On the Convergence of Differentially Private Federated Learning on Non-Lipschitz Objectives via Clipping and Normalized Client Updates

Abolfazl Hashemi, Purdue ECE FLOW Seminar, April 20th, 2022

Rudrajit Das (UT CS)

Sujay Sanghavi (UT ECE)

https://arxiv.org/abs/2106.07094

Inderjit S. Dhillon (UT CS)

Collaborative ML via Federated Learning (FL)

- Decentralized data (as opposed to traditional distributed learning)
- Different (resp., identical) \mathcal{D}_i 's: heterogeneous (resp., homogeneous) setting.

Privacy-Preserving FL

- Despite the locality of data storage in FL, information-sharing opens the door to the possibility of sabotaging the security of personal data through communication.
- Can the server optimize while preserving a strong notion of privacy of clients' data?

Differential Privacy (DP)

- DP is a popular privacy-quantifying framework for training of ML models.
- Goal: Learning nothing about an individual while learning useful information about a whole population
- Reducing learning algorithm's sensitivity to an individual's data
- To protect the individuals' privacy, one adds a controlled amount of random noise to the results of our analysis.

Differential Privacy (DP) Background

Neighboring datasets

Two datasets $\mathcal{D} \in D_c$ and $\mathcal{D}' \in D_c$ are said to be neighboring if they differ in exactly one sample, and we denote this by $|\mathcal{D} - \mathcal{D}'| = 1$.

(ε, δ) -DP [DMNS06]

Given a collection of datasets D_c and a query function $h:D_c\to\mathcal{X}$, a randomized mechanism $\mathcal{M}:\mathcal{X}\to\mathcal{Y}$ is said to be (ε,δ) -DP, if for any two neighboring datasets

$$\mathbb{P}(\mathcal{M}(h(\mathcal{D})) \in \mathcal{R}) \leq e^{\varepsilon} \mathbb{P}(\mathcal{M}(h(\mathcal{D}')) \in \mathcal{R}) + \delta.$$

- When $\delta = 0$, it is commonly known as pure DP. Otherwise, it is known as approximate DP.
- Setting \mathcal{M} to additive random Gaussian noise known as the Gaussian mechanism is a customary approach to provide DP.

How Much Noise is Adequate?

Gaussian mechanism [DR+14]

Let $\Delta := \sup_{\mathcal{D}, \mathcal{D}' \in D_c: |\mathcal{D} - \mathcal{D}'| = 1} \|h(\mathcal{D}) - h(\mathcal{D}')\|$. If we set $\mathcal{M}(h(\mathcal{D})) = h(\mathcal{D}) + \mathbf{Z}$, where $\mathbf{Z} \sim \mathcal{N}\Big(\vec{0}_p, \frac{2\log(1.25/\delta)\Delta^2}{\varepsilon^2}\mathbf{I}_p\Big)$, then the mechanism \mathcal{M} is (ε, δ) -DP.

- Noise power increases with sensitivity and desired privacy guarantees.
- Similar results exists for Laplace mechanism and discretized/truncated distributions

Going back to FL: How to apply DP in FL?

DP in FL: FedAvg Revisited

- Local update: For E steps, do GD, i.e., $\mathbf{w}_{k,\tau+1}^{(i)} \leftarrow \mathbf{w}_{k,\tau}^{(i)} \eta_k \nabla f_i(\mathbf{w}_{k,\tau}^{(i)})$
- Each client communicates its update $u_k^{(i)} = \frac{w_k w_{k,E}^{(i)}}{\eta_k}$ to server w.p. $\frac{r}{n}$ (total of K rounds)
- Global update: $\mathbf{w}_{k+1} \leftarrow \mathbf{w}_k \frac{\beta_k}{r} \sum_{i \in \mathcal{S}_k} \mathbf{u}_k^{(i)}$
- Output: $\mathbf{w}_{\tilde{k}}$ with $\tilde{k} \sim \mathsf{Unif}[0, K-1]$.

 $u_k^{(i)}$ contains local gradient information \rightarrow needs to be made private!

DP-FedAvg with Clipping

- Maximum sensitivity, Δ , grows with norm of $m{u}_k^{(i)} = rac{m{w}_k m{w}_{k,E}^{(i)}}{\eta_k}$
- Assuming G-Lipschitzness, i.e., $\sup_{\theta \in \Theta} \|\nabla g(\theta)\|_2 \leq G$, this norm is at most $GE \to \text{controlled}$ additive noise
- In general, need to limit how large $u_k^{(i)}$ can get to remove unbounded impact of one client.

Clipped Updates:
$$\boldsymbol{u}_k^{(i)} \min \left(1, \frac{C}{\|\boldsymbol{u}_k^{(i)}\|}\right) + \zeta_k^{(i)}, \quad \zeta_k^{(i)} \sim \mathcal{N}(0_d, r\sigma^2 I_d)$$

Theorem (Based on [ACG+16])

There exists an absolute constant q>0 s.t. for $\varepsilon=\mathcal{O}(1)$, DP-FedAvg will be (ε,δ) -DP as long as

$$\sigma^2 = qKC^2 \frac{\log(1/\delta)}{n^2 \varepsilon^2}.$$

Convergence of DP-FedAvg

with Clipping

Relevant Notations and Definitions

Convexity

A function $g: \Theta \to \mathbb{R}$ is convex if $g(\lambda \theta + (1 - \lambda)\theta') \le \lambda g(\theta) + (1 - \lambda)g(\theta')$ for any $\theta, \theta' \in \Theta$ and $0 \le \lambda \le 1$.

Smoothness

A function $g:\Theta\to\mathbb{R}$ is to said to be L-smooth if for all $\theta,\theta'\in\Theta$, $\|\nabla g(\theta)-\nabla g(\theta')\|_2\leq L\|\theta-\theta'\|_2$. If g is twice differentiable, then for all $\theta,\theta'\in\Theta$:

$$g(oldsymbol{ heta}') \leq g(oldsymbol{ heta}) + \langle
abla g(oldsymbol{ heta}), oldsymbol{ heta}' - oldsymbol{ heta}
angle + rac{L}{2} \|oldsymbol{ heta}' - oldsymbol{ heta}\|_2^2.$$

Heterogeneity

Let $\mathbf{w}^* \in \arg\min_{\mathbf{w}' \in \mathbb{R}^d} f(\mathbf{w}')$ and $\Delta_i^* := f_i(\mathbf{w}^*) - \min_{\mathbf{w}' \in \mathbb{R}^d} f_i(\mathbf{w}') \geq 0$. Then the heterogeneity of the system is quantified by some increasing function of the Δ_i^* 's.

Convergence Without Assuming Lipschitzness

Theorem 1

Suppose the f_i 's are convex and L-smooth over \mathbb{R}^d . Define $0 < \rho := \frac{\sqrt{qd \log(1/\delta)}}{n\varepsilon} < 1$. There exists constant local and global learning rates η and β , and a lower bound on the clipping threshold C_{low} , such that for any $C \geq C_{\text{low}}$ and in $K = \mathcal{O}\left(\frac{L\|\mathbf{w_0} - \mathbf{w}^*\|}{C\rho^2}\right)$ rounds

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\min\left(f_{i}(\boldsymbol{w}_{\tilde{k}})-f_{i}(\boldsymbol{w}^{*}),\mathcal{O}\left(\frac{C}{LE}\|\nabla f_{i}(\boldsymbol{w}_{\tilde{k}})\|\right)\right)\right]\leq\mathcal{O}\left(\frac{C}{E}\|\boldsymbol{w}_{0}-\boldsymbol{w}^{*}\|+E\left(\frac{1}{n}\sum_{i=1}^{n}\Delta_{i}^{*}\right)\right)\rho.$$

- ρ : the price of privacy increases as the level of privacy increases (i.e., ε and δ decrease).
- Non-vanishing convergence error in Private FL
- The second term, effect of heterogeneity, can be reduced arbitrarily by increasing K, but the first term, effect of initialization remains.

Friendlier Results Under Lipschitzness

- Under G-Lipschitzness we can set C = GE since $\|\boldsymbol{u}_{k}^{(i)}\| \leq GE$
- This means no clipping occurs and we can get rid of $\mathcal{O}\left(\frac{C}{LE}\|\nabla f_i(\boldsymbol{w}_{\vec{k}})\|\right)$ from the convergence criterion to obtain

$$\mathbb{E}[f(\boldsymbol{w}_{\tilde{k}})] - f(\boldsymbol{w}^*) \leq \frac{8}{5} \left(G \|\boldsymbol{w}_0 - \boldsymbol{w}^*\| + \frac{3}{4} E \left(\frac{1}{n} \sum_{i=1}^n \Delta_i^* \right) \right) \rho.$$

ullet With $E=\mathcal{O}(1)$ our bound matches the lower bound for the centralized convex and Lipschitz case with respect to the dependence on ho

Are multiple local steps (E > 1)

beneficial or detrimental?

Effect of Multiple Local Steps

- In a nutshell, increasing *E* mitigates the effect of initialization at the cost of increasing the effect of heterogeneity; the "best" value of *E* depends on which one is more dominant, and also the privacy level.
- Let us quantify this with an additional assumption.

Assumption 1

- (i) For any $\mathbf{w} \in \mathbb{R}^d$ and each $i \in [n]$, we have $\|\nabla f_i(\mathbf{w} \eta \nabla f_i(\mathbf{w})) \nabla f_i(\mathbf{w})\| \ge \eta \lambda \|\nabla f_i(\mathbf{w})\|$, for some $0 < \lambda \le L$ and $\eta \le \frac{\rho}{2L}$. (ii) Additionally, each f_i is G-Lipschitz over \mathbb{R}^d .
 - For small enough η , $\|\nabla f_i(\boldsymbol{w} \eta \nabla f_i(\boldsymbol{w})) \nabla f_i(\boldsymbol{w})\| = \Theta(\eta \|\nabla^2 f_i(\boldsymbol{w})\nabla f_i(\boldsymbol{w})\|)$; so, we are basically assuming $\|\nabla^2 f_i(\boldsymbol{w})\nabla f_i(\boldsymbol{w})\| \geq \Omega(\lambda \|\nabla f_i(\boldsymbol{w})\|)$ which is weaker than strong convexity.

Effect of Multiple Local Steps

• Recall $\rho = \mathcal{O}\Big(\frac{\sqrt{d\log(1/\delta)}}{n\varepsilon}\Big)$ is the privacy cost.

Proposition 1

Under Assumption 1, there exists a choice of C (depending on E), s.t. we get the following convergence guarantee:

$$\mathbb{E}[f(\mathbf{w}_{\tilde{k}})] - f(\mathbf{w}^*) \leq \left(2G\|\mathbf{w}_0 - \mathbf{w}^*\| + \frac{6}{5}E\left\{\frac{1}{n}\sum_{i=1}^n \Delta_i^* - \frac{11G\|\mathbf{w}_0 - \mathbf{w}^*\|\rho}{48}\left(\frac{\lambda^2}{L^2}\right)\right\}\right)\rho.$$

• So if $\frac{1}{n}\sum_{i=1}^{n}\Delta_{i}^{*}<\mathcal{O}\left(G\left(\frac{\lambda^{2}}{L^{2}}\right)\right)\|\mathbf{w}_{0}-\mathbf{w}^{*}\|\rho$, then having a large value of E is beneficial; in particular, setting the maximum permissible value of E, which is $\frac{1}{2\rho}$, is the best (in terms of smallest suboptimality gap). Otherwise, having a small value of E is better; specifically, E=1 is the best.

Roadmap

So far we discussed

- Convergence of DP-FedAvg with clipping with and without Lipschitzness
- Role of E in DP-FedAvg with clipping

But clipping has a potential issue!

$$\mathsf{clip}(\boldsymbol{z},c) := \boldsymbol{z} \min \Big(1, \frac{c}{\|\boldsymbol{z}\|}\Big).$$

- As our FL algorithm converges, norm of model update $u_k^{(i)} = \frac{w_k w_{k,E}^{(i)}}{\eta}$ becomes small \to no clipping occurs
- But $\sigma \propto C$ regardless (can we adaptively reduce C?)
- Hence, we enter a low SNR regime where added noise is dominant and hurts the convergence

Low SNR near Solution

• DP-FL on synthetic convex quadratic functions

How can we ensure clients' update have higher SNR values?

Normalized Updates in DP-FL

Client-Update Normalization (Instead of Clipping)

We propose to use

$$\mathsf{norm}(\pmb{z},c) := rac{c\pmb{z}}{\|\pmb{z}\|} \qquad \mathsf{vs.} \qquad \mathsf{clip}(\pmb{z},c) := \pmb{z} \min\left(1, rac{c}{\|\pmb{z}\|}
ight)$$

in DP-FedAvg, i.e.,

Normalized Updates:
$$\frac{C \boldsymbol{u}_k^{(i)}}{\|\boldsymbol{u}_k^{(i)}\|} + \zeta_k^{(i)}, \quad \zeta_k^{(i)} \sim \mathcal{N}(\mathbf{0}_d, r\sigma^2 \mathbf{I}_d)$$

- This ensures the updates are uniformly bounded and at the same time noise will not overpower the update direction, leading to better convergence and accuracy.
- For smaller *C*, normalization and clipping become equivalent.

Theoretical Comparison of Clipping and Normalization

See Section 5.1 and Remark 1 in the paper for a precise comparison. In summary:

- Our theory shows normalization enjoys a smaller effect of initialization on convergence.
- Not easy to characterize whether the effect of heterogeneity is smaller for normalization or clipping.
- But recall, the effect of heterogeneity can be controlled by increasing K, the number of rounds.
- Hence, normalization has a better asymptotic convergence.

Theory-guided Recommendation

Do normalization if we can afford training for large K.

Experiments: Synthetic Convex Quadratic Problems

- We set $(\varepsilon, \delta) = (5, 10^{-6})$, K = 500, E = 20, and n = 100.
- $f_i(\mathbf{w}) = \frac{1}{2}(\mathbf{w} \mathbf{w}_i^*)^T \mathbf{Q}_i(\mathbf{w} \mathbf{w}_i^*)$
- \mathbf{w}_i^* and $\mathbf{Q}_i = \mathbf{A}_i \mathbf{A}_i^T$, where \mathbf{A}_i is 200 × 20, are formed randomly.
- Two different initialization
 - **I1**: $w_0 = w^* + z$, and
 - 12: $w_0 = w^* + \frac{z}{5}$,
- ullet Finally, we consider full-device participation and vary η and C.

Synthetic Problems: 2D Trajectories

(a) I1: C = 50 and $\eta = 0.003$

(b) I1: C = 100 and $\eta = 0.001$

• DP-NormFedAvg reaches closer to the optimum than DP-FedAvg with clipping.

Synthetic Problems: Convergence Curves

- Normalization does significantly better than clipping for large *C*.
- For smaller *C* normalization and clipping are nearly equivalent (as expected).

Synthetic Problems: SNR Comparison

• SNR: The ratio of average clipped/normalized per-client update and average per-client noise

• SNR of normalization is never lower than that of clipping, explaining the superiority of the former.

Logistic Regression on FMNIST, CIFAR-10 and CIFAR-100

• Average test accuracy over the last 5 rounds

FMNIST	$(5, 10^{-5})$ -DP	$(1.5, 10^{-5})$ -DP
Clipping	75.59%	56.90%
Normalization	77.72%	57.80%
FedAvg (w/o privacy)	83.43%	

CIFAR-10	$(5, 10^{-5})$ -DP	$(1.5, 10^{-5})$ -DP
Clipping	82.63%	81.53%
Normalization	84.21%	82.42%
FedAvg (w/o privacy)	85.64%	

CIFAR-100	$(5, 10^{-5})$ -DP	$(1.5, 10^{-5})$ -DP
Clipping	56.53%	41.33%
Normalization	59.36%	42.76%
FedAvg (w/o privacy)	64.61%	

Summary

Goal

Convergence analysis of private federated learning

- Established convergence of DP-FedAvg with clipping without Lipschitzness on smooth convex functions
- Effect of heterogeneity can be controlled while effect of initialization remains (cannot hope to do better)
- Role of local steps E: If $\frac{1}{n}\sum_{i=1}^{n}\Delta_{i}^{*} < \mathcal{O}\left(G\left(\frac{\lambda^{2}}{L^{2}}\right)\right)\|\mathbf{w}_{0} \mathbf{w}^{*}\|\rho$ having a large value of E is beneficial (under a suitable hessian assumption).

Theory-guided Recommendation

Normalized client updates instead of clipping for DP-FedAvg

- Ensures updates enjoy higher SNR
- Theoretical advantage over clipping in mitigating the effect of initialization

Thank you!

On the Convergence of Differentially Private Federated Learning on Non-Lipschitz Objectives via Clipping and Normalized Client Updates

https://arxiv.org/abs/2106.07094

Hiring Postdocs and PhD Students at Purdue ECE!

Abolfazl Hashemi (email: abolfazl@purdue.edu)