数理リテラシー特別講座

Mathematical Essence of Wave

第2回「渡の性質」

■ 第2回「波の性質」

"波=媒質の振動の空間的な伝わり"

◆ 波の表し方

物理量の時間的・空間的な変化は, 時刻と位置の関数で表されること, 特に波形が時間的に変化しない場合, 波は関数の平行移動で表されることを理解しよう.

◆ 重ね合わせの原理

(線形方程式に従う)複数の波の合成波は、それぞれの波の単なる足し合わせであり、互いに振動数・波長を乱さない(波の独立性).

◆ ホイヘンスの原理

波面のあらゆる点からの要素波の重ね合わせで,波の伝わりや反射・屈折の現象を統一的に説明できることを理解しよう.

渡とは

何らかの物理量の振動的変化が次々と周囲に伝わる現象 時間的·空間的な変化

振動を伝える物質 = 媒質

媒質は平衡位置を中心に振動するだけで それ自体が移動するわけではない!

波は身の回りにあふれている

水面波,音波,光(電磁波),地震波,…

横波+縦波

縦波

横波

横波·縦波

縦波

◆ 波の表し方 〔テキスト pp.17-19〕

L→ 時間的・空間的な変化

 $\xi(x,t)$ は何らかの物理量を表すが、 具体的には媒質の位置 x での変位 などを考えればよい.

波を表す関数 $\xi(x,t)$ は位置 x(1次元)と時刻 tの関数

$$\xi(x,0) = f(x)$$

は位置 t=0での空間的な波形

<u>波形が変わらず</u>一定の速さvで進む場合, Δt 後の波はx 方向に $v\Delta t$ だけ平行移動

+x方向に進む $\Rightarrow f(x-v\Delta t)$

-x 方向に進む $\Rightarrow f(x+v\Delta t)$

◆ 波の表し方 〔テキスト pp.17-19〕

(1) 平面波

波面が平面となって伝わる波

- 位相(媒質の変位)の等しい点の集合

平面波の表現

$$f(\boldsymbol{r}\cdot\boldsymbol{u}\mp v\Delta t)$$

u:波の進行方向の単位ベクトル

※ 2次元の平面波では, 波面が直線として表 される.

◆ 波の表し方 〔テキスト pp.17-19〕

(2) 球面波

1点の波源から発生して伝わり、波面が球面となる波

球面波の表現

$$\frac{1}{r}f(r \mp v\Delta t)$$

r:点波源からの距離

点波源からの距離が大きくなるに したがって 1/r で減衰

※ 2次元の球面波では波面が円として表される.

◆ 波の表し方 〔テキスト pp.17-19〕

具体的な波形の関数として正弦波を考える。

(1) 平面波

$$f(\mathbf{r} \cdot \mathbf{u} \mp vt) = A \sin[k(\mathbf{r} \cdot \mathbf{u} \mp vt) + \delta]$$
 波数 $k = \frac{2\pi}{\lambda}$
$$= A \sin(\mathbf{k} \cdot \mathbf{r} \mp \omega t + \delta)$$
 波数ベクトル $\mathbf{k} = k\mathbf{u}$ 角振動数 $\omega = kv$

(2) 球面波

$$\frac{1}{r}f(r\mp vt) = \frac{A}{r}\sin[k(r\mp vt) + \delta] = \frac{A}{r}\sin(kr\mp \omega t + \delta)$$

◆ 波の表し方 〔テキスト pp.17-19〕

講座第3回以降では主に1次元の正弦波を考える。

※ 1次元なので波面という 概念自体存在しないが, 分類でいうと平面波

$$f(x \mp vt) = A\sin[k(x \mp vt) + \delta] = A\sin(kx \mp \omega t + \delta)$$

$$= A \sin \left[2\pi \left(\frac{x}{\lambda} \mp \frac{t}{T} \right) + \delta \right]$$

表現の仕方は様々

$$= A \sin \left[2\pi \left(\frac{x}{\lambda} \mp \nu t \right) + \delta \right]$$

$$= A \sin \left[\omega \left(\frac{x}{v} \mp t \right) + \delta \right]$$

波数
$$k = \frac{2\pi}{\lambda}$$

角振動数 $\omega = kv$

周期
$$T = \frac{2\pi}{\omega}$$

振動数
$$u = \frac{1}{T}$$

◆ 重ね合わせの原理 〔テキスト pp.20-23〕

線形微分方程式の解を f_1 , f_2 とすると, その線形結合 $f = C_1 f_1 + C_2 f_2$ (C_1 , C_2 :結合定数) も元の線形微分方程式の解となる.

波の従う方程式が<mark>線形</mark>の場合, 複数の波が発生したときの波はそれらの 足し合わせで表せ, 互いに振動数・波長を乱さない(波の独立性). 合成波

$$f(x,t) = f_1(x,t) + f_2(x,t) + f_3(x,t) + \cdots$$
$$= \sum_{i} f_i(x,t)$$

フーリエ解析においても重要な概念

◆ **重ね合わせの原理** [テキスト pp.20-23]

第2回講義資料フォルダ内にある動画

重ね合わせ1.mp4 重ね合わせ2.mp4

を参照

合成波 f(x,t)= $f_1(x - v_1t) + f_2(x + v_2t)$

図の場合,合成波は時間の経過に伴い波形が変わる.

演習2-1

2つの波の進行する様子, 及び合成波を描いてみよう.

◆ **重ね合わせの原理** 〔テキスト pp.20-23〕

2つの正弦波の重ね合わせ

$$\begin{cases} f_1(x,t) = A_1 \sin(k_1 x - \omega_1 t + \delta_1) \\ f_2(x,t) = A_2 \sin(k_2 x - \omega_2 t + \delta_2) \end{cases}$$

$$k = \frac{k_1 + k_2}{2}$$

$$\omega = \frac{\omega_1 + \omega_2}{2}$$

- $f(x,t) = f_1(x,t) + f_2(x,t) = A(x,t) \sin(kx \omega t + \delta)$ 動画「重ね合わせ3.mp4」参照 x,tに依存し、一般に複雑
- $igoplus k_1=k_2=k$, $\omega_1=\omega_2=\omega$ の場合,単なる三角関数の合成

$$\Rightarrow f(x,t) = A_1 \sin(kx - \omega t + \delta_1) + A_2 \sin(kx - \omega t + \delta_2)$$

$$= A_1 \{ \sin(kx - \omega t) \cos \delta_1 + \cos(kx - \omega t) \sin \delta_1 \}$$

$$+ A_2 \{ \sin(kx - \omega t) \cos \delta_2 + \cos(kx - \omega t) \sin \delta_2 \}$$

$$= A \sin(kx - \omega t + \delta)$$
動画「重ね合わせ4.mp4」参照

左式を導出してみよう.

◆ 重ね合わせの原理 〔テキスト pp.20-23〕

干渉:2つの球面波(正弦波型)の重ね合わせ

点波源 S_1 , S_2 から点Pまでの距離 r_1 , r_2

強め合う点: $r_1 - r_2 = n\lambda$

(整数 n)

弱め合う点: $r_1 - r_2 = \left(n + \frac{1}{2}\right)\lambda$

【双曲線の定義】

焦点 F. F'からの距離の 差が等しい点 P の集合

$$PF' - PF = \pm 2a$$
 (一定)

$$\frac{x^2}{a^2} - \frac{y^2}{c^2 - a^2} = 1$$

■ 第2回「波の性質」

◆ 重ね合わせの原理 〔テキスト pp.20-23〕

干渉:2つの球面波(正弦波型)の重ね合わせ

点波源 S_1 , S_2 から点Pまでの距離 r_1 , r_2

強め合う点: $r_1-r_2=n\lambda$ 弱め合う点: $r_1-r_2=\left(n+\frac{1}{2}\right)\lambda$

(整数 n)

2つの球面波の合成波の変位 をカラーマップで表した図

動画「干渉.mp4」参照

変位がゼロの点が白で表さ れる.白い双曲線は2つの球 面波が干渉して弱め合って いる点の集合を表している.

◆ 波の反射・屈折 [テキスト pp.23-26]

ホイヘンスの原理

- 1. ある瞬間の波面上のすべての点からは、その点を波源として、 到達した波と同じ振動数・速さの球面波(要素波)が発生する.
- 2. 要素波同士が干渉し、波の進む前方に共通に接する面ができ、それが次の瞬間の波面として観測される.

◆ 波の反射・屈折 [テキスト pp.23-26]

反射の法則

入射角 θ_i = 反射角 θ_j

入射波の波面OA上の各点が境界面に達した瞬間にOC上で順次発生する要素波を考えたとき、それらの要素波に共通の接線が反射波の波面BCとなる。波面BCは波面OAの点Aが点Cに達した瞬間の反射波の波面である。

演習2-3

ホイヘンスの原理と上の図を使って,反射の法則を説明しよう.

◆ 波の反射・屈折 [テキスト pp.23-26]

屈折の法則

$$\frac{\sin \theta_i}{\sin \theta_r} = \frac{v_1}{v_2} = [n_{12} \text{ (相対屈折率)}]$$

入射波の波面OA上の各点が境界面に達した瞬間COC上で媒質 II 側で順次発生する要素波を考えたとき、それらの要素波に共通の接線が反射波の波面BCとなる。波面 BCは波面OAの点Aが時間 t かけて点Cに達した瞬間の反射波の波面である。

媒質Ⅰに対するⅡの屈折率

 v_1 :入射波の速さ、 v_2 :屈折波の速さ

| 第2回「波の性質」

まとめ

波 = 物理量の時間的・空間的な変化の伝わり

時刻 tと位置 xの関数 時間経過でx波形が変わらない</u>場合 $\xi(x,t) = \begin{cases} f(x-vt) & +x$ 方向に速さ xで進む f(x+vt) & -x 方向に速さ xで進む

波の方程式が線形 → 複数の波の足し合わせで波を表現(合成波)

重ね合わせの原理

個々の波は互いに振動数・波長を乱さない(波の独立性)

要素波の重ね合わせの結果(干渉)で波面を表現

ホイヘンスの原理

波の反射・屈折・回折の現象を統一的に説明