Set Theory

郝兆宽

2021年12月7日

目录

1	Intro						1	
2	序数						4	
3	基数与选择公理							4
4	滤、	理想与	5无界闭集					7
	4.1	滤						7
	4.2 Clut set						8	
	4.3 Ultrafilter and large cardinal							16
		4.3.1	Regular ultrafilter					16
		4.3.2	Measurable cardinal					17
5	复习	Ī						18
1	In	tro						

习题 40%

考试闭卷

期中8周

集合 $\{x,y,z,...\}$ 外延 $\{x\mid x \text{ is }...\}$ 内涵

Theorem 1.1 (Cantor-Bendixen). 闭集 $X \subseteq \mathbb{R}$ uncountable, then $X = Y_1 \cup Y_2$, where Y_1 is countable and Y_2 is perfect

if Y_2 is perfect, then $|Y_2| = |\mathbb{R}|$.

Hence CH is true for close set

Suppose *X* is a set and $Y = \{x \mid x \in X \land x \notin x\}$ is a set

 $Y \in Y => Y \in X$ and $Y \notin Y$, a contradiction. Hence $Y \notin Y$.

$$Y \notin Y => Y \notin X \text{ or } Y \in Y => Y \notin X$$

Thus we have

Proposition 1.2. 1. For any set X, there exists a set Y s.t. $Y \notin X$.

2. collection of all sets is not a set

Notation: we call $\{x \mid \varphi(x)\}$ a class

$$V = \{x \mid x = x\}, \{x \mid x \notin x\}$$
 is not a set

Proposition 1.3. $\{x \mid x \neq x\}$ is a set

证明. From Existential Axiom, there is a set X_0 .

Claim: $\{x \mid x \neq x\} = \{x \mid x \in X_0 \land x \neq x\}$

for any $z, z \neq z$, we need to prove $z \in X_0$. But $z \neq z$ is always false. \square

We write $\emptyset = \{x \mid x \neq x\}$

For any set $X \neq \emptyset$, its arbitrary intersection

$$\bigcap X = \{u \mid \forall Y (Y \in X \to u \in Y)\}$$

Definition 1.4. $(x,y) = \{\{x\}, \{x,y\}\}$

Proposition 1.5. $(x,y)=(x',y')\Leftrightarrow x=x'\wedge y=y'$

partial ordering + well-founded => linear ordering since for arbitrary $\{x, y\}$, it has a minimal element

Definition 1.6. For any set α , if \in is a well-ordering on α , then α is an **ordinal**

Definition 1.7. successor of x is $S(x) = x \cup \{x\}$, or x^+

ordinal that is not 0 and successor is a limit ordinal

极限是否存在

let $\omega = \{n \mid n = 0 \lor n \text{ is successor and } \forall m < n(m \text{ is successor})\}$

Then we need to show that ω is a set. So we need new axiom

Proposition 1.8. X 是归纳集,则 $\omega \subseteq X$

证明. Otherwise we have least $n \in \omega$ and $n \notin X$. Let n = S(m), then $m \in X$. Hence we get a contradiction

Theorem 1.9. For any $X \subset \omega$, if X is inductive, then $X = \omega$

$$[\varphi(0) \land \varphi(n) \to \varphi(n+1)] \Rightarrow \forall n \varphi(n)$$

Theorem 1.10. ω *is a ordinal and is a limit ordinal*

证明. \in is a well-ordering on ω , then we need show

- 1. \in is a partial ordering
 - (a) transitive. let $\varphi(x)$: if m < n, then for any $x, n < x \to m < x$ x = 0 $x = k+1, n < k+1, n \in k \cup \{k\}. \text{ then } n = k \text{ or } n \in k$
- 2. \in is well-founded

 $X\subseteq \omega,\,X\neq\emptyset$, then $\exists x_0\in X.$ consider $\omega-X.$ Suppose X has no minimum element

- (a) $0 \notin X \Rightarrow 0 \in \omega$
- (b) if $n \in \omega X$, then $S(n) \in \omega X$. Suppose $n \notin X$ and $S(n) \in X$. Then S(n) is minimum

then $\omega - X$ is inductive

for any $\alpha < \omega$, $S(\alpha) \neq \omega$, hence ω is limit

2 序数

Definition 2.1. 一个集合 X 成为 **传递**的,如果对任意 $x \in X$,都有 $x \subseteq X$ **Proposition 2.2.** 假设 X 是传递集。如果 X 的所有元素也是传递集,则 \in 在 X 上是一个传递关系。反之亦然。

证明. 注意在证明反方向时, \in 是 X 上的传递关系,如果 $x \in b, b \in a$,我们先说明 $x,b,a \in X$,然后因为 \in 是传递关系,于是 $x \in a$

Exercise 2.0.1. 如果 (\mathcal{T}, \in) 是传递集,则外延公理在 \mathcal{T} 中成立,即:对任意 $X,Y\in\mathcal{T},~X=Y$ 当且仅当对任意 $a\in\mathcal{T},a\in X$ 当且仅当 $a\in Y$ 。即 $X\cap\mathcal{T}=Y\cap\mathcal{T}$

如果 \mathcal{T} 不传递,存在 $X \in \mathcal{T}$,有 $X \nsubseteq \mathcal{T}$,有 $a \in X$ 且 $a \notin \mathcal{T}$,假设 X 与 Y 仅有 a 差别,但是 \mathcal{T} 分辨不出

Definition 2.3. 对任意集合 α , 如果 \in 是 α 上的良序, 就称 α 是 **序数**

 $\{\omega, \omega+1, \omega+2, \dots\}$ 是集合吗? 这需要替换公理

考虑 $V_{\omega+\omega}$,我们定义集合是它的元素,替换公理在这里不对, $f(\omega)\notin V_{\omega+\omega}$ 不是集合。因此我们需要替换公理来保证它是集合

3 基数与选择公理

Proposition 3.1. *TFAE*

- 1. set X is finite
- 2. there is a linear order \leq on X satisfying for any nonempty subset there is a maximum and a minimum
- 3. $\forall Y \subseteq \mathcal{P}(X)$ and $Y \neq \emptyset$, it has a maximal under \subseteq

证明. $2 \to 1$. Let $x_0 = \inf(X)$. For any $k \in \mathbb{N}$, let $x_{k+1} = \inf(X - \{x_0, \dots, x_k\})$ if $x_k \neq \sup(X)$.

 $1 \rightarrow 3$. Find a maximum cardinality

$$3 \rightarrow 1$$
. If *X* is infinite. $Y = \{Z \subseteq X \mid Z \text{ is finite}\}$

Theorem 3.2. 一个序数是 α 是至多可数的,当且仅当存在 $\mathbb R$ 的子集 A, $ot(A) = \alpha$

证明. 首先假设 $A \subseteq \mathbb{R}$ 并且 $ot(A) = \alpha$,即 $A = \{a_{\beta} \mid \beta < \alpha\}$,并且 $a_{\beta} < a_{\gamma}$ 当且仅当 $\beta < \gamma$ 。对任意 $\beta < \alpha$,令 $I_{\beta} = (a_{\beta}, a_{\beta+1})$ 为实数的区间。如果 $\alpha = \eta + 1$ 是后继序数,则令 $I_{\eta} = (a_{\eta}, a_{\eta} + 1)$ 。这样的区间只有可数多 因为每个区间都有有理数,但是有理数只有可数多

Proposition 3.3 (2.2.15). 对任意无穷基数 κ, λ

1.
$$\kappa^{<\lambda} = \sup \{ \kappa^{\eta} \mid \eta$$
 是基数并且 $\eta < \lambda \}$

证明. 1. TTT

$$\begin{split} \kappa^{<\lambda} &= \left| \bigcup \{X^\beta \mid \beta < \lambda\} \right| \\ &= \{\bigcup_{\beta < \lambda} \kappa^\beta\} = \bigoplus_{\beta < \lambda} \left| \kappa^\beta \right| \\ &= \sup \{\left| \kappa^\beta \right| \mid \beta < \lambda\} \\ &= \sup \{\kappa^{|\beta|} \mid \beta < \lambda\} \end{split}$$

2. 对于 $f \in \kappa^{\lambda}$, f 都是 $\lambda \otimes \kappa$ 的子集且 $f \in \{X \subseteq \lambda \otimes \kappa \mid |X| = \lambda\}$

Exercise 3.0.1. 若 κ 是不可达的,则 $V_{\kappa} \models ZF$ 。

Corollary 3.4. $ZF \nvDash \exists \kappa (\kappa \not\equiv inaccessible)$

证明. 由 Gödel 第二不完全性定理,如果存在了,就能证明有模型了,就证明一致了 □

大基数: κ 是基数且 $ZF \nvDash \exists \kappa$

Proposition 3.5. κ 不可达, $|V_{\kappa}| = \kappa$.

证明. $\kappa \leq |V_{\kappa}|$

证明对任意 $\alpha < \kappa$, $|V_{\alpha}| < \kappa$, 根据 $2^{\alpha} < \kappa$

证明
$$f: |X| = \alpha \to V_{\kappa}$$
 有界

若
$$\beta < \alpha \cdot \omega, \beta = \alpha \cdot \xi + \eta$$
, 其中 ξ 有穷

$$\beta>\alpha, \beta=\alpha\cdot\xi+\eta. \ \alpha+\beta=\alpha+\alpha\cdot\xi+\eta=\alpha\cdot\xi+\eta. \ \alpha+\alpha\cdot\xi=\alpha\cdot\xi.$$
只要证明 $\alpha\cdot(\xi+1)=\alpha+\alpha\cdot\xi$

Lemma 3.6.
$$\left|\bigcup_{\gamma<\omega_{\alpha}}V_{\gamma}\right|=2^{\aleph_{\beta}}$$

证明.
$$2^{\aleph_{\beta}} = \sup\{2^{\aleph_{\gamma}} \mid \gamma < \beta\}$$
. Thus $2^{\aleph_{\beta}} \leq \left|\bigcup_{\gamma < \omega_{\gamma}} V_{\gamma}\right|$

$$\begin{split} |V_{\omega+1}| &= 2^{\aleph_0}, |V_{\omega+2}| = 2^{|2^{\aleph_0}|} > 2^{\aleph_0} \\ \left|V_{\omega_1}\right| &\geq |V_{\omega+2}| > 2^{\aleph_0} = \beth(1) \\ \left|V_{\omega_1}\right| &= \beth_{\omega_1} \end{split}$$

Proposition 3.7. 若 κ 不可达, $X \in V_{\kappa'}f: X \to V_{\kappa}$, 则 $f[X] \in V_{\kappa}$

证明.
$$|X| < \kappa$$
,对不可达基数 $|V_{\kappa}| = \kappa$

因此
$$|f(X)| < \kappa$$

已知 $f[X] \subseteq V_{\kappa}$ 。令 $\lambda = \sup\{\operatorname{rank}(y) \mid y \in f[X]\}$,因为 $y \in V_{\kappa}$ 而 κ 是 极限序数,因此存在 $\alpha < \kappa$ 使得 $y \in V_{\alpha}$,于是 $\operatorname{rank}(y) < \alpha + 1 < \kappa$,因此 λ 是 $\lambda \in \kappa$ 个小于 λ 的上界,又因为 $\lambda \in \kappa$ 是正则的, $\lambda \in \kappa$,于是 $\lambda \in \kappa$ 是正则的, $\lambda \in \kappa$ 。 $\lambda \in \kappa$ 是正则的, $\lambda \in \kappa$ 。 $\lambda \in \kappa$ 是正则的, $\lambda \in \kappa$ 。 $\lambda \in \kappa$ 是正则的, $\lambda \in \kappa$ 是正则的,

Proposition 3.8. 令 β 为任意序数, α 为任意极限序数, 证明: 如果 $\alpha+\beta=\beta$, 则 $\beta\geq\alpha\cdot\omega$

证明.
$$\alpha + \beta = \beta \Rightarrow \alpha \leq \beta \Rightarrow \exists \delta, \gamma(\beta = \alpha \cdot \delta + \gamma \land \gamma < \alpha)$$

若
$$\delta \geq \omega$$
 就对了

若
$$\delta < \omega$$
, $\alpha + \beta = \alpha + (\alpha \cdot \delta) + \gamma = \alpha(1 + \delta) + \delta > \alpha$

$$\aleph_1 \leq 2^{\aleph_0}$$
,因此 $\aleph_1^{\aleph_0} \leq 2^{\aleph_0 \cdot \aleph_0} = 2^{\aleph_0}$

Proposition 3.9. \diamondsuit $X=\{f:\omega\to\omega_1\mid f$ 1-1 $\}$,证明 $|X|=2^\omega$

证明.
$$Y = \{F \mid F : \aleph_0 \rightarrow \aleph_0 \times \aleph_1, 1-1\}$$

$$G=\aleph_1^{\aleph_0} o Y \text{ s.t. } G(f)=F\in Y \text{ s.t. } F(n)=(n,f(n)), \text{ then } G \text{ is 1-1}$$
 Hence $\aleph_1^{\aleph_0} \leq |Y|=(\aleph_0 \times \aleph_1)^{\aleph_0}=\aleph_1^{\aleph_0}$

4 滤、理想与无界闭集

4.1 滤

Proposition 4.1. 1. -0 = 1

$$2. -1 = 0$$

3.
$$a \cdot 1 = a$$

4.
$$a + 0 = a$$

5.
$$a + a = a$$

6.
$$a \cdot a = a$$

7.
$$1 + a = 1$$

8.
$$0 \cdot a = 0$$

9.
$$a+b=1 \land a \cdot b=0 \Rightarrow b=-a$$

10.
$$-(a \cdot b) = (-a) + (-b)$$

11.
$$-(a+b) = (-a) \cdot (-b)$$

证明. 1.
$$1 = 0 + (-0) = (0 \cdot (-0)) + (-0) = -0$$

2.
$$0 = 1 \cdot (-1) = (1 + (-1)) \cdot (-1) = -1$$

3.
$$a \cdot 1 = a \cdot (a + (-a)) = a$$

5.
$$a + a = a + (a \cdot 1) = a$$

7.
$$1+a=(a+1)\cdot 1=(a+1)\cdot (a+-a)=a\cdot a+0+a+-a=a+-a=1$$

8.
$$0 \cdot a = (a \cdot (-a)) \cdot a = a \cdot a \cdot (-a) = a \cdot (-a) = 0$$

9.
$$-a = (-a) \cdot 1 = (-a) \cdot (a+b) = (-a) \cdot a + (-a) \cdot b = (-a) \cdot b.$$

 $ab + (-a)b = -a.$ $b(a + (-a)) = b = -a$

10.
$$ab + (-a) + (-b) = ab + (-a) + (-b) \cdot 1 = ab + (-a) + (-b)a + (-b)(-a) = a(b + (-b)) + (-a) + (-b)(-a) = 1 + (-b)(-a) = 1$$

G 有有穷交性质 $F = \{b \in B \mid \exists g \in G(g \le b)\}$

若
$$a,b \in F$$
,则 $g_1 \le a, g_2 \le b$

Rasiowa-Sikorski [mathematics for metamathematics] 是为了证明一阶完全性, $\sum D$ 等价于 $\exists x$

$$\diamondsuit \; \phi(x,\bar{y}) \text{, } M_{\phi} = \{ [\varphi(t,\bar{y})] \; | \; t \text{ a term} \} \subset B$$

Claim
$$\sum M_{\phi} = [\exists x \varphi(x, \bar{y})]$$

那么如果 U 是完全的,那么 $\sum M_{\phi} \in U$,于是 $\exists t[\phi(t,\bar{y})] \in U$ 。类似于极大一致 Henkin 集

under CH
$$|A| < 2^{\aleph_0} = \aleph_1$$
 iff $|A| \le \aleph_0$

cichon diagram

$$f: M \to N, f \upharpoonright A: A \to N, \forall a \in A, f \upharpoonright A(a) = f(a)$$

4.2 Clut set

Definition 4.2. α limit, $C \subseteq \alpha$ is a **club set** in α if

- 1. unbounded sup $C = \alpha$, that is, for any $\beta < \alpha$, there is $\gamma \in C$ s.t. $\beta < \gamma$
- 2. closed: for any limit $\gamma < \alpha$, $\sup(C \cap \gamma) = \gamma \Rightarrow \gamma \in C$

If $A \subseteq C \subseteq \alpha$ and $\sup C = \gamma < \alpha$, then γ is the **limit point** of C. C is closed in α iff all limit point of C belong to C

Lemma 4.3. α *limit and* $cf(\alpha) > \omega$, *then*

- 1. α is a club set of itself
- 2. $\forall \beta < \alpha$, $\{\beta < \alpha \mid \delta > \beta\}$ is a club set in α
- 3. $X = \{ \beta < \alpha \mid \beta \text{ limit} \}$ is a club set in α

- 4. If X is unbounded in α , then $X' = \{ \gamma \in X \mid \gamma < \alpha \land \gamma \text{ is a limit point of } X \}$ is a club set in α
- 证明. 3. X is closed. For any $\xi \in \alpha$, define

$$\xi=\xi_0,\xi_1,\cdots,\xi_n,\cdots\quad (n\in\omega)$$

- s.t. $\xi_{n+1}=\min\{\alpha-\xi_n\}$. Let $\eta=\sup\xi_i$. Then $\xi<\eta\in X$. $\eta<\alpha$ since $\mathrm{cf}(\alpha)>\omega$
- 4. Like 3, for any $\xi \in \alpha$, define $\xi_{n+1} = \min\{\xi' > \xi : X \{\xi_1, \dots, \xi_n\}\}$, this works since X is unbounded.

For any limit point $\eta < \alpha$ of X', that is, $\sup(X' \cap \eta) = \eta$, then for any $\sigma < \eta$, there is limit point $\xi < \eta$ of X s.t. $\sigma + 1 < \xi$. By definition of limit point, $\exists \mu \in X \cap \xi$ s.t. $\sigma < \mu$, so $\sup(X \cap \eta) = \eta$ and η is a limit point of X, thus $\eta \in X'$

Limit of limits of *X* is still a limit of *X*

Lemma 4.4. *if* α *is limit and* $\mathrm{cf}(\alpha) > \omega$, *and* $f : \alpha \to \alpha$ *is strictly increasing and continuous, that is, for any limit* $\beta < \alpha$, $f(\beta) = \bigcup_{\gamma < \beta} f(\gamma)$, then

- 1. im(f) is a club set in α
- 2. *if* α *is regular, then every club set* C *in* α *is the image of such a function*
- 证明. 2. suppose $ot(C) = \tau$. $f: (\tau, <) \cong (C, <)$, then f is strictly increasing and continuous. Since C is unbounded and α is regular, $\tau \geq \mathrm{cf}(\alpha) = \alpha$. $\forall \eta < \tau, \eta \leq f(\eta)$, so $\tau \leq \sup f(\eta) = \alpha$, thus $\tau = \alpha$

Proposition 4.5. Suppose α is a limit ordinal and $\mathrm{cf}(\alpha) > \omega$, then for any $\gamma < \mathrm{cf}(\alpha)$, if $(C_\xi)_{\xi < \gamma}$ is a sequence of club sets in α , then $\bigcap_{\xi < \gamma} C_\xi$ is a club set in α

证明. Suppose $\gamma=2$. Intersection of closed sets is still closed. We prove that $C_1\cap C_2$ is unbounded in α . $\forall \delta<\kappa$, $\exists \xi\in C_1,\eta\in C_2$ s.t. $\delta<\xi<\eta$, let

$$\xi_0<\eta_0<\xi_1<\eta_1<\dots$$

where $\xi_0=\xi,\eta_0=\eta$ and for any $n\in\omega$, $\xi_n\in C_1$, $\eta_n\in C_2$. Let μ be the limit of this sequence, then $\sup(C_1\cap\mu)=\mu$ and $\sup(C_2\cap\mu)=\mu$, hence $\mu\in C_1\cap C_2$.

Suppose γ is a successor ordinal

Suppose γ is a limit ordinal, let $D=\bigcap_{\xi<\gamma}C_\xi$, we prove it is unbounded. For any $\eta<\gamma$, if $D_\eta=\bigcap\{C_\xi\mid \xi<\eta\}$, then η_n is a club set and $D=\bigcap_{\eta<\gamma}D_\eta$ and $\eta<\eta'<\gamma$ implies $D_\eta\supset D_{\eta'}$. For any $\mu<\alpha$, let

$$\xi_0 < \xi_1 < \dots < \xi_\eta < \dots$$

where $\xi_0 > \mu$, and for any $\eta < \gamma$, $\xi_\eta \in D_\eta$ is the minimum element larger than $\sup\{\xi_\alpha \mid \alpha < \eta\}$. Since $\mathrm{cf}(\alpha) > \gamma$, $\xi = \sup\{\xi_n \mid \eta < \gamma\} < \alpha$. for any $\eta < \lambda$, $\xi \in D_\eta$, thus $\xi \in D$ and $\mu < \xi$

Definition 4.6. For any limit $cf(\alpha) > \omega$

$$F_{CB}(\alpha) = \{ X \subseteq \alpha \mid \exists C(C \text{ is a club set in } \alpha \land C \subseteq X) \}$$

is a filter, called **club filter** in α

Corollary 4.7. If κ is uncountable regular cardinal, then club filter in κ is κ -complete

Definition 4.8. for any ordinal α , $(X_{\xi} \mid \xi < \alpha)$ is a sequence of subsets of α

1. diagonal intersection of X_{ε}

$$\triangle_{\xi<\alpha}X_\xi=\{\eta<\alpha\mid\eta\in\bigcap_{\xi<\eta}X_\xi\}$$

2. diagonal union of X_{ε}

$$\bigtriangledown_{\xi < \alpha} X_{\xi} = \{ \eta < \alpha \mid \eta \in \bigcup_{\xi < \eta} X_{\xi} \}$$

Remark. Let
$$Y_{\xi} = \{ \eta \in X_{\xi} \mid \eta > \xi \}$$
, then $\triangle_{\xi < \alpha} X_{\xi} = \triangle_{\xi < \alpha} Y_{\xi}$

Proposition 4.9. for any uncountable regular κ , and a sequence of club sets $(X_{\gamma} \mid \gamma < \kappa)$ in κ , $\triangle_{\gamma < \kappa} X_{\gamma}$ is a club set in κ .

证明. Let
$$C_{\gamma} = \bigcap_{\xi < \gamma} X_{\xi}$$
, then $\triangle X_{\gamma} = \triangle C_{\gamma}$

$$\begin{split} \eta \in \triangle C_{\gamma} &\Leftrightarrow \forall \xi < \eta, \eta \in C_{\xi} = \bigcap_{\zeta < \xi} X_{\zeta} \\ &\Leftrightarrow \forall \zeta < \xi < \eta, \eta \in X_{\zeta} \end{split}$$

guess should be $C_{\gamma} = \bigcap_{\xi < \gamma} X_{\xi}$

let

$$C_0\supset C_1\supset\cdots\supset C_\gamma\supset\cdots\quad (\gamma<\kappa)$$

Define $C=\triangle C_{\gamma}$. To prove C is closed, let η be the limit point of C. We need to prove $\eta\in C$, that is, $\forall \xi<\eta,\eta\in C_{\xi}$. For any $\xi<\eta$, define $X=\{\nu\in C\mid \xi<\nu<\eta\}$, then $X\subset C_{\xi}$; by Theorem 4.7, C_{ξ} is a club in κ , therefore $\eta=\sup X\in C_{\xi}$, hence $\eta\in C$

Unboundedness: for any $\mu < \kappa$, define $(\beta_n \mid n \in \omega)$: let $\mu < \beta_0 \in C_0$, and $\beta_n < \beta_{n+1} \in C_{\beta_n}$. Since C_{β_n} is unbounded, such β_{n+1} can always be found. Also

$$C_{\beta_0}\supset C_{\beta_1}\supset C_{\beta_2}\supset\cdots$$

thus for any m>n, $\beta_m\in C_{\beta_{m+1}}\subset C_{\beta_n}$. Now we prove $\beta=\sup\{\beta_n\mid n\in\omega\}$ $\in C$, which is suffice to show that for any $\xi<\beta$, $\beta\in C_{\xi}$. But if $\xi<\beta$, there is n s.t. $\xi<\beta_n$ and for any m>n, $\beta_m\in C_{\beta_n}\subset C_{\xi}$. Since C_{ξ} is closed, $\beta\in C_{\xi}$. Thus $\beta\in C$

Corollary 4.10. For any uncountable regular cardinal κ , if $f: \kappa \to \kappa$ is a function ,then

$$D = \{\alpha < \kappa \mid \forall \beta < \alpha(f(\beta) < \alpha)\}$$

is a club set

证明. For any $\alpha<\kappa$, let $C_{\alpha}=\{\beta<\kappa\mid f(\alpha)<\beta\}$, which is a club set. Then $D=\triangle C_{\alpha}$

Definition 4.11. α limit and $cf(\alpha) > \omega$)

- 1. If $S \subseteq \alpha$ and for any club set C in α $S \cap C \neq \emptyset$, then S is called **stationary set** in α
- 2. $I_{NS}(\alpha)=\{X\subseteq\alpha\mid \exists C(C \text{ is a club set in }\alpha\wedge X\cap C=\emptyset)\}$ is called a non-stationary ideal in α

Proposition 4.12. *limit ordinal* α *with* $\mathrm{cf}(\alpha) > \omega$

- 1. club set in α is stationary. if S is stationary and $S \subseteq T \subseteq \alpha$, then T is stationary
- 2. stationary set in α is unbounded
- *3.* there is unbounded $T \subseteq \alpha$ that is not stationary

证明. 1.4.5

- 2. If S is stationary, for any $\beta < \alpha$, $\{\gamma < \alpha \mid \beta < \gamma\}$ is a club set in α and the elements of the intersection of it with S is larger than β
- 3. $T = \{\alpha + 1 \mid \alpha < \kappa\}$ is unbounded but not stationary, since the club set of all limit ordinal doesn't intersect with it

Proposition 4.13. *limit ordinal* α *with* $cf(\alpha) > \omega$ *and* $\lambda < cf(\alpha)$ *is regular, then*

$$E_{\lambda}^{\alpha} = \{ \beta < \alpha \mid \mathrm{cf}(\beta) = \lambda \}$$

is stationary in α

证明. For any club set C in α , define a strictly increasing sequence of C:

$$\alpha_0 < \alpha_1 < \dots < \alpha_{\varepsilon} < \dots \quad (\xi < \lambda)$$

such sequence exists since λ is regular, $\lambda < \mathrm{cf}(\alpha)$ and C is unbounded. suppose δ is the supremem of the sequence. Since C is closed, $\delta \in C$, Since $\mathrm{cf}(\delta) = \lambda, \delta \in E^{\alpha}_{\lambda}$

Proposition 4.14. for any uncountable regular cardinal κ , if $(X_{\xi} \mid \xi < \kappa)$ is a sequence of non-stationary sets, then $\nabla_{\xi < \kappa} X_{\xi}$ is non-stationary. That is, $I_{NS}(\kappa)$ is closed under diagonal intersection

证明. For any X_{ξ} , there is C_{ξ} s.t. $X_{\xi} \cap C_{\xi} = \emptyset$. Let $C = \triangle C_{\xi}$, then C is a club set. Let $X = \nabla X_{\xi}$, then $X \cap C = \emptyset$

Definition 4.15. For a ordinal set S and dom(f) = S, if for any $0 \neq \alpha \in S$, $f(\alpha) < \alpha$, then f is **regressive**

Theorem 4.16 (Fodor). For any uncountable regular cardinal κ , stationary $S \subseteq \kappa$, if dom(f) = S is regressive, then there is a stationary $T \subseteq S$ and ordinal $\gamma < \kappa$ s.t. for any $\alpha \in T$, $f(\alpha) = \gamma$

证明. If for any $\gamma < \kappa$, $A_{\gamma} = \{\alpha \in S \mid f(\alpha) = \gamma\}$ is non-stationary, and there is a club set C_{γ} s.t. $A_{\gamma} \cap C_{\gamma} = \emptyset$, that is, for any $\alpha \in S \cap C_{\gamma}$, $f(\alpha) \neq \gamma$. Let $C = \triangle_{\gamma < \kappa} C_{\gamma}$. Then $\alpha \in C$ iff $\forall \gamma < \alpha$, $\alpha \in C_{\gamma}$ iff $\forall \gamma < \alpha$, $f(\alpha) \neq \gamma$. Hence for any $\alpha \in C$, $f(\alpha) \geq \alpha$. Since C is a club set, $S \cap C \neq \emptyset$, but for any $\alpha \in S$, $f(\alpha) < \alpha$

Lemma 4.17. uncountable regular cardinal κ , $S \subseteq \kappa$ stationary, f is a regressive function on S. If for any $\eta < \kappa$,

$$X_{\eta} = \{\alpha \in S \mid f(\alpha) \geq \eta\}$$

is stationary, then S can be partitioned into κ disjoint stationary sets

证明. For any $\eta<\kappa$, $f\upharpoonright X_\eta$ is a regressive function on X_η . By Fodor's, there is $\eta<\gamma_\eta<\kappa$ s.t. $S_{\gamma_n}=\{\alpha\in S\mid f(\alpha)=\gamma_n\}$ is stationary

Define $g:\kappa \to \kappa$: g(0)=0, $g(\eta)=\sup\{\gamma_{g(\xi)}+1\mid \xi<\eta\}$. If $\xi<\eta<\kappa$, then $\gamma_{g(\xi)}< g(\eta)\leq \gamma_{g(\eta)}$, hence $\eta\mapsto \gamma_{g(\eta)}$ is a increasing cofinal

function from κ to κ . Thus $\{S_{\gamma_{g(\eta)}} \mid \eta < \kappa\}$ has cardinality κ and is pairwise disjoint

Lemma 4.18. *uncountable regular* κ , $\lambda < \kappa$ *is regular, any stationary subset of*

$$E_{\lambda}^{\kappa} = \{ \alpha < \kappa \mid \mathrm{cf}(\alpha) = \lambda \}$$

can be partitioned into κ disjoint stationary subsets

证明. Stationary $S\subseteq E^\kappa_\lambda$, $\forall \alpha\in S$, choose a strictly increasing cofinal function $f_\alpha:\lambda\to\alpha$. $\forall \xi<\lambda$, define $g_\xi:\kappa\to\kappa$:

$$g_{\xi}(\alpha) = \begin{cases} 0 & \alpha \notin S \\ f_{\alpha}(\xi) & \alpha \in S \end{cases}$$

 $g_{\xi} \upharpoonright S$ is regressive

 $\forall \eta < \kappa \forall \xi < \lambda$, let

$$X^\eta_\xi = \{\alpha \in S \mid g_\xi(\alpha) \geq \eta\}$$

We prove: $\exists \xi < \lambda \forall \eta < \kappa$, X_{ξ}^{η} is stationary. Otherwise, $\forall \xi < \lambda$, there is a club C_{ξ} and a ordinal $\eta_{\xi} < \kappa$ s.t. $C_{\xi} \cap X_{\xi}^{\eta_{\xi}} = \emptyset$. Let $C = \bigcap_{\xi < \lambda} C_{\xi}$, $\eta = \sup\{\eta_{\xi} \mid \xi < \lambda\}$, then C is a club. But for any $\alpha \in C \cap S$, $\forall \xi < \lambda$, $g_{\xi}(\alpha) < \eta$ since $C \cap X_{\xi}^{\eta} = \emptyset$, therefore $C \cap S \subseteq \eta$, a contradiction since C is a club

Fix a $\xi < \lambda$ s.t. for any $\eta < \kappa$, X_{ξ}^{η} is stationary. By 4.17, S can be partitioned into κ disjoint stationary sets

Corollary 4.19. *uncountable regular* κ , $X = \{\alpha < \kappa \mid cf(\alpha) < \alpha\}$. *If* $S \subseteq X$ *is stationary, then* S *can be partitioned into* κ *disjoint stationary sets*

证明. Let $f:\kappa \to \kappa$ be $f(\alpha)=\mathrm{cf}(\alpha)$. Then $f \upharpoonright S$ is regressive. By Fodor's lemma, there is $\lambda < \kappa$, $S_\lambda = \{\alpha \in S \mid f(\alpha) = \lambda\}$ is stationary. Note that $S_\lambda \subseteq E_\lambda^\kappa$, hence S_λ can be partitioned into κ disjoint stationary sets

Lemma 4.20 (skip). *uncountable regular* κ , $S \subseteq \kappa$ *stationary,* $f : S \to \kappa$ *regressive. for any* $\beta < \kappa$, *define*

$$S_{\beta} = \{ \alpha \in S \mid f(\alpha) = \beta \}$$

Let $I = \{S_{\beta} \mid S_{\beta} \text{ stationary}\}$, then exactly one of below is true

- 1. $|I| = \kappa$
- 2. $|I| < \kappa$ and there is a club C, $\operatorname{im}(f \upharpoonright C \cap S)$ is bounded in κ

Lemma 4.21. uncountable regular κ , $R = \{\omega < \gamma < \kappa \mid \mathrm{cf}(\gamma) = \gamma\}$, define

$$D = \{ \gamma \in R \mid R \cap \gamma \in I_{NS}(\gamma) \}$$

If R is stationary in κ , then so is D

证明. If D is not stationary, there is club C s.t. $C \cap D = \emptyset$. Let C' be the set of limit points of C. Let $\gamma = \min(C' \cap R)$, $\gamma \in R - D$, thus $R \cap \gamma$ is stationary in γ

Now consider $C \cap \gamma$, since γ is a limit point of C, this set is unbounded in γ . By 4.3 (4), $C' \cap \gamma$ is a club set in γ , thus $R \cap C' \cap \gamma \neq \emptyset$, which contradicts the minimality of γ in $R \cap C'$

Theorem 4.22 (Soloway). Any stationary set in uncountable regular cardinal κ can be partitioned into κ disjoint stationary sets

证明. stationary $S \subseteq \kappa$, let

$$S_0 = \{\alpha < \kappa \mid \mathrm{cf}(\alpha) < \alpha\}$$

$$S_1 = \{\alpha < \kappa \mid \mathrm{cf}(\alpha) = \alpha\}$$

Then $S=S_0\cup S_1$, hence either S_0 or S_1 is stationary ?

If S_0 is stationary, by 4.19, S_0 can be partitioned into κ disjoint stationary sets

Now suppose S_1 is stationary, let $D = \{ \alpha \in S_1 \mid S_1 \cap \alpha \in I_{NS}(\alpha) \}$

4.3 Ultrafilter and large cardinal

4.3.1 Regular ultrafilter

Definition 4.23. limit ordinal α , $cf(\alpha) > \omega$, F is a filter on α . If F is closed under diagonal intersection, then F is **regular**

Example 4.1. For any limit ordinal α with $cf(\alpha) > \omega$, $F_{CB}(\alpha)$ is regular

Let elements in F have measure 1, otherwise has measure 0

Definition 4.24. limit ordinal α , $\operatorname{cf}(\alpha) > \omega$, F is a filter on α , if $\forall X \in F$, $Y \cap X \neq \emptyset$, then $Y \subseteq \alpha$ has **positive measure**

Lemma 4.25. uncountable regular cardinal κ , F is a filter on κ . F is regular \Leftrightarrow for any $f: \kappa \to \kappa$, if there is a X with positive measure s.t. $f \upharpoonright X$ is regressive, then there exists $\gamma < \kappa$ s.t. $X_{\gamma} = \{\alpha \in X \mid f(\alpha) = \gamma\}$ has positive measure

证明. \Rightarrow . $f:\kappa\to\kappa$, Y has positive measure and $f\upharpoonright Y$ is regressive. If for all $\gamma<\kappa$, $Y_\gamma=\{\alpha\in Y\mid f(\alpha)=\gamma\}$ doesn't have positive measure, then there is $X_\gamma\in F$ s.t. $Y_\gamma\cap X_\gamma=\emptyset$. Let $X=\triangle X_\gamma\in F$ since F is regular. Since Y has positive measure, $X\cap Y\neq\emptyset$. For any $\gamma\in X\cap Y$, since $\gamma\in X$, then for any $\beta<\gamma$, $f(\gamma)\neq\beta$, therefore $f(\gamma)\geq\gamma$, contradicting the fact that f is regressive on Y.

 \Leftarrow . Suppose for any $\beta < \kappa$, $X_{\beta} \in F$ and $X = \triangle X_{\beta} \notin F$, then

$$Y = \kappa - X = \{ \alpha < \kappa \mid \exists \beta < \alpha (\alpha \notin X_{\beta}) \}$$

has positive measure. Define $f : \kappa \to \kappa$:

$$f(\alpha) = \begin{cases} \min\{\beta \mid \beta < \alpha \land \alpha \not\in X_\beta\} & \alpha \in Y \\ 0 \end{cases}$$

that is, if $\alpha \notin X$, there is $\beta < \alpha$ s.t. $\alpha \notin X_{\beta}$

Then $f \upharpoonright Y$ is regressive, hence there is $0 < \gamma < \kappa$, $Y_{\gamma} = \{\alpha \in Y \mid f(\alpha) = \gamma\}$ has positive measure. But $\alpha \in Y_{\gamma} \Rightarrow \alpha \notin X_{\gamma}$, hence $X_{\gamma} \cap Y_{\gamma} = \emptyset$, a contradiction

4.3.2 Measurable cardinal

Lemma 4.26. there is no \aleph_1 -complete non-principal ultrafilter on $2^\omega=\{f\mid f:\omega\to\{0,1\}\}$

证明. If U is a \aleph_1 -complete non-principal ultrafilter on 2^ω . Let $L=\{f\in 2^\omega\mid f(0)=0\},\,R=\{f\in 2^\omega\mid f(0)=1\}$, then $2^\omega=L\cup R$, and only one of them belongs to U. Define h and a sequence $(X_n)_{n\in\omega}$ of subsets of 2^ω as follows:

- 1. If $L \in U$, then h(0) = 0, $X_0 = R$. If $R \in U$, then let h(0) = 1, $X_0 = L$
- 2. Let h(n) and X_n is defined, then

$$Y = \{ f \in 2^{\omega} \mid \forall i \le n(f(i) = h(i)) \} \in U$$

Let $Y^L=\{f\in Y\mid f(n+1)=0\}, Y^R=\{f\in Y\mid f(n+1)=1\}$, then only one of them belongs to U. If $Y^L\in U$, let $h(n+1)=0, X_{n+1}=Y^R;$ otherwise, $h(n+1)=1, X_{n+1}=Y_L$

For any $f\in 2^\omega$, if $f\neq h$, then there is a smallest $i\in\omega$ s.t. $f(i)\neq h(i)$, which implies $f\in X_i$, thus

$$\{h\} \cup \bigcup_{n \in \omega} X_n = 2^\omega \in U$$

But $\forall n \in \omega, X_n \notin U, U$ is \aleph_1 -complete implying $\bigcup_{n \in \omega} X_n \notin U$. $\bigcup_{n \in \omega} X_n \notin U \Leftrightarrow \overline{\bigcup_{n \in \omega} X_n} \in U \Leftrightarrow \bigcap_{n \in \omega} \overline{X_n} \in U \Leftrightarrow \forall n \in \omega(\overline{X_n} \in U)$ And U is not principal, thus $\{h\} \notin U$.

Lemma 4.27. Let κ be the minimum cardinal with a \aleph_1 -complete non-principal ultrafilter on it, then

- 1. any \aleph_1 -complete non-principal ultrafilter on κ is κ -complete
- 2. κ is uncountable and regular

证明. 1. U is an $lpha_1$ -complete non-principal ultrafilter on κ . If U is not κ -complete, then there is $\gamma < \kappa$, $(X_{eta})_{\beta < \gamma}$ a sequence of pairwise disjoint subsets of κ s.t. $\bigcup_{\beta < \gamma} X_{\beta} \in U$ and $\forall \beta < \gamma (X_{\beta} \notin U)$

Now we define a filter on γ . First, for any $Y \subseteq \gamma$, let

$$X_Y = \{\delta < \kappa \mid \exists \beta \in Y (\delta \in X_\beta)\}$$

that is, $X_Y = \bigcup_{\beta \in Y} X_\beta$. Let $F = \{Y \subseteq \gamma \mid X_Y \in U\}$, we prove that F is an \aleph_1 -complete non-principal ultrafilter on γ , contradicting the minimality of κ

Since

2. Let $(X_{\beta})_{\beta<\gamma}$ be a sequence of subsets of κ , $\gamma<\kappa$ and for any $\beta<\gamma$, $|X_{\beta}|<\kappa$, now we prove $\left|\bigcup_{\beta<\gamma}X_{\beta}\right|\neq\kappa$

By 1, let U be a κ -complete non-principal ultrafilter on κ . For any $\beta < \kappa$, since $\left| X_{\beta} \right| < \kappa$, $X_{\beta} \notin U$. But U is κ -complete, so $\bigcup_{\beta < \gamma} X_{\beta} \notin U$

5 复习

没有良序集同构于真前段 递归定理