Examen de Computabilidad y Complejidad

(CMC)

11 de septiembre de 1996

- (I) Cuestiones (justifique formalmente las respuestas)
- 1. Pronúnciese acerca de la veracidad o falsedad de las siguientes afirmaciones
 - (a) Todo subconjunto de un lenguaje incontextual es incontextual
 - (b) Todo superconjunto de un lenguaje incontextual es incontextual

(1 pto)

2. Sea el homomorfismo $h:\{a,b\} \to \{a,b\}^*$ definido como h(a)=b y h(b)=a. Sea el lenguaje $L \subset \Sigma^*$ definido como $L=\{ww' \mid w'=h(w)\}$. ¿ Es L incontextual ?

(1 pto)

3. Sea $L \subseteq \Sigma^*$ y se define la operación P como sigue, $P(L) = \{x \in \Sigma^* \mid x \text{ se obtiene de alguna palabra de } L$ eliminando los símbolos que ocupan posición par $\}$. ¿ Es la clase de los lenguajes recursivamente enumerables cerrada bajo P? ¿ Y la clase de los lenguajes recursivos?

(2 ptos)

4. Sea M una máquina de Turing de forma que si la cadena de entrada tiene longitud impar entonces siempre para y si tiene longitud par no para nunca. ¿ Es L(M) recursivo?

(1 pto)

5. Sea L un lenguaje recursivo definido sobre Σ y F un lenguaje finito definido sobre el mismo alfabeto. Se define $F^{-1}L = \{v \in \Sigma^* \mid \exists u \in F \land uv \in L\}$. ¿ Es $F^{-1}L$ un lenguaje recursivo?

(1 pto)

(II) PROBLEMAS:

6. Dadas las gramáticas G_1 y G_2 definidas por las reglas

y dada la sustitución $\sigma(a) = L(G_1)$ y $\sigma(b) = L(G_2)$ se pide obtener una gramática incontextual que genere el lenguaje $\sigma(\sigma(L(G_1)^r) \cup L(G_2))$.

(2 ptos)

7. Dada la gramática G, se pide obtener una gramática incontextual en Forma Normal de Greibach que genere $L(G) - \{\lambda\}$. Nota: no es necesario hacer las últimas sustituciones.

(2 ptos)