

Lab2: 3Ps cod length-at-age 2019 course

Noel Cadigan

CFER

Centre for Fisheries Ecosystems Research

The Data

Year Start Date End Date 1983 23-Apr-83 8-May-83 10-Apr-84 17-Apr-84 1984 1985 8-Mar-85 25-Mar-85 6-Mar-86 23-Mar-86 1986 1987 13-Feb-87 22-Mar-87 1988 27-Jan-88 14-Feb-88 1989 1-Feb-89 16-Feb-89 1-Feb-90 19-Feb-90 1990 1991 2-Feb-91 20-Feb-91 1992 6-Feb-92 24-Feb-92 1993.4 2-Apr-93 20-Apr-93 6-Apr-94 26-Apr-94 1994 4-Apr-95 28-Apr-95 1995 1996 10-Apr-96 1-May-96 1997 2-Apr-97 23-Apr-97 1998 10-Apr-98 5-May-98 1999 13-Apr-99 6-May-99 2000 8-Apr-00 11-May-00 2001 7-Apr-01 29-Apr-01 2002 5-Apr-02 27-Apr-02 2003 5-Apr-03 2-May-03 2004 11-Apr-04 11-May-04 2005 17-Apr-05 9-May-05 2006 13-Apr-06 18-Apr-06 2007 4-Apr-07 2-May-07 2008 10-Apr-08 23-May-08 2009 8-Apr-09 13-May-09 2010 8-Apr-10 8-May-10 7-Apr-11 8-May-11 2011 31-Mar-12 26-Apr-12 2012 26-Mar-13 23-Apr-13 2013 2014 5-Apr-14 10-May-14 2015 11-Apr-15 10-May-15 2016 2-Apr-16 1-May-16

Survey Timing

Time-varying SR

> I fit models with various combinations of time-varying (i.e. RW)

Linf, k, and po,
$$l_c(a) = L_{c,\infty} \{1 - (1 - \rho_{c,o}) exp(-k_c a)\}$$

	k+Linf+po	(k+Linf+po) C	k+po+(Linf C)	Linf+po+(k C)	Linf+(po+k C)
Dev	-777.161	-803.080	-803.080	-802.098	-802.098
Nparm	4.000	7.000	5.000	5.000	6.000
AIC	-769.161	-789.080	-793.080	-792.098	-790.098
BIC	-753.358	-761.425	-773.327	-772.345	-766.394
MSE	0.008	0.007	0.007	0.007	0.007
Linf	176.359	170.268	170.268	161.020	161.020
k	0.057	0.064	0.064	0.069	0.069
logit_po	-24.638	-33.391	-24.409	-24.503	-25.228
std_Linf		0.014	0.014	0.017	0.017
std_k		0.000		0.083	0.275
std_lpo		0.000			0.083
std_me	0.088	0.083	0.083		

Fit using age+sf

3Ps cod RW VonB

VonB2 model did not help much!

None of these models fit the data well – under-estimate size at ages 3-6

Time-Varying Bi-phasic Growth Model

```
//Fixed effects
                                TMB
 PARAMETER(log Linf);
                                                             lts = data.frame(
 PARAMETER(log k1);
                                                              len=as.numeric(unlist(len[,2:(n.age+1)])),
 PARAMETER(log k2);
                                                              age = as.numeric(unlist(agem)),
 PARAMETER(theta0);
                                                              year = as.numeric(unlist(yearm)),
 PARAMETER(theta1);
                                                              sf=as.numeric(unlist(sfm)))
 PARAMETER(log po);
 PARAMETER(log std log Linf);
                                                             Its$cohort = Its$year - Its$age
 PARAMETER(log std log k1);
                                                             Its$age = Its$age + Its$sf
 PARAMETER(log std log k2);
                                                             ltsp = subset(lts,!is.na(len))
 PARAMETER(log std me);
                                                            tmb.data = list(
//Random Effects:
                                                              nobs = nrow(ltsp),
 PARAMETER VECTOR(rlog Linf);
                                                               nc = length(unique(ltsp$cohort)),
 PARAMETER VECTOR(rlog k1);
                                                              y = Itsp$len,
 PARAMETER VECTOR(rlog k2);
                                                               cohort = Itsp$cohort,
                                                               age = Itsp$age,
 vector<Type> k1 = k1 c(ic);
                                                               ic = as.numeric(as.factor(ltsp$cohort))-1,
 vector<Type> k2 = k2 c(ic);
                                                               REk = 0, #0 for no, 1 for yes;
 vector<Type> logit p = theta0 + theta1*age;
                                                               RELinf = 0 #0 for no, 1 for yes;
 vector<Type> pmat = exp(logit p)/(one + exp(logit p));
 vector<Type> k = k1*pmat + k2*(one-pmat);
 \log \text{ pred} = \log \text{ Linf } c(ic) + \log(one - (one - po)*exp(-k*age));
```

Time-Varying Bi-phasic Growth Model

	Const. k and Linf	Cohort k and Linf	Cohort k and const. Linf
Dev	-820.640	-857.135	-859.587
Nparm	6.000	9.000	8.000
AIC	-808.640	-839.135	-843.587
BIC	-784.936	-803.579	-811.982
MSE	0.007	0.006	0.006
Linf	145.286	141.534	133.004
k1	0.074	0.085	0.094
k2	0.061	0.064	0.067
theta0	-5.536	-5.396	-5.583
theta1	2.224	2.106	2.199
std_Linf		0.015	
std_k1		0.000	0.023
std_k2		0.015	0.000
std_me	0.083	0.076	0.077

Bi-phasic model fit much better

best

3Ps cod RW Bi-Phasic VonB

Still some residual "bias" at ages 4+5

3Ps cod RW Bi-Phasic VonB

Bi-Phasic VonB better, but still some bias.

Lets go <u>more</u> semiparametric to see what data want

3Ps cod agexyear RW K VonB

A nonparametric Von Bertalanffy model for estimating growth curves of Atlantic cod

By N. G. Cadigan and J. Brattey¹

The VONB equation (2) can be developed from the differential equation

$$\frac{\partial L(t)}{\partial t} = k\{\lambda_{\infty} - L(t)\}.$$

We modify this simple model to accommodate annual/seasonal variations in growth rates by allowing k to be a smooth function of t; that is,

$$\frac{\partial L(t)}{\partial t} = k(t) \{ \lambda_{\infty} - L(t) \}. \tag{3}$$

Given that a fish is known to be length l_r at the time-of-release t_r , then the solution to (3) is

$$L(t) = l_r + (\lambda_{\infty} - l_r) \left\{ 1 - e^{-K(t, t_r)} \right\}, \tag{4}$$

where $K(t,t_r) = \int_{t_r}^{t} k(u)du$. By subtracting l_r from both sides of this equation we get

3Ps cod agexyear RW K VonB

```
\succ K_c(a) = \sum_{i=1}^a \delta_{c,i}
```

 \triangleright I use a bi-variate RW for $\delta_{c,a}$, over cohorts (c) and ages (a)

If $K(a) = k \times a$ then K(a + 1) - K(a) = k

```
//Fixed effects
 PARAMETER(log_Linf);
 PARAMETER(log_k_main);
 PARAMETER(logit_po);
 PARAMETER(log_std_log_Linf);
 PARAMETER(log_std_log_k);
 PARAMETER(log_std_lpo);
 PARAMETER(log std me);
//Random Effects;
 PARAMETER_VECTOR(rlog_Linf);
 PARAMETER_MATRIX(rlog_k_dev);
 PARAMETER_VECTOR(rlogit_po);
```

```
matrix<Type> log_k(na,nc);
matrix<Type> ka(na,nc);
for (int j = 0; j < nc; ++j){
    log_k(0,j) = log_k_main + rlog_k_dev(0,j);
    ka(0,j) = exp(log_k(0,j));
    for (int i = 1; i < na; ++i){
        log_k(i,j) = log_k_main + rlog_k_dev(i,j);
        ka(i,j) = ka(i-1,j) + exp(log_k(i,j));
    }
}</pre>
```

3Ps cod agexyear RW K VonB

 \triangleright Bi-variate RW for $\delta_{c,a}$, over cohorts (c) and ages (a)

```
\begin{split} &\text{for}(\text{int } j=0; j < \text{nc}; ++j) \{ \\ &\text{for}(\text{int } i=0; i < \text{na}; ++i) \{ \\ &\text{if}((i==0)\&(j==0)) \{ \text{mZ} = \text{zero}; \} \\ &\text{if}((i>0)\&(j==0)) \{ \text{mZ} = \text{rlog\_k\_dev}(i-1,j); \} \\ &\text{if}((i==0)\&(j>0)) \{ \text{mZ} = \text{rlog\_k\_dev}(i,j-1); \} \\ &\text{if}((i>0)\&(j>0)) \{ \text{mZ} = \text{rlog\_k\_dev}(i,j-1) + \text{rlog\_k\_dev}(i-1,j) - \text{rlog\_k\_dev}(i-1,j-1); \} \\ &\text{nll} -= &\text{dnorm}(\text{rlog\_k\_dev}(i,j), \text{mZ}, \text{std\_log\_k}, \text{true}); \\ &\} \} \} \end{split}
```

agexyear RW K VonB

Exactly the same fit as slide 4, because it is the same model

	k+Linf+po	po+(k+Linf) C	k+po+(Linf C)	Linf+po+(k C)
Dev	-777.161	-854.655	-803.080	-854.655
Nparm	4.000	6.000	5.000	5.000
AIC	-769.161	-842.655	-793.080	-844.655
BIC	-753.358	-818.951	-773.327	-824.902
MSE	0.008	0.005	0.007	0.005
Linf	176.359	192.101	170.268	192.101
k_main	0.057	0.052	0.064	0.052
logit_po	-24.747	-20.118	-24.529	-22.908
std_Linf		0.000	0.014	0.021
std_k		0.021		0.073
std_me	0.088	0.073	0.083	

This model fits good!
AIC and BIC a little
lower than bi-phasic

agexyear RW K VonB

Some "bias" at ages 4+5

agexyear RW K VonB

Length at age by cohort

agexyear RW K VonB - the fix?

agexyear RW K VonB -the fix?

Cod in 3Ps have ontogenetic? change in spatial distribution, and tend to occupy water with different temperatures.

Older ages may be more on warm water slopes?

RV selectivity

A Hypothesis

Could also be explained by:

- 1) Diet
- 2) Stock mixing
- 3) etc

NC3

Noel Cadigan, 1/19/2019