

Anticipez les besoins en consommation de bâtiments Synthèse

Sommaire

1 - ANALYSE EXPLORATOIRE DES DONNÉES

- 1.1 NETTOYAGE & FEATURE ENGINEERING
- 1.2 SÉLECTION DES FEATURES & VARIABLES-CIBLES
- 1.3 STATISTIQUES DESCRIPTIVES

2 - MODÉLISATION

- 2.1 MÉTHODOLOGIE PRE-PROCESSING, STRATIFIED K-FOLD & ÉVALUATION
- 2.2 CHOIX DES MODÈLES & OPTIMISATION DES HYPER-PARAMÈTRES
- 2.3 RÉSULTATS SUR LES JEUX D'ENTRAÎNEMENT & DE VALIDATION

3 - ÉVALUATION DU MODÈLE FINAL

- 3.1 Sur le Jeu de Test
- 3.2 FEATURE IMPORTANCE GLOBALE
- 3.3 FEATURE IMPORTANCE LOCALE

CONCLUSION & PERSPECTIVES ANNEXES

Contexte & Objectifs

PROJET

Sur la base des relevés de l'année 2016, prédire la consommation énergétique totale et les émissions de gaz à effet de serre des immeubles à usage non-résidentiel de la ville de Seattle, et évaluer l'utilité de l'Energy Star Score dans ces prédictions.

DÉMARCHE

Après une analyse exploratoire des données, utiliser plusieurs familles de modèles et les évaluer selon plusieurs critères afin d'en déduire les meilleures prédictions et le meilleur jeu de données en entrée.

1.1 - NETTOYAGE & FEATURE ENGINEERING

JEU DE DONNEES INITIAL* :

Données géographiques :

Latitude & longitude

- Ville / État
- Code postal etc...
- 9 variables

Données énergétiques & environnementales :

- Consommation
- Types d'énergie
- Émissions de gaz à effet de serre etc...
- > 15 variables

Données structurelles, réglementaires & fiscales :

- Conformité des rapports
- Source des données
- Age des immeubles
- Nombre de bâtiments etc...
- > 12 variables

Données d'utilisation principale & secondaires :

- Habitation
- Commerces
- Parkings
- Superficies etc...
- ▶ 10 variables

^{*}Source: https://data.seattle.gov/Built-Environment/2016-Building-Energy-Benchmarking/2bpz-gwpy/about_data

3,376 immeubles distincts 46 variables 13% NaNs

1.1 - NETTOYAGE

SUPPRESSIONS – 87 immeubles sur 1,470 non-résidentiels

- Données non pertinentes:
 - immeubles à usage résidentiel (d'apres BuildingType, PrimaryPropertyType, LargestPropertyUseType, SecondLargestPropertyUseType et ThirdLargestPropertyUseType)
 - > données purement administratives (Zip code, information fiscale, commentaires etc...)
 - > données non-differenciées (1 seule valeur) comme State ou City

Données non qualitatives:

- > immeubles utilisant des DefaultData
- > immeubles pour lesquels la consommation totale des 3 types d'énergie dévie de plus de 5% en valeur absolue du total rapporté
- immeubles pour lesquels le LargestPropertyUseTypeGFA est manquant
- immeubles pour lesquels le NumberofBuildings est nul

Outliers

CORRECTION

des labels dans la colonne Neighborhood

1.1 - FEATURE ENGINEERING

- * Remplacement de l'année de construction par l'âge de l'immeuble
- ❖ Conversion des usages primaires, secondaires & tertiaires en colonnes de % de la surface totale & groupement des valeurs les moins fréquentes (<1%) en « Other_aggregated_usage »
- ❖ Discrétisation des variables-cibles en 3 quantiles (low / medium / high) en vue du stratified k-fold
- ❖ Addition d'une colonne binaire pour l'utilisation de chaque type d'énergie (électricité, gaz & vapeur)
- ❖ Ajout d'une colonne par type de consommation (électricité, gaz & vapeur) en % du total

1.2 - SÉLECTION DES FEATURES & VARIABLES-CIBLES

JEU DE DONNÉES NETTOYÉ:

2 VARIABLES-CIBLES:

Consommation d'énergie SiteEnergyUseWN(kBtu) Unité: milliers de British Thermal Units*

Émissions de gaz à effet de serre TotalGHGEmissions Unité: tonnes métriques d'équivalent CO₂

1.3 - STATISTIQUES DESCRIPTIVES

CORRÉLATIONS:

- Skew
- Variables non-gaussiennesCoefficient de Spearman

1.3 - STATISTIQUES DESCRIPTIVES

CARACTÉRISTIQUES DU PARC IMMOBILIER NON-RÉSIDENTIEL DE SEATTLE

ÂGE & HAUTEUR DES IMMEUBLES

Seattle

1.3 - STATISTIQUES DESCRIPTIVES

CARACTÉRISTIQUES DU PARC IMMOBILIER NON-RÉSIDENTIEL DE SEATTLE

Types d'Usage & d'Énergie

Buildings by primary property type

0.6%

5.0%

0.6% 2.8% Distribution Center

Hospital Hotel

University
Warehouse

K-12 School

Large Office

Medical Office

Mixed Use Property

Self-Storage Facility
Senior Care Community

Refrigerated Warehouse Restaurant

Small- and Mid-Sized Office Supermarket / Grocery Store

2.1 - MÉTHODOLOGIE - STRATIFIED K-FOLD

2.1 - ÉVALUATION DES MODÈLES

CRITÈRES D'ÉVALUATION:

- $ightharpoonup R^2$
- > MAE
- > Fit time

2.2 - Choix des Modèles & Features

❖ Modèles testés :

- ➤ Baseline = régression linéaire
- ➤ ElasticNet
- K-Nearest Neighbors
- > Support Vector Regression
- > Random Forest Regression
- ➤ Gradient Boosting Regression

* Combinaisons de features testées :

- ➤ Latitude & Longitude / neighborhood
- Catégories d'énergie utilisées / % du total
- > ENERGYSTARScore exclus ou inclus
- ➤ Et, dans le cas des Émissions de Gas à effet de serre, prédiction de la consommation totale d'énergie exclue ou incluse

2.2 - OPTIMISATION DES HYPER-PARAMÈTRES

	Valeur-cible			
Modèle	SiteEnergyUseWN(kBtu)	TotalGHGEmissions		
Linear Regression	fit_intercept: [True, False], modelcopy_X: [True]	fit_intercept: [True, False], modelcopy_X : [True]		
ElasticNet	alpha: [0.001, 0.01, 0.1, 1, 10], random_state: [rs], modelcopy_X: [True]	alpha: [0.01, 0.1, 1], random_state: [rs], modelcopy_X: [True], selection: ['random'], tol: [0.001], l1_ratio: [0.1, 0.2, 0.5], max_iter': [2000]		
KNN	n_neighbors: [5, 10, 15], weights : ['uniform', 'distance']	n_neighbors: [10, 15, 20], weights: ['distance'], algorithm: ['ball_tree', 'kd_tree'], leaf_size: [15, 30, 45], p:[1, 2], n_jobs:[-1]		
SVR	kernel: ['poly'], degree: [2,3], gamma: [1, 10], C: [0.1, 1], epsilon: [0.1, 0.5]	kernel: ['rbf'], gamma: [0.01, 0.1, 1], C: [0.01, 0.1, 1, 10, 100, 1000], epsilon: [0.05, 0.01, 0.1], max_iter: [2000], tol': [0.001]		
Random Forest	n_estimators: [100, 200], random_state : [rs], max_depth : [None]	n_estimators: [100, 200], random_state': [rs], max_depth: [5, 10], bootstrap': [True, False], min_samples_leaf: [2, 3], min_samples_split': [2, 5], max_features: ['sqrt', 'log2'], max_leaf_nodes': [20, 50], n_jobs': [-1]		
Gradient Boosting	learning_rate:[0.5, 0.25, 0.1], n_estimators':[100, 200], random_state':[rs]	learning_rate: [0.5, 0.25, 0.1], n_estimators: [200, 400], random_state': [rs], loss: ['squared_error'], max_features: ['sqrt',		

2.4 - ÉVALUATION SUR LES JEUX D'ENTRAÎNEMENT & DE VALIDATION SITEENERGYUSEWN(KBTU)

❖ Sans ENERGYSTARScore:

Model ▼	Train R2 🔻	Train fit time 🔻	Val R2 🔽	Val MAE 🔻
Linear Regression	0.1572	5.12	0.2297	8,343,228.5918
ElasticNet	0.2876	6.49	0.2214	6,682,449.4851
KNN	0.2846	10.84	0.5081	4,764,916.8436
SVR	0.3919	29.85	0.1994	5,558,838.0088
Random Forest Regression	0.5845	37.22	0.7721	3,686,620.3270
Gradient Boosting Regression	0.5339	32.62	0.7380	4,054,347.4131

PARAMÈTRES:

 {'max_depth': None, 'n_estimators': 200, 'random_state': 42}

* Avec ENERGYSTARScore:

Model ▼	Train R2 🔻	Train fit time 🔻	Val R2 💌	Val MAE 🔻
Linear Regression	0.1673	2.21	0.2424	8,283,946.3256
ElasticNet	0.2944	5.54	0.2296	6,636,985.4928
KNN	0.2783	6.86	0.4584	4,748,229.2635
SVR	0.3941	28.00	0.0651	5,809,382.7329
Random Forest Regression	0.6002	40.65	0.7993	3,443,620.8714
Gradient Boosting Regression	0.5751	35.07	0.7735	3,590,709.1203

2.4 - ÉVALUATION SUR LES JEUX D'ENTRAÎNEMENT & DE VALIDATION GHGEMISSIONS

❖ <u>Sans ENERGYSTARScore</u> :

Model ▼	Train R2 💌	Train fit time 🔻	Val R2 🔽	Val MAE 🔻
Linear Regression	- 0.6320	2.46	- 0.1465	183.6420
ElasticNet	0.0416	9.90	0.1768	142.2493
KNN	0.0980	47.32	0.3224	88.8791
SVR	0.3290	88.00	0.4430	80.9461
Random Forest Regression	0.3269	293.99	0.6732	80.1427
Gradient Boosting Regression	0.3307	390.90	0.6113	88.7281

❖ Avec ENERGYSTARScore :

Model ▼	Train R2 🔻	Train fit time 🔻	Val R2 🔻	Val MAE 🔻
Linear Regression	- 0.6320	2.16	- 0.1465	183.6420
ElasticNet	0.0416	9.05	0.1768	142.2502
KNN	0.2285	46.66	0.3161	88.9497
SVR	0.3337	91.51	0.4301	82.1739
Random Forest Regression	0.3615	293.76	0.6579	80.0998
Gradient Boosting Regression	0.3047	418.69	0.5850	84.3626

PARAMÈTRES:

- 'bootstrap': True,
 'max_depth': 10,
 'max_features': 'sqrt',
 'max_leaf_nodes': 50,
 'min_samples_leaf': 2,
 'min_samples_split': 2,
 'n_estimators': 200,
 'n_jobs': -1,
 'random_state': 42}
- 'bootstrap': True,
 'max_depth': 10,
 'max_features': 'sqrt',
 'max_leaf_nodes': 50,
 'min_samples_leaf': 2,
 'min_samples_split': 2,
 'n_estimators': 200,
 'n_jobs': -1,
 'random state': 42}

3.1 - SUR LE JEU DE TEST

* Résultats sur le jeu de Test après réentrainement sur jeu (Train + Validation) :

Modele	Variable-Cible	Features	Test R2	Test MAE
	SiteEnergyUseWN(kBtu)	Sans ENERGYSTARScore	0.6890	3,084,918.7219
Random Forest Regression		Avec ENERGYSTARScore	0.6992	2,934,380.6128
nandomi orest negression	GHGEmissions	Sans ENERGYSTARScore	0.6166	80.6622
		Avec ENERGYSTARScore	0.5641	85.8598

3.2 - FEATURE IMPORTANCE GLOBALE SITEENERGYUSEWN(KBTU)

3.2 - FEATURE IMPORTANCE GLOBALE GHGEMISSIONS

Conclusion & perspectives

- Ajout de données supplémentaires en entrée ne conduit pas nécessairement à une amélioration des résultats d'un modèle
 - ➤ Minimiser l'erreur totale = optimiser le compromis biais / variance#
- ❖ Point de vigilance, particulièrement lorsque ces données sont complexes à calculer* & coûteuses à acquérir
 - > Energy Star Score peu utile & pas toujours disponible
- Les résultats présentés ne sont que des exemples
 - > Pas de « meilleure modélisation » absolue
 - Autres modèles, paramètres, hypothèses+ & groupes de données à tester

^{*} Source: https://www.energystar.gov/buildings/benchmark/understand-metrics/score-details

[#] voir Annexe 1

ANNEXE 1 - THE BIAS / VARIANCE TRADE-OFF

Bias is the tendency of a model to provide inaccurate predictions.

Variance is the tendency of a model to provide very different predictions when trained with different sets of features.

Annexe 2 – Impact de l'EnergyStarScore sur les Prédictions Modèle = Random Forest Regressor

