

Cap 1 – Batimentos de dados – Mapeando o coração moderno

Integrantes

- Alexandre Oliveira Mantovani RM560355
- Edmar Ferreira Souza RM560406
- José André Filho RM87775
- Ricardo Lourenço Coube RM559871

GitHub com código-fonte:

https://github.com/alexomantovanIA/1TIAOR20242-Batimentos-de-Dados-Mapeando-o-Cora-o-Moderno-

1. Introdução

O avanço da inteligência artificial aplicado à saúde permite desenvolver modelos preditivos que auxiliam médicos e gestores na tomada de decisão, reduzindo custos hospitalares e aumentando a precisão dos diagnósticos.

As doenças cardiovasculares são a principal causa de mortes no mundo, sendo responsável por cerca de 17,9 milhões de óbitos anuais.

Nesse contexto, a IA tem potencial para revolucionar a cardiologia, antecipando eventos críticos e personalizando cuidados.

O **CardiolA** é um projeto acadêmico do curso de lA inovador criado para desenvolver uma plataforma inteligente que simule o ecossistema de uma cardiologia moderna.

Ele integra dados clínicos, modelos de Machine Learning, Visão Computacional, loT e agentes inteligentes para lidar com triagem, diagnósticos, monitoramento, assistência remota e previsões médicas.

2. Objetivos

Nessa primeira fase do projeto existem três principais objetivos:

- . Construir uma base de dados de pacientes cardiológicos com informações relevantes
- . Coletar dados de fontes públicas
- . Discutir aspectos de governança em IA e o impacto dos dados no projeto

3. Desenvolvimento

3.1. Construção de uma base de dados

Desenvolvemos em conjunto uma base de dados simulada com 500 (quinhentas) registros. As variáveis contidas aqui foram aquelas consideradas as mais relevantes nos prognósticos médicos de doenças cardiovasculares, nomeadamente idade, sexo, pressão arterial, colesterol, histórico de doenças cardíacas, sintomas e frequência cardíaca. A escolha dessas variáveis foi guiada pela literatura médica, destacando-se como preditores críticos em algoritmos de risco cardiovascular.

Vale destacar o contexto da governança, onde os dados sensíveis, tais como nomes, idades, gênero e informações de saúde foram gerados de forma aleatória, não representando nenhum indivíduo especificamente.

Um excerto da base de dados cardíacos simulada pode ser visto na figura 1.

	В	С	D	E	F	G	Н	l l	J
Nome Completo	Gênero	Idade	Pressao Sistólica	Pressao Diastólica	Colesterol	Historico Doença Cardiaca	Sintomas	Frequencia Cardiaca	Risco Cardiac
Sofia Almeida	Feminino	69	129.0	84.0	212.9	Não	Tontura	79.3	Baixo
Mateus Barros	Masculino	32	111.8	86.5	194.1	Não	Falta de ar	71.6	Baixo
Laura Costa	Feminino	88	120.2	75.2	181.4	Não	Nenhum	73.3	Baixo
Gustavo Dias	Masculino	78	130.7	95.7	136.2	Não	Dor no peito	77.1	Alto
Isabela Esteves	Feminino	38	117.1	67.7	220.5	Sim	Tontura	66.0	Alto
Pedro Fernandes	Masculino	41	124.2	65.4	178.7	Não	Nenhum	85.0	Baixo
Manuela Gonçalves	Feminino	20	145.1	82.2	153.2	Sim	Palpitação	77.9	Alto
Rafael Henriques	Masculino	39	121.3	90.5	85.1	Não	Dor no peito	75.7	Alto
Beatriz Inácio	Feminino	70	142.5	96.8	198.9	Sim	Nenhum	86.9	Alto
Leonardo Jardim	Masculino	19	113.1	75.4	270.9	Sim	Dor no peito	73.8	Alto
Luísa Leal	Feminino	47	137.9	90.8	266.5	Não	Dor no peito	73.2	Alto
Davi Machado	Masculino	55	151.6	79.6	181.7	Sim	Falta de ar	70.2	Alto
Carolina Neves	Feminino	19	92.9	78.3	175.9	Não	Dor no peito	78.4	Baixo
Enzo Oliveira	Masculino	81	118.0	88.8	218.8	Não	Falta de ar	78.1	Baixo
Larissa Pereira	Feminino	77	138.7	86.5	160.1	Sim	Tontura	68.3	Alto
Lucas Quintino	Masculino	38	127.0	64.2	212.1	Não	Falta de ar	73.2	Baixo
Clara Ramos	Feminino	50	135.6	94.8	230.6	Sim	Palpitação	68.4	Alto
Guilherme Santos	Masculino	75	120.9	93.8	249.1	Sim	Nenhum	68.0	Alto
Mariana Teixeira	Feminino	39	131.3	73.7	196.0	Não	Tontura	57.7	Baixo
Bruno Uribe	Masculino	66	127.7	84.0	191.9	Sim	Tontura	72.7	Alto
Júlia Valente	Feminino	76	147.5	84.9	164.9	Não	Palpitação	58.0	Alto
Thiago Xavier	Masculino	59	133.8	82.6	166.9	Sim	Falta de ar	70.4	Alto
Antônia Wanderley	Feminino	77	135.1	74.5	190.9	Sim	Nenhum	68.9	Baixo
Eduardo Young	Masculino	32	123.8	73.3	214.7	Não	Falta de ar	85.5	Baixo
Yasmin Zimmermann	Feminino	79	122.7	79.7	236.5	Não	Dor no peito	64.9	Baixo
Gabriel Abreu	Masculino	79	123.5	91.7	167.9	Sim	Falta de ar	67.4	Alto
Lorena Barcelos	Feminino	64	135.9	85.4	259.7	Não	Tontura	71.2	Alto
Vicente Camargo	Masculino	79	123.7	76.3	189.2	Sim	Nenhum	69.2	Baixo
Helena Domingues	Feminino	68	134.3	87.7	199.1	Não	Falta de ar	88.7	Baixo
Felipe Espinoza	Masculino		161.1	51.5	170.1	Não	Nenhum	63.6	Baixo
Olivia Farias	Feminino	81	143.1	91.5	103.0	Não	Nenhum	71.2	Baixo
			125.1	62.6	235.4	Não	Dor no peito	78.3	Baixo

Fig. 1 – Base cardíaca simulada

3.2. Dados Textuais (NLP)

O projeto inclui dois arquivos do tipo texto relacionados com saúde pública, sintomas e ou tratamentos de doenças cardíacas que serão futuramente utilizados como fonte de exploração em algoritmos de NLP. Esses textos servirão como corpus para experimentos de processamento de linguagem natural, visando extrair conhecimento semântico e estruturar informações não numéricas relevantes para cardiologia.

- . Avaliação e definição de uma base de dados para estudos em imagiologia cardiovascular Pedro Manoel Roquette Martins
- . Processamento em tempo real de sinais de Doppler de fluxo sanguíneo -
- -Maria Margarida da Cruz Silva Andrade Madeira e Carvalho de Moura

3.3. Dados Visuais

Inclusão de um dataset com 944 imagens de ECG em formato padronizado para análise computacional para a classificação e detecção de anomalias por IA ressaltando o enorme contributo que essas análises podem representar em programas de saúde ajudando na prevenção precoce de doenças, que antes, apenas eram descobertas quando já não haviam recursos paliativos possíveis.

A análise automática de ECGs é uma das áreas mais promissoras da IA em cardiologia, com potencial para auxiliar profissionais na triagem rápida e detecção de anomalias com alto grau de precisão.

A figura 2 mostra um exemplo das imagens guardadas no dataset.

Fig, 2 – Imagem de ECG

4. Conclusão

O projeto CardiolA representa um passo inicial importante na construção de um ecossistema digital de apoio à cardiologia moderna. A integração de dados clínicos simulados, fontes textuais e imagens de ECG estabelece as bases para aplicações futuras em Machine Learning, NLP e visão computacional. Além disso, a discussão em torno da governança de IA reforça a preocupação com a ética e a privacidade no uso de dados sensíveis. Dessa forma, esta primeira fase fornece não apenas os recursos técnicos necessários, mas também um alicerce conceitual para o avanço do projeto em direção a soluções inteligentes que contribuam para a prevenção, diagnóstico e monitoramento de doenças cardiovasculares.