Goodness of Fit: R-square

We measure how well the model fits the data via \mathbb{R}^2 (fraction of variance explained)

$$R^{2} = \frac{\sum (\hat{y}_{i} - \bar{y})^{2}}{\sum (y_{i} - \bar{y})^{2}} = \frac{\|\hat{\mathbf{y}} - \bar{y}\|^{2}}{\|\mathbf{y} - \bar{y}\|^{2}}$$
$$= \frac{\|\mathbf{y} - \bar{y}\|^{2} - \|\mathbf{r}\|^{2}}{\|\mathbf{y} - \bar{y}\|^{2}} = 1 - \frac{\mathsf{RSS}}{\mathsf{TSS}}$$

where we use the fact:

$$\|\mathbf{y} - \bar{y}\|^2 = \|\hat{\mathbf{y}} - \bar{y}\|^2 + \|\mathbf{r}\|^2.$$

Goodness of Fit: R-square

We measure how well the model fits the data via \mathbb{R}^2 (fraction of variance explained)

$$R^{2} = \frac{\sum (\hat{y}_{i} - \bar{y})^{2}}{\sum (y_{i} - \bar{y})^{2}} = \frac{\|\hat{\mathbf{y}} - \bar{y}\|^{2}}{\|\mathbf{y} - \bar{y}\|^{2}}$$
$$= \frac{\|\mathbf{y} - \bar{y}\|^{2} - \|\mathbf{r}\|^{2}}{\|\mathbf{y} - \bar{y}\|^{2}} = 1 - \frac{\text{RSS}}{\text{TSS}}$$

where we use the fact:

$$\|\mathbf{y} - \bar{y}\|^2 = \|\hat{\mathbf{y}} - \bar{y}\|^2 + \|\mathbf{r}\|^2.$$

$$0 \le R^2 \le 1$$
, $R^2 = \left[\mathsf{Corr}(\mathbf{y}, \hat{\mathbf{y}}) \right]^2$.

 R^2 invariant of any location and/or scale change of Y. In general, R^2 alone does not tell us much about the effectiveness of the LS model. (Wait till we discuss F-test.)

- A small R² does not imply that the LS model is bad.
- Adding a new predictor, even if it is randomly generated and has nothing to do with Y, will decrease RSS and therefore increase R².