

Lognormal and Gamma Mixed Negative Binomial Regression

Mingyuan Zhou, Lingbo Li, David Dunson and Lawrence Carin ECE and Statistics, Duke University, Durham, NC 27708, USA

Introduction

- ➤In regression analysis of counts, a lack of simple and efficient algorithms for posterior computation has made Bayesian approaches appear unattractive and thus underdeveloped.
- >We propose a lognormal and gamma mixed negative binomial (NB) regression model for counts, and present efficient closed-form Bayesian inference.
- ▶ By placing a gamma distribution prior on the NB dispersion parameter r, and connecting a lognormal distribution prior with the logit of the NB probability parameter p, efficient Gibbs sampling and variational Bayes inference are both developed.
- The closed-form updates are obtained by exploiting conditional conjugacy via both a compound Poisson representation and a Polya-Gamma distribution based data augmentation approach.
- >The proposed Bayesian inference can be implemented routinely, while being easily generalizable to more complex settings involving multivariate dependence structures.

Regression Models for Counts

□Poisson and Negative binomial distributions

$$\begin{split} f_X(k) = & \frac{e^{-\lambda} \lambda^k}{k!} \\ & = \frac{\int_0^\infty \operatorname{Pois}(k;\lambda) \operatorname{Gamma}\left(\lambda; r, \frac{p}{1-p}\right) d\lambda}{k! \Gamma(r)} \\ & = \frac{\Gamma(r+k)}{k! \Gamma(r)} (1-p)^r p^k \end{split}$$

Overdispersion: Variance > Mean

Heterogeneity: difference between individuals

Contagion: dependence between the occurrence of events

■Poisson regression

$$y_i \sim \text{Pois}(\lambda_i), \quad \lambda_i = \exp(\boldsymbol{x}_i^T \boldsymbol{\beta}) \qquad \mathbb{E}[y_i | \boldsymbol{x}_i] = \text{Var}[y_i | \boldsymbol{x}_i] = \exp(\boldsymbol{x}_i^T \boldsymbol{\beta})$$

□Poisson regression with random effect

$$y_i \sim \text{Pois}(\lambda_i), \quad \lambda_i = \exp(\mathbf{x}_i^T \boldsymbol{\beta}) \epsilon_i \quad \text{Var}[y_i | \mathbf{x}_i] = \mathbb{E}[y_i | \mathbf{x}_i] + \frac{\text{Var}[\epsilon_i]}{\mathbb{E}^2[\epsilon_i]} \mathbb{E}^2[y_i | \mathbf{x}_i]$$

Negative binomial regression

$$\epsilon_i \sim \mathrm{Gamma}(r, 1/r) = \frac{r^r}{\Gamma(r)} {\epsilon_i}^{r-1} e^{-r\epsilon_i} \ \mathrm{Var}[y_i | \boldsymbol{x}_i] = \mathbb{E}[y_i | \boldsymbol{x}_i] + \phi \mathbb{E}^2[y_i | \boldsymbol{x}_i]$$

Lognormal-Poisson regression

$$\epsilon_i \sim \ln \mathcal{N}(0, \sigma^2)$$
 $\operatorname{Var}[y_i | \boldsymbol{x}_i] = \mathbb{E}[y_i | \boldsymbol{x}_i] + \left(e^{\sigma^2} - 1\right) \mathbb{E}^2[y_i | \boldsymbol{x}_i]$

LGNB Regression

□Lognormal-gamma-gamma-Poisson regression

 $y_i \sim \text{Pois}(\lambda_i), \ \lambda_i \sim \text{Gamma}\left(r, \exp(\boldsymbol{x}_i^T\boldsymbol{\beta})\epsilon_i\right), \ r \sim \text{Gamma}(a_0, 1/h), \ \epsilon_i \sim \ln \mathcal{N}(0, \varphi^{-1})$

□Lognormal gamma mixed NB regression

$$p_i = \frac{e^{\psi_i}}{1 + e^{\psi_i}} = \frac{\exp(\mathbf{x}_i^T \boldsymbol{\beta}) \epsilon_i}{1 + \exp(\mathbf{x}_i^T \boldsymbol{\beta}) \epsilon_i}, \quad \text{logit}(p_i) = \ln \frac{p_i}{1 - p_i}$$

 $y_i \sim \text{NB}(r, p_i), \quad \psi_i = \text{logit}(p_i) = \boldsymbol{x}_i^T \boldsymbol{\beta} + \ln \epsilon_i, \quad r \sim \text{Gamma}(a_0, 1/h), \quad \epsilon_i \sim \ln \mathcal{N}(0, \varphi^{-1})$

Properties

$$\mathbb{E}[y_i|\mathbf{x}_i] = \mathbb{E}_{\epsilon_i}[\mathbb{E}[y_i|\mathbf{x}_i, \epsilon_i]] = \exp(\mathbf{x}_i^T \boldsymbol{\beta} + \sigma^2/2 + \ln r | \operatorname{Var}[y_i|\mathbf{x}_i] = \mathbb{E}_{\epsilon_i}[\operatorname{Var}[y_i|\mathbf{x}_i, \epsilon_i]] + \operatorname{Var}_{\epsilon_i}[\mathbb{E}[y_i|\mathbf{x}_i, \epsilon_i]]$$

$$= \mathbb{E}[y_i|\mathbf{x}_i] + \left(e^{\sigma^2}(1 + r^{-1}) - 1\right)\mathbb{E}^2[y_i|\mathbf{x}_i]$$

■Quasi-dispersion

$$\text{NB } \kappa = \phi = r^{-1} \qquad \text{Lognormal-Poisson} \quad \kappa = \left(e^{\sigma^2} - 1\right) \qquad \text{LGNB} \quad \kappa = \left(e^{\sigma^2}(1 + r^{-1}) - 1\right)$$

Inferring r under Compound Poisson

$$y \sim \mathrm{NB}(r,p) \quad \text{can be augmented as} \quad y = \sum_{\ell=1}^L u_\ell, \ L \sim \mathrm{Pois}(-r\ln(1-p)), \ \ u_\ell \stackrel{iid}{\sim} \mathrm{Log}(p)$$

$$y_i \stackrel{iid}{\sim} NB(r, p), \ r \sim Gamma(a, 1/b)$$

$$Pr(L_i = j|-) = R_r(y_i, j), \quad j = 0, \dots, y_i.$$

$$\begin{split} R_r(m,j) &= F(m,j) r^j \bigg/ \sum_{j'=1}^m F(m,j') r^{j'} & F(m,j) = \left\{ \begin{array}{ll} \frac{m-1}{m} F(m-1,j) + \frac{1}{m} F(m-1,j-1) & \text{if } 1 \leq j \leq m; \\ 0 & \text{otherwise.} \end{array} \right. \\ & (r|-) \sim \text{Gamma} \left(a + \sum_{j=1}^n L_i, \frac{1}{b-N \ln(1-p)} \right) \end{split}$$

Inferring $oldsymbol{eta}$ using Polya-Gamma

□Polya-Gamma distribution $X \sim PG(a, c)$

$$X \stackrel{D}{=} \frac{1}{2\pi^2} \sum_{k=1}^{\infty} \frac{g_k}{(k-1/2)^2 + c^2/(4\pi^2)}, \ g_k \sim \text{Gamma}(a,1)$$

Data augmentation

$$\begin{split} y_i &\sim \text{NB}\left(r, p_i\right), \quad \psi_i = \text{logit}(p_i) = x_i^T \beta + \ln \epsilon_i \quad \epsilon_i \sim \ln \mathcal{N}(0, \varphi^{-1}) \\ \omega_i &\sim \text{PG}(y_i + r, 0) \quad \mathbb{E}_{\omega_i}\left[\exp\left(-\omega_i \psi_i^2/2\right)\right] = \cosh^{-(y_i + r)}(\psi_i/2) \\ \mathcal{L}(\psi_i) &\propto \frac{\left(e^{\psi_i}\right)^{y_i}}{\left(1 + e^{\psi_i}\right)^{y_i + r}} = \frac{2^{-(y_i + r)} \exp\left(\frac{y_i - r}{2}\psi_i\right)}{\cosh^{y_i + r}(\psi_i/2)} \propto \exp\left(\frac{y_i - r}{2}\psi_i\right) \mathbb{E}_{\omega_i}\left[\exp\left(-\omega_i \psi_i^2/2\right)\right] \end{split}$$

■Gibbs sampling

$$(\psi|-) \propto \mathcal{N}(\psi; \mathbf{X}\boldsymbol{\beta}, \varphi^{-1}\mathbf{I}) \prod_{i=1}^{N} e^{-\frac{\omega_{i}}{2} \left(\psi_{i} - \frac{y_{i} - r}{2\omega_{i}}\right)^{2}}$$

$$(\psi|-) \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \quad \boldsymbol{\mu} = \boldsymbol{\Sigma}[(\boldsymbol{y} - r)/2 + \varphi \mathbf{X}\boldsymbol{\beta}] \quad \boldsymbol{\Sigma} = (\varphi \mathbf{I} + \boldsymbol{\Omega})^{-1}$$

$$(\omega_{i}|-) \propto \exp(-\omega_{i}\psi_{i}^{2}/2)\operatorname{PG}(\omega_{i}; y_{i} + r, 0)$$

$$(\omega_{i}|-) \sim \operatorname{PG}(y_{i} + r, \psi_{i})$$

Model and Inference

$$y_i \sim \text{NB}\left(r, p_i\right), \quad \psi_i = \text{logit}(p_i) = \boldsymbol{x}_i^T \boldsymbol{\beta} + \ln \epsilon_i$$
 $\epsilon_i \sim \ln \mathcal{N}(0, \varphi^{-1}), \quad \varphi \sim \text{Gamma}(e_0, 1/f_0)$
 $\boldsymbol{\beta} \sim \prod_{p=0}^P \mathcal{N}(0, \alpha_p^{-1}), \quad \alpha_p \sim \text{Gamma}(c_0, 1/d_0)$
 $r \sim \text{Gamma}(a_0, 1/h), \quad h \sim \text{Gamma}(b_0, 1/q_0)$

Gibbs sampling

$$\begin{split} & \Pr(L_i = j | -) = R_r(y_i, j), \quad j = 0, \cdots, y_i \\ & (r| -) \sim \operatorname{Gamma} \left(a_0 + \sum_{i=1}^N L_i, \frac{1}{h - \sum_{i=1}^n \ln(1 - p_i)} \right) \\ & (\omega_i | -) \sim \operatorname{PG}(y_i + r, \psi_i), \quad (\beta| -) \sim \mathcal{N}(\mu_\beta, \Sigma_\beta) \\ & (\psi| -) \sim \mathcal{N}(\mu, \Sigma), \quad (\beta| -) \sim \mathcal{N}(\mu_\beta, \Sigma_\beta) \\ & (h| -) \sim \operatorname{Gamma} \left(a_0 + b_0, 1/(g_0 + r) \right) \\ & (\varphi| -) \sim \operatorname{Gamma} \left(c_0 + \frac{N}{2}, \frac{1}{f_0 + \|\psi - \mathbf{X}\beta\|_2^2/2} \right) \\ & (\alpha_\beta | -) \sim \operatorname{Gamma} \left(c_0 + 1/2, 1/(d_0 + \beta_\beta^2/2) \right) \end{split}$$

Variational Baves

Experiments

□Univariate count data analysis

■Count regression

Table 1. The MLEs or posterior means of the lognormal variance parameter σ^2 , NB dispersion parameter r, quasi-dispersion κ and regression coefficients β for the Poisson, NB and LGNB regression models on the NASCAR dataset, using the MLE, VB or Gibbs sampling for parameter esti-

Model	Poisson	NB	LGNB	LGN
Parameters	(MLE)	(MLE)	(VB)	(Gibb
σ^2	N/A	N/A	0.1396	0.028
r	N/A	5.2484	18.5825	6.042
β_0	-0.4903	-0.5038	-3.5271	-2.16
β_1 (Laps)	0.0021	0.0017	0.0015	0.001
β_2 (Drivers)	0.0516	0.0597	0.0674	0.064
Bo (TrkLon)	0.6104	0.5153	0.4192	0.420

Models (Methods)	NASCAR	MotorIns
Poisson (MLE)	655.6	485.6
NB (MLE)	138.3	316.5
IG-Poisson (MLE)	N/A	319.7
LGNB ($r \equiv 1000$, Gibbs)	117.8	296.7
LGNB(VB)	126.1	275.5
LGNB(Gibbs)	129.0	284.4

 $\begin{array}{ccc} \text{LGNB (VB) Correlation matrix for} & (\beta_1,\beta_2,\beta_3)^T \\ \left(\begin{array}{ccc} 1.0000 & -0.4824 & 0.8933 \\ -0.4824 & 1.0000 & -0.7171 \\ 0.8933 & -0.7171 & 1.0000 \end{array} \right) \end{array}$

Figure 2. The histograms of the quasi-dispersion $\kappa=e^{\sigma^2}(1+1/r)-1$ based on (a) the 2000 collected Gibbs samples for NASCAR, (b) the 2000 simulated samples using the VB Q functions for NASCAR, (c) the 2000 collected Gibbs samples for Motorlns, and (d) the 2000 simulated samples using the VB Q functions for Motorlns.

Future work under the lognormal-gamma-NB framework

Multivariate count regression Log Gaussian process Mixture modeling, topic modeling