Report of Deep Learning for Natural Language Processing

II

Yucheng Wang wang eil@126.com

Abstract

本文从金庸的 16 篇小说库中均匀抽取了 1000 个段落作为数据集(每个段落可以有 K 个 token, K 可以取 20,100,500,1000,3000)。利用 LDA 模型在给定的语料库上进行文本建模,主题数量为 T (T可以取 10,20,50,100),把每个段落表示为主题分布后使用随机森林分类器进行分类。

比较了在设定不同的主题个数 T 的情况下,分类性能的差异;以"词"和以"字"为基本单元下分类性能的差异;不同的取值的 K 的短文本和长文本,分类性能的差异,以及选择不同大小的语料库时分类性能的差异。

Introduction

LDA,即 Latent Dirichlet Allocation (潜在狄利克雷分配),是一种常用的文本主题模型,用于发现文档集合中的潜在主题以及每个文档所包含的主题分布。在自然语言处理领域有广泛的应用,特别是在文本挖掘、信息检索和推荐系统等任务中。

LDA 假设每个文档都由多个主题组成,并且每个主题都由一组单词组成。模型通过以下过程工作:

步骤一一初始化:随机地为每个文档中的每个单词分配一个主题,以及为每个主题中的每个单词分配一个概率。

步骤二一迭代: 迭代地更新每个单词的主题分配,以及每个主题中的单词概率,直到达到收敛条件。

步骤三一输出:得到每个文档的主题分布以及每个主题的单词分布。

通过 LDA 模型对段落生成的主题分布,与每个段落对应的标签输入随机森林分类器进行分类,可以实现对 LDA 生成效果的测试。

Methodology

Part1: 文档抽取

由于每篇小说的字数不同,从所有小说中抽取 1000 个段落需要按照比例进行分配。首先读取每本小说的字数,然后按比例分配从每本小说抽取的段落数量。最后统计分配后的总数,如果不足 1000 段(可能因为小数舍弃的问题),从《鹿鼎记》中抽取缺少的段落补足 1000 段。

抽取段落前,首先对文档进行预处理,在预处理中去除标点符号、停用词、隐藏符号和非中文字符。对预处理后的文档,进行分词,按照字和词分别抽取 1000 段到 csv 文件中存储,并将对应文件名作为段落的标签,每个段落内使用逗号分隔字与字、词与词。

Part2: LDA 模型构建

LDA(Latent Dirichlet Allocation)是一种用于发现文本集合中潜在主题的统计模型。它的构建步骤包括:

数据准备: 收集文本数据集,并进行预处理,该步骤已在 Part1 完成。

文档表示:将文档表示为词频或 TF-IDF 向量,其中向量的长度等于词汇表中的词汇数量,而每个维度对应于词汇表中的一个词汇,在文档中的出现频率或 TF-IDF 值。

初始化模型参数:设置主题数量,并随机初始化文档的主题分布和主题的单词分布。

迭代优化:使用 Gibbs 采样等方法迭代更新模型参数,直到收敛。 LDA 模型为理解和分析大规模文本数据提供了有力工具,可应用于各种自然语言处理任务。

Part3: 使用随机森林进行分类

随机森林(Random Forest)是一种集成学习方法,用于解决分类和回归问题。它通过构建多个决策树,并将它们的输出结合起来进行预测,从而提高了模型的性能和鲁棒性。随机森林的基本组成部分是决策树。决策树是一种基于树结构的分类模型,通过对数据进行递归分割,将数据划分为不同的类别。通过构建多个

决策树,并将它们的预测结果进行组合,来提高整体模型的性能。本文中使用 90% 的段落作为训练集,10%作为测试集,并进行 10 次交叉验证。

Experimental Studies

经过统计每篇小说的字数,在使用 16 篇小说作为源时,每篇小说抽取的段落数目如下:

名称	段落数目	名称	段落数目
三十三剑客图	7	书剑恩仇录	61
侠客行	41	倚天屠龙记	113
天龙八部	139	射雕英雄传	106
碧血剑	57	白马啸西风	7
神雕侠侣	114	笑傲江湖	111
越女剑	2	连城诀	26
飞狐外传	51	雪山飞狐	15
鸳鸯刀	4	鹿鼎记	146

进行段落抽取后的 csv 文件如图所示:

铁冠面, 忽, 周颠, 负什韦, 笑, 周颠, 体慌助, 周颠, 慌妈, 屁慌什, 吸血, 蝙蝠, 老命, 天惊, 韦兄, 受什 倚天屠龙记. t洞会, 动静, 先进, 洞, 殷素素, 紧, 山洞, 极, 宽敞, 八九丈, 深, 中间, 透入, 线, 天光, 宛似, 天窗, 与倚天屠龙记. t明明, 曲方肯, 忍气吞声, 吃里扒外, 四字, 胡乱, 龙头, 哥, 相责, 须证, 弟适, 剑柄, 砸, 明明, 棒, 挡开 倚天屠龙记. t功力, 深浅, 立时, 显示, 出, 丝毫, 假, 莫声谷, 支持, 盏, 热茶, 时分, 宋远桥, 支持, 两, 炷, 香, 殷, 倚天屠龙记. t字, 突然, 问, 张口结舌, 空智, 吃惊, 急忙, 抢前, 抓住, 右腕, 竟觉, 脉息, 停, 空智, 更, 惊, 长老, 倚天屠龙记. t毕, 岭嵋派, 中, 走出, 名, 中年, 女尼, 走, 谢逊身, 前, 杀去, 仇口, 唾沫, 结罗口, 张口, 唾沫, 谢逊, 倚天屠龙记. t

以词为单位: K=20,100,500,1000,2000; T=10,20,50,100 进行实验,分类准确度如下:

K	10	20	50	100
20	0.084	0.152	0.110	0.150
100	0.162	0.148	0.164	0.167
500	0.200	0.220	0.304	0.314
1000	0.218	0.288	0.364	0.364
2000	0.332	0.457	0.628	0.606

以字为单位: K=20,100,500,1000,2000; T=10,20,50,100 进行实验,分类准确 度如下:

K	10	20	50	100
20	0.126	0.164	0.128	0.180
100	0.162	0.178	0.126	0.136
500	0.336	0.418	0.444	0.576
1000	0.342	0.483	0.599	0.681
2000	0.442	0.521	0.746	0.713

尝试减少文件数量到6个(碧血剑、飞狐外传、鹿鼎记、天龙八部、笑傲江湖、倚天屠龙记),抽取 1000 个段落,每个段落 2000 个词,主题数量 T=10,20,50,100,分类准确度结果如下:

K	10	20	50	100
2000	0.374	0.53	0.558	0.588

每个段落 2000 个字的分类准确度如下:

K T	10	20	50	100
2000	0.564	0.724	0.78	0.83

Conclusion

通过分析实验得到的结果可以总结出如下结论:

- ① 以字为单位的 LDA 模型相比以词为单位的 LDA 模型,在随机森林分类器中的分类效果更好;
- ② Token 数量越多,分类效果越好;
- ③ LDA 模型主题越多,分类效果越好;
- ④ 如果选择更少的文件数目作为源,在以字为单位的 LDA 模型中,随机森林分类器的分类效果显著提升,在以词为单位的模型中没有显著提升。 通过实验,验证了 LDA 模型在短文本上的效果不好。