

MSD Servo Drive

User Manual PROFIBUS / PROFINET

Single-Axis Servo Drive - Compact Single-Axis Servo Drive - Standard Multi-Axis Servo Drive - System

This document details the functionality of the following devices:

Single-Axis Servo Drive - Compact Single-Axis Servo Drive - Standard Multi-Axis Servo Drive - System

PROFIBUS/PROFINET User Manual for MSD Servo Drive

ID no.: CA65645-001, Rev. 3.0

Date: 01/2015

Subject to technical change without notice.

The German version is the original of this Operation Manual.

Subject to technical change without notice.

The contents of our documentation have been compiled with greatest care and in compliance with our present status of information.

Nevertheless we would like to point out that this document cannot always be updated parallel to the technical further development of our products.

Information and specifications may be changed at any time. For information on the latest version please refer to drives-support@moog.com.

How to use this document

Dear user,

This manual is intended for use by project engineers, commissioning engineers and programmers of drives and automation solutions involving the PROFIBUS/PROFINET fieldbus. It is assumed that you are already familiar with at least one of these fieldbuses on the basis of appropriate training and reading of the relevant literature. We assume that your drive has already been commissioned – if not, please first refer to the user manual.

Pictograms

Table of contents

1	Ger	neral		7
	1.1	Measure	es for your safety	7
	1.2	Introduc	ction	7
	1.3	System	requirements	7
	1.4	Further	documentation	7
	1.5	Helpline	/Support & Service	8
2	Cor	nmissio	ning	9
	2.1	PROFIBL	JS	9
		2.1.1	Connections and user controls	9
		2.1.2	Pin assignment of the D-Sub socket	9
		2.1.3	Specification of the PROFIBUS cable	10
		2.1.4	Bus termination	10
		2.1.5	PROFIBUS address setting	11
		2.1.6	PROFIBUS option card displays	11
		2.1.7	GSD file (PROFIBUS)	12
	2.2	PROFINI	ET	13
		2.2.1	Connections	13
		2.2.2	Pin assignment of the RJ45 socket	13
		2.2.3	Specification of the PROFINET cable	14
		2.2.4	Meanings of LEDs	14
		2.2.5	PROFINET option card displays	15
		2.2.6	GSDML file (PROFINET)	15

3	Cyclic data transfer 17				
	3.1	Parame	eter process data objects (PPOs)	17	
		3.1.1	Standard "PROFIdrive" telegrams	17	
		3.1.2	User-specific PPOs	19	
		3.1.3	Parameter channel PKW	23	
	3.2	Monito	ring	24	
		3.2.1	Watchdog	24	
		3.2.2	Sign of Life	24	
4	Acy	/clic da	ta transfer	27	
	4.1	PROFIB	US parameter access	27	
	4.2	PROFIN	IET parameter access	29	
	4.3	"Base N	Mode Parameter Access" data format	29	
	4.4	Exampl	es of request and response telegrams	32	
5	Pro	fidrive	operation modes	35	
	5.1	Profine	t operation modes	35	
		5.1.1	Speed control circuit and associated control parameters	36	
	5.2	Drive st	tate machine	37	
	5.3	Jog mo	de	38	
		5.3.1	Jog mode manufacturer-specific	38	
		5.3.2	Jog mode conforming to profile	38	
		5.3.3	Jog mode reference parameters	39	
	5.4	Speed	control (application class 1)	39	
		5.4.1	Master control word	40	
		5.4.2	Drive status word	41	
	5.5	Position	n control (application class 3)	42	
		5.5.1	Position control circuit and associated control parameters	44	

6	Hor	ming	. 49
	6.1	Drive-controlled homing	49
	6.2	Homing velocity	49
	6.3	Homing acceleration	49
	6.4	Zero point offset	49
	6.5	Homing method	49
	6.6	Reference cam, limit switch	51
7		mples of commissioning with manufacturer-specific	. 53
	7.1	Position control with PPO 5	53
	7.2	Controlled homing	54
	7.3	Conversion of reference and actual values via the factor group parameters	54
	7.4	Examples for setting the user factor group	56
	7.5	Speed control with PPO 2	56
		7.5.1 Speed input	57
	7.6	Mappable parameters	58
8	PRC	DFIBUS/PROFINET parameters	. 59
9	Арр	pendix	. 61
	9.1	Glossary	61
	9.2	Technical data	61

1 General

1.1 Measures for your safety

Servo drives of the MSD Servo Drive family are quick and easy to handle. For your own safety and for the safe functioning of your device, please be sure to observe the following points:

	Read the Operation Manual first!				
1.	Follow the safety instructions!				
A	Electrical voltages > 230 V/460 V: Dangerously high voltages may still be present 10 minutes after the power is cut. So check that the power has been cut! Rotating parts Hot surfaces				
	Your qualification: In order to prevent personal injury and damage to property, only personnel with electrical engineering qualifications may work on the device. Knowledge of the national accident prevention regulations (such as VBG4 in Germany) Knowledge of layout and interconnection of fieldbuses				
	During installation observe the following instructions: Always comply with the connection conditions and technical specifications. Electrical installation standards, such as cable cross-section, shielding, etc. Do not touch electronic components and contacts (electrostatic discharge may destroy components).				

1.2 Introduction

PROFIBUS based on standards and its modular interfaces. Thanks to its use of a single standardised, non-application-dependent communication protocol, PROFIBUS provides solutions for the process industry as well as in a wide range of motion control applications.

PROFINET permits enhanced system-wide connectivity, adding to tried and proven PROFIBUS technology for applications specifying fast data communication in combination with industrial IT functionality. Thanks to its Ethernet-based communication, PROFINET meets a wide range of requirements, from data-intensive parameter assignments to synchronised data transfer. Communication for all applications is routed through just one cable. Whether for a simple control task or for highly dynamic motion control of drive axes. TCP/IP-based communication in the PROFINET network enabling extensive system diagnostics in a control station or over the Internet is implemented in parallel with real-time communication.

1.3 System requirements

- PROFIBUS/PROFINET configuration program installed.
- PROFIBUS/PROFINET device description file for corresponding field device installed

1.4 Further documentation

- Instructions for commissioning the drive device
- PROFIBUS user organisation "PROFIdrive PROFIDrive Technology for PROFIBUS and PROFINET" Version 4.1, May 2006, Order no. 3.172
- PROFIBUS User Organisation: "Profile Guidelines Part 1: Identification & Maintenance Functions, 1.2, Oct 2009, Order No. 3.502"

Our Helpline can provide you with fast, targeted assistance if you have any technical queries relating to project planning or commissioning of the drive unit. To that end, please collect the following information prior to making contact:

- Type designation, serial number and software version of the devices (see Software rating plate)
- 2. Moog DriveAdministrator version in use (menu ►Help ►Information... ►Version)
- 3. Displayed error code version (on 7-segment display or Moog DriveAdministrator)
- 4. Description of the error symptoms, how it occurred and relevant circumstances
- 5. Save device settings to file in Moog DRIVEADMINISTRATOR
- 6. Name of company and contact, telephone number and e-mail address

If you have any technical questions concerning project planning or commissioning of the servo drive, please feel free to contact our helpline.

• Helpline - Please contact us:

Moog GmbH

Hanns-Klemm-Straße 28

D-71034 Böblingen

Phone: +49 7031 622 0 Telefax: +49 7031 622 100

E-Mail: drives-support@moog.com

If you need further assistance, our specialists at the Moog Service Center will be happy to help.

• Service - Please contact us:

Phone: +49 7031 622 0

E-Mail: info.germany@moog.com

2 Commissioning

2.1 PROFIBUS

Note

For technical data and information on topologies and maximum cable lengths see chapter 9.2.

2.1.1 Connections and user controls

The connections and user controls of the PROFIBUS interface are shown in table 2.1. LEDs H1, H2, H3 act as status indicators. The rotary coding switches S1 and S2 (MSD Servo Drive only) can be used to set the PROFIBUS address of the drive. The PROFIBUS cable is connected to the D-Sub socket X14.

Fro	nt panel	No.	Comments
MSD Servo Drive Single-Axis Compact		H1	Status indicator LED (yellow)
•		H2	Status indicator LED (red)
● H₁	H ¹	НЗ	Status indicator LED (green)
H2 H3 ADR S1	H ² H,	S1 ¹⁾	Rotary coding switch to set the PROFIBUS address for the drive = 0x(S2)(S1)
ADR S2		S2 ¹⁾	Rotary coding switch to set the PROFIBUS address for the drive = 0x(S2)(S1)
PB X14	X ¹⁴ PB	X14	PROFIBUS cable connection

Table 2.1 PROFIBUS option card

2.1.2 Pin assignment of the D-Sub socket

PROFIBUS is connected via a nine-pin sub-D plug connector. The pin assignment is shown in the diagram below and described in the following table.

Figure 2.1 Pin assignment of D-SUB connector

Pin	RS-485	Signal	Description	
1		SHIELD	Earthed shield	
2		RP	Reserved for power supply via bus	
3	B/B' (red)	RxD / TxD-P	Send and receive data (+)	
4		CNTR-P	Control signal for repeater (+)	
5	C/C'	DGND	Data reference potential and power supply to terminating resistor (-)	
6		VP	Power supply for terminating resistor (+)	
7		RP	Reserved for power supply via bus	
8	A/A' (green)	RxD / TxD-N	Send and receive data (-)	
	(green)			

Table 2.2 Description of pin assignment

The pin assignments highlighted in table 2.2 are necessary from the user's viewpoint. The control signals used for the repeaters are optional, and the power supply for the terminating resistors is provided by the device.

2.1.3 Specification of the PROFIBUS cable

For the wiring Moog recommends using the following hardware:

PROFIBUS D-Sub bus termination plug				
Siemens order number	6XV1 830-0EH10			
Siemens article description	PB FC EIA485 PLUG 180, AXIAL CABLE OUTLET			

Table 2.3 Recommended PROFIBUS D-Sub bus termination plug

PROFIBUS cable			
Siemens order number	6GK1 500-0FC10		
Siemens article description	SIMATIC NET, PB FC STANDARD CABLE GP, 2-WIRE, SHIELDED		

Table 2.4 Recommended PROFIBUS cable

2.1.4 Bus termination

If the MSD Servo Drive is initially at the end of the bus system, a plug with an integral terminating resistor Rt should be used. In addition to the cable terminating resistor in accordance with the EIA485 standard, a pull-down resistor Rd against the data reference potential DGND and a pull-up resistor Ru against VP are provided. This ensures a defined no-load potential of 1.1 Volt between pins 3 and 8. In a made-up PROFIBUS cable these resistors are all incorporated as standard in the PROFIBUS plug and the terminating resistor can be activated using a switch on the PROFIBUS plug. The following figure shows a Sub-D 9-pin plug bus termination.

Figure 2.2 Sub-D 9-pin plug bus termination

2.1.5 PROFIBUS address setting

MSD Servo Drive

Select the mode of addressing:

1. Coding switches S1 and S2

By way of the two coding switches a hexadecimal address between 0 and 125 is set.

Figure 2.3 Coding switches for PROFIBUS address

Bus address parameter P 0918

By way of bus address parameter **P 0918-COM_DP_Adress** a valid decimal address between 0 and 125 is set.

A setting via this parameter is only valid if an address above 125 is set via the coding switches (e.g. 0xFF, i.e. S1=S2=F).

3. Setting via device keypad

A valid hexadecimal address between 0 and 125 is set using the device keypad on the submenu "Fb". The preset value is written to bus address parameter P 0918. Instructions for use of the device keypad are given in the MSD Servo Drive Operation Manual.

A setting via the device keypad is only valid if an address above 125 is set via the coding switches (e.g. 0xFF, i.e. S1=S2=F).

Note:

All setting modes require the device to be restarted in order to activate the new address.

Single-Axis Compact

Select the mode of addressing:

- Bus address parameter P 0918
 By way of bus address parameter P 0918-COM_DP_Adress a valid decimal address between 0 and 125 is set.
- Setting via device keypad
 A valid hexadecimal address between 0 and 125 is set using the device keypad
 on the submenu "Fb". The preset value is written to bus address parameter
 P 0918. Instructions for use of the device keypad are given in the SingleAxis Compact Operation Manual.

Note:

All setting modes require the device to be restarted in order to activate the new address.

The following functions and displays are available:

- Display of device state
 The device state is displayed when the control supply is switched on. If no input is made via the keypad for 60 seconds, the display switches back to the device state.
- Display of device error state
 If a device error occurs the display immediately switches to show the error code.
- Parameter setting (display "PA")
 Reset device parameters to their factory setting
- Ethernet IP address setting (display "IP")
 Set Ethernet IP address and subnet mask
- Fieldbus settings (display "Fb")
 Set fieldbus address for example

2.1.6 PROFIBUS option card displays

Three LEDs are mounted on the PROFIBUS option card indicating the current operating status of the module. The following tables set out the operating states of the PROFIBUS option card based on the various illumination sequences.

LED 3, green	LED 2, red	Status
		Reset (after power on)
		ASIC RAM test and initialisation
		End of ASIC RAM test and initialisation

Table 2.5 Self-test during diagnostics

LED 3, green	LED 2, red	Status
		Seeking baud rate after power on without bus connection
	4	Seeking baud rate after bus connection has already been made
		Waiting for parameterisation data
		Communication: Data exchange without acyclic master class 2 connection. Yellow LED lit.
		Communication: Data exchange "clear state"
	4	Incorrect parameterisation data
		Incorrect configuration data
		Communication: Data exchange with acyclic master class 2 connection

Table 2.6 Operational diagnostics

LED 1, yellow	Status
	Device is exchanging data

Table 2.7 Data exchange

2.1.7 GSD file (PROFIBUS)

The device master data file contains the summary of the device features in a standardised form. The device features include the device name, the bus timing, the available extended services and the selectable modules (telegram types). In order to use the various telegram types, the GSD file must be integrated in the configuration phase of the PROFIBUS network. As well as the standard "Profidrive" profile, this file also contains manufacturer-specific telegram types.

2.2 PROFINET

Note:

For technical data and information on topologies and maximum cable lengths see chapter 9.2.

2.2.1 Connections

The connections of the PROFINET interface are shown in table 2.8. LEDs H17, H17 act as status indicators. The PROFINET cable is connected to the RJ45 sockets X47/X48. The two PROFINET connecting sockets are freely configurable in their communication direction.

The PROFINET interface features a 2-port Multiport PHY (Physical Layer Transceiver) supporting the following functionality:

- Autonegotiation (automatic detection of the functionality of the opposite interface)
- Auto Crossing (no cross-over cables are required, so through-going wiring is assured)
- Auto Polarity (the polarity of the Receive cable is automatically adjusted in the event of a wiring error (RecvData+ and RecvData-))

Front	t panel	No.	Comments
MSD Servo Drive	Single-Axis Compact	H17	Status indicator LED (green)
H15 H17		H16	Status indicator LED (red)
PN X"	X ²⁷ PN	X47/X48	PROFINET cable connection

Table 2.8 PROFINET option card

2.2.2 Pin assignment of the RJ45 socket

The contacting of eight-pin RJ45 sockets is subject to the EIA/TIA-568A/B standards. Table 2.9 below shows the pin assignment with the corresponding colour code for the EIA/TIA-568B standard.

The two standards differ only in that the two wire pairs 2 and 3 are interchanged.

Pin	Colour	Cable wire pair	Function
1	White/orange	2	TxData +
2	Orange	2	TxData -
3	White/green	3	RecvData +
4	Blue	1	Unused
5	White/blue	1	Unused
6	Green	3	RecvData -
7	White/brown	4	Unused
8	Brown	4	Unused

Table 2.9 Pin assignment of the RJ45 sockets

Figure 2.4 RJ45 socket

2.2.3 Specification of the PROFINET cable

For the cabling Moog recommends using the following hardware:

PROFINET RJ45 connector					
Siemens order number	6GK1901-1BB10-2AA0				
Siemens article description	IE FC RJ45 PLUG 180 2X2, RJ45 CONNECTOR (10/100MBIT/S) WITH ROBUST METAL HOUSING & FC CONNECTION				

Table 2.10 Recommended PROFINET connector

PROFINET cable	
Siemens order number	6XV1840-2AH10
Siemens article description	SIMATIC NET, IE FC TP STANDARD CABLE, GP 2X2 (PROFINET TYPE A)

Table 2.11 Recommended PROFINET cable

2.2.4 Meanings of LEDs

The two LEDs at the RJ45 sockets have the following meanings:

LED	Function	Meaning
	Link / Activity	Off = no link ⇒ No link to another device
Green		On = Link ⇒ Linked to another device, no data exchange
		Blinking = Activity ⇒ Data exchange active
	RUN	Off = Initialisation ⇒ Device in initialisation phase
Yellow		Blinking = Pre-Operational ⇒ Device in pre-operational phase
rellow		Single Flash = Safe-Operational ⇒ Device in safe operational phase
		On = Operational ⇒ Device operational

Table 2.12 Meanings of LEDs

2.2.5 PROFINET option card displays

Two LEDs are mounted on the PROFINET option card indicating the current operating status of the module. The following tables set out the operating states of the PROFINET option card based on the various illumination sequences.

LED H1, green	LED H2, red	Status	
		Reset (after power on)	
		PROFINET test and initialisation	
		End of PROFINET test and initialisation	

Table 2.13 Self-test during diagnostics

LED H1, green	LED H2, red	Status
		PROFINET ready, no cyclic data exchange with PROFINET master
		PROFINET ready, cyclic data exchange with PROFINET master taking place
		PROFINET software being loaded
		PROFINET master flash function. 3 seconds flashing, 3 seconds lit steadily

Table 2.14 Operational diagnostics

2.2.6 GSDML file (PROFINET)

Description of file name

File name: GSDML-Vx.xx-Moog-MSD Servo Drive-date.xml

Vx.xx : GSDML version

• Date: Date of creation of the GSDML file

Example: GSDML-V2.25-Moog-MSD Servo Drive-20120523.xml

NOTE:

The GSDML file contains the data for the MSD Servo Drive (DAP2) and the Single-Axis Compact (DAP3). The required DAP (Data Access Point) must be selected during configuration.

3 Cyclic data transfer

3.1 Parameter process data objects (PPOs)

Communication between a class 1 master and the MSD Servo Drive is essentially established in three phases. Firstly the MSD Servo Drive is parameterised with the current bus parameters, monitoring times and drive-specific parameters (phase 1). In the configuration phase a configuration sent by the master is compared with the actual MSD Servo Drive configuration (phase 2). Once these two phases have been completed successfully, the cyclic user data traffic starts (phase 3).

The various telegram types (parameter process data objects - PPOs) are made available in the GSD file. These PPOs form the basis of the configuration phase. The project engineer knows from the GSD file how many bytes are required for the input and output data for PROFIBUS communication between the master and the MSD Servo Drive and can use this information to make settings in a configuration tool. As well as the standard telegrams in accordance with the "PROFIdrive" profile, there are additionally user-specific telegram types. In addition to the process data channel PZD, some user-specific telegrams have a parameter channel PKW.

3.1.1 Standard "PROFIdrive" telegrams

The table below firstly lists the standard PROFIdrive telegrams supported by the MSD Servo Drive. The following table explains the abbreviations assigned in the standard telegrams to specific process data channels. The process data channel (abbreviated as PZD) is grouped word-by-word.

Abbreviation	Designation	Number of words
STW1	Control word 1	1
STW2	Control word 2	1
ZSW1	Status word 1	1
ZSW2	Status word 2	1
NSOLL_A	Rotation speed reference	1
NIST_A	Actual rotation speed	1
SATZANW	Set selection (from driving set table)	1
AKTSATZ	Current set selection (from driving set table)	1
XSOLL_A	Reference position	2
XIST_A	Actual position	2
TARPOS_A	Reference target position	2
VELOCITY_A	Reference velocity	2
E_DIGITAL	Input	1
A_DIGITAL	Output	1

Table 3.1 Abbreviations

Standard telegram 1 is a defined telegram type for speed control. It consists of two input words and two output words as shown in the following table.

PZD number	1	2	
Reference values	STW1	NSOLL_A	
Actual values	ZSW1	NIST_A	

Standard telegram 7 is a defined telegram type for driving set selection. There are a total of 16 driving sets available for selection in the drive. This telegram type consists of two input words and two output words as shown in the following table.

PZD number	1	2	
Reference values	STW1	SATZANW	
Actual values	ZSW1	AKTSATZ	

Standard telegram 8 is a defined telegram type for positioning with the option to preset a positioning velocity. It consists of five input words and five output words as shown in the following table.

PZD number	number 1		2 3		5
Reference values		XSOLL_A		STW2	NSOLL_A
Actual values		XIST_A		ZSW2	NIST_A

Standard telegram 9 is a defined telegram type for positioning. It consists of six input words and five output words as shown in the following table.

PZD number	1	2	3	4	5	6
Reference values	STW1	TARP	OS_A	STW2	VELOC	ITY_A
PZD number	1	2	3	4	5	
Actual values	ZSW1	XIS	T_A	ZSW2	NIST_A	

Table 3.2 Standard telegram 9

Every standard telegram in the device is described in the GSD or GSDML file as appropriate by a configuration identifier (ID) based on the PROFIdrive profile. The following table lists these identifiers for the selected standard telegrams.

Telegram type	PRO	FIBUS	PROFINET		
relegiani type	Data range	Identifier (ID)	Module ID	IRT module ID	
Standard telegram 1	2 output words and 2 input words	0xC3 0xC1 0xC1 0xFD 0x00 0x01	0x01	0x0101	
Standard telegram 7	2 output words and 2 input words	0xC3 0xC1 0xC1 0xFD 0x00 0x07	0x07	0x0107	
Standard telegram 8	5 output words and 5 input words	0xC3 0xC4 0xC4 0xFD 0x00 0x08	0x08	0x0108	
Standard telegram 9	6 output words and 5 input words	0xC3 0xC5 0xC4 0xFD 0x00 0x09	0x09	0x0109	

Table 3.3 Identifiers

3.1.2 User-specific PPOs

As well as the supported standard telegrams, there are additional user-specific parameter process data objects (PPOs). The following PPOs are also transmitted cyclically and in addition to the process data channel PZD in some instances contain a parameter channel PKW enabling access to the drive parameter values.

PPO		Pk	CW		PZD									
1	PKE	IND	PKW 1	PKW 2	STW/ ZSW	REFERENCE/ ACTUAL	-	-	-	-	-	-	-	-
2	PKE	IND	PKW 1	PKW 2	STW/ ZSW	REFERENCE/ ACTUAL	PZD 3	PZD 4	PZD 5	PZD 6	-	-	-	-
3*	-	-	-	-	STW/ ZSW	REFERENCE/ ACTUAL	-	-	-	-	-	-	-	-
4	-	-	-	-	STW/ ZSW	REFERENCE/ ACTUAL	PZD 3	PZD 4	PZD 5	PZD 6	-	-	-	-
5	PKE	IND	PKW 1	PKW 2	STW/ ZSW	REFERENCE/ ACTUAL	PZD 3	PZD 4	PZD 5	PZD 6	PZD 7	PZD 8	PZD 9	PZD 10
	-	-	-	-	STW/ ZSW	REFERENCE/ ACTUAL	PZD 3	PZD 4	-	-	-	-	-	-
	PKE	IND	PKW 1	PKW 2	STW/ ZSW	REFERENCE/ ACTUAL	PZD 3	PZD 4	-	-	-	-	-	-
	-	-	-	-	STW/ ZSW	REFERENCE/ ACTUAL	PZD 3	PZD 4	PZD 5	PZD 6	PZD 7	PZD 8	-	-
	PKE	IND	PKW 1	PKW 2	STW/ ZSW	REFERENCE/ ACTUAL	PZD 3	PZD 4	PZD 5	PZD 6	PZD 7	PZD 8	-	-
	-	-	-	-	STW/ ZSW	REFERENCE/ ACTUAL	PZD 3	PZD 4	PZD 5	PZD 6	PZD 7	PZD 8	PZD 9	PZD 10

Table 3.4 User-specific parameter process data objects

Cyclic data transfer

ID no.: CA65645-001 Date: 01/2015

In the drive parameter list there are two signal tables containing all the process data that can be cyclically read and written for the PROFIBUS communication DPV0. All possible writeable process data signals can be found in signal table P 1284 (COM_DP_ SignalList_Write) and all possible readable process data signals can be found in signal table P 1284 (COM_DP_SignalList_Read). The most important readable and writeable parameters are also documented in chapter 6.

The writeable process data signals can be configured in signal table **S 0915 (COM_DP_PZDSelectionWrite)**. The available number of writeable process data items is determined by the selected PPO type.

The readable process data signals can be configured in signal table **S 0915** (COM_DP_PZDSelectionRead). The available number of readable process data items is likewise determined by the selected PPO type.

When using standard telegrams, the process data signals in the signal tables are automatically configured by the firmware.

Note:

The content of this column applies only to PROFIBUS

A maximum of 15 process data signals can be mapped. Both single and double words can be used.

The user-specific drive telegram types are described by a configuration identifier (ID) in the GSD file. This describes the structure of the cyclic user data based on a special identifier format shown in the diagram below.

Figure 3.1 Identifier format

After the parameterisation phase, the master sends the drive a configuration telegram containing this special identifier (ID). On receipt of this, the drive compares the data in the configuration telegram with the configuration held in the drive. The identifier determined by the PPO type can be found in the GSD file under the heading "Modules". The following table shows these identifiers for the user-specific telegrams.

PPO type	PROFIBUS identifier (ID) Hex	PROFINET module ID	PROFINET IRT module ID	Evaluation by special identifier format (figure 3.6)	Referred to Table AK Slave-Master
1	0xF3 0xF1	0x65	0x165	4 words input/output data (consistent overall length) 2 words input/output data (consistent overall length)	PKW channel PZD channel
2	0xF3 0xF5	0x66	0x166	4 words input/output data (consistent overall length) 6 words input/output data (consistent overall length)	PKW channel PZD channel
3	0xF1	0x67	0x167	2 words input/output data (consistent overall length)	PZD channel
4	0xF5	0x68	0x168	6 words input/output data (consistent overall length)	PZD channel
5	0xF3 0xF9	0x69	0x169	4 words input/output data (consistent overall length) 10 words input/output data (consistent overall length)	PKW channel PZD channel
	0xF3	0x6A	0x16A	4 words input/output data (consistent overall length)	PZD channel
	0xF3 0xF3	0x6B	0x16B	4 words input/output data (consistent overall length) 4 words input/output data (consistent overall length)	PKW channel PZD channel
	0xF7	0x6C	0x16C	8 words input/output data (consistent overall length)	PZD channel
	0xF3 0xF7	0x6D	0x16D	4 words input/output data (consistent overall length) 8 words input/output data (consistent overall length)	PKW channel PZD channel
	0xF9	0x6E	0x16E	10 words input/output data (consistent overall length)	PZD channel
	0xC0 0xCD 0xCD	0x6F	0x16F	14 words input/output data (consistent overall length)	PZD channel
	0xF3 0xC0 0xCD 0xCD	0x70	0x170	4 words input/output data (consistent overall length) 14 words input/output data (consistent overall length)	PKW channel PZD channel
	0xC0 0xD1 0xD1	0x71	0x171	18 words input/output data (consistent overall length)	PZD channel
	0xF3 0xC0 0xD1 0xD1	0x72	0x172	4 words input/output data (consistent overall length) 18 words input/output data (consistent overall length)	PKW channel PZD channel
	0xC0 0xD5 0xD5	0x73	0x173	22 words input/output data (consistent overall length)	PZD channel

Table 3.5 Listing of identifiers

PPO type	PROFIBUS identifier (ID) Hex	PROFINET module ID	PROFINET IRT module ID	Evaluation by special identifier format (figure 3.6)	Referred to Table AK Slave-Master
	0xC0 0xD9 0xD9	0x75	0x175	26 words input/output data (consistent overall length)	PZD channel
	0xF3 0xC0 0xD9 0xD9	0x76	0x176	4 words input/output data (consistent overall length) 26 words input/output data (consistent overall length)	PKW channel PZD channel
	0xF3 0xC0 0xDD 0xDD	0x78	0x178	4 words input/output data (consistent overall length) 32 words input/output data (consistent overall length)	PKW channel PZD channel
	0xC0 0xDD 0xDD	0x77	0x177	32 words input/output data (consistent overall length)	PZD channel

Table 3.5 Listing of identifiers

3.1.3 Parameter channel PKW

Some PPOs offer an additional cyclic parameter channel. This channel allows drive parameters to be read and written.

	PKW										
1. Byte	2. Byte	3. Byte	4. Byte	5. Byte	6. Byte	7. Byte	8. Byte				
PKE (1 word)		IND (1	word)	PKW1 (1 word)	PKW2	! (1 word)				

The parameter consists of a total of four words: the parameter identifier PKE (1 word), the subindex IND (1 word) (subindex 0 in the parameter must be addressed with 1) and the parameter identifier value, which occupies the data range PKW1 (1 word) to PKW2 (1 word). The parameter identifier is represented bit-by-bit in the following table.

	AK								PN	1U					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												1			

AK	Request or response identifier (value range 015)
PNU	Parameter number (value range 14095)

Table 3.6 Parameter identifier PKE

The following tables list the request (master) and response (slave) identifiers.

Request identifier	Function
0	No request
1	Request parameter value
2	Change parameter value (word)
3	Change parameter value (double word)
4	Read parameter description
5	
6	Request parameter value (array)
7	Change parameter value (array) (word)
8	Change parameter value (array) (double word)

Table 3.7 Request identifier AK (Master ⇒ Slave)

Request identifier	Function
0	No response
1	Parameter value sent (word)
2	Parameter value sent (double word)
3	Parameter description sent
4	Parameter value (array) sent (word)
5	Parameter value (array) sent (double word)
6	-
7	Request not executable, see error no.

Table 3.8 Response identifier AK (Slave

→ Master)

In the case of response identifier 7 the error number sent to the drive from the master is shown in the range PKW1 to PKW2. The following table explains these error numbers.

Error	Statement
0	Impermissible PNU
1	Parameter cannot be changed
2	Lower or upper parameter value limit transgressed
3	Defective sub-index
4	Not an array
5	Incorrect data type
17	Request cannot be executed because of the operating status
18	Other error

Request identifier 4 can additionally be used to read a parameter description. The parameter description contains relevant information on the parameter concerned. The following table shows the subindices that can be used to access the individual parameter structure elements. The subindex is preset only by byte 3.

MOOG

ID no.: CA65645-001 Date: 01/2015

Sub-index	Meaning	Data type
1	Identifier (ID)	V2
2	Number of field elements or string length	Unsigned 16
3	Standardisation factor	Floating point
4	Variable attributes	Octet string 2
5	Reserved	Octet string 4
6	Name (only the first four bytes are sent)	Visible string 16
7	Lower limit value	Octet string 4
8	Upper limit value	Octet string 4
9	Reserved	Octet string 2
10	ID extension	Extension V2
11	PZD reference parameter	Unsigned 16
12	PZD standardisation	V2

Table 3.10 Parameter description

The identifier (subindex 1) in the parameter description identifies additional characteristics of the parameter concerned. Table 3-8 sets out the meaning of the identifier.

Bit	Meaning	Explanation
15	Reserved	
14	Array	
13	Parameter value can only be reset	If this bit is set, the relevant parameter value can be varied externally only so as to be set to zero.
12	Parameter value was changed to a value different from the factory settings	If this bit is set, the parameter value is different from the factory setting.
11	Reserved	
10	Additional text array can be called up	
9	Parameter cannot be written	
8	Standardisation factor and variable attributes not relevant	This bit is set if the parameter is of a data type that cannot be used to calculate any physical values (e. g. data type string)
0 - 7	Data type of the parameter value (value = "Profi-Drive table 9")	

Table 3.11 Identifier syntax

3.2 Monitoring

The MSD Servo Drive provides two options for monitoring cyclic communication.

3.2.1 Watchdog

Parameter P 1283 (COM_DP_BUS_Timeout) can be used to configure a watchdog.

Parameter No.	Name	Meaning	Data type	Unit
P 1283	COM_DP_BUS_Timeout	Watchdog for cyclic communication	INT32 (0 – 4294967295)	ms

Table 3.12 Watchdog

The watchdog is activated after the first cyclic telegram, and in the event of an error triggers error (32-1) if no cyclic telegrams are received in the time defined by parameter P 1283 (COM_DP_BUS_Timeout).

The value 0 in parameter P 1283 (COM_DP_BUS_Timeout) deactivates the function.

3.2.2 Sign of Life

The Sign of Life function is implemented as per Profidrive profile 4.1.

Parameter No.	Name	Meaning		
P 0925	COM_PN_Sign_of_life_limit	Number of approved SOL (Sign of Life) errors until error shutdown type U16: 0 – 0xfffe, 0xffff = switch off		
P 1296	COM_PN_Sign_of_life_err_cnt	Display of current error counter		
P 1280	Control word 2	Bit 12-15 Sign of Life master		
P 1281	Status word 2	Bit 12-15 Sign of Life slave		

Table 3.13 Sign of Life

The Sign of Life function can be deactivated with the value 0xFFFF in parameter **P 0925** (COM_PN_Sign_of_life_limit) (factory setting).

The function is activated when the first cyclic telegram is received in which bits 12-15 of the second control word (1280) are not equal to 0. When the function is activated, the error counter parameter **P 1296 (COM_PN_Sign_of_life_err_cnt)** is set to 0.

With each newly received telegram the counter (bits 12-15) in the second status word parameter **P 1281 (COM_DP_Statusword2)** is incremented by the value 1.

In each cycle the status counter is compared with the counter in the second control word. If that counter is not equal, the error counter parameter P 1296 (COM_PN_Sign_of_life_err_cnt) is incremented by the value 10. If the counters in the second control word and second status value are equal, the error counter parameter P 1296 (COM_PN_Sign_of_life_err_cnt) is decremented by the value 1. The error counter cannot fall below 0.

If the error counter parameter P 1296 (COM_PN_Sign_of_life_err_cnt) is greater than or equal to 10 * parameter P 0925 (COM_PN_Sign_of_life_limit) the error message (32-03 Profinet IRT: Sign of Life error) is triggered and bit 4 in parameter P 0953 (COM_DP_Warning) is set.

If cyclic transfer is interrupted and then re-established, the error counter parameter P 1296 (COM_PN_Sign_of_life_err_cnt) is cleared and the warning bit 4 in parameter P 0953 (COM_DP_Warning) is reset.

Normal operation Sign of Life

Figure 3.2 Normal operation Sign of Life

3 Sign of Life errors triggered

Figure 3.3 3 Sign of Life errors triggered

The value of the master is not increased in three cycles. The error counter is increased by the value 10 in each of these cycles. When the master generates the Sign of Life again, the error counter is decreased by the value 1 in each cycle.

4 Sign of Life errors triggered with error reaction

Figure 3.4 4 Sign of Life errors triggered with error reaction

The value of the master is not increased in four cycles if a value 4 is entered in parameter **P 0925 (COM_PN_Sign_of_life_limit)**. The error counter is increased by the value 10 in these cycles. When the error counter reaches the maximum value (40), the error reaction is triggered.

4 Acyclic data transfer

The PROFIdrive profile includes the "Base Mode Parameter Access" model for this. It is used for both PROFIBUS and PROFINET.

4.1 PROFIBUS parameter access

In addition to cyclic data communication, which is intended as the default for quick updating of I/O process data, acyclic services are offered for one-off events. They offer the facility to read or write parameters acyclically, for example, so as not to impede cyclic data traffic. Telegram type SD2 as set out in the following table is used for the PROFIBUS-DP extension DPV1.

SD	LE	LEr	SD	DA	SA	DSAP	SSAP	DU	FCS	ED
Start Delimi- ter	Length	Length repeat	Start Delimi- ter	Desti- nation Address	Source Address	Desti- nation Service Access Point	Source Service Access Point	Data Unit	Frame Check Se- quence	End Delimi- ter
68H	Х	X	68H	XX	XX	XX	XX	Х		

Table 4.1 PROFIBUS SD2 telegram for DPV1 services

The acyclic services can be used by a class 1 master (PLC etc.) and by a class 2 master (PC tool). The following table gives an overview of the acyclic services available in relation to the respective master class.

Acyclic services	Master class	Meaning	DSAP	SSAP
Initiate request	2	Establish an acyclic connection	32H	31H
Abort request	2	Break off an acyclic connection	32H	030H
Read request	2	Read request via DPV1	32H	030H
Write request	2	Write request via DPV1	32H	030H
Data request	2	Data transfer	32H	030H
Read request	1	Read request via DPV1	33	33H

Acyclic services	Master class	Meaning	DSAP	SSAP
Write request	1	Write request via DPV1	33	33H
Alarm	1	Interrupt handling	33	33H

Table 4.2 Overview of acyclic services offered

DPV1 is always accessed according to a fixed mechanism:

1. Write request (5F):

SD		DSAP	SSAP	DU Req. id	DU Slot	DU Index	DU Length	DU User	FCS	ED
68H	XX	32	30	5F	0	2F	n+1	0n	XX	16H

2. Write response (5F):

SD		DSAP	SSAP	DU Req. id	DU Slot	DU Index	DU Length	FCS	ED
68H	XX	32	30	5F	0	2F	n+1	XX	16H

3. Read request (5E):

SD		DSAP	SSAP	DU Req. id	DU Slot	DU Index	DU Length	FCS	ED
68H	XX	32	30	5E	0	2F	MAX	XX	16H

4. Read response (5E):

SD		DSAP	SSAP	DU Req. id	DU Slot	DU Index	DU Length	DU User	FCS	ED
68H	XX	32	30	5E	0	2F	n+1	0n	Xx	16H

Each read or write access must first be initiated by a write service on Data Unit Index 47 (2Fhex) (1). This write request gives the slave the information about the request it is to execute. After this the slave acknowledges with a response telegram (2), which initially contains no response data.

Acyclic data transfer

ID no.: CA65645-001 Date: 01/2015

This is simply an acknowledgement of the request and contains only the mirrored DPV1 header of the request telegram. In the event of an error, a negative response is sent. To then read the data from the slave, the master must present a read request (3). If the response (4) to this is positive, the user data can be used by the master. In the event of an error, a negative response is sent. The "DPV1 read request" diagram shows the telegram sequence for read access. This shows the slave sending a negative read response to the first read request. This negative read response means that the required data cannot yet be provided.

Not until the following cycle has the slave executed the request to the extent that it can send a positive read response with the requested data.

Figure 4.1 DPV1 read request

This transfer format is "Big Endian" (Motorola, the highest byte is transmitted first).

Word format:

0. Byte	1. Byte
High byte	Low byte

Double word format

0. Byte	1. Byte	2. Byte	3. Byte
High byte	Low byte	High byte	Low byte
High word	High word	Low word	Low word

The data unit in the table "PROFIBUS SD2 telegram for DPV1 services" of telegram type SD2 can be split into five areas:

- Req.id (1 byte)
 This is the function number of the DPV1 service. This describes, for example, whether a parameter is to be read or written. More detailed information can be found in the table headed "Data unit assignment".
- Slot (1 byte)
 DPV1 slaves consist of a number of physical or virtual slots. The drive is triggered by addressing a slot, following which the slot address is not evaluated.
- Index (1 byte)
 The index contains the address of the data area in which the slave makes available the data for parameter access. In accordance with ProfiDrive this is specified with the fixed data area number 47.
- Length (1 byte)
 Indicates the length of the user data that follow. In the case of a read access, the length must be sufficiently large for the data to be read (max. 240 bytes)
 User (1 byte...N bytes) Contains the user data to be processed

Data Unit (DU) Byte	Data Unit Param	Value	Mea	aning
0	Req.id	48H	Idle REQ, RES	Idle REQ, RES
		51H	Data Transport REQ, RES Data transport REQ,	
RES				
		56H	Resource Manager, REQ	Resource manager REQ
		57H	Initiate REQ, RES	Initiate REQ, RES
		58H	Abort REQ	Abort REQ
		5CH	Alarm REQ, RES Alarm REQ, RES	
		5EH	Read REQ, RES Read REQ, RES	
		5FH	Write REQ, RES Write REQ, RES	
		D1H	Data Transport NEG RES	Data transport negative RES
		D7H	Initiate NEG RES	Initiate negative RES
		DCH	Alarm NEG RES	Alarm negative RES
		DEH	Read NEG RES	Read negative RES
		DFH	Write NEG RES	Write negative RES
1	Slot	00HFEH	Slot number	
2	Index	2FH	Index	
3	Length	XX	Length of user data (max.	240 bytes)
4n	UserData	xx	User data	
[Alarms are not cur	rently supported]			

Table 4.3 Data unit assignment

4.2 PROFINET parameter access

In the case of PROFINET the acyclic services are executed by way of the "Record Data CR (connection relationsship)". There are read and write commands for the purpose.

Master	Slave
Parameter request "Write Data Record" with index 0xB02E	Read response OK or error message (0xDF)
Parameter request "Read Data Record" with index 0xB02E	Write response OK or error message (0xDE)

4.3 "Base Mode Parameter Access" data format

The following table sets out the telegram format of parameter access for a parameter request and response.

Base mode parameter request			Byte address	
Request	Request reference	Request identification	0	
header	Axis No	No. of Parameters (n)	2	
	Attribute	No. of elements	3	
1st parameter address	Parameter Number (PNU)			
	Subindex			
nth navamatar address			4+6*(n-1)	
nth parameter address	Format	No. of values	4+6*n	
	Values			
			4+6*n ++ (format_n *amount_n)	

Table 4.4 Data unit assignment

MOOG

ID no.: CA65645-001 Date: 01/2015

Base mode parameter response			Byte address
Response header	Request reference (mirror)	Response identification	0
neader	Axis No (mirror)	No. of Parameters (n)	2
	Format	4	
1st parameter value	Value / error code		
nth parameter value			
			4++ (format_n *amount_n)

Table 4.5 Parameter response

The user data are structured as follows:

Request reference:

The request reference is specified by the master and mirrored back by the slave in the response telegram. Based on this reference the master can uniquely assign each response telegram to a request telegram. A master changes the request reference with each new request.

Request ID

This identifier essentially describes how the parameter is handled. Currently two different identifiers are defined:

- Request parameter
- Change parameter

For more details on the identifier refer to the "User data" table.

Response ID

This identifier contains information on the origin of a request. If a request is executed correctly, the response ID matches the request ID. If a request cannot be executed, an identifier from the "User data" table is generated.

Axis No.

This value allows single axes in a multi-axis system to be addressed selectively (Axis No. \Rightarrow 0 = single axis).

• No. of Parameters

Number of parameters processed in a request.

Attribute

Describes the individual access to a parameter structure. For example, whether access to the actual numerical value or to the parameter description text is desired. Further information can be found in the "User data" table.

Number of Elements

When accessing an array or a string, this area contains the field size or string length as appropriate.

- Parameter Number
 - Contains the parameter number (PNU).
- Subindex

Addresses the first array element of a parameter or the beginning of a character string. This also allows addressing of description texts and text arrays.

Format

Specifies the relevant parameter and ensures unique assignment of the parameter value in the telegram.

Number of values

Number of following values

Values

Parameter values

Field name	Data type	Value	Meaning	Comments
Field name	Data type	Value	Meaning	Comments
Request refe- rence	Unsig- ned8	0x00 0x010xFF	Reserved	
Request ID	Unsig- ned8	0x00 0x01 0x02 0x030x03F 0x400x7F 0x800xFF	Reserved Request parameter Change Parameter Reserved Manufacturer-specific Reserved	
0x400x7 0x80 0x81 0x82 0x830xB		0x01 0x02 0x030x3F 0x400x7F 0x80 0x81	Reserved Request parameter (+) Change Parameter (+) Reserved Manufacturer-specific Reserved Request parameter (-) Change Parameter (-) Reserved Manufacturer-specific	
Axis No	No Unsig- 0x00 ned8 0x010xFE 0xFF		Device Representative Axis-Number 1254 Reserved	Zero = single axis
No. of Parame- ters	Unsig- ned8	0x00 0x010x27 0x280xFF	Reserved Quantity 139 Reserved	Limited by DPV1 Telegram length
Attribute	Unsig- ned8	0x00 0x10 0x20 0x30 0x400x70 0x800xF0	Reserved Value Description Text Reserved Manufacturer-specific	
No. of Elements	Unsig- ned8	0x00 0x010xEA 0xEB0xFF	Special Function Quantity 1234 Reserved	Limited by DPV1 Telegram length
Parameter Number	Unsig- ned16	0x0000 0x0001 0xFFFF	Reserved Number 165535	
Subindex	Unsig- ned16	0x0000 0xFFFF	Number 165535	

Table 4.6 User data

Field name	Data type	Value	Meaning	Comments
Format	Unsig- ned8	0x00 0x010x36 0x370x3F 0x40 0x41 0x42 0x43 0x44 0x450xFF	Reserved Data Types Reserved Zero Byte Word Double Word Error Reserved	
No. of Values	Unsig- ned8	0x000xEA 0xEB0xFF	Quantity 0234 Reserved	Limited by DPV1 Telegram length
Error Number	Unsig- ned16	0x0000 0x00FF	Error Numbers (see table below)	

Table 4.6 User data

Error number	Meaning
Error number	Meaning
0x00	Impermissible parameter number
0x01	Parameter value cannot be changed
0x02	Value area of the parameter transgressed
0x03	Defective parameter sub-index
0x04	Parameter is not an array
0x05	Incorrect parameter data type
0x06	Change access with value not equal to zero, which is not permitted
0x07	Change access on a descriptive element, which cannot be changed
0x09	No descriptive text available
0x11	Request cannot be performed in the present system status
0x14	Impermissible value
0x15	Reply telegram is too long
0x16	Impermissible parameter address
0x17	Illegal format
0x18	Number of parameter values is inconsistent
0x19	Request for a non-existent axis

Table 4.7 Error numbers

4.4 Examples of request and response telegrams

Write word

Re-fer.	Req. ID	Axis	No. Pa- ram.	Attr.			PNU low		Sub low	Format	No. Values	Value high	Value low
0	2	0	1	0x10	01	3	0x96	0	0	0x42	1	0	7

Table 4.8 ID:2 Change Parameter, Attr. 0x10: value; PNU = P 0918 = 0x396, format word=0x42

Positive response

Refer.	Req. ID	Axis	No. Param.	
0	2	0	1	

Table 4.9 ID:2 Change Parameter

Parameter P 0918 now has the value 7

Write double word

Refer.	Req. ID	Axis	No. Pa- ram.	Attr.	No. Ele.	PNU high	PNU low
0	2	0	1	0x10	01	4	0xFA
Sub high	Sub low	Format	No. Values	Value high	Value low	Value l high	Value I Iow
0	0	0x43	1	1	2	3	4

Table 4.10 ID:2 Change Parameter, Attr. 0x10: value; PNU = P 0918 = 0x396, format word=0x42

Refer.	Req. ID	Axis	No. Param.
0	2	0	1

Table 4.11 ID:2 Change Parameter

• Parameter 884 now has the value 16909060

Read simple parameter value

Read word

Refer.	Req. ID	Axis	No. Param.	Attr.	No. Ele.	Pnu high	Pnu Low	Sub high	Sub low
0	1	0	1	0x10	01	3	0x9A	0	0

Table 4.12 ID:1 Request Parameter, Attr. 0x10: value; PNU = P 0922 = 0x39A

Positive response

Refer.	Req. ID	Axis	No. Param.	Format	No values	Value high	Value low
0	1	0	1	0x42	1	0	9

Table 4.13 Format word=0x42; parameter value = 9

Read double word

Refer.	Req. ID	Axis	No. Param.	Attr.	No. Ele.	Pnu high	Pnu Low	Sub high	Sub low
0	1	0	1	0x10	01	4	0xFA	0	0

Table 4.14 ID:1 Reguest Parameter, Attr. 0x10: value; PNU = P 1274 = 0x4FA

Positive response

Refer.	Req. ID	Axis	No. Param.	Format	No values	Value H high		
0	1	0	1	0x43				

Table 4.15 Format dword=0x43; parameter value = 0x01020304 = 16909060

Error access

Erroneous parameter number

Refer.	Req. ID	Axis	No. Param.	Attr.	No. Ele.	Pnu high	Pnu Low	Sub high	Sub low
0	1	0	1	0x10	01	0	9	0	0

Table 4.16 ID:1 Request Parameter, Attr. 0x10: value; PNU = 9

Negative response

Refer.	Req. ID	Axis	No. Param.	Format	No values	Value high	Value low
0	0x81	0	1	0x44	1	0	0

Table 4.17 Format error=0x44; parameter value = 0 = incorrect parameter number

Write parameter values array

Refer.	Req. ID	Axis	No. Param.	Attr.	No. Ele.	PNU high	PNU low	Sub high	Sub low	Format	No. Values	Value 0 high	Value 0 Low	-	Value 4 high	Value 4 low
0	2	0	1	0x10	5	3	0x93	0	0	0x42	5	3	C7		0	0

Table 4.18 ID:2 Change Parameter, Attr. 0x10: value; PNU = P 0918 = 0x396, format word=0x42

• Parameter values = 0x03C7, 0x04F6, 0x04F6, 0x04F6, 0

OK response

Refer.	Req. ID	Axis	No. Param.
0	2	0	1

- Parameter P 0915 now contains the entries for the parameter values.
- No standard telegram smaller than 10 may set up in the device, because then it could not be overwritten; as a remedy set PPO5.

Read parameter values array

Read assigned process data reference values

Refer.	Req. ID	Axis	No. Param.	Attr.	No. Ele.	Value 0 high	Value 0 Low	Value 4 high	Value 4 low
0	2	0	1	0x10	5	3	С7	0	0

OK response

Refer.	Req. ID	Axis	No. Param.	Format	No Values	Value 0 high	Value 0 low	Value 1 high	Value 1 Low	Value 2 high	Value 2 Low	Value 3 high	Value 3 Low	Value 4 high	Value 4 low
0	1	0	1	0x42	5	3	0xC7	4	0xF6	4	0xF6	5	0	0	0

Table 4.20 ID: 1 Format: 0x42

5 Profidrive operation modes

5.1 Profinet operation modes

The devices of the MSD Servo Drive families support the following operation modes:

- Speed control jog mode
- Position control jog mode
- Speed control (application class 1)
- Position control (application class 3)
- Position control (interpolating mode)

Operation modes are selected by standard telegram selection in the master or by using free telegrams and configuring the following parameters:

Parameter No.	Name	Meaning			
P 0300	CON_CfgCon	Set control mode			
P 0301	CON_REF_Mode	Set reference profiles			

Table 5.1 Watchdog

Profidrive operation modes

ID no.:CA65645-001 Date: 01/2015

5.1.1 Speed control circuit and associated control parameters

Figure 5.1 Speed control loop

P.no.:	Parameter name	Meaning				
P 0167	MPRO_REF_OVR	Velocity override				
P 0320	CON_SCON_Kp	PI speed controller gain				
P 0321	CON_SCON_Tn	PI_speed controller integral-action time				
P 0325	CON_SCONFilterFreq	Limit frequencies for torque reference value filter				
P 0326	CON_SCONFilterAssi	Torque reference value filter draft parameter				
P 0327	CON_SCONFilterPara	Torque reference filter parameter				
P 0328	CON_SCON_SMax	Speed limit (reference variable: motor nominal speed)				
P 0330	CON_SCON_TMaxNeg	Negative torque limit (reference variable: nominal torque)				
P 0331	CON_SCON_TMaxPos	Positive torque limit (reference variable: nominal torque)				
P 0332	CON_SCON_TMaxScale	Torque scaling factor				
P 0333	CON_SCON_SMaxNeg	Negative speed limitation (reference value: motor nominal speed)				
P 0334	CON_SCON_SMaxPos	Positive speed limitation (reference value: motor nominal speed)				
P 0339	CON_SCON_Tmax	Torque limitation (reference value: nominal torque)				

P.no.:	Parameter name	Meaning					
P 0351	CON_SCALC_TF	Actual speed filter time constant					
P 0371	CON_IP_RefTF	Speed reference filter time constant					
P 0401	CON_SCON_AddTRef	Additive torque reference					
P 0402	CON_SCON_AddSRef	Additive velocity reference					
P 0417	CON_SCON_SDiff	Speed controller differential					
P 0458	MOT_Snom	Motor nominal speed					
P 0460	MOT_TNom	Motor nominal torque					
P 1270	COM_DP_RefSpeed	Velocity reference					
P 1271	COM_DP_ActSpeed	Actual speed					
P 1278	COM_DP_Acc	Acceleration ramp					
P 1279	COM_DP_Dec	Deceleration ramp					

Table 5.2 Control parameters

5.2 Drive state machine

Figure 5.2 General system state machine (control via PROFIBUS and PROFINET)

System state	Designation	Description
0	System initialisation in progress (start)	Initialisation after device reset (e. g. hardware, parameter list, controller,)
1	Not ready to switch on	Initialisation completed, but no power supply, or intermediate circuit voltage less than switch-on threshold
2	Switch on disabled	DC-link voltage greater than switch-on threshold
3	Ready to switch on	Optional conditions satisfied (e.g. homing run, quick stop inactive)
4	Switched on	Power stage enabled
5	Operation enabled	Power supplied to motor, operation active
6	Quick stop active	Quick stop active*
7	Error reaction active	Error reaction is active, reference values from the PROFIBUS master are ignored.
8	Error	Drive in error state, reference values from the PROFIBUS master are ignored
* Quick stop can be triggered by various circumstances. The parameter P 2218 (MP_QuickStopOC) allows the type of quick stop to be selected.		

Table 5.3 System states

Quick stop option code	Meaning
0	Disable drive function
1	Slow down on slow down ramp
2	Slow down on quick stop ramp
3	Slow down on the current limit
4	Slow down on the voltage limit
5	Slow down on slow down ramp and stay in "quick stop"
6	Slow down on quick stop ramp and stay in "quick stop"
7	Slow down on the current limit and stay in "quick stop"
8	Slow down on the voltage limit and stay in "quick stop"

Table 5.4 Quick stop option codes

MOOG

ID no.:CA65645-001 Date: 01/2015

System state transition	Designation	Description
0	Start	Initialisation after boot-up complete
1	UZK OK	DC-link voltage greater than switch-on threshold
2	Quick stop and spin out of true deactivated	Spin out of true deactivated \Rightarrow STW Bit 1 = 1 Quick stop deactivated \Rightarrow STW Bit 2 = 1
3	Power stage switched on	Switch power stage on ⇒ STW Bit 0 = 1
4	Controller enable	Controller enable ⇒ STW Bit 3 = 1
5	Control disabled	Disable control ⇒ STW Bit 3 = 0 *
6	Power stage blocked	Disable power stage ⇒ STW Bit 0 = 0
7	Quick stop or spin out of true activated	Spin out of true activated ⇒ STW Bit 1 = 0 Quick stop activated ⇒ STW Bit 2 = 0
8	UZK too low	Intermediate circuit voltage less than switch-on threshold
9	Quick stop activated	Activate quick stop ⇒ STW Bit 2 = 0
10	Quick stop deactivated	Deactivate quick stop ⇒ STW Bit 2 = 1
11	Spin out of true activated	Activate spin out of true ⇒ STW Bit 1 = 0
12	Standstill detected	Standstill was detected
13	Error	Error event occurred (can occur in any system state)
14	Error reaction ended	Error reaction ended (e. g. error stop ramp)
15	Error reset	Reset error ⇒ STW Bit 7 = 1 or by a rising edge of Enpo
16	Power stage blocked	Power stage blocked (can occur in any system status)
* Parameter P 0144 (Autostart) determines whether controller enable is flank-triggered (0) or status-dependent (1) [Parameter List ⇔Motion Profile ⇔Basic Settings].		

Table 5.5 System state transitions

5.3 Jog mode

5.3.1 Jog mode manufacturer-specific

Bits 8 and 9 of the control word permit jog mode in speed operation:

When bit 8 of parameter **COM_DP_CtrlConfig** is set to 0, the drive acts as follows (jog mode manufacturer-specific):

- When bit 8 is changed to 1, the drive adopts the speed in parameter P 1268 COM_DP_RefJogSpeed1.
- If bit 9 is additionally set to 1, the value of parameter P 1269 COM_DP_ RefJogSpeed2 is used as the reference (setpoint).
- If bit 9 is set to 0 again, **COM_DP_RefJogSpeed1** is again used as the reference.
- If bit 8 is set to 0 while bit 9 is still set to 1, no change occurs.
- When bit 9 is changed to 1, the drive adopts the negated speed in parameter
 COM DP RefJogSpeed1. The direction of rotation is reversed as a result.
- If bit 8 is additionally set to 1, the negated value of parameter COM_DP_ RefJogSpeed2 is used as the reference (setpoint).
- If bit 8 is set to 0 again -COM_DP_RefJogSpeed1 is again used as the reference.
- If bit 9 is set to 0 while bit 8 is still set to 1, no change occurs.
- If negative references are set, a negated velocity becomes positive again.
- Jog mode can only be activated when the motor is stopped.

5.3.2 Jog mode conforming to profile

- When bit 8 of parameter **COM_DP_CtrlConfig** is set to 1, the drive acts in conform to the profile (profile 4.1) page 84 [13]:
- Jog mode can only be activated when the motor is stopped.
- Bits 4 to 6 of the control word are 0.
- When bit 8 is changed to 1, the drive adopts the velocity in parameter COM_DP_RefJogSpeed1.
- When bit 9 is changed to 1, the drive adopts the velocity in parameter COM_DP_RefJogSpeed2.
- When bits 8 and 9 are set there is no change; the old reference value is retained.

5.3.3 Jog mode reference parameters

- Parameters P 1268 COM_DP_RefJogSpeed1 and P 1296 COM_DP_RefJogSpeed2 are of type Int32 and mappable as process data.
- The acceleration and deceleration are used in jog mode by parameters P 1278
 COM_DP_ACC and P 1279 COM_DP_DEC. These parameters are of type uint16
 and mappable in the process data.

5.4 Speed control (application class 1)

In speed control mode the speed control reference value can be influenced using 3 bits in the master control word (3.2).

Figure 5.3 Speed control

Setting the control word bit 4 allows the speed reference value to be taken over by the ramp generator. The ramp generator can be enabled by setting control word bit 5; resetting it freezes the ramp generator again.

The input of the ramp generator is influenced by control word bit 6. If bit 6 is set, the reference value is switched through. If bit 6 is not set, the reference value zero is transmitted.

ID no.:CA65645-001 Date: 01/2015

5.4.1 Master control word

Bit	Operation mode: Speed control	Operation mode: Position control	
Bit 15 (MSB)			
0		Apply relative positioning immediately after start enable	
1		Speed mode	
Bit 14			
0		Normal positioning	
1		Speed mode	
Bit 13			
0	Not used	New reference values activated by toggling master control word bit 6	
1	Not used	New reference values are applied directly. Special function: Feed hold is disabled.	
Bit 12			
0	Not used	d Positioning reference value = absolute	
1	Not used	Positioning reference value = relative	
Bit 11			
0	Not used	Stop homing	
1	Not used	Start homing	
Bit 10			
0	No access rights via PLC		
1	Access rights via PLC		
Bit 9			
0	Jog mode 2 off	Jog mode 2 off	
1	Jog mode 2 on	Jog mode 2 on	
Bit 8			
0	Jog mode 1 off	Jog mode 1 off	
1	Jog mode 1 on	Jog mode 1 on	
Bit 7			
Table E 6	Master control word		

Table 5.6 Master control word

Bit	Operation mode: Speed control	Operation mode: Position control	
0		Error reset on rising edge $0 \Rightarrow 1$	
1			
Bit 6			
0	Deactivate reference value	Activate driving set via rising and falling	
1	Activate reference value	edge (0 ⇒ 1 and 1 ⇒ 0) (in interpolating modes enable interpolation)	
Bit 5			
0	Freeze ramp generator	No feed hold	
1	Unfreeze ramp generator	Feed hold	
Bit 4			
0	Reset ramp generator	Abort driving set	
1	Activate ramp generator	Do not abort driving set	
Bit 3			
0		Controller not enabled	
1	Controller enabled (operation enabled)		
Bit 2			
0	Quick stop active		
1	Quick stop inactive		
Bit 1			
0	Spin out of true active		
1	Spin out of true inactive		
Bit 0			
0	Switch power stage OFF		
1		Switch power stage ON	

Table 5.6 Master control word

	Meaning
Bit 0 - 11	Not used
Bit 12 - 15	Master Sign of Life (SOL)

Table 5.7 Master control word 2

With parameter **P 1267 COM_DP_CtrlConfig** bits 6 and 8 can be configured:

Bit number	Value = 0 (default)	Value = 1
Bit 6	The driving job can be started with the negative and positive edge (profile 4.0).	The driving job can be started only with the positive edge (profile 4.1).
Bit 8	Jog mode is manufacturer-specific	Jog mode acts as described in profile 4.1.

Table 5.8 Parameter P 1267 COM_DP_CtrlConfig

5.4.2 Drive status word

	Operation mode: Speed control	Operation mode: Positioning control	
Bit 15 (MSB)	Not used		
Bit 14			
0	"ENPO" o	r "Safe Standstill" not set	
1	"ENPO"	or "Safe Standstill" set	
Bit 13			
0		Drive rotating	
1		Drive stationary	
Bit 12			
0	Not used	Driving ish confirmation by taggling this hit	
1	Not used	Driving job confirmation by toggling this bit	
Bit 11			
0	Not used	Homing point not yet set	
1	Not used	Homing point set	
Bit 10			
0	Frequency or speed not reached	Target position not reached	
1	Frequency or speed reached or exceeded	Target position reached	
Bit 9			
0	No access rights via PLC		
1	Access via PLC allowed		

	Operation mode: Speed control	Operation mode: Positioning control	
Bit 8			
0	Velocity error out of tolerance band	Positioning tracking error out of tolerance band	
1	Velocity error within tolerance band	Positioning error within tolerance band	
Bit 7			
0		No warning	
1		Warning issued	
Bit 6			
0	Swit	ch on not prevented	
1	Sw	vitch on prevented	
Bit 5			
0	Quick stop activated		
1	Quick stop deactivated		
Bit 4			
0	Spin out of true activated		
1	Spin out of true deactivated		
Bit 3			
0	No error		
1	Error reported		
Bit 2			
0	(Control disabled	
1	Control active (in operation / drive following reference values)		
Bit 1			
0	Power stage inactive (not ready)		
1	Powe	Power stage active (ready)	
Bit 0			
0	N	Not ready for start	
1	Ready for start		

Table 5.9 Drive status word

ID no.:CA65645-001 Date: 01/2015

MOOG

Bit	Meaning
0-1	Profile generator status 0: Stop 1: Acceleration 2: Positioning with sel. velocity 3: Deceleration
2	Torque limitation with positive direction of travel
3	Torque limitation with negative direction of travel
4	ISD00
5	ISD01
6	ISD02
7	ISD03
8	Reserved
9	Reserved
10	Reserved
11	Reserved

Table 5.10 Drive status word 2

Slave Sign of Life (SOL)

12-15

NOTE:

For more information refer to chapter 6, Homing.

5.5 Position control (application class 3)

In position control mode, from operating state 5 the drive can switch to various states in response to defined bits in the master control word. These states are illustrated in the following diagram.

Figure 5.4 Position control

A positioning command is activated by setting control word bit 4, feed hold via control word bit 5 and an edge at control word bit 6. Further positioning commands can then be controlled via control word bit 13.

If bit 13 is set, changes to the reference position, positioning velocity or positioning acceleration lead directly to a new driving job.

If bit 13 is not set, a new driving job is activated only by means of a positive or negative edge of control word bit 6.

If bit 6 in parameter **P 1267 (COM_DP_CtrlConfig)** is set, the driving job is only activated on a positive edge. This corresponds to the last PROFIDrive profile 4.1.

If feed hold is reset while a positioning command is active, the drive is braked to a standstill on a ramp and switches to the Intermediate Stop state. The current driving job is not executed until the feed hold is set again.

A driving job can be cancelled by resetting control word bit 4.

In this case the drive is also braked to a standstill and set to the "Control active" state.

Additionally, from the initial state 5 a homing run can be triggered by control word bit 11.

ID no.:CA65645-001 Date: 01/2015

5.5.1

Position control circuit and associated control parameters

Figure 5.5 Position control loop

P.no.:	Parameter name	Meaning
P 0167	MPRO_REF_OVR	Velocity override
P 0320	CON_SCON_Kp	PI speed controller gain
P 0321	CON_SCON_Tn	PI_speed controller integralaction time
P 0325	CON_SCONFilterFreq	Limit frequencies for torque reference value filter
P 0326	CON_SCONFilterAssi	Torque reference value filter parameter
P 0327	CON_SCONFilterPara	Torque reference value filter parameter
P 0328	CON_SCON_Smax	Speed limitation
P 0330	CON_SCON_TMaxNeg	Negative torque limit (reference variable: nominal torque)
P 0331	CON_SCON_TMaxPos	Positive torque limit (reference variable: nominal torque)
P 0332	CON_SCON_TMaxScale	Torque scaling factor
P 0333	CON_SCON_SMaxNeg	Negative speed limitation (reference value: motor nominal speed)
P 0334	CON_SCON_SMaxPos	Positive speed limitation (reference value: motor nominal speed)
P 0339	CON_SCON_Tmax	Torque limitation (reference value: nominal torque)
P 0351	CON_SCALC_TF	Actual speed filter time constant
P 0360	CON_PCON_Kp	P-position controller gain
P 0372	CON_IP_SFFTF	Speed pre-control filter time constant
P 0374	CON_IP_EpsDly	Position reference delay
P 0375	CON_IP_SFFScale	Speed pre-control scaling
P 0376	CON_IP_TFFScale	Acceleration pre-control scaling
P 0379	CON_IP_FFMode	Configuration of pre-control
P 0401	CON_SCON_AddTRef	Additive torque reference
P 0402	CON_SCON_AddSRef	Additive velocity reference

P.no.:	Parameter name	Meaning
P 0414	CON_PCON_PosDiff	Position controller control difference (tracking error)
P 0417	CON_SCON_SDiff	Speed controller differential
P 0460	MOT_TNom	Motor nominal torque
P 0458	MOT_Snom	Motor nominal speed
P 1270	COM_DP_RefSpeed	Velocity reference
P 1271	COM_DP_ActSpeed	Actual speed
P 1272	COM_DP_RefTorque	Torque reference
P 1274	COM_DP_RefPos	Reference position
P 1275	COM_DP_TargetPos	Target position
P 1276	COM_DP_ActPos1	Current actual position
P 1277	COM_DP_PosVelocity	Positioning velocity
P 1278	COM_DP_Acc	Acceleration ramp
P 1279	COM_DP_Dec	Deceleration ramp
P 1516	SCD_Jsum	Overall mass moment of inertia

Control parameters Table 5.11

6 Homing

6.1 Drive-controlled homing

Drive-controlled homing is activated with a rising edge of bit 11 in the master control word. A falling edge aborts an incomplete homing run. The completed homing is indicated in the status word by bit 11 being set.

Homing is executed according to the settings as described in the following subsections.

If the drive is run in interpolating mode, parameter **P 0300 (CON_CfgCon)** is switched from interpolating mode (IP) to profile-generating mode.

6.2 Homing velocity

The homing velocity is specified by parameter **P 2262 (MPRO_402_HomingSpeeds)** in the parameter editor [Parameter list⇒Motion Profile⇒Homing]. The user can specify two different homing velocities.

- 1. SpeedSwitch = Velocity when moving to the limit switch
- 2. SpeedZero = Velocity when moving to the zero point

6.3 Homing acceleration

Homing acceleration is set via parameter P 2263 (MPRO_402_Homing-Acc) in the parameter editor [Parameter list⇒Motion Profile⇒Homing].

6.4 Zero point offset

Absolute encoders (e. g. SSI-Multiturn encoders) are a special feature in homing, because they establish the absolute position reference directly. Homing with these encoders therefore requires no movement and, under certain conditions, no current to the drive. Furthermore, the zero point must be balanced. Type 5 is particularly suitable for this. A zero point offset can be set via parameter P 0525 (ENC_HomingOff) [Parameter list > Motion Profile + Homing].

6.5 Homing method

The reference cam signal can be optionally linked to one of the digital inputs. Inputs ISD00 to ISD06 are available.

In homing to a limit switch, the digital input must be selected with the available selection parameter LCW(5) for a positive or LCCW(6) negative limit switch. In homing to a cam, the selection parameter HOMSW(10) must be chosen (see parameters **P 0101–P 0107**).

P.no.	Parameter name/setting	Designation in MDA 5	Function		
P 2261		MPRO_402_ HomingMethod	Digital inputs		
(-12)	-	Setting the machine reference point	Move motor axis to machine reference point		
(-11)	-	Approach block, left with zero pulse	Approach block, direction of travel left, with zero pulse		
(-10)	-	Approach block, right with zero pulse	Approach block, direction of travel right, with zero pulse		
(-9)	-	Approach block, left	Approach block, direction left		
Table 6.1	Parameters for limit switch homing				

Homing

ID no.: CA65645-001 Date: 01/2015

P.no.	Parameter name/setting	Designation in MDA 5	Function
P 2261		MPRO_402_ HomingMethod	Digital inputs
(-8)	-	Approach block, direction right	Approach block, direction right
(-7)	-	move pos. direction, for distance coded encoder	Homing method for increment-coded encoder for positive direction
(-6)	-	move pos. direction, for distance coded encoder	Homing method for increment-coded encoder for negative direction
(-5)	-	Act. position + homing offset(multiturn-encoder)	Homing (absolute value encoder)
(-4)	HOMSW	Homing mode type 22 with continuous reference	Continuous homing, negative edge of reference cam
(-3)	HOMSW	Homing mode type 20 with continuous reference	Continuous homing, positive edge of reference cam
(-2)	-	No homing mode (act. position + homing offset)	No homing; only an offset adjustment is made
(-1)	-	Reference position = homing offset (parameter HOOFF)	Actual position=Zero
(0)	-	Not defined	No homing
(1)	LCCW	Neg. end switch, zero pulse	Homing negative limit switch and zero pulse
(2)	LCW	Pos. end switch, zero pulse	Homing positive limit switch and zero pulse
(3)	HOMSW	Pos. reference cams, zero pulse at RefNock=Low	Homing to cam negative edge, positive direction + zero pulse
(4)	HOMSW	Pos. reference cams, zero pulse at RefNock=High	Homing to cam positive edge, positive direction + zero pulse

P.no.	Parameter name/setting	Designation in MDA 5	Function					
P 2261		MPRO_402_ HomingMethod	Digital inputs					
(5)	HOMSW	Neg. reference cams, zero pulse at RefNock=Low	Homing to cam negative edge, negative direction + zero pulse					
(6)	HOMSW	Neg. reference cams, zero pulse at RefNock=High	Homing to cam positive edge, negative direction + zero pulse					
(7) to (14)	HOMSW	Left reference cam polarity, zero pulse at RefNock=Low	Various homing runs to cam					
(15), (16)	-	not defined	Reserved					
(17)	LCCW	Neg. end switch	Homing negative limit switch					
(18)	LCW	Pos. end switch	Homing positive limit switch					
(19)	HOMSW	Pos. reference cams, Stop at RefNock=Low	Homing to cam negative edge, positive direction					
(20)	HOMSW	Pos. reference cams, Stop at RefNock=High	Homing to cam positive edge, positive direction					
(21)	HOMSW	Neg. reference cams, Stop at RefNock=Low	Homing to cam negative edge, negative direction					
(22)	HOMSW	Neg. reference cams, Stop at RefNock=High	Homing to cam positive edge, negative direction					
(23) to (30)	HOMSW	Left reference cam polarity, Stop at RefNock=Low	Various homing runs to cam					
(31), (32)	-	Not defined	Reserved					
(33)	-	- Next left zero pulse Zero pulse in negative direction						
Table 6.1	Table 6.1 Parameters for limit switch homing							

P.no.	Parameter name/setting	Designation in MDA 5	Function	
P 2261		MPRO_402_ HomingMethod	Digital inputs	
(34)	-	Left reference cam polarity, Stop at RefNock=High	Zero pulse in positive direction	
(35)	-	Actual position = Reference position	Zero is current position	
Table 6.1	Parameters for limit switch homing			

The signal for the homing cams can optionally be linked to one of the digital inputs, for which the inputs ISD00 to ISD06 are available. The limit switches can also be used for homing. The assignments of the digital inputs can be found under the parameters **P 0101 to P 0107** [Parameter list \Rightarrow I/O configuration \Rightarrow Digital inputs]. When homing to limit switches, the digital input must be selected as a positive limit switch using selection parameter LCW(5) or a negative limit switch using selection parameter LCW(6). When homing to cams, the parameter HOMSW(10) must be selected.

The following table shows the necessary assignment of the digital inputs for the respective homing methods.

6.6 Reference cam, limit switch

The homing method is selected by parameter **P 2261 (MPRO_402_HomingMethod)** [Parameter list⇒Motion Profile⇒Homing].

For more information refer to the MSD Servo Drive Device Help on our product DVD.

ID no.: CA65645-001 Date: 01/2015

MSD Servo Drive User Manual PROFIBUS/PROFINET

52

7 Examples of commissioning with manufacturer-specific telegrams

7.1 Position control with PPO 5

The following section describes how the drive can be quickly and easily commissioned in position control mode.

First embed GSD file "MOOGOA33.gsd" in the PROFIBUS configuration phase and then select PPO type 5. PPO type 5 consists of a PKW channel (8 bytes) and 10 process data channels (20 bytes). The process data area can be freely configured using this manufacturer-specific telegram. That means that the desired reference and actual values can be mapped to a defined process data area. All mappable signals are listed in two signal tables, which can be accessed using the parameter editor under the folder Parameter list \Rightarrow Fieldbus \Rightarrow PROFIBUS-DP in the left-hand tree structure of the user interface. In this folder, signal list P 1284 (COM_DP_SignalList_Write) contains all possible writeable process data signals and signal list P 1285 (DP_SignalList_Read) contains all possible readable process data signals.

The user can assign the process data channels freely as required. The actual assignment takes place in signal tables P 0915 and P 0916 [Parameter list ⇒ Fieldbus ⇒ PROFIBUS-DP]. Signal table P 0915 (COM_DP_PZDSelectionWrite) contains all signals that can be sent by the control master to the drive. Signal table P 0916 (COM_DP_PZDSelectionRead) contains all signals that can be sent by the drive to the control master.

The following table shows an example configuration of the process data area from the master to the drive. The subindices in list **P 0915** are assigned the stated parameter numbers for the purpose.

Signal table 915 Subindex	PZD area	Parameter number	Parameter name	Data type (value range)
0	1	P 0967	Control word (COM_DP_Controlword)	U16 (065535)
1	2	P 1275	Target position (COM_DP_TargetPos)	132
2	3	P 1275	Target position (COM_DP_TargetPos)	(-2147483648 2147483647)
3	4	P 1280	P 1280 Control word 2 (COM_DP_Controlword2)	
4	5	P 1277	Positioning velocity (COM_DP_PosVelocity)	132
5	6	P 1277	Positioning velocity (COM_DP_PosVelocity)	(-2147483648 2147483647)
6	7	P 1278	Acceleration (COM_DP_Acc)	U16 (065535)
7	8	P 1279	Braking deceleration (COM_DP_Dec)	U16 (065535)
8	9	0		-
9	10	0	-	-

Table 7.1 Example of assignment of the master-slave process data channel

Each subindex represents a 16-bit process data channel. For this reason, the target position transferred as Int32, for example, is mapped to subindices 1 and 2 in order to transfer a real 32 bits. The parameters available for selection and their data types are listed in chapter 4.

The configuration of the process data channels can be freely selected by the user in the sequence of the signal assignments. Compliance with the data type format must be ensured however.

The following table shows an example of the process data area from the drive to the master. The subindices in list **P 0916** are assigned the desired parameter numbers for the purpose.

53

Signal table 915 Subindex	PZD area	Parameter number	Parameter name	Data type (value range)
0	1	P 0968	Status word (COM_DP_Statuswort)	U16 (065535)
1	2	P 1276	Actual position (COM_DP_ActPos1)	
2	3	P 1276	Actual position (COM_DP_ActPos1)	 2147483647)
3	4	P 1281	Status word 2 (COM_DP_Statusword2)	U16 (065535)
4	5	P 1271	Actual velocity (COM_DP_ActSpeed)	l16 (-3276832767)
5	6	-		-
6	7	-	-	-
7	8	-		-
8	9	-	-	-
9	10	-	-	-

ID no : CA65645-001 Date: 01/2015

Table 7.2 Example of assignment of the slave-master process data channels

The following parameters must then be set for position control mode.

- CON_CfgCon (300): PCON(3) [Parameter list

 Motor control]
 This parameter is used to change operation mode. The setting PCON (Position Control Mode) means that the drive is in position control mode.
- **2. CON_REF_Mode (301) : RFG(0)** [Parameter list⇒Motion Profile ⇒Basic settings]

This parameter is used to set the position reference input mode. The position reference value can be preset directly or via a ramp generator. The setting RFG (Ramp Function Generator) means that the position reference value is preset via a ramp generator.

3. MPRO_CTRL_SEL (159): PROFIBUS(7) [Parameter List

→ Motion Profile

→ Basic settings]

This parameter is used to set the control location. In this instance the control location is selected as PROFIBUS.

4. MPRO_REF_SEL (165) : PROFI(9) [Parameter list⇒Motion Profile⇒Basic settings]

This parameter is used to configure the reference selector. In this instance the reference values are taken from PROFIBUS.

Once these settings have been made, communication can be established between the master and drive.

7.2 Controlled homing

The touchprobe function enables controlled homing of an axis. In this variant the drive remains in interpolating mode. The touchprobe function is used to record the position of the reference pulse. For more information on the touchprobe function refer to the Device Help in the Touchprobe chapter.

7.3 Conversion of reference and actual values via the factor group parameters

Conversion of reference values and actual values via the factor group parameters

In positioning applications the input of reference values and the return of actual values is usually performed in application-specific user units (mm, degrees, ...). The reference and actual values of the drive are converted with the so-called factor group parameters [Parameter list⇒Motion profile⇒Standardisation/units]. Users can choose between three different groups of parameters. All three groups have the same task, which is to convert the user units to the fixed internal variables of the servocontroller. The first factor group is based on the CiA402 standard. The parameters of this group are described in detail in the CANopen specification CiA402. The second factor group is under the heading "Sercos". The parameters of this group refer to the Sercos specification "SERCOS interface" (Version 2.4 / February 2005). The parameters of this group are also described in detail in the cited specification. The third factor group is called "user spec" and is user-specific group. Since this factor group is not described in detail elsewhere, use of parameters of this group is illustrated in the following by means of an example.

The user can select the factor group using the parameter "MPRO_FG_Type".

Parameter number	Parameter name	Meaning
P 0283	MPRO_FG_Type	Factor group selection (0) = STD/402 (1) = SERCOS (2) = USER

Table 7.3 Parameter

The parameters of the USER factor group are listed in the table below.

Parameter number	Parameter name	Meaning	Unit
P 0270	MPRO_FG_PosNorm	Sensor resolution	[incr/rev]
P 0271	MPRO_FG_Num	Numerator (position)	[rev]
P 0272	MPRO_FG_Den	Denominator (position)	[POS]
P 0274	MPRO_FG_SpeedFac	Velocity factor	[rev/(min*SPEED)]
P 0275	MPRO_FG_AccFac	Acceleration factor	[rev/(sec*sec*ACC)]
P 0284	MPRO_FG_PosUnit	Position unit	String
P 0285	MPRO_FG_PosExp	Position exponent	-
P 0286	MPRO_FG_PosScaleFac	Position factor	-
P 0287	MPRO_FG_SpeedUnit	Velocity unit	String
P 0288	MPRO_FG_SpeedExp	Velocity exponent	-
P 0289	MPRO_FG_SpeedScaleFac	Velocity factor	-
P 0290	MPRO_FG_AccUnit	Acceleration unit	String
P 0291	MPRO_FG_AccExp	Acceleration exponent	-
P 0292	MPRO_FG_AccScaleFac	Acceleration factor	-
P 0293	MPRO_FG_TorqueUnit	Torque unit	String
P 0294	MPRO_FG_TorqueExp	Torque exponent	-
P 0295	MPRO_FG_TorqueScaleFac	Torque factor	-

Table 7.4 Factor group USER

These define the internal resolution of the unit for:

Position: rev Velocity: rev/min

Acceleration: rev/(sec*sec)

The units are automatically defined by the profiles themselves according to CiA402 or Sercos. The units can be assigned manually in the User setup.

The parameters for unit and exponent refer to the display and have no effect on the standardisation of the variables themselves.

The following three formulae describe the conversion of user units into the units used internally in positioning mode. They refer to reference position, velocity and acceleration.

The quotient of parameters MPRO_FG_Num and MPRO_FG_Den describes the ratio of user unit to motor revolutions. It also allows any gear ratios or feed constants to be incorporated.

Positioning velocity

The parameter MPRO_FG_SpeedFac offers the facility to change the number of decimal points for the positioning velocity or the unit of positioning velocity.

Positioning acceleration:

$$Positionierbeschleunigung_{\text{intern}} - \frac{[\text{rev}]}{[\text{sec}^2]} = \text{COM_DP_Acc} \\ [\text{UserEinheit}] \cdot \text{MPRO_FG_AccFac} - \frac{[\text{rev}]}{[\text{sec}^2 \cdot \text{UserEinheit}]}$$

The parameter MPRO_FG_AccFac offers the facility to change the number of decimal points for the positioning acceleration or the unit of positioning acceleration.

Examples of commissioning with manufacturer-specific telegrams

ID no.: CA65645-001 Date: 01/2015

MSD Servo Drive User Manual PROFIBUS/PROFINET

7.4 Examples for setting the user factor group

The positioning instructions should be input in degrees, so that 360° corresponds to one revolution of the motor (655 36 increments per revolution of the motor). The velocity should be preset in revs per minute (rev) and the acceleration in rev/sec. This gives the following values:

P 0270 Encoder resolution = 655 36 [incr/rev]

P 0271 Position numerator = 1 [rev]

P 0272 Position denominator = 360 [POS] **

P 0274 Velocity factor = 1 [rev/(min*SPEED)] ***

P 0275 Acceleration factor = 1/60 [rev /(sec*sec*ACC)] ****

P 0284 Position unit (string) = "Degree"
P 0287 Velocity unit (string) = "rev"

P 0290 Acceleration unit (string) = "rev/sec"

** POS = User unit for position

***SPEED = User unit for velocity

****ACC = User unit for acceleration

7.5 Speed control with PPO 2

The following section describes how the drive can be quickly and easily commissioned in speed control mode. First embed GSD file "MOOG0A33.gsd" in the PROFIBUS configuration phase and then select PPO type 2.

PPO type 2 consists of a PKW channel (8 bytes) and six process data channels (12 bytes). The process data area can be freely configured using this manufacturer-specific telegram. That means that the desired reference and actual values can be mapped to a defined process data area. All mappable signals are listed in two signal tables, which can be accessed using the parameter editor under the folder Parameter list ⇒ Fieldbus ⇒

PROFIBUS-DP in the left-hand tree structure of the user interface. In this folder, signal list P 1284 (COM_DP_SignalList_Write) contains all possible writeable process data signals and signal list P 1285 (DP_SignalList_Read) contains all possible readable process data signals.

The user can freely assign the process data area. The actual assignment takes place in signal tables P 0915 and P 0916 (Parameter list ⇒ Fieldbus ⇒ PROFIBUSDP). Signal table P 0915 (COM_DP_PZDSelectionWrite) contains all signals that can be sent by the control master to the drive. Signal table P 0916 (COM_DP_PZDSelectionRead) contains all signals that can be sent by the drive to the control master.

The following table shows an example of the process data area from the master to the drive. The subindices in list **P 0915** are assigned the desired parameter numbers for the purpose.

Signal table 915 Subindex	PZD area	Parameter number	Parameter name	Data type (value range)
0	1	P 0967	Control word (COM_DP_Controlword)	U16 (065535)
1	2	P 1270	Reference speed (COM_DP_RefSpeed)	l16 (-3276832767)
2	3	P 1278	Acceleration (COM_DP_Acc)	U16 (065535)
3	4	P 1279	Braking deceleration (COM_DP_Dec)	U16 (065535)
4	5	-	-	-
5	6	-	-	-
6	7	-	-	-
7	8	-	-	-
8	9	-	-	-
9	10	-	-	-

Table 7.5 Assignment of the master-slave process data channels

Each subindex represents a 16-bit process data channel. For this reason, an Int32 parameter, for example, must be mapped to two subindices. The selectable parameters and their data types are set out in the table "Assignment of master-slave process data channels".

56

The configuration of the process data areas can be freely selected by the user in the sequence of the signal assignments. The only requirement is compliance with the data type format. That means that a 32-bit variable also accordingly requires two process data channels.

The following table shows an example of the process data area from the drive to the master. The subindices in list **P 0916** are assigned the desired parameter numbers for the purpose.

Signal table 915 Subindex	PZD area	Parameter number	Parameter name	Data type (value range)
0	1	P 0968	Status word (COM_DP_Statuswort)	U16 (0655 35)
1	2	P 1271	Actual speed (COM_DP_ActSpeed)	l16 (-3276832767)
2	3	-	-	-
3	4	-	-	-
4	5	-	-	-
5	6	-	-	-
6	7	-	-	-
7	8	-	-	-
8	9	-	-	-
9	10	-	-	-

Table 7.6 Assignment of the slave-master process data channels

The following parameters must then be set for speed control mode:

- **1. CON_CfgCon (300)**: SCON(2) [Parameter list ⇒ control] This parameter is used to change operation mode. The setting SCON (Speed Control Mode) means that the drive is in speed control mode.
 - **1. CON_REF_Mode (301)** : RFG(0) [Parameter list ⇒ Motion Profile ⇒ Basic settings]

This parameter determines the mode of reference input. The position reference value can be preset directly or via a ramp generator. The setting RFG (Ramp Function Generator) means that the speed reference value is preset via a ramp generator.

2. MPRO_CTRL_SEL (159): PROFIBUS(7) [Parameter list

Motion Profile

Basic settings]

This parameter is used to set the control location. In this instance the control location is PROFIBUS.

3. MPRO_REF_SEL (165): PROFI(9) [Parameter list ⇒ Motion Profile ⇒ Basic settings]

This parameter is used to configure the reference selector. In this instance the reference values are taken from PROFIBUS.

Once these settings have been made, communication can be established between the master and drive.

7.5.1 Speed input

All factor group parameters are set to default values. The speed reference value can then be preset scaled to the motor rated speed. So a value of 16384 corresponds to a speed reference value of 100 % of the motor rated speed.

The drive can then be operated in speed control mode using the control word (section 3.2).

MOOG

Parameter number	Parameter name	Write (P 1284)	Read (P 1285)	PZD Length
P 0967	COM_DP_Controlword	Х	X	1
P 0968	COM_DP_Statusword	-	Х	1
P 1280	COM_DP_Controlword2	Х	Х	1
P 1281	COM_DP_Statusword2	-	Х	1
P 1270	COM_DP_RefSpeed	Х	Х	1
P 1271	COM_DP_ActSpeed	-	Х	1
P 0121	MPRO_Input_State	-	Х	1
P 0143	MPRO_Output_State	-	Х	1
P 1274	COM_DP_RefPos	Х	Х	2
P 1276	COM_DP_ActPos1	-	Х	2
P 0207 MPRO_TAB_ActIdx		Х	Х	1
P 1275	COM_DP_TargetPos	Х	Х	2
P 1277	COM_DP_PosVelocity	Х	Х	2
P 1278	P 1278 COM_DP_Acc		Х	1
P 1279	9 COM_DP_Dec		Х	1
P 1287	287 COM_DP_TMaxPos		Х	1
P 1288	COM_DP_TMaxNeg	Х	Х	1

Table 7.7 Mappable parameters

Further mappable parameters can be found in signal tables P 1284 (COM_DP_Signal-**List_Write**) and **P 1285 (DP_SignalList_Read)** [Parameter List ⇒ Fieldbus ⇒ PROFIBUS-DP].

8 PROFIBUS/PROFINET parameters

The following table describes the available parameters.

Parameter name	Number	Value range	Default value	Change- able	Data type	Meaning
PROFIBUS/PROFINET param	neters				,	
COM_DP_PZDSelectionWrite	P 0915	0 – 65535	967	Yes	U16	This parameter allows incoming process data to be linked to specific device parameters. Parameter P 1284 indicates which parameters can be entered. Subindex 0 contains the first process data word PZD1, etc.
COM_DP_PZDSelectionRead	P 0916	0 – 65535	968	Yes	U16	This parameter allows outgoing process data to be linked to specific device parameters. Parameter P 1285 indicates which parameters can be entered. Subindex 0 contains the first process data word PZD1, etc.
COM_DP_Address*	P 0918	0 – 126	126	Yes	U16	Station address of the inverter
COM_DP_TelegramSelection	P 0922	0 – 65535	0	Yes	U16	
COM_DP_SignalList	P 0923	0 – 65535	0	No	U16	This parameter lists all mappable parameters and signals for parameters P 0915 and P 0916.
COM_PN_sign_of_life_limit	P 0925	0 - 65535	0	Yes	U16	Number of approved SOL (Sign of Life) errors until error shutdown Type U16: 0 — 0xfffe, 0xffff = switch off
COM_DP_Warning	P 0953	0 – 0xFFFF	0	No	U16	This parameter returns warning messages from PROFIBUS. These include bus timeout and PLC stop mode.
COM_DP_Baudrate*	P 0963	9.6 – 45.45 kbits/s	9.6 kbit/s	No	U16	Current Baud rate for bus communication
COM_DP_DeviceId	P 0964	0 – 65535	0	No	U16	This parameter is for device identification
COM_DP_ProfileNo	P 0965	0 – 65535	0	No	U16	Profile number, not supported in the first step
COM_DP_Controlword	P 0967	0 – 0xFFFF	0	Yes	U16	Control word for the internal state machine
COM_DP_Statusword	P 0968	0 – 0xFFFF	0	No	U16	Status word for the internal state machine
COM_DP_DataStore	P 0971	0 – 255	0	Yes	U16	This parameter permits storage of data in the non-volatile memory.
COM_DP_DefinedParameter	P 0980	0 – 65535	0	No	U16	This parameter describes the defined parameters in the MSD Servo Drive.
COM_DP_ModifiedParameter	P 0990	0 – 65535	0	No	U16	This parameter describes all the parameters in the MSD Servo Drive that are not set to the default values.
COM_DP_CtrlConfig	P 1267	0 – 65535	0	Yes	U16	This parameter describes the function of each bits in the control word, parameter P 0967.
COM_DP_RefJogSpeed1	P 1268	- 4294967296 to 4294967295	0	Yes	132	This parameter contains the reference velocity 1 in jog mode
COM_DP_RefJogSpeed2	P 1269	- 4294967296 to 4294967295	0	Yes	132	This parameter contains the reference velocity 2 in jog mode
COM_DP_RefSpeed	P 1270	-32768 — 32767	0	Yes	116	Speed reference value written via PROFIBUS
COM_DP_ActSpeed	P 1271	-32768 — 32767	0	No	116	Actual speed

Table 8.1 PROFIBUS and PROFINET parameters

ID no.: CA65645-001 Date: 01/2015

60

Parameter name	Number	Value range	Default value	Change- able	Data type	Meaning
COM_DP_RefTorque	P 1272	-32768 — 32767	0	Yes	116	Torque reference value written via PROFIBUS
COM_DP_ActTorque	P 1273	-32768 — 32767	0	No	116	Actual torque
COM_DP_RefPos	P 1274	-2147483648 – 2147483647	0	Yes	132	Position reference value (ramp mode) written via PROFIBUS
COM_DP_TargetPos	P 1275	-2147483648 — 2147483647	0	Yes	132	Position reference value (direct mode) written via PROFIBUS
COM_DP_ActPos1	P 1276	-2147483648 — 2147483647	0	No	132	Actual position of 1st position encoder
COM_DP_PosVelocity	P 1277	-2147483648 — 2147483647	0	Yes	132	Velocity reference value (ramp mode) written via PROFIBUS
COM_DP_Acc	P 1278	0 – 0xFFFF	100	Yes	U16	Acceleration reference value (ramp mode) written via PROFIBUS
COM_DP_Dec	P 1279	0 – 0xFFFF	100	Yes	U16	Deceleration reference value (ramp mode) written via PROFIBUS
COM_DP_Controlword2	P 1280	0 – 0xFFFF	0	Yes	U16	2nd control value, not used at first
COM_DP_Statusword2	P 1281	0 – 0xFFFF	0	No	U16	2nd control word, initially not used
COM_DP_Bus_Timeout	P 1283	0 – 4294967295	5000	Yes	U32	Bus timeout
COM_DP_SignalList_write	P 1284	0 – 65535	0	No	U16	List of parameters that can be used as process data reference values
COM_DP_SignalList_Read	P 1285	0 – 65535	0	No	U16	List of parameters that can be used as process data actual values
COM_DP_TMaxScale	P 1286	0 – 2000	1000	Yes	U16	Online torque scaling
COM_DP_TMaxPos	P 1287	0 – 2000	1000	Yes	U16	Positive online torque scaling
COM_DP_TMaxNeg	P 1288	0 – 2000	1000	Yes	U16	Negative online torque scaling
PROFINET parameters						
COM_PN_StationName	P 1289		DRIVE	YES	string	Station name of PROFINET device
COM_PN_StationIP	P 1290	0-FFFFFFF	0	No	U32	IP address of PROFINET device
COM_PN_StationSubnet	P 1291	0-FFFFFFF	0	No	U32	Subnet mask of PROFINET device
COM_PN_StationMAc	P 1292	[0] -[5] 0-FF	0	No	U8	Station MAC address of PROFINET device
COM_PN_StationMAc	P 1292	[6] -[11] O-FF	0	No	U8	Station MAC address of PROFINET device
COM_PN_StationMAc	P 1292	[12] -[17] O-FF	0	No	U8	Station MAC address of PROFINET device
COM_PN_ProductFamily	P 1293		DRIVE	No	string	Product family
COM_PN_IM	P 1294	0 - FFFF	0	No	U16	Identification and maintenance data (IM)
COM_PN_DefaultGateway	P 1295	0-FFFFFFF	0	No	U32	Gateway (factory setting)
COM_PN_Sign_of_life_err_cnt	P 1296	0-65535	0	No	U16	Display of current error counter
* PROFIBUS parameters only			·			

Table 8.1 PROFIBUS and PROFINET parameters

Parameter **P 1994** is based on the description of the standard – Profile Guidelines Part 1: Identification & Maintenance Functions, 1.2, Oct 2009, Order No. 3.502 for I & M record 0.

9 Appendix

9.1 Glossary

AK Request identifier

Application data set Factory pre-defined data set for solution of typical applications

response to slave malfunctions.

DP Distributed peripherals

Master The master controller which handles communication.

MW Flag word

Parameter data The PKW parameter channel is used to transfer parameters cyclically to and from

the drive device.

PKW Parameter identifier value

PNU Parameter number

PROFIdrive mode Configuration of the process data channel, conforming to the PROFIdrive profile.

In contrast to EasyDrive mode, the system states are changed by defined control sequences. The system state machine defined in the PROFIBUS standard specifies

the individual system state transitions.

PZD Process data: The process data channel contains the functions "Apply control and

status", "Input reference values" and "Display actual values".

Slave A slave is a station on the PROFIBUS-DP bus which, in contrast to the master,

responds only to the requests directed to it.

SPM Spontaneous message

State machine This describes the transitions between the various system states. A state transition

is triggered by a defined event such as a control sequence or the setting of an input.

9.2 Technical data

The PROFIBUS/PROFINET implementation in MSD Servo Drive conforms to the PROFIdrive profile "PROFIBUS PROFIdrive-Profile Version 4.0" dated August 2005. The profile is not implemented in full however.

	PROFIBUS	PROFINET
Data transfer	Two-wire cable (EIA485)	Standard Ethernet patch cable (e.g. S/FTP Cat. 5e)
Max. transfer rate	12 MBaud	100 MBaud
Automatic baud rate detection	Yes	Fixed
Max. cable length	1000 m @ 9.6 to 187.5 KBaud 400 m @ 500 KBaud 200 m @ 1.5 MBaud 100 m @ 3 to 12 Mbaud The specified PROFIBUS cables should be used (see chapter 2.1.3)	100 m when using the specified PROFINET cable (see chapter 2.2.3) When using standard commercially available Ethernet cables, a max. cable length of 40 m is possible.
Network topologies	Line without repeater Line and tree with repeater	Tree, star and line
Programmable PROFIBUS address	MSD Servo Drive: via rotary coding switch/addressing parameter Single-Axis Compact: via addressing parameter	-
Cyclic exchange of reference and actual value data	Yes, via DPV0	Yes (up to 64 bytes)
Acyclic data exchange	Yes, via DPV1	Yes
Writing and reading drive parameters	Yes, via PKW channel or DPV1	Yes
Synchronisation of all con- nected drives in Freeze and Sync mode	Yes	-
Fieldbus stations	Slave	IO device with real-time (RT) and synchronous IRT (isochronous real-time) communication
Specification		PROFINET Version 2.2 (October 2007)

Table 9.1 Technical data

Index

Symbole

3 Sign of Life errors triggered	26
4 Sign of Life errors triggered with error reaction	26
7-segment display	. 8
Λ	
A	
Abbreviations	17
Acceleration factor	56
Acceleration unit	56
Access mechanism	27
Acyclic data transfer DPV1	27
Address parameters	11
Appendix	61
Application class	39
Attribute	30
Axis No.	30
В	
"Base Mode Parameter Access" data format	29
Bus terminating resistor	10
Bus termination	10
C	
Cable lengths	
Class 1 Master	17

Loding switches	11
Commissioning	53
Communication set-up	17
Configuration phase	12
Connections	13
Connections and user controls	. 9
Controlled homing	54
Control parameters	45
Conversion of reference and actual values	54
Cyclic data transfer	17
Cyclic data transfer DPV0	17
Data exchange	12
Data unit assignment	29
Date	. 2
Description of pin assignment	
Device settings	. 8
Double word format	28
DPV1 read request	28
Drive Administrator	. 8
Orive-controlled homing	49
Orive state machine	37
Orive status word	41
_	
Frror code	. 8
rror numbers	31

Example of assignment	53	Identifier format	
Examples	32	Identifier syntax	24
Examples for commissioning	53	Internal resolution	5!
Examples for setting the user factor group	56	Introduction	
F		J	
Factor group parameters	54	Jog mode	38
Factor group USER	55	Jog mode conforming to profile	38
Format	30	Jog mode manufacturer-specific	38
Further documentation	7	Jog mode reference parameters	39
G		L	
General	7	LED meaning	14
Glossary	61	LEDs	11, 1!
GSD file	12, 15	Limit switch	5 ⁻
GSDML file	15	N //	
		M	
Н		Mappable parameters	58
Helpline/Support & Service	8	Master control word	40
Homing	49	Meanings of LEDs	14
Homing acceleration	49	Measures for your safety	-
Homing method	49	Monitoring	24
Homing velocity	49	N.I.	
How to use this Manual	3	N	
		No. of Parameters	30
		Normal operation Sign of Life	2!
Identifier	18, 21	Number of Elements	30
		Number of values	30

O	
Operating displays	15
Operational diagnostics	. 15
Operation modes	35
P	
Parameter access	29
Parameter channel PKW	23
Parameter description	24
Parameter identifier PKE	23
Parameter number	30
Parameter process data objects	19
Parameter response	3(
Parameters for limit switch homing	49
Phase 1	17
Phase 2	17
Phase 3	17
Pictograms	. 4
Pin assignment	
Pin assignment of the RJ45 sockets	13
PKW	17
PNU	23
Position control 42,	49
Position control loop	44
Position control with PPO 5	53
Positioning acceleration	5
Positioning velocity	5!
Position unit	56
DDO	1-

Process data	20
Process data signals	20
PROFIBUS	. 9
PROFIBUS address	. 9
PROFIBUS address setting	11
PROFIBUS cable	10
PROFIBUS cable pin assignment	. 9
PROFIBUS option card	. 9
PROFIBUS parameter access	27
PROFIBUS parameters	59
PROFIBUS SD2 telegram for DPV1 services	27
PROFIdrive	17
PROFINET	13
PROFINET cable	14
Profinet operation modes	35
PROFINET option card	13
Project planning	. 8
PZD	17
Q	
Quick stop option codes	37
R	
Rating plate	. 8
Reference cam	51
Request ID	30
Request reference	30
Response ID	30
Response identifier AK (Slave Master)	23

S	
Sensor resolution	56
Serial number	8
Sign of Life	24
Sign of Life errors	26
Sign of Life errors with error reaction	26
Single-Axis Compact	11
Speed control	49
Speed control circuit and associated control parameters	36
Speed control with PPO 2	56
Speed input	57
Standard telegrams	18
Status display	9
Subindex	30
System requirements	7
System states	37
System state transitions.	38
Т	
Technical data	61
Topology	9
U	
User controls	9
User data	31
User-specific PPOs	19

\vee	
Values	30
Velocity factor	56
Velocity unit	56
\vee	
Watchdog	
Word format	28
Z	
Zero point offset	49

MSD Servo Drive User Manual PROFIBUS/PROFINET 67

TAKE A CLOSER LOOK.

Moog solutions are only a click away. Visit our worldwide Web site for more information and the Moog facility nearest you.

Moog GmbH Hanns-Klemm-Straße 28 D-71034 Böblingen Phone +49 7031 622 0 Telefax +49 7031 622 100

www.moog.com/industrial drives-support@moog.com

Moog is a registered trademark of Moog, Inc. and its subsidiaries. All quoted trademarks are property of Moog, Inc. and its subsidiaries. All rights reserved. © 2015 Moog GmbH

Subject to technical change without notice.

The contents of our documentation have been compiled with greatest care and in compliance with our present status of information.

Nevertheless we would like to point out that this document cannot always be updated parallel to the technical further development of our products.

Information and specifications may be changed at any time. For information on the latest version please refer to drives-support@moog.com.

ID no.: CA65645-001, Rev. 3.0

Date: 01/2015

Applicable from firmware version: V2.20-01

The German version is the original of this Operation Manual.