SMARTFARMER - IOT ENABLED SMART FARMING APPLICATION

IBM PROJECT REPORT TEAM ID: PNT2022TMID30597

Submitted by

SUBITHRA R - 613019104083

SWARNASHRI S - 613019104086

SNEGA M - 613019104075

TAMILSELVI N - 610919104062

in partial fulfillment for the award of the degree

of

BACHELOR OF TECHNOLOGY

In

COMPUTER SCIENCE AND ENGINEERING VIVEKANANDHA COLLEGE OF TECHNOLOGY FOR WOMEN,TIRUCHENGODE,NAMAKKAL

ANNA UNIVERSITY: CHENNAI – 600 025

TABLE OF CONTENTS

CHAPTER	CHAPTER NAME	PG.NO
1	INTRODUCTION	1
	1.1 Project Overview	1
	1.2 Purpose	1
2	LITERATURE SURVEY	3
	2.1 Existing Problem	3
	2.2 References	4
	2.3 Problem Statement Definition	4
3	IDEATION AND PROPOSED SOLUTION	5
	3.1 Empathy Map Canvas	5
	3.2 Ideation & Brainstorming	6
	3.3 Proposed Solution	10
	3.4 Problem Solution Fit	10
4	REQUIRMENTS ANALYSIS	11
	4.1 Functional Requirements	11
	4.2 Non - Functional Requirements	11
5	PROJECT DESIGN	12
	5.1 Data Flow Diagram	12
	5.2 Solution & Technical Architecture	12
	5.3 User Stories	14
6	PROJECT PLANNING & SCHEDULI	NG 15
	6.1 Sprint Planning & Estimation	15
	6.2 Sprint Delivery Schedule	16

	6.3 Report from JIRA	17
7	CODING & SOLUTIONING	18
	7.1 Features	18
8	TESTING	36
	8.1 Testing	36
	8.2 Integration Testing	36
	8.3 Test Cases	37
9	RESULTS	38
10	ADVANTAGES & DISADVANTAGES	40
11	CONCLUTION	41
12	FUTURE SCOPE	42
13	APPENDIX	43
	13.1 Source Code	43
	13.2 GitHub and Project Demo Link	43

CHAPTER 1

INTRODUCTION

1.1 Project Overview

People who use the internet of things can live and work more intelligently and have total control over their life. IoT is crucial to business in addition to providing smart home automation devices. With the help of IoT, organizations can see in real time how their systems actually function, gaining insights into anything from equipment performance to supply chain and logistics activities. This paper presents an Internet of Things (IoT) based Smart Farmer - IoT Enabled Smart Farming Application. The system is implemented using anultrasonic sensor which is connected to Arduino UNO as to monitor the water level. In this system, the depth level will be sent via Arduino Ethernet Shield with an Internet connection to the IBM Cloud.

1.1 Purpose

Since the dawn of human civilization, agriculture has been considered to be the most significant activity. Traditional irrigation techniques, such as flood irrigation and overhead sprinkler irrigation, are not very effective. They waste a significant amount of water, and the excessive moisture in the soil can also encourage the growth of diseases like fungus. Since water is a valuable resource and indirectly supports the survival of the farm, an automated irrigation system is crucial. This need is anticipated to rise in the coming years due to population growth. In an automation system, sensors are used to monitor the crop's access to water, and controlled irrigation is used to water the crop as needed.

IoT is possible because of adequate power supply and internet connectivity. The term "Internet of Things" is commonly used to describe framework in which sensors are connected to objects and allow these objects to share their "digital voice" with the outside world via an internet connection.

Based on a wireless sensor network, this system created an automated irrigation system for farmers. The soil's moisture content, humidity, and temperature are all continuously monitored Depending on the soil's moisture content, the irrigation system either starts or stops. This method suggests a low cost data collecting systembased on moisture sensors

CHAPTER -2

LITERATURE SURVEY

2.1 Existing Problem

S.NO	TITLE	AUTHOR AND YEAROF PUBLICATIO NS	METHODOLOGY USED
1.	Mobile Integrated Smart Irrigation Management and Monitoring SystemUsing IOT	S. Vaishali et.al, 08 February 2018	In order to control and monitor the irrigation process, smart and automated irrigation systemis developed, Implemented and tested. There is a need for automated irrigation system because it is simple and easy to install. This system uses values ON and OFF to control water motor.Python programming language is been used for automation purpose.
2.	IoT Based Smart Irrigation Monitoring And Controlling System	Shweta B. Saraf et.al ,15 January 2018	In this paper proposedsystem is based on IoT that uses real time input data. Smart farm irrigation system uses android phone for remote monitoring and controlling of drips throughwireless sensor network. Zigbee is used for communication between sensor nodes and base station. Real time sensed data handling and demonstration on the serveris accomplished using web based java graphical user interface.

Smart waste collection monitoring and alert system via IoT Smart waste Zainal Hisham Che Soh et.al, 24 June 2019	The system is implemented using an ultrasonic sensor which is connected to Arduino UNO as to monitor waste bin garbage level. In this system, waste bin depth level will be sent via Arduino Ethernet Shield with an Internet connection to the Ubidots IoT Cloud. The Ubidots store the collected waste bin level data into IoT database and display the waste bin depth level on online dashboard for real-time visualization.
---	--

2.2 References

1. Mobile Integrated Smart Irrigation Management and Monitoring System Using IOT

Date of Conference: 06-08 April 2017Publisher: IEEE Date Added to IEEE Xplore: 08

February 2018DOI:

10.1109/ICCSP.2017.8286792

2. IoT Based Smart Irrigation Monitoring And Controlling System

Date Added to IEEE Xplore: 15 January 2018 ISBN Information: Electronic ISBN: 978-1-5090...Date of Conference: 19-20 May 2017

INSPEC Accession Number: 17504411

3. Smart Waste Collection Monitoring and Alert System via IoT

Date Added to IEEE Xplore:

24 June 2019DOI:

10.1109/ISCAIE.2019.874376

Print on Demand(PoD) ISBN: 978-1-5386-854

2.3 Problem Statement Definition

Farmers are under pressure to produce more food and use less energy and water in the process. A remote monitoring and control system will help farmers deal effectively with these pressures Ideally, Each feld should get just the right amount of water at just the right time. Most of the rural area people cant implement the IOT devices because of they dont know about the device to use. This idea is also to focus on parameters such as temperature and soil moisture. The main objective of this project is to control reduce the water supply, save the crops and monitor the plants. The system is implemented using an ultrasonic sensor which is connected to Arduino UNO as to monitor Farm Field level. In this system, Farm Field depth level will be sent via Arduino Ethernet Shield with an Internet connection to the IBM IoT Cloud. The IBM Cloud store the collected Farm field level data into IoT database and display the Farm Field depth level on online dashboard for real-time visualization. The IBM Event manager invoke a notification alert to the Owner of the farmer mobile phone via a SMS when the farm field is nearly filled and It automatically Switch Off the Water Motor

CHAPTER 3

IDEATION AND PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 Ideation & Brainstorming

Step-1: Team Gathering, Collaboration and Select the Problem Statement

Step-2: Brainstorm, Idea Listing and Grouping

Step-3: Idea Prioritization

3.3 Proposed Solution

S.No.	Parameter	Description
1.	Problem Statement (Problem to besolved)	Farmers are under pressure to produce more food and use less energy and water in the process. A remote monitoring and control system will help farmers deal effectively with these pressures Soil erosion and soil nutrient loss, product satisfaction customers adaptation to climate, usage of harmful fertilizer and manure and pesticides are major problem faced by farmers For taking agriculture to the next generation, only fresh water can be used for farming. Farmers are more affected and annoyed by the above factors.
2.	Idea / Solution description	The IoT-based agriculture system helps the farmer in monitoring different parameters of his field like soil moisture, temperature, and humidity using some sensors. Farmers can monitor all the sensor parameters by using a web or mobile application even if the farmer is not near his field. Watering the crop is one of the important tasks for the farmers. They can make the decision whether to water the crop or postpone it by monitoring the sensor parameters and controlling the motor pumps from the mobile application itself.
3.	Novelty / Uniqueness	Building a community of farmers around the globe will definitely do great, where they can find lots and lots of information about crops and plantations directly from the other farmers and the agricultural experts around the globe.

4.	Social Impact / Customer Satisfaction	The good thing is that IoT instructs or alerts them to do the amount of work at the right time. So that the yielding will be more and good, it also reduces the attention and time required to the field, which makes the Customer Satisfaction. On the other hand the main disadvantage is that IoT reduces the number of laborers and their wages, as a resultmany people may lose their work.
5.	Business Model (Revenue Model)	Many agricultural products like fertilizers, pesticides, manure, and field equipment canalso be promoted in the form of ads. A small amount of subscription fee can also be collected from the farmers.
6.	Scalability of the Solution	The scalability of the above proposed solution is not limited. Here a lot of sensors and analyzing tools and algorithms can be integrated to provide the best experience.

J&P

The customer for this product is a farmer who grows crops. Our goal is to help them, monitor field parameters remotely. This product saves agriculture from extinction.

6.CUSTOMER

What constraints prevent your customers from taking action or limit their choices of solutions? i.e. spending power, budget, no cash, network connection, available devices.

The Crops are being destroyed because of not getting the exact data about the crops. It consumes high data storage

5. AVAILABLE SOLUTIONS

Which solutions are available to the customers when they face the problem

or need to get the job done? What have they sed in the past? What pros & cons do these solutions have? i.e. pen and

Automated irrigation using Iot. The Meteorological data and field parameters are being collected and processed and those data's are automatically updated to the device.

2. JOBS-TO-BE-DONE / PROBLEMS

Which jobs-to-be-done (or problems) do you address for your customers? there could be more than one; explore different sides.

The main objective of this project is to obtain a automated device which stores the data of crops and the use sensors to acquire various field parameters and process them using a central processing system. The cloud is used to store and transmitdata using 9. PROBLEM ROOT CAUSE

The Problem is raised due to Frequent change in climate and unpredictable weather and climate made it difficult for farmers to engage in agriculture. These factors play an important role in deciding whether to water your plants. Fields are difficult to monitor when the farmer is not at the field, leading to crop damage.

er do to address the problem and get the job done?
i.e. directly related: find the light solar panel installer, calculate
usage and benefits; indirectly associated: customers spend fre
time on volunteering work (i.e. Greenpeace)

It is best to use a proper drainage system to overcome the effects of excess water from heavy rain. Use of hybridplants that are resistant to pests.

Explore AS, differentiate

CHAPTER 4

REQUIREMENT ANALYSIS

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)		
FR-1	User Registration	Registration through Form Registration through Gmail		
FR-2	User Confirmation	Confirmation via Email Confirmation via OTP		
FR-3	Sensor Function for framing System	Measure the Temperature and Humidity Measure the Soil Monitoring Check the cropdiseases		
FR-4	Manage Modules	Manage Roles of User Manage User permission		
FR-5	Check whether details	Temperature details Humidity details		
FR-6	Data Management	Manage the data of weather conditions Manage the data of crop conditions Manage the data of live stock conditions		

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

S No.	Non-Functional Requirement	Description
NFR-1	Usability	User friendly guidelines for users to avail the features. Most simplistic user interface for ease of use and it includes easy learn ability, efficiency in use, remember ability, lack of errors in operation and subjective pleasure
NFR-2	Security	All the details about the user are protected from unauthorized access. Detection and identification of any misfunctions of sensors. Sensitive and private data must be protected from their production until the decision-making and storage stages
NFR-3	Reliability	Implementing Mesh IoT Networks Building a Multi-layered defence for IoT Networks and This model uses dedicated and shared protection schemes to avoid farm service outages
NFR-4	Performance	The use of modern technology solutions helps to achieve the maximum performances thus resulting in better quality and quantity yields. the idea of implementing integrated sensors with sensing soil and environmental in farming will be more efficient for overall monitoring.
NFR-5	Availability	This app is available for all platforms Then Automatic adjustment of farming equipment madepossible by linking information like crops/weather and equipment to auto-adjust temperature, humidity
NFR-6	Scalability	Scalability refers to the ability to increase available resources and system capability without the need to go through a major system redesign or implementation.

CHAPTER 5 PROJECT DESIGN

5.1 Data Flow Diagram

5.2 Solution and Technical Architecture

Solution architecture is a complex process – with many sub-processes – that bridges the gapbetween business problems and technology solutions. Its goals are to:

- Find the best tech solution to solve existing business problems.
- Describe the structure, characteristics, behavior, and other aspects of the software toproject stakeholders.
- Define features, development phases, and solution requirements.
- Provide specifications according to which the solution is defined, managed, and delivered.

Figure 1: Architecture and data flow of the smart farming application

Table-1 : Components & Technologies:

Description	Technology		
How user interacts with applicatione.g. Web UI, Mobile App, Chatbot etc.	HTML, CSS, JavaScript		
Logic for a process in the application	Python		
Logic for a process in the application	IBM Watson service		
Logic for a process in the application	IBM Watson Assistant		
Data Type, Configurations etc.	MySQL		
Database Service on Cloud	IBM DB2, IBM Cloudant etc.		
File storage requirements	IBM Block Storage or Other Storage Service or Local Filesystem		
Purpose of External API used in the application	IBM Weather API, etc.		
Application Deployment on LocalSystem / Cloud Local Server Configuration: Cloud Server Configuration:	Local, Cloud Foundry, Kubernetes, etc. Table-2: Application Characteristics:		

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	List the open-source frameworks used	Python IDE
2.	Security Implementations	List all the security / access controls implemented, use of firewalls etc.	GSM module
3.	Scalable Architecture	Justify the scalability of architecture (3 – tier, Micro-services)	Node red service
4.	Availability	Justify the availability of application (e.g. use of load balancers, distributed servers etc.)	IBM Watson IoT Platform
5.	Performance	Design consideration for the performance of the application (number of requests per sec, use of Cache, use of CDN's) etc.	NPK Sensors

5.3 User Stories

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Custoer (Mobile user)	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account / dashboard	High	Sprint-1
		USN-2	As a user, I will receive confirmationemail once I have registered for the application	I can receive confirmation email &click confirm	High	Sprint-1
		USN-3	As a user, I can register for the application through Gmail		Medium	Sprint-1
	Login	USN-4	As a user, I can log into the application by entering email & password		High	Sprint-1
Customer (Web user)	Dashboard	USN-5	As a User can view the dashboard, and this dashboard include the check roles of access and then move to the manage modules.	I can view the dashboardin this smart farming application system.	High	Sprint 2
		USN-6	User can remotely access the motor switch	In the smart farming app	High	Sprint 3
Administrat or			As a user once view the manage modules this describes the Manage system Admins and Manage Roles of User			Sprint 2

CHAPTER 6

PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

TITLE	DESCRIPTION	DATE
Literature Survey & Literature review on the chosen project and information gathering using references from IEEE Papers.		25 September 2022
Prepare Empathy Map	Get an Empathy Map Canvas ready to record the user's gains and pains and also prepare list of problem statements	26 September 2022
Ideation	Create a list of them by arranging the brainstorming session, then rank the top three concepts according to their viability and significance.	27 September 2022
Proposed Solution	Prepare the proposed solution document, which includes the novelty, workability of idea, business pattern, social clash and so on.	5 October 2022
Problem Solution Fit	Prepare problem - solution fit document.	8 September 2022

Solution Architecture	Prepare solution architecture document.	11 September 2022	
Customer Journey	Prepare the customer journey maps to understand the user interactions & experiences with the application	14 October 2022	
Functional Requirement	Create the project's functional requirements.	17 October 2022	
Data Flow Diagrams	Create the data flow diagrams, then submit them for evaluation.	17 October 2022	
Technology Architecture	Prepare the technology By using the architecture diagram.	18 October 2022	
Prepare Milestone & Activity	Prepare the milestones & activity list of the project.	22 October 2022	
Project Development - Delivery of Sprint-1, 2, 3 & 4	Develop & submit the developed code by testing it.	Towards Progress	

6.2 Sprint Delivery Schedule

Product Backlog, Sprint Schedule, and Estimation:

Sprint	Functional Requirement (Epic)	User Story Numb er	User Story /Task	Story Points	Priority	Team Member
Sprint-1	Registration (Farmer Mobile User)	UNS-1	As a user, I can register for the application by entering my email, password, and confirming my password.	2	High	Subithra.R (Leader)
Sprint-1	Login	UNS-2	As a user, I will receive confirmation email once I have registered for the application	1	High	Swarna shri (Member 1)

Sprint-2	User Interfac e	UN S-3	As a user, I can register for the application through Facebook	3	Low	Tamil selvi . N (Member 2)
Sprint-1	Data Visualizatio n	UN S-4	As a user, I can register for the application through GMAIL	2	Medium	Snega . m (Member 3)
Sprint-3	Registratio n(Farmer Web User)	US N - 1	As a user, I can log into the application by entering email and password	3	High	Subithra.R (leader)
Sprint 2	Login	US N - 2	As a registered user, I need to easily login log into my registered account via the web page in minimum time	3	High	Swarna shri
Sprint 4	Web UI	US N - 3	As a user, I need to have a friendly user interface to easily view and access the resources	3	Medium	Tamil selvi .N

Sprint - 1	U	US N - 1	As a new user, I want to first register using my organization email and create a password for the account.		High	Snega.M
Sprint - 4	Login	USN - 2	As a registered user, I need to easily log in using the registered account via the web page.	3	High	Subithra. R
Sprint - 3	Web UI	USN - 3	As a user, I need to have a user-friendly interface to easily view and access the resources.	3	Medium	Swarna shri
Sprint - 1	Registration (Chemical Manufacturer - Mobile User)	- 1 r	As a user, I want to first register using my email and create a password for the account.	1	High	Tamil Selvi . N

Sprint - 1	Login	USN	As a	2	Low	Snega . M
		- 2	registered			
			user, I need			
			to easily log			
			in to the			
			application.			

6.3 Reports from JIRA

CHAPTER 7 CODING & SOLUTIONING

7.1 Features - Development of Sprint-1 (User Interface Design)

SUBMIT

Temperature :	
Humidity:	
Moisture:	

MOTOR ON MOTOR OFF

Testing - Compatibility Testing:

- ➤ Compatibility Testing is a type of Software testing to check whether your software is capable of running on different hardware, operating systems, applications, network environments or Mobile devices.
- ➤ Compatibility testing is a type of non-functional testing.
- > Herewith, our test report is attached with log and output.

Test Report for Sprint 1:

PROJECT NAME: SMART FARMER – IOT ENABLED SMART FARMING APPLICATION

TEAM ID	PNT2022TMID30597
MODULE DESCRIPTION	Here we tested the compatibility of our Registration, Login and Dashboard Module with high Authentication
TYPE	Testing/verification

Development of Sprint-2 (Python Code for Publish & Subscribe)

```
Smart_Farming.py - C:\Users\A S ABISHEK\AppData\Local\Programs\Python\Python37\Smart_Farming.py (3.7.0)
 File Edit Format Run Options Window Help
       ort wiotp.sdk.device
  import os
import datetime
            random
         fig=(
identity":{
    "orgId":"uq23sr",
    "typeId":"Smart_Farming",
    "deviceId":"32826"
         'auth": {
    "token":"3wNLT001g8VpEJEpsq'
client=wiotp.sdk.device.DeviceClient(config=myConfig, logHandlers=None)
client.connect()
def myCommandCallback(cmd):
       print("Message received from IBM IoT Platform: %s" % cmd.data['command'])
m=cmd.data['command']
       if (m=="motoroff"):
    print("Motor is switched ON")
elif (m=="motoroff"):
       print("Motor is switched OFF")
print(" ")
       soil=random.randint(0,100)
        temp=random.randint(-20,125)
       hum=random.randint(0,100)
myData=('soil_moisture':soil,'temperature':temp,'humiduty':hum}
client.publishEvent(eventId="status",msgFormat="json",data=myData,qos=0,onPublish=None)
print("Published data successfully: %s",myData)
        time.sleep(2)
        client.commandCallback=myCommandCallback
                                                                                                                                                                                                                                   Ln: 1 Col: 0
                                                                                                                                                                                                       🚆 📜 🐶 🔒 🥩
Python 3.7.0 Shell
                                                                                                                                                                                                                           o
 File Edit Shell Debug Options Window Help
Python 3.7.0 (v3.7.0:1bf9cc5093, Jun 27 2018, 04:59:51) [MSC v.1914 64 bit (AMD64)] on win32 Type "copyright", "credits" or "license()" for more information.
  RESTART: C:\Users\A S ABISHEK\AppData\Local\Programs\Python\Python37\Smart_Farming.py
                                            wiotp.sdk.device.client.DeviceClient INFO
                                                                                                                           Connected successfully: d:uq23sr:Smart Farming:32826Published
 data successfully: %s
   {'soil moisture': 83, 'temperature': 29, 'humiduty': 36}
Published data successfully: %s {'soil_moisture': 47, 'temperature': 96, 'humiduty': 25}
Published data successfully: %s {'soil_moisture': 45, 'temperature': 5, 'humiduty': 49}
 Published data successfully: %s {'soil_moisture': 82,
                                                                                             'temperature': 29, 'humiduty': 80}
                                                                                             'temperature': 49, 'humiduty': 86}
'temperature': 11, 'humiduty': 98}
Published data successfully: %s {'soil_moisture': 92, Published data successfully: %s {'soil_moisture': 60,
Published data successfully: %s {'soil_moisture': 40, 'temperature': -18, 'humiduty': 10
Published data successfully: %s {'soil_moisture': 17, 'temperature': 80, 'humiduty': 33}
Published data successfully: %s {'soil_moisture': 60, 'temperature': 93, 'humiduty': 95}
                                                                                                                               'humiduty': 100}
 Published data successfully: %s {'soil_moisture': 22,
                                                                                             'temperature': 15, 'humiduty': 70}
Published data successfully: %s {'soil_moisture': 78, Published data successfully: %s {'soil_moisture': 42,
                                                                                             'temperature': 72, 'humiduty': 15)
                                                                                             'temperature': 41, 'humiduty': 63}
                                                                                              'temperature': 61, 'humiduty': 50}
 Published data successfully: %s {'soil_moisture': 21,
                                                                                             'temperature': 95, 'humiduty': 56}
'temperature': 102, 'humiduty': 74}
'temperature': 31, 'humiduty': 44}
Published data successfully: %s {'soil_moisture': 36, Published data successfully: %s {'soil_moisture': 14,
Published data successfully: %s {'soil_moisture': 34, 'temperature': 31, 'humiduty': 44}
Published data successfully: %s {'soil_moisture': 95, 'temperature': 1, 'humiduty': 37}
Published data successfully: %s {'soil_moisture': 58, 'temperature': 61, 'humiduty': 97}
Published data successfully: %s ('soil_moisture': 94, 'temperature': 86, 'humiduty': 14)
Published data successfully: %s ('soil_moisture': 56, 'temperature': 89, 'humiduty': 82)
Published data successfully: %s ('soil_moisture': 50, 'temperature': 59, 'numiduty': 82)
Published data successfully: %s ('soil_moisture': 100, 'temperature': -12, 'humiduty': 61)
Published data successfully: %s ('soil_moisture': 82, 'temperature': 63, 'humiduty': 41)
Published data successfully: %s ('soil_moisture': 30, 'temperature': 53, 'humiduty': 84)
Published data successfully: %s ('soil_moisture': 42, 'temperature': 83, 'humiduty': 71)
                                                                                             'temperature': 107, 'humiduty': 38}'temperature': 14, 'humiduty': 73}'temperature': 0, 'humiduty': 100}
 Published data successfully: %s
                                                        {'soil_moisture': 80,
 Published data successfully: %s {'soil_moisture': 64,
 Published data successfully: %s
                                                        {'soil_moisture': 95,
                                                                                             'temperature': 124, 'humiduty': 21}
'temperature': 109, 'humiduty': 5}
'temperature': 35, 'humiduty': 58}
Published data successfully: %s {'soil_moisture': 67, Published data successfully: %s {'soil_moisture': 51,
 Published data successfully: %s {'soil_moisture': 25,
                                                                                                                                                                                                                             Ln: 57 Col: 4
                                                                                                                                                                                                   △ 🍖 ♠ ♠ 🐿 1:13 AM 2
                                                                                                    🔡 🐚 🗸 🚱
```


Development of Sprint-3 (Web Application Using Node-Red)

```
Smart_Farming.py - C:\Users\A S ABISHEK\AppData\Local\Programs\Python\Python37\Smart_Farming.py (3.7.0)
 File Edit Format Run Options Window Help
 import wiotp.sdk.device
 import time
  import datetime
            random
 myConfig={
         nig={
"identity":{
    "orgId":"ug23sr",
    "typeId":"Smart_Fa
"deviceId":"32826"
       },
"auth": {
    "token":"3wNLT001g8VpEJEpsq"
 client=wiotp.sdk.device.DeviceClient(config=myConfig, logHandlers=None)
client.connect()
def myCommandCallback(cmd):
      mycommandcallback(cmd):
print("Message received from IBM IoT Platform: %s" % cmd.data['command'])
m=cmd.data['command']
if (m=="motoron"):
    print("Motor is switched ON")
elif(m=="motoroff"):
    print("Motor is switched OFF")
print(" ")
       print("
       soil=random.randint(0,100)
       temp=random.randint(-20,125)
hum=random.randint(0,100)
      mum-random.randint(0,100)
myData=('soil moisture':soil, 'temperature':temp, 'humidity':hum)
client.publishEvent(eventId="status",msgFormat="json",data=myData,qos=0,onPublish=None)
print("Published data successfully",myData)
time.sleep(2)
 client.commandCallback=myCommandCallback
client.disconnect()
                                                                                                                                                                                                                                Ln: 32 Col: 38
                                                                                                                                                                                                          € 4:04 PM
11/10/2022
                                                                                                     🚆 📜 🗸 🚱
*Python 3.7.0 Shell
 File Edit Shell Debug Options Window Help
Python 3.7.0 (v3.7.0:1bf9cc5093, Jun 27 2018, 04:59:51) [MSC v.1914 64 bit (AMD64)] on win32 Type "copyright", "credits" or "license()" for more information.
  RESTART: C:\Users\A S ABISHEK\AppData\Local\Programs\Python\Python37\Smart_Farming.py
2022-11-10 16:04:42,463 wiotp.sdk.device.client.DeviceClient INFO Connected successfully: d:uq23sr:Smart_Farming:32826Published
```


Development of Sprint-4 (MIT Application and its Execution)

```
\Box
                                                                                                                                                                                                                               ×
Smart Farming.py - C:\Users\A S ABISHEK\AppData\Local\Programs\Python\Python37\Smart Farming.py (3.7.0)
File Edit Format Run Options Window Help
            wiotp.sdk.device
  import time
 import os
     ort datetime
            random
 myConfig={
        "identity":{
    "orgId":"uq23sr",
    "typeId":"Smart_Farming",
    "deviceId":"32826"
       },
"auth": {
    "token":"3wNLT001g8VpEJEpsq"
 client=wiotp.sdk.device.DeviceClient(config=myConfig, logHandlers=None)
 client.connect()
def myCommandCallback(cmd):
      myCommandCallback(cmd):
print("Message received from IBM I
m=cmd.data['command']
if (m=="motoron"):
   print("Motor is switched ON")
elif(m=="motoroff"):
   print("Motor is switched OFF")
print(" ")
                                            ed from IBM IoT Platform: %s" % cmd.data['command'])
 while
       soil=random.randint(0,100)
temp=random.randint(-20,125)
hum=random.randint(0,100)
      num=random.randint(0,100)
myData=('soil_moisture':soil,'temperature':temp,'humidity':hum)
client.publishEvent(eventId="status",msgFormat="json",data=myData,qos=0,onPublish=None)
print("Published data successfully",myData)
time.sleep(2)
       client.commandCallback=myCommandCallback
 client.disconnect()
                                                                                                                                                                                                                       Ln: 32 Col: 38
                                                                                                 🔡 📜 🗸 🤡
                                                                                                                                                                                                   *Python 3.7.0 Shell*
File Edit Shell Debug Options Window Help
Python 3.7.0 (v3.7.0:1bf9cc5093, Jun 27 2018, 04:59:51) [MSC v.1914 64 bit (AMD64)] on win32 Type "copyright", "credits" or "license()" for more information.
  RESTART: C:\Users\A S ABISHEK\AppData\Local\Programs\Python\Python37\Smart_Farming.py
2022-11-10 16:04:42,463
                                                                                                                         Connected successfully: d:uq23sr:Smart_Farming:32826Published
                                           wiotp.sdk.device.client.DeviceClient INFO
Published data successfully ('soil_moisture': 62, 'temperature': -16, 'humidity': 33} Published data successfully ('soil_moisture': 99, 'temperature': 105, 'humidity': 62} Published data successfully ('soil_moisture': 41, 'temperature': 114, 'humidity': 78} Published data successfully ('soil_moisture': 26, 'temperature': -15, 'humidity': 49} Published data successfully ('soil_moisture': 55, 'temperature': 84, 'humidity': 87}
                                                                                                                                                                                                   △ 🐧 🤝 Ф)) 🗈 4:05 PM
11/10/2022
                                                                                                  🔡 📜 🕅 🚱 🤡
```


USERNAME: Smart_Farmer

PASSWORD:

SUBMIT

Temperature: 60

Humidity: 48

Moisture: 17

MOTOR ON MOTOR OFF

CHAPTER 8

TESTING

8.1 Unit Testing

Unit testing is a software development process in which the smallest testable parts of an application, called units, are individually and independently scrutinized for proper operation. This testing methodology is done during the development process by the software developers and sometimes QA staff.

Unit testing is a type of testing in which individual units or functions of software testing. Its primary purpose is to test each unit or function. A unit is the smallest testable part of an application. It mainly has one or a few inputs and produces a single output.

8.2 Integration Testing

Integration testing is also known as integration and testing (I&T), is a type of software testing in which the different units, modules or components of a software application are tested as a combined entity. However, these modules may be coded by different programmers.

Integration Testing is a type of software testing, which is performed on software to determine the flow between two or more modules by combining them. Integration testing makes sure that the interactions between different components of the software is completed smoothly without any complication.

The purpose of the integration testing is to expose faults in the interaction between integrated units. Once all the modules have been unit tested, integration testing is performed.

8.3 Test Cases

Table 8.1

S.NO	TEST		EXPECTED	ACTUAL	RESULT	
	CASE	INPUT	OUTPUT	OUTPUT	RESULI	
1	Temperature Detection	Username				
		and	60	60	PASS	
		Password				

Table 8.2

S.NO	TEST		EXPECTED	ACTUAL	RESULT
	CASE	INPUT	OUTPUT	OUTPUT	
1	Humidity Detection	Username			
		and	48	48	PASS
		Password			

Table 8.3

S.NO	TEST		EXPECTED	ACTUAL	респт	
	CASE	INPUT	OUTPUT	OUTPUT	RESULT	
	Maiatura	Username				
1	Moisture Detection	and	17	17	PASS	
		Password				

*Note: The Output Values may vary accordingly.

CHAPTER 9

RESULTS

Temperature: 60

Humidity: 48

Moisture: 17

MOTOR ON MOTOR OFF

CHAPTER 10

ADVANTAGES AND DISADVANTAGES

Advantages:

- ❖ As it is a mobile friendly application one can access all the metrics in one touch.
- ❖ It has clean User interface so that user have smooth control over the application.
- * The consumption of electric power is less as compared to other application.
- ❖ The moisture level and the temperature levels are monitored at regular intervals.
- ❖ It can run on all android versions.
- ❖ The application requires less memory and storage space.

Disadvantages:

- When the network connectivity is poor the performance of the application will be affected
- ❖ As it is platform dependent it cannot run on all devices.
- ❖ The application will produce inaccurate values when there is a fault or any change in API.
- ❖ The user should be more aware on the results produced.

CHAPTER 11 CONCLUSION

In this work, we successfully develop a system that can help in an automated irrigation system by analyzing the moisture level of the ground.

The smart irrigation system proves to be auseful system as it automates and regulates the watering without any manual intervention. The primary applications for this project are for farmers and gardeners who do not have enough timeto water crops/plants.

The farmers are facing major problems in watering their agriculture fields. So that the Farmers can Watering their plant Smart.

CHAPTER 12 FUTURE SCOPE

- It helps in automatic irrigation for crops and also helps to maintain the water level in field.
- The system will notify on the critical conditions.
- As this is an automated device it can works even the absence of farmer.

CHAPTER 13 APPENDIX

13.2 Source Code:

```
#include <ESP8266WiFi.h>
#include <WiFiClient.h> #include
<PubSubClient.h>#include "DHT.h"
const char* ssid = "SMART-G";
const char* password = "10112019";
#define DHTPIN D6#define G
D0
#define DHTTYPE DHT11 DHT
dht(DHTPIN, DHTTYPE);
#define ID "y13urg"
#define DEVICE_TYPE "ESP8266"
#define DEVICE_ID "TEST" #define
TOKEN "TEST-12345"
      server[] = ID ".messaging.internetofthings.ibmcloud.com";
char
                                                                    char
publish_Topic1[] = "iot-2/evt/Data1/fmt/json";
       publish_Topic2[] = "iot-2/evt/Data2/fmt/json";
char
publish_Topic3[] = "iot-2/evt/Data2/fmt/json";char publish_Topic4[]
= "iot-2/evt/Data2/fmt/json"; char authMethod[] = "use-token-auth";
char token[] = TOKEN;
char clientId[] = "d:" ID ":" DEVICE_TYPE ":" DEVICE_ID;
WiFiClient wifiClient;
```

```
PubSubClient client(server, 1883, NULL, wifiClient);
void setup() {
 pinMode(D0,OUTPUT);
 digitalWrite(D0,HIGH);
 Serial.begin(115200); dht.begin();
 Serial.println();
  WiFi.begin(ssid, password);
  while (WiFi.status() != WL_CONNECTED) {
   delay(500);
   Serial.print(".");
  Serial.println("");
    Serial.println(WiFi.localIP());
  if (!client.connected()) { Serial.print("Reconnecting
     client to ");Serial.println(server);
     while (!client.connect(clientId, authMethod, token)) {Serial.print(".");
       delay(500);
     }
    Serial.println("Connected TO IBM IoT cloud!");
  }
}
long previous_message = 0;void loop() {
  client.loop();
  long current = millis();
  if (current - previous_message > 3000) {
    previous_message = current;
     float hum = dht.readHumidity(); float temp =
                                           45
```

```
dht.readTemperature();
    float MOI = map(analogRead(A0), 0, 1023, 100, 0);
    float bi = map(digitalRead(D1), 0, 1, 100, 0); if
    (isnan(hum) || isnan(temp) ){
   Serial.println(F("Failed to read from DHT sensor!"));return;
}
Serial.print("Temperature: ");
Serial.print(temp); Serial.print("°C");
Serial.print(" Humidity: ");
Serial.print(hum); Serial.print("%");
Serial.print("SOIL MOITURE: ");
Serial.print(MOI); Serial.print("ANIMAL AND
BIRD: "); Serial.print(bi);
if(MOI<=10)
  digitalWrite(D0,LOW);
  delay(100);
  digitalWrite(D0,HIGH);
 else
  digitalWrite(D0,HIGH);
   String payload = "{\"d\":{\"Name\":\"" DEVICE_ID "\"";payload +=
       ",\"Temperature\":";
       payload += temp;payload +=
       "}}";
```

```
Serial.print("Sending payload: ");
Serial.println(payload);
if (client.publish(publish_Topic1, (char*) payload.c_str())) {Serial.println("Published
   successfully");
 } else {
   Serial.println("Failed");
}
String payload1 = "{\"d\":{\"Name\":\"" DEVICE_ID "\"";payload1 +=
    ",\"Humidity\":";
    payload1 += hum;payload1
    += "}}";
    Serial.print("Sending payload: ");
    Serial.println(payload1); Serial.println('\n');
 if (client.publish(publish_Topic2, (char*) payload1.c_str())) {
   Serial.println("Published successfully");
 } else {
   Serial.println("Failed");
}
String payload3 = "{\"d\":{\"Name\":\"" DEVICE_ID "\"";payload3 +=
    ",\"Moiture\":";
    payload3 += MOI;payload3
    +="}}";
Serial.print("Sending payload: ");
Serial.println(payload3);
```

```
if (client.publish(publish_Topic3, (char*) payload3.c_str())) {
       Serial.println("Published successfully");
     } else {
       Serial.println("Failed");
     }
String payload4 = "{\"d\":{\"Name\":\"" DEVICE_ID "\"";payload4 +=
         ",\"Animal&Bird\":";
         payload4 += bi; payload4 +=
         "}}";
     Serial.print("Sending payload: ");
     Serial.println(payload4);
     if (client.publish(publish_Topic4, (char*) payload4.c_str())) {
       Serial.println("Published successfully");
     } else {
       Serial.println("Failed");
     }
```

13.2 GITHUB LINK

https://github.com/IBM-EPBL/IBM-Project-15427-1659598581.git

13.2 DEMO LINK:

https://youtu.be/iOVOSv8wrt4