Projekt zrealizowany został w ramach przedmiotu **Relacyjne bazy danych**, przedstawia fragment bazy danych, która może zostać użyta w systemie zarządającym kontenerami na statkach cargo.

Spis treści:

- 1. Tabele
- 2. Założenia
- 3. Przykładowe widoki
- 4. Schemat

1. Tabele

Base person - przechowuje podstawowe informacje dotyczące osób fizycznych;

Employee - reprezentuje osoby fizyczne (base person), które są dodatkowo pracownikami (dowolnej, ale obecnej w systemie) firmy

Company - firmy współpracujące/właściciele konterów

Container - resprezentuje pojedynczy kontener

Country - kraj, informacja przechowywana w celu dodatkowej identyfikacji obywatelstwa/pochodzenia osoby/firmy/statku/portu

Harbour - reprezentuje port

Loading base - przechowuje informacje wspólne dla załadowania i rozładowania kontenera

Loading authorization - dane dotyczące załadowanina kontenera

Receivment authorization - rozładowanie kontenera

Private container owner - osoba fizyczna, która jest właścicielem jednego lub więcej kontenera

Ship check in - włpyniecie kontenerowca do portu

Shipment - łączy infromacje dotczące przesyłki, rozumianej jako zlecenie transportu kontenera o określonym zładunku z portu do innego portu

Ship - reprezentuje pojedynczy kontenerowiec

2. Założenia:

Wszystkie obiekty są identyfikowane w syatemie przez uuid. Zdecydowałam się na takie rozwiązanie dla gwarancji unikalności klucza głównego każdego obiektu w systemie. Uprości to implementację i zapobiegnie potencjalnym mylnym operacjom na obiektach, a tym samym usprawni proces tworzenia aplikacji, która miałaby używać takiej bazy danych.

Przykładowy przepływ informacji dla stworzonego systemu (aplikacji) może wyglądać następująco:

Dla statku *Ship* - o określinej nazwie (*name*) i banderze (*ensign_id*) - zostaje zarejestrowana przesyłka *Shipment*, ktróra zawiera informacje o przeiwdywanym czsie dostarczenia (*estimated_arrival*), wartość ładunku w USD (*USD_value*), automatycznie uzupełnianym czasie utworzenia instancji (*created_at*). Po rozładunku zostanie uzupełniona informacja dotycząca rzeczywistego czasu rozładunku (*arrival*), który w rzeczywistości może być różny od przewidywanego.

Właścielem kontenera, który przechowuje załadunek może być pojedyncza osoba (*Private Container Owner*) lub firma (*Company*), ponadto wiele osób dodatkowo może mieć prawo do zlecania przesyłki zawartości na kontenerze mimo iż nie są wprowadzeni do systemu jako właściele jednostki - jest to przewidziane dla sytuacji gdy właścielami kontera jest np. małżeństwo - system wymaga jendej osoby odpowiedzialnej priorytetowo, ale otwiera możliwość działania dla współmałżonka lub innej dowolnej zarejestrowanej osoby. Za załadunek i rozładunek jest odpowiedzialny pracownik, której dane są przechowywane w systemie w tabeli *Employee*. Autoryzowane firmy mogą dokonywać rozładunku i załadunku kontenerów.

3. Przykładowe widoki

Widok osób (imię, nazwisko), które są pracownikami jakiejś firmy z przyporządkowaną nazwą firmy.

Dane w tabelach:

Widok:

Widok portów (pastwo, miasto, szerokość i długość geograficzna). Dane w tabelach:

```
Query Editor Query History

1 SELECT *
2 FROM ship_containers_country;
3
4

Data Output Explain Messages Notifications
```

4	id [PK] uuid	country character varying (32)	
1	0c4f820c-cfff-42e8-83e7-489426c6a5d3	Djibouti	
2	f42587e3-939c-46f2-8e02-b73613e44492	Lesotho	
3	024b30a9-802f-4c74-be93-d2d78110f41d	Suazi	
4	1532050c-8265-46a6-a00b-a8e30211d1ec	Gwatemala	
5	7acf8a01-e6eb-489a-9598-929a57d7d022	Panama	
6	53bc8d49-8db6-4105-a645-9a3993d8b807	Sout African Republic	
7	8f49e452-0171-410a-9eff-15cbbbfcdab6	United Kingdom	
8	ede3b96a-c6e3-40da-8ba8-928b44a2b83a	USA	
9	b84d533a-fab0-4a6c-81ef-207d778e1c87	Poland	
10	b8ce6f86-9e7c-437b-9a2b-811f8f62eaf9	Ghana	
11	4763e812-ef4d-4122-b2af-87da8d7bbaec	Honduras	
12	c8721fc3-7c0b-42c3-ad47-6a116edfb70f	Benin	
13	7609c4fb-d921-47a2-853f-20499a15b882	Swaziland	

Widok:

Query Editor Query History

```
1 CREATE VIEW harbors AS
 2 SELECT
 3 ship_containers_country.country,
4 ship_containers_harbor.city,
   ship_containers_harbor.latitude,
5
   ship_containers_harbor.longitude
6
   FROM ship_containers_harbor
7
   INNER JOIN ship_containers_country
8
   ON ship_containers_harbor.country_id = ship_containers_country.id;
9
10
11 SELECT * FROM harbors;
12
```

Data Output Explain Messages Notifications

4	country character varying (32)	city character varying (128)	latitude numeric (9,6)	longitude numeric (9,6)
1	Sout African Republic	Cape Town	-33.918861	18.423300
2	United Kingdom	London	51.509865	-0.118092
3	USA	New York	40.730610	-73.935242

4. Schemat

