Efficiency through Uncertainty: Scalable Formal Synthesis for Stochastic Hybrid Systems

<u>Nathalie Cauchi</u>¹ Luca Laurenti¹ Morteza Lahijanian², Alessandro Abate¹ Marta Kwiatkowska¹ Luca Cardelli^{1,3} HSCC 2019

¹University of Oxford

²University of Colorado Boulder

³Microsoft Research at Cambridge

Safety critical systems with a multitude of requirements

System dynamics:

- complex continuous dynamics
- discrete modes
- uncertainty

Specifications:

• can be formally defined

stochastic hybrid systems + formal methods

Classical approach

- abstract continuous variables to finite Markov Processes
- errors between original and abstract model (treated as separate parameter)

Classical approach

- abstract continuous variables to finite Markov Processes
- errors between original and abstract model (treated as separate parameter)
- generate conservative error bounds
 - error increases linearly with time
 - state-space explosion due to error explosion
- limited to finite time properties
- synthesis over abstract model (classical MDP synthesis)

$$\mathcal{H} = (\mathcal{A}, F, G, \Upsilon, L)$$

$$\mathcal{H} = (\mathcal{A}, F, G, \Upsilon, L)$$

$$\mathcal{H} = (\mathcal{A}, F, G, \Upsilon, L)$$

A (discrete-time) linear stochastic hybrid system (SHS) is a tuple

$$\mathcal{H} = (\mathcal{A}, F, G, \Upsilon, L)$$

stochastic process

- a hybrid state of \mathcal{H} is a pair $s = (a, x) \in S$
- evolution of \mathcal{H} for $k \in \mathbb{Z}_{\geq 0}$ is a stochastic process $\mathbf{s}(k) = (\mathbf{a}(k), \mathbf{x}(k)) \in S$

switching strategy

a function that assigns a discrete mode $a\in\mathcal{A}$ to a finite path $\omega_{\mathcal{H}}$ of the process \mathbf{s}

switching strategy

a function that assigns a discrete mode $a\in\mathcal{A}$ to a finite path $\omega_{\mathcal{H}}$ of the process s

transition kernel

for any measurable set $B \subseteq \mathbb{R}^m$, $x \in \mathbb{R}^m$, and $a \in \mathcal{A}$

$$T(B \mid x, a) = \int_{B} \mathcal{N}(t \mid F(a)x, G(a)^{T} Cov_{w} G(a)) dt$$

switching strategy

a function that assigns a discrete mode $a\in\mathcal{A}$ to a finite path $\omega_{\mathcal{H}}$ of the process s

transition kernel

for any measurable set $B\subseteq \mathbb{R}^m$, $x\in \mathbb{R}^m$, and $a\in \mathcal{A}$

$$T(B \mid x, a) = \int_{B} \mathcal{N}(t \mid F(a)x, G(a)^{T} Cov_{w}G(a)) dt$$

temporal logic specifications

 deals with complex formal properties with boolean and temporal constraints (bounded and unbounded)

Problem statement

Given:

- 1. SHS \mathcal{H}
- 2. a compact set X
- 3. property expressed as a formula φ defined over regions of X
- 4. φ also requires system not to leave X

Problem statement

Given:

- 1. SHS \mathcal{H}
- 2. a compact set X
- 3. property expressed as a formula φ defined over regions of X
- 4. φ also requires system not to leave X

Find:

1. a switching strategy that maximizes the probability of satisfying φ for all initial states $s_0 \in \mathcal{A} \times X$

We construct abstract model that captures all behaviours of SHS with to X and regions of interest

We construct abstract model that captures all behaviours of SHS with to X and regions of interest

1. $\frac{\text{discretize}}{\text{discretize}}$ set X according to dynamics of each mode

We construct abstract model that captures all behaviours of SHS with to X and regions of interest

- 1. $\frac{\text{discretize}}{\text{discretize}}$ set X according to dynamics of each mode
- 2. quantify error of abstraction and represent it as uncertainty in the abstraction

We construct abstract model that captures all behaviours of SHS with to X and regions of interest

- 1. discretize set X
- 2. quantify error of abstraction and represent it as uncertainty
- 3. synthesise optimal strategy via stochastic games
- 4. strategy can be mapped back to SHS

Preliminaries: models

An IMDP is a tuple $\mathcal{I} = (Q, A, \check{P}, \hat{P})$

- Q is a finite set of states
- A is a finite set of actions
- $\check{P}(q, a, q')$ defines the lower bound of the transition probability
- $\hat{P}(q, a, q')$ defines the upper bound of the transition probability
- \U2223 is a finite set of atomic propositions
- $L: Q \to 2^{\Upsilon}$ is a labeling function

Preliminaries: models

An IMDP is a tuple $\mathcal{I} = (Q, A, \check{P}, \hat{P})$

• a feasible distribution reachable from q by a if

$$\check{P}(q, a, q') \leq \gamma_q^a(q') \leq \hat{P}(q, a, q')$$

for each state $q' \in Q$

$$\mathcal{I} = (Q, A, \check{P}, \hat{P}, \Upsilon, L)$$

$$\mathcal{I} = (Q, A, \check{P}, \hat{P}, \Upsilon, L)$$

$$\mathcal{I} = (Q, A, \check{P}, \hat{P}, \Upsilon, L)$$

1	$q_1^{a_1}$	$q_2^{a_1}$	$q_3^{a_1}$	$q_4^{a_1}$
		31	q ₇ ²¹	$q_8^{a_1}$
	$q_5^{a_1}$	21	da1	$q_{12}^{a_1}$
	$q_{9}^{a_{1}}$	$q_{10}^{a_1}$	91	

$q_1^{a_2}$	$q_2^{a_2}$	$q_3^{a_2}$	$q_4^{a_2}$
$q_5^{a_2}$	$q_6^{a_2}$	$q_7^{a_2}$	$q_8^{a_2}$
$q_9^{a_2}$	$q_{10}^{a_2}$	$q_{11}^{a_2}$	$q_{12}^{a_2}$

$$\mathcal{Q}^{a_1} = \{q_1^{a_1}, \dots, q_{12}^{a_1}\}$$

$$\mathcal{Q}^{a_2} = \{q_1^{a_2}, \dots, q_{12}^{a_2}\}$$

$$\mathcal{Q} = \{\mathcal{Q}^{a_1} \cup \mathcal{Q}^{a_1} \cup \{q_{\mu}\}\}$$

We abstract the SHS to an IMDP

$$\mathcal{I} = (Q, A, \check{P}, \hat{P}, \Upsilon, L)$$

• A are the set of modes of \mathcal{H} : $A(q) = A \forall q \in Q$

$$\mathcal{I} = (Q, A, \check{P}, \hat{P}, \Upsilon, L)$$

- A are the set of modes of $\mathcal{H}: A(q) = A \ \forall q \in Q$
- one-step transition probability : T(q|x, a)
- but $q \in Q$ correspond to regions in \mathcal{H}
 - range of feasible transition probabilities to region q
 - bound feasible transitions to get \check{P}, \hat{P}

$$\mathcal{I} = (Q, A, \check{P}, \hat{P}, \Upsilon, L)$$

- A are the set of modes of $\mathcal{H}: A(q) = A \ \forall q \in Q$
- one-step transition probability : T(q|x, a)

$$\gamma_{q_i}^a(q_j) \leq \min_{x \in q_i} T(q_j|x,a)$$

$$\gamma_{q_i}^a(q_j) \ge \max_{x \in q_i} T(q_j|x,a)$$

How do we efficiently compute

$$\min_{x \in q_i} T(q_j \mid x, a), \quad \max_{x \in q_i} T(q_j \mid x, a)?$$

How do we efficiently compute

$$\min_{x \in q_i} T(q_j \mid x, a), \quad \max_{x \in q_i} T(q_j \mid x, a)?$$

How do we efficiently compute

$$\min_{x \in q_i} T(q_j \mid x, a), \quad \max_{x \in q_i} T(q_j \mid x, a)?$$

For process x in mode $a \in A$

Transformation

Analytical solution

$$[v_l^{(1)}, v_u^{(1)}] \times \cdots \times [v_l^{(m)}, v_u^{(m)}]$$

$$\mathcal{T}(q_{j}|x,a) = \frac{1}{2^{m}} \prod_{n=1}^{m} \left(erf(\frac{y^{(n)} - v_{j}^{(n)}}{\sqrt{2}}) - erf(\frac{y^{(n)} - v_{u}^{(n)}}{\sqrt{2}}) \right)$$

How do we efficiently compute

$$\min_{x \in q_i} T(q_j \mid x, a), \quad \max_{x \in q_i} T(q_j \mid x, a)?$$

Optimisation via KKT conditions

- solving systems of non-linear equations
- efficient and exact for low-dimensional system
- number of vertices to check grows exponentially with dimensions

Optimisation via KKT conditions

- solving systems of non-linear equations
- efficient and exact for low-dimensional system
- number of vertices to check grows exponentially with dimensions

Optimisation via KKT conditions

- solving systems of non-linear equations
- efficient and exact for low-dimensional system
- number of vertices to check grows exponentially with dimensions

Optimisation via gradient descent method

$$f(y) = \frac{1}{2^m} \left[\prod_{i=1}^m \left(erf(\frac{y^{(i)} - v_l^{(i)}}{\sqrt{2}}) - erf(\frac{y^{(i)} - v_u^{(i)}}{\sqrt{2}}) \right) \right]$$

Optimisation via gradient descent method

$$f(y) = -\frac{1}{2^m} \log \left[\prod_{i=1}^m \left(erf(\frac{y^{(i)} - v_i^{(i)}}{\sqrt{2}}) - erf(\frac{y^{(i)} - v_u^{(i)}}{\sqrt{2}}) \right) \right]$$

- f(y) has the property of being log-concave
- can use standard convex optimisation techniques
- allows for scaling to high dimensions

SHS abstractions

We abstract the SHS to an IMDP

$$\mathcal{I} = (Q, A, \check{P}, \hat{P}, \Upsilon, L)$$

- associate labels with corresponding region R in X
- when discretisation does not respect R
 - add extra labels (conservatively)
 - converting φ into negation normal form (NNF)
 - associate labels with negation of propositions
 - under approximate this region

Strategy synthesis

- ullet uncertainties in $\mathcal I$: nondeterministic choice of transition probability from one IMDP state to another under a given action
- synthesis task interpreted as a $2\frac{1}{2}$ player stochastic game
- the set of actions of player 2 is continuous

Strategy synthesis

- ullet uncertainties in $\mathcal I$: nondeterministic choice of transition probability from one IMDP state to another under a given action
- synthesis task interpreted as a $2\frac{1}{2}$ player stochastic game
- the set of actions of player 2 is continuous

Case studies

- implemented the abstraction and synthesis algorithms
- test performance using three case studies
- analysis on the abstraction error generated

$$\varepsilon_{max} = \max_{q \in Q} \left(\hat{p}(q) - \check{p}(q) \right)$$

min $\check{p}(q)$ and max $\hat{p}(q)$ probabilities of satisfaction for each state q

ullet case studies are run on an Intel Core i7-8550U CPU at 1.80GHz imes 8 machine with 8 GB of RAM

model

1 discrete mode: $A = \{a_1\}$

$$x(k+1) = \begin{pmatrix} 0.85 & 0 \\ 0 & 0.90 \end{pmatrix} x(k) + \begin{pmatrix} 0.15 & 0 \\ 0 & 0.05 \end{pmatrix} w(k)$$

model

1 discrete mode: $A = \{a_1\}$

$$x(k+1) = \begin{pmatrix} 0.85 & 0 \\ 0 & 0.90 \end{pmatrix} x(k) + \begin{pmatrix} 0.15 & 0 \\ 0 & 0.05 \end{pmatrix} w(k)$$

verification of a safety property

$$\varphi_1 = \mathcal{G}^{\leq K}\{[-1,1] \times [-1,1]\}$$

comparison against state of the art tool FAUST²

$$\varphi_1 = \mathcal{G}^{\leq K=2}\{[-1,1] \times [-1,1]\}$$

Tool	Impl.	$ \bar{\mathbf{Q}} $	Time taken	Error
Method	Platform	(states)	(secs)	ε_{max}
IMDP (KKT)	MATLAB	361	19.789	0.211
FAUST ²	MATLAB	361	108.265	1.000
IMDP (KKT)	MATLAB	625	145.563	0.163
FAUST ²	MATLAB	625	285.795	1.000
IMDP (KKT)	MATLAB	2601	28127.256	0.082
FAUST ²	MATLAB	2601	5274.578	0.995
IMDP (KKT)	MATLAB	3721	Time out ^a	-
FAUST ²	MATLAB	3721	11285.313	0.832

^a9 hours+ and no solution

$$\varphi_1 = \mathcal{G}^{\leq K=2}\{[-1,1] \times [-1,1]\}$$

Tool	Impl.	$ \bar{\mathbf{Q}} $	Time taken	Error
Method	Platform	(states)	(secs)	ε_{max}
IMDP (KKT)	MATLAB	361	19.789	0.211
FAUST ²	MATLAB	361	108.265	1.000
IMDP (KKT)	MATLAB	625	145.563	0.163
FAUST ²	MATLAB	625	285.795	1.000
IMDP (KKT)	MATLAB	2601	28127.256	0.082
FAUST ²	MATLAB	2601	5274.578	0.995
IMDP (KKT)	MATLAB	3721	Time out ^a	-
FAUST ²	MATLAB	3721	11285.313	0.832

Method Platform (states) (secs) $ε_{max}$ IMDP (GD) C++ 361 29,003 0.211 FAUST ² C++ 361 136.71 1.000 IMDP (GD) C++ 625 117.741 0.163 FAUST ² C++ 625 302.900 1.000 IMDP (GD) C++ 2601 2939.050 0.082 FAUST ² C++ 2601 395.490 0.995 IMDP (GD) C++ 3721 3973.28 0.068 FAUST ² C++ 3721 758.7 Fg 0.822	Tool	Impl.	$ \bar{Q} $	Time taken	Error
FAUST ² C++ 361 136.71 1.000 IMDP (GD) C++ 625 117.741 0.163 FAUST ² C++ 625 302.900 1.000 IMDP (GD) C++ 2601 2939.050 0.082 FAUST ² C++ 2601 3305.490 0.995 IMDP (GD) C++ 3721 3973.28 0.068	Method	Platform	(states)	(secs)	ε_{max}
IMDP (GD) C++ 625 117.741 0.163 FAUST ² C++ 625 302.900 1.000 IMDP (GD) C++ 2601 2939.050 0.082 FAUST ² C++ 2601 3305.490 0.995 IMDP (GD) C++ 3721 3973.28 0.068	IMDP (GD)	C++	361	29.003	0.211
FAUST ² C++ 625 302.900 1.000 IMDP (GD) C++ 2601 2939.050 0.082 FAUST ² C++ 2601 3305.490 0.995 IMDP (GD) C++ 3721 3973.28 0.068	FAUST ²	C++	361	136.71	1.000
IMDP (GD) C++ 2601 2939.050 0.082 FAUST ² C++ 2601 3305.490 0.995 IMDP (GD) C++ 3721 3973.28 0.068	IMDP (GD)	C++	625	117.741	0.163
FAUST ² C++ 2601 3305.490 0.995 IMDP (GD) C++ 3721 3973.28 0.068	FAUST ²	C++	625	302.900	1.000
IMDP (GD) C++ 3721 3973.28 0.068	IMDP (GD)	C++	2601	2939.050	0.082
	FAUST ²	C++	2601	3305.490	0.995
EALIST ² C++ 3721 7537 750 0.832	IMDP (GD)	C++	3721	3973.28	0.068
1A031 CTT 3721 7331.730 0.032	FAUST ²	C++	3721	7537.750	0.832

^a9 hours+ and no solution

$$\varphi_1 = \mathcal{G}^{\leq k}\{[-1,1] \times [-1,1]\}$$

- error embedded within abstraction
- performs computations according to feasible transition probabilities
- abstraction errors does not explode with time

model

2 discrete modes:
$$A = \{a_1, a_2\}$$

$$x(k+1)_{a_1} = \begin{pmatrix} 0.1 & 0.9 \\ 0.8 & 0.2 \end{pmatrix} x(k)_{a_1} + \begin{pmatrix} 0.3 & 0.1 \\ 0.1 & 0.2 \end{pmatrix} w_{a_1}(k)$$

$$x(k+1)_{a_2} = \begin{pmatrix} 0.8 & 0.2 \\ 0.1 & 0.9 \end{pmatrix} x(k)_{a_2} + \begin{pmatrix} 0.2 & 0 \\ 0 & 0.1 \end{pmatrix} w_{a_2}(k)$$

model

2 discrete modes: $A = \{a_1, a_2\}$

$$x(k+1)_{a_1} = \begin{pmatrix} 0.1 & 0.9 \\ 0.8 & 0.2 \end{pmatrix} x(k)_{a_1} + \begin{pmatrix} 0.3 & 0.1 \\ 0.1 & 0.2 \end{pmatrix} w_{a_1}(k)$$

$$x(k+1)_{a_2} = \begin{pmatrix} 0.8 & 0.2 \\ 0.1 & 0.9 \end{pmatrix} x(k)_{a_2} + \begin{pmatrix} 0.2 & 0 \\ 0 & 0.1 \end{pmatrix} w_{a_2}(k)$$

synthesis of a maximising switching strategy

$$\varphi_2 = \neg red \ \mathcal{U} \ green$$

within the set $X = [-2, 2] \times [-2, 2]$

- total number of strates: 3612
- computational time: 5434 [s]

lower bound probability for a_1

lower bound probability for a_2

original set X with simulated trajectories

maximum error incurred in satisfying φ_2

model with d continuous variables

1 discrete mode: $A = \{a_1\}$

$$x(k+1) = -0.951_{d}x(k) + 0.11_{d}w(k)$$

model with d continuous variables

1 discrete mode: $A = \{a_1\}$

$$x(k+1) = -0.951_{d}x(k) + 0.11_{d}w(k)$$

verification of a safety property

$$\varphi_1 = \mathcal{G}^{\leq k=50}[-1,1]^{\mathbf{d}}$$

results:

• current state of the art

- number of dimensions that can now be analysed
- adaptive refinement resulting in max error of 0.03

- number of dimensions that can now be analysed
- adaptive refinement resulting in max error of 0.03
- manageable state spaces
- remarkable improvement

Conclusion

contributions

- theoretical & computational technique for analysis of SHS
- precise and compact abstractions
- algorithms embedded within new tool StocHy presented at TACAS'19

Conclusion

contributions

- theoretical & computational technique for analysis of SHS
- precise and compact abstractions
- algorithms embedded within new tool StocHy presented at TACAS'19

future work

- synthesis for more complex and even multi-objective properties
- analysis of continuous-time SHS (current work in progress)

Conclusion

contributions

- theoretical & computational technique for analysis of SHS
- precise and compact abstractions
- algorithms embedded within new tool StocHy presented at TACAS'19

Thank you!

abstraction into MDP

- define desired abstraction error
- grid state-space (uniform or adaptive)
- compute transition probabilities via marginalisation
- hinges on computation of Lipschitz constants (h_s)
- N step error

$$\varepsilon = h_s \delta \mathcal{L}(A) N$$

abstraction into MDP

- define desired abstraction error
- grid state-space (uniform or adaptive)
- compute transition probabilities via marginalisation
- hinges on computation of Lipschitz constants (h_s)
- N step error

$$\varepsilon = h_s \delta \mathcal{L}(A) N$$

abstraction into MDP

- define desired abstraction error
- grid state-space (uniform or adaptive)
- compute transition probabilities via marginalisation
- hinges on computation of Lipschitz constants (h_s)
- N step error

$$\varepsilon = h_s \delta \mathcal{L}(A) N$$

abstraction into MDP

- define desired abstraction error
- grid state-space (uniform or adaptive)
- compute transition probabilities via marginalisation
- hinges on computation of Lipschitz constants (h_s)
- N step error

$$\varepsilon = h_s \delta \mathcal{L}(A) N$$

Labelling

- conservatively overapproximate discretizations of $\mathcal{A} \times X$ that do not respect regions in $R = \{r_1, \dots, r_n\}$
- represent each region by its complement relative to X
- Let $r_{n+i} = X \setminus r_i$ be the complement region of r_i with respect to X. We associate to each r_{n+i} a new atomic proposition p_{n+i} for $1 \le i \le n$.

$$\bar{\Upsilon} = \Upsilon \cup \{p_{n+1}, \ldots, p_{2n}\}$$

Then, we design $L:Q \to 2^{\widehat{\mathsf{T}}}$ of $\mathcal I$ such that

$$p_i \in L(q) \Leftrightarrow q \subseteq r_i$$

for all
$$q \in \bar{Q}$$
 and $0 \le i \le 2n$, and $L(q_u) = \emptyset$