

Number representations

Microprocessor Techniques and Embedded Systems

Tomas Fryza

September 2018

Contents

- Numerical Systems in Microprocessor Techniques
 - Decimal, Hexadecimal (Hex), and Binary Systems
 - Transforming Numbers Between Systems

Fixed-point Representation

Floating-point Representation

Contents

- Numerical Systems in Microprocessor Techniques
 - Decimal, Hexadecimal (Hex), and Binary Systems
 - Transforming Numbers Between Systems

Fixed-point Representation

Floating-point Representation

Decimal and Hexadecimal (Hex) Systems

- Decimal system:
 - Base: 10
 - Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - Notation: without any prefix or sufix
- Hexadecimal system:
 - Base: 16
 - Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
 - Notation by subscript: 2BA6₁₆, or prefixes: 0xD2, \$25A4
 - Hexadecimal system represents values in more compact form than binary system.
- In the binary system there are only two symbols or possible digit values, 0 and 1.
 - Base: 2
 - Digits: 0, 1
 - Notation by subscript: 11002, or prefix 0b1010
- In binary system values can be considered as fixed-point or floating-point:
 - Fixed-point: integers (unsigned, signed), fractional representation.
 - Floating-point (IEEE 754): single, double, extended precision.
- Suppose the integer (8-bit) has the form $\mathbf{d}=(d_7,d_6,\ldots,d_1,d_0)$.
- The left-most bit, d_7 , is the most significant bit (MSB).
- The right-most bit, d_0 , is the *least significant bit* (LSB).

Transforming Numbers Between Systems

Table: Conversion table between dec, bin and hex.

Decimal	Binary	Hexadecimal	Decimal	Binary	Hexadecimal
0	0000	0	10	1010	а
1	0001	1	11	1011	b
2	0010	2	12	1100	С
3	0011	3	13	1101	d
4	0100	4	14	1110	е
5	0101	5	15	1111	f
6	0110	6	16	10000	10
7	0111	7	17	10001	11
8	1000	8	18	10010	12
9	1001	9			

- ullet We would like to transform number with base X into new one, that uses Y base.
- The method of continuous dividing and multiplying could be used:
 - ullet Dividing numbers on the left side of radix point with Y
 - ullet Multiplying numbers on the right side of radix point by Y

Decimal to Binary Transformation - Integer Numbers

Example

Transform 25 (decimal) into binary number.

Solution

Result is $1\,1001_2$.

Decimal to Binary Transformation - Rational Numbers

Example

Transform 0.375 (decimal) into binary number.

Solution

Method of continuous multiplying numbers on the right side of radix point by binary base (i.e. 2).

Result is 0.011_2 .

Decimal to Binary Transformation - Fast Method

Example

Transform 53 (decimal) into binary number using fast method.

Solution

$$2^5 + \ 2^4 + \ 2^2 + \ 2^0 = \mathbf{1} \cdot 2^5 + \ \mathbf{1} \cdot 2^4 + \ \mathbf{0} \cdot 2^3 + \ \mathbf{1} \cdot 2^2 + \ \mathbf{0} \cdot 2^1 + \ \mathbf{1} \cdot 2^0 \ \ \textit{Result is } 11\ 0101_2.$$

10 > 10 > 10 > 12 > 12 > 2 990

Decimal to Hexadecimal Transformation

Example

Transform 423.34 (decimal) into hexadecimal number.

Solution

(a) Method of continuous dividing with hexadecimal base (i.e. 16).

423 : 16 = 26, remaining **7** 16^0 LSB

26 : 16 = 1, remaining $10 16^1$

1: 16 = 0, remaining $1: 16^2$ MSB

Result is 1a716.

Decimal to Hexadecimal Transformation

Solution

(b) Method of continuous multiplying numbers on the right side of radix point by hexadecimal base (i.e. 16).

```
16^{-1}
0.34
          16
                    5.44
                                   first digit after zero
                           16^{-2}
0.44 ·
          16 =
                    7.04
                           16^{-3}
0.04
     · 16 =
                    0.64
                   10.24
                           16^{-4}
0.64
         16 =
                           16^{-5}
0.24
         16
                    3.84
```

procedure could continues

Result is approximately $1a7.570a3_{16}$.

Hexadecimal to Binary Transformation - Fast Method

Example

Transform 6f.a (hexadecimal) into binary number.

Solution

 $6f.a_{16} = 0110 \quad 1111 . \ 1010_2$ Result is $110 \ 1111 . \ 101_2$.

Example

Transform 11.0000 1100 1 (binary) into hexadecimal number.

Solution

11.0000 1100 $1_2=0011$. 0000 1100 $1000_2=3.0c8_{16}$ Result is $3.0c8_{16}$.

Contents

- Numerical Systems in Microprocessor Techniques
 - Decimal, Hexadecimal (Hex), and Binary Systems
 - Transforming Numbers Between Systems

- 2 Fixed-point Representation
- 3 Floating-point Representation

Integer Numbers

• An unsigned 32-bit integer has the decimal value

$$v = \sum_{n=0}^{31} d_n 2^n \tag{1}$$

and is in the range $[0, 2^{32} - 1]$.

• Signed integers are in the **two's complement** format with the MSB as the sign bit. A signed integer has the decimal value

$$v = -d_{31}2^{31} + \sum_{n=0}^{30} d_n 2^n \tag{2}$$

which is in the range $[-2^{31}, 2^{31} - 1]$.

The negative numbers are the two's complement of the positive numbers, and vice versa.

Example

Set decimal ranges for 8-bit unsigned and signed values.

Signed Integer Numbers

- The n-bit unsigned number represent a modulo (mod) 2^n system. If 1 is added to the largest number, the operation wraps around to give 0 as the answer. Therefore the finite bit system could be graphically demonstrates as a wheel.
- In signed numbers, the right half of wheel represents the positive numbers and the left half the negative numbers. This representation is the two's complement system.

Figure: Number wheel for signed integers (4-bit numbers example).

Two's Complement Format

- Algorithm for two's complement transformation:
 - (a) Negation of all bits (i.e. one's complement format).
 - (b) Add one.

Example

$$-2 + 3 = ?$$

Solution

- (a) Use positive value +2 and invert all bits: 0010 ightarrow 1101
- (b) Add one in binary: 1101 + 0001 = 1110 and get -2

$$\begin{array}{cccc} & 1110 & -2_{10} \\ + & 0011 & 3_{10} \\ \hline & 1\ 0001 & 1_{10} \end{array}$$

Fractional Fixed-Point Representation

- Fractional fixed-point numbers (n-bit) has values $[-1, 1-2^{-(n-1)}]$
- Conversion of binary fraction (n = 32) to a decimal fraction:

$$v = -d_0 2^0 + \sum_{n=1}^{32} d_n 2^{-n}$$
(3)

• The sign bit has a weight of negative 1 and the weights of the other bits are positive powers of 1/2

Example

Find out the binary representations for minimal and maximal 8-bit fractional fixed-point values.

Contents

- Numerical Systems in Microprocessor Techniques
 - Decimal, Hexadecimal (Hex), and Binary Systems
 - Transforming Numbers Between Systems

2 Fixed-point Representation

3 Floating-point Representation

Floating-Point Representation

- IEEE floating-point numbers can be normal numbers, denormalized (or subnormal) numbers, NaNs (not a number), and infinity numbers
- According to IEEE 754 standard, there are three floating-point formats:
 - 32-bit single precision
 - 64-bit double precision
 - 80-bit extended precision
- Every format contains sign bit, biased exponent and mantissa (or fractional part)

Figure: IEEE single and double precision floating-point formats

Floating-point single-precision format

- Sign bit = 1 ⇔ negative values:
 - signed values are no more express by the two'complement like fixed-point formats; opposite numbers differ by sign bit only
- Fraction:
 - represents the most important bits
 - binary value is normalized ⇒ radix point id shifted after the first "one"
- Exponent:
 - could express both positive and negative offset
 - ullet the bias is always added to the specific offset $2^{nexp-1}-1$ where nexp is number of bits for single-precision exponent. Therefore the stored exponent value is always positive. Bias for single-precision is 127_{10}

Figure: Structure of floating-point single-precision

• Single-precision range is approx. $\pm 3.4 \cdot 10^{38}$

Single Precision Floating-Point Representation

Figure: IEEE single precision floating-point format.

Example

Convert +14.625 to single precision floating-point number.

Solution

- (1) $14.625_{10} \rightarrow 1110.101_2$,
- (2) Normalized form: $1110.101 \rightarrow 1.110101 \cdot 2^3$,
- (3) 23-bit fraction: 1101 0100 0000 0000 0000 000
- (4) Exponent: $3 + bias = 3 + 127 = 130 \rightarrow 1000\ 0010\ (bias = 2^{nb_{exp}-1} 1$, where nb_{exp} is a number of bits for exponent part, i.e. $bias = 2^{8-1} 1 = 127$)
- (5) Positive number $\rightarrow sign = 0$

Floating-point double-precision format

Figure: Structure of floating-point double-precision

- Double-precision format has three parts:
 - sign bit (63)
 - 11-bit exponent (62:52)
 - 52-bit fraction (51:0)
- Real value in decimal system is express by equation $(-1)^{sign} \cdot 2^{exp-bias} \cdot 1$, fraction where $bias = 2^{nexp-1} 1$, i.e. for double-precision bias = 1023
- Double-precision range is approx. $\pm 1.8 \cdot 10^{308}$

Double Precision Floating-Point Representation

Figure: IEEE double precision floating-point format

Example

According to stand. IEEE 754 convert a floating-point number to the decimal form.

- 1
- 100 0001 1001
- 1101 0110 1111 0011 0100 0101 0100 0000 0000 0000 0000 0000 0000

Solution

- (1) Sign bit = $1 \Leftrightarrow$ negative number
- (2) Exponent: 100 0001 1001-bias=1049-1023=26 (bias $=2^{nb_{exp}-1}-1=2^{11-1}-1=1023$)
- (3) Normalized form: 1.1101 0110 1111 0011 0100 0101 0100 ... $2^{exponent}$
- Result -123 456 789

Special values of floating-point format

Table: Special values of floating-point format

Value	Sign	Exponent	Fraction
Zero	0	0	0
Zero	1	0	0
Infinity	1 or 0	0b1111_1111	0
NaN (not a number)	1 or 0	0b1111_1111	≠ 0

Figure: Floating-point format structure: (a) single-, (b) double-precision