

Tarallucci, Vino e Machine Learning "Il paper della buonanotte"  $^{"TM}$ 

## Case Study

sviluppo di un Clamidia-Detector

Fabio Mardero fabio.mardero@gmail.com github.com/fmardero

9 maggio 2019

## Indice



II progetto

Un primo modello

Lavori pregressi

Tentativi di training

Unlabeled Data

Valutazione dei risultati



## Il progetto

## II problema



La clamidia è un'infezione batterica venerea e generalmente asintomatica. Il metodo più attendibile per identificare la malattia consiste nell'analizzare un campione di sangue della persona.



### L'obiettivo



Una clinica medica commissiona al gruppo TVML di identificare, sulla base dell'immagine di un campione di sangue, se la persona è infetta o meno da clamidia. Al momento di lancio del progetto, l'equipe medica ha raccolto duemila immagini ( $\mathcal{D}_0 = \{2e3\}$ ), classificandole:

P: "clamidia"

N: "non clamidia"

**NOTA BENE:** in quest'analisi si trascura la difficoltà reale del problema.





- ▶ Che modello di machine learning conviene utilizzare?
- ► Possibili architetture?



- ▶ Che modello di machine learning conviene utilizzare?
- ▶ Possibili architetture?
- ▶ Tipo di allenamento? Tecniche?



- ▶ Che modello di machine learning conviene utilizzare?
- ► Possibili architetture?
- ▶ Tipo di allenamento? Tecniche?
- Proporzioni train&valid&test?



- ► Che modello di machine learning conviene utilizzare?
- Possibili architetture?
- Tipo di allenamento? Tecniche?
- Proporzioni train&valid&test?
- Metriche di allenamento e di supervisionamento degli errori?



# Lavori pregressi

# Lavori pregressi: Dati simili



Su Kaggle sono disponibili cinquanta mila immagini  $\mathcal{D}_1 = \{5e4\}$  relative a campioni di sangue infetti da una di 100 malattie. Ogni dato è opportunamente etichettato con l'infezione corrispondente. Le immagini appaiono simili a quelle in  $\mathcal{D}_0$ .

► Posso usare questi dati?

# Lavori pregressi: Dati simili



Su Kaggle sono disponibili cinquanta mila immagini  $\mathcal{D}_1 = \{5e4\}$  relative a campioni di sangue infetti da una di 100 malattie. Ogni dato è opportunamente etichettato con l'infezione corrispondente. Le immagini appaiono simili a quelle in  $\mathcal{D}_0$ .

- ► Posso usare questi dati?
- Proporzioni train&valid&test?

# Lavori pregressi: Modello



Tra i kernel della competizione è possibile scaricare un modello allenato su  $\mathcal{D}_1$  che fornisce previsioni estremamente accurate rispetto alle 100 classi.

- ▶ Posso utilizzare il modello?
- ► Come?



# Tentativi di training

### Previsioni accuratissime



#### **TENTATIVO 1**

Il modello di clamidia-prediction è allenato per la prima volta. Si ottiene un'accuratezza del 98% sul test set.

► Il risultato è attendibile?

### Previsioni accuratissime



#### **TENTATIVO 1**

Il modello di clamidia-prediction è allenato per la prima volta. Si ottiene un'accuratezza del 98% sul test set.

- ► Il risultato è attendibile?
- ▶ Eventuali controlli?

### Previsioni accuratissime



#### **TENTATIVO 1**

Il modello di clamidia-prediction è allenato per la prima volta. Si ottiene un'accuratezza del 98% sul test set.

- ► Il risultato è attendibile?
- ▶ Eventuali controlli?
- Metodi di bilanciamento delle classi?

# Migliorare il modello



#### **TENTATIVO 2**

Allenato nuovamente, il modello fornisce previsioni con un'accuratezza del 65% sul test set.

Risulta possibile migliorare le previsioni senza acquisire nuovi dati?

# Migliorare il modello



#### **TENTATIVO 2**

Allenato nuovamente, il modello fornisce previsioni con un'accuratezza del 65% sul test set.

- Risulta possibile migliorare le previsioni senza acquisire nuovi dati?
- In quali casi le tecniche di data augumentation potrebbero peggiorare le previsioni?



## Unlabeled Data

## Dati non classificati



Grazie alla data augumentation, l'accuratezza del modello sul test set è pari a 80%. Nel frattempo la clinica ha collezionato  $\mathcal{D}_2 = \{1e4\}$  diecimila immagini di campioni di sangue di persone che si sono sottoposte al test per la clamidia. A seguito di un errore informatico, l'esito delle valutazioni sui campioni è stato perso.

- ► Si possono utilizzare comunque questi dati?
- ► Come?



## Valutazione dei risultati



Con la nuova fase di training, l'accuratezza del modello sul test set è pari a 85%. Di seguito la relativa confusion matrix.

I risultati sono soddisfacenti? Posso mettere in produzione il modello?



Con la nuova fase di training, l'accuratezza del modello sul test set è pari a 85%. Di seguito la relativa confusion matrix.

- I risultati sono soddisfacenti? Posso mettere in produzione il modello?
- Soluzioni all'eventuale problema?



Risolto il problema si ottiene la seguente confusion matrix.

► Qual è l'accuratezza del modello?



Risolto il problema si ottiene la seguente confusion matrix.

- ► Qual è l'accuratezza del modello?
- Qual è la precisione del modello?



Risolto il problema si ottiene la seguente confusion matrix.

|      | TRUE |     |     |
|------|------|-----|-----|
|      |      | Р   | N   |
| PRED | Р    | 40% | 12% |
|      | Ν    | 3%  | 45% |

- ► Qual è l'accuratezza del modello?
- ► Qual è la precisione del modello?
- ► Qual è il recall del modello?

# Attendibilità delle previsioni



Il modello è preciso al 93%. Un medico, in condizioni normali, restituisce diagnosi con una precisione del 89%.

▶ Il modello ha ottenuto buone performance?

# Attendibilità delle previsioni



Il modello è preciso al 93%. Un medico, in condizioni normali, restituisce diagnosi con una precisione del 89%.

- ► Il modello ha ottenuto buone performance?
- I risultati sono attendibili?

## Attendibilità delle previsioni



Il modello è preciso al 93%. Un medico, in condizioni normali, restituisce diagnosi con una precisione del 89%.

- ▶ Il modello ha ottenuto buone performance?
- I risultati sono attendibili?
- Com'è possibile ottimizzare il problema di labeling?

# Apprendimento del modello



La clinica medica rimane stupita da una precisione così elevata per un computer. Vuole capire cosa il modello valuta per fornire una data previsione.

► Tecniche?



Grazie dell'attenzione!