Class 8: Mini Project

Nicole Chang

4/28/23

1. Exploratory Data Analysis

Prepare the Data

First we need to input and read the data.

```
# Save input data file into the Project directory
wisc.df <- read.csv('WisconsinCancer.csv', row.names = 1)
head(wisc.df)</pre>
```

	diagnosis radiu	s_mean	${\tt texture_mean}$	perimeter_mean	area_mea	n
842302	M	17.99	10.38	122.80	1001.	0
842517	M	20.57	17.77	132.90	1326.	0
84300903	M	19.69	21.25	130.00	1203.	0
84348301	M	11.42	20.38	77.58	386.	1
84358402	M	20.29	14.34	135.10	1297.	0
843786	M	12.45	15.70	82.57	477.	1
	smoothness_mean	compac	ctness_mean co	oncavity_mean c	oncave.po:	ints_mean
842302	0.11840		0.27760	0.3001		0.14710
842517	0.08474		0.07864	0.0869		0.07017
84300903	0.10960		0.15990	0.1974		0.12790
84348301	0.14250		0.28390	0.2414		0.10520
84358402	0.10030		0.13280	0.1980		0.10430
843786	0.12780		0.17000	0.1578		0.08089
	symmetry_mean f:	ractal_	_dimension_mea	an radius_se te	xture_se	perimeter_se
842302	0.2419		0.0787	71 1.0950	0.9053	8.589
842517	0.1812		0.0566	0.5435	0.7339	3.398
84300903	0.2069		0.0599	99 0.7456	0.7869	4.585
84348301	0.2597		0.0974	14 0.4956	1.1560	3.445

84358402	0.1809		0.05883		0.7813	5.438
843786	0.2087		0.07613		0.8902	2.217
	area_se smoothne	_		•	_	
842302		006399	0.04904			0.01587
842517		005225	0.01308			0.01340
84300903		006150	0.04006			0.02058
84348301		009110	0.07458			0.01867
84358402		011490	0.02461	0.05688		0.01885
843786		007510	0.03345	0.03672		0.01137
	symmetry_se frac	_	_	_	ture_worst	
842302	0.03003	0.00	6193	25.38	17.33	
842517	0.01389	0.00	3532	24.99	23.41	
84300903	0.02250	0.00	4571	23.57	25.53	
84348301	0.05963	0.00	9208	14.91	26.50	
84358402	0.01756	0.00	5115	22.54	16.67	
843786	0.02165	0.00	5082	15.47	23.75	
	perimeter_worst	area_worst s	moothness	s_worst compa	ctness_wors	st
842302	184.60	2019.0		0.1622	0.665	56
842517	158.80	1956.0		0.1238	0.186	86
84300903	152.50	1709.0		0.1444	0.424	! 5
84348301	98.87	567.7		0.2098	0.866	33
84358402	152.20	1575.0		0.1374	0.205	50
843786	103.40	741.6		0.1791	0.524	19
	concavity_worst	concave.poin	ts_worst	symmetry_wor	rst	
842302	0.7119		0.2654	0.46	301	
842517	0.2416		0.1860	0.27	'50	
84300903	0.4504		0.2430	0.36	313	
84348301	0.6869		0.2575	0.66	38	
84358402	0.4000		0.1625	0.23	364	
843786	0.5355		0.1741	0.39	985	
	fractal_dimension	on_worst				
842302		0.11890				
842517		0.08902				
84300903		0.08758				
84348301		0.17300				
84358402		0.07678				
843786		0.12440				

To make sure we don't accidentally include diagnosis in our analysis, lets create a new data.frame that omits this first column.

```
# We can use -1 here to remove the first column
wisc.data <- wisc.df[ ,-1]</pre>
```

Create a diagnosis vector for later

```
diagnosis <- wisc.df$diagnosis
```

Exploratory Data Analysis

Q1. How many observations are in this dataset?

```
nrow(wisc.data)
```

[1] 569

There are 569 observations.

Q2. How many of the observations have a malignant diagnosis?

```
table(wisc.df$diagnosis)
```

```
B M
357 212
```

```
diagnosis <- wisc.df$diagnosis
```

There are 212 observations that have a malignant diagnosis.

Q3. How many variables/features in the data are suffixed with _mean?

```
length(grep("_mean", colnames(wisc.df)))
```

[1] 10

There are 10 variables/features in the data that are suffixed with _mean.

2. Principal Component Analysis

Performing PCA

The next step is to perform principal component analysis (PCA) on wisc.data.

Check column means and standard deviations
colMeans(wisc.data)

radius_mean	texture_mean	perimeter_mean
1.412729e+01	1.928965e+01	9.196903e+01
area_mean	${\tt smoothness_mean}$	compactness_mean
6.548891e+02	9.636028e-02	1.043410e-01
concavity_mean	concave.points_mean	symmetry_mean
8.879932e-02	4.891915e-02	1.811619e-01
fractal_dimension_mean	radius_se	texture_se
6.279761e-02	4.051721e-01	1.216853e+00
perimeter_se	area_se	smoothness_se
2.866059e+00	4.033708e+01	7.040979e-03
compactness_se	concavity_se	concave.points_se
2.547814e-02	3.189372e-02	1.179614e-02
symmetry_se	fractal_dimension_se	radius_worst
2.054230e-02	3.794904e-03	1.626919e+01
texture_worst	perimeter_worst	area_worst
2.567722e+01	1.072612e+02	8.805831e+02
smoothness_worst	compactness_worst	concavity_worst
1.323686e-01	2.542650e-01	2.721885e-01
concave.points_worst	symmetry_worst	${\tt fractal_dimension_worst}$
1.146062e-01	2.900756e-01	8.394582e-02

apply(wisc.data,2,sd)

radius_mean	texture_mean	perimeter_mean
3.524049e+00	4.301036e+00	2.429898e+01
area_mean	${\tt smoothness_mean}$	compactness_mean
3.519141e+02	1.406413e-02	5.281276e-02
concavity_mean	concave.points_mean	symmetry_mean
7.971981e-02	3.880284e-02	2.741428e-02
fractal_dimension_mean	radius_se	texture_se
7.060363e-03	2.773127e-01	5.516484e-01

perimeter_se	area_se	smoothness_se
2.021855e+00	4.549101e+01	3.002518e-03
compactness_se	concavity_se	concave.points_se
1.790818e-02	3.018606e-02	6.170285e-03
symmetry_se	fractal_dimension_se	radius_worst
8.266372e-03	2.646071e-03	4.833242e+00
texture_worst	perimeter_worst	area_worst
6.146258e+00	3.360254e+01	5.693570e+02
${\tt smoothness_worst}$	compactness_worst	concavity_worst
2.283243e-02	1.573365e-01	2.086243e-01
concave.points_worst	symmetry_worst	${\tt fractal_dimension_worst}$
6.573234e-02	6.186747e-02	1.806127e-02

Execute PCA with the prcomp() function on the wisc.data, scaling if appropriate, and assign the output model to wisc.pr.

```
# Perform PCA on wisc.data by completing the following code
wisc.pr <- prcomp(wisc.data, scale. = TRUE)</pre>
```

Look at summary of results

```
summary(wisc.pr)
```

Importance of components:

```
PC1
                                 PC2
                                         PC3
                                                  PC4
                                                          PC5
                                                                  PC6
                                                                          PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion
                       0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                  PC9
                                         PC10
                                                PC11
                                                         PC12
                                                                 PC13
                                                                         PC14
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion
                       0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                          PC15
                                  PC16
                                          PC17
                                                  PC18
                                                           PC19
                                                                   PC20
                                                                          PC21
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Standard deviation
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion
                       0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                         PC24
                                                  PC25
                                                          PC26
                                                                  PC27
                                                                          PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
```

```
Proportion of Variance 0.00002 0.00000 Cumulative Proportion 1.00000 1.00000
```

Q4. From your results, what proportion of the original variance is captured by the first principal components (PC1)?

0.4427

Q5. How many principal components (PCs) are required to describe at least 70% of the original variance in the data?

```
variance <- (wisc.pr$sdev^2)
variance/(sum(variance))

[1] 4.427203e-01 1.897118e-01 9.393163e-02 6.602135e-02 5.495768e-02
[6] 4.024522e-02 2.250734e-02 1.588724e-02 1.389649e-02 1.168978e-02
[11] 9.797190e-03 8.705379e-03 8.045250e-03 5.233657e-03 3.137832e-03
[16] 2.662093e-03 1.979968e-03 1.753959e-03 1.649253e-03 1.038647e-03
[21] 9.990965e-04 9.146468e-04 8.113613e-04 6.018336e-04 5.160424e-04
[26] 2.725880e-04 2.300155e-04 5.297793e-05 2.496010e-05 4.434827e-06</pre>
```

Three principal components are required to describe at least 70% of the original variance in the data.

Q6. How many principal components (PCs) are required to describe at least 90% of the original variance in the data?

Seven principal components are required to describe at least 90% of the original variance in the data.

Interpreting PCA results

Now you will use some visualizations to better understand your PCA model. A common visualization for PCA results is the so-called biplot.

Q7. What stands out to you about this plot? Is it easy or difficult to understand? Why?

This plot is very messy and difficult to understand because the rownames are used as the plotting character, making it cluttered.

```
biplot(wisc.pr)
```


Create a cleaner plot

Q8. Generate a similar plot for principal components $\mathbf{1}$ and $\mathbf{3}$. What do you notice about these plots?

Based on the two plots, we can tell that the distinguishing factor for the diagnosis is reliant on PC1.

Create a data.frame for ggplot

```
df <- as.data.frame(wisc.pr$x)
df$diagnosis <- diagnosis</pre>
```

Load the ggplot2 package

```
library(ggplot2)
```

Make a scatter plot colored by diagnosis

```
ggplot(df) +
  aes(PC1, PC2, col= diagnosis) +
  geom_point()
```


Variance explained

We will produce scree plots showing the proportion of variance explained as the number of principal components increase.

Calculate variance of each component

```
pr.var <- wisc.pr$sdev^2
head(pr.var)</pre>
```

```
[1] 13.281608 5.691355 2.817949 1.980640 1.648731 1.207357
```

Calculate the variance explained by each principal component by dividing by the total variance explained of all principal components.

```
ylim = c(0, 1), type = "o")
```



```
ggplot based graph
Install the package
    #install.packages("factoextra")
Now plot
    library(factoextra)
```

Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa

```
fviz_eig(wisc.pr, addlabels = TRUE)
```


Communicating PCA results

Q9. For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points_mean? This tells us how much this original feature contributes to the first PC.

```
View(wisc.pr$rotation[,1])
```

-0.2608538

3. Hierarchical clustering

Scale the wisc.data using the scale() function

```
data.scaled <- scale(wisc.data)</pre>
```

Calculate the (Euclidean) distances between all pairs of observations in the new scaled dataset and assign the result to data.dist.

```
data.dist <- dist(data.scaled)</pre>
```

Create a hierarchical clustering model using complete linkage.

```
wisc.hclust <- hclust(data.dist, method = "complete")</pre>
```

Results of hierarchical clustering

Q10. Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters?

```
plot(wisc.hclust)
abline(h=19, col="red", lty=2)
```

Cluster Dendrogram

data.dist hclust (*, "complete")

The height at which the clustering model has 4 clusters is 19.

```
wisc.hclust.clusters <- cutree(wisc.hclust, k = 4)
table(wisc.hclust.clusters, diagnosis)</pre>
```

```
diagnosis wisc.hclust.clusters B M 1 12 165
```

2 2 5 3 343 40 4 0 2

Using different methods

Q12. Which method gives your favorite results for the same data.dist dataset? Explain your reasoning.

Ward.D2 is the method that gives my favorite results for the dataset because it is a lot easier to see the clusters and it minimizes the variance within the clusters.

```
wisc.hclust.single <- hclust(data.dist, method = "single")
plot(wisc.hclust.single)</pre>
```

Cluster Dendrogram

data.dist hclust (*, "single")

```
wisc.hclust.avg <- hclust(data.dist, method = "average")
plot(wisc.hclust.avg)
abline(h=13, col="red", lty=2)</pre>
```

Cluster Dendrogram

data.dist hclust (*, "average")

wisc.hclust.ward <- hclust(data.dist, method = "ward.D2")
plot(wisc.hclust.ward)</pre>

Cluster Dendrogram

data.dist hclust (*, "ward.D2")

4. Combining methods

Clustering on PCA results

Let's see if PCA improves or degrades the performance of hierarchical clustering.

```
wisc.pr.hclust <- hclust(dist(wisc.pr$x[, 1:7]), method="ward.D2")
plot(wisc.pr.hclust)</pre>
```

Cluster Dendrogram

dist(wisc.pr\$x[, 1:7]) hclust (*, "ward.D2")

```
grps <- cutree(wisc.pr.hclust, k=2)
table(grps)

grps
    1      2
216      353

table(grps, diagnosis)</pre>
```


plot(wisc.pr\$x[,1:2], col=diagnosis)


```
g <- as.factor(grps)
levels(g)</pre>
```

[1] "1" "2"

g <- relevel(g,2)
levels(g)</pre>

[1] "2" "1"

Plot using our re-ordered factor:

```
plot(wisc.pr$x[,1:2], col=g)
```


 $Cut this \ hierarchical \ clustering \ model \ into \ 2 \ clusters \ and \ assign \ the \ results \ to \ \verb|wisc.pr.hclust.clusters|.$

```
wisc.pr.hclust.clusters <- cutree(wisc.pr.hclust, k=2)</pre>
```

Q13. How well does the newly created model with four clusters separate out the two diagnoses?

```
# Compare to actual diagnoses
table(wisc.pr.hclust.clusters, diagnosis)
```

The newly created model with four clusters separates out the two diagnoses pretty well.

Q14. How well do the hierarchical clustering models you created in previous sections (i.e. before PCA) do in terms of separating the diagnoses? Again, use the table() function to compare the output of each model (wisc.km\$cluster and wisc.hclust.clusters) with the vector containing the actual diagnoses.

```
table(wisc.hclust.clusters, diagnosis)
```

```
diagnosis
wisc.hclust.clusters B M
1 12 165
2 2 5
3 343 40
4 0 2
```

The hierarchical clustering models I created in previous sections do not do as well of a job separating the diagnoses as the new model does, but it still distinguishes the diagnoses.

6. Prediction

We will use the predict() function that will take our PCA model from before and new cancer cell data and project that data onto our PCA space.

```
#url <- "new_samples.csv"
url <- "https://tinyurl.com/new-samples-CSV"
new <- read.csv(url)
npc <- predict(wisc.pr, newdata=new)
npc</pre>
```

```
PC4
                                                     PC5
           PC1
                     PC2
                                PC3
                                                                PC6
                                                                            PC7
     2.576616 -3.135913
                          1.3990492 -0.7631950 2.781648 -0.8150185 -0.3959098
[2,] -4.754928 -3.009033 -0.1660946 -0.6052952 -1.140698 -1.2189945
           PC8
                      PC9
                                PC10
                                          PC11
                                                    PC12
                                                               PC13
[1,] -0.2307350 0.1029569 -0.9272861 0.3411457 0.375921 0.1610764 1.187882
[2,] -0.3307423 0.5281896 -0.4855301 0.7173233 -1.185917 0.5893856 0.303029
                     PC16
                                 PC17
                                             PC18
                                                         PC19
[1,] 0.3216974 -0.1743616 -0.07875393 -0.11207028 -0.08802955 -0.2495216
[2,] 0.1299153 0.1448061 -0.40509706 0.06565549
                                                  0.25591230 -0.4289500
           PC21
                      PC22
                                 PC23
                                            PC24
                                                        PC25
     0.1228233 0.09358453 0.08347651 0.1223396 0.02124121
[1,]
                                                              0.078884581
[2,] -0.1224776 0.01732146 0.06316631 -0.2338618 -0.20755948 -0.009833238
             PC27
                                      PC29
                                                   PC30
                         PC28
     0.220199544 -0.02946023 -0.015620933 0.005269029
[1,]
[2,] -0.001134152  0.09638361  0.002795349 -0.019015820
```

```
plot(wisc.pr$x[,1:2], col=g)
points(npc[,1], npc[,2], col="blue", pch=16, cex=3)
text(npc[,1], npc[,2], c(1,2), col="white")
```


Q16. Which of these new patients should we prioritize for follow up based on your results?

Based on my results, we should prioritize patient 2.