

#15/A

SEQUENCE LISTING

<110> Mitchell, Lloyd G.
Garcia-Blanco, Mariano A.
Puttaraju, Madaiah
Mansfield, Gary S.

<120> METHODS AND COMPOSITIONS FOR USE IN
SPLICEROSOME MEDIATED RNA TRANS-SPLICING

<130> A31304-B-A-B 072874.0135

<140> 09/756,096
<141> 2001-01-08

<150> 09/158,863
<151> 1998-09-23

<150> 09/133,717
<151> 1998-08-13

<150> 09/087,233
<151> 1998-05-28

<150> 08/766,354
<151> 1996-12-13

<150> 60/008,317
<151> 1995-12-15

<160> 105

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 132
<212> DNA
<213> Homo sapien

<400> 1
caggggacgc accaaggatg gagatgttcc agggcgctga tgatgttgg tattttttttt 60
aaatcttttg tggaaaaa ctttttttcg taccacggga ctaaacctgg ttatgtat 120
tccattcaaa aa 132

<210> 2
<211> 29
<212> DNA

RECEIVED
FEB 14 2003
TECH CENTER 1600/2900

<213> Corynebacterium diphtheriae

<400> 2
ggcgctgcag ggcgctgatg atgttggttg 29

<210> 3
<211> 36
<212> DNA
<213> Corynebacterium diphtheriae

<400> 3
ggcgaagctt ggatccgaca cgatttcctg cacagg 36

<210> 4
<211> 68
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 4
aattctcttag atgcttcacc cgggcctgac tcgagtacta actggtaacct cttctttttt 60
ttccttgca 68

<210> 5
<211> 60
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 5
ggaaaaaaaaaa gaagaggtac cagtttagtac tcgagtcagg cccgggtgaa gcatctagag 60

<210> 6
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 6
tcgagcaacg ttataataat gttc 24

<210> 7
<211> 24

<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 7
tcgagaacat tattataacg ttgc 24

<210> 8
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 8
aattctctag atcaggcccg ggtgaagcac tcgag 35

<210> 9
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 9
tgcttcaccc gggcctgatc tagag 25

<210> 10
<211> 18
<212> DNA
<213> Homo sapien

<400> 10
tgcttcaccc gggcctga 18

<210> 11
<211> 16
<212> DNA
<213> Homo sapien

<400> 11
ctcttctttt ttttcc 16

<210> 12
<211> 18
<212> DNA

<213> Homo sapien

<400> 12
caacgttata ataatgtt 18

<210> 13
<211> 16
<212> DNA
<213> Homo sapien

<400> 13
ctgtgattaa tagcgg 16

<210> 14
<211> 16
<212> DNA
<213> Homo sapien

<400> 14
cctggacgcg gaagtt 16

<210> 15
<211> 51
<212> DNA
<213> Homo sapien

<400> 15
ctgggacaag gacactgctt cacccggta gtagaccaca gccctgaagc c 51

<210> 16
<211> 17
<212> DNA
<213> Homo sapien

<400> 16
cttctgtttt ttttctc 17

<210> 17
<211> 16
<212> DNA
<213> Homo sapien

<400> 17
cttctgtatt attctc 16

<210> 18
<211> 16
<212> DNA
<213> Homo sapien

<400> 18	
gttctgtcct tgtctc	16
<210> 19	
<211> 29	
<212> DNA	
<213> Corynebacterium diphtheriae	
<400> 19	
ggcgctgcag ggcgctgatg atgttgttg	29
<210> 20	
<211> 36	
<212> DNA	
<213> Corynebacterium diphtheriae	
<400> 20	
ggcgaagctt ggatccgaca cgatttcctg cacagg	36
<210> 21	
<211> 21	
<212> DNA	
<213> Corynebacterium diphtheriae	
<400> 21	
catcgatata atttccttgt g	21
<210> 22	
<211> 20	
<212> DNA	
<213> Corynebacterium diphtheriae	
<400> 22	
atggaatcta cataaccagg	20
<210> 23	
<211> 20	
<212> DNA	
<213> Corynebacterium diphtheriae	
<400> 23	
gaaggctgag cactacacgc	20
<210> 24	
<211> 20	
<212> DNA	
<213> Homo sapien	
<400> 24	
cggcacccgtg gccgaagtgg	20

```
<210> 25
<211> 30
<212> DNA
<213> Homo sapien

<400> 25
accggaattc atgaagccag gtacaccagg 30

<210> 26
<211> 20
<212> DNA
<213> Homo sapien

<400> 26
ggccaagggtg aacgtggatg 20

<210> 27
<211> 19
<212> DNA
<213> Homo sapien

<400> 27
atcaggagtg gacagatcc 19

<210> 28
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer complimentary to the
      Escherichia coli lacZ gene

<400> 28
gcataattc ggtaccatgg gggggttctc atcatcatc 39

<210> 29
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer complimentary to the
      Escherichia coli lacZ gene

<400> 29
ctgaggatcc tcttacctgt aaacgccat actgac 36

<210> 30
```

<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer complimentary to the Escherichia coli lacZ gene

<400> 30
gcatggtaac cctgcagggc ggcttcgtct gggactgg 38

<210> 31
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer complimentary to the Escherichia coli lacZ gene

<400> 31
ctgaaagctt gttaacttat tattttgac accagacc 38

<210> 32
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer complimentary to the Escherichia coli lacZ gene

<400> 32
gcatggtaac cctgcagggc ggcttcgtct aataatggga ctgggtg 47

<210> 33
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer complimentary to the beta HCG6 gene (accession #X00266)

<400> 33
gcatggatcc tccggagggc ccctgggcac cttccac 37

<210> 34
<211> 38
<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide primer complimentary to the beta HCG6 gene (accession #X00266)

<400> 34
ctgactgcag ggttaaccgga caaggacact gcttcacc 38

<210> 35

<211> 35

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide primer complimentary to the beta HCG6 gene (accession #X00266)

<400> 35
gcatggtaac cctgcagggg ctgctgctgt tgctg 35

<210> 36

<211> 37

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide primer complimentary to the beta HCG6 gene (accession #X00266)

<400> 36
ctgaaagtt gttaaccaggc tcaccatggt gggcag 37

<210> 37

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide primer complimentary to the Escherichia coli lacZ gene

<400> 37
ggcttcgct acctggagag ac 22

<210> 38

<211> 21

<212> DNA

<213> Artificial Sequence

<220>
<223> Oligonucleotide primer complimentary to the
Escherichia coli lacZ gene

<400> 38
gctggatgcg gcgtgcggtc g 21

<210> 39
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer complimentary to the
Escherichia coli lacZ gene

<400> 39
cggcaccgtg gccgaagtgg 20

<210> 40
<211> 45
<212> DNA
<213> Homo sapien

<400> 40
acctgggcc acccattatt agtcattat ccgcggaaca ttata 45

<210> 41
<211> 35
<212> DNA
<213> Homo sapiens

<400> 41
acctctgcag gtgaccctgc aggaaaaaaaaa agaag 35

<210> 42
<211> 30
<212> DNA
<213> Homo sapiens

<400> 42
acctctgcag acttcacttc taatgtatgtat 30

<210> 43
<211> 51
<212> DNA
<213> Homo sapien

<400> 43
acctgcggcc gcctaattat gatgtatgtat atgctttctt agttggcatg c 51

```
<210> 44
<211> 32
<212> DNA
<213> Homo sapien

<400> 44
gacctctcg a gggatttggg gaattat t tg ag
32

<210> 45
<211> 35
<212> DNA
<213> Homo sapien

<400> 45
ctgacacctgcg gccgctacag tttgttgaatgt ggtgc
35

<210> 46
<211> 35
<212> DNA
<213> Homo sapien

<400> 46
ctgacacctgcg gccgccccaa ac tatctgaatc atgtg
35

<210> 47
<211> 32
<212> DNA
<213> Homo sapien

<400> 47
gacctcttaa gtagactaac cgattgaata tg
32

<210> 48
<211> 21
<212> DNA
<213> Homo sapien

<400> 48
cta atgatga t gatgatgat g
21

<210> 49
<211> 21
<212> DNA
<213> Homo sapien

<400> 49
cgccta atga t gatgatgat g
21

<210> 50
```

<211> 21
<212> DNA
<213> Homo sapien

<400> 50
cttcttggta ctcctgtcct g 21

<210> 51
<211> 32
<212> DNA
<213> Homo sapien

<400> 51
gacctctcgaa gggatttggg gaattatttg ag 32

<210> 52
<211> 21
<212> DNA
<213> Homo sapien

<400> 52
aactagaagg cacagtcgag g 21

<210> 53
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> trans-spliced product containing Human chorionic
gonadotropin gene 6 sequences and Corynebacterium
diphtheriae diphtheria toxin A sequence

<400> 53
gagatgttcc agggcgtgat gatg 24

<210> 54
<211> 127
<212> RNA
<213> Artificial Sequence

<220>
<223> PTM intramolecular base paired stem

<221> misc_feature
<222> (57)...(70)
<223> Loop comprising a combination of 14 nucleotides
according to specification

<400> 54

gcuagccugg gacaaggaca cugcuucacc cgguuaguag accacagccc ugagccnnnn 60
nnnnnnnnnn aucguuaacu aauaaacuac uaacugggug aacuucuguu uuuuucucga 120
gcugcag 127

<210> 55
<211> 127
<212> RNA
<213> Artificial Sequence

<220>
<223> PTM intramolecular base paired stem

<221> misc_feature
<222> (57)...(70)
<223> Loop comprising a combination of 14 nucleotides
according to specification

<400> 55
gcuagccugg gacaaggaca cugcuucacc cgguuaguag accacagccc ugagccnnnn 60
nnnnnnnnnn aucguuaacu aauaaacuac uaacugggug aacuucugua uuauucucga 120
gcugcag 127

<210> 56
<211> 127
<212> RNA
<213> Artificial Sequence

<220>
<223> PTM intramolecular base paired stem

<221> misc_feature
<222> (57)...(70)
<223> Loop comprising a combination of 14 nucleotides
according to specification

<400> 56
gcuagccugg gacaaggaca cugcuucacc cgguuaguag accacagccc ugagccnnnn 60
nnnnnnnnnn aucguuaacu aauaaacuac uaacugggug aaguucuguc cuugucucga 120
gcugcag 127

<210> 57
<211> 132
<212> DNA
<213> Artificial Sequence

<220>
<223> trans-spliced product containing Human chorionic
gonadotropin gene 6 sequences and Corynebacterium
diphtheriae diphtheria toxin A sequences

<400> 57
caggggacgc accaaggatg gagatgttcc agggcgctga tgatgttgg tattttttt 60
aaatcttttg tgatggaaaa ctttttttcg taccacggga ctaaacctgg ttatgttagat 120
tccattcaaa aa 132

<210> 58
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial Sequence derived from Escherichia coli
lacZ gene

<400> 58
gaattcggta ccatgggg 18

<210> 59
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial Sequence derived from Escherichia coli
lacZ gene

<400> 59
cgtttacagg taagaggatc ctccggaggg ccc 33

<210> 60
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial Sequence derived from Escherichia coli
lacZ gene

<400> 60
tggtgtcaaa aataataagt taacaagctt 30

<210> 61
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> trans-spliced product containing Escherichia coli
lacZ gene sequences and Human chorionic
gonadotropin gene 6 exon 2 sequences

<400> 61
cagcagcccc tgtaaacggg gatac 25

<210> 62
<211> 286
<212> DNA
<213> Artificial Sequence

<220>
<223> trans-spliced product containing Escherichia coli
lacZ gene sequences

<400> 62
ggcttcgct acctggagag acgcgcggc tgatccttg cgaatacgcc cacgcgttgg 60
gtaacagtct tggcggttc gctaaatact ggcaggcggt tcgtcagttat ccccggttac 120
agggcggctt cgtctaataa tggactggg tggatcagtc gctgattaaa tatgtatgaaa 180
acgggcaacc cgtggtcggc ttacggcggt gattttggcg atacgccaa cgatcgccag 240
ttctgtatga acggctctggt ctttgccgac cgacgcgcg atccag 286

<210> 63
<211> 196
<212> DNA
<213> Artificial Sequence

<220>
<223> trans-spliced product containing Escherichia coli
lacZ gene sequences

<400> 63
ggcttcgct acctggagag acgcgcggc tgatccttg cgaatacgcc cacgcgttgg 60
gtaacagtct tggcggttc gctaaatact ggcaggcggt tcgtcagttat ccccggttac 120
aggggctgct gctgttgctg ctgctgagca tggcgggac atgggcattcc aaggagccac 180
ttcggccacg gtggcc 196

<210> 64
<211> 420
<212> DNA
<213> Artificial Sequence

<220>
<223> trans-spliced product comprising cystic fibrosis
transmembrane regulator-derived sequences and His
tag sequence

<400> 64
gctagcggtt aaacggggcg acccatcatt attaggtcat tatccgcggaa acattattat 60
aacgttgctc gagtactaac tggAACCTCT tctttttttt cctgcagact tcacttctaa 120
tgatgattat gggagaactg gagccttcag agggtaaaat taagcacagt ggaagaattt 180
cattctgttc tcagtttcc tggattatgc ctggcaccat taaagaaaat atcatcttg 240

gcggccgcca ctgtgctgga tatctgcaga attccaccac actggactag tggatccgag 300
ctcgttacca aggttaagtt taaaccgctg atcagcctcg actgtgcctt ctagttgccca 360
gccatctgtt gtttgccttccccgtgcc ttccttgacc ctggaagggtg ccactcccac 420

<210> 65
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Splice junction sequence

<400> 65
atgttccagg gcgtgatgat 20

<210> 66
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> C terminal residues from glutathione -S- transferase

<400> 66
Asp Tyr Lys Asp Asp Asp Lys
1 5

<210> 67
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial sequence comprising sequences derived from Escherichia coli lacZ gene

<400> 67
ggagttgatc ccgtc 15

<210> 68
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial sequence comprising sequences derived from Escherichia coli lacZ gene

<400> 68
gcagtgtcct tgtgcggta ccctgcaggg cggcttc 37

<210> 69
<211> 120
<212> DNA
<213> Artificial Sequence

<220>
<223> Binding domain of PTM

<400> 69
gattcacttg ctccaattat catcctaaggc agaagtgtat attcttattt gtaaaagattc 60
tattaactca tttgattcaa aatatttaaa atacttcctg tttcatactc tgctatgcac 120

<210> 70
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Spacer sequence of PTM

<400> 70
aacattatta taacgttgct cgaa 24

<210> 71
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Branch point, pyrimidine tract and acceptor splice site of PTM

<400> 71
tactaactgg taccttttct ttttttttt atatcctgca gggcggc 47

<210> 72
<211> 70
<212> DNA
<213> Artificial Sequence

<220>
<223> Donor site and spacer sequence of PTM

<400> 72
tgaacggtaa gtgttatcac cgatatgtgt ctaacctgat tcgggccttc gatacgctaa 60

gatccaccgg 70

<210> 73
<211> 260
<212> DNA
<213> Artificial Sequence

<220>
<223> Binding domain of spacer sequence

<400> 73
tcaaaaagtt ttcacataat ttcttacctc ttcttgaatt catgcttga tgacgcttct 60
gtatctatat tcatacattgg aaacaccaat gatTTTCTT taatggtgcc tggcataatc 120
ctggaaaact gataacacaa tgaaattctt ccactgtgct taaaaaaacc ctcttgaatt 180
ctccatttct cccataatca tcattacaac tgaactctgg aaataaaacc catcattatt 240
aactcattat caaatcacgc 260

<210> 74
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 74
cgctggaaaa acgagcttgt tg 22

<210> 75
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 75
actcagtgtg attccacacctt ctc 23

<210> 76
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 76
gacctctgca gacttcactt ctaatgatga ttatgg 36

<210> 77
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 77
ctaggatccc gttctttgt tcttcactat taa 33

<210> 78
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 78
ctagggttac cgaagtaaaa ccatacttat tag 33

<210> 79
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 79
gcatggttac cctgcagggg ctgctgctgt tgctg 35

<210> 80
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide primer

<400> 80
ctgaaagctt gttaaccagc tcaccatggt gggcag 37

<210> 81
<211> 23
<212> DNA
<213> Artificial Sequence

<220>

<223> Binding domain of PTM molecule

<400> 81

accatcatt attaggtcat tat

23

<210> 82

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide primer

<400> 82

gatcaaatct gtcgatcctt cc

22

<210> 83

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide primer

<400> 83

ctgatccacc cagtcccatt a

21

<210> 84

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide primer

<400> 84

gactgatcca cccagtccta ga

22

<210> 85

<211> 52

<212> DNA

<213> Artificial Sequence

<220>

<223> Random sequence inserted to replace 3' splice site

<221> misc_feature

<222> (7)...(30)

<223> spacer sequence, see SEQ ID NO 70

<400> 85
ccgcggnnnn nnnnnnnnnn nnnnnnnnnn gggttccggt accggcgct tc 52

<210> 86
<211> 71
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 86
tttatcccc gtttacaggg cggcttcgtc tggactggg tggatcagtc gctgattaaa 60
tatgtgaaa a 71

<210> 87
<211> 66
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 87
tttggcgata cgccgaacga tcgccagttc tgtatgaacg gtctggtctt tgccgaccgc 60
acgccc 66

<210> 88
<211> 192
<212> DNA
<213> Artificial Sequence

<220>
<223> PTM sequences

<400> 88
acgagcttgc tcatgatgat catggcgag ttagaaccaa gtgaaggcaa gatcaaacat 60
tccggccgca tcagctttg cagccaattc agttggatca tgcccggtac catcaaggag 120
aacataatct tcggcgtag ttacgacgag taccgctatc gctcggtgat taaggcctgt 180
cagttggagg ag 192

<210> 89
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 89

gagcaggcaa gacgagcttg ctcat 25

<210> 90
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 90
gagaacataa tcttcggcgt cagttacg 28

<210> 91
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 91
gtcagttgga ggaggacatc tccaaagtgg 30

<210> 92
<211> 192
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 92
acgagcttgc tcatgatgat catggcgag ttagaaccaa gtgaaggcaa gatcaaacat 60
tccggccgca tcagctttg cagccaattc agttggatca tgcccggtag catcaaggag 120
aacataatct tcggcgtag ttacgacgag taccgctatc gctcggtat taaggcctgt 180
cagttggagg ag 192

<210> 93
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> PTM sequences

<400> 93
aaatatcatt ggtgtttctt atgatga 27

<210> 94

<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 94
ccaactagaa gaggacatct ccaagttgc 30

<210> 95
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 95
atgatcatgg gcgagttaga accaagttag 30

<210> 96
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 96
aaaatatcat ctttgggttt tcctatg 27

<210> 97
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 97
ccaactagaa gaggacatct ccaagtt 27

<210> 98
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> 5' splice site

<400> 98
cgtttacagg taagtggatc c 21

<210> 99
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> 3' splice site

<400> 99
ctgcagggcg gcttcgtcta ataatgg 27

<210> 100
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Sequence from trans-splicing domain

<400> 100
tactaactgg tacctcttct ttttttttg atatcctgca gggcggc 47

<210> 101
<211> 1584
<212> DNA
<213> Artificial Sequence

<220>
<223> CFTR PTM

<400> 101
atgcagaggt cgccctctgga aaaggccagc gttgtctcca aactttttt cagctggacc 60
agaccaattt tgagggaaagg atacagacag cgccctggaat tgtcagacat ataccaaattc 120
ccttcgttg attctgctga caatctatct gaaaaattgg aaagagaatg ggatagagag 180
ctggcttcaa agaaaaatcc taaactcatt aatgcccttc ggcgatgtt tttctggaga 240
tttatgttct atggaatctt tttatattta ggggaagtca ccaaagcagt acagcctctc 300
ttactggaa gaatcatagc ttcctatgac ccggataaca aggaggaacg ctctatcgcg 360
atttatctag gcataggctt atgccttctc tttattgtga ggacactgct cctacaccca 420
gccattttg gccttcatca cattggaatg cagatgagaa tagctatgtt tagttgatt 480
tataagaaga cttaaagct gtcaagccgt gttctagata aaataagtat tggacaacctt 540
gttagtctcc tttccaaacaa cctgaacaaa tttgatgaag gacttgcatt ggcacatttc 600
gtgtggatcg ctcctttgca agtggcactc ctcattgggc taatctggga gttgttacag 660
gcgtctgcct tctgtggact tggttcctg atagtccttg cccttttca ggctgggcta 720
gggagaatga tggatgaagta cagagatcag agagctggga agatcagtga aagacttgcg 780
attacctcag aaatgatcga gaacatccaa tctgttaagg catactgctg ggaagaagca 840
atggaaaaaaaa tgattgaaaaa cttaagacaa acagaactga aactgactcg gaaggcagcc 900

tatgtgagat acttcaatag ctcagccttc ttcttctcag gttcttgtt ggtgtttta 960
tctgtgcttc cctatgcact aatcaaagga atcatcctcc gaaaaatatt caccaccatc 1020
tcattctgca ttgttctgcg catggcggtc actcggaat ttccctggc tgtacaaaca 1080
tggtatgact ctcttgaggc aataaacaaa atacaggatt tcttacaaaaa gcaagaatat 1140
aagacattgg aatataactt aacgactaca gaagtagtga tggagaatgt aacagccttc 1200
tggaggagg gatttgggga attattttag aaagcaaaac aaaacaataa caatagaaaa 1260
acttctaattg gtgatgacag cctcttcttc agtaatttct cacttcttgg tactcctgtc 1320
ctgaaagata ttaatttcaa gatagaaaaga ggacagttgt tggcggttgc tgatccact 1380
ggagcaggca agacgagctt gctcatgtat atcatggcg agttagaacc aagtgaaggc 1440
aagatcaaac attccggccg catcagctt tgcagccaat tcagttggat catgcccgt 1500
accatcaagg agaacataat ctccggcgtc agttacgacg agtaccgcta tcgctcggt 1560
attaaggcct gtcagttgga ggag 1584

<210> 102
<211> 323
<212> DNA
<213> Artificial Sequence

<220>
<223> trans-splicing domain of CFTR PTM

<400> 102
gtaagatatc accgatatgt gtctaacctg attcggcct tcgatacgt aagatccacc 60
ggtaaaaaag tttcacata atttcttacc tcttcttgc ttcatgctt gatgacgctt 120
ctgtatctat attcatcatt ggaaacacca atgatatttt cttaatggt gcctggcata 180
atcctggaaa actgataaca caatgaaatt cttccactgt gcttaatttt accctctgaa 240
ttctccattt ctccccataat catcattaca actgaactct ggaaataaaa cccatcatta 300
ttaactcatt atcaaatcac gct 323

<210> 103
<211> 165
<212> DNA
<213> Artificial Sequence

<220>
<223> PTM binding domain

<400> 103
gctagcaata atgacgaagc cgccccctcac gctcaggatt cacttgccctc caattatcat 60
cctaagcaga agtgtatatt cttatttgta aagattctat taactcattt gattcaaaat 120
atttaaaata cttccctgttt cacctactct gctatgcacc cgccgg 165

<210> 104
<211> 225
<212> DNA
<213> Artificial Sequence

<220>
<223> trans-splicing domain of CFTR PTM

<400> 104
aataatgacg aagccgcccc tcacgctcag gattcacttg ccctccaatt atcatcctaa 60
gcagaagtgt atatttttat ttgtaaagat tctattaact catttggattc aaaatattta 120
aaatacttcc tggcaccc actctgctat gcacccgcgg aacattatta taacgttgct 180
cgaatactaa ctggtaccc ttctttttt tttgatatcc tgtag 225

<210> 105
<211> 3069
<212> DNA
<213> Artificial Sequence

<220>
<223> CFTR PTM sequence

<400> 105
acttcacttc taatgatgat tatggagaaa ctggaggcctt cagaggtaa aattaagcac 60
agtggaaagaa tttcattctg ttctcagttt tcctggatta tgcctggcac cattaaagaa 120
aatatcatct ttgggtttc ctatgatgaa tatagataca gaagcgtcat caaagcatgc 180
caactagaag aggacatctc caagtttgcg gagaaagaca atatagttt tggagaaggt 240
ggaatcacac tgagtggagg tcaacgagca agaatttctt tagcaagagc agtatacaaa 300
gatgctgatt tgtattttt agactctcct tttggatacc tagatgttt aacagaaaaaa 360
gaaatatttg aaagctgtgt ctgtaaactg atggctaaca aaacttagat tttggtcact 420
tctaaaatgg aacattaaa gaaagctgac aaaatattaa ttttgcata agtagcagc 480
tatttttatg ggacatttc agaactccaa aatctacagc cagacttttgc ctcaaaactc 540
atggatgtg attcttcga ccaatttagt gcagaaagaa gaaattcaat cctaactgag 600
actttacacc gtttctcatt agaaggagat gtcctgtct cctggacaga aacaaaaaaa 660
caatctttt aacagactgg agagttggg gaaaaaaagga agaattctat tctcaatcca 720
atcaactcta tacgaaaatt ttccattgtg caaaagactc ctttacaaat gaatggcatc 780
gaagaggatt ctgtgagcc ttttagagaga aggctgtcct tagtaccaga ttctgagcag 840
ggagaggcga tactgcctcg catcagcgtg atcagcactg gccccacgct tcaggcacga 900
aggaggcagt ctgtcctgaa cctgatgaca cactcagttt accaaggta gaacattcac 960
cgaaagacaa cagcatccac acgaaaagtg tcaactggccc ctcaggcaaa ctgactgaa 1020
ctggatatat attcaagaag gttatctcaa gaaactggct tggaaataag tgaagaaatt 1080
aacgaagaag acttaaagga gtgtttttt gatgatatgg agagcataacc agcagtgact 1140
acatggaaca cataccttcg atatattact gtccacaaga gcttaatttt tggctaaatt 1200
tggcttag taattttctt ggcagaggtg gctgcttctt tggctgtct tggctccctt 1260
ggaaacactc ctcttcaaga caaagggaaat agtactcata gtagaaataa cagctatgca 1320
gtgattatca ccagcaccag ttctgttattt gtgtttaca tttacgtggg agtagccgac 1380
actttgcttg ctatggatt ctgcagaggt ctaccactgg tgcataactct aatcacagtg 1440
tcgaaaattt tacaccacaa aatgttacat tctgttctt aagcacctat gtcaaccctc 1500
aacacgtga aagcaggtgg gattcttaat agattctcca aagatatacg aattttggat 1560
gaccttctgc ctcttaccat atttgacttc atccagttgt tattaattgt gattggagct 1620
atagcagttg tcgcagttt acaaccctac atctttgtt caacagtgcc agtgatagtg 1680
gcttttatta tggctgtttt gatattttttt caaaccctac agcaactcaa acaactggaa 1740
tctgaaggca ggagtccaat ttctactcat ttgttacaa gcttaaaagg actatggaca 1800
cttcgtgcct tcggacggca gccttactttt gaaactctgt tccacaaagc tctgaattta 1860
catactgcca actgggtctt gtacctgtca acactgcgtt ggttccaaat gagaatagaa 1920
atgatttttgc tcatcttctt cattgctgtt accttcattt ccattttAAC aacaggagaa 1980
ggagaaggaa gagttggat tatcctgact ttgccttgc atatcatgag tacattgcag 2040
tggctgttaa actccagcat agatgtggat agcttgatgc gatctgtgag ccgagttttt 2100

aagttcattg acatgccaac agaaggtaaa cctaccaagt caaccaaacc atacaagaat 2160
ggccaaactct cgaaagttat gattatttag aattcacacg tgaagaaaga tgacatctgg 2220
ccctcagggg gccaaatgac tgtcaaagat ctcacagcaa aatacacaga aggtggaaat 2280
gccatattag agaacatttc cttctcaata agtcctggcc agagggtggg cctcttggga 2340
agaactggat cagggaaagag tactttgtta tcagctttt tgagactact gaacactgaa 2400
ggagaaaatcc agatcgatgg tgtgtcttgg gattcaataa ctttgcaaca gtggaggaaa 2460
gccttggag tgataccaca gaaagtattt atttttctg gaacatttag aaaaaacttg 2520
gatccctatg aacagtggag tgatcaagaa atatggaaag ttgcagatga gtttgggctc 2580
agatctgtga tagaacagtt tcctggaaag cttgactttg tccttgtgga tgggggctgt 2640
gtcctaagcc atggccacaa gcagttgatg tgcttggcta gatctgtct cagtaaggcg 2700
aagatcttgc tgcttggatg acccagtgct catttggatc cagtaacata ccaaataatt 2760
agaagaactc taaaacaagc atttgctgat tgcacagtaa ttctctgtga acacaggata 2820
gaagcaatgc tggaatgcca acaatttttgc gtcatagaag agaacaaagt gcggcagtac 2880
gattccatcc agaaactgct gaacgagagg agcctcttcc ggcaagccat cagcccctcc 2940
gacagggtga agctcttcc ccaccggAAC tcaagcaagt gcaagtctaa gcccccagatt 3000
gctgctctga aagaggagac agaagaagag gtgcaagata caaggcttca tcatcatcat 3060
catcattag 3069