Object Detection

Deep Learning

Aziz Temirkhanov Lambda, HSE

Object Detection

A. Temirkhanov, HSE. 01.04.24

Object Detection

- Goal: find objects in the image and localize them with bounding boxes (BB)
- Variable number of objects in each image
- Intra-class variation of objects
- Imbalanced / rare classes
- Efficiency (FPS)

Sliding Window

- Classify object and find coordinate of it
- Let's crop some region within the image and classify it
- The region with the highest probability of containing the object is the region we are looking for!
- In order to find best possible BB, iterate not only through the image, but also through window' hyperparams (e.g. window size)

Datasets

- Pascal VOC (Visual Object Classes), 20 classes
- MS COCO (Microsoft Common Objects in Context), 91 classes
- ImageNet, 200 classes

Two-Stage Detectors

- Find regions with high probability of containing object
- Adjust BB in the second stage

R-CNN

- Propose regions by <u>Selective</u>
 <u>Search</u>
 - Based on pixel intensity and using a graph-based algorithm, over-segment pixels
 - Group similar regions together
- Classify proposals and extract features using CNN
- Adjust coordinates
- Repeat for all proposals

Girshick et. al

R-CNN

- Extract a vector from last layer of CNN (AlexNet in original work)
- N_c + 1 of total SVM classifiers solving one-vs-rest task

loU

mAP

Class: antelope

ВВ	conf	loU (thr = 0.5)	TP/FP	precision	recall
#5	0.93	0.74	TP	1	0.33
#4	0.64	0.15	FP	0.5	0.33
#2	0.52	0.54	TP	0.66	0.66

Class: lion

ВВ	conf	loU (thr = 0.5)	TP/FP	precision	recall
#1	0.86	0.68	TP	1	1
#3	0.28	0.0	FP	0.5	1

mAP

- AP (average precision) = area under PR-curve
- **mAP** (mean AP) = AP averaged over all classes
- Different variants depending on IoU threshold: mAP₅₀, mAP₇₅, mAP_[50:95]

Non Maximum Suppression

- 1. Take a set of BBoxes and sort them by certainty score
- 2. Select BBox with highest score and add it to final list of BBoxes, remove it from original list
- 3. Take next BBox in original list and compare it with BBoxes in selected list
- 4. If their IoU is higher than threshold remove second BBox

Hard Negative Mining

- Positive hypothesis ones that contains an object
- Negative hypothesis ones that contains a background or a part of an object
- Penalty classifier for false positive hp
- How to deal with Negative hypothesis?
 - Easy Negative background
 - Hard Negative wrong class or partial right class

Hard Negative Mining

- Compare true BB with proposed one, using IoU
- Low IoU easy negative
- High IoU hard negative or positive
- Explicitly find those hard negative examples and add them to training data

Fast R-CNN

Fast R-CNN

- 1. Feed image to a CNN block and obtain Feature Map
- 2. Run a Selective Search on the image and obtain proposals
- 3. Project proposal region onto feature map
- 4. Employ Rol pooling layer: adjust size of the region to be the same, and then maxpool the same-size filters

Fast R-CNN

Faster R-CNN

Faster R-CNN

- 1. Pre-train a CNN network on image classification tasks.
- 2. Fine-tune the RPN (region proposal network) end-to-end for the region proposal task, which is initialized by the pre-train image classifier. Positive samples have IoU (intersection-over-union) > 0.7, while negative samples have IoU < 0.3.
 - a. Slide a small n x n spatial window over the conv feature map of the entire image.
 - b. At the center of each sliding window, we predict multiple regions of various scales and ratios simultaneously. An anchor is a combination of (sliding window center, scale, ratio). For example, 3 scales + 3 ratios => k=9 anchors at each sliding position.
- 3. Train a Fast R-CNN object detection model using the proposals generated by the current RPN
- 4. Then use the Fast R-CNN network to initialize RPN training. While keeping the shared convolutional layers, only fine-tune the RPN-specific layers. At this stage, RPN and the detection network have shared convolutional layers!
- 5. Finally fine-tune the unique layers of Fast R-CNN
- 6. Step 4-5 can be repeated to train RPN and Fast R-CNN alternatively if needed.

Region Proposal Network

- Using VGG16' last conv layer conv5_3:
 - Effective stride: 16
 - Receptive Field size: 196
 - o number of channels (feature maps): 512
- Take this feature maps and propose k hypothesis (k=9 at the beggining) for different sizes and aspect ratio. For default size it 14x14x9=1764 hypothesis
- Take $c\frac{H}{16}\frac{W}{16}$ feature map and apply 3x3 convolution layer with stride=1
- Apply two 1x1 convolutions simultaneously to the feature map
 - cls layer translates 512 filters to 2k filters (binary classification for objects)
 - o reg layer translates 512 filters to 4k filters: coordinates for each hypothesis
- Employ anchors: a defaults BBoxes with 3 different sizes (128x128, 256x256, 512x512) and 3 different aspect ratios (1:1, 2:1, 1:2), so 9 anchors in total.
- Now adjust this anchors with reg layer

Faster R-CNN

Faster R-CNN

- 1. Initialize RPN with CNN layer and generate current proposals
- 2. Train Fast R-CNN model using current proposals. Initialize weights with CNN
- 3. Train RPN network again using Fast R-CNN weights. At this stage, RPN and Fast R-CNN network shares the same layers, so freeze those layers and train only RPN-specific ones
- 4. Fine-tune Fast R-CNN network
- 5. Steps 3 and 4 can be repeated if needed

One-Stage Detectors

Bonus part

Two-stage and one-stage detectors

- Family of R-CNN models are all two-stage detectors, which can be slow
- One-Stage detectors runs once over dense sampling of possible locations

$S \times S \times B$ bounding boxes

confidence = *Pr(object)* x IoU(pred, truth)

YOLO

- Pre-train the CNN model
- Split image into SxS cells
- Assign B bounding boxes to each cell. Initial size is set via K-means and IoU throughout

true bboxes

- Predict 4 coordinates: x-center, y-center, h, w
- Predict probability of containing object
- Predict K conditional probabilities

S × S grid on input

Final detections

YOLO

YOLO

Set a threshold beforehand in terms of IoU

If proposed BBoxes has IoU > thresh leave this BB and remove other ones Truth bounding box

After non-max suppression

Non-Max Suppression

SSD

SSD

- Set of default BB of fixed size and ration
- Object of different sized is detected at different levels (depth)

