

Journal of Statistical Software

MMMMMM YYYY, Volume VV, Issue II.

doi: 10.18637/jss.v000.i00

nonprobsvy – An R package for modern methods for non-probability surveys

Łukasz Chrostowski Adam Mickiewicz University Piotr Chlebicki © Stockholm University

Maciej Beręsewicz

Poznań University of Economics and Business Statistical Office in Poznań

Abstract

The paper presents the **nonprobsvy** package which implements the state-of-the-art statistical inference methods for non-probability samples. The package implements various approaches that can be categorized into three groups: prediction-based approach, inverse probability weighting and doubly robust approach. On the contrary to the existing packages **nonprobsvy** assumes existance of either full population or probability-based population information and laverage the **survey** package for the inference. The package implements both analytical and bootstrap variance estimation for all of the proposed estimators. In the paper we present the theory behind the package, its functionalities and case study that showcases the usage of the package. The package is aimed at official statisticans, public opinion or market researchers who whould like to use non-probability samples (e.g. big data, opt-in web panels, social media) to accurately estimate population characteristics.

Keywords: data integration, doubly robust estimation, propensity score estimation, mass imputation, R, Python, survey.

1. Introduction

In official statistics, information about the target population and its characteristics is mainly collected through probability surveys, census or is obtained from administrative registers, which covers all (or nearly all) units of the population. However, owing to increasing non-response rates, particularly unit non-response and non-contact, resulting from the growing

respondent burden, as well as rising costs of surveys conducted by National Statistical Institutes (NSIs), non-probability data sources are becoming more popular (Beręsewicz 2017; Beaumont 2020; Biffignandi and Bethlehem 2021). Non-probability surveys, such as opt-in web panels, social media, scanner data, mobile phone data or voluntary register data, are currently being explored for use in the production of official statistics (Citro 2014; Daas, Puts, Buelens, and Hurk 2015), public opinion studies or market research. Since the selection mechanism in these sources is unknown, standard design-based inference methods cannot be directly applied and in case of large datasets may lead to big data paradox as described by Meng (2018).

Table 1 compares the basic characteristics of probability and non-probability samples. In particular, what are the advantages and disadvantages of each type of sample with respect to population coverage, bias, variance, costs, and the selection mechanism for observations into the samples. In general, non-probability samples suffers from unknown selection mechanism (i.e. unknown probabilities of inclusion into sample) and under-coverage of certain groups from the population. As a result direct estimation based on these samples are characterised with bias and, in most cases, small variance (for large non-probability surveys) which leads to so called big data paradox. Certainly, cost and timeliness of these surveys is significantly smaller than for non-probability samples.

Factor	Probability sample	Non-probability sample
Selection	Known probabilities	Unknown self-selection
Coverage	Complete	Incomplete
Estimation bias	Unbiased under design	Potential systematic bias
Variance of estimates	Typically high	Typically low
Cost	High	Low
Availability	Long	Rapid

Table 1: Comparison of probability and non-probability samples and its characteristics

To address this problem, several approaches based on inverse probability weighting (IPW; also propensity score weighting/adjustment, Lee (2006)), model-based prediction (in particular, mass imputation estimators; MI) and doubly robust (DR) approach have been proposed for two main scenarios: 1) population-level data are available, either in the form of unit-level data (e.g. from a register covering the whole population) or known population totals/means, and 2) only survey data is available as a source of information about the target population (cf. Elliott and Valliant 2017). Wu (2022) classified these approaches into three groups that require a joint randomization framework involving probability sampling design (denoted as p) and one of the outcome regression model (denoted as ξ) or propensity score model (denoted as q). In this approach the IPW estimators are under the qp framework, the MI estimators are under the ξp framework, DR estimators are under the qp or ξp framework.

Most approaches assume that population data are used to reduce the bias of non-probability sampling by a proper reweighting to reproduce known population totals/means (i.e. IPW estimators); by modelling target variable using various techniques (i.e. MI estimators); or combining both approaches (for instance DR estimators, cf. Chen, Li, and Wu (2020); Multi-level Regression and Post-stratification (MRP) also called *Mister-P*, cf. Gelman (1997)). This topic have became very popular and number of new methods were proposed; for instance non-parametric approaches based on nearest neighbours (Yang, Kim, and Hwang 2021), kernel

density estimation (Chen, Yang, and Kim 2022), empirical likelihood (Kim and Morikawa 2023) or quantile balanced (Beręsewicz, Szymkowiak, and Chlebicki 2025) to name few. It should be highlighted that, on contrary to probability samples, there is no single method that can be used for non-probability samples. As shown literature, and thus statistical software, offers various methods as presented in the next section.

1.1. Software for non-probability samples

Table 2 presents comparison of availability of various inference methods and functionalities of selected packages. We focused on packages available through CRAN or PyPI (for non-CRAN or non-PyPI software see Cobo, Ferri-García, Rueda-Sánchez, and Rueda (2024)).

In the comparison we have included four packages that particularly focus on non-probability samples: **NonProbEst** (Rueda, Ferri-García, and Castro 2020), **balance** (Sarig, Galili, and Eilat 2023), **inps** (Castro Martín 2024) and our **nonprobsvy**. We have included two packages that implements specific methods: **rstanarm** (MRP; Goodrich, Gabry, Ali, and Brilleman (2024)) and **GJRM** (generalized sample selection models; Marra and Rodicw (2023)).

Functionalities	NonProbEst	rstanarm	GJRM	balance	inps	nonprobsvy
IPW	✓	_	+/-	✓	✓	√
Calibrated IPW	_	_	_	_	_	\checkmark
MI	\checkmark	_	_	_	_	\checkmark
DR	_	_	_	+/-	\checkmark	\checkmark
MRP	_	\checkmark	_	_	_	_
Sample selection	_	_	\checkmark	_	_	_
Variable selection	\checkmark	_	_	\checkmark	_	\checkmark
Analytical variance	_	_	_	_	_	\checkmark
Bootstrap variance	\checkmark	_	_	_	_	\checkmark
Integration with survey	_	_	_	_	_	\checkmark
or samplics						

Table 2: Comparison of packages and implemented methods

The **NonProbEst** implements IPW under logistic regression as well as machine learning approaches (e.g. CART, GBM or Neural Networks) however does not provide theoretical justification of using the ML approaches. The **balance** focuses solely on the IPW and uses standard and covariate balancing propensity score.

It should be however noted that implementation of specific approaches may vary significantly as the documentation of specific modules is limited. For instance, **NonProbEst** allows for calibration of IPW weights after they are estimated, while **nonprobsvy** does this in one step. On the other hand **NonProbEst** implements various weights based on the estimated propensity scores while **nonprobsvy** supports only two types of IPW weights. Furthermore, it should be noted that **NonProbEst**, **balance** and **inps** implements survey calibration for non-probability sample but it is not theoretically justified as the inclusion probabilities are unknown (on the contrary to probability samples). Only the **nonprobsvy** package leveraged the use of the **survey** package to estimate analytic as well as bootstrap variance of the non-probability estimators.

To our knowledge the **nonprobsvy** is the solely software (open or close) that implements

state-of-the-art methods for non-probability samples.

The remaining part of the paper is as follows. In Section 2 theory of the statistical inference based on non-probability samples is presented. We provide basic set-up and introduce methods in separate subsections. In the paper we Wu (2022) notation. Section 3 describes the dependencies of the package and the main function with its arguments. Section 4 presents a case study of integration of the Polish Job Vacancy Survey with a voluntary admin data: Central Job Offers Database with an aim on estimating number of companies with at least vacancy offered on a single shift. Section 5 presents classes and the S3Methods implemented in the package. Paper finishes with summary and plans for the future works. In the Appendix we present codes for specific approaches discussed in the paper, algorithms and detailed derivations of the implemented methods.

2. Methods for non-probability samples

2.1. Basic setup

Let $U = \{1, ..., N\}$ denote the target population consisting of N labelled units. Each unit i has an associated vector of auxiliary variables \mathbf{x}_i and the study (target) variable y_i . Let $\{(y_i, \mathbf{x}_i), i \in S_A\}$ be a dataset of a non-probability sample S_A of size n_A and let $\{(\mathbf{x}_i, \pi_i^B), i \in S_B\}$ be a dataset of a probability sample S_B of size n_B , where only information about variables \mathbf{x} and inclusion probabilities π^B are known for all units in the population. Each unit in the sample S_B has been assigned a design-based weight given by $d_i^B = 1/\pi_i^B$. Let $R_i^A = I(i \in S_A)$ and $R_i^B = I(i \in S_B)$ be indicators of inclusion into non-probability S_A and probability S_B sample respectively and defined for all units in the target population. Let $\pi_i^A = P(R_i^A = 1 \mid \mathbf{x}_i, y_i) = P(R_i^A = 1 \mid \mathbf{x}_i)$ be the propensity scores (PS) which characterize the sample S_A inclusion and participation mechanisms. On the contrary to π_i^B , the π_i^A and $d_i^A = 1/\pi_i^A$ are unknown. This description of the data is presented in a more concise form in Table 3.

Sample	ID	Inclusion (R)	Design weight (d)	Covariates (x)	Study variable (y)
Non-probability	1	1	?	✓	✓
S_A	:	:	:	:	÷ :
	n_A	1	?	\checkmark	\checkmark
Probability	1	0	\checkmark	\checkmark	?
S_B	:	:	:	:	<u>:</u>
	n_B	0	\checkmark	\checkmark	?

Table 3: Two sample setting

The goal is to estimate a finite population mean $\mu = N^{-1} \sum_{i=1}^{N} y_i$ of the target variable y. As values of y_i are not observed in the probability sample, it cannot be used to estimate the target quantity. Instead, one could try combining the non-probability and probability samples to estimate μ . Given the absence of a universally accepted methodology for achieving this objective, the assumptions vary considerably, as outlined by Wu (2022). However, the main assumptions that apply to all presented in this section methods are:

- A1 R_i^A and the study variable y_i are independent given the set of covariates \boldsymbol{x}_i , i.e., $\left(R_i^A \perp y_i\right) \mid \boldsymbol{x}_i$ (missing at random mechanism is assumed).
- A2 All the units in the target population have non-zero propensity scores, i.e., $\pi_i^A > 0$, i = 1, 2, ..., N (i.e. no coverage error).
- A3 The indicator variables R_1, R_2, \ldots, R_N are independent given the set of auxiliary variables $(\boldsymbol{x}_1, \boldsymbol{x}_2, \ldots, \boldsymbol{x}_N)$ (i.e. no clustering).

In addition, we assume no overlap between S_A and S_B , and no measurement error in y_i and x_i is observed. Setting presented in Table 3 may be also extended to calibrated d_i^B weights (i.e. d_i^B adjusted for under-coverage, non-contact or non-response; cf. Särndal and Lundström (2005)) but this requires additional developments in the theory about the consistency of the MI, IPW and DR estimators. In the next sections we briefly present methods that are implemented in the package.

2.2. Prediction-based approach

General form of prediction estimators

In the prediction approach the following semiparametric model for the finite population is assumed

$$E_{\xi}(y_i \mid \boldsymbol{x}_i) = m(\boldsymbol{x}_i, \boldsymbol{\beta}), \text{ and } V_{\xi}(y_i \mid \boldsymbol{x}_i) = v(\boldsymbol{x}_i) \sigma^2, \quad i = 1, 2, \dots, N,$$
 (1)

where the mean function $m(\cdot,\cdot)$ and the variance $v(\cdot)$ have known forms and it assumed that y_i are independent given x_i . The model (1) is assumed to hold for all units in the non-probability sample S_A . Parameters of the (1) can be estimated using quasi maximum likelihood estimation method which covers linear and non-linear models such as generalized linear models (GLM). Let β_0 and σ_0^2 be the true values of the model parameters β and σ^2 under assumed model and the $\hat{\beta}$ be the quasi maximum likelihood estimator of β_0 . Let $m_i = m(x_i, \beta_0)$ and $\hat{m}_i = m(x_i, \hat{\beta})$ for all units i = 1, ..., N. Under this settings, Wu (2022) notes there are two commonly used prediction estimators

$$\hat{\mu}_{PR1} = \frac{1}{N} \sum_{i=1}^{N} \hat{m}_{i} \quad \text{and} \quad \hat{\mu}_{PR2} = \frac{1}{N} \left\{ \sum_{i \in S_{A}} y_{i} - \sum_{i \in S_{A}} \hat{m}_{i} + \sum_{i=1}^{N} \hat{m}_{i} \right\}.$$
 (2)

Under linear models where $m(\mathbf{x}_i, \boldsymbol{\beta}) = \mathbf{x}_i' \boldsymbol{\beta}$, the two estimators (2) reduce to

$$\hat{\mu}_{PR1} = \mu_x' \hat{\boldsymbol{\beta}}$$
 and $\hat{\mu}_{PR2} = \frac{n_A}{N} \left(\bar{y}_A - \overline{x}_A' \hat{\boldsymbol{\beta}} \right) + \mu_x' \hat{\boldsymbol{\beta}},$ (3)

where $\mu_{\boldsymbol{x}} = N^{-1} \sum_{i=1}^{N} \boldsymbol{x}_{i}$ is the vector of the population means of the \boldsymbol{x} variables and $\overline{\boldsymbol{x}}_{A} = n_{A}^{-1} \sum_{i \in S_{A}} \boldsymbol{x}_{i}$ is the vector of the simple means of \boldsymbol{x} from the non-probability sample S_{A} . If the linear model contains an intercept and $\hat{\boldsymbol{\beta}}$ is the ordinary least square estimator then $\hat{\mu}_{PR1} = \hat{\mu}_{PR2}$.

This form is appealing as the only requirement is the availability of a non-probability sample S_A and reference population means (or totals and population size N). If the population means are unknown they can be replaced by estimates provided by the reference probability sample S_B i.e. $\sum_{i=1}^{N} \hat{m}_i$ is replaced with $\sum_{i \in S_B} d_i^B \hat{m}_i$ for (2) and μ_x is replaced by $\hat{\mu}_x = \hat{N}_B^{-1} \sum_{i \in S_B} d_i^B x_i$ for (3) where $\hat{N}_B = \sum_{i \in S_B} d_i^B$.

Mass imputation estimators

Model-based prediction estimators of μ can be treated as mass imputation estimators as the information on y_i is missing entirely in the reference probability sample S_B (but x_i is available) and y_i can be imputed based on the non-probability sample as $\{(y_i, x_i), i \in S_A\}$ is observed. The general for of the MI estimator is given by

$$\hat{\mu}_{MI} = \frac{1}{\hat{N}_B} \sum_{i \in S_B} d_i^B y_i^*, \tag{4}$$

where y_i^* is the imputed value of y_i and \hat{N}_B is defined as previously. Under deterministic regression imputation the $\hat{\mu}_{MI}$ estimator reduce to (2) estimators.

There are several approaches how to impute y_i^* and in the package we have implemented the following MI estimators: semiparametric approach based on the generalized linear models (MI-GLM), nearest neighbour matching (MI-NN) and predictive mean matching (MI-PMM).

The properties of the MI-GLM estimator where y_i^* are \hat{m}_i from the semiparametric model was studied by Kim, Park, Chen, and Wu (2021). In the **nonprobsvy** package we allow for the following GLM families: gaussian, binomial and poisson.

The MI-NN estimator was initially proposed by Rivers (2007) under the name sample matching and theoretical properties for the MI-NN estimator for large non-probability samples (big data, i.e. $Nn_A^{-1} = O(1)$) was studied by Yang et al. (2021). The basic idea of the NN matching is as follows: 1) for each i unit in the probability sample S_B find a donor j (or donors) in sample S_A based on some distance between \mathbf{x}_i and \mathbf{x}_j ; 2) use the matched values y_j from S_A to impute missing y_i values in the probability sample S_B . Imputed values y_i^* depends on the number of selected neighbours, for k = 1 the closest one is selected and for k > 1 a simple average over a vector of selected y may be calculated. The detailed description is presented in the Algorithm 1 in the Appendix. The MI-NN estimator suffers from the curse of dimensionality as proved by for i.e. asymptotic bias of the MI estimator increases as the number of covariates \mathbf{x} increases with a fixed k (add citation here!!!!!). To overcome this issue PMM approach was proposed.

In the PMM approach matching is done using the predicted values of $\hat{m}_i = m\left(\mathbf{x}_i, \hat{\boldsymbol{\beta}}\right)$ instead of \mathbf{x}_i , thus the NN algorithm is modified as follows: 1) fit the $m\left(\mathbf{x}_i, \boldsymbol{\beta}\right)$ to non-probability sample S_A , 2) assign predicted values \hat{m}_i to all units in S_A and S_B ; 3) match all units from sample S_B to donor units from sample S_A based on \hat{m} values. The MI-PMM estimator is the same as in the NN approach. Chlebicki, Łukasz Chrostowski, and Beręsewicz (2024) studied properties of two variants of the MI-PMM estimator for non-probability samples: matching predicted to predicted $(\hat{m} - \hat{m})$ matching; denoted as MI-PMM A) and predicted to observed $(\hat{m} - y)$ matching; denoted as MI-PMM B). Details about the procedure can be found in Algorithm 2 and 3 in the Appendix. Chlebicki et al. (2024) also prove consistency of the MI-PMM A estimator under model mis-specification i.e. the assumed model may be different

from the true one.

Variance estimators for the prediction approach

Variance for the MI estimators can be either estimated using analytical or bootstrap approach. Analytical estimator of the variance of the MI-GLM estimator proposed by Kim et al. (2021) (p. 950) which contains two components: \hat{V}_1 (based on the information from both samples S_A and S_B) and \hat{V}_2 (based solely on the probability sample S_B); for the MI-NN estimator for large samples Yang et al. (2021) proposed variance estimator based solely on the probability sample S_B (i.e. design-based variance estimator of the mean which can be easily obtained from the survey package) and for smaller samples variance estimator can be found in Chlebicki et al. (2024); and for the MI-PMM estimators Chlebicki et al. (2024) contains formulas for variance estimators for small and large non-probability samples S_A which are the same as for the MI-PMM estimators.

The second approach is based on the bootstrap where in each bootstrap replication b = 1, ..., B the following steps are conducted.

1. Independently:

- draw a simple random sampling with replacement from the non-probability sample S_A ,
- draw a sample according to the declared sampling design from the probability sample S_B (e.g. one can use as.svrepdesign from the survey).
- 2. Estimate μ_{MI}^b based on appropriate approach (e.g. MI-GLM, MI-NN or MI-PMM).

After obtaining B bootstrap replicates estimate variance based on the following equation

$$\hat{V}_{\text{boot}} = \frac{1}{B-1} \sum_{b=1}^{B} (\hat{\mu}^b - \hat{\mu})^2,$$
 (5)

where $\hat{\mu}$ is the estimated mean using either MI-GLM, MI-NN or MI-PMM estimator.

The above approaches are applied when unit-level data from the probability sample S_B are available. If this is not the case and only population means (or totals and population size) we estimate variance of the μ_{MI-GLM} estimator using the first component \hat{V}_1 of the Kim *et al.* (2021) variance estimator (replaced by the survey based population quantities if available). For the variance of the MI-NN and MI-PMM estimators we only allow the bootstrap approach with known population means. Note, that current version of the **nonprobsvy** does not support the replicated weights in the probability sample S_B for any of the estimators discussed in this paper.

2.3. Inverse Probability Weighting

Another popular approach is inverse probability weighting (IPW) that involves estimation of PS given by $\pi_i^A = P(i \in S_A)$. Similarly as for the prediction approach we have two variants of the IPW estimator given by

$$\hat{\mu}_{IPW1} = \frac{1}{N} \sum_{i \in S_A} \frac{y_i}{\hat{\pi}_i^A} \quad \text{and} \quad \hat{\mu}_{IPW2} = \frac{1}{\hat{N}^A} \sum_{i \in S_A} \frac{y_i}{\hat{\pi}_i^A},$$
 (6)

where the $\hat{\mu}_{IPW1}$ is a version of the Horvitz-Thompson estimator and the $\hat{\mu}_{IPW2}$ is the Hájek estimator with the estimated population size given by $\hat{N}^A = \sum_{i \in S_A} (\pi_i^A)^{-1}$. This estimator in the case of non-probability samples was discussed by (!!!!CYTOWANIA!!!!) and several approaches on using propensity scores and alternative versions of the IPW estimators were discussed by (!!!!CYTOWANIA!!!!) Recently, Chen *et al.* (2020) studied properties of the (6) estimators, proved their consistency as well as derived closed form estimators. Wu (2022, section 4.2) argue that $\hat{\mu}_{IPW2}$ estimator performs better than $\hat{\mu}_{IPW1}$ even if the population size is known.

The construction of the IPW estimator involved two steps: 1) estimation of the PS; and 2) deriving d_i^A , which in our case are equal to $1/\pi_i^A$. To estimate the propensity scores $\pi_i^A = \pi(\boldsymbol{x}_i, \boldsymbol{\gamma})$ one can use the likelihood approach under assumption that the information about \boldsymbol{x}_i are available for each unit in the population given by (7).

$$\ell(\boldsymbol{\gamma}) = \log \left\{ \prod_{i=1}^{N} \left(\pi_i^A \right)^{R_i} \left(1 - \pi_i^A \right)^{1 - R_i} \right\} = \sum_{i \in S_A} \log \left\{ \frac{\pi \left(\boldsymbol{x}_i, \boldsymbol{\gamma} \right)}{1 - \pi \left(\boldsymbol{x}_i, \boldsymbol{\gamma} \right)} \right\} + \sum_{i=1}^{N} \log \left\{ 1 - \pi \left(\boldsymbol{x}_i, \boldsymbol{\gamma} \right) \right\}.$$
(7)

In practice, a function of this form cannot be used because we do not observe all units from the population. More realistic approach involves a reference probability sample S_B and as a result the second component of the (7) is replaced forming pseudo log-likelihood function given by (8)

$$\ell^*(\boldsymbol{\gamma}) = \sum_{i \in S_A} \log \left\{ \frac{\pi(\boldsymbol{x}_i, \boldsymbol{\gamma})}{1 - \pi(\boldsymbol{x}_i, \boldsymbol{\gamma})} \right\} + \sum_{i \in S_B} d_i^B \log \left\{ 1 - \pi(\boldsymbol{x}_i, \boldsymbol{\gamma}) \right\}.$$
(8)

The maximum pseudo-likelihood estimator $\hat{\gamma}$ can be obtained as the solution to the pseudo score equation which under logit function assumed for π_i^A is given by (9)

$$U(\gamma) = \sum_{i \in S_A} x_i - \sum_{i \in S_B} d_i^B \pi(x_i, \gamma) x_i.$$
(9)

In general, the pseudo score functions $U(\gamma)$ at the true values of the model parameters γ_0 are unbiased under the joint qp randomization in the sense that $E_{qp}\{U(\gamma_0)\}=0$, which implies that the estimator $\hat{\alpha}$ is qp-consistent for γ_0 (Wu 2022).

The system (9) can be replaced by a system of general estimation equations. Let $h(x, \gamma)$ be a user-specified vector of functions with the same dimension of γ and $G(\gamma)$ is defined as

$$G(\gamma) = \sum_{i \in S_A} h(x_i, \gamma) - \sum_{i \in S_B} d_i^B \pi(x_i, \gamma) h(x_i, \gamma), \qquad (10)$$

then solving $G(\gamma) = 0$ with the chosen parametric form of π_i^A and the chosen $h(x, \gamma)$ leads to the consistent estimator of $\hat{\gamma}$. In the literature, the most commonly considered functions

are $h(x_i, \gamma) = x_i$ and $h(x_i, \gamma) = x_i \pi(x_i, \gamma)^{-1}$. Note that if the function $h_i = x_i$, then G is reduced to

$$G(\gamma) = \sum_{i \in S_A} x_i - \sum_{i \in S_B} d_i^B \pi \left(x_i, \gamma \right) x_i.$$

If we use the second form of the function h we get the following form of the function G

$$G(\theta) = \sum_{i \in S_A} \frac{x_i}{\pi(x_i, \gamma)} - \sum_{i \in S_B} d_i^B x_i,$$
(11)

which can be viewed as *calibrated* IPW and equation (11) requires only the knowledge of population totals for the auxiliary variables x. Moreover, usage of the (11) leads to doubly robust estimator when the outcome model is linear (**riddles survey meth!!!!!!**).

Variance estimators for the inverse probability weighting approach

Chen et al. (2020, section 3.2) derived asymptotic variance estimators for both IPW estimators presented in (6) and presented the plug-in variance estimator for the $\hat{\mu}_{IPW2}$ estimator assuming logistic regression. In the package we have implemented this approach for logit, probit and cloglog link functions. We refer the reader to the Wu (2022, section 6.2) and Chrostowski (2024, chapter 3) for more details on how this estimators are derived based on the general estimating equations approach.

Another approach is to use bootstrap which essentially is the same as the one presented in the (5) where the $\hat{\mu}_y$ is replaced by one of the (6) estimators.

2.4. Doubly Robust approach

The IPW and MI estimators are sensible to mis-specified models for PS and outcome respectively. To improve robustness and efficiency, the DR approach was proposed that incorporates a prediction model for the response variable y_i and PS model for participation R_i^A . This approach is doubly robust in that sense that the DR estimator remains consistent even if one of the models is mis-specified. We need to consider a joint randomization approach consisting of a non-probability S_A and probability S_B sample and DR inference is done within the qp or ξp framework with no specification which one is correct. The general formulae for the for the DR estimator is given by

$$\tilde{\mu}_{DR} = \frac{1}{N} \sum_{i \in S_A} \frac{y_i - m_i}{\pi_i^A} + \frac{1}{N} \sum_{i=1}^N m_i,$$

where π_i^A and m_i are defined as previously. In the next subsections we discuss two approaches to DR estimation.

Separately estimated parameters

Chen et al. (2020) proposed two DR estimators given in (12) and (13) under assumption that population size either known or estimated

$$\hat{\mu}_{DR1} = \frac{1}{N} \sum_{i \in S_A} d_i^A \left\{ y_i - m \left(\boldsymbol{x}_i, \hat{\boldsymbol{\beta}} \right) \right\} + \frac{1}{N} \sum_{i \in S_B} d_i^B m \left(\boldsymbol{x}_i, \hat{\boldsymbol{\beta}} \right), \tag{12}$$

and

$$\hat{\mu}_{DR2} = \frac{1}{\hat{N}^A} \sum_{i \in S_A} d_i^A \left\{ y_i - m \left(\boldsymbol{x}_i, \hat{\boldsymbol{\beta}} \right) \right\} + \frac{1}{\hat{N}^B} \sum_{i \in S_B} d_i^B m \left(\boldsymbol{x}_i, \hat{\boldsymbol{\beta}} \right), \tag{13}$$

where $d_i^A = \pi (\mathbf{x}_i, \mathbf{\gamma})^{-1}$, $\hat{N}^A = \sum_{i \in S_A} d_i^A$ and $\hat{N}^B = \sum_{i \in S_B} d_i^B$. The estimator (13) using the estimated population size has better performance in terms of bias and mean squared error and should be used in practice. However, the main limitation is estimation of the variance which will be discussed at the end of this section.

Chen et al. (2020) suggested to construct the (12) or (13) estimator based on the two models estimated separately which is attractive as it is possible to specify different number of variables for the propensity and outcome model. An alternative approach was proposed by Yang, Kim, and Song (2020), similar as KIM AND HAZIZA (CITATION) and will be discussed in the next subsection.

Minimization of the bias for doubly robust methods

Yang et al. (2020) discussed variable selection for high-dimensional setting and noted that we cannot control the bias of the estimator, which may increase. Therefore, according to Yang et al. (2020), the idea is to determine the equations leading to the estimation of the β and γ parameters based on the bias of the population mean estimator. This method allows for the estimation of the parameters β and γ in a single step, rather than in two separate steps. First, they derived the bias of the $\hat{\mu}_{DR}$, assuming $h(x, \gamma) = x$ for the IPW estimator, which is given by equation (14)

bias
$$(\hat{\mu}_{DR}) = |\hat{\mu}_{DR} - \mu| = \frac{1}{N} \sum_{i=1}^{N} \left\{ \frac{R_i^A}{\pi(\boldsymbol{x}_i, \boldsymbol{\gamma})} - 1 \right\} \{ y_i - m(\boldsymbol{x}_i, \boldsymbol{\beta}) \}$$

$$+ \frac{1}{N} \sum_{i=1}^{N} \left(R_i^B d_i^B - 1 \right) m(\boldsymbol{x}_i, \boldsymbol{\beta})$$
(14)

The goal of this approach is to minimize bias $(\hat{\mu}_{DR})^2$ which leads to solving the following system of equations

$$\begin{pmatrix}
\sum_{i=1}^{N} R_i^A \left\{ \frac{1}{\pi(\boldsymbol{x}_i, \gamma)} - 1 \right\} \left\{ y_i - m\left(\boldsymbol{x}_i, \boldsymbol{\beta}\right) \right\} \boldsymbol{x}_i \\
\sum_{i=1}^{N} \frac{R_i^A}{\pi(\boldsymbol{x}_i, \gamma)} \dot{m}\left(\boldsymbol{x}_i, \boldsymbol{\beta}\right) - \sum_{i \in S_B} d_i^B \dot{m}\left(\boldsymbol{x}_i, \boldsymbol{\beta}\right)
\end{pmatrix} = \mathbf{0},$$
(15)

where $\dot{m}(x_i, \beta) = \frac{\partial m(x_i, \beta)}{\partial \beta}$ and system (15) can be solved using Newton-Raphson method. This method is equivalent to (!!!!kim and haziza!!!!) and was extensively discussed by Chen et al. (2020) and Wu (2022). The main limitation is the existence of the solution to (15) as it may not exist unless the two sets of covariates used, respectively, in the outcome regression model and the PS model have the same dimensions. That is why Yang et al. (2020)

suggested to use this approach on a union of variables from both models (e.g. after variable selection).

In the **nonprobsvy** package we have implemented these approaches not only for $h(x, \gamma) = x$ but also for $h(x, \gamma) = x$ and $h(x_i, \gamma) = x_i \pi(x_i, \gamma)^{-1}$ and various link functions for propensity score model. We also allow selection of this estimation strategy with or without variable selection methods discussed in Section 2.5. As noted in the beginning the selection between (12) and (13) result in a different approach of estimating variance which will be presented in the next subsection.

Variance estimators for the doubly robust approach

Yang et al. (2020) derived a closed form estimator for the (12) but this requires knowledge of the population and it is requires bias correction to obtain valid estimator for $V_{\xi p}$ ($\hat{\mu}_{DR} - \mu_y$) under the outcome regression model ξ . A doubly robust variance estimator for the $\hat{\mu}_{DR2}$ given by (13) is not yet available in the literature. In the package, for the analytical variance estimator of the $\hat{\mu}_{DR2}$ we simply replace N with estimated \hat{N}_A and \hat{N}_B and we strongly advice users to be be careful when using this approach.

Alternatively, one can use the bootstrap approach. Chen *et al.* (2020) showed that bootstrap approach presented in the Section 2.2 have excellent performance when one of the working models is correctly specified. That is why this approach is recommended for all users.

2.5. Variable selection algorithms

Yang and Kim (2020) point that using variable selection techniques during estimation is crucial, especially when dealing with high-dimensional non-probability sample. Variable selection not only improves the model stability and computational feasibility, but also reduces the variance, which can increase when irrelevant auxiliary variables are included.

The most popular approaches in the statistical literature are penalisation methods such as Least Absolute Shrinkage and Selection Operator (LASSO), Smoothly Clipped Absolute Deviation (SCAD) or Minimax Concave Penalty (MCP), which, thanks to appropriate loss functions, degenerate the coefficients in variables that have no significant effect on the dependent variable. (!!!cytowania!!!!)

The selection procedure works in a similar way for non-probability methods with loss functions modified to take into account external data sources such as sample or population totals or averages. In particular, the technique is divided into two steps: 1) we select the relevant variables using an appropriately constructed loss function (and possibly using the (15) approach to obtain the final estimates of the model parameters); and 2) we construct chosen estimator using variables selected from the first step. For instance, Yang et al. (2020) recommended using (16) as a loss function for estimating outcome equation parameters

$$\operatorname{Loss}(\lambda_{\beta}) = \sum_{i=1}^{N} R_i^A \left[y_i - m \left\{ \boldsymbol{x}_i, \boldsymbol{\beta}(\lambda_{\beta}) \right\} \right]^2, \tag{16}$$

where $m\{x_i, \beta(\lambda_{\beta})\}$ is the penalized function for the β parameters with a tuning parameter λ_{β} and loss functions for the PS function presented in the Table 4 where λ_{γ} is the tuning parameter.

$oldsymbol{h}(oldsymbol{x}_i,oldsymbol{\gamma})$ function	Loss function λ_{γ}		
$oldsymbol{x}_i$	$\sum_{j=1}^p \left(\sum_{i=1}^N \left[R_i^A - rac{R^B\pi\{oldsymbol{x}_i,\gamma(\lambda_\gamma)\}}{\pi_i^B} ight]oldsymbol{x}_{i,j} ight)^2$		
$oldsymbol{x}_i\pi_i(oldsymbol{x}_i,oldsymbol{\gamma})^{-1}$	$\sum_{j=1}^{p} \left(\sum_{i=1}^{N} \left[rac{R_i^A}{\pi\{m{x}_i, \gamma(\lambda_{m{\gamma}})\}} - rac{R_i^B}{\pi_i^B} ight] m{x}_{i,j} ight)^2$		

Table 4: Loss functions for the IPW estimator depending on the $h(\cdot,\cdot)$ function

where R_i^A and R_i^B are indicator functions defining the inclusion into non-probability S_A and probability S_B samples respectively. Yang et al. (2020) discussed only the SCAD penalty and the $h(x_i, \gamma) = x_i$ function for the DR estimator only. In the **nonprobsvy** package we have extended this approach to second variant of the $h(x_i, \gamma)$ as presented in the second row of the Table (4), allowed user to select other link functions for the π_i^A , implemented other penalty functions and extended the variable selection to MI and IPW estimators. In the next section we will dicuss how to define the approaches presented in this section.

3. The main function

3.1. The nonprob function

The nonprobsvy package is built around the nonprob function. The main design objective was to make using nonprob as similar as possible to standard R functions for fitting statistical models, such as stats::glm, while incorporating survey design features from the survey package. The most important arguments are given in Table 5 and the obligatory ones are data, while selection, outcome, or target must be specified depending on the chosen method.

The nonprob function is used specify inference methods through specifying selection and outcome arguments. If out of these two selection is specified than the IPW estimators are used, if only the outcome then the MI approach is used and if both are specified the DR approach is applied. The package allows to provide either reference population data (via the pop_totals, or pop_means and pop_size) or a probability sample declared by the svydesign argument (svydesign2 class of from the survey package). Selection of the specific inference method is done through method_selection, method_outcome, family_outcome, control_selection and control_outcome arguments. Specification of variance estimation method is done via the control_inference argument.

In addition to using the survey package for design-based inference when probability samples are available, it also supports the various methods for estimating propensity scores and outcome models described in this thesis, such as logistic regression, complementary log-log models, probit models, generalized linear models, nearest neighbour algorithms and predictive mean matching.

Resulting object of class nonprobsvy is a list that contains the following (most important) elements:

- data an data.frame containing non-probability sample.
- X a matrix containing both samples,

Argument	Description	
data	data.frame with data from the non-probability sample	
selection	formula for the selection (propensity) equation	
outcome	formula for the outcome equation	
target	formula with target variables	
svydesign	Optional svydesign2 object	
pop_totals,	Optional named vector with population totals or means of the	
<pre>pop_means, pop_size</pre>	covariates and population size	
${\tt method_selection}$	Link function for the IPW approach ("logit", "probit",	
	"cloglog")	
method_outcome	Specification of the MI approach (one of c("glm", "nn",	
	"pmm"))	
family_outcome	The GLM family for the MI approach (one of c("gaussian",	
	"binomial", "poisson"))	
subset	Optional vector specifying a subset of observations to be used in	
	the fitting process	
strata	Optional vector specifying strata	
weights	Optional vector of prior weights to be used in the fitting process	
na_action	function indicating what should happen when the data contain	
	NA's	
${\tt control_selection},$	Control parameters for selection and outcome model and the vari-	
control_outcome,	ance estimation via the controlSel, controlOut and controlInf	
control_inference	functions respectively	
${\tt start_selection},$	Optional vector with starting values for the parameters of the	
start_outcome	selection and the outcome equation	
verbose	Logical value indicating if verbose output should be printed	
se	Logical value indicating whether to calculate and return the stan-	
	dard error of the estimated mean	
• • •	Additional optional arguments	

Table 5: nonprob function arguments description

- y a list containing all variables declared in either target or outcome arguments,
- R a numeric vector informing about inclusion into non-probability sample,
- weights propensity score weights or NULL (for the MI estimators),
- output a data.frame containing point and standard error estimates,
- outcome a list of results for each outcome models,
- selection a list of results for the selection model.
- svydesign a svydesign2 object passed by the svydesign argument.

After this neat description of the main functionality of the package, we will move on to some examples of its use. We will show how to define the given arguments in order to obtain estimates of interest as a result. We will be less interested in the results than in the way they are presented. There will be room in the following chapters for an analysis of simulations and

applications of the package to the real world. We will focus on the three main estimators, as function calls for other functionalities such as variable selection, other linking functions or mass imputation methods.

3.2. Controlling inference methods and the variance estimation

We provide three control function that allow users to specify the exact inference methods and the variance estimation. The controlSel function provides essential control parameters for fitting the selection model in the nonprob function. It allows users to select between the MLE or GEE (calibrated) approach through est_method_sel (and the type with the h argument), specify the optimizer (optimizer) and the which variable selection should be applied (using different penalty functions like SCAD, lasso, and MCP through penalty) along with parameters (e.g. number of folds via the nfolds argument). The package uses the nleqslv package and fitting parameters (arguments starting with the nleqslv*).

The controlOut to fine-tune various aspects of the estimation process, including the variable selection methods (through different penalty options like SCAD, LASSO, and MCP with their respective tuning parameters), and detailed configuration for NN and PMM approaches (using parameters like predictive_match, pmm_weights, and pmm_k_choice).

Finally, the controlInf function configures the parameters for variance estimation in the nonprob function. It allows user to specify whether the analytical or bootstrap approach should be used (the var_method argument), whether the variable selection should be applied (the vars_selection argument) and what type of boostrap should be applied for the probability sample (the rep_type argument). This function also allow to specify the how the inference for the DR approach should be taken: if a union or a division of variables after variable selection was applied (the bias_inf argument) and if the bias correction should be applied (the bias_correction argument).

3.3. Design of the package

- we do not provide ways to assess the models: this should be done prior the estimation stage and there are plenty of packages to do so
- we provide some basic functionalities such as hatvalues or cooks.distance but in a limited form

In the next sections we present a case study on integration of non-probability sample with a reference probability sample. We will present various estimators and compare them. Finally, we present more advanced options of the package.

4. Data analysis example

4.1. Description of the data

Before we explain the case study let's first load the package.

```
R> library(nonprobsvy) ## for estimation
R> library(ggplot2) ## for visualisation
```

The goal of the case study to integrate administrative (admin) and survey (jvs) data about job vacancies in Poland. The first source is the Job Vacancy Survey (JVS) with a sample of 6,523 units. The survey is based on a probability sample drawn according to proportional-to-size stratified sampling design. The details regarding the survey can be found in Statistics Poland (2021). The dataset contains about The Nomenclature of Economic Activities (NACE; 14 levels, nace column), region (16 levels), sector (2 levels, private column), size of the entity (3 levels: Small, Medium and Large) and the final weight (i.e. design weight corrected for non-contact and non-response).

					0	0
1	j_1	0	L	0	14	1
2	j_2	0	L	0	24	6
3	j_3	0	L	R.S	14	1
4	j_4	0	L	R.S	14	1
5	j_5	0	L	R.S	22	1
6	j_6	0	M	R.S	26	1

As the package leverage the **survey** package functionalities we need to define the **svydesign2** object via the **svydesign** function as presented below. The dataset does not contain the true stratification variable we use a simplified version by specifying ~ **size + nace + region** and we do not know have information on the non-response and its correction we simply assume that the **weight** is the calibrated weight that sums up to the population size.

The second source is the Central Job Offers Database (CBOP), which is a register of all vacancies submitted to Public Employment Offices (see https://oferty.praca.gov.pl). We treat this as the non-probability sample because is voluntary administrative data and inclusion mechanism is unknown. This dataset was prepared in such way that the records out of scope (either by the definition of vacancy or population of entities) were excluded. The dataset contains the same variables as JVS with one additional single_shift which is our target variable defined as: whether a company seeks at least one employee for a single-shift job. The goal of this case study is to estimate the share of companies that seeks employees for a single-shift job in Poland in a given quarter.

2 j_2	0	L	0	14	TRUE
3 j_3	0	L	0	04	TRUE
4 j_4	0	L	0	24	TRUE
5 j_5	0	L	0	04	TRUE
6 j 6	1	L	C	28	FALSE

Please note that, this paper does not aim to provide full tutorial on using non-probability samples for statistical inference. Thus, we skipped the part of aligning variables to meet the same definitions, assessing how strong is the relation between auxiliary variables, target variable and selection mechanism and distribution mis-matches between both samples. In the examples below we assume that there is no overlap between two sources and the nai"ve, reference estimate, given by a simple mean of the single_shift column of admin equals to 66.1%.

4.2. Estimation

Propensity score approach

First, we start with the IPW approach with to possible estimation methods MLE (standard) and GEE (calibrated to the estimated survey totals). We start by calling the nonprob function where we define the selection argument responsible for the formulae for the inclusion variables, the target argument which specifies the variable of interest single_shift. The rest refer to the svydesign object, dataset and specification of the link function (method_selection).

```
R> ipw_est1 <- nonprob(
+ selection = ~ region + private + nace + size,
+ target = ~ single_shift,
+ svydesign = jvs_svy,
+ data = admin,
+ method_selection = "logit" ## this is the default
+ )</pre>
```

In order to get the basic information about the estimated target quantity we can use the print method the object. It provides the call and the estimated mean, standard error (SE) and 95% confidence interval (lower_bound and upper_bound).

```
R> ipw_est1
```

```
Call:
```

```
nonprob(data = admin, selection = ~region + private + nace +
    size, target = ~single_shift, svydesign = jvs_svy, method_selection = "logit")
```

Estimated population mean with overall std.err and confidence interval:

```
mean SE lower_bound upper_bound single_shift 0.7083228 0.009436907 0.6898268 0.7268188
```

If we are interested in a detailed information about the model we can use the summary method.

```
R> summary(ipw_est1)
```

```
Call:
```

```
nonprob(data = admin, selection = ~region + private + nace +
    size, target = ~single_shift, svydesign = jvs_svy, method_selection = "logit")
```

Estimated population mean: 0.7083 with overall std.err of: 0.009437 And std.err for nonprobability and probability samples being respectively: 0.003958 and 0.008567

95% Confidence inverval for population mean:
lower_bound upper_bound
single_shift 0.6898268 0.7268188

Based on: Inverse probability weighted method For a population of estimate size: 52898.13 Obtained on a nonprobability sample of size: 9344 With an auxiliary probability sample of size: 6523

Regression coefficients:

For glm regression on selection variable:

```
Estimate Std. Error z value P(>|z|)
region04
       region06
        0.10481
               0.08911 1.176 0.23950
region08
region10 -0.15756 0.06408 -2.459 0.01393 *
       -0.60987 0.06029 -10.115 < 2e-16 ***
region12
       -0.84150 0.05419 -15.530 < 2e-16 ***
region14
       region16
               0.07142 16.495 < 2e-16 ***
region18
       1.17811
region20
       0.22252
               0.09261 2.403 0.01627 *
       -0.03753 0.06039 -0.621 0.53438
region22
       -0.40670 0.05474 -7.430 1.09e-13 ***
region24
               0.08489 2.390 0.01685 *
region26
       0.20287
region28
        -0.61021 0.05908 -10.328 < 2e-16 ***
region30
region32
        0.32744
              0.06957 4.706 2.52e-06 ***
        0.05899 0.05880 1.003 0.31571
private
               0.10033 7.702 1.34e-14 ***
naceD.E
        0.77274
```

```
0.04271 -8.847 < 2e-16 ***
           -0.37783
naceF
           -0.33370
                       0.03788 -8.809
naceG
                                      < 2e-16 ***
naceH
           -0.65175
                       0.05977 -10.904 < 2e-16 ***
naceI
            0.41179
                       0.05726
                                7.191 6.41e-13 ***
naceJ
           -1.42639
                       0.13622 -10.471 < 2e-16 ***
            0.06171
                       0.07981
                                0.773 0.43941
naceK.L
naceM
           -0.40678
                       0.06741 -6.034 1.60e-09 ***
            0.80035
                       0.06733 11.888 < 2e-16 ***
naceN
naceO
           -0.69355
                       0.09460
                               -7.331 2.28e-13 ***
            1.25095
                       0.07647 16.359 < 2e-16 ***
naceP
naceQ
            0.30287
                       0.06799
                                4.455 8.41e-06 ***
                       0.06975
                                3.187 0.00144 **
naceR.S
            0.22228
           -0.36413
                       0.03444 -10.574 < 2e-16 ***
sizeM
           -1.02916
                       0.03504 -29.369 < 2e-16 ***
sizeS
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
_____
```

Weights:

```
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.169 2.673 4.333 5.661 7.178 49.951
```

Residuals:

```
Min. 1st Qu. Median Mean 3rd Qu. Max. -0.8552 -0.2308 0.5393 0.3080 0.7987 0.9800
```

AIC: 43894.82 BIC: 44140.32

Log-Likelihood: -21915.41 on 15835 Degrees of freedom

This displays information on the datasets used for estimation (probability and non-probability sample). The estimated regression coefficients are also shown, in this case for the logit model for propensity score model (section Regression coefficients). In addition, for diagnostic purposes, we have access to the distribution of the weights calculated from the inclusion probabilities (section Weights), the distribution of the residuals from the model (section Residuals), as well as the values of the AIC, BIC statistics in the case of models based on MLE.

If we are interested in the calibrated IPW, one needs to define a controlSel function in the control_selection argument with the est_method_sel argument equal to gee (the default is mle) and set the value of h.

```
R> ipw_est2 <- nonprob(
+ selection = ~ region + private + nace + size,
+ target = ~ single_shift,
+ svydesign = jvs_svy,
+ data = admin,</pre>
```

```
+ method_selection = "logit",
+ control_selection = controlSel(h = 1, est_method_sel = "gee")
+ )
```

Results are comparable to the standard IPW point estimate (70.4 vs 70.8) while the standard error is lower higher.

```
R> ipw_est2
```

Call:

```
nonprob(data = admin, selection = ~region + private + nace +
    size, target = ~single_shift, svydesign = jvs_svy, method_selection = "logit",
    control_selection = controlSel(h = 1, est_method_sel = "gee"))
```

Estimated population mean with overall std.err and confidence interval:

```
mean SE lower_bound upper_bound single_shift 0.7041796 0.01169878 0.6812504 0.7271088
```

The calibrated IPW significantly improves the balance as can be accessed by the nonprobsvycheck function:

Notice that, neither in the package nor this paper we focus a detailed description of the post-hoc results, such as covariate balance. This can be done via existing CRAN packages, for instance using the bal.tab function from the cobalt package (Greifer 2024).

Prediction-based approach

If a user is interested in a prediction-based approach, in particular mass imputation estimators, then should specify the argument outcome as a formulae (similarly as in the glm function). We allow single outcome (specified as $y \sim x1 + x2 + ... + xk$) or multiple outcomes (as $y1 + y2 + y2 \sim x1 + x2 + ... + xk$). Note that if the outcome argument is specified then there is no need to specify target argument. By default GLM type of the MI estimator is assumed (i.e. method_outcome="glm"). In the code below we present possible way to declare this type of the MI estimator.

```
R> mi_est1 <- nonprob(
+ outcome = single_shift ~ region + private + nace + size,</pre>
```

```
svydesign = jvs_svy,
    data = admin,
+
    method_outcome = "glm",
    family_outcome = "binomial"
+ )
R>
R> mi_est1
Call:
nonprob(data = admin, outcome = single_shift ~ region + private +
    nace + size, svydesign = jvs_svy, method_outcome = "glm",
    family_outcome = "binomial")
Estimated population mean with overall std.err and confidence interval:
                  mean
                               SE lower_bound upper_bound
single_shift 0.7032081 0.01120231
                                     0.681252
                                                 0.7251642
```

If a user is interested in the nearest neighbours MI estimator one can specify $method_outcome = "nn"$ for the nearest neighbours search using all variables specified in the outcome argument, or $method_outcome = "pmm"$ if is interested in predictive mean matching. In both cases we are using k = 5 nearest neighbours (i.e. controlOut(k=5)). For the NN MI estimator there is no need to specify the family_outcome argument as no model is estimated underneath. For both approaches we use the RANN package (Jefferis, Kemp, Arya, and Mount 2024).

```
R> mi_est2 <- nonprob(</pre>
    outcome = single_shift ~ region + private + nace + size,
    svydesign = jvs_svy,
    data = admin,
    method_outcome = "nn",
    control_outcome = controlOut(k=5)
+ )
R>
R> mi_est3 <- nonprob(</pre>
    outcome = single_shift ~ region + private + nace + size,
   svydesign = jvs_svy,
    data = admin,
   method_outcome = "pmm",
    family_outcome = "binomial",
    control_outcome = controlOut(k=5)
+
+ )
```

Results of both estimators seems to be similar, but it should be noted that the NN MI estimator suffers from the curse of dimensionality so one should trust more the PMM MI estimator.

```
mean SE
single_shift 0.7450896 0.01527651
```

As discussed in Section 2 both IPW and MI estimators are asymptotically unbiased only when the model and auxiliary variables are correctly specified. To overcome this problem we focus now on the doubly robust estimators.

The doubly robust approach

To indicate that the doubly robust estimation should used user needs to specify both the selection and outcome arguments. These formulas can be specified with the same or varying number of aixuliary variables. We also allow, similarly as in the MI approach, multiple outcomes. In the following example code we specified the non-calibrated IPW and the GLM MI estimator.

Estimated population mean with overall std.err and confidence interval:

```
mean SE lower_bound upper_bound single_shift 0.7034644 0.01131974 0.6812781 0.7256507
```

Detailed results can be obtained by using summary function which prints both set of coefficients for the outcome and selection models. We omit this output due to limited space of the

paper. Finally, we can use bias minimisation approach as proposed by Yang et al. (2020) by specifying control_inference = controlInf(bias_correction = TRUE) argument. This part is implemented in the Rcpp (Eddelbuettel, Francois, Allaire, Ushey, Kou, Russell, Ucar, Bates, and Chambers 2024) and RcppArmadillo (Eddelbuettel and Sanderson 2014) packages for performance.

```
R> dr_est2 <- nonprob(
    selection = ~ region + private + nace + size,
    outcome = single_shift ~ region + private + nace + size,
    svydesign = jvs_svy,
    data = admin,
   method_selection = "logit",
    method_outcome = "glm",
    family_outcome = "binomial",
    control_inference = controlInf(bias_correction = TRUE)
+ )
R> dr_est2
Call:
nonprob(data = admin, selection = ~region + private + nace +
    size, outcome = single_shift ~ region + private + nace +
    size, svydesign = jvs_svy, method_selection = "logit", method_outcome = "glm",
    family_outcome = "binomial", control_inference = controlInf(bias_correction = TRUE))
Estimated population mean with overall std.err and confidence interval:
                               SE lower_bound upper_bound
                  mean
single shift 0.7043248 0.01128182
                                    0.6822129
                                                0.7264368
```

4.3. Comparison of estimates

Finally, as there is no single method for non-probability samples we suggest to compare results in a single table or a plot. In the Figure . . . we presents point estimates along with 95% confidence intervals. The various estimators show interesting patterns compared to the naive estimate (red dashed line). MI estimators demonstrate notably different behaviours: while PMM produces the highest point estimate with the widest confidence interval, NN yields the lowest estimate, close to the naive value. The other estimators - MI (GLM), IPW (both MLE and GEE), and DR (with and without bias minimization) – cluster together with similar point estimates and confidence interval widths, suggesting some consensus in their bias correction. These methods all indicate a population parameter higher than the naive estimate, but their relative consistency, except for the extreme estimates from MI (PMM) and MI (NN), provides some confidence in their bias correction capabilities.

```
cbind(mi_est1$output, mi_est1$confidence_interval),
                      cbind(mi_est2$output, mi_est2$confidence_interval),
                      cbind(mi_est3$output, mi_est3$confidence_interval),
                      cbind(dr_est1$output, dr_est1$confidence_interval),
                      cbind(dr_est2$output, dr_est2$confidence_interval))
R> rownames(dr_summary) <- NULL</pre>
  dr summary$est <- c("IPW (MLE)", "IPW (GEE)", "MI (GLM)", "MI (NN)",
                      "MI (PMM)", "DR", "DR (BM)")
R>
  ggplot(data = dr_summary,
         aes(y = est, x = mean, xmin = lower_bound, xmax = upper_bound)) +
   geom_point() +
    geom_vline(xintercept = mean(admin$single_shift),
               linetype = "dotted", color = "red") +
   geom_errorbar() +
    labs(x = "Point estimator and confidence interval", y = "Estimators")
```


Figure 1: Comparison of estimates of the share of job vacancies offered on a single-shift

4.4. Advanced usage

Bootstrap Approach for Variance Estimation

In the package we allow user to estimate variance of the mean using analytical (default) or bootstrap approach. In case of analytical variance estimators we use the estimators proposed in the papers described in the Section 2. Users may disable standard error calculation using nonprob(se=FALSE). The bootstrap approach implemented in the package refers to two samples:

- non-probability we currently support only simple random sampling with replacement,
- probability we support all the approaches implemented in the as.svrepdesign and we refere the reader to the help file of this function. Currently we do not support the

The bootstrap approach is done in the following way: 1) we independently draw the same number of B bootstrap samples from non-probability and probability survey; 2) we estimate population mean based on selected method (e.g. the DR approach); and 3) calculate bootstrap standard error using the following formulae

$$aaa$$
 (17)

To specify the bootstrap approach one should use controlInf() function with var_method = "bootstrap". Controlling the bootstrap method for probability sample is done by rep_type argument which passes the method to the as.svrepdesign function. The number of iterations is set in the num_boot argument (default 100). If the samples are large or the estimation method is complicated (e.g. involves variable selection) one can set verbose=TRUE to track the progress. By default results of bootstrap are stored in the boot_sample element of the resulting list (to disable this keep_boot should be set to FALSE). The following code provides an example of using the IPW approach with the bootstrap approach specified by the argument control_inference of the nonprob function.

```
R> ipw_est1_boot <- nonprob(
+ selection = ~ region + private + nace + size,
+ target = ~ single_shift,
+ svydesign = jvs_svy,
+ data = admin,
+ method_selection = "logit",
+ control_inference = controlInf(var_method = "bootstrap", num_boot = 50),
+ verbose = F
+ )</pre>
```

Next, we compare the estimated standard error with the analytical one below.

To assess the samples one can access the boot_sample element of the output list of the nonprob function. Note that this is returned as matrix because we allow multiple target variables.

R> head(ipw_est1_boot\$boot_sample, n=3)

```
single_shift
[1,] 0.7112020
[2,] 0.7204836
[3,] 0.6997687
```

Variable Selection Algorithms

In this section we briefly present how to use variable selection algorithms. In order to specify that a variable selection algorithm should be used one should specify the control_inference = controlInf(vars_selection = TRUE) argument. Then, the user should either leave the default or specify the parameters for the outcome via the controlOut function or selection outcome (controlSel). Both function have the same parameters:

- penalty The penanlization function used during variables selection (possible values: c("SCAD", "lasso", "MCP"))
- nlambda The number of λ values. Default is 50.
- lambda_min The smallest value for λ , as a fraction of lambda.max. Default is .001.
- lambda A user specified vector of lambdas (only for the controlSel function).
- nfolds The number of folds for cross validation. Default is 10.
- a_SCAD, a_MCP The tuning parameter of the SCAD and MCP penalty for selection model. Default is 3.7 and 3 respectively.

For the MI approach we leverage the **ncvreg** package (Breheny and Huang 2011) as it is solely package that uses the SCAD method in R. While for the IPW and DR approaches we developed our own codes in C++ via the **Rcpp** package. In the code below we apply variable selection for the MI GLM estimator using only 5 folds, 25 possible values of λ parameters and apply the LASSO penalty.

```
Starting CV fold #3
Starting CV fold #4
Starting CV fold #5
```

In this case study the MI GLM estimator with variable selection yields almost the same results as the approach without it. Point estimates and standard errors differ at the fourth and third digit respectively.

```
R> rbind("MI without var sel"=mi_est1$output,
+ "MI with var sel"=mi_est1_sel$output)

mean SE
MI without var sel 0.7032081 0.01120231
MI with var sel 0.7022412 0.01112936
```

5. Classes and S3methods

6. Summary and future work

The **nonprobsvy** package provides a comprehensive R toolkit for addressing inference challenges with non-probability samples by integrating them with probability samples or known population totals/means. As non-probability data sources like administrative data, voluntary online panels, and social media data become increasingly available, statisticians need robust methods to produce reliable population estimates. The package implements *state-of-the-art* approaches including mass imputation, inverse probability weighting (IPW), and doubly robust (DR) methods, each designed to correct selection bias by leveraging auxiliary data. By providing a unified framework and integration with the **survey** package, **nonprobsvy** makes complex statistical methods for non-probability samples more accessible, enabling researchers to produce robust estimates even when working with non-representative data.

There are several avenues for future development of the **nonprobsvy** package. A key priority is implementing model-based calibration and additional methods for estimating propensity scores and weights. The package currently assumes no overlap between probability and non-probability samples, so accounting for potential overlap (e.g., in big data sources and registers) is another important extension. Additional planned developments include handling non-ignorable sample selection through sample selection models, maintaining consistency with calibration weights, and supporting multiple non-probability samples for data integration from various sources.

Further methodological extensions under consideration include empirical likelihood approaches for doubly/multiply robust estimation, integration of machine learning methods like debiased/double machine learning from causal inference, handling measurement error in big data variables, and expanding the bootstrap approach beyond simple random sampling with replacement. The package will also be extended to work with the <code>svyrep.design</code> class from the <code>survey</code> package and the <code>svrep</code> package. These developments will enhance <code>nonprobsvy</code>'s capabilities for handling complex survey data structures and modern estimation challenges.

7. Acknowledgements

The authors' work has been financed by the National Science Centre in Poland, OPUS 20, grant no. 2020/39/B/HS4/00941.

Łukasz Chrostowski is the main developer and maintainer of the package. He was also responsible for the first draft of the paper as it is based on his Master's thesis (available at https://github.com/ncn-foreigners/graduation-theses). Piotr Chlebicki contributed to the package and implemented PMM estimators. Maciej Beręsewicz was responsible for the initial idea and the design of the package, testing, reviewing and small contributions code and prepared the final manuscript.

We would like to thank ...

A. List of symbols

Symbol	Description	
\overline{U}	Target population of size N	
N	Population size	
\boldsymbol{x}_i	Vector of auxiliary variables for unit i	
y_i	Study variable for unit i	
S_A	Non-probability sample	
S_B	Probability sample	
n_A	Size of non-probability sample	
n_B	Size of probability sample	
π_i^A	Propensity score for unit i in non-probability sample	
π_i^B	Inclusion probability for unit i in probability sample	
d_i^A	Design weight $(1/\pi_i^A)$ for non-probability sample	
d_i^B	Design weight $(1/\pi_i^B)$ for probability sample	
$n_{B} \ \pi_{i}^{A} \ \pi_{i}^{B} \ d_{i}^{A} \ d_{i}^{B} \ R_{i}^{A} \ R_{i}^{B}$	Indicator of inclusion into non-probability sample	
R_i^B	Indicator of inclusion into probability sample	
μ	Population mean of target variable y	
$m({m x}_i,{m eta})$	Regression model for outcome variable	
$\hat{\mu}PR1$	First prediction estimator	
$\hat{\mu}PR2$	Second prediction estimator	
$\hat{\mu}MI$	Mass imputation estimator	
$\hat{\mu}IPW1$	First inverse probability weighting estimator	
$\hat{\mu}IPW2$	Second inverse probability weighting estimator	
$\hat{\mu}DR1$	First doubly robust estimator	
$\hat{\mu}_{DR2}$	Second doubly robust estimator	
$oldsymbol{eta}$	Parameter vector for outcome model	
γ	Parameter vector for propensity score model	
y_i^*	Imputed value for unit i	
y_i^* \hat{N}^A	Estimated size based on non-probability sample	
\hat{N}^B	Estimated size based on probability sample	

Table 6: List of symbols and their descriptions

B. Algorithms

Algorithm 1: Mass imputation using the k-nearest-neighbour algorithm

- 1: If k = 1, then for each $i \in S_B$ match $\hat{\nu}(i)$ such that $\hat{\nu}(i) = \arg\min_{i \in S_B} d(\boldsymbol{x}_i, \boldsymbol{x}_j)$.
- 2: If k > 1, then

$$\hat{\nu}(i, z) = \underset{j \in S_A \setminus \bigcup\limits_{t=1}^{z-1} \{\hat{\nu}(i, t)\}}{\arg\min} d(\boldsymbol{x}_i, \boldsymbol{x}_j)$$

i.e. $\hat{\nu}(i,z)$ is z-th nearest neighbour from the sample.;

3: For each $i \in S_B$, calculate the imputed value as

$$\hat{y}_i = \frac{1}{k} \sum_{t=1}^k y_{\hat{\nu}(i,t)}.$$

Algorithm 2: $\hat{y} - \hat{y}$ Imputation:

- 1: Estimate regression model $\mathbb{E}[Y|X=x]=m(x,\beta)$.;
- 2: Impute

$$\hat{y}_i = m\left(\boldsymbol{x}_i, \hat{\boldsymbol{\beta}}\right), \hat{y}_j = m\left(\boldsymbol{x}_j, \hat{\boldsymbol{\beta}}\right)$$

for $i \in S_B, j \in S_A$ and assign each $i \in S_B$ to $\hat{\nu}(i)$, where

$$\hat{\nu}(i) = \underset{j \in S_A}{\arg\min} \|\hat{y}_i - \hat{y}_j\|$$

or

$$\hat{\nu}(i) = \operatorname*{arg\,min}_{j \in S_A} d\left(\hat{y}_i, \hat{y}_j\right)$$

if d is not induced by the norm.;

3: If k > 1, then:

$$\hat{\nu}(i, z) = \operatorname*{arg\,min}_{j \in S_A \setminus \bigcup_{t=1}^{z-1} \{\hat{\nu}(i, t)\}} d(\hat{y}_i, \hat{y}_j)$$

e.g., $\hat{\nu}(i,z)$ is z-th nearest neighbor from a sample.;

4: For $i \in S_B$, calculate imputation value as

$$\hat{y}_i = \frac{1}{k} \sum_{t=1}^k y_{\hat{\nu}(i,t)}.$$

Algorithm 3: $\hat{y} - y$ Imputation:

- 1: Estimate regression $\mathbb{E}[Y|X=x]=m(x,\beta)$.;
- 2: Impute $\hat{y}_i = m\left(\boldsymbol{x}_i, \hat{\boldsymbol{\beta}}\right)$ for $i \in S_B$ and assign each $i \in S_B$ do $\hat{\nu}(i)$, where $\hat{\nu}(i) = \underset{j \in S_A}{\arg\min} \|\hat{y}_i - y_j'\| \text{ or } \hat{\nu}(i) = \underset{j \in S_A}{\arg\min} d\left(\hat{y}_i, y_j\right) \text{ if } d \text{ not induced by the norm.;}$ 3: If k > 1, then:

$$\hat{\nu}(i,z) = \underset{j \in S_A \setminus \bigcup_{t=1}^{z-1} {\{\hat{\nu}(i,t)\}}}{\arg \min} d(\hat{y}_i, y_j).$$

4: For each $i \in S_B$ calculate imputation value as

$$\hat{y}_i = \frac{1}{k} \sum_{t=1}^k y_{\hat{\nu}(i,t)}.$$

C. Codes for specific methods

In this section we provide list of methods along with the appropriate set up of the nonprob function. We divide this section into two groups: 1) unit-level data from the reference probability sample is available; 2) only a vector of population totals or means (with population size) is available.

C.1. Unit-level probability sample is available

1. Mass imputation based on regression imputation

```
R> nonprob(
+ outcome = y ~ x1 + x2,
+ data = nonprob,
+ svydesign = prob,
+ method_outcome = "glm",
+ family_outcome = "gaussian"
+ )
```

2. Mass imputation based on nearest neighbour imputation

```
R> nonprob(
+ outcome = y ~ x1 + x2,
+ data = nonprob,
+ svydesign = prob,
+ method_outcome = "nn",
+ family_outcome = "gaussian",
+ control_outcome = controlOutcome(k = 2)
+ )
```

3. Mass imputation based on predictive mean matching

```
R> nonprob(
+ outcome = y ~ x1 + x2,
+ data = nonprob,
+ svydesign = prob,
+ method_outcome = "pmm",
+ family_outcome = "gaussian"
+ )
```

4. Mass imputation based on regression imputation with variable selection (LASSO)

```
R> nonprob(
+ outcome = y ~ x1 + x2,
+ data = nonprob,
+ svydesign = prob,
```

```
method_outcome = "pmm",
    family_outcome = "gaussian",
+
  control_outcome = controlOut(penalty = "lasso"),
    control_inference = controlInf(vars_selection = TRUE)
+ )
  5. Inverse probability weighting (MLE)
R> nonprob(
  selection = ~x1 + x2,
+ target = \sim y,
+ data = nonprob,
+ svydesign = prob,
    method_selection = "logit"
+ )
  6. Inverse probability weighting with calibration constraint (GEE)
R> nonprob(
  selection = ~x1 + x2,
+ target = \sim y,
+ data = nonprob,
+ svydesign = prob,
+ method_selection = "logit",
    control_selection = controlSel(est_method_sel = "gee", h = 1)
+ )
  7. Inverse probability weighting with calibration constraint (GEE) with variable selection
    (SCAD)
R> nonprob(
  selection = ~x1 + x2,
+ target = ~ y,
+ data = nonprob,
+ svydesign = prob,
+ method_outcome = "pmm",
+ family_outcome = "gaussian",
    control_inference = controlInf(vars_selection = TRUE)
+ )
  8. Doubly robust estimator
R> nonprob(
  selection = ~x1 + x2,
  outcome = y \sim x1 + x2,
+ data = nonprob,
```

```
+ svydesign = prob,
+ method_outcome = "glm",
+ family_outcome = "gaussian"
+ )

9. Doubly robust estimator with variable selection (SCAD) and bias minimization

R> nonprob(
+ selection = ~ x1 + x2,
+ outcome = y ~ x1 + x2,
```

```
+ selection = ~ x1 + x2,
+ outcome = y ~ x1 + x2,
+ data = nonprob,
+ svydesign = prob,
+ method_outcome = "glm",
+ family_outcome = "gaussian",
+ control_inference = controlInf(
+ vars_selection = TRUE,
+ bias_correction = TRUE
+ )
+ )
```

C.2. Only population totals or means are available

Example declarations

+)

1. Mass imputation based on regression imputation

```
R> nonprob(
    outcome = y \sim x1 + x2,
  data = nonprob,
   pop_totals = c(`(Intercept)`= N,
                  x1 = tau_x1,
                   x2 = tau_x2),
  method_outcome = "glm",
    family_outcome = "gaussian"
+ )
  2. Inverse probability weighting
R> nonprob(
   selection = ~x1 + x2,
  target = ~ y,
+ data = nonprob,
  pop\_totals = c(`(Intercept)` = N,
                   x1 = tau_x1,
                   x2 = tau_x2),
  method_selection = "logit"
```

3. Inverse probability weighting with calibration constraint

```
R> nonprob(
  selection = ~x1 + x2,
+ target = ~ y,
  data = nonprob,
  pop_totals = c(`(Intercept)`= N,
                  x1 = tau_x1,
                  x2 = tau_x2),
+ method_selection = "logit",
    control_selection = controlSel(est_method_sel = "gee", h = 1)
+ )
  4. Doubly robust estimator
R> nonprob(
  selection = ~x1 + x2,
+ outcome = y \sim x1 + x2,
  pop_totals = c(`(Intercept)` = N,
                  x1 = tau_x1,
                  x2 = tau_x2),
+ method_outcome = "glm",
    family_outcome = "gaussian"
+ )
```

D. Detailed derivations

	Table 7: MLE Functions and Gradient	s for Different Link Functions
Link	MLE Function	Gradient
logit	$\sum_{i \in S_{\mathrm{A}}} oldsymbol{x}_i^ op oldsymbol{ heta}$	$\sum_{i \in S_A} oldsymbol{x}_i$
	$-\sum_{i \in S_{\mathrm{B}}} d_{i}^{\mathrm{B}} \log \left[1 + \exp \left(\boldsymbol{x}_{i}^{\top} \boldsymbol{\theta}\right)\right]$	$-\sum_{i \in S_B} d_i^B \pi(oldsymbol{x}_i, oldsymbol{ heta}) oldsymbol{x}_i$
probit	$\sum_{i \in S_A} \log \left(\frac{\Phi(\boldsymbol{x}_i^\top \boldsymbol{\theta})}{1 - \Phi(\boldsymbol{x}_i^\top \boldsymbol{\theta})} \right)$	$\sum_{i \in S_A} \frac{\phi(\boldsymbol{x}_i^\top \boldsymbol{\theta})}{\Phi(\boldsymbol{x}_i^\top \boldsymbol{\theta})[1 - \Phi(\boldsymbol{x}_i^\top \boldsymbol{\theta})]} \boldsymbol{x}_i$
	$+\sum_{i \in S_B} d_i^B \log \left[1 - \Phi(oldsymbol{x}_i^ op oldsymbol{ heta}) ight]$	$-\sum_{i \in S_B} d_i^B rac{\phi(oldsymbol{x}_i^ op oldsymbol{ heta}_i)}{1 - \Phi(oldsymbol{x}_i^ op oldsymbol{ heta})} oldsymbol{x}_i$
cloglog	$\sum_{i \in S_A} \left\{ \log \left[1 - \exp \left(- \exp(\boldsymbol{x}_i^\top \boldsymbol{\theta}) \right) \right] \right\}$	$\sum_{i \in S_A} \frac{\exp(\boldsymbol{x}_i^{\top} \boldsymbol{\theta}) \boldsymbol{x}_i}{\pi(\boldsymbol{x}_i, \boldsymbol{\theta})}$
0106108	$+\exp(oldsymbol{x}_i^ opoldsymbol{ heta}) - \sum_{i\in S_B} d_i^B \exp(oldsymbol{x}_i^ opoldsymbol{ heta})$	$-\sum_{i \in S_B} d_i^B \exp(oldsymbol{x}_i^ op oldsymbol{ heta}_i) oldsymbol{x}_i$

References

Beaumont JF (2020). "Are probability surveys bound to disappear for the production of official statistics." Survey Methodology, **46**(1), 1–28.

Beręsewicz M (2017). "A two-step procedure to measure representativeness of internet data sources." *International Statistical Review*, **85**(3), 473–493.

Beręsewicz M, Szymkowiak M, Chlebicki P (2025). "Quantile balancing inverse probability weighting for non-probability samples." Survey Methodology, **51**, 0–0.

Biffignandi S, Bethlehem J (2021). *Handbook of Web Surveys*. John Wiley & Sons. ISBN 9781119371687. doi:10.1002/9781119371717.

Breheny P, Huang J (2011). "Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection." *Annals of Applied Statistics*, **5**(1), 232–253. doi:10.1214/10-AOAS388. URL https://doi.org/10.1214/10-AOAS388.

Castro Martín L (2024). INPS: Inference from Non-Probability Samples. URL https://pypi.org/project/inps/.

Chen S, Yang S, Kim JK (2022). "Nonparametric Mass Imputation for Data Integration." Journal of Survey Statistics and Methodology, 10(1), 1-24. ISSN 2325-0984, 2325-0992. doi:10.1093/jssam/smaa036. URL https://academic.oup.com/jssam/article/10/1/1/5983829.

Chen Y, Li P, Wu C (2020). "Doubly robust inference with nonprobability survey samples." Journal of the American Statistical Association, 115(532), 2011–2021.

- Chlebicki P, Łukasz Chrostowski, Beręsewicz M (2024). "Data integration of non-probability and probability samples with predictive mean matching." 2403.13750, URL https://arxiv.org/abs/2403.13750.
- Chrostowski L (2024). "Statistical inference with non-probability samples." Master's thesis, Adam Mickiewicz Universith.
- Citro CF (2014). "From multiple modes for surveys to multiple data sources for estimates." $Survey\ Methodology,\ 40(2),\ 137-162.$
- Cobo B, Ferri-García R, Rueda-Sánchez JL, Rueda MdM (2024). "Software review for inference with non-probability surveys." *The Survey Statistician*, **90**, 40–47.
- Daas PJ, Puts MJ, Buelens B, Hurk PAvd (2015). "Big data as a source for official statistics." Journal of Official Statistics, **31**(2), 249–262.
- Eddelbuettel D, Francois R, Allaire J, Ushey K, Kou Q, Russell N, Ucar I, Bates D, Chambers J (2024). *Rcpp: Seamless R and C++ Integration*. R package version 1.0.13, URL https://CRAN.R-project.org/package=Rcpp.
- Eddelbuettel D, Sanderson C (2014). "RcppArmadillo: Accelerating R with high-performance C++ linear algebra." Computational Statistics and Data Analysis, 71, 1054–1063. doi: 10.1016/j.csda.2013.02.005.
- Elliott MR, Valliant R (2017). "Inference for Nonprobability Samples." Statistical Science, 32(2). ISSN 0883-4237. doi:10.1214/16-STS598. URL https://projecteuclid.org/journals/statistical-science/volume-32/issue-2/Inference-for-Nonprobability-Samples/10.1214/16-STS598.full.
- Gelman A (1997). "Poststratification into many categories using hierarchical logistic regression." Survey Methodology, 23, 127.
- Goodrich B, Gabry J, Ali I, Brilleman S (2024). rstanarm: Bayesian applied regression modeling via Stan. R package version 2.32.1, URL https://mc-stan.org/rstanarm/.
- Greifer N (2024). cobalt: Covariate Balance Tables and Plots. R package version 4.5.5, URL https://CRAN.R-project.org/package=cobalt.
- Jefferis G, Kemp SE, Arya S, Mount D (2024). RANN: Fast Nearest Neighbour Search (Wraps ANN Library) Using L2 Metric. R package version 2.6.2, URL https://CRAN.R-project.org/package=RANN.
- Kim JK, Morikawa K (2023). "An Empirical Likelihood Approach to Reduce Selection Bias in Voluntary Samples." *Calcutta Statistical Association Bulletin*, **75**(1), 8–27. doi:10.1177/00080683231186488.
- Kim JK, Park S, Chen Y, Wu C (2021). "Combining Non-Probability and Probability Survey Samples Through Mass Imputation." Journal of the Royal Statistical Society Series A: Statistics in Society, 184(3), 941–963. ISSN 0964-1998, 1467-985X. doi:10.1111/rssa. 12696. URL https://academic.oup.com/jrsssa/article/184/3/941/7068406.

- Lee S (2006). "Propensity score adjustment as a weighting scheme for volunteer panel web surveys." *Journal of official statistics*, **22**(2), 329.
- Marra G, Rodicw R (2023). GJRM: Generalized Joint Regression Modelling.
- Meng XL (2018). "Statistical Paradises and Paradoxes in Big Data (I): Law of Large Populations, Big Data Paradox, and the 2016 US Presidential Election." Annals of Applied Statistics, 12, 685–726. doi:10.1214/18-AOAS1161SF.
- Rivers D (2007). "Sampling for web surveys." In *Proceedings of the Survey Research Methods Section, Joint Statistical Meetings*, pp. 1–26. American Statistical Association, Alexandria, VA.
- Rueda MdM, Ferri-García R, Castro L (2020). "The R package NonProbEst for estimation in non-probability surveys." *The R Journal*, **12**, 406–418. ISSN 2073-4859. Https://rjournal.github.io/.
- Sarig T, Galili T, Eilat R (2023). "balance a Python package for balancing biased data samples." 2307.06024, URL https://arxiv.org/abs/2307.06024.
- Särndal CE, Lundström S (2005). Estimation in surveys with nonresponse. John Wiley & Sons.
- Statistics Poland (2021). "The Demand for :abour: Methodological report." Methodological report, Statistical Office in Bydgoszcz, Bydgoszcz, Warsaw. URL https://stat.gov.pl/obszary-tematyczne/rynek-pracy/popyt-na-prace/zeszyt-metodologiczny-popyt-na-prace,3,1.html.
- Wu C (2022). "Statistical inference with non-probability survey samples." Survey Methodology, 48, 283–311.
- Yang S, Kim JK (2020). "Asymptotic theory and inference of predictive mean matching imputation using a superpopulation model framework." Scandinavian Journal of Statistics, 47(3), 839–861. ISSN 0303-6898, 1467-9469. doi:10.1111/sjos.12429. URL https://onlinelibrary.wiley.com/doi/10.1111/sjos.12429.
- Yang S, Kim JK, Hwang Y (2021). "Integration of data from probability surveys and big found data for finite population inference using mass imputation." Survey Methodology, 47, 29–58.
- Yang S, Kim JK, Song R (2020). "Doubly Robust Inference when Combining Probability and Non-Probability Samples with High Dimensional Data." *Journal of the Royal Statistical Society Series B: Statistical Methodology*, **82**(2), 445–465. ISSN 1369-7412, 1467-9868. doi:10.1111/rssb.12354. URL https://academic.oup.com/jrsssb/article/82/2/445/7056072.

Affiliation:

Łukasz Chrostowski

Pearson First line Second line

E-mail: lukchr@st.amu.edu.pl

URL: https://posit.co

Piotr Chlebicki Stockholm University Matematiska institutionen Albano hus 1

106 91 Stockholm, Sweden E-mail: piotr.chlebicki@math.su.se

URL: https://github.com/Kertoo, https://www.su.se/profiles/pich3772

Maciej Beręsewicz Poznań University of Economics and Business Statistical Office in Poznań

Poznań University of Economics and Business Department of Statistics Institute of Informatics and Quantitative Economics Al. Niepodległosci 10 61-875 Poznań, Poland

Statistical Office in Poznań ul. Wojska Polskiego 27/29 60-624 Poznań, Poland

E-mail: maciej.beresewicz@ue.poznan.pl

URL: https://github.com/BERENZ, https://ue.poznan.pl/en/people/dr-maciej-beresewicz/

Journal of Statistical Software

published by the Foundation for Open Access Statistics

 MMMMM YYYY, Volume VV, Issue II

doi:10.18637/jss.v000.i00

http://www.jstatsoft.org/ http://www.foastat.org/

> Submitted: yyyy-mm-dd Accepted: yyyy-mm-dd