

DESCRIPTION

OLIGONUCLEOTIDE MEDIATED INHIBITION OF HEPATITIS B VIRUS AND HEPATITIS C VIRUS REPLICATION

Background Of The Invention

This patent application claims priority from Blatt et al., USSN (09/817,879), filed March 26, 2001, which is a continuation-in-part of Blatt et al., USSN (09/740,332), filed December 18, 2000, which is a continuation-in-part of Blatt et al., USSN (09/611,931), filed July 7, 2000, which is a continuation-in-part of Blatt et al., 09/504,321, filed February 15, 2000, which is a continuation-in-part of Blatt et al., USSN 09/274,553, filed March 23, 1999, which is a continuation-in-part of Blatt et al., USSN 09/257,608, filed February 24, 1999 (abandoned), which claims priority from Blatt et al., USSN 60/100,842, filed September 18, 1998, and McSwiggen et al., USSN 60/083,217 filed April 27, 1998; all of these earlier applications are entitled "ENZYMATIC NUCLEIC ACID TREATMENT OF DISEASES OR CONDITIONS RELATED TO HEPATITIS C VIRUS INFECTION". This patent application also claims priority from Draper et al., USSN 09/877,478 filed June 8, 2001, which is a continuation-in-part of Draper et al., USSN (09/696,347), filed October 24, 2000, which is a continuation-in-part of Draper et al., USSN (09/636,385), filed August 9, 2000, which is a continuation in part of Draper et al., USSN (09/531,025), filed March 20, 2000, which is a continuation in part of Draper, USSN (09/436,430), filed November 8, 1999, which is a continuation of USSN (08/193,627), filed February 7, 1994, now US patent No. 6,017,756, which is a continuation of USSN (07/882,712), filed May 14, 1992, now abandoned; all of these earlier applications are entitled "METHOD AND REAGENT FOR INHIBITING HEPATITIS B VIRUS REPLICATION". This patent application also claims priority from Macejak et al., USSN (60/335,059), filed October 24, 2001, Macejak et al., USSN (60/296,876), filed June 8, 2001, and Morrissey et al., USSN (60/337,055), filed December 5, 2001. These applications are hereby incorporated by reference herein in their entireties, including the drawings.

The present invention concerns compounds, compositions, and methods for the study, diagnosis, and treatment of degenerative and disease states related to hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, replication and gene expression. Specifically, the invention relates to nucleic acid molecules used to modulate expression of HBV and HCV. In

Best Available Copy

addition, the instant invention relates to methods, models and systems for screening inhibitors of HBV and HCV replication and propagation.

The following is a discussion of relevant art pertaining to hepatitis B virus (HBV) and hepatitis C virus (HCV). The discussion is not meant to be complete and is provided only for understanding of the invention that follows. The summary is not an admission that any of the work described below is prior art to the claimed invention.

In 1989, the Hepatitis C Virus (HCV) was determined to be an RNA virus and was identified as the causative agent of most non-A non-B viral Hepatitis (Choo *et al.*, *Science*. 1989; 244:359-362). Unlike retroviruses such as HIV, HCV does not go through a DNA replication phase and no integrated forms of the viral genome into the host chromosome have been detected (Houghton *et al.*, *Hepatology* 1991;14:381-388). Rather, replication of the coding (plus) strand is mediated by the production of a replicative (minus) strand leading to the generation of several copies of plus strand HCV RNA. The genome consists of a single, large, open-reading frame that is translated into a polyprotein (Kato *et al.*, *FEBS Letters*. 1991; 280: 325-328). This polyprotein subsequently undergoes post-translational cleavage, producing several viral proteins (Leinbach *et al.*, *Virology*. 1994; 204:163-169).

Examination of the 9.5-kilobase genome of HCV has demonstrated that the viral nucleic acid can mutate at a high rate (Smith *et al.*, *Mol. Evol.* 1997 45:238-246). This rate of mutation has led to the evolution of several distinct genotypes of HCV that share approximately 70% sequence identity (Simmonds *et al.*, *J. Gen. Virol.* 1994;75 :1053-1061). It is important to note that these sequences are evolutionarily quite distant. For example, the genetic identity between humans and primates such as the chimpanzee is approximately 98%. In addition, it has been demonstrated that an HCV infection in an individual patient is composed of several distinct and evolving quasispecies that have 98% identity at the RNA level. Thus, the HCV genome is hypervariable and continuously changing. Although the HCV genome is hypervariable, there are 3 regions of the genome that are highly conserved. These conserved sequences occur in the 5' and 3' non-coding regions as well as the 5'-end of the core protein coding region and are thought to be vital for HCV RNA replication as well as translation of the HCV polyprotein. Thus, therapeutic agents that target these conserved HCV genomic regions can have a significant impact over a wide range of HCV genotypes. Moreover, it is unlikely that drug resistance will occur with enzymatic nucleic acids specific to conserved regions of the HCV genome. In contrast, therapeutic modalities that target inhibition of enzymes such as the viral proteases or helicase are likely to result in the selection for drug resistant strains since the RNA for these viral encoded enzymes is located in the hypervariable portion of the HCV genome.

After initial exposure to HCV, the patient experiences a transient rise in liver enzymes, which indicates the occurrence of inflammatory processes (Alter *et al.*, IN: Seeff LB, Lewis JH, eds. *Current Perspectives in Hepatology*. New York: Plenum Medical Book Co; 1989:83-89). This elevation in liver enzymes will occur at least 4 weeks after the initial exposure and can last for up to two months (Farci *et al.*, *New England Journal of Medicine*. 1991;325:98-104). Prior to the rise in liver enzymes, it is possible to detect HCV RNA in the patient's serum using RT-PCR analysis (Takahashi *et al.*, *American Journal of Gastroenterology*. 1993;88:2:240-243). This stage of the disease is called the acute stage and usually goes undetected since 75% of patients with acute viral hepatitis from HCV infection are asymptomatic. The remaining 25% of these patients develop jaundice or other symptoms of hepatitis.

Acute HCV infection is a benign disease, however, and as many as 80% of acute HCV patients progress to chronic liver disease as evidenced by persistent elevation of serum alanine aminotransferase (ALT) levels and by continual presence of circulating HCV RNA (Sherlock, *Lancet* 1992; 339:802). The natural progression of chronic HCV infection over a 10 to 20 year period leads to cirrhosis in 20 to 50% of patients (Davis *et al.*, *Infectious Agents and Disease* 1993;2:150:154) and progression of HCV infection to hepatocellular carcinoma has been well documented (Liang *et al.*, *Hepatology*. 1993; 18:1326-1333; Tong *et al.*, *Western Journal of Medicine*, 1994; Vol. 160, No. 2: 133-138). There have been no studies that have determined sub-populations that are most likely to progress to cirrhosis and/or hepatocellular carcinoma, thus all patients have equal risk of progression.

It is important to note that the survival for patients diagnosed with hepatocellular carcinoma is only 0.9 to 12.8 months from initial diagnosis (Takahashi *et al.*, *American Journal of Gastroenterology*. 1993;88:2:240-243). Treatment of hepatocellular carcinoma with chemotherapeutic agents has not proven effective and only 10% of patients will benefit from surgery due to extensive tumor invasion of the liver (Trinchet *et al.*, *Presse Medicine*. 1994;23:831-833). Given the aggressive nature of primary hepatocellular carcinoma, the only viable treatment alternative to surgery is liver transplantation (Pichlmayr *et al.*, *Hepatology*. 1994;20:33S-40S).

Upon progression to cirrhosis, patients with chronic HCV infection present with clinical features, which are common to clinical cirrhosis regardless of the initial cause (D'Amico *et al.*, *Digestive Diseases and Sciences*. 1986;31:5: 468-475). These clinical features can include: bleeding esophageal varices, ascites, jaundice, and encephalopathy (Zakim D, Boyer TD. *Hepatology* a textbook of liver disease. Second Edition Volume 1. 1990 W.B. Saunders Company. Philadelphia). In the early stages of cirrhosis, patients are classified as compensated, meaning that although liver tissue damage has occurred, the patient's liver is still able to detoxify metabolites in the blood-stream. In addition, most

patients with compensated liver disease are asymptomatic and the minority with symptoms report only minor symptoms such as dyspepsia and weakness. In the later stages of cirrhosis, patients are classified as decompensated meaning that their ability to detoxify metabolites in the bloodstream is diminished and it is at this stage that the clinical features described above will present.

In 1986, D'Amico *et al.* described the clinical manifestations and survival rates in 1155 patients with both alcoholic and viral associated cirrhosis (D'Amico *supra*). Of the 1155 patients, 435 (37%) had compensated disease although 70% were asymptomatic at the beginning of the study. The remaining 720 patients (63%) had decompensated liver disease with 78% presenting with a history of ascites, 31% with jaundice, 17% had bleeding and 16% had encephalopathy. Hepatocellular carcinoma was observed in six (.5%) patients with compensated disease and in 30 (2.6%) patients with decompensated disease.

Over the course of six years, the patients with compensated cirrhosis developed clinical features of decompensated disease at a rate of 10% per year. In most cases, ascites was the first presentation of decompensation. In addition, hepatocellular carcinoma developed in 59 patients who initially presented with compensated disease by the end of the six-year study.

With respect to survival, the D'Amico study indicated that the five-year survival rate for all patients on the study was only 40%. The six-year survival rate for the patients who initially had compensated cirrhosis was 54%, while the six-year survival rate for patients who initially presented with decompensated disease was only 21%. There were no significant differences in the survival rates between the patients who had alcoholic cirrhosis and the patients with viral related cirrhosis. The major causes of death for the patients in the D'Amico study were liver failure in 49%; hepatocellular carcinoma in 22%; and, bleeding in 13% (D'Amico *supra*).

Chronic Hepatitis C is a slowly progressing inflammatory disease of the liver, mediated by a virus (HCV) that can lead to cirrhosis, liver failure and/or hepatocellular carcinoma over a period of 10 to 20 years. In the US, it is estimated that infection with HCV accounts for 50,000 new cases of acute hepatitis in the United States each year (NIH Consensus Development Conference Statement on Management of Hepatitis C March 1997). The prevalence of HCV in the United States is estimated at 1.8% and the CDC places the number of chronically infected Americans at approximately 4.5 million people. The CDC also estimates that up to 10,000 deaths per year are caused by chronic HCV infection. The prevalence of HCV in the United States is estimated at 1.8% and the CDC places the number of chronically infected Americans at approximately 4.5 million people. The CDC also estimates that up to 10,000 deaths per year are caused by chronic HCV infection.

Numerous well controlled clinical trials using interferon (IFN-alpha) in the treatment of chronic HCV infection have demonstrated that treatment three times a week results in lowering of serum ALT values in approximately 50% (range 40% to 70%) of patients by the end of 6 months of therapy (Davis *et al.*, *New England Journal of Medicine* 1989; 321:1501-1506; Marcellin *et al.*, *Hepatology*. 1991; 13:393-397; Tong *et al.*, *Hepatology* 1997;26:747-754; Tong *et al.*, *Hepatology* 1997 26(6): 1640-1645). However, following cessation of interferon treatment, approximately 50% of the responding patients relapsed, resulting in a "durable" response rate as assessed by normalization of serum ALT concentrations of approximately 20 to 25%.

In recent years, direct measurement of the HCV RNA has become possible through use of either the branched-DNA or Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) analysis. In general, the RT-PCR methodology is more sensitive and leads to more accurate assessment of the clinical course (Tong *et al.*, *supra*). Studies that have examined six months of type 1 interferon therapy using changes in HCV RNA values as a clinical endpoint have demonstrated that up to 35% of patients will have a loss of HCV RNA by the end of therapy (Marcellin *et al.*, *supra*). However, as with the ALT endpoint, about 50% of the patients relapse six months following cessation of therapy resulting in a durable virologic response of only 12% (Marcellin *et al.*, *supra*). Studies that have examined 48 weeks of therapy have demonstrated that the sustained virological response is up to 25% (NIH consensus statement: 1997). Thus, standard of care for treatment of chronic HCV infection with type 1 interferon is now 48 weeks of therapy using changes in HCV RNA concentrations as the primary assessment of efficacy (Hoofnagle *et al.*, *New England Journal of Medicine* 1997; 336(5) 347-356).

Side effects resulting from treatment with type 1 interferons can be divided into four general categories, which include 1. Influenza-like symptoms; 2. Neuropsychiatric; 3. Laboratory abnormalities; and, 4. Miscellaneous (Dusheiko *et al.*, *Journal of Viral Hepatitis*. 1994;1:3-5). Examples of influenza-like symptoms include; fatigue, fever; myalgia; malaise; appetite loss; tachycardia; rigors; headache and arthralgias. The influenza-like symptoms are usually short-lived and tend to abate after the first four weeks of dosing (Dusheiko *et al.*, *supra*). Neuropsychiatric side effects include: irritability, apathy; mood changes; insomnia; cognitive changes and depression. The most important of these neuropsychiatric side effects is depression and patients who have a history of depression should not be given type 1 interferon. Laboratory abnormalities include; reduction in myeloid cells including granulocytes, platelets and to a lesser extent red blood cells. These changes in blood cell counts rarely lead to any significant clinical sequelae (Dusheiko *et al.*, *supra*). In addition, increases in triglyceride concentrations and elevations in serum alanine and aspartate aminotransferase concentration have been observed. Finally, thyroid abnormalities have been reported. These thyroid abnormalities are usually reversible after cessation of interferon

therapy and can be controlled with appropriate medication while on therapy. Miscellaneous side effects include nausea; diarrhea; abdominal and back pain; pruritus; alopecia; and rhinorrhea. In general, most side effects will abate after 4 to 8 weeks of therapy (*Dushieko et al., supra*).

Type 1 Interferon is a key constituent of many treatment programs for chronic HCV infection. Treatment with type 1 interferon induces a number of genes and results in an antiviral state within the cell. One of the genes induced is 2', 5' oligoadenylate synthetase, an enzyme that synthesizes short 2', 5' oligoadenylate (2-5A) molecules. Nascent 2-5A subsequently activates a latent RNase, RNase L, which in turn nonspecifically degrades viral RNA.

Chronic hepatitis B is caused by an enveloped virus, commonly known as the hepatitis B virus or HBV. HBV is transmitted via infected blood or other body fluids, especially saliva and semen, during delivery, sexual activity, or sharing of needles contaminated by infected blood. Individuals may be "carriers" and transmit the infection to others without ever having experienced symptoms of the disease. Persons at highest risk are those with multiple sex partners, those with a history of sexually transmitted diseases, parenteral drug users, infants born to infected mothers, "close" contacts or sexual partners of infected persons, and healthcare personnel or other service employees who have contact with blood. Transmission is also possible via tattooing, ear or body piercing, and acupuncture; the virus is also stable on razors, toothbrushes, baby bottles, eating utensils, and some hospital equipment such as respirators, scopes and instruments. There is no evidence that HBsAg positive food handlers pose a health risk in an occupational setting, nor should they be excluded from work. Hepatitis B has never been documented as being a food-borne disease. The average incubation period is 60 to 90 days, with a range of 45 to 180; the number of days appears to be related to the amount of virus to which the person was exposed. However, determining the length of incubation is difficult, since onset of symptoms is insidious. Approximately 50% of patients develop symptoms of acute hepatitis that last from 1 to 4 weeks. Two percent or less of these individuals develop fulminant hepatitis resulting in liver failure and death.

The determinants of severity include: (1) The size of the dose to which the person was exposed; (2) the person's age with younger patients experiencing a milder form of the disease; (3) the status of the immune system with those who are immunosuppressed experiencing milder cases; and (4) the presence or absence of co-infection with the Delta virus (hepatitis D), with more severe cases resulting from co-infection. In symptomatic cases, clinical signs include loss of appetite, nausea, vomiting, abdominal pain in the right upper quadrant, arthralgia, and tiredness/loss of energy. Jaundice is not experienced in all

cases, however, jaundice is more likely to occur if the infection is due to transfusion or percutaneous serum transfer, and it is accompanied by mild pruritus in some patients. Bilirubin elevations are demonstrated in dark urine and clay-colored stools, and liver enlargement may occur accompanied by right upper-quadrant pain. The acute phase of the disease may be accompanied by severe depression, meningitis, Guillain-Barré syndrome, myelitis, encephalitis, agranulocytosis, and/or thrombocytopenia.

Hepatitis B is generally self-limiting and will resolve in approximately 6 months. Asymptomatic cases can be detected by serologic testing, since the presence of the virus leads to production of large amounts of HBsAg in the blood. This antigen is the first and most useful diagnostic marker for active infections. However, if HBsAg remains positive for 20 weeks or longer, the person is likely to remain positive indefinitely and is now a carrier. While only 10% of persons over age 6 who contract HBV become carriers, 90% of infants infected during the first year of life do so.

Hepatitis B virus (HBV) infects over 300 million people worldwide (Imperial, 1999, *Gastroenterol. Hepatol.*, 14 (suppl), S1-5). In the United States, approximately 1.25 million individuals are chronic carriers of HBV as evidenced by the fact that they have measurable hepatitis B virus surface antigen HBsAg in their blood. The risk of becoming a chronic HBsAg carrier is dependent upon the mode of acquisition of infection as well as the age of the individual at the time of infection. For those individuals with high levels of viral replication, chronic active hepatitis with progression to cirrhosis, liver failure and hepatocellular carcinoma (HCC) is common, and liver transplantation is the only treatment option for patients with end-stage liver disease from HBV.

The natural progression of chronic HBV infection over a 10 to 20 year period leads to cirrhosis in 20-to-50% of patients and progression of HBV infection to hepatocellular carcinoma has been well documented. There have been no studies that have determined sub-populations that are most likely to progress to cirrhosis and/or hepatocellular carcinoma, thus all patients have equal risk of progression.

It is important to note that the survival for patients diagnosed with hepatocellular carcinoma is only 0.9 to 12.8 months from initial diagnosis (Takahashi *et al.*, 1993, *American Journal of Gastroenterology*, 88, 240-243). Treatment of hepatocellular carcinoma with chemotherapeutic agents has not proven effective and only 10% of patients will benefit from surgery due to extensive tumor invasion of the liver (Trinchet *et al.*, 1994, *Presse Medicine*, 23, 831-833). Given the aggressive nature of primary hepatocellular carcinoma, the only viable treatment alternative to surgery is liver transplantation (Pichlmayr *et al.*, 1994, *Hepatology*, 20, 33S-40S).

Upon progression to cirrhosis, patients with chronic HCV and HBV infection present with clinical features, which are common to clinical cirrhosis regardless of the initial cause (D'Amico *et al.*, 1986, *Digestive Diseases and Sciences*, 31, 468-475). These clinical features may include: bleeding esophageal varices, ascites, jaundice, and encephalopathy (Zakim D, Boyer TD. *Hepatology a textbook of liver disease*, Second Edition Volume 1. 1990 W.B. Saunders Company. Philadelphia). In the early stages of cirrhosis, patients are classified as compensated, meaning that although liver tissue damage has occurred, the patient's liver is still able to detoxify metabolites in the blood-stream. In addition, most patients with compensated liver disease are asymptomatic and the minority with symptoms report only minor symptoms such as dyspepsia and weakness. In the later stages of cirrhosis, patients are classified as decompensated meaning that their ability to detoxify metabolites in the bloodstream is diminished and it is at this stage that the clinical features described above will present.

In 1986, D'Amico *et al.* described the clinical manifestations and survival rates in 1155 patients with both alcoholic and viral associated cirrhosis (D'Amico *supra*). Of the 1155 patients, 435 (37%) had compensated disease although 70% were asymptomatic at the beginning of the study. The remaining 720 patients (63%) had decompensated liver disease with 78% presenting with a history of ascites, 31% with jaundice, 17% had bleeding and 16% had encephalopathy. Hepatocellular carcinoma was observed in six (0.5%) patients with compensated disease and in 30 (2.6%) patients with decompensated disease.

Over the course of six years, the patients with compensated cirrhosis developed clinical features of decompensated disease at a rate of 10% per year. In most cases, ascites was the first presentation of decompensation. In addition, hepatocellular carcinoma developed in 59 patients who initially presented with compensated disease by the end of the six-year study.

With respect to survival, the D'Amico study indicated that the five-year survival rate for all patients on the study was only 40%. The six-year survival rate for the patients who initially had compensated cirrhosis was 54% while the six-year survival rate for patients who initially presented with decompensated disease was only 21%. There were no significant differences in the survival rates between the patients who had alcoholic cirrhosis and the patients with viral related cirrhosis. The major causes of death for the patients in the D'Amico study were liver failure in 49%; hepatocellular carcinoma in 22%; and, bleeding in 13% (D'Amico *supra*).

Hepatitis B virus is a double-stranded circular DNA virus. It is a member of the Hepadnaviridae family. The virus consists of a central core that contains a core antigen (HBcAg) surrounded by an envelope containing a surface protein/surface antigen (HBsAg)

and is 42 nm in diameter. It also contains an e antigen (HBeAg), which, along with HBcAg and HBsAg, is helpful in identifying this disease.

In HBV virions, the genome is found in an incomplete double-stranded form. HBV uses a reverse transcriptase to transcribe a positive-sense full length RNA version of its genome back into DNA. This reverse transcriptase also contains DNA polymerase activity and thus begins replicating the newly synthesized minus-sense DNA strand. However, it appears that the core protein encapsidates the reverse-transcriptase/polymerase before it completes replication.

From the free-floating form, the virus must first attach itself specifically to a host cell membrane. Viral attachment is one of the crucial steps that determines host and tissue specificity. However, currently there are no *in vitro* cell-lines that can be infected by HBV. There are some cell lines, such as HepG2, which can support viral replication only upon transient or stable transfection using HBV DNA.

After attachment, fusion of the viral envelope and host membrane must occur to allow the viral core proteins containing the genome and polymerase to enter the cell. Once inside, the genome is translocated to the nucleus where it is repaired and cyclized.

The complete closed circular DNA genome of HBV remains in the nucleus and gives rise to four transcripts. These transcripts initiate at unique sites but share the same 3'-ends. The 3.5-kb pregenomic RNA serves as a template for reverse transcription and also encodes the nucleocapsid protein and polymerase. A subclass of this transcript with a 5'-end extension codes for the precore protein that, after processing, is secreted as HBV e antigen. The 2.4-kb RNA encompasses the pre-S1 open reading frame (ORF) that encodes the large surface protein. The 2.1-kb RNA encompasses the pre-S2 and S ORFs that encode the middle and small surface proteins, respectively. The smallest transcript (~0.8-kb) codes for the X protein, a transcriptional activator.

Multiplication of the HBV genome begins within the nucleus of an infected cell. RNA polymerase II transcribes the circular HBV DNA into greater-than-full length mRNA. Since the mRNA is longer than the actual complete circular DNA, redundant ends are formed. Once produced, the pregenomic RNA exits the nucleus and enters the cytoplasm.

The packaging of pregenomic RNA into core particles is triggered by the binding of the HBV polymerase to the 5' epsilon stem-loop. RNA encapsidation is believed to occur as soon as binding occurs. The HBV polymerase also appears to require associated core protein in order to function. The HBV polymerase initiates reverse transcription from the 5' epsilon stem-loop three to four base pairs at which point the polymerase and attached nascent DNA

are transferred to the 3' copy of the DR1 region. Once there, the (-)DNA is extended by the HBV polymerase while the RNA template is degraded by the HBV polymerase RNase H activity. When the HBV polymerase reaches the 5' end, a small stretch of RNA is left undigested by the RNase H activity. This segment of RNA is comprised of a small sequence just upstream and including the DR1 region. The RNA oligomer is then translocated and annealed to the DR2 region at the 5' end of the (-)DNA. It is used as a primer for the (+)DNA synthesis which is also generated by the HBV polymerase. It appears that the reverse transcription as well as plus strand synthesis may occur in the completed core particle.

Since the pregenomic RNA is required as a template for DNA synthesis, this RNA is an excellent target for nucleic acid based therapeutics. Nucleoside analogues that have been documented to modulate HBV replication target the reverse transcriptase activity needed to convert the pregenomic RNA into DNA. Nucleic acid decoy and aptamer modulation of HBV reverse transcriptase would be expected to result in a similar modulation of HBV replication.

Current therapeutic goals of treatment are three-fold: to eliminate infectivity and transmission of HBV to others, to arrest the progression of liver disease and improve the clinical prognosis, and to prevent the development of hepatocellular carcinoma (HCC).

Interferon alpha use is the most common therapy for HBV; however, recently Lamivudine (3TC®) has been approved by the FDA. Interferon alpha (IFN-alpha) is one treatment for chronic hepatitis B. The standard duration of IFN-alpha therapy is 16 weeks, however, the optimal treatment length is still poorly defined. A complete response (HBV DNA negative HBeAg negative) occurs in approximately 25% of patients. Several factors have been identified that predict a favorable response to therapy including: High ALT, low HBV DNA, being female, and heterosexual orientation.

There is also a risk of reactivation of the hepatitis B virus even after a successful response, this occurs in around 5% of responders and normally occurs within 1 year.

Side effects resulting from treatment with type 1 interferons can be divided into four general categories including: Influenza-like symptoms, neuropsychiatric, laboratory abnormalities, and other miscellaneous side effects. Examples of influenza-like symptoms include, fatigue, fever, myalgia, malaise, appetite loss, tachycardia, rigors, headache and arthralgias. The influenza-like symptoms are usually short-lived and tend to abate after the first four weeks of dosing (Dusheiko *et al.*, 1994, *Journal of Viral Hepatitis*, 1, 3-5). Neuropsychiatric side effects include irritability, apathy, mood changes, insomnia, cognitive

changes, and depression. Laboratory abnormalities include the reduction of myeloid cells, including granulocytes, platelets and to a lesser extent, red blood cells. These changes in blood cell counts rarely lead to any significant clinical sequellae. In addition, increases in triglyceride concentrations and elevations in serum alanine and aspartate aminotransferase concentration have been observed. Finally, thyroid abnormalities have been reported. These thyroid abnormalities are usually reversible after cessation of interferon therapy and can be controlled with appropriate medication while on therapy. Miscellaneous side effects include nausea, diarrhea, abdominal and back pain, pruritus, alopecia, and rhinorrhea. In general, most side effects will abate after 4 to 8 weeks of therapy (Dushieko *et al.*, *supra*).

Lamivudine (3TC®) is a nucleoside analogue, which is a very potent and specific inhibitor of HBV DNA synthesis. Lamivudine has recently been approved for the treatment of chronic Hepatitis B. Unlike treatment with interferon, treatment with 3TC® does not eliminate the HBV from the patient. Rather, viral replication is controlled and chronic administration results in improvements in liver histology in over 50% of patients. Phase III studies with 3TC®, showed that treatment for one year was associated with reduced liver inflammation and a delay in scarring of the liver. In addition, patients treated with Lamivudine (100mg per day) had a 98 percent reduction in hepatitis B DNA and a significantly higher rate of seroconversion, suggesting disease improvements after completion of therapy. However, stopping of therapy resulted in a reactivation of HBV replication in most patients. In addition recent reports have documented 3TC® resistance in approximately 30% of patients.

Current therapies for treating HBV infection, including interferon and nucleoside analogues, are only partially effective. In addition, drug resistance to nucleoside analogues is now emerging, making treatment of chronic Hepatitis B more difficult. Thus, a need exists for effective treatment of this disease that utilizes antiviral modulators that work by mechanisms other than those currently utilized in the treatment of both acute and chronic hepatitis B infections.

Welch *et al.*, *Gene Therapy* 1996 3(11): 994-1001 describe *in vitro* and *in vivo* studies with two vector expressed hairpin ribozymes targeted against hepatitis C virus.

Sakamoto *et al.*, *J. Clinical Investigation* 1996 98(12): 2720-2728 describe intracellular cleavage of hepatitis C virus RNA and inhibition of viral protein translation by certain vector expressed hammerhead ribozymes.

Lieber *et al.*, *J. Virology* 1996 70(12): 8782-8791 describe elimination of hepatitis C virus RNA in infected human hepatocytes by adenovirus-mediated expression of certain hammerhead ribozymes.

Ohkawa *et al.*, 1997, *J. Hepatology*, 27; 78-84, describe *in vitro* cleavage of HCV RNA and inhibition of viral protein translation using certain *in vitro* transcribed hammerhead ribozymes.

Barber *et al.*, International PCT Publication No. WO 97/32018, describe the use of an adenovirus vector to express certain anti-hepatitis C virus hairpin ribozymes.

Kay *et al.*, International PCT Publication No. WO 96/18419, describe certain recombinant adenovirus vectors to express anti-HCV hammerhead ribozymes.

Yamada *et al.*, Japanese Patent Application No. JP 07231784 describe a specific poly-(L)-lysine conjugated hammerhead ribozyme targeted against HCV.

Draper, U.S. Patent Nos. 5,610,054 and 5,869,253, describes enzymatic nucleic acid molecules capable of inhibiting replication of HCV.

Macejak *et al.*, 2000, *Hepatology*, 31, 769-776, describe enzymatic nucleic acid molecules capable of inhibiting replication of HCV.

Weifeng and Torrence, 1997, *Nucleosides and Nucleotides*, 16, 7-9, describe the synthesis of 2'-5'A antisense chimeras with various non-nucleoside components.

Torrence *et al.*, US patent No. 5,583,032 describe targeted cleavage of RNA using an antisense oligonucleotide linked to a 2',5'-oligoadenylate activator of RNase L.

Suhadolnik and Pfleiderer, US patent Nos. 5,863,905; 5,700,785; 5,643,889; 5,556,840; 5,550,111; 5,405,939; 5,188,897; 4,924,624; and 4,859,768 describe specific internucleotide phosphorothioate 2',5'-oligoadenylates and 2',5'-oligoadenylate conjugates.

Budowsky *et al.*, US patent No. 5,962,431 describe a method of treating papillomavirus using specific 2',5'-oligoadenylylates.

Torrence *et al.*, International PCT publication No. WO 00/14219, describe specific peptide nucleic acid 2',5'-oligoadenylate chimeric molecules.

Stinchcomb *et al.*, US patent No. 5,817,796, describe C-myb ribozymes having 2'-5'-Linked Adenylate Residues.

Draper, US patent No. 6,017,756, describes the use of ribozymes for the inhibition of Hepatitis B Virus.

Passman *et al.*, 2000, *Biochem. Biophys. Res. Commun.*, 268(3), 728-733.; Gan *et al.*, 1998, *J. Med. Coll. PLA*, 13(3), 157-159.; Li *et al.*, 1999, *Jiefangjun Yixue Zazhi*, 24(2), 99-

101.; Prtlitz *et al.*, 1999, *J. Virol.*, 73(7), 5381-5387.; Kim *et al.*, 1999, *Biochem. Biophys. Res. Commun.*, 257(3), 759-765.; Xu *et al.*, 1998, *Bingdu Xuebao*, 14(4), 365-369.; Welch *et al.*, 1997, *Gene Ther.*, 4(7), 736-743.; Goldenberg *et al.*, 1997, International PCT publication No. WO 97/08309, Wands *et al.*, 1997, *J. of Gastroenterology and Hepatology*, 12(suppl.), S354-S369.; Ruiz *et al.*, 1997, *BioTechniques*, 22(2), 338-345.; Gan *et al.*, 1996, *J. Med. Coll. PLA*, 11(3), 171-175.; Beck and Nassal, 1995, *Nucleic Acids Res.*, 23(24), 4954-62.; Goldenberg, 1995, International PCT publication No. WO 95/22600.; Xu *et al.*, 1993, *Bingdu Xuebao*, 9(4), 331-6.; Wang *et al.*, 1993, *Bingdu Xuebao*, 9(3), 278-80, all describe ribozymes that are targeted to cleave a specific HBV target site.

Hunt *et al.*, US patent No. 5,859,226, describes specific non-naturally occurring oligonucleotide decoys intended to inhibit the expression of MHC-II genes through binding of the RF-X transcription factor, that can inhibit the expression of certain HBV and CMV viral proteins.

Kao *et al.*, International PCT Publication No. WO 00/04141, describes linear single stranded nucleic acid molecules capable of specifically binding to viral polymerases and inhibiting the activity of the viral polymerase.

Lu, International PCT Publication No. WO 99/20641, describes specific triplex-forming oligonucleotides used in treating HBV infection.

SUMMARY OF THE INVENTION

This invention relates to enzymatic nucleic acid molecules that can disrupt the function of RNA species of hepatitis B virus (HBV), hepatitis C virus (HCV) and/or those RNA species encoded by HBV or HCV. In particular, applicant provides enzymatic nucleic acid molecules capable of specifically cleaving HBV RNA or HCV RNA and describes the selection and function thereof. Such enzymatic nucleic acid molecules can be used to treat diseases and disorders associated with HBV and HCV infection.

In one embodiment, the invention features an enzymatic nucleic acid molecule that specifically cleaves RNA derived from hepatitis B virus (HBV), wherein the enzymatic nucleic acid molecule comprises sequence defined as Seq. ID No. 10887.

In another embodiment, the invention features a composition comprising an enzymatic nucleic acid molecule of the invention and a pharmaceutically acceptable carrier.

In another embodiment, the invention features a mammalian cell, for example a human cell, comprising an enzymatic nucleic acid molecule contemplated by the invention.

In one embodiment, the invention features a method for the treatment of cirrhosis, liver failure or hepatocellular carcinoma comprising administering to a patient an enzymatic nucleic acid molecule of the invention under conditions suitable for the treatment.

In another embodiment, the invention features a method for the treatment of a patient having a condition associated with HBV and/or HCV infection, comprising contacting cells of said patient with an enzymatic nucleic acid molecule of the invention.

In another embodiment, the invention features a method for the treatment of a patient having a condition associated with HBV and/or HCV infection, comprising contacting cells of said patient with an enzymatic nucleic acid molecule of the invention and further comprising the use of one or more drug therapies, for example, type I interferon or 3TC® (lamivudine), under conditions suitable for said treatment. In another embodiment, the other therapy is administered simultaneously with or separately from the enzymatic nucleic acid molecule.

In another embodiment, the invention features a method for inhibiting HBV and/or HCV replication in a mammalian cell comprising administering to the cell an enzymatic nucleic acid molecule of the invention under conditions suitable for the inhibition.

In yet another embodiment, the invention features a method of cleaving a separate HBV and/or HCV RNA comprising contacting an enzymatic nucleic acid molecule of the invention with the separate RNA under conditions suitable for the cleavage of the separate RNA.

In one embodiment, cleavage by an enzymatic nucleic acid molecule of the invention is carried out in the presence of a divalent cation, for example Mg²⁺.

In another embodiment, the enzymatic nucleic acid molecule of the invention is chemically synthesized.

In another embodiment, the type I interferon contemplated by the invention is interferon alpha, interferon beta, polyethylene glycol interferon, polyethylene glycol interferon alpha 2a, polyethylene glycol interferon alpha 2b, polyethylene glycol consensus interferon.

In one embodiment, the invention features a composition comprising type I interferon and an enzymatic nucleic acid molecule of the invention and a pharmaceutically acceptable carrier.

In another embodiment, the invention features a method of administering to a cell, for example a mammalian cell or human cell, an enzymatic nucleic acid molecule of the

invention independently or in conjunction with other therapeutic compounds, such as type I interferon or 3TC® (lamivudine), comprising contacting the cell with the enzymatic nucleic acid molecule under conditions suitable for the administration.

In another embodiment, administration of an enzymatic nucleic acid molecule of the invention is in the presence of a delivery reagent, for example a lipid, cationic lipid, phospholipid, or liposome.

In another embodiment, the invention features novel nucleic acid-based techniques such as enzymatic nucleic acid molecules and antisense molecules and methods for their use to down regulate or inhibit the expression of HBV RNA and/or replication of HBV.

In another embodiment, the invention features novel nucleic acid-based techniques such as enzymatic nucleic acid molecules and antisense molecules and methods for their use to down regulate or inhibit the expression of HCV RNA and/or replication of HCV.

In one embodiment, the invention features the use of one or more of the enzymatic nucleic acid-based techniques to down-regulate or inhibit the expression of the genes encoding HBV and/or HCV viral proteins. Specifically, the invention features the use of enzymatic nucleic acid-based techniques to specifically down-regulate or inhibit the expression of the HBV and/or HCV viral genome.

In another embodiment, the invention features nucleic acid-based inhibitors (*e.g.*, enzymatic nucleic acid molecules (ribozymes), antisense nucleic acids, triplex DNA, decoys, siRNA, aptamers, and antisense nucleic acids containing RNA cleaving chemical groups) and methods for their use to down regulate or inhibit the expression of RNA (*e.g.*, HBV and/or HCV) capable of progression and/or maintenance of hepatitis, hepatocellular carcinoma, cirrhosis, and/or liver failure.

In one embodiment, nucleic acid molecules of the invention are used to treat HBV infected cells or an HBV infected patient wherein the HBV is resistant or the patient does not respond to treatment with 3TC® (Lamivudine), either alone or in combination with other therapies under conditions suitable for the treatment.

In yet another embodiment, the invention features the use of an enzymatic nucleic acid molecule, preferably in the hammerhead, NCH (Inozyme), G-cleaver, amberzyme, zinzyme, and/or DNAzyme motif, to inhibit the expression of HBV and/or HCV RNA.

The enzymatic nucleic acid molecules described herein exhibit a high degree of specificity for only the viral mRNA in infected cells. Nucleic acid molecules of the instant invention targeted to highly conserved sequence regions allow the treatment of many strains

of human HBV and/or HCV with a single compound. No treatment presently exists which specifically attacks expression of the viral gene(s) that are responsible for transformation of hepatocytes by HBV and/or HCV.

The enzymatic nucleic acid-based modulators of HBV and HCV expression are useful for the prevention of the diseases and conditions including HBV and HCV infection, hepatitis, cancer, cirrhosis, liver failure, and any other diseases or conditions that are related to the levels of HBV and/or HCV in a cell or tissue.

Preferred target sites are genes required for viral replication, a non-limiting example includes genes for protein synthesis, such as the 5' most 1500 nucleotides of the HBV pregenomic mRNAs. For sequence references, see Renbao *et al.*, 1987, *Sci. Sin.*, 30, 507. This region controls the translational expression of the core protein (C), X protein (X) and DNA polymerase (P) genes and plays a role in the replication of the viral DNA by serving as a template for reverse transcriptase. Disruption of this region in the RNA results in deficient protein synthesis as well as incomplete DNA synthesis (and inhibition of transcription from the defective genomes). Targeting sequences 5' of the encapsidation site can result in the inclusion of the disrupted 3' RNA within the core virion structure and targeting sequences 3' of the encapsidation site can result in the reduction in protein expression from both the 3' and 5' fragments.

Alternative regions outside of the 5' most 1500 nucleotides of the pregenomic mRNA also make suitable targets for enzymatic nucleic acid mediated inhibition of HBV replication. Such targets include the mRNA regions that encode the viral S gene. Selection of particular target regions will depend upon the secondary structure of the pregenomic mRNA. Targets in the minor mRNAs can also be used, especially when folding or accessibility assays in these other RNAs reveal additional target sequences that are unavailable in the pregenomic mRNA species.

A desirable target in the pregenomic RNA is a proposed bipartite stem-loop structure in the 3'-end of the pregenomic RNA which is believed to be critical for viral replication (Kidd and Kidd-Ljunggren, 1996. *Nuc. Acid Res.* 24:3295-3302). The 5'end of the HBV pregenomic RNA carries a *cis*-acting encapsidation signal, which has inverted repeat sequences that are thought to form a bipartite stem-loop structure. Due to a terminal redundancy in the pregenomic RNA, the putative stem-loop also occurs at the 3'-end. While it is the 5' copy which functions in polymerase binding and encapsidation, reverse transcription actually begins from the 3' stem-loop. To start reverse transcription, a 4 nt primer which is covalently attached to the polymerase is made, using a bulge in the 5' encapsidation signal as template. This primer is then shifted, by an unknown mechanism, to the DR1 primer binding site in the 3' stem-loop structure, and reverse transcription proceeds

from that point. The 3' stem-loop, and especially the DR1 primer binding site, appear to be highly effective targets for ribozyme intervention.

Sequences of the pregenomic RNA are shared by the mRNAs for surface, core, polymerase, and X proteins. Due to the overlapping nature of the HBV transcripts, all share a common 3'-end. Enzymatic nucleic acids targeting of this common 3'-end will thus cleave the pregenomic RNA as well as all of the mRNAs for surface, core, polymerase and X proteins.

At least seven basic varieties of naturally-occurring enzymatic RNAs are known presently. Each can catalyze the hydrolysis of RNA phosphodiester bonds in *trans* (and thus can cleave other RNA molecules) under physiological conditions. **Table I** summarizes some of the characteristics of these enzymatic RNA molecules. In general, enzymatic nucleic acids act by first binding to a target RNA. Such binding occurs through the target binding portion of a enzymatic nucleic acid which is held in close proximity to an enzymatic portion of the molecule that acts to cleave the target RNA. Thus, the enzymatic nucleic acid first recognizes and then binds a target RNA through complementary base-pairing, and once bound to the correct site, acts enzymatically to cut the target RNA. Strategic cleavage of such a target RNA will destroy its ability to direct synthesis of an encoded protein. After an enzymatic nucleic acid has bound and cleaved its RNA target, it is released from that RNA to search for another target and can repeatedly bind and cleave new targets. Thus, a single enzymatic nucleic acid molecule is able to cleave many molecules of target RNA. In addition, the enzymatic nucleic acid is a highly specific inhibitor of gene expression, with the specificity of inhibition depending not only on the base-pairing mechanism of binding to the target RNA, but also on the mechanism of target RNA cleavage. Single mismatches, or base-substitutions, near the site of cleavage can completely eliminate catalytic activity of a an enzymatic nucleic acid molecule.

The enzymatic nucleic acid molecules that cleave the specified sites in HBV-specific RNAs represent a novel therapeutic approach to treat a variety of pathologic indications, including, HBV infection, hepatitis, hepatocellular carcinoma, tumorigenesis, cirrhosis, liver failure and other conditions related to the level of HBV.

In one of the preferred embodiments of the inventions described herein, the enzymatic nucleic acid molecule is formed in a hammerhead or hairpin motif, but can also be formed in the motif of a hepatitis delta virus, group I intron, group II intron or RNase P RNA (in association with an RNA guide sequence), *Neurospora* VS RNA, DNAzymes, NCH cleaving motifs, or G-cleavers. Examples of such hammerhead motifs are described by Dreyfus, *supra*, Rossi *et al.*, 1992, *AIDS Research and Human Retroviruses* 8, 183. Examples of hairpin motifs are described by Hampel *et al.*, EP0360257, Hampel and Tritz, 1989

Biochemistry 28, 4929, Feldstein *et al.*, 1989, *Gene* 82, 53, Haseloff and Gerlach, 1989, *Gene*, 82, 43, Hampel *et al.*, 1990 *Nucleic Acids Res.* 18, 299; and Chowrira & McSwiggen, US. Patent No. 5,631,359. The hepatitis delta virus motif is described by Perrotta and Been, 1992 *Biochemistry* 31, 16. The RNase P motif is described by Guerrier-Takada *et al.*, 1983 *Cell* 35, 849; Forster and Altman, 1990, *Science* 249, 783; and Li and Altman, 1996, *Nucleic Acids Res.* 24, 835. The *Neurospora* VS RNA ribozyme motif is described by Collins (Saville and Collins, 1990 *Cell* 61, 685-696; Saville and Collins, 1991 *Proc. Natl. Acad. Sci. USA* 88, 8826-8830; Collins and Olive, 1993 *Biochemistry* 32, 2795-2799; and Guo and Collins, 1995, *EMBO J.* 14, 363). Group II introns are described by Griffin *et al.*, 1995, *Chem. Biol.* 2, 761; Michels and Pyle, 1995, *Biochemistry* 34, 2965; and Pyle *et al.*, International PCT Publication No. WO 96/22689. The Group I intron is described by Cech *et al.*, U.S. Patent 4,987,071. DNAzymes are described by Usman *et al.*, International PCT Publication No. WO 95/11304; Chartrand *et al.*, 1995, *NAR* 23, 4092; Breaker *et al.*, 1995, *Chem. Bio.* 2, 655; and Santoro *et al.*, 1997, *PNAS* 94, 4262. NCH cleaving motifs are described in Ludwig & Sproat, International PCT Publication No. WO 98/58058; and G-cleavers are described in Kore *et al.*, 1998, *Nucleic Acids Research* 26, 4116-4120 and Eckstein *et al.*, International PCT Publication No. WO 99/16871. Additional motifs include the Aptazyme (Breaker *et al.*, WO 98/43993), Amberzyme (Class I motif; **Figure 3**; Beigelman *et al.*, International PCT publication No. WO 99/55857) and Zinzyme (Beigelman *et al.*, International PCT publication No. WO 99/55857), all these references are incorporated by reference herein in their totalities, including drawings and can also be used in the present invention. These specific motifs are not limiting in the invention and those skilled in the art will recognize that all that is important in an enzymatic nucleic acid molecule of this invention is that it has a specific substrate binding site which is complementary to one or more of the target gene RNA regions, and that it have nucleotide sequences within or surrounding that substrate binding site which impart an RNA cleaving activity to the molecule (Cech *et al.*, U.S. Patent No. 4,987,071).

In preferred embodiments of the present invention, a nucleic acid molecule, *e.g.*, an antisense molecule, a triplex DNA, or a ribozyme, is 13 to 100 nucleotides in length, *e.g.*, in specific embodiments 35, 36, 37, or 38 nucleotides in length (*e.g.*, for particular ribozymes or antisense). In particular embodiments, the nucleic acid molecule is 15-100, 17-100, 20-100, 21-100, 23-100, 25-100, 27-100, 30-100, 32-100, 35-100, 40-100, 50-100, 60-100, 70-100, or 80-100 nucleotides in length. Instead of 100 nucleotides being the upper limit on the length ranges specified above, the upper limit of the length range can be, for example, 30, 40, 50, 60, 70, or 80 nucleotides. Thus, for any of the length ranges, the length range for particular embodiments has lower limit as specified, with an upper limit as specified which is greater than the lower limit. For example, in a particular embodiment, the length range can be 35-50 nucleotides in length. All such ranges are expressly included. Also in particular

embodiments, a nucleic acid molecule can have a length which is any of the lengths specified above, for example, 21 nucleotides in length.

Exemplary enzymatic nucleic acid molecules of the invention targeting HBV are shown in **Tables V-XI**. For example, enzymatic nucleic acid molecules of the invention are preferably between 15 and 50 nucleotides in length, more preferably between 25 and 40 nucleotides in length, e.g., 34, 36, or 38 nucleotides in length (for example see Jarvis *et al.*, 1996, *J. Biol. Chem.*, 271, 29107-29112). Exemplary DNAzymes of the invention are preferably between 15 and 40 nucleotides in length, more preferably between 25 and 35 nucleotides in length, e.g., 29, 30, 31, or 32 nucleotides in length (see for example Santoro *et al.*, 1998, *Biochemistry*, 37, 13330-13342; Chartrand *et al.*, 1995, *Nucleic Acids Research*, 23, 4092-4096). Exemplary antisense molecules of the invention are preferably between 15 and 75 nucleotides in length, more preferably between 20 and 35 nucleotides in length, e.g., 25, 26, 27, or 28 nucleotides in length (see for example Woolf *et al.*, 1992, *PNAS*, 89, 7305-7309; Milner *et al.*, 1997, *Nature Biotechnology*, 15, 537-541). Exemplary triplex forming oligonucleotide molecules of the invention are preferably between 10 and 40 nucleotides in length, more preferably between 12 and 25 nucleotides in length, e.g., 18, 19, 20, or 21 nucleotides in length (see for example Maher *et al.*, 1990, *Biochemistry*, 29, 8820-8826; Strobel and Dervan, 1990, *Science*, 249, 73-75). Those skilled in the art will recognize that all that is required is for the nucleic acid molecule are of length and conformation sufficient and suitable for the nucleic acid molecule to catalyze a reaction contemplated herein. The length of the nucleic acid molecules of the instant invention are not limiting within the general limits stated.

In a preferred embodiment, the invention provides a method for producing a class of nucleic acid-based gene inhibiting agents which exhibit a high degree of specificity for the RNA of a desired target. For example, the enzymatic nucleic acid molecule is preferably targeted to a highly conserved sequence region of target RNAs encoding HBV proteins (specifically HBV RNA) such that specific treatment of a disease or condition can be provided with either one or several nucleic acid molecules of the invention. Such nucleic acid molecules can be delivered exogenously to specific tissue or cellular targets as required. Alternatively, the nucleic acid molecules (e.g., ribozymes and antisense) can be expressed from DNA and/or RNA vectors that are delivered to specific cells.

The enzymatic nucleic acid-based inhibitors of HBV expression are useful for the prevention of the diseases and conditions including HBV infection, hepatitis, cancer, cirrhosis, liver failure, and any other diseases or conditions that are related to the levels of HBV in a cell or tissue.

The nucleic acid-based inhibitors of the invention are added directly, or can be complexed with cationic lipids, packaged within liposomes, or otherwise delivered to target cells or tissues. The nucleic acid or nucleic acid complexes can be locally administered to relevant tissues *ex vivo*, or *in vivo* through injection, infusion pump or stent, with or without their incorporation in biopolymers. In preferred embodiments, the enzymatic nucleic acid HBV inhibitors comprise sequences, which are complementary to the substrate sequences in **Tables IV to XI**. Examples of such enzymatic nucleic acid molecules also are shown in **Tables V to XI**. Examples of such enzymatic nucleic acid molecules consist essentially of sequences defined in these tables.

In yet another embodiment, the invention features antisense nucleic acid molecules including sequences complementary to the HBV substrate sequences shown in **Tables IV to XI**. Such nucleic acid molecules can include sequences as shown for the binding arms of the enzymatic nucleic acid molecules in **Tables V to XI**. Similarly, triplex molecules can be provided targeted to the corresponding DNA target regions, and regions containing the DNA equivalent of a target sequence or a sequence complementary to the specified target (substrate) sequence. Typically, antisense molecules are complementary to a target sequence along a single contiguous sequence of the antisense molecule. However, in certain embodiments, an antisense molecule can bind to substrate such that the substrate molecule forms a loop, and/or an antisense molecule can bind such that the antisense molecule forms a loop. Thus, the antisense molecule can be complementary to two (or even more) non-contiguous substrate sequences or two (or even more) non-contiguous sequence portions of an antisense molecule can be complementary to a target sequence or both.

By “consists essentially of” is meant that the active nucleic acid molecule of the invention, for example, an enzymatic nucleic acid molecule, contains an enzymatic center or core equivalent to those in the examples, and binding arms able to bind RNA such that cleavage at the target site occurs. Other sequences can be present which do not interfere with such cleavage. Thus, a core region can, for example, include one or more loops, stem-loop structure, or linker which does not prevent enzymatic activity. Thus, the underlined regions in the sequences in **Tables V and VI** can be such a loop, stem-loop, nucleotide linker, and/or non-nucleotide linker and can be represented generally as sequence “X”. For example, a core sequence for a hammerhead enzymatic nucleic acid can comprise a conserved sequence, such as 5'-CUGAUGAG-3' and 5'-CGAA-3' connected by “X”, where X is 5'-GCCGUUAGGC-3' (SEQ ID NO. 16201), or any other Stem II region known in the art, or a nucleotide and/or non-nucleotide linker. Similarly, for other nucleic acid molecules of the instant invention, such as Inozyme, G-cleaver, amberzyme, zinzyme, DNAzyme, antisense, 2-5A antisense, triplex forming nucleic acid, and decoy nucleic acids, other sequences or non-nucleotide linkers can be present that do not interfere with the function of the nucleic acid molecule.

In another aspect of the invention, enzymatic nucleic acids or antisense molecules that interact with target RNA molecules and inhibit HBV (specifically HBV RNA) activity are expressed from transcription units inserted into DNA or RNA vectors. The recombinant vectors are preferably DNA plasmids or viral vectors. Enzymatic nucleic acid or antisense expressing viral vectors can be constructed based on, but not limited to, adeno-associated virus, retrovirus, adenovirus, or alphavirus. Preferably, the recombinant vectors capable of expressing the enzymatic nucleic acids or antisense are delivered as described above, and persist in target cells. Alternatively, viral vectors can be used that provide for transient expression of enzymatic nucleic acids or antisense. Such vectors can be repeatedly administered as necessary. Once expressed, the enzymatic nucleic acids or antisense bind to the target RNA and inhibit its function or expression. Delivery of enzymatic nucleic acids or antisense expressing vectors can be systemic, such as by intravenous or intramuscular administration, by administration to target cells ex-planted from the patient followed by reintroduction into the patient, or by any other means that allow for introduction into the desired target cell. Antisense DNA can be expressed via the use of a single stranded DNA intracellular expression vector.

In another embodiment, the invention features nucleic acid-based inhibitors (*e.g.*, enzymatic nucleic acid molecules (ribozymes), antisense nucleic acids, triplex DNA, decoys, aptamers, siRNA, antisense nucleic acids containing RNA cleaving chemical groups) and methods for their use to down regulate or inhibit the expression of RNA (*e.g.*, HBV) capable of progression and/or maintenance of liver disease and failure.

In another embodiment, the invention features nucleic acid-based techniques (*e.g.*, enzymatic nucleic acid molecules (ribozymes), antisense nucleic acids, triplex DNA, decoys, aptamers, siRNA, antisense nucleic acids containing RNA cleaving chemical groups) and methods for their use to down regulate or inhibit the expression of HBV RNA expression.

In other embodiments, the invention features a method for the analysis of HBV proteins. This method is useful in determining the efficacy of HBV inhibitors. Specifically, the instant invention features an assay for the analysis of HBsAg proteins and secreted alkaline phosphatase (SEAP) control proteins to determine the efficacy of agents used to modulate HBV expression.

The method consists of coating a micro-titer plate with an antibody such as anti-HBsAg Mab (for example, Biostride B88-95-31ad,ay) at 0.1 to 10 µg/ml in a buffer (for example, carbonate buffer, such as Na₂CO₃ 15 mM, NaHCO₃ 35 mM, pH 9.5) at 4°C overnight. The microtiter wells are then washed with PBST or the equivalent thereof, (for example, PBS, 0.05% Tween 20) and blocked for 0.1-24 hr at 37° C with PBST, 1% BSA or the equivalent thereof. Following washing as above, the wells are dried (for example, at 37° C for 30 min).

Biotinylated goat anti-HBsAg or an equivalent antibody (for example, Accurate YVS1807) is diluted (for example at 1:1000) in PBST and incubated in the wells (for example, 1 hr. at 37° C). The wells are washed with PBST (for example, 4x). A conjugate, (for example, Streptavidin/Alkaline Phosphatase Conjugate, Pierce 21324) is diluted to 10-10,000 ng/ml in PBST, and incubated in the wells (for example, 1 hr. at 37° C). After washing as above, a substrate (for example, p-nitrophenyl phosphate substrate, Pierce 37620) is added to the wells, which are then incubated (for example, 1 hr. at 37° C). The optical density is then determined (for example, at 405 nm). SEAP levels are then assayed, for example, using the Great EscAPE® Detection Kit (Clontech K2041-1), as per the manufacturers instructions. In the above example, incubation times and reagent concentrations can be varied to achieve optimum results, a non-limiting example is described in Example 6.

Comparison of this HBsAg ELISA method to a commercially available assay from World Diagnostics, Inc. 15271 NW 60th Ave, #201, Miami Lakes, FL 33014 (305) 827-3304 (Cat. No. EL10018) demonstrates an increase in sensitivity (signal:noise) of 3-20 fold.

This invention also relates to nucleic acid molecules directed to disrupt the function of HBV reverse transcriptase. In addition, the invention relates to nucleic acid molecules directed to disrupt the function of the Enhancer I core region of the HBV genomic DNA. In particular, the present invention describes the selection and function of nucleic acid molecules, such as decoys and aptamers, capable of specifically binding to the HBV reverse transcriptase (pol) primer and modulating reverse transcription of the HBV pregenomic RNA. In another embodiment, the present invention relates to nucleic acid molecules, such as decoys, antisense and aptamers, capable of specifically binding to the HBV reverse transcriptase (pol) and modulating reverse transcription of the HBV pregenomic RNA. In yet another embodiment, the present invention relates to nucleic acid molecules capable of specifically binding to the HBV Enhancer I core region and modulating transcription of the HBV genomic DNA. The invention further relates to allosteric enzymatic nucleic acid molecules or "allozymes" that are used to modulate HBV gene expression. Such allozymes are active in the presence of HBV-derived nucleic acids, peptides, and/or proteins such as HBV reverse transcriptase and/or a HBV reverse transcriptase primer sequence, thereby allowing the allozyme to selectively cleave a sequence of HBV DNA or RNA. Allozymes of the invention are also designed to be active in the presence of HBV Enhancer I sequences and/or mutant HBV Enhancer I sequences, thereby allowing the allozyme to selectively cleave a sequence of HBV DNA or RNA. These nucleic acid molecules can be used to treat diseases and disorders associated with HBV infection.

In one embodiment, the invention features a nucleic acid decoy molecule that specifically binds the hepatitis B virus (HBV) reverse transcriptase primer sequence. In

another embodiment, the invention features a nucleic acid decoy molecule that specifically binds the hepatitis B virus (HBV) reverse transcriptase. In yet another embodiment, the invention features a nucleic acid decoy molecule that specifically binds to the HBV Enhancer I core sequence.

In one embodiment, the invention features a nucleic acid aptamer that specifically binds the hepatitis B virus (HBV) reverse transcriptase primer. In another embodiment, the invention features a nucleic acid aptamer that specifically binds the hepatitis B virus (HBV) reverse transcriptase. In yet another embodiment, the invention features a nucleic acid aptamer molecule that specifically binds to the HBV Enhancer I core sequence.

In one embodiment, the invention features an allozyme that specifically binds the hepatitis B virus (HBV) reverse transcriptase primer. In another embodiment, the invention features an allozyme that specifically binds the hepatitis B virus (HBV) reverse transcriptase. In yet another embodiment, the invention features an allozyme that specifically binds to the HBV Enhancer I core sequence.

In yet another embodiment, the invention features a nucleic acid molecule, for example a triplex forming nucleic acid molecule or antisense nucleic acid molecule, that binds the hepatitis B virus (HBV) reverse transcriptase primer. In another embodiment, the invention features a triplex forming nucleic acid molecule or antisense nucleic acid molecule that specifically binds the hepatitis B virus (HBV) reverse transcriptase. In yet another embodiment, the invention features a triplex forming nucleic acid molecule or antisense nucleic acid molecule that specifically binds to the HBV Enhancer I core sequence.

In another embodiment, a nucleic acid molecule of the invention binds to Hepatocyte Nuclear Factor 3 (HNF3) and/or Hepatocyte Nuclear Factor 4 (HNF4) binding sequence within the HBV Enhancer I region of HBV genomic DNA, for example the plus strand and/or minus strand DNA of the Enhancer I region, and blocks the binding of HNF3 and/or HNF4 to the Enhancer I region.

In another embodiment, the nucleic acid molecule of the invention comprises a sequence having $(UUCA)_n$ domain, where n is an integer from 1-10. In another embodiment, the nucleic acid molecules of the invention comprise the sequence of SEQ. ID NOs: 11216 - 11342.

In another embodiment, the invention features a composition comprising a nucleic acid molecule of the invention and a pharmaceutically acceptable carrier. In another embodiment, the invention features a mammalian cell, for example a human cell, including a nucleic acid molecule contemplated by the invention.

In one embodiment, the invention features a method for treatment of HBV infection, cirrhosis, liver failure, or hepatocellular carcinoma, comprising administering to a patient a nucleic acid molecule of the invention under conditions suitable for the treatment.

In another embodiment, the invention features a method for the treatment of a patient having a condition associated with HBV infection comprising contacting cells of said patient with a nucleic acid molecule of the invention under conditions suitable for such treatment. In another embodiment, the invention features a method for the treatment of a patient having a condition associated with HBV infection comprising contacting cells of said patient with a nucleic acid molecule of the invention, and further comprising the use of one or more drug therapies, for example type I interferon or 3TC® (lamivudine), under conditions suitable for said treatment. In another embodiment, the other therapy is administered simultaneously with or separately from the nucleic acid molecule.

In another embodiment, the invention features a method for modulating HBV replication in a mammalian cell comprising administering to the cell a nucleic acid molecule of the invention under conditions suitable for the modulation.

In yet another embodiment, the invention features a method of modulating HBV reverse transcriptase activity comprising contacting a nucleic acid molecule of the invention, for example a decoy or aptamer, with HBV reverse transcriptase under conditions suitable for the modulating of the HBV reverse transcriptase activity.

In another embodiment, the invention features a method of modulating HBV transcription comprising contacting a nucleic molecule of the invention with a HBV Enhancer I sequence under conditions suitable for the modulation of HBV transcription.

In one embodiment, a nucleic acid molecule of the invention, for example a decoy or aptamer, is chemically synthesized. In another embodiment, the nucleic acid molecule of the invention comprises at least one nucleic acid sugar modification. In yet another embodiment, the nucleic acid molecule of the invention comprises at least one nucleic acid base modification. In another embodiment, the nucleic acid molecule of the invention comprises at least one nucleic acid backbone modification.

In another embodiment, the nucleic acid molecule of the invention comprises at least one 2'-O-alkyl, 2'-alkyl, 2'-alkoxylalkyl, 2'-alkylthioalkyl, 2'-amino, 2'-O-amino, or 2'-halo modification and/or any combination thereof with or without 2'-deoxy and/or 2'-ribo nucleotides. In yet another embodiment, the nucleic acid molecule of the invention comprises all 2'-O-alkyl nucleotides, for example, all 2'-O-allyl nucleotides.

In one embodiment, the nucleic acid molecule of the invention comprises a 5'-cap, 3'-cap, or 5'-3' cap structure, for example an abasic or inverted abasic moiety.

In another embodiment, the nucleic acid molecule of the invention is a linear nucleic acid molecule. In another embodiment, the nucleic acid molecule of the invention is a linear nucleic acid molecule that can optionally form a hairpin, loop, stem-loop, or other secondary structure. In yet another embodiment, the nucleic acid molecule of the invention is a circular nucleic acid molecule.

In one embodiment, the nucleic acid molecule of the invention is a single stranded oligonucleotide. In another embodiment, the nucleic acid molecule of the invention is a double-stranded oligonucleotide.

In one embodiment, the nucleic acid molecule of the invention comprises an oligonucleotide having between about 3 and about 100 nucleotides. In another embodiment, the nucleic acid molecule of the invention comprises an oligonucleotide having between about 3 and about 24 nucleotides. In another embodiment, the nucleic acid molecule of the invention comprises an oligonucleotide having between about 4 and about 16 nucleotides.

The nucleic acid decoy molecules and/or aptamers that bind to a reverse transcriptase and/or reverse transcriptase primer and therefore inactivate the reverse transcriptase, represent a novel therapeutic approach to treat a variety of pathologic indications, including, viral infection such as HBV infection, hepatitis, hepatocellular carcinoma, tumorigenesis, cirrhosis, liver failure and others.

The nucleic acid molecules that bind to a HBV Enhancer I sequence and therefore inactivate HBV transcription, represent a novel therapeutic approach to treat a variety of pathologic indications, including viral infection such as HBV infection, hepatitis, hepatocellular carcinoma, tumorigenesis, cirrhosis, liver failure and others conditions associated with the level of HBV.

In one embodiment of the present invention, a decoy nucleic acid molecule of the invention is 4 to 50 nucleotides in length, in specific embodiments about 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or 16 nucleotides in length. In another embodiment, a non-decoy nucleic acid molecule, *e.g.*, an antisense molecule, a triplex DNA, or a ribozyme, is 13 to 100 nucleotides in length, *e.g.*, in specific embodiments 35, 36, 37, or 38 nucleotides in length (*e.g.*, for particular ribozymes or antisense). In particular embodiments, the nucleic acid molecule is 15-100, 17-100, 20-100, 21-100, 23-100, 25-100, 27-100, 30-100, 32-100, 35-100, 40-100, 50-100, 60-100, 70-100, or 80-100 nucleotides in length. Instead of 100 nucleotides being the upper limit on the length ranges specified above, the upper limit of the

length range can be, for example, 30, 40, 50, 60, 70, or 80 nucleotides. Thus, for any of the length ranges, the length range for particular embodiments has lower limit as specified, with an upper limit as specified which is greater than the lower limit. For example, in a particular embodiment, the length range can be 35-50 nucleotides in length. All such ranges are expressly included. Also in particular embodiments, a nucleic acid molecule can have a length which is any of the lengths specified above, for example, 21 nucleotides in length.

Exemplary nucleic acid decoy molecules of the invention are shown in **Table XIV**. Exemplary synthetic nucleic acid molecules of the invention are shown in **Table XV**. For example, decoy molecules of the invention are between 4 and 40 nucleotides in length. Exemplary decoys of the invention are 4, 8, 12, or 16 nucleotides in length. In an additional example, enzymatic nucleic acid molecules of the invention are preferably between 15 and 50 nucleotides in length, more preferably between 25 and 40 nucleotides in length, e.g., 34, 36, or 38 nucleotides in length (for example see Jarvis *et al.*, 1996, *J. Biol. Chem.*, 271, 29107-29112). Exemplary DNAzymes of the invention are preferably between 15 and 40 nucleotides in length, more preferably between 25 and 35 nucleotides in length, e.g., 29, 30, 31, or 32 nucleotides in length (see for example Santoro *et al.*, 1998, *Biochemistry*, 37, 13330-13342; Chartrand *et al.*, 1995, *Nucleic Acids Research*, 23, 4092-4096). Exemplary antisense molecules of the invention are preferably between 15 and 75 nucleotides in length, more preferably between 20 and 35 nucleotides in length, e.g., 25, 26, 27, or 28 nucleotides in length (see for example Woolf *et al.*, 1992, *PNAS*, 89, 7305-7309; Milner *et al.*, 1997, *Nature Biotechnology*, 15, 537-541). Exemplary triplex forming oligonucleotide molecules of the invention are preferably between 10 and 40 nucleotides in length, more preferably between 12 and 25 nucleotides in length, e.g., 18, 19, 20, or 21 nucleotides in length (see for example Maher *et al.*, 1990, *Biochemistry*, 29, 8820-8826; Strobel and Dervan, 1990, *Science*, 249, 73-75). Those skilled in the art will recognize that all that is required is that the nucleic acid molecule is of length and conformation sufficient and suitable for the nucleic acid molecule to catalyze a reaction contemplated herein. The length of the nucleic acid molecules of the instant invention are not limiting within the general limits stated.

In one embodiment, the invention provides a method for producing a class of nucleic acid-based gene modulating agents, which exhibit a high degree of specificity for a viral reverse transcriptase such as HBV reverse transcriptase or reverse transcriptase primer such as a HBV reverse transcriptase primer. For example, the nucleic acid molecule is preferably targeted to a highly conserved nucleic acid binding region of the viral reverse transcriptase such that specific treatment of a disease or condition can be provided with either one or several nucleic acid molecules of the invention. Such nucleic acid molecules can be delivered exogenously to specific tissue or cellular targets as required. Alternatively, the

nucleic acid molecules can be expressed from DNA and/or RNA vectors that are delivered to specific cells.

In another embodiment, the invention provides a method for producing a class of nucleic acid-based gene modulating agents which exhibit a high degree of specificity for a viral enhancer regions such as the HBV Enhancer I core sequence. For example, the nucleic acid molecule is preferably targeted to a highly conserved transcription factor-binding region of the viral Enhancer I sequence such that specific treatment of a disease or condition can be provided with either one or several nucleic acid molecules of the invention. Such nucleic acid molecules can be delivered exogenously to specific tissue or cellular targets as required. Alternatively, the nucleic acid molecules can be expressed from DNA and/or RNA vectors that are delivered to specific cells.

In another embodiment the invention provides a method for producing a class of enzymatic cleaving agents which exhibit a high degree of specificity for the RNA of a desired target. The enzymatic nucleic acid molecule, nuclease activating compound or chimera is preferably targeted to a highly conserved sequence region of a target mRNAs encoding HCV or HBV proteins such that specific treatment of a disease or condition can be provided with either one or several enzymatic nucleic acids. Such nucleic acid molecules can be delivered exogenously to specific cells as required. Alternatively, the enzymatic nucleic acid molecules can be expressed from DNA/RNA vectors that are delivered to specific cells. DNAzymes can be synthesized chemically or expressed endogenously *in vivo*, by means of a single stranded DNA vector or equivalent thereof.

In another embodiment, the nucleic acid molecule of the invention binds irreversibly to the HBV reverse transcriptase target, for example by covalent attachment of the nucleic molecule to the reverse transcriptase primer sequence. The covalent attachment can be accomplished by introducing chemical modifications into the nucleic acid molecule's (for example, decoy or aptamer) sequence that are capable of forming covalent bonds to the reverse transcriptase primer sequence.

In another embodiment, the nucleic acid molecule of the invention binds irreversibly to the HBV Enhancer I sequence target, for example, by covalent attachment of the nucleic acid molecule to the HBV Enhancer I sequence. The covalent attachment can be accomplished by introducing chemical modifications into the nucleic acid molecule's sequence that are capable of forming covalent bonds to the reverse transcriptase primer sequence.

In another embodiment, the type I interferon contemplated by the invention is interferon alpha, interferon beta, consensus interferon, polyethylene glycol interferon,

polyethylene glycol interferon alpha 2a, polyethylene glycol interferon alpha 2b, polyethylene glycol consensus interferon.

In one embodiment, the invention features a composition comprising type I interferon and a nucleic acid molecule of the invention and a pharmaceutically acceptable carrier.

In another embodiment, the invention features a method of administering to a cell, for example a mammalian cell or human cell, a nucleic acid molecule of the invention independently or in conjunction with other therapeutic compounds, such as type I interferon or 3TC® (lamivudine), comprising contacting the cell with the nucleic acid molecule under conditions suitable for the administration.

In yet another embodiment, the invention features a method of administering to a cell, for example a mammalian cell or human cell, a nucleic acid molecule of the invention independently or in conjunction with other therapeutic compounds such as enzymatic nucleic acid molecules, antisense molecules, triplex forming oligonucleotides, 2,5-A chimeras, and/or RNAi, comprising contacting the cell with the nucleic acid molecule of the invention under conditions suitable for the administration.

In another embodiment, administration of a nucleic acid molecule of the invention is administered to a cell or patient in the presence of a delivery reagent, for example a lipid, cationic lipid, phospholipid, or liposome.

In one embodiment, the invention features novel nucleic acid-based techniques such as nucleic acid decoy molecules and/or aptamers, used alone or in combination with enzymatic nucleic acid molecules, antisense molecules, and/or RNAi, and methods for use to down regulate or modulate the expression of HBV RNA and/or replication of HBV.

In another embodiment, the invention features the use of one or more of the nucleic acid-based techniques to modulate the expression of the genes encoding HBV viral proteins. Specifically, the invention features the use of nucleic acid-based techniques to specifically modulate the expression of the HBV viral genome.

In another embodiment, the invention features the use of one or more of the nucleic acid-based techniques to modulate the activity, expression, or level of cellular proteins required for HBV replication. For example, the invention features the use of nucleic acid-based techniques to specifically modulate the activity of cellular proteins required for HBV replication.

In another embodiment, the invention features nucleic acid-based modulators(*e.g.*, nucleic acid decoy molecules, aptamers, enzymatic nucleic acid molecules (ribozymes),

antisense nucleic acids, triplex DNA, antisense nucleic acids containing RNA cleaving chemical groups) and methods for their use to down regulate or modulate reverse transcriptase activity and/or the expression of RNA (*e.g.*, HBV) capable of progression and/or maintenance of HBV infection, hepatocellular carcinoma, liver disease and failure.

In another embodiment, the invention features nucleic acid-based techniques (*e.g.*, nucleic acid decoy molecules, aptamers, enzymatic nucleic acid molecules (ribozymes), antisense nucleic acid molecules, triplex DNA, antisense nucleic acids containing RNA cleaving chemical groups) and methods for their use to down regulate or modulate reverse transcriptase activity and/or the expression of HBV RNA.

In another embodiment, the invention features nucleic acid-based modulators (*e.g.*, nucleic acid decoy molecules, aptamers, enzymatic nucleic acid molecules (ribozymes), antisense nucleic acids, triplex DNA, siRNA, dsRNA, antisense nucleic acids containing RNA cleaving chemical groups) and methods for their use to down regulate or modulate Enhancer I mediated transcription activity and/or the expression of DNA (*e.g.*, HBV) capable of progression and/or maintenance of HBV infection, hepatocellular carcinoma, liver disease and failure.

In another embodiment, the invention features nucleic acid-based techniques (*e.g.*, nucleic acid decoy molecules, aptamers, enzymatic nucleic acid molecules, antisense nucleic acid molecules, triplex DNA, siRNA, antisense nucleic acids containing DNA cleaving chemical groups) and methods for their use to down regulate or modulate Enhancer I mediated transcription activity and/or the expression of HBV DNA.

In another embodiment, the invention features a nucleic acid sensor molecule having an enzymatic nucleic acid domain and a sensor domain that interacts with an HBV peptide, protein, or polynucleotide sequence, for example, HBV reverse transcriptase, HBV reverse transcriptase primer, or the Enhancer I element of the HBV pregenomic RNA, wherein such interaction results in modulation of the activity of the enzymatic nucleic acid domain of the nucleic acid sensor molecule. In another embodiment, the invention features HBV-specific nucleic acid sensor molecules or allozymes, and methods for their use to down regulate or modulate the expression of HBV RNA capable of progression and/or maintenance of hepatitis, hepatocellular carcinoma, cirrhosis, and/or liver failure. In yet another embodiment, the enzymatic nucleic acid domain of a nucleic acid sensor molecule of the invention is a Hammerhead, Inozyme, G-cleaver, DNAzyme, Zinzyme, Amberzyme, or Hairpin enzymatic nucleic acid molecule.

In one embodiment, nucleic acid molecules of the invention are used to treat HBV-infected cells or a HBV-infected patient wherein the HBV is resistant or the patient does not

respond to treatment with 3TC® (Lamivudine), either alone or in combination with other therapies under conditions suitable for the treatment.

In another embodiment, nucleic acid molecules of the invention are used to treat HBV-infected cells or a HBV-infected patient, wherein the HBV is resistant or the patient does not respond to treatment with Interferon, for example Infergen®, either alone or in combination with other therapies under conditions suitable for the treatment.

The invention also relates to *in vitro* and *in vivo* systems, including, e.g., mammalian systems for screening inhibitors of HBV. In one embodiment, the invention features a mouse, for example a male or female mouse, implanted with HepG2.2.15 cells, wherein the mouse is susceptible to HBV infection and capable of sustaining HBV DNA expression. One embodiment of the invention provides a mouse implanted with HepG2.2.15 cells, wherein said mouse sustains the propagation of HEPG2.2.15 cells and HBV production.

In another embodiment, a mouse of the invention has been infected with HBV for at least one week to at least eight weeks, including, for example at least 4 weeks.

In yet another embodiment, a mouse of the invention, for example a male or female mouse, is an immunocompromised mouse, for example a nu/nu mouse or a scid/scid mouse.

In one embodiment, the invention features a method of producing a mouse of the invention, comprising injecting, for example by subcutaneous injection, HepG2.2.15 (Sells, *et al.*, 1987, *Proc Natl Acad Sci U S A.*, 84, 1005-1009) cells into the mouse under conditions suitable for the propagation of HepG2.2.15 cells in said mouse. HepG2.2.15 cells can be suspended in, for example, Delbecco's PBS solution including calcium and magnesium. In another embodiment, HepG2.2.15 cells are selected for antibiotic resistance and are then introduced into the mouse under conditions suitable for the propagation of HepG2.2.15 cells in said mouse. A non-limiting example of antibiotic resistant HepG2.2.15 cells include G418 antibiotic resistant HepG2.2.15 cells.

In another embodiment, the invention features a method of screening a compound for therapeutic activity against HBV, comprising administering the compound to a mouse of the invention and monitoring the levels of HBV produced (e.g. by assaying for HBV DNA levels) in the mouse.

In one embodiment, a therapeutic compound or therapy contemplated by the invention is a lipid, steroid, peptide, protein, antibody, monoclonal antibody, humanized monoclonal antibody, small molecule, and/or isomers and analogs thereof, and/or a cell.

In one embodiment, a therapeutic compound or therapy contemplated by the invention is a nucleic acid molecule, for example a nucleic acid molecule, such as an enzymatic nucleic acid molecule, antisense nucleic acid molecule, allozyme, peptide nucleic acid, decoy, triplex oligonucleotide, dsRNA, ssRNA, RNAi, siRNA, aptamer, or 2,5-A chimera used alone or in combination with another therapy, for example antiviral therapy. Antiviral therapy can be, for example, treatment with 3TC® (Lamivudine) or interferon. Interferon can include, for example, consensus interferon or type I interferon. Type I interferon can include interferon alpha, interferon beta, consensus interferon, polyethylene glycol interferon, polyethylene glycol interferon alpha 2a, polyethylene glycol interferon alpha 2b, or polyethylene glycol consensus interferon.

In one embodiment, the invention features a non-human mammal implanted with HepG2.2.15 cells, wherein the non-human mammal is susceptible to HBV infection and capable of sustaining HBV DNA expression in the implanted HepG2.2.15 cells.

In another embodiment, a non-human mammal of the invention, for example a male or female non-human mammal, has been infected with HBV for at least one week to at least eight weeks, including for example at least four weeks.

In yet another embodiment, a non-human mammal of the invention is an immunocompromised mammal, for example a nu/nu mammal or a scid/scid mammal.

In one embodiment, the invention features a method of producing a non-human mammal comprising HepG2.2.15 cells comprising injecting, for example by subcutaneous injection, HepG2.2.15 cells into the non-human mammal under conditions suitable for the propagation of HepG2.2.15 cells in said non-human mammal.

In another embodiment, the invention features a method of screening a compound for therapeutic activity against HBV comprising administering the compound to a non-human mammal of the invention and monitoring the levels of HBV produced (e.g. by assaying for HBV DNA levels) in the non-human mammals.

In one embodiment, a therapeutic compound or therapy contemplated by the invention is a nucleic acid molecule, for example an enzymatic nucleic acid molecule, allozyme, antisense nucleic acid molecule, decoy, triplex oligonucleotide, dsRNA, ssRNA, RNAi, siRNA, or 2,5-A chimera used alone or in combination with another therapy, for example antiviral therapy.

Methods and chimeric immunocompromised heterologous non-human mammalian hosts, particularly mouse hosts, are provided for the expression of hepatitis B virus ("HBV").

In one embodiment, the chimeric hosts have transplanted viable, HepG2.2.15 cells in an immunocompromised host.

The non-human mammals contemplated by the invention are immunocompromised in normally inheriting the desired immune incapacity, or the desired immune incapacity can be created. For example, hosts with severe combined immunodeficiency, known as scid/scid hosts, are available. Rodentia, particularly mice, and equine, particularly horses, are presently available as scid/scid hosts, for example scid/scid mice and scid/scid rats. The scid/scid hosts lack functioning lymphocyte types, particularly B-cells and some T-cell types. In the scid/scid mouse hosts, the genetic defect appears to be a non-functioning recombinase, as the germline DNA is not rearranged to produce functioning surface immunoglobulin and T-cell receptors.

Any immunodeficient non-human mammals, e.g. mouse, can be used to generate the animal models described herein. The term "immunodeficient," as used herein, refers to a genetic alteration that impairs the animal's ability to mount an effective immune response. In this regard, an "effective immune response" is one which is capable of destroying invading pathogens such as (but not limited to) viruses, bacteria, parasites, malignant cells, and/or a xenogeneic or allogeneic transplant. In one embodiment, the immunodeficient mouse is a severe immunodeficient (SCID) mouse, which lacks recombinase activity that is necessary for the generation of immunoglobulin and functional T cell antigen receptors, and thus does not produce functional B and T lymphocytes. In another embodiment, the immunodeficient mouse is a nude mouse, which contains a genetic defect that results in the absence of a functional thymus, leading to T-cell and B-cell deficiencies. However, mice containing other immunodeficiencies (such as *rag-1* or *rag-2* knockouts, as described in Chen *et al.*, 1994, *Curr. Opin. Immunol.*, 6, 313-319 and Guidas *et al.*, 1995, *J. Exp. Med.*, 181, 1187-1195, or beige-nude mice, which also lack natural killer cells, as described in Kollmann *et al.*, 1993, *J. Exp. Med.*, 177, 821-832) can also be employed.

The introduction of HepG2.2.15 cells occurs with a host at an age less than about 25% of its normal lifespan, usually to 20% of the normal lifespan with mice, and the age will generally be of an age of about 3 to 10 weeks, more usually from about 4 to 8 weeks. The mice can be of either sex, can be neutered, and can be otherwise normal, except for the immunocompromised state, or they can have one or more mutations, which can be naturally occurring or as a result of mutagenesis.

In another embodiment, the mouse model described herein is used to evaluate the effectiveness of therapeutic compounds and methods. The terms "therapeutic compounds", "therapeutic methods" and "therapy" as used herein, encompass exogenous factors, such as dietary or environmental conditions, as well as pharmaceutical compositions

“drugs” and vaccines. In one embodiment, the therapeutic method is an immunotherapy, which can include the treatment of the HBV bearing animal with populations of HBV-reactive immune cells. The therapeutic method can also, or alternatively, be a gene therapy (i.e., a therapy that involves treatment of the HBV-bearing mouse with a cell population that has been manipulated to express one or more genes, the products of which can possess anti-viral activity), see for example *The Development of Human Gene Therapy*, Theodore Friedmann, Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1999. Therapeutic compounds of the invention can comprise a drug or composition with pharmaceutical activity that can be used to treat illness or disease. A therapeutic method can comprise the use of a plurality of compounds in a mixture or a distinct entity. Examples of such compounds include nucleosides, nucleic acids, nucleic acid chimeras, RNA and DNA oligonucleotides, peptide nucleic acids, enzymatic nucleic acid molecules, antisense nucleic acid molecules, decoys, triplex oligonucleotides, ssDNA, dsRNA, ssRNA, siRNA, 2,5-A chimeras, lipids, steroids, peptides, proteins, antibodies, monoclonal antibodies (see for example Hall, 1995, *Science*, 270, 915-916), small molecules, and/or isomers and analogs thereof.

The methods of this invention can be used to treat human hepatitis B virus infections, which include productive virus infection, latent or persistent virus infection, and HBV-induced hepatocyte transformation. The utility can be extended to other species of HBV that infect non-human animals where such infections are of veterinary importance.

Preferred binding sites of the nucleic acid molecules of the invention include, but are not limited, to the primer binding site on HBV reverse transcriptase, the primer binding sequences of the HBV RNA, and/or the HBV Enhancer I region of HBV DNA.

This invention further relates to nucleic acid molecules that target RNA species of hepatitis C virus (HCV) and/or encoded by the HCV. In one embodiment, applicant describes enzymatic nucleic acid molecules that specifically cleave HCV RNA and the selection and function thereof. The invention further relates to compounds and chimeric molecules comprising nuclease activating activity. The invention also relates to compositions and methods for the cleavage of RNA using these nuclease activating compounds and chimeras. Nucleic acid molecules, nuclease activating compounds and chimeras, and compositions and methods of the invention can be used to treat diseases associated with HCV infection.

Due to the high sequence variability of the HCV genome, selection of nucleic acid molecules and nuclease activating compounds and chimeras for broad therapeutic applications preferably involve the conserved regions of the HCV genome. Thus, in one embodiment the present invention describes nucleic acid molecules that cleave the conserved

regions of the HCV genome. The invention further describes compounds and chimeric molecules that activate cellular nucleases that cleave HCV RNA, including conserved regions of the HCV genome. Examples of conserved regions of the HCV genome include but are not limited to the 5'-Non Coding Region (NCR), the 5'-end of the core protein coding region, and the 3'- NCR. HCV genomic RNA contains an internal ribosome entry site (IRES) in the 5'-NCR which mediates translation independently of a 5'-cap structure (Wang *et al.*, 1993, *J. Virol.*, 67, 3338-44). The full-length sequence of the HCV RNA genome is heterologous among clinically isolated subtypes, of which there are at least 15 (Simmonds, 1995, *Hepatology*, 21, 570-583), however, the 5'-NCR sequence of HCV is highly conserved across all known subtypes, most likely to preserve the shared IRES mechanism (Okamoto *et al.*, 1991, *J. General Virol.*, 72, 2697-2704). In general, enzymatic nucleic acid molecules and nuclease activating compounds, and chimeras that cleave sites located in the 5' end of the HCV genome are expected to block translation while nucleic acid molecules and nuclease activating compounds, and chimeras that cleave sites located in the 3' end of the genome are expected to block RNA replication. Therefore, one nucleic acid molecule, compound, or chimera can be designed to cleave all the different isolates of HCV. Enzymatic nucleic acid molecules and nuclease activating compounds, and chimeras designed against conserved regions of various HCV isolates enable efficient inhibition of HCV replication in diverse patient populations and ensure the effectiveness of the nucleic acid molecules and nuclease activating compounds, and chimeras against HCV quasi species which evolve due to mutations in the non-conserved regions of the HCV genome.

In one embodiment, the invention features an enzymatic nucleic acid molecule, preferably in the hammerhead, NCH (Inozyme), G-cleaver, amberzyme, zinzyme and/or DNAzyme motif, and the use thereof to down-regulate or inhibit the expression of HCV RNA.

In another embodiment, the invention features an enzymatic nucleic acid molecule, preferably in the hammerhead, Inozyme, G-cleaver, amberzyme, zinzyme and/or DNAzyme motif, and the use thereof to down-regulate or inhibit the expression of HCV minus strand RNA.

In yet another embodiment, the invention features a nuclease activating compound and/or a chimera and the use thereof to down-regulate or inhibit the expression of HCV RNA.

In another embodiment, the invention features the use of a nuclease activating compound and/or a chimera to inhibit the expression of HCVminus strand RNA.

In one embodiment, the invention features a compound having formula I:

wherein X_1 is an integer selected from the group consisting of 1, 2, and 3; X_2 is an integer greater than or equal to 1; R_6 is independently selected from the group including H, OH, NH₂, O-NH₂, alkyl, S-alkyl, O-alkyl, O-alkyl-S-alkyl, O-alkoxyalkyl, allyl, O-allyl, and fluoro; each R_1 and R_2 are independently selected from the group consisting of O and S; each R_3 and R_4 are independently selected from the group consisting of O, N, and S; and R_5 is selected from the group consisting of alkyl, alkylamine, an oligonucleotide having any of SEQ ID NOS. 11343-16182, an oligonucleotide having a sequence complementary to a sequence selected from the group including SEQ ID NOS. 2594-7433, and abasic moiety.

In another embodiment, the abasic moiety of the instant invention is selected from the group consisting of:

wherein R_3 is selected from the group consisting of O, N, and S, and R_7 is independently selected from the group consisting of H, OH, NH₂, O-NH₂, alkyl, S-alkyl, O-alkyl, O-alkyl-S-alkyl, O-alkoxyalkyl, allyl, O-allyl, fluoro, oligonucleotide, alkyl, alkylamine and abasic moiety.

In another embodiment, the oligonucleotide R_5 of Formula I having a sequence complementary to a sequence selected from the group consisting of SEQ ID NOS. 2594-7433 is an enzymatic nucleic acid molecule.

In yet another embodiment, the oligonucleotide R₅ of Formula I having a sequence complementary to a sequence selected from the group consisting of SEQ ID NOS. 2594-7433 is an antisense nucleic acid molecule.

In another embodiment, the oligonucleotide R₅ of Formula I having a sequence complementary to a sequence selected from the group consisting of SEQ ID NOS. 2594-7433 is an enzymatic nucleic acid molecule selected from the group consisting of Hammerhead, Inozyme, G-cleaver, DNAzyme, Amberzyme, and Zinzyme motifs.

In another embodiment, the Inozyme enzymatic nucleic acid molecule of the instant invention comprises a stem II region of length greater than or equal to 2 base pairs.

In one embodiment, the oligonucleotide R₅ of Formula I having a sequence complementary to a sequence selected from the group consisting of SEQ ID NOS. 2594-7433 is an enzymatic nucleic acid comprising between 12 and 100 bases complementary to an RNA derived from HCV.

In another embodiment, the oligonucleotide R₅ of Formula I having a sequence complementary to a sequence selected from the group consisting of SEQ ID NOS. 2594-7433 is an enzymatic nucleic acid comprising between 14 and 24 bases complementary to said RNA derived from HCV.

In one embodiment, the oligonucleotide R₅ of Formula I having a sequence complementary to a sequence selected from the group consisting of SEQ ID NOS. 2594-7433 is an antisense nucleic acid comprising between 12 and 100 bases complementary to an RNA derived from HCV.

In another embodiment, the oligonucleotide R₅ of Formula I having a sequence complementary to a sequence selected from the group consisting of SEQ ID NOS. 2594-7433 is an antisense nucleic acid comprising between 14 and 24 bases complementary to said RNA derived from HCV.

In another embodiment, the invention features a composition comprising a compound of Formula I, in a pharmaceutically acceptable carrier.

In yet another embodiment, the invention features a mammalian cell comprising a compound of Formula I. For example, the mammalian cell comprising a compound of Formula I can be a human cell.

In one embodiment, the invention features a method for the treatment of cirrhosis, liver failure, hepatocellular carcinoma, or a condition associated with HCV infection comprising

the step of administering to a patient a compound of Formula I under conditions suitable for said treatment.

In another embodiment, the invention features a method of treatment of a patient having a condition associated with HCV infection comprising contacting cells of said patient with a compound having Formula I, and further comprising the use of one or more drug therapies under conditions suitable for said treatment. For example, the other therapies of the instant invention can be selected from the group consisting of type I interferon, interferon alpha, interferon beta, consensus interferon, polyethylene glycol interferon, polyethylene glycol interferon alpha 2a, polyethylene glycol interferon alpha 2b, polyethylene glycol consensus interferon, treatment with an enzymatic nucleic acid molecule, and treatment with an antisense molecule.

In another embodiment, the other therapies of the instant invention, for example type I interferon, interferon alpha, interferon beta, consensus interferon, polyethylene glycol interferon, polyethylene glycol interferon alpha 2a, polyethylene glycol interferon alpha 2b, polyethylene glycol consensus interferon, treatment with an enzymatic nucleic acid molecule, and treatment with an antisense nucleic acid molecule, and the compound having Formula I are administered separately in separate pharmaceutically acceptable carriers.

In yet another embodiment, the other therapies of the instant invention, for example type I interferon, interferon alpha, interferon beta, consensus interferon, polyethylene glycol interferon, polyethylene glycol interferon alpha 2a, polyethylene glycol interferon alpha 2b, polyethylene glycol consensus interferon, treatment with an enzymatic nucleic acid molecule, and treatment with an antisense nucleic acid molecule, and the compound having Formula I are administered simultaneously in a pharmaceutically acceptable carrier. The invention features a composition comprising a compound of Formula I and one or more of the above-listed compounds in a pharmaceutically acceptable carrier.

In yet another embodiment, the invention features a method for inhibiting HCV replication in a mammalian cell comprising the step of administering to said cell a compound having Formula I under conditions suitable for said inhibition.

In another embodiment, the invention features a method of cleaving a separate RNA molecule (i.e., HCV RNA or RNA necessary for HCV replication) comprising contacting a compound having Formula I with the separate RNA molecule under conditions suitable for the cleavage of the separate RNA molecule. In one example, the method of cleaving a separate RNA molecule is carried out in the presence of a divalent cation, for example Mg²⁺.

In yet another embodiment, the method of cleaving a separate RNA molecule of the invention is carried out in the presence of a protein nuclease, for example RNase L.

In one embodiment, a compound having Formula I is chemically synthesized. In one embodiment, a compound having Formula I comprises at least one 2'-sugar modification, at least one nucleic acid base modification, and/or at least one phosphate modification.

The nucleic acid-based modulators of the invention are added directly, or can be complexed with cationic lipids, packaged within liposomes, or otherwise delivered to target cells or tissues. The nucleic acid or nucleic acid complexes can be locally administered to relevant tissues *ex vivo*, or *in vivo* through injection, infusion pump or stent, with or without their incorporation in biopolymers. In particular embodiments, the nucleic acid molecules of the invention comprise sequences shown in **Tables IV-XI, XIV-XV and XVIII-XXIII**. Examples of such nucleic acid molecules consist essentially of sequences defined in the tables.

The nucleic acid-based inhibitors, nuclease activating compounds and chimeras of the invention are added directly, or can be complexed with cationic lipids, packaged within liposomes, or otherwise delivered to target cells or tissues. The nucleic acid or nucleic acid complexes, and nuclease activating compounds or chimeras can be locally administered to relevant tissues *ex vivo*, or *in vivo* through injection or infusion pump, with or without their incorporation in biopolymers. In preferred embodiments, the enzymatic nucleic acid inhibitors, and nuclease activating compounds or chimeras comprise sequences, which are complementary to the substrate sequences in **Tables XVIII, XIX, XX and XXIII**. Examples of such enzymatic nucleic acid molecules also are shown in **Tables XVIII, XIX, XX, XXI and XXIII**. Examples of such enzymatic nucleic acid molecules consist essentially of sequences defined in these tables. In additional embodiments, the enzymatic nucleic acid inhibitors of the invention that comprise sequences which are complementary to the substrate sequences in **Tables XVIII, XIX, XX and XXIII** are covalently attached to nuclease activating compound or chimeras of the invention, for example a compound having Formula I.

In yet another embodiment, the invention features antisense nucleic acid molecules and 2-5A chimera including sequences complementary to the substrate sequences shown in **Tables XVIII, XIX, XX and XXIII**. Such nucleic acid molecules can include sequences as shown for the binding arms of the enzymatic nucleic acid molecules in **Tables XVIII, XIX, XX, XXI and XXIII**. Similarly, triplex molecules can be provided targeted to the corresponding DNA target regions, and containing the DNA equivalent of a target sequence or a sequence complementary to the specified target (substrate) sequence. Typically, antisense molecules are complementary to a target sequence along a single contiguous

sequence of the antisense molecule. However, in certain embodiments, an antisense molecule can bind to substrate such that the substrate molecule forms a loop, and/or an antisense molecule can bind such that the antisense molecule forms a loop. Thus, the antisense molecule can be complementary to two (or even more) non-contiguous substrate sequences or two (or even more) non-contiguous sequence portions of an antisense molecule can be complementary to a target sequence or both.

In one embodiment, the invention features nucleic acid molecules and nuclease activating compounds or chimeras that inhibit gene expression and/or viral replication. These chemically or enzymatically synthesized nucleic acid molecules can contain substrate binding domains that bind to accessible regions of their target mRNAs. The nucleic acid molecules also contain domains that catalyze the cleavage of RNA. The enzymatic nucleic acid molecules are preferably molecules of the hammerhead, Inozyme, DNAzyme, Zinzyme, Amberzyme, and/or G-cleaver motifs. Upon binding, the enzymatic nucleic acid molecules cleave the target mRNAs, preventing translation and protein accumulation. In the absence of the expression of the target gene, HCV gene expression and/or replication is inhibited.

In another aspect, the invention provides mammalian cells containing one or more nucleic acid molecules and/or expression vectors of this invention. The one or more nucleic acid molecules can independently be targeted to the same or different sites.

In one embodiment, nucleic acid decoys, aptamers, siRNA, enzymatic nucleic acids or antisense molecules that interact with target protein and/or RNA molecules and modulate HBV (specifically HBV reverse transcriptase, or transcription of HBV genomic DNA) activity are expressed from transcription units inserted into DNA or RNA vectors. The recombinant vectors are preferably DNA plasmids or viral vectors. Decoys, aptamers, enzymatic nucleic acid or antisense expressing viral vectors can be constructed based on, but not limited to, adeno-associated virus, retrovirus, adenovirus, or alphavirus. Preferably, the recombinant vectors capable of expressing the decoys, aptamers, enzymatic nucleic acids or antisense are delivered as described above, and persist in target cells. Alternatively, viral vectors can be used that provide for transient expression of decoys, aptamers, siRNA, enzymatic nucleic acids or antisense. Such vectors can be repeatedly administered as necessary. Once expressed, the decoys, aptamers, enzymatic nucleic acids or antisense bind to the target protein and/or RNA and modulate its function or expression. Delivery of decoy, aptamer, siRNA, enzymatic nucleic acid or antisense expressing vectors can be systemic, such as by intravenous or intramuscular administration, by administration to target cells explanted from the patient followed by reintroduction into the patient, or by any other means that would allow for introduction into the desired target cell. DNA based nucleic acid

molecules of the invention can be expressed via the use of a single stranded DNA intracellular expression vector.

In one embodiment, nucleic acid molecules and nuclease activating compounds or chimeras are added directly, or can be complexed with cationic lipids, packaged within liposomes, or otherwise delivered to target cells. The nucleic acid or nucleic acid complexes can be locally administered to relevant tissues ex vivo, or in vivo through injection, infusion pump or stent, with or without their incorporation in biopolymers. In another preferred embodiment, the nucleic acid molecule, nuclease activating compound or chimera is administered to the site of HBV or HCV activity (e.g., hepatocytes) in an appropriate liposomal vehicle.

In another embodiment, nucleic acid molecules that cleave target molecules and inhibit HCV activity are expressed from transcription units inserted into DNA or RNA vectors. The recombinant vectors are preferably DNA plasmids or viral vectors. Nucleic acid molecule expressing viral vectors can be constructed based on, but not limited to, adeno-associated virus, retrovirus, adenovirus, or alphavirus. Preferably, the recombinant vectors capable of expressing the nucleic acid molecules are delivered as described above, and persist in target cells. Alternatively, viral vectors can be used that provide for transient expression of nucleic acid molecules. Such vectors can be repeatedly administered as necessary. Once expressed, the nucleic acid molecules cleave the target mRNA. Delivery of enzymatic nucleic acid molecule expressing vectors can be systemic, such as by intravenous or intramuscular administration, by administration to target cells ex-planted from the patient followed by reintroduction into the patient, or by any other means that would allow for introduction into the desired target cell (for a review see Couture and Stinchcomb, 1996, *TIG.*, 12, 510). In another aspect of the invention, nucleic acid molecules that cleave target molecules and inhibit viral replication are expressed from transcription units inserted into DNA, RNA, or viral vectors. Preferably, the recombinant vectors capable of expressing the nucleic acid molecules are locally delivered as described above, and transiently persist in smooth muscle cells. However, other mammalian cell vectors that direct the expression of RNA can be used for this purpose.

The nucleic acid molecules of the instant invention, individually, or in combination or in conjunction with other drugs, and/or therapies can be used to treat diseases or conditions discussed herein. For example, to treat a disease or condition associated with the levels of HBV or HCV, the nucleic acid molecules can be administered to a patient or can be administered to other appropriate cells evident to those skilled in the art, individually or in combination with one or more drugs under conditions suitable for the treatment.

In a further embodiment, the described molecules, such as decoys, aptamers, antisense, enzymatic nucleic acids, or nuclease activating compounds and chimeras can be used in combination with other known treatments to treat conditions or diseases discussed above. For example, the described molecules could be used in combination with one or more known therapeutic agents to treat HBV infection, HCV infection, hepatitis, hepatocellular carcinoma, cancer, cirrhosis, and liver failure. Such therapeutic agents can include, but are not limited to, nucleoside analogs selected from the group comprising Lamivudine (3TC®), L-FMAU, and/or adefovir dipivoxil (for a review of applicable nucleoside analogs, see Colacino and Staschke, 1998, *Progress in Drug Research*, 50, 259-322). Immunomodulators selected from the group comprising Type 1 Interferon, therapeutic vaccines, steriods, and 2'-5' oligoadenylates (for a review of 2'-5' Oligoadenylates, see Charubala and Pfleiderer, 1994, *Progress in Molecular and Subcellular Biology*, 14, 113-138).

Nucleic acid molecules, nuclease activating compounds and chimeras of the invention, individually, or in combination or in conjunction with other drugs, can be used to treat diseases or conditions discussed above. For example, to treat a disease or condition associated with HBV or HCV levels, the patient can be treated, or other appropriate cells can be treated, as is evident to those skilled in the art.

In a further embodiment, the described molecules can be used in combination with other known treatments to treat conditions or diseases discussed above. For example, the described molecules can be used in combination with one or more known therapeutic agents to treat liver failure, hepatocellular carcinoma, cirrhosis, and/or other disease states associated with HBV or HCV infection. Additional known therapeutic agents are those comprising antivirals, interferons, and/or antisense compounds.

The term "inhibit" or "down-regulate" as used herein refers to the expression of the gene, or level of RNAs or equivalent RNAs encoding one or more protein subunits or components, or activity of one or more protein subunits or components, such as HBV protein or proteins, is reduced below that observed in the absence of the therapies of the invention. In one embodiment, inhibition or down-regulation with enzymatic nucleic acid molecule preferably is below that level observed in the presence of an enzymatically inactive or attenuated molecule that is able to bind to the same site on the target RNA, but is unable to cleave that RNA. In another embodiment, inhibition or down-regulation with antisense oligonucleotides is preferably below that level observed in the presence of, for example, an oligonucleotide with scrambled sequence or with mismatches. In another embodiment, inhibition or down-regulation of HBV with the nucleic acid molecule of the instant invention is greater in the presence of the nucleic acid molecule than in its absence.

The term "up-regulate" as used herein refers to the expression of the gene, or level of RNAs or equivalent RNAs encoding one or more protein subunits or components, or activity of one or more protein subunits or components, such as HBV or HCV protein or proteins, is greater than that observed in the absence of the therapies of the invention. For example, the expression of a gene, such as HBV or HCV genes, can be increased in order to treat, prevent, ameliorate, or modulate a pathological condition caused or exacerbated by an absence or low level of gene expression.

The term "modulate" as used herein refers to the expression of the gene, or level of RNAs or equivalent RNAs encoding one or more protein subunits or components, or activity of one or more proteins is up-regulated or down-regulated, such that the expression, level, or activity is greater than or less than that observed in the absence of the therapies of the invention.

The term "decoy" as used herein refers to a nucleic acid molecule, for example RNA or DNA, or aptamer that is designed to preferentially bind to a predetermined ligand. Such binding can result in the inhibition or activation of a target molecule. A decoy or aptamer can compete with a naturally occurring binding target for the binding of a specific ligand. For example, it has been shown that over-expression of HIV trans-activation response (TAR) RNA can act as a "decoy" and efficiently binds HIV tat protein, thereby preventing it from binding to TAR sequences encoded in the HIV RNA (Sullenger *et al.*, 1990, *Cell*, 63, 601-608). This is but a specific example and those in the art will recognize that other embodiments can be readily generated using techniques generally known in the art, see for example Gold *et al.*, 1995, *Annu. Rev. Biochem.*, 64, 763; Brody and Gold, 2000, *J. Biotechnol.*, 74, 5; Sun, 2000, *Curr. Opin. Mol. Ther.*, 2, 100; Kusser, 2000, *J. Biotechnol.*, 74, 27; Hermann and Patel, 2000, *Science*, 287, 820; and Jayasena, 1999, *Clinical Chemistry*, 45, 1628. Similarly, a decoy can be designed to bind to HBV or HCV proteins and block the binding of HBV or HCV DNA or RNA or a decoy can be designed to bind to HBV or HCV proteins and prevent molecular interaction with the HBV or HCV proteins.

By "aptamer" or "nucleic acid aptamer" as used herein is meant a nucleic acid molecule that binds specifically to a target molecule wherein the nucleic acid molecule has sequence that is distinct from sequence recognized by the target molecule in its natural setting. Alternately, an aptamer can be a nucleic acid molecule that binds to a target molecule where the target molecule does not naturally bind to a nucleic acid. The target molecule can be any molecule of interest. For example, the aptamer can be used to bind to a ligand-binding domain of a protein, thereby preventing interaction of the naturally occurring ligand with the protein. This is a non-limiting example and those in the art will recognize that other embodiments can be readily generated using techniques generally known in the art, see for

example Gold *et al.*, 1995, *Annu. Rev. Biochem.*, 64, 763; Brody and Gold, 2000, *J. Biotechnol.*, 74, 5; Sun, 2000, *Curr. Opin. Mol. Ther.*, 2, 100; Kusser, 2000, *J. Biotechnol.*, 74, 27; Hermann and Patel, 2000, *Science*, 287, 820; and Jayasena, 1999, *Clinical Chemistry*, 45, 1628.

By "enzymatic nucleic acid molecule" is meant a nucleic acid molecule that has complementarity in a substrate binding region to a specified gene target, and also has an enzymatic activity which is active to specifically cleave a target RNA molecule. That is, the enzymatic nucleic acid molecule is able to intermolecularly cleave a RNA molecule and thereby inactivate a target RNA molecule. These complementary regions allow sufficient hybridization of the enzymatic nucleic acid molecule to a target RNA molecule and thus permit cleavage. One hundred percent complementarity is preferred, but complementarity as low as 50-75% may also be useful in this invention (see for example Werner and Uhlenbeck, 1995, *Nucleic Acids Research*, 23, 2092-2096; Hammann *et al.*, 1999, *Antisense and Nucleic Acid Drug Dev.*, 9, 25-31). The nucleic acids can be modified at the base, sugar, and/or phosphate groups. The term enzymatic nucleic acid is used interchangeably with phrases such as ribozymes, catalytic RNA, enzymatic RNA, catalytic DNA, aptazyme or aptamer-binding ribozyme, regulatable ribozyme, catalytic oligonucleotides, nucleozyme, DNAzyme, RNA enzyme, endoribonuclease, endonuclease, minizyme, leadzyme, oligozyme or DNA enzyme. All of these terminologies describe nucleic acid molecules with enzymatic activity. The specific enzymatic nucleic acid molecules described in the instant application are not limiting in the invention and those skilled in the art will recognize that all that is important in an enzymatic nucleic acid molecule of this invention is that it have a specific substrate binding site which is complementary to one or more of the target nucleic acid regions, and that it have nucleotide sequences within or surrounding that substrate binding site which impart a nucleic acid cleaving activity to the molecule (Cech *et al.*, U.S. Patent No. 4,987,071; Cech *et al.*, 1988, *JAMA* 260:20 3030-4).

By "nucleic acid molecule" as used herein is meant a molecule comprising nucleotides. The nucleic acid can be single, double, or multiple stranded and can comprise modified or unmodified nucleotides or non-nucleotides or various mixtures and combinations thereof.

By "enzymatic portion" or "catalytic domain" is meant that portion/region of the enzymatic nucleic acid molecule essential for cleavage of a nucleic acid substrate (for example see **Figures 1-5**).

By "substrate binding arm" or "substrate binding domain" is meant that portion/region of a ribozyme which is complementary to (*i.e.*, able to base-pair with) a portion of its substrate. Generally, such complementarity is 100%, but can be less if desired. For example, as few as 10 bases out of 14 may be base-paired (see for example Werner and Uhlenbeck,

1995, *Nucleic Acids Research*, 23, 2092-2096; Hammann *et al.*, 1999, *Antisense and Nucleic Acid Drug Dev.*, 9, 25-31). Such arms are shown generally in Figures 1-5. That is, these arms contain sequences within a ribozyme which are intended to bring ribozyme and target RNA together through complementary base-pairing interactions. The ribozyme of the invention can have binding arms that are contiguous or non-contiguous and may be of varying lengths. The length of the binding arm(s) are preferably greater than or equal to four nucleotides and of sufficient length to stably interact with the target RNA; specifically 12-100 nucleotides; more specifically 14-24 nucleotides long (see for example Werner and Uhlenbeck, *supra*; Hamman *et al.*, *supra*; Hampel *et al.*, EP0360257; Berzal-Herrance *et al.*, 1993, *EMBO J.*, 12, 2567-73). If two binding arms are chosen, the design is such that the length of the binding arms are symmetrical (*i.e.*, each of the binding arms is of the same length; *e.g.*, five and five nucleotides, six and six nucleotides or seven and seven nucleotides long) or asymmetrical (*i.e.*, the binding arms are of different length; *e.g.*, six and three nucleotides; three and six nucleotides long; four and five nucleotides long; four and six nucleotides long; four and seven nucleotides long; and the like).

By “nuclease activating compound” is meant a compound, for example a compound having Formula I, that activates the cleavage of an RNA by a nuclease. The nuclease can comprise RNase L. By “nuclease activating chimera” or “chimera” is meant a nuclease activating compound, for example a compound having Formula I, that is attached to a nucleic acid molecule, for example a nucleic acid molecule that binds preferentially to a target RNA. These chimeric nucleic acid molecules can comprise a nuclease activating compound and an antisense nucleic acid molecule, for example a 2',5'-oligoadenylate antisense chimera, or an enzymatic nucleic acid molecule, for example a 2',5'-oligoadenylate enzymatic nucleic acid chimera.

By “Inozyme” or “NCH” motif or configuration is meant, an enzymatic nucleic acid molecule comprising a motif as is generally described as NCH Rz in Ludwig *et al.*, International PCT Publication No. WO 98/58058 and US Patent Application Serial No. 08/878,640. Inozymes possess endonuclease activity to cleave RNA substrates having a cleavage triplet NCH/, where N is a nucleotide, C is cytidine and H is adenosine, uridine or cytidine, and / represents the cleavage site. Inozymes can also possess endonuclease activity to cleave RNA substrates having a cleavage triplet NCN/, where N is a nucleotide, C is cytidine, and / represents the cleavage site.

By “G-cleaver” motif or configuration is meant, an enzymatic nucleic acid molecule comprising a motif as is generally described in Eckstein *et al.*, US 6,127,173 and in Kore *et al.*, 1998, *Nucleic Acids Research* 26, 4116-4120. G-cleavers possess endonuclease activity

to cleave RNA substrates having a cleavage triplet NYN/, where N is a nucleotide, Y is uridine or cytidine and / represents the cleavage site. G-cleavers can be chemically modified.

By “zinzyme” motif or configuration is meant, an enzymatic nucleic acid molecule comprising a motif as is generally described in Beigelman *et al.*, International PCT publication No. WO 99/55857 and US Patent Application Serial No. 09/918,728. Zinzymes possess endonuclease activity to cleave RNA substrates having a cleavage triplet including but not limited to, YG/Y, where Y is uridine or cytidine, and G is guanosine and / represents the cleavage site. Zinzymes can be chemically modified to increase nuclease stability through various substitutions, including substituting 2'-O-methyl guanosine nucleotides for guanosine nucleotides. In addition, differing nucleotide and/or non-nucleotide linkers can be used to substitute the 5'-gaaa-2' loop of the motif. Zinzymes represent a non-limiting example of an enzymatic nucleic acid molecule that does not require a ribonucleotide (2'-OH) group within its own nucleic acid sequence for activity.

By “amberzyme” motif or configuration is meant, an enzymatic nucleic acid molecule comprising a motif as is generally described in Beigelman *et al.*, International PCT publication No. WO 99/55857 and US Patent Application Serial No. 09/476,387. Amberzymes possess endonuclease activity to cleave RNA substrates having a cleavage triplet NG/N, where N is a nucleotide, G is guanosine, and / represents the cleavage site. Amberzymes can be chemically modified to increase nuclease stability. In addition, differing nucleoside and/or non-nucleoside linkers can be used to substitute the 5'-gaaa-3' loops of the motif. Amberzymes represent a non-limiting example of an enzymatic nucleic acid molecule that does not require a ribonucleotide (2'-OH) group within its own nucleic acid sequence for activity.

By ‘DNAzyme’ is meant, an enzymatic nucleic acid molecule that does not require the presence of a 2'-OH group within its own nucleic acid sequence for activity. In particular embodiments, the enzymatic nucleic acid molecule can have an attached linker or linkers or other attached or associated groups, moieties, or chains containing one or more nucleotides with 2'-OH groups. DNAzymes can be synthesized chemically or expressed endogenously *in vivo*, by means of a single stranded DNA vector or equivalent thereof. Non-limiting examples of DNAzymes are generally reviewed in Usman *et al.*, US patent No., 6,159,714; Chartrand *et al.*, 1995, *NAR* 23, 4092; Breaker *et al.*, 1995, *Chem. Bio.* 2, 655; Santoro *et al.*, 1997, *PNAS* 94, 4262; Breaker, 1999, *Nature Biotechnology*, 17, 422-423; and Santoro *et. al.*, 2000, *J. Am. Chem. Soc.*, 122, 2433-39. The “10-23” DNAzyme motif is one particular type of DNAzyme that was evolved using *in vitro* selection as generally described in Joyce *et al.*, US 5,807,718 and Santoro *et al.*, *supra*. Additional DNAzyme motifs can be selected for

using techniques similar to those described in these references, and hence, are within the scope of the present invention.

By "nucleic acid sensor molecule" or "allozyme" as used herein is meant a nucleic acid molecule comprising an enzymatic domain and a sensor domain, where the enzymatic nucleic acid domain's ability to catalyze a chemical reaction is dependent on the interaction with a target signaling molecule, such as a nucleic acid, polynucleotide, oligonucleotide, peptide, polypeptide, or protein, for example HBV RT, HBV RT primer, or HBV Enhancer I sequence. The introduction of chemical modifications, additional functional groups, and/or linkers, to the nucleic acid sensor molecule can provide enhanced catalytic activity of the nucleic acid sensor molecule, increased binding affinity of the sensor domain to a target nucleic acid, and/or improved nuclease/chemical stability of the nucleic acid sensor molecule, and are hence within the scope of the present invention (see for example Usman *et al.*, US Patent Application No. 09/877,526, George *et al.*, US Patent Nos. 5,834,186 and 5,741,679, Shih *et al.*, US Patent No. 5,589,332, Nathan *et al.*, US Patent No 5,871,914, Nathan and Ellington, International PCT publication No. WO 00/24931, Breaker *et al.*, International PCT Publication Nos. WO 00/26226 and 98/27104, and Sullenger *et al.*, US Patent Application Serial No. 09/205,520).

By "sensor component" or "sensor domain" of the nucleic acid sensor molecule as used herein is meant, a nucleic acid sequence (e.g., RNA or DNA or analogs thereof) which interacts with a target signaling molecule, for example a nucleic acid sequence in one or more regions of a target nucleic acid molecule or more than one target nucleic acid molecule, and which interaction causes the enzymatic nucleic acid component of the nucleic acid sensor molecule to either catalyze a reaction or stop catalyzing a reaction. In the presence of target signaling molecule of the invention, such as HBV RT, HBV RT primer, or HBV Enhancer I sequence, the ability of the sensor component, for example, to modulate the catalytic activity of the nucleic acid sensor molecule, is altered or diminished in a manner that can be detected or measured. The sensor component can comprise recognition properties relating to chemical or physical signals capable of modulating the nucleic acid sensor molecule via chemical or physical changes to the structure of the nucleic acid sensor molecule. The sensor component can be derived from a naturally occurring nucleic acid binding sequence, for example, RNAs that bind to other nucleic acid sequences *in vivo*. Alternately, the sensor component can be derived from a nucleic acid molecule (aptamer), which is evolved to bind to a nucleic acid sequence within a target nucleic acid molecule. The sensor component can be covalently linked to the nucleic acid sensor molecule, or can be non-covalently associated. A person skilled in the art will recognize that all that is required is that the sensor component is able to selectively modulate the activity of the nucleic acid sensor molecule to catalyze a reaction.

By "target molecule" or "target signaling molecule" is meant a molecule capable of interacting with a nucleic acid sensor molecule, specifically a sensor domain of a nucleic acid sensor molecule, in a manner that causes the nucleic acid sensor molecule to be active or inactive. The interaction of the signaling agent with a nucleic acid sensor molecule can result in modification of the enzymatic nucleic acid component of the nucleic acid sensor molecule via chemical, physical, topological, or conformational changes to the structure of the molecule, such that the activity of the enzymatic nucleic acid component of the nucleic acid sensor molecule is modulated, for example is activated or inactivated. Signaling agents can comprise target signaling molecules such as macromolecules, ligands, small molecules, metals and ions, nucleic acid molecules including but not limited to RNA and DNA or analogs thereof, proteins, peptides, antibodies, polysaccharides, lipids, sugars, microbial or cellular metabolites, pharmaceuticals, and organic and inorganic molecules in a purified or unpurified form, for example HBV RT or HBV RT primer.

By "sufficient length" is meant a nucleic acid molecule long enough to provide the intended function under the expected condition. For example, a nucleic acid molecule of the invention needs to be of "sufficient length" to provide stable binding to a target site under the expected binding conditions and environment. In another non-limiting example, for the binding arms of an enzymatic nucleic acid, "sufficient length" means that the binding arm sequence is long enough to provide stable binding to a target site under the expected reaction conditions and environment. The binding arms are not so long as to prevent useful turnover of the nucleic acid molecule. By "stably interact" is meant interaction of the oligonucleotides with target nucleic acid (*e.g.*, by forming hydrogen bonds with complementary nucleotides in the target under physiological conditions) that is sufficient for the intended purpose (*e.g.*, cleavage of target RNA by an enzyme).

By "equivalent" RNA to HBV or HCV is meant to include those naturally occurring RNA molecules having homology (partial or complete) to HBV or HCV proteins or encoding for proteins with similar function as HBV or HCV in various organisms, including human, rodent, primate, rabbit, pig, protozoans, fungi, plants, and other microorganisms and parasites. The equivalent RNA sequence also includes in addition to the coding region, regions such as 5'-untranslated region, 3'-untranslated region, introns, intron-exon junction and the like.

The term "component" of HBV or HCV as used herein refers to a peptide or protein subunit expressed from a HBV or HCV gene.

By "homology" is meant the nucleotide sequence of two or more nucleic acid molecules is partially or completely identical.

By "antisense nucleic acid", it is meant a non-enzymatic nucleic acid molecule that binds to target RNA by means of RNA-RNA or RNA-DNA or RNA-PNA (protein nucleic acid; Egholm *et al.*, 1993 *Nature* 365, 566) interactions and alters the activity of the target RNA (for a review, see Stein and Cheng, 1993 *Science* 261, 1004 and Woolf *et al.*, US patent No. 5,849,902). Typically, antisense molecules are complementary to a target sequence along a single contiguous sequence of the antisense molecule. However, in certain embodiments, an antisense molecule can bind to substrate such that the substrate molecule forms a loop, and/or an antisense molecule can bind such that the antisense molecule forms a loop. Thus, the antisense molecule can be complementary to two or more non-contiguous substrate sequences or two or more non-contiguous sequence portions of an antisense molecule can be complementary to a target sequence, or both. For a review of current antisense strategies, see Schmajuk *et al.*, 1999, *J. Biol. Chem.*, 274, 21783-21789, Delihas *et al.*, 1997, *Nature*, 15, 751-753, Stein *et al.*, 1997, *Antisense N. A. Drug Dev.*, 7, 151, Crooke, 2000, *Methods Enzymol.*, 313, 3-45; Crooke, 1998, *Biotech. Genet. Eng. Rev.*, 15, 121-157, Crooke, 1997, *Ad. Pharmacol.*, 40, 1-49. Antisense molecules of the instant invention can include 2-5A antisense chimera molecules. In addition, antisense DNA can be used to target RNA by means of DNA-RNA interactions, thereby activating RNase H, which digests the target RNA in the duplex. The antisense oligonucleotides can comprise one or more RNase H activating region that is capable of activating RNase H cleavage of a target RNA. Antisense DNA can be synthesized chemically or expressed via the use of a single stranded DNA expression vector or equivalent thereof.

By "RNase H activating region" is meant a region (generally greater than or equal to 4-25 nucleotides in length, preferably from 5-11 nucleotides in length) of a nucleic acid molecule capable of binding to a target RNA to form a non-covalent complex that is recognized by cellular RNase H enzyme (see for example Arrow *et al.*, US 5,849,902; Arrow *et al.*, US 5,989,912). The RNase H enzyme binds to the nucleic acid molecule-target RNA complex and cleaves the target RNA sequence. The RNase H activating region comprises, for example, phosphodiester, phosphorothioate (for example, at least four of the nucleotides are phosphorothioate substitutions; more specifically, 4-11 of the nucleotides are phosphorothioate substitutions), phosphorodithioate, 5'-thiophosphate, or methylphosphonate backbone chemistry or a combination thereof. In addition to one or more backbone chemistries described above, the RNase H activating region can also comprise a variety of sugar chemistries. For example, the RNase H activating region can comprise deoxyribose, arabinose, fluoroarabinose or a combination thereof, nucleotide sugar chemistry. Those skilled in the art will recognize that the foregoing are non-limiting examples and that any combination

of phosphate, sugar and base chemistry of a nucleic acid that supports the activity of RNase H enzyme is within the scope of the definition of the RNase H activating region and the instant invention.

By "2-5A antisense" or "2-5A antisense chimera" is meant an antisense oligonucleotide containing a 5'-phosphorylated 2'-5'-linked adenylate residue. These chimeras bind to target RNA in a sequence-specific manner and activate a cellular 2-5A-dependent ribonuclease which, in turn, cleaves the target RNA (Torrence et al., 1993 *Proc. Natl. Acad. Sci. USA* 90, 1300; Silverman et al., 2000, *Methods Enzymol.*, 313, 522-533; Player and Torrence, 1998, *Pharmacol. Ther.*, 78, 55-113).

By "triplex nucleic acid" or "triplex oligonucleotide" it is meant a polynucleotide or oligonucleotide that can bind to a double-stranded DNA in a sequence-specific manner to form a triple-strand helix. Formation of such triple helix structure has been shown to modulate transcription of the targeted gene (Duval-Valentin et al., 1992, *Proc. Natl. Acad. Sci. USA*, 89, 504). Triplex nucleic acid molecules of the invention also include steric blocker nucleic acid molecules that bind to the Enhancer I region of HBV DNA (plus strand and/or minus strand) and prevent translation of HBV genomic DNA.

The term "single stranded RNA" (ssRNA) as used herein refers to a naturally occurring or synthetic ribonucleic acid molecule comprising a linear single strand, for example a ssRNA can be a messenger RNA (mRNA), transfer RNA (tRNA), ribosomal RNA (rRNA) etc. of a gene.

The term "single stranded DNA" (ssDNA) as used herein refers to a naturally occurring or synthetic deoxyribonucleic acid molecule comprising a linear single strand, for example, a ssDNA can be a sense or antisense gene sequence or EST (Expressed Sequence Tag).

The term "allozyme" as used herein refers to an allosteric enzymatic nucleic acid molecule, see for example George et al., US Patent Nos. 5,834,186 and 5,741,679, Shih et al., US Patent No. 5,589,332, Nathan et al., US Patent No 5,871,914, Nathan and Ellington, International PCT publication No. WO 00/24931, Breaker et al., International PCT Publication Nos. WO 00/26226 and 98/27104, and Sullenger et al., International PCT publication No. WO 99/29842.

The term "2-5A chimera" as used herein refers to an oligonucleotide containing a 5'-phosphorylated 2'-5'-linked adenylate residue. These chimeras bind to target RNA in a sequence-specific manner and activate a cellular 2-5A-dependent ribonuclease which, in turn, cleaves the target RNA (Torrence et al., 1993 *Proc. Natl. Acad. Sci. USA* 90, 1300;

Silverman *et al.*, 2000, *Methods Enzymol.*, 313, 522-533; Player and Torrence, 1998, *Pharmacol. Ther.*, 78, 55-113).

The term "double stranded RNA" or "dsRNA" as used herein refers to a double stranded RNA molecule capable of RNA interference "RNAi", including short interfering RNA "siRNA" see for example Bass, 2001, *Nature*, 411, 428-429; Elbashir *et al.*, 2001, *Nature*, 411, 494-498; and Kreutzer *et al.*, International PCT Publication No. WO 00/44895; Zernicka-Goetz *et al.*, International PCT Publication No. WO 01/36646; Fire, International PCT Publication No. WO 99/32619; Plaetinck *et al.*, International PCT Publication No. WO 00/01846; Mello and Fire, International PCT Publication No. WO 01/29058; Deschamps-Depaillette, International PCT Publication No. WO 99/07409; and Li *et al.*, International PCT Publication No. WO 00/44914.

By "gene" it is meant, a nucleic acid that encodes an RNA, for example, nucleic acid sequences including, but not limited to, structural genes encoding a polypeptide.

By "complementarity" is meant that a nucleic acid can form hydrogen bond(s) with another nucleic acid sequence by either traditional Watson-Crick or other non-traditional types. In reference to the nucleic molecules of the present invention, the binding free energy for a nucleic acid molecule with its target or complementary sequence is sufficient to allow the relevant function of the nucleic acid to proceed, e.g., ribozyme cleavage, antisense or triple helix modulation. Determination of binding free energies for nucleic acid molecules is well known in the art (see, e.g., Turner *et al.*, 1987, *CSH Symp. Quant. Biol.* LII pp.123-133; Frier *et al.*, 1986, *Proc. Nat. Acad. Sci. USA* 83:9373-9377; Turner *et al.*, 1987, *J. Am. Chem. Soc.* 109:3783-3785). A percent complementarity indicates the percentage of contiguous residues in a nucleic acid molecule that can form hydrogen bonds (e.g., Watson-Crick base pairing) with a second nucleic acid sequence (e.g., 5, 6, 7, 8, 9, 10 out of 10 being 50%, 60%, 70%, 80%, 90%, and 100% complementary). "Perfectly complementary" means that all the contiguous residues of a nucleic acid sequence will hydrogen bond with the same number of contiguous residues in a second nucleic acid sequence.

As used herein "cell" is used in its usual biological sense, and does not refer to an entire multicellular organism, e.g., specifically does not refer to a human. The cell can be present in an organism, e.g., birds, plants and mammals such as humans, cows, sheep, apes, monkeys, swine, dogs, and cats. The cell can be prokaryotic (e.g., bacterial cell) or eukaryotic (e.g., mammalian or plant cell).

By "HBV proteins" or "HCV proteins" is meant, a protein or a mutant protein derivative thereof, comprising sequence expressed and/or encoded by the HBV genome.

By "highly conserved sequence region" is meant a nucleotide sequence of one or more regions in a target gene does not vary significantly from one generation to the other or from one biological system to the other.

By "highly conserved nucleic acid binding region" is meant an amino acid sequence of one or more regions in a target protein that does not vary significantly from one generation to the other or from one biological system to the other.

By "related to the levels of HBV" is meant that the reduction of HBV expression (specifically HBV gene) RNA levels and thus reduction in the level of the respective protein will relieve, to some extent, the symptoms of the disease or condition.

By "related to the levels of HCV" is meant that the reduction of HCV expression (specifically HCV gene) RNA levels and thus reduction in the level of the respective protein will relieve, to some extent, the symptoms of the disease or condition.

By "RNA" is meant a molecule comprising at least one ribonucleotide residue. By "ribonucleotide" is meant a nucleotide with a hydroxyl group at the 2' position of a β -D-ribofuranose moiety.

By "vector" is meant any nucleic acid- and/or viral-based technique used to express and/or deliver a desired nucleic acid.

By "patient" is meant an organism, which is a donor or recipient of explanted cells or the cells themselves. "Patient" also refers to an organism to which the nucleic acid molecules of the invention can be administered. In one embodiment, a patient is a mammal or mammalian cells. In another embodiment, a patient is a human or human cells.

Other features and advantages of the invention will be apparent from the following description of the preferred embodiments thereof, and from the claims.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

First the drawings will be described briefly.

Drawings

Figure 1 shows the secondary structure model for seven different classes of enzymatic nucleic acid molecules. Arrow indicates the site of cleavage. ----- indicate the target sequence. Lines interspersed with dots are meant to indicate tertiary interactions. - is meant to

indicate base-paired interaction. **Group I Intron:** P1-P9.0 represent various stem-loop structures (Cech *et al.*, 1994, *Nature Struct. Bio.*, 1, 273). **RNase P (M1RNA):** EGS represents external guide sequence (Forster *et al.*, 1990, *Science*, 249, 783; Pace *et al.*, 1990, *J. Biol. Chem.*, 265, 3587). **Group II Intron:** 5'SS means 5' splice site; 3'SS means 3'-splice site; IBS means intron binding site; EBS means exon binding site (Pyle *et al.*, 1994, *Biochemistry*, 33, 2716). **VS RNA:** I-VI are meant to indicate six stem-loop structures; shaded regions are meant to indicate tertiary interaction (Collins, International PCT Publication No. WO 96/19577). **HDV Ribozyme:** I-IV are meant to indicate four stem-loop structures (Been *et al.*, US Patent No. 5,625,047). **Hammerhead Ribozyme:** I-III are meant to indicate three stem-loop structures; stems I-III can be of any length and may be symmetrical or asymmetrical (Usman *et al.*, 1996, *Curr. Op. Struct. Bio.*, 1, 527). **Hairpin Ribozyme:** Helix 1, 4 and 5 can be of any length; Helix 2 is between 3 and 8 base-pairs long; Y is a pyrimidine; Helix 2 (H2) is provided with at least 4 base pairs (*i.e.*, n is 1, 2, 3 or 4) and helix 5 can be optionally provided of length 2 or more bases (preferably 3 - 20 bases, *i.e.*, m is from 1 - 20 or more). Helix 2 and helix 5 may be covalently linked by one or more bases (*i.e.*, r is \geq 1 base). Helix 1, 4 or 5 may also be extended by 2 or more base pairs (*e.g.*, 4 - 20 base pairs) to stabilize the ribozyme structure, and preferably is a protein binding site. In each instance, each N and N' independently is any normal or modified base and each dash represents a potential base-pairing interaction. These nucleotides may be modified at the sugar, base or phosphate. Complete base-pairing is not required in the helices, but is preferred. Helix 1 and 4 can be of any size (*i.e.*, o and p is each independently from 0 to any number, *e.g.*, 20) as long as some base-pairing is maintained. Essential bases are shown as specific bases in the structure, but those in the art will recognize that one or more may be modified chemically (abasic, base, sugar and/or phosphate modifications) or replaced with another base without significant effect. Helix 4 can be formed from two separate molecules, *i.e.*, without a connecting loop. The connecting loop when present may be a ribonucleotide with or without modifications to its base, sugar or phosphate. "q" \geq is 2 bases. The connecting loop can also be replaced with a non-nucleotide linker molecule. H refers to bases A, U, or C. Y refers to pyrimidine bases. "—" refers to a covalent bond. (Burke *et al.*, 1996, *Nucleic Acids & Mol. Biol.*, 10, 129; Chowrira *et al.*, US Patent No. 5,631,359).

Figure 2 shows examples of chemically stabilized ribozyme motifs. **HH Rz**, represents hammerhead ribozyme motif (Usman *et al.*, 1996, *Curr. Op. Struct. Bio.*, 1, 527); **NCH Rz** represents the NCH ribozyme motif (Ludwig & Sproat, International PCT Publication No. WO 98/58058); **G-Cleaver**, represents G-cleaver ribozyme motif (Kore *et al.*, 1998, *Nucleic Acids Research*, 26, 4116-4120). N or n, represent independently a nucleotide which may be same or different and have complementarity to each other; **rI**, represents ribo-Inosine nucleotide; arrow indicates the site of cleavage within the target. Position 4 of the HH Rz and the NCH Rz is shown as having 2'-C-allyl modification, but

those skilled in the art will recognize that this position can be modified with other modifications well known in the art, so long as such modifications do not significantly inhibit the activity of the ribozyme.

Figure 3 shows an example of the Amberzyme ribozyme motif that is chemically stabilized (see, for example, Beigelman *et al.*, International PCT publication No. WO 99/55857; also referred to as Class I Motif). The Amberzyme motif is a class of enzymatic nucleic acid molecules that do not require the presence of a ribonucleotide (2'-OH) group for activity.

Figure 4 shows an example of the Zinzyme A ribozyme motif that is chemically stabilized (see, for example, International PCT publication No. WO 99/55857; also referred to as Class A Motif). The Zinzyme motif is a class of enzymatic nucleic acid molecules that do not require the presence of a ribonucleotide (2'-OH) group for activity.

Figure 5 shows an example of a DNAzyme motif described by Santoro *et al.*, 1997, *PNAS*, 94, 4262.

Figure 6 is a bar graph showing the percent change in serum HBV DNA levels following fourteen days of ribozyme treatment in HBV transgenic mice. Ribozymes targeting sites 273 (RPI.18341) and 1833 (RPI.18371) of HBV RNA administered via continuous s.c. infusion at 10, 30, and 100 mg/kg/day are compared to continuous s.c. infusion administration of scrambled attenuated core ribozyme and saline controls, and orally administered 3TC® (300 mg/kg/day) and saline controls.

Figure 7 is a bar graph showing the mean serum HBV DNA levels following fourteen days of ribozyme treatment in HBV transgenic mice. Ribozymes targeting sites 273 (RPI.18341) and 1833 (RPI.18371) of HBV RNA administered via continuous s.c. infusion at 10, 30, and 100 mg/kg/day are compared to continuous s.c. infusion administration of scrambled attenuated core ribozyme and saline controls, and orally administered 3TC® (300 mg/kg/day) and saline controls.

Figure 8 is a bar graph showing the decrease in serum HBV DNA (log) levels following fourteen days of ribozyme treatment in HBV transgenic mice. Ribozymes targeting sites 273 (RPI.18341) and 1833 (RPI.18371) of HBV RNA administered via continuous s.c. infusion at 10, 30, and 100 mg/kg/day are compared to continuous s.c. infusion administration of scrambled attenuated core ribozyme and saline controls, and orally administered 3TC® (300 mg/kg/day) and saline controls.

Figure 9 is a bar graph showing the decrease in HBV DNA in HepG2.2.15 cells after treatment with ribozymes targeting sites 273 (RPI.18341), 1833 (RPI.18371), 1874

(RPI.18372), and 1873 (RPI.18418) of HBV RNA as compared to a scrambled attenuated core ribozyme (RPI.20995).

Figure 10 is a bar graph showing reduction in HBsAg levels following treatment of HepG2 cells with anti-HBV arm, stem, and loop-variant ribozymes (RPI.18341, RPI.22644, RPI.22645, RPI.22646, RPI.22647, RPI.22648, RPI.22649, and RPI.22650) targeting site 273 of the HBV pregenomic RNA as compared to a scrambled attenuated core ribozyme (RPI.20599).

Figure 11 is a bar graph showing reduction in HBsAg levels following treatment of HepG2 cells with RPI 18341 alone or in combination with Infergen®. At either 500 or 1000 units of Infergen®, the addition of 200 nM of RPI.18341 results in a 75-77% increase in anti-HBV activity as judged by the level of HBsAg secreted from the treated Hep G2 cells. Conversely, the anti-HBV activity of RPI.18341(at 200 nM) is increased 31-39% when used in combination of 500 or 1000 units of Infergen®.

Figure 12 is a bar graph showing reduction in HBsAg levels following treatment of HepG2 cells with RPI 18341 alone or in combination with Lamivudine. At 25 nM Lamivudine (3TC®), the addition of 100 nM of RPI.18341 results in a 48% increase in anti-HBV activity as judged by the level of HBsAg secreted from treated Hep G2 cells. Conversely, the anti-HBV activity of RPI.18341 (at 100 nM) is increased 31% when used in combination with 25 nM Lamivudine.

Figure 13 shows a scheme which outlines the steps involved in HBV reverse transcription. The HBV polymerase/reverse transcriptase binds to the 5'-stem-loop of the HBV pregenomic RNA and synthesizes a primer from the UUCA template. The reverse transcriptase and tetramer primer are translocated to the 3'-DR1 site. The RT primer binds to the UUCA sequence in the DR1 element and minus strand synthesis begins.

Figure 14 shows a non-limiting example of inhibition of HBV reverse transcription. A decoy molecule binds to the HBV RT primer, thereby preventing translocation of the RT to the 3'-DR1 site and preventing minus strand synthesis.

Figure 15 shows data of a HBV nucleic acid screen of 2'-O-allyl modified nucleic acid molecules. The levels of HbsAg were determined by ELISA. Inhibition of HBV is correlated to HBsAg antigen levels.

Figure 16 shows data of a HBV nucleic acid screen of 2'-O-methyl modified nucleic acid molecules. The levels of HbsAg were determined by ELISA. Inhibition of HBV is correlated to HBsAg antigen levels.

Figure 17 shows dose response data of 2'-O-methyl modified nucleic acid molecules targeting the HBV reverse transcriptase primer compared to levels of HBsAg.

Figure 18 shows data of nucleic acid screen of nucleic acid molecules (200 nM) targeting the HBV Enhancer I core region compared to levels of HBsAg.

Figure 19 shows data of nucleic acid screen of nucleic acid molecules (400 nM) targeting the HBV Enhancer I core region compared to levels of HBsAg.

Figure 20 shows dose response data of nucleic acid molecules targeting the HBV Enhancer I core region compared to levels of HBsAg.

Figure 21 shows a graph depicting HepG2.2.15 tumor growth in athymic nu/nu female mice as tumor volume (mm³) vs time (days).

Figure 22 shows a graph depicting HepG2.2.15 tumor growth in athymic nu/nu female mice as tumor volume (mm³) vs time (days). Inoculated HepG2.2.15 cells were selected for antibiotic resistance to G418 before introduction into the mouse.

Figure 23 is a schematic representation of the Dual Reporter System utilized to demonstrate enzymatic nucleic acid mediated reduction of luciferase activity in cell culture.

Figure 24 shows a schematic view of the secondary structure of the HCV 5'UTR (Brown *et al.*, 1992, *Nucleic Acids Res.*, 20, 5041-45; Honda *et al.*, 1999, *J. Virol.*, 73, 1165-74). Major structural domains are indicated in bold. Enzymatic nucleic acid cleavage sites are indicated by arrows. Solid arrows denote sites amenable to amino-modified enzymatic nucleic acid inhibition. Lead cleavage sites (195 and 330) are indicated with oversized solid arrows.

Figure 25 shows a non-limiting example of a nuclease resistant enzymatic nucleic acid molecule. Binding arms are indicated as stem I and stem III. Nucleotide modifications are indicated as follows: 2'-O-methyl nucleotides, lowercase; ribonucleotides, uppercase G, A; 2'-amino-uridine, u; inverted 3'-3' deoxyabasic, **B**. The positions of phosphorothioate linkages at the 5'-end of each enzymatic nucleic acid are indicated by subscript "s". *H* indicates A, C or U ribonucleotide, *N'* indicates A, C G or U ribonucleotide in substrate, *n* indicates base complementary to the *N'*. The U4 and U7 positions in the catalytic core are indicated.

Figure 26 is a set of bar graphs showing enzymatic nucleic acid mediated inhibition of HCV-luciferase expression in OST7 cells. OST7 cells were transfected with complexes containing reporter plasmids (2 µg/mL), enzymatic nucleic acids (100 nM) and lipid. The ratio of HCV-firefly luciferase luminescence/Renilla luciferase luminescence was determined

for each enzymatic nucleic acid tested and was compared to treatment with the ICR, an irrelevant control enzymatic nucleic acid lacking specificity to the HCV 5'UTR (adjusted to 1). Results are reported as the mean of triplicate samples \pm SD. In **Figure 26A**, OST7 cells were treated with enzymatic nucleic acids (100 nM) targeting conserved sites (indicated by cleavage site) within the HCV 5'UTR. In **Figure 26B**, OST7 cells were treated with a subset of enzymatic nucleic acids to lead HCV sites (indicated by cleavage site) and corresponding attenuated core (AC) controls. Percent decrease in firefly/Renilla luciferase ratio after treatment with active enzymatic nucleic acids as compared to treatment with corresponding ACs is shown when the decrease is $\geq 50\%$ and statistically significant. Similar results were obtained with 50 nM enzymatic nucleic acid.

Figure 27 is a series of line graphs showing the dose-dependent inhibition of HCV/luciferase expression following enzymatic nucleic acid treatment. Active enzymatic nucleic acid was mixed with corresponding AC to maintain a 100 nM total oligonucleotide concentration and the same lipid charge ratio. The concentration of active enzymatic nucleic acid for each point is shown. **Figure 27A–E** shows enzymatic nucleic acids targeting sites 79, 81, 142, 195, or 330, respectively. Results are reported as the mean of triplicate samples \pm SD.

Figure 28 is a set of bar graphs showing reduction of HCV/luciferase RNA and inhibition of HCV-luciferase expression in OST7 cells. OST7 cells were transfected with complexes containing reporter plasmids (2 μ g /ml), enzymatic nucleic acids, BACs or SACs (50 nM) and lipid. Results are reported as the mean of triplicate samples \pm SD. In **Figure 28A** the ratio of HCV-firefly luciferase RNA/Renilla luciferase RNA is shown for each enzymatic nucleic acid or control tested. As compared to paired BAC controls (adjusted to 1), luciferase RNA levels were reduced by 40% and 25% for the site 195 or 330 enzymatic nucleic acids, respectively. In **Figure 28B** the ratio of HCV-firefly luciferase luminescence/Renilla luciferase luminescence is shown after treatment with site 195 or 330 enzymatic nucleic acids or paired controls. As compared to paired BAC controls (adjusted to 1), inhibition of protein expression was 70% and 40% for the site 195 or 330 enzymatic nucleic acids, respectively $P < 0.01$.

Figure 29 is a set a bar graphs showing interferon (IFN) alpha 2a and 2b dose response in combination with site 195 anti-HCV enzymatic nucleic acid treatment. **Figure 29A** shows data for IFN alfa 2a treatment. **Figure 29B** shows data for IFN alfa 2b treatment. Viral yield is reported from HeLa cells pretreated with IFN in units/ml (U/ml) as indicated for 4 h prior to infection and then treated with either 200 nM control (SAC) or site 195 anti-HCV enzymatic nucleic acid (195 RZ) for 24 h after infection. Cells were infected with a MOI =

0.1 for 30 min and collected at 24 h post infection. Error bars represent the S.D. of the mean of triplicate determinations.

Figure 30 is a line graph showing site 195 anti-HCV enzymatic nucleic acid dose response in combination with interferon (IFN) alpha 2a and 2b pretreatment. Viral yield is reported from HeLa cells pretreated for 4 h with or without IFN and treated with doses of site 195 anti-HCV enzymatic nucleic acid (195 RZ) as indicated for 24 h after infection. Anti-HCV enzymatic nucleic acid was mixed with control oligonucleotide (SAC) to maintain a constant 200 nM total dose of nucleic acid for delivery. Cells were infected with a MOI = 0.1 for 30 min and collected at 24 h post infection. Error bars represent the S.D. of the mean of triplicate determinations.

Figure 31 is a set of bar graphs showing data from consensus interferon (CIFN)/enzymatic nucleic acid combination treatment. **Figure 31A** shows CIFN dose response with site 195 anti-HCV enzymatic nucleic acid treatment. Viral yield is reported from cells pretreated with CIFN in units/ml (U/ml) as indicated and treated with either 200 nM control (SAC) or site 195 anti-HCV enzymatic nucleic acid (195 RZ). **Figure 31B** shows site 195 anti-HCV enzymatic nucleic acid dose response with CIFN pretreatment. Viral yield is reported from cells pretreated with or without CIFN and treated with concentrations of site 195 anti-HCV enzymatic nucleic acid (195 RZ) as indicated. Anti-HCV enzymatic nucleic acid was mixed with control oligonucleotide (SAC) to maintain a constant 200 nM total dose of nucleic acid for delivery. Cells were infected with a MOI = 0.1 for 30 min. and collected at 24 h post infection. Error bars represent the S.D. of the mean of triplicate determinations.

Figure 32 is a bar graph showing enzymatic nucleic acid activity and enhanced antiviral effect of an anti-HCV enzymatic nucleic acid targeting site 195 used in combination with consensus interferon (CIFN). Viral yield is reported from cells treated as indicated. BAC, cells were treated with 200 nM BAC (binding attenuated control) for 24 h after infection; CIFN+BAC, cells were treated with 12.5 U/ml CIFN for 4 h prior to infection and with 200 nM BAC for 24 h after infection; 195 RZ, cells were treated with 200 nM site 195 anti-HCV enzymatic nucleic acid for 24 h after infection; CIFN + 195 RZ, cells were treated with 12.5 U/ml CIFN for 4 h prior to infection and with 200 nM site 195 anti-HCV enzymatic nucleic acid for 24 h after infection. Cells were infected with a MOI = 0.1 for 30 min. Error bars represent the S.D. of the mean of triplicate determinations.

Figure 33 is a bar graph showing inhibition of a HCV-PV chimera replication by treatment with zinzyne enzymatic nucleic acid molecules targeting different sites within the HCV 5'-UTR compared to a scrambled attenuated core control (SAC) zinzyne.

Figure 34 is a bar graph showing inhibition of a HCV-PV chimera replication by antisense nucleic acid molecules targeting conserved regions of the HCV 5'-UTR compared to scrambled antisense controls.

Figure 35 shows the structure of compounds (2-5A) utilized in the study. "X" denotes the position of oxygen (O) in analog I or sulfur (S) in thiophosphate (P=S) analog II. The 2-5A compounds were synthesized, deprotected and purified as described herein utilizing CPG support with 3'-inverted abasic nucleotide. For chain extension 5'-O-(4,4'-dimethoxytrityl)-3'-O-(tert-butyldimethylsilyl)-N6-benzoyladenosine-2-cyanoethyl-N,N-diisopropyl-phosphoramidite (Chem. Genes Corp., Waltham, MA) was employed. Introduction of a 5'-terminal phosphate (analog I) or thiophosphate (analog II) group was performed with "Chemical Phosphorylation Reagent" (Glen Research, Sterling , VA). Structures of the final compounds were confirmed by MALDI-TOF analysis.

Figure 36 is a bar graph showing ribozyme activity and enhanced antiviral effect. (A) Interferon/ribozyme combination treatment. (B) 2-5A/ribozyme combination treatment. HeLa cells seeded in 96-well plates (10,000 cells per well) were pretreated as indicated for 4 hours. For pretreatment, SAC (RPI 17894), RZ (RPI 13919), and 2-5A analog I (RPI 21096) (200 nM) were complexed with lipid cytofectin. Cells were then infected with HCV-PV at a multiplicity of infection of 0.1. Virus inoculum was replaced after 30 minutes with media containing 5% serum and 100 nM RZ or SAC as indicated, complexed with cytofectin RPI.9778. After 20 hours, cells were lysed by 3 freeze/thaw cycles and virus was quantified by plaque assay. Plaque forming units (PFU)/ml are shown as the mean of triplicate samples + SEM. The absolute amount of viral yield in treated cells varied from day to day, presumably due to day to day variations in cell plating and transfection complexation. None, normal media; IFN, 10 U/ml consensus interferon; SAC, scrambled arm attenuated core control (RPI 17894); RZ, anti-HCV ribozyme (RPI 13919); 2-5A, (RPI 21096).

Figure 37 is a graph showing the inhibition of viral replication with anti-HCV ribozyme (RPI 13919) or 2-5A (RPI 21096) treatment. HeLa cells were treated as described in **Figure 36** except that there was no pretreatment and 200 nM oligonucleotide was used for treatment. 2-5A P=S contains a 5'-terminal thiophosphate (RPI21095) (see **Figure 35**).

Figure 38 is a bar graph showing anti-HCV ribozyme in combination with 2-5A treatment. HeLa cells were treated as described in **Figure 37** except concentrations were co-varied as shown to maintain a constant 200 nM total oligonucleotide dose for transfection. Cells treated with 50 nM anti-HCV ribozyme (RPI 13919) (middle bars) were also treated with 150 nM SAC (RPI 17894) or 2-5A (RPI 21096); likewise, cells treated with 100 nM anti-HCV ribozyme (bars at right) were also treated with 100 nM SAC or 2-5A.

Mechanism of action of Nucleic Acid Molecules of the Invention

Decoy: Nucleic acid decoy molecules are mimetics of naturally occurring nucleic acid molecules or portions of naturally occurring nucleic acid molecules that can be used to modulate the function of a specific protein or a nucleic acid whose activity is dependant on interaction with the naturally occurring nucleic acid molecule. Decoys modulate the function of a target protein or nucleic acid by competing with authentic nucleic acid binding to the ligand of interest. Often, the nucleic acid decoy is a truncated version of a nucleic acid sequence that is recognized, for example by a particular protein, such as a transcription factor or polymerase. Decoys can be chemically modified to increase binding affinity to the target ligand as well as to increase the enzymatic and chemical stability of the decoy. In addition, bridging and non-bridging linkers can be introduced into the decoy sequence to provide additional binding affinity to the target ligand. Decoy molecules of the invention that bind to an HCV or HBV target, such as HBV reverse transcriptase or HBV reverse transcriptase primer, or an enhancer region of the HBV pregenomic RNA, for example the Enhancer I element, modulate the transcription of RNA to DNA and therefore modulate expression of the pregenomic RNA of the virus (see **Figures 13 and 14**).

Aptamer: Nucleic acid aptamers can be selected to specifically bind to a particular ligand of interest (see for example Gold *et al.*, US 5,567,588 and US 5,475,096, Gold *et al.*, 1995, *Annu. Rev. Biochem.*, 64, 763; Brody and Gold, 2000, *J. Biotechnol.*, 74, 5; Sun, 2000, *Curr. Opin. Mol. Ther.*, 2, 100; Kusser, 2000, *J. Biotechnol.*, 74, 27; Hermann and Patel, 2000, *Science*, 287, 820; and Jayasena, 1999, *Clinical Chemistry*, 45, 1628). For example, the use of in vitro selection can be applied to evolve nucleic acid aptamers with binding specificity for HBV RT and/or HBV RT primer. Nucleic acid aptamers can include chemical modifications and linkers as described herein. Aptamer molecules of the invention that bind to a reverse transcriptase or reverse transcriptase primer, such as HBV reverse transcriptase or HBV reverse transcriptase primer, modulate the transcription of RNA to DNA and therefore modulate expression of the pregenomic RNA of the virus.

Antisense: Antisense molecules can be modified or unmodified RNA, DNA, or mixed polymer oligonucleotides and primarily function by specifically binding to matching sequences resulting in modulation of peptide synthesis (Wu-Pong, Nov 1994, *BioPharm*, 20-33). The antisense oligonucleotide binds to target RNA by Watson Crick base-pairing and blocks gene expression by preventing ribosomal translation of the bound sequences either by steric blocking or by activating RNase H enzyme. Antisense molecules can also alter protein synthesis by interfering with RNA processing or transport from the nucleus into the cytoplasm (Mukhopadhyay & Roth, 1996, *Crit. Rev. in Oncogenesis* 7, 151-190).

In addition, binding of single stranded DNA to RNA may result in nuclease degradation of the heteroduplex (Wu-Pong, *supra*; Crooke, *supra*). To date, the only backbone modified DNA chemistry which will act as substrates for RNase H are phosphorothioates, phosphorodithioates, and borontrifluoridates. Recently, it has been reported that 2'-arabino and 2'-fluoro arabino- containing oligos can also activate RNase H activity.

A number of antisense molecules have been described that utilize novel configurations of chemically modified nucleotides, secondary structure, and/or RNase H substrate domains (Woolf *et al.*, International PCT Publication No. WO 98/13526; Thompson *et al.*, USSN 60/082,404 which was filed on April 20, 1998; Hartmann *et al.*, USSN 60/101,174 which was filed on September 21, 1998) all of these are incorporated by reference herein in their entirety.

Antisense DNA can be used to target RNA by means of DNA-RNA interactions, thereby activating RNase H, which digests the target RNA in the duplex. Antisense DNA can be chemically synthesized or can be expressed via the use of a single stranded DNA intracellular expression vector or the equivalent thereof.

Triplex Forming Oligonucleotides (TFO): Single stranded oligonucleotide can be designed to bind to genomic DNA in a sequence specific manner. TFOs can be comprised of pyrimidine-rich oligonucleotides which bind DNA helices through Hoogsteen Base-pairing (Wu-Pong, *supra*). In addition, TFOs can be chemically modified to increase binding affinity to target DNA sequences. The resulting triple helix composed of the DNA sense, DNA antisense, and TFO disrupts RNA synthesis by RNA polymerase. The TFO mechanism can result in gene expression or cell death since binding may be irreversible (Mukhopadhyay & Roth, *supra*)

2'-5' Oligoadenylates: The 2-5A system is an interferon-mediated mechanism for RNA degradation found in higher vertebrates (Mitra *et al.*, 1996, *Proc Nat Acad Sci USA* 93, 6780-6785). Two types of enzymes, 2-5A synthetase and RNase L, are required for RNA cleavage. The 2-5A synthetases require double stranded RNA to form 2'-5' oligoadenylates (2-5A). 2-5A then acts as an allosteric effector for utilizing RNase L, which has the ability to cleave single stranded RNA. The ability to form 2-5A structures with double stranded RNA makes this system particularly useful for modulation of viral replication.

(2'-5') oligoadenylate structures can be covalently linked to antisense molecules to form chimeric oligonucleotides capable of RNA cleavage (Torrence, *supra*). These molecules putatively bind and activate a 2-5A-dependent RNase, the oligonucleotide/enzyme complex then binds to a target RNA molecule which can then be cleaved by the RNase enzyme. The covalent attachment of 2'-5' oligoadenylate structures is not limited to

antisense applications, and can be further elaborated to include attachment to nucleic acid molecules of the instant invention.

RNA interference (RNAi): RNA interference refers to the process of sequence specific post transcriptional gene silencing in animals mediated by short interfering RNAs (siRNA) (Fire *et al.*, 1998, *Nature*, 391, 806). The corresponding process in plants is commonly referred to as post transcriptional gene silencing or RNA silencing and is also referred to as quelling in fungi. The process of post transcriptional gene silencing is thought to be an evolutionarily conserved cellular defense mechanism used to prevent the expression of foreign genes which is commonly shared by diverse flora and phyla (Fire *et al.*, 1999, *Trends Genet.*, 15, 358). Such protection from foreign gene expression may have evolved in response to the production of double stranded RNAs (dsRNA) derived from viral infection or the random integration of transposon elements into a host genome via a cellular response that specifically destroys homologous single stranded RNA or viral genomic RNA. The presence of dsRNA in cells triggers the RNAi response though a mechanism that has yet to be fully characterized. This mechanism appears to be different from the interferon response that results from dsRNA mediated activation of protein kinase PKR and 2',5'-oligoadenylate synthetase resulting in non-specific cleavage of mRNA by ribonuclease L.

The presence of long dsRNAs in cells stimulates the activity of a ribonuclease III enzyme referred to as dicer. Dicer is involved in the processing of the dsRNA into short pieces of dsRNA known as short interfering RNAs (siRNA) (Berstein *et al.*, 2001, *Nature*, 409, 363). Short interfering RNAs derived from dicer activity are typically about 21-23 nucleotides in length and comprise about 19 base pair duplexes. Dicer has also been implicated in the excision of 21 and 22 nucleotide small temporal RNAs (stRNA) from precursor RNA of conserved structure that are implicated in translational control (Hutvagner *et al.*, 2001, *Science*, 293, 834). The RNAi response also features an endonuclease complex containing a siRNA, commonly referred to as an RNA-induced silencing complex (RISC), which mediates cleavage of single stranded RNA having sequence homologous to the siRNA. Cleavage of the target RNA takes place in the middle of the region complementary to the guide sequence of the siRNA duplex (Elbashir *et al.*, 2001, *Genes Dev.*, 15, 188).

Short interfering RNA mediated RNAi has been studied in a variety of systems. Fire *et al.*, 1998, *Nature*, 391, 806, were the first to observe RNAi in *C. Elegans*. Wianny and Goetz, 1999, *Nature Cell Biol.*, 2, 70, describes RNAi mediated by dsRNA in mouse embryos. Hammond *et al.*, 2000, *Nature*, 404, 293, describe RNAi in *Drosophila* cells transfected with dsRNA. Elbashir *et al.*, 2001, *Nature*, 411, 494, describe RNAi induced by introduction of duplexes of synthetic 21-nucleotide RNAs in cultured mammalian cells including human embryonic kidney and HeLa cells. Recent work in *Drosophila* embryonic lysates has revealed certain requirements for siRNA length, structure, chemical composition,

and sequence that are essential to mediate efficient RNAi activity. These studies have shown that 21 nucleotide siRNA duplexes are most active when containing two nucleotide 3'-overhangs. Furthermore, substitution of one or both siRNA strands with 2'-deoxy or 2'-O-methyl nucleotides abolishes RNAi activity, whereas substitution of 3'-terminal siRNA nucleotides with deoxy nucleotides was shown to be tolerated. Mismatch sequences in the center of the siRNA duplex were also shown to abolish RNAi activity. In addition, these studies also indicate that the position of the cleavage site in the target RNA is defined by the 5'-end of the siRNA guide sequence rather than the 3'-end (Elbashir *et al.*, 2001, *EMBO J.*, 20, 6877). Other studies have indicated that a 5'-phosphate on the target-complementary strand of a siRNA duplex is required for siRNA activity and that ATP is utilized to maintain the 5'-phosphate moiety on the siRNA (Nykanen *et al.*, 2001, *Cell*, 107, 309), however siRNA molecules lacking a 5'-phosphate are active when introduced exogenously, suggesting that 5'-phosphorylation of siRNA constructs may occur *in vivo*.

Enzymatic Nucleic Acid: Several varieties of naturally occurring enzymatic RNAs are presently known (Doherty and Doudna, 2001, *Annu. Rev. Biophys. Biomol. Struct.*, 30, 457-475; Symons, 1994, *Curr. Opin. Struct. Biol.*, 4, 322-30). In addition, several *in vitro* selection (evolution) strategies (Orgel, 1979, *Proc. R. Soc. London, B* 205, 435) have been used to evolve new nucleic acid catalysts capable of catalyzing cleavage and ligation of phosphodiester linkages (Joyce, 1989, *Gene*, 82, 83-87; Beaudry *et al.*, 1992, *Science* 257, 635-641; Joyce, 1992, *Scientific American* 267, 90-97; Breaker *et al.*, 1994, *TIBTECH* 12, 268; Bartel *et al.*, 1993, *Science* 261:1411-1418; Szostak, 1993, *TIBS* 17, 89-93; Kumar *et al.*, 1995, *FASEB J.*, 9, 1183; Breaker, 1996, *Curr. Op. Biotech.*, 7, 442; Santoro *et al.*, 1997, *Proc. Natl. Acad. Sci.*, 94, 4262; Tang *et al.*, 1997, *RNA* 3, 914; Nakamaye & Eckstein, 1994, *supra*; Long & Uhlenbeck, 1994, *supra*; Ishizaka *et al.*, 1995, *supra*; Vaish *et al.*, 1997, *Biochemistry* 36, 6495). Each can catalyze a series of reactions including the hydrolysis of phosphodiester bonds in *trans* (and thus can cleave other RNA molecules) under physiological conditions.

Nucleic acid molecules of this invention can block HBV or HCV protein expression and can be used to treat disease or diagnose disease associated with the levels of HBV or HCV.

The enzymatic nature of an enzymatic nucleic acid has significant advantages, such as the concentration of nucleic acid necessary to affect a therapeutic treatment is low. This advantage reflects the ability of the enzymatic nucleic acid molecule to act enzymatically. Thus, a single enzymatic nucleic acid molecule is able to cleave many molecules of target RNA. In addition, the enzymatic nucleic acid molecule is a highly specific modulator, with the specificity of modulation depending not only on the base-pairing mechanism of binding to the target RNA, but also on the mechanism of target RNA cleavage. Single mismatches,

or base-substitutions, near the site of cleavage can be chosen to completely eliminate catalytic activity of an enzymatic nucleic acid molecule.

Nucleic acid molecules having an endonuclease enzymatic activity are able to repeatedly cleave other separate RNA molecules in a nucleotide base sequence-specific manner. With proper design and construction, such enzymatic nucleic acid molecules can be targeted to any RNA transcript, and efficient cleavage achieved *in vitro* (Zaug *et al.*, 324, *Nature* 429 1986; Uhlenbeck, 1987 *Nature* 328, 596; Kim *et al.*, 84 *Proc. Natl. Acad. Sci. USA* 8788, 1987; Dreyfus, 1988, *Einstein Quart. J. Bio. Med.*, 6, 92; Haseloff and Gerlach, 334 *Nature* 585, 1988; Cech, 260 *JAMA* 3030, 1988; and Jefferies *et al.*, 17 *Nucleic Acids Research* 1371, 1989; Chartrand *et al.*, 1995, *Nucleic Acids Research* 23, 4092; Santoro *et al.*, 1997, *PNAS* 94, 4262).

Because of their sequence specificity, *trans*-cleaving enzymatic nucleic acid molecules show promise as therapeutic agents for human disease (Usman & McSwiggen, 1995 *Ann. Rep. Med. Chem.* 30, 285-294; Christoffersen and Marr, 1995 *J. Med. Chem.* 38, 2023-2037). Enzymatic nucleic acid molecule can be designed to cleave specific RNA targets within the background of cellular RNA. Such a cleavage event renders the RNA non-functional and abrogates protein expression from that RNA. In this manner, synthesis of a protein associated with a disease state can be selectively modulated(Warashina *et al.*, 1999, *Chemistry and Biology*, 6, 237-250.

The present invention also features nucleic acid sensor molecules or allozymes having sensor domains comprising nucleic acid decoys and/or aptamers of the invention. Interaction of the nucleic acid sensor molecule's sensor domain with a molecular target, such as HCV or HBV target, e.g., HBV RT and/or HBV RT primer, can activate or inactivate the enzymatic nucleic acid domain of the nucleic acid sensor molecule, such that the activity of the nucleic acid sensor molecule is modulated in the presence of the target-signaling molecule. The nucleic acid sensor molecule can be designed to be active in the presence of the target molecule or alternately, can be designed to be inactive in the presence of the molecular target. For example, a nucleic acid sensor molecule is designed with a sensor domain having the sequence (UUCA)_n, where n is an integer from 1-10. In a non-limiting example, interaction of the HBV RT primer with the sensor domain of the nucleic acid sensor molecule can activate the enzymatic nucleic acid domain of the nucleic acid sensor molecule such that the sensor molecule catalyzes a reaction, for example cleavage of HBV RNA. In this example, the nucleic acid sensor molecule is activated in the presence of HBV RT or HBV RT primer, and can be used as a therapeutic to treat HBV infection. Alternately, the reaction can comprise cleavage or ligation of a labeled nucleic acid reporter molecule, providing a useful diagnostic reagent to detect the presence of HBV in a system.

HCV Target sites

Targets for useful nucleic acid molecules and nuclease activating compounds or chimeras can be determined as disclosed in Draper *et al.*, WO 93/23569; Sullivan *et al.*, WO 93/23057; Thompson *et al.*, WO 94/02595; Draper *et al.*, WO 95/04818; McSwiggen *et al.*, US Patent No. 5,525,468. Rather than repeat the guidance provided in those documents here, below are provided specific examples of such methods, not limiting to those in the art. Nucleic acid molecules and nuclease activating compounds or chimeras to such targets are designed as described in those applications and synthesized to be tested *in vitro* and *in vivo*, as also described. Such nucleic acid molecules and nuclease activating compounds or chimeras can also be optimized and delivered as described therein.

The sequence of HCV RNAs were screened for optimal enzymatic nucleic acid molecule target sites using a computer folding algorithm. Enzymatic nucleic acid cleavage sites were identified. These sites are shown in **Tables XVIII, XIX, XX and XXIII** (All sequences are 5' to 3' in the tables). The nucleotide base position is noted in the tables as that site to be cleaved by the designated type of enzymatic nucleic acid molecule. The nucleotide base position is noted in the tables as that site to be cleaved by the designated type of enzymatic nucleic acid molecule.

Because HCV RNAs are highly homologous in certain regions, some enzymatic nucleic acid molecule target sites are also homologous. In this case, a single enzymatic nucleic acid molecule will target different classes of HCV RNA. The advantage of one enzymatic nucleic acid molecule that targets several classes of HCV RNA is clear, especially in cases where one or more of these RNAs can contribute to the disease state.

Enzymatic nucleic acid molecules were designed that could bind and were individually analyzed by computer folding (Jaeger *et al.*, 1989 *Proc. Natl. Acad. Sci. USA*, 86, 7706) to assess whether the enzymatic nucleic acid molecule sequences fold into the appropriate secondary structure. Those enzymatic nucleic acid molecules with unfavorable intramolecular interactions between the binding arms and the catalytic core are eliminated from consideration. Varying binding arm lengths can be chosen to optimize activity. Generally, at least 5 bases on each arm are able to bind to, or otherwise interact with, the target RNA. Enzymatic nucleic acid molecules were designed to anneal to various sites in the mRNA message. The binding arms are complementary to the target site sequences described above.

HBV Target sites

Targets for useful ribozymes and antisense nucleic acids targeting HBV can be determined as disclosed in Draper *et al.*, WO 93/23569; Sullivan *et al.*, WO 93/23057; Thompson *et al.*, WO 94/02595; Draper *et al.*, WO 95/04818; McSwiggen *et al.*, US Patent No. 5,525,468. Other examples include the following PCT applications, which concern inactivation of expression of disease-related genes: WO 95/23225, WO 95/13380, WO 94/02595. Rather than repeat the guidance provided in those documents here, below are provided specific examples of such methods, not limiting to those in the art. Ribozymes and antisense to such targets are designed as described in those applications and synthesized to be tested *in vitro* and *in vivo*, as also described. The sequence of human HBV RNAs (for example, accession AF100308.1; HBV strain 2-18; additionally, other HBV strains can be screened by one skilled in the art, see **Table III** for other possible strains) were screened for optimal enzymatic nucleic acid and antisense target sites using a computer-folding algorithm. Antisense, hammerhead, DNAzyme, NCH (Inozyme), amberzyme, zinzyme or G-Cleaver ribozyme binding/cleavage sites were identified. These sites are shown in **Tables V to XI** (all sequences are 5' to 3' in the tables; X can be any base-paired sequence, the actual sequence is not relevant here). The nucleotide base position is noted in the Tables as that site to be cleaved by the designated type of enzymatic nucleic acid molecule. **Table IV** shows substrate positions selected from Renbo *et al.*, 1987, *Sci. Sin.*, 30, 507, used in Draper, USSN (07/882,712), filed May 14, 1992, entitled "METHOD AND REAGENT FOR INHIBITING HEPATITIS B VIRUS REPLICATION" and Draper *et al.*, International PCT publication No. WO 93/23569, filed April 29, 1993, entitled "METHOD AND REAGENT FOR INHIBITING VIRAL REPLICATION". While human sequences can be screened and enzymatic nucleic acid molecule and/or antisense thereafter designed, as discussed in Stinchcomb *et al.*, WO 95/23225, mouse targeted ribozymes can be useful to test efficacy of action of the enzymatic nucleic acid molecule and/or antisense prior to testing in humans.

Antisense, hammerhead, DNAzyme, NCH (Inozyme), amberzyme, zinzyme or G-Cleaver ribozyme binding/cleavage sites were identified, as discussed above. The nucleic acid molecules were individually analyzed by computer folding (Jaeger *et al.*, 1989 *Proc. Natl. Acad. Sci. USA*, 86, 7706) to assess whether the sequences fold into the appropriate secondary structure. Those nucleic acid molecules with unfavorable intramolecular interactions such as between the binding arms and the catalytic core were eliminated from consideration. Varying binding arm lengths can be chosen to optimize activity.

Antisense, hammerhead, DNAzyme, NCH, amberzyme, zinzyme or G-Cleaver ribozyme binding/cleavage sites were identified and were designed to anneal to various sites in the RNA target. The binding arms are complementary to the target site sequences

described above. The nucleic acid molecules were chemically synthesized. The method of synthesis used follows the procedure for normal DNA/RNA synthesis as described below and in Usman *et al.*, 1987 *J. Am. Chem. Soc.*, 109, 7845; Scaringe *et al.*, 1990 *Nucleic Acids Res.*, 18, 5433; Wincott *et al.*, 1995 *Nucleic Acids Res.* 23, 2677-2684; and Caruthers *et al.*, 1992, *Methods in Enzymology* 211,3-19.

Synthesis of Nucleic acid Molecules

Synthesis of nucleic acids greater than 100 nucleotides in length is difficult using automated methods, and the therapeutic cost of such molecules is prohibitive. In this invention, small nucleic acid motifs ("small" refers to nucleic acid motifs no more than 100 nucleotides in length, preferably no more than 80 nucleotides in length, and most preferably no more than 50 nucleotides in length; e.g., decoy nucleic acid molecules, aptamer nucleic acid molecules antisense nucleic acid molecules, enzymatic nucleic acid molecules) are preferably used for exogenous delivery. The simple structure of these molecules increases the ability of the nucleic acid to invade targeted regions of protein and/or RNA structure. Exemplary molecules of the instant invention are chemically synthesized, and others can similarly be synthesized.

Oligonucleotides (e.g., DNA oligonucleotides) are synthesized using protocols known in the art, for example as described in Caruthers *et al.*, 1992, *Methods in Enzymology* 211, 3-19, Thompson *et al.*, International PCT Publication No. WO 99/54459, Wincott *et al.*, 1995, *Nucleic Acids Res.* 23, 2677-2684, Wincott *et al.*, 1997, *Methods Mol. Bio.*, 74, 59, Brennan *et al.*, 1998, *Biotechnol Bioeng.*, 61, 33-45, and Brennan, US patent No. 6,001,311. The synthesis of oligonucleotides makes use of common nucleic acid protecting and coupling groups, such as dimethoxytrityl at the 5'-end, and phosphoramidites at the 3'-end. In a non-limiting example, small scale syntheses are conducted on a 394 Applied Biosystems, Inc. synthesizer using a 0.2 μ mol scale protocol with a 2.5 min coupling step for 2'-O-methylated nucleotides and a 45 sec coupling step for 2'-deoxy nucleotides. **Table II** outlines the amounts and the contact times of the reagents used in the synthesis cycle. Alternatively, syntheses at the 0.2 μ mol scale can be performed on a 96-well plate synthesizer, such as the instrument produced by Protogene (Palo Alto, CA) with minimal modification to the cycle. A 33-fold excess (60 μ L of 0.11 M = 6.6 μ mol) of 2'-O-methyl phosphoramidite and a 105-fold excess of S-ethyl tetrazole (60 μ L of 0.25 M = 15 μ mol) can be used in each coupling cycle of 2'-O-methyl residues relative to polymer-bound 5'-hydroxyl. A 22-fold excess (40 μ L of 0.11 M = 4.4 μ mol) of deoxy phosphoramidite and a 70-fold excess of S-ethyl tetrazole (40 μ L of 0.25 M = 10 μ mol) can be used in each coupling cycle of deoxy residues relative to polymer-bound 5'-hydroxyl. Average coupling yields on the 394 Applied Biosystems, Inc. synthesizer, determined by colorimetric quantitation of the trityl fractions, are typically 97.5-

99%. Other oligonucleotide synthesis reagents for the 394 Applied Biosystems, Inc. synthesizer include the following: detritylation solution is 3% TCA in methylene chloride (ABI); capping is performed with 16% *N*-methyl imidazole in THF (ABI) and 10% acetic anhydride/10% 2,6-lutidine in THF (ABI); and oxidation solution is 16.9 mM I₂, 49 mM pyridine, 9% water in THF (PERSEPTIVE™). Burdick & Jackson Synthesis Grade acetonitrile is used directly from the reagent bottle. S-Ethyltetrazole solution (0.25 M in acetonitrile) is made up from the solid obtained from American International Chemical, Inc. Alternately, for the introduction of phosphorothioate linkages, Beaucage reagent (3H-1,2-Benzodithiol-3-one 1,1-dioxide, 0.05 M in acetonitrile) is used.

Deprotection of the DNA-based oligonucleotides is performed as follows: the polymer-bound trityl-on oligoribonucleotide is transferred to a 4 mL glass screw top vial and suspended in a solution of 40% aq. methylamine (1 mL) at 65 °C for 10 min. After cooling to –20 °C, the supernatant is removed from the polymer support. The support is washed three times with 1.0 mL of EtOH:MeCN:H₂O/3:1:1, vortexed and the supernatant is then added to the first supernatant. The combined supernatants, containing the oligoribonucleotide, are dried to a white powder.

The method of synthesis used for normal RNA including certain decoy nucleic acid molecules and enzymatic nucleic acid molecules follows the procedure as described in Usman *et al.*, 1987, *J. Am. Chem. Soc.*, 109, 7845; Scaringe *et al.*, 1990, *Nucleic Acids Res.*, 18, 5433; and Wincott *et al.*, 1995, *Nucleic Acids Res.* 23, 2677-2684 Wincott *et al.*, 1997, *Methods Mol. Bio.*, 74, 59, and makes use of common nucleic acid protecting and coupling groups, such as dimethoxytrityl at the 5'-end, and phosphoramidites at the 3'-end. In a non-limiting example, small scale syntheses are conducted on a 394 Applied Biosystems, Inc. synthesizer using a 0.2 μmol scale protocol with a 7.5 min coupling step for alkylsilyl protected nucleotides and a 2.5 min coupling step for 2'-O-methylated nucleotides. **Table II** outlines the amounts and the contact times of the reagents used in the synthesis cycle. Alternatively, syntheses at the 0.2 μmol scale can be done on a 96-well plate synthesizer, such as the instrument produced by Protogene (Palo Alto, CA) with minimal modification to the cycle. A 33-fold excess (60 μL of 0.11 M = 6.6 μmol) of 2'-O-methyl phosphoramidite and a 75-fold excess of S-ethyl tetrazole (60 μL of 0.25 M = 15 μmol) can be used in each coupling cycle of 2'-O-methyl residues relative to polymer-bound 5'-hydroxyl. A 66-fold excess (120 μL of 0.11 M = 13.2 μmol) of alkylsilyl (ribo) protected phosphoramidite and a 150-fold excess of S-ethyl tetrazole (120 μL of 0.25 M = 30 μmol) can be used in each coupling cycle of ribo residues relative to polymer-bound 5'-hydroxyl. Average coupling yields on the 394 Applied Biosystems, Inc. synthesizer, determined by colorimetric quantitation of the trityl fractions, are typically 97.5-99%. Other oligonucleotide synthesis reagents for the 394 Applied Biosystems, Inc. synthesizer include the following: detritylation

solution is 3% TCA in methylene chloride (ABI); capping is performed with 16% *N*-methyl imidazole in THF (ABI) and 10% acetic anhydride/10% 2,6-lutidine in THF (ABI); oxidation solution is 16.9 mM I₂, 49 mM pyridine, 9% water in THF (PERSEPTIVE™). Burdick & Jackson Synthesis Grade acetonitrile is used directly from the reagent bottle. S-Ethyltetrazole solution (0.25 M in acetonitrile) is made up from the solid obtained from American International Chemical, Inc. Alternately, for the introduction of phosphorothioate linkages, Beaucage reagent (3H-1,2-Benzodithiol-3-one 1,1-dioxide 0.05 M in acetonitrile) is used.

Deprotection of the RNA is performed using either a two-pot or one-pot protocol. For the two-pot protocol, the polymer-bound trityl-on oligoribonucleotide is transferred to a 4 mL glass screw top vial and suspended in a solution of 40% aq. methylamine (1 mL) at 65 °C for 10 min. After cooling to –20 °C, the supernatant is removed from the polymer support. The support is washed three times with 1.0 mL of EtOH:MeCN:H₂O/3:1:1, vortexed and the supernatant is then added to the first supernatant. The combined supernatants, containing the oligoribonucleotide, are dried to a white powder. The base deprotected oligoribonucleotide is resuspended in anhydrous TEA/HF/NMP solution (300 μL of a solution of 1.5 mL N-methylpyrrolidinone, 750 μL TEA and 1 mL TEA•3HF to provide a 1.4 M HF concentration) and heated to 65 °C. After 1.5 h, the oligomer is quenched with 1.5 M NH₄HCO₃.

Alternatively, for the one-pot protocol, the polymer-bound trityl-on oligoribonucleotide is transferred to a 4 mL glass screw top vial and suspended in a solution of 33% ethanolic methylamine/DMSO: 1/1 (0.8 mL) at 65 °C for 15 min. The vial is brought to r.t. TEA•3HF (0.1 mL) is added and the vial is heated at 65 °C for 15 min. The sample is cooled at –20 °C and then quenched with 1.5 M NH₄HCO₃.

For purification of the trityl-on oligomers, the quenched NH₄HCO₃ solution is loaded onto a C-18 containing cartridge that had been prewashed with acetonitrile followed by 50 mM TEAA. After washing the loaded cartridge with water, the RNA is detritylated with 0.5% TFA for 13 min. The cartridge is then washed again with water, salt exchanged with 1 M NaCl and washed with water again. The oligonucleotide is then eluted with 30% acetonitrile.

Inactive hammerhead ribozymes or binding attenuated control (BAC) oligonucleotides are synthesized by substituting a U for G5 and a U for A14 (numbering from Hertel, K. J., *et al.*, 1992, *Nucleic Acids Res.*, 20, 3252). Similarly, one or more nucleotide substitutions can be introduced in other nucleic acid decoy molecules to inactivate the molecule and such molecules can serve as a negative control.

The average stepwise coupling yields are typically >98% (Wincott *et al.*, 1995 *Nucleic Acids Res.* 23, 2677-2684). Those of ordinary skill in the art will recognize that the scale of synthesis can be adapted to be larger or smaller than the example described above including but not limited to 96-well format, all that is important is the ratio of chemicals used in the reaction.

Alternatively, the nucleic acid molecules of the present invention can be synthesized separately and joined together post-synthetically, for example, by ligation (Moore *et al.*, 1992, *Science* 256, 9923; Draper *et al.*, International PCT publication No. WO 93/23569; Shabarova *et al.*, 1991, *Nucleic Acids Research* 19, 4247; Bellon *et al.*, 1997, *Nucleosides & Nucleotides*, 16, 951; Bellon *et al.*, 1997, *Bioconjugate Chem.* 8, 204).

The nucleic acid molecules of the present invention can be modified extensively to enhance stability by modification with nuclease resistant groups, for example, 2'-amino, 2'-C-allyl, 2'-flouro, 2'-O-methyl, 2'-H (for a review see Usman and Cedergren, 1992, *TIBS* 17, 34; Usman *et al.*, 1994, *Nucleic Acids Symp. Ser.* 31, 163). Ribozymes can be purified by gel electrophoresis using general methods or can be purified by high pressure liquid chromatography (HPLC; see Wincott *et al.*, *supra*, the totality of which is hereby incorporated herein by reference) and re-suspended in water.

The sequences of the nucleic acid molecules that are chemically synthesized, useful in this study, are shown in **Tables XI, XV, XX, XXI, XXII and XXIII**. The nucleic acid sequences listed in **Tables IV-XI, XIV-XV and XVIII-XXIII** can be formed of ribonucleotides or other nucleotides or non-nucleotides. Such nucleic acid sequences are equivalent to the sequences described specifically in the Tables.

Optimizing Activity of the nucleic acid molecule of the invention

Chemically synthesizing nucleic acid molecules with modifications (base, sugar and/or phosphate) can prevent their degradation by serum ribonucleases, which can increase their potency (see e.g., Eckstein *et al.*, International Publication No. WO 92/07065; Perrault *et al.*, 1990 *Nature* 344, 565; Pieken *et al.*, 1991, *Science* 253, 314; Usman and Cedergren, 1992, *Trends in Biochem. Sci.* 17, 334; Usman *et al.*, International Publication No. WO 93/15187; and Rossi *et al.*, International Publication No. WO 91/03162; Sproat, US Patent No. 5,334,711; Gold *et al.*, US 6,300,074; and Burgin *et al.*, *supra*; all of which are incorporated by reference herein). All of the above references describe various chemical modifications that can be made to the base, phosphate and/or sugar moieties of the nucleic acid molecules described herein. Modifications that enhance their efficacy in cells, and removal of bases from nucleic acid molecules to shorten oligonucleotide synthesis times and reduce chemical requirements are desired.

There are several examples in the art describing sugar, base and phosphate modifications that can be introduced into nucleic acid molecules with significant enhancement in their nuclease stability and efficacy. For example, oligonucleotides are modified to enhance stability and/or enhance biological activity by modification with nuclease resistant groups, for example, 2'-amino, 2'-C-allyl, 2'-flouro, 2'-O-methyl, 2'-H, nucleotide base modifications (for a review see Usman and Cedergren, 1992, *TIBS*, 17, 34; Usman *et al.*, 1994, *Nucleic Acids Symp. Ser.* 31, 163; Burgin *et al.*, 1996, *Biochemistry*, 35, 14090). Sugar modification of nucleic acid molecules have been extensively described in the art (see Eckstein *et al.*, *International Publication* PCT No. WO 92/07065; Perrault *et al.* *Nature*, 1990, 344, 565-568; Pieken *et al.* *Science*, 1991, 253, 314-317; Usman and Cedergren, *Trends in Biochem. Sci.*, 1992, 17, 334-339; Usman *et al.* *International Publication* PCT No. WO 93/15187; Sproat, *US Patent* No. 5,334,711 and Beigelman *et al.*, 1995, *J. Biol. Chem.*, 270, 25702; Beigelman *et al.*, *International PCT publication* No. WO 97/26270; Beigelman *et al.*, *US Patent* No. 5,716,824; Usman *et al.*, *US patent* No. 5,627,053; Woolf *et al.*, *International PCT Publication* No. WO 98/13526; Thompson *et al.*, *USSN* 60/082,404 which was filed on April 20, 1998; Karpeisky *et al.*, 1998, *Tetrahedron Lett.*, 39, 1131; Earnshaw and Gait, 1998, *Biopolymers (Nucleic Acid Sciences)*, 48, 39-55; Verma and Eckstein, 1998, *Annu. Rev. Biochem.*, 67, 99-134; and Burlina *et al.*, 1997, *Bioorg. Med. Chem.*, 5, 1999-2010; all of the references are hereby incorporated in their totality by reference herein). Such publications describe general methods and strategies to determine the location of incorporation of sugar, base and/or phosphate modifications and the like into ribozymes without modulating catalysis, and are incorporated by reference herein. In view of such teachings, similar modifications can be used as described herein to modify the nucleic acid molecules of the instant invention.

While chemical modification of oligonucleotide internucleotide linkages with phosphorothioate, phosphorothioate, and/or 5'-methylphosphonate linkages improves stability, excessive modifications can cause some toxicity. Therefore, when designing nucleic acid molecules, the amount of these internucleotide linkages should be minimized. The reduction in the concentration of these linkages should lower toxicity, resulting in increased efficacy and higher specificity of these molecules.

Nucleic acid molecules having chemical modifications that maintain or enhance activity are provided. Such a nucleic acid is also generally more resistant to nucleases than an unmodified nucleic acid. Accordingly, the *in vitro* and/or *in vivo* activity should not be significantly lowered. In cases in which modulation is the goal, therapeutic nucleic acid molecules delivered exogenously should optimally be stable within cells until translation of the target RNA has been modulated long enough to reduce the levels of the undesirable protein. This period of time varies between hours to days depending upon the disease state.

Improvements in the chemical synthesis of RNA and DNA (Wincott *et al.*, 1995 *Nucleic Acids Res.* 23, 2677; Caruthers *et al.*, 1992, *Methods in Enzymology* 211,3-19 (incorporated by reference herein)) have expanded the ability to modify nucleic acid molecules by introducing nucleotide modifications to enhance their nuclease stability, as described above.

In one embodiment, nucleic acid molecules of the invention include one or more G-clamp nucleotides. A G-clamp nucleotide is a modified cytosine analog wherein the modifications confer the ability to hydrogen bond both Watson-Crick and Hoogsteen faces of a complementary guanine within a duplex, see for example Lin and Matteucci, 1998, *J. Am. Chem. Soc.*, 120, 8531-8532. A single G-clamp analog substitution within an oligonucleotide can result in substantially enhanced helical thermal stability and mismatch discrimination when hybridized to complementary oligonucleotides. The inclusion of such nucleotides in nucleic acid molecules of the invention results in both enhanced affinity and specificity to nucleic acid targets. In another embodiment, nucleic acid molecules of the invention include one or more LNA “locked nucleic acid” nucleotides such as a 2', 4'-C methylene bicyclo nucleotide (see for example Wengel *et al.*, International PCT Publication No. WO 00/66604 and WO 99/14226).

In another embodiment, the invention features conjugates and/or complexes of nucleic acid molecules targeting HBV or HCV. Such conjugates and/or complexes can be used to facilitate delivery of molecules into a biological system, such as a cell. The conjugates and complexes provided by the instant invention can impart therapeutic activity by transferring therapeutic compounds across cellular membranes, altering the pharmacokinetics, and/or modulating the localization of nucleic acid molecules of the invention. The present invention encompasses the design and synthesis of novel conjugates and complexes for the delivery of molecules, including, but not limited to, small molecules, lipids, phospholipids, nucleosides, nucleotides, nucleic acids, antibodies, toxins, negatively charged polymers and other polymers, for example proteins, peptides, hormones, carbohydrates, polyethylene glycols, or polyamines, across cellular membranes. In general, the transporters described are designed to be used either individually or as part of a multi-component system, with or without degradable linkers. These compounds are expected to improve delivery and/or localization of nucleic acid molecules of the invention into a number of cell types originating from different tissues, in the presence or absence of serum (see Sullenger and Cech, US 5,854,038). Conjugates of the molecules described herein can be attached to biologically active molecules via linkers that are biodegradable, such as biodegradable nucleic acid linker molecules.

The term “biodegradable nucleic acid linker molecule” as used herein, refers to a nucleic acid molecule that is designed as a biodegradable linker to connect one molecule to another molecule, for example, a biologically active molecule. The stability of the

biodegradable nucleic acid linker molecule can be modulated by using various combinations of ribonucleotides, deoxyribonucleotides, and chemically modified nucleotides, for example, 2'-O-methyl, 2'-fluoro, 2'-amino, 2'-O-amino, 2'-C-allyl, 2'-O-allyl, and other 2'-modified or base modified nucleotides. The biodegradable nucleic acid linker molecule can be a dimer, trimer, tetramer or longer nucleic acid molecule, for example, an oligonucleotide of about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides in length, or can comprise a single nucleotide with a phosphorus-based linkage, for example, a phosphoramidate or phosphodiester linkage. The biodegradable nucleic acid linker molecule can also comprise nucleic acid backbone, nucleic acid sugar, or nucleic acid base modifications.

The term “biodegradable” as used herein, refers to degradation in a biological system, for example enzymatic degradation or chemical degradation.

The term “biologically active molecule” as used herein, refers to compounds or molecules that are capable of eliciting or modifying a biological response in a system. Non-limiting examples of biologically active molecules contemplated by the instant invention include therapeutically active molecules such as antibodies, hormones, antivirals, peptides, proteins, chemotherapeutics, small molecules, vitamins, co-factors, nucleosides, nucleotides, oligonucleotides, enzymatic nucleic acids, antisense nucleic acids, triplex forming oligonucleotides, 2,5-A chimeras, siRNA, dsRNA, allozymes, aptamers, decoys and analogs thereof. Biologically active molecules of the invention also include molecules capable of modulating the pharmacokinetics and/or pharmacodynamics of other biologically active molecules, for example, lipids and polymers such as polyamines, polyamides, polyethylene glycol and other polyethers.

The term “phospholipid” as used herein, refers to a hydrophobic molecule comprising at least one phosphorus group. For example, a phospholipid can comprise a phosphorus-containing group and saturated or unsaturated alkyl group, optionally substituted with OH, COOH, oxo, amine, or substituted or unsubstituted aryl groups.

Therapeutic nucleic acid molecules (*e.g.*, decoy nucleic acid molecules) delivered exogenously optimally are stable within cells until reverse transcription of the pregenomic RNA has been modulated long enough to reduce the levels of HBV or HCV DNA. The nucleic acid molecules are resistant to nucleases in order to function as effective intracellular therapeutic agents. Improvements in the chemical synthesis of nucleic acid molecules described in the instant invention and in the art have expanded the ability to modify nucleic acid molecules by introducing nucleotide modifications to enhance their nuclease stability as described above.

In yet another embodiment, nucleic acid molecules having chemical modifications that maintain or enhance enzymatic activity are provided. Such nucleic acids are also generally more resistant to nucleases than unmodified nucleic acids. Thus, *in vitro* and/or *in vivo* the activity should not be significantly lowered. As exemplified herein, such nucleic acid molecules are useful *in vitro* and/or *in vivo* even if activity over all is reduced 10 fold (Burgin *et al.*, 1996, *Biochemistry*, 35, 14090).

Use of the nucleic acid-based molecules of the invention will lead to better treatment of the disease progression by affording the possibility of combination therapies (*e.g.*, multiple antisense, nucleic acid decoy, or nucleic acid aptamer molecules targeted to different genes; nucleic acid molecules coupled with known small molecule modulators ors; or intermittent treatment with combinations of molecules (including different motifs) and/or other chemical or biological molecules). The treatment of patients with nucleic acid molecules may also include combinations of different types of nucleic acid molecules.

In another aspect the nucleic acid molecules comprise a 5' and/or a 3'- cap structure.

By "cap structure" is meant chemical modifications, which have been incorporated at either terminus of the oligonucleotide (see, for example, Wincott *et al.*, WO 97/26270, incorporated by reference herein). These terminal modifications protect the nucleic acid molecule from exonuclease degradation, and may help in delivery and/or localization within a cell. The cap may be present at the 5'-terminus (5'-cap) or at the 3'-terminal (3'-cap) or may be present on both termini. In non-limiting examples: the 5'-cap is selected from the group comprising inverted abasic residue (moiety); 4',5'-methylene nucleotide; 1-(beta-D-erythrophuranosyl) nucleotide, 4'-thio nucleotide; carbocyclic nucleotide; 1,5-anhydrohexitol nucleotide; L-nucleotides; alpha-nucleotides; modified base nucleotide; phosphorodithioate linkage; *threo*-pentofuranosyl nucleotide; acyclic 3',4'-seco nucleotide; acyclic 3,4-dihydroxybutyl nucleotide; acyclic 3,5-dihydroxypentyl nucleotide, 3'-3'-inverted nucleotide moiety; 3'-3'-inverted abasic moiety; 3'-2'-inverted nucleotide moiety; 3'-2'-inverted abasic moiety; 1,4-butanediol phosphate; 3'-phosphoramidate; hexylphosphate; aminohexyl phosphate; 3'-phosphate; 3'-phosphorothioate; phosphorodithioate; or bridging or non-bridging methylphosphonate moiety (for more details, see Wincott *et al.*, International PCT publication No. WO 97/26270, incorporated by reference herein).

In yet another preferred embodiment, the 3'-cap is selected from a group comprising, 4',5'-methylene nucleotide; 1-(beta-D-erythrophuranosyl) nucleotide; 4'-thio nucleotide, carbocyclic nucleotide; 5'-amino-alkyl phosphate; 1,3-diamino-2-propyl phosphate; 3-aminopropyl phosphate; 6-aminohexyl phosphate; 1,2-aminododecyl phosphate; hydroxypropyl phosphate; 1,5-anhydrohexitol nucleotide; L-nucleotide; alpha-nucleotide; modified base nucleotide; phosphorodithioate; *threo*-pentofuranosyl nucleotide; acyclic 3',4'-

seco nucleotide; 3,4-dihydroxybutyl nucleotide; 3,5-dihydroxypentyl nucleotide, 5'-5'-inverted nucleotide moiety; 5'-5'-inverted abasic moiety; 5'-phosphoramidate; 5'-phosphorothioate; 1,4-butanediol phosphate; 5'-amino; bridging and/or non-bridging 5'-phosphoramidate, phosphorothioate and/or phosphorodithioate, bridging or non bridging methylphosphonate and 5'-mercapto moieties (for more details see Beaucage and Iyer, 1993, *Tetrahedron* 49, 1925; incorporated by reference herein).

By the term "non-nucleotide" is meant any group or compound which can be incorporated into a nucleic acid chain in the place of one or more nucleotide units, including either sugar and/or phosphate substitutions, and allows the remaining bases to exhibit their enzymatic activity. The group or compound is abasic in that it does not contain a commonly recognized nucleotide base, such as adenosine, guanine, cytosine, uracil or thymine.

The term "alkyl" as used herein refers to a saturated aliphatic hydrocarbon, including straight-chain, branched-chain "isoalkyl", and cyclic alkyl groups. The term "alkyl" also comprises alkoxy, alkyl-thio, alkyl-thio-alkyl, alkoxyalkyl, alkylamino, alkenyl, alkynyl, alkoxy, cycloalkenyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heteroaryl, C1-C6 hydrocarbyl, aryl or substituted aryl groups. Preferably, the alkyl group has 1 to 12 carbons. More preferably it is a lower alkyl of from about 1 to 7 carbons, more preferably about 1 to 4 carbons. The alkyl group can be substituted or unsubstituted. When substituted the substituted group(s) preferably comprise hydroxy, oxy, thio, amino, nitro, cyano, alkoxy, alkyl-thio, alkyl-thio-alkyl, alkoxyalkyl, alkylamino, silyl, alkenyl, alkynyl, alkoxy, cycloalkenyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heteroaryl, C1-C6 hydrocarbyl, aryl or substituted aryl groups. The term "alkyl" also includes alkenyl groups containing at least one carbon-carbon double bond, including straight-chain, branched-chain, and cyclic groups. Preferably, the alkenyl group has about 2 to 12 carbons. More preferably it is a lower alkenyl of from about 2 to 7 carbons, more preferably about 2 to 4 carbons. The alkenyl group can be substituted or unsubstituted. When substituted the substituted group(s) preferably comprise hydroxy, oxy, thio, amino, nitro, cyano, alkoxy, alkyl-thio, alkyl-thio-alkyl, alkoxyalkyl, alkylamino, silyl, alkenyl, alkynyl, alkoxy, cycloalkenyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heteroaryl, C1-C6 hydrocarbyl, aryl or substituted aryl groups. The term "alkyl" also includes alkynyl groups containing at least one carbon-carbon triple bond, including straight-chain, branched-chain, and cyclic groups. Preferably, the alkynyl group has about 2 to 12 carbons. More preferably it is a lower alkynyl of from about 2 to 7 carbons, more preferably about 2 to 4 carbons. The alkynyl group can be substituted or unsubstituted. When substituted the substituted group(s) preferably comprise hydroxy, oxy, thio, amino, nitro, cyano, alkoxy, alkyl-thio, alkyl-thio-alkyl, alkoxyalkyl, alkylamino, silyl, alkenyl, alkynyl, alkoxy, cycloalkenyl, cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heteroaryl, C1-C6 hydrocarbyl, aryl or substituted aryl groups. Alkyl groups or moieties of

the invention can also include aryl, alkylaryl, carbocyclic aryl, heterocyclic aryl, amide and ester groups. The preferred substituent(s) of aryl groups are halogen, trihalomethyl, hydroxyl, SH, OH, cyano, alkoxy, alkyl, alkenyl, alkynyl, and amino groups. An "alkylaryl" group refers to an alkyl group (as described above) covalently joined to an aryl group (as described above). Carbocyclic aryl groups are groups wherein the ring atoms on the aromatic ring are all carbon atoms. The carbon atoms are optionally substituted. Heterocyclic aryl groups are groups having from about 1 to 3 heteroatoms as ring atoms in the aromatic ring and the remainder of the ring atoms are carbon atoms. Suitable heteroatoms include oxygen, sulfur, and nitrogen, and include furanyl, thieryl, pyridyl, pyrrolyl, N-lower alkyl pyrrolo, pyrimidyl, pyrazinyl, imidazolyl and the like, all optionally substituted. An "amide" refers to an -C(O)-NH-R, where R is either alkyl, aryl, alkylaryl or hydrogen. An "ester" refers to an -C(O)-OR', where R is either alkyl, aryl, alkylaryl or hydrogen.

The term "alkoxyalkyl" as used herein refers to an alkyl-O-alkyl ether, for example methoxyethyl or ethoxymethyl.

The term "alkyl-thio-alkyl" as used herein refers to an alkyl-S-alkyl thioether, for example methylthiomethyl or methylthioethyl.

The term "amination" as used herein refers to a process in which an amino group or substituted amine is introduced into an organic molecule.

The term "exocyclic amine protecting moiety" as used herein refers to a nucleobase amino protecting group compatible with oligonucleotide synthesis, for example an acyl or amide group.

The term "alkenyl" as used herein refers to a straight or branched hydrocarbon of a designed number of carbon atoms containing at least one carbon-carbon double bond. Examples of "alkenyl" include vinyl, allyl, and 2-methyl-3-heptene.

The term "alkoxy" as used herein refers to an alkyl group of indicated number of carbon atoms attached to the parent molecular moiety through an oxygen bridge. Examples of alkoxy groups include, for example, methoxy, ethoxy, propoxy and isopropoxy.

The term "alkynyl" as used herein refers to a straight or branched hydrocarbon of a designed number of carbon atoms containing at least one carbon-carbon triple bond. Examples of "alkynyl" include propargyl, propyne, and 3-hexyne.

The term "aryl" as used herein refers to an aromatic hydrocarbon ring system containing at least one aromatic ring. The aromatic ring can optionally be fused or otherwise attached to other aromatic hydrocarbon rings or non-aromatic hydrocarbon rings. Examples

of aryl groups include, for example, phenyl, naphthyl, 1,2,3,4-tetrahydronaphthalene and biphenyl. Preferred examples of aryl groups include phenyl and naphthyl.

The term "cycloalkenyl" as used herein refers to a C3-C8 cyclic hydrocarbon containing at least one carbon-carbon double bond. Examples of cycloalkenyl include cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclopentadiene, cyclohexenyl, 1,3-cyclohexadiene, cycloheptenyl, cycloheptatrienyl, and cyclooctenyl.

The term "cycloalkyl" as used herein refers to a C3-C8 cyclic hydrocarbon. Examples of cycloalkyl include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl.

The term "cycloalkylalkyl," as used herein, refers to a C3-C7 cycloalkyl group attached to the parent molecular moiety through an alkyl group, as defined above. Examples of cycloalkylalkyl groups include cyclopropylmethyl and cyclopentylethyl.

The terms "halogen" or "halo" as used herein refers to indicate fluorine, chlorine, bromine, and iodine.

The term "heterocycloalkyl," as used herein refers to a non-aromatic ring system containing at least one heteroatom selected from nitrogen, oxygen, and sulfur. The heterocycloalkyl ring can be optionally fused to or otherwise attached to other heterocycloalkyl rings and/or non-aromatic hydrocarbon rings. Preferred heterocycloalkyl groups have from 3 to 7 members. Examples of heterocycloalkyl groups include, for example, piperazine, morpholine, piperidine, tetrahydrofuran, pyrrolidine, and pyrazole. Preferred heterocycloalkyl groups include piperidinyl, piperazinyl, morpholinyl, and pyrrolidinyl.

The term "heteroaryl" as used herein refers to an aromatic ring system containing at least one heteroatom selected from nitrogen, oxygen, and sulfur. The heteroaryl ring can be fused or otherwise attached to one or more heteroaryl rings, aromatic or non-aromatic hydrocarbon rings or heterocycloalkyl rings. Examples of heteroaryl groups include, for example, pyridine, furan, thiophene, 5,6,7,8-tetrahydroisoquinoline and pyrimidine. Preferred examples of heteroaryl groups include thienyl, benzothienyl, pyridyl, quinolyl, pyrazinyl, pyrimidyl, imidazolyl, benzimidazolyl, furanyl, benzofuranyl, thiazolyl, benzothiazolyl, isoxazolyl, oxadiazolyl, isothiazolyl, benzisothiazolyl, triazolyl, tetrazolyl, pyrrolyl, indolyl, pyrazolyl, and benzopyrazolyl.

The term "C1-C6 hydrocarbyl" as used herein refers to straight, branched, or cyclic alkyl groups having 1-6 carbon atoms, optionally containing one or more carbon-carbon double or triple bonds. Examples of hydrocarbyl groups include, for example, methyl, ethyl,

propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, pentyl, 2-pentyl, isopentyl, neopentyl, hexyl, 2-hexyl, 3-hexyl, 3-methylpentyl, vinyl, 2-pentene, cyclopropylmethyl, cyclopropyl, cyclohexylmethyl, cyclohexyl and propargyl. When reference is made herein to C1-C6 hydrocarbyl containing one or two double or triple bonds it is understood that at least two carbons are present in the alkyl for one double or triple bond, and at least four carbons for two double or triple bonds.

The term "nucleotide" as used herein refers to a heterocyclic nitrogenous base in N-glycosidic linkage with a phosphorylated sugar. Nucleotides are recognized in the art to include natural bases (standard), and modified bases well known in the art. Such bases are generally located at the 1' position of a nucleotide sugar moiety. Nucleotides generally comprise a base, sugar and a phosphate group. The nucleotides can be unmodified or modified at the sugar, phosphate and/or base moiety, (also referred to interchangeably as nucleotide analogs, modified nucleotides, non-natural nucleotides, non-standard nucleotides and other; see for example, Usman and McSwiggen, *supra*; Eckstein *et al.*, International PCT Publication No. WO 92/07065; Usman *et al.*, International PCT Publication No. WO 93/15187; Uhlman & Peyman, *supra* all are hereby incorporated by reference herein. There are several examples of modified nucleic acid bases known in the art as summarized by Limbach *et al.*, 1994, Nucleic Acids Res. 22, 2183. Some of the non-limiting examples of chemically modified and other natural nucleic acid bases that can be introduced into nucleic acids include, for example, inosine, purine, pyridin-4-one, pyridin-2-one, phenyl, pseudouracil, 2, 4, 6-trimethoxy benzene, 3-methyl uracil, dihydrouridine, naphthyl, aminophenyl, 5-alkylcytidines (*e.g.*, 5-methylcytidine), 5-alkyluridines (*e.g.*, ribothymidine), 5-halouridine (*e.g.*, 5-bromouridine) or 6-azapyrimidines or 6-alkylpyrimidines (*e.g.* 6-methyluridine), propyne, quenosine, 2-thiouridine, 4-thiouridine, wybutoxine, wybutoxosine, 4-acetylcytidine, 5-(carboxyhydroxymethyl)uridine, 5'-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluridine, beta-D-galactosylqueosine, 1-methyladenosine, 1-methylinosine, 2,2-dimethylguanosine, 3-methylcytidine, 2-methyladenosine, 2-methylguanosine, N6-methyladenosine, 7-methylguanosine, 5-methoxyaminomethyl-2-thiouridine, 5-methylaminomethyluridine, 5-methylcarbonylmethyluridine, 5-methoxyuridine, 5-methyl-2-thiouridine, 2-methylthio-N6-isopentenyladenosine, beta-D-mannosylqueosine, uridine-5-oxyacetic acid, 2-thiocytidine, threonine derivatives and others (Burgin *et al.*, 1996, Biochemistry, 35, 14090; Uhlman & Peyman, *supra*). By "modified bases" in this aspect is meant nucleotide bases other than adenine, guanine, cytosine and uracil at 1' position or their equivalents; such bases can be used at any position, for example, within the catalytic core of an enzymatic nucleic acid molecule and/or in the substrate-binding regions of the nucleic acid molecule.

The term "nucleoside" as used herein refers to a heterocyclic nitrogenous base in N-glycosidic linkage with a sugar. Nucleosides are recognized in the art to include natural bases (standard), and modified bases well known in the art. Such bases are generally located at the 1' position of a nucleoside sugar moiety. Nucleosides generally comprise a base and sugar group. The nucleosides can be unmodified or modified at the sugar, and/or base moiety (also referred to interchangeably as nucleoside analogs, modified nucleosides, non-natural nucleosides, non-standard nucleosides and other; see for example, Usman and McSwiggen, *supra*; Eckstein *et al.*, International PCT Publication No. WO 92/07065; Usman *et al.*, International PCT Publication No. WO 93/15187; Uhlman & Peyman, *supra* all are hereby incorporated by reference herein). There are several examples of modified nucleic acid bases known in the art as summarized by Limbach *et al.*, 1994, *Nucleic Acids Res.* 22, 2183. Some of the non-limiting examples of chemically modified and other natural nucleic acid bases that can be introduced into nucleic acids include, inosine, purine, pyridin-4-one, pyridin-2-one, phenyl, pseudouracil, 2, 4, 6-trimethoxy benzene, 3-methyl uracil, dihydrouridine, naphthyl, aminophenyl, 5-alkylcytidines (*e.g.*, 5-methylcytidine), 5-alkyluridines (*e.g.*, ribothymidine), 5-halouridine (*e.g.*, 5-bromouridine) or 6-azapyrimidines or 6-alkylpyrimidines (*e.g.* 6-methyluridine), propyne, quenosine, 2-thiouridine, 4-thiouridine, wybutosine, wybutoxosine, 4-acetylcytidine, 5-(carboxyhydroxymethyl)uridine, 5'-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluridine, beta-D-galactosylqueosine, 1-methyladenosine, 1-methylinosine, 2,2-dimethylguanosine, 3-methylcytidine, 2-methyladenosine, 2-methylguanosine, N6-methyladenosine, 7-methylguanosine, 5-methoxyaminomethyl-2-thiouridine, 5-methylaminomethyluridine, 5-methylcarbonylmethyluridine, 5-methoxyuridine, 5-methyl-2-thiouridine, 2-methylthio-N6-isopentenyladenosine, beta-D-mannosylqueosine, uridine-5-oxyacetic acid, 2-thiocytidine, threonine derivatives and others (Burgin *et al.*, 1996, *Biochemistry*, 35, 14090; Uhlman & Peyman, *supra*). By "modified bases" in this aspect is meant nucleoside bases other than adenine, guanine, cytosine and uracil at 1' position or their equivalents; such bases can be used at any position, for example, within the catalytic core of an enzymatic nucleic acid molecule and/or in the substrate-binding regions of the nucleic acid molecule.

In one embodiment, the invention features modified nucleic acid molecules with phosphate backbone modifications comprising one or more phosphorothioate, phosphorodithioate, methylphosphonate, morpholino, amide carbamate, carboxymethyl, acetamide, polyamide, sulfonate, sulfonamide, sulfamate, formacetal, thioformacetal, and/or alkylsilyl, substitutions. For a review of oligonucleotide backbone modifications see Hunziker and Leumann, 1995, *Nucleic Acid Analogues: Synthesis and Properties*, in *Modern Synthetic Methods*, VCH, 331-417, and Mesmaeker *et al.*, 1994, *Novel Backbone Replacements for Oligonucleotides*, in *Carbohydrate Modifications in Antisense Research*, ACS, 24-39. These references are hereby incorporated by reference herein.

The term "abasic" as used herein refers to sugar moieties lacking a base or having other chemical groups in place of a base at the 1' position, for example a 3',3'-linked or 5',5'-linked deoxyabasic ribose derivative (for more details see Wincott *et al.*, International PCT publication No. WO 97/26270).

The term "unmodified nucleoside" as used herein refers to one of the bases adenine, cytosine, guanine, thymine, uracil joined to the 1' carbon of β-D-ribo-furanose.

The term "modified nucleoside" as used herein refers to any nucleotide base which contains a modification in the chemical structure of an unmodified nucleotide base, sugar and/or phosphate.

In connection with 2'-modified nucleotides as described for the present invention, by "amino" is meant 2'-NH₂ or 2'-O- NH₂, which can be modified or unmodified. Such modified groups are described, for example, in Eckstein *et al.*, U.S. Patent 5,672,695 and Matulic-Adamic *et al.*, WO 98/28317, respectively, which are both incorporated by reference in their entireties.

Various modifications to nucleic acid (*e.g.*, enzymatic nucleic acid, antisense, decoy, aptamer, siRNA, triplex oligonucleotides, 2,5-A oligonucleotides and other nucleic acid molecules) structure can be made to enhance the utility of these molecules. For example, such modifications can enhance shelf life, half-life *in vitro*, stability, and ease of introduction of such oligonucleotides to the target site, including *e.g.*, enhancing penetration of cellular membranes and conferring the ability to recognize and bind to targeted cells.

Use of these molecules can lead to better treatment of the disease progression by affording the possibility of combination therapies (*e.g.*, multiple nucleic acid molecules targeted to different genes, nucleic acid molecules coupled with known small molecule inhibitors, or intermittent treatment with combinations of nucleic acid molecules (including different nucleic acid molecule motifs) and/or other chemical or biological molecules). The treatment of patients with nucleic acid molecules can also include combinations of different types of nucleic acid molecules. Therapies can be devised which include a mixture of enzymatic nucleic acid molecules (including different enzymatic nucleic acid molecule motifs), antisense, decoy, aptamer and/or 2-5A chimera molecules to one or more targets to alleviate symptoms of a disease.

Administration of Nucleic Acid Molecules

Methods for the delivery of nucleic acid molecules are described in Akhtar *et al.*, 1992, *Trends Cell Bio.*, 2, 139; *Delivery Strategies for Antisense Oligonucleotide Therapeutics*, ed. Akhtar, 1995, Maurer *et al.*, 1999, *Mol. Membr. Biol.*, 16, 129-140; Hofland and Huang,

1999, *Handb. Exp. Pharmacol.*, 137, 165-192; and Lee *et al.*, 2000, *ACS Symp. Ser.*, 752, 184-192, Sullivan *et al.*, PCT WO 94/02595, further describes the general methods for delivery of enzymatic nucleic acid molecules. These protocols can be utilized for the delivery of virtually any nucleic acid molecule. Nucleic acid molecules can be administered to cells by a variety of methods known to those of skill in the art, including, but not restricted to, encapsulation in liposomes, by iontophoresis, or by incorporation into other vehicles, such as hydrogels, cyclodextrins, biodegradable nanocapsules, and bioadhesive microspheres, or by proteinaceous vectors (O'Hare and Normand, International PCT Publication No. WO 00/53722). Alternatively, the nucleic acid/vehicle combination is locally delivered by direct injection or by use of an infusion pump. Direct injection of the nucleic acid molecules of the invention, whether subcutaneous, intramuscular, or intradermal, can take place using standard needle and syringe methodologies, or by needle-free technologies such as those described in Conry *et al.*, 1999, *Clin. Cancer Res.*, 5, 2330-2337 and Barry *et al.*, International PCT Publication No. WO 99/31262. The molecules of the instant invention can be used as pharmaceutical agents. Pharmaceutical agents prevent, modulate the occurrence, or treat (alleviate a symptom to some extent, preferably all of the symptoms) of a disease state in a patient.

Thus, the invention features a pharmaceutical composition comprising one or more nucleic acid(s) of the invention in an acceptable carrier, such as a stabilizer, buffer, and the like. The negatively charged polynucleotides of the invention can be administered (*e.g.*, RNA, DNA or protein) and introduced into a patient by any standard means, with or without stabilizers, buffers, and the like, to form a pharmaceutical composition. When it is desired to use a liposome delivery mechanism, standard protocols for formation of liposomes can be followed. The compositions of the present invention may also be formulated and used as tablets, capsules or elixirs for oral administration, suppositories for rectal administration, sterile solutions, suspensions for injectable administration, and the other compositions known in the art.

The present invention also includes pharmaceutically acceptable formulations of the compounds described. These formulations include salts of the above compounds, *e.g.*, acid addition salts, for example, salts of hydrochloric, hydrobromic, acetic acid, and benzene sulfonic acid.

A pharmacological composition or formulation refers to a composition or formulation in a form suitable for administration, *e.g.*, systemic administration, into a cell or patient, including for example a human. Suitable forms, in part, depend upon the use or the route of entry, for example oral, transdermal, or by injection. Such forms should not prevent the composition or formulation from reaching a target cell (*i.e.*, a cell to which the negatively

charged nucleic acid is desirable for delivery). For example, pharmacological compositions injected into the blood stream should be soluble. Other factors are known in the art, and include considerations such as toxicity and forms that prevent the composition or formulation from exerting its effect.

By "systemic administration" is meant *in vivo* systemic absorption or accumulation of drugs in the blood stream followed by distribution throughout the entire body. Administration routes which lead to systemic absorption include, without limitation: intravenous, subcutaneous, intraperitoneal, inhalation, oral, intrapulmonary and intramuscular. Each of these administration routes expose the desired negatively charged polymers, *e.g.*, nucleic acids, to an accessible diseased tissue. The rate of entry of a drug into the circulation has been shown to be a function of molecular weight or size. The use of a liposome or other drug carrier comprising the compounds of the instant invention can potentially localize the drug, for example, in certain tissue types, such as the tissues of the reticular endothelial system (RES). A liposome formulation that can facilitate the association of drug with the surface of cells, such as, lymphocytes and macrophages is also useful. This approach may provide enhanced delivery of the drug to target cells by taking advantage of the specificity of macrophage and lymphocyte immune recognition of abnormal cells, such as cancer cells.

By "pharmaceutically acceptable formulation" is meant, a composition or formulation that allows for the effective distribution of the nucleic acid molecules of the instant invention in the physical location most suitable for their desired activity. Nonlimiting examples of agents suitable for formulation with the nucleic acid molecules of the instant invention include: P-glycoprotein inhibitors (such as Pluronic P85), which can enhance entry of drugs into the CNS (Jolliet-Riant and Tillement, 1999, *Fundam. Clin. Pharmacol.*, 13, 16-26); biodegradable polymers, such as poly (DL-lactide-coglycolide) microspheres for sustained release delivery after intracerebral implantation (Emerich, DF *et al.*, 1999, *Cell Transplant*, 8, 47-58) (Alkermes, Inc. Cambridge, MA); and loaded nanoparticles, such as those made of polybutylcyanoacrylate, which can deliver drugs across the blood brain barrier and can alter neuronal uptake mechanisms (*Prog Neuropsychopharmacol Biol Psychiatry*, 23, 941-949, 1999). Other non-limiting examples of delivery strategies for the nucleic acid molecules of the instant invention include material described in Boado *et al.*, 1998, *J. Pharm. Sci.*, 87, 1308-1315; Tyler *et al.*, 1999, *FEBS Lett.*, 421, 280-284; Pardridge *et al.*, 1995, *PNAS USA.*, 92, 5592-5596; Boado, 1995, *Adv. Drug Delivery Rev.*, 15, 73-107; Aldrian-Herrada *et al.*, 1998, *Nucleic Acids Res.*, 26, 4910-4916; and Tyler *et al.*, 1999, *PNAS USA.*, 96, 7053-7058.

The invention also features the use of the composition comprising surface-modified liposomes containing poly (ethylene glycol) lipids (PEG-modified, or long-circulating

liposomes or stealth liposomes). These formulations offer a method for increasing the accumulation of drugs in target tissues. This class of drug carriers resists opsonization and elimination by the mononuclear phagocytic system (MPS or RES), thereby enabling longer blood circulation times and enhanced tissue exposure for the encapsulated drug (Lasic *et al.* *Chem. Rev.* 1995, 95, 2601-2627; Ishiwata *et al.*, *Chem. Pharm. Bull.* 1995, 43, 1005-1011). Such liposomes have been shown to accumulate selectively in tumors, presumably by extravasation and capture in the neovascularized target tissues (Lasic *et al.*, *Science* 1995, 267, 1275-1276; Oku *et al.*, 1995, *Biochim. Biophys. Acta*, 1238, 86-90). The long-circulating liposomes enhance the pharmacokinetics and pharmacodynamics of DNA and RNA, particularly compared to conventional cationic liposomes which are known to accumulate in tissues of the MPS (Liu *et al.*, *J. Biol. Chem.* 1995, 42, 24864-24870; Choi *et al.*, International PCT Publication No. WO 96/10391; Ansell *et al.*, International PCT Publication No. WO 96/10390; Holland *et al.*, International PCT Publication No. WO 96/10392). Long-circulating liposomes are also likely to protect drugs from nuclease degradation to a greater extent compared to cationic liposomes, based on their ability to avoid accumulation in metabolically aggressive MPS tissues such as the liver and spleen.

The present invention also includes compositions prepared for storage or administration, which include a pharmaceutically effective amount of the desired compounds in a pharmaceutically acceptable carrier or diluent. Acceptable carriers or diluents for therapeutic use are well known in the pharmaceutical art, and are described, for example, in *Remington's Pharmaceutical Sciences*, Mack Publishing Co. (A.R. Gennaro edit. 1985) hereby incorporated by reference herein. For example, preservatives, stabilizers, dyes and flavoring agents may be provided. These include sodium benzoate, sorbic acid and esters of *p*-hydroxybenzoic acid. In addition, antioxidants and suspending agents may be used.

A pharmaceutically effective dose is that dose required to prevent, inhibit the occurrence of, or treat (alleviate a symptom to some extent, preferably all of the symptoms) a disease state. The pharmaceutically effective dose depends on the type of disease, the composition used, the route of administration, the type of mammal being treated, the physical characteristics of the specific mammal under consideration, concurrent medication, and other factors that those skilled in the medical arts will recognize. Generally, an amount between 0.1 mg/kg and 100 mg/kg body weight/day of active ingredients is administered dependent upon potency of the negatively charged polymer.

The present invention also includes compositions prepared for storage or administration that include a pharmaceutically effective amount of the desired compounds in a pharmaceutically acceptable carrier or diluent. Acceptable carriers or diluents for therapeutic use are well known in the pharmaceutical art, and are described, for example, in *Remington's*

Pharmaceutical Sciences, Mack Publishing Co. (A.R. Gennaro edit. 1985), hereby incorporated by reference herein. For example, preservatives, stabilizers, dyes and flavoring agents can be provided. These include sodium benzoate, sorbic acid and esters of *p*-hydroxybenzoic acid. In addition, antioxidants and suspending agents can be used.

A pharmaceutically effective dose is that dose required to prevent, inhibit the occurrence, or treat (alleviate a symptom to some extent, preferably all of the symptoms) of a disease state. The pharmaceutically effective dose depends on the type of disease, the composition used, the route of administration, the type of mammal being treated, the physical characteristics of the specific mammal under consideration, concurrent medication, and other factors that those skilled in the medical arts will recognize. Generally, an amount between 0.1 mg/kg and 100 mg/kg body weight/day of active ingredients is administered dependent upon potency of the negatively charged polymer.

The nucleic acid molecules of the invention and formulations thereof can be administered orally, topically, parenterally, by inhalation or spray, or rectally in dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvants and/or vehicles. The term parenteral as used herein includes percutaneous, subcutaneous, intravascular (e.g., intravenous), intramuscular, or intrathecal injection or infusion techniques and the like. In addition, there is provided a pharmaceutical formulation comprising a nucleic acid molecule of the invention and a pharmaceutically acceptable carrier. One or more nucleic acid molecules of the invention can be present in association with one or more non-toxic pharmaceutically acceptable carriers and/or diluents and/or adjuvants, and if desired other active ingredients. The pharmaceutical compositions containing nucleic acid molecules of the invention can be in a form suitable for oral use, for example, as tablets, troches, lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsion, hard or soft capsules, or syrups or elixirs.

Compositions intended for oral use can be prepared according to any method known to the art for the manufacture of pharmaceutical compositions and such compositions can contain one or more such sweetening agents, flavoring agents, coloring agents or preservative agents in order to provide pharmaceutically elegant and palatable preparations. Tablets contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients that are suitable for the manufacture of tablets. These excipients can be, for example, inert diluents; such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example, corn starch, or alginic acid; binding agents, for example starch, gelatin or acacia; and lubricating agents, for example magnesium stearate, stearic acid or talc. The tablets can be uncoated or they can be coated by known techniques. In some cases such coatings can be prepared by

known techniques to delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glycercyl monosterate or glycercyl distearate can be employed.

Formulations for oral use can also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example peanut oil, liquid paraffin or olive oil.

Aqueous suspensions contain the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients are suspending agents, for example sodium carboxymethylcellulose, methylcellulose, hydropropyl-methylcellulose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents can be a naturally-occurring phosphatide, for example, lecithin, or condensation products of an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monooleate. The aqueous suspensions can also contain one or more preservatives, for example ethyl, or n-propyl p-hydroxybenzoate, one or more coloring agents, one or more flavoring agents, and one or more sweetening agents, such as sucrose or saccharin.

Oily suspensions can be formulated by suspending the active ingredients in a vegetable oil, for example arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin. The oily suspensions can contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol. Sweetening agents and flavoring agents can be added to provide palatable oral preparations. These compositions can be preserved by the addition of an anti-oxidant such as ascorbic acid.

Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable dispersing or wetting agents or suspending agents are exemplified by those already mentioned above. Additional excipients, for example sweetening, flavoring and coloring agents, can also be present.

- Pharmaceutical compositions of the invention can also be in the form of oil-in-water emulsions. The oily phase can be a vegetable oil or a mineral oil or mixtures of these. Suitable emulsifying agents can be naturally-occurring gums, for example gum acacia or gum

tragacanth, naturally-occurring phosphatides, for example soy bean, lecithin, and esters or partial esters derived from fatty acids and hexitol, anhydrides, for example sorbitan monooleate, and condensation products of the said partial esters with ethylene oxide, for example polyoxyethylene sorbitan monooleate. The emulsions can also contain sweetening and flavoring agents.

Syrups and elixirs can be formulated with sweetening agents, for example glycerol, propylene glycol, sorbitol, glucose or sucrose. Such formulations can also contain a demulcent, a preservative and flavoring and coloring agents. The pharmaceutical compositions can be in the form of a sterile injectable aqueous or oleaginous suspension. This suspension can be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents that have been mentioned above. The sterile injectable preparation can also be a sterile injectable solution or suspension in a non-toxic parentally acceptable diluent or solvent, for example as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that can be employed are water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil can be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.

The nucleic acid molecules of the invention can also be administered in the form of suppositories, *e.g.*, for rectal administration of the drug. These compositions can be prepared by mixing the drug with a suitable non-irritating excipient that is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug. Such materials include cocoa butter and polyethylene glycols.

Nucleic acid molecules of the invention can be administered parenterally in a sterile medium. The drug, depending on the vehicle and concentration used, can either be suspended or dissolved in the vehicle. Advantageously, adjuvants such as local anesthetics, preservatives and buffering agents can be dissolved in the vehicle.

Dosage levels of the order of from about 0.1 mg to about 140 mg per kilogram of body weight per day are useful in the treatment of the above-indicated conditions (about 0.5 mg to about 7 g per patient per day). The amount of active ingredient that can be combined with the carrier materials to produce a single dosage form varies depending upon the host treated and the particular mode of administration. Dosage unit forms generally contain between from about 1 mg to about 500 mg of an active ingredient.

It is understood that the specific dose level for any particular patient depends upon a variety of factors including the activity of the specific compound employed, the age, body

weight, general health, sex, diet, time of administration, route of administration, and rate of excretion, drug combination and the severity of the particular disease undergoing therapy.

For administration to non-human animals, the composition can also be added to the animal feed or drinking water. It can be convenient to formulate the animal feed and drinking water compositions so that the animal takes in a therapeutically appropriate quantity of the composition along with its diet. It can also be convenient to present the composition as a premix for addition to the feed or drinking water.

The nucleic acid molecules of the present invention may also be administered to a patient in combination with other therapeutic compounds to increase the overall therapeutic effect. The use of multiple compounds to treat an indication may increase the beneficial effects while reducing the presence of side effects.

In one embodiment, the invention compositions suitable for administering nucleic acid molecules of the invention to specific cell types, such as hepatocytes. For example, the asialoglycoprotein receptor (ASGPr) (Wu and Wu, 1987, *J. Biol. Chem.* 262, 4429-4432) is unique to hepatocytes and binds branched galactose-terminal glycoproteins, such as asialoorosomucoid (ASOR). Binding of such glycoproteins or synthetic glycoconjugates to the receptor takes place with an affinity that strongly depends on the degree of branching of the oligosaccharide chain, for example, triantennary structures are bound with greater affinity than biantennary or monoantennary chains (Baenziger and Fiete, 1980, *Cell*, 22, 611-620; Connolly *et al.*, 1982, *J. Biol. Chem.*, 257, 939-945). Lee and Lee, 1987, *Glycoconjugate J.*, 4, 317-328, obtained this high specificity through the use of N-acetyl-D-galactosamine as the carbohydrate moiety, which has higher affinity for the receptor, compared to galactose. This “clustering effect” has also been described for the binding and uptake of mannose-terminating glycoproteins or glycoconjugates (Ponpipom *et al.*, 1981, *J. Med. Chem.*, 24, 1388-1395). The use of galactose and galactosamine based conjugates to transport exogenous compounds across cell membranes can provide a targeted delivery approach to the treatment of liver disease such as HBV infection or hepatocellular carcinoma. The use of bioconjugates can also provide a reduction in the required dose of therapeutic compounds required for treatment. Furthermore, therapeutic bioavailability, pharmacodynamics, and pharmacokinetic parameters can be modulated through the use of nucleic acid bioconjugates of the invention.

Alternatively, certain of the nucleic acid molecules of the instant invention can be expressed within cells from eukaryotic promoters (e.g., Izant and Weintraub, 1985, *Science*, 229, 345; McGarry and Lindquist, 1986, *Proc. Natl. Acad. Sci., USA* 83, 399; Scanlon *et al.*, 1991, *Proc. Natl. Acad. Sci. USA*, 88, 10591-5; Kashani-Sabet *et al.*, 1992, *Antisense Res. Dev.*, 2, 3-15; Dropulic *et al.*, 1992, *J. Virol.*, 66, 1432-41; Weerasinghe *et al.*, 1991, *J. Virol.*, 65, 5531-4; Ojwang *et al.*, 1992, *Proc. Natl. Acad. Sci. USA*, 89, 10802-6; Chen *et*

al., 1992, *Nucleic Acids Res.*, 20, 4581-9; Sarver *et al.*, 1990 *Science*, 247, 1222-1225; Thompson *et al.*, 1995, *Nucleic Acids Res.*, 23, 2259; Good *et al.*, 1997, *Gene Therapy*, 4, 45; all of these references are hereby incorporated in their totalities by reference herein). Those skilled in the art realize that any nucleic acid can be expressed in eukaryotic cells from the appropriate DNA/RNA vector. The activity of such nucleic acids can be augmented by their release from the primary transcript by a ribozyme (Draper *et al.*, PCT WO 93/23569, and Sullivan *et al.*, PCT WO 94/02595; Ohkawa *et al.*, 1992, *Nucleic Acids Symp. Ser.*, 27, 15-6; Taira *et al.*, 1991, *Nucleic Acids Res.*, 19, 5125-30; Ventura *et al.*, 1993, *Nucleic Acids Res.*, 21, 3249-55; Chowrira *et al.*, 1994, *J. Biol. Chem.*, 269, 25856; all of these references are hereby incorporated in their totality by reference herein).

In another aspect of the invention, RNA molecules of the present invention are preferably expressed from transcription units (see, for example, Couture *et al.*, 1996, *TIG.*, 12, 510) inserted into DNA or RNA vectors. The recombinant vectors are preferably DNA plasmids or viral vectors. Ribozyme expressing viral vectors could be constructed based on, but not limited to, adeno-associated virus, retrovirus, adenovirus, or alphavirus. Preferably, the recombinant vectors capable of expressing the nucleic acid molecules are delivered as described above, and persist in target cells. Alternatively, viral vectors may be used that provide for transient expression of nucleic acid molecules. Such vectors might be repeatedly administered as necessary. Once expressed, the nucleic acid molecule binds to the target mRNA. Delivery of nucleic acid molecule expressing vectors could be systemic, such as by intravenous or intra-muscular administration, by administration to target cells ex-planted from the patient followed by reintroduction into the patient, or by any other means that would allow for introduction into the desired target cell (for a review see Couture *et al.*, 1996, *TIG.*, 12, 510).

In one aspect, the invention features an expression vector comprising a nucleic acid sequence encoding at least one of the nucleic acid molecules of the instant invention is disclosed. The nucleic acid sequence encoding the nucleic acid molecule of the instant invention is operably linked in a manner which allows expression of that nucleic acid molecule.

In another aspect the invention features an expression vector comprising: a) a transcription initiation region (*e.g.*, eukaryotic pol I, II or III initiation region); b) a transcription termination region (*e.g.*, eukaryotic pol I, II or III termination region); c) a nucleic acid sequence encoding at least one of the nucleic acid catalyst of the instant invention; and wherein said sequence is operably linked to said initiation region and said termination region, in a manner which allows expression and/or delivery of said nucleic acid molecule. The vector may optionally include an open reading frame (ORF) for a protein

operably linked on the 5' side or the 3'-side of the sequence encoding the nucleic acid catalyst of the invention; and/or an intron (intervening sequences).

Transcription of the nucleic acid molecule sequences are driven from a promoter for eukaryotic RNA polymerase I (pol I), RNA polymerase II (pol II), or RNA polymerase III (pol III). Transcripts from pol II or pol III promoters will be expressed at high levels in all cells; the levels of a given pol II promoter in a given cell type will depend on the nature of the gene regulatory sequences (enhancers, silencers, etc.) present nearby. Prokaryotic RNA polymerase promoters are also used, providing that the prokaryotic RNA polymerase enzyme is expressed in the appropriate cells (Elroy-Stein and Moss, 1990, *Proc. Natl. Acad. Sci. U S A*, 87, 6743-7; Gao and Huang 1993, *Nucleic Acids Res.*, 21, 2867-72; Lieber et al., 1993, *Methods Enzymol.*, 217, 47-66; Zhou et al., 1990, *Mol. Cell. Biol.*, 10, 4529-37). All of these references are incorporated by reference herein. Several investigators have demonstrated that nucleic acid molecules, such as ribozymes expressed from such promoters can function in mammalian cells (e.g. Kashani-Sabet et al., 1992, *Antisense Res. Dev.*, 2, 3-15; Ojwang et al., 1992, *Proc. Natl. Acad. Sci. U S A*, 89, 10802-6; Chen et al., 1992, *Nucleic Acids Res.*, 20, 4581-9; Yu et al., 1993, *Proc. Natl. Acad. Sci. U S A*, 90, 6340-4; L'Huillier et al., 1992, *EMBO J.*, 11, 4411-8; Lisziewicz et al., 1993, *Proc. Natl. Acad. Sci. U. S. A.*, 90, 8000-4; Thompson et al., 1995, *Nucleic Acids Res.*, 23, 2259; Sullenger & Cech, 1993, *Science*, 262, 1566). More specifically, transcription units such as the ones derived from genes encoding U6 small nuclear (snRNA), transfer RNA (tRNA) and adenovirus VA RNA are useful in generating high concentrations of desired RNA molecules such as ribozymes in cells (Thompson et al., *supra*; Couture and Stinchcomb, 1996, *supra*; Noonberg et al., 1994, *Nucleic Acid Res.*, 22, 2830; Noonberg et al., US Patent No. 5,624,803; Good et al., 1997, *Gene Ther.*, 4, 45; Beigelman et al., International PCT Publication No. WO 96/18736; all of these publications are incorporated by reference herein). The above ribozyme transcription units can be incorporated into a variety of vectors for introduction into mammalian cells, including but not restricted to, plasmid DNA vectors, viral DNA vectors (such as adenovirus or adeno-associated virus vectors), or viral RNA vectors (such as retroviral or alphavirus vectors) (for a review see Couture and Stinchcomb, 1996, *supra*).

In yet another aspect, the invention features an expression vector comprising nucleic acid sequence encoding at least one of the nucleic acid molecules of the invention, in a manner that allows expression of that nucleic acid molecule. The expression vector comprises in one embodiment: a) a transcription initiation region; b) a transcription termination region; c) a nucleic acid sequence encoding at least one said nucleic acid molecule; and wherein said sequence is operably linked to said initiation region and said termination region, in a manner which allows expression and/or delivery of said nucleic acid molecule. In another embodiment, the expression vector comprises: a) a transcription initiation region; b) a

transcription termination region; c) an open reading frame; d) a nucleic acid sequence encoding at least one said nucleic acid molecule, wherein said sequence is operably linked to the 3'-end of said open reading frame; and wherein said sequence is operably linked to said initiation region, said open reading frame and said termination region, in a manner which allows expression and/or delivery of said nucleic acid molecule. In yet another embodiment, the expression vector comprises: a) a transcription initiation region; b) a transcription termination region; c) an intron; d) a nucleic acid sequence encoding at least one said nucleic acid molecule; and wherein said sequence is operably linked to said initiation region, said intron and said termination region, in a manner which allows expression and/or delivery of said nucleic acid molecule. In another embodiment, the expression vector comprises: a) a transcription initiation region; b) a transcription termination region; c) an intron; d) an open reading frame; e) a nucleic acid sequence encoding at least one said nucleic acid molecule, wherein said sequence is operably linked to the 3'-end of said open reading frame; and wherein said sequence is operably linked to said initiation region, said intron, said open reading frame and said termination region, in a manner which allows expression and/or delivery of said nucleic acid molecule.

Interferons

Type I interferons (IFN) are a class of natural cytokines that includes a family of greater than 25 IFN- α (Pestka, 1986, *Methods Enzymol.* 119, 3-14) as well as IFN- β , and IFN- ω . Although evolutionarily derived from the same gene (Diaz *et al.*, 1994, *Genomics* 22, 540-552), there are many differences in the primary sequence of these molecules, implying an evolutionary divergence in biologic activity. All type I IFN share a common pattern of biologic effects that begin with binding of the IFN to the cell surface receptor (Pfeffer & Strulovici, 1992, Transmembrane secondary messengers for IFN- α/β . In: *Interferon. Principles and Medical Applications.*, S. Baron, D.H. Copenhaver, F. Dianzani, W.R. Fleischmann Jr., T.K. Hughes Jr., G.R. Kimpel, D.W. Niesel, G.J. Stanton, and S.K. Tyring, eds. 151-160). Binding is followed by activation of tyrosine kinases, including the Janus tyrosine kinases and the STAT proteins, which leads to the production of several IFN-stimulated gene products (Johnson *et al.*, 1994, *Sci. Am.* 270, 68-75). The IFN-stimulated gene products are responsible for the pleotropic biologic effects of type I IFN, including antiviral, antiproliferative, and immunomodulatory effects, cytokine induction, and HLA class I and class II regulation (Pestka *et al.*, 1987, *Annu. Rev. Biochem* 56, 727). Examples of IFN-stimulated gene products include 2-5-oligoadenylate synthetase (2-5 OAS), β_2 -microglobulin, neopterin, p68 kinases, and the Mx protein (Chebath & Revel, 1992, The 2-5 A system: 2-5 A synthetase, isospecies and functions. In: *Interferon. Principles and Medical Applications.* S. Baron, D.H. Copenhaver, F. Dianzani, W.R. Jr. Fleischmann, T.K. Jr Hughes, G.R. Kimpel, D.W. Niesel, G.J. Stanton, and S.K. Tyring, eds., pp. 225-236;

Samuel, 1992, The RNA-dependent P1/eIF-2 α protein kinase. In: *Interferon. Principles and Medical Applications.* S. Baron, D.H. Coopenhaver, F. Dianzani, W.R. Fleischmann Jr., T.K. Hughes Jr., G.R. Kimpel, D.W. Niesel, G.H. Stanton, and S.K. Tyring, eds. 237-250; Horisberger, 1992, MX protein: function and Mechanism of Action. In: *Interferon. Principles and Medical Applications.* S. Baron, D.H. Coopenhaver, F. Dianzani, W.R. Fleischmann Jr., T.K. Hughes Jr., G.R. Kimpel, D.W. Niesel, G.H. Stanton, and S.K. Tyring, eds. 215-224). Although all type I IFN have similar biologic effects, not all the activities are shared by each type I IFN, and, in many cases, the extent of activity varies quite substantially for each IFN subtype (Fish *et al.*, 1989, *J. Interferon Res.* 9, 97-114; Ozes *et al.*, 1992, *J. Interferon Res.* 12, 55-59). More specifically, investigations into the properties of different subtypes of IFN- α and molecular hybrids of IFN- α have shown differences in pharmacologic properties (Rubinstein, 1987, *J. Interferon Res.* 7, 545-551). These pharmacologic differences can arise from as few as three amino acid residue changes (Lee *et al.*, 1982, *Cancer Res.* 42, 1312-1316).

Eighty-five to 166 amino acids are conserved in the known IFN- α subtypes. Excluding the IFN- α pseudogenes, there are approximately 25 known distinct IFN- α subtypes. Pairwise comparisons of these nonallelic subtypes show primary sequence differences ranging from 2% to 23%. In addition to the naturally occurring IFNs, a non-natural recombinant type I interferon known as consensus interferon (CIFN) has been synthesized as a therapeutic compound (Tong *et al.*, 1997, *Hepatology* 26, 747-754).

Interferon is currently in use for at least 12 different indications including infectious and autoimmune diseases and cancer (Borden, 1992, *N. Engl. J. Med.* 326, 1491-1492). For autoimmune diseases IFN has been utilized for treatment of rheumatoid arthritis, multiple sclerosis, and Crohn's disease. For treatment of cancer IFN has been used alone or in combination with a number of different compounds. Specific types of cancers for which IFN has been used include squamous cell carcinomas, melanomas, hypernephromas, hemangiomas, hairy cell leukemia, and Kaposi's sarcoma. In the treatment of infectious diseases, IFNs increase the phagocytic activity of macrophages and cytotoxicity of lymphocytes and inhibits the propagation of cellular pathogens. Specific indications for which IFN has been used as treatment include: hepatitis B, human papillomavirus types 6 and 11 (i.e. genital warts) (Leventhal *et al.*, 1991, *N Engl J Med* 325, 613-617), chronic granulomatous disease, and hepatitis C virus.

Numerous well controlled clinical trials using IFN-alpha in the treatment of chronic HCV infection have demonstrated that treatment three times a week results in lowering of serum ALT values in approximately 50% (range 40% to 70%) of patients by the end of 6 months of therapy (Davis *et al.*, 1989, *The new England Journal of Medicine* 321, 1501-

1506; Marcellin et al., 1991, *Hepatology* 13, 393-397; Tong et al., 1997, *Hepatology* 26, 747-754; Tong et al., *Hepatology* 26, 1640-1645). However, following cessation of interferon treatment, approximately 50% of the responding patients relapsed, resulting in a "durable" response rate as assessed by normalization of serum ALT concentrations of approximately 20 to 25%. In addition, studies that have examined six months of type 1 interferon therapy using changes in HCV RNA values as a clinical endpoint have demonstrated that up to 35% of patients will have a loss of HCV RNA by the end of therapy (Tong et al., 1997, supra). However, as with the ALT endpoint, about 50% of the patients relapse six months following cessation of therapy resulting in a durable virologic response of only 12% (23). Studies that have examined 48 weeks of therapy have demonstrated that the sustained virological response is up to 25%.

Pegylated interferons, ie. interferons conjugated with polyethylene glycol (PEG), have demonstrated improved characteristics over interferon. Advantages incurred by PEG conjugation can include an improved pharmacokinetic profile compared to interferons lacking PEG, thus imparting more convenient dosing regimes, improved tolerance, and improved antiviral efficacy. Such improvements have been demonstrated in clinical studies of both polyethylene glycol interferon alfa-2a (PEGASYS, Roche) and polyethylene glycol interferon alfa-2b (VIRAFERON PEG, PEG-INTRON, Enzon/Schering Plough).

Enzymatic nucleic acid molecules in combination with interferons and polyethylene glycol interferons have the potential to improve the effectiveness of treatment of HCV or any of the other indications discussed above. Enzymatic nucleic acid molecules targeting RNAs associated with diseases such as infectious diseases, autoimmune diseases, and cancer, can be used individually or in combination with other therapies such as interferons and polyethylene glycol interferons and to achieve enhanced efficacy.

Examples:

The following are non-limiting examples showing the selection, isolation, synthesis and activity of nucleic acids of the instant invention. These examples demonstrate the selection and design of Antisense, Hammerhead, DNAzyme, NCH, Amberzyme, Zinzyme or G-Cleaver ribozyme molecules and binding/cleavage sites within HBV and HCV RNA. The following examples also demonstrate the selection and design of nucleic acid decoy molecules that target HBV reverse transcriptase. The following examples also demonstrate the use of enzymatic nucleic acid molecules that cleave HCV RNA. The methods described herein represent a scheme by which nucleic acid molecules can be derived that cleave other RNA targets required for HCV replication.

Example 1: Identification of Potential Target Sites in Human HBV RNA

The sequence of human HBV was screened for accessible sites using a computer-folding algorithm. Regions of the RNA that did not form secondary folding structures and contained potential ribozyme and/or antisense binding/cleavage sites were identified. The sequences of these cleavage sites are shown in **Tables IV - XI**.

Example 2: Selection of Enzymatic Nucleic Acid Cleavage Sites in Human HBV RNA

Ribozyme target sites were chosen by analyzing sequences of Human HBV (accession number: AF100308.1) and prioritizing the sites on the basis of folding. Ribozymes were designed that could bind each target and were individually analyzed by computer folding (Christoffersen *et al.*, 1994 *J. Mol. Struc. Theochem*, 311, 273; Jaeger *et al.*, 1989, *Proc. Natl. Acad. Sci. USA*, 86, 7706) to assess whether the ribozyme sequences fold into the appropriate secondary structure. Those ribozymes with unfavorable intramolecular interactions between the binding arms and the catalytic core were eliminated from consideration. As noted herein, varying binding arm lengths can be chosen to optimize activity. Generally, at least 5 bases on each arm are able to bind to, or otherwise interact with, the target RNA.

Example 3: Chemical Synthesis and Purification of Ribozymes and Antisense for Efficient Cleavage and/or blocking of HBV RNA

Ribozymes and antisense constructs were designed to anneal to various sites in the RNA message. The binding arms of the ribozymes are complementary to the target site sequences described above, while the antisense constructs are fully complementary to the target site sequences described above. The ribozymes and antisense constructs were chemically synthesized. The method of synthesis used followed the procedure for normal RNA synthesis as described above and in Usman *et al.*, (1987 *J. Am. Chem. Soc.*, 109, 7845), Scaringe *et al.*, (1990 *Nucleic Acids Res.*, 18, 5433) and Wincott *et al.*, *supra*, and made use of common nucleic acid protecting and coupling groups, such as dimethoxytrityl at the 5'-end, and phosphoramidites at the 3'-end. The average stepwise coupling yields were typically >98%.

Ribozymes and antisense constructs were also synthesized from DNA templates using bacteriophage T7 RNA polymerase (Milligan and Uhlenbeck, 1989, *Methods Enzymol.* 180, 51). Ribozymes and antisense constructs were purified by gel electrophoresis using general methods or were purified by high pressure liquid chromatography (HPLC; see Wincott *et al.*, *supra*; the totality of which is hereby incorporated herein by reference) and were resuspended in water. The sequences of the chemically synthesized ribozymes used in this study are shown below in **Table XI**.

Example 4: Ribozyme Cleavage of HBV RNA Target *in vitro*

Ribozymes targeted to the human HBV RNA are designed and synthesized as described above. These ribozymes can be tested for cleavage activity *in vitro*, for example using the following procedure. The target sequences and the nucleotide location within the HBV RNA are given in Tables IV-XI.

Cleavage Reactions: Full-length or partially full-length, internally-labeled target RNA for ribozyme cleavage assay is prepared by *in vitro* transcription in the presence of [α -³²P] CTP, passed over a G 50 Sephadex® column by spin chromatography and used as substrate RNA without further purification. Alternately, substrates are 5'-³²P-end labeled using T4 polynucleotide kinase enzyme. Assays are performed by pre-warming a 2X concentration of purified ribozyme in ribozyme cleavage buffer (50 mM Tris-HCl, pH 7.5 at 37°C, 10 mM MgCl₂) and the cleavage reaction was initiated by adding the 2X ribozyme mix to an equal volume of substrate RNA (maximum of 1-5 nM) that was also pre-warmed in cleavage buffer. As an initial screen, assays are carried out for 1 hour at 37°C using a final concentration of either 40 nM or 1 mM ribozyme, *i.e.*, ribozyme excess. The reaction is quenched by the addition of an equal volume of 95% formamide, 20 mM EDTA, 0.05% bromophenol blue and 0.05% xylene cyanol after which the sample is heated to 95°C for 2 minutes, quick chilled and loaded onto a denaturing polyacrylamide gel. Substrate RNA and the specific RNA cleavage products generated by ribozyme cleavage are visualized on an autoradiograph of the gel. The percentage of cleavage is determined by Phosphor Imager® quantitation of bands representing the intact substrate and the cleavage products.

Example 5: Transfection of HepG2 Cells with psHBV-1 and Ribozymes

The human hepatocellular carcinoma cell line Hep G2 was grown in Dulbecco's modified Eagle media supplemented with 10% fetal calf serum, 2 mM glutamine, 0.1 mM nonessential amino acids, 1 mM sodium pyruvate, 25 mM Hepes, 100 units penicillin, and 100 µg/ml streptomycin. To generate a replication competent cDNA, prior to transfection the HBV genomic sequences are excised from the bacterial plasmid sequence contained in the psHBV-1 vector (Those skilled in the art understand that other methods may be used to generate a replication competent cDNA). This was done with an EcoRI and Hind III restriction digest. Following completion of the digest, a ligation was performed under dilute conditions (20 µg/ml) to favor intermolecular ligation. The total ligation mixture was then concentrated using Qiagen spin columns.

Secreted alkaline phosphatase (SEAP) was used to normalize the HBsAg levels to control for transfection variability. The pSEAP2-TK control vector was constructed by ligating a Bgl II-Hind III fragment of the pRL-TK vector (Promega), containing the herpes

simplex virus thymidine kinase promoter region, into *Bgl* II/*Hind* III digested pSEAP2-Basic (Clontech). Hep G2 cells were plated (3×10^4 cells/well) in 96-well microtiter plates and incubated overnight. A lipid/DNA/ribozyme complex was formed containing (at final concentrations) cationic lipid (15 $\mu\text{g}/\text{ml}$), prepared psHBV-1 (4.5 $\mu\text{g}/\text{ml}$), pSEAP2-TK (0.5 $\mu\text{g}/\text{ml}$), and ribozyme (100 μM). Following a 15 min. incubation at 37° C, the complexes were added to the plated Hep G2 cells. Media was removed from the cells 96 hr. post-transfection for HBsAg and SEAP analysis.

Transfection of the human hepatocellular carcinoma cell line, Hep G2, with replication competent HBV DNA results in the expression of HBV proteins and the production of virions. To investigate the potential use of ribozymes for the treatment of chronic HBV infection, a series of ribozymes that target the 3' terminus of the HBV genome have been synthesized. Ribozymes targeting this region have the potential to cleave all four major HBV RNA transcripts as well as the potential to block the production of HBV DNA by cleavage of the pregenomic RNA. To test the efficacy of these HBV ribozymes, they were co-transfected with HBV genomic DNA into Hep G2 cells, and the subsequent levels of secreted HBV surface antigen (HBsAg) were analyzed by ELISA. To control for variability in transfection efficiency, a control vector which expresses secreted alkaline phosphatase (SEAP), was also co-transfected. The efficacy of the HBV ribozymes was determined by comparing the ratio of HBsAg:SEAP and/or HBeAg:SEAP to that of a scrambled attenuated control (SAC) ribozyme. Twenty-five ribozymes (RPI18341, RPI18356, RPI18363, RPI18364, RPI18365, RPI18366, RPI18367, RPI18368, RPI18369, RPI18370, RPI18371, RPI18372, RPI18373, RPI18374, RPI18303, RPI18405, RPI18406, RPI18407, RPI18408, RPI18409, RPI18410, RPI18411, RPI18418, RPI18419, and RPI18422) have been identified which cause a reduction in the levels of HBsAg and/or HBeAg as compared to the corresponding SAC ribozyme. In addition, loop variant anti-HBV ribozymes targeting site 273 were tested using this system, the results of this study are summarized in **Figure 10**. As indicated in the figure, the ribozymes tested demonstrate significant reduction in HepG2 HBsAg levels as compared to a scrambled attenuated core ribozyme control, with RPI 22650 and RPI 22649 showing the greatest decrease in HBsAg levels.

Example 6: Analysis of HBsAg and SEAP Levels Following Ribozyme Treatment

Immulon 4 (Dynax) microtiter wells were coated overnight at 4° C with anti-HBsAg Mab (Biostride B88-95-31ad,ay) at 1 $\mu\text{g}/\text{ml}$ in Carbonate Buffer (Na₂CO₃ 15 mM, NaHCO₃ 35 mM, pH 9.5). The wells were then washed 4x with PBST (PBS, 0.05% Tween® 20) and blocked for 1 hr at 37° C with PBST, 1% BSA. Following washing as above, the wells were dried at 37° C for 30 min. Biotinylated goat ant-HBsAg (Accurate YVS1807) was diluted 1:1000 in PBST and incubated in the wells for 1 hr. at 37° C. The wells were washed 4x with

PBST. Streptavidin/Alkaline Phosphatase Conjugate (Pierce 21324) was diluted to 250 ng/ml in PBST, and incubated in the wells for 1 hr. at 37° C. After washing as above, p-nitrophenyl phosphate substrate (Pierce 37620) was added to the wells, which were then incubated for 1 hr. at 37° C. The optical density at 405 nm was then determined. SEAP levels were assayed using the Great EscAPE® Detection Kit (Clontech K2041-1), as per the manufacturers instructions.

Example 7: X-gene Reporter Assay

The effect of ribozyme treatment on the level of transactivation of a SV40 promoter driven firefly luciferase gene by the HBV X-protein was analyzed in transfected Hep G2 cells. As a control for variability in transfection efficiency, a Renilla luciferase reporter driven by the TK promoter, which is not transactivated by the X protein, was used. Hep G2 cells were plated (3×10^4 cells/well) in 96-well microtiter plates and incubated overnight. A lipid/DNA/ribozyme complex was formed containing (at final concentrations) cationic lipid (2.4 μ g/ml), the X-gene vector pSBDR(2.5 μ g/ml), the firefly reporter pSV40HCVluc (0.5 μ g/ml), the Renilla luciferase control vector pRL-TK (0.5 μ g/ml), and ribozyme (100 μ M). Following a 15 min. incubation at 37° C, the complexes were added to the plated Hep G2 cells. Levels of firefly and Renilla luciferase were analyzed 48 hr. post transfection, using Promega's Dual-Luciferase Assay System.

The HBV X protein is a transactivator of a number of viral and cellular genes. Ribozymes which target the X region were tested for their ability to cause a reduction in X protein transactivation of a firefly luciferase gene driven by the SV40 promoter in transfected Hep G2 cells. As a control for transfection variability, a vector containing the Renilla luciferase gene driven by the TK promotor, which is not activated by the X protein, was included in the co-transfections. The efficacy of the HBV ribozymes was determined by comparing the ratio of firefly luciferase: Renilla luciferase to that of a scrambled attenuated control (SAC) ribozyme. Eleven ribozymes (RPI18365, RPI18367, RPI18368, RPI18371, RPI18372, RPI18373, RPI18405, RPI18406, RPI18411, RPI18418, RPI18423) were identified which cause a reduction in the level of transactivation of a reporter gene by the X protein, as compared to the corresponding SAC ribozyme.

Example 8: HBV transgenic mouse study A

A transgenic mouse strain (founder strain 1.3.32 with a C57B1/6 background) that expresses HBV RNA and forms HBV viremia (Morrey *et al.*, 1999, *Antiviral Res.*, 42, 97-108; Guidotti *et al.*, 1995, *J. Virology*, 69, 10, 6158-6169) was utilized to study the *in vivo* activity of ribozymes (RPI.18341, RPI.18371, RPI.18372, and RPI.18418) of the instant invention. This model is predictive in screening for anti-HBV agents. Ribozyme or the

equivalent volume of saline was administered via a continuous s.c. infusion using Alzet® mini-osmotic pumps for 14 days. Alzet® pumps were filled with test material(s) in a sterile fashion according to the manufacturer's instructions. Prior to *in vivo* implantation, pumps were incubated at 37°C overnight (\geq 18 hours) to prime the flow modulators. On the day of surgery, animals were lightly anesthetized with a ketamine/xylazine cocktail (94 mg/kg and 6 mg/kg, respectively; 0.3 ml, IP). Baseline blood samples (200 μ l) were obtained from each animal *via* a retro-orbital bleed. For animals in groups 1-5 (**Table XII**), a 2 cm area near the base of the tail was shaved and cleansed with betadine surgical scrub and sequentially with 70% alcohol. A 1 cm incision in the skin was made with a #15 scalpel blade or a blunt pair of scissors near the base of the tail. Forceps were used to open a pocket rostrally (*i.e.*, towards the head) by spreading apart the subcutaneous connective tissue. The pump was inserted with the delivery portal pointing away from the incision. Wounds were closed with sterile 9-mm stainless steel clips or with sterile 4-0 suture. Animals were then allowed to recover from anesthesia on a warm heating pad before being returned to their cage. Wounds were checked daily. Clips or sutures were replaced as needed. Incisions typically healed completely within 7 days post-op. Animals were then deeply anesthetized with the ketamine/xylazine cocktail (150 mg/kg and 10 mg/kg, respectively; 0.5 ml, IP) on day 14 post pump implantation. A midline thoracotomy/ laparatomy was performed to expose the abdominal cavity and the thoracic cavity. The left ventricle was cannulated at the base and animals exsanguinated using a 23G needle and 1 ml syringe. Serum was separated, frozen and analyzed for HBV DNA and antigen levels. Experimental groups were compared to the saline control group in respect to percent change from day 0 to day 14. HBV DNA was assayed by quantitative PCR.

Results

Table XII is a summary of the group designation and dosage levels used in this HBV transgenic mouse study. Baseline blood samples were obtained *via* a retroorbital bleed and animals (N=10/group) received anti-HBV ribozymes (100 mg/kg/day) as a continuous SC infusion. After 14 days, animals treated with a ribozyme targeting site 273 (RPI.18341) of the HBV RNA showed a significant reduction in serum HBV DNA concentration, compared to the saline treated animals as measured by a quantitative PCR assay. More specifically, the saline treated animals had a 69% increase in serum HBV DNA concentrations over this 2-week period while treatment with the 273 ribozyme (RPI.18341) resulted in a 60% decrease in serum HBV DNA concentrations. Ribozymes directed against sites 1833 (RPI.18371), 1873 (RPI.18418), and 1874 (RPI.18372) decreased serum HBV DNA concentrations by 49%, 15% and 16%, respectively.

Example 9: HBV transgenic mouse study B

A transgenic mouse strain (founder strain 1.3.32 with a C57B1/6 background) that expresses HBV RNA and forms HBV viremia (Morrey *et al.*, 1999, *Antiviral Res.*, 42, 97-108; Guidotti *et al.*, 1995, *J. Virology*, 69, 10, 6158-6169) was utilized to study the *in vivo* activity of ribozymes (RPI.18341 and RPI.18371) of the instant invention. This model is predictive in screening for anti-HBV agents. Ribozyme or the equivalent volume of saline was administered via a continuous s.c. infusion using Alzet® mini-osmotic pumps for 14 days. Alzet® pumps were filled with test material(s) in a sterile fashion according to the manufacturer's instructions. Prior to *in vivo* implantation, pumps were incubated at 37°C overnight (\geq 18 hours) to prime the flow modulators. On the day of surgery, animals were lightly anesthetized with a ketamine/xylazine cocktail (94 mg/kg and 6 mg/kg, respectively; 0.3 ml, IP). Baseline blood samples (200 μ l) were obtained from each animal *via* a retro-orbital bleed. For animals in groups 1-10 (**Table XIII**), a 2 cm area near the base of the tail was shaved and cleansed with betadine surgical scrub and sequentially with 70% alcohol. A 1 cm incision in the skin was made with a #15 scalpel blade or a blunt pair of scissors near the base of the tail. Forceps were used to open a pocket rostrally (*ie.*, towards the head) by spreading apart the subcutaneous connective tissue. The pump was inserted with the delivery portal pointing away from the incision. Wounds were closed with sterile 9-mm stainless steel clips or with sterile 4-0 suture. Animals were then allowed to recover from anesthesia on a warm heating pad before being returned to their cage. Wounds were checked daily. Clips or sutures were replaced as needed. Incisions typically healed completely within 7 days post-op. Animals were then deeply anesthetized with the ketamine/xylazine cocktail (150 mg/kg and 10 mg/kg, respectively; 0.5 ml, IP) on day 14 post pump implantation. A midline thoracotomy/ laparatomy was performed to expose the abdominal cavity and the thoracic cavity. The left ventricle was cannulated at the base and animals exsanguinated using a 23G needle and 1 ml syringe. Serum was separated, frozen and analyzed for HBV DNA and antigen levels. Experimental groups were compared to the saline control group in respect to percent change from day 0 to day 14. HBV DNA was assayed by quantitative PCR. Additionally, mice treated with 3TC® by oral gavage at a dose of 300 mg/kg/day for 14 days (group 11, **Table XIII**) were used as a positive control.

Results

Table XIII is a summary of the group designation and dosage levels used in this HBV transgenic mouse study. Baseline blood samples were obtained *via* a retroorbital bleed and animals (N=15/group) received anti-HBV ribozymes (100 mg/kg/day, 30 mg/kg/day, 10 mg/kg/day) as a continuous SC infusion. The results of this study are summarized in **Figures 6, 7, and 8**. As **Figures 6, 7, and 8** demonstrate, Ribozymes directed against sites 273 (RPI.18341) and 1833 (RPI.18371) demonstrate reduction in the serum HBV DNA levels following 14 days of ribozyme treatment in HBV transgenic mice, as compared to scrambled attenuated core (SAC) ribozyme and saline controls. Furthermore, these ribozymes provide similar, and in some cases, greater reduction of serum HBV DNA levels, as compared to the 3TC® positive control, at lower doses than the 3TC® positive control.

Example 10: HBV DNA reduction in HepG2.2.15 cells

Ribozyme treatment of HepG2.2.15 cells was performed in a 96-well plate format, with 12 wells for each different ribozyme tested (RPI.18341, RPI.18371, RPI.18372, RPI.18418, RPI.20599SAC). HBV DNA levels in the media collected between 120 and 144 hours following transfection was determined using the Roche Amplicor HBV Assay. Treatment with RPI.18341 targeting site 273 resulted in a significant ($P<0.05$) decrease in HBV DNA levels of 62% compared to the SAC (RPI.20599). Treatment with RPI.18371 (site 1833) or RPI.18372 (site 1874) resulted in reductions in HBV DNA levels of 55% and 58% respectively, as compared to treatment with the SAC RPI.20599 (see **Figure 9**).

Example 11: RPI 18341 combination treatment with Lamivudine/Infergen®

The therapeutic use of nucleic acid molecules of the invention either alone or in combination with current therapies, for example lamivudine or type 1 IFN, can lead to improved HBV treatment modalities. To assess the potential of combination therapy, HepG2 cells transfected with a replication competent HBV cDNA, were treated with RPI 18341(HepBzyme™), Infergen® (Amgen, Thousand Oaks Ca), and/or Lamivudine (Epivir®: GlaxoSmithKline, Research Triangle Park NC) either alone or in combination. Results indicated that combination treatment with either RPI 18341 plus Infergen® or combination of RPI 18341 plus lamivudine results in additive down regulation of HBsAg expression ($P<0.001$). These studies can be applied to the treatment of lamivudine resistant cells to further asses the potential for combination therapy of RPI 18341 plus currently available therapies for the treatment of chronic Hepatitis B.

Hep G2 cells were plated (2 x 10⁴ cells/well) in 96-well microtiter plates and incubated overnight. A cationic lipid/DNA/ribozyme complex was formed containing (at final

concentrations) lipid (11-15 µg/mL), re-ligated psHBV-1 (4.5 µg/mL) and ribozyme (100-200 nM) in growth media. Following a 15 min incubation at 37°C, 20 µL of the complex was added to the plated Hep G2 cells in 80 µL of growth media minus antibiotics. For combination treatment with interferon, interferon (Infergen®, Amgen, Thousand Oaks CA) was added at 24 hr post-transfection and then incubated for an additional 96 hr. In the case of co-treatment with Lamivudine (3TC®), the ribozyme-containing cell culture media was removed at 120 hr post-transfection, fresh media containing Lamivudine (Epivir®: GlaxoSmithKline, Research Triangle Park NC) was added, and then incubated for an additional 48 hours. Treatment with Lamivudine or interferon individually was done on Hep G2 cells transfected with the pSHBV-1 vector alone and then treated identically to the co-treated cells. All transfections were performed in triplicate. Analysis of HBsAg levels was performed using the Diasorin HBsAg ELISA kit.

Results

At either 500 or 1000 units of Infergen®, the addition of 200 nM of RPI.18341 results in a 75-77% increase in anti-HBV activity as judged by the level of HBsAg secreted from the treated Hep G2 cells. Conversely, the anti-HBV activity of RPI.18341(at 200 nM) is increased 31-39% when used in combination of 500 or 1000 units of Infergen® (**Figure 11**).

At 25 nM Lamivudine (3TC®), the addition of 100 nM of RPI.18341 results in a 48% increase in anti-HBV activity as judged by the level of HBsAg secreted from treated Hep G2 cells. Conversely, the anti-HBV activity of RPI.18341 (at 100 nM) is increased 31% when used in combination with 25 nM Lamivudine (**Figure 12**).

Example 13: Modulation of HBV reverse transcriptase

The HBV reverse transcriptase (pol) binds to the 5' stem-loop structure in the HBV pregenomic RNA and synthesizes a four-nucleotide primer from the template UUCA. The reverse transcriptase then translocates to the 3' end of the pregenomic RNA where the primer binds to the UUCA sequence within the DR1 element and begins first-strand synthesis of HBV DNA. A number of short oligos, ranging in size from 4 to 16-mers, were designed to act as competitive inhibitors of the HBV reverse transcriptase primer, either by blocking the primer binding sites on the HBV RNA or by acting as a decoy.

The oligonucleotides and controls were synthesized in all 2'-O-methyl and 2'-O-allyl versions (**Table XV**). The inverse sequence of all oligos were generated to serve as controls. Primary screening of the competitive inhibitors was completed in the HBsAg transfection/ELISA system, in which the oligo is co-transfected with a HBV cDNA vector into Hep G2 cells. Following 4 days of incubation, the levels of HBsAg secreted into the cell

culture media were determined by ELISA. Screening of the 2'-O-allyl versions revealed that two of the decoy oligos (RPI.24944 and RPI.24945), consisting of 3x or 4x repeats of the RT primer binding site UUCA, along with the matched inverse controls, displayed considerable activity by decreasing HBsAg levels (**Figure 15**). This dramatic decrease in HBsAg levels is not due to cellular toxicity, because a MTS assay showed no difference in proliferation between any of the treated cells. A follow up experiment with a 5x UUCA repeat, the inverse sequence control, and a matched scrambled control, showed that all three oligos decreased HBsAg levels without cellular toxicity. Screening of the 2'-O-methyl versions of the oligos showed no activity from the 3x and 4x UUCA repeat (**Figure 16**), also suggesting that the anti-HBV effect is perhaps related to the 2'-O-allyl chemistry rather than to sequence specificity.

Screening of the 2'-O-methyl oligos did show that the 2'-O-methyl 2x UUCA repeat, RPI.24986, displayed activity in decreasing HBsAg levels as compared to the inverse control, RPI.24950. A dose response experiment showed that at the lower concentrations of 100 and 200 nM, RPI.24986 showed greater activity in decreasing HbsAg levels as compared to the inverse control RPI.24950 (**Figure 17**).

Example 14: Modulation of HBV transcription via Oligonucleotides targeting the Enhancer I core region of HBV DNA

In an effort to block HBV replication, oligonucleotides were designed to bind to two liver-specific factor binding sites in the Enhancer I core region of HBV genomic DNA. Hepatocyte Nuclear Factor 3 (HNF3) and Hepatocyte Nuclear Factor 4 (HNF4) bind to sites in the core region, with the HNF3 site being 5' to the HNF4 site. The HNF3 and HNF4 sites overlap or are adjacent to binding sites for a number of more ubiquitous factors, and are termed nuclear receptor response elements (NRRE). These elements are critical in regulating HBV transcription and replication in infected hepatocytes, with mutations in the HNF3 and HNF4 binding sites having been demonstrated to greatly reduce the levels of HBV replication (Bock *et al.*, 2000, *J. Virology*, 74, 2193)

Oligonucleotides (**Table XV**) were designed to bind to either the positive or negative strands of the HNF3 or HNF4 binding sites. Scrambled controls were made to match each oligo. Each oligo was synthesized in all 2'-O-methyl/all phosphorothioate, or all 2'-O-allyl/all phosphorothioate chemistries. The initial screening of the oligos was done in the HBsAg transfection/ELISA system in Hep G2 cells. RPI.25654, which targets the negative strand of the HNF4 binding site, shows greater activity in reducing HBsAg levels as compared to RPI.25655, which targets the HNF4 site positive strand, and the scrambled control RPI.25656. This result was observed at both 200 and 400 nM (**Figures 18 and 19**).

In a follow-up study, RPI.25654 reduced HBsAg levels in a dose-dependent manner, from 50-200 nM (**Figure 20**).

Example 15: Transfection of HepG2 Cells with psHBV-1 and Nucleic acid

The human hepatocellular carcinoma cell line Hep G2 was grown in Dulbecco's modified Eagle media supplemented with 10% fetal calf serum, 2 mM glutamine, 0.1 mM nonessential amino acids, 1 mM sodium pyruvate, 25 mM Hepes, 100 units penicillin, and 100 µg/ml streptomycin. To generate a replication competent cDNA, prior to transfection the HBV genomic sequences are excised from the bacterial plasmid sequence contained in the psHBV-1 vector. This was done with an EcoRI and Hind III restriction digest. Following completion of the digest, a ligation was performed under dilute conditions (20 µg/ml) to favor intermolecular ligation. The total ligation mixture was then concentrated using Qiagen spin columns. One skilled in the art would realize that other methods can be used to generate a replication competent cDNA.

Secreted alkaline phosphatase (SEAP) was used to normalize the HBsAg levels to control for transfection variability. The pSEAP2-TK control vector was constructed by ligating a Bgl II-Hind III fragment of the pRL-TK vector (Promega), containing the herpes simplex virus thymidine kinase promoter region, into *Bgl* II/*Hind* III digested pSEAP2-Basic (Clontech). Hep G2 cells were plated (3×10^4 cells/well) in 96-well microtiter plates and incubated overnight. A lipid/DNA/nucleic acid complex was formed containing (at final concentrations) cationic lipid (15 µg/ml), prepared psHBV-1 (4.5 µg/ml), pSEAP2-TK (0.5 µg/ml), and nucleic acid (100 µM). Following a 15 min. incubation at 37° C, the complexes were added to the plated Hep G2 cells. Media was removed from the cells 96 hr. post-transfection for HBsAg and SEAP analysis.

Transfection of the human hepatocellular carcinoma cell line, Hep G2, with replication competent HBV DNA results in the expression of HBV proteins and the production of virions.

Example 16: Analysis of HBsAg and SEAP Levels Following Nucleic Acid Treatment

Immilon 4 (Dynax) microtiter wells were coated overnight at 4° C with anti-HBsAg Mab (Biostride B88-95-31ad,ay) at 1 µg/ml in Carbonate Buffer (Na₂CO₃ 15 mM, NaHCO₃ 35 mM, pH 9.5). The wells were then washed 4x with PBST (PBS, 0.05% Tween® 20) and blocked for 1 hr at 37° C with PBST, 1% BSA. Following washing as above, the wells were dried at 37° C for 30 min. Biotinylated goat anti-HBsAg (Accurate YVS1807) was diluted 1:1000 in PBST and incubated in the wells for 1 hr. at 37° C. The wells were washed 4x with PBST. Streptavidin/Alkaline Phosphatase Conjugate (Pierce 21324) was diluted to 250

ng/ml in PBST, and incubated in the wells for 1 hr. at 37° C. After washing as above, p-nitrophenyl phosphate substrate (Pierce 37620) was added to the wells, which were then incubated for 1 hr. at 37° C. The optical density at 405 nm was then determined. SEAP levels were assayed using the Great EscAPE® Detection Kit (Clontech K2041-1), as per the manufacturers instructions.

Example 17: Analysis of HBV DNA expression a HepG2.2.15 murine model

The development of new antiviral agents for the treatment of chronic Hepatitis B has been aided by the use of animal models that are permissive to replication of related Hepadnaviridae such as Woodchuck Hepatitis Virus (WHV) and Duck Hepatitis Virus (DHV). In addition, the use of transgenic mice has also been employed. The human hepatoblastoma cell line, HepG2.2.15, implanted as a subcutaneous (SC) tumor, can be used to produce Hepatitis B viremia in mice. This model is useful for evaluating new HBV therapies. Mice bearing HepG2.2.15 SC tumors show HBV viremia. HBV DNA can be detected in serum beginning on Day 35. Maximum serum viral levels reach 1.9×10^5 copies/mL by day 49. A study also determined that the minimum tumor volume associated with viremia was 300 mm³. Therefore, the HepG2.2.15 cell line grown as a SC tumor produces a useful model of HBV viremia in mice. This new model can be suitable for evaluating new therapeutic regimens for chronic Hepatitis B.

HepG2.2.15 tumor cells contain a slightly truncated version of viral HBV DNA and sheds HBV particles. The purpose of this study was to identify what time period viral particles are shed from the tumor. Serum was analyzed for presence of HBV DNA over a time course after HepG2.2.15 tumor inoculation in Athymic Ncr nu/nu mice. HepG2.2.15 cells were carried and expanded in DMEM/10% FBS/2.4% HEPES/1% NEAA/1% Glutamine/1% Sodium Pyruvate media. Cells were resuspended in Delbecco's PBS with calcium/magnesium for injection. One hundred microliters of the tumor cell suspension (at a concentration of 1×10^8 cells/mL) were injected subcutaneously in the flank of NCR nu/nu female mice with a 23g1 needle and 1 cc syringe, thereby giving each mouse 1×10^7 cells. Tumors were allowed to grow for a period of up to 49 days post tumor cell inoculation. Serum was sampled for analysis on days 1, 7, 14, 35, 42 and 49 post tumor inoculation. Length and width measurements from each tumor were obtained three times per week using a Jamison microcaliper. Tumor volumes were calculated from tumor length/width measurements (tumor volume = $0.5[a(b)^2]$ where a = longest axis of the tumor and b = shortest axis of the tumor). Serum was analyzed for the presence of HBV DNA by the Roche Amplicor HBV moniter TM DNA assay.

Experiment 1

HepG2.2.15 cells were carried and expanded in DMEM/10% FBS/2.4%HEPES/1%NEAA/1% Glutamine/1% Sodium Pyruvate media. Cells were resuspended in Delbecco's PBS with calcium/magnesium for injection. One hundred microliters of the tumor cell suspension (at a concentration of 1×10^8 cells/mL) were injected subcutaneously in the flank of NCR nu/nu female mice with a 23g1 needle and 1 cc syringe, thereby giving each mouse 1×10^7 cells. Tumors were allowed to grow for a period of up to 49 days post tumor cell inoculation. Serum was sampled for analysis on days 1, 7, 14, 35, 42 and 49 post tumor inoculation. Length and width measurements from each tumor were obtained three times per week using a Jamison microcaliper. Tumor volumes were calculated from tumor length/width measurements (tumor volume = $0.5[a(b)^2]$ where a = longest axis of the tumor and b = shortest axis of the tumor). Serum was analyzed for the presence of HBV DNA by the Roche Amplicor HBV moniter TM DNA assay.

Results

When athymic nu/nu female mice are subcutaneously injected with HepG2.2.15 cells and form tumors, HBV DNA is detected in serum (peak serum level was 1.9×10^5 copies/mL). There is a positive correlation ($r_s = 0.7$, $p < 0.01$) between tumor weight (milligrams) and HB viral copies/mL serum. **Figure 21** shows a plot of HepG2.2.15 tumors in nu/nu female mice as tumor volume vs time. **Table XVI** shows the concentration of HBV DNA in relation to tumor size in the HepG2.2.15 implanted nu/nu female mice used in the study.

Experiment 2

HepG2.2.15 cells were carried and expanded in DMEM/10% FBS/2.4%HEPES/1%NEAA/1% Glutamine/1% Sodium Pyruvate media containing 400 $\mu\text{g}/\text{ml}$ G418 antibiotic. G418-resistant cells were resuspended in Dulbecco's PBS with calcium/magnesium for injection. One hundred microliters of the tumor cell suspension (at a concentration of 1×10^8 cells/mL) were injected subcutaneously in the flank of NCR nu/nu female mice with a 23g1 needle and 1 cc syringe, thereby giving each mouse 1×10^7 cells. Tumors were allowed to grow for a period of up to 49 days post tumor cell inoculation. Serum was sampled for analysis on day 37 post tumor inoculation. Length and width measurements from each tumor were obtained three times per week using a Jamison microcaliper. Tumor volumes were calculated from tumor length/width measurements (tumor volume = $0.5[a(b)^2]$ where a = longest axis of the tumor and b = shortest axis of the tumor). Serum was analyzed for the presence of HBV DNA by the Roche Amplicor HBV moniter TM DNA assay.

Results

When athymic nu/nu female mice are subcutaneously injected with G418 antibiotic resistant HepG2.2.15 cells and form tumors, HBV DNA is detected in serum (peak serum level was 4.0×10^5 copies/mL). There is a positive correlation ($r_s = 0.7$, $p < 0.01$) between tumor weight (milligrams) and HB viral copies/mL serum. **Figure 22** shows a plot of HepG2.2.15 tumors in nu/nu female mice as tumor volume vs time. **Table XVII** shows the concentration of HBV DNA in relation to tumor size in the G418 antibiotic resistant HepG2.2.15 implanted nu/nu female mice used in the study.

Example 18: Identification of Potential Enzymatic nucleic acid molecules Cleavage Sites in HCV RNA

The sequence of HCV RNA was screened for accessible sites using a computer folding algorithm. Regions of the mRNA that did not form secondary folding structures and contained potential enzymatic nucleic acid cleavage sites were identified. The sequences of these cleavage sites are shown in **Tables XVIII, XIX, XX and XXIII**.

Example 19: Selection of Enzymatic nucleic acid molecules Cleavage Sites in HCV RNA

Enzymatic nucleic acid target sites were chosen by analyzing sequences of Human HCV (Genbank accession Nos: D11168 , D50483.1, L38318 and S82227) and prioritizing the sites on the basis of folding. Enzymatic nucleic acid molecules are designed that could bind each target and are individually analyzed by computer folding (Christoffersen *et al.*, 1994 *J. Mol. Struc. Theochem*, 311, 273; Jaeger *et al.*, 1989, *Proc. Natl. Acad. Sci. USA*, 86, 7706) to assess whether the enzymatic nucleic acid molecules sequences fold into the appropriate secondary structure. Those enzymatic nucleic acid molecules with unfavorable intramolecular interactions between the binding arms and the catalytic core can be eliminated from consideration. As noted below, varying binding arm lengths can be chosen to optimize activity. Generally, at least 4 bases on each arm are able to bind to, or otherwise interact with, the target RNA.

Example 20: Chemical Synthesis and Purification of Enzymatic nucleic acids

Enzymatic nucleic acid molecules can be designed to anneal to various sites in the RNA message. The binding arms of the enzymatic nucleic acid molecules are complementary to the target site sequences described above. The enzymatic nucleic acid molecules can be chemically synthesized using, for example, RNA syntheses such as those described above and those described in Usman *et al.*, (1987 *J. Am. Chem. Soc.*, 109, 7845), Scaringe *et al.*, (1990 *Nucleic Acids Res.*, 18, 5433) and Wincott *et al.*, *supra*. Such methods make use of common nucleic acid protecting and coupling groups, such as dimethoxytrityl at the 5'-end, and phosphoramidites at the 3'-end. The average stepwise coupling yields are

typically >98%. Enzymatic nucleic acid molecules can be modified to enhance stability by modification with nuclease resistant groups, for example, 2'-amino, 2'-C-allyl, 2'-flouro, 2'-O-methyl, 2'-H (for a review see Usman and Cedergren, 1992 TIBS 17, 34).

Enzymatic nucleic acid molecules can also be synthesized from DNA templates using bacteriophage T7 RNA polymerase (Milligan and Uhlenbeck, 1989, Methods Enzymol. 180, 51). Enzymatic nucleic acid molecules can be purified by gel electrophoresis using known methods, or can be purified by high pressure liquid chromatography (HPLC; See Wincott et al., *supra*; the totality of which is hereby incorporated herein by reference), and are resuspended in water. The sequences of chemically synthesized enzymatic nucleic acid constructs are shown below in **Tables XX, XXI and XXIII**. The antisense nucleic acid molecules shown in **Table XXII** were chemically synthesized.

Inactive enzymatic nucleic acid molecules, for example inactive hammerhead enzymatic nucleic acids, can be synthesized by substituting the order of G5A6 and substituting a U for A14 (numbering from Hertel et al., 1992 Nucleic Acids Res., 20, 3252).

Example 21: Enzymatic Nucleic Acid Cleavage of HCV RNA Target *in vitro*

Enzymatic nucleic acid molecules targeted to the HCV are designed and synthesized as described above. These enzymatic nucleic acid molecules can be tested for cleavage activity *in vitro*, for example using the following procedure. The target sequences and the nucleotide location within the HCV are given in **Tables XVIII, XIX, XX and XXIII**.

Cleavage Reactions: Full-length or partially full-length, internally-labeled target RNA for enzymatic nucleic acid molecule cleavage assay is prepared by *in vitro* transcription in the presence of [α -³²P] CTP, passed over a G 50 Sephadex column by spin chromatography and used as substrate RNA without further purification. Alternately, substrates are 5'-³²P-end labeled using T4 polynucleotide kinase enzyme. Assays are performed by pre-warming a 2X concentration of purified enzymatic nucleic acid molecule in enzymatic nucleic acid molecule cleavage buffer (50 mM Tris-HCl, pH 7.5 at 37°C, 10 mM MgCl₂) and the cleavage reaction was initiated by adding the 2X enzymatic nucleic acid molecule mix to an equal volume of substrate RNA (maximum of 1-5 nM) that was also pre-warmed in cleavage buffer. As an initial screen, assays are carried out for 1 hour at 37°C using a final concentration of either 40 nM or 1 mM enzymatic nucleic acid molecule, *i.e.*, enzymatic nucleic acid molecule excess. The reaction is quenched by the addition of an equal volume of 95% formamide, 20 mM EDTA, 0.05% bromophenol blue and 0.05% xylene cyanol after which the sample is heated to 95°C for 2 minutes, quick chilled and loaded onto a denaturing polyacrylamide gel. Substrate RNA and the specific RNA cleavage products generated by enzymatic nucleic acid molecule cleavage are visualized on an autoradiograph of the gel. The

percentage of cleavage is determined by Phosphor Imager® quantitation of bands representing the intact substrate and the cleavage products.

Alternatively, enzymatic nucleic acid molecules and substrates were synthesized in 96-well format using 0.2 μ mol scale. Substrates were 5'-³²P labeled and gel purified using 7.5% polyacrylamide gels, and eluting into water. Assays were done by combining trace substrate with 500nM enzymatic nucleic acid or greater, and initiated by adding final concentrations of 40mM Mg⁺², and 50mM Tris-Cl pH 8.0. For each enzymatic nucleic acid/substrate combination a control reaction was done to ensure cleavage was not the result of non-specific substrate degradation. A single three hour time point was taken and run on a 15% polyacrylamide gel to assess cleavage activity. Gels were dried and scanned using a Molecular Dynamics Phosphorimager and quantified using Molecular Dynamics ImageQuant software. Percent cleaved was determined by dividing values for cleaved substrate bands by full-length (uncleaved) values plus cleaved values and multiplying by 100 (%cleaved=[C/(U+C)]*100). In vitro cleavage data of enzymatic nucleic acid molecules targeting plus and minus strand HCV RNA is shown in **Table XXIII**.

Example 22: Inhibition of Luciferase Activity Using HCV Targeting Enzymatic nucleic acids in OST7 Cells

The capability of enzymatic nucleic acids to inhibit HCV RNA intracellularly was tested using a dual reporter system that utilizes both firefly and Renilla luciferase (**Figure 23**). The enzymatic nucleic acids targeted to the 5' HCV UTR region, which when cleaved, would prevent the translation of the transcript into luciferase.

Synthesis of Stabilized Enzymatic nucleic acids

Enzymatic nucleic acids were designed to target 15 sites within the 5'UTR of the HCV RNA (**Figure 24**) and synthesized as previously described, except that all enzymatic nucleic acids contain two 2'-amino uridines. Enzymatic nucleic acid and paired control sequences for targeted sites used in various examples herein are shown in **Table XXI**.

Reporter plasmids

The T7/HCV/firefly luciferase plasmid (HCVT7C1-341, genotype 1a) was graciously provided by Aleem Siddiqui (University of Colorado Health Sciences Center, Denver, CO). The T7/HCV/firefly luciferase plasmid contains a T7 bacteriophage promoter upstream of the HCV 5'UTR (nucleotides 1-341)/firefly luciferase fusion DNA. The Renilla luciferase control plasmid (pRLSV40) was purchased from PROMEGA.

Luciferase assay

Dual luciferase assays were carried out according to the manufacturer's instructions (PROMEGA) at 4 hours after co-transfection of reporter plasmids and enzymatic nucleic acids. All data is shown as the average ratio of HCV/firefly luciferase luminescence over Renilla luciferase luminescence as determined by triplicate samples \pm SD.

Cell culture and transfections

OST7 cells were maintained in Dulbecco's modified Eagle's medium (GIBCO BRL) supplemented with 10% fetal calf serum, L-glutamine (2 mM) and penicillin/streptomycin. For transfections, OST7 cells were seeded in black-walled 96-well plates (Packard) at a density of 12,500 cells/well and incubated at 37°C under 5% CO₂ for 24 hours. Co-transfection of target reporter HCVT7C (0.8 µg/mL), control reporter pRLSV40, (1.2 µg/mL) and enzymatic nucleic acid, (50 - 200 nM) was achieved by the following method: a 5X mixture of HCVT7C (4 µg/mL), pRLSV40 (6 µg/mL) enzymatic nucleic acid (250 – 1000 nM) and cationic lipid (28.5 µg/mL) was made in 150 µL of OPTI-MEM (GIBCO BRL) minus serum. Reporter/enzymatic nucleic acid/lipid complexes were allowed to form for 20 min at 37°C under 5% CO₂. Medium was aspirated from OST7 cells and replaced with 120 µL of OPTI-MEM (GIBCO BRL) minus serum, immediately followed by the addition of 30 µL of 5X reporter/enzymatic nucleic acid/lipid complexes. Cells were incubated with complexes for 4 hours at 37°C under 5% CO₂.

IC₅₀ determinations for dose response curves

Apparent IC₅₀ values were calculated by linear interpolation. The apparent IC₅₀ is 1/2 the maximal response between the two consecutive points in which approximately 50% inhibition of HCV/luciferase expression is observed on the dose curve.

Quantitation of RNA Samples

Total RNA from transfected cells was purified using the Qiagen RNeasy 96 procedure including a DNase I treatment according to the manufacturer's instructions. Real time RT-PCR (Taqman assay) was performed on purified RNA samples using separate primer/probe sets specific for either firefly or Renilla luciferase RNA. Firefly luciferase primers and probe were upper (5'-CGGTCGGTAAAGTTGTTCCATT-3') (SEQ ID NO. 16202), lower (5'-CCTCTGACACATAATTCGCCTCT-3') (SEQ ID NO. 16203), and probe (5'-FAM-TGAAGCGAAGGTTGTGGATCTGGATACC-TAMRA-3') (SEQ ID NO. 16204), and Renilla luciferase primers and probe were upper (5'-GTTTATTGAATCGGACCCAGGAT-3') (SEQ ID NO. 16205), lower (5'-AGGTGCATCTTCTTGCAGAAA-3') (SEQ ID NO. 16206), and probe (5'-FAM-CTTTCCAATGCTATTGTTGAAGGTGCCAA-3') (SEQ ID NO. 16207) -TAMRA, both sets of primers and probes were purchased from Integrated DNA

Technologies. RNA levels were determined from a standard curve of amplified RNA purified from a large-scale transfection. RT minus controls established that RNA signals were generated from RNA and not residual plasmid DNA. RT-PCR conditions were: 30 min at 48°C, 10 min at 95°C, followed by 40 cycles of 15 sec at 95°C and 1 min at 60°C. Reactions were performed on an ABI Prism 7700 sequence detector. Levels of firefly luciferase RNA were normalized to the level of Renilla luciferase RNA present in the same sample. Results are shown as the average of triplicate treatments \pm SD.

Example 23: Inhibition of HCV 5'UTR-luciferase expression by synthetic stabilized enzymatic nucleic acids

The primary sequence of the HCV 5'UTR and characteristic secondary structure (**Figure 24**) is highly conserved across all HCV genotypes, thus making it a very attractive target for enzymatic nucleic acid-mediated cleavage. Enzymatic hammerhead nucleic acids, as generally shown in **Figure 25** and **Table XXI** (RPI 12249-12254, 12257-12265) were designed and synthesized to target 15 of the most highly conserved sites in the 5'UTR of HCV RNA. These synthetic enzymatic nucleic acids were stabilized against nuclease degradation by the addition of modifications such as 2'-*O*-methyl nucleotides, 2'-amino-uridines at U4 and U7 core positions, phosphorothioate linkages, and a 3'-inverted abasic cap.

In order to mimic cytoplasmic transcription of the HCV genome, OST7 cells were transfected with a target reporter plasmid containing a T7 bacteriophage promoter upstream of a HCV 5'UTR/firefly luciferase fusion gene. Cytoplasmic expression of the target reporter is facilitated by high levels of T7 polymerase expressed in the cytoplasm of OST7 cells. Co-transfection of target reporter HCVT7C₁₋₃₄₁ (firefly luciferase), control reporter pRLSV40 (Renilla luciferase) and enzymatic nucleic acid was carried out in the presence of cationic lipid. To determine the background level of luciferase activity, applicant used a control enzymatic nucleic acid that targets an irrelevant, non-HCV sequence. Transfection of reporter plasmids in the presence of this irrelevant control enzymatic nucleic acid (ICR) resulted in a slight decrease of reporter expression when compared to transfection of reporter plasmids alone. Therefore, the ICR was used to control for non-specific effects on reporter expression during treatment with HCV specific enzymatic nucleic acids. Renilla luciferase expression from the pRLSV40 reporter was used to normalize for transfection efficiency and sample recovery.

Of the 15 amino-modified hammerhead enzymatic nucleic acids tested, 12 significantly inhibited HCV/luciferase expression ($> 45\%$, $P < 0.05$) as compared to the ICR (**Figure 26A**). These data suggest that most of the HCV 5'UTR sites targeted here are accessible to enzymatic nucleic acid binding and subsequent RNA cleavage. To investigate further the

enzymatic nucleic acid-dependent inhibition of HCV/luciferase activity, hammerhead enzymatic nucleic acids designed to cleave after sites 79, 81, 142, 192, 195, 282 or 330 of the HCV 5'UTR were selected for continued study because their anti-HCV activity was the most efficacious over several experiments. A corresponding attenuated core (AC) control was synthesized for each of the 7 active enzymatic nucleic acids (Table XX). Each paired AC control contains similar nucleotide composition to that of its corresponding active enzymatic nucleic acid however, due to scrambled binding arms and changes to the catalytic core, lacks the ability to bind or catalyze the cleavage of HCV RNA. Treatment of OST7 cells with enzymatic nucleic acids designed to cleave after sites 79, 81, 142, 195 or 330 resulted in significant inhibition of HCV/luciferase expression (65%, 50%, 50%, 80% and 80%, respectively) when compared to HCV/luciferase expression in cells treated with corresponding ACs, $P < 0.05$ (Figure 26B). It should be noted that treatment with either the ICR or ACs for sites 79, 81, 142 or 192 caused a greater reduction of HCV/luciferase expression than treatment with ACs for sites 195, 282 or 330. The observed differences in HCV/luciferase expression after treatment with ACs most likely represents the range of activity due to non-specific effects of oligonucleotide treatment and/or differences in base composition. Regardless of differences in HCV/luciferase expression levels observed as a result of treatment with ACs, active enzymatic nucleic acids designed to cleave after sites 79, 81, 142, 195, or 330 demonstrated similar and potent anti-HCV activity (Figure 26B).

Example 24: Synthetic stabilized enzymatic nucleic acids inhibit HCV/luciferase expression in a concentration-dependent manner

In order to characterize enzymatic nucleic acid efficacy in greater detail, these same 5 lead hammerhead enzymatic nucleic acids were tested for their ability to inhibit HCV/luciferase expression over a range of enzymatic nucleic acid concentrations (0 nM - 100 nM). For constant transfection conditions, the total concentration of nucleic acid was maintained at 100 nM for all samples by mixing the active enzymatic nucleic acid with its corresponding AC. Moreover, mixing of active enzymatic nucleic acid and AC maintains the lipid to nucleic acid charge ratio. A concentration-dependent inhibition of HCV/luciferase expression was observed after treatment with each of the 5 enzymatic nucleic acids (Figures 27A-E). By linear interpolation, the enzymatic nucleic acid concentration resulting in 50% inhibition (apparent IC₅₀) of HCV/luciferase expression ranged from 40 - 215 nM. The two most efficacious enzymatic nucleic acids were those designed to cleave after sites 195 or 330 with apparent IC₅₀ values of 46 nM and 40 nM, respectively (Figures 27D and E).

Example 25: An enzymatic nucleic acid mechanism is required for the observed inhibition of HCV/luciferase expression

To confirm that an enzymatic nucleic acid mechanism of action was responsible for the observed inhibition of HCV/luciferase expression, paired binding-arm attenuated core (BAC) controls (RPI 15291 and 15294) were synthesized for direct comparison to enzymatic nucleic acids targeting sites 195 (RPI 12252) and 330 (RPI 12254). Paired BACs can specifically bind HCV RNA but are unable to promote RNA cleavage because of changes in the catalytic core and, thus, can be used to assess inhibition due to binding alone. Also included in this comparison were paired SAC controls (RPI 15292 and 15295) that contain scrambled binding arms and attenuated catalytic cores, and so lack the ability to bind the target RNA or to catalyze target RNA cleavage.

Enzymatic nucleic acid cleavage of target RNA should result in both a lower level of HCV/luciferase RNA and a subsequent decrease in HCV/luciferase expression. In order to analyze target RNA levels, a reverse transcriptase/polymerase chain reaction (RT-PCR) assay was employed to quantify HCV/luciferase RNA levels. Primers were designed to amplify the luciferase coding region of the HCV 5'UTR/luciferase RNA. This region was chosen because HCV-targeted enzymatic nucleic acids that might co-purify with cellular RNA would not interfere with RT-PCR amplification of the luciferase RNA region. Primers were also designed to amplify the Renilla luciferase RNA so that Renilla RNA levels could be used to control for transfection efficiency and sample recovery.

OST7 cells were treated with active enzymatic nucleic acids designed to cleave after sites 195 or 330, paired SACs, or paired BACs. Treatment with enzymatic nucleic acids targeting site 195 or 330 resulted in a significant reduction of HCV/luciferase RNA when compared to their paired SAC controls ($P < 0.01$). In this experiment the site 195 enzymatic nucleic acid was more efficacious than the site 330 enzymatic nucleic acid (**Figure 28A**). Treatment with paired BACs that target site 195 or 330 did not reduce HCV/luciferase RNA when compared to the corresponding SACs, thus confirming that the ability to bind alone does not result in a reduction of HCV/luciferase RNA.

To confirm that enzymatic nucleic acid-mediated cleavage of target RNA is necessary for inhibition of HCV/luciferase expression, HCV/luciferase activity was determined in the same experiment. As expected, significant inhibition of HCV/luciferase expression was observed after treatment with active enzymatic nucleic acids when compared to paired SACs (**Figure 28B**). Importantly, treatment with paired BACs did not inhibit HCV/luciferase expression, thus confirming that the ability to bind alone is also not sufficient to inhibit translation. As observed in the RNA assay, the site 195 enzymatic nucleic acid was more efficacious than the site 330 enzymatic nucleic acid in this experiment. However, a correlation between enzymatic nucleic acid-mediated HCV RNA reduction and inhibition of HCV/luciferase translation was observed for enzymatic nucleic acids to both sites. The

reduction in target RNA and the necessity for an active enzymatic nucleic acid catalytic core confirm that a enzymatic nucleic acid mechanism is required for the observed reduction in HCV/luciferase protein activity in cells treated with site 195 or site 330 enzymatic nucleic acids.

Example 26: Zinzyme Inhibition of chimeric HCV/Poliovirus replication

During HCV infection, viral RNA is present as a potential target for enzymatic nucleic acid cleavage at several processes: un-coating, translation, RNA replication and packaging. Target RNA can be more or less accessible to enzymatic nucleic acid cleavage at any one of these steps. Although the association between the HCV initial ribosome entry site (IRES) and the translation apparatus is mimicked in the HCV 5'UTR/luciferase reporter system, these other viral processes are not represented in the OST7 system. The resulting RNA/protein complexes associated with the target viral RNA are also absent. Moreover, these processes can be coupled in an HCV-infected cell which could further impact target RNA accessibility. Therefore, applicant tested whether enzymatic nucleic acids designed to cleave the HCV 5'UTR could effect a replicating viral system.

Recently, Lu and Wimmer characterized a HCV-poliovirus chimera in which the poliovirus IRES was replaced by the IRES from HCV (Lu & Wimmer, 1996, Proc. Natl. Acad. Sci. USA. 93, 1412-1417). Poliovirus (PV) is a positive strand RNA virus like HCV, but unlike HCV is non-enveloped and replicates efficiently in cell culture. The HCV-PV chimera expresses a stable, small plaque phenotype relative to wild type PV.

The following enzymatic nucleic acid molecules (zinzymes) were synthesized and tested for replicative inhibition of an HCV/Poliovirus chimera: RPI 18763, RPI 18812, RPI 18749, RPI 18765, RPI 18792, and RPI 18814 (**Table XX**). A scrambled attenuated core enzymatic nucleic acid, RPI 18743, was used as a control.

HeLa cells were infected with the HCV-PV chimera for 30 minutes and immediately treated with enzymatic nucleic acid. HeLa cells were seeded in U-bottom 96-well plates at a density of 9000-10,000 cells/well and incubated at 37°C under 5% CO₂ for 24 h. Transfection of nucleic acid (200 nM) was achieved by mixing of 10X nucleic acid (2000 nM) and 10X of a cationic lipid (80 µg/ml) in DMEM (Gibco BRL) with 5% fetal bovine serum (FBS). Nucleic acid/lipid complexes were allowed to incubate for 15 minutes at 37°C under 5% CO₂. Medium was aspirated from cells and replaced with 80 µl of DMEM (Gibco BRL) with 5% FBS serum, followed by the addition of 20 µl of 10X complexes. Cells were incubated with complexes for 24 hours at 37°C under 5% CO₂.

The yield of HCV-PV from treated cells was quantified by plaque assay. The plaque assays were performed by diluting virus samples in serum-free DMEM (Gibco BRL) and applying 100 µl to HeLa cell monolayers (~80% confluent) in 6-well plates for 30 minutes. Infected monolayers were overlayed with 3 ml 1.2% agar (Sigma) and incubated at 37°C under 5% CO₂. Two or three days later the overlay was removed, monolayers were stained with 1.2% crystal violet, and plaque forming units were counted. The results for the zinzyme inhibition of HCV-PV replication are shown in **Figure 33**.

Example 27: Antisense inhibition of chimeric HCV/Poliovirus replication

Antisense nucleic acid molecules (RPI 17501 and RPI 17498, **Table XXII**) were tested for replicative inhibition of an HCV/Poliovirus chimera compared to scrambled controls. An antisense nucleic acid molecule is a non-enzymatic nucleic acid molecule that binds to target RNA by means of RNA-RNA or RNA-DNA or RNA-PNA (protein nucleic acid; Egholm et al., 1993 *Nature* 365, 566) interactions and alters the activity of the target RNA (for a review, see Stein and Cheng, 1993 *Science* 261, 1004 and Woolf et al., US patent No. 5,849,902). Typically, antisense molecules are complementary to a target sequence along a single contiguous sequence of the antisense molecule. However, in certain embodiments, an antisense molecule can bind to substrate such that the substrate molecule forms a loop, and/or an antisense molecule can bind such that the antisense molecule forms a loop. Thus, the antisense molecule can be complementary to two (or even more) non-contiguous substrate sequences or two (or even more) non-contiguous sequence portions of an antisense molecule can be complementary to a target sequence or both. For a review of current antisense strategies, see Schmajuk et al., 1999, *J. Biol. Chem.*, 274, 21783-21789, Delihas et al., 1997, *Nature*, 15, 751-753, Stein et al., 1997, *Antisense N. A. Drug Dev.*, 7, 151, Crooke, 2000, *Methods Enzymol.*, 313, 3-45; Crooke, 1998, *Biotech. Genet. Eng. Rev.*, 15, 121-157, Crooke, 1997, *Ad. Pharmacol.*, 40, 1-49. In addition, antisense DNA can be used to target RNA by means of DNA-RNA interactions, thereby activating RNase H, which digests the target RNA in the duplex. The antisense oligonucleotides can comprise one or more RNase H activating region, which is capable of activating RNase H cleavage of a target RNA. Antisense DNA can be synthesized chemically or expressed via the use of a single stranded DNA expression vector or equivalent thereof. Additionally, antisense molecules can be used in combination with the enzymatic nucleic acid molecules of the instant invention.

A RNase H activating region is a region (generally greater than or equal to 4-25 nucleotides in length, preferably from 5-11 nucleotides in length) of a nucleic acid molecule capable of binding to a target RNA to form a non-covalent complex that is recognized by cellular RNase H enzyme (see for example Arrow et al., US 5,849,902; Arrow et al., US 5,989,912). The RNase H enzyme binds to the nucleic acid molecule-target RNA complex

and cleaves the target RNA sequence. The RNase H activating region comprises, for example, phosphodiester, phosphorothioate (preferably at least four of the nucleotides are phosphorothioate substitutions; more specifically, 4-11 of the nucleotides are phosphorothioate substitutions); phosphorodithioate, 5'-thiophosphate, or methylphosphonate backbone chemistry or a combination thereof. In addition to one or more backbone chemistries described above, the RNase H activating region can also comprise a variety of sugar chemistries. For example, the RNase H activating region can comprise deoxyribose, arabino, fluoroarabino or a combination thereof, nucleotide sugar chemistry. Those skilled in the art will recognize that the foregoing are non-limiting examples and that any combination of phosphate, sugar and base chemistry of a nucleic acid that supports the activity of RNase H enzyme is within the scope of the definition of the RNase H activating region and the instant invention.

HeLa cells were infected with the HCV-PV chimera for 30 minutes and immediately treated with antisense nucleic acid. HeLa cells were seeded in U-bottom 96-well plates at a density of 9000-10,000 cells/well and incubated at 37°C under 5% CO₂ for 24 h. Transfection of nucleic acid (200 nM) was achieved by mixing of 10X nucleic acid (2000 nM) and 10X of a cationic lipid (80 µg/ml) in DMEM (Gibco BRL) with 5% fetal bovine serum (FBS). Nucleic acid/lipid complexes were allowed to incubate for 15 minutes at 37°C under 5% CO₂. Medium was aspirated from cells and replaced with 80 µl of DMEM (Gibco BRL) with 5% FBS serum, followed by the addition of 20 µls of 10X complexes. Cells were incubated with complexes for 24 hours at 37°C under 5% CO₂.

The yield of HCV-PV from treated cells was quantified by plaque assay. The plaque assays were performed by diluting virus samples in serum-free DMEM (Gibco BRL) and applying 100 µl to HeLa cell monolayers (~80% confluent) in 6-well plates for 30 minutes. Infected monolayers were overlayed with 3 ml 1.2% agar (Sigma) and incubated at 37°C under 5% CO₂. Two or three days later the overlay was removed, monolayers were stained with 1.2% crystal violet, and plaque forming units were counted. The results for the antisense inhibition of HCV-PV are shown in Figure 34.

Example 28: Nucleic acid Inhibition of Chimeric HCV/PV in combination with Interferon

One of the limiting factors in interferon (IFN) therapy for chronic HCV are the toxic side effects associated with IFN. Applicant has reasoned that lowering the dose of IFN needed can reduce these side effects. Applicant has previously shown that enzymatic nucleic acid molecules targeting HCV RNA have a potent antiviral effect against replication of an HCV-poliovirus (PV) chimera (Macejak *et al.*, 2000, *Hepatology*, 31, 769-776). In order to determine if the antiviral effect of type 1 IFN could be improved by the addition of anti-HCV enzymatic nucleic acid treatment, a dose response (0 U/ml to 100 U/ml) with IFN alfa 2a or

IFN alfa 2b was performed in HeLa cells in combination with 200 nM site 195 anti-HCV enzymatic nucleic acid (RPI 13919) or enzymatic nucleic acid control (SAC) treatment. The SAC control (RPI 17894) is a scrambled binding arm, attenuated core version of the site 195 enzymatic nucleic acid (RPI 13919). IFN dose responses were performed with different pretreatment regimes to find the dynamic range of inhibition in this system. In these studies, HeLa cells were used instead of HepG2 because of more efficient enzymatic nucleic acid delivery (Macejak *et al.*, 2000, *Hepatology*, 31, 769-776).

Cells and Virus

HeLa cells were maintained in DMEM (BioWhittaker, Walkersville, MD) supplemented with 5% fetal bovine serum. A cloned DNA copy of the HCV-PV chimeric virus was a gift of Dr. Eckard Wimmer (NYU, Stony Brook, NY). An RNA version was generated by in vitro transcription and transfected into HeLa cells to produce infectious virus (Lu and Wimmer, 1996, PNAS USA., 93, 1412-1417).

Enzymatic nucleic acid Synthesis

Nuclease resistant enzymatic nucleic acids and control oligonucleotides containing 2'-O-methyl-nucleotides, 2'-deoxy-2'-C-allyl uridine, a 3'-inverted abasic cap, and phosphorothioate linkages were chemically synthesized. The anti-HCV enzymatic nucleic acid (RPI 13919) targeting cleavage after nucleotide 195 of the 5' UTR of HCV is shown in **Table XX**. Attenuated core controls have nucleotide changes in the core sequence that greatly diminished the enzymatic nucleic acid's cleavage activity. The attenuated controls either contain scrambled binding arms (referred to as SAC, RPI 18743) or maintain binding arms (BAC, RPI 17894) capable of binding to the HCV RNA target.

Enzymatic nucleic acid Delivery

A cationic lipid was used as a cytofectin agent. HeLa cells were seeded in 96-well plates at a density of 9000-10,000 cells/well and incubated at 37°C under 5% CO₂ for 24 h. Transfection of enzymatic nucleic acid or control oligonucleotides (200 nM) was achieved by mixing 10X enzymatic nucleic acid or control oligonucleotides (2000 nM) with 10X RPI.9778 (80 µg/ml) in DMEM containing 5% fetal bovine serum (FBS) in U-bottom 96-well plates to make 5X complexes. Enzymatic nucleic acid/lipid complexes were allowed to incubate for 15 min at 37°C under 5% CO₂. Medium was aspirated from cells and replaced with 80 µl of DMEM (Gibco BRL) containing 5% FBS serum, followed by the addition of 20 µl of 5X complexes. Cells were incubated with complexes for 24 h at 37°C under 5% CO₂.

Interferon/Enzymatic nucleic acid Combination Treatment

Interferon alfa 2a (Roferon®) was purchased from Roche Bioscience (Palo Alto, CA). Interferon alfa 2b (Intron A®) was purchased from Schering-Plough Corporation (Madison, NJ). Consensus interferon (interferon-alfa-con 1) was a generous gift of Amgen, Inc. (Thousand Oaks, CA). For the basis of comparison, the manufacturers' specified units were used in the studies reported here; however, the manufacturers' unit definitions of these three IFN preparations are not necessarily the same. Nevertheless, since clinical dosing is based on the manufacturers' specified units, a direct comparison based on these units has relevance to clinical therapeutic indices. HeLa cells were seeded (10,000 cells per well) and incubated at 37°C under 5% CO₂ for 24 h. Cells were then pre-treated with interferon in complete media (DMEM + 5% FBS) for 4 h and then infected with HCV-PV at a multiplicity of infection (MOI) = 0.1 for 30 min. The viral inoculum was then removed and enzymatic nucleic acid or attenuated control (SAC or BAC) was delivered with the cytofectin formulation (8 µg/ml) in complete media for 24 h as described above. Where indicated for enzymatic nucleic acid dose response studies, active enzymatic nucleic acid was mixed with SAC to maintain a 200 nM total oligonucleotide concentration and the same lipid charge ratio. After 24 h, cells were lysed to release virus by three cycles of freeze/thaw. Virus was quantified by plaque assay and viral yield is reported as mean plaque forming units per ml (pfu/ml) + SD. All experiments were repeated at least twice and the trends in the results reported were reproducible. Significance levels (P values) were determined by the Student's test.

Plaque Assay

Virus samples were diluted in serum-free DMEM and 100 µl applied to Vero cell monolayers (~80% confluent) in 6-well plates for 30 min. Infected monolayers were overlaid with 3 ml 1.2% agar (Sigma Chemical Company, St. Louis, MO) and incubated at 37°C under 5% CO₂. When plaques were visible (after two to three days) the overlay was removed, monolayers were stained with 1.2% crystal violet, and plaque forming units were counted.

Results

As shown in **Figure 29A** and **29B**, treatment with the site 195 (RPI 13919) anti-HCV hammerhead enzymatic nucleic acid alone (0 U/ml IFN) resulted in viral replication that was dramatically reduced compared to SAC-treated cells (85%, P<0.01). For both IFN alfa 2a (**Figure 29A**) or IFN alfa 2b (**Figure 29B**), treatment with 25 U/ml resulted in a ~90% inhibition of HCV-PV replication in SAC-treated cells as compared to cells treated with SAC alone (p<0.01 for both observations). The maximal level of inhibition in SAC-treated cells (94%) was achieved by treatment with ≥50U/ml of either IFN alfa 2a or IFN alfa 2b (p<0.01 for both observations *versus* SAC alone). Maximal inhibition could however, be achieved by a 5-fold lower dose of IFN alfa 2a (10 U/ml) if enzymatic nucleic acid targeting site 195 in the 5' UTR of HCV RNA was given in combination (**Figure 29A**, p<0.01). While the

additional effect of enzymatic nucleic acid treatment on IFN alfa 2b-treated cells at 10 U/ml was very slight, the combined effect with 25 U/ml IFN alfa 2b was greater in magnitude (**Figure 29B**). For both interferons tested, pretreatment with 25 U/ml in combination with 200 nM site 195 anti-HCV enzymatic nucleic acid resulted in an even greater level of inhibition of viral replication (>98%) compared to replication in cells treated with 200 nM SAC alone ($P<0.01$).

A dose response of the site 195 anti-HCV enzymatic nucleic acid was also performed in HeLa cells, either with or without 12.5 U/ml IFN alfa 2a or IFN alfa 2b pretreatment. As shown in **Figure 30**, enzymatic nucleic acid-mediated inhibition was dose-dependent and a significant inhibition of HCV-PV replication (>75% *versus* 0 nM enzymatic nucleic acid, $P<0.01$) could be achieved by treatment with ≥ 150 nM anti-HCV enzymatic nucleic acid alone (no IFN). However, in IFN-pretreated cells, the dose of anti-HCV enzymatic nucleic acid needed to achieve this level of inhibition was decreased 3-fold to 50 nM ($P<0.01$ *versus* 0 nM enzymatic nucleic acid). In comparison, treatment with the site 195 anti-HCV enzymatic nucleic acid alone at 50 nM resulted in only ~40% inhibition of virus replication. Pretreatment with IFN enhanced the antiviral effect of site 195 enzymatic nucleic acid at all enzymatic nucleic acid doses, compared to no IFN pretreatment.

Interferon-alfacon1, consensus IFN (CIFN), is another type 1 IFN that is used to treat chronic HCV. To determine if a similar enhancement can occur in CIFN-treated cells, a dose response with CIFN was performed in HeLa cells using 0 U/ml to 12.5 U/ml CIFN in combination with 200 nM site 195 anti-HCV enzymatic nucleic acid or SAC treatment (**Figure 31A**). Again, in the presence of the site 195 anti-HCV enzymatic nucleic acid alone, viral replication was dramatically reduced compared to SAC-treated cells. As shown in **Figure 31A**, treatment with 200 nM anti-HCV enzymatic nucleic acid alone significantly inhibited HCV-PV replication (90% *versus* SAC treatment, $P<0.01$). However, pretreatment with concentrations of CIFN from 1 U/ml to 12.5 U/ml in combination with 200 nM anti-HCV enzymatic nucleic acid resulted in even greater inhibition of viral replication (>98%) compared to replication in cells treated with 200 nM SAC alone ($P<0.01$). It is important to note that pretreatment with 1 U/ml CIFN in SAC-treated cells did not have a significant effect on HCV-poliovirus replication, but in the presence of enzymatic nucleic acid a significant inhibition of replication was observed (>98%, $P<0.01$). Thus, the dose of CIFN needed to achieve a >98% inhibition could be lowered to 1 U/ml in cells also treated with 200 nM site 195 anti-HCV enzymatic nucleic acid.

A dose response of site 195 anti-HCV enzymatic nucleic acid was then performed in HeLa cells, either with or without 12.5 U/ml CIFN pretreatment. As shown in **Figure 31B**, a significant inhibition of HCV-PV replication (>95% *versus* 0 nM enzymatic nucleic acid,

P<0.01) could be achieved by treatment with ≥ 150 nM anti-HCV enzymatic nucleic acid alone. However, in CIFN-pretreated cells, the dose of anti-HCV enzymatic nucleic acid needed to achieve this level of inhibition was only 50 nM (P<0.01). In comparison, treatment with the site 195 anti-HCV enzymatic nucleic acid alone at 50 nM resulted in ~50% inhibition of virus replication. Thus, as was seen with IFN alfa 2a and IFN alfa 2b, the dose of enzymatic nucleic acid could be reduced 3-fold in the presence of CIFN pretreatment to achieve a similar antiviral effect as enzymatic nucleic acid-treatment alone.

To further explore the combination of lower enzymatic nucleic acid concentration and CIFN, a dose response with 0 U/ml to 12.5 U/ml CIFN was subsequently performed in HeLa cells in combination with 50 nM site 195 anti-HCV enzymatic nucleic acid treatment. In multiple experiments, treatment with 50 nM anti-HCV enzymatic nucleic acid alone inhibited HCV-PV replication 50% – 81% compared to viral replication in SAC-treated cells. As for the experiment shown in **Figure 31A**, treatment with CIFN alone at 5 U/ml resulted in ~50% inhibition of viral replication. However, a four hour pretreatment with 5 U/ml CIFN followed by 50 nM anti-HCV enzymatic nucleic acid treatment resulted in 95% - 97% inhibition compared to SAC-treated cells (P<0.01).

To demonstrate that the enhanced antiviral effect of CIFN and enzymatic nucleic acid combination treatment was dependent upon enzymatic nucleic acid cleavage activity, the effect of CIFN in combination with site 195 anti-HCV enzymatic nucleic acid versus the effect of CIFN in combination with a binding competent, attenuated core, control (BAC) was then compared. The BAC can still bind to its specific RNA target, but is greatly diminished in cleavage activity. Pretreatment with 12.5 U/ml CIFN reduced the viral yield ~90% (7-fold) in cells treated with BAC (compare CIFN versus BAC in **Figure 32**). Cells treated with 200 nM site 195 anti-HCV enzymatic nucleic acid alone produced ~95% (17-fold) less virus than BAC-treated cells (195 RZ BAC in **Figure 32**). The combination of CIFN pretreatment and 200 nM site 195 anti-HCV enzymatic nucleic acid results in an augmented >98% (300-fold) reduction in viral yield (CIFN+RZ versus control in **Figure 32**).

2'-5'-Oligoadenylate Inhibition of HCV

Type 1 Interferon is a key constituent of many effective treatment programs for chronic HCV infection. Treatment with type 1 interferon induces a number of genes and results in an antiviral state within the cell. One of the genes induced is 2', 5' oligoadenylate synthetase, an enzyme that synthesizes short 2', 5' oligoadenylate (2-5A) molecules. Nascent 2-5A subsequently activates a latent RNase, RNase L, which in turn nonspecifically degrades viral RNA. As described herein, ribozymes targeting HCV RNA that inhibit the replication of an HCV-poliovirus (HCV-PV) chimera in cell culture and have shown that this antiviral effect is

augmented if ribozyme is given in combination with type 1 interferon. In addition, the 2'-5'A component of the interferon response can also inhibit replication of the HCV-PV chimera.

The antiviral effect of anti-HCV ribozyme treatment is enhanced if type 1 interferon is given in combination. Interferon induces a number of gene products including 2',5' oligoadenylate (2-5A) synthetase, double-stranded RNA-activated protein kinase (PKR), and the Mx proteins. Mx proteins appear to interfere with nuclear transport of viral complexes and are not thought to play an inhibitory role in HCV infection. On the other hand, the additional 2-5A-mediated RNA degradation (via RNase L) and/or the inhibition of viral translation by PKR in interferon-treated cells can augment the ribozyme-mediated inhibition of HCV-PV replication.

To investigate the potential role of the 2-5A/RNase L pathway in this enhancement phenomenon, HCV-PV replication was analyzed in HeLa cells treated exogenously with chemically-synthesized analogs of 2-5A (**Figure 35**), alone and in combination with the anti-HCV ribozyme (RPI 13919). These results were compared to replication in cells treated with interferon and/or anti-HCV ribozyme. Anti-HCV ribozyme was transfected into cells with a cationic lipid. To control for nonspecific effects due to lipid-mediated transfection, a scrambled arm, attenuated core, oligonucleotide (SAC) (RPI 17894) was transfected for comparison. The SAC is the same base composition as the ribozyme but is greatly attenuated in catalytic activity due to changes in the core sequence and cannot bind specifically to the HCV sequence.

As shown in **Figure 36A**, HeLa cells pretreated with 10 U/ml consensus interferon for 4 hours prior to HCV-PV infection resulted in ~70% reduction of viral replication in SAC-treated cells. Similarly, HeLa cells treated with 100 nM anti-HCV ribozyme for 20 hours after infection resulted in an ~80% reduction in viral yield. This antiviral effect was enhanced to ~98% inhibition in HeLa cells pretreated with interferon for 4 hours before infection and then treated with anti-HCV ribozyme for 20 hours after infection. In parallel, a 2-5A compound (analog I, **Figure 35**) that was protected from nuclease digestion at the 3'-end with an inverted abasic moiety was tested. As shown in **Figure 36B**, treatment with 200 nM 2-5A analog I for 4 hours prior to HCV-PV infection only slightly inhibited HCV-PV replication (~20%) in SAC-treated cells. Moreover, the inhibition due to a 20 hour anti-HCV ribozyme treatment was not augmented with a 4 hour pretreatment of 2-5A in combination (compare third bar to fourth bar in **Figure 36B**).

There are several possible explanations why the chemically synthesized 2-5A analog was not able to completely activate RNase L. It is possible that the 2-5A analog was not sufficiently stable or that in this experiment the 4 hour pretreatment period was too short for RNase L activation. To test these possibilities, a 2-5A compound containing a 5'-terminal

thiophosphate (P=S) for added nuclease resistance, in addition to the 3'- abasic, was also included (analog II, **Figure 35**). In addition, a longer 2-5A treatment was used. In this experiment (**Figure 37**), HeLa cells were treated with 2-5A or 2-5A(P=S) for 20 hours after HCV-PV infection. Again, anti-HCV ribozyme treatment resulted in >80% inhibition. In contrast to the 20% inhibition of viral replication seen with a 4 hour 2-5A pretreatment, viral replication in cells treated with 2-5A analog I for 20 hours after HCV-PV infection was inhibited by ~70%. The P=S version (analog II) inhibited HCV-PV replication by ~35%. Thus, both 2-5A analogs used here are able to generate an antiviral effect, presumably through RNase L activation. The P=S version, although more resistant to 5' dephosphorylation, did not yield as great an anti-viral effect. It is possible that combination of the 5'-terminal thiophosphate together with the presence of a 3'-inverted abasic moiety can interfere with RNase L activation. Nevertheless, these results demonstrate potent anti-HCV activity by a nuclease-stabilized 2-5A analog.

The level of reduction in HCV-PV replication in cells treated with 2-5A analog I for 20 hours was similar to that in cells pretreated with consensus interferon for 4 hours. To determine if this expanded 2-5A treatment regimen would enhance anti-HCV ribozyme efficacy to the same degree as does the interferon pretreatment, HeLa cells infected with HCV-PV were treated with a combination of 2-5A and anti-HCV ribozyme for 20 hours after infection. In this experiment, a 200 nM treatment with anti-HCV ribozyme or 2-5A treatment alone inhibited viral replication by 88% or ~60%, respectively, compared to SAC treatment (**Figure 38**, left three bars). To maintain consistent transfection conditions but vary the concentration of anti-HCV ribozyme or 2-5A, anti-HCV ribozyme was mixed with the SAC to maintain a total dose of 200 nM. A 50 nM treatment with anti-HCV ribozyme inhibited HCV-PV replication by ~70% (solid middle bar). However, the amount of HCV-PV replication was not further reduced in cells treated with a combination of 50 nM anti-HCV ribozyme and 150 nM 2-5A (striped middle bar). Likewise, cells treated with 100 nM anti-HCV ribozyme inhibited HCV-PV replication by ~80% whether they were also treated with 100 nM of 2-5A or SAC (right two bars). In contrast, antiviral activity increased from 80% to 98% when 100 nM anti-HCV ribozyme was given in combination with interferon (**Figure 36A**). The reasons for the lack of additive or synergistic effects for the ribozyme/2-5A combination therapy is unclear at this time but can be due to that fact that both compounds have a similar mechanism of action (degradation of RNA). Further study is warranted to examine this possibility.

As a monotherapy, 2-5A treatment generates a similar inhibitory effect on HCV-poliovirus replication as does interferon treatment. If these results are maintained in HCV patients, treatment with 2-5A can not only be efficacious but can also generate less side

effects than those observed with interferon if the plethora of interferon-induced genes were not activated.

HBV Cell Culture Models

As previously mentioned, HBV does not infect cells in culture. However, transfection of HBV DNA (either as a head-to-tail dimer or as an “overlength” genome of >100%) into HuH7 or Hep G2 hepatocytes results in viral gene expression and production of HBV virions released into the media. Thus, HBV replication competent DNA are co-transfected with ribozymes in cell culture. Such an approach has been used to report intracellular ribozyme activity against HBV (zu Putlitz, *et al.*, 1999, *J. Virol.*, 73, 5381-5387, and Kim *et al.*, 1999, *Biochem. Biophys. Res. Commun.*, 257, 759-765). In addition, stable hepatocyte cell lines have been generated that express HBV. In these cells, only ribozyme need be delivered; however, performance of a delivery screen is required. Intracellular HBV gene expression can be assayed by a Taqman® assay for HBV RNA or by ELISA for HBV protein. Extracellular virus can be assayed by PCR for DNA or ELISA for protein. Antibodies are commercially available for HBV surface antigen and core protein. A secreted alkaline phosphatase expression plasmid can be used to normalize for differences in transfection efficiency and sample recovery.

HBV Animal Models

There are several small animal models to study HBV replication. One is the transplantation of HBV-infected liver tissue into irradiated mice. Viremia (as evidenced by measuring HBV DNA by PCR) is first detected 8 days after transplantation and peaks between 18 – 25 days (Ilan *et al.*, 1999, *Hepatology*, 29, 553-562).

Transgenic mice that express HBV have also been used as a model to evaluate potential anti-virals. HBV DNA is detectable in both liver and serum (Guidotti *et al.*, 1995, *J. Virology*, 69, 10, 6158-6169; Morrey *et al.*, 1999, *Antiviral Res.*, 42, 97-108).

An additional model is to establish subcutaneous tumors in nude mice with Hep G2 cells transfected with HBV. Tumors develop in about 2 weeks after inoculation and express HBV surface and core antigens. HBV DNA and surface antigen is also detected in the circulation of tumor-bearing mice (Yao *et al.*, 1996, *J. Viral Hepat.*, 3, 19-22).

In one embodiment, the invention features a mouse, for example a male or female mouse, implanted with HepG2.2.15 cells, wherein the mouse is susceptible to HBV infection and capable of sustaining HBV DNA expression. One embodiment of the invention provides a mouse implanted with HepG2.2.15 cells, wherein said mouse sustains the propagation of

HEPG2.2.15 cells and HBV production (see Macejak, US Provisional Patent Application No. 60/296,876).

Woodchuck hepatitis virus (WHV) is closely related to HBV in its virus structure, genetic organization, and mechanism of replication. As with HBV in humans, persistent WHV infection is common in natural woodchuck populations and is associated with chronic hepatitis and hepatocellular carcinoma (HCC). Experimental studies have established that WHV causes HCC in woodchucks and woodchucks chronically infected with WHV have been used as a model to test a number of anti-viral agents. For example, the nucleoside analogue 3T3 was observed to cause dose dependent reduction in virus (50% reduction after two-daily treatments at the highest dose) (Hurwitz *et al.*, 1998. *Antimicrob. Agents Chemother.*, 42, 2804-2809).

HCV Cell Culture Models

Although there have been reports of replication of HCV in cell culture (see below), these systems are difficult to replicate and have proven unreliable. Therefore, as was the case for development of other anti-HCV therapeutics such as interferon and ribavirin, after demonstration of safety in animal studies applicant can proceed directly into a clinical feasibility study.

Several recent reports have documented *in vitro* growth of HCV in human cell lines (Mizutani *et al.*, *Biochem Biophys Res Commun* 1996 227(3):822-826; Tagawa *et al.*, *Journal of Gastroenterology and Hepatology* 1995 10(5):523-527; Cribier *et al.*, *Journal of General Virology* 76(10):2485-2491; Seipp *et al.*, *Journal of General Virology* 1997 78(10):2467-2478; Iacovacci *et al.*, *Research Virology* 1997 148(2):147-151; Iocavacci *et al.*, *Hepatology* 1997 26(5):1328-1337; Ito *et al.*, *Journal of General Virology* 1996 77(5):1043-1054; Nakajima *et al.*, *Journal of Virology* 1996 70(5):3325-3329; Mizutani *et al.*, *Journal of Virology* 1996 70(10):7219-7223; Valli *et al.*, *Res Virol* 1995 146(4): 285-288; Kato *et al.*, *Biochem Biophys Res Comm* 1995 206(3):863-869). Replication of HCV has been demonstrated in both T and B cell lines as well as cell lines derived from human hepatocytes. Demonstration of replication was documented using either RT-PCR based assays or the b-DNA assay. It is important to note that the most recent publications regarding HCV cell cultures document replication for up to 6-months.

Additionally, another recent study has identified more robust strains of hepatitis C virus having adaptive mutations that allow the strains to replicate more vigorously in human cell culture. The mutations that confer this enhanced ability to replicate are located in a specific region of a protein identified as NS5A. Studies performed at Rockefeller University have shown that in certain cell culture systems, infection with the robust strains produces a 10,000-

fold increase in the number of infected cells. The greatly increased availability of HCV-infected cells in culture can be used to develop high-throughput screening assays, in which a large number of compounds, such as enzymatic nucleic acid molecules, can be tested to determine their effectiveness.

In addition to cell lines that can be infected with HCV, several groups have reported the successful transformation of cell lines with cDNA clones of full-length or partial HCV genomes (Harada *et al.*, Journal of General Virology 1995 76(5):1215-1221; Haramatsu *et al.*, Journal of Viral Hepatitis 1997 4S(1):61-67; Dash *et al.*, American Journal of Pathology 1997 151(2):363-373; Mizuno *et al.*, Gasteroenterology 1995 109(6):1933-40; Yoo *et al.*, Journal Of Virology 1995 69(1):32-38).

HCV Animal Models

The best characterized animal system for HCV infection is the chimpanzee. Moreover, the chronic hepatitis that results from HCV infection in chimpanzees and humans is very similar. Although clinically relevant, the chimpanzee model suffers from several practical impediments that make use of this model difficult. These include; high cost, long incubation requirements and lack of sufficient quantities of animals. Due to these factors, a number of groups have attempted to develop rodent models of chronic hepatitis C infection. While direct infection has not been possible several groups have reported on the stable transfection of either portions or entire HCV genomes into rodents (Yamamoto *et al.*, Hepatology 1995 22(3): 847-855; Galun *et al.*, Journal of Infectious Disease 1995 172(1):25-30; Koike *et al.*, Journal of general Virology 1995 76(12):3031-3038; Pasquinelli *et al.*, Hepatology 1997 25(3): 719-727; Hayashi *et al.*, Princess Takamatsu Symp 1995 25:1430149; Mariya K, Yotsuyanagi H, Shintani Y, Fujie H, Ishibashi K, Matsuura Y, Miyamura T, Koike K. Hepatitis C virus core protein induces hepatic steatosis in transgenic mice. Journal of General Virology 1997 78(7) 1527-1531; Takehara *et al.*, Hepatology 1995 21(3):746-751; Kawamura *et al.*, Hepatology 1997 25(4): 1014-1021). In addition, transplantation of HCV infected human liver into immunocompromised mice results in prolonged detection of HCV RNA in the animal's blood.

Vierling, International PCT Publication No. WO 99/16307, describes a method for expressing hepatitis C virus in an *in vivo* animal model. Viable, HCV infected human hepatocytes are transplanted into a liver parenchyma of a scid/scid mouse host. The scid/scid mouse host is then maintained in a viable state, whereby viable, morphologically intact human hepatocytes persist in the donor tissue and hepatitis C virus is replicated in the persisting human hepatocytes. This model provides an effective means for the study of HCV inhibition by enzymatic nucleic acids *in vivo*.

Indications

Particular degenerative and disease states that can be associated with HBV expression modulation include, but are not limited to, HBV infection, hepatitis, cancer, tumorigenesis, cirrhosis, liver failure and other conditions related to the level of HBV.

Particular degenerative and disease states that can be associated with HCV expression modulation include, but are not limited to, HCV infection, hepatitis, cancer, tumorigenesis, cirrhosis, liver failure and other conditions related to the level of HCV.

The present body of knowledge in HBV and HCV research indicates the need for methods to assay HBV or HCV activity and for compounds that can regulate HBV and HCV expression for research, diagnostic, and therapeutic use.

Lamivudine (3TC®), L-FMAU, adefovir dipivoxil, type 1 Interferon (*e.g.*, interferon alpha, interferon beta, consensus interferon, polyethylene glycol interferon, polyethylene glycol interferon alpha 2a, polyethylene glycol interferon 2b, and polyethylene glycol consensus interferon), therapeutic vaccines, steriods, and 2'-5' Oligoadenylates are non-limiting examples of pharmaceutical agents that can be combined with or used in conjunction with the nucleic acid molecules (*e.g.* ribozymes and antisense molecules) of the instant invention. Those skilled in the art will recognize that other drugs or other therapies can similarly and readily be combined with the nucleic acid molecules of the instant invention (*e.g.* ribozymes and antisense molecules) and are, therefore, within the scope of the instant invention.

Diagnostic uses

The nucleic acid molecules of this invention can be used as diagnostic tools to examine genetic drift and mutations within diseased cells or to detect the presence of HBV or HCV RNA in a cell. For example, the close relationship between enzymatic nucleic acid activity and the structure of the target RNA allows the detection of mutations in any region of the molecule which alters the base-pairing and three-dimensional structure of the target RNA. By using multiple enzymatic nucleic acids described in this invention, one can map nucleotide changes which are important to RNA structure and function *in vitro*, as well as in cells and tissues. Cleavage of target RNAs with enzymatic nucleic acids can be used to inhibit gene expression and define the role (essentially) of specified gene products in the progression of disease. In this manner, other genetic targets can be defined as important mediators of the disease. These experiments can lead to better treatment of the disease progression by affording the possibility of combinational therapies (*e.g.*, multiple enzymatic nucleic acid molecules targeted to different genes, enzymatic nucleic acid molecules coupled

with known small molecule inhibitors, or intermittent treatment with combinations of enzymatic nucleic acid molecules and/or other chemical or biological molecules). Other *in vitro* uses of enzymatic nucleic acid molecules of this invention are well known in the art, and include detection of the presence of mRNAs associated with HBV or HCV-related condition. Such RNA is detected by determining the presence of a cleavage product after treatment with an enzymatic nucleic acid using standard methodology.

In a specific example, enzymatic nucleic acid molecules which can cleave only wild-type or mutant forms of the target RNA are used for the assay. The first enzymatic nucleic acid is used to identify wild-type RNA present in the sample and the second enzymatic nucleic acid is used to identify mutant RNA in the sample. As reaction controls, synthetic substrates of both wild-type and mutant RNA can be cleaved by both enzymatic nucleic acid molecules to demonstrate the relative ribozyme efficiencies in the reactions and the absence of cleavage of the "non-targeted" RNA species. The cleavage products from the synthetic substrates can also serve to generate size markers for the analysis of wild-type and mutant RNAs in the sample population. Thus each analysis involves two enzymatic nucleic acid molecules, two substrates and one unknown sample which is combined into six reactions. The presence of cleavage products is determined using an RNase protection assay so that full-length and cleavage fragments of each RNA can be analyzed in one lane of a polyacrylamide gel. It is not absolutely required to quantify the results to gain insight into the expression of mutant RNAs and putative risk of the desired phenotypic changes in target cells. The expression of mRNA whose protein product is implicated in the development of the phenotype (*i.e.*, HBV or HCV) is adequate to establish risk. If probes of comparable specific activity are used for both transcripts, then a qualitative comparison of RNA levels is adequate and will decrease the cost of the initial diagnosis. Higher mutant form to wild-type ratios are correlated with higher risk whether RNA levels are compared qualitatively or quantitatively.

Additional Uses

Potential usefulness of sequence-specific enzymatic nucleic acid molecules of the instant invention have many of the same applications for the study of RNA that DNA restriction endonucleases have for the study of DNA (Nathans *et al.*, 1975 *Ann. Rev. Biochem.* 44:273). For example, the pattern of restriction fragments can be used to establish sequence relationships between two related RNAs, and large RNAs can be specifically cleaved to fragments of a size more useful for study. The ability to engineer sequence specificity of the enzymatic nucleic acid molecule is ideal for cleavage of RNAs of unknown sequence. Applicant describes the use of nucleic acid molecules to down-regulate gene

expression of target genes in bacterial, microbial, fungal, viral, and eukaryotic systems including plant, or mammalian cells.

All patents and publications mentioned in the specification are indicative of the levels of skill of those skilled in the art to which the invention pertains. All references cited in this disclosure are incorporated by reference to the same extent as if each reference had been incorporated by reference in its entirety individually.

One skilled in the art would readily appreciate that the present invention is well adapted to carry out the objects and obtain the ends and advantages mentioned, as well as those inherent therein. The methods and compositions described herein as presently representative of preferred embodiments are exemplary and are not intended as limitations on the scope of the invention. Changes therein and other uses will occur to those skilled in the art, which are encompassed within the spirit of the invention, are defined by the scope of the claims.

It will be readily apparent to one skilled in the art that varying substitutions and modifications may be made to the invention disclosed herein without departing from the scope and spirit of the invention. Thus, such additional embodiments are within the scope of the present invention and the following claims.

The invention illustratively described herein suitably can be practiced in the absence of any element or elements, limitation or limitations that are not specifically disclosed herein. Thus, for example, in each instance herein any of the terms "comprising", "consisting essentially of" and "consisting of" may be replaced with either of the other two terms. The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention that in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed. Thus, it should be understood that although the present invention has been specifically disclosed by preferred embodiments, optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention as defined by the description and the appended claims.

In addition, where features or aspects of the invention are described in terms of Markush groups or other grouping of alternatives, those skilled in the art will recognize that the invention is also thereby described in terms of any individual member or subgroup of members of the Markush group or other group.

TABLE I

Characteristics of naturally occurring ribozymes

Group I Introns

- Size: ~150 to >1000 nucleotides.
- Requires a U in the target sequence immediately 5' of the cleavage site.
- Binds 4-6 nucleotides at the 5'-side of the cleavage site.
- Reaction mechanism: attack by the 3'-OH of guanosine to generate cleavage products with 3'-OH and 5'-guanosine.
- Additional protein cofactors required in some cases to help folding and maintenance of the active structure.
- Over 300 known members of this class. Found as an intervening sequence in *Tetrahymena thermophila* rRNA, fungal mitochondria, chloroplasts, phage T4, blue-green algae, and others.
- Major structural features largely established through phylogenetic comparisons, mutagenesis, and biochemical studies [i,ii].
- Complete kinetic framework established for one ribozyme [iii,iv,v,vi].
- Studies of ribozyme folding and substrate docking underway [vii,viii,ix].
- Chemical modification investigation of important residues well established [x,xii].
- The small (4-6 nt) binding site may make this ribozyme too non-specific for targeted RNA cleavage, however, the Tetrahymena group I intron has been used to repair a "defective" β -galactosidase message by the ligation of new β -galactosidase sequences onto the defective message [xii].

RNase P RNA (M1 RNA)

- Size: ~290 to 400 nucleotides.
- RNA portion of a ubiquitous ribonucleoprotein enzyme.

- Cleaves tRNA precursors to form mature tRNA [xiii].
- Reaction mechanism: possible attack by M²⁺-OH to generate cleavage products with 3'-OH and 5'-phosphate.
- RNase P is found throughout the prokaryotes and eukaryotes. The RNA subunit has been sequenced from bacteria, yeast, rodents, and primates.
- Recruitment of endogenous RNase P for therapeutic applications is possible through hybridization of an External Guide Sequence (EGS) to the target RNA [xiv,xv]
- Important phosphate and 2' OH contacts recently identified [xvi,xvii]

Group II Introns

- Size: >1000 nucleotides.
- Trans cleavage of target RNAs recently demonstrated [xviii,xix].
- Sequence requirements not fully determined.
- Reaction mechanism: 2'-OH of an internal adenosine generates cleavage products with 3'-OH and a "lariat" RNA containing a 3'-5' and a 2'-5' branch point.
- Only natural ribozyme with demonstrated participation in DNA cleavage [xx,xxi] in addition to RNA cleavage and ligation.
- Major structural features largely established through phylogenetic comparisons [xxii].
- Important 2' OH contacts beginning to be identified [xxiii]
- Kinetic framework under development [xxiv]

Neurospora VS RNA

- Size: ~144 nucleotides.
- Trans cleavage of hairpin target RNAs recently demonstrated [xxv].

- Sequence requirements not fully determined.
- Reaction mechanism: attack by 2'-OH 5' to the scissile bond to generate cleavage products with 2',3'-cyclic phosphate and 5'-OH ends.
- Binding sites and structural requirements not fully determined.
- Only 1 known member of this class. Found in Neurospora VS RNA.

Hammerhead Ribozyme

(see text for references)

- Size: ~13 to 40 nucleotides.
- Requires the target sequence UH immediately 5' of the cleavage site.
- Binds a variable number nucleotides on both sides of the cleavage site.
- Reaction mechanism: attack by 2'-OH 5' to the scissile bond to generate cleavage products with 2',3'-cyclic phosphate and 5'-OH ends.
- 14 known members of this class. Found in a number of plant pathogens (virusoids) that use RNA as the infectious agent.
- Essential structural features largely defined, including 2 crystal structures [xxvi,xxvii]
- Minimal ligation activity demonstrated (for engineering through *in vitro* selection) [xxviii]
- Complete kinetic framework established for two or more ribozymes [xxix].
- Chemical modification investigation of important residues well established [xxx].

Hairpin Ribozyme

- Size: ~50 nucleotides.
- Requires the target sequence GUC immediately 3' of the cleavage site.

- Binds 4-6 nucleotides at the 5'-side of the cleavage site and a variable number to the 3'-side of the cleavage site.
- Reaction mechanism: attack by 2'-OH 5' to the scissile bond to generate cleavage products with 2',3'-cyclic phosphate and 5'-OH ends.
- 3 known members of this class. Found in three plant pathogen (satellite RNAs of the tobacco ringspot virus, arabis mosaic virus and chicory yellow mottle virus) which uses RNA as the infectious agent.
- Essential structural features largely defined [xxxii, xxxiii, xxxiv]
- Ligation activity (in addition to cleavage activity) makes ribozyme amenable to engineering through *in vitro* selection [xxxv]
- Complete kinetic framework established for one ribozyme [xxxvi].
- Chemical modification investigation of important residues begun [xxxvii, xxxviii].

Hepatitis Delta Virus (HDV) Ribozyme

- Size: ~60 nucleotides.
- Trans cleavage of target RNAs demonstrated [xxxix].
- Binding sites and structural requirements not fully determined, although no sequences 5' of cleavage site are required. Folded ribozyme contains a pseudoknot structure [xl].
- Reaction mechanism: attack by 2'-OH 5' to the scissile bond to generate cleavage products with 2',3'-cyclic phosphate and 5'-OH ends.
- Only 2 known members of this class. Found in human HDV.
- ^{xli}Circular form of HDV is active and shows increased nuclease stability [xlii]

i. Michel, Francois; Westhof, Eric. Slippery substrates. *Nat. Struct. Biol.* (1994), 1(1), 5-7.

ii. Lisacek, Frederique; Diaz, Yolande; Michel, Francois. Automatic identification of group I intron cores in genomic DNA sequences. *J. Mol. Biol.* (1994), 235(4), 1206-17.

iii. Herschlag, Daniel; Cech, Thomas R.. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 1. Kinetic description of the reaction of an RNA substrate complementary to the active site. *Biochemistry* (1990), 29(44), 10159-71.

- v. Herschlag, Daniel; Cech, Thomas R.. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 2. Kinetic description of the reaction of an RNA substrate that forms a mismatch at the active site. *Biochemistry* (1990), **29**(44), 10172-80.
- v. Knitt, Deborah S.; Herschlag, Daniel. pH Dependencies of the Tetrahymena Ribozyme Reveal an Unconventional Origin of an Apparent pKa. *Biochemistry* (1996), **35**(5), 1560-70.
- vi. Bevilacqua, Philip C.; Sugimoto, Naoki; Turner, Douglas H.. A mechanistic framework for the second step of splicing catalyzed by the Tetrahymena ribozyme. *Biochemistry* (1996), **35**(2), 648-58.
- vii. Li, Yi; Bevilacqua, Philip C.; Mathews, David; Turner, Douglas H.. Thermodynamic and activation parameters for binding of a pyrene-labeled substrate by the Tetrahymena ribozyme: docking is not diffusion-controlled and is driven by a favorable entropy change. *Biochemistry* (1995), **34**(44), 14394-9.
- viii. Banerjee, Aloke Raj; Turner, Douglas H.. The time dependence of chemical modification reveals slow steps in the folding of a group I ribozyme. *Biochemistry* (1995), **34**(19), 6504-12.
- ix. Zarrinkar, Patrick P.; Williamson, James R.. The P9.1-P9.2 peripheral extension helps guide folding of the Tetrahymena ribozyme. *Nucleic Acids Res.* (1996), **24**(5), 854-8.
- x. Strobel, Scott A.; Cech, Thomas R.. Minor groove recognition of the conserved G.cntdot.U pair at the Tetrahymena ribozyme reaction site. *Science (Washington, D. C.)* (1995), **267**(5198), 675-9.
- xii. Strobel, Scott A.; Cech, Thomas R.. Exocyclic Amine of the Conserved G.cntdot.U Pair at the Cleavage Site of the Tetrahymena Ribozyme Contributes to 5'-Splice Site Selection and Transition State Stabilization. *Biochemistry* (1996), **35**(4), 1201-11.
- xiii. Sullenger, Bruce A.; Cech, Thomas R.. Ribozyme-mediated repair of defective mRNA by targeted trans-splicing. *Nature (London)* (1994), **371**(6498), 619-22.
- xiv. Robertson, H.D.; Altman, S.; Smith, J.D. *J. Biol. Chem.*, **247**, 5243-5251 (1972).
- xv. Forster, Anthony C.; Altman, Sidney. External guide sequences for an RNA enzyme. *Science (Washington, D.C., 1883-)* (1990), **249**(4970), 783-6.
- xvi. Yuan, Y.; Hwang, E. S.; Altman, S.. Targeted cleavage of mRNA by human RNase P. *Proc. Natl. Acad. Sci. USA* (1992) **89**, 8006-10.
- xvii. Harris, Michael E.; Pace, Norman R.. Identification of phosphates involved in catalysis by the ribozyme RNase P RNA. *RNA* (1995), **1**(2), 210-18.
- xviii. Pan, Tao; Loria, Andrew; Zhong, Kun. Probing of tertiary interactions in RNA: 2'-hydroxyl-base contacts between the RNase P RNA and pre-tRNA. *Proc. Natl. Acad. Sci. U. S. A.* (1995), **92**(26), 12510-14.
- xix. Pyle, Anna Marie; Green, Justin B.. Building a Kinetic Framework for Group II Intron Ribozyme Activity: Quantitation of Interdomain Binding and Reaction Rate. *Biochemistry* (1994), **33**(9), 2716-25.
- xx. Michels, William J. Jr.; Pyle, Anna Marie. Conversion of a Group II Intron into a New Multiple-Turnover Ribozyme that Selectively Cleaves Oligonucleotides: Elucidation of Reaction Mechanism and Structure/Function Relationships. *Biochemistry* (1995), **34**(9), 2965-77.
- xx. Zimmerly, Steven; Guo, Huatao; Eskes, Robert; Yang, Jian; Perlman, Philip S.; Lambowitz, Alan M.. A group II intron RNA is a catalytic component of a DNA endonuclease involved in intron mobility. *Cell (Cambridge, Mass.)* (1995), **83**(4), 529-38.

- xxii . McKay, Structure and function of the hammerhead ribozyme: an unfinished story. *RNA*, (1996), 2, 395-403.
- xxvii . Long, D., Uhlenbeck, O., Hertel, K. Ligation with hammerhead ribozymes. US Patent No. 5,633,133.
- xxix . Hertel, K.J., Herschlag, D., Uhlenbeck, O. A kinetic and thermodynamic framework for the hammerhead ribozyme reaction. *Biochemistry*, (1994) 33, 3374-3385. Beigelman, L., et al., Chemical modifications of hammerhead ribozymes. *J. Biol. Chem.*, (1995) 270, 25702-25708.
- xxx . Beigelman, L., et al., Chemical modifications of hammerhead ribozymes. *J. Biol. Chem.*, (1995) 270, 25702-25708.
- xxxi . Hampel, Arnold; Tritz, Richard; Hicks, Margaret; Cruz, Phillip. 'Hairpin' catalytic RNA model: evidence for helices and sequence requirement for substrate RNA. *Nucleic Acids Res.* (1990), 18(2), 299-304.
- xxxii . Chowrima, Bharat M.; Berzal-Herranz, Alfredo; Burke, John M.. Novel guanosine requirement for catalysis by the hairpin ribozyme. *Nature* (London) (1991), 354(6351), 320-2.
- xxxiii . Berzal-Herranz, Alfredo; Joseph, Simpson; Chowrima, Bharat M.; Butcher, Samuel E.; Burke, John M.. Essential nucleotide sequences and secondary structure elements of the hairpin ribozyme. *EMBO J.* (1993), 12(6), 2567-73.
- xxxiv . Joseph, Simpson; Berzal-Herranz, Alfredo; Chowrima, Bharat M.; Butcher, Samuel E.. Substrate selection rules for the hairpin ribozyme determined by in vitro selection, mutation, and analysis of mismatched substrates. *Genes Dev.* (1993), 7(1), 130-8.
- xxxv . Berzal-Herranz, Alfredo; Joseph, Simpson; Burke, John M.. In vitro selection of active hairpin ribozymes by sequential RNA-catalyzed cleavage and ligation reactions. *Genes Dev.* (1992), 6(1), 129-34.
- xxxvi . Hegg, Lisa A.; Fedor, Martha J.. Kinetics and Thermodynamics of Intermolecular Catalysis by Hairpin Ribozymes. *Biochemistry* (1995), 34(48), 15813-28.
- xxxvii . Grasby, Jane A.; Mersmann, Karin; Singh, Mohinder; Gait, Michael J.. Purine Functional Groups in Essential Residues of the Hairpin Ribozyme Required for Catalytic Cleavage of RNA. *Biochemistry* (1995), 34(12), 4068-76.
- xxxviii . Schmidt, Sabine; Beigelman, Leonid; Karpeisky, Alexander; Usman, Nassim; Sorensen, Ulrik S.; Gait, Michael J.. Base and sugar requirements for RNA cleavage of essential nucleoside residues in internal loop B of the hairpin ribozyme: implications for secondary structure. *Nucleic Acids Res.* (1996), 24(4), 573-81.
- xxxix . Perrotta, Anne T.; Been, Michael D.. Cleavage of oligoribonucleotides by a ribozyme derived from the hepatitis delta virus RNA sequence. *Biochemistry* (1992), 31(1), 16-21.
- xl . Perrotta, Anne T.; Been, Michael D.. A pseudoknot-like structure required for efficient self-cleavage of hepatitis delta virus RNA. *Nature* (London) (1991), 350(6317), 434-6.
- xli . Puttaraju, M.; Perrotta, Anne T.; Been, Michael D.. A circular trans-acting hepatitis delta virus ribozyme. *Nucleic Acids Res.* (1993), 21(18), 4253-8.

Table II:

A. 2.5 μmol Synthesis Cycle ABI 394 Instrument

Reagent	Equivalents	Amount	Wait Time* DNA	Wait Time* 2'-O-methyl	Wait Time*RNA
Phosphoramidites	6.5	163 μL	45 sec	2.5 min	7.5 min
S-Ethyl Tetrazole	23.8	238 μL	45 sec	2.5 min	7.5 min
Acetic Anhydride	100	233 μL	5 sec	5 sec	5 sec
N-Methyl Imidazole	186	233 μL	5 sec	5 sec	5 sec
TCA	176	2.3 mL	21 sec	21 sec	21 sec
Iodine	11.2	1.7 mL	45 sec	45 sec	45 sec
Beaucage	12.9	645 μL	100 sec	300 sec	300 sec
Acetonitrile	NA	6.67 mL	NA	NA	NA

B. 0.2 μmol Synthesis Cycle ABI 394 Instrument

Reagent	Equivalents	Amount	Wait Time* DNA	Wait Time* 2'-O-methyl	Wait Time*RNA
Phosphoramidites	15	31 μL	45 sec	233 sec	465 sec
S-Ethyl Tetrazole	38.7	31 μL	45 sec	233 min	465 sec
Acetic Anhydride	655	124 μL	5 sec	5 sec	5 sec
N-Methyl Imidazole	1245	124 μL	5 sec	5 sec	5 sec
TCA	700	732 μL	10 sec	10 sec	10 sec
Iodine	20.6	244 μL	15 sec	15 sec	15 sec
Beaucage	7.7	232 μL	100 sec	300 sec	300 sec
Acetonitrile	NA	2.64 mL	NA	NA	NA

C. 0.2 μmol Synthesis Cycle 96 well Instrument

Reagent	Equivalents:DNA/ 2'-O-methyl/Ribo	Amount: DNA/2'-O- methyl/Ribo	Wait Time* DNA	Wait Time* 2'-O- methyl	Wait Time* Ribo
Phosphoramidites	2/233/66	40/60/120 μ L	60 sec	180 sec	360sec
S-Ethyl Tetrazole	70/105/210	40/60/120 μ L	60 sec	180 min	360 sec
Acetic Anhydride	265/265/265	50/50/50 μ L	10 sec	10 sec	10 sec
N-Methyl Imidazole	502/502/502	50/50/50 μ L	10 sec	10 sec	10 sec
TCA	238/475/475	250/500/500 μ L	15 sec	15 sec	15 sec
Iodine	6.8/6.8/6.8	80/80/80 μ L	30 sec	30 sec	30 sec
Beaucage	34/51/51	80/120/120	100 sec	200 sec	200 sec
Acetonitrile	NA	1150/1150/1150 μ L	NA	NA	NA

- Wait time does not include contact time during delivery.

Table III: HBV Strains and Accession numbers

Accession Number	NAME
AF100308.1	AF100308 Hepatitis B virus strain 2-18, complete
AB026815.1	AB026815 Hepatitis B virus DNA, complete genome,
AB033559.1	AB033559 Hepatitis B virus DNA, complete genome,
AB033558.1	AB033558 Hepatitis B virus DNA, complete genome,
AB033557.1	AB033557 Hepatitis B virus DNA, complete genome,
AB033556.1	AB033556 Hepatitis B virus DNA, complete genome,
AB033555.1	AB033555 Hepatitis B virus DNA, complete genome,
AB033554.1	AB033554 Hepatitis B virus DNA, complete genome,
AB033553.1	AB033553 Hepatitis B virus DNA, complete genome,
AB033552.1	AB033552 Hepatitis B virus DNA, complete genome,
AB033551.1	AB033551 Hepatitis B virus DNA, complete genome,
AB033550.1	AB033550 Hepatitis B virus DNA, complete genome
AF143308.1	AF143308 Hepatitis B virus clone WB1254, complete
AF143307.1	AF143307 Hepatitis B virus clone RM518, complete
AF143306.1	AF143306 Hepatitis B virus clone RM517, complete
AF143305.1	AF143305 Hepatitis B virus clone RM501, complete
AF143304.1	AF143304 Hepatitis B virus clone HD319, complete
AF143303.1	AF143303 Hepatitis B virus clone HD1406, complete
AF143302.1	AF143302 Hepatitis B virus clone HD1402, complete
AF143301.1	AF143301 Hepatitis B virus clone BW1903, complete
AF143300.1	AF143300 Hepatitis B virus clone 7832-G4, complete
AF143299.1	AF143299 Hepatitis B virus clone 7744-G9, complete
AF143298.1	AF143298 Hepatitis B virus clone 7720-G8, complete
AB026814.1	AB026814 Hepatitis B virus DNA, complete genome,
AB026813.1	AB026813 Hepatitis B virus DNA, complete genome,
AB026812.1	AB026812 Hepatitis B virus DNA, complete genome,
AB026811.1	AB026811 Hepatitis B virus DNA, complete genome,
AJ131956.1	HBV131956 Hepatitis B virus complete genome,
AF151735.1	AF151735 Hepatitis B virus, complete genome
AF090842.1	AF090842 Hepatitis B virus strain G5.27295, complete

AF090841.1	AF090841 Hepatitis B virus strain G4.27241, complete
AF090840.1	AF090840 Hepatitis B virus strain G3.27270, complete
AF090839.1	AF090839 Hepatitis B virus strain G2.27246, complete
AF090838.1	AF090838 Hepatitis B virus strain P1.27239, complete
Y18858.1	HBV18858 Hepatitis B virus complete genome, isolate
Y18857.1	HBV18857 Hepatitis B virus complete genome, isolate
D12980.1	HPBCG Hepatitis B virus subtype adr (SRADR) DNA,
Y18856.1	HBV18856 Hepatitis B virus complete genome, isolate
Y18855.1	HBV18855 Hepatitis B virus complete genome, isolate
AJ131133.1	HBV131133 Hepatitis B virus, complete genome, strain
X80925.1	HBVF6PCXX Hepatitis B virus (patient 6) complete
X80926.1	HBVF5PCXX Hepatitis B virus (patient 5) complete
X80924.1	HBVF4PCXX Hepatitis B virus (patient 4) complete
AF100309.1	Hepatitis B virus strain 56, complete genome
AF068756.1	AF068756 Hepatitis B virus, complete genome
AF043593.1	AF043593 Hepatitis B virus isolate 6/89, complete
Y07587.1	HEVAYWGEN Hepatitis B virus, complete genome
D28880.1	D28880 Hepatitis B virus DNA, complete genome, strain
X98076.1	HBVDEFVP3 Hepatitis B virus complete genome with
X98075.1	HBVDEFVP2 Hepatitis B virus complete genome with
X98074.1	HBVDEFVP1 Hepatitis B virus complete genome with
X98077.1	HBVCGWITY Hepatitis B virus complete genome, wild type
X98072.1	HBVCGINSC Hepatitis B virus complete genome with
X98073.1	HBVCGINCX Hepatitis B virus complete genome with
U95551.1	U95551 Hepatitis B virus subtype ayw, complete genome
D23684.1	HPBC6T588 Hepatitis B virus (C6-TKB588) complete genome
D23683.1	HPBC5HK02 Hepatitis B virus (C5-HBVK02) complete genome
D23682.1	HPBB5HK01 Hepatitis B virus (B5-HBVK01) complete genome
D23681.1	HPBC4HST2 Hepatitis B virus (C4-HBVST2) complete genome
D23680.1	HPBB4HST1 Hepatitis B virus (B4-HBVST1) complete genome
D00331.1	HPBADW3 Hepatitis B virus genome, complete genome
D00330.1	HPBADW2 Hepatitis B virus genome, complete genome
D50489.1	HPBA11A Hepatitis B virus DNA, complete genome
D23679.1	HPBA3HMS2 Hepatitis B virus (A3-HBVMs2) complete genome

D23678 .1	HPBA2HYS2 Hepatitis B virus (A2-HBVYS2) complete genome
D23677 .1	HPBA1HKK2 Hepatitis B virus (A1-HBVKK2) complete genome
D16665 .1	HPBADRM Hepatitis B virus DNA, complete genome
D00329 .1	HPBADW1 Hepatitis B virus (HBV) genome, complete genome
X97851 .1	HBVP6CSX Hepatitis B virus (patient 6) complete genome
X97850 .1	HBVP4CSX Hepatitis B virus (patient 4) complete genome
X97849 .1	HBVP3CSX Hepatitis B virus (patient 3) complete genome
X97848 .1	HBVP2CSX Hepatitis B virus (patient 2) complete genome
X51970 .1	HVHEPB Hepatitis B virus (HBV 991) complete genome
M38636 .1	HPBCGADR Hepatitis B virus, subtype adr, complete genome
X59795 .1	HBVAYWMCG Hepatitis B virus (ayw subtype mutant)
M38454 .1	HPBADR1CG Hepatitis B virus , complete genome
M32138 .1	HPBHBVAA Hepatitis B virus variant HBV-alpha1, complete
J02203 .1	HPBAYW Human hepatitis B virus (subtype ayw), complete
M12906 .1	HPBADRA Hepatitis B virus subtype adr, complete genome
M54923 .1	HPBADWZ Hepatitis B virus (subtype adw), complete genome
L27106 .1	HPBMUT Hepatitis B virus mutant complete genome

Table IV: HBV Substrate Sequence

NT Position*	SUBSTRATE	SEQ ID
82	CUAUCGUCCCCUUUCAUC	1.
101	CUACCGUUCCGGCC	2.
159	CUUCUCAUUCU	3.
184	CUUCCUUUCAACCAC	4.
269	GACUCUCAGAAUGGUCAACGAC	5.
381	CUGUAGGCAUAAAUGGUUCUG	6.
401	GUUCACCCAGCACCAGCAACUUUUU	7.
424	UUUCACGUCUGGCCUAAUCAUC	8.
524	AUUUGGAGCUUC	9.
562	CUGACUUUCUUUCCUUUCAUUC	10.
649	CUCACCAUACCGCACUCA	11.
667	GGCAAGCUAUUCUGUG	12.
717	GGAAAGUAAAUGGAAGAC	13.
758	CAGCUAUGGUCAAUGUUA	14.
783	CUAAAAUUCGGCCUAAAUCAGAC	15.
812	CAUUUCCUGUCUCACUUUUGGAAG	16.
887	UCUGGUUACAGAC	17.
922	CAACACUUUCGGAAACUACUGUUGUUAG	18.
989	CUUCGCCUUCGGCAGACGGAAGGUCUC	19.
1009	CAAUCGGCCGUCCGAGAAG	20.
1031	AUCUCAAUUCUGGGAAUCUCAA	21.
1052	AUGUUUAGUAUCUCCUUGGACUC	22.
1072	CAUAAGGUGGGAAACUUUACUG	23.
1109	CUGUACCUAUUCUUUAAAUC	24.
1127	CUGAGUGGCAACUCUCC	25.
1271	CCAAAUAUCUGCCCCUUGGACAA	26.
1297	AUAAAACCAUAUUAUCCUGAACAA	27.
1319	AUGCAGUAAAUCAUUACUUCAAAACUA	28.
1340	AAACUAGGCAUUA	29.

1370	AGGGGGCAUUCUAAUAAAGAGAG	30.
1393	GAAACUACGGCAGGCCUCAUUUUGU	31.
1412	CAUUUUGUGGGUCACCAUA	32.
1441	CAAGAGCUACAGCAUGGG	33.

LOCUS HPBADR1CG 3221 bp DNA circular VRL 06-MAR-1995
DEFINITION Hepatitis B virus , complete genome.
ACCESSION M38454

*The nucleotide number referred to in that table is the position of the 5' end of the oligo in this sequence.

TABLE V: HUMAN HBV HAMMERHEAD RIBOZYME AND TARGET SEQUENCE

Pos	Substrate	Seq ID	Hammerhead	Seq ID
13	CCACCAUCU U UCCACCAA	34	UGGGUGGA CUGAUGAG GCGGUUAGGC CGAA AGUGGG	7434
14	CACCAUU U CCACCAAA	35	UUGGUGG CUGAUGAG GCCGUUAGGC CGAA AAGUGG	7435
15	ACCACUU C CACCAAC	36	GUUUGGUG CUGAUGAG GCGGUUAGGC CGAA AAAGGU	7436
25	ACCAAACU C UUCAAGAU	37	AUCUUGAA CUGAUGAG GCGGUUAGGC CGAA AGUUGU	7437
27	CAAACUCU U CAAGAUCC	38	GAUCUUG CUGAUGAG GCGGUUAGGC CGAA AGAGUU	7438
28	AAACUCUU C AAGAUCCC	39	GGAAUCU CUGAUGAG GCGGUUAGGC CGAA AAGAGU	7439
34	UUCAAAGAU C CCAAGAGUC	40	GACUCUGG CUGAUGAG GCGGUUAGGC CGAA AUCUUGAA	7440
42	CCCAGAGU C AGGGCCCU	41	AGGGCCCU CUGAUGAG GCGGUUAGGC CGAA ACUCUGG	7441
53	GGCCCCUGU A CUUUCUG	42	CAGGAAAG CUGAUGAG GCGGUUAGGC CGAA ACAGGGCC	7442
56	CCUGUACU U UCCUGCUG	43	CAGCAGGA CUGAUGAG GCGGUUAGGC CGAA AGUACAGG	7443
57	CUGUACUU U CCUGCUGG	44	CCAGCAGG CUGAUGAG GCGGUUAGGC CGAA AAGUACAG	7444
58	UGUACUU C CUGCUGGU	45	ACCAGCAG CUGAUGAG GCGGUUAGGC CGAA AAAGUACA	7445
71	UGGUGGCC U CAGGUUCAG	46	CUGAACUG CUGAUGAG GCGGUUAGGC CGAA AGCCACCA	7446
76	GCUCCCAGU U CAGGAACA	47	UGUUCUG CUGAUGAG GCGGUUAGGC CGAA ACUGGAGC	7447
77	CUCAGUU C AGGAACAG	48	CUGUUCU CUGAUGAG GCGGUUAGGC CGAA AACUGGAG	7448
97	GCCCCUGU C AGAAUACU	49	AGUAUUCU CUGAUGAG GCGGUUAGGC CGAA AGCAGGGC	7449
103	CUCAGAAU A CUGUCUCU	50	AGAGACAG CUGAUGAG GCGGUUAGGC CGAA AUUCUGAG	7450
108	AAUACUGU C UCUGCCAU	51	AUGGCAGA CUGAUGAG GCGGUUAGGC CGAA ACAGUAU	7451
110	UACUGUCU C UGCACAU	52	AUAUGGCA CUGAUGAG GCGGUUAGGC CGAA AGACAGUA	7452
117	UCUGCCAU A UCGUCAAU	53	AUGGACGA CUGAUGAG GCGGUUAGGC CGAA AUGGAGA	7453
119	UGCCCAAU C GUCAAUCU	54	AGAUUUGAC CUGAUGAG GCGGUUAGGC CGAA AUUAGGA	7454
122	CAUADUGU C AAUCUUUU	55	AUAAGAU CUGAUAAG GCGGUUAGGC CGAA ACGAUAUG	7455
126	UCGUCAAU C UUAUCGAA	56	UUCGAUAA CUGAUGAG GCGGUUAGGC CGAA AUUGACGA	7456
128	GUCAAUCU U AUCGAAGA	57	UCUUCGAU CUGAUGAG GCGGUUAGGC CGAA AGAUUGAC	7457
129	UCAAUUU A UCGAAGAC	58	GUCUDCGA CUGAUGAG GCGGUUAGGC CGAA AAGAUUGA	7458
131	AAUCUUAU C GAAGACUG	59	CAGUCUUC CUGAUGAG GCGGUUAGGC CGAA AUAGAUU	7459
150	GACCCUGU A CCGAACAU	60	AUGUUCGG CUGAUGAG GCGGUUAGGC CGAA ACAGGGUC	7460
168	GAGAACAU C GCAUCAGG	61	CCUGAUGC CUGAUGAG GCGGUUAGGC CGAA AUGUUCUC	7461
173	CAUCGCAU C AGGACUCC	62	GGAGGUCCU CUGAUGAG GCGGUUAGGC CGAA AUGCGAUG	7462
180	UCAGGACU C CUAGGACC	63	GGUCCUAG CUGAUGAG GCGGUUAGGC CGAA AGUCCUGA	7463
183	GGACUCUU A GGACCCCU	64	AGGGGUCC CUGAUGAG GCGGUUAGGC CGAA AGGAGUCC	7464
195	CCCCUGGU C GUGGUACAU	65	UGUAACAC CUGAUGAG GCGGUUAGGC CGAA AGCAGGGG	7465

200	GCUCGUGU U ACAGGGGG	66	CGGCCUGU CUGAUGAG GCGGUUAGGC CGAA ACACGAGC	7466
201	CUCGUGUU A CAGGGGGG	67	CCGCCUG CUGAUGAG GCGGUUAGGC CGAA AACACGAG	7467
212	GGGGGGU U UUUCUUGU	68	ACAAGAAA CUGAUGAG GCGGUUAGGC CGAA ACCCCGC	7468
213	GCCCCGUU U UUUCUUGU	69	ACAAGAA CUGAUGAG GCGGUUAGGC CGAA AACCCGC	7469
214	GGGGGUU U UCUCUGUG	70	CAACAAGA CUGAUGAG GCGGUUAGGC CGAA AAACCCCG	7470
215	GGGGUUIU U CUUGUUGA	71	UCAACAAG CUGAUGAG GCGGUUAGGC CGAA AAAACCC	7471
216	GGGUUUIU C UUGUGUGAC	72	GUCAACAA CUGAUGAG GCGGUUAGGC CGAA AAAAACCC	7472
218	GUUUUUCU U GUUGACAA	73	TUGUCAAC CUGAUGAG GCGGUUAGGC CGAA AGAAAAAC	7473
221	UUUCUUGU U GACAAAAA	74	UUUUUGUC CUGAUGAG GCGGUUAGGC CGAA ACAAGAAA	7474
231	ACAAAAAU C CUCACAAU	75	AUUGUGAG CUGAUGAG GCGGUUAGGC CGAA AUUUUUU	7475
234	AAAUAUCCU C ACAAUACC	76	GUUAUUGU CUGAUGAG GCGGUUAGGC CGAA AGGAUUU	7476
240	CUCACAAU A CCACAGAG	77	CUCUGGG CUGAUGAG GCGGUUAGGC CGAA AUUGUGAG	7477
250	CACAGAGU C UAGACUCG	78	CGAGCUA CUGAUGAG GCGGUUAGGC CGAA ACUCUGUG	7478
252	CAGAGUCU A GACUCUG	79	CACGAGC CUGAUGAG GCGGUUAGGC CGAA AGACUCUG	7479
257	UCUAGACU C GUGGUGGA	80	UCCACCA CUGAUGAG GCGGUUAGGC CGAA AGUCUAGA	7480
268	GGGGGACU U CUCUCAAU	81	AUUGAGAG CUGAUGAG GCGGUUAGGC CGAA AGUCCACC	7481
269	GUGGACUU C UCUCAAU	82	AAUUGAGA CUGAUGAG GCGGUUAGGC CGAA AAGUCCAC	7482
271	GGACUUCU C UCAAUUUU	83	AAAADUGA CUGAUGAG GCGGUUAGGC CGAA AGAAAGCC	7483
273	ACUUCUCU C AAUUUUCU	84	AGAAAAAU CUGAUGAG GCGGUUAGGC CGAA AGAGAAAU	7484
277	CUCUCAAU U UUCUAGGG	85	CCCUAGAA CUGAUGAG GCGGUUAGGC CGAA AUUGAGAG	7485
278	UCUCAAU U UCIAGGGG	86	CCCCUAGA CUGAUGAG GCGGUUAGGC CGAA AAUUGAGA	7486
279	CUCAAUUU U CUAGGGGG	87	CCCCCUAG CUGAUGAG GCGGUUAGGC CGAA AAAUUGAG	7487
280	UCAAUUTU C UAGGGGGG	88	UCCCCCUA CUGAUGAG GCGGUUAGGC CGAA AAAAUUGA	7488
282	AAUUUUCU A GGGGGAAC	89	GUUCCCC CUGAUGAG GCGGUUAGGC CGAA AGAAAAAU	7489
301	CCGUGUGU C UGGCCAA	90	UGGGCCAA CUGAUGAG GCGGUUAGGC CGAA ACACACGG	7490
303	GUGUGDCU U GGCCAAAA	91	UUUGGCC CUGAUGAG GCGGUUAGGC CGAA AGACACAC	7491
313	GCCAAAAU U CGCAGUCC	92	GGACUGCG CUGAUGAG GCGGUUAGGC CGAA AUUUUGC	7492
314	CCAAAAUU C GCAGUCCC	93	GGGACUGC CUGAUGAG GCGGUUAGGC CGAA AUUUUGG	7493
320	UUCGGAGU C CCAAAUCU	94	GAUUUGG CUGAUGAG GCGGUUAGGC CGAA ACUGCGAA	7494
327	UCCCAAAU C UCCAGUCA	95	UGACUGGA CUGAUGAG GCGGUUAGGC CGAA AUUUGGA	7495
329	CCAAAUUCU C CAGUCACU	96	AGUGACUG CUGAUGAG GCGGUUAGGC CGAA AGAUUUGG	7496
334	UCUCCAGU C ACUCACCA	97	UGGUGAGU CUGAUGAG GCGGUUAGGC CGAA ACUGGAGA	7497
338	CAGUCACU C ACCAACCU	98	AGGUUGGU CUGAUGAG GCGGUUAGGC CGAA AGUGACUG	7498
349	CAACCUUGU U GUCCUCCA	99	UGGAGGAC CUGAUGAG GCGGUUAGGC CGAA ACAGGUUG	7499
352	CCUGUGU C CUCCAAUU	100	AAUUGGAG CUGAUGAG GCGGUUAGGC CGAA ACAACAGG	7500
355	GUUGGUCCU C CAUUUUGU	101	ACAAAUUG CUGAUGAG GCGGUUAGGC CGAA AGGACAC	7501
360	CCUCCAAU U UGUCCUGG	102	CCAGGACA CUGAUGAG GCGGUUAGGC CGAA AUUGGAGG	7502

361	CUCCAUU U GUCCUGGU	103	ACCAAGGAC CUGAUGAG <u>GCCGUUAGGC</u> CGAA AUUUGGAG	7503
364	CAAUTUGU C CUGGUUUAU	104	AUAACCGAG CUGAUGAG <u>GCCGUUAGGC</u> CGAA ACAAAUUG	7504
370	GUCCUGGU U AUGCGUGG	105	CAAGCGAU CUGAUGAG <u>GCCGUUAGGC</u> CGAA ACCAGGAC	7505
371	UCCUGGUU A UCGCUGGA	106	UCCAGCGA CUGAUGAG <u>GCCGUUAGGC</u> CGAA AACCGGA	7506
373	CUGGUUAU C GCGGGAUG	107	CAUCCAGC CUGAUGAG <u>GCCGUUAGGC</u> CGAA AUAACCAAG	7507
385	GAUGUGU C UGGGGCGU	108	ACGCCGCA CUGAUGAG <u>GCCGUUAGGC</u> CGAA ACACAUCC	7508
394	UGCGGGGU U UUAUCUAC	109	GAUGAUAA CUGAUGAG <u>GCCGUUAGGC</u> CGAA AGCAGCGA	7509
395	GGGGCTUU U UAUCAUUC	110	AGAUGAUAA CUGAUGAG <u>GCCGUUAGGC</u> CGAA AACGCCGC	7510
396	GGGGGUUU U AUCAUCUU	111	AGAUGAU CUGAUGAG <u>GCCGUUAGGC</u> CGAA AAACGCCG	7511
397	GGCGGUUU A UCAUCUUC	112	GAAGAUGA CUGAUGAG <u>GCCGUUAGGC</u> CGAA AAAACGCC	7512
399	CGUUUUAU C AUCCUCCU	113	AGGAAGAU CUGAUGAG <u>GCCGUUAGGC</u> CGAA AUAAAACG	7513
402	UUUAUCAU C UUCCUCUG	114	CAGAGGA CUGAUGAG <u>GCCGUUAGGC</u> CGAA AUGAUAAA	7514
404	UAUCAUCU U CCUCUGCA	115	UGCAGAGG CUGAUGAG <u>GCCGUUAGGC</u> CGAA AGAUGAU	7515
405	AUCAUCUU C CUCUGCAU	116	AUGCAGAG CUGAUGAG <u>GCCGUUAGGC</u> CGAA AAGAUGAU	7516
408	AUCUUCCU C UGCAUCCU	117	AGGAUGCA CUGAUGAG <u>GCCGUUAGGC</u> CGAA AGGAAGAU	7517
414	CUCUGCAU C CUGCUGCU	118	AGCAGGAG CUGAUGAG <u>GCCGUUAGGC</u> CGAA AUGCAGAG	7518
423	CUGCUGCU A UGCCUCAU	119	AUGAGGCA CUGAUGAG <u>GCCGUUAGGC</u> CGAA AGCAGCAG	7519
429	CUAUGGCCU C AUCCUCUU	120	AAGAAGAU CUGAUGAG <u>GCCGUUAGGC</u> CGAA AGGCAUAG	7520
432	UGCCUCAU C UUCCUGUU	121	AACAAGAA CUGAUGAG <u>GCCGUUAGGC</u> CGAA AUGAGCA	7521
434	CCUCAUCU U CUUGUGGG	122	CCAACAAAG CUGAUGAG <u>GCCGUUAGGC</u> CGAA AGAUGAGG	7522
435	CUCAUCUU C UUGUGGGU	123	ACCAACAA CUGAUGAG <u>GCCGUUAGGC</u> CGAA AAGAUGAG	7523
437	CAUCUUCU U GUUGGUUC	124	GAACCAAC CUGAUGAG <u>GCCGUUAGGC</u> CGAA AGAAGAUG	7524
440	CUUCUUGU U GGUUCUUC	125	GAAGAACCC CUGAUGAG <u>GCCGUUAGGC</u> CGAA ACAAGAAG	7525
444	UUGUUGGU U CUCUGGUA	126	UCCAGAAAG CUGAUGAG <u>GCCGUUAGGC</u> CGAA ACCAACAA	7526
445	UGUUGGUU C UUCCGGAC	127	GUCCAGAA CUGAUGAG <u>GCCGUUAGGC</u> CGAA AACCAACAA	7527
447	UUGGUUCU U CUGGACUA	128	UAGUCCAG CUGAUGAG <u>GCCGUUAGGC</u> CGAA AGAACCAA	7528
448	UGGUUCUU C UGGACAU	129	AUAGUCCA CUGAUGAG <u>GCCGUUAGGC</u> CGAA AAGAACCA	7529
455	UCUGGACU A UCAAGGUU	130	UACCUUGA CUGAUGAG <u>GCCGUUAGGC</u> CGAA AGUCCAGA	7530
457	UGGACAUU C AAGGUUAU	131	CAUACCUU CUGAUGAG <u>GCCGUUAGGC</u> CGAA AUAGUCCA	7531
463	AUCAAGGU A UGGUGCCC	132	GGGAAACA CUGAUGAG <u>GCCGUUAGGC</u> CGAA ACCUUGAU	7532
467	AGGUAGGU U GCCCGUUU	133	AAACGGGC CUGAUGAG <u>GCCGUUAGGC</u> CGAA ACAUACU	7533
474	UUGCCCGU U UGUCCUCU	134	AGAGGACA CUGAUGAG <u>GCCGUUAGGC</u> CGAA ACGGGCAA	7534
475	UGCCCCGUU U GUCCUCUA	135	UAGAGGAC CUGAUGAG <u>GCCGUUAGGC</u> CGAA AACGGGCA	7535
478	CCGGUUDGU C CUCUAAAU	136	AAUUAAGAG CUGAUGAG <u>GCCGUUAGGC</u> CGAA ACAAACGG	7536
481	UUUGUCUU C UAAUUCUA	137	UGGAUUUA CUGAUGAG <u>GCCGUUAGGC</u> CGAA AGGACAAA	7537
483	UGUCCUCU A AUUCCAGG	138	OCUGGAAU CUGAUGAG <u>GCCGUUAGGC</u> CGAA AGAGGACA	7538
486	CCUCAU U CCAGGAUC	139	GAUCCUGG CUGAUGAG <u>GCCGUUAGGC</u> CGAA AUUAGAGG	7539

487	CUCUAAU C CAGGAUCA	140	UGAUCCUG CUGAUGAG <u>GCCGUUAGGC</u> CGAA AUUAGAG	7540
494	UCCAGGAU C AUCAACAA	141	UGGUUGAU CUGAUGAG <u>GCCGUUAGGC</u> CGAA AUCCUGGA	7541
497	AGGAUCAU C AACAACCA	142	UGGUUGUU CUGAUGAG <u>GCCGUUAGGC</u> CGAA AUGAUCU	7542
535	GCACAACU C CUGCUCAA	143	UGAGGAG CUGAUGAG <u>GCCGUUAGGC</u> CGAA AGUUGUGC	7543
541	CUCCUGGU C AAGGAACC	144	CUGUCCUU CUGAUGAG <u>GCCGUUAGGC</u> CGAA AGCAGGAG	7544
551	AGGAACCU C UAGGUUUC	145	GAACAAUA CUGAUGAG <u>GCCGUUAGGC</u> CGAA AGGUUCU	7545
553	GAACCUCU A UGUUUCCC	146	GGAAACAA CUGAUGAG <u>GCCGUUAGGC</u> CGAA AGAGGUUC	7546
557	CUCUAGGU U UCCCCUCAU	147	AUGAGGG CUGAUGAG <u>GCCGUUAGGC</u> CGAA ACAUAGAG	7547
558	UCUAUGGU U CCCUCAUG	148	CAUGAGGG CUGAUGAG <u>GCCGUUAGGC</u> CGAA AACAUAGA	7548
559	CUAUGGUU C CCUCUAGU	149	ACAUAGGG CUGAUGAG <u>GCCGUUAGGC</u> CGAA AAACAUAG	7549
563	GUUUCCCU C AUGUJGUU	150	AGCAACAU CUGAUGAG <u>GCCGUUAGGC</u> CGAA AGGGAAAC	7550
568	CCUCAUGU U GCUGUACAA	151	UGUACAGG CUGAUGAG <u>GCCGUUAGGC</u> CGAA ACAUAGGG	7551
574	GUUGCUGU A CAAAACCU	152	AGGUUUGG CUGAUGAG <u>GCCGUUAGGC</u> CGAA ACAGAAC	7552
583	CAAAACCU A CGGACGGA	153	UCCGUCCG CUGAUGAG <u>GCCGUUAGGC</u> CGAA AGGUUUG	7553
604	GCACCUUGU A UUCCCAUC	154	GAUGGGAA CUGAUGAG <u>GCCGUUAGGC</u> CGAA ACAGGUGC	7554
606	ACCUGUAU U CCCAUCCC	155	GGGAUGGG CUGAUGAG <u>GCCGUUAGGC</u> CGAA AUACAGGU	7555
607	CCUGUAUU C CCAUCCCA	156	UGGGGAUGG CUGAUGAG <u>GCCGUUAGGC</u> CGAA AAUACAGG	7556
612	AUUCCCAU C CCAUCAUC	157	GAUGAUGG CUGAUGAG <u>GCCGUUAGGC</u> CGAA AUGGAAU	7557
617	CAUCCCCAU C AUUUTGGG	158	CCCAAGAU CUGAUGAG <u>GCCGUUAGGC</u> CGAA AUGGAGU	7558
620	CCCAUCAU C UGGGGCUU	159	AAGCCCAA CUGAUGAG <u>GCCGUUAGGC</u> CGAA AUGAUGG	7559
622	CAUCAUCU U GGGCUUUC	160	GAAGGCC CUGAUGAG <u>GCCGUUAGGC</u> CGAA AGAUGAUG	7560
628	CUUGGGCU U UGGCAAAA	161	UUUGCGA CUGAUGAG <u>GCCGUUAGGC</u> CGAA AGCCCCAAG	7561
629	UUGGGCUU U CGCAAAAU	162	AUUUUGCG CUGAUGAG <u>GCCGUUAGGC</u> CGAA AAGCCAA	7562
630	UGGGCUUU C GCAAAAU	163	UAUUUUGC CUGAUGAG <u>GCCGUUAGGC</u> CGAA AAAGCCCA	7563
638	CGCAAAAU A CCUAUGGG	164	CCCAUAGG CUGAUGAG <u>GCCGUUAGGC</u> CGAA AUUUGCG	7564
642	AAAUACCU A UGGGAGUG	165	CACUCCCA CUGAUGAG <u>GCCGUUAGGC</u> CGAA AGGUAUU	7565
656	GUGGGCCU C AGUCCGUU	166	AAACGGACU CUGAUGAG <u>GCCGUUAGGC</u> CGAA AGGCCAC	7566
660	GCCUCAGU C CGUJJUCUC	167	GAGAAACG CUGAUGAG <u>GCCGUUAGGC</u> CGAA ACUGAGGC	7567
664	CAGUCCGU U UCUCUDDG	168	CCAAGAGA CUGAUGAG <u>GCCGUUAGGC</u> CGAA ACGGACUG	7568
665	AGUUCUCU U CUCUJGGC	169	GCCAAAGG CUGAUGAG <u>GCCGUUAGGC</u> CGAA AACGGACU	7569
666	GUCCGUUU C UCUIJGGCU	170	AGCCCAAGA CUGAUGAG <u>GCCGUUAGGC</u> CGAA AAACGGAC	7570
668	CCGUUUCU C UUGGCUCU	171	UGAGCCAA CUGAUGAG <u>GCCGUUAGGC</u> CGAA AGAAAAGG	7571
670	GUUUCUCU U GGCUUCAGU	172	ACUGAGCC CUGAUGAG <u>GCCGUUAGGC</u> CGAA AGAGAAC	7572
675	UCUDGGGU C AGUJJUACU	173	AGUAAACU CUGAUGAG <u>GCCGUUAGGC</u> CGAA AGCCAAGA	7573
679	GGCUCAGU U UACUJAGUG	174	CACUAGUA CUGAUGAG <u>GCCGUUAGGC</u> CGAA ACUGAGCC	7574
680	GCUCAGGU U ACUAGUGC	175	GCACUAGU CUGAUGAG <u>GCCGUUAGGC</u> CGAA AACUGAGC	7575
681	CUCAGUUTU A CUAGUGCC	176	GGCACUAG CUGAUGAG <u>GCCGUUAGGC</u> CGAA AAACUGAG	7576

684	A G U U U A C U A G U G C C A U U	177	A U G G C A C C U G A U G G A G G C C G G U U A G G C C G A A A G U A A C U	7577
692	A G U G C C A U U U G U U I C A G U	178	A C U G A A C A C U G A U G G A G G C C G G U U A G G C C G A A A U G G C A C U	7578
693	G U G G C A U U U G U U C A G U G	179	C A C U G A A C C U G A U G G A G G C C G G U U A G G C C G A A A U G G C A C	7579
696	C C A U U J G U U U C A G G G G U U	180	A C C A C U G C U G A U G G A G G C C G G U U A G G C C G A A A C A A U G G	7580
697	C A U T U G U U C A G G G G U U C	181	G A A C C A C U C U G A U G G A G G C C G G U U A G G C C G A A A A C A A A U G	7581
704	U C A G U G G U U C G U A G G G C	182	G C C C U A C G C U A G C U G C U A C G C U A G C U G C A A C C A U G A	7582
705	C A G G G G U U C G U A G G G C U	183	A G C C C U A C C U G A U G G A G G C C G G U U A G G C C G A A A A C C A U G	7583
708	U G G U I C G U A G G G C U U U C	184	G A A A G G C C C U G A U G G A G G C C G G U U A G G C C G A A A C G A A A C C A	7584
714	G U A G G G C U U C U C C C C A C	185	G U G G G G G A C U G A U G G A G G C C G G U U A G G C C G A A A G G C C U A C	7585
715	U A G G G C U U U C C C C C A C U	186	A G U G G G G G C U G A U G G A G G C C G G U U A G G C C G A A A A G C C C U A	7586
716	A G G G C U U U C C C C A C U G	187	C A G U G G G G C U G A U G G A G G C C G G U U A G G C C G A A A A G C C C U	7587
726	C C C A C U G U C U G G C U U U C	188	G A A A G G C C A C U G A U G G A G G C C G G U U A G G C C G A A A C A G U G G	7588
732	G U C U G G C U U U C A G U U U A	189	A U U A C U G A C U G A U G G A G G C C G G U U A G G C C G A A A G G C A G	7589
733	U C U G G C U U U C A G U U U A	190	U A U A A C U G C U G A U G G A G G C C G G U U A G G C C G A A A A G C C C A G	7590
734	C U G G C U U U C A G U U A U	191	A U A U A A C U C U G A U G G A G G C C G G U U A G G C C G A A A A G C C A G	7591
738	C U U C A G U U A U A U G G A U	192	A U C C A U A U C U G A U G G A G G C C G G U U A G G C C G A A A C U G A A A G	7592
739	U U U C A G U U A U A U G G A U	193	C A U C C A U A C U G A U G G A G G C C G G U U A G G C C G A A A A C U G A A A	7593
741	U C A G D U A U A U G G A U A U	194	A U C A U C C A U C U G A U G G A G G C C G G U U A G G C C G A A A U A C A U G A	7594
755	G A U G U G G U U U I U G G G G C	195	G C C C C C C A A C U G A U G G A G G C C G G U U A G G C C G A A A C C A U C	7595
756	A U G G G G U U U U G G G G C C	196	G G C C C C C A C U G A U G G A G G C C G G U U A G G C C G A A A C C A C A U	7596
757	U G G G G U U U U G G G G C C A	197	U G G G G G C C C C C U G A U G G A G G C C G G U U A G G C C G A A A A C C A C A	7597
769	G G C C A A G U C U G U A C A A C	198	G U G G U A C A C U G A U G G A G G C C G G U U A G G C C G A A A C U U G G C C	7598
773	A A G U C U G U A C A A C A U C U	199	A G A U G U G G C U G A U G G A G G C C G G U U A G G C C G A A A C A G A C U U	7599
780	U A C A A C A U C U G G A U C C U	200	G G A C U C A A C U G A U G G A G G C C G G U U A G G C C G A A A U G G U G A	7600
782	C A A C A U C U U G A G U C C C U	201	A G G G A C U C U C U G A U G G A G G C C G G U U A G G C C G A A A G A U G U G	7601
787	U C D U G A G U C C C U U A U G	202	C A U A A G G C U G A U G G A G G C C G G U U A G G C C G A A A C U C A A G A	7602
791	G A G U C C C U U U A U G G C C G	203	G C G G C A U A C U G A U G G A G G C C G G U U A G G C C G A A A G G G A C U	7603
792	A G U C C C U U U A U G G C C G C U	204	A G G G G C A U C U G A U G G A G G C C G G U U A G G C C G A A A G G G A C U	7604
793	G U G G C C U U U A U G C C G C U	205	C A G G G G C A C U G A U G G A G G C C G G U U A G G C C G A A A A G G G A C	7605
803	G C C G C U G U U A C C A A U U U	206	A A A U U G G U C U G A U G G A G G C C G G U U A G G C C G A A A C G G G C	7606
804	C C G C U G D U A C C A A U U U	207	A A A A U G G C U G A U G G A G G C C G G U U A G G C C G A A A A C G G G	7607
810	U A C C A A U U U C U C U U U U G	208	C A A A A G A A C U G A U G G A G G C C G G U U A G G C C G A A A U G G U A A	7608
811	U A C C A A U U U U C U U U U G G	209	A C A A A A G A C U G A U G G A G G C C G G U U A G G C C G A A A U U G G U A	7609
812	A C C A A U U U U C U U U G G C	210	G A C A A A A G C U G A U G G A G G C C G G U U A G G C C G A A A A A U U G G U	7610
813	C C A A U U U U C U U U G G U C	211	A G A C A A A A C U G A U G G A G G C C G G U U A G G C C G A A A A A U U G G	7611
815	A A U U U U C U U U G G U C U U U	212	A A A G A C A A C U G A U G G A G G C C G G U U A G G C C G A A A G A A A A A U U	7612
816	A U U U U C U U U U G G U C U U U G	213	C A A A G A C A C U G A U G G A G G C C G G U U A G G C C G A A A G A A A A A A U U	7613

817	UUUUCUUU U GUCCUUGG	214	CCAAGAC CUGAUGAG	GCCGUUAGGC	CGAA AAAGAAA	7614
820	UCUUUCGU C UUUGGGUA	215	UACCCAA CUGAUGAG	GCCGUUAGGC	CGAA ACAAAAAGA	7615
822	UUUUGUCU U UGGGUAAA	216	UAUACCC CUGAUGAG	GCCGUUAGGC	CGAA AGACAAAA	7616
823	UUUGGUUU U GGGUAC	217	GUAUACCC CUGAUGAG	GCCGUUAGGC	CGAA AAGACAAA	7617
828	CUUUGGGU A UACAUUU	218	UAAAUGUA CUGAUGAG	GCCGUUAGGC	CGAA ACCCAAAAG	7618
830	UUGGGUAU A CAUUIAAA	219	UUUAAAUG CUGAUGAG	GCCGUUAGGC	CGAA AUACCAA	7619
834	GUAUACAU U UAAACCCU	220	AGGGUUUA CUGAUGAG	GCCGUUAGGC	CGAA AUGUAUAC	7620
835	UAUACAUU U AAACCCUC	221	GAAGGGUU CUGAUGAG	GCCGUUAGGC	CGAA AAUGUAUA	7621
836	UAUACAUU A AACCCCUA	222	UGAGGGUU CUGAUGAG	GCCGUUAGGC	CGAA AAUAGUAU	7622
843	UAAACCCU C ACAAAACA	223	UGUUUUUGU CUGAUGAG	GCCGUUAGGC	CGAA AGGGUUUA	7623
865	AUGGGGAU A UUCCCCUA	224	UAAGGGAA CUGAUGAG	GCCGUUAGGC	CGAA AUCCCCAU	7624
867	GGGGUAU U CCCUUAAAC	225	GUAAAGGG CUGAUGAG	GCCGUUAGGC	CGAA AUAUCCCC	7625
868	GGGAUAU C CCUUAACU	226	AGUUAAAG CUGAUGAG	GCCGUUAGGC	CGAA AAAUAUCC	7626
872	UAUUCCU U AACUUCAU	227	AUGAAAGU CUGAUGAG	GCCGUUAGGC	CGAA AGGGAAUA	7627
873	AUCCCCU A ACUUCAU	228	CAUGAACGU CUGAUGAG	GCCGUUAGGC	CGAA AAGGGAAU	7628
877	CCUUAACU U CAUGGGAU	229	AUCCCCAU CUGAUGAG	GCCGUUAGGC	CGAA AGUAAAAG	7629
878	CUUAACUU C AUGGGAU	230	UAUCCCCU CUGAUGAG	GCCGUUAGGC	CGAA AAGUUAG	7630
886	CAUGGGAU A UGUAAUUG	231	CAAUUACA CUGAUGAG	GCCGUUAGGC	CGAA AUCCCCAU	7631
890	CGAUUAIGU A AUUGGGAG	232	CUCCCCAAU CUGAUGAG	GCCGUUAGGC	CGAA ACAUAUCC	7632
893	UAUGUAU U GGAGGUUG	233	CAACUCCC CUGAUGAG	GCCGUUAGGC	CGAA AUUACAU	7633
900	UGGGGAGU U GGGGCACA	234	UGUGCCCC CUGAUGAG	GCCGUUAGGC	CGAA ACUCCCCA	7634
910	GGGCACAU U GCCCACAGG	235	CCUGUGGC CUGAUGAG	GCCGUUAGGC	CGAA AUGUGCCC	7635
924	AGGAACAU A UUGGUACAA	236	UUGGUACAA CUGAUGAG	GCCGUUAGGC	CGAA AUGUUCU	7636
926	GAACAUAU U GUACAAAA	237	UUUUGUAC CUGAUGAG	GCCGUUAGGC	CGAA AUAGUDUC	7637
929	CAUAUUGU A CAAAAAAU	238	AUUUUJUG CUGAUGAG	GCCGUUAGGC	CGAA ACAAUAU	7638
938	CAAAAUU C AAAAUUG	239	CACAUUOU CUGAUGAG	GCCGUUAGGC	CGAA AUUUUUG	7639
948	AAAUGUGU U UUAGGAAA	240	UUUCCUAA CUGAUGAG	GCCGUUAGGC	CGAA ACACAUU	7640
949	AAUGUGUU U UAGGAAAC	241	GUUUCCUA CUGAUGAG	GCCGUUAGGC	CGAA AACACAUU	7641
950	AUGUGUUU U AGGAAACU	242	AGUUUCCU CUGAUGAG	GCCGUUAGGC	CGAA AAACACAU	7642
951	UGUGUUU A GGAAACU	243	AAGUUUCC CUGAUGAG	GCCGUUAGGC	CGAA AAAACACA	7643
959	AGGAAACU U CCUGUAAA	244	UUUACAGG CUGAUGAG	GCCGUUAGGC	CGAA AGUUUCU	7644
960	GGAAACUU C CUGUAAAC	245	GUUACAG CUGAUGAG	GCCGUUAGGC	CGAA AAGUUICC	7645
965	CUDCCUGU A AACAGGCC	246	GGCCUGUU CUGAUGAG	GCCGUUAGGC	CGAA ACAGGAAG	7646
975	ACAGGGCCU A UUGAUUGG	247	CCAAUCAA CUGAUGAG	GCCGUUAGGC	CGAA AGGCCUGU	7647
977	AGGCCCUU U GAUUGGAA	248	UCCAAUC CUGAUGAG	GCCGUUAGGC	CGAA AUAGGCCU	7648
981	CUAUUGAU U GGAAAGUA	249	UACUUUCC CUGAUGAG	GCCGUUAGGC	CGAA AUCAAUAG	7649
989	UGGAAAGU A UGUCAACG	250	CGUUGGACA CUGAUGAG	GCCGUUAGGC	CGAA ACUUCCCA	7650

993	AAGUAUGU C AACCGAAAU	251	AAUUCGUU CUGAUGAG GCGGUUAGGC CGAA ACAUACUU	7651
1001	CAACGAAU U GUCCCCGUU	252	AGACCCAC CUGAUGAG GCCGUUAGGC CGAA AUUCGUUG	7652
1008	UUGGGGGU C UUUUGGGG	253	CCCCCAAA CUGAUGAG GCCGUUAGGC CGAA ACCCACAA	7653
1010	GUGGGUCU U UGGGGGUU	254	AACCCCAA CUGAUGAG GCCGUUAGGC CGAA AGACCCAC	7654
1011	UGGGUCUU U UGGGGGUU	255	AAACCCCA CUGAUGAG GCCGUUAGGC CGAA AAGACCCA	7655
1012	GGGUCUUU U GGGGUUUG	256	CAAACCCC CUGAUGAG GCCGUUAGGC CGAA AAAGACCC	7656
1018	UUGGGGU U UGCCGCC	257	GGGGCA CUGAUGAG GCCGUUAGGC CGAA ACCCCAAA	7657
1019	UUGGGGU U GCGGCC	258	GGGGGGC CUGAUGAG GCCGUUAGGC CGAA AACCCCAA	7658
1029	CCGGCCCU U UCAGCCAA	259	UUGGGUGA CUGAUGAG GCCGUUAGGC CGAA AGGGGGG	7659
1030	CGCCCCUU U CACGCAAU	260	AUUGCUGU CUGAUGAG GCCGUUAGGC CGAA AAGGGCG	7660
1031	GCCCCUUU C ACGCAAUG	261	CAUUGCGU CUGAUGAG GCCGUUAGGC CGAA AAAGGGGC	7661
1045	AUGGGGAU A UUCUGCUU	262	AAGCAGAA CUGAUGAG GCCGUUAGGC CGAA AUCCACAU	7662
1047	GUGGAUAU U CUGGUUUA	263	UAAAGCG CUGAUGAG GCCGUUAGGC CGAA AUUACAC	7663
1048	UGGAUAUU C UGGUUUAA	264	UAAAGCA CUGAUGAG GCCGUUAGGC CGAA AAAUACCA	7664
1053	AUUCUGCU U UAUGGCCU	265	AGGCAUUA CUGAUGAG GCCGUUAGGC CGAA AGCAGAAU	7665
1054	UUCUGCUU U AAUGCCUU	266	AAGGCAU CUGAUGAG GCCGUUAGGC CGAA AAGCAGAA	7666
1055	UCUGCUUU A AUGCCUUU	267	AAAGGCAU CUGAUGAG GCCGUUAGGC CGAA AAAGCAGA	7667
1062	UAAUGGCCU U UAUAGCA	268	UGCAUAAA CUGAUGAG GCCGUUAGGC CGAA AGGCAUUA	7668
1063	AAUCCUU U AUAGCAU	269	AUGCAUAA CUGAUGAG GCCGUUAGGC CGAA AAGGCAUU	7669
1064	AUGCCUUU A UAGCAUG	270	CAUGCAU CUGAUGAG GCCGUUAGGC CGAA AAAGGCAU	7670
1066	GCCUUAU A UGCAUGCA	271	UGCAUGCA CUGAUGAG GCCGUUAGGC CGAA AURAAGGC	7671
1076	GCAUGCAU A CAAGCAAA	272	UUUGCUG CUGAUGAG GCCGUUAGGC CGAA AUGCAUGC	7672
1092	AACAGGCCU U UUACUUUC	273	GAAGGUAA CUGAUGAG GCCGUUAGGC CGAA AGCCUGUU	7673
1093	ACAGGCCU U UACUUUCU	274	AGAAAGUA CUGAUGAG GCCGUUAGGC CGAA AAGCCUGU	7674
1094	CAGGCCUU U ACUUUCUC	275	GAGAAAGU CUGAUGAG GCCGUUAGGC CGAA AAAGCCUG	7675
1095	AGGCCDDU A CUUDUCUG	276	CGAGAAAG CUGAUGAG GCCGUUAGGC CGAA AAAAGCU	7676
1098	CUUUUACU U UCUUGCCA	277	UGGGGAGA CUGAUGAG GCCGUUAGGC CGAA AGUAAAAG	7677
1099	UUUUACUU U CUCGCCAA	278	UGGGCAG CUGAUGAG GCCGUUAGGC CGAA AAUAAA	7678
1100	UUUACUUU C UCGCCAAC	279	GUUGGCGA CUGAUGAG GCCGUUAGGC CGAA AAAGUAAA	7679
1102	UACUUUCU C GCCAACUU	280	AAGGUUGG CUGAUGAG GCCGUUAGGC CGAA AGAAAGUA	7680
1110	CGCCCAACU U ACAAGGCC	281	GGCCCUUGU CUGAUGAG GCCGUUAGGC CGAA AGUUGGC	7681
1111	GCCAAACUU A CAAGGCCU	282	AGGCCUUG CUGAUGAG GCCGUUAGGC CGAA AAGUUGGC	7682
1120	CAAGGCCU U UCUUAGUA	283	UACUUAGA CUGAUGAG GCCGUUAGGC CGAA AGGCCUUG	7683
1121	AAGGCCUU U CUAAGUAA	284	UACUUAG CUGAUGAG GCCGUUAGGC CGAA AAGGCCUU	7684
1122	AGGCCUUU C UAAGUAAA	285	UUUACUUA CUGAUGAG GCCGUUAGGC CGAA AAAGGCCU	7685
1124	GCCUUUCU A AGUAAAACA	286	UGUUUACU CUGAUGAG GCCGUUAGGC CGAA AGAAAGC	7686
1128	UUCUAGU A AACAGUAU	287	AUACUGUU CUGAUGAG GCCGUUAGGC CGAA ACUAGAA	7687

1135	UAAACAGU A	UGUGAACCC	288	GGUUCACA	CUGAUGAG	GCCGUUAGGC	CGAA	ACGUUUUA	7688
1145	GUGAACCU U	UACCCCCGU	289	A CGGGGUU	CUGAUGAG	GCCGUUAGGC	CGAA	AGGUUCAC	7689
1146	UGAACCUU U	ACCCCCGUU	290	AACGGGGU	CUGAUGAG	GCCGUUAGGC	CGAA	AAGGUUCA	7690
1147	GAACCUUU A	CCCCGUUG	291	CAACGGGG	CUGAUGAG	GCCGUUAGGC	CGAA	AAAGGUUC	7691
1154	UACCCCGU U	GGCUCGGCA	292	UGCCGAGC	CUGAUGAG	GCCGUUAGGC	CGAA	ACGGGGUA	7692
1158	CCGUUGC U C	GGCAACCGG	293	CGGUUGCC	CUGAUGAG	GCCGUUAGGC	CGAA	AGCAACGG	7693
1173	GGCCUGGU C	UAUGCCAA	294	UGGCCAU A	CUGAUGAG	GCCGUUAGGC	CGAA	ACCAGGCC	7694
1175	CCUGGUUC U	UGCCAAGU	295	ACUUGGCC	CUGAUGAG	GCCGUUAGGC	CGAA	AGACCAAG	7695
1186	CCAAGUGU U	UGUGUGACG	296	CGUCAGCA	CUGAUGAG	GCCGUUAGGC	CGAA	ACACUUGG	7696
1187	CAAGUGGU U	GGCUGACGC	297	GGCUCAGC	CUGAUGAG	GCCGUUAGGC	CGAA	AACACUUG	7697
1209	CCACUGGU U	GGGGCUUG	298	CAAGCCCC	CUGAUGAG	GCCGUUAGGC	CGAA	ACCAGUGG	7698
1216	UUGGGGU U	GGCAUAG	299	CUAUGGCC	CUGAUGAG	GCCGUUAGGC	CGAA	AGCCCCAA	7699
1223	UGGGCCAU A	GGCCAUCU	300	UGAUGGCC	CUGAUGAG	GCCGUUAGGC	CGAA	AUGGCCAA	7700
1230	UAGGCCAU C	AGGCCAUG	301	CAUGGCCU	CUGAUGAG	GCCGUUAGGC	CGAA	AUGGCCUA	7701
1249	UGGAACCU U	UGUGUCUC	302	GAGACACA	CUGAUGAG	GCCGUUAGGC	CGAA	AGGUUCCA	7702
1250	GGAAACCU U	GUGUCUCC	303	GGAGACAC	CUGAUGAG	GCCGUUAGGC	CGAA	AAGGUUCC	7703
1255	CUUUDUGU C	UCCUCUGC	304	GCAGAGGA	CUGAUGAG	GCCGUUAGGC	CGAA	ACACAAAG	7704
1257	UUGUGUCU C	CUCUGCCG	305	CGGCAGAG	CUGAUGAG	GCCGUUAGGC	CGAA	AGACACAA	7705
1260	UGUCUCU C	UGCCGAUC	306	GAUCGGCA	CUGAUGAG	GCCGUUAGGC	CGAA	AGGAGACA	7706
1268	CUGCCGAU C	CAUACCGC	307	GCGGUUAU	CUGAUGAG	GCCGUUAGGC	CGAA	AUCGGAG	7707
1272	CGAUCCAU A	CCGGGAA	308	UCCCGGG	CUGAUGAG	GCCGUUAGGC	CGAA	AUGGAUCG	7708
1283	GCGGAACU C	CUAGCCGC	309	GCGGCCUAG	CUGAUGAG	GCCGUUAGGC	CGAA	A GUUCGC	7709
1286	GAACUCU A	GCCGCCU	310	CAAGGGC	CUGAUGAG	GCCGUUAGGC	CGAA	AGGAGUUC	7710
1293	UAGCCGCC U	GUUUTGCU	311	AGCAAAAC	CUGAUGAG	GCCGUUAGGC	CGAA	AGGGCUA	7711
1296	CCGCUUUGU U	UGUCUCGC	312	GCGAGCAA	CUGAUGAG	GCCGUUAGGC	CGAA	ACAAGGG	7712
1297	CGCUUUGGU U	UGCUUCGCA	313	UGCGAGCA	CUGAUGAG	GCCGUUAGGC	CGAA	AACAAGCG	7713
1298	GUUUGUU U	GCUCGGCAG	314	CUGCGAGC	CUGAUGAG	GCCGUUAGGC	CGAA	AAACAAAGC	7714
1302	GUUUDGGU C	GCAGCGAG	315	CCUGCGUC	CUGAUGAG	GCCGUUAGGC	CGAA	AGCAAAAC	7715
1312	CAGCAGGU C	UGGGGCAA	316	UUGCCCCA	CUGAUGAG	GCCGUUAGGC	CGAA	ACCUGUG	7716
1325	GCAAAAACU C	AUCGGGAC	317	GUCCCCAU	CUGAUGAG	GCCGUUAGGC	CGAA	AGUUUGC	7717
1328	AAACUCAU C	GGGACUGA	318	UCAGCUCCC	CUGAUGAG	GCCGUUAGGC	CGAA	AUGAGUU	7718
1341	CUGACAAU U	CUGUCGUG	319	CACGACAG	CUGAUGAG	GCCGUUAGGC	CGAA	AUUGUCAG	7719
1342	UGACAAU U	UGUCGUGC	320	GCACGGACA	CUGAUGAG	GCCGUUAGGC	CGAA	AAUUGUCA	7720
1346	AAUUCUGU C	GUCCUCUC	321	GAAGGCCAC	CUGAUGAG	GCCGUUAGGC	CGAA	ACAGAAAU	7721
1352	GUCCUGCU C	UCCCGCAA	322	UUGGGGAA	CUGAUGAG	GCCGUUAGGC	CGAA	AGCACGAC	7722
1354	CGUGGCUU C	CCGGAAAU	323	AUUUGCGG	CUGAUGAG	GCCGUUAGGC	CGAA	AGGACAG	7723
1363	CCGCAAAU A	UACAUCAU	324	AUGAUGUA	CUGAUGAG	GCCGUUAGGC	CGAA	AUUGGG	7724

1365	GCAAAUAU A CAUCAUUU	325	AAUAGAUG CUGAUGAG GCGGUUAGGC CGAA AUAUUUGC	7725
1369	AUAUACAU C AUUUCCAU	326	AUGGAAA U CUGAUGAG GCGGUUAGGC CGAA AUGUAAU	7726
1372	UACAUCAU U UCCAUAGGC	327	GCCAUAGGA CUGAUGAG GCGGUUAGGC CGAA AUGAUGUA	7727
1373	ACAUCAUU U CCAUGGCCU	328	AGCCAUGG CUGAUGAG GCGGUUAGGC CGAA AUAGAUGU	7728
1374	CAUCAUTU C CAUGGGCUG	329	CAGCCCAUG CUGAUGAG GCGGUUAGGC CGAA AAAUAGAUG	7729
1385	UGGCUGCU A GGCGUGGC	330	GCACAGGC CUGAUGAG GCGGUUAGGC CGAA AGCAGCCA	7730
1406	AACUAGGAU C CUACGCGG	331	CGCGGUAG CUGAUGAG GCGGUUAGGC CGAA AUCCAGUU	7731
1409	UGGAUCCU A CGGGGGAC	332	GUCCCCGG CUGAUGAG GCGGUUAGGC CGAA AGGAUCCA	7732
1420	CGGGACGU C CUUUGUUU	333	AAACAAAG CUGAUGAG GCGGUUAGGC CGAA AGGUCCG	7733
1423	GACGUCCU U UGUUUACG	334	CGUAAACA CUGAUGAG GCGGUUAGGC CGAA AGGACGU	7734
1424	ACGUCCUU U GUUUAACGU	335	ACGUAAAC CUGAUGAG GCGGUUAGGC CGAA AAGGACGU	7735
1427	UCCUUJGU U UACGUCCC	336	GGGACGUA CUGAUGAG GCGGUUAGGC CGAA ACAAAAGA	7736
1428	CCUUJGUU U ACGUCCCCG	337	CGGGACGU CUGAUGAG GCGGUUAGGC CGAA AACAAAGG	7737
1429	CUUUGUUU A CGUCCCCGU	338	ACGGGACG CUGAUGAG GCGGUUAGGC CGAA AAACAAAG	7738
1433	GUUUAACGU C CCGUJCGGC	339	GGCGACGG CUGAUGAG GCGGUUAGGC CGAA ACGUAAAC	7739
1438	CGUCCCCGU C GGCGCUGA	340	UCAGGGCC CUGAUGAG GCGGUUAGGC CGAA ACGGGACG	7740
1449	CGCUJGAAU C CGCGGGAC	341	GUCCGGGG CUGAUGAG GCGGUUAGGC CGAA AUUCAGCG	7741
1465	CGACCCCCU C CCGGGGGC	342	GGCCCCGG CUGAUGAG GCGGUUAGGC CGAA AGGGUCG	7742
1477	GGGGCCGU U GGGGCUU	343	AGAGCCCC CUGAUGAG GCGGUUAGGC CGAA AGGGGCC	7743
1484	UJGGGGCU C UACCGCCC	344	GGGGGGUA CUGAUGAG GCGGUUAGGC CGAA AGCCCAA	7744
1486	GGGGCUCU A CCGCCCCG	345	GGGGGGCG CUGAUGAG GCGGUUAGGC CGAA AGAGCCC	7745
1496	CGCCCCGU U CUCCGGCU	346	AGGGGGAG CUGAUGAG GCGGUUAGGC CGAA AGGGGGCG	7746
1497	GCCCCGUU C UCCGCCUA	347	UAGGGCGGA CUGAUGAG GCGGUUAGGC CGAA AAGGGGC	7747
1499	CCGCUCU C CGCCCUAU	348	AAUAGGGG CUGAUGAG GCGGUUAGGC CGAA AGAACGGG	7748
1505	CUCCGCUCU A UUGUACCG	349	CGGUACAA CUGAUGAG GCGGUUAGGC CGAA AGGGGAG	7749
1507	CCGCCCUAU U GUACCGAC	350	GUCCGUAC CUGAUGAG GCGGUUAGGC CGAA AUAGGGCG	7750
1510	CCUJAUGU A CCCAACGU	351	ACGGUCCG CUGAUGAG GCGGUUAGGC CGAA ACAAUAGG	7751
1519	CCGACCGU C CACGGGGC	352	GCCCCGG CUGAUGAG GCGGUUAGGC CGAA AGGGUGG	7752
1534	GGGCACCU C UCUTUACG	353	CGUAAAAGA CUGAUGAG GCGGUUAGGC CGAA AGGUGGC	7753
1536	GCACCUUCU C UUUACGCG	354	CGCGUAAA CUGAUGAG GCGGUUAGGC CGAA AGAGAGG	7754
1538	ACCUUCUCU U UACGCGGA	355	UCCCGGUUA CUGAUGAG GCGGUUAGGC CGAA AGAGAGU	7755
1539	CCUCUCUU U ACCGGGAC	356	GUCCGGGU CUGAUGAG GCGGUUAGGC CGAA AAGAGAGG	7756
1540	CUCUCUUU A CGCGGACU	357	AGUCCGGCG CUGAUGAG GCGGUUAGGC CGAA AAAGAGAG	7757
1549	CGCGGGACU C CCCGUCUG	358	CAAGACGGG CUGAUGAG GCGGUUAGGC CGAA AGUCCCGG	7758
1555	CUCCCCGU C UGUGCCUU	359	AAGGGCACA CUGAUGAG GCGGUUAGGC CGAA ACGGGGAG	7759
1563	CUUGUGCCU U CUCAUUCUG	360	CAAGAUGAG CUGAUGAG GCGGUUAGGC CGAA AGGCAAG	7760
1564	UGUGCCUU C UCAUCUGC	361	GCAGAUGA CUGAUGAG GCGGUUAGGC CGAA AAGGCACAA	7761

1566	UGCCUUUCU C AUUCUGCCG	362	CGGCAGAU CUGAUGAG GCGGUUAGGC CGAA AGAAGCA	7762
1569	CUUCUCAU C UGCCGGAC	363	GUCCGGCA CUGAUGAG GCGGUUAGGC CGAA AUGAGAG	7763
1588	UGUGCACU U CGCUUCAC	364	GUGAACCG CUGAUGAG GCGGUUAGGC CGAA AGUGACA	7764
1589	GUGCACUU C GCUUCACC	365	GUGAACG CUGAUGAG GCGGUUAGGC CGAA AAGUGCAC	7765
1593	AUCUUCGCC U CACCUUCUG	366	CAGAGGG CUGAUGAG GCGGUUAGGC CGAA AGCGAAGU	7766
1594	CUUCGCUU C ACCUCUGC	367	CGAGAGGU CUGAUGAG GCGGUUAGGC CGAA AAGCGAAG	7767
1599	CUUCACCU C UGCACGUC	368	GACGUGCA CUGAUGAG GCGGUUAGGC CGAA AGGUGAG	7768
1607	CUGGACGU C GCAUGGAG	369	CUCCAUGC CUGAUGAG GCGGUUAGGC CGAA ACGUGCAG	7769
1651	CCCAAGGU C UGGCAUAA	370	UUAUGCAA CUGAUGAG GCGGUUAGGC CGAA ACCUUGGG	7770
1653	CAAGGUUCU U GCAUAAA	371	UCUUAUGC CUGAUGAG GCGGUUAGGC CGAA AGACCUUG	7771
1658	UCUUGGCAU A AGAGGACU	372	AGUCCUCU CUGAUGAG GCGGUUAGGC CGAA AUGCAAAGA	7772
1667	AGAGGACU C UGGGACUU	373	AGUCCAA CUGAUGAG GCGGUUAGGC CGAA AGUCCUCU	7773
1669	AGGACUCU U GGACUUUC	374	GAAAGUCC CUGAUGAG GCGGUUAGGC CGAA AGAGUCU	7774
1675	CUUUGGACU U UCAGCAAU	375	AUUGGUGA CUGAUGAG GCGGUUAGGC CGAA AGUCCAAAG	7775
1676	UUGGACUU U CAGGAAUG	376	CAUUGGUG CUGAUGAG GCGGUUAGGC CGAA AGUCCAA	7776
1677	UGGACUUU C AGCAAUGU	377	ACAUUGCU CUGAUGAG GCGGUUAGGC CGAA AAAGUCCA	7777
1686	AGGAIAUGU C AACGACCG	378	GGGUCGUU CUGAUGAG GCGGUUAGGC CGAA ACAUUGCU	7778
1699	ACCCGACCU U GAGGCCAU	379	UAUGCCUC CUGAUGAG GCGGUUAGGC CGAA AGGUCGU	7779
1707	UGAGGCAU A CUUCAAAG	380	CUUUGAAG CUGAUGAG GCGGUUAGGC CGAA AUGCCUCU	7780
1710	GGCAUACU U CAAAGACU	381	AGCUUUG CUGAUGAG GCGGUUAGGC CGAA AGUAUGCC	7781
1711	GCAUACUU C AAAGACUG	382	CAGUCUUTU CUGAUGAG GCGGUUAGGC CGAA AGUAUGC	7782
1725	CUGUGUG U UAAUGAGU	383	ACUCAUUA CUGAUGAG GCGGUUAGGC CGAA ACACACAG	7783
1726	UGUGUGUU U AAUGAGUG	384	CACUCAUU CUGAUGAG GCGGUUAGGC CGAA AACACACA	7784
1727	GUGUGUUU A AUGAGUGG	385	CAUCUCAU CUGAUGAG GCGGUUAGGC CGAA AAACACAC	7785
1743	GGAGGGAGU U GGGGGAGG	386	CCUCCCCC CUGAUGAG GCGGUUAGGC CGAA ACUCCUC	7786
1756	GAGGGAGU U AGGTUAAA	387	UUDAAACCU CUGAUGAG GCGGUUAGGC CGAA ACCUCCUC	7787
1757	AGGAGGUU A GGUUAAAAG	388	CUUUAACC CUGAUGAG GCGGUUAGGC CGAA AACCUCCU	7788
1761	GGUUAGGU U AAAGGUUCU	389	AGACCUUU CUGAUGAG GCGGUUAGGC CGAA ACCUAACC	7789
1762	GUUAGGUU A AAAGGUUU	390	AAGACCUU CUGAUGAG GCGGUUAGGC CGAA AACCUAAC	7790
1768	UUAAGGU C UUUGUACU	391	AGUACAAA CUGAUGAG GCGGUUAGGC CGAA ACCUUAAA	7791
1770	AAAGGUUCU U UGUACUAG	392	CUAGUACU CUGAUGAG GCGGUUAGGC CGAA AGACCUUU	7792
1771	AAGGUUCU U GUACUAGG	393	CCUAGUAC CUGAUGAG GCGGUUAGGC CGAA AAGACCUU	7793
1774	GUUCUUGU A CUAGGAGG	394	CCUCCUAG CUGAUGAG GCGGUUAGGC CGAA ACAAAAGAC	7794
1777	UUTUGUACU A GGAGGGCUG	395	CAGCCCUCC CUGAUGAG GCGGUUAGGC CGAA AGUACAAA	7795
1787	GAGGCUGU A GGCACAUAA	396	UUAUGCC CUGAUGAG GCGGUUAGGC CGAA ACAGCCUC	7796
1793	GUAGGGCAU A AAUUGGUG	397	CACCAAUU CUGAUGAG GCGGUUAGGC CGAA AUGCCUAC	7797
1797	GCAUAAA U GGUGUGUU	398	AACACACC CUGAUGAG GCGGUUAGGC CGAA AUUAUGC	7798

1805	UGGUGUGU U CACCGAGCA	399	UGCUGGUG CUGAUGAG GCGGUUAGGC CGAA ACACACCA	7799
1806	GGUGUGUU C ACCAGCAC	400	GUGCUUGU CUGAUGAG GCGGUUAGGC CGAA AACACACC	7800
1824	AUGCAACU U UUUCACCU	401	AGGUGAAA CUGAUGAG GCGGUUAGGC CGAA AGUUGCAU	7801
1825	UGCAACUU U UUCACCU	402	GAGGUGAA CUGAUGAG GCGGUUAGGC CGAA AAGUUGCA	7802
1826	GCAACUOU U UCACCU	403	AGAGGUGA CUGAUGAG GCGGUUAGGC CGAA AAAGUUGC	7803
1827	CAACUUUU U CACCU	404	CAGAGGUG CUGAUGAG GCGGUUAGGC CGAA AAAAGUUG	7804
1828	AACUOUUU C ACCUCUGC	405	GCAGAGGU CUGAUGAG GCGGUUAGGC CGAA AAAAGUU	7805
1833	UUUCACCU C UGCCUAAU	406	AUUAGGCCA CUGAUGAG GCGGUUAGGC CGAA AGGUGAAA	7806
1839	CUCUGGCC A AUCAUCUC	407	GAGAUGAU CUGAUGAG GCGGUUAGGC CGAA AGGCCAGAG	7807
1842	UGCCUAAU C AUCAUCAG	408	CAUGAGAU CUGAUGAG GCGGUUAGGC CGAA AUUAGCA	7808
1845	CUAAUCAU C UCAUGUUC	409	GAACAUAGA CUGAUGAG GCGGUUAGGC CGAA AUGAUUAG	7809
1847	AAUCAUCU C AUGUUCAU	410	AUGAACAU CUGAUGAG GCGGUUAGGC CGAA AGAUGAU	7810
1852	UCUCAUGU U CAUGUCCU	411	AGGACAUG CUGAUGAG GCGGUUAGGC CGAA ACAUGAGA	7811
1853	CUCAUUU C AUGUCCUA	412	UAGGACAU CUGAUGAG GCGGUUAGGC CGAA AACAUAGAG	7812
1858	GUUCGAUGU C CUACUGUU	413	ACACGUAG CUGAUGAG GCGGUUAGGC CGAA ACAUGAAC	7813
1861	CAUGUCCU A CUGUUCAA	414	UUGAACAG CUGAUGAG GCGGUUAGGC CGAA AGGACAG	7814
1866	CCUACUGU U CAAGCCUC	415	GAGGCCUUG CUGAUGAG GCGGUUAGGC CGAA ACAGUAGG	7815
1867	CUACUGUU C AAGGCCUCC	416	GGAGGCCU CUGAUGAG GCGGUUAGGC CGAA AACAGUAG	7816
1874	UCAAAGCCU C CAAGCUGU	417	ACAGCCUUG CUGAUGAG GCGGUUAGGC CGAA AGGCUUAG	7817
1887	CUGUGCCU U GGGUGGU	418	AGGCCACCC CUGAUGAG GCGGUUAGGC CGAA AGGCACAG	7818
1896	GGGUGGGCU U UGGGGCAU	419	AUGCCCCA CUGAUGAG GCGGUUAGGC CGAA AGCCACCC	7819
1897	GGUGGCCU U GGGGCAUG	420	CAUGCCCC CUGAUGAG GCGGUUAGGC CGAA AGGCCACC	7820
1911	AUGGACAU U GACCCGU	421	UACGGGU CUGAUGAG GCGGUUAGGC CGAA AUGUCAU	7821
1919	UGACCCGU A UAAAGAAU	422	AUUCUUTA CUGAUGAG GCGGUUAGGC CGAA ACGGGUCA	7822
1921	ACCCGUAU A AAAGAAUU	423	AAAUUCUU CUGAUGAG GCGGUUAGGC CGAA AUACGGGU	7823
1928	UAAAGAAU U UGGAGCU	424	AAGGUCCA CUGAUGAG GCGGUUAGGC CGAA AUUCUUA	7824
1929	AAAGAAUU U GGAGCUUC	425	GAAGCUCC CUGAUGAG GCGGUUAGGC CGAA AAUCUUU	7825
1936	UUGGAGCU U CUGUGGAG	426	CUCCACAG CUGAUGAG GCGGUUAGGC CGAA AGCUOCAA	7826
1937	UGGAGCUU C UGGUGAGU	427	ACUCCACA CUGAUGAG GCGGUUAGGC CGAA AAUCUCCA	7827
1946	UUGGAGGU U ACUCUCUU	428	AAGAGAGU CUGAUGAG GCGGUUAGGC CGAA ACUCCACA	7828
1947	GUUGGAGGU A CUCUCUU	429	AAAGAGAG CUGAUGAG GCGGUUAGGC CGAA AACUCCAC	7829
1950	GAGUUAUCU C UCUUUUU	430	AAAAAAAGA CUGAUGAG GCGGUUAGGC CGAA AGUAACUC	7830
1952	GUUACUCU C UUUUUUGC	431	GCaaaaaaaa CUGAUGAG GCGGUUAGGC CGAA AGAGUAC	7831
1954	UACUCUCU U UUUUGCCU	432	AGGGCAAAA CUGAUGAG GCGGUUAGGC CGAA AGAGAGUA	7832
1955	ACUCUCUU U UUUGCCUU	433	AAGGCCAAA CUGAUGAG GCGGUUAGGC CGAA AAGAGAGU	7833
1956	CUCUCUUU U UGGCCUU	434	GAAGGGAA CUGAUGAG GCGGUUAGGC CGAA AAAGAGAG	7834
1957	UCUCUTUU U UGCCUU	435	AGAAGGCA CUGAUGAG GCGGUUAGGC CGAA AAAAGAGA	7835

1958	CUCUUUU U GCUUUCUG	436	CAGAAGGC CUGAUGAGG	GCCGUUAGGC CGAA AAAAGAG	7836
1963	UUUUGCCU U CUGACIUC	437	GAAGUCAG CUGAUGAG	GCCGUUAGGC CGAA AGGCCAAA	7837
1964	UUUGCCU C UCACUUCU	438	AGAAGUCA CUGAUGAG	GCCGUUAGGC CGAA AAGGCCAA	7838
1970	UUCUGACU U CUUUCUU	439	AGGAAAG CUGAUGAG	GCCGUUAGGC CGAA AGUCAGAA	7839
1971	UCUGACU C UUOCCUC	440	GAAGAAA CUGAUGAG	GCCGUUAGGC CGAA AAGUCAGA	7840
1973	UGACUUCU U UCCUUCUA	441	UAGAAGGA CUGAUGAG	GCCGUUAGGC CGAA AGAAAGCA	7841
1974	GACUUCU U CCUCUCAU	442	AUAGAAGG CUGAUGAG	GCCGUUAGGC CGAA AAGAACUC	7842
1975	ACUUCUU C CUCUCAU	443	AUAGAAAG CUGAUGAG	GCCGUUAGGC CGAA AAAGAAAGU	7843
1978	UChUUCU U CUAUUCGA	444	UCCGAUUA CUGAUGAG	GCCGUUAGGC CGAA AGGAAGA	7844
1979	CUUUCU C UAUUCGAG	445	CUCGAUAA CUGAUGAG	GCCGUUAGGC CGAA AAGGAAAG	7845
1981	UCCUCUCA U UCCGAGAU	446	AUCUCGAA CUGAUGAG	GCCGUUAGGC CGAA AGAAGGAA	7846
1983	CCUUCUAU U CGAGAUCU	447	GAUCUCG CUGAUGAG	GCCGUUAGGC CGAA AUAGAAGG	7847
1984	CUUCUAU C GAGAUCUC	448	GAGAUCUC CUGAUGAG	GCCGUUAGGC CGAA AAUAGAG	7848
1990	UUCGAGAU C UCCUCGAC	449	GUCCGAGGA CUGAUGAG	GCCGUUAGGC CGAA AUCUCGAA	7849
1992	CGAGAUCU C CUCGACAC	450	GUGUCGAG CUGAUGAG	GCCGUUAGGC CGAA AGAUCUCG	7850
1995	GAUCUCCU C GACACCCG	451	GCGGGUGC CUGAUGAG	GCCGUUAGGC CGAA AGGAGAUC	7851
2006	CACCGCCU C UGCCUCUG	452	ACAGAGCA CUGAUGAG	GCCGUUAGGC CGAA AGGCCGGUG	7852
2011	CCUCUGCCU C UGUAUCCG	453	CGGAUACA CUGAUGAG	GCCGUUAGGC CGAA AGCAGAGG	7853
2015	UGCUCUGU A UCGGGGGG	454	CCCCCGA CUGAUGAG	GCCGUUAGGC CGAA ACAGAGCA	7854
2017	CUCUGUAU C GGGGGGCC	455	GCCCCCC CUGAUGAG	GCCGUUAGGC CGAA AUACAGAG	7855
2027	GGGGGCCU U AGAGUCUC	456	GAGACUCU CUGAUGAG	GCCGUUAGGC CGAA AGGGCCCC	7856
2028	GGGGCCUU A GAGUCUCC	457	GAGACUC CUGAUGAG	GCCGUUAGGC CGAA AAGGGCCC	7857
2033	CUUAGAGU C UCCGGAAC	458	GUUCCGGA CUGAUGAG	GCCGUUAGGC CGAA ACUUAAG	7858
2035	UAGAGUCU C CGGAACAU	459	AUGUUCCG CUGAUGAG	GCCGUUAGGC CGAA AGACUCUA	7859
2044	CGGAACAU U GUUCACCU	460	AGGUGAAC CUGAUGAG	GCCGUUAGGC CGAA AUGUUCG	7860
2047	AACAUUGU U CACCUCAC	461	GUGGAGG CUGAUGAG	GCCGUUAGGC CGAA ACAAUUU	7861
2048	ACAUUGUU C ACCUCACC	462	GUGGAGG CUGAUGAG	GCCGUUAGGC CGAA AACAAAGU	7862
2053	GUUCACCU C ACCAUACG	463	GUUAUGG CUGAUGAG	GCCGUUAGGC CGAA AGGUGAAC	7863
2059	CUCACCAU A CGGCACUC	464	GAGUGCCG CUGAUGAG	GCCGUUAGGC CGAA AUGGUGAG	7864
2067	ACGGCACU C AGGCAAGC	465	GUUUGCCU CUGAUGAG	GCCGUUAGGC CGAA AGUGCCGU	7865
2077	GGCAAGCCU A UUCUGUGU	466	ACACAGAA CUGAUGAG	GCCGUUAGGC CGAA ACUCACCC	7866
2079	CAAGCUAU U CUGUGUUG	467	CAACACAG CUGAUGAG	GCCGUUAGGC CGAA AUAGCUUG	7867
2080	AAGCUAUU C UGUGUUGG	468	CCAACACA CUGAUGAG	GCCGUUAGGC CGAA AAUAGCUU	7868
2086	UUCUGUGU U GGGGGUG	469	CUCACCCC CUGAUGAG	GCCGUUAGGC CGAA ACACAGAA	7869
2096	GGGUGAGU U GAUGAACU	470	GAUUCAU CUGAUGAG	GCCGUUAGGC CGAA AUUCAUA	7870
2104	UGAUGAAU C UAGGCCACC	471	GUUCCUA CUGAUGAG	GCCGUUAGGC CGAA AGAUUCAU	7871
2106	AUGAAUCU A GCCACCUG	472	CAGGUGGC CUGAUGAG	GCCGUUAGGC CGAA AGAUUCAU	7872

2125	UGGGAAU G AUUJGGAA	473	UUCCAAAU CUGAUGAG GCGGUUAGGC CGAA ACUCCCA	7873
2128	GAAGUAAU U UGGAAGAU	474	AUCUUCCA CUGAUGAG GCCGUUAGGC CGAA AUUACUUC	7874
2129	AAGUAAU U GGAAGAUC	475	GAUCUUCU CUGAUGAG GCCGUUAGGC CGAA AAUUACUU	7875
2137	UGGAAGAU C CAGCAUCC	476	GAUUGCUG CUGAUGAG GCCGUUAGGC CGAA AUCUCCA.	7876
2144	UCCAGCAU C CAGGGAAU	477	AUDCCCUG CUGAUGAG GCCGUUAGGC CGAA AUGCUGGA	7877
2153	CAGGGAAU U AGUAAGCUA	478	UGACUACU CUGAUGAG GCCGUUAGGC CGAA AUUCCUG	7878
2154	AGGGAAUU A GUAGUCAG	479	CUGACUAC CUGAUGAG GCCGUUAGGC CGAA AAUUCCU	7879
2157	GAAUTAGU A GUACGCUA	480	UAGGUCGAC CUGAUGAG GCCGUUAGGC CGAA ACUAAUUC	7880
2160	UUAUGUAGU C AGCUAUGU	481	ACAUAGCU CUGAUGAG GCCGUUAGGC CGAA ACUACUAA	7881
2165	AGUCAGCU A UGUCAACG	482	CGUJUGACA CUGAUGAG GCCGUUAGGC CGAA AGCUGACU	7882
2169	AGCUAUGU C AACGUAAA	483	UUAACGUU CUGAUGAG GCCGUUAGGC CGAA ACAUAGCU	7883
2175	GUCAACGU U AAUAUGGG	484	CCCCAUUU CUGAUGAG GCCGUUAGGC CGAA AGCUUGAC	7884
2176	UCAAACGUU A AUUAUGGGC	485	GCCCCAUU CUGAUGAG GCCGUUAGGC CGAA AACGUUGA	7885
2179	ACGUUAAU A UGGGCCUA	486	UAGGGCCC CUGAUGAG GCCGUUAGGC CGAA AUUACGU	7886
2187	AUGGGCCU A AAAUACAG	487	CUGAUUUU CUGAUGAG GCCGUUAGGC CGAA AGGCCAU	7887
2193	CUAAAAAU C AGACAAACU	488	AGUTUGUCU CUGAUGAG GCCGUUAGGC CGAA AUUUUAG	7888
2202	AGACAAACU A UUGGGGUU	489	AACCACAA CUGAUGAG GCCGUUAGGC CGAA AGUUGUCU	7889
2204	ACAACUAU U GUGGUUUC	490	GAACCCAC CUGAUGAG GCCGUUAGGC CGAA AUAGUUGU	7890
2210	AUUGUGGU U UCACAUUU	491	AAAUGUGA CUGAUGAG GCCGUUAGGC CGAA ACCACAAU	7891
2211	UUGGGGUU U CACAUUUC	492	GAAAGUGU CUGAUGAG GCCGUUAGGC CGAA AACCAAA	7892
2212	UGUGGGUUU C ACATUUCC	493	GGAAAUGU CUGAUGAG GCCGUUAGGC CGAA AAACCCAA	7893
2217	UUUCACAU U UCCUGUCU	494	AGACAGGA CUGAUGAG GCCGUUAGGC CGAA AUGUGAAA	7894
2218	UUCACAUU U CCUGUCUU	495	AGAGCAGG CUGAUGAG GCCGUUAGGC CGAA AAUGUGAA	7895
2219	UCACAUU C CUGUCUUA	496	UAAAGACAG CUGAUGAG GCCGUUAGGC CGAA AAAUGUGA	7896
2224	UUUCCUGU C UUACUUUU	497	AAAAGUAA CUGAUGAG GCCGUUAGGC CGAA ACAGGAAA	7897
2226	UCCUGUCU U ACUDDUGG	498	CCAAAAGU CUGAUGAG GCCGUUAGGC CGAA AGACAGGA	7898
2227	CCUGUCUU A CUUJUGGG	499	CCCAAAAG CUGAUGAG GCCGUUAGGC CGAA AAGACAGG	7899
2230	GUCCUACU U UGGGGCGA	500	UCGCCCCA CUGAUGAG GCCGUUAGGC CGAA AGUAAGAC	7900
2231	UCUUCACU U UGGGCAG	501	CUCGCCCC CUGAUGAG GCCGUUAGGC CGAA AAGUAGGA	7901
2232	CUUACUU U GGGCGAGA	502	UCUCGCC CUGAUGAG GCCGUUAGGC CGAA AAAGUAG	7902
2247	GAAACUGU U CUUGAAUA	503	UAUUCAAG CUGAUGAG GCCGUUAGGC CGAA ACAGUUUC	7903
2248	AAACUGUU C UUGAAUAU	504	UAUUCUAA CUGAUGAG GCCGUUAGGC CGAA AACAGUUU	7904
2250	ACUGUUUCU U GAAUAUU	505	AAAUAUUC CUGAUGAG GCCGUUAGGC CGAA AGAACAGU	7905
2255	UCUUGAAU A UJUGGUGU	506	ACACCAAA CUGAUGAG GCCGUUAGGC CGAA AUUCAAGA	7906
2257	UUGAAAUU U UGGUGUCU	507	AGACACCA CUGAUGAG GCCGUUAGGC CGAA AUUUCAA	7907
2258	UGAAAUU U GGUGUCUU	508	AGAGCACCC CUGAUGAG GCCGUUAGGC CGAA AAUAUUC	7908
2264	UUUGGGGU C UUJUGGGAG	509	CUCCAAAA CUGAUGAG GCCGUUAGGC CGAA ACACCAA	7909

2266	UGGUGUCU U UGGAGUG	510	CACUCAA CUGAUGAG GCGGUUAGGC CGAA AGACACA	7910
2267	GGUGCUUU U UGGAGUGU	511	ACACUCCA CUGAUGAG GCGGUUAGGC CGAA AAGACACC	7911
2268	GUGUCUUU U GGAGUGUG	512	CACACUCC CUGAUGAG GCGGUUAGGC CGAA AAAGACAC	7912
2280	GUGUGGAU U CGCACUCC	513	GGAGUGCG CUGAUGAG GCGGUUAGGC CGAA AUCCACAC	7913
2281	UGUGGAU C GCACUCCU	514	AGGAGUGC CUGAUGAG GCGGUUAGGC CGAA AAUCCACCA	7914
2287	UUCGCACU C CUCCUGCA	515	UGCAGGAG CUGAUGAG GCGGUUAGGC CGAA AGUGGCAA	7915
2290	GCACUCCU C CUGCAAU	516	AUAUGGAG CUGAUGAG GCGGUUAGGC CGAA AGGAGUGC	7916
2297	UCCUGCAU A UAGACCAC	517	GUGGUCUA CUGAUGAG GCGGUUAGGC CGAA AUGCAGGA	7917
2299	CUGCAAU A GACCAACCA	518	UGGGGGUC CUGAUGAG GCGGUUAGGC CGAA AUUAGGAG	7918
2317	AUGCCCCU A UCUUAUC	519	UGAUAAA CUGAUGAG GCGGUUAGGC CGAA AGGGCAU	7919
2319	GCCCCUAU C UUAUCAAC	520	GUUGAUAA CUGAUGAG GCGGUUAGGC CGAA AUAGGGGC	7920
2321	CCCUAUUC U AUCAACAC	521	GUUGUGAU CUGAUGAG GCGGUUAGGC CGAA AGAUAGGG	7921
2322	CCUAUCCU A UCAACACU	522	AGUGUDUGA CUGAUGAG GCGGUUAGGC CGAA AAGAUAGG	7922
2324	UAUCUUAU C AACACUUC	523	GAAGUGUU CUGAUGAG GCGGUUAGGC CGAA AUAAAGUA	7923
2331	UCAACACU U CCGGAAAC	524	GUUUCCGG CUGAUGAG GCGGUUAGGC CGAA AGUGUUGA	7924
2332	CAACACU C CGGAAACU	525	AGUTUCCG CUGAUGAG GCGGUUAGGC CGAA AAGUGUUG	7925
2341	CGGAAACU A CUGUGUU	526	ACAACACG CUGAUGAG GCGGUUAGGC CGAA AGUUUCG	7926
2346	ACUACUGU U GUUAGACG	527	CGCUAAC CUGAUGAG GCGGUUAGGC CGAA ACAGUAGU	7927
2349	ACUUGUUG U AGACGAAG	528	CUUCGUCU CUGAUGAG GCGGUUAGGC CGAA ACAACAGU	7928
2350	CUUGUGUU A GACGAAGA	529	UCUUCGUC CUGAUGAG GCGGUUAGGC CGAA AACAAACAG	7929
2366	AGGCAGGU C CCCUAGAA	530	UUCUAGGG CUGAUGAG GCGGUUAGGC CGAA ACCUGCCU	7930
2371	GGUCCCCU A GAAGAAGA	531	UCUUCUUC CUGAUGAG GCGGUUAGGC CGAA AGGGGCC	7931
2383	GAAGAACU C CCUCGCCU	532	AGGGCAGG CUGAUGAG GCGGUUAGGC CGAA AGUUCUUC	7932
2387	AACUCCU C GCCUCGC	533	UGCCAGGG CUGAUGAG GCGGUUAGGC CGAA AGGGAGUU	7933
2392	CCUCGCCU C GCAGACGA	534	UCCGUCUGC CUGAUGAG GCGGUUAGGC CGAA AGGGAGG	7934
2405	ACGAAAGGU C OCAUDCG	535	GGGAUDGA CUGAUGAG GCGGUUAGGC CGAA ACCUUCGU	7935
2407	GAAGGUUC U AAUCGCCG	536	CGGCGAUU CUGAUGAG GCGGUUAGGC CGAA AGACCUUC	7936
2411	GUCUCAAU C GCCGCGUC	537	GACCGGGC CUGAUGAG GCGGUUAGGC CGAA AUUGAGAC	7937
2419	CGCCGGCU C GCAGAAAGA	538	UCCUUCUGC CUGAUGAG GCGGUUAGGC CGAA ACGGGGCG	7938
2429	CAGAAAU C UCAUCUC	539	GAGAUUGA CUGAUGAG GCGGUUAGGC CGAA AUCUUCUG	7939
2431	GAAGAUUC C AAUCUCGG	540	CCGAGAUU CUGAUGAG GCGGUUAGGC CGAA AGAUUCUC	7940
2435	AUCUCAAU C UCGGGAAU	541	AUUCCCGA CUGAUGAG GCGGUUAGGC CGAA AUUGAGAU	7941
2437	CUCAAUCU C GGGAAUCU	542	AGAUUCCC CUGAUGAG GCGGUUAGGC CGAA AGAUUGAG	7942
2444	UCGGGAAU C UCAAUUU	543	AACAUUGA CUGAUGAG GCGGUUAGGC CGAA AUUCCCGA	7943
2446	GGGAAUCU C AAUGUUAG	544	CUAACAUU CUGAUGAG GCGGUUAGGC CGAA AGAUUCC	7944
2452	CUCAAUGU U AGUAUUC	545	GGAAUACU CUGAUGAG GCGGUUAGGC CGAA ACAUUGAG	7945
2453	UCAAUGU A GUAUUCCU	546	AGGAUAC CUGAUGAG GCGGUUAGGC CGAA AACAUUGA	7946

2456	AUGUUAGU A UUCCUUGG	547	CCAAGGAA CUGAUGAG <u>GCCGUUAGGC</u> CGAA ACUAAACAU	7947
2458	GUUAGUAU U CCUUGGAC	548	GUCCAAGG CUGAUGAG <u>GCCGUUAGGC</u> CGAA AUACUAC	7948
2459	UUAGUAU C CUUGGACA	549	UGUCCAAG CUGAUGAG <u>GCCGUUAGGC</u> CGAA AAUACUAA	7949
2462	GUAUUCCU U GGACACAU	550	AUGUGUCC CUGAUGAG <u>GCCGUUAGGC</u> CGAA AGGAAUAC	7950
2471	GGACACAU A AGGUGGGA	551	UCCCCACCU CUGAUGAG <u>GCCGUUAGGC</u> CGAA AUGUGUCC	7951
2484	GGGAAACU U UACGGGGC	552	GCCCCGU A CUGAUGAG <u>GCCGUUAGGC</u> CGAA AGUUUCCC	7952
2485	GGAAACUU U ACGGGGCU	553	AGCCCCGU CUGAUGAG <u>GCCGUUAGGC</u> CGAA AAGUUUCC	7953
2486	GAAACUOU A CGGGGCUU	554	AAGCCCCG CUGAUGAG <u>GCCGUUAGGC</u> CGAA AAAGGUUC	7954
2494	ACGGGGCU U UAUUCUUC	555	GAAGAAUA CUGAUGAG <u>GCCGUUAGGC</u> CGAA AGGCCCGU	7955
2495	CGGGGCUU U AUUCUUCU	556	AGAAGAAU CUGAUGAG <u>GCCGUUAGGC</u> CGAA AAGCCCCG	7956
2496	GGGGCUUU A UUCUUCUA	557	UAGAAGAA CUGAUGAG <u>GCCGUUAGGC</u> CGAA AAAGCCCC	7957
2498	GGCUUUAU U CUCUCAUG	558	CGUAGAAC CUGAUGAG <u>GCCGUUAGGC</u> CGAA AUAAAAGCC	7958
2499	GCUDUADU C UUCUACGG	559	CCGUAGAA CUGAUGAG <u>GCCGUUAGGC</u> CGAA AAAAAGC	7959
2501	UUUAAUCU U CUACGGUA	560	UACCGUAG CUGAUGAG <u>GCCGUUAGGC</u> CGAA AGAAUAAA	7960
2502	UUAUUCUU C UACGGUAC	561	GUACCGUA CUGAUGAG <u>GCCGUUAGGC</u> CGAA AGAAUAAA	7961
2504	AUUCUUCU A CGGUACCU	562	AGGUACCC CUGAUGAG <u>GCCGUUAGGC</u> CGAA AGAAAGAU	7962
2509	UCUACGGU A CCCUUGCU	563	AAGCAAGG CUGAUGAG <u>GCCGUUAGGC</u> CGAA ACCGUAGA	7963
2513	CGGUACCU U GCUUUAUU	564	AUUAAGC CUGAUGAG <u>GCCGUUAGGC</u> CGAA AGGUACCG	7964
2517	ACCUUUGC U UAAUCCUA	565	UAGGAAUA CUGAUGAG <u>GCCGUUAGGC</u> CGAA AGCAAGGU	7965
2518	CCUUGCUU U AAUCCUAA	566	UUAGGAU CUGAUGAG <u>GCCGUUAGGC</u> CGAA AAGCAAGG	7966
2519	CUUGCUUU A AUCCUAAA	567	UUUAGGAU CUGAUGAG <u>GCCGUUAGGC</u> CGAA AAAGCAAG	7967
2522	GUUUIAAU C CUAIAUUG	568	CCAUUUAU CUGAUGAG <u>GCCGUUAGGC</u> CGAA AUAAAAGC	7968
2525	UUAUCCU A AAUGGCAA	569	UUGCCAUU CUGAUGAG <u>GCCGUUAGGC</u> CGAA AGGAUAAA	7969
2537	GGCAAAACU C CUUCUUUU	570	AAAAGAAAG CUGAUGAG <u>GCCGUUAGGC</u> CGAA AGUUUCCC	7970
2540	AAACUCCU U CUUUUCCU	571	AGGAAAAAG CUGAUGAG <u>GCCGUUAGGC</u> CGAA AGGAGUU	7971
2541	AACUCCU C UUUUCCUG	572	CAGGAAA CUGAUGAG <u>GCCGUUAGGC</u> CGAA AAGGAGU	7972
2543	CUCCUUCU U UUCCUGAC	573	GUCAGGAA CUGAUGAG <u>GCCGUUAGGC</u> CGAA AGAAGGAG	7973
2544	UCCUUCUU U UCCUGACA	574	UGUCAGGA CUGAUGAG <u>GCCGUUAGGC</u> CGAA AAGAAGGA	7974
2545	CCUUCUOU U CCUGACAU	575	AUGUCAGG CUGAUGAG <u>GCCGUUAGGC</u> CGAA AAAGAAGG	7975
2546	CUUCUUUU C CUGACAU	576	AUGUCAG CUGAUGAG <u>GCCGUUAGGC</u> CGAA AAAAGAAG	7976
2554	CCUGACAU U CAUJUGCA	577	UGCAAAUG CUGAUGAG <u>GCCGUUAGGC</u> CGAA AUGUCAGG	7977
2555	CUGACAUU C AUUJUGCAG	578	CUGCAAAU CUGAUGAG <u>GCCGUUAGGC</u> CGAA AAUGUCAG	7978
2558	ACAUUCAU U UGGAGGAG	579	CUCCUGCA CUGAUGAG <u>GCCGUUAGGC</u> CGAA AUGAAAGU	7979
2559	CAUUCADU U GCAGGGAG	580	CCUCCUGC CUGAUGAG <u>GCCGUUAGGC</u> CGAA AAUGAAUG	7980
2572	GAGGACAU U GUUGAUAG	581	CUAUCAAC CUGAUGAG <u>GCCGUUAGGC</u> CGAA AUGUCCUC	7981
2575	GACAUUGU U GAUAGAUG	582	CAUCUACU CUGAUGAG <u>GCCGUUAGGC</u> CGAA ACAAUGUC	7982
2579	UUGUDGGAU A GAUGUAAG	583	CUUACAU CUGAUGAG <u>GCCGUUAGGC</u> CGAA AUCAACAA	7983

2585	AUAGAUGU A AGCAAUUU	584	AAUUGC U CUGAUGAG GCGGUUAGGC CGAA ACAUCUAU	7984
2592	UAAGCAAU U UGUGGGCC	585	GCCCCACA CUGAUGAG GCGGUUAGGC CGAA AUUGCUUA	7985
2593	AAGCAAUU U GUCCCCC	586	GCCCCCAC CUGAUGAG GCGGUUAGGC CGAA AAUUGCUU	7986
2605	GGCCCCU U ACAGUAAA	587	UUUACUG U CUGAUGAG GCGGUUAGGC CGAA AGGGGCC	7987
2606	GGCCCCU U CAGUAAA	588	AAUACUG CUGAUGAG GCGGUUAGGC CGAA AAGGGGCC	7988
2611	CUUACAGU A AAUGAAAA	589	UUUCAUU CUGAUGAG GCGGUUAGGC CGAA ACUGUAAG	7989
2629	AGGAGACU U AAAUUAAC	590	GUUAUUU CUGAUGAG GCGGUUAGGC CGAA AGUCUCU	7990
2630	GGAGACUU A AAUUAACU	591	GUUAUUU CUGAUGAG GCGGUUAGGC CGAA AAGUCUCC	7991
2634	ACUUAUU U AACUUAUGC	592	GCAGAUU CUGAUGAG GCGGUUAGGC CGAA AUUUAAGU	7992
2635	CUAAAUAU A ACUADGCC	593	GGCAUAGU CUGAUGAG GCGGUUAGGC CGAA AAUUAAG	7993
2639	AAUUAACU A UGCCUGCU	594	AGCAGGCC CUGAUGAG GCGGUUAGGC CGAA AGUUAUU	7994
2648	UGCCUGCU A GGUUUUAU	595	AUAAAACC CUGAUGAG GCGGUUAGGC CGAA AGCAGGCA	7995
2652	UGCUAGGU U UUAUCCCA	596	UGGGAUAA CUGAUGAG GCGGUUAGGC CGAA ACCUAGCA	7996
2653	GCUAGGUU U UAUCCCAA	597	UGGGAUAA CUGAUGAG GCGGUUAGGC CGAA AACCUAGC	7997
2654	CUAGGUUU U AUCCCCAU	598	AUUGGAU CUGAUGAG GCGGUUAGGC CGAA AAACCUAG	7998
2655	UAGGUUUU A UCCCAAUG	599	CAUUGGG A CUGAUGAG GCGGUUAGGC CGAA AAAACCUA	7999
2657	GGUUJUAU C CCAAUGUU	600	ACAUUUG CUGAUGAG GCGGUUAGGC CGAA AUAAAACC	8000
2665	CCCACAAUGU U ACUAAAUA	601	UAUUUAU CUGAUGAG GCGGUUAGGC CGAA ACAUUGGG	8001
2666	CCAACAUU A CUAAAUAU	602	AUAUUUAU CUGAUGAG GCGGUUAGGC CGAA ACAUUGGG	8002
2669	AUGUOACU A AAUAUUUG	603	CAAAAUU CUGAUGAG GCGGUUAGGC CGAA AGUACAU	8003
2673	UACUAAAUAU A UUUGGCCU	604	AGGGCAAA CUGAUGAG GCGGUUAGGC CGAA AUUAGUA	8004
2675	CUAAAUAU U UGCCCUUUA	605	UAAGGGCA CUGAUGAG GCGGUUAGGC CGAA AUUUAAG	8005
2676	UAAAUAU U GCCCUUAG	606	CUAAGGGC CUGAUGAG GCGGUUAGGC CGAA AAUAAUUA	8006
2682	UUUGCCCU U AGAUAAAAG	607	CUUUAUCU CUGAUGAG GCGGUUAGGC CGAA AGGGCAA	8007
2683	UUGCCCUU A GAUAAAAG	608	CCUUUAUC CUGAUGAG GCGGUUAGGC CGAA AAGGGCAA	8008
2687	CCUUAAGAU A AAGGGAC	609	GAUCCCCU CUGAUGAG GCGGUUAGGC CGAA AUCUAGG	8009
2695	AAAGGGAU C AAACCGUA	610	UACGGGUU CUGAUGAG GCGGUUAGGC CGAA AUCCCCUU	8010
2703	CAAACCGU A UUAUCCAG	611	CUGGAUAA CUGAUGAG GCGGUUAGGC CGAA ACGGGUUG	8011
2705	AACCGGUU U AUCCAGAG	612	CUCUGGAU CUGAUGAG GCGGUUAGGC CGAA AUACGGUU	8012
2706	ACCGGUU U UCCAGAGU	613	ACUCUGGA CUGAUGAG GCGGUUAGGC CGAA AAUACGGU	8013
2708	CGUAAUUAU C CAGAGUUA	614	AUACUCUG CUGAUGAG GCGGUUAGGC CGAA AAUAAUACG	8014
2715	UCCAGAGU A UGUAGUUA	615	TAACUACA CUGAUGAG GCGGUUAGGC CGAA ACUCUGGA	8015
2719	GAGUAUGU A GUUAAUCA	616	UGAUUAAAC CUGAUGAG GCGGUUAGGC CGAA ACAUACUC	8016
2722	UAUGUAGU U AAUCAUUA	617	UAAUGAU CUGAUGAG GCGGUUAGGC CGAA ACUACAU	8017
2723	AUGUAGU U AUCAUUAU	618	GUAAUGAU CUGAUGAG GCGGUUAGGC CGAA AACUACAU	8018
2726	UAGUUAU C AUUACUUC	619	GAAGUAAU CUGAUGAG GCGGUUAGGC CGAA AUUACUA	8019
2729	UUAUCAU U ACUUCAG	620	CUGGAAGU CUGAUGAG GCGGUUAGGC CGAA AUGAUAAA	8020

2730	UAAUCAUU A CUUCCAGA	621	UCUGGAAAG CUGAUGAG GCGGUUAGGC CGAA AAUGAUUA	8021
2733	UCAUUCAU U CCAGACGC	622	GCGUCUUGG CUGAUGAG GCCGUUAGGC CGAA AGUAAAUGA	8022
2734	CAUUCUU C CAGACGCG	623	CGGCUCUG CUGAUGAG GCCGUUAGGC CGAA AAGUAUAG	8023
2747	CGCGACAU U AUUJACAC	624	GUGUAAA CUGAUGAG GCCGUUAGGC CGAA AUGUCGG	8024
2748	GCGACAUU A UUUACACA	625	UGUGUAAA CUGAUGAG GCCGUUAGGC CGAA AAUGUCGC	8025
2750	GACAUUAU U UACACACU	626	AGUGUGUA CUGAUGAG GCCGUUAGGC CGAA AUAAUGUC	8026
2751	ACAUUAUU U ACACACUC	627	GAGUGUGU CUGAUGAG GCCGUUAGGC CGAA AUAAUGU	8027
2752	CAUUAUUAU A CACACUCU	628	AGAGUGUG CUGAUGAG GCCGUUAGGC CGAA AAAUAUAG	8028
2759	UACACACU C UUUGGAAG	629	CUUCCAAA CUGAUGAG GCCGUUAGGC CGAA AGUGUGUA	8029
2761	CACACUCU U UGGAAGGC	630	GCCCCUCC CUGAUGAG GCCGUUAGGC CGAA AGAGUGUG	8030
2762	ACACUCUU U GGAAAGGC	631	CGCCUUC CUGAUGAG GCCGUUAGGC CGAA AAGAGUGU	8031
2776	GCGGGGAU C UUUAUAAA	632	UUAUAAA CUGAUGAG GCCGUUAGGC CGAA AUCCCGC	8032
2778	GGGGAUUC U AUUAUAAA	633	UUUUUAU CUGAUGAG GCCGUUAGGC CGAA AGAUCCCC	8033
2779	GGGAUCUU A UUAAAAG	634	CUUUAAA CUGAUGAG GCCGUUAGGC CGAA AGAUCCCC	8034
2781	GAUCUUAU A UAAAAGAG	635	CUCUOJUUA CUGAUGAG GCCGUUAGGC CGAA AUAAAGUC	8035
2783	UCUUAUUAU A AAAAGAG	636	CUCUCUUU CUGAUGAG GCCGUUAGGC CGAA AUUAAGA	8036
2793	AAGAGAGU C CACACGU	637	UACCGUGU CUGAUGAG GCCGUUAGGC CGAA ACUCUUU	8037
2801	CCACACGU A GCGCCUCA	638	UGAGGGCGC CUGAUGAG GCCGUUAGGC CGAA ACGUGGG	8038
2808	UAGGGCCU C AUUUGGC	639	CGCAAAAAU CUGAUGAG GCCGUUAGGC CGAA AGGGCUA	8039
2811	CGCCUCAU U UGGGGGU	640	ACCCGCAA CUGAUGAG GCCGUUAGGC CGAA AUGAGGG	8040
2812	GCCUCAUU U UGGGGGUC	641	GAACCCGCA CUGAUGAG GCCGUUAGGC CGAA AAUGAGGC	8041
2813	CCUCAUU U GCGGGCUA	642	UGACCCCGC CUGAUGAG GCCGUUAGGC CGAA AAAUGGG	8042
2820	UUGGGGGU C ACCAUUU	643	AAUAUGGU CUGAUGAG GCCGUUAGGC CGAA ACCGGAA	8043
2826	GUCACCAU A UUUCUUGG	644	CCCAAGAA CUGAUGAG GCCGUUAGGC CGAA AUGUGAC	8044
2828	CACCAUAU U CUUGGGAA	645	UUCCCCAA CUGAUGAG GCCGUUAGGC CGAA AUAUUGUG	8045
2829	ACCAUAUU C UGGGAAC	646	GUUCCCCA CUGAUGAG GCCGUUAGGC CGAA AAUAUGGU	8046
2831	CAUAUUCU U GGGAACAA	647	UUGUUCCC CUGAUGAG GCCGUUAGGC CGAA AGAAUAG	8047
2843	AACAAGAU C UACAGCAU	648	AUGCGUGA CUGAUGAG GCCGUUAGGC CGAA AUCUUGUU	8048
2845	CAAGAUUCU A CAGCAUGG	649	CCAUGCGU CUGAUGAG GCCGUUAGGC CGAA AGAUCUUG	8049
2859	UGGGAGGU U GGCUUUC	650	GGAAAGACCC CUGAUGAG GCCGUUAGGC CGAA ACCUCCA	8050
2863	AGGUUUGGU C UUCAAAC	651	GUUUGGAA CUGAUGAG GCCGUUAGGC CGAA ACCAACU	8051
2865	GUUGGUUCU U CCAAACCU	652	AGGUUUGG CUGAUGAG GCCGUUAGGC CGAA AGACCAAC	8052
2866	UUGGUUU C CAAACCUC	653	GAGGUUUG CUGAUGAG GCCGUUAGGC CGAA AGACCAA	8053
2874	CCAAACCU C GAAAAGGC	654	GCCCCUUUC CUGAUGAG GCCGUUAGGC CGAA AGGUUUGG	8054
2895	GGACAAAU C UUUCUGUC	655	GACAGAAA CUGAUGAG GCCGUUAGGC CGAA AUUUGCC	8055
2897	ACAAAUCU U UCUGUCCC	656	GGGAAGAGA CUGAUGAG GCCGUUAGGC CGAA AGAUUUGU	8056
2898	CAAAUCUU U CUGUCCCC	657	GGGGACAG CUGAUGAG GCCGUUAGGC CGAA AGAUUUG	8057

2899	AAUCUUU C UGUCCCCA	658	UGGGGACA CUGAUGAG	GCCGUUAGGC CGAA AAAGAUU	8058
2903	CUUUCUGU C CCCAAUCC	659	GAUUGGG CUGAUGAG	GCCGUUAGGC CGAA ACAGAAAG	8059
2910	UCCCCAAU C CCCUGGGA	660	UCCCAAGG CUGAUGAG	GCCGUUAGGC CGAA AUUGGGGA	8060
2920	CCUGGGAU U CUUCCCCG	661	CGGGGAAG CUGAUGAG	GCCGUUAGGC CGAA AUCCAGG	8061
2921	CUGGGAUU C UUCCCCGA	662	UCCCCGAA CUGAUGAG	GCCGUUAGGC CGAA AAUCCCAG	8062
2923	GGAAUUCU U CCCCGAUC	663	GAUCGGGG CUGAUGAG	GCCGUUAGGC CGAA AGAAUCC	8063
2924	GAUUCUDU C CCCGAUCA	664	UGAUCGGG CUGAUGAG	GCCGUUAGGC CGAA AAGAAUCC	8064
2931	UCCCCGAAU C AUCAGUUG	665	CAACUGAU CUGAUGAG	GCCGUUAGGC CGAA AUUGGGGA	8065
2934	CGGAUCAU C AGUUGGAC	666	GUCCAACU CUGAUGAG	GCCGUUAGGC CGAA AUGAUGC	8066
2938	UCAUCAGU U GGACCCUG	667	CAGGUCCC CUGAUGAG	GCCGUUAGGC CGAA ACUGAUGA	8067
2950	CCUCGCAU U CAAAGCCA	668	UGGUUUG CUGAUGAG	GCCGUUAGGC CGAA AUGCAGGG	8068
2951	CCUGCAUU C AAAGCCAA	669	UGGGCUU CUGAUGAG	GCCGUUAGGC CGAA AAUGCAGG	8069
2962	AGCCAACU C AGUAAAUC	670	GAUUAUCU CUGAUGAG	GCCGUUAGGC CGAA AGUUGGCC	8070
2966	AACUCAGU A AAUCCAGA	671	UCUGGAAU CUGAUGAG	GCCGUUAGGC CGAA ACUGAGUU	8071
2970	CAGUAAAU C CAGAUJGG	672	CAAUCUG CUGAUGAG	GCCGUUAGGC CGAA AUUACUG	8072
2976	AUCCAGAU U GGGACCUC	673	GAGGUCCC CUGAUGAG	GCCGUUAGGC CGAA AUCUGGAU	8073
2984	UGGGACCU C AACCCGCA	674	UGGGGUU CUGAUGAG	GCCGUUAGGC CGAA AGGUCCCA	8074
3037	GGGAGCAU U CGGGCCAG	675	CUGGCCG CUGAUGAG	GCCGUUAGGC CGAA AUGCUCCC	8075
3038	GGAGCAUU C GGGCCAGG	676	CTUGGGCC CUGAUGAG	GCCGUUAGGC CGAA AAUGCUCC	8076
3049	GCCAGGGU U CACCCUC	677	GAGGGGU CUGAUGAG	GCCGUUAGGC CGAA ACCCUGGC	8077
3050	CCAGGGGUU C ACCCCCUC	678	GGAGGGU CUGAUGAG	GCCGUUAGGC CGAA AACCCUGG	8078
3057	UCACCCCU C CCCAUGGG	679	CCCAUGGG CUGAUGAG	GCCGUUAGGC CGAA AGGGGUGA	8079
3073	GGGACUGU U GGGGGUGA	680	UCCACCCC CUGAUGAG	GCCGUUAGGC CGAA ACAGUCC	8080
3087	GGAGGCCU C ACCGUCAG	681	CUGAGCGU CUGAUGAG	GCCGUUAGGC CGAA AGGGCUCC	8081
3093	CUCACGCU C AGGGCCUA	682	UAGGGCCU CUGAUGAG	GCCGUUAGGC CGAA AGCGUGAG	8082
3101	CAGGGCCU A CUCACAAC	683	GUUGUGAG CUGAUGAG	GCCGUUAGGC CGAA AGGCCUG	8083
3104	GGCCUACU C ACAACUGU	684	ACAGUGU CUGAUGAG	GCCGUUAGGC CGAA AGUAGGCC	8084
3123	CAGGZAGCU C CUCCUCCU	685	AGGAGGAG CUGAUGAG	GCCGUUAGGC CGAA AGCUGCUG	8085
3126	CAGGUCCU C CUCCUGCC	686	GCAGGGAG CUGAUGAG	GCCGUUAGGC CGAA AGGAGCUG	8086
3129	CUCUCUCU C CUGGUCCU	687	GGAGGCAG CUGAUGAG	GCCGUUAGGC CGAA AGGAGGAG	8087
3136	UCCUGGCCU C CACCAAUC	688	GAUUGGUG CUGAUGAG	GCCGUUAGGC CGAA AGGCAGGA	8088
3144	CCACCAAU C GGCAGUCA	689	UGACUGCC CUGAUGAG	GCCGUUAGGC CGAA AUUGGGGG	8089
3151	UCGGZAGCU C AGGAAGGC	690	GCCUUCCU CUGAUGAG	GCCGUUAGGC CGAA ACUGCCGA	8090
3165	GGGZAGCCU A CUCCCCUA	691	UAAGGGAG CUGAUGAG	GCCGUUAGGC CGAA AGGCCUCC	8091
3168	AGCCUACU C CCUUAUCU	692	AGAUAAAGG CUGAUGAG	GCCGUUAGGC CGAA AGUAGGCC	8092
3172	UACUCCCCU U AUCUCCAC	693	GUUGGAGU CUGAUGAG	GCCGUUAGGC CGAA AGGGAGUA	8093
3173	ACUCCCCU A UCUCACC	694	GUUGGAGA CUGAUGAG	GCCGUUAGGC CGAA AAGGGAGU	8094

3175	UCCCCUUAU	C	UCCACCUC	695	GAGGUGGA	CUGAUGAG	<u>GCCGUUAGGC</u>	CGAA	AUAAGGGA	8095
3177	CCUUDAUUC	C	CACCUUC	696	UAGAGGUG	CUGAUGAG	<u>GCCGUUAGGC</u>	CGAA	AGAUAAAGG	8096
3183	CUCCACCU	C	UAAGGGAC	697	GUCCCCU	CUGAUGAG	<u>GCCGUUAGGC</u>	CGAA	AGGUGGAG	8097
3185	CCACCUUC	A	AGGGACAC	698	GUGUCCCC	CUGAUGAG	<u>GCCGUUAGGC</u>	CGAA	AGAGGGGG	8098
3195	GGGACACU	C	AUCCUCAG	699	CUGAGGAU	CUGAUGAG	<u>GCCGUUAGGC</u>	CGAA	AGUGUCCC	8099
3198	ACACUCAU	C	CUCAGGCC	700	GGCCUGAG	CUGAUGAG	<u>GCCGUUAGGC</u>	CGAA	AUGAGUGU	8100
3201	CUCAUCCU	C	AGGCCAUG	701	CAUGGCCU	CUGAUGAG	<u>GCCGUUAGGC</u>	CGAA	AGGAUGAG	8101

Input Sequence = AF100308. Cut Site = OH/.

Stem Length = 8 . Core Sequence = CUGAUGAG GCCGUUAGGC CGAA
AF100308 (Hepatitis B virus strain 2-18, 3215 bp)

Underlined region can be any X sequence or linker, as described herein.

TABLE VI: HUMAN HBV INOZYME AND SUBSTRATE SEQUENCE

Pos	Substrate	Seq ID	Inozyme	Seq ID
9	AACUCCAC C ACUUUCCA	702	UGGAAAGU CUGAUGAG CGCUUAGGC CGAA TUGGAGU	8102
10	ACUCCAC C CUUCCAC	703	GUGGAAAG CUGAUGAG CGCUUAGGC CGAA TUGGAGU	8103
12	UCCACCAC U UUCCACCA	704	UGGGUGGA CUGAUGAG CGCUUAGGC CGAA TUGGUGA	8104
16	CCACUUUC C ACCAACU	705	AGUUUUGG CUGAUGAG CGCUUAGGC CGAA TAAAGUGG	8105
17	CACUUUCC A CCAAACUC	706	GAGUUUUGG CUGAUGAG CGCUUAGGC CGAA TGAAGUG	8106
19	CUUUCCAC C AAACUCUU	707	AAGAGUUU CUGAUGAG CGCUUAGGC CGAA TUGGAAAG	8107
20	UUUCCAC C AACUCUUC	708	GAAGAGGU CUGAUGAG CGCUUAGGC CGAA TUGGAAA	8108
24	CACCAAC U CUUCAAGA	709	UCUUGAAG CUGAUGAG CGCUUAGGC CGAA TUUUGUG	8109
26	CCAAACUC U UCAAGAUC	710	GAUCUUGA CUGAUGAG CGCUUAGGC CGAA TAGUUGG	8110
29	AACUCUUC A AGAUCCCA	711	UGGGGAUCU CUGAUGAG CGCUUAGGC CGAA TAAGAGUU	8111
35	UCAAGAUC C CAGAGUCA	712	UGACUCUG CUGAUGAG CGCUUAGGC CGAA IAUCUUGA	8112
36	CAAGAUCC C AGAGUCAG	713	CUGACUCU CUGAUGAG CGCUUAGGC CGAA IGAUCUDG	8113
37	AAGAUCC C AGAGCAGG	714	CCUGACUC CUGAUGAG CGCUUAGGC CGAA IGGAAUCU	8114
43	CCAGAGUC A GGCCCCUG	715	CAGGGCCC CUGAUGAG CGCUUAGGC CGAA IAUCUGG	8115
48	GUCAGGGC C CUGUACUU	716	AAGUACAG CUGAUGAG CGCUUAGGC CGAA ICCUGAC	8116
49	UCAGGGGC C UGUACUUU	717	AAAGUACA CUGAUGAG CGCUUAGGC CGAA IGGCCUGA	8117
50	CAGGGCCC U GUACUUUC	718	GAAAGUAC CUGAUGAG CGCUUAGGC CGAA IGGCCUGJ	8118
55	CCCUGUAC U UUCCUGCU	719	AGCAGGAA CUGAUGAG CGCUUAGGC CGAA TUACAGGG	8119
59	GUACUUUC C UGCGGGUG	720	CACCAAGCA CUGAUGAG CGCUUAGGC CGAA TAAGUAC	8120
60	UACUUUC V GCUGGGUG	721	CCACCCAGC CUGAUGAG CGCUUAGGC CGAA TGAAGUA	8121
63	UUUCCUGC U GGGGCCUC	722	GAGGCCACC CUGAUGAG CGCUUAGGC CGAA ICAGGAA	8122
70	CUGGGGC U CCAGGUCA	723	UGAACUGG CUGAUGAG CGCUUAGGC CGAA ICCACCG	8123
72	GGGGCUC C AGUUCAGG	724	CCUGAACU CUGAUGAG CGCUUAGGC CGAA IAGCCACC	8124
73	GUGGCUC C GUUCAGGA	725	UCCUGAAC CUGAUGAG CGCUUAGGC CGAA IAGCCAC	8125
78	UCCAGUUUC A GGAACAGU	726	ACUGUUC CUGAUGAG CGCUUAGGC CGAA TAACUGGA	8126
84	UCAGGAAC C GUGGCC	727	GGGCUCAC CUGAUGAG CGCUUAGGC CGAA TUUCCUGA	8127
91	CAGUGAGC C CUGUCAG	728	CUGAGCAG CUGAUGAG CGCUUAGGC CGAA ICUCACUG	8128
92	AGUGAGCC C UGGCUCAGA	729	UCUGAGCA CUGAUGAG CGCUUAGGC CGAA IGGCUCACU	8129
93	GUGAGGCC U GCUAGAA	730	UUCUGAGC CUGAUGAG CGCUUAGGC CGAA IGGCUCAC	8130
96	AGCCUCGC U CAGAAUAC	731	GUAUUCUG CUGAUGAG CGCUUAGGC CGAA ICAGGGCU	8131
98	CCUGUC C A GAAUACUG	732	CAGUAUUC CUGAUGAG CGCUUAGGC CGAA IAGGAGGG	8132
105	CAGAAUAC U GUCUCUGC	733	GCAGAGAC CUGAUGAG CGCUUAGGC CGAA TUAUUCUG	8133

109	AUACUGUC	U	CUGC CAUA	734	UAUGGCAG	CUGAUGAG	GCCGUUAGGC	CGAA	IACAGUAU	8134
111	ACUGUCUC	U	GCCCA U AUC	735	GAU AUAGGC	CUGAUGAG	GCCGUUAGGC	CGAA	IAGACAGU	8135
114	GUCUCUGC	C	AUAUCGUC	736	GAC GGAUAU	CUGAUGAG	GCCGUUAGGC	CGAA	IACAGAGAC	8136
115	UCUCUGCC	A	UAUCGUCA	737	UGAC GGAU	CUGAUGAG	GCCGUUAGGC	CGAA	IGCAGAGGA	8137
123	AUAUCGUC	A	AUCUUAUC	738	GAU AAAGAU	CUGAUGAG	GCCGUUAGGC	CGAA	IACGAUAU	8138
127	CGUCAAUC	U	UAUCGAAG	739	CUUC GGAU	CUGAUGAG	GCCGUUAGGC	CGAA	IAUUGACG	8139
138	UCGAAGAC	U	GGGGACCC	740	GGGUUCCCC	CUGAUGAG	GCCGUUAGGC	CGAA	IUCUUCGA	8140
145	CUGGGGAC	C	CUGUACCG	741	CGGUUACAG	CUGAUGAG	GCCGUUAGGC	CGAA	IUCUCCAG	8141
146	UGGGGAC	C	UGGUCCGA	742	UCGGGUUACA	CUGAUGAG	GCCGUUAGGC	CGAA	IGUCCCCA	8142
147	GGGGACCC	U	GUACCGAA	743	UUCGGGUAC	CUGAUGAG	GCCGUUAGGC	CGAA	IGGUCCCC	8143
152	CCCUGUAC	C	GAACAU GG	744	CCAUGUUC	CUGAUGAG	GCCGUUAGGC	CGAA	IUACAGGG	8144
157	UACCGAAC	A	UGGAGAAC	745	GUUCUCCA	CUGAUGAG	GCCGUUAGGC	CGAA	IUUCGGUA	8145
166	UGGAGAAC	A	UCGC CAUCA	746	UGAUGCGA	CUGAUGAG	GCCGUUAGGC	CGAA	IUUCUCCA	8146
171	AACAUUCG	C	UCAGGACU	747	AGUCCUGA	CUGAUGAG	GCCGUUAGGC	CGAA	ICGAUGUU	8147
174	AUCGCAUC	A	GGACUCCU	748	AGGA GUCC	CUGAUGAG	GCCGUUAGGC	CGAA	IAUGCGAU	8148
179	AUCAGGAC	U	CCUAGGAC	749	GUCCUAGG	CUGAUGAG	GCCGUUAGGC	CGAA	IUCUUGAU	8149
181	CAGGACUC	C	UAGGACCC	750	GGGUCCUA	CUGAUGAG	GCCGUUAGGC	CGAA	IAGUCCU	8150
182	AGGACUC	C	U AGGACCCC	751	GGGGGUCCU	CUGAUGAG	GCCGUUAGGC	CGAA	IGAGGUCCU	8151
188	CCUAGGAC	C	CCUG CUCG	752	CGAGCAGG	CUGAUGAG	GCCGUUAGGC	CGAA	IUCCUAGG	8152
189	CUAGGAC	C	CUGCU CGU	753	ACGAGCAG	CUGAUGAG	GCCGUUAGGC	CGAA	IGUCCUAG	8153
190	UAGGACCC	C	U GCUCUGUG	754	CACGAGCA	CUGAUGAG	GCCGUUAGGC	CGAA	I GGUCCUA	8154
191	AGGACCCC	C	U GCUCUGU	755	ACACGAGC	CUGAUGAG	GCCGUUAGGC	CGAA	IGGGUCCU	8155
194	ACCCUGC	U	CGUGGUAC	756	GUAAACAG	CUGAUGAG	GCCGUUAGGC	CGAA	I CAGGGGU	8156
203	CGUGGUAC	A	GGGGGGGU	757	ACCCCGCC	CUGAUGAG	GCCGUUAGGC	CGAA	IUAACACG	8157
217	GGUUUUUC	U	UGGU GACA	758	UGUCA ACA	CUGAUGAG	GCCGUUAGGC	CGAA	I AAAACC	8158
225	UGGU GAC	A	AAA AUCCU	759	AGGAU UU	CUGAUGAG	GCCGUUAGGC	CGAA	I UCAACAA	8159
232	AAAAAAUC	C	UCACAAUA	760	UAU UGUGA	CUGAUGAG	GCCGUUAGGC	CGAA	IAU UUUG	8160
233	AAAAAAUC	U	CAAAUAC	761	GUAUUUG	CUGAUGAG	GCCGUUAGGC	CGAA	I GAUUUUU	8161
235	AAA UCCU	A	CAAUACCA	762	UGGU AUU	CUGAUGAG	GCCGUUAGGC	CGAA	I AGGAUU	8162
237	AUCCUC	A	AUACACCA	763	UGGU GUAU	CUGAUGAG	GCCGUUAGGC	CGAA	IUGAGAU	8163
242	CACAAUAC	C	ACAGAGUC	764	GACUCUG	CUGAUGAG	GCCGUUAGGC	CGAA	IUAUUGUG	8164
243	ACAAUAC	A	CAGAGUC	765	AGACUCUG	CUGAUGAG	GCCGUUAGGC	CGAA	I GUAUJGU	8165
245	AAU ACCAC	A	GAGCUAG	766	CUAGACUC	CUGAUGAG	GCCGUUAGGC	CGAA	I UGGUAUU	8166
251	ACAGAGUC	U	AGACUCGU	767	ACGAGUCU	CUGAUGAG	GCCGUUAGGC	CGAA	I ACUCUGU	8167
256	GUCUAGAC	U	CGUGGUGG	768	CCACCA CG	CUGAUGAG	GCCGUUAGGC	CGAA	IUCUAGAC	8168
267	UGGUGGAC	U	UCUCUCAA	769	UGGAGAGA	CUGAUGAG	GCCGUUAGGC	CGAA	I UCCACCA	8169
270	UGGACUUC	U	CUCAUUU	770	AAA UUUG	CUGAUGAG	GCCGUUAGGC	CGAA	I AAGUCCA	8170

272	GACUUUCU C CAAUJJUUC	771	GAAGAUUUG CUGAUGAG GCCGUUAGGC CGAA IAGAACUC	8171
274	CUUCUCUC A AUUUVUCUA	772	UAGAAAAAU CUGAUGAG GCCGUUAGGC CGAA IAGAAAG	8172
281	CAAUUUUC U AGGGGAA	773	UCCCCCU CUGAUGAG GCCGUUAGGC CGAA IAAGAUUUG	8173
291	GGGGGAAC A CCCGUGUG	774	CACACGGG CUGAUGAG GCCGUUAGGC CGAA IUUCCCC	8174
293	GGGAACAC C CGUGUGUC	775	GACACAGC CUGAUGAG GCCGUUAGGC CGAA IUGUDCCC	8175
294	GGAACACCC C GUGUGUCU	776	AGACACAC CUGAUGAG GCCGUUAGGC CGAA IGUGUCCC	8176
302	CGUGUGUC U UGGCAAAA	777	UUUUGGCCA CUGAUGAG GCCGUUAGGC CGAA IACACACG	8177
307	GUCUJGGC C AAAAUUCG	778	CGAAUUTU CUGAUGAG GCCGUUAGGC CGAA ICCAAGAC	8178
308	UCUHGGGC A AAAUUCGC	779	GCGAAUUU CUGAUGAG GCCGUUAGGC CGAA IGCCAAGA	8179
317	AAAUUDCGC A GUCCCAAA	780	UUUUGGGAC CUGAUGAG GCCGUUAGGC CGAA ICGAUUU	8180
321	UCGCAGUC C CAAAUUC	781	GAGAUUUG CUGAUGAG GCCGUUAGGC CGAA IACUGCAGA	8181
322	CGCAGUCC C AAAUUCUC	782	GGAGAAUU CUGAUGAG GCCGUUAGGC CGAA IGACUGCAG	8182
323	GCAGUCCC A AAUCUCCA	783	UGGAGAUU CUGAUGAG GCCGUUAGGC CGAA IGGACUGG	8183
328	CCCCAAUC U CCAGUCAC	784	UGACUGG CUGAUGAG GCCGUUAGGC CGAA IAUUUGGG	8184
330	CAAUUCUC C AGUCACUC	785	GAGUGACU CUGAUGAG GCCGUUAGGC CGAA TAGAUUUG	8185
331	AAAUUCUCC A GUCAUCUA	786	UGAGUGAC CUGAUGAG GCCGUUAGGC CGAA IGAGAUU	8186
335	CUCCAGUC A CUCACCAA	787	UUGGUGAG CUGAUGAG GCCGUUAGGC CGAA IACUGGAG	8187
337	CCAGUCAC U CACCAACC	788	GGDUGGGG CUGAUGAG GCCGUUAGGC CGAA TUGACUGG	8188
339	AGUCACUC A CCAACCUG	789	CZGGUJGG CUGAUGAG GCCGUUAGGC CGAA TAGUGACU	8189
341	UCACUCAC C AACCUGUU	790	ACAGGGUU CUGAUGAG GCCGUUAGGC CGAA IUGAGUGA	8190
342	CACUCACC A ACCUGUG	791	CAACACGGU CUGAUGAG GCCGUUAGGC CGAA IUGAGUG	8191
345	UCACCAAC C UGGUGUCC	792	GGACAAACA CUGAUGAG GCCGUUAGGC CGAA IUGGGUGA	8192
346	CACCAAC C GUUGGUCCU	793	AGGACAAAC CUGAUGAG GCCGUUAGGC CGAA IGUUGGUG	8193
353	CUGUUGGU C UCCAUUU	794	AAAUUUGGA CUGAUGAG GCCGUUAGGC CGAA IACAACAG	8194
354	UGUUGUUC C CCAAUUUG	795	CZAAUUGG CUGAUGAG GCCGUUAGGC CGAA IGACAACA	8195
356	UUGGUCCUC C AAUUGUC	796	GAACAAAU CUGAUGAG GCCGUUAGGC CGAA IAGGACA	8196
357	UGUCCUC A AUUUGUCC	797	GGACAAAU CUGAUGAG GCCGUUAGGC CGAA IAGGACA	8197
365	AAUUGUGC C UGGUAUC	798	GAUAAACCA CUGAUGAG GCCGUUAGGC CGAA IACAAAU	8198
366	AUUUGUC D GGUUUAUC	799	CGAUAAACC CUGAUGAG GCCGUUAGGC CGAA IGACAAAU	8199
376	GUUAUCGC U GGAUGUGU	800	ACACAUCC CUGAUGAG GCCGUUAGGC CGAA ICGAAAC	8200
386	GAUGUGUC U GCGGCGUU	801	AACGCCGC CUGAUGAG GCCGUUAGGC CGAA IACACAC	8201
400	GUUUUAUC A UCUCCUC	802	GAGGAAGA CUGAUGAG GCCGUUAGGC CGAA IAUAAAAC	8202
403	UUAUCAUC U UCCUCUGC	803	GCAGAGGA CUGAUGAG GCCGUUAGGC CGAA IAUGAUAA	8203
406	UCAUCUUC C UCUGCAUC	804	GAUGCGAGA CUGAUGAG GCCGUUAGGC CGAA IAAGAUGA	8204
407	CAUCUUCU C CUGCAUCC	805	GGAUGGAG CUGAUGAG GCCGUUAGGC CGAA IGAAGAUG	8205
409	UCUUCUCU C GCAUCCUG	806	CAGGAUG CUGAUGAG GCCGUUAGGC CGAA IAGGAAGA	8206
412	UCCUCUGG A UCCUGCUG	807	CAGGAGGA CUGAUGAG GCCGUUAGGC CGAA ICAGAGGA	8207

415	UCUGCAUC	C	UGCGGCUA	808	UAGCAGCA	CUGAUGAG	GCCGUUAGGC	CGAA	TAUGCAGA	8208
416	CUGCAUCC	U	GCUGCUAU	809	AUAGCAGC	CUGAUGAG	GCCGUUAGGC	CGAA	IGAUGCAG	8209
419	CAUCCUGC	U	GCUAUGCC	810	GCCAUAGC	CUGAUGAG	GCCGUUAGGC	CGAA	ICAGGAUG	8210
422	CCUGCGC	U	AUGCUCUA	811	UGAGGCAU	CUGAUGAG	GCCGUUAGGC	CGAA	ICAGCAGG	8211
427	UGCUAUGC	C	UCAUCUUC	812	GAAGAUGA	CUGAUGAG	GCCGUUAGGC	CGAA	ICAUGCCA	8212
428	GCUAUGC	C	CAUCUUCU	813	AGAAGAUG	CUGAUGAG	GCCGUUAGGC	CGAA	IGCAUAGC	8213
430	UAUGCCUC	A	UCUUCUUG	814	CAAGAAGA	CUGAUGAG	GCCGUUAGGC	CGAA	IAGGCAJA	8214
433	GCCCUAUC	U	UCUUGGUU	815	CAACAAAGA	CUGAUGAG	GCCGUUAGGC	CGAA	IAUGAGGC	8215
436	UCAUCUUC	U	UGUGGGUU	816	ACCAAAAC	CUGAUGAG	GCCGUUAGGC	CGAA	IAAGAUGA	8216
446	GUUGGUUC	U	UCUGGACU	817	AGUCCAGA	CUGAUGAG	GCCGUUAGGC	CGAA	IAACCAAC	8217
449	GGUUCUUC	U	GGACUAUC	818	GAUAGUCC	CUGAUGAG	GCCGUUAGGC	CGAA	IAAGAACCC	8218
454	UUCUGGAC	C	UACAAGGU	819	ACCUUAGU	CUGAUGAG	GCCGUUAGGC	CGAA	IUCCAGAA	8219
458	GGACUAUC	A	AGGU AUGU	820	ACAUACCU	CUGAUGAG	GCCGUUAGGC	CGAA	IAUAGUCC	8220
470	UAUGUUGC	C	CGUUUGUC	821	GACAAACG	CUGAUGAG	GCCGUUAGGC	CGAA	ICAACAUJA	8221
471	AUGGUUGC	C	GUUUGUCC	822	GGACAAAC	CUGAUGAG	GCCGUUAGGC	CGAA	IGCAACAU	8222
479	CGUUUGUC	C	UCUAAUUC	823	GAUUUAGA	CUGAUGAG	GCCGUUAGGC	CGAA	IACAAACG	8223
480	GUUGUGUC	C	CUAAUUCC	824	GGAAUUAG	CUGAUGAG	GCCGUUAGGC	CGAA	IGACAAAC	8224
482	UGUGCCUC	U	AAUUCAG	825	CGGAAAUU	CUGAUGAG	GCCGUUAGGC	CGAA	IAGGACZA	8225
488	UCUAAUUC	C	AGGAUCAU	826	AUGAUCCU	CUGAUGAG	GCCGUUAGGC	CGAA	IAAUUAGA	8226
489	CUAAUUC	C	GGAUCAUC	827	GAUGAUCC	CUGAUGAG	GCCGUUAGGC	CGAA	IGAAUUAG	8227
482	UGUGCCUC	U	AAUUCAG	828	GUUDGUUGA	CUGAUGAG	GCCGUUAGGC	CGAA	IAUCCUGG	8228
495	CCAGGAUC	A	UCAACAAAC	828	GUUDGUUGA	CUGAUGAG	GCCGUUAGGC	CGAA	IAUGAUCC	8229
498	GGAUCAUC	A	ACAACCAG	829	CUGGGUUGU	CUGAUGAG	GCCGUUAGGC	CGAA	IAAUUAGA	8226
501	UCAUCAAC	A	ACCAGCAC	830	GUUGCUGGG	CUGAUGAG	GCCGUUAGGC	CGAA	IUUGAUGA	8230
504	UCAAAAC	C	AGCACCCGG	831	CGGGGGCU	CUGAUGAG	GCCGUUAGGC	CGAA	IUUGUGCA	8231
505	CAAACAAC	C	GCACCGGA	832	UCCGGUGC	CUGAUGAG	GCCGUUAGGC	CGAA	IGUUGUJG	8232
508	CAACCGAC	A	CCGGACCA	833	UGGUCCCCG	CUGAUGAG	GCCGUUAGGC	CGAA	ICUGGUDG	8233
510	ACCGGAC	C	GGACCAUG	834	CAUGGUCC	CUGAUGAG	GCCGUUAGGC	CGAA	IUGGUUGU	8234
515	CACCGGAC	C	AUGCAAAA	835	UUUUGCAU	CUGAUGAG	GCCGUUAGGC	CGAA	IUCCGGUG	8235
516	ACCGGAC	A	UGCAAAAC	836	GUUUUGCA	CUGAUGAG	GCCGUUAGGC	CGAA	IGUCCGGU	8236
520	GACCAUC	A	AAAC CUGC	837	GCAGGGUUU	CUGAUGAG	GCCGUUAGGC	CGAA	ICAUGGUJC	8237
525	UGCAAAAC	C	UGCACAAAC	838	GUUDGUGCA	CUGAUGAG	GCCGUUAGGC	CGAA	IUUUUGCA	8238
526	GCAAAAC	C	GCACAAUC	839	AGUUGUGC	CUGAUGAG	GCCGUUAGGC	CGAA	IGUUUUGC	8239
529	AAACCUGC	A	CAACUCU	840	AGGAGUUG	CUGAUGAG	GCCGUUAGGC	CGAA	ICAGGUJJ	8240
531	ACCUGCAC	A	ACUCUGC	841	GCAGGGAG	CUGAUGAG	GCCGUUAGGC	CGAA	IUGGCAGGU	8241
534	UGCACAAAC	U	CCUGCUCA	842	UGAGGAGG	CUGAUGAG	GCCGUUAGGC	CGAA	IUUGUGCA	8242
536	CACAAUC	C	UGCUCAAG	843	CUUGAGCA	CUGAUGAG	GCCGUUAGGC	CGAA	IAUGUUGJ	8243
537	ACAACUC	C	GCUCAAAG	844	CCUUGAGC	CUGAUGAG	GCCGUUAGGC	CGAA	IGAGUUGU	8244

540	ACUCUGG C U CAAGGAAC	845	GUUCCUU G CUGAUGAG	GCCGUUAGGC	CGAA ICAGGAGU	824 5
542	UCCUGCU C A AGGAACCU	846	AGGUUCCU CUGAUGAG	GCCGUUAGGC	CGAA IAGGAGGA	824 6
549	CAAGGAAC C UCUAUGUU	847	AACAUAGA CUGAUGAG	GCCGUUAGGC	CGAA IUUCCUJG	824 7
550	AAGGAAC C U CUAUGUUU	848	AAACAUAG CUGAUGAG	GCCGUUAGGC	CGAA IGUUCCU	824 8
552	GGAAACCUC U AUGUUUCC	849	GAAAACAU CUGAUGAG	GCCGUUAGGC	CGAA IAGGUICC	824 9
560	UAUGUUUC C CUAUGUU	850	AAACAUGAG CUGAUGAG	GCCGUUAGGC	CGAA IAAACAU	825 0
561	AUGUUUDC C UCAUGUUG	851	CAACAUAGA CUGAUGAG	GCCGUUAGGC	CGAA IGAACAU	825 1
562	UGUUUCCC U CAUGUGC	852	GAAACAUG CUGAUGAG	GCCGUUAGGC	CGAA IGGAAACA	825 2
564	UUUCCUC A UGUUGCUG	853	CAGGAACA CUGAUGAG	GCCGUUAGGC	CGAA IAGGAA	825 3
571	CAUGUUGC U GUACAAAA	854	UUUUGUAC CUGAUGAG	GCCGUUAGGC	CGAA ICAACAU	825 4
576	UGCGUGUAC A AAACCUAC	855	GUAGGUUU CUGAUGAG	GCCGUUAGGC	CGAA IUACAGCA	825 5
581	UACAAAAC C UACGACG	856	CGUCCGU A CUGAUGAG	GCCGUUAGGC	CGAA IUUUGUA	825 6
582	ACAAAAC C UACGACGG	857	CCGUCCGU CUGAUGAG	GCCGUUAGGC	CGAA IGUUUTGU	825 7
595	ACGGAAAC U GCACUGU	858	ACAGGGUG CUGAUGAG	GCCGUUAGGC	CGAA TUUCCGU	825 8
598	GAAAUCGC A CCUGUAUU	859	AAUACAGG CUGAUGAG	GCCGUUAGGC	CGAA ICAGUUDC	825 9
600	AACUGCAC C UGUAUUCC	860	GGAAUACU CUGAUGAG	GCCGUUAGGC	CGAA IUGGAGU	826 0
601	ACUGCAC C UGUAUUCC	861	GGGAAUAC CUGAUGAG	GCCGUUAGGC	CGAA IGUGCAGU	826 1
608	CUGUAUUC C CAUCCCCAU	862	AUGGGGAU CUGAUGAG	GCCGUUAGGC	CGAA IAAUACAG	826 2
609	UGUAUUC C AUCCCAUC	863	GAUGGGAU CUGAUGAG	GCCGUUAGGC	CGAA IGAUACCA	826 3
610	GUAUUCCC A UCCCAUCA	864	UGAUGGGU CUGAUGAG	GCCGUUAGGC	CGAA IGGAAUAC	826 4
613	UUCCCAUC C CAUCAUCU	865	AGAUGAUG CUGAUGAG	GCCGUUAGGC	CGAA IAUGGGAA	826 5
614	UCCCAUCC C AUCAUCU	866	AGAUGAU CUGAUGAG	GCCGUUAGGC	CGAA IGAUGGGA	826 6
615	CCCAUCCC A UCAUCUUG	867	CAAGAUGA CUGAUGAG	GCCGUUAGGC	CGAA IGGAUJGG	826 7
618	AUCCCAUC A UCUGGGGC	868	GCCCCAAGA CUGAUGAG	GCCGUUAGGC	CGAA IAUGGGAU	826 8
621	CCAUCAU C UGGGUUU	869	AAAGCCCCA CUGAUGAG	GCCGUUAGGC	CGAA IAUGAUGG	826 9
627	UCUUGGGC U UUCGCAA	870	UUUGCGAA CUGAUGAG	GCCGUUAGGC	CGAA ICCCAAGA	827 0
633	GCUUUCGC A AAAUACCU	871	AGGUUAAA CUGAUGAG	GCCGUUAGGC	CGAA ICGAAAGC	827 1
640	CAAAAUAC C UAUGGGAG	872	CUCCCCAA CUGAUGAG	GCCGUUAGGC	CGAA IUUUUUG	827 2
641	AAAAAUAC C UAUGGAGU	873	ACUCCCCAU CUGAUGAG	GCCGUUAGGC	CGAA IGUAIUUU	827 3
654	GAGGGGCC C UCAGUCCG	874	CGGACUGA CUGAUGAG	GCCGUUAGGC	CGAA ICCCAUC	827 4
655	AGUGGGCC U CAGUCCGU	875	ACGGACUG CUGAUGAG	GCCGUUAGGC	CGAA IGCCAACU	827 5
657	UGGGCCUC A GUCCGUU	876	AAACGGAC CUGAUGAG	GCCGUUAGGC	CGAA IAGGCCCA	827 6
661	CCUCAGUC C GUUUCUCU	877	AGAGAAAC CUGAUGAG	GCCGUUAGGC	CGAA IACUGAGG	827 7
667	UCCGUUUUC U CUUGGCUC	878	GAGCCAAG CUGAUGAG	GCCGUUAGGC	CGAA IAAACGGA	827 8
669	CGUUUCUC U UGGCUCAG	879	CUGAGGCCA CUGAUGAG	GCCGUUAGGC	CGAA IAGAAACG	827 9
674	CUCUUGGGC U CAGUUUAC	880	GUAAACUG CUGAUGAG	GCCGUUAGGC	CGAA ICCAAGAG	828 0
676	CUUUGGCUC A GUUACUA	881	UAGUAAAAC CUGAUGAG	GCCGUUAGGC	CGAA IAGCCAAAG	828 1

683	CAGUUUAC	U	AGUGCCAU	882	AUGGCCACU	CUGAUGAG	GCCGUUAGGC	CGAA	IUAAACUG	8282
689	ACUAGUGC	C	AUUGGUUC	883	GAACAAAU	CUGAUGAG	GCCGUUAGGC	CGAA	ICACUAGU	8283
690	CUAGUGCC	A	UUUGGUCA	884	UGAACAAA	CUGAUGAG	GCCGUUAGGC	CGAA	IGCACUAG	8284
698	AUUGGUUC	A	GUGGUUCG	885	CGAACACC	CUGAUGAG	GCCGUUAGGC	CGAA	IAACAAAAU	8285
713	CGUAGGGC	U	UUCCCCCA	886	UGGGGGAA	CUGAUGAG	GCCGUUAGGC	CGAA	ICCCUACG	8286
717	GGGCUUUC	C	CCACACUGU	887	ACAGUGGG	CUGAUGAG	GCCGUUAGGC	CGAA	IAAAGCCC	8287
718	GGCUUUUC	C	CCACUGUC	888	GACAGUGG	CUGAUGAG	GCCGUUAGGC	CGAA	IGAAAGCC	8288
719	GCUTUUC	C	CACUGUCU	889	AGACAGUG	CUGAUGAG	GCCGUUAGGC	CGAA	IGGAAAGC	8289
720	CUUUC	C	ACUGUCUG	890	CAGACAGU	CUGAUGAG	GCCGUUAGGC	CGAA	IGGGAAAG	8290
721	UUUCCCC	A	CUGUCUGG	891	CCAGACAG	CUGAUGAG	GCCGUUAGGC	CGAA	IGGGGAAA	8291
723	UCCCCCAC	U	GUCUGGCC	892	AGCCAGAC	CUGAUGAG	GCCGUUAGGC	CGAA	IUGGGGAA	8292
727	CCACUGUC	U	GGCUUUCA	893	UGAAAGCC	CUGAUGAG	GCCGUUAGGC	CGAA	IACAGUGG	8293
731	UGUCUGGC	U	UUCAGUUA	894	UAACUGAA	CUGAUGAG	GCCGUUAGGC	CGAA	ICCCAGACA	8294
735	UGGCUUUC	A	GUUAUAUG	895	CAUAAUAC	CUGAUGAG	GCCGUUAGGC	CGAA	IAAAGCCA	8295
764	UJGGGGGC	C	AAGUCUGU	896	ACAGACUU	CUGAUGAG	GCCGUUAGGC	CGAA	ICCCCCAA	8296
765	UGGGGGC	A	AGUCUGUA	897	UACAGACU	CUGAUGAG	GCCGUUAGGC	CGAA	IGCCCCCA	8297
770	GCCAAGUC	U	GUACAAACA	898	UGUUGUAC	CUGAUGAG	GCCGUUAGGC	CGAA	IACUUGGC	8298
775	GUCUGUAC	A	ACAUCUUG	899	CAAGAAGU	CUGAUGAG	GCCGUUAGGC	CGAA	IUACAGAC	8299
778	UGUACAAAC	A	UCUUGAGU	900	ACUAAAGA	CUGAUGAG	GCCGUUAGGC	CGAA	IUUGUACAA	8300
781	ACAAACU	U	UGAGUCCC	901	GGGACUCA	CUGAUGAG	GCCGUUAGGC	CGAA	IAUGUDGU	8301
788	CUUGAGUC	C	CUUUAUGC	902	GCAUAAAAG	CUGAUGAG	GCCGUUAGGC	CGAA	IACUCAAG	8302
789	UUGAGUCC	C	UUUAUGCC	903	GCCAUAAA	CUGAUGAG	GCCGUUAGGC	CGAA	IGACUCAA	8303
790	UGAGUCC	U	UUAUGCCG	904	CGGCAUAA	CUGAUGAG	GCCGUUAGGC	CGAA	IGGACUCA	8304
797	CUUUAUGC	C	GCUGUUAC	905	GUAAACAGC	CUGAUGAG	GCCGUUAGGC	CGAA	ICAUAAAAG	8305
800	UAUGCCGC	U	GUUACCAA	906	UGGUUAAC	CUGAUGAG	GCCGUUAGGC	CGAA	ICGGCAUA	8306
806	GCUGGUAC	C	AAUUUUUCU	907	AGAAAAAU	CUGAUGAG	GCCGUUAGGC	CGAA	IUAAACAGC	8307
807	CUGUUAC	A	AUUUUCUU	908	AGAAAAAU	CUGAUGAG	GCCGUUAGGC	CGAA	IGUAAACAG	8308
814	CAAUUUUC	U	UUUGGUUU	909	AGACAAA	CUGAUGAG	GCCGUUAGGC	CGAA	IAAAAUG	8309
821	CUUUGUIC	U	UUGGGGUAU	910	AUACCCAA	CUGAUGAG	GCCGUUAGGC	CGAA	IAACAAAAG	8310
832	GGGUUAUC	A	UUUAAACC	911	GGUUUUAA	CUGAUGAG	GCCGUUAGGC	CGAA	IUAUACCC	8311
840	AUUAAAAC	C	CUCACAAA	912	UUUGUGAG	CUGAUGAG	GCCGUUAGGC	CGAA	IUUAAAUAU	8312
841	UUUAAAAC	C	UCACAAAA	913	UUUUGUGA	CUGAUGAG	GCCGUUAGGC	CGAA	IGUUUAAA	8313
842	UUAAAACC	C	CACAAAC	914	GUUUUGUG	CUGAUGAG	GCCGUUAGGC	CGAA	IGGUUUAAA	8314
844	AAACCCUC	A	CAAAACAA	915	UUUUUUUD	CUGAUGAG	GCCGUUAGGC	CGAA	IAGGGGUU	8315
846	ACCCUCAC	A	AAACAAAAA	916	UUUUUUUU	CUGAUGAG	GCCGUUAGGC	CGAA	IUGAGGGU	8316
851	CACAAAAC	A	AAAAGAUG	917	CAUCUUUU	CUGAUGAG	GCCGUUAGGC	CGAA	IUUUUGUG	8317
869	GGAUAAUC	C	CUUACUU	918	AAAGUAAG	CUGAUGAG	GCCGUUAGGC	CGAA	IAAUAUCC	8318

870	GAUUUUC C UUAACUUC	919	GAAGUUAA CUGAUGAG	GCCGUUAGGC	CGAA	IGAAUAU	8319
871	AUAUUCC C UUAACUCA	920	UGAAGUUU CUGAUGAG	GCCGUUAGGC	CGAA	IGGAAUAU	8320
876	CCCUUAC U UCAUGGGA	921	UCCCauga CUGAUGAG	GCCGUUAGGC	CGAA	IUUAGGG	8321
879	UUAACUUC A UGGGAUAU	922	AUAUCCCA CUGAUGAG	GCCGUUAGGC	CGAA	IAAGUAAA	8322
906	GUUGGGGC A CAUGCCA	923	UGGCAAAUG CUGAUGAG	GCCGUUAGGC	CGAA	ICCCCAAC	8323
908	UGGGCAC A UGGCACA	924	UGGGCAA CUGAUGAG	GCCGUUAGGC	CGAA	IUGCCCCA	8324
913	CACAUUGC C ACAGAAC	925	GUUCCUGU CUGAUGAG	GCCGUUAGGC	CGAA	ICAUGUG	8325
914	ACAUUGGC A CAGGAACA	926	UGUUCUCG CUGAUGAG	GCCGUUAGGC	CGAA	IGCAAUGU	8326
916	AUUGGCCAC A GGAAUAA	927	UAUGUUCU CUGAUGAG	GCCGUUAGGC	CGAA	IUGCCAAU	8327
922	ACAGGAAC A UAUUGUAC	928	GUACAAAU CUGAUGAG	GCCGUUAGGC	CGAA	IUUCUGU	8328
931	UAUUGUAC A AAAAUCA	929	UGAUUUUU CUGAUGAG	GCCGUUAGGC	CGAA	IUACAAUA	8329
939	AAAAAAUC A AAAUGUGU	930	ACACAUUU CUGAUGAG	GCCGUUAGGC	CGAA	IAUUUUUU	8330
958	UAGGAAAC U UCCUGUAA	931	UOACAGGA CUGAUGAG	GCCGUUAGGC	CGAA	IUUUCUJA	8331
961	GAAACUUC C UGUAACAA	932	UGUUUACA CUGAUGAG	GCCGUUAGGC	CGAA	IAAGUUJC	8332
962	AAACUUC C GUAAACAG	933	CUGUUUAC CUGAUGAG	GCCGUUAGGC	CGAA	IGAAGUUJ	8333
969	CUGUAAAC A GGCCUAAU	934	AAUAGGCC CUGAUGAG	GCCGUUAGGC	CGAA	IUUUACAG	8334
973	AAACAGGC C UAUUGAUU	935	AAUCAAAU CUGAUGAG	GCCGUUAGGC	CGAA	IICCUGUU	8335
974	AAACAGGC C UUUGAUUG	936	CAAUCAAU CUGAUGAG	GCCGUUAGGC	CGAA	IGCCUGUU	8336
994	AGUAUGUC A ACGAUUG	937	CAAUUCGU CUGAUGAG	GCCGUUAGGC	CGAA	IACAUACU	8337
1009	UGUGGGUC U UUUGGGU	938	ACCCCCAA CUGAUGAG	GCCGUUAGGC	CGAA	IACCCACAA	8338
1022	GGGUUUGC C GCCCCUUU	939	AAAGGGGC CUGAUGAG	GCCGUUAGGC	CGAA	ICAAACCC	8339
1025	UUUGCCGC C CCUUUCAC	940	GUAAAAGG CUGAUGAG	GCCGUUAGGC	CGAA	IGGGCAA	8340
1026	UUGCCGEC C CUUUCACG	941	CGUGAAAG CUGAUGAG	GCCGUUAGGC	CGAA	IGGGGCAA	8341
1027	UGCCGCC C UUUCACGC	942	GGGUGAAA CUGAUGAG	GCCGUUAGGC	CGAA	IGGGGGCA	8342
1028	GCCGCCCC U UUACAGCA	943	UGCGUGAA CUGAUGAG	GCCGUUAGGC	CGAA	IGGGGGC	8343
1032	CCCCUUC C CGCAUGU	944	ACAUUUCG CUGAUGAG	GCCGUUAGGC	CGAA	IAAAGGG	8344
1036	UUUACGC A AUGUGGAU	945	AUCCACAU CUGAUGAG	GCCGUUAGGC	CGAA	IGGUGAAA	8345
1049	GGAUUUUC U GCUUAAA	946	AUAAAAGC CUGAUGAG	GCCGUUAGGC	CGAA	IAAUUCC	8346
1052	UAUUCUGC U UUAUGCC	947	GGCAUAAA CUGAUGAG	GCCGUUAGGC	CGAA	ICAGAAUA	8347
1060	UUUAAUGC C UUUUAUG	948	CAUAAAAA CUGAUGAG	GCCGUUAGGC	CGAA	ICAUUAAA	8348
1061	UUAAUGGC U UUUAUGC	949	GCAUAAA CUGAUGAG	GCCGUUAGGC	CGAA	IGCAUAAA	8349
1070	UUUAUGC A UGCAUACA	950	UGUAUGCA CUGAUGAG	GCCGUUAGGC	CGAA	ICAUUAAA	8350
1074	AUGCAUGC A UACAGCA	951	UGCUUUGUA CUGAUGAG	GCCGUUAGGC	CGAA	ICAUGCAU	8351
1078	AUGCAUAC A AGCAAAAC	952	GUUUUGCU CUGAUGAG	GCCGUUAGGC	CGAA	IUAUGCAU	8352
1082	AUACAAGC A AAACAGGC	953	GCCUGUUUU CUGAUGAG	GCCGUUAGGC	CGAA	ICUUGUAU	8353
1087	AGCAAAAC A GGCUUUUA	954	UAAAAGCC CUGAUGAG	GCCGUUAGGC	CGAA	IUUUUGCU	8354
1091	AAACAGGC U UUACUUU	955	AAAGUAAA CUGAUGAG	GCCGUUAGGC	CGAA	ICCUUGUU	8355

1097	GCUUUUAC	U	UUCUCGCC	956	GGCGAGAA	CUGAUGAG	GCCGUUAGGC	CGAA	IUAAGC	8356
1101	UUACUUUC	U	CGCCAACU	957	AGUJGGCG	CUGAUGAG	GCCGUUAGGC	CGAA	IAAAAGUA	8357
1105	UUUCUCGC	C	AACUUAAC	958	UGUJAAGU	CUGAUGAG	GCCGUUAGGC	CGAA	ICGAGAAA	8358
1106	UUCUCGC	C	ACUUAACAA	959	UGUUAAGU	CUGAUGAG	GCCGUUAGGC	CGAA	IGCGAGAA	8359
1109	UCGCCAAC	U	UACAAGGC	960	GCCUJUGUA	CUGAUGAG	GCCGUUAGGC	CGAA	IUTGGCGA	8360
1113	CAACUUAC	A	AGGCCUUU	961	AAAGGCCU	CUGAUGAG	GCCGUUAGGC	CGAA	IUAAGUUG	8361
1118	UACAAGGC	C	UUUCUAAG	962	CUJAGAAA	CUGAUGAG	GCCGUUAGGC	CGAA	ICCUUJGUA	8362
1119	ACAAGGCC	U	UUCUAAGU	963	ACUJAGAA	CUGAUGAG	GCCGUUAGGC	CGAA	IGCCUJGU	8363
1123	GGCCUUUC	U	AAGUAAAC	964	GUUJACUU	CUGAUGAG	GCCGUUAGGC	CGAA	IAAAGGCC	8364
1132	AAGUAAAC	A	GUAGUGA	965	UCACAUAC	CUGAUGAG	GCCGUUAGGC	CGAA	IUUUACUU	8365
1143	AUGUGAAC	C	UUUACCCC	966	GGGGUAAA	CUGAUGAG	GCCGUUAGGC	CGAA	IUUUCACAU	8366
1144	UGUGAAC	C	UUACCCCC	967	CGGGGUAA	CUGAUGAG	GCCGUUAGGC	CGAA	IGUUCACAU	8367
1149	ACCUUUAC	C	CCGUUGCU	968	AGCAACGG	CUGAUGAG	GCCGUUAGGC	CGAA	IUAAGGU	8368
1150	CCUUUAC	C	CGUUGCUC	969	GAGGAACG	CUGAUGAG	GCCGUUAGGC	CGAA	IGUAAAAGG	8369
1151	CUUUACCC	C	GUUGCUUG	970	CGAGCAAC	CUGAUGAG	GCCGUUAGGC	CGAA	IGGUAAAAG	8370
1157	CCCGUUGC	U	CGGCAACG	971	CGUJGCGC	CUGAUGAG	GCCGUUAGGC	CGAA	ICAACGGG	8371
1162	UGCUCGGC	A	ACGGCCUG	972	CAGGCCGU	CUGAUGAG	GCCGUUAGGC	CGAA	ICCGAGCA	8372
1168	GCAACGGC	C	UGGUUCUAU	973	AUAGACCA	CUGAUGAG	GCCGUUAGGC	CGAA	ICCGGUJG	8373
1169	CAACGGGC	U	GGGUCAUG	974	CAUAGACC	CUGAUGAG	GCCGUUAGGC	CGAA	IGCCGUJUG	8374
1174	GCCUGGU	C	AUGCAAG	975	CUUJGGCAU	CUGAUGAG	GCCGUUAGGC	CGAA	IACCGGC	8375
1179	GUCUAUGC	C	AAGGUUUU	976	AAACACUU	CUGAUGAG	GCCGUUAGGC	CGAA	ICAUAGAC	8376
1180	UCUAUGGC	A	AGGUUUG	977	CAAACACU	CUGAUGAG	GCCGUUAGGC	CGAA	IGCAUAGA	8377
1190	GUGUUUGC	U	GACGCAAC	978	GUJGCGUC	CUGAUGAG	GCCGUUAGGC	CGAA	ICAAACAC	8378
1196	GCUGACGC	A	ACCCCCAC	979	GUJGGGGU	CUGAUGAG	GCCGUUAGGC	CGAA	ICGUACAG	8379
1199	GACGCAAC	C	CCCAUCGG	980	CCAGUGGG	CUGAUGAG	GCCGUUAGGC	CGAA	IUJGCGUC	8380
1200	ACGCAACC	C	CCACUGGU	981	ACCAUGGG	CUGAUGAG	GCCGUUAGGC	CGAA	IGUJGGGU	8381
1201	CGCAACCC	C	CACUGGUU	982	AACCAGUG	CUGAUGAG	GCCGUUAGGC	CGAA	IGGUUGCC	8382
1202	GCAACCCC	C	ACUGGUUG	983	CAACCAGU	CUGAUGAG	GCCGUUAGGC	CGAA	IGGGGUJC	8383
1203	CAACCCCC	A	CUGGUUGG	984	CCAAACAG	CUGAUGAG	GCCGUUAGGC	CGAA	IGGGGUJUG	8384
1205	ACCCCCAC	U	GGUUGGG	985	CCCCAAC	CUGAUGAG	GCCGUUAGGC	CGAA	IUGGGGU	8385
1215	GUUGGGGC	U	UGGCACUA	986	UAUGGCCA	CUGAUGAG	GCCGUUAGGC	CGAA	ICCCCAAC	8386
1220	GGCUUUGC	C	AUAGGCCA	987	UGGCCUAU	CUGAUGAG	GCCGUUAGGC	CGAA	ICCAAGCC	8387
1221	GCUUGGCG	A	UAGGCCAU	988	AUGGCCAU	CUGAUGAG	GCCGUUAGGC	CGAA	IGCCZAAGC	8388
1227	CCAUVAGG	C	AUCAGCGC	989	GCGCUGAU	CUGAUGAG	GCCGUUAGGC	CGAA	ICCUUAUGG	8389
1228	CAUAGGGC	A	UCAGCGCA	990	UGCGCUGA	CUGAUGAG	GCCGUUAGGC	CGAA	IGCCUUAUG	8390
1231	AGGCCAUC	A	GCGCAUGC	991	GCAUGGCG	CUGAUGAG	GCCGUUAGGC	CGAA	IAUGGCCU	8391
1236	AUCAGGGC	A	UGGGUGGA	992	UCCACGCA	CUGAUGAG	GCCGUUAGGC	CGAA	IGCGCUGAU	8392

1247	CGUGGAAC C UUUGUGUC	993	GACACAAA CUGAUGAG GCCGUUAGGC CGAA IUUCCACG	8393
1248	GUUGGAACC U UUUGUGUC	994	AGACACAA CUGAUGAG GCCGUUAGGC CGAA IGGUCCAC	8394
1256	UUUGUGUC U CCUCUGCC	995	GGCAGAGG CUGAUGAG GCCGUUAGGC CGAA IACACAA	8395
1258	UGUGUCUC C UCUGCCGA	996	UCGGCGAGA CUGAUGAG GCCGUUAGGC CGAA TAGACACA	8396
1259	GUGUCUCC U CUGCCGAU	997	AUCGGCAG CUGAUGAG GCCGUUAGGC CGAA TAGACAC	8397
1261	GUCUCCUC U GCGGAUCC	998	GGAUCCGGC CUGAUGAG GCCGUUAGGC CGAA IAGGAGAC	8398
1264	UCCUDUGC C GAUCCAUA	999	UAUGGAAUC CUGAUGAG GCCGUUAGGC CGAA ICAGAGGA	8399
1269	UGCCGAUC C AUACCGCG	1000	CGGGGUAU CUGAUGAG GCCGUUAGGC CGAA IAUCGGCA	8400
1270	GCCGAUUC A UACCGCGG	1001	CCGGGGUA CUGAUGAG GCCGUUAGGC CGAA IGAUCGGC	8401
1274	AUCCAUC C GCGGAACU	1002	AGUUCCGGC CUGAUGAG GCCGUUAGGC CGAA IUUAGGAU	8402
1282	CGCGGAAC U CCUAGCCG	1003	GGCUAAGG CUGAUGAG GCCGUUAGGC CGAA IUUCCGCG	8403
1284	CGGAACUC C UAGCGCU	1004	AGCGGCCA CUGAUGAG GCCGUUAGGC CGAA IAGUCCG	8404
1285	GGAACUCU C AGCCGCU	1005	AGGCGGCC U CUGAUGAG GCCGUUAGGC CGAA IGAGUUCC	8405
1289	CUCCUAGC C GCUUUGUU	1006	AAACAAAGC CUGAUGAG GCCGUUAGGC CGAA ICUAGGAG	8406
1292	CUAGCCGC U UGUUJUGC	1007	GAACAAACA CUGAUGAG GCCGUUAGGC CGAA ICGGCUAG	8407
1301	UGUUUJUGC U CGCAGCAG	1008	CUIGCUGGC CUGAUGAG GCCGUUAGGC CGAA ICAAAACA	8408
1305	UGUCUCGC A GCAGGUCU	1009	AGACCUGC CUGAUGAG GCCGUUAGGC CGAA ICGAGCAA	8409
1308	CUCGCAGC A GGUCUGGG	1010	CCCAAGACC CUGAUGAG GCCGUUAGGC CGAA ICUGCGAG	8410
1313	AGCAGGUC U GGGGCAA	1011	UWUGCCCC CUGAUGAG GCCGUUAGGC CGAA IACCGCU	8411
1319	UCUGGGGC A AAACUCAU	1012	AUGAGUUU CUGAUGAG GCCGUUAGGC CGAA ICCCCAGA	8412
1324	GGCAAAAC U CAUCGGGA	1013	UCCCGGAU CUGAUGAG GCCGUUAGGC CGAA IUUUDGCC	8413
1326	CAAAACUC A UCGGGACU	1014	AGUCCCCA CUGAUGAG GCCGUUAGGC CGAA IAGUUUUG	8414
1334	AUCGGGAC U GACAUAUC	1015	GAUJJUGC CUGAUGAG GCCGUUAGGC CGAA IUCCCGAU	8415
1338	GGACUGAC A AUUCUGUC	1016	GACAGAAU CUGAUGAG GCCGUUAGGC CGAA IUCAGUCC	8416
1343	GACAAUUC U GUCGUGCU	1017	AGCZACGAC CUGAUGAG GCCGUUAGGC CGAA IAAUUGUC	8417
1351	UGUGGGUC U CUCCCGCA	1018	UGCGGGAG CUGAUGAG GCCGUUAGGC CGAA ICACGACA	8418
1353	UCCGUGCU C CCCGCAA	1019	UUGCGGG CUGAUGAG GCCGUUAGGC CGAA IAGCACGA	8419
1355	GUGCUCUC C CGCAAAUA	1020	UAUJJUGC CUGAUGAG GCCGUUAGGC CGAA TAGAGCAC	8420
1356	UGCUUCUC C GCAAAUAU	1021	AIAUJUGC CUGAUGAG GCCGUUAGGC CGAA IAGAGGCA	8421
1359	UCUCCCGC A AAAUUAACA	1022	UGUAUAUU CUGAUGAG GCCGUUAGGC CGAA IGGGAGA	8422
1367	AAAUAUAC A UCAUUUCC	1023	GGAAAUGA CUGAUGAG GCCGUUAGGC CGAA IUUAUUU	8423
1370	UAUACAUC A UUUCAUG	1024	CAUGGGAA CUGAUGAG GCCGUUAGGC CGAA IAUGUAUA	8424
1375	AUCAUUUC C AUGGCUGC	1025	GGAGGCCAU CUGAUGAG GCCGUUAGGC CGAA IAAUAGAU	8425
1376	UCAUUTUCC A UGGCUGCU	1026	AGCAAGCCA CUGAUGAG GCCGUUAGGC CGAA IGAIAAUGA	8426
1381	UCCAUGGC U GCUAGGCC	1027	AGCCUAGC CUGAUGAG GCCGUUAGGC CGAA ICCAUGGA	8427
1384	AUGGCUGC U AGGCUGUG	1028	CACAGGCC U CUGAUGAG GCCGUUAGGC CGAA ICAGCCAU	8428
1389	UGCUAGGGC U GGGCUGCC	1029	GGCAGGCAC CUGAUGAG GCCGUUAGGC CGAA ICCUAGCA	8429

1394	GGCUGUGGC U GCCAACUG	1030	CAGUUGGC CUGAUGAG	GCCGUUAGGC CGAA ICACAGCC	8430
1397	UGUGUGUC C AACUUGAU	1031	AUCCAGUU CUGAUGAG	GCCGUUAGGC CGAA ICAGCACCA	8431
1398	GUGGUGC C ACUGGAUC	1032	GAUCCAGU CUGAUGAG	GCCGUUAGGC CGAA IGGCCAC	8432
1401	CUGCCAAC U GGAUCCUA	1033	UAGGAUCC CUGAUGAG	GCCGUUAGGC CGAA IUUGGCAG	8433
1407	ACUGGAUC C UACGGGGG	1034	CCCGCGUA CUGAUGAG	GCCGUUAGGC CGAA IAUCAGGU	8434
1408	CUGGAUC U ACGGGGA	1035	UCCCCGCU CUGAUGAG	GCCGUUAGGC CGAA IGAUCCAG	8435
1421	GGGACGU C UUUGUOUA	1036	UAAACAAA CUGAUGAG	GCCGUUAGGC CGAA IAUGUCCC	8436
1422	GGACGUCC U UGGUUUAC	1037	GUAAACAA CUGAUGAG	GCCGUUAGGC CGAA IGACGUCC	8437
1434	UUUACGUC C CGUGGGCG	1038	CGCCGACG CUGAUGAG	GCCGUUAGGC CGAA IAUGUAAA	8438
1435	UUACGUCC C GUCCGCGC	1039	GCGGCCGAC CUGAUGAG	GCCGUUAGGC CGAA IGACGUAAA	8439
1444	GUCCGGGC U GAAUCCCG	1040	CGGGAUUC CUGAUGAG	GCCGUUAGGC CGAA IGGCCGAC	8440
1450	GCUGAAUC C CGCGACG	1041	CGUCCCGG CUGAUGAG	GCCGUUAGGC CGAA IAUCAGC	8441
1451	CUGAAUCC C GCGGACGA	1042	UCCGUCCGC CUGAUGAG	GCCGUUAGGC CGAA IGAUUCAG	8442
1461	CGGACGAC C CCUCCCGG	1043	CCGGGAGG CUGAUGAG	GCCGUUAGGC CGAA IUCGUCCG	8443
1462	GGACGAC C CUCCCGGG	1044	CCCCGGAG CUGAUGAG	GCCGUUAGGC CGAA IGUCGUCC	8444
1463	GACGACCC C UCCCCGGG	1045	CCCCGGGA CUGAUGAG	GCCGUUAGGC CGAA IGGUCGUIC	8445
1464	ACGACCCC U CCCGGGGC	1046	CCCCCGGG CUGAUGAG	GCCGUUAGGC CGAA IGGGUCCG	8446
1466	GACCCCCU C CGGGCCCG	1047	CCCCCCCC CUGAUGAG	GCCGUUAGGC CGAA IAGGGGUIC	8447
1467	ACCCCCUCC C GGGGCCGC	1048	GGGGCCCC CUGAUGAG	GCCGUUAGGC CGAA IAGGGGUIC	8448
1473	CCCCGGGC C GCUUUGGG	1049	CCCCAAAGC CUGAUGAG	GCCGUUAGGC CGAA ICCCGGG	8449
1476	GGGGCCGC U UGGGGCUC	1050	GAGCCCCA CUGAUGAG	GCCGUUAGGC CGAA IGGCCCC	8450
1483	CUUGGGGC U CUACCGCC	1051	GCGGGUAG CUGAUGAG	GCCGUUAGGC CGAA ICCCCAAAG	8451
1485	UGGGGCUC U ACCGGCCG	1052	CGGGGGGU CUGAUGAG	GCCGUUAGGC CGAA IAGCCCCA	8452
1488	GGCUCUAC C GCCCCGUU	1053	AAGGGGGC CUGAUGAG	GCCGUUAGGC CGAA IUAGAGCC	8453
1491	UCUACCGC C CGCUUCUC	1054	GAGAAAGC CUGAUGAG	GCCGUUAGGC CGAA ICGGUAGA	8454
1492	CUACCGCC C GCUUCUCC	1055	GGAGAAGC CUGAUGAG	GCCGUUAGGC CGAA IGGGGUAG	8455
1495	CCGCCCGC U UCUCGCC	1056	GCGGGAGA CUGAUGAG	GCCGUUAGGC CGAA IGGGGGG	8456
1498	CCCGCUUC U CGGCCUAU	1057	AUAGGGGG CUGAUGAG	GCCGUUAGGC CGAA IAAGGGGG	8457
1500	CGCUUUC C GCCUAUUG	1058	CAUAGGC CUGAUGAG	GCCGUUAGGC CGAA IAGAACCC	8458
1503	UUCUCCGC C UAUUGUAC	1059	GUACAAAU CUGAUGAG	GCCGUUAGGC CGAA IGGAGAA	8459
1504	UCUCCGJC U AUUGUACC	1060	GGUACAAU CUGAUGAG	GCCGUUAGGC CGAA IGGGAGAA	8460
1512	UAUUGUAC C GACCGUCC	1061	GGACGGUC CUGAUGAG	GCCGUUAGGC CGAA IUACAAUA	8461
1516	GUACCGAC C GUCCACGG	1062	CCGUGGAC CUGAUGAG	GCCGUUAGGC CGAA IUCGGUAC	8462
1520	CGACCGUC C ACGGGGCG	1063	CGCCCCGU CUGAUGAG	GCCGUUAGGC CGAA IAUGGUUCG	8463
1521	GACCGUC C CGGGCGC	1064	GGCCCCCG CUGAUGAG	GCCGUUAGGC CGAA IGACGGUC	8464
1530	CGGGGGCGC A CCUCUCUU	1065	AAGAGAGG CUGAUGAG	GCCGUUAGGC CGAA ICGCCCCG	8465
1532	GGGGCCAC C UCUCUUUA	1066	AAAAGAGA CUGAUGAG	GCCGUUAGGC CGAA IUGGGCCC	8466

1533	GGCGCACCC U CUCUUUAC	1067	GUAAAGAG CUGAUGAG GCCGUUAGGC CGAA IUGGCC	8467
1535	CGCACCUUC U CUUUACGC	1068	GCGUAAAAG CUGAUGAG GCCGUUAGGC CGAA IAGGUGC	8468
1537	CACCUUC U UUACGGGG	1069	CCGGGUAA CUGAUGAG GCCGUUAGGC CGAA TAGGGUG	8469
1548	ACGGGAC C CCCGUCU	1070	AGACGGGG CUGAUGAG GCCGUUAGGC CGAA IUCGGGU	8470
1550	GCGGACUC C CCGUCUGU	1071	ACAGACGG CUGAUGAG GCCGUUAGGC CGAA TAGUCCG	8471
1551	CGGACUCC C CGUCUGUG	1072	CACAGACG CUGAUGAG GCCGUUAGGC CGAA IAGGUCCG	8472
1552	GGACUCCC C GUCUGUGC	1073	GCAZAGAC CUGAUGAG GCCGUUAGGC CGAA IGGAGUCC	8473
1556	UCCCCGUIC U GUGCCUUC	1074	GAAGGGCA CUGAUGAG GCCGUUAGGC CGAA IACGGGA	8474
1561	GUCUGUGC C UUCUCAUC	1075	GAUGAGAA CUGAUGAG GCCGUUAGGC CGAA ICACAGAC	8475
1562	UCDUGUGC C UCUCAUU	1076	AGAUGAGA CUGAUGAG GCCGUUAGGC CGAA IGCACAGA	8476
1565	GUGCCUUC U CAUCUGCC	1077	GCCAGAUG CUGAUGAG GCCGUUAGGC CGAA IAAGGCAC	8477
1567	GCCUUCUC A UCUGCCGG	1078	CCGGCAGA CUGAUGAG GCCGUUAGGC CGAA IAGAAGGC	8478
1570	UUCUCAUC U GCGGGGAC	1079	GGUCCGGG CUGAUGAG GCCGUUAGGC CGAA IAUGAGAA	8479
1573	UCAUCUGC C GGACCGUG	1080	CACGGUCC CUGAUGAG GCCGUUAGGC CGAA ICAGAUGA	8480
1578	UGCCGGAC C GUGGCAC	1081	GUGCACAC CUGAUGAG GCCGUUAGGC CGAA IUCGGCA	8481
1585	CCGUGUGC A CUUCGCUU	1082	AAGGGAAG CUGAUGAG GCCGUUAGGC CGAA ICACACGG	8482
1587	GUGGAC C UCGCUUCA	1083	UGAAGGCA CUGAUGAG GCCGUUAGGC CGAA IUGCACAC	8483
1592	CACUUUCG C UCACUCU	1084	AGAGGGUGA CUGAUGAG GCCGUUAGGC CGAA ICGAAGUG	8484
1595	UUCGGUUUC A CCUCUGCA	1085	UGGAGAGG CUGAUGAG GCCGUUAGGC CGAA IAAGCMA	8485
1597	CGCUUCAC C UCUGCACG	1086	CGUGGAGA CUGAUGAG GCCGUUAGGC CGAA IUGAACCG	8486
1598	GCUUCACC C CUGCACGU	1087	ACGDUGCG CUGAUGAG GCCGUUAGGC CGAA IUGAACG	8487
1600	UUCACCUC U GCACGUUG	1088	CGACGUGC CUGAUGAG GCCGUUAGGC CGAA IAGGUGAA	8488
1603	ACCUUCGC A CGUCGCAU	1089	AUGCGACG CUGAUGAG GCCGUUAGGC CGAA ICAGAGGU	8489
1610	CACGUGCA U UGGAGACC	1090	GUUCUCCA CUGAUGAG GCCGUUAGGC CGAA ICGACGUJ	8490
1618	AUGGAGAC C ACCGUGAA	1091	UUCACCGU CUGAUGAG GCCGUUAGGC CGAA IUCUCCAU	8491
1619	UGGAGACCA CCGUGAAC	1092	GUUCACGG CUGAUGAG GCCGUUAGGC CGAA IUGUCCCA	8492
1621	GAGACCAC C GUGAACGC	1093	GGGUUCAC CUGAUGAG GCCGUUAGGC CGAA TUGGUUC	8493
1630	GUGAACGC C CACAGGAA	1094	UUCUCUGG CUGAUGAG GCCGUUAGGC CGAA ICGUUCAC	8494
1631	UGAACGCG C ACAGGAAC	1095	GUUCUCUG CUGAUGAG GCCGUUAGGC CGAA ICGGUUCA	8495
1632	GAACGCC C CAGGAACC	1096	GUUCUCUG CUGAUGAG GCCGUUAGGC CGAA IGGGUUC	8496
1634	ACGCCAAC C GGAAACCUUG	1097	CAGGUUCC CUGAUGAG GCCGUUAGGC CGAA IUGGGGU	8497
1640	ACAGGAAC C UGGCCAAG	1098	CUUUGGCA CUGAUGAG GCCGUUAGGC CGAA IUUCUGU	8498
1641	CAGGAAC C GCCCAAGG	1099	CCUUGGGC CUGAUGAG GCCGUUAGGC CGAA IGUUCUJ	8499
1644	GAACCUGC C CAAGGUCU	1100	AGACCUUG CUGAUGAG GCCGUUAGGC CGAA ICAGGUJC	8500
1645	AACCUGGC C AAGGUUCU	1101	AGACCUU CUGAUGAG GCCGUUAGGC CGAA IGCAGGUU	8501
1646	ACCUGCC C AGGUUCUG	1102	CAAGACCU CUGAUGAG GCCGUUAGGC CGAA IGGZAGGU	8502
1652	CCAAGGUC U UGCAUAAG	1103	CUUAUGCA CUGAUGAG GCCGUUAGGC CGAA IACCUUGG	8503

1656	GGCUUUGC A UAAGGAGGA	11.04	UCCUCUUUA CUGAUGAG	GCCGUUAGGC	CGAA TCAAGACC	8504
1666	AAGAGGAC U CUGGACU	11.05	AGUCCAAG CUGAUGAG	GCCGUUAGGC	CGAA TUCCUCUU	8505
1668	GAGGACUC U UGGACUUU	11.06	AAAGGUCCA CUGAUGAG	GCCGUUAGGC	CGAA TAGUCCUC	8506
1674	UCUUGGAC U UUCAGCAA	11.07	UJUGCUGAA CUGAUGAG	GCCGUUAGGC	CGAA TUCCAGA	8507
1678	GGACUUTUC A GCAAGUGC	11.08	GACAUUGC CUGAUGAG	GCCGUUAGGC	CGAA TAAAGUCC	8508
1681	CUUUCAGC A AUGUCAAC	11.09	GUUGACAU CUGAUGAG	GCCGUUAGGC	CGAA ICUGAAAG	8509
1687	GCAAUGUC A ACGCCGGA	11.10	UCGGUGCU CUGAUGAG	GCCGUUAGGC	CGAA IACAUUGC	8510
1693	UCAACGAC C GACCUUGA	11.11	UCAAGGUC CUGAUGAG	GCCGUUAGGC	CGAA IUCGUUGA	8511
1697	CGACCGAC C UGGAGGCA	11.12	UGCCUCAA CUGAUGAG	GCCGUUAGGC	CGAA IUCGGUCC	8512
1698	GACCGAC C UGAGGCAU	11.13	AUGGCCUCA CUGAUGAG	GCCGUUAGGC	CGAA IGUCGGUC	8513
1705	CUUGAGGC A UACUUCAA	11.14	UUGAAGUA CUGAUGAG	GCCGUUAGGC	CGAA ICCUCZAAG	8514
1709	AGGCAUAC U UCAAAGAC	11.15	GUUCUUUGA CUGAUGAG	GCCGUUAGGC	CGAA IUAUGCCU	8515
1712	CAUACUUUC A AAGACUGU	11.16	ACAGUCUU CUGAUGAG	GCCGUUAGGC	CGAA IAAGUADG	8516
1718	UCAAAGAC U GUGGUUUU	11.17	AAACACAC CUGAUGAG	GCCGUUAGGC	CGAA IUCUUUGA	8517
1769	UAAAAGGU C UGUACUA	11.18	UAGUACAA CUGAUGAG	GCCGUUAGGC	CGAA IACCUUUA	8518
1776	CUUUGUAC U AGGGGCCU	11.19	AGCCUCCU CUGAUGAG	GCCGUUAGGC	CGAA IUACAAAG	8519
1784	UAGGAGGC U GUAGGCAU	11.20	AUGGCCUAC CUGAUGAG	GCCGUUAGGC	CGAA ICCUCCUA	8520
1791	CUGUAGGC A UAAAUGG	11.21	CCAAUUUA CUGAUGAG	GCCGUUAGGC	CGAA ICCUACAG	8521
1807	GUGGUGUIC A CCAGCACC	11.22	GGUGGUGG CUGAUGAG	GCCGUUAGGC	CGAA IAACACAC	8522
1809	GUGGUUAC C AGCACCAU	11.23	AUGGUGCU CUGAUGAG	GCCGUUAGGC	CGAA IUGAACAC	8523
1810	UGUUCACC A GCACCAUG	11.24	CAUGGGUGC CUGAUGAG	GCCGUUAGGC	CGAA IGUGAACACA	8524
1813	UCACCAAGC A CCAUGCAA	11.25	UJGCAUGG CUGAUGAG	GCCGUUAGGC	CGAA ICUGGUGA	8525
1815	ACCGGAC C AUGCAACU	11.26	AGUUGCAU CUGAUGAG	GCCGUUAGGC	CGAA IUGUGGU	8526
1816	CCAGGCAC A UGCAACUU	11.27	AAGUUGCA CUGAUGAG	GCCGUUAGGC	CGAA IGUGUGG	8527
1820	CACCAUGC A ACUUUUC	11.28	GAAAAAAGU CUGAUGAG	GCCGUUAGGC	CGAA ICAUGGU	8528
1823	CAUGCAAC U UUUUACCC	11.29	GGUGAAAA CUGAUGAG	GCCGUUAGGC	CGAA IUGCAUG	8529
1829	ACUUUUUC A CCUCUGCC	11.30	GGCAGAGG CUGAUGAG	GCCGUUAGGC	CGAA IAAAAGU	8530
1831	UUUUUCAC C UCUGCCUA	11.31	UAGGGCAGA CUGAUGAG	GCCGUUAGGC	CGAA IUGAAAAA	8531
1832	UUUUUCAC U CUGCUUA	11.32	UJAGGGCAG CUGAUGAG	GCCGUUAGGC	CGAA IGUGAAAA	8532
1834	UUCACCUC U GCCUAAUC	11.33	GAUUAGGC CUGAUGAG	GCCGUUAGGC	CGAA TAGGUAA	8533
1837	ACCUCUGC C UAAUCAUC	11.34	GAUGAUUA CUGAUGAG	GCCGUUAGGC	CGAA ICAGAGGU	8534
1838	CCUCUGCC U AAUCAUCU	11.35	AGAUGAUU CUGAUGAG	GCCGUUAGGC	CGAA IGGAGAGG	8535
1843	GCCUAAUC A UCUCAU	11.36	ACAUGAGA CUGAUGAG	GCCGUUAGGC	CGAA IAUUAGGC	8536
1846	UAAUCAUC U CAUGUUC	11.37	UGAACAAUG CUGAUGAG	GCCGUUAGGC	CGAA IAUGAUOA	8537
1848	AUCAUUC C UGUUCAUG	11.38	CAUGAACAC CUGAUGAG	GCCGUUAGGC	CGAA IAGAUGAU	8538
1854	UCAUGUUU C UGUCUAC	11.39	GUAGGACA CUGAUGAG	GCCGUUAGGC	CGAA IAACAUAGA	8539
1859	UUCAUUGUC C UACUGUUC	11.40	GAACAGUA CUGAUGAG	GCCGUUAGGC	CGAA IACAUAGAA	8540

1860	UCAUGUCC U ACUGGUCA	1141	UGAACACGU CUGAUGAG GCCGUUAGGC CGAA TGACAUGA	8541
1863	UGUCCUAC U GUUCAAGC	1142	GCUUGAAC CUGAUGAG GCCGUUAGGC CGAA TUAGGACA	8542
1868	UACUGUUC A AGCCUCCA	1143	UGGAGGCC U CUGAUGAG CGCGUUAGGC CGAA IAACAGUA	8543
1872	GUUCAAGC C UCCAAGCU	1144	AGCUUDDGA CUGAUGAG CGCGUUAGGC CGAA ICUUGAAC	8544
1873	UUCAAAGCC U CCAAGCUG	1145	CAGCUUJGG CUGAUGAG CGCGUUAGGC CGAA ICGUUGAA	8545
1875	CAAGCCUC C AAGCUJGUG	1146	CACAGCUU CUGAUGAG CGCGUUAGGC CGAA IAGGCUU	8546
1876	AAGCCUC C AGCUJGUGC	1147	GCACAGCU CUGAUGAG CGCGUUAGGC CGAA IGAGGCUU	8547
1880	CUCCAAGC U GUGCUUUG	1148	CAAGGCAC CUGAUGAG CGCGUUAGGC CGAA ICUGGGAG	8548
1885	AGCUUGGC C UGGGGUGG	1149	CCACCCAA CUGAUGAG CGCGUUAGGC CGAA ICACAGCU	8549
1886	GCUGUGGC U UGGGGUGC	1150	GCCACCCCA CUGAUGAG CGCGUUAGGC CGAA IGCACAGC	8550
1895	UGGGUGGC U UGGGGCA	1151	UGCCCCAA CUGAUGAG CGCGUUAGGC CGAA ICCACCCA	8551
1903	UUUGGGGC A UGGACAUU	1152	ADUGUCCA CUGAUGAG CGCGUUAGGC CGAA ICCACAA	8552
1909	GCAUGGAC A UUGACCCG	1153	CGGGGUCAA CUGAUGAG CGCGUUAGGC CGAA IUCCAUGC	8553
1915	ACAUUGAC C CGUAAA	1154	UUAUACG CUGAUGAG CGCGUUAGGC CGAA IUCAAUCU	8554
1916	CAUUGACCC C GUUAAAAG	1155	CUUUAUAC CUGAUGAG CGCGUUAGGC CGAA IGUCAAUG	8555
1935	UUUGGGAC U UCUGGGA	1156	UCCACAGA CUGAUGAG CGCGUUAGGC CGAA ICUCCAAA	8556
1938	GGAGGUUC U GUGGAGUU	1157	ACUCCAC CUGAUGAG CGCGUUAGGC CGAA IAAGCUCC	8557
1949	GGAGGUAC U CUCUUUUU	1158	AAAAAGAG CUGAUGAG CGCGUUAGGC CGAA IUAACUCC	8558
1951	AGUUACUC U CUUUUUUG	1159	CAAAAAAG CUGAUGAG CGCGUUAGGC CGAA IAGUAAUCU	8559
1953	UUACUCUC U UUUUUGCC	1160	GGCAAAAA CUGAUGAG CGCGUUAGGC CGAA TAGAGUAA	8560
1961	UUUUUUGC C UTUCUGACU	1161	AGUCAGAA CUGAUGAG CGCGUUAGGC CGAA ICAAAAAA	8561
1962	UUUUUGCC U UCUGACUU	1162	AAGUCAGA CUGAUGAG CGCGUUAGGC CGAA ICAAAAAA	8562
1965	UUGCCUUC U GACUDCUU	1163	AAGAAAGUC CUGAUGAG CGCGUUAGGC CGAA IAAGGCAA	8563
1969	CUUCUGAC U UCUUUCUU	1164	AGGAAAGA CUGAUGAG CGCGUUAGGC CGAA IUCAGAAG	8564
1972	CUGACUUC U UUCCUUUC	1165	AGAAGGAA CUGAUGAG CGCGUUAGGC CGAA IAAGUCAG	8565
1976	CUCUUCUC C UUCUAAUC	1166	GAADAGAA CUGAUGAG CGCGUUAGGC CGAA TAAAAGAG	8566
1977	UUCUUCUC U UCUAUUCG	1167	CGAAUAGA CUGAUGAG CGCGUUAGGC CGAA IGAAAAGA	8567
1980	UUUCCUUUC U AUUCGAGA	1168	UCUCGAAU CUGAUGAG CGCGUUAGGC CGAA IAAGGAAA	8568
1991	UCCGAGAU C CCUCGACA	1169	UGUCGGAGG CUGAUGAG CGCGUUAGGC CGAA IAUCUCCA	8569
1993	GAGAUCUC C UCGACACC	1170	GGUGUGGA CUGAUGAG CGCGUUAGGC CGAA IAGAUUC	8570
1994	AGAUUCUC C CGACACCG	1171	CGGUGUGG CUGAUGAG CGCGUUAGGC CGAA IGAGAUCU	8571
1999	UCCUCGAC A CCGCCUCU	1172	AGAGGGGG CUGAUGAG CGCGUUAGGC CGAA TUCGAGGA	8572
2001	CUCGACAC C GCCUCUGC	1173	GCAGAGGC CUGAUGAG CGCGUUAGGC CGAA IUGUCGAG	8573
2004	GACACCGC C UCUGCUCU	1174	AGAGCAGA CUGAUGAG CGCGUUAGGC CGAA ICGGUGUC	8574
2005	ACACCGGC C UCGUCUCU	1175	CAGAGCAG CUGAUGAG CGCGUUAGGC CGAA ICGGGUGU	8575
2007	ACCGCCUC U GCUCUGUA	1176	UACAGAGC CUGAUGAG CGCGUUAGGC CGAA IAGGGGGU	8576
2010	GCCUCUGG C UCGUAUCG	1177	CGAUACAG CUGAUGAG CGCGUUAGGC CGAA ICAGAGGC	8577

2012	CUCUGCUC U GUAUCGGG	1178	CCCGAUAC CUGAUGAG	GCCGUUAGGC	CGAA TAGCAGAG	857 8
2025	CGGGGGGC C UUAGAGUC	1179	GAUCUUA CUGAUGAG	GCCGUUAGGC	CGAA ICCCCCCG	857 9
2026	GGGGGGC U UAGAGUC	1180	AGACUCUA CUGAUGAG	GCCGUUAGGC	CGAA TGCCTCCC	8580
2034	UUAGAGUC U CGGAACA	1181	UGUUCCGG CUGAUGAG	GCCGUUAGGC	CGAA TACUCUAA	8581
2036	AGAGUCUC C GGAAACAUU	1182	AUGUUC CUGAUGAG	GCCGUUAGGC	CGAA TAGACUCU	8582
2042	UCCGGAAC A UUGUUCAC	1183	GUAGACAA CUGAUGAG	GCCGUUAGGC	CGAA TUUCGGGA	8583
2049	CAUDGUUC A CCUCACCA	1184	UGGUGAGG CUGAUGAG	GCCGUUAGGC	CGAA TAACAUG	8584
2051	UUGGUUCAC C UCACCAUA	1185	UAUGGUGA CUGAUGAG	GCCGUUAGGC	CGAA TUGAACAA	8585
2052	UGUUCAC U CACCAUAC	1186	GUAGGGUG CUGAUGAG	GCCGUUAGGC	CGAA IGUGAACAA	8586
2054	UDUCACCUC A CCAUACGG	1187	CCGUUAUGG CUGAUGAG	GCCGUUAGGC	CGAA TAGGUGAA	8587
2056	CACCUUCAC C AUACGGCA	1188	UGCCGUUAU CUGAUGAG	GCCGUUAGGC	CGAA TUGAGGUG	8588
2057	ACCUUCAC A UACGGCAC	1189	GUGCCGUUA CUGAUGAG	GCCGUUAGGC	CGAA IGUGAGGU	8589
2064	CAUACGGC A CUCAGGCA	1190	UGCCUGAG CUGAUGAG	GCCGUUAGGC	CGAA ICCGUUAUG	8590
2066	UACGGCAC U CAGGCAAG	1191	CUUGCUC CUGAUGAG	GCCGUUAGGC	CGAA IUGCCGU	8591
2068	CGGCACUC A GGCAGCU	1192	AGCUUUGCC CUGAUGAG	GCCGUUAGGC	CGAA IAGUGCCG	8592
2072	ACUCAGGC A AGCUAUC	1193	GAUAGGU CUGAUGAG	GCCGUUAGGC	CGAA ICCUGAGU	8593
2076	AGGCAAGC U AUUCUGUG	1194	CACAGAAU CUGAUGAG	GCCGUUAGGC	CGAA ICUGGCCU	8594
2081	AGCUAUUC U GUGUUGGG	1195	CCCAACAC CUGAUGAG	GCCGUUAGGC	CGAA TAAUAGCU	8595
2105	GAUAAUC U AGCCACCU	1196	AGGUGGGU CUGAUGAG	GCCGUUAGGC	CGAA TAUUACU	8596
2109	AAUCUAGC C ACCUGGU	1197	ACCCAGGU CUGAUGAG	GCCGUUAGGC	CGAA ICUAGAU	8597
2110	AUCUAGGC A CCUGGGUG	1198	CACCCAGG CUGAUGAG	GCCGUUAGGC	CGAA IGGCUAGAU	8598
2112	CUAGCCAC C UGGGGUGG	1199	CCCCACCA CUGAUGAG	GCCGUUAGGC	CGAA TUGGUAG	8599
2113	UAGCCAC U GGGGGGA	1200	UCCCCACCC CUGAUGAG	GCCGUUAGGC	CGAA IGGGGCUA	8600
2138	GGAAAAGC C AGCAUCCA	1201	UGGAUGCU CUGAUGAG	GCCGUUAGGC	CGAA TAUUUC	8601
2139	GAAGAUUC C GCAUCCAG	1202	CUGGAUGC CUGAUGAG	GCCGUUAGGC	CGAA TGAUCUJC	8602
2142	GAUCCAGC A UCCAGGG	1203	UCCCCUGGA CUGAUGAG	GCCGUUAGGC	CGAA ICUGGAGC	8603
2145	CCAGCAUC C AGGGAAU	1204	AAUUCUCCU CUGAUGAG	GCCGUUAGGC	CGAA IAUGCUGG	8604
2146	CAGCAUC C GGGAAUUA	1205	UAAUUCCC CUGAUGAG	GCCGUUAGGC	CGAA IGAUGCUG	8605
2161	UAGUAGUC A GCUAUGUC	1206	GACAUAGC CUGAUGAG	GCCGUUAGGC	CGAA TACUACUA	8606
2164	UAGUCAGC U AUGUCAAC	1207	GUUGACAU CUGAUGAG	GCCGUUAGGC	CGAA ICUGACUA	8607
2170	GCUAUGUC A ACGUAAAU	1208	ADUAACGU CUGAUGAG	GCCGUUAGGC	CGAA TACAUAGC	8608
2185	AUAUGGGC C UAAAAAAC	1209	GAUUUUUA CUGAUGAG	GCCGUUAGGC	CGAA ICCCAUAU	8609
2186	UAUGGGC U AAAAUCA	1210	UGAUUUUU CUGAUGAG	GCCGUUAGGC	CGAA IGCCCAUA	8610
2194	AAAAAAUC A GACAACUA	1211	UAGUUGUD CUGAUGAG	GCCGUUAGGC	CGAA TAUUUUUA	8611
2198	AAUCAGAC A ACUAUUGU	1212	ACAAAUAGU CUGAUGAG	GCCGUUAGGC	CGAA TUCUGAUU	8612
2201	CAGACAAC U AUUGGGU	1213	ACCACAAU CUGAUGAG	GCCGUUAGGC	CGAA TUUGUGUG	8613
2213	GUGGUUUC A CAUUCUCC	1214	AGGAAAUG CUGAUGAG	GCCGUUAGGC	CGAA TAAACCCAC	8614

2215	GGUUUCAC A UUUCUGU	1215	ACAGGAAA CUGAUGAG	GCCGUUAGGC	CGAA TUGAACCC	8615
2220	CACAUUUC C UGUCUAC	1216	GUAGAGACA CUGAUGAG	GCCGUUAGGC	CGAA TAAAUGUG	8616
2221	ACAUUUC U GCUUACU	1217	AGUAGAC CUGAUGAG	GCCGUUAGGC	CGAA TGAAGAU	8617
2225	UCCUGUC U UACUUUUG	1218	CAAAAGUA CUGAUGAG	GCCGUUAGGC	CGAA TACAGGA	8618
2229	UGUCUAC U UUGGGCG	1219	CGCCCCAA CUGAUGAG	GCCGUUAGGC	CGAA TUAAGACA	8619
2244	CGAGAAC U GUUCUUGA	1220	UCAAGAAC CUGAUGAG	GCCGUUAGGC	CGAA TUUUCUCG	8620
2249	AACUGUDC U UGAAUAUU	1221	AAUAUUCA CUGAUGAG	GCCGUUAGGC	CGAA TAACAGUU	8621
2265	UGGUGUC U UUUGGAGU	1222	ACUCCAAA CUGAUGAG	GCCGUUAGGC	CGAA TACACCAA	8622
2284	GGAUUCGC A CUCCUCCU	1223	AGGAGGAG CUGAUGAG	GCCGUUAGGC	CGAA TCGAAUCC	8623
2286	AUUCGCAC U CCUCUGC	1224	GCAGGGAG CUGAUGAG	GCCGUUAGGC	CGAA TUGCAGAU	8624
2288	UCGCACUC C UCCUGCAU	1225	AUGCAGGA CUGAUGAG	GCCGUUAGGC	CGAA TAGUGGGA	8625
2289	CGCACUC C CCUGCAUA	1226	UAUGCAGG CUGAUGAG	GCCGUUAGGC	CGAA TGAUGGCG	8626
2291	CACUCCUC C UGCAUUA	1227	UAUAUGCA CUGAUGAG	GCCGUUAGGC	CGAA TAGGAGUG	8627
2292	ACUCCUC U GCAUUAAG	1228	CUAUAGC CUGAUGAG	GCCGUUAGGC	CGAA TCGAGAGU	8628
2295	CCUCUGC A UAUAGACC	1229	GUUCUAAA CUGAUGAG	GCCGUUAGGC	CGAA ICAGGAGG	8629
2303	AUAUAGAC C ACCAAAG	1230	CAUUTTGGU CUGAUGAG	GCCGUUAGGC	CGAA TUCUAUAU	8630
2304	UAUAGAC C CCAAUGC	1231	GCAUUUGG CUGAUGAG	GCCGUUAGGC	CGAA IGCUAU	8631
2306	UAGACCAC C AAAUGCCC	1232	GGGCAUU CUGAUGAG	GCCGUUAGGC	CGAA TUGGCUA	8632
2307	AGACCAC A AAUGCCC	1233	GGGGCAUU CUGAUGAG	GCCGUUAGGC	CGAA IUGGUCU	8633
2313	CCAAAGC C CCUAUCU	1234	AGAAUAGG CUGAUGAG	GCCGUUAGGC	CGAA ICAUUUGG	8634
2314	CAAAUGGC C CUACUUA	1235	UAAGAAUAG CUGAUGAG	GCCGUUAGGC	CGAA IGCATUUG	8635
2315	AAAUGGCC C UAUCUUAU	1236	AUAAGAAU CUGAUGAG	GCCGUUAGGC	CGAA IGGCAUU	8636
2316	AAUGCCCC U AUCUAUC	1237	GAUAAAGAU CUGAUGAG	GCCGUUAGGC	CGAA IGGCAUU	8637
2320	CCCCUAUC U UAUCAAACA	1238	UGUUGAU CUGAUGAG	GCCGUUAGGC	CGAA TAUAGGG	8638
2325	AUCUAUC A ACACUUCC	1239	GGAAGUGU CUGAUGAG	GCCGUUAGGC	CGAA TAUAGAU	8639
2328	UUAUCAAC A CUUCCGGA	1240	UCCGGAAAG CUGAUGAG	GCCGUUAGGC	CGAA TUGUAUA	8640
2330	AUCAACAC U UCCGAAA	1241	UUUCGGGA CUGAUGAG	GCCGUUAGGC	CGAA TUGUGAU	8641
2333	AACACUUC C GGAAACUA	1242	UAGUUUCC CUGAUGAG	GCCGUUAGGC	CGAA TAAGUGU	8642
2340	CCGGAAAC U ACUGUUGU	1243	ACAACAGU CUGAUGAG	GCCGUUAGGC	CGAA TUUUCGG	8643
2343	GAAACUAC U GUUGUAG	1244	CUAAACAC CUGAUGAG	GCCGUUAGGC	CGAA TUGUUUC	8644
2362	GAAGAGGC A GGUCCCC	1245	AGGGGACC CUGAUGAG	GCCGUUAGGC	CGAA ICCUCUJC	8645
2367	GGCAGGU C CCUAGAAG	1246	CUUCUAGG CUGAUGAG	GCCGUUAGGC	CGAA IACCUGCC	8646
2368	GCAGGU C CUAGAAGA	1247	UCUUCUAG CUGAUGAG	GCCGUUAGGC	CGAA IGACCUIGC	8647
2369	CAGGUCC C UAGAAGAA	1248	UOCUUCUCA CUGAUGAG	GCCGUUAGGC	CGAA IGGACCG	8648
2370	AGGUCCCC U AGAAGAAG	1249	CUUCUUUC CUGAUGAG	GCCGUUAGGC	CGAA IGGGACCU	8649
2382	AGAAAGAAC U CCCUCGCC	1250	GGCGAGGG CUGAUGAG	GCCGUUAGGC	CGAA TUUUCUCU	8650
2384	AGAAACUC C CUCGCCUC	1251	GAGGGCAG CUGAUGAG	GCCGUUAGGC	CGAA TAGUUCUU	8651

2385	AGAACUC C	UCGCCUCG	1252	CGAGGGCA	CUGAUGAG	GCCGUUAGGC	CGAA	IGAGUUCU	8652
2386	GAACUCC C	CGCCUCGC	1253	GCGAGGGC	CUGAUGAG	GCCGUUAGGC	CGAA	IGGAGUUC	8653
2390	UCCCCUGC C	UCGAGAC	1254	GUCUGCGA	CUGAUGAG	GCCGUUAGGC	CGAA	IGGAGGG	8654
2391	CCCUUCGC C	CGCAGACG	1255	CGUCUGCG	CUGAUGAG	GCCGUUAGGC	CGAA	IGGAGGG	8655
2395	CGCCUCGC A	GACGAAAG	1256	CCUCUCGC	CUGAUGAG	GCCGUUAGGC	CGAA	IGGAGGG	8656
2406	CGAAGGUC U	CAAUCGCC	1257	GCGGAUUG	CUGAUGAG	GCCGUUAGGC	CGAA	IACCUUUCG	8657
2408	AAGGUCUC A	AUCGCCGC	1258	GCGGCCAU	CUGAUGAG	GCCGUUAGGC	CGAA	IAGACCUU	8658
2414	UCAAUCGC C	GGCGUCGA	1259	UGCGACGC	CUGAUGAG	GCCGUUAGGC	CGAA	IGGAUUGA	8659
2422	CGCGUCGC A	GAAGAUUC	1260	AGAUUCUU	CUGAUGAG	GCCGUUAGGC	CGAA	IGGACGCG	8660
2430	AGAAGAUC U	CAAUCUCG	1261	CGAGAAUUG	CUGAUGAG	GCCGUUAGGC	CGAA	IACUCUCU	8661
2432	AAGAUCUC A	AUCUCGGG	1262	CCCGAGAU	CUGAUGAG	GCCGUUAGGC	CGAA	IAGAUUCU	8662
2436	UCUCAAUC U	CGGGAAUC	1263	GAUUCCCG	CUGAUGAG	GCCGUUAGGC	CGAA	IAUJAGGA	8663
2445	CGGGAAUC U	CAAUGUUA	1264	UAAACAUU	CUGAUGAG	GCCGUUAGGC	CGAA	IAUUCCCG	8664
2447	GGAAUCUC A	AUGUAGU	1265	ACUAACAU	CUGAUGAG	GCCGUUAGGC	CGAA	IAGAUUC	8665
2460	UAGUAAUC C	UGGGACAC	1266	GUGUCCAA	CUGAUGAG	GCCGUUAGGC	CGAA	IAAUACUA	8666
2461	AGUAUUC U	UGGACACA	1267	UGUGUCCA	CUGAUGAG	GCCGUUAGGC	CGAA	IGAAUACU	8667
2467	CCUUGGAC A	CAUAGGU	1268	ACCUUAUG	CUGAUGAG	GCCGUUAGGC	CGAA	IUCCAAAGG	8668
2469	UGGGACAC A	UAAGGGGG	1269	CCACCUUA	CUGAUGAG	GCCGUUAGGC	CGAA	IUGUCCAA	8669
2483	UGGGAAC U	UUAGGGGG	1270	CCCCGUAA	CUGAUGAG	GCCGUUAGGC	CGAA	IUUIUCCA	8670
2493	UACGGGGC U	UUAUUCUU	1271	AAGAAUAA	CUGAUGAG	GCCGUUAGGC	CGAA	ICCCCCGU	8671
2500	CUUUAUUC U	UCUACGGU	1272	ACCGGUAGA	CUGAUGAG	GCCGUUAGGC	CGAA	IAAUAAAAG	8672
2503	UAAUUCUU C	ACGGUACC	1273	GUACCCGU	CUGAUGAG	GCCGUUAGGC	CGAA	IAAGAAUA	8673
2511	UACGGGUAC C	UUGGUUUUA	1274	UAAAAGCAA	CUGAUGAG	GCCGUUAGGC	CGAA	IUACCGUA	8674
2512	ACGGGUAC C	UGCUUUAA	1275	UAAAAGCA	CUGAUGAG	GCCGUUAGGC	CGAA	IGUACCGU	8675
2516	UACCUUUC U	UAAAUCCU	1276	AGGAUAAA	CUGAUGAG	GCCGUUAGGC	CGAA	ICAAAGGU	8676
2523	CUUUAUUC C	UAAAUGGC	1277	GCCAUAAA	CUGAUGAG	GCCGUUAGGC	CGAA	IAUAAAAG	8677
2524	UUAAAUC C	AAAUGGCA	1278	UGCCCAUU	CUGAUGAG	GCCGUUAGGC	CGAA	IGAUAAA	8678
2532	UAAAUGGC A	AACCUCCU	1279	AAGGAGUU	CUGAUGAG	GCCGUUAGGC	CGAA	ICCAUUA	8679
2536	UGGCAAAUC	UCCUCUUU	1280	AAAAGAAGG	CUGAUGAG	GCCGUUAGGC	CGAA	IUUIUGCAC	8680
2538	GCAAACUC C	UUCUUUUC	1281	AAAAAGAA	CUGAUGAG	GCCGUUAGGC	CGAA	IAGUUUGC	8681
2539	CAAACUCC U	UCUUUDCC	1282	GGAAAAAGA	CUGAUGAG	GCCGUUAGGC	CGAA	IGAGUUUG	8682
2542	ACUCCUUC U	UUUCUCGA	1283	UCAGGAAA	CUGAUGAG	GCCGUUAGGC	CGAA	IAAGGAGU	8683
2547	UUCUUUUC C	UGACAUUC	1284	GAAUGUCA	CUGAUGAG	GCCGUUAGGC	CGAA	IAAAAGAA	8684
2548	UUCUUUUC C	GACAUUCA	1285	UGAAUGUC	CUGAUGAG	GCCGUUAGGC	CGAA	IGAAAAGA	8685
2552	UUCUGAC A	UUCAUUUG	1286	CAAAUGAA	CUGAUGAG	GCCGUUAGGC	CGAA	IUCAGGAA	8686
2556	UGACAUUC A	UUUGCAGG	1287	CCUGCAAA	CUGAUGAG	GCCGUUAGGC	CGAA	IAAUUGCA	8687
2562	UCAUUUGC A	GGAGGACA	1288	UGUCCUCC	CUGAUGAG	GCCGUUAGGC	CGAA	ICAAAUGA	8688

2570	AGGAGGAC A UGGUGUAU	1289	AUCAACAA CUGAUGAG GCCGUUAGGC CGAA IUCUCCU	8689
2589	AUGUAAGG A AUUUUGGG	1290	CCACAAAU CUGAUGAG GCCGUUAGGC CGAA ICUUACAU	8690
2601	UGGGGGCC C CCUUCACAG	1291	CUGUAAGG CUGAUGAG GCCGUUAGGC CGAA ICCCCCACA	8691
2602	GUGGGGCC C CUUACAGU	1292	ACUGUAAG CUGAUGAG GCCGUUAGGC CGAA ICCCCCAC	8692
2603	UGGGGGCC C UUACAGUA	1293	UACUGUAA CUGAUGAG GCCGUUAGGC CGAA IGGCCCCCA	8693
2604	GGGGCCCC U UACAGUAA	1294	UUACUGUA CUGAUGAG GCCGUUAGGC CGAA IGGCCCCC	8694
2608	CCCCUUAC A GUAAAUGA	1295	UCAUUUAUC CUGAUGAG GCCGUUAGGC CGAA IUAGGGG	8695
2621	AUGAAAAAC A GGAGACUU	1296	AGUCUCCC CUGAUGAG GCCGUUAGGC CGAA IUUUCAU	8696
2628	CAGGAGAC U UAAAUAUA	1297	UAAAUAUA CUGAUGAG GCCGUUAGGC CGAA IUCUCCU	8697
2638	AAAUAUAC U AUGCUGC	1298	GGAGGGCAU CUGAUGAG GCCGUUAGGC CGAA IUUAUU	8698
2643	AACCUAUGC C UGCUAGGU	1299	ACCUCAGCA CUGAUGAG GCCGUUAGGC CGAA ICAUAGU	8699
2644	ACUAUGGC U GCUAGGUU	1300	ACCUUAGC CUGAUGAG GCCGUUAGGC CGAA ICGAUAGU	8700
2647	AUGCCUGC U AGGUUUUA	1301	UAAAACCU CUGAUGAG GCCGUUAGGC CGAA ICAGGCAU	8701
2658	GUUUUAUC C CAAUGUUA	1302	UAAACAUU CUGAUGAG GCCGUUAGGC CGAA IAUAAAAC	8702
2659	UUUUAUCC C AAUGUAC	1303	GUAAACAUU CUGAUGAG GCCGUUAGGC CGAA IGAUAAA	8703
2660	UUUAUCCC A AUGUACU	1304	AGUAACAU CUGAUGAG GCCGUUAGGC CGAA IGGAUAAA	8704
2668	AAUGUUAC U AAAUAUUU	1305	AAZAAUUU CUGAUGAG GCCGUUAGGC CGAA IUACAUU	8705
2679	AUAUUUGC C CUUAGAUA	1306	UAUCUAAG CUGAUGAG GCCGUUAGGC CGAA ICAAUAU	8706
2680	UAUUUGGC C UUAGAUAA	1307	UUAUCUAA CUGAUGAG GCCGUUAGGC CGAA IGGAAAAUA	8707
2681	AUUGGCC U UAGAUAAA	1308	UUAUACUA CUGAUGAG GCCGUUAGGC CGAA IGGCAAAU	8708
2696	AAGGGAAUC A AACCGUAU	1309	AUACGGGUU CUGAUGAG GCCGUUAGGC CGAA IAUCCCU	8709
2700	GAUCAAAC C GUUAUAC	1310	GAUAAUAC CUGAUGAG GCCGUUAGGC CGAA IUUUGAU	8710
2709	GUAUUAUC C AGAGUAUG	1311	CAUACUCU CUGAUGAG GCCGUUAGGC CGAA IAUAAUAC	8711
2710	UAUUAUAC A GAGUAUGU	1312	ACAUACUC CUGAUGAG GCCGUUAGGC CGAA IGAUAAAUA	8712
2727	AGUAAAUC A UUACUUCC	1313	GEAAGUAA CUGAUGAG GCCGUUAGGC CGAA IAUAAACU	8713
2732	AUCAUUAUC U UCCAGACG	1314	CGUCUGGA CUGAUGAG GCCGUUAGGC CGAA IUAUAGAU	8714
2735	AUUACUUC C AGAGCGA	1315	UGCGGUUCU CUGAUGAG GCCGUUAGGC CGAA IAAGUAU	8715
2736	UUACUUUC A GACGCGAC	1316	GUCGCGUC CUGAUGAG GCCGUUAGGC CGAA IGAAGUAA	8716
2745	GACGCGAC A UUAAUUAUC	1317	GUAAAUA CUGAUGAG GCCGUUAGGC CGAA IUCGGGDC	8717
2754	UUUUUUAAC A CACCUUUU	1318	AAAGAGUG CUGAUGAG GCCGUUAGGC CGAA IUAUAAA	8718
2756	AUUUACAC A CUCUUUGG	1319	CCAAAGAG CUGAUGAG GCCGUUAGGC CGAA IUGUAAA	8719
2758	UUACACAC U CUUUGGAA	1320	UCCCAAAAG CUGAUGAG GCCGUUAGGC CGAA IUGUAAA	8720
2760	ACACACUC U UGGAGG	1321	CCUUCCAA CUGAUGAG GCCGUUAGGC CGAA IAGUGUGU	8721
2777	CGGGGAUC U UAUAAA	1322	UUUUAUAA CUGAUGAG GCCGUUAGGC CGAA IAUCCCCG	8722
2794	AGAGAGUC C ACACGUAG	1323	CUACGUGU CUGAUGAG GCCGUUAGGC CGAA IACUCUCU	8723
2795	GAGAGUC A CACGUAGC	1324	GUACGUG CUGAUGAG GCCGUUAGGC CGAA IGAUCUC	8724
2797	GAGUCCAC A CGUAGCGC	1325	GCGCUACG CUGAUGAG GCCGUUAGGC CGAA IUGGACUC	8725

2806	CGUAGCGGC	C	UCAUUUUG	1326	CAAAAUGA	CUGAUGAG	GCCGUUAGGC	CGAA	I CGCUACG	8726
2807	GUAGGCC	C	CAUUUGC	1327	GCCCCAAUG	CUGAUGAG	GCCGUUAGGC	CGAA	I CGCUAC	8727
2809	AGGCCUC	A	UUUGCGG	1328	CCGGAAAA	CUGAUGAG	GCCGUUAGGC	CGAA	I AGGGCGC	8728
2821	UGGGGGUC	A	CCAUUUC	1329	GAAUAUGG	CUGAUGAG	GCCGUUAGGC	CGAA	I ACCCGCA	8729
2823	CGGGUCAC	C	AUAUUCU	1330	AGAAAUAU	CUGAUGAG	GCCGUUAGGC	CGAA	I UGACCCG	8730
2824	GGGUCAC	A	UAUUCUUG	1331	CAAGAAUA	CUGAUGAG	GCCGUUAGGC	CGAA	I GUGACCC	8731
2830	CCAUAUUC	U	UGGGACA	1332	UGUUCCCA	CUGAUGAG	GCCGUUAGGC	CGAA	I AAUAGG	8732
2838	UUGGGAAC	A	AGAUUCAC	1333	GUAGAUUC	CUGAUGAG	GCCGUUAGGC	CGAA	I UUCCAA	8733
2844	ACAAGAUC	U	ACAGCAUG	1334	CAUGCUGU	CUGAUGAG	GCCGUUAGGC	CGAA	I AUUJUGU	8734
2847	AGAUUCAC	A	GCAUGGGA	1335	UCCCACUG	CUGAUGAG	GCCGUUAGGC	CGAA	I UAGAUUC	8735
2850	UCUACAGC	A	UGGGAGGU	1336	ACCUCCCCA	CUGAUGAG	GCCGUUAGGC	CGAA	I CUGUAGA	8736
2864	GGUUGGU	C	UCCAAACC	1337	GUUUGGGA	CUGAUGAG	GCCGUUAGGC	CGAA	I ACCAACCC	8737
2867	UGGUCUUC	C	AAACUCUG	1338	CGAGGUUU	CUGAUGAG	GCCGUUAGGC	CGAA	I AAGACCA	8738
2868	GGCUUUC	C	AACCUUCGA	1339	UCCGAGGU	CUGAUGAG	GCCGUUAGGC	CGAA	I GAAGACCC	8739
2872	UCCCAAAAC	C	UCGAAAG	1340	CUUUUCGA	CUGAUGAG	GCCGUUAGGC	CGAA	I UUJGGAA	8740
2873	UCCAAAC	C	CGAAAAGG	1341	CCUUUUCG	CUGAUGAG	GCCGUUAGGC	CGAA	I GUUJUGGA	8741
2883	GAAAAGGC	A	UGGGACA	1342	UGUCCCCA	CUGAUGAG	GCCGUUAGGC	CGAA	I CCUUUUC	8742
2891	AUGGGGAC	A	AAUCUUUC	1343	GAAAGAUU	CUGAUGAG	GCCGUUAGGC	CGAA	I UCCCCAU	8743
2896	GACAAAC	U	UUCUGUCC	1344	GGACAGAA	CUGAUGAG	GCCGUUAGGC	CGAA	I AUUJUGC	8744
2900	AAUCUUUC	U	GUCCCCA	1345	UUGGGGAC	CUGAUGAG	GCCGUUAGGC	CGAA	I AAAGAUU	8745
2904	UUUCUGUC	C	CCAUCUCC	1346	GGGAUUGG	CUGAUGAG	GCCGUUAGGC	CGAA	I TACAGAAA	8746
2905	UUCUGUC	C	CAAUCCCC	1347	GGGGAUUG	CUGAUGAG	GCCGUUAGGC	CGAA	I GACAGAA	8747
2906	UCUGUCCC	C	AAUCCCCU	1348	AGGGGAU	CUGAUGAG	GCCGUUAGGC	CGAA	I GGACAGA	8748
2907	CUGUCCCC	A	AUCCCCUG	1349	CAGGGGAU	CUGAUGAG	GCCGUUAGGC	CGAA	I GGGGACAG	8749
2911	CCCCAAUC	C	CCUGGGAU	1350	AUCCCCAGG	CUGAUGAG	GCCGUUAGGC	CGAA	I AUUJGGG	8750
2912	CCCAAUCC	C	CUGGAU	1351	AAUCCCG	CUGAUGAG	GCCGUUAGGC	CGAA	I GAUDGGG	8751
2913	CCAAUCCC	C	UGGGAUUC	1352	GAAUCCCCA	CUGAUGAG	GCCGUUAGGC	CGAA	I GGAUUGG	8752
2914	CAAUCCC	U	GGGAUUCU	1353	AGAAUCCC	CUGAUGAG	GCCGUUAGGC	CGAA	I GGGGAUG	8753
2922	UGGGAUUC	U	UCCCGAU	1354	AUCGGGGAA	CUGAUGAG	GCCGUUAGGC	CGAA	I AAUCCCA	8754
2925	GAUUCUUC	C	CCGAUCAU	1355	AUGAUUCGG	CUGAUGAG	GCCGUUAGGC	CGAA	I AAAGAU	8755
2926	AUUCUUC	C	CGAUCAU	1356	GAUGAUUC	CUGAUGAG	GCCGUUAGGC	CGAA	I GAAGAAU	8756
2927	UUCUUC	C	GAUCAUCA	1357	UGAUGAU	CUGAUGAG	GCCGUUAGGC	CGAA	I GGAAGAA	8757
2932	CCCCGAUC	A	UCAGUUGG	1358	CCAACUGA	CUGAUGAG	GCCGUUAGGC	CGAA	I AUUJGGG	8758
2935	CGAUCAUC	A	GUUGGAC	1359	GGUCCAAC	CUGAUGAG	GCCGUUAGGC	CGAA	I AUGAUUC	8759
2943	AGUUGGAC	C	CUGCAUUC	1360	GAAUGCAG	CUGAUGAG	GCCGUUAGGC	CGAA	I TUCCAACU	8760
2944	GUUGGAC	C	UGCAUUC	1361	UGAAUGC	CUGAUGAG	GCCGUUAGGC	CGAA	I GUCCAAAC	8761
2945	UGGACCC	U	GCAUCAA	1362	UGGAAUGC	CUGAUGAG	GCCGUUAGGC	CGAA	I GGUCCAA	8762

2948	GACCCUGG A UUCAAAGC	1363	GCUCUUGAA CUGAUGAG	GCCGUUAGGC	CGAA ICAGGGUC	8763
2952	CUGGCAUUC A AAGCCAAC	1364	GUUGGGCUU CUGAUGAG	GCCGUUAGGC	CGAA TAAUGGAG	8764
2957	UUCAAAGC C AACUCAGU	1365	AUCUGAGU CUGAUGAG	GCCGUUAGGC	CGAA ICUUUGAA	8765
2958	UCAAAGCC A ACUCAGUA	1366	UACUGAGU CUGAUGAG	GCCGUUAGGC	CGAA IGCUUUGA	8766
2961	AAGCCAAC U CAGUAAA	1367	AUUCACUG CUGAUGAG	GCCGUUAGGC	CGAA IUUGGUU	8767
2963	GCCAACUC A GUAAAUC	1368	GAUUUAUC CUGAUGAG	GCCGUUAGGC	CGAA IAGUUGGC	8768
2971	AGUAAAUC C AGAUUGGG	1369	CCCAAAUCU CUGAUGAG	GCCGUUAGGC	CGAA IAUUUACU	8769
2972	GUAAAUCU C GAUUGGG	1370	UCCCAAUC CUGAUGAG	GCCGUUAGGC	CGAA IGAUUAAC	8770
2982	AUUGGGAC C UCAACCCG	1371	CGGGGUUGA CUGAUGAG	GCCGUUAGGC	CGAA IUCCAAU	8771
2983	UUGGGACC U CAACCCGC	1372	GGGGGUUG CUGAUGAG	GCCGUUAGGC	CGAA IGUCCCCA	8772
2985	GGGACCU C ACCCGCAC	1373	GUCCGGGU CUGAUGAG	GCCGUUAGGC	CGAA TAGGUCCC	8773
2988	ACCUCAAC C CGCACAAAG	1374	CUGUGGG CUGAUGAG	GCCGUUAGGC	CGAA IUUGAGGU	8774
2989	CCUCAACC C GCACAAAG	1375	CCUUGUGC CUGAUGAG	GCCGUUAGGC	CGAA IGUGAGG	8775
2992	CAACCCGC A CAAGGACA	1376	UGUCCUUG CUGAUGAG	GCCGUUAGGC	CGAA ICGGGUUG	8776
2994	ACCCGCAC A AGGACAAC	1377	GUUGGUCCU CUGAUGAG	GCCGUUAGGC	CGAA IUGGGGU	8777
3000	ACAAGGAC A ACUGGCC	1378	CGGCCAGU CUGAUGAG	GCCGUUAGGC	CGAA IUCUUGU	8778
3003	AGGACAAC U GGCGGGAC	1379	GUCCGGCC CUGAUGAG	GCCGUUAGGC	CGAA IUUGGUCCU	8779
3007	CAACUGGC C GGAGGCCA	1380	UGGCGGUCC CUGAUGAG	GCCGUUAGGC	CGAA ICCAGUJG	8780
3014	CGGGACGC C AACAAAGGU	1381	ACCUUGUU CUGAUGAG	GCCGUUAGGC	CGAA ICGUCCGG	8781
3015	CGGACGCG C ACAAGGUG	1382	CACCUUDGU CUGAUGAG	GCCGUUAGGC	CGAA IGCGUCCG	8782
3018	ACGCCAAC A AGGGGGA	1383	UCCCACCU CUGAUGAG	GCCGUUAGGC	CGAA IUUGGGGU	8783
3035	GUGGGAGC A UUCGGGCC	1384	GCCCCGAA CUGAUGAG	GCCGUUAGGC	CGAA ICUCCCA	8784
3043	AUUCGGGC C AGGGGUCA	1385	UGAACCCU CUGAUGAG	GCCGUUAGGC	CGAA ICCCGAAU	8785
3044	UUCGGGGC A GGGUUCAC	1386	GUAGAACCC CUGAUGAG	GCCGUUAGGC	CGAA IGGCCGAA	8786
3051	CAGGGUU C CCCUCCCC	1387	GGGAGGG CUGAUGAG	GCCGUUAGGC	CGAA IAACCCUJG	8787
3053	GGGUUCAC C CCUCCCCCA	1388	UGGGGAGG CUGAUGAG	GCCGUUAGGC	CGAA IUGAACCC	8788
3054	GGUUCAC C CUCCCCAU	1389	AUGGGGAG CUGAUGAG	GCCGUUAGGC	CGAA IGUGAAC	8789
3055	GUUCACCC C UCCCCAUG	1390	CAUGGGGA CUGAUGAG	GCCGUUAGGC	CGAA IGGUGAAC	8790
3056	UUACCCCC U CCCCAUGG	1391	CAUAGGGG CUGAUGAG	GCCGUUAGGC	CGAA IGGGUJGA	8791
3058	CACCCUC C CCAUGGG	1392	CCCCAUGG CUGAUGAG	GCCGUUAGGC	CGAA IAGGGGU	8792
3059	ACCCCUUC C CAUGGGG	1393	CCCCCAUG CUGAUGAG	GCCGUUAGGC	CGAA IGAGGGGU	8793
3060	CCCCCUCC C AUGGGGA	1394	UCCCCCAU CUGAUGAG	GCCGUUAGGC	CGAA IGGAGGGG	8794
3061	CCCUCCCC A UGGGGGAC	1395	GUCCCCCA CUGAUGAG	GCCGUUAGGC	CGAA IGGGAGGG	8795
3070	UGGGGGAC U GUUGGGGU	1396	ACCCCAAC CUGAUGAG	GCCGUUAGGC	CGAA IUCCCCCA	8796
3084	GGUGGAGC C CUCACGCU	1397	AGCGUGAG CUGAUGAG	GCCGUUAGGC	CGAA ICUCCACC	8797
3085	GUGGAGGC C UCAGGCUC	1398	GAGCGUGA CUGAUGAG	GCCGUUAGGC	CGAA IGGUCCAC	8798
3086	UGGAGGCC U CACGCCUCA	1399	UGAGCGUG CUGAUGAG	GCCGUUAGGC	CGAA IGGGUCCA	8799

3088	GAGCCUC A CGCUCAAG	1400	CCUGAGCG CUGAUGAG	GCCGUUAGGC	CGAA TAGGGCUC	8800
3092	CCUCACGCC U CAGGCCU	1401	AGGCCCCG CUGAUGAG	GCCGUUAGGC	CGAA TCGUGAGG	8801
3094	UCACGGC U GGGCUAC	1402	GUAGGCC CUGAUGAG	GCCGUUAGGC	CGAA TAGCGUGGA	8802
3099	CUCAGGGC C UACUCACA	1403.	UGUGAGUA CUGAUGAG	GCCGUUAGGC	CGAA ICCGUAG	8803
3100	UCAGGGCC U ACUCACAA	1404	UUGUGAGU CUGAUGAG	GCCGUUAGGC	CGAA TGCCTCUGA	8804
3103	GGGCCUAC U CACACACU	1405	CAGUUUGU CUGAUGAG	GCCGUUAGGC	CGAA TUAGGCC	8805
3105	GCCUACUC A CAACUGUG	1406	CAACGUUG CUGAUGAG	GCCGUUAGGC	CGAA TAUAGGC	8806
3107	CUACUCAC A ACUGUGCC	1407	GGCACAGU CUGAUGAG	GCCGUUAGGC	CGAA TUGAGUAG	8807
3110	CUCACAAAC U GUCCAGCG	1408	GUUGGGCAC CUGAUGAG	GCCGUUAGGC	CGAA TUUGUGAG	8808
3115	AACUGUGC C AGCAGCUC	1409	GAGCUGCU CUGAUGAG	GCCGUUAGGC	CGAA ICACAGU	8809
3116	ACUGUGGC A GCAGCUCC	1410	GGAGCUGC CUGAUGAG	GCCGUUAGGC	CGAA IGCACAGU	8810
3119	GUGCCAGC A GCUCUCCC	1411	GGAGGGAG CUGAUGAG	GCCGUUAGGC	CGAA ICUGGCAC	8811
3122	CCAGCAGC U CCUCUCUCC	1412	GGAGGGAGG CUGAUGAG	GCCGUUAGGC	CGAA ICUGCGUGG	8812
3124	AGCAGCUC C UCCUCUCUG	1413	CAGGAGGA CUGAUGAG	GCCGUUAGGC	CGAA TAGCGUCU	8813
3125	GCAGCUC U CCUCUCUG	1414	GCAGGAGG CUGAUGAG	GCCGUUAGGC	CGAA TAGCGUGC	8814
3127	AGCUCCUC C UCCUCUCU	1415	AGGCAGGA CUGAUGAG	GCCGUUAGGC	CGAA TAGGAGCU	8815
3128	GUCCUCUC U CCUGCCUC	1416	GAGGCCAG CUGAUGAG	GCCGUUAGGC	CGAA TAGGGAGC	8816
3130	UCCUCCUC C UGCCUCCA	1417	UGGGAGGA CUGAUGAG	GCCGUUAGGC	CGAA TAGGAGGA	8817
3131	CCUCCUC U GCCUCCAC	1418	GUUGGGGC CUGAUGAG	GCCGUUAGGC	CGAA TAGGGAGG	8818
3134	CCUCCUGC C UCCACCAA	1419	UUGGGUGA CUGAUGAG	GCCGUUAGGC	CGAA ICAGGAGG	8819
3135	CUCCUGGC U CCACCAAU	1420	AUUGGGGG CUGAUGAG	GCCGUUAGGC	CGAA IGCAGGAG	8820
3137	CCUGCCUC C ACCAACUC	1421	CGAUUUGG CUGAUGAG	GCCGUUAGGC	CGAA TAGGCAGG	8821
3138	CUGCCUC A CCAAUCGG	1422	CCGAUUGG CUGAUGAG	GCCGUUAGGC	CGAA TGAAGGZAG	8822
3140	GCCUCCAC C AAUCGGCA	1423	UGCCGAU CUGAUGAG	GCCGUUAGGC	CGAA TUGGGAGC	8823
3141	CCUCCAC C AUCGGCAG	1424	CGGCCGAU CUGAUGAG	GCCGUUAGGC	CGAA TUGGGAGG	8824
3148	CAAUCGGC A GUCAAGAA	1425	UOCCUGAC CUGAUGAG	GCCGUUAGGC	CGAA ICCGAUIG	8825
3152	CGGCAGUC A GGAAAGCA	1426	UGCCUUUC CUGAUGAG	GCCGUUAGGC	CGAA TACUGCCG	8826
3160	AGGAAGGC A GCCUACUC	1427	GAUGAGGC CUGAUGAG	GCCGUUAGGC	CGAA ICCUUCCU	8827
3163	AAGGGAGC C UACUCCCU	1428	AGGGAGUA CUGAUGAG	GCCGUUAGGC	CGAA ICUGCCUU	8828
3164	AGGCAGC U ACUCCUU	1429	AGGGGAGU CUGAUGAG	GCCGUUAGGC	CGAA IGCUGCCU	8829
3167	CAGCCUAC U CCCUUAUC	1430	GAUAAAGGG CUGAUGAG	GCCGUUAGGC	CGAA TUAGGCUG	8830
3169	GCCUACUC C CUUAUCUC	1431	GAGAUAAAG CUGAUGAG	GCCGUUAGGC	CGAA TAUAGGGC	8831
3170	CCUACUC C UUAUCUCC	1432	GGAGAUAA CUGAUGAG	GCCGUUAGGC	CGAA TGAUGAGG	8832
3171	CUACUCUC U UAUCCCA	1433	UGGAGAUAA CUGAUGAG	GCCGUUAGGC	CGAA TGGAGUAG	8833
3176	CCCUUAC U CCACCUUC	1434	AGAGGUGG CUGAUGAG	GCCGUUAGGC	CGAA TAUAAAGGG	8834
3178	CUUAAUCUC C ACCUCUAA	1435	UDAGAGGU CUGAUGAG	GCCGUUAGGC	CGAA TGAUAAG	8835
3179	UUAUCUC A CCUCUAAAG	1436	CUUAGGAG CUGAUGAG	GCCGUUAGGC	CGAA TGAUAZA	8836

3181	AUCUCCAC	C	UCUAAGGG	1437	CCCUUAGA	CUGAUGAG	GCCGUUAGGC	CGAA	IUGGAGAU	8837
3182	UCUCCACC	U	CUAAGGGA	1438	UCCCCUUAG	CUGAUGAG	GCCGUUAGGC	CGAA	IUGGAGA	8838
3184	UCCACCUC	U	AAGGGACA	1439	UGUCCCCU	CUGAUGAG	GCCGUUAGGC	CGAA	IAGGUGGA	8839
3192	UAAGGGAC	A	CUCAUCCU	1440	AGGAUGAG	CUGAUGAG	GCCGUUAGGC	CGAA	IUCCCUUA	8840
3194	AGGGACAC	U	CAUCUCUA	1441	UGAGGAUG	CUGAUGAG	GCCGUUAGGC	CGAA	IUGUCCCCU	8841
3196	GGACACUC	A	UCCUCAGG	1442	CCUGAGGA	CUGAUGAG	GCCGUUAGGC	CGAA	IAGGUCCC	8842
3199	CACUCAUC	C	UCAGGCCA	1443	UGGCCUCA	CUGAUGAG	GCCGUUAGGC	CGAA	IAUGAGUJG	8843
3200	ACUCAUC	U	CAGGCCAU	1444	AUGGCCUG	CUGAUGAG	GCCGUUAGGC	CGAA	IGAUGAGU	8844
3202	UCAUCCUC	A	GGCCAUUGC	1445	CGAUGGCC	CUGAUGAG	GCCGUUAGGC	CGAA	IAGGAUCA	8845
3206	CCUCAGGC	C	AUGCAGUG	1446	CACUGCAU	CUGAUGAG	GCCGUUAGGC	CGAA	ICCUUGAGG	8846
3207	CUCAGGCC	A	UGCAGUGG	1447	CCACUGCA	CUGAUGAG	GCCGUUAGGC	CGAA	IGCCUGAG	8847

Input Sequence = AF100308 . Cut Site = CH/.
 Stem Length = 8 . Core Sequence = CUGAUGAG X CGAA (X = GCCGUUAGGC or other stem II)
 AF100308 (Hepatitis B virus strain 2-18, 3215 bp)

Underlined region can be any X sequence or linker, as described herein.
 “I” stands for Inosine

TABLE VII: HUMAN HBV G-CLEAVER AND SUBSTRATE SEQUENCE

Pos	Substrate	Seq ID	G-cleaver	Seq ID
61	ACUUUCCU G CUGGGGGC	1448	GCCACCAG UGAUG GCAUGGCACUAUGC GCG AGGAAAGU	8848
87	GGAAACAU G AGCCUCGC	1449	GCAGGGCU UGAUG GCAUGGCACUAUGC GCG ACUGUCCC	8849
94	UGAGGCCU G CUCAGAAU	1450	AUDUCUGAG UGAUG GCAUGGCACUAUGC GCG AGGGCUCA	8850
112	CUGUCUCU G CCAUAUCG	1451	CGAUUAUGG UGAUG GCAUGGCACUAUGC GCG AGAGACAG	8851
132	AUCUUAUC G AAGACUGG	1452	CCAGUCUU UGAUG GCAUGGCACUAUGC GCG GAUAGAU	8852
153	CCUGUACC G AACAUAGGA	1453	UCCAUGUU UGAUG GCAUGGCACUAUGC GCG GGUACAGG	8853
169	AGAACAU C G CAUCAGGA	1454	UCCUGAUG UGAUG GCAUGGCACUAUGC GCG GAUGUUCU	8854
192	GGACCCCCU G CUCGUUU	1455	AACACGAG UGAUG GCAUGGCACUAUGC GCG AGGGGUCC	8855
222	UUCUUGUU G ACAAAAAU	1456	AUUUUUGU UGAUG GCAUGGCACUAUGC GCG AACAAAGAA	8856
315	CAAAAUUC G CAGUCCCA	1457	UGGGACUG UGAUG GCAUGGCACUAUGC GCG GAUUUUUG	8857
374	UGGUUAUC G CUGGAUGU	1458	ACAUCCAG UGAUG GCAUGGCACUAUGC GCG GAUAACCA	8858
387	AUGUGUCU G CGGGGUUU	1459	AAACGCCG UGAUG GCAUGGCACUAUGC GCG AGACACAU	8859
410	CUDCCUCU G CAUCCUGC	1460	GCAGGGAUG UGAUG GCAUGGCACUAUGC GCG AGAGGAAG	8860
417	UGCAUCCU G CUGCUAUG	1461	CAUAGCAG UGAUG GCAUGGCACUAUGC GCG AGGAUGCA	8861
420	AUCCUGCU G CUAUGCCU	1462	AGGCAUAG UGAUG GCAUGGCACUAUGC GCG ACCAGGAU	8862
425	GCUGCUAU G CCUCAUVC	1463	AGAUDGAG UGAUG GCAUGGCACUAUGC GCG AUAGCAGC	8863
468	GGUAUGUU G CCCGUUUG	1464	CAAACGGG UGAUG GCAUGGCACUAUGC GCG AACAUACC	8864
518	CGGACCAU G CAAAACCU	1465	AGGUUUUG UGAUG GCAUGGCACUAUGC GCG AUGGUCCG	8865
527	CAAAACCU G CACAAUC	1466	GAGUUGUG UGAUG GCAUGGCACUAUGC GCG AGGTUTUG	8866
538	CAACUCU G CUCAAAGGA	1467	UCCUUGAG UGAUG GCAUGGCACUAUGC GCG AGGAGUUG	8867
569	CUCAUGUU G CUGUACAA	1468	UJGUACAG UGAUG GCAUGGCACUAUGC GCG AACAUAGAG	8868
596	CGGAAACU G CACCUGUA	1469	UACAGGUG UGAUG GCAUGGCACUAUGC GCG AGUUICCG	8869
631	GGGCUUUC G CAAAUAJC	1470	GUAUUUUG UGAUG GCAUGGCACUAUGC GCG GAAAGCCC	8870
687	UUACUAGU G CCAUUUGU	1471	ACAAAUGG UGAUG GCAUGGCACUAUGC GCG ACUAGUAA	8871
747	AUAUGGAU G AUGGGGUU	1472	HACCACAU UGAUG GCAUGGCACUAUGC GCG AUCCAUAU	8872
783	AACAUCCU G AGUCCUU	1473	HAGGGACU UGAUG GCAUGGCACUAUGC GCG AAGAUGUU	8873
795	CCCUUUAU G CCGCUGUU	1474	AACAGGGG UGAUG GCAUGGCACUAUGC GCG AUAAAAGGG	8874
798	UUUAUGCC G CUGUUACC	1475	GGUAACAG UGAUG GCAUGGCACUAUGC GCG GGCAUAAA	8875
911	GGCACAUU G CCACAGGA	1476	DCCUGUGG UGAUG GCAUGGCACUAUGC GCG AAUGUGCC	8876
978	GGCCUUAU G AUUAGAAA	1477	UUUCCAAU UGAUG GCAUGGCACUAUGC GCG AAUAGGCC	8877
997	AUGUCAAC G AAUUGGG	1478	CCACAAAU UGAUG GCAUGGCACUAUGC GCG GUUGACAU	8878
1020	UGGGGGUUU G CCGCCCCU	1479	AGGGGGGG UGAUG GCAUGGCACUAUGC GCG AAACCCCA	8879
1023	GGUUUGCC G CCCCCUUC	1480	GAAGGGGG UGAUG GCAUGGCACUAUGC GCG GGCAAAACC	8880

1034	CCUUUCAC	G	CAAUGGG	1481	CCACAUUG	UUAUG	GCAUGCACUAUGC	GCG	GUGAAGG	8881
1050	GAUAAUCU	G	CUUUAUG	1482	CAUAAAAG	UUAUG	GCAUGCACUAUGC	GCG	AGAAUAC	8882
1058	GCUUUAAU	G	CCUUUAAU	1483	UAUAAAAGG	UUAUG	GCAUGCACUAUGC	GCG	AUAAAAGC	8883
1068	CUUUAUAU	G	CAUGCAUA	1484	UAUGCAU	UUAUG	GCAUGCACUAUGC	GCG	AUAAAAG	8884
1072	AUAGCAU	G	CAUACAAG	1485	CUUGUAUG	UUAUG	GCAUGCACUAUGC	GCG	AUGCAUAU	8885
1103	ACUUUCUC	G	CCAAUUA	1486	UAAGUUGG	UUAUG	GCAUGCACUAUGC	GCG	GAGAACU	8886
1139	TAGUAUGU	G	AAACCUUUA	1487	UAAAGGUU	UUAUG	GCAUGCACUAUGC	GCG	ACAUACUG	8887
1155	ACCCCGIU	G	CUCGGCAA	1488	UUGGCCAG	UUAUG	GCAUGCACUAUGC	GCG	AACGGGU	8888
1177	UGGUCUAU	G	CCAAUGGU	1489	ACACUUGG	UUAUG	GCAUGCACUAUGC	GCG	AUAGACCA	8889
1188	AGAGGUDU	G	CUGACGCA	1490	UGGGUCAG	UUAUG	GCAUGCACUAUGC	GCG	AAACACUU	8890
1191	UCUUVGGU	G	ACGCAACC	1491	GGUUGGGU	UUAUG	GCAUGCACUAUGC	GCG	AGCAAAAC	8891
1194	UUGGUGAC	G	CAACCCCC	1492	GGGGGGUG	UUAUG	GCAUGCACUAUGC	GCG	GUACGCCA	8892
1234	CCAUCAGC	G	CAUGGGUG	1493	CACCGAUG	UUAUG	GCAUGCACUAUGC	GCG	GCUGAUGG	8893
1238	CAGCGCAU	G	CGUGGAAC	1494	GUUCCACG	UUAUG	GCAUGCACUAUGC	GCG	AUGGCGUG	8894
1262	UCUCCUCU	G	CCGAUCCA	1495	UUGAUCGG	UUAUG	GCAUGCACUAUGC	GCG	AGAGGAGA	8895
1265	CCUCUGCC	G	AUCCAUAC	1496	GUUAUGAU	UUAUG	GCAUGCACUAUGC	GCG	GGCAGAGG	8896
1275	UCCAUACC	G	CGGAACUC	1497	GAGUUCG	UUAUG	GCAUGCACUAUGC	GCG	GGUAUGGA	8897
1290	UCCUAGCC	G	CUUGUJUUU	1498	AAAACAAG	UUAUG	GCAUGCACUAUGC	GCG	GGCUAGGA	8898
1299	CUUUGUUU	G	CUCCGAGC	1499	GGUUGCCAG	UUAUG	GCAUGCACUAUGC	GCG	AAAACAAG	8899
1303	UUDUGGUC	G	CAGCAGGU	1500	ACCUGCUG	UUAUG	GCAUGCACUAUGC	GCG	GAGCAAA	8900
1335	UCGGGACU	G	ACAAAUUC	1501	AGAAUJGU	UUAUG	GCAUGCACUAUGC	GCG	AGUCCCCA	8901
1349	UCUGUICGU	G	CUCUCCCG	1502	CGGGAGAG	UUAUG	GCAUGCACUAUGC	GCG	ACGACAGA	8902
1357	GCUCUCCC	G	CAAAAUAA	1503	UAUAUUUG	UUAUG	GCAUGCACUAUGC	GCG	GGGAGAGC	8903
1382	CCAUGGCCU	G	CUAGGGCUG	1504	CAGCCUAG	UUAUG	GCAUGCACUAUGC	GCG	AGCCAUGG	8904
1392	UAGGCUGU	G	CUGCCAAC	1505	GUUGGCAG	UUAUG	GCAUGCACUAUGC	GCG	ACAGCCUA	8905
1395	GCUGUGCU	G	CCAAUCGG	1506	CCAGUDDG	UUAUG	GCAUGCACUAUGC	GCG	AGCACAGC	8906
1411	GAUCCUAC	G	CGGGACGU	1507	ACGUCCCC	UUAUG	GCAUGCACUAUGC	GCG	GUAGGAUC	8907
1442	CCGUUGGGC	G	CUGAAUCC	1508	GGAUUCAG	UUAUG	GCAUGCACUAUGC	GCG	GCGGACGG	8908
1445	UCGGGGCU	G	AAUCCCGC	1509	GGGGGAAU	UUAUG	GCAUGCACUAUGC	GCG	AGGCCCGA	8909
1452	UGAAUCCC	G	CGGACGAC	1510	GUUGUCCG	UUAUG	GCAUGCACUAUGC	GCG	GGGAUUCGA	8910
1458	CCGGGGAC	G	ACCCCCUCC	1511	GGAGGGGU	UUAUG	GCAUGCACUAUGC	GCG	GUCCGGGG	8911
1474	CCGGGGCC	G	CUUGGGCC	1512	GCCCCAAAG	UUAUG	GCAUGCACUAUGC	GCG	GGCCCCGG	8912
1489	GCUCUACC	G	CCCGUUC	1513	GAAGGGGG	UUAUG	GCAUGCACUAUGC	GCG	GGUAGAGC	8913
1493	UACCGCCC	G	CUUCUCCG	1514	CGGAGAAG	UUAUG	GCAUGCACUAUGC	GCG	GGGGGGUA	8914
1501	GUUUCUCC	G	CCUAUUGU	1515	ACAAUAGG	UUAUG	GCAUGCACUAUGC	GCG	GGAGAAGC	8915
1513	AUTGUACC	G	ACCGGUCA	1516	UGGACGGU	UUAUG	GCAUGCACUAUGC	GCG	GGUACAAU	8916
1528	CACGGGGC	G	CACCUUCUC	1517	GAGGGGUG	UUAUG	GCAUGCACUAUGC	GCG	GGCCCGUG	8917

1542	CUCUUUAC	G	CGGACUCC	1518	GGAGUCCG	UGAUG	GCAUGCACUAUGC	GCG	GUAAAGAG	8918
1559	CCGUCUGU	G	CCUUCUCA	1519	UGAGAAAGG	UGAUG	GCAUGCACUAUGC	GCG	ACAGACGG	8919
1571	UCUCAUCU	G	CCGGACCG	1520	CGGUCCGG	UGAUG	GCAUGCACUAUGC	GCG	AGAUGAGA	8920
1583	GACCGUGU	G	CACUUCGC	1521	GCGGAAGUG	UGAUG	GCAUGCACUAUGC	GCG	ACACGGUC	8921
1590	UGCACUUC	G	CUUCACCU	1522	AGGUGAAG	UGAUG	GCAUGCACUAUGC	GCG	GAAGUGCA	8922
1601	UCACCUCU	G	CACGUGCG	1523	GCGACGUG	UGAUG	GCAUGCACUAUGC	GCG	AGAGGUGA	8923
1608	UGCACGUC	G	CAUGGAGA	1524	UCUCCAUG	UGAUG	GCAUGCACUAUGC	GCG	GACGUGCA	8924
1624	ACCACCGU	G	AACGCCCA	1525	UGGGGCGU	UGAUG	GCAUGCACUAUGC	GCG	ACGGUGGU	8925
1628	CCGUGAAC	G	CCCACAGG	1526	CCUGUGGG	UGAUG	GCAUGCACUAUGC	GCG	GUUCACGG	8926
1642	AGGAACCU	G	CCCCAAGG	1527	ACCUUDGGG	UGAUG	GCAUGCACUAUGC	GCG	AGGUUCCU	8927
1654	AAGGUUU	G	CAUAAAGG	1528	CUCUUAUG	UGAUG	GCAUGCACUAUGC	GCG	AAGACCUU	8928
1690	AUGUCAAAC	G	ACCGACCU	1529	AGGUCCGU	UGAUG	GCAUGCACUAUGC	GCG	GUUGACAU	8929
1694	CAACGACC	G	ACCUUAGG	1530	CUCAAAGGU	UGAUG	GCAUGCACUAUGC	GCG	GGUCGUG	8930
1700	CCGACCCU	G	AGGCAUAC	1531	GUAUGCCU	UGAUG	GCAUGCACUAUGC	GCG	AAGGUCCG	8931
1730	UGUUUAAU	G	AGUGGGAG	1532	CUCCACU	UGAUG	GCAUGCACUAUGC	GCG	AUAAAACA	8932
1818	AGCACCAU	G	CAACUUTU	1533	AAAAGUUG	UGAUG	GCAUGCACUAUGC	GCG	AUGGUGCU	8933
1835	UCACCUUC	G	CCUUAUCA	1534	UGAUUAGG	UGAUG	GCAUGCACUAUGC	GCG	AGAGGUGA	8934
1883	CAAGCUGU	G	CCUUGGGU	1535	ACCCAAAG	UGAUG	GCAUGCACUAUGC	GCG	ACAGCUUG	8935
1912	UGGACAUU	G	ACCCGUAU	1536	AUACGGGU	UGAUG	GCAUGCACUAUGC	GCG	AAUGUCCA	8936
1959	UCUUUUUU	G	CCUUUCUGA	1537	UCAGAAGG	UGAUG	GCAUGCACUAUGC	GCG	AAAAAGA	8937
1966	UGCCUUCU	G	ACUUCUUU	1538	AAAGAAAGU	UGAUG	GCAUGCACUAUGC	GCG	AGAAGGCCA	8938
1985	UUCUAUJC	G	AGAUUCCC	1539	GGAGAUCU	UGAUG	GCAUGCACUAUGC	GCG	GAUAGAAA	8939
1996	AUCUCCUC	G	ACACCGCC	1540	GGGGGGGU	UGAUG	GCAUGCACUAUGC	GCG	GAGGAGAU	8940
2002	UCGACACC	G	CCUCUGCU	1541	AGCAGAGG	UGAUG	GCAUGCACUAUGC	GCG	GGUGUCCG	8941
2008	CCGCCUCU	G	CUCUGUAU	1542	AUACAGAG	UGAUG	GCAUGCACUAUGC	GCG	AGAGGGGG	8942
2092	GTUUGGGGU	G	AGGUUGAU	1543	CAUCAACU	UGAUG	GCAUGCACUAUGC	GCG	ACCCCAAC	8943
2097	GGUGAGUU	G	AUGAAUCU	1544	AGAUUCAU	UGAUG	GCAUGCACUAUGC	GCG	AACUCACC	8944
2100	GAGUUGAU	G	AAUCUAGC	1545	GUCAAGAU	UGAUG	GCAUGCACUAUGC	GCG	AUCAACUC	8945
2237	UUUUGGGC	G	AGAAAACUG	1546	CAGUUDCU	UGAUG	GCAUGCACUAUGC	GCG	GCCCCAAA	8946
2251	CUGUUCUU	G	AAAUUUUG	1547	CAAAAUUU	UGAUG	GCAUGCACUAUGC	GCG	AAGAACAG	8947
2282	GUUGGAUUC	G	CACUCUC	1548	GAGGGAGG	UGAUG	GCAUGCACUAUGC	GCG	GAUCCAC	8948
2293	CUCCUCCU	G	CAUAAUAGA	1549	UCUUAUAG	UGAUG	GCAUGCACUAUGC	GCG	AGGAGGAG	8949
2311	CACCAAAU	G	CCCCUUAUC	1550	GAUAGGGG	UGAUG	GCAUGCACUAUGC	GCG	AUUUGGUG	8950
2354	UGUUAAGAC	G	AAGAGGCA	1551	UGCCCDU	UGAUG	GCAUGCACUAUGC	GCG	GUCAAACA	8951
2388	ACUCCCCU	G	CCUCGCAG	1552	CUGGGAGG	UGAUG	GCAUGCACUAUGC	GCG	GAGGGAGU	8952
2393	CUCGCCUC	G	CAAGACGAA	1553	UUCGUUCUG	UGAUG	GCAUGCACUAUGC	GCG	GAGGCAG	8953
2399	UCGGAGAC	G	AAGGGUCUC	1554	GAGACCUU	UGAUG	GCAUGCACUAUGC	GCG	GUUCGGCA	8954

2412	UCUCAAUC	G	CCGGUGCG	1555	CGACGCGG	UGAUG	GCAUGCACUAUGC	GCG	GAUUGAGA	8955
2415	CAAUCGCC	G	CGUUCGAG	1556	CUGCACGG	UGAUG	GCAUGCACUAUGC	GCG	GGCGAUUG	8956
2420	GCCGCGUC	G	CAGAAAGAU	1557	AUCUUCUG	UGAUG	GCAUGCACUAUGC	GCG	GACGGGGC	8957
2514	GGUACCUU	G	CUUUAAUC	1558	GAUAAAAG	UGAUG	GCAUGCACUAUGC	GCG	AGGUACCC	8958
2549	CUTUUCU	G	ACAUTUCAU	1559	AUGAAUGU	UGAUG	GCAUGCACUAUGC	GCG	AGGAAAAAG	8959
2560	AUUCAUUU	G	CAGGAGGA	1560	UCCUCUG	UGAUG	GCAUGCACUAUGC	GCG	AAAUGAAU	8960
2576	ACAUGGUU	G	AUAGAUGU	1561	ACAUCAU	UGAUG	GCAUGCACUAUGC	GCG	AACAAUGU	8961
2615	CAGAAAUAU	G	AAAACAGG	1562	CCUGUUUU	UGAUG	GCAUGCACUAUGC	GCG	AUUAUCUG	8962
2641	UUAACUAU	G	CCUGUAG	1563	CUGGAGG	UGAUG	GCAUGCACUAUGC	GCG	AUAGUAAA	8963
2645	CTAUGCCU	G	CUAGGUUU	1564	AAACCUCAG	UGAUG	GCAUGCACUAUGC	GCG	AGGCAUAG	8964
2677	AAAUAUUU	G	CCCUUAGA	1565	UCUAAAGGG	UGAUG	GCAUGCACUAUGC	GCG	AAAUAUUI	8965
2740	UCCAGAC	G	CGACAUUA	1566	UAAUGUGC	UGAUG	GCAUGCACUAUGC	GCG	GUUGGZAA	8966
2742	CCAGACGC	G	ACAUUAU	1567	AAUAAUGU	UGAUG	GCAUGCACUAUGC	GCG	GCGUCUGG	8967
2804	CACGUAGC	G	CCCUAUU	1568	AAUAGAGG	UGAUG	GCAUGCACUAUGC	GCG	GCUACUG	8968
2814	CUCADUUU	G	CGGGGUAC	1569	GUGACCCG	UGAUG	GCAUGCACUAUGC	GCG	AAAUGAG	8969
2875	CAAACCCUC	G	AAAAGGCA	1570	UGCCUUUU	UGAUG	GCAUGCACUAUGC	GCG	GAGGUUUG	8970
2928	UCUCCCC	G	AUCAUCAG	1571	CUGAUGAU	UGAUG	GCAUGCACUAUGC	GCG	GGGGAAAGA	8971
2946	UGGACCCU	G	CAUCAAA	1572	UDUGAAUG	UGAUG	GCAUGCACUAUGC	GCG	AGGGGUCCA	8972
2990	CUCAACCC	G	CACAAAGA	1573	UCCUUGUG	UGAUG	GCAUGCACUAUGC	GCG	GGGUUUG	8973
3012	GGCCGGAC	G	CCAAACAAAG	1574	CUUGUUGG	UGAUG	GCAUGCACUAUGC	GCG	GUCCGGCC	8974
3090	GCCCCUCAC	G	CUCAGGGC	1575	GCCCUGAG	UGAUG	GCAUGCACUAUGC	GCG	GUGAGGGC	8975
3113	ACAACUGU	G	CCAGGAGC	1576	GCUGCGUG	UGAUG	GCAUGCACUAUGC	GCG	ACAGUUGU	8976
3132	CUCCUCCU	G	CCUCACC	1577	GGUGGGAG	UGAUG	GCAUGCACUAUGC	GCG	AGGAGGZAG	8977
51	AGGGCCCCU	G	UACUUUCC	1578	GGAAAAGUA	UGAUG	GCAUGCACUAUGC	GCG	AGGGCCCCU	8978
106	AGAAAUACU	G	UCUCUGCC	1579	GGCAGAGA	UGAUG	GCAUGCACUAUGC	GCG	AQUAUUCU	8979
148	GGGACCCU	G	UACCGAAC	1580	GUUCGGUA	UGAUG	GCAUGCACUAUGC	GCG	AGGGUCCC	8980
198	CUGCUCGU	G	UUACAGGC	1581	GCCUGUAA	UGAUG	GCAUGCACUAUGC	GCG	ACGAGCAG	8981
219	UUUUUCUU	G	UUGACAAA	1582	UUUGCUAA	UGAUG	GCAUGCACUAUGC	GCG	AAGAAAAA	8982
297	ACACCCGU	G	UUGCUUUGG	1583	CCAAGACA	UGAUG	GCAUGCACUAUGC	GCG	ACGGGUUGU	8983
299	ACCCGUGU	G	UCUUUGCC	1584	GGCCAAGA	UGAUG	GCAUGCACUAUGC	GCG	ACACGGGU	8984
347	ACCAACCU	G	UUGUCUC	1585	GAGGACAA	UGAUG	GCAUGCACUAUGC	GCG	AGGUUUGGU	8985
350	AACCCUGUU	G	UCCUCCAA	1586	UUGGAGGA	UGAUG	GCAUGCACUAUGC	GCG	AACAGGUU	8986
362	UCCAAUUU	G	UCCUGGUU	1587	AACCAAGGA	UGAUG	GCAUGCACUAUGC	GCG	AAAUUGGA	8987
381	CGCUGGAAU	G	UGUCUGGCG	1588	CGCAGACA	UGAUG	GCAUGCACUAUGC	GCG	AUCCAGCG	8988
383	CUGGAUGU	G	UCUGGGCC	1589	GCCGCAGA	UGAUG	GCAUGCACUAUGC	GCG	ACAUCCAG	8989
438	AUCUUCUU	G	UUGGUUCU	1590	AGAACCAA	UGAUG	GCAUGCACUAUGC	GCG	AAGAAGAU	8990
465	CAAGGUAU	G	UUGCCCGU	1591	ACGGGCAA	UGAUG	GCAUGCACUAUGC	GCG	AUCCUUG	8991

476	GCCCCUUU G	UCCUCUAA	1592	UUAGAGGA	UGAUG	GCAUGCACUAUGC	GCG	AAACGGGC	8992
555	ACCUCCAU G	UUUCCCCUC	1593	GAAGGGAAA	UGAUG	GCAUGCACUAUGC	GCG	AUAGAGGU	8993
566	UCCCCUCAU G	UUGCGUGUA	1594	UACAGCAA	UGAUG	GCAUGCACUAUGC	GCG	AUGAGGGAA	8994
572	AUGGUGCU G	UACAAAAAC	1595	GUUDUGUA	UGAUG	GCAUGCACUAUGC	GCG	AGCAACAU	8995
602	CUGCACCU G	UAUCCCCA	1596	UGGGAAUA	UGAUG	GCAUGCACUAUGC	GCG	AGGUGCAG	8996
694	UGCCAUUU G	UUCAGUGG	1597	CCACUGAA	UGAUG	GCAUGCACUAUGC	GCG	AAAUUGGA	8997
724	CCCCCACU G	UCUGGGCUU	1598	PAAGCCAGA	UGAUG	GCAUGCACUAUGC	GCG	AGUGGGGG	8998
750	UGGAUGAU G	UGGUUUUJG	1599	CAAAACCA	UGAUG	GCAUGCACUAUGC	GCG	AUCAUCCA	8999
771	CCAAGGCU G	UACAAACAU	1600	AUGGUUGUA	UGAUG	GCAUGCACUAUGC	GCG	AGACUUGG	9000
801	AUGGCCU G	UUAACCAU	1601	AUGGGUAA	UGAUG	GCAUGCACUAUGC	GCG	AGGGCCAU	9001
818	UUUCUUUU G	UCUUUGGG	1602	CCCACAAA	UGAUG	GCAUGCACUAUGC	GCG	AAAAGAAA	9002
888	UGGGAUAU G	UAUDDGGG	1603	CCCCAAUUA	UGAUG	GCAUGCACUAUGC	GCG	AUAUCCCA	9003
927.	AACAUAUU G	UACAAAAAA	1604	UUUUUGUA	UGAUG	GCAUGCACUAUGC	GCG	AAU AUGUU	9004
944	AUCAAAAAU G	UGUUUUUAG	1605	CUAAAAACAA	UGAUG	GCAUGCACUAUGC	GCG	AU UUU GAU	9005
946	CAAAAUUGU G	UDDUAGGA	1606	UCCUAAAA	UGAUG	GCAUGCACUAUGC	GCG	ACAUUUUG	9006
963	AACUCCU G	UAAACAGG	1607	CCUGUUUA	UGAUG	GCAUGCACUAUGC	GCG	AGGAAGUU	9007
991	GAAGGUAU G	UCAACGAA	1608	UUCGUUGA	UGAUG	GCAUGCACUAUGC	GCG	AUACUUUC	9008
1002	AACGAAAU G	UGGGGUUU	1609	PAAGACCCAA	UGAUG	GCAUGCACUAUGC	GCG	AAUDCGUU	9009
1039	CAACGAAU G	UGGAUAAA	1610	AAUAUCCA	UGAUG	GCAUGCACUAUGC	GCG	AU UGGGUG	9010
1137	AAACAGUAU G	UGAACCCU	1611	PAAGGUUCA	UGAUG	GCAUGCACUAUGC	GCG	AUACUGUU	9011
1184	UGCCAAGU G	UUUGUGA	1612	UCAGCAAA	UGAUG	GCAUGCACUAUGC	GCG	ACU UGGCCA	9012
1251	GAACCUUU G	UGUCUCCU	1613	AGGAGACA	UGAUG	GCAUGCACUAUGC	GCG	AAAGGUUC	9013
1253	ACCUUJUGU G	UCUCCUCU	1614	AGAGGGAA	UGAUG	GCAUGCACUAUGC	GCG	ACAAAGGU	9014
1294	AGCCGCUU G	UUUUGUC	1615	GAGCAAAA	UGAUG	GCAUGCACUAUGC	GCG	AAGGGCCU	9015
1344	ACAAUUCU G	UCUGGCUC	1616	GAGCACGA	UGAUG	GCAUGCACUAUGC	GCG	AGAAUUGU	9016
1390	GCUAGGGCU G	UGCGUGCCA	1617	UGGCAGCA	UGAUG	GCAUGCACUAUGC	GCG	AGCCUAGC	9017
1425	CGUCCCCU G	UUUACGUC	1618	GACGUAAA	UGAUG	GCAUGCACUAUGC	GCG	AAAGGACG	9018
1508	CGCCCUAU G	UACCGGACC	1619	GGUUGGUA	UGAUG	GCAUGCACUAUGC	GCG	AUAGGGCG	9019
1557	CCCCCGUCU G	UGCCUUCU	1620	AGAAGGCA	UGAUG	GCAUGCACUAUGC	GCG	AGACGGGG	9020
1581	CGGACCGU G	UGCACUUC	1621	GAAGUGUA	UGAUG	GCAUGCACUAUGC	GCG	ACGGUCCG	9021
1684	UCAGGAAAU G	UCAACGAC	1622	GUCCGUUA	UGAUG	GCAUGCACUAUGC	GCG	AUUGCUGA	9022
1719	CAAAAGACU G	UGUGUUUA	1623	UAAAACACA	UGAUG	GCAUGCACUAUGC	GCG	AGUCUUIG	9023
1721	AAAGACUGU G	UGUUUUAAU	1624	AUAAAACA	UGAUG	GCAUGCACUAUGC	GCG	ACAGUCUU	9024
1723	GAUCUGUGU G	UUUAAAUGA	1625	UCAUUUAAA	UGAUG	GCAUGCACUAUGC	GCG	ACACAGUC	9025
1772	AGGUCCCCU G	UACUAGGA	1626	UCCUAGUA	UGAUG	GCAUGCACUAUGC	GCG	AAAGACCU	9026
1785	AGGGAGGCCU G	UAGGGCAUA	1627	UAUGCCUA	UGAUG	GCAUGCACUAUGC	GCG	AGCCUCCU	9027
1801	AAAUUGGU G	UGUUUCACC	1628	GGUGAACAA	UGAUG	GCAUGCACUAUGC	GCG	ACCAAUUV	9028

1803	AUUGGUGU G UUCACCAAG	1629	CUGGUGAA UGAUG GCAUGCACUAUGC GCG ACACCAAU	9029
1850	CAUCUCAU G UUCAUGUC	1630	GACAUGAA UGAUG GCAUGCACUAUGC GCG AUGAGAUG	9030
1856	AUGUUCAU G UCCUACUG	1631	CAGUAGGA UGAUG GCAUGCACUAUGC GCG AUGAACAU	9031
1864	GUCCUACU G UUCAAGGCC	1632	GGCUUGAA UGAUG GCAUGCACUAUGC GCG AGUAGGAC	9032
1881	UCCAAGCU G UGCCUUGG	1633	CCAAAGGCA UGAUG GCAUGCACUAUGC GCG AGCUUGGA	9033
1939	GAGCUUCU G UGGAGUUA	1634	UAAUCUCA UGAUG GCAUGCACUAUGC GCG AGAAGCUC	9034
2013	UCUGCUCU G UAUCGGGG	1635	CCCCGAAU UGAUG GCAUGCACUAUGC GCG AGAGCAGA	9035
2045	GGAACAUU G UUCACCUC	1636	GAGGUGAA UGAUG GCAUGCACUAUGC GCG AAUGUICC	9036
2082	GCIAAUUCU G UGUUGGGG	1637	CCCCAAAC UGAUG GCAUGCACUAUGC GCG AGAAUAGC	9037
2084	UAUUCUGU G UGGGGUG	1638	CACCCCCA UGAUG GCAUGCACUAUGC GCG ACAGAAUA	9038
2167	UCAGCUAU G UCAACGUU	1639	FACGUUGA UGAUG GCAUGCACUAUGC GCG AUAGCUGA	9039
2205	CAACUAUU G UGGGUUCA	1640	UGAAAACCA UGAUG GCAUGCACUAUGC GCG AAUAGUUG	9040
2222	CAUUCUCCU G UCUUACUU	1641	FAGUAGAA UGAUG GCAUGCACUAUGC GCG AGGAAUAG	9041
2245	GAGAACU G UUCUUGAA	1642	UUCZAGAA UGAUG GCAUGCACUAUGC GCG AGUUUCUC	9042
2262	UAUUUGGU G UCUUUUGG	1643	CCAAAAGA UGAUG GCAUGCACUAUGC GCG ACCAAUA	9043
2274	UUUGGAGU G UGGAAUUCG	1644	CGGAAUCCA UGAUG GCAUGCACUAUGC GCG ACUCCAAA	9044
2344	AAACUACU G UGGUUAGA	1645	UCUAACAA UGAUG GCAUGCACUAUGC GCG AGUAGUU	9045
2347	CUACUGUU G UUAGACGA	1646	UCGUUCUAA UGAUG GCAUGCACUAUGC GCG AACAGUAG	9046
2450	AUCUCAAU G UUAGUAUU	1647	HAUACUAA UGAUG GCAUGCACUAUGC GCG AUUAGAU	9047
2573	AGGACAUU G UUGAUAGA	1648	UCUADCAA UGAUG GCAUGCACUAUGC GCG AAUGUCCU	9048
2583	UIGAUAGAU G UAAAGCAAU	1649	AUTUGCUTA UGAUG GCAUGCACUAUGC GCG AUCUAUCA	9049
2594	AGCAAUUU G UGGGGCCC	1650	GGGGCCCC UGAUG GCAUGCACUAUGC GCG AAAUUGCU	9050
2663	AUCCCAAU G UUACUAAA	1651	UUUAGUAA UGAUG GCAUGCACUAUGC GCG AUUUGGAU	9051
2717	CAGAGUAU G UAGUUAAA	1652	AUUAACUA UGAUG GCAUGCACUAUGC GCG AUACUCUG	9052
2901	AUCUUUCU G UCCCCAAU	1653	AUUGGGGA UGAUG GCAUGCACUAUGC GCG AGAAAGAU	9053
3071	GGGGGACU G UGGGGUG	1654	CACCCCCA UGAUG GCAUGCACUAUGC GCG AGUCCCCC	9054
3111	UCACAAUCU G UGCCAGCA	1655	UGCUGGCA UGAUG GCAUGCACUAUGC GCG AGUUGUGA	9055

Input Sequence = AF100308. Cut Site = YG/M or UG/U.

Stem Length = 8. Core Sequence = UGAUG GCAUGCACUAUGC GCG

AF100308 (Hepatitis B virus strain 2-18, 3215 bp)

TABLE VIII: HUMAN HBV ZINZYME AND SUBSTRATE SEQUENCE

Pos	Substrate	Seq ID	Zinzyme	Seq ID
61	ACUUUCCU G CUGGGGGC	1448	GCCACCAG G CcgaaaaggCGGaGuCaAGGuCu AGGAAAGU	9056
94	UGAGCCCCU G CUCAGAAU	1450	AUUCUGAG G CcgaaaaggCGGaGuCaAGGuCu AGGGCUCA	9057
112	CUGUCUCU G CCAUACUC	1451	CGAUAUCC G CcgaaaaggCGGaGuCaAGGuCu AGAGACAG	9058
169	AGAACAUIC G CAUCAGGA	1454	UCCUGAUG G CcgaaaaggCGGaGuCaAGGuCu GAUGUUCU	9059
192	GGACCCCU G CUCGUGGU	1455	AACACGAG G CcgaaaaggCGGaGuCaAGGuCu AGGGGUCC	9060
315	CAAAAUUC G CAGUCCCCA	1457	UGGGACUG G CcgaaaaggCGGaGuCaAGGuCu GAAUUTUG	9061
374	UGGUUAUC G CUGGAUGU	1458	ACAUCAG G CcgaaaaggCGGaGuCaAGGuCu GAUAACCA	9062
387	AUGUGUCU G CGGGGUUU	1459	AAACGCCG G CcgaaaaggCGGaGuCaAGGuCu AGACACAU	9063
410	CUUCCUCU G CAUCCUGC	1460	GCAGGAUG G CcgaaaaggCGGaGuCaAGGuCu AGAGGAAG	9064
417	UGCAUCCU G CUDGCUAUG	1461	CAUAGCAG G CcgaaaaggCGGaGuCaAGGuCu AGGAUGCA	9065
420	AUCCUGCU G CUAUGCCU	1462	AGGCAUAG G CcgaaaaggCGGaGuCaAGGuCu AGCAGGAAU	9066
425	GGUGCUAU G CCUCAUUC	1463	AGAUAGGG G CcgaaaaggCGGaGuCaAGGuCu AUAGCAGC	9067
468	GGUAUGUU G CCCGUUDG	1464	CAAACCGG G CcgaaaaggCGGaGuCaAGGuCu AACAUACC	9068
518	CGGACCAU G CAAAACCU	1465	AGGUUUUG G CcgaaaaggCGGaGuCaAGGuCu AUGGUCCG	9069
527	CAAAACCU G CACAAUC	1466	GAGUUGUG G CcgaaaaggCGGaGuCaAGGuCu AGGUUUUG	9070
538	CAACUCU G CUCAAAGGA	1467	UCCUUGAG G CcgaaaaggCGGaGuCaAGGuCu AGGAGGUUG	9071
569	CUCAUGUU G CUGUACAA	1468	UUGUACAG G CcgaaaaggCGGaGuCaAGGuCu AACAUAG	9072
596	CGGAAACU G CACCUUGA	1469	UACAGGG G CcgaaaaggCGGaGuCaAGGuCu AGIUUUCG	9073
631	GGGCUUUC G CAAAAAUAC	1470	GUAUUUTUG G CcgaaaaggCGGaGuCaAGGuCu GAAAGCCC	9074
687	UUACUAGU G CCAUUIUGU	1471	ACAAAUGG G CcgaaaaggCGGaGuCaAGGuCu ACUAGUAA	9075
795	CCCUUOAU G CCGCUGUU	1474	AACAGCGG G CcgaaaaggCGGaGuCaAGGuCu AUAAAAGG	9076
798	UUUAUGCC G CUGUUACC	1475	GUUAACAG G CcgaaaaggCGGaGuCaAGGuCu GGGAUAAA	9077
911	GGCACAUU G CCACAGGA	1476	UCCUGUGG G CcgaaaaggCGGaGuCaAGGuCu AUUGUGCC	9078
1020	UGGGGUUU G CCGCCCCU	1479	AGGGGGG G CcgaaaaggCGGaGuCaAGGuCu AAACCCCCA	9079
1023	GGUUUUGCC G CCCCCUUUC	1480	GAAAGGGG G CcgaaaaggCGGaGuCaAGGuCu GGGAAACC	9080
1034	CCUUDUCAC G CAAUUGGG	1481	CCACAUUG G CcgaaaaggCGGaGuCaAGGuCu GUGAAAGG	9081
1050	GAUAUUCU G CUUUUAUG	1482	CAUAAAAG G CcgaaaaggCGGaGuCaAGGuCu AGAAUAUC	9082
1058	GCUUUAAU G CCUUUAAA	1483	UAUAAAAGG G CcgaaaaggCGGaGuCaAGGuCu AUUAAAAGC	9083
1068	CUUUAUAU G CAUGCAUA	1484	UAUGCAUG G CcgaaaaggCGGaGuCaAGGuCu AUAAAAG	9084
1072	AUAUGCAU G CAUACAAG	1485	CUUUGUAUG G CcgaaaaggCGGaGuCaAGGuCu AUGCAUAU	9085
1103	ACUUUCUC G CCAACUUA	1486	UAAGGUUGG G CcgaaaaggCGGaGuCaAGGuCu GAGAAAGU	9086
1155	ACCCCCGUU G CUCGGCAA	1488	UUGCCGAG G CcgaaaaggCGGaGuCaAGGuCu AACGGGGGU	9087
1177	UGGGUCUAU G CCAAGUGU	1489	ACACUUGG G CcgaaaaggCGGaGuCaAGGuCu AUAGACCCA	9088

1188	AAGUGUUU	G	CUGACGCCA	1490	UGCGUCAG	GCcggaaaaggGCGaGuCaAGGuCu	AAACACUU	9089
1194	UUGCUGAC	G	CAACCCCC	1492	GGGGGUUG	GCcggaaaaggGCGaGuCaAGGuCu	GUCAGCAA	9090
1234	CCAUCAGC	G	CAUGCUG	1493	CACGCCAUG	GCcggaaaaggGCGaGuCaAGGuCu	GCGUAGGG	9091
1238	CAGGCAU	G	CGUGGAAC	1494	GUUCCACG	GCcggaaaaggGCGaGuCaAGGuCu	AUGGCGUG	9092
1262	UCUCCUCU	G	CCGAUCCA	1495	UGGAUCCG	GCcggaaaaggGCGaGuCaAGGuCu	AGAGGAGA	9093
1275	UCCAUACC	G	CGGAACUC	1497	GAGUUCGG	GCcggaaaaggGCGaGuCaAGGuCu	GGUUAUGGA	9094
1290	UCCUAGCC	G	CUUGGUUU	1498	AAAACAAG	GCcggaaaaggGCGaGuCaAGGuCu	GCCUAGGA	9095
1299	CUUGUUU	G	CUCGCAAGC	1499	GCUGCGAG	GCcggaaaaggGCGaGuCaAGGuCu	AAAACAAG	9096
1303	UUUUGCU	G	CAGGAGGU	1500	ACCUUCUG	GCcggaaaaggGCGaGuCaAGGuCu	GAGCAAAA	9097
1349	UCUGUCGU	G	CUCUCCCC	1502	CGGGAGAG	GCcggaaaaggGCGaGuCaAGGuCu	ACGACAGA	9098
1357	GCUCUCCC	G	CAAAUAUA	1503	UAUAUUTG	GCcggaaaaggGCGaGuCaAGGuCu	GGGAGAGC	9099
1382	CAUGGCU	G	CUAGGCUG	1504	CAGGCCUAG	GCcggaaaaggGCGaGuCaAGGuCu	AGCCCAUGG	9100
1392	UAGGCUGU	G	CUGCCAAAC	1505	GUDDGGCG	GCcggaaaaggGCGaGuCaAGGuCu	ACAGCCUA	9101
1395	GCUGUGCU	G	CCAAACUGG	1506	CCAGUUGG	GCcggaaaaggGCGaGuCaAGGuCu	AGCACAGC	9102
1411	GAUCCUAC	G	CGGGACGU	1507	ACGUCCCG	GCcggaaaaggGCGaGuCaAGGuCu	GUAGGAUC	9103
1442	CCGUCGGC	G	CUGAAUCC	1508	GGAUUCAG	GCcggaaaaggGCGaGuCaAGGuCu	GCCGACGG	9104
1452	UGAAUCCC	G	CGGAGCAC	1510	GUUCGUCCG	GCcggaaaaggGCGaGuCaAGGuCu	GGGAUUCU	9105
1474	CGGGGGCC	G	CUUGGGGG	1512	GCCCCAACG	GCcggaaaaggGCGaGuCaAGGuCu	GGCCCCGG	9106
1489	GCUCUACC	G	CCCCGUUC	1513	GAAGGGGG	GCcggaaaaggGCGaGuCaAGGuCu	GUAGAGC	9107
1493	UACCGCCC	G	CUUCUCGG	1514	CGGAGAAC	GCcggaaaaggGCGaGuCaAGGuCu	GGGGGGUA	9108
1501	GCUCUCUCC	G	CCUUAUUGU	1515	ACAAUAGG	GCcggaaaaggGCGaGuCaAGGuCu	GGAGAACG	9109
1528	CACGGGGC	G	CACCUUCUC	1517	GAGGGUG	GCcggaaaaggGCGaGuCaAGGuCu	GCCCCGUG	9110
1542	CUCUUUAC	G	CGGACUCC	1518	GGAGUCCG	GCcggaaaaggGCGaGuCaAGGuCu	GUAAAGAG	9111
1559	CGGUCUGU	G	CCUUCUCA	1519	UGAGAAGG	GCcggaaaaggGCGaGuCaAGGuCu	ACAGACGG	9112
1571	UCUCAUCU	G	CCGGACCG	1520	CGGUCCCG	GCcggaaaaggGCGaGuCaAGGuCu	AGAUGAGA	9113
1583	GRACCGUGU	G	CAUCUUCG	1521	GCGAAGUG	GCcggaaaaggGCGaGuCaAGGuCu	ACACGGUC	9114
1590	UGCACUUC	G	CUUCACCU	1522	AGGUUGAG	GCcggaaaaggGCGaGuCaAGGuCu	GAAGUGCA	9115
1601	UCACCUUC	G	CACGUUCG	1523	GCGACGUG	GCcggaaaaggGCGaGuCaAGGuCu	AGAGGUUGA	9116
1608	UGCACGUIC	G	CAUGGAGA	1524	UCUCCAUG	GCcggaaaaggGCGaGuCaAGGuCu	GAACGUGCA	9117
1628	CCGUGAAC	G	CCCACAGG	1526	CCUGUGGG	GCcggaaaaggGCGaGuCaAGGuCu	GUUCACGG	9118
1642	AGGAACCU	G	CCCAAGGU	1527	ACCUUUGG	GCcggaaaaggGCGaGuCaAGGuCu	AGGUUUCU	9119
1654	AAGGUCUU	G	CAUAAAGAG	1528	CUCUUAUG	GCcggaaaaggGCGaGuCaAGGuCu	AAGACCUU	9120
1818	AGCACCAU	G	CAACUUUU	1533	AAAAGUUG	GCcggaaaaggGCGaGuCaAGGuCu	AUGGUGCU	9121
1835	UCACCUUC	G	CCUAAUCA	1534	UGAUUAGG	GCcggaaaaggGCGaGuCaAGGuCu	AGAGGUGA	9122
1883	CAAGCUGU	G	CCUUGGGU	1535	ACCCAAAGG	GCcggaaaaggGCGaGuCaAGGuCu	ACAGGUUG	9123
1959	UCUUUUUU	G	CCUUUCUGA	1537	UCAGAAGG	GCcggaaaaggGCGaGuCaAGGuCu	AAAAAAGA	9124
2002	UCGACACC	G	CCUCUGCU	1541	AGCAGAGG	GCcggaaaaggGCGaGuCaAGGuCu	GGUGUCGA	9125

2008	CCGCCUCU	G	CUCUGUAU	1542	AUACAGAG	GCcggaaaaggGGGaGuCaaGGGuCu	AGAGGGGG	9126
2282	GUUGAUUC	G	CAUCUCUC	1548	GAGGGAGUG	GCcggaaaaggGGGaGuCaaGGGuCu	GAUCCAC	9127
2293	CUCCUCCU	G	CAUAUAGA	1549	UCUUAUAUG	GCcggaaaaggGGGaGuCaaGGGuCu	AGGAGGAG	9128
2311	CAACAAAU	G	CCCCUUAUC	1550	GAUAGGGG	GCcggaaaaggGGGaGuCaaGGGuCu	AUUGGGUG	9129
2388	ACUCCCCUC	G	CCUCGCAG	1552	CUUGCAGG	GCcggaaaaggGGGaGuCaaGGGuCu	GAAGGGAGU	9130
2393	CUUCGCCUC	G	CAGACGAA	1553	UUCGUCUG	GCcggaaaaggGGGaGuCaaGGGuCu	GAAGGGAG	9131
2412	UCUCAUC	G	CGCGUJCG	1555	CGACGCGG	GCcggaaaaggGGGaGuCaaGGGuCu	GAUUGAGA	9132
2415	CAAUCGCC	G	CGUUCGAG	1556	CUUGCAGC	GCcggaaaaggGGGaGuCaaGGGuCu	GGCGGAUJUG	9133
2420	GGCGCGUC	G	CAGAACAU	1557	AUCUUUCUG	GCcggaaaaggGGGaGuCaaGGGuCu	GAAGGGGC	9134
2514	GGUACCUU	G	CUUUAUC	1558	GAUAAAAG	GCcggaaaaggGGGaGuCaaGGGuCu	FAAGGUACC	9135
2560	AUUCAUUU	G	CAGGGGA	1560	UCCUCUCUG	GCcggaaaaggGGGaGuCaaGGGuCu	FAAUAGAAU	9136
2641	UUAACUAU	G	CCUGCUAG	1563	CUAGCAGG	GCcggaaaaggGGGaGuCaaGGGuCu	AUAGUAAA	9137
2645	CUAUGCCU	G	CUAGGUUU	1564	AAACCUUAG	GCcggaaaaggGGGaGuCaaGGGuCu	AGGGCAUAG	9138
2677	AAAUAUUU	G	CCCUUAGA	1565	UCUAAAGGG	GCcggaaaaggGGGaGuCaaGGGuCu	AAAUAUUU	9139
2740	UUCZAGAC	G	CGACAUUA	1566	UAAUUGUC	GCcggaaaaggGGGaGuCaaGGGuCu	GUUCGGAA	9140
2804	CA CGUAGC	G	CCCUAUUU	1568	AAAUGAGG	GCcggaaaaggGGGaGuCaaGGGuCu	GCUDACGUG	9141
2814	CUCAUUUU	G	CGGGGUAC	1569	GUUGACCCG	GCcggaaaaggGGGaGuCaaGGGuCu	AAAUAUGAG	9142
2946	U GGAAACCU	G	CAUUCAAA	1572	UUUGAAUAG	GCcggaaaaggGGGaGuCaaGGGuCu	AGGGGUCCA	9143
2990	CUCAAACCC	G	CACAAGGA	1573	UCCUJUJUG	GCcggaaaaggGGGaGuCaaGGGuCu	GGGGUJUGAG	9144
3012	GGCCGGAC	G	CCAACAAAG	1574	CUUUGUUG	GCcggaaaaggGGGaGuCaaGGGuCu	GUCCGGCC	9145
3090	GCCCCUZAC	G	CUCAGGGC	1575	GCCCCUGAG	GCcggaaaaggGGGaGuCaaGGGuCu	GUAGGGGC	9146
3113	ACAACUGU	G	CCAGCAGC	1576	GCUGCUJGG	GCcggaaaaggGGGaGuCaaGGGuCu	ACAGUUGU	9147
3132	CUCCUCCU	G	CCUCCACC	1577	GGUGGGAG	GCcggaaaaggGGGaGuCaaGGGuCu	AGGAGGAG	9148
51	AGGGCCCC	G	UACUUTUCC	1578	GGAAAAGUA	GCcggaaaaggGGGaGuCaaGGGuCu	AGGGCCCC	9149
106	AGAAUACU	G	UCUCUGGCC	1579	GGCAGAGA	GCcggaaaaggGGGaGuCaaGGGuCu	AQUAUUCU	9150
148	GGGACCCC	G	UACCGAAC	1580	GUUCGGUA	GCcggaaaaggGGGaGuCaaGGGuCu	AGGGUCCC	9151
198	CUUCUCCGU	G	UUACAGGC	1581	GCCUGUUA	GCcggaaaaggGGGaGuCaaGGGuCu	ACGAGGCAG	9152
219	UUUUUCUU	G	UUGACAAA	1582	UUUGUCAA	GCcggaaaaggGGGaGuCaaGGGuCu	FAGAAAAAA	9153
297	ACACCCGU	G	UGUCUJGG	1583	CCAAAGACA	GCcggaaaaggGGGaGuCaaGGGuCu	ACGGGGGU	9154
299	ACCCGUGU	G	UCUUGGCC	1584	GGCCAAGA	GCcggaaaaggGGGaGuCaaGGGuCu	ACACGGGU	9155
347	ACCAACCU	G	UUGUCUC	1585	GAGGACAA	GCcggaaaaggGGGaGuCaaGGGuCu	AGGUUGGU	9156
350	AACCUJGU	G	UCCUCCAA	1586	UUGGAGGA	GCcggaaaaggGGGaGuCaaGGGuCu	FACAGGUU	9157
362	UCCAAUUU	G	UCCUGGUU	1587	AACCAGGA	GCcggaaaaggGGGaGuCaaGGGuCu	AAAUAUGGA	9158
381	CGCGUGGAU	G	UGUCUGCG	1588	CGCGAGACA	GCcggaaaaggGGGaGuCaaGGGuCu	AUUCZAGCG	9159
383	CUGGGAUGU	G	UCUGGGGC	1589	GGCGCGAGA	GCcggaaaaggGGGaGuCaaGGGuCu	ACAUCZAG	9160
438	AUCUUCUU	G	UUGGUUCU	1590	AGAACCAA	GCcggaaaaggGGGaGuCaaGGGuCu	AGAACCAAU	9161
465	CAAGGUAU	G	UUGCCCGU	1591	ACGGGCAA	GCcggaaaaggGGGaGuCaaGGGuCu	AUACCCUJUG	9162

476	GCCGUUU G	UCCUCUAA	1592	UUGAGGGA	GCcggaaaaggGCGaGuCaagGuCu	AAACGGGC	9163
555	ACCUCUAU G	UUUCCCCUC	1593	GAGGGAAA	GCcggaaaaggGCGaGuCaagGuCu	AUAGAGGU	9164
566	UCCCUAU G	UUGCUGUA	1594	UACAGCAA	GCcggaaaaggGCGaGuCaagGuCu	AUGAGGG	9165
572	AUGUGGCU G	UACAAAAC	1595	GUUUUJUA	GCcggaaaaggGCGaGuCaagGuCu	AGCAACAU	9166
602	CUGCACCU G	UAUCCCCA	1596	UGGGAAUA	GCcggaaaaggGCGaGuCaagGuCu	AGGUGCAG	9167
694	UGCCAUUU G	UUCAGUUGG	1597	CCACUGAA	GCcggaaaaggGCGaGuCaagGuCu	AAAUGGCA	9168
724	CCCCCACU G	UCUGGCCU	1598	AAGCCAGA	GCcggaaaaggGCGaGuCaagGuCu	AGUGGGGG	9169
750	UGGAUGAU G	UGGUUUDG	1599	CAAAACCA	GCcggaaaaggGCGaGuCaagGuCu	AUCAUCCA	9170
771	CCAAGUCU G	UACAAACAU	1600	AUGUUUUA	GCcggaaaaggGCGaGuCaagGuCu	AGACUUGG	9171
801	AUGCCGCU G	UUACCAAU	1601	AUUGGUUA	GCcggaaaaggGCGaGuCaagGuCu	AGCGGCAU	9172
818	UUUCUUUU G	UCUUIJGG	1602	CCCAAAGA	GCcggaaaaggGCGaGuCaagGuCu	AAAAAGAAA	9173
888	UGGGAUAU G	UAAUUGGG	1603	CCCCAAUUA	GCcggaaaaggGCGaGuCaagGuCu	AUAUCCCA	9174
927	AACAUAUU G	UACAAAAA	1604	UUUUUJUA	GCcggaaaaggGCGaGuCaagGuCu	AUAUAGUU	9175
944	AUCAAAAAU G	UGUUUJAG	1605	CUAAAACA	GCcggaaaaggGCGaGuCaagGuCu	AUUUGAU	9176
946	CAAAAUUG G	UUUUJAGGA	1606	UCCUAAAAA	GCcggaaaaggGCGaGuCaagGuCu	ACAUUUUG	9177
963	ACUUCCUU G	UAAAACAGG	1607	CCDGUUUA	GCcggaaaaggGCGaGuCaagGuCu	AGGAAGGU	9178
991	GAAGGUAU G	UCAAAGAA	1608	UUCGUUGA	GCcggaaaaggGCGaGuCaagGuCu	AUACUUC	9179
1002	AACGAAAU G	UGGGGUUU	1609	AAGACCCA	GCcggaaaaggGCGaGuCaagGuCu	AUUVCGUU	9180
1039	CAAGCAAU G	UGGAUAUU	1610	AUAUUCCA	GCcggaaaaggGCGaGuCaagGuCu	AUUGCGU	9181
1137	ACAGUAU G	UGAACCUU	1611	AAGGUUCA	GCcggaaaaggGCGaGuCaagGuCu	AUACUGUU	9182
1184	UGCCAAGU G	UUDUGCUGA	1612	UCAGGAAA	GCcggaaaaggGCGaGuCaagGuCu	ACUUGGCA	9183
1251	GAACCUUU G	UGUCUCCU	1613	AGGAGACA	GCcggaaaaggGCGaGuCaagGuCu	AAAGGUUC	9184
1253	ACCUUJUG G	UCUCCUCU	1614	AGAGGGAA	GCcggaaaaggGCGaGuCaagGuCu	ACAAAGGU	9185
1294	AGCCGGCUU G	UJUDUGCUC	1615	GAGGAAAAA	GCcggaaaaggGCGaGuCaagGuCu	AGGGGGCU	9186
1344	ACAAUUCU G	UJUGUGCUC	1616	GAGGCACCA	GCcggaaaaggGCGaGuCaagGuCu	AGAAUUGU	9187
1390	GCUGAGGU G	UGCUJGCCA	1617	UGGAGGCA	GCcggaaaaggGCGaGuCaagGuCu	AGCCUAGC	9188
1425	CGUCCUUU G	UUUACGU	1618	GACGUAAA	GCcggaaaaggGCGaGuCaagGuCu	AAAGGACG	9189
1508	CGCCUAUU G	UACCGAAC	1619	GGUCGGUA	GCcggaaaaggGCGaGuCaagGuCu	AUUAAGGC	9190
1557	CCCCGUUCU G	UGCCCUUC	1620	AGAAGGCA	GCcggaaaaggGCGaGuCaagGuCu	AGACGGGG	9191
1581	CGGACCGU G	UGCACUUC	1621	GAAGUGCA	GCcggaaaaggGCGaGuCaagGuCu	ACGGUCCG	9192
1684	UCAGCAAU G	UCAACGAC	1622	GUUCGUUGA	GCcggaaaaggGCGaGuCaagGuCu	AUUGCUGA	9193
1719	CAAAGACU G	UGUGUUTA	1623	UAAAACACA	GCcggaaaaggGCGaGuCaagGuCu	AGUCUOUG	9194
1721	AAAGACUGU G	UGUUUJAU	1624	AUUAACAA	GCcggaaaaggGCGaGuCaagGuCu	ACAGUCUU	9195
1723	GACUGUGU G	UJUUAUGA	1625	UCAUAAA	GCcggaaaaggGCGaGuCaagGuCu	ACACAGUC	9196
1772	AGGUCUUU G	UACUAGGA	1626	UCCUAGUA	GCcggaaaaggGCGaGuCaagGuCu	AAAGACCU	9197
1785	AGGAGGGU G	UAGGCAUA	1627	UAUGCCUA	GCcggaaaaggGCGaGuCaagGuCu	AGCCUCCU	9198
1801	AAAUJGGU G	UGGUUCACC	1628	GGUGAAACA	GCcggaaaaggGCGaGuCaagGuCu	ACCAAUUT	9199

1803	AUUGGUGU	G	UUCACCCAG	1629	CUGGUGAA	GCcgaaaaggGCGaGuCaAGGuCu	ACACCAAU	9200
1850	CAUCUCAU	G	UUCAUGUC	1630	GACAUGAA	GCcgaaaaggGCGaGuCaAGGuCu	AUGAGAUG	9201
1856	AUGUUCAU	G	UCCUACUG	1631	CAGUAGGA	GCcgaaaaggGCGaGuCaAGGuCu	AUGAACAU	9202
1864	GUCCUACU	G	UUC2AGCC	1632	GGCUUAGA	GCcgaaaaggGCGaGuCaAGGuCu	AGUAGGAC	9203
1881	UCCAAGCU	G	UGCCUUGG	1633	CCAAGGCA	GCcgaaaaggGCGaGuCaAGGuCu	AGCUUJGGA	9204
1939	GAAGCUCU	G	UGGAGUUA	1634	UAACUCCA	GCcgaaaaggGCGaGuCaAGGuCu	AGAAGGCC	9205
2013	UCUGCUCU	G	UAUCGGGG	1635	CCCCGAUA	GCcgaaaaggGCGaGuCaAGGuCu	AGAGCAGA	9206
2045	GGAAACAU	G	UOCACUC	1636	GAGGUGAA	GCcgaaaaggGCGaGuCaAGGuCu	AAUGUJCC	9207
2082	GUAAUUCU	G	UGUUUGGG	1637	CCCCAAC	GCcgaaaaggGCGaGuCaAGGuCu	AGAAUAGC	9208
2084	UAUUCUGU	G	UJGGGGUG	1638	CACCCCA	GCcgaaaaggGCGaGuCaAGGuCu	ACAGAAUA	9209
2167	UCAGCUAU	G	UCAACGUU	1639	AACGUUGA	GCcgaaaaggGCGaGuCaAGGuCu	AAUAGCUGA	9210
2205	CAACUAUU	G	UGGUUJCUA	1640	UGAAAACCA	GCcgaaaaggGCGaGuCaAGGuCu	AAUAGUUG	9211
2222	CAUUDCCU	G	UCUUACUU	1641	AAGUAAGA	GCcgaaaaggGCGaGuCaAGGuCu	AGGAAAUG	9212
2245	GAGAAACU	G	UUCUJGAA	1642	UUCUAGAA	GCcgaaaaggGCGaGuCaAGGuCu	AGUJUCUC	9213
2262	UAUUVUGG	G	UCCUUUGG	1643	CCAAAAGA	GCcgaaaaggGCGaGuCaAGGuCu	ACCAAAUA	9214
2274	UUTGGAGU	G	UGGAJDUC	1644	CGAAUCCA	GCcgaaaaggGCGaGuCaAGGuCu	ACUCCAAA	9215
2344	AAACUACU	G	UUGUUAGA	1645	UCUAAACAA	GCcgaaaaggGCGaGuCaAGGuCu	AGUAGUUU	9216
2347	CUACUGUU	G	UUAGACGA	1646	UCGUCCUA	GCcgaaaaggGCGaGuCaAGGuCu	AAACAGUAG	9217
2450	AUCUCAAU	G	UUAGUJAUU	1647	AAUACUUA	GCcgaaaaggGCGaGuCaAGGuCu	AAUAGAGAU	9218
2573	AGCACAUU	G	UUGAUAGA	1648	UCUAUCAA	GCcgaaaaggGCGaGuCaAGGuCu	AAUUGCCU	9219
2583	UGAUAGAU	G	UAAGCAAU	1649	AUJGUUUA	GCcgaaaaggGCGaGuCaAGGuCu	AUCUAUCA	9220
2594	AGCAAUUU	G	UGGGGCC	1650	GGGCCCCA	GCcgaaaaggGCGaGuCaAGGuCu	AAAUGJCU	9221
2663	AUCCCAAU	G	UUACUAAA	1651	UUUAGUAA	GCcgaaaaggGCGaGuCaAGGuCu	AUJGGGAU	9222
2717	CAGAGUAU	G	UAGUUAAA	1652	AUUAACUA	GCcgaaaaggGCGaGuCaAGGuCu	AAUACUCUG	9223
2901	AUCUUUCU	G	UCCCCAAU	1653	AUJGGGA	GCcgaaaaggGCGaGuCaAGGuCu	AGAAAGAU	9224
3071	GGGGGACU	G	UUGGGUG	1654	CACCCCA	GCcgaaaaggGCGaGuCaAGGuCu	AGUCCCC	9225
3111	UCACAAACU	G	UGCCAGCA	1655	UGCUGGCA	GCcgaaaaggGCGaGuCaAGGuCu	AGUDGUGA	9226
40	AUCCCAAG	G	UCAAGGCC	1656	GGCCCUGA	GCcgaaaaggGCGaGuCaAGGuCu	UCUGGGAU	9227
46	GAGUCAGG	G	CCCUJGUAC	1657	GUACAGGG	GCcgaaaaggGCGaGuCaAGGuCu	CCUGACUC	9228
65	UCCUJGUG	G	UGGGCUCA	1658	UGGAGCCA	GCcgaaaaggGCGaGuCaAGGuCu	CTAGCAGGA	9229
68	UGCUGGGUG	G	CUCCAGUU	1659	AACUGGG	GCcgaaaaggGCGaGuCaAGGuCu	CACCAAGCA	9230
74	UGGGCUCCA	G	UUCAGGAA	1660	UJCCUCAA	GCcgaaaaggGCGaGuCaAGGuCu	JGGAGGCC	9231
85	CAGGAACA	G	UGAGCCCU	1661	AGGGCUA	GCcgaaaaggGCGaGuCaAGGuCu	UGUJCCUG	9232
89	AACAGUGA	G	CCCUGCUC	1662	GAGCAGGG	GCcgaaaaggGCGaGuCaAGGuCu	UCACUGUU	9233
120	GCCAUAU	G	UCAAUCUU	1663	AAGAUUGA	GCcgaaaaggGCGaGuCaAGGuCu	GAUAGGGC	9234
196	CCCUJGUC	G	UGGUUACAG	1664	CUJGUAAAC	GCcgaaaaggGCGaGuCaAGGuCu	GAGCAGGG	9235
205	UGUTACAG	G	CGGGGUUU	1665	AAACCCCG	GCcgaaaaggGCGaGuCaAGGuCu	CUGUAACA	9236

210	CAGGCCGG	G	UUUUUCUU	1666	AAGAAAAA	GCcggaaaaggGCGaGuCaAGGuCu	CCCGCCUG	9237
248	ACCAACAGA	G	UCUAGACU	1667	AGUCUAGA	GCcggaaaaggGCGaGuCaAGGuCu	UCUGUGGU	9238
258	CUAGACUC	G	UGGUGGAC	1668	GUCCACCA	GCcggaaaaggGCGaGuCaAGGuCu	GAAGCUAG	9239
261	GAUCUGUG	G	UGGACUUC	1669	GAAGGUCCA	GCcggaaaaggGCGaGuCaAGGuCu	CACGAGUC	9240
295	GAACACCC	G	UGUGUCUU	1670	AAGACACA	GCcggaaaaggGCGaGuCaAGGuCu	GGCGUGUC	9241
305	GUGUCUUG	G	CCAAAUAU	1671	AAUUUUGG	GCcggaaaaggGCGaGuCaAGGuCu	CAAGACAC	9242
318	AAUUCGCA	G	UCCCCAAU	1672	AUUUUGGA	GCcggaaaaggGCGaGuCaAGGuCu	UGCAGAUU	9243
332	AAUCUCCA	G	UCACUCAC	1673	GUGAGUGA	GCcggaaaaggGCGaGuCaAGGuCu	UGCAGAUU	9244
368	UUGUCCUG	G	UUAUCGCU	1674	AGCGAUUA	GCcggaaaaggGCGaGuCaAGGuCu	CAAGACAA	9245
390	UGUCUGCG	G	CGUUDUUAU	1675	AUAAAACG	GCcggaaaaggGCGaGuCaAGGuCu	CGCAGACAA	9246
392	UCUGGGC	G	UUUUAUCA	1676	UGAUAAAA	GCcggaaaaggGCGaGuCaAGGuCu	GGCGCAGA	9247
442	UCUUGUUG	G	UUCUCUCUG	1677	CAGAAGAA	GCcggaaaaggGCGaGuCaAGGuCu	CAACAAAGA	9248
461	CUAUCAAG	G	UAUGUUGC	1678	GCAACAUU	GCcggaaaaggGCGaGuCaAGGuCu	CTUGAUAG	9249
472	UGUUGCCC	G	UUUGUCCU	1679	AGGACAAA	GCcggaaaaggGCGaGuCaAGGuCu	GGGCAACA	9250
506	ACAAACCA	G	CACCGGAC	1680	GUCCGGUG	GCcggaaaaggGCGaGuCaAGGuCu	UGGUUGUU	9251
625	CAUCUUGG	G	CUUUCGCA	1681	UGCGAAAAG	GCcggaaaaggGCGaGuCaAGGuCu	CCAAGAUG	9252
648	CUAUGGGA	G	UGGGCUC	1682	GAGGCCCA	GCcggaaaaggGCGaGuCaAGGuCu	UCCCCAUAG	9253
652	GGGAGUUG	G	CCUCAGUC	1683	GACUGAGG	GCcggaaaaggGCGaGuCaAGGuCu	CCACUCCC	9254
658	GGGCCCUA	G	UCCGUUUC	1684	GAACACGG	GCcggaaaaggGCGaGuCaAGGuCu	UGAGGGCC	9255
662	CUGAGUCC	G	UUUCUCUU	1685	AAAGAGAA	GCcggaaaaggGCGaGuCaAGGuCu	GGACUJAG	9256
672	UUCUCUJUG	G	CUCAGUUU	1686	AAACUGAG	GCcggaaaaggGCGaGuCaAGGuCu	CAAGAGAA	9257
677	UUGGCUCUA	G	UUUACUAG	1687	CUAGUAAA	GCcggaaaaggGCGaGuCaAGGuCu	UGAGCCAA	9258
685	GUUJACUA	G	UGCCAUUU	1688	AAAUGGCA	GCcggaaaaggGCGaGuCaAGGuCu	UAGUAAAC	9259
699	UUUGUUCUA	G	UGGUUUCGU	1689	ACGAACCA	GCcggaaaaggGCGaGuCaAGGuCu	UGAACAAA	9260
702	GUUCAGUG	G	UUCGUAGG	1690	CCUACGAA	GCcggaaaaggGCGaGuCaAGGuCu	CAUCGAAC	9261
706	AGUGGUUC	G	UAGGGCU	1691	AAAGCCCCA	GCcggaaaaggGCGaGuCaAGGuCu	GAACCCAU	9262
711	UUCGUJAGG	G	CUUUCCCC	1692	GGGGAAAG	GCcggaaaaggGCGaGuCaAGGuCu	CCUACGAA	9263
729	ACUGUCUG	G	CUUUCAGU	1693	ACUGAAAG	GCcggaaaaggGCGaGuCaAGGuCu	CAGACAGU	9264
736	GGCUUJUCA	G	UUUAUAGG	1694	CCAUAUAA	GCcggaaaaggGCGaGuCaAGGuCu	UGAAAGCC	9265
753	AUGAUGUG	G	UUUUGGGG	1695	CCCCAAAA	GCcggaaaaggGCGaGuCaAGGuCu	CACAUCAU	9266
762	UUDUGGGG	G	CCAAGUCU	1696	AGACUUGG	GCcggaaaaggGCGaGuCaAGGuCu	CCCCAAAA	9267
767	GGGGCCAA	G	UCUGUACA	1697	UGUACAGA	GCcggaaaaggGCGaGuCaAGGuCu	UUGGGCCCC	9268
785	CAUCUJUGA	G	UCCCCUUA	1698	UAAAAGGA	GCcggaaaaggGCGaGuCaAGGuCu	UCAAGAUG	9269
826	GUUCUJUGG	G	UAUACAUU	1699	AAUGUAAA	GCcggaaaaggGCGaGuCaAGGuCu	CCAAAGAC	9270
898	AAUUGGGA	G	UUGGGCAG	1700	UGCCCCAA	GCcggaaaaggGCGaGuCaAGGuCu	UCCCCAUU	9271
904	GAGUUGGG	G	CACAUUGC	1701	GCAAUUGG	GCcggaaaaggGCGaGuCaAGGuCu	CCCAAACUC	9272
971	GUAAACAG	G	CCUUAUGA	1702	UCAAUAGG	GCcggaaaaggGCGaGuCaAGGuCu	CUUGUJAC	9273

987	AUUGGAAA	G	UAUGGUCAA	1'703	UUGACAUAA	GCcggaaaaggCGGaGuCaAGGuCu	UUUCCAAU	9274
1006	AAUUGUGG	G	UCUUCUUGG	1'704	CCAAAAGA	GCcggaaaaggCGGaGuCaAGGuCu	CCACAAAU	9275
1016	CUUUGGG	G	UUUGGCCGC	1'705	GGGGCAAA	GCcggaaaaggCGGaGuCaAGGuCu	CCCCAAAG	9276
1080	GCAUACAA	G	CAAAACAG	1'706	CUGUUUUG	GCcggaaaaggCGGaGuCaAGGuCu	UGUGUAGC	9277
1089	CAAAACAG	G	CUUCUACU	1'707	AGDAAAAG	GCcggaaaaggCGGaGuCaAGGuCu	CUGGUUUG	9278
1116	CUUACAAG	G	CCUUUUCUA	1'708	UAGAAAGG	GCcggaaaaggCGGaGuCaAGGuCu	CUUGUAAAG	9279
1126	CUUUCUAA	G	UAAAACAGU	1'709	ACUGGUUA	GCcggaaaaggCGGaGuCaAGGuCu	UUGAAAAG	9280
1133	AGUAAAACA	G	UAUGUGAA	1'710	UUCACAUAA	GCcggaaaaggCGGaGuCaAGGuCu	UGUUUACU	9281
1152	UUUACCCC	G	UUGUCUCCG	1'711	CGGAGCAA	GCcggaaaaggCGGaGuCaAGGuCu	GGGGUAAA	9282
1160	GUUGCUCG	G	CAACGGCC	1'712	GGCCGUUG	GCcggaaaaggCGGaGuCaAGGuCu	CGAGGAAC	9283
1166	CGGCAACG	G	CCUGGUUCU	1'713	AGACCAGG	GCcggaaaaggCGGaGuCaAGGuCu	CGUUGCCG	9284
1171	ACGGCCUG	G	UCU AUGCC	1'714	GGCAUAGA	GCcggaaaaggCGGaGuCaAGGuCu	CAGGCCGU	9285
1182	UAUGCCAA	G	UGUUTUGCU	1'715	AGCAAACAA	GCcggaaaaggCGGaGuCaAGGuCu	UUGGCAUA	9286
1207	CCCCCACUIG	G	UUGGGCU	1'716	AGCCCCAA	GCcggaaaaggCGGaGuCaAGGuCu	CACUGGG	9287
1213	UGGUUGGG	G	CUUGGCCA	1'717	UGGCCAAG	GCcggaaaaggCGGaGuCaAGGuCu	CCCAACCA	9288
1218	GGGGCUUG	G	CCAUAGGC	1'718	GCCUAUGG	GCcggaaaaggCGGaGuCaAGGuCu	CAAGCCCC	9289
1225	GGCCAUAAG	G	CCAUACAGC	1'719	GCUGAUGG	GCcggaaaaggCGGaGuCaAGGuCu	CUAUGGCC	9290
1232	GGCCAUCUA	G	CGCAUGCG	1'720	CGCAUGCG	GCcggaaaaggCGGaGuCaAGGuCu	UGAUGGCC	9291
1240	GCGCAUCG	G	UGGAACCU	1'721	AGGUUCCA	GCcggaaaaggCGGaGuCaAGGuCu	CGAUGGCC	9292
1287	ACUCCUA	G	CCGCUUDGU	1'722	ACAAGCGG	GCcggaaaaggCGGaGuCaAGGuCu	UAGGAGUU	9293
1306	UGCUCCGCA	G	CAGGUUCUG	1'723	CAGACCUG	GCcggaaaaggCGGaGuCaAGGuCu	UGCGAGCA	9294
1310	CGCACCCAG	G	UCUGGGGC	1'724	GCCCCAGA	GCcggaaaaggCGGaGuCaAGGuCu	CUGCUUGCC	9295
1317	GGUCUGGG	G	CAAAACUC	1'725	GAAGUUUG	GCcggaaaaggCGGaGuCaAGGuCu	CCCAAGCC	9296
1347	AUUCUGUC	G	UGCUUCUCC	1'726	GGAGAGCA	GCcggaaaaggCGGaGuCaAGGuCu	GACAGAAU	9297
1379	UUUCCAUG	G	CUGGUAGG	1'727	CCUAGCAG	GCcggaaaaggCGGaGuCaAGGuCu	CAUGAAAA	9298
1387	GCUGCUUAG	G	CUUGGUUG	1'728	CAGCACAG	GCcggaaaaggCGGaGuCaAGGuCu	CUAGCAGC	9299
1418	CGCGGGAC	G	UCCUUIJGU	1'729	ACAAAGGA	GCcggaaaaggCGGaGuCaAGGuCu	GUCCCCGG	9300
1431	UUGUUUJAC	G	UCCCGUJC	1'730	CGACGGGA	GCcggaaaaggCGGaGuCaAGGuCu	GUAAAACAA	9301
1436	UACGUICCC	G	UCGGGGCU	1'731	AGGCCCGA	GCcggaaaaggCGGaGuCaAGGuCu	GGGAGCUA	9302
1440	UCCCCGUUC	G	CUGCUGAAU	1'732	AUUCAGCG	GCcggaaaaggCGGaGuCaAGGuCu	CGACGGGA	9303
1471	CUCCCCGG	G	CCGCUUJGG	1'733	CCAAGCGG	GCcggaaaaggCGGaGuCaAGGuCu	CCCGGGAG	9304
1481	CGCUUJGG	G	CUCUACCG	1'734	CGGUAGAG	GCcggaaaaggCGGaGuCaAGGuCu	CCCAAGCC	9305
1517	UACCGGAC	G	UCCACGGG	1'735	CCCGUGGA	GCcggaaaaggCGGaGuCaAGGuCu	GGUGCGGU	9306
1526	UCCACGGG	G	CGCACCCUC	1'736	GAGGGUGCG	GCcggaaaaggCGGaGuCaAGGuCu	CCCCGGUGGA	9307
1553	GACUCCCC	G	UCUGUGCC	1'737	GGCACAGA	GCcggaaaaggCGGaGuCaAGGuCu	GGGGAGUC	9308
1579	GCCGGGAC	G	UGUGCACU	1'738	AGUGCACA	GCcggaaaaggCGGaGuCaAGGuCu	GGUCCGGC	9309
1605	CUCUGCAC	G	UCGGCAUGG	1'739	CCAUGCGA	GCcggaaaaggCGGaGuCaAGGuCu	GUGGAGAG	9310

1622	AGACCACC	G	UGAACGCC	1740	GGCGUUCA	GCcgaaaaggGCGaGuCaAGGuCu	GUUGGUCAU	9311
1649	UGCCCAAAG	G	UCUUGGCAU	1741	AUGCAAGA	GCcgaaaaggGCGaGuCaAGGuCu	CUUGGGCA	9312
1679	GACUUUCA	G	CAAUGCUA	1742	UGACAUUG	GCcgaaaaggGCGaGuCaAGGuCu	UGAAAAGUC	9313
1703	ACCUUUGAG	G	CAUACUUC	1743	GAAGUAUG	GCcgaaaaggGCGaGuCaAGGuCu	CUCAAAGGU	9314
1732	UUUAUGA	G	UGGGAGGA	1744	UCCUCCCA	GCcgaaaaggGCGaGuCaAGGuCu	UCAUAAA	9315
1741	UGGGAGGA	G	UUGGGGGA	1745	UCCCCCAA	GCcgaaaaggGCGaGuCaAGGuCu	UCCUCCCA	9316
1754	GGGAGGAG	G	UUAGGUUA	1746	UAACCUAA	GCcgaaaaggGCGaGuCaAGGuCu	CUCCUCCC	9317
1759	GAGGUUAG	G	UUAAAGGU	1747	ACCUUUAA	GCcgaaaaggGCGaGuCaAGGuCu	CUAACCUUC	9318
1766	GGUUAAG	G	UCUUUUGUA	1748	UACAAAGA	GCcgaaaaggGCGaGuCaAGGuCu	CUUUAACC	9319
1782	ACUAGGAG	G	CGUGAGGC	1749	GCCUACAG	GCcgaaaaggGCGaGuCaAGGuCu	CUCCUAGU	9320
1789	GGCUGUAG	G	CAUAAAUAU	1750	AAUUAUG	GCcgaaaaggGCGaGuCaAGGuCu	CUACAGGCC	9321
1799	AUAAAUG	G	UGUGUICA	1751	UGAACACAU	GCcgaaaaggGCGaGuCaAGGuCu	CAAUUUAU	9322
1811	GUUCACCA	G	CACCAUGC	1752	GCAUGGGUG	GCcgaaaaggGCGaGuCaAGGuCu	UGGUGAAC	9323
1870	CUGUCAA	G	CCUCCAAAG	1753	CUUGGAGG	GCcgaaaaggGCGaGuCaAGGuCu	UGAAACAG	9324
1878	GCCUCCAA	G	CUGUGGCCU	1754	AGGCACAG	GCcgaaaaggGCGaGuCaAGGuCu	UGGGAGGC	9325
1890	UGCCUUGG	G	UGGGCUUUG	1755	CAAAGCCA	GCcgaaaaggGCGaGuCaAGGuCu	CCAAGGGCA	9326
1893	CUUGGGUG	G	CUUUGGGG	1756	CCCCAAAG	GCcgaaaaggGCGaGuCaAGGuCu	CACCCAAAG	9327
1901	GCUDUUGGG	G	CAUGGACA	1757	UGUCCAUG	GCcgaaaaggGCGaGuCaAGGuCu	CCCAAAGC	9328
1917	AUGACCC	G	UAAAAGA	1758	UCUUUUAU	GCcgaaaaggGCGaGuCaAGGuCu	GGCUCAAU	9329
1933	AAUUUGGA	G	CUUCUGUG	1759	CACAGAAG	GCcgaaaaggGCGaGuCaAGGuCu	UCCAAAUU	9330
1944	UCUGUGGA	G	UUAUCUC	1760	GAGAGUAA	GCcgaaaaggGCGaGuCaAGGuCu	UCCACAGA	9331
2023	AUCGGGG	G	CCUUAGAG	1761	CUCUAAAGG	GCcgaaaaggGCGaGuCaAGGuCu	CCCCGAU	9332
2031	GCCUJAGA	G	UCUCCGGGA	1762	UCCGGAGA	GCcgaaaaggGCGaGuCaAGGuCu	UCUJAAGGC	9333
2062	ACCAUACG	G	CACUCAGG	1763	CCUGAGUG	GCcgaaaaggGCGaGuCaAGGuCu	CGUAUGGU	9334
2070	GCACUCAG	G	CAAGCUAU	1764	AUAGCUUUG	GCcgaaaaggGCGaGuCaAGGuCu	CUGAGUGC	9335
2074	UCAGGGCAA	G	CUAUUCUG	1765	CAGAAUAG	GCcgaaaaggGCGaGuCaAGGuCu	UGGCCUGA	9336
2090	GUGUUGGG	G	UGAGUUGA	1766	UCAACUCA	GCcgaaaaggGCGaGuCaAGGuCu	CCCACAC	9337
2094	UGGGGGUGA	G	UUGAUGAA	1767	UUCAUCAA	GCcgaaaaggGCGaGuCaAGGuCu	UCACCCCCA	9338
2107	UGAAUCUA	G	CCACCUUGG	1768	CCAGGGUGG	GCcgaaaaggGCGaGuCaAGGuCu	UAGAUUCA	9339
2116	CCACCUUGG	G	UGGGAAUG	1769	ACUUCCCA	GCcgaaaaggGCGaGuCaAGGuCu	CCAGGUGG	9340
2123	GGUUGGGAA	G	UAAUUUGG	1770	CCAAAUUA	GCcgaaaaggGCGaGuCaAGGuCu	UUCCCCA	9341
2140	AGAUCCA	G	CAUCCAGG	1771	CCUGGAUG	GCcgaaaaggGCGaGuCaAGGuCu	UGGAUCU	9342
2155	GGGAUUUA	G	UAGUCAGC	1772	GCUGACUA	GCcgaaaaggGCGaGuCaAGGuCu	UAAUUCCC	9343
2158	AAUUAUGUA	G	UCAGCUAU	1773	AUAGCUGA	GCcgaaaaggGCGaGuCaAGGuCu	UACUAUU	9344
2162	AGUAGUCA	G	CUAUGCUA	1774	UGACAUAG	GCcgaaaaggGCGaGuCaAGGuCu	UGACUACU	9345
2173	AUGUCAAC	G	UUAAUUAUG	1775	CAUAAUUA	GCcgaaaaggGCGaGuCaAGGuCu	GUUGACAU	9346
2183	UAAUAUUGG	G	CCUAAAAA	1776	UUTUUUAGG	GCcgaaaaggGCGaGuCaAGGuCu	CCAUAUUA	9347

2208	CUAUUGUG G	UUUCACAU	1777	AUGUGAAA	GCcgaaaaggCGGaGuCaAGGuCu	CACAAUAG	9348
2235	ACUUUTGG G	CGAGAAAC	1778	GUUUCUCG	GCCggaaaaggCGGaGuCaAGGuCu	CCAAAAGU	9349
2260	AAUAUUUG G	UGUCUUUU	1779	AAAAGACA	GCCggaaaaggCGGaGuCaAGGuCu	CAAAAUUU	9350
2272	CUUUDUGGA G	UGUGGAUU	1780	AAUCCACA	GCCggaaaaggCGGaGuCaAGGuCu	UCCAAAAG	9351
2360	ACGAAGAG G	CAGGUCCC	1781	GGGACCUG	GCCggaaaaggCGGaGuCaAGGuCu	CUCUUCGU	9352
2364	AGAGGCCAG G	UCCCCUAG	1782	CUAGGGGA	GCCggaaaaggCGGaGuCaAGGuCu	UGGCCUCU	9353
2403	AGACGAAG G	UCUCAUC	1783	GAUUDGAGA	GCCggaaaaggCGGaGuCaAGGuCu	CUUCGUCU	9354
2417	AUCGCCGC G	UCGCAGAA	1784	UUCUGGGA	GCCggaaaaggCGGaGuCaAGGuCu	GGGGCAU	9355
2454	CAAUGUUA G	UAUUCCUU	1785	AGGAAUAA	GCCggaaaaggCGGaGuCaAGGuCu	UAACAUUUG	9356
2474	CACAUAAAG G	UGGGAAAC	1786	GUUCCCCA	GCCggaaaaggCGGaGuCaAGGuCu	CUUAUGUG	9357
2491	UUUACGGG G	CUUUAUUC	1787	GAUAAAAG	GCCggaaaaggCGGaGuCaAGGuCu	CCCGUAAA	9358
2507	CUUCUACG G	UACCUUGC	1788	GCAAGGUA	GCCggaaaaggCGGaGuCaAGGuCu	CCUAGAAC	9359
2530	CCUAAAUG G	CAAACUCC	1789	GGAGUUUG	GCCggaaaaggCGGaGuCaAGGuCu	CAUUAUAGG	9360
2587	AGAUGUAA G	CAAUUUGU	1790	ACAAAUUU	GCCggaaaaggCGGaGuCaAGGuCu	UACAUUCU	9361
2599	UUUGUGGG G	CCCCUUAC	1791	GUAAAGGG	GCCggaaaaggCGGaGuCaAGGuCu	CCACACAA	9362
2609	CCCUUACCA G	UAAAUGAA	1792	UUCUUUUA	GCCggaaaaggCGGaGuCaAGGuCu	UGUAAGGG	9363
2650	CCUGCUAG G	UUUUAUCC	1793	GGAUAAAA	GCCggaaaaggCGGaGuCaAGGuCu	CUAGCAGG	9364
2701	AUCAAACC G	UAUUUAUC	1794	GGAUAAAUA	GCCggaaaaggCGGaGuCaAGGuCu	CGUUUGAU	9365
2713	UAUCCAGA G	UAUUGUAG	1795	ACUACAUU	GCCggaaaaggCGGaGuCaAGGuCu	UCUGGAUA	9366
2720	AGUAUGUA G	UUAUACAU	1796	AUGAUUAA	GCCggaaaaggCGGaGuCaAGGuCu	UACAUACU	9367
2768	UUUGGAAG G	CGGGGAUC	1797	GAUCCCCG	GCCggaaaaggCGGaGuCaAGGuCu	CTUCCAAA	9368
2791	AAAAGAGA G	UCCACACG	1798	CGUGUGGA	GCCggaaaaggCGGaGuCaAGGuCu	UCUCUUUU	9369
2799	GUCCACAC G	UAGGGCCU	1799	AUGGCGUA	GCCggaaaaggCGGaGuCaAGGuCu	GUUGGGAC	9370
2802	CACACGUA G	CGCCUCAU	1800	AUGAGGGC	GCCggaaaaggCGGaGuCaAGGuCu	UACGUGUG	9371
2818	UUUUGCGG G	UCACCAUA	1801	UAUGGUGA	GCCggaaaaggCGGaGuCaAGGuCu	CCGCAAAAA	9372
2848	GAUCUACA G	CAUGGGAG	1802	CUCCCCADG	GCCggaaaaggCGGaGuCaAGGuCu	UGUAGAUC	9373
2857	CAUGGGAG G	UJGGGUUU	1803	AAAGACAA	GCCggaaaaggCGGaGuCaAGGuCu	CUCCCAUG	9374
2861	GGAGGGUUG G	UCUUUCAA	1804	UJGGGAAGA	GCCggaaaaggCGGaGuCaAGGuCu	CAACCUCC	9375
2881	UJCGAAAAG G	CAUGGGGA	1805	UCCCCCAUG	GCCggaaaaggCGGaGuCaAGGuCu	CUUUIUCGA	9376
2936	GAUCAUCA G	UJGGGACCC	1806	GGGUCCAA	GCCggaaaaggCGGaGuCaAGGuCu	UGAUGAUC	9377
2955	CAUDCAAA G	CCAACUCA	1807	UGAGGUUG	GCCggaaaaggCGGaGuCaAGGuCu	UJUGAAUG	9378
2964	CCAAACUCA G	UAAAUCCA	1808	UGGAUUUA	GCCggaaaaggCGGaGuCaAGGuCu	UGAGUUGG	9379
3005	GACAACUG G	CGGGACGC	1809	CGGUCCGG	GCCggaaaaggCGGaGuCaAGGuCu	ZAGUUGUC	9380
3021	CCAAACAAG G	UGGGAGUG	1810	CACUCCCCA	GCCggaaaaggCGGaGuCaAGGuCu	CUUGUDGG	9381
3027	AGGUGGGA G	UGGGAGCA	1811	UGCUCCCCA	GCCggaaaaggCGGaGuCaAGGuCu	UCCCAACC	9382
3033	GAGUGGGG A	CAUUCGGG	1812	CCCGAAUAG	GCCggaaaaggCGGaGuCaAGGuCu	UCCCAUC	9383
3041	GCAUUCGG G	CCAGGGUU	1813	AACCCUGG	GCCggaaaaggCGGaGuCaAGGuCu	CCGGAUGC	9384

3047	GGGCCAGG	G	UUCACCCC	1814	GGGGUGAA	GCcgaaaaggGCGaGuCaaggGuCu	CCUGGCC	9385
3077	CUGUUGGG	G	UGGAGCCC	1815	GGGCUCCA	GCcgaaaaggGCGaGuCaaggGuCu	CCCAACAG	9386
3082	GGGGUGGA	G	CCCUUCACG	1816	CGUGAGGG	GCcgaaaaggGCGaGuCaaggGuCu	UCCACCCC	9387
3097	GGCUCAGG	G	CCUACUCA	1817	UGAGUAGG	GCcgaaaaggGCGaGuCaaggGuCu	CCUGAGCG	9388
3117	CUGUGCCA	G	CAGCUCCU	1818	AGGAGGUG	GCcgaaaaggGCGaGuCaaggGuCu	UGGCACAG	9389
3120	UGCCAGCA	G	CUCCUCCU	1819	AGGAGGAG	GCcgaaaaggGCGaGuCaaggGuCu	UGCUGGCA	9390
3146	ACCAAUCG	G	CAGUCAGG	1820	CCUGACUG	GCcgaaaaggGCGaGuCaaggGuCu	CGAUUUGGU	9391
3149	AUCGGCA	G	UCAGGAAG	1821	CUUCCUGA	GCcgaaaaggGCGaGuCaaggGuCu	UGCCCAUU	9392
3158	UCAGGGAA	G	CAGCCUAC	1822	GUAGGGUG	GCcgaaaaggGCGaGuCaaggGuCu	CUUCCUCA	9393
3161	GGAGGGCA	G	CCUACUCC	1823	GGAGUAGG	GCcgaaaaggGCGaGuCaaggGuCu	UGCCUUCC	9394
3204	AUCCUCAG	G	CCAUGGAG	1824	CUGCAUUG	GCcgaaaaggGCGaGuCaaggGuCu	CUGAGGAU	9395

Input Sequence = AF100308. Cut Site = YG/M or UG/U.

Stem Length = 8 . Core Sequence = GCcgaaaaggGCGaGuCaaggGuCu
AF100308 (Hepatitis B virus strain 2-18, 3215 bp)

TABLE IX: HUMAN HBV DAZYME AND SUBSTRATE SEQUENCE

Pos	Substrate	Seq ID	DNAzyme	Seq ID
508	CAACCAGC A CCGGACCA	833	TGGTCCGG GGCTAGCTACAACGA GCTGGTTG	9396
1632	GAACGCC A CAGGAACC	1096	GGTTCCGT GGCTAGCTACAACGA GGGGTTTC	9397
2992	CAACCGC A CAAGGACA	1376	TGTCCTTG GGCTAGCTACAACGA GGGGGTTG	9398
61	ACUUUCCU G CUGGUGGC	1448	GCCACCAAG GGCTAGCTACAACGA AGGAAGT	9399
94	UGAGCCCCU G CUCAGAAU	1450	ATTCTGAG GGCTAGCTACAACGA AGGGCTCA	9400
112	CUGUCUCU G CCAUAUCG	1451	CGATATGG GGCTAGCTACAACGA AGAGACAG	9401
169	AGAACAU C G CAUCAGGA	1454	TCCTGTAG GGCTAGCTACAACGA GATGTTCT	9402
192	GGACCCCU G CUCGUUUU	1455	AACACGAG GGCTAGCTACAACGA AGGGGTC	9403
315	CAAAAUUC G CAGUCCA	1457	TGGGACTG GGCTAGCTACAACGA GAATTITG	9404
374	UGGUUAUC G CUGGAUGU	1458	ACATCCAG GGCTAGCTACAACGA GATAACCA	9405
387	AUGUGUCU G CGGGGUUU	1459	AAACGCCG GGCTAGCTACAACGA AGACACAT	9406
410	CUUCCUCU G CAUCCUGC	1460	GCAGGGATG GGCTAGCTACAACGA AGAGGAAG	9407
417	UGCAUCCU G CUGCUAUG	1461	CATAGCAG GGCTAGCTACAACGA AGGTGCA	9408
420	AUCCUGCU G CUAUGCCU	1462	AGGCATAG GGCTAGCTACAACGA AGCAGGAT	9409
425	GCUGCUAU G CCUCAUUC	1463	AGATGAGG GGCTAGCTACAACGA ATAGCAGC	9410
468	GGUAUGUU G CCCGUUUG	1464	CAAACGGG GGCTAGCTACAACGA AACATACC	9411
518	CGGACCCAU G CAAAACCU	1465	AGGTTTTG GGCTAGCTACAACGA ATGGTCCG	9412
527	CAAACCCU G CACAAACUC	1466	GAGTTGTTG GGCTAGCTACAACGA AGTTTTG	9413
538	CAACUCCU G CUCAGGA	1467	TCCTTGAG GGCTAGCTACAACGA AGGAGTTG	9414
569	CUCUAGUU G CUGUACAA	1468	TTGTACAG GGCTAGCTACAACGA AACATGAG	9415
596	CGGAAACU G CACCUUGUA	1469	TACAGGTG GGCTAGCTACAACGA AGTTTCCG	9416
631	GGGCUUUC G CAAAAUAC	1470	GTATTITG GGCTAGCTACAACGA GAAAGCCC	9417
687	UUACUAGU G CCAUUUJGU	1471	ACAAATGG GGCTAGCTACAACGA ACTAGTAA	9418
795	CCCUUUAU G CCGCUGUU	1474	AAACAGGG GGCTAGCTACAACGA ATAAAAGGG	9419
798	UUUUAUGCC G CUGUUUACC	1475	GGTAACAG GGCTAGCTACAACGA GGCAATAA	9420
911	GGCACAUU G CCACAGGA	1476	TCCTGTGG GGCTAGCTACAACGA AATGTGCC	9421
1020	UGGGGUUU G CCGCCCCU	1479	AGGGGGGG GGCTAGCTACAACGA AAACCCCA	9422
1023	GGUUUUGCC G CCCUUIUC	1480	GAAAGGGG GGCTAGCTACAACGA GGCAAAACC	9423
1034	CCUUCUAC G CAAUGUGG	1481	CCACATG GGCTAGCTACAACGA GTGAAAGG	9424
1050	GAUAUUCU G CUUUAAUG	1482	CATTAAG GGCTAGCTACAACGA AGAATATC	9425
1058	GCUDUAAU G CCUUUAUA	1483	TATAAAGG GGCTAGCTACAACGA ATTAAAGC	9426
1068	CUUTAUAU G CAUGCAUA	1484	TATGCATG GGCTAGCTACAACGA ATATAAAG	9427
1072	AUAUGCAU G CAUACAAAG	1485	CTTGTATG GGCTAGCTACAACGA ATGCAATAT	9428

1103	A CU UUCUC G CCAACUU A	1486	TAAGTTGG GGCTAGCTACAACGA GAGAAAGT	9429
1155	A CCCCCGUU G CUCGGCAA	1488	TTGCCGAG GGCTAGCTACAACGA AACGGGGT	9430
1177	UGGUCUAU G CCAAGUGU	1489	ACACTTGG GGCTAGCTACAACGA ATAGACCA	9431
1188	A AGGUGUUU G CUGACCGA	1490	TGGCTAG GGCTAGCTACAACGA AAACACTT	9432
1194	UUGGUGAC G CAACCCCC	1492	GGGGTTG GGCTAGCTACAACGA GTCAGCAA	9433
1234	CCAUCAGC G CAUGGUG	1493	CACGCATG GGCTAGCTACAACGA GCTGTATGG	9434
1238	ZAGGCGAU G CGUGGAAC	1494	GTTCCAG GGCTAGCTACAACGA ATGGCCTG	9435
1262	UCUCCUCU G CCGGAUCC A	1495	TGGATCGG GGCTAGCTACAACGA AGAGGAGA	9436
1275	UCCAUACC G CGGAACUC	1497	GAGTTTCG GGCTAGCTACAACGA GGTATGGA	9437
1290	UCCUAGCC G CUUGUUUU	1498	AAAAACAG GGCTAGCTACAACGA GGCTATGGA	9438
1299	CUUGUUUU G CUCGCAGC	1499	GCTGCGAG GGCTAGCTACAACGA AAAACAAAG	9439
1303	UUUUIGCUC G CAGCAGGU	1500	ACCTGCTG GGCTAGCTACAACGA GAGCAAAA	9440
1349	UCUUGDCGU G CUCUCCCG	1502	CGGGAGAG GGCTAGCTACAACGA ACGACAGA	9441
1357	GCUCUCCCC G CAAAUAUA	1503	TATATTG GGCTAGCTACAACGA GGGAGAGC	9442
1382	CCAUGGCU G CUAGGCUG	1504	CAGCCTAG GGCTAGCTACAACGA AGCCATGG	9443
1392	UAGGGCUGU G CUGCCAAC	1505	GTGCGCAG GGCTAGCTACAACGA ACAGCCTA	9444
1395	GCUGUGCU G CCAACUGG	1506	CCAGTTGG GGCTAGCTACAACGA AGCACAGC	9445
1411	GAUCCUAC G CGGGACGU	1507	ACGTCCTG GGCTAGCTACAACGA GTAGGATC	9446
1442	CCGUICGGC G CUGAAUCC	1508	GGATTCA G GGCTAGCTACAACGA GCCGACGG	9447
1452	UGZAAUCCC G CGGACGAC	1510	GTGCTCG GGCTAGCTACAACGA GGGATTCATCA	9448
1474	CCGGGGCC G CUUGGGGC	1512	GCCCCAAG GGCTAGCTACAACGA GGGCCCCGG	9449
1489	GCUCUACC G CCCGCUUC	1513	GAAGCGGG GGCTAGCTACAACGA GGTAGAGC	9450
1493	UACCGCCC G CUDUCUCG	1514	CGGAGAAG GGCTAGCTACAACGA GGGGGTAA	9451
1501	GCUUCUCC G CCUUAUUGU	1515	ACAATAGG GGCTAGCTACAACGA GGAGAAAGC	9452
1528	CAZCGGGC G CACCUUCUC	1517	GAGAGGTG GGCTAGCTACAACGA GCCCCGTG	9453
1542	CUCUUDAC G CGGACUCC	1518	GGAGTC CG GGCTAGCTACAACGA GTAAGAG	9454
1559	CCGUUCUGU G CCUUCUCA	1519	TGAGAAGG GGCTAGCTACAACGA ACAGACGG	9455
1571	UCUCAUCU G CCGGACCG	1520	CGGTCCGG GGCTAGCTACAACGA AGATGAGA	9456
1583	GACCCGUGU G CACUUCGC	1521	GCGAAGTG GGCTAGCTACAACGA ACACGGTC	9457
1590	UGCACUUC G CUUUACCU	1522	AGGTGAAG GGCTAGCTACAACGA GAAAGTGC	9458
1601	UCACCUUC G CACGUCGC	1523	GCGACGTG GGCTAGCTACAACGA AGAGGTGA	9459
1608	UGCACGGUC G CAUGGAGA	1524	TCTCCATG GGCTAGCTACAACGA GACGTGCA	9460
1628	CCGUGAAC G CCCACAGG	1526	CCTGTGGG GGCTAGCTACAACGA GTTCACGG	9461
1642	AGGAACCU G CCCAAGGU	1527	ACCTTGGG GGCTAGCTACAACGA AGGTTCTT	9462
1654	AAGGUUCU G CAUAAAGG	1528	CTCTTATG GGCTAGCTACAACGA AAGACCTT	9463
1818	AGCACCAU G CAACUUUU	1533	AAAATGTT GGCTAGCTACAACGA ATGGTGT	9464
1835	UCACCUUC G CCUAAUCA	1534	TGATTAGG GGCTAGCTACAACGA AGAGGTGA	9465

1883	CAAGCUGU	G	CCUUGGGU	1535	ACCCAAGG	GGCTAGCTACAACGA	ACAGCTTG	9466
1959	UCUUUUUU	G	CCUUUCUGA	1537	TCAGAAGG	GGCTAGCTACAACGA	AAAAAAGA	9467
2002	UCGACACC	G	CCUCUGCU	1541	AGCGAGGG	GGCTAGCTACAACGA	GGTGTGGA	9468
2008	CCGCCUCU	G	CUCUGUAU	1542	ATACAGAG	GGCTAGCTACAACGA	AGAGGCGG	9469
2282	GUGGAUUC	G	CAUCUCUC	1548	GAGGAGTG	GGCTAGCTACAACGA	GAATCCAC	9470
2293	CUCCUCCC	G	CAUAUAGA	1549	TCTATATG	GGCTAGCTACAACGA	AGGAGGAG	9471
2311	CACCAAAU	G	CCCCUUAUC	1550	GATAAGGG	GGCTAGCTACAACGA	ATTGGTTG	9472
2388	ACUCCCCUC	G	CCUCGCAG	1552	CTGCGAGG	GGCTAGCTACAACGA	GAGGGAGT	9473
2393	CUCGCCUC	G	CAGACGAA	1553	TTCGTCTG	GGCTAGCTACAACGA	GAGGGAG	9474
2412	UCUCAAU	G	CCGGGUUCG	1555	CGACGCGG	GGCTAGCTACAACGA	GATTGAGA	9475
2415	CAAUCGCC	G	CGUCGCAG	1556	CTGCGACG	GGCTAGCTACAACGA	GGCGATTG	9476
2420	GCCGCGUC	G	CAGAACAU	1557	ATCTTCTG	GGCTAGCTACAACGA	GACGGGGC	9477
2514	GGUACCUU	G	CUUUAUC	1558	GATTAAG	GGCTAGCTACAACGA	AAAGTACCA	9478
2560	AUUCAUU	G	CAGGGAGA	1560	TCCTCC TG	GGCTAGCTACAACGA	AAATGAAAT	9479
2641	UUAACUAU	G	CCUGCUAG	1563	CTAGCAGG	GGCTAGCTACAACGA	ATAGTTAA	9480
2645	CUAUGCUC	G	CUAGGUUU	1564	AAACCTAG	GGCTAGCTACAACGA	AGGGCATAG	9481
2677	AAAUAUUU	G	CCCUUAGA	1565	TCTAAGGG	GGCTAGCTACAACGA	AAATATT	9482
2740	UOCCAGAC	G	CGACAUUA	1566	TAATGTCG	GGCTAGCTACAACGA	GTCCTGGAA	9483
2804	CACGUAGC	G	CCUCAUUU	1568	AAATGAGG	GGCTAGCTACAACGA	GCTACGTG	9484
2814	CUCAUUUU	G	CGGGGUUC	1569	GTGACCCG	GGCTAGCTACAACGA	AAAATGAG	9485
2946	UGGACCCC	G	CAUUCAAA	1572	TTTGAATG	GGCTAGCTACAACGA	AGGGTCCA	9486
2990	CUCAACCC	G	CACAAGGA	1573	TCCTTGTG	GGCTAGCTACAACGA	GGGTGTGAG	9487
3012	GGCCGGAC	G	CCAAACAG	1574	CTTGTGG	GGCTAGCTACAACGA	GTCCGGCC	9488
3090	GCCCUUCAC	G	CUCAGGGC	1575	GCCCTGAG	GGCTAGCTACAACGA	GTGAGGGC	9489
3113	ACAAUCUG	G	CCAGCAGC	1576	GCTGCTGG	GGCTAGCTACAACGA	ACAGTTGT	9490
3132	CUCCUCCC	G	CCUCACCC	1577	GGTGGAGG	GGCTAGCTACAACGA	AGGAGGAG	9491
51	AGGGCCCC	G	UACUUUCC	1578	GGAAAGTA	GGCTAGCTACAACGA	AGGGCCCT	9492
106	AGAAAUACU	G	UCUCUGCC	1579	GGCAGAGA	GGCTAGCTACAACGA	AGTATTC	9493
148	GGGACCCU	G	UACCGAAC	1580	GTTGGTTA	GGCTAGCTACAACGA	AGGGTCCC	9494
198	CUGCUCGU	G	UUACAGGC	1581	GGCTGTAA	GGCTAGCTACAACGA	ACGAGCAG	9495
219	UUUUUCUU	G	UUGACAAA	1582	TTTGTCAA	GGCTAGCTACAACGA	AAGAAAAA	9496
297	ACACCCGU	G	UGUCUUGG	1583	CCAAGACA	GGCTAGCTACAACGA	ACGGGTGT	9497
299	ACCCGUGU	G	UCUUGGCC	1584	GGCCAAGA	GGCTAGCTACAACGA	ACACGGGT	9498
347	ACCAACCU	G	UUGUCUC	1585	GAGGACAA	GGCTAGCTACAACGA	AGGTTGGT	9499
350	AACCUUU	G	UCCUCCAA	1586	TTGGAGGA	GGCTAGCTACAACGA	AACAGGTT	9500
362	UCCAAUUU	G	UCCUGGUU	1587	AACCAGA	GGCTAGCTACAACGA	AAAATGGA	9501
381	CGCUGGAU	G	UGUCUGCG	1588	CGCAGACA	GGCTAGCTACAACGA	ATCCAGCG	9502

383	CUGGAUGU	G	UCUGGGC	1589		GCCGCAGA	GGCTAGCTACAACGA	ACATCCAG	9503
438	AUCUUCUU	G	UUGGUUCU	1590		AGAACCAA	GGCTAGCTACAACGA	AAAGGAGT	9504
465	CAAGGUAU	G	UUGCCCGU	1591		ACGGGCAA	GGCTAGCTACAACGA	ATACCTTG	9505
476	GCCCGUUU	G	UCCUCUAA	1592		TTAGAGGA	GGCTAGCTACAACGA	AAACGGGC	9506
555	ACCUCUAU	G	UDDCCCUC	1593		GAGGGAAA	GGCTAGCTACAACGA	ATAGAGGT	9507
566	UCCCCAU	G	UUGCGUUA	1594		TACAGCAA	GGCTAGCTACAACGA	ATGAGGGA	9508
572	AUGUDGCU	G	UACAAAC	1595		GTGTTGTA	GGCTAGCTACAACGA	AGCACCAT	9509
602	CUGGCCCU	G	UAUUCCCA	1596		TGGGAATA	GGCTAGCTACAACGA	AGGTGCGAG	9510
694	UGCCCAUU	G	UUCAGUGG	1597		CCACTGAA	GGCTAGCTACAACGA	AAATGGCA	9511
724	CCCCCACU	G	UCUGGGCU	1598		AAGCCAGA	GGCTAGCTACAACGA	AGTGGGGG	9512
750	UGGAUGAU	G	UGGUUJUG	1599		CAAAACCA	GGCTAGCTACAACGA	ATCATCCA	9513
771	CCAAGUCU	G	UACAAACAU	1600		ATGTTGTA	GGCTAGCTACAACGA	AGACTTGG	9514
801	AUGCCGCU	G	UUAACCAAU	1601		ATTGGTAA	GGCTAGCTACAACGA	AGCGGCAT	9515
818	UUUCUUUU	G	UCUUUGGG	1602		CCCAAAAGA	GGCTAGCTACAACGA	AAAAGAAA	9516
888	UGGGAAU	G	UAUUGGG	1603		CCCAATA	GGCTAGCTACAACGA	ATATCCA	9517
927	FACAUAU	G	UACAAAAA	1604		TTTTTGTA	GGCTAGCTACAACGA	AATATGTT	9518
944	AUCAAAAU	G	UGUUUWAG	1605.		CTAAACAA	GGCTAGCTACAACGA	ATTTTGAT	9519.
946	CAAAADGU	G	UUUUAGGA	1606		TCCTAAAA	GGCTAGCTACAACGA	ACATTGTT	9520
963	ACAUUCCU	G	UAAAACAGG	1607		CCTGTTA	GGCTAGCTACAACGA	AGGAAGTT	9521
991	GAAGGUAU	G	UCAACGAA	1608		TTCGTTGA	GGCTAGCTACAACGA	ATACTTTC	9522
1002	FACGAAAU	G	UGGGGUUU	1609		AAGACCCA	GGCTAGCTACAACGA	AATTGCGTT	9523
1039	CAACGAAAU	G	UGGAUAUU	1610		AATATCCA	GGCTAGCTACAACGA	ATTGCGTT	9524
1137	FACAGUAU	G	UGAACCUU	1611		AAGGTTCA	GGCTAGCTACAACGA	ATACTGTT	9525
1184	UGCCAAGU	G	UUUGUGUA	1612		TCAGCAA	GGCTAGCTACAACGA	ACTTGGCA	9526
1251	GAACCUUU	G	UGUCUCCU	1613		AGGAGACA	GGCTAGCTACAACGA	AAAGGTTTC	9527
1253	ACCUUDGU	G	UCUCCUCU	1614		AGAGGAGA	GGCTAGCTACAACGA	ACAAAGGT	9528
1294	AGCCGCUU	G	UUUUGUCU	1615		GAGCAAAA	GGCTAGCTACAACGA	AAAGGGGCT	9529
1344	ACAAUUDU	G	UCUGGUC	1616		GAGCACGA	GGCTAGCTACAACGA	AGAAATTGT	9530
1390	GCUAGGGU	G	UGCGUGCA	1617		TGGCAGCA	GGCTAGCTACAACGA	AGCCCTAGC	9531
1425	CGUCCUUU	G	UUUACGUC	1618		GACGTA	GGCTAGCTACAACGA	AAAGGACG	9532
1508	CGCCCUAU	G	UACCGACC	1619		GGTCGGTA	GGCTAGCTACAACGA	AATAGGGC	9533
1557	CCCCGUCU	G	UGCCUUCU	1620		AGAAGGCA	GGCTAGCTACAACGA	AGACGGGG	9534
1581	CGGACCGU	G	UGCACUUC	1621		GAAGTGA	GGCTAGCTACAACGA	ACGGTCCG	9535
1684	UCAGCAAU	G	UCAACGAC	1622		GTCGTTGA	GGCTAGCTACAACGA	ATTGGCTGA	9536
1719	CAAAGACU	G	UGUGUUUA	1623		TAAACACA	GGCTAGCTACAACGA	AGTCTTTG	9537
1721	AAGACUGU	G	UGUUUUAU	1624		ATTAAACA	GGCTAGCTACAACGA	ACAGTCFT	9538
1723	GACUGUGU	G	UUUAUGA	1625		TCATTAAA	GGCTAGCTACAACGA	ACACAGTC	9539

1772	AGGUCUUU	G	UACUAGGA	1	626	TCCTAGTA	GGCTAGCTACAACGA	AAAGACCT	9540
1785	AGGAGGCCU	G	UAGGCCAU	1	627	TATGCCTA	GGCTAGCTACAACGA	AGCCCTCC	9541
1801	AAAUUGGU	G	UGUUUCACC	1	628	GGTGAACA	GGCTAGCTACAACGA	ACCAATT	9542
1803	AUJGGUGU	G	UUCACCAAG	1	629	CTGGTGA	GGCTAGCTACAACGA	ACACCAAAT	9543
1850	CAUCUCAU	G	UDCUAUGUC	1	630	GACATGAA	GGCTAGCTACAACGA	ATGAGATG	9544
1856	AUGUUCAU	G	UCCUACUG	1	631	CACTAGGA	GGCTAGCTACAACGA	ATGAACT	9545
1864	GUCCUACU	G	UUCAAAGCC	1	632	GGCTTGAA	GGCTAGCTACAACGA	AGTAGGAC	9546
1881	UCCAAAGCU	G	UGCCUUGG	1	633	CCAAGGCA	GGCTAGCTACAACGA	AGCTTTGGA	9547
1939	GGAGCUUUC	G	UGGAGCUA	1	634	TAACTCA	GGCTAGCTACAACGA	AGAACCTC	9548
2013	UCUGCUCU	G	UAUCGGGG	1	635	CCCCGATA	GGCTAGCTACAACGA	AGAGGAGA	9549
2045	GGAAACAUU	G	UUCACCU	1	636	GAGGTGAA	GGCTAGCTACAACGA	AATCTTCC	9550
2082	GCUAAUUCU	G	UGUUGGGG	1	637	CCCCAAC	GGCTAGCTACAACGA	AGAAATAGC	9551
2084	UAUDCGU	G	UUGGGGGG	1	638	CACCCCAA	GGCTAGCTACAACGA	ACAGAAATA	9552
2167	UCAGGCUAU	G	UCAACGUU	1	639	AACGTTGA	GGCTAGCTACAACGA	ATAGCTGA	9553
2205	CAACUAUU	G	UGGUUUCUA	1	640	TGAAACCA	GGCTAGCTACAACGA	AATAAGTTG	9554
2222	CAUUCUCCU	G	UCUUUACUU	1	641	AAGTAAGA	GGCTAGCTACAACGA	AGGAATATG	9555
2245	GAGAAACU	G	UUCUUGAA	1	642	TTCAAGAA	GGCTAGCTACAACGA	AGTTTCTC	9556
2262	UAUUDGGU	G	UCUUUUGG	1	643	CCAAAAGA	GGCTAGCTACAACGA	ACCAAATA	9557
2274	UUUUGGAGU	G	UGGAUUCG	1	644	CGAACATCA	GGCTAGCTACAACGA	ACTCCAAA	9558
2344	AAACUACU	G	UUGGUUAGA	1	645	TCTAACAA	GGCTAGCTACAACGA	AGTAGTTT	9559
2347	CUACUGUU	G	UUAGACGA	1	646	TCGTCTAA	GGCTAGCTACAACGA	AACAGTAG	9560
2450	AUCUCAAU	G	UUAGUAAU	1	647	AATACTAA	GGCTAGCTACAACGA	ATTGAGAT	9561
2573	AGGACAUU	G	UUGUAUAGA	1	648	TCTATCAA	GGCTAGCTACAACGA	AATGTCCT	9562
2583	UGAUUAGAU	G	UAAGCCAAU	1	649	ATTGCTTA	GGCTAGCTACAACGA	ATCTTATCA	9563
2594	AGCAAUUU	G	UGGGGCC	1	650	GGGCCCA	GGCTAGCTACAACGA	AAATTGCT	9564
2663	AUCCCCAU	G	UUACUAAA	1	651	TTTAGTAA	GGCTAGCTACAACGA	ATTGGGAT	9565
2717	CAGAGUAU	G	UAGUUAAA	1	652	ATTAACTA	GGCTAGCTACAACGA	ATACTCTG	9566
2901	AUCUUUCU	G	UCCCCAAU	1	653	ATTGGGGA	GGCTAGCTACAACGA	AGAAAGAT	9567
3071	GGGGGACU	G	UUGGGUG	1	654	CACCCCAA	GGCTAGCTACAACGA	AGTCCCCC	9568
3111	UCACAAUC	G	UGCCAGCA	1	655	TGCTGGCA	GGCTAGCTACAACGA	AGTTGTGA	9569
40	AUCCCCAGA	G	UCAGGGCC	1	656	GGCCCTGA	GGCTAGCTACAACGA	TCTGGGAT	9570
46	GAGUCAGG	G	CCCUGUAC	1	657	GTACAGGG	GGCTAGCTACAACGA	CCTGACTC	9571
65	UCCUGCGUG	G	UGGCUCCA	1	658	TGGAGCCA	GGCTAGCTACAACGA	CAGCAGGA	9572
68	UGCUGGGUG	G	CUCCAGUU	1	659	AACTGGAG	GGCTAGCTACAACGA	CACCAAGCA	9573
74	UGGCUUCA	G	UUCAGGAA	1	660	TTCCTGAA	GGCTAGCTACAACGA	TGGAGCCA	9574
85	CAGGAACA	G	UGAGGCCU	1	661	AGGGCTCA	GGCTAGCTACAACGA	TGTTCCIG	9575
89	AACAGUGA	G	CCCUGCUC	1	662	GAGCAGGG	GGCTAGCTACAACGA	TCACCTGTT	9576

120	GCCAUauc	G	UCAAUCUU	1	663	AAGATTGA	GGCTAGCTACAACGA	GATATGGC	9577
196	CCCCUGCUC	G	UGUUACAG	1	664	CTGTAACA	GGCTAGCTACAACGA	GAGCAGGG	9578
205	UGUUACAG	G	CGGGGUUU	1	665	AAACCCCG	GGCTAGCTACAACGA	CTGTAAACA	9579
210	CAGGGGGG	G	UUUUUCUU	1	666	AAGAAAAA	GGCTAGCTACAACGA	CCCGCCTG	9580
248	ACCACAGA	G	UCUAGACU	1	667	AGTCTAGA	GGCTAGCTACAACGA	TCTGTGGT	9581
258	CUAGACUC	G	UGGGGAC	1	668	GTCCACCA	GGCTAGCTACAACGA	GAGTCAG	9582
261	GAUCGUG	G	UGGACUUC	1	669	GAAGTCAC	GGCTAGCTACAACGA	CACGAGTC	9583
295	GAACACCC	G	UGUGUCUU	1	670	AAGACACA	GGCTAGCTACAACGA	GGCTGTTTC	9584
305	GUGGCUUG	G	CCAAAUU	1	671	AATTTTTG	GGCTAGCTACAACGA	CAACGAC	9585
318	AAUUCGCA	G	UCCCCAAU	1	672	ATTGGGA	GGCTAGCTACAACGA	TGGGAATT	9586
332	AAUCUCCA	G	UCACUCAC	1	673	GTGAGTGA	GGCTAGCTACAACGA	TGGAGATT	9587
368	UGUGCCUG	G	UAUAGCU	1	674	AGCGATAA	GGCTAGCTACAACGA	CAGGACAA	9588
390	UGUCUGCG	G	CGUUTUAU	1	675	ATAAAAACG	GGCTAGCTACAACGA	CGCGAGACA	9589
392	UCUGCGGC	G	UUUUUAUC	1	676	TGATAAAA	GGCTAGCTACAACGA	GCCGAGA	9590
442	UCUUDGUUG	G	UUCCUUCUG	1	677	CAGAAGAA	GGCTAGCTACAACGA	CAACAAAGA	9591
461	CUAUCZAG	G	UAUGUUGC	1	678	GCAACATA	GGCTAGCTACAACGA	CTTGATAG	9592
472	UGUUGGCC	G	UUUGGUCCU	1	679	AGGACAAA	GGCTAGCTACAACGA	GGGCZACA	9593
506	AAACAACCA	G	CACCGGAC	1	680	GTCCGGTG	GGCTAGCTACAACGA	TGGTTGTT	9594
625	CAUCUUGG	G	CUUUCGCA	1	681	TGCGAAAG	GGCTAGCTACAACGA	CCAAGATG	9595
648	CUAUGGGA	G	UGGGCUC	1	682	GAGGCCA	GGCTAGCTACAACGA	TCCCZATAG	9596
652	GGGAGUGG	G	CCUCAGUC	1	683	GACTGAGG	GGCTAGCTACAACGA	CCACTCTCC	9597
658	GGGCCCUA	G	UCCGUUUC	1	684	GAAACGGA	GGCTAGCTACAACGA	TGAGGCC	9598
662	CUCAGUCC	G	UUUCUCUU	1	685	AAGAGAAA	GGCTAGCTACAACGA	GGACTGAG	9599
672	UUCUCUUG	G	CUCAGUUU	1	686	AAACTGAG	GGCTAGCTACAACGA	CAAGAGAA	9600
677	UUGGCUCA	G	UUUACUAG	1	687	CTAGTAA	GGCTAGCTACAACGA	TGAGCCAA	9601
685	GUDDACUA	G	UGCCAUU	1	688	AAATGGCA	GGCTAGCTACAACGA	TAGTAAC	9602
699	UUUGGUCA	G	UGGUUCGU	1	689	ACGAACCA	GGCTAGCTACAACGA	TGAACAAA	9603
702	GUUCAGUG	G	UUCGUAGG	1	690	CCTACGAA	GGCTAGCTACAACGA	CACTGAAC	9604
706	AGUGGUUC	G	UAGGGCUU	1	691	AAGCCCTA	GGCTAGCTACAACGA	GAACCACT	9605
711	UUCGUAGG	G	CUUUCCCC	1	692	GGGAAAG	GGCTAGCTACAACGA	CCTACGAA	9606
729	ACUGUCUG	G	CUUUCAGU	1	693	ACTGAAAG	GGCTAGCTACAACGA	CAGACAGT	9607
736	GGCUUUCA	G	UUUAUUGG	1	694	CCATATAA	GGCTAGCTACAACGA	TGAAAGCC	9608
753	AUGAUGUG	G	UUUUGGGG	1	695	CCCCAAA	GGCTAGCTACAACGA	CACATCAT	9609
762	UUUUUGGGG	G	CCAAGUCU	1	696	AGACTTGG	GGCTAGCTACAACGA	CCCCAAAA	9610
767	GGGGCCAA	G	UCUGUACA	1	697	TGTACAGA	GGCTAGCTACAACGA	TTGGCCCC	9611
785	CAUCUUGA	G	UCCCCUUUA	1	698	TAAAGGA	GGCTAGCTACAACGA	TCAAGATG	9612
826	GUCUUUGG	G	UAUACAUU	1	699	AATGTTATA	GGCTAGCTACAACGA	CCAAAGAC	9613

898	AAUUGGGG	G	UUGGGCA	1700	TGCCCCAA	GGCTAGCTACAACGA	TCCCCAATT	9614
904	GAAGUUGGG	G	CACAUUGC	1701	GCAATGTG	GGCTAGCTACAACGA	CCCAAACTC	9615
971	GUAAACAG	G	CCUUAUGA	1702	TCAATAGG	GGCTAGCTACAACGA	CTGTTTAC	9616
987	AUUGGAAA	G	UAUGUCAA	1703	TTGACATA	GGCTAGCTACAACGA	TTTCCAAAT	9617
1006	AAUTUGGG	G	UCUUTUGG	1704	CCAAAAAGA	GGCTAGCTACAACGA	CCACAAATT	9618
1016	CUUUUGGG	G	UUUGCGCG	1705	GCGGCAA	GGCTAGCTACAACGA	CCCAAAAG	9619
1080	CGAUACAA	G	CAAAACAG	1706	CTGTTTG	GGCTAGCTACAACGA	TTGTATGC	9620
1089	CAAAACAG	G	CUUUUAUCU	1707	AGTAAAAG	GGCTAGCTACAACGA	CTGTTTTG	9621
1116	CUUACAAAG	G	CCUUUUCUA	1708	TAGAAAGG	GGCTAGCTACAACGA	CTTGTAG	9622
1126	CUUUCUAA	G	UAAACAGU	1709	ACTGTTA	GGCTAGCTACAACGA	TTAGAAAG	9623
1133	AGUAAACA	G	UAUGUGAA	1710	TTCACATA	GGCTAGCTACAACGA	TGTTTACT	9624
1152	UUUACCCC	G	UUGCUCCG	1711	CCGAGCAA	GGCTAGCTACAACGA	GGGGTAAA	9625
1160	GTUGCUUG	G	CAACGGCC	1712	GGCCGTG	GGCTAGCTACAACGA	CGAGCAAC	9626
1166	CGGCZAACG	G	CCUGGUUC	1713	AGACCAGG	GGCTAGCTACAACGA	CGTTGCCG	9627
1171	ACGGCCUG	G	UCU AUGCC	1714	GGCATAGA	GGCTAGCTACAACGA	CAGGCCGT	9628
1182	UAUGCCAA	G	UGUUUUGCU	1715	AGCAAACAA	GGCTAGCTACAACGA	TTGGGATA	9629
1207	CCCCZACUG	G	UUGGGGU	1716	AGCCCCAA	GGCTAGCTACAACGA	CAGTGGGG	9630
1213	UGGUUUGGG	G	CUTUGGCCA	1717	TGGCCAAG	GGCTAGCTACAACGA	CCAAACCA	9631
1218	GGGGCUUUG	G	CCAUAGGC	1718	GCCTATGG	GGCTAGCTACAACGA	CAAGCCCC	9632
1225	GGCCAUAG	G	CCAUCAGC	1719	GCTGATGG	GGCTAGCTACAACGA	CTATGGCC	9633
1232	GGCCAUC	G	CGCAUGCG	1720	CGCATGCG	GGCTAGCTACAACGA	TGATGGCC	9634
1240	GCGCAUGC	G	UGGAACCU	1721	AGGTTCCA	GGCTAGCTACAACGA	GCATGCGC	9635
1287	ACACCUUA	G	CCGCUJGU	1722	ACAAGCGG	GGCTAGCTACAACGA	TAGGAGTT	9636
1306	UGCUUCGCA	G	CAGGGUCUG	1723	CAGACCTG	GGCTAGCTACAACGA	TGCGAGCA	9637
1310	CGCAGCGAG	G	UCUGGGGC	1724	GCCCCAGA	GGCTAGCTACAACGA	CTGCTGCG	9638
1317	GGUCUDGGG	G	CAAAACUC	1725	GAGTTTG	GGCTAGCTACAACGA	CCCAAGACC	9639
1347	AUUCUGUC	G	UGCUUCUCC	1726	GGAGAGCA	GGCTAGCTACAACGA	GACAGAAT	9640
1379	UUUCCAU	G	CUGGUAGG	1727	CCTAGCAG	GGCTAGCTACAACGA	CATGGAAA	9641
1387	GGUUCUAG	G	CUGGUUCG	1728	CAGCACAG	GGCTAGCTACAACGA	CTAGCAGC	9642
1418	CGCGGGAC	G	UCCUUUJGU	1729	ACAAAGGA	GGCTAGCTACAACGA	GTCCCCGCG	9643
1431	UUGGUUDAC	G	UCCCGUJCG	1730	CGACGGGA	GGCTAGCTACAACGA	GTAAACAA	9644
1436	UACGUCCCC	G	UCGGGGCU	1731	AGCGCCGA	GGCTAGCTACAACGA	GGGACGTA	9645
1440	UCCCGUJCG	G	CGGCUJAAU	1732	ATTCAAGCG	GGCTAGCTACAACGA	CGACGGGA	9646
1471	CUCCCGGGG	G	CCGCUJUGG	1733	CCAAGCGG	GGCTAGCTACAACGA	CCCGGGGAG	9647
1481	CGCUUUGGG	G	CUCUACCG	1734	CGGTAGAG	GGCTAGCTACAACGA	CCCAAGCG	9648
1517	UACCCGACC	G	UCCACGGG	1735	CCCGTGA	GGCTAGCTACAACGA	GGTGGGTA	9649
1526	UCCACGGGG	G	CGCACCUC	1736	GAGGTGCG	GGCTAGCTACAACGA	CCCGTGGGA	9650

1553	GACUCCCC G UCUGUGCC	1737	GGCACAGA GGCTAGCTACAACGA GGGGAGTC	9651
1579	GCCGGACC G UGUGCACU	1738	AGTGCACA GGCTAGCTACAACGA GTGCCGGC	9652
1605	CUCUGCAC G UCGCAUGG	1739	CCATGCGA GGCTAGCTACAACGA GTGCAGAG	9653
1622	AGACCAAC G UGAACGCC	1740	GGCGTTCA GGCTAGCTACAACGA GGTGGTCT	9654
1649	UGCCCAAAG G UCUUGCAU	1741	ATGCAAGA GGCTAGCTACAACGA CTTGGGCA	9655
1679	GACUUUCA G CAAUGCUA	1742	TGACATG GGCTAGCTACAACGA TGAAAAGTC	9656
1703	ACCUUAG G CAUACUUC	1743	GAAGTATG GGCTAGCTACAACGA CTCAAGGT	9657
1732	UUUAUAG G UGGGGAGA	1744	TCCTCCCA GGCTAGCTACAACGA TCATTAAA	9658
1741	UGGGAGGA G UGGGGGGA	1745	TCCCCCAA GGCTAGCTACAACGA TCCTCCCA	9659
1754	GGGAGGGAG G UUAGGUUA	1746	TAACCTAA GGCTAGCTACAACGA CTCCCTCCC	9660
1759	TAGGUUAG G UUAAAGGU	1747	ACCTTTAA GGCTAGCTACAACGA CTAACCTC	9661
1766	GGUUAAG G UCUUUGUA	1748	TACAAAGA GGCTAGCTACAACGA CTTTAACCC	9662
1782	ACUAGGGAG G CUGUAGGC	1749	GCCTACAG GGCTAGCTACAACGA CTCCCTAGT	9663
1789	GGCUGUAG G CAUAAAUU	1750	AATTTTATG GGCTAGCTACAACGA CTACAGCC	9664
1799	AUAAAUUG G UGUGUJCA	1751	TGAACACA GGCTAGCTACAACGA CAATTAT	9665
1811	GUUCACCA G CACCAUGC	1752	GCATGGTG GGCTAGCTACAACGA TGGTGAAC	9666
1870	CUGUUCAA G CCUCCAAAG	1753	CTTGGAGG GGCTAGCTACAACGA TTGAACAG	9667
1878	GCCUCCAA G CUGUGGCCU	1754	AGGCACAG GGCTAGCTACAACGA TTGGAGGC	9668
1890	UGCCUUUGG G UGGCUUUG	1755	CAAAGCCA GGCTAGCTACAACGA CCAAGGCC	9669
1893	CUDGGGUG G CUUUGGGG	1756	CCCCAAAG GGCTAGCTACAACGA CACCCAAAG	9670
1901	GCUTUUGGG G CAUGGACA	1757	TGTCCCATG GGCTAGCTACAACGA CCCAAAGCC	9671
1917	AUUGACCC G UAUAAAGA	1758	TCTTTATA GGCTAGCTACAACGA GGGTCATA	9672
1933	PAUUGGGG G CUDUGUGG	1759	CACAGAAG GGCTAGCTACAACGA TCCAAATT	9673
1944	UCUGUGGA G UUACUCUC	1760	GAGAGTAA GGCTAGCTACAACGA TCCACAGA	9674
2023	AUCGGGGG G CCUUAGAG	1761	CTCTAAGG GGCTAGCTACAACGA CCCCCGAT	9675
2031	GCCUUDAGA G UCUCCCGA	1762	TCCGGAGA GGCTAGCTACAACGA TCTAAAGGC	9676
2062	ACCAUACG G CACUCAGG	1763	CCTGAGTG GGCTAGCTACAACGA CGTATGGT	9677
2070	GCACUCAG G CAAGCUAU	1764	ATAGCTG GGCTAGCTACAACGA CTGAGTG	9678
2074	UCAGGCCAA G CUAUUCUG	1765	CAGAATAG GGCTAGCTACAACGA TTGCTCTGA	9679
2090	GUGUUGGG G UGAGUUGA	1766	TCAACTCA GGCTAGCTACAACGA CCCAACAC	9680
2094	UGGGGUGA G UUGAUGAA	1767	TTCATCAA GGCTAGCTACAACGA TCACCCCA	9681
2107	UGAAUUCUA G CCACCUUG	1768	CCAGGTTGG GGCTAGCTACAACGA TAGATTCA	9682
2116	CCACCUUGG G UGGGAAGU	1769	ACTTCCA GGCTAGCTACAACGA CCAGTTGG	9683
2123	GGUGGGAA G UAUUUGG	1770	CCAAATTA GGCTAGCTACAACGA TTCCCAAC	9684
2140	AAGAUCCA G CAUCCAGG	1771	CCTGGATG GGCTAGCTACAACGA TGGATCTT	9685
2155	GGGAUUUA G UAGUCAGC	1772	GCTGACTA GGCTAGCTACAACGA TAATFTCCC	9686
2158	AAUUAGUA G UCAGCUAU	1773	ATAGCTGA GGCTAGCTACAACGA TACTAATT	9687

2162	A GUAGUCA	G CUAUGCUA	1774	TGACATAG	GGCTAGCTACAACGA	TGACTACT	9688
2173	A UGUCAAC	G UUUAAUAG	1775	CATATTAA	GGCTAGCTACAACGA	GTTGACAT	9689
2183	UAAAUAUGG	G CCUAAA	1776	TTTTTGG	GGCTAGCTACAACGA	CCATATTAA	9690
2208	CUAUUGUG	G UUUCAU	1777	ATGTGAAA	GGCTAGCTACAACGA	CACATATAG	9691
2235	ACUUDUUGG	G CGAGAAC	1778	GTTCCTCG	GGCTAGCTACAACGA	CCAAAAAGT	9692
2260	AAUAUUUG	G UGUCCCCU	1779	AAAAGACA	GGCTAGCTACAACGA	CAAATATT	9693
2272	CUUUGGGA	G UGUCCCCU	1780	AATCCACA	GGCTAGCTACAACGA	TCCAAAG	9694
2360	ACGAAGAG	G CAGGUCCC	1781	GGGACCTG	GGCTAGCTACAACGA	CTCTTTCGT	9695
2364	ACAGGGCAG	G UCCCCUAG	1782	CTAGGGGA	GGCTAGCTACAACGA	CTGCCCTCT	9696
2403	AGACCAAG	G UCUCAAUC	1783	GATTGAGA	GGCTAGCTACAACGA	CTTCGCTCT	9697
2417	AUCGCCGC	G UCGCAGAA	1784	TTCTGCGA	GGCTAGCTACAACGA	GCGGGCAT	9698
2454	CAAUGUUA	G UAUUCUUV	1785	AAGGAATA	GGCTAGCTACAACGA	TAACATTG	9699
2474	CACAUAG	G UGGGAAAC	1786	GTTCCTCA	GGCTAGCTACAACGA	CTTATGTG	9700
2491	UUUACGGG	G CUUUAUUC	1787	GAATAAG	GGCTAGCTACAACGA	CCCGTAAA	9701
2507	CUUCUACG	G UACCUUGC	1788	GCAAGGTA	GGCTAGCTACAACGA	CGTAGAAG	9702
2530	CCUAAAUG	G CAAACUCC	1789	GGAGTTTG	GGCTAGCTACAACGA	CATTATGG	9703
2587	AGAUGUAA	G CAAUUGU	1790	ACAAATG	GGCTAGCTACAACGA	TTACATCT	9704
2599	UUUGGGGG	G CCCCUUAC	1791	GTAAGGGG	GGCTAGCTACAACGA	CCCAACAAA	9705
2609	CCCUUAC	G UAAAUGAA	1792	TTCATTTA	GGCTAGCTACAACGA	TGTAAGGG	9706
2650	CCUCGUAG	G UUUUAUCC	1793	GGATAAAA	GGCTAGCTACAACGA	CTAGCAGG	9707
2701	AUCAAACC	G UAUUAUCC	1794	GGATAATA	GGCTAGCTACAACGA	GTTTTGTAT	9708
2713	UAUCCAGA	G UAUUGUAGU	1795	ACTACATA	GGCTAGCTACAACGA	TCTGGATA	9709
2720	AGUAUGUA	G UUAAUCAU	1796	ATGATTAA	GGCTAGCTACAACGA	TACATACT	9710
2768	UUUGGAAG	G CGGGGAUC	1797	GATCCCCG	GGCTAGCTACAACGA	CTTCCAAA	9711
2791	AAAAGAGA	G UCCACACG	1798	CGTGTGGA	GGCTAGCTACAACGA	TCTCTTT	9712
2799	GUCCACAC	G UAGGCCU	1799	AGGGCGTA	GGCTAGCTACAACGA	GTGTGGAC	9713
2802	CACACGUA	G CGCCCUAU	1800	ATGAGGCC	GGCTAGCTACAACGA	TACGTGTG	9714
2818	UUUDGGGG	G UCACCAUA	1801	TATGGTGA	GGCTAGCTACAACGA	CCGCAAAA	9715
2848	GAUCUAC	G CAUGGGAG	1802	CTCCCCATG	GGCTAGCTACAACGA	TGTAGATC	9716
2857	CAUGGGAG	G UGGGUUU	1803	AAGACCAA	GGCTAGCTACAACGA	CTCCCATG	9717
2861	GGAGGGUUG	G UCUDUCAA	1804	TTGGAAAGA	GGCTAGCTACAACGA	CAACCTCC	9718
2881	UCGAAAAG	G CAUGGGGA	1805	TCCCCATG	GGCTAGCTACAACGA	CTTTTCGA	9719
2936	GAUCAUCA	G UGGGACCC	1806	GGGTCAA	GGCTAGCTACAACGA	TGATGATC	9720
2955	CAUUCAAA	G CCAACUCU	1807	TGAGTTGG	GGCTAGCTACAACGA	TTTGAATG	9721
2964	CCAACUCU	G UAAAUCCA	1808	TGGATTAA	GGCTAGCTACAACGA	TGAGTTGG	9722
3005	GACAACUG	G CCGGAACG	1809	GCGTCCGG	GGCTAGCTACAACGA	CAGTTGTC	9723
3021	CCAACAAG	G UGGGAUG	1810	CACTCCCA	GGCTAGCTACAACGA	CTTGTGTTGG	9724

3027	AGGUGGGAA G	UGGGAGCA	1811	TGCTCCCA	GGCTAGCTACAACGA	TCCCCACCT	9725
3033	GAGUGGGAA G	CAUUCGGG	1812	CCCGAATG	GGCTAGCTACAACGA	TCCCCACTC	9726
3041	GCAUUCGG G	CCAGGGUU	1813	AACCCCTGG	GGCTAGCTACAACGA	CCGAATG	9727
3047	GGGCCAGG G	UUCACCCC	1814	GGGTGAA	GGCTAGCTACAACGA	CCTGGCCC	9728
3077	CUGUUGGG G	UGGAGCCC	1815	GGGCTCCA	GGCTAGCTACAACGA	CCCAACAG	9729
3082	GGGGUGGA G	CCCUUCAG	1816	CGTGAGGG	GGCTAGCTACAACGA	TCCACCCC	9730
3097	CGCUCAGG G	CCUACUCA	1817	TGAGTAGG	GGCTAGCTACAACGA	CCTGAGCG	9731
3117	CUGUGCCA G	CAGGUCCU	1818	AGGAGCTG	GGCTAGCTACAACGA	TGGCACAG	9732
3120	UGCCAGGA G	CUCCUCCU	1819	AGGAGGAG	GGCTAGCTACAACGA	TGCTGGCA	9733
3146	ACCAAUCG G	CAGUCAGG	1820	CCTGACTG	GGCTAGCTACAACGA	CGATTGTT	9734
3149	AAUCGGCA G	UCAGGAAG	1821	CTTCCTGA	GGCTAGCTACAACGA	TGCCGATT	9735
3158	UCAGGAAG G	CAGCCUAC	1822	GTAGGGCTG	GGCTAGCTACAACGA	CTTCCCTGA	9736
3161	GGAAAGGGCA G	CCUACUCC	1823	GGAGTAGG	GGCTAGCTACAACGA	TGCCCTCC	9737
3204	AUCCUCAG G	CCAUGCAG	1824	CTGCATGG	GGCTAGCTACAACGA	CTGAGGAT	9738
10	ACUCCACC A	CUUDCAC	703	GTGGAAG	GGCTAGCTACAACGA	GGTGGAGT	9739
17	CACUUUCC A	CCAAACUC	706	GAGTTTGG	GGCTAGCTACAACGA	GCAAYAGTG	9740
22	UCCZACCAA A	CUCUCAA	1825	TTGAAGAG	GGCTAGCTACAACGA	TTGGTGGAA	9741
32	UCUUCUAG A	UCCCCAGAG	1826	CTCTGGGA	GGCTAGCTACAACGA	CTTGAAAGA	9742
53	GGCCCCUGU A	CUUUCUG	42	CAGGAAAG	GGCTAGCTACAACGA	ACAGGGCC	9743
82	GUUCAGGA A	CAGUGAGC	1827	GCTCACTG	GGCTAGCTACAACGA	TCTTGAAC	9744
101	UGCUCUAGA A	UACUGUCU	1828	AGACAGTA	GGCTAGCTACAACGA	TCTGAGCA	9745
103	CUCAGAAU A	CUGUCUCU	50	AGAGACAG	GGCTAGCTACAACGA	ATTCTGAG	9746
115	UCUDCUGCC A	UAUCGUCA	737	TGACGATA	GGCTAGCTACAACGA	GGCAGAGA	9747
117	UCUGCCAU A	UGGUCAAU	53	ATTGACGA	GGCTAGCTACAACGA	ATGGGAGA	9748
124	UAUCGUCA A	UCUUAUCG	1829	CGATAAGA	GGCTAGCTACAACGA	TGACGATA	9749
129	UCAAUCUU A	UCGAAAGAC	58	GTCTTCGA	GGCTAGCTACAACGA	AAGATGTA	9750
136	UAUCCGAAG A	CUGGGGAC	1830	GTCCCCAG	GGCTAGCTACAACGA	CTTCCGATA	9751
143	GACUGGGG A	CCCGUAC	1831	GTACAGGG	GGCTAGCTACAACGA	CCCCAGTC	9752
150	GACCCUGU A	CCGAACAU	60	ATGTTCGG	GGCTAGCTACAACGA	ACAGGGTC	9753
155	UGUACCGA A	CAUGGAGA	1832	TCTCCATG	GGCTAGCTACAACGA	TGGTACA	9754
157	UACCCGAAC A	UGGAGAAC	745	GTTCCTCA	GGCTAGCTACAACGA	GTTCGGTA	9755
164	CAUGGAGA A	CAUCGCAU	1833	ATGCGATG	GGCTAGCTACAACGA	TCTCCATG	9756
166	UGGAGAAC A	UCGCAUCA	746	TGATGCGA	GGCTAGCTACAACGA	TTTCTCCA	9757
171	AACAUUCGC A	UCAGGACU	747	AGTCCTGA	GGCTAGCTACAACGA	GCGATGTT	9758
177	GCAUCAGG A	CUCCUAGG	1834	CCTAGGAG	GGCTAGCTACAACGA	CCTGTATGC	9759
186	CUCCUAGG A	CCCCUGCU	1835	AGCAGGG	GGCTAGCTACAACGA	CCTTAGGAG	9760
201	CUCGUGUU A	CAGGGGG	67	CCCGCCCTG	GGCTAGCTACAACGA	AACACGGAG	9761

223	UCUUGUUG A CAAAAUC	1836	GATTTTG GGCTAGCTACAACGA CAACAGAA	9762
229	UGACAAAA A UCCUCACA	1837	TGTGAGGA GGCTAGCTACAACGA TTTTCTCA	9763
235	AAUCCUC A CAAUACCA	762	TGGTATG GGCTAGCTACAACGA GAGGATT	9764
238	UCCUCACA A UACCACAG	1838	CTGTGGTA GGCTAGCTACAACGA TGTGAGGA	9765
240	CUCACAAU A CCACAGAG	77	CTCTGTGG GGCTAGCTACAACGA ATTGTGAG	9766
243	ACAAUACC A CAGAGUCU	765	AGACTCTG GGCTAGCTACAACGA GGTATTTG	9767
254	GAGUCUAG A CUCGGGGU	1839	ACACCGAG GGCTAGCTACAACGA CTAGACTC	9768
265	CGUGGUUG A CUUCUCUC	1840	GAGAGAAG GGCTAGCTACAACGA CCACCAAG	9769
275	UUCUCUCA A UUUUCUAG	1841	CTAGAAA GGCTAGCTACAACGA TGAGGAA	9770
289	UAGGGGGA A CACCCCGUG	1842	CACGGGTG GGCTAGCTACAACGA TCCCCCTA	9771
291	GGGGGAAC A CCCGUGUG	774	CACACGGG GGCTAGCTACAACGA GTTCCCCC	9772
311	UGGCCAAA A UUCGCAGU	1843	ACTGCAA GGCTAGCTACAACGA TTGGCCA	9773
325	AGUCCCAA A UCUCAGU	1844	ACTGGAGA GGCTAGCTACAACGA TTGGCACT	9774
335	CUCCAGUC A CUCACCAA	787	TTGGTGG AGCTAGCTACAACGA GACTGGAG	9775
339	AGUCACUC A CCAACCUG	789	CAGGTGG GGCTAGCTACAACGA GAGTGAET	9776
343	ACUCACCA A CCUGUUGU	1845	ACAACAGG GGCTAGCTACAACGA TTGGTAGT	9777
358	GUCCUCCA A UUDGUCCU	1846	AGGACAAA GGCTAGCTACAACGA TGGAGGAC	9778
371	UCCUGGUU A UCGCUUGGA	106	TCCAGCGA GGCTAGCTACAACGA AAACZAGGA	9779
379	AUCGCUUGG A UGUGUCUG	1847	CAGACACA GGCTAGCTACAACGA CCAGGGAT	9780
397	GGCGGUUU A UCAUCUDC	112	GAAGATGA GGCTAGCTACAACGA AAAACGCC	9781
400	GUUUUAUC A UCUUUCUC	802	GAGGAAGA GGCTAGCTACAACGA GATAAAC	9782
412	UCCUCUGC A UCCUGCUG	807	CAGCAGGA GGCTAGCTACAACGA GCAGGGA	9783
423	CUUGCUGCU A UGCCUCAU	119	ATGAGGCA GGCTAGCTACAACGA AGCAGCAG	9784
430	UAUGGCCUC A UCUUUCUUG	814	CAAGAAGA GGCTAGCTACAACGA GAGGGATA	9785
452	UCUUCUGG A CUAUCAAG	1848	CTTGATAG GGCTAGCTACAACGA CCAGAAAGA	9786
455	UCUGGACU A UCAAGGU	130	TACCTTGA GGCTAGCTACAACGA AGTCACAGA	9787
463	AUCAAGGU A UGUUGCCC	132	GGGCAACA GGCTAGCTACAACGA ACCTTGT	9788
484	GUCCUCUA A UUCCAGGA	1849	TCCTGGAA GGCTAGCTACAACGA TAGAGGAC	9789
492	AUUCGAGG A UCAUCAAC	1850	GTTGATGA GGCTAGCTACAACGA CCTGGAAAT	9790
495	CCAGGAUC A UCAACAC	828	GTTGTTGA GGCTAGCTACAACGA GATCCTGG	9791
499	GAUCAUCA A CAACCAAGC	1851	GCTGGTTG GGCTAGCTACAACGA TGATGATC	9792
502	CAUCAACA A CCAGGACC	1852	GGTGCTGG GGCTAGCTACAACGA TTGTTGATG	9793
513	AGCACCGG A CCAUGCAA	1853	TTGCATGG GGCTAGCTACAACGA CCGGTGCT	9794
516	ACCGGACCA UGCAAAAC	836	GTGTTGCA GGCTAGCTACAACGA GGTCCGGT	9795
523	CAUGCAAA A CCUGCACA	1854	TGTGCAAG GGCTAGCTACAACGA TTTGCATG	9796
529	AAACCUUGC A CAACUCCU	840	AGGAGTGT GGCTAGCTACAACGA GCAGGGTT	9797
532	CCUGCACCA A CUCCUGCU	1855	AGCAGGAG GGCTAGCTACAACGA TGTGCCAGG	9798

547	CUCAGGGA A CCUCUCAUG	1856	CATAGAGG GGCTAGCTACAACGA TCCTTGAG	9799
553	GAACCUCU A UGUUUUCCC	146	GGGAAACA GGCTAGCTACAACGA AGAGGTTC	9800
564	UUUCCUC A UGUUGCUG	853	CAGCAACA GGCTAGCTACAACGA GAGGAAA	9801
574	GUUGCUGU A CAAACCU	152	AGGTTTG GGCTAGCTACAACGA ACAGAAC	9802
579	UGUACAAA A CCUAGGA	1857	TCCGTTGG GGCTAGCTACAACGA TTTGTACA	9803
583	CAAACCU A CGGAGGA	153	TCCGTCG GGCTAGCTACAACGA AGGTTTG	9804
587	ACCUACGG A CGGAAACU	1858	AGTTTCG GGCTAGCTACAACGA CGCTAGGT	9805
593	GCACGGAA A CUGGCCU	1859	AGGTGCAG GGCTAGCTACAACGA TTCCGTCC	9806
598	GAACUUGC A CCUGUAUU	859	AATACAGG GGCTAGCTACAACGA GCAGTTTC	9807
604	GCACCUGU A UUCCCCAU	154	GATGGGAA GGCTAGCTACAACGA ACAGGTGC	9808
610	GUAUUCCC A UCCCCAUC	864	TGATGGGA GGCTAGCTACAACGA GGGAAATAC	9809
615	CCCAUCCC A UCAUCUUG	867	CAAGATGA GGCTAGCTACAACGA GGGATGGG	9810
618	AUCCCAUC A UCUIGGGC	868	GCCCAAGA GGCTAGCTACAACGA GATGGGAT	9811
636	UUCGGAAA A UACCUAUG	1860	CATAGGTA GGCTAGCTACAACGA TTTCGAA	9812
638	CGCAAAAU A CCCAUAGGG	164	CCCATAGG GGCTAGCTACAACGA ATTTGCG	9813
642	AAAUACCU A UGGGAGUG	165	CACTCCCA GGCTAGCTACAACGA AGGTATT	9814
681	CUCAGUUU A CUAGUGCC	176	GGCACTAG GGCTAGCTACAACGA AAACTAGAG	9815
690	CUAGUGCC A UUUGUICA	884	TGAACAAA GGCTAGCTACAACGA GGCACTAG	9816
721	UUUCCCCC A CUGUCUGG	891	CCAGACAG GGCTAGCTACAACGA GGGGAAA	9817
739	UUUCAGUU A UAUUGGAU	193	CATCCATA GGCTAGCTACAACGA AACTGAAA	9818
741	UCAGUUAU A UGGAUGAU	194	ATCATCCA GGCTAGCTACAACGA ATAACCTGA	9819
745	UUUAAUGG A UGAUGUGG	1861	CCACATCA GGCTAGCTACAACGA CCATATAAA	9820
748	UAUGGAAUG A UGUGGUUU	1862	AAACCACA GGCTAGCTACAACGA CATCCATA	9821
773	AAGUCUGU A CAACAUUC	199	AGATGTTG GGCTAGCTACAACGA ACAGACTT	9822
776	UCUGUACA A CAUCUUGA	1863	TCAAGATG GGCTAGCTACAACGA TGTACAGA	9823
778	UGUACAAAC A UCUUGAGU	900	ACTCAAGA GGCTAGCTACAACGA GTTGTACA	9824
793	GUCCCCUU A UGCCGUG	205	CAGGGCA GGCTAGCTACAACGA AAAGGGAC	9825
804	CCGCUGUU A CCAAUUUU	207	AAAATTGG GGCTAGCTACAACGA AACAGCGG	9826
808	UGUUAACCA A UUUUUUUU	1864	AAAGAAAA GGCTAGCTACAACGA TGGTAAACA	9827
828	CUUUGGGU A UACAUUUA	218	TAAATGTA GGCTAGCTACAACGA ACCCZAAAG	9828
830	UUGGGGUU A CAUUUAAA	219	TTTAAATG GGCTAGCTACAACGA ATACCCAA	9829
832	GGGUUAUC A UUUAAACC	911	GGTTAAA GGCTAGCTACAACGA GTATACCC	9830
838	ACAUUUAA A CCCUCACCA	1865	TGTGAGGG GGCTAGCTACAACGA TTAATGTT	9831
844	AAACCCUC A CAAAAACAA	915	TTGTTTTG GGCTAGCTACAACGA GAGGGTTT	9832
849	CUCACAAA A CAAAAAGA	1866	TCTTTTTG GGCTAGCTACAACGA TTGTGAG	9833
857	ACAAAAAAG A UGGGGAU	1867	TATCCCCA GGCTAGCTACAACGA CTTFITGT	9834
863	AGAUGGGG A UAUUCCU	1868	AGGGAATAA GGCTAGCTACAACGA CCCCATCT	9835

865	AUGGGGAU A UUCCCUUA	224	TAAGGGAA GGCTAGCTACAACGA ATCCCCAT	9836
874	UUCCCCUUA A CUUCAUGG	1869	CCATGAAG GGCTAGCTACAACGA TAAGGGAA	9837
879	UUAACUUC A UGGGAU	922	ATATCCCA GGCTAGCTACAACGA GAAGTTAA	9838
884	UUCAUGGG A UAUGGUAA	1870	ATTACATA GGCTAGCTACAACGA CCCATGAA	9839
886	CAUGGGAU A UGUAAUJG	231	CAATTACA GGCTAGCTACAACGA ATCCCCATG	9840
891	GAUAUGUA A UGGGGAGU	1871	ACTCCCCA GGCTAGCTACAACGA TACATATC	9841
906	GUUGGGGC A CAUUGCCA	923	TGGCAATG GGCTAGCTACAACGA GCCCAAC	9842
908	UGGGGCCAC A UGGCCACA	924	TGTGGCAA GGCTAGCTACAACGA GTGCCCCA	9843
914	ACAUUGCC A CAGGAACA	926	TGTTTCTTG GGCTAGCTACAACGA GGCATATGT	9844
920	CCACAGGA A CAUUAUGU	1872	ACAATATG GGCTAGCTACAACGA TCCTGTGG	9845
922	ACAGGAAC A UAUUGUAC	928	GTACAATA GGCTAGCTACAACGA GTTCCCTGT	9846
924	AGGAACAU A UUGUACAA	236	TTGTACAA GGCTAGCTACAACGA ATGTTCTT	9847
929	CAUAUUGU A CAAAAAAU	238	ATTTTTTG GGCTAGCTACAACGA ACAATATG	9848
936	UACAAAAAA A UCAAAAUG	1873	CATTTTGA GGCTAGCTACAACGA TTTTTGTA	9849
942	AAUJCAA A UGUGUUUU	1874	AAAACACA GGCTAGCTACAACGA TTGATTT	9850
956	UUUAGGAA A CUUCCUGU	1875	ACAGGAAG GGCTAGCTACAACGA TTCCCTAAA	9851
967	UCCUGUAA A CAGGCCUA	1876	TAGGCCTG GGCTAGCTACAACGA TTACAGGA	9852
975	ACAGGGCCU A UUGAUUUG	247	CCAATCAA GGCTAGCTACAACGA AGGCCCTGT	9853
979	GCCCUAUUG A UUGGAAG	1877	CTTTCCAA GGCTAGCTACAACGA CAAATAGGC	9854
989	UGGAAAGU A UGUCAACG	250	CGTTGACA GGCTAGCTACAACGA ACTTTCCA	9855
995	GUAUUGUCA A CGAAUUGU	1878	ACAATTG GGCTAGCTACAACGA TGACATAC	9856
999	GUCAAACGA A UUGGGGU	1879	ACCCACAA GGCTAGCTACAACGA TCGTTGAC	9857
1032	CCCCUUUC A CGCAAAUGU	944	ACATTGCG GGCTAGCTACAACGA GAAAGGGG	9858
1037	UUCACGCA A UGUGGAUA	1880	TATCCACA GGCTAGCTACAACGA TGCGTGAA	9859
1043	CAAUGGG A UAUUCUGC	1881	GCAGAAATA GGCTAGCTACAACGA CCACATTG	9860
1045	AUGUGGAU A UUCUGCUU	262	AAGCAGAA GGCTAGCTACAACGA ATCCACAT	9861
1056	CUGCUUU A UGCCUUUA	1882	TAAAGGCA GGCTAGCTACAACGA TAAAGCAG	9862
1064	AUGCCUUU A UAUGCAUG	270	CATGCATA GGCTAGCTACAACGA AAAGGCAT	9863
1066	GCCUUUUU A UGCAUGCA	271	TGGCATGA GGCTAGCTACAACGA ATAAGGGC	9864
1070	UUUAUUGC A UGCAUACA	950	TGTATGCA GGCTAGCTACAACGA GCATGCAT	9865
1074	AUGCAUGC A UACAAGCA	951	TGCTTGTAA GGCTAGCTACAACGA GCATGCAT	9866
1076	GCAUGCAU A CAAGCAAA	272	TTTGCTTG GGCTAGCTACAACGA ATGCATGC	9867
1085	CAAGCAAA A CAGGCUUU	1883	AAAGCCGT GGCTAGCTACAACGA TTTCGTTG	9868
1095	AGGCCUUU A CUUUCUCG	276	CGAGAAAG GGCTAGCTACAACGA AAAAGCCT	9869
1107	UCUCGCCA A CUUACAAAG	1884	CTTGTAA GGCTAGCTACAACGA TGGCGAGA	9870
1111	GCCAACUU A CAAGGCCU	282	AGGCCTTG GGCTAGCTACAACGA AAGTGGC	9871
1130	CUAAGUAA A CAGUAU	1885	ACATACGT GGCTAGCTACAACGA TTACTTTAG	9872

1135	UAAACAGU A UGUGAACCC	288	GGTTCAACA GGCTAGTACAACGA ACTGTTTA	9873
1141	GUAUUGUGA A CCUUUUAACC	1896	GGTAAAGG GGCTAGTACAACGA TCACATAC	9874
1147	GAACCUUU A CCCCGUUG	291	CAACGGGG GGCTAGTACAACGA AAAGGTTTC	9875
1163	GCUCGGCA A CGGCCUUGG	1887	CCAGGCGC GGCTAGTACAACGA TGCCGAGC	9876
1175	CCUGGUUCU A UGCCAAGU	295	ACTTGGCA GGCTAGTACAACGA AGACCAAGG	9877
1192	GUUUGCUG A CGCAACCCC	1888	GGGTTGG GGCTAGTACAACGA CAGCAAC	9878
1197	CUGACGCA A CCCCCACU	1889	AGTGGGGG GGCTAGTACAACGA TGCCTCAG	9879
1203	CAACCCCC A CUGGUUGG	984	CCAACCAAG GGCTAGTACAACGA GGGGTTTG	9880
1221	GUUUGGCC A UAGGCCAU	988	ATGGCTTA GGCTAGTACAACGA GGCCZAGC	9881
1228	CAUAGGCC A UCAGGCCA	990	TGCGCTGA GGCTAGTACAACGA GGCCATATG	9882
1236	AUCAGGCC A UGCCUGGA	992	TCCACGCA GGCTAGTACAACGA GGCCTGTAT	9883
1245	UGCGUGGA A CCUUUUGUG	1890	CACAAAGG GGCTAGTACAACGA TCCACGCA	9884
1266	CUCUGCCG A UCCAUACC	1891	GGTATGGA GGCTAGTACAACGA CGGCAGAG	9885
1270	GCCGAUCC A UACCGCGG	1001	CCGGGTA GGCTAGTACAACGA GGATCGGC	9886
1272	CGAUCCAU A CCCGGAA	308	TTCCCGGG GGCTAGTACAACGA ATGGATCG	9887
1280	ACCGGGGA A CUCCUAGC	1892	GCTAGGAG GGCTAGTACAACGA TCCGGGGT	9888
1322	GGGGCAA A CUCAUCCG	1893	CCGATGAG GGCTAGTACAACGA TTTCGCC	9889
1326	CAAAACUC A UCGGGACU	1014	AGTCCCGA GGCTAGTACAACGA GAGTTTTG	9890
1332	UCAUCCGG A CUGACAAU	1894	ATTGTCAG GGCTAGTACAACGA CCCGATGA	9891
1336	CGGGACUG A CAAUUCUG	1895	CAGAATG GGCTAGTACAACGA CAGTCCCG	9892
1339	GAUCUGACA A UUCUGUCG	1896	CGACAGAA GGCTAGTACAACGA TGTCAGTC	9893
1361	UCCCGCAA A UAUACAU	1897	GATGTATA GGCTAGTACAACGA TTGGGGGA	9894
1363	CCGCAAAU A UACAUCAU	324	ATGATGTA GGCTAGTACAACGA ATTTCGGG	9895
1365	GCAAAAUU A CAUCAUU	325	AAATGATG GGCTAGTACAACGA ATATTTCG	9896
1367	AAAUAUAC A UCAUUIUCC	1023	GGAAATGA GGCTAGTACAACGA GTATATT	9897
1370	UAUACAU A UUCCAU	1024	CATGGAAA GGCTAGTACAACGA GATGATA	9898
1376	UCAUUIUCC A UGGCUGC	1026	AGCAGCCA GGCTAGTACAACGA GGAATGTA	9899
1399	UGCUGCCA A CUGGAUCC	1898	GGATCCAG GGCTAGTACAACGA TGGCAGCA	9900
1404	CCAACUUGG A UCCUACGC	1899	GGCTAGGA GGCTAGTACAACGA CCACGTTGG	9901
1409	UGGAUCCU A CGCGGAC	332	GTCCCCGG GGCTAGTACAACGA AGGATCCA	9902
1416	UACGCGGG A CGUCCUUU	1900	AAAGGACG GGCTAGTACAACGA CCCGGTGA	9903
1429	CUUUGUUU A CGUCCCGU	338	ACGGGACG GGCTAGTACAACGA AAACAAAG	9904
1447	GGCGCUGA A UCCCCGGG	1901	CCGCGGG GGCTAGTACAACGA TCAGCGCC	9905
1456	UCCCCGGG A CGACCCCU	1902	AGGGGTG GGCTAGTACAACGA CCGGGGGA	9906
1459	CGCGGACG A CCCCUCCC	1903	GGGAGGG GGCTAGTACAACGA CGTCCGGG	9907
1486	GGGGCUUCU A CGGCCCGC	345	GCGGGGG GGCTAGTACAACGA AGAGCCCC	9908
1505	CUCCGCCU A UUGUACCG	349	CGGTACAA GGCTAGTACAACGA AGGGGGAG	9909

1510	CCUAUUGU A CCGGACCGU	351	ACGGTCTGG GGCTAGCTACAACGA ACAATAAGG	9910
1514	UUGUACCG A CCGGUCCAC	1904	GTGGACGG GGCTAGCTACAACGA CGGCTAACAA	9911
1521	GACCGUCC A CGGGGCCGC	1064	GCGCCCCG GGCTAGCTACAACGA GGACGGTC	9912
1530	CGGGGCGC A CCUCUCUU	1065	AAGAGAGG GGCTAGCTACAACGA GCGCCCCG	9913
1540	CUCUCUUT A CGCGGACU	357	AGTCGGCG GGCTAGCTACAACGA AAAGAGAG	9914
1546	UUAACCGGG A CUCCCCGU	1905	ACGGGAG GGCTAGCTACAACGA CGGGCTPAA	9915
1567	GCCUDUCU C UCGCGGG	1078	CCGGCAGA GGCTAGCTACAACGA GAGAAGGC	9916
1576	UCUGGCCG A CGCGUGGC	1906	GCACACGG GGCTAGCTACAACGA CGGGCAGA	9917
1585	CCGUGUGC A CUUCGUUU	1082	AAGCGGAG GGCTAGCTACAACGA GCACACGG	9918
1595	UUCGCUUC A CCUCUGCA	1085	TGCAGAGG GGCTAGCTACAACGA GAAGCGAA	9919
1603	ACCUCUGC A CGUCGCAU	1089	ATGCGACG GGCTAGCTACAACGA GCAGAGGT	9920
1610	CACGUCGC A UGGAGACC	1090	GGTCTCCA GGCTAGCTACAACGA GCGACGTG	9921
1616	CGAUGGGAG A CCACCGUG	1907	CACGGTGG GGCTAGCTACAACGA CTCCCATGC	9922
1619	UCCGAGACC A CCGUGAAC	1092	GTTCACGG GGCTAGCTACAACGA GGTCTCCA	9923
1626	CACCGUGA A CGCCCACCA	1908	TGTGGCG GGCTAGCTACAACGA TCACGGTG	9924
1638	CCACAGGA A CCUGCCCCA	1909	TGGGCAAG GGCTAGCTACAACGA TCCTCTGG	9925
1656	GGGUUUGC A UAAGAGGA	1104	TCCTCTTA GGCTAGCTACAACGA GCAAGACC	9926
1664	AUAAAGGG A CUCUUGGA	1910	TCCAAGAG GGCTAGCTACAACGA CCTCTCTAT	9927
1672	ACUCUUUG A CUUUCAGC	1911	GCTGAAAG GGCTAGCTACAACGA CCAAGAGT	9928
1682	UUUCAGCA A UGUCAACG	1912	CGTTGACA GGCTAGCTACAACGA TGCTGAAA	9929
1688	CAAUGUCA A CGACCGAC	1913	GTCCGGTCG GGCTAGCTACAACGA TGACATTG	9930
1691	UGCUAACG A CCGACCUU	1914	AAGGTCTGG GGCTAGCTACAACGA CGTTGACA	9931
1695	FACGACCG A CCUUGAGG	1915	CCTCAAGG GGCTAGCTACAACGA CGGTTCTGT	9932
1705	CUUGAGGC A UACUUCAA	1114	TTGAAGTA GGCTAGCTACAACGA GCCTCTAAC	9933
1707	UGAGGCCAU A CUUCAAAG	380	CTTTGAAG GGCTAGCTACAACGA ATGCCCTCA	9934
1716	CUDCAAAAG A CGUGUGGU	1916	ACACACAG GGCTAGCTACAACGA CTTTGAAG	9935
1728	UGUGUUUA A UGAGUGGG	1917	CCCACTCA GGCTAGCTACAACGA TAAACACA	9936
1774	GUCCUUUGU A CUAGGAGG	394	CCTCCTAG GGCTAGCTACAACGA ACAAGAC	9937
1791	CUGUAGGC A UAAAUUGG	1121	CCAATTAA GGCTAGCTACAACGA GCCTACAG	9938
1795	AGGCAUAA A UUGGGUG	1918	CACACCAA GGCTAGCTACAACGA TTATGCTT	9939
1807	GUGUGUUC A CCAGGACC	1122	GGTGTGG GGCTAGCTACAACGA GAACACAC	9940
1813	UCACCAAGC A CCAUGCAA	1125	TTGCATGG GGCTAGCTACAACGA GCTGTGA	9941
1816	CCAGCACC A UGCAACUU	1127	AAGTTGCA GGCTAGCTACAACGA GGTGCTGG	9942
1821	ACCAUGCA A CUUUUUC	1919	TGAAAAAG GGCTAGCTACAACGA TGCATGGT	9943
1829	ACUUUUUC A CCUCUGCC	1130	GGCAGAGG GGCTAGCTACAACGA GAAAAGT	9944
1840	UCUGCCUA A UCAUCUCA	1920	TGAGATGA GGCTAGCTACAACGA TAGGAGA	9945
1843	GCCUAAUC A UCUCAUUG	1136	ACATGAGA GGCTAGCTACAACCA GATTAGGC	9946

1848	AUCAUUCU A UGUUCAUG	1138	CATGAACA GGCTAGCTACAACGA GAGATGAT	9947
1854	UCAUGUUUC A UGUCCUAC	1139	GTAGGGACA GGCTAGCTACAACGA GAACATGA	9948
1861	CAUGUCCU A CUGUUCAA	414	TTGAAACAG GGCTAGCTACAACGA AGGACATG	9949
1903	UUUUGGGGC A UGGACAUU	1152	AATGTCGA GGCTAGCTACAACGA GCCCCAAA	9950
1907	GGGCAUGG A CAUUGACC	1921	GGTCAATG GGCTAGCTACAACGA CCATGCC	9951
1909	GCAUGGCAC A UUGACCCG	1153	CGGGTCAA GGCTAGCTACAACGA GTCCCATGC	9952
1913	GGACAUUG A CCCGUAAA	1922	TATACGGG GGCTAGCTACAACGA CAATGTCC	9953
1919	UGAACCCGU A UAAAGAAU	422	ATTCTTTA GGCTAGCTACAACGA ACGGGTCA	9954
1926	UAUAAGAA A UUUGGAGC	1923	GCTCCAAA GGCTAGCTACAACGA TCTTTATA	9955
1947	GUUGGAGUU A CUCUCUUU	429	AAAGAGAG GGCTAGCTACAACGA AACTCCAC	9956
1967	GCCUUCUG A CUUCUUC	1924	GAAAAGAG GGCTAGCTACAACGA CAGAAGGC	9957
1981	UUCCUUCU A UUCCGAU	446	ATCTCGAA GGCTAGCTACAACGA AGAAGGAA	9958
1988	UAUUCGAG A UCUCUCUG	1925	CGAGGAGA GGCTAGCTACAACGA CTCGAATA	9959
1997	UCUCCUCG A CACCGCCU	1926	AGGGGGTG GGCTAGCTACAACGA CGAGGAGA	9960
1999	UCCUUCGAC A CCGCCUCU	1172	AGAGGGGG GGCTAGCTACAACGA GTCCZAGGA	9961
2015	UGGUCUGU A UCGGGGGG	454	CCCCCGGA GGCTAGCTACAACGA ACAGAGCA	9962
2040	UCUCUCGG A CAUUGUUC	1927	GAACAAATG GGCTAGCTACAACGA TCCGGAGA	9963
2042	UCCGGAAC A UUGGUUCAC	1183	GTGAACAA GGCTAGCTACAACGA GTTCCGGGA	9964
2049	CAUUGUUC A CCUCACCA	1184	TGGTGGGG GGCTAGCTACAACGA GAACATATG	9965
2054	UUCUCCUC A CCAUACGG	1187	CCGTATGG GGCTAGCTACAACGA GAGGTGAA	9966
2057	ACCUCCACC A UACGGCAC	1189	GTGCCGTA GGCTAGCTACAACGA GTGTGAGGT	9967
2059	CUCACCAU A CGGGCACUC	464	GAGTGCAG GGCTAGCTACAACGA ATGGTGAG	9968
2064	CAUACGGC A CUCAGGCA	1190	TGCCTGAG GGCTAGCTACAACGA GCGGTATG	9969
2077	GGCAAGGU A UUCUGUGU	466	ACACAGAA GGCTAGCTACAACGA AGCTTGCC	9970
2098	GUGAGUUG A UGAAUCUA	1928	TAGATTCA GGCTAGCTACAACGA CAACTCAC	9971
2102	GUUGAUGA A UCUAGCCA	1929	TGGCTAGA GGCTAGCTACAACGA TCATCAC	9972
2110	AUCUAGGC A CCUGGGUG	1198	CACCCAGG GGCTAGCTACAACGA GGCTAGAT	9973
2126	GGGAAGUA A UUUGGAAG	1930	CTTCCAAA GGCTAGCTACAACGA TACTTCCC	9974
2135	UUUUGGAAG A UCCAGCAU	1931	ATGCTGGA GGCTAGCTACAACGA CTTCACAA	9975
2142	GAUCCAGC A UCCAGGG	1203	TCCCTGGA GGCTAGCTACAACGA GCTGGATC	9976
2151	UCCAGGG A UUAGUAGU	1932	ACTACTAA GGCTAGCTACAACGA TCCCTGGA	9977
2165	AGUCAGGU A UGUCAACG	482	CGTTGACA GGCTAGCTACAACGA AGCTGACT	9978
2171	CUAUGUCA A CGUUUAUA	1933	TATTAACG GGCTAGCTACAACGA TGACZATAG	9979
2177	CAACGUUA A UAUGGGCC	1934	GGCCCAT A GGCTAGCTACAACGA TAACGTTG	9980
2179	ACGUUAAU A UGGGCCUA	486	TAGGCCCA GGCTAGCTACAACGA ATTAAACGT	9981
2191	GCCUAAA A UCAGACAA	1935	TIGTCTGA GGCTAGCTACAACGA TTITAGGC	9982
2196	AAAUCAG A CAACUAUU	1936	AATAGTTG GGCTAGCTACAACGA CTGATT	9983

2199	AUCAGACA A CUAUUUGUG	1937	CACAATAG GGCTAGCTACAACGA TGTCTGAT	9984
2202	AGACAACU A UUUGGGGU	489	AACCACAA GGCTAGCTACAACGA AGTTCTCT	9985
2213	GUUGUUUC A CAUUCUCCU	1214	AGGAAATG GGCTAGCTACAACGA GAAACAC	9986
2215	GGUUUCAC A UUUCUUGU	1215	ACAGGAAA GGCTAGCTACAACGA GTGAAACC	9987
2227	CCUGUCUU A CUUUGGG	499	CCCCAAAG GGCTAGCTACAACGA AAGACAGG	9988
2242	GGCGAGAA A CUGUUCUU	1938	AAGAACAG GGCTAGCTACAACGA TTCTGCC	9989
2253	GUUCUUGA A UAUUUGGU	1939	ACCAAATA GGCTAGCTACAACGA TCAAGAAC	9990
2255	UCUUGAAU A UUUGGUGU	506	ACACCAA GGCTAGCTACAACGA ATTCAAGA	9991
2278	GAGGUGGG A UOUGCACU	1940	AGTGCAGA GGCTAGCTACAACGA CCACACTC	9992
2284	GGAUUCGC A CUCCUCCU	1223	AGGAGGAG GGCTAGCTACAACGA GCGAAATCC	9993
2295	CCUCCUGC A UAUAGACC	1229	GGTCTATA GGCTAGCTACAACGA GCAGGAGG	9994
2297	UCCUGGCAU A UAGACAC	517	GTGGITCA GGCTAGCTACAACGA ATGCAGGA	9995
2301	GCAUUAAG A CCACCAA	1941	TTTGGTGG GGCTAGCTACAACGA CTATATGC	9996
2304	UAUAGACC A CCAAUAUGC	1231	GCATTGG GGCTAGCTACAACGA GTTCTATA	9997
2309	ACCACCAA A UGCCCUA	1942	TAGGGCA GGCTAGCTACAACGA TTGGGGTT	9998
2317	AUGCCCCU A UCUUUAUC	519	TGATAAGA GGCTAGCTACAACGA AGGGGCAT	9999
2322	CCUUAUCU A UCAACACU	522	AGTGTGA GGCTAGCTACAACGA AACATAGG	10000
2326	UCUTAUCA A CACUUCCG	1943	CGGAAGTG GGCTAGCTACAACGA TGATAAGA	10001
2328	UUAUCAAC A CUUCCGGA	1240	TCCGGAAAG GGCTAGCTACAACGA TTGGATAA	10002
2338	UUCCGGAA A CUACUGUU	1944	AAACATAG GGCTAGCTACAACGA TTCCGGAA	10003
2341	CGGAAACU A CUGUUGUU	526	AAACAACAG GGCTAGCTACAACGA AGTTTCGG	10004
2352	GUUGUUAG A CGAAAGGG	1945	CCTCTTCG GGCTAGCTACAACGA CTAACAAC	10005
2380	GAAGAAGA A CUCCCUCG	1946	CGAGGGAG GGCTAGCTACAACGA TCTTCTC	10006
2397	CCUCGCAG A CGAAGGGC	1947	GACCTTCG GGCTAGCTACAACGA CTGCCAGG	10007
2409	AGGUUCUA A UCGCCGCG	1948	CGCGGGCA GGCTAGCTACAACGA TGACACCT	10008
2427	CGCAGAAG A UCUCAUC	1949	GATTGAGA GGCTAGCTACAACGA CTTCTGCG	10009
2433	AGAUUCUA A UCUCGGGA	1950	TCCCGAGA GGCTAGCTACAACGA TGAGATCT	10010
2442	UCUCGGGA A UCUCAAUG	1951	CATTGAGA GGCTAGCTACAACGA TCCCGAGA	10011
2448	GAAUCUCA A UGUUAGUA	1952	TACTAAACA GGCTAGCTACAACGA TGAGATTG	10012
2456	AUGUJAGU A UUCCUUGG	547	CCAAGGAA GGCTAGCTACAACGA ACTAACAT	10013
2465	UUCUCUDGG A CACAUUAG	1953	CITTATGTG GGCTAGCTACAACGA CCAAGGAA	10014
2467	CCUUGGAC A CAUAGGU	1268	ACCTTATG GGCTAGCTACAACGA GTCCAAGG	10015
2469	UUGGACAC A UAAGGUUG	1269	CCACCTTA GGCTAGCTACAACGA GTGTCCAA	10016
2481	GGUGGGAA A CUUUACGG	1954	CCGTAAG GGCTAGCTACAACGA TTCCCAAC	10017
2486	GAAACUUU A CGGGCUU	554	AAGCCCCG GGCTAGCTACAACGA AAAGTTTC	10018
2496	GGGGCUUU A UUCUUCUA	557	TAGAAGAA GGCTAGCTACAACGA AAAGCCCC	10019
2504	AUUCUUCU A CGGUACCU	562	AGGTACCG GGCTAGCTACAACGA AGAAGAAT	10020

2509	UCUACGGU	A	CCUUGGUU	563	AAGCAAGG	GGCTAGCTACAACGA	ACCGTAGA	10021
2520	UUUCUUIUA	A	UCCUAAA	1955	ATTTAGGA	GGCTAGCTACAACGA	TAAAGCAA	10022
2527	AAUCCUAA	A	UGGAAAC	1956	GTTTGCCA	GGCTAGCTACAACGA	TTAGGATT	10023
2534	AAUGGCAA	A	CUCCUUCU	1957	AGAAGGAG	GGCTAGCTACAACGA	TTGCCATT	10024
2550	UUUUCUCG	A	CAUUCAUU	1958	AATGAATG	GGCTAGCTACAACGA	CAGGAAAA	10025
2552	UUCUCUGAC	A	UUCAUUG	1286	CAAATGAA	GGCTAGCTACAACGA	GTCAGGAA	10026
2556	UGACAUUC	A	UUUGCAGG	1287	CCTGCAAA	GGCTAGCTACAACGA	GAATGTCA	10027
2568	GCAGGGGG	A	CAUUGUUG	1959	CAACAATG	GGCTAGCTACAACGA	CCTCCTGC	10028
2570	AGGAGGAC	A	UUGUUUGAU	1289	ATCAACAA	GGCTAGCTACAACGA	GTCCTCCCT	10029
2577	CAUDGUUG	A	UAGAUGUA	1960	TACATCTA	GGCTAGCTACAACGA	CAACAAATG	10030
2581	GUUGAUAG	A	UGUAAGCA	1961	TGCTTACA	GGCTAGCTACAACGA	CTATCAAC	10031
2590	UGUAAGCA	A	UUUGGGGG	1962	CCCACAAA	GGCTAGCTACAACGA	TGCTTACA	10032
2606	GGCCCCUU	A	CAGUAAA	588	ATTTACTG	GGCTAGCTACAACGA	AAGGGGCC	10033
2613	UACAGUAA	A	UGAAAACA	1963	TGTTTTCA	GGCTAGCTACAACGA	TTACTGTA	10034
2619	AAAUGAAA	A	CAGGAGAC	1964	GTCTCCGT	GGCTAGCTACAACGA	TTTCATTT	10035
2626	AACAGGGAG	A	CUUAAA	1965	AATTTAAG	GGCTAGCTACAACGA	CTCCCTGTT	10036
2632	AGACUAAA	A	UUAACAU	1966	ATAGTTAA	GGCTAGCTACAACGA	TTAAGTCT	10037
2636	UUAAAAUU	A	CUAUGCUC	1967	AGGCATAG	GGCTAGCTACAACGA	TAATTTAA	10038
2639	AAUUAACU	A	UGCCUGCU	594	AGCAGGCA	GGCTAGCTACAACGA	AGTTAAATT	10039
2655	UAGGDDUU	A	UCCCAAUG	599	CATTGGGA	GGCTAGCTACAACGA	AAAACCTA	10040
2661	UUAUCCCCA	A	UGUUACUA	1968	TAGTAACA	GGCTAGCTACAACGA	TGGGATAAA	10041
2666	CCAAUGUU	A	CUAAA	602	ATATTAG	GGCTAGCTACAACGA	AACATTGG	10042
2671	GUUACUAA	A	UAUUUGCC	1969	GGCAAATA	GGCTAGCTACAACGA	TTAGTAAAC	10043
2673	UACUAAA	A	UUUGCCU	604	AGGGCAAA	GGCTAGCTACAACGA	ATTAGTA	10044
2685	GCCCCUUG	A	UAAAAGGA	1970	TCCCTTA	GGCTAGCTACAACGA	CTAAGGGC	10045
2693	AUAAAAGGG	A	UCAAAACCG	1971	CGGTTGA	GGCTAGCTACAACGA	CCCTTTAT	10046
2698	GGGAUCAA	A	CCGUUA	1972	TAATACGG	GGCTAGCTACAACGA	TTGATCCC	10047
2703	CAAACCGU	A	UUUAUCAG	611	CTGGATAA	GGCTAGCTACAACGA	ACGGTTTG	10048
2706	ACCGGUAU	A	UCCAGAGU	613	ACTCTGGA	GGCTAGCTACAACGA	AATAACGGT	10049
2715	UCCAGAGU	A	UGUAGUUA	615	TAACTACA	GGCTAGCTACAACGA	ACTCTGGA	10050
2724	UGUAGUUA	A	UCAUUACU	1973	AGTAATGA	GGCTAGCTACAACGA	TAACTACA	10051
2727	AGUAAAUC	A	UUACUUC	1313	GGAAGTAA	GGCTAGCTACAACGA	GATTAACT	10052
2730	UAAUCAUU	A	CUUCCAGA	621	TCTGGAA	GGCTAGCTACAACGA	AAATGATTA	10053
2738	ACUUUCCAG	A	CGCGACAU	1974	ATGTCGGG	GGCTAGCTACAACGA	CTGGAAAGT	10054
2743	CAGACGCG	A	CAUUAUU	1975	AAATAATG	GGCTAGCTACAACGA	CGCGCTG	10055
2745	GACGCGAC	A	UUUUUUC	1317	GTAATAAA	GGCTAGCTACAACGA	GTGCGGTC	10056
2748	GCGACAUU	A	UUUACACA	625	TGTGTAAA	GGCTAGCTACAACGA	AATGTGCG	10057

2752	CAUUAUU A CACACUCU	628	AGAGTGTG GGCTAGCTACAACGA AAATAATG	10058
2754	UUAUUUAC A CACUCUUU	1318	AAAGAGTG GGCTAGCTACAACGA GTAATAAA	10059
2756	AUUUACAC A CUCUUUJGG	1319	CCAAAGAG GGCTAGCTACAACGA GTGTAAAT	10060
2774	AGGGGGGG A UCUUUAU	1976	ATATAAGA GGCTAGCTACAACGA CCCCCCCT	10061
2779	GGGAUCUU A UAUAAAAG	634	CTTTTATA GGCTAGCTACAACGA AAGATCCC	10062
2781	GAUCUUAU A UAAAAGAG	635	CTCTTTTA GGCTAGCTACAACGA ATAAGATC	10063
2795	GAGAGUCC A CACGUAGC	1324	GCTACGTG GGCTAGCTACAACGA GGACTCTC	10064
2797	GAGUCCAC A CGUAGCGC	1325	GCGCTACG GGCTAGCTACAACGA GTGGACTC	10065
2809	AGCGCCUC A UUUUGGGG	1328	CCGCAAA GGCTAGCTACAACGA GAGGGGCT	10066
2821	UGCGGGGUC A CCAUAUJC	1329	GAATATGG GGCTAGCTACAACGA GACCCGCA	10067
2824	GGGUCAAC A UAUUCUJUG	1331	CAAGAAATA GGCTAGCTACAACGA GCTGACCCC	10068
2826	GU2ACCAU A UUUUUGGG	644	CCCAAGAA GGCTAGCTACAACGA ATGGTGAC	10069
2836	UCUUGGGG A CAAGAUUCU	1977	AGATCTG GGCTAGCTACAACGA TCCCAGAA	10070
2841	GGAAACAAG A UCUACAGC	1978	GCTGTAGA GGCTAGCTACAACGA CTTGTCTC	10071
2845	CAAGAUUCU A CAGCAUGG	649	CCATGCTG GGCTAGCTACAACGA AGATCTTG	10072
2850	UCUACAGC A UGGGAGGU	1336	ACCTCCCA GGCTAGCTACAACGA GCTGTAGA	10073
2870	UCUUCCAA A CCUCGAAA	1979	TTCGAGG GGCTAGCTACAACGA TTGGAAAGA	10074
2883	GAAAAGGC A UGGGGACA	1342	TGTCCCCA GGCTAGCTACAACGA GCCTTTTC	10075
2889	GCAUAGGGG A CAAAUCUU	1980	AAGATTG GGCTAGCTACAACGA CCCCATGC	10076
2893	GGGGACAA A UCUUUCUG	1981	CAGAAAGA GGCTAGCTACAACGA TTGTCCCC	10077
2908	UGUCCCCA A UCCCCUJGG	1982	CCAGGGGA GGCTAGCTACAACGA TGGGGACA	10078
2918	CCCCUJGGG A UUCUUCCC	1983	GGGAAGAA GGCTAGCTACAACGA CCCAGGGG	10079
2929	CUUCCCCG A UCAUCAGU	1984	ACTGATGA GGCTAGCTACAACGA CGGGGAAG	10080
2932	CCCCGAUC A UCAGUJGG	1358	CCAACTGA GGCTAGCTACAACGA GATCGGGG	10081
2941	UCAGUJGG A CCCUGCAU	1985	ATGCAGGG GGCTAGCTACAACGA CCAACTGA	10082
2948	GACCCUGC A UUCAAAGC	1363	GCTTTGAA GGCTAGCTACAACGA GCAGGGTC	10083
2959	CAAAGCCA A CUCAGUAA	1986	TTACTGAG GGCTAGCTACAACGA TGGCTTTG	10084
2968	CUCAGUAA A UCCAGAUU	1987	AACTCTGGA GGCTAGCTACAACGA TTACTGAG	10085
2974	AAAUUCCAG A UUGGGACC	1988	GGTCCCCA GGCTAGCTACAACGA CTGGATTT	10086
2980	AGAUUJGG A CCUCAACC	1989	GGTTGAGG GGCTAGCTACAACGA CCCAATCT	10087
2986	GGACCUCA A CCCGCACA	1990	TGTGCGGG GGCTAGCTACAACGA TGAGGTCC	10088
2998	GCACAAGG A CAACUGGC	1991	GCCAGTGTG GGCTAGCTACAACGA CCTTGTG	10089
3001	CAAGGACA A CUGGCCGG	1992	CGGGCCAG GGCTAGCTACAACGA TGTCTTGT	10090
3010	CUGGCCGG A CGCCAACA	1993	TGTTGGCG GGCTAGCTACAACGA CGGGCCAG	10091
3016	GGACGCCA A CAAGGUJGG	1994	CCACCTTG GGCTAGCTACAACGA TGGGCTCC	10092
3035	GUGGGAGC A UUCGGGCC	1384	GGCCGAA GGCTAGCTACAACGA GCTCCAC	10093
3051	CAGGGUUC A CCCCUCCC	1387	GGGAGGGG GGCTAGCTACAACGA GAACCCCTG	10094

3061	CCCUCCCC A	UGGGGAC	1.395	GTCCCCCA	GGCTAGCTACAACGA	GGGGAGGG	10095
3068	CAUCCCCG A	CUGUUGGG	1.995	CCCAAACAG	GGCTAGCTACAACGA	CCCCCATG	10096
3088	GAAGCCUC A	CGCUCAGG	1.400	CCTGAGCG	GGCTAGCTACAACGA	GAGGGCTC	10097
3101	CAGGGCCU A	CUCACAAC	683	GTGTTGAG	GGCTAGCTACAACGA	AGGCCCTG	10098
3105	GCCUACUC A	CAACUGUG	1.406	CACAGTGT	GGCTAGCTACAACGA	GACTAGGC	10099
3108	UACUCACCA A	CUGUGCCA	1.996	TGGCACAG	GGCTAGCTACAACGA	TGTGAGTA	10100
3138	CUGGCCUCC A	CCAAUCGG	1.422	CCGATTGG	GGCTAGCTACAACGA	GGAGGGAG	10101
3142	CUCCACCA A	UCGGCAGU	1.997	ACTGCCGA	GGCTAGCTACAACGA	TGTTGGAG	10102
3165	GGCAGGCC U	A CUCCUUA	691	TAAGGGAG	GGCTAGCTACAACGA	AGGCTGCC	10103
3173	ACUCCCCU U	A UCUCACC	694	GGTGGGAGA	GGCTAGCTACAACGA	AAGGGAGT	10104
3179	UUAUCUCC A	CCUCUAAAG	1.436	CTTAGAGG	GGCTAGCTACAACGA	GGAGATAA	10105
3190	UCUAAGGG A	CACUCAU	1.998	GATGAGTG	GGCTAGCTACAACGA	CCCTTATGA	10106
3192	UAGGGAC A	CUCAUCCU	1.440	AGGATGAG	GGCTAGCTACAACGA	GTCCCCTTA	10107
3196	GGACACUC A	UCCUCAGG	1.442	CCTGAGGA	GGCTAGCTACAACGA	GAGTGTCC	10108
3207	CUCAGGCC A	UGCAGGG	1.447	CCACTGCA	GGCTAGCTACAACGA	GGCCTGTAG	10109

Input Sequence = AF100308 . Cut Site = YG/M or UG/U.

Stem Length = 8 . Core Sequence = GGCTAGCTACAACGA

AF100308 (Repatitis B virus strain 2-18, 3215 bp)

TABLE X: HUMAN HBV AMBERZYME AND SUBSTRATE SEQUENCE

Pos	Substrate	Seq ID	Amberzyme	Seq ID				
61	ACUUDCCU G	CUGGGGGC	1448	GCCACAG	GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG	AGGAAAGU	10110
87	GGAACAGU G	AGCCCUGC	1449	GCAGGGC	GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG	ACUGUUCC	10111
94	UGAGGCCU G	CUCAGAU	1450	AUUCUGAG	GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG	AGGGCUCA	10112
112	CUGUCUCU G	CCAUAUUC	1451	CGAUAU	GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG	AGAGACAG	10113
132	AUCUUAUC G	AAGACUGG	1452	CCAGCUU	GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG	GAUAGAU	10114
153	CCUGUACC G	AAACAU	1453	UCCAUGU	GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG	GGUACAGG	10115
169	AGAACAU C G	CAUCAGGA	1454	UCCUGAU	GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG	GAUGUUCU	10116
192	GGACCCCCU G	CUCGUGU	1455	AACACAG	GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG	AGGGGUCC	10117
222	UUUCUUGUU G	ACAAAAAU	1456	AUUUUGU	GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG	AACAAGAA	10118
315	CAAAAUUC G	CAGUCCCA	1457	UGGGACUG	GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG	GAUUUUG	10119
374	UGGUUAUC G	CUGGAUGU	1458	ACAUUCAG	GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG	GAUAAACCA	10120
387	AUGUGUCU G	CGGGCUUU	1459	AAACGCCG	GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG	AGACACAU	10121
410	CUUCCUCU G	CAUCCUGC	1.460	GCAGGAUG	GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG	AGAGGAAG	10122
417	UGCAUCCU G	CUGCUAUG	1.461	CAUAGCAG	GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG	AGGAUGCA	10123

420	AUCCUGCU	G	CUAUGCCU	1462	AGGCAUAG	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	AGCAGGAU	10124
425	GCUGCUAU	G	CCUCAU CU	1463	AGAUGAGG	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	AUAGCAGC	10125
468	GGUAUGUU	G	CCCGGUUUG	1464	CAAACGGG	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	AACAUACC	10126
518	CGGACCAU	G	CAAAACCU	1465	AGGUUUUJ	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	AUGGUCCG	10127
527	CAAAACCU	G	CACAAUCU	1466	GAGUUGUG	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	AGGUUUUG	10128
538	CAACUCU	G	CUCAGGA	1467	UCCUUGAG	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	AGGAGUUG	10129
569	CUCAU G	CUGUACAA	1468	UUGUACAG	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	AACAUAGG	10130	
596	CGGAAACU	G	CACCU GUA	1469	UACAGGUG	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	AGUUUCCG	10131
631	GGGUUUC	G	CAAAAUAC	1470	GUAUUUG	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	GAAAGCCC	10132
687	UUACUAGU	G	CCAUU JGU	1471	ACAAAUUG	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	ACUAGUAA	10133
747	AUAGGAU	G	AUGUGGUU	1472	AACCACAU	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	AUCCAUAU	10134
783	ACAUCU	G	AGUCCUU	1473	AAGGGACU	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	AAGAUGUU	10135
795	CCCUUUAU	G	CCCGUGUU	1474	AACAGCGG	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	AUAAAAGGG	10136
798	UUUAUGCC	G	CUGUACC	1475	GGUAAACAG	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	GGCAUAAA	10137
911	GGCACAU	G	CCACAGGA	1476	UCCUGUGG	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	AAUGUGCC	10138
978	GGCCUAUU	G	AUUGGAAA	1477	UUUCCAU	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	AAUAGGCC	10139
997	AUGUCAAC	G	AAUUGGG	1478.	CCACAAU	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	GUUGACAU	10140
1020	UGGGGGUU	G	CCGGCCCCU	1479	AGGGGGG	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	AAACCCCA	10141
1023	GGUUUJGCC	G	CCCCCUUUC	1480	GAAGGGG	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	GGCAAAACC	10142
1034	CCUUUCAC	G	CAAUGGG	1481	CCACAUU	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	GUGAAAGG	10143
1050	GAUAUUCU	G	CUTUUAUG	1482	CAUUAAG	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	AGAAAUAUC	10144
1058	GCUUUAAU	G	CCUUUUAU	1483	UAAAAGG	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	AUAAAAGC	10145
1068	CUDUUAU	G	CAUGCAUA	1484	UAUGCAUG	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	AUAAAAG	10146
1072	AUAUGCAU	G	CAUACAA G	1485	CUUGUAUG	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	AUGCAUAU	10147
1103	ACUUUCUC	G	CCAACUU A	1486	UAAGGUUG	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	GAGAAAGU	10148
1139	CAGUADGU	G	AACCUUTA	1487	UAAA GGUU	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	ACAUACUG	10149
1155	ACCCCGUU	G	CUCGGCAA	1488	UUGCCGAG	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	AACGGGGU	10150
1177	UGGUCUAU	G	CCAAGJGU	1489	ACACUUGG	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	AUAGACCA	10151
1188	TAUGUUU	G	CUGACGCA	1490	UGCGUICAG	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	AAACACUU	10152
1191	UGGUUGGU	G	ACGCAACC	1491	GGUUGCGU	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	AGCAAACA	10153
1194	UJGGCUGAC	G	CAACCCCC	1492	GGGGGUUG	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	GUCAGCAA	10154
1234	CCAU CAGC	G	CAUGCGUG	1493	CACGCAUG	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	GCUGAUGG	10155
1238	CAGCGCAU	G	CGUGGAAC	1494	GUUCCACG	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	AUGGCUG	10156
1262	UCUCCUCU	G	CCGAUCCA	1495	UGGAUCGG	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	AGAGGAGA	10157
1265	CCUCUGCC	G	AUCCAUAC	1496	GUAU GAU	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	GGCAGAGG	10158
1275	UCCAUACC	G	CGGAAACUC	1497	GAGUOCCG	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	GGUAUGGA	10159
1290	UCCUJAGCC	G	CUUGUUUU	1498	AAAACAA G	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	GGCUAGGA	10160

1299	CUUGUUUU G CUCGZAGC	1499	GCUGCGAG GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG AAAACAAG	10161
1303	UUUUGCUC G CAGCGAGG	1500	ACCUUCUG GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG GAGCAAAA	10162
1335	UCGGGACU G ACAAUUCU	1501	AGAAUUGU GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG AGUCCCCA	10163
1349	UCUGUCGU G CUCUCCCG	1502	CGGGAGAG GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG ACGACAGA	10164
1357	GCUCUCCC G CAAAUAUA	1503	UAUAUTUG GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG GGGAGAGC	10165
1382	CAUGGU G CUAGGCUG	1504	CAGCCUAG GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG AGCCAUGG	10166
1392	UAGGCUGU G CUGCCAAC	1505	GUUGGCAG GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG ACAGCCUA	10167
1395	GCUGUGCU G CCAACUJGG	1506	CCAGUJGG GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG AGCACAGC	10168
1411	GAUCCUAC G CGGGACGU	1507	ACGUCCCG GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG GUAGGAUC	10169
1442	CGUGGGC G CUGAAUCC	1508	GGAUUCAG GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG GCCGACGG	10170
1445	UCGGGCCU G AAUCCCGC	1509	GCGGGAUU GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG AGGCGCGA	10171
1452	UGAAUCCC G CGGACGAC	1510	GUCGUCCG GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG GGGAUUCA	10172
1458	CGCGGC G ACCCCUCC	1511	GGAGGGGU GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG GUCCGCGG	10173
1474	CGGGGCC G CUUGGGGC	1512	GCCCCAAG GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG GGGCCCGG	10174
1489	GCUCUACC G CCCGCUJC	1513	GAAGGGGG GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG GGUAGAGC	10175
1493	UACCGCCC G CUUCUCCG	1514	CGGAGAAG GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG GGGCGGUA	10176
1501	GUUUCUCC G CCUAUJGU	1515	ACAAUAGG GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG GGAGAACG	10177
1513	AUGUACC G ACCGUCCA	1516	UGGACGGU GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG GGUACAAU	10178
1528	CACGGGGC G CACCUUCU	1517	GAGAGGUG GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG GCCCCGGU	10179
1542	CUCUUUAC G CGGACUCC	1518	GGAGUCCG GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG GUAAAGAG	10180
1559	CGGUCUGU G CCUUCUCA	1519	UGAGAAGG GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG ACAGACGG	10181
1571	UCUCAUCU G CCGGACCG	1520	CGGUCCGG GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG AGAUGAGA	10182
1583	GACCGUGU G CACUUCGCG	1521	GCGAAGUG GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG ACAGGGUC	10183
1590	UGCACUUC G CUUCACCU	1522	AGGUAGG GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG GAAGUGCA	10184
1601	UACCCUCU G CACGUUCG	1523	GCGACGUG GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG AGAGGUGA	10185
1608	UGCACGUC G CAUGGGAGA	1524	UCUCCUAG GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG GACGGUGCA	10186
1624	ACCAACGGU G AACGCCCA	1525	UGGGGGU GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG ACGGUGGU	10187
1628	CGUGAAC G CCCZAGG	1526	CCUGGGGG GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG GUUCACGG	10188
1642	AGGAACCU G CCCAAGGU	1527	ACCUUJGG GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG AGGUUCCU	10189
1654	AGGGUCUU G CAUAAGAG	1528	CUCUJAG GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG AAAGACCUU	10190
1690	AUGUCAAC G ACCGACCU	1529	AGGUCCG GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG GUUDGACAU	10191
1694	CAACGACC G ACCUJUGAG	1530	CUCAGGU GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG GGUGGUUG	10192
1700	CGGACCUU G AGGCAUAC	1531	GUAUJCCU GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG AAGGUUGG	10193
1730	UGUUUAAU G AGUGGGAG	1532	CUCCCACU GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG AUUAAAACA	10194
1818	AGCACCAU G CAACUUU	1533	AAAAGUUG GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG AUUGGUGU	10195
1835	UCACCUUCU G CCUUAUCA	1534	UGAUUAGG GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG AGAGGGUGA	10196
1883	CAAGCUGU G CCUUGGGU	1535	ACCCAAGG GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGGG ACAGGUUUG	10197

1912	UGGACAUU G ACCCGUAU	1536	AUACGGGU GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG AAUGUCCA	10198
1959	UCUUUUUU G CCUDUGA	1537	UCAGAAGG GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG AAAAAAGA	10199
1966	UGCCUUCU G ACUUCUUU	1538	AAAGAAGU GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG AGAAGGCA	10200
1985	UUCUAUUC G AGAUCUCC	1539	GGAGAUCU GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG GAAUAGAA	10201
1996	AUCUCCUC G ACACCGCC	1540	GGCGGUGU GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG GAGGAGAU	10202
2002	UGGACACC G CCUCUGCU	1541	AGCAGAGG GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG GGUGUGCA	10203
2008	CCGCCUCU G CUCUGUAU	1542	AUACAGAG GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG AGAGGCGG	10204
2092	GUUGGGGU G AGUUGAUG	1543	CAUCAUCU GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG ACCCCAAC	10205
2097	GGUGAGUU G AUGAAUCU	1544	AGAUUCAU GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG AACUCACC	10206
2100	GAGUJGUAU G AAUCUAGC	1545	GCUAGAUU GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG AUCAACUC	10207
2237	UUUUGGGC G AGAAACUG	1546	CAGUUUCU GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG GCCCAAAA	10208
2251	CUGUUCUU G AAUAUUG	1547	CAAAAUUU GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG AAGAACAG	10209
2282	GUGGAUUC G CACUCUC	1548	GAGGAGUG GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG GAAUCCAC	10210
2293	CUCCUCCU G CAUUAUGA	1549	UCUUAUAG GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG AGGAGGAG	10211
2311	CACCAAAU G CCCCUAUC	1550	GAUAGGGG GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG AUUUGGUG	10212
2354	UGUUTAGAC G AAGAGGCA	1551	UGCCUCUU GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG GUCCUAAA	10213
2388	ACUCCCCU G CCUCGCAG	1552	CUGCGAGG GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG GAGGGAGU	10214
2393	CTUGCCUC G CAGACGAA	1553	UUCGUCUG GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG GAGGGGAG	10215
2399	UOCCGAGAC G AAGGUUC	1554	GAGACUU GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG GUICHGGA	10216
2412	UCUCAAUC G CGCGUUC	1555	CGACGCGG GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG GAGGGAGA	10217
2415	CAAUCGCC G CGUCGCAG	1556	CUGCGACG GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG GGCGAUUG	10218
2420	GCCGCGUC G CAGAAAGAU	1557	AUCUUUCU GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG GACGGGGC	10219
2514	GGUACCUU G CUUUAUC	1558	GAUUAAG GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG AAGGUACC	10220
2549	CUTUUCU G ACAUUCAU	1559	AUGAAUGU GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG AGAAAAAG	10221
2560	AUUCAUU G CAGGAGGA	1560	UCCUCUG GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG AAAUAGAU	10222
2576	ACAUDDGU G AUAGAUU	1561	ACAUUUAU GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG AACAAAGU	10223
2615	CAAGAAAAU G AAAAACAGG	1562	CCUGUUUU GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG AUUUCAG	10224
2641	UUAACUAU G CCUGCUAG	1563	CUAGCAGG GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG AUAGUAAA	10225
2645	CTAUGCCU G CUAGGUU	1564	AAACCUAG GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG AGGCAUAG	10226
2677	AAAUAUUU G CCCUUAGA	1565	UUAUGUCG GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG AAAUAUUU	10227
2740	UJCCAGAC G CGACAUUA	1566	AAAUAUGU GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG GUCUGGAA	10228
2742	CCAGACGC G ACAUUAUU	1567	AAAUAUGU GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG GCGUCUGG	10229
2804	CAAGUAGC G CCCUAUU	1568	AAAUGAGG GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG GCUACUGG	10230
2814	CUCAUUU G CGGGUCAC	1569	GUGACCCG GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG AAAAUGAG	10231
2875	CAAAACCUC G AAAAGGCA	1570	UGCCUUUU GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG GAGGUUUG	10232
2928	UCUUCCCC G AUCAUCAG	1571	CUGAUGAU GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG GGGGAAGA	10233
2946	UGGACCCU G CAUCAAA	1572	UUUGAUG GGAGGAACUCC	CU UCAAGGACAUCGUCCGGG AGGGUCCA	10234

2990	CUCAACCC G	CAAAAGGA	1573	UCCUUGUG GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	GGGUUGAG	10235
3012	GGCCGGAC G	CCAAACAG	1574	CUUGUUGG GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	GUCCGGCC	10236
3090	GCCCCUCAC G	CUCAGGGC	1575	GCCCCUGAG GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	GUGAGGGC	10237
3113	ACAAACUGU G	CCAGCGAC	1576	GCUGCGGG GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	ACAGUUU	10238
3132	CUCCUCCU G	CCUCACC	1577	GGUGGAGG GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	AGGAGGAG	10239
51	AGGGCCCU G	UACUUC	1578	GGAAAGUA GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	AGGGCCCCU	10240
106	AGAAUACU G	UCUCUGC	1579	GGCGAGAGA GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	AGUAUUCU	10241
148	GGGACCCU G	UACCGAAC	1580	GUUCGGUA GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	AGGGUCCC	10242
198	CUGGCUCCU G	UACAGGGC	1581	GCCUUGUA GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	ACGGACAG	10243
219	UUUUUCUU G	UUGACAAA	1582	UUUGUCAA GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	AAGAAAAA	10244
297	ACACCCGU G	UGUCUUGG	1583	CCAAGACA GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	ACGGGUGU	10245
299	ACCCGUGU G	UCUUGGCC	1584	GGCCAAAGA GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	ACACGGGU	10246
347	ACCAACCU G	UUGUCUC	1585	GAGGACAA GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	AGGUUGGU	10247
350	AACCUGUU G	UCCUCCAA	1586	UUGGAGGA GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	AACAGGUU	10248
362	UCCAAUUU G	UCCUGGUU	1587	AACCAAGA GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	AAAUGGAA	10249
381	CGCGGGAU G	UGUDUGCG	1588	CGCGAGACA GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	AUCCAGCG	10250
383	CUGGAUGU G	UCUGGGC	1589	GCCGCAGA GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	ACAUCAG	10251
438	AUCUUCUO G	ÜUGGUUCU	1590	AGAACCAA GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	AAGAAGAU	10252
465	CAAGGUAU G	UUGGCCGU	1591	ACGGGCAA GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	AUACCUU	10253
476	GCCCCGUU G	UCCUCUAA	1592	UUAAGGGA GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	AAACGGGC	10254
555	ACCUCUAU G	UUDCCUC	1593	GAGGGAAA GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	AUAGAGGU	10255
566	UCCCCUCAU G	UUGCGUGA	1594	UACAGCAA GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	AUGAGGAA	10256
572	AUGUUGCU G	UACAAAAC	1595	GUUUUGUA GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	AGCAACAU	10257
602	CUGGCCU G	UAUUCCA	1596	UGGGAAUA GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	AGGUGCAG	10258
694	UGCCCAUUU G	UUCAGUGG	1597	CCACUGAA GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	AAAUGGCA	10259
724	CCCCCCACU G	UCUGGCCU	1598	AAGCCAGA GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	AGUGGGGG	10260
750	UGGAUGAU G	UGGUUJUG	1599	CAAAACCA GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	AUCAUCCA	10261
771	CCAAGUCU G	UACAAACAU	1600	AUGUUGUA GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	AGACUUGG	10262
801	AUGCCGGU G	UUAACCAAU	1601	AUUGGUAA GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	AGGGCAU	10263
818	UUUCUUUU G	UCUUUGGG	1602	CCCAAAGA GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	AAAAGAAA	10264
888	UGGGAUAU G	UAAUUGGG	1603	CCCAAUUA GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	AUAUCCA	10265
927	AACAUAUU G	UACAAAAA	1604	UUUUUGUA GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	AAAUAUGU	10266
944	AUCAAAAU G	UGUUUJAG	1605	CUAAAACA GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	AUUUUGAU	10267
946	CTAAAUGU G	UUTUUGGA	1606	UCCUAAAA GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	ACAUUUUG	10268
963	AAACUUCU G	UAAACAGG	1607	CCUGUUA GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	AGGAAGUU	10269
991	GAAAGUAU G	UCAACGAA	1608	UUCGUUGA GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	AUACUUUC	10270
1002	AACGAAUU G	UGGGGUUU	1609	AAGACCCA GGAGGAAACUCC	CU UCAAGGACAUCGUCCCCGGG	AAUUGGUU	10271

1039	CACGCAAU	G	UGGAUUU	1610	AUAUCCCA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AUUGCUG	10272
1137	ACAGUAU	G	UGAACCUU	1611	AAGGUUCA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AUACUGUU	10273
1184	UGCCAAGU	G	UUUGCUGA	1612	UCAGCAAA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	ACUUGGCA	10274
1251	GAACCUUU	G	UGUCUCCU	1613	AGGAGACA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AAAGGUUC	10275
1253	ACCUUUGU	G	UCUCUCU	1614	AGAGGAGA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	ACAAAAGU	10276
1294	AGCCGCUU	G	UUUGUCUC	1615	GAGCAAAA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AAGGGGCCU	10277
1344	ACAAUUCU	G	UCUGUGUC	1616	GAGCACGA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AGAAUUGU	10278
1390	GCUAGGCU	G	UGCGGCCA	1617	UGGCAGCA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AGCCUAGC	10279
1425	CGUCCUUU	G	UUUACGUC	1618	GACCGUAAA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AAAGGACG	10280
1508	CGCCUAUU	G	UACCGACC	1619	GGUCGGUA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AAUAGGCG	10281
1557	CCCGGUCU	G	UGCCUUCU	1620	AGAAGGCA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AGACGGGG	10282
1581	GGGACCGU	G	UGGCACUUC	1621	GAAGUGCA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	ACGGUCCG	10283
1684	UCAGCAAU	G	UCAAAGGAC	1622	GUUCGUUGA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AUDUGUGA	10284
1719	CAAAGACU	G	UGUGUUUA	1623	UAAACACA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AGUCUUUG	10285
1721	AGAGCUGU	G	UGUUUUAU	1624	AUAAAACA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	ACAGUCUU	10286
1723	GACUGUGU	G	UUUAUGA	1625	UCAUAAA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	ACACAGUC	10287
1772	AGGUCUUU	G	UACUAGGA	1626	UCCUAGUA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AAAGACCU	10288
1785	AGGAGGCCU	G	UAGGGCAUA	1627	UAUGCCUA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AGCCUCCU	10289
1801	AAAUUUGG	G	UGUUUACCC	1628	GGUGAACAA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	ACCAAUUU	10290
1803	AUUGGGUG	G	UUCACCAAG	1629	CUGGUGAA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	ACACAAAU	10291
1850	CAUCUCAU	G	UUCAUUGC	1630	GACAUGAA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AUGAGAUG	10292
1856	AUGUUCAU	G	UCCUACUG	1631	CAGUAGGA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AUGAACAU	10293
1864	GUCCUACU	G	UUCAAGCC	1632	GGCUUCAA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AUGAGGAC	10294
1881	UCCAAGCU	G	UGCCUUGG	1633	CCAAGGCA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AGCUUUGA	10295
1939	GAAGCUUCU	G	UGGAGUUUA	1634	UAAUCUCA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AGAAAGCUC	10296
2013	UCUGCUUC	G	UAUCGGGG	1635	CCCCGAAU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AGAGGAGA	10297
2045	GGAACAUU	G	UUCACCU	1636	GAGGGUAA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AAUGUUC	10298
2082	GCUAUUCU	G	UGUUGGGG	1637	CCCCAAACA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AGAAUAGC	10299
2084	UAUUCUUG	G	UUUGGGGG	1638	CACCCCAA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	ACAGAAUA	10300
2167	UCAGCUAU	G	UCAACGUU	1639	AACGUUGA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AUAGCUGA	10301
2205	CAACUAUU	G	UGGUUUCUA	1640	UGAAAACCA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AAUAGUUG	10302
2222	CAUUCUCC	G	UCUUACUU	1641	AAGUAAGA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AGGAAAUG	10303
2245	GAGAAACU	G	UUUUUGAA	1642	UUCAAGAA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AGUUUCUC	10304
2262	UAUUUGGU	G	UCUUUUUG	1643	CCAAAAGA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	ACCAAAUA	10305
2274	UUUGGAGU	G	UGGAUUCG	1644	CGAAUCCA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	ACUCCAAA	10306
2344	AAACUACU	G	UUUGUUAGA	1645	UCUAAACAA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AGUAGUUU	10307
2347	CUACUGUU	G	UUAGACGA	1646	UCGUUUAA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AACAGUAG	10308

2450	AUCUCAAU	G	UUAGUAUU	1647	AAUACUAA	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	AUUGAGAU	10309
2573	GGGACAUU	G	UOGUAUAGA	1648	UCUACUAA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	AAUGGUCCU	10310
2583	UGAUAGAU	G	UAAGCAAU	1649	AUUGCUUA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	AUCUAUCA	10311
2594	AGCAAUUU	G	UGGGGCC	1650	GGGCCCA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	AAAUUGCU	10312
2663	AUCCCAAU	G	UOACUAAA	1651	UUUAGUAA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	AUUGGGAU	10313
2717	CAGAGUAU	G	UAGUUAU	1652	AUUAACUA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	AUACUCUG	10314
2901	AUCUJUCU	G	UCCCCAAU	1653	AUUGGGAA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	AGAAAAGAU	10315
3071	GGGGGACU	G	UJGGGGUG	1654	CACCCCAA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	AGUCCCCC	10316
3111	UCACAAUC	G	UGCCAGCA	1655	UGCGGCA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	AGUUGUGA	10317
40	AUCCCAAGA	G	UCAGGGCC	1656	GGCCUGA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	UCUGGGAU	10318
46	GAUCAGG	G	CCCUGUAC	1657	GUACAGGG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	CCUGACUC	10319
65	UCCUGCGU	G	UGGCUCCA	1658	UGGAGCCA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	CAGCAGGA	10320
68	UGCGGGUG	G	CUCCAGUU	1659	AACUGGG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	CACAGCA	10321
74	UGGCUCCA	G	UICAGGAA	1660	UUCUUGAA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	UGGAGCCA	10322
85	CAGGAACAA	G	UIGAGCCU	1661	AGGGCUCA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	UGUUCUG	10323
89	AACAGUGA	G	CCCCUGUC	1662	GAGGAGGG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	UCACUGUU	10324
120	GCCAUAU	G	UCAAUCUU	1663	AAGAUUGA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	GAUAUUGC	10325
196	CCCGUGUC	G	UGUUUACAG	1664	CUGUAACA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	GAGCAGGG	10326
205	UGUUIACAG	G	CGGGGUUU	1665	AAACCCCG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	CUGUAACA	10327
210	CAGGCCGG	G	UUUUUCUU	1666	AAGAAAAA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	CCCGCCUG	10328
248	ACCCACAGA	G	UCUAGACU	1667	AGUCUAGA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	UCUGUGGU	10329
258	CUAGACUC	G	UGGGGAC	1668	GUCCACCA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	GAGCUUAG	10330
261	GAUCUGUG	G	UGGACUUC	1669	GAAGUCCA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	CACGAGUC	10331
295	GAACACCC	G	UGUGUCUU	1670	AAGACACA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	GGGGGUUC	10332
305	GUGUCUUG	G	CCAAAAAU	1671	AAUUUUGG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	CAAGACAC	10333
318	AAUUCGCA	G	UCCCCAAU	1672	AUUUGGG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	DGCGAAAU	10334
332	AAUCUCCA	G	UCACUCAC	1673	GUGAGUGA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	UGGAGAUU	10335
368	UUGUCCUG	G	UUAUCGCU	1674	AGCGAUAA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	CAGGACAA	10336
390	UGUCUGCG	G	CGUUUUAU	1675	AUAAAACG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	CGCAGACA	10337
392	UCUGCGGC	G	UUUUUAUCA	1676	UGAUAAAA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	GCCGAGA	10338
442	UCUJUGUUG	G	UUCUUCUG	1677	CAGAAGAA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	CAACAAGA	10339
461	CUAUCAAG	G	UAUGUUGC	1678	GCAACAUAA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	CUUGAUAG	10340
472	UGUUGGCC	G	UUUGUCCU	1679	AGGACAAA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	GGGCAACA	10341
506	AACAACCA	G	CACCGGAC	1680	GUCCGGUG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	UGGUUGUU	10342
625	CAUCUJUGG	G	CUUUGCA	1681	UGCGAAAG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	CCAAGAUG	10343
648	CUAUGGGA	G	UGGGCUC	1682	GAGGCCA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	UCCCCAUAG	10344
652	GGGAGUJGG	G	CCUCAGUC	1683	GACUGAGG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	CCACUCCC	10345

658	GGCCCUCA	G	UCCGUUUC	1684	GAAACGGG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	UGAGGCC	10346
662	CUCAGUCC	G	UUUCUCCU	1685	AAGAGAAA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	GGACUGAG	10347
672	UUCUCUUG	G	CUCAGUUU	1686	AAACUGAG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	CAAGAGAA	10348
677	UGGCCUCA	G	UUUACUAG	1687	CUAGUAAA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	UGAGCAA	10349
685	GUUACUA	G	UGCCAUU	1688	AAUUGGCA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	UAGUAAC	10350
699	UUUGGUCA	G	UGGUUCGU	1689	ACGAACCA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	UGAACAAA	10351
702	GUUCAGUG	G	UUCGUAGG	1690	CCUACGAA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	CACUGAAC	10352
706	AGUGGUUC	G	UAGGGCUU	1691	AAGCCCCU	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	GAACCACU	10353
711	UUCGUAGG	G	CUUUCCCC	1692	GGGAAAG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	CCUACGAA	10354
729	ACUGUCUG	G	CUUCAGAU	1693	ACUGAAAG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	CAGACAGU	10355
736	GGCUUUC	A	G UUAUAGG	1694	CCAUAUAA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	UGAAAGCC	10356
753	AUGAUGUG	G	UUUUGGGG	1695	CCCCAAAA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	CACAUCAU	10357
762	UUUUGGG	G	CCAAGUCU	1696	AGACUUGG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	CCCCAAAA	10358
767	GGGCCAA	G	UCUGUACA	1697	UGUACAGA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	UJGGCCCC	10359
785	CAUCUUGA	G	UCCCCUUA	1698	UAAAGGG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	UCAAGAUG	10360
826	GUCUUGG	G	UAUACAUU	1699	AAUGUAUA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	CCAAAGAC	10361
898	AAUUGGG	G	UJGGGGCA	1700	UGCCCCAA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	UCCCAAUU	10362
904	GAGUUGGG	G	CACAUUGC	1701	GCAAUUGG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	CCCAACUC	10363
971	GUAAACAG	G	CCUUAUIGA	1702	UCAAUAGG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	CUGUUUAC	10364
987	AUUGGAA	G	UAUGUCAA	1703	UUGACAU	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	UUUCCAAU	10365
1006	AAUUGUGG	G	UCUUOJGG	1704	CCAAAAGA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	CCACAAUU	10366
1016	CUUUGGG	G	UUUGCCGC	1705	GCGGCAAA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	CCCCAAAG	10367
1080	GCAUACAA	G	CAAAACAG	1706	CGUOJJUG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	DUGUAUGC	10368
1089	CAAAACAG	G	CUUUTUACU	1707	AGUAAAAG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	CUGUUTUG	10369
1116	CUUACAA	G	CCUUUUCUA	1708	UAGAAAAG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	CUUGUAAG	10370
1126	CUUUCUAA	G	UAAAACAGU	1709	ACUGUUUA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	DUAGAAAAG	10371
1133	AGUAAAAC	G	UAUGUGAA	1710	UUCACAU	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	UGUUUACU	10372
1152	UUUACCCC	G	UUGCUCGG	1711	CCGAGCAA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	GGGGUAAA	10373
1160	GUUGCUUG	G	CAACGGCC	1712	GGCCGUUG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	CGAGCAA	10374
1166	CGGCCAACG	G	CCUGGUCA	1713	AGACCAAG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	CGUUGCCG	10375
1171	ACGGCCCG	G	UCUAUGCC	1714	GGCAUAGA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	CAGGGCGU	10376
1182	UAUGCCAA	G	UGUUUGCU	1715	AGCAAACA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	UJGGCAUA	10377
1207	CCCCACUG	G	UJGGGGCU	1716	AGCCCCAA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	CAGUGGGG	10378
1213	UGGUTUGGG	G	CUJGGGCCA	1717	UGGCAAA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	CCCAACCA	10379
1218	GGGGCUU	G	CCAUAGGC	1718	GCCUAU	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	CAAGGCC	10380
1225	GGCCAUAG	G	CCAUACAGC	1719	GCUGAU	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	CUAUGGCC	10381
1232	GGCCCAUCA	G	CGCAUGCG	1720	CGCAU	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCC	UGAUGGGCC	10382

1240	GCGCAUGC G	UGGAACCU	1721	AGGUUCCA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	GCAUGGCC	10383
1287	AACUCCUA G	CCGCUTGU	1722	ACAAGCGG	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	UAGGAGUU	10384
1306	UGCUCGCA G	CAGGUUG	1723	CAGACCUG	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	UGCGAGCA	10385
1310	CGCAGCG G	UCUGGGGC	1724	GCCCCAGA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CUGUGCG	10386
1317	GUUCUGGG G	CAAAACUC	1725	GAGUUTUG	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CCCAGACC	10387
1347	AUUCUGUC G	UGCUUCUCC	1726	GGAGAGCA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	GACAGAAU	10388
1379	UUUCCUA G	CUGGUAGG	1727	CCUAGCG	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CAUGGAAA	10389
1387	GCUGCUAG G	CUGUGCG	1728	CAGCACAG	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CUAGGAGC	10390
1418	CGCGGGAC G	UCCUUDGU	1729	ACAAAGGA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	GUCCCGG	10391
1431	UUGUUUAC G	UCCCCGUC	1730	CGACCGGG	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	GUAAAACAA	10392
1436	UACGUCCC G	UCGGGCCU	1731	AGCGCCGA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	GGGAGCUA	10393
1440	UCCCCGUC G	CGCUAGAU	1732	AUUCAGCG	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CGACGGGA	10394
1471	CUCCCGGG G	CCGGCUJGG	1733	CCAAGCGG	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CCCCGGAG	10395
1481	GGCUUGGG G	CUCUACCG	1734	CGGUAGAG	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CCCCAAGGG	10396
1517	UACCGACC G	UCCACGGG	1735	CCCGUGGG	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	GGUCGGUA	10397
1526	UCCACGGG G	CGCACCCU	1736	GAGGUGCG	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CCCCUGGA	10398
1553	GACUCCCC G	YCUUGGCC	1737	GGCACAGA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	GGGGAGUC	10399
1579	GCGGGACC G	UGUGCACU	1738	AGUGCACA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	GGUCCGGC	10400
1605	CUCUGGCAC G	UCCGAUGG	1739	CCAUGGCA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	GUGGAGAG	10401
1622	AGACCAAC G	UGAACGCC	1740	GGCGUICA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	GGGGGUCU	10402
1649	UGCCCCAAG G	UCUUGCAU	1741	AUGCAAGA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CUTGGGCA	10403
1679	GACUUUCA G	CAAUGCUA	1742	UGACAUUG	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	UGAAAAGUC	10404
1703	ACCCUGAG G	CAUACUJC	1743	GAAGU AUG	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CUCUAGGU	10405
1732	UUAAAUGA G	UGGGAGGA	1744	UCCUCCCA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	UCAUAAA	10406
1741	UGGGAGGA G	UJGGGGGA	1745	UCCCCCAA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	UCCUCCCA	10407
1754	GGCAGGGAG G	UOAGGUUA	1746	UAACTTAA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CUCUCCCC	10408
1759	GGAGGUAG G	UJAAGGU	1747	ACCUUUAA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CUAACCU	10409
1766	GGUAAAAG G	UCUUUGUA	1748	UACAAAGA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CUUUAACC	10410
1782	ACUAGGGAG G	CUGUGGGC	1749	GCCUACAG	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CUCCUAGU	10411
1789	GGCUGUAG G	CAUAAAUU	1750	AAUUUAUG	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CUACAGCC	10412
1799	AUAAAUG G	UGUGUICA	1751	UGAACACA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CAAUUUAU	10413
1811	GUUCACCA G	CACCAUGC	1752	GCAUGGUG	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	UGGUGAAC	10414
1870	CUGUUCCAA G	CCUCCAAAG	1753	CUUGGAGG	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	UUGAACAG	10415
1878	GCCUCCCAA G	CUGUGCCU	1754	AGGCACAG	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	DUGGGAGGC	10416
1890	UGCCUUIGG G	UGGGUUUG	1755	CAAAGCCA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CCAAGGGCA	10417
1893	CUUGGGGUG G	CUUUGGGG	1756	CCCCAAAG	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CACCCAAAG	10418
1901	GCUUUUGGG G	CAUGGGACA	1757	UGGUCAUG	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CCCCAAAGC	10419

1917	AUUGACCC	G	UAUAAAAGA	1758	UCUUUUAUA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	GGGUCAAU	104420
1933	AAUUGGA	G	CUUCUGUG	1759	CACAGAA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	UCCAAAUU	104421
1944	UCUGUGGA	G	UUACUCUC	1760	GAGAGUA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	UCCACAGA	104422
2023	AUCGGGGG	G	CCUJUAGAG	1761	CUCUAAAG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CCCCCGAU	104423
2031	GCCUUAGA	G	UCUCCGGA	1762	UCCGGAGA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	UCUAAGGC	104424
2062	ACCAUACG	G	CACUCAGG	1763	CCUGAGUG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CGUAGUGU	104425
2070	GCACUCAG	G	CAAGCUAU	1764	AUAGCUU	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CUGAGUGC	104426
2074	UCAGGGAA	G	CUAUTCUG	1765	CAGAAUAG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	UDGCCUGA	104427
2090	GUUCHUGG	G	UGAGUUGA	1766	UCAACUCA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CCCAACAC	104428
2094	UGGGGUGA	G	UUGAGUAA	1767	UUCAUCAA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	UCACCCCCA	104429
2107	UGAAUCUA	G	CCACCUUG	1768	CCAGGUUG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	UAGAUUCA	104430
2116	CACCUUGG	G	UGGGAAAGU	1769	ACUUCCCA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CCAGGGUG	104431
2123	GGUGGGAA	G	UAAUUDGG	1770	CCAAAUUA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	UDCCACCC	104432
2140	AGAUUCCA	G	CAUCCAGG	1771	CCUGGAAU	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	UGGAUCUU	104433
2155	GGGAUUUA	G	UAGUCAGC	1772	GCUGACUA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	UAAUUCCC	104434
2158	AAUAGUA	G	UCAGCUAU	1773	AUAGCUGA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	UACUAAAU	104435
2162	AGUAGUCA	G	CUAUGUCA	1774	UGACAUAG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	UGACUACU	104436
2173	AUGUCAAC	G	UUAUAAUG	1775	CAUAAUAA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	GUUGACAU	104437
2183	UAUUAUGG	G	CCUAAAAGA	1776	UUUUUAGG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CCAAUAAA	104438
2208	CUAUUUGG	G	UUUCUCAU	1777	AUGUGAAA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CACAAUAG	104439
2235	ACUUUUGG	G	CGAGAAAC	1778	GUUDUCUG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CCAAAAGU	104440
2260	AAUAAUUG	G	UGUCUUUU	1779	AAAAGACA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CAAAUAUU	104441
2272	CUUUGGA	G	UGUGGAU	1780	AAUCCACA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	UCCAAAAG	104442
2360	ACGAAGAG	G	CAGGUCCC	1781	GGGACUC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CUCUUCGU	104443
2364	AGAGGCAG	G	UCCCCUAG	1782	CUAGGGGA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CUGCCUCU	104444
2403	AGACGAAG	G	UCDCUAAUC	1783	GAUUGAGA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CUDCGUCU	104445
2417	AUCGCCG	G	UCCGAGAA	1784	UUCUGGGA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	GGGGCGAU	104446
2454	CAAGUUA	G	UAUUCUU	1785	AAGGAAUA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	UAACAUUG	104447
2474	CAACAUAA	G	UGGGAAAC	1786	GUUUCCCCA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CUUAUGUG	104448
2491	UUUACGGG	G	CUUUAAUC	1787	GAUUAAG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CCCGUAAA	104449
2507	CUUCUACG	G	UACCUUUC	1788	GCAAGGUUA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CGUAGAAG	104450
2530	CCUAAAAG	G	CAAACUCC	1789	GGAGUUUG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CAUUUAGG	104451
2587	AGAUGUAA	G	CAAUUJGU	1790	ACAAAUUG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	UUCACAUU	104452
2599	UUUGUGGG	G	CCCCUUTAC	1791	GUAAAGGG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CCCAACAAA	104453
2609	CCCUUACAA	G	UAAAUGAA	1792	UUCAUUUA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	UGUAAGGG	104454
2650	CCUGGUAG	G	UUUUUAUCC	1793	GGAUAAA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CUAGCAGG	104455
2701	AUCAAACC	G	UAUTAUCC	1794	GGAUAAA	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	GGUUUGAU	104456

2713	UAUCCAGA	G	UAUGUAGU	1795	ACUACAUU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	UCUGGAUA	10457
2720	AUGAUUGUA	G	UUAAUCAU	1796	AUGAUUAA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	UACAUACU	10458
2768	UUUGGAAG	G	CGGGGAUC	1797	GAUCCCCG	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	CUUCAAA	10459
2791	AAAGAGA	G	UCCACACG	1798	CGUGUGGA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	UCUCUUUU	10460
2799	GUCCACAC	G	UAGGCCU	1799	AGGCCUA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	GUGGGAC	10461
2802	CACACGUA	G	CGCCUCAU	1800	AUGAGGCG	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	UACGUGUG	10462
2818	UUUGGCGG	G	UCACCAUA	1801	UAUGGJUGA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	CCGAAAA	10463
2848	GAUCUACA	G	CAUGGGAG	1802	CUCCCAUG	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	UGUGAUC	10464
2857	CAUGGGAG	G	UUGGGCUU	1803	AAGACAA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	CUCCAAUG	10465
2861	GGAGGGDUG	G	UCUUCCAA	1804	UUGGAAGA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	CAACCUCC	10466
2881	UCGAAAAG	G	CAUGGGGA	1805	UCCCCAUG	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	CUUUUGUA	10467
2936	GAUCAUCA	G	UUGGACCC	1806	GGGUCCAA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	UGAUGAUC	10468
2955	CAUUCAAA	G	CCAAUCUA	1807	UGAGUJGG	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	UUUGGAAUG	10469
2964	CCAAUCUA	G	UAAAUCCA	1808	UGGAUUA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	UGAGUJGG	10470
3005	GACAACUG	G	CCGGACGC	1809	GCGUCCGG	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	CAGUUGUC	10471
3021	CCAACAAAG	G	UGGGAGUG	1810	CACUCCCA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	CUUGUJGG	10472
3027	AGGUGGGA	G	UGGGAGCA	1811	UGCUCCCA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	UCCCACCU	10473
3033	GAGUGGGG	G	CAUTUCCGG	1812	CCCGAUG	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	UCCCACUC	10474
3041	GCAUUCGG	G	CCAGGGUU	1813	AACCCUUGG	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	CCGAAUGC	10475
3047	GGGCCZAGG	G	UDCACCCC	1814	GGGGUGAA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	CCUGGCC	10476
3077	CUGUUGGG	G	UGGAGCCC	1815	GGGCUCCA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	CCCAAACAG	10477
3082	GGGGUGGA	G	CCCUUCACG	1816	CGUGAGGG	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	UCCACCCCC	10478
3097	CGCUCAGG	G	CCUACUCA	1817	UGAGUJGG	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	CCUGAGCG	10479
3117	CUGUGCCA	G	CAGCCUCCU	1818	AGGGCUG	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	UGGCACAG	10480
3120	UGCCAGCA	G	CUCCUCCU	1819	AGGAGGAG	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	UGCUGGGCA	10481
3146	ACCAAUCG	G	CAGUCAGG	1820	CCUGACUG	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	CGAUUGGU	10482
3149	AAUCCGCA	G	UCAGGAAG	1821	CUUCCUGA	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	UGCCGAU	10483
3158	UCAGGAAG	G	CAGCCUAC	1822	GUAGGCUG	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	CUUCUGA	10484
3161	GGAAAGGC	G	CCUACUCC	1823	GGAGUAGG	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	UGCCUUC	10485
3204	AUCCUCAG	G	CCAUGCAG	1824	CUGCAUG	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	CUGAGGAU	10486
31	CUCUDUCAA	G	AUCCCCAGA	1999	UCUGGGAU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	UJGAAGAG	10487
38	AGAUCCCCA	G	AGUCAGGG	2000	CCCUUGACU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	UGGGAUCU	10488
44	CAGAGUCA	G	GGCCUGU	2001	ACAGGGCC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	UGACUCUG	10489
45	AGAGUCAG	G	GCCCCUGUA	2002	UACAGGGC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	CUGACUCU	10490
64	UUCUCUGCU	G	GUGGCUCC	2003	GGAGCcac	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	AGCAGGAA	10491
67	CUGCGUGG	G	GUCCAGU	2004	ACUGGAGC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	ACCAGCAG	10492
79	CCAGUUCA	G	GAACAGUG	2005	CACUGUUC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCGGG	UGAACUGG	10493

80	CAGUUCAG	G	AACAGUGA	2006	UCACUGUU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CUGAACUG	10494
99	CCUGCUCA	G	AAUACIUGU	2007	ACAGUAUU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	UGAGCAGG	10495
135	UUAUCGAA	G	ACUGGGGA	2008	UCCCAGU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	UUCGAUAA	10496
139	CGAAGACU	G	GGGACCCU	2009	AGGGUCC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AGUCUUCG	10497
140	GAAGACUG	G	GGACCUCUG	2010	CAGGGUCC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CAGUCUTC	10498
141	AGACUGGG	G	GACCCUUGU	2011	ACAGGGUC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CCAGUCUU	10499
142	AGACUGGG	G	ACCCUUGUA	2012	UACAGGGU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CCCAGUCU	10500
159	CGAACAU	G	GAGAACAU	2013	AUGUUCUC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AUGUUCGG	10501
160	CGAACAU	G	AGAACAU	2014	GAUGUUCU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CAUGUUCG	10502
162	ACAUGGA	G	AAACAUUCG	2015	GCGAUGUU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	UCCAUGUU	10503
175	UCGCAUCA	G	GACUCCUA	2016	UAGGAGUC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	UGAUGCGA	10504
176	CGCAUCAG	G	ACUCCUAG	2017	CUAGGAGU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CUGAUGCG	10505
184	GAUCUCCUA	G	GACCCCCUG	2018	CAGGGGUC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	UAGGAGUC	10506
185	ACUCCUAG	G	ACCCCCUG	2019	GCAGGGGU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CUAGGAGU	10507
204	GUGUUACA	G	GCGGGGUU	2020	AACCCCGC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	UGUAACAC	10508
207	UACAGGGC	G	GGGUUUUU	2021	AAAAACCC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	GCCUGUAA	10509
208	UACAGGGC	G	GGUUUUUC	2022	GAAAAAAC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CGCCUGUA	10510
209	ACAGGGCG	G	GUUUUUCU	2023	AGAAAAAAAC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CCGCCUGU	10511
246	AUACCACCA	G	AGUCUAGA	2024	UCUAGACU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	UGUGGUAU	10512
253	AGAGUCUA	G	ACUCGUUG	2025	CCACGAGU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	UAGACUCU	10513
260	AGACUCGU	G	GUGGACUU	2026	AAGUCCAC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	ACGAGUCU	10514
263	CUCGUGGU	G	GACUUCUC	2027	GAGAAUGC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	ACCACGAG	10515
264	UCGUGGGU	G	ACUDUCU	2028	AGAGAAGU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CACCAAGA	10516
283	AUUUUCUA	G	GGGGAAACA	2029	UGUUCCCC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	UAGAAAAAU	10517
284	UUUUUCUAG	G	GGGAACAC	2030	GUGUUCCC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CUAGAAAA	10518
285	UUUCUAGG	G	GGAAACACC	2031	GGUGUUC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CCUAGAAA	10519
286	UUCUAGGG	G	GAACACCC	2032	GGGUGUUC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CCCUAGAA	10520
287	UCUAGGGG	G	AAACCCCG	2033	CGGGGGUU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CCCCUAGA	10521
304	UGUGUCUU	G	GCCCAAAU	2034	AUUUUGGC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AAGACACA	10522
367	UUUGUCCU	G	GUUAUCG	2035	GCGAUUAC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AGGACAAA	10523
377	UUAUCGCU	G	GAUGUGUC	2036	GACACAU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AGCGAUAA	10524
378	UAUCGCGU	G	AUGUGUC	2037	AGACACAU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CAGCGAU	10525
389	GUUGUCUGC	G	GCGUUUUA	2038	UAAAACGC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	GCAGACAC	10526
441	UUCUUGU	G	GUUCUUCU	2039	AGAAAGAAC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AACAAAGAA	10527
450	GUUCUUCU	G	GACUUA	2040	UGAUUAGC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AGAAAGAAC	10528
451	UUCUUCUG	G	ACUADCAA	2041	UUGAUAGU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CAGAAGAA	10529
460	ACUAUCAA	G	GUAGUUG	2042	CAACAUAC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	UUGAUAGU	10530

490	UAAUUCCA	G	GAUCAUCA	2043	UGAUGAUC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	UGGAUUUA	10531
491	AAUCCAG	G	AUCAUCAA	2044	UUGAUGAU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CUGGAAUU	10532
511	CGAGCACC	G	GACCAUGC	2045	GCAUGGUC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	GGUGUGGG	10533
512	CAGCACCG	G	ACCAUGCA	2046	UGCAUGGU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CGUGUGCG	10534
544	CUGCUCAA	G	GAACCUJC	2047	AGAGGUUC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	UJAGGCAG	10535
545	UGCUCAAG	G	AACCUCUA	2048	UAGAGGUU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CUTJAGGCA	10536
585	AAACCUAC	G	GACGGAAA	2049	UUUCCGUC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	GUAGGUUU	10537
586	AAACCUACG	G	ACGGAAAC	2050	GUUDCCGU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CGUAGGGU	10538
589	CUACGGAC	G	GAAACUJC	2051	GCAGGUUC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	GUCCGUAG	10539
590	UACGGACG	G	AAACUJCA	2052	UGCAGUUU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CGUCCGUA	10540
623	AUCAUCU	G	GGCUUJCG	2053	CGAAAGCC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AAAGAUGAU	10541
624	UCAUCU	G	GCUCUJCGC	2054	GCGAAAGC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CAAGAUGA	10542
644	AUACCUAU	G	GGAGGUGG	2055	CCCAUCUCC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AUAGGUAU	10543
645	UACCUAUG	G	GAGUGGGC	2056	GCCCCACU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CAUAGGU	10544
646	ACCUAUGG	G	AGUGGGCC	2057	GGCCCACU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CCAUAGGU	10545
650	AUGGGAGU	G	GGCCUJCAG	2058	CUGAGGCC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	ACUCCCAU	10546
651	UGGGAGUG	G	GCCUCJAGU	2059	ACUGAGGC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CACUCCCC	10547
671	UUDUCUU	G	GCUDCAGU	2060	AACUGAGC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AAAGAAAA	10548
701	UGUUCAGU	G	GUUCCUJAG	2061	CUACGAAC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	ACUGAACAA	10549
709	GUUUCGUA	G	GGCUUJUCC	2062	GGAAAGCC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	UACGAACC	10550
710	GUUCGUAG	G	GCUJUJCCC	2063	GGGAAAGC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CUACGAAAC	10551
728	CACUGUCU	G	GCUUUCAG	2064	CUGAAAGC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AGACAGUG	10552
743	AGUUAUAU	G	GAUGAUGU	2065	ACAUCAUC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AUUAACU	10553
744	GUUAUAG	G	AUGAUGUG	2066	CACAUCAU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CAUAAUAC	10554
752	GAUGAUGU	G	GUUUGGG	2067	CCCAAAAC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	ACAUCAUC	10555
758	GUUGGUDD	G	GGGGCCAA	2068	UUGGCC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AAAACCC	10556
759	UGGUUUUUG	G	GGGCCAAG	2069	CUUGGCC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CAAAACCA	10557
760	GGUUUUGG	G	GGCCCAGU	2070	ACUUGGCC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CCAAAACCC	10558
761	GUUUIUGG	G	GCCCAAGUC	2071	GAUCUUGC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CCCCAAAC	10559
824	UUGUCUUU	G	GGUAUACA	2072	UGUAUACC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AAAGACAA	10560
825	UGUCUUDG	G	GUAUACAU	2073	AUGUAUAC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CAAAAGACA	10561
856	ACACAAAAA	G	AUGGGAU	2074	AUCCCCAU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	UUUUUGUU	10562
859	AAAAGAGU	G	GGGAUAUU	2075	AAUAUCCC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AUCUUUUU	10563
860	AAAAGAUG	G	GGAUAUUC	2076	GAAAUACC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CAUCUUUU	10564
861	AAAAGAUGG	G	GAUAUUC	2077	GGAAAUAC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CCAUUUUU	10565
862	AAAGAUGGG	G	AUAUUC	2078	GGGAAAU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CCCAUCUU	10566
881	ACACUCAU	G	GGAUAUGU	2079	ACAUAUCC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AUGAAGUU	10567

882	ACUUCAUG G	GAU AUGUA	2080	UACAU AU	GGAGGAACUCC	CU	UCAGGACAUCGUCCCCG	CAUGAAGU	10568
883	CUUCAUGG G	GAU AUGUA	2081	UUACAU AU	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	CCAUGAAG	10569
894	AUGUAAUU G	GGAGU UGG	2082	CCAAUCUCC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	AAUUACAU	10570
895	UGUUAUUG G	GAU UGGGG	2083	CCCAACUC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	CAAUUACA	10571
896	GUAAUUGG G	AGU UGGGG	2084	CCCCAACU	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	CCAUVUAC	10572
901	UGGGAGUU G	GGGCACAU	2085	AUGUGCCC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	AACUCCCA	10573
902	GGGAGUUG G	GGC ACAU	2086	AAUGUGC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	CAACUCC	10574
903	GGAGUUGG G	GCACAUU	2087	CAAUGUGC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	CCAACUCC	10575
917	UUGGCCAC A G	GAACAUAU	2088	AUAUUGUC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	UGUGGCAA	10576
918	UGCCACAG G	AAACAUAU	2089	AAU AUGU	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	CUGUGGCA	10577
952	GUGUUUUA G	GAACUUC	2090	GAAGU UUC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	UAAAACAC	10578
953	UGUUUUA G	AAACUCC	2091	GGAAU JUU	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	CUAAAACA	10579
970	UGUAAACA G	GCCUAU	2092	CAAUAGG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	UGUUUACA	10580
982	UAUUGAUU G	GAAAGUAU	2093	AUACU UUC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	AAUCAAAU	10581
983	AUUGAUUG G	AAAGUAU	2094	CAUACUU	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	CAAUAAU	10582
1004	CGAAUUGU G	GGUCUUTU	2095	AAAAAGACC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	ACAAUUCG	10583
1005	GAUUUGUG G	GUCUUUUG	2096	CAAAAGAC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	CAAAUUC	10584
1013	GGUCUUU G	GGGUUUGC	2097	GCAAACCC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	AAAAGACC	10585
1014	GU CUUUUG G	GGUUUUGCC	2098	GGCAA ACC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	CAAAGAC	10586
1015	UCUUUUGG G	GUU UCCG	2099	CGGCAAAC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	CCAAAAGA	10587
1041	CGCAA AUGU G	GAU AUUCU	2100	AGAAAUAC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	ACAUUGCG	10588
1042	GCAA AUGUG G	AUAUUCUG	2101	CAGAAU AU	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	CACAUUGC	10589
1088	CGAAA ACA G	GCUU UUAC	2102	GUAAAAGC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	UGUUUUGC	10590
1115	ACUUACAA G	GCCU UUUCU	2103	AGAAAAGG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	UUGUAAGU	10591
1159	CGUUG CUC G	GCAACGGC	2104	GCCGU UGC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	GAGCAA CG	10592
1165	UCGGCAAC G	GCCUGGU C	2105	GACCA GG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	GUUGCCGA	10593
1170	AACGGCCU G	GU CUAU	2106	GCAUAGAC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	AGGCCGUU	10594
1206	CCCCCACU G	GUUGGGCC	2107	GCCCCAAC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	AGUGGGGG	10595
1210	CAUCGGGU G	GGGCUU	2108	CCAAGCCC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	AACCA GUG	10596
1211	ACUGGUUG G	GGCUU	2109	GCCCAAGC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	CAACCA G	10597
1212	CUGGUUUG G	GC UU	2110	GGCCAAGC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	CCAACCA G	10598
1217	UGGGGCCU G	GCCAUAGG	2111	CCUAU GGC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	AAGCCCCA	10599
1224	UGGCCAU A G	GCCAU CAG	2112	CUGAUGGC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	UAUGGCCA	10600
1242	GCAUGGCU G	GAACCUU	2113	AAAGGUUC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	ACGCAUGC	10601
1243	CAUGCGUG G	AACCUU	2114	CAAAGGU	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	CACGCAUG	10602
1277	CAUACCGC G	GAACCU	2115	AGGAGUUC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	GCGGUAUG	10603
1278	AUACCGCG G	AACCUCA	2116	UAGGAGUU	GGAGGAACUCC	CU	UCAAGGACAUCGUCCCCG	CGGGGUAU	10604

1309	UCGCAGCA	G	GUUCGGGG	2117	CCCCAGAC	GGAGGAACUCC	CU	UCAGGACAUCGUCCGGG	UGCUGCGA	10605
1314	GCAGGUCU	G	GGGCAAAA	2118	UUUUGCCC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	AGACCUGC	10606
1315	CAGGUCUG	G	GGCAAAAC	2119	GUUUTGCC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CAGACCU	10607
1316	AGGUCUGG	G	GCAAAACU	2120	AGUUUUGC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CCAGACCU	10608
1329	AACUCAUC	G	GGACUGAC	2121	GUCAUC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	GAUGAGU	10609
1330	ACUCAUCG	G	GACUGACA	2122	UGUCAGUC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CGAUGAGU	10610
1331	CUCAUCCG	G	ACUGACAA	2123	UUGUCAGU	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CCGAUGAG	10611
1378	AUUCCAU	G	GCUGCUAG	2124	CUAGCAGC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	AUGGAAAAU	10612
1386	GGCUGCUA	G	GCUGUGCU	2125	AGCACAGC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	UAGCAGCC	10613
1402	UGCCAACU	G	GAUCCUAC	2126	GUAGGAUC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	AGUUGGCA	10614
1403	GCCAACUG	G	AUCCUACG	2127	CGUAGGAU	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CAGUUGGC	10615
1413	UCCUACGC	G	GGACGUCC	2128	GGACGUCC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	GGCUAGGA	10616
1414	CCUACCGG	G	GACGUCCU	2129	AGGACGUC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CGCGUAGG	10617
1415	CUACCGGG	G	ACGUCCUU	2130	AAGGACGU	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CCGGGUAG	10618
1439	GUCCCCGUC	G	GCGCUGAA	2131	UUCAGGCG	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	GACGGGAC	10619
1454	AAUCCCGC	G	GACGCC	2132	GGGUUCGU	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	GGGGAUU	10620
1455	AUCCCCGG	G	ACGACCCC	2133	GGGGUGGU	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CCGGGGAU	10621
1468	CCCCUCCC	G	GGGGCGCU	2134	AGCGGGCC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	GGGAGGGG	10622
1469	CCCUCCCC	G	GGGGCGUU	2135	AAGCGGCC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CGGGAGGG	10623
1470	CCUCCCCG	G	GGCGCUUG	2136	CAAGGGCC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CCGGGAGG	10624
1478	GGCCCGUU	G	GGGCUCUA	2137	UAGAGCCC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	AAGGGGCC	10625
1479	GCCGCUU	G	GGCUUCUAC	2138	GUAGAGCC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CAAGGGCC	10626
1480	CGGUUUGG	G	GCUCUACC	2139	GGUAGAGC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CCAAGCGG	10627
1523	CGGUCCAC	G	GGGGCAC	2140	GGUGGCC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	GUGGACGG	10628
1524	CGUCCACG	G	GGGCAC	2141	GGUGGCC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CGUGGACG	10629
1525	GUCCACGG	G	GCGCACCU	2142	AGGUUGGC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CCGUGGAC	10630
1544	CUIUACGC	G	GACUCCCC	2143	GGGGAGUC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	GGCUAAAG	10631
1545	UUUACGCG	G	ACUCCCG	2144	CGGGGAGU	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CGCGUAAA	10632
1574	CAUCUJGCC	G	GAACCGUGU	2145	ACACGGUC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	GGCAGAUG	10633
1575	AUCUGCCG	G	ACCGUGUG	2146	CACACGU	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CGGCAGAU	10634
1612	CGUCGCAU	G	GAGACCAAC	2147	GUGGUUC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	AUGCGACG	10635
1613	GUUCGCAUG	G	AGACCAAC	2148	GGUGGUUC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CAUGCGAC	10636
1615	CGCAUGGA	G	ACCCACGU	2149	ACGGGGGU	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	UCCAUGCG	10637
1635	CGCCCCACA	G	GAACCUJC	2150	GGAGGUUC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	UGGGGGCG	10638
1636	GCCACAG	G	AACCUGCC	2151	GGCAGGUU	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CUGGGGGC	10639
1648	CUGCCCAA	G	GUCCUUGCA	2152	UGCAAGAC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	UGGGGCAG	10640
1660	UUGGCAUAA	G	AGGACUCU	2153	AGAGUCCU	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	UUAUGCAA	10641

1662	GCAUAAA G GACUCUUG	2154	CAAGAGUC GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG UCUUUAUG	10642
1663	CAUAAAAG G ACUCUUGG	2155	CCAAGAGU GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG CUCUUAUG	10643
1670	GGACUCUU G GACUUUCA	2156	UGAAAGUC GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG AAGAGUCC	10644
1671	GACUCUUG G ACUUUCAG	2157	CUGAAAAGU GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG CAAGAGUC	10645
1702	GACCUUAG G GCAUACUU	2158	AAGUAUGC GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG UCAAGGUC	10646
1715	ACUUCAAA G ACUGUGUG	2159	CACACAGU GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG UUUGAAGU	10647
1734	UAUUGAGU G GGAGGAGU	2160	ACUCCUCC GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG ACUCAUUA	10648
1735	AUGAGUG G GAGGAGUU	2161	AACUCUCU GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG CACUCAUU	10649
1736	AUGAGUGG G AGGAUGUG	2162	CAACUCU GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG CCACUCAU	10650
1738	GAGGUGGA G GAGGUGGG	2163	CCCAAACU GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG UCCCACUC	10651
1739	AGUGGGAG G AGUUGGGG	2164	CCCAAACU GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG CUCCCACU	10652
1744	GAGGAGUU G GGGGAGGA	2165	UCCUCCCC GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG AACUCCUC	10653
1745	AGGAGUUG G GGGGAGAG	2166	CUCCUCCC GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG CAACUCU	10654
1746	GGAGGUUG G GGAGGAGG	2167	CCUCCUCC GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG CCAACUCC	10655
1747	GGAGGUUGG G GAGGAGGU	2168	ACCUCCUC GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG CCCAACUC	10656
1748	AGUUGGGG G AGGAGGU	2169	AACCUCCU GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG CCCAACU	10657
1750	UUGGGGGGA G GAGGUUAG	2170	CUAACUC GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG UCCCCCAA	10658
1751	UGGGGGAG G AGGUUAGG	2171	CCUAAACU GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG CUCCCCCA	10659
1753	GGCCAGGA G GUUAGGU	2172	AACCUAAC GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG UCCUCCCC	10660
1758	GGAGGUUA G GUUAAAAG	2173	CCUUUAAAC GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG UUAAAACC	10661
1765	AGGUAAA G GUCUUTGU	2174	ACAAAAGAC GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG UUAAAACC	10662
1778	UUGUACUA G GAGGGUGU	2175	ACAGCUC GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG UAGUACAA	10663
1779	UGUACUAG G AGGGUGUA	2176	UACAGCU GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG CUAGUACAA	10664
1781	UACUAGGA G GGUGUAGG	2177	CCUACAGC GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG UCCUAGUA	10665
1788	AGGCUGUA G GCAUAAA	2178	AUUUAGC GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG UACAGCCU	10666
1798	CAUAAAATU G GUGGUUGC	2179	GAACACAC GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG AAUUUAUG	10667
1888	UGUGGCCUU G GGUGGUU	2180	AAGGCCAC GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG AAGGCCACA	10668
1889	GUGCCUUG G GUGGUUU	2181	AAAGGCAC GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG CAAGGCAC	10669
1892	CCUUGGGGU G GCUUUGGG	2182	CCCAAAGC GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG ACCCAAAGG	10670
1898	GUGGCCUU G GGGCAUUG	2183	CCAUGCCC GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG AAAGGCCAC	10671
1899	UGGGCUUDG G GGGCAUGGA	2184	UCCAUGCC GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG CAAAGCCA	10672
1900	GGCUUUGG G GCAUGGAC	2185	GUCCAUGC GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG CCAAAGGCC	10673
1905	UGGGGCCAU G GACAUGA	2186	UCAAUGUC GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG AUGCCCCA	10674
1906	GGGGCAUG G ACAUUGAC	2187	GUCAAUGU GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG CAUGCCCC	10675
1924	CGUAUAAA G AAUUUGGA	2188	UCCAAAUU GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG UUUUAUCG	10676
1930	AGAAAUUU G GAGCUUCU	2189	AGAAGUC GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG AAAUUCU	10677
1931	AGAAAUUUG G AGCUUCUG	2190	CAGAAGCU GGAGGAAACUCC CU UCAAGGACAUCGUCCCCGG CAAAUCU	10678

1941	GCUUCUGU	G	GAGUUAUCU	2191		AGUAACUC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	ACAGAACG	10679
1942	CUUCUGUG	G	AGUUAUCU	2192		GAGUUAUCU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CACAGAAG	10680
1987	CUAUUCGA	G	AUCUCUCU	2193		GAGGAGAU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	UCGAUAG	10681
2018	UCUGUAUC	G	GGGGGCCU	2194		AGGCCCCC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	GAUACAGA	10682
2019	CUGUAUCG	G	GGGGCCUU	2195		AAGGGCCC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CGAUACAG	10683
2020	UGUAUCGG	G	GGGGCCUUA	2196		UAAGGGCC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CCGAUACA	10684
2021	GUAUCGGG	G	GGCCUCUAG	2197		CUAAGGCC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CCCGAUAC	10685
2022	UAUCGGGG	G	GGCUUJAGA	2198		UCUAAGGC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CCCCGAUA	10686
2029	GGGCCUUA	G	AGUCUCCG	2199		CGGAGACU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	UAAGGGCC	10687
2037	GAGUCUCC	G	GAACAUJUG	2200		CAAUGUUC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	GGAGACUC	10688
2038	AGUCUCCG	G	AACAUJGU	2201		ACAAUGUU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CGGAGACU	10689
2061	CACCAUAC	G	GCACUCAG	2202		CUGAGUGC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	GUAUUGGU	10690
2069	GGCACUCA	G	GCAAGCUA	2203		UAGCUUGC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	UGAGUGCC	10691
2087	UCUGUGUU	G	GGGUGAGU	2204		ACUCACCC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AAACACAGA	10692
2088	CUGUGGUU	G	GGUGAGUU	2205		AACUCACC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CAACACAG	10693
2089	UGUGUUGG	G	GUGAGUUG	2206		CAACUCAC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CCAACACAG	10694
2114	AGCCACCU	G	GGUGGGAA	2207		UUCCCACC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AGGGGGCU	10695
2115	GCCACCUG	G	GGGGAAAG	2208		CUUCCCAC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CAGGGGGC	10696
2118	ACCUGGGU	G	GGAAAGUA	2209		UUACUUC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	ACCCAGGU	10697
2119	CCUGGGUG	G	GAAGUAUU	2210		AUUACUUC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CACCCAGG	10698
2120	CUGGGUGG	G	AAGUAUU	2211		AAUUACU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CCACCCAG	10699
2130	AGUAUUU	G	GAAGAUCC	2212		GGAUUCU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AAAUAUACU	10700
2131	GUAAUUTG	G	AAGAAUCC	2213		UGGAUCUU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CAAAUUAC	10701
2134	AUUUGGAA	G	AUCCAGCA	2214		UGCUUGAU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	UUCCAAAAU	10702
2147	AGCAUCCA	G	GGAAUJAG	2215		CUAAUUC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	UGGAUGCU	10703
2148	GCAUCCAG	G	GAAUUAGU	2216		ACUAAUUC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CUGGAUGC	10704
2149	CAUCCAGG	G	AUUUAGUA	2217		UACUAAU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CCUGGAUG	10705
2181	GUAAAUAU	G	GGCCUAAA	2218		UUUAGGCC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AUAAAUAAC	10706
2182	UAAAUAUG	G	GCCUAAA	2219		UUUUAGGC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CAUAIUAA	10707
2195	AAAAAUCA	G	AACAACAU	2220		AUAGUUGU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	UGAUUUUU	10708
2207	ACUAUUGU	G	GUUUCACA	2221		UGUGAAAC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	ACAAAUAGU	10709
2233	UUAUCUUU	G	GGCGAGAA	2222		UUCUCGCC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AAAAAGUAA	10710
2234	UACUUUUG	G	GCGGAGAA	2223		UUUCUCGC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	CAAAAGUA	10711
2239	UUGGGCGA	G	AAACUGUU	2224		AAACGUUU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	UCGCCCAA	10712
2259	GAUAUUUU	G	GUGUCUUU	2225		AAAGACAC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AAAUAUUC	10713
2269	UGUCUUTU	G	GAGUGUGG	2226		CCACACUC	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AAAAAGACA	10714
2270	GUUCUUJUG	G	AGUGUGGA	2227		UCCACACU	GGAGGAAACUCC	CU	UCAAGGACAUCGUCCCCG	AAAAAGAC	10715

2276	UGGAGUGU G GAUUCGCA	2228	UGCGAACU CGAGGAACUCC	CU UCAAGGACAUCGUCCCCG ACACUCCA	10716
2277	GGAGUGUG G AUUCGCC	2229	GGUGGAUU GGAGGAACUCC	CU UCAAGGACAUCGUCCCCG CACACUCC	10717
2300	UGCAUAAA G ACCACCAA	2230	UUGGGGGU GGAGGAACUCC	CU UCAAGGACAUCGUCCCCG UAU AUGCA	10718
2334	ACACUCCC G GAAACUAC	2231	GUAGUUUC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCG GGAAGUGU	10719
2335	CACUCCG G AAACUACU	2232	AGUAGUUU GGAGGAACUCC	CU UCAAGGACAUCGUCCCCG CGGAAGUG	10720
2351	UGUUGUUA G AGGAAGAG	2233	CUCUUCGU GGAGGAACUCC	CU UCAAGGACAUCGUCCCCG UAACAACA	10721
2357	UAGACGAA G AGGCAGGU	2234	ACCUGCCU GGAGGAACUCC	CU UCAAGGACAUCGUCCCCG UUCGUCUA	10722
2359	GACGAAGA G GCAGGUCC	2235	GGACCUUG GGAGGAACUCC	CU UCAAGGACAUCGUCCCCG UCUUCGUC	10723
2363	AGAGGCA G GUCCCCUA	2236	UAGGGGAC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCG UGCCUCUU	10724
2372	GUCCCCUA G AAGGAAGAA	2237	UDUCUUCU GGAGGAACUCC	CU UCAAGGACAUCGUCCCCG UAGGGGAC	10725
2375	CCCUAGAA G AAGAACUC	2238	GAGUUUCU GGAGGAACUCC	CU UCAAGGACAUCGUCCCCG UUCUAGGG	10726
2378	UAGAAGAA G AACUCCU	2239	AGGGAGUU GGAGGAACUCC	CU UCAAGGACAUCGUCCCCG UUCUUCUA	10727
2396	GCCUCGGCA G ACGAAGGU	2240	ACCUUCGU GGAGGAACUCC	CU UCAAGGACAUCGUCCCCG UGGGAGGC	10728
2402	CAGACGAA G GUCUCAAU	2241	AUUGAGAC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCG UUCGUCUG	10729
2423	GCGUCGGCA G AAGAACUC	2242	GAGAUUU GGAGGAACUCC	CU UCAAGGACAUCGUCCCCG DGCGACGC	10730
2426	UGCGAGAA G AUCUCAAU	2243	AUUGAGAU GGAGGAACUCC	CU UCAAGGACAUCGUCCCCG UUCUGCGA	10731
2438	UCAAUCUC G GGAAUCUC	2244	GAGAUUCC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCG GAGAUUGA	10732
2439	CAAUCUCG G GAAUCUCA	2245	UGAGAUUC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCG CGAGAUUG	10733
2440	AAUCUCGG G AAUCUCAA	2246	UUGAGAUU GGAGGAACUCC	CU UCAAGGACAUCGUCCCCG CCGAGAUU	10734
2463	UAUUCCUU G GACACAU	2247	UAUGUGUC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCG AAGGAAUA	10735
2464	AUUCCUUG G ACACAUAA	2248	UUAGUGUU GGAGGAACUCC	CU UCAAGGACAUCGUCCCCG CAAGGAAAU	10736
2473	ACACAUAA G GUGGGAAA	2249	UUUCCAC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCG UUAUGUGU	10737
2476	CAUAAGGU G GGAAACUU	2250	AAGUUUCC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCG ACCUUAUG	10738
2477	AUAAGGGUG G GAAACUUU	2251	AAAGUUTC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCG CACCUUAU	10739
2478	UAAGGGUG G AAACUUUA	2252	UAAAGUU GGAGGAACUCC	CU UCAAGGACAUCGUCCCCG CCACCUUA	10740
2488	TAUCUUTAC G GGGCUUUA	2253	UAAAGCC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCG GUAAAUGU	10741
2489	ACUUUACG G GGGUUUAU	2254	AUAAAGCC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCG CGUAAAUGU	10742
2490	CUUUAACGG G GCUUUUAU	2255	AAUAAAAGC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCG CGGUAAAAG	10743
2506	UCUUCUAC G GUACCUUG	2256	CAAGGUAC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCG GUAGAAGA	10744
2529	UCCUAAA G GCAAACUC	2257	GAGUUUGC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCG AUUUGGAA	10745
2563	CAUUDGCA G GAGGACAU	2258	AUGUCUC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCG UGCAAAAG	10746
2564	AUUUGCAG G AGGACAU	2259	AAUGUCCU GGAGGAACUCC	CU UCAAGGACAUCGUCCCCG CUGCAAAU	10747
2566	UUGCAGGA G GACAUUGU	2260	ACAAUUGC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCG UCCUGCAA	10748
2567	UGCAGGGAG G ACAUUGUU	2261	AACAAUUGU GGAGGAACUCC	CU UCAAGGACAUCGUCCCCG CUCCUGCA	10749
2580	UGUUGUAAU G AUGUAAGC	2262	GCUUACAU GGAGGAACUCC	CU UCAAGGACAUCGUCCCCG UAUCAACA	10750
2596	CAAUOOGU G GGGCCCCU	2263	AGGGGCC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCG ACAAAUUG	10751
2597	AAUUUGUG G GGGCCCCUU	2264	AAGGGGCC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCG CACAAAUU	10752

2598	AUUGUGGG G	GCCCCUUUA	2265	UAAGGGGC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	CCACAAAU	10753
2622	UGAAAAACA G	GAGACUUUA	2266	UAAGUCUC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	UGUUUUCA	10754
2623	GAACACAG G	AGACUUAA	2267	UUAAGUCU GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	CUGUUUUUC	10755
2625	AAACAGGA G	ACUUAAA	2268	AUUUAAGU GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	UCCGUUUU	10756
2649	GCCUGCUA G	GUUUTAU	2269	GAUAAAAC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	UAGCAGGC	10757
2684	UGCCCCUUUA G	AUAAGGGG	2270	CCCUUUAU GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	UAAGGGCA	10758
2690	UGAUAAA G	GGAUCAA	2271	UUDGAUCC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	UUUAUCUA	10759
2691	AGAUAAAAG G	GAUCAAAC	2272	GUUUGAU GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	CUUUAUCU	10760
2692	GAUAAAAGG G	AUCAAACC	2273	GGUUUGAU GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	CCUUUAUC	10761
2711	AUUAUCCA G	AGUAUGUA	2274	UACAUACU GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	UGGAAUAU	10762
2737	UACUUCCA G	ACGCCACA	2275	UGUCGGGU GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	UGGAAGUA	10763
2763	CACUCUUU G	GAAGGGGG	2276	CCGCCUUUC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	AAAAGAGUG	10764
2764	ACUCUTUIG G	AAGGGGGG	2277	CCCGCCUU GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	CAAAGAGU	10765
2767	CUUUGGAA G	GCGGGGAU	2278	AUCCCCGC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	UUCCAAAG	10766
2770	UGGAAGGGC G	GGGAUCUU	2279	AAGAUCCC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	GCCUUUCCA	10767
2771	GGAAGGGG G	GGAUUUUA	2280	UAGAUCC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	CGCCUUC	10768
2772	GAAGGGGG G	GAUCUUUA	2281	AUAAGAUU GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	CCGCCUUUC	10769
2773	AAGGGGGG G	AUCUUUA	2282	UAUAAAGU GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	CCCGCCUU	10770
2787	AUAAAAGAA G	AGAGUCCA	2283	UGGACUUCU GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	UUUUUAU	10771
2789	AUAAAAGA G	AGUCCACA	2284	UGGGGACU GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	UCUUUUAU	10772
2816	CAUUIIUGC G	GGUCACCA	2285	UGGUGACU GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	GCAAAAG	10773
2817	AUUIIUGC G	GUCACCAU	2286	AUGGUGAC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	CGAAAAAU	10774
2832	AUAUUCUU G	GGAAACAG	2287	CUUGGUUC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	AAGAAUAU	10775
2833	TAUUCUUG G	GAACAAGA	2288	UCUUGUUC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	CAAGAAUA	10776
2834	AUUCUUGG G	AACAAGAU	2289	AUCUUGUU GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	CCAAGAAU	10777
2840	GGGAACAA G	AUCUACAG	2290	CUGUAGAU GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	DUGUUC	10778
2852	UACAGCAU G	GGAGGUJUG	2291	CAACCUCC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	AUGCUGUA	10779
2853	ACAGCAUG G	GAGGUJUG	2292	CCAACUC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	CAUGCUGU	10780
2854	CAGCAUGG G	AGGUJUGU	2293	ACCAACCU GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	CCAUGCUG	10781
2856	GC2AUGGGA G	GUUGGUU	2294	AGACCAAC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	UCCCAUGC	10782
2860	GGGAAGGGUU G	GUCUUCCA	2295	UGGAAGAC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	AACCUCCC	10783
2880	CUCGAAAAA G	GCAUGGGG	2296	CCCCAUGC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	UUUUUGAG	10784
2885	AAAGGCAU G	GGGACAAA	2297	UUUGUCCC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	AUGCCUUU	10785
2886	AAAGGCAUG G	GGACAAAU	2298	AUUDGUCC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	CAUGCCUU	10786
2887	AGGCAUGG G	GACAAUC	2299	GAUUGUCU GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	CCAUGCCU	10787
2888	GGCAUUGGG G	ACAAAUUC	2300	AGAUUUGU GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	CCCAUGCC	10788
2915	AAUCCCCU G	GGAUUUUU	2301	AAGAAUCC GGAGGAACUCC	CU UCAAGGACAUCGUCCCCGGG	AGGGGAUU	10789

2916	AUCCCCUG G	GAUUCUUC	2302	GAAGAAC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CAGGGGAU	10790
2917	UCCCCUGG G	AUUCUUC	2303	GGAAAGAU	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CCAGGGGA	10791
2939	CAUCAGUU G	GACCCUGC	2304	GCAGGCC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	AAUCUGAUG	10792
2940	AUCAGGUUG G	ACCCUGCA	2305	UGCAGGGU	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CAACUGAU	10793
2973	UAAAUCCA G	AUUGGAC	2306	GUCCCCAU	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	UGGAUUA	10794
2977	UCCAGAUU G	GGACCUCA	2307	UGAGGUCC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	AAUCUGGA	10795
2978	CCAGAUUG G	GACCUCAA	2308	UDAGGGUC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CAAUCUGG	10796
2979	ACAUUUGG G	ACCUAAC	2309	GUUGAGGU	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CCAAUCUG	10797
2996	CCGAACAA G	GACAAUC	2310	CAAGGUUC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	UUGUGCGG	10798
2997	CGCACAAAG G	ACAACUGG	2311	CCAGUUGU	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CUUGUGCG	10799
3004	GGACAAACU G	GCCGGACG	2312	CGUCCGGC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	AGUUGUCC	10800
3008	ACUGGGCC G	GACGCCAA	2313	UUGGGUC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	GGCCAGUU	10801
3009	ACUGGGCCG G	ACGCCAAC	2314	GUUGGGU	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CGGCCAGU	10802
3020	GCCAAACAA G	GUGGGAGU	2315	ACUCCAC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	UUGUUGGC	10803
3023	AACAAAGGU G	GGAGGGGG	2316	CCCACUCC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	ACCUUGUU	10804
3024	ACAAGGGUG G	GAGUGGGA	2317	UCCCCACU	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CACCUUGU	10805
3025	CAAGGGUGG G	AGUGGGAG	2318	CUCCCCACU	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CCACCUUG	10806
3029	GUUGGGAGU G	GGAGCAUU	2319	AAUGCUCC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	ACUCCAC	10807
3030	UGGGAGUG G	GAGCAUUC	2320	GAAGUGUC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CACUCCCA	10808
3031	GGGAAGGG G	AGCAAUUC	2321	CGAAUUGC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CCACUCCC	10809
3039	GAGCAUUC G	GGCCAGGG	2322	CCCUUGCC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	GAAUGUC	10810
3040	AGCAUUCG G	GCCAGGGU	2323	ACCCUGGC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CGAAUGCU	10811
3045	UCGGGGCCA G	GGUUCACC	2324	GGUGAAC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	UGGCCCGA	10812
3046	CGGGCCAG G	GUUCACCC	2325	GGGUGAAC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CUGGCCCG	10813
3063	CUCCCCCAU G	GGGGACUG	2326	CAGUCCCC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	AUGGGAG	10814
3064	UCCCCCAUG G	GGGACUGU	2327	ACAGUCCC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CAUGGGGA	10815
3065	CCCCCAUGG G	GGACUGUU	2328	AAACGUCC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CCAUGGGG	10816
3066	CCCAUAGGG G	GACUGUUG	2329	CAACAGUC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CCCAUGGG	10817
3067	CCAUGGGGG G	ACUGUUGG	2330	CCAACAGU	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CCCCAUGG	10818
3074	GGACUGUU G	GGGGGGAG	2331	CUCCACCC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	AAACAGUCC	10819
3075	GACUGUUG G	GGUGGAGC	2332	GCUCUCC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CAACAGUC	10820
3076	ACUGUUGG G	GUUGGAGCC	2333	GGCUCCAC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CCAACAGU	10821
3079	GUUGGGGU G	GAGCCUC	2334	GAGGGUC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	ACCCCAAC	10822
3080	UUGGGGGUG G	AGCCCCUCA	2335	UGAGGGCU	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CACCCCAA	10823
3095	CACGCCUCA G	GGCCCUAC	2336	AGUAGGCC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	UGAGGGUG	10824
3096	ACGCCUCAG G	GCCCUACUC	2337	GAGUAGGC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	CUGAGGGU	10825
3145	CACCAAUC G	GCAGCUAG	2338	CUGACUGC	GGAGGAACUCC	CU	UCAAGGACAUCGUCCGGG	GAUUGGGU	10826

3153	GGCAGUCA	G	GAAGGGAG	2339	CUGCCUUC	GGAGGAAACUCC	CU	UCAGGACAUCGUCCCCG	UGACUGCC	10827
3154	GCAGUCAG	G	AAGGGCAGC	2340	GCUGCCUU	GGAGGAAACUCC	CU	UCAGGACAUCGUCCCCG	CUGACUGC	10828
3157	GUCAAGGAA	G	GGAGCCUA	2341	UAGGGUCC	GGAGGAAACUCC	CU	UCAGGACAUCGUCCCCG	UUCCUGAC	10829
3187	ACCUCUAA	G	GGACACUC	2342	GAGUGUCC	GGAGGAAACUCC	CU	UCAGGACAUCGUCCCCG	UUAGAGGU	10830
3188	CCUCUAG	G	GACACUCA	2343	UGAGUGUC	GGAGGAAACUCC	CU	UCAGGACAUCGUCCCCG	CUUAGAGG	10831
3189	CUCUAAAG	G	ACACUCAU	2344	AUGAGUGU	GGAGGAAACUCC	CU	UCAGGACAUCGUCCCCG	CCUUAGAG	10832
3203	CAUCCUCA	G	GCCAUGCA	2345	UGCAUGGC	GGAGGAAACUCC	CU	UCAGGACAUCGUCCCCG	UGAGGAUG	10833

Input Sequence = AF100308. Cut Site = YG/M or UG/U.

Stem Length = 8. Core Sequence = GGAGGAAACUCC CU UCAAAGGACAUCGUCCCCG

AF100308 (Hepatitis B virus strain 2-18, 3215 bp)

Table XI: Human HBV Enzymatic Nucleic Acid and Target Sequence

Pos	Substrate	Seq ID	RPI#	Ribozyme Alias	Enzymatic Nucleic Acid	Seq ID
313	CCAAAAU U CGCAGUC	2346	18157	HBV-313 Rz-7 RNA	GACUGGG CUGAUGAGGCCGUAGGCCGAA AUUUGGG B	10834
327	CCCCAAU C UCCAGUC	2347	18158	HBV-327 Rz-7 RNA	GACUGGA CUGAUGAGGCCGUAGGCCGAA AUUUGGG B	10835
334	CUCCAGU C ACUCACC	2348	18159	HBV-334 Rz-7 RNA	GGUGAGU CUGAUGAGGCCGUAGGCCGAA ACUGGAG B	10836
408	UCUUCCU C UGCAUCC	2349	18160	HBV-408 Rz-7 RNA	GGAUCCA CUGAUGAGGCCGUAGGCCGAA AGGAAGA B	10837
557	UCUAUGU U UCCCCUA	2350	18161	HBV-557 Rz-7 RNA	UGAGGG A CUGAUGAGGCCGUAGGCCGAA ACAUAGA B	10838
1255	UUUGUGU C UCCUCUG	2351	18162	HBV-1255 Rz-7 RNA	CAGAGGA CUGAUGAGGCCGUAGGCCGAA ACACAAA B	10839
1538	CCUCUCU U UACGCGG	2352	18163	HBV-1538 Rz-7 RNA	CCGCGUA CUGAUGAGGCCGUAGGCCGAA AGAGAGG B	10840
1756	AGGAGGU U AGGUUAA	2353	18164	HBV-1756 Rz-7 RNA	UUAAACCU CUGAUGAGGCCGUAGGCCGAA ACCUCCU B	10841
1861	AUGUCCU A CUGUUCA	2354	18165	HBV-1861 Rz-7 RNA	UGAACAG CUGAUGAGGCCGUAGGCCGAA AGGACAU B	10842
2504	UUCUUCCU A CGGUACC	2355	18166	HBV-2504 Rz-7 RNA	GGUACCG CUGAUGAGGCCGUAGGCCGAA AGAAAGA B	10843
10	CUCCACC A CUUUCCA	2356	18197	HBV-10 CHz-7 RNA	UGGAAAG CUGAUGAGGCCGUAGGCCGAA GGUGGAG B	10844
335	UCCAGUC A CUCACCA	2357	18198	HBV-335 CHz-7 RNA	UGGUGAG CUGAUGAGGCCGUAGGCCGAA GACUGGA B	10845
1258	GUGUCUC C UCUGCCG	2358	18199	HBV-1258 CHz-7 RNA	CGGCAGA CUGAUGAGGCCGUAGGCCGAA GAGACAC B	10846
2307	GACCACC A AAUGCCC	2359	18200	HBV-2307 CHz-7 RNA	GGGCAUU CUGAUGAGGCCGUAGGCCGAA GGUGGUC B	10847
347	UCACCAACU G UUGUC	2360	18216	HBV-347 GC1.Rz-5/10 RNA	GACAA UGAUGGCAUGCACAUAGGCCG AGGUUGGUGA B	10848
350	CCAACCUGUU G UCCUC	2361	18217	HBV-350 GC1.Rz-5/10 RNA	GAGGA UGAUGGCAUGCACAUAGGCCG AACAGGGUGG B	10849
1508	UCCGCCUAAU G UACCG	2362	18218	HBV-1508 GC1.Rz-5/10 RNA	CGGUA UGAUGGCAUGCACAUAGGCCG AAUAGGGGA B	10850
234	AAUCCU C ACAAAUA	2363	18334	HBV-234 Rz-6 allyl stab1	u.sas.us.sgu cUGAUGaggccuuuaggccGaa Aggauu B	10851
252	GAGUCU A GACUCG	2364	18335	HBV-252 Rz-6 allyl stab1	csg.sas.suc cUGAUGaggccuuuaggccGaa Agacuc B	10852
268	UGGACU U CUCUCA	2365	18337	HBV-268 Rz-6 allyl stab1	u.sgs.ssg.sag cUGAUGaggccuuuaggccGaa Aqucca B	10853
280	AAUUUU C UAGGGG	2366	18345	HBV-280 Rz-6 allyl stab1	cscscscsua cUGAUGaggccuuuaggccGaa Aaaaau B	10854
313	CCCCAAU U CGCAGU	2367	18346	HBV-313 Rz-6 allyl stab1	as.sus.scg cUGAUGaggccuuuaggccGaa Auuuug B	10855
395	GGCGUU U UAUCAU	2368	18350	HBV-395 Rz-6 allyl stab1	asussasua cUGAUGaggccuuuaggccGaa Aacgccc B	10856
402	UAUCAU C UUCCUC	2369	18351	HBV-402 Rz-6 allyl stab1	g.sas.sgs.saa cUGAUGaggccuuuaggccGaa Augaua B	10857
607	UGUAUU C CCAUCU	2370	18355	HBV-607 Rz-6 allyl stab1	g.sgs.sus.sgg cUGAUGaggccuuuaggccGaa Aauaca B	10858
697	UUUGUU C AGUGGU	2371	18362	HBV-697 Rz-6 allyl stab1	ascsccsas.cu cUGAUGaggccuuuaggccGaa Aacaaaa B	10859
1539	UCUCUU U ACGCGG	2372	18366	HBV-1539 Rz-6 allyl stab1	cscsg.ssg.sgu cUGAUGaggccuuuaggccGaa Aagaga B	10860
1599	UCACCU C UGCACG	2373	18367	HBV-1599 Rz-6 allyl stab1	csg.sus.sca cUGAUGaggccuuuaggccGaa Agguga B	10861
1607	GCACGU C GCAUGG	2374	18368	HBV-1607 Rz-6 allyl stab1	c.s.sas.sus.sgc cUGAUGaggccuuuaggccGaa Acgguc B	10862
1833	UCACCU C UGCCUA	2375	18371	HBV-1833 Rz-6 allyl stab1	u.sas.sgs.sca cUGAUGaggccuuuaggccGaa Agguga B	10863

2383	AGAACU C CCUCGGC	2376	18374	HBV-2383 Rz-6 allyl stab1	g _s c _s g _s a _s gg cUGAUGaggccguuaggccGaa Aguucu B	10864
2429	GAAGAU C UCAAUC	2377	18376	HBV-2429 Rz-6 allyl stab1	g _s u <u>s</u> u <u>s</u> ga cUGAUGaggccguuaggccGaa Aucuuc B	10865
2831	UADUCU U GGGAAC	2378	18379	HBV-2831 Rz-6 allyl stab1	g _s u <u>s</u> c _s cc cUGAUGaggccguuaggccGaa Agaaa B	10866
430	UGCCUC A UCUCU	2379	18391	HBV-430 CHz-6 allyl stab1	a _s g _s a _s ga cUGAUGaggccguuaggccGaa Tagca B	10867
676	UGGCUC A GUUUC	2380	18396	HBV-676 CHz-6 allyl stab1	g _s u <u>s</u> a _s ac cUGAUGaggccguuaggccGaa Tagca B	10868
683	GUUUAC U AGUGC	2381	18397	HBV-683 CHz-6 allyl stab1	g _s g _s a _s cu cUGAUGaggccguuaggccGaa Iuaac B	10869
1150	UUUACC C CGUUGC	2382	18402	HBV-1150 CHz-6 allyl stab1	g _s c _s a _s cg cUGAUGaggccguuaggccGaa Igaaaa B	10870
1200	GCAACC C CCACUG	2383	18403	HBV-1200 CHz-6 allyl stab1	c _s a _s u _s gg cUGAUGaggccguuaggccGaa Iguugc B	10871
1201	CAACCC C CACUGG	2384	18404	HBV-1201 CHz-6 allyl stab1	c _s c _s a _s ug cUGAUGaggccguuaggccGaa Iggug B	10872
1444	CGGCCG U GAAUCC	2385	18405	HBV-1444 CHz-6 allyl stab1	q _s g _s a _s u <u>s</u> uc cUGAUGaggccguuaggccGaa Igcgg B	10873
1451	GAAUCC C GCGGAC	2386	18406	HBV-1451 CHz-6 allyl stab1	g _s u <u>s</u> c _s gyc cUGAUGaggccguuaggccGaa Igauc B	10874
1533	CGCAC C U CUCUU	2387	18407	HBV-1533 CHz-6 allyl stab1	a _s a _s g _s ag cUGAUGaggccguuaggccGaa Igugcg B	10875
1600	CACCU C GCACGU	2388	18410	HBV-1600 CHz-6 allyl stab1	a _s c _s g _s u <u>s</u> gc cUGAUGaggccguuaggccGaa Iaggug B	10876
1698	CCGACC U UGAGGC	2389	18411	HBV-1698 CHz-6 allyl stab1	q _s c _s u <u>s</u> ca cUGAUGaggccguuaggccGaa Iguggg B	10877
1784	GGAGGC U GUAGGC	2390	18412	HBV-1784 CHz-6 allyl stab1	q _s c _s u <u>s</u> ac cUGAUGaggccguuaggccGaa Iccucc B	10878
1829	UUUUUC A CCUCUG	2391	18414	HBV-1829 CHz-6 allyl stab1	c _s as _s a _s gg cUGAUGaggccguuaggccGaa Iaaaaa B	10879
1876	GCCUCC A AGCUGU	2392	18420	HBV-1876 CHz-6 allyl stab1	a _s c _s g _s cu cUGAUGaggccguuaggccGaa Igaggc B	10880
1880	CCAAGC U GUGCCU	2393	18422	HBV-1880 CHz-6 allyl stab1	a _s g _s g _s c _s ac cUGAUGaggccguuaggccGaa Icuugg B	10881
218	UUUUUCU U GUUGACA	2394	18333	HBV-218 Rz-7 allyl stab1	u _s g _s u <u>s</u> ac cUGAUGaggccguuaggccGaa Agaaaaa B	10882
257	CUAGACU C GUGGGGG	2395	18336	HBV-257 Rz-7 allyl stab1	c _s c _s a _s c _s ac cUGAUGaggccguuaggccGaa Aguuaq B	10883
268	GUGGACU U CUCUCAA	2396	18338	HBV-268 Rz-7 allyl stab1	u _s u _s g _s ag cUGAUGaggccguuaggccGaa Aguucc B	10884
269	UGGACUU C UCUCAAU	2397	18339	HBV-269 Rz-7 allyl stab1	a _s u <u>s</u> g _s aga cUGAUGaggccguuaggccGaa Aagucca B	10885
271	GACUUCU C UCAAUU	2398	18340	HBV-271 Rz-7 allyl stab1	a _s a _s u <u>s</u> uga cUGAUGaggccguuaggccGaa Agaaugc B	10886
273	CUUCUCU C AAUUUC	2399	18341	HBV-273 Rz-7 allyl stab1	g _s as _s a _s au cUGAUGaggccguuaggccGaa Agagaag B	10887
277	UCUCAAU U UUCUAGG	2400	18342	HBV-277 Rz-7 allyl stab1	c _s c _s u <u>s</u> aga cUGAUGaggccguuaggccGaa Auugaga B	10888
278	CUCAAUU U UCUAGGG	2401	18343	HBV-278 Rz-7 allyl stab1	c _s c _s u <u>s</u> aga cUGAUGaggccguuaggccGaa Auuugag B	10889
279	UCAAUUU U CUAGGGG	2402	18344	HBV-279 Rz-7 allyl stab1	c _s c _s c _s u <u>s</u> ag cUGAUGaggccguuaggccGaa Aaaauuga B	10890
314	CAAAAUU C GCAGUCC	2403	18347	HBV-314 Rz-7 allyl stab1	g _s g _s a _s u <u>s</u> gc cUGAUGaggccguuaggccGaa Auuuugg B	10891
385	GAUGUGU C UGGGGCG	2404	18348	HBV-385 Rz-7 allyl stab1	c _s g _s c _s g _s ca cUGAUGaggccguuaggccGaa Acacauc B	10892
394	GCGGGGU U UUAUCAU	2405	18349	HBV-394 Rz-7 allyl stab1	a _s u _s g _s u <u>s</u> aa cUGAUGaggccguuaggccGaa Acgcgc B	10893
402	UUAUCAU C UDCCUCU	2406	18352	HBV-402 Rz-7 allyl stab1	as _s a _s g _s gaa cUGAUGaggccguuaggccGaa Augauaa B	10894
423	UGCUGCU A UGCCUCA	2407	18353	HBV-423 Rz-7 allyl stab1	u _s g _s a _s g _s ga cUGAUGaggccguuaggccGaa Agcagca B	10895
429	UAUGCCU C ADCCDCU	2408	18354	HBV-429 Rz-7 allyl stab1	as _s a _s g _s gau cUGAUGaggccguuaggccGaa Aggcata B	10896
679	GCUCAGU U UACUAGU	2409	18356	HBV-679 Rz-7 allyl stab1	as _s c _s u <u>s</u> sgua cUGAUGaggccguuaggccGaa Acugagc B	10897

680	CUCAGUU U ACUAGUG	2410	18357	HBV-680 Rz-7 allyl stab1	c _s a _s s _u s _u s _u agu cUGAUGaggccguuaggccGaa Aacugag B	10898
681	UCAGUUU A CUAGUGC	2411	18358	HBV-681 Rz-7 allyl stab1	g _s c _s a _s s _u uag cUGAUGaggccguuaggccGaa Aaacuga B	10899
684	GUUUACU A GUGCCAU	2412	18359	HBV-684 Rz-7 allyl stab1	a _s u _s g _s s _u cac cUGAUGaggccguuaggccGaa Aguuaac B	10900
692	GUGCCAU U UGUUCAG	2413	18360	HBV-692 Rz-7 allyl stab1	c _s u _s g _s s _u s _u aca cUGAUGaggccguuaggccGaa Auggcac B	10901
693	UGCCAUU U GUUCAGU	2414	18361	HBV-693 Rz-7 allyl stab1	a _s c _s u _s g _s aac cUGAUGaggccguuaggccGaa Aauuggca B	10902
1534	CGCACCU C UCUUUAC	2415	18363	HBV-1534 Rz-7 allyl stab1	g _s u _s a _s s _u s _u aga cUGAUGaggccguuaggccGaa Agggcg B	10903
1536	CACCUUCU C UUUACGC	2416	18364	HBV-1536 Rz-7 allyl stab1	g _s c _s g _s u _s aaa cUGAUGaggccguuaggccGaa Agggug B	10904
1538	CCUCUCU U UACGGGG	2352	18365	HBV-1538 Rz-7 allyl stab1	c _s c _s g _s sgua cUGAUGaggccguuaggccGaa Agagg B	10905
1787	AGGCUGU A GGCAUAA	2417	18369	HBV-1787 Rz-7 allyl stab1	u _s u _s u _s g _s ccc cUGAUGaggccguuaggccGaa Acagccu B	10906
1793	UAGGGCAU A AAUUGGU	2418	18370	HBV-1793 Rz-7 allyl stab1	a _s c _s c _s auu cUGAUGaggccguuaggccGaa Augccua B	10907
1874	CAAGGCCU C CAAGCUG	2419	18372	HBV-1874 Rz-7 allyl stab1	c _s a _s g _s s _u uug cUGAUGaggccguuaggccGaa Aggcuug B	10908
1887	UGUGCCU U GGGUGGC	2420	18373	HBV-1887 Rz-7 allyl stab1	g _s c _s c _s a _s ccc cUGAUGaggccguuaggccGaa Aggcaca B	10909
2383	AAGAACU C CCUCGCC	2421	18375	HBV-2383 Rz-7 allyl stab1	g _s g _s c _s sggg cUGAUGaggccguuaggccGaa Aguucuu B	10910
2828	ACCAAUU U CUUGGGA	2422	18377	HBV-2828 Rz-7 allyl stab1	u _s c _s c _s a _s ag cUGAUGaggccguuaggccGaa Auuggu B	10911
2829	CCAUAUU C UGGGAA	2423	18378	HBV-2829 Rz-7 allyl stab1	u _s u _s c _s caa cUGAUGaggccguuaggccGaa Aauaugg B	10912
2831	AUAUUCU U GGGAAACA	2424	18380	HBV-2831 Rz-7 allyl stab1	u _s g _s u _s u _s ccc cUGAUGaggccguuaggccGaa Agaaauu B	10913
256	UCUAGAC U CGUGGUG	2425	18381	HBV-256 CHz-7 allyl stab1	c _s a _s c _s s _u acg cUGAUGaggccguuaggccGaa Iucuaga B	10914
267	GGUGGAC U UCUCUCA	2426	18382	HBV-267 CHz-7 allyl stab1	u _s g _s a _s s _u aga cUGAUGaggccguuaggccGaa Iuccacc B	10915
270	GGACUUC U CUCAAUU	2427	18383	HBV-270 CHz-7 allyl stab1	a _s a _s u _s u _s gag cUGAUGaggccguuaggccGaa Iaagucc B	10916
272	ACUDUCU C CAAUUU	2428	18384	HBV-272 CHz-7 allyl stab1	a _s a _s a _s u _s uug cUGAUGaggccguuaggccGaa Iaqaaqu B	10917
274	UUCUCUC A AUUUUCU	2429	18385	HBV-274 CHz-7 allyl stab1	a _s g _s a _s s _u aa cUGAUGaggccguuaggccGaa Tagagaa B	10918
386	AUGUGUC U GCGGGCU	2430	18386	HBV-386 CHz-7 allyl stab1	a _s c _s g _s c _s cg cUGAUGaggccguuaggccGaa Icacau B	10919
419	AUCCUGC U GCUAUGC	2431	18387	HBV-419 CHz-7 allyl stab1	g _s c _s a _s s _u agc cUGAUGaggccguuaggccGaa Icaggau B	10920
422	CUGCUGC U AUGCCUC	2432	18388	HBV-422 CHz-7 allyl stab1	g _s a _s g _s s _u cau cUGAUGaggccguuaggccGaa Icqagcag B	10921
427	GCUAUGC C UCAUCUU	2433	18389	HBV-427 CHz-7 allyl stab1	a _s a _s g _s s _u aga cUGAUGaggccguuaggccGaa Icauhgc B	10922
428	CUAUGCC U CAUCUUC	2434	18390	HBV-428 CHz-7 allyl stab1	g _s a _s g _s s _u aug cUGAUGaggccguuaggccGaa Igcauag B	10923
430	AUGCCUC A UCUUCUU	2435	18392	HBV-430 CHz-7 allyl stab1	a _s a _s g _s s _u s _u aga cUGAUGaggccguuaggccGaa Iaggcav B	10924
608	UGUAUUC C CAUCCCA	2436	18393	HBV-608 CHz-7 allyl stab1	u _s g _s g _s s _u aug cUGAUGaggccguuaggccGaa Iauuaca B	10925
609	GUAUUCC C AUCCCCAU	2437	18394	HBV-609 CHz-7 allyl stab1	a _s u _s g _s s _u gau cUGAUGaggccguuaggccGaa Igaauac B	10926
669	GUUUUCU C UGGCUC	2438	18395	HBV-669 CHz-7 allyl stab1	u _s g _s g _s s _u cca cUGAUGaggccguuaggccGaa Iagaac B	10927
689	CUAGUGC C AUUUGUU	2439	18398	HBV-689 CHz-7 allyl stab1	a _s a _s c _s s _u aa cUGAUGaggccguuaggccGaa Icacuag B	10928
690	UAGUGCC A UUUGUUC	2440	18399	HBV-690 CHz-7 allyl stab1	g _s a _s c _s s _u aaa cUGAUGaggccguuaggccGaa Igcacua B	10929
718	GCUUUDCC C CCACUGU	2441	18400	HBV-718 CHz-7 allyl stab1	a _s c _s a _s g _s ugg cUGAUGaggccguuaggccGaa Igaaaggc B	10930
1149	CCUUUAC C CCGUUGC	2442	18401	HBV-1149 CHz-7 allyl stab1	g _s c _s a _s s _u scgg cUGAUGaggccguuaggccGaa Tuuaagg B	10931

1535	GCACCUC U CUUUACG	2443	18408	HBV-1535 CHz-7 allyl stab1	csgsusasaaag cUGAUGaggccguuaggccGaa Iagguc B	10932
1537	ACCUUCUC U UUACGGG	2444	18409	HBV-1537 CHz-7 allyl stab1	csgscsguuuaa cUGAUGaggccguuaggccGaa Iagguc B	10933
1791	UGUAGGC A UAAAUUG	2445	18413	HBV-1791 CHz-7 allyl stab1	csgasusuuu cUGAUGaggccguuaggccGaa Iccuaca B	10934
1831	UUUUCAC C UCUGCCU	2446	18415	HBV-1831 CHz-7 allyl stab1	a sgsgcsaga cUGAUGaggccguuaggccGaa Iugaaaa B	10935
1832	UUUCACC U CUGCCUA	2447	18416	HBV-1832 CHz-7 allyl stab1	usasgsgscag cUGAUGaggccguuaggccGaa Igugaaa B	10936
1872	UUCAAAGC C UCCAAAGC	2448	18417	HBV-1872 CHz-7 allyl stab1	gscsussgga cUGAUGaggccguuaggccGaa Icuugaa B	10937
1873	UCAAAGCC U CCAAGCU	2449	18418	HBV-1873 CHz-7 allyl stab1	a sgscusugg cUGAUGaggccguuaggccGaa Igcuuga B	10938
1875	AAGCCUC C AAGCDGU	2450	18419	HBV-1875 CHz-7 allyl stab1	ascasgsuu cUGAUGaggccguuaggccGaa Iagguu B	10939
1876	AGCCUCC A AGCUGUG	2451	18421	HBV-1876 CHz-7 allyl stab1	c sascasggc cUGAUGaggccguuaggccGaa Igaggcu B	10940
1880	UCCAAGC U GUGCCU	2452	18423	HBV-1880 CHz-7 allyl stab1	asasgsgscac cUGAUGaggccguuaggccGaa Icuugga B	10941
2382	GAAGAAC U CCCUCGC	2453	18424	HBV-2382 CHz-7 allyl stab1	gscsgsasggg cUGAUGaggccguuaggccGaa Iuucuc B	10942
2384	AGAACUC C CUGGCCU	2454	18425	HBV-2384 CHz-7 allyl stab1	a sgsgscsgag cUGAUGaggccguuaggccGaa Iaguucu B	10943
2385	GAACUCC C UCGCCUC	2455	18426	HBV-2385 CHz-7 allyl stab1	g sasgsgscga cUGAUGaggccguuaggccGaa Igaguuc B	10944
2422	GCGUCGC A GAAGAUC	2456	18427	HBV-2422 CHz-7 allyl stab1	q sasuscsucc cUGAUGaggccguuaggccGaa Igcacgc B	10945
2830	CAUAUUC U UGGGAAC	2457	18428	HBV-2830 CHz-7 allyl stab1	q sususccca cUGAUGaggccguuaggccGaa Iaauaug B	10946
234	AAUCCU C ACAAAU	2363	19179	HBV-2334 Rz-6 amino stab1	usasusugu cUGAUGaggccguuaggccGaa Agaaau B	10947
252	GAGUCU A GACUCG	2364	19180	HBV-252 Rz-6 amino stab1	c sgasgscuc cUGAUGaggccguuaggccGaa Agacuc B	10948
268	UGGACU U CUCUCA	2365	19182	HBV-2668 Rz-6 amino stab1	usgsasgsag cUGAUGaggccguuaggccGaa Agucca B	10949
280	AAUUUU C UAGGGG	2366	19190	HBV-280 Rz-6 amino stab1	c scscsua cUGAUGaggccguuaggccGaa Aaaaau B	10950
313	CAAAAU U CGCAGU	2367	19191	HBV-313 Rz-6 amino stab1	ascusgsccg cUGAUGaggccguuaggccGaa Auuuug B	10951
395	GGCGUU U UAUCAU	2368	19195	HBV-395 Rz-6 amino stab1	asusgsasua cUGAUGaggccguuaggccGaa Aacgcc B	10952
402	UAUCAU C UUCCUC	2369	19196	HBV-402 Rz-6 amino stab1	gsasgsasaa cUGAUGaggccguuaggccGaa Augaea B	10953
607	UGUAUU C CCAUCC	2370	19200	HBV-607 Rz-6 amino stab1	gsgsusgsgg cUGAUGaggccguuaggccGaa Aauaca B	10954
697	UUUGUU C AGUGGU	2371	19207	HBV-697 Rz-6 amino stab1	asccscasuu cUGAUGaggccguuaggccGaa Aacaaa B	10955
1539	UCUCUU U ACGGGG	2372	19211	HBV-1539 Rz-6 amino stab1	c scsgscsgu cUGAUGaggccguuaggccGaa Aagaga B	10956
1599	UCACCU C UGCACG	2373	19212	HBV-1599 Rz-6 amino stab1	csgsusgsca cUGAUGaggccguuaggccGaa Agguga B	10957
1607	GCACGU C GCAUGG	2374	19213	HBV-1607 Rz-6 amino stab1	q sasussga cUGAUGaggccguuaggccGaa Aucuuc B	10961
1833	UCACCU C UGCCUA	2375	19216	HBV-1833 Rz-6 amino stab1	q susussc cUGAUGaggccguuaggccGaa Agaaau B	10962
2383	AGAACU C CCUCGC	2376	19219	HBV-2383 Rz-6 amino stab1	q sgsgsasgg cUGAUGaggccguuaggccGaa Iaggca B	10963
2429	GAAGAU C UCAAUC	2377	19221	HBV-2429 Rz-6 amino stab1	q sasussga cUGAUGaggccguuaggccGaa Aucuuc B	10964
2831	UAUUCU U GGGAAC	2378	19224	HBV-2831 Rz-6 amino stab1	q susussc cUGAUGaggccguuaggccGaa Agaaau B	10965
430	UGCCUC A UCUUCU	2379	19236	HBV-430 CHz-6 amino stab1	asasasasa cUGAUGaggccguuaggccGaa Iaggca B	10966
676	UGGCUC A GUUAC	2380	19241	HBV-676 CHz-6 amino stab1	q susasasac cUGAUGaggccguuaggccGaa Iagccca B	10967
683	GUUUAC U AGUGGC	2381	19242	HBV-683 CHz-6 amino stab1	q sgsscasu cUGAUGaggccguuaggccGaa Iuaaac B	10968

1150	UUUACC C CGUUGC	2382	19247	HBV-1150 CHz-6 amino stab1	gssasascg cUGAUgaggccuuuaggccGaa Iguaaa B	10966
1200	GCAACC C CCACUG	2383	19248	HBV-1200 CHz-6 amino stab1	casgsusgg cUGAUgaggccuuuaggccGaa Iguugg B	10967
1201	CAACCC C CACUGG	2384	19249	HBV-1201 CHz-6 amino stab1	cssasgsug cUGAUgaggccuuuaggccGaa Iggug B	10968
1444	CGGGCC U GAAUCC	2385	19250	HBV-1444 CHz-6 amino stab1	gsasasusuc cUGAUgaggccuuuaggccGaa Icgccg B	10969
1451	GAAUCC C GGGGAC	2386	19251	HBV-1451 CHz-6 amino stab1	gsusccsgc cUGAUgaggccuuuaggccGaa Igaauuc B	10970
1533	CGCACC U CUCUUU	2387	19252	HBV-1533 CHz-6 amino stab1	asasagsag cUGAUgaggccuuuaggccGaa Igugcg B	10971
1600	CACCUU C GCACGU	2388	19255	HBV-1600 CHz-6 amino stab1	ascsgsusgc cUGAUgaggccuuuaggccGaa Iaggug B	10972
1698	CCGACC U UGAGGC	2389	19256	HBV-1698 CHz-6 amino stab1	gsscsusca cUGAUgaggccuuuaggccGaa Igucgg B	10973
1784	GGAGGC U GUAGGC	2390	19257	HBV-1784 CHz-6 amino stab1	gsscsusac cUGAUgaggccuuuaggccGaa Iccucc B	10974
1829	UUUUUC A CCUCUG	2391	19259	HBV-1829 CHz-6 amino stab1	csassasgg cUGAUgaggccuuuaggccGaa Iaaaaaa B	10975
1876	GCCUCC A AGCUGU	2392	19265	HBV-1876 CHz-6 amino stab1	asasagscu cUGAUgaggccuuuaggccGaa Igaggc B	10976
1880	CCAAGC U GUGCCU	2393	19267	HBV-1880 CHz-6 amino stab1	asgsgsacsac cUGAUgaggccuuuaggccGaa Icuugg B	10977
218	UUUUUCU U GUUGACA	2394	19178	HBV-218 Rz-7 amino stab1	usgsuscaac cUGAUgaggccuuuaggccGaa Agaaaaaa B	10978
257	CUAGACU C GUCCCC	2395	19181	HBV-257 Rz-7 amino stab1	csasasccac cUGAUgaggccuuuaggccGaa Aguucag B	10979
268	GUGGACU U CUCUCAA	2396	19183	HBV-268 Rz-7 amino stab1	ususgsasag cUGAUgaggccuuuaggccGaa Aquuccac B	10980
269	UGGACUU C UCUCAAU	2397	19184	HBV-269 Rz-7 amino stab1	asususgsaga cUGAUgaggccuuuaggccGaa Aaguucca B	10981
271	GACUUCU C UCAAUU	2398	19185	HBV-271 Rz-7 amino stab1	asasasusuga cUGAUgaggccuuuaggccGaa Agaaaguc B	10982
273	CUUCUCU C AAUUCU	2399	19186	HBV-273 Rz-7 amino stab1	gsasasasau cUGAUgaggccuuuaggccGaa Agagaag B	10983
277	UCUCAAU U UUCUAGG	2400	19187	HBV-277 Rz-7 amino stab1	cscusassgaa cUGAUgaggccuuuaggccGaa Auuugaga B	10984
278	CUCAAUU U UCUAAGG	2401	19188	HBV-278 Rz-7 amino stab1	csccssusaga cUGAUgaggccuuuaggccGaa Aaungag B	10985
279	UCAAUUU U CUAGGGG	2402	19189	HBV-279 Rz-7 amino stab1	csccscsuag cUGAUgaggccuuuaggccGaa Aaaauuga B	10986
314	CAAAAUU C GCAGUCC	2403	19192	HBV-314 Rz-7 amino stab1	gsgsasssugc cUGAUgaggccuuuaggccGaa Aauuung B	10987
385	GAUGUGU C UGGGGCG	2404	19193	HBV-385 Rz-7 amino stab1	csccsssgca cUGAUgaggccuuuaggccGaa Acacauc B	10988
394	GCGGGGU U UUAUCAU	2405	19194	HBV-394 Rz-7 amino stab1	asusgsasuaa cUGAUgaggccuuuaggccGaa Acgccgc B	10989
402	UUAUCAU C UUCCUCU	2406	19197	HBV-402 Rz-7 amino stab1	asgsassgaa cUGAUgaggccuuuaggccGaa Augauuaa B	10990
423	UGCUGCU A UGCCUCA	2407	19198	HBV-423 Rz-7 amino stab1	usgsasgsca cUGAUgaggccuuuaggccGaa Agcagca B	10991
429	UAUGCCU C AUCUCU	2408	19199	HBV-429 Rz-7 amino stab1	asgsasasgau cUGAUgaggccuuuaggccGaa Aggcacua B	10992
679	GCUCAGU U UACUAGU	2409	19201	HBV-679 Rz-7 amino stab1	ascsusasqua cUGAUgaggccuuuaggccGaa Acuggac B	10993
680	CUCAGUU U ACUAGUG	2410	19202	HBV-680 Rz-7 amino stab1	csassusasagu cUGAUgaggccuuuaggccGaa Aacugag B	10994
681	UCAGUUU A CUAGUGC	2411	19203	HBV-681 Rz-7 amino stab1	gsccsascsuag cUGAUgaggccuuuaggccGaa Aaacuga B	10995
684	GUUUACU A GUGCCAU	2412	19204	HBV-684 Rz-7 amino stab1	asusgsccac cUGAUgaggccuuuaggccGaa Aguaaac B	10996
692	GUGCCAU U UGUUCAG	2413	19205	HBV-692 Rz-7 amino stab1	csusgsasaca cUGAUgaggccuuuaggccGaa Auggcac B	10997
693	UGCCAUU U GUUCAGU	2414	19206	HBV-693 Rz-7 amino stab1	ascsusgsaac cUGAUgaggccuuuaggccGaa Aauggca B	10998
1534	CGCACCU C UCUUUAC	2415	19208	HBV-1534 Rz-7 amino stab1	gsusasasaga cUGAUgaggccuuuaggccGaa Aggugcg B	10999

1536	CACCUUCU C UUUACGC	2416	19209	HBV-1536 Rz-7 amino stabl	g _s c _s g _s u _s aaa cUGAU ^G ggccuuaggccGaa Agaggug B	11000
1538	CCUCUCU U UACGGGG	2352	19210	HBV-1538 Rz-7 amino stabl	c _s c _s g _s guu cUGAU ^G ggccuuaggccGaa Agagagg B	11001
1787	AGGCUGU A GGCUAAG	2417	19214	HBV-1787 Rz-7 amino stabl	u _s u _s u _s g _{cc} cUGAU ^G ggccuuaggccGaa Acaggcu B	11002
1793	UAGGCAU A AAUUGGU	2418	19215	HBV-1793 Rz-7 amino stabl	a _s c _s c _s auu cUGAU ^G ggccuuaggccGaa Augcua B	11003
1874	CAAGCCU C CAAGCUG	2419	19217	HBV-1874 Rz-7 amino stabl	c _a g _s c _s u _u cUGAU ^G ggccuuaggccGaa Agcuug B	11004
1887	UGUGCCU U GGGGGC	2420	19218	HBV-1887 Rz-7 amino stabl	g _s c _s c _s ccc cUGAU ^G ggccuuaggccGaa Aggcaca B	11005
2383	AAGAACU C CCUCGCC	2421	19220	HBV-2383 Rz-7 amino stabl	q _s g _s c _s agg cUGAU ^G ggccuuaggccGaa Aguucuu B	11006
2828	ACCAUAU U CUUGGGA	2422	19222	HBV-2828 Rz-7 amino stabl	u _s c _s c _s aa _g cUGAU ^G ggccuuaggccGaa Auauugu B	11007
2829	CCAUAUU C UUGGAA	2423	19223	HBV-2829 Rz-7 amino stabl	u _s u _s c _s caa cUGAU ^G ggccuuaggccGaa Aauauug B	11008
2831	AUAUUCU U GGGAAACA	2424	19225	HBV-2831 Rz-7 amino stabl	u _s g _s u _s ccc cUGAU ^G ggccuuaggccGaa Agaaau B	11009
256	UCUAGAC U CGUGGUG	2425	19226	HBV-256 CHz-7 amino stabl	c _s a _s c _s acg cUGAU ^G ggccuuaggccGaa Iucuaga B	11010
267	GGUGGAC U UCUCUCA	2426	19227	HBV-267 CHz-7 amino stabl	u _s g _s a _s aga cUGAU ^G ggccuuaggccGaa Iuccacc B	11011
270	GGACUUC U CUCAAUU	2427	19228	HBV-270 CHz-7 amino stabl	as _s u _s u _s gag cUGAU ^G ggccuuaggccGaa Iaagucc B	11012
272	ACUUCUC U CAAUUUU	2428	19229	HBV-272 CHz-7 amino stabl	a _s a _s a _s u _u cUGAU ^G ggccuuaggccGaa Tagaaqu B	11013
274	UUCUCUC A AUUUCU	2429	19230	HBV-274 CHz-7 amino stabl	a _s g _s a _s aa _u cUGAU ^G ggccuuaggccGaa Tagagaa B	11014
386	AUGUGUC U GCGGGGU	2430	19231	HBV-386 CHz-7 amino stabl	a _c s _g s _c cg _c cUGAU ^G ggccuuaggccGaa Iacacau B	11015
419	AUCCUGC U GCUAUGC	2431	19232	HBV-419 CHz-7 amino stabl	q _s c _a s _u agg cUGAU ^G ggccuuaggccGaa Icaaggau B	11016
422	CUGCUGC U AUGCCUC	2432	19233	HBV-422 CHz-7 amino stabl	q _s a _s g _s cau cUGAU ^G ggccuuaggccGaa Icaqag B	11017
427	GCUAUGC C UCAUCUU	2433	19234	HBV-427 CHz-7 amino stabl	a _s a _s g _s u _g cUGAU ^G ggccuuaggccGaa Icauagc B	11018
428	CUAUGCC U CAUCUUC	2434	19235	HBV-428 CHz-7 amino stabl	q _s a _s g _s aa _g cUGAU ^G ggccuuaggccGaa Icauag B	11019
430	AUGCCUC A UCUUCUU	2435	19237	HBV-430 CHz-7 amino stabl	a _s a _s g _s aga cUGAU ^G ggccuuaggccGaa Iaggcau B	11020
608	UGUAUUC C CAUCCCA	2436	19238	HBV-608 CHz-7 amino stabl	u _s g _s g _s aug cUGAU ^G ggccuuaggccGaa Iaauaca B	11021
609	GUAUJCC C AUCCCCAU	2437	19239	HBV-609 CHz-7 amino stabl	a _s u _s g _s sgau cUGAU ^G ggccuuaggccGaa Igaauc B	11022
669	GUUUCUC U UGGCUCA	2438	19240	HBV-669 CHz-7 amino stabl	u _s g _s a _s cca cUGAU ^G ggccuuaggccGaa Igaaac B	11023
689	CUAGUGC C AUUDGUU	2439	19243	HBV-689 CHz-7 amino stabl	a _s a _s c _s aa _u cUGAU ^G ggccuuaggccGaa Icacuag B	11024
690	UAGUGCC A UUUUGUC	2440	19244	HBV-690 CHz-7 amino stabl	g _s a _s c _s aaa cUGAU ^G ggccuuaggccGaa Igacuua B	11025
718	GCUUUCC C CCACUGU	2441	19245	HBV-718 CHz-7 amino stabl	a _c s _g s _u gg cUGAU ^G ggccuuaggccGaa Igaaggc B	11026
1149	CCUUCUAC C CCGGUUGC	2442	19246	HBV-1149 CHz-7 amino stabl	q _s c _s a _s ccg cUGAU ^G ggccuuaggccGaa Iuaaagg B	11027
1535	GCACCUUC U CUUUACG	2443	19253	HBV-1535 CHz-7 amino stabl	c _s g _s u _s aa _g cUGAU ^G ggccuuaggccGaa Iaggugc B	11028
1537	ACCUCUC U UUACCGC	2444	19254	HBV-1537 CHz-7 amino stabl	c _s g _s g _s u _u cUGAU ^G ggccuuaggccGaa Iagagg B	11029
1791	UGUAGGC A UAAAUG	2445	19258	HBV-1791 CHz-7 amino stabl	c _s a _s u _s uu cUGAU ^G ggccuuaggccGaa Iccuaca B	11030
1831	UUUCUAC C UCUGCCU	2446	19260	HBV-1831 CHz-7 amino stabl	a _s g _s g _s aga cUGAU ^G ggccuuaggccGaa Iugaaaa B	11031
1832	UUCGACC U CUGCCUA	2447	19261	HBV-1832 CHz-7 amino stabl	u _s g _s g _s cag cUGAU ^G ggccuuaggccGaa Igugaaa B	11032
1872	UUCGAAGC C UCCAAGC	2448	19262	HBV-1872 CHz-7 amino stabl	g _s c _s u _s sgga cUGAU ^G ggccuuaggccGaa Icuugaa B	11033

1873	UCAAGCC U CCAAAGCU	2449	19263	HBV-1873	CHz-7	amino	stab1	asgscsussugg cUGAUAGggccuuaggccGaa Iggcugua B	11034
1875	AAGCCUC C AAGGUUGU	2450	19264	HBV-1875	CHz-7	amino	stab1	a c s a g s c u u cUGAUAGggccuuaggccGaa Iaggcuc B	11035
1876	AGCCUCC A AGCUGUG	2451	19266	HBV-1876	CHz-7	amino	stab1	c s a s c s a s g c u cUGAUAGggccuuaggccGaa Igaggcu B	11036
1880	UCCAAGG U GUCCCCUU	2452	19268	HBV-1880	CHz-7	amino	stab1	a s a g g s c a c cUGAUAGggccuuaggccGaa Icuugga B	11037
2382	GAAGAAC U CCCUCUGC	2453	19269	HBV-2382	CHz-7	amino	stab1	g s c s g s a s g g cUGAUAGggccuuaggccGaa Iuucuc B	11038
2384	AGAACUC C CUCGCCU	2454	19270	HBV-2384	CHz-7	amino	stab1	asgsgs s g a g cUGAUAGggccuuaggccGaa Iaguucu B	11039
2385	GAACUCC C UCGCCUC	2455	19271	HBV-2385	CHz-7	amino	stab1	g s a s g g s c g a cUGAUAGggccuuaggccGaa Igaguuc B	11040
2422	GCGUCGC A GAAGAUC	2456	19272	HBV-2422	CHz-7	amino	stab1	g s a s u s c s u u cUGAUAGggccuuaggccGaa Icgacgc B	11041
2830	CAUAUUC U UGGGAAC	2457	19273	HBV-2830	CHz-7	amino	stab1	g s u s u s c c a cUGAUAGggccuuaggccGaa Iaauaug B	11042
3115	GCCAAAAAUUC G CAGUC	2458	20079	HBV-3115	GCl .Rz-5/10	stab2	g s a s c s g uGAUs g 9cauGcacauga gcg gaa uuuuggc B	11043	
381	AUCGCUGGAU G UGUCU	2459	20080	HBV-381	GCl .Rz-5/10	stab2	asg s a s a uGAUs g 9cauGcacauga gcg auccaggc gau B	11044	
476	UUGCCCGUUU G UCCUC	2460	20081	HBV-476	GCl .Rz-5/10	stab2	g s a s g s a uGAUs g 9cauGcacauga gcg aaacggcaa B	11045	
694	AGUGCCAUVU G UUCAG	2461	20082	HBV-694	GCl .Rz-5/10	stab2	c s u s g s a uGAUs g 9cauGcacauga gcg aaauggcacu B	11046	
1265	CUCCUCUGCC G AUCCA	2462	20083	HBV-1265	GCl .Rz-5/10	stab2	usgs su uGAUs g 9cauGcacauga gcg ggcagaggag B	11047	
1601	CUCUACCUCU G CACGU	2463	20084	HBV-1601	GCl .Rz-5/10	stab2	a s c s g s g uGAUs g 9cauGcacauga gcg agaggugaa g B	11048	
1881	CCUCCAAGCU G UGOCU	2464	20085	HBV-1881	GCl .Rz-5/10	stab2	asgsgs a uGAUs g 9cauGcacauga gcg acguuggagg B	11049	
1883	UCCAAGCUGU G CCUG	2465	20086	HBV-1883	GCl .Rz-5/10	stab2	c s a s s g uGAUs g 9cauGcacauga gcg acaggc uugga B	11050	
2388	GAACUCCUC G CCUCG	2466	20087	HBV-2388	GCl .Rz-5/10	stab2	c s g s a s g uGAUs g 9cauGcacauga gcg gagggagguuc B	11051	
381	GCUGGAU G UGUCUGC	2467	20091	HBV-381	Zin.Rz-7	amino	g s c s a s g s a c a GccgaaaagGCGAGugGuCu auccagc B	11052	
392	CUGGGGC G UUUUAUC	2468	20092	HBV-392	Zin.Rz-7	amino	g s a s u s a s a a GccgaaaagGCGAGugGuCu gcccgcag B	11053	
420	UCCUGCU G CUAUGCC	2469	20093	HBV-420	Zin.Rz-7	amino	g s g s c s a s u a g GccgaaaagGCGAGugGuCu agcagg a B	11054	
648	UAUGGGA G UGGGCCU	2470	20094	HBV-648	Zin.Rz-7	amino	a s g s c s c c a GccgaaaagGCGAGugGuCu ucccaua B	11055	
711	UCGUAGG G CUUUCCC	2471	20095	HBV-711	Zin.Rz-7	amino	g s g s g s a a g GccgaaaagGCGAGugGuCu ccuacga B	11056	
1262	CUCUCUCU G CGGAUCC	2472	20096	HBV-1262	Zin.Rz-7	amino	g s g s a s u c g GccgaaaagGCGAGugGuCu agaggag B	11057	
1835	CACCUCCU G CCUAAUC	2473	20097	HBV-1835	Zin.Rz-7	amino	g s a s u s s a g GccgaaaagGCGAGugGuCu agaggug B	11058	
2388	CUCCCUC G CCUCUGCA	2474	20098	HBV-2388	Zin.Rz-7	amino	u s g s c s s a g GccgaaaagGCGAGugGuCu gagggag B	11059	
192	GACCCCCU G CUCGUGU	2475	20099	HBV-192	Zin.Rz-7	amino	a s c s a s s g a g GccgaaaagGCGAGugGuCu aggguc B	11060	
198	UGCUCCGU G UUACAGG	2476	20100	HBV-198	Zin.Rz-7	amino	c s c u s s u a a GccgaaaagGCGAGugGuCu acggcca B	11061	

315	AAAUUC G CAGUCCC	2477	20101	HBV-315 Zin.Rz-7 amino	gsgsasug GccaaaaggCCGAGGGuCu gaauuu B	11062
383	GGAUGU G UCUGCG	2478	20102	HBV-383 Zin.Rz-6 amino	csgscsaga GccaaaaggCCGAGGGuCu acaucc B	11063
383	UGGAUGU G UCUGCGG	2479	20103	HBV-383 Zin.Rz-7 amino	cscsgscsaga GccaaaaggCCGAGGGuCu acaucc B	11064
387	GUGUCU G CGGCGU	2480	20104	HBV-387 Zin.Rz-6 amino	acsosgscsag GccaaaaggCCGAGGGuCu agacac B	11065
390	GUCUGCG G CGUUUA	2481	20105	HBV-390 Zin.Rz-7 amino	usasasasacg GccaaaaggCCGAGGGuCu cgcgac B	11066
392	UGCGGC G UUUUAU	2482	20106	HBV-392 Zin.Rz-6 amino	usasasasa GccaaaaggCCGAGGGuCu gccgca B	11067
425	UGCUAU G CCUCAU	2483	20107	HBV-425 Zin.Rz-6 amino	ususgsagg GccaaaaggCCGAGGGuCu auagca B	11068
425	CUGCUAU G CCUCAU	2484	20108	HBV-425 Zin.Rz-7 amino	gsusgsagg GccaaaaggCCGAGGGuCu auagcag B	11069
468	GUAUGUU G CCCGUU	2485	20109	HBV-468 Zin.Rz-7 amino	asasascgg GccaaaaggCCGAGGGuCu aacauac B	11070
476	CCCGUUU G UCCCUA	2486	20110	HBV-476 Zin.Rz-7 amino	usasgsaga GccaaaaggCCGAGGGuCu aaacggg B	11071
648	AUGGGA G UGGGCC	2487	20111	HBV-648 Zin.Rz-6 amino	gsgsccsca GccaaaaggCCGAGGGuCu ucccau B	11072
694	GCCAUUU G UUCAGUG	2488	20112	HBV-694 Zin.Rz-7 amino	cscscusgaa GccaaaaggCCGAGGGuCu aaauggc B	11073
699	UUGGUCA G UGGGUUC	2489	20113	HBV-699 Zin.Rz-7 amino	csgsascca GccaaaaggCCGAGGGuCu ugaacaa B	11074
1262	UCCUCU G CGGAUC	2490	20114	HBV-1262 Zin.Rz-6 amino	gsasuscsg GccaaaaggCCGAGGGuCu agaggc B	11075
1440	CCCGUCG G CGCUGAA	2491	20115	HBV-1440 Zin.Rz-7 amino	ususcsasgcg GccaaaaggCCGAGGGuCu cgacggg B	11076
1526	CACGGG G CGCAC	2492	20116	HBV-1526 Zin.Rz-6 amino	gsusgsqsg GccaaaaggCCGAGGGuCu ccccgug B	11077
1526	CCACGGG G CGCACU	2493	20117	HBV-1526 Zin.Rz-7 amino	agsgsusqsg GccaaaaggCCGAGGGuCu cgacggg B	11078
1557	CCCGUCU G UGCCUC	2494	20118	HBV-1557 Zin.Rz-7 amino	gsasgsqsgca GccaaaaggCCGAGGGuCu agacggg B	11079
1559	CGUCUGU G CCUCUC	2495	20119	HBV-1559 Zin.Rz-7 amino	gsasgsasagg GccaaaaggCCGAGGGuCu acagacg B	11080
1590	GCACUUC G CUUCACC	2496	20120	HBV-1590 Zin.Rz-7 amino	gsgsusqsga GccaaaaggCCGAGGGuCu gaauguc B	11081
1835	ACCUUCU G CCUAAU	2497	20121	HBV-1835 Zin.Rz-6 amino	asususasgg GccaaaaggCCGAGGGuCu agagu B	11082
2311	ACCAAAU G CCCCUAU	2498	20122	HBV-2311 Zin.Rz-7 amino	asusasgsqgg GccaaaaggCCGAGGGuCu auuuggu B	11083

2420	CCGGCUC G CAGAAGA	2499	20123	HBV-2420 Zin.Rz-7 amino	u _S s <u>S</u> s <u>S</u> cug GccgaaaggCCaGugaGGuCu gacgggg B	11084
65	CCUGCUG G UGGCUCC	2500	20124	HBV-65 Zin.Rz-7 amino	g _S g _S s _S cca GccgaaaggCCaGugaGGuCu cagcagg B	11085
192	ACCCCCU G CUCGUG	2501	20125	HBV-192 Zin.Rz-6 amino	c _S a _S C _S g _S ag GccgaaaggCCaGugaGGuCu aggggu B	11086
198	GCUCGU G UUACAG	2502	20126	HBV-198 Zin.Rz-6 amino	c _S u _S g _S u _S aa GccgaaaggCCaGugaGGuCu acggc B	11087
258	UAGACUC G UGGUGGA	2503	20127	HBV-258 Zin.Rz-7 amino	u _S C _S s _S cca GccgaaaggCCaGugaGGuCu gagucua B	11088
261	ACUCGUG G UGGACUU	2504	20128	HBV-261 Zin.Rz-7 amino	a _S a _S g _S u _S cca GccgaaaggCCaGugaGGuCu cacgagu B	11089
315	AAAUUC G CAGUC	2505	20129	HBV-315 Zin.Rz-6 amino	g _S g _S a _S c _S ug GccgaaaggCCaGugaGGuCu gaauu B	11090
381	CUGGAU G UGUCUG	2506	20130	HBV-381 Zin.Rz-6 amino	c _S a _S g _S as _S ca GccgaaaggCCaGugaGGuCu auccag B	11091
387	UGUGUCU G CGGGGUU	2507	20131	HBV-387 Zin.Rz-7 amino	a _S a _S C _S g _S ccg GccgaaaggCCaGugaGGuCu agacaca B	11092
390	UCUGCG G CGUUUU	2508	20132	HBV-390 Zin.Rz-6 amino	a _S a _S a _S cg GccgaaaggCCaGugaGGuCu cgcaga B	11093
417	CAUCCU G CUGCUA	2509	20133	HBV-417 Zin.Rz-6 amino	u _S a _S g _S c _S ag GccgaaaggCCaGugaGGuCu aggaug B	11094
420	CCUGCU G CUAUGC	2510	20134	HBV-420 Zin.Rz-6 amino	g _S C _S a _S u _S ag GccgaaaggCCaGugaGGuCu agcagg B	11095
468	UAUGUU G CCCGUU	2511	20135	HBV-468 Zin.Rz-6 amino	a _S a _S C _S g _S gg GccgaaaggCCaGugaGGuCu aacua B	11096
476	CCGUUU G UCCUCU	2512	20136	HBV-476 Zin.Rz-6 amino	a _S g _S a _S g _S ga GccgaaaggCCaGugaGGuCu aaacgg B	11097
677	GGCUCA G UUUACU	2513	20137	HBV-677 Zin.Rz-6 amino	a _S g _S u _S a _S aa GccgaaaggCCaGugaGGuCu ugagcc B	11098
677	UGGCUCA G UUUACUA	2514	20138	HBV-677 Zin.Rz-7 amino	u _S g _S u _S aaa GccgaaaggCCaGugaGGuCu ugagcc B	11099
685	UUACUA G UGCCAU	2515	20139	HBV-685 Zin.Rz-6 amino	a _S u _S g _S u _S ca GccgaaaggCCaGugaGGuCu uaguuaa B	11100
685	UUACUA G UGGCUU	2516	20140	HBV-685 Zin.Rz-7 amino	a _S u _S g _S u _S ca GccgaaaggCCaGugaGGuCu uaguuaa B	11101
687	UACUAGU G CCAUÜUG	2517	20141	HBV-687 Zin.Rz-7 amino	c _S a _S a _S ugg GccgaaaggCCaGugaGGuCu acuqua B	11102
699	UGUUCA G UGGÜUC	2518	20142	HBV-699 Zin.Rz-6 amino	g _S a _S C _S ca GccgaaaggCCaGugaGGuCu ugaaca B	11103
702	UCAGUG G UUCGUA	2519	20143	HBV-702 Zin.Rz-6 amino	u _S a _S C _S g _S aa GccgaaaggCCaGugaGGuCu cacuga B	11104
702	UUCAGUG G UUCGUAG	2520	20144	HBV-702 Zin.Rz-7 amino	c _S u _S a _S C _S g _S aa GccgaaaggCCaGugaGGuCu cacugaa B	11105

711	CGUAGG G CUUUCC	2521	20145 HBV-7111 Zin.Rz-6 amino	g s g s a s a g GccgaaaaggCCGA GugagGGuCu ccuacg B	11106
1006	UUGUGG G UCUUUU	2522	20146 HBV-1006 Zin.Rz-6 amino	a s a s a s a g GccgaaaaggCCGA GugagGGuCu ccacaa B	11107
1103	UUUCUC G CCAACU	2523	20147 HBV-1103 Zin.Rz-6 amino	a s g s u s s g GccgaaaaggCCGA GugagGGuCu gagaaa B	11108
1103	CUUUCUC G CCAACU	2524	20148 HBV-1103 Zin.Rz-7 amino	a s a s g s u s g GccgaaaaggCCGA GugagGGuCu gagaag B	11109
1184	GCCAAAGU G UUUGCUG	2525	20149 HBV-1184 Zin.Rz-7 amino	c s a s g s s a a a GccgaaaaggCCGA GugagGGuCu acuuuggc B	11110
1440	CCGUCG G CGCUGA	2526	20150 HBV-1440 Zin.Rz-6 amino	u s c a s g s c g GccgaaaaggCCGA GugagGGuCu cgacgg B	11111
1442	GUCCCC G CUGAAU	2527	20151 HBV-1442 Zin.Rz-6 amino	a s u s u s c a g GccgaaaaggCCGA GugagGGuCu gcccgcac B	11112
1442	CGUCGGC G CUGAAC	2528	20152 HBV-1442 Zin.Rz-7 amino	g s a s u s s c a g GccgaaaaggCCGA GugagGGuCu gggggag B	11113
1553	CUCCCC G UCUGUG	2529	20153 HBV-1553 Zin.Rz-6 amino	c s a s c a s a g GccgaaaaggCCGA GugagGGuCu gggggag B	11114
1557	CCGUCU G UGCCUJ	2530	20154 HBV-1557 Zin.Rz-6 amino	a s a s g s c a GccgaaaaggCCGA GugagGGuCu agacgg B	11115
1559	GUCUGU G CCUUUC	2531	20155 HBV-1559 Zin.Rz-6 amino	a s g s a s a g GccgaaaaggCCGA GugagGGuCu acagac B	11116
1583	CCGUGU G CACUUC	2532	20156 HBV-1583 Zin.Rz-6 amino	g s a s g s u g GccgaaaaggCCGA GugagGGuCu acacgg B	11117
1590	CACUUC G CUUAC	2533	20157 HBV-1590 Zin.Rz-6 amino	g s u s g s a g GccgaaaaggCCGA GugagGGuCu gaagug B	11118
1622	ACCACC G UGAACG	2534	20158 HBV-1622 Zin.Rz-6 amino	c s g s u s c a GccgaaaaggCCGA GugagGGuCu gguggu B	11119
1870	UGUUCAA G CCUCCAA	2535	20159 HBV-1870 Zin.Rz-7 amino	u s u s g s s a g GccgaaaaggCCGA GugagGGuCu uugaaca B	11120
1881	CCAAGCU G UGCCUJ	2536	20160 HBV-1881 Zin.Rz-7 amino	c s a s g s c a GccgaaaaggCCGA GugagGGuCu agcuugg B	11121
1883	AGCUGU G CCUUGG	2537	20161 HBV-1883 Zin.Rz-6 amino	c s c s a s s g GccgaaaaggCCGA GugagGGuCu acacu B	11122
1883	AAGCUGU G CCUUGGG	2538	20162 HBV-1883 Zin.Rz-7 amino	c s c s s a s s g GccgaaaaggCCGA GugagGGuCu acacuu B	11123
2311	CCAAAU G CCCCUA	2539	20163 HBV-2311 Zin.Rz-6 amino	u s a s g s s s g GccgaaaaggCCGA GugagGGuCu auuugg B	11124
2347	ACUGUU G UUAGAC	2540	20164 HBV-2347 Zin.Rz-6 amino	g s u s c u s s a a GccgaaaaggCCGA GugagGGuCu aacagu B	11125
2364	AGGCAG G UCCCCU	2541	20165 HBV-2364 Zin.Rz-6 amino	a s g s g s s g a GccgaaaaggCCGA GugagGGuCu cugccu B	11126
2364	GAGGCAG G UCCCCUA	2542	20166 HBV-2364 Zin.Rz-7 amino	u s a s g s s s g a GccgaaaaggCCGA GugagGGuCu cuqcuc B	11127

2388	UCCCCUC G CCUCGGC	2543	20167	HBV-2388 Zin.Rz-6 amino stab2	gssgsasgg GccaaaggGCGaGugaGGuCu gagggg B	11128
2393	CGCCUC G CAGACG	2544	20168	HBV-2393 Zin.Rz-6 amino stab2	csgsuscug GccaaaggGCGaGugaGGuCu gagggcg B	11129
2417	CGCCGC G UCGCAG	2545	20169	HBV-2417 Zin.Rz-6 amino stab2	csusgssga GccaaaggGCGaGugaGGuCu gggggcg B	11130
2420	CGCGUC G CAGAAG	2546	20170	HBV-2420 Zin.Rz-6 amino stab2	csususcsug GccaaaggGCGaGugaGGuCu gacggcg B	11131
2474	CAUAAG G UGGGAA	2547	20171	HBV-2474 Zin.Rz-6 amino stab2	ususcsca GccaaaggGCGaGugaGGuCu cuuaug B	11132
381	GCUGGAU G UGUCUGC	2467	20172	HBV-381 Amb.Rz-7 stab2	gssasgsaca gga L uccttutcaaggaa L ucGGGG auccaggc B	11133
648	UAUGGGA G UGGGCCU	2470	20173	HBV-648 Amb.Rz-7 stab2	agsgsccca gga L uccttutcaaggaa L ucGGGG ucccaa B	11134
198	UGCUCGU G UUACAGG	2476	20174	HBV-198 Amb.Rz-7 stab2	csusgsuaa gga L uccttutcaaggaa L ucGGGG acgagca B	11135
377	UAUCCGU G GAUGUGU	2548	20175	HBV-377 Amb.Rz-7 stab2	acsascsauc gga L uccttutcaaggaa L ucGGGG agcgaua B	11136
378	AUCGCUG G AUGUGC	2549	20176	HBV-378 Amb.Rz-7 stab2	gssascsau gga L uccttutcaaggaa L ucGGGG cagcgau B	11137
383	UGGAUGU G UCUGGG	2479	20177	HBV-383 Amb.Rz-7 stab2	cssgscsaga gga L uccttutcaaggaa L ucGGGG acaucca B	11138
383	GGAUGU G UCUGCG	2478	20178	HBV-383 Amb.Rz-6 stab2	csqsgsasgg gga L uccttutcaaggaa L ucGGGG acaucc B	11139
648	AUGGGA G UGGGCC	2487	20179	HBV-648 Amb.Rz-6 stab2	gsgscscsa gga L uccttutcaaggaa L ucGGGG ucccaa B	11140
650	UGGGAGU G GGCCCUA	2550	20180	HBV-650 Amb.Rz-7 stab2	usgsasgsgc gga L uccttutcaaggaa L ucGGGG acuccca B	11141
650	GGGAGU G GGCCUC	2551	20181	HBV-650 Amb.Rz-6 stab2	.gssgsgsc gga L uccttutcaaggaa L ucGGGG acuccc B	11142
694	GCCAUUU G UUCAGUG	2488	20182	HBV-694 Amb.Rz-7 stab2	casscsugaa gga L uccttutcaaggaa L ucGGGG aauggc B	11143
699	UUGGUUA G UGGGUUCG	2489	20183	HBV-699 Amb.Rz-7 stab2	Csgsasccca gga L uccttutcaaggaa L ucGGGG ugaacaa B	11144
701	GUUCAGU G GUUCGUA	2552	20184	HBV-701 Amb.Rz-7 stab2	usascsgaac gga L uccttutcaaggaa L ucGGGG acugaac B	11145
710	UUCGUAG G GCUUUCC	2553	20185	HBV-710 Amb.Rz-7 stab2	gssgasasagg gga L uccttutcaaggaa L ucGGGG cuacgaa B	11146
1525	CCACGG G GCGCAC	2554	20186	HBV-1525 Amb.Rz-6 stab2	gusgscsgc gga L uccttutcaaggaa L ucGGGG cggugg B	11147
1624	CACCGU G AACGCC	2555	20187	HBV-1624 Amb.Rz-6 stab2	gsgcsgsuu gga L uccttutcaaggaa L ucGGGG acggug B	11148
2069	CACUCA G GCAAGC	2556	20188	HBV-2069 Amb.Rz-6 stab2	gcsususgc gga L uccttutcaaggaa L ucGGGG ugagug B	11149
2375	CCUAGAA G AAGAACU	2557	20189	HBV-2375 Amb.Rz-7 stab2	agsususcuu gga L uccttutcaaggaa L ucGGGG wcuuagg B	11150
2476	AUAAGGU G GGAAGACU	2558	20190	HBV-2476 Amb.Rz-7 stab2	agsususuc gga L uccttutcaaggaa L ucGGGG accuuau B	11151
65	CCUGCGUG G UGGCUCC	2500	20191	HBV-65 Amb.Rz-7 stab2	gsgsasgcca gga L uccttutcaaggaa L ucGGGG caggagg B	11152
67	GCUGGU G GCUCCA	2559	20192	HBV-67 Amb.Rz-6 stab2	usgsasgc gga L uccttutcaaggaa L ucGGGG accaggc B	11153
198	GCUCGU G UUACAG	2502	20193	HBV-198 Amb.Rz-6 stab2	csusgsaa gga L uccttutcaaggaa L ucGGGG acggagc B	11154
260	GACUCGU G GUGGACU	2560	20194	HBV-260 Amb.Rz-7 stab2	agsusscac gga L uccttutcaaggaa L ucGGGG acgaguc B	11155
263	UCGUGGU G GACUUUCU	2561	20195	HBV-263 Amb.Rz-7 stab2	agsasasguc gga L uccttutcaaggaa L ucGGGG accacacg B	11156
377	AUCGGU G GAUGUG	2562	20196	HBV-377 Amb.Rz-6 stab2	cascsasuc gga L uccttutcaaggaa L ucGGGG agcgau B	11157
378	UCGCGUG G AUGUGU	2563	20197	HBV-378 Amb.Rz-6 stab2	acsascsau gga L uccttutcaaggaa L ucGGGG cagcga B	11158

476	CCGUUU G UCCUCU	2512	20198	HBV-476 Amb.Rz-6 stab2	a g s a g s g a g g a L u c c c t t u c a a g g a L u c C G G G a a a c g g B	11159
651	GGGAGUG G GCCUCAG	2564	20199	HBV-651 Amb.Rz-7 stab2	c u s g s a g g c g g a L u c c c t t u c a a g g a L u c C G G G c a c u c c c B	11160
677	UGGCUCA G UUUACUA	2514	20200	HBV-677 Amb.Rz-7 stab2	u s a s g s u a a g g a L u c c c t t u c a a g g a L u c C G G G u g a g c c a B	11161
685	UUUACUA G UGCCAUU	2516	20201	HBV-685 Amb.Rz-7 stab2	a s a s u s g g c g g a L u c c c t t u c a a g g a L u c C G G G u a g u a a a B	11162
702	UUCAGUG G UUCGUAG	2520	20202	HBV-702 Amb.Rz-7 stab2	c u s a s c g g a g g a L u c c c t t u c a a g g a L u c C G G G c a c u g a a B	11163
709	GUUCGUA G GGCUIUC	2565	20203	HBV-709 Amb.Rz-7 stab2	g s a s a s g g c g g a L u c c c t t u c a a g g a L u c C G G G u a c g a a c B	11164
710	UCGUAG G GCUUUC	2566	20204	HBV-710 Amb.Rz-6 stab2	g s a s a s g c g g a L u c c c t t u c a a g g a L u c C G G G c u a c g a B	11165
747	UAUGGAU G AUGGGU	2567	20205	HBV-747 Amb.Rz-7 stab2	a s c c s a s c a u g g a L u c c c t t u c a a g g a L u c C G G G a u c c a u a B	11166
1557	CCGUCU G UGCCUU	2530	20206	HBV-1557 Amb.Rz-6 stab2	a s a g s g c a g g a L u c c c t t u c a a g g a L u c C G G G a g a c g g B	11167
1881	CCAAGCU G UGCCUUG	2536	20207	HBV-1881 Amb.Rz-7 stab2	c s a s a s g g c a g g a L u c c c t t u c a a g g a L u c C G G G a g c u u g g B	11168
2347	ACUGUU G UUAGAC	2540	20208	HBV-2347 Amb.Rz-6 stab2	g s u s c u s a a g g a L u c c c t t u c a a g g a L u c C G G G a a c a g u B	11169
2375	CUAGAA G AAGAAC	2568	20209	HBV-2375 Amb.Rz-6 stab2	g s u s u s c u u g g a L u c c c t t u c a a g g a L u c C G G G u u c u a g B	11170
2378	GAAGAA G AACUCC	2569	20210	HBV-2378 Amb.Rz-6 stab2	g s g g a s g s u u g g a L u c c c t t u c a a g g a L u c C G G G u u c u u c B	11171
2423	CGUCGCA G AAAGAUU	2570	20211	HBV-2423 Amb.Rz-7 stab2	a s g s a s u c u u g g a L u c c c t t u c a a g g a L u c C G G G u g c a c g B	11172
2426	GCAGAA G AUUCUA	2571	20212	HBV-2426 Amb.Rz-6 stab2	u s g s a s g a u g g a L u c c c t t u c a a g g a L u c C G G G u u c u g c B	11173
2426	CGCAGAA G AUUCAA	2572	20213	HBV-2426 Amb.Rz-7 stab2	u s u s g s a s g a u g g a L u c c c t t u c a a g g a L u c C G G G u u c u g c g B	11174
2476	UAAGGU G GGAAAC	2573	20214	HBV-2476 Amb.Rz-6 stab2	g s u s u s u c c g g a L u c c c t t u c a a g g a L u c C G G G a c c u u a B	11175
2477	UAAGGGUG G GAAACUU	2574	20215	HBV-2477 Amb.Rz-7 stab2	a s a s g g u s u c c g g a L u c c c t t u c a a g g a L u c C G G G c a c c u u a B	11176
2477	AAGGGUG G GAAACU	2575	20216	HBV-2477 Amb.Rz-6 stab2	a s g g u s u s u c c g g a L u c c c t t u c a a g g a L u c C G G G c a c c u u B	11177
1607	UGCACGU C GCAUGGA	20697	HBV-1607 Rz-7 ally1 stab1	u s c s c s a s u g c c u g g c u u u a g g c G a a A c g u g c a B	11178	
1887	GUGCCU U GGGUGG	20698	HBV-1887 Rz-6 ally1 stab1	c s c s a s c s c c c u g g a u G a g g c c u u u a g g c G a a A c g u g c B	11179	
1607	GCACGU C GCAUGG	20699	HBV-1607 Rz-6 ally1 stab1	c s c s a s u s g c c u g g a u G a g g c c u u u a g g c G a a A c g u g c B	11180	
1607	UGCACGU C GCAUGGA	2374	(6/3)	HBV-1607 Rz-7 ally1 stab1	u s c s c s a s u g c c u g g a u G a g g c c u u u a g g c G a a A c g u g c B	11181
1887	GUGCCU U GGGUGG	2576	(6/4)	HBV-1887 Rz-6 ally1 stab1	c s c s a s c s c c c u g g a u G a g g c c u u u a g g c G a a A c g c a c B	11182
1887	UGUGCCU U GGGUGG	20701	(6/3)	HBV-1887 Rz-7 ally1 stab1	g s s c s a s c c c c u g g a u G a g g c c u u u a g g c G a a A g g c a c a B	11183
313	CCAAAAU U CGCAGUC	2346	22798	HBV-313 Rz-7 Ome stab1	g a c u g g g c u g a u G a g g c c c u u u a g g c G a a A u u u u g g B	11184
408	UCUUCCU C UGCAUCC	2349	22799	HBV-408 Rz-7 Ome stab1	g g a u g g c a c u g a u G a g g c c c u u u a g g c G a a A g g a a g a B	11185
1756	AGGAGGU U AGGUAAA	2353	22800	HBV-1756 Rz-7 Ome stab1	u u a a c c u c u g a u G a g g c c c u u u a g g c G a a A c c u c c u B	11186
10	CUCCAACC A CUUUCCA	2356	22770	HBV-10 CHz-7 Ome stab1	u g g g a a g c u g a u G a g g c c c u u u a g g c G a a I g u g g a g B	11187
335	UCCAGUC A CUCACCA	2357	22771	HBV-335 CHz-7 Ome stab1	u g g g a g c u g a u G a g g c c c u u u a g g c G a a I a c u g g a B	11188
273	CUUCUCU C AAUUUUC	2399	22645	HBV-273 Rz-7 ally1 stab1	g s a s a s a s a u u c u g a u G a g g c c c u u u a g g c G a a A g a g a a g B	11189

273	CUUCUCU C AAUUUUC	2399	22646	HBV-273 Rz-7 allyl stab1 (7/4-GUUA)	gsasasasauu cUGAUGaggccuuaggccGaa Agagaag B	11190
273	CUUCUCU C AAUUUUC	2399	22648	HBV-273 Rz-7 allyl stab1 (7/3-GAAA)	gsasasasauu cUGAUGaggccaaaggccGaa Agagaag B	11191
273	CUUCUCU C AAUUUUC	2578	22650	HBV-273 Rz-7 allyl stab1 (7/4-GAAA)	gsasasasauu cUGAUGaggccaaaggccGaa Agagaag B	11192
273	UUCUCU C AAUUUU	2578	22644	HBV-273 Rz-6 allyl stab1 (6/3-GUUA)	a.sasasasauu cUGAUGaggccuuaggccGaa Agagaag B	11193
273	UUCUCU C AAUUUU	2578	22647	HBV-273 Rz-6 allyl stab1 (6/3-GAAA)	a.sasasasauu cUGAUGaggccaaaggccGaa Agagaag B	11194
273	UUCUCU C AAUUUU	2579	22649	HBV-273 Rz-6 allyl stab1 (6/4-GAAA)	a.sasasasauu cUGAUGaggccaaaggccGaa Agagaag B	11195
350	ACCUGUU G UCCUCCA	2580	22714	HBV-350 GCl.Rz-7 5ribo stab3	uggagga uGAUg gcauGcacuaugc gCg aacaggB	11196
1253	CCUUGU G UCUCUC	2581	22715	HBV-1253 GCl.Rz-7 5ribo stab3	gaggaga uGAUg gcauGcacuaugc gCg acaaggB	11197
1856	UGUCAU G UCCUACU	2582	22716	HBV-1856 GCl.Rz-7 5ribo stab3	aguagga uGAUg gcauGcacuaugc gCg augaacB	11198
1966	GCCUUCU G ACUUUU	2583	22717	HBV-1966 GCl.Rz-7 5ribo stab3	aagaagu uGAUg gcauGcacuaugc gCg agaaggB	11199
3132	UCCUCCU G CCUCAC	2584	22718	HBV-3132 GCl.Rz-7 5ribo stab3	guggagg uGAUg gcauGcacuaugc gCg aggaggB	11200
332	AUCUCCA G UCACUCA	2579	22742	HBV-332 Zin.Rz-7 amino stab4	ugaguga gccgaaaaggCgaggugagGUCu ugaggau B	11201
350	ACCUGUU G UCCUCCA	2585	22743	HBV-350 Zin.Rz-7 amino stab4	uggagga gccgaaaaggCgaggugagGUCu aacaggB	11202
410	UCCUCU G CAUCCUG	2580	22744	HBV-410 Zin.Rz-7 amino stab4	caggauq qccgaaaaggCgaggugagGU Cu agaggaa B	11203
1253	CCUUUGU G UCUCCUC	2586	22745	HBV-1253 Zin.Rz-7 amino stab4	gaggaga qccgaaaaggCgaggugagGU Cu acaaaggB	11204
1754	GGAGGGAG G UUAGGUU	2587	22746	HBV-1754 Zin.Rz-7 amino stab4	aaccuaa qccgaaaaggCgaggugagGU Cu cuccuc B	11205
407	AUCUJCC U CUGCAUC	2588	22772	HBV-407 CHz-7 Ome stab1	gaugcag CUGAUGAgggccquuaggccGAA Igaagau B	11206
1848	UCAUCUC A UGUUCAU	2589	22773	HBV-1848 CHz-7 Ome stab1	augaaca CUGAUGAgggccquuaggccGAA Tagauga B	11207
3124	GCAGCUC C UCCUCU	2590	22774	HBV-3124 CHz-7 Ome stab1	aggaggaa CUGAUGAgggccquuaggccGAA TagcuggC B	11208
2165	GUAGCU A UGUCAAC	2591	22801	HBV-2165 Rz-7 Ome stab1	guugaca CUGAUGAgggccquuaggccGAA Agcugac B	11209
2706	CCGUAUU A UCCAGAG	2579	22802	HBV-2706 Rz-7 Ome stab1	cucugga CUGAUGAgggccquuaggccGAA Aauacgg B	11210
350	ACCUGUU G UCCUCUCA	2584	22966	HBV-350 Dz-7 stab3	uggagga GGCTAGCTAACCGA aacagg B	11211
332	AUCUCCA G UCACUCA	2592	22967	HBV-332 Dz-7 stab3	ugaguga GGCTAGCTAACCGA uggagau B	11212
1840	CUGCCUA A UCAUCUC	2593	22968	HBV-1840 Dz-7 stab3	gagauga GGCTAGCTAACCGA uaggcag B	11213
358	UCCUCCA A UUDGUCC	2580	22969	HBV-358 Dz-7 stab3	ggacaaa GGCTAGCTAACCGA uggagga B	11214
1253	CCUUTUGU G UCUCUC	2346	22970	HBV-1253 Dz-7 stab3	gaggaga GGCTAGCTAACCGA acaaagg B	11215
			20599	SAC	Csgasasauu cUGAUGaccggaaaggGaa Aagggb	10834

UPPER CASE = RIBO

UNDERLINE = DEOXY

lower case = 2'-O-methyl

I = inosine

s = phosphorothioate linkage

B = inverted deoxyabasic residue

U = 2'-deoxy-2'-C-allyl Uridine

U = 2'-deoxy-2'-amino Uridine

C = 2'-deoxy-2'-amino Cytidine

Table XII: Group Designation and Dosage levels for HBV transgenic mouse study

Group	Compound	Dose	Number of Mice	Duration of Treatment
1	RPI.18341 (site 273)	100 mg/kg/day*	10F	14 days
2	RPI.18371 (site 1833)	100 mg/kg/day*	10F	14 days
3	RPI.18418 (site 1873)	100 mg/kg/day*	10F	14 days
4	RPI.18372 (site 1874)	100 mg/kg/day*	10F	14 days
5	Saline control	100 mg/kg/day*	10F	14 days
6	Untreated		10F	0 days

*administered via sc infusion using Alzet® mini-osmotic pumps

TABLE XIII: GROUP DESIGNATION AND DOSAGE LEVELS FOR HBV TRANSGENIC MOUSE STUDY

Group	Compound	Dose	Number of Mice	Duration of Treatment
1	RPI.18341 (site 273)	100 mg/kg/day*	15 (M or F)	14 days
2	RPI.18341 (site 273)	30 mg/kg/day*	15 (M or F)	14 days
3	RPI.18341 (site 273)	10 mg/kg/day*	15 (M or F)	14 days
4	RPI.18371 site 1833	100 mg/kg/day*	15 (M or F)	14 days
5	RPI.18371 site 1833	30 mg/kg/day*	15 (M or F)	14 days
6	RPI.18371 site 1833	10 mg/kg/day*	15 (M or F)	14 days
7	SAC (RPI.20599)	100 mg/kg/day*	15 (M or F)	14 days
8	SAC (RPI.20599)	30 mg/kg/day*	15 (M or F)	14 days
9	SAC (RPI.20599)	10 mg/kg/day*	15 (M or F)	14 days
10	Saline control	12 µl/day*	15 (M or F)	14 days
11	3TC® control	50 mg/kg/day, PO	15 (M or F)	14 days

*administered via sc infusion using Alzet® mini-osmotic pumps

Table XIV: HBV RT primer Decoy sequences

Length	Decoy Sequence	Seq ID No.
4	AUUC	11216
4	CAUU	11217
4	UCAU	11218
4	UUCA	11219
5	AUUCA	11220
5	CAUUC	11221
5	UCAUU	11222
5	UUCAU	11223
6	AUUCAU	11224
6	CAAUCA	11225
6	UCAUUC	11226
6	UUCAUU	11227
7	AUUCAUU	11228
7	CAAUCAU	11229
7	UCAUUCA	11230
7	UUCAUUC	11231
8	AUUCAUUC	11232
8	CAAUCAUU	11233
8	UCAUUCAU	11234
8	UUCAUUCA	11235
9	AUUCAUCA	11236
9	CAAUCAUUC	11237
9	UCAUUCAUU	11238
9	UUCAUUCAU	11239
10	AUUCAUCAU	11240
10	CAAUCAUCA	11241
10	UCAAUCAUUC	11242
10	UUCAUUCAUU	11243
11	AUUCAUCAUU	11244
11	CAAUCAUUCAU	11245
11	UCAUUCAUCA	11246
11	UUCAUUCAUUC	11247
12	AUUCAUCAUUC	11248
12	CAAUCAUUCAUU	11249
12	UCAAUCAUCAU	11250
12	UUCAUUCAUCA	11251
13	AUUCAUCAUUCA	11252
13	CAAUCAUUCAUUC	11253
13	UCAAUCAUUCAUU	11254
13	UUCAAUCAUCAU	11255
14	AUUCAUCAUCAU	11256
14	CAAUCAUUCAUCA	11257
14	UCAAUCAUCAUUC	11258
14	UUCAAUCAUCAUU	11259
15	AUUCAUCAUUCAUU	11260
15	CAAUCAUUCAUCAU	11261

15	UCAUUCAUUCAAUCA	11262
15	UUCAUUCAUUCAUUC	11263
16	AUUCAUUCAUUCAUUC	11264
16	CAUUCAUUCAUUCAUU	11265
16	UCAUUCAUUCAAUCAU	11266
16	UUCAUUCAUUCAUCA	11267
17	AUUCAUUCAUUCAUUCA	11268
17	CAUUCAUUCAUUCAUUC	11269
17	UCAUUCAUUCAUUCAUU	11270
17	UUCAUUCAUUCAUUCAU	11271
18	AUUCAUUCAUUCAUUCAU	11272
18	CAUUCAUUCAUUCAUCA	11273
18	UCAUUCAUUCAUUCAUC	11274
18	UUCAUUCAUUCAUUCAUU	11275
19	AUUCAUUCAUUCAUUCAUU	11276
19	CAUUCAUUCAUUCAUCAU	11277
19	UCAUUCAUUCAUUCAUCA	11278
19	UUCAUUCAUUCAUUCAUUC	11279
20	AUUCAUUCAUUCAUUCAUUC	11280
20	CAUUCAUUCAUUCAUCAUU	11281
20	UCAUUCAUUCAUUCAUCAU	11282
20	UUCAUUCAUUCAUUCAUCA	11283
21	AUUCAUUCAUUCAUUCAUCA	11284
21	CAUUCAUUCAUUCAUCAUC	11285
21	UCAUUCAUUCAUUCAUCAUU	11286
21	UUCAUUCAUUCAUUCAUCAU	11287
22	CAUUCAUUCAUUCAUCAUCA	11288
22	UCAUUCAUUCAUUCAUUCAUUC	11289
22	UUCAUUCAUUCAUUCAUCAUU	11290
23	UCAUUCAUUCAUUCAUCA	11291
23	UUCAUUCAUUCAUUCAUCAUC	11292
24	UUCAUUCAUUCAUUCAUCAUCA	11293

Table XV: Synthetic Nucleic acid molecules

RPI#	Alias	Sequence	SeqID
24961	HBV DR1 2'Oallyl P=S	g _s c _s a _s g _s a _s g _s g _s u _s g _s a _s a _s B	11294
24997	HBV DR1 2'Oallyl P=S control	a _s a _s g _s u _s g _s g _s a _s g _s a _s c _s g _s B	11295
24956	HBV 1866-1869 1x 2'Oallyl P=S	u _s u _s c _s a _s B	11296
24992	HBV 1866-1869 1x 2'Oallyl P=S control	a _s c _s u _s u _s B	11297
24941	HBV 1866-1869 2x 2'Oallyl P=S	u _s u _s c _s a _s u _s u _s c _s a _s B	11298
24959	HBV 1866-1869 2x 2'Oallyl P=S control	a _s c _s u _s u _s a _s c _s u _s u _s B	11299
24944	HBV 1866-1869 3x 2'Oallyl P=S	u _s u _s c _s a _s u _s u _s c _s a _s u _s u _s c _s a _s B	11300
24962	HBV 1866-1869 3x 2'Oallyl P=S control	a _s c _s u _s u _s a _s c _s u _s u _s a _s c _s u _s u _s B	11301
24945	HBV 1866-1869 4x 2'Oallyl P=S	u _s u _s c _s a _s B	11302
24963	HBV 1866-1869 4x 2'Oallyl P=S control	a _s c _s u _s u _s B	11303
24938	HBV 1866-1869 2'Oallyl P=S	u _s g _s a _s a _s B	11304
24974	HBV 1866-1869 2'Oallyl P=S control	a _s a _s g _s u _s B	11305
24940	HBV 1866-1872 2'Oallyl P=S	g _s c _s u _s u _s g _s a _s a _s B	11306
24958	HBV 1866-1872 2'Oallyl P=S control	a _s a _s g _s u _s u _s c _s g _s B	11307
24943	HBV 1866-1876 2'Oallyl P=S	g _s g _s a _s g _s g _s c _s u _s u _s g _s a _s a _s B	11308
24979	HBV 1866-1876 2'Oallyl P=S control	a _s a _s g _s u _s u _s c _s g _s g _s a _s g _s g _s B	11309
18341	HBV-273 UH.Rz-7 allyl stab1	g _s a _s a _s a _s auu cUGAUAGggccguuaggccGaa Agagaag B	10887
24588	HBV-273 UH.Rz-7 allyl stab1 inact3 scram1 (GUUA SAC)	a _s a _s u _s g _s agg cUAGuGacgccguuaggcgGaa Aaaugaa B	11310
24929	HBV 1866-1969 2'Omethyl	ugaab	11311
24965	HBV 1866-1969 2'Omethyl control	aaguB	11312
24934	HBV 1866-1876 2'Omethyl	ggaggcuugaaB	11313
24970	HBV 1866-1876 2'Omethyl control	aaguucggaggB	11314
24976	HBV 1866-1872 2'Omethyl	gcuugaab	11315
24949	HBV 1866-1872 2'Omethyl control	aaguucgB	11316
24952	HBV DR1 2'Omethyl	gcagaggugaaB	11317
24988	HBV DR1 2'Omethyl control	aaguggagacgB	11318
24947	HBV 1866-1869 1x 2'Omethyl	uucaB	11319
24983	HBV 1866-1869 1x 2'Omethyl control	acuuB	11320
24986	HBV 1866-1869 2x 2'Omethyl	uucauucaB	11321
24950	HBV 1866-1869 2x 2'Omethyl control	acuuuacuuB	11322

a, g, c, u = all 2'-O-allyl

a, g, c, u = 2'-O-methyl

U=2'-C-allyl Uridine

S= phosphorothioate

B= inverted deoxyabasic

Table XVI: Comparison of Tumor Weight to HBV DNA concentration in mice inoculated with HepG2.2.15 cells

Time point (days)	HBV DNA copies/mL serum	Tumor weight (milligrams)
1	Below detection	No tumor
1	Below detection	No tumor
1	Below detection	No tumor
1	Below detection	No tumor
7	Below detection	No tumor
7	Below detection	No tumor
7	Below detection	No tumor
7	Below detection	No tumor
14	Below detection	No tumor
14	Below detection	No tumor
14	Below detection	No tumor
14	Below detection	No tumor
35	356	33
35	125083	167
35	578	No tumor
35	386	56
42	493	No tumor
42	114431	790
42	94025	359
42	111882	647
49	189885	816
49	Below detection	No tumor
49	293	90
49	41477	2521

Table XVII: Comparison of Tumor Weight to HBV DNA concentration in mice inoculated with G418 resistant HepG2.2.15 cells

Time point (days)	HBV DNA copies/mL serum	Tumor weight (milligrams)
37	7000	1120.0
37	no sample	no sample
37	400000	1962.3
37	26000	558.5
37	380000	2286.0
37	100	317.2
37	52000	1429.0
37	100	427.4
37	26000	813.2
37	1400	631.6
37	186000	1101.5
37	134000	1573.0
37	17800	1040.0
37	16600	1327.2
37	8200	275.7
37	68000	632.8
37	24000	1090.0
37	58000	1082.7
37	12400	1116.3
37	100	763.3

Table XVIII: HCV DNAzyme and Substrate Sequence

Pos	Substrate	SEQ ID	DNAZYME	SEQ ID
10	UGGGGGCG A CACUCCAC	2594	GTGGAGTG GGCTAGCTACAACGA CGCCCCCA	11343
12	GGGGCGAC A CUCCACCA	2595	TGGTGGAG GGCTAGCTACAACGA GTCGCCCC	11344
17	GACACUCC A CCAUAGAU	2596	ATCTATGG GGCTAGCTACAACGA GGAGTGTC	11345
20	ACUCCACC A UAGAUACAC	2597	GTGATCTA GGCTAGCTACAACGA GGTGGAGT	11346
24	CACCAUAG A UCACUCCC	2598	GGGAGTGA GGCTAGCTACAACGA CTATGGTG	11347
27	CAUAGAUC A CUCCCCUG	2599	CAGGGGAG GGCTAGCTACAACGA GATCTATG	11348
35	ACUCCCCU G UGAGGAAC	2600	GTTCCCTCA GGCTAGCTACAACGA AGGGGAGT	11349
42	UGUGAGGA A CUACUGUC	2601	GACAGTAG GGCTAGCTACAACGA TCCTCACA	11350
45	GAGGAACU A CUGUCUUC	2602	GAAGACAG GGCTAGCTACAACGA AGTTCCCTC	11351
48	GAACUACU G UCUUCACG	2603	CGTGAAGA GGCTAGCTACAACGA AGTAGTTC	11352
54	CUGUCUUC A CGCAGAAA	2604	TTTCTGCG GGCTAGCTACAACGA GAAGACAG	11353
56	GUCUUCAC G CAGAAAGC	2605	GCTTTCTG GGCTAGCTACAACGA GTGAAGAC	11354
63	CGCAGAAA G CGUCUAGC	2606	GCTAGACG GGCTAGCTACAACGA TTTCTGCG	11355
65	CAGAAAGC G UCUAGCCA	2607	TGGCTAGA GGCTAGCTACAACGA GCTTTCTG	11356
70	AGCGUCUA G CCAUGGCG	2608	CGCCATGG GGCTAGCTACAACGA TAGACGCT	11357
73	GUCUAGCC A UGGCGUUA	2609	TAACGCCA GGCTAGCTACAACGA GGCTAGAC	11358
76	UAGCCAUG G CGUUAGUA	2610	TACTAACG GGCTAGCTACAACGA CATGGCTA	11359
78	GCCAUGGC G UUAGUAUG	2611	CATACTAA GGCTAGCTACAACGA GCCATGGC	11360
82	UGGCGUUA G UAUGAGUG	2612	CACTCATA GGCTAGCTACAACGA TAACGCCA	11361
84	GCGUUAGU A UGAGUGUC	2613	GACACTCA GGCTAGCTACAACGA ACTAACGC	11362
88	UAGUAUGA G UGUCGUGC	2614	GCACGACA GGCTAGCTACAACGA TCATACTA	11363
90	GUUAUGAGU G UCGUGGAG	2615	CTGCACGA GGCTAGCTACAACGA ACTCATAAC	11364
93	UGAGUGUC G UGCAGCCU	2616	AGGCTGCA GGCTAGCTACAACGA GACACTCA	11365
95	AGUGUCGU G CAGCCUCC	2617	GGAGGGCTG GGCTAGCTACAACGA ACGACACT	11366
98	GUCGUGCA G CCUCCAGG	2618	CCTGGAGG GGCTAGCTACAACGA TGACGAC	11367
107	CCUCCAGG A CCCCCCCC	2619	AGGGGGGG GGCTAGCTACAACGA CCTGGAGG	11368
125	CCGGGAGA G CCAUAGUG	2620	CACTATGG GGCTAGCTACAACGA TCTCCCGG	11369
128	GGAGAGCC A UAGUGGUC	2621	GACCACTA GGCTAGCTACAACGA GGCTCTCC	11370
131	GAGCCAUA G UGGUCUGC	2622	GCAGACCA GGCTAGCTACAACGA TATGGCTC	11371
134	CCAUAGUG G UCUGCGGA	2623	TCCGCAGA GGCTAGCTACAACGA CACTATGG	11372
138	AGUGGUCU G CGGAACCG	2624	CGGTTCCG GGCTAGCTACAACGA AGACCACT	11373
143	UCUGCGGA A CCGGUGAG	2625	CTCACCGG GGCTAGCTACAACGA TCCGCAGA	11374
147	CGGAACCG G UGAGUACA	2626	TGTACTCA GGCTAGCTACAACGA CGGTTCCG	11375
151	ACCCGUGA G UACACCGG	2627	CCGGTGTA GGCTAGCTACAACGA TCACCGGT	11376
153	CGGUGAGU A CACCGGAA	2628	TTCCGGTG GGCTAGCTACAACGA ACTCACCG	11377
155	GUGAGUAC A CCGGAAUU	2629	AATTCCGG GGCTAGCTACAACGA GTACTCAC	11378
161	ACACCGGA A UUGCCAGG	2630	CCTGGCAA GGCTAGCTACAACGA TCCGGTGT	11379
164	CCGGAAUU G CCAGGACG	2631	CGTCCTGG GGCTAGCTACAACGA AATTCCGG	11380
170	UUGCCAGG A CGACCGGG	2632	CCCGGGTCG GGCTAGCTACAACGA CCTGGCAA	11381
173	CCAGGACG A CCGGGUCC	2633	GGACCCGG GGCTAGCTACAACGA CGTCCTGG	11382
178	ACGACCGG G UCCUUUCU	2634	AGAAAGGA GGCTAGCTACAACGA CCGGTCGT	11383
190	UUUCUUGG A UCAACCCG	2635	CGGGTTGA GGCTAGCTACAACGA CCAAGAAA	11384
194	UUGGAUCA A CCCGCUCA	2636	TGAGCGGG GGCTAGCTACAACGA TGATCCAA	11385
198	AUCAACCC G CUCAAUGC	2637	GCATTGAG GGCTAGCTACAACGA GGGTTGAT	11386
203	CCCGCUCA A UGCCUGGA	2638	TCCAGGCA GGCTAGCTACAACGA TGAGCGGG	11387
205	CGCUCAAU G CCUGGAGA	2639	TCTCCAGG GGCTAGCTACAACGA ATTGAGCG	11388
213	GCCUGGAG A UUUGGGCG	2640	CGCCCCAA GGCTAGCTACAACGA CTCCAGGC	11389
219	AGAUUUGG G CGUGCCCC	2641	GGGGCACG GGCTAGCTACAACGA CCAAATCT	11390
221	AUUUGGGC G UGCCCCCG	2642	CGGGGGCA GGCTAGCTACAACGA GCCCAAAT	11391
223	UUGGGCGU G CCCCCCGCG	2643	CGCGGGGG GGCTAGCTACAACGA ACGCCCCAA	11392

229	GUGCCCC G CGAGACUG	2644	CAGTCTCG GGCTAGCTACAACGA GGGGGCAC	11393
234	CCCGCGAG A CUGCUAGC	2645	GCTAGCAG GGCTAGCTACAACGA CTCGCGGG	11394
237	GCGAGACU G CUAGCCGA	2646	TCGGCTAG GGCTAGCTACAACGA AGTCTCGC	11395
241	GACUGCUA G CCGAGUAG	2647	CTACTCGG GGCTAGCTACAACGA TAGCAGTC	11396
246	CUAGCCGA G UAGUGUUG	2648	CAACACTA GGCTAGCTACAACGA TCGGCTAG	11397
249	GCCGAGUA G UGUUGGGU	2649	ACCCAACA GGCTAGCTACAACGA TACTCGGC	11398
251	CGAGUAGU G UUGGGUCG	2650	CGACCCAA GGCTAGCTACAACGA ACTACTCG	11399
256	AGUGUUGG G UCGCGAAA	2651	TTTCGCGA GGCTAGCTACAACGA CCAACACT	11400
259	GUUGGGUC G CGAAAGGC	2652	GCCTTCG GGCTAGCTACAACGA GACCCAAC	11401
266	CGCGAAAG G CCUUGUGG	2653	CCACAAAGG GGCTAGCTACAACGA CTTTCGCG	11402
271	AAGGCCUU G UGGUACUG	2654	CAGTACCA GGCTAGCTACAACGA AAGGCCTT	11403
274	GCCUUGUG G UACUGCCU	2655	AGGCAGTA GGCTAGCTACAACGA CACAAGGC	11404
276	CUUGUGGU A CUGCCUGA	2656	TCAGGCAG GGCTAGCTACAACGA ACCACAAG	11405
279	GUGGUACU G CCUGAUAG	2657	CTATCAGG GGCTAGCTACAACGA AGTACCAC	11406
284	ACUGCCUG A UAGGGUGC	2658	GCACCCCTA GGCTAGCTACAACGA CAGGCAGT	11407
289	CUGAUAGG G UGCUUUGCG	2659	CGCAAGCA GGCTAGCTACAACGA CCTATCAG	11408
291	GAUAGGGU G CUUGCGAG	2660	CTCGCAAG GGCTAGCTACAACGA ACCCTATC	11409
295	GGGUGCUU G CGAGUGCC	2661	GGCACTCG GGCTAGCTACAACGA AAGCACCC	11410
299	GCUUJCGA G UGCCCCGG	2662	CCGGGGCA GGCTAGCTACAACGA TCGCAAGC	11411
301	UUGCGAGU G CCCC GGGA	2663	TCCC GGGG GGCTAGCTACAACGA ACTCGCAA	11412
311	CCCGGGAG G UCUCGUAG	2664	CTACGAGA GGCTAGCTACAACGA CTCCC GG	11413
316	GAGGUCUC G UAGACCGU	2665	ACGGTCTA GGCTAGCTACAACGA GAGACCTC	11414
320	UCUCGUAG A CCGUGCAC	2666	GTGCACGG GGCTAGCTACAACGA CTACGAGA	11415
323	CGUAGACC G UGCACCAU	2667	ATGGTGCA GGCTAGCTACAACGA GGTCTACG	11416
325	UAGACCGU G CACCAUGA	2668	TCATGGTG GGCTAGCTACAACGA ACGGTCTA	11417
327	GACCGUGC A CCAUGAGC	2669	GCTCATGG GGCTAGCTACAACGA GCACGGTC	11418
330	CGUGCACCA A UGAGCACG	2670	CGTGCTCA GGCTAGCTACAACGA GGTGCACG	11419
334	CACCAUGA G CACGAAUC	2671	GATTCTGT GGCTAGCTACAACGA TCATGGTG	11420
336	CCAUGAGC A CGAAUCCU	2672	AGGATTCTG GGCTAGCTACAACGA GCTCATGG	11421
340	GAGCACGA A UCCUAAAC	2673	GTTCAGGA GGCTAGCTACAACGA TCGTGCTC	11422
347	AAUCCUAA A CCUCAAAG	2674	CTTGAGG GGCTAGCTACAACGA TTAGGATT	11423
360	AAAGAAAA A CCAAACGU	2675	ACGTTTGG GGCTAGCTACAACGA TTTTCTTT	11424
365	AAAACCAA A CGUAAACAC	2676	GTGTTACG GGCTAGCTACAACGA TTGGTTTT	11425
367	AACCAAAC G UAACACCA	2677	TGGTGTAA GGCTAGCTACAACGA GTTTGGTT	11426
370	CAAACGUA A CACCAACC	2678	GGTTGGTG GGCTAGCTACAACGA TACGTTTG	11427
372	AACGUAAAC A CCAACCGC	2679	GCGGTTGG GGCTAGCTACAACGA GTTACGTT	11428
376	UAACACCA A CCGCCGCC	2680	GGCGGCCGG GGCTAGCTACAACGA TGTTGTAA	11429
379	CACCAACC G CCGCCCAC	2681	GTGGGCCGG GGCTAGCTACAACGA GGTTGGTG	11430
382	CAACCGCC G CCCACAGG	2682	CCTGTGGG GGCTAGCTACAACGA GGC GGTTG	11431
386	CGCCGCC A CAGGACGU	2683	ACGTCCTG GGCTAGCTACAACGA GGGCGGCC	11432
391	CCCACAGG A CGUCAAGU	2684	ACTTGACG GGCTAGCTACAACGA CCTGTGGG	11433
393	CACAGGAC G UCAAGUUC	2685	GAACTTGA GGCTAGCTACAACGA GTCCTGTG	11434
398	GACGUCAA G UUCCCGGG	2686	CCCGGGAA GGCTAGCTACAACGA TTGACGTC	11435
406	GUUCCCGG G CGGUGGGUC	2687	GACCACCG GGCTAGCTACAACGA CCGGGAAC	11436
409	CCCGGGCG G UGGUCAGA	2688	TCTGACCA GGCTAGCTACAACGA CGCCCGGG	11437
412	GGGCGGUG G UCAGAUCCG	2689	CGATCTGA GGCTAGCTACAACGA CACCGCCC	11438
417	GUGGUCAG A UCGUUGGU	2690	ACCAACGA GGCTAGCTACAACGA CTGACCAAC	11439
420	GUCAGAU C G UGGUGGGA	2691	TCCACCAA GGCTAGCTACAACGA GATCTGAC	11440
424	GAUCGUUG G UGGAGUUU	2692	AAACTCCA GGCTAGCTACAACGA CAACGATC	11441
429	UUGGUGGA G UUUACCUG	2693	CAGGTAAA GGCTAGCTACAACGA TCCACCAA	11442
433	UGGAGUUU A CCUGUUGC	2694	GCAACAGG GGCTAGCTACAACGA AAACCTCCA	11443
437	GUUUACCU G UUGCCGCG	2695	CGCGGCAA GGCTAGCTACAACGA AGGTAAAC	11444
440	UACCUGUU G CCGCGCAG	2696	CTGCGCGG GGCTAGCTACAACGA AACAGGTA	11445
443	CUGUUGCC G CGCAGGGG	2697	CCCCTGCG GGCTAGCTACAACGA GGCAACAG	11446
445	GUUGCCGC G CAGGGGCC	2698	GGCCCCCTG GGCTAGCTACAACGA GCGGCAAC	11447
451	GCGCAGGG G CCCCAGGU	2699	ACCTGGGG GGCTAGCTACAACGA CCCTGCGC	11448

458	GGCCCCAG G UUGGGUGU	2700	ACACCCAA GGCTAGCTACAACGA CTGGGGCC	11449
463	CAGGUUGG G UGUGCGCG	2701	CGCGCACA GGCTAGCTACAACGA CCAACCTG	11450
465	GGUUGGGU G UGCGCGCG	2702	CGCGCGCA GGCTAGCTACAACGA ACCCAACC	11451
467	UUGGGUGU G CGCGCGAC	2703	GTCGCGCG GGCTAGCTACAACGA ACACCCAA	11452
469	GGGUGUGC G CGCGACUA	2704	TAGTCGCG GGCTAGCTACAACGA GCACACCC	11453
471	GUGUGCGC G CGACUAGG	2705	CCTAGTCG GGCTAGCTACAACGA GCGCACAC	11454
474	UGCGCGCG A CUAGGAAG	2706	CTTCCTAG GGCTAGCTACAACGA CGCGCGCA	11455
483	CUAGGAAG A CUUCCGAG	2707	CTCGGAAG GGCTAGCTACAACGA CTTCCTAG	11456
491	ACUUCCGA G CGGUCGCA	2708	TGGCACCG GGCTAGCTACAACGA TCGGAAGT	11457
494	UCCGAGCG G UCGCAACC	2709	GGTTGCAGA GGCTAGCTACAACGA CGCTCGGA	11458
497	GAGCGGUC G CAACCUCG	2710	CGAGGTTG GGCTAGCTACAACGA GACCGCTC	11459
500	CGGUUCGCA A CCUCUGGG	2711	CCACGAGG GGCTAGCTACAACGA TGCGACCG	11460
505	GCAACCU C G UGGAAGGC	2712	GCCTTCCA GGCTAGCTACAACGA GAGGTTGC	11461
512	CGUGGAAG G CGACAAACC	2713	GGTTGTAG GGCTAGCTACAACGA CTTCCACG	11462
515	GGAAGGCG A CAACCUAU	2714	ATAGGTTG GGCTAGCTACAACGA CGCCTTCC	11463
518	AGGCACCA A CCUAUCCC	2715	GGGATAGG GGCTAGCTACAACGA TGTCGCCT	11464
522	GACAACCU A UCCCCAACG	2716	CTTGGGGA GGCTAGCTACAACGA AGGTTGTC	11465
531	UCCCCAAG G CUCGCCGG	2717	CCGGCGAG GGCTAGCTACAACGA CTTGGGGA	11466
535	CAAGGCUC G CCGGCCCG	2718	CGGGCCGG GGCTAGCTACAACGA GAGCCTTG	11467
539	GCUCGCCG G CCCGAGGG	2719	CCCTCGGG GGCTAGCTACAACGA CGGCGAGC	11468
547	GCCCCGAGG G CAGGGCCU	2720	AGGCCCTG GGCTAGCTACAACGA CCTCGGGC	11469
552	AGGGCAGG G CCUGGGCU	2721	AGCCCAGG GGCTAGCTACAACGA CCTGCCCT	11470
558	GGGCCUGG G CUCAGCCC	2722	GGGCTGAG GGCTAGCTACAACGA CCAGGCC	11471
563	UGGGCUCA G CCCGGGUA	2723	TACCCGGG GGCTAGCTACAACGA TGAGCCA	11472
569	CAGCCCGG G UACCCUUG	2724	CAAGGGTA GGCTAGCTACAACGA CGGGGCTG	11473
571	GCCCCGGU A CCCUUGGC	2725	GCCAAGGG GGCTAGCTACAACGA ACCCGGGC	11474
578	UACCCUUG G CCCUCUCA	2726	TAGAGGGG GGCTAGCTACAACGA CAAGGGTA	11475
586	GCCCCUCU A UGGCAAUG	2727	CATTGCCA GGCTAGCTACAACGA AGAGGGC	11476
589	CCUCUAUG G CAAUGAGG	2728	CCTCATTG GGCTAGCTACAACGA CATAGAGG	11477
592	CUAUGGCA A UGAGGGCU	2729	AGCCCTCA GGCTAGCTACAACGA TGCCATAG	11478
598	CAAUGAGG G CUUAGGGU	2730	ACCCTAAG GGCTAGCTACAACGA CCTCATTG	11479
605	GGCUUAGG G UGGCAGG	2731	CCTGCCCA GGCTAGCTACAACGA CCTAAGCC	11480
609	UAGGGUGG G CAGGAUGG	2732	CCATCCTG GGCTAGCTACAACGA CCACCCCTA	11481
614	UGGGCAGG A UGGCUCCU	2733	AGGAGCCA GGCTAGCTACAACGA CCTGCCCA	11482
617	GCAGGAUG G CUCCUGUC	2734	GACAGGAG GGCTAGCTACAACGA CATCCTGC	11483
623	UGGCUCCU G UCACCCCG	2735	CGGGGTGA GGCTAGCTACAACGA AGGAGCCA	11484
626	CUCCUGUC A CCCCAGGG	2736	CCGCAGGG GGCTAGCTACAACGA GACAGGAG	11485
631	GUCACCCC G CGGCCUCCC	2737	GGGAGCCG GGCTAGCTACAACGA GGGGTGAC	11486
634	ACCCCGCG G CUCCCGGC	2738	GCCGGGAG GGCTAGCTACAACGA CGCGGGGT	11487
641	GGCUCCCG G CCUAGUUG	2739	CAACTAGG GGCTAGCTACAACGA CGGGAGCC	11488
646	CCGGCCUA G UGGGGGCC	2740	GGCCCCAA GGCTAGCTACAACGA TAGGCCGG	11489
652	UAGUUGGG G CCCCACGG	2741	CCGTGGGG GGCTAGCTACAACGA CCCAACTA	11490
657	GGGGCCCC A CGGACCCC	2742	GGGGTCCG GGCTAGCTACAACGA GGGGCCCC	11491
661	CCCCACGG A CCCCCGGC	2743	GCCGGGGGG GGCTAGCTACAACGA CCGTGGGG	11492
668	GACCCCGG G CGUAGGUC	2744	GACCTACG GGCTAGCTACAACGA CGGGGGTC	11493
670	CCCCCGGC G UAGGUCGC	2745	GCGACCTA GGCTAGCTACAACGA GCCGGGGG	11494
674	CGGCGUAG G UCGCGUAA	2746	TTACGCGA GGCTAGCTACAACGA CTACGCCG	11495
677	CGUAGGUC G CGUAACUU	2747	AAGTTACG GGCTAGCTACAACGA GACCTACG	11496
679	UAGGUCGC G UAACUUGG	2748	CCAAGTTA GGCTAGCTACAACGA GCGACCTA	11497
682	GUCCGUAA A CUUGGGUA	2749	TACCCAAG GGCTAGCTACAACGA TACGCGAC	11498
688	UAACUUGG G UAAGGUCA	2750	TGACCTTA GGCTAGCTACAACGA CCAAGTTA	11499
693	UGGGUAAG G UCAUCGAU	2751	ATCGATGA GGCTAGCTACAACGA CTTACCCA	11500
696	GUAAGGUC A UCGAUACC	2752	GGTATCGA GGCTAGCTACAACGA GACCTTAC	11501
700	GGUCAUCG A UACCCUCA	2753	TGAGGGTA GGCTAGCTACAACGA CGATGACC	11502
702	UCAUCGAU A CCCUCACA	2754	TGTGAGGG GGCTAGCTACAACGA ATCGATGA	11503
708	AUACCCUC A CAUGCGC	2755	GCCGCATG GGCTAGCTACAACGA GAGGGTAT	11504

710	ACCCUCAC A UGCAGGUU	2756	AAGCCGCA GGCTAGCTACAACGA GTGAGGGT	11505
712	CCUCACAU G CGGCCUUCG	2757	CGAAGCCG GGCTAGCTACAACGA ATGTGAGG	11506
715	CACAUGCG G CUUCGCCG	2758	CGGCGAAG GGCTAGCTACAACGA CGCATGTG	11507
720	GCGGCUUC G CCGACCUC	2759	GAGGTCGG GGCTAGCTACAACGA GAAGCCGC	11508
724	CUUCGCCG A CCUCAUGG	2760	CCATGAGG GGCTAGCTACAACGA CGGCGAAG	11509
729	CCGACCUUC A UGGGUUAC	2761	GTACCCCA GGCTAGCTACAACGA GAGGTCGG	11510
734	CUCAUAGGG G UACAUUCC	2762	GGAATGTA GGCTAGCTACAACGA CCCATGAG	11511
736	CAUAGGGU A CAUUCCGC	2763	GCGGAATG GGCTAGCTACAACGA ACCCCATG	11512
738	UGGGGUAC A UUCCGCUC	2764	GAGCGGAA GGCTAGCTACAACGA GTACCCCA	11513
743	UACAUUCC G CUCGUCGG	2765	CCGACGAG GGCTAGCTACAACGA GGAATGTA	11514
747	UUCCGCUC G UCAGCGCC	2766	GGCGCCGA GGCTAGCTACAACGA GAGCGGAA	11515
751	GCUCGUCG G CGCCCCCU	2767	AGGGGGCG GGCTAGCTACAACGA CGACGAGC	11516
753	UCGUCCGG G CCCCCUUG	2768	CAAGGGGG GGCTAGCTACAACGA GCCGACGA	11517
766	CUUGGGAG G CACUGCCA	2769	TGGCAGTG GGCTAGCTACAACGA CTCCCAAG	11518
768	UGGGAGGC A CUGCCAGG	2770	CCTGGCAG GGCTAGCTACAACGA GCCTCCCA	11519
771	GAGGCACU G CCAGGGCC	2771	GGCCCTGG GGCTAGCTACAACGA AGTGCCTC	11520
777	CUGCCAGG G CCCUGGCG	2772	CGCCAGGG GGCTAGCTACAACGA CCTGGCAG	11521
783	GGGCCUG G CGCAUGGC	2773	GCCATGCG GGCTAGCTACAACGA CAGGGCCC	11522
785	GCCCUGGC G CAUGGCGU	2774	ACGCCATG GGCTAGCTACAACGA GCCAGGGC	11523
787	CCUGGCGC A UGGCGUCC	2775	GGACGCCA GGCTAGCTACAACGA GCGCCAGG	11524
790	GGCGCAUG G CGUCCGGG	2776	CCCGGACG GGCTAGCTACAACGA CATGCGCC	11525
792	CGCAUGGC G UCCGGGUU	2777	AACCCGGA GGCTAGCTACAACGA GCCATGCG	11526
798	GCGUCCGG G UUCUGGAA	2778	TTCCAGAA GGCTAGCTACAACGA CCGGACGC	11527
808	UCUGGAAG A CGGCGUGA	2779	TCACGCCG GGCTAGCTACAACGA CTTCCAGA	11528
811	GGAAGACG G CGUGAACU	2780	AGTTCACG GGCTAGCTACAACGA CGTCTTCC	11529
813	AAGACGGC G UGAACUAU	2781	ATAGTTCA GGCTAGCTACAACGA GCCGTCTT	11530
817	CGGCGUGA A CUAUGCAA	2782	TTGCATAG GGCTAGCTACAACGA TCACGCCG	11531
820	CGUGAACU A UGCAACAG	2783	CTGTTGCA GGCTAGCTACAACGA AGTTCACG	11532
822	UGAACUAU G CAACAGGG	2784	CCCTGTTG GGCTAGCTACAACGA ATAGTTCA	11533
825	ACUAUGCA A CAGGGAAU	2785	ATTCCTG GGCTAGCTACAACGA TGCATAGT	11534
832	AACAGGGG A UCUGCCCG	2786	CGGGCAGA GGCTAGCTACAACGA TCCCTGTT	11535
836	GGGAAUCU G CCCGGUUG	2787	CAACCGGG GGCTAGCTACAACGA AGATTCCC	11536
841	UCUGCCCG G UUGCUCUU	2788	AAGAGCAA GGCTAGCTACAACGA CGGGCAGA	11537
844	GCCCUGGU G CUCUUUCU	2789	AGAAAGAG GGCTAGCTACAACGA AACCGGGC	11538
855	CUUUCUCU A UCUUCCUC	2790	GAGGAAGA GGCTAGCTACAACGA AGAGAAAG	11539
867	UCCUCUUG G CUCUGCUG	2791	CAGCAGAG GGCTAGCTACAACGA CAAGAGGA	11540
872	UUGGCUCU G CUGCCCG	2792	CAGGGCAG GGCTAGCTACAACGA AGAGCCAA	11541
875	GCUCUGCU G CCCUGUCU	2793	AGACAGGG GGCTAGCTACAACGA AGCAGAGC	11542
880	GCUGCCCU G UCUGACCA	2794	TGGTCAGA GGCTAGCTACAACGA AGGGCAGC	11543
885	CCUGUCUG A CCAUCCCA	2795	TGGGATGG GGCTAGCTACAACGA CAGACAGG	11544
888	GUCUGACC A UCCTAGCC	2796	GGCTGGGA GGCTAGCTACAACGA GGTCAAGAC	11545
894	CCAUCCCA G CCUCCGCU	2797	AGCGGAGG GGCTAGCTACAACGA TGGGATGG	11546
900	CAGCCUCC G CUUAUGAG	2798	CTCATAG GGCTAGCTACAACGA GGAGGCTG	11547
904	CUCCGCUU A UGAGGUGU	2799	ACACCTCA GGCTAGCTACAACGA AAGCGGAG	11548
909	CUUAUGAG G UGUGCAAC	2800	GTTGCACA GGCTAGCTACAACGA CTCATAAG	11549
911	UAUGAGGU G UGCAACGC	2801	GGCTTGCA GGCTAGCTACAACGA ACCTCATA	11550
913	UGAGGUGU G CAACGCGU	2802	ACGCCTTG GGCTAGCTACAACGA ACACCTCA	11551
916	GGUGUGCA A CGCGUCCG	2803	CGGACGCG GGCTAGCTACAACGA TGACACCC	11552
918	UGUGCAAC G CGUCCGGG	2804	CCCGGACG GGCTAGCTACAACGA GTTGCACA	11553
920	UGCAACGC G UCCGGGU	2805	AGCCCGGA GGCTAGCTACAACGA GCGTTGCA	11554
926	GCGUCCGG G CUGUACCA	2806	TGGTACAG GGCTAGCTACAACGA CGGGACGC	11555
929	UCCGGGU G UACCAUGU	2807	ACATGGTA GGCTAGCTACAACGA AGCCCGGA	11556
931	CGGGCUGU A CCAUGUCA	2808	TGACATGG GGCTAGCTACAACGA ACAGCCCG	11557
934	GCUGUACC A UGUCACGA	2809	TCGTGACA GGCTAGCTACAACGA GGTACAGC	11558
936	UGUACCAU G UCACGAAC	2810	GTTCGTGA GGCTAGCTACAACGA ATGGTACA	11559
939	ACCAUGUC A CGAACGAU	2811	ATCGTTCG GGCTAGCTACAACGA GACATGGT	11560

943	UGUCACGA A CGAUUGC	2812	AGCAATCG GGCTAGCTACAACGA TCGTGACA	11561
946	CACGAACG A UUGCUCCA	2813	TGGAGCAA GGCTAGCTACAACGA CGTCGTG	11562
949	GAACGAUU G CUCCAACU	2814	AGTTGGAG GGCTAGCTACAACGA AATCGTT	11563
955	UUGCUCCA A CUCAGCA	2815	TGCTTGAG GGCTAGCTACAACGA TGGAGCAA	11564
961	CAACUCAA G CAUUGUGU	2816	ACACAATG GGCTAGCTACAACGA TTGAGTTG	11565
963	ACUCAAGC A UUGUGUAU	2817	ATACACAA GGCTAGCTACAACGA GCTTGAGT	11566
966	CAAGCAUU G UGUUAUGAG	2818	CTCATACA GGCTAGCTACAACGA AATGCTTG	11567
968	AGCAUUGU G UAUAGAGC	2819	GCCTCATA GGCTAGCTACAACGA ACAATGCT	11568
970	CAUUGUGU A UGAGGCAG	2820	CTGCCCTCA GGCTAGCTACAACGA ACACAATG	11569
975	UGUAUGAG G CAGAGGAC	2821	GTCCTCTG GGCTAGCTACAACGA CTCATACA	11570
982	GGCAGAGG A CAUGAUCA	2822	TGATCATG GGCTAGCTACAACGA CCTCTGCC	11571
984	CAGAGGAC A UGAUCAUG	2823	CATGATCA GGCTAGCTACAACGA GTCCTCTG	11572
987	AGGACAUG A UCAUGCAC	2824	GTGCATGA GGCTAGCTACAACGA CATGTCCT	11573
990	ACAUGAUC A UGCACACC	2825	GGTGTGCA GGCTAGCTACAACGA GATCATGT	11574
992	AUGAUCAU G CACACCCC	2826	GGGGTGTG GGCTAGCTACAACGA ATGATCAT	11575
994	GAUCAUGC A CACCCCGG	2827	CCGGGGTG GGCTAGCTACAACGA GCATGATC	11576
996	UCAUGCAC A CCCCCGGG	2828	CCCCGGGG GGCTAGCTACAACGA GTGCATGA	11577
1004	ACCCCGGG G UGCUGGCC	2829	GGCACGCA GGCTAGCTACAACGA CCCGGGGT	11578
1006	CCCGGGGU G CGUGCCU	2830	AGGGCACG GGCTAGCTACAACGA ACCCCGGG	11579
1008	CGGGGUGC G UGCCCCUGC	2831	GCAGGGCA GGCTAGCTACAACGA GCACCCCG	11580
1010	GGGUGCGU G CCCUGCGU	2832	ACGCAGGG GGCTAGCTACAACGA ACGCACCC	11581
1015	CGUGCCCU G CGUUCGGG	2833	CCCGAACG GGCTAGCTACAACGA AGGGCACG	11582
1017	UGCCCGUC G UUCGGGAG	2834	CTCCCGAA GGCTAGCTACAACGA GCAGGGCA	11583
1027	UCGGGAGA A CAACUCCU	2835	AGGAGTTG GGCTAGCTACAACGA TCTCCGA	11584
1030	GGAGAAC A CUCCUCCC	2836	GGGAGGAG GGCTAGCTACAACGA TGTTCTCC	11585
1039	CUCCUCCC G CUGCUGGG	2837	CCCAGCAG GGCTAGCTACAACGA GGGAGGAG	11586
1042	CUCCCGCU G CUGGGUAG	2838	CTACCCAG GGCTAGCTACAACGA AGCGGGAG	11587
1047	GCUGCGUG G UAGCGCUC	2839	GAGCGCTA GGCTAGCTACAACGA CCAGCAGC	11588
1050	GCUGGGUA G CGCUCACU	2840	AGTGAGCG GGCTAGCTACAACGA TACCCAGC	11589
1052	UGGGUAGC G CUCACUCC	2841	GGAGTGAG GGCTAGCTACAACGA GCTACCCA	11590
1056	UAGCGCUC A CUCCCACG	2842	CGTGGGAG GGCTAGCTACAACGA GAGCGCTA	11591
1062	UCACUCCC A CGCUCGCG	2843	CGCGAGCG GGCTAGCTACAACGA GGGAGTGA	11592
1064	ACUCCCAC G CUCGCGC	2844	GCCGCGAG GGCTAGCTACAACGA GTGGGAGT	11593
1068	CCACGCUC G CGGCCAGG	2845	CCTGGCCG GGCTAGCTACAACGA GAGCGTGG	11594
1071	CGCUCGCG G CCAGGAAU	2846	ATTCCTGG GGCTAGCTACAACGA CGCGAGCG	11595
1078	GGCCAGGA A UGCCAGCA	2847	TGCTGGCA GGCTAGCTACAACGA TCCTGGCC	11596
1080	CCAGGAAU G CCAGCAUC	2848	GATGCTGG GGCTAGCTACAACGA ATTCCCTGG	11597
1084	GAAUGCCA G CAUCCCCA	2849	TGGGGATG GGCTAGCTACAACGA TGGCATTC	11598
1086	AUGCCAGC A UCCCCACU	2850	AGTGGGGA GGCTAGCTACAACGA GCTGGCAT	11599
1092	GCAUCCCC A CUACGACG	2851	CGTCGTAG GGCTAGCTACAACGA GGGGATGC	11600
1095	UCCCCACU A CGACGAUA	2852	TATCGTCG GGCTAGCTACAACGA AGTGGGGA	11601
1098	CCACUACG A CGAUACGG	2853	CCGTATCG GGCTAGCTACAACGA CGTAGTGG	11602
1101	CUACGACG A UACGGCGU	2854	ACGCCGTA GGCTAGCTACAACGA CGTCGTAG	11603
1103	ACGACGAU A CGGCGUCA	2855	TGACGCCG GGCTAGCTACAACGA ATCGTCGT	11604
1106	ACGAUACG G CGUCACGU	2856	ACGTGACG GGCTAGCTACAACGA CGTATCGT	11605
1108	GAUACGGC G UCACGUCC	2857	CGACGTGA GGCTAGCTACAACGA GCCGTATC	11606
1111	ACGGCGUC A CGUCGAUU	2858	AATCGACG GGCTAGCTACAACGA GACGCCGT	11607
1113	GGCGUCAC G UCGAUUUG	2859	CAAATCGA GGCTAGCTACAACGA GTGACGCC	11608
1117	UCACGUUG A UUUGCUUG	2860	CGAGCAAA GGCTAGCTACAACGA CGACGTGA	11609
1121	GUCGAUUU G CUCGUUGG	2861	CCAACGAG GGCTAGCTACAACGA AAATCGAC	11610
1125	AUUUGCUC G UUGGGCG	2862	CGCCCCAA GGCTAGCTACAACGA GAGCAAAT	11611
1131	UCGUUGGG G CGGCUGCU	2863	AGCAGCCG GGCTAGCTACAACGA CCCAACGA	11612
1134	UUGGGGCG G CUGCUUUC	2864	GAAAGCAG GGCTAGCTACAACGA CGCCCCAA	11613
1137	GGCGGGCU G CUUUCUGC	2865	GCAGAAAG GGCTAGCTACAACGA AGCCGCC	11614
1144	UGCUUUUCU G CUCUGCUA	2866	TAGCAGAG GGCTAGCTACAACGA AGAAAGCA	11615
1149	UCUGCUCU G CUAUGUAC	2867	GTACATAG GGCTAGCTACAACGA AGAGCAGA	11616

1152	GCUCUGCU A UGUACGUG	2868	CACGTACA GGCTAGCTACAACGA AGCAGAGC	11617
1154	UCUGCUAU G UACGUGGG	2869	CCCACGTA GGCTAGCTACAACGA ATAGCAGA	11618
1156	UGCUAUGU A CGUGGGGG	2870	CCCCCACG GGCTAGCTACAACGA ACATAGCA	11619
1158	CUAUGUAC G UGGGGGAU	2871	ATCCCCCA GGCTAGCTACAACGA GTACATAG	11620
1165	CGUGGGGG A UCUCUGCG	2872	CGCAGAGA GGCTAGCTACAACGA CCCCCACG	11621
1171	GGAUCUCU G CGGAUCUG	2873	CAGATCCG GGCTAGCTACAACGA AGAGATCC	11622
1175	CUCUGCAG A UCUGUCUU	2874	AAGACAGA GGCTAGCTACAACGA CCGCAGAG	11623
1179	GCGGAUCU G UCUUCCUC	2875	GAGGAAGA GGCTAGCTACAACGA AGATCCGC	11624
1188	UCUUCCUC G UCUCUCAG	2876	CTGAGAGA GGCTAGCTACAACGA GAGGAAGA	11625
1196	GUCUCUCA G CUGUUCAC	2877	GTGAACAG GGCTAGCTACAACGA TGAGAGAC	11626
1199	UCUCAGCU G UUCACCUU	2878	AAGGTGAA GGCTAGCTACAACGA AGCTGAGA	11627
1203	AGCUGUUC A CCUUCUCG	2879	CGAGAAGG GGCTAGCTACAACGA GAACAGCT	11628
1211	ACCUUCUC G CCUCGCCG	2880	CGGGGAGG GGCTAGCTACAACGA GAGAAGGT	11629
1216	CUCGCCUC G CCGGUAUG	2881	CATACCGG GGCTAGCTACAACGA GAGGCGAG	11630
1220	CCUCGCCG G UAUGAGAC	2882	GTCTCATA GGCTAGCTACAACGA CGGGGAGG	11631
1222	UCGCCGGU A UGAGACAG	2883	CTGTCTCA GGCTAGCTACAACGA ACCGGCGA	11632
1227	GGUAUGAG A CAGUACAG	2884	CTGTACTG GGCTAGCTACAACGA CTCATACC	11633
1230	AUGAGACA G UACAGGAC	2885	GTCCTGTA GGCTAGCTACAACGA TGTCTCAT	11634
1232	GAGACAGU A CAGGACUG	2886	CAGTCCTG GGCTAGCTACAACGA ACTGTCTC	11635
1237	AGUACAGG A CUGUAAUU	2887	AATTACAG GGCTAGCTACAACGA CCTGTACT	11636
1240	ACAGGACU G UAAUUGCU	2888	AGCAATTG GGCTAGCTACAACGA AGTCTGT	11637
1243	GGACUGUA A UUGCUCGA	2889	TCGAGCAA GGCTAGCTACAACGA TACAGTCC	11638
1246	CUGUAAUU G CUCGAUCU	2890	AGATCGAG GGCTAGCTACAACGA AATTACAG	11639
1251	AUUGCUCG A UCUAUCCC	2891	GGGATAGA GGCTAGCTACAACGA CGAGCAAT	11640
1255	CUCGAUCU A UCCCAGCC	2892	GGCCGGGA GGCTAGCTACAACGA AGATCGAG	11641
1261	CUAUCCCC G CCACGUAU	2893	ATACGTGG GGCTAGCTACAACGA CGGGATAG	11642
1264	UCCCGGCC A CGUAUCAG	2894	CTGATACG GGCTAGCTACAACGA GGCCGGGA	11643
1266	CCGGCCAC G UAUCAAGC	2895	GCCTGATA GGCTAGCTACAACGA GTGGCCGG	11644
1268	GGCCACGU A UCAGGCCA	2896	TGGCCTGA GGCTAGCTACAACGA ACGTGGCC	11645
1273	CGUAUCAG G CCAUCGCA	2897	TGGATGG GGCTAGCTACAACGA CTGATACG	11646
1276	AUCAGGCC A UCGCAUAG	2898	CCATGCGA GGCTAGCTACAACGA GGCCTGAT	11647
1279	AGGCCAUC G CAUGGCCU	2899	AAGCCATG GGCTAGCTACAACGA GATGGCCT	11648
1281	GCCAUCGC A UGGCUUUG	2900	CCAAGCCA GGCTAGCTACAACGA GCGATGGC	11649
1284	AUCGCAUG G CUUGGGAU	2901	ATCCAAGA GGCTAGCTACAACGA CATGCGAT	11650
1291	GGCUUUGG A UAUGAUGA	2902	TCATCATA GGCTAGCTACAACGA CCCAAGCC	11651
1293	CUUGGGAU A UGAUGAUG	2903	CATCATCA GGCTAGCTACAACGA ATCCAAG	11652
1296	GGGAUAUG A UGAUGAAU	2904	ATTCATCA GGCTAGCTACAACGA CATATCCC	11653
1299	AUAUGAUG A UGAUUUGG	2905	CCAATTCA GGCTAGCTACAACGA CATCATAT	11654
1303	GAUGAUGA A UUGGUAC	2906	GTGACCAA GGCTAGCTACAACGA TCATCATC	11655
1307	AUGAAUUG G UCACCUAC	2907	GTAGGTGA GGCTAGCTACAACGA CAATTCTAT	11656
1310	AAUUGGUC A CCUACAAAC	2908	GTGTAGGG GGCTAGCTACAACGA GACCAATT	11657
1314	GGUCACCU A CAACAGCC	2909	GGCTGTTG GGCTAGCTACAACGA AGGTGACC	11658
1317	CACCUAC A CAGCCUA	2910	TAGGGCTG GGCTAGCTACAACGA TGTAGGTG	11659
1320	CUACAAAC G CCCUAGUG	2911	CACTAGGG GGCTAGCTACAACGA TGTTGTAG	11660
1326	CAGCCCUA G UGGUAUCG	2912	CGATACCA GGCTAGCTACAACGA TAGGGCTG	11661
1329	CCCUAGUG G UAUUCGAG	2913	CTGCGATA GGCTAGCTACAACGA CACTAGGG	11662
1331	CUAGUGGU A UCGCAGUU	2914	AACTGCGA GGCTAGCTACAACGA ACCACTAG	11663
1334	GUGGUAUC G CAGUUGCU	2915	AGCAACTG GGCTAGCTACAACGA GATACCAC	11664
1337	GUAUCGCA G UUGCUCCG	2916	CGGAGCAA GGCTAGCTACAACGA TGCGATAC	11665
1340	UCGCAGUU G CUCCGGAU	2917	ATCCGGAG GGCTAGCTACAACGA AACTGCGA	11666
1347	UGCUCCGG A UCCCACAA	2918	TTGTGGGA GGCTAGCTACAACGA CGGGAGCA	11667
1352	CGGAUCCC A CAAGCCGU	2919	ACGGCTTG GGCTAGCTACAACGA GGGATCCG	11668
1356	UCCCACAA G CCGUCGUG	2920	CACGACGG GGCTAGCTACAACGA TTGTGGGA	11669
1359	CACAAGCC G UCGUGGGAC	2921	GTCCACGA GGCTAGCTACAACGA GGCTTGTG	11670
1362	AAGCCGUC G UGGACAUAG	2922	CATGTCCA GGCTAGCTACAACGA GACGGCTT	11671
1366	CGUCGUGG A CAUGGUGG	2923	CCACCATG GGCTAGCTACAACGA CCACGACG	11672

1368	UCGUGGAC A UGGUGGCG	2924	CGCCACCA GGCTAGCTACAACGA GTCCACGA	11673
1371	UGGACAUG G UGGCGGGG	2925	CCCCGCCA GGCTAGCTACAACGA CATGTCCA	11674
1374	ACAUGGUG G CGGGGGCC	2926	GGCCCCCG GGCTAGCTACAACGA CACCATGT	11675
1380	UGGCGGGG G CCCACUGG	2927	CCAGTGGG GGCTAGCTACAACGA CCCCGCCA	11676
1384	GGGGGCC A CUGGGGAG	2928	CTCCCCAG GGCTAGCTACAACGA GGGCCCCC	11677
1392	ACUGGGGA G UCCUGGCG	2929	CGCCAGGA GGCTAGCTACAACGA TCCCCAGT	11678
1398	GAGUCCUG G CGGGCCUU	2930	AAGGCCCC GGCTAGCTACAACGA CAGGACTC	11679
1402	CCUGGCGG G CCUUGCCU	2931	AGGCAAGG GGCTAGCTACAACGA CCGCCAGG	11680
1407	CGGGCCUU G CCUAUUAAU	2932	ATAATAGG GGCTAGCTACAACGA AAGGCCCC	11681
1411	CCUUGCCU A UUAUCCA	2933	TGGAATAA GGCTAGCTACAACGA AGGCAAGG	11682
1414	UGCCUAUU A UUCCAUGG	2934	CCATGGAA GGCTAGCTACAACGA AATAGGCA	11683
1419	AUUAUUCC A UGGUGGGG	2935	CCCCACCA GGCTAGCTACAACGA GGAATAAT	11684
1422	AUCCAUG G UGGGGAAC	2936	GTCCCCCA GGCTAGCTACAACGA CATGGAAT	11685
1429	GGUGGGGA A CUGGGCUA	2937	TAGCCCAG GGCTAGCTACAACGA TCCCCACC	11686
1434	GGAACUGG G CUAAGGUG	2938	CACCTTAG GGCTAGCTACAACGA CCAGTTCC	11687
1440	GGGCUAAG G UGUUGAUU	2939	AATCAACA GGCTAGCTACAACGA CTTAGCCC	11688
1442	GCUAAGGU G UUGAUUGU	2940	ACAATCAA GGCTAGCTACAACGA ACCTTAGC	11689
1446	AGGUGUUG A UUGUGAUG	2941	CATCACAA GGCTAGCTACAACGA CAACACCT	11690
1449	UGUUGAUU G UGAUGCUA	2942	TAGCATCA GGCTAGCTACAACGA AATCAACA	11691
1452	UGAUUGUG A UGCUACUC	2943	GAGTAGCA GGCTAGCTACAACGA CACAATCA	11692
1454	AUUGUGAU G CUACUUU	2944	AAGAGTAG GGCTAGCTACAACGA ATCACAAT	11693
1457	GUGAUGCU A CUCUUUGC	2945	GCAAAGAG GGCTAGCTACAACGA AGCATCAC	11694
1464	UACUUUU G CCGGCGUU	2946	AACGCCGG GGCTAGCTACAACGA AAAGAGTA	11695
1468	CUUJGCG G CGUUGACG	2947	CGTCAACG GGCTAGCTACAACGA CGGCAAAG	11696
1470	UUGCCGGC G UUGACGGG	2948	CCCGTCAA GGCTAGCTACAACGA GCCGGCAA	11697
1474	CGGCGUUG A CGGGGACA	2949	TGTCCCCG GGCTAGCTACAACGA CAACGCCG	11698
1480	UGACGGGG A CACCUACA	2950	TGTAGGTG GGCTAGCTACAACGA CCCCCGTCA	11699
1482	ACGGGGAC A CCUACACG	2951	CGTGTAGG GGCTAGCTACAACGA GTCCCCGT	11700
1486	GGACACCU A CACGACAG	2952	CTGTCGTG GGCTAGCTACAACGA AGGTGTCC	11701
1488	ACACCUAC A CGACAGGG	2953	CCCTGTCTG GGCTAGCTACAACGA GTAGGTGT	11702
1491	CCUACACG A CAGGGGGG	2954	CCCCCTG GGCTAGCTACAACGA CGTGTAGG	11703
1500	CAGGGGGG G CGCAGGGC	2955	GCCCTGCG GGCTAGCTACAACGA CCCCCCTG	11704
1502	GGGGGGGC G CAGGGCCA	2956	TGGCCCTG GGCTAGCTACAACGA GCCCCCCC	11705
1507	GGCGCAGG G CCACACCA	2957	TGGTGTGG GGCTAGCTACAACGA CCTGCGCC	11706
1510	GCAGGGCC A CACCACUA	2958	TAGTGGTG GGCTAGCTACAACGA GGCCCTGC	11707
1512	AGGGCCAC A CCACUAGU	2959	ACTAGTGG GGCTAGCTACAACGA GTGGCCCT	11708
1515	GCCACACC A CUAGUAGG	2960	CCTACTAG GGCTAGCTACAACGA GGTGTGGC	11709
1519	CACCACUA G UAGGGUGG	2961	CCACCCCTA GGCTAGCTACAACGA TAGTGGTG	11710
1524	CUAGUAGG G UGGCAUCC	2962	GGATGCCA GGCTAGCTACAACGA CCTACTAG	11711
1527	GUAGGGUG G CAUCCCUC	2963	GAGGGATG GGCTAGCTACAACGA CACCCCTAC	11712
1529	AGGGUGGC A UCCCUCUU	2964	AAGAGGGG GGCTAGCTACAACGA GCCACCCCT	11713
1539	CCUCUUU A CAUCUGGA	2965	TCCAGATG GGCTAGCTACAACGA AAAGAGGG	11714
1541	CUCUUUAC A UCUGGAGC	2966	GCTCCAGA GGCTAGCTACAACGA GTAAAGAG	11715
1548	CAUCUGGA G CAUCUCAG	2967	CTGAGATG GGCTAGCTACAACGA TCCAGATG	11716
1550	UCUGGAGC A UCUCAGAA	2968	TTCTGAGA GGCTAGCTACAACGA GCTCCAGA	11717
1558	AUCUCAGA A UAUCGAGC	2969	GCTGGATA GGCTAGCTACAACGA TCTGAGAT	11718
1560	CUCAGAAU A UCCAGCUU	2970	AAGCTGGA GGCTAGCTACAACGA ATTCTGAG	11719
1565	AAUAUCCA G CUUAUUAA	2971	TTAATAAG GGCTAGCTACAACGA TGGATATT	11720
1569	UCCAGCUU A UUAACACC	2972	GGTGTAA GGCTAGCTACAACGA AAGCTGGA	11721
1573	GUUUAUUA A CACCAACG	2973	CGTTGGTG GGCTAGCTACAACGA TAATAAGC	11722
1575	UUAUUAAC A CCAACGGC	2974	GCCGTTGG GGCTAGCTACAACGA GTTAATAA	11723
1579	UAACACCA A CGGCAGCU	2975	AGCTGCCG GGCTAGCTACAACGA TGGTGTAA	11724
1582	CACCAACG G CAGCUGGC	2976	GCCAGCTG GGCTAGCTACAACGA CGTTGGTG	11725
1585	CAACGGCA G CUGGCACA	2977	TGTGCCAG GGCTAGCTACAACGA TGCCGTTG	11726
1589	GGCAGCUG G CACAUUAA	2978	TTAATGTG GGCTAGCTACAACGA CAGCTGCC	11727
1591	CAGCUGGC A CAUUAACA	2979	TGTTAATG GGCTAGCTACAACGA GCCAGCTG	11728

1593	GCUGGCAC A UUAACAGG	2980	CCTGTTAA GGCTAGCTACAACGA GTGCCAGC	11729
1597	GCACAUUA A CAGGACUG	2981	CAGTCCTG GGCTAGCTACAACGA TAATGTGC	11730
1602	UUAACAGG A CUGCCCUG	2982	CAGGGCAG GGCTAGCTACAACGA CCTGTTAA	11731
1605	ACAGGACU G CCCUGAAC	2983	GTCAGGG GGCTAGCTACAACGA AGTCCTGT	11732
1612	UGCCUGA A CUGCAAUG	2984	CATTGCAG GGCTAGCTACAACGA TCAGGGCA	11733
1615	CCUGAACU G CAAUGACU	2985	AGTCATTG GGCTAGCTACAACGA AGTTCAGG	11734
1618	GAACUGCA A UGACUCCC	2986	GGGAGTCA GGCTAGCTACAACGA TGCAAGTTC	11735
1621	CUGCAAUG A CUCCCCUCC	2987	GGAGGGAG GGCTAGCTACAACGA CATTGCAG	11736
1632	CCCUCCAA A CCGGGUUC	2988	GAACCCGG GGCTAGCTACAACGA TTGGAGGG	11737
1637	CAAACCGG G UUCAUUGC	2989	GCAATGAA GGCTAGCTACAACGA CCGGTTTG	11738
1641	CCGGGUUC A UUGCUGCA	2990	TGCAGCAA GGCTAGCTACAACGA GAACCCGG	11739
1644	GGUUCAUU G CUGCACUG	2991	CAGTGCAG GGCTAGCTACAACGA AATGAACC	11740
1647	UCAUUGCU G CACUGUUC	2992	GACAGTG GGCTAGCTACAACGA AGCAATGA	11741
1649	AUUGCUGC A CUGUUCUA	2993	TAGAACAG GGCTAGCTACAACGA GCAGCAAT	11742
1652	GCUGCACU G UUCUAUGC	2994	GCATAGAA GGCTAGCTACAACGA AGTGCAGC	11743
1657	ACUGUUCU A UGCACACA	2995	TGTGTGCA GGCTAGCTACAACGA AGAACAGT	11744
1659	UGUUCUAU G CACACAGG	2996	CCTGTGTG GGCTAGCTACAACGA ATAGAACAA	11745
1661	UUCUAUGC A CACAGGUU	2997	AACCTGTG GGCTAGCTACAACGA GCATAGAA	11746
1663	CUAUGCAC A CAGGUUCA	2998	TGAACCTG GGCTAGCTACAACGA GTGCATAG	11747
1667	GCACACAG G UUCAACUC	2999	GAGTTGAA GGCTAGCTACAACGA CTGTGTGC	11748
1672	CAGGUUCA A CUCGUCCG	3000	CGGACGAG GGCTAGCTACAACGA TGAACCTG	11749
1676	UUCAACUC G UCCGGGAUG	3001	CATCCGGA GGCTAGCTACAACGA GAGTTGAA	11750
1682	UCGUCCGG A UGCCCCACA	3002	TGTGGGCA GGCTAGCTACAACGA CCGGACGA	11751
1684	GUCCGGAU G CCCACAGC	3003	GCTGTGGG GGCTAGCTACAACGA ATCCGGAC	11752
1688	GGAUGCCC A CAGCGCUU	3004	AAGCGCTG GGCTAGCTACAACGA GGGCATCC	11753
1691	UGCCACACA G CGCUUUGGC	3005	GCCAAGCG GGCTAGCTACAACGA TGTGGGCA	11754
1693	CCCACAGC G CUUGGCCA	3006	TGGCCAAG GGCTAGCTACAACGA GCTGTGGG	11755
1698	AGCGCUUG G CCAGCUGC	3007	GCAGCTGG GGCTAGCTACAACGA CAAGCGCT	11756
1702	CUUUGCCA G CUGCCGCU	3008	AGCGGCAG GGCTAGCTACAACGA TGGCCAAG	11757
1705	GGCCAGCU G CCGCUCCA	3009	TGGAGCGG GGCTAGCTACAACGA AGCTGGCC	11758
1708	CAGCUGCC G CUCCAUUG	3010	CAATGGAG GGCTAGCTACAACGA GGCAGCTG	11759
1713	GCCGCUCC A UUGACAAG	3011	CTTGTCAA GGCTAGCTACAACGA GGAGCGGC	11760
1717	CUCCAUUG A CAAGUUCG	3012	CGAACTTG GGCTAGCTACAACGA CAATGGAG	11761
1721	AUUGACAA G UUCGCUA	3013	TGAGCGAA GGCTAGCTACAACGA TTGTCAAT	11762
1725	ACAAGUUC G CUCAGGGG	3014	CCCTGTAG GGCTAGCTACAACGA GAACTTGT	11763
1733	GCUCAGGG G UGGGGUCC	3015	GGACCCCA GGCTAGCTACAACGA CCCTGAGC	11764
1738	GGGGUGGG G UCCUAUCA	3016	TGATAGGA GGCTAGCTACAACGA CCCACCCC	11765
1743	GGGGUCCU A UCACCUAC	3017	GTAGGTGA GGCTAGCTACAACGA AGGACCCC	11766
1746	GUCCUAUC A CCUACACC	3018	GGTGTAGG GGCTAGCTACAACGA GATAGGAC	11767
1750	UAUCACCU A CACCGAGG	3019	CCTCGGTG GGCTAGCTACAACGA AGGTGATA	11768
1752	UCACCUAC A CCGAGGGC	3020	GCCCTCGG GGCTAGCTACAACGA GTAGGTGA	11769
1759	CACCGAGG G CCACAAACU	3021	AGTTGTGG GGCTAGCTACAACGA CCTCGGTG	11770
1762	CGAGGGCC A CAACUCGG	3022	CCGAGTTG GGCTAGCTACAACGA GGCCCTCG	11771
1765	GGGCCACA A CUCGGACC	3023	GGTCCGAG GGCTAGCTACAACGA TGTGGCCC	11772
1771	CAACUCGG A CCAGAGGC	3024	GCCCTCTGG GGCTAGCTACAACGA CCGAGTTG	11773
1778	GACCAGAG G CCCUAUUG	3025	CAATAGGG GGCTAGCTACAACGA CTCTGGTC	11774
1783	GAGGCCCU A UUGCUGGC	3026	GCCAGCAA GGCTAGCTACAACGA AGGGCCTC	11775
1786	GCCCUAUU G CUGGCACU	3027	AGTGCAG GGCTAGCTACAACGA AATAGGGC	11776
1790	UAUUGCUG G CACUACGC	3028	GCGTAGTG GGCTAGCTACAACGA CAGCAATA	11777
1792	UUGCUGGC A CUACGCAC	3029	GTGCGTAG GGCTAGCTACAACGA GCCAGCAA	11778
1795	CUGGCACU A CGCACCGC	3030	GCGGTGCG GGCTAGCTACAACGA AGTGCAG	11779
1797	GGCACUAC G CACCGCGG	3031	CCCGCGGT GGCTAGCTACAACGA GTAGTGCC	11780
1799	CACUACGC A CCGCGGCC	3032	GGCCGCGG GGCTAGCTACAACGA GCGTAGTG	11781
1802	UACGCACC G CGGCCGUG	3033	CACGGCCG GGCTAGCTACAACGA GGTGCGTA	11782
1805	GCACCGCG G CCGUGUGG	3034	CCACACGG GGCTAGCTACAACGA CGCGGTGC	11783
1808	CCGCGGCC G UGUGGUAU	3035	ATACCACA GGCTAGCTACAACGA GGCCGCGG	11784

1810	GCGGCCGU G UGGUAUCG	3036	CGATACCA GGCTAGCTACAACGA ACGGCCGC	11785
1813	GCCGUGUG G UAUCGUAC	3037	GTACGATA GGCTAGCTACAACGA CACACGGC	11786
1815	CGUGUGGU A UCGUACCC	3038	GGGTACGA GGCTAGCTACAACGA ACCACACG	11787
1818	GUGGUAUC G UACCCGCA	3039	TGCGGGTA GGCTAGCTACAACGA GATACCAC	11788
1820	GGUAUCGU A CCCGCAUC	3040	GATGCGGG GGCTAGCTACAACGA ACGATACC	11789
1824	UCGUACCC G CAUCGCAG	3041	CTGGCATG GGCTAGCTACAACGA GGGTACGA	11790
1826	GUACCCGC A UCGCAGGU	3042	ACCTGCGA GGCTAGCTACAACGA GCGGGTAC	11791
1829	CCCGCAUC G CAGGUAG	3043	CATACCTG GGCTAGCTACAACGA GATGCGGG	11792
1833	CAUCGCAG G UAUUGGGU	3044	ACCACATA GGCTAGCTACAACGA CTGCGATG	11793
1835	UCGCAGGU A UGUGGUCC	3045	GGACACAA GGCTAGCTACAACGA ACCTGCGA	11794
1837	GCAGGUAU G UGGUCCAG	3046	CTGGACCA GGCTAGCTACAACGA ATACCTGC	11795
1840	GGUAUGUG G UCCAGUGU	3047	ACACTGGA GGCTAGCTACAACGA CACATACC	11796
1845	GUGGUCCA G UGUAUUGC	3048	GCAATACA GGCTAGCTACAACGA TGGACCAC	11797
1847	GGUCCAGU G UAUUGCUU	3049	AAGCAATA GGCTAGCTACAACGA ACTGGACC	11798
1849	UCCAGUGU A UUGCUUCA	3050	TGAAGCAA GGCTAGCTACAACGA ACACTGGA	11799
1852	AGUGUAUU G CUUCACCC	3051	GGGTGAAG GGCTAGCTACAACGA AATAACACT	11800
1857	AUUGCUUC A CCCAACG	3052	GCTTGGGG GGCTAGCTACAACGA GAAGCAAT	11801
1864	CACCCCAA G CCCUGUUG	3053	CAACAGGG GGCTAGCTACAACGA TTGGGGTG	11802
1869	CAAGCCCU G UUGUGGUG	3054	CACCACAA GGCTAGCTACAACGA AGGGCTTG	11803
1872	GCCCUGUU G UGGUGGGG	3055	CCCCACCA GGCTAGCTACAACGA AACAGGGC	11804
1875	CUGUUGUG G UGGGGACG	3056	CGTCCCCA GGCTAGCTACAACGA CACAACAG	11805
1881	UGGUGGGG A CGACCGAC	3057	GTCGGTCG GGCTAGCTACAACGA CCCCACCA	11806
1884	UGGGGACG A CCGACCGU	3058	ACGGTCGG GGCTAGCTACAACGA CGTCCCCA	11807
1888	GACGACCG A CCGUUUCG	3059	CGAAACGG GGCTAGCTACAACGA CGGTCGTC	11808
1891	GACCGACC G UUUCGGCG	3060	CGCCGAAA GGCTAGCTACAACGA GGTGGTC	11809
1897	CCGUUUCG G CGCCCCCA	3061	TGGGGCG GGCTAGCTACAACGA CGAACGG	11810
1899	GUUUCGGC G CCCCCACG	3062	CGTGGGGG GGCTAGCTACAACGA GCCGAAAC	11811
1905	GCGCCCCC A CGUUAAC	3063	GTATACG GGCTAGCTACAACGA GGGGGCGC	11812
1907	GCCCCCAC G UAUACUG	3064	CAGTTATA GGCTAGCTACAACGA GTGGGGGC	11813
1909	CCCCACGU A UAACUGGG	3065	CCCATTTA GGCTAGCTACAACGA ACGTGGGG	11814
1912	CACGUUA A CUGGGGGG	3066	CCCCCCAG GGCTAGCTACAACGA TATACGTG	11815
1920	ACUGGGGG G CGAACGAG	3067	CTCGTTCG GGCTAGCTACAACGA CCCCCAGT	11816
1924	GGGGCGA A CGAGACGG	3068	CCGTCTCG GGCTAGCTACAACGA TCGCCCC	11817
1929	CGAACGAG A CGGACGUG	3069	CACGTCCG GGCTAGCTACAACGA CTCGTTCG	11818
1933	CGAGACGG A CGUGCUGC	3070	GCAGCACG GGCTAGCTACAACGA CCGTCTCG	11819
1935	AGACGGAC G UGCUGCUC	3071	GAGCAGCA GGCTAGCTACAACGA GTCCGTCT	11820
1937	ACGGACGU G CUGCUCCU	3072	AGGAGCAG GGCTAGCTACAACGA ACGTCCGT	11821
1940	GACGUGCU G CUCCUCAA	3073	TTGAGGAG GGCTAGCTACAACGA AGCACGTC	11822
1948	GCUCCUCA A CAACACGC	3074	GCGTGTG GGCTAGCTACAACGA TGAGGAGC	11823
1951	CCUCAACA A CACGCGC	3075	GCCCGGTG GGCTAGCTACAACGA TGTTGAGG	11824
1953	UCAACAAAC A CGCGGCCG	3076	CGGCCGCG GGCTAGCTACAACGA GTTGTGTA	11825
1955	AACAAACAC G CGGCCGCC	3077	GGCGGCCG GGCTAGCTACAACGA GTGTTGTT	11826
1958	AACACGCG G CCGCCGCA	3078	TGCGGCCGG GGCTAGCTACAACGA CGCGTGT	11827
1961	ACGGGGCC G CCGCAAGG	3079	CCTTGGCG GGCTAGCTACAACGA GGCGCGGT	11828
1964	CGGGCGCC G CAAGGCAA	3080	TTGCCTTG GGCTAGCTACAACGA GGCGGCCG	11829
1969	GCCGCAAG G CAACUGGU	3081	ACCAAGTT GGCTAGCTACAACGA CTTGCCGC	11830
1972	GCAAGGCA A CUGGUUCG	3082	CGAACCGAG GGCTAGCTACAACGA TGCCCTGC	11831
1976	GGCAACUG G UUCGGCUG	3083	CAGCCGAA GGCTAGCTACAACGA CAGTTGCC	11832
1981	CUGGUUCG G CUGCACAU	3084	ATGTGCAG GGCTAGCTACAACGA CGAACCGAG	11833
1984	GUUCGGCU G CACAUGGA	3085	TCCATGTG GGCTAGCTACAACGA AGCCGAAC	11834
1986	UCGGCUGC A CAUGGAUG	3086	CATCCATG GGCTAGCTACAACGA GCAGCCGA	11835
1988	GGCUGCAC A UGGAUGAA	3087	TTCATCCA GGCTAGCTACAACGA GTGCAGCC	11836
1992	GCACAUAG A UGAAUGGC	3088	GCCATTCA GGCTAGCTACAACGA CCATGTGC	11837
1996	AUGGAUGA A UGGCACUG	3089	CAGTGCCA GGCTAGCTACAACGA TCATCCAT	11838
1999	GAUGAAUG G CACUGGGU	3090	ACCCAGTG GGCTAGCTACAACGA CATTCCATC	11839
2001	UGAAUGGC A CUGGGUUC	3091	GAACCCAG GGCTAGCTACAACGA GCCATTCA	11840

2006	GGCACUGG G UUCACCAA	3092	TTGGTGAA GGCTAGCTACAACGA CCAGTGCC	11841
2010	CUGGGUUC A CCAAGACG	3093	CGTCTTGG GGCTAGCTACAACGA GAACCCAG	11842
2016	UCACCAAG A CGUGCGGG	3094	CCCGCACG GGCTAGCTACAACGA CTTGGTGA	11843
2018	ACCAAGAC G UGCGGGGG	3095	CCCCCGCA GGCTAGCTACAACGA GTCTTGGT	11844
2020	CAAGACGU G CGGGGGCC	3096	GGCCCCCG GGCTAGCTACAACGA ACGTCTTG	11845
2026	GUGCGGGG G CCCCCCGU	3097	ACGGGGGG GGCTAGCTACAACGA CCCCGCAC	11846
2033	GGCCCCCC G UGCAACAU	3098	ATGTTGCA GGCTAGCTACAACGA GGGGGGCC	11847
2035	CCCCCCGU G CAACAUCG	3099	CGATGTTG GGCTAGCTACAACGA ACGGGGGG	11848
2038	CCCGUGCA A CAUCGGGG	3100	CCCCGATG GGCTAGCTACAACGA TGCACGGG	11849
2040	CGUGCAAC A UCGGGGGG	3101	CCCCCGA GGCTAGCTACAACGA GTTGCACG	11850
2049	UCGGGGGG G CCGGUAC	3102	GTTACCGG GGCTAGCTACAACGA CCCCCCGA	11851
2053	GGGGGCCG G UAACGACA	3103	TGTGTTA GGCTAGCTACAACGA CGGGCCCC	11852
2056	GGCCGGUA A CGACACCU	3104	AGGTGTCG GGCTAGCTACAACGA TACCGGCC	11853
2059	CGGUAAACG A CACCUUAA	3105	TTAAGGTG GGCTAGCTACAACGA CGTTACCG	11854
2061	GUACGAC A CCUUAAACC	3106	GGTTAAGG GGCTAGCTACAACGA GTCGTTAC	11855
2067	ACACCUUA A CCUGCCCC	3107	GGGGCAGG GGCTAGCTACAACGA TAAGGTGT	11856
2071	CUUAAACCU G CCCCACGG	3108	CCGTGGGG GGCTAGCTACAACGA AGGTTAACG	11857
2076	CCUGCCCC A CGGACUGC	3109	GCAGTCCG GGCTAGCTACAACGA GGGGCAGG	11858
2080	CCCCACGG A CUGCUUCC	3110	GGAAGCAG GGCTAGCTACAACGA CCGTGGGG	11859
2083	CACGGACU G CUUCCCGA	3111	TCCGGAAG GGCTAGCTACAACGA AGTCCGTG	11860
2093	UUCCCGAA G CACCCCGA	3112	TCGGGGTG GGCTAGCTACAACGA TTCCGAA	11861
2095	CCGGAAGC A CCCCAGGG	3113	CCTCGGGG GGCTAGCTACAACGA GCTTCCGG	11862
2103	ACCCCGAG G CCACUUAC	3114	GTAAGTGG GGCTAGCTACAACGA CTCGGGGT	11863
2106	CCGAGGCC A CUUACGCA	3115	TGCGTAAG GGCTAGCTACAACGA GGCCTCGG	11864
2110	GGCCACUU A CGCAAAGU	3116	ACTTGCG GGCTAGCTACAACGA AAGTGGCC	11865
2112	CCACUUAC G CAAAGUGC	3117	GCACTTTG GGCTAGCTACAACGA GTAAGTGG	11866
2117	UACGCCAA G UGCGGUUC	3118	GAACCGCA GGCTAGCTACAACGA TTTGCGTA	11867
2119	CGCAAAGU G CGGUUCGG	3119	CCGAACCG GGCTAGCTACAACGA ACTTTGCG	11868
2122	AAAGUGCG G UUCGGGGC	3120	GCCCCGAA GGCTAGCTACAACGA CGCACTTT	11869
2129	GGUUCGGG G CCUUGGUU	3121	AACCAAGG GGCTAGCTACAACGA CCCGAACC	11870
2135	GGGCCUUG G UUAACACC	3122	GGTGTAA GGCTAGCTACAACGA CAAGGCC	11871
2139	CUUGGUUA A CACCUAGA	3123	TCTAGGTG GGCTAGCTACAACGA TAACCAAG	11872
2141	UGGUUAAC A CCUAGAUG	3124	CATCTAGG GGCTAGCTACAACGA GTTAACCA	11873
2147	ACACCUAG A UGCAUAGU	3125	ACTATGCA GGCTAGCTACAACGA CTAGGTGT	11874
2149	ACCUAGAU G CAUAGUUG	3126	CAACTATG GGCTAGCTACAACGA ATCTAGGT	11875
2151	CUAGAUGC A UAGUUGAC	3127	GTCAACTA GGCTAGCTACAACGA GCATCTAG	11876
2154	GAUGCAUA G UUGACUAC	3128	GTAGTCAA GGCTAGCTACAACGA TATGCATC	11877
2158	CAUAGUUG A CUACCCAU	3129	ATGGGTAG GGCTAGCTACAACGA CAACTATG	11878
2161	AGUUGACU A CCCAUACA	3130	TGTATGGG GGCTAGCTACAACGA AGTCAACT	11879
2165	GACUACCC A UACAGGCC	3131	AGCCTGTA GGCTAGCTACAACGA GGGTAGTC	11880
2167	CUACCCAU A CAGGCCUU	3132	AAAGCCTG GGCTAGCTACAACGA ATGGGTAG	11881
2171	CCAUCACG G CUUUGGCA	3133	TGCCAAAG GGCTAGCTACAACGA CTGTATGG	11882
2177	AGGCUUUG G CACUACCC	3134	GGGTAGTG GGCTAGCTACAACGA CAAAGCCT	11883
2179	GUUUGGC A CUACCCCU	3135	AGGGGTAG GGCTAGCTACAACGA GCCAAAGC	11884
2182	UUGGCACU A CCCUGCA	3136	TGCAGGGG GGCTAGCTACAACGA AGTGCCAA	11885
2188	CUACCCCU G CACUGUCA	3137	TGACAGTG GGCTAGCTACAACGA AGGGGTAG	11886
2190	ACCCUGC A CUGUCAAU	3138	ATTGACAG GGCTAGCTACAACGA GCAGGGGT	11887
2193	CCUGCACU G UCAAUUUU	3139	AAAATTGA GGCTAGCTACAACGA AGTGCAGG	11888
2197	CACUGUCA A UUUUUCCA	3140	TGGAAAAA GGCTAGCTACAACGA TGACAGTG	11889
2205	AUUUUUCC A UCUUUUAG	3141	CTAAAGA GGCTAGCTACAACGA GGAAAAAT	11890
2214	UCUUUAAG G UUAGGAUG	3142	CATCCTAA GGCTAGCTACAACGA CTTAAAGA	11891
2220	AGGUUAGG A UGUAUGUG	3143	CACATACA GGCTAGCTACAACGA CCTAACCT	11892
2222	GUUAGGAU G UAUGUGGG	3144	CCCACATA GGCTAGCTACAACGA ATCCTAAC	11893
2224	UAGGAUGU A UGUGGGGG	3145	CCCCCACA GGCTAGCTACAACGA ACATCCTA	11894
2226	GGAUGUAU G UGGGGGGC	3146	GCCCCCCA GGCTAGCTACAACGA ATACATCC	11895
2233	UGUGGGGG G CGUGGAGC	3147	GCTCCACG GGCTAGCTACAACGA CCCCCACA	11896

2235	UGGGGGGC G UGGAGCAC	3148	GTTGCTCCA GGCTAGCTACAACGA GCCCCCCA	11897
2240	GGCGUGGA G CACAGGCC	3149	AGCCTGTG GGCTAGCTACAACGA TCCACGCC	11898
2242	CGUGGGAGC A CAGGCUA	3150	TGAGCCTG GGCTAGCTACAACGA GCTCCACG	11899
2246	GAGCACAG G CUCACCGC	3151	GCGGTGAG GGCTAGCTACAACGA CTGTGCTC	11900
2250	ACAGGCUC A CCGCCGCA	3152	TGCGGCCG GGCTAGCTACAACGA GAGCCTGT	11901
2253	GGCUCACC G CGCGAUGC	3153	GCATGCCG GGCTAGCTACAACGA GGTGAGCC	11902
2256	UCACCGCC G CAUGCAAU	3154	ATTGCATG GGCTAGCTACAACGA GGCGGTGA	11903
2258	ACCGCCGC A UGCAAUUG	3155	CAATTGCA GGCTAGCTACAACGA GCGGCGGT	11904
2260	CGCCGCAU G CAAUUGGA	3156	TCCAATTG GGCTAGCTACAACGA ATGCGGCG	11905
2263	CGCAUGCA A UUGGACUC	3157	GAGTCCAA GGCTAGCTACAACGA TGCAATGCG	11906
2268	GCAAUUGG A CUCGAGGA	3158	TCCTCGAG GGCTAGCTACAACGA CCAATTGC	11907
2279	CGAGGAGA G CGUUGUGA	3159	TCACAACG GGCTAGCTACAACGA TCTCCTCG	11908
2281	AGGAGAGC G UUGUGAUU	3160	AATCACAA GGCTAGCTACAACGA GCTCTCCT	11909
2284	AGAGCGUU G UGAUUUGG	3161	CCAAATCA GGCTAGCTACAACGA AACGCTCT	11910
2287	GCGUUGUG A UUUGGAGG	3162	CCTCCAAA GGCTAGCTACAACGA CACAACGC	11911
2296	UUUGGAGG A CAGGGACA	3163	TGTCCCTG GGCTAGCTACAACGA CCTCCAAA	11912
2302	GGACAGGG A CAGAUACAG	3164	CTGATCTG GGCTAGCTACAACGA CCCTGTCC	11913
2306	AGGGACAG A UCAGAGCU	3165	AGCTCTGA GGCTAGCTACAACGA CTGTCCCT	11914
2312	AGAUACAG A CUCAGCCC	3166	GGGCTGAG GGCTAGCTACAACGA TCTGATCT	11915
2317	AGAGCUCA G CCCGCUGC	3167	GCAGCGGG GGCTAGCTACAACGA TGAGCTCT	11916
2321	CUCAGCCC G CUGCUGUU	3168	AACAGCAG GGCTAGCTACAACGA GGGCTGAG	11917
2324	AGCCCAGCU G CUGUUGUC	3169	GACAACAG GGCTAGCTACAACGA AGCGGGCT	11918
2327	CCGUGCU G UUGUCCAC	3170	GTGGACAA GGCTAGCTACAACGA AGCAGCGG	11919
2330	CUGCUGUU G UCCACUAC	3171	GTAGTGGA GGCTAGCTACAACGA AACAGCAG	11920
2334	UGUUGUCC A CUACAGAG	3172	CTCTGTAG GGCTAGCTACAACGA GGACAACA	11921
2337	UGUCCACU A CAGAGUGG	3173	CCACTCTG GGCTAGCTACAACGA AGTGGACA	11922
2342	ACUACAGA G UGGCAAAU	3174	ATTGCCA GGCTAGCTACAACGA TCTGTAGT	11923
2345	ACAGAGUG G CAAUUAUCU	3175	AGTATTTG GGCTAGCTACAACGA CACTCTGT	11924
2349	AGUGGCAA A UACUGCCC	3176	GGGCAGTA GGCTAGCTACAACGA TTGCCACT	11925
2351	UGGCAAAU A CUGCCUG	3177	CAGGGCAG GGCTAGCTACAACGA ATTGCCA	11926
2354	CAAUACU G CCCUGCUC	3178	GAGCAGGG GGCTAGCTACAACGA AGTATTTG	11927
2359	ACUGCCCU G CUCCUUCA	3179	TGAAGGAG GGCTAGCTACAACGA AGGGCAGT	11928
2367	GCUCCUUC A CCACCCUA	3180	TAGGGTGG GGCTAGCTACAACGA GAAGGAGC	11929
2370	CCUUCACC A CCCUACCG	3181	CGGTAGGG GGCTAGCTACAACGA GGTGAAGG	11930
2375	ACCACCCU A CCGGCUCU	3182	AGAGCCGG GGCTAGCTACAACGA AGGGTGGT	11931
2379	CCCUACCG G CUCUGUCC	3183	GGACAGAG GGCTAGCTACAACGA CGGTAGGG	11932
2384	CCGGCUCU G UCCACUGG	3184	CCAGTGGA GGCTAGCTACAACGA AGAGCCGG	11933
2388	CUCUGUCC A CUGGUUUG	3185	CAAACCAG GGCTAGCTACAACGA GGACAGAG	11934
2392	GUCCACUG G UUUGAUCC	3186	GGATCAA GGCTAGCTACAACGA CAGTGGAC	11935
2397	CUGGUUUG A UCCAUCUC	3187	GAGATGGA GGCTAGCTACAACGA CAAACCAG	11936
2401	UUUGAUCC A UCUCCACC	3188	GGTGGAGA GGCTAGCTACAACGA GGATCAA	11937
2407	CCAUCUCC A CCAGAACAA	3189	TGTTCTGG GGCTAGCTACAACGA GGAGATGG	11938
2413	CCACCAAGA A CAUCGUGG	3190	CCACGATG GGCTAGCTACAACGA TCTGGTGG	11939
2415	ACCAGAAC A UCGUGGAC	3191	GTCCACGA GGCTAGCTACAACGA GTTCTGGT	11940
2418	AGAACAAUC G UGGACGUG	3192	CACGTCCA GGCTAGCTACAACGA GATGTTCT	11941
2422	CAUCGUGG A CGUGCAAU	3193	ATTCGACG GGCTAGCTACAACGA CCACGATG	11942
2424	UCGUGGAC G UGCAAUAC	3194	GTATTGCA GGCTAGCTACAACGA GTCCACGA	11943
2426	GUGGACGU G CAAUACCU	3195	AGGTATTG GGCTAGCTACAACGA ACGTCCAC	11944
2429	GACGUGCA A UACCUGUA	3196	TACAGGTA GGCTAGCTACAACGA TGCACGTC	11945
2431	CGUGCAAU A CCUGUACG	3197	CGTACAGG GGCTAGCTACAACGA ATTGCACG	11946
2435	CAAUACCU G UACGGGUGU	3198	ACACCGTA GGCTAGCTACAACGA AGGTATTG	11947
2437	AUACCUGU A CGGUGUAG	3199	CTACACCG GGCTAGCTACAACGA ACAGGTAT	11948
2440	CCUGUACG G UGUAGGGU	3200	ACCCTACA GGCTAGCTACAACGA CGTACAGG	11949
2442	UGUACGGU G UAGGGUCA	3201	TGACCCCTA GGCTAGCTACAACGA ACCGTACA	11950
2447	GGUGUAGG G UCAGCGGU	3202	ACCGCTGA GGCTAGCTACAACGA CCTACACC	11951
2451	UAGGGUCA G CGGUUGUC	3203	GACAACCG GGCTAGCTACAACGA TGACCCCTA	11952

2454	GGUCAGCG G UUGUCUCC	3204	GGAGACAA GGCTAGCTACAACGA CGCTGACC	11953
2457	CAGCGGUU G UCUCUUUC	3205	GAAGGGAGA GGCTAGCTACAACGA AACCGCTG	11954
2466	UCUCCUUC G CAAUAAA	3206	TTTGATTG GGCTAGCTACAACGA GAAGGAGA	11955
2469	CCUUCGCA A UCAAAUGG	3207	CCATTTGA GGCTAGCTACAACGA TGCGAAGG	11956
2474	GCAAUCAA A UGGGAGUA	3208	TACTCCC GGCTAGCTACAACGA TTGATTGC	11957
2480	AAAUGGGA G UAUGUCCU	3209	AGGACATA GGCTAGCTACAACGA TCCCATT	11958
2482	AUGGGAGU A UGUCCUGU	3210	ACAGGACA GGCTAGCTACAACGA ACTCCCAT	11959
2484	GGGAGUAU G UCCUGUUG	3211	CAACAGGA GGCTAGCTACAACGA ATACTCCC	11960
2489	UAUGUCCU G UUGCUUUU	3212	AAAAGCAA GGCTAGCTACAACGA AGGACATA	11961
2492	GUCCUGUU G CUUUUCCU	3213	AGGAAAAG GGCTAGCTACAACGA AACAGGAC	11962
2508	UUCUCCUG G CAGACGCG	3214	CGCGTCTG GGCTAGCTACAACGA CAGGAGAA	11963
2512	CCUGGCAG A CGCGCGCG	3215	CGCGCGCG GGCTAGCTACAACGA CTGCCAGG	11964
2514	UGGCAGAC G CGCGCGUC	3216	GACGCGCG GGCTAGCTACAACGA GTCTGCCA	11965
2516	GCAGACGC G CGCGUCUG	3217	CAGACGCG GGCTAGCTACAACGA GCGTCTGC	11966
2518	AGACGCGC G CGUCUGUG	3218	CACAGACG GGCTAGCTACAACGA GCGCGTCT	11967
2520	ACGCGCGC G UCUGUGCC	3219	GGCACAGA GGCTAGCTACAACGA GCGCGCGT	11968
2524	GCGCGUCU G UGCCUGUU	3220	AACAGGCA GGCTAGCTACAACGA AGACGCGC	11969
2526	GCGUCUGU G CCUGUUUG	3221	CAAACAGG GGCTAGCTACAACGA ACAGACGC	11970
2530	CUGUGCCU G UUUGUGGA	3222	TCCACAAA GGCTAGCTACAACGA AGGCACAG	11971
2534	GCCUGUUU G UGGAUGAU	3223	ATCATCCA GGCTAGCTACAACGA AAACAGGC	11972
2538	GUUUGUGG A UGAUGCUG	3224	CAGCATCA GGCTAGCTACAACGA CCACAAAC	11973
2541	UGUGGAUG A UGCUGUUG	3225	CAACAGCA GGCTAGCTACAACGA CATCCACA	11974
2543	UGGAUGAU G CUGUUGGU	3226	ACCAACAG GGCTAGCTACAACGA ATCATCCA	11975
2546	AUGAUGCU G UGGUAGC	3227	GCTACCAA GGCTAGCTACAACGA AGCATCAT	11976
2550	UGCUGUUG G UAGCCCAG	3228	CTGGGCTA GGCTAGCTACAACGA CAACAGCA	11977
2553	UGUUGGUA G CCCAGGCC	3229	GGCCTGGG GGCTAGCTACAACGA TACCAACA	11978
2559	UAGCCCAG G CCGAGGCU	3230	AGCCTCGG GGCTAGCTACAACGA CTGGGCTA	11979
2565	AGGCCGAG G CUGCCCUA	3231	TAGGGCAG GGCTAGCTACAACGA CTCGGCCT	11980
2568	CCGAGGCU G CCCUAGAG	3232	CTCTAGGG GGCTAGCTACAACGA AGCCTCGG	11981
2578	CCUAGAGA A CCUGGUGG	3233	CCACCAGG GGCTAGCTACAACGA TCTCTAGG	11982
2583	AGAACCUUG G UGGUCCUC	3234	GAGGACCA GGCTAGCTACAACGA CAGGTTCT	11983
2586	ACCUUGUG G UCCUAAU	3235	ATTGAGGA GGCTAGCTACAACGA CACCAGGT	11984
2593	GGUCCUCA A UGCAGCAU	3236	ATGCTGCA GGCTAGCTACAACGA TGAGGACC	11985
2595	UCCUAAU G CAGCAUCC	3237	GGATGCTG GGCTAGCTACAACGA ATTGAGGA	11986
2598	UCAAUGCA G CAUCCUUG	3238	CAAGGATG GGCTAGCTACAACGA TGCATTGA	11987
2600	AAUGCAGC A UCCUUGGC	3239	GCCAAGGA GGCTAGCTACAACGA GCTGCATT	11988
2607	CAUCCUUG G CCGGAGUG	3240	CACTCCGG GGCTAGCTACAACGA CAAGGATG	11989
2613	UGGCCGGA G UGCAUGGC	3241	GCCATGCA GGCTAGCTACAACGA TCCGGCCA	11990
2615	GCCGGAGU G CAUGGCAU	3242	ATGCCATG GGCTAGCTACAACGA ACTCCGGC	11991
2617	CGGAGUGC A UGGCAUCC	3243	GGATGCCA GGCTAGCTACAACGA GCACTCCG	11992
2620	AGUGCAUG G CAUCCUCU	3244	AGAGGATG GGCTAGCTACAACGA CATGCACT	11993
2622	UGCAUGGC A UCCUCUCC	3245	GGAGAGGA GGCTAGCTACAACGA GCCATGCA	11994
2637	CCUCCUC G UGUUCUUC	3246	GAAGAACAA GGCTAGCTACAACGA GAGGAAGG	11995
2639	UUCCUCGU G UUCUUCUG	3247	CAGAAGAA GGCTAGCTACAACGA ACGAGGAA	11996
2647	GUUCUUCU G UGCUGCCU	3248	AGGCAGCA GGCTAGCTACAACGA AGAAGAAC	11997
2649	UCUUCUGU G CUGCCUGG	3249	CCAGGCAG GGCTAGCTACAACGA ACAGAAGA	11998
2652	UCUGUGCU G CCUGGUAC	3250	GTACCAAGG GGCTAGCTACAACGA AGCACAGA	11999
2657	GCUGCCUG G UACAUCAA	3251	TTGATGTA GGCTAGCTACAACGA CAGGCAGC	12000
2659	UGCCUGGU A CAUCAAAG	3252	CTTGTATG GGCTAGCTACAACGA ACCAGGCA	12001
2661	CCUGGUAC A UCAAAGGC	3253	GCCTTGA GGCTAGCTACAACGA GTACCAGG	12002
2668	CAUCAAAG G CAAGCUGG	3254	CCAGCTTG GGCTAGCTACAACGA CTTTGATG	12003
2672	AAAGGCAG A CUGGUCCC	3255	GGGACCAG GGCTAGCTACAACGA TTGCCTTT	12004
2676	GCAAGCUG G UCCCUGGG	3256	CCCAGGGA GGCTAGCTACAACGA CAGCTTGC	12005
2685	UCCCUGGG G CGGCAUAU	3257	ATATGCCG GGCTAGCTACAACGA CCCAGGGA	12006
2688	CUGGGCG G CAUAUGCU	3258	AGCATATG GGCTAGCTACAACGA CGCCCCAG	12007
2690	GGGGCGGC A UAUGCUCU	3259	AGAGCATA GGCTAGCTACAACGA GCCGCC	12008

2692	GGCGGCAU A UGCUCUCU	3260	AGAGAGCA GGCTAGCTACAACGA ATGCCGCC	12009
2694	CGGCAUAU G CUCUCUAC	3261	GTAGAGAG GGCTAGCTACAACGA ATATGCCG	12010
2701	UGCUCUCU A CGGCGUAU	3262	ATACGCCG GGCTAGCTACAACGA AGAGAGCA	12011
2704	UCUCUACG G CGUAUGGC	3263	GCCATACG GGCTAGCTACAACGA CGTAGAGA	12012
2706	UCUACGGC G UAUGGCCG	3264	CGGCCATA GGCTAGCTACAACGA GCCGTAGA	12013
2708	UACGGCGU A UGGCCGCU	3265	ACGGGCCA GGCTAGCTACAACGA ACGCCGTA	12014
2711	GGCGUAUG G CCGCUACU	3266	AGTAGCGG GGCTAGCTACAACGA CATACGCC	12015
2714	GUAUAGGCC G CUACUCCU	3267	AGGAGTAG GGCTAGCTACAACGA GGCCATAC	12016
2717	UGGCCGCU A CUCCUGCU	3268	ACGAGGAG GGCTAGCTACAACGA AGCGGCCA	12017
2723	CUACUCCU G CUCCUGCU	3269	ACGAGGAG GGCTAGCTACAACGA AGGAGTAG	12018
2729	CUGCUCCU G CUGGCGUU	3270	AACGCCAG GGCTAGCTACAACGA AGGAGCAG	12019
2733	UCCUGCUG G CGUUACCA	3271	TGGTAACG GGCTAGCTACAACGA CAGCAGGA	12020
2735	CUGCUGGC G UUACCACC	3272	GGTGGTAA GGCTAGCTACAACGA GCCAGCAG	12021
2738	CUGGCGUU A CCACCAAG	3273	CGTGGTGG GGCTAGCTACAACGA AACGCCAG	12022
2741	GCGUUACC A CCACGGGC	3274	GCCC GTGG GGCTAGCTACAACGA GGTAACGC	12023
2744	UUACCACC A CGGGCGUA	3275	TACGCCCG GGCTAGCTACAACGA GGTGGTAA	12024
2748	CACCAACGG G CGUACGCC	3276	GGCGTACG GGCTAGCTACAACGA CCGTGGTG	12025
2750	CCACGGGC G UACGCCAU	3277	ATGGCGTA GGCTAGCTACAACGA GCCCGTGG	12026
2752	ACGGGCGU A CGCCAUGG	3278	CCATGGCG GGCTAGCTACAACGA ACGCCCGT	12027
2754	GGGCGUAC G CCAUGGAC	3279	GTCCATGG GGCTAGCTACAACGA GTACGCC	12028
2757	CGUACGCC A UGGACCGG	3280	CCGGTCCA GGCTAGCTACAACGA GGCATACG	12029
2761	CGCCAUGG A CCGGGAGA	3281	TCTCCCGG GGCTAGCTACAACGA CCATGGCG	12030
2769	ACCGGGAG A UGGCCGCA	3282	TGCGGCCA GGCTAGCTACAACGA CTCCCGGT	12031
2772	GGGAGAUG G CCGCAUCG	3283	CGATGCCG GGCTAGCTACAACGA CATCTCCC	12032
2775	AGAUGGCC G CAUCGUGC	3284	GCACGATG GGCTAGCTACAACGA GGCCATCT	12033
2777	AUGGCCGC A UCGUGCGG	3285	CCGCACGA GGCTAGCTACAACGA GCGGCCAT	12034
2780	GCCGCAUC G UGCGGAGG	3286	CCTCCGCA GGCTAGCTACAACGA GATGCGGC	12035
2782	CGCAUCGU G CGGAGGCG	3287	CGCCTCCG GGCTAGCTACAACGA ACGATGCG	12036
2788	GUGCGGAG G CGUGGUUU	3288	AAACCAACG GGCTAGCTACAACGA CTCCGCAC	12037
2790	GCGGAGGC G UGGUUUUU	3289	AAAAACCA GGCTAGCTACAACGA GCCTCCGC	12038
2793	GAGGCGUG G UUUUUGUA	3290	TACAAAAA GGCTAGCTACAACGA CACGCCTC	12039
2799	UGGUUUUU G UAGGUCUA	3291	TAGACCTA GGCTAGCTACAACGA AAAAACCA	12040
2803	UUUUGUAG G UCUAGCAC	3292	GTGCTAGA GGCTAGCTACAACGA CTACAAA	12041
2808	UAGGUCUA G CACUCUUG	3293	CAAGAGTG GGCTAGCTACAACGA TAGACCTA	12042
2810	GGUCUAGC A CUCUUGAC	3294	GTCAAGAG GGCTAGCTACAACGA GCTAGACC	12043
2817	CACUCUUG A CCUUGUCA	3295	TGACAAGG GGCTAGCTACAACGA CAAGAGTG	12044
2822	UUGACCUU G UCACCAUA	3296	TATGGTGA GGCTAGCTACAACGA AAGGTCAA	12045
2825	ACCUUGUC A CCAUACUA	3297	TAGTATGG GGCTAGCTACAACGA GACAAGGT	12046
2828	UUGUCACC A UACUACAA	3298	TTGTAGTA GGCTAGCTACAACGA GGTGACAA	12047
2830	GUCACCAU A CUACAAAG	3299	CTTGTAG GGCTAGCTACAACGA ATGGTGAC	12048
2833	ACCAUACU A CAAAGUGU	3300	ACACTTTG GGCTAGCTACAACGA AGTATGGT	12049
2838	ACUACAAA G UGUUCCUC	3301	GAGGAACA GGCTAGCTACAACGA TTTGTAGT	12050
2840	UACAAAGU G UUCCUCGC	3302	GCGAGGAA GGCTAGCTACAACGA ACTTTGTA	12051
2847	UGUUCCUC G CUAGGCUC	3303	GAGCCTAG GGCTAGCTACAACGA GAGGAACA	12052
2852	CUCGCUAG G CUCAUAUG	3304	CATATGAG GGCTAGCTACAACGA CTAGCGAG	12053
2856	CUAGGCUC A UAUUGGUGG	3305	CCACCATA GGCTAGCTACAACGA GAGCCTAG	12054
2858	AGGCUCAU A UGGUGGUU	3306	AACCACCA GGCTAGCTACAACGA ATGAGCCT	12055
2861	CUCAUAUG G UGGUUGCA	3307	TGCAACCA GGCTAGCTACAACGA CATATGAG	12056
2864	AUAUGGUG G UUGCAAUA	3308	TATTGCAA GGCTAGCTACAACGA CACCATAT	12057
2867	UGGUGGUU G CAAUACCU	3309	AGGTATTG GGCTAGCTACAACGA AACCAACCA	12058
2870	UGGUUGCA A UACCUUAU	3310	ATAAGGTA GGCTAGCTACAACGA TGCAACCA	12059
2872	GUUGCAAU A CCUUAUCA	3311	TGATAAGG GGCTAGCTACAACGA ATTGCAAC	12060
2877	AAUACCUU A UCACCAGA	3312	TCTGGTGA GGCTAGCTACAACGA AAGGTATT	12061
2880	ACCUUAUC A CCAGAGCC	3313	GGCTCTGG GGCTAGCTACAACGA GATAAGGT	12062
2886	UCACCAAGA G CCGAGGCG	3314	CGCCTCGG GGCTAGCTACAACGA TCTGGTGA	12063
2892	GAGCCGAG G CGCAGUUG	3315	CAACTGCG GGCTAGCTACAACGA CTCGGCTC	12064

2894	GCCGAGGC G CAGUUGCA	3316	TGCAACTG GGCTAGCTACAACGA GCCTCGGC	12065
2897	GAGGCGCA G UUGCAAGU	3317	ACTTGCAA GGCTAGCTACAACGA TGCGCCTC	12066
2900	GCGCAGUU G CAAGUGUG	3318	CACACTTG GGCTAGCTACAACGA AACTGCGC	12067
2904	AGUUGCAA G UGUGGAUC	3319	GATCCACA GGCTAGCTACAACGA TTGCAACT	12068
2906	UUGCAAGU G UGGAUCCC	3320	GGGATCCA GGCTAGCTACAACGA ACTTGCAA	12069
2910	AAGUGUGG A UCCCCCCC	3321	GGGGGGGA GGCTAGCTACAACGA CCACACTT	12070
2923	CCCCCUCA A CGUUCGGG	3322	CCCGAACG GGCTAGCTACAACGA TGAGGGGG	12071
2925	CCCUCAAC G UUCGGGGG	3323	CCCCCGAA GGCTAGCTACAACGA GTTGAGGG	12072
2936	CGGGGGGG G CGCGGUGC	3324	GCACCGCG GGCTAGCTACAACGA CCCCCCG	12073
2938	GGGGGGGC G CGGUGCCA	3325	TGGCACCG GGCTAGCTACAACGA GCCCCCC	12074
2941	GGGGCGCG G UGCCAUCA	3326	TGATGGCA GGCTAGCTACAACGA CGCGCCCC	12075
2943	GGCGCGGU G CCAUCAUU	3327	AATGATGG GGCTAGCTACAACGA ACCGCGCC	12076
2946	GGGGUGGC A UCAUUCUC	3328	GAGAATGA GGCTAGCTACAACGA GGCACCGC	12077
2949	GUGCCAUC A UUCUCCUC	3329	GAGGAGAA GGCTAGCTACAACGA GATGGCAC	12078
2958	UUCUCCUC A CGUGUGUG	3330	CACACACG GGCTAGCTACAACGA GAGGAGAA	12079
2960	CUCCUCAC G UGUGUGGU	3331	ACCACACCA GGCTAGCTACAACGA GTGAGGAG	12080
2962	CCUCACGU G UGUGGUCC	3332	GGACCAACA GGCTAGCTACAACGA ACGTGAGG	12081
2964	UCACGUGU G UGGUCCAC	3333	GTGGACCA GGCTAGCTACAACGA ACACGTGA	12082
2967	CGUGUGUG G UCCACCCA	3334	TGGGTGGA GGCTAGCTACAACGA CACACACG	12083
2971	UGUGGUCC A CCCAGAGC	3335	GCTCTGGG GGCTAGCTACAACGA GGACCACA	12084
2978	CACCCAGA G CUAAUCUU	3336	AAGATTAG GGCTAGCTACAACGA TCTGGGTG	12085
2982	CAGACCUA A UCUUUGAC	3337	GTCAAAGA GGCTAGCTACAACGA TAGCTCTG	12086
2989	AAUCUUUG A CAUCACCA	3338	TGGTGATG GGCTAGCTACAACGA CAAAGATT	12087
2991	UCUJUGAC A UCACAAAA	3339	TTTGGTGA GGCTAGCTACAACGA GTCAAAGA	12088
2994	UUGACAUC A CCAAAAUU	3340	AATTTTGG GGCTAGCTACAACGA GATGTCAA	12089
3000	UCACCAAA A UUAUGCUC	3341	GAGCATAA GGCTAGCTACAACGA TTTGGTGA	12090
3003	CCAAAAUUU A UGCUCGCC	3342	GGCGAGCA GGCTAGCTACAACGA AATTTTGG	12091
3005	AAAAUUUAU G CUCGCCAU	3343	ATGGCGAG GGCTAGCTACAACGA ATAATTTT	12092
3009	UUAUGCUC G CCAUACUC	3344	GAGTATGG GGCTAGCTACAACGA GAGCATAA	12093
3012	UGCUCGCC A UACUCGGC	3345	GCCGAGTA GGCTAGCTACAACGA GGCGAGCA	12094
3014	CUCGCCAU A CUCGGCCC	3346	GGGCCGAG GGCTAGCTACAACGA ATGGCGAG	12095
3019	CAUACUCG G CCCGCUA	3347	TGAGCGGG GGCTAGCTACAACGA CGAGTATG	12096
3023	CUCGGCCC G CUCAUGGU	3348	ACCATGAG GGCTAGCTACAACGA GGGCCGAG	12097
3027	GCCCCGUC A UGGUGCUC	3349	GAGCACCA GGCTAGCTACAACGA GAGCGGGC	12098
3030	CGCUCUCAUG G UGCCUCCAG	3350	CTGGAGCA GGCTAGCTACAACGA CATGAGCG	12099
3032	CUCUCAUGG G CUCCAGGC	3351	GCCTGGAG GGCTAGCTACAACGA ACCATGAG	12100
3039	UGCUCCAG G CUGGUUAU	3352	TATACCAG GGCTAGCTACAACGA CTGGAGCA	12101
3043	CCAGGCUG G UAUAGCAA	3353	TTGCTATA GGCTAGCTACAACGA CAGCCTGG	12102
3045	AGGCUGGU A UAGCAAAA	3354	TTTGCTA GGCTAGCTACAACGA ACCAGCCT	12103
3048	CUGGUUAU G CAAAAGUG	3355	CACTTTG GGCTAGCTACAACGA TATACCAG	12104
3054	UAGCAAAA G UGCCGGAC	3356	GTCCGGCA GGCTAGCTACAACGA TTTTGCTA	12105
3056	GCAAAAGU G CCGGACUU	3357	AAGTCCGG GGCTAGCTACAACGA ACTTTTGC	12106
3061	AGUGCCCG A CUUUGUGC	3358	GCACAAAG GGCTAGCTACAACGA CCGGCACT	12107
3066	CGGACUUU G UGCGGGCU	3359	AGCCCGCA GGCTAGCTACAACGA AAAGTCCG	12108
3068	GACUUUUGU G CGGGCUA	3360	TGAGCCCG GGCTAGCTACAACGA ACAAAAGTC	12109
3072	UUGUGCGG G CUCAAGGG	3361	CCCTTGAG GGCTAGCTACAACGA CCGCACAA	12110
3081	CUCAAGGG G UCAUCCGU	3362	ACGGATGA GGCTAGCTACAACGA CCCTTGAG	12111
3084	AAGGGGUC A UCCGUGAA	3363	TTCACCGA GGCTAGCTACAACGA GACCCCTT	12112
3088	GGUCAUCC G UGAAUGCA	3364	TGCATTCA GGCTAGCTACAACGA GGATGACC	12113
3092	AUCCGUGA A UGCAUUUU	3365	AAAATGCA GGCTAGCTACAACGA TCACGGAT	12114
3094	CCGUGAAU G CAUWUUGG	3366	CCAAAATG GGCTAGCTACAACGA ATTACCGG	12115
3096	GUGAAUGC A UUWUGGUG	3367	CACCAAAA GGCTAGCTACAACGA GCATTACAC	12116
3102	GCAUUUUG G UGCGGAAA	3368	TTTCCGCA GGCTAGCTACAACGA CAAAATGC	12117
3104	AUUUUGGU G CGGAAAGU	3369	ACTTTCCG GGCTAGCTACAACGA ACCAAAAT	12118
3111	UGCGGAAA G UCGGUGGG	3370	CCCACCGA GGCTAGCTACAACGA TTTCCGCA	12119
3115	GAAAGUCG G UGGGGGGC	3371	GCCCCCCA GGCTAGCTACAACGA CGACTTTC	12120

3122	GGUGGGGG G CAAUAUGU	3372	ACATATTG GGCTAGCTACAACGA CCCCCACC	12121
3125	GGGGGGCA A UAUGUCCA	3373	TGGACATA GGCTAGCTACAACGA TGCCCCCC	12122
3127	GGGGCAAU A UGUCCAAA	3374	TTTGGACA GGCTAGCTACAACGA ATTGCC	12123
3129	GGCAAUAU G UCCAAAUG	3375	CATTTGGA GGCTAGCTACAACGA ATATTGCC	12124
3135	AUGUCCAA A UGGCCUUC	3376	GAAGGCCA GGCTAGCTACAACGA TTGGACAT	12125
3138	UCCAA AUG G CCUUCAUG	3377	CATGAAGG GGCTAGCTACAACGA CATTGGA	12126
3144	UGGCCUUC A UGAAGUUG	3378	CAACTTCA GGCTAGCTACAACGA GAAGGCCA	12127
3149	UUCAUGAA G UUGGCCGA	3379	TCGGCCAA GGCTAGCTACAACGA TTCATGAA	12128
3153	UGAAGUUG G CCGAAUUG	3380	CAATTCCG GGCTAGCTACAACGA CAACTTCA	12129
3158	UUGGCCGA A UUGAAAGG	3381	CCTTCAA GGCTAGCTACAACGA TCGGCCAA	12130
3166	AUUGAAAG G UACGUCCG	3382	CGGACGTA GGCTAGCTACAACGA CTTTCAAT	12131
3168	UGAAAGGU A CGUCCGUC	3383	GACGGACG GGCTAGCTACAACGA ACCTTCA	12132
3170	AAAGGUAC G UCCGUCUA	3384	TAGACGGA GGCTAGCTACAACGA GTACCTTT	12133
3174	GUACGUCC G UCUAUGAC	3385	GTCATAGA GGCTAGCTACAACGA GGACGTAC	12134
3178	GUCCGUCU A UGACCACC	3386	GGTGGTCA GGCTAGCTACAACGA AGACGGAC	12135
3181	CGUCUAUG A CCACCUCA	3387	TGAGGTGG GGCTAGCTACAACGA CATAGACG	12136
3184	CUAUGACC A CCCACACU	3388	GAGTGAGG GGCTAGCTACAACGA GGTCTAG	12137
3189	ACCACCUC A CUCCACUG	3389	CAGTGGAG GGCTAGCTACAACGA GAGGTGGT	12138
3194	CUCACUCC A CUGCAGGA	3390	TCCCTGCAG GGCTAGCTACAACGA GGAGTGAG	12139
3197	ACUCCACU G CAGGACUG	3391	CAGTCCTG GGCTAGCTACAACGA AGTGGAGT	12140
3202	ACUGCAGG A CUGGGCCC	3392	GGGCCAG GGCTAGCTACAACGA CCTGCAGT	12141
3207	AGGACUGG G CCCACACAA	3393	TGTGTGGG GGCTAGCTACAACGA CCAGTCCT	12142
3211	CUGGGCCC A CACAGGUC	3394	GACCTGTG GGCTAGCTACAACGA GGGCCCAG	12143
3213	GGGCCAC A CAGGUCUA	3395	TAGACCTG GGCTAGCTACAACGA GTGGGCC	12144
3217	CCACACAG G UCUACGAG	3396	CTCGTAGA GGCTAGCTACAACGA CTGTGTGG	12145
3221	ACAGGUUCU A CGAGACCU	3397	AGGTCTCG GGCTAGCTACAACGA AGACCTGT	12146
3226	UCUACGAG A CCUGGCGG	3398	CCGCCAGG GGCTAGCTACAACGA CTCGTAGA	12147
3231	GAGACCUG G CGGUAGCG	3399	CGCTACCG GGCTAGCTACAACGA CAGGTCTC	12148
3234	ACCUGGCG G UAGCGGUC	3400	GACCGCTA GGCTAGCTACAACGA CGCCAGGT	12149
3237	UGGCGGUA G CGGUCGAG	3401	CTCGACCG GGCTAGCTACAACGA TACCGCCA	12150
3240	CGGUAGCG G UCGAGCCC	3402	GGGCTCGA GGCTAGCTACAACGA CGCTACCG	12151
3245	GCGGUCGA G CCCGUCGU	3403	ACGACGGG GGCTAGCTACAACGA TCGACCGC	12152
3249	UCGAGCCC G UCGUCUUC	3404	GAAGACGA GGCTAGCTACAACGA GGGCTCGA	12153
3252	AGCCCUC G UCUUCUCC	3405	GGAGAAGA GGCTAGCTACAACGA GACGGGCT	12154
3262	CUUCUCCG A CAUGGAAA	3406	TTCCCATG GGCTAGCTACAACGA CGGAGAAC	12155
3264	UCUCCGAC A UGGAAAUC	3407	GATTCCA GGCTAGCTACAACGA GTCGGAGA	12156
3270	ACAUGGAA A UCAAGAUC	3408	GATCTTGA GGCTAGCTACAACGA TTCCATGT	12157
3276	AAAUCAAAG A UCAUCACC	3409	GGTGATGA GGCTAGCTACAACGA CTTGATTT	12158
3279	UCAAGAAC A UCACCUGG	3410	CCAGGTGA GGCTAGCTACAACGA GATCTTGA	12159
3282	AGAUCAUC A CCUGGGGG	3411	CCCCCAGG GGCTAGCTACAACGA GATGATCT	12160
3295	GGGGGGAG A CACCGCGG	3412	CCCGGGTG GGCTAGCTACAACGA CTCCCCCC	12161
3297	GGGGAGAC A CCGCGGGC	3413	CGCCGCGG GGCTAGCTACAACGA GTCTCCCC	12162
3300	GAGACACC G CGGCGUGU	3414	ACACGCCG GGCTAGCTACAACGA GGTGTCTC	12163
3303	ACACCGCG G CGUGUGGG	3415	CCCACACG GGCTAGCTACAACGA CGCGGTGT	12164
3305	ACCGCGGC G UGUGGGGA	3416	TCCCCACA GGCTAGCTACAACGA GCCGCGGT	12165
3307	CGCGCGU G UGGGGACA	3417	TGCCCCA GGCTAGCTACAACGA ACGCCGCG	12166
3313	GUGUGGGG A CAUCAUUA	3418	TAATGATG GGCTAGCTACAACGA CCCCCACAC	12167
3315	GUGGGGAC A UCAUUAUG	3419	CATAATGA GGCTAGCTACAACGA GTCCCCAC	12168
3318	GGGACAAUC A UUAUGGGU	3420	ACCCATAA GGCTAGCTACAACGA GATGTCCC	12169
3321	ACAUCAUU A UGGGUCUA	3421	TAGACCCA GGCTAGCTACAACGA AATGATGT	12170
3325	CAUUAUGG G UCUACCUG	3422	CAGGTAGA GGCTAGCTACAACGA CCATAATG	12171
3329	AUGGGUCU A CCUGUCUC	3423	GAGACAGG GGCTAGCTACAACGA AGACCCAT	12172
3333	GUCUACCU G UCUCGCC	3424	GGCGGAGA GGCTAGCTACAACGA AGGTAGAC	12173
3339	CUGUCUCC G CCCGAAGG	3425	CCTTCGGG GGCTAGCTACAACGA GGAGACAG	12174
3357	GGAGGGAG A UACUCCUA	3426	TAGGAGTA GGCTAGCTACAACGA CTCCCTCC	12175
3359	AGGGAGAU A CUCCUAGG	3427	CCTAGGAG GGCTAGCTACAACGA ATCTCCCT	12176

3368	CUCCUAGG A CCAGCCGA	3428	TCGGCTGG GGCTAGCTACAACGA CCTAGGAG	12177
3372	UAGGACCA G CCGACAGU	3429	ACTGTCGG GGCTAGCTACAACGA TGGTCCTA	12178
3376	ACCAGCCG A CAGUCUUG	3430	CAAGACTG GGCTAGCTACAACGA CGGCTGGT	12179
3379	AGCCGACA G UCUUGAGG	3431	CCTCAAGA GGCTAGCTACAACGA TGTCGGCT	12180
3389	CUUGAGGG G CAGGGGUG	3432	CACCCCTG GGCTAGCTACAACGA CCCTCAAG	12181
3395	GGGCAGGG G UGGCGACU	3433	AGTCGCCA GGCTAGCTACAACGA CCCTGCC	12182
3398	CAGGGGUG G CGACUCCU	3434	AGGAGTCG GGCTAGCTACAACGA CACCCCTG	12183
3401	GGGUUGCG A CUCCUCGC	3435	GCGAGGAG GGCTAGCTACAACGA CGCCACCC	12184
3408	GACUCCUC G CGCCCAUU	3436	AATGGGCG GGCTAGCTACAACGA GAGGAGTC	12185
3410	CUCCUCGC G CCCAUUAC	3437	GTAATGGG GGCTAGCTACAACGA GCGAGGAG	12186
3414	UCGCGCCC A UUACGGCC	3438	GGCGTAA GGCTAGCTACAACGA GGGCGCGA	12187
3417	CGCCCAUU A CGGCCUAC	3439	GTAGGCCG GGCTAGCTACAACGA AATGGGCG	12188
3420	CCAUUACG G CCUACUCC	3440	GGAGTAGG GGCTAGCTACAACGA CGTAATGG	12189
3424	UACGGCCU A CUCCCAAC	3441	GTGGGAG GGCTAGCTACAACGA AGGCCGTA	12190
3431	UACUCCCA A CAGACGCG	3442	CGCGTCTG GGCTAGCTACAACGA TGGGAGTA	12191
3435	CCCAACAG A CGCGGGGC	3443	GCCCCGCG GGCTAGCTACAACGA CTGTTGGG	12192
3437	CAACAGAC G CGGGGCCU	3444	AGGCCCCG GGCTAGCTACAACGA GTCTGTTG	12193
3442	GACCGGGG G CCUGUUUG	3445	CAAACAGG GGCTAGCTACAACGA CCCGCGTC	12194
3446	CGGGGCCU G UUUGGCUG	3446	CAGCCAAA GGCTAGCTACAACGA AGGCCCCG	12195
3451	CCUGUUUG G CUGCAUUA	3447	TAATGCAG GGCTAGCTACAACGA CAAACAGG	12196
3454	GUUUGGCU G CAUUAUCA	3448	TGATAATG GGCTAGCTACAACGA AGCCAAAC	12197
3456	UUGGCUGC A UUAUCACC	3449	GGTGATAA GGCTAGCTACAACGA GCAGCCAA	12198
3459	GCUGCAUU A UCACCAGC	3450	GCTGGTGA GGCTAGCTACAACGA AATGCAGC	12199
3462	GCAUUAUC A CCAGCCUC	3451	GAGGCTGG GGCTAGCTACAACGA GATAATGC	12200
3466	UAUCACCA G CCUCACGG	3452	CCGTGAGG GGCTAGCTACAACGA TGGTGATA	12201
3471	CCAGCCUC A CGGGCCGG	3453	CCGGCCCCG GGCTAGCTACAACGA GAGGCTGG	12202
3475	CCUCACGG G CCGGGACA	3454	TGTCCCGG GGCTAGCTACAACGA CCGTGAGG	12203
3481	GGGCGGG A CAAGAAC	3455	GGTTCTTG GGCTAGCTACAACGA CCCGGCCC	12204
3487	GGACAAGA A CCAAGUCG	3456	CGACTTGG GGCTAGCTACAACGA TCTTGTCC	12205
3492	AGAACCAA G UCGAGGGG	3457	CCCCTCGA GGCTAGCTACAACGA TTGGTTCT	12206
3504	AGGGGGAA G UUCAAGUG	3458	CACTTGAA GGCTAGCTACAACGA TTCCCCCT	12207
3510	AAGUUCAA G UGGUUUCC	3459	GGAAACCA GGCTAGCTACAACGA TTGAACCT	12208
3513	UUCAAGUG G UUUCACC	3460	GGTGGAAA GGCTAGCTACAACGA CACTTGAA	12209
3519	UGGUUUCC A CCGCGACG	3461	CGTCGCGG GGCTAGCTACAACGA GGAAACCA	12210
3522	UUUCCACC G CGACGCAG	3462	CTGCGTCG GGCTAGCTACAACGA GGTGGAAA	12211
3525	CCACCGCG A CGCAGUCU	3463	AGACTGCG GGCTAGCTACAACGA CGCGGTGG	12212
3527	ACCGCGAC G CAGUCUUU	3464	AAAGACTG GGCTAGCTACAACGA GTCGCGGT	12213
3530	GCGACGCA G UCUUUCU	3465	AGGAAAAGA GGCTAGCTACAACGA TGCGTCG	12214
3540	CUUUCUA G CGACCUGC	3466	GCAGGTCG GGCTAGCTACAACGA TAGGAAAG	12215
3543	UCCUAGCG A CCUGCGUC	3467	GACGCAGG GGCTAGCTACAACGA CGCTAGGA	12216
3547	AGCGACCU G CGUCAACG	3468	CGTTGACG GGCTAGCTACAACGA AGGTCGCT	12217
3549	CGACCUGC G UCAACGGC	3469	GCCGTTGA GGCTAGCTACAACGA GCAGGTCG	12218
3553	CUGCGUCA A CGGCGUGU	3470	ACACGCCG GGCTAGCTACAACGA TGACGCAG	12219
3556	CGUCAACG G CGUGUGCU	3471	AGCACACG GGCTAGCTACAACGA CGTTGACG	12220
3558	UCAACGGC G UGUGCUUG	3472	CCAGCACA GGCTAGCTACAACGA GCCGTTGA	12221
3560	AACGGCGU G UGCUGGAC	3473	GTCCAGCA GGCTAGCTACAACGA ACGCCGTT	12222
3562	CGGCGUGU G CUGGACUG	3474	CAGTCCAG GGCTAGCTACAACGA ACACGCCG	12223
3567	UGUGCUGG A CUGUCUAC	3475	GTAGACAG GGCTAGCTACAACGA CCAGCACA	12224
3570	GCUGGACU G UCUACCAC	3476	GTGGTAGA GGCTAGCTACAACGA AGTCCAGC	12225
3574	GACUGUCU A CCACGGCG	3477	CGCCGTGG GGCTAGCTACAACGA AGACAGTC	12226
3577	UGUCUACC A CGGCGCCG	3478	CGGCGCCG GGCTAGCTACAACGA GGTAGACA	12227
3580	CUACCACG G CGCCGGCU	3479	AGCCGGCG GGCTAGCTACAACGA CGTGGTAG	12228
3582	ACCACGGC G CGGGCUCA	3480	TGAGCCGG GGCTAGCTACAACGA GCCGTGGT	12229
3586	CGGGCGCG G CUCAAAGA	3481	TCTTTGAG GGCTAGCTACAACGA CGGGCGCG	12230
3594	GCUAAAG A CCCUAGCC	3482	GGCTAGGG GGCTAGCTACAACGA CTTTGAGC	12231
3600	AGACCCUA G CGGGCCCA	3483	TGGGCCGG GGCTAGCTACAACGA TAGGGTCT	12232

3604	CCUAGCCG G CCCAAAGG	3484	CCTTGGG GGCTAGCTACAACGA CGGCTAGG	12233
3613	CCCAAAGG G UCCAAUCA	3485	TGATTGGA GGCTAGCTACAACGA CCTTTGGG	12234
3618	AGGGUCCA A UCACCAA	3486	TTGGGTGA GGCTAGCTACAACGA TGGACCCCT	12235
3621	GUCAAUC A CCCAAUUG	3487	CATTGGG GGCTAGCTACAACGA GATTGGAC	12236
3627	UCACCAA A UGUACACC	3488	GGTGTACA GGCTAGCTACAACGA TTGGGTGA	12237
3629	ACCCAAAU G UACACCAA	3489	TTGGTGTA GGCTAGCTACAACGA ATTTGGGT	12238
3631	CCAAAUUG A CACCAAUG	3490	CATTGGT GGCTAGCTACAACGA ACATTTGG	12239
3633	AAAUGUAC A CCAAUGUA	3491	TACATTGG GGCTAGCTACAACGA GTACATTT	12240
3637	GUACACCA A UGUAGACC	3492	GGTCTACA GGCTAGCTACAACGA TGTTGTAC	12241
3639	ACACCAAU G UAGACCAG	3493	CTGGTCTA GGCTAGCTACAACGA ATTGGTGT	12242
3643	CAAUGUAG A CCAGGACC	3494	GGTCCTGG GGCTAGCTACAACGA CTACATTG	12243
3649	AGACCAGG A CCUCGUCG	3495	CGACGAGG GGCTAGCTACAACGA CCTGGTCT	12244
3654	AGGACCU C G UCGGAUGG	3496	CCATCCGA GGCTAGCTACAACGA GAGGTCTT	12245
3659	CUCGUCGG A UGGCCGGC	3497	GCCGGCCA GGCTAGCTACAACGA CCGACGAG	12246
3662	GUCGGAUG G CCGGCGCC	3498	GGCGCCGG GGCTAGCTACAACGA CATCCGAC	12247
3666	GAUGGCCG G CGCCCCCC	3499	GGGGGGCG GGCTAGCTACAACGA CGGCCATC	12248
3668	UGGCCGGC G CCCCCCGG	3500	CCGGGGGG GGCTAGCTACAACGA GCCGGCCA	12249
3678	CCCCCGGA G CGCGGUCC	3501	GGACCGCG GGCTAGCTACAACGA TCCGGGGG	12250
3680	CCCGGAGC G CGGUCCUU	3502	AAGGACCG GGCTAGCTACAACGA GCTCCGGG	12251
3683	GGAGCGCG G UCCUUGAC	3503	GTCAAGGA GGCTAGCTACAACGA CGCGCTCC	12252
3690	GGUCCUUG A CACCAUGC	3504	GCATGGTG GGCTAGCTACAACGA CAAGGACC	12253
3692	UCCUUGAC A CCAUGCAC	3505	GTGCATGG GGCTAGCTACAACGA GTCAAGGA	12254
3695	UUGACACC A UGCACCUG	3506	CAGGTGCA GGCTAGCTACAACGA GGTGTCAA	12255
3697	GACACCAU G CACCUUGCG	3507	CGCAGGTG GGCTAGCTACAACGA ATGGTGTC	12256
3699	CACCAUGC A CCUGCGGC	3508	GCCGCAGG GGCTAGCTACAACGA GCATGGTG	12257
3703	AUGCACCU G CGGCGGCCU	3509	AGCCGCCG GGCTAGCTACAACGA AGGTGCAT	12258
3706	CACCUUGCG G CGGCUCGG	3510	CCGAGCCG GGCTAGCTACAACGA CGCAGGTG	12259
3709	CUGCGGCG G CUCGGACC	3511	GGTCCGAG GGCTAGCTACAACGA CGCCGCAG	12260
3715	CGGCUCGG A CCUUUACU	3512	AGTAAAGG GGCTAGCTACAACGA CCGAGCCG	12261
3721	GGACCUUU A CUUGGUCA	3513	TGACCAAG GGCTAGCTACAACGA AAAGGTCC	12262
3726	UUUACUUG G UCACGAGA	3514	TCTCGTGA GGCTAGCTACAACGA CAAGTAAA	12263
3729	ACUUGGUC A CGAGACAC	3515	GTGTCTCG GGCTAGCTACAACGA GACCAAGT	12264
3734	GUCACGAG A CACGCUGA	3516	TCAGCGTG GGCTAGCTACAACGA CTCGTGAC	12265
3736	CACGAGAC A CGCUGAUG	3517	CATCAGCG GGCTAGCTACAACGA GTCTCGTG	12266
3738	CGAGACAC G CUGAUGUC	3518	GACATCAG GGCTAGCTACAACGA GTGTCTCG	12267
3742	ACACGCUG A UGUCAUUC	3519	GAATGACA GGCTAGCTACAACGA CAGCGTGT	12268
3744	ACGCUGAU G UCAUUCCG	3520	CGGAATGA GGCTAGCTACAACGA ATCAGCGT	12269
3747	CUGAUGUC A UUCCGGUG	3521	CACCGGAA GGCTAGCTACAACGA GACATCAG	12270
3753	UCAUUCCG G UGCGCCGG	3522	CCGGCGCA GGCTAGCTACAACGA CGGAATGA	12271
3755	AUUCCGGU G CGCCGGCG	3523	CGCCGGCG GGCTAGCTACAACGA ACCGGAAT	12272
3757	UCCGGUGC G CCGGCGGG	3524	CCCGCCGG GGCTAGCTACAACGA GCACCGGA	12273
3761	GUGCGCCG G CGGGGUGA	3525	TCACCCCG GGCTAGCTACAACGA CGGCGCAC	12274
3766	CCGGCGGG G UGACAGCA	3526	TGCTGTCA GGCTAGCTACAACGA CCCGCCGG	12275
3769	GCGGGGUG A CAGCAGGG	3527	CCCTGCTG GGCTAGCTACAACGA CACCCCGC	12276
3772	GGGUGACA G CAGGGGGA	3528	TCCCCCTG GGCTAGCTACAACGA TGTCACCC	12277
3781	CAGGGGGA G CUUACUAU	3529	ATAGTAAG GGCTAGCTACAACGA TCCCCCTG	12278
3785	GGGAGCUU A CUAUCCCC	3530	GGGGATAG GGCTAGCTACAACGA AAGCTCCC	12279
3788	AGCUUACU A UCCCCCAG	3531	CTGGGGGA GGCTAGCTACAACGA AGTAAGCT	12280
3797	UCCCCCAG G CCCAUCUC	3532	GAGATGGG GGCTAGCTACAACGA CTGGGGGA	12281
3801	CCAGGCC A UCUCCUAC	3533	GTAGGAGA GGCTAGCTACAACGA GGGCCTGG	12282
3808	CAUCUCCU A CUUGAAGG	3534	CCTTCAAG GGCTAGCTACAACGA AGGAGATG	12283
3817	CUUGAAGG G CUCCUCGG	3535	CCGAGGAG GGCTAGCTACAACGA CCTTCAAG	12284
3826	CUCCUCGG G CGGUCCAC	3536	GTGGACCG GGCTAGCTACAACGA CCGAGGAG	12285
3829	CUCGGGCG G UCCACUGC	3537	GCAGTGGGA GGCTAGCTACAACGA CGCCCGAG	12286
3833	GGCGGUCC A CUGCUCUG	3538	CAGAGCAG GGCTAGCTACAACGA GGACCGCC	12287
3836	GGUCCACU G CUCUGCCC	3539	GGGCAGAG GGCTAGCTACAACGA AGTGGACC	12288

3841	ACUGCUCU G CCCUUCGG	3540	CCGAAGGG GGCTAGCTACAACGA AGAGCA GT	12289
3851	CCUUUCGGG G CACGUUGU	3541	ACAACGTG GGCTAGCTACAACGA CCCGAAGG	12290
3853	UUCGGGGC A CGUUGUGG	3542	CCACAAACG GGCTAGCTACAACGA GCCCGAAG	12291
3855	CGGGGCAC G UUGUGGGC	3543	GCCCACAA GGCTAGCTACAACGA GTGCCCG	12292
3858	GGCACGUU G UGGGCAUC	3544	GATGCCCA GGCTAGCTACAACGA AACGTGCC	12293
3862	CGUUGUGG G CAUCUUCC	3545	GGAAGATG GGCTAGCTACAACGA CCACAAACG	12294
3864	UUGUGGGC A UCUUCCGG	3546	CCGGAAGA GGCTAGCTACAACGA GCCCACAA	12295
3873	UCUUCCGG G CUGCUGUG	3547	CACAGCAG GGCTAGCTACAACGA CCGGAAGA	12296
3876	UCCGGGCU G CUGUGUGC	3548	GCACACAG GGCTAGCTACAACGA AGCCCGGA	12297
3879	GGGCUGCU G UGUGCACC	3549	GGTGCACA GGCTAGCTACAACGA AGCAGCCC	12298
3881	GCUGCUGU G UGCACCCG	3550	CGGGTGCA GGCTAGCTACAACGA ACAGCAGC	12299
3883	UGCUGUGU G CACCCGGG	3551	CCCGGGTG GGCTAGCTACAACGA ACACAGCA	12300
3885	CUGUGUGC A CCCGGGGG	3552	CCCCCGGG GGCTAGCTACAACGA GCACACAG	12301
3894	CCCGGGGG G UUGCGAAG	3553	CTTCGCAA GGCTAGCTACAACGA CCCCCGGG	12302
3897	GGGGGUU G CGAAGGCG	3554	CGCCTTCG GGCTAGCTACAACGA AACCCCCC	12303
3903	UUGCAG G CGGUGGAC	3555	GTCCACCG GGCTAGCTACAACGA TTTCGCAA	12304
3906	CGAAGGCG G UGGACUUU	3556	AAAGTCCA GGCTAGCTACAACGA CGCCTTCG	12305
3910	GGCGGUGG A CUUUGUAC	3557	GTACAAAG GGCTAGCTACAACGA CCACCGCC	12306
3915	UGGACUUU G UACCCGUU	3558	AACGGGTA GGCTAGCTACAACGA AAAGTCCA	12307
3917	GACUUUGU A CCCGUUGA	3559	TCAACGGG GGCTAGCTACAACGA ACAAAAGTC	12308
3921	UUGUACCC G UUGAGUCU	3560	AGACTCAA GGCTAGCTACAACGA GGGTACAA	12309
3926	CCCGUUGA G UCUAUGGA	3561	TCCATAGA GGCTAGCTACAACGA TCAACGGG	12310
3930	UUGAGUCU A UGGAAACU	3562	AGTTTCCA GGCTAGCTACAACGA AGACTCAA	12311
3936	CUAUGGAA A CUACCAUG	3563	CATGGTAG GGCTAGCTACAACGA TTCCATAG	12312
3939	UGGAAACU A CCAUGCGG	3564	CCGCATGG GGCTAGCTACAACGA AGTTTCCA	12313
3942	AAACUACC A UGCGGUCC	3565	GGACCGCA GGCTAGCTACAACGA GGTAGTTT	12314
3944	ACUACCAU G CGGUCCCC	3566	GGGGACCG GGCTAGCTACAACGA ATGGTAGT	12315
3947	ACCAUGCG G UCCCCGGU	3567	ACCGGGGA GGCTAGCTACAACGA CGCATGGT	12316
3954	GGUCCCCG G UCUUCACG	3568	CGTGAAGA GGCTAGCTACAACGA CGGGGACC	12317
3960	CGGUUCU A CGGACAAC	3569	GTGTCCG GGCTAGCTACAACGA GAAGACCG	12318
3964	CUUACACGG A CAACUCGU	3570	ACGAGTTG GGCTAGCTACAACGA CCGTGAAG	12319
3967	CACGGACA A CUCGUCCC	3571	GGGACGAG GGCTAGCTACAACGA TGTCGTG	12320
3971	GACAACUC G UCCCCCCC	3572	GGGGGGGA GGCTAGCTACAACGA GAGTTGTC	12321
3981	CCCCCCCCA G CCGUACCG	3573	CGGTACGG GGCTAGCTACAACGA TGGGGGGG	12322
3984	CCCCAGCC G UACCGCAG	3574	CTGGCGTA GGCTAGCTACAACGA GGCTGGGG	12323
3986	CCAGCCGU A CCGCAGAC	3575	GTCTGCAG GGCTAGCTACAACGA ACGGCTGG	12324
3989	GCCGUACC G CAGACAUU	3576	AATGTCTG GGCTAGCTACAACGA GGTACGGC	12325
3993	UACCGCAG A CAUUCCAA	3577	TTGGAATG GGCTAGCTACAACGA CTGCGGTA	12326
3995	CCGCAGAC A UUCCAAGU	3578	ACTTGGAA GGCTAGCTACAACGA GTCTGCAG	12327
4002	CAUUCCAA G UGGCCCAC	3579	GTGGGCCA GGCTAGCTACAACGA TTGGAATG	12328
4005	UCCAAGUG G CCCACCUA	3580	TAGGTGGG GGCTAGCTACAACGA CACTTGGG	12329
4009	AGUGGCC A CCUACACG	3581	CGTGTAGG GGCTAGCTACAACGA GGGCCACT	12330
4013	GCCCCACCU A CACGCUCC	3582	GGAGCGTG GGCTAGCTACAACGA AGGTGGGC	12331
4015	CCACCUAC A CGCUCCCA	3583	TGGGAGCG GGCTAGCTACAACGA GTAGGTGG	12332
4017	ACCUACAC G CUCCCCACU	3584	AGTGGGAG GGCTAGCTACAACGA GTGTAGGT	12333
4023	ACGCUCCC A CUGGCAGC	3585	GCTGCCAG GGCTAGCTACAACGA GGGAGCGT	12334
4027	UCCCACUG G CAGCGGCA	3586	TGCCGCTG GGCTAGCTACAACGA CAGTGGGA	12335
4030	CACUGGCA G CGGCAAGA	3587	TCTTGCAG GGCTAGCTACAACGA TGCCAGTG	12336
4033	UGGCAGCG G CAAGAGCA	3588	TGCTCTTG GGCTAGCTACAACGA CGCTGCCA	12337
4039	CGGAAGA G CACUAAGG	3589	CCTTAGTG GGCTAGCTACAACGA TCTTGCCG	12338
4041	GCAAGAGC A CUAAGGUA	3590	TACCTTAG GGCTAGCTACAACGA GCTCTTGC	12339
4047	GCACUAAG G UACCGGCC	3591	AGCCGGTA GGCTAGCTACAACGA CTTAGTGC	12340
4049	ACUAAGGU A CGGGCUGC	3592	GCAGCCGG GGCTAGCTACAACGA ACCTTAGT	12341
4053	AGGUACCG G CUGCAUUAU	3593	ATATGCAG GGCTAGCTACAACGA CGGTACCT	12342
4056	UACCGGCC A CAUAUGCA	3594	TGCATATG GGCTAGCTACAACGA AGCCGGTA	12343
4058	CCGGCUGC A UAUGCAGC	3595	GCTGCATA GGCTAGCTACAACGA GCAGCCGG	12344

4060	GGCUGCAU A UGCAGCCC	3596	GGGCTGCA GGCTAGCTACAACGA ATGCAGCC	12345
4062	CUGCAUAU G CAGCCCCA	3597	TTGGGCTG GGCTAGCTACAACGA ATATGCAG	12346
4065	CAUAUGCA G CCCAAGGG	3598	CCCTTGGG GGCTAGCTACAACGA TGCAATATG	12347
4073	GCCCAAGG G UACAAAGU	3599	ACTTGTA GGCTAGCTACAACGA CCTTGGGC	12348
4075	CCAAGGGU A CAAAGUGC	3600	GCACTTG GGCTAGCTACAACGA ACCCTTGG	12349
4080	GGUACAAA G UGCUCGUC	3601	GACGAGCA GGCTAGCTACAACGA TTTGTACC	12350
4082	UACAAAGU G CUCGUCCU	3602	AGGACGAG GGCTAGCTACAACGA ACTTTGTA	12351
4086	AAGUGCUC G UCCUAAA	3603	ATTAGGA GGCTAGCTACAACGA GAGCACTT	12352
4093	CGUCCUAA A UCCGUCCG	3604	CGGACGGA GGCTAGCTACAACGA TTAGGACG	12353
4097	CUAAUCC G UCCGUUAC	3605	GTAACGGA GGCTAGCTACAACGA GGATTTAG	12354
4101	AUCCGUCC G UUACCGCC	3606	GGCGGTA GGCTAGCTACAACGA GGACGGAT	12355
4104	CGUCCGUU A CCGCCACC	3607	GGTGGCGG GGCTAGCTACAACGA AACGGACG	12356
4107	CCGUUACC G CCACCUUA	3608	TAAGGTGG GGCTAGCTACAACGA GGTAAACGG	12357
4110	UUACCGCC A CCUUAGGG	3609	CCCTAAGG GGCTAGCTACAACGA GGCGGTA	12358
4118	ACCUUAGG G UUUGGGGC	3610	GCCCCAAA GGCTAGCTACAACGA CCTAAGGT	12359
4125	GGUUUUGGG G CGUUAUAG	3611	CATATACG GGCTAGCTACAACGA CCCAAACC	12360
4127	UUUGGGGC G UUAUAGUC	3612	GACATATA GGCTAGCTACAACGA GCCCCAAA	12361
4129	UGGGGCGU A UAUGUCUA	3613	TAGACATA GGCTAGCTACAACGA ACGCCCCA	12362
4131	GGGCGUAU A UGUCUAAG	3614	CTAGACACA GGCTAGCTACAACGA ATACGCC	12363
4133	GCGUUAU G UCUAAGGC	3615	GCCTTAGA GGCTAGCTACAACGA ATATACGC	12364
4140	UGUCUAAG G CACACGGU	3616	ACCGTGTG GGCTAGCTACAACGA CTTAGACA	12365
4142	UCUAAGGC A CACGGUGU	3617	ACACCGTG GGCTAGCTACAACGA GCCTTAGA	12366
4144	UAAGGCAC A CGGUGUCG	3618	CGACACCG GGCTAGCTACAACGA GTGCCTTA	12367
4147	GGCACACG G UGUCGAUC	3619	GATCGACA GGCTAGCTACAACGA CGTGTGCC	12368
4149	CACACGGU G UCGAUCCU	3620	AGGATCGA GGCTAGCTACAACGA ACCGTGTG	12369
4153	CGGUGUCG A UCCUAACA	3621	TGTTAGGA GGCTAGCTACAACGA CGACACCG	12370
4159	CGAUCCUA A CAUCAGAA	3622	TTCTGATG GGCTAGCTACAACGA TAGGATCG	12371
4161	AUCCUAAC A UCAGAACU	3623	AGTTCTGA GGCTAGCTACAACGA GTTAGGAT	12372
4167	ACAUCAGA A CUGGGGUA	3624	TACCCCAG GGCTAGCTACAACGA TCTGATGT	12373
4173	GAACUGGG G UAAGGACC	3625	GGTCCTTA GGCTAGCTACAACGA CCCAGTTC	12374
4179	GGGUAAAGG A CCAUCACC	3626	GGTGATGG GGCTAGCTACAACGA CCTTACCC	12375
4182	UAAGGACC A UCACCACG	3627	CGTGGTGA GGCTAGCTACAACGA GGTCTTA	12376
4185	GGACCAUC A CCACGGGC	3628	GCCCCTGG GGCTAGCTACAACGA GATGGTCC	12377
4188	CCAUCACC A CGGGCGCC	3629	GGCGCCCG GGCTAGCTACAACGA GGTGATGG	12378
4192	CACCAACGG G CGCCCCCA	3630	TGGGGCCG GGCTAGCTACAACGA CGTGGTG	12379
4194	CCACGGGC G CCCCCAAC	3631	GATGGGGG GGCTAGCTACAACGA CCCGTGG	12380
4200	GCGCCCCC A UCACGUAC	3632	GTACGTGA GGCTAGCTACAACGA GGGGGCGC	12381
4203	CCCCCAUC A CGUACUCC	3633	GGAGTACG GGCTAGCTACAACGA GATGGGGG	12382
4205	CCCAUCAC G UACUCCAC	3634	GTGGAGTA GGCTAGCTACAACGA GTGATGGG	12383
4207	CAUCACGU A CUCCACCU	3635	AGGTGGAG GGCTAGCTACAACGA ACGTGATG	12384
4212	CGUACUCC A CCUAUGGC	3636	GCCATAGG GGCTAGCTACAACGA GGAGTACG	12385
4216	CUCCACCU A UGGCAAGU	3637	ACTTGCCA GGCTAGCTACAACGA AGGTGGAG	12386
4219	CACCUAUG G CAAGUUCC	3638	GGAACCTG GGCTAGCTACAACGA CATAGGTG	12387
4223	UAUGGCAA G UUCCUUGC	3639	GCAAGGAA GGCTAGCTACAACGA TTGCCATA	12388
4230	AGUUCCUU G CCGACGGU	3640	ACCGTCGG GGCTAGCTACAACGA AAGGAACG	12389
4234	CCUUGCCG A CGGUGGUU	3641	AACCACCG GGCTAGCTACAACGA CGGCAAGG	12390
4237	UGCCGACG G UGGUUGCU	3642	AGCAACCA GGCTAGCTACAACGA CGTCGGCA	12391
4240	CGACGGUG G UUGCUCUG	3643	CAGAGCAA GGCTAGCTACAACGA CACCGTCG	12392
4243	CGGUGGUU G CUCUGGGG	3644	CCCCAGAG GGCTAGCTACAACGA AACCAACCG	12393
4252	CUCUGGGG G CGCCUAUG	3645	CATAGGCG GGCTAGCTACAACGA CCCCAGAG	12394
4254	CUGGGGGC G CCUAUGAC	3646	GTCATAGG GGCTAGCTACAACGA GCCCCCAG	12395
4258	GGCGGCCU A UGACAUCA	3647	TGATGTCA GGCTAGCTACAACGA AGGCGCCC	12396
4261	CGCCUAUG A CAUCAUAA	3648	TTATGATG GGCTAGCTACAACGA CATAGGCG	12397
4263	CCUAUGAC A UCAUAAA	3649	CATTATGA GGCTAGCTACAACGA GTCTAGG	12398
4266	AUGACAUCA UAAUGUGU	3650	ACACATTA GGCTAGCTACAACGA GATGTCAT	12399
4269	ACAUCAUA A UGUGUGAU	3651	ATCACACCA GGCTAGCTACAACGA TATGATGT	12400

4271	AUCAUAAA G UGUGAUGA	3652	TCATCAC A GGCTAGCTACAACGA ATTATGAT	12401
4273	CAUAAUGU G UGAUGAGU	3653	ACTCATCA GGCTAGCTACAACGA ACATTATG	12402
4276	AAUGUGUG A UGAGUGCC	3654	GGCACTCA GGCTAGCTACAACGA CACACATT	12403
4280	UGUGAUGA G UGCCACUC	3655	GAGTGGCA GGCTAGCTACAACGA TCATCAC A	12404
4282	UGAUGAGU G CCACUCAA	3656	TTGAGTGG GGCTAGCTACAACGA ACTCATCA	12405
4285	UGAGUGCC A CUCAAUUG	3657	CAATTGAG GGCTAGCTACAACGA GGCAC TCA	12406
4290	GCCACUCA A UUGACUCG	3658	CGAGTC A GGCTAGCTACAACGA TGAGTGGC	12407
4294	CUCAAUUG A CUCGACUU	3659	AAGTCGAG GGCTAGCTACAACGA CAATTGAG	12408
4299	UUGACUCG A CUUCCAUU	3660	AATGGAAG GGCTAGCTACAACGA CGAGTCAA	12409
4305	CGACUUCC A UUUUGGGC	3661	GCCCCAAA GGCTAGCTACAACGA GGAAGTCG	12410
4312	CAUUUUGG G CAUCGGCA	3662	TGCCGATG GGCTAGCTACAACGA CCAAAATG	12411
4314	UUUUGGGC A UCGGCACA	3663	TGTGCCGA GGCTAGCTACAACGA GCCC AAAA	12412
4318	GGGCAUCG G CACAGUCC	3664	GGACTGTG GGCTAGCTACAACGA CGATGCC	12413
4320	GCAUCGGC A CAGUCCUG	3665	CAGGACTG GGCTAGCTACAACGA GCCGATGC	12414
4323	UCGGCACA G UCCUGGAC	3666	GTCCAGGA GGCTAGCTACAACGA TGTGCCGA	12415
4330	AGUCCUGG A CCAAGCGG	3667	CCGCTTGG GGCTAGCTACAACGA CCAGGACT	12416
4335	UGGACCAA G CGGAGACG	3668	CGTCTCCG GGCTAGCTACAACGA TTGGTCCA	12417
4341	AAGCGGAG A CGGCUGGA	3669	TCCAGCCG GGCTAGCTACAACGA CTCCGCTT	12418
4344	CGGAGACG G CUGGAGCG	3670	CGCTCCAG GGCTAGCTACAACGA CGTCTCCG	12419
4350	CGGCUGGA G CGCGGCUC	3671	GAGCCGCG GGCTAGCTACAACGA TCCAGCCG	12420
4352	GCUGGGAGC G CGGCCUCGU	3672	ACGAGCCG GGCTAGCTACAACGA GCTCCAGC	12421
4355	GGAGCGCG G CUCGUCGU	3673	ACGACGAG GGCTAGCTACAACGA CGCGCTCC	12422
4359	CGCGGCUC G UCGUGCUC	3674	GAGCACGA GGCTAGCTACAACGA GAGCCGCG	12423
4362	GGCUCGUC G UGCUCGCC	3675	GGCGAGCA GGCTAGCTACAACGA GACGAGCC	12424
4364	CUCGUCGU G CUCGCCAC	3676	GTGGCGAG GGCTAGCTACAACGA ACGACGAG	12425
4368	UCGUGCUC G CCACCGCU	3677	AGCGGTGG GGCTAGCTACAACGA GAGCACGA	12426
4371	UGCUCGCC A CCGCUACG	3678	CGTAGCGG GGCTAGCTACAACGA GGC GAGCA	12427
4374	UCGCCACC G CUACGCCU	3679	AGGC GTAG GGCTAGCTACAACGA GGTGGCGA	12428
4377	CCACCGCU A CGCCUCCG	3680	CGGAGGCG GGCTAGCTACAACGA AGCGGTGG	12429
4379	ACCGCUAC G CCUCCGGG	3681	CCC GGAGG GGCTAGCTACAACGA GTAGCGGT	12430
4388	CCUCCGGG A UCGGUCAC	3682	GTGACCGA GGCTAGCTACAACGA CCCGGAGG	12431
4392	CGGGAUUCG G UCACCGUG	3683	CACGGTGA GGCTAGCTACAACGA CGATCCCG	12432
4395	GAUCGGUC A CCGUGCCA	3684	TGGCACGG GGCTAGCTACAACGA GACCGATC	12433
4398	CGGU CACC G UGCCACAU	3685	ATGTGGCA GGCTAGCTACAACGA GGTGACCG	12434
4400	GU CACCGU G CCACAUCC	3686	GGATGTGG GGCTAGCTACAACGA ACGGTGAC	12435
4403	ACCGUGCC A CAUCCCAA	3687	TTGGGATG GGCTAGCTACAACGA GGCACGGT	12436
4405	CGUGCCAC A UCCCAACA	3688	TGTTGGGA GGCTAGCTACAACGA GTGGCACG	12437
4411	ACAUC CCA A CAUCGAGG	3689	CCTCGATG GGCTAGCTACAACGA TGGGATGT	12438
4413	AUCCCAAC A UCGAGGAG	3690	CTCCTCGA GGCTAGCTACAACGA GTTGGGAT	12439
4422	UCGAGGAG A UAGCCUUG	3691	CAAGGCTA GGCTAGCTACAACGA CTCCTCGA	12440
4425	AGGAGAU A G CCUUGUCC	3692	GGACAAGG GGCTAGCTACAACGA TATCTCCT	12441
4430	AUAGCCUU G UCCAACAC	3693	GTGTTGG A GGCTAGCTACAACGA AAGGCTAT	12442
4435	CUUGUCCA A CACCGGAG	3694	CTCCGGTG GGCTAGCTACAACGA TGGACAAG	12443
4437	UGUCCAAC A CCGGAGAG	3695	CTCTCCGG GGCTAGCTACAACGA GTTGGACA	12444
4446	CCGGAGAG A UCCCCUUC	3696	GAAGGGGA GGCTAGCTACAACGA CTCTCCGG	12445
4456	CCCCUUCU A UGGCAAAG	3697	CTTGCC A GGCTAGCTACAACGA AGAAGGGG	12446
4459	CUUCUAUG G CAAAGCCA	3698	TGGCTTTG GGCTAGCTACAACGA CATAGAAG	12447
4464	AUGGCAAA G CCAUCCCC	3699	GGGGATGG GGCTAGCTACAACGA TTTGCCAT	12448
4467	GCAAAGCC A UCCCCAUC	3700	GATGGGG A GGCTAGCTACAACGA GGCTTTGC	12449
4473	CCAUC CCCC A UCGAGACC	3701	GGTCTCGA GGCTAGCTACAACGA GGGGATGG	12450
4479	CCAUCGAG A CCAUCAA	3702	TTTGATGG GGCTAGCTACAACGA CTCGATGG	12451
4482	UCGAGACC A UCAAAGGG	3703	CCCTTGA GGCTAGCTACAACGA GGTCTCGA	12452
4496	GGGGGGAG G CAUCUCAU	3704	ATGAGATG GGCTAGCTACAACGA CTCCCCC	12453
4498	GGGGAGGC A UCUCAUCU	3705	AGATGAGA GGCTAGCTACAACGA GCCTCCCC	12454
4503	GGCAUCUC A UCUUCUGC	3706	GCAGAAGA GGCTAGCTACAACGA GAGATGCC	12455
4510	CAUCUUCU G CCAUUCCA	3707	TGGAATGG GGCTAGCTACAACGA AGAAGATG	12456

4513	CUUCUGCC A UUCCAAGA	3708	TCTTGGAA GGCTAGCTACAACGA GGCAGAAG	12457
4526	AAGAAGAA A UGUGACGA	3709	TCGTCACA GGCTAGCTACAACGA TTCTTCTT	12458
4528	GAAGAAA G UGACGAGC	3710	GCTCGTCA GGCTAGCTACAACGA ATTTCTTC	12459
4531	GAAAUGUG A CGAGCUCG	3711	CGAGCTCG GGCTAGCTACAACGA CACATTC	12460
4535	UGUGACGA G CUCGCUGC	3712	GCAGCGAG GGCTAGCTACAACGA TCGTCACA	12461
4539	ACGAGCUC G CUGCAAAG	3713	CTTGCAAG GGCTAGCTACAACGA GAGCTCGT	12462
4542	AGCUCGCU G CAAAGCUG	3714	CAGCTTTG GGCTAGCTACAACGA AGCGAGCT	12463
4547	GCUGCAAA G CUGUCGGG	3715	CCCGACAG GGCTAGCTACAACGA TTTGCAGC	12464
4550	GCAAAGCU G UCAGGCCU	3716	AGGCCCGA GGCTAGCTACAACGA AGCTTTGC	12465
4555	GCUGUCGG G CCUCGGAC	3717	GTCCGAGG GGCTAGCTACAACGA CCGACAGC	12466
4562	GGCCUCGG A CUUAACGC	3718	GCGTTAAC GGCTAGCTACAACGA CCGAGGCC	12467
4567	CGGACUUA A CGCUGUAG	3719	CTACAGCG GGCTAGCTACAACGA TAAGTCCG	12468
4569	GACUUAAC G CUGUAGCG	3720	CGCTACAG GGCTAGCTACAACGA GTTAAGTC	12469
4572	UUAACGCU G UAGCGUAU	3721	ATACGCTA GGCTAGCTACAACGA AGCGTTAA	12470
4575	ACGUGUAG C CGUAUUAC	3722	GTAATACG GGCTAGCTACAACGA TACAGCGT	12471
4577	GCUGUAGC G UAUUACCG	3723	CGGTAATA GGCTAGCTACAACGA GCTACAGC	12472
4579	UGUAGCGU A UUACCGGG	3724	CCCGGTAA GGCTAGCTACAACGA ACGCTACA	12473
4582	AGCGUAAU A CCGGGGUC	3725	GACCCCGG GGCTAGCTACAACGA AATACGCT	12474
4588	UUACCGGG G UCUCGACG	3726	CGTCGAGA GGCTAGCTACAACGA CCCGGTAA	12475
4594	GGGUUCUCG A CGUGUCCG	3727	CGGACACG GGCTAGCTACAACGA CGAGACCC	12476
4596	GUCUCGAC G UGUCCGUC	3728	GACGGACA GGCTAGCTACAACGA GTCGAGAC	12477
4598	CUCGACGU G UCCGUCAU	3729	ATGACGGA GGCTAGCTACAACGA ACGTCGAG	12478
4602	ACGUGUCC G UCAUACCG	3730	CGGTATGA GGCTAGCTACAACGA GGACACGT	12479
4605	UGUCCGUC A UACCGGCC	3731	GGCCGGTA GGCTAGCTACAACGA GACGGACA	12480
4607	UCCGUCAU A CCGGCCAG	3732	CTGGCCGG GGCTAGCTACAACGA ATGACGGA	12481
4611	UCAUACCG G CCAGCGGG	3733	CCCGCTGG GGCTAGCTACAACGA CGGTATGA	12482
4615	ACCGGCCA G CGGGGACG	3734	CGTCCCCG GGCTAGCTACAACGA TGGCCGGT	12483
4621	CAGCGGGG A CGUCGUUG	3735	CAACGACG GGCTAGCTACAACGA CCCCCTG	12484
4623	GCGGGGAC G UCGUUGUC	3736	GACAACGA GGCTAGCTACAACGA GTCCCCGC	12485
4626	GGGACGUC G UUGUCGUG	3737	CACGACAA GGCTAGCTACAACGA GACGTCCC	12486
4629	ACGUCGUU G UCGUGGCA	3738	TGCCACGA GGCTAGCTACAACGA AACGACGT	12487
4632	UCGUUGUC G UGGCAACA	3739	TGTTGCCA GGCTAGCTACAACGA GACAACGA	12488
4635	UUGUCGUG G CAACAGAC	3740	GTCCTGTT GGCTAGCTACAACGA CACGACAA	12489
4638	UCGUUGGC A CAGACGCU	3741	AGCGTCTG GGCTAGCTACAACGA TGCCACGA	12490
4642	GGCACACG A CGCUCUAA	3742	TTAGAGCG GGCTAGCTACAACGA CTGTTGCC	12491
4644	CAACAGAC G CUCUAAUG	3743	CATTAGAG GGCTAGCTACAACGA GTCTGTTG	12492
4650	ACGUCUUA A UGACGGGC	3744	GCCCGTCA GGCTAGCTACAACGA TAGAGCGT	12493
4653	CUCUAAUG A CGGGCUAU	3745	ATAGCCCG GGCTAGCTACAACGA CATTAGAG	12494
4657	AAUGACGG G CUUAACCG	3746	CGGTATAG GGCTAGCTACAACGA CCGTCATT	12495
4660	GACGGGCU A UACCGGCG	3747	CGCCGGTA GGCTAGCTACAACGA AGCCCGTC	12496
4662	CGGGCUAU A CCGCGGAU	3748	ATCGCCGG GGCTAGCTACAACGA ATAGCCCG	12497
4666	CUAUACCG G CGAUUUUG	3749	CAAATCG GGCTAGCTACAACGA CGGTATAG	12498
4669	UACCGGCC A UUUUGACU	3750	AGTAAAAA GGCTAGCTACAACGA CGCCGGTA	12499
4675	CGAUUUUG A CUCGGUGA	3751	TCACCGAG GGCTAGCTACAACGA CAAAATCG	12500
4680	UUGACUCG G UGAUCGAC	3752	GTCGATCA GGCTAGCTACAACGA CGAGTCAA	12501
4683	ACUCGGUG A UCGACUGU	3753	ACAGTCGA GGCTAGCTACAACGA CACCGAGT	12502
4687	GGUGAUUCG A CUGUAAA	3754	TATTACAG GGCTAGCTACAACGA CGATCACC	12503
4690	GAUCGACU G UAAUACAU	3755	ATGTATTA GGCTAGCTACAACGA AGTCGATC	12504
4693	CGACUGUA A UACAUGUG	3756	CACATGTA GGCTAGCTACAACGA TACAGTCG	12505
4695	ACUGUAAU A CAUGUGUC	3757	GACACATG GGCTAGCTACAACGA ATTACAGT	12506
4697	UGUAAUAC A UGUGUCAC	3758	GTGACACCA GGCTAGCTACAACGA GTATTACA	12507
4699	UAAUACAU G UGUCACCC	3759	GGGTGACA GGCTAGCTACAACGA ATGTATTA	12508
4701	AUACAUGU G UCACCCAA	3760	TTGGGTGA GGCTAGCTACAACGA ACATGTAT	12509
4704	CAUGUGUC A CCCAAACA	3761	TGTTGGGG GGCTAGCTACAACGA GACACATG	12510
4710	UCACCCAA A CAGUCGAC	3762	GTCGACTG GGCTAGCTACAACGA TTGGGTGA	12511
4713	CCCAAAACA G UCGACUUC	3763	GAAGTCGA GGCTAGCTACAACGA TGTTGGGG	12512

4717	AACAGUCG A CUUCAGCU	3764	AGCTGAAG GGCTAGCTACAACGA CGACTGTT	12513
4723	CGACUUCA G CUUGGACC	3765	GGTCCAAG GGCTAGCTACAACGA TGAAGTCG	12514
4729	CAGCUUGG A CCCUACCU	3766	AGGTAGGG GGCTAGCTACAACGA CCAAGCTG	12515
4734	UGGACCCU A CCUUCACC	3767	GGTGAAGG GGCTAGCTACAACGA AGGGTCCA	12516
4740	CUACCUUC A CCAUUGAG	3768	CTCAATGG GGCTAGCTACAACGA GAAGGTAG	12517
4743	CCUUCACC A UUGAGACG	3769	CGTCTCAA GGCTAGCTACAACGA GGTGAAGG	12518
4749	CCAUVAGAG A CGACGACC	3770	GGTCGTCG GGCTAGCTACAACGA CTCAATGG	12519
4752	UUGAGACG A CGACCGUG	3771	CACGGTCG GGCTAGCTACAACGA CGTCTCAA	12520
4755	AGACGACG A CCGUGCCC	3772	GGGCACGG GGCTAGCTACAACGA CGTCGTCT	12521
4758	CGACGACC G UGCCCCAA	3773	TTGGGGCA GGCTAGCTACAACGA GGTCGTCG	12522
4760	ACGACCGU G CCCCAAGA	3774	TCTTGGGG GGCTAGCTACAACGA ACGGTCGT	12523
4768	GCCCCAAG A CGCAGUGU	3775	ACACTGCG GGCTAGCTACAACGA CTTGGGGC	12524
4770	CCCAAGAC G CAGUGUCC	3776	GGACACTG GGCTAGCTACAACGA GTCTTGGG	12525
4773	AAGACGCA G UGUCCCGC	3777	GCGGGACA GGCTAGCTACAACGA TGCGTCTT	12526
4775	GACGCAGU G UCCCCGUC	3778	GAGCGGGA GGCTAGCTACAACGA ACTGCGTC	12527
4780	AGUGUCCC G CUCGCAGA	3779	TCTGCGAG GGCTAGCTACAACGA GGGACACT	12528
4784	UCCCGCUC G CAGAGGCG	3780	CGCCTCTG GGCTAGCTACAACGA GAGCGGGA	12529
4790	UCGCAGAG G CGAGGUAG	3781	CTACCTCG GGCTAGCTACAACGA CTCTGCGA	12530
4795	GAGGGCAG G UAGGACCG	3782	CGGTCCTA GGCTAGCTACAACGA CTGCCTC	12531
4800	GAGGUAGG A CCGGUAGG	3783	CCTACCGG GGCTAGCTACAACGA CCTACCTC	12532
4804	UAGGACCG G UAGGGGCA	3784	TGCCCCTA GGCTAGCTACAACGA CGGTCCTA	12533
4810	CGGUAGGG G CAGGAGAG	3785	CTCTCCTG GGCTAGCTACAACGA CCCTACCG	12534
4819	CAGGAGAG G CAUAUACA	3786	TGTATATG GGCTAGCTACAACGA CTCTCCTG	12535
4821	GGAGAGGC A UAUACAGG	3787	CCTGTATA GGCTAGCTACAACGA GCCTCTCC	12536
4823	AGAGGCAU A UACAGGUU	3788	AACCTGTA GGCTAGCTACAACGA ATGCCTCT	12537
4825	AGGCAUUA A CAGGUUUG	3789	CAAACCTG GGCTAGCTACAACGA ATATGCCT	12538
4829	AUAUACAG G UUUGUGAC	3790	GTCACAAA GGCTAGCTACAACGA CTGTATAT	12539
4833	ACAGGUUU G UGACUCCA	3791	TGGAGTCA GGCTAGCTACAACGA AAACCTGT	12540
4836	GGUUUGUG A CUCCAGGA	3792	TCCCTGGAG GGCTAGCTACAACGA CACAAACC	12541
4847	CCAGGAGA G CGGCCUUC	3793	GAAGGCCG GGCTAGCTACAACGA TCTCCTGG	12542
4850	GGAGAGCG G CCUUCGGG	3794	CCCGAAGG GGCTAGCTACAACGA CGCTCTCC	12543
4858	GCCUUCGG G CAUGUUCG	3795	CGAACATG GGCTAGCTACAACGA CCGAAGGC	12544
4860	CUUCCGGC A UGUUCGAC	3796	GTCGAACA GGCTAGCTACAACGA GCCCGAAG	12545
4862	UCGGGCAU G UUCGACUC	3797	GAGTCGAA GGCTAGCTACAACGA ATGCCCGA	12546
4867	CAUGUUCG A CUCCUCGG	3798	CCGAGGAG GGCTAGCTACAACGA CGAACATG	12547
4875	ACUCCUCG G UCCUGUGU	3799	ACACAGGA GGCTAGCTACAACGA CGAGGAGT	12548
4880	UCGGGUCCU G UGUGAGUG	3800	CACTCACA GGCTAGCTACAACGA AGGACCGA	12549
4882	GGUCCUGU G UGAGUGCU	3801	AGCACTCA GGCTAGCTACAACGA ACAGGACC	12550
4886	CUGUGUGA G UGCUAUGA	3802	TCATAGCA GGCTAGCTACAACGA TCACACAG	12551
4888	GUGUGAGU G CUAUGACG	3803	CGTCATAG GGCTAGCTACAACGA ACTCACAC	12552
4891	UGAGUGCU A UGACCGGG	3804	CCCGCGTCA GGCTAGCTACAACGA AGCACTCA	12553
4894	GUGCUAUG A CGCGGGAU	3805	ATCCCGCG GGCTAGCTACAACGA CATAGCAC	12554
4896	GCUAUGAC G CGGGGAUGU	3806	ACATCCCG GGCTAGCTACAACGA GTCATAGC	12555
4901	GACCGGGG A UGUGCUUG	3807	CAAGCACA GGCTAGCTACAACGA CCCCGCGTC	12556
4903	CGCGGGAU G UGCUUGGU	3808	ACCAAGCA GGCTAGCTACAACGA ATCCCGCG	12557
4905	CGGGGAUGU G CUUGGUAC	3809	GTACCAAG GGCTAGCTACAACGA ACATCCCG	12558
4910	UGUGCUUG G UACGAGCU	3810	AGCTCGTA GGCTAGCTACAACGA CAAGCACA	12559
4912	UGCUGGU A CGAGCUCA	3811	TGAGCTCG GGCTAGCTACAACGA ACCAAGCA	12560
4916	UGGUACGA G CUCACGCC	3812	GGCGTGAG GGCTAGCTACAACGA TCGTACCA	12561
4920	ACGAGCUC A CGCCCGCC	3813	GGCGGGCG GGCTAGCTACAACGA GAGCTCGT	12562
4922	GAGCUCAC G CCCGCCGA	3814	TCGGCGGG GGCTAGCTACAACGA GTGAGCTC	12563
4926	UCACGCC G CCGAGACC	3815	GGTCTCGG GGCTAGCTACAACGA GGGCGTGA	12564
4932	CCGCGGAG A CCUCCGUU	3816	AACGGGAGG GGCTAGCTACAACGA CTCGGCGG	12565
4938	AGACCUCC G UUAGGUUG	3817	CAACCTAA GGCTAGCTACAACGA GGAGGTCT	12566
4943	UCCGUUAG G UUGCGGGC	3818	GCCCGCAA GGCTAGCTACAACGA CTAACGGA	12567
4946	GUUAGGUU G CGGGCUUA	3819	TAAGCCCG GGCTAGCTACAACGA AACCTAAC	12568

4950	GGUUGC GG G CUUACCUA	3820	TAGGTAAG GGCTAGCTACAACGA CCGCAACC	12569
4954	GCGGGCUU A CCUAAAUA	3821	TATTTAGG GGCTAGCTACAACGA AAGCCC GC	12570
4960	UUACCUAA A UACACCAG	3822	CTGGTGTA GGCTAGCTACAACGA TTAGGTAA	12571
4962	ACCUAAA U A CACCAGGG	3823	CCCTGGTG GGCTAGCTACAACGA ATTTAGGT	12572
4964	CUAAAUC A CCAGGGUU	3824	AACCCTGG GGCTAGCTACAACGA GTATTTAG	12573
4970	ACACCAGG G UUGCCCUU	3825	AAGGGCAA GGCTAGCTACAACGA CCTGGTGT	12574
4973	CCAGGGUU G CCCUUCUG	3826	CAGAAGGG GGCTAGCTACAACGA AACCTGG	12575
4981	GCCCCUUC G CCAGGACC	3827	GGTCCTGG GGCTAGCTACAACGA AGAAGGGC	12576
4987	CUGCCAGG A CCAUCUGG	3828	CCAGATGG GGCTAGCTACAACGA CCTGGCAG	12577
4990	CCAGGACC A UCUGGAGU	3829	ACTCCAGA GGCTAGCTACAACGA GGTCTGG	12578
4997	CAUCUGGA G UUCUGGGG	3830	TCCCAGAA GGCTAGCTACAACGA TCCAGATG	12579
5008	CUGGGAGG G UGUCUUC	3831	TGAAGACA GGCTAGCTACAACGA CCTCCCAG	12580
5010	GGGAGGGU G UCUUCACA	3832	TGTGAAGA GGCTAGCTACAACGA ACCCTCCC	12581
5016	GUGUCUUC A CAGGCCUC	3833	GAGGCCTG GGCTAGCTACAACGA GAAGACAC	12582
5020	CUUCACAG G CCUCACCC	3834	GGGTGAGG GGCTAGCTACAACGA CTGTGAAG	12583
5025	CAGGCCUC A CCCACAU	3835	TATGTGGG GGCTAGCTACAACGA GAGGCCTG	12584
5029	CCUCACCC A CAUAGAUG	3836	CATCTATG GGCTAGCTACAACGA GGGTGAGG	12585
5031	UCACCCAC A UAGAUGCC	3837	GGCATCTA GGCTAGCTACAACGA GTGGGTGA	12586
5035	CCACAUAG A UGCCCCACU	3838	AGTGGGCA GGCTAGCTACAACGA CTATGTGG	12587
5037	ACAUAGAU G CCCACUUC	3839	GAAGTGGG GGCTAGCTACAACGA ATCTATGT	12588
5041	AGAUGCCC A CUUCUUGU	3840	ACAAGAAC GGCTAGCTACAACGA GGGCATCT	12589
5048	CACUUCUU G UCCCAGAC	3841	GTCTGGGA GGCTAGCTACAACGA AAGAAGTG	12590
5055	UGUCCCCAG A CCAAGCAG	3842	CTGCTTGG GGCTAGCTACAACGA CTGGGACA	12591
5060	CAGACCAA G CAGGCAGG	3843	CCTGCCCTG GGCTAGCTACAACGA TTGGTCTG	12592
5064	CCAAGCAG G CAGGAGAA	3844	TTCTCCTG GGCTAGCTACAACGA CTGCTTGG	12593
5074	AGGAGAAA A CCUCCCCU	3845	AGGGGAGG GGCTAGCTACAACGA TTTCTCCT	12594
5083	CCUCCCCU A CCUGGUAG	3846	CTACCAGG GGCTAGCTACAACGA AGGGGAGG	12595
5088	CCUACCUG G UAGCAUAC	3847	GTATGCTA GGCTAGCTACAACGA CAGGTAGG	12596
5091	ACCUUGUA G CAUACCAA	3848	TTGGTATG GGCTAGCTACAACGA TACCAGGT	12597
5093	CUGGUAGC A UACCAAGC	3849	GCTTGGTA GGCTAGCTACAACGA GCTACCAG	12598
5095	GGUAGCAU A CCAAGCCA	3850	TGGCTTGG GGCTAGCTACAACGA ATGCTACC	12599
5100	CAUACCAA G CCACAGUG	3851	CACTGTGG GGCTAGCTACAACGA TTGGTATG	12600
5103	ACCAAGCC A CAGUGUGC	3852	GCACACTG GGCTAGCTACAACGA GGCTTGGT	12601
5106	AAGCCACA G UGUGCGCC	3853	GGCGCACA GGCTAGCTACAACGA TGTGGCTT	12602
5108	GCCACAGU G UGGGCCAG	3854	CTGGCGCA GGCTAGCTACAACGA ACTGTGGC	12603
5110	CACAGUGU G CGCCAGGG	3855	CCCTGGCG GGCTAGCTACAACGA ACACTGTG	12604
5112	CAGUGUGC G CCAGGGCU	3856	AGCCCTGG GGCTAGCTACAACGA GCACACTG	12605
5118	GCGCCAGG G CUCAGGCU	3857	AGCCTGAG GGCTAGCTACAACGA CCTGGCGC	12606
5124	GGGCUCAG G CUCCACCC	3858	GGGTGGAG GGCTAGCTACAACGA CTGAGCCC	12607
5129	CAGGUCC A CCCCCCAUC	3859	GATGGGGG GGCTAGCTACAACGA GGAGCCTG	12608
5135	CCACCCCC A UCGUGGGG	3860	TCCCACGA GGCTAGCTACAACGA GGGGGTGG	12609
5138	CCCCCAUC G UGGGAUCA	3861	TGATCCCA GGCTAGCTACAACGA GATGGGGG	12610
5143	AUCGUGGG A UCAAAUGU	3862	ACATTGTA GGCTAGCTACAACGA CCCACGAT	12611
5148	GGGAUCAA A UGUGGAAG	3863	CTTCCACA GGCTAGCTACAACGA TTGATCCC	12612
5150	GAUAAA G UGGAAGUG	3864	CACTTCCA GGCTAGCTACAACGA ATTTGATC	12613
5156	AUGUGGAA G UGUCUCAC	3865	GTGAGACA GGCTAGCTACAACGA TTCCACAT	12614
5158	GUGGAAGU G UCUCACAC	3866	GTGTGAGA GGCTAGCTACAACGA ACTTCCAC	12615
5163	AGUGUCUC A CACGGCUA	3867	TAGCCCTG GGCTAGCTACAACGA GAGACACT	12616
5165	UGUCUCAC A CGGCCUAAA	3868	TTTAGCCG GGCTAGCTACAACGA GTGAGACA	12617
5168	CUCACACG G CUAAAGCC	3869	GGCTTTAG GGCTAGCTACAACGA CGTGTGAG	12618
5174	CGGCCUAAA G CCUACGCU	3870	AGCGTAGG GGCTAGCTACAACGA TTTAGCCG	12619
5178	UAAAGCCU A CGCUACAC	3871	GTGTAGCG GGCTAGCTACAACGA AGGCTTTA	12620
5180	AAGCCUAC G CUACACGG	3872	CCGTGTAG GGCTAGCTACAACGA GTAGGCTT	12621
5183	CCUACGCU A CACGGGCC	3873	GGCCCCGTG GGCTAGCTACAACGA AGCGTAGG	12622
5185	UACGCCUAC A CGGGCCAA	3874	TTGGCCCG GGCTAGCTACAACGA GTAGCGTA	12623
5189	CUACACGG G CCAACACC	3875	GGTGTGTTGG GGCTAGCTACAACGA CCGTGTAG	12624

5193	ACGGGCCA A CACCCUG	3876	CAGGGGTG GGCTAGCTACAACGA TGGCCCGT	12625
5195	GGGCCAAC A CCCUGCU	3877	AGCAGGGG GGCTAGCTACAACGA GTTGGCCC	12626
5201	ACACCCU G CUGUAUAG	3878	CTATACAG GGCTAGCTACAACGA AGGGGTGT	12627
5204	CCCCUGCU G UAUAGGCU	3879	AGCCTATA GGCTAGCTACAACGA AGCAGGGG	12628
5206	CCUGCUGU A UAGGUAG	3880	CTAGCCTA GGCTAGCTACAACGA ACAGCAGG	12629
5210	CUGUAUAG G CUAGGAGC	3881	GCTCCTAG GGCTAGCTACAACGA CTATACAG	12630
5217	GGCUAGGA G CCGUCCAA	3882	TTGGACGG GGCTAGCTACAACGA TCCTAGCC	12631
5220	UAGGAGCC G UCCAAAAU	3883	ATTTGGA GGCTAGCTACAACGA GGCTCCTA	12632
5227	CGUCCAAA A UGAUGUCA	3884	TGACATCA GGCTAGCTACAACGA TTTGGACG	12633
5230	CCAAAAUG A UGUCACCC	3885	GGGTGACA GGCTAGCTACAACGA CATTGG	12634
5232	AAAUAUGAU G UCACCCUC	3886	GAGGGTGA GGCTAGCTACAACGA ATCATTTT	12635
5235	AUGAUGUC A CCCUCACA	3887	TGTGAGGG GGCTAGCTACAACGA GACATCAT	12636
5241	UCACCCUC A CACACCCC	3888	GGGGTGTG GGCTAGCTACAACGA GAGGGTGA	12637
5243	ACCCUCAC A CACCCCAU	3889	ATGGGGTG GGCTAGCTACAACGA GTGAGGGT	12638
5245	CCUCACAC A CCCCAUAA	3890	TTATGGGG GGCTAGCTACAACGA GTGTGAGG	12639
5250	CACACCCC A UAACCAAA	3891	TTTGGTTA GGCTAGCTACAACGA GGGGTGTG	12640
5253	ACCCCAUA A CCAAAUAC	3892	GTATTGGA GGCTAGCTACAACGA TATGGGTT	12641
5258	AUAACCAA A UACAUCAU	3893	ATGATGTA GGCTAGCTACAACGA TTGGTTAT	12642
5260	AACCAAAU A CAUCAUGA	3894	TCATGATG GGCTAGCTACAACGA ATTTGGTT	12643
5262	CCAAAUAC A UCAUGACA	3895	TGTATGTA GGCTAGCTACAACGA GTATTGGA	12644
5265	AAUACAUAC A UGACAUGC	3896	GCATGTCA GGCTAGCTACAACGA GATGTATT	12645
5268	ACAUCAUG A CAUGCAUG	3897	CATGCATG GGCTAGCTACAACGA CATGATGT	12646
5270	AUCAUGAC A UGCAUGUC	3898	GACATGCA GGCTAGCTACAACGA GTCATGAT	12647
5272	CAUGACAU G CAUGUCGG	3899	CCGACATG GGCTAGCTACAACGA ATGTCATG	12648
5274	UGACAUGC A UGUCGGCU	3900	AGCCGACA GGCTAGCTACAACGA GCATGTCA	12649
5276	ACAUGCAU G UCGGCUGA	3901	TCAGCCGA GGCTAGCTACAACGA ATGCATGTT	12650
5280	GCAUGUCG G CUGACCUG	3902	CAGGTCAG GGCTAGCTACAACGA CGACATGC	12651
5284	GUCGGCUG A CCUGGAGG	3903	CCTCCAGG GGCTAGCTACAACGA CAGCCGAC	12652
5292	ACCUUGGAG G UCGUCACC	3904	GGTGACGA GGCTAGCTACAACGA CTCCAGGT	12653
5295	UGGAGGUC G UCACCAGC	3905	GCTGGTGA GGCTAGCTACAACGA GACCTCCA	12654
5298	AGGUCGUC A CCAGCACCC	3906	GGTGCTGG GGCTAGCTACAACGA GACGACCT	12655
5302	CGUCACCA G CACCUUGGG	3907	CCCAGGTG GGCTAGCTACAACGA TGGTGACG	12656
5304	UCACCAGC A CCUGGGUG	3908	CACCCAGG GGCTAGCTACAACGA GCTGGTGA	12657
5310	GCACCUGG G UGCUAGUA	3909	TACTAGCA GGCTAGCTACAACGA CCAGGTGC	12658
5312	ACCUUGGU G CUAGUAGG	3910	CCTACTAG GGCTAGCTACAACGA ACCCAGGT	12659
5316	GGGUGCUA G UAGGUGGC	3911	GCCACCTA GGCTAGCTACAACGA TAGCACCC	12660
5320	GCUAGUAG G UGGCGUCC	3912	GGACGCCA GGCTAGCTACAACGA CTACTAGC	12661
5323	AGUAGGUG G CGUCCUGG	3913	CCAGGACG GGCTAGCTACAACGA CACCTACT	12662
5325	UAGGUGGC G UCCUGGCA	3914	TGCCAGGA GGCTAGCTACAACGA GCCACCTA	12663
5331	GCGUCCUG G CAGCUCUG	3915	CAGAGCTG GGCTAGCTACAACGA CAGGACGC	12664
5334	UCCUGGCA G CUCUGACC	3916	GGTCAGAG GGCTAGCTACAACGA TGCCAGGA	12665
5340	CAGCUCUG A CCGCGUAU	3917	ATACGCGG GGCTAGCTACAACGA CAGAGCTG	12666
5343	CUCUGACC G CGUAUUGC	3918	GCAATACG GGCTAGCTACAACGA GGTCAAGAG	12667
5345	CUGACCGC G UAUUGCCU	3919	AGGCAATA GGCTAGCTACAACGA GCGGTCAG	12668
5347	GACCGCGU A UUGCCUGA	3920	TCAGGCAA GGCTAGCTACAACGA ACGCGGTC	12669
5350	CGCGUAUU G CCUGACGA	3921	TCGTCAGG GGCTAGCTACAACGA AATACGCG	12670
5355	AUUGCCUG A CGACAGGC	3922	GCCTGTCTG GGCTAGCTACAACGA CAGGCAAT	12671
5358	GCCUGACG A CAGGCAGC	3923	GCTGCCTG GGCTAGCTACAACGA CGTCAGGC	12672
5362	GACGACAG G CAGCGUGG	3924	CCACGCTG GGCTAGCTACAACGA CTGTCGTC	12673
5365	GACAGGCA G CGUGGUCA	3925	TGACCACG GGCTAGCTACAACGA TGCCTGTC	12674
5367	CAGGCAGC G UGGUCAUU	3926	AATGACCA GGCTAGCTACAACGA GCTGCCTG	12675
5370	GCAGCGUG G UCAUUGUG	3927	CACAATGA GGCTAGCTACAACGA CACGCTGC	12676
5373	GCGUGGUC A UUGUGGGC	3928	GCCCACAA GGCTAGCTACAACGA GACCACGC	12677
5376	UGGUCAUU G UGGGCAGA	3929	TCTGCCCA GGCTAGCTACAACGA AATGACCA	12678
5380	CAUUGUGG G CAGAAUCA	3930	TGATTCTG GGCTAGCTACAACGA CCACAATG	12679
5385	UGGGCAGA A UCAUCUUG	3931	CAAGATGA GGCTAGCTACAACGA TCTGCCCA	12680

5388	GCAGAAUC A UCUUGUCC	3932	GGACAAGA GGCTAGCTACAACGA GATTCTGC	12681
5393	AUCAUCUU G UCCGGGAA	3933	TTCCCGGA GGCTAGCTACAACGA AAGATGAT	12682
5402	UCCGGGAA G CCGGCUGU	3934	ACAGCCGG GGCTAGCTACAACGA TTCCCGGA	12683
5406	GGAAGCCG G CUGUUUAUC	3935	GATAACAG GGCTAGCTACAACGA CGGCTTCC	12684
5409	AGCCGGCU G UUAUCCCC	3936	GGGGATAA GGCTAGCTACAACGA AGCCGGCT	12685
5412	CGGCUGUU A UCCCAGAC	3937	GTCGGGGA GGCTAGCTACAACGA AACAGCCG	12686
5419	UAUCCCCG A CAGGGAGG	3938	CCTCCCTG GGCTAGCTACAACGA CGGGGATA	12687
5427	ACAGGGAG G CUCUCUAC	3939	GTAGAGAG GGCTAGCTACAACGA CTCCCTGT	12688
5434	GGCUCUCU A CCAGGAGU	3940	ACTCCTGG GGCTAGCTACAACGA AGAGAGCC	12689
5441	UACCAGGA G UUCGAUGA	3941	TCATCGAA GGCTAGCTACAACGA TCCTGGTA	12690
5446	GGAGUUUCG A UGAGAUGG	3942	CCATCTCA GGCTAGCTACAACGA CGAACTCC	12691
5451	UCGAUGAG A UGGAGGAG	3943	CTCCTCCA GGCTAGCTACAACGA CTCATCGA	12692
5459	AUGGAGGA G UGUGCCUC	3944	GAGGCACA GGCTAGCTACAACGA TCCTCCAT	12693
5461	GGAGGGAGU G UGCCUCAC	3945	GTGAGGCA GGCTAGCTACAACGA ACTCCTCC	12694
5463	AGGAGGUGU G CCUCACAC	3946	GTGTGAGG GGCTAGCTACAACGA ACACTCCT	12695
5468	UGUGCCUC A CACCUCCC	3947	GGGAGGTG GGCTAGCTACAACGA GAGGCACA	12696
5470	UGCCUCAC A CCUCCUU	3948	AAGGGAGG GGCTAGCTACAACGA GTGAGGCA	12697
5479	CCUCCUUU A CAUCGAAC	3949	GTTCGATG GGCTAGCTACAACGA AAGGGAGG	12698
5481	UCCCUUAC A UCGAACAG	3950	CTGTTCGA GGCTAGCTACAACGA GTAAGGGA	12699
5486	UACAUCGA A CAGGGGAU	3951	ATCCCCTG GGCTAGCTACAACGA TCGATGTA	12700
5493	AACAGGGG A UGCAGCUC	3952	GAGCTGCA GGCTAGCTACAACGA CCCCTGTT	12701
5495	CAGGGGAU G CAGCUCGC	3953	GCGAGCTG GGCTAGCTACAACGA ATCCCCTG	12702
5498	GGGAUGCA G CUCGCCGA	3954	TCGGCGAG GGCTAGCTACAACGA TGCACTCCC	12703
5502	UGCAGCUC G CCGAGCAG	3955	CTGCTCGG GGCTAGCTACAACGA GAGCTGCA	12704
5507	CUCGCCGA G CAGUUCAA	3956	TTGAAC TG GGCTAGCTACAACGA TCGGCGAG	12705
5510	GCCGAGCA G UUCAAGCA	3957	TGCTTGAA GGCTAGCTACAACGA TGCTCGGC	12706
5516	CAGUUCAA G CAGAAGGC	3958	GCCTTCTG GGCTAGCTACAACGA TTGAAC TG	12707
5523	AGCAGAAG G CGCUCGGA	3959	TCCGAGCG GGCTAGCTACAACGA CTTCTGCT	12708
5525	CAGAAGGC G CUCGGAUU	3960	AATCCGAG GGCTAGCTACAACGA GCCTTCTG	12709
5531	GCGCUCGG A UUGCUGCA	3961	TGCAGCAA GGCTAGCTACAACGA CCGAGCGC	12710
5534	CUCGGAUU G CUGCAAAC	3962	GTTCGAG GGCTAGCTACAACGA AATCCGAG	12711
5537	GGAUUGCU G CAAACAGC	3963	GCTGTTTG GGCTAGCTACAACGA AGCAATCC	12712
5541	UGCUGCAA A CAGCCACC	3964	GGTGGCTG GGCTAGCTACAACGA TTGCAGCA	12713
5544	UGCAAAACA G CCACCAAC	3965	GTTGGTGG GGCTAGCTACAACGA TGTTTGCA	12714
5547	AAACAGCC A CCAACCAA	3966	TTGGTTGG GGCTAGCTACAACGA GGCTGTTT	12715
5551	AGCCACCA A CCAAGCGG	3967	CCGCTTGG GGCTAGCTACAACGA TGTTGGCT	12716
5556	CCAACCAA G CGGAGGCU	3968	AGCCTCCG GGCTAGCTACAACGA TTGGTTGG	12717
5562	AAGCGGAG G CUGCUGCU	3969	AGCAGCAG GGCTAGCTACAACGA CTCCGCTT	12718
5565	CGGAGGCC G CUGCUCCC	3970	GGGAGCAG GGCTAGCTACAACGA AGCCTCCG	12719
5568	AGGCUGCU G CUCCCGUG	3971	CACGGGAG GGCTAGCTACAACGA AGCAGCCT	12720
5574	CUGCUCCC G UGGUGGAA	3972	TTCCACCA GGCTAGCTACAACGA GGGAGCAG	12721
5577	CUCCCGUG G UGGAAUCC	3973	GGATTCCA GGCTAGCTACAACGA CACGGGAG	12722
5582	GUGGUGGA A UCCAAGUG	3974	CACTTGGG GGCTAGCTACAACGA TCCACCAC	12723
5588	GAAUCCAA G UGGCGAGC	3975	GCTCGCCA GGCTAGCTACAACGA TTGGATTG	12724
5591	UCCAAGUG G CGAGCCU	3976	AGGGCTCG GGCTAGCTACAACGA CACTTGGG	12725
5595	AGUGGCCA G CCCUUGAG	3977	CTCAAGGG GGCTAGCTACAACGA TCGCCACT	12726
5604	CCCUUGAG G CUUUCUGG	3978	CCAGAAAG GGCTAGCTACAACGA CTCAAGGG	12727
5613	CUUUCUGG G CGAACAC	3979	GTGCTTCG GGCTAGCTACAACGA CCAGAAAG	12728
5618	UGGGCGAA G CACAUGUG	3980	CACATGTG GGCTAGCTACAACGA TTCGCCA	12729
5620	GGCGAACG A CAUGUGGA	3981	TCCACATG GGCTAGCTACAACGA GCTTCGCC	12730
5622	CGAACAC A UGUGGAAU	3982	ATCCACAA GGCTAGCTACAACGA GTGCTTCG	12731
5624	AAGCACAU G UGGAAUUU	3983	AAATTCCA GGCTAGCTACAACGA ATGTGCTT	12732
5629	CAUGUGGA A UUCAUCA	3984	TGATGAAA GGCTAGCTACAACGA TCCACATG	12733
5634	GGAAUUC A UCAGCGGG	3985	CCCGCTGA GGCTAGCTACAACGA GAAATTCC	12734
5638	UUUCAUCA G CGGGAUAC	3986	GTATCCCG GGCTAGCTACAACGA TGATGAAA	12735
5643	UCAGCGGG A UACAGUAC	3987	GTACTGTA GGCTAGCTACAACGA CCCGCTGA	12736

5645	AGCGGGAU A CAGUACCU	3988	AGGTACTG GGCTAGCTACAACGA ATCCCGCT	12737
5648	GGGAUACA G UACCUAGC	3989	GCTAGGTA GGCTAGCTACAACGA TGTATCCC	12738
5650	GAUACAGU A CCUAGCAG	3990	CTGCTAGG GGCTAGCTACAACGA ACTGTATC	12739
5655	AGUACCUA G CAGGCUUG	3991	CAAGCCTG GGCTAGCTACAACGA TAGGTACT	12740
5659	CCUAGCAG G CUUGUCCA	3992	TGGACAAG GGCTAGCTACAACGA CTGCTAGG	12741
5663	GCAGGCCU G UCCACUCU	3993	AGAGTGGG GGCTAGCTACAACGA AAGCCTGC	12742
5667	GCUUGUCC A CUCUGCCU	3994	AGGCAGAG GGCTAGCTACAACGA GGACAAGC	12743
5672	UCCACUCU G CCUGGGAA	3995	TTCCCGAGG GGCTAGCTACAACGA AGAGTGGG	12744
5680	GCCUGGGG A CCCCGCGA	3996	TCGGGGGG GGCTAGCTACAACGA TCCCAGGC	12745
5685	GGAACCCC G CGAUAGCA	3997	TGCTATCG GGCTAGCTACAACGA GGGGTTCC	12746
5688	ACCCCGCG A UAGCAUCA	3998	TGATGCTA GGCTAGCTACAACGA CGCGGGGT	12747
5691	CCGCGAUA G CAUCAUUG	3999	CAATGATG GGCTAGCTACAACGA TATCGCGG	12748
5693	GCGAUAGC A UCAUUGAU	4000	ATCAATGA GGCTAGCTACAACGA GCTATCGC	12749
5696	AUAGCAUC A UUGAUGGC	4001	GCCATCAA GGCTAGCTACAACGA GATGCTAT	12750
5700	CAUCAUUG A UGGCAUUC	4002	GAATGCCA GGCTAGCTACAACGA CAATGATG	12751
5703	CAUUGAUG G CAUUCACA	4003	TGTGAATG GGCTAGCTACAACGA CATCAATG	12752
5705	UUGAUGGC A UUCACAGC	4004	GCTGTGAA GGCTAGCTACAACGA GCCATCAA	12753
5709	UGGCAUUC A CAGCCUCC	4005	GGAGGGCTG GGCTAGCTACAACGA GAATGCCA	12754
5712	CAUUCACA G CCUCCAUC	4006	GATGGAGG GGCTAGCTACAACGA TGTGAATG	12755
5718	CAGCCUCC A UCACCAGC	4007	GCTGGTGA GGCTAGCTACAACGA GGAGGCTG	12756
5721	CCUCCAUC A CCAGCCCC	4008	CGGGCTGG GGCTAGCTACAACGA GATGGAGG	12757
5725	CAUCACCA G CCCGCUCA	4009	TGAGCGGG GGCTAGCTACAACGA TGGTGATG	12758
5729	ACCAGCCC G CUCACCAC	4010	GTGGTGAG GGCTAGCTACAACGA GGGCTGGT	12759
5733	GCCCCCUC A CCACCCAA	4011	TTGGGTGG GGCTAGCTACAACGA GAGCGGGC	12760
5736	CGCUCACC A CCCAAAGC	4012	GCTTTGGG GGCTAGCTACAACGA GGTGAGCG	12761
5743	CACCCAAA G CACCCUCC	4013	GGAGGGTG GGCTAGCTACAACGA TTTGGGTG	12762
5745	CCCAAAAGC A CCCUCCUG	4014	CAGGAGGG GGCTAGCTACAACGA GCTTTGGG	12763
5753	ACCCUCCU G UUCAACAU	4015	ATGTTGAA GGCTAGCTACAACGA AGGAGGGT	12764
5758	CCUGUUC A CAUCUUGG	4016	CCAAGATG GGCTAGCTACAACGA TGAACAGG	12765
5760	UGUUCAAC A UCUUGGGA	4017	TCCCAAGA GGCTAGCTACAACGA GTTGAACA	12766
5771	UUGGGAGG G UGGGUGGC	4018	GCCACCCA GGCTAGCTACAACGA CCTCCCAA	12767
5775	GAGGGUGG G UGGCCGCC	4019	GGCGGCCA GGCTAGCTACAACGA CCACCCCTC	12768
5778	GGUGGGUG G CCGCCCAA	4020	TTGGGGCG GGCTAGCTACAACGA CACCCACC	12769
5781	GGGUUGGCC G CCCAACUC	4021	GAGTTGGG GGCTAGCTACAACGA GGCCACCC	12770
5786	GCCGCCCA A CUCGCUCC	4022	GGAGCGAG GGCTAGCTACAACGA TGGCGGC	12771
5790	CCCAACUC G CUCCCCCC	4023	GGGGGGAG GGCTAGCTACAACGA GAGTTGGG	12772
5802	CCCCCAGA G CCGUUUCG	4024	CGAAACGG GGCTAGCTACAACGA TCTGGGGG	12773
5805	CCAGAGCC G UUUCGGCC	4025	GGCCGAAA GGCTAGCTACAACGA GGCTCTGG	12774
5811	CCGUUUUCG G CCUUCGUG	4026	CACGAAGG GGCTAGCTACAACGA CGAACCGG	12775
5817	CGGCCUUC G UGGCGGCC	4027	GGCGCCCA GGCTAGCTACAACGA GAAGGCCG	12776
5821	CUUCGUGG G CGCCGGCA	4028	TGCCGGCG GGCTAGCTACAACGA CCACGAAG	12777
5823	UCGUGGGC G CCGGCAUC	4029	GATGCCGG GGCTAGCTACAACGA GCCCACGA	12778
5827	GGGCGCCG G CAUCGCUG	4030	CAGCGATG GGCTAGCTACAACGA CGGCGCCC	12779
5829	GCGCCGGC A UCGCUGGC	4031	GCCAGCGA GGCTAGCTACAACGA GCCGGCGC	12780
5832	CCGGCAUC G CUGGCGCG	4032	CGCGCCAG GGCTAGCTACAACGA GATGCCGG	12781
5836	CAUCGCUG G CGCGCUG	4033	CAGCCGCG GGCTAGCTACAACGA CAGCGATG	12782
5838	UCGCUUGG C CGGCUGUU	4034	AACAGCCG GGCTAGCTACAACGA GCCAGCGA	12783
5841	CUGGCGCG G CUGUUGGC	4035	GCCAACAG GGCTAGCTACAACGA CGCGCCAG	12784
5844	GCCGGGCU G UUGGCAGC	4036	GCTGCCAA GGCTAGCTACAACGA AGCCGCGC	12785
5848	GGCUGUUG G CAGCAUAG	4037	CTATGCTG GGCTAGCTACAACGA CAACAGCC	12786
5851	UGUUGGCA G CAUAGGCC	4038	GGCCTATG GGCTAGCTACAACGA TGCCAACA	12787
5853	UUGGCAGC A UAGGCCUU	4039	AAGGCCCTA GGCTAGCTACAACGA GCTGCCAA	12788
5857	CACCAUAG G CCUUGGGG	4040	TCCCAAGG GGCTAGCTACAACGA CTATGCTG	12789
5868	UUGGGAAG G UGCUUGUA	4041	TACAAGCA GGCTAGCTACAACGA CTTCCCAA	12790
5870	GGGAAGGU G CUUGUAGA	4042	TCTACAAG GGCTAGCTACAACGA ACCTTCCC	12791
5874	AGGUGCUU G UAGACAUU	4043	AATGTCTA GGCTAGCTACAACGA AAGCACCT	12792

5878	GCUUGUAG A CAUUCUGG	4044	CCAGAATG GGCTAGCTACAACGA CTACAAGC	12793
5880	UUGUAGAC A UUCUGGCG	4045	CGCCAGAA GGCTAGCTACAACGA GTCTACAA	12794
5886	ACAUUCUG G CGGGCUAU	4046	ATAGCCCG GGCTAGCTACAACGA CAGAATGT	12795
5890	UCUGGCAG G CUAUGGAG	4047	CTCCATAG GGCTAGCTACAACGA CGGCCAGA	12796
5893	GGCGGGCU A UGGAGCAG	4048	CTGCTCCA GGCTAGCTACAACGA AGCCCGCC	12797
5898	GCUAUGGA G CAGGAGUG	4049	CACTCCTG GGCTAGCTACAACGA TCCATAGC	12798
5904	GAGCAGGA G UGGCGGGU	4050	ACCCGCCA GGCTAGCTACAACGA TCCTGCTC	12799
5907	CAGGAGUG G CGGGUGCU	4051	AGCACCCG GGCTAGCTACAACGA CACTCCTG	12800
5911	AGUGGCAG G UGCUCUCG	4052	CGAGAGCA GGCTAGCTACAACGA CCGCCACT	12801
5913	UGGGGGGU G CUCUCGUG	4053	CACGAGAG GGCTAGCTACAACGA ACCCGCCA	12802
5919	GUGCUCUC G UGGCCUUC	4054	GAAGGCCA GGCTAGCTACAACGA GAGAGCAC	12803
5922	CUCUCGUG G CCUUCAAG	4055	CTTGAAGG GGCTAGCTACAACGA CACGAGAG	12804
5931	CCUUCAAG G UCAUGAGC	4056	GCTCATGA GGCTAGCTACAACGA CTTGAAGG	12805
5934	UCAAGGUC A UGAGCGGG	4057	CCCGCTCA GGCTAGCTACAACGA GACCTTGA	12806
5938	GGUCAUGA G CGGGGAGA	4058	TCTCCCCG GGCTAGCTACAACGA TCATGACC	12807
5946	GCAGGGAG A UGCCUUCU	4059	AGAAGGCA GGCTAGCTACAACGA CTCCCCGC	12808
5948	GGGGAGAU G CCUUCUAC	4060	GTAGAAGG GGCTAGCTACAACGA ATCTCCCC	12809
5955	UGCCUUCU A CCGAGGAC	4061	GTCCTCGG GGCTAGCTACAACGA AGAAGGCA	12810
5962	UACCGAGG A CCUGGUCA	4062	TGACCAGG GGCTAGCTACAACGA CCTCGGTA	12811
5967	AGGACCUG G UCAACUUA	4063	TAAGTTGA GGCTAGCTACAACGA CAGGTCTT	12812
5971	CCUGGUCA A CUUACUCC	4064	GGAGTAAG GGCTAGCTACAACGA TGACCAGG	12813
5975	GUCAACUU A CUCCCUGC	4065	GCAGGGAG GGCTAGCTACAACGA AAGTTGAC	12814
5982	UACUCCCU G CCAUCCUC	4066	GAGGATGG GGCTAGCTACAACGA AGGGAGTA	12815
5985	UCCCUGCC A UCCUCUCU	4067	AGAGAGGA GGCTAGCTACAACGA GGCAGGG	12816
5998	CUCUCCUG G CGCCCCUGG	4068	CCAGGGCG GGCTAGCTACAACGA CAGGAGAG	12817
6000	CUCCUGGC G CCCUGGU	4069	GACCAGGG GGCTAGCTACAACGA GCCAGGG	12818
6006	GCGCCCGUG G UCGUCGGG	4070	CCCGACGA GGCTAGCTACAACGA CAGGGCGC	12819
6009	CCCUUGGUC G UCGGGGUG	4071	CACCCCGA GGCTAGCTACAACGA GACCAGGG	12820
6015	UCGUCGGG G UGGUGUGC	4072	GCACACCA GGCTAGCTACAACGA CCCGACGA	12821
6018	UCGGGGUG G UGUGCGCA	4073	TGGCGACA GGCTAGCTACAACGA CACCCCGA	12822
6020	GGGGUGGU G UGCGCAGC	4074	GCTGCGCA GGCTAGCTACAACGA ACCACCCC	12823
6022	GGUGGUGU G CGCAGCGA	4075	TCGCTGCG GGCTAGCTACAACGA ACACCACC	12824
6024	UGGUGUGC G CAGCGAUA	4076	TATCGCTG GGCTAGCTACAACGA GCACACCA	12825
6027	UGUGCGCA G CGAUACUG	4077	CAGTATCG GGCTAGCTACAACGA TGCGCACA	12826
6030	GCGCAGCG A UACUGCGU	4078	ACCGACTA GGCTAGCTACAACGA CGCTGCG	12827
6032	GCACGGAU A CUGCGUCG	4079	CGACGCAG GGCTAGCTACAACGA ATCGCTGC	12828
6035	GCGAUACU G CGUCCGCA	4080	TGCGCAGC GGCTAGCTACAACGA AGTATCGC	12829
6037	GAUACUGC G UCGGCAUG	4081	CATGCCGA GGCTAGCTACAACGA GCAGTATC	12830
6041	CUGCGUCG G CAUGUGGG	4082	CCACACATG GGCTAGCTACAACGA CGACGCAG	12831
6043	GCGUCGGC A UGUGGGCC	4083	GGCCCCACA GGCTAGCTACAACGA GCCGACGC	12832
6045	GUCCGCAU G UGGGCCCA	4084	TGGGCCCA GGCTAGCTACAACGA ATGCCGAC	12833
6049	GCAUGUGG G CCCAGGAG	4085	CTCCTGGG GGCTAGCTACAACGA CCACATGC	12834
6061	AGGAGAGG G CGCUGUGC	4086	GCACAGCG GGCTAGCTACAACGA CCTCTCCT	12835
6063	GAGAGGGC G CUGUGCAG	4087	CTGCACAG GGCTAGCTACAACGA GCCCTCTC	12836
6066	AGGGCGCU G UGCAGUGG	4088	CCACTGCA GGCTAGCTACAACGA AGCGCCCT	12837
6068	GGCCGUGU G CAGUGGAU	4089	ATCCACTG GGCTAGCTACAACGA ACAGGCC	12838
6071	GCUGUGCA G UGGAUGAA	4090	TTCATCCA GGCTAGCTACAACGA TGACAGC	12839
6075	UGCAGUGG A UGAAUCGG	4091	CCGATTCA GGCTAGCTACAACGA CCACTGCA	12840
6079	GUGGAUGA A UCGGCUGA	4092	TCAGCCGA GGCTAGCTACAACGA TCATCCAC	12841
6083	AUGAAUCG G CUGAUAGC	4093	GCTATCAG GGCTAGCTACAACGA CGATTCAT	12842
6087	AUCGGCUG A UAGCGUUC	4094	GAACGCTA GGCTAGCTACAACGA CAGCCGAT	12843
6090	GGCUGAUA G CGUUCGCU	4095	AGCGAACG GGCTAGCTACAACGA TATCAGCC	12844
6092	CUGAUAGC G UUCGCUUC	4096	GAAGCGAA GGCTAGCTACAACGA GCTATCAG	12845
6096	UAGCGUUC G CUUCGCGG	4097	CCGCGAAG GGCTAGCTACAACGA GAACGCTA	12846
6101	UUCGCUUC G CGGGGCAA	4098	TTGCCCCG GGCTAGCTACAACGA GAAGCGAA	12847
6106	UUCGCGGG G CAACCAUG	4099	CATGGTTG GGCTAGCTACAACGA CCCCGCAA	12848

6109	GCGGGGCA A CCAUGUCU	4100	AGACATGG GGCTAGCTACAACGA TGCCCCGC	12849
6112	GGGCAACC A UGUCUCCC	4101	GGGAGAC A GGCTAGCTACAACGA GGTTGCC	12850
6114	GCAACCAU G UCUCCCCC	4102	GGGGGAGA GGCTAGCTACAACGA ATGGTTGC	12851
6123	UCUCCCCC A CGCACUAU	4103	ATAGTGC G GGCTAGCTACAACGA GGGGGAGA	12852
6125	UCCCCCAC G CACUAUGU	4104	ACATAGTG GGCTAGCTACAACGA GTGGGGGA	12853
6127	CCCCCACGC A CUAUGUGC	4105	GCACATAG GGCTAGCTACAACGA GCGTGGGG	12854
6130	CACGCACU A UGUGCCUG	4106	CAGGCACA GGCTAGCTACAACGA AGTGCCTG	12855
6132	CGCACAUU G UGCCUGAG	4107	CTCAGGCA GGCTAGCTACAACGA ATAGTGC	12856
6134	CACUAUGU G CCUGAGAG	4108	CTCTCAGG GGCTAGCTACAACGA ACATAGTG	12857
6142	GCCUGAGA G CGACGCAG	4109	CTGCGTCG GGCTAGCTACAACGA TCTCAGGC	12858
6145	UGAGAGCG A CGCAGCGG	4110	CCGCTGCG GGCTAGCTACAACGA CGCTCTCA	12859
6147	AGAGCGAC G CAGCGGCG	4111	CGCCGCTG GGCTAGCTACAACGA GTCGCTCT	12860
6150	GCGACGCA G CGGCGCGC	4112	GCGCGCCG GGCTAGCTACAACGA TGCGTCGC	12861
6153	ACGCAGCG G CGCGCGUC	4113	GACGCGCG GGCTAGCTACAACGA CGCTGCGT	12862
6155	GCAGCGGC G CGCGUCAC	4114	GTGACGCG GGCTAGCTACAACGA GCCGCTGC	12863
6157	AGCGCGC G CGUCACAC	4115	GTGTGACG GGCTAGCTACAACGA GCGCCGCT	12864
6159	CGGCGCGC G UCACACAA	4116	TTGTGTGA GGCTAGCTACAACGA GCGCGCCG	12865
6162	CGCGCGUC A CACAAAUC	4117	GATTTGTG GGCTAGCTACAACGA GACGCGCG	12866
6164	CGCGUCAC A CAAAUCU	4118	AGGATTG GGCTAGCTACAACGA GTGACGCG	12867
6168	UCACACAA A UCCUCUCC	4119	GGAGAGGA GGCTAGCTACAACGA TTGTGTGA	12868
6178	CCUCUCCA G CCUCACCA	4120	TGGTGAGG GGCTAGCTACAACGA TGGAGAGG	12869
6183	CCAGCCUC A CCAUCACU	4121	AGTGATGG GGCTAGCTACAACGA GAGGCTGG	12870
6186	GCCUCACC A UCACUCAG	4122	CTGAGTGA GGCTAGCTACAACGA GGTGAGGC	12871
6189	UCACCAUC A CUCAGCUG	4123	CAGCTGAG GGCTAGCTACAACGA GATGGTGA	12872
6194	AUCACUCA G CUGCUGAG	4124	CTCAGCAG GGCTAGCTACAACGA TGAGTGAT	12873
6197	ACUCAGCU G CUGAGGAG	4125	CTCCTCAG GGCTAGCTACAACGA AGCTGAGT	12874
6206	CUGAGGAG G CUCCAUC	4126	TGATGGAG GGCTAGCTACAACGA CTCCTCAG	12875
6211	GAGGCCUC A UCAGUGGA	4127	TCCACTGA GGCTAGCTACAACGA GGAGCCTC	12876
6215	CUCCAUCA G UGGAUCAA	4128	TTGATCCA GGCTAGCTACAACGA TGATGGAG	12877
6219	AUCAGUGG A UCAAUGAG	4129	CTCATTGA GGCTAGCTACAACGA CCACTGAT	12878
6223	GUGGAUCA A UGAGGACU	4130	AGTCCTCA GGCTAGCTACAACGA TGATCCAC	12879
6229	CAAUGAGG A CUGCUCCA	4131	TGGAGCAG GGCTAGCTACAACGA CCTCATTG	12880
6232	UGAGGACU G CUCCACGC	4132	GCCTGGAG GGCTAGCTACAACGA AGTCCTCA	12881
6237	ACUGCUCC A CGCCAUGU	4133	ACATGGCG GGCTAGCTACAACGA GGAGCAGT	12882
6239	UGCUCCAC G CCAUGUUC	4134	GAACATGG GGCTAGCTACAACGA GTGGAGCA	12883
6242	UCCACGCC A UGUUCCGG	4135	CCGGAACA GGCTAGCTACAACGA GGCCTGGA	12884
6244	CACGCCAU G UUCCGGCU	4136	AGCCGGA GGCTAGCTACAACGA ATGGCGTG	12885
6250	AUGUUCCG G CUCGUGGC	4137	GCCACGAG GGCTAGCTACAACGA CGGAACAT	12886
6254	UCCGGCUC G UGGCUAAG	4138	CTAGCCA GGCTAGCTACAACGA GAGCCGGA	12887
6257	GGCUCGUG G CUAAGGGA	4139	TCCCTTAG GGCTAGCTACAACGA CACGAGCC	12888
6265	GCUAAGGG A UGUUUGGG	4140	CCCAAACA GGCTAGCTACAACGA CCCTTAGC	12889
6267	UAAGGGAU G UUUGGGAC	4141	GTCCCCAA GGCTAGCTACAACGA ATCCCTTA	12890
6274	UGUUUUGGG A CUGGAUAU	4142	ATATCCAG GGCTAGCTACAACGA CCCAAACA	12891
6279	GGGACUGG A UAUGCACG	4143	CGTGCATA GGCTAGCTACAACGA CCAGTCCC	12892
6281	GACUGGAU A UGCACGGU	4144	ACCGTGCA GGCTAGCTACAACGA ATCCAGTC	12893
6283	CUGGAUAU G CACGGUGU	4145	ACACCGTG GGCTAGCTACAACGA ATATCCAG	12894
6285	GGAAUUGC A CGGUGUUG	4146	CAACACCG GGCTAGCTACAACGA GCATATCC	12895
6288	UAUGCACG G UGUUGACU	4147	AGTCAACA GGCTAGCTACAACGA CGTGCATA	12896
6290	UGCACGGU G UUGACUGA	4148	TCAGTCAA GGCTAGCTACAACGA ACCGTGCA	12897
6294	CGGUGUUG A CUGACUUC	4149	GAAGTCAG GGCTAGCTACAACGA CAACACCG	12898
6298	GUUGACUG A CUUCAAGA	4150	TCTTGAAG GGCTAGCTACAACGA CAGTCAAC	12899
6306	ACUUCAAG A CCUGGCCU	4151	AAGCCAGG GGCTAGCTACAACGA CTTGAAGT	12900
6311	AAGACCUG G CUUCAGUC	4152	GACTGAAG GGCTAGCTACAACGA CAGGTCTT	12901
6317	UGGUUCA G UCCAAGCU	4153	AGCTTGGGA GGCTAGCTACAACGA TGAAGCCA	12902
6323	CAGUCCAA G CUCCUGCC	4154	GGCAGGAG GGCTAGCTACAACGA TTGGACTG	12903
6329	AAGCUCCU G CCGCGGUU	4155	AACCGCGG GGCTAGCTACAACGA AGGAGCTT	12904

6332	CUCCUGCC G CGGUUGCC	4156	GGCAACCG GGCTAGCTACAACGA GGCAGGAG	12905
6335	CUGCCGCG G UUGCCGGG	4157	CCCGGCAA GGCTAGCTACAACGA CGCAGGAG	12906
6338	CCGCGGUU G CCGGGAGU	4158	ACTCCCAG GGCTAGCTACAACGA AACCGCGG	12907
6345	UGCCGGGA G UCCCCUUC	4159	GAAAGGGA GGCTAGCTACAACGA TCCCAGCA	12908
6359	UUCUUCUC A UGCCAACG	4160	CGTTGGCA GGCTAGCTACAACGA GAGAAGAA	12909
6361	CUUCUCAU G CCAACGUG	4161	CACGTTGG GGCTAGCTACAACGA ATGAGAAG	12910
6365	UCAUGCCA A CGUGGGUA	4162	TACCCACG GGCTAGCTACAACGA TGGCATGA	12911
6367	AUGCCAAC G UGGGUAC	4163	TGTACCCA GGCTAGCTACAACGA GTTGGCAT	12912
6371	CAACGUGG G UACAGGGG	4164	CCCCTGTA GGCTAGCTACAACGA CCACGTTG	12913
6373	ACGUGGGU A CAGGGGGG	4165	CCCCCTG GGCTAGCTACAACGA ACCCACGT	12914
6381	ACAGGGGG G UCUGGCGG	4166	CCGCCAGA GGCTAGCTACAACGA CCCCTGT	12915
6386	GGGGUCUG G CGGGGGAG	4167	TCTCCCCG GGCTAGCTACAACGA CAGACCCC	12916
6394	GGGGGGAG A CGGUAUCA	4168	TGATACCG GGCTAGCTACAACGA CTCCCCGC	12917
6397	GGGAGACG G UAUCAUGC	4169	GCATGATA GGCTAGCTACAACGA CGTCTCCC	12918
6399	GAGACGGU A UCAUGCAA	4170	TTGCATGA GGCTAGCTACAACGA ACCGTCTC	12919
6402	ACGGUAUC A UGCAAACC	4171	GGTTTGCA GGCTAGCTACAACGA GATACCGT	12920
6404	GGUAUCAU G CAAACCAC	4172	GTGGTTTG GGCTAGCTACAACGA ATGATACC	12921
6408	UCAUGCAA A CCACCUGC	4173	GCAGGTGG GGCTAGCTACAACGA TTGCATGA	12922
6411	UGCAAACC A CCUGCCCA	4174	TGGGCAGG GGCTAGCTACAACGA GGTTTGCA	12923
6415	AACCACCU G CCCAUGCG	4175	CGCATGGG GGCTAGCTACAACGA AGGTGGTT	12924
6419	ACCUGCCC A UGCGGAGC	4176	GCTCCGCA GGCTAGCTACAACGA GGGCAGGT	12925
6421	CUGCCCAU G CGGAGCGC	4177	GCGCTCCG GGCTAGCTACAACGA ATGGGCAG	12926
6426	CAUGCGGA G CGCAGAUC	4178	GATCTGCG GGCTAGCTACAACGA TCCGCATG	12927
6428	UGCGGAGC G CAGAUCAC	4179	GTGATCTG GGCTAGCTACAACGA GCTCCGCA	12928
6432	GAGCGCAG A UCACUGGA	4180	TCCAGTGA GGCTAGCTACAACGA CTGCGCTC	12929
6435	CGCAGAUC A CUGGACAU	4181	ATGTCCAG GGCTAGCTACAACGA GATCTGCG	12930
6440	AUCACUGG A CAUGUCAA	4182	TTGACATG GGCTAGCTACAACGA CCAGTGAT	12931
6442	CACUGGAC A UGUCAAGA	4183	TCTTGACA GGCTAGCTACAACGA GTCCAGTG	12932
6444	CUGGACAU G UCAAGAAC	4184	GTCTTGA GGCTAGCTACAACGA ATGTCCAG	12933
6451	UGUCAAGA A CGGUUCCA	4185	TGGAACCG GGCTAGCTACAACGA TCTTGACA	12934
6454	CAAGAACG G UUCCAUGA	4186	TCATGGAA GGCTAGCTACAACGA CGTTCTTG	12935
6459	ACGGUUCC A UGAGGAUC	4187	GATCCTCA GGCTAGCTACAACGA GGAACCGT	12936
6465	CCAUGAGG A UCGUCGGG	4188	CCCGACGA GGCTAGCTACAACGA CCTCATGG	12937
6468	UGAGGAUC G UCGGGCCU	4189	AGGCCCCG GGCTAGCTACAACGA GATCCTCA	12938
6473	AUCGUCGG G CCUAAGAC	4190	GTCTTAGG GGCTAGCTACAACGA CCGACGAT	12939
6480	GGCCUAAG A CCUGUAGC	4191	GCTACAGG GGCTAGCTACAACGA CTTAGGCC	12940
6484	UAAGACCU G UAGCAACA	4192	TGTTGCTA GGCTAGCTACAACGA AGGTCTTA	12941
6487	GACCUGUA G CAACACGU	4193	ACGTGTTG GGCTAGCTACAACGA TACAGGTC	12942
6490	CUGUAGCA A CACGUGGC	4194	GCCACGTG GGCTAGCTACAACGA TGCTACAG	12943
6492	GUAGCAAC A CGUGGCAU	4195	ATGCCACG GGCTAGCTACAACGA GTTGCTAC	12944
6494	AGCAACAC G UGGCAUGG	4196	CCATGCCA GGCTAGCTACAACGA GTGTTGCT	12945
6497	AACACGUG G CAUGGAAC	4197	GTTCCATG GGCTAGCTACAACGA CACGTGTT	12946
6499	CACGUGGC A UGGAACAU	4198	ATGTTCCA GGCTAGCTACAACGA GCCACGTG	12947
6504	GGCAUGGA A CAUCCCCC	4199	GGGAATG GGCTAGCTACAACGA TCCATGCC	12948
6506	CAUGGAAC A UUCCCCAU	4200	ATGGGGAA GGCTAGCTACAACGA GTTCCATG	12949
6513	CAUCCCCC A UCAACGCA	4201	TGCGTTGA GGCTAGCTACAACGA GGGGAATG	12950
6517	CCCCAUCA A CGCAUACA	4202	TGTATGCG GGCTAGCTACAACGA TGATGGGG	12951
6519	CCAUCAAC G CAUACACC	4203	GGTGTATG GGCTAGCTACAACGA GTTGTATG	12952
6521	AUCAACGC A UACACCAC	4204	GTGGTGTA GGCTAGCTACAACGA GCGTTGAT	12953
6523	CAACGCAU A CACCACGG	4205	CCGTGGTG GCTAGCTACAACGA ATGCGTTG	12954
6525	ACGCAUAC A CCACGGGC	4206	GCCCCTGG GGCTAGCTACAACGA GTATCGGT	12955
6528	CAUACACC A CGGGCCCC	4207	GGGGCCCC GGCTAGCTACAACGA GGTGTATG	12956
6532	CACCAACGG G CCCUGCA	4208	TGCAGGGG GGCTAGCTACAACGA CCGTGGTG	12957
6538	GGGCCCCU G CACACCCU	4209	AGGGTGTG GGCTAGCTACAACGA AGGGGGCC	12958
6540	GCCCCUGC A CACCCUCC	4210	GGAGGGTG GGCTAGCTACAACGA GCAGGGGC	12959
6542	CCCUGCAC A CCCUCCCC	4211	GGGGAGGG GGCTAGCTACAACGA GTGCAGGG	12960

6552	CCUCCCCG G CGCCAAAC	4212	GTTGGCG GGCTAGCTACAACGA CGGGGAGG	12961
6554	UCCCCGGC G CCAAACUA	4213	TAGTTTGG GGCTAGCTACAACGA GCCGGGGA	12962
6559	GGGCCAA A CUAUUCUA	4214	TAGAATAG GGCTAGCTACAACGA TTGGCGCC	12963
6562	GCCAAACU A UUCUAGGG	4215	CCCTAGAA GGCTAGCTACAACGA AGTTTGGC	12964
6570	AUUCUAGG G CGCUAUGG	4216	CCATAGCG GGCTAGCTACAACGA CCTAGAAT	12965
6572	UCUAGGGC G CUAUGGCG	4217	CGCCATAG GGCTAGCTACAACGA GCCCTAGA	12966
6575	AGGGCGCU A UGGCGGGU	4218	ACCCGCCA GGCTAGCTACAACGA AGCGCCCT	12967
6578	GCGCUAUG G CGGGUGGC	4219	GCCACCCG GGCTAGCTACAACGA CATAGCGC	12968
6582	UAUGGCGG G UGGCCGCU	4220	AGCGGCCA GGCTAGCTACAACGA CCGCCATA	12969
6585	GGCGGGUG G CCGCUGAG	4221	CTCAGCGG GGCTAGCTACAACGA CACCCGCC	12970
6588	GGGUGGCC G CUGAGGAG	4222	CTCCTCAG GGCTAGCTACAACGA GGCCACCC	12971
6596	GCUGAGGA G UACGUGGA	4223	TCCACGTA GGCTAGCTACAACGA TCCTCAGC	12972
6598	UGAGGAGU A CGUGGAGG	4224	CCTCCACG GGCTAGCTACAACGA ACTCCTCA	12973
6600	AGGAGUAC G UGGAGGUU	4225	AACCTCCA GGCTAGCTACAACGA GTACTCCT	12974
6606	ACGUGGAG G UUACGCGG	4226	CCCGGTAA GGCTAGCTACAACGA CTCCACGT	12975
6609	UGGAGGUU A CGCGGGUG	4227	CACCCGCG GGCTAGCTACAACGA AACCTCCA	12976
6611	GAGGUUAC G CGGGUGGG	4228	CCCACCCG GGCTAGCTACAACGA GTAACCTC	12977
6615	UUACGCGG G UGGGGGAU	4229	ATCCCCCA GGCTAGCTACAACGA CCGCGTAA	12978
6622	GGUGGGGG A UUUCACU	4230	AGTGGAAA GGCTAGCTACAACGA CCCCCACC	12979
6628	GGAUUUCC A CUACGUGA	4231	TCACGTAG GGCTAGCTACAACGA GGAAATCC	12980
6631	UUUCCACU A CGUGACGG	4232	CCGTCACG GGCTAGCTACAACGA AGTGGAAA	12981
6633	UCCACUAC G UGACGGGC	4233	GCCCCTCA GGCTAGCTACAACGA GTAGTGGA	12982
6636	ACUACGUG A CGGGCAUG	4234	CATGCCCG GGCTAGCTACAACGA CACGTAGT	12983
6640	CGUGACGG G CAUGACCA	4235	TGGTCATG GGCTAGCTACAACGA CCGTCACG	12984
6642	UGACGGGC A UGACCACU	4236	AGTGGTCA GGCTAGCTACAACGA GCCCCTCA	12985
6645	CGGGCAUG A CCACUGAC	4237	GTCAGTGG GGCTAGCTACAACGA CATGCCCG	12986
6648	GCAUGACC A CUGACAAAC	4238	GTTGTCAG GGCTAGCTACAACGA GGTCACTGC	12987
6652	GACCACUG A CAACGUAA	4239	TTACGTT GGCTAGCTACAACGA CAGTGGTC	12988
6655	CACUGACA A CGUAAAAU	4240	ATTTTACG GGCTAGCTACAACGA TGTCAGTG	12989
6657	CUGACAAAC G UAAAAUGC	4241	GCATTTTA GGCTAGCTACAACGA GTTGTCA	12990
6662	AACGUAAA A UGCCCCGUG	4242	CACGGGCA GGCTAGCTACAACGA TTTACGTT	12991
6664	CGUAAAAU G CCCGUGCC	4243	GGCACGGG GGCTAGCTACAACGA ATTTTACG	12992
6668	AAAUGCCC G UGCCAGGU	4244	ACCTGGCA GGCTAGCTACAACGA GGGCATTT	12993
6670	AUGCCCGU G CCAGGUUC	4245	GAACCTGG GGCTAGCTACAACGA ACGGGCAT	12994
6675	CGUGCCAG G UUCCGCCCC	4246	GGGCGGAA GGCTAGCTACAACGA CTGGCACG	12995
6680	CAGGUUCC G CCCCCCGA	4247	TCGGGGGG GGCTAGCTACAACGA GGAACCTG	12996
6689	CCCCCCGA A UUCUUCAC	4248	GTGAAGAA GGCTAGCTACAACGA TCGGGGGG	12997
6696	AAUUCUUC A CGGAAGUG	4249	CACTTCCG GGCTAGCTACAACGA GAAGAATT	12998
6702	UCACGGAA G UGGAUGGG	4250	CCCATCCA GGCTAGCTACAACGA TTCCGTGA	12999
6706	GGAAGUGG A UGGGGUAC	4251	GTACCCCA GGCTAGCTACAACGA CCACCTCC	13000
6711	UGGAUGGG G UACGCCUG	4252	CAGGCGTA GGCTAGCTACAACGA CCCATCCA	13001
6713	GAUGGGGU A CGCCUGCA	4253	TGCAGGCG GGCTAGCTACAACGA ACCCCATC	13002
6715	UGGGGUAC G CCUGCACA	4254	TGTGCAGG GGCTAGCTACAACGA GTACCCCA	13003
6719	GUACGCCU G CACAGAAA	4255	TTTCTGTG GGCTAGCTACAACGA AGGCGTAC	13004
6721	ACGCCUGC A CAGAAACG	4256	CGTTCTG GGCTAGCTACAACGA GCAGGCGT	13005
6727	GCACAGAA A CGCUCCGG	4257	CCGGAGCG GGCTAGCTACAACGA TTCTGTGC	13006
6729	ACAGAAC G CUCCGGCG	4258	CGCCGGAG GGCTAGCTACAACGA GTTTCTGT	13007
6735	ACGCCUCG G CGUGUGGA	4259	TCCACACG GGCTAGCTACAACGA CGGAGCGT	13008
6737	GCUCCGGC G UGUGGACC	4260	GGTCCACA GGCTAGCTACAACGA GCCGGAGC	13009
6739	UCCGGCGU G UGGACCUC	4261	GAGGTCCA GGCTAGCTACAACGA ACGCCGGA	13010
6743	GCGUGUGG A CCUCUCCU	4262	AGGAGAGG GGCTAGCTACAACGA CCACACGC	13011
6752	CCUCUCCU A CGGGAGGA	4263	TCCTCCCG GGCTAGCTACAACGA AGGAGAGG	13012
6762	GGGAGGAG G UCACAUUC	4264	GAATGTGA GGCTAGCTACAACGA CTCCCTCC	13013
6765	AGGAGGUC A CAUUCCAG	4265	CTGGAATG GGCTAGCTACAACGA GACCTCCT	13014
6767	GAGGUCAC A UUCCAGGU	4266	ACCTGGAA GGCTAGCTACAACGA GTGACCTC	13015
6774	CAUUCCAG G UCGGGCUC	4267	GAGCCCGA GGCTAGCTACAACGA CTGGAATG	13016

6779	CAGGUCGG G CUCAACCA	4268	TGGTTGAG GGCTAGCTACAACGA CCGACCTG	13017
6784	CGGGCUCA A CCAAUACC	4269	GGTATTGG GGCTAGCTACAACGA TGAGCCCG	13018
6788	CUCAACCA A UACCUUGGU	4270	ACCAGGTA GGCTAGCTACAACGA TGGTTGAG	13019
6790	CAACCAAU A CCUGGUUG	4271	CAACCAGG GGCTAGCTACAACGA ATTGGTTG	13020
6795	AAUACCUG G UUGGUCA	4272	TGACCAA GGCTAGCTACAACGA CAGGTATT	13021
6800	CUGGUUGG G UCACAGCU	4273	AGCTGTGA GGCTAGCTACAACGA CCAACCAG	13022
6803	GUUGGGUC A CAGCUCCC	4274	GGGAGCTG GGCTAGCTACAACGA GACCCAAC	13023
6806	GGGUCACA G CUCCC AUG	4275	CATGGGAG GGCTAGCTACAACGA TGTGACCC	13024
6812	CAGCUCCC A UGCAGGCC	4276	GGCTCGCA GGCTAGCTACAACGA GGGAGCTG	13025
6814	GCUCCCAU G CGAGCCCG	4277	CGGGCTCG GGCTAGCTACAACGA ATGGGAGC	13026
6818	CCAUGCGA G CCCGAACC	4278	GGTCGGG GGCTAGCTACAACGA TCGCATGG	13027
6824	GAGCCCGA A CCGGAUGU	4279	ACATCCGG GGCTAGCTACAACGA TCAGGGCTC	13028
6829	CGAACCCG A UGUAGCAG	4280	CTGCTACA GGCTAGCTACAACGA CCGGTTCG	13029
6831	AACCGGAU G UAGCAGUG	4281	CACTGCTA GGCTAGCTACAACGA ATCCGGTT	13030
6834	CGGAUGUA G CAGUGCUC	4282	GAGCACTG GGCTAGCTACAACGA TACATCCG	13031
6837	AUGUAGCA G UGCUCACG	4283	CGTGAGCA GGCTAGCTACAACGA TGCTACAT	13032
6839	GUAGCAGU G CUCACGUC	4284	GACGTGAG GGCTAGCTACAACGA ACTGCTAC	13033
6843	CAGUGCUC A CGUCCAUG	4285	CATGGACG GGCTAGCTACAACGA GAGCACTG	13034
6845	GUGCUCAC G UCCAUGCU	4286	AGCATGGA GGCTAGCTACAACGA GTGAGCAC	13035
6849	UCACGUCC A UGCUCACC	4287	GGTGAGCA GGCTAGCTACAACGA GGACGTGA	13036
6851	ACGUCCAU G CUCACCGA	4288	TCGGTGAG GGCTAGCTACAACGA ATGGACGT	13037
6855	CCAUGCUC A CCGACCCC	4289	GGGGTCGG GGCTAGCTACAACGA GAGCATGG	13038
6859	GCUCACCG A CCCCUCCC	4290	GGGAGGGG GGCTAGCTACAACGA CGGTGAGC	13039
6868	CCCCUCCC A CAUUACAG	4291	CTGTAATG GGCTAGCTACAACGA GGGAGGGG	13040
6870	CCUCCAC A UUACAGGA	4292	TCCGTAA GGCTAGCTACAACGA GTGGGAGG	13041
6873	CCCACAUU A CAGGAGAG	4293	CTCTCCTG GGCTAGCTACAACGA AATGTGGG	13042
6882	CAGGAGAG A CGGCUAAG	4294	CTTAGCCG GGCTAGCTACAACGA CTCTCCTG	13043
6885	GAGAGACG G CUAAGCGU	4295	ACGCTTAG GGCTAGCTACAACGA CGTCTCTC	13044
6890	ACGGCUAA G CGUAGGCU	4296	AGCCTACG GGCTAGCTACAACGA TTAGCCGT	13045
6892	GGCUAAGC G UAGGCUUG	4297	CCAGCCTA GGCTAGCTACAACGA GCTTAGCC	13046
6896	AAGCGUAG G CUGGCCAG	4298	CTGGCCAG GGCTAGCTACAACGA CTACGCTT	13047
6900	GUAGGCUG G CCAGGGGG	4299	CCCCCTGG GGCTAGCTACAACGA CAGCCTAC	13048
6908	GCCAGGGG G UCUCCCCC	4300	GGGGGAGA GGCTAGCTACAACGA CCCCTGGC	13049
6924	CCUCCUUG G CCAGCUCC	4301	GGAGCTGG GGCTAGCTACAACGA CAAGGAGG	13050
6928	CUU GGCCA G CUCCUCAG	4302	CTGAGGAG GGCTAGCTACAACGA TGGCCAAG	13051
6936	GCUCCUCA G CUAGCCAG	4303	CTGGCTAG GGCTAGCTACAACGA TGAGGAGC	13052
6940	CUCAGCUA G CCAGCUGU	4304	ACAGCTGG GGCTAGCTACAACGA TAGCTGAG	13053
6944	GCUAGCCA G CUGUCUGC	4305	GCAGACAG GGCTAGCTACAACGA TGGCTAGC	13054
6947	AGCCAGCU G UCUGCGCC	4306	GGCGCAGA GGCTAGCTACAACGA AGCTGGCT	13055
6951	AGCUGUCU G CGCCUUUC	4307	AGAAGGCG GGCTAGCTACAACGA AGACAGCT	13056
6953	CUGUCUGC G CCUUCUUC	4308	GAAGAAGG GGCTAGCTACAACGA GCAGACAG	13057
6966	CUUCGAAG G CGACAUAC	4309	GTATGTCT GGCTAGCTACAACGA CTTCGAAG	13058
6969	CGAAGGCG A CAUACAUU	4310	AATGTATG GGCTAGCTACAACGA CGCCTTCG	13059
6971	AAGGCGAC A UACAUUAC	4311	GTAATGTA GGCTAGCTACAACGA GTCGCCTT	13060
6973	GGCGACAU A CAUUA CCC	4312	GGGTAATG GGCTAGCTACAACGA ATGTCGCC	13061
6975	CGACAUAC A UUACCAA	4313	TTGGTAA GGCTAGCTACAACGA GTATGTCT	13062
6978	CAUACAUU A CCCAUU	4314	ATATTGGG GGCTAGCTACAACGA AATGTATG	13063
6983	AUUA CCA A UAUGACUC	4315	GAGTCATA GGCTAGCTACAACGA TGGGTAAT	13064
6985	UACCCAAU A UGACUCC	4316	GGGAGTCA GGCTAGCTACAACGA ATTGGGTA	13065
6988	CCAAUAUG A CUCCCCAG	4317	CTGGGGAG GGCTAGCTACAACGA CATATTGG	13066
6997	CUCCCCAG A CUUUGACC	4318	GGTCAAAG GGCTAGCTACAACGA CTGGGGAG	13067
7003	AGACUUUG A CCUCAUCG	4319	CGATGAGG GGCTAGCTACAACGA CAAAGTCT	13068
7008	UUGACCUC A UCGAGGCC	4320	GGCCTCGA GGCTAGCTACAACGA GAGGTCAA	13069
7014	UCAUCGAG G CCAACCUC	4321	GAGGTTGG GGCTAGCTACAACGA CTCGATGA	13070
7018	CGAGGCCA A CCUCCUGU	4322	ACAGGAGG GGCTAGCTACAACGA TGGCCTCG	13071
7025	AACCUCCU G UGGCGGCA	4323	TGCCGCCA GGCTAGCTACAACGA AGGAGGTT	13072

7028	CUCCUGUG G CGGCAGGA	4324	TCCTGCCG GGCTAGCTACAACGA CACAGGAG	13073
7031	CUGUGGCG G CAGGAGAU	4325	ATCTCCTG GGCTAGCTACAACGA CGCCACAG	13074
7038	GGCAGGAG A UGGCGGU	4326	ACCGCCCA GGCTAGCTACAACGA CTCCTGCC	13075
7042	GGAGAUGG G CGGUAAACA	4327	TGTTACCG GGCTAGCTACAACGA CCATCTCC	13076
7045	GAUGGGCG G UAACAUCA	4328	TGATGTTA GGCTAGCTACAACGA CGCCCCATC	13077
7048	GGGCGGUA A CAUCACUC	4329	GAGTGATG GGCTAGCTACAACGA TACCGCCC	13078
7050	GCGGUAAAC A UCACUCGC	4330	GCGAGTGA GGCTAGCTACAACGA GTTACCGC	13079
7053	GUAAACAUC A CUCGCGUG	4331	CACGCGAG GGCTAGCTACAACGA GATGTTAC	13080
7057	CAUCACUC G CGUGGAGU	4332	ACTCCACG GGCTAGCTACAACGA GAGTGATG	13081
7059	UCACUCGC G UGGAGUCA	4333	TGACTCCA GGCTAGCTACAACGA GCGAGTGA	13082
7064	CGCGUGGA G UCAGAGAA	4334	TTCTCTGA GGCTAGCTACAACGA TCCACGCG	13083
7072	GUCAGAGA A UAAGGUAG	4335	CTACCTTA GGCTAGCTACAACGA TCTCTGAC	13084
7077	AGAAUAAG G UAGUUACC	4336	GGTAACTA GGCTAGCTACAACGA CTTATTCT	13085
7080	AUAAGGUA G UUACCCUG	4337	CAGGGTAA GGCTAGCTACAACGA TACCTTAT	13086
7083	AGGUAGUU A CCCUGGAC	4338	GTCCAGGG GGCTAGCTACAACGA AACTACCT	13087
7090	UACCCUGG A CUCUUUUG	4339	CAAAGAG GGCTAGCTACAACGA CCAGGGTA	13088
7099	CUCUUUUG A CCCGUUC	4340	GAAGCGGG GGCTAGCTACAACGA CAAAAGAG	13089
7103	UUUGACCC G CUUCGAGC	4341	GCTCGAAG GGCTAGCTACAACGA GGGTAAA	13090
7110	CGCUUCGA G CGGAGGAG	4342	CTCCTCCG GGCTAGCTACAACGA TCGAAGCG	13091
7120	GGAGGAGG A UGAGAGAG	4343	CTCTCTCA GGCTAGCTACAACGA CCTCCTCC	13092
7131	AGAGAGAG G UGUCCAUU	4344	AATGGACA GGCTAGCTACAACGA CTCTCTCT	13093
7133	AGAGAGGU G UCCAUUCC	4345	GGAATGGA GGCTAGCTACAACGA ACCTCTCT	13094
7137	AGGUGUCC A UUCCGGCG	4346	CGCCGGAA GGCTAGCTACAACGA GGACACCT	13095
7143	CCAUCCG G CGGAGAUC	4347	GATCTCCG GGCTAGCTACAACGA CGGAATGG	13096
7149	CGGCGGAG A UCCUGCGG	4348	CCGCAGGA GGCTAGCTACAACGA CTCCGCCG	13097
7154	GAGAUCCU G CGGAAUAC	4349	GATTCCG GGCTAGCTACAACGA AGGATCTC	13098
7160	CUGCGGAA A UCCAAGAA	4350	TTCTTGGG GGCTAGCTACAACGA TTCCGCAG	13099
7169	UCCAAGAA G UUCCUUC	4351	GAAGGAAA GGCTAGCTACAACGA TTCTTGGG	13100
7179	UUCCUUC A CGUUACCC	4352	GGGTAACG GGCTAGCTACAACGA TGAAGGAA	13101
7181	CCUUCAGC G UUACCCAU	4353	ATGGGTAA GGCTAGCTACAACGA GCTGAAGG	13102
7184	UCAGCGUU A CCCAU AUG	4354	CATATGGG GGCTAGCTACAACGA AACGCTGA	13103
7188	CGUUACCC A UAUGGGCA	4355	TGCCCCATA GGCTAGCTACAACGA GGGTAACG	13104
7190	UUACCCAU A UGGGCACG	4356	CGTGCCCA GGCTAGCTACAACGA ATGGGTAA	13105
7194	CCAUAU GG CACGCCCG	4357	CGGGCGTG GGCTAGCTACAACGA CCATATGG	13106
7196	AUAUGGGC A CGCCCGGA	4358	TCCGGGCG GGCTAGCTACAACGA GCCCATAT	13107
7198	AUGGGCAC G CCCGGAUU	4359	AATCCGGG GGCTAGCTACAACGA GTGCCCAT	13108
7204	ACGCCCGG A UUACAACC	4360	GGTTGTAA GGCTAGCTACAACGA CCGGGCGT	13109
7207	CCCGGAAU A CAACCCUC	4361	GAGGGTTG GGCTAGCTACAACGA AATCCGGG	13110
7210	GGAUUACA A CCCUCCAC	4362	GTGGAGGG GGCTAGCTACAACGA TGTAATCC	13111
7217	AACCCUCC A CUACUAGA	4363	TCTAGTAG GGCTAGCTACAACGA GGAGGGTT	13112
7220	CCUCCACU A CUAGAGCC	4364	GGCTCTAG GGCTAGCTACAACGA AGTGGAGG	13113
7226	CUACUAGA G CCCUGGAA	4365	TTCCAGGG GGCTAGCTACAACGA TCTAGTAG	13114
7237	CUGGAAAG A CCCAGACU	4366	AGTCTGGG GGCTAGCTACAACGA CTTTCCAG	13115
7243	AGACCCAG A CUACGUCC	4367	GGACGTAG GGCTAGCTACAACGA CTGGGTCT	13116
7246	CCCAGACU A CGUCCCCU	4368	GAGGGACG GGCTAGCTACAACGA AGTCTGGG	13117
7248	CAGACUAC G UCCCUCG	4369	CGGAGGGA GGCTAGCTACAACGA GTAGTCTG	13118
7257	UCCCUCG G UGGUACAC	4370	GTGTACCA GGCTAGCTACAACGA CGGAGGGA	13119
7260	CUCCGGUG G UACACGGG	4371	CCCGTGTG GGCTAGCTACAACGA CACCGGAG	13120
7262	CCGGUGGU A CACGGGUG	4372	CACCCGTG GGCTAGCTACAACGA ACCACCGG	13121
7264	GGUGGUAC A CGGGUGCC	4373	GGCACCCG GGCTAGCTACAACGA GTACCACC	13122
7268	GUACACGG G UGCCCAUU	4374	AATGGGCA GGCTAGCTACAACGA CCGTGTAC	13123
7270	ACACGGGU G CCCAUUGC	4375	GCAATGGG GGCTAGCTACAACGA ACCCGTGT	13124
7274	GGGUGCCC A UUGCCACC	4376	GGTGGCAA GGCTAGCTACAACGA GGGCACCC	13125
7277	UGCCCAUU G CCACCUGC	4377	GCAGGTGG GGCTAGCTACAACGA AATGGGCA	13126
7280	CCAUUGCC A CCUGCCAA	4378	TTGGCAGG GGCTAGCTACAACGA GGCAATGG	13127
7284	UGCCACCU G CCAAGGCC	4379	GGCCTTGG GGCTAGCTACAACGA AGGTGGCA	13128

7290	CUGCCAAG G CCCCUCCA	4380	TGGAGGGG GGCTAGCTACAACGA CTTGGCAG	13129
7299	CCCCUCCA A UACCACCU	4381	AGGTGGTA GGCTAGCTACAACGA TGGAGGGG	13130
7301	CCUCCAAU A CCACCUCC	4382	GGAGGTGG GGCTAGCTACAACGA ATTGGAGG	13131
7304	CCAAUACC A CCUCCACG	4383	CGTGGAGG GGCTAGCTACAACGA GGTATTGG	13132
7310	CCACCUCC A CGGAGGAA	4384	TTCCCTCG GGCTAGCTACAACGA GGAGGTGG	13133
7323	GGAAGAGG A CGGUUGUU	4385	AACAACCG GGCTAGCTACAACGA CCTCTTCC	13134
7326	AGAGGACG G UUGUUCUG	4386	CAGAACAA GGCTAGCTACAACGA CGTCCTCT	13135
7329	GGACGGUU G UUCUGACA	4387	TGTCAGAA GGCTAGCTACAACGA AACCGTCC	13136
7335	UUGUUCUG A CAGAGUCC	4388	GGACTCTG GGCTAGCTACAACGA CAGAACAA	13137
7340	CUGACAGA G UCCACCGU	4389	ACGGTGGA GGCTAGCTACAACGA TCTGTCAG	13138
7344	CAGAGUCC A CCGUGUCU	4390	AGACACGG GGCTAGCTACAACGA GGACTCTG	13139
7347	AGUCCACC G UGUCUUCU	4391	AGAAGACA GGCTAGCTACAACGA GGTGGACT	13140
7349	UCCACCGU G UCUUCUGC	4392	GCAGAAGA GGCTAGCTACAACGA ACGGTGGA	13141
7356	UGUCUUCU G CCUUGGCG	4393	CGCCAAGG GGCTAGCTACAACGA AGAAGACA	13142
7362	CUGCCUUG G CGGAGCUC	4394	GAGCTCCG GGCTAGCTACAACGA CAAGGCAG	13143
7367	UUGGCCGA G CUCGCCAC	4395	GTGGCGAG GGCTAGCTACAACGA TCCGCCAA	13144
7371	CGGAGCUC G CCACAAAG	4396	CTTGTGG GGCTAGCTACAACGA GAGCTCCG	13145
7374	AGCUCGCC A CAAAGACC	4397	GGTCTTTG GGCTAGCTACAACGA GGCAGACT	13146
7380	CCACAAAG A CCUUCGGC	4398	GCCGAAGG GGCTAGCTACAACGA CTTTGTGG	13147
7387	GACCUUCG G CAGCUCUG	4399	CAGAGCTG GGCTAGCTACAACGA CGAAGGTC	13148
7390	CUUCGGCA G CUCUGAAU	4400	ATTCAGAG GGCTAGCTACAACGA TGCCGAAG	13149
7397	AGCUCUGA A UCAUCGGC	4401	GCCGATGA GGCTAGCTACAACGA TCAGAGCT	13150
7400	UCUGAAUC A UCGGCCGC	4402	GCGGCCGA GGCTAGCTACAACGA GATTCA	13151
7404	AAUCAUCG G CCGCUGAU	4403	ATCAGCGG GGCTAGCTACAACGA CGATGATT	13152
7407	CAUCGGCC G CUGAUAGA	4404	TCTATCAG GGCTAGCTACAACGA GGCGATG	13153
7411	GGCCGCUG A UAGAGGUA	4405	TACCTCTA GGCTAGCTACAACGA CAGCGGCC	13154
7417	UGAUAGAG G UACGGCAA	4406	TTGCCGTA GGCTAGCTACAACGA CTCTATCA	13155
7419	AUAGAGGU A CGGCAACC	4407	GGTTGCCG GGCTAGCTACAACGA ACCTCTAT	13156
7422	GAGGUACG G CAACCGCC	4408	GGCGGTTG GGCTAGCTACAACGA CGTACCTC	13157
7425	GUACGGCA A CCGCCCCC	4409	GGGGGGCG GGCTAGCTACAACGA TGCCGTAC	13158
7428	CGGCAACC G CCCCCCCC	4410	GGGGGGGG GGCTAGCTACAACGA GGTTGCCG	13159
7438	CCCCCCCG A CCAGACCU	4411	AGGTCTGG GGCTAGCTACAACGA CGGGGGGG	13160
7443	CCGACCAG A CCUCCAAU	4412	ATTGGAGG GGCTAGCTACAACGA CTGGTCGG	13161
7450	GACCUCCA A UGACGGUG	4413	CACCGTCA GGCTAGCTACAACGA TGGAGGTC	13162
7453	CUCCAAUG A CGGUGACG	4414	CGTCACCG GGCTAGCTACAACGA CATTGGAG	13163
7456	CAAUGACG G UGACGCAG	4415	CTGCGTCA GGCTAGCTACAACGA CGTCATTG	13164
7459	UGACGGUG A CGCAGGAU	4416	ATCCTGCG GGCTAGCTACAACGA CACCGTCA	13165
7461	ACGGUGAC G CAGGAUCC	4417	GGATCCTG GGCTAGCTACAACGA GTCACCGT	13166
7466	GACGCAGG A UCCGACGU	4418	ACGTCGGA GGCTAGCTACAACGA CCTGCGTC	13167
7471	AGGAUCCG A CGUUGAGU	4419	ACTCAACG GGCTAGCTACAACGA CGGATCCT	13168
7473	GAUCCGAC G UUGAGUCG	4420	CGACTCAA GGCTAGCTACAACGA GTCGGATC	13169
7478	GACGUUGA G UCGUACUC	4421	GAGTACGA GGCTAGCTACAACGA TCAACGTC	13170
7481	GUUGAGUC G UACUCCUC	4422	GAGGACTA GGCTAGCTACAACGA GACTAAC	13171
7483	UGAGUCGU A CUCCUCUA	4423	TAGAGGAG GGCTAGCTACAACGA ACGACTCA	13172
7491	ACUCCUCU A UGCCCCCC	4424	GGGGGGCA GGCTAGCTACAACGA AGAGGAGT	13173
7493	UCCUCUAU G CCCCCCCC	4425	AGGGGGGG GGCTAGCTACAACGA ATAGAGGA	13174
7511	GAGGGGGA G CCGGGGGA	4426	TCCCCCGG GGCTAGCTACAACGA TCCCCCTC	13175
7519	GCGGGGGG A UCCCGAUC	4427	GATCGGGG GGCTAGCTACAACGA CCCCCGGC	13176
7525	GGAUCCCG A UCUCAGCG	4428	CGCTGAGA GGCTAGCTACAACGA CGGGATCC	13177
7531	CGAUCUCA G CGACGGGU	4429	ACCCGTCG GGCTAGCTACAACGA TGAGATCG	13178
7534	UCUCAGCG A CGGGUCUU	4430	AAGACCCG GGCTAGCTACAACGA CGCTGAGA	13179
7538	AGCGACGG G UCUUGGUC	4431	GACCAAGA GGCTAGCTACAACGA CCGTCGCT	13180
7544	GGGUUUG G UCUACCGU	4432	ACGGTAGA GGCTAGCTACAACGA CAAGACCC	13181
7548	CUUGGUCU A CCGUGAGC	4433	GCTCACGG GGCTAGCTACAACGA AGACCAAG	13182
7551	GGUCUACC G UGAGCGAA	4434	TTCGCTCA GGCTAGCTACAACGA GGTAGACC	13183
7555	UACCGUGA G CGAAGAGG	4435	CCTCTTCG GGCTAGCTACAACGA TCACGGTA	13184

7563	GCGAAGAG G CUGGCGAG	4436	CTCGCCAG GGCTAGCTACAACGA CTCTTCGC	13185
7567	AGAGGCUG G CGAGGAUG	4437	CATCCTCG GGCTAGCTACAACGA CAGCCTCT	13186
7573	UGGCGAGG A UGUCGUCU	4438	AGACGACA GGCTAGCTACAACGA CCTCGCCA	13187
7575	GCGAGGAU G UCGUCUGC	4439	GCAGACGA GGCTAGCTACAACGA ATCCTCGC	13188
7578	AGGAUGUC G UCUGCUGC	4440	GCAGCAGA GGCTAGCTACAACGA GACATCCT	13189
7582	UGUCGUCU G CUGCUCGA	4441	TCGAGCAG GGCTAGCTACAACGA AGACGACA	13190
7585	CGUCUGCU G CUCGAUGU	4442	ACATCGAG GGCTAGCTACAACGA AGCAGACG	13191
7590	GCUGCUCG A UGUCCUAC	4443	GTAGGACA GGCTAGCTACAACGA CGAGCAGC	13192
7592	UGCUCGAU G UCCUACAC	4444	GTGTAGGA GGCTAGCTACAACGA ATCGAGCA	13193
7597	GAUGUCCU A CACAUGGA	4445	TCCATGTG GGCTAGCTACAACGA AGGACATC	13194
7599	UGUCCUAC A CAUGGACG	4446	CGTCCATG GGCTAGCTACAACGA GTAGGACA	13195
7601	UCCUACAC A UGGACGGG	4447	CCCGTCCA GGCTAGCTACAACGA GTGTAGGA	13196
7605	ACACAUHG A CGGGCGCC	4448	GGCGCCCG GGCTAGCTACAACGA CCATGTGT	13197
7609	AUGGACGG G CGCCCGUA	4449	TCAGGGCG GGCTAGCTACAACGA CCGTCCAT	13198
7611	GGACGGGC G CCCUGAUC	4450	GATCAGGG GGCTAGCTACAACGA GCCCGTCC	13199
7617	GCGCCCUG A UCACGCCA	4451	TGGCGTGA GGCTAGCTACAACGA CAGGGCGC	13200
7620	CCCUUGAUC A CGCCAUGC	4452	GCATGGCG GGCTAGCTACAACGA GATCAGGG	13201
7622	CUGAUCAC G CCAUGCGC	4453	GCGCATGG GGCTAGCTACAACGA GTGATCAG	13202
7625	AUCACGCC A UGCGCUGC	4454	GCAGCGCA GGCTAGCTACAACGA GGCCTGAT	13203
7627	CACGCCAU G CGCUGCGG	4455	CCGCAGCG GGCTAGCTACAACGA ATGGCGTG	13204
7629	CGCCAUGC G CUGCGGAG	4456	CTCCGCAG GGCTAGCTACAACGA GCATGGCG	13205
7632	CAUGCGCU G CGGAGGAA	4457	TTCCCTCCG GGCTAGCTACAACGA AGCGCATG	13206
7642	GGAGGAAA G CAAGUUGC	4458	GCAACTTG GGCTAGCTACAACGA TTTCCCTCC	13207
7646	GAAAGCAA G UUGCCCAU	4459	ATGGGCAA GGCTAGCTACAACGA TTGCTTTG	13208
7649	AGCAAGUU G CCCAUCAA	4460	TTGATGGG GGCTAGCTACAACGA AACTTGCT	13209
7653	AGUUGCCC A UCAACGCG	4461	CGCGTTGA GGCTAGCTACAACGA GGGCAACT	13210
7657	GCCCCAUCA A CGCGUUGA	4462	TCAACGCG GGCTAGCTACAACGA TGATGGGC	13211
7659	CCAUCAAC G CGUUGAGC	4463	GCTCAACG GGCTAGCTACAACGA GTTGATGG	13212
7661	AUCAACGC G UUGAGCAA	4464	TTGCTCAA GGCTAGCTACAACGA GCGTTGAT	13213
7666	CGCGUUGA G CAACUUU	4465	AAGAGTTG GGCTAGCTACAACGA TCAACGCG	13214
7669	GUUGAGCA A CUCUUUGC	4466	GCAAAGAG GGCTAGCTACAACGA TGCTCAAC	13215
7676	AACUCUUU G CUGCGUCA	4467	TGACGCAG GGCTAGCTACAACGA AAAGAGTT	13216
7679	UCUUUGCU G CGUCACCA	4468	TGGTGACG GGCTAGCTACAACGA AGCAAAGA	13217
7681	UUUGCGC G UCACCACA	4469	TGTGGTGA GGCTAGCTACAACGA GCAGCAAA	13218
7684	GCUGCGUC A CCACAAAC	4470	TGTTGTGG GGCTAGCTACAACGA GACGCAGC	13219
7687	GCGUCACC A CAACAUGG	4471	CCATGTTG GGCTAGCTACAACGA GGTGACGC	13220
7690	UCACCACCA A CAUGGUCU	4472	AGACCATG GGCTAGCTACAACGA TGTGGTGA	13221
7692	ACCACAAC A UGGUCUAC	4473	GTAGACCA GGCTAGCTACAACGA GTTGTGGT	13222
7695	ACAACAUG G UCUACGCU	4474	AGCGTACA GGCTAGCTACAACGA CATGTTGT	13223
7699	CAUGGUCU A CGCUACAA	4475	TTGTAGCG GGCTAGCTACAACGA AGACCATG	13224
7701	UGGUCCUAC G CUACAACA	4476	TGTTGTAG GGCTAGCTACAACGA GTAGACCA	13225
7704	UCUACGCU A CAACAUCU	4477	AGATGTTG GGCTAGCTACAACGA AGCGTAGA	13226
7707	ACGCUACA A CAUCUCGC	4478	GCGAGATG GGCTAGCTACAACGA TGTAGCGT	13227
7709	GCUACAAC A UCUCGCG	4479	CTGCGAGA GGCTAGCTACAACGA GTTGTAGC	13228
7714	AACAUCUC G CAGCGCAA	4480	TTGCGCTG GGCTAGCTACAACGA GAGATGTT	13229
7717	AUCUCGCA G CGCAAGCC	4481	GGCTTGGC GGCTAGCTACAACGA TGCGAGAT	13230
7719	CUCGCAGC G CAAGCCAG	4482	CTGGCTTG GGCTAGCTACAACGA GCTGCGAG	13231
7723	CAGCGCAA G CCAGCGGC	4483	GCCGCTGG GGCTAGCTACAACGA TTGCGCTG	13232
7727	GCAAGCCA G CGGGCAGAA	4484	TTCTGCCG GGCTAGCTACAACGA TGGCTTGC	13233
7730	AGCCAGCG G CAGAAGAA	4485	TTCTTCTG GGCTAGCTACAACGA CGCTGGCT	13234
7740	AGAAGAAG G UCACCUUU	4486	AAAGGTGA GGCTAGCTACAACGA CTTCTTCT	13235
7743	AGAAGGUC A CCUUUGAC	4487	GTCAAAGG GGCTAGCTACAACGA GACCTTCT	13236
7750	CACCUUUG A CAGACUGC	4488	GCAGTCTG GGCTAGCTACAACGA CAAAGGTG	13237
7754	UUUGACAG A CUGCAAGU	4489	ACTTGCAG GGCTAGCTACAACGA CTGTAAA	13238
7757	GACAGACU G CAAGUCCU	4490	AGGACTTG GGCTAGCTACAACGA AGTCTGTC	13239
7761	GACUGCAA G UCCUGGAC	4491	GTCCAGGA GGCTAGCTACAACGA TTGCAGTC	13240

7768	AGUCCUGG A CGACCACU	4492	AGTGGTCG GGCTAGCTACAACGA CCAGGACT	13241
7771	CCUGGACG A CCACUACC	4493	GGTAGTGG GGCTAGCTACAACGA CGTCCAGG	13242
7774	GGACGACC A CUACCGGG	4494	CCCGGTAG GGCTAGCTACAACGA GGTGTC	13243
7777	CGACCACU A CCGGGACG	4495	CGTCCCAG GGCTAGCTACAACGA AGTGGTC	13244
7783	CUACCGGG A CGUGCUCA	4496	TGAGCACG GGCTAGCTACAACGA CCCGGTAG	13245
7785	ACCGGGAC G UGCUCUAAAG	4497	CTTGAGCA GGCTAGCTACAACGA GTCCCGGT	13246
7787	CGGGACGU G CUCAAGGA	4498	TCCTTGAG GGCTAGCTACAACGA ACGTCCCC	13247
7797	UCAAGGAG A UGAAGGCG	4499	CGCCTTCA GGCTAGCTACAACGA CTCCCTGA	13248
7803	AGAUGAAG G CGAAGGCG	4500	CGCCTTCG GGCTAGCTACAACGA CTTCATCT	13249
7809	AGGCGAAG G CGUCCACA	4501	TGTGGACG GGCTAGCTACAACGA CTTCGCCT	13250
7811	GCGAAGGC G UCCACAGU	4502	ACTGTGGA GGCTAGCTACAACGA GCCTTCGC	13251
7815	AGGCGUCC A CAGUUUAG	4503	CTTAAC TG GGCTAGCTACAACGA GGACGCCT	13252
7818	CGUCCACA G UUAAGGCU	4504	AGCCTAA GGCTAGCTACAACGA TGTGGACG	13253
7824	CAGUUAAG G CUAAACUU	4505	AAGTTAG GGCTAGCTACAACGA CTTAAC	13254
7829	AAGGCCA A CUUCUAUC	4506	GATAGAAG GGCTAGCTACAACGA TTAGCCTT	13255
7835	AAACUUCU A UCCGUAGA	4507	TCTACGGA GGCTAGCTACAACGA AGAAGTTT	13256
7839	UUCUAUCC G UAGAGGAA	4508	TTCCCTCA GGCTAGCTACAACGA GGATAGAA	13257
7848	UAGAGGAA G CCUGCAGA	4509	TCTGCAGG GGCTAGCTACAACGA TTCCCTCA	13258
7852	GGAAGCCU G CAGACUGA	4510	TCAGTCTG GGCTAGCTACAACGA AGGCTTCC	13259
7856	GCCUGCAG A CUGACGCC	4511	GGCGTCAG GGCTAGCTACAACGA CTGCAGGC	13260
7860	GCAGACUG A CGCCCCCA	4512	TGGGGGCG GGCTAGCTACAACGA CAGTCTGC	13261
7862	AGACUGAC G CCCCCACA	4513	TGTGGGGG GGCTAGCTACAACGA GTCACT	13262
7868	ACGCCCCC A CAUUCGGC	4514	GCCGAATG GGCTAGCTACAACGA GGGGGCGT	13263
7870	GCCCCCAC A UUCGGCCA	4515	TGCCCCAA GGCTAGCTACAACGA GTGGGGGC	13264
7875	CACAUUCG G CCAGGUCC	4516	GGACCTGG GGCTAGCTACAACGA CGAATGTG	13265
7880	UCGGCCAG G UCCAAAUU	4517	AATTGGAA GGCTAGCTACAACGA CTGGCCGA	13266
7886	AGGUCCAA A UUUGGUUA	4518	TAACCAAA GGCTAGCTACAACGA TTGGACCT	13267
7891	CAAUUUUG G UUAUGGGG	4519	CCCCATAA GGCTAGCTACAACGA CAAATTG	13268
7894	AUUUGGUU A UGGGGCAA	4520	TTGCCCCA GGCTAGCTACAACGA AACCAAAT	13269
7899	GUUAUGGG G CAAAGGAC	4521	GTCCTTTG GGCTAGCTACAACGA CCCATAAC	13270
7906	GGCAAAGG A CGUCCGGA	4522	TCCGGACG GGCTAGCTACAACGA CCTTGCC	13271
7908	CAAAGGAC G UCCGGAAC	4523	GTTCCGGA GGCTAGCTACAACGA GTCCCTTG	13272
7915	CGUCCGGA A CCUAUCCA	4524	TGGATAGG GGCTAGCTACAACGA TCCGGACG	13273
7919	CGGAACCU A UCCAGCGG	4525	CCGCTGGA GGCTAGCTACAACGA AGGTTCCG	13274
7924	CCUAUCCA G CGGGGCCG	4526	CGGCCCCG GGCTAGCTACAACGA TGGATAGG	13275
7929	CCAGCGGG G CCGUCAAC	4527	GTTGACGG GGCTAGCTACAACGA CCCGCTGG	13276
7932	GCGGGGCC G UCAACCAC	4528	GTGGTTGA GGCTAGCTACAACGA GGCCCCGC	13277
7936	GGCCGUCA A CCACAUCC	4529	GGATGTGG GGCTAGCTACAACGA TGACGGCC	13278
7939	CGUCAACC A CAUCCGCU	4530	AGCGGATG GGCTAGCTACAACGA GTTGACG	13279
7941	UCAACCAC A UCCGCUCC	4531	GGAGCGGA GGCTAGCTACAACGA GTGGTTGA	13280
7945	CCACAUCC G CUCCGUGU	4532	ACACGGAG GGCTAGCTACAACGA GGATGTGG	13281
7950	UCCGCUCC G UGUGGAAG	4533	CTTCCACA GGCTAGCTACAACGA GGAGCGGA	13282
7952	CGCUCCGU G UGGAAGGA	4534	TCCTTCCA GGCTAGCTACAACGA ACGGAGCG	13283
7960	GUGGAAGG A CUUGCUUG	4535	CCAGCAAG GGCTAGCTACAACGA CCTTCCAC	13284
7964	AAGGACUU G CUGGAAGA	4536	TCTTCCAG GGCTAGCTACAACGA AAGTCCTT	13285
7972	GCUGGAAG A CACUGAGA	4537	TCTCAGTG GGCTAGCTACAACGA CTTCCAGC	13286
7974	UGGAAGAC A CUGAGACA	4538	TGTCTCAG GGCTAGCTACAACGA GTCTTCCA	13287
7980	ACACUGAG A CACCAUU	4539	AATTGGTG GGCTAGCTACAACGA CTCAGTGT	13288
7982	ACUGAGAC A CCAUUGA	4540	TCAATTGG GGCTAGCTACAACGA GTCTCAGT	13289
7986	AGACACCA A UUGAUACC	4541	GGTATCAA GGCTAGCTACAACGA TGGTGTCT	13290
7990	ACCAAUUG A UACCACCA	4542	TGGTGGTA GGCTAGCTACAACGA CAATTGGT	13291
7992	CAAUUGAU A CCACCAUC	4543	GATGGTGG GGCTAGCTACAACGA ATCAATTG	13292
7995	UUGAUACC A CCAUCAUG	4544	CATGATGG GGCTAGCTACAACGA GGTATCAA	13293
7998	AUACCACC A UCAUGGCA	4545	TGCCATGA GGCTAGCTACAACGA GGTGGTAT	13294
8001	CCACCAUC A UGGCAAAA	4546	TTTTGCCA GGCTAGCTACAACGA GATGGTGG	13295
8004	CCAUCAUG G CAAAAAAAU	4547	ATTTTTTG GGCTAGCTACAACGA CATGATGG	13296

8011	GGCAAAAA A UGAGGUUU	4548	AAACCTCA GGCTAGCTACAACGA TTTTGCC	13297
8016	AAAAUAGAG G UUUUCUGC	4549	GCAGAAAA GGCTAGCTACAACGA CTCATTTT	13298
8023	GGUUUUUCU G CGUCCAAC	4550	GTTGGACG GGCTAGCTACAACGA AGAAAACC	13299
8025	UUUUCUGC G UCCAACCA	4551	TGTTGGA GGCTAGCTACAACGA GCAGAAAA	13300
8030	UGCGUCCA A CCAGAGAA	4552	TTCTCTGG GGCTAGCTACAACGA TGGACGCA	13301
8044	GAAAGGAG G CCGCAAGC	4553	GCTTGGGG GGCTAGCTACAACGA CTCCCTTC	13302
8047	AGGAGGCC G CAAGCCAG	4554	CTGGCTTG GGCTAGCTACAACGA GGCCTCCT	13303
8051	GGCCGCAA G CCAGCUCG	4555	CGAGCTGG GGCTAGCTACAACGA TTGCGGCC	13304
8055	GCAAGCCA G CUCGCCUU	4556	AAGGCGAG GGCTAGCTACAACGA TGGCTTGC	13305
8059	GCCAGCUC G CCUUAUCG	4557	CGATAAGG GGCTAGCTACAACGA GAGCTGGC	13306
8064	CUCGCCUU A UCGUGUUC	4558	GAACACGA GGCTAGCTACAACGA AAGGCGAG	13307
8067	GCCUUAUC G UGUUCCCCA	4559	TGGGAACA GGCTAGCTACAACGA GATAAGGC	13308
8069	CUUAUCGU G UUCCCAGA	4560	TCTGGGAA GGCTAGCTACAACGA ACGATAAG	13309
8077	GUUCCCAG A CUUGGGGG	4561	CCCCCAAG GGCTAGCTACAACGA CTGGGAAC	13310
8085	ACUUGGGG G UUCGUGUG	4562	CACACGAA GGCTAGCTACAACGA CCCCAAGT	13311
8089	GGGGGUUC G UGUGUGCG	4563	CGCACACCA GGCTAGCTACAACGA GAACCCCC	13312
8091	GGGUUCCG U UGUGCGAG	4564	CTCGCACA GGCTAGCTACAACGA ACGAACCC	13313
8093	GUUCGUGU G UGCGAGAA	4565	TTCTCGCA GGCTAGCTACAACGA ACACGAAC	13314
8095	UCGUGUGU G CGAGAAAA	4566	TTTCTCG GGCTAGCTACAACGA ACACACGA	13315
8103	GCGAGAAA A UGGCCCUU	4567	AAGGGCCA GGCTAGCTACAACGA TTTCTCGC	13316
8106	AGAAA AUG G CCCUUUAC	4568	GTAAAGGG GGCTAGCTACAACGA CATTTCCT	13317
8113	GGCCUUU A CGACGUGG	4569	CCACGTCG GGCTAGCTACAACGA AAAGGGCC	13318
8116	CCUUUACG A CGUGGUCU	4570	AGACCACG GGCTAGCTACAACGA CGTAAAGG	13319
8118	UUUACGAC G UGGUCUCC	4571	GGAGACCA GGCTAGCTACAACGA GTCGTAAA	13320
8121	ACGACGUG G UCUCACC	4572	GGTGGAGA GGCTAGCTACAACGA CACGTCGT	13321
8127	UGGUCUCC A CCCUUCU	4573	AGGAAGGG GGCTAGCTACAACGA GGAGACCA	13322
8139	UUCCUCAG G CCGUGAUG	4574	CATCACGG GGCTAGCTACAACGA CTGAGGAA	13323
8142	CUCAGGCC G UGAUGGGC	4575	GCCCATCA GGCTAGCTACAACGA GGCCTGAG	13324
8145	AGGCCGUG A UGGGUCU	4576	AGAGCCCA GGCTAGCTACAACGA CACGGCCT	13325
8149	CGUGAUGG G CUCUCAU	4577	ATGAAGAG GGCTAGCTACAACGA CCATCACG	13326
8156	GGCUCUUC A UACGGAUU	4578	AATCCGTA GGCTAGCTACAACGA GAAGAGCC	13327
8158	CUCUUCAU A CGGAUUCC	4579	GGAATCCG GGCTAGCTACAACGA ATGAAGAG	13328
8162	UCAUACGG A UUCCAGUA	4580	TACTGGAA GGCTAGCTACAACGA CCGTATGA	13329
8168	GGAUUCCA G UACUCUCC	4581	GGAGAGTA GGCTAGCTACAACGA TGGAATCC	13330
8170	AUUCCAGU A CUCUCCUG	4582	CAGGAGAG GGCTAGCTACAACGA ACTGGAAT	13331
8180	UCUCCUGG G CAGCGGGU	4583	ACCCGCTG GGCTAGCTACAACGA CCAGGAGA	13332
8183	CCUGGGCA G CGGGUUGA	4584	TCAACCCG GGCTAGCTACAACGA TGCCCAGG	13333
8187	GGCAGCGG G UUGAGUUC	4585	GAACCTAA GGCTAGCTACAACGA CCGCTGCC	13334
8192	CGGGUUGA G UUCCUGGU	4586	ACCAGGAA GGCTAGCTACAACGA TCAACCCG	13335
8199	AGUUCCUG G UGAAUGCC	4587	GGCATTCA GGCTAGCTACAACGA CAGGAAC	13336
8203	CCUGGGUG A UGCCUGGA	4588	TCCAGGCA GGCTAGCTACAACGA TCACCAGG	13337
8205	UGGUGAAU G CCUGGAAA	4589	TTTCCAGG GGCTAGCTACAACGA ATTACCCA	13338
8213	GCCUGGAA A UCAAAGAA	4590	TTCTTGA GGCTAGCTACAACGA TTCCAGGC	13339
8222	UCAAAGAA A UGCCUAU	4591	ATAGGGCA GGCTAGCTACAACGA TTCTTGA	13340
8224	AAAGAAA U CCCUAUGG	4592	CCATAGGG GGCTAGCTACAACGA ATTTCTTT	13341
8229	AAUGCCCU A UGGGCUUU	4593	AAAGCCCA GGCTAGCTACAACGA AGGGCATT	13342
8233	CCCUAUGG G CUUUGCAU	4594	ATGCAAAG GGCTAGCTACAACGA CCATAGGG	13343
8238	UGGGCUUU G CAUAUGAC	4595	GTCATATG GGCTAGCTACAACGA AAAGCCCA	13344
8240	GGCUUUGC A UAUGACAC	4596	GTGTCTATA GGCTAGCTACAACGA GCAAAGCC	13345
8242	CUUUGCAU A UGACACCC	4597	GGGTGTCA GGCTAGCTACAACGA ATGCAAAG	13346
8245	UGCAUAUG A CACCCGCU	4598	AGCGGGTG GGCTAGCTACAACGA CATATGCA	13347
8247	CAUAUGAC A CCCGCUGU	4599	ACAGCGGG GGCTAGCTACAACGA GTCATATG	13348
8251	UGACACCC G CUGUUUCG	4600	CGAAACAG GGCTAGCTACAACGA GGGTGTCA	13349
8254	CACCCGCU G UUUCGACU	4601	AGTCGAAA GGCTAGCTACAACGA AGCGGGTG	13350
8260	CUGUUUCG A CUCAACAG	4602	CTGTTGAG GGCTAGCTACAACGA CGAAACAG	13351
8265	UCGACUCA A CAGUCACC	4603	GGTGAUTG GGCTAGCTACAACGA TGAGTCGA	13352

8268	ACUCAACA G UCACCGAG	4604	CTCGGTGA GGCTAGCTACAACGA TGTTGAGT	13353
8271	CAACAGUC A CCGAGAGU	4605	ACTCTCGG GGCTAGCTACAACGA GACTGTTG	13354
8278	CACCGAGA G UGACAUCC	4606	GGATGTCA GGCTAGCTACAACGA TCTCGGTG	13355
8281	CGAGAGUG A CAUCCGUG	4607	CACGGATG GGCTAGCTACAACGA CACTCTCG	13356
8283	AGAGUGAC A UCCGUGUC	4608	GACACGGA GGCTAGCTACAACGA GTCACTCT	13357
8287	UGACAUCC G UGUCGAGG	4609	CCTCGACA GGCTAGCTACAACGA GGATGTCA	13358
8289	ACAUCCGU G UCGAGGGAG	4610	CTCCTCGA GGCTAGCTACAACGA ACGGATGT	13359
8297	GUCGAGGA G UCAAUUUA	4611	TAAATTGA GGCTAGCTACAACGA TCCTCGAC	13360
8301	AGGAGUCA A UUUACCAA	4612	TTGGTAAA GGCTAGCTACAACGA TGACTCCT	13361
8305	GUCAAUU A CCAAUGUU	4613	AACATTGG GGCTAGCTACAACGA AAATTGAC	13362
8309	AUUUACCA A UGUUGUGA	4614	TCACAACA GGCTAGCTACAACGA TGGTAAAT	13363
8311	UUACCAAU G UUGUGACU	4615	AGTCACAA GGCTAGCTACAACGA ATTGGTAA	13364
8314	CCAAUGUU G UGACUUGG	4616	CCAAGTCA GGCTAGCTACAACGA AACATTGG	13365
8317	AUGUJUGUG A CUUGGCC	4617	GGGCCAAG GGCTAGCTACAACGA CACAACAT	13366
8322	GUGACUUG G CCCCCGAA	4618	TTCGGGGG GGCTAGCTACAACGA CAAGTCAC	13367
8331	CCCCCGAA G CCAGACAG	4619	CTGTCTGG GGCTAGCTACAACGA TTGGGGGG	13368
8336	GAAGCCAG A CAGGCCAU	4620	ATGGCCTG GGCTAGCTACAACGA CTGGCTTC	13369
8340	CCAGACAG G CCAAUAGG	4621	CCTTATGG GGCTAGCTACAACGA CTGTCTGG	13370
8343	GACAGGCC A UAAGGUUG	4622	CGACCTTA GGCTAGCTACAACGA GGCCTGTC	13371
8348	GCCAUAAAG G UCGCUCAC	4623	GTGAGCGA GGCTAGCTACAACGA CTTATGGC	13372
8351	AUAAGGUC G CUCACAGA	4624	TCTGTGAG GGCTAGCTACAACGA GACCTTAT	13373
8355	GGUCGCUC A CAGAGCGG	4625	CCGCTCTG GGCTAGCTACAACGA GAGCGACC	13374
8360	CUCACAGA G CGGCCUUUA	4626	TAAAGCCG GGCTAGCTACAACGA TCTGTGAG	13375
8363	ACAGAGCG G CUUUUAU	4627	ATATAAAG GGCTAGCTACAACGA CGCTCTGT	13376
8368	GCGGCUUU A UAUCGGGG	4628	CCCCGATA GGCTAGCTACAACGA AAAGCCGC	13377
8370	GGCUUUUA A UCGGGGGU	4629	ACCCCCGA GGCTAGCTACAACGA ATAAAGCC	13378
8377	UAUCGGGG G UCCUCUGA	4630	TCAGAGGA GGCTAGCTACAACGA CCCCAGATA	13379
8385	GUCCUCUG A CUAAUUCA	4631	TGAATTAG CGCTAGCTACAACGA CAGAGGAC	13380
8389	UCUGACUA A UUAAAAG	4632	CTTTGAA GGCTAGCTACAACGA TAGTCAGA	13381
8399	UCAAAAGG G CAGAACUG	4633	CAGTTCTG GGCTAGCTACAACGA CCTTTTGA	13382
8404	AGGGCAGA A CUGCGGUU	4634	AACCGCAG GGCTAGCTACAACGA TCTGCCCT	13383
8407	GCAGAACU G CGGUUAUC	4635	GATAACCG GGCTAGCTACAACGA AGTTCTGC	13384
8410	GAACUGCG G UUAUCGCC	4636	GGCGATAA GGCTAGCTACAACGA CGCAGTTC	13385
8413	CUGCGGUU A UCGCCGGU	4637	ACCGGGCA GGCTAGCTACAACGA AACCGCAG	13386
8416	CGGUUAUC G CCGGUGCC	4638	GGCACCCG GGCTAGCTACAACGA GATAACCG	13387
8420	UAUCGCCG G UGCCGC	4639	GCGCGGCA GGCTAGCTACAACGA CGGCGATA	13388
8422	UCGCCGGU G CCGCGCGA	4640	TCGCGCGG GGCTAGCTACAACGA ACCGGCGA	13389
8425	CCGGUGCC G CGCGAGCG	4641	CGCTCGCG GGCTAGCTACAACGA GGCACCGG	13390
8427	GGUGCCGC G CGAGCGC	4642	GCCGCTCG GGCTAGCTACAACGA GCGGCACC	13391
8431	CCGCGCGA G CGGCGUGC	4643	GCACGCCG GGCTAGCTACAACGA TCGCGCGG	13392
8434	CGCGAGCG G CGUGCUGA	4644	TCAGCACG GGCTAGCTACAACGA CGCTCGCG	13393
8436	CGAGCGGC G UGCUGACG	4645	CGTCAGCA GGCTAGCTACAACGA GCCGCTCG	13394
8438	AGCGGCGU G CUGACGAC	4646	GTCGTCAG GGCTAGCTACAACGA ACGCCGCT	13395
8442	GCGUGCGUG A CGACCAGC	4647	GCTGGTCG GGCTAGCTACAACGA CAGCACGC	13396
8445	UGCUGACG A CCAGCUGU	4648	ACAGCTGG GGCTAGCTACAACGA CGTCAGCA	13397
8449	GACGACCA G CUGUGGUA	4649	TACCACAG GGCTAGCTACAACGA TGTCAGTC	13398
8452	GACCAGCU G UGGUAAA	4650	TATTACCA GGCTAGCTACAACGA AGCTGGTC	13399
8455	CAGCUGUG G UAAUACCC	4651	GGGTATTA GGCTAGCTACAACGA CACAGCTG	13400
8458	CUGUGGUA A UACCCUCA	4652	TGAGGGTA GGCTAGCTACAACGA TACCACAG	13401
8460	GUGGUAAU A CCCUCACA	4653	TGTGAGGG GGCTAGCTACAACGA ATTACCAAC	13402
8466	AUACCCUC A CAUGUUAC	4654	GTAACATG GGCTAGCTACAACGA GAGGGTAT	13403
8468	ACCCUCAC A UGUUACUU	4655	AAGTAACA GGCTAGCTACAACGA GTGAGGGT	13404
8470	CCUCACAU G UUACUUGA	4656	TCAAGTAA GGCTAGCTACAACGA ATGTGAGG	13405
8473	CACAUGUU A CUUGAAAG	4657	CTTCAAG GGCTAGCTACAACGA AACATGTG	13406
8481	ACUUGAAA G CCUCUGCG	4658	CGCAGAGG GGCTAGCTACAACGA TTTCAAGT	13407
8487	AAGCCUCU G CGGCCUGU	4659	ACAGGCCG GGCTAGCTACAACGA AGAGGCTT	13408

8490	CCUCUGCG G CCUGUCGA	4660	TCGACAGG GGCTAGCTACAACGA CGCAGAGG	13409
8494	UGCGGCCU G UCGAGCUG	4661	CAGCTCGA GGCTAGCTACAACGA AGGCCGCA	13410
8499	CCUGUCGA G CUGCGAAG	4662	CTTCGCAG GGCTAGCTACAACGA TCGACAGG	13411
8502	GUCGAGCU G CGAACGUC	4663	GAGCTTCG GGCTAGCTACAACGA AGCTCGAC	13412
8507	GCUGCGAA G CUCCAGGA	4664	TCCCTGGAG GGCTAGCTACAACGA TTCGCAGC	13413
8515	GCUCCGAG A CUGCACGA	4665	TCGTGCAG GGCTAGCTACAACGA CCTGGAGC	13414
8518	CCAGGACU G CACGAUGC	4666	GCATCGTG GGCTAGCTACAACGA AGTCCTGG	13415
8520	AGGACUGC A CGAUGCUC	4667	GAGCATCG GGCTAGCTACAACGA GCAGTCCT	13416
8523	ACUGCACG A UGCUCGUG	4668	CACGAGCA GGCTAGCTACAACGA CGTGCAGT	13417
8525	UGCACGAU G CUCGUGUG	4669	CACACGAG GGCTAGCTACAACGA ATCGTGCA	13418
8529	CGAUGCUC G UGUGUGGA	4670	TCCACACCA GGCTAGCTACAACGA GAGCATCG	13419
8531	AUGCUCGU G UGUGGAGA	4671	TCTCCACA GGCTAGCTACAACGA ACGAGCAT	13420
8533	GCUCGUGU G UGGAGACG	4672	CGTCTCCA GGCTAGCTACAACGA ACACGAGC	13421
8539	GUGUGGAG A CGACCUGG	4673	CCAGGTCG GGCTAGCTACAACGA CTCCACAC	13422
8542	UGGAGACG A CCUGGUCG	4674	CGACCAGG GGCTAGCTACAACGA CGTCTCCA	13423
8547	ACGACCUG G UCGUUAUC	4675	GATAACGA GGCTAGCTACAACGA CAGGTCGT	13424
8550	ACCUUGUC G UUAUCUGU	4676	ACAGATAA GGCTAGCTACAACGA GACCAGGT	13425
8553	UGGUUCGUU A UCUGUGAA	4677	TTCACAGA GGCTAGCTACAACGA AACGACCA	13426
8557	CGUUUAUCU G UGAAAGUG	4678	CACTTTCA GGCTAGCTACAACGA AGATAACG	13427
8563	CUGUGAAA G UGCGGGGA	4679	TCCCCGCA GGCTAGCTACAACGA TTTCACAG	13428
8565	GUGAAAGU G CGGGGACC	4680	GGTCCCCG GGCTAGCTACAACGA ACTTTCAC	13429
8571	GUGCAGGGG A CCCAAGAG	4681	CTCTTGGG GGCTAGCTACAACGA CCCCCGCAC	13430
8581	CCAAGAGG A CGCGGCAG	4682	TCGCCGCG GGCTAGCTACAACGA CCTCTTGG	13431
8583	AAGAGGAC G CGGCGAGC	4683	GCTCGCCG GGCTAGCTACAACGA GTCCCTCTT	13432
8586	AGGACGCG G CGAGCCUA	4684	TAGGCTCG GGCTAGCTACAACGA CGCGTCCT	13433
8590	CGCGGCAG A CCUACGAG	4685	CTCGTAGG GGCTAGCTACAACGA TCGCCGCG	13434
8594	GCGAGCCU A CGAGUCUU	4686	AAGACTCG GGCTAGCTACAACGA AGGCTCGC	13435
8598	GCCUACGA G UCUUCACG	4687	CGTGAAGA GGCTAGCTACAACGA TCGTAGGC	13436
8604	GAGUCUUC A CGGAGGCU	4688	AGCCTCCG GGCTAGCTACAACGA GAAGACTC	13437
8610	UCACGGAG G CUAUGACU	4689	AGTCATAG GGCTAGCTACAACGA CTCCGTGA	13438
8613	CGGAGGCCU A UGACUAGG	4690	CCTAGTCA GGCTAGCTACAACGA AGCCTCCG	13439
8616	AGGCUAUG A CUAGGUAC	4691	GTACCTAG GGCTAGCTACAACGA CATAGCCT	13440
8621	AUGACUAG G UACUCUGC	4692	GCAGAGTA GGCTAGCTACAACGA CTAGTCAT	13441
8623	GACUAGGU A CUCUGCCC	4693	GGGCAGAG GGCTAGCTACAACGA ACCTAGTC	13442
8628	GGUACUCU G CCCCCCCC	4694	GGGGGGGG GGCTAGCTACAACGA AGAGTACC	13443
8641	CCCCGGGG A CCCGCC	4695	GGGGCGGG GGCTAGCTACAACGA CCCCCGGGG	13444
8645	GGGGACCC G CCCCAACC	4696	GGTTGGGG GGCTAGCTACAACGA GGGTCCCC	13445
8651	CCGCCCCA A CCGGAAUA	4697	TATTCCGG GGCTAGCTACAACGA TGGGGCGG	13446
8657	CAACCGGA A UACGACUU	4698	AAGTCGTA GGCTAGCTACAACGA TCCGGTTG	13447
8659	ACCGGAAU A CGACUUGG	4699	CCAAGTCG GGCTAGCTACAACGA ATTCCGGT	13448
8662	GGAAUACG A CUUGGAGU	4700	ACTCCAAG GGCTAGCTACAACGA CGTATTCC	13449
8669	GACUUGGA G UUGAUAAAC	4701	GTTATCAA GGCTAGCTACAACGA TCCAAGTC	13450
8673	UGGAGUUG A UAACAUCA	4702	TGATGTTA GGCTAGCTACAACGA CAACTCCA	13451
8676	AGUUGAUA A CAUCAUGC	4703	GCATGATG GGCTAGCTACAACGA TATCAACT	13452
8678	UUGAUAAAC A UCAUGCUC	4704	GAGCATGA GGCTAGCTACAACGA GTTATCAA	13453
8681	AUAACAUCA U GCUCCUC	4705	GAGGAGCA GGCTAGCTACAACGA GATGTTAT	13454
8683	AACAUCAU G CUCCUCCA	4706	TGGAGGAG GGCTAGCTACAACGA ATGATGTT	13455
8692	CUCCUCCA A CGUAUCAG	4707	CTGATACG GGCTAGCTACAACGA TGGAGGAG	13456
8694	CCUCCAAC G UAUCAGUU	4708	AACTGATA GGCTAGCTACAACGA GTTGGAGG	13457
8696	UCCAACGU A UCAGUUGC	4709	GCAACTGA GGCTAGCTACAACGA ACGTTGGA	13458
8700	ACGUAUCA G UUGCACAC	4710	GTGTGCAA GGCTAGCTACAACGA TGATACGT	13459
8703	UAUCAGUU G CACACGAU	4711	ATCGTGTG GGCTAGCTACAACGA AACTGATA	13460
8705	UCAGUUGC A CACGAUGC	4712	GCATCGTG GGCTAGCTACAACGA GCAACTGA	13461
8707	AGUUGCAC A CGAUGCAU	4713	ATGCATCG GGCTAGCTACAACGA GTGCAACT	13462
8710	UGCACACG A UGCAUCUG	4714	CAGATGCA GGCTAGCTACAACGA CGTGTGCA	13463
8712	CACACGAU G CAUCUGGC	4715	GCCAGATG GGCTAGCTACAACGA ATCGTGTG	13464

8714	CACGAUGC A UCUGGCAA	4716	TTGCCAGA GGCTAGCTACAACGA GCATCGTG	13465
8719	UGCAUCUG G CAAAAGGG	4717	CCCTTTG GGCTAGCTACAACGA CAGATGCA	13466
8727	GCAAAAGG G UGUACUAC	4718	GTAGTACA GGCTAGCTACAACGA CCTTTGC	13467
8729	AAAAGGGU G UACUACCU	4719	AGGTAGTA GGCTAGCTACAACGA ACCCTTT	13468
8731	AAGGGUGU A CUACCUCA	4720	TGAGGTAG GGCTAGCTACAACGA ACACCCTT	13469
8734	GGUGUACU A CCUCACCC	4721	GGGTGAGG GGCTAGCTACAACGA AGTACACC	13470
8739	ACUACCUC A CCCGUGAC	4722	GTCACGGG GGCTAGCTACAACGA GAGGTAGT	13471
8743	CCUCACCC G UGACCCCA	4723	TGGGGTCA GGCTAGCTACAACGA GGGTGAGG	13472
8746	CACCCGUG A CCCCACCA	4724	TGGTGGGG GGCTAGCTACAACGA CACGGGTG	13473
8751	GUGACCCC A CCACCCCC	4725	GGGGGTGG GGCTAGCTACAACGA GGGGTAC	13474
8754	ACCCCACC A CCCCCCUU	4726	AAGGGGGG GGCTAGCTACAACGA GGTGGGGT	13475
8763	CCCCCCUU G CGCGGGCU	4727	AGCCCGCG GGCTAGCTACAACGA AAGGGGGG	13476
8765	CCCCUUGC G CGGGCUGC	4728	GCAGCCCG GGCTAGCTACAACGA GCAAGGGG	13477
8769	UUGCGCGG G CUGCGUGG	4729	CCACGCG AGCTAGCTACAACGA CCGCGCAA	13478
8772	CGCGGGCU G CGUGGGAG	4730	CTCCCCACG GGCTAGCTACAACGA AGCCCGCG	13479
8774	CGGGCUGC G UGGGAGAC	4731	GTCTCCCA GGCTAGCTACAACGA GCAGCCCG	13480
8781	CGUGGGAG A CAGCUAGA	4732	TCTAGCTG GGCTAGCTACAACGA CTCCCACG	13481
8784	GGGAGACA G CUAGAACG	4733	GCTTCTAG GGCTAGCTACAACGA TGTCTCCC	13482
8791	AGCUAGAA G CACUCCAG	4734	CTGGAGTG GGCTAGCTACAACGA TTCTAGCT	13483
8793	CUAGAACG A CUCCAGUC	4735	GACTGGAG GGCTAGCTACAACGA GCTTCTAG	13484
8799	GCACUCCA G UCAACUCC	4736	GGAGTTGA GGCTAGCTACAACGA TGGAGTGC	13485
8803	UCCAGUCA A CUCCUGGC	4737	GCCAGGAG GGCTAGCTACAACGA TGACTGGA	13486
8810	AACUCCUG G CUAGGCAA	4738	TTGCCTAG GGCTAGCTACAACGA CAGGAGTT	13487
8815	CUGGUCA G CAACAUCA	4739	TGATGTTG GGCTAGCTACAACGA CTAGCCAG	13488
8818	GCUAGGCA A CAUCAUCA	4740	TGATGATG GGCTAGCTACAACGA TGCCTAGC	13489
8820	UAGGCAAC A UCAUCAUG	4741	CATGATGA GGCTAGCTACAACGA GTTGCCTA	13490
8823	GCAACAUCA UCAUGUUU	4742	AAACATGA GGCTAGCTACAACGA GATGTTGC	13491
8826	ACAUCAUCA UGUUUGCA	4743	TGAAACACA GGCTAGCTACAACGA GATGATGT	13492
8828	AUCAUCAU G UUUGCACC	4744	GGTGCAAA GGCTAGCTACAACGA ATGATGAT	13493
8832	UCAUGUUU G CACCCACU	4745	AGTGGGTG GGCTAGCTACAACGA AAACATGA	13494
8834	AUGUUUGC A CCCACUCU	4746	AGAGTGGG GGCTAGCTACAACGA GCAAACAT	13495
8838	UUGCACCC A CUCUAUGG	4747	CCATAGAG GGCTAGCTACAACGA GGGTGCAA	13496
8843	CCCACUCU A UGGGUAG	4748	CTTACCCA GGCTAGCTACAACGA AGAGTGGG	13497
8847	CUCUAUGG G UAAGGAUG	4749	CATCCTTA GGCTAGCTACAACGA CCATAGAG	13498
8853	GGGUUAAGG A UGAUUCUG	4750	CAGAATCA GGCTAGCTACAACGA CCTTACCC	13499
8856	UAAGGAUG A UUCUGAUG	4751	CATCAGAA GGCTAGCTACAACGA CATCCTTA	13500
8862	UGAUUCUG A UGACUCAC	4752	GTGAGTCA GGCTAGCTACAACGA CAGAATCA	13501
8865	UUCUGAUG A CUCACUUC	4753	GAAGTGAG GGCTAGCTACAACGA CATCAGAA	13502
8869	GAUGACUC A CUUCUUCU	4754	AGAAGAAG GGCTAGCTACAACGA GAGTCATC	13503
8880	UCUUCUCC A UCCUUCUA	4755	TAGAAGGA GGCTAGCTACAACGA GGAGAAGA	13504
8889	UCCUUCUA G CCCAGGAG	4756	CTCCTGGG GGCTAGCTACAACGA TAGAAGGA	13505
8897	GCCCAGGA G CAACUUGA	4757	TCAAGTTG GGCTAGCTACAACGA TCCTGGC	13506
8900	CAGGAGCA A CUUGAGAA	4758	TTCTCAAG GGCTAGCTACAACGA TGCTCCTG	13507
8910	UUGAGAAA G CCCUAGAC	4759	GTCTAGGG GGCTAGCTACAACGA TTTCTCAA	13508
8917	AGCCCUAG A CUGCCAGA	4760	TCTGGCAG GGCTAGCTACAACGA CTAGGGCT	13509
8920	CCUAGACU G CCAGAUCA	4761	AGATCTGG GGCTAGCTACAACGA AGTCTAGG	13510
8925	ACUGCCAG A UCUACGGG	4762	CCCGTAGA GGCTAGCTACAACGA CTGGCAGT	13511
8929	CCAGAUCA U CGGGGCUU	4763	AAGCCCCG GGCTAGCTACAACGA AGATCTGG	13512
8934	UCUACGGG G CUUGUUAC	4764	GTAACAAAG GGCTAGCTACAACGA CCCGTAGA	13513
8938	CGGGGCUU G UUACUCCA	4765	TGGAGTAA GGCTAGCTACAACGA AAGCCCCG	13514
8941	GGCUUGUU A CUCCAUUG	4766	CAATGGAG GGCTAGCTACAACGA AACAAAGCC	13515
8946	GUUACUCC A UUGAGCCA	4767	TGGCTCAA GGCTAGCTACAACGA GGAGTAAC	13516
8951	UCCAUUGA G CCACUUGA	4768	TCAAGTGG GGCTAGCTACAACGA TCAATGGA	13517
8954	AUUGAGCC A CUUGACCU	4769	AGGTCAAG GGCTAGCTACAACGA GGCTCAAT	13518
8959	GCCACUUG A CCUACCUC	4770	GAGGTAGG GGCTAGCTACAACGA CAAGTGGC	13519
8963	CUUGACCU A CCUCAGAU	4771	ATCTGAGG GGCTAGCTACAACGA AGGTCAAG	13520

8970	UACCUCAG A UCAUUCAG	4772	CTGAATGA GGCTAGCTACAACGA CTGAGGTA	13521
8973	CUCAGAUC A UUCAGCGA	4773	TCGCTGAA GGCTAGCTACAACGA GATCTGAG	13522
8978	AUCAUUCA G CGACUCCA	4774	TGGAGTCG GGCTAGCTACAACGA TGAATGAT	13523
8981	AUUCAGCG A CUCCAUGG	4775	CCATGGAG GGCTAGCTACAACGA CGCTGAAT	13524
8986	GCGACUCC A UGGUCUUA	4776	TAAGACCA GGCTAGCTACAACGA GGAGTCGC	13525
8989	ACUCCAUG G UCUUAGCG	4777	CGCTAAGA GGCTAGCTACAACGA CATGGAGT	13526
8995	UGGUUUUA G CGCAUUUU	4778	AAAATGCG GGCTAGCTACAACGA TAAGACCA	13527
8997	GUCUUAGC G CAUUUUCA	4779	TGAAAATG GGCTAGCTACAACGA GCTAAGAC	13528
8999	CUUAGCGC A UUUUCACU	4780	AGTGAAAA GGCTAGCTACAACGA GCGCTAAG	13529
9005	GCAUUUUC A CUCCAUG	4781	CTATGGAG GGCTAGCTACAACGA GAAAATGC	13530
9010	UUCACUCC A UAGUUACU	4782	AGTAACTA GGCTAGCTACAACGA GGAGTGAA	13531
9013	ACUCCAUA G UUACUCCC	4783	GGGAGTAA GGCTAGCTACAACGA TATGGAGT	13532
9016	CCAUAGUU A CUCCCCAG	4784	CTGGGGAG GGCTAGCTACAACGA AACTATGG	13533
9025	CUCCCCAG G UGAAUCA	4785	TGATTTCA GGCTAGCTACAACGA CTGGGGAG	13534
9030	CAGGUGAA A UCAAUAGG	4786	CCTATTGA GGCTAGCTACAACGA TTCACCTG	13535
9034	UGAAAUCA A UAGGGUGG	4787	CCACCCCTA GGCTAGCTACAACGA TGATTTCA	13536
9039	UCAAUAGG G UGGCAUCA	4788	TGATGCCA GGCTAGCTACAACGA CCTATTGA	13537
9042	AUAGGGUG G CAUCAUGC	4789	GCATGATG GGCTAGCTACAACGA CACCCCTAT	13538
9044	AGGGUGGC A UCAUGCCU	4790	AGGCATGA GGCTAGCTACAACGA GCCACCCCT	13539
9047	GUGGCAUC A UGCCUCAG	4791	CTGAGGCA GGCTAGCTACAACGA GATGCCAC	13540
9049	GGCAUCAU G CCUCAGGA	4792	TCCTGAGG GGCTAGCTACAACGA ATGATGCC	13541
9059	CUCAGGAA A CUUGGGGU	4793	ACCCCAAG GGCTAGCTACAACGA TTCTTGAG	13542
9066	AACUUGGG G UACCACCC	4794	GGGTGGTA GGCTAGCTACAACGA CCCAAGTT	13543
9068	CUUGGGGU A CCACCCUU	4795	AAGGGTGG GGCTAGCTACAACGA ACCCCAAG	13544
9071	GGGUUACC A CCCUUGCG	4796	CGCAAGGG GGCTAGCTACAACGA GGTACCCC	13545
9077	CCACCCUU G CGAACCGU	4797	CAGGTTCG GGCTAGCTACAACGA AAGGGTGG	13546
9081	CCUUGCGA A CCUGGAGA	4798	TCTCCAGG GGCTAGCTACAACGA TCGCAAGG	13547
9089	ACCUGGAG A CAUCGGGC	4799	GCCCGATG GGCTAGCTACAACGA CTCCAGGT	13548
9091	CUGGAGAC A UCGGGCCA	4800	TGGCCCGA GGCTAGCTACAACGA GTCTCCAG	13549
9096	GACAUCGG G CCAGAAGU	4801	ACTTCTGG GGCTAGCTACAACGA CCGATGTC	13550
9103	GGCCAGAA G UGUUCGCG	4802	CGCGAACAA GGCTAGCTACAACGA TTCTGGCC	13551
9105	CCAGAACU G UUCGCGCU	4803	AGCGCGAA GGCTAGCTACAACGA ACTTCTGG	13552
9109	AAGUGUUC G CGCUAAGC	4804	GCTTAGCG GGCTAGCTACAACGA GAACACTT	13553
9111	GUGUUCGC G CUAAGCUA	4805	TAGCTTAG GGCTAGCTACAACGA GCGAACAC	13554
9116	CGCGCUAA G CUACUGUC	4806	GACAGTAG GGCTAGCTACAACGA TTAGCGCG	13555
9119	GCUAAGCU A CUGUCCCA	4807	TGGGACAG GGCTAGCTACAACGA AGCTTAGC	13556
9122	AAGCUACU G UCCCAGGG	4808	CCCTGGGA GGCTAGCTACAACGA AGTAGCTT	13557
9138	GGGGGAGG G CCGCCACC	4809	GGTGGCGG GGCTAGCTACAACGA CCTCCCCC	13558
9141	GGAGGGCC G CCACCUGU	4810	ACAGGTGG GGCTAGCTACAACGA GGCCCTCC	13559
9144	GGGCGGCC A CCUGUGGC	4811	GCCACAGG GGCTAGCTACAACGA GGCGGCC	13560
9148	CGCCACCU G UGGCAGGU	4812	ACCTGCCA GGCTAGCTACAACGA AGGTGGCG	13561
9151	CACCUGUG G CAGGUACC	4813	GGTACCTG GGCTAGCTACAACGA CACAGGTG	13562
9155	UGUGGCAG G UACCUUU	4814	AAGAGGTA GGCTAGCTACAACGA CTGCCACA	13563
9157	UGGCAGGU A CCUCUUCA	4815	TGAAGAGG GGCTAGCTACAACGA ACCTGCCA	13564
9166	CCUCUUCA A CUGGGCAG	4816	CTGCCAG GGCTAGCTACAACGA TGAAGAGG	13565
9171	UCAACUGG G CAGUAAAG	4817	CTTACTG GGCTAGCTACAACGA CCAGTTGA	13566
9174	ACUGGGCA G UAAAGACC	4818	GGTCTTTA GGCTAGCTACAACGA TGCCCAAGT	13567
9180	CAGUAAAG A CCAAACUC	4819	GAGTTTGG GGCTAGCTACAACGA CTTTACTG	13568
9185	AAGACCAA A CUCAAACU	4820	AGTTTGAG GGCTAGCTACAACGA TTGGTCTT	13569
9191	AAACUCAA A CUCACUCC	4821	GGAGTGAG GGCTAGCTACAACGA TTGAGTTT	13570
9195	UCAAACUC A CUCAAUC	4822	GATTGGAG GGCTAGCTACAACGA GAGTTTGA	13571
9201	UCACUCCA A UCCCAGCU	4823	AGCTGGGA GGCTAGCTACAACGA TGGAGTGA	13572
9207	CAAUCCCA G CUGCGUCU	4824	AGACGCAG GGCTAGCTACAACGA TGGGATTG	13573
9210	UCCCAGCU G CGUCUCAG	4825	CTGAGACG GGCTAGCTACAACGA AGCTGGGA	13574
9212	CCAGCUGC G UCUCAGUU	4826	AACTGAGA GGCTAGCTACAACGA GCAGCTGG	13575
9218	GCGUCUCA G UUGGACUU	4827	AAGTCCAA GGCTAGCTACAACGA TGAGACGC	13576

9223	UCAGUUGG A CUUGUCCA	4828	TGGACAAG GGCTAGCTACAAACGA CCAACTGA	13577
9227	UUGGACUU G UCCAACUG	4829	CAGTTGGA GGCTAGCTACAAACGA AAGTCCAA	13578
9232	CUUGUCCA A CUGGUUCG	4830	CGAACCCAG GGCTAGCTACAAACGA TGGACAAG	13579
9236	UCCAACUG G UUCGUUGC	4831	GCAACGAA GGCTAGCTACAAACGA CAGTTGGA	13580
9240	ACUGGUUC G UUGCUGGC	4832	GCCAGCAA GGCTAGCTACAAACGA GAACCAGT	13581
9243	GGUUCGUU G CUGGUAC	4833	GTAGCCAG GGCTAGCTACAAACGA AACGAACC	13582
9247	CGUUGCUG G CUACAGCG	4834	CGCTGTAG GGCTAGCTACAAACGA CAGCAACG	13583
9250	UGCUGGCCU A CAGCGGGG	4835	CCCCGCTG GGCTAGCTACAAACGA AGCCAGCA	13584
9253	UGGUUACA G CGGGGGAG	4836	CTCCCCCG GGCTAGCTACAAACGA TGTAGCCA	13585
9262	CGGGGGAG A CGUGUAUC	4837	GATACACG GGCTAGCTACAAACGA CTCCCCCG	13586
9264	GGGGAGAC G UGUUAUCAC	4838	GTGATACA GGCTAGCTACAAACGA GTCTCCCC	13587
9266	GGAGACGU G UAUACACAG	4839	CTGTGATA GGCTAGCTACAAACGA ACGTCTCC	13588
9268	AGACGUGU A UCACAGCC	4840	GGCTGTGA GGCTAGCTACAAACGA ACACGTCT	13589
9271	CGUGUAUC A CAGCCUGU	4841	ACAGGCTG GGCTAGCTACAAACGA GATACACG	13590
9274	GUAVACACA G CCUGUCUC	4842	GAGACAGG GGCTAGCTACAAACGA TGTGATAC	13591
9278	CACAGCCU G UCUCGUGC	4843	GCACGAGA GGCTAGCTACAAACGA AGGCTGTG	13592
9283	CCUGUCUC G UGCCCCGAC	4844	GTCGGGCA GGCTAGCTACAAACGA GAGACAGG	13593
9285	UGUCUCGU G CCCGACCC	4845	GGGTCGGG GGCTAGCTACAAACGA ACGAGACA	13594
9290	CGUGCCCG A CCCCACUG	4846	CAGCGGGG GGCTAGCTACAAACGA CGGGCACG	13595
9295	CCGACCCCC G CUGGUUCA	4847	TGAACCAG GGCTAGCTACAAACGA GGGGTCGG	13596
9299	CCCCCGUG G UUCAUGCU	4848	AGCATGAA GGCTAGCTACAAACGA CAGCGGGG	13597
9303	GCUGGUUC A UGCUUUGC	4849	GCAAAGCA GGCTAGCTACAAACGA GAACCAGC	13598
9305	UGGUUCAU G CUUUGCCU	4850	AGGCAAAG GGCTAGCTACAAACGA ATGAACCA	13599
9310	CAUGCUUU G CCUACUCC	4851	GGAGTAGG GGCTAGCTACAAACGA AAAGCATG	13600
9314	CUUUGCCU A CUCCUACU	4852	AGTAGGAG GGCTAGCTACAAACGA AGGCAAAG	13601
9320	CUACUCCU A CUCUCCGU	4853	ACGGAGAG GGCTAGCTACAAACGA AGGAGTAG	13602
9327	UACUCUCC G UAGGGGUA	4854	TACCCCTA GGCTAGCTACAAACGA GGAGAGTA	13603
9333	CCGUAGGG G UAGGCAUC	4855	GATGCCTA GGCTAGCTACAAACGA CCCTACGG	13604
9337	AGGGGUAG G CAUCUACC	4856	GGTAGATG GGCTAGCTACAAACGA CTACCCCT	13605
9339	GGGUAGGC A UCUACCUG	4857	CAGGTAGA GGCTAGCTACAAACGA GCCTACCC	13606
9343	AGGCAUCU A CCUGCUCC	4858	GGAGCAGG GGCTAGCTACAAACGA AGATGCCT	13607
9347	AUCUACCU G CUCCCCAA	4859	TTGGGGAG GGCTAGCTACAAACGA AGGTAGAT	13608
9355	GCUCCCCA A CCGAUGAA	4860	TTCATCGG GGCTAGCTACAAACGA TGGGGAGC	13609
9359	CCCAACCG A UGAACAGG	4861	CCTGTTCA GGCTAGCTACAAACGA CGGTTGGG	13610
9363	ACCGAUGA A CAGGGAGC	4862	GCTCCCTG GGCTAGCTACAAACGA TCATCGGT	13611
9370	AACAGGG A CUAAACAC	4863	GTGTTTAG GGCTAGCTACAAACGA TCCCTGTT	13612
9375	GGAGCUAA A CACUCCAG	4864	CTGGAGTG GGCTAGCTACAAACGA TTAGCTCC	13613
9377	AGCUAAAC A CUCCAGGC	4865	GCCTGGAG GGCTAGCTACAAACGA GTTTAGCT	13614
9384	CACUCCAG G CCAAUAGG	4866	CCTATTGG GGCTAGCTACAAACGA CTGGAGTG	13615
9388	CCAGGCCA A UAGGCCAU	4867	ATGGCCTA GGCTAGCTACAAACGA TGGCCTGG	13616
9392	GCCAAUAG G CCAUCCCG	4868	CGGGATGG GGCTAGCTACAAACGA CTATTGGC	13617
9395	AAUAGGCC A UCCCGUUU	4869	AAACGGGA GGCTAGCTACAAACGA GGCCTATT	13618
9400	GCCAUCCC G UUUUUUUU	4870	AAAAAAA GGCTAGCTACAAACGA GGGATGGC	13619

Input Sequence = HPCK1S1. Cut Site = R/Y

Arm Length = 8. Core Sequence = GGCTAGCTACAAACGA

HPCK1S1 Hepatitis C virus (strain HCV-1b, clone HCV-K1-S1), complete genome; acc# gi|1030702|dbj|D50483.1; 9410 nt

Table XIX: HCV minus strand DNAzyme and Substrate Sequence

Pos	Substrate	SeqID	DNAzyme	SeqID
9413	AAAAAAA A CGGGAUGG	4871	CCATCCCC GGCTAGCTACAACGA TTTTTTTT	13620
9408	AAAACGGG A UGGCCUAU	4872	ATAGGCCA GGCTAGCTACAACGA CCCGTTTT	13621
9405	ACGGGAUG G CCUAUUUGG	4873	CCAATAGG GGCTAGCTACAACGA CATCCCGT	13622
9401	GAUGGCCU A UUGGCCUG	4874	CAGGCCAA GGCTAGCTACAACGA AGGCCATC	13623
9397	GCCUAUUG G CCUGGGAGU	4875	ACTCCAGG GGCTAGCTACAACGA CAATAGGC	13624
9390	GGCCUGGA G UGUUUUAGC	4876	GCTAAACA GGCTAGCTACAACGA TCCAGGCC	13625
9388	CCUGGAGU G UUUAGCUC	4877	GAGCTAAA GGCTAGCTACAACGA ACTCCAGG	13626
9383	AGUGUUUA G CUCCCUGU	4878	ACAGGGAG GGCTAGCTACAACGA TAAACACT	13627
9376	AGCUCCCCU G UUCAUCGG	4879	CCGATGAA GGCTAGCTACAACGA AGGGAGCT	13628
9372	CCCUGUUC A UCUGGUUGG	4880	CCAACCGA GGCTAGCTACAACGA GAACAGGG	13629
9368	GUUCAUCG G UUGGGGAG	4881	CTCCCCAA GGCTAGCTACAACGA CGATGAAC	13630
9360	GUUGGGGA G CAGGUAGA	4882	TCTACCTG GGCTAGCTACAACGA TCCCCAAC	13631
9356	GGGAGCAG G UAGAUGCC	4883	GGCATCTA GGCTAGCTACAACGA CTGCTCCC	13632
9352	GCAGGUAG A UGCCUACCC	4884	GGTAGGCA GGCTAGCTACAACGA CTACCTGC	13633
9350	AGGUAGAU G CCUACCCC	4885	GGGGTAGG GGCTAGCTACAACGA ATCTACCT	13634
9346	AGAUGCCU A CCCCUACG	4886	CGTAGGGG GGCTAGCTACAACGA AGGCATCT	13635
9340	CUACCCCU A CGGAGAGU	4887	ACTCTCCG GGCTAGCTACAACGA AGGGGTAG	13636
9333	UACGGAGA G UAGGAGUA	4888	TACTCCTA GGCTAGCTACAACGA TCTCCGTA	13637
9327	GAGUAGGA G UAGGCAAA	4889	TTTGCCTA GGCTAGCTACAACGA TCCTACTC	13638
9323	AGGAGUAG G CAAAGCAU	4890	ATGCTTTG GGCTAGCTACAACGA CTACTCCT	13639
9318	UAGGCAAA G CAUGAACC	4891	GGTTCATG GGCTAGCTACAACGA TTTGCCTA	13640
9316	GGCAAAGC A UGAACCAG	4892	CTGGTTCA GGCTAGCTACAACGA GCTTTGCC	13641
9312	AAGCAUGA A CCAGCGGG	4893	CCCGCTGG GGCTAGCTACAACGA TCATGCTT	13642
9308	AUGAACCA G CGGGGUCG	4894	CGACCCCG GGCTAGCTACAACGA TGGTTCAT	13643
9303	CCAGCGGG G UCGGGCAC	4895	GTGCCCCA GGCTAGCTACAACGA CCCGCTGG	13644
9298	GGGGUCGG G CACGAGAC	4896	GTCTCGTG GGCTAGCTACAACGA CCGACCCC	13645
9296	GGUCGGGC A CGAGACAG	4897	CTGTCTCG GGCTAGCTACAACGA GCCCAGCC	13646
9291	GGCACGAG A CAGGCUGU	4898	ACAGCCTG GGCTAGCTACAACGA CTCGTGCC	13647
9287	CGAGACAG G CUGUGAU	4899	TATCACAG GGCTAGCTACAACGA CTGTCTCG	13648
9284	GACAGGCU G UGAUACAC	4900	GTGTATCA GGCTAGCTACAACGA AGCCTGTC	13649
9281	AGGCUGUG A UACACGUC	4901	GACGTGTA GGCTAGCTACAACGA CACAGCCT	13650
9279	GCUGUGAU A CACGUCUC	4902	GAGACGTG GGCTAGCTACAACGA ATCACAGC	13651
9277	UGUGAUAC A CGUCUCCC	4903	GGGAGACG GGCTAGCTACAACGA GTATCACA	13652
9275	UGAUACAC G UCUCCCCC	4904	GGGGGAGA GGCTAGCTACAACGA GTGTATCA	13653
9266	UCUCCCC G CUGUAGCC	4905	GGCTACAG GGCTAGCTACAACGA GGGGGAGA	13654
9263	CCCCCGCU G UAGCCAGC	4906	GCTGGCTA GGCTAGCTACAACGA AGCGGGGG	13655
9260	CCGCGUUA G CCAGCAAC	4907	GTTGCTGG GGCTAGCTACAACGA TACAGCGG	13656
9256	UGUAGCCA G CAACGAAC	4908	GTTCGTTG GGCTAGCTACAACGA TGGCTACA	13657
9253	AGCCAGCA A CGAACCCAG	4909	CTGGTTCG GGCTAGCTACAACGA TGCTGGCT	13658
9249	AGCAACGA A CCAGUUGG	4910	CCAACTGG GGCTACCTACAACGA TCGTTGCT	13659
9245	ACGAACCA G UUGGACAA	4911	TTGTCCAA GGCTAGCTACAACGA TGGTCGTT	13660
9240	CCAGUUGG A CAAGUCCA	4912	TGGACTTG GGCTAGCTACAACGA CCAACTGG	13661
9236	UUGGACAA G UCCAACUG	4913	CAGTTGGA GGCTAGCTACAACGA TTGTCCAA	13662
9231	CAAGUCCA A CUGAGACG	4914	CGTCTCAG GGCTAGCTACAACGA TGGACTTG	13663
9225	CAACUGAG A CGCAGCUG	4915	CAGCTGGC GGCTAGCTACAACGA CTCAGTTG	13664
9223	ACUGAGAC G CAGCUGGG	4916	CCCAGCTG GGCTAGCTACAACGA GTCTCAGT	13665
9220	GAGACGCA G CUGGGAUU	4917	AATCCCGA GGCTAGCTACAACGA TGCGTCTC	13666
9214	CAGCUGGG A UUGGAGUG	4918	CACTCCAA GGCTAGCTACAACGA CCCAGCTG	13667
9208	GGAUUGGA G UGAGUUUG	4919	CAAACCTA GGCTAGCTACAACGA TCCAATCC	13668
9204	UGGAGUGA G UUUGAGUU	4920	AACTCAAA GGCTAGCTACAACGA TCACTCCA	13669
9198	GAGUUUGA G UUUGGUCU	4921	AGACCAAA GGCTAGCTACAACGA TCAAACTC	13670

9193	UGAGUUUG G UCUUUACU	4922	AGTAAAGA GGCTAGCTACAACGA CAAACTCA	13671
9187	UGGUUUU A CUGCCCAG	4923	CTGGGCAG GGCTAGCTACAACGA AAAGACCA	13672
9184	UCUUUACU G CCCAGUUG	4924	CAACTGGG GGCTAGCTACAACGA AGTAAAGA	13673
9179	ACUGCCCCA G UUGAAGAG	4925	CTCTTCAA GGCTAGCTACAACGA TGGGCAGT	13674
9170	UUGAAGAG G UACCUGCC	4926	GGCAGGTA GGCTAGCTACAACGA CTCTTCAA	13675
9168	GAAGAGGU A CCUGCCAC	4927	GTGGCAGG GGCTAGCTACAACGA ACCTCTTC	13676
9164	AGGUACCU G CCACAGGU	4928	ACCTGTGG GGCTAGCTACAACGA AGGTACCT	13677
9161	UACCUGCC A CAGGUGGC	4929	GCCACCTG GGCTAGCTACAACGA GGCAGGTA	13678
9157	UGCCACAG G UGGCGGCC	4930	GGCCGCCA GGCTAGCTACAACGA CTGTGGCA	13679
9154	CACAGGUG G CGGCCUC	4931	GAGGGCCG GGCTAGCTACAACGA CACCTGTG	13680
9151	AGGUGGCG G CCCUCCCC	4932	GGGGAGGG GGCTAGCTACAACGA CGCCACCT	13681
9135	CCCCUGGG A CAGUAGCU	4933	AGCTACTG GGCTAGCTACAACGA CCCAGGGG	13682
9132	CUGGGACA G UAGCUUAG	4934	CTAAGCTA GGCTAGCTACAACGA TGTCCCAG	13683
9129	GGACAGUA G CUUAGCGC	4935	GCGCTAAG GGCTAGCTACAACGA TACTGTCC	13684
9124	GUAGCUUA G CGCGAAC	4936	TGTTCGCG GGCTAGCTACAACGA TAAGCTAC	13685
9122	AGCUUAGC G CGAACACU	4937	AGTGTTCG GGCTAGCTACAACGA GCTAAGCT	13686
9118	UAGCGCGA A CACUUCUG	4938	CAGAAGTG GGCTAGCTACAACGA TCGCGCTA	13687
9116	GCGCGAAC A CUUCUGGC	4939	GCCAGAAG GGCTAGCTACAACGA GTTCGCGC	13688
9109	CACUUCUG G CCCGAUGU	4940	ACATCGGG GGCTAGCTACAACGA CAGAAGTG	13689
9104	CUGGCCCG A UGUCUCCA	4941	TGGAGACA GGCTAGCTACAACGA CGGGCCAG	13690
9102	GGCCCGAU G UCUCAGG	4942	CCTGGAGA GGCTAGCTACAACGA ATCGGGCC	13691
9094	GUCUCCAG G UUCGCAAG	4943	CTTGCAGA GGCTAGCTACAACGA CTGGAGAC	13692
9090	CCAGGUUC G CAAGGGUG	4944	CACCCCTG GGCTAGCTACAACGA GAACCTGG	13693
9084	UCGCAAGG G UGGUACCC	4945	GGGTACCA GGCTAGCTACAACGA CCTTGCAGA	13694
9081	CAAGGGUG G UACCCCAA	4946	TTGGGGTA GGCTAGCTACAACGA CACCCCTG	13695
9079	AGGGUGGU A CCCCAAGU	4947	ACTTGGGG GGCTAGCTACAACGA ACCACCC	13696
9072	UACCCCAA G UUUCUGA	4948	TCAGGAAA GGCTAGCTACAACGA TTGGGGTA	13697
9062	UUCUGAG G CAUGAUGC	4949	GCATCATG GGCTAGCTACAACGA CTCAGGAA	13698
9060	CCUGAGGC A UGAUGCCA	4950	TGGCATCA GGCTAGCTACAACGA GCCTCAGG	13699
9057	GAGGCAUG A UGCCACCC	4951	GGGTGGCA GGCTAGCTACAACGA CATGCCTC	13700
9055	GGCAUGAU G CCACCCUA	4952	TAGGGTGG GGCTAGCTACAACGA ATCATGCC	13701
9052	AUGAUGCC A CCCUAUUG	4953	CAATAGGG GGCTAGCTACAACGA GGCATCAT	13702
9047	GCCACCCU A UUGAUUUC	4954	GAAATCAA GGCTAGCTACAACGA AGGGTGGC	13703
9043	CCCUAUUG A UUUCACCU	4955	AGGTGAAA GGCTAGCTACAACGA CAATAGGG	13704
9038	UUGAUUUC A CCUGGGGA	4956	TCCCCAGG GGCTAGCTACAACGA GAAATCAA	13705
9029	CCUGGGGA G UAACUAUG	4957	CATAGTTA GGCTAGCTACAACGA TCCCCAGG	13706
9026	GGGGAGUA A CUAUGGAG	4958	CTCCATAG GGCTAGCTACAACGA TACTCCCC	13707
9023	GAGUAACU A UGGAGUGA	4959	TCACTCCA GGCTAGCTACAACGA AGTTACTC	13708
9018	ACUAUGGA G UGAAAAUG	4960	CATTTTCA GGCTAGCTACAACGA TCCATAGT	13709
9012	GAGUGAAA A UGCGCUAA	4961	TTAGCGCA GGCTAGCTACAACGA TTTCACTC	13710
9010	GUGAAAAU G CGCUAAGA	4962	TCTTAGCG GGCTAGCTACAACGA ATTTTCAC	13711
9008	GAAAAUGC G CUAAGACC	4963	GGTCTTAG GGCTAGCTACAACGA GCATTTTC	13712
9002	GCGCUAAG A CCAUGGAG	4964	CTCCATGG GGCTAGCTACAACGA CTTAGCGC	13713
8999	CUAAGACC A UGGAGUCG	4965	CGACTCCA GGCTAGCTACAACGA GGTCTTAG	13714
8994	ACCAUGGA G UCGCUGAA	4966	TTCAGCGA GGCTAGCTACAACGA TCCATGGT	13715
8991	AUGGAGUC G CUGAAUGA	4967	TCATTCA GGCTAGCTACAACGA GACTCCAT	13716
8986	GUCCUGA A UGAUCUGA	4968	TCAGATCA GGCTAGCTACAACGA TCAGCGAC	13717
8983	GCUGAAUG A UCUGAGGU	4969	ACCTCAGA GGCTAGCTACAACGA CATTCA	13718
8976	GAUCUGAG G UAGGUCAA	4970	TTGACCTA GGCTAGCTACAACGA CTCAGATC	13719
8972	UGAGGUAG G UCAAGUGG	4971	CCACTTGA GGCTAGCTACAACGA CTACCTCA	13720
8967	UAGGUCAA G UGGCUCAA	4972	TTGAGCCA GGCTAGCTACAACGA TTGACCTA	13721
8964	GUCAAGUG G CUCAAUUG	4973	CCATTGAG GGCTAGCTACAACGA CACTTGAC	13722
8959	GUGGUCA A UGGAGUAA	4974	TTACTCCA GGCTAGCTACAACGA TGAGCCAC	13723
8954	UCAAUGGA G UAACAAGC	4975	GCTTGTGA GGCTAGCTACAACGA TCCATTGA	13724
8951	AUGGAGUA A CAAGCCCC	4976	GGGGCTTG GGCTAGCTACAACGA TACTCCAT	13725
8947	AGUAACAA G CCCCGUAG	4977	CTACGGGG GGCTAGCTACAACGA TTGTTACT	13726

8942	CAAGCCCC G UAGAUCUG	4978	CAGATCTA GGCTAGCTACAACGA GGGGCTTG	13727
8938	CCCCGUAG A UCUGGCAG	4979	CTGCCAGA GGCTAGCTACAACGA CTACGGGG	13728
8933	UAGAUCUG G CAGUCUAG	4980	CTAGACTG GGCTAGCTACAACGA CAGATCTA	13729
8930	AUCUGGCA G UCUAGGGC	4981	GCCCTAGA GGCTAGCTACAACGA TGCCAGAT	13730
8923	AGUCUAGG G CUUUCUCA	4982	TGAGAAAG GGCTAGCTACAACGA CCTAGACT	13731
8913	UUUCUCAA G UUGCUCU	4983	AGGAGCAA GGCTAGCTACAACGA TTGAGAAA	13732
8910	CUCAAGUU G CUCCUGGG	4984	CCCAGGAG GGCTAGCTACAACGA AACTTGAG	13733
8902	GCUCCUGG G CUAGAAGG	4985	CCTTCTAG GGCTAGCTACAACGA CCAGGAGC	13734
8893	CUAGAAGG A UGGAGAAG	4986	CTTCTCCA GGCTAGCTACAACGA CCTTCTAG	13735
8882	GAGAAGAA G UGAGUCAU	4987	ATGACTCA GGCTAGCTACAACGA TTCTTCTC	13736
8878	AGAAGUGA G UCAUCAGA	4988	TCTGATGA GGCTAGCTACAACGA TCACTTCT	13737
8875	AGUGAGUC A UCAGAAC	4989	GATTCTGA GGCTAGCTACAACGA GACTCACT	13738
8869	UCAUCAGA A UCAUCCUU	4990	AAGGATGA GGCTAGCTACAACGA TCTGATGA	13739
8866	UCAGAAUC A UCCUUACC	4991	GGTAAGGA GGCTAGCTACAACGA GATTCTGA	13740
8860	UCAUCCUU A CCCAUAGA	4992	TCTATGGG GGCTAGCTACAACGA AAGGATGA	13741
8856	CCUUAACC A UAGAGUGG	4993	CCACTCTA GGCTAGCTACAACGA GGGTAAGG	13742
8851	CCCAUAGA G UGGGUGCA	4994	TGCACCCA GGCTAGCTACAACGA TCTATGGG	13743
8847	UAGAGUGG G UGCAAACA	4995	TGTTTGCA GGCTAGCTACAACGA CCACTCTA	13744
8845	GAGUGGGU G CAAACAUG	4996	CATGTTTG GGCTAGCTACAACGA ACCCACTC	13745
8841	GGGUGCAA A CAUGAUGA	4997	TCATCATG GGCTAGCTACAACGA TTGCACCC	13746
8839	GUGCAAAC A UGAUGAUG	4998	CATCATCA GGCTAGCTACAACGA GTTTGCAC	13747
8836	CAAAC AUG A UGAUGUUG	4999	CAACATCA GGCTAGCTACAACGA CATGTTTG	13748
8833	ACAUGAUG A UGUUGGCCU	5000	AGGCAACA GGCTAGCTACAACGA CATCATGT	13749
8831	AUGAUGAU G UUGCCUAG	5001	CTAGGCAA GGCTAGCTACAACGA ATCATCAT	13750
8828	AUGAUGUU G CCUAGCCA	5002	TGGCTAGG GGCTAGCTACAACGA AACATCAT	13751
8823	GUUGCCUA G CCAGGAGU	5003	ACTCCTGG GGCTAGCTACAACGA TAGGCAAC	13752
8816	AGCCAGGA G UUGACUGG	5004	CCAGTCAA GGCTAGCTACAACGA TCCTGGCT	13753
8812	AGGAGUUG A CUGGAGUG	5005	CACTCCAG GGCTAGCTACAACGA CAACTCCT	13754
8806	UGACUGGA G UGCUUCUA	5006	TAGAAGCA GGCTAGCTACAACGA TCCAGTCA	13755
8804	ACUGGAGU G CUUCUAGC	5007	GCTAGAAG GGCTAGCTACAACGA ACTCCAGT	13756
8797	UGCUUCUA G CUGUCUCC	5008	GGAGACAG GGCTAGCTACAACGA TAGAAGCA	13757
8794	UUUCUAGCU G UCUCCCAC	5009	GTGGGAGA GGCTAGCTACAACGA AGCTAGAA	13758
8787	UGUCUCCC A CGCAGCCC	5010	GGGCTGCG GGCTAGCTACAACGA GGGAGACA	13759
8785	UCUCCCAC G CAGCCCCG	5011	GGGGGCTG GGCTAGCTACAACGA GTGGGAGA	13760
8782	CCCACGCA G CCCCGCGA	5012	TGGCGGGG GGCTAGCTACAACGA TCGTGGG	13761
8778	CGCAGCCC G CGCAAGGG	5013	CCCTTGCG GGCTAGCTACAACGA GGGCTGCG	13762
8776	CAGCCCGC G CAAGGGGG	5014	CCCCCTTG GGCTAGCTACAACGA GCGGGCTG	13763
8767	CAAGGGGG G UGGUGGGG	5015	CCCCACCA GGCTAGCTACAACGA CCCCCCTG	13764
8764	GGGGGGUG G UGGGGUCA	5016	TGACCCCA GGCTAGCTACAACGA CACCCCCC	13765
8759	GUGGUGGG G UCACGGGU	5017	ACCCGTGA GGCTAGCTACAACGA CCCACCAC	13766
8756	GUGGGGUC A CGGGUGAG	5018	CTCACCCG GGCTAGCTACAACGA GACCCCCAC	13767
8752	GGUCACGG G UGAGGUAG	5019	CTACCTCA GGCTAGCTACAACGA CCGTGACC	13768
8747	CGGGUGAG G UAGUACAC	5020	GTGTACTA GGCTAGCTACAACGA CTCACCCG	13769
8744	GUGAGGUA G UACACCCU	5021	AGGGGTGA GGCTAGCTACAACGA TACCTCAC	13770
8742	GAGGUAGU A CACCCUUU	5022	AAAGGGTG GGCTAGCTACAACGA ACTACCTC	13771
8740	GGUAGUAC A CCCUUUUG	5023	AAAAAGGG GGCTAGCTACAACGA GTACTACC	13772
8732	ACCCUUUU G CCAGAUGC	5024	GCATCTGG GGCTAGCTACAACGA AAAAGGGT	13773
8727	UUUGCCAG A UGCAUCGU	5025	ACGATGCA GGCTAGCTACAACGA CTGGCAAA	13774
8725	UGCCAGAU G CAUCGUGU	5026	ACACGATG GGCTAGCTACAACGA ATCTGGCA	13775
8723	CCAGAUGC A UCGUGUGC	5027	GCACACGA GGCTAGCTACAACGA GCATCTGG	13776
8720	GAUGCAUC G UGUGCAAC	5028	GTTGCACA GGCTAGCTACAACGA GATGCATC	13777
8718	UGCAUCGU G UGCAACUG	5029	CAGTTGCA GGCTAGCTACAACGA ACGATGCA	13778
8716	CAUCGUGU G CAACUGAU	5030	ATCAGTTG GGCTAGCTACAACGA ACACGATG	13779
8713	CGUGUGCA A CUGAUACG	5031	CGTATCAG GGCTAGCTACAACGA TGCACACG	13780
8709	UGAACACUG A UACGUUGG	5032	CCAACGTA GGCTAGCTACAACGA CAGTTGCA	13781
8707	CAACUGAU A CGUUGGAG	5033	CTCCAACG GGCTAGCTACAACGA ATCAGTTG	13782

8705	ACUGAUAC G UUGGAGGA	5034	TCCTCCAA GGCTAGCTACAACGA GTATCAGT	13783
8696	UUGGAGGA G CAUGAUGU	5035	ACATCATG GGCTAGCTACAACGA TCCTCCAA	13784
8694	GGAGGAGC A UGAUGUUA	5036	TAACATCA GGCTAGCTACAACGA GCTCCTCC	13785
8691	GGAGCAUG A UGUUAUCA	5037	TGATAACA GGCTAGCTACAACGA CATGCTCC	13786
8689	AGCAUGAU G UUAUCAAC	5038	GTTGATAA GGCTAGCTACAACGA ATCATGCT	13787
8686	AUGAUGUU A UCAACUCC	5039	GGAGTTGA GGCTAGCTACAACGA AACATCAT	13788
8682	UGUUAUCA A CUCCAAGU	5040	ACTTGGAG GGCTAGCTACAACGA TGATAACA	13789
8675	AACUCCAA G UCGUAUUC	5041	GAATACGA GGCTAGCTACAACGA TTGGAGTT	13790
8672	UCCAAGUC G UAUUCCGG	5042	CCGGAATA GGCTAGCTACAACGA GACTTGGA	13791
8670	CAAGUCGU A UUCCGGUU	5043	AACCGGAA GGCTAGCTACAACGA ACGACTTG	13792
8664	GUAUUCCG G UUGGGGGCG	5044	CGCCCCAA GGCTAGCTACAACGA CGGAATAC	13793
8658	CGGUUGGG G CGGGUCCC	5045	GGGACCCG GGCTAGCTACAACGA CCCAACCG	13794
8654	UGGGGCGG G UCCCCGGG	5046	CCCGGGGA GGCTAGCTACAACGA CCGCCCCA	13795
8641	CGGGGGGG G CAGAGUAC	5047	GTACTCTG GGCTAGCTACAACGA CCCCCCCG	13796
8636	GGGGCAGA G UACCUAGU	5048	ACTAGGTA GGCTAGCTACAACGA TCTGCC	13797
8634	GGCAGAGU A CCUAGUCA	5049	TGACTAGG GGCTAGCTACAACGA ACTCTGCC	13798
8629	AGUACCUA G UCAUAGCC	5050	GGCTATGA GGCTAGCTACAACGA TAGGTACT	13799
8626	ACCUAGUC A UAGCCUCC	5051	GGAGGCTA GGCTAGCTACAACGA GACTAGGT	13800
8623	UAGUCAUA G CCUCCGUG	5052	CACGGAGG GGCTAGCTACAACGA TATGACTA	13801
8617	UAGCCUCC G UGAAGACU	5053	AGTCTTCA GGCTAGCTACAACGA GGAGGCTA	13802
8611	CCGUGAAG A CUCGUAGG	5054	CCTACGAG GGCTAGCTACAACGA CTTCACGG	13803
8607	GAAGACUC G UAGGCUCG	5055	CGAGCCTA GGCTAGCTACAACGA GAGTCTTC	13804
8603	ACUCGUAG G CUCGCCGC	5056	CGGGCGAG GGCTAGCTACAACGA CTACGAGT	13805
8599	GUAGGCUC G CGCGGUCC	5057	GGACGCCG GGCTAGCTACAACGA GAGCCTAC	13806
8596	GGCUCGCC G CGUCCUCU	5058	AGAGGACG GGCTAGCTACAACGA GGCGAGCC	13807
8594	CUCGCCGC G UCCUCUUG	5059	CAAGAGGA GGCTAGCTACAACGA GCGGCGAG	13808
8584	CCUCUUGG G UCCCCGCA	5060	TGCGGGGA GGCTAGCTACAACGA CCAAGAGG	13809
8578	GGGUCCCC G CACUUUCA	5061	TGAAAGTG GGCTAGCTACAACGA GGGGACCC	13810
8576	GUCCCCGC A CUUUCACA	5062	TGTGAAAG GGCTAGCTACAACGA GCGGGGAC	13811
8570	GCACUUUC A CAGAUAAAC	5063	GTTATCTG GGCTAGCTACAACGA GAAAGTGC	13812
8566	UUUCACAG A UAACGACC	5064	GGTCGTTA GGCTAGCTACAACGA CTGTGAAA	13813
8563	CACAGAUA A CGACCAAG	5065	CCTGGTCG GGCTAGCTACAACGA TATCTGTG	13814
8560	AGAUAAACG A CCAGGUUC	5066	CGACCTGG GGCTAGCTACAACGA CGTTATCT	13815
8555	ACGACCAG G UCGUCUCC	5067	GGAGACGA GGCTAGCTACAACGA CTGGTCGT	13816
8552	ACCAGGUC G UCUCCACA	5068	TGTGGAGA GGCTAGCTACAACGA GACCTGGT	13817
8546	UCGUCUCC A CACACGAG	5069	CTCGTGTG GGCTAGCTACAACGA GGAGACGA	13818
8544	GUCUCCAC A CACGAGCA	5070	TGCTCGTG GGCTAGCTACAACGA GTGGAGAC	13819
8542	CUCCACAC A CGAGCAUC	5071	GATGCTCG GGCTAGCTACAACGA GTGTGGAG	13820
8538	ACACACGA G CAUCGUGC	5072	GCACGATG GGCTAGCTACAACGA TCGTGTGT	13821
8536	ACACGAGC A UCGUGCAG	5073	CTGCAAGA GGCTAGCTACAACGA GCTCGTGT	13822
8533	CGAGCAUC G UGCAGUCC	5074	GGACTGCA GGCTAGCTACAACGA GATGCTCG	13823
8531	AGCAUCGU G CAGUCCUG	5075	CAGGACTG GGCTAGCTACAACGA ACGATGCT	13824
8528	AUCGUGCA G UCCUGGAG	5076	CTCCAGGA GGCTAGCTACAACGA TGCACGAT	13825
8520	GUCCUGGA G CUUCGCAG	5077	CTGCGAAG GGCTAGCTACAACGA TCCAGGAC	13826
8515	GGAGCUUC G CAGCUCGA	5078	TCGAGCTG GGCTAGCTACAACGA GAAGCTCC	13827
8512	GCUUCGCA G CUCGACAG	5079	CTGTCGAG GGCTAGCTACAACGA TGCAGAAC	13828
8507	GCAGCUCG A CAGGCCGC	5080	CGGGCCTG GGCTAGCTACAACGA CGAGCTGC	13829
8503	CUCGACAG G CCGCAGAG	5081	CTCTGCGG GGCTAGCTACAACGA CTGTCGAG	13830
8500	GACAGGCC G CAGAGGCU	5082	AGCCTCTG GGCTAGCTACAACGA GGCCTGTC	13831
8494	CCGAGAG G CUUUCAAG	5083	CTTGAAAG GGCTAGCTACAACGA CTCTGCGG	13832
8486	GCUUUCAA G UAACAU	5084	ACATGTTA GGCTAGCTACAACGA TTGAAAGC	13833
8483	UUCAAGUA A CAUGUGAG	5085	CTCACATG GGCTAGCTACAACGA TACTTGAA	13834
8481	CAAGUAAC A UGUGAGGG	5086	CCCTCACA GGCTAGCTACAACGA GTTACTTG	13835
8479	AGUAACAU G UGAGGGUA	5087	TACCCCTCA GGCTAGCTACAACGA ATGTTACT	13836
8473	AUGUGAGG G UAUUACCA	5088	TGGTAATA GGCTAGCTACAACGA CCTCACAT	13837
8471	GUGAGGGU A UUACCACA	5089	TGTGGTAA GGCTAGCTACAACGA ACCCTCAC	13838

8468	AGGGUAUU A CCACAGCU	5090	AGCTGTGG GGCTAGCTACAACGA AATACCCT	13839
8465	GUAUUACC A CAGCUGGU	5091	ACCAGCTG GGCTAGCTACAACGA GGTAATAAC	13840
8462	UUACCACA G CUUGGUCGU	5092	ACGACCAG GGCTAGCTACAACGA TGTGGTAA	13841
8458	CACAGCUG G UCGUCAGC	5093	GCTGACGA GGCTAGCTACAACGA CAGCTGTG	13842
8455	AGCUGGUC G UCAGCACG	5094	CGTGCTGA GGCTAGCTACAACGA GACCAGCT	13843
8451	GGUCGUCA G CACGCCGC	5095	GCGGCGTG GGCTAGCTACAACGA TGACGACC	13844
8449	UCGUCAGC A CGCCGCUC	5096	GAGCGGCG GGCTAGCTACAACGA GCTGACGA	13845
8447	GUCAGCAC G CCGCUCGC	5097	GCGAGCGG GGCTAGCTACAACGA GTGCTGAC	13846
8444	AGCACGCC G CUCGCGCG	5098	CGCGCGAG GGCTAGCTACAACGA GGCCTGCT	13847
8440	CGCCGCUC G CGCGGCAC	5099	GTGCCGCG GGCTAGCTACAACGA GAGCGGCG	13848
8438	CCGCUCGC G CGGCACCG	5100	CGGTGCCG GGCTAGCTACAACGA GCGAGCGG	13849
8435	CUCCGCGC G CACCGGGCG	5101	CGCCGGTG GGCTAGCTACAACGA CGCGCGAG	13850
8433	CGCGCGGC A CCGGCGAU	5102	ATCGCCGG GGCTAGCTACAACGA GCCGCGCG	13851
8429	CGGCACCG G CGAUAAACC	5103	GGTTATCG GGCTAGCTACAACGA CGGTGCCG	13852
8426	CACCGGCG A UAACCGCA	5104	TGCGGTTA GGCTAGCTACAACGA CGCCGGTG	13853
8423	CGGCGAUA A CCGCAGUU	5105	AACTGCGG GGCTAGCTACAACGA TATCGCCG	13854
8420	CGAUAAACC G CAGUUCUG	5106	CAGAACTG GGCTAGCTACAACGA GGTTATCG	13855
8417	UAACCGCA G UUCUGCCC	5107	GGGCAGAA GGCTAGCTACAACGA TGCGGTTA	13856
8412	GCAGUUCU G CCCUUUUG	5108	CAAAGGG GGCTAGCTACAACGA AGAACTGC	13857
8402	CCUUUUGA A UUAGUCAG	5109	CTGACTAA GGCTAGCTACAACGA TCAAAAGG	13858
8398	UUGAAUUA G UCAGAGGA	5110	TCCTCTGA GGCTAGCTACAACGA TAATTCAA	13859
8390	GUCAGAGG A CCCCCGAU	5111	ATCGGGGG GGCTAGCTACAACGA CCTCTGAC	13860
8383	GACCCCCG A UAUAAAAGC	5112	GCTTTATA GGCTAGCTACAACGA CGGGGGTC	13861
8381	CCCCCGAU A UAAAGCCG	5113	CGGCTTTA GGCTAGCTACAACGA ATCGGGGG	13862
8376	GAUAAAAG G CCGCUCUG	5114	CAGAGCGG GGCTAGCTACAACGA TTTATATC	13863
8373	AUAAAGCC G CUCUGUGA	5115	TCACAGAG GGCTAGCTACAACGA GGCTTTAT	13864
8368	GCCGCUCU G UGAGCGAC	5116	GTCGCTCA GGCTAGCTACAACGA AGAGCGGC	13865
8364	CUCUGUGA G CGACCUUA	5117	TAAGGTCTG GGCTAGCTACAACGA TCACAGAG	13866
8361	UGUGAGCG A CCUUUAGG	5118	CCATAAGG GGCTAGCTACAACGA CGCTCACA	13867
8356	GCGACCUU A UGGCCUGU	5119	ACAGGCCA GGCTAGCTACAACGA AAGGTCGC	13868
8353	ACCUUAUG G CCUGUCUG	5120	CAGACAGG GGCTAGCTACAACGA CATAAGGT	13869
8349	UAUGGCCU G UCUGGCUU	5121	AAGCCAGA GGCTAGCTACAACGA AGGCCATA	13870
8344	CCUGUCUG G CUUCGGGG	5122	CCCCGAAG GGCTAGCTACAACGA CAGACAGG	13871
8335	CUUCGGGG G CCAAGUCA	5123	TGACTTGG GGCTAGCTACAACGA CCCCAGA	13872
8330	GGGCCAA G UCACAAAC	5124	TGTTGTGA GGCTAGCTACAACGA TTGGCCCC	13873
8327	GCCAAGUC A CAACAUUG	5125	CAATGTTG GGCTAGCTACAACGA GACTTGGC	13874
8324	AAGUCACA A CAUUGGUA	5126	TACCAATG GGCTAGCTACAACGA TGTGACTT	13875
8322	GUCACAAAC A UGGUAAA	5127	TTTACCAA GGCTAGCTACAACGA GTTGTGAC	13876
8318	CAACAUUG G UAAAUGA	5128	TCAATTAA GGCTAGCTACAACGA CAATGTTG	13877
8314	AUUGGUAA A UUGACUCC	5129	GGAGTCAA GGCTAGCTACAACGA TTACCAAT	13878
8310	GUAAAUG A CUCCUCGA	5130	TCGAGGAG GGCTAGCTACAACGA CAATTTAC	13879
8302	ACUCCUCG A CACGGAUG	5131	CATCCGTG GGCTAGCTACAACGA CGAGGAGT	13880
8300	UCCUCGAC A CGGAUGUC	5132	GACATCCG GGCTAGCTACAACGA GTCGAGGA	13881
8296	CGACACGG A UGUCACUC	5133	GAGTGACA GGCTAGCTACAACGA CCGTGTG	13882
8294	ACACGGAU G UCACUCUC	5134	GAGAGTGA GGCTAGCTACAACGA ATCCGTGT	13883
8291	CGGAUGUC A CUCUCGGU	5135	ACCGAGAG GGCTAGCTACAACGA GACATCCG	13884
8284	CACUCUCG G UGACUGUU	5136	AACAGTCA GGCTAGCTACAACGA CGAGAGTG	13885
8281	UCUCGGUG A CUGUUGAG	5137	CTCAACAG GGCTAGCTACAACGA CACCGAGA	13886
8278	CGGUGACU G UUGAGUCG	5138	CGACTCAA GGCTAGCTACAACGA AGTCACCG	13887
8273	ACUGUUGA G UCGAAACA	5139	TGTTTCGA GGCTAGCTACAACGA TCAACAGT	13888
8267	GAGUCGAA A CAGCGGGU	5140	ACCCGCTG GGCTAGCTACAACGA TTGACTC	13889
8264	UCGAAACA G CGGGUGUC	5141	GACACCCG GGCTAGCTACAACGA TGTTTCGA	13890
8260	AACAGCGG G UGUCAUAU	5142	ATATGACA GGCTAGCTACAACGA CCGCTGTT	13891
8258	CAGCGGGU G UCAUAUGC	5143	GCATATGA GGCTAGCTACAACGA ACCCGCTG	13892
8255	CGGGUGUC A UAUGCAAA	5144	TTTGCATA GGCTAGCTACAACGA GACACCCG	13893
8253	GGUGUCAU A UGCAAAGC	5145	GCTTGCA GGCTAGCTACAACGA ATGACACC	13894

8251	UGUCAUUAU G CAAAGCCC	5146	GGGCTTTG GGCTAGCTACAACGA ATATGACA	13895
8246	UAUGCAAA G CCCAUAGG	5147	CCTATGGG GGCTAGCTACAACGA TTTGCATA	13896
8242	CAAAGCCC A UAGGGCAU	5148	ATGCCCTA GGCTAGCTACAACGA GGGCTTTG	13897
8237	CCCAUAGG G CAUUCUUU	5149	AAGAAATG GGCTAGCTACAACGA CCTATGGG	13898
8235	CAUAGGGC A UUUCUUUG	5150	CAAAGAAA GGCTAGCTACAACGA GCCCTATG	13899
8226	UUUCUUUG A UUUCCAGG	5151	CCTGGAAA GGCTAGCTACAACGA CAAAGAAA	13900
8218	AUUUCCAG G CAUUCACC	5152	GGTGAATG GGCTAGCTACAACGA CTGGAAAT	13901
8216	UUCCAGGC A UUCACCAG	5153	CTGGTGAA GGCTAGCTACAACGA GCCTGGAA	13902
8212	AGGCAUUC A CCAGGAAC	5154	GTTCCTGG GGCTAGCTACAACGA GAATGCCT	13903
8205	CACCAAGG A CUCAACCC	5155	GGGTTGAG GGCTAGCTACAACGA TCCTGGTG	13904
8200	GGAACUCA A CCCGCUGC	5156	GCAGCGGG GGCTAGCTACAACGA TGAGTTCC	13905
8196	CUCAACCC G CUGCCCAG	5157	CTGGGCAG GGCTAGCTACAACGA GGGTTGAG	13906
8193	AACCCGCU G CCCAGGAG	5158	CTCCTGGG GGCTAGCTACAACGA AGCAGGTT	13907
8183	CCAGGAGA G UACUGGAA	5159	TTCCAGTA GGCTAGCTACAACGA TCTCCTGG	13908
8181	AGGAGAGU A CUGGAAUC	5160	GATTCCAG GGCTAGCTACAACGA ACTCTCCT	13909
8175	GUACUGGA A UCCGUUAUG	5161	CATACGGA GGCTAGCTACAACGA TCCAGTAC	13910
8171	UGGAAUCC G UAUGAAGA	5162	TCTTCATA GGCTAGCTACAACGA GGATTCCA	13911
8169	GAAUCCGU A UGAAGAGC	5163	GCTCTTCA GGCTAGCTACAACGA ACGGATTC	13912
8162	UAUGAAGA G CCCAUCAC	5164	GTGATGGG GGCTAGCTACAACGA TCTTCATA	13913
8158	AAGAGCCC A UCACGGCC	5165	GGCCGTGA GGCTAGCTACAACGA GGGCTCTT	13914
8155	AGCCCAUC A CGGCCUGA	5166	TCAGGCCG GGCTAGCTACAACGA GATGGGCT	13915
8152	CCAUACAG G CCUGAGGA	5167	TCCTCAGG GGCTAGCTACAACGA CGTGATGG	13916
8140	GAGGAAGG G UGGAGAGC	5168	GGTCTCCA GGCTAGCTACAACGA CCTTCCTC	13917
8134	GGGUGGAG A CCACGUCC	5169	CGACGTGG GGCTAGCTACAACGA CTCCACCC	13918
8131	UGGAGACC A CGUCGUAA	5170	TTACGACG GGCTAGCTACAACGA GGTCTCCA	13919
8129	GAGACCAC G UCGUAAAG	5171	CTTTACGA GGCTAGCTACAACCA GTGGTCTC	13920
8126	ACCACGUC G UAAAGGGC	5172	GCCCTTTA GGCTAGCTACAACGA GACGTGGT	13921
8119	CGUAAAGG G CCAUUUUC	5173	GAAAATGG GGCTAGCTACAACGA CCTTTACG	13922
8116	AAAGGGCC A UUUUCUCG	5174	CGAGAAAA GGCTAGCTACAACGA GGCCCTTT	13923
8108	AUUUUCUC G CACACACG	5175	CGTGTGTG GGCTAGCTACAACGA GAGAAAAT	13924
8106	UUUCUCGC A CACACGAA	5176	TTCGTGTG GGCTAGCTACAACGA GCGAGAAA	13925
8104	UCUCGCAC A CACGAACC	5177	GGTTCGTG GGCTAGCTACAACGA GTGCGAGA	13926
8102	UCGCACAC A CGAACCCCC	5178	GGGGTTCG GGCTAGCTACAACGA GTGTGCGA	13927
8098	ACACACGA A CCCCCAAG	5179	CTTGGGGG GGCTAGCTACAACCA TCGTGTGT	13928
8090	ACCCCCAA G UCUGGGAA	5180	TTCCCAGA GGCTAGCTACAACGA TTGGGGGT	13929
8082	GUCUGGGA A CACGAUAA	5181	TTATCGTG GGCTAGCTACAACGA TCCCAGAC	13930
8080	CUGGGAAC A CGUAUAGG	5182	CCTTATCG GGCTAGCTACAACGA GTTCCCAG	13931
8077	GGAACACG A UAAGGCAG	5183	TCGCCTTA GGCTAGCTACAACGA CGTGTTC	13932
8072	ACGAUAAAG G CGAGCUGG	5184	CCAGCTCG GGCTAGCTACAACGA CTTATCGT	13933
8068	UAAGGCAG G CUGGCUUG	5185	CAAGCCAG GGCTAGCTACAACGA TCGCCTTA	13934
8064	GCGAGCUG G CUUGCGC	5186	GGCGCAAG GGCTAGCTACAACGA CAGCTCGC	13935
8060	GCUGGCUU G CGGCCUCC	5187	GGAGGCCG GGCTAGCTACAACGA AAGCCAGC	13936
8057	GGCUUGCG G CCUCUUU	5188	AAAGGAGG GGCTAGCTACAACGA CGCAAGCC	13937
8043	UUUCUCUG G UGGGACGC	5189	CGCTTCAA GGCTAGCTACAACGA CAGAGAAA	13938
8038	CUGGUUGG A CGCAGAAA	5190	TTTCTGCG GGCTAGCTACAACGA CCAACCAG	13939
8036	GGUUGGAC G CAGAAAAAC	5191	TTTTTCTG GGCTAGCTACAACGA GTCCAACC	13940
8029	CGCAGAAA A CCUCAUUU	5192	AAATGAGG GGCTAGCTACAACGA TTTCTGCG	13941
8024	AAAACCUC A UUUUUUGC	5193	GCAAAAAA GGCTAGCTACAACGA GAGGTTTT	13942
8017	CAUUUUUU G CCAUGAUG	5194	CATCATGG GGCTAGCTACAACGA AAAAAATG	13943
8014	UUUUUGCC A UGAUGGUG	5195	CACCATCA GGCTAGCTACAACGA GGCAAAAA	13944
8011	UUGCCAUG A UGGUGGUA	5196	TACCAACCA GGCTAGCTACAACGA CATGGCAA	13945
8008	CCAUGAUG G UGGUAUCA	5197	TGATACCA GGCTAGCTACAACGA CATCATGG	13946
8005	UGAUGGUG G UAUCAAUU	5198	AATTGATA GGCTAGCTACAACGA CACCATCA	13947
8003	AUGGUGGU A UCAAUUUGG	5199	CCATTGGA GGCTAGCTACAACGA ACCACCAT	13948
7999	UGGUUAUCA A UGGUGUGC	5200	GACACCAA GGCTAGCTACAACGA TGATACCA	13949
7995	AUCAAUUG G UGUCUCAG	5201	CTGAGACA GGCTAGCTACAACGA CAATTGAT	13950

7993	CAAUUGGU G UCUCAGUG	5202	CACTGAGA GGCTAGCTACAACGA ACCAATTG	13951
7987	GUGUCUCA G UGUCUUCC	5203	GGAAGACA GGCTAGCTACAACGA TGAGACAC	13952
7985	GUCUCAGU G UCUUCCAG	5204	CTGGAAGA GGCTAGCTACAACGA ACTGAGAC	13953
7977	GUCUUCCA G CAAGUCCU	5205	AGGACTTG GGCTAGCTACAACGA TGGAAGAC	13954
7973	UCCAGCAA G UCCUUCCA	5206	TGGAAGGA GGCTAGCTACAACGA TTGCTGGA	13955
7965	GUCCUCCC A CACGGAGC	5207	GCTCCGTG GGCTAGCTACAACGA GGAAGGAC	13956
7963	CCUUCCAC A CGGAGCGG	5208	CCGCTCCG GGCTAGCTACAACGA GTGGAAGG	13957
7958	CACACGGA G CGGAUGUG	5209	CACATCCG GGCTAGCTACAACGA TCCGTGTG	13958
7954	CGGAGCGG A UGUGGUUG	5210	CAACCACA GGCTAGCTACAACGA CCGCTCCG	13959
7952	GAGCGGAU G UGGUUGAC	5211	GTCAACCA GGCTAGCTACAACGA ATCCGCTC	13960
7949	CGGAUGUG G UUGACGGC	5212	GCCGTCAA GGCTAGCTACAACGA CACATCCG	13961
7945	UGUGGUUG A CGGCCCCG	5213	CGGGGCCG GGCTAGCTACAACGA CAACCACA	13962
7942	GGUUGACG G CCCCGCUG	5214	CAGCGGGG GGCTAGCTACAACGA CGTCAACC	13963
7937	ACGGCCCC G CUGGAUAG	5215	CTATCCAG GGCTAGCTACAACGA GGGGCCGT	13964
7932	CCCGCUGG A UAGGUUCC	5216	GGAACCTA GGCTAGCTACAACGA CCAGCGGG	13965
7928	CUGGAUAG G UUCCGGAC	5217	GTCCGGAA GGCTAGCTACAACGA CTATCCAG	13966
7921	GGUUCCGG A CGUCCUUU	5218	AAAGGACG GGCTAGCTACAACGA CCGGAACC	13967
7919	UUCCGGAC G UCCUUUGC	5219	GCAAAGGA GGCTAGCTACAACGA GTCCGGAA	13968
7912	CGUCCUUU G CCCCAUAA	5220	TTATGGGG GGCTAGCTACAACGA AAAGGACG	13969
7907	UUUGCCCC A UAACCAA	5221	TTTGGTTA GGCTAGCTACAACGA GGGGCAA	13970
7904	GCCCCAAU A CCAAAUUU	5222	AAATTTGG GGCTAGCTACAACGA TATGGGGC	13971
7899	AUAACCAA A UUUGGACC	5223	GGTCCAAA GGCTAGCTACAACGA TTGGTTAT	13972
7893	AAAUUUGG A CCUGGCCG	5224	CGGCCAGG GGCTAGCTACAACGA CCAAATT	13973
7888	UGGACCUG G CGGAUGU	5225	ACATTCTGG GGCTAGCTACAACGA CAGGTCCA	13974
7883	CUGGCCGA A UGUGGGGG	5226	CCCCCACA GGCTAGCTACAACGA TCGGCCAG	13975
7881	GGCCGAAU G UGGGGGCG	5227	CGCCCCCA GGCTAGCTACAACGA ATTCCGGCC	13976
7875	AUGUGGGG G CGUCAGUC	5228	GACTGACG GGCTAGCTACAACGA CCCCCACAT	13977
7873	GUGGGGGC G UCAGUCUG	5229	CAGACTGA GGCTAGCTACAACGA GCCCCCAC	13978
7869	GGGCGUCA G UCUGCAGG	5230	CCTGCAGA GGCTAGCTACAACGA TGACGCC	13979
7865	GUCAGUCU G CAGGCUUC	5231	GAAGCCTG GGCTAGCTACAACGA AGACTGAC	13980
7861	GUCUGCAG G CUUCCUCU	5232	AGAGGAAG GGCTAGCTACAACGA CTGCAGAC	13981
7852	CUUCCUCU A CGGAUAGA	5233	TCTATCCG GGCTAGCTACAACGA AGAGGAAG	13982
7848	CUCUACGG A UAGAAGUU	5234	AACTTCTA GGCTAGCTACAACGA CCGTAGAG	13983
7842	GGAUAGAA G UUUAGCCU	5235	AGGCTAAA GGCTAGCTACAACGA TTCTATCC	13984
7837	GAAGUUUA G CCUUAACU	5236	AGTTAAGG GGCTAGCTACAACGA TAAACTTC	13985
7831	UAGCCUUA A CUGUGGAC	5237	GTCCACAG GGCTAGCTACAACGA TAAGGCTA	13986
7828	CCUUAACU G UGGACGCC	5238	GGCGTCCA GGCTAGCTACAACGA AGTTAAGG	13987
7824	AACUGUGG A CGCCUUUCG	5239	CGAAGGCG GGCTAGCTACAACGA CCACAGTT	13988
7822	CUGUGGAC G CCUUCGCC	5240	GGCGAAGG GGCTAGCTACAACGA GTCCACAG	13989
7816	ACGCCUUC G CCUUCAUC	5241	GATGAAGG GGCTAGCTACAACGA GAAGGCAGT	13990
7810	UCGCCUUC A UCUCUUG	5242	CAAGGAGA GGCTAGCTACAACGA GAAGGCAGA	13991
7800	CUCCUUGA G CACGUCCC	5243	GGGACGTG GGCTAGCTACAACGA TCAAGGAG	13992
7798	CCUUGAGC A CGUCCCGG	5244	CGGGGACG GGCTAGCTACAACGA GCTCAAGG	13993
7796	UUGAGCAC G UCCC GGUA	5245	TACCGGGG GGCTAGCTACAACGA GTGCTCAA	13994
7790	ACGUCCCC G UAGUGGUC	5246	GACCACTA GGCTAGCTACAACGA CGGGACGT	13995
7787	UCCCGGUA G UGGUCCUC	5247	GACGACCA GGCTAGCTACAACGA TACCGGGG	13996
7784	CGGUAGUG G UCGUCCAG	5248	CTGGACGA GGCTAGCTACAACGA CACTACCG	13997
7781	UAGUGGUC G UCCAGGAC	5249	GTCCTGGG GGCTAGCTACAACGA GACCACTA	13998
7774	CGUCCAGG A CUUGCAGU	5250	ACTGCAAG GGCTAGCTACAACGA CCTGGACG	13999
7770	CAGGACUU G CAGUCUGU	5251	ACAGACTG GGCTAGCTACAACGA AAGTCCTG	14000
7767	GACUUGCA G UCUGUCAA	5252	TTGACAGA GGCTAGCTACAACGA TGCAAGTC	14001
7763	UGCAGUCU G UCAAAGGU	5253	ACCTTTGA GGCTAGCTACAACGA AGACTGCA	14002
7756	UGUCAAAG G UGACCUUC	5254	GAAGGTCA GGCTAGCTACAACGA CTTTGACA	14003
7753	CAAAGGUG A CCUUCUUC	5255	GAAGAAGG GGCTAGCTACAACGA CACCTTTG	14004
7743	CUUCUUCU G CCGCUGGC	5256	GCCAGCGG GGCTAGCTACAACGA AGAAGAAG	14005
7740	CUUCUGCC G CUGGCUUG	5257	CAAGCCAG GGCTAGCTACAACGA GGCAGAAG	14006

7736	UGCCGCUG G CUUGCACU	5258	AGCGCAAG GGCTAGCTACAACGA CAGCGGCA	14007
7732	GCUGGGCUU G CGCUCGCA	5259	TCGCAGCG GGCTAGCTACAACGA AAGCCAGC	14008
7730	UGGUUUGC G CUGCGAGA	5260	TCTCGCAG GGCTAGCTACAACGA GCAAGCCA	14009
7727	CUUGCGCU G CGAGAU	5261	ACATCTCG GGCTAGCTACAACGA AGCGCAAG	14010
7722	GCUGCGAG A UGUUGUAG	5262	CTACAACA GGCTAGCTACAACGA CTCGCAGC	14011
7720	UGCGAGAU G UUGUAGCG	5263	CGCTACAA GGCTAGCTACAACGA ATCTCGCA	14012
7717	GAGAUGUU G UAGCGUAG	5264	CTACGCTA GGCTAGCTACAACGA AACATCTC	14013
7714	AUGUUGUA G CGUAGACC	5265	GGTCTACG GGCTAGCTACAACGA TACAACAT	14014
7712	GUUGUAGC G UAGACCAU	5266	ATGGTCTA GGCTAGCTACAACGA GCTACAAC	14015
7708	UAGCGUAG A CCAUGUUG	5267	CAACATGG GGCTAGCTACAACGA CTACGCTA	14016
7705	CGUAGACC A UGUUGUGG	5268	CCACAACA GGCTAGCTACAACGA GGTCTACG	14017
7703	UAGACCAU G UUGUGGGUG	5269	CACCACAA GGCTAGCTACAACGA ATGGTCTA	14018
7700	ACCAUGUU G UGGUGACG	5270	CGTCACCA GGCTAGCTACAACGA AACATGGT	14019
7697	AUGUUGUG G UGACGCAG	5271	CTGCGTCA GGCTAGCTACAACGA CACAACAT	14020
7694	UUGUGGGUG A CGCAGCAA	5272	TTGCTGCG GGCTAGCTACAACGA CACCACAA	14021
7692	GUGGUGAC G CAGCAAAG	5273	CTTGCTG GGCTAGCTACAACGA GTCACCCAC	14022
7689	GUGACGCA G CAAAGAGU	5274	ACTCTTG GGCTAGCTACAACGA TGCGTCAC	14023
7682	AGCAAAGA G UUGCUCAA	5275	TTGAGCAA GGCTAGCTACAACGA TCTTTGCT	14024
7679	AAAGAGUU G CUCAACGC	5276	GGCGTTGAG GGCTAGCTACAACGA AACTCTTT	14025
7674	GUUGCUCA A CGCGUUGA	5277	TCAACGCG GGCTAGCTACAACGA TGAGAAC	14026
7672	UGCUCAAC G CGUUGAUG	5278	CATCAACG GGCTAGCTACAACGA GTTGAGCA	14027
7670	CUCAACGC G UUGAUGGG	5279	CCCATCAA GGCTAGCTACAACGA GCGTTGAG	14028
7666	ACCGUUG A UGGGCAAC	5280	GTTGCCCA GGCTAGCTACAACGA CAACCGT	14029
7662	GUUGAUGG G CAACUUGC	5281	GCAAGTTG GGCTAGCTACAACGA CCATCAAC	14030
7659	GAUGGGCA A CUUGCUUU	5282	AAAGCAAG GGCTAGCTACAACGA TGCCCCATC	14031
7655	GGCAACUU G CUUUCUC	5283	GAGGAAAG GGCTAGCTACAACGA AAGTTGCC	14032
7645	UUUCCUCC G CAGCGCAU	5284	ATGCGCTG GGCTAGCTACAACGA GGAGGAAA	14033
7642	CCUCCGCA G CGCAUGGC	5285	GCCATGCG GGCTAGCTACAACGA TGCGGAGG	14034
7640	UCCGCAGC G CAUGGCGU	5286	ACGCCATG GGCTAGCTACAACGA GCTGCGGA	14035
7638	CGCAGCGC A UGGCGUGA	5287	TCACGCCA GGCTAGCTACAACGA GCGCTGCG	14036
7635	AGCGCAUG G CGUGAUCA	5288	TGATCACG GGCTAGCTACAACGA CATGCGCT	14037
7633	CGCAUGGC G UGAUCAGG	5289	CCTGATCA GGCTAGCTACAACGA GCCATGCG	14038
7630	AUGGCGUG A UCAGGGCG	5290	CGCCCTGA GGCTAGCTACAACGA CACGCCAT	14039
7624	UGAUCAGG G CGCCCGUC	5291	GACGGGCG GGCTAGCTACAACGA CCTGATCA	14040
7622	AUCAGGGC G CCCGUCCA	5292	TGGACGGG GGCTAGCTACAACGA GCCCTGAT	14041
7618	GGCGGCC G UCCAUGUG	5293	CACATGGA GGCTAGCTACAACGA GGGCGCCC	14042
7614	GCCCGUCC A UGUGUAGG	5294	CCTACACA GGCTAGCTACAACGA GGACGGGC	14043
7612	CCGUCCAU G UGUAGGAC	5295	GTCCTACA GGCTAGCTACAACGA ATGGACGG	14044
7610	GUCCAUGU G UAGGACAU	5296	ATGTCCTA GGCTAGCTACAACGA ACATGGAC	14045
7605	UGUGUAGG A CAUCGAGC	5297	GCTCGATG GGCTAGCTACAACGA CCTACACA	14046
7603	UGUAGGAC A UCGAGCAG	5298	CTGCTCGA GGCTAGCTACAACGA GTCCTACA	14047
7598	GACAU CGA G CAGCAGAC	5299	GTCTGCTG GGCTAGCTACAACGA TCGATGTC	14048
7595	AUCGAGCA G CAGACGAC	5300	GTCGTCTG GGCTAGCTACAACGA TGCTCGAT	14049
7591	AGCAGCAG A CGACAUCC	5301	GGATGTCG GGCTAGCTACAACGA CTGCTGCT	14050
7588	AGCAGACG A CAUCCUCG	5302	CGAGGATG GGCTAGCTACAACGA CGTCTGCT	14051
7586	CAGACGAC A UCCUCGCC	5303	GGCGAGGA GGCTAGCTACAACGA GTCGTCTG	14052
7580	ACAUCCUC G CCAGCCUC	5304	GAGGCTGG GGCTAGCTACAACGA GAGGATGT	14053
7576	CCUCGCCA G CCUCUUCG	5305	CGAAGAGG GGCTAGCTACAACGA TGGCGAGG	14054
7568	GCCUCUUC G CUCACGGU	5306	ACCGTGAG GGCTAGCTACAACGA GAAGAGGC	14055
7564	CUUCGCUA C CGGUAGAC	5307	GTCTACCG GGCTAGCTACAACGA GAGCGAAG	14056
7561	CGCUCACG G UAGACCAA	5308	TTGGTCTA GGCTAGCTACAACGA CGTGAGCG	14057
7557	CACGGUAG A CCAAGACC	5309	GGTCTTGG GGCTAGCTACAACGA CTACCGTG	14058
7551	AGACCAAG A CCCGUCGC	5310	GCGACGGG GGCTAGCTACAACGA CTTGGTCT	14059
7547	CAAGACCC G UCGCUGAG	5311	CTCAGCGA GGCTAGCTACAACGA GGGTCTTG	14060
7544	GACCCGUC G CUGAGAUC	5312	GATCTCAG GGCTAGCTACAACGA GACGGGTC	14061
7538	UCGCUGAG A UCGGGAU	5313	GATCCCGA GGCTAGCTACAACGA CTCAGCGA	14062

7532	AGAUCGGG A UCCCCCGG	5314	CCGGGGGA GGCTAGCTACAACGA CCCGATCT	14063
7524	AUCCCCCG G CUCCCCU	5315	AGGGGGAG GGCTAGCTACAACGA CGGGGGAT	14064
7506	AAGGGGGG G CAUAGAGG	5316	CCTCTATG GGCTAGCTACAACGA CCCCCCTT	14065
7504	GGGGGGGC A UAGAGGAG	5317	CTCCTCTA GGCTAGCTACAACGA GCCCCCC	14066
7496	AUAGAGGA G UACGACUC	5318	GAGTCGTA GGCTAGCTACAACGA TCCTCTAT	14067
7494	AGAGGAGU A CGACUCAA	5319	TTGAGTCG GGCTAGCTACAACGA ACTCCTCT	14068
7491	GGAGUACG A CUCAACGU	5320	ACGTTGAG GGCTAGCTACAACGA CGTACTCC	14069
7486	ACGACUCA A CGUCGGAU	5321	ATCCGACG GGCTAGCTACAACGA TGAGTCGT	14070
7484	GACUCAAC G UCAGGAUCC	5322	GGATCCGA GGCTAGCTACAACGA GTTGAGTC	14071
7479	AACGUCGG A UCCUGCGU	5323	ACGCAGGA GGCTAGCTACAACGA CCGACGTT	14072
7474	CGGAUCCU G CGUCACCG	5324	CGGTGACG GGCTAGCTACAACGA AGGATCCG	14073
7472	GAUCCUGC G UCACCGUC	5325	GACGGTGA GGCTAGCTACAACGA GCAGGATC	14074
7469	CCUGCGUC A CCGUCAUU	5326	ATGACGG GGCTAGCTACAACGA GACGCAGG	14075
7466	GCGUCACC G UCAUUGGA	5327	TCCAATGA GGCTAGCTACAACGA GGTGACGC	14076
7463	UCACCGUC A UGGGAGGU	5328	ACCTCCAA GGCTAGCTACAACGA GACGGTGA	14077
7456	CAUUGGAG G UCUGGUGC	5329	CGACCAGA GGCTAGCTACAACGA CTCCAATG	14078
7451	GAGGUCUG G UCGGGGGG	5330	CCCCCCGA GGCTAGCTACAACGA CAGACCTC	14079
7441	CGGGGGGG G CGGUUGCC	5331	GGCAACCG GGCTAGCTACAACGA CCCCCCCC	14080
7438	GGGGGGCG G UUGCCGUA	5332	TACGGCAA GGCTAGCTACAACGA CGCCCC	14081
7435	GGCCGGUU G CCGUACCU	5333	AGGTACGG GGCTAGCTACAACGA AACCGCCC	14082
7432	CGGUUGCC G UACCUACUA	5334	TAGAGGTA GGCTAGCTACAACGA GGCAACCG	14083
7430	GUUGCCGU A CCUCUACU	5335	GATAGAGG GGCTAGCTACAACGA ACGGCAAC	14084
7424	GUACCUUC A UCAGCGGC	5336	GCCGCTGA GGCTAGCTACAACGA AGAGGTAC	14085
7420	CUCUAUCA G CGGCCGAU	5337	ATCGGCCG GGCTAGCTACAACGA TGATAGAG	14086
7417	UAUCAGCG G CCGAUGAU	5338	ATCATCGG GGCTAGCTACAACGA CGCTGATA	14087
7413	AGCGGCCG A UGAUUCAG	5339	CTGAATCA GGCTAGCTACAACGA CGGCCGCT	14088
7410	GGCCGAUG A UUCAGAGC	5340	GCTCTGAA GGCTAGCTACAACGA CATGGCC	14089
7403	GAUUCAGA G CUGCCGAA	5341	TTCGGCAG GGCTAGCTACAACGA TCTGAATC	14090
7400	UCAGAGCU G CCGAAGGU	5342	ACCTTCGG GGCTAGCTACAACGA AGCTCTGA	14091
7393	UGCCGAAG G UCUUUGUG	5343	CACAAAGA GGCTAGCTACAACGA CTTCGGCA	14092
7387	AGGUUUU G UGGCGAGC	5344	GCTGCCA GGCTAGCTACAACGA AAAGACCT	14093
7384	UCUUUGUG G CGAGCUCC	5345	GGAGCTCG GGCTAGCTACAACGA CACAAAGA	14094
7380	UGUGGCGA G CUCCGCCA	5346	TGGCGGAG GGCTAGCTACAACGA TCGCCACA	14095
7375	CGAGCUCC G CCAAGGCA	5347	TGCCTTGG GGCTAGCTACAACGA GGAGCTCG	14096
7369	CCGCCAAG G CAGAACAC	5348	GTCTTCTG GGCTAGCTACAACGA CTTGGCG	14097
7362	GGCAGAAG A CACGGUGG	5349	CCACCGTG GGCTAGCTACAACGA CTTCTGCC	14098
7360	CAGAACAC A CGGUGGAC	5350	GTCCACCG GGCTAGCTACAACGA GTCTTCTG	14099
7357	AAGACACG G UGGACUCU	5351	AGAGTCCA GGCTAGCTACAACGA CGTGTCTT	14100
7353	CACGGUGG A CUCUGUCA	5352	TGACAGAG GGCTAGCTACAACGA CCACCGTG	14101
7348	UGGACUCU G UCAGAAC	5353	TGTTCTGA GGCTAGCTACAACGA AGAGTCCA	14102
7342	CUGUCAGA A CAACCGUC	5354	GACGGTTG GGCTAGCTACAACGA TCTGACAG	14103
7339	UCAGAAC A CCGUCCUC	5355	GAGGACGG GGCTAGCTACAACGA TGTTCTGA	14104
7336	GAACAACC G UCCUCUUC	5356	GAAGAGGA GGCTAGCTACAACGA GTTGTTC	14105
7323	CUUCCUCC G UGGAGGUG	5357	CACCTCCA GGCTAGCTACAACGA GGAGGAAG	14106
7317	CCGUGGAG G UGGUAUUG	5358	CAATACCA GGCTAGCTACAACGA CTCCACGG	14107
7314	UGGAGGUG G UAUUGGAG	5359	CTCCAATA GGCTAGCTACAACGA CACCTCCA	14108
7312	GAGGUGGU A UGGAGGG	5360	CCCTCCAA GGCTAGCTACAACGA ACCACCTC	14109
7303	UGGAGGG G CCUUGGCA	5361	TGCCAAGG GGCTAGCTACAACGA CCCTCCAA	14110
7297	GGGCCUUG G CAGGUGGC	5362	GCCACCTG GGCTAGCTACAACGA CAAGGCC	14111
7293	CUUGGCAG G UGGCAAUG	5363	CATTGCCA GGCTAGCTACAACGA CTGCCAAG	14112
7290	GGCAGGUG G CAAUGGGC	5364	GCCCCATTG GGCTAGCTACAACGA CACCTGCC	14113
7287	AGGUGGCA A UGGGCACC	5365	GGTGCCCA GGCTAGCTACAACGA TGCCACCT	14114
7283	GGCAAUGG G CACCCGUG	5366	CACGGGTG GGCTAGCTACAACGA CCATTGCC	14115
7281	CAAUGGGC A CCCGUGUA	5367	TACACGGG GGCTAGCTACAACGA GCCCCATTG	14116
7277	GGGCACCC G UGUACCAC	5368	GTGGTACA GGCTAGCTACAACGA GGGTGCCC	14117
7275	GCACCCGU G UACCACCG	5369	CGGTGGTA GGCTAGCTACAACGA ACGGGTGC	14118

7273	ACCCGUGU A CCACCGGA	5370	TCCGGTGG GGCTAGCTACAACGA ACACGGGT	14119
7270	CGUGUACC A CCGGAGGG	5371	CCCTCCGG GGCTAGCTACAACGA GGTACACG	14120
7261	CCGGAGGG A CGUAGUCU	5372	AGACTACG GGCTAGCTACAACGA CCCTCCGG	14121
7259	GGAGGGAC G UAGUCUGG	5373	CCAGACTA GGCTAGCTACAACGA GTCCCTCC	14122
7256	GGGACGUA G UCUGGGUC	5374	GACCCAGA GGCTAGCTACAACGA TACGTCCC	14123
7250	UAGUCUGG G UCUUUCCA	5375	TGGAAAGA GGCTAGCTACAACGA CCAGACTA	14124
7239	UUUCCAGG G CUCUAGUA	5376	TACTAGAG GGCTAGCTACAACGA CCTGGAAA	14125
7233	GGGCUCUA G UAGUGGAG	5377	CTCCACTA GGCTAGCTACAACGA TAGAGCCC	14126
7230	CUCUAGUA G UGGAGGGU	5378	ACCCCTCA GGCTAGCTACAACGA TACTAGAG	14127
7223	AGUGGAGG G UUGUAAUC	5379	GATTACAA GGCTAGCTACAACGA CCTCCACT	14128
7220	GGAGGGUU G UAAUCCGG	5380	CCGGATTAA GGCTAGCTACAACGA AACCTCC	14129
7217	GGGUUGUA A UCCGGGCG	5381	CGCCCGGA GGCTAGCTACAACGA TACAACCC	14130
7211	UAAUCCGG G CGUGCCCA	5382	TGGGCACG GGCTAGCTACAACGA CCGGATTAA	14131
7209	AUCCGGGC G UGCCCAUA	5383	TATGGGCA GGCTAGCTACAACGA GCCCGGAT	14132
7207	CCGGGCGU G CCCAUUAUG	5384	CATATGGG GGCTAGCTACAACGA ACGCCCGG	14133
7203	GCGUGCCC A UAUGGGUA	5385	TACCCATA GGCTAGCTACAACGA GGGCACGC	14134
7201	GUGCCAU A UGGGUAAAC	5386	GTTACCCA GGCTAGCTACAACGA ATGGGCAC	14135
7197	CCAUAUGG G UAACGCUG	5387	CAGCGTTA GGCTAGCTACAACGA CCATATGG	14136
7194	UAUGGGUA A CGCUGAAG	5388	CTTCAGCG GGCTAGCTACAACGA TACCCATA	14137
7192	UGGUAAC G CUGAAGGA	5389	TCCTTCAG GGCTAGCTACAACGA GTTACCCA	14138
7182	UGAAGGAA A CUUCUUGG	5390	CCAAGAAG GGCTAGCTACAACGA TTCCCTCA	14139
7173	CUUCUUGG A UUUCCGCA	5391	TGCGGAAA GGCTAGCTACAACGA CCAAGAAG	14140
7167	GGAUUUCC G CAGGAUCU	5392	AGATCCTG GGCTAGCTACAACGA GGAAATCC	14141
7162	UCCGCAGG A UCUCGCC	5393	GGCGGAGA GGCTAGCTACAACGA CCTGCGGA	14142
7156	GGAUCUCC G CCGGAAUG	5394	CATTCCGG GGCTAGCTACAACGA GGAGATCC	14143
7150	CCGCCGGA A UGGACACC	5395	GGTGTCCA GGCTAGCTACAACGA TCCGGCGG	14144
7146	CGGAAUUGG A CACCUCUC	5396	GAGAGGTG GGCTAGCTACAACGA CCATTCCG	14145
7144	GAAUUGGAC A CCUCUCUC	5397	GAGAGAGG GGCTAGCTACAACGA GTCCATTG	14146
7133	UCUCUCUC A UCCUCCUC	5398	GAGGAGGA GGCTAGCTACAACGA GAGAGAGA	14147
7123	CCUCCUCC G CUCGAAGC	5399	GCTTCAGG GGCTAGCTACAACGA GGAGGAGG	14148
7116	CGCUCGAA G CGGGUCAA	5400	TTGACCCG GGCTAGCTACAACGA TTCGAGCG	14149
7112	CGAACCGG G UCAAAAGA	5401	TCTTTGTA GGCTAGCTACAACGA CCGCTTCG	14150
7103	UCAAAAGA G UCCAGGGU	5402	ACCCCTGGA GGCTAGCTACAACGA TCTTTGTA	14151
7096	AGUCCAGG G UAACUACC	5403	GGTAGTTA GGCTAGCTACAACGA CCTGGACT	14152
7093	CCAGGGUA A CUACCUA	5404	TAAGGTAG GGCTAGCTACAACGA TACCCCTGG	14153
7090	GGGUACU A CCUUUUAUC	5405	GAATAAGG GGCTAGCTACAACGA AGTTACCC	14154
7085	ACUACCUU A UUCUCUGA	5406	TCAGAGAA GGCTAGCTACAACGA AAGGTAGT	14155
7077	AUUCUCUG A CUCCACGC	5407	CGCTGGAG GGCTAGCTACAACGA CAGAGAAT	14156
7072	CUGACUCC A CGCGAGUG	5408	CACTCGCG GGCTAGCTACAACGA GGAGTCAG	14157
7070	GACUCCAC G CGAGUGAU	5409	ATCACTCG GGCTAGCTACAACGA GTGGAGTC	14158
7066	CCACGCGA G UGAUGUUA	5410	TAACATCA GGCTAGCTACAACGA TCGCGTGG	14159
7063	CGCGAGUG A UGUUACCG	5411	CGGTAACA GGCTAGCTACAACGA CACTCGCG	14160
7061	CGAGUGAU G UUACCGCC	5412	GGCGGTAA GGCTAGCTACAACGA ATCACTCG	14161
7058	GUGAUGUU A CCGCCCCAU	5413	ATGGGCAG GGCTAGCTACAACGA AACATCAC	14162
7055	AUGUUACC G CCCAUCUC	5414	GAGATGGG GGCTAGCTACAACGA GGTAACAT	14163
7051	UACCGCCC A UCUCUGC	5415	GCAGGAGA GGCTAGCTACAACGA GGGCGGTA	14164
7044	CAUCUCCU G CCGCCACA	5416	TGTGGCGG GGCTAGCTACAACGA AGGAGATG	14165
7041	CUCCUGCC G CCACAGGA	5417	TCCCTGTGG GGCTAGCTACAACGA GGCAGGAG	14166
7038	CUGCCGCC A CAGGAGGU	5418	ACCTCCTG GGCTAGCTACAACGA GGCAGGAG	14167
7031	CACAGGAG G UGGCCUC	5419	GAGGCCAA GGCTAGCTACAACGA CTCCGTG	14168
7027	GGAGGUUG G CCUCGAUG	5420	CATCGAGG GGCTAGCTACAACGA CAACCTCC	14169
7021	UGGCCUCG A UGAGGUCA	5421	TGACCTCA GGCTAGCTACAACGA CGAGGCCA	14170
7016	UCGAUGAG G UCAAAGUC	5422	GACTTTGA GGCTAGCTACAACGA CTCATCGA	14171
7010	AGGUCAAA G UCUGGGGA	5423	TCCCCAGA GGCTAGCTACAACGA TTTGACCT	14172
7001	UCUGGGGA G UCAUUAUG	5424	CAATATGA GGCTAGCTACAACGA TCCCCAGA	14173
6998	GGGGAGUC A UAUUGGGU	5425	ACCCAATA GGCTAGCTACAACGA GACTCCCC	14174

6996	GGAGUCAU A UUGGGUAA	5426	TTACCCAA GGCTAGCTACAACGA ATGACTCC	14175
6991	CAUAUUGG G UAAUGUAU	5427	ATACATTA GGCTAGCTACAACGA CCAATATG	14176
6988	AUUGGGUA A UGU AUGUC	5428	GACATACA GGCTAGCTACAACGA TACCCAAT	14177
6986	UGGGUAAU G UAUGUCGC	5429	GCGACATA GGCTAGCTACAACGA ATTACCCA	14178
6984	GGUAAUGU A UGUCGCCU	5430	AGGCGACA GGCTAGCTACAACGA ACATTACC	14179
6982	UAAUGUAU G UCGCCUUC	5431	GAAGGCAGA GGCTAGCTACAACGA ATACATTA	14180
6979	UGUAUGUC G CCUUCGAA	5432	TTCGAAGG GGCTAGCTACAACGA GACATACA	14181
6966	CGAAGAAC G CGCAGACA	5433	TGTCTGCG GGCTAGCTACAACGA CTTCTTCG	14182
6964	AAGAACGC G CAGACAGC	5434	GCTGTCTG GGCTAGCTACAACGA GCCTTCTT	14183
6960	AGGCGCAG A CAGCUGGC	5435	GCCAGCTG GGCTAGCTACAACGA CTGCGCCT	14184
6957	CGCAGACA G CUGGCUAG	5436	CTAGCCAG GGCTAGCTACAACGA TGTCTGCG	14185
6953	GACAGCUG G CUAGCUGA	5437	TCAGCTAG GGCTAGCTACAACGA CAGCTGTC	14186
6949	GCUGGCUA G CUGAGGAG	5438	CTCCTCTG GGCTAGCTACAACGA TAGCCAGC	14187
6941	GCUGAGGA G CUGGCCAA	5439	TTGGCCAG GGCTAGCTACAACGA TCCTCAGC	14188
6937	AGGAGCUG G CCAAGGAG	5440	CTCCTTGG GGCTAGCTACAACGA CAGCTCCT	14189
6921	GGGGGGAG A CCCCCUGG	5441	CCAGGGGG GGCTAGCTACAACGA CTCCCCCC	14190
6913	ACCCCCUG G CCAGCCUA	5442	TAGGCTGG GGCTAGCTACAACGA CAGGGGGT	14191
6909	CCUGGCCA G CCUACGCU	5443	AGCGTAGG GGCTAGCTACAACGA TGGCCAGG	14192
6905	GCCAGCCU A CGCUUAGC	5444	GCTAAGCG GGCTAGCTACAACGA AGGCTGGC	14193
6903	CAGCCUAC G CUUAGCCG	5445	CGGCTAAG GGCTAGCTACAACGA GTAGGCTG	14194
6898	UACGUUA G CCGUCUCU	5446	AGAGACGG GGCTAGCTACAACGA TAAGCGTA	14195
6895	GCUUAGCC G UCUCUCCU	5447	AGGAGAGA GGCTAGCTACAACGA GGCTAAGC	14196
6886	UCUCUCCU G UAAUGUGG	5448	CCACATTA GGCTAGCTACAACGA AGGAGAGA	14197
6883	CUCCUGUA A UGUGGGAG	5449	CTCCCACA GGCTAGCTACAACGA TACAGGAG	14198
6881	CCUGUAAU G UGGGAGGG	5450	CCCTCCCCA GGCTAGCTACAACGA ATTACAGG	14199
6872	UGGGAGGG G UC GGUGAG	5451	CTCACCGA GGCTAGCTACAACGA CCCTCCCCA	14200
6868	AGGGGUUC G UGAGCAUG	5452	CATGCTCA GGCTAGCTACAACGA CGACCCCT	14201
6864	GUCCGUGA G CAUGGACG	5453	CGTCCATG GGCTAGCTACAACGA TCACCGAC	14202
6862	CGGUGAGC A UGGACGUG	5454	CACGTCCA GGCTAGCTACAACGA GCTCACCG	14203
6858	GAGCAUGG A CGUGAGCA	5455	TGCTCACG GGCTAGCTACAACGA CCATGCTC	14204
6856	GCAUGGAC G UGAGCACU	5456	AGTGCTCA GGCTAGCTACAACGA GTCCATGC	14205
6852	GGACGUGA G CACUGCUA	5457	TAGCAGTG GGCTAGCTACAACGA TCACGTCC	14206
6850	ACGUGAGC A CUGCUACA	5458	TGTAGCAG GGCTAGCTACAACGA GCTCACGT	14207
6847	UGAGCACU G CUACAUCC	5459	GGATGTAG GGCTAGCTACAACGA AGTGCTCA	14208
6844	GCACUGCU A CAUCCGGU	5460	ACCGGATG GGCTAGCTACAACGA AGCAGTGC	14209
6842	ACUGCUAC A UCCGGUUC	5461	GAACCGGA GGCTAGCTACAACGA GTAGCAGT	14210
6837	UACAUCCG G UUCGGGCU	5462	AGCCCGAA GGCTAGCTACAACGA CGGATGTA	14211
6831	CGGUUCGG G CUCGCAUG	5463	CATGCGAG GGCTAGCTACAACGA CCGAACCG	14212
6827	UCGGGCUC G CAUGGGAG	5464	CTCCCCTG GGCTAGCTACAACGA GAGCCCGA	14213
6825	GGGCUCGC A UGGGAGCU	5465	AGCTCCCCA GGCTAGCTACAACGA GCGAGCCC	14214
6819	GCAUGGGA G CUGUGACC	5466	GGTCACAG GGCTAGCTACAACGA TCCCACATG	14215
6816	UGGGAGCU G UGACCAA	5467	TTGGGTCA GGCTAGCTACAACGA AGCTCCCCA	14216
6813	GAGCUGUG A CCCAACCA	5468	TGGTTGGG GGCTAGCTACAACGA CACAGCTC	14217
6808	GUGACCCA A CCAGGUAU	5469	ATACCTGG GGCTAGCTACAACGA TGGGTAC	14218
6803	CCAACCA G UAUUGGUU	5470	AACCAATA GGCTAGCTACAACGA CTGGTTGG	14219
6801	AACCAAGGU A UUGGUUGA	5471	TCAACCAA GGCTAGCTACAACGA ACCTGGTT	14220
6797	AGGUAUUG G UUGAGCCC	5472	GGGCTCAA GGCTAGCTACAACGA CAATACCT	14221
6792	UUGGUUGA G CCCGACCU	5473	AGGTGGGG GGCTAGCTACAACGA TCAACCAA	14222
6787	UGAGCCCG A CCUGGAAU	5474	ATTCCAGG GGCTAGCTACAACGA CGGGCTCA	14223
6780	GACCUGGA A UGUGACCU	5475	AGGTCAACA GGCTAGCTACAACGA TCCAGGTC	14224
6778	CCUGGAAU G UGACCUCC	5476	GGAGGTCA GGCTAGCTACAACGA ATTCCAGG	14225
6775	GGAAUGUG A CCUCCUCC	5477	GGAGGAGG GGCTAGCTACAACGA CACATTCC	14226
6765	CUCCUCCC G UAGGAGAG	5478	CTCTCCTA GGCTAGCTACAACGA GGGAGGAG	14227
6756	UAGGAGAG G UCCACACG	5479	CGTGTGGA GGCTAGCTACAACGA CTCTCCTA	14228
6752	AGAGGUCC A CACGCCGG	5480	CCGGCGTG GGCTAGCTACAACGA GGACCTCT	14229
6750	AGGUCCAC A CGCCGGAG	5481	CTCCGGCG GGCTAGCTACAACGA GTGGACCT	14230

6748	GUCCACAC G CGGGAGCG	5482	CGCTCCGG GGCTAGCTACAACGA GTGTGGAC	14231
6742	ACGCCGGA G CGUUUCUG	5483	CAGAAACG GGCTAGCTACAACGA TCCGGCGT	14232
6740	GCCGGAGC G UUUCUGUG	5484	CACAGAAA GGCTAGCTACAACGA GCTCCGGC	14233
6734	GCGUUUCU G UGCAGGCG	5485	CGCCTGCA GGCTAGCTACAACGA AGAACCGC	14234
6732	GUUUCUGU G CAGGCGUA	5486	TACGCCCTG GGCTAGCTACAACGA ACAGAAC	14235
6728	CUGUGCAG G CGUACCCC	5487	GGGGTAGC GGCTAGCTACAACGA CTGCACAG	14236
6726	GUGCAGGC G UACCCCAU	5488	ATGGGGTA GGCTAGCTACAACGA GCCTGCAC	14237
6724	GCAGGCGU A CCCCAUCC	5489	GGATGGGG GGCTAGCTACAACGA ACGCCTGC	14238
6719	CGUACCCC A UCCACUUC	5490	GAAGTGGA GGCTAGCTACAACGA GGGGTACG	14239
6715	CCCCAUCC A CUUCCGUG	5491	CACGGAAG GGCTAGCTACAACGA GGATGGGG	14240
6709	CCACUUCC G UGAAGAAU	5492	ATTCTTCA GGCTAGCTACAACGA GGAAGTGG	14241
6702	CGUGAAGA A UUCGGGGG	5493	CCCCCGAA GGCTAGCTACAACGA TCTTCACG	14242
6693	UUCGGGGG G CGGAACCU	5494	AGGTTCCG GGCTAGCTACAACGA CCCCCGAA	14243
6688	GGGGCGGA A CCUGGCAC	5495	GTGCCAGG GGCTAGCTACAACGA TCCGCC	14244
6683	GGAACCUG G CACGGGCA	5496	TGCCCCGTG GGCTAGCTACAACGA CAGGTTCC	14245
6681	AACCUGGC A CGGGCAUU	5497	AATGCCCG GGCTAGCTACAACGA GCCAGGTT	14246
6677	UGGCACGG G CAUUUUAC	5498	GTAAAATG GGCTAGCTACAACGA CCGTGCCA	14247
6675	GCACGGGC A UUUUACGU	5499	ACGTAAAA GGCTAGCTACAACGA GCCCCGTGC	14248
6670	GGCAUUUU A CGUUGUCA	5500	TGACAACG GGCTAGCTACAACGA AAAATGCC	14249
6668	CAUUUUAC G UUGUCAGU	5501	ACTGACAA GGCTAGCTACAACGA GTAAAATG	14250
6665	UUUACGUU G UCAGUGGU	5502	ACCACTGA GGCTAGCTACAACGA AACGTA	14251
6661	CGUUGUCA G UGGUCAUG	5503	CATGACCA GGCTAGCTACAACGA TGACAACG	14252
6658	UGUCAGUG G UCAUGCCC	5504	GGGCATGA GGCTAGCTACAACGA CACTGACA	14253
6655	CAGUGGUC A UGCCCUC	5505	GACGGGCA GGCTAGCTACAACGA GACCACTG	14254
6653	GUGGUCAU G CCCGUCAC	5506	GTGACGGG GGCTAGCTACAACGA ATGACCAC	14255
6649	UCAUGCCC G UCACGUAG	5507	CTACGTGA GGCTAGCTACAACGA GGGCATGA	14256
6646	UGCCCGUC A CGUAGUGG	5508	CCACTACG GGCTAGCTACAACGA GACGGGCA	14257
6644	CCCGUCAC G UAGUGGAA	5509	TTCCACTA GGCTAGCTACAACGA GTGACGGG	14258
6641	GUCACGU A UGGAAAUC	5510	GATTCTCA GGCTAGCTACAACGA TACGTGAC	14259
6635	UAGUGGAA A UCCCCCAC	5511	GTGGGGGA GGCTAGCTACAACGA TTCCACTA	14260
6628	AAUCCCCC A CCCCGCUA	5512	TACGCGGG GGCTAGCTACAACGA GGGGGATT	14261
6624	CCCCACCC G CGUACCU	5513	AGGTTACG GGCTAGCTACAACGA GGGTGGGG	14262
6622	CCACCCGC G UAACCUCC	5514	GGAGGTTA GGCTAGCTACAACGA GCGGGTGG	14263
6619	CCCGCGUA A CCUCCACG	5515	CGTGGAGG GGCTAGCTACAACGA TACGCGGG	14264
6613	UAACCUCC A CGUACUCC	5516	GGAGTACG GGCTAGCTACAACGA GGAGGTTA	14265
6611	ACCUCCAC G UACUCCUC	5517	GAGGAGTA GGCTAGCTACAACGA GTGGAGGT	14266
6609	CUCCACGU A CUCCUCAG	5518	CTGAGGAG GGCTAGCTACAACGA ACGTGGAG	14267
6601	ACUCCUCA G CGGCCACC	5519	GGTGGCCG GGCTAGCTACAACGA TGAGGAGT	14268
6598	CCUCAGCG G CCACCCGC	5520	GCGGGTGG GGCTAGCTACAACGA CGCTGAGG	14269
6595	CAGCGGCC A CCCGCCAU	5521	ATGGCGGG GGCTAGCTACAACGA GGCGCTG	14270
6591	GGCCACCC G CCAUAGCG	5522	CGCTATGG GGCTAGCTACAACGA GGGTGGCC	14271
6588	CACCGGCC A UAGCGCCC	5523	GGCGCTA GGCTAGCTACAACGA GGCGGGTG	14272
6585	CCGCCAUA G CGCCCUAG	5524	CTAGGGCG GGCTAGCTACAACGA TATGGCGG	14273
6583	GCCAUAGC G CCCUAGAA	5525	TTCTAGGG GGCTAGCTACAACGA GCTATGGC	14274
6575	GCCCUAGA A UAGUUUUGG	5526	CAAACATA GGCTAGCTACAACGA TCTAGGGC	14275
6572	CUAGAAUA G UUUGGCC	5527	GCGCCAAA GGCTAGCTACAACGA TATTCTAG	14276
6567	AUAGUUUG G CGCCGGGG	5528	CCCCGGCG GGCTAGCTACAACGA CAAACTAT	14277
6565	AGUUUGGC G CGGGGGAG	5529	CTCCCCGG GGCTAGCTACAACGA GCCAAACT	14278
6555	CGGGGAGG G UGUGCAGG	5530	CCTGCACA GGCTAGCTACAACGA CCTCCCCG	14279
6553	GGGAGGGU G UGCAGGGG	5531	CCCCTGCA GGCTAGCTACAACGA ACCCTCCC	14280
6551	GAGGGUGU G CAGGGGCC	5532	GGCCCCCTG GGCTAGCTACAACGA ACACCCCTC	14281
6545	GUGCAGGG G CCCGUGGU	5533	ACCACGGG GGCTAGCTACAACGA CCCTGCAC	14282
6541	AGGGGCC G UGGUGUAU	5534	ATACACCA GGCTAGCTACAACGA GGGCCCT	14283
6538	GGCCCGUG G UGUAUGCG	5535	CGCATACA GGCTAGCTACAACGA CACGGGCC	14284
6536	CCCGUGGU G UAUGCGUU	5536	AACGCATA GGCTAGCTACAACGA ACCACGGG	14285
6534	CGUGGUGU A UGCGUUGA	5537	TCAACGCA GGCTAGCTACAACGA ACACCACG	14286

6532	UGGUGUAU G CGUUGAUG	5538	CATCAACG GGCTAGCTACAACGA ATACACCA	14287
6530	GUGUAUGC G UUGAUGGG	5539	CCCATCAA GGCTAGCTACAACGA GCATACAC	14288
6526	AUGCGUUG A UGGGGAAU	5540	ATTCCCCA GGCTAGCTACAACGA CAACGCAT	14289
6519	GAUGGGGA A UGUUCCAU	5541	ATGGAACA GGCTAGCTACAACGA TCCCCATC	14290
6517	UGGGGAAU G UUCCAUUC	5542	GCATGGAA GGCTAGCTACAACGA ATTCCCCA	14291
6512	AAUGUUCC A UGCCACGU	5543	ACGTGGCA GGCTAGCTACAACGA GGAACATT	14292
6510	UGUUCCAU G CCACGUGU	5544	ACACGTGG GGCTAGCTACAACGA ATGGAACA	14293
6507	UCCAUGCC A CGUGUUGC	5545	GCAACACG GGCTAGCTACAACGA GGCATGGA	14294
6505	CAUGCCAC G UGUUGCUA	5546	TAGCAACA GGCTAGCTACAACGA GTGGCATG	14295
6503	UGCCACGU G UUGCUACU	5547	TGTAGCAA GGCTAGCTACAACGA ACGTGGCA	14296
6500	CACGUGUU G CUACAGGU	5548	ACCTGTAG GGCTAGCTACAACGA AACACGTG	14297
6497	GUGUUGCU A CAGGUCUU	5549	AAGACCTG GGCTAGCTACAACGA AGCAACAC	14298
6493	UGCUACAG G UCUUAGGC	5550	GCCTAAGA GGCTAGCTACAACGA CTGTAGCA	14299
6486	GGUCUUAG G CCCGACGA	5551	TCGTCGGG GGCTAGCTACAACGA CTAAGACC	14300
6481	UAGGCCCG A CGAUCCUC	5552	GAGGATCG GGCTAGCTACAACGA CGGGCCTA	14301
6478	GCCCGACG A UCCUCAUG	5553	CATGAGGA GGCTAGCTACAACGA CGTCGGGC	14302
6472	CGAUCCUC A UGGAACCG	5554	CGGTTCCA GGCTAGCTACAACGA GAGGATCG	14303
6467	CUCAUGGA A CCGUUCUU	5555	AAGAACGG GGCTAGCTACAACGA TCCATGAG	14304
6464	AUGGAACC G UUCUUGAC	5556	GTCAAGAA GGCTAGCTACAACGA GGTTCCAT	14305
6457	CGUUCUUG A CAUGUCCA	5557	TGGACATG GGCTAGCTACAACGA CAAGAACG	14306
6455	UUCUUGAC A UGUCCAGU	5558	ACTGGACA GGCTAGCTACAACGA GTCAAGAA	14307
6453	CUUGACAU G UCCAGUGA	5559	TCACTGGA GGCTAGCTACAACGA ATGTCAAG	14308
6448	CAUGUCCA G UGAUCUGC	5560	GCAGATCA GGCTAGCTACAACGA TGGACATG	14309
6445	GUCCAGUG A UCUGCGCU	5561	AGCGCAGA GGCTAGCTACAACGA CACTGGAC	14310
6441	AGUGAUCU G CGCUCCGC	5562	CGGGAGCG GGCTAGCTACAACGA AGATCACT	14311
6439	UGAUCUGC G CUCCGCAU	5563	ATGCGGAG GGCTAGCTACAACGA GCAGATCA	14312
6434	UGCCGUCC G CAUGGGCA	5564	TGCCCATG GGCTAGCTACAACGA GGAGCGCA	14313
6432	CGCUCCGC A UGGGCAGG	5565	CCTGCCCA GGCTAGCTACAACGA CGGGAGCG	14314
6428	CCGCAUGG G CAGGUGGU	5566	ACCACCTG GGCTAGCTACAACGA CCATGCGG	14315
6424	AUGGGCAG G UGGUUUGC	5567	GCAAACCA GGCTAGCTACAACGA CTGCCCAT	14316
6421	GGCAGGUG G UUUGCAUG	5568	CATGCAAA GGCTAGCTACAACGA CACCTGCC	14317
6417	GGUGGUUU G CAUGAUAC	5569	GTATCATG GGCTAGCTACAACGA AAACCACC	14318
6415	UGGUUUGC A UGAUACCG	5570	CGGTATCA GGCTAGCTACAACGA GCAAACCA	14319
6412	UUUGCAUG A UACCGUCU	5571	AGACGGTA GGCTAGCTACAACGA CATGCAAA	14320
6410	UGCAUGAU A CCGUCUCC	5572	GGAGACGG GGCTAGCTACAACGA ATCATGCA	14321
6407	AUGAUACC G UCUCCCCG	5573	CGGGGAGA GGCTAGCTACAACGA GGTATCAT	14322
6399	GUCUCCCC G CCAGACCC	5574	GGGTCTGG GGCTAGCTACAACGA GGGGAGAC	14323
6394	CCCGCCAG A CCCCCCUG	5575	CAGGGGGG GGCTAGCTACAACGA CTGGCGGG	14324
6386	ACCCCCCU G UACCCACG	5576	CGTGGGTA GGCTAGCTACAACGA AGGGGGGT	14325
6384	CCCCCUGU A CCCACGUU	5577	AACGTGGG GGCTAGCTACAACGA ACAGGGGG	14326
6380	CUGUACCC A CGUUGGCA	5578	TGCCAACG GGCTAGCTACAACGA GGGTACAG	14327
6378	GUACCCAC G UUGGCAUG	5579	CATGCCAA GGCTAGCTACAACGA GTGGGTAC	14328
6374	CCACGUUG G CAUGAGAA	5580	TTCTCATG GGCTAGCTACAACGA CAACGTGG	14329
6372	ACGUUGGC A UGAGAAGA	5581	TCTTCTCA GGCTAGCTACAACGA GCCAACGT	14330
6358	AGAAAGGG A CUCCCGGC	5582	GCCGGGAG GGCTAGCTACAACGA CCCTTTCT	14331
6351	GACUCCCG G CAACCGCG	5583	CGCGGTTG GGCTAGCTACAACGA CGGGAGTC	14332
6348	UCCCGGCA A CCGCGGCA	5584	TGCCCGGG GGCTAGCTACAACGA TGCCGGGA	14333
6345	CGGCAACC G CGGCAGGA	5585	TCCTGCCG GGCTAGCTACAACGA GGTTGCCG	14334
6342	CAACCGCG G CAGGAGCU	5586	AGCTCCTG GGCTAGCTACAACGA CGCGGTTG	14335
6336	CGGCAGGA G CUUGGACU	5587	AGTCCAAG GGCTAGCTACAACGA TCCTGCCG	14336
6330	GAGCUUGG A CUGAAGCC	5588	GGCTTCAG GGCTAGCTACAACGA CCAAGCTC	14337
6324	GGACUGAA G CCAGGUCU	5589	AGACCTGG GGCTAGCTACAACGA TTCAGTCC	14338
6319	GAAGCCAG G UCUUGAAG	5590	CTTCAAGA GGCTAGCTACAACGA CTGGCTTC	14339
6311	GUCUUGAA G UCAGUCAA	5591	TTGACTGA GGCTAGCTACAACGA TTCAAGAC	14340
6307	UGAAGUCA G UCAACACC	5592	GGTGTGTA GGCTAGCTACAACGA TGACTTCA	14341
6303	GUCAGUCA A CACCGUGC	5593	GCACGGTG GGCTAGCTACAACGA TGACTGAC	14342

6301	CAGUCAAC A CCGUGCAU	5594	ATGCACGG GGCTAGCTACAACGA GTTGACTG	14343
6298	UCAACACC G UGCAUAUC	5595	GATATGCA GGCTAGCTACAACGA GGTGTTGA	14344
6296	AACACCGU G CAUAUCCA	5596	TGGATATG GGCTAGCTACAACGA ACGGTGTT	14345
6294	CACCGUGC A UAUCCAGU	5597	ACTGGATA GGCTAGCTACAACGA GCACGGTG	14346
6292	CCGUGCAU A UCCAGUCC	5598	GGACTGGA GGCTAGCTACAACGA ATGCACGG	14347
6287	CAUAUCCA G UCCCACAA	5599	GTTTGGGA GGCTAGCTACAACGA TGGATATG	14348
6280	AGUCCCAA A CAUCCCCU	5600	AAGGGATG GGCTAGCTACAACGA TTGGGACT	14349
6278	UCCCCAAC A UCCCUUAG	5601	CTAAGGGA GGCTAGCTACAACGA GTTTGGGA	14350
6270	AUCCCUUA G CCACGAGC	5602	GCTCGTGG GGCTAGCTACAACGA TAAGGGAT	14351
6267	CCUUAGCC A CGAGCCGG	5603	CCGGCTCG GGCTAGCTACAACGA GGCTAAGG	14352
6263	AGCCACGA G CCGGAACA	5604	TGTTCCGG GGCTAGCTACAACGA TCGTGGCT	14353
6257	GAGCCGGA A CAUGGCGU	5605	ACGCCATG GGCTAGCTACAACGA TCCGGCTC	14354
6255	GCCGGAAC A UGGCGUGG	5606	CCACGCCA GGCTAGCTACAACGA GTTCCGGC	14355
6252	GGACAACG G CGUGGAGC	5607	GCTCCACG GGCTAGCTACAACGA CATGTTCC	14356
6250	AACAUUGC G UGGAGCAG	5608	CTGCTCCA GGCTAGCTACAACGA GCCATGTT	14357
6245	GGCGUGGA G CAGUCCUC	5609	GAGGACTG GGCTAGCTACAACGA TCCACGCC	14358
6242	GUGGAGCA G UCCUCAUU	5610	AATGAGGA GGCTAGCTACAACGA TGCTCCAC	14359
6236	CAGUCCUC A UUGAUCCA	5611	TGGATCAA GGCTAGCTACAACGA GAGGACTG	14360
6232	CCUCAUUG A UCCACUGA	5612	TCAGTGGG GGCTAGCTACAACGA CAATGAGG	14361
6228	AUUGAUCC A CUGAUGGA	5613	TCCATCAG GGCTAGCTACAACGA GGATCAAT	14362
6224	AUCCACUG A UGGAGCCU	5614	AGGCTCCA GGCTAGCTACAACGA CAGTGGAT	14363
6219	CUGAUGGA G CCUCCUCA	5615	TGAGGAGG GGCTAGCTACAACGA TCCATCAG	14364
6210	CCUCCUCA G CAGCUGAG	5616	CTCAGCTG GGCTAGCTACAACGA TGAGGAGG	14365
6207	CCUCAGCA G CUGAGUGA	5617	TCACTCAG GGCTAGCTACAACGA TGCTGAGG	14366
6202	GCAGCUGA G UGAUGGUG	5618	CACCATCA GGCTAGCTACAACGA TCAGCTGC	14367
6199	GCUGAGUG A UGGUGAGG	5619	CCTCACCA GGCTAGCTACAACGA CACTCAGC	14368
6196	GAGUGAUG G UGAGGCUG	5620	CAGCCTCA GGCTAGCTACAACGA CATCACTC	14369
6191	AUGGUGAG G CUUGGAGAG	5621	CTCTCCAG GGCTAGCTACAACGA CTCACCAT	14370
6181	UGGAGAGG A UUUGUGUG	5622	CACACAAA GGCTAGCTACAACGA CCTCTCCA	14371
6177	GAGGAUUU G UGUGACGC	5623	GCGTCACA GGCTAGCTACAACGA AAATCCTC	14372
6175	GGAUUUGU G UGACGCGC	5624	GCGCGTCA GGCTAGCTACAACGA ACAAAATCC	14373
6172	UUUGUGUG A CGCGCGCC	5625	GGCGCGCG GGCTAGCTACAACGA CACACAAA	14374
6170	UGUGUGAC G CGCGCCGC	5626	GCGCGCGC GGCTAGCTACAACGA GTCACACA	14375
6168	UGUGACGC G CGCCGCGUG	5627	CAGCGGCG GGCTAGCTACAACGA GCGTCACA	14376
6166	UGACGCGC G CCCGUGCG	5628	CGCAGCGG GGCTAGCTACAACGA GCGCGTCA	14377
6163	CGCGCGCC G CUGCGUCG	5629	CGACGCAG GGCTAGCTACAACGA GGCGCGCG	14378
6160	GCGCCGCU G CGUCGUC	5630	GAGCGACG GGCTAGCTACAACGA AGCGGGCGC	14379
6158	GCCGCUGC G UCGCUCUC	5631	GAGAGCGA GGCTAGCTACAACGA GCAGCGGC	14380
6155	GCUGCGUC G CUCUCAGG	5632	CCTGAGAG GGCTAGCTACAACGA GACGCAGC	14381
6147	GCUCUCAG G CACAUAGU	5633	ACTATGTG GGCTAGCTACAACGA CTGAGAGC	14382
6145	UCUCAGGC A CAUAGUGC	5634	GCACATG GGCTAGCTACAACGA GCCTGAGA	14383
6143	UCAGGCAC A UAGUGCGU	5635	ACGCACTA GGCTAGCTACAACGA GTGCCTGA	14384
6140	GGCACAUU G UGCGUGGG	5636	CCCACGCA GGCTAGCTACAACGA TATGTGCC	14385
6138	CACAUAGU G CGUGGGGG	5637	CCCCCACG GGCTAGCTACAACGA ACTATGTG	14386
6136	CAUAGUGC G UGGGGGAG	5638	CTCCCCCA GGCTAGCTACAACGA GCACTATG	14387
6127	UGGGGGAG A CAUGGUUG	5639	CAACCATG GGCTAGCTACAACGA CTCCCCCA	14388
6125	GGGGAGAC A UGGUUGCC	5640	GGCAACCA GGCTAGCTACAACGA GTCTCCCC	14389
6122	GAGACAUG G UUGCCCCG	5641	CGGGGCAA GGCTAGCTACAACGA CATGTCTC	14390
6119	ACAUUGGUU G CCCCGCGA	5642	TCGCGGGG GGCTAGCTACAACGA AACCATGT	14391
6114	GUUGCCCC G CGAACCGA	5643	TCGCTTCG GGCTAGCTACAACGA GGGGCAAC	14392
6109	CCCGCGAA G CGAACCGU	5644	AGCGTTCG GGCTAGCTACAACGA TTTCGCGGG	14393
6105	CGAACCGA A CGCUAUCA	5645	TGATAGCG GGCTAGCTACAACGA TCGCTTCG	14394
6103	AAGCGAAC G CUAUCAGC	5646	GCTGATAG GGCTAGCTACAACGA GTTCGCTT	14395
6100	CGAACCGU A UCAGCCGA	5647	TCGGCTGA GGCTAGCTACAACGA AGCGTTCG	14396
6096	CGCUAUCA G CCGAUUCA	5648	TGAATCGG GGCTAGCTACAACGA TGATAGCG	14397
6092	AUCAGCCG A UUCAUCCA	5649	TGGATGAA GGCTAGCTACAACGA CGGCTGAT	14398

6088	GCCGAUUC A UCCACUGC	5650	GCAGTGGG GGCTAGCTACAACGA GAATCGGC	14399
6084	AUUCAUCC A CUGCACAG	5651	CTGTGCAG GGCTAGCTACAACGA GGATGAAT	14400
6081	CAUCCACU G CACAGCGC	5652	GCGCTGTG GGCTAGCTACAACGA AGTGGATG	14401
6079	UCCACUGC A CAGCGCCC	5653	GGCGCCTG GGCTAGCTACAACGA GCAGTGGA	14402
6076	ACUGCACA G CGCCCCU	5654	AGAGGGCG GGCTAGCTACAACGA TGTGCAGT	14403
6074	UGCACAGC G CCCUCUCC	5655	GGAGAGGG GGCTAGCTACAACGA GCTGTGCA	14404
6062	UCUCCUGG G CCCACAAUG	5656	CATGTGGG GGCTAGCTACAACGA CCAGGAGA	14405
6058	CUGGGCCC A CAUGCCGA	5657	TCGGCATG GGCTAGCTACAACGA GGGCCCAG	14406
6056	GGGCCAAC A UGCCGACG	5658	CGTCGGCA GGCTAGCTACAACGA GTGGGCC	14407
6054	GCCCCACAU G CCGACGCA	5659	TGCGTCGG GGCTAGCTACAACGA ATGTGGGC	14408
6050	ACAUGCCG A CGCAGUAU	5660	ATACTGCG GGCTAGCTACAACGA CGGCATGT	14409
6048	AUGCCGAC G CAGUAUCG	5661	CGATACTG GGCTAGCTACAACGA GTCGGCAT	14410
6045	CCGACGCA G UAUCGCUG	5662	CAGCGATA GGCTAGCTACAACGA TGCGTCGG	14411
6043	GACGCAGU A UCGCUGCG	5663	CGCAGCGA GGCTAGCTACAACGA ACTGCGTC	14412
6040	GCAGUAUC G CUGCGCAC	5664	GTGCGCAG GGCTAGCTACAACGA GATACTGC	14413
6037	GUACGCU G CGCACACC	5665	GGTGTGCG GGCTAGCTACAACGA AGCGATAC	14414
6035	AUCGCUGC G CACACCAC	5666	GTGGTGTG GGCTAGCTACAACGA GCAGCGAT	14415
6033	CGCUGCGC A CACCACCC	5667	GGGGTGGT GGCTAGCTACAACGA GCGCAGCG	14416
6031	CUGCGCAC A CCACCCCG	5668	CGGGGTGG GGCTAGCTACAACGA GTGCGCAG	14417
6028	CGCACACC A CCCGACG	5669	CGTCGGGG GGCTAGCTACAACGA GGTGTGCG	14418
6022	CCACCCCG A CGACCAGG	5670	CCTGGTCG GGCTAGCTACAACGA CGGGGTGG	14419
6019	CCCCGACG A CCAGGGCG	5671	CGCCCTGG GGCTAGCTACAACGA CGTCGGGG	14420
6013	CGACCAGG G CGCCAGGA	5672	TCCTGGCG GGCTAGCTACAACGA CCTGGTCG	14421
6011	ACCAGGGC G CCAGGAGA	5673	TCTCCTGG GGCTAGCTACAACGA GCCCTGGT	14422
5998	GAGAGAGG A UGGCAGGG	5674	CCCTGCCA GGCTAGCTACAACGA CCTCTCTC	14423
5995	AGAGGAUG G CAGGGAGU	5675	ACTCCCTG GGCTAGCTACAACGA CATCCTCT	14424
5988	GGCAGGGG G UAAGUUGA	5676	TCAACTTA GGCTAGCTACAACGA TCCCTGCC	14425
5984	GGGAGUAA G UUGACCAG	5677	CTGGTCAA GGCTAGCTACAACGA TTACTCCC	14426
5980	GUAAGUUG A CCAGGUCC	5678	GGACCTGG GGCTAGCTACAACGA CAACTTAC	14427
5975	UUGACCAG G UCCUCGGU	5679	ACCGAGGA GGCTAGCTACAACGA CTGGTCAA	14428
5968	GGUCCUCG G UAGAAGGC	5680	GCCTTCTA GGCTAGCTACAACGA CGAGGACC	14429
5961	GGUAGAAG G CAUCUCCC	5681	GGGAGATG GGCTAGCTACAACGA CTTCTACC	14430
5959	UAGAAGGC A UCUCCCCG	5682	CGGGGAGA GGCTAGCTACAACGA GCCTTCTA	14431
5951	AUCUCCCC G CUCAUGAC	5683	GTCATGAG GGCTAGCTACAACGA GGGGAGAT	14432
5947	CCCCGCU A UGACCUUG	5684	CAAGGTCA GGCTAGCTACAACGA GAGCGGGG	14433
5944	CGCUCAUG A CCUUGAAG	5685	CTTCAAGG GGCTAGCTACAACGA CATGAGCG	14434
5935	CCUUGAAG G CCACGAGA	5686	TCTCGTGG GGCTAGCTACAACGA CTTCAAGG	14435
5932	UGAAGGCC A CGAGAGCA	5687	TGCTCTCG GGCTAGCTACAACGA GGCCTTCA	14436
5926	CCACGAGA G CACCGGCC	5688	GGCGGGTG GGCTAGCTACAACGA TCTCGTGG	14437
5924	ACGAGAGC A CCCGCCAC	5689	GTGGCGGG GGCTAGCTACAACGA GCTCTCGT	14438
5920	GAGCACCC G CCACUCCU	5690	AGGAGTGG GGCTAGCTACAACGA GGGTGCTC	14439
5917	CACCCGCC A CUCCUGCU	5691	AGCAGGAG GGCTAGCTACAACGA GGCGGGTG	14440
5911	CCACUCCU G CUCCAUAG	5692	CTATGGAG GGCTAGCTACAACGA AGGAGTGG	14441
5906	CCUGCUCC A UAGCCCGC	5693	GCAGGGCTA GGCTAGCTACAACGA GGAGCAGG	14442
5903	GCUCCAUA G CCCGCCAG	5694	CTGGCGGG GGCTAGCTACAACGA TATGGAGC	14443
5899	CAUAGCCC G CCAGAAUG	5695	CATTCTGG GGCTAGCTACAACGA GGGCTATG	14444
5893	CCGCCAGA A UGUCUACA	5696	TGTAGACA GGCTAGCTACAACGA TCTGGCG	14445
5891	GCCAGAAU G UCUACAAG	5697	CTTGTAGA GGCTAGCTACAACGA ATTCTGGC	14446
5887	GAAUGUCU A CAAGCACC	5698	GGTGCTTG GGCTAGCTACAACGA AGACATTC	14447
5883	GUCUACAA G CACCUUCC	5699	GGAAAGGTG GGCTAGCTACAACGA TTGTAGAC	14448
5881	CUACAAGC A CCUUCCCA	5700	TGGGAAGG GGCTAGCTACAACGA GCTTGTAG	14449
5870	UUCCCAAG G CCUAUGCU	5701	AGCATAGG GGCTAGCTACAACGA CTTGGGAA	14450
5866	CAAGGCCU A UGCUGCCA	5702	TGGCAGCA GGCTAGCTACAACGA AGGCCTTG	14451
5864	AGGCCUAU G CUGCCAAC	5703	GTTGGCAG GGCTAGCTACAACGA ATAGGCCT	14452
5861	CCUAUGCU G CCAACAGC	5704	GCTGTTGG GGCTAGCTACAACGA AGCATAGG	14453
5857	UGCUGCCA A CAGCGCG	5705	CGCGGCTG GGCTAGCTACAACGA TGGCAGCA	14454

5854	UGCCAACA G CCGCGCCA	5706	TGGCGCGG GGCTAGCTACAACGA TGTTGGCA	14455
5851	CAACAGCC G CGCCAGCG	5707	CGCTGGCG GGCTAGCTACAACGA GGCTGTTG	14456
5849	ACAGCCGC G CCAGCGAU	5708	ATCGCTGG GGCTAGCTACAACGA CGGGCTGT	14457
5845	CCGCGCCA G CGAUGCCG	5709	CGGCATCG GGCTAGCTACAACGA TGGCGCGG	14458
5842	CGCCAGCG A UGCCGGCG	5710	CGCCGGCA GGCTAGCTACAACGA CGCTGGCG	14459
5840	CCAGCGAU G CCGGGCGC	5711	GGCGCCGG GGCTAGCTACAACGA ATCGCTGG	14460
5836	CGAUGCCG G CGCCCACG	5712	CGTGGGCG GGCTAGCTACAACGA CGGCATCG	14461
5834	AUGCCGGC G CCCACGAA	5713	TTCGTGGG GGCTAGCTACAACGA GCGGCAT	14462
5830	CGCGCCCC A CGAAGGCC	5714	GGCCTTCG GGCTAGCTACAACGA GGGCGCCG	14463
5824	CCACGAAG G CCGAAACG	5715	CGTTTCGG GGCTAGCTACAACGA CTTCGTGG	14464
5818	AGGCCGAA A CGGCUCUG	5716	CAGAGCCG GGCTAGCTACAACGA TTTCGGCT	14465
5815	CCGAAACG G CUCUGGGG	5717	CCCCAGAG GGCTAGCTACAACGA CGTTTCGG	14466
5803	UGGGGGGA G CGAGUUGG	5718	CCAACTCG GGCTAGCTACAACGA TCCCCCCA	14467
5799	GGGAGCGA G UGGGGCGG	5719	CCGCCCAA GGCTAGCTACAACGA TCGCTCCC	14468
5794	CGAGUUGG G CGGCCACC	5720	GGTGGCCG GGCTAGCTACAACGA CCAACTCG	14469
5791	GUUGGGCG G CCACCCAC	5721	GTGGGTGG GGCTAGCTACAACGA CGCCCAAC	14470
5788	GGCGGCC A CCCACCCU	5722	AGGGTGGG GGCTAGCTACAACGA GGCGGCC	14471
5784	GGCCACCC A CCCUCCCA	5723	TGGGAGGG GGCTAGCTACAACGA GGGTGGCC	14472
5773	CUCCAAG A UGUUGAAC	5724	GTTCAACA GGCTAGCTACAACGA CTTGGGAG	14473
5771	CCCAAGAU G UUGAACAG	5725	CTGTTCAA GGCTAGCTACAACGA ATCTTGGG	14474
5766	GAUGUUGA A CAGGAGGG	5726	CCCTCCTG GGCTAGCTACAACGA TCAACATC	14475
5758	ACAGGAGG G UGUUUUGG	5727	CAAAGCA GGCTAGCTACAACGA CCTCCTGT	14476
5756	AGGAGGGU G CUUUGGGU	5728	ACCCAAAG GGCTAGCTACAACGA ACCCTCCT	14477
5749	UGCUUUGG G UGGUGAGC	5729	GCTCACCA GGCTAGCTACAACGA CAAAGCA	14478
5746	UUUGGGUG G UGAGCGGG	5730	CCCGCTCA GGCTAGCTACAACGA CACCCAAA	14479
5742	GGUGGUGA G CGGGCUGG	5731	CCAGCCCG GGCTAGCTACAACGA TCACCACC	14480
5738	GUGAGCGG G CUGGUGAU	5732	ATCACCAG GGCTAGCTACAACGA CCGCTCAC	14481
5734	GCGGGCUG G UGAUGGAG	5733	CTCCATCA GGCTAGCTACAACGA CAGCCCGC	14482
5731	GGCUGGUG A UGGAGGCU	5734	AGCCTCCA GGCTAGCTACAACGA CACCAGCC	14483
5725	UGAUGGAG G CUGUGAAU	5735	ATTCACAG GGCTAGCTACAACGA CTCCATCA	14484
5722	UGGAGGCU G UGAAUGCC	5736	GGCATTCA GGCTAGCTACAACGA AGCCTCCA	14485
5718	GGCUGUGA A UGCCAUCA	5737	TGATGGCA GGCTAGCTACAACGA TCACAGCC	14486
5716	CUGUGAAU G CCAUCAAU	5738	ATTGATGG GGCTAGCTACAACGA ATTACAGC	14487
5713	UGAAUGCC A UCAGAU	5739	ATCATTGA GGCTAGCTACAACGA GGCATTCA	14488
5709	UGCCAUC A UGAUGCUA	5740	TAGCATCA GGCTAGCTACAACGA TGATGGCA	14489
5706	CAUCAAUG A UGCUAUCG	5741	CGATAGCA GGCTAGCTACAACGA CATTGATG	14490
5704	UCAAUGAU G CUAUCGCG	5742	CGCGATAG GGCTAGCTACAACGA ATCATTGA	14491
5701	AUGAUGCU A UCGCGGGG	5743	CCCCGCGA GGCTAGCTACAACGA AGCATCAT	14492
5698	AUGCUAUC G CGGGGUUC	5744	GAACCCCG GGCTAGCTACAACGA GATAGCAT	14493
5693	AUCGCGGG G UUCCCGAG	5745	CCTGGGAA GGCTAGCTACAACGA CCCGCGAT	14494
5685	GUUCCAG G CAGAGUGG	5746	CCACTCTG GGCTAGCTACAACGA CTGGGAAC	14495
5680	CAGGCAGA G UGGACAAG	5747	CTTGTCCA GGCTAGCTACAACGA TCTGCCTG	14496
5676	CAGAGUGG A CAAGCCUG	5748	CAGGCTTG GGCTAGCTACAACGA CCACTCTG	14497
5672	GUGGACAA G CCUGCUAG	5749	CTAGCAGG GGCTAGCTACAACGA TTGTCCAC	14498
5668	ACAAGCCU G CUAGGUAC	5750	GTACCTAG GGCTAGCTACAACGA AGGCTTGT	14499
5663	CCUGCUAG G UACUGUAU	5751	ATACAGTA GGCTAGCTACAACGA CTAGCAGG	14500
5661	UGCUGGU A CUGUAUCC	5752	GGATACAG GGCTAGCTACAACGA ACCTAGCA	14501
5658	UAGGUACU G UAUCCCGC	5753	CGGGGATA GGCTAGCTACAACGA AGTACCTA	14502
5656	GGUACUGU A UCCCGCUG	5754	CAGCGGGA GGCTAGCTACAACGA ACAGTACC	14503
5651	UGUAUCCC G CUGAUGAA	5755	TTCATCAG GGCTAGCTACAACGA GGGATACA	14504
5647	UCCCGCUG A UGAAUUC	5756	GAATTTCA GGCTAGCTACAACGA CAGCGGGA	14505
5642	CUGAUGAA A UUCCACAU	5757	ATGTGGAA GGCTAGCTACAACGA TTCATCAG	14506
5637	GAAAUUCC A CAUGUGCU	5758	AGCACATG GGCTAGCTACAACGA GGAATTTC	14507
5635	AAUCCAC A UGUGCUUC	5759	GAAGCACA GGCTAGCTACAACGA GTGGAATT	14508
5633	UUCCACAU G UGCUUCGC	5760	GCGAAGCA GGCTAGCTACAACGA ATGTGGAA	14509
5631	CCACAUGU G CUUCGCC	5761	GGCGAAG GGCTAGCTACAACGA ACATGTGG	14510

5626	UGUGCUC G CCCAGAAA	5762	TTTCTGGG GGCTAGCTACAACGA GAAGCACA	14511
5617	CCCAGAAA G CCUCAAGG	5763	CCTTGAGG GGCTAGCTACAACGA TTTCTGGG	14512
5608	CCUCAAGG G CUCGCCAC	5764	GTGGCGAG GGCTAGCTACAACGA CCTTGAGG	14513
5604	AAGGGCUC G CCACUUGG	5765	CCAAGTGG GGCTAGCTACAACGA GAGCCCTT	14514
5601	GGCUCGCC A CUUGGAUU	5766	AATCCAAG GGCTAGCTACAACGA GGCGAGCC	14515
5595	CCACUUGG A UUCCACCA	5767	TGGTGGAA GGCTAGCTACAACGA CCAAGTGG	14516
5590	UGGAUUCC A CCACGGGA	5768	TCCCCGTGG GGCTAGCTACAACGA GGAATCCA	14517
5587	AUUCCACC A CGGGAGCA	5769	TGCTCCCG GGCTAGCTACAACGA GGTGGAAT	14518
5581	CCACGGGA G CAGCAGCC	5770	GGCTGCTG GGCTAGCTACAACGA TCCCCTGG	14519
5578	CGGGAGCA G CAGCCUCC	5771	GGAGGCTG GGCTAGCTACAACGA TGCTCCCG	14520
5575	GAGCAGCA G CCUCCGCU	5772	AGCGGAGG GGCTAGCTACAACGA TGCTGCTC	14521
5569	CAGCCUCC G CUUGGUUG	5773	CAACCAAG GGCTAGCTACAACGA GGAGGCTG	14522
5564	UCCGCUUG G UUGGUGGC	5774	GCCACCAA GGCTAGCTACAACGA CAAGCGGA	14523
5560	CUUGGUUG G UGGCUGUU	5775	AACAGCCA GGCTAGCTACAACGA CAACCAAG	14524
5557	GGUUGGUG G CUGUUUGC	5776	GCAACACAG GGCTAGCTACAACGA CACCAACC	14525
5554	UGGUGGCU G UUUGCAGC	5777	GCTGCAAA GGCTAGCTACAACGA AGCCACCA	14526
5550	GGCUGUUU G CAGCAAU	5778	GATTGCTG GGCTAGCTACAACGA AAACAGCC	14527
5547	UGUUUGCA G CAAUCCGA	5779	TCGGATTG GGCTAGCTACAACGA TGCAAACA	14528
5544	UUGCAGCA A UCCGAGCG	5780	CGCTCGGA GGCTAGCTACAACGA TGCTGCAA	14529
5538	CAAUCCGA G CGCCUUCU	5781	AGAAGGCG GGCTAGCTACAACGA TCGGATTG	14530
5536	AUCCGAGC G CCUUCUGC	5782	GCAGAAGG GGCTAGCTACAACGA GCTCGGAT	14531
5529	CGCCUUCU G CUUGAACU	5783	AGTTCAAG GGCTAGCTACAACGA AGAAGGCG	14532
5523	CUGCUUGA A CUGCUCGG	5784	CCGAGCAG GGCTAGCTACAACGA TCAAGCAG	14533
5520	CUUGAACU G CUCGGCGA	5785	TCGCGCGA GGCTAGCTACAACGA AGTTCAAG	14534
5515	ACUGCUCG G CGAGCUGC	5786	GCAGCTCG GGCTAGCTACAACGA CGAGCAGT	14535
5511	CUCGGCGA G CUGCAUCC	5787	GGATGCAG GGCTAGCTACAACGA TCGCCGAG	14536
5508	GGCGAGCU G CAUCCCCU	5788	AGGGGATG GGCTAGCTACAACGA AGCTGCC	14537
5506	CGAGCUGC A UCCCCUGU	5789	ACAGGGGA GGCTAGCTACAACGA GCAGCTCG	14538
5499	CAUCCCCU G UUCGAUGU	5790	ACATCGAA GGCTAGCTACAACGA AGGGGATG	14539
5494	CCUGUUCG A UGUAAGGG	5791	CCCTTACA GGCTAGCTACAACGA CGAACAGG	14540
5492	UGUUCGAU G UAAGGGAG	5792	CTCCCTTA GGCTAGCTACAACGA ATCGAACAA	14541
5483	UAAGGGAG G UGUGAGGC	5793	GCCTCACA GGCTAGCTACAACGA CTCCCTTA	14542
5481	AGGGAGGU G UGAGGCAC	5794	GTGCCTCA GGCTAGCTACAACGA ACCTCCCT	14543
5476	GGUGUGAG G CACACUCC	5795	GGAGTGTG GGCTAGCTACAACGA CTCACACC	14544
5474	UGUGAGGC A CACUCCUC	5796	GAGGAGTG GGCTAGCTACAACGA GCCTCACA	14545
5472	UGAGGCAC A CUCCUCCA	5797	TGGAGGAG GGCTAGCTACAACGA GTGCCTCA	14546
5464	ACUCCUCC A UCUCAUCG	5798	CGATGAGA GGCTAGCTACAACGA GGAGGAGT	14547
5459	UCCAUCUC A UCGAACUC	5799	GAGTCGAA GGCTAGCTACAACGA GAGATGGA	14548
5454	CUCAUCGA A CUCCUGGU	5800	ACCAGGAG GGCTAGCTACAACGA TCGATGAG	14549
5447	AACUCCUG G UAGAGAGC	5801	GCTCTCTA GGCTAGCTACAACGA CAGGAGTT	14550
5440	GGUAGAGA G CCUCCUG	5802	CAGGGAGG GGCTAGCTACAACGA TCTCTACC	14551
5432	GCCUCCCU G UCGGGGAU	5803	ATCCCCGA GGCTAGCTACAACGA AGGGAGGC	14552
5425	UGUCGGGG A UAACAGCC	5804	GGCTGTTA GGCTAGCTACAACGA CCCCCACA	14553
5422	CGGGGAUA A CAGCCGGC	5805	GCCGGCTG GGCTAGCTACAACGA TATCCCCG	14554
5419	GGAUAAACA G CCGGCUUC	5806	GAAGCCGG GGCTAGCTACAACGA TGTTATCC	14555
5415	AACAGCCG G CUUCCCAG	5807	CCGGGAAG GGCTAGCTACAACGA CGGCTGTT	14556
5406	CUUCCCAG A CAAGAUGA	5808	TCATCTTG GGCTAGCTACAACGA CCGGGAAAG	14557
5401	CGGACAAG A UGAUUCUG	5809	CAGAATCA GGCTAGCTACAACGA CTTGTCCG	14558
5398	ACAAGAUG A UUCUGCCC	5810	GGGCAGAA GGCTAGCTACAACGA CATCTTGT	14559
5393	AUGAUUCU G CCCACAAU	5811	ATTGTGGG GGCTAGCTACAACGA AGAATCAT	14560
5389	UUCUGCCC A CAAUGACC	5812	GGTCATTG GGCTAGCTACAACGA GGGCAGAA	14561
5386	UGCCCACA A UGACCACG	5813	CGTGGTCA GGCTAGCTACAACGA TGTGGGCA	14562
5383	CCACAAUG A CCACGCUG	5814	CAGCGTGG GGCTAGCTACAACGA CATTGTGG	14563
5380	CAAUGACC A CGCUGCCU	5815	AGGCAGCG GGCTAGCTACAACGA GGTTCATTG	14564
5378	AUGACCAC G CUGCCUGU	5816	ACAGGCAG GGCTAGCTACAACGA GTGGTCAT	14565
5375	ACCACGCU G CCUGUCGU	5817	ACGACAGG GGCTAGCTACAACGA AGCGTGGT	14566

5371	CGCUGCCU G UCGUCAGG	5818	CCTGACGA GGCTAGCTACAACGA AGGCAGCG	14567
5368	UGCCUGUC G UCAGGCAA	5819	TTGCCTGA GGCTAGCTACAACGA GACAGGCA	14568
5363	GUCCUGAG G CAAUACGC	5820	GCGTATTG GGCTAGCTACAACGA CTGACGAC	14569
5360	GUCAGGCA A UACGCGGU	5821	ACCGCGTA GGCTAGCTACAACGA TGCCTGAC	14570
5358	CAGGCAAU A CGCGGUCA	5822	TGACCGCG GGCTAGCTACAACGA ATTGCCTG	14571
5356	GGCAAUAC G CGGUCAGA	5823	TCTGACCG GGCTAGCTACAACGA GTATTGCC	14572
5353	AAUACGCG G UCAGAGCU	5824	AGCTCTGA GGCTAGCTACAACGA CGCGTATT	14573
5347	CGGUCAGA G CUGCCAGG	5825	CCTGGCAG GGCTAGCTACAACGA TCTGACCG	14574
5344	UCAGAGCU G CCAGGACG	5826	CGTCCTGG GGCTAGCTACAACGA AGCTCTGA	14575
5338	CUGCCAGG A CGCCACCU	5827	AGGTGGCG GGCTAGCTACAACGA CCTGGCAG	14576
5336	GCCAGGAC G CCACCUAC	5828	GTAGGTGG GGCTAGCTACAACGA GTCCTGGC	14577
5333	AGGACGCC A CCUACUAG	5829	CTAGTAGG GGCTAGCTACAACGA GGCGTCCT	14578
5329	CGCCACCU A CUAGCACC	5830	GGTGCTAG GGCTAGCTACAACGA AGGTGGCG	14579
5325	ACCUACUA G CACCCAGG	5831	CCTGGGTG GGCTAGCTACAACGA TAGTAGGT	14580
5323	CUACUAGC A CCCAGGUG	5832	CACCTGGG GGCTAGCTACAACGA GCTAGTAG	14581
5317	GCACCCAG G UGCUGGUG	5833	CACCAAGCA GGCTAGCTACAACGA CTGGGTGC	14582
5315	ACCCAGGU G CUUGGUGAC	5834	GTCACCAAG GGCTAGCTACAACGA ACCTGGGT	14583
5311	AGGUGCUG G UGACGACC	5835	GGTCGTCA GGCTAGCTACAACGA CAGCACCT	14584
5308	UGCUGGUG A CGACCUCC	5836	GGAGGTCG GGCTAGCTACAACGA CACCAAGCA	14585
5305	UGGUGACG A CCUCCAGG	5837	CCTGGAGG GGCTAGCTACAACGA CGTCACCA	14586
5297	ACCUCCAG G UCAGCCGA	5838	TCGGCTGA GGCTAGCTACAACGA CTGGAGGT	14587
5293	CCAGGUCA G CCGACAAUG	5839	CATGTCGG GGCTAGCTACAACGA TGACCTGG	14588
5289	GUCAGGCC A CAUGCAUG	5840	CATGCATG GGCTAGCTACAACGA CGGCTGAC	14589
5287	CAGCCGAC A UGCAUGUC	5841	GACATGCA GGCTAGCTACAACGA GTCGGCTG	14590
5285	GCCGACAU G CAUGUCAU	5842	ATGACATG GGCTAGCTACAACGA ATGTCGGC	14591
5283	CGACAUGC A UGUCAUGA	5843	TCATGACA GGCTAGCTACAACGA GCATGTCG	14592
5281	ACAUGCAU G UCAUGAUG	5844	CATCATGA GGCTAGCTACAACGA ATGCATGT	14593
5278	UGCAUGUC A UGAUGUAU	5845	ATACATCA GGCTAGCTACAACGA GACATGCA	14594
5275	AUGUCAUG A UGUAUUUG	5846	CAAATACA GGCTAGCTACAACGA CATGACAT	14595
5273	GUCAUGAU G UAUUUGGU	5847	ACCAAATA GGCTAGCTACAACGA ATCATGAC	14596
5271	CAUGAUGU A UUUGGUUA	5848	TAACCAAA GGCTAGCTACAACGA ACATCATG	14597
5266	UGUAUUUG G UUAUGGGG	5849	CCCCATAA GGCTAGCTACAACGA CAAATACA	14598
5263	AUUUGGUU A UGGGGUGU	5850	ACACCCCCA GGCTAGCTACAACGA AACCAAAT	14599
5258	GUUAUGGG G UGUGUGAG	5851	CTCACACAA GGCTAGCTACAACGA CCCATAAC	14600
5256	UAUGGGGU G UGUGAGGG	5852	CCCTCACAA GGCTAGCTACAACGA ACCCCATA	14601
5254	UGGGGUGU G UGAGGGUG	5853	CACCCCTCA GGCTAGCTACAACGA ACACCCCCA	14602
5248	GUGUGAGG G UGACAUCA	5854	TGATGTCA GGCTAGCTACAACGA CCTCACAC	14603
5245	UGAGGGUG A CAUCAUUU	5855	AAATGATG GGCTAGCTACAACGA CACCCCTCA	14604
5243	AGGGUGAC A UCAUUUUG	5856	CAAAATGA GGCTAGCTACAACGA GTCACCCCT	14605
5240	GUGACAUCA UUUUGGAC	5857	GTCCAAAAA GGCTAGCTACAACGA GATGTCAC	14606
5233	CAUUUUGG A CGGCUCCU	5858	AGGAGCCG GGCTAGCTACAACGA CCAAAATG	14607
5230	UUUGGACG G CUCCUAGC	5859	GCTAGGAG GGCTAGCTACAACGA CGTCCAAA	14608
5223	GGCUCCUA G CCUUAUACA	5860	TGTATAGG GGCTAGCTACAACGA TAGGAGCC	14609
5219	CCUAGCCU A UACAGCAG	5861	CTGCTGTA GGCTAGCTACAACGA AGGCTAGG	14610
5217	UAGCCUAU A CAGCAGGG	5862	CCCTGCTG GGCTAGCTACAACGA ATAGGCTA	14611
5214	CCUUAUACA G CAGGGGUG	5863	CACCCCTG GGCTAGCTACAACGA TGTATAGG	14612
5208	CAGCAGGG G UGUUGGCC	5864	GGCCAACA GGCTAGCTACAACGA CCCTGCTG	14613
5206	GCAGGGGU G UUGGCCCG	5865	CGGGCCAA GGCTAGCTACAACGA ACCCCCTGC	14614
5202	GGGUGUUG G CCCGUGUA	5866	TACACGGG GGCTAGCTACAACGA CAACACCC	14615
5198	GUUGGCC G UGUAGCGU	5867	ACGCTACA GGCTAGCTACAACGA GGGCCAAC	14616
5196	UGGCCCGU G UAGCGUAG	5868	CTACGCTA GGCTAGCTACAACGA ACGGGCCA	14617
5193	CCCGUGUA G CGUAGGCC	5869	AGCCTACG GGCTAGCTACAACGA TACACGGG	14618
5191	CGUGUAGC G UAGGCCUU	5870	AAAGCCTA GGCTAGCTACAACGA GCTACACG	14619
5187	UAGCGUAG G CUUUAGCC	5871	GGCTAAAG GGCTAGCTACAACGA CTACGCTA	14620
5181	AGGCCUUUA G CCGUGUGA	5872	TCACACGG GGCTAGCTACAACGA TAAAGCCT	14621
5178	CUUUAGCC G UGUGAGAC	5873	GTCTCACAA GGCTAGCTACAACGA GGCTAAAG	14622

5176	UUAGCCGU G UGAGACAC	5874	GTGTCTCA GGCTAGCTACAACGA ACGGCTAA	14623
5171	CGUGUGAG A CACUCCA	5875	TGGAAGTG GGCTAGCTACAACGA CTCACACG	14624
5169	UGUGAGAC A CUUCCACA	5876	TGTGGAAG GGCTAGCTACAACGA GTCTCACA	14625
5163	ACACCUCC A CAUUGAU	5877	ATCAAATG GGCTAGCTACAACGA GGAAGTGT	14626
5161	ACUCCAC A UUUGAUCC	5878	GGATCAA GGCTAGCTACAACGA GTGGAAGT	14627
5156	CACAUUUG A UCCCACGA	5879	TCGTGGGA GGCTAGCTACAACGA CAAATGTG	14628
5151	UUGAUCCC A CGAUGGGG	5880	CCCCATCG GGCTAGCTACAACGA GGGATCAA	14629
5148	AUCCCACG A UGGGGGUG	5881	CACCCCCA GGCTAGCTACAACGA CGTGGGAT	14630
5142	CGAUGGGG G UGGAGCCU	5882	AGGCTCCA GGCTAGCTACAACGA CCCCATCG	14631
5137	GGGGUGGA G CCUGAGCC	5883	GGCTCAGG GGCTAGCTACAACGA TCCACCCC	14632
5131	GAGCCUGA G CCCUGGCG	5884	CGCCAGGG GGCTAGCTACAACGA TCAGGGCTC	14633
5125	GAGCCUG G CGCACACU	5885	AGTGTGCG GGCTAGCTACAACGA CAGGGCTC	14634
5123	GCCUGGC G CACACUGU	5886	ACAGTGTG GGCTAGCTACAACGA GCCAGGGC	14635
5121	CCUGGCGC A CACUGUGG	5887	CCACAGTG GGCTAGCTACAACGA GCGCCAGG	14636
5119	UGGCGCAC A CUGUGGCU	5888	AGCCACAG GGCTAGCTACAACGA GTGCGCCA	14637
5116	CGCACACU G UGGCUUUG	5889	CCAAGCCA GGCTAGCTACAACGA AGTGTGCG	14638
5113	ACACUGUG G CUUGGUAU	5890	ATACCAAG GGCTAGCTACAACGA CACAGTGT	14639
5108	GUGGUUUG G UAUGCUAC	5891	GTAGCATA GGCTAGCTACAACGA CAAGCCAC	14640
5106	GGCUUGGU A UGCUACCA	5892	TGGTAGCA GGCTAGCTACAACGA ACCAAGCC	14641
5104	CUUGGUAU G CUACCAAG	5893	CCTGGTAG GGCTAGCTACAACGA ATACCAAG	14642
5101	GGUAUGCU A CCAGGUAG	5894	CTACCTGG GGCTAGCTACAACGA AGCATACC	14643
5096	GCUACCAG G UAGGGGAG	5895	CTCCCCTA GGCTAGCTACAACGA CTGGTAGC	14644
5087	UAGGGGAG G UUUUCUCC	5896	GGAGAAAA GGCTAGCTACAACGA CTCCCCTA	14645
5077	UUUCUCCU G CCUGCUUG	5897	CAAGCAGG GGCTAGCTACAACGA AGGAGAAA	14646
5073	UCCUGCCU G CUUGGUU	5898	AGACCAAG GGCTAGCTACAACGA AGGCAGGA	14647
5068	CCUGCUUG G UCUGGGAC	5899	GTCCCAGA GGCTAGCTACAACGA CAAGCAGG	14648
5061	GGUCUGGG A CAAGAACU	5900	ACTTCTTG GGCTAGCTACAACGA CCCAGACC	14649
5054	GACAAGAA G UGGGCAUC	5901	GATGCCCA GGCTAGCTACAACGA TTCTTGTC	14650
5050	AGAAGUGG G CAUCUAUG	5902	CATAGATG GGCTAGCTACAACGA CCACTTCT	14651
5048	AAGUGGGC A UCUAUGUG	5903	CACATAGA GGCTAGCTACAACGA GCCCACTT	14652
5044	GGGCAUCU A UGUGGGUG	5904	CACCCACA GGCTAGCTACAACGA AGATGCC	14653
5042	GCAUCUAU G UGGGUGAG	5905	CTCACCCA GGCTAGCTACAACGA ATAGATGC	14654
5038	CUAUGUGG G UGAGGCCU	5906	AGGCCTCA GGCTAGCTACAACGA CCACATAG	14655
5033	UGGGUGAG G CCUGUGAA	5907	TTCACAGG GGCTAGCTACAACGA CTCACCCA	14656
5029	UGAGGCCU G UGAAGACA	5908	TGTCTTCA GGCTAGCTACAACGA AGGCCTCA	14657
5023	CUGUGAAG A CACCCUCC	5909	GGAGGGTG GGCTAGCTACAACGA CTTCACAG	14658
5021	GUGAACAC A CCCUCCCA	5910	TGGGAGGG GGCTAGCTACAACGA GTCTTCAC	14659
5010	CUCCCAGA A CUCCAGAU	5911	ATCTGGAG GGCTAGCTACAACGA TCTGGGAG	14660
5003	AACUCCAG A UGGUCCUG	5912	CAGGACCA GGCTAGCTACAACGA CTGGAGTT	14661
5000	UCCAGAUG G UCCUGGCA	5913	TGCCAGGA GGCTAGCTACAACGA CATCTGGA	14662
4994	UGGUCCUG G CAGAAGGG	5914	CCCTTCTG GGCTAGCTACAACGA CAGGACCA	14663
4986	GCAGAAGG G CAACCCUG	5915	CAGGGTTG GGCTAGCTACAACGA CCTTCTGC	14664
4983	GAAGGGCA A CCCUGGUG	5916	CACCAAGGG GGCTAGCTACAACGA TGCCCTTC	14665
4977	CAACCCUG G UGUAAUUA	5917	TAAATACA GGCTAGCTACAACGA CAGGGTTG	14666
4975	ACCCUGGU G UAAAAUAG	5918	CCTAAATA GGCTAGCTACAACGA ACCAGGGT	14667
4973	CCUGGUGU A UUUAGUA	5919	TACCTAAA GGCTAGCTACAACGA ACACCAGG	14668
4967	GUAAUUAG G UAAGCCCG	5920	CGGGCTTA GGCTAGCTACAACGA CTAAATAC	14669
4963	UUAGGUAA G CCCGCAAC	5921	GTTGCGGG GGCTAGCTACAACGA TTACCTAA	14670
4959	GUAAGCCC G CAACCUAA	5922	TTAGGTTG GGCTAGCTACAACGA GGGCTTAC	14671
4956	AGCCCGCA A CCUACCGG	5923	CCGTTAGG GGCTAGCTACAACGA TGCAGGGCT	14672
4951	GCAACCUA A CGGAGGUC	5924	GACCTCCG GGCTAGCTACAACGA TAGGTTGC	14673
4945	UAACGGAG G UCUCGGCG	5925	CGCCGAGA GGCTAGCTACAACGA CTCCGTTA	14674
4939	AGGUCUCG G CGGGCGUG	5926	CACGCCCG GGCTAGCTACAACGA CGAGACCT	14675
4935	CUCGGCGG G CGUGAGCU	5927	AGCTCACG GGCTAGCTACAACGA CCGCCGAG	14676
4933	CGGCGGGC G UGAGCUCG	5928	CGAGCTCA GGCTAGCTACAACGA GCCCCGCC	14677
4929	GGGCGUGA G CUCGUACC	5929	GGTACGAG GGCTAGCTACAACGA TCACGCC	14678

4925	GUGAGCUC G UACCAAGC	5930	GCTTGGTA GGCTAGCTACAACGA GAGCTCAC	14679
4923	GAGCUCGU A CCAAGCAC	5931	GTGCTTGG GGCTAGCTACAACGA ACGAGCTC	14680
4918	CGUACCAA G CACAUCCC	5932	GGGATGTG GGCTAGCTACAACGA TTGGTACG	14681
4916	UACCAAGC A CAUCCCGC	5933	GCGGGATG GGCTAGCTACAACGA GCTTGGTA	14682
4914	CCAAGCAC A UCCCGCGU	5934	ACGCGGGA GGCTAGCTACAACGA GTGCTTGG	14683
4909	CACAUCCC G CGUCAUAG	5935	CTATGACG GGCTAGCTACAACGA GGGATGTG	14684
4907	CAUCCCGC G UCAUAGCA	5936	TGCTATGA GGCTAGCTACAACGA GCGGGATG	14685
4904	CCCGCGUC A UAGCACUC	5937	GAGTGCTA GGCTAGCTACAACGA GACGCGGG	14686
4901	GCGUCAUA G CACUCACA	5938	TGTGAGTG GGCTAGCTACAACGA TATGACGC	14687
4899	GUCAUAGC A CUCACACA	5939	TGTGTGAG GGCTAGCTACAACGA GCTATGAC	14688
4895	UAGCACUC A CACAGGAC	5940	GTCCTGTG GGCTAGCTACAACGA GAGTGCTA	14689
4893	GCACUCAC A CAGGACCG	5941	CGGTCCGT GGCTAGCTACAACGA GTGAGTGC	14690
4888	CACACAGG A CCGAGGAG	5942	CTCCTCGG GGCTAGCTACAACGA CCTGTGTTG	14691
4880	ACCGAGGA G UCGAACAU	5943	ATGTTCGA GGCTAGCTACAACGA TCCTCGGT	14692
4875	GGAGUCGA A CAUGCCCG	5944	CGGGCATG GGCTAGCTACAACGA TCGACTCC	14693
4873	AGUCGAAC A UGCCCCGAA	5945	TTCGGGCA GGCTAGCTACAACGA GTTCGACT	14694
4871	UCGAACAU G CCCGAAGG	5946	CCTTCGGG GGCTAGCTACAACGA ATGTTCGA	14695
4863	GCCCCGAA G CCGCUCUC	5947	GAGAGCGG GGCTAGCTACAACGA CTTCGGGC	14696
4860	CGAAGGCC G CUCUCCUG	5948	CAGGAGAG GGCTAGCTACAACGA GCCCTTCG	14697
4849	CUCCUGGA G UCACAAAC	5949	GTGGTGA GGCTAGCTACAACGA TCCAGGAG	14698
4846	CUGGAGUC A CAAACCUG	5950	CAGGTTTG GGCTAGCTACAACGA GACTCCAG	14699
4842	AGUCACAA A CCUGUAAA	5951	TATACAGG GGCTAGCTACAACGA TTGTGACT	14700
4838	ACAAACCU G UUAUAGCC	5952	GGCATATA GGCTAGCTACAACGA AGGTTTGT	14701
4836	AAACCUGU A UAUGCCUC	5953	GAGGCATA GGCTAGCTACAACGA ACAGGTTT	14702
4834	ACCUGUAA U UGCCUCUC	5954	GAGAGGCA GGCTAGCTACAACGA ATACAGGT	14703
4832	CUGUAAAU G CCUCUCCU	5955	AGGAGAGG GGCTAGCTACAACGA ATATACAG	14704
4823	CCUCUCCU G CCCCCUACC	5956	GGTAGGGG GGCTAGCTACAACGA AGGAGAGG	14705
4817	CUGCCCCU A CCGGUCCU	5957	AGGACCGG GGCTAGCTACAACGA AGGGCAG	14706
4813	CCCUACCG G UCCUACCU	5958	AGGTAGGA GGCTAGCTACAACGA CGGTAGGG	14707
4808	CCGGUCCU A CCUCGCCU	5959	AGGCGAGG GGCTAGCTACAACGA AGGACCGG	14708
4803	CCUACCUC G CCUCUGCG	5960	CGCAGAGG GGCTAGCTACAACGA GAGGTAGG	14709
4797	UCGCCUCU G CGAGCGGG	5961	CCCGCTCG GGCTAGCTACAACGA AGAGGCGA	14710
4793	CUCUGCGA G CGGGACAC	5962	GTGTCCCC GGCTAGCTACAACGA TCGCAGAG	14711
4788	CGAGCGGG A CACUGCGU	5963	ACGCAGTG GGCTAGCTACAACGA CCCGCTCG	14712
4786	AGCGGGAC A CUGCGUCU	5964	AGACGCAG GGCTAGCTACAACGA GTCCCGCT	14713
4783	GGGACACU G CGUCUUGG	5965	CCAAGACG GGCTAGCTACAACGA AGTGTCCC	14714
4781	GACACUGC G UCUUGGGG	5966	CCCCAAGA GGCTAGCTACAACGA GCAGTGTG	14715
4773	GUCUUGGG G CACGGUCG	5967	CGACCGTG GGCTAGCTACAACGA CCCAAGAC	14716
4771	CUUGGGGC A CGGUCGUC	5968	GACGACCG GGCTAGCTACAACGA GCCCCAAG	14717
4768	GGGCACG G UCGUCGUC	5969	GACGACGA GGCTAGCTACAACGA CGTGCCCC	14718
4765	GCACGGUC G UCGUCUCA	5970	TGAGACGA GGCTAGCTACAACGA GACCGTGC	14719
4762	CGGUCGUC G UCUCAAUG	5971	CATTGAGA GGCTAGCTACAACGA GACGACCG	14720
4756	UCGUCUCA A UGGUGAAG	5972	CTTCACCA GGCTAGCTACAACGA TGAGACGA	14721
4753	UCUCAAUG G UGAAGGUA	5973	TACCTTCA GGCTAGCTACAACGA CATTGAGA	14722
4747	UGGUGAAG G UAGGGUCC	5974	GGACCCCTA GGCTAGCTACAACGA CTTCACCA	14723
4742	AAGGUAGG G UCCAAGCU	5975	AGCTTGGG GGCTAGCTACAACGA CCTACCTT	14724
4736	GGGUCCAA G CUGAAGUC	5976	GACTTCAG GGCTAGCTACAACGA TTGGACCC	14725
4730	AAGCUGAA G UCGACUGU	5977	ACAGTCGA GGCTAGCTACAACGA TTCAGCTT	14726
4726	UGAAGUCG A CUGUUUGG	5978	CCAAACAG GGCTAGCTACAACGA CGACTTCA	14727
4723	AGUCGACU G UUUGGGUG	5979	CACCCAAA GGCTAGCTACAACGA AGTCGACT	14728
4717	CUGUUUGG G UGACACAU	5980	ATGTTGTC GGCTAGCTACAACGA CAAACAG	14729
4714	UUUGGGUG A CACAUGUA	5981	TACATGTG GGCTAGCTACAACGA CACCCAAA	14730
4712	UGGGUGAC A CAUGUAAU	5982	AATACATG GGCTAGCTACAACGA GTCACCCA	14731
4710	GGUGACAC A UGUAAUAC	5983	GTAATACA GGCTAGCTACAACGA GTGTCACC	14732
4708	UGACACAU G UAUUACAG	5984	CTGTAATA GGCTAGCTACAACGA ATGTTGTC	14733
4706	ACACAUGU A UUACAGUC	5985	GACTGTAA GGCTAGCTACAACGA ACATGTGT	14734

4703	CAUGUAUU A CAGUCGAU	5986	ATCGACTG GGCTAGCTACAACGA AATAACATG	14735
4700	GUAIUUACA G UCGAUCAC	5987	GTGATCGA GGCTAGCTACAACGA TGTAAATAC	14736
4696	UACAGUCG A UCACCGAG	5988	CTCGGTGA GGCTAGCTACAACGA CGACTGTA	14737
4693	AGUCGAUC A CCGAGUCA	5989	TGACTCGG GGCTAGCTACAACGA GATCGACT	14738
4688	AUCACCGA G UCACAAUC	5990	GATTTTGA GGCTAGCTACAACGA TCGGGTAT	14739
4682	GAGUCAAA A UCGCCGGU	5991	ACCGGGCGA GGCTAGCTACAACGA TTTGACTC	14740
4679	UCAACAAUC G CCGGGUAUA	5992	TATACCGG GGCTAGCTACAACGA GATTTTGA	14741
4675	AAUCGCCG G UAUAGCCC	5993	GGGCTATA GGCTAGCTACAACGA CGGGCGATT	14742
4673	UCGCCGGU A UAGCCCGU	5994	ACGGGCTA GGCTAGCTACAACGA ACCGGCGA	14743
4670	CCGGUUAUA G CCCGUCAU	5995	ATGACGGG GGCTAGCTACAACGA TATACCGG	14744
4666	UAUAGCCC G UCAUUAGA	5996	TCTAATGA GGCTAGCTACAACGA GGGCTATA	14745
4663	AGCCCGUC A UUAGAGCG	5997	CGCTCTAA GGCTAGCTACAACGA GACGGGCT	14746
4657	UCAUUAGA G CGUCUGUU	5998	AACAGACG GGCTAGCTACAACGA TCTAATGA	14747
4655	AUUAGAGC G UCUGUUGC	5999	GCAACAGA GGCTAGCTACAACGA GCTCTAAT	14748
4651	GAGCGUCU G UUGCCACG	6000	CGTGGCAA GGCTAGCTACAACGA AGACGCTC	14749
4648	CGUCUGUU G CCACGACA	6001	TGTCGTGG GGCTAGCTACAACGA AACAGACG	14750
4645	CUGUUGGC A CGACAAACG	6002	CGTTGTG GGCTAGCTACAACGA GGCAACAG	14751
4642	UUGCCACG A CAACGACG	6003	CGTCGTTG GGCTAGCTACAACGA CGTGGCAA	14752
4639	CCACGACA A CGACGUCC	6004	GGACGTCG GGCTAGCTACAACGA TGTCGTGG	14753
4636	CGACAAACG A CGUCCCCG	6005	CGGGGACG GGCTAGCTACAACGA CGTTGTG	14754
4634	ACAACGAC G UCCCCGCU	6006	AGCGGGGA GGCTAGCTACAACGA GTCTTGT	14755
4628	ACGUCCCC G CUGGCCGG	6007	CCGGCCAG GGCTAGCTACAACGA GGGGACGT	14756
4624	CCCCGCUG G CCGGUAUG	6008	CATACCGG GGCTAGCTACAACGA CAGCGGGG	14757
4620	GCUGGCCG G UAUGACGG	6009	CCGTCATA GGCTAGCTACAACGA CGGCCAGC	14758
4618	UGGCCGGU A UGACGGAC	6010	GTCCGTCA GGCTAGCTACAACGA ACCGGCCA	14759
4615	CCGUAUAG A CGGACACG	6011	CGTGTCCG GGCTAGCTACAACGA CATACCGG	14760
4611	UAUGACGG A CACGUCGA	6012	TCGACGTG GGCTAGCTACAACGA CCGTCATA	14761
4609	UGACGGAC A CGUCGAGA	6013	TCTCGACG GGCTAGCTACAACGA GTCCGTCA	14762
4607	ACGGACAC G UCGAGACC	6014	GGTCTCGA GGCTAGCTACAACGA GTGTCCGT	14763
4601	ACGUCGAG A CCCCGUA	6015	TACCGGGG GGCTAGCTACAACGA CTCGACGT	14764
4595	AGACCCCG G UAAAACGC	6016	GGGTATTA GGCTAGCTACAACGA CGGGGTCT	14765
4592	CCCCGGUA A UACGCUAC	6017	GTAGCGTA GGCTAGCTACAACGA TACCGGGG	14766
4590	CCGUAUAA A CGCUACAG	6018	CTGTAGCG GGCTAGCTACAACGA ATTACCGG	14767
4588	GGUAAUAC G CUACAGCG	6019	CGCTGTAG GGCTAGCTACAACGA GTATTACC	14768
4585	AAUACGCU A CAGCGUUA	6020	TAACGCTG GGCTAGCTACAACGA AGCGTATT	14769
4582	ACGUACUA G CGUUAAGU	6021	ACTTAACG GGCTAGCTACAACGA TGTAGCGT	14770
4580	GCUACAGC G UUAAGUCC	6022	GGACTTAA GGCTAGCTACAACGA GCTGTAGC	14771
4575	AGCGUAAA G UCCGAGGC	6023	GCCTCGGA GGCTAGCTACAACGA TTAACGCT	14772
4568	AGUCCGAG G CCCGACAG	6024	CTGTCGGG GGCTAGCTACAACGA CTCGGACT	14773
4563	GAGGCCCG A CAGCUUUG	6025	CAAAGCTG GGCTAGCTACAACGA CGGGCCTC	14774
4560	GCCCCACA G CUUUGCAG	6026	CTGCAAAG GGCTAGCTACAACGA TGTCGGGC	14775
4555	ACAGCUUU G CAGCGAGC	6027	GCTCGCTG GGCTAGCTACAACGA AAAGCTGT	14776
4552	GCUUUGCA G CGAGCUCG	6028	CGAGCTCG GGCTAGCTACAACGA TGCAAAGC	14777
4548	UGCAGCGA G CUCGUCAC	6029	GTGACGAG GGCTAGCTACAACGA TCGCTGCA	14778
4544	GCGAGCUC G UCACAUUU	6030	AAATGTGA GGCTAGCTACAACGA GAGCTCGC	14779
4541	AGCUCGUC A CAUUCUU	6031	AAGAAATG GGCTAGCTACAACGA GACGAGCT	14780
4539	CUCGUCAC A UUUCUUCU	6032	AGAAGAAA GGCTAGCTACAACGA GTGACGAG	14781
4526	UUCUUGGA A UGGCAGAA	6033	TTCTGCCA GGCTAGCTACAACGA TCCAAGAA	14782
4523	UUGGAAUAG G CAGAAGAU	6034	ATCTTCTG GGCTAGCTACAACGA CATTCCAA	14783
4516	GGCAGAAG A UGAGAUGC	6035	GCATCTCA GGCTAGCTACAACGA CTTCTGCC	14784
4511	AAGAUGAG A UGCCUCCC	6036	GGGAGGCA GGCTAGCTACAACGA CTCATCTT	14785
4509	GAUGAGAU G CCUCCCCC	6037	GGGGGAGG GGCTAGCTACAACGA ATCTCATC	14786
4495	CCCCUUUG A UGGUCUCG	6038	CGAGACCA GGCTAGCTACAACGA CAAAGGG	14787
4492	CUUUGAUG G UCUCGAUG	6039	CATCGAGA GGCTAGCTACAACGA CATCAAAG	14788
4486	UGGUCUCG A UGGGGAUG	6040	CATCCCCA GGCTAGCTACAACGA CGAGACCA	14789
4480	CGAUGGGG A UGGCUUUG	6041	CAAAGCCA GGCTAGCTACAACGA CCCCATCG	14790

4477	UGGGGAUG G CUUUGCCA	6042	TGGCAAAG GGCTAGCTACAACGA CATCCCCA	14791
4472	AUGGCUUU G CCAUAGAA	6043	TTCTATGG GGCTAGCTACAACGA AAAGCCAT	14792
4469	GCUUUGCC A UAGAAGGG	6044	CCCTTCTA GGCTAGCTACAACGA GGCAAAGC	14793
4459	AGAAGGGG A UCUCUCCG	6045	CGGAGAGA GGCTAGCTACAACGA CCCCTTCT	14794
4450	UCUCUCCG G UGUUGGAC	6046	GTCCAACA GGCTAGCTACAACGA CGGAGAGA	14795
4448	UCUCCGGU G UUGGACAA	6047	TTGTCCAA GGCTAGCTACAACGA ACCGGAGA	14796
4443	GGUGUUGG A CAAGGCUA	6048	TAGCCTTG GGCTAGCTACAACGA CCAACACC	14797
4438	UGGACAAG G CUAUCUCC	6049	GGAGATAG GGCTAGCTACAACGA CTTGTCCA	14798
4435	ACAAGGCU A UCUCUCG	6050	CGAGGAGA GGCTAGCTACAACGA AGCCTTGT	14799
4426	UCUCCUCG A UGUUGGGG	6051	TCCCAACA GGCTAGCTACAACGA CGAGGAGA	14800
4424	UCCUCGAU G UUGGGGAUG	6052	CATCCCAA GGCTAGCTACAACGA ATCGAGGA	14801
4418	AUGUUGGG A UGUGGCAC	6053	GTGCCACA GGCTAGCTACAACGA CCCAACAT	14802
4416	GUUGGGAU G UGGCACGG	6054	CCGTGCCA GGCTAGCTACAACGA ATCCCAAC	14803
4413	GGGAUGUG G CACGGUGA	6055	TCACCGTG GGCTAGCTACAACGA CACATCCC	14804
4411	GAUGUGGC A CGGUGACC	6056	GGTCACCG GGCTAGCTACAACGA GCCACATC	14805
4408	GUGGCACG G UGACCGAU	6057	ATCGGTCA GGCTAGCTACAACGA CGTGCCAC	14806
4405	GCACGGUG A CCGAUCCC	6058	GGGATCGG GGCTAGCTACAACGA CACCGTGC	14807
4401	GGUGACCG A UCCCAGG	6059	CTCCGGGA GGCTAGCTACAACGA CGGTACCC	14808
4392	UCCCGGAG G CGUAGCGG	6060	CCGCTACG GGCTAGCTACAACGA CTCCGGGA	14809
4390	CCGGAGGC G UAGCGGUG	6061	CACCGCTA GGCTAGCTACAACGA GCCTCCGG	14810
4387	GAGGCGUA G CGGUGGCG	6062	CGCCACCG GGCTAGCTACAACGA TACGCCCTC	14811
4384	GCGUAGCG G UGGCGAGC	6063	GCTCGCCA GGCTAGCTACAACGA CGCTACGC	14812
4381	UAGCGGUG G CGAGCACG	6064	CGTGCTCG GGCTAGCTACAACGA CACCGCTA	14813
4377	GGUGGCGA G CACGACGA	6065	TCGTCGTG GGCTAGCTACAACGA TCGCCACC	14814
4375	UGGCGAGC A CGACGAGC	6066	GCTCGTCG GGCTAGCTACAACGA GCTCGCCA	14815
4372	CGAGCACG A CGAGCCGC	6067	GCGGCTCG GGCTAGCTACAACGA CGTGCTCG	14816
4368	CACGACGA G CCGCGCUC	6068	GAGCGCGG GGCTAGCTACAACGA TCGTCGTG	14817
4365	GACCGAGCC G CGCUCCAG	6069	CTGGAGCG GGCTAGCTACAACGA GGCTCGTC	14818
4363	CGAGCCGC G CUCCAGCC	6070	GGCTGGAG GGCTAGCTACAACGA GCGGCTCG	14819
4357	GCGCUCCA G CCGUCUCC	6071	GGAGACGG GGCTAGCTACAACGA TGGAGCGC	14820
4354	CUCCAGCC G UCUCCGCU	6072	AGCGGAGA GGCTAGCTACAACGA GGCTGGAG	14821
4348	CCGUCUCC G CUUGGUCC	6073	GGACCAAG GGCTAGCTACAACGA GGAGACGG	14822
4343	UCCGCUUG G UCCAGGAC	6074	GTCCTGGA GGCTAGCTACAACGA CAAGCGGA	14823
4336	GGUCCAGG A CUGUGCCG	6075	CGGCACAG GGCTAGCTACAACGA CCTGGACC	14824
4333	CCAGGACU G UGCGGAUG	6076	CATCGGCA GGCTAGCTACAACGA AGTCCTGG	14825
4331	AGGACUGU G CCGAUGCC	6077	GGCATCGG GGCTAGCTACAACGA ACAGTCCT	14826
4327	CUGUGCCG A UGCCCCAA	6078	TTTGGGCA GGCTAGCTACAACGA CGGCACAG	14827
4325	GUGCCGAU G CCCAAAAAU	6079	ATTTTGGG GGCTAGCTACAACGA ATCGGCAC	14828
4318	UGCCAAA A UGGAAGUC	6080	GACTTCCA GGCTAGCTACAACGA TTTGGGCA	14829
4312	AAAUGGAA G UCGAGUCA	6081	TGACTCGA GGCTAGCTACAACGA TTCCATT	14830
4307	GAAGUCGA G UCAAUUGA	6082	TCAATTGA GGCTAGCTACAACGA TCGACTTC	14831
4303	UCGAGUCA A UUGAGUGG	6083	CCACTCAA GGCTAGCTACAACGA TGACTCGA	14832
4298	UCAAUUGA G UGGCACUC	6084	GAGTGCCA GGCTAGCTACAACGA TCAATTGA	14833
4295	AUUGAGUG G CACUCAUC	6085	GATGAGTG GGCTAGCTACAACGA CACTCAAT	14834
4293	UGAGUGGC A CUCAUCAC	6086	GTGATGAG GGCTAGCTACAACGA GCCACTCA	14835
4289	UGGCACUC A UCACACAU	6087	ATGTGTGA GGCTAGCTACAACGA GAGTGCCA	14836
4286	CACUCAUC A CACAUUAU	6088	ATAATGTG GGCTAGCTACAACGA GATGAGTG	14837
4284	CUCAUCAC A CAUUAUGA	6089	TCATAATG GGCTAGCTACAACGA GTGATGAG	14838
4282	CAUCACAC A UUAUGAUG	6090	CATCATAA GGCTAGCTACAACGA GTGTGATG	14839
4279	CACACAUU A UGAUGUCA	6091	TGACATCA GGCTAGCTACAACGA AATGTGTG	14840
4276	ACAUUAUG A UGUCAUAG	6092	CTATGACA GGCTAGCTACAACGA CATAATGT	14841
4274	AUUAUGAU G UCAUAGGC	6093	GCCTATGA GGCTAGCTACAACGA ATCATAAT	14842
4271	AUGAUGUC A UAGGCGCC	6094	GGCGCCTA GGCTAGCTACAACGA GACATCAT	14843
4267	UGUCAUAG G CGCCCCCA	6095	TGGGGGCG GGCTAGCTACAACGA CTATGACA	14844
4265	UCAUAGGC G CCCCCCAGA	6096	TCTGGGGG GGCTAGCTACAACGA GCCTATGA	14845
4256	CCCCCAGA G CAACCACC	6097	GGTGGTTG GGCTAGCTACAACGA TCTGGGGG	14846

4253	CCAGAGCA A CCACCGUC	6098	GACGGTGG GGCTAGCTACAACGA TGCTCTGG	14847
4250	GAGCAACC A CCGUCGGC	6099	GCCGACGG GGCTAGCTACAACGA GGTTGCTC	14848
4247	CAACCACC G UCGGCAAG	6100	CTTGCCGA GGCTAGCTACAACGA GGTGGTTG	14849
4243	CACCGUCG G CAAGGAAC	6101	GTTCCTTG GGCTAGCTACAACGA CGACGGTG	14850
4236	GGCAAGGA A CUUGCCAU	6102	ATGGCAAG GGCTAGCTACAACGA TCCTTGCC	14851
4232	AGGAACUU G CCAUAGGU	6103	ACCTATGG GGCTAGCTACAACGA AAGTTCCCT	14852
4229	AACUUGCC A UAGGUGGA	6104	TCCACCTA GGCTAGCTACAACGA GGCAAGTT	14853
4225	UGCCAUAG G UGGAGUAC	6105	GTACTCCA GGCTAGCTACAACGA CTATGGCA	14854
4220	UAGGUGGA G UACGUGAU	6106	ATCACGTA GGCTAGCTACAACGA TCCACCTA	14855
4218	GGUGGGAGU A CGUGAUGG	6107	CCATCACG GGCTAGCTACAACGA ACTCCACC	14856
4216	UGGAGUAC G UGAUGGGG	6108	CCCCATCA GGCTAGCTACAACGA GTACTCCA	14857
4213	AGUACGUG A UGGGGGCG	6109	CGCCCCCA GGCTAGCTACAACGA CACGTACT	14858
4207	UGAUGGGG G CGCCCGUG	6110	CACGGGCG GGCTAGCTACAACGA CCCCCATCA	14859
4205	AUGGGGGC G CCCGUGGU	6111	ACCACGGG GGCTAGCTACAACGA GCCCCCAT	14860
4201	GGGCGCCC G UGGUGAUG	6112	CATCACCA GGCTAGCTACAACGA GGGCGCCC	14861
4198	CGCCCGUG G UGAUGGGC	6113	GACCATCA GGCTAGCTACAACGA CACGGGCG	14862
4195	CCGUGGUG A UGGUCCUU	6114	AAGGACCA GGCTAGCTACAACGA CACCACGG	14863
4192	UGGUGAUG G UCCUUACC	6115	GGTAAGGA GGCTAGCTACAACGA CATCACCA	14864
4186	UGGUCCUU A CCCCAGUU	6116	AACTGGGG GGCTAGCTACAACGA AAGGACCA	14865
4180	UUACCCCCA G UUCUGAUG	6117	CATCAGAA GGCTAGCTACAACGA TGGGGTAA	14866
4174	CAGUUCUG A UGUUAGGA	6118	TCCTAACCA GGCTAGCTACAACGA CAGAACTG	14867
4172	GUUCUGAU G UUAGGAUC	6119	GATCCTAA GGCTAGCTACAACGA ATCAGAAC	14868
4166	AUGUUAGG A UCGACACC	6120	GGTGTGCA GGCTAGCTACAACGA CCTAACAT	14869
4162	UAGGAUCG A CACCGUGU	6121	ACACGGTG GGCTAGCTACAACGA CGATCCTA	14870
4160	GGAUCGAC A CCGUGUGC	6122	GCACACGG GGCTAGCTACAACGA GTCGATCC	14871
4157	UCGACACC G UGUGCCUU	6123	AAGGCACA GGCTAGCTACAACGA GGTGTGCA	14872
4155	GACACCGU G UGCCUUAG	6124	CTAAGGCA GGCTAGCTACAACGA ACGGTGTC	14873
4153	CACCGUGU G CCUUAGAC	6125	GTCTAAGG GGCTAGCTACAACGA ACACGGTG	14874
4146	UGCCUUAG A CAUUAUACG	6126	CGTATATG GGCTAGCTACAACGA CTAAGGCA	14875
4144	CCUUAGAC A UAUACGCC	6127	GGCGTATA GGCTAGCTACAACGA GTCTAAGG	14876
4142	UUAGACAU A UACGCC	6128	GGGGCGTA GGCTAGCTACAACGA ATGTCTAA	14877
4140	AGACAUAU A CGCCCCAA	6129	TTGGGGCG GGCTAGCTACAACGA ATATGTCT	14878
4138	ACAUAUAC G CCCCAAAC	6130	GTGGGGGG GGCTAGCTACAACGA GTATATGT	14879
4131	CGCCCCAA A CCCUAAGG	6131	CCTTAGGG GGCTAGCTACAACGA TTGGGGCG	14880
4123	ACCCUAAG G UGGCGGUA	6132	TACCGCCA GGCTAGCTACAACGA CTTAGGGT	14881
4120	CUAAGGUG G CGGUUACG	6133	CGTTACCG GGCTAGCTACAACGA CACCTTAG	14882
4117	AGGUGGCG G UAACGGAC	6134	GTCCGTTA GGCTAGCTACAACGA CGCCACCT	14883
4114	UGGCGGUA A CGGACGGA	6135	TCCGTCCG GGCTAGCTACAACGA TACCGCCA	14884
4110	GGUAAACGG A CGGAUUUA	6136	TAAATCCG GGCTAGCTACAACGA CCGTTACC	14885
4106	ACGGACGG A UUUAGGAC	6137	GTCCTAAA GGCTAGCTACAACGA CCGTCCGT	14886
4099	GAUUUAGG A CGAGCACU	6138	AGTGCTCG GGCTAGCTACAACGA CCTAAATC	14887
4095	UAGGACGA G CACUUUGU	6139	ACAAAGTG GGCTAGCTACAACGA TCGTCCTA	14888
4093	GGACGAGC A CUUUGUAC	6140	GTACAAAG GGCTAGCTACAACGA GCTCGTCC	14889
4088	AGCACUUU G UACCCUUG	6141	CAAGGGTA GGCTAGCTACAACGA AAAGTGCT	14890
4086	CACUUUGU A CCCUUGGG	6142	CCCAAGGG GGCTAGCTACAACGA ACAAAAGTG	14891
4078	ACCCUUGG G CUGCAUAU	6143	ATATGCAG GGCTAGCTACAACGA CCAAGGGT	14892
4075	CUUGGGCU G CAU AUGCA	6144	TGCATATG GGCTAGCTACAACGA AGCCCAAG	14893
4073	UGGGCUGC A UAU G CAGC	6145	GCTGCATA GGCTAGCTACAACGA GCAGCCCCA	14894
4071	GGCUGCAU A UGCAGCCG	6146	CGGCTGCA GGCTAGCTACAACGA ATGCAGCC	14895
4069	CUGCAUAU G CAGCCGGU	6147	ACCGGCTG GGCTAGCTACAACGA ATATGCAG	14896
4066	CAUAUGCA G CCGGUACC	6148	GGTACCGG GGCTAGCTACAACGA TGCATATG	14897
4062	UGCAGCCG G UACCUUAG	6149	CTAAGGTA GGCTAGCTACAACGA CGGCTGCA	14898
4060	CAGCCGGU A CCUUAGUG	6150	CACTAAGG GGCTAGCTACAACGA ACCGGCTG	14899
4054	GUACCUUA G UGCUCUUG	6151	CAAGAGCA GGCTAGCTACAACGA TAAGGTAC	14900
4052	ACCUUAGU G CUCUUGCC	6152	GGCAAGAG GGCTAGCTACAACGA ACTAAGGT	14901
4046	GUGCUCUU G CCGCUGCC	6153	GGCAGCGG GGCTAGCTACAACGA AAGAGCAC	14902

4043	CUCUUGCC G CUGCCAGU	6154	ACTGGCAG GGCTAGCTACAACGA GGCAAGAG	14903
4040	UUGCCGCU G CCAGUGGG	6155	CCCACTGG GGCTAGCTACAACGA AGCGGCAA	14904
4036	CGCUGCCA G UGGGAGCG	6156	CGCTCCCCA GGCTAGCTACAACGA TGGCAGCG	14905
4030	CAGUGGGA G CGUGUAGG	6157	CCTACACG GGCTAGCTACAACGA TCCCAC TG	14906
4028	GUGGGAGC G UGUAGGUG	6158	CACCTACA GGCTAGCTACAACGA GCTCCCAC	14907
4026	GGGAGCGU G UAGGUGGG	6159	CCCACCTA GGCTAGCTACAACGA ACGCTCCC	14908
4022	GCGUGUAG G UGGGCCAC	6160	GTGGCCCA GGCTAGCTACAACGA CTACACGC	14909
4018	GUAGGUGG G CCACUUGG	6161	CCAAGTGG GGCTAGCTACAACGA CCACCTAC	14910
4015	GGUGGGCC A CUUGGAAU	6162	ATTCCAAG GGCTAGCTACAACGA GGCCCACC	14911
4008	CACUUGGA A UGUCUGCG	6163	CGCAGACA GGCTAGCTACAACGA TCCAAGTG	14912
4006	CUUGGAAU G UCUGCGGU	6164	ACCGCAGA GGCTAGCTACAACGA ATTCCAAG	14913
4002	GAAUGUCU G CGGUACGG	6165	CCGTACCG GGCTAGCTACAACGA AGACATTC	14914
3999	UGUCUGCG G UACGGCUG	6166	CAGCCGTA GGCTAGCTACAACGA CGCAGACA	14915
3997	UCUGCGGU A CGGCUGGG	6167	CCCAGCCG GGCTAGCTACAACGA ACCGCAGA	14916
3994	GCGGUACG G CUGGGGGG	6168	CCCCCCAG GGCTAGCTACAACGA CGTACCGC	14917
3984	UGGGGGGG A CGAGUUGU	6169	ACAACCTG GGCTAGCTACAACGA CCCCCCCC	14918
3980	GGGGACGA G UUGUCCGU	6170	ACGGACAA GGCTAGCTACAACGA TCGTCCCC	14919
3977	GACCGAGUU G UCCGUGAA	6171	TTCACGGA GGCTAGCTACAACGA AACTCGTC	14920
3973	AGUUGUCC G UGAAGACC	6172	GGTCTTCA GGCTAGCTACAACGA GGACAAC	14921
3967	CCGUGAAG A CCGGGGAC	6173	GTCCCCGG GGCTAGCTACAACGA CTTCACGG	14922
3960	GACCGGGG A CCGCAUWG	6174	CCATGCGG GGCTAGCTACAACGA CCCCAGTC	14923
3957	CGGGGACC G CAUGGUAG	6175	CTACCATG GGCTAGCTACAACGA GGTCCCCG	14924
3955	GGGACCGC A UGGUAGUU	6176	AACTACCA GGCTAGCTACAACGA GCGGTCCC	14925
3952	ACCGCAUG G UAGUUUCC	6177	GGAAACTA GGCTAGCTACAACGA CATGCGGT	14926
3949	GCAUGGUA G UUUCCAUA	6178	TATGGAAA GGCTAGCTACAACGA TACCATGC	14927
3943	UAGUUUCC A UAGACUCA	6179	TGAGTCTA GGCTAGCTACAACGA GGAAACTA	14928
3939	UUCCAUAG A CUCAACGG	6180	CCGTTGAG GGCTAGCTACAACGA CTATGGAA	14929
3934	UAGACUCA A CGGGUAC	6181	TGTACCCG GGCTAGCTACAACGA TGAGTCTA	14930
3930	CUCAACGG G UACAAAGU	6182	ACTTTGTA GGCTAGCTACAACGA CCGTTGAG	14931
3928	CAACGGGU A CAAAGUCC	6183	GGACTTTG GGCTAGCTACAACGA ACCCGTTG	14932
3923	GGUACAAA G UCCACCGC	6184	GGGGTGG GGCTAGCTACAACGA TTTGTACC	14933
3919	CAAAGUCC A CCGCCUUC	6185	GAAGGCAG GGCTAGCTACAACGA GGACTTG	14934
3916	AGUCCACC G CCUUCGCA	6186	TGCGAAGG GGCTAGCTACAACGA GGTGGACT	14935
3910	CCGCCUUC G CAACCCCC	6187	GGGGGTTG GGCTAGCTACAACGA GAAGGCAG	14936
3907	CCUUCGCA A CCCCCCGG	6188	CCGGGGGG GGCTAGCTACAACGA TGCGAAGG	14937
3898	CCCCCCGG G UGCACACA	6189	TGTGTGCA GGCTAGCTACAACGA CCGGGGGG	14938
3896	CCCCGGGU G CACACAGC	6190	GCTGTGTG GGCTAGCTACAACGA ACCCGGGG	14939
3894	CCGGGUGC A CACAGCAG	6191	CTGCTGTG GGCTAGCTACAACGA GCACCCGG	14940
3892	GGGUGCAC A CAGCAGCC	6192	GGCTGCTG GGCTAGCTACAACGA GTGCACCC	14941
3889	UGCACACA G CAGCCCGG	6193	CCGGGCTG GGCTAGCTACAACGA TGTGTGCA	14942
3886	ACACAGCA G CCCGGAAG	6194	CTTCCGGG GGCTAGCTACAACGA TGCTGTGT	14943
3877	CCCGGAAG A UGCCCACA	6195	TGTGGGCA GGCTAGCTACAACGA CTTCCGGG	14944
3875	CGGAAGAU G CCCACAAC	6196	GTTGTGGG GGCTAGCTACAACGA ATCTTCCG	14945
3871	AGAUGCCC A CAACGUGC	6197	GCACGTTG GGCTAGCTACAACGA GGGCATCT	14946
3868	UGCCCACA A CGUGCCCC	6198	GGGGCACG GGCTAGCTACAACGA TGTGGGCA	14947
3866	CCCACAAC G UGCCCCGA	6199	TGGGGGCA GGCTAGCTACAACGA GTTGTGGG	14948
3864	CACAAACGU G CCCCAGA	6200	CTTCGGGG GGCTAGCTACAACGA ACGTTGTG	14949
3854	CCCGAAGG G CAGAGCAG	6201	CTGCTCTG GGCTAGCTACAACGA CCTTCGGG	14950
3849	AGGGCAGA G CAGUGGAC	6202	GTCCACTG GGCTAGCTACAACGA TCTGCCCT	14951
3846	GCAGAGCA G UGGACCAG	6203	GCAGGTCCA GGCTAGCTACAACGA TGCTCTGC	14952
3842	AGCAGUGG A CCGCCCGA	6204	TCGGGCGG GGCTAGCTACAACGA CCACTGCT	14953
3839	AGUGGACC G CCCGAGGA	6205	TCCTCGGG GGCTAGCTACAACGA GGTCCACT	14954
3830	CCCGAGGA G CCCUUCAA	6206	TTGAAGGG GGCTAGCTACAACGA TCCTCGGG	14955
3821	CCCUUCAA G UAGGAGAU	6207	ATCTCCTA GGCTAGCTACAACGA TTGAAGGG	14956
3814	AGUAGGAG A UGGGCCUG	6208	CAGGCCCA GGCTAGCTACAACGA CTCCTACT	14957
3810	GGAGAUGG G CCUGGGGG	6209	CCCCCAGG GGCTAGCTACAACGA CCATCTCC	14958

3801	CCUGGGGG A UAGUAAGC	6210	GCTTACTA GGCTAGCTACAACGA CCCCCAGG	14959
3798	GGGGGAUA G UAAGCUCC	6211	GGAGCTTA GGCTAGCTACAACGA TATCCCC	14960
3794	GAUAGUAA G CUCCCCU	6212	AGGGGGAG GGCTAGCTACAACGA TTACTATC	14961
3785	CUCCCCCU G CUGUCACC	6213	GGTGACAG GGCTAGCTACAACGA AGGGGGAG	14962
3782	CCCCUGCU G UCACCCCG	6214	CGGGGTGA GGCTAGCTACAACGA AGCAGGGG	14963
3779	CUGCUGUC A CCCCGCCG	6215	CGGCAGGG GGCTAGCTACAACGA GACAGCAG	14964
3774	GUCACCCC G CGGGCGCA	6216	TGCGCCGG GGCTAGCTACAACGA GGGGTGAC	14965
3770	CCCCGCCG G CGCACCGG	6217	CCGGTGC G GGCTAGCTACAACGA CGGCGGGG	14966
3768	CCGCCGGC G CACCGGAA	6218	TTCCGGTG GGCTAGCTACAACGA GCCGGCGG	14967
3766	GCCGGCGC A CCGGAAUG	6219	CATTCCGG GGCTAGCTACAACGA GCGCCGGC	14968
3760	GCACCGGA A UGACAUCA	6220	TGATGTCA GGCTAGCTACAACGA TCCGGTGC	14969
3757	CCGAAUAG A CAUCAGCG	6221	CGCTGATG GGCTAGCTACAACGA CATTCCGG	14970
3755	GGAAUAGAC A UCAGCGUG	6222	CACGCTGA GGCTAGCTACAACGA GTCATTCC	14971
3751	UGACAUCA G CGUGUCUC	6223	GAGACACG GGCTAGCTACAACGA TGATGTCA	14972
3749	ACAUCAGC G UGUCUCGU	6224	ACGAGACA GGCTAGCTACAACGA GCTGATGT	14973
3747	AUCAGCGU G UCUCGUGA	6225	TCACGAGA GGCTAGCTACAACGA ACGCTGAT	14974
3742	CGUGUCUC G UGACCAAG	6226	CTTGGTCA GGCTAGCTACAACGA GAGACACG	14975
3739	GUCUCGUG A CCAAGUAA	6227	TTACTTGG GGCTAGCTACAACGA CACGAGAC	14976
3734	GUGACCAA G UAAAGGUC	6228	GACCTTTA GGCTAGCTACAACGA TTGGTCAC	14977
3728	AAGUAAAG G UCCGAGCC	6229	GGCTCGGA GGCTAGCTACAACGA CTTTACTT	14978
3722	AGGUCCGA G CCGCCGCA	6230	TGCGGGCG GGCTAGCTACAACGA TCGGACCT	14979
3719	UCCGAGCC G CCGCAGGU	6231	ACCTGCGG GGCTAGCTACAACGA GGCTCGGA	14980
3716	GAGCCGCC G CAGGUGCA	6232	TGCACCTG GGCTAGCTACAACGA GGCGGCTC	14981
3712	CGCCGCAG G UGCAUGGU	6233	ACCATGCA GGCTAGCTACAACGA CTGCGGCG	14982
3710	CCGCAGGU G CAUGGUGU	6234	ACACCATG GGCTAGCTACAACGA ACCTGCGG	14983
3708	GCAGGUGC A UGGUGUCA	6235	TGACACCA GGCTAGCTACAACGA GCACCTGC	14984
3705	GGUGCAUG G UGUCAAGG	6236	CCTTGACA GGCTAGCTACAACGA CATGCACC	14985
3703	UGCAUGGU G UCAAGGAC	6237	GTCCTTGA GGCTAGCTACAACGA ACCATGCA	14986
3696	UGUCAAGG A CCGCGCUC	6238	GAGCGCGG GGCTAGCTACAACGA CCTTGACA	14987
3693	CAAGGACC G CGCUCCGG	6239	CCGGAGCG GGCTAGCTACAACGA GGTCCCTG	14988
3691	AGGACCGC G CUCCGGGG	6240	CCCCGGAG GGCTAGCTACAACGA GCGGTCT	14989
3681	UCCGGGGG G CGCCGGCC	6241	GGCCGGCG GGCTAGCTACAACGA CCCCCGGA	14990
3679	CGGGGGGC G CCGGCCAU	6242	ATGGCCGG GGCTAGCTACAACGA GCCCCCCG	14991
3675	GGGCGCCG G CCAUCCGA	6243	TCGGATGG GGCTAGCTACAACGA CGGCGCCC	14992
3672	CGCCGGCC A UCCGACGA	6244	TCGTCGG A GGCTAGCTACAACGA GGCCGGCG	14993
3667	GCCAUCCG A CGAGGUCC	6245	GGACCTCG GGCTAGCTACAACGA CGGATGGC	14994
3662	CCGACGAG G UCCUGGUC	6246	GACCAGGA GGCTAGCTACAACGA CTCGTCGG	14995
3656	AGGUCCUG G UCUACAUU	6247	AATGTAGA GGCTAGCTACAACGA CAGGACCT	14996
3652	CCUGGUCU A CAUUGGUG	6248	CACCAATG GGCTAGCTACAACGA AGACCAGG	14997
3650	UGGUUCUAC A UGGUGUA	6249	TACACCAA GGCTAGCTACAACGA GTAGACCA	14998
3646	CUACAUUG G UGUACAUU	6250	AATGTACA GGCTAGCTACAACGA CAATGTAG	14999
3644	ACAUUGGU G UACAUUUG	6251	CAAATGTA GGCTAGCTACAACGA ACCAATGT	15000
3642	AUUGGUGU A CAUUGGGG	6252	CCCAAATG GGCTAGCTACAACGA ACACCAAT	15001
3640	UGGUGUAC A UUUGGGUG	6253	CACCCAAA GGCTAGCTACAACGA GTACACCA	15002
3634	ACAUUUGG G UGAUUGGA	6254	TCCAATCA GGCTAGCTACAACGA CCAAATGT	15003
3631	UUUUGGUG A UGGACCC	6255	GGGTCAA GGCTAGCTACAACGA CACCCAAA	15004
3626	GUGAUUGG A CCCUUUGG	6256	CCAAAGGG GGCTAGCTACAACGA CCAATCAC	15005
3617	CCCUUUGG G CGGGCUAG	6257	CTAGCCGG GGCTAGCTACAACGA CCAAAGGG	15006
3613	UUGGGCCG G CUAGGGUC	6258	GACCCCTAG GGCTAGCTACAACGA CGGCCCAA	15007
3607	CGGCUAGG G UCUUUGAG	6259	CTCAAAGA GGCTAGCTACAACGA CCTAGCCG	15008
3599	GUCUUUGA G CGGGCGCC	6260	GGCGCCGG GGCTAGCTACAACGA TCAAAGAC	15009
3595	UUGAGCCG G CGCCGUGG	6261	CCACGGCG GGCTAGCTACAACGA CGGCTCAA	15010
3593	GAGCCGGC G CCGUGGUA	6262	TACACGG GGCTAGCTACAACGA GCCGGCTC	15011
3590	CCGGCGCC G UGGUAGAC	6263	GTCTACCA GGCTAGCTACAACGA GGCGCCGG	15012
3587	GCGCCGUG G UAGACAGU	6264	ACTGTCTA GGCTAGCTACAACGA CACGGCGC	15013
3583	CGUGGUAG A CAGUCCAG	6265	CTGGACTG GGCTAGCTACAACGA CTACCACG	15014

3580	GGUAGACA G UCCAGCAC	6266	GTGCTGGA GGCTAGCTACAACGA TGTCTACC	15015
3575	ACAGUCCA G CACACGCC	6267	GGCGTGTG GGCTAGCTACAACGA TGGACTGT	15016
3573	AGUCCAGC A CACGCCGU	6268	ACGGCGTG GGCTAGCTACAACGA GCTGGACT	15017
3571	UCCAGCAC A CGCCGUUG	6269	CAACGGCG GGCTAGCTACAACGA GTGCTGGA	15018
3569	CAGCACAC G CCCGUUGAC	6270	GTCAACGG GGCTAGCTACAACGA GTGTGCTG	15019
3566	CACACGCC G UUGACGCA	6271	TGCGTCAA GGCTAGCTACAACGA GGCGTGTG	15020
3562	CGCCGUUG A CGCAGGUC	6272	GACCTGCG GGCTAGCTACAACGA CAACGGCG	15021
3560	CCGUUGAC G CAGGUCGC	6273	GCGACCTG GGCTAGCTACAACGA GTCAACGG	15022
3556	UGACGCAG G UCGCUAGG	6274	CCTAGCGA GGCTAGCTACAACGA CTGCGTCA	15023
3553	CGCAGGUC G CUAGGAAA	6275	TTTCCTAG GGCTAGCTACAACGA GACCTGCG	15024
3543	UAGGAAAG A CUGCGUCG	6276	CGACGCAG GGCTAGCTACAACGA CTTTCCTA	15025
3540	GAAAGACU G CGUCGCGG	6277	CCGCGACG GGCTAGCTACAACGA AGTCTTTC	15026
3538	AAGACUGC G UCGCGGUG	6278	CACCGCGA GGCTAGCTACAACGA GCAGTCTT	15027
3535	ACUGCGUC G CGGUGGAA	6279	TTCCACCG GGCTAGCTACAACGA GACGCAGT	15028
3532	GCGUCGCG G UGGAAACC	6280	GGTTTCCA GGCTAGCTACAACGA CGCGACGC	15029
3526	CGGUGGAA A CCACUUGA	6281	TCAAGTGG GGCTAGCTACAACGA TTCCACCG	15030
3523	UGGAAACC A CUUGAACU	6282	AGTTCAAG GGCTAGCTACAACGA GGTTTCCA	15031
3517	CCACUUGA A CUUCCCCC	6283	GGGGGAAG GGCTAGCTACAACGA TCAAGTGG	15032
3505	CCCCCUCG A CUUGGUUC	6284	GAACCAAG GGCTAGCTACAACGA CGAGGGGG	15033
3500	UCGACUUG G UUCUUGUC	6285	GACAAGAA GGCTAGCTACAACGA CAAGTCGA	15034
3494	UGGUUCUU G UCCC GCCC	6286	GGCCGGGA GGCTAGCTACAACGA AAGAACCA	15035
3488	UUGUCCCG G CCCGUGAG	6287	CTCACGGG GGCTAGCTACAACGA CGGGACAA	15036
3484	CCCGGCCG G UGAGGCUG	6288	CAGCCTCA GGCTAGCTACAACGA GGGCCGGG	15037
3479	CCCGUGAG G CU GGUGAU	6289	ATCACCA G GGCTAGCTACAACGA CTCACGGG	15038
3475	UGAGGCUG G UGAUAAUG	6290	CATTATCA GGCTAGCTACAACGA CAGCCTCA	15039
3472	GGCUGGUG A UAAUGCAG	6291	CTGCATTA GGCTAGCTACAACGA CACCAGCC	15040
3469	UGGUGUA A UGCAGCCA	6292	TGGCTGCA GGCTAGCTACAACGA TATCACCA	15041
3467	GUGAUAAU G CAGCCAAA	6293	TTTGGCTG GGCTAGCTACAACGA ATTATCAC	15042
3464	AUAAUGCA G CCAAACAG	6294	CTGTTGG GGCTAGCTACAACGA TGCATTAT	15043
3459	GCAGCCAA A CAGGCCCC	6295	GGGGCCTG GGCTAGCTACAACGA TTGGCTGC	15044
3455	CCAAACAG G CCCCGCGU	6296	ACGCGGGG GGCTAGCTACAACGA CTGTTGG	15045
3450	CAGGCCCC G CGUCUGUU	6297	AACAGACG GGCTAGCTACAACGA GGGGCCTG	15046
3448	GGCCCCGC G UCUGUUGG	6298	CCAACAGA GGCTAGCTACAACGA GCGGGGCC	15047
3444	CCGCGUCU G UUGGGAGU	6299	ACTCCCAA GGCTAGCTACAACGA AGACGC GG	15048
3437	UGUUGGGA G UAGGCCGU	6300	ACGGCCTA GGCTAGCTACAACGA TCCCAACA	15049
3433	GGGAGUAG G CCGUAAUG	6301	CATTACGG GGCTAGCTACAACGA CTACTCCC	15050
3430	AGUAGGCC G UAAUGGGC	6302	GCCCCATTA GGCTAGCTACAACGA GGCCTACT	15051
3427	AGGCCGUA A UGGCGCG	6303	CGCGCCCA GGCTAGCTACAACGA TACGGCCT	15052
3423	CGUAAU GG G CGCGAGGA	6304	TCCTCGCG GGCTAGCTACAACGA CCATTACG	15053
3421	UAAUGGCC G CGAGGAGU	6305	ACTCCTCG GGCTAGCTACAACGA GCCCATT	15054
3414	CGCGAGGA G UCGCCACC	6306	GGTGGCGA GGCTAGCTACAACGA TCCTCGCG	15055
3411	GAGGAGUC G CCACCCCU	6307	AGGGGTGG GGCTAGCTACAACGA GACTCCTC	15056
3408	GAGUCGCC A CCCUGCC	6308	GGCAGGGG GGCTAGCTACAACGA GGCGACTC	15057
3402	CCACCCCU G CCCCUCAA	6309	TTGAGGGG GGCTAGCTACAACGA AGGGGTGG	15058
3392	CCCUCUAG A CUGUCGGC	6310	GCCGACAG GGCTAGCTACAACGA CTTGAGGG	15059
3389	UCAAGACU G UCGGCUGG	6311	CCAGCCGA GGCTAGCTACAACGA AGTCTTGA	15060
3385	GACUGUCG G CU GGUCU	6312	AGGACCA G GGCTAGCTACAACGA CGACAGTC	15061
3381	GUCGGCUG G UCCUAGGA	6313	TCCTAGGA GGCTAGCTACAACGA CAGCCGAC	15062
3372	UCCUAGGA G UAUCUCCC	6314	GGGAGATA GGCTAGCTACAACGA TCCTAGGA	15063
3370	CUAGGAGU A UCUCUCC	6315	GAGGGAGA GGCTAGCTACAACGA ACTCCTAG	15064
3352	CCCUUCGG G CGGAGACA	6316	TGTCTCCG GGCTAGCTACAACGA CCGAAGGG	15065
3346	GGCGGGAG A CAGGUAGA	6317	TCTACCTG GGCTAGCTACAACGA CTCCGCC	15066
3342	GGAGACAG G UAGACCCA	6318	TGGGTCTA GGCTAGCTACAACGA CTGTCTCC	15067
3338	ACAGGUAG A CCCAUAAA	6319	ATTATGGG GGCTAGCTACAACGA CTACCTGT	15068
3334	GUAGACCC A UAAUGAUG	6320	CATCATTA GGCTAGCTACAACGA GGGTCTAC	15069
3331	GACCAUA A UGAUGUCC	6321	GGACATCA GGCTAGCTACAACGA TATGGGTC	15070

3328	CCAUAAUG A UGUCCCCA	6322	TGGGGACA GGCTAGCTACAACGA CATTATGG	15071
3326	AUAAUGAU G UCCCCACA	6323	TGTGGGGA GGCTAGCTACAACGA ATCATTAT	15072
3320	AUGUCCCC A CACGCCGC	6324	GCGGCGTG GGCTAGCTACAACGA GGGGACAT	15073
3318	GUCCCCAC A CGCCGCGG	6325	CCGCGGCG GGCTAGCTACAACGA GTGGGGAC	15074
3316	CCCCCACAC G CCGCGGUG	6326	CACCGCGG GGCTAGCTACAACGA GTGTGGGG	15075
3313	CACACGCC G CGGUGUCU	6327	AGACACCG GGCTAGCTACAACGA GCGTGTG	15076
3310	ACGCGCG G UGUCUCCC	6328	GGGAGACA GGCTAGCTACAACGA CGCGCGT	15077
3308	GCCGCGGU G UCUCCCCC	6329	GGGGGAGA GGCTAGCTACAACGA ACCGCGGC	15078
3295	CCCCCCAG G UGAUGAUC	6330	GATCATCA GGCTAGCTACAACGA CTGGGGGG	15079
3292	CCCAGGUG A UGAUCUUG	6331	CAAGATCA GGCTAGCTACAACGA CACCTGGG	15080
3289	AGGUGAUG A UCUUGAUU	6332	AATCAAGA GGCTAGCTACAACGA CATCACCT	15081
3283	UGAUUCAUG A UUUCCAUG	6333	CATGGAAA GGCTAGCTACAACGA CAAGATCA	15082
3277	UGAUUUUCC A UGUCGGAG	6334	CTCCGACA GGCTAGCTACAACGA GGAAATCA	15083
3275	AUUUCCAU G UCGGAGAA	6335	TTCTCCGA GGCTAGCTACAACGA ATGGAAAT	15084
3265	CGGAGAAC G CGACGGGC	6336	GCCCCGTCG GGCTAGCTACAACGA CTTCTCCG	15085
3262	AGAAGACG A CGGGCUCG	6337	CGAGCCCC GGCTAGCTACAACGA CGTCTTCT	15086
3258	GACGACGG G CUCGACCG	6338	CGGTGAGG GGCTAGCTACAACGA CCGTCGTC	15087
3253	CGGGCUCG A CCGCUACC	6339	GGTAGCGG GGCTAGCTACAACGA CGAGCCCG	15088
3250	GCUCGACC G CUACCGCC	6340	GGCGGGTAG GGCTAGCTACAACGA GGTCGAGC	15089
3247	CGACCGCU A CCGCCAGG	6341	CCTGGCGG GGCTAGCTACAACGA AGCGGTG	15090
3244	CCGCUACC G CCAGGUCU	6342	AGACCTGG GGCTAGCTACAACGA GGTAGCGG	15091
3239	ACCGCCAG G UCUCGUAG	6343	CTACGAGA GGCTAGCTACAACGA CTGGCGGT	15092
3234	CAGGUCUC G UAGACCUG	6344	CAGGTCTA GGCTAGCTACAACGA GAGACCTG	15093
3230	UCUCGUAG A CCUGUGUG	6345	CACACAGG GGCTAGCTACAACGA CTACGAGA	15094
3226	GUAGACCU G UGUGGGCC	6346	GGCCCACA GGCTAGCTACAACGA AGGTCTAC	15095
3224	AGACCUGU G UGGGCCCA	6347	TGGGCCCCA GGCTAGCTACAACGA ACAGGTCT	15096
3220	CUGUGUGG G CCCAGUCC	6348	GGACTGGG GGCTAGCTACAACGA CCACACAG	15097
3215	UGGGCCCA G UCCUGCAG	6349	CTGCAGGA GGCTAGCTACAACGA TGGGCCCCA	15098
3210	CCAGUCCU G CAGUGGAG	6350	CTCCACTG GGCTAGCTACAACGA AGGACTGG	15099
3207	GUCCUGCA G UGGAGUGA	6351	TCACTCCA GGCTAGCTACAACGA TGCAGGAC	15100
3202	GCAGUGGA G UGAGGUGG	6352	CCACCTCA GGCTAGCTACAACGA TCCACTGC	15101
3197	GGAGUGAG G UGGUCAUA	6353	TATGACCA GGCTAGCTACAACGA CTCACTCC	15102
3194	GUGAGGUG G UCAUAGAC	6354	GTCTATGA GGCTAGCTACAACGA CACCTCAC	15103
3191	AGGUGGUC A UAGACGGA	6355	TCCGTCTA GGCTAGCTACAACGA GACCACCT	15104
3187	GGUCAUAG A CGGACGUA	6356	TACGTCCG GGCTAGCTACAACGA CTATGACC	15105
3183	AUAGACGG A CGUACCUU	6357	AAGGTACG GGCTAGCTACAACGA CCGTCTAT	15106
3181	AGACGGAC G UACCUUUC	6358	GAAAGGTA GGCTAGCTACAACGA GTCCGTCT	15107
3179	ACGGACGU A CCUUUCAA	6359	TTGAAAGG GGCTAGCTACAACGA ACGTCCGT	15108
3171	ACCUUUCA A UUCGGCCA	6360	TGGCCGAA GGCTAGCTACAACGA TGAAAGGT	15109
3166	UCAAUUCG G CCAACUUC	6361	GAAGTTGG GGCTAGCTACAACGA CGAATTGA	15110
3162	UUCGGCCA A CUUCAUGA	6362	TCATGAAG GGCTAGCTACAACGA TGGCCGAA	15111
3157	CCAACUUC A UGAAGGCC	6363	GGCCTTCA GGCTAGCTACAACGA GAAGTTGG	15112
3151	UCAUGAAG G CCAUUUGG	6364	CCAAATGG GGCTAGCTACAACGA CTTCATGA	15113
3148	UGAAGGCC A UUUGGACA	6365	TGTCCAAA GGCTAGCTACAACGA GGCCTTCA	15114
3142	CCAUUUGG A CAUAUUGC	6366	GCAATATG GGCTAGCTACAACGA CCAAATGG	15115
3140	AUUUGGAC A UAUUGCCC	6367	GGGCAATA GGCTAGCTACAACGA GTCCAAAT	15116
3138	UUGGACAU A UUGCCCCC	6368	GGGGGCAA GGCTAGCTACAACGA ATGTCCAA	15117
3135	GACAUUU G CCCCCCAC	6369	GTGGGGGG GGCTAGCTACAACGA AATATGTC	15118
3128	UGCCCCCCC A CCGACUUU	6370	AAAGTCGG GGCTAGCTACAACGA GGGGGCA	15119
3124	CCCCACCG A CUUUCGCG	6371	GCGGAAAG GGCTAGCTACAACGA CGGTGGGG	15120
3117	GACUUUCC G CACCAAAA	6372	TTTTGGTG GGCTAGCTACAACGA GGAAAGTC	15121
3115	CUUUCGCG A CCAAAAUG	6373	CATTTTGG GGCTAGCTACAACGA GCGGAAAG	15122
3109	GCACCAAA A UGCAUUC	6374	TGAATGCA GGCTAGCTACAACGA TTTGGTGC	15123
3107	ACCAAAAU G CAUUCACG	6375	CGTGAATG GGCTAGCTACAACGA ATTTGGT	15124
3105	CAAAAUGC A UUCACGGA	6376	TCCGTGAA GGCTAGCTACAACGA GCATTTTG	15125
3101	AUGCAUUC A CGGAUGAC	6377	GTCATCCG GGCTAGCTACAACGA GAATGCAT	15126

3097	AUUCACGG A UGACCCCU	6378	AGGGGTCA GGCTAGCTACAACGA CGGTGAAT	15127
3094	CACCGAUG A CCCCUUGA	6379	TCAAGGGG GGCTAGCTACAACGA CATCCGTG	15128
3085	CCCCUUGA G CCCGCACA	6380	TGTGCGGG GGCTAGCTACAACGA TCAAGGGG	15129
3081	UUGAGCCC G CACAAAGU	6381	ACTTTGTG GGCTAGCTACAACGA GGGCTCAA	15130
3079	GAGGCCGC A CAAAGUCC	6382	GGACTTTG GGCTAGCTACAACGA GCAGGGCTC	15131
3074	CGCACAAA G UCCGGCAC	6383	GTGCCGGA GGCTAGCTACAACGA TTGTGCG	15132
3069	AAAGUCCG G CACUUUUG	6384	CAAAAGTG GGCTAGCTACAACGA CGGACTTT	15133
3067	AGUCCGGC A CUUUGCU	6385	AGCAAAAG GGCTAGCTACAACGA GCCGGACT	15134
3061	GCACUUUU G CUAUACCA	6386	TGGTATAG GGCTAGCTACAACGA AAAAGTGC	15135
3058	CUUUGCU A UACCAGCC	6387	GGCTGGTA GGCTAGCTACAACGA AGCAAAAG	15136
3056	UUUGCUAU A CCAGCCUG	6388	CAGGCTGG GGCTAGCTACAACGA ATAGCAAA	15137
3052	CUAUACCA G CCUGGAGC	6389	GCTCCAGG GGCTAGCTACAACGA TGGTATAG	15138
3045	AGCUGGA G CACCAUGA	6390	TCATGGTG GGCTAGCTACAACGA TCCAGGCT	15139
3043	CCUGGAGC A CCAUGAGC	6391	GCTCATGG GGCTAGCTACAACGA GCTCCAGG	15140
3040	GGAGCACC A UGAGCGGG	6392	CCCGCTCA GGCTAGCTACAACGA GGTGCTCC	15141
3036	CACCAUGA G CGGGCCGA	6393	TCGGCCCG GGCTAGCTACAACGA TCATGGTG	15142
3032	AUGAGCGG G CCGAGUAU	6394	ATACTCGG GGCTAGCTACAACGA CCGCTCAT	15143
3027	CGGGCCGA G UAUGGCAG	6395	TCGCCATA GGCTAGCTACAACGA TCGGCCCG	15144
3025	GGCCGAGU A UGGCGAGC	6396	GCTCGCCA GGCTAGCTACAACGA ACTCGGCC	15145
3022	CGAGUAUG G CGAGCAUA	6397	TATGCTCG GGCTAGCTACAACGA CATACTCG	15146
3018	UAUGGCGA G CAUAAAAU	6398	AAATTATG GGCTAGCTACAACGA TCGCCATA	15147
3016	UGGCGAGC A UAAAAAUG	6399	CAAAATTA GGCTAGCTACAACGA GCTCGCCA	15148
3013	CGAGCAUA A UUUUGGUG	6400	CACCAAAA GGCTAGCTACAACGA TATGCTCG	15149
3007	UAAAUUUG G UGAUGUCA	6401	TGACATCA GGCTAGCTACAACGA CAAAATTA	15150
3004	UUUUGGUG A UGUCAAAG	6402	CTTTGACA GGCTAGCTACAACGA CACCAAAA	15151
3002	UUGGUGAU G UCAGAGAU	6403	ATCTTTGA GGCTAGCTACAACGA ATCACCAA	15152
2995	UGUCAAAG A UUAGCUCU	6404	AGAGCTAA GGCTAGCTACAACGA CTTTGACA	15153
2991	AAAGAUUA G CUCUGGGU	6405	ACCCAGAG GGCTAGCTACAACGA TAATCTTT	15154
2984	AGCUCUGG G UGGACCAC	6406	GTGGTCCA GGCTAGCTACAACGA CCAGAGCT	15155
2980	CUGGGUGG A CCACACAC	6407	GTGTGTGG GGCTAGCTACAACGA CCACCCAG	15156
2977	GGUGGACC A CACACGUG	6408	CACGTGTG GGCTAGCTACAACGA GGTCCACC	15157
2975	UGGACCAC A CACGUGAG	6409	CTCACGTG GGCTAGCTACAACGA GTGGTCCA	15158
2973	GACCACAC A CGUGAGGA	6410	TCCTCACG GGCTAGCTACAACGA GTGTGGTC	15159
2971	CCACACAC G UGAGGAGA	6411	TCTCCTCA GGCTAGCTACAACGA GTGTGTGG	15160
2962	UGAGGAGA A UGAUGGCA	6412	TGCCATCA GGCTAGCTACAACGA TCTCCTCA	15161
2959	GGAGAAUG A UGGCACCG	6413	CGGTGCCA GGCTAGCTACAACGA CATTCTCC	15162
2956	GAAUGAUG G CACCGCGC	6414	CGCGGGTG GGCTAGCTACAACGA CATCATTC	15163
2954	AUGAUGGC A CCGCGCCC	6415	GGGCGCGG GGCTAGCTACAACGA GCCATCAT	15164
2951	AUGGCACC G CGCCCCCCC	6416	GGGGGGCG GGCTAGCTACAACGA GGTGCCAT	15165
2949	GGCACCGC G CCCCCCCCC	6417	GGGGGGGG GGCTAGCTACAACGA GCGGTGCC	15166
2938	CCCCCCGA A CGUUGAGG	6418	CCTCAACG GGCTAGCTACAACGA TCGGGGGG	15167
2936	CCCCGAAC G UUGAGGGG	6419	CCCCTCAA GGCTAGCTACAACGA GTTCGGGG	15168
2923	GGGGGGGG A UCCACACU	6420	AGTGTGGA GGCTAGCTACAACGA CCCCCCCC	15169
2919	GGGGAUCC A CACUUGCA	6421	TGCAAGTG GGCTAGCTACAACGA GGATCCCC	15170
2917	GGAUCCAC A CUUGCAAC	6422	GTTGCAAG GGCTAGCTACAACGA GTGGATCC	15171
2913	CCACACUU G CAACUGCG	6423	CGCAGTTG GGCTAGCTACAACGA AAGTGTGG	15172
2910	CACUUGCA A CUGCGCCU	6424	AGGCGCAG GGCTAGCTACAACGA TGCAAGTG	15173
2907	UUGCAACU G CGCCUCGG	6425	CCGAGGCG GGCTAGCTACAACGA AGTTGCAA	15174
2905	GCAACUGC G CCUCGGCU	6426	AGCCGAGG GGCTAGCTACAACGA GCAGTTGC	15175
2899	GCGCCUCG G CUCUGGUG	6427	CACCAAGAG GGCTAGCTACAACGA CGAGGCAG	15176
2893	CGGCUCUG G UGAAUAGG	6428	CCTTATCA GGCTAGCTACAACGA CAGAGCCG	15177
2890	CUCUGGUG A UAAGGUAU	6429	ATACCTTA GGCTAGCTACAACGA CACCAGAG	15178
2885	GUGAUAG G UAUUGCAA	6430	TTGCAATA GGCTAGCTACAACGA CTTATCAC	15179
2883	GAUAGGU A UUGCAACC	6431	GGTTGCAA GGCTAGCTACAACGA ACCTTATC	15180
2880	AAGGUAUU G CAACCACC	6432	GGTGGTTG GGCTAGCTACAACGA AATACCTT	15181
2877	GUAUUGCA A CCACCAUA	6433	TATGGTGG GGCTAGCTACAACGA TGCAATAC	15182

2874	UUGCAACC A CCAUAUGA	6434	TCATATGG GGCTAGCTACAACGA GGTTGCAA	15183
2871	CAACCACC A UAUGAGCC	6435	GGCTCATA GGCTAGCTACAACGA GGTGGTTG	15184
2869	ACCACCAU A UGAGCCUA	6436	TAGGCTCA GGCTAGCTACAACGA ATGGTGGT	15185
2865	CCAUAUGA G CCUAGCGA	6437	TCGCTAGG GGCTAGCTACAACGA TCATATGG	15186
2860	UGAGCCUA G CGAGGAAC	6438	GTTCCCTCG GGCTAGCTACAACGA TAGGCTCA	15187
2853	AGCGAGGA A CACUUUGU	6439	ACAAAGTG GGCTAGCTACAACGA TCCTCGCT	15188
2851	CGAGGAAC A CUUUGUAG	6440	CTACAAAG GGCTAGCTACAACGA GTTCCTCG	15189
2846	AACACUUU G UAGUAUUG	6441	CCATACTA GGCTAGCTACAACGA AAAGTGT	15190
2843	ACUUUGUA G UAUGGUGA	6442	TCACCATA GGCTAGCTACAACGA TACAAAGT	15191
2841	UUUGUAGU A UGGUGACA	6443	TGTACCCA GGCTAGCTACAACGA ACTACAAA	15192
2838	GUAGUAUG G UGACAAGG	6444	CCTTGTCA GGCTAGCTACAACGA CATACTAC	15193
2835	GUAUGGUG A CAAGGUCA	6445	TGACCTTG GGCTAGCTACAACGA CACCATAC	15194
2830	GUGACAAG G UCAAGAGU	6446	ACTCTTGA GGCTAGCTACAACGA CTTGTAC	15195
2823	GGUCAAGA G UGCUAGAC	6447	GTCTAGCA GGCTAGCTACAACGA TCTTGACC	15196
2821	UCAAGAGU G CUAGACCU	6448	AGGTCTAG GGCTAGCTACAACGA ACTCTTGA	15197
2816	AGUGCUAG A CCUACAAA	6449	TTTGTAGG GGCTAGCTACAACGA CTAGCACT	15198
2812	CUAGACCU A CAAAAACC	6450	GGTTTTTG GGCTAGCTACAACGA AGGTCTAG	15199
2806	CUACAAAA A CCACGCCU	6451	AGGCGTGG GGCTAGCTACAACGA TTTTGTAG	15200
2803	CAAAAACC A CGCCUCCG	6452	CGGAGGCG GGCTAGCTACAACGA GGTTTTTG	15201
2801	AAAACCAC G CCUCCGCA	6453	TGCGGAGG GGCTAGCTACAACGA GTGGTTTT	15202
2795	ACGCCUCC G CACGAUGC	6454	GCATCGTG GGCTAGCTACAACGA GGAGGCCT	15203
2793	GCCUCCGC A CGAUGCGG	6455	CCGCATCG GGCTAGCTACAACGA GCGGAGGC	15204
2790	UCCGCACG A UCGGGCCA	6456	TGGCCGCA GGCTAGCTACAACGA CGTGC	15205
2788	CGCACGAU G CGGCCAUC	6457	GATGGCCG GGCTAGCTACAACGA ATCGTGC	15206
2785	ACGAUGCG G CCAUCUCC	6458	GGAGATGG GGCTAGCTACAACGA CGCATCG	15207
2782	AUGCGGCC A UCUCCCGG	6459	CCGGGAGA GGCTAGCTACAACGA GGCCGCAT	15208
2774	AUCUCCCG G UCCAUGGC	6460	GCCATGGA GGCTAGCTACAACGA CGGGAGAT	15209
2770	CCCGGUCC A UGGCGUAC	6461	GTACGCCA GGCTAGCTACAACGA GGACCGGG	15210
2767	GGUCCAUG G CGUACGCC	6462	GGCGTACG GGCTAGCTACAACGA CATGGACC	15211
2765	UCCAUGGC G UACGCCCG	6463	CGGGCGTA GGCTAGCTACAACGA GCCATGGA	15212
2763	CAUGGCGU A CGCCCGUG	6464	CACGGGCG GGCTAGCTACAACGA ACGCCATG	15213
2761	UGGCGUAC G CCCGUGGU	6465	ACCACGGG GGCTAGCTACAACGA GTACGCCA	15214
2757	GUACGCC G UGGUGGUA	6466	TACCACCA GGCTAGCTACAACGA GGGCGTAC	15215
2754	CGCCCGUG G UGGUAACG	6467	CGTTACCA GGCTAGCTACAACGA CACGGGCG	15216
2751	CCGUGGUG G UAACGCCA	6468	TGGCGTTA GGCTAGCTACAACGA CACCACGG	15217
2748	UGGUGGUA A CGCCAGCA	6469	TGCTGGCG GGCTAGCTACAACGA TACCACCA	15218
2746	GUGGUAAAC G CCAGCAGG	6470	CCTGCTGG GGCTAGCTACAACGA GTTACCA	15219
2742	UAACGCCA G CAGGAGCA	6471	TGCTCCTG GGCTAGCTACAACGA TGGCGTTA	15220
2736	CAGCAGGA G CAGGAGUA	6472	TACTCCTG GGCTAGCTACAACGA TCCTGCTG	15221
2730	GAGCAGGA G UAGCGGCC	6473	GGCCGCTA GGCTAGCTACAACGA TCCTGCTC	15222
2727	CAGGAGUA G CGGCCAU	6474	TATGGCCG GGCTAGCTACAACGA TACTCCTG	15223
2724	GAGUAGCG G CCAUACGC	6475	GGGTATGG GGCTAGCTACAACGA CGCTACTC	15224
2721	UAGCGGCC A UACGCCGU	6476	ACGGCGTA GGCTAGCTACAACGA GGCCGCTA	15225
2719	GCGGCCAU A CGCCGUAG	6477	CTACGGCG GGCTAGCTACAACGA ATGGCCGC	15226
2717	GGCCAUAC G CCGUAGAG	6478	CTCTACGG GGCTAGCTACAACGA GTATGGCC	15227
2714	CAUACGCC G UAGAGAGC	6479	GCTCTCTA GGCTAGCTACAACGA GCGTATG	15228
2707	CGUAGAGA G CAUAUGCC	6480	GGCATATG GGCTAGCTACAACGA TCTCTACG	15229
2705	UAGAGAGC A UAUGCCGC	6481	GGGGCATA GGCTAGCTACAACGA GCTCTCTA	15230
2703	GAGAGCAU A UGCGGCC	6482	GGGCGGCA GGCTAGCTACAACGA ATGCTCTC	15231
2701	GAGCAUAU G CCGCCCCA	6483	TGGGGCGG GGCTAGCTACAACGA ATATGCTC	15232
2698	CAUAUGCC G CCCCAGGG	6484	CCCTGGGG GGCTAGCTACAACGA GGCATATG	15233
2689	CCCCAGGG A CCAGCUUG	6485	CAAGCTGG GGCTAGCTACAACGA CCCTGGGG	15234
2685	AGGGACCA G CUUGCCUU	6486	AAGGCAAG GGCTAGCTACAACGA TGGTCCCT	15235
2681	ACCAGCUU G CCUUUGAU	6487	ATCAAAGG GGCTAGCTACAACGA AAGCTGGT	15236
2674	UGCCUUUG A UGUACCAG	6488	CTGGTACA GGCTAGCTACAACGA CAAAGGCA	15237
2672	CCUUUGAU G UACCAGGC	6489	GCCTGGTA GGCTAGCTACAACGA ATCAAAGG	15238

2670	UUUGAUGU A CCAGGCAG	6490	CTGCCTGG GGCTAGCTACAACGA ACATCAAA	15239
2665	UGUACCAG G CAGCACAG	6491	CTGTGCTG GGCTAGCTACAACGA CTGGTACA	15240
2662	ACCAGGCA G CACAGAAG	6492	CTTCTGTG GGCTAGCTACAACGA TGCCTGGT	15241
2660	CAGGCAGC A CAGAAGAA	6493	TTCTTCTG GGCTAGCTACAACGA GCTGCCGT	15242
2652	ACAGAAGA A CACGAGGA	6494	TCCTCGTG GGCTAGCTACAACGA TCTTCTGT	15243
2650	AGAAGAAC A CGAGGAAG	6495	CTTCCTCG GGCTAGCTACAACGA GTTCTTCT	15244
2635	AGGAGAGG A UGCCAUGC	6496	GCATGGCA GGCTAGCTACAACGA CCTCTCCT	15245
2633	GAGAGGAU G CCAUGCAC	6497	GTGCATGG GGCTAGCTACAACGA ATCCTCTC	15246
2630	AGGAUGCC A UGCACUCC	6498	GGAGTGCA GGCTAGCTACAACGA GGCATCCT	15247
2628	GAUGCCAU G CACUCCGG	6499	CCGGAGTG GGCTAGCTACAACGA ATGGCATC	15248
2626	UGCCAUGC A CUCCGGCC	6500	GGCCGGAG GGCTAGCTACAACGA GCATGGCA	15249
2620	GCACUCCG G CCAAGGAU	6501	ATCCTTGG GGCTAGCTACAACGA CGGAGTGC	15250
2613	GGCCAAGG A UGCUGCAU	6502	ATGCAGCA GGCTAGCTACAACGA CCTTGGCC	15251
2611	CCAAGGAU G CUGCAUUG	6503	CAATGCAG GGCTAGCTACAACGA ATCCTTGG	15252
2608	AGGAUGCU G CAUUGAGG	6504	CCTCAATG GGCTAGCTACAACGA AGCATTCT	15253
2606	GAUGCUGC A UUGAGGAC	6505	GTCCCTAA GGCTAGCTACAACGA GCAGCATC	15254
2599	CAUUGAGG A CCACCAGG	6506	CCTGGTGG GGCTAGCTACAACGA CCTCAATG	15255
2596	UGAGGACC A CCAGGUUC	6507	GAACCTGG GGCTAGCTACAACGA GGTCCTCA	15256
2591	ACCACCAG G UUCUCUAG	6508	CTAGAGAA GGCTAGCTACAACGA CTGGTGGT	15257
2581	UCUCUAGG G CAGCCUCG	6509	CGAGGCTG GGCTAGCTACAACGA CCTAGAGA	15258
2578	CUAGGGCA G CCUCGGCC	6510	GGCCGAGG GGCTAGCTACAACGA TGCCCTAG	15259
2572	CAGCCUCG G CCUGGGCU	6511	AGCCCAGG GGCTAGCTACAACGA CGAGGCTG	15260
2566	CGGCCUGG G CUACCAAC	6512	GTTGGTAG GGCTAGCTACAACGA CCAGGCCG	15261
2563	CCUGGGCU A CCAACAGC	6513	GCTGTTGG GGCTAGCTACAACGA AGCCCAGG	15262
2559	GGCUACCA A CAGCAUCA	6514	TGATGCTG GGCTAGCTACAACGA TGGTAGCC	15263
2556	UACCAACA G CAUCAUCC	6515	GGATGATG GGCTAGCTACAACGA TGTTGGTA	15264
2554	CCAACAGC A UCAUCCAC	6516	GTGGATGA GGCTAGCTACAACGA GCTGTTGG	15265
2551	ACAGCAUC A UCCACAAA	6517	TTTGTGGA GGCTAGCTACAACGA GATGCTGT	15266
2547	CAUCAUCC A CAAACAGG	6518	CCTGTTTG GGCTAGCTACAACGA GGATGATG	15267
2543	AUCCACAA A CAGGCACA	6519	TGTGCCTG GGCTAGCTACAACGA TTGTGGAT	15268
2539	ACAAACAG G CACAGACG	6520	CGTCTGTG GGCTAGCTACAACGA CTGTTTGT	15269
2537	AAACAGGC A CAGACGCG	6521	CGCGTCTG GGCTAGCTACAACGA GCCTGTTT	15270
2533	AGGCACAG A CGCGCGCG	6522	CGCGCGCG GGCTAGCTACAACGA CTGTGCCT	15271
2531	GCACAGAC G CGCGCGUC	6523	GACGCGCG GGCTAGCTACAACGA GTCTGTGC	15272
2529	ACAGACGC G CGCGUCUG	6524	CAGACGCG GGCTAGCTACAACGA GCGTCTGT	15273
2527	AGACGCGC G CGUCUGCC	6525	GGCAGACG GGCTAGCTACAACGA GCGCGTCT	15274
2525	ACGCGCGC G UCUGCCAG	6526	CTGGCAGA GGCTAGCTACAACGA GCGCGCGT	15275
2521	GCGCGUCU G CCAGGAGA	6527	TCTCCTGG GGCTAGCTACAACGA AGACGCGC	15276
2505	AAGGAAAA G CAACAGGA	6528	TCCTGTTG GGCTAGCTACAACGA TTTTCCTT	15277
2502	GAAAAGCA A CAGGACAU	6529	ATGTCCTG GGCTAGCTACAACGA TGCTTTTC	15278
2497	GCAACAGG A CAUACUCC	6530	GGAGTATG GGCTAGCTACAACGA CCTGTTGC	15279
2495	AACAGGAC A UACUCCCA	6531	TGGGAGTA GGCTAGCTACAACGA GTCCTGTT	15280
2493	CAGGACAU A CUCCCAUU	6532	AATGGGAG GGCTAGCTACAACGA ATGTCCTG	15281
2487	AUACUCCC A UUUGAUUG	6533	CAATCAAA GGCTAGCTACAACGA GGGAGTAT	15282
2482	CCCAUUUG A UUGCGAAG	6534	CTTCGCAA GGCTAGCTACAACGA CAAATGGG	15283
2479	AUUUGAUU G CGAAGGAG	6535	CTCCTTCG GGCTAGCTACAACGA AATCAAAT	15284
2470	CGAAGGAG A CAACCGCU	6536	AGCGGTTG GGCTAGCTACAACGA CTCCCTCG	15285
2467	AGGAGACA A CCGCUGAC	6537	GTCAGCGG GGCTAGCTACAACGA TGTCTCCT	15286
2464	AGACAACC G CUGACCCU	6538	AGGGTCAG GGCTAGCTACAACGA GGTTGTCT	15287
2460	AACCGCUG A CCCUACAC	6539	GTGTAGGG GGCTAGCTACAACGA CAGCGGTT	15288
2455	CUGACCCU A CACCGUAC	6540	GTACGGTG GGCTAGCTACAACGA AGGGTCAG	15289
2453	GACCCUAC A CCGUACAG	6541	CTGTACGG GGCTAGCTACAACGA GTAGGGTC	15290
2450	CCUACACC G UACAGGUA	6542	TACCTGTA GGCTAGCTACAACGA GGTGTAGG	15291
2448	UACACCGU A CAGGUAUU	6543	AATACTG GGCTAGCTACAACGA ACGGTGTA	15292
2444	CCGUACAG G UAUUGCAC	6544	GTGCAATA GGCTAGCTACAACGA CTGTACGG	15293
2442	GUACAGGU A UUGCACGU	6545	ACGTGCAA GGCTAGCTACAACGA ACCTGTAC	15294

2439	CAGGUUU G CACGUCCA	6546	TGGACGTG GGCTAGCTACAACGA AATACTG	15295
2437	GGUAUUGC A CGUCCACG	6547	CGTGGACG GGCTAGCTACAACGA GCAATACC	15296
2435	UAUUGCAC G UCCACGAU	6548	ATCGTGG A GGCTAGCTACAACGA GTGCAATA	15297
2431	GCACGUCC A CGAUGUUC	6549	GAACATCG GGCTAGCTACAACGA GGACGTGC	15298
2428	CGUCCACG A UGUUCUGG	6550	CCAGAAC A GGCTAGCTACAACGA CGTGGACG	15299
2426	UCCACGAU G UUCUGGUG	6551	CACCAAGA GGCTAGCTACAACGA ATCGTGG	15300
2420	AUGUUCUG G UGGAGAUG	6552	CATCTCCA GGCTAGCTACAACGA CAGAACAT	15301
2414	UGGUGGAG A UGGAUCAA	6553	TTGATCCA GGCTAGCTACAACGA CTCCACCA	15302
2410	GGAGAUGG A UCACAAAC	6554	TGGTTTGA GGCTAGCTACAACGA CCATCTCC	15303
2405	UGGAUCAA A CCAGUGGA	6555	TCCACTGG GGCTAGCTACAACGA TTGATCCA	15304
2401	UCAAACCA G UGGACAGA	6556	TCTGTCCA GGCTAGCTACAACGA TGGTTTGA	15305
2397	ACCAGUGG A CAGAGCCG	6557	CGGCTCTG GGCTAGCTACAACGA CCACTGGT	15306
2392	UGGACAGA G CCCGUAGG	6558	CCTACCGG GGCTAGCTACAACGA TCTGTCCA	15307
2388	CAGAGCCG G UAGGGUGG	6559	CCACCCCTA GGCTAGCTACAACGA CGGCTCTG	15308
2383	CCGGUAGG G UGGUGAAG	6560	CTTCACCA GGCTAGCTACAACGA CCTACCGG	15309
2380	GUAGGGUG G UGAAGGAG	6561	CTCCTTCA GGCTAGCTACAACGA CACCCCTAC	15310
2372	GUGAAGGA G CAGGGCAG	6562	CTGCCCTG GGCTAGCTACAACGA TCCTTCAC	15311
2367	GGAGCAGG G CAGUAUUU	6563	AAATACTG GGCTAGCTACAACGA CCTGCTCC	15312
2364	GCAGGGCA G UAUUUGCC	6564	GGCAAATA GGCTAGCTACAACGA TGCCCTGC	15313
2362	AGGGCAGU A UUUGCCAC	6565	GTGGCAAA GGCTAGCTACAACGA ACTGCCCT	15314
2358	CAGUAUUU G CCACUCUG	6566	CAGAGTGG GGCTAGCTACAACGA AAATACTG	15315
2355	UAUUUGCC A CUCUGUAG	6567	CTACAGAG GGCTAGCTACAACGA GGCAAATA	15316
2350	GCCACUCU G UAGUGGAC	6568	GTCCACTA GGCTAGCTACAACGA AGAGTGGC	15317
2347	ACUCUGUA G UGGACAAAC	6569	GTTGTCCA GGCTAGCTACAACGA TACAGAGT	15318
2343	UGUAGUGG A CAACAGCA	6570	TGCTGTTG GGCTAGCTACAACGA CCACTACA	15319
2340	AGUGGACA A CAGCAGCG	6571	CGCTGCTG GGCTAGCTACAACGA TGTCCACT	15320
2337	GGACAACA G CAGCGGGC	6572	GCCCCGCTG GGCTAGCTACAACGA TGTTGTCC	15321
2334	CAACAGCA G CGGGCUGA	6573	TCAGCCCG GGCTAGCTACAACGA TGCTGTTG	15322
2330	AGCAGCGG G CUGAGCUC	6574	GAGCTCG AGGCTAGCTACAACGA CCGCTGCT	15323
2325	CGGGCUGA G CUCUGAUC	6575	GATCAGAG GGCTAGCTACAACGA TCAGCCCG	15324
2319	GAGCUCUG A UCUGUCCC	6576	GGGACAGA GGCTAGCTACAACGA CAGAGCTC	15325
2315	UCUGAUCU G UCCCUGUC	6577	GACAGGGA GGCTAGCTACAACGA AGATCAGA	15326
2309	CUGUCCCCU G UCCUCCAA	6578	TTGGAGGA GGCTAGCTACAACGA AGGGACAG	15327
2300	UCCUCCAA A UCACAAACG	6579	CGTTGTGA GGCTAGCTACAACGA TTGGAGGA	15328
2297	UCCAAAUC A CAACGCUC	6580	GAGCGTTG GGCTAGCTACAACGA GATTGGAA	15329
2294	AAAUCACA A CGCUCUCC	6581	GGAGAGCG GGCTAGCTACAACGA TGTGATT	15330
2292	AUCACAAAC G CUCUCCUC	6582	GAGGAGAG GGCTAGCTACAACGA GTTGTGAT	15331
2281	CUCCUCGA G UCCAAUUG	6583	CAATTGGA GGCTAGCTACAACGA TCGAGGAG	15332
2276	CGAGUCCA A UUGCAUGC	6584	GCATGCAA GGCTAGCTACAACGA TGGACTCG	15333
2273	GUCCAAUU G CAUGCGGC	6585	GCCGCATG GGCTAGCTACAACGA AATTGGAC	15334
2271	CCAAUUGC A UGCGGCGG	6586	CCGCGC A GGCTAGCTACAACGA GCAATTGG	15335
2269	AAUUGCAU G CGGGGGUG	6587	CACCGCCG GGCTAGCTACAACGA ATGCAATT	15336
2266	UGCAUGCG G CGGUGAGC	6588	GCTCACCG GGCTAGCTACAACGA CGCATGCA	15337
2263	AUGCGGCG G UGAGCCUG	6589	CAGGCTCA GGCTAGCTACAACGA CGCCGCAT	15338
2259	GGCGGUGA G CCUGUGCU	6590	AGCACAGG GGCTAGCTACAACGA TCACCGCC	15339
2255	GUGAGCCU G UGUCCAC	6591	GTGGAGCA GGCTAGCTACAACGA AGGCTCAC	15340
2253	GAGCCUGU G CUCCACGC	6592	CGCTGGAG GGCTAGCTACAACGA ACAGGCTC	15341
2248	UGUGCUCC A CGCCCCCCC	6593	GGGGGGCG GGCTAGCTACAACGA GGAGCACA	15342
2246	UGCUCCAC G CCCCCCCAC	6594	GTGGGGGG GGCTAGCTACAACGA GTGGAGCA	15343
2239	CGCCCCCCC A CAUACAUC	6595	GATGTATG GGCTAGCTACAACGA GGGGGGCG	15344
2237	CCCCCCCCAC A UACAUCCU	6596	AGGATGTA GGCTAGCTACAACGA GTGGGGGG	15345
2235	CCCCCACAU A CAUCCUAA	6597	TTAGGATG GGCTAGCTACAACGA ATGTGGGG	15346
2233	CCACAUAC A UCCUAAACC	6598	GGTTAGGA GGCTAGCTACAACGA GTATGTGG	15347
2227	ACAUCCUA A CCUUAAAAG	6599	CTTTAAGG GGCTAGCTACAACGA TAGGATGT	15348
2218	CCUAAAAG A UGGAAAAAA	6600	TTTTTCCA GGCTAGCTACAACGA CTTTAAGG	15349
2210	AUGGAAAA A UUGACAGU	6601	ACTGTCAA GGCTAGCTACAACGA TTTTCCAT	15350

2206	AAAAAUUG A CAGUGCAG	6602	CTGCACTG GGCTAGCTACAACGA CAATTTTT	15351
2203	AAUJUGACA G UGCAGGGG	6603	CCCCTGCA GGCTAGCTACAACGA TGTCATT	15352
2201	UUGACAGU G CAGGGGU	6604	TACCCCTG GGCTAGCTACAACGA ACTGTCAA	15353
2195	GUGCAGGG G UAGUGCCA	6605	TGGCACTA GGCTAGCTACAACGA CCCTGCAC	15354
2192	CAGGGGU A UGCCAAAG	6606	CTTGGCA GGCTAGCTACAACGA TACCCCTG	15355
2190	GGGUAGU G CCAAAGCC	6607	GGCTTTGG GGCTAGCTACAACGA ACTACCCC	15356
2184	GUGCCAAA G CCUGUAUG	6608	CATACAGG GGCTAGCTACAACGA TTTGGCAC	15357
2180	CAAAGCCU G UAUGGGUA	6609	TACCCATA GGCTAGCTACAACGA AGGCTTTG	15358
2178	AAGCCUGU A UGGGUAGU	6610	ACTACCCA GGCTAGCTACAACGA ACAGGCTT	15359
2174	CUGUAUGG G UAGUCAAC	6611	GTTGACTA GGCTAGCTACAACGA CCATACAG	15360
2171	UAUGGGUA G UCAACUAU	6612	ATAGTTGA GGCTAGCTACAACGA TACCCATA	15361
2167	GGUAGUCA A CUAUGCAU	6613	ATGCATAG GGCTAGCTACAACGA TGACTACC	15362
2164	AGUCAACU A UGCAUCUA	6614	TAGATGCA GGCTAGCTACAACGA AGTTGACT	15363
2162	UCAACUAU G CAUCUAGG	6615	CCTAGATG GGCTAGCTACAACGA ATAGTTGA	15364
2160	AACUAUGC A UCUAGGUG	6616	CACCTAGA GGCTAGCTACAACGA GCATAGTT	15365
2154	GCAUCUAG G UGUUAACC	6617	GGTTAACCA GGCTAGCTACAACGA CTAGATGC	15366
2152	AUCUAGGU G UUAACCAA	6618	TTGGTTAA GGCTAGCTACAACGA ACCTAGAT	15367
2148	AGGUGUUA A CCAAGGCC	6619	GGCCTTGG GGCTAGCTACAACGA TAACACCT	15368
2142	UAACCAAG G CCCCGAAC	6620	TTTCGGGG GGCTAGCTACAACGA CTTGGTTA	15369
2135	GGCCCCGA A CCGCACUU	6621	AAAGTGCAGG GGCTAGCTACAACGA TCAGGGCC	15370
2132	CCCGAACCG G CACUUUGC	6622	GCAAAGTG GGCTAGCTACAACGA GGTTCGGG	15371
2130	CGAACCGC A CUUUGCGU	6623	ACGCAAAG GGCTAGCTACAACGA CGGGTTCG	15372
2125	CGCACUUU G CGUAAGUG	6624	CACTTACG GGCTAGCTACAACGA AAAGTGCG	15373
2123	CACUUUGC G UAAGUGGC	6625	GCCACTTA GGCTAGCTACAACGA GCAAAGTG	15374
2119	UUGCGUAA G UGGCCUCG	6626	CGAGGCCA GGCTAGCTACAACGA TTACGCAA	15375
2116	CGUAAGUG G CCUCGGGG	6627	CCCCGAGG GGCTAGCTACAACGA CACTTACG	15376
2108	GCCUCGGG G UGCUUCCG	6628	CGGAAGCA GGCTAGCTACAACGA CCCGAGGC	15377
2106	CUCCCCGU G CUUCCCGA	6629	TCCGGAAG GGCTAGCTACAACGA ACCCCGAG	15378
2096	UUCCGGAA G CAGUCCGU	6630	ACGGACTG GGCTAGCTACAACGA TTCCGGAA	15379
2093	CGGAAGCA G UCCGUGGG	6631	CCCACGGA GGCTAGCTACAACGA TGCTTCCG	15380
2089	AGCAGUCC G UGGGGCAG	6632	CTGCCCCA GGCTAGCTACAACGA GGACTGCT	15381
2084	UCCGUGGG G CAGGUAAA	6633	TTAACCTG GGCTAGCTACAACGA CCCACGGA	15382
2080	UGGGGCAG G UUAAGGUG	6634	CACCTTAA GGCTAGCTACAACGA CTGCCCCA	15383
2074	AGGUUAAG G UGUCGUUA	6635	TAACGACA GGCTAGCTACAACGA CTTAACCT	15384
2072	GUUAAGGU G UCGGUUACC	6636	GGTAACGA GGCTAGCTACAACGA ACCTTAAC	15385
2069	AAGGUGUC G UUACCGGC	6637	CCCGGTAA GGCTAGCTACAACGA GACACCTT	15386
2066	GUGUCGUU A CCGGCCCC	6638	GGGGCCGG GGCTAGCTACAACGA AACGACAC	15387
2062	CGUUACCG G CCCCCCCC	6639	CGGGGGGG GGCTAGCTACAACGA CGGTAACG	15388
2053	CCCCCCCCG A UGUUGCAC	6640	GTGCAACA GGCTAGCTACAACGA CGGGGGGG	15389
2051	CCCCCGAU G UUGCACGG	6641	CCGTGCAA GGCTAGCTACAACGA ATCGGGGG	15390
2048	CCGAUGUU G CACGGGGG	6642	CCCCCGTG GGCTAGCTACAACGA AACATCGG	15391
2046	GAUGUUGC A CGGGGGGC	6643	CCCCCCCC GGCTAGCTACAACGA GCAACATC	15392
2039	CACGGGGG G CCCCCCGCA	6644	TGCGGGGG GGCTAGCTACAACGA CCCCCGTG	15393
2033	GGGGCCCC G CACGUCUU	6645	AAGACGTG GGCTAGCTACAACGA GGGGGCCC	15394
2031	CCCCCCGC A CGUCUUGG	6646	CCAAGACG GGCTAGCTACAACGA GCGGGGGC	15395
2029	CCCCGCAC G UCUUGGUG	6647	CACCAAGA GGCTAGCTACAACGA GTGCGGGG	15396
2023	ACGUCUUG G UGAACCCA	6648	TGGGTTCA GGCTAGCTACAACGA CAAGACGT	15397
2019	CUUGGUGA A CCCAGUGC	6649	GCACTGGG GGCTAGCTACAACGA TCACCAAG	15398
2014	UGAACCCA G UGCCAUUC	6650	GAATGGCA GGCTAGCTACAACGA TGGGTTCA	15399
2012	AACCCAGU G CCAUCAU	6651	ATGAATGG GGCTAGCTACAACGA ACTGGGTT	15400
2009	CCAGUGCC A UUCAUCCA	6652	TGGATGAA GGCTAGCTACAACGA GGCACGG	15401
2005	UGCCAUUC A UCCAUGUG	6653	CACATGGA GGCTAGCTACAACGA GAATGGCA	15402
2001	AUUCAUCC A UGUGCAGC	6654	GCTGCACA GGCTAGCTACAACGA GGATGAAT	15403
1999	UCAUCCAU G UGCAGCCG	6655	CGGCTGCA GGCTAGCTACAACGA ATGGATGA	15404
1997	AUCCAUGU G CAGCCGAA	6656	TTCGGCTG GGCTAGCTACAACGA ACATGGAT	15405
1994	CAUGUGCA G CCGAACCA	6657	TGGTTCGG GGCTAGCTACAACGA TGCACATG	15406

1989	GCAGCCGA A CCAGUUGC	6658	GCAACTGG GGCTAGCTACAACGA TCGGCTGC	15407
1985	CCGAACCA G UUGCCUUG	6659	CAAGGCAGA GGCTAGCTACAACGA TGGTTCGG	15408
1982	AACCAGUU G CCUUGCGG	6660	CCGCAAGG GGCTAGCTACAACGA AACTGGTT	15409
1977	GUUGCCUU G CGGCCGGC	6661	GGCCGCCG GGCTAGCTACAACGA AAGGCAAC	15410
1974	GCCUUGCG G CGGCCGCG	6662	CGCGGCCG GGCTAGCTACAACGA CGCAAGGC	15411
1971	UUGCAGCG G CCGCGUGU	6663	ACACCGGG GGCTAGCTACAACGA CGCCGCAA	15412
1968	CGGGGGCC G CGUGUUGU	6664	ACAACACG GGCTAGCTACAACGA GGCCGCCG	15413
1966	GCGGCCGC G UGUUGUUG	6665	CAACAACA GGCTAGCTACAACGA GCGGCCGC	15414
1964	GGCCGCGU G UUGUUGAG	6666	CTCAACAA GGCTAGCTACAACGA ACGCCGCC	15415
1961	CGCGUGUU G UUGAGGAG	6667	CTCCTCAA GGCTAGCTACAACGA AACACGCG	15416
1953	GUUGAGGA G CAGCACGU	6668	ACGTGCTG GGCTAGCTACAACGA TCCTCAAC	15417
1950	GAGGAGCA G CACGUCCG	6669	CGGACGTG GGCTAGCTACAACGA TGCTCCTC	15418
1948	GGAGCAGC A CGUCCGUC	6670	GACGGACG GGCTAGCTACAACGA GCTGCTCC	15419
1946	AGCAGCAC G UCCGUCUC	6671	GAGACGGA GGCTAGCTACAACGA GTGCTGCT	15420
1942	GCACGUCC G UCUCGUUC	6672	GAACGAGA GGCTAGCTACAACGA GGACGTGC	15421
1937	UCCGUCUC G UUCGCC	6673	GGGGCGAA GGCTAGCTACAACGA GAGACGGA	15422
1933	UCUCGUUC G CCCCCCAG	6674	CTGGGGGG GGCTAGCTACAACGA GAACGAGA	15423
1925	GCCCCCCA G UUUAACGU	6675	ACGTATAA GGCTAGCTACAACGA TGGGGGGC	15424
1922	CCCCAGUU A UACGUGGG	6676	CCCACGTA GGCTAGCTACAACGA AACTGGGG	15425
1920	CCAGUUUA A CGUGGGGG	6677	CCCCCACG GGCTAGCTACAACGA ATAACCTGG	15426
1918	AGUUAUAC G UGGGGGCG	6678	CGCCCCCA GGCTAGCTACAACGA GTATAACT	15427
1912	ACGUGGGG G CGCCGAAA	6679	TTTCGGCG GGCTAGCTACAACGA CCCCCACGT	15428
1910	GUGGGGGC G CCGAAACG	6680	CGTTTCGG GGCTAGCTACAACGA GCCCCCAC	15429
1904	GCGCCGAA A CGGUCGGU	6681	ACCGACCG GGCTAGCTACAACGA TTGGCGC	15430
1901	CCGAAACG G UC GGUCGU	6682	ACGACCGA GGCTAGCTACAACGA CGTTTCGG	15431
1897	AACGGUCG G UCGUCCCC	6683	GGGGACGA GGCTAGCTACAACGA CGACCGTT	15432
1894	GGUCGGUC G UCCCCACC	6684	GGTGGGGA GGCTAGCTACAACGA GACCGACC	15433
1888	UCGUCCCC A CCACAA	6685	TGTTGTGG GGCTAGCTACAACGA GGGGACGA	15434
1885	UCCCCACC A CAACAGGG	6686	CCCTGTT GGCTAGCTACAACGA GGTGGGGA	15435
1882	CCACCA A CAGGGCUU	6687	AAGCCCTG GGCTAGCTACAACGA TGTGGTGG	15436
1877	ACAACAGG G CUUGGGGU	6688	ACCCCAAG GGCTAGCTACAACGA CCTGTTGT	15437
1870	GGCUUGGG G UGAAGCAA	6689	TTGCTTCA GGCTAGCTACAACGA CCCAAGCC	15438
1865	GGGGUGAA G CAAUACAC	6690	GTGTATTG GGCTAGCTACAACGA TTCACCCC	15439
1862	GUGAAGCA A UACACUGG	6691	CCAGTGTA GGCTAGCTACAACGA TGCTTCAC	15440
1860	GAAGCAAU A CACUGGAC	6692	GTCCAGTG GGCTAGCTACAACGA ATTGCTTC	15441
1858	AGCAAUAC A CUGGACCA	6693	TGGTCCAG GGCTAGCTACAACGA GTATTGCT	15442
1853	UACACUGG A CCACAUAC	6694	GTATGTGG GGCTAGCTACAACGA CCAGTGTA	15443
1850	ACUGGACC A CAUACCUG	6695	CAGGTATG GGCTAGCTACAACGA GGTCCAGT	15444
1848	UGGACCAC A UACCUGCG	6696	CGCAGGTA GGCTAGCTACAACGA GTGGTCCA	15445
1846	GACCACAU A CCUGCGAU	6697	ATCGCAGG GGCTAGCTACAACGA ATGTGGTC	15446
1842	ACAUACCU G CGAUGCGG	6698	CCGCATCG GGCTAGCTACAACGA AGGTATGT	15447
1839	UACCUGCG A UGCGGGUA	6699	TACCCGCA GGCTAGCTACAACGA CGCAGGTA	15448
1837	CCUGCGAU G CGGGUACG	6700	CGTACCCG GGCTAGCTACAACGA ATCGCAGG	15449
1833	CGAUGCGG G UACGAUAC	6701	GTATCGTA GGCTAGCTACAACGA CGCATCG	15450
1831	AUGCGGGU A CGAUACCA	6702	TGGTATCG GGCTAGCTACAACGA ACCCGCAT	15451
1828	CGGGUACG A UACCACAC	6703	GTGTGGTA GGCTAGCTACAACGA CGTACCCG	15452
1826	GGUACGAU A CCACACGG	6704	CCGTGTGG GGCTAGCTACAACGA ATCGTACC	15453
1823	ACGAUACC A CACGGCCG	6705	CGGCCGTG GGCTAGCTACAACGA GGTATCGT	15454
1821	GAUACCAC A CGGCCGCG	6706	CGCGGCCG GGCTAGCTACAACGA GTGGTATC	15455
1818	ACCACACG G CCGCGGUG	6707	CACCGCGG GGCTAGCTACAACGA CGTGTGGT	15456
1815	ACACGGCC G CGGUGCGU	6708	ACGCACCG GGCTAGCTACAACGA GGCGTGT	15457
1812	CGGGCGCG G UGCGUAGU	6709	ACTACGCA GGCTAGCTACAACGA CGCGGCCG	15458
1810	GCCGCGGU G CGUAGUGC	6710	GCACTAGC GGCTAGCTACAACGA ACCGCCGC	15459
1808	CGCGGUGC G UAGUGCCA	6711	TGGCACTA GGCTAGCTACAACGA GCACCGCG	15460
1805	GGUGCGUA G UGCCAGCA	6712	TGCTGGCA GGCTAGCTACAACGA TAGCACC	15461
1803	UGCGUAGU G CCAGCAAU	6713	ATTGCTGG GGCTAGCTACAACGA ACTACGCA	15462

1799	UAGUGCCA G CAAUAGGG	6714	CCCTATTG GGCTAGCTACAACGA TGGCACTA	15463
1796	UGCCAGCA A UAGGGCCU	6715	AGGCCCTA GGCTAGCTACAACGA TGCTGGCA	15464
1791	GCAAUAGG G CCUCUGGU	6716	ACCAGAGG GGCTAGCTACAACGA CCTATTGC	15465
1784	GGCCUCUG G UCCGAGUU	6717	AACTCGGA GGCTAGCTACAACGA CAGAGGCC	15466
1778	UGGUCCGA G UUGUGGCC	6718	GGCCACAA GGCTAGCTACAACGA TCGGACCA	15467
1775	UCCGAGUU G UGGCCCUC	6719	GAGGGCCA GGCTAGCTACAACGA AACTCGGA	15468
1772	GAGUUGUG G CCCUCGGU	6720	ACCGAGGG GGCTAGCTACAACGA CACAACTC	15469
1765	GGCCCUCG G UGUAGGUG	6721	CACCTACA GGCTAGCTACAACGA CGAGGGCC	15470
1763	CCCUCGGU G UAGGUGAU	6722	ATCACCTA GGCTAGCTACAACGA ACCGAGGG	15471
1759	CGGUGUAG G UGAUAGGA	6723	TCCTATCA GGCTAGCTACAACGA CTACACCG	15472
1756	UGUAGGUG A UAGGACCC	6724	GGGTCCCTA GGCTAGCTACAACGA CACCTACA	15473
1751	GUGAUAGG A CCCCACCC	6725	GGGTGGGG GGCTAGCTACAACGA CCTATCAC	15474
1746	AGGACCCC A CCCCUGAG	6726	CTCAGGGG GGCTAGCTACAACGA GGGGTCCCT	15475
1738	ACCCCUAG G CGAACUUG	6727	CAAGTTCG GGCTAGCTACAACGA TCAGGGGT	15476
1734	CUGAGCGA A CUUGUCAA	6728	TTGACAAG GGCTAGCTACAACGA TCGCTCAG	15477
1730	GCGAACUU G UCAGAUGGA	6729	TCCATTGA GGCTAGCTACAACGA AAGTTCGC	15478
1726	ACUUGUCA A UGGAGCGG	6730	CCGCTCCA GGCTAGCTACAACGA TGACAAGT	15479
1721	UCAAUGGA G CGGCAGCU	6731	AGCTGCCG GGCTAGCTACAACGA TCCATTGA	15480
1718	AUGGAGCG G CAGCUGGC	6732	GCCAGCTG GGCTAGCTACAACGA CGCTCCAT	15481
1715	GAGCGGCA G CUGGCCAA	6733	TTGGCCAG GGCTAGCTACAACGA TGCCGCTC	15482
1711	GGCAGCUG G CCAAGCGC	6734	GCGCTTGG GGCTAGCTACAACGA CAGCTGCC	15483
1706	CUGGCCAA G CGCUGUGG	6735	CCACAGCG GGCTAGCTACAACGA TTGGCCAG	15484
1704	GGCCAAGC G CUGUGGGC	6736	GCCCCACAG GGCTAGCTACAACGA GCTTGGCC	15485
1701	CAAGCGCU G UGGGCAUC	6737	GATGCCCA GGCTAGCTACAACGA AGCGCTTG	15486
1697	CGCUGUGG G CAUCCGGA	6738	TCCGGATG GGCTAGCTACAACGA CCACAGCG	15487
1695	CUGUGGGC A UCCGGACG	6739	CGTCCGGA GGCTAGCTACAACGA GCCCCACAG	15488
1689	GCAUCCGG A CGAGUUGA	6740	TCAACTCG GGCTAGCTACAACGA CCGGATGC	15489
1685	CCGGACGA G UUGAACCU	6741	AGGTTCAA GGCTAGCTACAACGA TCGTCCGG	15490
1680	CGAGUUGA A CCUGUGUG	6742	CACACAGG GGCTAGCTACAACGA TCAACTCG	15491
1676	UUGAACCU G UGUGCAUA	6743	TATGCACA GGCTAGCTACAACGA AGGTTCAA	15492
1674	GAACCUGU G UGCAUAGA	6744	TCTATGCA GGCTAGCTACAACGA ACAGGTTTC	15493
1672	ACCUGUGU G CAUAGAAC	6745	GTTCTATG GGCTAGCTACAACGA ACACAGGT	15494
1670	CUGUGUGC A UAGAACAG	6746	CTGTTCTA GGCTAGCTACAACGA GCACACAG	15495
1665	UGCAUAGA A CAGUGCAG	6747	CTGCACTG GGCTAGCTACAACGA TCTATGCA	15496
1662	AUAGAACCA G UGCAGCAA	6748	TTGCTGCA GGCTAGCTACAACGA TGTTCTAT	15497
1660	AGAACAGU G CAGCAAUG	6749	CATTGCTG GGCTAGCTACAACGA ACTGTTCT	15498
1657	ACAGUGCA G CAAUGAAC	6750	GTTCATTG GGCTAGCTACAACGA TGCACGT	15499
1654	GUGCAGCA A UGAACCCG	6751	CGGGTTCA GGCTAGCTACAACGA TGCTGCAC	15500
1650	AGCAAUGA A CCCGGUUU	6752	AAACCGGG GGCTAGCTACAACGA TCATTGCT	15501
1645	UGAACCCG G UUUGGAGG	6753	CCTCCAAA GGCTAGCTACAACGA CGGGTTCA	15502
1634	UGGAGGGA G UCAUUGCA	6754	TGCAATGA GGCTAGCTACAACGA TCCCCTCCA	15503
1631	AGGGAGUC A UUGCAGUU	6755	AACTGCAA GGCTAGCTACAACGA GACTCCCT	15504
1628	GAGUCAUU G CAGUUCAG	6756	CTGAACTG GGCTAGCTACAACGA AATGACTC	15505
1625	UCAUUGCA G UUCAGGGC	6757	GCCCTGAA GGCTAGCTACAACGA TGCAATGA	15506
1618	AGUUCAGG G CAGUCCUG	6758	CAGGACTG GGCTAGCTACAACGA CCTGAACCT	15507
1615	UCAGGGCA G UCCUGUUA	6759	TAACAGGA GGCTAGCTACAACGA TGCCCTGA	15508
1610	GCAGUCCU G UUAAUGUG	6760	CACATTAA GGCTAGCTACAACGA AGGACTGC	15509
1606	UCCUGUUA A UGUGCCAG	6761	CTGGCACA GGCTAGCTACAACGA TAACAGGA	15510
1604	CUGUUAUU G UGCCAGCU	6762	AGCTGGCA GGCTAGCTACAACGA ATTAACAG	15511
1602	GUUAAUGU G CCAGCUGC	6763	GCAGCTGG GGCTAGCTACAACGA ACATTAAC	15512
1598	AUGUGCCA G CUGCCGUU	6764	AACGGCAG GGCTAGCTACAACGA TGGCACAT	15513
1595	UGCCAGCU G CCGUUGGU	6765	ACCAACGG GGCTAGCTACAACGA AGCTGGCA	15514
1592	CAGCUGCC G UUGGUGUU	6766	AACACCAA GGCTAGCTACAACGA GGCAGCTG	15515
1588	UGCCGUUG G UGUUAAUA	6767	TATTAACA GGCTAGCTACAACGA CAACGGCA	15516
1586	CCGUUGGU G UUAAUAAG	6768	CTTATTAA GGCTAGCTACAACGA ACCAACGG	15517
1582	UGGUGUUA A UAAGCUGG	6769	CCAGCTTA GGCTAGCTACAACGA TAACACCA	15518

1578	GUUAAUAA G CUGGAUAU	6770	ATATCCAG GGCTAGCTACAACGA TTATTAAC	15519
1573	UAAGCUGG A UAUUCUGA	6771	TCAGAATA GGCTAGCTACAACGA CCAGCTTA	15520
1571	AGCUGGAU A UUCUGAGA	6772	TCTCAGAA GGCTAGCTACAACGA ATCCAGCT	15521
1563	AUUCUGAG A UGCCUCCAG	6773	CTGGAGCA GGCTAGCTACAACGA CTCAGAAT	15522
1561	UCUGAGAU G CUCCAGAU	6774	ATCTGGAG GGCTAGCTACAACGA ATCTCAGA	15523
1554	UGCUCAGG A UGUAAAAGA	6775	TCTTTACA GGCTAGCTACAACGA CTGGAGCA	15524
1552	CUCCAGAU G UAAAGAGG	6776	CCTCTTAA GGCTAGCTACAACGA ATCTGGAG	15525
1542	AAAGAGGG A UGCCACCC	6777	GGGTGGCA GGCTAGCTACAACGA CCCTCTTT	15526
1540	AGAGGGAU G CCACCCUA	6778	TAGGGTGG GGCTAGCTACAACGA ATCCCTCT	15527
1537	GGGAUGCC A CCCUACUA	6779	TAGTAGGG GGCTAGCTACAACGA GGCACTCCC	15528
1532	GCCACCCU A CUAGUGGU	6780	ACCACTAG GGCTAGCTACAACGA AGGGTGGC	15529
1528	CCCUACUA G UGGUGUGG	6781	CCACACCA GGCTAGCTACAACGA TAGTAGGG	15530
1525	UACUAGUG G UGGGGCCC	6782	GGGCCACA GGCTAGCTACAACGA CACTAGTA	15531
1523	CUAGUGGU G UGGCCCUG	6783	CAGGGCCA GGCTAGCTACAACGA ACCACTAG	15532
1520	GUGGUGUG G CCCUGCGC	6784	GCGCAGGG GGCTAGCTACAACGA CACACCAC	15533
1515	GUGGCCU G CGCCCCCC	6785	GGGGGGCG GGCTAGCTACAACGA AGGGCCAC	15534
1513	GGCCCUGC G CCCCCCCC	6786	AGGGGGGG GGCTAGCTACAACGA GCAGGGCC	15535
1504	CCCCCCCCU G UCGUGUAG	6787	CTACACGA GGCTAGCTACAACGA AGGGGGGG	15536
1501	CCCCUGUC G UGUAGGUG	6788	CACCTACA GGCTAGCTACAACGA GACAGGGG	15537
1499	CCUGUCGU G UAGGUGUC	6789	GACACCTA GGCTAGCTACAACGA ACGACAGG	15538
1495	UCGUGUAG G UGUCCCCG	6790	CGGGGACA GGCTAGCTACAACGA CTACACGA	15539
1493	GUGUAGGU G UCCCCGUC	6791	GACGGGGA GGCTAGCTACAACGA ACCTACAC	15540
1487	GUGUCCCC G UCAACGCC	6792	GGCGTTGA GGCTAGCTACAACGA GGGGACAC	15541
1483	CCCCGUCA A CGCCGGCA	6793	TGCCGGCG GGCTAGCTACAACGA TGACGGGG	15542
1481	CCGUCAAC G CCGGCAAA	6794	TTTGCCGG GGCTAGCTACAACGA GTTGACGG	15543
1477	CAACGCCG G CAAAGAGU	6795	ACTCTTG GGCTAGCTACAACGA CGGCCTTG	15544
1470	GGCAAAGA G UAGCAUCA	6796	TGATGCTA GGCTAGCTACAACGA TCTTGCC	15545
1467	AAAGAGUA G CAUCACAA	6797	TTGTGATG GGCTAGCTACAACGA TACTCTTT	15546
1465	AGAGUAGC A UCACAAUC	6798	GATTGTGA GGCTAGCTACAACGA GCTACTCT	15547
1462	GUAGCAUC A CAAUCAAC	6799	GTTGATTG GGCTAGCTACAACGA GATGCTAC	15548
1459	GCAUCACA A UCAACACC	6800	GGTGTGTA GGCTAGCTACAACGA TGTGATGC	15549
1455	CACAAUCA A CACCUUAG	6801	CTAAGGTG GGCTAGCTACAACGA TGATTGTG	15550
1453	CAAUCAAC A CCUUAGCC	6802	GGCTAAGG GGCTAGCTACAACGA GTTGATTG	15551
1447	ACACCUUA G CCCAGUUC	6803	GAACCTGG GGCTAGCTACAACGA TAAGGTGT	15552
1442	UUAGCCCC G UUCCCCAC	6804	GTGGGGAA GGCTAGCTACAACGA TGGGCTAA	15553
1435	AGUCCCCC A CCAUGGAA	6805	TTCCATGG GGCTAGCTACAACGA GGGGAAC	15554
1432	UCCCCACC A UGGAAUAA	6806	TTATTCCA GGCTAGCTACAACGA GGTGGGGA	15555
1427	ACCAUGGA A UAAUAGGC	6807	GCCTATTAA GGCTAGCTACAACGA TCCATGGT	15556
1424	AUGGAAUA A UAGGCAAG	6808	CTTGCCTA GGCTAGCTACAACGA TATTCCAT	15557
1420	AAUAAUAG G CAAGGCC	6809	GGGCCTTG GGCTAGCTACAACGA CTATTATT	15558
1415	UAGGCAAG G CCCGCCAG	6810	CTGGCGGG GGCTAGCTACAACGA CTTGCCTA	15559
1411	CAAGGCC G CCAGGACU	6811	AGTCCTGG GGCTAGCTACAACGA GGGCCTTG	15560
1405	CCGCCAGG A CUCCCCAG	6812	CTGGGGAG GGCTAGCTACAACGA CCTGGCGG	15561
1397	ACUCCCCA G UGGGGCCC	6813	GGGGCCCA GGCTAGCTACAACGA TGGGGAGT	15562
1393	CCCAGUGG G CCCCCGCC	6814	GGCGGGGG GGCTAGCTACAACGA CCACTGGG	15563
1387	GGGGCCCC G CCACCAUG	6815	CATGGTGG GGCTAGCTACAACGA GGGGGCCC	15564
1384	CCCCCGCC A CCAUGUCC	6816	GGACATGG GGCTAGCTACAACGA GGCGGGGG	15565
1381	CCGCCACC A UGUCCACG	6817	CGTGGACA GGCTAGCTACAACGA GGTGGCGG	15566
1379	GCCACCAU G UCCACGAC	6818	GTCGTGGA GGCTAGCTACAACGA ATGGTGCG	15567
1375	CCAUGUCC A CGACGGCU	6819	AGCCGTCG GGCTAGCTACAACGA GGACATGG	15568
1372	UGUCCACG A CGGCUUGU	6820	ACAAGCCG GGCTAGCTACAACGA CGTGGACA	15569
1369	CCACGACG G CUUGUGGG	6821	CCCACAAG GGCTAGCTACAACGA CGTCGTGG	15570
1365	GACGGCUU G UGGGAUCC	6822	GGATCCCA GGCTAGCTACAACGA AAGCCGTC	15571
1360	CUUGUGGG A UCCGGAGC	6823	GCTCCGGA GGCTAGCTACAACGA CCCACAAG	15572
1353	GAUCCGGA G CAACUGCG	6824	CGCAGTTG GGCTAGCTACAACGA TCCGGATC	15573
1350	CCGGAGCA A CUGCGAUA	6825	TATCGCAG GGCTAGCTACAACGA TGCTCCGG	15574

1347	GAGCAACU G CGAUACCA	6826	TGGTATCG GGCTAGCTACAACGA AGTTGCTC	15575
1344	CAACUGCG A UACCACUA	6827	TAGTGGTA GGCTAGCTACAACGA CGCAGTTG	15576
1342	ACUGCGAU A CCACUAGG	6828	CCTAGTGG GGCTAGCTACAACGA ATCGCAGT	15577
1339	GCGAUACC A CUAGGGCU	6829	AGCCCTAG GGCTAGCTACAACGA GGTATCGC	15578
1333	CCACUAGG G CUGUUGUA	6830	TACAACAG GGCTAGCTACAACGA CCTAGTGG	15579
1330	CUAGGGCU G UUGUAGGU	6831	ACCTACAA GGCTAGCTACAACGA AGCCCTAG	15580
1327	GGGCUGUU G UAGGUGAC	6832	GTCACCTA GGCTAGCTACAACGA AACAGCCC	15581
1323	UGUUGUAG G UGACCAAU	6833	ATTGGTCA GGCTAGCTACAACGA CTACAACA	15582
1320	UGUAGGUG A CCAUUCA	6834	TGAATTGG GGCTAGCTACAACGA CACCTACA	15583
1316	GGUGACCA A UUCAUCAU	6835	ATGATGAA GGCTAGCTACAACGA TGGTCACC	15584
1312	ACCAAUUC A UCAUCAUA	6836	TATGATGA GGCTAGCTACAACGA GAATTGGT	15585
1309	AAUUCAUC A UCAUAUCC	6837	GGATATGA GGCTAGCTACAACGA GATGAATT	15586
1306	UCAUCAUC A UAUCCCAA	6838	TTGGGATA GGCTAGCTACAACGA GATGATGA	15587
1304	AUCAUCAU A UCCCAAGC	6839	GCTTGGGA GGCTAGCTACAACGA ATGATGAT	15588
1297	UAUCCCAA G CCAUGCGA	6840	TCGCATGG GGCTAGCTACAACGA TTGGGATA	15589
1294	CCCAAGCC A UGCGAUGG	6841	CCATCGCA GGCTAGCTACAACGA GGCTTGGG	15590
1292	CAAGCCAU G CGAUGGCC	6842	GGCCATCG GGCTAGCTACAACGA ATGGCTTG	15591
1289	GCCAUGCG A UGGCCUGA	6843	TCAGGCCA GGCTAGCTACAACGA CGCATGGC	15592
1286	AUGCGAUG G CCUGAUAC	6844	GTATCAGG GGCTAGCTACAACGA CATCGCAT	15593
1281	AUGGCCUG A UACGUGGC	6845	GCCACGTA GGCTAGCTACAACGA CAGGCCAT	15594
1279	GGCCUGAU A CGUGGCCG	6846	CGGCCACG GGCTAGCTACAACGA ATCAGGCC	15595
1277	CCUGAUAC G UGGCCGGG	6847	CCCGGCCA GGCTAGCTACAACGA GTATCAGG	15596
1274	GAUACGUG G CCGGGUA	6848	TATCCCGG GGCTAGCTACAACGA CACGTATC	15597
1268	UGGCCGGG A UAGAUCGA	6849	TCGATCTA GGCTAGCTACAACGA CCCGGCCA	15598
1264	CGGGAUAG A UCGAGCAA	6850	TTGCTCGA GGCTAGCTACAACGA CTATCCCG	15599
1259	UAGAUCGA G CAAUUA	6851	TGTAATTG GGCTAGCTACAACGA TCGATCTA	15600
1256	AUCGAGCA A UUACAGUC	6852	GACTGTAA GGCTAGCTACAACGA TGCTCGAT	15601
1253	GAGCAAUU A CAGUCCUG	6853	CAGGACTG GGCTAGCTACAACGA AATTGCTC	15602
1250	CAAAUACA G UCCUGUAC	6854	GTACAGGA GGCTAGCTACAACGA TGTAATTG	15603
1245	ACAGUCCU G UACUGUCU	6855	AGACAGTA GGCTAGCTACAACGA AGGACTGT	15604
1243	AGUCCUGU A CUGUCUCA	6856	TGAGACAG GGCTAGCTACAACGA ACAGGACT	15605
1240	CCUGUACU G UCUCAUAC	6857	GTATGAGA GGCTAGCTACAACGA AGTACAGG	15606
1235	ACUGUCUC A UACCGGCG	6858	CGCCGGTA GGCTAGCTACAACGA GAGACAGT	15607
1233	UGUCUCAU A CCGGCGAG	6859	CTCGCCGG GGCTAGCTACAACGA ATGAGACA	15608
1229	UCAUACCG G CGAGGC	6860	TCGCCTCG GGCTAGCTACAACGA CGGTATGA	15609
1224	CCGGCGAG G CGAGAAGG	6861	CCTTCTCG GGCTAGCTACAACGA CTCGCCGG	15610
1216	GCGAGAAG G UGAACAGC	6862	GCTGTTCA GGCTAGCTACAACGA CTTCTCGC	15611
1212	GAAGGUGA A CAGCUGAG	6863	CTCAGCTG GGCTAGCTACAACGA TCACCTTC	15612
1209	GGUGAAC A CUGAGAGA	6864	TCTCTCGA GGCTAGCTACAACGA TGTTCAC	15613
1201	GCUGAGAG A CGAGGAAG	6865	CTTCCTCG GGCTAGCTACAACGA CTCTCAGC	15614
1192	CGAGGAAG A CAGAUCCG	6866	CGGATCTG GGCTAGCTACAACGA CTTCCTCG	15615
1188	GAAGACAG A UCCGCAGA	6867	TCTGCCGA GGCTAGCTACAACGA CTGTCTTC	15616
1184	ACAGAUCC G CAGAGAUC	6868	GATCTCTG GGCTAGCTACAACGA GGATCTGT	15617
1178	CCGCAGAG A UCCCCCAC	6869	GTGGGGGA GGCTAGCTACAACGA CTCTCGGG	15618
1171	GAUCCCCC A CGUACAU	6870	TATGTACG GGCTAGCTACAACGA GGGGGATC	15619
1169	UCCCCCAC G UACAUAGC	6871	GCTATGTA GGCTAGCTACAACGA GTGGGGGA	15620
1167	CCCCACGU A CAUAGCAG	6872	CTGCTATG GGCTAGCTACAACGA ACGTGGGG	15621
1165	CCACGUAC A UAGCAGAG	6873	CTCTGCTA GGCTAGCTACAACGA GTACGTGG	15622
1162	CGUACAU A CAGAGCAG	6874	CTGCTCTG GGCTAGCTACAACGA TATGTACG	15623
1157	AUAGCAGA G CAGAAAGC	6875	GCTTCTG GGCTAGCTACAACGA TCTGCTAT	15624
1150	AGCAGAAA G CAGCCGCC	6876	GGCGGCTG GGCTAGCTACAACGA TTTCTGCT	15625
1147	AGAAAGCA G CCGCCCCA	6877	TGGGGCGG GGCTAGCTACAACGA TGCTTTCT	15626
1144	AAGCAGCC G CCCCAACG	6878	CGTTGGGG GGCTAGCTACAACGA GGCTGCTT	15627
1138	CCGCCCCA A CGAGCAAA	6879	TTTGCTCG GGCTAGCTACAACGA TGGGGCGG	15628
1134	CCCAACGA G CAAAUCGA	6880	TCGATTTG GGCTAGCTACAACGA TCGTTGGG	15629
1130	ACGAGCAA A UCGACGUG	6881	CACGTCGA GGCTAGCTACAACGA TTGCTCGT	15630

1126	GCAAAUCG A CGUGACGC	6882	GCGTCACG GGCTAGCTACAACGA CGATTGTC	15631
1124	AAAUCGAC G UGACGCCG	6883	CGGCGTCA GGCTAGCTACAACGA GTCGATT	15632
1121	UCGACGUG A CGCCGUAU	6884	ATACGGCG GGCTAGCTACAACGA CACGTCGA	15633
1119	GACGUGAC G CCCGUACG	6885	CGATACGG GGCTAGCTACAACGA GTCACGTC	15634
1116	GUGACGCC G UAUCGUCG	6886	CGACGATA GGCTAGCTACAACGA GGCCTCAC	15635
1114	GACGCCGU A UCGUCGUA	6887	TACGACGA GGCTAGCTACAACGA ACGGCGTC	15636
1111	GCCGUUAUC G UCGUAGUG	6888	CACTACGA GGCTAGCTACAACGA GATACGGC	15637
1108	GUAUCGUC G UAGUGGGG	6889	CCCCACTA GGCTAGCTACAACGA GACGATAAC	15638
1105	UCGUCGUA G UGGGGGAUG	6890	CATCCCCA GGCTAGCTACAACGA TACGACGA	15639
1099	UAGUGGGG A UGCUGGCA	6891	TGCCAGCA GGCTAGCTACAACGA CCCCCACTA	15640
1097	GUGGGGAU G CUGGCAUU	6892	AATGCCAG GGCTAGCTACAACGA ATCCCCAC	15641
1093	GGAUGCUG G CAUUCCUG	6893	CAGGAATG GGCTAGCTACAACGA CAGCATCC	15642
1091	AUGCUGGC A UUCCUGGC	6894	GCCAGGAA GGCTAGCTACAACGA GCCAGCAT	15643
1084	CAUUCCUG G CCGCGAGC	6895	GCTCGCGG GGCTAGCTACAACGA CAGGAATG	15644
1081	UCCUGGCC G CGAGCGUG	6896	CACGCTCG GGCTAGCTACAACGA GGCCAGGA	15645
1077	GGCCGCGA G CGUGGGAG	6897	CTCCCACG GGCTAGCTACAACGA TCGCGGCC	15646
1075	CCCGCAGC G UGGGAGUG	6898	CACTCCCA GGCTAGCTACAACGA GCTCGCGG	15647
1069	GCGUGGGG G UGAGCGCU	6899	AGCGCTCA GGCTAGCTACAACGA TCCCACGC	15648
1065	GGGAGUGA G CGCUACCC	6900	GGGTAGCG GGCTAGCTACAACGA TCACTCCC	15649
1063	GAGUGAGC G CUACCCAG	6901	CTGGGTAG GGCTAGCTACAACGA GCTCACTC	15650
1060	UGAGCGCU A CCCAGCAG	6902	CTGCTGGG GGCTAGCTACAACGA AGCGCTCA	15651
1055	GCUACCCA G CAGCGGGG	6903	TCCCGCTG GGCTAGCTACAACGA TGGGTAGC	15652
1052	ACCCAGCA G CGGGAGGA	6904	TCCTCCCG GGCTAGCTACAACGA TGCTGGGT	15653
1043	CGGGAGGA G UUGUUCUC	6905	GAGAACAA GGCTAGCTACAACGA TCCTCCCG	15654
1040	GAGGAGUU G UUCUCCCG	6906	CGGGAGAA GGCTAGCTACAACGA AACTCCTC	15655
1030	UCUCCCGA A CGCAGGGC	6907	CCCCTGCG GGCTAGCTACAACGA TCAGGGAGA	15656
1028	UCCCGAAC G CAGGGCAC	6908	GTGCCCTG GGCTAGCTACAACGA GTTCGGGA	15657
1023	AACCGCAGG G CACGCACC	6909	GGTGCCTG GGCTAGCTACAACGA CCTGCGTT	15658
1021	CGCAGGGC A CGCACCCCC	6910	GGGGTGCN GGCTAGCTACAACGA CCCCTGCG	15659
1019	CAGGGCAC G CACCCCGG	6911	CCGGGGTG GGCTAGCTACAACGA GTGCCCTG	15660
1017	GGGCACGC A CCCCCGGG	6912	CCCCGGGG GGCTAGCTACAACGA GCGTGCC	15661
1009	ACCCCGGG G UGUGCAUG	6913	CATGCACA GGCTAGCTACAACGA CCCGGGTT	15662
1007	CCCGGGGU G UGCAUGAU	6914	ATCATGCA GGCTAGCTACAACGA ACCCCGGG	15663
1005	CGGGGUGU G CAUGAUCA	6915	TGATCATG GGCTAGCTACAACGA ACACCCCG	15664
1003	GGGUGUGC A UGAUCAUG	6916	CATGATCA GGCTAGCTACAACGA GCACACCC	15665
1000	UGUGCAUG A UCAUGUCC	6917	GGACATGA GGCTAGCTACAACGA CATGCACA	15666
997	GCAUGAUC A UGUCCUCU	6918	AGAGGACA GGCTAGCTACAACGA GATCATGC	15667
995	AUGAUCAU G UCCUCUGC	6919	GCAGAGGA GGCTAGCTACAACGA ATGATCAT	15668
988	UGUCCUCU G CCUCAUAC	6920	GTATGAGG GGCTAGCTACAACGA AGAGGACA	15669
983	UCUGCCUC A UACACAAU	6921	ATTGTGTA GGCTAGCTACAACGA GAGGCAGA	15670
981	UGCCUCAU A CACAAUGC	6922	GCATTGTG GGCTAGCTACAACGA ATGAGGCA	15671
979	CCUCAUAC A CAAUGCUU	6923	AAGCATTG GGCTAGCTACAACGA GTATGAGG	15672
976	CAUACACA A UGCUUGAG	6924	CTCAAGCA GGCTAGCTACAACGA TGTGTATG	15673
974	UACACAAU G CUUGAGUU	6925	AACTCAAG GGCTAGCTACAACGA ATTGTGTA	15674
968	AUGCUUGA G UUGGAGCA	6926	TGCTCCAA GGCTAGCTACAACGA TCAAGCAT	15675
962	GAGUUGGA G CAAUCGUU	6927	AACGATTG GGCTAGCTACAACGA TCCAACTC	15676
959	UUGGAGCA A UCGUUCGU	6928	ACGAACGA GGCTAGCTACAACGA TGCTCCAA	15677
956	GAGCAAUC G UUCGUGAC	6929	GTCACGAA GGCTAGCTACAACGA GATTGCTC	15678
952	AAUCGUUC G UGACAUUGG	6930	CCATGTCA GGCTAGCTACAACGA GAACGATT	15679
949	CGUUCGUG A CAUGGUAC	6931	GTACCATG GGCTAGCTACAACGA CACGAACG	15680
947	UUCGUGAC A UGGUACAG	6932	CTGTACCA GGCTAGCTACAACGA GTCACGAA	15681
944	GUGACAUG G UACAGCCC	6933	GGGCTGTA GGCTAGCTACAACGA CATGTCAC	15682
942	GACAUGGU A CAGCCCGG	6934	CCGGGCTG GGCTAGCTACAACGA ACCATGTC	15683
939	AUGGUACA G CCCGGACG	6935	CGTCCGGG GGCTAGCTACAACGA TGTACCAT	15684
933	CAGCCCGG A CGCGUUGC	6936	GCAACGCG GGCTAGCTACAACGA CCGGGCTG	15685
931	GCCCGGAC G CGUUGCAC	6937	GTGCAACG GGCTAGCTACAACGA GTCCGGGC	15686

929	CCGGACGC G UUGCACAC	6938	GTGTGCAA GGCTAGCTACAACGA GCGTCCGG	15687
926	GACGCGUU G CACACCUC	6939	GAGGTGTG GGCTAGCTACAACGA AACGCGTC	15688
924	CGGGUUGC A CACCUCAU	6940	ATGAGGTG GGCTAGCTACAACGA GCAACGCG	15689
922	CGUUGCAC A CCUCAUAA	6941	TTATGAGG GGCTAGCTACAACGA GTGCAACG	15690
917	CACACCUC A UAAGCGGA	6942	TCCGCTTA GGCTAGCTACAACGA GAGGTGTG	15691
913	CCUCAUAA G CGGAGGCCU	6943	AGCCTCCG GGCTAGCTACAACGA TTATGAGG	15692
907	AAGCGGAG G CUGGGAUG	6944	CATCCCAG GGCTAGCTACAACGA CTCCGCTT	15693
901	AGGCUGGG A UGGUCAGA	6945	TCTGACCA GGCTAGCTACAACGA CCCAGCCT	15694
898	CUGGGAUG G UCAGACAG	6946	CTGTCTGA GGCTAGCTACAACGA CATCCCAG	15695
893	AUGGUCAG A CAGGGCAG	6947	CTGCCCTG GGCTAGCTACAACGA CTGACCAT	15696
888	CAGACAGG G CAGCAGAG	6948	CTCTGCTG GGCTAGCTACAACGA CCTGCTCTG	15697
885	ACAGGGCA G CAGAGCCA	6949	TGGCTCTG GGCTAGCTACAACGA TGCCCTGT	15698
880	GCAGCAGA G CCAAGAGG	6950	CCTCTTGG GGCTAGCTACAACGA TCTGCTGC	15699
868	AGAGGAAG A UAGAGAAA	6951	TTTCTCTA GGCTAGCTACAACGA CTTCCCTCT	15700
857	GAGAAAGA G CAACCGGG	6952	CCCGGTTG GGCTAGCTACAACGA TCTTTCTC	15701
854	AAAGAGCA A CCGGGCAG	6953	CTGCCCCG GGCTAGCTACAACGA TGCTCTTT	15702
849	GCAACCGG G CAGAUUCC	6954	GGAATCTG GGCTAGCTACAACGA CCGGTTGC	15703
845	CCGGGCAG A UUCCCUGU	6955	ACAGGGAA GGCTAGCTACAACGA CTGCCCCG	15704
838	GAUUCCU G UUGCAUAG	6956	CTATGCAA GGCTAGCTACAACGA AGGGAATC	15705
835	UCCCUGUU G CAUAGUUC	6957	GAACTATG GGCTAGCTACAACGA AACAGGGA	15706
833	CCUGUUGC A UAGUUCAC	6958	GTGAACTA GGCTAGCTACAACGA GCAACAGG	15707
830	GUUGCAUA G UUCACGCC	6959	GGCGTGAA GGCTAGCTACAACGA TATGCAAC	15708
826	CAUAGUUC A CGCCGUCU	6960	AGACGGCG GGCTAGCTACAACGA GAACTATG	15709
824	UAGUUCAC G CCGUCUUC	6961	GAAGACGG GGCTAGCTACAACGA GTGAACTA	15710
821	UUCACGCC G UCUUCCAG	6962	CTGGAAGA GGCTAGCTACAACGA GGCGTGAA	15711
811	CUUCCAGA A CCCGGACG	6963	CGTCCGGG GGCTAGCTACAACGA TCTGGAAG	15712
805	GAACCCGG A CGCCAUGC	6964	GCATGGCG GGCTAGCTACAACGA CCGGGTTC	15713
803	ACCCGGAC G CCAUGCGC	6965	GCGCATGG GGCTAGCTACAACGA GTCCGGGT	15714
800	CGGACGCC A UGCGCCAG	6966	CTGGCGCA GGCTAGCTACAACGA GGCGTCCG	15715
798	GACGCCAU G CGCCAGGG	6967	CCCTGGCG GGCTAGCTACAACGA ATGGCGTC	15716
796	CGCCAUGC G CCAGGGCC	6968	GGCCCTGG GGCTAGCTACAACGA GCATGGCG	15717
790	GCGCCAGG G CCCUGGCA	6969	TGCCAGGG GGCTAGCTACAACGA CCTGGCGC	15718
784	GGGCCUG G CAGUGCCU	6970	AGGCACTG GGCTAGCTACAACGA CAGGGCCC	15719
781	CCUUGGCA G UGCCUCCC	6971	GGGAGGCA GGCTAGCTACAACGA TGCCAGGG	15720
779	CUGGCAGU G CCUCCCCA	6972	TTGGGAGG GGCTAGCTACAACGA ACTGCCAG	15721
766	CCAAGGGG G CGCCGACG	6973	CGTCGGCG GGCTAGCTACAACGA CCCCTTGG	15722
764	AAGGGGGC G CCGACGAG	6974	CTCGTCGG GGCTAGCTACAACGA GCCCCCTT	15723
760	GGGCGCCG A CGAGCGGA	6975	TCCGCTCG GGCTAGCTACAACGA CGGCGCCC	15724
756	GCCGACGA G CGGAAUGU	6976	ACATTCCG GGCTAGCTACAACGA TCGTCGGC	15725
751	CGAGCGGA A UGUACCCC	6977	GGGGTACA GGCTAGCTACAACGA TCCGCTCG	15726
749	AGCGGAAU G UACCCCAU	6978	ATGGGGTA GGCTAGCTACAACGA ATTCCGCT	15727
747	CGGAAUGU A CCCCAUGA	6979	TCATGGGG GGCTAGCTACAACGA ACATTCCG	15728
742	UGUACCCC A UGAGGUCG	6980	CGACCTCA GGCTAGCTACAACGA GGGGTACA	15729
737	CCCAUGAG G UCGGCAGA	6981	TTCGCCGA GGCTAGCTACAACGA CTCATGGG	15730
733	UGAGGUCG G CGAACCGC	6982	CGGCTTCG GGCTAGCTACAACGA CGACCTCA	15731
728	UCGGCGAA G CCCCAUGU	6983	ACATGCCG GGCTAGCTACAACGA TTCGCCGA	15732
725	GCGAAGCC G CAUGUGAG	6984	CTCACATG GGCTAGCTACAACGA GGCTTCGC	15733
723	GAAGCCGC A UGUGAGGG	6985	CCCTCACA GGCTAGCTACAACGA GCGGCTTC	15734
721	AGCCGCAU G UGAGGGUA	6986	TACCCCTCA GGCTAGCTACAACGA ATGCGGCT	15735
715	AUGUGAGG G UAUCAUG	6987	CATCGATA GGCTAGCTACAACGA CCTCACAT	15736
713	GUGAGGGU A UCGAUGAC	6988	GTCATCGA GGCTAGCTACAACGA ACCCTCAC	15737
709	GGGUUAUCG A UGACCUUA	6989	TAAGGTCA GGCTAGCTACAACGA CGATACCC	15738
706	UAUCGAUG A CCUUACCC	6990	GGGTAAGG GGCTAGCTACAACGA CATCGATA	15739
701	AUGACCUU A CCCAAGUU	6991	AACTTGGG GGCTAGCTACAACGA AAGGTCAT	15740
695	UUACCCAA G UUACGCGA	6992	TCGCGTAA GGCTAGCTACAACGA TTGGGTAA	15741
692	CCCAAGUU A CGCGACCU	6993	AGGTCGCG GGCTAGCTACAACGA AACTTGGG	15742

690	CAAGUUAC G CGACCUAC	6994	GTTAGGTCG GGCTAGCTACAACGA GTAACTTG	15743
687	GUUACGCG A CCUACGCC	6995	GGCGTAGG GGCTAGCTACAACGA CGCGTAAC	15744
683	CGCGACCU A CGCCGGGG	6996	CCCCGGCG GGCTAGCTACAACGA AGGTGCGC	15745
681	CGACCUAC G CCGGGGGU	6997	ACCCCCGG GGCTAGCTACAACGA GTAGGTCG	15746
674	CGCCGGGG G UCCGUGGG	6998	CCCACGGA GGCTAGCTACAACGA CCCCGGCG	15747
670	GGGGGUCC G UGGGGCCC	6999	GGGCCCCA GGCTAGCTACAACGA GGACCCCC	15748
665	UCCGUGGG G CCCCAACU	7000	AGTTGGGG GGCTAGCTACAACGA CCCACGGA	15749
659	GGGCCCCA A CUAGGCCG	7001	CGGCCTAG GGCTAGCTACAACGA TGGGGCCC	15750
654	CCAACUAG G CCGGGAGC	7002	GCTCCCGG GGCTAGCTACAACGA CTAGTTGG	15751
647	GGCCGGGA G CCGCGGGG	7003	CCCCGCGG GGCTAGCTACAACGA TCCCAGGC	15752
644	CGGGAGCC G CGGGGUGA	7004	TCACCCCCG GGCTAGCTACAACGA GGCTCCCG	15753
639	GCCGCGGG G UGACAGGA	7005	TCCTGTCA GGCTAGCTACAACGA CCCGCGGC	15754
636	GCGGGGUG A CAGGAGCC	7006	GGCTCCTG GGCTAGCTACAACGA CACCCCGC	15755
630	UGACAGGA G CCAUCCUG	7007	CAGGATGG GGCTAGCTACAACGA TCCTGTCA	15756
627	CAGGAGCC A UCCUGCCC	7008	GGGCAGGA GGCTAGCTACAACGA GGCTCCTG	15757
622	GCCAUCU G CCCACCCU	7009	AGGGTGGG GGCTAGCTACAACGA AGGATGGC	15758
618	UCCUGCCC A CCCUAAGC	7010	GCTTAGGG GGCTAGCTACAACGA GGGCAGGA	15759
611	CACCUUA G CCCUCAUU	7011	AATGAGGG GGCTAGCTACAACGA TTAGGGTG	15760
605	AAGCCCUC A UUGCCAUA	7012	TATGGCAA GGCTAGCTACAACGA GAGGGCTT	15761
602	CCCUCAUU G CCAUAGAG	7013	CTCTATGG GGCTAGCTACAACGA AATGAGGG	15762
599	UCAUUGCC A UAGAGGGG	7014	CCCCTCTA GGCTAGCTACAACGA GGCAATGA	15763
591	AUAGAGGG G CCAAGGGU	7015	ACCCTTGG GGCTAGCTACAACGA CCCTCTAT	15764
584	GGCCAAGG G UACCCGGG	7016	CCCGGGTA GGCTAGCTACAACGA CCTTGGCC	15765
582	CCAAGGGU A CCCGGGCU	7017	AGCCCCGG GGCTAGCTACAACGA ACCCTTGG	15766
576	GUACCCGG G CUGAGCCC	7018	GGGCTCAG GGCTAGCTACAACGA CGGGGTAC	15767
571	CGGGCUGA G CCCAGGCC	7019	GGCCTGGG GGCTAGCTACAACGA TCAGCCCG	15768
565	GAGCCCAG G CCCUGCCC	7020	GGGCAGGG GGCTAGCTACAACGA CTGGGCTC	15769
560	CAGGCCCU G CCCUCGGG	7021	CCCGAGGG GGCTAGCTACAACGA AGGGCCTG	15770
552	GCCCCUCG G CCGGCGAG	7022	CTCGCCGG GGCTAGCTACAACGA CCGAGGGC	15771
548	UCGGGCCG G CGAGCCUU	7023	AAGGCTCG GGCTAGCTACAACGA CGGCCCCG	15772
544	GCCGGCGA G CCUUGGGG	7024	CCCCAAGG GGCTAGCTACAACGA TCGCCGGC	15773
535	CCUUGGGG A UAGGUUGU	7025	ACAACCTA GGCTAGCTACAACGA CCCCCAAGG	15774
531	GGGGAUAG G UUGUCGCC	7026	GGCGACAA GGCTAGCTACAACGA CTATCCCC	15775
528	GAUAGGUU G UCGCCUUC	7027	GAAGGCGA GGCTAGCTACAACGA AACCTATC	15776
525	AGGUUGUC G CCUUCCAC	7028	GTGGAAGG GGCTAGCTACAACGA GACAACCT	15777
518	CGCCUUCC A CGAGGUUG	7029	CAACCTCG GGCTAGCTACAACGA GGAAGGCG	15778
513	UCCACGAG G UUGCGACC	7030	GGTCGCAA GGCTAGCTACAACGA CTCGTGGA	15779
510	ACGAGGUU G CGACCGCU	7031	AGCGGTGCG GGCTAGCTACAACGA AACCTCGT	15780
507	AGGUUGCG A CCGCUCGG	7032	CCGAGCGG GGCTAGCTACAACGA CGCAACCT	15781
504	UUGCGACC G CUCGGAAG	7033	CTTCCCGAG GGCTAGCTACAACGA GGTCGCAA	15782
496	GCUCGGAA G UCUUCCUA	7034	TAGGAAGA GGCTAGCTACAACGA TTCCGAGC	15783
487	UCUUCCUA G UCGCGCGC	7035	GGCGCGCA GGCTAGCTACAACGA TAGGAAGA	15784
484	UCCUAGUC G CGCGCACA	7036	TGTGCGCG GGCTAGCTACAACGA GACTAGGA	15785
482	CUAGUCGC G CGCACACCC	7037	GGTGTGCG GGCTAGCTACAACGA GCGACTAG	15786
480	AGUCGCGC G CACACCCA	7038	TGGGTGTG GGCTAGCTACAACGA GCGCGACT	15787
478	UCGCGCGC A CACCCAAC	7039	GTTGGGTG GGCTAGCTACAACGA GCGCGCGA	15788
476	GCGCGCAC A CCCAACCU	7040	AGGTTGGG GGCTAGCTACAACGA GTGCGCGC	15789
471	CACACCCA A CCUGGGGC	7041	GCCCCCAGG GGCTAGCTACAACGA TGGGTGTG	15790
464	AACCUGGG G CCCUGCGC	7042	CGCAGGGG GGCTAGCTACAACGA CCCAGGTT	15791
458	GGGCCCCU G CGCGCAA	7043	TTGCCCGC GGCTAGCTACAACGA AGGGGCC	15792
456	GCCCCUGC G CGGCAACA	7044	TGTTGCCG GGCTAGCTACAACGA GCAGGGGC	15793
453	CCUGCGCG G CAACAGGU	7045	ACCTGTTG GGCTAGCTACAACGA CGCGCAGG	15794
450	GCGCGGCA A CAGGUAAA	7046	TTTACCTG GGCTAGCTACAACGA TGCCCGCC	15795
446	GGCAACAG G UAAACUCC	7047	GGAGTTTA GGCTAGCTACAACGA CTGTTGCC	15796
442	ACAGGUAA A CUCCACCA	7048	TGGTGGAG GGCTAGCTACAACGA TTACCTGT	15797
437	AAAACUCC A CCAACGAU	7049	ATCGTTGG GGCTAGCTACAACGA GGAGTTTA	15798

433	CUCCACCA A CGAUCUGA	7050	TCAGATCG GGCTAGCTACAACGA TGGTGGAG	15799
430	CACCAACG A UCUGACCA	7051	TGGTCAGA GGCTAGCTACAACGA CGTTGGTG	15800
425	ACGAUCUG A CCACCGCC	7052	GGCGGTGG GGCTAGCTACAACGA CAGATCGT	15801
422	AUCUGACC A CCGCCCCG	7053	CCGGGC GGCTAGCTACAACGA GGTCAGAT	15802
419	UGACCACC G CCCGGGAA	7054	TTCCCCGG GGCTAGCTACAACGA GGTGGTCA	15803
411	GCCCGGGA A CUUGACGU	7055	ACGTCAAG GGCTAGCTACAACGA TCCCAGGC	15804
406	GGAACUUG A CGUCCUGU	7056	ACAGGACG GGCTAGCTACAACGA CAAGTTCC	15805
404	AACUUGAC G UCCUGUGG	7057	CCACAGGA GGCTAGCTACAACGA GTCAAGTT	15806
399	GACGUCCU G UGGGCGGC	7058	GCCGCCCA GGCTAGCTACAACGA AGGACGTC	15807
395	UCCUGUGG G CGGGGUU	7059	AACCGCCG GGCTAGCTACAACGA CCACAGGA	15808
392	UGUGGGCG G CGGUUGGU	7060	ACCAACCG GGCTAGCTACAACGA CGCCCACA	15809
389	GGGGGGCG G UUGGUGUU	7061	AACACCAA GGCTAGCTACAACGA CGCCGCC	15810
385	GGCGGUUG G UGUUACGU	7062	ACGTAACA GGCTAGCTACAACGA CAACCGCC	15811
383	CGGUUGGU G UUACGUUU	7063	AAACGTA GGCTAGCTACAACGA ACCAACCG	15812
380	UUGGUGUU A CGUUUGGU	7064	ACCAAACG GGCTAGCTACAACGA AACACCAA	15813
378	GGUGUUA C G UUUGGUUU	7065	AAACCAAA GGCTAGCTACAACGA GTAACACC	15814
373	UACGUUUG G UUUUUCUU	7066	AAGAAAAA GGCTAGCTACAACGA CAAACGTA	15815
360	UCUUUGAG G UUUAGGAU	7067	ATCCTAAA GGCTAGCTACAACGA CTCAAAGA	15816
353	GGUUUAGG A UUCGUGCU	7068	AGCACGAA GGCTAGCTACAACGA CCTAAACC	15817
349	UAGGAUUC G UGCUCUAUG	7069	CATGAGCA GGCTAGCTACAACGA GAATCCTA	15818
347	GGAUUCGU G CUCAUGGU	7070	ACCATGAG GGCTAGCTACAACGA ACGAATCC	15819
343	UCGUGCUC A UGGUGCAC	7071	GTGCACCA GGCTAGCTACAACGA GAGCACGA	15820
340	UGCUCAUG G UGCACGGU	7072	ACCGTGCA GGCTAGCTACAACGA CATGAGCA	15821
338	CUCAUAGGU G CACGGUCU	7073	AGACCGTG GGCTAGCTACAACGA ACCATGAG	15822
336	CAUGGUGC A CGGUCUAC	7074	GTAGACCG GGCTAGCTACAACGA GCACCATG	15823
333	GGUGCACG G UCUACGAG	7075	CTCGTAGA GGCTAGCTACAACGA CGTGCACC	15824
329	CACGGUCU A CGAGACCU	7076	AGGTCTCG GGCTAGCTACAACGA AGACCGTG	15825
324	UCUACGAG A CCUCCCGG	7077	CCGGGAGG GGCTAGCTACAACGA CTCGTAGA	15826
314	CUCCCGGG G CACUCGCA	7078	TGCGAGTG GGCTAGCTACAACGA CCCGGGAG	15827
312	CCCCGGGC A CUCGCAAG	7079	CTTGCAGG GGCTAGCTACAACGA GCCCCGGG	15828
308	GGGCACUC G CAAGCACC	7080	GGTGCTTG GGCTAGCTACAACGA GAGTGCC	15829
304	ACUCGCAA G CACCCUAU	7081	ATAGGGTG GGCTAGCTACAACGA TTGCGAGT	15830
302	UCGCAAGC A CCCUAUCA	7082	TGATAGGG GGCTAGCTACAACGA GCTTGC	15831
297	AGCACCCU A UCAGGCAG	7083	CTGCCTGA GGCTAGCTACAACGA AGGGTGCT	15832
292	CCUaucag G CAGUACCA	7084	TGGTACTG GGCTAGCTACAACGA CTGATAGG	15833
289	AUCAGGCA G UACCACAA	7085	TTGTGGTA GGCTAGCTACAACGA TGCCTGAT	15834
287	CAGGCAGU A CCACAAAGG	7086	CCTTGTGG GGCTAGCTACAACGA ACTGCCTG	15835
284	GCAGUACC A CAAGGCCU	7087	AGGCCTTG GGCTAGCTACAACGA GGTACTGC	15836
279	ACCACAAAG G CCUUUCGC	7088	GCGAAAGG GGCTAGCTACAACGA CTTGTGGT	15837
272	GGCCUUUC G CGACCCAA	7089	TTGGGTG GGCTAGCTACAACGA GAAAGGCC	15838
269	CUUUCGCG A CCCAACAC	7090	GTGTTGGG GGCTAGCTACAACGA CGCAGAAAG	15839
264	GCGACCCA A CACUACUC	7091	GAGTAGTG GGCTAGCTACAACGA TGGGTC	15840
262	GACCCAAC A CUACUCGG	7092	CCGAGTAG GGCTAGCTACAACGA GTGGGTC	15841
259	CCAACACU A CUCGGCUA	7093	TAGCCGAG GGCTAGCTACAACGA AGTGTG	15842
254	ACUACUCG G CUAGCAGU	7094	ACTGCTAG GGCTAGCTACAACGA CGAGTAGT	15843
250	CUCGGCUA G CAGUCUCG	7095	CGAGACTG GGCTAGCTACAACGA TAGCCGAG	15844
247	GGCUAGCA G UCUCGG	7096	CCGCGAGA GGCTAGCTACAACGA TGCTAGCC	15845
242	GCAGUCUC G CGGGGGCA	7097	TGCCCCCG GGCTAGCTACAACGA GAGACTGC	15846
236	UCGGGGGG G CACGCCCA	7098	TGGGCGTG GGCTAGCTACAACGA CCCCCGCA	15847
234	GCGGGGGC A CGCCCAA	7099	TTTGGGCG GGCTAGCTACAACGA GCCCCCGC	15848
232	GGGGGCAC G CCCAAUC	7100	GATTGGG GGCTAGCTACAACGA GTGCCCC	15849
226	ACGCCCAA A UCUCAGG	7101	CCTGGAGA GGCTAGCTACAACGA TTGGGCGT	15850
218	AUCUCCAG G CAUUGAGC	7102	GCTCAATG GGCTAGCTACAACGA CTGGAGAT	15851
216	CUCCAGGC A UUGAGCGG	7103	CCGCTCAA GGCTAGCTACAACGA GCCTGGAG	15852
211	GGCAUUGA G CGGGUUGA	7104	TCAACCCG GGCTAGCTACAACGA TCAATGCC	15853
207	UUGAGCGG G UUGAUCCA	7105	TGGATCAA GGCTAGCTACAACGA CCGCTCAA	15854

203	GCGGGUUG A UCCAAGAA	7106	TTCTTGG A GGCTAGCTACAACGA CAACCCGC	15855
191	AAGAAAGG A CCCGGUCG	7107	CGACCGGG GGCTAGCTACAACGA CCTTTCTT	15856
186	AGGACCCG G UCGUCCUG	7108	CAGGACGA GGCTAGCTACAACGA CGGGTCCT	15857
183	ACCCGGUC G UCCUGGCA	7109	TGCCAGGA GGCTAGCTACAACGA GACCGGGT	15858
177	UCGUCCUG G CAAUUCCG	7110	CGGAATTG GGCTAGCTACAACGA CAGGACGA	15859
174	UCCUGGCA A UUCCGGUG	7111	CACCGGAA GGCTAGCTACAACGA TGCCAGGA	15860
168	CAAUUCCG G UGUACUCA	7112	TGAGTACA GGCTAGCTACAACGA CGGAATTG	15861
166	AUUCGGU G UACUCACC	7113	GGTGAGTA GGCTAGCTACAACGA ACCGGAAT	15862
164	UCCGGUGU A CUCACCGG	7114	CCGGTGAG GGCTAGCTACAACGA ACACCGGA	15863
160	GUGUACUC A CCGGUUCC	7115	GGAACCGG GGCTAGCTACAACGA GAGTACAC	15864
156	ACUCACCG G UUCCGCAG	7116	CTGCGGAA GGCTAGCTACAACGA CGGTGAGT	15865
151	CCGGUUCC G CAGACCAC	7117	GTGGTCTG GGCTAGCTACAACGA GGAACCGG	15866
147	UUCCGCAG A CCACUAUG	7118	CATAGTGG GGCTAGCTACAACGA CTGCGGAA	15867
144	CGCAGACC A CUAUGGCU	7119	AGCCATAG GGCTAGCTACAACGA GGTCTGCG	15868
141	AGACCACU A UGGCUCUC	7120	GAGAGCCA GGCTAGCTACAACGA AGTGGTCT	15869
138	CCACUAUG G CUCUCCCC	7121	CGGGGAGAG GGCTAGCTACAACGA CATAGTGG	15870
120	GAGGGGGG G UCCUGGAG	7122	CTCCAGGA GGCTAGCTACAACGA CCCCCCTC	15871
111	UCCUGGAG G CUGCACGA	7123	TCGTGCAG GGCTAGCTACAACGA CTCCAGGA	15872
108	UGGAGGCU G CACGACAC	7124	GTGTGCGT GGCTAGCTACAACGA AGCCTCCA	15873
106	GAGGCUGC A CGACACUC	7125	GAGTGTGCG GGCTAGCTACAACGA GCAGCCTC	15874
103	GCUGCACG A CACUCAUA	7126	TATGAGTG GGCTAGCTACAACGA CGTGCAGC	15875
101	UGCACGAC A CUCAUACU	7127	AGTATGAG GGCTAGCTACAACGA TCGTGCA	15876
97	CGACACUC A UACUAACG	7128	CGTTAGTA GGCTAGCTACAACGA GAGTGTG	15877
95	ACACUCAU A CUAACGCC	7129	GGCGTTAG GGCTAGCTACAACGA ATGAGTGT	15878
91	UCAUACUA A CGCCAUGG	7130	CCATGGCG GGCTAGCTACAACGA TAGTATGA	15879
89	AUACUAAC G CCAUGGCU	7131	AGCCATGG GGCTAGCTACAACGA GTTAGTAT	15880
86	CUAACGCC A UGGCUAGA	7132	TCTAGCCA GGCTAGCTACAACGA GGCCTTAC	15881
83	ACGCCAUG G CUAGACGC	7133	GCGTCTAG GGCTAGCTACAACGA CATGGCGT	15882
78	AUGGCUAG A CGCUUUCU	7134	AGAAAAGCG GGCTAGCTACAACGA CTAGCCAT	15883
76	GGCUAGAC G CUUUCUGC	7135	GCAGAAAG GGCTAGCTACAACGA GTCTAGCC	15884
69	CGCUUUCU G CGUGAAGA	7136	TCTTCACG GGCTAGCTACAACGA AGAAAGCG	15885
67	CUUUCUGC G UGAAGACA	7137	TGTCTTCA GGCTAGCTACAACGA GCAGAAAG	15886
61	GCGUGAAG A CAGUAGUU	7138	AAACTACTG GGCTAGCTACAACGA CTTCACGC	15887
58	UGAAGACA G UAGUUCU	7139	AGGAACTA GGCTAGCTACAACGA TGTCTTCA	15888
55	AGACAGUA G UUCCUCAC	7140	GTGAGGAA GGCTAGCTACAACGA TACTGTCT	15889
48	AGUCCUC A CAGGGGAG	7141	CTCCCCCTG GGCTAGCTACAACGA GAGGAAC	15890
40	ACAGGGGA G UGAUCUAU	7142	ATAGATCA GGCTAGCTACAACGA TCCCCCTGT	15891
37	GGGGAGUG A UCUAUGGU	7143	ACCATAGA GGCTAGCTACAACGA CACTCCCC	15892
33	AGUGAUCU A UGGUGGAG	7144	CTCCACCA GGCTAGCTACAACGA AGATCACT	15893
30	GAUCUAUG G UGGAGUGU	7145	ACACTCCA GGCTAGCTACAACGA CATAGATC	15894
25	AUGGUGGA G UGUCGCC	7146	GGGCGACA GGCTAGCTACAACGA TCCACCAT	15895
23	GGUGGAGU G UCGCCCCC	7147	GGGGGCGA GGCTAGCTACAACGA ACTCCACC	15896

Input Sequence = HPCK1S1. Cut Site = R/Y

Arm Length = 8. Core Sequence = GGCTAGCTACAACGA

HPCK1S1 Hepatitis C virus (strain HCV-1b, clone HCV-K1-S1), complete genome; acc# gi|1030702|dbj|D50483.1; 9410 nt

Table XX: Synthetic anti-HCV nucleic acid molecule and Target Sequences

ref	Ref Seq	Target	Seq ID	RPI#	NUCLEIC ACID	Seq ID	Nucleic Acid Alias
195	HCV+	GGGUCCU U UCUIJGGA	7148	15364	C _S S _S A _S S _S A _S S _S A _S T _S G _S T _S G _S T _S G _S T _S C _S T	15897	Hammerhead
342	HCV+	AGACCGUGCAUCAUAGGCCAC	7149	17501	G _S T _S G _S T _S C _S A _S T _S G _S A _S T _S G _S C _S A _S C _S G _S T _S C _S T	15898	Antisense
195	HCV+	GGGUCCU U UCUIJGGA	7148	17558	C _S S _S A _S S _S A _S S _S A _S T _S G _S T _S G _S T _S G _S T _S C _S T	15899	Hammerhead
195	HCV+	GGGUCCU U UCUIJGGA	7148	17559	C _S S _S A _S S _S A _S S _S A _S T _S G _S T _S G _S T _S G _S T _S C _S T	15900	Hammerhead
195	HCV+	GGGUCCU U UCUIJGGA	7148	17560	Z _S S _S A _S S _S A _S S _S A _S T _S G _S T _S G _S T _S G _S T _S C _S T	15901	Hammerhead
195	HCV+	GGGUCCU U UCUIJGGA	7148	17561	Z _S S _S A _S S _S A _S S _S A _S T _S G _S T _S G _S T _S G _S T _S C _S T	15902	Hammerhead
195	HCV+	GGGUCCU U UCUIJGGA	7148	18012	C _S A _A G _S S _S A _S S _S A _S T _S G _S T _S G _S T _S G _S T _S C _S T	15903	Hammerhead
82	HCV+	GCGCUA G CCAUGGC	7150	18744	G _S S _S C _S S _S A _S S _S A _S T _S G _S T _S G _S T _S G _S T _S C _S T	15904	Zinzyme
100	HCV+	AGUAUGA G UGUCGUG	7151	18745	C _S A _S S _S A _S S _S A _S T _S G _S T _S G _S T _S G _S T _S C _S T	15905	Zinzyme
102	HCV+	UAUGAGU G UCGUGCA	7152	18746	U _S S _S C _S S _S A _S S _S A _S T _S G _S T _S G _S T _S G _S T _S C _S T	15906	Zinzyme
105	HCV+	GAGUGUC G UGCAGCC	7153	18747	G _S S _S C _S S _S A _S S _S A _S T _S G _S T _S G _S T _S G _S T _S C _S T	15907	Zinzyme
107	HCV+	GUGUCGU G CAGGCCUC	7154	18748	G _S S _S G _S C _S S _S A _S S _S A _S T _S G _S T _S G _S T _S G _S T _S C _S T	15908	Zinzyme
146	HCV+	CAUAGUG G UCUGCGGG	7155	18749	C _S S _S C _S S _S A _S S _S A _S T _S G _S T _S G _S T _S G _S T _S C _S T	15909	Zinzyme
190	HCV+	CGACCGG G UCCUUUC	7156	18750	G _S S _S A _S S _S A _S S _S A _S T _S G _S T _S G _S T _S G _S T _S C _S T	15910	Zinzyme
217	HCV+	GCUCAAU G CCUGGAG	7157	18751	C _S S _S C _S S _S A _S S _S A _S T _S G _S T _S G _S T _S G _S T _S C _S T	15911	Zinzyme
231	HCV+	GAUUUGG G CGUGGCC	7158	18752	G _S S _S G _S C _S S _S A _S S _S A _S T _S G _S T _S G _S T _S G _S T _S C _S T	15912	Zinzyme
258	HCV+	UAGCCGA G UAGUGUU	7159	18753	A _S A _S C _S S _S A _S S _S A _S T _S G _S T _S G _S T _S G _S T _S C _S T	15913	Zinzyme
307	HCV+	GGUGCUU G CGAGUGC	7160	18754	G _S S _S C _S S _S A _S S _S A _S T _S G _S T _S G _S T _S G _S T _S C _S T	15914	Zinzyme
77	HCV+	GAAAGC G UCUAGC	7161	18755	G _S S _S C _S S _S A _S S _S A _S T _S G _S T _S G _S T _S G _S T _S C _S T	15915	Zinzyme
77	HCV+	AGAAAGC G UCUAGCC	7162	18756	G _S S _S C _S S _S A _S S _S A _S T _S G _S T _S G _S T _S G _S T _S C _S T	15916	Zinzyme
88	HCV+	AGCCAUG G CGUUAJGU	7163	18757	A _S S _S C _S S _S A _S S _S A _S T _S G _S T _S G _S T _S G _S T _S C _S T	15917	Zinzyme
94	HCV+	GGCGUUA G UAUGAGU	7164	18758	A _S S _S C _S S _S A _S S _S A _S T _S G _S T _S G _S T _S G _S T _S C _S T	15918	Zinzyme
102	HCV+	AUGAGU G UCGUGC	7165	18759	G _S S _S C _S S _S A _S S _S A _S T _S G _S T _S G _S T _S G _S T _S C _S T	15919	Zinzyme
105	HCV+	AGUGUC G UGCAGC	7166	18760	G _S S _S C _S S _S A _S S _S A _S T _S G _S T _S G _S T _S G _S T _S C _S T	15920	Zinzyme
110	HCV+	UCGUGCA G CCUCAG	7167	18761	C _S S _S C _S S _S A _S S _S A _S T _S G _S T _S G _S T _S G _S T _S C _S T	15921	Zinzyme
137	HCV+	GGGAGA G CCAUAG	7168	18762	C _S S _S C _S S _S A _S S _S A _S T _S G _S T _S G _S T _S G _S T _S C _S T	15922	Zinzyme
137	HCV+	CGGGAGA G CCAUAGU	7169	18763	A _S S _S C _S S _S A _S S _S A _S T _S G _S T _S G _S T _S G _S T _S C _S T	15923	Zinzyme
146	HCV+	AUAGUG G UCUGCG	7170	18764	C _S S _S C _S S _S A _S S _S A _S T _S G _S T _S G _S T _S G _S T _S C _S T	15924	Zinzyme
150	HCV+	GUGGUUCU G CGGAACC	7171	18765	G _S S _S C _S S _S A _S S _S A _S T _S G _S T _S G _S T _S G _S T _S C _S T	15925	Zinzyme
176	HCV+	CGGAAUU G CCAGGAC	7172	18766	G _S S _S C _S S _S A _S S _S A _S T _S G _S T _S G _S T _S G _S T _S C _S T	15926	Zinzyme

190	HCV+	GACCGG G UCCUUU	7173	18767	asasasgga GccgaaaggCCGaGucaaGGuCu cccgguc B	15927	Zinzyme
253	HCV+	CUGCUA G CCGAGU	7174	18768	assuscs99 GccgaaaggCCGaGucaaGGuCu uaggcag B	15928	Zinzyme
253	HCV+	ACUGCUA G CCGAGUA	7175	18769	usacsuscc99 GccgaaaggCCGaGucaaGGuCu uaggcagu B	15929	Zinzyme
258	HCV+	AGCCGA G UAGUGU	7176	18770	assacsua GccgaaaggCCGaGucaaGGuCu ucggcu B	15930	Zinzyme
263	HCV+	GAGUAGU G UGGGUC	7177	18771	gsacs-scaa GccgaaaggCCGaGucaaGGuCu acuacuc B	15931	Zinzyme
268	HCV+	UGUUGG G UCGCGA	7178	18772	uscgscsga GccgaaaggCCGaGucaaGGuCu ccaaca B	15932	Zinzyme
268	HCV+	GUGUUGG G UCGCGAA	7179	18773	usucs9scga GccgaaaggCCGaGucaaGGuCu ccaacac B	15933	Zinzyme
271	HCV+	UGGGUC G CGAAAGG	7180	18774	cscsususcg GccgaaaggCCGaGucaaGGuCu gacccaa B	15934	Zinzyme
283	HCV+	AGCCCUU G UGGUACU	7181	18775	agsusascca GccgaaaggCCGaGucaaGGuCu aaggccu B	15935	Zinzyme
286	HCV+	CCUUGUG G UACUGCC	7182	18776	gsgsasqua GccgaaaggCCGaGucaaGGuCu cacaagg B	15936	Zinzyme
291	HCV+	UGGUACU G CCUGAU	7183	18777	usasuscsagg GccgaaaggCCGaGucaaGGuCu aguacca B	15937	Zinzyme
301	HCV+	UGAUAGG G UGGUUGC	7184	18778	gcsasasgca GccgaaaggCCGaGucaaGGuCu ccauca B	15938	Zinzyme
303	HCV+	AUAGGGU G CUUGCGA	7185	18779	uscs9scsaag GccgaaaggCCGaGucaaGGuCu acccuau B	15939	Zinzyme
60	HCV+	ACUACU G UCUUCA	7186	18780	usgsasasga GccgaaaggCCGaGucaaGGuCu aquagu B	15940	Zinzyme
60	HCV+	AAUCACU G UCUUUCAC	7187	18781	gsus9sasaga GccgaaaggCCGaGucaaGGuCu aquaguu B	15941	Zinzyme
68	HCV+	UCUUCAC G CAGAAAAG	7188	18782	csususcsug GccgaaaggCCGaGucaaGGuCu gugaaga B	15942	Zinzyme
75	HCV+	CAGAAA G CGUCUA	7189	18783	usasgsascg GccgaaaggCCGaGucaaGGuCu uuucug B	15943	Zinzyme
82	HCV+	CGUCUA G CCAUGG	7190	18784	cscsasus99 GccgaaaggCCGaGucaaGGuCu uagacg B	15944	Zinzyme
88	HCV+	GCCAUG G CGUUAG	7191	18785	csusasas9 GccgaaaggCCGaGucaaGGuCu cauggc B	15945	Zinzyme
90	HCV+	CAUGGC G UUAGUA	7192	18786	usacsusaa GccgaaaggCCGaGucaaGGuCu gccaug B	15946	Zinzyme
90	HCV+	CCAUAGGC G UUAGUAU	7193	18787	asusascsua GccgaaaggCCGaGucaaGGuCu qccaugg B	15947	Zinzyme
100	HCV+	GUUAUGA G UGUCGU	7194	18788	acsqsasca GccgaaaggCCGaGucaaGGuCu ucauac B	15948	Zinzyme
107	HCV+	UGUCGU G CAGCCU	7195	18789	asgsqscsug GccgaaaggCCGaGucaaGGuCu acgaca B	15949	Zinzyme
110	HCV+	CGUGCA G CCUCCA	7196	18790	usgsqssas99 GccgaaaggCCGaGucaaGGuCu ugcacg B	15950	Zinzyme
150	HCV+	UGGUCU G CGGAAC	7197	18791	gsususcs99 GccgaaaggCCGaGucaaGGuCu agacca B	15951	Zinzyme
159	HCV+	GGAAACCG G UGAGUAC	7198	18792	gsusascsuca GccgaaaggCCGaGucaaGGuCu cgguuucc B	15952	Zinzyme
176	HCV+	GGAAUU G CCAGGA	7199	18793	uscsus99 GccgaaaggCCGaGucaaGGuCu auuucc B	15953	Zinzyme
217	HCV+	CUCAAU G CCUGGA	7200	18794	uscs9scs99 GccgaaaggCCGaGucaaGGuCu auuagag B	15954	Zinzyme
231	HCV+	AUUUGG G CGAAAG	7201	18795	gsqscsas99 GccgaaaggCCGaGucaaGGuCu ccaau B	15955	Zinzyme
261	HCV+	CGAGUA G UGUUGG	7202	18796	cscsasasca GccgaaaggCCGaGucaaGGuCu uacucg B	15956	Zinzyme
261	HCV+	CCGAGUA G UGUUGGG	7203	18797	cscs9scsaca GccgaaaggCCGaGucaaGGuCu uacucgg B	15957	Zinzyme
263	HCV+	AGUAGU G UGGGGU	7204	18798	asscs9scsaa GccgaaaggCCGaGucaaGGuCu acuacu B	15958	Zinzyme
271	HCV+	UGGGUC G CGAAAG	7205	18799	csususcs99 GccgaaaggCCGaGucaaGGuCu gaccca B	15959	Zinzyme
283	HCV+	GGCCUUU G UGGUAC	7206	18800	gsusascsca GccgaaaggCCGaGucaaGGuCu aaggcc B	15960	Zinzyme
291	HCV+	GGUACU G CCUGAU	7207	18801	asscsas99 GccgaaaggCCGaGucaaGGuCu aquacc B	15961	Zinzyme

139	HCV+	GAGGCCAUAGUG	7278	22526	C _s a _s c _s u _s au c <u>U</u> GAuGaggccguuaggccGaa I <u>c</u> ucuc B	16032	Inozyme
140	HCV+	AGAGCCAUAGUG	7279	22527	C _s c _s a _s ca c <u>U</u> GAuGaggccguuaggccGaa I <u>c</u> ucu B	16033	Inozyme
281	HCV+	AAGGCCUUGGGGU	7280	22528	a _s c _s a _s ca c <u>U</u> GAuGaggccguuaggccGaa I <u>c</u> ccuu B	16034	Inozyme
130	HCV+	CCUCCCGGAGA	7281	22529	u _s c _s u _s cc c <u>U</u> GAuGaggccguuaggccGaa I <u>g</u> aggg B	16035	Inozyme
280	HCV+	AAAGGCCUUGGG	7282	22530	c _s a _s c _s aa c <u>U</u> GAuGaggccguuaggccGaa I <u>cc</u> uu B	16036	Inozyme
149	HCV+	GGGGUCUCCGGAA	7283	22531	u _s u _s c _s gc c <u>U</u> GAuGaggccguuaggccGaa I <u>acc</u> B	16037	Inozyme
194	HCV+	GGGUCCUUCUUJUG	7284	22532	c _s a _s g _s aa c <u>U</u> GAuGaggccguuaggccGaa I <u>g</u> accc B	16038	Inozyme
255	HCV+	GCUAGCCCAGUAG	7285	22533	c _s u _s a _s uc c <u>U</u> GAuGaggccguuaggccGaa I <u>cu</u> agc B	16039	Inozyme
294	HCV+	ACUGCCUGAUAGG	7286	22534	c _s u _s a _s uc c <u>U</u> GAuGaggccguuaggccGaa I <u>cg</u> u B	16040	Inozyme
293	HCV+	UACUGCCUGAUAG	7287	22535	c _s u _s a _s ca c <u>U</u> GAuGaggccguuaggccGaa I <u>ca</u> gu B	16041	Inozyme
290	HCV+	UGGUACUGGCCUGA	7288	22536	u _s c _s a _s gc c <u>U</u> GAuGaggccguuaggccGaa I <u>u</u> acca B	16042	Inozyme
169	HCV+	GUACACCGGAAUU	7289	22537	a _s u _s u _s cc c <u>U</u> GAuGaggccguuaggccGaa I <u>ugu</u> ac B	16043	Inozyme
293	HCV+	GUACUGCCUCAUAGG	7290	22544	c _s u _s a _s ca c <u>U</u> GAuGaggccguuaggccGaa I <u>ca</u> quac B	16044	Inozyme
294	HCV+	UACUGCCUCAUAGGG	7291	22545	c _s c _s u _s auc c <u>U</u> GAuGaggccguuaggccGaa I <u>gc</u> agu B	16045	Inozyme
281	HCV+	AAAGGCCUUCUGGU	7292	22546	u _s a _s c _s a _s ca c <u>U</u> GAuGaggccguuaggccGaa I <u>gc</u> ccuu B	16046	Inozyme
166	HCV+	UGAGUACACCGGA	7293	22549	u _s c _s g _s gu c <u>U</u> GAuGaggccguuaggccGaa I <u>vac</u> u B	16047	Amberzyme
168	HCV+	AGUACACCGGAAU	7294	22550	a _s u _s u _s cg c <u>U</u> GAuGaggccguuaggccGaa I <u>gu</u> acu B	16048	Amberzyme
141	HCV+	GAGGCCAUAGGGU	7295	22551	a _s c _s a _s cu c <u>U</u> GAuGaggccguuaggccGaa I <u>gg</u> uc B	16049	Amberzyme
156	HCV+	GCGGAACCGGUGA	7296	22552	u _s c _s a _s cg c <u>U</u> GAuGaggccguuaggccGaa I <u>ucc</u> g B	16050	Amberzyme
155	HCV+	UGGGAACCGGUG	7297	22553	c _s a _s c _s gg c <u>U</u> GAuGaggccguuaggccGaa I <u>cc</u> gc B	16051	Amberzyme
289	HCV+	GUGGUACUGGCCUG	7298	22554	c _s a _s g _s ca c <u>U</u> GAuGaggccguuaggccGaa I <u>acc</u> ac B	16052	Amberzyme
297	HCV+	GCCUGAUAGGGUG	7299	22555	c _s a _s c _s cu c <u>U</u> GAuGaggccguuaggccGaa I <u>agg</u> B	16053	Amberzyme
166	HCV+	GUGAGUACACCGGAA	7300	22556	u _s u _s c _s gg u _s c _s u _s cu c <u>U</u> GAuGaggccguuaggccGaa I <u>ac</u> ucac B	16054	Amberzyme
141	HCV+	AGAGGCCAUAGGGUC	7301	22557	g _s a _s c _s acu c <u>U</u> GAuGaggccguuaggccGaa I <u>gg</u> ccuu B	16055	Amberzyme
156	HCV+	UGCGGAACCGGUGAG	7302	22558	c _s u _s a _s ccg c <u>U</u> GAuGaggccguuaggccGaa I <u>ucc</u> gc B	16056	Amberzyme
155	HCV+	CUGCGGAACCGGUGA	7303	22559	u _s c _s a _s c _s gg c <u>U</u> GAuGaggccguuaggccGaa I <u>cc</u> gcag B	16057	Amberzyme
289	HCV+	UGUGGUACUGGCCUGA	7304	22560	u _s c _s a _s g _s ca c <u>U</u> GAuGaggccguuaggccGaa I <u>acc</u> aca B	16058	Amberzyme
297	HCV+	UGCCUCAUAGGGUGC	7305	22561	g _s c _s a _s ccu c <u>U</u> GAuGaggccguuaggccGaa I <u>agg</u> ca B	16059	Amberzyme
168	HCV+	GAGUACACCGGAAUU	7306	22562	a _s u _s u _s ccg c <u>U</u> GAuGaggccguuaggccGaa I <u>gu</u> acuc B	16060	Amberzyme
166	HCV-	UCCGGUGUACUCA	7307	22563	u _s g _s a _s g _s ua g <u>cc</u> ga <u>aa</u> g <u>cc</u> g <u>aa</u> agg <u>cc</u> g <u>aa</u> g <u>gu</u> ac <u>gg</u> B	16061	Zinzyme
168	HCV-	AUUCGGGGGUACU	7308	22564	a _s g _s u _s ca g <u>cc</u> g <u>aa</u> agg <u>cc</u> g <u>aa</u> g <u>gu</u> cu c <u>gg</u> aa B	16062	Zinzyme
138	HCV-	ACUAUGGCUCUCC	7309	22565	g _s g _s a _s g _s ag g <u>cc</u> g <u>aa</u> agg <u>cc</u> g <u>aa</u> g <u>gu</u> cu c <u>au</u> gu B	16063	Zinzyme
156	HCV-	UCACCGGTUCCGC	7310	22566	g _s c _s a _s gg g <u>cc</u> g <u>aa</u> agg <u>cc</u> g <u>aa</u> g <u>gu</u> cu c <u>gg</u> gu B	16064	Zinzyme
236	HCV-	GCGGGGGCACGCC	7311	22567	g _s g _s c _s g _s ug g <u>cc</u> g <u>aa</u> agg <u>cc</u> g <u>aa</u> g <u>gu</u> cu c <u>ccc</u> gc B	16065	Zinzyme
279	HCV-	CACAAAGGCCUUUC	7312	22568	g _s a _s a _s sg g <u>cc</u> g <u>aa</u> agg <u>cc</u> g <u>aa</u> g <u>gu</u> cu c <u>uu</u> gu B	16066	Zinzyme

151	HCV-	GGUCCGGAGACC	7313	22569	g _s g _s u _s c _s ug gccgaaaggC _g agugaaG _g u _C u ggaacc B	16067	Zinzyme
292	HCV-	UAUCAGGAGAUAC	7314	22570	g _s u _s a _s s _s ug gccgaaaggC _g agugaaG _g u _C u cu _g au _a B	16068	Zinzyme
289	HCV-	CAGGCAGTACACCAC	7315	22571	g _s u _s g _s u _a gccgaaaggC _g agugaaG _g u _C u u _g cc <u>u</u> g B	16069	Zinzyme
166	HCV-	UUCGGUGGUACUCAC	7316	22572	g _s u _s g _s as _u a gccgaaaggC _g agugaaG _g u _C u accggaa B	16070	Zinzyme
279	HCV-	CACAAGGCCUUCUG	7317	22573	c _s g _s a _s s _s agg gccgaaaggC _g agugaaG _g u _C u cu <u>g</u> uggg B	16071	Zinzyme
156	HCV-	CUCACCGGCUCCCGCA	7318	22574	u _g g _s c _s g _s aa gccgaaaggC _g agugaaG _g u _C u cg <u>u</u> gag B	16072	Zinzyme
138	HCV-	CAUUAUGGCCUCUCCC	7319	22575	g _s g _s g _s a _s g _g gccgaaaggC _g agugaaG _g u _C u ca <u>u</u> agug B	16073	Zinzyme
151	HCV-	GGGUUCCGGAGACCA	7320	22576	u _g g _s g _s u _s c _s ug gccgaaaggC _g agugaaG _g u _C u ggaaccg B	16074	Zinzyme
292	HCV-	CUAUCAGGGAGUACC	7321	22577	g _s g _s u _s a _s c _s ug gccgaaaggC _g agugaaG _g u _C u cu <u>g</u> au <u>a</u> g B	16075	Zinzyme
289	HCV-	UCAGGCAGUACCACCA	7322	22578	u _g g _s u _s g _s ua gccgaaaggC _g agugaaG _g u _C u u _g cc <u>u</u> ga B	16076	Zinzyme
168	HCV-	AAUUCGGGGUACUC	7323	22579	g _s g _s g _s u _s a _s gccgaaaggC _g agugaaG _g u _C u cgg <u>a</u> uu B	16077	Zinzyme
163	HCV-	GGUGUACUCACCG	7324	22580	c _s g _s u _s g _s ga c <u>U</u> GAU <u>G</u> agggccguuaggccGaa U acacc B	16078	Amberzyme
159	HCV-	UACUACCGGUUC	7325	22581	g _s as _s a _s c _s g _g c <u>U</u> GAU <u>G</u> agggccguuaggccGaa U gagu <u>a</u> B	16079	Amberzyme
140	HCV-	CCACUAUGGCCUCU	7326	22582	a _g g _s as _s cc c <u>U</u> GAU <u>G</u> agggccguuaggccGaa U guggg B	16080	Amberzyme
281	HCV-	ACACAAAGGCCUU	7327	22583	a _g g _s g _s cc c <u>U</u> GAU <u>G</u> agggccguuaggccGaa U guggu B	16081	Amberzyme
233	HCV-	GGGGCACGGCCCAA	7328	22584	u _g g _s g _s g _g c <u>U</u> GAU <u>G</u> agggccguuaggccGaa U gcccc B	16082	Amberzyme
143	HCV-	AGACCACUAGGCC	7329	22585	g _s c _s cs <u>s</u> ua c <u>U</u> GAU <u>G</u> agggccguuaggccGaa U gg <u>u</u> B	16083	Amberzyme
146	HCV-	CGCAGACCAUAU	7330	22586	a _u u _s a _s s _s ug c <u>U</u> GAU <u>G</u> agggccguuaggccGaa U cg <u>cg</u> B	16084	Amberzyme
195	HCV-	CCAAGAAAGGACC	7331	22587	g _s g _s u _s c _s u c <u>U</u> GAU <u>G</u> agggccguuaggccGaa U cuu <u>g</u> B	16085	Amberzyme
194	HCV-	CAAGAAAGGACCC	7332	22588	g _s g _s u _s s _s cc c <u>U</u> GAU <u>G</u> agggccguuaggccGaa U cuu <u>g</u> B	16086	Amberzyme
283	HCV-	GUACCACZAGGGCC	7333	22589	g _s g _s c _s uu c <u>U</u> GAU <u>G</u> agggccguuaggccGaa U quac B	16087	Amberzyme
286	HCV-	GCAGUACCAACAAAG	7334	22590	c _s u _s u _s g _s ug c <u>U</u> GAU <u>G</u> agggccguuaggccGaa U ac <u>uc</u> B	16088	Amberzyme
296	HCV-	ACCCUAUCAGGGCA	7335	22591	u _g g _s c _s u _s g _s ug c <u>U</u> GAU <u>G</u> agggccguuaggccGaa U agg <u>u</u> B	16089	Amberzyme
190	HCV-	AAAGGACCCGGUC	7336	22592	g _s as _s c _s gg c <u>U</u> GAU <u>G</u> agggccguuaggccGaa U ccuu B	16090	Amberzyme
163	HCV-	CGGUGUACUCACGG	7337	22593	c _s c _s g _s u _a g <u>U</u> GAU <u>G</u> agggccguuaggccGaa U acacc B	16091	Amberzyme
140	HCV-	ACCACUAUGGCCUC	7338	22594	g _s as _s a _s g _g c <u>U</u> GAU <u>G</u> agggccguuaggccGaa U agg <u>u</u> B	16092	Amberzyme
159	HCV-	GUACUCACGGGUUC	7339	22595	g _s as _s a _s c _s gg c <u>U</u> GAU <u>G</u> agggccguuaggccGaa U guac B	16093	Amberzyme
233	HCV-	GGGGCACGGCCAAA	7340	22596	u _u u _u s _u s _u g _g c <u>U</u> GAU <u>G</u> agggccguuaggccGaa U uugga B	16094	Amberzyme
143	HCV-	CAGACCACUAGGGCU	7341	22597	a _g g _s g _s c _s uu c <u>U</u> GAU <u>G</u> agggccguuaggccGaa U gu <u>u</u> B	16095	Amberzyme
146	HCV-	CCGZAGACCAUCUAUG	7342	22598	c _s as _s a _s s _s ug c <u>U</u> GAU <u>G</u> agggccguuaggccGaa U ug <u>cg</u> B	16096	Amberzyme
195	HCV-	UCCAAGAAAGGACCC	7343	22599	g _s g _s u _s sc <u>u</u> c <u>U</u> GAU <u>G</u> agggccguuaggccGaa U uugga B	16097	Amberzyme
283	HCV-	AGUACCCACAAAGGCCU	7344	22600	a _g g _s g _s c _s uu c <u>U</u> GAU <u>G</u> agggccguuaggccGaa U gu <u>u</u> B	16098	Amberzyme
281	HCV-	UACCCACAAAGGCCUU	7345	22601	a _g as _s g _s cc c <u>U</u> GAU <u>G</u> agggccguuaggccGaa U ugg <u>u</u> B	16099	Amberzyme
296	HCV-	CACCCUAUCAGGGCAG	7346	22602	c _s u _s g _s c _s ug c <u>U</u> GAU <u>G</u> agggccguuaggccGaa U agg <u>u</u> B	16100	Amberzyme
286	HCV-	GGCAGUACCAACAAAG	7347	22603	c _s cs <u>su_su_sg_g c<u>U</u>GAU<u>G</u>agggccguuaggccGaa Uac<u>ug</u>cc B</u>	16101	Amberzyme

7985	HCV-	UCUCAGU G UCUUCCA	7348	22719	uggaaaga uGAUG gcauGcacuaugc gCg acugaga B	16102	G-cleaver
4832	HCV-	UGUAUAU G CCUCUCC	7349	22720	ggaggagg uGAUG gcauGcacuaugc gCg auauaca B	16103	G-cleaver
4153	HCV-	ACCGUGU G CCUJAGA	7350	22721	ucuaagg uGAUG gcauGcacuaugc gCg acacggg B	16104	G-cleaver
3200	HCV+	GGGGAGU G AGGGGGU	7351	22722	accaccu uGAUG gcauGcacuaugc gCg acuccac B	16105	G-cleaver
1682	HCV-	ACAGUUU G AACCUGU	7352	22723	acaggguu uGAUG gcauGcacuaugc gCg aacucgu B	16106	G-cleaver
896	HCV+	CCUGUCU G ACCAUCC	7353	22724	ggauuggu uGAUG gcauGcacuaugc gCg agacagg B	16107	G-cleaver
2504	HCV+	UCUCGUU G CUUUUCC	7354	22725	ggaaaag uGAUG gcauGcacuaugc gCg aacagga B	16108	G-cleaver
2651	HCV+	UCUCGU G UUCUUCU	7355	22726	agaagaa uGAUG gcauGcacuaugc gCg acgaggaa B	16109	G-cleaver
4094	HCV+	ACAAAGU G CUCGUCC	7356	22727	ggacgag uGAUG gcauGcacuaugc gCg acuuugu B	16110	G-cleaver
8970	HCV+	GCACUUU G ACCUACC	7357	22728	gguagggu uGAUG gcauGcacuaugc gCg aaguggg B	16111	G-cleaver
1200	HCV+	CUUCUC G UCUCUCA	7358	22747	uggagaga qcgcgaaaggCqagugaggGuCu gaggaag B	16112	Zinzyme
1211	HCV+	CUCAGCU G UUCACCU	7359	22748	aggugaa gcgcgaaaggCqagugaggGuCu agcugag B	16113	Zinzyme
2504	HCV+	UCUCGUU G CUUJUCC	7354	22749	ggggaaag qccgcgaaaggCqagugaggGuCu aacaggga B	16114	Zinzyme
2651	HCV+	UCUCGU G UUCUUCU	7355	22750	aggagaa gcccggaaaggCqagugaggGuCu acgggaa B	16115	Zinzyme
8811	HCV+	CACUCCA G UCAAUCU	7360	22751	gaguuga gcccggaaaggCqagugaggGuCu uggegug B	16116	Zinzyme
8594	HCV-	UGGCCGG G UCCUCUU	7361	22752	aaggagga gcccggaaaggCqagugaggGuCu qcggcgaa B	16117	Zinzyme
7985	HCV-	UCUCAGU G UCUUCCA	7348	22753	uggaaga gcccggaaaggCqagugaggGuCu acugaga B	16118	Zinzyme
6611	HCV-	CCUCCAC G UACUCCU	7362	22754	aggagaa gcccggaaaggCqagugaggGuCu guggagg B	16119	Zinzyme
5633	HCV-	UCACAU G UGGUJUCG	7363	22755	cggagca gcccggaaaggCqagugaggGuCu augugga B	16120	Zinzyme
821	HCV-	UCAGGCC G UCUJCCA	7364	22756	uggaaga gcccggaaaggCqagugaggGuCu ggccgug B	16121	Zinzyme
870	HCV+	CUCUAUC U UCCUCUU	7365	22775	aaggagga CUCAUCAggGccguuaggccGAA Iauagag B	16122	Inozyme
1210	HCV+	UCUCAGC U GUIJCACC	7366	22776	ggugaaac CUCAUCAggGccguuaggccGAA Icuugaga B	16123	Inozyme
2642	HCV+	UCUCUC C UGCCUCC	7367	22777	cggagaa CUCAUCAggGccguuaggccGAA Iagagga B	16124	Inozyme
5726	HCV+	UCACAGC C UCCAUCA	7368	22778	ugaugga CUCAUCAggGccguuaggccGAA Icuuguga B	16125	Inozyme
8142	HCV+	CUCCACC C UUCCUCA	7369	22779	ugaggaa CUCAUCAggGccguuaggccGAA Iguggag B	16126	Inozyme
7990	HCV-	UGGUGUC U CAGUGUC	7370	22780	gacacug CUCAUCAggGccguuaggccGAA Iacacca B	16127	Inozyme
7813	HCV-	CUUCGGC U UCAUCUC	7371	22781	gagauga CUCAUCAggGccguuaggccGAA Igcgaag B	16128	Inozyme
7137	HCV-	ACCUCUC U CUCAUCC	7372	22782	ggauugag CUCAUCAggGccguuaggccGAA Iagaggua B	16129	Inozyme
6084	HCV-	UCAUCCC A CUGCACA	7373	22783	uguggcag CUCAUCAggGccguuaggccGAA Igauagaa B	16130	Inozyme
2554	HCV-	CAACAGC A UCAUCCA	7374	22784	uggauga CUCAUCAggGccguuaggccGAA Icuuguu B	16131	Inozyme
1202	HCV+	UCCUCGU C UCUCAGC	7375	22943	gcugaga CUCAUCAggGccguuaggccGAA Acgaggaa B	16132	Hammerhead
1607	HCV+	GGCACAU U AACAGGA	7376	22944	uccuguu CUCAUCAggGccguuaggccGAA Augugcc B	16133	Hammerhead
2639	HCV+	GC AUCCCU C UCCUUC	7377	22945	ggaaagga CUCAUCAggGccguuaggccGAA Aggauagc B	16134	Hammerhead
6610	HCV+	GAGGAGU A CGUGGAG	7378	22946	cucacag CUCAUCAggGccguuaggccGAA Acuccuc B	16135	Hammerhead
9014	HCV+	GGCAU U UCACUCC	7379	22947	ggagaga CUCAUCAggGccguuaggccGAA Aaugcgcc B	16136	Hammerhead
8605	HCV-	GAUCUGU A GGCUJCGC	7380	22948	gcgaggc CUCAUCAggGccguuaggccGAA Acgaguc B	16137	Hammerhead
7983	HCV-	UCAGUGU C UCCAGC	7381	22949	gcuggaa CUCAUCAggGccguuaggccGAA Acacuga B	16138	Hammerhead
7136	HCV-	CCUCUCU C UCAUCCU	7382	22950	aggauua CUCAUCAggGccguuaggccGAA Agagagg B	16139	Hammerhead
6609	HCV-	UCCACGU A CUCCUCA	7383	22951	ugaggag CUCAUCAggGccguuaggccGAA Acgugga B	16140	Hammerhead
6292	HCV-	CGUGCAU A UCCAGUC	7384	22952	gacugga CUCAUCAggGccguuaggccGAA Augacag B	16141	Hammerhead
867	HCV+	UUCUCU A UCUCUCC	7385	22971	aggaaga CUCAUCAggGccguuaggccGAA agaaaaa B	16142	DNAzyme
1200	HCV+	CUUCUC G UCUCUCA	7358	22972	ugagaga GGCTAGCTACAACGA gagaaag B	16143	DNAzyme
1211	HCV+	CUCAGCU G UUCACCU	7359	22973	aggugaa GGCTAGCTACAACGA agcugag B	16144	DNAzyme
5730	HCV+	AGCCUCC A UCACCG	7386	22974	cugguga GGCTAGCTACAACGA ggaggcu B	16145	DNAzyme
6533	HCV+	UCAAACGC A UACACCA	7387	22975	uggugua GGCTAGCTACAACGA gcguuua B	16146	DNAzyme

8594	HCV -	UCGCCGC G UCCUCUU	7361	22976	aagagga GGCTAGCTACAACGA gcggcga B	16147	DNAzyme
7810	HCV -	CGCCUUC A UCCUCUU	7388	22977	aaggaga GGCTAGCTACAACGA gaaggcg B	16148	DNAzyme
7133	HCV -	CUCUCUC A UCCUCCU	7389	22978	aggagga GGCTAGCTACAACGA gagagag B	16149	DNAzyme
6611	HCV -	CCUCCAC G UACUCCU	7362	22979	aggagua GGCTAGCTACAACGA guggagg B	16150	DNAzyme
2300	HCV -	CCUCCAA A UCACAAAC	7390	22980	guugugua GGCTAGCTACAACGA uuggagg B	16151	DNAzyme
195	HCV +	GGGUCCU U UCUUGGA	7148	23072	c _S s _S s _S s _G cUGAU ^G g ^G cg ^G WW ^W agccGaa Aggacc B	16152	Hammerhead
195	HCV +	GGGUCCU U UCUUGGA	7148	23076	WWWWWC _S s _S s _S s _G cUGAU ^G aggcguuaggccGaa Aggacc B	16153	Hammerhead
195	HCV +	GGGUCCU U UCUUGGA	7148	23077	WWWC _S s _S s _S s _G cUGAU ^G aggc ^G g ^G WW ^W agccGaa Aggacc B	16154	Hammerhead
195	HCV +	GGGUCCU U UCUUGGA	7148	23086	c _S s _S s _S s _G cUGAU ^G aggc ^G g ^G WW ^W agccGaa Aggacc B	16155	Hammerhead

lower case = 2'-O-methyl

UPPER CASE = RIBO

B = inverted deoxy abasic

U = 2'-deoxy-2'-amino Uridine

C = 2'-deoxy-2'-amino Cytidine

U**Z** = 2'-deoxy-2'-amino Uracil

Z = BRdU (5-bromo-2'-deoxy Uridine)

W = acyclic galactose-amine linker

UNDERLINE = deoxy nucleotide

TABLE XXI: ANTI HCV AMINO CONTAINING HAMMERHEAD RIBOZYME AND CONTROL SEQUENCES

pos	RPI#	HCV 5'UTR Site	Ribozyme Sequences (5'-3')	Core	Rz Seq ID
62	12257	HCV-62	g _s c _s g _s ugaa cUGAU ^G aggccguuaggccGaa AcaguagB	Active	15897
79	12258	HCV-79	a _s u _s g _s gcua cUGAU ^G aggccguuaggccGaa AcgcuuuB	Active	15898
81	12249	HCV-81	c _s c _s a _s uggc cUGAU ^G aggccguuaggccGaa AgacgcuB	Active	15899
104	12259	HCV-104	g _s c _s u _s gcac cUGAU ^G aggccguuaggccGaa Acacucab	Active	15900
142	12250	HCV-142	a _s g _s a _s ccac cUGAU ^G aggccguuaggccGaa AuggcucB	Active	15901
148	12251	HCV-148	u _s u _s c _s cgca cUGAU ^G aggccguuaggccGaa AccacuaB	Active	15902
165	12260	HCV-165	u _s c _s c _s ggug cUGAU ^G aggccguuaggccGaa AcucaccB	Active	15903
192	12261	HCV-192	a _s a _s g _s aaag cUGAU ^G aggccguuaggccGaa AcccgguB	Active	15904
195	12252	HCV-195	u _s c _s c _s aaga cUGAU ^G aggccguuaggccGaa AggacccB	Active	15905
196	12262	HCV-196	a _s u _s c _s caag cUGAU ^G aggccguuaggccGaa AaggaccB	Active	15906
270	12263	HCV-270	c _s u _s u _s ucgc cUGAU ^G aggccguuaggccGaa Acccaacb	Active	15907
282	12264	HCV-282	g _s u _s a _s ccac cUGAU ^G aggccguuaggccGaa AggccuuB	Active	15908
306	12265	HCV-306	c _s a _s c _s ucgc cUGAU ^G aggccguuaggccGaa Agcacccb	Active	15909
325	12253	HCV-325	u _s c _s u _s acga cUGAU ^G aggccguuaggccGaa Accucccb	Active	15910
330	12254	HCV-330	c _s a _s c _s gguc cUGAU ^G aggccguuaggccGaa Acgagacb	Active	15911
			Control Sequences		
79	13274	HCV-79 AC2	c _s u _s u _s aggu cUAGU ^G aggccguuaggccGau AguucucB	Attenuated	16171
81	13271	HCV-81 AC	u _s c _s u _s gccc cUAGU ^G aggccguuaggccGau AgugaccB	Attenuated	16172
142	13270	HCV-142 AC	a _s a _s c _s ccug cUAGU ^G aggccguuaggccGau AgcucguB	Attenuated	16173
192	13272	HCV-192 AC	a _s g _s u _s agaa cUAGU ^G aggccguuaggccGau AgcugccB	Attenuated	16174
195	13269	HCV-195 AC	g _s a _s u _s ucca cUAGU ^G aggccguuaggccGau Acgcgacb	Attenuated	16175
282	13273	HCV-282 AC	g _s c _s c _s auuc cUAGU ^G aggccguuaggccGau Aucuggcb	Attenuated	16176
330	13268	HCV-330 AC	c _s c _s a _s ggcu cUAGU ^G aggccguuaggccGau Aaugcgcb	Attenuated	16177
195	15291	HCV-195 BAC3	u _s c _s c _s aaga cUAGU ^G acgcccguuaggcgGaa AggacccB	Attenuated	16178
195	15292	HCV-195 SAC3	a _s g _s a _s cuac cUAGU ^G acgcccguuaggcgGaa AcccgagB	Attenuated	16179
330	15294	HCV-330 BAC	c _s a _s c _s gguc cUAGU ^G acgcccguuaggcgGaa Acgagacb	Attenuated	16180
330	15295	HCV-330 SAC	g _s c _s u _s ccga cUAGU ^G acgcccguuaggcgGaa Agacacgb	Attenuated	16181

UPPER CASE = RIBO; lower case = 2'-O-methyl; B = inverted deoxyabasic;

s = phosphorothioate linkage

U = 2'-deoxy-2'-amino uridine

TABLE XXII: ANTI HCV SITE 330 ANTISENSE NUCLEIC ACID AND SCRAMBLED CONTROL SEQUENCES

pos	RPI #	Alias	Antisense Nucleic Acid	Seq ID #
330	17501	HCV.5-330 antisense	G _S T _S G _S C _S T _S C _S A _S T _S G _S A _S T _S G _S C _S A _S C _S G _S G _S T _S C _S T	15898
330	17498	HCV.5-330 antisense	G _S T _S G _S C _S T _S C _S A _S T _S G _S G _S T _S G _S C _S A _S C _S G _S G _S T _S C _S T	16182

pos	RPI#	Alias	Control Sequence	Seq ID #
330	17499	HCV.5-330 scrambled	T _S G _S A _S T _S C _S A _S G _S G _S T _S C _S T _S G _S C _S T _S G _S C _S G _S T _S G _S C	16183
330	17502	HCV.5-330 Scrambled	T _S G _S A _S T _S C _S A _S G _S G _S T _S C _S T _S G _S C _S T _S G _S C _S A _S T _S G _S C	16184

UPPER CASE = Deoxy Nucleotide

s = phosphorothioate

TABLE XXIII: IN VITRO CLEAVAGE DATA, ANTI-HCV ENZYMATIC NUCLEIC ACIDS

Seq ID #	RPI#	Motif	Site (+/-)	Enzymatic Nucleic Acid Sequence	% Substrate Cleaved in 3 hours	Substrate Sequence	Seq ID #	Substrate RPI#
16132	22943	Hammerhead	1190 (+)	gcugaga CUGAUGAGccgcuuaggccGAA AcgaggA B	89.67	UCUCUGU C UCUCAGC B	7391	22897
16133	22944	Hammerhead	1595 (+)	uccuguu CUGAUGAGccgcuuaggccGAA Augugcc B	90.33	GGCACAU U AACAGGA B	7392	22898
16134	22945	Hammerhead	2627 (+)	ggaaggaa CUGAUGAGccgcuuaggccGAA Aggaugc B	82.54	GCAUCCU C UCUCUCC B	7393	22899
16135	22946	Hammerhead	6598 (+)	cuccacg CUGAUGAGccgcuuaggccGAA Acuccc B	78.06	GAGGAGU A CGUGGAG B	7394	22900
16136	22947	Hammerhead	9002 (+)	ggaguga CUGAUGAGccgcuuaggccGAA Aaugccg B	81.88	GCGCAUU U UCACUCC B	7395	22901
16137	22948	Hammerhead	818 (-)	gaggacc CUGAUGAGccgcuuaggccGAA Acgaguc B	88.34	GACUCGU A GGCUUGC B	7396	22902
16138	22949	Hammerhead	1440 (-)	gcugggaa CUGAUGAGccgcuuaggccGAA Acacuga B	89.16	UCAGUGU C UUCCAGC B	7397	22903
16139	22950	Hammerhead	2287 (-)	aggauua CUGAUGAGccgcuuaggccGAA Agagagg B	83.43	CCUCUCU C UCACUCC B	7398	22904
16140	22951	Hammerhead	2814 (-)	ugaggag CUGAUGAGccgcuuaggccGAA Acguugga B	83.25	UCCACGU A CUCCUCA B	7399	22905
16141	22952	Hammerhead	3131 (-)	gacugga CUGAUGAGccgcuuaggccGAA Augcacg B	86.96	CGUGCAU A UCCAGUC B	7400	22906
16142	22971	DNAzyme	855 (+)	aggaaaga <u>GGCTAGCTACAACGA</u> agaggaaa B	92.11	UUUCUCU A UCUCUCCU B	7401	22925
16143	22972	DNAzyme	1188 (+)	ugaggaga <u>GGCTAGCTACAACGA</u> gagggaa B	86.38	CUUCUC G UCUCUCA B	7402	22926
16144	22973	DNAzyme	1199 (+)	aggugaa <u>GGCTAGCTACAACGA</u> agcugag B	83.15	CUCAGCU G UUCACCU B	7403	22927
16145	22974	DNAzyme	5718 (+)	cugugua <u>GGCTAGCTACAACGA</u> gggagcu B	57.82	AGCCUCC A UCACCCAG B	7404	22928
16146	22975	DNAzyme	6521 (+)	ugggugua <u>GGCTAGCTACAACGA</u> ggguiuga B	75.77	UCAACGC A UCACCA B	7405	22929
16147	22976	DNAzyme	829 (-)	aaggadga <u>GGCTAGCTACAACGA</u> gggcga B	66.06	UGGCCGC G UCUCUU B	7406	22930
16148	22977	DNAzyme	1613 (-)	aaggaga <u>GGCTAGCTACAACGA</u> gaaggcg B	71.28	CGCCUUC A UCUCUU B	7407	22931
16149	22978	DNAzyme	2290 (-)	aaggaga <u>GGCTAGCTACAACGA</u> gagtag B	61.60	CUCUCUC A UCUCUU B	7408	22932
16150	22979	DNAzyme	2812 (-)	aggaguua <u>GGCTAGCTACAACGA</u> guggagg B	85.53	CCUCCCAC G UCUCUU B	7409	22933
16151	22980	DNAzyme	7123 (-)	guuuguga <u>GGCTAGCTACAACGA</u> uuggagg B	34.60	CCUCCAA A UCACAAAC B	7410	22934
16102	22719	G-cleaver	1438 (+)	uggaaga uGAUg gcauGcaucuaugc gCg acugaga B	69.88	UCUCAGU G UCUCUCC B	7411	22813
16103	22720	G-cleaver	4591 (+)	ggagggg uGAUg gcauGcaucuaugc gCg auauaca B	77.74	UGUAUAU G CCUCUCC B	7412	22814
16104	22721	G-cleaver	5270 (+)	ucuaagg uGAUg gcauGcaucuaugc gCg acacggu B	47.37	ACCGUGU G CCUCUAGA B	7413	22815
16105	22722	G-cleaver	6223 (+)	accacccu uGAUg gcauGcaucuaugc gCg acuccac B	75.84	GUGGAGU G AGGUUGGU B	7414	22816
16106	22723	G-cleaver	7741 (+)	acagguu uGAUg gcauGcaucuaugc gCg acucugu B	61.58	ACGAGUU G AACCUUGU B	7415	22817
16107	22724	G-cleaver	884 (-)	ggauggu uGAUg gcauGcaucuaugc gCg agacagg B	65.16	CCUGUCU G ACCAUCC B	7416	22818
16108	22725	G-cleaver	2492 (-)	ggaaaag uGAUg gcauGcaucuaugc gCg acacgga B	94.66	UCUCGUU G CUUCUUC B	7417	22819
16109	22726	G-cleaver	2639 (-)	agaagaa uGAUg gcauGcaucuaugc gCg acaggga B	82.14	UCUCUCU G UUCUUCU B	7418	22820

16110	22727	G-cleaver	4082 (-)	ggacgag uGAUG gcauGcacaauugc gCg acuuugg B	67.20	ACAAAGU G CUCGUCC B	7419	22821
16111	22728	G-cleaver	8958 (-)	gguagg uGAUG gcauGcacaauugc gCg asuggc B	81.06	GCCACUU G ACCUACC B	7420	22822
16112	22747	Zinzyme	1188 (+)	ugagaga gccgaaaggCgagugaGGuCu gaggaag B	66.11	CUJCCUC G UCUJCUC B	7402	22841
16113	22748	Zinzyme	1199 (+)	aggugaa gccgaaaggCgagugaGGuCu acugag B	80.28	CUCAGCU G UUCACCU B	7403	22842
16114	22749	Zinzyme	2492 (+)	ggaaaaag gccgaaaggCgagugaGGuCu aacacga B	90.80	UCCUGUU G CUUUCUCC B	7417	22843
16115	22750	Zinzyme	2639 (+)	agaagaa gccgaaaggCgagugaGGuCu acaggaa B	80.64	UCCUCGU G UUCUUCU B	7418	22844
16116	22751	Zinzyme	8799 (+)	gaguuga gccgaaaggCgagugaGGuCu ugaggug B	14.85	CACUCCA G UCAACUC B	7421	22845
16117	22752	Zinzyme	829 (-)	aaggaga gccgaaaggCgagugaGGuCu ggccgaa B	27.83	UCCGCCG G UCCUCUU B	7406	22846
16118	22753	Zinzyme	1438 (-)	uggaaga gccgaaaggCgagugaGGuCu acugaga B	89.39	UCUCAGU G UCUCUCC B	7411	22847
16119	22754	Zinzyme	2812 (-)	aggaguua gccgaaaggCgagugaGGuCu guggggg B	50.40	CCUCCAC G UACUCCU B	7409	22848
16120	22755	Zinzyme	3790 (-)	cgaagca gccgaaaggCgagugaGGuCu augugga B	81.10	UCCACAU G UGCUCUCC B	7422	22849
16121	22756	Zinzyme	8602 (-)	uggaaga gccgaaaggCgagugaGGuCu ggccguga B	73.47	UCACGCC G UCUCUCCA B	7423	22850

16122	22775	Inozyme	858 (+)	aaggaga CUGAUGAggcgcuuggccGAA Iauggag B	87.74	CUCUAUC U UCUCUCUU B	7424	22869
16123	22776	Inozyme	1198 (+)	ggugac CUGAUGAggcgcuuggccGAA Icugaga B	84.55	UCUCAGC U GUUCACC B	7425	22870
16124	22777	Inozyme	2630 (+)	cgaggaa CUGAUGAggcgcuuggccGAA Iagagg B	90.12	UCCUCUC C UUCCUCG B	7426	22871
16125	22778	Inozyme	5714 (+)	ugauuga CUGAUGAggcgcuuggccGAA Icuguga B	83.77	UCACAGC C UCCAUC A B	7427	22872
16126	22779	Inozyme	8130 (+)	ugauuga CUGAUGAggcgcuuggccGAA Iuggag B	82.22	CUCCACC C UUCCUCA B	7428	22873
16127	22780	Inozyme	1433 (-)	gacaug CUGAUGAggcgcuuggccGAA Iacacca B	87.33	UGGUGUC U CAGUGUC B	7429	22874
16128	22781	Inozyme	1610 (-)	gagauga CUGAUGAggcgcuuggccGAA Igcaag B	70.67	CUUCGCC U UCACUC B	7430	22875
16129	22782	Inozyme	2286 (-)	ggauag CUGAUGAggcgcuuggccGAA Iagggu B	78.83	ACCUUCUC U CUCAUCC B	7431	22876
16130	22783	Inozyme	3339 (-)	ugugag CUGAUGAggcgcuuggccGAA Igauuga B	86.93	UUCAUCC A CUGCAC A B	7432	22877
16131	22784	Inozyme	6869 (-)	uggauuga CUGAUGAggcgcuuggccGAA Icuguug B	90.41	CAACAGC A UCAUCCA B	7433	22878

In vitro cleavage in 50 mM Tris-Cl, pH 8.0, 40 mM Mg²⁺ at 37°, using trace substrate, and enzymatic nucleic acid concentration of 500 nM or greater.

UPPER CASE = RIBO

UNDERLINED = DEOXY

lower case = 2'-O-methyl

B = inverted deoxyabasic

C = 2'-amino C

(+/-) = plus strand/minus strand of HCV genome

CLAIMS

What we claim is:

1. A compound having Formula I:

- 5 wherein X_1 is an integer selected from the group consisting of 1, 2, and 3; X_2 is an integer greater than or equal to 1; R_6 is independently selected from the group consisting of H, OH, NH₂, O NH₂, alkyl, S-alkyl, O-alkyl, O-alkyl-S-alkyl, O-alkoxyalkyl, allyl, O-allyl, and fluoro; each R_1 and R_2 are independently selected from the group consisting of O and S; each R_3 and R_4 are independently selected from the group consisting of O, N, and S; and R_5 is selected from the group consisting of alkyl, alkylamine, oligonucleotide having any of SEQ ID NOS. 11343-16182, oligonucleotide having a sequence complementary to any of SEQ ID NOS. 2594-7433, and abasic moiety.
- 10 2. The compound of claim 1, wherein said oligonucleotide having a sequence complementary to any of SEQ ID NOS. 2594-7433 is an enzymatic nucleic acid molecule.
- 15 3. The compound of claim 1, wherein said oligonucleotide having a sequence complementary to any of SEQ ID NOS. 2594-7433 is an antisense nucleic acid molecule.

4. The compound of claim 2, wherein said enzymatic nucleic acid molecule is selected from the group consisting of Hammerhead, Inozyme, G-cleaver, DNAzyme, Amberzyme, and Zinzyme motifs.
5. The compound of claim 2, wherein said Inozyme enzymatic nucleic acid molecule comprises a stem II region of length greater than or equal to 2 base pairs.
6. The compound of claim 2, wherein said enzymatic nucleic acid comprises between 12 and 100 bases complementary to an RNA derived from HCV.
7. The compound of claim 2, wherein said enzymatic nucleic acid comprises between 14 and 24 bases complementary to an RNA derived from HCV.
- 10 8. The compound of claim 3, wherein said antisense nucleic acid comprises between 12 and 100 bases complementary to an RNA derived from HCV.
9. The compound of claim 3, wherein said antisense nucleic acid comprises between 14 and 24 bases complementary to an RNA derived from HCV.
10. A composition comprising the compound of claim 1 and a pharmaceutically acceptable carrier.
11. A mammalian cell comprising a compound of claim 1.
12. The mammalian cell of claim 11, wherein said mammalian cell is a human cell.
13. A method for treatment of cirrhosis, liver failure, hepatocellular carcinoma, or a condition associated with HCV infection comprising the step of administering to a patient a compound of claim 1 under conditions suitable for said treatment.
- 20 14. The method of claim 13 further comprising the use of one or more drug therapies under conditions suitable for said treatment.
15. A method for inhibiting HCV replication in a mammalian cell comprising the step of administering to said cell the compound of claim 1 under conditions suitable for said inhibition.

16. A method of cleaving a separate RNA molecule comprising contacting the compound of claim 1 with said separate RNA molecule under conditions suitable for the cleavage of said separate RNA molecule.
17. The method of claim 16, wherein said cleavage is carried out in the presence of a divalent cation.
5
18. The method of claim 17, wherein said divalent cation is Mg²⁺.
19. The method of claim 16, wherein said cleavage is carried out in the presence of a protein nuclease.
20. The method of claim 19, wherein said protein nuclease is an RNase L.
- 10 21. The compound of claim 1, wherein said compound is chemically synthesized.
22. The compound of claim 1, wherein said oligonucleotide comprises at least one 2'-sugar modification.
23. The compound of claim 1, wherein said oligonucleotide comprises at least one nucleic acid base modification.
- 15 24. The compound of claim 1, wherein said oligonucleotide comprises at least one phosphate modification.
25. The method of claim 14, wherein said drug therapy is the administration of type I interferon.
26. The method of claim 25, wherein said type I interferon and the compound of claim 1 are administered simultaneously.
- 20 27. The method of claim 25, wherein said type I interferon and the compound of claim 1 are administered separately.
28. The method of claim 25, wherein said type I interferon is selected from the group consisting of interferon alpha, interferon beta, consensus interferon, polyethylene glycol interferon,

polyethylene glycol interferon alpha 2a, polyethylene glycol interferon alpha 2b, and polyethylene glycol consensus interferon.

29. The method of claim 14, wherein R₅ in said compound is selected from the group consisting of alkyl, alkylamine and abasic moiety and said drug therapy comprises treatment with an enzymatic nucleic acid molecule which is targeted against HCV replication.
5
30. The method of claim 14, wherein R₅ in said compound is selected from the group consisting of alkyl, alkylamine and abasic moiety and said drug therapy comprises treatment with an antisense nucleic acid molecule which is targeted against HCV replication.
31. A composition comprising type I interferon and the compound of claim 1 and a pharmaceutically acceptable carrier.
10
32. The compound of claim 1, wherein said abasic moiety is selected from the group consisting of:

wherein R₃ is selected from the group consisting of S, N, or O and R₇ is independently selected from the group consisting of H, OH, NH₂, O-NH₂, alkyl, S-alkyl, O-alkyl, O-alkyl-S-alkyl, O-alkoxyalkyl, allyl, O-allyl, fluoro, oligonucleotide, alkyl, alkylamine and abasic moiety.
15

33. An enzymatic nucleic acid molecule that specifically cleaves RNA derived from hepatitis B virus (HBV), wherein said enzymatic nucleic acid molecule comprises sequence defined as
20 Seq. ID No. 6346.
34. A method of administering to a cell an enzymatic nucleic acid molecule of claim 33 comprising contacting said cell with the enzymatic nucleic acid molecule under conditions suitable for said administration.

35. The method of claim 34, further comprising the administration of one or more other therapeutic compounds.
36. The method of claim 35, wherein said other therapeutic compound is type I interferon.
37. The method of claim 35, wherein said other therapeutic compound is 3TC® (Lamivudine).
- 5 38. The method of claim 35, wherein said other therapeutic compound and the enzymatic nucleic acid molecule are administered simultaneously.
39. The method of claim 35, wherein said other therapeutic compound and enzymatic nucleic acid molecule are administered separately.
40. The method of claim 36, wherein said type I interferon is selected from the group consisting
10 of interferon alpha, interferon beta, consensus interferon, polyethylene glycol interferon, polyethylene glycol interferon alpha 2a, polyethylene glycol interferon alpha 2b, and polyethylene glycol consensus interferon.
41. The method of claim 34 or claim 35, wherein said cell is a mammalian cell.
42. The method of claim 41, wherein said cell is a human cell.
- 15 43. The method of claim 41, wherein said administration is in the presence of a delivery reagent.
44. The method of claim 43, wherein said delivery reagent is a lipid.
45. The method of claim 44, wherein said lipid is a cationic lipid or a phospholipid.
46. The method of claim 43, wherein said delivery reagent is a liposome.
- 20 47. A nucleic acid molecule that specifically binds the hepatitis B virus (HBV) reverse transcriptase primer, wherein said nucleic acid molecule comprises the sequence (UUCA)_n, wherein n is an integer from 1 to 10.

48. A nucleic acid molecule that specifically binds the hepatitis B virus (HBV) reverse transcriptase primer, wherein said nucleic acid molecule is a sequence comprising any of Seq. ID Nos: 11216-11262, 11264, 11266, 11268, 11270, 11272, 11274, 11276, 11278, 11280, 11282, 11284, 11286, 11288, 11290 and 11292.
- 5 49. A nucleic acid molecule that specifically binds to the Enhancer I sequence of HBV DNA.
50. A nucleic acid molecule of claim 49 wherein said nucleic acid molecule comprises any of SEQ ID Nos: 11327, 11330, 11332, 11334, 11335, 11338, 11340 and 11342.
51. A method of administering to a cell a nucleic acid molecule of any of claims 47-50 comprising contacting said cell with the nucleic acid decoy molecule under conditions
10 suitable for said administration.
52. The method of claim 51, further comprising administering one or more other therapeutic compounds.
53. The method of claim 52, wherein said other therapeutic compound is type I interferon.
54. The method of claim 52, wherein said other therapeutic compound is 3TC® (Lamivudine).
- 15 55. The method of claim 52, wherein said other therapeutic compound and the nucleic acid molecule are administered simultaneously.
56. The method of claim 52, wherein said other therapeutic compound and the nucleic acid molecule are administered separately.
57. The method of claim 53, wherein said type I interferon is selected from the group consisting
20 of interferon alpha, interferon beta, consensus interferon, polyethylene glycol interferon, polyethylene glycol interferon alpha 2a, polyethylene glycol interferon alpha 2b, and polyethylene glycol consensus interferon.
58. The nucleic acid molecule of any of claims 47-50, wherein said nucleic acid molecule comprises a nucleic acid backbone modification.

59. The nucleic acid molecule of any of claims 47-50, wherein said nucleic acid molecule comprises a nucleic acid sugar modification.
60. The nucleic acid molecule of any of claims 47-50, wherein said nucleic acid decoy molecule comprises a nucleic acid base modification.
- 5 61. The method of claim 51 or claim 52, wherein said cell is a mammalian cell.
62. The method of claim 61, wherein said cell is a human cell.
63. The method of claim 61, wherein said administration is in the presence of a delivery reagent.
64. The method of claim 63, wherein said delivery reagent is a lipid.
65. The method of claim 64, wherein said lipid is a cationic lipid or a phospholipid.
- 10 66. The method of claim 63 wherein said delivery reagent is a liposome.
67. The nucleic acid molecule of claim 47, wherein said nucleic acid molecule is a decoy nucleic acid molecule.
68. The nucleic acid molecule of claim 47, wherein said nucleic acid molecule is an aptamer nucleic acid molecule.
- 15 69. The nucleic acid molecule of claim 49, wherein said Enhancer I sequence comprises a Hepatocyte Nuclear Factor 3 and/or Hepatocyte Nuclear Factor 4 binding sequence.
70. A mouse implanted with HepG2.2.15 cells, wherein said mouse sustains the propagation of HEPG2.2.15 cells and HBV production.
- 20 71. The mouse of claim 70, wherein said mouse has been infected with HBV for at least one week.
72. The mouse of claim 70, wherein said mouse has been infected with HCV for at least four weeks.
73. The mouse of claim 70, wherein said mouse has been infected with HBV for at least eight weeks.

74. The mouse of claim 70, wherein said mouse is an immuno compromised mouse.
75. The mouse of claim 74, wherein said mouse is a nu/nu mouse.
76. The mouse of claim 74, wherein said mouse is a scid/scid mouse.
77. A method of producing a mouse according to claim 70, comprising injecting HepG2.2.15 cells into said mouse under conditions suitable for the propagation of the HepG2.2.15 cells in said mouse.
5
78. The method of claim 77, wherein said mouse is a nu/nu mouse.
79. The method of claim 77, wherein said mouse is a scid/scid mouse.
80. The method of claim 77, wherein said injection is subcutaneous injection.
- 10 81. The method of claim 77, wherein said HepG2.2.15 cells are suspended in Dulbecco's PBS solution including calcium and magnesium.
82. A method of screening a therapeutic compound for activity against HBV comprising administering said therapeutic compound to a mouse of claim 70 and monitoring said mouse for the effects of said therapeutic compound on levels of HBV DNA.
- 15 83. The method of claim 70, wherein said therapeutic compound is a nucleic acid molecule, administered alone or in combination with another therapeutic compound or treatment.
84. The method of claim 83, wherein said nucleic acid molecule is an enzymatic nucleic acid molecule.
85. The method of claim 83, wherein said nucleic acid molecule is an antisense nucleic acid
20 molecule.
86. The method of claim 83, wherein said other treatment is antiviral therapy.
87. The method of claim 86, wherein said antiviral therapy is treatment with 3TC® (Lamivudine).
88. The method of claim 86, wherein said antiviral therapy is treatment with interferon.
- 25 89. The method of claim 88, wherein said interferon is selected from the group consisting of consensus interferon, type I interferon, interferon alpha, interferon beta, consensus

interferon, polyethylene glycol interferon, polyethylene glycol interferon alpha 2a, polyethylene glycol interferon alpha 2b and polyethylene glycol consensus interferon.

90. An immunocompromised non-human mammal implanted with HepG2.2.15 cells, wherein said non-human mammal is susceptible to HBV infection and capable of sustaining HBV
5 DNA expression.
91. The mammal of claim 90, wherein said non-human mammal has been infected with HBV for at least one week.
92. The mammal of claim 90, wherein said non-human mammal has been infected with HCV for at least four weeks.
- 10 93. The mammal of claim 90, wherein said non-human mammal has been infected with HBV for at least eight weeks.
94. The mammal of claim 90, wherein said non-human mammal is a nu/nu mammal.
95. The mammal of claim 90, wherein said non-human mammal is a scid/scid mammal.
- 15 96. A method of producing a non-human mammal according to claim 90, comprising injecting HepG2.2.15 cells into said non-human mammal under conditions suitable for the propagation of the HepG2.2.15 cells in said non-human.
97. The method of claim 96, wherein said non-human mammal is a nu/nu mammal.
98. The method of claim 96, wherein said non-human mammal is a scid mammal.
99. The method of claim 96, wherein said injection is subcutaneous injection.
- 20 100. The method of claim 96, wherein said HepG2.2.15 cells are suspended in Delbecco's PBS solution including calcium and magnesium.
101. A method of screening a therapeutic compound for activity against HBV, comprising administering said therapeutic compound to a non-human mammal of claim 90 and monitoring said mammal for the effects of said therapeutic compound on levels of HBV
25 DNA.
102. The method of claim 101, wherein said therapeutic compound is a nucleic acid molecule administered alone or in combination with another therapeutic compound or treatment.

- 103.The method of claim 102, wherein said nucleic acid molecule is an enzymatic nucleic acid molecule.
- 104.The method of claim 102, wherein said nucleic acid molecule is an antisense nucleic acid molecule.
- 5 105.The method of claim 102, wherein said other treatment is antiviral therapy.
- 106.The method of claim 105, wherein said antiviral therapy is treatment with 3TC® (Lamivudine).
- 107.The method of claim 105, wherein said antiviral therapy is treatment with interferon.
- 108.The method of claim 107, wherein said interferon is selected from the group consisting of consensus interferon, type I interferon, interferon alpha, interferon beta, consensus interferon, polyethylene glycol interferon, polyethylene glycol interferon alpha 2a, polyethylene glycol interferon alpha 2b, and polyethylene glycol consensus interferon.

ABSTRACT OF THE DISCLOSURE

The present invention relates to nucleic acid molecules, including antisense and enzymatic nucleic acid molecules, such as hammerhead ribozymes, DNAzymes, Inozymes, Zinzymes, Amberzymes, and G-cleaver ribozymes, which modulate the synthesis, expression and/or stability of an HCV or HBV RNA and methods for their use alone or in combination with other therapies. In addition, nucleic acid decoy molecules and aptamers that bind to HBV reverse transcriptase and/or HBV reverse transcriptase primer sequences and methods for their use alone or in combination with other therapies, are disclosed. Oligonucleotides that specifically bind the Enhancer I region of HBV DNA are further disclosed. The present invention further relates to the use of nucleic acids, such as decoy and aptamer molecules of the invention, to modulate the expression of Hepatitis B virus (HBV) genes and HBV viral replication. Furthermore, HBV animal models and methods of use are disclosed, including methods of screening for compounds and/or potential therapies directed against HBV. The present invention also relates to compounds, including enzymatic nucleic acid molecules, ribozymes, DNAzymes, nuclease activating compounds and chimeras such as 2',5'-adenylates, that modulate the expression and/or replication of hepatitis C virus (HCV).

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.