1. Find the normal form of the equation

$$u_{xx} + 2u_{xy} + u_{yy} + u_x + u = 0.$$

2. Find the normal form of the equation

$$u_{xx} + 2u_{xy} + u_{yy} - u_{zz} = 0.$$

Write its general solution.

3. Check that the general solution of the equation

$$\partial_x \left(\frac{xy}{x^2 + y^2} \partial_x u \right) + \frac{1}{2} \partial_x \left(\frac{x^2 - y^2}{x^2 + y^2} \partial_y u \right) + \frac{1}{2} \partial_y \left(\frac{x^2 - y^2}{x^2 + y^2} \partial_x u \right) - \partial_y \left(\frac{xy}{x^2 + y^2} \partial_y u \right) = 0$$

is given by

$$u(x,y) = F(x^2 - y^2) + G(xy).$$

4. Solve the wave equation on the half-line x > 0:

$$u_{tt} - u_{xx} = \theta_H(1-x), \quad u(0,x) = 0, \quad u_t(0,x) = 0, \quad u(t,0) = 0,$$

where θ_H is the Heaviside theta function:

$$\theta_H(x) = \begin{cases} 0, & x < 0, \\ 1, & x > 0, \\ \frac{1}{2}, & x = 0. \end{cases}$$

For simplicity, you may consider its solution only for t > 4.

5. Solve the wave equation on the half-line x > 0:

$$u_{tt} - u_{xx} = 0$$
, $u(0, x) = 0$, $u_t(0, x) = \theta_H(x - 3) - \theta_H(x - 2)$, $u(t, 0) = 0$.

For simplicity, you may again consider only the large time case.

6. Solve the wave equation on the half-line:

$$u_{tt} - u_{xx} = 0$$
, $u(0, x) = 0$, $u_t(0, x) = 0$, $u(t, 0) = \sin t$.

7. Compute the Fourier transform of the function f on $\mathbb{Z}/(2N)\mathbb{Z}$ defined by

$$f(0) = 0$$
, $f(1) = \dots = f(N-1) = 1$, $f(N) = 0$, $f(-1) = \dots = f(1-N) = -1$.

8. Compute the Fourier transform of the function $f(\phi)$ on S^1 defined by

$$f(\phi) = \begin{bmatrix} -1, & \phi \in (-\pi, 0) \\ 1, & \phi \in (0, \pi) \end{bmatrix}$$

9. Compute the [inverse] Fourier transform of

$$\tilde{f}_{\epsilon}(p) = e^{-\epsilon|p|}$$

defined on the real line.

10. Compute the Fourier transform of

$$f_{\epsilon}(x) = \frac{x}{\pi(x^2 + \epsilon^2)}$$

defined on the real line. Compute the integral

$$\int_{-\infty}^{\infty} f_{\epsilon}(x) dx$$

11. Compute the Fourier transform of

$$f(n) = e^{-\epsilon|n|}$$

defined on \mathbb{Z} .

12. Compute the [inverse] Fourier transform of

$$\tilde{f}_{\epsilon}(p) = e^{-\frac{1}{2}\epsilon p^2}$$

What is the value of its integral from $-\infty$ to $+\infty$?

13. Compute the Fourier transform of the function on S^1

$$f_{\epsilon}(\phi) = \frac{\sinh \epsilon}{\cosh \epsilon - \cos \phi}.$$

Hint: for computing the integral $\int_0^{2\pi} \frac{d\phi}{2\pi} f_{\epsilon}(\phi) e^{-in\phi}$, introduce the new variable $z=e^{i\phi}$ and find an appropriate way to deform the integration contour.

What is $\int_0^{2\pi} f_{\epsilon}(\phi) d\phi$?

14. Solve the heat equation

$$u_t = u_{xx}, \quad u(0, x) = e^{-ax^2}$$

15. Compute the Fourier transform of

$$f(x) = xe^{-x^2}$$

and of

$$f(x) = x^2 e^{-x^2}$$