Coordonnés cylindrique

 (r,ϕ,z)

Les équations	$\begin{cases} x = r \cos \phi \\ y = r \sin \phi \\ z = z \end{cases}$
Les limites	$0 \le r$ $0 \le \phi < 2\pi$ $-\infty < z < \infty$
Facteurs d'échelle	$h_1 = 1$ $h_2 = r$ $h_3 = 1$
Élément de déplacement	$d\hat{l} = dr\hat{r} + rd\phi\hat{\phi} + dz\hat{z}$
Élément de surface	$ds_r = rd\phi dz$ $ds_\phi = drdz$ $ds_z = rdrd\phi$
Élément de volume	$dV = rdrd\phi dz$
Gradient	$\nabla f = \frac{\partial f}{\partial r}\hat{r} + \frac{1}{r}\frac{\partial f}{\partial \phi}\hat{\phi} + \frac{\partial f}{\partial z}\hat{z}$
Divergence	$\nabla . A = \frac{1}{r} \left[\frac{\partial}{\partial r} (rA_r) + \frac{\partial}{\partial \phi} A_{\phi} + \frac{\partial}{\partial z} (rA_z) \right]$
Rotationnel	$ \nabla \cdot \vec{A} = \frac{1}{r} \left[\frac{\partial}{\partial r} (rA_r) + \frac{\partial}{\partial \phi} A_{\phi} + \frac{\partial}{\partial z} (rA_z) \right] $ $ \nabla \times \vec{A} = \frac{1}{r} \begin{vmatrix} \hat{r} & r\hat{\phi} & \hat{z} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \\ A_r & rA_{\phi} & A_z \end{vmatrix} $
Laplacien	$\nabla^2 \Phi = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \Phi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial \phi^2} + \frac{\partial^2 \Phi}{\partial z^2}$
Vecteur position	$r = r \hat{r} + z \hat{z}$ ou bien $r = r \hat{r}(\theta) + z \hat{z}$
Vecteur position unitaire	$\hat{r} = \frac{r\hat{r} + z\hat{z}}{(r^2 + z^2)^{\frac{1}{2}}} \text{ ou bien } \hat{r} = \frac{r\hat{r}(\theta) + z\hat{z}}{(r^2 + z^2)^{\frac{1}{2}}}$