The determinacy of infinite games specified by automata

Olivier Finkel

Equipe de Logique Mathématique Institut de Mathématiques de Jussieu - Paris Rive Gauche CNRS and Université Paris 7

Highlights of Logic, Games and Automata, September 2013, Paris

INFINITE GAMES

A system in relation with an environment may be specified by an infinite game between two players.

Two players:

- Player 1: the computer program
- Player 2: the environment

The possible actions of the players are represented by letters of a finite alphabet A.

INFINITE PLAY

The two players compose an infinite word over the alphabet A:

Player 1:
$$a_1$$
 a_3 a_5 ...

Player 2: a_2 a_4 a_6

The infinite word $a_1.a_2.a_3...$ represents the infinite behaviour of the system.

A good behaviour is represented by a set of infinite words $L \subseteq A^{\omega}$ called the winning set for Player 1.

The above game, with perfect information, is a Gale-Stewart game G(L).

WINNING STRATEGIES

A strategy for Player 1 is a mapping $f: (A^2)^* \longrightarrow A$. Player 1 follows the strategy f iff $\forall n \ge 1$: $a_{2n+1} = f(a_1 a_2 \dots a_{2n})$.

The strategy *f* **is winning for Player 1 if it ensures** a good behaviour of the system, **i.e. such that :** the infinite word written by the two players belongs to the winning set *L*:

$$a_1.a_2.a_3\ldots\in L$$

A winning strategy for Player 2 is a strategy for Player 2 which ensures that $a_1.a_2.a_3... \notin L$.

A Gale-Stewart game G(L) is determined iff one of the two players has a winning strategy.

WINNING STRATEGIES

The important problems to solve in practice are:

- (1) Is the game G(L) determined?
- (2) Which player has a winning strategy?
- (3) If Player 1 has a winning strategy, can we effectively construct this winning strategy? Is it computable?
- (4) What is the complexity of this construction? What are the necessary amounts of time and space?

COMPLEXITY OF WINNING SETS

The winning set for Player 1 is often given as the set of infinite behaviours which satisfy a logical formula.

It is also often given as the set of infinite words accepted by a finite automaton, a one-counter automaton, a pushdown automaton, ... with a Büchi acceptance condition ...

Regular winning sets

Büchi and Landweber solved the famous Church's Problem posed in 1957, Rabin gave an alternative solution:

Theorem (Büchi-Landweber 1969; Rabin 1972)

If $L \subseteq \Sigma^{\omega}$ is a regular ω -language then:

- The game G(L) is determined.
- One can decide which Player has a winning strategy.
- On can construct effectively a winning strategy given by a finite state transducer.

This was extended to the case of deterministic context free winning sets ([Walukiewicz 1996]), and to winning sets accepted by deterministic higher-order pushdown automata ([Cachat 2003], [Carayol, Hagues, Meyer, Ong, Serre 2008])

The question of the determinacy

The determinacy of regular or deterministic context-free games follows from the determinacy of Borel games. (Martin 1975).

The question remained open for non-deterministic pushdown automata, one-counter automata, 2-tape automata: these automata accept non-Borel sets.

Complexity of ω -Languages of Non Deterministic Turing Machines

Non deterministic Büchi (or Muller) Turing machines accept effective analytic sets (Staiger). The class Effective- Σ_1^1 is the class of projections of arithmetical sets.

There are some non-Borel sets in the class **Effective-** Σ_1^1 .

Theorem

• [Ressayre and F. 2003] There are some non-Borel context-free (and even 1-counter) ω -languages.

The (effective) analytic determinacy

Theorem (Martin 1970 and Harrington 1978)

The effective analytic determinacy is equivalent to the existence of a particular real called 0[‡].

The existence of the real 0[‡] is known in set theory to be a large cardinal assumption, and is not provable in **ZFC**.

(Viewed as a set of integers, the real 0^{\sharp} is the set of Gödel numbers of formulas which are satisfied by an uncountable set of indiscernible ordinals in **L**, firstly considered by Silver 1966)

The context-free determinacy

Theorem (F. 2011)

The determinacy of games G(L), where L is accepted by a real-time 1-counter Büchi automaton, is equivalent to the effective analytic determinacy, and thus it is not provable in ZFC.

Sketch of the proof

We start from an effective analytic set $L(\mathcal{T})$ accepted by a Büchi Turing machine \mathcal{T} .

We construct a real time 1-counter Büchi automaton \mathcal{A} such that Player 1 (resp. Player 2) has a winning strategy in $G(L(\mathcal{T}))$ if and only if that Player 1 (resp. Player 2) has a winning strategy in the game $G(L(\mathcal{A}))$.

The game G(L(T)) is determined iff the game G(L(A)) is determined.

Games with non-recursive strategies when they exist

Theorem (F. 2011)

There exists a 1-counter Büchi automaton A such that:

- (1) There is a model V_1 of **ZFC** in which Player 1 has a winning strategy σ in the game G(L(A)). But σ cannot be recursive and not even hyperarithmetical.
- (2) There is a model V_2 of **ZFC** in which the game G(L(A)) is not determined.

Moreover these are the only two possibilities: there are no models of **ZFC** in which Player 2 has a winning strategy.

Games of maximum strength of determinacy

Theorem (F. 2012)

There exists a 1-counter Büchi automaton A_{\sharp} such that: The game $G(A_{\sharp})$ is determined iff the effective analytic determinacy holds iff all 1-counter games are determined.

Are there two or more strengths of determinacy?

A transfinite sequence of 1-counter Büchi automata

The recursive ordinals form an initial segment of the countable ordinals.

The ordinals ω , ω^{ω} , $\omega^{\omega^{\omega}}$, ...,

$$\varepsilon_0 = \lim_n \underbrace{\omega^{\omega}}_n$$

are recursive.

A transfinite sequence of 1-counter Büchi automata

A transfinite sequence of games specified by 1-counter Büchi automata with increasing strength of determinacy.

Theorem (F. 2012)

There is a transfinite sequence of 1-counter Büchi automata $(\mathcal{A}_{\alpha})_{\alpha<\omega_1^{\mathrm{CK}}}$, indexed by recursive ordinals, s.t.:

$$\forall \alpha < \beta < \omega_1^{\text{CK}} \ [\ \textit{Det}(\textit{G}(\textit{L}(\mathcal{A}_{\beta}))) \Longrightarrow \textit{Det}(\textit{G}(\textit{L}(\mathcal{A}_{\alpha}))) \]$$

but the converse is not true:

For each recursive ordinal α there is a model \mathbf{V}_{α} of **ZFC** such that in this model the game $G(L(A_{\beta}))$ is determined iff $\beta < \alpha$.

THANK YOU!