CPU Role Play

Command Decoder Table (for the Control Unit)

Command	(Bin)Command	(Dec) (Command ((Assembly	Language)
---------	--------------	---------	-----------	-----------	-----------

0000 0000	00000000	LOAD (address) -> A
0000 0001	0000001	LOAD (address) -> B
0000 0010	00000002	LOAD (address) -> D
0000 0011	0000003	LOAD A -> (address)
0000 0100	0000004	LOAD C -> (address)
0000 0101	00000005	ADD A,B -> C
0000 0110	00000006	DEC D
0000 0111	0000007	JMPDNZ (address)
0000 1000	8000000	OUT (address)

Command Cards (for the Control Unit)

00000000 LOAD (address) -> A

Steps to execute:

- 1. Increase program counter by one
- 2. Give command read to control bus
- 3. Wait until the data (an address) appears on the data bus
- 4. Write the value from the data bus to the address register
- 5. Give command read to control bus
- 6. Wait until the data appears on the data bus
- 7. Write the data (number) to register A
- 8. Increase the program counter by one

00000001 LOAD (address) -> B

Steps to execute:

- 1. Increase program counter by one
- 2. Give command read to control bus
- 3. Wait until the data (an address) appears on the data bus
- 4. Write the value from the data bus to the address register
- 5. Give command read to control bus
- 6. Wait until the data appears on the data bus
- 7. Write the data (number) to register B
- 8. Increase the program counter by one

000000002 LOAD (address) -> D

Steps to execute:

- 1. Increase program counter by one
- 2. Give command read to control bus
- 3. Wait until the data (an address) appears on the data bus
- 4. Write the value from the data bus to the address register
- 5. Give command read to control bus
- 6. Wait until the data appears on the data bus
- 7. Write the data (number) to register D
- 8. Increase the program counter by one

00000003 LOAD A -> (address)

Steps to execute:

- 9. Increase the program counter by one
- 10. Give command read to control bus
- 11. Wait until the data (an address) appears on the data bus
- 12. Write the value from the data bus to the address register
- 13. Give the content of register A to the data bus
- 14. Give command write to control bus
- 15. Increase the program counter by one

00000004 LOAD C -> (address)

Steps to execute:

- 1. Increase the program counter by one
- 2. Give command read to control bus
- 3. Wait until the data (an address) appears on the data bus
- 4. Write the value from the data bus to the address register
- 5. Give the content of register C to the data bus
- 6. Give command write to control bus
- 7. Increase the program counter by one

00000005 ADD A,B -> C

Steps to execute:

- 1. Tell the ALU to add the contents of the registers A and B
- 2. Write the result into register C
- 3. Increase the program counter by one

00000006 DEC D

Steps to execute:

- 1. Decrease the content or register D by one (i.e. subtract one)
- 2. Increase the program counter by one

00000007 JMPDNZ (address)

Steps to execute:

- 1. Increase the program counter by one
- 2. Give the command read to the control bus
- 3. Wait until the data (an address) appears on the data bus
- 4. Tell the ALU to check if the register D is equal to zero
- 5. If no: Write the address from the data bus to the program counter If yes: Increase the program counter by one

00000008 OUT (address)

Steps to execute:

- 1. Increase the program counter by one
- 2. Give the command read to the control bus
- 3. Wait until the data (an address) appears on the data bus
- 4. Wait the value from the data bus to the address register
- 5. Give the command read to the control bus
- 6. Wait until the data appears on the data bus
- 7. Shout "The output equals to ..." plus the value of your data (Output)!
- 8. Increase the program counter by one