• Với một trạng thái s, sai số xấp xỉ là:

$$\text{Error}(s) = \left(V^{\pi}(s) - \hat{v}(s; \mathbf{w})\right)^2$$

→ gọi là squared error.

Nhưng: chỉ lỗi tại một trạng thái là chưa đủ. Cần đo tổng thể trên toàn bộ không gian trạng thái.

3. Mean Squared Value Error (MSVE)

MSVE là trung bình có trọng số của squared error trên mọi trạng thái:

$$ext{MSVE}(\mathbf{w}) = \sum_{s \in \mathcal{S}} \mu(s) \left(V^{\pi}(s) - \hat{v}(s; \mathbf{w}) \right)^2$$

Trong đó:

- $\mu(s)$: phân phối trạng thái đại diện cho tầm quan trọng của từng trạng thái.
- $\hat{v}(s;\mathbf{w})$: giá trị xấp xỉ từ hàm học.
- $V^{\pi}(s)$: giá trị thực tế của trạng thái dưới chính sách π .

Từ Monte Carlo đến TD Learning

Monte Carlo update:

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha (G_t - \hat{v}(S_t; \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(S_t; \mathbf{w})$$

- ullet G_t : Return đầy đủ (tổng phần thưởng đến cuối episode)
- Nhưng bạn không cần chờ đến cuối episode → dùng TD target:

$$U_t = R_{t+1} + \gamma \hat{v}(S_{t+1}; \mathbf{w})$$

• Đây là bootstrap estimate (ước lượng từ chính hàm giá trị hiện tại)