2021 Spring MAS 365 Chapter 9: Approximating Eigenvalues

Donghwan Kim

KAIST

- 1 9.1 Linear Algebra and Eigenvalues
- 2 9.3 The Power Method

Eigenvalues

• The eigenvalues of an $n \times n$ matrix A, corresponds to the zeros of the characteristic polynomial

$$p(\lambda) = \det\{A - \lambda I\}.$$

- Finding the determinant and the roots of $p(\lambda)$ is computationally expensive and difficult.
- Sometimes knowing only the region of the complex plane in which the eigenvalues lie is good enough. (When?)

1/24

Geršgorin Circle

Theorem 1 (Geršgorin Circle)

Let A be an $n \times n$ matrix and R_i denote the circle in the complex plane with center a_{ii} and radius $\sum_{i=1, i \neq i}^{n} |a_{ij}|$; that is,

$$R_i = \left\{ z \in \mathcal{C} \mid |z - a_{ii}| \le \sum_{\substack{j=1, \ j \ne i}}^n |a_{ij}| \right\}$$

where $\mathcal C$ denotes the complex plane. The eigenvalues of A are contained within the union of these circles, $R=\cup_{i=1}^n R_i$. Moreover, the union of any k of the circles that do not intersect the remaining (n-k) contains precisely k (counting multiplicities) of the eigenvalues.

Chapter 9 2 /

Geršgorin Circle (cont'd)

Proof Suppose that λ is an eigenvalue of A with associated eigenvector x, where $||x||_{\infty} = 1$. Since $Ax = \lambda x$, the equivalent component representation is

$$\sum_{j=1}^{n} a_{ij} x_j = \lambda x_i, \quad \text{for each } i = 1, 2, \dots, n.$$

Let k be an integer with $|x_k| = ||\boldsymbol{x}||_{\infty} = 1$. When i = k, we have

$$\sum_{j=1}^{n} a_{kj} x_j = \lambda x_k.$$

Chapter 9 3 / 24

Geršgorin Circle (cont'd)

Ex. Determine the Geršgorin circles for the matrix

$$A = \left[\begin{array}{rrr} 4 & 1 & 1 \\ 0 & 2 & 1 \\ -2 & 0 & 9 \end{array} \right]$$

and use these to find bounds for the spectral radius of A.

Chapter 9 4 / 24

Geršgorin Circle (cont'd)

This technique is useful even when we need to find the eigenvalues.
 When?

Chapter 9 5 / 24

- 1 9.1 Linear Algebra and Eigenvalues
- 2 9.3 The Power Method

The Power Method

- The power method is an iterative technique that determines the dominant eigenvalue of a matrix. A modified version (such as inverse power method and deflation methods) can also find other eigenvalues.
- We assume that the $n \times n$ matrix A has n eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ with an associated collection of linearly independent eigenvectors $\{\boldsymbol{v}^{(1)}, \boldsymbol{v}^{(2)}, \ldots, \boldsymbol{v}^{(n)}\}$. When they are linearly dependent, the power method is not guaranteed to work well.
- Moreover, we assume that λ_1 is largest in magnitude, so that

$$|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \dots \ge |\lambda_n| \ge 0.$$

Chapter 9 6 / 24

• For any vector x in \mathbb{R}^n , constants $\beta_1, \beta_2, \ldots, \beta_n$ exist with

$$\boldsymbol{x} = \sum_{j=1}^{n} \beta_j \boldsymbol{v}^{(j)}.$$

• Multiplying both sides of this equation by A^k gives

$$A^k \boldsymbol{x} = \sum_{j=1}^n \beta_j \lambda_j^k \boldsymbol{v}^{(j)} = \lambda_1^k \sum_{j=1}^n \beta_j \left(\frac{\lambda_j}{\lambda_1}\right)^k \boldsymbol{v}^{(j)}$$

• Since $|\lambda_1|>|\lambda_j|$ for $j=2,3,\ldots,n$, we have $\lim_{k\to\infty}(\lambda_j/\lambda_1)^k=0$, and

$$\lim_{k\to\infty} A^k \boldsymbol{x} = \lim_{k\to\infty} \lambda_1^k \beta_1 \boldsymbol{v}^{(1)},$$

which converges to 0 if $|\lambda_1| < 1$ and diverges if $|\lambda_1| > 1$, provided that $\beta_1 \neq 0$.

Chapter 9 7 / 24

- We scale the powers of $A^k x$ in an appropriate way to ensure that the limit is finite and nonzero.
- This begins by choosing x to be a unit vector $x^{(0)}$ relative to $||\cdot||_{\infty}$ and choosing a component $x_{p_0}^{(0)}$ of $x^{(0)}$ with

$$x_{p_0}^{(0)} = 1 = ||\boldsymbol{x}^{(0)}||_{\infty}.$$

ullet Let $m{y}^{(1)} = Am{x}^{(0)}$ and define $\mu^{(1)} = y_{p_0}^{(1)}$. Then

$$\mu^{(1)} = y_{p_0}^{(1)} = \frac{y_{p_0}^{(1)}}{x_{p_0}^{(0)}} =$$

Chapter 9 8 / 24

• Let p_1 be the smallest integer such that

$$|y_{p_1}^{(1)}| = ||\boldsymbol{y}^{(1)}||_{\infty}$$

and define $oldsymbol{x}^{(1)}$ by

$$\boldsymbol{x}^{(1)} = \frac{1}{y_{p_1}^{(1)}} \boldsymbol{y}^{(1)} = \frac{1}{y_{p_1}^{(1)}} A \boldsymbol{x}^{(0)}.$$

Then $x_{p_1}^{(1)}=1=||oldsymbol{x}^{(1)}||_{\infty}$, and define

$$\boldsymbol{y}^{(2)} = A \boldsymbol{x}^{(1)} = \frac{1}{y_{p_1}^{(1)}} A^2 \boldsymbol{x}^{(0)}$$

and

$$\mu^{(2)} = y_{p_1}^{(2)} =$$

Chapter 9 9 / 24

• Let p_2 be the smallest integer such that

$$|y_{p_2}^{(2)}| = ||\boldsymbol{y}^{(2)}||_{\infty}$$

and define

$$\boldsymbol{x}^{(2)} = \frac{1}{y_{p_2}^{(2)}} \boldsymbol{y}^{(2)} = \frac{1}{y_{p_2}^{(2)}} A \boldsymbol{x}^{(1)} = \frac{1}{y_{p_2}^{(2)} y_{p_1}^{(1)}} A^2 \boldsymbol{x}^{(0)}.$$

Chapter 9 10 / 24

• Similarly, define sequences of vectors $\{x^{(m)}\}_{m=0}^{\infty}$ and $\{y^{(m)}\}_{m=0}^{\infty}$ and a sequence of scalars $\{\mu^{(m)}\}_{m=0}^{\infty}$ inductively by

$$\begin{split} & \boldsymbol{y}^{(m)} = A\boldsymbol{x}^{(m-1)}, \\ & \boldsymbol{\mu}^{(m)} = y_{p_{m-1}}^{(m)} = \lambda_1 \left[\frac{\beta_1 \boldsymbol{v}_{p_{m-1}}^{(1)} + \sum_{j=2}^n (\lambda_j/\lambda_1)^m \beta_j \boldsymbol{v}_{p_{m-1}}^{(j)}}{\beta_1 \boldsymbol{v}_{p_{m-1}}^{(1)} + \sum_{j=2}^n (\lambda_j/\lambda_1)^{m-1} \beta_j \boldsymbol{v}_{p_{m-1}}^{(j)}} \right] \\ & \boldsymbol{x}^{(m)} = \frac{\boldsymbol{y}^{(m)}}{y_{p_m}^{(m)}} = \frac{A^m \boldsymbol{x}^{(0)}}{\prod_{k=1}^m y_{p_k}^{(k)}}, \end{split}$$

where at each step, p_m is used to represent the smallest integer for which

$$|y_{p_m}^{(m)}| = ||\boldsymbol{y}^{(m)}||_{\infty}.$$

Chapter 9 11 / 24

• Since $|\lambda_j/\lambda_1| < 1$ for each $j = 2, 3, \dots, n$,

$$\lim_{m \to \infty} \mu^{(m)} = \lambda_1,$$

provided that $x^{(0)}$ is chosen so that $\beta_1 \neq 0$. Moreover, the sequence of vectors $\{x^{(m)}\}_{m=0}^{\infty}$ converges to an eigenvector associated with λ_1 that has l_{∞} norm equal to one.

ullet For $oldsymbol{x}^{(0)} = \sum_{j=1}^n eta_j oldsymbol{v}^{(j)}$, we know that

$$\lim_{k \to \infty} A^k \boldsymbol{x}^{(0)} = \lim_{k \to \infty} \lambda_1^k \beta_1 \boldsymbol{v}^{(1)},$$

SO

$$\lim_{k \to \infty} \boldsymbol{x}^{(k)} = \lim_{k \to \infty} \frac{A^k \boldsymbol{x}^{(0)}}{||A^k \boldsymbol{x}^{(0)}||_{\infty}} = \frac{\boldsymbol{v}^{(1)}}{||\boldsymbol{v}^{(1)}||_{\infty}}.$$

Chapter 9 12 / 24

Ex. Approximate the dominant eigenvalue and its associated eigenvector of

$$A = \left[\begin{array}{cc} -2 & -3 \\ 6 & 7 \end{array} \right],$$

using two iterations of the power method with $x_0 = (1, 1)^t$.

Chapter 9 13 / 24

- Choosing the smallest integer p_m for which $|y_{p_m}^{(m)}| = ||\mathbf{y}^{(m)}||_{\infty}$ will generally ensure that this index eventually becomes invariant.
- The rate at which $\{\mu^{(m)}\}_{m=1}^{\infty}$ converges to λ_1 is determined by the ratios $\left|\frac{\lambda_j}{\lambda_1}\right|^m$, for $j=2,3,\ldots,n$, and in particular by $\left|\frac{\lambda_2}{\lambda_1}\right|^m$.

14 / 24

Inverse Power Method

- **Inverse Power method** is a modification of the Power method that determines the eigenvalue of A that is closest to a specified number q.
- Suppose that A has eigenvalues $\lambda_1, \ldots, \lambda_n$ with linearly independent eigenvectors $v^{(1)}, \ldots, v^{(n)}$.

Chapter 9 15 / 24

Inverse Power Method (cont'd)

• The eigenvalues of $(A-qI)^{-1}$, where $q \neq \lambda_i$, for $i=1,2,\ldots,n$ are

$$\frac{1}{\lambda_1 - q}$$
, $\frac{1}{\lambda_2 - q}$, ..., $\frac{1}{\lambda_n - q}$,

with the same eigenvectors $v^{(1)}, v^{(2)}, \dots, v^{(n)}$.

Chapter 9 16 / 24

Inverse Power Method (cont'd)

ullet Applying the Power method to $(A-qI)^{-1}$ gives

$$\mathbf{y}^{(m)} = (A - qI)^{-1} \mathbf{x}^{(m-1)},$$
 $\mu^{(m)} = y_{p_{m-1}}^{(m)} = \frac{y_{p_{m-1}}^{(m)}}{x_{p_{m-1}}^{(m-1)}} =$
 $\mathbf{x}^{(m)} = \frac{\mathbf{y}^{(m)}}{y_{p_m}^{(m)}},$

where p_m represents the smallest integer for which $|y_{p_m}^{(m)}| = ||\boldsymbol{y}^{(m)}||_{\infty}$.

• The sequence $\mu^{(m)}$ converges to $\frac{1}{\lambda_k - a}$, where

$$\frac{1}{|\lambda_k - q|} = \max_{1 \le i \le n} \frac{1}{|\lambda_i - q|},$$

where $\lambda_k \approx q + \frac{1}{\mu(m)}$ is the eigenvalue of A closest to q.

Chapter 9 17 / 24

Inverse Power Method (cont'd)

 \bullet With known k, we have

$$\mu^{(m)} = \frac{1}{\lambda_k - q} \left[\frac{\beta_k v_{p_{m-1}}^{(k)} + \sum_{\substack{j=1 \ j \neq k}}^{n} \beta_j \left[\frac{\lambda_k - q}{\lambda_j - q} \right]^m v_{p_{m-1}}^{(j)}}{\beta_k v_{p_{m-1}}^{(k)} + \sum_{\substack{j=1 \ j \neq k}}^{n} \beta_j \left[\frac{\lambda_k - q}{\lambda_j - q} \right]^{m-1} v_{p_{m-1}}^{(j)}} \right]$$

• The choice of q determines the convergence, provided that $1/(\lambda_k-q)$ is a unique dominant eigenvalue of $(A-qI)^{-1}$; the convergence is determined by the ratio

$$\left| \frac{(\lambda - q)^{-1}}{(\lambda_k - q)^{-1}} \right|^m = \left| \frac{\lambda_k - q}{\lambda - q} \right|^m$$

where λ represents the eigenvalue of A that is second closest to q.

• Use Geršgorin Circle Theorem to initialize q, or choose q from $x^{(0)}$ by

$$q = \frac{[\mathbf{x}^{(0)}]^t A \mathbf{x}^{(0)}}{[\mathbf{x}^{(0)}]^t \mathbf{x}^{(0)}}.$$

Chapter 9 18 / 24

Deflation Methods

- How can we obtain other eigenvalues of matrix once an approximation to the dominant eigenvalue has been computed?
- **Deflation techniques** involve forming a new matrix B whose eigenvalues are the same as those of A, except that the dominant eigenvalue of A is replaced by the eigenvalue 0 in B.

Chapter 9 19 / 24

Deflation Methods (cont'd)

Theorem 2

Suppose that $\lambda_1, \lambda_2, \ldots, \lambda_n$ are eigenvalues of A with associated eigenvectors $v^{(1)}, v^{(2)}, \ldots, v^{(n)}$ and that λ_1 has multiplicity 1. Let x be a vector with $x^t v^{(1)} = 1$. Then the matrix

$$B = A - \lambda_1 \boldsymbol{v}^{(1)} \boldsymbol{x}^t$$

has eigenvalues $0, \lambda_2, \lambda_3, \ldots, \lambda_n$ with associated eigenvectors $v^{(1)}, w^{(2)}, w^{(3)}, \ldots, w^{(n)}$, where $v^{(i)}$ and $w^{(i)}$ are related by the equation

$$\boldsymbol{v}^{(i)} = (\lambda_i - \lambda_1) \boldsymbol{w}^{(i)} + \lambda_1 (\boldsymbol{x}^t \boldsymbol{w}^{(i)}) \boldsymbol{v}^{(1)},$$

for each i = 2, 3, ..., n.

Chapter 9 20 /

Deflation Methods (cont'd)

Wielandt deflation proceeds with

$$\mathbf{x} = \frac{1}{\lambda_1 v_i^{(1)}} (a_{i1}, a_{i2}, \dots, a_{in})^t,$$

where $v_i^{(1)}$ is a nonzero coordinate of the eigenvector $v^{(1)}$.

Chapter 9 21 / 24

Deflation Method (cont'd)

- ullet The ith row of B consists entirely of zero entries
- If $\lambda \neq 0$ is an eigenvalue with associated eigenvector w, the relation $Bw = \lambda w$ implies that the ith coordinate of w must also be zero.

Chapter 9 22 / 24

Deflation Method (cont'd)

- The matrix B can be then replaced by $(n-1) \times (n-1)$ matrix B', by deleting the ith row and column from B. The matrix B' has eigenvalues $\lambda_2, \lambda_3, \ldots, \lambda_n$.
- If $|\lambda_2| > |\lambda_3|$, the Power method can be applied to B' to determine this new dominant eigenvalue λ_2 and an associated eigenvector $\boldsymbol{w}^{(2)'}$.
- To find ${\pmb w}^{(2)}$ for B, insert a zero coordinate between the coordinates $w_{i-1}^{(2)'}$ and $w_i^{(2)'}$ of ${\pmb w}^{(2)'}$ and then calculate

$$v^{(2)} = (\lambda_2 - \lambda_1) w^{(2)} + \lambda_1 (x^t w^{(2)}) v^{(1)}.$$

Chapter 9 23 / 24

Deflation Method (cont'd)

Ex The matrix

$$A = \left[\begin{array}{rrr} 4 & -1 & 1 \\ -1 & 3 & -2 \\ 1 & -2 & 3 \end{array} \right]$$

has the dominant eigenvalue $\lambda_1=6$ with associated unit eigenvector $\boldsymbol{v}^{(1)}=(1,-1,1)^t$. Apply deflation to approximate the other eigenvalues and eigenvectors.

Chapter 9 24 / 24