ゼミノート #4

Fibered Categories

七条彰紀

2018年11月27日

1 Motivation : Fibered Categories

"family"あるいは "object on/over a base space" (例えば schemes over a scheme や sheaves on a scheme など) の抽象的な枠組が fibered category である. 今後は fibered category が提供する枠組を sheaves on a site の貼り合わせや stack の定義の為に活用する.

2 Definition: Fibered Categories

 $\mathbf{X}, \mathbf{B} :: \text{category }$ と関手 $\pi \colon \mathbf{X} \to \mathbf{B}$ を考える.

- π を projection あるいは fibration と呼ぶ.
- X を fibered category と呼ぶ.
- $\pi(O) = P$ であるとき O は P の上にある (O is over P) という.

定義 2.1 (Cartesian Arrow, Cartesian Lifting, Cartesian Functor, Base Preserving Natural Transformation, [3] and [2])

(i) 以下の性質 (Triangle Lifting という) を満たす \mathbf{X} の射 ϕ : $x \to y$ を cartesian arrow という: (1) にあるような対象と射があるとき, (2) の様に射 $z \to y$ がただ一つ存在し, 可換と成る.

(ii) $y \in \mathbf{X}, u \to \pi(y) \in \mathbf{B}$ に対し、以下の図式を満たす $^{\dagger 1}$ $\underline{x} \in \mathbf{X}$ と cartesian arrow :: $x \to y \in \mathbf{X}$ を、cartesian lifting(or cleavage) of $u \to \pi(y)$ と呼ぶ.

- (iii) 任意の $y \in \mathbf{X}$ と $u \to \pi(y) \in \mathbf{B}$ に対して cartesian lifting が存在する $\pi \colon \mathbf{X} \to \mathbf{B}$ を fibered category という. fibered category over \mathbf{B} が成す圏を $\mathbf{Fib}(\mathbf{B})$ とする.
- (iv) 二つの fibered category :: π : $\mathbf{X} \to \mathbf{B}, \pi'$: $\mathbf{X}' \to \mathbf{B}$ について, $\mathbf{X} \succeq \mathbf{X}'$ の間の射 (morphism of fibered categories, cartesian functor) とは, functor :: g: $\mathbf{X} \to \mathbf{X}'$ であって, π, π' と整合的 $^{\dagger 2}$ であり, cartesian arrow を cartesian arrow に写すもの.

(v)

注意 2.2

少し圏論の言葉を整理しておく.

対象を 0-morphism (あるいは 0-cell) と呼ぶ時, 非負整数 $k \ge 0$ について, k-morphism (cell) は (k-1)-

 $^{^{\}dagger 1}$ すなわち, $\pi(x)=u,\pi(x o y)=u o\pi(y)$ を満たす.

^{†2} すなわち $\pi' \circ q = \pi$ を満たす.

morphism (cell) の間の射と定義できる. こうして k-morphism (cell) は階層を成す. そこで, ここで定義した性質を階層別にまとめると次のように成る.

arrow	arrow in a fibered category	(i) Cartesian Arrow, (ii) Cartesian Lifting
0-cell	fibered category	(iii) Existence of Cartesian Lifting
1-cell	functor between fibered categories	(iii) Morphism of Fibered Category
2-cell	nat. trans. between functors	(iv) Base-Preserving Natural Transformation

通常の圏同型を 1-iso と呼び $\stackrel{1}{\cong}$ と書く. この時、階層ごとの iso/equiv は以下のようなものである.

iso.	$x \cong y$	\iff	2 つの arrow ϕ : $x \rightleftarrows y$: ψ が存在し、 $\psi \circ \phi = \mathrm{id}_x, \phi \circ \psi = \mathrm{id}_y$.
1-iso.	$x \stackrel{1}{\cong} y$	\iff	2 つの 1-cell ϕ : $x \rightleftarrows y$: ψ が存在し、 $\psi \circ \phi = \mathrm{id}_x, \phi \circ \psi = \mathrm{id}_y$.
1-equiv.	$x \stackrel{1}{\simeq} y$	\iff	2 つの 1-cell ϕ : $x \rightleftarrows y$: ψ が存在し, $\psi \circ \phi \cong \mathrm{id}_x, \phi \circ \psi \cong \mathrm{id}_y$.
2-iso.	$x \stackrel{2}{\cong} y$	\iff	2 つの 2 -cell ϕ : $x \rightleftarrows y$: ψ が存在し、 $\psi \circ \phi = \mathrm{id}_x, \phi \circ \psi = \mathrm{id}_y$.
2-equiv.	$x \stackrel{2}{\simeq} y$	\iff	2 つの 2 -cell ϕ : $x \rightleftarrows y$: ψ が存在し, $\psi \circ \phi \stackrel{1}{\cong} \mathrm{id}_x, \phi \circ \psi \stackrel{1}{\cong} \mathrm{id}_y$.

注意 2.3

 $\mathbf{Fib}(\mathbf{B})$ は 2-category である。2-category は 2-morphism ($\mathbf{Fib}(\mathbf{B})$ では natural transformation) に "vertical composition" と "horizontal composition" の二種類の合成が定まる圏である。詳しくはこのノートでは触れない。

定義 2.4 (Base-Preserving Natural Transformation, HOM, Equivalence)

(i) 二つの fibered category :: π : $\mathbf{X} \to \mathbf{B}$, π' : $\mathbf{X}' \to \mathbf{B}$ の間の 2 つの射 g, g': $\mathbf{X} \to \mathbf{X}'$ と natural transformation :: α : $g \to g'$ を考える.

任意の $x \in \mathbf{X}$ について, $\pi'(\alpha_x): \pi'(g(x)) \to \pi'(g'(x))$ が恒等射になるとき, α を base-preserving natural transformation という.

- (ii) $\mathbf{X}, \mathbf{X}' \in \mathbf{Fib}(\mathbf{B})$ について、 $\mathrm{HOM}_{\mathbf{B}}(\mathbf{X}, \mathbf{X}')$ を次の圏とする.
 - Object. morphism of fibered category $X \to X'$.

Arrows. base-preserving natural transformation.

(iii) morphism of fibered category :: $g: \mathbf{X} \to \mathbf{X}'$ が equivalence of fibered category であるとは、別の morphism $h: \mathbf{X}' \to \mathbf{X}$ が存在し、 $h \circ g \succeq \mathrm{id}_{\mathbf{X}}$ 、 $g \circ h \succeq \mathrm{id}_{\mathbf{X}'}$ の間に base-preserving isomorphism が 存在すること $^{\dagger 3}$.

$$h \circ g \stackrel{2}{\cong} \mathrm{id}_{\mathbf{X}}, g \circ h \stackrel{2}{\cong} \mathrm{id}_{\mathbf{X}'}.$$

二つの fibrered category が equivalent であるとは、二つの間に equivalence of fibered category が存

^{†3} 基本的には category of equivalence の定義と同じである.

在するということである.

注意 2.5

2-morphism (2-cell) を base-preserving natural transformation に制限した fibered category の圏を ${\bf Fib}^{\rm bp}({\bf B})$ とすると、HOM は ${\rm Hom}_{{\bf Fib}^{\rm bp}({\bf B})}$ であるし、equivalence of fibered category は ${\bf Fib}^{\rm bp}({\bf B})$ での 2-iso である.

3 Examples : Fibered Categories

例 3.1

morphism of schemes :: $f: X \to Y$ を取る. この f に対し、f の pullback が成す圏 $\Pi(f)$ を考えることが出来る. 以下のように定義する.

Arrow. pullback diagram と整合的な射の組 $(Z \to Z', P \to P')$.

 $\Pi(f)$ から次のように projection が定まる.

$$\pi\colon \quad \Pi(f) \qquad \to \quad \mathbf{Sch}/Y$$

$$P \xrightarrow{\text{p.b.}} X$$

$$\downarrow \quad \text{p.b.} \quad \downarrow f \quad \mapsto \quad [Z \to Y]$$

$$Z \xrightarrow{\text{p.b.}} Y$$

ここで注意したいのは、 $\Pi(f)$ は pullback of f の同型類や代表ではなく、pullback of f 全てであることである。 したがって $\pi\colon\Pi(f)\to\mathbf{Sch}/Y$ は pullback of f を選択公理無しに扱う枠組を与えている。

例 3.2

category :: \mathbf{C} について、arrow category :: \mathbf{C}^{\rightarrow} を以下で定める.

Object. \mathbf{C} の射($[x \to u]$ の様に表記する).

Arrow. 射
$$[x \to u] \to [y \to v]$$
 は次の図式を可換にする $x \to y, u \to v$ の組:
$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow$$

すると Cartesian Lifting は ${f C}$ が pullback を持つことを意味し、Triangle Lifting は pullback の普遍性を意味する.

例 3.3

以下の関手は fibration である.

$$\pi \colon \mathbf{Sch}/X \to \mathbf{Sch}$$

$$[Y \to X] \mapsto Y$$

4 Propositions: Fibered Categories

命題 4.1 ([1] Prop3.4)

- (i) cartesian arrow の合成は cartesian arrow である.
- (ii) $\phi: x \to y, \psi: y \to z$ について, $\psi \circ \phi, \psi:$ cartesian arrow ならば $\psi:$ cartesian arrow.

(証明). Triangle Lifting のみを用いて証明できる. 簡単なので証明は省略する.

次の命題の証明は Cartesian Lifting と Triangle Lifting の使い方をよく示している.

命題 4.2

 $\pi\colon \mathbf{X}\to \mathbf{B}$ を fibered category over \mathbf{B} とする. \mathbf{X} の射 $x\to y$ は以下のような二つの射の合成 $x\to z\to y$ に 分解できる.

- $x \to z :: \text{ over id}_{\pi(x)}$.
- $z \to y$:: cartesian, over $\pi(x \to y)$.

(証明). $\pi(\phi)$ の cartesian lifting として以下の図式 (1) の z と $z \to y$ を得る. さらに Triangle Lifting により図式 (2) の通り $\mathrm{id}_{\pi(x)}$ 上の射 $x \to z$ を得る.

命題 4.3

 π : $\mathbf{X} \to \mathbf{B}$ を fibered category とする. \mathbf{X} の任意の cartesian morphism :: ϕ : $x \to y$ について, ϕ :: iso と $\Phi := \pi(\phi)$:: iso は同値.

(証明). 以下の図式 (1) に Triangle Lifting を用いれば、 $\phi \circ \psi = \mathrm{id}_y$ なる射 $\psi \colon y \to x$ を得る. さらに図式 (2) に於いて、 $\phi \circ \mathrm{id}_x = \phi = \phi \circ \psi \circ \phi$ と Triangle Lifting の一意性から $\psi \circ \phi = \mathrm{id}_x$ を得る.

5 Fiber of Fibered Categories

5.1 Motivation

5.2 Definition

定義 **5.1** (Fiber)

 π : $\mathbf{X} \to \mathbf{B}$ を fibered category とする. 任意の $b \in \mathbf{B}$ について、以下で定める圏を \mathbf{X}_b あるいは $\mathbf{X}(b)$ と書き、fiber of π at (over) b と呼ぶ:

Object. $\pi(x) = b$ となる object :: $x \in \mathbf{X}$.

Arrow. $\pi(\phi) = \mathrm{id}_b$ となる arrow :: $\phi \in \mathbf{X}$.

morphism of fibered category :: $g: \mathbf{X} \to \mathbf{Y}$ から fiber の間に誘導される射を $g_B: \mathbf{X}_B \to \mathbf{Y}_B$ と書く.

注意 5.2

標語的には次のように定義されている.

$$\mathbf{X}_b = \mathbf{X}(b) :=$$
" $\pi^{-1} \left(b \bigcap \mathrm{id} \right)$ "

X は上で定義した fiber と cartesian lifting によって contravariant functor に成ることが予想される. しかしこれは一般には正しくない. 正確には、fibered category の fiber は一般に psuedo-functor となる. このことは後に証明する.

定義 5.3 (Psuedo-functor (weak 2-functor))

(以下の URL を参照せよ: https://stacks.math.columbia.edu/tag/003G.) 2-圏 \mathbf{C} から 2-圏 \mathbf{D} への psuedo-functor :: $F: \mathbf{C} \to \mathbf{D}$ とは, \mathbf{C} の object を \mathbf{D} の object へ, \mathbf{C} の arrow を \mathbf{D} の arrow へ対応させ るものであり,以下を満たす.

(a) 任意の $c \in \mathbb{C}$ について 2-isomorphism $\alpha_c \colon F(\mathrm{id}_c) \to \mathrm{id}_{F(c)}$ が存在する.

- (b) 任意の $f: c \to d, g: d \to e \in \mathbb{C}$ について 2-isomorphism $\alpha_{g,f}: F(g \circ f) \to F(g) \circ F(f)$ が存在する.
- (c) $f: x \to y, g: y \to z, h: z \to w$ について以下の等式が成り立つ.

5.3 Propositions

補題 5.4

 π : $\mathbf{X} \to \mathbf{B}$ を fibered category とする. 任意の \mathbf{B} の射 $f: b \to b'$ と $x \in \mathbf{X}(b')$ について、f と x に対する cartesian lifting は、同型を除いて一意に存在する.

(証明). 存在は fibered category の定義から明らか. 一意性は cartesian lifting が普遍性を持つことを Triangle Lifting を用いて示せば良い. ■

補題 5.5

 $\pi: \mathbf{X} \to \mathbf{B}$ を fibered category とする. このとき, fiber of π は psuedo-functor である.

(証明). $b \in \mathbf{B}$ について、 $\mathbf{X}(b)$ は既に既に定義した。 \mathbf{B} の射 ϕ : $b' \to b$ について、関手 $\mathbf{X}(\phi)$: $\mathbf{X}(b) \to \mathbf{X}(b')$ は次のように定められる。まず $u \in \mathbf{X}(b)$ について、 $\mathbf{X}(\phi)(u)$ は ϕ による u の pullback :: ϕ^*u (cartesian lifting of ϕ) である。次に $\mathbf{X}(b)$ の射 λ : $u \to v$ ($\mathbf{X}(b)$ の定義から $\pi(\lambda) = \mathrm{id}$ を満たす)について、下の図式 に triangle lifting を用いて $\phi^*u \to \phi^*v$ を得る。

定義 (5.3) にある条件 (a) については、各 $b \in \mathbf{B}$ について、命題 (4.3) を用いれば同型の存在が分かる. 条件 (b) については、各 $f: c \to d, g: d \to e \in \mathbf{C}$ と各 $b \in \mathbf{B}$ について補題 (5.4) を用いれば

 $\mathbf{X}(g \circ f)(b) \cong \mathbf{X}(f) \circ \mathbf{B}(g)(b)$ が得られる. あとはこの同型が自然である(すなわち自然変換を定める)ことを確かめれば良い.

この事実は次のセミナーで用いる.

定理 5.6 (2-Yoneda Lemma)

 $\pi\colon \mathbf{X}\to \mathbf{B}$:: fibered category とする. 以下のように関手を定める.

$$Y : \mathbf{B} \rightarrow \mathbf{Fib}(\mathbf{B})$$
 $U \mapsto \mathbf{B}/U$

ここで \mathbf{B}/U は例 (3.3) にあるとおり fibered category over \mathbf{B} である. この時、圏同値 $\mathrm{HOM}_{\mathbf{U}}(Y(U),\mathbf{X}) \to \mathbf{X}(U)$ が成り立つ.

注意 5.7

この定理から、 $\mathbf{X}(U)$ を「空間」 \mathbf{X} の U-rational points と考えることが出来る。また、この定理から関手 Y が $U \in \mathbf{B}$ の fibered category over \mathbf{B} への「昇格」を与えていることが分かる.

系 5.8

圏同値 $U, V \in \mathbf{B}$ について $Y(U) \simeq Y(V)$ と $U \cong V$ は同値.

参考文献

- [1] Notes on grothendieck topologies, fibered categories and descent theory (version of october 2, 2008).
- [2] Behrang Noohi. A quick introduction to fibered categories and topological stacks. http://www.maths.qmul.ac.uk/~noohi/papers/quick.pdf.
- [3] Martin Olsson. Algebraic Spaces and Stacks (American Mathematical Society Colloquium Publications). Amer Mathematical Society, 4 2016.