Olimpiada Națională de Matematică

Etapa Județeană și a Municipiului București, 12 Martie 2011

SOLUŢII ŞI BAREME ORIENTATIVE - CLASA a IX-a

Problema 1. Pe laturile AB, BC, CD, DA ale paralelogramului \overrightarrow{ABCD} se consideră punctele M, N, P, repectiv Q, astfel încât $\overrightarrow{MN} + \overrightarrow{QP} = \overrightarrow{AC}$. Să se arate că $\overrightarrow{PN} + \overrightarrow{QM} = \overrightarrow{DB}$.

Soluţie. Notăm $m = \frac{AM}{AB}$, $n = \frac{BN}{BC}$, $p = \frac{DP}{DC}$, $q = \frac{AQ}{AD}$. Avem $\overrightarrow{MN} = \overrightarrow{AN} - \overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{BN} - \overrightarrow{AM} = (1-m)\overrightarrow{AB} + n\overrightarrow{AD}$,

 $\overrightarrow{QP} = \overrightarrow{pAB} + (1-q)\overrightarrow{AD},$ 1 punct

deci, conform ipotezei, rezultă că $(1-m+p)\overrightarrow{AB} + (1-q+n)\overrightarrow{AD} = \overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD}$.

Problema 2. Pentru fiecare un număr natural nenul n considerăm mulțimea A_n a tuturor numerelor de forma $\pm 1 \pm 2 \pm \cdots \pm n$; de exemplu, $A_2 = \{-3, -1, 1, 3\}$ și $A_3 = \{-6, -4, -2, 0, 2, 4, 6\}$. Să se determine numărul elementelor mulțimii A_n .

deci toate elementele au aceeași paritate.

Demonstrăm că toate numerele dintre $-\frac{n(n+1)}{2}$ şi $\frac{n(n+1)}{2}$ şi de aceeaşi paritate cu acestea aparțin mulțimii A_n – şi numai acestea. Într-adevăr, fie $x \in A_n, \ x < \frac{n(n+1)}{2}$. Dacă o scriere a sa începe cu -1, schimbând semnul în +1 obținem $x+2 \in A_n$.

Dacă scrierea începe cu +1, cautăm primul termen al scrierii cu semnul -; fie acesta -k (acesta există, altfel $x = 1 + 2 + \cdots + n = \frac{n(n+1)}{2}$):

$$x = +1 + 2 + \dots + (k-1) - k \pm \dots \pm n.$$

Schimbând semnele termenilor $k-1$ și k rezultă că $x+2\in A_n$
În concluzie, mulţimea A_n are $\frac{n(n+1)}{2}+1$ elemente.
Problema 3. Fie $f: \mathbb{R} \to \mathbb{R}$ o funcţie cu proprietatea că $f(f(x)) = [x]$, oricare ar fi numărul real x . Să se arate că există numerele reale distincte a şi b astfel încât $ f(a) - f(b) \ge a - b $. Notă. $[x]$ reprezintă partea întreagă a numărului real x . Soluţie.
Arătăm că pentru orice n întreg avem $f(n) \in \mathbb{Z}$. Avem $f(f(f(x))) = f([x]) = [f(x)],$
deci $f(n) = [f(n)]$ pentru n întreg, adică $f(n) \in \mathbb{Z}$.
Presupunând contrariul, pentru orice $a,b\in\mathbb{Z}$ avem $ f(a)-f(b) < a-b $. Atunci $ f(n+1)-f(n) <1$, unde n este întreg, deci $f(n)=f(n+1)$, de unde $f(n)=f(0)$, oricare ar fi n întreg.
Rezultă că $n = f(f(n)) = f(f(0)) = 0$, fals.
Problema 4. Considerăm un număr real nenul a cu proprietatea că $\{a\} + \{\frac{1}{a}\} = 1$. Să se arate că $\{a^n\} + \{\frac{1}{a^n}\} = 1$, oricare ar fi numărul natural nenul n .
Notă. $\{x\}$ reprezintă partea fracționară a numărului real x . Soluție. Deoarece $a + \frac{1}{a} = [a] + [\frac{1}{a}] + 1$, rezultă că $a + \frac{1}{a} \in \mathbb{Z}$.
Pentru fiecare n natural nenul notăm $s_n = a^n + \frac{1}{a^n}$. Avem
$s_1 s_n = s_{n+1} + s_{n-1},$
oricare ar fi $n \ge 2$,
deci, prin inducţie, $s_n \in \mathbb{Z}$, oricare ar fi n natural nenul.
Rezultă că $\{a^n\} + \{\frac{1}{a^n}\} = a^n + \frac{1}{a^n} - [a^n] - [\frac{1}{a^n}] = s_n - [a^n] - [\frac{1}{a^n}] \in \mathbb{Z}.$ Cum $\{x\} \in [0,1)$, rezultă $\{a^n\} + \{\frac{1}{a^n}\} \in \{0,1\}.$
Dacă $\{a^n\}+\{\frac{1}{a^n}\}=0$, atunci a^n și $\frac{1}{a^n}$ sunt numere întregi, de unde $a^n=1$, adică $a=\pm 1$.
I punct