Chapter 5 - Ex 2
证明: 独设. 101, 102 都属于W:美
$\lim_{j \to \infty} \sup_{j \to \infty} (p_{j}) = \lim_{j \to \infty} \sum_{i \to \infty} \sum_{j \to \infty} p_{i} = \lim_{j \to \infty} \sum_{i \to \infty} \sum_{j \to \infty} p_{i} $
$W_{i}^{\alpha} \mathcal{G}_{i}^{\beta} (\mathcal{D}_{2}) = \mathcal{G}_{i}^{\beta} \mathcal{X}_{2} + W_{i}^{\alpha} \mathcal{D}_{i}^{\beta}$
西对任意的: , 04入41
$W_j^T [\times Y_{i^T} (1-\lambda) \times 2] + W_j$
= > (with, 4 wio) + (1-x)(with 2 + w60)
\[\left(\omega_i^T \pa_1, 4 \omega_{i0} \right) + (1-\lambda) \left(\omega_i^T \pa_2 + \omega_{i0} \right) \]
Q对于中国内上之间的一点入户十个一个的。
man f wit I xpit (Fx)p2 I + wjo }
$= \alpha \max (w_1^T p_1 + w_{10}) + (HX) \cdot \max (w_1^T p_2 + w_{10})$ $= \alpha \max (w_1^T p_1 + w_{10}) + (HX) \cdot (w_1^T p_2 + w_{10})$
> (W,TP, + W,0) + (1-x) (W,TP2+W,0)
= WiTNP1+(H)N2]+Wio
结合多,到点入的+ CH入)的也属于以美
13 rie

Charpter b. Ex 21

The softwap (N) =
$$\frac{e^{\circ j}}{\sum_{i=1}^{2} e^{\circ j}}$$
 $\frac{dZ}{Z}$ 2(N)

 $\frac{dZ}{dP} = \frac{d}{Z} \cdot (1-Z)$
 $\frac{d}{Z} \cdot (1-$

$$\frac{e^{0} \cdot (-1) \cdot e^{0}}{\left(\frac{5}{5} \cdot e^{0} \cdot y\right)^{2}} = -\frac{2}{5} \cdot \frac{1}{5} \cdot \frac{1}{5}$$

$$\frac{c}{z-2}(tc-2c)(2c-2c^2)Wsj$$

$$\frac{c}{z-2}(tc-2c)(2c-2c^2)Wsj$$

$$\frac{c}{z-2}(tc-2c)(2c-2c^2)Wsj$$

$$\frac{c}{z-2}(tc-2c)(2c-2c^2)Wsj$$

$$\frac{c}{z-2}(tc-2c)(2c-2c^2)Wsj$$

$$\frac{c}{z-2}(tc-2c)(2c-2c^2)Wsj$$

$$\frac{c}{z-2}(tc-2c)(2c-2c^2)Wsj$$

$$\frac{c}{z-2}(tc-2c)(2c-2c^2)Wsj$$