# **Dynamics Test Benches**

**User Tutorial for the Dynamics Test Benches** 

May 2, 2014





## 1.0 Purpose

The purpose of the Dynamics Test Benches is to provide the designer with information about the performance of the FANG vehicle over various terrains.

## 2.0 Procedures

#### 2.1 Installation

Initial installations will be provided with the installation of the CyPhy tool suite. The test benches will be part of the dynamics test bench suite.

#### **2.2 Tool**

The suite of Dynamics Test Benches in GME allows the user to query a surrogate model that represents the performance of the FANG vehicle as a function of several input parameters. The CyPhy Interpreter calls upon a python script that contains the surrogate formulas used to characterize performance.

# 3.0 Requirements tested

- **Cross Country Land Speed:** The maximum speed a vehicle can reach over cross country terrain
- Level Road Land Speed: The maximum speed a vehicle can reach over tarmac
- **Level Road Land Range:** The distance that the vehicle can travel on one tank of fuel (183 gallons) at 25 mph steady state
- **Max Speed on 60 Percent Grade:** The maximum speed a vehicle can achieve on a 60% longitudinal grade
- **Acceleration 0 32 kph:** The time it takes the vehicle to accelerate to 32 kph (20 mph) at full throttle





## 4.0 Required components

### 4.1 Manually specified information

- Vehicle mass for all test benches
- Fuel tank volume for Level\_Road\_Land\_Range test bench

## **5.0 Theory of Operation**

The overall performance of the FANG vehicle has been abstracted to be a function of the total mass of the design. Since the powertrain system of the vehicle has been pre-determined, the mass of the vehicle becomes the predominant factor. The results of the 5 Dynamics Test Benches mentioned above will be extracted when the user clicks on the Master Interpreter button in GME, and the metrics are provided in the testbench\_manifest.json for scoring.

## 5.1 How to Test Vehicle Performance Using a Dynamics Test Bench

This exercise will introduce you to creating and running test benches in the *dynamics suite*. The dynamics suite is the group of test benches found in the

Dynamics testing folder in the seed design GME project.

Creating and running a dynamics test bench allows you to grade certain dynamics aspects of your vehicle's performance. In this example, you'll determine a vehicle's max speed on cross country terrain using the **Cross\_Country\_Land\_Speed** test bench.





#### Step 1 - Create a dynamics test bench in GME

First, you'll create a new test bench. A test bench is an add-on app to GME that rates the performance of a given vehicle characteristic.

- 1. If you haven't done so already, download the FANG Vehicle Seed Design from the <u>Downloads page</u>, and extract (unzip) the folder to a location of your choice.
- 2. Open the Seed Design. If you downloaded and extracted it following step 1, in the downloaded folder, open the GME .mga project file whose name begins with "Official\_Seed".
- 3. Expand  **\*\*\* RootFolder**.
- 4. Right-click the **Test\_Benches** folder and, from the **Insert Folder** submenu, click **Testing**.
- 5. Type **Example\_Dynamics\_Test\_Bench** and press **Enter**.
- 6. Right-click the folder you just created, and, from the **Insert Model** submenu, click **Test Bench**.
- 7. Type Cross\_Country\_Land\_Speed and press Enter.
- 8. View the **Cross\_Country\_Land\_Speed** test bench in the workspace by double-clicking it.

#### Step 2 - Choose the vehicle or part whose performance you'll test

- 1. Expand in Seed\_Component\_Assemblies.
- 2. Choose the FANG Vehicle Seed Design as the vehicle or part to test. To do this, using a right-click, drag **FANG\_Design** onto the workspace.
- 3. Click Create Reference.
- 4. Double-click **TopLevelSystemUnderTest**.

#### Step 3 - Define the test with a workflow and task

First, you'll create a workflow. A workflow is a set of computer-readable directions that instruct a given test bench. For example, a *CAD workflow* instructs its parent test bench to synthesize a virtual design of the vehicle or part so that it can be tested. To create a workflow:

- 1. Right-click **Example\_Dynamics\_Test\_Bench**.
- 2. From the **Insert Folder** submenu, click **Workflow Definitions**.
- 3. Type **Workflow\_Definitions** and press **Enter**.
- 4. Right-click **Workflow\_Definitions**.
- 5. From the **Insert Model** submenu, click **Workflow**.
- 6. Type **CyPhyPython\_Surrogates** and press **Enter**.





Next, you'll create a task. A task is simply an item used to pick its parent workflow's type, such as the "CyPhy2CAD\_CSharp" type, that ultimately synthesizes a virtual design of the vehicle or part so that it can be tested. To create a task:

- 1. In the **GME Browser**, right-click the **ZevPhyPython\_Surrogates** workflow.
- 2. From the **Insert Atom** submenu, click **Task**.
- 3. Pick **CyPhyPython Interpreter** and click **OK**.
- 4. Press **Enter** to use the assigned name "Task".
- 5. Double-click the **X** Task task to view it in the workspace.
- 6. Double-click the only item in the workspace, called **Task CyPhyPython**.
- 7. Click twice in the **name** field, and type **CyPhyPython\_Surrogates**.
- 8. Click twice in the **script\_file** field, and type "New\_PP\PostProc\_SurrogateDynamics.py".
- 9. Close the **Workflow Parameters** window.
- 10. Close the active workspace tab.
- 11. Using a right-click, drag **CyPhyPython\_Surrogates** onto the **Cross\_Country\_Land\_Speed** workspace.
- 12. Click Create Reference.

#### **Step 4 - Define input parameters**

- 1. In the **GME Browser**, expand **◆ UnitLibrary QUDT**, then **L □ TypeSpecifications**, then **L □ Units**.
- 2. Using a right-click, drag **Kilogram** onto the workspace.
- 3. Click **Create Reference**.
- 4. Double-click Parameter.
- 5. In the **Object Inspector**, in the **field at the top**, type **Mass**.
- 6. On the **Attributes** tab, at **Data Type**, pick **Integer**.
- 7. Also on the Attributes tab, at **Value**, type **27000**.

#### Step 5 - Pick output metrics

From the **Part Browser**, drag the below pictured **Metric** onto the workspace.



In the **Object Inspector**, in the **field at the top**, type **Cross\_C6ountry\_Land\_Speed**.





#### Step 6 - Run the test bench

- Begin the test bench by, in the toolbar, clicking the CyPhy Master Interpreter button
- 2. Allow the master interpreter to start up.
- 3. To the top-left in the **CyPhy Master Interpreter** window, check **Post to META Job Manager** if it isn't.
- 4. Click OK.
- 5. When the **CAD Options** window appears, check **Use Project Manifest** if it isn't.
- 6. Click OK.
- 7. Allow a few moments for the test bench to get started.
- 8. When the **JobManager Configuration** window appears, uncheck **Remote Execution** if it's checked.
- 9. Click **Save**.
- 10. In the **Job Manager**, wait until the top row turns green and **Succeeded** appears in the Status column.
- 11. Right-click the **green row** and click **Show in explorer**.
- 12. Open testbench\_manifest.json.
- 13. Find and view the resulting performance metrics, listed below in the **Metrics** section.

## 6.0 Metrics

| Test<br>Bench # | Metric                     | Description                                                                                   |
|-----------------|----------------------------|-----------------------------------------------------------------------------------------------|
| 1.1             | Cross_Country_Land_Speed   | Maximum speed (in kph) that the vehicle can achieve over cross country terrain.               |
| 1.2             | Level_Road_Land_Speed      | Maximum speed (in kph) that the vehicle can achieve over tarmac.                              |
| 3.1             | Acc32kph                   | Time (in seconds) that it takes the vehicle to reach 20 mph from rest.                        |
| 3.2             | Land_Range_on_Level_Ground | Range (in km) that a vehicle can travel at 25mph steady state over tarmac.                    |
| 17.1            | Speed_on_60_Percent_Grade  | Speed (in kph) that the vehicle achieved during a wide open throttle maneuver up a 60% grade. |

**Table 1: Dynamics Test Bench Metrics** 





# 7.0 Required Connection to System Under Test

- Vehicle Mass (All dynamics)
- Fuel Tank Volume (Level Road Land Range Only)

# 8.0 Outputs

#### 8.1 Text

The output of the test bench is in the file: "testbench\_manifest.json."

```
🔙 testbench_manifest.json 🖾
 1 {
 2
      "Status": "UNEXECUTED",
      "Artifacts": [],
 4
      "VisualizationArtifacts": [],
 5
      "Created": "2014-01-24T21:51:46.3172445Z",
      "DesignID": "{90b2b46c-0183-431a-b239-7c67ee39a281}",
 6
 7
      "DesignName": "FANG Design",
 8
      "Metrics": [
 9
10
          "VisualizationArtifacts": [],
11
          "Description": "",
          "Name": "Cross_Country_Land_Speed",
12
13
          "Unit": "km/hr",
14
          "Value": "65.4752618058136",
15
          "ID": "996c284c-58d8-4129-9e20-4a1aa6a38f2c",
          "DisplayedName": null,
16
17
          "GMEID": "id-0067-00001c49"
18
19
      ],
20
      "Parameters": [
21
         "Range": "-inf..inf",
         "Description": "",
23
          "Name": "Mass",
24
25
          "Unit": "Kilogram",
26
          "Value": "27000",
          "ID": "4829d437-9bd9-4c80-b8f5-f16b6d55fd10",
27
28
          "DisplayedName": null,
          "GMEID": "id-0067-000022ad"
29
31
      ],
      "Stens" . [
```

Figure 1: Summary Results sample



