Ficha de Trabalho 1

Métodos de Previsão e Séries Temporais Mestrado em Estatística para Ciência de Dados

1. Calcule a fórmula geral para a FAC do seguinte processo AR(2)

$$Y_t = 1.2 Y_{t-1} - 0.32 Y_{t-2} + \varepsilon_t.$$

2. Em ambiente R, gere 500 observações do modelo AR(2)

$$Y_t = Y_{t-1} - 0.9 Y_{t-2} + \varepsilon_t$$

onde ε_t é um ruído branco reduzido.

3. Em ambiente R, gere 100 observações da autorregressão

$$Y_t = -0.9 Y_{t-2} + \varepsilon_t,$$

onde ε_t é um ruído branco reduzido. De seguida, aplique o filtro de médias móveis

$$X_t = (Y_t + Y_{t-1} + Y_{t-2} + Y_{t-3})/4$$

aos dados gerados de Y_t . Apresente Y_t e X_t no mesmo gráfico. Comente o comportamento de X_t e como a aplicação da média móvel alterou esse comportamento.

- 4. Obtenha os parâmetros de um processo AR(3) em que as 3 primeiras autocorrelações são dadas por $\rho_1=0.8$, $\rho_2=0.6$ e $\rho_3=0.4$. Verifique se o processo é estacionário. Em caso afirmativo, calcule a fórmula geral para a FAC.
- 5. Prove que a função de autocovariância de um processo MA(1) é dada por

$$\gamma_k = \begin{cases} \sigma_{\varepsilon}^2 (1 + \theta^2), & \text{se } k = 0 \\ -\theta \sigma_{\varepsilon}^2, & \text{se } k = \pm 1. \\ 0, & \text{se } |k| \ge 2 \end{cases}$$

6. Mostre que a função de autocovariância, no caso de um processo não estacionário, pode ser escrita como

$$\gamma(t_1,t_2) = E[(Y_{t1} - \mu_{t1})(Y_{t2} - \mu_{t2})] = E[Y_{t1}Y_{t2}] - \mu_{t1}\mu_{t2}$$

onde $E[Y_t] = \mu_t$.

7. Considere a seguinte série temporal y_t para t = 1, ..., 200:

$$y_t = s_t + \varepsilon_t$$

onde ε_t é um ruído branco de média zero reduzido,

$$s_t = \begin{cases} 0, & t = 1, \dots, 100 \\ 10 \exp\left(-\frac{(t - 100)}{20}\right) \cos\left(\frac{2\pi t}{4}\right), & t = 101, \dots, 200 \end{cases}$$

- **7.1** Calcule a função média, $\mu_y(t)$ para t=1,...,200, do processo dado. Desenhe o respetivo gráfico.
- **7.2** Calcule a função de autocovariância $\gamma_y(t_1,t_2)$ para $t_1=1,...,200$ e $t_2=1,...,200$.
- **8.** Considere a série temporal

$$y_t = \beta_1 + \beta_2 t + \varepsilon_t$$

onde β_1 e β_2 são constantes conhecidas e ε_t é um processo ruído branco com variância σ_{ε}^2 .

- **8.1** Determine se y_t é estacionário.
- **8.2** Mostre que o processo $y_t y_{t-1}$ é estacionário. Para tal, encontre as respetivas funções para a média e autocovariância.
- **8.3** Repita a alínea **8.2** caso ε_t seja substituído por um processo estacionário geral, digamos z_t com função média dada por μ_z e função de autocovariância dada por $\gamma_z(h)$.
- 8.4 Mostre que o valor esperado do seguinte processo de médias móveis

$$v_t = \frac{1}{2q+1} \sum_{j=-q}^{q} y_{t-j}$$

é dado por $\beta_1 + \beta_2 t$ e apresente uma expressão simplificada para a função de autocovariância.

9. Considere um processo de médias móveis definido por

$$y_t = \varepsilon_{t-1} + 2\varepsilon_t + \varepsilon_{t+1}$$

onde os vários ε_t são independentes com média zero e variância σ_{ε}^2 . Determine as funções de autocovariância e autocorrelação como funções de argumento $h = t_1 - t_2$ e faça os respetivos gráficos.

10. Identifique o seguinte modelo ARMA(p,q) e determine se é estacionário e/ou invertível processo de médias móveis definido por

$$y_t = y_{t-1} - 0.5 y_{t-2} + \varepsilon_t - \varepsilon_{t-1}$$

sendo ε_t um processo ruído branco com média zero e variância σ_ε^2 .

11. Se as primeiras 10 autocorrelações simples e parciais calculadas para uma amostra de 100 observações de uma série temporal forem

lag k	1	2	3	4	5	6	7	8	9	10
FAC ρ_k	0,01	0,07	-0,05	0,06	-0,16	0,11	0,08	0,05	0,12	-0,01
FACP α_{kk}	0,08	0,09	0,03	0,09	-0,07	0,12	0,08	-0,09	0,02	0,11

Que modelo seria apropriado para descrever a série temporal?