

a Fresnel lens sheet forming Fresnel lenses at an emission side of said light;

a first configuration element having:

a plurality of lenticular lenses at an incidence side of light emitted from said Fresnel lens sheet;

light passing windows formed at a light emission side of said first configuration element and each provided at a place in close proximity to each focal point of said lenticular lenses;

a plurality of light absorbing layers each provided among said light passing windows; and

a second configuration element placed on said emission side of said first configuration element;

wherein a pitch of said light passing windows formed on said first configuration element is made smaller than a pitch of pixels projected and enlarged on said screen from said image produced by said picture display device; and

wherein said second configuration element is adhered to said first configuration element so as to eliminate an air boundary surface therebetween.

2. (amended) A screen according to claim 1 wherein an emission surface of a light passing plate provided on said second configuration element is subjected to a reflection preventing process for preventing reflection of a visible

light.

3. (amended) A screen according to claim 1 wherein, on an emission side of a light passing plate provided on said second configuration element, there is provided a reflection preventing film for preventing reflection of a visible light.

and

4. (amended) A screen according to claim 2 wherein a light scattering material is mixed inside said light passing plate.

5. (amended) A screen according to claim 2 wherein a light scattering layer is provided between said light passing plate and said first configuration element.

6. (amended) A screen according to claim 1 wherein:
said Fresnel lenses of said Fresnel lens sheet are laid out at a pitch F_p ;
said light passing windows are laid out in a horizontal direction of said screen at a pitch L_p ; and
a ratio L_p/F_p of said pitch L_p to said pitch F_p is set at a value in the range 1.588 to 1.649.

7. (amended) A screen for projecting an enlarged picture on said screen from a picture display apparatus

including a light source, a picture display device implemented as a matrix of pixels each having a means for modulating the intensity of a light generated by said light source, and a projection optical means for projecting said displayed picture appearing on said picture display device,

said screen comprising:

a first configuration element having a plurality of lenticular lenses provided on a light-emission side of said picture display device and light absorbing layers provided on a light-emission side of said lenticular lenses; and

a light passing second configuration element provided on said light-emission side of said first configuration element;

said lenticular lenses having a longitudinal direction coinciding with a screen surface vertical direction and laid out contiguously in a screen surface horizontal direction; and

said light absorbing layers sandwiched by boundaries of any two adjacent openings each provided at a location in close proximity to a focal point of one of said lenticular lenses associated with said opening;

wherein:

said first and second configuration elements are bound or stuck to each other so as to eliminate an air boundary surface therebetween;

a pitch of said openings is made smaller than a pitch of pixels projected and enlarged on said screen from said

displayed picture output by said picture display device; and
a pitch of interference lines caused by interference
between a pitch of an opening of said lenticular lenses and a
pitch in the horizontal direction of pixels projected and
enlarged on said screen from said image produced by said
picture display device is set at a value equal to or smaller
than said pitch of pixels projected and enlarged on said
screen from said displayed picture output by said picture
display device.

Ar 12. (amended) A screen according to claim 7 wherein a
third configuration element having Fresnel lenses is provided
on a light-incidence side of said first configuration element;
said Fresnel lenses of said third configuration element
laid out at a lens pitch F_p ;
said openings of said first configuration element are
laid in a horizontal direction of said screen at a pitch L_p ;
a ratio L_p/F_p of said lens pitch L_p to said pitch F_p is
at a value in the range 1.588 to 1.649; and
a pitch M_{pl} of moire lines is set at a value smaller than
a pitch I_{ph} of pixels projected and enlarged on said screen in
a screen horizontal direction from said displayed picture
output by said picture display device.

13. (amended) A projection-type picture display

apparatus comprising:

a light source;
a picture display device implemented as a matrix of pixels for modulating the intensity of a light generated by said light source; and

a projection optical means for projecting a picture appearing on said picture display device, a Fresnel lens sheet placed on an emission side of said picture display device;

*Clerk X
Clerk A2*
a first configuration element having:

lenticular lenses provided on an incidence side of a light passing through said Fresnel lens sheet; and

light absorbing layers each provided at a place in close proximity to the focal point of one of said lenticular lenses and are separated from each other by a predetermined distance for forming a light passing window;

a second configuration element having a light passing plate fixed on said emission side of said first configuration element;

wherein a pitch of said light passing windows is made smaller than a pitch of pixels projected and enlarged on a screen by said picture display device; and

wherein said second configuration element is adhered to said first configuration element so as to eliminate an air boundary surface therebetween.

OB 17. (amended) A projection-type picture display apparatus according to claim 13 wherein:

Fresnel lenses of said Fresnel lens sheet are laid out at a pitch F_p ;

said light passing windows are laid out in a horizontal direction of said screen at a pitch L_p ; and

a ratio L_p/F_p of said pitch L_p to said pitch F_p is set at a value in the range 1.588 to 1.649.

18. (amended) A projection-type picture display apparatus comprising:

a light source;

a picture display device implemented as a matrix of pixels each having a means for modulating the intensity of a light generated by said light source;

a projection optical means for projecting a displayed image appearing on said picture display device; and

a screen used by said projection optical means to project said displayed image as an enlarge picture and provided with:

a first configuration element having a plurality of lenticular lenses provided on a light-emission side of said picture display device and light absorbing layers provided on a light-emission side of said lenticular lenses, and

a light passing second configuration element provided on said light-emission side of said first

configuration element,

said lenticular lenses having a longitudinal direction coinciding with a screen surface vertical direction and laid out contiguously in a screen surface horizontal direction;

said light absorbing layers sandwiched by boundaries of any two adjacent openings each provided at a location in close proximity to a focal point of one of said lenticular lenses associated with said opening; and

said first and second configuration elements are bound or stuck to each other so as to eliminate an air boundary surface therebetween;

*cert
ah*
wherein a pitch of said openings is made smaller than a pitch of pixels projected and enlarged on said screen from said displayed image output by said picture display device; and

a pitch of interference lines caused by interference between a pitch of an opening of said lenticular lenses and a pitch in the horizontal direction of pixels projected and enlarged on said screen from said image produced by said picture display device is set at a value equal to or smaller than said pitch of pixels projected and enlarged on said screen from said displayed image output by said picture display device.

94 22. (amended) A projection-type picture display

apparatus according to claim 18 wherein:

a third configuration element having Fresnel lenses is provided on a light-incidence side of said first configuration element;

said Fresnel lenses of said third configuration element are laid out at a lens pitch F_p ;

said openings of said first configuration element are laid out in a horizontal direction of said screen at a pitch L_p ;

a ratio L_p/F_p of said lens pitch L_p to said pitch F_p is set at a value in the range 1.588 to 1.649; and

art A4
a pitch M_{pl} of moire lines is set at a value smaller than a pitch I_{ph} of pixels projected and enlarged on said screen in a screen horizontal direction from said displayed image output by said picture display device.

23. (amended) A screen comprising:

a Fresnel lens sheet;

a first configuration element having:

lenticular lenses provided on an incidence side of a light passing through said Fresnel lens sheet; and

light absorbing layers each provided at a place in close proximity to the focal point of one of said lenticular lenses and are separated from each other by a predetermined distance for forming a light passing window; and

a second configuration element having a light passing plate fixed on said emission side of said first configuration element;

wherein a pitch of said light passing windows is made smaller than a pitch of pixels projected and enlarged on said screen from said image produced by said picture display device; and

wherein said second configuration element is adhered to said first configuration element so as to eliminate an air boundary surface therebetween.

*Conf
QF* 24. (amended) A screen for projecting an enlarged picture on said screen from a picture display apparatus comprising:

a first configuration element having a plurality of lenticular lenses provided on a light-emission side of said picture display device and light absorbing layers provided on a light-emission side of said lenticular lenses, and

a light passing second configuration element provided on said light-emission side of said first configuration element, said lenticular lenses having a longitudinal direction coinciding with a screen surface vertical direction and laid out contiguously in a screen surface horizontal direction; and

said light absorbing layers sandwiched by boundaries of any two adjacent openings each provided at a location in close

proximity to a focal point of one of said lenticular lenses associated with said opening;

wherein said first and second configuration elements are bound or stuck to each other so as to eliminate an air interface therebetween;

a pitch of said openings is made smaller than a pitch of pixels projected and enlarged on said screen from said displayed picture output by said picture display device; and

*CMT
04*
a pitch of interference lines caused by interference between a pitch of an opening of said lenticular lenses and a pitch in the horizontal direction of pixels projected and enlarged on said screen from said image produced by said picture display device is set at a value equal to or smaller than said pitch of pixels projected and enlarged on said screen from said displayed picture output by said picture display device.

Please add the following new claims:

Q5 --25. A screen according to claim 1, wherein:

a pitch of said lenticular lenses formed on said first configuration element is L_p ;

a pitch of said Fresnel lens formed on said Fresnel lens sheet is F_p ;

a ratio of L_p/F_p of said pitch L_p to said pitch F_p is set at a value in the range of 1.588 to 1.649;

a pitch Mp_1 of moire lines caused by said pitch L_p of said lenticular lenses and said pitch F_p of said Fresnel lens and a horizontal component I_{ph} of a pitch I_p of said pixels enlarged and projected on said screen are substantially equal; and

a ratio I_{pv}/F_p of a vertical component I_{pv} of said pitch I_p of said pixels enlarged and projected on said screen to said pitch F_p of said Fresnel lens is set to at least 2.

26. A screen according to claim 1, wherein said plurality of lenticular lenses of said first configuration element extend in a vertical direction and are arranged in a horizontal direction at the incident side of light emitted from said Fresnel lens sheet.--

IN THE ABSTRACT OF THE DISCLOSURE:

Ab Please amend the abstract as follows: