Workshop: Git and GitHub (Day 2)

Cyrus Vandrevala ¹
Nicolás Guarín-Zapata²

¹ Physics Department

² Civil Engineering Department

October 30, 2014

GitHub

Workshop: Git and GitHub (Day 2)

Overview

- GitHub Pages and Jekyll
- Q GitHub Mobile App
- GitHub Student Developer Pack (GitHub Education)
- 4 GitHub Open Source Projects
- 6 GitHub Community
- 6 Programming Example
- Programming Challenges

2014-10-30

└**O**verview

Workshop: Git and GitHub (Day 2)

Overview

GitHub Pages and Jekyll

GitHub Mobile App
GitHub Student Developer Pack (GitHub Education)

GitHub Open Source Projects

GitHub Community

Programming Example

Programming Challenges

- Post Questions That You Might Have in the Repo
- Recommend Other Sources That You Found Useful
- Remember, We Do Not Know Everything!

─We Encourage Participation!

We Encourage Participation!

- Post Questions That You Might Have in the Repo Recommend Other Sources That You Found Useful
- Remember, We Do Not Know Everything!

Pages

- GitHub allow users to have one personal (static) site.
- 2 Allows a site per project.
- 3 Jekyll is the site-generator behind GitHub Pages. There are plenty of templates written in Liquid. 1

¹See here http://jekyllrb.com/docs/templates/. If you are one of those geeks... you can also use CSS templates.

Pages

- GitHub allow users to have one personal (static) site.
- 2 Allows a site per project.
- 3 Jekyll is the site-generator behind GitHub Pages. There are plenty of templates written in Liquid. 1

¹See here http://jekyllrb.com/docs/templates/. If you are one of those geeks... you can also use CSS templates.

Pages

- GitHub allow users to have one personal (static) site.
- Allows a site per project.
- 3 Jekyll is the site-generator behind GitHub Pages. There are plenty of templates written in Liquid. 1

¹See here http://jekyllrb.com/docs/templates/. If you are one of those geeks... you can also use CSS templates.

Workshop: Git and GitHub (Day 2) $\begin{tabular}{ll} \begin{tabular}{ll} \begin{tabu$

Pages

- GitHub allow users to have one personal (static) site.
- Allows a site per project.
 Jekyll is the site-generator behind GitHub Pages. There are
- plenty of templates written in Liquid. ¹

See here http://jekyllrb.com/docs/templates/. If you are one of those geeks... you can also use CSS templates.

Mobile App

GitHub Pages

GitHub for Android^a

- Issue Dashboard.
- Gist Support.
- News Feed.

Off course, it is not a replacement for a Desktop client. But it is good enough to keep track of some changes on the go.

Challenges

ahttps://mobile.github.com/

Workshop: Git and GitHub (Day 2)

GitHub Mobile App

Mobile App

GitHub for Androids

I tissee Dashboard.

Git Support.

News Feed.

Mobile App

Off course, it is not a replacement for a Desktop client. But it is good enough to keep track of some changes on the go.

A couple of months ago GitHub (with some companies) released a pack of free tools for students². Here we present some of them that were arbitrarily chosen.

- Atom: a text editor developed by GitHub.
- 2 CrowdFlower: data enrichment, data mining and
- SendGrid: Email services.

²https://education.github.com/pack

A couple of months ago GitHub (with some companies) released a pack of free tools for students². Here we present some of them that were arbitrarily chosen.

- Atom: a text editor developed by GitHub.
- 2 CrowdFlower: data enrichment, data mining and crowdsourcing services.
- SendGrid: Email services.

²https://education.github.com/pack

A couple of months ago GitHub (with some companies) released a pack of free tools for students². Here we present some of them that were arbitrarily chosen.

- Atom: a text editor developed by GitHub.
- 2 CrowdFlower: data enrichment, data mining and crowdsourcing services.
- GitHub: 5 Private GitHub Repos.
- SendGrid: Email services.
- Unreal Engine: A suite of game development tools for PC,

²https://education.github.com/pack

A couple of months ago GitHub (with some companies) released a pack of free tools for students². Here we present some of them that were arbitrarily chosen.

- Atom: a text editor developed by GitHub.
- 2 CrowdFlower: data enrichment, data mining and crowdsourcing services.
- GitHub: 5 Private GitHub Repos.
- SendGrid: Email services.
- Unreal Engine: A suite of game development tools for PC,

²https://education.github.com/pack

A couple of months ago GitHub (with some companies) released a pack of free tools for students². Here we present some of them that were arbitrarily chosen.

- Atom: a text editor developed by GitHub.
- 2 CrowdFlower: data enrichment, data mining and crowdsourcing services.
- GitHub: 5 Private GitHub Repos.
- SendGrid: Email services.
- Unreal Engine: A suite of game development tools for PC. console, mobile and web.

²https://education.github.com/pack

A couple of months ago GitHub (with some companies) released a pack of free tools for students2. Here we present some of them that were arbitrarily chosen.

Atom: a text editor developed by GitHub.

@ CrowdFlower: data enrichment, data mining and

crowdsourcing services. GitHub: 5 Private GitHub Repos.

SendGrid: Email services.

 Unreal Engine: A suite of game development tools for PC, console, mobile and web.

- Jekyll: https://github.com/jekyll/jekyll

- Scipy Lecture Notes:

- Jekyll: https://github.com/jekyll/jekyll
- Linux Kernel: https://github.com/torvalds/linux
- Scipy Lecture Notes:

- Jekyll: https://github.com/jekyll/jekyll
- Linux Kernel: https://github.com/torvalds/linux
- Matplotlib: https://github.com/matplotlib/matplotlib
- Scipy Lecture Notes:

- Jekyll: https://github.com/jekyll/jekyll
- Linux Kernel: https://github.com/torvalds/linux
- Matplotlib: https://github.com/matplotlib/matplotlib
- Scipy Lecture Notes: https://github.com/scipy-lectures/scipy-lecture-notes

Workshop: Git and GitHub (Day 2) └─GitHub Open Source Projects

GitHub Open Source Projects

GitHub Open Source Projects

- Jekyll: https://github.com/jekyll/jekyll
 Linux Kernel: https://github.com/torvalds/linux
- Linux Remail: https://github.com/torvaids/inux
 Manufaction has a faithful and faithful
- Matplotlib: https://github.com/matplotlib/matplotlib
 Scipy Lecture Notes:
- https://github.com/scipy-lectures/scipy-lecture-notes

- D3: https://github.com/mbostock/d3
- Flatland (Book): https://github.com/Ivesvdf/flatland
- Generate DOI for Github Repos: https:
- GitBook (Books Editor): https://www.gitbook.io/
- Sharel atex:

- D3: https://github.com/mbostock/d3
- Flatland (Book): https://github.com/Ivesvdf/flatland
- Generate DOI for Github Repos: https: //guides.github.com/activities/citable-code/
- GitBook (Books Editor): https://www.gitbook.io/
- GitHub Visualizer: http://ghv.artzub.com/
- ShareLatex: https://github.com/sharelatex/sharelate;

- D3: https://github.com/mbostock/d3
- Flatland (Book): https://github.com/Ivesvdf/flatland
- Generate DOI for Github Repos: https: //guides.github.com/activities/citable-code/
- GitBook (Books Editor): https://www.gitbook.io/
- Sharel atex:

- D3: https://github.com/mbostock/d3
- Flatland (Book): https://github.com/Ivesvdf/flatland
- Generate DOI for Github Repos: https: //guides.github.com/activities/citable-code/
- GitBook (Books Editor): https://www.gitbook.io/
- GitHub Visualizer: http://ghv.artzub.com/
- ShareLatex: https://github.com/sharelatex/sharelate:

- D3: https://github.com/mbostock/d3
- Flatland (Book): https://github.com/Ivesvdf/flatland
- Generate DOI for Github Repos: https: //guides.github.com/activities/citable-code/
- GitBook (Books Editor): https://www.gitbook.io/
- GitHub Visualizer: http://ghv.artzub.com/
- ShareLatex: https://github.com/sharelatex/sharelate

- D3: https://github.com/mbostock/d3
- Flatland (Book): https://github.com/Ivesvdf/flatland
- Generate DOI for Github Repos: https: //guides.github.com/activities/citable-code/
- GitBook (Books Editor): https://www.gitbook.io/
- GitHub Visualizer: http://ghv.artzub.com/
- ShareLatex: https://github.com/sharelatex/sharelatex

- # D3: https://github.com/mbostock/d3
- # Flatland (Book): https://github.com/Ivesvdf/flatland · Generate DOI for Github Repos: https:
- //guides.github.com/activities/citable-code/ # GitBook (Books Editor): https://www.witbook.io/
 - # GitHub Visualizer: http://ghv.artzub.com/
 - ShareLatex:

 - https://github.com/sharelatex/sharelatex

- Choosing an OSS license: http://choosealicense.com/
- GitHub Explore: https://github.com/trending
- Gitter: Chat rooms for GitHub Projects (https://gitter.im)
- LearnProgramming: http://learnprogramming.github.io

- Choosing an OSS license: http://choosealicense.com/
- GitHub Explore: https://github.com/trending
- Gitter: Chat rooms for GitHub Projects
- LearnProgramming:

- Choosing an OSS license: http://choosealicense.com/
- GitHub Explore: https://github.com/trending
- Gitter: Chat rooms for GitHub Projects (https://gitter.im)
- LearnProgramming: http://learnprogramming.github.io/

- w Choosing an OSS license: http://choosealicense.com/
- GitHub Explore: https://github.com/trending
 Gitter: Chat rooms for GitHub Projects
- (https://gitter.im)
- u LearnProgramming: http://learnprogramming.github.io/

Verlet Integration I

GitHub Pages

Verlet integration is a numerical method used to integrate Newton's equations of motion. It is frequently used to calculate trajectories of particles in molecular dynamics simulations and computer graphics.

If we do a Taylor expansion of the position vector $\vec{x}(t\pm \Delta t)$ forwards and backward we get

$$\vec{x}(t+\Delta t) = \vec{x}(t) + \vec{v}(t)\Delta t + \frac{\vec{a}(t)\Delta t^2}{2} + \frac{\vec{b}(t)\Delta t^3}{6} + \mathcal{O}(\Delta t^4)$$
$$\vec{x}(t-\Delta t) = \vec{x}(t) - \vec{v}(t)\Delta t + \frac{\vec{a}(t)\Delta t^2}{2} - \frac{\vec{b}(t)\Delta t^3}{6} + \mathcal{O}(\Delta t^4),$$

Verlet Integration II

GitHub Pages

Adding these two expansions gives

$$\vec{x}(t + \Delta t) = 2\vec{x}(t) - \vec{x}(t - \Delta t) + \vec{a}(t)\Delta t^2 + \mathcal{O}(\Delta t^4).$$

We can see that the first and third-order terms from the Taylor expansion cancel out, thus making the Verlet integrator an order more accurate than integration by simple Taylor expansion alone. So we can use as time stepper the equation

$$\left| \vec{x}(t + \Delta t) = 2\vec{x}(t) - \vec{x}(t - \Delta t) + \vec{a}(t)\Delta t^2 \right|,$$

or in terms of forces

$$\vec{x}(t + \Delta t) = 2\vec{x}(t) - \vec{x}(t - \Delta t) + \frac{\vec{F}(t)}{m}\Delta t^2$$

Verlet Integration III

GitHub Pages

Our goal is to create a solver for Newton equations using Verlet integration. We can split the project into small groups. A possible division of labors is

- Force routines (springs, electrostatic interactions, some wacky stuff);
- Verlet step calculator for different coordinates x, y and z;
- Verlet time stepper;
- Plotting capabilities; and
- Main routines.

Verlet Integration III

Our goal is to create a solver for Newton equations using Verlet integration. We can split the project into small groups. A possible division of labors is

- Force routines (springs, electrostatic interactions, some wacky stuff):
- ${\bf u}$ Verlet step calculator for different coordinates x,y and z;
- Verlet time stepper:
- Plotting capabilities; and
- Protting capacitors; and
 Main routines.

Small programming tasks

GitHub Pages

We have a set of *simple* programming tasks. The main idea is to get a set of different solutions to compare the execution times or the codes. Please commit your code as probX_ID.ext, where X is the number of the problem, ID and ext is the extension of the file. There is a directory named ./programming_challenges/, where you should commit your solutions.

Thank you for your attention.

