Inverse Kinematics for swerve with N wheels (N>2).

Pick a fixed point "C" on the robot to act as the reference for all calculations.

Fix an XY Cartesian coordinate system on the robot with the origin at C and the positive Y axis pointing in the robot's forward direction.

Let the location of the center of the ith swerve wheel be specified by the coordinates $(X_i, Y_i)^1$.

Let ω_v be the desired clockwise robot rotation (in radians/sec) about the point C.

Let V_x and V_y be the components of the desired vehicle translational velocity² (with respect to the coordinate system fixed on the robot).

Then the forward speed of the ith wheel should be set to³:

$$\operatorname{sqrt}(W_{xi}^2 + W_{yi}^2)$$

And the steering angle of the ith wheel should be set to⁴:

$$(180/\pi)$$
·atan2 (W_{xi}, W_{vi})

... where
$$\mathbf{W}_{xi} = \mathbf{V}_x + \mathbf{\omega}_v \cdot \mathbf{Y}_i$$
 and $\mathbf{W}_{yi} = \mathbf{V}_y - \mathbf{\omega}_v \cdot \mathbf{X}_i$

¹ Use the same units for all distance inputs

² Velocity units must be consistent with distance units

³ Wheel speeds will be in the same units as input; see footnotes 2&3 above. If any of the N wheel speeds exceeds the maximum, scale all wheel speeds down by the same factor.

 $^{^4}$ Angles will be in the range -180 to +180, clockwise, with zero occurring at the +Y axis. If using the Excel atan2() function, reverse the order of the arguments.