Logic Synthesis with Design Compiler

Yuan-Ho Chen

Department of Electronic Engineering
Chang Guan University
chenyh@mail.cgu.edu.tw

VLSI DSP Yuan-Ho Chen

Cell-based Design Flow

Front-end

- System partitioning
- Design entry:HDL/Schematic
- Logic synthesis
- Pre-layout simulation

Back-end

- Floor plan
- Placement
- Routing
- Extraction
- Post-layout simulation

Yuan-Ho Chen

References

- Logic Synthesis with Design Compiler, CIC Training Manual.
- Handout of Introduction to Integrated Circuits Design, T.-Y. Chang, EE, NTHU.
- Larc Synthesis Course, EE, NTHU.

Cell-based Design Flow

Synthesis

- Convert a high-level RTL into an optimized gatelevel netlist.
 - Standard cell library
 Provide from Fab., such TSMC or UMC
 - Constraints
 - Translation + Optimization + Mapping

Basic Synthesis Flow

Getting Start

Setup file

- Put .synopsys_dc.setup in your local home directory
- \$HOME/.synopsys_dc.setup

Start design compiler

-dv

VLSI DSP

- design_vision-xg
- dc_shell-xg-t (script mode)

.synopsys_dc.setup File

```
set designer "Yuan-Ho Chen"
set company " ICLab. ELE. CGU."

set search_path "~/../tech/Synth/ $search_path"
set link_library "* slow.db fast.db dw_foundation.sldb"
set target_library "slow.db fast.db"
set symbol_library "generic.sdb"
set synthetic_library "dw_foundation.sldb"

set verilogout_no_tri true
set sh_enable_line_editing true
set sh_line_editing_mode emacs
history keep 100
alias h history
```

Design Objects

Yuan-Ho Chen

Invoke Design Compiler

%> design_vision-xg

• %> dv

Add Cell Library Path

Read Design – Method 1: Read File

Read Design – Method 2: Analyze

Read Design – Method 2: Elaborate

Read Design

Setting Design Environment

- Operation condition
- Input driving strength
- Output loading
- Input/output delay
- Wire load model

Setup Time → Max. Delay

$$t_{p \log ic} \leq T - \underbrace{\left(t_{\text{setup}} + t_{c-q}\right)}_{\text{sequencing overhead}}$$

Hold Time → Min. Delay

Operation Condition

Max. → setup time check
Min. → hold time check

Input Driving Strength

VLSI DSP

Output Loading

Input/output Delay

Clock Frequency

•
$$T = max(T_A + T_{ff-w_r}T_{ff-r} + T_B)$$

Input Delay

- EE-1: $T_{ff-r} + T_X$
- $T = T_{ff-r} + T_X + T_A + T_{ff-w}$
- Input Delay = $T_{ff-r} + T_X$

Output Delay

- EE-2: $T_Z + T_{ff-w}$
- $T = T_{ff-r} + T_B + T_Z + T_{ff-w}$
- Output Delay = $T_z + T_{ff-w}$

Input/output Delay

Wire Load Model

Setting Design Constraints

Optimization

- Specify clock
 - Period, waveform
 - Clock latency
 - Clock uncertainty
- Power and area
- Final check design

VLSI DSP

Specify Clock

Clock Latency

Clock Skew : Setup Time → Max. Delay

$$t_{pd} \leq T_c - \underbrace{\left(t_{pcq} + t_{\text{setup}} + t_{\text{skew}}\right)}_{\text{sequencing overhead}}$$

Clock Skew : Hold Time → Min. Delay

Clock Uncertainty (Skew)

Setting Design Constraints

- Optimization
 - Specify clock
 - Period, waveform
 - Clock latency
 - Clock uncertainty
 - Power and area
- Final check design

Power and Area

Setting Design Constraints

- Optimization
 - Specify clock
 - Period, waveform
 - Clock latency
 - Clock uncertainty
 - Power and area
- Final check design

Check Timing

VLSI DSP

Check Design

Compile and Report

Compile design

- Map effort
- Area effort
- Power effort

Report design

- Design
- Area
- Power
- Delay

Compile Design

Compile Ultra

Compile and Report

Compile design

- Map effort
- Area effort
- Power effort

Report design

- Design
- Area
- Power
- Delay

Design Hierarchy

Report Hierarchy

Report Reference

Report Area

Report Power

Report Timing

VLSI DSP

Report Timing

	Des/Clust/Port	Wire Load Model	Library	

Report : timing -path full	counter	tsmc18_w110	slow	
-delay max -max_paths 1 Design : counter Version: G-2012.06-SP5 Date : Mon Apr 15 06:52:36	Point		Incr	Path
	clock clk (rise ed		0.00	
	2 1		0.00	
	doub was 0 /CF (TERRINI)		0.00	
	dout reg 0 /Q (JKFFRXL)		1.55	
	U9/Y (NAND2X1)	(RAII)	0.34	
Operating Conditions: slow	U11/Y (NOR2BX1)		0.34	
	U10/Y (XOR2X1)		0.33	
	dout reg 3 /D (DFF	RHOX1)	0.00	
Startpoint: dout_reg_0_/CK (internal path	data arrival time			2.56
Endpoint: dout_reg_3_	clock clk (rise ed	ge)	10.00	10.00
	clock network dela	_	0.00	10.00
Path Group: clk			0.00	10.00 r
Path Type: max	library setup time		-0.37	9.63
	data required time			9.63
	data required time			9.63
	data arrival time			-2.56
	slack (MET)			7.07

Slack

- Slack must be positive or zero in a design.
- Negative slack means violate constraints.
- Setup time (max delay):
 - Slack = data required time data arrival time >= 0;
- Hold time (min delay):

VLSI DSP

Slack = data arrival time - data required time >= 0;

Save Design

- Change naming rule
 - Script
- Save design
 - Design setup file
 - Timing file
 - Netlist
 - Design
 - Script

Change Naming Rule

```
current_design [get_designs $mydesign]
remove_unconnected_ports -blast_buses [get_cells * -hier]
set bus_inference_style {%s[%d]}
set bus_naming_style {%s[%d]}
set hdlout_internal_busses true
change_names -hierarchy -rule verilog
define_name_rules name_rule -allowed {a-z A-Z 0-9 _} -max_length 255 -type cell
define_name_rules name_rule -allowed {a-z A-Z 0-9 _[]} -max_length 255 -type net
define_name_rules name_rule -map {{"\\*cell\\*" "cell"}}
define_name_rules name_rule -case_insensitive
change_names -hierarchy -rules name_rule
```

No assign or other key-word !!

Save Design Setup File

Save Design Timing File

Save Netlist

write -format verilog -hierarchy -output chip_syn.v

Save Design

Save the design as ddc (or db) format

Save Script

Function Simulation

Gate Level Simulation

Testbench SDF Annotation

Include timing information in the simulations

- Standard Delay Format (SDF) file
- \$sdf_annotate(sdf_file, module_instance, log_file, scale_factor, scale_type);