Class-Weighted Convolutional Features for Image Retrieval

Motivation

Search by Visual Similarity on Large Scale Databases.

General Pipeline

Desired Properties for Image Encoding

Be able to provide a **fast search**

Challenge in Retrieval: Dynamic Datasets of Unlabeled Images

From Classification to Retrieval

Class Activation Maps (CAMs) [1] weight the Convolutional Features according to the predicted semantic classes.

[1] B. Zhou, A. Khosla, Lapedriza. A., A. Oliva, and A. Torralba. Learning Deep Features for Discriminative Localization. CVPR (2016).

We have observed an important variations in the CAMs generated by different CNN architectures.

Top-1 predicted class

Top-1, Top-2 & Top-3 predicted classes

Xavier

Proposed Image Encoding

1) Extraction of Convolutional Features & CAMs

2) Feature Weighting and Pooling

3) Feature Aggregation

4) Region Proposals for Reranking (R) and Query Expansion (QE)

Bounding boxes are fit to the largest connected components of the CAMs after a binarization at different thresholds.

Green - Ground Truth Orange → Red - Different Thresholds

Experiments

Baseline Results		Computation	Networks Comparison				
Descriptor Aggregation	Oxford5k	Descriptor Aggregation	Time (s)	mAP	Network	Oxf5k	Paris6k
Raw Features Raw + Crow (channel) Raw Features + PCA Raw + Crow(channel) + PCA	0.396 0.420 0.589 0.607	Raw + PCA 1 CAM 8 CAMs 32 CAMs 64 CAMs	0.49 0.5 0.6 0.9 1.5	0.589 0.667 0.709 0.711 0.712	VGG-16 (Raw) VGG-16 (64CAMs) Resnet-50 (Raw) Resnet-50 (64CAMs) Densenet-161 (Raw) Densenet-161 (64CAMs)	0.396 0.712 0.389 0.699 0.339 0.695	0.526 0.805 0.508 0.804 0.495 0.799

Comparison with the State-of-the-Art for off-the-shelf features

Method	Dim	Oxf5k	Par6k	Oxf105k	Par106k	
SPoC[3]	256	0.531	-	0.501	-	
uCroW[14]	256	0.666	0.767	0.629	0,695	
CroW[14]	512	0.682	0.796	0.632	0.710	
R-MAC[31]	512	0.669	0.830	0.616	0.757	
BoW[16]	25k	0.738	0.820	0.593	0.648	
Razavian [22]	32k	0.843	0.853	-	-	
Ours(OnA)	512	0.736	0.855	-	-	
Ours(OfA)	512	0.712	0.805	0.672	0.733	

 $N_c = 64, N_{pca} = 1$

Method	Dim	R	QE	Oxf5k	Par6k	Oxf105k	Par106k
CroW	512	-	10	0.722	0.855	0.678	0.797
Ours(OnA)	512	-	10	0.760	0.873	-	-
Ours(OfA)	512	-	10	0.730	0.836	0.712	0.791
BoW	25k	100	10	0.788	0.848	0.651	0.641
Ours(OnA)	512	100	10	0.780	0.874	-	-
Ours(OfA)	512	100	10	0.773	0.838	0.750	0.780
RMAC	512	1000	5	0.770	0.877	0.726	0.817
Ours(OnA)	512	1000	5	0.811	0.874	-	-
Ours(OfA)	512	1000	5	0.801	0.855	0.769	0.800

 $N_c = 64$, $N_{pca} = 1$, $N_{re-ranking} = 6$

PYTORCH

