Height Estimates for r-Mean Curvature Spacelike Hypersurfaces in Product Spaces

A.Gervasio Colares (Universidade Federal do Ceará, Brazil)

Joint work with H. F. de Lima in *General Relativity and Gravitation*, v.40 (2008), 2131-2147

V International Meeting on Lorentzian Geometry Martina Franca, Italy

8-11 July, 2009

• Consider an n-dimensional Riemannian manifold M, and let \mathbb{R} be the 1-dimensional Euclidean space.

- Consider an n-dimensional Riemannian manifold M, and let \mathbb{R} be the 1-dimensional Euclidean space.
- We will denote by $-\mathbb{R} \times M$ the (n+1)-dimensional product manifold $\mathbb{R} \times M$ endowed with the Lorentzian metric

- Consider an n-dimensional Riemannian manifold M, and let \mathbb{R} be the 1-dimensional Euclidean space.
- We will denote by $-\mathbb{R} \times M$ the (n+1)-dimensional product manifold $\mathbb{R} \times M$ endowed with the Lorentzian metric

$$<$$
 , $>=-\pi_{R}^{*}dt^{2}+\pi_{M}^{*}<$, $>_{M}$,

- Consider an n-dimensional Riemannian manifold M, and let \mathbb{R} be the 1-dimensional Euclidean space.
- We will denote by $-\mathbb{R} \times M$ the (n+1)-dimensional product manifold $\mathbb{R} \times M$ endowed with the Lorentzian metric

$$< , > = -\pi_R^* dt^2 + \pi_M^* < , >_M,$$

• where $\pi_{\mathbb{R}}$ and π_{M} denote the canonical projections of $-\mathbb{R} \times M$ onto each fator and <, $>_{M}$ stands for the Riemannian metric on M.

- Consider an n-dimensional Riemannian manifold M, and let \mathbb{R} be the 1-dimensional Euclidean space.
- We will denote by $-\mathbb{R} \times M$ the (n+1)-dimensional product manifold $\mathbb{R} \times M$ endowed with the Lorentzian metric

$$< , > = -\pi_R^* dt^2 + \pi_M^* < , >_M,$$

- where $\pi_{\mathbb{R}}$ and π_{M} denote the canonical projections of $-\mathbb{R} \times M$ onto each fator and <, $>_{M}$ stands for the Riemannian metric on M.
- In particular, when the Riemannian factor M is the Euclidean space \mathbb{R}^n then $-\mathbb{R} \times \mathbb{R}^n$ is the Lorentz-Minkowski space \mathbb{L}^{n+1} .

• Consider a smooth immersion

• Consider a smooth immersion

$$\Psi:\Sigma\to -\mathbb{R}\times M$$

Consider a smooth immersion

$$\Psi: \Sigma \to -\mathbb{R} \times M$$

of a n-dimensional connected manifold Σ into $-\mathbb{R} \times M$, and assume that the induced metric via Ψ is a Riemannian metric on Σ ; that is, Σ is a spacelike hypersurface.

Consider a smooth immersion

$$\Psi:\Sigma\to -\mathbb{R}\times M$$

of a n-dimensional connected manifold Σ into $-\mathbb{R} \times M$, and assume that the induced metric via Ψ is a Riemannian metric on Σ ; that is, Σ is a spacelike hypersurface.

• Since $\vartheta_t = (\vartheta/\vartheta_t)_{(t,\,x)}$, $(t,\,x)\varepsilon - \mathbb{R} \times M$, is a unitary timelike vector field globally defined on the ambient, then there exists a unique unitary timelike normal field N globally defined on Σ which is in the same time-orientation as ϑ_t , so that

Consider a smooth immersion

$$\Psi:\Sigma\to -\mathbb{R}\times M$$

of a n-dimensional connected manifold Σ into $-\mathbb{R} \times M$, and assume that the induced metric via Ψ is a Riemannian metric on Σ ; that is, Σ is a spacelike hypersurface.

• Since $\vartheta_t = (\vartheta/\vartheta_t)_{(t,\,x)}$, $(t,\,x)\varepsilon - \mathbb{R} \times M$, is a unitary timelike vector field globally defined on the ambient, then there exists a unique unitary timelike normal field N globally defined on Σ which is in the same time-orientation as ϑ_t , so that

$$<$$
 N, ϑ_t $> \le -1 < 0$ on Σ .

Consider a smooth immersion

$$\Psi:\Sigma\to -\mathbb{R}\times M$$

of a n-dimensional connected manifold Σ into $-\mathbb{R} \times M$, and assume that the induced metric via Ψ is a Riemannian metric on Σ ; that is, Σ is a spacelike hypersurface.

• Since $\vartheta_t = (\vartheta/\vartheta_t)_{(t,\,x)}$, $(t,\,x)\varepsilon - \mathbb{R} \times M$, is a unitary timelike vector field globally defined on the ambient, then there exists a unique unitary timelike normal field N globally defined on Σ which is in the same time-orientation as ϑ_t , so that

$$<$$
 N, ϑ_t $> \le -1 < 0$ on Σ .

• We will refer to that normal field N as the future-pointing Gauss map of the hypersurface. Its opposite will be refered as the past-pointing Gauss map of Σ .

0

• Let A be the shape operator of Σ with respect to either the future or the past-pointing Gauss map N. It is a self-adjoint linear operator on each tangent space $T_p\Sigma$ and its eigenvalues $k_1(p),\ldots,k_n(p)$ are the principal curvatures of the hypersurface. Associated to the shape operator there are n algebraic invariants given by

• Let A be the shape operator of Σ with respect to either the future or the past-pointing Gauss map N. It is a self-adjoint linear operator on each tangent space $T_p\Sigma$ and its eigenvalues $k_1(p),\ldots,k_n(p)$ are the principal curvatures of the hypersurface. Associated to the shape operator there are n algebraic invariants given by

$$S_k(p) = \sigma_k(k_1(p), \dots, k_n(p)), \quad 1 \le k \le n,$$

• Let A be the shape operator of Σ with respect to either the future or the past-pointing Gauss map N. It is a self-adjoint linear operator on each tangent space $T_p\Sigma$ and its eigenvalues $k_1(p),\ldots,k_n(p)$ are the principal curvatures of the hypersurface. Associated to the shape operator there are n algebraic invariants given by

$$S_k(p) = \sigma_k(k_1(p), \dots, k_n(p)), \quad 1 \le k \le n,$$

where $\sigma_k : \mathbb{R}^n \to \mathbb{R}$ is the elementary symmetric function in \mathbb{R} given by

• Let A be the shape operator of Σ with respect to either the future or the past-pointing Gauss map N. It is a self-adjoint linear operator on each tangent space $T_p\Sigma$ and its eigenvalues $k_1(p),\ldots,k_n(p)$ are the principal curvatures of the hypersurface. Associated to the shape operator there are n algebraic invariants given by

$$S_k(p) = \sigma_k(k_1(p), \dots, k_n(p)), \quad 1 \le k \le n,$$

where $\sigma_k:\mathbb{R}^n\to\mathbb{R}$ is the elementary symmetric function in \mathbb{R} given by

$$\sigma_k(x_1\cdots x_n) = \Sigma_{i_1 < \dots < i_k} x_{i1} \cdots x_{ik}$$

• The kth-mean curvature H_k of the hypersurface is then defined by

• The kth-mean curvature H_k of the hypersurface is then defined by

$$\binom{n}{k}H_k = (-1)^k S_k = \sigma_k(-k_1, \dots, -k_n),$$

• The kth-mean curvature H_k of the hypersurface is then defined by

$$\binom{n}{k}H_k = (-1)^k S_k = \sigma_k(-k_1, \dots, -k_n),$$

for every $0 \le k \le n$.

• The kth-mean curvature H_k of the hypersurface is then defined by

$$\binom{n}{k}H_k=(-1)^kS_k=\sigma_k(-k_1,\ldots,-k_n),$$

for every $0 \le k \le n$.

• When k = 1,

• The kth-mean curvature H_k of the hypersurface is then defined by

$$\binom{n}{k}H_k=(-1)^kS_k=\sigma_k(-k_1,\ldots,-k_n),$$

for every $0 \le k \le n$.

• When k = 1,

$$H_1 = -1/n \sum k_i = -1/n \operatorname{trace}(A) = H,$$

• The kth-mean curvature H_k of the hypersurface is then defined by

$$\binom{n}{k}H_k=(-1)^kS_k=\sigma_k(-k_1,\dots,-k_n),$$

for every $0 \le k \le n$.

• When k = 1,

$$H_1 = -1/n\sum k_i = -1/n\,\text{trace}(A) = H,$$

the mean curvature of Σ . By the choice of the sign $(-1)^k$, the mean curvature vector \mathbf{H} is given by $\mathbf{H} = HN$. Therefore, $H(\mathfrak{p}) > 0$ at a point $\mathfrak{p} \in \Sigma$ if and only if $\mathbf{H}(\mathfrak{p})$ is in the same time-orientation as N.

 \bullet The Newton transformations P_k are defined inductively from A by $P_0 = I$ and

 \bullet The Newton transformations P_k are defined inductively from A by $P_0 = I$ and

$$P_k = \binom{n}{k} H_k I + A \cdot P_{k-1}, \quad k = 1, \dots, n,$$

• The Newton transformations P_k are defined inductively from A by $P_0 = I$ and

$$P_k = \binom{\mathfrak{n}}{k} H_k I + A \cdot P_{k-1}, \quad k = 1, \dots, \mathfrak{n},$$

and I the identity.

 \bullet The Newton transformations P_k are defined inductively from A by $P_0 = I$ and

$$P_k = \binom{n}{k} H_k I + A \cdot P_{k-1}, \quad k = 1, \dots, n,$$

and I the identity.

• Then $P_k(p)$ is a self-adjoint linear operator on the tangent space $T_p\Sigma$ which commutes with A(p) and A(p) and $P_k(p)$ can be simultaneously diagonalized.

 \bullet The Newton transformations P_k are defined inductively from A by $P_0 = I$ and

$$P_k = \binom{n}{k} H_k I + A \cdot P_{k-1}, \quad k = 1, \dots, n,$$

and I the identity.

- Then $P_k(p)$ is a self-adjoint linear operator on the tangent space $T_p\Sigma$ which commutes with A(p) and A(p) and $P_k(p)$ can be simultaneously diagonalized.
- Let ∇ be the Levi-Civita connection of Σ . To each P_k , we associate the second order linear differential operator

0

 \bullet The Newton transformations P_k are defined inductively from A by $P_0 = I$ and

$$P_k = \binom{\mathfrak{n}}{k} H_k I + A \cdot P_{k-1}, \quad k = 1, \dots, \mathfrak{n},$$

and I the identity.

- Then $P_k(p)$ is a self-adjoint linear operator on the tangent space $T_p\Sigma$ which commutes with A(p) and A(p) and $P_k(p)$ can be simultaneously diagonalized.
- Let ∇ be the Levi-Civita connection of Σ . To each P_k , we associate the second order linear differential operator

$$L_k(f) = trace(P_k \circ \nabla^2 f).$$

0

• There $\nabla^2 f$ denotes the self-adjoint linear operator metrically equivalent to the hessian of f: for all tangent X, Y,

• There $\nabla^2 f$ denotes the self-adjoint linear operator metrically equivalent to the hessian of f: for all tangent X, Y,

$$<\nabla^2 f(X), Y> = <\nabla_X(\nabla f), Y>.$$

• There $\nabla^2 f$ denotes the self-adjoint linear operator metrically equivalent to the hessian of f: for all tangent X, Y,

$$<\nabla^2 f(X), Y> = <\nabla_X(\nabla f), Y>.$$

• Observe that P_k commutes with $\nabla^2 f$ and

• There $\nabla^2 f$ denotes the self-adjoint linear operator metrically equivalent to the hessian of f: for all tangent X, Y,

$$<\nabla^2 f(X), Y> = <\nabla_X(\nabla f), Y>.$$

• Observe that P_k commutes with $\nabla^2 f$ and

$$div(P_k(\nabla f)) = < divP_k, \, \nabla f > + \, L_k(f),$$

• There $\nabla^2 f$ denotes the self-adjoint linear operator metrically equivalent to the hessian of f: for all tangent X, Y,

$$<\nabla^2 f(X), Y> = <\nabla_X(\nabla f), Y>.$$

• Observe that P_k commutes with $\nabla^2 f$ and

$$\operatorname{div}(P_k(\nabla f)) = <\operatorname{div}P_k, \, \nabla f> + L_k(f),$$

where, for an orthonormal basis E_1, \ldots, E_n ,

-0

• There $\nabla^2 f$ denotes the self-adjoint linear operator metrically equivalent to the hessian of f: for all tangent X, Y,

$$<\nabla^2 f(X), Y> = <\nabla_X(\nabla f), Y>.$$

• Observe that P_k commutes with $\nabla^2 f$ and

$$\operatorname{div}(P_k(\nabla f)) = <\operatorname{div}P_k, \, \nabla f> + L_k(f),$$

where, for an orthonormal basis E_1, \ldots, E_n ,

$$divP_k := trace(\nabla P_k) = \Sigma_{i=1}(\nabla_{E_i} P_k)E_i.$$

0

• There $\nabla^2 f$ denotes the self-adjoint linear operator metrically equivalent to the hessian of f: for all tangent X, Y,

$$<\nabla^2 f(X), Y> = <\nabla_X(\nabla f), Y>.$$

• Observe that P_k commutes with $\nabla^2 f$ and

$$div(P_k(\nabla f)) = < divP_k, \ \nabla f > + L_k(f),$$

where, for an orthonormal basis E_1, \ldots, E_n ,

$$divP_k := trace(\nabla P_k) = \Sigma_{i=1}(\nabla_{E_i} P_k)E_i.$$

• Then $L_k(f) = div(P_k(\nabla f)) \Leftrightarrow div(P_k) = 0.$

• By an elliptic point in a spacelike hypersurface Σ we mean a point of Σ where all the principal curvatures are negative, with respect to an appropriate choice of the Gauss map N.

Ellipticity and positive definiteness

 By an elliptic point in a spacelike hypersurface Σ we mean a point of Σ where all the principal curvatures are negative, with respect to an appropriate choice of the Gauss map N.

Lemma 1

Let Σ be a spacelike hypersurface immersed into a Lorentzian product space. If there exists an elliptic point of Σ , with respect to an appropriate choice of the Gauss map N, and $H_{k+1}>0$ on Σ , for $1\leq k\leq n-1$, then for all $1\leq j\leq k$ the operator L_j is elliptic or, equivalently, P_j is positive definite (for that appropriate choice of the Gauss map if j is odd)

Ellipticity and positive definiteness

• By an elliptic point in a spacelike hypersurface Σ we mean a point of Σ where all the principal curvatures are negative, with respect to an appropriate choice of the Gauss map N.

Lemma 1

Let Σ be a spacelike hypersurface immersed into a Lorentzian product space. If there exists an elliptic point of Σ , with respect to an appropriate choice of the Gauss map N, and $H_{k+1}>0$ on Σ , for $1\leq k\leq n-1$, then for all $1\leq j\leq k$ the operator L_j is elliptic or, equivalently, P_j is positive definite (for that appropriate choice of the Gauss map if j is odd)

• The proof follows from that of Cheng-Rosenberg in An. Ac. Br. Ci., 2005 or Barbosa-Colares in Ann. Gl. Ann. and Geom., 1997, considering that in our case, and by our sign convention in the definition of the j—th mean curvatures, we have

Ellipticity and positive definiteness

 By an elliptic point in a spacelike hypersurface Σ we mean a point of Σ where all the principal curvatures are negative, with respect to an appropriate choice of the Gauss map N.

Lemma 1

Let Σ be a spacelike hypersurface immersed into a Lorentzian product space. If there exists an elliptic point of $\Sigma,$ with respect to an appropriate choice of the Gauss map N, and $H_{k+1}>0$ on $\Sigma,$ for $1\leq k\leq n-1,$ then for all $1\leq j\leq k$ the operator $\ L_j$ is elliptic or, equivalently, $\ P_j$ is positive definite (for that appropriate choice of the Gauss map if j is odd)

• The proof follows from that of Cheng-Rosenberg in An. Ac. Br. Ci., 2005 or Barbosa-Colares in Ann. Gl. Ann. and Geom., 1997, considering that in our case, and by our sign convention in the definition of the j—th mean curvatures, we have

$$\binom{n}{k}H_j=\sigma_j\left(-k_1,\ldots,-k_n\right)=(-1)^jS_j.$$

- In this setting, we consider two particular functions naturally attached to a spacelike hypersurface Σ immersed into a Lorentzian product space $-\mathbb{R} \times \mathbb{R}^n$: the vertical height function $h = (\pi_\mathbb{R})_{|\Sigma}$ and the support function $\eta = \langle N, \partial_t \rangle$, where N denotes the Gauss map of Σ^n and ∂_t is the coordinate vector field induced on $-\mathbb{R} \times M^n$.
- The following lemma corresponds to the analytical framework that we will use to obtain our main result.

Lemma 2

Let Σ^n be an immersed spacelike hypersurface of a Lorentzian product space $-\mathbb{R} \times M^n$, with Gauss map N. For every $r = 0, \dots, n-1$ we have:

10/23

Lemma 2

Let Σ^n be an immersed spacelike hypersurface of a Lorentzian product space $-\mathbb{R} \times M^n$, with Gauss map N. For every $r = 0, \dots, n-1$ we have:

(a)
$$L_r h = -(r+1) \binom{n}{r+1} H_{r+1} \eta;$$

Lemma 2

Let Σ^n be an immersed spacelike hypersurface of a Lorentzian product space $-\mathbb{R} \times M^n$, with Gauss map N. For every $r = 0, \dots, n-1$ we have:

- (a) $L_r h = -(r+1)\binom{n}{r+1}H_{r+1}\eta;$
- (b) $\Delta \eta = n \langle \nabla H, \vartheta_t \rangle + (|A|^2 + Ric_M((\pi_M)_*N, (\pi_M)_*N))\eta$, where Ric_M denotes the Ricci tensor of M^n .

 Moreover, if M^n has constant sectional curvature κ_M , then

-0

Lemma 2

Let Σ^n be an immersed spacelike hypersurface of a Lorentzian product space $-\mathbb{R} \times M^n$, with Gauss map N. For every $r = 0, \dots, n-1$ we have:

- (a) $L_r h = -(r+1)\binom{n}{r+1} H_{r+1} \eta;$
- (b) $\Delta \eta = n \langle \nabla H, \partial_t \rangle + (|A|^2 + Ric_M((\pi_M)_*N, (\pi_M)_*N))\eta$, where Ric_M denotes the Ricci tensor of M^n .

Moreover, if M^n has constant sectional curvature κ_M , then

$$L_r \eta = \binom{n}{r+1} \langle \nabla H_{r+1}, \vartheta_t \rangle + \operatorname{tr}(A^2 \circ P_r) \eta$$

10/23

Lemma 2

Let Σ^n be an immersed spacelike hypersurface of a Lorentzian product space $-\mathbb{R} \times M^n$, with Gauss map N. For every $r = 0, \dots, n-1$ we have:

- (a) $L_r h = -(r+1)\binom{n}{r+1} H_{r+1} \eta;$
- (b) $\Delta \eta = n \langle \nabla H, \partial_t \rangle + (|A|^2 + Ric_M((\pi_M)_*N, (\pi_M)_*N))\eta$, where Ric_M denotes the Ricci tensor of M^n .

Moreover, if M^n has constant sectional curvature κ_M , then

$$\begin{split} L_r \eta &= \binom{n}{r+1} \langle \nabla H_{r+1}, \vartheta_t \rangle + tr(A^2 \circ P_r) \eta \\ &= + \kappa_M \left((r+1) \binom{n}{r+1} H_r |\nabla h|^2 - \langle P_r \nabla h, \nabla h \rangle \right) \eta. \end{split}$$

10/23

Remark

The formulae collected in the above lemma are the Lorentzian versions of the ones obtained by X. Cheng and H. Rosenberg. We also note that L.J. Alías jointly with A. G. Colares obtained a generalization of these formulae in the context of the Generalized Robertson- Walker spacetimes. Moreover, A.L. Albujer and L.J. Alías obtained the corresponding formulae for the Laplacian of the height and support functions of a space-like surface immersed in a 3-dimensional Lorentzian product space.

Now, we are in the position to state and prove our main result.

Theorem

Let Σ^n be a compact immersed spacelike hypersurface of a Lorentzian product space $-\mathbb{R} \times M^n$ whose Riemannian fiber M^n has nonnegative constant sectional curvature κ_M . Suppose that Σ^n has positive constant r-mean curvature H_r , for some $1 \leq r \leq n$, and that its boundary $\partial \Sigma^n$ is contained in the slice $\{0\} \times M^n$. Then, the vertical height of Σ^n satisfies the inequality

Theorem

Let Σ^n be a compact immersed spacelike hypersurface of a Lorentzian product space $-\mathbb{R} \times M^n$ whose Riemannian fiber M^n has nonnegative constant sectional curvature κ_M . Suppose that Σ^n has positive constant r-mean curvature H_r , for some $1 \le r \le n$, and that its boundary $\partial \Sigma^n$ is contained in the slice $\{0\} \times M^n$. Then, the vertical height of Σ^n satisfies the inequality

$$|h| \leq \frac{C-1}{H_r^{1/r}}$$

Theorem

Let Σ^n be a compact immersed spacelike hypersurface of a Lorentzian product space $-\mathbb{R} \times M^n$ whose Riemannian fiber M^n has nonnegative constant sectional curvature κ_M . Suppose that Σ^n has positive constant r-mean curvature H_r , for some $1 \le r \le n$, and that its boundary $\partial \Sigma^n$ is contained in the slice $\{0\} \times M^n$. Then, the vertical height of Σ^n satisfies the inequality

$$|h| \leq \frac{C-1}{H_r^{1/r}}$$

where $C = \max_{\partial \Sigma} |\eta|$. Moreover, in the case r=1 one can replace the condition on the sectional curvature of M^n by that of the Ricci curvature of M^n being nonnegative.

Proof.

Suppose, for example, that N is in the same time-orientation of ϑ_t (i.e., $\langle N, \vartheta_t \rangle \leq -1$). At a lowest point, all the principal curvatures have the same sign. Since we are assume that $H_r > 0$, we know that at this point all the principal curvatures are negative and hence we can apply Lemma 1 to obtain that L_{r-1} is elliptic and H_i are positive, $1 \leq j \leq r-1$.

-0

Proof.

Suppose, for example, that N is in the same time-orientation of ϑ_t (i.e., $\langle N, \vartheta_t \rangle \leq -1$). At a lowest point, all the principal curvatures have the same sign. Since we are assume that $H_r > 0$, we know that at this point all the principal curvatures are negative and hence we can apply Lemma 1 to obtain that L_{r-1} is elliptic and H_j are positive, $1 \leq j \leq r-1$.

Now, we define on Σ the function

Proof.

Suppose, for example, that N is in the same time-orientation of ϑ_t (i.e., $\langle N, \vartheta_t \rangle \leq -1$). At a lowest point, all the principal curvatures have the same sign. Since we are assume that $H_r > 0$, we know that at this point all the principal curvatures are negative and hence we can apply Lemma 1 to obtain that L_{r-1} is elliptic and H_j are positive, $1 \leq j \leq r-1$.

Now, we define on Σ the function

$$\varphi = ch - \eta,$$

Proof.

Suppose, for example, that N is in the same time-orientation of ϑ_t (i.e., $\langle N, \vartheta_t \rangle \leq -1$). At a lowest point, all the principal curvatures have the same sign. Since we are assume that $H_r > 0$, we know that at this point all the principal curvatures are negative and hence we can apply Lemma 1 to obtain that L_{r-1} is elliptic and H_j are positive, $1 \leq j \leq r-1$.

Now, we define on Σ the function

$$\varphi = ch - \eta,$$

where c is a negative constant. We have that $\phi_{|\partial \Sigma} \leq C$, where $C = \max_{\partial \Sigma} |\eta|$.

Proof (cont.)

On the other hand, since P_{r-1} is positive definite, we have that

Proof (cont.)

On the other hand, since P_{r-1} is positive definite, we have that

$$\langle P_{r-1}\nabla h, \nabla h\rangle \leq tr(P_{r-1})|\nabla h|^2 = r\binom{n}{r}H_{r-1}|\nabla h|^2.$$

Proof (cont.)

On the other hand, since P_{r-1} is positive definite, we have that

$$\langle P_{r-1}\nabla h, \nabla h\rangle \leq \operatorname{tr}(P_{r-1})|\nabla h|^2 = r\binom{n}{r}H_{r-1}|\nabla h|^2.$$

Thus, from Lemma 2 and using the assumption that the Riemannian fiber M^n has nonnegative constant sectional curvature κ_M , we obtain that

()

Proof (cont.)

On the other hand, since P_{r-1} is positive definite, we have that

$$\langle P_{r-1}\nabla h, \nabla h\rangle \leq \operatorname{tr}(P_{r-1})|\nabla h|^2 = r\binom{n}{r}H_{r-1}|\nabla h|^2.$$

Thus, from Lemma 2 and using the assumption that the Riemannian fiber M^n has nonnegative constant sectional curvature κ_M , we obtain that

$$L_{r-1}\phi = -\langle N, \vartheta_t \rangle \left(r \binom{n}{r} c H_r + tr(A^2 \circ P_{r-1}) \right)$$

()

Proof (cont.)

On the other hand, since P_{r-1} is positive definite, we have that

$$\langle P_{r-1}\nabla h, \nabla h\rangle \leq \operatorname{tr}(P_{r-1})|\nabla h|^2 = r\binom{n}{r}H_{r-1}|\nabla h|^2.$$

Thus, from Lemma 2 and using the assumption that the Riemannian fiber M^n has nonnegative constant sectional curvature κ_M , we obtain that

$$\begin{array}{lcl} L_{r-1}\phi & = & -\langle N, \partial_t \rangle \left(r \binom{n}{r} c H_r + tr(A^2 \circ P_{r-1})\right) \\ \\ & -\kappa_M \left(r \binom{n}{r} H_{r-1} |\nabla h|^2 - \langle P_{r-1} \nabla h, \nabla h \rangle\right) \eta \end{array}$$

0 14/23

Proof (cont.)

On the other hand, since P_{r-1} is positive definite, we have that

$$\langle P_{r-1}\nabla h, \nabla h\rangle \leq \operatorname{tr}(P_{r-1})|\nabla h|^2 = r\binom{n}{r}H_{r-1}|\nabla h|^2.$$

Thus, from Lemma 2 and using the assumption that the Riemannian fiber M^n has nonnegative constant sectional curvature κ_M , we obtain that

$$\begin{split} L_{r-1}\phi &= -\langle N, \vartheta_t \rangle \left(r \binom{n}{r} c H_r + tr(A^2 \circ P_{r-1}) \right) \\ &- \kappa_M \left(r \binom{n}{r} H_{r-1} |\nabla h|^2 - \langle P_{r-1} \nabla h, \nabla h \rangle \right) \eta \\ &\geq - \langle N, \vartheta_t \rangle \left(r \binom{n}{r} c H_r + tr(A^2 \circ P_{r-1}) \right). \end{split}$$

()

Proof (cont.)

Furthermore, we have in the case r=1 (by the Cauchy-Schwarz inequality)

Proof (cont.)

Furthermore, we have in the case r = 1 (by the Cauchy-Schwarz inequality)

$$H H_r - H_{r+1} = H^2 - H_2 \ge 0.$$

()

Proof (cont.)

Furthermore, we have in the case r = 1 (by the Cauchy-Schwarz inequality)

$$H H_r - H_{r+1} = H^2 - H_2 \ge 0.$$

In the case r > 1, we know from Garding inequalites that

()

Proof (cont.)

Furthermore, we have in the case r = 1 (by the Cauchy-Schwarz inequality)

$$H H_r - H_{r+1} = H^2 - H_2 \ge 0.$$

In the case r > 1, we know from Garding inequalites that

$$H_{r-1} \ge H_r^{(r-1)/r} > 0,$$

Proof (cont.)

Furthermore, we have in the case r = 1 (by the Cauchy-Schwarz inequality)

$$H H_r - H_{r+1} = H^2 - H_2 \ge 0.$$

In the case r > 1, we know from Garding inequalites that

$$H_{r-1} \ge H_r^{(r-1)/r} > 0,$$

and also that

Proof (cont.)

Furthermore, we have in the case r = 1 (by the Cauchy-Schwarz inequality)

$$H H_r - H_{r+1} = H^2 - H_2 \ge 0.$$

In the case r > 1, we know from Garding inequalites that

$$H_{r-1} \ge H_r^{(r-1)/r} > 0,$$

and also that

$$H \ge H_{r-1}^{1/(r-1)}$$
.

Proof (cont.)

Furthermore, we have in the case r = 1 (by the Cauchy-Schwarz inequality)

$$H H_r - H_{r+1} = H^2 - H_2 \ge 0.$$

In the case r > 1, we know from Garding inequalites that

$$H_{r-1} \ge H_r^{(r-1)/r} > 0,$$

and also that

$$H \geq H_{r-1}^{1/(r-1)}.$$

Moreover, we have also that $H_r^2 - H_{r-1}H_{r+1} \ge 0$. Thus,

Proof (cont.)

Furthermore, we have in the case r = 1 (by the Cauchy-Schwarz inequality)

$$H H_r - H_{r+1} = H^2 - H_2 \ge 0.$$

In the case r > 1, we know from Garding inequalites that

$$H_{r-1} \ge H_r^{(r-1)/r} > 0,$$

and also that

$$H \ge H_{r-1}^{1/(r-1)}$$
.

Moreover, we have also that $H_r^2 - H_{r-1}H_{r+1} \ge 0$. Thus,

$$H_{r+1} \le \frac{H_r^2}{H_{r-1}}.$$

Proof (cont.)

Then, from these above inequalities, we obtain that

Proof (cont.)

Then, from these above inequalities, we obtain that

$$H H_r - H_{r+1} \ \geq \ \frac{H_r}{H_{r-1}} (H H_{r-1} - H_r) \geq \frac{H_r}{H_{r-1}} (H H_{r-1} - H_{r-1}^{r/(r-1)})$$

(

Proof (cont.)

Then, from these above inequalities, we obtain that

$$\begin{split} H\,H_r-H_{r+1} & \geq & \frac{H_r}{H_{r-1}}(H\,H_{r-1}-H_r) \geq \frac{H_r}{H_{r-1}}(H\,H_{r-1}-H_{r-1}^{r/(r-1)}) \\ & = & H_r(H-H_{r-1}^{1/(r-1)}) \geq 0. \end{split}$$

(

Proof (cont.)

Then, from these above inequalities, we obtain that

$$\begin{split} H\,H_r-H_{r+1} & \geq & \frac{H_r}{H_{r-1}}(H\,H_{r-1}-H_r) \geq \frac{H_r}{H_{r-1}}(H\,H_{r-1}-H_{r-1}^{r/(r-1)}) \\ & = & H_r(H-H_{r-1}^{1/(r-1)}) \geq 0. \end{split}$$

Therefore,

C

Proof (cont.)

Then, from these above inequalities, we obtain that

$$\begin{split} H\,H_r-H_{r+1} & \geq & \frac{H_r}{H_{r-1}}(H\,H_{r-1}-H_r) \geq \frac{H_r}{H_{r-1}}(H\,H_{r-1}-H_{r-1}^{r/(r-1)}) \\ & = & H_r(H-H_{r-1}^{1/(r-1)}) \geq 0. \end{split}$$

Therefore,

$$\operatorname{tr}(A^2 \circ P_{r-1}) = \binom{n}{r} (nH H_r - (n-r)H_{r+1}) \ge r \binom{n}{r} H_r^{(r+1)/r}.$$

(

Proof (cont.)

Consequently, by taking

Proof (cont.)

Consequently, by taking

$$c = -H_r^{1/r}$$

Proof (cont.)

Consequently, by taking

$$c = -H_r^{1/r}$$

in the definition of the function ϕ , we get that $L_{r-1}\phi \geq 0$ on Σ . Then, we conclude from the maximum principle that $\phi \leq C$ on Σ . Therefore,

Proof (cont.)

Consequently, by taking

$$c = -H_r^{1/r}$$

in the definition of the function φ , we get that $L_{r-1}\varphi \geq 0$ on Σ . Then, we conclude from the maximum principle that $\varphi \leq C$ on Σ . Therefore,

$$0 \ge h \ge \frac{1-C}{H_r^{1/r}}.$$

0

Proof (cont.)

Consequently, by taking

$$c = -H_r^{1/r}$$

in the definition of the function φ , we get that $L_{r-1}\varphi \geq 0$ on Σ . Then, we conclude from the maximum principle that $\varphi \leq C$ on Σ . Therefore,

$$0 \geq h \geq \frac{1-C}{H_r^{1/r}}.$$

In the case of N is in the opposite time-orientation of ∂_t (i.e., $\langle N, \partial_t \rangle \geq 1$), the proof carries in a similar way and we conclude that

Proof (cont.)

Consequently, by taking

$$c = -H_r^{1/r}$$

in the definition of the function φ , we get that $L_{r-1}\varphi \geq 0$ on Σ . Then, we conclude from the maximum principle that $\varphi \leq C$ on Σ . Therefore,

$$0 \geq h \geq \frac{1-C}{H_r^{1/r}}.$$

In the case of N is in the opposite time-orientation of ∂_t (i.e., $\langle N, \partial_t \rangle \geq 1$), the proof carries in a similar way and we conclude that

$$0 \le h \le \frac{C-1}{H_r^{1/r}}.$$

Proof (cont.)

Finally, since

Proof (cont.)

Finally, since

$$\Delta \eta = \eta \langle \Delta H, \vartheta_t \rangle + (|A|^2 + Ric_M((\pi_M) * N, (\pi_M) * N))\eta,$$

Proof (cont.)

Finally, since

$$\Delta \eta = \eta \langle \Delta H, \vartheta_t \rangle + (|A|^2 + Ric_M((\pi_M) * N, (\pi_M) * N))\eta,$$

we note that in the case r=1 one can replace the condition on the sectional curvature of M^n by that of the Ricci curvature of M^n being nonnegative.

18 / 23

0

Remark

By considering the hyperbolic caps of the Lorentz-Minkowski space \mathbb{L}^{n+1} , we show that our estimate is sharp.

Remark

By considering the hyperbolic caps of the Lorentz-Minkowski space \mathbb{L}^{n+1} , we show that our estimate is sharp.

Fixed a positive constant λ , we easily verify that the hyperbolic cap

Remark

By considering the hyperbolic caps of the Lorentz-Minkowski space \mathbb{L}^{n+1} , we show that our estimate is sharp.

Fixed a positive constant λ , we easily verify that the hyperbolic cap

$$\Sigma_{\lambda}^{n} = \left\{ x \in L^{n+1}; \langle x, x \rangle = -\lambda^{2}, \lambda \leq x_{1} \leq \sqrt{1 + \lambda^{2}} \right\}$$

19/23

Remark

By considering the hyperbolic caps of the Lorentz-Minkowski space \mathbb{L}^{n+1} , we show that our estimate is sharp.

Fixed a positive constant λ , we easily verify that the hyperbolic cap

$$\Sigma_{\lambda}^{n} = \left\{ x \in L^{n+1}; \langle x, x \rangle = -\lambda^{2}, \lambda \leq x_{1} \leq \sqrt{1 + \lambda^{2}} \right\}$$

is an example of spacelike hypersurface of the Lorentz-Minkowski space L^{n+1} which has positive constant r-mean curvature

Remark

By considering the hyperbolic caps of the Lorentz-Minkowski space \mathbb{L}^{n+1} , we show that our estimate is sharp.

Fixed a positive constant λ , we easily verify that the hyperbolic cap

$$\Sigma_{\lambda}^{n} = \left\{ x \in L^{n+1}; \langle x, x \rangle = -\lambda^{2}, \lambda \leq x_{1} \leq \sqrt{1 + \lambda^{2}} \right\}$$

is an example of spacelike hypersurface of the Lorentz-Minkowski space L^{n+1} which has positive constant r-mean curvature

$$H_r = \frac{1}{\lambda^r}$$

Remark

By considering the hyperbolic caps of the Lorentz-Minkowski space \mathbb{L}^{n+1} , we show that our estimate is sharp.

Fixed a positive constant λ , we easily verify that the hyperbolic cap

$$\Sigma_{\lambda}^{n} = \left\{ x \in L^{n+1}; \langle x, x \rangle = -\lambda^{2}, \lambda \leq x_{1} \leq \sqrt{1 + \lambda^{2}} \right\}$$

is an example of spacelike hypersurface of the Lorentz-Minkowski space L^{n+1} which has positive constant r-mean curvature

$$H_r = \frac{1}{\lambda^r}$$

for each $1 \le r \le n$ (if we choose the Gauss map N in the same time-orientation of e_1 , for the case r odd).

Remark (cont.)

We also easily verify that the hyperbolic image of Σ_{λ}^{n} is contained in the geodesic ball of center $e_1 \in \mathbb{H}^n$ and radius

Remark (cont.)

We also easily verify that the hyperbolic image of Σ_{λ}^{n} is contained in the geodesic ball of center $e_1 \in \mathbb{H}^n$ and radius

$$\rho = \cosh^{-1} \sqrt{1 + \frac{1}{\lambda^2}}.$$

20/23

Remark (cont.)

We also easily verify that the hyperbolic image of Σ_{λ}^{n} is contained in the geodesic ball of center $e_1 \in \mathbb{H}^n$ and radius

$$\rho = \cosh^{-1} \sqrt{1 + \frac{1}{\lambda^2}}.$$

Therefore, since the vertical height of such hyperbolic cap is

20/23

(

Remark (cont.)

We also easily verify that the hyperbolic image of Σ_{λ}^{n} is contained in the geodesic ball of center $e_1 \in \mathbb{H}^n$ and radius

$$\rho = \cosh^{-1} \sqrt{1 + \frac{1}{\lambda^2}}.$$

Therefore, since the vertical height of such hyperbolic cap is

$$h = \sqrt{1 + \lambda^2} - \lambda = \frac{\cosh \rho - 1}{H_n^{1/r}},$$

C

Remark (cont.)

We also easily verify that the hyperbolic image of Σ_{λ}^{n} is contained in the geodesic ball of center $e_1 \in \mathbb{H}^n$ and radius

$$\rho = \cosh^{-1} \sqrt{1 + \frac{1}{\lambda^2}}.$$

Therefore, since the vertical height of such hyperbolic cap is

$$h = \sqrt{1 + \lambda^2} - \lambda = \frac{\cosh \rho - 1}{H_n^{1/r}},$$

we conclude that our estimate for the vertical height function is sharp.

20 / 23

• For what follows, we observe that a complete immersed spacelike hypersurface Σ^n of a Lorentzian product space $-\mathbb{R} \times M^{n+1}$, with one end, can be regarded as

(

• For what follows, we observe that a complete immersed spacelike hypersurface Σ^n of a Lorentzian product space $-\mathbb{R} \times M^{n+1}$, with one end, can be regarded as

$$\Sigma^n = \Sigma^n_t \cup \mathcal{C},$$

• For what follows, we observe that a complete immersed spacelike hypersurface Σ^n of a Lorentzian product space $-\mathbb{R} \times M^{n+1}$, with one end, can be regarded as

$$\Sigma^n = \Sigma^n_t \cup \mathcal{C},$$

where Σ^n_t is a compact hypersurface with boundary contained into a slice $M_t = \{t\} \times M^n$ and \mathcal{C}^n is diffeomorphic to the cylinder $[t, \infty) \times \mathbb{S}^{n-1}$.

21/23

• For what follows, we observe that a complete immersed spacelike hypersurface Σ^n of a Lorentzian product space $-\mathbb{R} \times M^{n+1}$, with one end, can be regarded as

$$\Sigma^n = \Sigma^n_t \cup \mathcal{C},$$

where Σ^n_t is a compact hypersurface with boundary contained into a slice $M_t = \{t\} \times M^n$ and \mathcal{C}^n is diffeomorphic to the cylinder $[t, \infty) \times \mathbb{S}^{n-1}$.

• Given a complete space-like hypersurface with one end, $\Sigma^n = \Sigma^n_t \cup \mathcal{C}$, we say that the end of Σ^n is *divergent* if, considering \mathcal{C}^n with cylindrical coordinates $\mathfrak{p} = (s, q) \in [t, \infty) \times \mathbb{S}^{n-1}$, we have that

• For what follows, we observe that a complete immersed spacelike hypersurface Σ^n of a Lorentzian product space $-\mathbb{R} \times M^{n+1}$, with one end, can be regarded as

$$\Sigma^n = \Sigma^n_t \cup \mathcal{C},$$

where Σ^n_t is a compact hypersurface with boundary contained into a slice $M_t = \{t\} \times M^n$ and \mathcal{C}^n is diffeomorphic to the cylinder $[t, \infty) \times \mathbb{S}^{n-1}$.

• Given a complete space-like hypersurface with one end, $\Sigma^n = \Sigma^n_t \cup \mathcal{C}$, we say that the end of Σ^n is *divergent* if, considering \mathcal{C}^n with cylindrical coordinates $\mathfrak{p} = (s, q) \in [t, \infty) \times \mathbb{S}^{n-1}$, we have that

$$\lim_{s\to\infty}h(p)=\infty,$$

• For what follows, we observe that a complete immersed spacelike hypersurface Σ^n of a Lorentzian product space $-\mathbb{R} \times M^{n+1}$, with one end, can be regarded as

$$\Sigma^n = \Sigma^n_t \cup \mathcal{C},$$

where Σ^n_t is a compact hypersurface with boundary contained into a slice $M_t = \{t\} \times M^n$ and \mathcal{C}^n is diffeomorphic to the cylinder $[t, \infty) \times \mathbb{S}^{n-1}$.

• Given a complete space-like hypersurface with one end, $\Sigma^n = \Sigma^n_t \cup \mathcal{C}$, we say that the end of Σ^n is *divergent* if, considering \mathcal{C}^n with cylindrical coordinates $\mathfrak{p} = (s, q) \in [t, \infty) \times \mathbb{S}^{n-1}$, we have that

$$\lim_{s\to\infty}h(p)=\infty,$$

where h denotes the vertical height function of C^n .

4□ > 4₫ > 4₫ > 4₫ > ₹ 900°

Theorem

Let Σ^n be a complete immersed space-like hypersurface of a Lorentzian product space $-\mathbb{R} \times M^n$, with one end. Suppose that one of the following conditions is satisfied:

(

Theorem

Let Σ^n be a complete immersed space-like hypersurface of a Lorentzian product space $-\mathbb{R} \times M^n$, with one end. Suppose that one of the following conditions is satisfied:

(a) The Riemannian fiber M^n has nonnegative Ricci curvature Ric_M and Σ^n has positive constant mean curvature H.

(

Theorem

Let Σ^n be a complete immersed space-like hypersurface of a Lorentzian product space $-\mathbb{R} \times M^n$, with one end. Suppose that one of the following conditions is satisfied:

- (a) The Riemannian fiber M^n has nonnegative Ricci curvature Ric_M and Σ^n has positive constant mean curvature H.
- (b) The Riemannian fiber M^n has nonnegative constant sectional curvature κ_M and Σ^n has positive constant r-mean curvature H_r , for some 1 < r < n.

0

Theorem

Let Σ^n be a complete immersed space-like hypersurface of a Lorentzian product space $-\mathbb{R} \times M^n$, with one end. Suppose that one of the following conditions is satisfied:

- (a) The Riemannian fiber M^n has nonnegative Ricci curvature Ric_M and Σ^n has positive constant mean curvature H.
- (b) The Riemannian fiber M^n has nonnegative constant sectional curvature κ_M and Σ^n has positive constant r-mean curvature H_r , for some 1 < r < n.

If the support function η of Σ^n is bounded, then its end is not divergent.

22 / 23

Height Estimates for r-Mean Curvature Spacelike Hypersurfaces in Product Spaces

A.Gervasio Colares (Universidade Federal do Ceará, Brazil)

Joint work with H. F. de Lima in *General Relativity and Gravitation*, v.40 (2008), 2131-2147

V International Meeting on Lorentzian Geometry Martina Franca, Italy

Thanks