Chapter 3 Naïive Bayes Learning

Contents

3	Naïi	ve Bayes Learning	1
	3.1	Direct Learning	2
	3.2	Probabilistic Model	3
	3.3	Probability Recap	3
	3.4	Joint Distribution	3
	3.5	Probability Distribution	4
		3.5.1 Bernoulli Distribution	4
		3.5.2 Binomial Distribution	4
		3.5.3 Categorical Distribution	4
		3.5.4 Multinomial Distribution	5
	3.6	Independence	5
	3.7	Bayes' Rule	5
	3.8	Bayesian Learning	6
	3.9	Maximum APosteriori Estimate	6
	3.10	Maximum Likelihood Estimate	7
	3.11	Bayesian Classifier	7
		Naïve Bayes Classifier	8
		Estimating Probabilities	8
		Laplace Smoothing	8
		Continuous Features	9
		Gaussian Naïve Bayes	9
		Bayesian Belief Network	9
			10
			10
			11
			11
			12
			12
	3.24		13

3.1 Direct Learning

 \bullet Consider a distribution D

- X Instance space, Y Set of labels. (e.g. ± 1)
- Given a sample $\{(\mathbf{x}, y)\}_1^n$ and a loss function $L(\mathbf{x}, y)$, find a hypothesis $h \in H$ that minimizes $\sum_{i=1,...n} L(h(\mathbf{x}_i), y_i)$.

Table 3.1: Losses

0 - 1 loss: $L(h(\mathbf{x}), y) = 1, h(\mathbf{x}) \neq y$ otherwise $L(h(\mathbf{x}), y) = 0$ L_2 Loss: $L(h(\mathbf{x}), y) = (h(\mathbf{x}) - y)^2$ Hinge Loss: $L(h(\mathbf{x}), y) = \max\{0, 1 - yh(\mathbf{x})\}$ Exponential Loss: $L(h(\mathbf{x}), y) = e^{-yh(\mathbf{x})}$

3.2 Probabilistic Model

Paradigm:

- Learn a probability distribution of the dataset.
- Use it to estimate which outcome is more likely.

Instead of learning $h: X \to Y$, learn P(Y|X).

- Estimate probability from data
 - Maximum Likelihood Estimate (MLE)
 - Maximum Aposteriori Estimation (MAP)

3.3 Probability Recap

$$0 \le P(A) \le 1$$

$$P(true) = 1, P(false) = 0$$

$$P(A \lor B) = P(A) + P(B) + P(A \land B)$$

$$P(A|B) = \frac{P(A \land B)}{P(B)}$$

3.4 Joint Distribution

Making a joint distribution of d variables

• Make a truth table listing all combinations of values of your variables (if there are $\frac{d}{d}$ boolean variables then the table will have $\frac{d}{d}$ rows)

- For each combination of values, say how probable it is.
- The probability must sum up to 1.

Once we have the Joint Distribution, we find probability of any logical expression involving these variables.

$$P(E) = \sum_{rows \ matching \ E} P(row)$$

$$P(E_1 \mid E_2) = \frac{E_1 \land E_2}{P(E_2)}$$

$$= \frac{\sum_{rows \ matching \ E_1 \ and \ E_2} P(row)}{\sum_{rows \ matching \ E_2} P(row)}$$
(3.1)

3.5 Probability Distribution

3.5.1 Bernoulli Distribution

Random Variable X takes values $\{0,1\}$ such that

$$P(X = 1) = p = 1 - P(X = 0)$$

Example: Tossing a coin.

3.5.2 Binomial Distribution

Random Variable X takes values $\{1, 2, ..., n\}$ representing the number of successes X = 1 in n Bernoulli trials.

$$P(X = k) = f(n, p, k) = C_n^k p^k (1 - p)^{n-k}$$

Example: Tossing a coin n times.

3.5.3 Categorical Distribution

Random Variable X takes on values in $\{1, 2, ..., k\}$ such that

$$P(X = i) = p_i \text{ and } \sum_{i=1}^{k} p_i = 1$$

Example: Rolling a die.

3.5.4 Multinomial Distribution

- Let the random variables $X_i (i = 1, 2, ..., k)$ indicates the number of times outcome i was observed over the n trials.
- The vector $X = (X_1, X_2, \dots, X_k)$ follows a multinomial distribution (n, p) where $p = (p_1, p_2, \dots, p_k)$ and $\sum_{i=1}^{k} 1$

$$f(x_1, x_2, ..., x_k, n, p) = P(X_1 = x_1, X_2 = x_2, ..., X_k = x_k)$$

$$= \frac{n!}{x_1! \times x_2! \times \dots \times x_k!} \times p_1^{x_1} \times p_2^{x_2} \times \dots \times p_k^{x_k} \text{ where } \sum_{i=1}^k x_i = n$$

Example: Rolling a die n times.

3.6 Independence

When two events do not affect each other's probabilities, they are called independent events

$$A \perp \!\!\!\perp B \Leftrightarrow P(A \wedge B) = P(A) \times P(B)$$

 $\Leftrightarrow P(A \mid B) = P(A)$

The conditional independence of events A and B, given C is:

$$A \perp \!\!\!\perp B|C \Leftrightarrow P(A \mid B, C) = \frac{P(A \land B|C)}{P(B|C)} = \frac{P(A|C) \times P(B|C)}{P(B|C)}$$
$$= P(A|C)$$

3.7 Bayes' Rule

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$
(3.2)

where A and B are events and $P(B) \neq 0$. Applying Bayes' rule for machine learning –

$$P(hypothesis \mid evidence) = \frac{P(evidence \mid hypothesis) \times P(hypothesis)}{P(evidence)}$$
(3.3)

3.8 Bayesian Learning

- Goal: find the best hypothesis from some space H of hypotheses, given the observed data (evidence) D.
- Define the most probable hypothesis in H to be the best.
- In order to do that, we need to assume a probability distribution over the class H.
- In addition, we need to know something about the relation between the evidence and the hypotheses.
- P(h) Prior Probability of the hypothesis h. Reflects the background knowledge, before data is observed.
- P(D) Probability that this sample of the data is observed.
- P(D|h) Probability of observing the sample D, given that hypothesis h is the target, also referred to as likelihood.
- P(h|D) Posterior probability of h. The probability that h is the target, given that D has been observed.
 - P(h|D) increases with P(h) and P(D|h).
 - P(h|D) decreases with P(D).

3.9 Maximum APosteriori Estimate

$$P(h|D) = \frac{P(D|h) \times P(h)}{P(D)}$$
(3.4)

- The learner considers a set of candidate hypotheses H (models) and attempts to find the most probable one $h \in H$, given the observed data.
- Such maximally probable hypothesis is called maximum a posterior estimate (MAP). Bayes theorem is used to compute it:

$$\begin{aligned} h_{MAP} &= \arg\max_{h \in H} P(h|D) \\ &= \arg\max_{h \in H} \frac{P(D|h) \times P(h)}{P(D)} \\ &= \arg\max_{h \in H} P(D|h) \times P(h) \end{aligned}$$

3.10 Maximum Likelihood Estimate

• We may assume that a priori, hypotheses are equally probable.

$$P(h_i) = P(h_i) \forall h_i, h_i \in H$$

• With that assumption, we can treat $\frac{P(h)}{P(D)}$ as a constant. We get the maximum likelihood estimate (MLE):

$$h_{MLE} = \arg \max_{h \in H} \frac{P(D|h) \times P(h)}{P(D)}$$

$$= \arg \max_{h \in H} P(D|h)$$
(3.5)

• Here we just look for the hypothesis that best explains the data.

3.11 Bayesian Classifier

• $f: \mathbf{X} \to Y$ where, instances $\mathbf{x} \in \mathbf{X}$ is a collection of inputs –

$$\mathbf{x} = (x_1, x_2, \dots, x_n)$$

• Given an example, assign it the most probable value in Y.

$$y_{MAP} = \arg \max_{y_j \in Y} P(y_j | x)$$

$$= \arg \max_{y_j \in Y} P(y_j | x_1, x_2, \dots, x_n)$$

$$= \arg \max_{y_j \in Y} \frac{P(x_1, x_2, \dots, x_n | y_j) P(y_j)}{P(x_1, x_2, \dots, x_n)}$$

$$= \arg \max_{y_i \in Y} P(x_1, x_2, \dots, x_n | y_j) P(y_j)$$
(3.6)

- Given the training data, we have to estimate the two terms.
- Estimating P(y) is easy, e.g., under the binomial distribution assumption, count the number of times y appears in the training data.
- However, it is not feasible to estimate $P(x_1, x_2, \dots, x_n | y)$
- In this case, we have to estimate for each target value, the probability of each instance (some of which might now ever occur).
- In order to use a Bayesian classifiers in practice, we need to make assumptions that will allow us to estimate these quantities.

3.12 Naïve Bayes Classifier

Assumption: Input feature values are independent, given the target value.

$$P(x_{1}, x_{2},..., x_{n}|y_{j}) = P(x_{1}|y_{j}) \times P(x_{2},..., x_{n}, x_{j})$$

$$= P(x_{1}|y_{j}) \times P(x_{2}|y_{j}) \times P(x_{3},..., x_{n}, x_{j})$$

$$= P(x_{1}|y_{j}) \times P(x_{2}|y_{j}) \times P(x_{3}|y_{j}) \times ... \times P(x_{n}|x_{j})$$

$$= \prod_{i=1}^{n} P(x_{i}|y_{j})$$
(3.7)

$$Y_{NB} = \arg \max_{y_j \in Y} P(x_1, x_2, \dots, x_n | y_j) P(y_j)$$

$$= \arg \max_{y_j \in Y} P(y_j) \prod_{i=1}^n P(x_i | y_j)$$
(3.8)

3.13 Estimating Probabilities

How do we estimate $P(x_i|y)$?

$$P(x_i|y) = \frac{\text{number of } x_i \text{ labeled as } y}{\text{total number of label } y} = \frac{n_i}{n}$$
(3.9)

Sparsity of data is a problem –

- If n is small, the estimate is not accurate.
- If $n_i = 0$, we will never accurately predict Y if an instance that never appeared in the training appears in the test data.

3.14 Laplace Smoothing

$$P(x_i|y) = \frac{n_i + \alpha}{n + \alpha d} \tag{3.10}$$

- Also known as additive smoothing.
- $\alpha > 0$ is a smoothing parameter.
- \bullet d is the dimension of the input.

3.15 Continuous Features

- Assume $P(x_i|y)$ has a Gaussian (normal) distribution.
- It is a continuous distribution with probability density function:

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 (3.11)

- $-\mu$ is the mean of the distribution.
- $-\sigma^2$ is the variance of the distribution.
- -x is a continuous variance $(-\infty \le x \le \infty)$

3.16 Gaussian Naïve Bayes

Table 3.2: Naïve Bayes Example

X_1	X_2	X_3	Y
2	3	1	1
-1.2	2	0.4	1
1.2	0.3	0	0
2.2	1.1	0	1

Compute the mean and standard deviation to estimate the likelihood.

$$\mu_1 = E[X_1 \mid Y = 1] = \frac{2 + (-1.2) + 2.2}{3} = 1$$

$$\sigma_1^2 = E[(X_1 - \mu_1)^2 \mid Y = 1] = \frac{(2 - 1)^2 + (-1.2 - 1)^2 + (2.2 - 1)^2}{3} = 2.43$$

$$P(x_1 \mid Y = 1) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x_1 - \mu_1)^2}{2\sigma^2}} = \frac{1}{3.91} e^{-\frac{(x_1 - 1)^2}{4.86}}$$

3.17 Bayesian Belief Network

- Naïve Bayes classifier works with the assumption that the values of the input features are conditionally independent given the target value.
- This assumption dramatically reduces the complexity of learning the target function.
- Bayesian Belief Network describes the probability distribution governing a set of variables by specifying a set of conditional independence assumptions along with a set of conditional probabilities. Conditional independence assumptions here apply to subsets of the variables.

$$P(x_1, x_2, \dots, x_l \mid x_1', x_2', \dots, x_m', y_1, y_2, \dots, y_n) = P(x_1, x_2, \dots, x_l \mid y_1, y_2, \dots, y_n)$$

3.18 Training Bayesian Classifier

During training, typically log-space is used.

$$y_{NB} = \arg\max_{y} \left[\log P(y) \prod_{i=1}^{n} P(x_i|y) \right]$$
$$= \arg\max_{y} \left[\log P(y) + \sum_{i=1}^{n} \log P(x_i|y) \right]$$

3.19 Text Classification

```
Algorithm 3.1 Text-based Naïve Bayes Classification
```

```
1: function Train-Naive-Bayes (D, C) returns \log P(c) and \log P(w|c)
           for all class c \in C do
                                                                                                                   \triangleright Calculate P(c) terms
 2:
 3:
                 N_{doc} \leftarrow \text{number of documents in } D
                 N_c \leftarrow \text{number of documents from } D \text{ in class } c
logprior[c] \leftarrow \log \frac{N_c}{N_{doc}}
 4:
 5:
                 V \leftarrow \text{vocabulary of } D
 6:
                 bigdoc[c] \leftarrow Append(d) for d \in D with class c
 7:
                 for all word w in V do
                                                                                                               \triangleright Calculate P(w|c) terms
 8:
                       \begin{aligned} & \text{Count}(w,c) \leftarrow \# \text{ of occurrences of } w \text{ in } bigdoc[c] \\ & loglikelihood[w,c] \leftarrow \log \frac{\text{Count}(w,c)+1}{\sum_{w'} \text{ in } v^{\text{(Count}(w',c)+|V|)}} \end{aligned}
10:
                 end for
11:
           end for
12:
           return logprior, loglikelihood, V
13:
14: end function
```

Algorithm 3.2 Test Naïve Bayes

```
1: function Test-Naive-Bayes(testdoc, logprior, loglikelihood, C, V) returns best c
2:
       for all class c \in C do
           sum[c] \leftarrow logprior[c]
3:
           for all position i in testdoc do
4:
               word \leftarrow testdoc[i]
5:
               if word \in V then
6:
                   sum[c] \leftarrow sum[c] + loglikelihood[word, c]
7:
               end if
8:
           end for
9:
       end for
10:
       return \arg \max_{c}, sum[c]
11:
12: end function
```

The word with doesn't occur in the training set, so we drop it completely (we don't use unknown word models for Naïve Bayes)

3.20 Evaluating Classifiers

- Gold Label is the correct output class label of an input.
- Confusion Matrix is a table for visualizing how a classifier performs with respect to the gold labels, using two dimensions (system output and gold labels), and each cell labeling a set of possible outcomes.
- True Positives and True Negatives are correctly classified outputs belonging to the positive and negative class, respectively.
- False Positives and False Negatives are incorrectly classified outputs.

Figure 3.1: An example of a Confusion Matrix.

3.21 Precision, Recall, F-Measure

$$\mathbf{Precision} = \frac{\text{true positives}}{\text{true positives} + \text{false positives}}$$
(3.12)

$$\mathbf{Recall} = \frac{\mathbf{true \ positives}}{\mathbf{true \ positives} + \mathbf{\ false \ negatives}} \tag{3.13}$$

$$\mathbf{F} - \mathbf{measure} = F_{\beta} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$
 (3.14)

3.22 ROC Curve

- A receiver operating characteristic curve (ROC curve) is a graphical plot that illustrates the performance of a binary classifier model.
- The ROC curve is the plot of the true positive rate (recall) (TPR) (3.13) against the false positive rate (FPR).

$$\mathbf{FPR} = \frac{\text{false positives}}{\text{false positives} + \text{true negatives}}$$
(3.15)

- ROC curve plots TPR vs. FPR at different classification thresholds.
- Classification threshold is used to convert the output of a probabilistic classifier into class labels.
- The threshold determines the minimum probability required for a positive class.
- Lowering the classification threshold classifiers more items as positive, thus increasing both False Positives and True Positives.

Figure 3.3: ROC Curve with defined thresholds

Figure 3.2: ROC Curve

3.23 AUC

- The Area Under the Curve (AUC) provides an aggregate measure of performance across all possible classification thresholds.
- Between two ROC curves plotted based on two learning models, the model with the higher AUC learned better than the other.

3.24 Naïve Bayes: Two Classes

- Naïve Bayes classifier gives a method for predicting the most likely class rather than an explicit class.
- In the case of two classes, $y \in \{0, 1\}$ we predict that y = 1 iff

$$\frac{P(y_j = 1) \times \prod_{i=1}^n P(x_i | y_j = 1)}{P(y_i = 0) \times \prod_{i=1}^n P(x_i | y_i = 0)} > 1$$

• $p_i = P(x_i|y_j = 1)$, $q_i = P(x_i|y_j = 0)$. Assuming Bernoulli Naïve Bayes,

$$\frac{P(y_j = 1) \times \prod_{i=1}^n p_i^{x_i} (1 - p_i)^{1 - x_i}}{P(y_j = 0) \times \prod_{i=1}^n q_i^{x_i} (1 - q_i)^{1 - x_i}} > 1$$

$$\Rightarrow \frac{P(y_j = 1) \times \prod_{i=1}^n (1 - p_i) (p_i / 1 - p_i)^{x_i}}{P(y_j = 0) \times \prod_{i=1}^n (1 - q_i) (q_i / 1 - q_i)^{x_i}} > 1$$

Take logarithm; we predict y = 1 iff

$$\log \frac{P(y_j = 1)}{P(y_j = 0)} + \sum_{i} \log \frac{1 - p_i}{1 - q_i} + \sum_{i} \left(\log \frac{p_i}{1 - p_i} - \log \frac{q_i}{1 - q_i} \right) x_i > 0$$

• We get that Naïve Bayes is a linear separator with –

$$w_i = \log \frac{p_i}{1 - p_i} - \log \frac{q_i}{1 - q_i} = \log \frac{p_i(1 - q_i)}{q_i(1 - p_i)}$$
(3.16)

- NB classifier corresponds to a linear classifier if the likelihood is from exponential family distributions i.e., Bernoulli, binomial, Gaussian etc.
- In the case of two classes, we can say:

$$\log \frac{P(y_j = 1|x)}{P(y_j = 0|x)} = \sum_{i} \mathbf{w}_i \mathbf{x}_i + b$$

• but since $P(y_j = 1|x) = 1 - P(y_j = 0|x)$, we get:

$$P(y_j = 1|x) = \frac{1}{1 + e^{-(\sum_i w_i x_i + b)}}$$

• This is simply the logistic function.