Optimization Theory and Algorithms

Instructor: Prof. LIAO, Guocheng (廖国成)

Email: liaogch6@mail.sysu.edu.cn

School of Software Engineering Sun Yat-sen University

Outline

- Inequality constrained minimization
- Logarithmic barrier function and central path
- Barrier method

Equality constrained minimization problem

min
$$f_0(x)$$

s.t. $f_i(x) \le 0, i = 1, ..., m$
 $Ax = b$

- f is convex and twice continuously differentiable
- Assume optimal point x^* exists. Let $p^* = f(x^*)$ be the optimal value.
- Assume Slater's condition holds, i.e., strong duality holds.

Optimality condition (KKT conditions): x^* is optimal iff there exists a λ^* and ν^* such that

- $\lambda_i^* f_i(x^*) = 0, i = 1, ..., m$
- $\nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) + A^T \nu^* = 0$
- $\lambda^* \geq 0$
- $f_i(x^*) \le 0, i = 1, ..., m, Ax^* = b$

Logarithmic barrier

not differentiable

$$\min f_0(x)$$
s.t. $f_i(x) \le 0, i = 1, ..., m$

$$Ax = b$$

min
$$f_0(x) + \sum_{i=1}^m I_-(f_i(x))$$

s.t. $Ax = b$

 I_{-} is the indicator function for the nonpositive reals

$$I_{-}(\mu) = \begin{cases} 0, & \text{if } \mu \leq 0 \\ \infty, & \text{if } \mu > 0 \end{cases}$$

min
$$f_0(x) + \sum_{i=1}^m I_-(f_i(x))$$

s.t. $Ax = b$

min
$$f_0(x) - (1/t) \sum_{i=1}^m \log(-f_i(x))$$

s.t. $Ax = b$

$$\widehat{I}_{-}(\mu) = -(1/t) \sum_{i=1}^{m} \log(-\mu)$$

- Convex
- Differentiable
- As t increases, the approximation is more accurate

Central path

min
$$f_0(x) - (1/t) \sum_{i=1}^m \log(-f_i(x))$$

s.t. $Ax = b$

• $\phi(x) = -\sum_{i=1}^{m} \log(-f_i(x))$: logarithmic barrier function

Multiply the objective with *t*

min
$$tf_0(x) + \phi(x)$$

s.t. $Ax = b$

- For t > 0, $x^*(t)$ is the solution of the above problem
- Central path: $x^*(t)$, t > 0:

$$Ax^{*}(t) = b$$

$$f_{i}(x^{*}(t)) < 0$$

$$t\nabla f_{0}(x^{*}(t)) + \nabla \phi(x^{*}(t)) + A^{T}v' = 0$$

$$t\nabla f_{0}(x^{*}(t)) + \sum_{i=1}^{m} \frac{1}{-f_{i}(x^{*}(t))} \nabla f_{i}(x^{*}(t)) + A^{T}v' = 0$$

Approximation gap

min
$$tf_0(x) + \phi(x)$$

s.t. $Ax = b$

- $Ax^*(t) = b$
- $f_i(x^*(t)) < 0$
- $t\nabla f_0(x^*(t)) + \sum_{i=1}^m \frac{1}{-f_i(x^*(t))} \nabla f_i(x^*(t)) + A^T v' = 0$ $\sum_{i=1}^m \lambda_i f_i(x) + v^T (Ax b)$

$$p^* = \min \ f_0(x)$$

s.t. $f_i(x) \le 0, i = 1, ..., m$
 $Ax = b$
Lagrangian

Lower bound of the optimal value p^* : $f_0(x^*(t)) \le p^* + m/t$

convergence as
$$t \to \infty$$

- $\nabla f_0(x^*(t)) + \sum_{i=1}^m \frac{1}{-tf_i(x^*(t))} \nabla f_i(x^*(t)) + A^T v'/t = 0$
- Define $\lambda_i^*(t) = -1/t f_i(x^*(t))$, and $\nu_i^*(t) = \nu'/t$
- $x^*(t)$ minimizes Lagrangian $L(x, \lambda^*(t), \nu^*(t)) = f_0(x) + \sum_{i=1}^m \lambda_i^*(t) f_i(x^*) + \nu_i^*(t)^T (Ax b)$
- $g(\lambda^*(t), \nu^*(t)) = f_0(x^*(t)) + \sum_{i=1}^m \lambda_i^*(t) f_i(x^*) + \nu_i^*(t)^T (Ax b) = f_0(x^*(t)) m/t$

$$f_0(x^*(t)) - m/t = g(\lambda^*(t), \nu^*(t)) \le p^*$$

Interpretation via modified KKT conditions

$$x^*(t), \lambda^*(t), \nu^*(t)$$
 satisfy

- Approximate complementary slackness: $\lambda_i^*(t) f_i(x^*(t)) = -1/t$, i = 1, ..., m
- Lagrangian optimality: $\nabla f_0(x^*(t)) + \sum_{i=1}^m \lambda_i^*(t) \nabla f_i(x^*(t)) + A^T v^*(t) = 0$
- Dual feasibility: $\lambda^*(t) \ge 0$
- Primal feasibility: $f_i(x^*(t)) \le 0$, i = 1, ..., m, $Ax^*(t) = b$

Barrier method

- Given strictly feasible x, t > 0, u > 1, tolerance $\epsilon > 0$
- Repeat
- 1. Centering step.

Starting at x, compute $x^*(t)$ by solving the following problem (Newton's method)

min
$$tf_0(x) + \phi(x)$$

s.t. $Ax = b$

- 2. Update: $x \leftarrow x^*(t)$
- 3. Stopping criterion: if $m/t \le \varepsilon$, break
- 4. Increase $t.t \leftarrow ut$
- Centering usually use Newton's method, starting at current x.
- Choice of u: large u means fewer outer iterations, more inner Newton iterations.

Example

Inequality form LP (m=100 inequalities, n=50 variables)

- Staircase shape: horizontal portion is the number of Newton steps of that inner iterations; vertical portion is u
- Total number of Newton iterations is nor very sensitive for $u \ge 10$.

Newton step for modified KKT equations

min
$$tf_0(x) + \phi(x)$$

s.t. $Ax = b$

Compute Newton step by solving linear equations:

$$\begin{bmatrix} t\nabla^2 f(x) + \nabla^2 \phi(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ v \end{bmatrix} = \begin{bmatrix} -t\nabla f_0(x) - \nabla \phi(x) \\ 0 \end{bmatrix}$$

Modified KKT equations •
$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + A^T \nu = 0$$

•
$$Ax = b$$

•
$$\lambda_i f_i(x) = -1/t, i = 1, ..., m$$

Newton step for modified KKT equations

Newton's method with equality constraints

min
$$f(x)$$

s.t. $Ax = b$

Optimality conditions (KKT conditions):

$$\nabla f(x^*) + A^T v^* = 0, \quad Ax^* = b$$

$$\nabla f(x) + \nabla^2 f(x) \Delta x_{nt} + A^T v^* = 0,$$

$$A(x + \Delta x_{nt}) = b$$

$$\nabla f(x) + \nabla^2 f(x) \Delta x_{nt} + A^T v^* = 0,$$

$$A \Delta x_{nt} = 0$$

Newton's method with inequality constraints

min
$$f_0(x)$$

s.t. $f_i(x) \le 0, i = 1, ..., m$
 $Ax = b$

Appro. optimality conditions (modified KKT equations)

•
$$\nabla f_0(x^*) + \sum_{i=1}^m \frac{1}{-tf_i(x^*)} \nabla f_i(x^*) + A^T v^* = 0$$

•
$$Ax^* = b$$

•
$$(\nabla^2 f(x) + \nabla^2 \phi(x)) \Delta x_{nt} + A^T v^* = -\nabla f_0(x) - 1/t \nabla \phi(x),$$

•
$$A\Delta x_{nt} = 0$$

Interpretation of Newton's method

Non-linear equations: $F(x^*) = 0$

Linear equations of Δx_{nt} :

$$F(x^*) \approx F(x) + DF(x) \Delta x_{nt} = 0$$

