跌落式熔断器串口版通信协议

一、固定帧

固定帧长度固定为6字节, 其格式如表1:

表1:

启动字符(10H)		
控制域(C)(1字节)		
链路地址域(2字节)		
帧校验(CS) (1字节)		
结束字符(16H)		

1. 启动字符

10H 标示此帧为固定帧, 帧总长度为 6 个字节

2. 控制域

表 2:

控制域 (C)	bit 7	bit 6	bit 5	bit 4	bit 3: 0
主站发送	DIR	PRM	FCB	FCV	功能码

1.1 bit 7 DIR

0:此帧为主站发送帧

1:此帧为从站发送帧

1.2 bit 6 PRM 启动报文

0:此帧为回复帧

1:此帧为启动帧

1.3 bit 5 FCB 帧计数位

此位翻转:正常发送时 FCB 位每发送一帧翻转一次。

此位不变:未收到对方响应时此位不翻转并重复发送(延时 5S 未收到信息则认为接收失败,重复发送)。

1.4 bit 4 FCV 帧计数有校位

0:FCB 位变化无效, 即忽略 FCB 位值

1:FCB 位每次发送翻转一次,若接收到相同 FCB 则认为重复发送。

1.5 bit 3:0 功能码

功能码含义见表 3:

表 3:

功能码	含义
0	主站复制远方链路
3	发送确认用户数据
9	主站链状态
В	回复链路状态

3. 链路地址域

两字节, 低字节在前, 标示从站链路地址,

4. 帧校验

校验和是控制域, 地址域的 8 位位组的算术和

5. 结束字符

16H 标示一帧数据结束,固定帧结束字符在第 6 字节。

6. 固定帧示例

表 4:

主站回复复位	10 00 01 00 01 16
主站回复链路状态 (正常)	10 0B 01 00 0C 16
主站复位远方链路	10 40 01 00 41 16
主站请求远方链路	10 49 01 00 4a 16
子站链路主站	10 C9 01 00 CA 16
子站复位主站	10 C0 01 00 C1 16
子站回复主站总召	10 80 01 00 81 16
子站回复链路状态	10 8B 01 00 8C 16
子站回复主站复位链路	10 80 01 00 81 16

二、变长帧

变长帧格式如下:

表 5:

启动字符(68H)
L (1 byte)
L (1 byte)
启动字符 (68H)
控制域 (C)
链路地址域(A)
链路用户数据(可变长度)
帧校验和 (CS)
7. 16H

1. 启动字符

68H 标示此帧为变长帧

2. L

L 指控制域、链路地址域及用户数据区的字节数, 帧总长度为 L+6

3. 控制域

表 6:

控制域 (C)	bit 7	bit 6	bit 5	bit 4	bit 3: 0
主站发送	DIR	PRM	FCB	FCV	功能码

3.1 bit 7 DIR

0:此帧为主站发送帧

1:此帧为从站发送帧

3.2 bit 6 PRM 启动报文

0:此帧为回复帧

1:此帧为启动帧

3.3 bit 5 FCB 帧计数位

此位翻转:正常发送时 FCB 位每发送一帧翻转一次。

此位不变:未收到对方响应时此位不翻转并重复发送(延时 5S 未收到信

息则认为接收失败, 重复发送)。

3.4 bit 4 FCV 帧计数有校位

0:FCB 位变化无效, 即忽略 FCB 位值

1:FCB 位每次发送翻转一次,若接收到相同 FCB 则认为重复发送。

3.5 bit 3:0 功能码

功能码含义见表 3:

表 7:

功能码	含义
0	主站复制远方链路
3	发送确认用户数据
9	主站链状态
В	回复链路状态

4. 链路地址域

两字节, 低字节在前, 标示从站链路地址,

5. 链路用户数据

数据域格式如下表:

表 8:

	数据单元类型	类型标识	
 数据单元标识	数指手儿关至 	可变结构限定词	
— 数加 丰 儿你以	传送原因		
	公共地址		
	信息体地址		
信息体	信息体元素		
	信息体时标		

5.1 类型标识

定义后续信息对象的结构、类型和格式,本协议中使用的标识如下:

表 9:

64H	总召唤
67H	对时
1EH	带时标的单点信息

5.1.1 总召唤

总召唤帧示例:68 0C 0C 68 F3 01 00 64 01 07 00 01 00 00 00 14 85 16

其对应含义如下:

帧	格式	备注
68H	变长帧头	变长帧头
0BH	L	控制、链路及数据长度
0BH	L	控制、链路及数据长度
68H		变长帧头
73H	控制域	主站发送用户数据
1H	链路地址	低字节
0H	链路地址	高字节
64H	类型标示	
1H	可变结构限定词	数据域为1个单元数据
7H	传送原因	低字节
1H	公共地址	低字节
0H	公共地址	高字节
0H	信息体地址	低字节
0H	信息体地址	高字节
14H	信息	1个字节用记数据
85H	校验	
16H	结束符	

5.1.2 对时

由主站发起, 带有时间信息, 给从站对时, 从站回复应答帧, 对时结束

示例: 68 11 11 68 D3 01 00 67 01 06 01 00 00 00 23 00 10 01 01 01 17

09 16

68H	变长帧头	
11H	控制、链路及数据长度	
11H	控制、链路及数据长度	
68H	变长帧头	
D3H	从站突发上传数据	
1H	链路地址	
0H	链路地址	
67H	带时标的单点信息	
1H	可变结构限定词	数据域为1个单元数据
6H	传送原因	主站激活对时
1H	公共地址	与链路地址相同
0H	公共地址	与链路地址相同
OH	信息体地址	
0H	信息体地址	
23H	毫秒低位	
00H	毫秒高位	
10H	分钟	
1	时	
1H	田	
1H	月	
17H	年	
09H	校验	
16H	结束符	

5.1.3 带时标的单点信息

由从站突发上传, 主站回复固定应答帧 10 00 01 00 01 16

示例: 68 12 12 68 D3 01 00 1E 01 03 01 00 01 00 01 00 12 23 10 01 01 17

84 16

其对应含义如下:

68H	变长帧头	
12H	控制、链路及数据长度	
12H	控制、链路及数据长度	
68H	变长帧头	

D3H	从站突发上传数据	
1H	链路地址	
0H	链路地址	
1EH	带时标的单点信息	
1H	可变结构限定词	数据域为1个单元数据
3H	传送原因	突发上传
1H	公共地址	与链路地址相同
0H	公共地址	与链路地址相同
1H	信息体地址	
0H	信息体地址	
1H	信息	跌落数据
23H	毫秒低位	
00H	毫秒高位	
10H	分钟	
1	时	
1H	日	
1H	月	
17H	年	
84H	校验	
16H	结束符	
	-	

6. 校验和

校验和是控制域, 地址域 用户数据区的 8 位位组的算术和

7. 结束字符

三、 流程示例:

1. 复位链路:

主站可复位从站链路

主站发起: 10 40 01 00 41 16 从站回复: 10 80 01 00 81 16

2. 请求链路状态

主站发起链路状态

主站发起链路请求: 10 49 01 00 4a 16 从站应答链路状态: 10 8B 01 00 8C 16

3. 突发数据

由从站发起:

68 12 12 68 C3 01 00 1E 01 03 01 00 01 00 <mark>01</mark> 38 4A 25 00 01 01 00 92 16(A 相跌落 68 12 12 68 C3 01 00 1E 01 03 01 00 01 00 00 E0 2E 27 00 01 01 00 1F 16(A 相正常)

主站确认应答: 10 00 01 00 01 16

注:绿色为信息体地址,红色为数据(下同)

4. 总召

主站发起总召: 68 0B 0B 68 73 01 00 64 01 06 01 00 00 00 14 F4 16 子站响应总召: 68 0B 0B 68 80 01 00 64 01 07 01 00 00 00 14 02 16

子站发回总召数据: 68 10 10 68 80 01 00 01 86 14 01 00 01 00 00 00 00 00 00 01 1F 16

子站发回总召结束帧: 68 0B 0B 68 80 01 00 64 01 0A 01 00 00 00 14 05 16

5. 对时

主站发起对时:68 11 11 68 53 01 00 67 01 06 01 00 00 00 23 00 1E 0C 1E 06 11 45 16 从站回复对时:68 11 11 68 80 01 00 67 01 07 01 00 00 00 00 1E 0C 1E 06 11 50 16

备注:主站可以通信复位链路及链路请求检查链路状态,在确定链接状态,也可

不需要复位及请求链路,直接发起总召。

四、通信接口

通信接口用标准 9 针 RS232 串口,使用 RXD TXD GND 针,全双工,无流控制,一位起始位,一位停止位,8 位数据位,波特率 9600.

附录 1:

跌落式熔断器点表

信息体地址	信息	备注
1	A 相状态	0:正常 1:跌落
2	B 相状态	0:正常 1:跌落
3	C相状态	0:正常 1:跌落
4	备用	
5	备用	
	电池欠	
6	压	0:正常 1:欠压