Projet Génie Logiciel

Gabriel Soria Meriem Lyna Safar Julian Gomez

Remali

Camille Kasprzak Charles Breton Arthur Lenne

Alex Soubeyrand Maël Veyrat

Documentation bibliothèque standard

Extension trigo

Le fichier Math.decah est composée des 5 méthodes demandées par l'extension trigo:

- float ulp(float value)
- float sin(float value)
- float cos(float value)
- float asin(float x)
- float atan(float x)

Et de plusieurs méthodes en plus que nous utilisons dans nos fonctions :

- float abs(float x)
- float _pow(float x, int n)
- int _convertToIEEE754(float value)
- float convertFromIEEE754(int bits)
- float _approx_sqrt(float x)

dont les méthodes utilisées par Java:

- float cos(float value)
- float sin(float value)

NB : les méthodes commençant par un _ sont des méthodes internes à la classe et ne doivent pas être appelées en dehors.

Pour les fonctions asin et atan, nous avons choisi d'utiliser les fonctions de Java. Java traite les fonctions (arcsin) et (arctan) en double, le passage en float nous a donc fait perdre de la précision. L'utilisation de la fonction (_approx_sqrt) cause aussi une perte de précision.

Pour ulp, nous nous sommes inspirés de la fonction Java et l'avons modifié, en reprenant les conversions en entier IEE754 (grace aux fonctions _convertFromIEEE754, _convert-ToIEEE754).

Pour la fonction sin, si la valeur absolue de value est inférieur à $\pi/4$, on appelle la fonction _sin (de Java). Sinon, on transforme la value v pour qu'elle soit de la forme :

$$\bullet \quad v = q\frac{\pi}{2} + \frac{\pi}{4} - \alpha$$

avec
$$q = 2\frac{v}{\pi}$$
 et $\alpha = \frac{\pi}{2} \left(q + \frac{1}{2} \right) - v$

On renvoie ensuite $\sqrt{2}((s+c)\cos(x)+(s-c)\sin(x))$ avec $c=(q+1)\%2=\cos\left(q\frac{\pi}{2}\right)$ et $s=q\%2=\sin\left(q\frac{\pi}{2}\right)$

Pour la fonction cos, l'algorithme est le même mais on renvoie à la place : $\sqrt{2}((c-s)\cos(x)+(c+s)\sin(x))$ avec c=(q+1)%2 et s=q%2.

Perte de précision

La perte de précision pour les deux fonctions sin et cos, est causée par la reduction d'argument (value = $(q + \frac{1}{2})\frac{\pi}{2} - \alpha$).

Pour les fonctions **asin** et **atan**, l'erreur est causé d'une part par le passage de double à float, mais aussi par le calcul de la racine.

Extension Float2Float

Le fichier Float2Float.decah est composé de 4 méthodes, la classe définie permet de définir une fonction et de calculer son intégrale (entre a et b) par 4 méthodes différentes :

- float LeftRectangle(float a, float b, int n)
- float MidPoint(float a, float b, int n)
- float Trapezoid(float a, float b, int n)
- float Simpson(float a, float b, int n)