Hard Questions from Test Math Spring 2021

Let Q(b) denote the right-tail probability of a standard Gaussian random variable. Suppose that X and Y are jointly-distributed Gaussian random variables with $X \sim N(3, 18)$ and $Y \sim N(10, 5)$. If the correlation coefficient between X and Y is 0.8, then $P[Y > 0 \mid X = 3] = Q(b)$, where b is:

12 0/1 point

Let X_i , i = 1, ... 15 denote a collection of mutually independent, identically distributed random variables with common mean 2 and variance 10. Let S be the sum of all the X_i 's above. If Q(x) is the right-tail probability of the standard Gaussian distribution, then $P[S > 3] \approx Q(b)$, where b is

16 0/1 point

U is a uniform random variable on [0, 1], and Y = cos $\left(\frac{\pi}{2}U\right)$. The probability density function of Y at argument 0.7 is

7 0/1 point

Let Q(b) denote the right-tail probability of a standard Gaussian random variable. Suppose that X and Y are jointly-distributed Gaussian random variables with $X \sim N$ (16,6) and $Y \sim N$ (20,13). If the correlation coefficient between X and Y is 0.3, then $P[Y > 0 \mid X = 3] = Q(b)$, where b is:

Given $P[A \cup B] = 0.6$ and $P[A \cup B^C] = 0.43333333$, where B^C represents the complement of B. The value of P[A] is :

0.0166667

0.1333333

Correct Answer: 0.0166667

0.1

Regrade 0 /1 point