Project Presentation: Task 1 - Bootable Linux Image via QEMU - <u>GitHub repository</u>.

Overview

Task 1 aims to create a bootable Linux filesystem image using QEMU that prints "hello world" upon successful startup. This is achieved through a series of shell scripts that automate the process ensuring minimal user interaction and focusing on modularity and reusability.

Structure of the Project

The project is organized into several key scripts and components:

1. build_initramfs.sh

 Builds the initial ramdisk (initramfs) required for booting (builds manually).

2. build_kernel.sh

 Downloads and compiles the Linux kernel or uses a pre-built kernel if available.

3. extract_initramfs.sh

Extracts the initramfs to prepare it for modifications or usage. (not used)

4. init

 Initialization script for the initramfs, responsible for setting up the environment.

5. main.sh

• The main script coordinates the entire process, including building the initramfs, compiling the kernel, and launching QEMU.

6. rungemu.sh

 Script that launches QEMU with the created filesystem image and displays the "hello world" message.

Methodology

1. Kernel Modification

 The "hello world" message is embedded directly into the kernel code, though this method is susceptible to changes if the kernel is updated.

2. Shell Script Integration

 The message is also added via shell script, which provides a more stable and robust solution against kernel updates.

Usage

This will execute all the necessary steps to create and run the bootable image in OEMU.

Assumptions and Limitations

Assumptions:

- The project assumes the use of Ubuntu 20.04 LTS
- Superuser privileges may be required for certain operations and additional dependency installation if missing.

Limitations:

- Direct modifications to the kernel code may not be reliable after kernel source code updates.
- Using "Init" script design to add the message ensures no dependency and better stability and robustness.

Minimal Environment Creation

To maintain a minimal and simple environment for testing, I manually constructed the initramfs. This approach was preferred to have detailed control and to ensure minimal overhead for the intended purpose

Modularity and Reusability

• The project is designed to be highly modular, allowing each script to handle a specific task. This structure enhances reusability and simplifies maintenance.

For more detailed information and to access the source code, visit the <u>GitHub</u> repository.