# Performance Modeling of Computer Systems and Networks

Prof. Vittoria de Nitto Personè

The multi-server queue

Università degli studi di Roma Tor Vergata

Department of Civil Engineering and Computer Science Engineering

Copyright © Vittoria de Nitto Personè, 2021 https://creativecommons.org/licenses/by-nc-nd/4.0/

@(§)(€)(CC BY-NC-ND 4.0)

1



$$p(n) = \begin{cases} \frac{1}{n!} (m\rho)^n p(0) & \text{for } n = 1, ..., m \\ \frac{m^m}{m!} \rho^n p(0) & \text{for } n > m \end{cases}$$

$$p(0) = \left[ \sum_{i=0}^{m-1} \frac{(m\rho)^i}{i!} + \frac{(m\rho)^m}{m!(1-\rho)} \right]^{-1}$$

Prof. Vittoria de Nitto Personè

2



















Analytical models server organizations

### Communication systems

#### Frequency-division Multiplexing

#### Statistical multiplexing

$$\begin{array}{c} \lambda_{m} \Longrightarrow \coprod \mu \longrightarrow \\ \lambda_{m} \Longrightarrow \coprod \mu \longrightarrow \\ \vdots \\ \lambda_{m} \Longrightarrow \coprod \mu \longrightarrow \end{array}$$

$$\lambda \Longrightarrow \iiint m \mu \longrightarrow$$

$$E(T_S) = \frac{\rho E(S)}{1 - \rho} + E(S) = \frac{E(S)}{1 - \rho}$$
$$E(T_S) = \frac{1}{\mu \left(1 - \frac{\lambda}{\mu}\right)} = \frac{1}{\mu - \lambda}$$

M/M/1

Prof. Vittoria de Nitto Personè

13

13

Analytical models server organizations

## Communication systems

#### Frequency-division Multiplexing

### Statistical multiplexing



$$E(T_S)^{FDM} = \frac{1}{\mu - \frac{\lambda}{m}} = \frac{m}{m\mu - \lambda}$$

$$E(T_S)^{SM} = \frac{1}{m\mu - \lambda}$$

FDM shows a response time *m* times greater then for SM!

Prof. Vittoria de Nitto Personè

14











Analytical models server organizations

## **Server Organizations**



$$E(T_Q)_{Erlang} = \frac{P_Q E(S)}{1 - \rho}$$
  $E(T_Q)_{KP} = \frac{\rho E(S)}{1 - \rho}$ 

from the waiting time perspective the distributed capacity solution produces an improvement in the user perceived QoS

Prof. Vittoria de Nitto Personè

21

21

Analytical models server organizations

# **Server Organizations**



What about the response time perspective??

$$E(T_S)_{Erlang} = \frac{P_Q E(S)}{1 - \rho} + E(S_i)$$

$$E(T_S)_{KP} = \frac{\rho E(S)}{1 - \rho} + E(S)$$

$$E(S_i) = \frac{1}{\mu} = m \frac{1}{m\mu} = mE(S)$$

Prof. Vittoria de Nitto Personè

22











What about waiting and response time?

$$\rho = \frac{\lambda}{m\mu} \qquad \qquad \rho = \frac{a\lambda}{ma\mu} = \frac{\lambda}{m\mu}$$

$$E(S_i) = \frac{1}{\mu} \qquad \qquad E(S) = \frac{E(S_i)}{m}$$

Prof. Vittoria de Nitto Personè

27

27

Analytical models server organizations

## **Scaling factor**



Mean waiting time

$$E(T_Q)_{m,a} = \frac{P_Q E(S)_{m,a}}{1 - \rho} = \frac{P_Q}{ma\mu(1 - \rho)} = \frac{1}{a} \frac{P_Q E(S)m,1}{(1 - \rho)} = \frac{1}{a} E(T_Q)_{m,1}$$

Prof. Vittoria de Nitto Personè

28

$$\lambda_{\rm m} \Longrightarrow \coprod_{\mu} \mu \longrightarrow \lambda_{\rm m} \Longrightarrow \lambda_{\rm$$

$$\lambda \Longrightarrow \boxed{m} \mu \longrightarrow$$

 $\lambda = 4 \text{ j/s}, \quad m\mu = 4x1.5 = 6 \text{ j/s} \quad E(S)=0.166667 \text{ s}$ 

 $\rho = 0.666667$ 

$$E(T_S) = \frac{1}{m\mu - \lambda} = 0.5$$

$$E(T_Q) = 0.3334$$

Prof. Vittoria de Nitto Personè

31

31