

CVT-SIMULATOR

McMaster University 🚒

Kai Arseneau, Travis Wing, Cameron Dunn, Grace McKenna and our supervisor Dr. Spencer Smith

ENGINEERING Computing & Software

Project Motivation

- Primary Stakeholder: McMaster Baja Racing Team
- **Key Component:** Continuous Variable Transmission (CVT) – responsible for maximizing power transfer from the engine.
- Importance: The CVT is crucial for performance in key competition events such as hill climb, acceleration, and the endurance race.
- Current Issue:
 - The mechanical CVT is complex, with ~10 tuneable parameters.
 - Last year, CVT tuning took over 8 weekends, even with formalized testing tools.
 - Despite optimization, there is still untapped performance potential.

Challenges:

- Some metrics of the CVT's performance are not fully understood.
- Limited drive time each season hampers optimization.
- Manual tuning is resource-intensive and costly.
- Expensive manufacturing techniques for CVT components add to costs.

Components of Primary CVT

Components of Secondary CVT

Our Solution

- Developed a comprehensive powertrain model for the Baja vehicle.
- Modeled resistive forces, engine, and CVT system.
- Enables rapid assessment of component changes and their impact.
- Provides a cost-effective way to test and iterate designs.

Key Features

- Successfully simulates the McMaster Baja Team's CVT using mathematical models.
- Computes primary and secondary clamping forces based on CVT
- parameters.
- Calculates acceleration, velocity, and distance of the car.
- Allows users to adjust CVT tuning parameters as well as other inputs.
- Provides an interface for users to play and the simulation
- Displays graphs of the simulation results
 - Exporting of the simulation data.

Product

Trend Analysis

- Increased weight lowers peak engine speed.
- Heavier configurations slow CVT ratio engagement.

• Simulation reflects added inertia delaying speed transitions.

- "Engine Speed 1" shows a flatter curve due to increased load.
- Engine Speed vs Vehicle Speed <u>2</u> 300 250 200 150 100 Engine Speed 0 Engine Speed ——— Min Ratio --- Max Ratio 5.0 10.0 7.5 12.5 15.0 Vehicle Speed (m/s)
- Spring rate variations influence CVT response.
- Stiffer springs cause an earlier upshift.
- Higher initial engine speeds and quicker ratio adjustment.
 - Simulation accurately reflects spring rate effects.

Results

The software has already been instrumental in guiding the design of new ramps, streamlining the development process and contributing to more efficient, datainformed design decisions.

# Pos. > #	Car No. V	School / Team Name	~	Status	~ #	Time ~	# Points ~
1	66	Case Western Reserve Univ CWRU Motorsports		OK		3.863	70
2	69	Univ of Michigan - Ann Arbor Michigan Baja Racing		OK		3.916	68.86890244
3	27	Ecole de Technologie Superieure Baja ÉTS		OK		3.919	68.80487805
4	36	California Polytechnic State Univ-SLO Cal Poly Racing		OK		3.989	67.31097561
5	73	Cornell Univ Cornell Baja Racing		OK		4.033	66.37195122
6	72	Rochester Institute of Technology RIOT RACING		OK		4.117	64.57926829
7	76	Univ of Maryland - Baltimore County UMBC Racing		OK		4.187	63.08536585
8	65	Johns Hopkins Univ Blue Jay Racing		OK		4.199	62.82926829
9	16	ITESM - Campus Guadalajara Mad Rams		OK		4.254	61.6554878
10	64	McMaster Univ McMaster Baja Racing		OK	·	4.285	60.99390244
11	34	Univ of Calif - Los Angeles Bruin Racing Baja		OK		4.297	60.73780488
12	25	Utah State University USU Baja		OK		4.36	59.39329268
13	75	The Ohio State University Baja Buckeyes		OK		4.372	59.13719512
14	32	Oregon Inst of Tech Oregon Tech Racing		OK		4.413	58.26219512
15	43	San Diego State Univ Aztec Baja Racing		OK		4.422	58.07012195
16	22	Oregon State Univ Beaver Racing		OK		4.434	57.81402439
17	55	Universite de Sherbrooke Universite de Sherbrooke		OK		4.441	57.66463415
18	18	California State Poly Univ - Pomona Bronco Racing		OK		4.448	57.5152439
19	35	Harding Univ Bison Baja		OK		4.489	56.6402439
20	12	Univ of Missouri - Kansas City Roo Racing		OK		4.56	55.125
21	64	McMaster Univ McMaster Baja Racing		OK		4.56	55.125

$F_{\text{prim_clamp}}(d_{\text{shift}}, \omega_{\text{eng}}) - F_{\text{sec_clamp}}(d_{\text{shift}}, T_{\text{eng}}, R_{\text{cvt}})$ Shifting Acceleration ODE

$$\frac{dv_{\text{car}}}{dt} = \frac{\frac{R_{\text{CVT}}R_{\text{gearbox}}}{r_{\text{wheel}}} \tau_{\text{engine}}(\frac{v_{\text{car}}R_{\text{CVT}}R_{\text{gearbox}}}{r_{\text{wheel}}})}{m_v + m_d} - g\sin\theta_{\text{inc}} - \frac{\rho C_D A}{2(m_v + m_d)}v_{\text{car}}^2$$

Car Acceleration ODE