CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the October/November 2014 series

9702 PHYSICS

9702/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

P	age 2	Mark Scheme Syllabu		
	(Cambridge International AS/A Level – October/November 2014 9702	22	
1	(a) stre	ess = Young modulus × strain		
		= $1.8 \times 10^{11} \times 8.2 \times 10^{-4}$ or 1.476×10^{8}	C1	
		= 0.15 (0.148) GPa	A1	[2]
	(b) (i)	wavelength = $3 \times 10^8 / 12 \times 10^{12}$ = $25 \mu m$	C1 A1	[2]
	(ii)	infra-red/IR	B1	[1]
	(c) (i)	arrow drawn up to the left of 7.5 N force		
	\	approximately 5° to 40° to west of north	A1	[1]
	(ii)	 correct vector triangle or working to show magnitude of resultant force = 6.6 N 		
		allow 6.5 to 6.7 N if scale diagram	M1	[1]
		2. magnitude of acceleration = 6.6 / 0.75 [scale diagram: (6.5 to 6.7) / 0.75]	C1	
		= 8.8 m s^{-2} [scale diagram: $8.7 - 8.9 \text{ m s}^{-2}$]	A1	[2]
	(iii)	19° [use of scale diagram allow 17° to 21° (a diagram must be seen)]	B1	[1]
2	(a) (i)	straight line from $t = 0.60$ s to $t = 1.2$ s and $ V_v = 5.9$ at $t = 1.2$ s $V_v = -5.9$ at $t = 1.2$ s i.e. line is for negative values of V_v	M1 A1	[2]
	(::)			رے]
	(11)	$s = 0 + \frac{1}{2} \times 9.81 \times (0.6)^2$ or area of graph = $(5.9 \times 0.6) / 2$	C1	.
		= 1.8 (1.77) m = 1.8 (1.77) m	A1	[2]
	(iii)	$V_h = V \cos 60^\circ \text{ and } V_v = V \sin 60^\circ \text{ or } V_h = 5.9 \text{ / } \tan 60^\circ \text{ or } V_h = 5.9 \text{ tan } 30^\circ \text{ or } V_h = 5.9 \text{ / } \tan 60^\circ \text{ or } V_h = 5.9 \text{ tan } 30^\circ \text{ or } V_h = 5.9 \text{ / } \tan 60^\circ \text{ or } V_h = 5.9 \text{ or } V_h = 5.9 \text{ or } V_h = 5.9$	80° C1	
		$V_{\rm h} = 3.4 \rm m s^{-1}$	A1	[2]
	(iv)	horizontal line at 3.4 from $t = 0$ to $t = 1.2$ s [to half a small square]	B1	[1]
	(b) (i)	$KE = \frac{1}{2}mv^2$	C1	
		= $\frac{1}{2} \times 0.65 \times (6.81)^2$ [allow if valid method to find v]	C1	

[3]

[2]

Α1

C1

Α1

= 15 (15.1) J

(ii) PE = $0.65 \times 9.81 \times 1.77$

= 11(11.3) J

Syllabus

Paper

-	age 5		9702	22	
3	(a) el	ectric field strength is force per unit positive charge		B1	[1]
	(b) m	ass = volume × density (any subject, allow usual symbols or defined sy	mbols)	C1	
		= $4/3 \times \pi \times (1.2 \times 10^{-6})^3 \times 930$ (= 6.73×10^{-15})			
	w	eight = $4/3 \times \pi \times (1.2 \times 10^{-6})^3 \times 930 \times 9.81 = 6.6 \times 10^{-14} \text{N}$		M1	[2]
	(c) (i	$E = 1.9 \times 10^{3} / 14 \times 10^{-3}$ = 1.4 (1.36) × 10 ⁵ V m ⁻¹		C1 A1	[2]
	(ii	F = QE			
		Q = $6.6 \times 10^{-14} / 1.36 \times 10^{5}$ = $4.9 (4.86) \times 10^{-19} C$ [allow $4.7 \times 10^{-19} C$ if 1.4×10^{5} used]		C1 A1	[2]
	(iii	electric force increases/is greater (than weight) charge (on S) is negative to give resultant/net/sum/total force up		B1 B1	[2]
4	(a) (i	solid: (molecules) vibrate no translational motion/fixed position, liquid: translational motion		B1 B1	[2]
	(ii	gas: molecules have random (and translational) motion		B1	[1]
	(b) (i	ductile: straight line through origin then curving towards <i>x</i> -axis		B1	[1]
	(ii	brittle: straight line through origin with no or negligible curved region		B1	[1]
	(c) si	milarity: obey Hooke's law / $F \propto x$ or have elastic regions		B1	
	di	fference: brittle no or (very) little plastic region ductile has (large(r)) plastic region		B1	[2]
5	(a) (i	in series $2X \underline{or}$ in parallel $X/2$ other relationship given \underline{and} $4\times$ greater in series (than in parallel)		M1 A1	[2]
	(ii	due to the internal resistance		B1	
		total resistance for series circuit is not four times greater than resistance for parallel circuit	e	B1	[2]
	(iii	1. $E = I_1(2X + r)$ or $12 = 1.2(2X + r)$		A1	
		2. $E = I_2(X/2 + r)$ or $12 = 3.0(X/2 + r)$		A1	[2]
	(iv	2X + r = 10 and $X/2 + r = 4X = 4.0 \Omega$		A1	[1]

Mark Scheme

Page 3

Page 4			Mark Scheme	Syllabus	ıs Paper	
		(Cambridge International AS/A Level – October/November 2014	9702	22	
	(b)		I^2R or V^2/R or VI		C1	
		rati	$0 = [(1.2)^2 \times 4] / [(1.5)^2 \times 4]$ = 0.64		A1	[2]
	(c)	the	resistance (of a lamp) changes with $\it V$ or $\it I$		B1	
			or I is greater in parallel circuit or circuit 2 V or I is less in series circuit or circuit 1		B1	[2]
6	(a)		erence: vibration/oscillation (of particles)/displacement of particles energy transfer/wavefronts in longitudinal and perpendicular for tran		B1	
		trai	nsverse can be polarised, longitudinal cannot be polarised			
		sim	nilarity: both transfer/propagate energy		B1	[2]
	(b)	(i)	waves from <u>slits</u> are coherent/constant phase relationship waves overlap (at screen) with a phase difference or have a path of maxima where phase difference is integer $\times 360^{\circ}$ (or $\times 2\pi$ rad) or path difference is integer $\times \lambda$	lifference	(B1) (B1)	
		or equivalent explanation of minima e.g. (n+½)×360° max. 2			(B1)	[2]
		(ii)	maxima spacing = $\lambda D / a$		C1	
			= $(6.3 \times 10^{-7} \times 2.5) / 0.35 \times 10^{-3}$ = 4.5×10^{-3} m		A1	[2]
	(c)	(ult	ra-violet has) short <u>er</u> wavelength, hence small <u>er</u> separation/distanc	e	A1	[1]
7	(a)	(i)	A: 206, nucleon(s) or neutron(s) and proton(s) } B: 82, proton(s) } all correct		A1	[1]
		(ii)	kinetic/ E_{K} /KE		B1	[1]
	(b)	ene	ergy = $5.3 \times 1.6 \times 10^{-13}$ (J) [= 8.48×10^{-3} (J)]		C1	
		power = $(7.1 \times 10^{18} \times 5.3 \times 1.6 \times 10^{-13}) / (3600 \times 24)$				
			= 70 (69.7) W		A1	[2]