

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

THE GIFT OF

Dean M. E. Cooley

THE VAN NOSTRAND SCIENCE SERIES.

- No. 19.—STRENGTH OF BEAMS UNDER TRANSVERSI LOADS. By Prof. W. Allan, author of "Theor, of Arches," Second edition, revised.
- No. 20.—BRIDGE AND TUNNEL CENTRES. By John B McMaster, C.E. Second edition.
- No. 21.—SAFETY VALVES. Second Edition. By Richard H. Buel, C.E.
- No. 22.—HIGH MASONRY DAMS. By John B. McMaster C.E.
- No. 23.—THE FATIGUE OF METALS UNDER REFEATEI STRAINS. With various Tables of Results an Experiments. From the German of Prof. Ludwin Spangenburgh, with a Preface by S. H. Shreve A.M.
- No. 24.—A PRACTICAL TREATISE ON THE TEETH OI WHEELS. By Prof. S. W. Robinson. Second edition, revised.
- No. 25.—ON THE THEORY AND CALCULATION OF CON TINUOUS BRIDGES. By Mansfield Merriman Ph.D.
- No. 26.—PRACTICAL TREATISE ON THE PROPERTIES OF CONTINUOUS BRIDGES. By Charle Bender, C.E.
- No. 27.—ON BOILER INCRUSTATION AND CORROSION By F. J. Rowan. New Ed. Rev. by F. E. Idell.
- No. 28.—TRANSMISSION OF POWER BY WIRE ROPES Second edition. By Albert W. Stahl, U.S.N.
- No. 29.—STEAM INJECTORS. Translated from the French of M. Leon Pochet.
- No. 30.—TERRESTRIAL MAGNETISM AND THE MAGNETISM OF IRON VESSELS. By Prof. Fair man Rogers.
- No. 81.—THE SANITARY CONDITION OF DWELLING HOUSES IN TOWN AND COUNTRY. By George E. Waring, jun.
- No. 82.—CABLE-MAKING FOR SUSPENSION BRIDGES By W. Hildebrand, C.E.
- No. 33.—MECHANICS OF VENTILATION. By George W Rafter, C.E. New and Revised Edition.
- No. 34.—FOUNDATIONS. By Prof. Jules Gaudard, C.E. Second edition. Translated from the French.
- No. 35.—THE ANEROID BAROMETER: ITS CONSTRUC TION AND USE. Compiled by George V. Plympton. Fourth edition.
- No. 86.—MATTER AND MOTION. By J. Clerk Maxwell M.A. Second American edition.
- No. 87.—GEOGRAPHICAL SURVEYING; ITS USES METHODS, AND RESULTS. By Frank D Yeaux Carpenter, C.E.
- No. 38.—MAXIMUM STRESSES IN FRAMED BRIDGES By Prof. William Cain, A.M., C.E.

THE VAN NOSTRAND SCIENCE SERIES.

- No. 39.—A HANDBOOK OF THE ELECTRO-MAGNETIC TELEGRAPH, By A. E. Loring.
- No. 40.—TRANSMISSION OF POWER BY COMPRESSED AIR. By Robert Zahner, M.E. Second edition.
- No. 41.—STRENGTH OF MATERIALS. By William Kent, C.E. Second Edition.
- No. 42.—VOUSSOIR ARCHES APPLIED TO STONE BRIDGES, TUNNELS, CULVERTS, AND DOMES. By Prof. William Cain.
- No. 43.—WAVE AND VORTEX MOTION. By Dr. Thomas Craig, of Johns Hopkins University.
- No. 44.—TURBINE WHEELS. By Prof. W. P. Trowbridge, Columbia College. Second edition. Revised.
- No. 45.—THERMODYNAMICS. By Prof. H. T. Eddy, University of Cincinnati.
- No. 46.—ICE-MAKING MACHINES. From the French of M. Le Doux. Revised by Prof. Denton.
- No. 47.—LINKAGES; THE DIFFERENT FORMS AND USES OF ARTICULATED LINKS. By J. D. C. de Roos.
- No. 48.—THEORY OF SOLID AND BRACED ARCHES By William Cain, C.E.
- No. 48.—ON THE MOTION OF A SOLID IN A FLUID. By Thomas Craig, Ph.D.
- No. 50.—DWELLING-HOUSES: THEIR SANITARY CON-STRUCTION AND ARRANGEMENTS. By Prof. W. H. Corfield.
- No. 51.—THE TELESCOPE: ITS CONSTRUCTION, ETC. By Thomas Nolan.
- No. 52.—IMAGINARY QUANTITIES. Translated from the French of M. Argand. By Prof. Hardy.
- No. 53.—INDUCTION COILS: HOW MADE AND HOW USED. Fifth edition.
- No. 54.—KINEMATICS OF MACHINERY. By Prof. Kennedy. With an introduction by Prof. R. H. Thurston.
- No. 55.—SEWER GASES: THEIR NATURE AND ORIGIN. By A. de Varona. 2d ed., revised and enlarged.
- No. 56.—THE ACTUAL LATERAL PRESSURE OF EARTH-WORK. By Benjamin Baker, M. Inst. C.E.
- No. 57.—INCANDESCENT ELECTRIC LIGHTING. A
 Practical Description of the Edison System. By
 L. H. Latimer, to which is added the Design and
 Operation of Incandescent Stations. By C. J.
 Field, and the Maximum Efficiency of Incandescent Lamps, by John W. Howell.
- No. 58.—THE VENTILATION OF COAL-MINES. By W. Fairley, M.E., F.S.S., and Geo. J. André.
- No. 59.—RAILROAD ECONOMICS; OR, NOTES WITH COMMENTS. By S. W. Robinson C.E.

HYDRAULIC TABLES 151 FG 5

FOR THE

CALCULATION OF THE DISCHARGE

THROUGH

SEWERS, PIPES AND CONDUITS;

BASED ON KUTTER'S FORMULA.

By P. J. FL YNN, Civil Engineer.

REPRINTED FROM VAN NOSTRAND'S MAGAZINE.

NEW YORK:

D. VAN NOSTRAND COMPANY, PUBLISHERS, 23 MURRAY AND 27 WARREN STREETS. 1883.

Gft De noon y Two

PREFACE.

The usefulness of such tables as are presented in the following pages requires no demonstration in a preface. A glance at the explanatory text and tabular arrangement of the values will be sufficient to convince the practical engineer, who has ever had occasion to apply Kutter's formula, that the present collection is in an eminent degree of the labor saving kind.

EDITOR OF MAGAZINE.

•

Hydraulic Tables Based on Kutter's Formula.

The tables given below are intended to facilitate the calculation of velocities, discharges, slopes and dimensions of sewers and other conduits, and their use will effect a great saving of time; as, for instance, instead of calculating the velocity and discharge by the use of a troublesome formula, the same result, practically, will be arrived at by taking the product of two factors given in the tables.

Kutter's formula is a complicated equation, and in its general form is:

$$c = \left\{ egin{aligned} v = c\sqrt{rs} & ext{in which} \\ 41.6 + rac{1.811}{n} + rac{.00281}{s} \\ \hline 1 + \left((41.6 + rac{.00281}{s}) imes rac{n}{\sqrt{r}}
ight) \end{aligned}
ight\}$$

In this and the following formulæ,

v=mean velocity in feet per second.

c=coefficient of mean velocity.

s=fall of water surface (h) in any distance (l) divided by that distance = $\frac{h}{l} = \text{sine of slope.}$

r=hydraulic mean depth=area of cross section of water divided by wetted

perimeter= $\frac{a}{p}$.

d=diameter of circular channel.

a=area of cross section of water.

p = wetted perimeter.

Q=discharge in cubic feet per second.

- n=the natural coefficient depending on the nature of the bed, that is, the lining of the channel over which the water flows, which throughout this article, and in the preparation of the tables, has been taken at .015.
- Mr. J. C. Trautwine, in his Engineer's Pocket Book, states that, "In consideration of the rough character of sewer brickwork generally," he has taken n = .015 in Kutter's formula when he calculated the velocities in sewers.

Mr. R. Hering, in a paper read before the American Society of Civil Engineers in 1878 on the velocity and discharge of sewers, gave:

"n=.015" for "foul and slightly tuberculated iron: cement and terra cotta pipes with imperfect joints, and in bad order: well dressed stonework and second-class brickwork." The tables do not apply to channels with smooth or plastered surfaces. They are intended to apply only to sewers, conduits and other channels whose surfaces exposed to the flow of water are of second-class brickwork, or have surfaces of other material equally rough, such, for instance, as those given above from Mr. Hering's paper.

The general form of Kutter's formula is:

$$v = c\sqrt{rs} = c\sqrt{r} \times \sqrt{s}$$
 . . (1). from which

$$s = \left(\frac{v}{c\sqrt{r}}\right)^s$$
 (4).

$$Q = ac\sqrt{r} \times \sqrt{s} \quad . \quad . \quad . \quad (5).$$
 from which

$$a=\frac{\mathbf{Q}}{v}$$
 (6).

$$ac\sqrt{r} = \frac{Q}{\sqrt{s}}$$
 (7).

$$\sqrt{s} = \frac{Q}{ac\sqrt{r}}$$
 . . . (8).

$$s = \left(\frac{Q}{ac\sqrt{r}}\right)^{2}$$
 (9).

The values of $c\sqrt{r}$ and $ac\sqrt{r}$ for 173 diameters are given in Table 1, and the values of \sqrt{s} for 1072 slopes are given in Table 2. It will then be seen that a large range of channels numbering 185456 are included in these tables. The velocity is found by the product of two factors $c\sqrt{r}$ and \sqrt{s} , and in a similar way the discharge is found by the product of the two factors $ac\sqrt{r}$ and \sqrt{s} .

In Kutter's formula given above the value of c is found from an equation in-

volving the value of r, n and s, so that any change in the value of s would cause a change in the value of c, but as the influence of s on the value of c is not very marked in such slopes as are usually adopted for sewers and conduits, the value of the coefficient has been calculated for one slope, that of 1 in 1000 or s=.001. This value of the coefficient is practically constant for all values of s with a steeper slope than 1 in 1000, and as sewers are generally designed with steeper slopes than 1 in 1000, the tables are well adapted to facilitate the calculations. For flatter slopes than 1 in 1000 up to even 2 feet per mile, or 1 in 2640, the tables give results showing a maximum error in the case of a sewer 2 feet in diameter of less than 2 per cent., and in the case of a sewer 8 feet in diameter less than \(\frac{1}{2} \) per cent.; therefore, for all practical purposes, the tables are sufficiently accurate.

The hydraulic mean depth of a cylindrical conduit flowing full is equal to one-fourth of the diameter.

The mean velocity in circular sewers

and conduits is the same when running half full as when running full.

APPLICATION AND USE OF THE TABLES.

To find the mean velocity in feet per second and the discharge in cubic feet per second.

Example 1.—A circular brick sewer has a diameter of 3 feet and a fall of 1 in 500. What is its mean velocity in feet per second and also its discharge in cubic feet per second?

By formula (1) $v=c\sqrt{r}\times\sqrt{s}$.

In column 4 of table 1 and opposite 3 feet diameter the value of $c\sqrt{r}$ is found equal to 80.77, and in table 2 opposite 1 in 500 the value of \sqrt{s} is found equal to .044721; substituting these values in equation, we have:

 $v = 80.77 \times .044721$.

=3.61 feet per second the mean velocity.

By formula (5) $Q=av=a \times 3.61$, but by table 2 the area of a sewer 3 feet in diameter=7.068; substitute this value in equation and

 $Q=7.068\times3.61$

=25.52, the discharge in cubic feet per second.

Again, as a check,

By formula (5) $Q=ac\sqrt{r} \times \sqrt{s}$.

In column 4 of table 1, and opposite 3 feet diameter the value of $ac\sqrt{r}$ is given as 570.9, substituting this value and also the value of \sqrt{s} , as found above, in equation we have

 $Q=570.9\times.044721=25.53$ cubic feet per second the discharge, which is the same as already found above.

Example 2.—To find the diameter.—(d). The grade (s) of a sewer is to be 1 in 480, and its mean velocity (v) 4 feet per second. What is the required diameter? By formula (2).

$$c\sqrt{r} = \frac{v}{\sqrt{s}}$$

In column 3 of table 2 we find for a slope of 1 in 480 that \sqrt{s} is equal to .045644. Substitute this in equation, and also the value of v already given, and

$$c\sqrt{r} = \frac{4}{.045644} = 87.63.$$

Now look in column 4 of table 1 for the nearest value of $c\sqrt{r}$ to this which we find to be $\epsilon 7.15$, opposite 3 feet 4 inches in diameter, which is the diameter required.

Example 3.—To find the grade of Sewer.—A sewer 2 feet 6 inches diameter is to have a velocity when running full or half full of not more than 3½ feet a second. What should its grade be?

By formula (3)
$$\sqrt{s} = \frac{v}{c\sqrt{r}}$$

In column 4 of table 1 find opposite the diameter 2 feet 6 inches that $c\sqrt{r}$ is equal to 70.74. Substitute this value and also the value of v already given in equation,

and
$$\sqrt{s} = \frac{3.5}{70.74} = .049477$$
. Now look out

the nearest the value of \sqrt{s} to this in column 3 of table 2, which we find to be .049507, opposite a slope of 1 in 408, which is the required grade.

To find the grade of sewer when the grade is not given in Table 2.

Example 4.—A sewer having a diameter of 8 feet is to have a velocity of

31 feet per second. What is its required grade?

By formula (3)
$$\sqrt{\tilde{s}} = \frac{v}{c\sqrt{r}}$$
. Look out

the value of $c\sqrt{r}$ for 8 feet diameter in Table 1, and it will be found to be 158.7. Substitute this value and also the value of v already given in equation and

$$\sqrt{s} = \frac{3.5}{158.7} = .022054.$$

On looking for this value of \sqrt{s} in Table 2 it is not to be found, therefore square each side of equation

$$\sqrt{s} = .022054$$
 and we get $s = .000486379$

and $\frac{1}{.000486379}$ = 2056, therefore the slope is 1 in 2056.

To find the diameter (d).

Example 5.—A sewer is to discharge 9 cubic feet of water per second and its grade is to be 1 in 200. What is its diameter to be?

By formula (7)
$$ac\sqrt{r} = \frac{Q}{\sqrt{s}}$$
. In the

third column of Table 2 and opposite 1 in 200 the value of \sqrt{s} is found to be .070710. Substitute this value and the discharge already given in equation, and

we have
$$ac\sqrt{r} = \frac{9}{.070710} = 127.28$$
. In

column 5 of Table 1, the value of $ac\sqrt{r}$ nearest to this we find to be 130.58, opposite to which is the diameter of 1 foot 9 inches, which is the diameter required.

To find the grade or slope of sewer. (s)

Example. 6.—A sewer 6 feet in diameter is required to discharge 180 cubic feet of water per second. What should be its slope?

By formula (8)
$$\sqrt{s} = \frac{Q}{ac\sqrt{r}}$$
. In col-

umn 5 of table 1 and opposite 6 feet in diameter the value of $ac\sqrt{r}$ is found equal to 3702.3. Substitute this and also the value of Q in equation, and we have

$$\sqrt{s} = \frac{180}{3702.3} = .048618$$
. Now in

column 4 of Table 2 look out the number nearest to this, which will be found to be .045621 opposite a slope 1 in 423, therefore the required grade is 1 in 423.

To find diameters in a series of sewers with increasing discharge.

Example 7.—A circular sewer has for 500 feet in length to discharge 10 cubic feet per second, then for 600 feet more has to discharge 12 cubic feet per second, and again for 700 feet, farther on 15 cubic feet per second. The total fall available is 5 feet. What is the required diameter and fall of each section? The total length is 1800 feet and $\frac{5}{1800} = .002777 = s$ and $\sqrt{.002777} = .052705 = \sqrt{s}$.

By formula (7)
$$ac\sqrt{r} = \frac{Q}{\sqrt{s}}$$
.

In this equation substitute values of Q and s for each section and find the corresponding diameters, which will be the diameter required.

$ac\sqrt{r} = \frac{1}{.05}$ $ac\sqrt{r} = \frac{1}{.05}$ $ac\sqrt{r} = \frac{1}{.05}$	$ \frac{10}{2705} $ = 189. $ \frac{12}{2705} $ = 227. $ \frac{15}{2705} $ = 284. $ \frac{1}{2705} $	Opposite which in Table 1 is	dian dian dian	m.2'-0'' m.2'-2'' m.2'-4''
Now $s = \frac{h}{l}$.	. h=sl, th	erefore	the	
Fall of first	t section=s			:1.89 ft.
Fall of seco	ond section			
Fall of this	d section=	sl=.00	2777	
	 l fall			
	, therefore,	•••••	•••••	.5.0016
1st section,	diameter	2'0",	fall	1.39 ft.
2d "	"	2-2"	"	1.67 "
3d "	"	2'-4"	"	1.94 "

To find velocity and discharge of trapezoidal channel.

Example 8.— A trapezoidal channel lined with brickwork, 6 feet wide at bottom and with side slopes of 1 to 1, has 2

feet in depth of water and a grade of 1 in 160. What is its velocity and discharge per second?

Area
$$(a) = \frac{6 \times 10}{2} \times 2 = 16$$
 square feet.

Wetted primeter $(p)=2 \times \sqrt{2^2 \times 2^2} + 6 = 11.66$ feet.

.. Hydraulic mean depth

$$(r) = \frac{a}{p} = \frac{16}{11.66} = 1.372.$$

In column 3 of Table 1 look out the nearest value of r to this which we find to be 1.375, and corresponding to this we find $c\sqrt{r}$ equal to 123.5. In Table 2 for a slope of 1 in 160 the value of \sqrt{s} is found to be=.079057.

Now by formula (1) $v=c\sqrt{r}\times\sqrt{s}$ and "" " (5) Q=av substituting the values above found of the factors, then $v=123.5\times.079057=9.76$ feet per second and Q=16+9.76=156.2 cubic feet per second, therefore the mean velocity is equal to 9.76 feet per second and the discharge equal to 156.2 cubic feet per second.

To find the dimensions of a circular sewer to replace a rectangular brick channel.

Example 9.—An open brick channel 5 feet wide at bottom, with vertical sides, has a depth of water in floods of 3 feet and a slope of 1 in 520. It is intended to substitute for it a circular sewer whose mean velocity flowing full shall be about 5 ft. per second. What should be the diameter and grade of the new circular sewer flowing full?

In Table 2 the \sqrt{s} for a grade of 1 in 520=.043853.

Area of rectangular channel (a) =5+3 =15 sq. ft. Wetted perimeter (p)=3+5+3=11 feet. ... Hydraulic mean depth (r)= $\frac{a}{p}=\frac{15}{11}$ 1.364. In Table 1 find corresponding to this hydraulic mean depth the nearest $c\sqrt{r}$, which is 123.5.

By formula (5) $Q=a+c\sqrt{r}+\sqrt{s}$ substitute the values found above, of the factors in right hand side of equation, and $Q=15\times123.5+.043853=81.24$ cubic feet

per second, the discharge from the rectangular channel.

We have now to find the diameter and grade of a circular sewer to convey this quantity of water with a velocity not greater than 5 feet per second.

By formula (6) $a = \frac{Q}{v}$ substitute values $a = \frac{81.24}{s} = 16.248$ square feet area of

circular sewer. In column 2 of Table 1 we find the area nearest in value to this =16.499, and the corresponding diameter equal to 4 feet 7 inches, and at the same time find the value of the corresponding ac_4/r which is 1796.5.

By formula (8) $\sqrt{s} = \frac{Q}{ac\sqrt{r}}$ substitute values of Q and $ac\sqrt{r}$ found above and $\sqrt{s} = \frac{81.24}{1796.5} = .045221$.

In Table 2 we find the grade corresponding to this equal to 1 in 489, therefore the diameter of circular sewer is 4 feet 7 inches, and the grade 1 in 489.

CIRCULAR SEWERS AND CONDUITS FLOWING FULL.

Table 1.—Giving Values of a and r and also the Factors $c\sqrt{r}$ and also $ac\sqrt{r}$.

These factors are to be used only where the value of n, that is the coefficient of roughness of lining of channel=.015, as in second class or rough-faced brickwork, well-dressed stone work, foul and slightly tuberculated iron, cement and terra cotta pipes with imperfect joints and in bad order.

$$v=c$$
 $\sqrt{r} \times \sqrt{s}$. $Q=av=ac$ $\sqrt{r} \times \sqrt{s}$.

am	in	a=area in square ft.	r=hy- draulic mean	For velocity. $c\sqrt{r}$	For discharge $ac\sqrt{r}$
ft. 	in.		depth.		
0	5	0.136	0.104	17.36	2.3615
0	6	0.196	0.125	20.21	3.9604
0	7	0.267	0.146	22.95	6.1268
0	8	0.349	0.167	25.56	8.9194

am	=di- leter in in,	a=area in square ft.	r=hy- draulic mean depth.	For velocity. $c\sqrt{r}$	For discharge $ac\sqrt{r}$
0	9	0.442	0.187	28.10	12.421
0	10	0.545	0.208	30.52	16.633
0	11	0.660	0.229	33.03	21.798
1	0	0.785	0.250	35.40	27.803
1	1	0.922	0.271	37.60	34.664
1	2	1.069	0.292	39.85	42.602
1	3	1.227	0.312	42.05	51.600
1	4	1.396	0.333	44.19	61.685
1	5	1.576	0.354	46.36	73.066
1	6	1.767	0.375	48.38	85.496
1	7	1.969	0.396	50.40	99.242
1	8	2.182	0.417	52.45	114.46
1	9	2.405	0.437	54.29	130.58

_		,		,	
an	=di- neter in in.	a=area in square ft.	r=hy- draulic mean depth.	For velocity. $c\sqrt{r}$	For discharge $ac\sqrt{r}$
1	10	2.640	0.458	56.29	148.61
1	11	2.885	0.479	58.20	167.90
2	0	3.142	0.500	60.08	188.77
2	1	3.409	0.521	61.95	211.20
2	2	3.687	0.542	63.72	234.94
2	3	3.976	0.562	65.51	260.47
2	4	4.276	0.583	67.32	287.87
2	5	4.587	0.604	69.02	316.59
2	6	4.909	0.625	70.74	347.28
2	7	5.241	0.646	72.59	380.46
.2	8	5.585	0.667	74.27	414.81
2	9	5.939	0.687	75.98	451.23
2	10	6.305	0.708	77.56	488.99

am	eter in in.	a=area in square ft.	r=hy- draulic mean depth.	For velocity. $c\sqrt{r}$	For discharge $ac\sqrt{r}$
2	11	6.681	0.729	79.16	528.85
3	0	7.068	0.750	80.77	570.90
3	1	7.466	0.771	82.39	615.14
3	2	7.875	0.792	84.03	661.77
3	3	8.295	0.812	85.54	709.56
3	4	8.726	0.833	87.15	760.44
3	5	9.169	0.854	88.61	812.38
3	6	9.621	0.875	90.11	866.91
3	7	10.084	0.896	91.60	923.70
3	8	10.559	0.917	93.11	983.11
3	9	11.044	0.937	94.62	1045.0
3	10	11.541	0.958	96.15	1109.6
3	11	12.048	0.979	97.55	1175.2

am	=di- neter in in.	a=area in square ft.	r=hy- draulic mean depth.	For velocity. $c\sqrt{r}$	For discharge ac \sqrt{r}
4	0	12.566	1.000	99.10	1245.3
4	1	13.096	1.021	100.5	1315.8
4	2	13.635	1.042	102.0	1390.8
4	3	14.186	1.062	103.4	1466.7
4	4	14.748	1.083	104.8	1545.7
4	5	15.321	1.104	106.2	1627.0
4	6	15.904	1.125	107.6	1711.4
4	7	16.499	1.146	108.9	1796.5
4	8	17.104	1.167	110.3	1886.8
4	9	17.721	1.187	111.6	1977.7
4	10	18.348	1.208	113.0	2074.1
4	11	18.986	1.229	114.4	2172.9
5	0	19.635	1.250	115.7	2272.7

_					
an	=di- neter in in.	a=area in square ft.	r=hy- draulic mean depth.	For velocity. $c\sqrt{r}$	For discharge $ac\sqrt{r}$
5	1	20.295	1.271	117.1	2376.7
5	2	20.966	1.292	118.4	2482.0
5	3	21.648	1.312	119.7	2590.5
5	4	22.340	1.333	121.0	2702.1
5	5	23.044	1.354	122.2	2816.7
5	6	23.758	1.375	123.5	2934.8
5	7	24.484	1.396	124.8	3056.4
5	8	25.220	1.417	126.0	3177.3
5	9	25.967	1.437	127.3	3305.6
5	10	26.725	1.458	128.6	3436.3
5	11	27.494	1.479	129.7	3566.6
6	0	28.274	1.500	131.0	3702.3
6	3	30.680	1.562	134.6	4130.3

am	=di- leter in in.	a=area in square ft.	r=hy- draulic mean depth.	For velocity. $c\sqrt{r}$	For discharge $ac\sqrt{r}$
6	6	33.183	1.625	138.3	4588.3
6	9	35.785	1.687	141.8	5074.7
7	0	38.485	1.750	145.3	5591.6
7	3	41.283	1.812	148.7	6136.8
7	6	44.179	1.875	152.0	6717.0
7	9	47.173	1.937	155.5	7333.5
8	0	50.266	2.000	158.7	7978.3
8	3	53.456	2.062	162.0	8658.8
8	6	56.745	2.125	165.3	9377.9
8	9	60.132	2.187	168.4	10128
9	0	63.617	2.250	171.6	10917
9	3	67.201	2.312	174.7	11740
9	6	70.882	2.375	177.7	12594

am	di- eter in in.	a=area in square ft.	r=hy- draulic mean depth.	For velocity. $c\sqrt{r}$	For discharge $ac\sqrt{r}$
9	9	74.662	2.437	180.7	13489
10	0	78.540	2.500	183.7	14426
10	3	82.516	2.562	186.7	15406
10	6	86.590	2.625	189.5	16412
10	9	90.763	2.687	192.4	17462
11	0	95.033	2.750	195.2	18555
.11	3	99.402	2.812	198.1	19694
11	6	103.87	2.875	201.0	20879
11	9	108.43	2.937	203.7	22093
12	0	113.10	3.000	206.5	23352
12	3	117.86	3.062	209.2	24658
12	6	122.72	3.125	212.0	26012
12	9	127.68	3.187	214.6	27399
13	0	132.73	3.250	217.4	28850

d= ame in ft.	eter	a=area in square ft.	r=hy- draulic mean depth.	For velocity. $c\sqrt{r}$	For discharge $ac\sqrt{r}$
13	3	137.88	3.312	220.0	30330
13	6	143.14	3.375	222.6	31860
13	9	148.49	3.437	225.2	33441.
14	0	153.94	3.500	227.8	35073
14	3	159.48	3.562	230.0	36736
14	6	165.13	3.625	232.9	38454
14	9	170.87	3.687	235.4	40221
15	0	176.72	3.750	237.9	42040
15	3	182.65	3.812	240.5	43931
15	6	188.69	3.875	242.8	45820
15	9	194.83	3.937	245.3	47792
16	0	201.06	4.000	247.8	49823
16	3	207.40	4.062	250.3	51904
16	6	213.83	4.125	252.7	54056

d=d amet in ft. i	ter	a=area in square ft.	r=hy- draulic mean depth.	For velocity. $c\sqrt{r}$	For discharge $ac\sqrt{r}$
16	9	220.35	4.187	254.9	56171
17	0	226.98	4.250	257.2	58387
17	3	233.71	4.312	259.7	60700
17	6	240.53	4.375	261.9	62999
17	9	247.45	4.437	264.4	65428
18	0	254.47	4.500	266.6	67839
18	3	261.59	4.562	268.9	70346
18	6	268.80	4.625	271.3	72916
18	9	276.12	4.687	273.5	75507
19	0	283.53	4.750	275.8	78201
19	3	291.04	4.812	278.0	80916
19	6	298.65	4.875	280.2	83686
19	9	306.36	4.937	282.4	86526
20	0	314 16	5.000	284.6	89423

TABLE 2. GIVING VALUES OF s AND \sqrt{s} . s—sine of slope—fall of water surface (\hbar) in any distance (\hbar), divided by that distance $=\frac{\hbar}{l}$

Slope 1 in.	s=sine of slope.	√8.
4	.250000000	.500000
5	.200000000	.447214
6	.16666660	.408248
7	142857143	377978
8	.125000000	.353553
9	111111111	333333
10	100000000	316228
11	090909090	.301511
12	083333333	.288675
13	076923077	277350
14	.071428571	267261
15	.06666667	.258199

Slope 1 in.	s=sine of slope.	√s.
16	.062500000	.250000
17	.058823529	.242536
18	.05555555	.235702
19	.052631579	.229416
20	.050000000	.223607
21	.047619048	.218218
22	.045454545	.213200
23	.043478261	.208514
24	.041666667	.204124
25	.040000000	.200000
26	.038461538	.196116
27	.037037037	.192450
28	.035714286	.188982
29	.034452759	.185695
30	.033333333	.182574
31	.032258065	.179605
32	.031250000	.176777
33	.030303030	.174077
34	.029411765	.171499

Slope 1 in.	s=sine of slope.	√8.
35	.028571429	.169031
.36	.02777778	.166667
37	.027027027	.164399
.38	.026315789	.162221
.39	.025641026	.160125
40	.025000000	.158114
41	.024390244	.156174
42	.023809524	.154303
43	.023255814	.152499
44	.022727273	.150756
45	.02222222	.149071
46	.021739130	.147444
47	.021276600	.145865
4 8	.020833333	.144337
49	.020408163	.142857
.50	.020000000	.141421
51	.019607843	.140028
.52	.019230769	.138676
.53	.018867925	.137361

Slope 1 in.	s=sine of slope.	√ē.
54	.018518519	.136085
55	.018181818	.134839
56	.017850143	.133630
57	.017543860	.132453
58	.017241379	.131305
5 9	.016949153	.130189
60	.016666667	.129100
61	.016393443	.128037
. 62	.016129032	.127000
63	.015873016	.125988
64	.015625000	.125000
65	.015384615	.124035
66	.015151515	.123091
67	.014925353	.122169
68	.014705882	.122268
69	.014492754	.120386
70	014285714	.119524
71	.014084507	.118678
72	.013888889	.117851

Slope 1 in.	s=sine of slope.	√8.
73	.013698630	.117041
74	.013513514	.116248
75	.013333333	.115470
76	.013157895	.114708
77	.012987013	.113961
78	.012820513	.113228
79	.012658228	.112509
80	.012500000	.111803
81	.012345679	.111111
82	.012195122	.110431
83	.012048193	.109764
84	.011904762	.109109
85	.011764706	.108465
• 86	.011627907	107833
87	.011494253	107211
88	,011363636	106600
. 89	.011235955	106000
. 90 .	.011111111	105409
91	.010989011	104828

Slope 1 in.	s=sine of slope.	√8.
92	.010869565	.104257
93	.010752688	.103695
94	.010638298	.103142
95	.010526316	.102598
96	.010416667	.102062
97	.010309278	.101535
98	.010204082	.101015
99	.010101010	.100504
100	.010000000	.100000
101	.009900990	.099504
102	.009803922	.099015
103	.009708738	.098533
104	.009615385	.098058
105	.009523810	.097590
106	.009433962	.097129
107	.009345794	.096674
108	.009259259	.096225
109	.009174312	.095783
3.10	.009090909	.095346

Slope 1 in.	s=sine of slope.	√8.
111	.009009009	.094916
112	.008928571	.094491
113	.008849558	.094072
114	.008771930	.093659
115	.008695652	.093250
116	.008620690	.092848
117	.008547009	.092450
118	.008474576	.092057
119	.008403361	.091669
120	.008333333	.091287
121	.008264463	.090909
122	.008196721	.090536
123	.008130081	.090167
124	.008064516	.089803
125	.008000000	.089442
126	.007836508	.089087
127	.007874016	.088736
128	.007812500	.088388
129	.007751938	.088045

Slope 1 in.	s=sine of slope.	√€.
130	.007692308	.087706
131	.007633588	.087370
13 2	.007575758	.087039
13 3	.007518797	.086711
134	.007462687	.086387
13 5	.007407407	.086066
13 6	.007352941	.085749
137	.007299270	.085436
1 38	.007246377	.085126
1 39	.007194245	.084419
140	.007142857	.084516
141	.007092199	.084215
142	.007042254	.083918
143	.006993007	.083624
144	.0 069 44444	.083333
145	.006896552	.083046
14 6	.006849315	.082760
, 147	.006802721	.082479
148	.00675675 7	.082199

ŗ			
	39		
	Slope 1 in.	s=sine of slope.	Ë.
	149	.006711409	.081923
	150	.006666667	.081650
	151	.006622517	.081379
	152	.006578947	.081111
	153	.006535948	.080845
	154	.006493506	.080582
	155	.006451613	.080322
-	156	.006410256	.080065
	157	.006369427	.079809
	158	.006329114	.079556
	159	.006289308	.079305
	160	.006250000	.079057
	161	.006211180	.078811
	162	.006172840	.078568
	163	.006134969	.078326
	164	.006097561	.078087
	165	.006060606	.077850
	166	.006024096	.077615
	167	.005988024	.077382

Slope 1 in.	s=sine of slope.	√8.
168	.005952381	.077152
169	.005917160	.076923
170	.005882353	.076697
171	.005847953	.076472
172	.005813953	.076249
173	.005780347	.076029
174	.005747126	.075810
175	.005714286	.075593
176	.005681818	.075378
177	.005649718	.075164
178	.005617978	.074953
179	.005586592	.074744
180	.00555556	.074536
181	.005524862	.074329
182	.005494505	.074125
183	.005464481	.073922
184	.005434783	.073721
185	.005405405	.073521
186	.005376344	.073324

Slope 1 in.	s=sine of slope.	√8 <u>.</u>
187	.005347594	.073127
188	.005319149	.072932
189	.005291005	.072739
190	.005263158	.072548
191	.005235602	.072357
192	.005208333	.072169
193	.005181347	.071982
194	.005154639	.071796
195	.005128205	.071612
196	.005102041	.071429
197	.005076142	.071247
198	.005050505	.071067
199	.005025126	.070888
200	.005000000	.070710
201	.004975124	.070534
202	.004950495	.070359
203	.004926108	.070186
204	.004901961	.070014
205	.004878049	.069843

Slope 1 in.	s=sine of slope.	· √s.
206	.004854369	.069673
207	.004830918	.069505
208	.004807692	.069338
209	.004784689	.069172
210	.004761905	.069007
211	.004739336	.068843
212	.004716981	.068680
213	.004694836	.068519
214	.004672897	.068358
215	.004651163	.068199
216	.004629630	.068041
217	.004608295	.067885
218	.004587156	.067729
219	.004566210	.067574
220	.004545455	.067419
221	.004524887	.067267
222	.004504505	.067116
223	.004484305	.0669 65
224	.004464286	.066815

Slope 1 in.	s=sine of slope.	√ 8.
225	.004444444	.066667
226	.004424779	.066519
227	.004405286	.066372
228	.004385965	.066227
229	.004366812	.066082
230	.004347826	.065938
231	.004329004	.065795
232	.004310345	.065653
233	.004291845	.065512
234	.004273504	.065372
235	.004255319	.065233
236	.004237288	.065094
237	.004219409	.064957
238	.004201681	.064820
239	.004184100	.064685
240	.004166667	.064549
241	.004149378	.064416
242	.004132231	.064283
243	.004115226	.064150

Slope 1 in.	s=sine of slope.	√ <u>s.</u>
244	.004098361	.064018
245	.004081633	.063888
246	.004065041	.063758
247	.004048583	.063629
248	.004032258	.063500
249	.004016064	.063372
250	.004000000	.063246
251	.003984064	.063119
252	.003968254	.062994
253	.003952569	.062870
254	.003937008	.062746
255	.003921569	.062622
256	.003906250	.062500
257	.003891051	.062378
258	.003875969	.062257
259	.003861004	.062137
260	.003846154	.062018
261	.003831418	.061899
262	.003816794	.061780

Slope 1 in.	s=sine of slope.	√8.
263	.003802281	.061662
264	.003787879	.061546
265	.003773585	.061430
266	.003759398	.061314
267	.003745319	.061199
268	.003731343	.061085
269	.003717472	.060971
270	.003703704	.060858
271	.003690037	.060746
272	.003676471	.060634
273	.003663004	.060523
274	.003649635	.060412
275	.003636364	.060302
276	.003623188	.060193
277	.003610108	.060084
278	.003597122	.059976
279	.003584229	.059868
280	.003571429	.059761
281	.003558719	.059655

Slope 1 in.	s=sine of slope.	√8.
282	.003546099	.059549
283	.003533569	.059444
284	.003521127	.059339
285	.003508772	.059235
286	.003496503	.059131
287	.003484321	.059028
288	.003472222	.058926
289	.003460208	.058824
290	.003448276	.058722
291	.003436426	.058621
292	.003424658	.058520
293	.003412969	.058420
294	.003401361	.058321
295	.003389831	.058222
296	.003378378	.058124
297	.003367003	.058026
298	.003355705	.057929
299	.003344482	.057831
300	.003333333	.057735

Slope 1 in.	s=sine of slope.	√8.
301	.003322259	.057639
302	.003311258	.057544
303	.003300330	.057449
304	.003289474	.057354
305	.003278689	.057260
306	.003267974	.057166
307	.003257329	.057073
308	.003246753	.056980
309	.003236246	.056888
310	.003225806	.056796
311	.003215434	.056705
312	003205128	.056614
313	.003194888	.056523
314	.003184713	.056433
315	.003174603	.056344
316	.003164557	.056254
317	.003154574	.056165
318	.003144654	.056077
319	.003134796	.055989

Slope 1 in.	s=sine of slope.	√8.
320	.003125000	.055902
321	.003115265	.055815
322	.003105590	.055728
323	.003095975	.055641
324	.003086420	.055556
325	.003076923	.055470
326	.003067485	.055385
327	.003058104	.055300
328	.003048780	.055216
329	.003039514	.055132
33 0	.003030303	.055048
331	.003021148	.054965
332	.003012048	.054882
333	.003003003	.054799
334	.002994012	.054717
335	.002985075	.054636
336	.002976190	.054555
337	.002967359	.054474
338	.002958580	.054393

Slope 1 in.	s=sine of slope.	\sqrt{a}
339	.002949853	.054312
34 0	.002941176	.054232
341	.002932551	.054153
342	.002923977	.054074
34 3	.002915452	.053995
344	.002906977	.053916
34 5	.002898551	.053838
34 6	.002890171	.053760
347	.002881844	.053683
34 8	.002873563	.053606
349	.002865330	.053529
350	.002857143	.053452
351	.002849003	.053376
352	.002840909	.053300
353	.002832861	.053224
354	.002824859	.053149
355	.002816901	.053074
356	.002808989	.052999
357	.002801120	.052925

Slope 1 in.	=size of slope.	√8.
358	.002793296	.052851
359	.002785515	.052778
360	.002777778	.052705
3 61	.002770083	.052632
362	.002762431	.052559
363	.002754821	.052486
364	.002747253	.052414
365	.002739726	.052342
366	.002732240	.052270
367	.002724796	.052199
368	.002717391	.052129
3 69	.002710027	.052060
370	.002702703	.051988
371	.002695418	.051917
372	.002688172	.051847
373	.002680965	.051778
374	.002673797	.051709
375	.002666667	.051640
376	.002659574	.051571

Slope 1 in.	s=sine of slope.	√ 8.
377	.002652520	.051502
378	.002645503	.051434
379	.002638522	.051366
3 80	.002631579	.051299
381	.002624672	.051231
382	.002617801	.051174
383	.002610966	.051097
384	.002604167	.051031
385	.002597403	.050965
386	.002590674	.050899
387	.002583979	.050833
3 88	.002577320	.050767
389	.002570694	.050702
390	.002564103	.050637
391	.002557545	.050572
392	.002551020	.050507
393	.002544529	.050443
394	.002538071	.050379
395	.002531646	.050315

Slope 1 in.	s=sine of slope.	√8.
396	.002525253	.050252
397	.002518892	.050188
398	.002512563	.050125
399	.002506266	.050062
4 00	.002500000	.050000
401	.002493766	.049938
402	.002487562	.049876
403	.002481390	.049814
404	.002475248	.049752
405	.002469136	.049690
406	.002463054	.049629
407	.002457002	.049568
4 08	.002450980	.049507
409	.002444988	.049447
410	.002439024	.049387
411	.002433090	.049326
412	.002427184	.049266
413	.002421308	.049207
414	.002415459	.049147

Slope 1 in.	s=sine of slope.	√8.
415	.002409639	.049088
416	.002403846	.049029
417	.002398082	.048970
418	.002392344	.048911
419	.002386635	.048853
420	.002380952	.048795
421	.002375297	.048737
422	.002369668	.048679
423	.002364066	.048621
424	.002358491	.048564
425	.002352941	.048507
426	.002347418	.048450
427	.002341920	.048393
428	.002336449	.048337
429	.002331002	.048280
430	.002325581	.048224
431	.002320186	.048168
432	.002314815	.048113
433	.002309469	.048057

Slope 1 in.	=sine of slope.	√ <u>s.</u>
434	.002304147	.048001
435	.002298851	.047946
436	.002293578	.047891
437	.002288330	.047836
438	.002283105	.047782
439	.002277904	.047728
44 0	.002272727	.047673
441	.002267574	.047619
442	.002262443	.047565
443	.002257336	.047511
444	.002252252	.047458
44 5	.002247191	.047404
44 6	.002242152	.047351
447	.002237136	.047298
44 8	.002232143	.047245
449	.002227194	.047193
450	.002222222	.047140
4 51	.002217295	.047088
452	.002212389	.047036

Slope 1 in.	s=sine of slope.	√s.
453	.002207506	.046984
454	.002202643	.046932
455	.002197802	.046880
456	.002192982	.046829
457	.002188184	.046778
45 8	.002183406	046726
4 59	.002178649	.046676
460	.002173913	.046625
461	.002169197	.046575
462	.002164502	.046524
463	.002159827	.046474
464	.002155172	.046424
465	.002150538	.046374
4 66	.002145923	.046324
467	.002141328	.046274
468	.002136752	.046225
469	.002132196	.046176
470	.002127660	.046126
471	.002123142	.046077

Slope 1 in.	s=sine of slope.	√ <u>s.</u>
472	.002118644	.046029
473	.002114165	.045980
474	.002109705	.045932
475	.002105263	.045883
476	.002100840	. 045835
477	.002096436	.045787
478	.002092050	.045739
479	.002087683	.045691
480	.002083333	.045644
481	.002079002	.045596
482	.002074689	.045549
483	.002070393	.045502
484	.002066116	.045454
485	.002061856	.045407
486	.002057613	.045361
487	.002053388	.045314
488	.002049180	.045268
489	.002044990	.045222
490	.002040816	.045175

Slope 1 in.	s=sine of slope.	√ <u>8.</u>
491	.002036660	.045129
492	.002032520	.045083
493	.002028398	.045037
494	.002024291	.044992
495	.002020202	.044947
496	.002016128	.044901
497	.002012072	.044856
498	.002008032	.044811
499	.002004008	.044766
500	.002000000	.044721
501	.001996008	.044677
502	.001992032	.044632
503	.001988072	.044588
504	.001984127	.044544
505	.001980198	.044499
506	.001976285	.044455
507	.001972387	.044412
508	.001968504	.044368
509	.001964637	.044324

Slope 1 in.	s=sine of slope.	√8.
510	.001960784	.044281
511	.001956947	.044237
512	.001953125	.044194
513	.001949318	.044151
514	.001945525	.044108
515	.001941748	.044065
516	.001937984	.044022
517	.001934236	.043979
518	.001930502	.043937
519	.001926782	.043895
52 0	.001923077	.043853
521	.001919386	, 043811
522	.001915709	.043769
523	.001912046	.043727
524	.001908397	.043685
525	.001904762	.043644
526	.001901141	.043602
527	.001897533	.043561
528	.001893939	.043519

Slope 1 in.	s=sine of slope.	√8.
529	.001890359	.043478
530	.001886792	.043437
531	.001883239	.043396
532	.001879699	.043355
533	.001876173	.043315
534	.001872659	.043274
535	.001869159	.043234
53 6	.001865672	.043193
537	.001862197	.043153
538	.001858736	.043113
53 9	.001855288	.043073
54 0	.001851852	.043033
541	.001848429	.042993
542	.001845018	.042953
543	.001841621	.042914
544	.001838235	.042874
545	.001834862	.042835
54 6	.001831502	.042796
547	.001828154	.042757

Slope 1 in.	s=sine of slope.	√8.
548	.001824817	.042718
54 9	.001821494	.042679
55 0	.001818182	.042640
551	.001814882	.042601
552	.001811594	.042563
553	.001808318	.042524
554	.001805054	.042486
555	.001801802	.042448
556	.001798561	.042410
557	.001795332	.042371
558	.001792115	.042333
559	.001788909	.042295
560	.001785714	.042258
561	.001782531	.042220
562	.001779359	.042183
563	.001776199	.042145
564	.001773050	.042108
565	.001769912	.042070
566	.001766784	.042033

Slope 1 in.	s=sine of slope.	√8.
567	.001763668	.041996
568	.001760563	.041959
569	.001757469	.041922
57 0	.001754386	.041885
571	.001751313	.041848
572	.001748252	.041812
573	.001745201	.041776
574	.001742160	.041739
575	.001739130	.041703
576	.001736111	.041667
577	.001733102	.041630
578	.001730104	.041594
579	.001727116	.041559
580	.001724138	.041523
581	.001721170	.041487
582	.001718213	.041451
583	.001715266	.041416
584 .	.001712329	.041380
585	.001709420	.041345

Slope 1 in.	s=sine of slope.	√8.
586	.001706485	041309
587	.001703578	.041274
588	.001700680	.041239
589	.001697793	.041204
590	.001694915	.041169
591	.001692047	.041135
592	.001689189	.041100
593	.001686341	.041065
594	.001683502	.041031
595	.001680672	.040996
596	.001677852	.040961
597	.001675042	.040927
598	.001672241	.040893
599	.001669449	.040859
600	.001666667	.040825
601	.001663894	.040791
602	.001661130	.040757
603	.001658375	.040723
604	.001655629	.040689

Slope 1 in.	s=sine of slope.	$\sqrt{s.}$
605	.001652893	.040656
606	.001650165	.040622
607	.001647446	.040589
608	.001644737	.040555
609	.001642036	.040522
610	.001639344	.040489
611	.001636661	.040456
612	.001633987	.040422
613	.001631321	.040389
614	.001628664	.040357
615	.001626016	.040324
616	.001623377	.040291
617	.001620746	.040258
618	.001618123	.040226
619	.001615509	.040193
620	.001612903	.040161
621	.001610306	.040128
622	.001607717	.040096
623	.001605136	.040664

Slope 1 in.	s=sine of slope.	√8.
624	.001602564	.040032
625	.001600000	.040000
626	.001597444	.039968
627	.001594896	.039936
628	.001592357	.039904
629	.001589825	.039873
630	.001587302	.039841
631	.001584786	.039809
632	.001582278	.039778
633	.001579779	.039746
634	.001577287	.039715
635	.001574803	.039684
63 6	.001572327	.039653
637	.001569859	.039621
638	.001567398	.039590
639	.001564945	.039559
64 0	.001562500	.039528
641	.001560062	.039498
642	.001557632	.039467

Slope 1 in.	s=sine of slope.	√s.
643	.001555210	.039436
644	.001552795	.039405
645	.001550388	.039375
646	.001547988	.039344
647	.001545595	.039314
648	.001543210	.039284
649	.001540832	.039253
650	.001538462	.039223
651	.001536098	.039193
652	.001533742	.039163
653	.001531394	.039133
654	.001529052	.039103
655	.001526718	.039073
656	.001524390	.039043
657	.001522070	.039013
65 8	.001519757	.038984
659	.001517451	.038954
660	.001515152	.038925
661	.001512859	.038895

Slope 1 in.	s=sine of slope.	√8 .
662	.001510574	.038866
663	.001508296	.038837
$\boldsymbol{664}$.001506024	.038808
665	.001503759	.038778
666	.001501502	.038749
667	.001499250	.038720
668	.001497006	.038691
669	.001494768	.038662
670	.001492537	.038633
671	.001490313	.038604
672	.001488095	.038576
673	.001485884	.038547
674	.001483680	.038518
675	.001481481	.038490
676	.001479290	.038461
677	.001477105	.038433
678	.001474926	.038405
679	.001472754	.038376
680	.001470588	.038348

Slope 1 in.	s=sine of slope.	√8.
681	.001468429	.038320
682	.001466276	.038292
683	.001464129	.038264
684	.001461988	.038236
685	.001459854	.038208
686	.001457726	.038180
687	.001455604	.038152
688	.001453488	.038125
689	.001451379	.038097
690	.001449275	.038069
691	.001447178	.038042
692	.001445087	.038014
693	.001443001	.037987
694	.001440922	.037959
695	.001438849	.037932
696	.001436782	.037905
697	.001434720	.037878
698	.001432665	.037851
699	.001430615	.037824

Slope 1 in.	s=sine of slope.	√8.
700	.001428571	.037796
701	.001426534	.037769
702	.001424501	.037743
703	.001422475	.037716
704	.001420455	.037689
705	.001418440	.037662
706	.001416431	.037636
707	.001414427	.037609
708	.001412429	.037582
709	.001410437	.037556
710	.001408451	.037529
711	.001406470	.037503
712	.001404494	.037477
713	.001402525	.037450
714	.001400560	.037424
715	.001398601	.037398
716	.001396648	.037372
717	.001394700	.037346
718	.001392758	.037320

Slope 1 in.	s=sine of slope.	√8,
719	.001390821	.037294
720	.001388889	.037268
721	.001386963	.037242
722	.001385042	.037216
723	.001383126	.037190
724	.001381215	.037164
725	.001379310	.037139
726	.001377410	.037113
727	.001375516	.037088
728	.001373626	.037063
729	.001371742	.037037
730	.001369863	.037012
731	.001367989	.036986
732	.001366120	.036961
733	.001364256	.036936
734	.001362398	.036911
735	.001360544	.036885
736	.001358696	.036860
737	.001356852	.036835

Slope 1 in.	s=sine of slope.	√ 8.
738	.001355014	.036810
739	.001353180	.036786
740	.001351351	.036761
741	.001349528	.036736
742	.001347709	.036711
743	.001345895	.036686
744	.001344086	.036662
745	.001342282	.036637
746	.001340483	.036613
747	.001338688	.036588
748	.001336898	.036563
749	.001335113	.036539
750	.001333333	.036515
751	.001331558	.036490
752	.001329787	.036466
753	.001328021	.036442
754	.001326260	.036418
755	.001324503	.036394
756	.001322751	.036370

Slope 1 in.	s=sine of slope.	√ s.
757	.001321004	.036346
758	.001319261	.036322
759	.001317523	.036298
760	.001315789	.036274
761	.001314060	.036250
762	.001312336	.036226
763	.001310616	.036202
764	.001308901	.036179
765	.001307190	.036155
766	.001305483	.036131
767	.001303781	.036108
768	.001302083	.036084
769	.001300390	036061
770	.001298701	.036038
771	.001297017	.036014
772	.001295337	. 035991
773	.001293661	.035967
774	.001291990	.035944
775	.001290323	.035921

Slope 1 in.	s=sine of slope.	√8 .
776	.001288660	.035898
777	.001287001	.035875
778	.001285347	.035852
779	.001283697	.035829
780	.001282051	.035806
781	.001280410	.035783
782	.001278772	.035760
783	.001277139	.035737
784	.001275510	.035714
785	.001273885	.035691
786	.001272265	.035669
787	.001270648	.035646
788	.001269036	.035623
789	.001267427	.035601
790	.001265823	.035578
791	.001264223	.035556
792	.001262626	.035533
793	.001261034	.035511
79 4	.001259446	.035489

Slope 1 in.	s=sine of slope.	√8.
795	. 001257862	.035466
796	.001256281	.035444
797	.001254705	.035422
788	.001253133	035399
799	.001251564	.035377
800	.001250000	.035355
801	.001248439	.035333
802	.001246883	.035311
803	.001245330	.035289
804	.001243781	.035267
905	.001242236	.035245
806	.001240695	.035223
807	.001239157	.035201
808	.001237624	.035179
809	.001236094	.035158
810	.001234568	.035136
811	.001233046	.035115
812	.001231527	.035093
813	.001230012	.035071

Slope 1 in.	s=sine of alope.	√€.
814	.001228501	.035050
815	.001226994	.035028
816	.001225490	.035007
817	.001223990	.034985
818	.001222494	.034964
819	.001221001	.034943
820	.001219512	.034922
821	.001218027	.034900
822	.001216545	.034879
823	.001215067	.034858
824	.001213592	.034837
825	.001212121	.034816
826	.001210654	.034794
827	.001209190	.034773
82 8	.001207729	.034752
829	.001206273	.034731
830	.001204819	.034710
831	.001203369	.034689
832	.001201923	.034669

Slope 1 in.	s=sine of slope.	√8.
833	.001200480	.034648
834	.001199041	.034627
835	.001197605	.034606
836	.001196172	.034586
837	.001194743	.034565
838	.001193317	.034544
839	.001191895	.034524
840	.001190476	.034503
841	.001189061	.034483
842	.001187648	.034462
843	.001186240	.034442
844	.001184834	.034421
845	.001183432	.034401
846	.001182033	.034381
847	.001180638	.034360
848	.001179245	.034340
849	.001177856	.034320
850	.001176471	.034300
851	.001175088	.034279

Slope 1 in.	s=sine of slope.	√s.
852	.001173709	.034259
853	.001172333	.034239
854	.001170960	.034219
855	.001169591	.034199
856	.001168224	.034179
857	.001166861	.034159
858	.001165501	.034139
859	.001164144	.034119
860	.001162791	.034099
861	.001161440	.034080
862	.001160093	.034060 ⁻
863	.001158749	.034040
864	.001157407	.034021
865	.001156069	.034001
866	.001154734	.033981
867	.001153403	.033962
868	.001152074	.033942
869	.001150748	.033923
870	.001149425	.033903

Slope 1 in.	s=sine of slope.	√8.
871	.001148106	.033883
872	.001146789	.033864
873	.001145475	.033845
874	.001144165	.033825
875	.001142857	.033806
876	.001141553	.033787
877	.001140251	.033768
878	.001138952	.033748
879	.001137656	.033729
880	.001136364	.033710
881	.001135074	.033691
882	.001133787	.033672
883	.001132503	.033653
884	.001131222	.033633
88 5	.001129944	.033614
8 86	.001128668	.033595
887	.001127396	.033577
888	.001126126	.033558
889	.001124859	.033539

Slope 1 in.	s=sine of slope.	√5.
890	.001123596	.033520
891	.001122334	.033501
892	.001121076	.033483
893	.001119821	.033464
894	.001118568	.033445
895	.001117318	.033426
896	.001116071	.033408
897	.001114827	.033389
898	.001113586	.033370
899	.001112347	.033352
900	.001111111	.033333
901	.001109878	.033315
902	.001108647	.033296
903	.001107420	.033278
904	.001106195	.033259
905	.001104972	.033241
906	.001103753	.033223
907	.001102536	.033204
908	.001101322	.033186

Slope 1 in.	s=sine of slope.	√8.
909	.001100110	.033168
910	.001098901	.033149
911	.001097695	.033131
912	.001096491	.033113
913	.001095290	.033095
914	.001094092	.033077
915	.001092896	.033059
916	.001091703	.033041
917	.001090513	.033023
918	.001089325	.033005
919	.001088139	.032987
920	.001086957	.032969
921	.001085776	.032951
922	.001084599	.032933
923	.001083423	.032915
924	.001082251	.032897
925	.001081081	.032879
926	.001079914	.032862
927	.001078749	.032844

Slope 1·in.	s=sine of slope.	√8.
928	.001077586	.032826
929	.001076426	.032809
930	.001075269	.032791
931	.001074114	.032774
932	.001072961	.032756
933	.001071811	.032738
934	.001070664	.032721
935	.001069519	.032703
936	.001068376	.032686
937	.001067236	.032669
938	.001066098	.032651
939	.001064963	.032634
940	.001063830	.032616
941	.001062699	.032599
942	.001061571	.032582
943	.001060445	.032565
944	.001059322	.032547
945	.001058201	.032530
946	.001057082	.032513

Slope 1 in.	s=sine of slope.	√8.
947	.001055966	.032496
948	.001054852	.032479
949	.001053741	.032461
950	.001052632	.032444
951	.001051525	.032427
952	.001050420	.032410
953	.001049318	.032393
954	.001048218	.032376
955	.001047120	.032359
956	.001046025	.032342
957	.001044932	.032325
958	.001043841	.032309
959	.001042753	.032292
960	.001041667	.032275
961	.001040583	.032258
962	.001039501	.032241
963	.001038422	.032224
964	.001037344	.032208
965	.001036269	.032191

Slope 1 in.	s=sine of slope.	√ <u>s.</u>
966	.001035197	.032174
967	.001034126	.032158
968	.001033058	.032141
969	.001031992	.032125
970	.001030928	.032108
971	.001029866	.032091
972	.001028807	.032075
973	.001027749	.032059
974	.001026694	.032042
975	.001025641	.032026
976	.001024590	.032009
977	.001023541	.031993
978	.001022495	.031977
979	.001021450	.031960
980	.001020408	.031944
981	.001019368	.031928
982	.001018330	.031911
983	.001017294	.031895
984	.001016260	.031879

Slope 1 in.	s=sine of slope.	√8.
985	.001015228	.031863
986	.001014199	.031847
987	.001013171	.031830
988	.001012146	.031814
989	.001011122	.031798
990	.001010101	.031782
991	.001009082	.031766
992	.001008065	.031750
993	.001007049	.031734
994	.001006036	.031718
995	.001005025	.031702
996	.001004016	.031686
997	.001003009	.031670
998	.001002004	.031654
999	.001001001	.031639
1000	.001000000	.031623
1010	.000990099	.031466
1020	.000080392	.031311
1030	.000970873	.031159

Slope 1 in.	s=sine of slope.	√8.
1040	.000961538	.031009
1050	.000952381	.030861
1060	.000943396	.030715
1070	.000934579	.030571
1080	.000925926	.030429
1090	.000917431	.030289
1100	.000909090	.030151
1110	.000900900	.030015
1120	.000892857	.029881
1130	.000884956	.029748
1140	.000877193	.029617
1150	.000869566	.029488
1160	.000862069	.029361
1170	.000854701	.029235
1180	.000847458	.029111
1190	.000840336	.028988
1200	.000833333	.028868
1220	.000819672	.028630
1240	.000806452	.028398

Slope 1 in.	s=sine of slope.	√8.
1260	.000793651	.028172
1280	.000781250	.027951
1300	.000769231	.027735
1320	.000757576	.027524
134 0	.000746268	.027318
1360	.000735294	.027116
1380	.000724638	.026919
1400	.000714286	.026726
1420	,000704225	.026537
1440	.000694444	.026352
1460	.000684932	.026171
1480	.000675675	.025994
1500	.000666666	.025820
1520	.000657895	.025649
154 0	.000649351	.025482
156 0	000641025	.025318
1580	.000632911	.025158
1600	.000625000	.025000
1620	.000617284	.024845

Slope 1 in.	s=sine of slope,	√8.
1640	.000609756	.024693
166 0	.000602409	.024744
1680	.000595238	.024398
1700	.000588235	.024254
1720	.000581395	.024112
1740	.000574712	.023973
1760	.000568182	.023836
1780	.000561798	.023702
1800	.000555555	.023570
1820	.000549450	.023440
1840	.000543478	.023313
1860	.000537634	.023187
1880	.000531915	.023063
1900	.000526316	.022942
1920	.000520833	.022822
1940	.000515464	.022704
1960	.000510204	.022588
1980	.000505050	.022473
2000 .	.000500000	.022861

Slope 1 in.	s=sine of slope.	. $\sqrt{s.}$
2040	.000490196	.022140
2080	.000480769	.021927
2120	.000471698	.021719
2160	.000462963	.021517
2200	.000454545	.021320
2240	.000446429	.021129
2280	.000438597	.020943
2320	.000431034	.020761
2360	.000423729	.020585
2400	.000416666	.020412
244 0	.000409836	.020244
2480	.000403226	.020080
252 0	.000396825	.019920
2560	.000390625	.019764
2600	.000384615	.019612
2640	.000378787	.019463

•

EGG-SHAPED SEWERS.

INTERNAL DIMENSIONS.

Hydraulic Tables Based on Kutter's Formula.

EGG-SHAPED SEWERS.—INTERNAL DIMENSIONS.

Depth of verticle diameter is 1.5 times the greatest transverse diameter; that is, the diameter of top of arch.

Let D=greatest transverse diameter, that is the diameter of top or

$$arch=\frac{2H}{3}$$
, then

H=depth of sewer or vertical diameter=1.5D.

B=radius of bottom or invert= $\frac{H}{\tilde{e}}$.

R=radius of sides=H.

By reference to column $c\sqrt{r}$ in Tables 3 and 4 it will be seen that the mean velocity of an egg-shaped sewer flowing two-thirds full is always *greater* than that of the mean velocity of same sewer flowing

full. When the slopes are equal, columns $c\sqrt{r}$ and $ac\sqrt{r}$ give a ready means for comparing velocities and discharges.

APPLICATION AND USE OF THE TABLES.

To find the velocity and discharge in an egg-shaped sewer.

Example 10.—An egg-shaped sewer 7 feet by 10 feet 6 inches has a slope of 6 feet per mile. What is its velocity and discharge flowing full, flowing two-thirds full depth and one-third full depth?

A slope of 6 feet per mile is equal to 1 in 880, opposite to which in Table 2 the value of \sqrt{s} is found to be=.03371.

In Tables 3, 4 and 5 opposite a transverse diameter of 7 feet find the values of $c\sqrt{r}$ and $ac\sqrt{r}$ and substitute them and also the value of \sqrt{s} above found in formula (1) $v=c\sqrt{r}\times\sqrt{s}$.

" (5) $Q = ac\sqrt{r} \times v\sqrt{s}$ and we get the following:

Full depth $\begin{cases} v = 160.2 \times .03371 = 5.4 \text{ feet} \\ \text{per second.} \\ \mathbf{Q} = 9 \cap 15.7 \times .03371 = 303.9 \\ \text{cubic feet per second.} \end{cases}$

Two-thirds depth. $\begin{cases} v = 169.6 \times .03371 = 5.72 \text{ feet} \\ \text{per second.} \\ Q = 6283.5 \times .03371 = 211.8 \\ \text{cubic feet per second.} \end{cases}$ One-third $\begin{cases} v = 127.9 \times .03371 = 4.31 \text{ feet} \\ \text{per second.} \end{cases}$

One-third depth. $\begin{cases} v=127.9\times.03371=4.31 \text{ feet} \\ \text{per second.} \\ Q=1779.4\times.03371=59.98 \\ \text{cubic feet per second.} \end{cases}$

To find the dimensions of an egg-shaped sewer to replace a circular sewer.

Example 11.—A circular sewer 5 feet diameter and 4800 feet long has a fall of 16 feet. It is to be removed and replaced by an egg-shaped sewer with a fall of 8 feet whose discharge flowing full shall equal that of the circular sewer flowing full? Give dimensions of egg-shaped sewer.

A fall of 16 in 4800=1 in 300 and in Table 2 the \sqrt{s} corresponding to this is 057735. In Table 1 opposite 5 feet diameter the value $ac\sqrt{r}$ is 2272.7, substitute this value and also the value of \sqrt{s} in formula (5) $Q=ac\sqrt{r}\times\sqrt{s}$ and we have $Q=2272.7\times.057735=131.21$ cubic feet per

second, the discharge of the circular sewer. The egg-shaped sewer is to have a fall of 8 in 4800=1 in 600, and in Table 2 the equivalent \sqrt{s} is .040325, substitute this value and also the discharge found above in

formula (7)
$$ac\sqrt{r} = \frac{Q}{\sqrt{s}} = \frac{131.21}{.040625} = 3213.9$$

In Table 3, the nearest value of $ac\sqrt{r}$ to this is 3353 opposite a transverse diameter 4 feet 10 inches, therefore the egg-shaped sewer is to be 4 feet 10 inches by 7 feet 3 inches.

To find the diameter of a circular sewer whose discharge flowing full shall equal that of an egg-shaped sewer flowing one-third full depth.

Example 12.—Find the diameter of a circular sewer whose discharge flowing full shall equal that of the egg-shaped sewer in last example flowing one-third full the slope being the same in each.

In Table 5 and opposite transverse diameter 4 feet 10 inches the value of $ac\sqrt{r}$ =657.53.

In Table 1 the value of $ac\sqrt{r}$ nearest to this is found to be 661.77 opposite a diameter of 3 feet 2 inches, which is the diameter of the circular sewer required.

To find the diameter of a circular sewer whose velocity flowing full shall equal that of an egg-shaped sewer flowing one-third full depth.

Example 13.—What is the diameter of a circular sewer whose mean velocity flowing full shall equal that of an egg-shaped sewer 4 feet by 6 feet flowing one-third full, the grade in each being the same?

In Table 5 and opposite the transverse diameter 4 feet the value of $c\sqrt{r} = 86.61$.

In Table 1 the value of $c\sqrt{r}$ nearest to this is 87.15, opposite diameter 3 feet 4 inches, which is the diameter of the circular sewer required.

To find the dimensions and slope of an egg-shaped sewer flowing full, the mean velocity and discharge being given.

Example 14.—An egg-shaped sewer flowing full is to have a mean velocity not greater than 5 feet per second, and is to

discharge 108 cubic feet per second. What is size and slope?

By formula (6) $a = \frac{Q}{v}$ substitute values

of Q and v given and $a = \frac{108}{5} = 21.6$ square feet.

In column 2 of Table 3 the nearest area to this is 21.556 opposite the transverse diameter 4 feet 4 inches, therefore the sewer required is 4 feet 4 inches by 6 feet 6 inches. At the same time the value of $ac\sqrt{r}$ opposite 4 feet 4 inches diameter is found equal to 2501.4, substitute this and also value of

formula (8)
$$\sqrt{s} = \frac{Q}{ac\sqrt{r}} = \frac{108}{2501.4} = \frac{1}{2}$$

.043176, and in Table 2 the nearest value of \sqrt{s} to this is .043193 opposite the slope of 1 in 536, which is slope of sewer.

The diameter and slope of a circular sewer being given, to find dimensions and slope of an egg-shaped sewer whose discharge flowing two-thirds depth shall equal that of the circular sever flowing full and

whose velocity at same depth shall not exceed a certain rate.

Example 15.—A circular sewer 6 feet in diameter and with a slope of 1 in 600 is to be removed and to be replaced by an egg-shaped sewer whose discharge flowing at two-thirds of its full depth shall be equal to that of the circular sewer flowing full and whose mean velocity at the same two-thirds depth shall not exceed 5 feet per second? Give dimensions and slope of egg-shaped sewer.

In Table 1 and opposite 6 feet diameter the value of $ac\sqrt{r}$ is 3702.3, and in Table 2 opposite 1 in 600 the value of \sqrt{s} is .040825, substitute these values in formula (5) $Q = ac\sqrt{r} \times \sqrt{s}$ and we get

 $Q=3702.3 \times .040825=151.15$ cubic feet per second, the discharge of the circular sewer. Now substitute this discharge and the velocity above given 5 feet per second in formula (6) $a=\frac{Q}{v}$ and

we get $a = \frac{151.15}{5} 30.23$ square feet, the

area at two-thirds depth of the egg-shaped sewer. In column 2 of Table 4 the nearest area to this is 30.317 opposite a transverse diameter of 6 feet 4 inches, therefore the dimensions of egg-shaped sewer are 6 feet 4 inches by 9 feet 6 inches.

At the same time take out the value of $a \cdot c \sqrt{r}$ opposite 6 feet 4 inches, which is 4811.9. Substitute this and also the value of Q found in formula (8)

$$\sqrt{s} = \frac{Q}{ac\sqrt{r}} = .031412$$

and this not being found in Table 1, square each side and

$$s = .0009867,$$

and $\frac{1}{.0009867} = 1013$ nearly, therefore the slope of egg-shaped sewer is 1 in 1013 and its size 6 feet 4 inches by 9 feet 6 inches.

To find the dimensions and grade of an egg-shaped sewer to have a certain discharge flowing full, and whose mean velocity shall not exceed a certain rate when flowing two-thirds full depth.

Example 16.—An egg-shaped sewer is to discharge 110 cubic feet per second flowing full and its mean velocity flowing two-thirds full depth is not to exceed 5 feet per second? Find its dimensions and slope.

As a first approximation assume the velocity flowing full at 5 feet per second, then $\frac{110}{5}$ =22 square feet the area of egg-shaped sewer flowing full, and in Table 3 opposite this area the transverse diameter 4 feet 4 inches is found. Now with this diameter

the value of $c\sqrt{r}$ full depth =116.0 the value of $c\sqrt{r}$ two-thirds depth=123.1 therefore we may assume that the velocity of sewer flowing full is for 4 feet 4 inches, transverse diameter about 6 per cent. less than when flowing two-thirds full, that is, assuming the velocity at two-thirds depth 5 feet per second, the velocity at full depth will be about 4.7 feet per second. Substituting this velocity and also discharge

in formula (6) $a = \frac{Q}{v} = \frac{110}{4.7} = 23.4$ the area.

of egg-shaped sewer flowing full. In Table 3 the transverse diameter opposite this is 4 feet 6 inches, which is the diameter required of the egg-shaped sewer. At the same time that diameter is found look out the value of $ac\sqrt{r}$ which is 2770, substitute this in

formula (8) .
$$\sqrt{s} = \frac{Q}{ac\sqrt{s}}$$

= $\frac{110}{2770}$ = .039711.

In Table 2 the \sqrt{s} nearest to this is .039715 opposite a slope of 1 in 634, therefore the dimensions of egg-shaped sewer are 4 feet 6 inches by 6 feet 9 inches and its slope 1 in 634.

Now in Table 4 the value of $c\sqrt{r}$ opposite transverse diameter of 4 feet 6 inches is 126.3, substitute this and also value of \sqrt{s} above found in

formula (1) $v=c\sqrt{r} \times \sqrt{s}$ and we have $v=126.3\times.039711=5$ feet per second, the mean velocity of sewer flowing two-thirds full.

Table 3.—Giving Values of a and r and also the Factors $c\sqrt{r}$ and $ac\sqrt{r}$ for Corresponding Transverse Diameters of Egg-Shaped Sewers, Flowing full depth, given in First Column.

These factors are to be used only where the value of n, that is the coefficient of roughness of lining of channel=.015, as in second class or rough-faced brickwork, well-dressed stone work, foul and slightly tuberculated iron, cement and terra cotta pipes with imperfect joints and in bad order.

Area of egg-shaped sewer flowing full depth = $D^2 \times 1.148525$.

Perimeter of egg-shaped sewer flowing full depth $= D \times 3.9649$.

Hydraulic mean depth of egg-shaped sewer flowing full depth $= D \times 0.2897$.

$$v=c$$
 $\sqrt{r} \times \sqrt{s}$. $Q=av=ac$ $\sqrt{r} \times \sqrt{s}$.

Flowing Full Death 102

Full Depin			11-	015	
D= trans- verse diam. ft. in.		a=area in square ft.	r=hy- draulic mean depth in feet.	For velocity. $c\sqrt{r}$	For discharge $ac\sqrt{r}$
1	0	1.148	.2897	39.62	45.528
1	2	1.563	.3380	44.66	69.804
1	4	2.041	.3864	49.57	101.17
1	6	2.584	.4345	54.08	139.74
1	8	3.190	.4828	58.64	187.06
1	10	3.860	.5311	62.83	242.52
.2	0	4.594	.5794	66.93	307.48
2	2	5.391	.6277	71.01	382.81
2	4	6.253	.6760	74.93	468.54
2	6	7.178	.7242	78.76	565.34
.2	8	8.167	.7725	82.44	673.29
2	10	9.220	.8208	86.21	794.86
.3	0	10.337	.8691	89.70	927.23

h = 015

tr ve	ans- erse am. in.	a=area in square ft.	r=hy- draulic mean depth in feet.	For velocity. $c\sqrt{r}$	For discharge ac \sqrt{r}
3	2	11.517	.9174	93.25	1074.0
3	4	12.761	.9657	96.73	1234.4
3	6	14.069	1.014	100.1	1407.6
3	8	15.442	1.062	103.4	1596.7
3	10	16.877	1.111	106.6	1799.1
4	0	18.376	1.159	109.9	2019.5
4	2	19.940	1.207	113.0	2254.0
4	4	21.566	1.255	116.0	2501.4
4	6	23.258	1.304	119.1	2770.0
4	8	25.013	1.352	122.1	3053.8
4	10	26.830	1.400	125.0	3353.0
5	0	28.713	1.449	128.0	3675.6
5	2	30.660	1.497	130.7	4007.9

tra	ans- erse am. in.	a=area in square ft.	r=hy- draulic mean depth in feet.	For velocity. $c\sqrt{r}$	For discharge ac \sqrt{r}
5	4	32.669	1.545	133.6	4364.9
5	6	34.743	1.593	136.4	4738.0
5	8	36.880	1.642	139.2	5131.7
5	10	39.081	1.690	142.0	5548.0
6	0	41.347	1.738	144.6	5980.3
6	2	43.676	1.787	147.3	6435.1
6	4	46.068	1.835	149.8	6902.6
6	6	48.525	1.883	152.5	7399.3
. 6	8	51.046	1.931	155. 2	7920.6
6	10	53.629	1.980	157.7	8547.1
7	0	56.278	2.028	160.2	9015.7
7	4	61.764	2.124	165.0	10192
7	8	67.508	2.221	170.1	11482

tri	= ans- erse am. in.	a=area in square ft.	r=hy- draulic mean depth in feet.	For velocity.	For discharge $ac\sqrt{r}$
8	0	73.506	2.318	174.8	12852
8	4	79.758	2.414	179.6	14327
8	8	86.268	2.511	184.3	15898
9	0	93.030	2.607	188.8	17563
9	4	100.049	2.704	193.1	19323
9	8	107.324	2.800	197.5	21198
10	0	114.853	2.897	201.9	23191
10	6	126.625	3.042	208.3	26376
11	0	138.972	3.187	214.6	29822
12	. 0	165.388	3.476	226.8	37502

Table 4.—Giving Values of α and r and also the Factors $c\sqrt{r}$ and $ac\sqrt{r}$. For Corresponding Diameters of Egg-Shaped Sewers, Flowivg two-thirds full depth, given in First Column.

These factors are to be used only where the value of n, that is the coefficient of roughness of lining of channel=.015, as in second class or rough-faced brickwork, well-dressed stone work, foul and slightly tuberculated iron, cement and terra cotta pipes with imperfect joints and in bad order.

Area of section of egg-shaped sewer flowing twothirds full depth $= D^2 \times 0.755825$.

Perimeter of section of egg-shaped sewer flowing two-thirds full depth $= D \times 2.3941$.

Hydraulic mean depth of section of egg-shaped sewer flowing two-thirds full depth = $D \times 0.3157$.

$$v=c$$
 $\sqrt{r} \times \sqrt{s}$. $Q=av=ac$ $\sqrt{r} \times \sqrt{s}$.

<u> </u>					
tr	ans- erse am. in.	a=area in square ft.	r=hy- draulic mean depth in feet.	For velocity. $c\sqrt{r}$	For discharge $ac\sqrt{r}$
1	0	0.756	0.316	42.40	32.048
1	2	1.029	0.368	47.80	49.181
1	4	1.344	0.421	52.82	70.993
1	6	1.701	0.474	57.68	98.115
1	8	2.099	0.526	62.46	131.10
1	10	2.540	0.579	66.94	170.02
2	0	3.023	0.631	71.42	216.54
2	2	3.548	0.684	75.59	268.19
2	4 .	4.115	0.737	79.69	327.93
2	6	4.724	0.789	83.90	396.32
2	8	5.375	0.842	87.82	472.01
2	10	6.067	0.894	91.60	555.74
3	0	6.802	0.947	95.33	648.40

tr	ans- erse am. in.	a=area in square ft.	r=hy- draulic mean depth in feet.	For velocity. $c\sqrt{r}$	For discharge $ac\sqrt{r}$
3	2	7.579	1.000	99.10	751.08
· 3	4	8.398	1.052	102.7	862.41
3	6	9.259	1.105	106.2	983.24
3	8	10.161	1.158	109.7	1115.1
3	10	11.106	1.210	113.2	1256.1
4	0	12.093	1.263	116.5	1409.4
4	2	13.123	1.315	119.8	1572.1
4	4	14.192	1.368	123.1	1746.9
4	6	15.305	1.421	126.3	1932.7
4	8	16.460	1.473	129.4	2130.5
4	10	17.656	1.526	132.5	2338.6
5	0	18.895	1.579	135.5	2560.3
5 .	2	20.177	1.631	138.6	2795.9

tr	ans- erse am. in.	n=area r square ft.	r=hy- draulic mean depth in feet.	For velocity. $c\sqrt{r}$	For discharge $ac\sqrt{r}$
5	4	21.498	1.684	141.7	3045.5
5	6	22.863	1.736	144.6	3305.3
5	8	24.270	1.789	147.5	3578.9
5	10	25.718	1.842	150.3	3864.8
6	0	27.210	1.894	153.1	4165.3
6	2	28.743	1.947	155.9	4481.6
6	4	30.317	1.999	158.7	4811.9
6	6	31.933	2.052	161.5	5158.5
6	8	33.592	2.095	164.2	5516.6
6	10	35.292	2.157	166.9	5891.0
7	0	37.035	2.210	169.6	6283.5
7	4	40.646	2.315	174.8	7106.8
7	8	44.426	2.420	179.9	7993.0

D= trans- verse diam. ft. in.		a=area in square ft.	r=hy- draulic mean depth in feet.	For velocity. $c\sqrt{r}$	For discharge $ac\sqrt{r}$
8	0	48.373	2.526	184.9	8944.0
8	4	52.487	2.631	189.8	9964.1
8	8	56.771	2.736	194.6	11050
9	0	61.222	2.841	199.5	12213
9	4	65.840	2.947	204.2	13444
9	8	70.628	3.052	208.7	14743
10	0	75.583	3.157	213.3	16125
10	6	83.330	3.315	220.1	18342
11	0	91.445	3.473	226.8	20738
12	0	108.839	3.788	239.4	26060

Table 5.—Giving Values of a and r and also the Factors $c\sqrt{r}$ and $ac\sqrt{r}$. For Corresponding Diameters of Egg-Shaped Sewers, Flowing one-third full depth, given in First Column.

These factors are to be used only where the value of n, that is the coefficient of roughness of lining of channel=.015, as in second class or rough-faced brickwork, well-dressed stone work, foul and slightly tuberculated iron, cement and terra cotta pipes with imperfect joints and in bad order.

Area of section of egg-shaped sewers flowing one-third full depth $= D^2 \times 0.284$.

Perimeter of section of egg-shaped sewer flowing one-third full depth $= D \times 1.3747$.

Hydraulic Lean depth of section of egg-shaped sewers flowing one-third full depth = $D \times 0.2066$.

$$v=c$$
 $\sqrt{r} \times \sqrt{s}$. $Q=av=ac$ $\sqrt{r} \times \sqrt{s}$.

tre	erse am. in.	a=area in square ft.	r=hy- draulic mean depth in feet.	For velocity. $c\sqrt{r}$	For discharge $ac\sqrt{r}$
1	0	0.284	0.207	30.41	8.637
1	2	0.387	0.241	34.38	13.303
1	4	0.505	0.276	38.16	19.269
1	6	0.639	0.310	42.23	26.986
1	8	0.789	0.344	45.39	35.815
1	10	0.955	0.379	48.74	46.546
2	. 0	1.136	0.413	52.09	59.173
2	2	1.333	0.448	55.29	73.696
2	4	1.546	0.482	58.58	90.568
2	6	1.776	0.517	61.58	109.37
2	8	2.020	0.551	64.49	130.26
2	10	2.280	0.585	67.46	153.80
3	0	2.556	0.620	70.48	180.14

tre	= ans- orse am. in.	a=area in square ft.	r=hy- draulic mean depth in feet.	For velocity. $c\sqrt{r}$	For discharge $ac\sqrt{r}$
3	2	2.848	0.654	73.24	208.58
3	4	3.156	0.689	75.98	239.79
3	6	3.479	0.723	78.63	273.54
3	8	3.818	0.758	81.31	310.44
3	10	4.173	0.792	84.03	350.67
4	0	4.544	0.826	86.61	393.55
4	2	4.931	0.861	88.98	438.75
4	4	5.333	0.895	91.60	488.50
4	6	5.751	0.930	94.08	541.04
4	8	6.185	0.964	96.57	597.29
4	10	6.635	0.999	99.10	657.53
5	0	7.100	1.033	101.3	719.27
5	2	7.581	1.068	103.7	785.86

GRIMSHAW (ROBERT, M.E.) The Steam Boiler. Catechism. A Practical Book for Steam Engineers, Firemen and Owners and Makers of Boilers of any kind. Illustrated. Thick 18mo, cloth	
GRIFFITHS (A. B., Ph.D.) A Treatise on Manures, or the Philosophy of Manuring. A Practical Hand-book for the Agriculturist, Manufacturer, and Student. 12mo, cloth.	3 04
GRUNER (M. L.) The Manufacture of Steel. Translated from the French by Lenox Smith; with an appendix on the Bessemer process in the United States, by the translator. Illustrated. 8vo, cloth	3 50
GURDEN (RICHARD LLOYD). Traverse Tables: computed to 4 places Decimals for every ° of angle up to 100 of Distance. For the use of Surveyors and Engineers. New edition. Folio, half mor	7 50
HALSEY (F. A.) Slide-valve Gears, an Explanation of the Action and Construction of Plain and Cut-off Slide Valves. Illustrated. 12mo, cloth. Second edition	1 50
HAMILTON (W. G.) Useful Information for Railway Men. Tenth edition, revised and enlarged, 562 pages, pocket form. Morocco, gilt	2 00
HARRISON (W. B.) The Mechanics' Tool Book. With Practical Rules and Suggestions for use of Machin- ists, Iron-Workers, and others. Illustrated with 44 engravings. 12mo, cloth	
HASKINS (C. H.) The Galvanometer: ; Uses, A Manual for Electricians and Studenty ; imo, cloth	I 50
HAWKINS (C. C.) and WALLIS (F.) T : Dynamo, Its Theory, Design and Manufacture. 8v , cloth, 190 ills.	9 00
HEAP (Major D. P., U. S. A.) Electric 1 Appliances of the Present Day. Report of the Par's Electrical Ex- position of 1881. 250 illustrations. 8 cloth	2 0 0
HOUSTON (E. J.) Dictionary of Electrical Words, Terms and Phrases. Third edition, revised and en-	

HERRMANN (GUSTAV). The Graphical Statics of Mechanism. A Guide for the Use of Machinists, Architects, and Engineers; and also a Text-book for Technical Schools. Translated and annotated by A. P. Smith, M.E. 12mo, cloth, 7 folding plates 200
HEWSON (WM.) Principles and Practice of Embanking Lands from River Floods, as applied to the Levees of the Mississippi. 8vo, cloth
HENRICI (OLAUS). Skeleton Structures, Applied to the Building of Steel and Iron Bridges. Illustrated 1 50
HOBBS (W. R. P.) The Arithmetic of Electrical Measurements, with numerous examples. 12mo, cloth 50
HOLLEY (ALEXANDER L.) Railway Practice. American and European Railway practice in the Economical Generation of Steam, including the Materials and Construction of Coal-burning Boilers, Combustion, the Variable Blast, Vaporization, Circulation, Superheating, Supplying and Heating Feed-water, etc., and the Adaptation of Wood and Coke-burning Engines to Coal-burning; and in Permanent Way, including Road-bed, Sleepers, Rails, Joint Fastenings, Street Railways, etc. With 77 lithographed plates. Folio, cloth
HOLMES (A. BROMLEY). The Electric Light Popularly Explained. Fifth edition. Illustrated. 12mo, paper
HOWARD (C. R.) Earthwork Mensuration on the Basis of the Prismoidal Formulæ. Containing Simple and Labor-saving Method of obtaining Prismoidal Contents directly from End Areas. Illustrated by Examples and accompanied by Plain Rules for Practical Uses. Illustrated. 8vo, cloth
HUMBER (WILLIAM, C. E.) A Handy Book for the Calculation of Strains in Girders, and Similar Structures, and their Strength; Consisting of Formulæ and Corresponding Diagrams, with numerous details for practical application, etc. Fourth edition, 12MO, cloth
HUTTON (W. S.) Steam-Boiler Construction. A Practical Hand-book for Engineers, Boiler Makers, and Steam Users. With upwards of 300 illustrations.

Comprising a Large Selection of Tabulated Results, showing the Strength and other Properties of Materials used in Construction, with Explanatory Text and Historical Sketch. Numerous engravings and 25 lithographed plates. 4to, cloth
KIRKWOOD (JAS. P.) Report on the Filtration of River Waters for the supply of Cities, as practised in Europe. Illustrated by 30 double-plate engravings. 4to, cloth
LARRABEE (C. S.) Cipher and Secret Letter and Telegraphic Code, with Hog's Improvements. 18mo, cloth
LARDEN (W., M. A.) A School Course on Heat. 12mo, half leather 2 00
LEITZE (ERNST). Modern Heliographic Processes. A Manual of Instruction in the Art of Reproducing Drawings, Engravings, etc., by the action of Light. With 32 wood-cuts and ten specimens of Heliograms. 8vo, cloth. Second edition
LOCKWOOD (THOS. D.) Electricity, Magnetism, and Electro-Telegraphy. A Practical Guide for Students, Operators, and Inspectors. 8vo, cloth. Third edition
LODGE (OLIVER J.) Elementary Mechanics, including Hydrostatics and Pneumatics. Revised edition. 12mo, cloth
LOCKE (ALFRED G. and CHARLES G.) A Practical Treatise on the Manufacture of Sulphuric Acid. With 77 Constructive Plates drawn to Scale Measurements, 7nd other Illustrations. Royal 8vo, cloth15 00
LOVELL (D. H.) Practical Switch Work. A Handbook for Track Foremen. Illustrated 12mo, cloth. 1 50 LUNGE (GEO.) A Theoretical and Practical Treatise on the Manufacture of Sulphuric Acid and Alkali with the Collateral Branches. Vol. I. Sulphuric Acid. Second edition, revised and enlarged. 342 Illustrations. 8vo., cloth
turers of Sulphuric Acid, Nitric Acid, Soda, Potash Second edition. 12mo, cloth 3 co

MACCORD (Prof. C. W.) A Practical 5 ** ** ** ** ** ** ** ** ** ** ** ** *	d e e	2	50
MAYER (Prof. A. M.) Lecture Notes on Physics. 8v.		2	
McCULLOCH (Prof. R. S.) Elementary Treatise on the Mechanical Theory of Heat, and its application to A and Steam Engines. 8vo, cloth	ir	3	50
MERRILL (Col. WM. E., U. S. A.) Iron Truss Bridge for Railroads. The method of calculating strains: Trusses, with a careful comparison of the most proment Trusses, in reference to economy in combination etc. Illustrated. 4to, cloth	n i-	5	∞
METAL TURNING. By a Foreman Pattern Make Illustrated with 81 engravings. 12mo, cloth	r.	1	50
MINIFIE (WM.) Mechanical Drawing. A Text-book Geometrical Drawing for the use of Mechanics ar schools, in which the Definitions and Rules of Geore etry are familiarly explained; the Practical Problem are arranged from the most simple to the more corplex, and in their description technicalities are avoide as much as possible. With illustrations for Drawing Plans, Sections, and Elevations of Railways and Michinery; an Introduction to Isometrical Drawing, at an Essay on Linear Perspective and Shadows. Illustrated with over 200 diagrams engraved on stee With an appendix on the Theory and Application.	n- is n- id a- id s- id s- id	4	co
Geometrical Drawing. Abridged from the octave dition, for the use of schools Illustrated with steel plates. Ninth edition. 12mo, cloth	70 48	•	
MODERN METEOROLOGY. A Series of Six Lecture delivered under the auspices of the Meteorologic Society in 1878. Illustrated. 12mo, cloth	al	ı	50
MOONEY (WM.) The American Gas Engineers' at Superintendents' Hand-book, consisting of Rule Reference Tables, and original matter pertaining the Manufacture, Manipulation, and Distribution Illuminating Gas Illustrated arms morrors.	s, to	•	~~

MOTT (H. A., Jun.) A Practical Treatise on Chemistry (Qualitative and Quantitative Analysis), Stoichi- ometry, Blow-pipe Analysis, Mineralogy, Assaying, Pharmaceutical Preparations, Human Secretions, Specific Gravities, Weights and Measures, etc. New Edition, 1883. 650 pages. 8vo, cloth	4 00
MULLIN (JOSEPH P., M.E.) Modern Moulding and Pattern-making. A Practical Treatise upon Pattern-Shop and Foundry Work: embracing the Moulding of Pulleys, Spur Gears, Worm Gears, Balance-wheels, Stationary Engine and Locomotive Cylinders, Globe Valves, Tool Work, Mining Machinery, Screw Propellers, Pattern-shop Machinery, and the latest improvements in English and American Cupolas; together with a large collection of original and carefully selected Rules and Tables for every-day use in the Drawing Office, Pattern-shop, and Foundry.	
nzmo, cloth, illustrated. MUNRO (JOHN, C.E.) and JAMIESON (ANDREW, C.E.) A Pocket-book of Electrical Rules and Tables for the use of Electricians and Engineers. Seventh edition, revised and enlarged. With numerous diagrams. Pocket size. Leather	
MURPHY (J. G., M.E.) Practical Mining. A Field Manual for Mining Engineers. With Hints for In- vestors in Mining Properties. 16mo, morocco tucks. 1	-
NAQUET (A.) Legal Chemistry. A Guide to the Detection of Poisons, Falsification of Writings, Adulteration of Alimentary and Pharmaceutical Substances, Analysis of Ashes, and examination of Hair, Coins, Arms, and Stains, as applied to Chemical Jurisprudence, for the use of Chemists. Physicians, Lawyers, Pharmacists and Experts. Translated, with additions, including a list of books and memoirs on Toxicology, etc., from the French, by J. P. Battershall, Ph.D., with a preface by C. F. Chandler, Ph.D.	J
NEWALL (J. W.) Plain Practical Directions for Drawing, Sizing and Cutting Bevel-Gears, showing how the Teeth may be cut in a plain Milling Machine or Gear Cutter so as to give them a correct shape, from end to end: and showing how to get out all particulars for	1 00
the Workshop without making any Drawings. In- cluding a full set of Tables of Reference. Folding Plates, 8vo., cloth	00

NEWLANDS (JAMES). The Carpenter's and Joiners' Assistant: being a Comprehensive Treatise on the Selection, Preparation and Strength of Materials, and the Mechanical Principles of Framing, with their application in Carpentry, Joinery, and Hand-Railing; also, a Complete Treatise on Sines; and an illustrated Glossary of Terms used in Architecture and Building. Illustrated. Folio, half mor
NIBLETT (J. T.) Secondary Batteries. Illustrated.
NIPHER (FRANCIS E., A.M.) Theory of Magnetic Measurements, with an appendix on the Method of Least Squares. 12mo, cloth
NOAD (HENRY M.) The Students' Text-book of Electricity. A new edition, carefully revised. With an Introduction and additional chapters by W. H. Preece. With 471 illustrations. 12mo, cloth 400
NUGENT (E.) Treatise on Optics; or, Light and Sight theoretically and practically treated, with the application to Fine Art and Industrial Pursuits. With 103 illustrations. 12mo, cloth
PAGE (DAVID). The Earth's Crust, a Handy Outline of Geology. 16mo, cloth
PARSONS (Jr., W. B., C.E.) Track, a Complete Manual of Maintenance of Way, according to the Latest and Best Practice on Leading American Railroads, Illustrated. 8vo, cloth
LIRCE (B.) System of Analytic Mechanics. 4to,
PHILLIPS (JOSHUA). Engineering Chemistry. A Practical Treatise for the use of Analytical Chemists, Engineers, Iron Masters, Iron Founders, students and others. Comprising methods of Analysis and Valuation of the principal materials used in Engineering works, with numerous Analyses, Examples and Sug-
gestions. 314 Illustrations. 8vo, cloth 4 00 PLANE TABLE (THE). Its Uses in Topographical
Surveying. Illustrated. 8vo, cloth

Prof. H. B. Cornwall, assisted by John H. Caswell. Illustrated with 87 wood-cuts and one lithographic plate. Fourth edition, revised. 560 pages. 3vo, cloth 5 000
PLANTE (GASTON). The Storage of Electrical Energy, and Researches in the Effects created by Currents, combining Quantity with High Tension. Translated from the French by Paul B. Elwell. 89 illustrations. 8vo
PLYMPTON (Frof. GEO. W.) The Blow-pipe. A Guide to its use in the Determination of Salts and Minerals. Compiled from various sources. 12mo, cloth
POCKET LOGARITHMS to Four Places of Decimals, including Logarithms of Numbers and Logarithmic Sines and Tangents to Single Minutes. To which is added a Table of Natural Sines, Tangents and Co-Tangents. 16mo, boards
POPE (F. L.) Modern Practice of the Electric Telegraph. A Technical Hand-book for Electricians, Managers and Operators. New edition, rewritten and enlarged, and fully illustrated. 8vo, cloth 1 50
PRAY (Jr., THOMAS). Twenty Years with the Indicator; being a Practical Text-book for the Engineer or the Student. Illustrated. 8vo, cloth
PRACTICAL IRON-FOUNDING. By the author of "Pattern Making," etc., etc. Illustrated with over one hundred engravings. 12mo, cloth
PREECE (W H.) and STUBBS (A. J.) Manual of Telephony. Illustrations and Plates. 12mo, cloth 4 50
PRESCOTT (Prof. A. B.) Organic Analysis. A Manual of the Descriptive and Analytical Chemistry of certain Carbon Compounds in Common Use; a Guide in the Qualitative and Quantitative Analysis of Organic Materials in Commercial and Pharmaceutical Assays, in the estimation of Impurities under Authorized Standards, and in Forensic Examinations for Poisons, with Directions for Elementary Organic Analysis.
8vo, cloth
Compounds. 12mo, cloth 1 75

PRESCOTT (Prof. A. B.) First Book in Qualitative Chemistry. Fifth edition. 12mo, cloth	1 50
—— and OTIS COE JOHNSON. Qualitative Chemical Analysis. A Guide in the Practical Study of Chemistry and in the work of Analysis. Revised edition With Descriptive Chemistry extended throughout	-
PRITCHARD (O. G.) The Manufacture of Electric Light Carbons Illustrated. 8vo, paper	60
PULSIFER (W. H.) Notes for a History of Lead. 8vo, cloth, gilt tops	4 00
PYNCHON (Prof. T. R.) Introduction to Chemical Physics, designed for the use of Academies, Colleges, and H., Schools. 269 illustrations on wood. Crown 8vo, cloth	2 00
RANDALL (J. E.) A Practical Treatise on the Incan- descent Lamp. Illustrated. 16mo, cloth	3 00
	50
— (P. M.) Quartz Operator's Hand-book. New edition, revised and enlarged, fully illustrated. 12mo, cloth	2 00
cloth	6 00
RANKINE (W. J. MACQUORN, C.E., LL D., F.R.S.) Applied Mechanics. Comprising the Principles of Statics and Cinematics, and Theory of Structures, Mechanism, and Machines. With numerous dia- grams. Thoroughly revised by W. J. Millar. Crown 8vo, cloth	
— Civil Engineering. Comprising Engineering Surveys, Earthwork, Foundations. Masonry. Carpentry, Metal-work, Roads, Railways, Canals, Rivers, Water-Works, Harbors, etc. With numerous tables and illustrations. Thoroughly revised by W. J. Millar.	
Crown 8vo, cloth	6 50
try. Motions, Work, Strength, Construction, and Objects of Machines, etc. Illustrated with nearly 300 woodcuts. Thoroughly revised by W. J. Miler. Crown 8vo, cloth.	5 00.
The Steam-Engine and Other Prime Movers. With diagram of the Mechanical Properties of Steam, folding plates, numerous tables and illustrations. Thoroughly revised by W. J. Millar. Crown 8vo,	-
cloth	5 00

RANKINE (W. J. MACQUORN, C.E., LL.D., F.R.S.) Useful Rules and Tables for Engineers and Others. With Appendix, tables, tests, and formulæ for the use of Electrical Engineers. Comprising Submarine Electrical Engineering, Electric Lighting, and Trans- mission of Power. By Andrew Jamieson, C.E., F.R.S.E. Thoroughly revised by W. J. Millar. Crown 8vo, cloth
REED'S ENGINEERS' HAND-BOOK, to the Local Marine Board Examinations for Certificates of Com- petency as First and Second Class Engineers. By W. H. Thorn. Illustrated. 8vo, cloth 4 50
RICE (Prof. J. M.) and JOHNSO N (Prof. W. W.) On a New Method of obtaining the Differential of Functions, with especial reference to the Newtonian Conception of Rates or Velocities. 12mo, paper 50
RIPPER (WILLIAM). A Course of Instruction in Machine Drawing and Design for Technical Schools and Engineer Students. With 52 plates and numerous explanatory engravings. Folio, cloth
ROEBLING (J. A.) Long and Short Span Railway Bridges. Illustrated with large copperplate engrav- ings of plans and views. Imperial folio, cloth25 ∞
ROGERS (Prof. H. D.) The Geology of Pennsylvania. A Government Survey, with a General View of the Geology of the United States, essays on the Coal Formation and its Fossils, and a description of the Coal Fields of North America and Great Britain. Illustrated with plates and engravings in the text. 3 vols. 4to, cloth, with portfolio of maps
ROSE (JOSHUA, M.E.) The Pattern-makers' Assistant. Embracing Lathe Work, Branch Work, Core Work, Sweep Work, and Practical Gear Constructions, the Preparation ard Use of Tools, together with a large collection of useful and valuable Tables. Sixth edition, Illust atted with 250 engravings. 8vo, cloth. 250 Key to Eng nes and Engine-Running. A Practical Treatise up in the Management of Steam Engines and Boliers, for the Use of Those who Desire to Pass

an Examination to Take Charge of an Engine or Boiler. With numerous illustrations, and Instruc- tions upon Engineers' Calculations, Indicators, Dia- grams, Engine Adjustments, and other Valuable Information necessary for Engineers and Firemen.	o
SABINE (ROBERT). History and Progress of the Electric Telegraph. With descriptions of some of the apparatus. 12mo, cloth	25
SAELTZER (ALEX.) Treatise on Acoustics in connection with Ventilation. 12mo, cloth	
SALOMONS (Sir DAVID, M. A.) Electric Light Installations. Vol. I. The management of Accumulators. Seventh edition, revised and enlarged, with numerous illustrations. 12mo, cloth	
SAUNNIER (CLAUDIUS). Watchmaker's Hand-book. A Workshop Companion for those engaged in Watch- making and allied Mechanical Arts. Translated by J. Tripplin and E. Rigg. 12mo, cloth	
SEATON (A. E.) A Manual of Marine Engineering. Comprising the Designing, Construction, and Working of Marine Machinery. With numerous tables and illustrations. 10th edition. 8vo, cloth	0
SCHUMANN (F.) A Manual of Heating and Ventila- tion in its Practical Application, for the use of Engi- neers and Architects. Embracing a suries of Tables and Formulæ for dimensions of heating, flow and return pipes for steam and hot-water coolers, flues, etc. 12mo, illustrated, full roan.	
— Formulas and Tables for Architects and Engineers in calculating the strains and capacity of structures in Iron and Wood. 12mo, morocco, tucks	
SCRIBNER (J. M.) Engineers' and Mechanics' Corpanion. Comprising United States Weights and Measures. Mensuration of Superfices, and Solids, Tables of Squares and Cubes, Square and Cube Roots, Circumference and Areas of Circles, the Mechanical Powers, Centres of Gravity, Gravitation of Bodies, Pendulums, Specific Gravity of Bodies, Strength, Weight, and Crush of Materials, Water-Wheels, Hydrostatics, Hydraulics, Statics, Centres of	

Percussion and Gyration, Friction Heat, Tables of the Weight of Metals, Scantling, etc. Steam and the Steam-Engine. 16mo, full morocco	1 50
SCHELLEN (Dr. H.) Magneto-Electric and Dynamo- Electric Machines: their Construction and Practical Application to Electric Lighting, and the Trans- mission of Power. Translated from the third German edition by N. S. Keith and Percy Neymann, Ph.D. With very large additions and notes relating to American Machines, by N. S. Keith. Vol. 1, with 353 illustrations.	
SHIELDS (J. E.) Notes on Engineering Construction. Embracing Discussions of the Principles involved, and Descriptions of the Material employed in Tunnelling, Bridging, Canal and Road Building, etc. 12mo, cloth.	1 50
SHREVE (S. H.) A Treatise on the Strength of Bridges and Roofs. Comprising the determination of Algebraic formulas for strains in Horizontal, Inclined or Rafter, Triangular, Bowstring, Lenticular, and other Trusses, from fixed and moving loads, with practical applications, and examples, for the use of Students and Engineers. 87 woodcut illustrations. 8vo, cloth.	3 50
SHUNK (W. F.) The Field Engineer. A Handy Book of Practice in the Survey, Location, and Truck-work of Railroads, containing a large collection of Rules and Tables, original and selected, applicable to both the Standard and Narrow Gauge, and prepared with special reference to the wants of the young Engineer. Ninth edition. Revised and Enlarged. 12mo, morocco, tucks.	
SIMMS (F. W.) A Treatise on the Principles and Practice of Levelling. Showing its application to purposes of Railway Engineering, and the Construction of Roads, etc. Revised and corrected, with the addition of Mr. Laws' Practical Examples for setting out Railway Curves. I'lustrated. 8vo, cloth	
- Practical Tunnelling. Explaining in detail Setting- out of the Work, Shaft-sinking, Sub-excavating, Tim- bering, etc., with cost of work. 8vo, cloth	7 59

SLATER (J. W.) Sewage Treatment, Purification, and Utilization. A Practical Manual for the Use of Corporations, Local Boards, Medical Officers of Health, Inspectors of Nuisances, Chemists, Manufacturers, Riparian Owners, Engineers, and Rate-payers. 12mo, cloth
SMITH (ISAAC W., C.E.) The Theory of Deflections and of Latitudes and Departures. With special applications to Curvilinear Surveys, for Alignments of Railway Tracks. Illustrated. 16mo, morocco, tucks
GUSTAVUS W.) Notes on Life Insurance. Theoretical and Practical. Third edition. Revised and enlarged. 8vo, cloth
STAHL (A. W.) and WOODS (A. T.) Elementary Mechanism. A Text-book for Students of Mechanical Engineering. 12mo, cloth
STALEY (CADY) and PIERSON (GEO. S.) The Separate System of Sewerage: its Theory and Construction. 8vo, cloth. With maps, plates, and numerous illustrations. 8vo, cloth 300
STEVENSON (DAVID, F.R.S.N.) The Principles and Practice of Canal and River Engineering. Revised by his sons David Alan Stevenson, B.Sc., F.R.S.E., and Charles Alexander Stevenson, B.Sc., F.R.S.E., Civil Engineer. 8vo, cloth
The Design and Construction of Harbors, A Treatise on Maritime Engineering. 8vo, cloth10 00
STILES (AMOS). Tables for Field Engineers. Designed for use in the field. Tables containing all the functions of a one degree curve, from which a corresponding one can be found for any required degree. Also, Tables of Natural Sines and Tangents. 12mo, morocco, tucks
STILLMAN (PAUL). Steam-Engine Indicator and the Improved Manometer Steam and Vacuum Gauges; their Utility and Application. 12mo, flexible cloth 1 00
STONEY (B. D.) The Theory of Stresses in Girders and Similar Structures. With observations on the application of Theory to Practice, and Tables of Strength, and other properties of Materials. 8vo, cloth

STUART (B.) How to become a Successful Engineer. Being Hints to Youths intending to adopt the Pro- fession. Sixth edition. 12mo, boards
— (C. B.) C.E. Lives and Works of Civil and Military Engineers of America. With 10 steel-plate engravings. 8vo. cloth 5 00
SWEET (S. H.) Special Report on Coal, showing its Distribution, Classification, and Costs delivered over different routes to various points in the State of New York and the principal cities on the Atlantic Coast. With maps. 8vo, cloth
SWINTON (ALAN A. CAMPBELL). The Elementary Principle of Electric Lighting. Illustrated. 12mo, cloth
SWINBURNE (J.) Practical Electrical Measurement. With 55 illustrations. 8vo, cloth
TEMPLETON (WM.) The Practical Mechanic's Workshop Companion. Comprising a great variety of the most useful rules and formulæ in Mechanical Science, with numerous tables of practical data and calculated results facilitating mechanical operations. Revised
and enlarged by W. S. Hutton. 12mo, morocco 2 00
THOM (C.) and JONES (W. E.) Telegraphic Connections embracing recent methods in Quadruplex Telegraphy. Illustrated. 8vo, cloth
THOMPSON (EDWARD P.) How to make Inventions; or, Inventing as a Science and an Art. A Practical Guide for Inventors. 8vo, paper
TREVERT (E.) E.ectricity and its Recent Applications. A Practical Treatise for Students and Amateurs, with an Illustrated Dictionary of Electrical Terms and
Phrases. Illustrated. 12mo, cloth
FUMLIRZ (Dr. O.) Potential and its Application to
the Explanation of Electric Phenomena, Popularly Treated. Translated from the German by D. Robert- son. Ill. 12mo, cloth
TUNNER (P. A.) Treatise on Roll-Turning for the Manufacture of Iron. Translated and adapted by John B. Pearse, of the Pennsylvania Steel Works,

WATT (ALEXANDER). Electro-Deposition. A Practical Treatise on the Electrolysis of Gold, Silver, Copper, Nickel, and other Metals, with Descriptions of Voltaic Batteries. Magneto and Dynamo-Electric Machines, Thermopiles, and of the Materials and Processes used in every Department of the Art, and
Processes used in every Department of the Art, and several chapters on Electro-Metaflurgy. With numerous illustrations. Third edition, revised and corrected. Crown 8vo, 568 pages
Electro-Metallurgy Practically Treated. 12mo,
WEALE (JOHN). A Dictionary of Terms Used in Architecture Building, Engineering, Mining, Metalurgy, Archæology, the Fine Arts, etc., with explanatory observations connected with applied Science and Art, 12mo, cloth
WEBB (HERBERT LAWS). A Practical Guide to the Testing of Insulated Wires and Cables. Illustrated. 12mo, cloth
WEISBACH (JULIUS). A Manual of Theoretical Mechanics. Translated from the fourth augmented and improved German edition, with an Introduction to the Calculus by Eckley B. Coxe, A.M., Mining Engineer. 1100 pages, and 902 woodcut illustrations.
8vo, cloth
WEYRAUCH (J. J.) Strength and Calculations of Dimensions of Iron and Steel Construction, with reference to the Latest Experiments. 12mo, cloth, plates. 1 oc
WHIPPLE (S. C.E.) An Elementary and Practical Treatise on Bridge Building. 8vo, cloth
WILLIAMSON (R. S.) On the Use of the Barometer on Surveys and Reconnoissances. Part I. Meteorology in its Connection with Hypsometry. Part II. Barometric Hypsometry. With Illustrative tables
and engravings, 4to, cloth
WRIGHT (T. W., Prof.) A Treatise on the Adjustment of Observations. With applications to Geodetic
Work and other Measures of Precision. 8vo, cloth 4 oc — A Text-book of Mechanics for Colleges and Technical Schools. 12mo. cloth 2 sc
mical Schools. 12mo, Cloth

?

THE VAN NOSTRAND SCIENCE SERIES.

- No. 60.—STRENGTH OF WROUGHT IRON BRIDGE MEM-BERS. By S. W. Robinson, C.E.
- No. 61.—POTABLE WATER AND THE DIFFERENT METHODS OF DETECTING IMPURITIES. By Charles W. Folkhard.
- No. 62.—THE THEORY OF THE GAS ENGINE. By Dougald Clerk. Second edition. With additional matter. Edited by F. E. Idell, M. E.
- No. 68.—HOUSE DRAINAGE AND SANITARY PLUMB-ING. By W. P. Gerhard. Sixth edition. Revised.
- No. 64.—ELECTRO-MAGNETS. By Th. du Moncel. 2d revised edition.
- No. 65.—POCKET LOGARITHMS TO FOUR PLACES OF DECIMALS.
- No. 66.—DYNAMO-ELECTRIC MACHINERY. By S. P. Thompson. With notes by F. L. Pope. Third edition.
- No. 67.—HYDRAULIC TABLES BASED ON "KUTTER'S FORMULA." By P. J. Flynn.
- No. 68.—STEAM-HEATING. By Robert Briggs. Third edition, revised, with additions by A. R. Wolff.
- No. 69.—CHEMICAL PROBLEMS. By Prof. J. C. Foye. Third edition, revised and enlarged.
- No. 70.-EXPLOSIVE MATERIALS. By M. Bertholet.
- No. 71.—DYNAMIC ELECTRICITY. By John Hopkinson, J. A. Schoolbred, and R. E. Day.
- No. 72.—TOPOGRAPHICAL SURVEYING. By George J. Specht, Prof. A. S. Hardy, John B. McMaster, and H. F. Walling.
- No. 73.—SYMBOLIC ALGEBRA; OR, THE ALGEBRA OF ALGEBRAIC NUMBERS. By Prof. W. Cain.
- No. 74.—TESTING MACHINES: THEIR HISTORY, CON-STRUCTION, AND USE. By Arthur V. Abbott.
- No. 75.—RECENT PROGRESS IN DYNAMO-ELECTRIC MACHINES. Being a Supplement to Dynamo-Electric Machinery. By Prof. Sylvanus P. Thompson.
- No. 76.—MODERN REPRODUCTIVE GRAPHIC PROCESSES. By Lieut, James S. Pettit, U.S.A.
- No. 77.—STADIA SURVEYING. The Theory of Stadia Measurements. By Arthur Winslow.
- No. 78.—THE STEAM-ENGINE INDICATOR, AND ITS USE. By W. B. Le Van.
- No. 79.—THE FIGURE OF THE EARTH. By Frank C. Roberts, C.E.
- No. 80.—HEALTH'I FOUNDATIONS FOR HOUSES. By Glenn Brown.

THE VAN NOSTRAND SCIENCE SERIES.

- No. 81.—WATER METERS: COMPARATIVE TESTS OF ACCURACY, DELIVERY, ETC. Distinctive features of the Worthington, Kennedy, Siemens, and Hesse meters. By Ross E. Browne.
- No. 82.—THE PRESERVATION OF TIMBER BY THE USE OF ANTISEPTICS. By Samuel Bagster Boulton, C.E.
- No. 88.—MECHANICAL INTEGRATORS. By Prof. Henry S. H. Shaw, C. E.
- No. 84.—FLOW OF WATER IN OPEN CHANNELS, PIPES, OONDUITS, S. WERS, ETC. With Tables. By P. J. Flynn, C.E.
- No. 85.—THE LUMINIFEROUS ÆTHER. By Prof. de Volson Wood.
- No. 86.—HAND-BOOK OF MINERALOGY; DETERMINATION AND DESCRIPTION OF MINERALS FOUND IN THE UNITED STATES. By Prof. J. C. Foye. Fourth edition, revised.
- No. 87.—TREATISE ON THE THEORY OF THE CON-STRUCTION OF HELICOIDAL OBLIQUE ARCHES By John L. Culley, C.E.
- No. 88.—BEAMS AND GIRDERS. Practical Formulas for their Resistance. By P. H. Philbrick.
- No. 89.—MODERN GUN COTTON: ITS MANUFACTURE, PROPERTIES, AND ANALYSIS. By Lieut. John P. Wisser, U.S.A.
- No. 90.—ROTARY MOTION AS APPLIED TO THE GYRO-SCOPE. By Gen. J. G. Barnard.
- No. 91.—LEVELING: BAROMETRIC, TRIGONOMETRIC, AND SPIRIT. By Prof. I. O. Baker.
- No. 92.—PETROLEUM: ITS PRODUCTION AND USE. By Boverton Redwood, F.l.C., F.C.S.
- No. 98.—RECENT PRACTICE IN THE SANITARY DRAIN-AGE OF BUILDINGS. With Memoranda on the Cost of Plumbing Work. Second edition, revised. By William Paul Gerhard, C.E.
- No. 94.—THE TREATMENT OF SEWAGE. By Dr. C. Meymott Tidy.
- No. 95.—PLATE GIRDER CONSTRUCTION. By Isami Hiroi, C.E. 2d edition, revised and enlarged.
- No. 96.—ALTERNATE CURRENT MACHINERY. By Gisbert Kapp, Assoc. M. Inst., C.E.
- No. 97.-THE DISPOSAL OF HOUSEHOLD WASTES. By W. Paul Gerhard, Sanitary Engineer.
- No. 98.—PRACTICAL DYNAMO-BUILDING FOR AMA-TEURS. HOW TO WIND FOR ANY OUTPUT. By Frederick Walker. Fully illustrated.
- No. 99.—TRIPLE—EXPANSION ENGINES AND ENGINE
 TRIALS. By Prof. Osborne Reynolds. Edited,
 with notes, etc., by F. E. Idell, M.E.

No. 100.—HOW TO BECOME AN ENGINEER, or the Theoretical and Practical Training necessary in fitting for the duties of the Civil Engineer. By Prof. Geo. W. Plympton.

No. 101.—THE SEXTANT, and other Reflecting Mathematical Instruments. With Practical Hints for their adjustment and use. By F. R. Brainard, U. S. Navy.

No. 102.—THE GALVANIC CIRCUIT INVESTIGATED MATHEMATICALLY. By Dr. G. S. Ohm, Berlin, 1827. Translated by William Francis. With Preface and Notes by the Editor, Thomas D. Lockwood, M.I.E.E.

No. 103.—THE MICROSCOPICAL EXAMINATION OF POTABLE WATER. With Diagrams. By Geo-W. Rafter.

No. 164.—VAN NOSTRAND'S PABLE BOOK FOR O AND MECHANICAL ENGINEERS, Co by Prof. Geo. W. Plympton,

No. 105.—DETERMINANTS. An Introduction t of, with Examples and Application G. A. Miller.

No. 106.—COMPRESSED AIR. Exper Transmission of Power by Paris. (Popp's System.) Kennedy. The Transmi Power from Central System. By Prof. W. C. Unw

No. 107.—A GRAPHICAL ME A Rational and Stresses in Introduction Statics.

No. 108.—SLIDE for C

No. 109.-

d the ng, and d edition al Gerhard,

r E. Sherman