

Supervised Learning for Predictive Analytics

More Classification Algorithms

Dr. Unchalisa Taetragool

Department of Computer Engineering, Faculty of Engineering King Mongkut's University of Technology Thonburi

Classification Recap

- Two-step process:
 - **Learning** a model construction
 - **Applying** a model usage
- In model construction, we describe a set of pre-determined classes:
 - Each record is assumed to belong to a predefined class based on its features
 - The set of records is used for model construction is a **training set**
- The trained model is then applied to **unseen data** to classify those records into the predefined classes
- Model should fit well to training data and have strong predictive power
 - Do NOT overfit a model, as that results in low predictive power

Classification Methods

Classification Methods

- There is no "BEST" method
- Methods can be selected based on metrics (accuracy, precision, recall, F-measure), speed, robustness, and scalability

Outline

- Ensemble methods
 - Bagging and Boosting trees
 - Random forest and XGBoost algorithms
- Support Vector Machines

Ensemble Learning

- Ensemble learning
 - The process by which <u>multiple models</u>, such as classifiers or experts, are strategically generated and <u>combined</u> to solve a particular computational intelligence problem.
- Ensemble classification
 - Aggregation of predictions of multiple classifiers with the goal of improving accuracy.

Machine learning competition with a \$1 million prize

Leaderboard

Display top 20 ve leaders.

Rank 1	Team Name The Ensemble	0.8553	10.10	2009-07-26 18:38:22
6	Delinors and House States	0.0004	10.09	2009-07-26 18:18:28
Gran	d Prize - RMSE <= 0.8563			
3	Grand Prize Team	0.8571	9.91	2009-07-24 13:07:49
4	Opera Solutions and Vandelay United	0.8573	9.89	2009-07-25 20:05:52
5	Vandelay Industries !	0.8579	9.83	2009-07-26 02:49:53
6	PragmaticTheory	0.8582	9.80	2009-07-12 15:09:53
7	BellKor in BigChaos	0.8590	9.71	2009-07-26 12:57:25
В	Dace	0.8603	9.58	2009-07-24 17:18:43
9	Opera Solutions	0.8611	9.49	2009-07-26 18:02:08
10	BellKor	0.8612	9.48	2009-07-26 17:19:11
11	BioChaos	0.8613	9.47	2009-06-23 23:06:52
12	Feeds2	0.8613	9.47	2009-07-24 20:06:46
Prog	ress Prize 2008 - RMSE = 0.8616 -	Winning Team:	BellKor in BigCh	aos
13	xiangliang	0.8633	9.26	2009-07-21 02:04:40
14	Gravite	0.8634	9.25	2009-07-26 15:58:34
15	Ces	0.8642	9.17	2009-07-25 17:42:38
15	Invisible Ideas	0.8644	9.14	2009-07-20 03:26:12
17	Just a guy in a garage	0.8650	9.08	2009-07-22 14:10:42
18	Craig Carmichael	0.8656	9.02	2009-07-25 16:00:54
19	J Dennis Su	0.8658	9.00	2009-03-11 09:41:54
20	acmehill	0.8659	8.99	2009-04-16 06:29:35
Prog	ress Prize 2007 - RMSE = 0.8712 -	Winning Team:	KorBell	
Cine	match score on quiz subset - RMSE	= 0.9514		

Ensemble Learning

- Utility of combining diverse, independent opinions in human decision making
- Majority vote
 - Suppose we have 5 completely independent classifiers...
 - If accuracy is 70% for each
 - $10(.7^3)(.3^2) + 5(.7^4)(.3) + (.7^3)$
 - 83.7% accuracy
 - 101 such classifiers
 - 99.9% accuracy

Bias-Variance Tradeoff

Bias-Variance Tradeoff

High bias (underfit)

"Just right"

High variance (overfit)

Model Complexity

Reducing variance without increasing bias

Averaging reduces variance:

$$\operatorname{var}(\overline{X}) = \frac{\operatorname{var}(X)}{n}$$

- Average models to reduce model variance
- One problem
 - Only one training set
 - Where do multiple models come from?

Bagging: bootstrap aggregation

- Take repeated bootstrap samples from training set D.
 - Bootstrap sampling: Given set D containing N training examples, create D' by drawing N examples at random with replacement from D.
- Bagging: Procedure
 - Create k bootstrap samples $D_1 \dots D_k$
 - Train distinct classifier on each Di < Different training set >
 - Classify new instance by majority vote (classification) or average (regression)

Bagging

• Best case

$$\operatorname{var}\left(bagging\left(L(x,D)\right)\right) \to \frac{\operatorname{var}\left(L(x,D)\right)}{N}$$

- In practice, models are correlated, so the reduction is smaller than 1/N
- Variance of the models trained on fewer training cases usually somewhat larger

Bagging

Reduce bias and decrease variance?

Reduce over fitting effect

- Bagging reduces variance by averaging
- In practice, bagging has little effect on bias
- Can we average and reduce bias?
- Yes: Boosting

Reduce under fitting

Boosting

- Boosting aims to reduce bias.
- Can a set of weak learners create a single strong learner?
- A weak learner is defined to be a classifier which is only slightly correlated with the true classification (it can label examples better than random guessing).
- In contrast, a strong learner is a classifier that is arbitrarily well-correlated with the true classification.
- It make examples currently misclassified more important (or less, in some cases)

Boosting (AdaBoost)

ปรับ weight ไปเรือยๆจนกว่าจะดี

$$h(x) = a_1h_1(x) + a_2h_2(x) + ... + a_3h_n(x)$$

u - weighting on data points

a - weight of linear combination

https://www.cs.princeton.edu/~schapire/papers/explaining-adaboost.pdf

Stop when validation performance plateaus (will discuss later)

 $h_n(x)$

Boosting

- Create a sequence of classifiers, giving higher influence to more accurate classifiers
- At each iteration, make examples currently misclassified more important (get larger weight in the construction of the next classifier)
 - Then, combine classifiers by weighted vote (weight given by classifier accuracy)

AdaBoost

- Advantages
 - Very little code
 - Reduce variance

- Disadvantages
 - Sensitive to noise and outliers

เวลาไปทำให้ noise สำคัญกว่า data จริง

Stacking

- Stacking (sometimes called stacked generalization) involves training a learning algorithm to combine the predictions of several other learning algorithms
- First, all of the other algorithms are trained using the available data, then a combiner algorithm is trained to make a final prediction using all the predictions of the other algorithms as additional inputs

Stacking

Random Forest

for regression and classification

Random Forest

Random forest

random both data, and feature selection

- An ensemble of decision tree trained by bootstrap sampling and random feature selection
- It is based on decision trees: classifiers constructed greedily using the conditional entropy
- The extension hinges on two ideas:
 - building an ensemble of trees by training on subsets of data
 - considering a reduced number of possible variables at each node

Classification and Regression Trees Pioneers

Pioneers:

- Morgan and Sonquist (1963).
- Breiman, Friedman, Olshen, Stone (1984). CART
- Quinlan (1993). C4.5

A Classification Tree

Data and Underlying Function

Single Regression Trees

10 Regression Trees

from bagging

Average of 100 Regression Trees

Hard problem for a single tree

Single Tree

25 Averaged Trees

25 Voted Trees

Random Forests

- Grow a **forest** of many trees.
 - Number of trees could be 10, 50, 500. The more trees, the less overfitted.
- Grow each tree on an independent bootstrap sample* from the training data.
- At each node:
 - 1. Select *m* variables at random out of all *M* possible variables (independently for each node).
 - 2. Find the best split on the selected *m* variables.
- Grow the trees to maximum depth (classification). Vote/average the trees to get predictions for new data.
- *Sample N cases at random with replacement.

Random Forests

Inherit many of the advantages of CART:

- Applicable to both regression and classification problems. Yes.
- Handle categorical predictors naturally. Yes.
- Computationally simple and quick to fit, even for large problems. Yes.
- No formal distributional assumptions (non-parametric). Yes.
- Can handle highly non-linear interactions and classification boundaries.
 Yes.
- Automatic variable selection. Yes. But need variable importance too.
- Handles missing values through surrogate variables. Using proximities.
- Very easy to interpret if the tree is small. NO! It's not easy to interprete

Random Forests

Improve on CART with respect to:

- Accuracy Random Forests is competitive with the best known machine learning methods.
- *Instability* if we change the data a little, the individual trees may change but the forest is relatively stable because it is a combination of many trees.

Two natural questions

- Why bootstrap? (Why subsample?)
 - Bootstrapping → out-of-bag data →
 - Estimated error rate and confusion matrix
 - Variable importance
- Why trees?
 - Trees → proximities →
 - Missing value fill-in
 - Outlier detection
 - Illuminating pictures of the data (clusters, structure, outliers)

eXtreme Gradient Boosting

XGBoost

- stands for eXtreme Gradient Boosting
- has become a widely used and really popular tool among Kaggle competitors and Data Scientists in industry
- highly flexible and versatile tool that can work through most regression, classification and ranking problems as well as user-built objective functions

XGBoost

- a scalable and accurate implementation of gradient boosting machines
- It has proven to push the limits of computing power for boosted trees algorithms
 - it was built and developed for the sole purpose of model performance and computational speed

How does it work?

- Concept of boosting: ทำให้ model แย่ๆ นั้นดีขึ้นเรื่อยๆ จากการสร้างโมเดลที่ไม่ดีหลายอัน
 - an ensemble method that seeks to create a strong classifier (model) based on "weak" classifiers
 - weak and strong refer to a measure of how correlated are the learners to the actual target variable
- Gradient Boosting = Gradient Descent + Boosting
- In each state, introduce a weak learner to compensate shortcomings of existing weak learners.
 - AdaBoost: shortcomings are identified by high-weight data points
 - Gradient boosting: shortcomings are identified by gradients

Gradient Boosting

Fit model to initial data

It can be:

- same algorithm as for further steps
- or something very simple (like uniform probabilities or average target in regression)

ทำการ fit residue แล้วเอามาบวกกับ prediction แล้วก็ fit residue ... and so on

Fit pseudo-residuals

For any function that:

- agrregates the error from examples (e.g. log-loss, RMSE, but not AUC)
- you can calculate gradient on example level (it is called pseudo-residual)

Finalization

Sum up all the models

how to deal with unbalanced

- 1) Re sampling
- 2) Ensemble techniques

using K-mean clustering and over sampling every group to replicate the data minimum event rate should be around 20%

Random Forest: Lab

Support Vector Machines

Linear Discriminant Analysis (LDA)

- Focus on linear classification model, i.e., the decision boundary is a linear function of x
 - Defined by (D − 1)-dimensional hyperplane
- If the data can be separated exactly by linear decision surfaces, they are called linearly separable
- Implicit assumption: Classes can be modeled well by Gaussians
- Simply speaking, treat classification as a projection problem

From PRML (Bishop, 2006)

Projection

• Assume we know the basic vector w, we can compute the projection, y, of any points, x.

• Threshold w_0 , such that we decide on C_1 if $y \ge w_0$ and C_2 otherwise.

Potential issues

- Considerable loss of information when projecting
- Even if data was linearly separable, we may lose this separability

• Find good basis vector w that spans the subspace we project onto

Approach: Maximize Class Separation

- Adjust components of basis vector w
 - ▶ Select projection that maximizes the class separation
- Consider two classes: C_1 with N_1 points and C_2 with N_2 points
- Corresponding mean vectors:

$$m_1 = \frac{1}{N_1} \sum_{n \in C_1} x_n$$
, $m_2 = \frac{1}{N_2} \sum_{n \in C_2} x_n$

 Measure class separation as the distance of the projected class means:

$$m_2 - m_1 = \mathbf{w}^{\top} m_2 - \mathbf{w}^{\top} m_1 = \mathbf{w}^{\top} (m_2 - m_1)$$

and maximize this w.r.t. w with the constraint ||w|| = 1

Maximum Class Separation

- Find $\mathbf{w} \propto (\mathbf{m}_2 \mathbf{m}_1)$
- LDA: Large separation of projected class means and small within-class variation (small overlap of classes)

_DA

- Separate samples of distinct groups by projecting them onto a space that
 - Maximize their between-class separability while
 - Minimize their within-class variability

SVM

SVM Margin

Linearly separable: What is the best w?

• the points can be linearly separated but there is a very narrow margin

 but possibly the large margin solution is better, even though one constraint is violated

In general there is a trade off between the margin and the number of mistakes on the training data

Error variables

• for $0 < \xi \le 1$ point is between margin and correct side of hyperplane. This is a margin violation

• for $\xi > 1$ point is **misclassified**

Misclassified •

point

Margin =

SVM, (2) error handling

- Real world data are not well separated
- In SVM, it simply penalize a training point for being on the wrong side.
- If data are linearly separable no penalty will incur.
- If data are not linearly separable, the best fit is some balance between a fat margin and a low total error penalty

SVM error handling

• The penalty for a misclassified point is proportional to the distance from the margin

Distance from decision boundary

Soft margin solution

The optimization problem becomes

$$\min_{\mathbf{w} \in \mathbb{R}^d, \xi_i \in \mathbb{R}^+} ||\mathbf{w}||^2 + C \sum_{i=1}^N \xi_i$$

subject to

$$y_i\left(\mathbf{w}^{\top}\mathbf{x}_i + b\right) \geq 1 - \xi_i \text{ for } i = 1 \dots N$$

- ullet Every constraint can be satisfied if ξ_i is sufficiently large
- C is a regularization parameter:
 - small C allows constraints to be easily ignored \rightarrow large margin
 - large C makes constraints hard to ignore \rightarrow narrow margin
 - $-C=\infty$ enforces all constraints: hard margin

SVM Kernel

Different types of SVM kernels

linear: u'v

polynomial: $(\gamma u'v + coef0)^{degree}$

radial basis: $e^{(-\gamma |u-v|^2)}$

sigmoid: $tanh(\gamma u'v + coef0)$

SVC with polynomial (degree 3) kernel

Sepal length

SVM: Lab

Thank you

Question?

