RIOIEI 의한 RIPARE 1

2주차. 벡터, 행렬의 연산 및 함수

이혜선 교수

포항공과대학교 산업경영공학과

2주차. 벡터, 행렬의 연산 및 함수

1차시 벡터 및 행렬 생성

2차시 벡터와 행렬의 연산

3차시 간단한 함수 생성 및 루프

● 기본 연산

☑ 기본 연산 기호

Operator	Description
+	addition
-	subtraction
*	multiplication
/	division
^ or **	exponentiation
х %% у	modulus (x mod y) 5%%2 is 1
x %/% y	integer division 5%/%2 is 2

Operator	Description
<	less than
<=	less than or equal to
>	greater than
>=	greater than or equal to
	exactly equal to
!=	not equal to
!x	Not x
x y	x OR y
х & у	x AND y
isTRUE(x)	test if X is TRUE

● 기본 연산

☑ 더하기, 곱하기, 나누기 (몫, 나머지)

2의 3승 (2^3, 2**3) 4의 3승(4^3, 4**3)

%% (7을 5로 나눴을 때 나머지) %/% (7을 5로 나눴을 때 몫)

```
# calcualtion
2^3
4 * * 3
7%%5
7%/%5
```


● 행렬의 연산

☑ 행렬의 연산

Operator or Function	Description
A*B	Element-wise multiplication
A%*%B	Matrix multiplication
A %o% B	Outer product. AB'
crossprod(A,B) crossprod(A)	A'B and A'A respectively.
t(A)	Transpose
solve(A, b)	Returns vector x in the equation b = Ax (i.e., A ⁻¹ b)
solve(A)	Inverse of A where A is a square matrix.
ginv(A)	Moore-Penrose Generalized Inverse of A. ginv(A) requires loading the MASS package.
y<-eigen(A)	y\$val are the eigenvalues of A y\$vec are the eigenvectors of A

y<-svd(A)	Single value decomposition of A. y\$d = vector containing the singular values of A. y\$u = matrix with columns contain the left singular vectors of A. y\$v = matrix with columns contain the right singular vectors of A.
R <- chol(A)	Choleski factorization of A . Returns the upper triangular factor, such that $R'R = A$.
y <- qr(A)	QR decomposition of A. y\$qr has an upper triangle that contains the decomposition and a lower triangle that contains information on the Q decomposition y\$rank is the rank of A. y\$qraux a vector which contains additional information on Q. y\$pivot contains information on the pivoting strategy used.
cbind(A,B,)	Combine matrices(vectors) horizontally. Returns a matrix.
rbind(A,B,)	Combine matrices(vectors) vertically. Returns a matrix.
rowMeans(A)	Returns vector of row means.
rowSums(A)	Returns vector of row sums.
colMeans(A)	Returns vector of column means.
colSums(A)	Returns vector of column sums.

● 행렬의 연산

☑ 행렬 생성

```
# matrix example (2*5)
m1 < -matrix(1:10, nrow=2)
m1
```



```
> m1<-matrix(1:10, nrow=2)
> m1
[1,]
[2,]
                             10
```

```
# dimension of m1
dim(m1)
```



```
dim(m1)
[1] 2 5
```


● 행렬의 연산

전치 행렬(transpose) 구하기 (t)

```
m2<-matrix(1:6, ncol=3)</pre>
m2
# transpose of m2
tm2 < -t(m2)
tm2
```

```
> m2<-matrix(1:6, ncol=3)
> m2
     [,1] [,2] [,3]
[1,]
[2,]
> # transpose of m2
> tm2<-t(m2)
> tm2
     [,1] [,2]
[1,]
[2,]
[3,]
```

전치행렬은 행과 열을 바꾼 행렬

m2는 (2*3)행렬, tm2는 (3*2)행렬

● 행렬의 연산

☑ determinant 구하기 (det)

determinant 식

$$|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc.$$

$$d1 = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

의 determinant는 -2

```
# determinant of matrix,
d1<-matrix(1:4, nrow=2, byrow=T)</pre>
d1
det(d1)
```



```
> d1<-matrix(1:4, nrow=2, byrow=T)</pre>
> d1
    [,1] [,2]
[1,] 1 2
[2,] 3 4
> det(d1)
[1] -2
```

● 행렬의 연산

$$d1 = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$d1 = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 의역행렬: inverse(d1) $= \begin{bmatrix} -2.0 & 1.0 \\ 1.5 & -0.5 \end{bmatrix}$

```
#inverse of matrix
d1 inv<-solve(d1)</pre>
d1 inv
# d1*inv(d1)=identity matrix
d1%*%d1 inv
```



```
> d1 inv<-solve(d1)</pre>
> d1 inv
     [,1] [,2]
[1,] -2.0 1.0
[2,] 1.5 -0.5
> d1%*%d1 inv
     [,1]
                   [,2]
        1 1.110223e-16
[1,]
[2,]
        0 1.000000e+00
```

d1*(d1의 역행렬)= 단위행렬 (대각행렬이 1인 행렬)

- 행렬의 연산
- ☑ 역행렬을 이용한 방정식 해 구하기 (solve)
 - ▶ solve(A,b) : AX = b 의 해를 찾음

$$3x + 2y = 8$$
$$x + y = 2$$

$$A = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}, X = \begin{bmatrix} x \\ y \end{bmatrix}, b = \begin{bmatrix} 8 \\ 2 \end{bmatrix}$$

방정식의 해를 구하기 위해 a(행렬)와 b(벡터)를 생성

solve함수를 이용해 x와 y의 해를 찾음 (답: x=4, y=-2)

```
#solve equation
# 3x+2y=8, x+y=2
# matrix a, b
a <- matrix(c(3,1,2,1),nrow=2,ncol=2)
b \le matrix(c(8,2),nrow=2,ncol=1)
a
b
```


solve(a,b)

> solve(a,b) [,1] [1,] [2,]

● 행렬의 연산

☑ 매뉴얼 보기 : help(solve)

● 행렬의 연산

☑ 고유치(eigenvalue)와 고유벡터(eigenvector)

```
# example for eigen value and eigen vector
# already centered matrix
x \le matrix(c(-3,-2,0, 1, 2, 2, -3, -3, 0, 2, 2, 2, 5,7,4,0,-5,-11), nrow = 6, ncol = 3)
х
dim(x)
                                     > x
                                          [,1] [,2] [,3]
                                     [1,] -3
                                     [2,] -2 -3
                (6*3)의 행렬 x,
                                     [3,] 0 0
                                     [4,] 1 2
                 행렬 x의 차원
                                     [5,] 2 2
                                                  2 -11
                                     [6,]
                                     > dim(x)
                                     [1] 6 3
```

● 행렬의 연산

☑ 고유치(eigenvalue)와 고유벡터(eigenvector)

```
# eigen value and eigen vector
e1 < -eigen(t(x) % * % x)
e1
```



```
> el<-eigen(t(x)%*%x)
> e1
eigen() decomposition
$values
[1] 273.546962 13.845220
                            0.607818
$vectors
                     [,2]
           [,1]
[1,] -0.2525343 0.5487321 0.79694382
[2,] -0.2841664 0.7452586 -0.60319073
      0.9249194 0.3787911 0.03227211
```

여기서 t(x)%*%x는 공분산 행렬이라고 할 수 있음