```
In [5]:
        # Basic Libraries
        import numpy as np
        import pandas as pd
         import seaborn as sb
         import matplotlib.pyplot as plt # we only need pyplot
        from plotnine import *
         sb.set() # set the default Seaborn style for graphics
In [3]:
        #!pip install catboost
        import catboost
        Dataset
In [6]:
        # read data
        flight_train_data=pd.read_csv('train.csv')
        flight_test_data=pd.read_csv('test.csv')
In [7]:
        print("Dimensions: ")
        print('Train: ',flight_train_data.shape )
        print('Test: ',flight_test_data.shape )
        Dimensions:
        Train: (100000, 9)
               (100000, 8)
        Test:
In [8]:
        # combine train n test
        data=pd.concat([flight_train_data,flight_test_data],axis=0,sort=False).reset_index()
        # drop index columns
        data=data.drop(['index'],axis=1)
In [9]:
        data.head()
Out[9]:
            Month
                  DayofMonth DayOfWeek DepTime
                                                UniqueCarrier Origin Dest
                                                                         Distance
                                                                                  dep_delayed_15min
                                                               ATL DFW
         0
                                                         AA
              c-8
                        c-21
                                    c-7
                                           1934
                                                                             732
                                                                                                Ν
         1
              c-4
                        c-20
                                    c-3
                                           1548
                                                         US
                                                               PIT MCO
                                                                             834
                                                                                                Ν
         2
                                           1422
                                                         XΕ
                                                              RDU
                                                                    CLE
                         c-2
                                    c-5
                                                                             416
                                                                                                Ν
              c-9
```

Observation:

c-11

c-10

3

train and tests are split 50-50

c-25

c-7

• train set has one additional response column as expected

c-6

c-6

1015

1828

00

WN

DEN MEM

MDW OMA

872

423

Ν

Response: dep_delayed_15min

- · Observation:
 - there is a class imbalance, only 19% of flights are delayed 15 minutes
- · Action:
 - Stratified Kfold or SMOTE could be used later on to mitigate

Data exploration

check NAs

```
In [11]:
          data.isna().sum()
Out[11]: Month
                                      0
                                      0
          DayofMonth
          DayOfWeek
                                      0
                                      0
          DepTime
          UniqueCarrier
                                      0
          Origin
                                      0
          Dest
                                      0
          Distance
                                      0
          dep_delayed_15min
                                100000
          dtype: int64
```

check duplicates

```
In [12]: data[data.duplicated()]
Out[12]: Month DayofMonth DayOfWeek DepTime UniqueCarrier Origin Dest Distance dep delayed 15min
```

- Observation:
 - there are no NAs(100000 NAs refer to test set)
 - and no duplicates

some cleaning

- · Action:
 - 'Month','DayofMonth','DayOfWeek' have a pattern of: c-(number), so we use that to extract the numerics

visualising time-based variables

```
In [14]:
         data.dtypes
Out[14]: Month
                               object
                               object
         DayofMonth
         DayOfWeek
                               object
         DepTime
                                int64
                               object
         UniqueCarrier
         Origin
                               object
         Dest
                               object
         Distance
                                int64
         dep_delayed_15min
                               object
         dtype: object
In [15]:
         # time-based variables to int64
         for i,var in enumerate(['Month','DayofMonth','DayOfWeek']):
              data[var]=data[var].astype('int64')
```

```
In [16]: # visualising number of flights against time-based variables
    f, axes = plt.subplots(4,1 , figsize=(10, 15))
    for i,var in enumerate(['Month','DayofMonth','DayOfWeek']):
        sb.countplot(data=data,x=var,ax=axes[i]).set(ylabel='Number of Flights')
    sb.distplot(data['DepTime'],bins=24,kde=False,ax=axes[3]).set(ylabel='Number of Flights')
```

Out[16]: [Text(0, 0.5, 'Number of Flights')]

· Observation:

- February seems to have the least flights while August the most
- Number of flights at the end of the month also seems to be the least
- Weekends have fewer flights than weekdays
- most flights occur 0600-2000, fewer flights are observed at other times

```
In [17]: # encoding response variable/delay variable
    delay_encoding_0={'Y':1,'N':0}
    data['dep_delayed_15min_encoded']=data['dep_delayed_15min'].map(delay_encoding_0)

In [18]: # binned departure time
    bins=[]
    for i in range(24):
        tuple_bin=(i*100,i*100+59)
        bins.append(tuple_bin)
    interval_bins = pd.IntervalIndex.from_tuples(bins)
    data['DepTime_binned']=pd.cut(data['DepTime'],interval_bins)
```

In [19]: # visualise likelihood of 15 min delay agaianst the time-based variables
for i,var in enumerate(['Month','DayofMonth','DayOfWeek','DepTime_binned']):
 sb.catplot(x=var,y='dep_delayed_15min_encoded',data=data,kind='bar',height=4, aspec

- · Observation:
 - most predictive indicators:
 - mid-year
 - end of year
 - fridays
 - time of day
 - more interestingly, the likelihood of a flight delay increments starting from 0500 to 2359
 - looking at departure times, it seems like even though the number of flights from 0000 to 0359 is very low, likelihood of a late flight is the highest. same goes for flights 2100 onwards

```
In [20]: # create a date column
data['date']=pd.to_datetime('2018/'+data.Month.astype(str)+'/'+data.DayofMonth.astype(str)
```

```
In [21]: # create likelihood of a late flight on any day of the year
    daily_late_likelihood_encoding=data.groupby(['date'])['dep_delayed_15min_encoded'].agg(
    data['daily_late_likelihood']=data['date'].map(daily_late_likelihood_encoding)
    # create number of flights on any day of the year
    daily_flight_count_encoding=data.groupby(['date'])['dep_delayed_15min_encoded'].agg(['modata['daily_flight_count']=data['date'].map(daily_flight_count_encoding)
```

In [22]: ggplot(data,aes(x='daily_flight_count',y='daily_late_likelihood'))+geom_point(aes(color

- · Observation:
 - looks like there is a poor correlation between number of fights in any given day and the likelihood of a late flight
- In [23]: # create likelihood of a late flight in a month
 monthly_late_likelihood=data.groupby(['Month'])['dep_delayed_15min_encoded'].agg(['mean
 # create number of flights in a month
 monthly_flight_count=data.groupby(['Month'])['dep_delayed_15min_encoded'].agg(['mean','
- In [24]: # scatterplot showing number of flights in a month against likelihood of late flight
 temp_monthly_df=pd.concat([monthly_flight_count,monthly_late_likelihood],axis=1).reset_
 sb.scatterplot(data=temp_monthly_df,x='count',y='mean',size=temp_monthly_df.Month)
- Out[24]: <matplotlib.axes. subplots.AxesSubplot at 0x21b0a9b0f88>

- · Observation:
 - there are too little data points to discern anything. however, number of flights may have very little correlation w delay

visualising holidays

```
In [21]:
         # %pip install holidays
         import holidays
         for date,holiday in holidays.UnitedStates(years=2018).items():
             print(date,holiday)
         2018-01-01 New Year's Day
         2018-01-15 Martin Luther King Jr. Day
         2018-02-19 Washington's Birthday
         2018-05-28 Memorial Day
         2018-07-04 Independence Day
         2018-09-03 Labor Day
         2018-10-08 Columbus Day
         2018-11-11 Veterans Day
         2018-11-12 Veterans Day (Observed)
         2018-11-22 Thanksgiving
         2018-12-25 Christmas Day
In [22]:
         # create new feature: holiday or not
         holiday_dates=pd.to_datetime(list(holidays.UnitedStates(years=2018).keys()))
         data=data.assign(holiday=data['date'].apply(lambda x: 1 if x in holiday dates else 0))
In [23]:
         sb.catplot(x='holiday',y='dep_delayed_15min_encoded',data=data,kind='bar',height=4, asp
```

Out[23]: <seaborn.axisgrid.FacetGrid at 0x2729ee82988>

- · Observation:
 - on the day of the holiday, flights are slightly less likely to be late

```
In [24]: # get list of dates before and after holiday
import datetime
before_holiday=[]
after_holiday=[]
for date in holiday_dates:
    for i in range(1,5):
        previous_date=date-datetime.timedelta(days=i)
        coming_date=date+datetime.timedelta(days=i)
        before_holiday.append(previous_date)
        after_holiday.append(coming_date)

before_holiday=pd.to_datetime(before_holiday)
after_holiday=pd.to_datetime(after_holiday)
```

In [25]: data=data.assign(before_holiday=data['date'].apply(lambda x: 1 if x in before_holiday e
 sb.catplot(x='before_holiday',y='dep_delayed_15min_encoded',data=data,kind='bar',height

Out[25]: <seaborn.axisgrid.FacetGrid at 0x27297fb6f48>

In [26]: data=data.assign(after_holiday=data['date'].apply(lambda x: 1 if x in after_holiday elso sb.catplot(x='after_holiday',y='dep_delayed_15min_encoded',data=data,kind='bar',height=

Out[26]: <seaborn.axisgrid.FacetGrid at 0x27294e9adc8>


```
In [27]: # new feature: number of days from any holiday
    all_dates_list=pd.to_datetime(data['date'].sort_values().unique())
    days_from_holiday=[]
    for date in all_dates_list:
        smallest_difference=999
        for holiday in holiday_dates:
            difference=(date-holiday).days
            if(abs(difference)<smallest_difference):
                smallest_difference
            days_from_holiday.append(smallest_difference)
            days_from_holiday_mapping=dict(zip(all_dates_list,days_from_holiday))
            data=data.assign(days_from_holiday=data['date'].map(days_from_holiday_mapping))</pre>
```


- · Observations:
 - flights closer to holidays are more likely to be delayed
 - flights a week before a holiday are less likely to be delayed

visualising effect of number of delays from the previous 10 flights

```
In [29]: # sort flights by date and time
    testor=data.copy()
    testor.dropna(subset=['dep_delayed_15min_encoded'],axis=0,inplace=True)
    subset=testor.sort_values(by=['date','DepTime'])
    delayed_subset=subset['dep_delayed_15min_encoded']
```

```
In [30]: # encode flights by their sum of flights delays out of the previous 10 flights
number_of_delays_previous_10=[]
for day in subset['date'].unique():
    daily_flight_delays=subset[subset['date']==day]['dep_delayed_15min_encoded']
    for i in range(10):
        number_of_delays_previous_10.append(None)
    for ordered_flight in range(10,len(daily_flight_delays)):
        temp=daily_flight_delays[ordered_flight-10:ordered_flight].sum()
        number_of_delays_previous_10.append(temp)
```

```
In [31]: subset['number_of_delays_previous_10']=number_of_delays_previous_10
sb.catplot(x='number_of_delays_previous_10',y='dep_delayed_15min_encoded',data=subset,k
```

Out[31]: <seaborn.axisgrid.FacetGrid at 0x2729ac5bd48>

- · Observation:
 - flights delays can snowball, which explains why likelihood of delays increase throughout the day

visualising UniqueCarrier

In [33]: # value counts of Carriers (training set followed by test set)
f, axes = plt.subplots(2,1 , figsize=(10, 10))
for i,sets in enumerate([flight_train_data,flight_test_data]):
 sb.countplot(data=sets,x='UniqueCarrier',ax=axes[i],order=list(data.UniqueCarrier.v)

- Obseravtion:
 - Carrier 9E is present in test set but completely missing in the training set
 - certain carriers present in the training set is also absent from the test set

In [34]: sb.catplot(x='UniqueCarrier',y='dep_delayed_15min_encoded',data=data,kind='bar',height=

Out[34]: <seaborn.axisgrid.FacetGrid at 0x2729a4c6d48>

Observation:

- the above plot also orders carriers by frequency.
- even though carriers like EV and AS are not as frequent, their likelihood of being late is much higher
- this concludes that the competency of carriers is also a factor in determining whether a flight is late
 - e.g. EV carrier may not be as good (in terms of punctuality) compared to OO carrier

In [35]: # labels a categorical variable by their rank based on frequency def labelcount encode(X, categorical features, ascending=False): print('LabelCount encoding: {}'.format(categorical_features)) X = pd.DataFrame() for cat_feature in categorical_features: cat_feature_value_counts = X[cat_feature].value_counts() value counts list = cat feature value counts.index.tolist() if ascending: # for ascending ordering value_counts_range = list(reversed(range(len(cat feature value counts)))) else: # for descending ordering value_counts_range = list(range(len(cat_feature_value_counts))) labelcount_dict = dict(zip(value_counts_list, value_counts_range)) X_[cat_feature] = X[cat_feature].map(labelcount_dict) X = X .add suffix(' labelcount encoded') if ascending: X_ = X_.add_suffix('_ascending') else: X_ = X_.add_suffix('_descending') X = X .astype(np.uint32)return X

In [36]: # encode UniqueCarrier by frequency rank
data=pd.concat([data,labelcount_encode(data,['UniqueCarrier'], ascending=True)],axis=1)

LabelCount encoding: ['UniqueCarrier']

```
In [37]: f, axes = plt.subplots(1,1 , figsize=(13,5))
for level in data['dep_delayed_15min'].unique():
    sb.kdeplot(data[data['dep_delayed_15min']==level]['UniqueCarrier_labelcount_encoded_
```


Observation:

- most frequnt carriers are more likely to be late
- moderately frequent carriers(rank 16-20) are less likely to be late
- less frequent carriers(rank 6-16) are more likely to be late

Origin and Destinations

```
In [38]: print("Number of levels: ")
          for var in ['Origin','Dest']:
              print('{:<10}:{}'.format(var,len(data.Origin.unique())))</pre>
          Number of levels:
                    :307
          Origin
          Dest
                    :307
In [39]: print("Value counts: ")
          for var in ['Origin','Dest']:
              print(data[var].value_counts())
          Value counts:
          ATL
                 11387
          ORD
                  9823
          DFW
                  8163
          LAX
                  6434
          DEN
                  6222
                     2
          CMX
          AL0
                     2
          EAU
                     1
          VCT
                     1
                     1
          VIS
          Name: Origin, Length: 307, dtype: int64
                 11382
          ATL
          ORD
                  9877
          DFW
                  8290
          LAX
                  6445
          DEN
                  6115
          _ ^ 1 1
```

- · Observation:
 - Conveniently, there is the same number of Origin and Dest airports

```
In [40]: # encode by frequency rank
data=pd.concat([data,labelcount_encode(data,['Origin','Dest'], ascending=True)],axis=1)
LabelCount encoding: ['Origin', 'Dest']
```

```
In [42]: f, axes = plt.subplots(2,1 , figsize=(15,10))
    for level in data['dep_delayed_15min'].unique():
        sb.kdeplot(data[data['dep_delayed_15min']==level]['Origin_labelcount_encoded_ascend
        for level in data['dep_delayed_15min'].unique():
        sb.kdeplot(data[data['dep_delayed_15min']==level]['Dest_labelcount_encoded_ascending)
```


Observation:

- more frequent origin airports actually have a higher likelihood of being late(larger orange area under curve)
- less frequent origin airports have a lower likelihood of being late(smaller orange area under curve)
- the effects are very marginal however.
- for dest airports around the rank of 300 in frequency have less likelihood of being late

```
In [43]: # combining Origin n Dest
    data['Origin-Dest']=data['Origin']+data['Dest']
    # frequency encode
    data=pd.concat([data,labelcount_encode(data,['Origin-Dest'], ascending=True)],axis=1)
```

LabelCount encoding: ['Origin-Dest']

- · Observation:
 - certain origin-dest pairs actually have a lower than average likelihood of being late
 - on the other hand, certain origin-dest pairs actually have a higher than average likelihood of being late, even though they are quite frequent occurences

distance

```
In [46]: # uni-variate plots
f, axes = plt.subplots(1,2 , figsize=(12,4))
sb.boxplot(data.Distance,ax=axes[0])
sb.distplot(data.Distance,ax=axes[1])
```

Out[46]: <matplotlib.axes._subplots.AxesSubplot at 0x2729d7f1e88>

- · Observation:
 - most flights are around 250 to 1000 miles

```
In [47]: # distance against unique carriers
f, axes = plt.subplots(1,1 , figsize=(15,12))
sb.boxplot(data=data,x='UniqueCarrier',y='Distance',order=list(data.UniqueCarrier.value)
```

Out[47]: <matplotlib.axes. subplots.AxesSubplot at 0x2729d96b808>

- · Observation:
 - certain carriers tend to service flights that are shorter in distance like HA and AQ, which may be a reason why their lieklihood of delay is low
 - however, there are cases when this notion does not hold.
 - o e.g. WN has a lower distance IQR than UA, but UA has a lower likelihood of a late flight

```
In [49]: # KDE of flight distance segmented by the response
f, axes = plt.subplots(1,1 , figsize=(15,5))
for level in data['dep_delayed_15min'].unique():
    sb.kdeplot(data[data['dep_delayed_15min']==level]['Distance'],shade=True,label=leve
```



```
In [50]: # these plots are also ordered by frequnecy of the carrier in descending order
multiplier=len(data.UniqueCarrier.unique())
f, axes = plt.subplots(multiplier,1 , figsize=(6,6*multiplier))
for i,carrier in enumerate(list(data.UniqueCarrier.value_counts().index)):
    subset=data[data['UniqueCarrier']==carrier][['Distance','dep_delayed_15min']]
    for level in data['dep_delayed_15min'].unique():
        sb.kdeplot(subset[subset['dep_delayed_15min']==level]['Distance'],shade=True,la
```


- · Observation:
 - for carrier like MQ, NW and OH lower distance travels are more likely to be late(higher area under curve)
 - however, this notion does not hold for certain less frequent carriers like TZ and B6

visualising extreme weather(US)

Out[52]: <seaborn.axisgrid.FacetGrid at 0x272a167c188>

- · Observation:
 - extreme weather should cause delays logically, however, the effect is probably very local and minimal

Data preparation

```
In [20]: # Basic Libraries
   import numpy as np
   import pandas as pd
   import seaborn as sb
   import matplotlib.pyplot as plt # we only need pyplot
   from plotnine import *
   sb.set() # set the default Seaborn style for graphics
```

```
In [21]: # read data
flight_train_data=pd.read_csv('train.csv')
flight_test_data=pd.read_csv('test.csv')
# combine train n test
data_preprocessing=pd.concat([flight_train_data,flight_test_data],axis=0,sort=False).re
# drop index columns
data_preprocessing=data_preprocessing.drop(['index'],axis=1)
```

time-based columns

```
In [22]:
          # extract only the numerics from these variable
          for var in ['Month', 'DayofMonth', 'DayOfWeek']:
               data preprocessing[var]=data preprocessing[var].apply(lambda x: x.split('-')[1])
In [23]:
          # bin departure time
          bins=[]
          for i in range(24):
               tuple bin=(i*100,i*100+59)
               bins.append(tuple bin)
          interval_bins = pd.IntervalIndex.from_tuples(bins)
          data_preprocessing['DepTime_binned']=pd.cut(data_preprocessing['DepTime'],interval_bins
          data preprocessing['DepTime binned']=data preprocessing['DepTime binned'].map(dict(zip())
          #convert time-base columns to int
          for var in ['Month','DayofMonth','DayOfWeek']: data preprocessing[var]=data preprocessing[var].astype(int)
          #function that converts variable to a cyclical feature
          def encode_cyclical_feature(data, col): max_val=data[col].max() data[col + '_sin'] = np.sin(2 * np.pi *
          data[col]/max val) data[col + ' cos'] = np.cos(2 * np.pi * data[col]/max val) return data
          #convert variables to cyclical
          for var in ['Month','DayofMonth','DayOfWeek']: encode cyclical feature(data preprocessing,var)
          #scatter plot to check conversion
          scatterplot_list=[('Month_sin', 'Month_cos'), ('DepTime_binned_sin', 'DepTime_binned_cos'),
          ('DayofMonth_sin', 'DayofMonth_cos'), ('DayOfWeek_sin', 'DayOfWeek_cos')] f, axes = plt.subplots(4,1,
          figsize=(5,15)) for i,pair in enumerate(scatterplot_list)
          sb.scatterplot(data=data_preprocessing,x=pair[0],y=pair[1],ax=axes[i])
In [25]: | data_preprocessing.dtypes
Out[25]: Month
                                    object
          DayofMonth
                                    object
          DayOfWeek
                                    object
          DepTime
                                     int64
          UniqueCarrier
                                    object
          Origin
                                    object
          Dest
                                    object
          Distance
                                     int64
          dep_delayed_15min
                                    object
          DepTime_binned
                                  category
          dtype: object
```

new feature: days from holiday

· Action:

```
In [ ]: # get list of holidays
        import holidays
        holiday dates=pd.to datetime(list(holidays.UnitedStates(years=2018).keys()))
In [ ]: | # create a date column
        data preprocessing['date']=pd.to datetime('2018/'+data preprocessing.Month.astype(str)+
In [ ]: | # list all dates in order
        all_dates_list=pd.to_datetime(data_preprocessing['date'].sort_values().unique())
        # find the corresponding number of days from holiday
        days from holiday=[]
        for date in all dates list:
            smallest difference=999
            for holiday in holiday dates:
                difference=(date-holiday).days
                if(abs(difference)<smallest_difference):</pre>
                     smallest difference=difference
            days from holiday.append(smallest difference)
        # dictionary used for mapping
        days from holiday mapping=dict(zip(all dates list,days from holiday))
        # .map() method to map every date to their corresponding number of days from holiday
        data_preprocessing=data_preprocessing.assign(days_from_holiday=data_preprocessing['date
```

- Action:
 - created new feature, days_from_holiday, because dates closer to holidays are more likely to be delayed

UniqueCarrier

```
In [ ]:
        # labels a categorical variable by their rank based on frequency
        def labelcount encode(X, categorical features, ascending=False):
            print('LabelCount encoding: {}'.format(categorical_features))
            X = pd.DataFrame()
            for cat_feature in categorical_features:
                 cat_feature_value_counts = X[cat_feature].value_counts()
                 value counts list = cat feature value counts.index.tolist()
                 if ascending:
                     # for ascending ordering
                     value_counts_range = list(
                         reversed(range(len(cat_feature_value_counts))))
                 else:
                     # for descending ordering
                     value_counts_range = list(range(len(cat_feature_value_counts)))
                 labelcount dict = dict(zip(value counts list, value counts range))
                X_[cat_feature] = X[cat_feature].map(
                     labelcount dict)
            X_ = X_.add_suffix('_labelcount_encoded')
            if ascending:
                X_ = X_.add_suffix('_ascending')
            else:
                X_ = X_.add_suffix('_descending')
            X_{-} = X_{-}.astype(np.uint32)
            return X
```

#encode UniqueCarrier by frequency rank

data_preprocessing=pd.concat([data_preprocessing,labelcount_encode(data_preprocessing, ['UniqueCarrier'], ascending=True)],axis=1)

- · Action:
 - this time, since i am use cat boost, i will keep this variable as categoric variable rather than count encoding because catboost takes care of categorical variables

Origin Dest

```
In [ ]: #combining Origin n Dest

data_preprocessing['Origin-Dest']=data_preprocessing['Origin']+data_preprocessing['Dest

#frequency encode
#data_preprocessing=pd.concat([data_preprocessing, labelcount_encode(data_preprocessing, labelcount_encode(data_pr
```

- · Action:
 - created a new variable by combining origin and destination, but i will not frequency encode this time

drop remaining variables

```
In [26]: data_preprocessing.drop(['Month', 'DayofMonth', 'DayOfWeek', 'DepTime', 'UniqueCarrier'
```

- · Action:
 - dropped because i won't use these variables in the models

scale variables

```
In [27]: # define function that applies normalization
    def normalization(target_data,target_variable):
        target_series=target_data[target_variable]
        minimum=target_series.min()
        maximum=target_series.max()
        resultant_series=(target_series-minimum)/(maximum-minimum)
        return resultant_series
In [28]: for var in ['Distance','days_from_holiday','Origin-Dest_labelcount_encoded_ascending','data preprocessing[var]=normalization(data preprocessing,var)
```

- Action:
 - normalized variables so features are in the same scale. speed and performance may improve for certain models

encode response

```
In [29]: response_encoding_map={'Y':1,'N':0}
    data_preprocessing['dep_delayed_15min']=data_preprocessing['dep_delayed_15min'].map(res
```

separate to train and test set

```
In [30]: test_set=data_preprocessing[data_preprocessing['dep_delayed_15min'].isna()]
    training_set=data_preprocessing[~data_preprocessing['dep_delayed_15min'].isna()]
```

```
In [31]: # separate response from predictors
    y=training_set['dep_delayed_15min']
    X=training_set.drop(['dep_delayed_15min'],axis=1)
    test_set=test_set.drop(['dep_delayed_15min'],axis=1)
```

```
In [32]: # safe a copy of the columns sequence
column_sequence=test_set.columns
```

```
In [33]: X.head()
```

Out[33]:

	Distance	Month_sin	Month_cos	DayofMonth_sin	DayofMonth_cos	DayOfWeek_sin	DayOfWeek_cos	Dŧ
0	0.142336	-0.866025	-5.000000e- 01	-0.897805	-0.440394	-2.449294e-16	1.000000	
1	0.163017	0.866025	-5.000000e- 01	-0.790776	-0.612106	4.338837e-01	-0.900969	
2	0.078264	-1.000000	-1.836970e- 16	0.394356	0.918958	-9.749279e-01	-0.222521	
3	0.170722	-0.500000	8.660254e- 01	-0.937752	0.347305	-7.818315e-01	0.623490	
4	0.079684	-0.866025	5.000000e- 01	0.988468	0.151428	-7.818315e-01	0.623490	

```
In [34]: test_set.head()
```

Out[34]:

	Distance	Month_sin	Month_cos	DayofMonth_sin	DayofMonth_cos	DayOfWeek_sin	DayOfWe
100000	0.115166	-5.000000e- 01	-8.660254e-01	-0.937752	0.347305	4.338837e-01	-C
100001	0.244323	8.660254e-01	-5.000000e-01	-0.299363	-0.954139	9.749279e-01	- O
100002	0.110908	-2.449294e- 16	1.000000e+00	0.394356	0.918958	-2.449294e-16	1
100003	0.070357	1.000000e+00	6.123234e-17	-0.937752	0.347305	-2.449294e-16	1
100004	0.046229	1.224647e-16	-1.000000e+00	0.937752	0.347305	4.338837e-01	-0

Borderline SMOTE + undersampling

- since the response classes are imbalanced i want to apply SMOTE to balance the classes
- · this over samples the minority class
 - essentially, a line is drawn between minority examples that a close tog ether and a new example along this line is augmented
 - furthermore, i will try borderline sampling only augments minority exam ples that are **harder to classify** i.e. examples that are along the decis ion boundary(hard to discern whether its going to be delayed or not)
- it has been suggested in certain studies that combining SMOTE with undersampling may be better, so i will try undersampling the majority class

```
In [35]: from numpy import mean
         from sklearn.model selection import RepeatedStratifiedKFold
         from sklearn.tree import DecisionTreeClassifier
         from imblearn.pipeline import Pipeline
         from imblearn.over_sampling import BorderlineSMOTE,SMOTE
         from imblearn.under sampling import RandomUnderSampler
In [36]: from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, ExtraT
         from sklearn.svm import SVC
         from sklearn.model selection import StratifiedKFold, cross val score,GridSearchCV,learn
         #apply Borderline smote with undersampling
         k values = [1, 2, 3, 4, 5, 6, 7] for k in k values:
             # define pipeline
             model = DecisionTreeClassifier()
             over = BorderlineSMOTE(sampling_strategy=0.5, k_neighbors=k)
             under = RandomUnderSampler(sampling strategy=0.5)
             steps = [('over', over), ('under', under), ('model', model)]
             pipeline = Pipeline(steps=steps)
             # evaluate pipeline
             cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
             scores = cross_val_score(pipeline, X, y, scoring='accuracy', cv=cv, n_jobs=-1)
             score = mean(scores)
             print('> k=%d, Mean Accuracy: %.3f' % (k, score))
In [37]:
         # performance with SMOTE and undersampling
         from IPython.display import Image
         Image(filename='Images\SMOTE+undersampling performance.JPG')
Out[37]:
          > k=1, Mean Accuracy: 0.715
          > k=2, Mean Accuracy: 0.714
          > k=3, Mean Accuracy: 0.712
          > k=4, Mean Accuracy: 0.712
          > k=5, Mean Accuracy: 0.713
          > k=6, Mean Accuracy: 0.712
```

Action:

> k=7, Mean Accuracy: 0.712

• trained a simple model to descern what is the optimal number of **k neighbours**.

• there isn't much difference, 1 seems to be best

```
#without SMOTE
          model = DecisionTreeClassifier()
          #cross validation
          cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1) scores =
          cross val score(model, X, y, scoring='accuracy', cv=cv, n jobs=-1) print('Mean accuracy: %.3f' %
          mean(scores))
In [38]:
          # performance without SMOTE
          Image(filename='Images\without SMOTE performance.JPG')
Out[38]:
           Mean accuracy: 0.719
          #apply SMOTE only
          model = DecisionTreeClassifier() oversample = SMOTE() X_Smote, y_Smote = oversample.fit_resample(X,
          y)
          #cross validation
          cv = RepeatedStratifiedKFold(n splits=10, n repeats=3, random state=1) scores =
          cross val score(model, X Smote, y Smote, scoring='accuracy', cv=cv, n jobs=-1) print('Mean accuracy:
          %.3f' % mean(scores))
In [39]:
          # performance with SMOTE
          Image(filename='Images\with SMOTE performance.PNG')
Out[39]:
          Mean accuracy: 0.811
In [40]:
          # apply Borderline SMOTE only
          model = DecisionTreeClassifier()
          oversample = BorderlineSMOTE()
          X BSmote, y BSmote = oversample.fit resample(X, y)
          # cross validation
          cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
          scores = cross_val_score(model, X_BSmote, y_BSmote, scoring='accuracy', cv=cv, n_jobs=-
          print('Mean accuracy: %.3f' % mean(scores))
          Mean accuracy: 0.818
```

- · Observation:
 - looks like applying undersampling together with SMOTE actually worsens model performance
 - applying SMOTE is indeed much better than without
 - applying BorderlineSMOTE performed better than regular SMOTE

Training the models

· i will use only Borderline SMOTE for the remaining models

```
In [81]: # stratified k fold to preserve the class proportions in every fold
    kfold=StratifiedKFold(n_splits=10)

In [88]: # training random forest model
    random_state=2
    classifier=RandomForestClassifier(random_state=random_state,n_jobs=-1,n_estimators=500)
    cv_results=cross_val_score(classifier,X_BSmote, y_BSmote,cv=kfold,n_jobs=-1)

In [87]: print("Cross Validation Score:",mean(cv_results))
```

Cross Validation Score: 0.8830628314152346

- · Action:
 - for this dataset, training the model takes too long, so i will **skip hyperparameter** tuning which will take even longer

Learning Curves

```
In [89]:
         def plot learning curve(estimator,title,X,y,ylim=None,cv=None,n jobs=-1,train sizes=np.
             plt.figure(figsize=(12, 8))
             plt.title(title)
             plt.xlabel('Training Examples')
             plt.ylabel('Score')
             train_sizes,train_scores,test_scores=learning_curve(estimator ,X , y,
                                                                cv=cv,
                                                                n_jobs=n_jobs,
                                                                train_sizes=train_sizes)
             train_scores_mean=np.mean(train_scores,axis=1)
             train scores std=np.std(train scores,axis=1)
             test_scores_mean=np.mean(test_scores,axis=1)
             test_scores_std=np.std(test_scores,axis=1)
             plt.grid()
             plt.fill_between(train_sizes,
                               train_scores_mean-train_scores_std,
                               train scores mean+train scores std, alpha= 0.1 ,color='y')
             plt.fill between(train sizes,
                              test_scores_mean-test_scores_std,
                              test_scores_mean+test_scores_std, alpha= 0.1 ,color='b')
             plt.plot(train_sizes,train_scores_mean,'o-',color='y',
                     label='Training scores')
             plt.plot(train_sizes,test_scores_mean,'o-',color='b',
                     label='Cross validation scores')
             plt.legend(loc='best')
             return plt
```

```
In [90]:
         plot_learning_curve(classifier, 'Random Forest Learning Curve',
                              X_BSmote, y_BSmote,
                              cv=kfold)
```

Out[90]: <module 'matplotlib.pyplot' from 'C:\\Users\\tanch\\AppData\\Roaming\\Python\\Pytho</pre> n37\\site-packages\\matplotlib\\pyplot.py'>

- · Obersvation:
 - a significant differnce in training and cross validation scores suggest significant over fitting

training on the whole training set

[0.834, 0.166], [0.882, 0.118]])

```
In [91]:
           # random forest model
           random state=2
           ran For Classifier = Random Forest Classifier (random\_state = random\_state, n\_jobs = -1, n\_estimator) \\
           ranForClassifier.fit(X_BSmote, y_BSmote)
 Out[91]: RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
                                   max depth=None, max features='auto', max leaf nodes=None,
                                   min_impurity_decrease=0.0, min_impurity_split=None,
                                   min_samples_leaf=1, min_samples_split=2,
                                   min weight fraction leaf=0.0, n estimators=500,
                                   n jobs=-1, oob score=False, random state=2, verbose=0,
                                   warm_start=False)
In [116]:
           # making probability predictions on the test set
           test_predictions=ranForClassifier.predict_proba(test_set)
           test_predictions
Out[116]: array([[0.994, 0.006],
                  [0.928, 0.072],
                  [0.966, 0.034],
                  [0.688, 0.312],
```

Observation: the probablity of being delayed 15 min is on index 1

```
dep_delayed_15min=[]
           for predictions in test_predictions:
               dep_delayed_15min.append(predictions[1])
           dep_delayed_15min=pd.Series(dep_delayed_15min, name='dep_delayed_15min')
In [121]:
           # extract the id column
           test_set_id_column=pd.Series(range(len(test_set)),name='id')
In [122]:
           # finalising results
           results=pd.concat([test set id column,dep delayed 15min],axis=1)
           results
Out[122]:
                      id
                         dep_delayed_15min
                0
                      0
                                     0.006
                      1
                                     0.072
                2
                      2
                                     0.034
                3
                      3
                                     0.266
                4
                      4
                                     0.512
                                     0.040
            99995 99995
            99996
                  99996
                                     0.146
            99997
                  99997
                                     0.312
                                     0.166
            99998
                  99998
            99999 99999
                                     0.118
           100000 rows × 2 columns
In [123]:
           results.to csv('randomForestPredictions.csv',index=False)
```

extract the probablity of being delayed 15 min

First try results

In [117]:

```
In [15]:
             Image(filename='Images/first_try_results.png')
Out[15]:
                                                                                       n sig
                1560
                         Yermukhamet Medetov
                                                                                                 0.68716
                                                                                                                 3
                                                                                                                      7mo
                 1561
                         Tom Smith
                                                                                                 0.68609
                                                                                                                 3
                                                                                                                        1у
                1562
                                                                                                 0.68560
                                                                                                                 3
                         arsenabzaev
                                                                                                                        1y
                1563
                                                                                                 0.68518
                                                                                                                 1
                                                                                                                       2h
                         China
                 Your First Entry 1
                 Welcome to the leaderboard!
                                                                                        9
                1564
                         zak daouma
                                                                                                 0.68382
                                                                                                                3
                                                                                                                      6mo
                                                                                                 0.68263
                1565
                         Dagva Baidaev
                                                                                                                 3
                                                                                                                        1у
```

· performance on the training set was not very good on the first try

Feature importances

Out[99]: Text(0.5, 1.0, 'Feature Importance')

- · Observation:
 - as expected, departure time is the strongest predictor
 - carriers and distance a also quite important