QUESTIONS FROM COMPETITIVE EXAMS

3.1 Introduction

	(MHT-C	ET 2018)			
1.	Which of the following is one dimension	nal motion?			
	a) landing of an aircraft	b) earth revolving	g around the sun		
	c) motion of a wheel of moving train	d) train running (on a straight track		
	(MHT-C	ET 2019)			
2.	A particle is performing a uniform circulof radius 'R' and 'T' is the periodic time. covered are respectively	In the time 1/4 its a	ispiacement and distance		
	a) $\sqrt{2} R$, $\frac{\pi R}{4}$ b) $\frac{\pi R}{4}$, $\sqrt{2} R$	c) $\sqrt{2}$ R, π R	d) $\sqrt{2}$ R, $\frac{\pi R}{2}$		
3.	Out of the following examples of mo- considered approximately as a point ob-	otion, in which situ ject ?	ations the body can be		
	i) a railway carriage moving without j	erks between two st	ations.		
	ii) a monkey sitting on top of a man cyc	cling smoothly on a c	rircular track.		
	iii) a spinning cricket ball that turns sharply on hitting the ground.				
	iv) a tumbling beaker that has slipped or	ff the edge of a table.			
	a) 'i' and 'iii' b) 'i' and 'iv'	and the state of t	d) 'i', 'ii' and 'iii'		
	(MHT-C				
4.	A particle is performing a uniform circular motion along a circle of radius 'R'. In half the period of revolution, its displacement and distance covered are respectively				
	a) $2 R, 2 \pi R$ b) $2R, \pi R$	c) $\sqrt{2R}$, 2π R	d) R, πR		
	3.2 Rectilin	ear Motion			
	(MHT-C	ET 2020)			
5.	A vehicle moving with 15 km/hr comes brakes. If the same vehicle moves at 45 k rest by covering a distance				
	a) 60 m b) 15 m	c) 45 m	d) 30 m		
ś.	A moving body is covering distances w	hich are proportion	al to square of the time		
	Then the acceleration of the body is				
	a) constant but not zero	b) increasing			
	c) zero	d) decreasing			
7.	A particle is moving along the circular path of radius 'r' with velocity 'v'. The magnitude of average acceleration after half revolution is				
	$3v^2$ $3v^2$	$2v^2$	v^2		
	a) $\frac{3v^2}{\pi r}$ b) $\frac{3v^2}{2\pi r}$	c) $\frac{2v^2}{\pi r}$	d) π r		
	(MHT-CI		***		
	A body starts falling from height 'h' and		1/2 during last second of		
	its motion, then time of flight in seconds		o mor second of		

a) $(2+\sqrt{3})$ b) $(\sqrt{2}-1)$ c) $(2+\sqrt{2})$ d) $(\sqrt{2}+\sqrt{3})$

	9.	A car travelling	at a speed 'U' m/s,	stops within a dist	ance 'S', when the brak		
9. A car travelling at a speed 'U' m/s, stops within a distance 'S', whe applied. If the car is travelling at '2 U' m/s then the stopping distance							
		a) more than 'S'		b) less than	S'		
		c) equal to 'S'		d) zero			
	10.	their potential er	nergies at the highes	st points of their joi			
		a) 1:1	b) 4:1	c) 3:2	d) 2:1		
		(MHT-CET 2022)					
	11.	A body covers half of its distance with speed 'u' and the other half with a speed 'y' then average speed of the body is					
		a) $\frac{2uv}{u+v}$	b) $\frac{u+v}{2uv}$	c) $\frac{u+v}{2}$	d) $\frac{u-v}{2}$		
	12. A ball is dropped from a tower of height 'h'. The total distance covered by it in la second of its motion is equal to the distance covered by it in first 3 seconds. The val of 'h' is						
		a) 200 m	b) 125 m	c) 100 m	d) 80 m		
			3.3 Motion in	Two Dimensio	ns		
			(MHT	C-CET 2021)	Para et al.		
	13. A student is throwing balls vertically upwards such that he throws the 2 nd ball when the 1 st ball reaches maximum height. If he throws balls at an interval of 3 seconds, the maximum height of the balls is						
		a) 45 m	b) 35 m	c) 25 m	d) 30 m		
	14.	14. Two bodies A and B are projected with same velocity. If bodies A and B are projected at angles of 30° and 60° with the horizontal respectively, the ratio of maximum height reached by the body A to that of body B is					
		a) 1:2	b) 2:1	c) 3·1	d) 1:3		
	at a height of 980 m. At the time of dropping the bomb, the distance of the aeropla from the target on the ground to hit directly is						
	9.0		b) $\frac{10^4}{9}$ m		d) $\frac{10^4}{18}$ m		
	16.	A body at rest fall:	s through a height 'h	n' with velocity 'v'	If it has to fall down further		
		A body at rest falls through a height 'h' with velocity 'v'. If it has to fall down further a) 8 h b) 6 h					
	-		-) 011	c) 4 h	d) 12 h		
		A projectile is thrown with an initial velocity (a î + b ĵ) m/s, where î and ĵ are unit vectors along horizontal and vertical directions respectively. If the range of the projectile is twice the maximum height reached by it, then					
		a) b = 2a	b) b = 4a	c) $b = \frac{a}{2}$	d) b = a		
-							

WHT-CET

(MHT-CET 2022)

	A projectile thrown from the ground has initial speed 'u' and its direction makes an angle ' θ ' with the horizontal. If at maximum height from ground, the speed of projectile is half its initial speed of projection, then the maximum height reached by the projectile
	is

a)
$$\frac{2u^2}{g}$$
.

b)
$$\frac{u^2}{4g}$$

c)
$$\frac{3u^2}{8g}$$

d)
$$\frac{u^2}{g}$$

A shell is fired at an angle of 30° to the horizontal with velocity 196 m/s. The time of 19. flight is

a) 10 s

b) 20 s

c) $6.5 \, s$

d) 16.5 s

The equation of the trajectory of a ball projected at an angle ' θ ' with the horizontal, is 20.

given as $y = \sqrt{3} x - \frac{gx^2}{2}$. The initial velocity of the ball is

a) 3 m/s

b) 2 m/s

c) 1 m/s

Two projectiles A and B are projected with velocities $\sqrt{2}$ v and v respectively. 21. They have the same range. If A is thrown at angle of 15° with the horizontal, the angle of projection of B with horizontal will be

a) 90°

b) 60°

c) 30°

d) 45°

3.4 Uniform Circular Motion

(MHT-CET 2005)

22. Angular velocity of hour hand of a watch is

a) $\frac{\pi}{43200}$ rad s⁻¹ b) $\frac{\pi}{30}$ rad s⁻¹ c) $\frac{\pi}{21600}$ rad s⁻¹ d) $\frac{\pi}{1800}$ rad s⁻¹

(MHT-CET 2006)

23. An electric fan has blades of length of 30 cm as measured from the axis of rotation. If the fan is rotating at 1200 rpm, the acceleration of a point on the tip of the blade is about

a) 1600 ms⁻²

b) 4750 ms^{-2}

c) 2370 ms⁻²

d) 5055 ms⁻²

(MHT-CET 2011)

A ball of mass 0.25 kg attached to the end of a string of length 1.96 m is moving in 24. a horizontal circle. The string will break if the tension is more than 25 N. What is the maximum speed with which the ball can be moved?

a) 14 ms⁻¹

b) 3 ms⁻¹

c) 3.92 ms⁻¹

d) 5 ms⁻¹

(MHT-CET 2014)

The difference between angular speeds of minute hand and second hand of a clock is 25.

a) $\frac{59\pi}{900}$ rad/s b) $\frac{59\pi}{1800}$ rad/s c) $\frac{59\pi}{2400}$ rad/s d) $\frac{59\pi}{3600}$ rad/s

(MHT-CET 2016)

Angular speed of hour hand of a clock in degree per second is 26.

b) $\frac{1}{60}$

120

The angular displacement of body performing circular motion is given by $\theta = 5 \sin \frac{\pi t}{6}$. 36. The angular velocity of the body at t = 3 seconds will be a) 5 rad/s b) 1 rad/s c) 2.5 rad/s d) zero rad/s A body of mass 'm' is moving with speed 'V' along a circular path of radius 'r'. 37. Now the speed is reduced to $\frac{V}{2}$ and radius is increased to '3r'. For this change, initial centripetal force needs to be b) increased by $\frac{10}{12}$ times a) increased by $\frac{7}{12}$ times d) decreased by $\frac{1}{12}$ times c) decreased by $\frac{11}{12}$ times 38. At any instant, for a body performing uniform circular motion, velocity vector and acceleration vector are a) in opposite directions b) along the same direction d) make an angle of 45° with each other c) normal to each other LEVEL - II An aeroplane flies 400 m north and 300 m south and then flies 1200 upwards, then net 39. displacement is a) 1200 m b) 1300 m c) 1400 m d) 1500 m A cyclist moving on a circular track of radius 20 m completes half revolution in 20 s. 40. His average speed and average velocity are a) 3.14 m/s; 2 m/s b) 3.17 m/s; 1 m/s c) 6.34 m/s, 4 m/s d) 6.34 m/s, 2 m/s A body covers one third of the distance with velocity v₁, the second one third of the 41. distance with a velocity v2 and the remaining distance with a velocity v3. The average velocity is a) $\frac{v_1 + v_2 + v_3}{2}$ b) $\frac{v_1 v_2 v_3}{v_1 + v_2}$ c) $\frac{3 v_1 v_2 v_3}{v_1 v_2 + v_2 v_3 + v_3 v_1}$ d) $\frac{v_1v_2 + v_2v_3 + v_3v_1}{3}$ A body covers first one third of the distance with a velocity 20 m/s, the second 42. one-third distance with a velocity 30 m/s and the last one-third distance with a velocity 40 ms⁻¹. The average velocity is nearly a) 28 ms^{-1} b) 38 ms⁻¹ c) 18 ms^{-1} d) 8 ms⁻¹ 43. A body begins to walk eastward along a Position (m) sheet in front of his house and the graph of 40 his position from home is shown in the fig. His average speed for the whole time 20 interval is equal to → Time (min) a) 8 m/min b) 6 m/min -20c) $\frac{8}{3}$ m/min d) 2 m/min