TOPICS

- Introduction
- Thread terminology
- Thread drawing and dimensioning
- Threaded fastener

FASTENING TYPE

1. Permanent

FASTENING TYPE

2. Temporary

1. Threaded fastener

- bolts
- studs
- screws

2. Non-threaded fastener

- keys
- pin

THREAD APPLICATION

- 1. To hold parts together.
- To move part(s) relative to others

THREAD APPLICATION

- To hold parts together.
- 2. To move part(s) relative to others.

Wood working vise

Palm fruit pressing machine

External (male) thread

Internal (female) thread A thread cut on the **outside** of a cylindrical body.

A thread cut on the *inside* of a cylindrical body.

External thread-

Internal thread

Right-hand thread

Left-hand thread

Thread that will **assemble** when turned **clockwise**.

Thread that will **assemble** when turned **counter-clockwise**.

Turnbuckle use RH and LH thread at each end to double displacement.

Crest

The **peak edge** of a thread.

Root

The **bottom** of the thread cut into a cylindrical body.

Thread angle

The angle between threads faces.

Major diameter

Minor diameter

The *largest diameter* on an internal or external thread.

The *smallest diameter* on an internal or external thread.

External Thread

Internal Thread

Pitch

Lead

The distance between crests of threads.

The distance a screw will advance when turned 360°.

External Thread

Internal Thread

COMPARISON OF THREAD CUTTING

THREAD REPRESENTATION

- 1. Detailed representation
- 2. Schematic representation
- 3. Simplified representation

Important Note:

Simplified representation is used in the practical class

SIMPLIFIED REPRESENTATION

Use thick continuous lines for representing crest and thin continuous lines for representing root of the thread, respectively.

External thread

Internal thread

SIMPLIFIED REPRESENTATION

Use thick continuous lines for representing crest and thin continuous lines for representing root of the thread, respectively.

External thread

Internal thread

DRAWING STEPS OF EXTERNAL THREAD

DRAWING STEPS OF THREADED HOLE

DRAWING STEPS OF THREADED HOLE

2. Blinded threaded hole

DIMENSIONING EXTERNAL THREAD

- Use *local note* to specify:- *thread form*, *nominal size*, *pitch* (if it is a fine thread)
- Use typical method to specify: thread length.

DIMENSIONING THREADED HOLE

Use *local note* to specify

- 1. Tap drill size
- 2. Drill depth
- 3. Thread form
- 4. Nominal size
- 5. Pitch
- 6. Thread depth

BOLT: Terminology

Bolt is a threaded cylinder with a head.

Hexagonal head bolt and nut

Front View Left side View First angle projection

Hexagonal nut

Hexagonal nut- Step 1

Hexagonal nut- Step 2

BOLT: Drawing steps

Right side View

Front View

Third angle projection

NUT: Drawing steps

Dimensions of the nut are given in Table 9.14.

BOLT: Application

Drawing steps of Hexagonal of K. J.

Draw steps of Hexagonal

Other method -Steps of Hexagonal

DIMENSIONING THREADED HOLE

Use *local note* to specify

- 1. Tap drill size
- 2. Drill depth
- 3. Thread form
- 4. Nominal size
- 5. Pitch
- 6. Thread depth

