Project sizes: statistics

Overview

This notebook explores Q5: "How frequently have you contributed to projects of the following size?". I am following up on some plots and counts from sizes_plots.qmd with statistics.

Import packages and utilities

```
project_root <- here::here() # requires that you be somewhere in the
# project directory (not above it)
# packages
suppressMessages(source(file.path(project_root, "scripts/packages.R")))
# functions and objects used across scripts
suppressMessages(source(file.path(project_root, "scripts/utils.R")))</pre>
```

Load data

```
sizes_raw <- load_qualtrics_data("clean_data/project_size_Q5.tsv")
other_quant <- load_qualtrics_data("clean_data/other_quant.tsv")</pre>
```

Wrangle data

```
sizes_job <- cbind(sizes_raw, other_quant$job_category)</pre>
# Rename column
names(sizes_job)[ncol(sizes_job)] <- "job_category"</pre>
# Filter out people who didn't answer either question
sizes_job <- exclude_empty_rows(sizes_job, strict = TRUE)</pre>
sizes_job$participantID <- seq(nrow(sizes_job))</pre>
sizes_job_long <- sizes_job %>%
 pivot_longer(
    cols = -c(job_category, participantID),
    names_to = "size",
   values_to = "frequency"
head(sizes_job_long)
# A tibble: 6 x 4
  job_category participantID size frequency
  <chr>
                       <int> <chr> <chr>
                           1 Small Relatively frequently
1 Faculty
                           1 Medium Occasionally
2 Faculty
                           1 Large Relatively infrequently
3 Faculty
4 Post-Doc
                          2 Small Occasionally
5 Post-Doc
                          2 Medium Relatively infrequently
6 Post-Doc
                           2 Large Never
# three way cross tabs (xtabs) and flatten the table
# code from: https://ladal.edu.au/tutorials/regression/regression.html
ftable(xtabs(~ job_category + size + frequency, data = sizes_job_long))
```

frequency Never Occasionally Relatively frequently Relatively in

job_category	size			
Faculty	Large	26	6	8
	Medium	13	17	10
	Small	6	17	28
Grad Student	Large	11	7	1
	Medium	8	10	2
	Small	0	7	14
Non-research Staff	Large	15	17	20
	Medium	11	28	22

	Small	10	25	33
Other research staff	Large	17	5	8
	Medium	6	8	14
	Small	0	11	22
Post-Doc	Large	8	3	1
	Medium	1	4	4
	Small	0	6	8
Undergraduate	Large	5	1	0
	Medium	4	1	1
	Small	0	1	4

Create different job category labels

Let's fold in the smaller job categories, like we did with the other regressions. Acutally, let's try it two ways: first, with 4 groups (nr staff, students, postdocs, and faculty), and then with two: non-research staff vs. academics. We'll see which model looks better.

```
combined4 <- sizes_job_long %>%
  mutate(
    job_category = recode(
        job_category,
        "Post-Doc" = "Postdocs and Staff Researchers",
        "Other research staff" = "Postdocs and Staff Researchers"
    )
)

combined4 <- combined4 %>%
  mutate(
    job_category = recode(
        job_category,
        "Grad Student" = "Students",
        "Undergraduate" = "Students"
    )
)
```

```
combined2 <- sizes_job_long %>%
  mutate(
    job_category = recode(
       job_category,
       "Grad Student" = "Academic",
       "Undergraduate" = "Academic",
       "Other research staff" = "Academic",
```

```
"Post-Doc" = "Academic",
    "Faculty" = "Academic"
)
)
# example
combined2
```

```
# A tibble: 699 x 4
  job_category participantID size
                                    frequency
  <chr>
                      <int> <chr> <chr>
1 Academic
                           1 Small Relatively frequently
2 Academic
                           1 Medium Occasionally
3 Academic
                           1 Large Relatively infrequently
4 Academic
                           2 Small Occasionally
5 Academic
                           2 Medium Relatively infrequently
6 Academic
                         2 Large Never
7 Academic
                          3 Small Occasionally
8 Academic
                         3 Medium Relatively infrequently
9 Academic
                         3 Large Never
10 Academic
                          4 Small Relatively frequently
# i 689 more rows
```

Reorder factor levels.

```
ordered_sizes <- c(
    "Small",
    "Medium",
    "Large"
)

ordered_freqs <- c(
    "Never",
    "Relatively infrequently",
    "Occasionally",
    "Relatively frequently"
)

ordered_jobs4 <- c(
    "Students",
    "Postdocs and Staff Researchers",</pre>
```

```
"Faculty",
  "Non-research Staff"
)

ordered_jobs2 <- c(
  "Academic",
  "Non-research Staff"
)

combined4$size <- factor(combined4$size, levels = ordered_sizes)
combined4$frequency <- factor(combined4$frequency, levels = ordered_freqs)
combined4$job_category <- factor(combined4$job_category, levels = ordered_jobs4)

combined2$size <- factor(combined2$size, levels = ordered_sizes)
combined2$frequency <- factor(combined2$frequency, levels = ordered_freqs)
combined2$job_category <- factor(combined2$frequency, levels = ordered_jobs2)</pre>
```

Model selection part 1: comparing non-mixed models

To start with, I'm going to create and compare a variety of non-mixed models to see which one looks best. clm(), which is for non-mixed models, has a couple of diagnostic capabilities that clmm() (mixed models) does not. Once I've chosen a non-mixed model that looks good, I'll add in the random effects term.

```
Here are the models I want to inspect: freq \sim size freq \sim combined2 + size freq \sim combined2 * size freq \sim combined4 + size freq \sim combined4 * size
```

Model 1: no job data

Model 2: 2 job categories, no interaction

Model 3: 4 job categories, no interaction

Model 4: 2 job categories, with interaction

Model 5: 4 job categories, with interaction

Goodness-of-fit

AICs

```
models <- list(
   "fit1"=fit1,
   "fit2"=fit2,
   "fit3"=fit3,
   "fit4"=fit4,
   "fit5"=fit5
)</pre>
```

First, let's get a general sense of goodness-of-fit by looking at the AICs. You're not supposed to compare AICs for models fit to different data sets, but since I've only changed the job_category labels, not the observations or the number of observations, I think this is ok.

```
sapply(models, function(x) round(stats::AIC(x)))

fit1 fit2 fit3 fit4 fit5
1831 1829 1828 1812 1815
```

AICs are very similar across the board. The last two models look a teensy bit better.

"Condition number of the Hessian"

Let's check the condition number of the Hessian. I don't really understand what this is, but the clmm2 tutorial says that high numbers, say larger than say 10^4 or 10^6, indicate poor fit.

```
sapply(models, function(x)
summary(x)$info["cond.H"]
)
```

```
$fit1.cond.H
[1] "3.2e+01"

$fit2.cond.H
[1] "3.4e+01"

$fit3.cond.H
[1] "8.3e+01"

$fit4.cond.H
[1] "1.1e+02"

$fit5.cond.H
[1] "6.8e+02"
```

All look fine.

ANOVAs

Let's use some anovas to compare nested models.

```
stats::anova(fit1, fit2)
Likelihood ratio tests of cumulative link models:
     formula:
                                      link: threshold:
fit1 frequency ~ size
                                      logit flexible
fit2 frequency ~ job_category + size logit flexible
               AIC logLik LR.stat df Pr(>Chisq)
     no.par
fit1
          5 1831.3 -910.64
fit2
          6 1829.4 -908.71 3.8758 1
                                           0.04899 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Hmm. Including two job categories (no interaction) is just barely significant.
stats::anova(fit1, fit3)
```

Likelihood ratio tests of cumulative link models:

```
formula: link: threshold:

fit1 frequency ~ size logit flexible

fit3 frequency ~ job_category + size logit flexible

no.par AIC logLik LR.stat df Pr(>Chisq)

fit1 5 1831.3 -910.64

fit3 8 1828.2 -906.09 9.1026 3 0.02796 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Including four job categories (no interaction) is slightly more significant. Let's proceed with fit3 as the one to beat. We'll compare it to fit5, which uses the same job labels.

```
stats::anova(fit3, fit5)
```

Likelihood ratio tests of cumulative link models:

```
formula: link: threshold:

fit3 frequency ~ job_category + size logit flexible

fit5 frequency ~ job_category * size logit flexible

no.par AIC logLik LR.stat df Pr(>Chisq)

fit3     8 1828.2 -906.09

fit5     14 1815.1 -893.55     25.08     6      0.0003299 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Yes, inclusion of the interaction term is helpful.

Nominal and scale tests for clm

https://www.rdocumentation.org/packages/ordinal/versions/2023.12-4.1/topics/nominal_test

nominal_test(), as I understand it, tests for violations of the proportional odds assumption, which is the assumption that the effect of the explanatory variables are the same across all levels of the outcome variable (remember, we're assuming the outcome categories are cut-offs of an underlying continuous variable). It does ANOVA/LRT on models where a predictor is allowed to have different effects on the different factor levels (cut-off regions), and tests if a version of the model where this assumption is relaxed is a significantly better fit than the one where the assumption is required.

scale_test() does the same sort of thing, but instead of testing for non-proportional odds, it's testing for heteroskedasticity.

```
nominal_test(fit5)
```

Tests of nominal effects

```
formula: frequency ~ job_category * size

Df logLik AIC LRT Pr(>Chi)

<none> -893.55 1815.1
job_category 6 -890.83 1821.7 5.439 0.48885
size 4 -891.58 1819.2 3.944 0.41362
job_category:size 22 -875.69 1823.4 35.721 0.03253 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
scale_test(fit5)
```

Tests of scale effects

```
formula: frequency ~ job_category * size

Df logLik AIC LRT Pr(>Chi)
<none> -893.55 1815.1

job_category 3 -893.03 1820.1 1.0382 0.7920

size 2 -892.27 1816.5 2.5567 0.2785

job_category:size 11 -887.31 1824.6 12.4788 0.3287
```

Hmm. Looks like the interaction term violates the non-proportional odds assumption. In other words, the effect of the interaction varies at different frequency levels. No bueno. But the model is improved by the interaction term, according to the LRTs, so we don't want to get rid of it. I will proceed cautiously, and maybe just report it? I really don't want to get into the weeds with this.

Mixed models

Model 6: size as fixed effect only

Model 7: size as both a fixed and random effect

```
Warning: no. random effects (=699) >= no. observations (=699) for term: (1 + size | participantID)
```

```
Warning: no. random effects (=699) >= no. observations (=699)
```

Hm. I think the 4-job-category data are too sparse for this model to converge. I'm kind of curious about the 2-job label.

Model 8: size as fixed + random, 2 job cats

```
Warning: no. random effects (=699) >= no. observations (=699) for term: (1 + size | participantID)
```

```
Warning: no. random effects (=699) >= no. observations (=699)
```

Hm. This one is having the same problem. I guess we'll proceed with the one that converged.

Goodness-of-fit: mixed

```
stats::anova(fit5, fit6)
```

Likelihood ratio tests of cumulative link models:

```
formula: link: threshold: fit5 frequency ~ job_category * size logit flexible fit6 frequency ~ job_category * size + (1 | participantID) logit flexible

no.par AIC logLik LR.stat df Pr(>Chisq)
fit5    14 1815.1 -893.55
fit6    15 1794.7 -882.36    22.377    1    2.24e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

It appears that the model is very much improved by including the participant ID as a random effect (each participant has their own intercept ("baseline")). Since clmm() doesn't support relaxing the non-proportional odds requirement with nominal=, and since I really don't want to switch to a new package/methodology that does, I'm just going to report this and move forward with fit6.

Hypothesis testing (emmeans)

summary(fit6)

Cumulative Link Mixed Model fitted with the Laplace approximation

formula: frequency ~ job_category * size + (1 | participantID)
data: combined4

link threshold nobs logLik AIC niter max.grad cond.H logit flexible 699 -882.36 1794.73 1371(4115) 7.60e-04 5.9e+02

Random effects:

Groups Name Variance Std.Dev. participantID (Intercept) 0.7988 0.8938

Number of groups: participantID 233

Coefficients:

	Estimate	Std. Error
job_categoryPostdocs and Staff Researchers	0.1496	0.4840
job_categoryFaculty	-0.3564	0.4772
job_categoryNon-research Staff	-0.8317	0.4472
sizeMedium	-2.4019	0.4875
sizeLarge	-3.1399	0.5066
${\tt job_categoryPostdocs} \ \ {\tt and} \ \ {\tt Staff} \ \ {\tt Researchers:sizeMedium}$	1.0664	0.6045
job_categoryFaculty:sizeMedium	0.8673	0.5932
<pre>job_categoryNon-research Staff:sizeMedium</pre>	1.9299	0.5613
<pre>job_categoryPostdocs and Staff Researchers:sizeLarge</pre>	0.1753	0.6210
job_categoryFaculty:sizeLarge	0.5136	0.6102
<pre>job_categoryNon-research Staff:sizeLarge</pre>	2.2159	0.5748
	z value P	r(> z)
job_categoryPostdocs and Staff Researchers	0.309 0	.757160
job_categoryFaculty	-0.747 0	.455136
job_categoryNon-research Staff	-1.860 0	.062952 .
sizeMedium	-4.927 8	.37e-07 ***
sizeLarge	-6.197 5	.74e-10 ***
${\tt job_categoryPostdocs} \ \ {\tt and} \ \ {\tt Staff} \ \ {\tt Researchers:sizeMedium}$	1.764 0	.077741 .
job_categoryFaculty:sizeMedium	1.462 0	.143741
<pre>job_categoryNon-research Staff:sizeMedium</pre>	3.438 0	.000586 ***
<pre>job_categoryPostdocs and Staff Researchers:sizeLarge</pre>	0 282 0	.777782
	0.202 0	
job_categoryFaculty:sizeLarge	0.842 0	.399954

Threshold coefficients:

	Estimate	Std. Error	${\tt z}$ value
Never Relatively infrequently	-3.2971	0.4143	-7.957
Relatively infrequently Occasionally	-1.6379	0.3921	-4.177
Occasionally Relatively frequently	-0.2328	0.3845	-0.605

That's a lot of parameters to interpret. emmeans to the rescue.

I'm not going to attempt to average the results across job category, so there's no weighting scheme needed.

```
emm <- emmeans(fit6, ~ size * job_category, mode = "mean.class")
summary(emm) %>%
arrange(desc(mean.class))
```

size	job_category			mean.class	SE	df	asymp.LCL	asymp.UCL
Small	Postdocs and	Staff	Researchers	3.42	0.118	Inf	3.19	3.65
Small	Students			3.36	0.160	${\tt Inf}$	3.05	3.67
Small	Faculty			3.20	0.133	${\tt Inf}$	2.94	3.46
Small	Non-research	${\tt Staff}$		2.97	0.117	${\tt Inf}$	2.74	3.20
Medium	Postdocs and	${\tt Staff}$	Researchers	2.78	0.149	${\tt Inf}$	2.49	3.07
Medium	Non-research	${\tt Staff}$		2.72	0.117	${\tt Inf}$	2.49	2.95
Large	Non-research	${\tt Staff}$		2.47	0.120	${\tt Inf}$	2.24	2.71
Medium	Faculty			2.40	0.141	${\tt Inf}$	2.12	2.68
Medium	Students			2.13	0.185	${\tt Inf}$	1.77	2.49
Large	Postdocs and	${\tt Staff}$	Researchers	1.92	0.143	${\tt Inf}$	1.64	2.20
Large	Faculty			1.84	0.131	${\tt Inf}$	1.59	2.10
Large	Students			1.77	0.167	${\tt Inf}$	1.45	2.10

Confidence level used: 0.95

Hmm. Mildly interesting. As suggested by the exploratory plots, the results are fairly clean for small and large projects, but more muddled for medium projects.

```
by_job <- summary(</pre>
  pairs(emm, by = "job_category"),
  infer = TRUE # infer CIs
)
by_job
job_category = Students:
 contrast
                estimate
                            SE df asymp.LCL asymp.UCL z.ratio p.value
 Small - Medium
                   1.229 0.223 Inf
                                      0.7056
                                                 1.753
                                                         5.502 <.0001
                                                         7.450 < .0001
 Small - Large
                   1.586 0.213 Inf
                                      1.0873
                                                 2.085
                                                 0.884
 Medium - Large
                   0.357 0.225 Inf
                                     -0.1702
                                                         1.587 0.2511
job_category = Postdocs and Staff Researchers:
 contrast
                estimate
                            SE df asymp.LCL asymp.UCL z.ratio p.value
                   0.639 0.172 Inf
 Small - Medium
                                      0.2348
                                                 1.043
                                                         3.706 0.0006
                                                         8.761 <.0001
 Small - Large
                   1.496 0.171 Inf
                                      1.0958
                                                 1.896
 Medium - Large
                   0.857 0.188 Inf
                                      0.4175
                                                 1.297
                                                         4.569 < .0001
job_category = Faculty:
 contrast
                            SE df asymp.LCL asymp.UCL z.ratio p.value
 Small - Medium
                   0.801 0.176 Inf
                                      0.3884
                                                 1.214
                                                         4.547 < .0001
 Small - Large
                   1.357 0.172 Inf
                                      0.9548
                                                 1.759
                                                         7.908 < .0001
 Medium - Large
                                      0.1472
                                                 0.964
                                                         3.189 0.0041
                   0.555 0.174 Inf
job category = Non-research Staff:
                            SE df asymp.LCL asymp.UCL z.ratio p.value
 contrast
                estimate
 Small - Medium
                   0.249 0.149 Inf
                                     -0.0999
                                                 0.599
                                                          1.673 0.2155
 Small - Large
                   0.494 0.152 Inf
                                      0.1382
                                                 0.850
                                                         3.253 0.0033
 Medium - Large
                   0.245 0.151 Inf
                                     -0.1082
                                                 0.598
                                                         1.625 0.2348
Confidence level used: 0.95
Conf-level adjustment: tukey method for comparing a family of 3 estimates
P value adjustment: tukey method for comparing a family of 3 estimates
```

Wow, okay, still a lot of parameters to interpret.

After staring at this for a while, I think the main conclusion is that everyone is more likely to contribute to small projects than large projects.

```
by_size <- summary(
  pairs(emm, by = "size"),
  infer = TRUE # infer CIs</pre>
```

```
)
by_size
```

```
size = Small:
 contrast
                                                      estimate
                                                                 SE df
Students - Postdocs and Staff Researchers
                                                      -0.0607 0.198 Inf
Students - Faculty
                                                        0.1579 0.208 Inf
Students - (Non-research Staff)
                                                       0.3919 0.198 Inf
Postdocs and Staff Researchers - Faculty
                                                       0.2186 0.177 Inf
                                                       0.4526 0.166 Inf
Postdocs and Staff Researchers - (Non-research Staff)
Faculty - (Non-research Staff)
                                                        0.2341 0.177 Inf
asymp.LCL asymp.UCL z.ratio p.value
             0.4473 -0.307 0.9900
  -0.5687
                      0.760 0.8725
  -0.3760
             0.6918
            0.9017 1.975 0.1975
  -0.1179
  -0.2355
             0.6726 1.237 0.6034
             0.8785
                      2.730 0.0321
   0.0267
  -0.2215
             0.6896 1.320 0.5502
size = Medium:
 contrast
                                                      estimate
                                                                 SE df
Students - Postdocs and Staff Researchers
                                                      -0.6511 0.238 Inf
Students - Faculty
                                                       -0.2699 0.233 Inf
Students - (Non-research Staff)
                                                      -0.5878 0.219 Inf
Postdocs and Staff Researchers - Faculty
                                                       0.3812 0.206 Inf
Postdocs and Staff Researchers - (Non-research Staff)
                                                       0.0632 0.190 Inf
Faculty - (Non-research Staff)
                                                       -0.3179 0.183 Inf
asymp.LCL asymp.UCL z.ratio p.value
  -1.2622
           -0.0400 -2.737 0.0315
  -0.8674
            0.3276 -1.160 0.6518
  -1.1503 -0.0254 -2.685 0.0365
  -0.1469 0.9093 1.854 0.2481
  -0.4239
           0.5504 0.333 0.9872
  -0.7892 0.1533 -1.733 0.3063
size = Large:
 contrast
                                                      estimate
                                                                 SE df
Students - Postdocs and Staff Researchers
                                                      -0.1510 0.219 Inf
Students - Faculty
                                                       -0.0716 0.212 Inf
Students - (Non-research Staff)
                                                      -0.7002 0.206 Inf
Postdocs and Staff Researchers - Faculty
                                                       0.0794 0.193 Inf
Postdocs and Staff Researchers - (Non-research Staff) -0.5492 0.186 Inf
```

Confidence level used: 0.95 Conf-level adjustment: tukey method for comparing a family of 4 estimates

P value adjustment: tukey method for comparing a family of 4 estimates

After staring at this for a while, I think we can conclude that academics contribute to large projects less frequently than non-research staff, but there is very little evidence to support the reverse—that academics are more likely to contribute to small projects than NR staff. (Only true for postdocs and staff researchers.)

So, w.r.t. conclusion #2, I think we've mitigated the danger of the non-proportional odds violation by just looking at a single level, i.e. Large projects for different job_categories, so it doesn't matter that the effect of the interaction is different at large vs. medium, for example, because we're only looking at large. I don't think this is true for #1, where were saying that the frequency of small is higher than the frequency of large for all groups.

Wilcoxon test

Let's use a Wilcoxon test to confirm/deny the claim that all groups contribute to small projects more than they contribute to large projects. I'm subsetting the data to just small/large, removing medium, since I'm not making claims about contributions to medium projects. Since I'm just looking at two categories, small vs. large (for each of the 4 jobs independently), I'll use a Wilcoxon test instead of a Kruskal-Wallis test.

```
# Note, no need to worry about missing data as all options were mandatory
paired <- combined4 %>%
  mutate(
    freq_score = recode(
        frequency,
        "Never" = OL,
        "Relatively infrequently" = 1L,
        "Occasionally" = 2L,
        "Relatively frequently" = 3L
```

```
)
) %>%
select(job_category, participantID, size, freq_score) %>%
filter(size != "Medium") %>%
mutate(size = forcats::fct_relevel(size, "Small", "Large")) %>%
pivot_wider(names_from = size, values_from = freq_score) %>%
mutate(diff = Small - Large)

paired
```

```
# A tibble: 233 x 5
                                 participantID Small Large diff
  job_category
  <fct>
                                          <int> <int> <int> <int>
1 Faculty
                                              1
                                                    3
                                                          1
                                                                2
2 Postdocs and Staff Researchers
                                              2
                                                    2
                                                          0
                                                                2
3 Postdocs and Staff Researchers
                                              3
                                                          0
                                                                2
4 Faculty
                                              4
5 Faculty
                                              5
                                                    3
                                                          1
                                                                2
                                              6
                                                    3
6 Faculty
                                                          0
                                                                3
7 Postdocs and Staff Researchers
                                              7
                                                    2
                                                          0
                                                               2
                                              8
                                                    3
                                                          0
                                                                3
8 Faculty
9 Postdocs and Staff Researchers
                                              9
                                                    2
                                                          2
                                                                0
                                                          2
10 Students
                                             10
                                                    3
                                                                1
# i 223 more rows
```

```
# Wilcoxon test per job_category (one-sided: Small > Large)

wilc_results <- lapply(split(paired, paired$job_category), function(df) {
    wilcox.test(
        df$Small,
        df$Large,
        paired = TRUE,
        alternative = "greater",
        conf.int = TRUE,
        conf.level = 0.95
    )
})</pre>
```

Warning in wilcox.test.default(df\$Small, df\$Large, paired = TRUE, alternative = "greater", : cannot compute exact p-value with ties

Warning in wilcox.test.default(df\$Small, df\$Large, paired = TRUE, alternative = "greater", : cannot compute exact confidence interval with ties

Warning in wilcox.test.default(df\$Small, df\$Large, paired = TRUE, alternative =
"greater", : cannot compute exact p-value with zeroes

Warning in wilcox.test.default(df\$Small, df\$Large, paired = TRUE, alternative = "greater", : cannot compute exact confidence interval with zeroes

Warning in wilcox.test.default(df\$Small, df\$Large, paired = TRUE, alternative = "greater", : cannot compute exact p-value with ties

Warning in wilcox.test.default(df\$Small, df\$Large, paired = TRUE, alternative = "greater", : cannot compute exact confidence interval with ties

Warning in wilcox.test.default(df\$Small, df\$Large, paired = TRUE, alternative = "greater", : cannot compute exact p-value with zeroes

Warning in wilcox.test.default(df\$Small, df\$Large, paired = TRUE, alternative = "greater", : cannot compute exact confidence interval with zeroes

```
# Example
wilc_results[[1]]
```

Wilcoxon signed rank test with continuity correction

data: df\$Small and df\$Large
V = 325, p-value = 4.72e-06
alternative hypothesis: true location shift is greater than 0
95 percent confidence interval:
 1.50001 Inf
sample estimates:
 (pseudo)median

Let's look at the adjusted p-values.

```
job_cats <- names(split(paired, paired$job_category))
wilc_results_pvals <- sapply(seq(length(job_cats)), function(i) wilc_results[[i]]$p.value)
names(wilc_results_pvals) <- job_cats
p.adjust(wilc_results_pvals, method = "holm")</pre>
```

```
Students Postdocs and Staff Researchers
1.415879e-05 1.866168e-07
Faculty Non-research Staff
1.968021e-05 6.147576e-03
```

Great. This gives us more confidence in claiming that all groups contribute to small projects more than large projects.

Wilcoxon test: focusing on large projects

Well, since we're here, we might as well also do a wilcoxon test our other finding that non-research staff contribute to large projects more frequently than academics do. These data are not paired, obviously, since we don't have repeated measures per person for just large projects. Now we're comparing between job categories instead of between project sizes.

```
large_projs <- combined4 %>%
  mutate(
    freq_score = recode(
      frequency,
      "Never" = 0L,
      "Relatively infrequently" = 1L,
      "Occasionally" = 2L,
      "Relatively frequently" = 3L
    )
  ) %>%
  filter(size == "Large") %>%
  mutate(
    group = if_else(
      job_category == "Non-research Staff",
      "nrstaff",
      "academic"
    )
  ) %>%
  select(group, freq_score)
```

```
large_projs$group <- factor(large_projs$group, levels = c("nrstaff", "academic"))</pre>
# one-sided: NRS > Academics
wilc_results2 <- wilcox.test(</pre>
  freq_score ~ group,
  data = large_projs,
  alternative = "greater",
  conf.int = TRUE
wilc_results2
    Wilcoxon rank sum test with continuity correction
data: freq_score by group
W = 8226.5, p-value = 3.033e-05
alternative hypothesis: true location shift is greater than 0
95 percent confidence interval:
 2.496483e-05
                       Inf
sample estimates:
difference in location
             0.9999661
sessionInfo()
R version 4.4.2 (2024-10-31)
Platform: aarch64-apple-darwin20
Running under: macOS Sequoia 15.6.1
Matrix products: default
       /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib;
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
time zone: America/Los_Angeles
tzcode source: internal
```

```
attached base packages:
[1] tools
              grid
                        stats
                                   graphics grDevices datasets utils
[8] methods
              base
other attached packages:
 [1] treemapify_2.5.6
                            tidyr_1.3.1
                                                   svglite_2.2.1
 [4] stringr_1.5.1
                            scales_1.4.0
                                                  readr 2.1.5
 [7] pwr_1.3-0
                            patchwork_1.3.2
                                                  ordinal_2023.12-4.1
[10] lme4_1.1-37
                            Matrix_1.7-1
                                                  languageserver_0.3.16
[13] here_1.0.1
                            gtools_3.9.5
                                                  ggforce_0.5.0
[16] FSA_0.10.0
                            fpc_2.2-13
                                                  forcats_1.0.0
[19] factoextra_1.0.7
                            ggplot2_3.5.2
                                                   emmeans_1.11.2
[22] dplyr_1.1.4
                                                   ComplexHeatmap_2.22.0
                            corrplot_0.95
[25] cluster_2.1.8.1
                            BiocManager_1.30.26
loaded via a namespace (and not attached):
 [1] Rdpack_2.6.4
                                              magrittr_2.0.3
                          rlang_1.1.6
 [4] clue_0.3-66
                          GetoptLong_1.0.5
                                              matrixStats_1.5.0
                          flexmix_2.3-20
                                              systemfonts_1.2.3
 [7] compiler_4.4.2
                          callr 3.7.6
                                              vctrs 0.6.5
[10] png_0.1-8
[13] pkgconfig_2.0.3
                          shape_1.4.6.1
                                              crayon_1.5.3
[16] fastmap_1.2.0
                          utf8_1.2.6
                                              rmarkdown 2.29
[19] ggfittext_0.10.2
                          tzdb_0.5.0
                                              ps_1.9.1
[22] nloptr_2.2.1
                          purrr_1.1.0
                                              xfun_0.53
                                              tweenr_2.0.3
[25] modeltools_0.2-24
                          jsonlite_2.0.0
[28] parallel_4.4.2
                          prabclus_2.3-4
                                              R6_2.6.1
[31] stringi_1.8.7
                          RColorBrewer_1.1-3
                                              boot_1.3-31
[34] diptest_0.77-2
                          numDeriv_2016.8-1.1
                                              estimability_1.5.1
[37] Rcpp_1.1.0
                          iterators_1.0.14
                                              knitr_1.50
[40] IRanges_2.40.1
                          splines_4.4.2
                                              nnet_7.3-19
[43] tidyselect_1.2.1
                          yaml_2.3.10
                                              doParallel_1.0.17
[46] codetools_0.2-20
                                              lattice_0.22-6
                         processx_3.8.6
[49] tibble_3.3.0
                          withr_3.0.2
                                              evaluate_1.0.4
[52] polyclip_1.10-7
                          xml2_1.4.0
                                              circlize_0.4.16
[55] mclust 6.1.1
                         kernlab 0.9-33
                                              pillar 1.11.0
[58] renv_1.1.5
                          foreach_1.5.2
                                              stats4_4.4.2
[61] reformulas_0.4.1
                          generics_0.1.4
                                              rprojroot_2.1.1
[64] S4Vectors_0.44.0
                          hms_1.1.3
                                              minqa_1.2.8
[67] xtable_1.8-4
                          class_7.3-22
                                              glue_1.8.0
[70] robustbase_0.99-4-1 mvtnorm_1.3-3
                                              rbibutils_2.3
[73] colorspace_2.1-1
                         nlme_3.1-166
                                              cli_3.6.5
[76] textshaping 1.0.1
                          gtable_0.3.6
                                              DEoptimR_1.1-4
[79] digest_0.6.37
                          BiocGenerics_0.52.0 ucminf_1.2.2
```

[82] ggrepel_0.9.6 rjson_0.2.23 farver_2.1.2

[85] htmltools_0.5.8.1 lifecycle_1.0.4 GlobalOptions_0.1.2

[88] MASS_7.3-61