# EECS 431 Human Perception and Electronic Media

Lecture 3

Thrasos Pappas
Electrical Engineering & Computer Science Department
Northwestern University

Winter 2016

### Digital Halftoning

- Rendering continuous-tone images with printing/display devices that can directly represent only small number of output levels
- Desktop publishing
  - High quality printed material available to everyone
- Digital photography
  - Photographic quality images on inexpensive printers
- Printing industry
  - High volume offset printing vs. print-on-demand

# Original Grayscale Thrasos Pappas, Winter 2018 3





# Random

### Line





### Bayer



# Blue Noise









### Model-Based Error Diffusion



### Halftoning Techniques

- Point algorithms
  - Screening (dithering)
- Neighborhood algorithms
  - Error diffusion
- Iterative algorithms
  - Least squares model-based (direct binary search)
- All can incorporate HVS and printer models

### Halftone Quality

 Halftone-induced texture (visibility/quality of halftone patterns)

Tone-scale resolution —
 (number of perceived levels)

 Adjacent level compatibility (of halftone textures)

 Tone-scale accuracy (display device)

Spatial resolution (sharpness) Constant tone-level

Slowly changing tone-level (smooth regions)

 Rapidly changing tone-level (edges)

### Halftone Quality Tradeoffs

- Traditional halftoning techniques (clustered-dot screens)
  - Spatial resolution and texture vs.
     Tone-scale resolution and accuracy
- Error diffusion and iterative techniques
  - Texture vs. tone-scale resolution
  - Spatial resolution is very high
- Other tradeoffs
  - Robustness to printer distortions (clustered-dot) vs.
     better spatial resolution and texture (model-based error diffusion and iterative techniques)
  - Green-noise halftoning

### Model-Based Halftoning



- All halftoning algorithms rely on the fact that the eye acts as a spatial low-pass filter
- Vision-based algorithms use explicit models of the HVS to produce halftones of higher visual quality
- HVS models vs. visual fidelity metrics
  - Single filter-based models (simple computation)
  - Multichannel models (image quality/compression)



- Viewers cannot be expected to maintain fixed distance
- Eye is less sensitive to diagonal features



- Viewing distance
- Printer resolution



300 dpi



- Scale factor s
  - -s = viewing distance X printer resolution
  - Perceived resolution in dots per radian
  - Tradeoff between texture and tone-scale resolution
- Small s: Dots are visible
  - Fine textures
  - Few gray levels Few patterns to chose from
- Large s: Eye averages several pixels
  - Coarse halftone patterns acceptable
  - Many gray levels Many pattern choices

- B&W and color printers
  - Electrophotographic, inkjet
- Printer effects
  - Dot overlap
  - Mechanical, optical, electric field dot gain
  - Other nonlinearities
- Predict gray levels produced by printer
- Easy to incorporate in halftoning algorithm



Sampled grayscale printer model

|     |     |     |     |       |         |         | <u></u>      |
|-----|-----|-----|-----|-------|---------|---------|--------------|
| 0   | .03 | .33 | .03 | 0     | 0       | 0       |              |
| .03 | .57 | 1   | .57 | .66   | .33     | .03     | $$ $1/R_y$   |
| .33 | 1   | .80 | 1   | .66   | 1       | .33     |              |
| .03 | .33 | .06 | .33 | .06   | .33     | .03     |              |
|     |     |     |     | Thrac | oc Danr | NAC Min | <br>tor 2019 |

Thrasos Pappas, Winter 2018



| 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|
| 0 | 1 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |



300 dpi

Halftone pattern

600 dpi

<sup>\*</sup> Figure provided by Jan Allebach

- Circular black dots
  - First order approximation
  - Dot size, shape, placement, density of colorant may vary
- Sampled grayscale printer model
  - Deterministic or probabilistic
  - Can be specified as a table
  - Can be derived from physical considerations or can be based on measurements (macroscopic or microscopic)

# Color Printer Models



Sampled tonescale printer model



# Least-Squares Model-Based Halftoning



Binary image that minimizes square of perceived error

# Least-Squares Model-Based Halftoning

- Exhaustive search: 2<sup>N</sup> patterns (10<sup>77</sup> for 16x16 image)
- Iterative techniques that produce local optima
- Depending on optimization strategy, visual quality may depend on starting point
- Toggle/swap scheme proposed by Allebach produces excellent results, independent of starting point
- Simulated annealing techniques offer no significant improvements in image quality
- Viewing distance/printer resolution (scale factor s) affect
  - Coarseness of halftone textures and number of perceived graylevels (at appropriate viewing distance)
  - Number of iterations for convergence

# Least-Squares Model-Based Halftoning



- Scale factor s provides tradeoff between texture and tone-scale resolution
  - Even when viewing distance and printer resolution is known
  - Dual metric approach for LSMB/DBS algorithm
     (Kim & Allebach' 02): large s in highlights, shadows, and midtones; small s everywhere else



Continuous
-tone
Image
Threshold
Bits

### **Error Diffusion Filter**



### Model-Based Error Diffusion



# Multi-pass Model-Based Error Diffusion

Standard ED

Model-based ED



### **Error Diffusion Modifications**

- Threshold and weight perturbations (Ulichney' 87)
- Space filling curves (Witten & Neal' 82, Vehlo & Gomes'91)
- Dot diffusion (Knuth' 87)
- "Optimized" error diffusion (Kolpatzik & Bouman' 92)
- More symmetric error distribution (Fan' 94)
- Modified error diffusion weights (Fan' 93, Shiau & Fan' 96)
- Edge enhancement using input-dependent threshold (Eschbach & Knox'91)
- NL detail enhancement (Thurnhofer & Mitra' 94)
- Adaptive threshold modulation (Damera-Venkata & Evans'01) Thrasos Pappas, Winter 2018

# Halftone Quality/Visibility & Radial Spectra



# Halftone Quality/Visibility & Radial Spectra



# Halftone Quality/Visibility & Radial Spectra



### Green-Noise Halftoning

- Generate visually pleasing ED-type patterns with various degrees of clustering
  - Error diffusion with output-dependent feedback (Levien' 92)
  - Green-noise halftoning (Lau, Arce, Gallagher' 98)

### Tone-Dependent Error Diffusion

- Varying the weights as a function of graylevel (Eschbach' 93, Shu' 95, Ostromoukhov' 01)
- Tone-dependent weights, serpentine raster, two tone-dependent thresholds (Li & Allebach' 02)
  - Optimized parameters using HVS-based cost function

### Blue-Noise Screening

- Attempts to simulate error diffusion
  - Power-spectrum matching (Mitsa & Parker' 91)
  - "Void-and-cluster" (Ulichney' 93)
  - Gaussian filter used to find largest void and tightest cluster can be interpreted as HVS point spread function
- Can account for printer distortions
- Green-noise screening
  - (Lau, Arce, Gallagher' 99)

### Image Halftoning

• T. N. Pappas, J. P. Allebach, and D. L. Neuhoff, "Model-based digital halftoning," *IEEE Signal Processing Mag.*, vol. 20, pp. 14-27, July 2003.