## Model fitting like a boss

#### Luigi Acerbi

Department of Basic Neuroscience, University of Geneva Center for Neural Science, New York University International Brain Lab



September 9, 2019

- Introduction
  - Of models and likelihoods
- 2 Model fitting
  - A statistical estimation problem
  - Model fitting via optimization
  - Optimization algorithms
- Bayesian Adaptive Direct Search (BADS)
  - Bayesian Optimization
  - BADS
- Cheat sheets
- Beyond optimization
  - Bayesian model fitting

- Introduction
  - Of models and likelihoods
- 2 Model fitting
  - A statistical estimation problem
  - Model fitting via optimization
  - Optimization algorithms
- 3 Bayesian Adaptive Direct Search (BADS)
  - Bayesian Optimization
  - BADS
- 4 Cheat sheets
- Beyond optimization
  - Bayesian model fitting

## What is a model?

Luigi Acerbi

4 / 35

#### What is a model?



The best material model of a cat is another, or preferably the same, cat.

Wiener, Philosophy of Science (1945) (with Rosenblueth)

Quantitative stand-in for a theory

Sep 9, 2019

5 / 35

- Quantitative stand-in for a theory
- A family of probability distributions over possible datasets:

$$p\left(\mathsf{data}|\boldsymbol{ heta}\right)$$

- data is a dataset with n data points (e.g., trials)
- ightharpoonup heta is a parameter vector

- Quantitative stand-in for a theory
- A family of probability distributions over possible datasets:

$$p(data|\theta)$$

- data is a dataset with n data points (e.g., trials)
- ightharpoonup heta is a parameter vector
- Why?

- Quantitative stand-in for a theory
- A family of probability distributions over possible datasets:

$$p\left(\mathsf{data}|\theta\right)$$

- data is a dataset with n data points (e.g., trials)
- ightharpoonup heta is a parameter vector
- Why? Description, prediction, and explanation

- Quantitative stand-in for a theory
- A family of probability distributions over possible datasets:

$$p(data|\theta)$$

- data is a dataset with n data points (e.g., trials)
- ightharpoonup heta is a parameter vector
- Why? Description, prediction, and explanation
- Defining  $p(\text{data}|\theta)$  is the core of model building

- Quantitative stand-in for a theory
- A family of probability distributions over possible datasets:

$$p(\mathsf{data}|\theta)$$

- data is a dataset with n data points (e.g., trials)
- ightharpoonup heta is a parameter vector
- Why? Description, prediction, and explanation
- Defining  $p(\text{data}|\theta)$  is the core of model building
  - ► Wait, what?

- Quantitative stand-in for a theory
- A family of probability distributions over possible datasets:

$$p(\mathsf{data}|\theta)$$

- data is a dataset with n data points (e.g., trials)
- ightharpoonup heta is a parameter vector
- Why? Description, prediction, and explanation
- Defining  $p(\text{data}|\theta)$  is the core of model building
  - Wait, what?
- How? Think about the data generation process!

# Example: Psychometric function

Task: heading direction 'discrimination' task

## Example: Psychometric function

Task: heading direction 'discrimination' task



(data from Acerbi\*, Dokka\*, et al., PLoS Comput Biol, 2018)

## Example: Psychometric function



- data: (heading direction, choice) for each trial
- parameters  $\theta$ :  $(\mu, \sigma, \lambda)$

- $p(data|\theta)$  is a probability density as you vary data for a fixed  $\theta$
- $p(\text{data}|\theta)$  is the *likelihood*, a function of  $\theta$  for fixed data

ullet For numerical reasons we work with  $\log p(\mathrm{data}|oldsymbol{ heta})$ 

- ullet For numerical reasons we work with  $\log p({
  m data}|oldsymbol{ heta})$
- Using the rules of probability and logarithms:

$$\log p \left( \operatorname{data} | \theta \right) = \log p(\boldsymbol{r}^{(1)}, \dots, \boldsymbol{r}^{(n)} | \boldsymbol{s}^{(1)}, \dots, \boldsymbol{s}^{(n)}, \theta )$$

$$= \log \prod_{i=1}^{n} p_i \left( \boldsymbol{r}^{(i)} | \boldsymbol{r}^{(1)}, \dots, \boldsymbol{r}^{(i-1)}, \boldsymbol{s}^{(1)}, \dots, \boldsymbol{s}^{(n)}, \theta \right)$$

$$= \sum_{i=1}^{n} \log p_i \left( \boldsymbol{r}^{(i)} | \boldsymbol{r}^{(1)}, \dots, \boldsymbol{r}^{(i-1)}, \boldsymbol{s}^{(1)}, \dots, \boldsymbol{s}^{(n)}, \theta \right)$$

- ullet For numerical reasons we work with  $\log p(\mathsf{data}|oldsymbol{ heta})$
- Using the rules of probability and logarithms:

$$\log p \left( \operatorname{data} | \theta \right) = \log p(\boldsymbol{r}^{(1)}, \dots, \boldsymbol{r}^{(n)} | \boldsymbol{s}^{(1)}, \dots, \boldsymbol{s}^{(n)}, \theta )$$

$$= \log \prod_{i=1}^{n} p_i \left( \boldsymbol{r}^{(i)} | \boldsymbol{r}^{(1)}, \dots, \boldsymbol{r}^{(i-1)}, \boldsymbol{s}^{(1)}, \dots, \boldsymbol{s}^{(n)}, \theta \right)$$

$$= \sum_{i=1}^{n} \log p_i \left( \boldsymbol{r}^{(i)} | \boldsymbol{r}^{(1)}, \dots, \boldsymbol{r}^{(i-1)}, \boldsymbol{s}^{(1)}, \dots, \boldsymbol{s}^{(n)}, \theta \right)$$

• Simplest case:  $\log p\left(\mathsf{data}|\boldsymbol{\theta}\right) = \sum_{i=1}^n \log p_i\left(\boldsymbol{r}^{(i)}|\boldsymbol{s}^{(i)},\boldsymbol{\theta}\right)$ 

- ullet For numerical reasons we work with  $\log p({
  m data}|oldsymbol{ heta})$
- Using the rules of probability and logarithms:

$$\log p \left( \operatorname{data} | \boldsymbol{\theta} \right) = \log p(\boldsymbol{r}^{(1)}, \dots, \boldsymbol{r}^{(n)} | \boldsymbol{s}^{(1)}, \dots, \boldsymbol{s}^{(n)}, \boldsymbol{\theta})$$

$$= \log \prod_{i=1}^{n} p_i \left( \boldsymbol{r}^{(i)} | \boldsymbol{r}^{(1)}, \dots, \boldsymbol{r}^{(i-1)}, \boldsymbol{s}^{(1)}, \dots, \boldsymbol{s}^{(n)}, \boldsymbol{\theta} \right)$$

$$= \sum_{i=1}^{n} \log p_i \left( \boldsymbol{r}^{(i)} | \boldsymbol{r}^{(1)}, \dots, \boldsymbol{r}^{(i-1)}, \boldsymbol{s}^{(1)}, \dots, \boldsymbol{s}^{(n)}, \boldsymbol{\theta} \right)$$

- Simplest case:  $\log p\left(\mathsf{data}|\boldsymbol{\theta}\right) = \sum_{i=1}^n \log p_i\left(\boldsymbol{r}^{(i)}|\boldsymbol{s}^{(i)},\boldsymbol{\theta}\right)$
- Model building: Write function with
  - ▶ Input:  $\theta$  and data
  - Output:  $\log p(\text{data}|\theta)$

- Introduction
  - Of models and likelihoods
- 2 Model fitting
  - A statistical estimation problem
  - Model fitting via optimization
  - Optimization algorithms
- 3 Bayesian Adaptive Direct Search (BADS)
  - Bayesian Optimization
  - BADS
- 4 Cheat sheets
- Beyond optimization
  - Bayesian model fitting

Model fitting  $\sim$  statistical estimation problem

Model fitting  $\sim$  statistical estimation problem

1. Maximum likelihood estimation (MLE)

Model fitting  $\sim$  statistical estimation problem

### 1. Maximum likelihood estimation (MLE)

• Find maximum of  $p(\text{data}|\theta)$ 

$$\hat{\theta}_{\mathsf{ML}} = \arg\max_{oldsymbol{ heta}} p(\mathsf{data}|oldsymbol{ heta}) = \arg\max_{oldsymbol{ heta}} \log p(\mathsf{data}|oldsymbol{ heta})$$

#### Model fitting $\sim$ statistical estimation problem

### 1. Maximum likelihood estimation (MLE)

• Find maximum of  $p(\text{data}|\theta)$ 

$$\hat{\theta}_{\mathsf{ML}} = \arg\max_{oldsymbol{ heta}} p(\mathsf{data}|oldsymbol{ heta}) = \arg\max_{oldsymbol{ heta}} \log p(\mathsf{data}|oldsymbol{ heta})$$

### 2. Bayesian posterior

$$p(\boldsymbol{\theta}|\mathsf{data}) = \frac{p(\mathsf{data}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathsf{data})} \propto p(\mathsf{data}|\boldsymbol{\theta})p(\boldsymbol{\theta})$$

#### Model fitting $\sim$ statistical estimation problem

### 1. Maximum likelihood estimation (MLE)

• Find maximum of  $p(\text{data}|\theta)$ 

$$\hat{\theta}_{\mathsf{ML}} = \arg\max_{oldsymbol{ heta}} p(\mathsf{data}|rac{oldsymbol{ heta}}{oldsymbol{ heta}}) = \arg\max_{oldsymbol{ heta}} \log p(\mathsf{data}|rac{oldsymbol{ heta}}{oldsymbol{ heta}})$$

### 2. Bayesian posterior

$$p(\boldsymbol{\theta}|\mathsf{data}) = \frac{p(\mathsf{data}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathsf{data})} \propto p(\mathsf{data}|\boldsymbol{\theta})p(\boldsymbol{\theta})$$

• For  $n \to \infty$  converges to MLE (if  $p(\hat{\theta}_{\mathsf{ML}}) \neq 0$ )

Model fitting  $\sim$  statistical estimation problem

### 1. Maximum likelihood estimation (MLE)

• Find maximum of  $p(\text{data}|\theta)$ 

$$\hat{\theta}_{\mathsf{ML}} = \arg\max_{oldsymbol{ heta}} p(\mathsf{data}|oldsymbol{ heta}) = \arg\max_{oldsymbol{ heta}} \log p(\mathsf{data}|oldsymbol{ heta})$$

### 2. Bayesian posterior

$$p(\boldsymbol{\theta}|\mathsf{data}) = \frac{p(\mathsf{data}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathsf{data})} \propto p(\mathsf{data}|\boldsymbol{\theta})p(\boldsymbol{\theta})$$

- ullet For  $n o\infty$  converges to MLE (if  $p(\hat{oldsymbol{ heta}}_{\mathsf{ML}})
  eq 0$ )
- Full posterior: informative about parameter uncertainty and trade-offs

Model fitting  $\sim$  statistical estimation problem

### 1. Maximum likelihood estimation (MLE)

• Find maximum of  $p(\text{data}|\theta)$ 

$$\hat{\theta}_{\mathsf{ML}} = \arg\max_{oldsymbol{ heta}} p(\mathsf{data}|oldsymbol{ heta}) = \arg\max_{oldsymbol{ heta}} \log p(\mathsf{data}|oldsymbol{ heta})$$

### 2. Bayesian posterior

$$p(\boldsymbol{\theta}|\mathsf{data}) = \frac{p(\mathsf{data}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathsf{data})} \propto p(\mathsf{data}|\boldsymbol{\theta})p(\boldsymbol{\theta})$$

- ullet For  $n o\infty$  converges to MLE (if  $p(\hat{oldsymbol{ heta}}_{\mathsf{ML}})
  eq 0$ )
- Full posterior: informative about parameter uncertainty and trade-offs
- Maximum-a-posteriori (MAP):  $\hat{\theta}_{MAP} = \arg \max_{\theta} p(\theta | \text{data})$

Maximum likelihood estimation (MLE), Maximum-a-posteriori (MAP)

■ Model fitting ~ optimization problem

## Maximum likelihood estimation (MLE), Maximum-a-posteriori (MAP)

■ Model fitting ~ optimization problem

### Bayesian posterior

• How do we represent/approximate an arbitrary posterior distribution?

## Maximum likelihood estimation (MLE), Maximum-a-posteriori (MAP)

Model fitting ~ optimization problem

### Bayesian posterior

- How do we represent/approximate an arbitrary posterior distribution?
  - 1 Use a known (easier) distribution (variational inference)

### Maximum likelihood estimation (MLE), Maximum-a-posteriori (MAP)

Model fitting ~ optimization problem

### Bayesian posterior

- How do we represent/approximate an arbitrary posterior distribution?
  - ① Use a known (easier) distribution (variational inference)
  - ② Use a bunch of discrete samples (Markov-Chain Monte Carlo)

## Model fitting via optimization

ullet Find single  $oldsymbol{ heta}$  that best describes the data

# Model fitting via optimization

- ullet Find single  $oldsymbol{ heta}$  that best describes the data
- ullet (For this section we switch notation from eta to x)

# Model fitting via optimization

- ullet Find single  $oldsymbol{ heta}$  that best describes the data
- ullet (For this section we switch notation from heta to x)
- Given  $\tilde{f}(x) \equiv \begin{cases} \log p(\text{data}|x) & \text{maximum likelihood} \\ \log p(\text{data}|x) + \log p(x) & \text{maximum-a-posteriori} \end{cases}$

## Model fitting via optimization

- ullet Find single  $oldsymbol{ heta}$  that best describes the data
- (For this section we switch notation from  $\theta$  to x)
- Given  $\tilde{f}(x) \equiv \begin{cases} \log p(\text{data}|x) & \text{maximum likelihood} \\ \log p(\text{data}|x) + \log p(x) & \text{maximum-a-posteriori} \end{cases}$
- ullet By convention, we *minimize*  $f(x) \equiv - ilde{f}(x)$

## Model fitting via optimization

- ullet Find single  $oldsymbol{ heta}$  that best describes the data
- (For this section we switch notation from  $\theta$  to x)
- Given  $\tilde{f}(x) \equiv \begin{cases} \log p(\text{data}|x) & \text{maximum likelihood} \\ \log p(\text{data}|x) + \log p(x) & \text{maximum-a-posteriori} \end{cases}$
- By convention, we minimize  $f(x) \equiv -\tilde{f}(x)$
- $\Longrightarrow$  Find  $x_{opt} \approx \arg \min_{x} f(x)$  as fast as possible

## Model fitting via optimization

- ullet Find single  $oldsymbol{ heta}$  that best describes the data
- (For this section we switch notation from  $\theta$  to x)
- Given  $\tilde{f}(x) \equiv \left\{ \begin{array}{ll} \log p(\mathsf{data}|x) & \mathsf{maximum\ likelihood} \\ \log p(\mathsf{data}|x) + \log p(x) & \mathsf{maximum-a-posteriori} \end{array} \right.$
- By convention, we minimize  $f(x) \equiv -\tilde{f}(x)$
- $\Longrightarrow$  Find  $x_{opt} \approx \arg \min_{x} f(x)$  as fast as possible
- General case: f(x) is a black box
  - Sometimes we can compute the gradient



Source: Wikimedia Commons



Source: Wikimedia Commons





| neval | $x_1$  | <i>x</i> <sub>2</sub> | f(x)    |
|-------|--------|-----------------------|---------|
| 1     | -0.500 | 2.500                 | 508.500 |
| 2     | -0.525 | 2.500                 | 497.110 |
| 3     | -0.500 | 2.625                 | 566.313 |
| 4     | -0.525 | 2.375                 | 443.063 |
| 5     | -0.537 | 2.250                 | 386.953 |
| 6     | -0.563 | 2.250                 | 376.320 |
| 7     | -0.594 | 2.125                 | 316.702 |
| 8     | -0.606 | 1.875                 | 229.824 |
| 9     | -0.647 | 1.563                 | 133.598 |
| 10    | -0.703 | 1.438                 | 91.847  |
| 11    | -0.786 | 1.031                 | 20.292  |
| 12    | -0.839 | 0.469                 | 8.918   |
| 13    | -0.962 | -0.359                | 168.785 |
| 14    | -0.978 | -0.063                | 107.796 |
| 15    | -0.895 | 0.344                 | 24.553  |
| 16    | -0.730 | 1.156                 | 41.905  |
| 17    | -0.854 | 0.547                 | 6.760   |
| 18    | -0.907 | -0.016                | 73.917  |
| 19    | -0.816 | 0.770                 | 4.366   |
| 20    | -0.831 | 0.848                 | 5.818   |
| 21    | -0.793 | 1.070                 | 22.655  |
| 22    | -0.839 | 0.678                 | 3.448   |
| 23    | -0.824 | 0.600                 | 3.955   |
| 24    | -0.846 | 0.508                 | 7.766   |
| 25    | -0.824 | 0.704                 | 3.391   |
| 26    | -0.839 | 0.782                 | 4.004   |
| 27    | -0.828 | 0.645                 | 3.497   |
| 28    | -0.835 | 0.737                 | 3.523   |
| 29    | ?      | ?                     | ?       |

Optimizer does not see the landscape!

- Optimizer does not see the landscape!
- Multiple local minima or saddle points ('non-convex')

- Optimizer does not see the landscape!
- Multiple local minima or saddle points ('non-convex')
- Expensive function evaluation

- Optimizer does not see the landscape!
- Multiple local minima or saddle points ('non-convex')
- Expensive function evaluation
- Noisy function evaluation
- Sough landscape (numerical approximations, etc.)

# Optimization algorithms

#### Gradient-based methods

- Stochastic gradient descent (e.g., ADAM)
- Quasi-Newton methods (e.g., BFGS aka fminunc/fmincon)

#### Gradient-free methods

- Nelder-Mead (fminsearch)
- Pattern/direct search (patternsearch)
- Simulated annealing
- Genetic algorithms
- CMA-ES
- Bayesian optimization
- Bayesian Adaptive Direct Search (BADS; Acerbi & Ma, NeurIPS 2017)

## Optimization algorithms

#### Gradient-based methods

- Stochastic gradient descent (e.g., ADAM)
- Quasi-Newton methods (e.g., BFGS aka fminunc/fmincon)

#### Gradient-free methods

- Nelder-Mead (fminsearch)
- Pattern/direct search (patternsearch)
- Simulated annealing
- Genetic algorithms
- CMA-ES
- Bayesian optimization
- Bayesian Adaptive Direct Search (BADS; Acerbi & Ma, NeurIPS 2017)

Demos: https://github.com/lacerbi/optimviz

#### Local vs. global optimization



- Introduction
  - Of models and likelihoods
- 2 Model fitting
  - A statistical estimation problem
  - Model fitting via optimization
  - Optimization algorithms
- Bayesian Adaptive Direct Search (BADS)
  - Bayesian Optimization
  - BADS
- 4 Cheat sheets
- Beyond optimization
  - Bayesian model fitting

Start with a prior over functions (Gaussian process)

- Start with a prior over functions (Gaussian process)
- $oldsymbol{\circ}$  Find  $ilde{x}$  that maximizes acquisition function (exploration/exploitation)

- Start with a prior over functions (Gaussian process)
- ② Find  $\tilde{x}$  that maximizes acquisition function (exploration/exploitation)
- **3** Evaluate f(x)

- Start with a prior over functions (Gaussian process)
- 2 Find  $\tilde{x}$  that maximizes acquisition function (exploration/exploitation)
- **3** Evaluate f(x)
- Compute posterior over functions (Gaussian process)

- Start with a prior over functions (Gaussian process)
- $oldsymbol{\circ}$  Find  $ilde{x}$  that maximizes acquisition function (exploration/exploitation)
- **3** Evaluate f(x)
- Compute posterior over functions (Gaussian process)
- goto 2

- Start with a prior over functions (Gaussian process)
- $oldsymbol{\circ}$  Find  $ilde{x}$  that maximizes acquisition function (exploration/exploitation)
- **3** Evaluate f(x)
- Compute posterior over functions (Gaussian process)
- goto 2

J. Mockus, Journal of Global Optimization (1994)

• Good for expensive ( $\gtrsim 1$  min), noisy functions up to  $D \approx 10$ 

- Good for expensive ( $\gtrsim 1$  min), noisy functions up to  $D \approx 10$
- Scales badly with n, computation time  $\sim O(n^3)$

- Good for expensive ( $\gtrsim 1$  min), noisy functions up to  $D \approx 10$
- Scales badly with n, computation time  $\sim O(n^3)$
- Performance depends on quality of global approximation

 Combines Mesh-Adaptive Direct Search (MADS) with Bayesian Optimization (BO)

 Combines Mesh-Adaptive Direct Search (MADS) with Bayesian Optimization (BO)

#### Algorithm

■ Take as input f, x0, LB, UB, PLB, PUB

 Combines Mesh-Adaptive Direct Search (MADS) with Bayesian Optimization (BO)

- Take as input f, x0, LB, UB, PLB, PUB
- 2 Evaluate f on an initial design and  $x \leftarrow \arg \min_i f(x_i)$

Combines Mesh-Adaptive Direct Search (MADS) with Bayesian Optimization (BO)

- Take as input f, x0, LB, UB, PLB, PUB
- 2 Evaluate f on an initial design and  $x \leftarrow \arg \min_i f(x_i)$
- Until convergence or MaxFunEvals do

Combines Mesh-Adaptive Direct Search (MADS) with Bayesian Optimization (BO)

- Take as input f, x0, LB, UB, PLB, PUB
- 2 Evaluate f on an initial design and  $x \leftarrow \arg \min_i f(x_i)$
- Until convergence or MaxFunEvals do
  - ▶ POLL STEP: Evaluate up to 2D points around x, update x

 Combines Mesh-Adaptive Direct Search (MADS) with Bayesian Optimization (BO)

- Take as input f, x0, LB, UB, PLB, PUB
- 2 Evaluate f on an initial design and  $x \leftarrow \arg \min_i f(x_i)$
- Until convergence or MaxFunEvals do
  - POLL STEP: Evaluate up to 2D points around x, update x
  - ► (TRAIN STEP: Train GP on neighborhood of x)

Combines Mesh-Adaptive Direct Search (MADS) with Bayesian Optimization (BO)

- Take as input f, x0, LB, UB, PLB, PUB
- 2 Evaluate f on an initial design and  $x \leftarrow \arg \min_i f(x_i)$
- Until convergence or MaxFunEvals do
  - POLL STEP: Evaluate up to 2D points around x, update x
  - ightharpoonup (TRAIN STEP: Train GP on neighborhood of x)
  - $\triangleright$  SEARCH STEP: Perform multiple iterations of BO in neighborhood of x

 Combines Mesh-Adaptive Direct Search (MADS) with Bayesian Optimization (BO)

#### Algorithm

- Take as input f, x0, LB, UB, PLB, PUB
- 2 Evaluate f on an initial design and  $x \leftarrow \arg \min_i f(x_i)$
- Until convergence or MaxFunEvals do
  - POLL STEP: Evaluate up to 2D points around x, update x
  - ► (TRAIN STEP: Train GP on neighborhood of x)
  - $\triangleright$  SEARCH STEP: Perform multiple iterations of BO in neighborhood of x

Acerbi & Ma, NeurIPS (2017)

## BADS algorithm



## BADS algorithm



## BADS algorithm



### BADS algorithm

#### Algorithm 1 Bayesian Adaptive Direct Search

```
Input: objective function f, starting point x_0, hard bounds LB, UB, (optional: plausible bounds PLB,
     PUB, barrier function c, additional options)
 1: Initialization: \Delta_0^{\text{mesh}} \leftarrow 2^{-10}, \Delta_0^{\text{pol}} \leftarrow 1, k \leftarrow 0, evaluate f on initial design
                                                                                                                      ⊳ Section 3.1
 2: repeat
 3:
          (update GP approximation at any step; refit hyperparameters if necessary)
                                                                                                                      ▶ Section 3.2
          for 1 \dots n_{\text{search}} do
                                                                                                 ▷ SEARCH stage, Section 3.3
 4:
 5:
                                                                                         ▷ local Bayesian optimization step
                x_{\text{search}} \leftarrow \text{SEARCHORACLE}
 6:
                Evaluate f on x_{\text{search}}, if improvement is sufficient then break
 7:
          if SEARCH is NOT successful then
                                                                                         ▷ optional POLL stage, Section 3.3
 8:
               compute poll set P_k
 9:
               evaluate opportunistically f on P_k sorted by acquisition function
          if iteration k is successful then
10:
11:
                update incumbent x_{k+1}
               if POLL was successful then \Delta_{\scriptscriptstyle L}^{\rm mesh} \leftarrow 2\Delta_{\scriptscriptstyle L}^{\rm mesh}, \Delta_{\scriptscriptstyle L}^{\rm poll} \leftarrow 2\Delta_{\scriptscriptstyle L}^{\rm poll}
12:
13:
          else
               \Delta_h^{\text{mesh}} \leftarrow \frac{1}{2} \Delta_h^{\text{mesh}}, \Delta_h^{\text{poll}} \leftarrow \frac{1}{2} \Delta_h^{\text{poll}}
14:
15:
          k \leftarrow k + 1
16: until fevals > MaxFunEvals or \Delta_k^{\text{poll}} < 10^{-6} or stalling
                                                                                                               17: return x_{\text{end}} = \arg \min_k f(x_k) (or x_{\text{end}} = \arg \min_k q_{\beta}(x_k) for noisy objectives, Section 3.4)
```

### **BADS** properties

- Good for moderately costly ( $\gtrsim 0.1 \text{ s}$ ) or noisy functions
- Scales okay with *n* (uses only local neighborhood)
- Local approximation deals with nonstationarity
- Explicit support for noise
- Outperforms other algorithms (Acerbi & Ma, 2017)

## **BADS** summary

- POLL stage: Similar to patternsearch
- SEARCH stage: Local Bayesian optimization
- ullet Initial POLL/SEARCH scale  $\sim$  plausible box
- BADS supports:
  - Unbounded variables (deprecated)
  - Bounded variables
  - Non-bound constraints
  - Fixed variables
  - Periodic variables
- BADS treats stochastic target functions differently
  - ▶ Ensure that the noise SD is  $\lesssim 1$

- Introduction
  - Of models and likelihoods
- 2 Model fitting
  - A statistical estimation problem
  - Model fitting via optimization
  - Optimization algorithms
- 3 Bayesian Adaptive Direct Search (BADS)
  - Bayesian Optimization
  - BADS
- Cheat sheets
- Beyond optimization
  - Bayesian model fitting

Rule zero

#### Rule zero

Understand your problem  $\Longrightarrow$  often a gray box

#### Rule zero

Understand your problem  $\Longrightarrow$  often a gray box

### Input variables:

• Dimensionality: low ( $D\lesssim 10$ ) or high ( $D\gg 20$ )

#### Rule zero

Understand your problem  $\Longrightarrow$  often a gray box

### Input variables:

- Dimensionality: low ( $D\lesssim 10$ ) or high ( $D\gg 20$ )
- Bounds: Think of *hard* and *plausible* bounds

#### Rule zero

Understand your problem  $\Longrightarrow$  often a gray box

### Input variables:

- Dimensionality: low ( $D\lesssim 10$ ) or high ( $D\gg 20$ )
- Bounds: Think of hard and plausible bounds
- Parameterization: Not all parameterizations are created equal

#### Rule zero

Understand your problem  $\Longrightarrow$  often a gray box

### Input variables:

- Dimensionality: low ( $D \lesssim 10$ ) or high ( $D \gg 20$ )
- Bounds: Think of hard and plausible bounds
- Parameterization: Not all parameterizations are created equal

### **Target function:**

Convexity: convex or non-convex

#### Rule zero

Understand your problem  $\Longrightarrow$  often a gray box

### Input variables:

- Dimensionality: low ( $D\lesssim 10$ ) or high ( $D\gg 20$ )
- Bounds: Think of hard and plausible bounds
- Parameterization: Not all parameterizations are created equal

### **Target function:**

- Convexity: convex or non-convex
- Smoothness: smooth or rough





#### Rule zero

Understand your problem  $\Longrightarrow$  often a gray box

### Input variables:

- Dimensionality: low ( $D\lesssim 10$ ) or high ( $D\gg 20$ )
- Bounds: Think of hard and plausible bounds
- Parameterization: Not all parameterizations are created equal

### **Target function:**

- Convexity: convex or non-convex
- Smoothness: smooth or rough



• Deterministic or stochastic

#### Rule zero

Understand your problem  $\Longrightarrow$  often a gray box

### Input variables:

- Dimensionality: low  $(D \lesssim 10)$  or high  $(D \gg 20)$
- Bounds: Think of hard and plausible bounds
- Parameterization: Not all parameterizations are created equal

### **Target function:**

- Convexity: convex or non-convex
- Smoothness: smooth or rough



- Deterministic or stochastic
  - ▶ If stochastic  $\Longrightarrow$  minimize  $\mathbb{E}[f(x)]$

#### Rule zero

Understand your problem  $\Longrightarrow$  often a gray box

### Input variables:

- Dimensionality: low ( $D \lesssim 10$ ) or high ( $D \gg 20$ )
- Bounds: Think of hard and plausible bounds
- Parameterization: Not all parameterizations are created equal

### **Target function:**

- Convexity: convex or non-convex
- Smoothness: smooth or rough



- Deterministic or stochastic
  - ▶ If stochastic  $\implies$  minimize  $\mathbb{E}[f(x)]$
- Computational cost: cheap ( $\ll$  0.01 s), moderate (0.01-1 s), or expensive ( $\gg$  1 s)

Fundamental theorem

#### Fundamental theorem

'No Free Lunch' theorem  $\Longrightarrow$  no single best optimizer for all problems

#### Fundamental theorem

#### Fundamental theorem

'No Free Lunch' theorem  $\implies$  no single best optimizer for all problems (But not all methods are created equal!)

Is your problem smooth?

#### Fundamental theorem

- Is your problem smooth?
  - ▶ If you have the gradient ⇒⇒ BFGS

#### Fundamental theorem

- Is your problem smooth?
  - ▶ If you have the gradient ⇒ BFGS
  - ▶ If low-D and cheap  $\Longrightarrow$  BFGS with finite differences

#### Fundamental theorem

- Is your problem smooth?
  - ▶ If you have the gradient ⇒ BFGS
  - ▶ If low-*D* and cheap ⇒ BFGS with finite differences
  - ▶ If low-D and (moderately) costly  $\Longrightarrow$  BADS

#### Fundamental theorem

- Is your problem smooth?
  - ▶ If you have the gradient ⇒ BFGS
  - ▶ If low-*D* and cheap ⇒ BFGS with finite differences
  - ▶ If low-D and (moderately) costly  $\Longrightarrow$  BADS

#### Fundamental theorem

- Is your problem smooth?
  - ▶ If you have the gradient ⇒ BFGS
  - ▶ If low-*D* and cheap ⇒ BFGS with finite differences
  - ▶ If low-D and (moderately) costly ⇒ BADS
- Is your problem rough or noisy?

#### Fundamental theorem

- Is your problem smooth?
  - ▶ If you have the gradient ⇒ BFGS
  - ▶ If low-*D* and cheap ⇒ BFGS with finite differences
  - ▶ If low-D and (moderately) costly ⇒ BADS
- Is your problem rough or noisy?
  - First, try and make it smooth and deterministic!

#### Fundamental theorem

- Is your problem smooth?
  - ▶ If you have the gradient ⇒ BFGS
  - ▶ If low-*D* and cheap ⇒ BFGS with finite differences
  - ▶ If low-D and (moderately) costly ⇒ BADS
- Is your problem rough or noisy?
  - First, try and make it smooth and deterministic!
  - ▶ If gradient is available and high- $D \Longrightarrow \mathsf{SGD}$  (e.g., ADAM)

#### Fundamental theorem

- Is your problem smooth?
  - ▶ If you have the gradient ⇒ BFGS
  - ▶ If low-*D* and cheap ⇒ BFGS with finite differences
  - ▶ If low-D and (moderately) costly ⇒ BADS
- Is your problem rough or noisy?
  - First, try and make it smooth and deterministic!
  - ▶ If gradient is available and high- $D \Longrightarrow \mathsf{SGD}$  (e.g., ADAM)
  - ▶ If high-D and cheap  $\Longrightarrow$  CMA-ES

#### Fundamental theorem

- Is your problem smooth?
  - ▶ If you have the gradient ⇒ BFGS
  - ▶ If low-D and cheap  $\Longrightarrow$  BFGS with finite differences
  - ▶ If low-D and (moderately) costly ⇒ BADS
- Is your problem rough or noisy?
  - First, try and make it smooth and deterministic!
  - ▶ If gradient is available and high- $D \Longrightarrow \mathsf{SGD}$  (e.g., ADAM)
  - ▶ If high-D and cheap  $\Longrightarrow$  CMA-ES
  - ▶ If low-D and (moderately) costly  $\Longrightarrow$  BADS

#### Fundamental theorem

- Is your problem smooth?
  - ▶ If you have the gradient ⇒ BFGS
  - ▶ If low-*D* and cheap ⇒ BFGS with finite differences
  - ▶ If low-D and (moderately) costly ⇒ BADS
- Is your problem rough or noisy?
  - First, try and make it smooth and deterministic!
  - ▶ If gradient is available and high- $D \Longrightarrow \mathsf{SGD}$  (e.g., ADAM)
  - ▶ If high-D and cheap  $\Longrightarrow$  CMA-ES
  - ▶ If low-D and (moderately) costly ⇒ BADS
- Is your problem high-D, costly, and you do not have the gradient?

#### Fundamental theorem

- Is your problem smooth?
  - ▶ If you have the gradient ⇒ BFGS
  - ▶ If low-*D* and cheap ⇒ BFGS with finite differences
  - ▶ If low-D and (moderately) costly ⇒ BADS
- Is your problem rough or noisy?
  - First, try and make it smooth and deterministic!
  - ▶ If gradient is available and high- $D \Longrightarrow SGD$  (e.g., ADAM)
  - ▶ If high-D and cheap  $\Longrightarrow$  CMA-ES
  - ▶ If low-D and (moderately) costly ⇒ BADS
- Is your problem high-D, costly, and you do not have the gradient?
  - Give up and pray

The golden rule

### The golden rule

No optimizer can guarantee to find the global optimum

### The golden rule

No optimizer can guarantee to find the global optimum

 $\Longrightarrow {\sf Always} \ {\sf perform} \ {\sf multiple} \ {\sf distinct} \ {\sf optimization} \ {\sf runs} \ ({\sf `restarts'})$ 

### The golden rule

No optimizer can guarantee to find the global optimum

⇒ Always perform multiple distinct optimization runs ('restarts')

• How to choose starting points?

### The golden rule

No optimizer can guarantee to find the global optimum

⇒ Always perform multiple distinct optimization runs ('restarts')

- How to choose starting points?
  - Draw from prior distribution

### The golden rule

No optimizer can guarantee to find the global optimum

⇒ Always perform multiple distinct optimization runs ('restarts')

- How to choose starting points?
  - Draw from prior distribution
  - Draw from a 'plausible' box

### The golden rule

No optimizer can guarantee to find the global optimum

⇒ Always perform multiple distinct optimization runs ('restarts')

- How to choose starting points?
  - Draw from prior distribution
  - Draw from a 'plausible' box
  - Sieve method

#### The golden rule

No optimizer can guarantee to find the global optimum

⇒ Always perform multiple distinct optimization runs ('restarts')

- How to choose starting points?
  - Draw from prior distribution
  - Draw from a 'plausible' box
  - Sieve method
  - Use space-filling designs (quasi-random sequences)



Luigi Acerbi

#### The golden rule

No optimizer can guarantee to find the global optimum

- How to choose starting points?
  - Draw from prior distribution
  - Draw from a 'plausible' box
  - Sieve method
  - Use space-filling designs (quasi-random sequences)





Space-filling

#### The golden rule

No optimizer can guarantee to find the global optimum

- How to choose starting points?
  - Draw from prior distribution
  - Draw from a 'plausible' box
  - Sieve method
  - Use space-filling designs (quasi-random sequences)
- How many restarts?
  - As many as you need



Space-filling

#### The golden rule

No optimizer can guarantee to find the global optimum

- How to choose starting points?
  - Draw from prior distribution
  - Draw from a 'plausible' box
  - Sieve method
  - Use space-filling designs (quasi-random sequences)



- How many restarts?
  - As many as you need
  - ▶ Informally, check that 'most' points converge to the same solution

#### The golden rule

No optimizer can guarantee to find the global optimum

- How to choose starting points?
  - Draw from prior distribution
  - Draw from a 'plausible' box
  - Sieve method
  - Use space-filling designs (quasi-random sequences)



- How many restarts?
  - As many as you need
  - Informally, check that 'most' points converge to the same solution
  - ▶ Bootstrap approach (Acerbi, Dokka et al., PLoS Comp Biol 2018)

- Introduction
  - Of models and likelihoods
- 2 Model fitting
  - A statistical estimation problem
  - Model fitting via optimization
  - Optimization algorithms
- 3 Bayesian Adaptive Direct Search (BADS)
  - Bayesian Optimization
  - BADS
- 4 Cheat sheets
- Beyond optimization
  - Bayesian model fitting

# Bayesian posteriors

Luigi Acerbi

## Bayesian posteriors



n = 1353 trials

# Bayesian posteriors



n = 90 trials

- Check for parameter uncertainty, trade-offs, identifiability
  - Deeper understanding of your model
  - ► Robustness of claims (Acerbi, Ma, Vijayakumar, NeurIPS 2014)

- Check for parameter uncertainty, trade-offs, identifiability
  - Deeper understanding of your model
  - ▶ Robustness of claims (Acerbi, Ma, Vijayakumar, NeurIPS 2014)
- Less overfitting

- Check for parameter uncertainty, trade-offs, identifiability
  - Deeper understanding of your model
  - ▶ Robustness of claims (Acerbi, Ma, Vijayakumar, NeurIPS 2014)
- Less overfitting
- Use posterior samples to compute model comparison metrics
  - DIC, WAIC, LOO-CV

- Check for parameter uncertainty, trade-offs, identifiability
  - Deeper understanding of your model
  - ▶ Robustness of claims (Acerbi, Ma, Vijayakumar, NeurIPS 2014)
- Less overfitting
- Use posterior samples to compute model comparison metrics
  - DIC, WAIC, LOO-CV
- Fully taking into account uncertainty is just better

- Check for parameter uncertainty, trade-offs, identifiability
  - Deeper understanding of your model
  - ▶ Robustness of claims (Acerbi, Ma, Vijayakumar, NeurIPS 2014)
- Less overfitting
- Use posterior samples to compute model comparison metrics
  - DIC, WAIC, LOO-CV
- Fully taking into account uncertainty is just better

How do I get Bayesian posteriors?

- MCMC (slice sampling, NUTS)
- Variational inference

Alternative to MCMC (for low-D, moderately costly problems)



Acerbi, NeurIPS 2018



Acerbi, NeurIPS 2018



Acerbi, NeurIPS 2018



Acerbi, NeurIPS 2018



Acerbi, NeurIPS 2018



Acerbi, NeurIPS 2018



Acerbi, NeurIPS 2018



Acerbi, NeurIPS 2018



Acerbi, NeurIPS 2018



Acerbi, NeurIPS 2018



Acerbi, NeurIPS 2018



Acerbi, NeurIPS 2018



Acerbi, NeurIPS 2018



Acerbi, NeurIPS 2018



Acerbi, NeurIPS 2018



Acerbi, NeurIPS 2018

#### Applied example

RESEARCH ARTICLE

#### Bayesian comparison of explicit and implicit causal inference strategies in multisensory heading perception

Luigi Acerbi 💿 🖾, Kalpana Dokka 💀, Dora E. Angelaki, Wei Ji Ma

Published: July 27, 2018 • https://doi.org/10.1371/journal.pcbi.1006110

#### Final slide

- Contact me at luigi.acerbi@gmail.com
- Optimization demos: github.com/lacerbi/optimviz
- BADS available at github.com/lacerbi/bads
- VBMC available at github.com/lacerbi/vbmc
- Tutorial: github.com/lacerbi/workshop-nyu-2019

#### Final slide

- Contact me at luigi.acerbi@gmail.com
- Optimization demos: github.com/lacerbi/optimviz
- BADS available at github.com/lacerbi/bads
- VBMC available at github.com/lacerbi/vbmc
- Tutorial: github.com/lacerbi/workshop-nyu-2019

#### Thanks!

(Time for questions?)