Color Filter for Clothingretail Companies

Euclidean Distance for Color Resemblance

PRIMARK*

next

The Task

Rank(1), Dist(53.2335)

Rank(5), Dist(81.198)

Rank(9), Dist(97.5375)

Retrieving Red Items (255,0,0)

Rank(2), Dist(76.005)

Rank(6), Dist(90.6058)

Rank(10), Dist(108.9392)

Rank(3), Dist(78.4275)

Rank(7), Dist(93.7509)

Rank(11), Dist(114.9551)

Rank(4), Dist(80.8757)

Rank(8), Dist(94.5984)

Rank(12), Dist(128.8142)FindingF

Yellow (255,255,0) Clothes

Rank(1), Dist(86.1324)

Rank(2), Dist(94.1487)

Rank(3), Dist(101.6008)

The Algorithm

Input the color (C) to search for, example (140,183,247)
Create [] arrayDistance (double)

For All images in the folder (1.png – 60.png)

Read Image (at position **P**)

Create varR, varG, varB, count

Scan image (column-wise or row-wise)

If current pixel color is not a background

Add R to varR

Add G to varG

Add B to varB

Increment count

End if

End Scan

Get the mean color (meanC) of varR, varG, varB
Calculate the euclidean distance (edist) between C and meanC
Add edist to arrayDistance at position P

End For

Sort **arrayDistance** in ascending order (preserve the indexation) Display the top **n** images with colors closest to **C**

