Wintersemester 2020/21 Einführung in die Modellierung

Till Francke und Maik Heistermann *Universität Potsdam*

Seminar Einführung in die Modellierung im Modul Versuchsplanung und Geoökologische Modellierung

Wintersemester 2020/21 Einführung in die Modellierung

In diesem Semester

R als Werkzeug in der Modellierung

Ökologische Modelle

Hydrologische Modelle

(Ökohydrologische Modelle)

Wintersemester 2020/21 Einführung in die Modellierung

Heute

Populationsmodelle

Das exponentielle Wachstum – die Grenzen des Wachstums Routinekämpfe

Ökologische Modellierung

Wie lassen sich die Verbreitung und Dynamik von Arten darstellen?

Ansätze:

- Habitatmodelle
- Individuenbasierte Modelle

Im Kurs: Zeitdiskrete Betrachtung:

generationen-/zyklengesteuerte Dynamik

Fallbeispiel: Kaninchen im neuen Habitat

...?...

Wie entwickelt sich die Kaninchenbevölkerung?

1.

Exponentielles Wachstum

Zeitschritt

Population(sdichte

No

 N_1

 N_2

 N_3

neu geboren

B: Geburtenrate

gestorben

$$D \cdot N_{t-1}$$

D: Sterberate

$$N_t = N_{t-1} + \Delta N$$

△N: effektive Änderung

$$N_t = N_{t-1} + B \cdot N_{t-1} - D \cdot N_{t-1}$$

= $N_{t-1} + r \cdot N_{t-1}$

(additive Schreibweise)

=
$$(1+B-D)\cdot N_{t-1}$$

= $(1+r) \cdot N_{t-1} = R \cdot N_{t-1}$

(faktorielle Schreibweise)

I. Exponentielles Wachstum - Pandemie

Zeitschritt

Infektionen

 N_1

 N_0

 N_2

 N_3

 N_{\perp}

$$N_t = N_{t-1} + \Delta N$$

△N: effektive Änderung

. . .

 $B \cdot N_{t-1}$

B: Infektionsrate

neu infiziert

geheilt, gestorben

$$(C+D)-N_{t-1}$$

C: Heilungsrate

D: Sterberate

$$N_t = N_{t-1} + B \cdot N_{t-1} - (C+D) \cdot N_{t-1} = N_{t-1} + r \cdot N_{t-1}$$

(additive Schreibweise)

=
$$(1+B-C-D)\cdot N_{t-1}$$

= $(1+r) \cdot N_{t-1} = R \cdot N_{t-1}$

(faktorielle Schreibweise)

Exponentielles Wachstum - Merkmale

einfachstes Modell für das unbegrenzte Wachstum: exponentielles Wachstum:

$$N_t = N_{t-1} + r \cdot N_{t-1}$$

$$= (1+r)^t N_0$$

$$\circ$$

$$\circ$$

$$\mathsf{Zeit} \ \mathsf{t}$$

Populationsmodell in R umsetzen (1 exp Wachstum.R) r = 0.2, nt = 30, N0 = 2Populationsmodell zu Funktion umbauen (2 exp Wachstum function.R), n0 = 2 und n0 = 4 vergleichen

You Gotta Fight

