NAME 3	OMBS	O
AP Calculi	16	

DATE	
FRQ #26	

Tables

χ.	f(x)	f'(x)	g(x)	g'(x)
1	6	4	2	5
2	9	2	3	
3	10	-4	4	2
4	-1	3	6	7

The functions f and g are differentiable for all real numbers, and g is strictly increasing. The table gives values of the functions and their first derivatives at selected values of x. The function h is given by h(x) = f(g(x)) - 6.

(a) Explain why there must be a value r for 1 < r < 3 such that h(r) = -5.

(b) Explain why there must be a value c for 1 < c < 3 such that h'(c) = -5.

h is cont. and disservationally. Lowerism for MUT are met.
$$\frac{h(3)-h(1)}{3-1}=\frac{-7-3}{2}=\left[-5\right]$$

$$\therefore \text{ By MUT, there exists a value of for a $\{1<6<3\}$ s.t. $h'(1)=-5$$$

(c) Let w be the function given by $w(x) = \int_1^{g(x)} f(t) dt$. Find the value of w'(3).

$$w'(x) = f(g(x)) \cdot g'(x)$$
 $w'(x) = f(g(x)) \cdot g'(x) = -1 \cdot 2 = (-2)$

(d) If g^{-1} is the inverse function of g, write an equation for the tangent to the graph of $y = g^{-1}(x)$ at x = 2.

$$g^{-1}(x) = \frac{1}{5(6^{-1}(x))}$$

$$g(1) = -2$$

$$5^{-1}(2) \cdot \frac{1}{5}$$

$$g'(g(1) = g^{-1}(2)$$

$$= 1$$

Tables

1. The table below shows the behavior of a function f that is continuous for all real numbers. For the function, f(2) = 4, and $\lim_{x\to\infty} f(x) = 0$.

	x < 4	X = 4	x > 4
f'(x)	Positive	DNE	Negative
f''(x)	Negative	DNE	Positive

(a) For what values of x is f increasing? Explain.

(b) Does f have a relative maximum at x = 4? Justify your answer.

(c) If possible, name the x-coordinate of the point of inflection on the graph of f. Justify your answer.

(d) Does MVT apply over the interval [3, 5]? Justify your answer.

(e) Sketch a possible graph of f.

