Příklady pro týden 6 - Martin Šimák

Zadání

Určete elektrický odpor na vstupních svorkách nekonečné žebříčkové struktury dle Obr. 1.

Řešení

Daný problém můžeme pojmout jako nekonečnou posloupnost, jejíž členy představují opakující se části zadaného obvodu (jeden člen je znázorněn na Obr. 2). Obr. 2 zároveň znázorňuje první člen takto definované posloupnosti, u kterého můžeme jednoduše určit odpor jako

$$x_1 = R_1 + R_2.$$

Následné dva členy posloupnosti lze jednoduchou obvodovou analýzou určit jako (obvodové diagramy Obr. 3a, Obr. 3b)

$$x_2 = \frac{(R_1 + R_2)R_2}{R_1 + 2R_2} + R_1,$$

$$x_3 = \frac{\left(R_1 + \frac{R_1 R_2 + R_2^2}{R_1 + 2R_2}\right) R_2}{\left(R_1 + \frac{R_1 R_2 + R_2^2}{R_1 + 2R_2}\right) + R_2}.$$

V členech posloupnosti lze tedy lehce poznat rekurentní vzorec

$$x_{n+1} = \frac{x_n R_2}{x_n + R_2} + R_1,$$

přičemž naše řešení je ntý člen posloupnosti, když n se bude blížít nekonečnu. Pro tento nekonečný člen můžeme uvést rovnost

$$\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} a_n.$$

Označíme-li tedy $L \equiv \lim_{n \to \infty} a_n,$ můžeme psát rekurentní vzorec jako

$$L = \frac{LR_2}{L + R_2} + R_1,$$

což nám umožňuje řešit rovnici pro L, kdy jediné kladné řešení (záporné samozřejmě z fyzikálních důvodů nelze uvažovat) této rovnice je

$$\boxed{L \equiv R = \frac{R_1}{2} \sqrt{1 + 4\frac{R_2}{R_1}}}.$$