Reconstruction of MRI

Professor Dr. Rafiqul Islam
Department of CSE

Introduction

- Magnetic Resonance Imaging (MRI) is a fascinating imaging technology for capturing image to visualize inside of the human body.
- Painless and non-invasive procedure.
- MRI does not use any ionizing radiation.

Introduction

• MRI Principle

Introduction

• CT Principle

MRI

- Inherent slow data collection
 - Limits spatial resolution
 - Limits temporal resolution
 - Introduces artifacts in image
- Moreover, slow acquisition is uncomfortable for patients, especially-
 - Who are anxious
 - Who can not keep still or motionless
 - Who have limited breath-hold capacity, and
 - Who are uncooperative such as children

CT

- Radiation Exposure
- Harm to unborn babies
- Reactions to contrast material

Motivation: CT

• Acquisition of projections with low dose radiation is a challenge

- Possible solution
 - Reduces number of projections and apply iterative algorithm to reconstruct

Motivation: MRI

• Acquisition of k-space data within reasonable time is a challenge

- Possible solution
 - Enables faster acquisition by reducing sampling data

• These challenges can be solved using compressed sampling

Compressed Sampling

• Compressed Sampling in MRI, while reducing acquisition time, enables high subsampling factors maintaining diagnosable image quality.

- This technique changes the goal based on three golden rules:
 - 1. Incoherent sub-sampling
 - 2. Transform sparsity
 - 3. Non-linear iterative reconstruction technique

Compressed Sampling

	Nyquist's Sampling	Compressed Sampling
Sampling Frequency		
Reconstruction	Low pass filter	Non-linear reconstruction

Non-linear Iterative Reconstruction

• Basic formulation of CS technique:

$$y = \Phi_c x + b$$

• Objective function:

$$J(x) = \frac{1}{2} \|\Phi_c \Psi x - y\|_2 + \tau \|\Psi x\|_1$$

- $\Phi_c \Psi x$ generates low coherence
- Our goal is to achieve and optimal balance of data consistency and sparsity

Non-linear Iterative Reconstruction

- Iterative Algorithm
- Denoising/ regularization based algorithm
- Wavelet domain regularised based algorithm
- Deep Learning based algorithm

Algorithm

- Initialization: Reconstructed Image (x0), Other parameters
- Start: Loop
- Update Image: $z_j^{(n)} = W_j \left(\alpha_j x^{(n)} + \Phi_c^* (y \Phi_c x^{(n)}) \right)$
- Perform de-noising: $x^{(n+1)} = M_i(\hat{z}^{(n)})$
- End: Loop

Denoising Algorithm

- Total Variation
- Soft-thresholding
- Gaussian Mixture Model

Algorithm Flowchart

Thank you

Any Questions?