

УДК 621.923 ББК 34.637.3 Н 73

Рецензенти: докт. техн. наук, професор, завідувач кафедри технології та автоматизації виробництва радіоелектронних та електронно-обчислювальних засобів Харківського національного університету радіоелектроніки, заслужений діяч науки і техніки України Невлюдов І. Ш.; докт. техн. наук, академік Транспортної академії України, професор кафедри "Теоретична механіка та деталі машин" Харківського національного технічного університету сільського господарства імені Петра Василенка Коломієць В. В.; канд. техн. наук, провідний інженер-технолог Державного підприємства "Харківський машинобудівний завод «ФЕД»" Рябенков І. О.

Рекомендовано до видання рішенням вченої ради Харківського національного економічного університету імені Семена Кузнеця.

Протокол № 6 від 19.12.2014 р.

Авторський колектив: докт. техн. наук, професор Новіков Ф. В. – вступ, п. 1.1-1.5, 2.1-2.3, 3.1, 6.1; канд. техн. наук, доцент Шкурупій В. Г. – п. 1.6-1.9, 2.4-2.7, 3.2, 3.3, 6.2-6.4, розділи 4, 5, 7, висновки.

Новіков Ф. В.

Н 73 Основи обробки металевих виробів з оптичними властивостями : монографія / Ф. В. Новіков, В. Г. Шкурупій. — Х. : ХНЕУ ім. С. Кузнеця, 2015. — 388 с. (Укр. мов.)

ISBN 978-966-676-612-3

Наведено наукові основи створення прогресивних технологій фінішної механічної та фізико-технічної обробки металевих виробів з оптичними властивостями, які працюють в умовах інтенсивної світлової дії. Обґрунтовано умови підвищення якості та продуктивності обробки світловідбивальних і світлорозсіювальних поверхонь металевих виробів із тонкого листа та стрічок космічного призначення, лазерних дзеркал тощо. Надано практичні рекомендації щодо ефективного використання розроблених технологій обробки у виробництві.

хар Рекомендовано для отудёнтів інженерних та економічних спеціальностей вищих навыкльних закладів в також для фахівців і керівників підприємств, які підвищують свою кваліфікацію.

БІБЛІСТЕКА

УДК 621.923 ББК 34.637.3

ISBN 978-966-676-612-3

© Новіков Ф. В., Шкурупій В. Г., 2015

© Харківський національний економічний університет імені Семена Кузнеця, 2015

Зміст

Вступ	3
Розділ 1. Аналіз найбільш істотних проблем виготовлення металевих	
виробів із оптичними властивостями	5
1.1. Загальна характеристика металевих виробів, які працюють	
в умовах дії світлового потоку	5
1.2. Зв'язок геометричних і оптичних характеристик поверхонь	
оброблюваних деталей	.10
1.3. Теоретичні підходи до розрахунку параметрів шорсткості	. 10
поверхні в умовах фінішної обробки	.12
1.4. Приклади розрахунку параметрів шорсткості поверхні в проце	ci
фінішної абразивної обробки на основі теорії ймовірностей	24
1.5. Розрахункові схеми опису взаємозв'язку шорсткості	,
з поглинальною та випромінювальною здатністю поверхні	32
1.6. Загальний аналіз технологічних методів забезпечення	
оптичних характеристик поверхонь	.36
1.7. Технологічні можливості обробки деталей вільним	
абразивом	.40
1.8. Питання розроблення теорії обробки деталей вільним	
абразивом	.51
1.9. Особливості технології обробки поверхонь деталей	
з тонкого листа та стрічок	.62
Duarrame no manada d	.64
Розділ 2. Теоретичні дослідження шорсткості обробленої поверхні	
й її зв'язків з оптичними характеристиками	.66
2.1. Розроблення математичної моделі формування шорсткості	
поверхні в процесі абразивної обробки	.66
2.2. Оцінювання вірогідності отриманого теоретичного рішення	75
2.3. Теоретичний аналіз умов зменшення шорсткості поверхні	
в процесі абразивної обробки	85
2.4. Розрахунок і аналіз відносної опорної довжини профілю	
обробленої поверхні	89
2.5. Установлення функціональних зв'язків між параметрами	
шорсткості й оптичними характеристиками обробленої поверхні	92
2.6. Розроблення методики розрахунку нового параметра	
шорсткості оброблених світловідбивальних поверхонь	98

2.7. Теоретичне обґрунтування зв'язку геометричних характеристик	
світловідоивальних поверхонь із експлуатаційними властивостями	
довгомірних трубчастих елементів	
Висновки до розділу 2	
Розділ 3. Експериментальні дослідження шорсткості обробленої	
поверхні й її зв'язку з оптичними характеристиками	
3.1. Методика проведення експериментів, використовуване	
встаткування, інструменти й апаратура120	
3.1.1. Використовувані оброблювані матеріали, метоли	
та режими обробки	
3.1.2. Методика визначення шорсткості поверхні	
 3.1.3. Вимірювальна апаратура та методики вимірювання 	
параметрів оброблених світловідбивальних поверхонь	
3.1.4. Оцінювання фізико-хімічного стану поверхні на основі	
контактної різниці потенціалів	
 5.2. Бплив методів фінішної механічної та фізико-технічної 	
обробки на шорсткість і оптичні характеристики поверхонь зразків	
13 ТОНКОГО ЛИСТА ТА СТРІЧОК	
 3.2.1. Формування шорсткості й оптичних характеристик. 	
поверхонь у процесі різання	
 3.2.2. Формування шорсткості й оптичних характеристик. 	
поверхонь зразків у процесі абразивного полірування	
3.2.3. Вплив умов електрохімічного полірування на шороткіст	
топтичні характеристики обробленої поверхні 153	
 Формування шорсткості й оптичних характеристик 	
електроосаджених покриттів на поверхнях	
висновки до розділу 3	
Розділ 4. Розроблення та впровадження ефективних технополій	
фінішної обробки світловідбивальних поверхонь деталей з тонкого	
листа та стрічок	
4.1. Розроблення та впровадження технопогії фініциюї обробии	
довгомірних трубчастих елементів	
4. г. г. Розроблення аналітичної моделі стійкості трубизстої	
заготовки під час її абразивної обробки й обґрунтування	
параметрів режиму різання	
4.1.2. Оцінювання технологічності конструкції довгомірую	
трубчастих елементів	

4.1.3. Обґрунтування маршруту виготовлення довгомірних	
трубчастих елементів і розроблення технологічного встаткування1	94
4.1.4. Дослідження якості поверхні довгомірних трубчастих	
	201
4.1.5. Стан поверхонь довгомірних трубчастих елементів	
	204
4.1.6. Техніко-економічні показники пропонованих технічних	
рішень2	212
4.2. Розроблення та впровадження ефективної технології	
фінішної обробки світлорозсіювальних поверхонь	
	213
4.3. Створення матових (світлорозсіювальних) поверхонь	
деталей, які знайшли застосування в побуті	220
Висновки до розділу 4	221
Розділ 5. Теоретичні основи визначення параметрів шорсткості	
поверхні в процесі абразивного полірування	223
5.1. Загальний теоретичний підхід до аналізу закономірностей	
формування шорсткості поверхні в процесі абразивної обробки	223
5.2. Аналітичне визначення параметрів шорсткості оброблюваної	
поверхні в процесі абразивної обробки	231
5.3. Аналітичне визначення параметрів шорсткості оброблюваної	
поверхні в процесі абразивного полірування	237
5.4. Аналітичний опис параметрів шорсткості поверхні в процесі	
абразивного полірування з фіксованим радіальним зусиллям	245
5.5. Визначення впливу зношування зерен на шорсткість	
обробленої поверхні в процесі абразивного полірування	255
5.6. Визначення впливу зернистості абразивних зерен	
на шорсткість обробленої поверхні	263
5.7. Аналітичне визначення параметрів силової напруженості	
абразивного полірування	
Висновки до розділу 5	
Розділ 6. Теоретичні дослідження шорсткості поверхні та умов	6
її зменшення в процесі абразивної обробки	
6.1. Застосування теоретико-ймовірнісного підходу до визначення	
параметрів шорсткості поверхні в процесі абразивної обробки	285
6.2. Спрощений кінематичний підхід до визначення параметрів	
шорсткості поверхні в процесі доведення	296

6.3. Аналітичне визначення умов зменшення шорсткості поверхні	
в процесі абразивного полірування	.302
в процест абразивного полірування	
6.4. Експериментальне оцінювання отриманих теоретичних	310
рішень	316
Висновки до розділу 6	.510
Розділ 7. Експериментальні дослідження умов зменшення висоти	
мікронерівностей та підвищення оптичних властивостей	0.47
оброблюваних поверхонь лазерних дзеркал	.317
7.1. Умови технологічного забезпечення експлуатаційних	
характеристик деталей у процесі абразивного полірування	317
7.2. Вплив чинників абразивної обробки на фізико-хімічний стан	
поверхонь оброблюваних деталей	323
7.3. Взаємозв'язок параметрів поверхонь деталей з оптичними	
характеристиками	332
7.4. Оптимізація параметрів абразивного полірування	340
7.5. Властивості поверхневого шару після абразивної обробки	347
7.6. Технологічне забезпечення параметрів якості поверхонь	
металевих лазерних дзеркал на фінішних операціях	351
7.7. Формування неметалевих плівок на поверхнях виробів	
	355
з алюмінієвих і титанових сплавів	
7.8. Дослідження закономірностей зміни шорсткості поверхні	360
деталей у процесі їх зберігання	300
Висновки до розділу 7	304
Висновки	365
Рикористана пітература	368