Algorithmics	Student information	Date	Number of session
	UO: 284185	22/3/202 2	5
	Surname: Fernández-Catuxo Ortiz		
	Name: Rita		

Activity 1. Create a table with the times

N	T Levenshtein (microseconds)
400	96
800	343
1600	1328
3200	5909
6400	23279
12800	88822

• What is the complexity of the algorithm?

The result complexity of the algorithm is the length of the first string times the length of the second string --> O(len(string1) * len(string2))

• Do the empirical results make sense?

We know that t2 = (f(n2) / f(n1)) x t1. As we are taking measurements with words that have the same length, the complexity would be length(n)*length(n) = length(n)^2 and therefore, square. Thus, $f(n) = n^2$

According to the following results, we can conclude that the values obtained meet the theoretical complexity of the algorithm and thus, they make sense:

Algorithmics	Student information	Date	Number of session
	UO: 284185	22/3/202 2	5
	Surname: Fernández-Catuxo Ortiz		
	Name: Rita		

Taking this values:

t2 = (
$$1600^2/800^2$$
) x 343 = $1372 \approx 1328$

Taking this values:

$$t2 = (12800^2/6400^2) \times 5909 = 23636 \approx 23279$$