2.3 Properties of Context-free Languages

Pumping Lemma for CFL's

Closure Properties

Decision Properties

Pumping Lemma for CFL's

- ☐ Similar to regular-language PL, but you have to pump two strings in the middle of the string, in tandem (i.e., the same number of copies of each). Formally:
 - ∀ CFL L
 - ∃ integer p
 - \forall w in L, with $|w| \ge p$
 - \exists uvxyz = w such that $|vxy| \le p$ and |vy| > 0
 - \forall i \geq 0, uvⁱxyⁱz is in L.

Proof: consider a parse tree for a very long string $w \in L$:

- how large should pumping length p be?
- need to ensure other conditions:

$$|vy| > 0$$
 $|vxy| \le p$

- $b = max \# symbols on rhs of any production (assume <math>b \ge 2$)
- if parse tree has height < h, then string generated has length < b^h (so length ≥ b^h implies height ≥ h)

- let m be the # of nonterminals in the grammar
- to ensure path of length at least m+1, require

$$|w| \ge p = b^{m+1}$$

- since |w| ≥ b^{m+1}, any parse tree for w has height ≥ m+1
- let T be the smallest parse tree for w
- longest root-leaf path must consist of at least m+1 non-terminals and 1 terminal.

- there must be a repeated non-terminal A on long path
- select a repetition among the lowest m+1 non-terminals on path.
- pictures show that for every $i \ge 0$, $uv^ixy^iz \in L$


```
is |vy| > 0 ?
smallest parse tree T ensures
```

is
$$|vxy| \le p$$
?
red path has length $\le m+1$, so $\le b^{m+1} = p$ leaves

Example 2.20

- $\square B = \{a^nb^nc^n \mid n \ge 0\}$
- ☐ Assume B is a CFL, let p be the pumping length
- \square Choose $w = a^p b^p c^p$ in B (|w| > p)
- □ Applying PL, w = uvxyz, where |vy| > 0 and $|vxy| \le p$, such that uv^ixy^iz in B for all $i \ge 0$
- Two possible cases:
 - vxy = a*b*, uv²xy²z will result in more a's and/or more b's than c's, not in B
 - vxy = b*c*, uv²xy²z will result in more b's and/or more c's than a's, not in B
- Contradiction, B is not a CFL

Example 2.21

- \Box C = {aⁱb^jc^k | k \ge j \ge i \ge 0}
- ☐ Assume C is a CFL, let p be the pumping length
- \square Choose $w = a^p b^p c^p$ in C(|w| > p)
- □ Applying PL, w = uvxyz, where |vy| > 0 and $|vxy| \le p$, such that uv^ixy^iz in C for all $i \ge 0$
- Two possible cases:
 - vxy = a*b*, uv²xy²z will result in more a's and/or more b's than c's, not in C
 - vxy = b*c*, uv⁰xy⁰z = uxz will result in fewer b's and/or fewer c's than a's, not in C
- Contradiction, C is not a CFL

Example 2.22

- \square D = { ww | w ∈ {0, 1}* }
- Assume D is a CFL, let p be the pumping length
- \square Choose $w = 0^p1^p0^p1^p$ in D(|w| > p)
 - Why not choose $w = 0^p10^p1?$
- Applying PL, w = uvxyz, where |vy|>0 and |vxy|≤p, such that uvixyiz in D for all i≥0

Example 2.22 (Cont'd)

- ☐ Three possible cases:
 - vxy in first half
 - \Box then uv²xy²z = 0??...?1??...?, not in D
 - vxy in second half
 - \Box then uv²xy²z = ??...?0??...?1, not in D
 - vxy straddles midpoint
 - □ then $uv^0xy^0z = uxz = 0^p1^i0^j1^p$ with $i \neq p$ or $j \neq p$, not in D
- Contradiction, D is not a CFL

Exercise

□ Prove that $L = \{0^{k^2} \mid k \text{ is any integer}\}$ is not a CFL

2.3 Properties of Context-free Languages

- Pumping Lemma for CFL's
- Closure Properties
- Decision Properties

Closure Under Substitution

- □ If a substitution s assigns a CFL to every symbol in the alphabet of a CFL L, then s(L) is a CFL.
 - Take a grammar for L and a grammar for each language L_a = s(a).
 - Make sure all the variables of all these grammars are different (rename variables whenever necessary).
 - Replace each terminal a in the productions for L by S_a , the start symbol of the grammar for L_a .
 - Intuition: this replacement allows any string in L_a to take the place of any occurrence of a in any string of L.

Example

- \square L = {0ⁿ1ⁿ | n ≥ 1}, generated by CFG S \rightarrow 0S1 | 01.
- □ $s(0) = \{a^nb^m \mid m \le n\}$, generated by CFG S \rightarrow aSb | A; A \rightarrow aA | ab.
- □ $s(1) = \{ab, abc\}$, generated by CFG S \rightarrow abA; A \rightarrow c | ϵ .
- 1. Rename second and third S's to S_0 and S_1 , respectively. Rename second A to B. Resulting grammars are:
 - $S_0 \rightarrow aS_0b \mid A; A \rightarrow aA \mid ab$
 - $S_1 \rightarrow abB; B \rightarrow c \mid \varepsilon$
- 2. In the first grammar, replace 0 by S_0 and 1 by S_1 . The combined grammar:
 - \blacksquare $S \rightarrow S_0SS_1 \mid S_0S_1$
 - $S_0 \rightarrow aS_0b \mid A; A \rightarrow aA \mid ab$
 - $S_1 \rightarrow abB; B \rightarrow c \mid \varepsilon$

Consequences of Closure Under Substitution

- ☐ Closure of CFL's under union, concatenation, star, homomorphism.
 - union: let L_1 and L_2 be CFL's, $L = \{1, 2\}$, $s(1)=L_1$, $s(2)=L_2$. Then $L_1 \cup L_2 = s(L)$.
 - concatenation: let $L = \{12\}$. Then $L_1L_2 = s(L)$.
 - star: let L = $\{1\}^*$. Then $L_1^* = s(L)$.
 - homomorphism: let L be a CFL over Σ , h be a homomorphism over Σ . Define s by $s(a) = \{h(a)\}$. Then h(L) = s(L).

Closure Under Reversal

- \square If L∈CFL, then L^R∈CFL.
- PROOF: Suppose L is generated by CFG G = (V, T, P, S), construct G^R = (V, T, P^R, S), where

$$P^{R} = \{A \rightarrow \alpha^{R} \mid A \rightarrow \alpha \text{ in } P\}$$

Prove that $L^R = L(G^R)$ by induction on the lengths of derivations

Closure Under Inverse Homom.

- PDA-based construction.
 - Keep a "buffer" in which we place h(a) for some input symbol a.
 - Read inputs from the front of the buffer $(\varepsilon \ OK)$.
 - When the buffer is empty, it may be reloaded with h(b) for the next input symbol b, or we may continue making εmoves.

Closure Under Inverse Homom.

Formal Construction of PDA for h⁻¹(L)

Let L = L(P) for some PDA P, construct some PDA P' to accept $h^{-1}(L)$

- ☐ States are pairs [q, w], where:
 - q is a state of P
 - w is a suffix of h(a) for some symbol a
 - Thus, only a finite number of possible values for w
- ☐ Stack symbols of P' are those of P
- \square Start state of P' is $[q_0, \varepsilon]$

Formal Construction of PDA for h⁻¹(L)

- Final states of P' are the states [q, ε] such that q is a final state of P
- \square δ'([q, bw], ε, X) contains ([p,w], α) if δ (q, b, X) contains (p, α), where b is either an input symbol of P or ε.
 - Simulate P from the buffer

Proving $L(P') = h^{-1}(L(P))$

- □ Key argument:
 - P' makes the transition ([q₀, ε], w, Z₀) |-* ([p, ε], ε, γ) if and only if P makes the transition (q₀, h(w), Z₀) |-* (p, ε, γ)
- Proof in both directions is an induction on the number of moves made.

Non-closure Under Intersection

- \square A counter example: L= $\{0^n1^n2^n \mid n\geq 1\}$ is not a CFL. But
 - $L_1 = \{0^n 1^n 2^i \mid n \ge 1, i \ge 1\}$ is a CFL, can be generated by grammar:

- Likewise $L_2 = \{0^i 1^n 2^n \mid n \ge 1, i \ge 1\}$ is a CFL.
- \blacksquare L = L₁ \cap L₂

Non-closure Under Complement

Since CFL's are closed under union, if they were also closed under complement, they would be closed under intersection by DeMorgan's law.

2.3 Properties of Context-free Languages

- Pumping Lemma for CFL's
- ☐ Closure Properties
- Decision Properties

Decision Properties of CFL's

- □ Testing emptiness of a CFL
- ☐ Testing finiteness of a CFL
- Testing membership of a string in a CFL
- Preview of undecidable CFL problems

Testing Emptiness

☐ Use a CFG representation of the given CFL, check if the start symbol is useless.

Testing Finiteness

- □ Let L be a CFL. Then there is some pumping-lemma constant n for L.
- □ Test all strings of length between n and 2n-1 for membership (as in next section).
- □ If there is any such string, it can be pumped, and the language is infinite.
- ☐ If there is no such string, then n-1 is an upper limit on the length of strings, so the language is finite.
 - Trick: If there were a string z = uvxyz of length 2n or longer, you can find a shorter string uxz in L, but it's at most n shorter. Thus, if there are any strings of length 2n or more, you can repeatedly cut out vy to get, eventually, a string whose length is in the range n to 2n-1.

Testing Membership

- Can simulate NPDA, but this takes exponential time in the worst case.
- ☐ There is an O(n³) algorithm (n = length of w) that uses a "dynamic programming" technique.
 - Called Cocke-Younger-Kasami (CYK) algorithm.

Testing Membership

- Convert CFG into Chomsky Normal form.
- □ Parse tree for string x generated by nonterminal A:

If $A \Rightarrow^k x$ (k > 1) then there must be a way to split x:

$$x = yz$$

- A → BC is a production and
- B \Rightarrow^i y and C \Rightarrow^j z for i, j < k

CYK Algorithm

- \square Input is $w = a_1 a_2 ... a_n$
- ☐ We construct a triangular table, where $X_{ij} = \{A \mid A$ $\Rightarrow^* a_i a_{i+1} ... a_j \}$
- □ See if $S \in X_{1n}$, i.e. $S \Rightarrow^* W$

$$X_{15}$$
 X_{14} X_{25}
 X_{13} X_{24} X_{35}
 X_{12} X_{23} X_{34} X_{45}
 X_{11} X_{22} X_{33} X_{44} X_{55}

CYK Algorithm

- ☐ Fill the table row-by-row, upwards.
- \square Compute X_{ij} in the induction
 - Basis: $X_{ii} = \{A \mid A \rightarrow a_i \text{ is in } G\}$
 - Induction: A ∈ X_{ij} if there exists A → BC in G, and B ∈ X_{ik} , C ∈ $X_{(k+1)j}$ for some k (i<=k<j).
- □ For $w = a_1 a_2 ... a_n$, there are $O(n^2)$ entries X_{ij} to compute. For each X_{ij} we need to compare at most n pairs $(X_{ik}, X_{(k+1)j})$. Total work is $O(n^3)$.

Example

 $S \rightarrow AS \mid SB \mid AB$

 $A \rightarrow a$

 $B \rightarrow b$

and the input string is aabb.

Preview of Undecidable CFL Problems

- ☐ Is a given CFG ambiguous?
- ☐ Is a given CFL inherently ambiguous?
- ☐ Is the intersection of two CFL's empty?
- ☐ Are two CFL's the same?
- \square Is a given CFL universal (equal to Σ^*)?

Summary of Chap. 2

- □ Context-Free Grammars (CFG's) describe Context-Free Languages (CFL's)
 - formal definition
 - □ terminals, non-terminals
 - productions
 - derivations
 - parse trees, yields
 - ambiguity
 - Chomsky Normal Form (CNF)
- Pushdown Automata (PDA)

Summary of Chap. 2

- NPDA's and CFG's are equivalent
- □ Deterministic PDA's are weaker
- CFL Pumping Lemma is used to show certain languages are not CFL's
- Some of the closure properties of regular languages carry over to CFL's. But CFL's are not closed under intersection nor complement.
- □ We can test for emptiness, finiteness and membership. But for instance, equivalence of CFL's is undecidable.

So far...

□ We proved (using constructions of FA's and PDA's and the two pumping lemmas):

