MULTIVARIABLE CALCULUS MATH2007

2.5 Change of variables (Part 1)

Theorem (2.5.1). Let $\underline{T}: \mathbb{R}^2 \to \mathbb{R}^2$ and let D be a region in \mathbb{R}^2 . Suppose that D^* is a region in \mathbb{R}^2 such that \underline{T} is one-to-one on D^* and $\underline{T}(D^*) = D$. Then

$$\int_{D}^{*} \operatorname{and} \underline{T}(D^{*}) = D. \text{ Then}$$

$$\int_{D}^{*} f(x,y) \, dx \, dy = \iint_{D^{*}} f(\underline{T}(u,v)) \left| \frac{\partial \underline{T}(u,v)}{\partial (u,v)} \right| \, du \, dv.$$

$$(x,y) = \underline{T}(u,v)$$

$$(y) = \underline{T}(v)$$

$$\underline{J}^* \qquad \underline{T} \qquad \underline{D}$$

$$\underline{area et parollelogram} = |\underline{axb}| = |\underline{det}(\underline{ab})| = |\underline{det}(\underline{T'a T'b})|$$

$$\underline{a}, \underline{b} \quad \underline{column \ vectors} \qquad = |\underline{det}(\underline{T'(\underline{ab})}| = |\underline{det}(\underline{T'b})| = |\underline{det}(\underline{T'b})|$$

$$(\underline{Ax}) \approx \underline{T}(\underline{u}) + (\underline{Au}) - \underline{T}(\underline{u}) = \underline{T}(\underline{u}) + \underline{T'(\underline{u})}(\underline{Au}) - \underline{T}(\underline{u})$$

$$(\underline{Ay}) \approx \underline{T}(\underline{u}) + (\underline{Au}) - \underline{T}(\underline{u}) = \underline{T}(\underline{u}) + \underline{T'(\underline{u})}(\underline{Au}) - \underline{T}(\underline{u})$$

$$(\underline{Ay}) \approx \underline{T}(\underline{u}) + (\underline{Au}) - \underline{T}(\underline{u}) = \underline{T}(\underline{u}) + \underline{T'(\underline{u})}(\underline{Au}) - \underline{T}(\underline{u})$$

 $= T'(\Delta u)$ Proof: omitted.

Note. In Theorem 2.5.1, D is the region of integration with respect to the co-ordinates (x, y) and D^* is the region in terms of the co-ordinates (u, v). In addition, if we write $\begin{pmatrix} x \\ y \end{pmatrix} = \underline{T} \begin{pmatrix} u \\ v \end{pmatrix}$ then Theorem 2.5.1 becomes

5.1 becomes
$$\iint_D f(x,y) \ dx \ dy = \iint_{D^*} f(\underline{T}(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \ du \ dv.$$

Note. If

$$\underline{T}(u,v) = \begin{pmatrix} x(u,v) \\ y(u,v) \end{pmatrix} \quad \text{then} \quad \begin{pmatrix} u \\ v \end{pmatrix} = \underline{T}^{-1} \begin{pmatrix} x(u,v) \\ y(u,v) \end{pmatrix}$$
$$\frac{\partial \underline{T}^{-1}(x,y)}{\partial (x,y)} = \frac{1}{\frac{\partial \underline{T}(u,v)}{\partial (u,v)}}.$$

Useful tip:

If we cannot find x, y in terms of the new variables, we may calculate the Jacobian in terms of x, y then invert. It may then be possible to write in terms of the new variables or may cancel with the given integrand.

MULTIVARIABLE CALCULUS MATH2007

2.5 Change of variables (Part 2)

Example. Evaluate $\iint_D e^{\frac{y-x}{y+x}} dx dy$ where D is the triangle with vertices $\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ using the transformation u = y - x, v = y + x.

$$\int \int e^{\frac{y-x}{y+x}} dx dy = \int \int e^{\frac{y-x}{y+x}} dy dx$$

$$= \int \int e^{\frac{y-x}{y+x}} dy dx = ?$$
Tuge 3

Type 3

$$u = y - x \quad v = y + x \quad y = \frac{1}{2}(u + v) \quad (1 + 2)$$
 $v = \frac{1}{2}(v - u) \quad (2 - 1)$
 $v = \frac{1}{2}(v - u) \quad (2 - 1)$
 $v = \frac{1}{2}(v - u) \quad (2 - 1)$
 $v = \frac{1}{2}(v - u) \quad (2 - 1)$
 $v = \frac{1}{2}(v - u) \quad (2 - 1)$
 $v = \frac{1}{2}(v - u) \quad (2 - 1)$
 $v = \frac{1}{2}(v - u) \quad (2 - 1)$
 $v = \frac{1}{2}(v - u) \quad (2 - 1)$
 $v = \frac{1}{2}(v - u) \quad (2 - 1)$
 $v = \frac{1}{2}(v - u) \quad (2 - 1)$
 $v = \frac{1}{2}(v - u) \quad (2 - 1)$
 $v = \frac{1}{2}(v - u) \quad (2 - 1)$
 $v = \frac{1}{2}(v - u) \quad (2 - 1)$
 $v = \frac{1}{2}(v - u) \quad (2 - 1)$
 $v = \frac{1}{2}(v - u) \quad (2 - 1)$

$$y = \frac{1}{2}(u+v)$$

$$y = \frac{1}{2}(u+v)$$

$$x = \frac{1}{2}(v-u)$$

$$u = y-x$$

$$v = y+x$$

$$y = \frac{1}{2}(v-u)$$

$$\frac{\partial T}{\partial (u,v)} = \det \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = -\frac{1}{2}$$

$$\iint_{0} e^{\frac{y-x}{y+x}} dx dy = \iint_{0}^{x} e^{\frac{y-x}{y}} \left| \frac{\partial I}{\partial (u,v)} \right| du dv$$

$$= \iint_{0}^{x} e^{\frac{y}{y}} \frac{1}{2} du dv = \int_{0}^{1} \left(\int_{-v}^{v} \frac{1}{2} e^{\frac{y}{y}} v du \right) dv$$

$$= \int_{0}^{v} e^{\frac{y-x}{y}} \frac{1}{2} du dv = \int_{0}^{1} \left(\int_{-v}^{v} \frac{1}{2} e^{\frac{y}{y}} v du \right) dv$$

$$= \iint_{0}^{\infty} e^{\sqrt{2}} \frac{1}{2} du dv = \int_{0}^{\infty} \left(\int_{-\sqrt{2}}^{\sqrt{2}} e^{\sqrt{2}} du \right) dv$$

$$= \int_{0}^{1} \left[\frac{\sqrt{2}}{2} e^{\sqrt{2}} \right]_{u=-\sqrt{2}}^{u=\sqrt{2}} dv \qquad \qquad \frac{\partial}{\partial u} \frac{\sqrt{2}}{2} e^{\sqrt{2}} e^{\sqrt{2}} e^{\sqrt{2}}$$

$$= \int_{0}^{1} \frac{\sqrt{2}}{2} e^{1} - \frac{\sqrt{2}}{2} e^{-1} dv = \left[\frac{\sqrt{2}}{4} (e - \frac{1}{e}) \right]_{0}^{1} = \frac{1}{4} (e - \frac{1}{e}).$$

MULTIVARIABLE CALCULUS MATH2007

2.5 Change of variables (Part 3)

Example. Evaluate $\iint_D \frac{dx \, dy}{(1+x^2+y^2)}$ taken over D, the sector of the circle $x^2+y^2 \leq 9$ from the positive

x-axis to the ray in the direction of $\begin{pmatrix} 1 \\ \sqrt{3} \end{pmatrix}$ by changing to polar co-ordinates i.e. using the transformation $x = r \cos \theta$, $y = r \sin \theta$.

$$\iint_{D} \frac{d \times d y}{(1+x^2+y^2)} = \iint_{D^*} \frac{1}{1+r^2\cos^2\theta+r^2\sin^2\theta} \cdot \left| \frac{\partial (x,y)}{\partial (r,\theta)} \right| dr d\theta = \iint_{D^*} \frac{1}{1+r^2} \cdot r dr d\theta$$

$$\frac{1}{(j^2)} = \int$$

$$\iint_{D} \frac{dx \, dy}{(1+x^2+y^2)} = \iint_{D^*} \frac{1}{1+r^2} \cdot r \, dr d\theta$$

 $04 \Gamma 43$ $0404 \arctan(\sqrt{3}) = \frac{\pi}{2}$

$$=\int_{0}^{\pi/3}\int_{0}^{3}\frac{\Gamma}{1+\Gamma^{2}}drd\theta$$

$$=\int_0^{N_3}\int_0^{r}\frac{r}{1+r^2}drd\theta$$

$$= \int_{0}^{3} \int_{0}^{3} \frac{1}{1+r^{2}} dr d\theta$$

$$= \int_{0}^{\mathcal{R}/3} \left[\frac{1}{2} \ln \left(1 + r^{2} \right) \right]^{3} d\theta$$

$$= \int_{0}^{R/3} \left[\frac{1}{2} \ln \left(1 + r^{2} \right) \right]_{0}^{3} d\theta$$

$$= \int_{0}^{N_{3}} \left[\frac{1}{2} \ln \left(1 + r^{2} \right) \right]_{0}^{T_{3}} d\theta$$

$$= \int_{0}^{N_{3}} \frac{1}{2} \ln \left(10 \right) d\theta = \frac{9}{2} \ln \left(10 \right) \Big|_{0}^{N_{3}}$$

$$= \int_{0}^{\sqrt{3}} \frac{1}{2} \ln(10) d\theta = \frac{\theta}{2} \ln \theta$$

$$= \int_{0}^{3} \frac{1}{2} \ln(10) d\theta = \frac{1}{2} \ln(10) |_{0}$$

$$= \int_{0}^{\sqrt{3}} \frac{1}{2} \ln(10) d\theta = \frac{1}{2}$$

$$= \frac{\Lambda}{h} \ln(10).$$

$$= \int_{0}^{N_3} \frac{1}{2} \ln(10) d\theta =$$