IEEE TRANSACTION ON ...

A Fancy Tutorial for Writing IEEE Transaction Journal Paper in LATEX

Gabriel Yin, Student Member, IEEE, and Gabriel Yin, Member IEEE

Abstract-Type your Abstract. Index Terms—Type your Keywords.

I. INTRODUCTION

ERE is your intro. If you are going to use this Big "H" head, please make efforts to finish this paragraph in three lines. Yes, like what I am doing now.

New Paragraph ...

if you like to enumerate,

- 1) First item.
- 2) Second item.

You can change the type of enumerate from 1) to i), or a), or just dot (delete the [1)].). And also you can use other functions like typing math within the enumeration.

- a) First item: $\mathbb{G}\alpha b \text{riel}^{is} \mathcal{A} N_{ice} G_{uy}$.
- b) Second item.

Itemize is another type of enumerate. It does not requires any package, but can only use dots to present the items.

- · First item.
- · Second item.

The rest of the paper is fivefold: BlahBlahBlah

II. MATHEMATICAL FORMULATION AND BLAHBLAHBLAH

A. Nomenclature

The major symbol notations used in this paper are presented here. Note that vectors and matrices are represented by bold lower-case and upper-case characters, respectively. Other notations are given throughout the paper if necessary.

1) *Sets*:

G/R/L	Conventional generator / transmission line.
S/V	Sending/receiving bus of ℓ th transmission line.
$C^{'}$	Generator&bus mapping of g th or r th generator
X^G/X^R	Candidate traditional/renewable generator.
X^L	Candidate transmission line.
T	Planning horizon.

2)

) Indices:	
$g / r / \ell$	Conventional generator / renewable generator /
	transmission line.
d	Demand.
n	Bus.
ω	Scenario.
k	Iteration counter for C&CG algorithm.

The work of G. Yin and G. Yin is partly supported by Southern Methodist University, U.S.A, under Project DOD-PENTAGON-0001234. (seriously, NO) G. Yin and G. Yin are with the Lyle School of Engineering, Southern Methodist University, TX, U.S.A. (emails: {gyin, gyin}@smu.edu).

o	Iteration counter for L-shaped algorithm.
t	Planning year.

3) Parameters:

$IC_{q,t}^G/IC_{r,t}^R$ Investment cost for gth conventional /	rth	re-
newable generator in t th year [\$].		

$IC_{\ell,t}^L$	Investment cost for ℓ th transmission line in t th
-,-	vear [\$].

$$OC_{g,t}$$
 Operating cost for g th generator in t th year [\$/MWh]

$$PC_{d,t}$$
 Load-shedding cost for unserved load in d th demand in t th year [\$/MWh].

$$B_t^G/B_t^L$$
 Investment budget for generator/transmission line in tth year [\$].

$$K_t^G / K_t^L$$
 Contingency criteria for generator/transmission line in t th year.

FL_{$$\ell,t$$} Flow capacity of ℓ th transmission line in t th year [MW].

$$\overline{PL}_{g,t}^G$$
 Capacity limit of g th conventional generator in t th year [MW].

 $\underline{\Delta}_{n,t}/\overline{\Delta}_{n,t}$ Angle limit of voltage angle at nth bus in tth year [rad].

4) Uncertain Parameters:

$\overline{PL}_{r,t}^R$	Capacity	limit	of	rth	renewable	generator	in
	tth year	[WW]					

 $P_{d,t}$ Demand of dth load in tth year [MW].

5) Variables:

$x_{g,t}^G/x_{r,t}^R$	Binary expansion decision for gth traditional
,	/ rth renewable generator in tth year. $x = 1$
	means built; $x = 0$ otherwise.

$x_{\ell,t}^L$	Binary expansion decision for ℓ th transmission
	line. $x = 1$ means built; $x = 0$ otherwise.

$$a_{g,t}^G$$
 Binary outage indicator for g th conventional generator. $a=1$ means outage; $a=0$ otherwise.

Binary outage indicator for *l*th transmission line. a = 1 means outage; a = 0 otherwise.

Scheduled power output of gth conventional / rth renewable generator in tth year [MW].

Load shedding in dth demand in tth year $r_{d,t}$ [MW].

 $f_{\ell,t}$ Power flow through ℓ th transmission line in tth year [MW].

 $\delta_{n,t}$ Voltage angle at nth bus in tth year [rad].

Dummy variable formulating a relaxed lower bound in the master problem.

B. Problem Description

Here it flies ...

IEEE TRANSACTION ON ... 2

$$\sum_{g}^{X^{G}} IC_{g,t}^{G} x_{g,t}^{G} + \sum_{g}^{X^{R}} IC_{r,t}^{R} x_{r,t}^{R} \leq B_{t}^{G}, \quad \forall t,$$
 (1a)

$$\sum_{\ell}^{X^L} IC_{\ell,t}^L x_{\ell,t}^L \le B_t^L, \quad \forall t, \tag{1b}$$

Here is an example of auto-numbered align environment:

$$\sum_{g}^{X^G} IC_{g,t}^G x_{g,t}^G + \sum_{g}^{X^R} IC_{r,t}^R x_{r,t}^R \le B_t^G, \quad \forall t, \tag{1}$$

$$\sum_{\ell}^{X^L} IC_{\ell,t}^L x_{\ell,t}^L \le B_t^L, \quad \forall t, \tag{2}$$

Here it flies ..

Your new paragraph ...

III. SOLUTION STRATEGY

BlahBlahBlah...

A. Hi

BlahBlahBlah...

B. Hey

BlahBlahBlah...

C. Algorithm (or so-called Pseudocode)

One paragon algorithm presentation is illustrated in Algorithm 1. You can find other formats in Google.

Algorithm 1 Sample Algorithm Presentation

Initialization: Set $o \leftarrow 0$, $LB_o \leftarrow -\infty$, $UB_o \leftarrow \infty$, $\mathcal{O}_o =$

Step 1. $o \leftarrow o + 1$.

for $d \in D$ do:

Step 2. Write normal texts or MATH $e_u^q ations$.

Step 3. You can even use align or equation environments:

$$lpha = rac{\log 4^7}{\min_a 6a}; \qquad oldsymbol{eta} = -\sum_{\omega} {
m Good}_{\omega} {f H}_2^{ op} {m \gamma}.$$

BlahBlahBlah...

end for

Step 4. Update $UB_o = \min\{UB_{o-1}, \text{ whatever}\}\$ and $LB_o = \min\{UB_{o-1}, \text{ whatever}\}\$ η^o . If $\left|\frac{UB_o-LB_o}{UB_o}\right| \leq \varepsilon$, then terminate, declare optimality and report $(\mathbf{x}^o, \mathbf{y}^o)$.

Step 5. If you are an optimization guy like me, you might be familiar with:

$$M = \min_{\mathbf{x}, \mathbf{y}} \mathbf{c}_1^{\mathsf{T}} \mathbf{x} + \eta,$$

subject to

$$\mathbf{H}_1^{\top}\mathbf{x} + \mathbf{K}_1^{\top}\mathbf{y} = \mathbf{r}_1,$$

$$\mathbf{A}_1^{\mathsf{T}}\mathbf{x} \leq \mathbf{b}_1,$$

$$\alpha_{i}^{j} + (\beta_{i}^{j})^{\top} \mathbf{v} \leq n/v_{d}, \quad \forall i \in \mathcal{O}_{o}, \ \forall d \in D$$

 $\alpha_d^j + (\boldsymbol{\beta}_d^j)^\top \mathbf{y} \leq \eta/v_d, \ \ \forall j \in \mathcal{O}_o, \ \forall d \in D.$ Let $(\mathbf{x}^{o+1}, \mathbf{y}^{o+1}, \eta^{o+1})$ denote the optimal primal solution. goto Step 1.

Actually, you can make any pseudocode you want fancy with adjustwidth and \textbf.

You can even make more subsubsubsubsubsection

- 1) Go Go Go: BlahBlahBlah...
- 2) Go Go Go: BlahBlahBlah...

IV. ILLUSTRATIVE EXAMPLE AND CASE STUDIES

TABLE I RESULTS FOR TESTING TWO METHODS

	Silver Bullet Method			Werewolf Method			
Trans. Investment budget [M\$]	1	2	3	1	2	3	
Transmission expansion	1-5, 4-6	2-3, 2-5 3-5, 4-6	1-2, 2-3, 2-4, 2-5 4-6	1-5, 4-6	1-5, 2-4 2-5, 2-6	1-5, 2-3, 2-4, 3-4 4-6	
Generation expansion*	1, 2, 3, 4, 5	2, 4, 5, 6	1, 2, 5	1, 2, 3, 4, 5	1, 2, 4, 6	2, 4, 5	
Total cost [M\$]	99.16	67.19	56.51	104.57	63.57	59.71	
Loss of load rate	6.2%	6.0%	2.1%	7.3%	5.2%	2.1%	
Iteration number	7	13	12	8	11	9	
Elapsed time [s]	9.2	30.1	27.3	25.4	166.5	110.2	

^{*}Number shown in this row indicates the number of bus in which the generator is proposed to be built, and the same below.

A. IEEE 118-bus System

BlahBlahBlah...

V. CONCLUSION

Using my tutorial file can solve most of the problems in research writings. If you have any concern, just contact me without hesitation!

APPENDIX A McCormick Relaxation

BlahBlahBlah...

APPENDIX B SEMI-CONVEX JENSEN'S INEQUALITY

BlahBlahBlah...

ACKNOWLEDGMENT

The authors would like to thank Gabriel Yin for coaching them how to use LATEX. Any issue report or comment is SUPER welcome to be sent to gyin@smu.edu.