bbs.eins.mainz Berufsbildende Schule Technik	3. Test	Name: Musterlasung
	Einfache IT-Systeme	Datum: ———
BS FI 18	von <u>79</u> Punkten erreicht:%	Note:

Allgemeines

- Bei der Bearbeitung ist ein nachvollziehbarer, vollständiger Rechenweg aufzuschreiben.
- Die Lösungen müssen mit dokumentenechten Stiften (Kugelschreiber oder Fine-Liner) (keine rote Mine) erstellt werden.
- Die Bewertung des Tests ist nur bei gut lesbarer Schrift möglich.
- Zugelassene Hilfsmittel: Taschenrechner (nicht graphikfähig / programmierbar)
- Bearbeitungszeit: 45 Minuten

Aufgabe 1

$$/16 + 9 + 15 = 40$$
 Pkt.

Gegeben ist folgende Schaltung:

- a) Geben Sie zunächst die Wahrheitstabelle für die obige Schaltung an.
- b) Bestimmen Sie die Minterme der Tabelle.
- c) Stellen Sie aus den Mintermen die disjunktive Normalform auf.

Aufgabe 2

$$/ 6 + 18 = 20 \text{ Pkt.}$$

Gegeben sind die Minterme $f_0, f_1, f_5, f_7, f_9, f_{11}$ und f_{13} .

- a) Geben Sie die Ein- und Ausgangsvariablen der Funktion f an.
- b) Bestimmen Sie die minimierte disjunktive Normalform der dazugehörigen Funktion.

3. Test

Aufgabe 1

b)
$$m_0 = \overline{E_1} \wedge \overline{E_2}$$

 $m_1 = \overline{E_1} \wedge \overline{E_2}$
 $m_2 = \overline{E_1} \wedge \overline{E_2}$

C)
$$m(E_1,E_2) = m_3 \vee m_4 \vee m_2$$

= $\overline{E_1} \wedge \overline{E_2} \vee \overline{E_1} \wedge \overline{E_2} \vee E_1 \wedge \overline{E_2}$

Aufgabe 2 forfarforfarforfar und fis

a) Eingangsvariablen Xo, X1, X2, X3
Ausgangsvariable X

b)
$$\frac{X_0X_1}{X_2X_3}$$
 60 01 11 10 $\frac{X_0X_1}{X_2}$ $\frac{X_2X_3}{X_1}$ 60 $\frac{X_0}{X_1}$ $\frac{X_2}{X_2}$ $\frac{X_1}{X_2}$ $\frac{X_2}{X_3}$ $\frac{X_1}{X_2}$ $\frac{X_2}{X_3}$ $\frac{X_1}{X_2}$ $\frac{X_2}{X_3}$ $\frac{X_1}{X_3}$ $\frac{X_2}{X_4}$ $\frac{X_2}{X_3}$ $\frac{X_1}{X_3}$ $\frac{X_2}{X_4}$ $\frac{X_3}{X_4}$ $\frac{X_2}{X_3}$ $\frac{X_1}{X_4}$ $\frac{X_2}{X_3}$

 $\Rightarrow f(x_0, X_1, X_2, X_3) = (\overline{X}_0 \wedge \overline{X}_1 \wedge \overline{X}_2) \vee (\overline{X}_0 \wedge X_1 \wedge X_3)$ $\vee (X_0 \wedge \overline{X}_1 \wedge X_3) \vee (\overline{X}_2 \wedge X_3)$

Aufgabe 3

Test Nr 7. Die Signale a und b werden über ODER verknüpft und liefen au das nächste ODER eine 1-Signal, so dass die ses auschließend nu NOT-Gatter negiert und zu einem O-Signal als Ausgabe führen müsste.