센서의 원리 및 응용 센서의 선정과 설계

■ 센서의 선정

1. 센서 선정 시 고려사항

- 현장에서 센서의 선정 기준
 - 생산 원가의 절감
 - 생산 공정의 합리화
 - 생산 설비의 자동화
 - 생산 체제의 유연성
 - 작업자의 보호 및 안전 등
- 센서 자체의 특성과 함께 센서의 신뢰성, 생산성 등을 고려하여 설계
 - 센서의 특성 : 검출 범위, 응답 속도, 구조의 검출 한계, 감도 검출 한계, 과부하 보호 등
 - 센서의 신뢰성 : 내환경성, 수명, 재현성, 히스테리시스, 직선성 및 감도 등
 - 생산성 : 제조 산출율, 제조 원가 등
 - 기타: 호환성, 센서의 내구성, 정전, 단선에 대비한 보조동력 등

2. 센서의 선정 기준

- 많은 요소들을 고려하여 종합적으로 판단
 - → 이것은 동일한 현상의 계측에서도 센서에 접속되는 계측 시스템에 따라 측정값이 크게 영향을 받기 때문
- 계측 시스템에 이미 설치되어 있는 것을 사용할 경우에는 하나의 요소는 결정되지만 시스템을 새로 개발할 경우 그 부분의 아날로그 기술, 인터페이스 개발 기술의 수준에 따라 센서를 이용할 수 있는 범위와 기종이 한정됨

■ 센서의 선정

2. 센서의 선정 기준

- 측정 대상의 성질과 상태 : 측정대상의 성질, 상태, 재질, 조건 등을 알고 선정해야 함
- 측정 현상과 범위 : 무엇을 어떻게 측정하는지 범위가 명확해야 함
- 정밀도와 응답속도: 센서의 분해능과 안정도, 응답속도를 확인
- 내구성과 유지보수 : 열악한 조건 속에서 사용되는 센서는 수명이 단축되므로 내구성 고려
- 내 환경성 : 측정하고자 하는 환경에 대한 내구성 이외에 다른 환경에서도 견딜 수 있어야 함
- 센서의 선정 방법
 - 목적에 맞는 센서를 선정할 것
 - 시스템의 설계단계에서부터 최적의 센서를 선정해 둘 것
 - 선정 기준 외에 센서를 선택할 때는 안정성, 내구성, 내마모성, 내후성, 노이즈, 외상 방지책, 보조동력, 신호의 통일 등을 반드시 고려

선정조건	선정 의미	선정 항목				
측정 조건	✓ 시스템 사양을 검토하고, 센서의 필요성과 사용 목적을 명확히 함	측정의 목적 / 측정량 / 측정 범위 / 입력신호 / 요구 정도 /측정시간				
특성	✓ 여러 가지 센서의 특성과 요구되는 특성을 맞춤	정도 / 안정성 / 응답도 / 직선성 / 히스테리시스 / 출력신호				
사용 조건	✓ 센서의 특성을 최대한 활용하기 위해서 환경을 고려	설치장소 / 접촉 시, 비접촉 시 / 외부신호 / 표시법				
입수 보수	✓ 종류와 가격이 다른 센서 중에서 최적의 것을 선정✓ 입수하기 쉽고, 보수가 용이하고, 장시간 운전에 좋은 것을 선정	가격 / 납기 / 서비스 / 보증기간 / 표준, 특수사양				

센서의 원리 및 응용 센서의 선정과 설계

- 1. 센서의 입력 선 연결
- 근접 센서 입력선 연결
 - 센서의 특징에 따른 요구사항을 위반할 경우 에러가 발생됨

검출 센서로부터 본 기기까지의 거리를 되도록 짧게 설계

입력선은 다른 동력선들과 같은 배관을 쓰지 않도록 구성

입력 배선이 길어지는 경우 <u>쉴드(Shield)</u> 선을 사용

*쉴드란?

주 배선에 외부 신호로 부터 영향을 받지 않기 위하여 금속 그물망을 선위로 커버하는 선

2. 센서의 출력 연결

- 근접 센서 출력회로 구성
 - 출력회로의 차이 및 전원전압 차이에 따라 구분하여 설계
 - 센서의 출력을 접속하는 기기나 장치의 입력 조건에 대하여 어떤 기종이 적합한지 선택하는 경우에 필요
 - 근접 센서의 구분 : 저소비 전류식인 직류 2선식, NPN 트랜지스터 방식, PNP 트랜지스터 오픈 컬렉터 방식, 설정거리에 비례한 아날로그 전압 출력 방식, 아날로그 전류 출력 방식으로 구분
- 교류형 근접 센서의 출력 연결
 - 부하를 접속하지 않은 상태에서 전원을 공급하면 내부 소자가 파손되므로 부하를 반드시 접속 한 후 사용
 - 부하는 어느 쪽이든 접속이 가능

2. 센서의 출력 연결

- 교류형 근접 센서의 출력 연결
 - ① 직렬(AND 접속): 교류형 근접 센서를 직렬로 사용할 경우 릴레이나 블리더 저항을 사용
 - 블리더 저항: 부하에 병렬로 접속하여 일정 전류를 흘리는 저항으로, 부하전류의 변화에 의한 전압의 변동을 억제하여 전압 변동률을 개선하고, 출력전압을 분압하여 필요한 전압을 얻기 위해서도 사용되는 방식

② 병렬(OR 접속)

- 2개 이상 접속할 경우 병렬회로로 접속하여 부하를 구동시킬 수 없음
- 근접 센서가 동시에 동작하지 않으면서 부하를 계속 유지시킬 필요가 없을 경우에 한하여 병렬 접속이 가능
- 근접 센서가 동작하지 않을 때는 누설전류가 n배가 되어 부하의 복귀불량이 발생 할 수 있음

2. 센서의 출력 연결

- 직류형 근접 센서의 출력 연결
 - ① 직렬(AND 접속)
 - 센서가 모두 동작해야만 출력 발생
 - 근접 센서가 ON 되었을 때 잔류전압의 합이 근접 센서의 동작전압과 부하의 구동전압에 영향을 미치지 않을 정도까지 접속 가능

2. 센서의 출력 연결

- 직류형 근접 센서의 출력 연결
 - ② 병렬(OR 접속)
 - 근접 센서 중 어느 하나만 동작해도 부하가 동작
 - 근접 센서가 OFF 인 경우 : 내부회로 동작 ⇒ 소량의 누설전류 발생
 - 여러 개의 근접 센서를 병렬접속 할 경우 : 누설전류 증가 ⇒ 부하 동작
 - 접속된 근접 센서의 누설전류의 합이 부하의 복귀 전류에 영향을 미치지 않는 정도까지 병렬접속 가능

3. 센서의 연결 시 주의사항

- 센서 입력 시 전원 투입 후 100mS의 내부회로 전압이 상승하는 시간이 필요
 - → 이 시간에는 입력에 대하여 동작을 하지 않을 수 있음
- 전원 개방 후 500mS 이하는 내부회로 전압의 하강 시간을 가지고 있음

3. 센서의 연결 시 주의사항

- 전원 투입 후 신호의 상승 시간과 하강 시간
 - 센서 입력 시 전원 투입 후 100mS의 내부회로 전압이 상승하는 시간이 필요 → 이 시간에는 입력에 대하여 동작을 하지 않을 수 있음
 - 전원 개방 후 500mS 이하는 내부회로 전압의 하강 시간을 가지고 있음

• 전원전압 채터링 방지

- 채터링(Chattering) : 계전기의 접점이 닫힐 때 한번에 닫히지 않고 여러 번 단속을 반복하는 것

3. 센서의 연결 시 주의사항

- 콘트롤러 2개 이상 장착하는 경우
 - 장착 간격을 최소 10mm이상 분리
 - 발열에 대한 환기장치 구성

4. 주위 환경 조건 고려

- 1) 설치 시 피해야 할 조건
- 강력한 진동 및 충격이 있는 장소
- 인화성, 부식성 가스가 발생하는 장소
- 강한 자기나 전기 노이즈 발생 장소
- 온도, 습도가 정격을 초과하는 장소
- 강 알카리, 강 산성 물질이 직접 나오는 장소
- 직사일광이 있는 장소

4. 주위 환경 조건 고려

- 2) 노이즈에 대한 주의사항
- 센서의 동작을 방해하는 전기신호인 노이즈에 센서가 영향을 받아
 오동작을 일으키거나 정확한 신호를 검출하지 못하는 문제 발생
- 임펄스 노이즈 전압 발생 : 전원 단자간에 0.1~1µF정도의 교류용 MP 콘덴서를 접속
- 제어반 조립 후 동작 측정
 - 센서를 회로에서 완전히 분리하여 측정
 - 단자부의 전 단자를 접속(Short)
- 동작 중 오동작 발생
 - 전원을 OFF/ON
 - 유도성 부하 양단에 서지 차단회로 삽입

5. 센서의 오동작 방지 방법

- 제어장치의 설치 및 분리는 전원입력을 차단한 후에 설치
- 오 배선을 피하기 위하여 접속도를 재확인
- 통풍이 잘되는 곳에 설치
- 사용 전원 전압 (AC 100V~220V) 사용
- 증기, 먼지, 부식성 가스, 물이 튀는 근처 배제
- AC 전원선은 O.C 출력선, 신호입력선과 배관 분리
- 입력 신호원으로 마이크로스위치, 리미트 스위치를 사용할 경우 O.C 출력단자에 채터링이 발생할 수 있으므로 주의 요망

센서의 원리 및 응용 센서의 선정과 설계

■ 센서 점검 및 유지보수

1. 자동화 설비의 보전 활동

• 자동화 설비의 도입 : 높은 설비투자 필요

• 투자비용 회수 : 자동화 설비의 높은 가동률

• 설비 성능 유지 : 신속한 고장 조치, 고장을 방지하기 위한 유지보수 활동

계획보전

설비의 설계에서 폐기까지 생산성, 품질 등을 극대화시키고, 보전비용을 최소화 시키는 것을 목표로 전개하는 보전활동

예방보전

설비의 건강 상태를 유지하고 고장이 나지 않도록 열화를 방지하기 위해 일상보전, 정기검사 등 예방을 위한 보전 활동

사후보전

고장정지 또는 유해한 성능저하를 가져온 후에 수리하는 보전활동

개량보전

설비의 신뢰성과 보전성을 향상시키기 위한 개선, 특히 고장 및 재발 방지, 수명연장, 보전시간 단축 및 기타 생산성 향상 등을 광범하게 목 적하는 개선활동

보전예방

고장이 잘 나지 않거나 고장이 나더라도 수리하기 쉽고 사용하기 편리한 설비를 만들기 위한 보전기술을 설계부문에 피드백하여 보전 불필요의 설비를 만들기 위한 보전 활동

■ 센서 점검 및 유지보수

2. 점검 절차 및 방법

• 센서의 일상, 정기점검을 위한 점검차트를 작성하여 센서의 이력 관리

서비	장치	부위	위 점검 항목	점검	검 점검 법 기준		점검	결과		조치	i
설비				시기		수리	검사	정비	계	자체	의뢰

센서 고장 시 점검 절차

→ 배선은 잘되어 있는가?	Yes No
→ 접속부는 이상 없는가?	Yes No
→ 전원, 전압은 이상 없는가?	Yes No
→ 센서 조정에는 이상 없는가?	Yes No
→ 광전 센서인 경우, 수광부측의 외란광의 상호간섭(설정거리, 감도조정, 광축)은 없는가?	Yes No

3. 센서의 보수 및 점검

- 장시간 사용 시 보수 및 점검 필요
- 너트 풀림이나 찌그러짐 유무를 점검
- 배선, 결선부분의 느슨함, 접속 불량, 단선 유무 점검
- 검출부에 금속분진 등의 부착 및 퇴적 유무 점검
- 설정거리의 이상 유무 점검
- 사용온도 조건, 주위 환경조건의 이상 유무 점검