Now bic.	Marian	a ·	Lulvak	la ,	lepe	5		cc.	10	575	100	3		F	ech	di	00	tub	ve	11	20	25		
Parcial 1	: Send	iles	4 5	ster	nas											1						1		
1. La d 12. C; entre	se p	vede	medi e ex	a e	11	9 1	se par-	nal	de	per	po	ten	Cia	x (1	t) necl	e	R. de	2 10	1	X 14e	ı (t	(ia	4	
d2 (X	, X2)	= Px	- x	2 =	L)r	^ .	1]	7	ka l	t) -	Y 2	(t)	1	d	t									
Sea	Xalt)	7	X2(t) :	2 5	cra	lel	de	tir	nida	(0	mo	:											
XI(t)	- Ae	-jnu	y ot			X2	(t)	= Y	3e	jmw	+											1		
(on (a) 1	00 € 27 Served	t/t	. (0	r. A	, B	e =	1R+	10	r	m	6	Z	- 1	Det V+1	hor	nin	e	la	di-	sta	ncie	7 (nti	c
PxA-x2	= 1 T	ST	1 Xa (t	1-	12 (t)	² d	t	=	1+		T (XA	(2)	- 7	2 (7	9)	(X1	(t)	- X	2(7	(1:	*)	dt.
= 1	(),	χnl	t) -)	12 (t)((XA#	(4)	- X	2*	(4)) d	t												
= 1- (JT XA	(t)	Xn*	(4)	dt	- 5	X	1(t)	X	L* (t	10	t-	1	X 2 (כוו	111	-(+) d	t i	-	721	t))	12.4	(t)
= 1	JT XA	(t)		t -	2	5.	X 4	(2)	Xx	* (+	10	t	+	1	1	X2	(1)	12	dt					
	Px		000					C	12								Px:							
Pxn =	TIT) Xn+	TOP	dt	= .	1	T	Ae	-jnu	ort	(4	es	nwa	1	10	rt.		8					
= 42	S™, e	غ (م. ا	1	ot	at	n	A ²	1	9	rt =	All	2 1		T	= 1	A ²	(7)	u	A ²				
Px2 =	1 1,	XzI	t) X	, * (11)t =	= 1	1		eim	woe	(6	se	-jn	اتوسا	()	d							
= 82	J. e	j(20	1	Not.	de		6	2	T	dt	- 1	32	t	17	4	В	2 (y)	-	B2				

Para Xx(t) - Blas (1000 TIt) WA - 1000TT -- TI - ZTT = ZTT | 1000TT 500 XI [N] = AWS 27 N F) = 3 WS (27 N 500) = 3 WS (NT 500) = 3 WS (NT Para 12 (t) - 5 sen (3000 Tt) W2 = 3000 TT - T2 = 2TT F2 = 1 = 1 T2 1/4500 28 1 = 1500 Hz 1 W2 3000M 1500 X= [n] = Asen (2mn F=) = 5sen (2mn 1500)
5000 = 3 sen | 3 NT | 5000 Para 13(t) - 10(05 (11000 mt) $W_3 = 10000 \text{ T} - T_3 = 27 1 1 - F_3 = 1 = 1 = 5500 Hz$ X3 [N] = A (05 (271 F3) = 10 (05 | 271 5500) = 10 (05 | 14 N TT VINT = 3605 (NTT) + 35en (3nTT) 10605 (MATT) W2 = 300011 = 3 60 W1 = 1000T = 1 6 0 300011 Wa 11 0000 W1 = 1000 = 1 & Q : La senal es cuasipeliódica 11 11000 NO wmple nyquist. Si Ts > 2 Fmax - 2 Fmax = 2 (5500 Ht) = 11000 Ht pero Fs = 5000 Ht Comparando con los originales - - TI A 4TT capia o aliasina no comple > TT] 1 = 1 TT comple, 1/2 = 3 TT comple, 1/3 = 11 TT 13 original = 11 T - 2T = 1 T anora si comple

se suporte una trequencia de muestreo más grande Fs = 3 Fmox = 3 (3500 Hz) = 16500 Hz 16 300 Para X1(t) = 3(0) (1000 11 t) XV[n] = 3005 (2 mn 500) = 305 (2 nTT N1 = 27 0,06T Para 12 (t) = 5 sen (3000 #t) N2 = 21 = 018 TT) = 5 scn (2 NTT) X2[N] = 5 8ch / 211 1500 16 500 Para X3(t) = 10(05 (11000 TT) $X3[n] = 10 \cos (2\pi n) 5500 = 10 \cos (2n\pi) 13 = 2\pi = 0,67\pi$ 16500 - IT 4 N1, N2, N3 4 TT - las 3 trecuencias digitales estan en las originales. W1= 1000 TT W2 - 3000TT x[n] = 3 cos (20T) + 5 scn (20T) + 10 cos (20T) W3 = 11000 TT Hallamol e período T para graficar las serales: = 127 T = 128 = 1281 K2TT 1211 = T= 1211 11.0000 3000 N 1000A Ws W2 wi 16500T = 331 = 111 = 3K K T = | T 500 1500 5500 1=3 K= 11 r = 1 MCM (33, 11, 37 = 33 -> 16 500 + = 33 T = 33 500 16500

Se reemplata el Tr - Unn2 wo= = 1 (x/(t)e-shwot dt. (n= 1 | x"(t)e-jnwot dt = 1 | x"(t) (ws (nwot) - j sen (nw.x) dt (ti-t+) n2wo2 | x"(t) (ws (nwot) - j sen (nw.x) dt 1 (ti-te) n2 wot) + (ti-te) n2 wot) + (ti-te) n2 wot) + Sabemol ace an= 2 [xttlos(nwot) dt; bn = 2 [xttlsen(nwot) dt. 4 90x an = 2 fe { (n) ; bn = - 21m { (n) - an= 2 Re ((n) = 2 1 | X " (os (nwot) dt O también (on x(t)= 7 an (os (nwot) + brisch (nwot) x(t) = 7, an los(nwot) + busen (hwot) x'(t) = 7 - ansen (nwot) nwo + bn (05 (nwot) nwo x"(t) = 7 -ancos (nwot)(nwo)2 - on sen(nwot)(nwo)2 = D-ann2wor cos(nwot), - bn n2wor sen (nwot) an = 2 | x(t) (0) (nwot) dt - an = = | x" (t) (0) (nwot) dt. -ann2wo2 = 2 | x"(t) (a) (nwot) dt - an= (x"(t)(a) (nwot) dt. -(+++1) n= wo+

1 1 1 1 1 A (d(t+d2)+d(t-d2))-(A A)(d(t+d2)+d(t-d2))+
Tn2wo2 1-112 (d2-d1) 2A d(t)] (-) nwot como xIEI con simetia par sen (01) = 0 (The A d(t+d1) (05(NWOT) d+ (T)2 A d(t-d2) (01(NWSE) dt -112 02-01 Th2Wo7 1-1/2 d2-d1 1 1 6 (t+d1) (05 (nwot) dt - 57/2 A (1) + 5(t-d1) cos(nwot) dt + (1/2 2A d(t) (0) (nwot) de] Usamo) - 10 x (t) 8 (t = to) at = x (7 to) (x) = (0) (-x) (n= 4 (AA (05(nwo(1d2))+ 1 (05(nwod2)- d2-d1+d1 (05(nwo(1-d1))

tn= 4 (AA (05(nwo(1d2))+ 1 (05(nwod2)- d2-d1+d1 (05(nwo(1-d1))) -- d2-d1+d1 (05(NWod1) + 2 (05(NWO-0)) d1(d2-d1) 2 (01 (nwodz) - 2d2 (05 (nwod1) (ti-ti) n2wo+ (d2-d1 daldz-dal da 1 (05 (hwod2) - d2 (o) (NWoda) + 1 (1 di-di dildi-dil dildi-dil (05 (nwodi) + 1) - Re((n) (os (nwodz) -- AT 1 de-d1 ICAl = See & Cal + 0' + Re (Cay) On = tan-1 (Im f(n) tan-1 Pe Ecny Re (Cny Pr=1 Er = 1 lejnwt12 e(1) = (1-8/1012 Pm) 100 [-/-]

confirmamo con x(t) T= t4-t1 = T - (- T (n=1 (1-d) 0. e-invot dt + (d) A (t+d2) e-invot dt + (0-4 + e-invot dt) + 101 A e-Inwot dt . 102 - A (t+d2) e-Inwot dt + 17/2 De-Inwot dt (n = 1 (A) (+ d2) e-smuot dt - A 10 te-jnuot + A (d) te-smuot at - A (d2 (t+d2) E) wot dt) (n=1 | A | | d1 te-jawat dt + d2 | -d1 e-jawat dt | - A | 0 te-jawat dt | - A | 0 te-jawat at + A pan te-invotat - A pazte-inwetat + dz paz e-invotat d2 d1 Jd1 Is Hecho en calculadura: In = e jawodi (di -6 Junogs d2 1 1 12 002 US MOS 1 nWo de ejnwode ejnwode 12= jnwo enwoda 13= - d1 e 1 mwood 1 h2wo2 n24002 jnwo 10 = - de e-jawoda 1 e-jawoda 1 n2 wo2 12 Wez jnwo 1 e-j woods 15 = | d1 e- jnwod1 de e-jnwodz 12W02 jnwo jnwo 12m03 da e-jawodz 16 = d2 e-jnwod1 Inwo 1 WW

AC Jawodz Aethwood defemods Cn = 1/ inwo (dz-d1) 12wo2(d2-d1) 12woz (dz-d1) 1000 (dz-d1) AC-IRwoods da A @ I n wo dz A ej nwod1 inwoldz-da) dinzwoz 0112002 jnwo in wo AC Jawoda da Al- jawoda dz Ae-Inwodz jawo(dz-da) d1 12 W07 dintwo2 inwo(dz-d1) dz Aljanodz AC-) NWodz de Al-Inwoods Ac-Jawods n2w02/012-01 12w02 (dz-dh) 1 nwo (dz - d1) inwo (dz-dh) e 10'= (05 (0) +) sen (0) Palando (n = di 2A Sen (nwoods) dz 2+65(nwod2) d2-d1 nwo nwo (dz-dn) nwo 24cos/nwoda)/ 0/2 24(05 (NWOOL) d2 d2-d9 nwo (dz-dn) nwo HA NWO awa 202 A sen(nwod2) + 2A dan2wo2) NW (d2-d1)

