Tipos de interés a 3 y 6 meses en EEUU

Datos

Datos semanales desde el 12 de diciembre de 1958 al 6 de agosto de 2004 (en total 2383 observaciones). Fuente: ejemplo 8.6.5 del libro de Ruey S. Tsay, Multivariate Time Series Analysis and its applications (w-tb3n6ms.txt).

TB3 3-month Treasury Bill

TB6 6-month Treasury Bill

```
open ../datos/LetrasTesoroAmericano3y6meses.gdt
gnuplot TB3 TB6 --time-series --with-lines --output="TB3yTB6.png"
```


- Ficheros
- Versión en pdf
- Datos: https://mbujosab.github.io/org-lessons-gitpages/datos/LetrasTesoroAmericano3y6meses.gdt
- Guión de gretl: LetrasTesoroAmericano3y6meses.inp

Letras a tres meses

Gráfico y correlograma de la serie temporal TB3

```
gnuplot TB3 --time-series --with-lines --output="TB3.png"
corrgm TB3 --plot="TB3ACF-PACF.png"
```


Regresión auxiliar para TB3

Consideremos la regresión

$$\nabla TB3_{t} = \nu + \delta TB3_{t-1} + \sum_{j=1}^{3} \pi_{j} \nabla TB3_{t-j} + U_{t}.$$

Y consideremos la siguiente hipótesis nula acerca del parámetro δ :

$$H_0: \delta = 0$$
, frente a $H_1: \delta < 0$

```
diff TB3
RegresionAUX_TB3 <- ols d_TB3 0 TB3(-1) d_TB3(-2) d_TB3(-3)
```

Model 2: OLS, using observations 1959-01-09:2004-08-06 (T = 2379) Dependent variable: d_TB3

	coeffi	cient	std.	error	t-ratio	p-value	
const	0.020	4353	0.009	950288	2.150	0.0316	**
TB3_1	-0.00371135		0.00152221		-2.438	0.0148	**
d_TB3_1	0.271	457	0.020	04924	13.25	1.07e-38	***
d_TB3_2	-0.014	8460	0.02	12326	-0.6992	0.4845	
d_TB3_3	0.038	1931	0.020	05139	1.862	0.0628	*
Mean depende	nt var	-0.0005	513	S.D. de	ependent va	r 0.212	547
Sum squared	resid	99.33	579	S.E. of	regressio	n 0.204	556
R-squared		0.0753	335	Adjuste	ed R-square	d 0.073	777
F(4, 2374)		48.354	122	P-value	e(F)	3.80e	-39
Log-likeliho	od	402.13	135	Akaike	criterion	-794.23	269
Schwarz crit	erion	-765.35	547	Hannan-	-Quinn	-783.7	185
rho		-0.0027	760	Durbin'	s h	-4.320	544

Excluding the constant, p-value was highest for variable 6 (d_TB3_2)

Contraste de la hipótesis nula

Respecto al contraste de la hipótesis nula sobre el parámetro δ de la anterior regresión auxiliar:

$$H_0: \delta = 0$$
, frente a $H_1: \delta < 0$

Para el tamaño muestral considerado, y bajo la hipótesis nula, el valor crítico del contraste para un nivel de significación del $5\,\%$ es -2.86

Contraste aumentado de Dickey Fuller sobre la existencia de una raíz unitaria para TB3

```
Augmented Dickey-Fuller test for TB3
including 3 lags of (1-L)TB3
sample size 2379
unit-root null hypothesis: a = 1

test with constant
model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
estimated value of (a - 1): -0.00371135
test statistic: tau_c(1) = -2.43813
asymptotic p-value 0.1312
1st-order autocorrelation coeff. for e: -0.003
lagged differences: F(3, 2374) = 63.404 [0.0000]
```

Conteste KPSS de estacionariedad para TB3

```
KPSS test for TB3

T = 2383

Lag truncation parameter = 3

Test statistic = 8.99282

10% 5% 1%

Critical values: 0.348 0.462 0.744

P-value < .01
```

kpss 3 TB3

Letras a seis meses

Gráfico y correlograma de la serie temporal TB6

```
gnuplot TB6 --time-series --with-lines --output="TB6.png"
corrgm TB6 --plot="TB6ACF-PACF.png"
```


Regresión auxiliar para TB6

Consideremos la regresión

$$\nabla TB6_t = \nu + \delta TB6_{t-1} + \sum_{j=1}^{3} \pi_j \nabla TB6_{t-j} + U_t.$$

Y consideremos la siguiente hipótesis nula acerca del parámetro δ :

```
H_0: \delta = 0, frente a H_1: \delta < 0
```

```
diff TB6
RegresionAUX_TB6 <- ols d_TB6 0 TB6(-1) d_TB6(-2) d_TB6(-3)
```

Model 4: OLS, using observations 1959-01-09:2004-08-06 (T = 2379) Dependent variable: d_TB6

	coeffi	cient	std.	error	t-ratio	p-value	
const	0.018	8423	0.008	868102	2.171	0.0301	**
TB6_1	-0.003	32840	0.001	136431	-2.440	0.0148	**
d_TB6_1	0.273	770	0.020	4870	13.36	2.52e-39	***
d_TB6_2	0.053	5491	0.021	2198	2.524	0.0117	**
d_TB6_3	0.040	8834	0.020	5125	1.993	0.0464	**
Mean depende	nt var	-0.000	509	S.D. de	ependent va	r 0.1894	139
Sum squared :	resid	77.37	722	S.E. of	f regression	n 0.1805	537
R-squared		0.093	303	Adjust	ed R-square	d 0.0917	775
F(4, 2374)		61.073	380	P-value	e(F)	3.60e-	-49
Log-likeliho	od	699.20	366	Akaike	criterion	-1388.5	533
Schwarz crit	erion	-1359.6	361	Hannan-	-Quinn	-1378.0)25
rho		-0.001	784	Durbin	's h	-2.2532	222

Contraste de la hipótesis nula

Respecto al contraste de la hipótesis nula sobre el parámetro δ de la anterior regresión auxiliar:

$$H_0: \delta = 0$$
, frente a $H_1: \delta < 0$

Para el tamaño muestral considerado, y bajo la hipótesis nula, el valor crítico del contraste para un nivel de significación del $5\,\%$ es -2.86

Contraste aumentado de Dickey Fuller sobre la existencia de una raíz unitaria para TB6

```
Augmented Dickey-Fuller test for TB6
including 3 lags of (1-L)TB6
sample size 2379
unit-root null hypothesis: a = 1

test with constant
model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
estimated value of (a - 1): -0.0033284
test statistic: tau_c(1) = -2.43963
asymptotic p-value 0.1308
1st-order autocorrelation coeff. for e: -0.002
lagged differences: F(3, 2374) = 80.572 [0.0000]
```

Conteste KPSS de estacionariedad para TB6

```
KPSS test for TB6

T = 2383

Lag truncation parameter = 3

Test statistic = 9.29618
```

kpss 3 TB6

```
10% 5% 1%
Critical values: 0.348 0.462 0.744
```

P-value < .01

Contraste de cointegración de Engle y Granger

```
coint 3 TB3 TB6
Step 1: testing for a unit root in TB3
Augmented Dickey-Fuller test for TB3
including 3 lags of (1-L)TB3
sample size 2379
unit-root null hypothesis: a = 1
 test with constant
 model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
 estimated value of (a - 1): -0.00371135
 test statistic: tau_c(1) = -2.43813
 asymptotic p-value 0.1312
 1st-order autocorrelation coeff. for e: -0.003
 lagged differences: F(3, 2374) = 63.404 [0.0000]
Step 2: testing for a unit root in TB6
Augmented Dickey-Fuller test for TB6
including 3 lags of (1-L)TB6
sample size 2379
unit-root null hypothesis: a = 1
 test with constant
 model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
 estimated value of (a - 1): -0.0033284
 test statistic: tau_c(1) = -2.43963
 asymptotic p-value 0.1308
  1st-order autocorrelation coeff. for e: -0.002
 lagged differences: F(3, 2374) = 80.572 [0.0000]
Step 3: cointegrating regression
Cointegrating regression -
OLS, using observations 1958-12-12:2004-08-06 (T = 2383)
Dependent variable: TB3
            coefficient std. error t-ratio p-value
             -0.227230
                        0.0103472
                                       -21.96
                                               1.73e-97 ***
 const
 TB6
              1.01277
                          0.00162648
                                       622.7
                                                 0.0000 ***
Mean dependent var 5.595682
                              S.D. dependent var
                                                   2.766766
Sum squared resid
                    111.2926
                               S.E. of regression
                                                   0.216199
R-squared
                    0.993896 Adjusted R-squared 0.993894
Log-likelihood
                    269.3694 Akaike criterion
                                                  -534.7387
Schwarz criterion
                   -523.1865
                               Hannan-Quinn
                                                   -530.5345
                    0.917536
                              Durbin-Watson
                                                    0.164916
Step 4: testing for a unit root in uhat
Augmented Dickey-Fuller test for uhat
including 3 lags of (1-L)uhat
sample size 2379
unit-root null hypothesis: a = 1
 test without constant
 model: (1-L)y = (a-1)*y(-1) + ... + e
```

```
estimated value of (a - 1): -0.0714629

test statistic: tau_c(2) = -8.40176

asymptotic p-value 3.55e-13

1st-order autocorrelation coeff. for e: -0.001

lagged differences: F(3, 2375) = 31.962 [0.0000]

There is evidence for a cointegrating relationship if:

(a) The unit-root hypothesis is not rejected for the individual variables, and

(b) the unit-root hypothesis is rejected for the residuals (uhat) from the cointegrating regression.
```

Regresión de los tipos a 3 meses sobre los tipos a 6 meses

```
MCO3sobre6 <- ols TB3 0 TB6
modtest --normality --quiet
modtest --white --quiet
modtest --autocorr 1 --quiet
Model 8: OLS, using observations 1958-12-12:2004-08-06 (T = 2383)
Dependent variable: TB3
            coefficient std. error t-ratio p-value
             -0.227230 0.0103472
                                       -21.96 1.73e-97 ***
 const
                          0.00162648 622.7
                                                 0.0000 ***
 TB6
              1.01277
Mean dependent var 5.595682
                               S.D. dependent var 2.766766
Sum squared resid 111.2926
                               S.E. of regression 0.216199
                    0.993896
                               Adjusted R-squared 0.993894
R-squared
F(1, 2381)
                    387722.5
                                                   0.000000
                               P-value(F)
Log-likelihood
                             Akaike criterion
                                                   -534.7387
                   269.3694
Schwarz criterion -523.1865 Hannan-Quinn
                                                  -530.5345
rho
                    0.917536 Durbin-Watson
                                                   0.164916
Test for null hypothesis of normal distribution:
Chi-square(2) = 1605.555 \text{ with } p-value 0.00000
White's test for heteroskedasticity
Test statistic: TR^2 = 334.788512,
with p-value = P(Chi-square(2) > 334.788512) = 0.000000
Breusch-Godfrey test for first-order autocorrelation
Test statistic: LMF = 12669.718945,
with p-value = P(F(1,2380) > 12669.7) = 0
Alternative statistic: TR^2 = 2006.146451,
with p-value = P(Chi-square(1) > 2006.15) = 0
Ljung-Box Q' = 2008.6,
with p-value = P(Chi-square(1) > 2008.6) = 0
```

Regresión en primeras diferencias

```
diff TB3 TB6

MC03sobre6_en_Diff <- ols d_TB3 0 d_TB6

modtest --normality --quiet

modtest --white --quiet

modtest --autocorr 2 --quiet
```

Model 10: OLS, using observations 1958-12-19:2004-08-06 (T = 2382) Dependent variable: d_TB3

	coefficient	std.	erro	- t-ra	tio	p-value		
	8.20245e-06 1.02172						***	
R-squared F(1, 2380) Log-likelihoo	resid 18.34 0.829 11557 od 2415. erion -4815.	18.34704 0.829239 11557.57 2415.765 -4815.979		Akaike criterion		0.087800 0.829167 0.000000 -4827.531 -4823.327		
Test for null hypothesis of normal distribution: Chi-square(2) = 3551.267 with p-value 0.00000								
White's test for heteroskedasticity								
Test statistic: TR^2 = 271.546715, with p-value = P(Chi-square(2) > 271.546715) = 0.000000								
Breusch-Godfrey test for autocorrelation up to order 2								
Test statistic: LMF = 57.661126 , with p-value = $P(F(2,2378) > 57.6611) = 3.52e-25$								
Alternative statistic: TR^2 = 110.173325, with p-value = P(Chi-square(2) > 110.173) = 1.19e-24								
Ljung-Box Q' = 108.32, with p-value = P(Chi-square(2) > 108.32) = 3.01e-24								

Preguntas

Pregunta 1

Discuta de todas las formas posibles si las series temporales de letras del tesoro norteamericano a tres meses (TB3) y a seis meses (TB6) son estacionarias en media (i.e., son la realización de procesos estocásticos estacionarios en media), usando para ello los resultados de los apartados Letras a tres meses y Letras a seis meses así como sus subapartados.

(Respuesta 1)

Pregunta 2

Discuta si las series temporales TB3 y TB6 están cointegradas, a partir de los resultados del apartado Contraste de cointegración de Engle y Granger.

(Respuesta 2)

Pregunta 3

¿Qué relación existe entre el contraste de la hipótesis $H_0: \delta = 0$ para la Regresión auxiliar para TB3 y el Contraste aumentado de Dickey Fuller sobre la existencia de una raíz unitaria para TB3?

¿Qué relación existe entre el contraste de la hipótesis $H_0: \delta = 0$ para la Regresión auxiliar para TB6 y el Contraste aumentado de Dickey Fuller sobre la existencia de una raíz unitaria para TB6? (Respuesta 3)

Pregunta 4

Los listados de la Regresión de los tipos a 3 meses sobre los tipos a 6 meses y la Regresión en primeras diferencias muestran los principales resultados obtenidos al estimar por MCO dos modelos de regresión.

Resuma y comente los resultados de estimación y diagnosis que le parezcan más relevantes para cada uno de los modelos (el primero en niveles y el segundo en diferencias).

¿Detecta alguna desviación del cumplimiento de las hipótesis habituales en dichos modelos? (Respuesta 4)

Respuestas

Respuesta 1

Ambas series (TB3 y TB6) parecen ser NO estacionarias en media,

- Analizando los gráficos de las series, ambas parecen tener una tendencia estocástica sin deriva.
- Ambas funciones de autocorrelación (FAC) muestran persistencia (sus coeficientes decrecen despacio y
 a un ritmo aproximadamente lineal); y el primer coeficiente de la PACF está próximo a uno en ambos
 casos.
- En ambos casos el contraste Dickey-Fuller aumentado no rechaza la hipótesis nula de existencia de una raíz unitaria ni al 1 %, ni al 5 %, ni tampoco al 10 % de significación.
- En consonancia con lo anterior, en ambos casos el test KPSS rechaza contundentemente que las series sean estacionarias.
- Además (aunque el enunciado no hace referencia a la sección "Contraste de cointegración de Engle y Granger"), los test ADF calculados en las etapas 1 y 2 no rechazan la hipótesis (raíz unitaria) pues, de hecho, son los mismos test mostrados más arriba.

Aclaraciones a algunas respuestas incorrectas en los exámenes:

Las regresiones auxiliares corresponden al contraste Dickey-Fuller (en este caso Dickey-Fuller aumentado por incluir tanto un término constante como tres retardos de la variable). De este contraste solo nos interesa el ratio t (parámetro estimado dividido por desviación típica) para δ (la pendiente correspondiente al primer retardo de la variable).
Dicho ratio, bajo la H₀ de que la serie es I(1), no tiene la habitual distribución t-student. Por eso se compara el ratio con unas tablas especiales (las del Dickey-Fuller aumentado con constante, tres retardos y en tamaño muestral correspondiente) que para una significación del 5% arrojan un valor crítico de -2.86 como se indica tras los resultados de la regresión.
El valor de R² o los criterios de información, o cualquier otro estadístico no nos importan (esta regresión auxiliar no trata de encontrar un modelo para la serie, solo pretende contrastar si hay una raíz unitaria, es decir, contrastar si δ = 0). Por último, que el R² sea bajo NO indica ni que la serie sea estacionaria ni que no lo sea.

(Pregunta 1)

Respuesta 2

El resumen de las distintas etapas del test de cointegración son:

- **Etapa 1** El test ADF no rechaza que la serie TB3 sea I(1) para niveles de significación inferiores al 13 % (p-valor asintótico 0,1312).
- **Etapa 2** El test ADF no rechaza que la serie TB6 sea I(1) para niveles de significación inferiores al 13 % (p-valor asintótico 0,1308).
- **Etapa 3** En la regresión (cointegrante) de las letras a 3 meses sobre las letras a 6 meses la pendiente es muy significativa, y el R^2 está próximo a 1.
- **Etapa 4** El test ADF rechaza **contundentemente** que los residuos de la regresión cointegrante sean I(1) a casi cualquier nivel de significación (p-valor asintótico 0.000000000000355)

Por lo que podemos concluir que, siendo las series TB3 y TB6 no estacionarias (etapas 1 y 2), la regresión cointegrante muestra que existe una estrecha y significativa relación entre ellas (etapa 3) con residuos estacionarios (etapa 4). En otras palabras, aunque TB3 y TB6 no son estacionarias en media, la diferencia entre ellas $TB3 - \widehat{\beta}_2 TB6$ sí es estacionaria en media. Consecuentemente, el test NO rechaza la cointegración de los tipos de interés a 3 y 6 meses.

Aclaraciones a algunas respuestas incorrectas en los exámenes:

- La etapa 3 es tan importante como el resto de etapas (en dicha etapa 3 lo importante es que la pendiente sea significativa y el ajuste elevado, pues indica que una serie ajusta los datos de la otra). Las otras etapas añaden que ambas series son no estacionarias en media, pero los residuos sí son estacionarios, es decir, que $y_t \widehat{cte} \widehat{\beta_2} x_t$ (i.e. los residuos) es una serie estacionaria en media.
- En la regresión cointegrante, la interpretación de la constante es que, en media, el tipo de interés TB3 es -0,227230 puntos más bajo que el TB6. Si se fija en la primera gráfica con ambas series se puede apreciar que en casi todo el periodo muestral TB3 (en verde) se encuentra ligeramente por debajo de TB6 (en naranja). Es decir, su interpretación NO ES que la media de TB3 sea negativa (basta mirar el gráfico para constatar que su media no es negativa).

(Pregunta 2)

Respuesta 3

Precisamente, ambas regresiones auxiliares son las que se han empleado en los respectivos contrastes ADF (en este caso incluyendo tres retardos)

$$\nabla Y_t = \nu + \delta Y_{t-1} + \sum_{j=1}^3 \pi_j \nabla Y_{t-j} + U_t,$$

un $\delta = 0$ implica, bajo la hipótesis de que la serie Y_t es I(1), que la primera diferencia es estacionaria en media, pues

$$Y_t - Y_{t-1} = \nu + \underbrace{\sum_{j=1}^{3} \pi_j \nabla Y_{t-j}}_{I(0)} + U_t.$$

Bajo la hipótesis H_0 de que la serie Y_t es I(1), el ratio t correspondiente al parámetro δ no se distribuye como una t-student, por lo que el estadístico t y el correspondiente p-valor mostrados en las regresiones auxiliares no son válidos. Por eso el contraste ADF emplea unos valores críticos distintos (en este ejemplo -2.86). Como los ratios t (-2.438 y -2.440) no superan el valor crítico, no se rechaza la hipótesis nula $\delta = 0$, es decir, no se rechaza que las series sean I(0) (nótese que la hipótesis alternativa es $\delta < 0$, y que por tanto el contraste es de una sola cola: la cola izquierda; por tanto, para rechazar la hipótesis el ratio debería tomar valores a la izquierda de -2.86).

(Pregunta 3)

Respuesta 4

Regresión de los tipos a 3 meses sobre los tipos a 6 meses Los coeficientes estimados son muy significativos. El ajuste del modelo, medido por el valor del \mathbb{R}^2 es muy elevado, pero los contrastes rechazan las hipótesis habituales de distribución normal, homocedasticidad y ausencia de autocorrelación en los residuos.

Regresión en primeras diferencias El único coeficiente significativo es la pendiente (es decir, al diferenciar las series NO desaparece la relación entre ellas; como cabe esperar entre series cointegradas), y el ajuste del modelo, medido por el valor del R^2 , es superior al 80 %. Los contrastes residuales rechazan las hipótesis habituales de distribución normal, homocedasticidad y ausencia de autocorrelación en los residuos.

Aclaraciones a algunas respuestas incorrectas en los exámenes

- Un coeficiente de determinación (R^2) muy elevado indica un buen **ajuste** de los datos. Eso no significa una buena explicación (no confunda lo que es un ajuste con lo que es una explicación... si no lo entiende, repase el concepto de correlación espuria).
- En un modelo con constante, el coeficiente de determinación (R^2) indica el porcentaje de la varianza de los datos del regresando que es replicada por los datos de los regresores (es una medida de *ajuste de los datos*).
- La lectura de los criterios de información o del coeficiente de determinación ajustado es diferente al del R². Dichos estadísticos sirven para comparar modelos con el mismo regresando. Por eso no tiene sentido comparar dichos estadísticos para un modelo de TB3 y otro para su primera diferencia d_TB3 (al ser regresandos distintos, no cabe la comparación). Fíjese que en mi respuesta solo indico la magnitud del R² en cada modelo, pero no los comparo entre si.

Los valores de los criterios de información no nos indican la calidad del modelo; es la comparación de dichos valores entre modelos distintos la que nos indica comparativamente determinadas cualidades de dichos modelos.

- Las hipótesis habituales y que se han contrastado como hipótesis nulas (H_0) en las salidas de Gretl son:
 - 1. Distribución normal (o gaussiana) de las perturbaciones
 - 2. Homocedasticidad (que la varianza de las perturbaciones es constante a lo largo de la muestra). Cuando las perturbaciones no son homocedásticas se dice que son heterocedásticas. Por tanto la H_0 es la homocedasticidad (igual varianza) y NO la heterocedasticidad.
 - 3. Ausencia de autocorrelación en las perturbaciones (es decir que no hay autocorrelación). Por tanto, rechazar esta H_0 significa que vamos a asumir que hay autocorrelación.
- El teorema de Gauss-Markov NO exige la distribución normal... pero SI exige homocedasticidad y ausencia de autocorrelación. Por tanto las estimaciones de las dos regresiones NO son eficientes en el sentido de Gauss-Markov (tampoco en el máximo-verosímil).

(Pregunta 4)

Aclaraciones generales

- En un contraste de hipótesis NO se rechaza ni el test, ni el contraste, ni el p-valor, etc. Se rechaza una hipótesis nula, y cada contraste corresponde a una hipótesis particular. Por tanto, siempre se debe enunciar en qué consiste la hipótesis en cuestión. Limitarse a decir que se rechaza la hipótesis nula no indica nada si no se explicita cuál es la hipótesis... del mismo modo que tampoco estoy informando de nada a quien me pregunta por el destino de mi último viaje si le contesto... "pues es donde estuve").
- Hablar de la significatividad de un parámetro es un modo abreviado de decir que se rechaza la hipótesis de que el parámetro sea cero. Así que decir que un parámetro es no significativo es un modo de decir no rechazamos la hipótesis de que sea cero.
 La significatividad se refiere a un parámetro, hablar de la significatividad de un p-valor NO TIENE NINGÚN SENTIDO (el p-valor es una probabilidad y no un parámetro). Afirmar que los datos son (estadísticamente) significativos tiene el mismo sentido que decir que un

atardecer es muy esdrújulo o un teorema muy longevo.

• La significación (o nivel de significación) α es una probabilidad fijada a priori que sirve para estableces los valores críticos de un contraste limitando la probabilidad de cometer el error tipo I bajo la hipótesis nula del contraste. Decir que la variable de un modelo tiene un alto nivel de significación NO TIENE NINGÚN SENTIDO (pero decir que es estadísticamente significativa SÍ).

- Correlación (tiene que ver con los momentos de una variable) y regresión (es un modelo) son conceptos muy distintos. Consecuentemente también lo son autocorrelación (entre variables) y la expresión AR(p) (que es una abreviatura de modelo autorregresivo de orden p). Así pues, las variables pueden mostrar autocorrelación (PERO NO AUTORREGRESIÓN), y se contrasta la ausencia de autocorrelación (NO AUTORREGRESIÓN). En el correlograma, el primer palote representa la magnitud de la autocorrelación de orden 1 (eso NO ES UN AR(1)... recuerde que un AR(1) es un modelo y el palote representa el valor de un parámetro).
- Un proceso estocástico cuyo modelo univariante posee un polinomio AR (o polinomio autorregresivo) con raíces en el círculo unidad no es estacionario. Pero un proceso no estacionario no tiene por que tener un modelo con raíces autorregresivas en el círculo unidad (su modelo puede no tener nada que ver con los modelos ARIMA). El curso solo ha tratado con modelos univariantes ARIMA, pero dichos modelos no cubren todos los posibles procesos estocásticos.
- En las salidas de Gretl aparecen expresiones como (1-L), en dichas expresiones, L es el operador retardo (que en otros programas o libros también se denota con B). Por tanto el símbolo L NADA TIENE QUE VER CON LOS LOGARITMOS.