Low-rank approximation and its applications

Ivan Markovsky

University of Southampton

1/25

- restatement of problem (*) as an equivalent problem (**)
- however, (**) is a standard problem
- the solution generalizes to
 - 1. multivariable data (points in \mathbb{R}^q) fitting by an affine set
 - 2. time-series fitting by linear time-invariant dynamical models
 - 3. data fitting by nonlinear models

Exact line fitting

the points
$$w_i=(x_i,y_i)$$
, $i=1,\ldots,N$ lie on a line (*) \updownarrow there is $(a,b,c)\neq 0$, such that $ax_i+by_i+c=0$, for $i=1,\ldots,N$

there is
$$(a,b,c) \neq 0$$
, such that $ax_i + by_i + c = 0$, for $i = 1, \dots, N$
 \updownarrow

there is
$$(a,b,c) \neq 0$$
, such that $\begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} x_1 & \cdots & x_N \\ y_1 & \cdots & y_N \\ 1 & \cdots & 1 \end{bmatrix} = 0$

$$\operatorname{rank}\left(\begin{bmatrix} x_1 & \cdots & x_N \\ y_1 & \cdots & y_N \\ 1 & \cdots & 1 \end{bmatrix}\right) \leq 2 \tag{**}$$

2/25

Exact conic section fitting

the points
$$w_i = (x_i, y_i)$$
, $i = 1, ..., N$ lie on a conic section \updownarrow

there are $A = A^{\top}$, b, c, at least one of them nonzero, such that $w_i^{\top} A w_i + b^{\top} w_i + c = 0$, for i = 1, ..., N

 \updownarrow

there is $(a_{11}, a_{12}, a_{22}, b_1, b_2, c) \neq 0$, such that

$$\begin{bmatrix} a_{11} & 2a_{12} & b_1 & a_{22} & b_2 & c \end{bmatrix} \begin{bmatrix} x_1^2 & \cdots & x_N^2 \\ x_1y_1 & \cdots & x_Ny_N \\ x_1 & \cdots & x_N \\ y_1^2 & \cdots & y_N^2 \\ y_1 & \cdots & y_N \\ 1 & \cdots & 1 \end{bmatrix} = 0$$

3/25 4/25

the points $w_i = (x_i, y_i)$, i = 1, ..., N lie on a conic section

rank
$$\begin{pmatrix} \begin{bmatrix} x_1^2 & \cdots & x_N^2 \\ x_1y_1 & \cdots & x_Ny_N \\ x_1 & \cdots & x_N \\ y_1^2 & \cdots & y_N^2 \\ y_1 & \cdots & y_N \\ 1 & \cdots & 1 \end{pmatrix} \le 5$$

5/25

Exact fitting by linear homogeneous recurrence relations with constant coefficients

the sequence $w = (w_1, \dots, w_T)$ is generated by linear recurrence relations with lag $< \ell$

there is
$$a=(a_0,a_1,\ldots,a_\ell)\neq 0$$
, such that $a_0w_i+a_1w_{i+1}+\ldots+a_\ell w_{i+\ell}=0$, for $i=1,\ldots,T-\ell$

there is $a = (a_0, a_1, \dots, a_\ell) \neq 0$, such that

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} w_1 & w_2 & w_2 & w_T & w_{T-\ell} \ w_2 & w_3 & \cdots & w_{T-\ell+1} \ dots & dots & dots \ w_{\ell+1} & w_{\ell+2} & \cdots & w_T \end{aligned} \end{bmatrix} = oldsymbol{a}^ op \mathscr{H}_\ell(w) = 0$$

• $N < 4 \rightsquigarrow$ nonunique fit

• N = 4 (different points) \rightsquigarrow unique fit

• $N > 4 \rightarrow$ generically no conic section fits the data exactly

the sequence $w = (w_1, \dots, w_T)$ is a linear recursion with lag $\leq \ell$

$$\mathsf{rank} \left(\begin{bmatrix} w_1 & w_2 & \cdots & w_{T-\ell} \\ w_2 & w_3 & \cdots & w_{T-\ell+1} \\ \vdots & \vdots & & \vdots \\ w_{\ell+1} & w_{\ell+2} & \cdots & w_T \end{bmatrix} \right) \leq \ell$$

- $T \le 2\ell \iff$ there is exact fit (independent of w)
- $T > 2\ell \iff$ generically there is no exact fit

7/25 8/25

6/25

Existence of greatest common divisor

the polynomials p and q have a GCD of degree $\geq \ell$

 \updownarrow

. . .

1

 $rank(Sylvester matrix of p and q) \le m+n-\ell$

Continue the sequences

- (1, 2, 3, 5, 8, 13, ?)
- (-5, 5, 0, 5, 5, 10, ?)
- (1, 0, -1, -1, 0, 1, ?)

Data, model, and model class

	line fitting	conic section fitting	$\begin{array}{c} \text{linear} \\ \text{recurrence} \\ \text{with lag} \leq \ell \end{array}$	GCD
data	points (in \mathbb{R}^2)	points (in \mathbb{R}^2)	sequence	pair of polynomials
model	line (in \mathbb{R}^2)	conic section	autonomous LTI system	polynomials with nontrivial GCD
model class	$\{ \text{lines} \ (\text{in } \mathbb{R}^2) \}$	{ conic sections }	class of LTI systems	?

9/25 10/25

An algorithm for continuation of a sequence

Input: $w = (w_1, ..., w_T)$

- 1: $\ell := 1$
- 2: **while** rank $(\mathcal{H}_{\ell}(w)) = \ell + 1$ **do**
- 3: $\ell := \ell + 1$
- 4: end while
- 5: compute nonzero vector a in the left null space of $\mathcal{H}_{\ell}(w)$

Output:
$$w_{T+1} = -\frac{1}{a_{\ell}}(a_0w_{T-\ell+1} + a_1w_{T-\ell+2} + \cdots + a_{\ell-1}w_T)$$

11/25 12/25

Abstract setting for data modeling

- data space $\mathscr U$ examples: $\mathbb R^q$, $(\mathbb R^q)^T$, $\mathbb R[z] \times \mathbb R[z]$, $\{ \text{true}, \text{ false} \}$
- data $\mathscr{D} = \{\mathscr{D}_1, \dots, \mathscr{D}_N\} \subset \mathscr{U}$ $\mathscr{D}_i \in \mathscr{U}$ — observation, relalization, or outcome
- model $\mathscr{B} \subset \mathscr{U}$ an exclusion rule, declares what outcomes are possible
- model class $\mathcal{M} \subset 2^{\mathcal{U}}$

13/25

Model complexity

- the "smaller" a model is the more powerful/useful it is
- the "bigger" a model is the more complex it is
- we prefer simple models over complex ones
- exact modeling problem:
 find the least complex model that fits the data exactly

Exact vs approximate models

- $\mathscr B$ is an exact model for $\mathscr D$ if $\mathscr D\subset\mathscr B$ otherwise $\mathscr B$ is an approximate model for $\mathscr D$
- any model is approximate model for any data set
 we need to quantify the approximation accuracy
 notion of model accuracy (w.r.t. the data)

14/25

Linear model complexity

- a linear model ${\mathscr B}$ is a subspace of ${\mathscr U}$ (${\mathscr U}$ is a vector space)
- the complexity of ${\mathscr B}$ is defined as its dimension
- in the linear case

 $\mathscr{D} \subset \mathscr{B} \qquad \Longrightarrow \qquad \operatorname{span}(\mathscr{D}) \subset \mathscr{B}$

and the rank of the data matrix is $\leq \dim(\mathcal{B})$

• $\operatorname{span}(\mathcal{D})$ — the smallest linear model, consistent with \mathcal{D}

15/25 16/25

Model accuracy

- the distance between the data \mathcal{D} and a model \mathcal{B} is

$$\mathsf{dist}(\mathscr{D},\mathscr{B}) := \min_{\widehat{\mathscr{D}} \subset \mathscr{B}} \|\mathscr{D} - \widehat{\mathscr{D}}\|$$

• approximate modeling problem:

minimize over $\mathscr{B} \in \mathscr{M}$ dist $(\mathscr{D}, \mathscr{B})$

17/25

Example: $\mathcal{U} = \mathbb{R}^2$, Euclidean norm, $\mathcal{M} = \{ \text{ ellipses } \}$

Example: $\mathcal{U} = \mathbb{R}^2$, Euclidean norm, $\mathcal{M} = \{ \text{ lines } \}$

18/25

Approximate modeling \iff Low-rank approximation

$$\begin{array}{ccc} \text{minimize} & \text{over } \mathcal{B} \in \mathscr{M} & \text{dist}(\mathscr{D}, \mathscr{B}) \\ & & & & & \\ \\ \text{minimize} & \text{over } \widehat{\mathscr{D}} \subset \mathscr{B} \in \mathscr{M} & \|\mathscr{D} - \widehat{\mathscr{D}}\| \\ & & & & \\ \\ \end{array}$$

minimize over $\widehat{\mathcal{D}} = \|\mathscr{D} - \widehat{\mathscr{D}}\|$ subject to $\operatorname{rank} \big(\operatorname{matrix} \, \operatorname{constructed} \, \operatorname{of} \, \widehat{\mathscr{D}} \big) \leq \operatorname{complexity} \, \operatorname{of} \, \mathscr{M}$

- in general, nonconvex optimization problem
- different matrix structures occur in the applications

19/25

Approximate line fitting in \mathbb{R}^2

can be solved using the singular value decomposition

21/25

Conclusions

- common pattern in data modeling
 - data is exact for a model of bounded complexity

 \updownarrow

matrix constructed from the data is rank deficient

- exact modeling ≈ rank computation
- approximate modeling problem
 modify the data as little as possible in order to
 make it exact for a model in the given model class
- the problem is equivalent to low-rank approximation

Approximate conic section fitting in \mathbb{R}^2

minimize over $\mathscr{B} \in \{ \text{conic sections} \}$ dist $(\mathscr{D}, \mathscr{B})$

minimize over
$$\widehat{x}_i$$
, \widehat{y}_i , $i = 1, ..., N$
$$\sum_{i=1}^{N} \left\| \begin{bmatrix} x_i \\ y_i \end{bmatrix} - \begin{bmatrix} \widehat{x}_i \\ \widehat{y}_i \end{bmatrix} \right\|_2^2$$

subject to rank
$$\begin{pmatrix} \begin{bmatrix} \widehat{x}_1^2 & \cdots & \widehat{x}_N^2 \\ \widehat{x}_1 \widehat{y}_1 & \cdots & \widehat{x}_N \widehat{y}_N \\ \widehat{x}_1 & \cdots & \widehat{x}_N \\ \widehat{y}_1^2 & \cdots & \widehat{y}_N^2 \\ \widehat{y}_1 & \cdots & \widehat{y}_N \\ 1 & \cdots & 1 \end{pmatrix} \leq 5$$

requires iterative optimization methods and initial approx.

22/25

Conclusions

- seemingly unrelated problems (line, ellipse, dynamic model fitting, GCD computation) are reduced to one problem
- theory, algorithms, and related software for the generic problem have impact on many applied problems
- postdoc position available from January 2011

23/25 24/25

Questions?