Project Name: Medicine Recommendation System using Machine Learning

Team Members:

Bajrang Kumar

Ahana Mandal

Sonu Kumar Ranjan

Department: Computer Science & Engineering

Institution Name: Bengal College of Engineering & Technology

Guide Name: Mr. Prasanna Roy (Assistant Professor)

CONTENTS:

- 1. Introduction
- 2. Problem Statement
- 3. Project Objective
- 4. Features of the System
- 5. Technologies Used
- 6. System Architecture
- 7. Dataset Details
- 8. Machine Learning Model
- 9. Key Features Explained
- 10. Project Demo Screenshots
- 11. Challenges Faced
- 12. Future Enhancements
- 13. Conclusion

Problem Statement

- People often experience health-related symptoms but lack quick access to reliable and accurate medical guidance.
- Searching symptoms online may provide confusing, misleading, or even harmful information.
- Manual symptom checking is time-consuming, error-prone, and not easily accessible for everyone.
- There is a growing need for a **fast**, **intelligent**, **and user-friendly system** that can predict diseases and guide users with medical recommendations based on symptoms.

Project Objective

- To develop a web-based Medicine Recommendation System that predicts possible diseases based on user-input symptoms.
- To provide personalized medical guidance including:
 - Suggested medications
 - Precautionary measures
 - Diet recommendations
 - Workout plans
- To ensure the system is user-friendly, fast, and accessible, supporting both text and voice-based symptom input.
- To help users quickly access reliable healthcare information and make informed decisions.

Features of the System

- **Symptom-Based Disease Prediction**: Predicts diseases based on user-input symptoms using machine learning.
- Speech Input Support: Allows users to enter symptoms using voice commands for better accessibility.
- Autocomplete Symptom Selection: Prevents typing mistakes using a multi-select dropdown with real-time suggestions.
- Personalized Recommendations: Provides medications, precautions, diet plans, and workout tips tailored to the predicted disease.
- User-Friendly Web Interface: Clean, mobile-friendly, and responsive design for easy navigation.

Technologies Used

Frontend:

- HTML, CSS, JavaScript
- Bootstrap for responsive design
- Select2 for multi-symptom autocomplete dropdown

Backend:

- Python
- Flask web framework

Machine Learning:

• Scikit-learn (Support Vector Classifier, Random Forest, Gradient Boosting, Naïve Bayes)

Machine Learning:

Web Speech API for voice-based symptom input

Dataset:

- Symptom-based disease dataset
- Supporting files: Precautions, Medications, Diets, Workouts

System Architecture:

Dataset Details

- Primary Dataset: "Training.csv" containing symptom-to-disease mappings.
- Number of Symptoms: 132 unique symptoms.
- Number of Diseases: 41 classified diseases.
- Supporting Files:
 - description.csv: Disease descriptions.
 - precautions_df.csv: Precautionary steps.
 - medications.csv: Suggested medications.
 - diets.csv: Recommended diets.
 - workout_df.csv: Suggested workouts.

Dataset:

- Symptom-based disease dataset
- Supporting files: Precautions, Medications, Diets, Workouts

Machine Learning Models Training

We selected Support Vector Machine: Seeking Separations

MULTICLASS CLASSIFICATION:- It is simple and effective for Multiclass classification.

FAST TO TRAIN:- It is fast to train and works well for proof of control system

MINIMAL TUNING:- It supported in sklearn with minimal tuning needed.

Machine Learning Model

- Model Used: Support Vector Classifier (SVC)
- Why SVC?
 - Suitable for multi-class classification
 - Simple and efficient for symptom-based datasets
 - Performs well with smaller and structured datasets
- Input Format: Binary symptom vector (0 for absent, 1 for present)
- Training Process:
 - Dataset split: 70% training, 30% testing
 - Model trained to map symptom patterns to diseases
- Model Performance:
 - High accuracy on academic dataset
 - Potential overfitting due to structured dataset (acknowledged for future improvements)

Key Features Explained

Symptom-Based Disease Prediction:

Uses machine learning to predict diseases based on multiple symptoms provided by the user.

Voice-Based Symptom Input:

Allows users to speak their symptoms directly, making the system easy and accessible for all.

Autocomplete Multi-Symptom Selection:

Users can select symptoms using a dropdown with real-time suggestions to avoid input mistakes.

Personalized Medical Recommendations:

 Displays disease description, suggested medications, precautionary measures, diet plans, and workout tips tailored to the predicted disease.

User-Friendly, Mobile-Responsive Interface:

 The system is fully responsive and easy to use across devices like laptops, tablets, and smartphones.

Project Demo Screenshots

Challenges Faced

1. Dataset Preparation and Cleaning

- Ensuring correct symptom-to-disease mapping.
- Organizing additional datasets for medications, diets, precautions, and workouts.

2. Symptom Input Validation

- Handling incorrect symptom inputs or misspellings.
- Avoiding system crashes with invalid data.

3. Speech Input Integration

- Managing accurate speech-to-text conversion.
- Ensuring compatibility with the multi-select symptom input.

4. Model Accuracy and Overfitting

- Dealing with possible overfitting due to a small and structured dataset.
- Balancing simplicity and accuracy.

5. User-Friendly Web Design

- Making the system clean, responsive, and mobile-friendly.
- Providing a smooth experience for all users.

Future Enhancements

1. Improve Prediction Accuracy:

- Use more advanced models like XGBoost, or Neural Networks.
- Expand the dataset with real-world medical records.

2. Cloud Deployment:

Host the system on cloud platforms like Heroku or AWS for public access.

3. Mobile Application Developmen:

Build a mobile app version for better accessibility and wider reach.

4. Multi-Language Support:

Add support for regional and international languages to make the system usable for diverse users.

5. Real-Time Doctor Consultation:

Integrate real-time doctor suggestions or chatbot support for immediate expert advice.

Conclusion

- Successfully developed a **Medicine Recommendation System** using machine learning.
- Provides instant disease prediction based on user-input symptoms.
- Delivers **personalized medical recommendations**, including medications, precautions, diets, and workouts.
- Features a **user-friendly**, **mobile-responsive web interface** with voice input support.
- Contributes to faster, accessible, and reliable healthcare guidance.
- Open for **future improvements** like advanced models, mobile apps, and real-time doctor consultation.

Thank You