

Chapter 5b – Algorithms Spring 2023

Algorithms

- https://en.wikipedia.org/wiki/Scheduling (computing)
- How does the scheduler choose which process in the ready queue to run next?
 - CPU utilization Can we keep the CPU(s) as busy as possible?
 - Throughput How many processes can we run in a time frame? The more the merrier
 - Turnaround time How long are processes taking? From New to Terminated
 - Waiting time How long are processes waiting in the ready queue
 - Response time How long are processes taking to just start giving responses?

Algorithms

- Fairness The general goal is to:
 - Maximize CPU utilization
 - Maximize throughput
 - Minimize turnaround time
 - Minimize waiting time
 - Minimize response time
- Some systems may value some criteria more than others
- No matter what, we don't want any processes to be starved out (never gets run!)

Algorithms

- First-Come, First-Served Scheduling (FIFO) (Queue)
- Last-Come, First Served Scheduling (LIFO) (Stack)
- Shortest-Job-First Scheduling
- Round-Robin Scheduling
- Priority Scheduling
- Lottery Scheduling
- Multilevel Queue Scheduling
- Multilevel Feedback Queue Scheduling

- The first process to enter the ready queue gets to run first
- A process continues to run until it needs I/O or until it terminates
 - Is this preemptive or nonpreemptive?
- Pro The simplest algorithm to understand and implement
- Con The waiting time can be long

Consider the following processes in the following order:

Process	Burst time (milliseconds)
P_1	24
P ₂	3
P_3	3

The Gantt chart for the schedule is:

- Waiting time for $P_1 = 0$, $P_2 = 24$, $P_3 = 27$. Average is (0 + 24 + 27)/3 = 17
- Turnaround time for $P_1 = 24$, $P_2 = 27$, $P_3 = 30$. Average is (24 + 27 + 30)/3 = 27

Suppose we had a different order:

Process	Burst time (milliseconds)
P ₂	3
P_3	3
P_1	24

The Gantt chart for the schedule is:

- Waiting time for $P_1 = 6$, $P_2 = 0$, $P_3 = 3$. Average is (6 + 0 + 3)/3 = 3
- Turnaround time for $P_1 = 30$, $P_2 = 3$, $P_3 = 6$. Average is (30 + 3 + 6)/3 = 14

Suppose we had a different order:

Process	Burst time (milliseconds)
P_2	3
P_1	24
P_3	3

What does the Gantt chart look like?

- What is the waiting time for P_1 , P_2 , P_3 ? Average waiting time? $(0+3+27)/\zeta = 10$
- What is the turnaround time for P_1 , P_2 , P_3 ? Average turnaround time? (3+2)+20)/(3=20)

Summary:

	P ₁ , P ₂ , P ₃	P ₂ , P ₃ , P ₁	P ₂ , P ₁ , P ₃
Average Waiting Time	17	3	(3 + 0 + 27)/3 = 10
Average Turnaround Time	27	14	(27 + 3 + 30)/3 = 20

- Convoy effect Short processes stuck behind long processes
 - We want to avoid this!

We should be considering arrival time

Process	Arrival time	Burst time (milliseconds)
P_1	0	24
P_2	1	3
P_3	2	3

The Gantt chart for the schedule is:

- Waiting time for $P_1 = 0$, $P_2 = 24-1 = 23$, $P_3 = 27-2 = 25$. Average is (0 + 23 + 25)/3 = 16
- Turnaround time for $P_1 = 24$, $P_2 = 27-1 = 26$, $P_3 = 30-2 = 28$. Average is (24 + 26 + 28)/3 = 26

Suppose we had a different order

Process	Arrival time	Burst time (milliseconds)
P ₂	0 .	3
P_1	1)	24
P ₃	2	3

What does the Gantt chart look like?

What is the waiting time for P_1 , P_2 , P_3 ? Average waiting time? $\begin{bmatrix} 0 + (\zeta - 1) + (2\zeta - 1) \end{bmatrix} / \zeta$

Last-Come, First Served

- The latest process to enter the ready queue gets to run first
- Pro Improves response time for newly created processes
- Con Risk of starvation. Some processes may never be picked up

- (More accurate to call it "Shortest-next-CPU-burst", since we are based off CPU bursts, not the entire job)
- Associate with each process the length of its next CPU burst
 - Use these lengths to schedule the process with the shortest time
 - Generally, nonpreemptive but preemptive is, of course, possible
- Pro If the CPU burst time is accurate, SJF is optimal. Guaranteed to provide the minimum average waiting time for a given set of processes
- ・ Con How do we determine the length of the next CPU burst? We could ask the user/developer to set it, or we could make an estimate based on previous history

Consider the following processes

Process	Burst time (milliseconds)
P_1	6
P ₂	8
P ₃	7
P ₄	3

What does the Gantt chart look like?

- Waiting time for $P_1 = 3$, $P_2 = 16$, $P_3 = 9$, $P_4 = 0$. Average is (3 + 16 + 9 + 0)/4 = 7
- Turnaround time for $P_1 = 9$, $P_2 = 24$, $P_3 = 16$, $P_4 = 3$. Average is (9 + 24 + 16 + 3)/4 = 13

With arrival time

Process	Arrival time	Burst time (milliseconds)
P_1	0	6
P ₂	1	8
P ₃	2	7
P ₄	3	3

What does the Gantt chart look like?

- What is the waiting time for P₁, P₂, P₃, P₄? Average waiting time?
- What is the turnaround time for P_1 , P_2 , P_3 , P_4 ? Average turnaround time?

- How do we estimate the next CPU burst? Exponential smoothing (or Exponential averaging)
 - It probably won't be the same as the previous CPU burst, but it will probably be similar
 - 1. t_n = actual length of n^{th} CPU burst
 - 2. τ_{n+1} = predicted value for the next CPU burst
 - 3. α , $0 \le \alpha \le 1$
 - 4. Define:

$$au_{n+1} = lpha t_n + (1-lpha) au_n$$

- How do we estimate the next CPU burst?
 - Set α to 0 The most recent history has no bearing. Pick an estimate and never update it

$$au_{n+1} = au_n$$

Set α to 1 – Only the most recent history has any bearing

$$au_{n+1} = t_n$$

- More commonly, set α to $\frac{1}{2}$ so we get the most recent history and all the past history
 - Set α to 0.5 1.0 to put higher weight on recent history, 0 0.5 to put higher weight on past history

- How do we estimate the next CPU burst?
 - Pick any value for τ_0 to get us started (say, 10) set α to $\frac{1}{2}$

- How do we estimate the next CPU burst?
 - What if we give higher weight to the most recent burst and set α to 0.75

t _i		6	4	6	4	13	13	13
τ_0		4.5+2.5	3+1.8	4.5+1.2	3+1.4	9.8+1.1	9.8+2.8	9.8+3.2
	10	7	4.8	5.7	4.4	10.9	12.6	13

• What if we give higher weight to past history and set α to 0.25

t _i		6	4	6	4	13	13	13
το								
	10							

With arrival time and preemption ("shortest-remaining-time-first")

Process	Arrival time	Burst time (milliseconds)
P_1	0	8
P_2	1	4
P_3	2	9
P_4	3	5

What does the Gantt chart look like? P₁ has 7ms left but P₂ has 4:

	P ₁	P ₂	P ₄	P ₁	P ₃
0	•	1 5	5 1	0 1	7 26

- $P_1 = 10-1$, $P_2 = 1-1$, $P_3 = 17-2$, $P_4 = 5-3$ Average waiting time is 6.5
- $P_1 = 17-0$, $P_2 = 5-1$, $P_3 = 26-2$, $P_4 = 10-3$? Average turnaround is 13

Round-Robin

- Similar to FCFS scheduling except we add a preemption using a timer
- Each process gets a small unit of CPU time (time quantum), usually 10-100 milliseconds. After this time has elapsed, the process is preempted and added to the end of the ready queue.
- <u>Pro</u> If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n of the CPU time in chunks of at most q time units at once. No process waits more than (n-1)q time units.
- Con If q is very high, this is just FCFS with extra steps! If q is very low, you may spend more time context switching than actually executing tasks! Typically, q ~10-100 milliseconds. Context switches <10 microseconds

Round-Robin

Consider the following processes with time quantum 4

Process	Burst time (milliseconds)	
P_1	24	
P ₂	3	
P_3	3	

What does the Gantt chart look like?

- Waiting time for $P_1 = 10-4$, $P_2 = 4$, $P_3 = 7$. Average is (6 + 4 + 7)/3 = 5.66
- Turnaround time for $P_1 = 30$, $P_2 = 7$, $P_3 = 10$. Average is (30+7+10)/3 = 15.66

Round-Robin

- A smaller quantum generally means more context switches which generally means longer turnaround time
- Ideally, ~80% of CPU bursts should be shorter than the quantum

process	time
P ₁	6
P_2	3
P_3	1
P_4	7

- Assign a priority number (integer) to each process
- The CPU is allocated to the process with the highest priority (We will treat the smallest integer as highest priority, but this could be implemented the other way too)
- Generally, a preemptive algorithm but nonpreemptive could be possible
- FCFS is priority scheduling where all processes have the same priority
- SJF is priority scheduling where priority is the inverse of predicted next CPU burst time (The larger the CPU burst, the lower the priority, and vice versa)
- Pro More control over CPU scheduling

- Con Starvation is possible and needs to be accounted for hyler primity.

Consider the following processes with the following priorities

Process	Burst time (milliseconds)	Priority
P_1	10	3
P ₂	1	1
P_3	2	4
P ₄	1	5
P ₅	5	2

What does the Gantt chart look like?

Average waiting time is 8.2. Average turnaround time is 12

 Consider the following processes with the following priorities with round-robin with time quantum 2

Process	Burst time (milliseconds)	Priority	
P_1	4	3	
P_2	5	2	
P ₃	8	2	1
P ₄	7	1	,
P ₅	3	3	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

What does the Gantt chart look like?

- A process that is ready to run but may be in the ready queue indefinitely
 - It may EVENTUALLY run (e.g. 2am on a Sunday)
 - The computer may reboot or crash and the process may never get run
- Implement aging As time progresses, increase the priority of the process

avoid of starvation.

Lottery

- The scheduler distributes "lottery tickets" to all the processes
- The scheduler then randomly selects a lottery number
- The process assigned the lottery number is the next process to run
- E.g. 100 tickets for 3 processes: Process A gets 50%, Process B gets 15%, Process C gets 35%
- · Pro If each process gets tickets, no process will ever starve get a chance es m
- Con If there are many tickets for many processes, this may be inefficient

Multilevel Queue

- The ready queue consists of multiple queues. This is how ready queues are usually implemented
- Multilevel queue scheduler requires: A set of queues, a scheduling algorithms for each queue, a method used to determine which queue a process will enter when that process needs service, and scheduling among the queues
- Pro The best of all worlds. Pick the most appropriate scheduling algorithm for the queue
- Con Starvation is still possible. High priority processes may use up all the CPU time

Multilevel Queue

Multilevel Feedback Queue

- To address the issue of starvation in a multilevel queue, provide an aging mechanism so
 processes can be promoted to higher priority queues
- To address the issue of processes using too much CPU time, provide a mechanism to demote them to a lower priority queue

Multilevel Feedback Queue

- Consider an example with three queues
 - $Q_0 RR$ with time quantum 8 milliseconds
 - Q₁ RR time quantum 16 milliseconds
 - $Q_2 FCFS$

- A new process enters queue Q₀ and receives 8 milliseconds
- If it does not finish in 8 milliseconds, the process is moved to queue Q₁
- At Q₁ job is again served in RR and receives 16 additional milliseconds
- If it still does not complete, it is preempted and moved to queue Q₂

