Linear search methods

Alexandre Gramfort

Master 2 Data Science, Univ. Paris Saclay Optimisation for Data Science

Table of Contents

- Motivation
- 2 Line search rules
- Theory
- 4 Security interval update

Table of Contents

- Motivation
- 2 Line search rules
- Theory
- 4 Security interval update

Why line search?

Descent algorithm reads:

$$x_{k+1} = x_k + t_k d_k, \ t_k \ge 0$$

where d_k is a descent direction ($\exists t_k > 0$ s.t. $f(x_{k+1}) < f(x_k)$). In the case of gradient descent one uses:

$$d_k = -\nabla f(x_k)$$

and if f has a Lipschitz continuous gradient with constant L then one can use $t_k = \frac{1}{L}$.

Problem: L is a global quantity (does not depend on x_k) and can be unknown.

Objective: Derive strategies to estimate "good enough" t_k (optimal step can be really costly in non-quadratic case).

Why line search?

Motivation

Let $\phi(t) = f(x_k + td_k)$

Objective: find t > 0 such that $\phi(t) \le \phi(0)$

For f is smooth, the optimal step size t^* is caracterized by:

$$\begin{cases} \phi'(t^*) = 0 & \text{(is a minimum)} \\ \phi(t) \ge \phi(t^*) \text{ for } 0 \le t \le t^* & \text{(decreases objective)} \end{cases}$$

Why line search?

Let

$$\phi(t) = f(x_k + td_k)$$

Objective: find t > 0 such that $\phi(t) \le \phi(0)$

Exercise: Show that with $d_k = -\nabla f(x_k)$ and optimal step size $d_{k+1}^T d_k = 0$.

Security interval

Definition (Security interval)

[a, b] is a security interval if one can classify t values as:

- If t < a then t is too small
- If $a \le t \le b$ then t is ok
- If t > b then t is too big

Problem: How to translate these conditions from values of ϕ ?

Problem: How to define a and b.

Security interval

Start from $[\alpha, \beta]$ with $[a, b] \subset [\alpha, \beta]$, e.g., $\alpha = 0$ and β large (always exists if f is coercive).

9 / 27

Basic algorithm

Start from $[\alpha, \beta]$ with $[a, b] \subset [\alpha, \beta]$, e.g., $\alpha = 0$ and β large (always exists if f is coercive).

Definition

f is coercive if

$$\lim_{\|x\|\to\infty}f(x)=+\infty$$

- **①** Choose t in $[\alpha, \beta]$
- **4** If t is too small then set $\alpha = t$ and go back to 1.
- **3** If t is too big then set $\beta = t$ and go back to 1.
- If t is ok then stop

Problem: How to translate the "too small", "too big" and "ok" from values of ϕ ?

Table of Contents

- Motivation
- 2 Line search rules
- Theory
- 4 Security interval update

Armijo's rule

Set $\alpha = 0$ and fix 0 < c < 1.

Definition (Armijo's rule)

- If $\phi(t) > \phi(0) + c\phi'(0)t$, then t is too big
- **2** If $\phi(t) \le \phi(0) + c\phi'(0)t$, then ok

Armijo's rule

Set $\alpha = 0$ and fix 0 < c < 1.

Definition (Armijo's rule)

- If $\phi(t) > \phi(0) + c\phi'(0)t$, then t is too big
- ② If $\phi(t) \leq \phi(0) + c\phi'(0)t$, then ok

Problem: As $\alpha = 0$, t is never considered too small. So Armijo is not heavily used in practice.

Note: You have function scalar_search_armijo in scipy/optimize/linesearch.py but it does more (cubic interpolation, backtracking).

Goldstein's rule

Goldstein is Armijo with an extra inequality. Let $0 < c_1 < c_2 < 1$.

Definition (Goldstein's rule)

- If $\phi(t) < \phi(0) + c_2 \phi'(0)t$, then t is too small
- ② If $\phi(t) > \phi(0) + c_1 \phi'(0) t$, then t is too big
- **3** If $\phi(0) + c_1 \phi'(0)t \ge \phi(t) \ge \phi(0) + c_2 \phi'(0)t$, then ok

Goldstein's rule

 c_2 should be chosen such that t^* in the quadratic case is in the security interval.

In the quadratic case:

$$\phi(t) = \frac{1}{2}at^2 + \phi'(0)t + \phi(0), a > 0$$

and t^* satisfies $\phi'(t^*)=0$, so $t^*=-rac{\phi'(0)}{a}$ and so

$$\phi(t^*) = \frac{\phi'(0)}{2}t^* + \phi(0)$$

which means that one should have $c_2 \geq \frac{1}{2}$.

Common values used in practice are $c_1 = 0.1$ and $c_2 = 0.7$.

Wolfe's rule

Requires $\phi'(t) = d_k^{\top} \nabla f(x_k + t d_k)$ (in theory more costly).

Definition: Wolfe's rule (with $0 < c_1 < c_2 < 1$)

- If $\phi(t) > \phi(0) + c_1 \phi'(0)t$, then t is too big (like Goldstein)
- ② If $\phi(t) \leq \phi(0) + c_1 \phi'(0) t$, and $\phi'(t) < c_2 \phi'(0)$ then t is too small
- ullet If $\phi(t) \leq \phi(0) + c_1 \phi'(0) t$, and $\phi'(t) \geq c_2 \phi'(0)$, then ok

Wolfe's rule

Requires $\phi'(t) = d_k^{\top} \nabla f(x_k + t d_k)$ (in theory more costly).

Definition: Wolfe's rule (with $0 < c_1 < c_2 < 1$)

- If $\phi(t) > \phi(0) + c_1 \phi'(0)t$, then t is too big (like Goldstein)
- ② If $\phi(t) \leq \phi(0) + c_1 \phi'(0)t$, and $\phi'(t) < c_2 \phi'(0)$ then t is too small
- ullet If $\phi(t) \leq \phi(0) + c_1 \phi'(0) t$, and $\phi'(t) \geq c_2 \phi'(0)$, then ok

Note: The idea is to guarantee that *t* is not too small by requiring that the gradient is increased enough.

Strong Wolfe's rule

Requires $\phi'(t) = d_k^\top \nabla f(x_k + td_k)$ (in theory more costly).

Definition: Strong Wolfe's rule (with $0 < c_1 < c_2 < 1$)

- If $\phi(t) > \phi(0) + c_1 \phi'(0)t$, then t is too big (like Goldstein)
- ② If $\phi(t) \le \phi(0) + c_1 \phi'(0) t$, and $|\phi'(t)| > c_2 |\phi'(0)|$ then t is too small
- **3** If $\phi(t) \le \phi(0) + c_1 \phi'(0)t$, and $|\phi'(t)| \le c_2 |\phi'(0)|$, then ok

Note: This is implemented in scipy.optimize.line_search.

Table of Contents

- 1 Motivation
- 2 Line search rules
- Theory
- 4 Security interval update

Existence of steps that satisfy Wolfe conditions

Proposition (Existence)

Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable.

Let d_k be a descent direction at x_k , and assume that f is bounded below along the ray $\{x_k + td_k | t > 0\}$.

Then if $0 < c_1 < c_2 < 1$, there exist intervals of step lengths satisfying the Wolfe conditions and the strong Wolfe conditions.

Existence of steps that satisfy Wolfe conditions

Proposition (Existence)

Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable.

Let d_k be a descent direction at x_k , and assume that f is bounded below along the ray $\{x_k + td_k | t > 0\}$.

Then if $0 < c_1 < c_2 < 1$, there exist intervals of step lengths satisfying the Wolfe conditions and the strong Wolfe conditions.

Take home message: One can always find a good step size for a smooth and bounded below function.

Proof of existence

Since $\phi(t) = f(x_k + td_k)$ is bounded below for all t > 0 and since $0 < c_1 < 1$, the line $I(t) = f(x_k) + tc_1 \nabla f(x_k)^\top d_k$ must intersect the graph of ϕ at least once.

Let t' > 0 be the smallest intersecting value of t, that is,

$$f(x_k + t'd_k) = f(x_k) + t'c_1 \nabla f_k^{\top} d_k .$$

The sufficient decrease condition (Armijo) clearly holds for all $t \leq t'$.

Proof of existence

Since $\phi(t) = f(x_k + td_k)$ is bounded below for all t > 0 and since $0 < c_1 < 1$, the line $I(t) = f(x_k) + tc_1 \nabla f(x_k)^{\top} d_k$ must intersect the graph of ϕ at least once.

Let t' > 0 be the smallest intersecting value of t, that is,

$$f(x_k + t'd_k) = f(x_k) + t'c_1\nabla f_k^{\top}d_k.$$

The sufficient decrease condition (Armijo) clearly holds for all $t \le t'$. By the mean value theorem, there exists $t'' \in (0, t')$ such that

$$f(x_k + t'd_k) - f(x_k) = t'\nabla f(x_k + t''d_k)^{\top}d_k.$$

By combining both, we obtain:

$$\nabla f(x_k + t''d_k)^{\top} d_k = c_1 \nabla f(x_k)^{\top} d_k > c_2 \nabla f(x_k)^{\top} d_k ,$$

since $c_1 < c_2$ and $\nabla f(x_k)^{\top} d_k < 0$.

This implies that t'' satisfies the Wolfe conditions and since t'' < t', the inequalities in the 2 Wolfe conditions hold strictly.

Theory

By the smoothness assumption on f, there is an interval around t'' for which the Wolfe conditions hold.

Moreover, since $\nabla f(x_k + t''d_k)^{\top} d_k$ (left-hand side in last equation) is negative, the strong Wolfe conditions hold in the same interval.

Proof of existence

This implies that t'' satisfies the Wolfe conditions and since t'' < t', the inequalities in the 2 Wolfe conditions hold strictly.

By the smoothness assumption on f, there is an interval around t'' for which the Wolfe conditions hold.

Moreover, since $\nabla f(x_k + t''d_k)^{\top} d_k$ (left-hand side in last equation) is negative, the strong Wolfe conditions hold in the same interval.

Take home message: One can always find a good step size for a smooth and bounded below function but it can take some time to find it...

Convergence of line search methods

Theorem (Zoutendijk)

Consider any iteration of the form $x_{k+1} = x_k + t_k d_k$, where d_k is a descent direction ($\cos \theta_k = -\frac{d_k^\top \nabla f(x_k)}{\|d_k\| \|\nabla f(x_k)\|} > 0$) and t_k satisfies the Wolfe conditions.

Suppose that f is bounded below in \mathbb{R}^n and that f is continuously differentiable in an open set \mathcal{N} containing the level set $\mathcal{L} = \{x : f(x) \le f(x_0)\}$, where x_0 is the starting point of the iteration.

Assume also that the gradient ∇f is Lipschitz continuous on \mathcal{N} , that is, there exists a constant L>0 such that:

$$\|\nabla f(x) - \nabla f(x')\| \le L\|x - x'\|, \forall x, x' \in cN.$$

Then:

$$\sum_{k>0}^{\infty} \cos^2 \theta_k \|\nabla f(x_k)\|^2 < \infty$$

Proof of Zoutendijk's theorem

Wolfe's condition (second) implies:

$$(\nabla f(x_{k+1}) - \nabla f(x_k))^{\top} d_k \ge (c_2 - 1) \nabla f(x_k)^{T} d_k$$

Lipschitz condition implies:

$$(\nabla f(x_{k+1}) - \nabla f(x_k))^{\top} d_k \le t_k L \|d_k\|^2$$

Combining the 2 we obtain:

$$t_k \geq \frac{c_2 - 1}{L} \frac{\nabla f(x_k)^\top d_k}{\|d_k\|^2}$$

Substituting this inequality into the first Wolfe condition we get:

$$f(x_{k+1}) \le f(x_k) - c_1 \frac{1 - c_2}{L} \frac{(\nabla f(x_k)^{\top} d_k)^2}{\|d_k\|^2}$$

21 / 27

Proof of Zoutendijk's theorem

Which by the definion of θ_k is equivalent to:

$$f(x_{k+1}) \le f(x_k) - c \|\nabla f(x_k)\|^2 \cos^2 \theta_k$$

where $c = c_1 \frac{1-c_2}{L}$.

Summing over k leads to:

$$f(x_{k+1}) \le f(x_0) - c \sum_{k=0}^{k} \|\nabla f(x_k)\|^2 \cos^2 \theta_k$$

And since f is bounded below leads to:

$$\sum_{k=0}^{\infty} \|\nabla f(x_k)\|^2 \cos^2 \theta_k < \infty$$

22 / 27

Consequence of Zoutendijk's theorem

A direct consequence is that:

$$\|\nabla f(x_k)\|^2\cos^2\theta_k\to 0$$

So if θ_k is never too close to 90°:

$$\exists \delta > 0 \text{ s.t. } \cos \theta_k \geq \delta$$

Then x_k converges to a stationary point:

$$\|\nabla f(x_k)\| \to 0$$

Consequence of Zoutendijk's theorem

A direct consequence is that:

$$\|\nabla f(x_k)\|^2\cos^2\theta_k\to 0$$

So if θ_k is never too close to 90°:

$$\exists \delta > 0 \text{ s.t. } \cos \theta_k \geq \delta$$

Then x_k converges to a stationary point:

$$\|\nabla f(x_k)\| \to 0$$

Take home message: $\|\nabla f(x_k)\|$ converges to zero, provided that search directions are never too close to orthogonality with gradient. So gradient descent with line search using Wolfe's conditions always converges to a stationary point! (no need convexity but Lipschitz gradient)

Table of Contents

- 1 Motivation
- 2 Line search rules
- 3 Theory
- 4 Security interval update

Reducing security interval

First search for starting interval or first value of t ($\alpha = 0$).

- If t is Ok then stop
- **2** If t is too big then set $\beta = t$ and ok.
- \bullet If t is too small, then set t to ct with c > 1 and back to 1.

Reducing the interval

Multiple strategies

- **①** Dichotomy. Try $t = (\alpha + \beta)/2$ and then work with $[\alpha, t]$ or $[t, \beta]$
- **2** Polynomial approximation of ϕ , e.g., cubic approximation.

Cubic approximation

Cubic approximation is compatible with Wolfe's method which also needs ϕ' . Take 2 values t_0 and t_1 (for example α and β). Define the third order polynomial p such that:

- $p(t_1) = \phi(t_1)$
- $p'(t_0) = \phi'(t_0)$
- $p'(t_1) = \phi'(t_1)$

Then propose for *t* the minimum of the polynomial. If it does not provide a valid *t* you can fallback to dichotomy.

 \rightarrow Demo on notebook

References

• Wright and Nocedal, Numerical Optimization, 1999, Springer, Chapter 3.