

LOONGSON

龙芯 3A2000/3B2000 处理器

数据手册

V1.4

2017年05月

龙芯中科技术有限公司

版权声明

本文档版权归龙芯中科技术有限公司所有,并保留一切权利。未经书面许可,任何公司和 个人不得将此文档中的任何部分公开、转载或以其他方式散发给第三方。否则,必将追究 其法律责任。

免责声明

本文档仅提供阶段性信息,所含内容可根据产品的实际情况随时更新,恕不另行通知。如因文档使用不当造成的直接或间接损失,本公司不承担任何责任。

龙芯中科技术有限公司

Loongson Technology Corporation Limited

地址:北京市海淀区中关村环保科技示范园龙芯产业园2号楼

Building No.2, Loongson Industrial Park,

Zhongguancun Environmental Protection Park, Haidian District, Beijing

电话(Tel): 010-62546668

传真(Fax): 010-62600826

阅读指南

《龙芯 3A2000/3B2000 处理器数据手册》主要介绍龙芯 3A2000/3B2000 处理器接口结构,特性,电气规范,以及硬件设计指导。

修订历史

	÷ +\/ &;	龙芯 3A2000/3B2000 处理器	
文档更新记录	文档名:	数据手册	
	版本号:	V1.4	
	创建人 : 芯片研发部		
	创建日期:	2017-05-23	

更新历史

序号	更新日期	版本号	更新内容
1	2015-07-25	V1.0	初稿完成
2	2015-12-01	V1.1	修正 PCICFG 相关的描述
3	2016-02-23	V1.2	增加 13 章
4	2017-03-29	V1.3	更新第 7.8.1 小节的电源电压信息 更新第 10 章的封装机械尺寸
5	2017-05-23	V1.4	修改 7.8 节电流数据及第 8 章中的功耗数据

手册信息反馈: <u>service@loongson.cn</u>

也可通过问题反馈网站 http://bugs.loongnix.org/ 向我司提交芯片产品使用过程中的问题,并获取技术支持。

目 录

图目录	VII
表目录	VIII
1 概述	1
2 接口描述	2
2. 1 接口信号模块	2
2. 2 PCI 总线接口信号	3
2.3 HYPERTRANSPORT 总线接口信号	3
2.4 DDR2/3 SDRAM 总线接口信号	7
2. 5 初始化信号	8
2.6 低速 1/0 接口	9
2.7 芯片引脚中断信号	10
2. 8 JTAG 及 EJTAG 信号	11
2.9 测试和控制信号	12
2. 10 时钟信号	12
2. 11 电源引脚	13
2. 12 GPI0 信号	14
3 PCI 总线接口特性	15
3.1 PCI/PCI-X 接口特性	15
3. 2 仲裁器和设备模式	15
3.3 PCI 总线仲裁器	15
4 HYPERTRANSPORT 总线接口描述	16
4.1 HYPERTRANSPORT接口特性	16
4. 2 设备模式	16
4.3 系统 HT 接口连接	16
5 DDR2/3 SDRAM 控制器接口描述	19
5.1 DDR2/3 SDRAM 控制器功能概述	19
5.2 DDR2/3 SDRAM 读操作协议	19
5.3 DDR2/3 SDRAM 写操作协议	20
5. 4 初始化操作	20
5. 5 复位引脚的控制	21
6 复位时序要求	23
7 电气特性	25
7. 1 绝对最大额定值	25
7.2 HyperTransport 总线接口特性	25
7. 2. 1 HyperTransport 推荐直流工作条件	25
7. 2. 2 HyperTransport 推荐交流工作条件	26

7. 2. 3 传输时序特性	26
7. 3 DDR2 总线内存接口特性	29
7. 3. 1 推荐直流特性	29
7. 3. 2 推荐的交流特性	29
7. 3. 3 电气交流时序特性	30
7. 4 DDR3 内存接口特性	33
7. 4. 1 推荐的直流工作条件	33
7.4.2 交流和直流逻辑输入电平	33
7. 4. 3 交流和直流逻辑输出电平	35
7. 4. 4 IDD 和 IDDQ 规范的参数和测试条件	41
7. 4. 5 输入/输出电容	42
7. 4. 6 不同器件密度下的刷新参数	42
7. 4. 7 标准的速度分级	43
7. 4. 8 DDR3 的时序参数	46
7. 5 PCI-X 总线特性	54
7. 5. 1 推荐的直流工作条件	54
7. 5. 2 交流工作特性	55
7. 5. 3 时序参数	56
7. 5. 4 复位时序	57
7. 5. 5 PCI-X 总线系统的噪声容限	57
7. 5. 6 PCI-X 的系统时序裕量	58
7. 6 LPC 总线和其它引脚	58
7. 6. 1 LPC 总线	58
7.6.2 EJTAG	58
7. 7 参考时钟	59
7. 7. 1 HyperTransport 的时钟	59
7. 7. 2 DDR2 内存的时钟	60
7. 7. 3 PCI-X 时钟	60
7. 8 电源	61
7. 8. 1 电源工作条件	61
8 热特性	62
8. 1 热参数	62
8. 2 焊接温度	62
9 引脚排列和封装	64
9.1 按引脚排列的封装引脚	64
9. 2 FCBGA 引脚顶层排列	73
10 封装机械尺寸	78
11 订货信息	79

12	2 不使用引脚处理	80
	12.1 系统配置引脚	80
	12. 2 LPC 总线	80
	12. 3 PCI 总线	80
	12. 4 SPI/UART/GPI0 总线	80
	12. 5 DDR 总线	80
	12. 6 HYPERTRANSPORT 总线	80
	12. 7 JTAG/EJTAG 总线、TESTCLK	81
	12.8 系统中断管脚	81
13	3 硬件改动说明	81

图目录

图 2.1 龙芯 3A2000 处理器接口信号框图	2
图 4.1 龙芯 3A2000 单处理器系统 HT 接口连接	17
图 4.2 龙芯 3A2000 多处理器系统 HT 接口连接(四片)	17
图 4.3 龙芯 3A2000 多处理器系统 HT 接口连接(二片)	18
图 5.1 DDR2 SDRAM 读操作协议	20
图 5.2 DDR2 SDRAM 写操作协议	20
图 6.1 龙芯 3A2000 复位时序图	
图 7.1 HyperTransport 总线 Todiff 时序	26
图 7.2 HyperTransport 总线 T _{DIFF} 时序	26
图 7.3 HyperTransport 总线 T _{CADV} 时序	
图 7.4 HyperTransport 总线 Tsu 和 ThD 时序	
图 7.5 HyperTransport 总线 T _{CADVRS} / T _{CADVRH} 时序	27
图 7.6 差分的信号电平	
图 7.7 ac-swing 和 ac-level 时间点(tDVA)的差分定义	
图 7.8 Vix 定义	
图 7.9 单端输出斜率的定义	
图 7.10 差分输出斜率的定义	
图 7.11 地址和控制的上冲和下冲定义	
图 7.12 时钟,数据,选通和屏蔽信号的交流上冲和下冲定义	38
图 7.13 tAON 的定义	
图 7.14 tAONPD 的定义	
图 7.15 tAOF 的定义	
图 7.16 tAOFPD 的定义	
图 7.17 tADC 的定义	
图 7.18 转换到带上拉的 PCI-X 模式的 RST#时序	
图 7.19 PCI-X 噪声容限	
图 7.20 3.3V PCI-X 时钟波形	60
图 8 1 焊接同流曲线	(2)

表目录

4
8
8
.10
.10
.10
.11
. 11
.11
12
.12
12
13
13
13
.14
25
25
26
27
29
29
29
29
29
30
30
30
.31
33
33
34
35
35
36
36

表 7.21 单端信号输出斜率的定义	36
表 7.22 单端的输出斜率	37
表 7.23 差分输出斜率的定义	37
表 7.24 差分输出斜率	37
表 7.25 地址和控制引脚的交流上冲/下冲规范	38
表 7.26 时钟,数据,选通和屏蔽信号的交流上冲/下冲	中规范38
表 7.27 ODT 时序定义	39
表 7.28 ODT 时序测量的参考设置	39
表 7.29 IDD 和 IDDQ 测量循环模式的时序	41
表 7.30 输入/输出电容	42
表 7.31 不同器件密度下的刷新参数	42
表 7.32 DDR3-800 Speed Bins and Operating Condit	ions43
表 7.33 DDR3-1066 Speed Bins and Operating Condi	tions43
表 7.34 DDR3-1333 Speed Bins and Operating Condi	tions43
表 7.35 DDR3-1600 Speed Bins and Operating Condi	tions44
表 7.36 Timing Parameters by Speed Bin	46
表 7.37 PCI-X 设备的直流规范	54
表 7.38 推荐的直流特性	54
表 7.39 10 引脚的输入电容	54
表 7.40 推荐的交流特性	55
表 7.41 输出信号的斜率	55
表 7.42 通用时序参数	56
表 7.43 PCI-X 系统的噪声容限	57
表 7.44 建立时间预算	58
表 7.45 保持时间预算	58
表 7.46 推荐的上拉电阻值	58
表 7.47 EJTAG 的交流时序特性	58
表 7.48 发送端时钟的不确定性	
表 7.49 输入时钟抖动参数	60
表 7.50 PCI-X 时钟参数	60
表 7.51 推荐的工作电源电压	61
表 8.1 龙芯 3A2000 的热特性参数和推荐的最大值	62
表 8.2 龙芯 3A2000 的热阻参数	
表 8.3 无铅工艺的封装回流最大温度表	
表 8.4 回流焊接温度分类表	62
表 9.1 按引脚排列的封装引脚表	64

1 概述

龙芯 3A2000/3B2000 是龙芯 3A1000 四核处理器的微结构升级版本, 封装引脚与龙芯 3A1000 兼容。龙芯 3A2000/3B2000 是一个配置为单节点 4 核的处理器, 采用 40nm 工艺制造,工作主频为 800MHz-1GHz,主要技术特征如下:

- 片内集成 4 个 64 位的四发射超标量 GS464e 高性能处理器核;
- 片内集成 4 MB 的分体共享三级 Cache(由 4 个体模块组成,每个体模块容量为 1MB);
- 通过目录协议维护多核及 I/O DMA 访问的 Cache 一致性;
- 片内集成 2 个 64 位带 ECC, 667MHz 的 DDR2/3 控制器;
- 3B2000 片内集成 2 个 16 位 1.6GHz 的 HyperTransport 控制器(以下简称 HT);
- 3A2000 片内 HT1 为 16 位 1.6GHz 的 HT 控制器, HT0 不可用;
- 每个 16 位的 HT 端口拆分成两个 8 路的 HT 端口使用。
- 片内集成 32 位 33MHz PCI;
- 片内集成 1 个 LPC、2 个 UART、1 个 SPI、16 路 GPIO 接口。

相比龙芯 3A1000, 其主要改进如下:

- 处理器核结构全面升级;
- 内存控制器结构、频率全面升级;
- HT 控制器结构、频率全面升级:
- 内部互连结构全面升级:
- 外部扩展互连结构全面升级;
- 支持 SPI 启动功能;
- 支持全芯片软件频率配置:
- 全芯片的性能优化提升。

龙芯 3A2000/3B2000 的芯片整体架构基于两级互连实现,芯片结构和介绍详见 《龙芯 3A2000/3B2000 用户手册 P1》1.2 节 龙芯 3A2000 简介。3B2000 与 3A2000 处理器的区别 在于 3B2000 支持使用 HTO 作为一致性互连接口使用,基于龙芯 3 号可扩展互联架构,4 片四核龙芯 3B2000 可以通过 HT 端口连接构成 4 芯片 16 核的 NUMA 结构。而 3A2000 处理器仅 支持 HT1 控制器的 IO 使用。

以下将 3B2000 与 3A2000 不作区别,简称为龙芯 3A2000。

2接口描述

2.1 接口信号模块

龙芯 3A2000 的接口信号如图 2.1 所示。

图 2.1 龙芯 3A2000 处理器接口信号框图

注:箭头指示信号方向,有输入、输出和双向。

2.2 PCI 总线接口信号

龙芯 3A2000 的 PCI 总线信号包括:

- 32 位地址数据总线信号:
- 4位命令数据 ID 总线信号;
- 14 位总线仲裁信号;
- 7位接口控制信号;
- 2位错误报告信号;

PCI 控制器只支持 3.3V 的信号环境和 33MHz 频率。

下表是龙芯 3A2000 处理器的 PCI 总线接口信号定义。

类型 信号名称 描述 是否三态 电压域 VDDE3V3 PCI_AD[31:0] t/s PCI 地址/数据信号 是 PCI_CBEn[3:0] t/s PCI 命令/字节使能信号, 需外部上拉 是 VDDE3V3 PCI_PAR t/s 地址/数据奇偶检测信号,需外部上拉 是 VDDE3V3 PCI_REQn[6:1] 外部设备总线占用请求输入信号,需外部上拉 VDDE3V3 t/s 否 根据仲裁模式,可为外部设备总线请求输入, 或为到外部仲裁器的总线请求输出信号。需外 PCI_REQn[0] t/s 是 VDDE3V3 部上拉。当使用外部仲裁器时,该信号作为输 出信号。 到外部设备的 PCI 总线允许输出信号, 需外部 VDDE3V3 PCI_GNTn[6:1] t/s 否 根据仲裁模式,可为外部仲裁器返回的总线允 许输入,或为到外部设备的 PCI 总线允许输 提 VDDE3V3 PCI_GNTn[0] t/s 出。需外部上拉。当使用外部仲裁器时,该信 号作为输入信号。 PCI_FRAMEn s/t/s PCI 帧周期信号,需外部上拉 是 VDDE3V3 PCI_IRDYn PCI 主设备准备好信号, 需外部上拉 是 VDDE3V3 s/t/s PCI_TRDYn PCI 目标设备准备好信号, 需外部上拉 是 VDDE3V3 s/t/s PCI_STOPn s/t/s PCI 停止数据传送信号,需外部上拉 是 VDDE3V3 PCI DEVSELn PCI 设备选择,需外部上拉 是 VDDE3V3 s/t/s

表 2.1 PCI 总线信号

2.3 HyperTransport 总线接口信号

in

s/t/s

o/d

PCI_IDSEL

PCI_PERRn

PCI_SERRn

龙芯 3A2000 中拥有两组独立的的 HyperTransport 总线(分别称为 HT0 与 HT1),其中每组 16 位的 HyperTransport 总线可独立配置为两组 8 位总线分别使用(分别称为 HTx Lo 与 HTx Hi)。

PCI 配置片选,作为主桥时应拉低

PCI 系统错误报告,需外部上拉

PCI 数据奇偶错误报告信号,需外部上拉

其中每组 HyperTransport 总线信号包括:

- 16 对差分发送数据命令总线:
- 16 对差分接收数据命令总线;
- 2 对差分发送控制信号:

否

是

否

VDDE3V3

VDDE3V3

VDDE3V3

- 2 对差分接收控制信号;
- 2 对差分发送时钟信号;
- 2 对差分接收时钟信号;
- 4 个 16 位/低 8 位总线控制信号;
- 4个高8位总线控制信号;

下表是龙芯 3A2000 处理器的 HyperTransport 总线接口信号定义。

表 2.2 HT 总线信号

HTO 总线信号				
信号名称	输入/输 出	加 达	电源域	默认上下 拉
HT0_8x2	I	为 1 时有效,表示将 HT0 分为 HT0_Lo 与 HT0_Hi 分别使用 为 0 时无效,表示将 HT0 作为 16 位总线使用	VDDESB	下拉
HT0_Lo_Hostmode		为 1 时有效,表示将 HTO_Lo 控制器作为主模式,控制复位等信号 为 0 时无效,表示将 HTO_Lo 控制器作为从模式,复位等信号仅为 输入模式	VDDESB	上拉
HT0_Hi_Hostmode	I	为 1 时有效,表示将 HT0_Hi 控制器作为主模式,控制复位等信号为 0 时无效,表示将 HT0_Hi 控制器作为从模式,复位等信号仅为输入模式	VDDESB	上拉
HT0_Lo_PowerOK	I/O	当 HT0_8x2 无效时为 HT0 总线 PowerOK 信号, 当 HT0_8x2 有效时为 HT0_Lo 总线 PowerOK 信号。 当 HT0_Lo_Hostmode 有效时为双向信号, 当 HT0_Lo_Hostmode 无效时为输入信号。	VDDESB	上拉
HT0_Lo_Resetn	I/O	当 HT0_8x2 无效时为 HT0 总线 Resetn 信号, 当 HT0_8x2 有效时为 HT0_Lo 总线 Resetn 信号。 当 HT0_Lo_Hostmode 有效时为双向信号, 当 HT0_Lo_Hostmode 无效时为输入信号。	VDDESB	上拉
HT0_Lo_Ldt_Stopn	I/O	当 HT0_8x2 无效时为 HT0 总线 Ldt_Stopn 信号, 当 HT0_8x2 有效时为 HT0_Lo 总线 Ldt_Stopn 信号。 当 HT0_Lo_Hostmode 有效时为双向信号, 当 HT0_Lo_Hostmode 无效时为输入信号。	VDDESB	上拉
HT0_Lo_Ldt_reqn	I/O	当 HT0_8x2 无效时为 HT0 总线 Ldt_Reqn 信号, 当 HT0_8x2 有效时为 HT0_Lo 总线 Ldt_Reqn 信号。	VDDESB	上拉
HT0_Hi_PowerOK	I/O	当 HT0_8x2 无效时该信号无效, 当 HT0_8x2 有效时为 HT0_Hi 总线 PowerOK 信号。 当 HT0_Hi_Hostmode 有效时为双向信号, 当 HT0_Hi_Hostmode 无效时为输入信号。	VDDESB	上拉
HT0_Hi_Resetn	I/O	当 HT0_8x2 无效时该信号无效, 当 HT0_8x2 有效时为 HT0_Hi 总线 Resetn 信号。 当 HT0_Hi_Hostmode 有效时为双向信号, 当 HT0_Hi_Hostmode 无效时为输入信号。	VDDESB	上拉
HT0_Hi_LDT_Stopn	I/O	当 HT0_8x2 无效时该信号无效, 当 HT0_8x2 有效时为 HT0_Hi 总线 Ldt_Stopn 信号。 当 HT0_Hi_Hostmode 有效时为双向信号, 当 HT0_Hi_Hostmode 无效时为输入信号。	VDDESB	上拉
HT0_Hi_LDT_reqn	I/O	当 HT0_8x2 无效时该信号无效, 当 HT0_8x2 有效时为 HT0_Hi 总线 Ldt_Reqn 信号。	VDDESB	上拉
HT0_Tx_CADp[15:0]	О	[7:0]位为 H10_Lo 总线友达数据命令总线, [15:0]位为 HT0_Hi 总线发送数据命令总线。	HT_VDDE	无
HT0_Tx_CADn[15:0]	О	当 HT0_8x2 无效时,该总线为 HT0 总线发送数据命令总线, 当 HT0_8x2 有效时,	HT_VDDE	无

		[7:0]位为 HT0_Lo 总线发送数据命令总线, [15:0]位为 HT0_Hi 总线发送数据命令总线。		
HT0_Tx_CTLp[1:0]	О	当 HT0_8x2 无效时, [0]位为 HT0 总线发送控制信号, [1]位无效。 当 HT0_8x2 有效时, [0]位为 HT0_Lo 总线发送控制信号, [1]位为 HT0_Hi 总线发送控制信号。	HT_VDDE	无
HT0_Tx_CTLn[1:0]	О	当 HTO_8x2 无效时, [0]位为 HTO 总线发送控制信号, [1]位无效。 当 HTO_8x2 有效时, [0]位为 HTO_Lo 总线发送控制信号, [1]位为 HTO_Hi 总线发送控制信号。	HT_VDDE	无
HT0_Tx_CLKp[1:0]	О	当 HT0_8x2 无效时,该总线为 HT0 总线发送时钟总线, 当 HT0_8x2 有效时, [0]位为 HT0_Lo 总线发送时钟信号, [1]位为 HT0_Hi 总线发送时钟信号。	HT_VDDE	无
HT0_Tx_CLKn[1:0]	О	当 HT0_8x2 无效时,该总线为 HT0 总线发送时钟总线, 当 HT0_8x2 有效时, [0]位为 HT0_Lo 总线发送时钟信号, [1]位为 HT0_Hi 总线发送时钟信号。	HT_VDDE	无
HT0_Rx_CADp[15:0]	I	当 HT0_8x2 无效时,该总线为 HT0 总线接收数据命令总线, 当 HT0_8x2 有效时, [7:0]位为 HT0_Lo 总线接收数据命令总线, [15:0]位为 HT0_Hi 总线接收数据命令总线。	HT_VDDE	无
HT0_Rx_CADn[15:0]	I	[7:0]位为 H10_Lo 总线接收数据命令总线, [15:0]位为 HT0_Hi 总线接收数据命令总线。	HT_VDDE	无
HT0_Rx_CTLp[1:0]	I	当 HTO_8x2 无效时, [0]位为 HTO 总线接收控制信号, [1]位无效。 当 HTO_8x2 有效时, [0]位为 HTO_Lo 总线接收控制信号, [1]位为 HTO_Hi 总线接收控制信号。	HT_VDDE	无
HT0_Rx_CTLn[1:0]	I	当 HT0_8x2 无效时, [0]位为 HT0 总线接收控制信号, [1]位无效。 当 HT0_8x2 有效时, [0]位为 HT0_Lo 总线接收控制信号, [1]位为 HT0_Hi 总线接收控制信号。	HT_VDDE	无
HT0_Rx_CLKp[1:0]	I	[0]位为 H10_Lo 总线接收时钟信号, [1]位为 HT0_Hi 总线接收时钟信号。	HT_VDDE	无
HT0_Rx_CLKn[1:0]	I	[0]位为 H10_Lo 总线接收时钟信号, [1]位为 HT0_Hi 总线接收时钟信号。	HT_VDDE	无
信号名称	输入/输出	HT1 总线信号 描述	电源域	默认上下 拉
HT1_8x2	I	为 1 时有效,表示将 HT1 分为 HT0_Lo 与 HT0_Hi 分别使用 为 0 时无效,表示将 HT1 作为 16 位总线使用	VDDESB	下拉
HT1_Lo_Hostmode	I	为1时有效,表示将HT1_Lo控制器作为主模式,控制复位等信号为0时无效,表示将HT1_Lo控制器作为从模式,复位等信号仅为输入模式		上拉
HT1_Hi_Hostmode	I	为 1 时有效,表示将 HT1_Hi 控制器作为主模式,控制复位等信号	VDDESB	上拉

		为 0 时无效,表示将 HT1_Hi 控制器作为从模式,复位等信号仅	为	
HT1_Lo_PowerOK	I/O	输入模式 当 HT1_8x2 无效时为 HT1 总线 PowerOK 信号, 当 HT1_8x2 有效时为 HT1_Lo 总线 PowerOK 信号。 当 HT1_Lo_Hostmode 有效时为双向信号, 当 HT1_Lo_Hostmode 无效时为输入信号。	VDDESB	上拉
HT1_Lo_Resetn	I/O	当 HT1_8x2 无效时为 HT1 总线 Resetn 信号, 当 HT1_8x2 有效时为 HT1_Lo 总线 Resetn 信号。 当 HT1_Lo_Hostmode 有效时为双向信号, 当 HT1_Lo_Hostmode 无效时为输入信号。	VDDESB	上拉
HT1_Lo_Ldt_Stopn	I/O	当 HT1_8x2 无效时为 HT1 总线 Ldt_Stopn 信号, 当 HT1_8x2 有效时为 HT1_Lo 总线 Ldt_Stopn 信号。 当 HT1_Lo_Hostmode 有效时为双向信号, 当 HT1_Lo_Hostmode 无效时为输入信号。	VDDESB	上拉
HT1_Lo_Ldt_reqn	I/O	当 HT1_8x2 无效时为 HT1 总线 Ldt_Reqn 信号, 当 HT1_8x2 有效时为 HT1_Lo 总线 Ldt_Reqn 信号。	VDDESB	上拉
HT1_Hi_PowerOK	I/O	当 HT1_8x2 无效时该信号无效, 当 HT1_8x2 有效时为 HT1_Hi 总线 PowerOK 信号。 当 HT1_Hi_Hostmode 有效时为双向信号, 当 HT1_Hi_Hostmode 无效时为输入信号。	VDDESB	上拉
HT1_Hi_Resetn	I/O	当 HT1_8x2 无效时该信号无效, 当 HT1_8x2 有效时为 HT1_Hi 总线 Resetn 信号。 当 HT1_Hi_Hostmode 有效时为双向信号, 当 HT1_Hi_Hostmode 无效时为输入信号。	VDDESB	上拉
HT1_Hi_LDT_Stopn	I/O	当 HT1_8x2 无效时该信号无效, 当 HT1_8x2 有效时为 HT1_Hi 总线 Ldt_Stopn 信号。 当 HT1_Hi_Hostmode 有效时为双向信号, 当 HT1_Hi_Hostmode 无效时为输入信号。	VDDESB	上拉
HT1_Hi_LDT_reqn	I/O	当 HT1_8x2 无效时该信号无效, 当 HT1_8x2 有效时为 HT1_Hi 总线 Ldt_Reqn 信号。	VDDESB	上拉
HT1_Tx_CADp[15:0]	0	当 HT1_8x2 无效时,该总线为 HT1 总线发送数据命令总线,当 HT1_8x2 有效时, [7:0]位为 HT1_Lo 总线发送数据命令总线, [15:0]位为 HT1_Hi 总线发送数据命令总线。	HT_VDDE	无
HT1_Tx_CADn[15:0]	0	当 HT1_8x2 无效时,该总线为 HT1 总线发送数据命令总线, 当 HT1_8x2 有效时, [7:0]位为 HT1_Lo 总线发送数据命令总线, [15:0]位为 HT1_Hi 总线发送数据命令总线。	HT_VDDE	无
HT1_Tx_CTLp[1:0]	О	当 HT1_8x2 无效时, [0]位为 HT1 总线发送控制信号, [1]位无效。 当 HT1_8x2 有效时, [0]位为 HT1_Lo 总线发送控制信号, [1]位为 HT1_Hi 总线发送控制信号。	HT_VDDE	无
HT1_Tx_CTLn[1:0]	О	当 HT1_8x2 无效时, [0]位为 HT1 总线发送控制信号, [1]位无效。 当 HT1_8x2 有效时, [0]位为 HT1_Lo 总线发送控制信号, [1]位为 HT1_Hi 总线发送控制信号。	HT_VDDE	无
HT1_Tx_CLKp[1:0]	0	当 HT1_8x2 无效时,该总线为 HT0 总线发送时钟总线, 当 HT1_8x2 有效时, [0]位为 HT1_Lo 总线发送时钟信号, [1]位为 HT1_Hi 总线发送时钟信号。	HT_VDDE	无
HT1_Tx_CLKn[1:0]	0	当 HT1_8x2 无效时,该总线为 HT0 总线发送时钟总线, 当 HT1_8x2 有效时, [0]位为 HT1_Lo 总线发送时钟信号, [1]位为 HT1_Hi 总线发送时钟信号。	HT_VDDE	无
HT1_Rx_CADp[15:0]	I	当 HT1_8x2 无效时,该总线为 HT1 总线接收数据命令总线,	HT_VDDE	无

_				
		当 HT1_8x2 有效时,		
		[7:0]位为 HT1_Lo 总线接收数据命令总线,		
		[15:0]位为 HT1_Hi 总线接收数据命令总线。		
		当 HT1_8x2 无效时,该总线为 HT1 总线接收数据命令总线,		
HT1_Rx_CADn[15:0]	Ţ	当 HT1_8x2 有效时,	HT VDDE	无
HII_KX_CADII[13.0]	1	[7:0]位为 HT1_Lo 总线接收数据命令总线,	HI_VDDE	儿
		[15:0]位为 HT1_Hi 总线接收数据命令总线。		
		当 HT1_8x2 无效时,		
		[0]位为 HT1 总线接收控制信号,		
IIT1 D. CTI[1.0]	T	[1]位无效。	HT VDDE	无
HT1_Rx_CTLp[1:0]	1	当 HT1_8x2 有效时,	HT_VDDE	兀
		[0]位为 HT1_Lo 总线接收控制信号,		
		[1]位为 HT1_Hi 总线接收控制信号。		
		当 HT1_8x2 无效时,		
		[0]位为 HT1 总线接收控制信号,		
IIT1 D. CTI[1.0]	т	[1]位无效。	HT VDDE	无
HT1_Rx_CTLn[1:0]	1	当 HT1_8x2 有效时,	HT_VDDE	兀
		[0]位为 HT1_Lo 总线接收控制信号,		
		[1]位为 HT1_Hi 总线接收控制信号。		
		当 HT1_8x2 无效时,该总线为 HT0 总线发送时钟总线,		
UT1 D. CUV[1.0]	Ţ	当 HT1_8x2 有效时,	HT VDDE	无
HT1_Rx_CLKp[1:0]	1	[0]位为 HT1_Lo 总线发送时钟信号,	HT_VDDE	兀
		[1]位为 HT1_Hi 总线发送时钟信号。		
		当 HT1_8x2 无效时,该总线为 HT0 总线接收时钟总线,		
IIT1 D. CIV[1.0]	ī	当 HT1_8x2 有效时,	HT VDDE	无
HT1_Rx_CLKn[1:0]	1	[0]位为 HT1_Lo 总线接收时钟信号,	HT_VDDE	兀
		[1]位为 HT1_Hi 总线接收时钟信号。		

2.4 DDR2/3 SDRAM 总线接口信号

龙芯 3A2000 集成了标准的 DDR2/3 SDRAM 内存控制器。该内存控制器接口包括有下列信号:

- 72 位双向数据总线信号(包括 ECC);
- 9路双向数据选通差分信号(包括 ECC);
- 9位数据掩码信号(包括 ECC);
- 16 位地址总线信号(相比龙芯 3A1000,增加一位地址位,使用龙芯 3A1000 中的 DDR RES GND 信号);
- 7位逻辑 Bank 和物理片选信号;
- 6 路差分时钟信号;
- 4 位时钟使能信号;
- 3 位命令总线信号;
- 4 位 ODT(On Die Termination)信号;
- 1位复位控制信号。

表 2.3 是龙芯 3A2000 每一组 DDR2 SDRAM 控制器接口信号。共有两组,分别在电源域上分为 0/1。

MEM VDDE 0/1 在封装内部不必区分,为同一电源域。

信号名称 输入/输出 描述 电源域 DDR2_DQ[63:0] MEM_VDDE_0/1 Ю DDR2/3 SDRAM 数据总线信号 DDR2_CB[7:0] Ю DDR2/3 SDRAM 数据总线 ECC 信号 MEM_VDDE_0/1 Ю DDR2/3 SDRAM 数据选通(包括 ECC) MEM_VDDE_0/1 DDR2_DQSp[8:0] MEM_VDDE_0/1 DDR2_DQSn[8:0] Ю DDR2/3 SDRAM 数据选通(包括 ECC) MEM VDDE 0/1 DDR2 DQM[8:0] DDR2/3 SDRAM 数据屏蔽(包括 ECC) O MEM VDDE 0/1 DDR2_A[15:0] O DDR2/3 SDRAM 地址总线信号 MEM_VDDE_0/1 DDR2_BA[2:0] DDR2/3 SDRAM 逻辑 Bank 地址信号 O MEM_VDDE_0/1 DDR2_WEn DDR2/3 SDRAM 写使能信号 O MEM_VDDE_0/1 DDR2_CASn DDR2/3 SDRAM 列地址选择信号 O MEM_VDDE_0/1 DDR2_RASn DDR2/3 SDRAM 行地址选择信号 O MEM_VDDE_0/1 DDR2_CSn[3:0] O DDR2/3 SDRAM 片选信号 DDR2_CKE[3:0] 0 DDR2/3 SDRAM 时钟使能信号 MEM_VDDE_0/1 MEM_VDDE_0/1 DDR2/3 SDRAM 差分时钟输出信号 DDR2 CKp[5:0] O {1.3.5} 为一组 DIMM 时钟, {0,2,4}为另一组 DIMM 时钟 DDR2/3 SDRAM 差分时钟输出信号 MEM VDDE 0/1 DDR2_CKn[5:0] O {1,3,5}为一组 DIMM 时钟, {0,2,4}为另一组 DIMM 时钟 MEM_VDDE_0/1 DDR2_ODT[3:0] O DDR2/3 SDRAM ODT 信号 MEM_VDDE_0/1 DDR2_Resetn O DDR2/3 SDRAM 复位控制信号

表 2.3 DDR2 SDRAM 控制器接口信号

2.5 初始化信号

表 2.4 提供了初始化信号的名称,方向和描述。其中 PCI 接口速度最高支持到 PCI/PCI-X 33MHz。PCI 控制器只支持 3.3V 信号环境。

信号名称	输入/输出	描述	电压域
		系统复位信号,该信号的低电平状态需要维	VDDE3V3
SYSRESETn	I	持多于一个 SYSCLK 周期,它可异步于	
		SYSCLK 信号。	
PCI_RESETn	I/O	PCI 接口复位信号	VDDE3V3
		IO 配置控制	VDDE3V3
		7 HT 总线强制设为 1.0 模式	
		6:4 需设置为 000	
PCI_CONFIG[7:0]	I	3 PCI 主设备模式	
		2 需设置为 0	
		1 使用外部 PCI 仲裁	
		0 使用 SPI 启动功能	

表 2.4 初始化接口信号

■ SYSRESETn: 这个复位信号是唯一能复位整个龙芯 3A2000 处理器的信号。 SYSCLK 和 MEMCLK 必须在 SYSRESETn 释放到无效前就保持稳定。 SYSRESETn 的有效时间必须大于一个时钟周期。处理器内部的复位控制逻辑在 SYSRESETn 无效时才开始复位处理器。处理器内部复位将在 64K 个 SYSCLK 周期后完成,之后复位异常处理才可以被执行

- PCI_RESETn: 当龙芯 3A2000 作为 PCI 总线主桥时,这个信号工作为输出,系统中的 PCI/PCI-X 设备的复位必须由该信号控制。当龙芯 3A2000 作为 PCI/PCI-X 设备工作时,该信号作为输入用来复位龙芯 3A2000 的 PCI 接口。
 - 注: 当龙芯 3A2000 作为 PCI 总线主桥时,处理器仅在系统上电复位时会产生 PCI_RESETn 复位信号,龙芯 3A2000 软复位时,需使用 GPIO 和外部复位 电路配合,使处理器产生 PCI_RESETn 复位信号。
- PCI_CONFIG[7:0]: 定义了龙芯 3A2000 PCI/PCI-X 接口的工作模式以及其它需要静态配置的信号,它在系统复位时必须保持稳定。系统开始运行时软件从内部寄存器中读取该值。如果系统设置成从使用 SPI 启动,则系统自动读取 SPI 中的指令开始执行,否则系统将从 LPC 总线的 ROM 空间开始取指。

2.6 低速 1/0 接口

龙芯 3A2000 处理器的低速 I/O 接口包括 LPC 总线、SPI 总线和 UART。LPC 总线连接启动 Flash 和 SuperIO 芯片。SPI 总线可连接 SPI flash(可支持启动)。

LPC 控制器具有以下特性:

- 符合 LPC1.1 规范
- 支持 LPC 访问超时计数器
- 支持 Memory Read 和 Memory write 访问类型
- 支持 Firmware Memory Read 和 Firmware Memory Write 访问类型(单字节)
- 支持 I/O read 和 I/O write 访问类型
- 支持 Memory 访问类型地址转换
- 支持 Serialized IRQ 规范,提供 17 个中断源

SPI 控制器具有以下特性:

- 全双工同步串口数据传输
- 支持到4个的变长字节传输
- 主模式支持
- 双缓冲接收器
- 极性和相位可编程的串行时钟
- 可在等待模式下对 SPI 进行控制
- 可支持处理器通过 SPI 启动

UART 控制器具有以下特性

- 全双工异步数据接收/发送
- 可编程的数据格式
- 16 位可编程时钟计数器
- 支持接收超时检测
- 带仲裁的多中断系统
- 仅工作在 FIFO 方式
- 在寄存器与功能上兼容 NS16550A

这些低速 I/O 接口包含的信号如下:

表 2.5 LPC 接口信号

信号名称	输入/输出	描述	电压域
L_AD[3:0]	I/O	LPC 总线地址数据信号	VDDE3V3
L_FRAME	О	LPC 总线数据开始/结束信号	VDDE3V3
L_SIRQ	I/O	LPC 总线 serial IRQ 信号,用于传输串行中断信号	VDDE3V3
L_8MBits	I	LPC 启动 flash 8Mbits 和 4Mbits 设置。该信号为高表示 LPC 所接的启动 flash 为 8Mbits,该信号为低表示 LPC 所接的启动 flash 为 4Mbits	VDDE3V3
L_INTEL	I	LPC 启动 flash 类型设置。该信号为高表示所接启动 flash 为 INTEL 类型,否则为 AMD 类型	VDDE3V3

表 2.6 SPI 接口信号

信号名称	输入/输出	描述	电压域
SPI_SCK	О	SPI 总线时钟	VDDE3V3
SPI_SDO	О	SPI 总线数据输出	VDDE3V3
SPI_SDI	I	SPI 总线数据输入	VDDE3V3

表 2.7 UART 接口信号

信号名称	输入/输出	描述	电压域
TXD	O	串口数据输出	VDDE3V3
RXD	I	串口数据输入	VDDE3V3
RTS	O	串口数据传输请求	VDDE3V3
CTS	I	设备接受数据就绪	VDDE3V3
DTR	O	串口初始化完成	VDDE3V3
DSR	I	设备初始化完成	VDDE3V3
DCD	I	外部 MODEM 探测到载波信号	VDDE3V3
RI	I	外部 MODEM 探测到振铃信号	VDDE3V3

2.7 芯片引脚中断信号

龙芯 3A2000 处理器的引脚中断包括 4 个系统中断(INTn),4 个 PCI 中断 (PCI_IRQ),2 个 PCI 总线错误报告信号 (PCI_SERRn 与 PCI_PERRn)和 1 个不可屏蔽中断 (NMIn)。下表显示了引脚中断信号的名称、方向和描述。

除了芯片引脚接入的中断外,龙芯 3A2000 还包括 16 个 HT 中断,3 个内部事件中断,1 个 LPC 中断,以及 2 个内存控制器中断。这些中断通过内部的功能模块自己产生,没有

专门的中断引脚。

任意一个中断源可以选择路由到处理器核中断引脚的 INT0-3(对应 CP0 寄存器 CR_STATUS 的 IP2-5 位)四根中断中的任意一个。有关中断的详细说明请参考用户手册的中断部分。

信号名称	输入/输出	描述	电压域
NMIn	I	不可屏蔽中断信号,(复位为低有 效),需视实际情况上下拉。	VDDE3V3
INTn[3:0]	I	4 个外部中断信号,这些信号分别连接 到处理器中断寄存器(CR_CAUSE IP 域) 的位 3 到位 0,需视实际情况上下拉。	VDDE3V3
PCI_IRQ[3:0]	I	这些中断信号应在中断控制器中使能, 低电平有效。这些中断能够被路由到中 断寄存器的第7到4位,需外部上拉。	VDDE3V3
PCI_PERRn	I/O	PCI 总线奇偶错信号,低电平有效。这些中断能够被路由到中断寄存器的第 15位,需外部上拉。	VDDE3V3
PCI_SERRn	I/O	PCI 总线系统错,低电平有效。这些中断能够被路由到中断寄存器的第 15 位(与 PCI_SERRn 共享),需外部上拉。	VDDE3V3

表 2.8 引脚中断信号描述

2.8 JTAG 及 EJTAG 信号

龙芯 3A2000 提供了一个兼容 JTAG 的边界扫描接口。JTAG 接口用于测试处理器引脚是否被正确连接。表 2.9 提供了 JTAG 信号的名称、方向和描述。

信号名称	输入/输出`	描述	电压域
TDI	I	JTAG 串行扫描数据输入。	VDDE3V3
TDO	О	JTAG 串行扫描数据输出。	VDDE3V3
TMS	Ι	JTAG 命令,指示输入的串行数据是一个命令。	VDDE3V3
TRST	I	JTAG 重启信号。	VDDE3V3
TCK	I	JTAG 串行扫描时钟。	VDDE3V3

表 2.9 JTAG 接口信号

此外,龙芯 3A2000 还提供了 EJTAG 调试接口,用于调试底层应用软件。 表 2.10 提供了 EJTAG 信号的名称,方向和描述。

表 2.10 EJTAG 接口信号

信号名称	输入/输出`	描述	电压域
EJTAG_TDI	I	EJTAG 串行扫描数据输入。	VDDE3V3
EJTAG_TDO	О	EJTAG 串行扫描数据输出。	VDDE3V3
EJTAG_TMS	I	EJTAG 命令,指示输入的串行数据是一个命令。	VDDE3V3
EJTAG_TRST	I	EJTAG 重启信号。	VDDE3V3
EJTAG_TCK	I	EJTAG 串行扫描时钟。	VDDE3V3

2.9 测试和控制信号

龙芯 3A2000 芯片的测试信号仅仅用于芯片物理测试,如扫描链测试。当芯片正常工作,这些信号应设置为无效。通常这些信号进行上拉处理。用于测试的控制信号为 DOTEST 信号,管脚定义在表 2.11 中。

表 2.11 EJTAG 接口信号

信号 名称	输入/输出	描述	默认上下拉
DOTEST	I	DOTEST=0,芯片处于测试模式; DOTEST=1 芯片处于正常功能模式。芯片正常工作时,需通过 4.7K 电阻上拉至 3.3V。	上拉

2.10 时钟信号

龙芯 3A2000 关于时钟的信号参见表 2.12。处理器有五个系统输入时钟信号(包括 SYSCLK,MEMCLK,PCI_CLK,HTCLK,差分时钟 HT0_CLKp/HT0_CLKn 及差分时钟 HT0_CLKp/HT1_CLKn)。龙芯 3A2000 的 Core 时钟通过 SYSCLK 产生,DDR2/3 时钟通过 MEMCLK 产生。HT 的时钟产生较为复杂。首先,差分时钟对 HT0_CLKp/HT0_CLKn 与 HT1_CLKp/HT1_CLKn 分别给 HT0 和 HT1 使用。此外,也可以使用单端时钟 HTCLK 替代 ht0_clkp/ht0_clkn,采用 CLKSEL[15:10]进行相关控制。CLKSEL 控制分频的方法参见表 2.13、表 2.14 和表 2.15。

表 2.12 时钟信号

信号名称	输入/输 出	频率范围 (MHz)	描述	电压域
SYSCLK	I		系统输入时钟,驱动内置的 PLL 产生处理器的 Core 时钟。它同时作为系统复位电路的时钟。	VDDE3V3
MEMCLK	I		DDR2/3 控制器的输入时钟,驱动内置的 PLL 用来产生 DDR2/3 时钟。	VDDE3V3
PCI_CLK	I	25-33	PCI 、LPC、SPI、UART 总线的参考时钟。	VDDE3V3
HT0_CLKp/ HT0_CLKn	I	200	HTO 总线及控制器使用参考时钟。	VDDE3V3
HT1_CLKp/ HT1_CLKn	I	200	HT1 总线及控制器使用参考时钟。	VDDE3V3
HTCLK	I	100	HT0 及 HT1 总线控制器使用的可选备份时钟	VDDE3V3
CLKSEL[15:0]	I	-	Core、DDR 和 HT 的频率选择,参见 2.13-2.15.	VDDE3V3

表 2.13 CORE 时钟控制

/ ⇒ □	佐田
165	TE FH

	5'b11111 表示 CORE 时钟直接采用 sysclk
	5'b011xx 表示 CORE 时钟采用软件设置,设置方法见用户手册说明
	5'b01111 为正常工作模式,其它情况为调试模式
	5'b0110x 表示 FIFO 深度设为 2
	5'b011x0 表示 DCDL 控制模式
CLKSEL[4:0]	其它情况下 CORE 时钟为
	sysclk*(clksel[3:0]+30)/(clksel[4]+1)
	注:
	sysclk*(clksel[3:0]+30) 必须为 1.2GHz~3.2GHz
	sysclk 必须为 20~40MHz

表 2.14 MEM 时钟控制

信号	作用
CLKSEL[9:5]	5'b11111 表示 MEM 时钟直接采用 memclk 5'b01111 表示 MEM 时钟采用软件设置,设置方法见用户手册说明 其它情况下 MEM 时钟为 memclk*(clksel[8:5]+30)/(clksel[9]+3) 注: memclk*(clksel[8:5]+30)必须为 1.2GHz~3.2GHz memclk 必须为 20~40MHz

表 2.15 HT 时钟控制

信号	作用
CLKSEL[15]	1'b1 表示 HT 控制器频率采用硬件设置 1'b0 表示 HT 控制器频率采用软件设置
CLKSEL[14]	1'b1 表示 HT PLL 采用普通时钟输入 1'b0 表示 HT PLL 采用差分时钟输入
CLKSEL[13:12]	2'b00 表示 PHY 时钟为 1.6GHZ 2'b01 表示 PHY 时钟为 3.2GHZ 2'b10 表示 PHY 时钟为 1.2GHz 2'b11 表示 PHY 时钟为 2.4GHz
CLKSEL[11:10]	2'b00 表示 HT 控制器时钟为 PHY 时钟 8 分频 2'b01 表示 HT 控制器时钟为 PHY 时钟 4 分频 2'b10 表示 HT 控制器时钟为 PHY 时钟 2 分频 2'b11 表示 HT 控制器时钟为 PHY 时钟

注: CLKSEL[13:10] == 4'b1111 时,HT 控制器时钟为 bypass 模式,

直接使用外部输入 100MHz 参考时钟

2.11 电源引脚

表 2.16 电源引脚

Parameter	Description
-----------	-------------

VDD	处理器核电源	
VDDE3V3	处理器 IO 电源	
MEM_VDD_0/1	DDR2/3 通道 0/1 核电源	
MEM_VDDE_0/1	DDR2/3 通道 0/1 IO 电源	
MEM_VREF_0/1	DDR2/3 通道 0/1 参考电源	
HT_VDD	HT 核电源	
HT_VDDE	HT IO 电源	
VDDESB	HT 控制信号电源	
CORE_PLL_AVDD	-	
CORE_PLL_DVDD	Core PLL 数字电源	
DDR_PLL_AVDD	-	
DDR_PLL_DVDD	DDR2/3 PLL 数字电源	
HT0/1_PLL_AVDD	-	
HT0/1_PLL_DVDD	HT0/1 PLL 数字电源	

2. 12 GPIO 信号

龙芯 3A2000 处理器包含 16 个 GPIO, 其引脚定义见下表。

表 2.17 GPIO 信号

信号名称	输入/输出`	描述	复位状态	电压域
GPIO00	I/O	通用输入输出	输出高阻	3.3V
GPIO01	I/O	通用输入输出	输出高阻	3.3V
GPIO02	I/O	通用输入输出	输出高阻	3.3V
GPIO03	I/O	通用输入输出	输出高阻	3.3V
GPIO04	I/O	通用输入输出	输出低电平	3.3V
GPIO05	I/O	通用输入输出	输出低电平	3.3V
GPIO06	I/O	通用输入输出	输出低电平	3.3V
GPIO07	I/O	通用输入输出	输出低电平	3.3V
GPIO08	I/O	通用输入输出	输出低电平	3.3V
GPIO09	I/O	通用输入输出	输出低电平	3.3V
GPIO10	I/O	通用输入输出	输出低电平	3.3V
GPIO11	I/O	通用输入输出	输出低电平	3.3V
GPIO12	I/O	通用输入输出	输出低电平	3.3V
GPIO13	I/O	通用输入输出	输出低电平	3.3V
GPIO14	I/O	通用输入输出	输出低电平	3.3V
GPIO15	I/O	通用输入输出	输出低电平	3.3V

3 PCI 总线接口特性

3.1 PCI/PCI-X 接口特性

PCI/PCI-X 接口特性包括:

- 兼容 PCI 2.3 和 PCI-X 1.0b;
- 接口速度最高支持到 PCI 33MHz;
- 支持 64 位双地址周期寻址(Dual Address Cycle);
- 支持 PCIX 模式下 8 个对外 split 读请求;
- 支持 PCIX 模式下 4 个对内 split 读请求;

3.2 仲裁器和设备模式

龙芯 3A2000 的 PCI/PCI-X 接口可以工作在主桥模式或设备模式。它依赖于初始信号 PCI_CONFIG。当处理器工作在主桥模式时,接口根据 PCI_CONFIG[6:4]的内容初始化总 线设备,这种情况 PCI_IDSEL 直接接地; 当处理器工作在设备模式时,PCI 总线的初始值 定义了接口的工作模式。在主桥模式时,PCI_CONFIG[6:4]的值应该根据总线设备的驱动能力去设置(请参见 PCI-X 1.0b 标准)。

3.3 PCI 总线仲裁器

龙芯 3A2000 上的 PCI/PCI-X 总线仲裁器最多支持 8 个主设备。仲裁采用两级的 Round Robin 调度算法,每一个请求的级别由软件配置决定。仲裁器能确保在总线切换时插入一个空周期。当总线上没有请求时,总线可配置为归属于最后发起操作的主设备或任一个指定的主设备。

当龙芯 3A2000 的 PCI/PCI-X 接口请求/允许信号连接到第 0 号请求/允许信号线, 1 到 7 号请求线连至片外(pci_req[6:0]与 pci_gnt[6:0])。当 PCI_CONFIG[1]设置成 1 时, 3A2000 的 PCI/PCI-X 接口请求应通过 pci_req[0]和 pci_gnt[0]连到外部的总线仲裁器上。

4 HyperTransport 总线接口描述

龙芯 3A2000 处理器拥有两个 16 位 HyperTransport 总线接口。每个 16 位总线接口可以分别配置为两个独立的 8 位 HyperTransport 总线接口单独使用。龙芯 3A2000 中,HyperTransport 接口硬件支持 IO Cache 一致性。并且,在使用龙芯 3B2000 的多片互联系统中,HT0 总线硬件支持多处理器核间 Cache 一致性。

4.1 HyperTransport 接口特性

HyperTransport 接口特性包括:

- 兼容 HyperTransport 1.03/HyperTransport 3.0;
- 接口频率支持 200/400/800/1000/1200/1600Mhz;
- HT1.0 接口宽度支持 8 位模式;
- HT3.0 接口宽度支持 8/16 位模式;
- 每个16位总线可单独配置为两个8位总线使用;
- 支持 IO Cache 一致性;
- HT0 支持多处理器核间 Cache 一致性;

4. 2 设备模式

HyperTransport 接口包括以下几个配置引脚:

- HTx_8x2,用于配置每个 HT 总线的工作模式,为 1 表示对应的 HT 总线配置为两个 8 位总线分别使用;
- HTx_x_Hostmode, 用于配置 HT 总线上单端控制信号的 IO 方向,具体请见表 2.2;

4.3 系统 HT 接口连接

龙芯 3A2000 中的 HyperTransport 接口可以用于系统中的 IO 连接或多处理器互联,不同系统中的连接方式如下所示:

■ 龙芯 3A2000 单处理器系统连接。用于 IO 设备连接时,HyperTransport 接口硬件维护 IO Cache 一致性。相比 PCI 接口,减少了软件维护 Cache 一致性协议所产生的开销,一种常见的连接方式如图 4.1 所示:

图 4.1 龙芯 3A2000 单处理器系统 HT 接口连接

■ 龙芯 3A2000 多处理器系统连接。用于多处理器间互联时,HT0 接口硬件支持处理器核间 Cache 一致性协议,可以使用 HT0 接口构成最多 4 片龙芯 3A2000 处理器的互联系统。如果需要继续扩展,则需要使用不支持处理器核间 Cache 一致性的 HT1 接口或采用其它方式。图 4.2、图 4.3 中分别给出了 4 片和 2 片互联的方式:

图 4.2 龙芯 3A2000 多处理器系统 HT 接口连接(四片)

图 4.3 龙芯 3A2000 多处理器系统 HT 接口连接(二片)

5 DDR2/3 SDRAM 控制器接口描述

龙芯 3A2000 处理器内部集成的内存控制器的设计遵守 DDR2/3 SDRAM 的行业标准 (JESD79-2 和 JESD79-3)。在龙芯 3A2000 处理器中,所实现的所有内存读/写操作都遵守 JESD79-2B 及 JESD79-3 的规定。

5.1 DDR2/3 SDRAM 控制器功能概述

龙芯 3A2000 处理器支持最大 4 个 CS(由 4 个 DDR2 SDRAM 片选信号实现,即两个双面内存条),一共含有 19 位的地址总线(即: 16 位的行列地址总线和 3 位的逻辑 Bank 总线)。相比龙芯 3A1000,增加了一位地址线。

龙芯 3A2000 处理器在具体选择使用不同内存芯片类型时,可以调整 DDR2/3 控制器参数设置进行支持。其中,支持的最大片选(CS_n)数为 4,行地址(RAS_n)数为 16,列地址(CAS_n)数为 15,逻辑体选择(BANK_n)数为 3。

CPU 发送的内存请求物理地址可以根据控制器内部不同的配置进行多种不同的地址映射。

龙芯 3A2000 处理器所集成的内存控制电路只接受来自处理器或者外部设备的内存读/写请求,在所有的内存读/写操作中,内存控制电路处于从设备状态(Slave State)。

龙芯 3A2000 处理器中内存控制器具有如下特征:

- 接口上命令、读写数据全流水操作
- 内存命令合并、排序提高整体带宽
- 配置寄存器读写端口,可以修改内存设备的基本参数
- 内建动态延迟补偿电路(DCC),用于数据的可靠发送和接收
- ECC 功能可以对数据通路上的 1 位和 2 位错误进行检测,并能对对 1 位错误进行自动纠错
- 支持 133-667MHZ 工作频率

5.2 DDR2/3 SDRAM 读操作协议

DDR2/3 SDRAM 读操作的协议如所示。在图 5.1 中命令(Command, 简称 CMD)由 RAS_n, CAS n 和 WE n, 共三个信号组成。对于读操作, RAS n=1, CAS n=0, WE n=1。

图 5.1 DDR2 SDRAM 读操作协议

上图中, Cas Latency (CL) = 3, Read Latency (RL) = 3, Burst Length = 8。

5.3 DDR2/3 SDRAM 写操作协议

DDR2/3 SDRAM 写操作的协议如图 5.2 所示。在图中命令 CMD 是由 RAS_n, CAS_n 和 WE_n, 共三个信号组成的。对于写操作,RAS_n=1,CAS_n=0,WE_n=0。另外,与读操作 不同,写操作需要 DQM 来标识写操作的掩码,即需要写入的字节数。DQM 与图中 DQs 信号 同步。

上图中, Cas Latency (CL) = 3, Write Latency (WL) = Read Latency (RL) - 1 = 2, Burst Length = 4。

5.4 初始化操作

内存控制器必须经过软件初始化之后,才可以正常使用,以下为对控制器进行初始化的具体方法。

初始化操作由软件向寄存器 Init_start (0x018) 写入 1 时开始,在设置 Init_start 信号之前,必须将其它所有寄存器设置为正确的值。

软硬件协同的 DRAM 初始化过程如下:

- (1) 软件向所有的寄存器写入正确的配置值,但是 Init_start (0x018) 在这一过程中必须保持为 0:
- (2) 软件将 Init_start (0x018) 设置为 1, 这将导致硬件初始化的开始:
- (3) PHY 内部开始初始化操作,DLL 将尝试进行锁定操作。如果锁定成功,则可以从 Dll_init_done (0x000) 读出对应状态,并可以从 Dll_value_ck (0x000) 读写 当前锁定延迟线个数; 如果锁定不成功,则初始化不会继续进行(此时可以通过 设置 Dll bypass (0x018) 使得初始化继续执行);
- (4) DLL 锁定(或者 bypass 设置)之后,控制器将根据对应 DRAM 的初始化要求向 DRAM 发出相应的初始化序列,例如对应的 MRS 命令, ZQCL 命令等等;
- (5) 软件可以通过采样 Dram init (0x160) 寄存器来判断内存初始化操作是否完成。

5.5 复位引脚的控制

为了在 STR 等状态下更加简单地控制复位引脚,可以通过 reset_ctrl (0x150) 寄存器进行特别的复位引脚 (DDR RESETn) 控制,主要的控制模式有两种:

- (1) 一般模式, reset_ctrl[1:0] == 2' b00。这种模式下, 复位信号引脚的行为与一般的控制模式相兼容。主板上直接将 DDR_RESETn 与内存槽上的对应引脚相连。引脚的行为是:
- 未上电时:引脚状态为低;
- 上电时:引脚状态为低;
- 控制器开始初始化时,引脚状态为高;
- 正常工作时,引脚状态为高。

时序如下图所示:

- (2) 反向模式, reset_ctrl[1:0] == 2' b10。这种模式下,复位信号引脚在进行内存实际控制的时候,有效电平与一般的控制模式相反。所以主板上需要将DDR RESETn 通过反向器与内存槽上的对应引脚相连。引脚的行为是:
- 未上电时:引脚状态为低;
- 上电时:引脚状态为低;
- 控制器开始配置时:引脚状态为高;
- 控制器开始初始化时:引脚状态为低;
- 正常工作时:引脚状态为低。

时序如下图所示:

- (3) 复位禁止模式,pm_reset_ctrl[1:0] == 2' b01。这种模式下,复位信号引脚在整个内存工作期间,保持低电平。所以主板上需要将 DDR_RESETn 通过反向器与内存槽上的对应引脚相连。引脚的行为是:
- 始终为低;

时序如下图所示:

由后两种复位模式相配合,就可以直接在使用内存控制器的复位信号的情况下实现 STR 控制。当整个系统从关闭状态下启动时,使用(2)中的方法来使用内存条正常复位并 开始工作。当系统从 STR 中恢复的时候,使用(3)中的方法来重新配置内存条,使得在不破坏内存条原有状态的条件上使其重新开始正常工作。

6 复位时序要求

龙芯 3A2000 的初始化分为Core时钟域、DDR2/3 时钟域、HT相关时钟域和PCI时钟域。

当处理器复位信号SYSRESETn为低时,相关的时钟,测试信号和初始化信号都必须有效。这些信号包括:

- SYSCLK, MEMCLK, HTCLK, PCI_CLK, CLKSEL, 差分时钟 ht0_c1kp/ht0_c1kn 和 差分时钟 ht1_c1kp/ht1_c1kn, 这些信号必须稳定。
- 初始化信号 PCI CONFIG 应该被设置为合适的值。
- ICCC_EN 和 NODE_ID 必须稳定(在复位结束前设置完毕并保持不变,信号意义见下文第二段)。

当SYSRESETn变高后,处理器内部的复位逻辑开始初始化芯片。SYSRESETn应至少保持一个时钟周期内(相对于SYSCLK)有效,以保证复位逻辑能可靠采样。PCI时钟域将会被首先初始化以保证龙芯 3A2000 中基本配置寄存器的有效,当龙芯 3A2000 作为PCI Master时还会输出PCI_RESETn来复位外部PCI设备。此后Core、DDR2/3 和HT时钟域相继初始化完成并根据配置引脚的输入去复位外部设备。

ICCC_EN信号为Inter Connection Cache Coherence Enable的缩写,此信号用于多片互联时维护cache一致性。NODE ID信号用于在多片互联时用来设置处理器号。

龙芯 3A2000 的复位时序图如下图 6.1 所示,图中黑色信号为外部信号,浅色信号为内部信号,用户无需关心:

图 6.1 龙芯 3A2000 复位时序图

7 电气特性

7.1 绝对最大额定值

表 7.1 绝对最大额定值

Parameter	Description	Min.	Max.	Unit
VDD	Core Supply Voltage	-0.3	1.3	V
VDDE3V3	Chip IO supply	-0.3	3.63	V
HT_VDD	HT core supply	-0.3	1.3	V
HT_VDDE	HT IO supply	-0.3	2.2	V
MEM_VDD_0/1	DDR2/3 memory core supply	-0.3	1.3	V
MEM_VDDE_0/1	DDR2/3 MEM IO supply	-0.5	2.3	V
Tstg	Storage Temperature	-55	100	°C

7. 2 HyperTransport 总线接口特性

7.2.1 HyperTransport 推荐直流工作条件

表 7.2 HyperTransport 直流工作条件

Symbol	Parameter	Min.	Тур.	Max.	Unit
$V_{\scriptscriptstyle OD}$	Output Differential Voltage	495	600	715	mV
$\Delta V_{\scriptscriptstyle OD}$	Change in V_{OD} from 0 to 1 State	-15	0	15	mV
V_{OCM}	Output Common Mode Voltage	495	600	715	mV
$\Delta V_{\scriptscriptstyle OCM}$	Change in V_{OCM} from 0 to 1 State	-15	0	15	mV
$V_{{\scriptscriptstyle I\!D}}$	Input Differential Voltage	200	600	1000	mV
$\Delta V_{{\scriptscriptstyle ID}}$	Change in V_{ID} from 0 to 1 State	-15	0	15	mV
V_{ICM}	Input Common Mode Voltage	440	600	780	mV
ΔV_{ICM}	Change in V_{ICM} from 0 to 1 State	-15	0	15	mV
R_{TT}	Input Differential Impedance	90	100	110	Ohm
R_{ON} (pull up)	Output Driver Impedance driving high	45	50	55	Ohm
R_{ON} (pull down)	Output Driver Impedance driving low	45	50	55	Ohm
C_{out}	Output pad capacitance for devices rated above 800 MT/s.			3	pF
	Output pad capacitance for devices rated up to 800 MT/s.			5	pF
C_{in}	Input pad capacitance for devices rated above 800 MT/s.			2	pF
	Input pad capacitance for devices rated up to 800 MT/s			5	pF

7. 2. 2 HyperTransport 推荐交流工作条件

Symbol	Parameter	Min.	Тур.	Max.	Unit
$V_{\scriptscriptstyle OD}$	Output Differential Voltage	400	600	820	mV
$\Delta V_{\scriptscriptstyle OD}$	Change in V_{OD} from 0 to 1 State	-75		75	mV
V_{OCM}	Output Common Mode Voltage	440	600	780	mV
$\Delta V_{\scriptscriptstyle OCM}$	Change in VOCM from 0 to 1 State	-50		50	mV
$V_{{\scriptscriptstyle I\!D}}$	Input Differential Voltage	300	600	900	mV
$\Delta V_{{\scriptscriptstyle I\!D}}$	Change in V_{ID} from 0 to 1 State	-125		125	mV
V_{ICM}	Input Common Mode Voltage	385	600	845	mV
ΔV_{ICM}	Change in V_{ICM} from 0 to 1 State	-100		100	mV
T_R	Input Rising Edge Rate	1.0		4.0	V/ns
$T_{\scriptscriptstyle F}$	Input Falling Edge Rate	1.0		4.0	V/ns

表 7.3 HyperTransport 交流工作条件

7. 2. 3 传输时序特性

图 7.1 HyperTransport 总线 Todiff 时序

图 7.2 HyperTransport 总线 TDIFF 时序

图 7.3 HyperTransport 总线 T_{CADV} 时序

图 7.4 HyperTransport 总线 Tsu 和 ThD 时序

图 7.5 HyperTransport 总线 TCADVRS / TCADVRH 时序

表 7.4 HyperTransport 连接传输时序规范

Parameter	Description	Link Speed	Min.	Max.	Units
T_{ODIFF}	Output differential skew	400 MT/s 600 MT/s 800 MT/s 1000 MT/s 1200 MT/s 1600 MT/s		70 70 70 60 60 60	ps ps ps ps ps ps

T_{IDIFF}	Input differential skew	400 MT/s 600 MT/s 800 MT/s 1000 MT/s 1200 MT/s 1600 MT/s		90 90 90 65 65 65	ps ps ps ps ps ps
T_{CADV}	Transmitter output CAD/CTLOUT valid relative to CLKOUT	400 MT/s 600 MT/s 800 MT/s 1000 MT/s 1200 MT/s 1600 MT/s	695 467 345 280 234 166	1805 1200 905 720 600 459	ps ps ps ps ps ps
$T_{\it CADVRS}$	Receiver input CADIN valid time to CLKIN	400 MT/s 600 MT/s 800 MT/s 1000 MT/s 1200 MT/s 1600 MT/s	460 312 225 194 166 116		ps ps ps ps ps ps
$T_{\it CADVRH}$	Receiver input CADIN valid time from CLKIN	400 MT/s 600 MT/s 800 MT/s 1000 MT/s 1200 MT/s 1600 MT/s	460 312 225 194 166 116		ps ps ps ps ps ps Ps
T_{SU}	Receiver input setup time	400 MT/s 600 MT/s 800 MT/s 1000 MT/s 1200 MT/s 1600 MT/s	0 0 0 0 0	250 215 175 153 138 110	ps ps ps ps ps ps Ps
T_{HD}	Receiver input hold time	400 MT/s 600 MT/s 800 MT/s 1000 MT/s 1200 MT/s 1600 MT/s	0 0 0 0 0	250 215 175 153 138 110	ps ps ps ps ps ps Ps

7. 3 DDR2 总线内存接口特性

7. 3. 1 推荐直流特性

表 7.5 推荐的直流工作条件(SSTL 1.8)

Symbol	Damamatan		Rating			
Бушрот	Parameter	Min.	Тур.	Max.	Units	
VDDQ (MEM_VDDE_0/1)	Supply Voltage for Output	1.7	1.8	1.9	V	
VREF (MEM_VREF_0/1)	Input Reference Voltage	0.49 x VDDQ	0.50 x VDDQ	0.51 x VDDQ	V	
VTT	Termination Voltage	VREF - 0.04	VREF	VREF + 0.04	V	

表 7.6 输入的直流逻辑电平

Symbo1	Parameter	Min.	Max.	Units
VIH(dc)	DC input logic HIGH	VREF+0. 125	VDDQ+0.3	V
VIL(dc)	DC input logic LOW	-0.3	VREF-0.125	V

表 7.7 输出直流电流驱动

Symbol	Parameter	SST1_18	Units
IOH(dc)	Output Minimum Source DC Current	-13.4	mA
IOL(dc)	Output Minimum Sink DC Current	13.4	mA

7.3.2 推荐的交流特性

表 7.8 输入交流逻辑电平

Symbol	Parameter	DDR2-400,	DDR2-533	DDR2-667,	DDR2-800	Units
Symbol Farameter		Min.	Max.	Min.	Max.	onits
VIH (ac)	ac input logic HIGH	VREF+0. 250	-	VREF+0. 200	-	V
VIL (ac)	ac input logic LOW	-	VREF- 0. 250		VREF- 0. 200	V

表 7.9 差分的输入交流逻辑电平

Symbol	Parameter	Min.	Max.	Units
VID(ac)	AC differential input voltage	0.5	VDDQ+0.6	V
VIX (ac)	AC differential crosspoint voltage	0.5 x VDDQ- 0.175	0.5 x VDDQ+0.175	V

图 7.6 差分的信号电平

表 7.10 差分的交流输出参数

Symbol	Parameter	Parameter Min. Max		Units
VOX (ac)	AC differential crosspoint voltage	0.5 x VDDQ- 0.125	0.5 x VDDQ+0.125	V

7.3.3 电气交流时序特性

表 7.11 不同密度的器件刷新参数

Parameter		Symbol Symbol	256 Mb	512 Mb	1Gb	2Gb	4Gb	Units
Refresh to active/Refresh command time		tRFC	75	105	127. 5	195	327. 5	ns
Average periodic	tREFI	0° C≤ TCASE ≤85° C	7.8	7.8	7.8	7.8	7.8	μs
refresh interval	UNEFI	85° C< TCASE ≤95 ° C	3. 9	3. 9	3.9	3. 9	3.9	μs

表 7.12 DDR2 内存标准速率分级

Speed bin	DDR2-8	800C	DDR2-8	100D	DDR2-8	OOE	DDR2-6	67C	DDR2-6	67D	
CL-tRCD- tRP	4-4-		5-5-		6-6-		4-4-		5-5-		Units
Parameter	Min.	Max.									
tRCD	10	_	12.5	-	15	-	12	-	15	-	ns
tRP1	10	_	12.5	-	15	-	12	-	15	-	ns
tRC	55	-	57. 5	-	60	-	57	-	60	-	ns
tRAS	45	70000	45	70000	45	70000	45	70000	45	70000	ns
tCK(avg) @CL=2	Optional		ns								
tCK(avg) @CL=3	Optional		ns								
tCK(avg) @CL=4	2. 5	8	3. 75	8	3. 75	8	3	8	3. 75	8	ns
tCK(avg) @CL=5	2. 5	8	2. 5	8	3	8	3	8	3	8	ns
tCK(avg) @CL=6	Optional		Optional		2. 5	8	Optional		Optional		ns

表 7.13 DDR2-667 和 DDR2-800 时序参数

Domenton	C1	DDR2	2–667	DDR2	2-800	Units	
Parameter	Symbol	Min.	Max.	Min.	Max.		
Average clock period	tCK(avg)	3000	8000	2500	8000	ps	
Average clock HIGH pulse width	tCH(avg)	0. 48	0. 52	0.48	0. 52	tCK(avg	
Average clock LOW pulse width	tCL(avg)	0. 48	0. 52	0.48	0. 52	tCK(avg	
Write command to DQS associated clock edge	WL	RL	- 1	RL	- 1	nCK	
DQS latching rising transitions to associated clock edges	tDQSS	-0. 25	0. 25	-0. 25	0. 25	tCK(avg	
DQS falling edge to CK setup time	tDSS	0.2	X	0.2	х	tCK(avg	
DQS falling edge hold time from CK	tDSH	0. 2	X	0.2	х	tCK(avg	
DQS input HIGH pulse width	tDQSH	0.35	X	0.35	Х	tCK(avg	
DQS input LOW pulse width	tDQSL	0. 35	X	0.35	х	tCK(avg	
Write preamble	tWPRE	0.35	Х	0.35	х	tCK(avg	
Write postamble	tWPST	0.4	0.6	0. 4	0.6	tCK(avg	
Address and control input setup time	tIS(base)	200	X	175	X	ps	
Address and control input hold time	tIH(base)	275	X	250	Х	ps	
Control & Address input pulse width for each input	tIPW	0.6	Х	0.6	х	tCK(avg	
DQ and DM input setup time	tDS(base)	100	X	50	X	ps	
DQ and DM input hold time	tDH(base)	175	X	125	Х	ps	
DQ and DM input pulse width for each input	tDIPW	0.35	Х	0.35	Х	tCK(avg	
DQ output access time from CK/CK	tAC	-450	450	-400	400	ps	
DQS output access time from CK/CK	tDQSCK	-400	400	-350	350	ps	
Data-out high- impedance time from CK/CK	tHZ	X	tAC, max	Х	tAC, max	ps	
DQS/DQS low- impedance time from CK/CK	tLZ (DQS)	tAC, min	tAC, max	tAC, min	tAC, max	ps	
DQ low-impedance time from CK/CK	tLZ(DQ)	2 x tAC, min	tAC, max	2 x tAC, min	tAC, max	ps	

DQS-DQ skew for DQS and associated DQ signals	tDQSQ	X	240	X	200	ps
CK half pulse width	tHP	Min(tCH(abs), tCL(abs)	X	Min(tCH(abs),tCL(abs))	X	ps
DQ hold skew factor	tQHS	Х	340	X	300	ps
DQ/DQS output hold time from DQS	tQH	tHP - tQHS	X	tHP - tQHS	X	ps
Read preamble	tRPRE	0.9	1.1	0.9	1. 1	tCK(avg)
Read postamble	tRPST	0.4	0.6	0.4	0.6	tCK(avg)
Activate to activate command period for 1KB page size products	tRRD	7. 5	X	7. 5	х	ns
Activate to activate command period for 2KB page size products	tRRD	10	X	10	Х	ns
Four Activate Window for 1KB page size products	tFAW	37.5	X	35	X	ns
Four Activate Window for 2KB page size products	tFAW	50	X	45	X	ns
CAS to CAS command delay	tCCD	2	X	2	X	nCK
Write recovery time	tWR	15	X	15	X	ns
Auto precharge write recovery + precharge time	tDAL	WR + tnRP	X	WR + tnRP	X	nCK
Internal write to read command delay	tWTR	7. 5	X	7. 5	Х	ns
Internal read to precharge command delay	tRTP	7. 5	х	7. 5	X	ns
CKE minimum pulse width (HIGH and LOW pulse width)	tCKE	3	X	3	X	nCK
Exit self refresh to a non-read command	tXSNR	tRFC + 10	X	tRFC + 10	X	ns
Exit self refresh to a read command	tXSRD	200	X	200	Х	nCK
Exit precharge power down to any command	tXP	2	X	2	X	nCK
Exit active power down to read command	tXARD	2	X	2	X	nCK
Exit active power down to read command (slow exit, lower power)	tXARDS	7-AL	х	8-AL	Х	nCK

ODT turn-on delay	tAOND	2	2	2	2	nCK
ODT turn-on	tAON	tAC, min	tAC, max + 0.7	tAC, min	tAC, max + 0.7	ns
ODT turn-on (Power- Down mode)	tAONPD	tAC, min + 2	2 x tCK(avg) + tAC, max +1	tAC, min + 2	2 x tCK(avg) + tAC, max +	ns
ODT turn-off delay	tAOFD	2. 5	2. 5	2. 5	2. 5	nCK
ODT turn-off	tAOF	tAC, min	tAC, max + 0.6	tAC, min	tAC, max + 0.6	ns
ODT turn-off (Power-Down mode)	tAOFPD	tAC, min + 2	2.5 x tCK(avg) + tAC, max +	tAC, min + 2	2.5 x tCK(avg) + tAC, max +	ns
ODT to power down entry latency	tANPD	3	X	3	X	nCK
ODT Power Down Exit Latency	tAXPD	8		8		nCK
Mode register set command cycle time	tMRD	2	X	2	X	nCK
MRS command to ODT update delay	tMOD	0	12	0	12	ns
OCD drive mode output delay	tOIT	0	12	0	12	ns
Minimum time clocks remains ON after CKE asyn-chronously drops LOW	tDelay	tIS+ tCK(avg)+ tIH	X	tIS + tCK(avg) + tIH	X	ns

7. 4 DDR3 内存接口特性

7.4.1 推荐的直流工作条件

表 7.14 推荐的直流工作条件

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vdd	Supply Voltage	1.425	1.5	1.575	V
VddQ	Supply Voltage for Output	1.425	1.5	1.575	V

7.4.2 交流和直流逻辑输入电平

7.4.2.1. 单端信号的交流和直流输入电平

表 7.15 控制信号和地址单端信号的交流和直流输入电平

Causala al	Donomotor.	DDR3-800/10	TI:4	
Symbol	Parameter	Min	Max	Unit
VIH.CA(DC100)	DC input logic high	Vref + 0.100	VDD	V
VIL.CA(DC100)	DC input logic low	VSS	Vref - 0.100	V
VIH.CA(AC175)	AC input logic high	Vref + 0.175	Note 2	V

龙芯中科技术有限公司

VIL.CA(AC175)	AC input logic low	Note 2	Vref - 0.175	V
VIH.CA(AC150)	AC input logic high	Vref + 0.150	Note 2	V
VIL.CA(AC150)	AC input logic low	Note 2	Vref - 0.150	V
VRefCA(DC)	Reference Voltage for ADD, CMD inputs	0.49 * VDD	0.51 * VDD	V

表 7.16 DQ和DM单端信号的交流和直流输入电平

Crimbal	Donomoton	DDR3-800, DDR3-1066		DDR3-1333	Unit	
Symbol	rarameter	Min	Max	Min	Max	Unit
VIH.DQ(DC100)	DC input logic high	Vref + 0.100	VDD	Vref + 0.100	VDD	V
VIL.DQ(DC100)	DC input logic low	VSS	Vref - 0.100	VSS	Vref - 0.100	V
VIH.DQ(AC175)	AC input logic high	Vref + 0.175	_	-	-	V
VIL.DQ(AC175)	AC input logic low	-	Vref - 0.175	-	-	V
VIH.DQ(AC150)	AC input logic high	Vref + 0.150	-	Vref + 0.150	-	V
VIL.DQ(AC150)	AC input logic low	-	Vref - 0.150	-	Vref - 0.150	V
	Reference Voltage for DQ, DM inputs	0.49 * VDD	0.51 * VDD	0.49 * VDD	0.51 * VDD	V

7.4.2.2. 差分信号的交流和直流输入电平

图 7.7 ac-swing 和 ac-level 时间点(tDVA)的差分定义

Country of	Do	DDR3-8	TI24	
Symbol	Parameter	Min	Max	Unit
VIHdiff	Differential input high	+ 0.200	note 3	V
VILdiff	Differential input logic low	Note 3	- 0.200	V
VIHdiff(ac)	Differential input high ac	2 x (VIH(ac) - Vref)	Note 3	V
VILdiff(ac)	Differential input low ac	note 3	2 x (VIL(ac) - Vref)	V

表 7.17 交流和直流的差分输入电平

7.4.2.3. 差分信号输入的交叉点电压

为了保证严格的建立和保持时钟和选通时间以及输出偏差参数,每个交叉点电压的差分输入信号(CK, CK#和DQS, DQS#)必须满足表 28 的要求。差分输入的交叉点电压VIX的测量是从实际的交叉点的和补偿信号的VDD和VSS之间的中间点处获得。

图 7.8 Vix 定义

表 7.18 差分输入信号(CK, DQS)交叉点电压

Symbol	Parameter	DDR3-800, DD DDR3-1333, D	Unit	
		Min.	Max.	
VIX	Differential Input Cross Point Voltage relative to VDD/2 for	-150	150	mV
VIA	CK,CK#		175	mV
VIX	Differential Input Cross Point Voltage relative to VDD/2 for DQS, DQS#	-150	150	mV

7.4.3 交流和直流逻辑输出电平

7.4.3.1. 单端信号的交流和直流输出电平

Symbol	Parameter	DDR3-800, 1066, 1333, and 1600	Unit				
VOH(DC)	DC output high measurement level (for IV curve linearity)	0.8 x VDDQ	V				
VOM(DC)	DC output mid measurement level (for IV curve linearity)	0.5 x VDDQ	V				
VOL(DC)	DC output low measurement level (for IV curve linearity)	0.2 x VDDQ	V				
VOH(AC)	AC output high measurement level (for output SR)	VTT + 0.1 x VDDQ	V				
VOL(AC)	AC output low measurement level (for output SR)	VTT - 0.1 x VDDQ	V				

表 7.19 单端信号的交流直流输出电平

7.4.3.2. 差分信号的交流和直流输出电平

表 7.20 差分信号的交流和直流输出电平

Symbol	Parameter	DDR3-800, 1066, 1333, and 1600	Unit
VOHdiff(AC)	AC differential output high measurement level (for output SR)	+ 0.2 x VDDQ	V
VOLdiff(AC)	AC differential output low measurement level (for output SR)	- 0.2 x VDDQ	V

7.4.3.3. 单端信号的输出斜率

作为时序测量的参考负载,单端信号的下降沿和上升沿输出斜率的定义和测量在VOL (AC) 和VOH (AC) 之间,如表 7.21 和图 7.9 所示。

表 7.21 单端信号输出斜率的定义

Description	Measi	ured	Defined by
Description	from	to	Defined by
Single-ended output slew rate for rising edge	VOL(AC)	VOH(AC)	[VOH(AC) -VOL(AC)] / DeltaTRse
Single-ended output slew rate for falling edge	VOH(AC)	VOL(AC)	[VOH(AC) - VOL(AC)] / DeltaTFse

图 7.9 单端输出斜率的定义

表 7.22 单端的输出斜率

Dovomotov	Cymbal	DDR3-800		DDR3-1066		Unit
Parameter	Symbol	Min.	Max.	Min.	Max.	UIII
Single-ended Output Slew Rate	SRQse	2.5	5	2.5	5	V/ns

7.4.3.4. 差分输出斜率

表 7.23 差分输出斜率的定义

Description	Meas	sured	Defined by
Description	from to		Defined by
Differential output slew rate for rising edge	VOLdiff(AC)	VOHdiff(AC)	[VOHdiff(AC) - VOLdiff(AC)]/DeltaTRdiff
Differential output slew rate for falling edge	VOHdiff(AC)	VOLdiff(AC)	[VOHdiff(AC) - VOLdiff(AC)]/DeltaTFdiff

图 7.10 差分输出斜率的定义

表 7.24 差分输出斜率

		DDI	R3-800	DDR	3-1066	DDR	3-1333	DDR3-1600		Units
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Units
Differential Output Slew Rate	SRQdiff	5	10	5	10	5	10	TBD	10	V/ns

7.4.3.5. 上冲和下冲的规范

表 7.25 地址和控制引脚的交流上冲/下冲规范

Parameter	DDR3- 800	DDR3- 1066	DDR3- 1333	DDR3- 1600	Units
Maximum peak amplitude allowed for overshoot area.	0.4	0.4	0.4	0.4	V
Maximum peak amplitude allowed for undershoot area.	0.4	0.4	0.4	0.4	V
Maximum overshoot area above VDD	0.67	0.5	0.4	0.33	V-ns
Maximum undershoot area below VSS	0.67	0.5	0.4	0.33	V-ns
(A0-A15, BA0-BA3, CS#, RAS	S#. CAS#.	WE#. CKI	E. ODT)		

图 7.11 地址和控制的上冲和下冲定义

表 7.26 时钟,数据,选通和屏蔽信号的交流上冲/下冲规范

	DDR3- 800	DDR3- 1066	DDR3- 1333	DDR3- 1600	Units
Maximum peak amplitude allowed for overshoot area.	0.4	0.4	0.4	0.4	V
Maximum peak amplitude allowed for undershoot area.	0.4	0.4	0.4	0.4	V
Maximum overshoot area above VDDQ	0.25	0.19	0.15	0.13	V-ns
Maximum undershoot area below VSSQ	0.25	0.19	0.15	0.13	V-ns
(CK, CK#, DQ, DQS,	DQS#, D	M)			

图 7.12 时钟,数据,选通和屏蔽信号的交流上冲和下冲定义

7.4.3.6. **ODT 时序定义**

表 7.27 ODT 时序定义

Symbol	Begin Point Definition	End Point Definition	Figure
tAON	Rising edge of CK -CK# defined by the end point of ODTLon	Extrapolated point at VSSQ	Figure 103
tAONPD	Rising edge of CK -CK# with ODT being first registered high	Extrapolated point at VSSQ	Figure 104
tAOF	Rising edge of CK -CK#defined by the end point of ODTLoff	End point: Extrapolated point at VRTT_Nom	Figure 105
tAOFPD	Rising edge of CK -CK# with ODT being first registered low	End point: Extrapolated point at VRTT_Nom	Figure 106
tADC	Rising edge of CK -CK# defined by the end point of ODTLcnw, ODTLcwn4 or ODTLcwn8	End point: Extrapolated point at VRTT_Wr and VRTT_Nom respectively	Figure 107

表 7.28 ODT 时序测量的参考设置

Measured Parameter	RTT_Nom Setting	RTT_Wr Setting	VSW1[V]	VSW2[V]
tAON	RZQ/4	NA	0.05	0.10
IAON	RZQ/12	NA	0.10	0.20
tAONPD	RZQ/4	NA	0.05	0.10
IAONPD	RZQ/12	NA	0.10	0.20
AAOE	RZQ/4	NA	0.05	0.10
tAOF	RZQ/12	NA	0.10	0.20
44 OEDD	RZQ/4	NA	0.05	0.10
tAOFPD	RZQ/12	NA	0.10	0.20
tAD	RZQ/12	RZQ/2	0.20	0.30

Begin point: Rising edge of CK - CK defined by the end point of ODTLon

图 7.17 tADC 的定义

7. 4. 4 IDD 和 IDDQ 规范的参数和测试条件

表 7.29 IDD 和 IDDQ 测量循环模式的时序

	DDR	3-800	DI	DR3-10	66		DDI	R3-13	33		DDR	3-1600		
Symbol	5-5-5	6-6-6	6-6-6	7-7-7	8-8-8	7-7-7	8-8-8	9-9-9	10-10- 10	8-8-8	9-9-9	10-10-10	11-11-11	Unit
tCK	2	.5		1.875				1.5			1	.25		ns
CL	5	6	6	7	8	7	8	9	10	8	9	10	11	nCK
nRCD	5	6	6	7	8	7	8	9	10	8	9	10	11	nCK
nRC	20	21	26	27	28	31	32	33	34	36	37	38	39	nCK
nRAS	1	5		20				24			2	28		nCK
nRP	5	6	6	7	8	7	8	9	10	8	9	10	11	nCK

-VSSQ-

EATT	1KBpagesize	16	20	20	24	nCK
nFAW	2KB page size	20	27	30	32	nCK
"DDD	1KB page size	4	4	4	5	nCK
nRRD	2KB page size	4	6	5	6	nCK
nR	RFC 512 Mb	36	48	60	72	nCK
n	RFC 1 Gb	44	59	74	88	nCK
n	RFC 2 Gb	64	86	107	128	nCK
n	RFC 4 Gb	120	160	200	240	nCK
n	RFC 8 Gb	140	187	234	280	nCK

7.4.5 输入/输出电容

表 7.30 输入/输出电容

Danamatan	Ch al	DDR	3-800	DDR	3-1066	DDR	3-1333	DDR	3-1600	TI:4
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Units
Input/output capacitance (DQ, DM, DQS, DQS#, TDQS,TDQS#)	Сю	1.5	3.0	1.5	2.7	1.5	2.5	1.5	2.3	pF
Input capacitance, CK and CK#	Сск	0.8	1.6	0.8	1.6	0.8	1.4	0.8	1.4	pF
Input capacitance delta, CK and CK#	CDCK	0	0.15	0	0.15	0	0.15	0	0.15	pF
Input/output capacitance delta DQS and DQS#	CDDQS	0	0.2	0	0.2	0	0.15	0	0.15	pF
Input capacitance, (CTRL, ADD, CMD input-only pins)	Cı	0.75	1.4	0.75	1.35	0.75	1.3	0.75	1.3	pF
Input capacitance delta, (All CTRL input-only pins	CDI_CTRL	-0.5	0.3	-0.5	0.3	-0.4	0.2	-0.4	0.2	pF
Input capacitance delta, (All ADD/ CMD input-only pins)	CDI_ADD_CM D	-0.5	0.5	-0.5	0.5	-0.4	0.4	-0.4	0.4	pF
Input/output capacitance delta, DQ, DM, DQS, DQS#, TDQS, TDQS#	Сыо	-0.5	0.3	-0.5	0.3	-0.5	0.3	-0.5	0.3	pF
Input/output capacitance of ZQ pin	CzQ	-	3	-	3	-	3	-	3	pF

7.4.6 不同器件密度下的刷新参数

表 7.31 不同器件密度下的刷新参数

Parameter	Symbol		512Mb	1Gb	2Gb	4Gb	8Gb	Unit
REF command to ACT or REF command time		tRFC	90	110	160	300	350	ns
Average periodic refresh interval	tREFI	0≤TCASE≤85	7.8	7.8	7.8	7.8	7.8	us
	IKEFI	85 <tcase≤95< td=""><td>3.9</td><td>3.9</td><td>3.9</td><td>3.9</td><td>3.9</td><td>us</td></tcase≤95<>	3.9	3.9	3.9	3.9	3.9	us

7. 4. 7 标准的速度分级

表 7.32 DDR3-800 Speed Bins and Operating Conditions

	Speed Bin		DI	DR3-800D	DI	DR3-800E		
	CL - nRCD - nR	P		5-5-5 6-6-		6-6-6		
Pa	rameter	Symbol	Min.	Max.	Min.	Max.		
Internal read com	mand to first data	tAA	12.5	20	15	20	ns	
ACT to internal re	ead or write delay time	tRCD	12.5	_	15	_	ns	
PRE command pe	eriod	tRP	12.5	_	15	_	ns	
ACT to ACT or R	EF command period	tRC	50	_	52.5	_	ns	
ACT to PRE com	mand period	tRAS	37.5	9 * tREFI	37.5	9 * tREFI	ns	
CL = 5	CWL = 5	tCK(AVG)	2.5	3.3	3.0	3.3	ns	
CL = 6	CWL = 5	tCK(AVG)	2.5	3.3	2.5	3.3	ns	
Supported CL Set	ttings			5, 6	5, 6		nCK	
Supported CWL S	Settings			5		nCK		

表 7.33 DDR3-1066 Speed Bins and Operating Conditions

	Speed Bi	n	DD	R3-1066E	DDF	R3-1066F	DD	R3-1066G	
(CL - nRCD –	nRP		6-6-6	,	7-7-7		8-8-8	Unit
Par	ameter	Symbol	Min.	Max.	Min.	Max.	Min.	Max.	
Internal re to first dat	ead command a	tAA	11.25	20	13.125	20	15	20	ns
ACT to in	ternal read elay time	tRCD	11.25	_	13.125	_	15	_	ns
PRE com	nand period	tRP	11.25	_	13.125	_	15	_	ns
ACT to Accommand	CT or REF period	tRC	48.75	_	50.625	_	52.5	_	ns
ACT to Pl period	RE command	tRAS	37.5	9 * tREFI	37.5	9 * tREFI	37.5	9 * tREFI	ns
CL = 5	CWL = 5	tCK(AVG)	2.5	3.3	3.0	3.3	3.0	3.3	ns
CL=3	CWL = 6	tCK(AVG)	R	teserved	Re	eserved	R	eserved	ns
CL = 6	CWL = 5	tCK(AVG)	2.5	3.3	2.5	3.3	2.5	3.3	ns
CL = 6	CWL = 6	tCK(AVG)	1.875	<2.5	Re	eserved	R	eserved	ns
CI 7	CWL = 5	tCK(AVG)	R	eserved	Re	eserved	R	eserved	ns
CL = 7	CWL = 6	tCK(AVG)	1.875	<2.5	1.875	< 2.5	R	eserved	ns
CI 0	CWL = 5	tCK(AVG)	R	1.875 <2.5 Reserved		eserved	R	eserved	ns
CL = 8	CWL = 6	tCK(AVG)	1.875	<2.5	1.875	<2.5	1.875	<2.5	ns
Supported	CL Settings			5,6,7,8 5,6,7,8		,6,7,8	5,6,8		nCK
Supported	CWL Setting	gs		5,6		5,6		5,6	nCK

表 7.34 DDR3-1333 Speed Bins and Operating Conditions

SpeedBin	DDR3-1333F (optional)	DDR3-1333G	DDR3-1333H	DDR3-1333J (optional)	Unit
CL-nRCD-nRP	7-7-7		9-9-9	10-10-10	

Par	ameter	Symbol	min	max	min	max	min	max	min	max			
	nd command to st data	tAA	10.5	20	12	20	13.5(13.125)5,1	20	15	20	ns		
	ternal read or delay time	<i>t</i> RCD	10.5	_	12		13.5(13.125)5,1		15		ns		
PRE com	mand period	<i>t</i> RP	10.5	_	12	_	13.5(13.125)5,1	_	15	_	ns		
	ACT or REF and period	<i>t</i> RC	46.5	_	48	_	49.5(49.125)5,1	_	51	_	ns		
	RE command eriod	tRAS	36	9*tREFI	36	9*tREFI	36	9*tREFI	36	9*tREFI	ns		
CL=5	CWL=5	tCK(AVG)	2.5	3.3	2.5	3.3	3.0	3.3	3.0	3.3	ns		
CL-3	CWL=6,7	tCK(AVG)	Res	erved	Re	served	Reserv	ed	Re	served	ns		
	CWL=5	tCK(AVG)	2.5	3.3	2.5	3.3	2.5	3.3	2.5	3.3	ns		
CL=6	CWL=6	tCK(AVG)	1.875	<2.5	Re	served	Reserv	ed	Re	served	ns		
	CWL=7	tCK(AVG)	Res	erved	Reserved		Reserved		Re	served	ns		
	CWL=5	tCK(AVG)	Res	erved	Re	served	Reserv	ed	Re	served	ns		
	GTT (1077		1077		1.875	<2.5	_				
CL=7	CWL=6	tCK(AVG)	1.875	<2.5	1.875	<2.5	(Optiona	l)5,11	Re	served	ns		
	CWL=7	tCK(AVG)	1.5	<1.875	Re	served	Reserv	ed	Re	served	ns		
	CWL=5	tCK(AVG)	Res	erved	Re	served	Reserv	ed	Re	served	ns		
CL=8	CWL=6	tCK(AVG)	1.875	<2.5	1.875	<2.5	1.875	<2.5	1.875	< 2.5	ns		
	CWL=7	tCK(AVG)	1.5	<1.875	1.5	<1.875	Reserv	ed	Re	served	ns		
CI 0	CWL=5,6	tCK(AVG)	Res	erved	Re	served	Reserv	ed	Re	served	ns		
CL=9	CWL=7	tCK(AVG)	1.5	<1.875	1.5	<1.875	1.5 <1.		1.5 <1.875		Re	served	ns
	CWL=5,6	tCK(AVG)	Res	erved	Re	served	Reserv	ed	Re	served	ns		
CL=10	CWI -7	tow (Tree)	1.5	<1.875	1.5	<1.875	1.5	<1.875			ns		
	CWL=7	tCK(AVG)	(Opt	tional)	(Op	tional)	(Option	ıal)	1.5 <1.875		ns		
Sup	ported CL Setti	ngs	5,6,7,	8,9,(10)	5,6,7	,8,9,(10)	5,6,8,(7),9	9,(10)	5,0	5,8,10	пСК		
Supp	orted CWL Sett	ings	5,	6, 7	5	, 6, 7	5, 6,	7	5	, 6, 7	пСК		

表 7.35 DDR3-1600 Speed Bins and Operating Conditions

	SpeedBin		DDR3-3		DDR3-	1600H	DDR3-	1600J	DDR3-16	00K	
(CL-nRCD-nR	RP.	8-8	-8	9-9	-9	10-10)-10	11-11-1	1	Unit
Par	ameter	Symbol	min	max	min	max	min	max	min	max	
	ead command est data	<i>t</i> AA	10	20	11.25	20	12.5	20	13.75(13.125)5,	20	ns
	internal read delay time	<i>t</i> RCD	10	_	11.25	_	12.5	_	13.75(13.125)5, 11	_	ns
PRE com	mand period	<i>t</i> RP	10	_	11.25	_	12.5	_	13.75(13.125)5,	_	ns
	ACT or REF nd period	<i>t</i> RC	45		46.25	_	47.5	_	48.75(48.125)5, 11	_	ns
	RE command riod	<i>t</i> RAS	35	9*tREFI	35	9*tREFI	35	9*tREFI	35	9 * tREFI	ns
CL = 5	CWL=5	tCK(AVG)	2.5	3.3	2.5	3.3	2.5	3.3	3.0	3.3	ns
CL=3	CWL=6,7,8	tCK(AVG)	Reser	ved	Rese	rved	Rese	rved	Reserve	ed	ns
	CWL=5	tCK(AVG)	2.5	3.3	2.5	3.3	2.5	3.3	2.5	3.3	ns
CL = 6	CWL=6	tCK(AVG)	1.875	<2.5	1.875	<2.5	Reserved	Reserved	d ns 1,2,3		
	CWL=7,8	tCK(AVG)	Reserved		Reserved		Reserved		Reserved		ns

İ	1		i i		İ	l	İ	İ		i i	
	CWL=5	tCK(AVG)	Reserved		Reserved		Reserved		Reserved		ns
									1.875	< 2.5	
CL = 7	CWL=6	tCK(AVG)	1.875	<2.5	1.875	<2.5	1.875	<2.5			ns
CL /									(Optional)5,11		
	CWL=7	tCK(AVG)	1.5	<1.875	Reser	ved	Resei	ved	Reserve	ed	ns
	CWL=8	tCK(AVG)	Reser	ved	Reser	ved	Reser	ved	Reserve	ed	ns
	CWL=5	tCK(AVG)	Reser	ved	Reser	ved	Resei	ved	Reserve	ed	ns
	CWL=6	tCK(AVG)	1.875	<2.5	1.875	<2.5	1.875	<2.5	1.875	< 2.5	ns
CL = 8	CWL=7	tCK(AVG)	1.5	<1.875	1.5	<1.875	Reserved	Reserved	ns	1,2,3,4,8	
	CWL=8	tCK(AVG)	1.25	<1.5	Reser	ved	Resei	ved	Reserve	ed	ns
	CWL=5,6	tCK(AVG)	Reser	ved	Reser	ved	Resei	ved	Reserve	ed	ns
									1.5	< 1.875	
CL = 9	CWL=7	tCK(AVG)	1.5	<1.875	1.5	<1.875	1.5	<1.875			ns
									(Optional)5,11		
	CWL=8	tCK(AVG)	1.25	<1.5	1.25	<1.5	Resei	ved	Reserve	ed	ns
	CWL=5,6	tCK(AVG)	Reser	ved	Reser	ved	Resei	ved	Reserve	ed	ns
CL = 10	CWL=7	tCK(AVG)	1.5	<1.875	1.5	<1.875	1.5	<1.875	1.5	<1.875	ns
	CWL=8	tCK(AVG)	1.25	<1.5	1.25	<1.5	1.25	<1.5	Reserved		ns
	CWL=5,6,7	tCK(AVG)	Reserved		Reserved		Reserved		Reserved		ns
CL = 11	CMI =6	town Nice:	1.25	<1.5	1.25	<1.5	1.25	<1.5	1.25	< 1.5	ns
	CWL=8	tCK(AVG)	(Optio	onal)	(Optio	onal)	(Optio	onal)	1.25	< 1.5	ns
Sup	ported CL Set	ttings	5,6,7,8,9,	10,(11)	5,6,7,8,9	,10,(11)	5,6,7,8	,9,10,	5,6,7,8,9,10	0,(11)	пСК
Supp	orted CWL Se	ettings	5,6,7	7,8	5,6,	7,8	5,6,	7,8	5,6,7,8		nck

7. 4. 8 DDR3 的时序参数

表 7.36 Timing Parameters by Speed Bin

T		DDR3-800)	DDR3-106	66	DDR3-1	1333	DDR3-1	1600	***
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Units
Clock Timing										
Minimum Clock Cycle Time (DLL off mode)	tCK(DLL_OFF)	8	-	8	-	8	1	8	-	ns
Average Clock Period	tCK(avg)									ps
Average high pulse width	tCH(avg)	0.47	0.53	0.47	0.53	0.47	0.53	0.47	0.53	tCK(avg)
Average low pulse width	tCL(avg)	0.47	0.53	0.47	0.53	0.47	0.53	0.47	0.53	tCK(avg)
Absolute Clock Period	tCK(abs)	tCK(avg)min + tJIT(per)min	tCK(avg) max + tJIT(per) max	tCK(avg)min + tJIT(per)min	tCK(avg) max + tJIT(per) max	tCK(avg)min + tJIT(per)min	tCK(avg) max + tJIT(per) max	tCK(avg)min + tJIT(per)min	tCK(avg) max + tJIT(per) max	ne
Absolute clock HIGH pulse width	tCH(abs)	0.43	-	0.43	-	0.43	-	0.43	-	tCK(avg)
Absolute clock LOW pulse width	tCL(abs)	0.43	-	0.43	-	0.43	-	0.43	-	tCK(avg)
Clock Period Jitter	JIT(per)	-100	100	-90	90	-80	80	-70	70	ps
Clock Period Jitter during DLL locking period	tJIT(per,lck)	-90	90	-80	80	-70	70	-60	60	ps
Cycle to Cycle Period Jitter	tJIT(cc)	200		180		160		140		ps
Cycle to Cycle Period Jitter during DLL locking period	tJIT(cc,lck)	180		160		140		120		ps
Duty Cycle Jitter	tJIT(duty)	-	-	-	-	-	-	-	-	ps

Cumulative error across 2 cycles	tERR(2per)	-147	147	-132	132	-118	118	-103	103	ps
Cumulative error across 3 cycles	tERR(3per)	-175	175	-157	157	-140	140	-122	122	ps
Cumulative error across 4 cycles	tERR(4per)	-194	194	-175	175	-155	155	-136	136	ps
Cumulative error across 5 cycles	tERR(5per)	-209	209	-188	188	-168	168	-147	147	ps
Cumulative error across 6 cycles	tERR(6per)	-222	222	-200	200	-177	177	-155	155	ps
Cumulative error across 7 cycles	tERR(7per)	-232	232	-209	209	-186	186	-163	163	ps
Cumulative error across 8 cycles	tERR(8per)	-241	241	-217	217	-193	193	-169	169	ps
Cumulative error across 9 cycles	tERR(9per)	-249	249	-224	224	-200	200	-175	175	ps
Cumulative error across 10 cycles	tERR(10per)	-257	257	-231	231	-205	205	-180	180	ps
Cumulative error across 11 cycles	tERR(11per)	-263	263	-237	237	-210	210	-184	184	ps
Cumulative error across 12 cycles	tERR(12per)	-269	269	-242	242	-215	215	-188	188	ps
Cumulative error across n = 13, 14 49, 50 cycles	tERR(nper)	tERR(nper)min = (1 + 0.68ln(n)) * tJIT(per)min tERR(nper)max = (1 + 0.68ln(n)) * tJIT(per)max	ps	24						
Data Timing		1			ı				ı	1

47

DQS, DQS# to DQ skew, per group, per access	tDQSQ	-	200	-	150	-	125	-	100	ps
DQ output hold time from DQS, DQS#	tQH	0.38	-	0.38	-	0.38	-	0.38	-	tCK(avg)
DQ low-impedance time from CK, CK#	tLZ(DQ)	-800	400	-600	300	-500	250	-450	225	ps
DQ high impedance time from CK, CK#	tHZ(DQ)	-	400	-	300	-	250	-	225	ps
Data setup time to DQS, DQS# referenced to Vih(ac) / Vil(ac) levels	tDS(base)AC175	75		25		-		-		ps
Data setup time to DQS, DQS# referenced to Vih(ac) / Vil(ac) levels	tDS(base)AC150	125		75		30		10		ps
Data hold time from DQS, DQS# referenced to Vih(dc) / Vil(dc) levels	tDH(base)DC100	150		100		65		45		ps
DQ and DM Input pulse width for each input	tDIPW	600	-	490	-	400	-	360	-	ps
Data Strobe Timing										
DQS,DQS# differential READ Preamble	tRPRE	0.9	Note19	0.9	Note19	0.9	Note19	0.9	Note19	tCK(avg)
DQS, DQS# differential READ Postamble	tRPST	0.3	Note11	0.3	Note11	0.3	Note11	0.3	Note11	tCK(avg)
DQS, DQS# differential output high time	tQSH	0.38	-	0.38	-	0.40	-	0.40	-	tCK(avg)
DQS, DQS# differential output low time	tQSL	0.38	-	0.38	-	0.40	-	0.40	-	tCK(avg)
DQS, DQS# differential WRITE Preamble	tWPRE	0.9	-	0.9	-	0.9	-	0.9	-	tCK(avg)
DQS, DQS# differential WRITE Postamble	tWPST	0.3	-	0.3	-	0.3	-	0.3	-	tCK(avg)
DQS, DQS# rising edge output access time from rising CK, CK#	tDQSCK	-400	400	-300	300	-255	255	-225	225	ps

DQS and DQS# low-impedance time (Referenced from RL - 1)	tLZ(DQS)	-800	400	-600	300	-500	250	-450	225	ps
DQS and DQS# high- impedance time (Referenced from RL + BL/2)	tHZ(DQS)	-	400	-	300	-	250	-	225	ps
DQS, DQS# differential input low pulse width	tDQSL	0.45	0.55	0.45	0.55	0.45	0.55	0.45	0.55	tCK(avg)
DQS, DQS# differential input high pulse width	tDQSH	0.45	0.55	0.45	0.55	0.45	0.55	0.45	0.55	tCK(avg)
DQS, DQS# rising edge to CK, CK# rising edge	tDQSS	-0.25	0.25	-0.25	0.25	-0.25	0.25	-0.27	0.27	tCK(avg)
DQS, DQS# falling edge setup time to CK, CK# rising edge	tDSS	0.2	-	0.2	-	0.2	-	0.18	-	tCK(avg)
DQS, DQS# falling edge hold time from CK, CK# rising edge	tDSH	0.2	-	0.2	-	0.2	-	0.18	-	tCK(avg)
Command and Address	Timing									
DLL locking time	tDLLK	512	-	512	-	512	-	512	-	nCK
Internal READ Command to PRECHARGE Command delay	tRTP	max(4nCK, 7.5ns)	-	max(4nCK,7.5ns)	-	max(4nCK,7.5n s)	-	max(4nCK,7.5n s)	-	
Delay from start of internal write transaction to internal read command	tWTR	max(4nCK, 7.5ns)	-	max(4nCK,7.5ns)	-	max(4nCK,7.5n s)	-	max(4nCK,7.5n s)	-	
WRITE recovery time	tWR	15	-	15	-	15	-	15	-	ns
Mode Register Set command cycle time	tMRD	4	-	4	-	4	-	4	-	nCK
Mode Register Set command update delay	tMOD	max(12nCK, 15ns)	-	max(12nCK,15ns)	-	max(12nCK,15n s)	-	max(12nCK,15n s)	-	
ACT to internal read or write delay time	tRCD	-	-	-	-					
PRE command period	tRP	-	-	-	-					
ACT to ACT or REF command period	tRC	-	-	-	-					

CAS# to CAS# command delay	tCCD	4	-	4	-	4	-	4	-	nCK
Auto precharge write recovery + precharge time	tDAL(min)	WR + roundup(tRP / tCK(avg))	nCK							
Multi-Purpose Register Recovery Time	tMPRR	1	1	1	-	1	-	1	1	nCK
ACTIVE to PRECHARGE command period	tRAS	-	1	-	-					
ACTIVE to ACTIVE command period for 1KB page size	tRRD	max(4nCK,10ns)	-	max(4nCK,7.5ns)	-	max(4nCK,6ns)	-	max(4nCK,6ns)	-	
ACTIVE to ACTIVE command period for 2KB page size	tRRD	max(4nCK,10ns)	-	max(4nCK,10ns)	-	max(4nCK,7.5n s)	-	max(4nCK,7.5n s)	-	
Four activate window for 1KB page size	tFAW	40	-	37.5	-	30	-	30	-	ns
Four activate window for 2KB page size	tFAW	50	-	50	-	45	-	40	-	ns
Command and Address setup time to CK, CK# referenced to Vih(ac) / Vil(ac) levels	tIS(base)AC175	200		125		65		45		ps
Command and Address setup time to CK, CK# referenced to Vih(ac) / Vil(ac) levels	tIS(base)AC150	350		275		190		170		ps
Command and Address hold time from CK, CK# referenced to Vih(dc) / Vil(dc) levels	tIH(base)DC100	275		200		140		120		ps
Control and Address Input pulse width for each input	tIPW	900	-	780	-	620	-	560	-	ps
Calibration Timing										
Power-up and RESET calibration time	tZQinit	max(512nCK,640ns)	-	max(512nCK,640ns)	-	max(512nCK,64 0ns)	-	max(512nCK,64 0ns)	-	
Normal operation Full calibration time	tZQoper	max(256nCK,320ns)	-	max(256nCK,320ns)	-	max(256nCK,32 0ns)	-	max(256nCK,32 0ns)	-	

Normal operation Short calibration time	tZQCS	max(64nCK,80ns)	-	max(64nCK,80ns)	-	max(64nCK,80n s)	-	max(64nCK,80n s)	-	
Reset Timing										
Exit Reset from CKE HIGH to a valid command	tXPR	max(5nCK,tRFC(min)+ 10ns)	-	max(5nCK,tRFC(min)+10ns)	-	max(5nCK,tRF C(min)+10ns)	-	max(5nCK,tRF C(min)+10ns)	-	
Self Refresh Timings						l				
Exit Self Refresh to commands not requiring a locked DLL	tXS	max(5nCK, tRFC(min) + 10ns)	-	max(5nCK, tRFC(min) + 10ns)	-	max(5nCK, tRFC(min) + 10ns)	-	max(5nCK, tRFC(min) + 10ns)	-	
Exit Self Refresh to commands requiring a locked DLL	tXSDLL	tDLLK(min)	-	tDLLK(min)	-	tDLLK(min)	-	tDLLK(min)	-	nCK
Minimum CKE low width for Self Refresh entry to exit timing	tCKESR	tCKE(min) + 1 nCK	-	tCKE(min) + 1 nCK	-	tCKE(min) + 1 nCK	-	tCKE(min) + 1 nCK	-	
Valid Clock Requirement after Self Refresh Entry (SRE) or Power-Down Entry (PDE)	tCKSRE	max(5nCK,10ns)	-	max(5nCK,10ns)	-	max(5nCK,10ns	-	max(5nCK,10ns	-	
Valid Clock Requirement before Self Refresh Exit (SRX) or Power-Down Exit (PDX) or Reset Exit	tCKSRX	max(5nCK,10ns)	-	max(5nCK,10ns)	-	max(5nCK,10ns	-	max(5nCK,10ns	-	
Power Down Timings										
Exit Power Down with DLL on to any valid command; Exit Precharge Power Down with DLL frozen to commands not requiring a locked DLL	tXP	max(3nCK,7.5ns)	-	max(3nCK,7.5ns)	-	max(3nCK,6ns)	,	max(3nCK,6ns)	-	
Exit Precharge Power Down with DLL frozen to commands requiring a locked DLL	tXPDLL	max(10nCK,24ns)	-	max(10nCK,24ns)	-	max(10nCK,24n s)	-	max(10nCK,24n s)	-	
CKE minimum pulse width	tCKE	max(3nCK7.5ns)	-	max(3nCK,5.625ns)	-	max(3nCK,5.62 5ns)	-	max(3nCK,5ns)	-	

Command pass disable delay	tCPDED	1	_	1	-	1	-	1	-	nCK
Power Down Entry to Exit Timing	tPD	tCKE(min)	9*tREFI	tCKE(min)	9*tREFI	tCKE(min)	9*tREFI	tCKE(min)	9*tREFI	
Timing of ACT command to Power Down entry	tACTPDEN	1	-	1	-	1	-	1	-	nCK
Timing of PRE or PREA command to Power Down entry	tPRPDEN	1	-	1	-	1	-	1	-	nCK
Timing of RD/RDA command to Power Down entry	tRDPDEN	RL+4+1	-	RL+4+1	-	RL+4+1	-	RL+4+1	-	nCK
Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF)	tWRPDEN	WL+4+(tWR/tCK(avg))	-	WL+4+(tWR/tCK(av g))	-	WL+4+(tWR/tC K(avg))	-	WL+4+(tWR/tC K(avg))	-	nCK
Timing of WRA command to Power Down entry (BL8OTF, BL8MRS, BC4OTF)	tWRAPDEN	WL+4+WR+1	-	WL+4+WR+1	-	WL+4+WR+1	-	WL+4+WR+1	-	nCK
Timing of WR command to Power Down entry (BC4MRS)	tWRPDEN	WL+2+(tWR/tCK(avg))	-	WL+2+(tWR/tCK(av g))	-	WL+2+(tWR/tC K(avg))	-	WL+2+(tWR/tC K(avg))	-	nCK
Timing of WRA command to Power Down entry (BC4MRS)	tWRAPDEN	WL+2+WR+1	-	WL+2+WR+1	-	WL+2+WR+1	-	WL+2+WR+1	-	nCK
Timing of REF command to Power Down entry	tREFPDEN	1	-	1	-	1	-	1	-	nCK
Timing of MRS command to Power Down entry	tMRSPDEN	tMOD(min)	-	tMOD(min)	-	tMOD(min)	-	tMOD(min)	-	
ODT Timings										
ODT turn on Latency	ODTLon			WL-2	=CWL+A	L-2				nCK
ODT turn off Latency	ODTLoff			WL-2	=CWL+A	L-2				nCK
ODT high time without write command or with write command and BC4	ODTH4	4	-	4	-	4	-	4	-	nCK
ODT high time with Write command and BL8	ODTH8	6	-	6	-	6	-	6	-	nCK

Asynchronous RTT turn-on delay (Power-Down with DLL frozen)	tAONPD	2	8.5	2	8.5	2	8.5	2	8.5	ns
Asynchronous RTT turn-off delay (Power-Down with DLL frozen)	tAOFPD	2	8.5	2	8.5	2	8.5	2	8.5	ns
RTT turn-on	tAON	-400	400	-300	300	-250	250	-225	225	ps
RTT_Nom and RTT_WR turn- off time from ODTLoff reference	tAOF	0.3	0.7	0.3	0.7	0.3	0.7	0.3	0.7	tCK(avg)
RTT dynamic change skew	tADC	0.3	0.7	0.3	0.7	0.3	0.7	0.3	0.7	tCK(avg)
Write Leveling Timings	3	•								
First DQS/DQS# rising edge after write leveling mode is programmed	tWLMRD	40	-	40	-	40	-	40	-	nCK
DQS/DQS# delay after write leveling mode is programmed	tWLDQSEN	25	-	25	-	25	-	25	-	nCK
Write leveling setup time from rising CK, CK# crossing to rising DQS, DQS# crossing	tWLS	325	-	245	-	195	-	165	-	ps
Write leveling hold time from rising DQS, DQS# crossing to rising CK, CK# crossing	tWLH	325	-	245	-	195	-	165	-	ps
Write leveling output delay	tWLO	0	9	0	9	0	9	0	7.5	ns
Write leveling output error	tWLOE	0	2	0	2	0	2	0	2	ns

7.5 PCI-X 总线特性

7.5.1 推荐的直流工作条件

表 7.37 PCI-X 设备的直流规范

Sym	Parameter	Condition	PC	CI-X	Conve	3V ntional (ref)	Units
			Min.	Max.	Min.	Max.	
Vcc	Supply Voltage		3.0	3.6	3.0	3.6	V
Vih	Input High Voltage		0.5Vcc	Vcc+ 0.5	0.5Vcc	Vcc+ 0.5	V
Vil	Input Low Voltage		-0.5	0.35Vcc	-0.5	0.3Vcc	V
Vipu	Input Pull-up Voltage		0.7Vcc		0.7Vcc		V
Iil	Input Leakage Current	0 <vin<vcc< td=""><td></td><td>+10</td><td></td><td>+10</td><td>mA</td></vin<vcc<>		+10		+10	mA
Voh	Output High Voltage	Iout= -500mA	0.9Vcc		0.9Vcc		V
Vol	Output Low Voltage	Iout=1500mA		0.1Vcc		0.1Vcc	V
Cin	Input Pin Capacitance			8		10	pF
Cclk	CLK Pin Capacitance		5	8	5	12	pF
CIDSEL	IDSEL Pin Capacitance			8		8	pF
Lpin	Pin Inductance			15		20	nН
IOff	PME# input leakage	Vo ≤3.6V Vcc off or floating	-	1	-	1	mA

表 7.38 推荐的直流特性

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit		
Receiver characteristics								
VIH	High level voltage	-	2	-	-	V		
VIL	Low level voltage	-	-	-	0.8	V		
VHYST	Input hysteresis voltage	-	300	-	-	mV		
	Driver characteristics							
ROUT	Output impedance	VOL = 0.3V	-	50	-	Ω		
ROUT	Output impedance	VOH = VDDE3V3 - 0.3V	-	50	-	Ω		
	Weak input p	oull-up and pull-down characte	ristics					
1PU	Pull up current	$V_1 = 0V$	39	66	101	μΑ		
1PD	Pull down current	Vi= VDDE3V3	33	66	120	μΑ		
RPU	Equivalent pull-up resistance	Vi = 0V	36	50	76	ΚΩ		
RPD	Equivalent pull-down resistance	Vi= VDDE3V3	30	50	90	ΚΩ		

表 7.39 10 引脚的输入电容

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
C_{IN}	IO pin capacitance	25Ωoutput impedance	-	0.9	-	pF

50Ωoutput impedance	ı	1.0	-	
80Ωoutput impedance	-	1.2	-	

7.5.2 交流工作特性

表 7.40 推荐的交流特性

Symbol	Parameter	Condition	Min.	Max.	Unit
		PCI	-X		•
		Output Buffer I	Drive Currents		
		0 < Vcc-Vout ≤3.6V		-74(Vcc- Vout)	mA
	Switching	$0 < Vcc\text{-}Vout \le 1.2V$	-32 (Vcc-Vout)		mA
Ioh(AC)	Current High	1.2V < Vcc-Vout≤1.9V	-11 (Vcc-Vout) - 25.2		mA
		1.9V < Vcc-Vout≤3.6V	-1.8 (Vcc-Vout) - 42.7		mA
	Switching	0 ≤Vout ≤3.6V		100Vout	mA
Iol(AC)	Current	0 < Vout ≤1.3V	48 Vout		mA
	Low	1.3V < Vout ≤3.6V	5.7 Vout + 55		mA
		Clamp C	urrents		
	Low Clamp	-3V < Vin ≤-0.8875V	-40 + (Vin+1)/0.005		mA
Icl	Current	-0.8875V < Vin≤- 0.625V	-25 + (Vin+1)/0.015		mA
Ich	High Clamp	0.8875V ≤Vin-Vcc< 4V	40 + (Vin-Vcc-1) / 0.005		mA
		0.625V≤Vin-Vcc< 0.8875V	25 + (Vin-Vcc-1) / 0.015		mA
		66 MHz Conven	` /		
		AC Drive	Points		1
Ioh(AC)	Switching	Vout = 0.7Vcc		-32Vcc	mA
Ton(FIC)	Current High	Vout = 0.3Vcc	-12Vcc		mA
Iol(AC)	Switching	Vout = 0.18Vcc		38Vcc	mA
101(110)	Current Low	Vout = 0.6Vcc	16Vcc		mA
		Clamp C			_
Ich	High clamp	Vcc+4 >Vin ≥Vcc+1	25 + (Vin-Vcc-1)/ 0.015		mA
Icl	Low clamp current	-3 < Vin ≤-1	-25 + (Vin+1)/0.015		mA

表 7.41 输出信号的斜率

Symbol	Parameter	Condition	tion PCI-X		Conv PCI	Units	
			Min.	Max.	Min.	Max.	
Tr	Output rise slew rate	0.3Vcc to 0.6Vcc	1	6	1	4	V/ns
Tf	Output fall slew rate	0.6Vcc to 0.3Vcc	1	6	1	4	V/ns

7.5.3 时序参数

表 7.42 通用时序参数

Symbol	Parameter	PCI-	X 33		ntional 3 (ref)	Unit
		Min.	Max.	Min.	Max.	
Tval	CLK to Signal Valid Delay - bused signals	2	6	2	11	ns
Tval(pt p)	CLK to Signal Valid Delay - point to point signals	2	6	2	12	ns
Ton	Float to Active Delay	2		2		ns
Toff	Active to Float Delay		14		28	ns
Tsu	Input Set up Time to CLK- bused signals	3		7		ns
Tsu(ptp	Input Set up Time to CLK- point to point signals	5		10,12		ns
Th	Input Hold Time from CLK	0		0		ns
Trst	Reset Active Time	1		1		ms
Trst-clk	Reset Active Time after CLK stable	100		100		ms
Trst-off	Reset Active to output float delay		40		40	ns
Trrsu	REQ64# to RST# setup time	10		10		clocks
Trrh	RST# to REQ64# hold time	0	50	0	50	ns
Trhfa	RST# high to first Configuration access	2^{25}		2^{25}		clocks
Trhff	RST# high to first FRAME# assertion	5		5		clocks
Tpvrh	Power valid to RST# high	100		100		ms
Tprsu	PCI-X initialization pattern to RST# setup time					clocks
Tprh	RST# to PCI-X initialization pattern hold time					ns
Trlex	Delay from RST# low to CLK frequency change					ns

7.5.4 复位时序

图 7.18 转换到带上拉的 PCI-X 模式的 RST#时序

7.5.5 PCI-X 总线系统的噪声容限

PCI-X 的噪声容限与 PCI 总线非常类似,具体的输入输出电压容限见下图:

表 7.43 PCI-X 系统的噪声容限

Noise Source Responsibility High Noise Budget Low Noise Budget

Reflective Noise	Platform	0.30Vcc	0.15Vcc
Crosstalk	Platform	0.05Vcc	0.05Vcc
Input Reference Offset	Device	0.05Vcc	0.05Vcc
Total		0.4Vcc	0.25Vcc

7. 5. 6 PCI-X 的系统时序裕量

PCI-X 系统时序裕量与 66MHz 的 PCI 2.2 规范类似,具体的时序裕量见下表。

表 7.44 建立时间预算

Parameter	PCI-X 33 MHz	Conventional PCI 33 MHz (ref)	Units
Tval (max)	6	11	ns
Tprop (max)	5	10	ns
Tskew (max)	1	2	ns
Tsu (min)	3	7	ns
Тсус	15	30	ns

表 7.45 保持时间预算

Parameter	PCI-X 33MHz	Conventional PCI 33 MHz (ref)	Units
Tval (min)	0.7	2	ns
Tprop (min)	0.3	0	ns
Tskew (max)	0.5	2	ns
Th (min)	0.5	0	ns

7.6 LPC 总线和其它引脚

7.6.1 LPC 总线

LPC 总线规范的直流和交流特性与 PCI V2.3 的规范类似,其信号推荐的上拉电阻见下表:

表 7.46 推荐的上拉电阻值

Signal Name	Pull-Up
LAD[3:0]	15k -100k ohm

7.6.2 EJTAG

表 7.47 EJTAG 的交流时序特性

Parameter		Symbol	Min.	Max.	Unit
EJTAG external clock frequency of operation		fJTG	0	33.3	MHz
EJTAG external clock cycle	TJTG	30	-	ns	
EJTAG external clock pulse width measured at 1.4 V		tJTKHKL	15	-	ns
EJTAG external clock rise and fall	times	tJTGR& tJTGF	0	2	ns

TRST ass	TRST assert time		25	-	ns
In and action times	Boundary-scan data TMS,	tJTDVKH	4	1	
Input setup times	TDI	tJTIVKH	0	-	ns
T 11.1	Boundary-scan data TMS,	tJTDXKH	20	1	
Input hold times	TDI	tJTIXKH	25	-	ns
Valid times	Boundary-scan data TDO	tJTKLDV	4	20	ns
		tJTKLOV	4	25	
	Boundary-scan data TDO	tJTKLDX	-	1	
Output hold times		tJTKLOX	-	-	ns
EJTAG external clock to	impedance: Boundary-	tJTKLDZ	3	19	ns
output high	scan data TDO	tJTKLOZ	3	9	115

7.7 参考时钟

7.7.1 HyperTransport 的时钟

表 7.48 发送端时钟的不确定性

Symbol	Description	400 Mb/s	600 Mb/s	800 Mb/s	1000 Mb/s	1200 Mb/s	1600 Mb/s	Unit
TPLLdc	2% duty cycle variation between opposing edges over 1 bit time	100	67	50	40	33	25	ps
TPLLjtr	Uncertainty in subsequent internal transmit clocks due to PLL variation between any 2 edges including that contributed by reference clock SSC techniques.	150	67	50	20	17	13	ps
TPLLerror	edges due PLL accumulated phase error (≤ 20 ps/ns over 1 bit time) in the internal transmit clock Uncertainty in subsequent CADOUT	50	33	25	20	17	13	ps
TPLLsup	Uncertainty in subsequent internal transmit clocks due to temporal PLL power supply modulation (50 ps/ns)	125	83	63	50	42	31	ps
Tclkskew	Uncertainty in the CLKOUT relative to CADOUT caused by load variations between the 90 degree phase shifted clock relative to the 0 degree clock	20	20	20	10	10	10	ps

7. 7. 2 DDR2 内存的时钟

Parameter	Symbol	DDR	2-667	DDR	Units	
rarameter	Symbol	Min.	Max.	Min.	Max.	Units
Clock period jitter	tJIT(per)	-125	125	-100	100	ps
Clock period jitter during DLL locking period	tJIT(per,lck)	-100	100	-80	80	ps
Cycle to cycle clock period jitter	tJIT(cc)	-250	250	-200	200	ps
Cycle to cycle clock period jitter during DLL locking period	tJIT(cc,lck)	-200	200	-160	160	ps
Cumulative error across 2 cycles	tERR(2per)	-175	175	-150	150	ps
Cumulative error across 3 cycles	tERR(3per)	-225	225	-175	175	ps
Cumulative error across 4 cycles	tERR(4per)	-250	250	-200	200	ps
Cumulative error across 5 cycles	tERR(5per)	-250	250	-200	200	ps
Cumulative error across n cycles, $n = 6 \dots 10$, inclusive	tERR(6-10per)	-350	350	-300	300	ps
Cumulative error across n cycles, n = 11 50, inclusive	tERR(11- 50per)	-450	450	-450	450	ps
Duty cycle jitter	tJIT(duty)	- 125	125	-100	100	ps

表 7.49 输入时钟抖动参数

7.7.3 PCI-X 时钟

图 7.20 3.3V PCI-X 时钟波形

表 7.50 PCI-X 时钟参数

Sym	Parameter	PCI-X 133 PCI-X 66			r. PCI (ref)		r. PCI	Unit		
·		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Тсус	CLK Cycle Time	7.5	20	15	20	15	30	30	∞	ns
Thigh	CLK High Time	3		6		6		11		ns
Tlow	CLK Low Time	3		6		6		11		ns
-	CLK Slew Rate	1.5	4	1.5	4	1.5	4	1	4	V/ns
Spread Spectrum Requirements										
fmod	Modulation frequency	30	33	30	33	30	33			kHz

fspread frequency spread	-1	0	-1	0	-1	0			%
--------------------------	----	---	----	---	----	---	--	--	---

7.8 电源

7.8.1 电源工作条件

表 7.51 推荐的工作电源电压

+ NE 1-1	шль		电压范围		.t. >>>	A7 .N4.	
电源域	描述	Min.	Тур.	Max.	电流	备注	
VDD	Chip core voltage (商业级)	-	1.25V	-	20 A	商业级器件为 1.25V, 电 源抖动小于正负 50mV	
VDD	Chip core voltage (工业级)	-	1.15V	-	20 A	工业级器件为 1.15V, 电源抖动小于正负 50mV	
VDDE3V3	Chip IO voltage	3.135V	3.3V	3.465V	1 A		
MEM VDD 0/1	DDR core voltage(商业级)	-	1.25V	-	1 A	商业级器件为 1.25V, 电 源抖动小于正负 50mV	
MILM_VDD_0/1	DDR core voltage(工业级)	_	1.15V	_	1 A	工业级器件为 1.15V, 电源抖动小于正负 50mV	
MEM VDDE 0/1	DDR2 ch0/1 IO voltage	1.7V	1.8V	1.9V	2 A		
MEM_VDDE_0/1	DDR3 ch0/1 IO voltage	1.4V	1.5V	1.6V	2 A		
MEM VDEE 0/1	DDR2 ch0/1 reference voltage	0.882V	0.9V	0.918V	0.1 A		
MEM_VREF_0/1	DDR3 ch0/1 reference voltage	0.7V	0.75V	0.8V	0.1 A		
HT VDD	HT core voltage(商业级)	-	1.25V	-	2 A	商业级器件为 1.25V, 电 源抖动小于正负 50mV	
HI_VDD	HT core voltage(工业级)	-	1.15V	-	2 A	工业级器件为 1.15V, 电 源抖动小于正负 50mV	
HT_VDDE	HT IO voltage	1.7V	1.8V	1.9V	1 A		
VDDESB	HT Side band voltage	1.7V	1.8V	1.9V	0. 1A		
VDDESB	H1 Side band voltage	3.135V	3.3V	3.465V	U. 1A		
CORE_PLL_AVDD	-						
CORE_PLL_DVDD	Core PLL digital voltage	1.1V	1.2V	1.3V	0.05A		
DDR_PLL_AVDD	-						
DDR_PLL_DVDD	DDR2 PLL digital voltage	1.1V	1.2V	1.3V	0.05A		
HT0/1_PLL_AVDD	-						
HT0/1_PLL_DVDD	HT0/1 PLL digital voltage	1.1V	1.2V	1.3V	0.05A		

8 热特性

8.1 热参数

表 8.1 龙芯 3A2000 的热特性参数和推荐的最大值

Parameter	Value
TDP Max Power	30 Watts
$T_{\scriptscriptstyle A}$	25 °C
T_{J}	100 °C

表 8.2 龙芯 3A2000 的热阻参数

Heat sink	V_{air} (m/s)	$ heta_{J\!A}$ (°C/W)	ψ _{JT} (°C/W)	θ_{JC} (°C/W)
	0	8.1	0.18	0.31
w/o	1	6.2	0.18	-
	2	5.3	0.18	-
	0	3.5	0.24	-
w/	1	1.9	0.26	-
	2	1.4	0.27-	-

8.2 焊接温度

表 8.3 无铅工艺的封装回流最大温度表

Package Thickness	Volume mm ³ < 350	Volume mm ³ 350 - 2000	Volume $mm^3 > 2000$
< 1.6 mm	260 °C *	260 °C *	260 °C *
1.6 mm - 2.5 mm	260 °C *	250 °C *	245 °C *
> 2.5 mm	250 °C *	245 °C *	245 °C *

^{*} Tolerance: The device manufacturer/supplier shall assure process compatibility up to and including the stated classification temperature at the rated MSL level

表 8.4 回流焊接温度分类表

Pro	Pb-Free Assembly				
Average ramp-	3°C/second max.				
	Temperature Min (Tsmin)	150 °C			
Preheat	Temperature Max (Tsmax)	200 °C			
	Time (Tsmin to Tsmax) (ts)	60-180 seconds			
Time maintained above	Temperature (TL)	217 °C			
Time maintained above	Time (tL)	60-150 seconds			
Peak Te	Peak Temperature (Tp)				
Time within 5°C of a	20-40 seconds				
Ram	6 °C/second max.				
Time 25°C t	o Peak Temperature	8 minutes max.			

图 8.1 焊接回流曲线

9 引脚排列和封装

9.1 按引脚排列的封装引脚

表 9.1 按引脚排列的封装引脚表

Pin		Pin	J	Pin	
Number	Net Name	Number	Net Name	Number	Net Name
A1	HT1_TX_CADn07	AP24	PCI_CBEn0	F8	HT1_RX_CADn15
A2	HT1_TX_CTLp0	AP25	PCI_REQn6	F9	HT1_RX_CADp15
A3	HT1_TX_CTLn0	AP26	PCI_IDSEL	F10	HT1_RX_CADn13
A4	VDDE_1V8	AP27	MC0_DDR_DQ63	F11	HT1_RX_CADp13
A5	NC1_HT1_REXT	AP28	MC0_DDR_DQ58	F12	HT1_RX_CLKp1
A6	HT1_TX_CTLp1	AP29	MC0_DDR_DQ54	F13	HT1_RX_CLKn1
A7	HT1CLKp	AP30	MC0_DDR_DQM6	F14	HT1_RX_CADn10
A8	HT1_RX_CTLn0	AP31	MC0_DDR_DQ48	F15	HT1_RX_CADp10
A9	HT1_RX_CTLp0	AP32	MC0_DDR_DQ42	F16	HT1_RX_CADn08
A10	HT1_RX_CADn06	AP33	GND	F17	HT1_RX_CADp08
A11	HT1_RX_CADp06	AP34	MC0_DDR_A03	F18	HT1_HI_HOSTMODE
A12	HT1_RX_CADn04	AP35	MC0_DDR_A02	F19	HT1_LO_HOSTMODE
A13	HT1_RX_CADp04	AP36	MC0_DDR_A01	F20	GND
A14	HT1_RX_CADn03	AP37	MC0_DDR_CLKp3	F21	HT0_LO_HOSTMODE
A15	HT1_RX_CADp03	AP38	MC0_DDR_CLKn3	F22	HT0_HI_HOSTMODE
A16	HT1_RX_CADn01	AP39	MC0_DDR_A00	F23	HT0_RX_CADp08
A17	HT1_RX_CADp01	AR1	MC1_DDR_CLKn2	F24	HT0_RX_CADn08
A18	HT1_LO_RSTn	AR2	MC1_DDR_CLKp2	F25	HT0_RX_CADp10
A19	HT1_LO_POWEROK	AR3	MC1_DDR_RASn	F26	HT0_RX_CADn10
A20	SYSCLK	AR4	MC1_DDR_BA0	F27	HT0_RX_CLKn1
A21	HT0_LO_POWEROK	AR5	MC1_DDR_BA1	F28	HT0_RX_CLKp1
A22	HT0_LO_RSTn	AR6	MC1_DDR_A10	F29	HT0_RX_CADp13
A23	HT0_RX_CADp01	AR7	MC1_DDR_DQ44	F30	HT0_RX_CADn13
A24	HT0_RX_CADn01	AR8	MC1_DDR_DQ47	F31	HT0_RX_CADp15
A25	HT0_RX_CADp03	AR9	MC1_DDR_DQ53	F32	HT0_RX_CADn15
A26	HT0_RX_CADn03	AR10	VDDE_DDR	F33	HT0_PLL_DGND
A27	HT0_RX_CADp04	AR11	MC1_DDR_DQ50	F34	HT0_TX_CADp12
A28	HT0_RX_CADn04	AR12	MC1_DDR_DQ56	F35	HT0_TX_CLKp1
A29	HT0_RX_CADp06	AR13	MC1_DDR_DQ59	F36	HT0_TX_CLKn1
A30	HT0_RX_CADn06	AR14	PCI_RESETn	F37	VDDE_1V8
A31	HT0_RX_CTLp0	AR15	PCI_REQn2	F38	VDDE_1V8
A32	HT0_RX_CTLn0	AR16	PCI_GNTn4	F39	HT0_TX_CLKp0
A33	HT0CLKp	AR17	PCI_AD28	G1	HT1_TX_CADn02
A34	HT0_TX_CTLp1	AR18	PCI_AD23	G2	HT1_TX_CADp03
A35	NC2_HT0_REXT	AR19	PCI_AD19	G3	HT1_TX_CADn03
A36	VDDE_1V8	AR20	PCI_IRDYn	G4	GND
A37	HT0_TX_CTLn0	AR21	PCI_PERR	G5	GND

Pin Number	Net Name	Pin Number	Net Name	Pin Number	Net Name
A39	HT0_TX_CADn07	AR23	PCI_AD09	G7	GND
AA1	MC1_DDR_DQSp0	AR24	PCI_AD07	G8	VDDE_1V2
AA2	MC1_DDR_DQSn0	AR25	PCI_AD05	G9	VDDE_1V2
AA3	MC1_DDR_DQ06	AR26	PCI_AD03	G10	GND
AA4	MC1_DDR_DQ03	AR27	MC0_DDR_DQ59	G11	GND
AA5	VDDE_DDR	AR28	MC0_DDR_DQ56	G12	VDDE_1V2
AA6	MC1_DDR_DQ07	AR29	MC0_DDR_DQ50	G13	VDDE_1V2
AA7	MC1_DDR_DQ02	AR30	VDDE_DDR	G14	GND
AA13	GND	AR31	MC0_DDR_DQ53	G15	GND
AA14	VDD	AR32	MC0_DDR_DQ47	G16	VDDE_1V2
AA15	GND	AR33	MC0_DDR_DQ44	G17	GND
AA16	VDD	AR34	MC0_DDR_A10	G18	VDDESB
AA17	GND	AR35	MC0_DDR_BA1	G19	GND
AA18	VDD	AR36	MC0_DDR_BA0	G20	VDDESB
AA19	GND	AR37	MC0_DDR_RASn	G21	GND
AA20	VDD	AR38	MC0_DDR_CLKp2	G22	VDDESB
AA21	GND	AR39	MC0_DDR_CLKn2	G23	GND
AA22	VDD	AT1	MC1_DDR_SCSn0	G24	VDDE_1V2
AA23	GND	AT2	MC1_DDR_WEn	G25	GND
AA24	VDD	AT3	MC1_DDR_SCSn2	G26	GND
AA25	GND	AT4	MC1_DDR_CASn	G27	VDDE_1V2
AA26	VDD	AT5	MC1_DDR_ODT0	G28	VDDE_1V2
AA27	GND	AT6	MC1_DDR_ODT2	G29	GND
AA33	MC0_DDR_DQ02	AT7	MC1_DDR_DQ40	G30	GND
AA34	MC0_DDR_DQ07	AT8	VDDE_DDR	G31	VDDE_1V2
AA35	VDDE_DDR	AT9	MC1_DDR_DQ49	G32	VDDE_1V2
AA36	MC0_DDR_DQ03	AT10	MC1_DDR_DQSn6	G33	GND
AA37	MC0_DDR_DQ06	AT11	MC1_DDR_DQ55	G34	HT0_TX_CADn11
AA38	MC0_DDR_DQSn0	AT12	VDDE_DDR	G35	GND
AA39	MC0_DDR_DQSp0	AT13	GND	G36	GND
AB1	MC1_DDR_DQM1	AT14	VDDE_3V3	G37	HT0_TX_CADn03
AB2	MC1_DDR_DQ13	AT15	PCI_GNTn1	G38	HT0_TX_CADp03
AB3	MC1_DDR_DQ09	AT16	VDDE_3V3	G39	HT0_TX_CADn02
AB4	GND	AT17	PCI_AD27	H1	HT1_TX_CADp02
AB5	MC1_DDR_DQ08	AT18	VDDE_3V3	H2	GND
AB6	MC1_DDR_DQ12	AT19	PCI_AD18	Н3	GND
AB7	VDD_MEM	AT20	VDDE_3V3	H4	HT1_TX_CADn10
AB13	VDD	AT21	PCI_SERR	Н5	HT1_TX_CADp10
AB14	GND	AT22	VDDE_3V3	Н6	HT1_TX_CADp11
AB15	VDD	AT23	PCI_AD08	H7	GND
AB16	GND	AT24	VDDE_3V3	H33	GND
AB17	VDD	AT25	PCI_AD04	H34	HT0_TX_CADp11
AB18	GND	AT26	VDDE_3V3	H35	HT0_TX_CADp10
AB19	VDD	AT27	GND	H36	HT0_TX_CADn10
AB20	GND	AT28	VDDE_DDR	H37	GND

Pin Number	Net Name	Pin Number	Net Name	Pin Number	Net Name
AB21	VDD	AT29	MC0_DDR_DQ55	H38	GND
AB22	GND	AT30	MC0_DDR_DQSn6	H39	HT0_TX_CADp02
AB23	VDD	AT31	MC0_DDR_DQ49	J1	HT1_TX_CADn00
AB24	GND	AT32	VDDE_DDR	J2	HT1_TX_CADp01
AB25	VDD	AT33	MC0_DDR_DQ40	J3	HT1_TX_CADn01
AB26	GND	AT34	MC0_DDR_ODT2	J4	VDDE_1V8
AB27	VDD	AT35	MC0_DDR_ODT0	J5	VDDE_1V8
AB33	VDD_MEM	AT36	MC0_DDR_CASn	J6	HT1_TX_CADn09
AB34	MC0_DDR_DQ12	AT37	MC0_DDR_SCSn2	J7	VDDE_1V2
AB35	MC0_DDR_DQ08	AT38	MC0_DDR_WEn	J33	VDDE_1V2
AB36	GND	AT39	MC0_DDR_SCSn0	J34	HT0_TX_CADn09
AB37	MC0_DDR_DQ09	AU1	MC1_DDR_SCSn3	J35	VDDE_1V8
AB38	MC0_DDR_DQ13	AU2	MC1_DDR_SCSn1	J36	VDDE_1V8
AB39	MC0_DDR_DQM1	AU3	GND	J37	HT0_TX_CADn01
AC1	MC1_DDR_DQSn1	AU4	MC1_DDR_A13	J38	HT0_TX_CADp01
AC2	MC1_DDR_DQSp1	AU5	MC1_DDR_ODT1	J39	HT0_TX_CADn00
AC3	VDDE_DDR	AU6	MC1_DDR_ODT3	K1	HT1_TX_CADp00
AC4	MC1_DDR_CLKp1	AU7	MC1_DDR_DQ45	K2	VDDE_1V8
AC5	MC1_DDR_CLKn1	AU8	MC1_DDR_DQSn5	K3	VDDE_1V8
AC6	MC1_DDR_DQ14	AU9	GND	K4	HT1_TX_CADn08
AC7	MC1_DDR_DQ10	AU10	MC1_DDR_DQSp6	K5	HT1_TX_CADp08
AC13	GND	AU11	GND	K6	HT1_TX_CADp09
AC14	VDD	AU12	MC1_DDR_DQ61	K7	VDDE_1V2
AC15	GND	AU13	MC1_DDR_DQSn7	K33	VDDE_1V2
AC16	VDD	AU14	PCI_IRQnA	K34	HT0_TX_CADp09
AC17	GND	AU15	PCI_REQn1	K35	HT0_TX_CADp08
AC18	VDD	AU16	PCI_REQn4	K36	HT0_TX_CADn08
AC19	GND	AU17	PCI_AD30	K37	VDDE_1V8
AC20	VDD	AU18	PCI_AD26	K38	VDDE_1V8
AC21	GND	AU19	PCI_AD22	K39	HT0_TX_CADp00
AC22	VDD	AU20	PCI_AD17	L1	UART0_RI
AC23	GND	AU21	PCI_TRDYn	L2	UART1_DCD
AC24	VDD	AU22	PCI_PAR	L3	PCI_CONFIG7
AC25	GND	AU23	PCI_AD11	L4	PCI_CONFIG6
AC26	VDD	AU24	DDR_PLL_GND	L5	PCI_CONFIG5
AC27	GND	AU25	PCI_AD06	L6	VDDE_3V3
AC33	MC0_DDR_DQ10	AU26	PCI_AD00	L7	GND
AC34	MC0_DDR_DQ14	AU27	MC0_DDR_DQSn7	L33	GND
AC35	MC0_DDR_CLKn1	AU28	MC0_DDR_DQ61	L34	VDDE_3V3
AC36	MC0_DDR_CLKp1	AU29	GND	L35	INTn1
AC37	VDDE_DDR	AU30	MC0_DDR_DQSp6	L36	NMIn
AC38	MC0_DDR_DQSp1	AU31	GND	L37	INTn0
AC39	MC0_DDR_DQSn1	AU32	MC0_DDR_DQSn5	L38	SPI_SDO
AD1	MC1_DDR_CLKp0	AU33	MC0_DDR_DQ45	L39	HTCLK
AD2	MC1_DDR_CLKn0	AU34	MC0_DDR_ODT3	M1	UART1_RTS

Pin Number	Net Name	Pin Number	Net Name	Pin Number	Net Name
AD3	GND	AU35	MC0_DDR_ODT1	M2	UART0_DTR
AD4	MC1_DDR_DQ15	AU36	MC0_DDR_A13	M3	UART0_RXD
AD5	MC1_DDR_DQ11	AU37	GND	M4	PCI_CONFIG0
AD6	MC1_DDR_DQ20	AU38	MC0_DDR_SCSn1	M5	PCI_CONFIG3
AD7	GND	AU39	MC0_DDR_SCSn3	M6	GND
AD13	VDD	AV1	MC1_DDR_DQ33	M7	VDDE_3V3
AD14	GND	AV2	MC1_DDR_DQM4	M33	VDDE_3V3
AD15	VDD	AV3	MC1_DDR_DQ37	M34	GND
AD16	GND	AV4	VDDE_DDR	M35	INTn3
AD17	VDD	AV5	MC1_DDR_DQ32	M36	INTn2
AD18	GND	AV6	MC1_DDR_DQ36	M37	SPI_SDI
AD19	VDD	AV7	MC1_DDR_DQ41	M38	DOTEST
AD20	GND	AV8	MC1_DDR_DQSp5	M39	TMS
AD21	VDD	AV9	MC1_DDR_CLKn4	N1	UART1_DTR
AD22	GND	AV10	MC1_DDR_CLKp5	N2	UART0_CTS
AD23	VDD	AV11	MC1_DDR_DQ51	N3	PCI_CONFIG2
AD24	GND	AV12	MC1_DDR_DQ57	N4	PCI_CONFIG1
AD25	VDD	AV13	MC1_DDR_DQSp7	N5	PCI_CONFIG4
AD26	GND	AV14	PCI_IRQnC	N6	VDDE_3V3
AD27	VDD	AV15	PCI_GNTn0	N7	GND
AD33	GND	AV16	PCI_GNTn3	N13	GND
AD34	MC0_DDR_DQ20	AV17	PCI_AD31	N14	VDD
AD35	MC0_DDR_DQ11	AV18	PCI_AD25	N15	GND
AD36	MC0_DDR_DQ15	AV19	PCI_AD21	N16	VDD
AD37	GND	AV20	PCI_AD16	N17	GND
AD38	MC0_DDR_CLKn0	AV21	PCI_DEVSELn	N18	VDD
AD39	MC0_DDR_CLKp0	AV22	PCI_AD15	N19	GND
AE1	MC1_DDR_DQSn2	AV23	PCI_AD12	N20	VDD
AE2	MC1_DDR_DQSp2	AV24	DDR_PLL_DVDD	N21	GND
AE3	MC1_DDR_DQM2	AV25	DDR_PLL_GNDE	N22	VDD
AE4	VDDE_DDR	AV26	PCI_AD02	N23	GND
AE5	MC1_DDR_DQ17	AV27	MC0_DDR_DQSp7	N24	VDD
AE6	MC1_DDR_DQ21	AV28	MC0_DDR_DQ57	N25	GND
AE7	MC1_DDR_DQ16	AV29	MC0_DDR_DQ51	N26	VDD
AE13	GND	AV30	MC0_DDR_CLKp5	N27	GND
AE14	VDD	AV31	MC0_DDR_CLKn4	N33	GND
AE15	GND	AV32	MC0_DDR_DQSp5	N34	VDDE_3V3
AE16	VDD	AV33	MC0_DDR_DQ41	N35	SPI_SCK
AE17	GND	AV34	MC0_DDR_DQ36	N36	TDO
AE18	VDD	AV35	MC0_DDR_DQ32	N37	TESTCLK
AE19	GND	AV36	VDDE_DDR	N38	TDI
AE20	VDD	AV37	MC0_DDR_DQ37	N39	TRST
AE21	GND	AV38	MC0_DDR_DQM4	P1	UART1_RXD
AE22	VDD	AV39	MC0_DDR_DQ33	P2	UART1_DSR
AE23	GND	AW1	MC1_DDR_DQSn4	P3	UART0_RTS

Pin Number	Net Name	Pin Number	Net Name	Pin Number	Net Name
AE24	VDD	AW2	MC1_DDR_DQSp4	P4	UART0_DSR
AE25	GND	AW3	MC1_DDR_DQ38	P5	UART0_DCD
AE26	VDD	AW4	MC1_DDR_DQ39	P6	UART0_TXD
AE27	GND	AW5	MC1_DDR_DQ34	P7	VDDE_3V3
AE33	MC0_DDR_DQ16	AW6	MC1_DDR_DQ35	P13	VDD
AE34	MC0_DDR_DQ21	AW7	MC1_DDR_DQM5	P14	GND
AE35	MC0_DDR_DQ17	AW8	MC1_DDR_DQ43	P15	VDD
AE36	VDDE_DDR	AW9	MC1_DDR_CLKp4	P16	GND
AE37	MC0_DDR_DQM2	AW10	MC1_DDR_CLKn5	P17	VDD
AE38	MC0_DDR_DQSp2	AW11	MC1_DDR_DQ60	P18	GND
AE39	MC0_DDR_DQSn2	AW12	MC1_DDR_DQM7	P19	VDD
AF1	MC1_DDR_DQ23	AW13	MC1_DDR_DQ62	P20	GND
AF2	MC1_DDR_DQ19	AW14	PCI_CLK	P21	VDD
AF3	MC1_DDR_DQ28	AW15	PCI_REQn0	P22	GND
AF4	MC1_DDR_DQ18	AW16	PCI_REQn3	P23	VDD
AF5	GND	AW17	PCI_AD29	P24	GND
AF6	MC1_DDR_DQ22	AW18	PCI_AD24	P25	VDD
AF7	VDD_MEM	AW19	PCI_AD20	P26	GND
AF13	VDD	AW20	PCI_CBEn2	P27	VDD
AF14	GND	AW21	PCI_STOPn	P33	VDDE_3V3
AF15	VDD	AW22	PCI_CBEn1	P34	EJTAG_TDO
AF16	GND	AW23	PCI_AD10	P35	TCK
AF17	VDD	AW24	MEMCLK	P36	EJTAG_TCK
AF18	GND	AW25	NC_DDR_PLL_AVDD	P37	EJTAG_TMS
AF19	VDD	AW26	PCI_AD01	P38	EJTAG_TDI
AF20	GND	AW27	MC0_DDR_DQ62	P39	EJTAG_TRST
AF21	VDD	AW28	MC0_DDR_DQM7	R1	NODE_ID0
AF22	GND	AW29	MC0_DDR_DQ60	R2	UART1_RI
AF23	VDD	AW30	MC0_DDR_CLKn5	R3	CLKSEL15
AF24	GND	AW31	MC0_DDR_CLKp4	R4	ICCC_EN
AF25	VDD	AW32	MC0_DDR_DQ43	R5	UART1_TXD
AF26	GND	AW33	MC0_DDR_DQM5	R6	UART1_CTS
AF27	VDD	AW34	MC0_DDR_DQ35	R7	GND
AF33	VDD_MEM	AW35	MC0_DDR_DQ34	R13	GND
AF34	MC0_DDR_DQ22	AW36	MC0_DDR_DQ39	R14	VDD
AF35	GND	AW37	MC0_DDR_DQ38	R15	GND
AF36	MC0_DDR_DQ18	AW38	MC0_DDR_DQSp4	R16	VDD
AF37	MC0_DDR_DQ28	AW39	MC0_DDR_DQSn4	R17	GND
AF38	MC0_DDR_DQ19	B1	HT1_TX_CADp07	R18	VDD
AF39	MC0_DDR_DQ23	B2	VDDE_1V8	R19	GND
AG1	MC1_DDR_DQSn3	В3	VDDE_1V8	R20	VDD
AG2	MC1_DDR_DQSp3	B4	HT1_TX_CADn15	R21	GND
AG3	MC1_DDR_DQ25	B5	HT1_TX_CADp15	R22	VDD
AG4	VDDE_DDR	B6	HT1_TX_CTLn1	R23	GND
AG5	MC1_DDR_DQ29	B7	HT1CLKn	R24	VDD

Pin Number	Net Name	Pin Number	Net Name	Pin Number	Net Name
AG6	MC1_DDR_DQ24	В8	VDDE_1V8	R25	GND
AG7	GND	В9	HT1_RX_CADn07	R26	VDD
AG13	GND	B10	VDDE_1V8	R27	GND
AG14	VDD	B11	HT1_RX_CADn05	R33	GND
AG15	GND	B12	VDDE_1V8	R34	GPIO15
AG16	VDD	B13	HT1_RX_CLKn0	R35	GPIO12
AG17	GND	B14	VDDE_1V8	R36	GPIO14
AG18	VDD	B15	HT1_RX_CADn02	R37	GPIO13
AG19	GND	B16	VDDE_1V8	R38	GPIO10
AG20	VDD	B17	HT1_RX_CADn00	R39	GPIO11
AG21	GND	B18	HT1_LO_LDT_STOPn	T1	CLKSEL11
AG22	VDD	B19	HT1_LO_LDT_REQn	T2	CLKSEL08
AG23	GND	B20	SYSRESETn	T3	CLKSEL14
AG24	VDD	B21	HT0_LO_LDT_REQn	T4	CLKSEL10
AG25	GND	B22	HT0_LO_LDT_STOPn	T5	CLKSEL13
AG26	VDD	B23	HT0_RX_CADn00	T6	NODE_ID1
AG27	GND	B24	VDDE_1V8	T7	GND
AG33	GND	B25	HT0_RX_CADn02	T13	VDD
AG34	MC0_DDR_DQ24	B26	VDDE_1V8	T14	GND
AG35	MC0_DDR_DQ29	B27	HT0_RX_CLKn0	T15	VDD
AG36	VDDE_DDR	B28	VDDE_1V8	T16	GND
AG37	MC0_DDR_DQ25	B29	HT0_RX_CADn05	T17	VDD
AG38	MC0_DDR_DQSp3	B30	VDDE_1V8	T18	GND
AG39	MC0_DDR_DQSn3	B31	HT0_RX_CADn07	T19	VDD
AH1	MC1_DDR_DQ27	B32	VDDE_1V8	T20	GND
AH2	MC1_DDR_DQ31	B33	HT0CLKn	T21	VDD
AH3	GND	B34	HT0_TX_CTLn1	T22	GND
AH4	MC1_DDR_DQM3	B35	HT0_TX_CADp15	T23	VDD
AH5	MC1_DDR_DQ26	B36	HT0_TX_CADn15	T24	GND
AH6	MC1_DDR_DQ30	B37	VDDE_1V8	T25	VDD
AH7	VDD_MEM	B38	VDDE_1V8	T26	GND
AH33	VDD_MEM	B39	HT0_TX_CADp07	T27	VDD
AH34	MC0_DDR_DQ30	C1	HT1_TX_CADn05	T33	VDDE_3V3
AH35	MC0_DDR_DQ26	C2	HT1_TX_CADp06	T34	GND
AH36	MC0_DDR_DQM3	C3	HT1_TX_CADn06	T35	GPIO07
AH37	GND	C4	GND	T36	GPIO09
AH38	MC0_DDR_DQ31	C5	GND	T37	GPIO08
AH39	MC0_DDR_DQ27	C6	HT1_TX_CADn14	T38	GPIO05
AJ1	MC1_DDR_DQM8	C7	NC_HT1_PLL_AVDD	T39	GPIO06
AJ2	MC1_DDR_CB1	C8	VDDE_1V8	U1	CLKSEL07
AJ3	MC1_DDR_CB0	C9	HT1_RX_CADp07	U2	CLKSEL06
AJ4	MC1_DDR_CB5	C10	VDDE_1V8	U3	CLKSEL09
AJ5	VDDE_DDR	C11	HT1_RX_CADp05	U4	CLKSEL05
AJ6	MC1_DDR_CB4	C12	VDDE_1V8	U5	CLKSEL12
AJ7	GND	C13	HT1_RX_CLKp0	U6	VDD

Pin Number	Net Name	Pin Number	Net Name	Pin Number	Net Name
AJ33	GND	C14	VDDE_1V8	U7	VDD
AJ34	MC0_DDR_CB4	C15	HT1_RX_CADp02	U13	GND
AJ35	VDDE_DDR	C16	VDDE_1V8	U14	VDD
AJ36	MC0_DDR_CB5	C17	HT1_RX_CADp00	U15	GND
AJ37	MC0_DDR_CB0	C18	HT1_8x2	U16	VDD
AJ38	MC0_DDR_CB1	C19	NC_CORE_PLL_AVDD	U17	GND
AJ39	MC0_DDR_DQM8	C20	CORE_PLL_GND	U18	VDD
AK1	MC1_DDR_DQSn8	C21	CORE_PLL_DVDD	U19	GND
AK2	MC1_DDR_DQSp8	C22	HT0_8x2	U20	VDD
AK3	MC1_DDR_CB3	C23	HT0_RX_CADp00	U21	GND
AK4	MC1_DDR_CB2	C24	VDDE_1V8	U22	VDD
AK5	MC1_DDR_CB7	C25	HT0_RX_CADp02	U23	GND
AK6	GND	C26	VDDE_1V8	U24	VDD
AK7	MC1_DDR_CB6	C27	HT0_RX_CLKp0	U25	GND
AK33	MC0_DDR_CB6	C28	VDDE_1V8	U26	VDD
AK34	GND	C29	HT0_RX_CADp05	U27	GND
AK35	MC0_DDR_CB7	C30	VDDE_1V8	U33	GND
AK36	MC0_DDR_CB2	C31	HT0_RX_CADp07	U34	VDDE_3V3
AK37	MC0_DDR_CB3	C32	VDDE_1V8	U35	GPIO02
AK38	MC0_DDR_DQSp8	C33	NC_HT0_PLL_AVDD	U36	GPIO03
AK39	MC0_DDR_DQSn8	C34	HT0_TX_CADn14	U37	GPIO04
AL1	MC1_DDR_CKE2	C35	GND	U38	GPIO00
AL2	MC1_DDR_BA2	C36	GND	U39	GPIO01
AL3	MC1_DDR_CKE0	C37	HT0_TX_CADn06	V1	CLKSEL02
AL4	VDDE_DDR	C38	HT0_TX_CADp06	V2	CLKSEL01
AL5	MC1_DDR_CKE1	C39	HT0_TX_CADn05	V3	CLKSEL04
AL6	MC1_DDR_CKE3	D1	HT1_TX_CADp05	V4	CLKSEL00
AL7	VDD_MEM	D2	GND	V5	CLKSEL03
AL33	VDD_MEM	D3	GND	V6	GND
AL34	MC0_DDR_CKE3	D4	HT1_TX_CADn13	V7	GND
AL35	MC0_DDR_CKE1	D5	HT1_TX_CADp13	V13	VDD
AL36	VDDE_DDR	D6	HT1_TX_CADp14	V14	GND
AL37	MC0_DDR_CKE0	D7	HT1_PLL_AGND	V15	VDD
AL38	MC0_DDR_BA2	D8	HT1_RX_CTLp1	V16	GND
AL39	MC0_DDR_CKE2	D9	GND	V17	VDD
AM1	MC1_DDR_A09	D10	HT1_RX_CADp14	V18	GND
AM2	MC1_DDR_A11	D11	GND	V19	VDD
AM3	GND	D12	HT1_RX_CADp12	V20	GND
AM4	MC1_DDR_A12	D13	GND	V21	VDD
AM5	MC1_DDR_A14	D14	HT1_RX_CADp11	V22	GND
AM6	MC1_DDR_RESETn	D15	GND	V23	VDD
AM7	MC1_DDR_A15	D16	HT1_RX_CADp09	V24	GND
AM33	MC0_DDR_A15	D17	GND	V25	VDD
AM34	MC0_DDR_RESETn	D18	HT1_HI_RSTn	V26	GND
AM35	MC0_DDR_A14	D19	HT1_HI_POWEROK	V27	VDD

Pin Number	Net Name	Pin Number	Net Name	Pin Number	Net Name
AM36	MC0_DDR_A12	D20	CORE_PLL_GNDE	V33	VDDE_3V3
AM37	GND	D21	HT0_HI_POWEROK	V34	GND
AM38	MC0_DDR_A11	D22	HT0_HI_RSTn	V35	LPC_LAD1
AM39	MC0_DDR_A09	D23	GND	V36	LPC_LAD3
AN1	MC1_DDR_A04	D24	HT0_RX_CADp09	V37	LPC_LAD2
AN2	MC1_DDR_A06	D25	GND	V38	LPC_LAD0
AN3	MC1_DDR_A05	D26	HT0_RX_CADp11	V39	LPC_SERIRQ
AN4	VDDE_DDR	D27	GND	W1	GND
AN5	MC1_DDR_A07	D28	HT0_RX_CADp12	W2	VDD
AN6	MC1_DDR_A08	D29	GND	W3	GND
AN7	NC3_MC1_REXT	D30	HT0_RX_CADp14	W4	VDD
AN8	MC1_DDR_DQ46	D31	GND	W5	GND
AN9	MC1_DDR_DQ52	D32	HT0_RX_CTLp1	W6	VDD
AN10	VDD_MEM	D33	HT0_PLL_AGND	W7	VDD
AN11	GND	D34	HT0_TX_CADp14	W13	GND
AN12	VDDE_VREF	D35	HT0_TX_CADp13	W14	VDD
AN13	VDDE_VREF	D36	HT0_TX_CADn13	W15	GND
AN14	PCI_IRQnD	D37	GND	W16	VDD
AN15	GND	D38	GND	W17	GND
AN16	GND	D39	HT0_TX_CADp05	W18	VDD
AN17	GND	E1	HT1_TX_CLKn0	W19	GND
AN18	GND	E2	HT1_TX_CADp04	W20	VDD
AN19	GND	E3	HT1_TX_CADn04	W21	GND
AN20	GND	E4	VDDE_1V8	W22	VDD
AN21	GND	E5	VDDE_1V8	W23	GND
AN22	GND	E6	HT1_TX_CADn12	W24	VDD
AN23	GND	E7	HT1_PLL_DVDD	W25	GND
AN24	PCI_GNTn6	E8	HT1_RX_CTLn1	W26	VDD
AN25	GND	E9	GND	W27	GND
AN26	GND	E10	HT1_RX_CADn14	W33	GND
AN27	VDDE_VREF	E11	GND	W34	VDDE_3V3
AN28	VDDE_VREF	E12	HT1_RX_CADn12	W35	GND
AN29	GND	E13	GND	W36	GND
AN30	VDD_MEM	E14	HT1_RX_CADn11	W37	LPC_ROM8MBITS
AN31	MC0_DDR_DQ52	E15	GND	W38	LPC_ROMINTEL
AN32	MC0_DDR_DQ46	E16	HT1_RX_CADn09	W39	LPC_LFRAMEn
AN33	NC4_MC0_REXT	E17	GND	Y1	MC1_DDR_DQ01
AN34	MC0_DDR_A08	E18	HT1_HI_LDT_REQn	Y2	MC1_DDR_DQ00
AN35	MC0_DDR_A07	E19	HT1_HI_LDT_STOPn	Y3	MC1_DDR_DQM0
AN36	VDDE_DDR	E20	VDDESB	Y4	GND
AN37	MC0_DDR_A05	E21	HT0_HI_LDT_STOPn	Y5	MC1_DDR_DQ05
AN38	MC0_DDR_A06	E22	HT0_HI_LDT_REQn	Y6	MC1_DDR_DQ04
AN39	MC0_DDR_A04	E23	GND	Y7	GND
AP1	MC1_DDR_A00	E24	HT0_RX_CADn09	Y13	VDD
AP2	MC1_DDR_CLKn3	E25	GND	Y14	GND

Pin Number	Net Name	Pin Number	Net Name	Pin Number	Net Name
AP3	MC1_DDR_CLKp3	E26	HT0_RX_CADn11	Y15	VDD
AP4	MC1_DDR_A01	E27	GND	Y16	GND
AP5	MC1_DDR_A02	E28	HT0_RX_CADn12	Y17	VDD
AP6	MC1_DDR_A03	E29	GND	Y18	GND
AP7	GND	E30	HT0_RX_CADn14	Y19	VDD
AP8	MC1_DDR_DQ42	E31	GND	Y20	GND
AP9	MC1_DDR_DQ48	E32	HT0_RX_CTLn1	Y21	VDD
AP10	MC1_DDR_DQM6	E33	HT0_PLL_DVDD	Y22	GND
AP11	MC1_DDR_DQ54	E34	HT0_TX_CADn12	Y23	VDD
AP12	MC1_DDR_DQ58	E35	VDDE_1V8	Y24	GND
AP13	MC1_DDR_DQ63	E36	VDDE_1V8	Y25	VDD
AP14	PCI_IRQnB	E37	HT0_TX_CADn04	Y26	GND
AP15	PCI_GNTn2	E38	HT0_TX_CADp04	Y27	VDD
AP16	PCI_REQn5	E39	HT0_TX_CLKn0	Y33	GND
AP17	PCI_GNTn5	F1	HT1_TX_CLKp0	Y34	MC0_DDR_DQ04
AP18	PCI_CBEn3	F2	VDDE_1V8	Y35	MC0_DDR_DQ05
AP19	VDDE_3V3	F3	VDDE_1V8	Y36	GND
AP20	PCI_FRAMEn	F4	HT1_TX_CLKn1	Y37	MC0_DDR_DQM0
AP21	VDDE_3V3	F5	HT1_TX_CLKp1	Y38	MC0_DDR_DQ00
AP22	PCI_AD14	F6	HT1_TX_CADp12	Y39	MC0_DDR_DQ01
AP23	VDDE 3V3	F7	HT1_PLL_DGND		

9. 2 FCBGA 引脚顶层排列

	1	2	3	4	5	6	7
Α	HT1_TX_CADn07	HT1_TX_CTLp0	HT1_TX_CTLn0	VDDE_1V8	NC1_HT1_REXT	HT1_TX_CTLp1	HT1CLKp
В	HT1_TX_CADp07	VDDE_1V8	VDDE_1V8	HT1_TX_CADn15	HT1_TX_CADp15	HT1_TX_CTLn1	HT1CLKn
С	HT1_TX_CADn05	HT1_TX_CADp06	HT1_TX_CADn06	GND	GND	HT1_TX_CADn14	NC_HT1_PLL_AVDD
D	HT1_TX_CADp05	GND	GND	HT1_TX_CADn13	HT1_TX_CADp13	HT1_TX_CADp14	HT1_PLL_AGND
Ε	HT1_TX_CLKn0	HT1_TX_CADp04	HT1_TX_CADn04	VDDE_1V8	VDDE_1V8	HT1_TX_CADn12	HT1_PLL_DVDD
F	HT1_TX_CLKp0	VDDE_1V8	VDDE_1V8	HT1_TX_CLKn1	HT1_TX_CLKp1	HT1_TX_CADp12	HT1_PLL_DGND
G	HT1_TX_CADn02	HT1_TX_CADp03	HT1_TX_CADn03	GND	GND	HT1_TX_CADn11	GND
Н	HT1_TX_CADp02	GND	GND	HT1_TX_CADn10	HT1_TX_CADp10	HT1_TX_CADp11	GND
J	HT1_TX_CADn00	HT1_TX_CADp01	HT1_TX_CADn01	VDDE_1V8	VDDE_1V8	HT1_TX_CADn09	VDDE_1V2
Κ	HT1_TX_CADp00	VDDE_1V8	VDDE_1V8	HT1_TX_CADn08	HT1_TX_CADp08	HT1_TX_CADp09	VDDE_1V2
L	UARTO_RI	UART1_DCD	PCI_CONFIG7	PCI_CONFIG6	PCI_CONFIG5	VDDE_3V3	GND
M	UART1_RTS	UARTO_DTR	UARTO_RXD	PCI_CONFIGO	PCI_CONFIG3	GND	VDDE_3V3
Ν	UART1_DTR	UARTO_CTS	PCI_CONFIG2	PCI_CONFIG1	PCI_CONFIG4	VDDE_3V3	GND
Р	UART1_RXD	UART1_DSR	UARTO_RTS	UARTO_DSR	UARTO_DCD	UARTO_TXD	VDDE_3V3
R	NODE_IDO	UART1_RI	CLKSEL15	ICCC_EN	UART1_TXD	UART1_CTS	GND
Т	CLKSEL11	CLKSEL08	CLKSEL14	CLKSEL10	CLKSEL13	NODE_ID1	GND
U	CLKSEL07	CLKSEL06	CLKSEL09	CLKSEL05	CLKSEL12	VDD	VDD
٧	CLKSEL02	CLKSEL01	CLKSEL04	CLKSEL00	CLKSEL03	GND	GND
W	GND	VDD	GND	VDD	GND	VDD	VDD
Υ	MC1_DDR_DQ01	MC1_DDR_DQ00	MC1_DDR_DQMO	GND	MC1_DDR_DQ05	MC1_DDR_DQ04	GND
AA	MC1_DDR_DQSp0	MC1_DDR_DQSn0	MC1_DDR_DQ06	MC1_DDR_DQ03	VDDE_DDR	MC1_DDR_DQ07	MC1_DDR_DQ02
AB	MC1_DDR_DQM1	MC1_DDR_DQ13	MC1_DDR_DQ09	GND	MC1_DDR_DQ08	MC1_DDR_DQ12	VDD_MEM
AC	MC1_DDR_DQSn1	MC1_DDR_DQSp1	VDDE_DDR	MC1_DDR_CLKp1	MC1_DDR_CLKn1	MC1_DDR_DQ14	MC1_DDR_DQ10
AD	MC1_DDR_CLKp0	MC1_DDR_CLKn0	GND	MC1_DDR_DQ15	MC1_DDR_DQ11	MC1_DDR_DQ20	GND
ΑE	MC1_DDR_DQSn2	MC1_DDR_DQSp2	MC1_DDR_DQM2	VDDE_DDR	MC1_DDR_DQ17	MC1_DDR_DQ21	MC1_DDR_DQ16
AF	MC1_DDR_DQ23	MC1_DDR_DQ19	MC1_DDR_DQ28	MC1_DDR_DQ18	GND	MC1_DDR_DQ22	VDD_MEM
AG	MC1_DDR_DQSn3	MC1_DDR_DQSp3	MC1_DDR_DQ25	VDDE_DDR	MC1_DDR_DQ29	MC1_DDR_DQ24	GND
АН	MC1_DDR_DQ27	MC1_DDR_DQ31	GND	MC1_DDR_DQM3	MC1_DDR_DQ26	MC1_DDR_DQ30	VDD_MEM
AJ	MC1_DDR_DQM8	MC1_DDR_CB1	MC1_DDR_CB0	MC1_DDR_CB5	VDDE_DDR	MC1_DDR_CB4	GND
AK	MC1_DDR_DQSn8	MC1_DDR_DQSp8	MC1_DDR_CB3	MC1_DDR_CB2	MC1_DDR_CB7	GND	MC1_DDR_CB6
AL	MC1_DDR_CKE2	MC1_DDR_BA2	MC1_DDR_CKE0	VDDE_DDR	MC1_DDR_CKE1	MC1_DDR_CKE3	VDD_MEM
AM	MC1_DDR_A09	MC1_DDR_A11	GND	MC1_DDR_A12	MC1_DDR_A14	MC1_DDR_RESETn	MC1_DDR_A15
AN	MC1_DDR_A04	MC1_DDR_A06	MC1_DDR_A05	VDDE_DDR	MC1_DDR_A07	MC1_DDR_A08	NC3_MC1_REXT
AP	MC1_DDR_A00	MC1_DDR_CLKn3	MC1_DDR_CLKp3	MC1_DDR_A01	MC1_DDR_A02	MC1_DDR_A03	GND
AR	MC1_DDR_CLKn2	MC1_DDR_CLKp2	MC1_DDR_RASn	MC1_DDR_BA0	MC1_DDR_BA1	MC1_DDR_A10	MC1_DDR_DQ44
AT	MC1_DDR_SCSn0	MC1_DDR_WEn	MC1_DDR_SCSn2	MC1_DDR_CASn	MC1_DDR_ODTO	MC1_DDR_ODT2	MC1_DDR_DQ40
AU	MC1_DDR_SCSn3	MC1_DDR_SCSn1	GND	MC1_DDR_A13	MC1_DDR_ODT1	MC1_DDR_ODT3	MC1_DDR_DQ45
AV	MC1_DDR_DQ33	MC1_DDR_DQM4	MC1_DDR_DQ37	VDDE_DDR	MC1_DDR_DQ32	MC1_DDR_DQ36	MC1_DDR_DQ41
AW	MC1_DDR_DQSn4	MC1_DDR_DQSp4	MC1_DDR_DQ38	MC1_DDR_DQ39	MC1_DDR_DQ34	MC1_DDR_DQ35	MC1_DDR_DQM5
	1	2	3	4	5	6	7
	8	9 10) 11	12	13	14	15
	<u> </u>	10	, 11	12	10	1.1	10

龙芯 3A2000/3B2000 处理器数据手册

UDDD 1100 HITT DV CAD OF HIDD 1100 HITT DV CAD OF HIDDD 1100 HITT DV CAD OF HIDDD 1100	_CADp03
VDDE_1V8 HT1_RX_CADn07 VDDE_1V8 HT1_RX_CADn05 VDDE_1V8 HT1_RX_CLKn0 VDDE_1V8 HT1_RX	_CADn02
VDDE_1V8 HT1_RX_CADp07 VDDE_1V8 HT1_RX_CADp05 VDDE_1V8 HT1_RX_CLKp0 VDDE_1V8 HT1_RX	_CADp02
HT1_RX_CTLp1 GND HT1_RX_CADp14 GND HT1_RX_CADp12 GND HT1_RX_CADp11 G1	ND
HT1_RX_CTLn1 GND HT1_RX_CADn14 GND HT1_RX_CADn12 GND HT1_RX_CADn11 G1	ND
HT1_RX_CADn15 HT1_RX_CADp15 HT1_RX_CADn13 HT1_RX_CADp13 HT1_RX_CLKp1 HT1_RX_CLKn1 HT1_RX_CADn10 HT1_RX	_CADp10
VDDE_1V2 VDDE_1V2 GND GND VDDE_1V2 VDDE_1V2 GND G	ND
	.5
	ND
	DD
	ND
	DD
	ND
V VDD GND VI	DD
W GND VDD GI	ND
Y VDD GND VI	DD
AA GND VDD GI	ND
AB VDD GND VI	DD
AC GND VDD G1	ND
AD VDD GND VI	DD
AE GND VDD GI	ND
AF VDD GND VI	DD
AG GND VDD G1	ND
13 14 1	.5
MC1_DDR_DQ46 MC1_DDR_DQ52 VDD_MEM GND VDDE_VREF VDDE_VREF PCI_IRQnD GI	ND
	GNTn2
	REQn2
	GNTn1
	REQn1
	GNTn0
. MOT DAM DAMES I MOT DAM CENDA I MOT DAM CENTIO I MOT DAM DAMO I MOT DAM DAME I MOT DAM DAMO I PODE DAMES I MOT DAM DAMO I PODE I PODE DAMES I MOT DAM DAMO I PODE DAMES I MOT DAM DAMO I PODE DAMES I MOT DAM DAMO I PODE DAMES DAMES I PODE DAMES DAMES I PODE DAMES	
	REQn0
8 9 10 11 12 13 14 1	REQn0
8 9 10 11 12 13 14 1 17 18 19 20 21 22	REQn0 5
8 9 10 11 12 13 14 1 17 18 19 20 21 22 HT1_RX_CADp01 HT1_LO_RSTn HT1_LO_POWEROK SYSCLK HT0_LO_POWEROK HT0_LO_RSTn HT0_RSTn	REQnO .5 23 X_CADpO1
8 9 10 11 12 13 14 1 17 18 19 20 21 22 HT1_RX_CADp01 HT1_LO_RSTn HT1_LO_POWEROK SYSCLK HT0_LO_POWEROK HT0_LO_RSTn HT0_RSTn HT1_RX_CADp00 HT1_LO_LDT_STOPn HT1_LO_LDT_REQn SYSRESETn HT0_LO_LDT_REQn HT0_LO_LDT_STOPn HT0_RSTOPn	REQn0

龙芯 3A2000/3B2000 处理器数据手册

GND	HT1_HI_LDT_REQn	HT1_HI_LDT_STOPn	VDDESB	HTO_HI_LDT_STOPn	HTO_HI_LDT_REQn	GND
HT1_RX_CADp08	HT1_HI_HOSTMODE	HT1_LO_HOSTMODE	GND	HTO_LO_HOSTMODE	HTO_HI_HOSTMODE	HTO_RX_CADp08
GND	VDDESB	GND	VDDESB	GND	VDDESB	GND
17	18	19	20	21	22	23
GND	VDD	GND	VDD	GND	VDD	GND
VDD	GND	VDD	GND	VDD	GND	VDD
GND	VDD	GND	VDD	GND	VDD	GND
VDD	GND	VDD	GND	VDD	GND	VDD
GND	VDD	GND	VDD	GND	VDD	GND
VDD	GND	VDD	GND	VDD	GND	VDD
GND	VDD	GND	VDD	GND	VDD	GND
VDD	GND	VDD	GND	VDD	GND	VDD
GND	VDD	GND	VDD	GND	VDD	GND
VDD	GND	VDD	GND	VDD	GND	VDD
GND	VDD	GND	VDD	GND	VDD	GND
VDD	GND	VDD	GND	VDD	GND	VDD
GND	VDD	GND	VDD	GND	VDD	GND
VDD	GND	VDD	GND	VDD	GND	VDD
GND	VDD	GND	VDD	GND	VDD	GND
17	18	19	20	21	22	23
l						
GND	GND	GND	GND	GND	GND	GND
PCI_GNTn5	PCI_CBEn3	VDDE_3V3	PCI_FRAMEn	VDDE_3V3	PCI_AD14	VDDE_3V3
PCI_AD28	PCI_AD23	PCI_AD19	PCI_IRDYn	PCI_PERR	PCI_AD13	PCI_AD09
PCI_AD27	VDDE_3V3	PCI_AD18	VDDE_3V3	PCI_SERR	VDDE_3V3	PCI_AD08
PCI_AD30	PCI_AD26	PCI_AD22	PCI_AD17	PCI_TRDYn	PCI_PAR	PCI_AD11
PCI_AD31	PCI_AD25	PCI_AD21	PCI_AD16	PCI_DEVSELn	PCI_AD15	PCI_AD12
PCI_AD29	PCI_AD24	PCI_AD20	PCI_CBEn2	PCI_STOPn	PCI_CBEn1	PCI_AD10
17	18	19	20	21	22	23

24	25	26	27	28	29	30	31
HTO_RX_CADnO1	HTO_RX_CADp03	HTO_RX_CADn03	HTO_RX_CADpO4	HTO_RX_CADnO4	HTO_RX_CADp06	HTO_RX_CADnO6	HTO_RX_CTLpO
VDDE_1V8	HTO_RX_CADn02	VDDE_1V8	HTO_RX_CLKn0	VDDE_1V8	HTO_RX_CADnO5	VDDE_1V8	HTO_RX_CADn07
VDDE_1V8	HTO_RX_CADp02	VDDE_1V8	HTO_RX_CLKp0	VDDE_1V8	HTO_RX_CADp05	VDDE_1V8	HTO_RX_CADp07
HTO_RX_CADp09	GND	HTO_RX_CADp11	GND	HTO_RX_CADp12	GND	HTO_RX_CADp14	GND
HTO_RX_CADnO9	GND	HTO_RX_CADn11	GND	HTO_RX_CADn12	GND	HTO_RX_CADn14	GND
HTO_RX_CADn08	HTO_RX_CADp10	HTO_RX_CADn10	HTO_RX_CLKn1	HTO_RX_CLKp1	HTO_RX_CADp13	HTO_RX_CADn13	HTO_RX_CADp15
VDDE_1V2	GND	GND	VDDE_1V2	VDDE_1V2	GND	GND	VDDE_1V2

24	25	26	27				
VDD	GND	VDD	GND	N			
GND	VDD	GND	VDD	Р			
VDD	GND	VDD	GND	R			
GND	VDD	GND	VDD	T			
VDD	GND	VDD	GND	U			
GND	VDD	GND	VDD	V			
VDD	GND	VDD	GND	W			
GND	VDD	GND	VDD	Y			
VDD	GND	VDD	GND	AA			
GND	VDD	GND	VDD	AB			
VDD	GND	VDD	GND	AC			
GND	VDD	GND	VDD	AD			
VDD	GND	VDD	GND	AE			
GND	VDD	GND	VDD	AF			
VDD	GND	VDD	GND	AG			
24	25	26	27	•			
PCI_GNTn6	GND	GND	VDDE_VREF	VDDE_VREF	GND	VDD_MEM	MCO_DDR_DQ52
PCI_CBEn0	PCI_REQn6	PCI_IDSEL	MCO_DDR_DQ63	MCO_DDR_DQ58	MCO_DDR_DQ54	MCO_DDR_DQM6	MCO_DDR_DQ48
PCI_AD07	PCI_AD05	PCI_AD03	MCO_DDR_DQ59	MCO_DDR_DQ56	MCO_DDR_DQ50	VDDE_DDR	MCO_DDR_DQ53
VDDE_3V3	PCI_AD04	VDDE_3V3	GND	VDDE_DDR	MCO_DDR_DQ55	MCO_DDR_DQSn6	MCO_DDR_DQ49
DDR_PLL_GND	PCI_AD06	PCI_AD00	MCO_DDR_DQSn7	MCO_DDR_DQ61	GND	MCO_DDR_DQSp6	GND
DDR_PLL_DVDD	DDR_PLL_GNDE	PCI_AD02	MCO_DDR_DQSp7	MCO_DDR_DQ57	MCO_DDR_DQ51	MCO_DDR_CLKp5	MCO_DDR_CLKn4
MEMCLK	NC_DDR_PLL_AVDD	PCI_AD01	MCO_DDR_DQ62	MCO_DDR_DQM7	MCO_DDR_DQ60	MCO_DDR_CLKn5	MCO_DDR_CLKp4
24	25	26	27	28	29	30	31

32	33	34	35	36	37	38	39	_
HTO_RX_CTLn0	HTOCLKp	HTO_TX_CTLp1	NC2_HTO_REXT	VDDE_1V8	HTO_TX_CTLn0	HTO_TX_CTLp0	HTO_TX_CADn07	Α
VDDE_1V8	HTOCLKn	HTO_TX_CTLn1	HTO_TX_CADp15	HTO_TX_CADn15	VDDE_1V8	VDDE_1V8	HTO_TX_CADp07	В
VDDE_1V8	NC_HTO_PLL_AVDD	HTO_TX_CADn14	GND	GND	HTO_TX_CADn06	HTO_TX_CADp06	HTO_TX_CADn05	С
HTO_RX_CTLp1	HTO_PLL_AGND	HTO_TX_CADp14	HTO_TX_CADp13	HTO_TX_CADn13	GND	GND	HTO_TX_CADp05	D
HTO_RX_CTLn1	HTO_PLL_DVDD	HTO_TX_CADn12	VDDE_1V8	VDDE_1V8	HTO_TX_CADnO4	HTO_TX_CADpO4	HTO_TX_CLKnO	Е
HTO_RX_CADn15	HTO_PLL_DGND	HTO_TX_CADp12	HTO_TX_CLKp1	HTO_TX_CLKn1	VDDE_1V8	VDDE_1V8	HTO_TX_CLKpO	F
VDDE_1V2	GND	HTO_TX_CADn11	GND	GND	HTO_TX_CADn03	HTO_TX_CADp03	HTO_TX_CADn02	G
	GND	HTO_TX_CADp11	HTO_TX_CADp10	HTO_TX_CADn10	GND	GND	HTO_TX_CADp02	Н
	VDDE_1V2	HTO_TX_CADn09	VDDE_1V8	VDDE_1V8	HTO_TX_CADn01	HTO_TX_CADp01	HTO_TX_CADn00	J
	VDDE_1V2	HTO_TX_CADp09	HTO_TX_CADp08	HTO_TX_CADn08	VDDE_1V8	VDDE_1V8	HTO_TX_CADp00	K
	GND	VDDE_3V3	INTn1	NMIn	INTn0	SPI_SD0	HTCLK	L

龙芯 3A2000/3B2000 处理器数据手册

	VDDE_3V3	GND	INTn3	INTn2	SPI_SDI	DOTEST	TMS	М
	GND	VDDE_3V3	SPI_SCK	TDO	TESTCLK	TDI	TRST	N
	VDDE_3V3	EJTAG_TDO	TCK	EJTAG_TCK	EJTAG_TMS	EJTAG_TDI	EJTAG_TRST	Р
	GND	GPI015	GPI012	GPI014	GPI013	GPI010	GPI011	R
	VDDE_3V3	GND	GP1007	GPI009	GP1008	GP1005	GPI006	Т
	GND	VDDE_3V3	GP1002	GPI003	GPI004	GP1000	GPI001	U
	VDDE_3V3	GND	LPC_LAD1	LPC_LAD3	LPC_LAD2	LPC_LAD0	LPC_SERIRQ	V
	GND	VDDE_3V3	GND	GND	LPC_ROM8MBITS	LPC_ROMINTEL	LPC_LFRAMEn	W
	GND	MCO_DDR_DQ04	MCO_DDR_DQ05	GND	MCO_DDR_DQMO	MCO_DDR_DQ00	MCO_DDR_DQ01	Υ
	MCO_DDR_DQ02	MCO_DDR_DQ07	VDDE_DDR	MCO_DDR_DQ03	MCO_DDR_DQ06	MCO_DDR_DQSnO	MCO_DDR_DQSpO	AA
	VDD_MEM	MCO_DDR_DQ12	MCO_DDR_DQ08	GND	MCO_DDR_DQ09	MCO_DDR_DQ13	MCO_DDR_DQM1	AB
	MCO_DDR_DQ10	MCO_DDR_DQ14	MCO_DDR_CLKn1	MCO_DDR_CLKp1	VDDE_DDR	MCO_DDR_DQSp1	MCO_DDR_DQSn1	AC
	GND	MCO_DDR_DQ20	MCO_DDR_DQ11	MCO_DDR_DQ15	GND	MCO_DDR_CLKnO	MCO_DDR_CLKpO	AD
	MCO_DDR_DQ16	MCO_DDR_DQ21	MCO_DDR_DQ17	VDDE_DDR	MCO_DDR_DQM2	MCO_DDR_DQSp2	MCO_DDR_DQSn2	AE
	VDD_MEM	MCO_DDR_DQ22	GND	MCO_DDR_DQ18	MCO_DDR_DQ28	MCO_DDR_DQ19	MCO_DDR_DQ23	AF
	GND	MCO_DDR_DQ24	MCO_DDR_DQ29	VDDE_DDR	MCO_DDR_DQ25	MCO_DDR_DQSp3	MCO_DDR_DQSn3	AG
	VDD_MEM	MCO_DDR_DQ30	MCO_DDR_DQ26	MCO_DDR_DQM3	GND	MCO_DDR_DQ31	MCO_DDR_DQ27	АН
	GND	MCO_DDR_CB4	VDDE_DDR	MCO_DDR_CB5	MCO_DDR_CBO	MCO_DDR_CB1	MCO_DDR_DQM8	AJ
	MCO_DDR_CB6	GND	MCO_DDR_CB7	MCO_DDR_CB2	MCO_DDR_CB3	MCO_DDR_DQSp8	MCO_DDR_DQSn8	AK
	VDD_MEM	MCO_DDR_CKE3	MCO_DDR_CKE1	VDDE_DDR	MCO_DDR_CKEO	MCO_DDR_BA2	MCO_DDR_CKE2	AL
	MCO_DDR_A15	MCO_DDR_RESETn	MCO_DDR_A14	MCO_DDR_A12	GND	MCO_DDR_A11	MCO_DDR_A09	AM
MCO_DDR_DQ46	NC4_MCO_REXT	MCO_DDR_A08	MCO_DDR_A07	VDDE_DDR	MCO_DDR_A05	MCO_DDR_A06	MCO_DDR_A04	AN
MCO_DDR_DQ42	GND	MCO_DDR_A03	MCO_DDR_A02	MCO_DDR_A01	MCO_DDR_CLKp3	MCO_DDR_CLKn3	MCO_DDR_A00	AP
MCO_DDR_DQ47	MCO_DDR_DQ44	MCO_DDR_A10	MCO_DDR_BA1	MCO_DDR_BAO	MCO_DDR_RASn	MCO_DDR_CLKp2	MCO_DDR_CLKn2	AR
VDDE_DDR	MCO_DDR_DQ40	MCO_DDR_ODT2	MCO_DDR_ODTO	MCO_DDR_CASn	MCO_DDR_SCSn2	MCO_DDR_WEn	MCO_DDR_SCSnO	AT
MCO_DDR_DQSn5	MCO_DDR_DQ45	MCO_DDR_ODT3	MCO_DDR_ODT1	MCO_DDR_A13	GND	MCO_DDR_SCSn1	MCO_DDR_SCSn3	AU
MCO_DDR_DQSp5	MCO_DDR_DQ41	MCO_DDR_DQ36	MCO_DDR_DQ32	VDDE_DDR	MCO_DDR_DQ37	MCO_DDR_DQM4	MCO_DDR_DQ33	AV
MCO_DDR_DQ43	MCO_DDR_DQM5	MCO_DDR_DQ35	MCO_DDR_DQ34	MCO_DDR_DQ39	MCO_DDR_DQ38	MCO_DDR_DQSp4	MCO_DDR_DQSn4	AW
32	33	34	35	36	37	38	39	

10 封装机械尺寸

注:单位为 mm

11 订货信息

AA="SM", Fundry name, English alphabet.

BBBCCC= Wafer Lot number.

DD = "AK", Package manufacturer name, English alphabet.

EEE = XXX, Package manufacturing line number for tracing, Arabic number.

FFF = "CHN", Country of Origin, English alphabet.

GG = XX, Test manufacturer or test line number, English alphabet or Arabic number.

HHH = YWW, Assy year and week, e.g. Mark "503" for 2015, 3'rd week.

版本号: A, B, C...

标识:2000

CPU版本:3A

Loongson标识

12 不使用引脚处理

无论相关总线使用与否,相关的电源地信号必须正确连接。

12.1 系统配置引脚

系统配置引脚包括 DOTEST、CLKSEL、ICCC_EN、NODEID、PCI_CONFIG,不可 悬空,必须连接正确输入。

12.2 LPC 总线

LPC 总线不使用时可以悬空。

12.3 PCI 总线

PCI 总线不使用时可以悬空。

但是 LPC/SPI 等启动总线依赖于 PCI_CLK,必须给时钟。

12.4 SPI/UART/GPIO 总线

SPI、UART 或 GPIO 总线不使用时可以悬空。

12.5 DDR 总线

DDR 总线不使用时可以悬空。

12.6 HyperTransport 总线

HyperTransport 总线不使用时可以悬空。

12.7 JTAG/EJTAG 总线、TESTCLK

JTAG/EJTAG 总线、TESTCLK 不使用时可以悬空。

12.8 系统中断管脚

系统中断管理包括 INTn 与 NMIn,不使用时可以悬空。

13 硬件改动说明

龙芯 3A2000 引脚向下兼容龙芯 3A1000,但为了获得更好的性能,请参考《龙芯 3A2000/3B2000 用户手册 上册》中的"软硬件改动说明"一章。