Learning Joint 2D-3D Representations for Depth Completion

ICCV 2019

2020.02

Sungha Choi

Contents

Deep Parametric Continuous Convolutional Neural Networks

Shenlong Wang^{1,3,*} Simon Suo^{2,3,*} Wei-Chiu Ma³ Andrei Pokrovsky³ Raquel Urtasun^{1,3}

¹University of Toronto, ²University of Waterloo, ³Uber Advanced Technologies Group

{slwang, suo, weichiu, andrei, urtasun}@uber.com

CVPR 2018

Learning Joint 2D-3D Representations for Depth Completion

Yun Chen¹ Bin Yang^{1,2} Ming Liang¹ Raquel Urtasun^{1,2}

¹Uber Advanced Technologies Group ²University of Toronto

{yun.chen, byang10, ming.liang, umtasun}@uber.com

ICCV 2019

Monocular Camera	RGB	No depth information	
Stereo Camera	Dense depth	Fail to sense depth Inaccurate depth	
LiDaR	Accurate depth	Sparse depth	

Backgrounds

Continuous Convolution

Figure 1: Unlike grid convolution, parametric continuous convolution uses kernel functions that are defined for arbitrary points in the continuous support domain. As a result, it is possible to output features at points not seen in the input.

Deep Parametric Continuous Convolutional Neural Networks

$$h_{k,i} = \sum_{d}^{F} \sum_{j}^{N} g_{d,k}(\mathbf{y}_i - \mathbf{x}_j) f_{d,j}$$

$$g(\mathbf{z}; \theta) = MLP(\mathbf{z}; \theta)$$

Introduction Task

Depth estimation

Depth completion

Challenges on point clouds

- Irregularity
- Unstructured
- Unorderdness

Projecting the 3D point cloud to 2D image space

- Metric space is distorted
- Having difficulty capturing precise 3D geometric clues

Producing a complete 3D voxel representation by applying 3D conv

 lack of exploitation of the dense image data, which can provide discriminative appearance clues

Taking advantage of both types of representations

- Extracting appearance features from dense pixels in 2D metric space
- Capturing geometric dependencies from sparse points in 3D metric space

Two-branch network structure to extract multi-scale features

Using 2D convolution to extract appearance features

Continuous conv directly on the 3D points to learn geometric features

- Output of each point is a weighted sum of transformed features of neighbors
 - o non-grid, 3D points can be arbitrarily placed: K-nearest-neighbors
 - parametrizing the weighting function using a MLP

$$\mathbf{h}_i = W(\sum_k \text{MLP}(\mathbf{x}_i - \mathbf{x}_k) \odot \mathbf{f}_k)$$

Continuous conv directly on the 3D points to learn geometric features

- output of each point is a weighted sum of transformed features of neighbors
 - o non-grid, 3D points can be arbitrarily placed: K-nearest-neighbors
 - parametrizing the weighting function using a MLP

$$\mathbf{h}_i = W(\sum_k \text{MLP}(\mathbf{x}_i - \mathbf{x}_k) \odot \mathbf{f}_k)$$

Proposed Methods

Fusing the output feature maps of the 2D and 3D sub-networks

The fusing representation captures correlation in both spaces

Figure 3. Example receptive fields of conv(3, 1), conv(3, 2) and continuous convolution. In 2D convolution, the neighbors are defined over image grids and are not necessarily close to each other in 3D space. The receptive field may cover both foreground and background objects. In the shown example convolution is performed at the red pixel. Green pixels are on the near car, and yellow pixels are on the distant car. In contrast, the neighbors in continuous convolution are based on the exact 3D geometric correlation.

Entire network architecture and learning

- Stacking 2D-3D fuse blocks into network
- Other approaches use multi-task objectives which leverage other tasks such as semantic segmentation to improve depth completion

Figure 4. **Depth completion network based on 2D-3D fuse blocks.** The 2D-3D fused network takes image and sparse depth as input and predicts dense depth output. The main part of the network is the stacking of N 2D-3D fuse blocks. We also apply some convolution layers at the input and the output stage.

Experiments

Entire network architecture and learning

- Dataset: KITTI depth completion
 - one sweep of LIDAR scan (sparse depth image), RGB image
 - ground truth: multiple sweeps of LIDAR scan (dense depth image)
- Evaluation Metrics: RMSE (Root Mean Square Error)

Method	RMSE	MAE	iRMSE	iMAE
Method	(mm)	(mm)	(1/km)	(1/km)
SparseConvs [33]	1601.33	481.27	4.94	1.78
NN+CNN [33]	1419.75	416.14	3.25	1.29
MorphNet [4]	1045.45	310.49	3.84	1.57
CSPN [2]	1019.64	279.46	2.93	1.15
Spade-RGBsD [13]	917.64	234.81	2.17	0.95
NConv-CNN-L1 [7]	859.22	207.77	2.52	0.92
DDP [†] [39]	832.94	203.96	2.10	0.85
NConv-CNN-L2 [7]	829.98	233.26	2.60	1.03
Sparse2Dense [21]	814.73	249.95	2.80	1.21
DeepLiDAR [†] [26]	775.52	245.28	2.79	1.25
FusionNet [†] [34]	772.87	215.02	2.19	0.93
Our FuseNet	752.88	221.19	2.34	1.14

Table 1. Comparison with state-of-the-art methods on the test set of KITTI depth completion benchmark, ranked by RMSE. † indicates models trained with additional data and labels.

Experiments

Ablation studies

Receptive field

K nearest neighbors	3	6	9	12	15
RMSE	813	810	810	816	812

Table 2. Ablation study on number of nearest neighbors in the continuous convolution branch. Network config: C = 32, N = 9.

Architecture of the 2D-3D fuse block

stride_1	stride_2	cont.	RMSE
conv	conv	conv	(mm)
	✓	✓	840
\checkmark		✓	826
\checkmark	✓		817
\checkmark	✓	✓	803

Table 3. Ablation study on the architecture of the 2D-3D fuse block. Network config: $C=32,\,N=12.$

Objective function

Loss	RMSE	MAE	iRMSE	iMAE
ℓ_2	790	232	2.51	1.16
smooth ℓ_1	839	197	2.23	0.91
ℓ_2 , ℓ_2 + smooth ℓ_1	785	217	2.36	1.08

Table 4. Ablation study on objective function. Network config: $C=64,\,N=12.$

Network (width/depth) configuration: channel #, block

Figure 5. Trade-off between accuracy and model size by varying feature channel number C and block number N of the network.

Sharper boundaries of objects especially in the long range

Scale-invariant geometric feature

Experiments

Qualitative Results

Sparse2Dense [21] NConv-CNN-L2 [7] Ours

Thank you!