\mathcal{D} em

Como $a_n \Rightarrow d$ y a_{20} , $\exists n_0 / a_n > \underline{a}$ $\forall n_{20}$ (Tomé $n_0 / a_n \in (a - \underline{a}, a + \underline{a})$)

$$= \sqrt{\alpha}, \left(\frac{1}{\sqrt{z}} + 1\right) = : \delta$$

$$(a_n - a)$$
. $\frac{1}{(a_n + a)}$

Fengo

$$\leq |\alpha_n - \alpha| \cdot \frac{1}{\delta}$$

$$|a_n-a| \langle \varepsilon, \frac{1}{5} \forall n \ge n,$$

Faltz el caso a=0

Si
$$\alpha = 0$$
,

dado ϵ to mo n_0 /

 $\alpha n < \epsilon^2$ si $n \ge n_0$

W

Sub sucesiones

I de:

Sez (an) SR

a, az, az, ..., a10, a1, ..., a100, a101, a102, ...

He que do con algunos (inhinitor) términor de forma
estrictamente creciente.

Més formal mente
(an)
$$\subseteq \mathbb{R} \iff g: \mathbb{N} \to \mathbb{R}$$

an = $g(n)$

25 ps C

$$g: \mathbb{N} \to \mathbb{R}$$
 (sucerion)

Ejen plo

$$\alpha = (-1)^n \left(1 - \frac{1}{n}\right) = g(n)$$

$$5: f: \mathbb{N} \to \mathbb{N}$$

Tenemos le sub suc.

$$g \circ f(k) = g(zk)$$

$$= (-1)^{zk} \left(1 - \frac{1}{zk}\right)$$

$$= \left(\left| - \frac{1}{2k} \right| \right) \xrightarrow{k \to +\infty} \frac{1}{k}$$

· Tembiés tenemos le subsuc.

$$Q_{2k-1} = \left(-1\right)^{2k+1} \left(1 - \frac{1}{2k-1}\right)$$

K-ésimo término de la subsuc.

(Zk-1)-ésimo " " " Sucesión original

$$=-\left(1-\frac{2\kappa-1}{2\kappa-1}\right)\xrightarrow{\kappa\to\infty}-1$$

Prop:

- · Ses (an) CR sucerion.
- Ses (ank) ⊆ R subsuc. de (an)

 f(k)

que converge à le R

Si (an) converge => Debe converger a

Si
$$(a_n)$$
 converge a $l \Rightarrow \forall (a_{n_k})$ subsuc,
$$(a_{n_k})$$
 converge a l

Ejemplo

Den:

Sez E≥0.,

$$|l-L| = |l-a_{n_k} + a_{n_k} - L|$$

$$\leq |l-a_{n_k}| + |a_{n_k} - L|$$

- · Tomo ko/ lank-ll (E Yk>ko
- · Tomo no/ lan-L/ (E Yn>no

Tomo $k_2 = m \times \{k_0, k_1\}$ Así, si $k \ge k_2$, $|l-L| < |l-a_{n_k}| + |a_{n_k}-L|$ $< \frac{\varepsilon}{2}$ $> ver k \ge k_0$ $< \varepsilon$ $< \varepsilon$

W

