

A THIRD PROCEDURE FOR LINEARIZED FULLY CAVITATING HYDROFOIL SECTION DESIGN

B. R. Parkin and J. Fernandez

Technical Memorandum
File No. TM 77-186
5 July 1977
Contract No. N00017-73-C-1418

Copy No. 50

The Pennsylvania State University APPLIED RESEARCH LABORATORY Post Office Box 30 State College, PA 16801 Processor States

Approved for Public Release Distribution Unlimited

AD NO.

NAVY DEPARTMENT

NAVAL SEA SYSTEMS COMMAND

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When	Dara Enterelly	
REPORT DOCUMENTATI	ION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
TM-77-186	2. GOVT ACCESSION NO.	3. BETPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle)		5. THE OF REPORT & PERIOD COVERE
A THIRD PROCEDURE FOR LINEARIZE	D FULLY CAVITATING	Technical Memorandum
HYDROFOIL SECTION DESIGN.		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(8)		8. CONTRACT OR GRANT NUMBER(s)
B. R. Parkin and J. Fernandez	(15)	N00017-73-C-1418
9. PERFORMING ORGANIZATION NAME AND ADD	RESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Applied Research Laboratory P. 0. Box 30		AREA WHOM BITT HOME AS
State College, PA 16801		12. REPORT DATE
Naval Sea Systems Command		//) 5 July 1977
Washington, DC 20362		13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(II di	Herent from Controlling Office)	15. SECURITY CLASS. (of this report)
(12/22001		UNCLASSIFIED
Sarp.		15. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		<u> </u>
Approved for public release. Per NAVSEA - Aug. 11, 1977.		iitea.
17. DISTRIBUTION STATEMENT (of the abstract en	stered in Block 20, if different fro	m Report)
19. KEY WORDS (Continue on reverse side if necess.	ary and identify by block number)	
Cavitation Pressure Dist		
Hydrofoils Parametric Des Wetted Surface Lift Coefficie Cavity Flow		
20. ABSTRACT (Continue on reverse side if necesse	ery and identify by block number)	
The third design procedure for linearized inverse theory of tw tion number. The cavity surfactrailing edges of the wetted su basic theory and gives detailed	fully cavitating hydro-dimensional cavity are assumed to orderface. This report	y flows at arbitrary cavita- iginate at the leading and reviews and completes the

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

along the profile chord. A prescribed pressure distribution shape is also selected. These quantities determine the profile design which consists of the upper cavity and wetted surface contours, the design angle of attack, the cavity length, the drag coefficient, the moment coefficient and the lift-to-drag ratio. The method also includes off-design calculations in accordance with the direct linearized theory of cavity flows which determines the flow states for which interference can occur between the upper surface of the cavity and the upper nonwetted surface of the profile. The hydrodynamic performance of specific point designs is also given by these direct calculations.

The chief new feature of the third design procedure is the ability of the designer to prescribe two points on the cavity surface instead of one as heretofore. Although certain constraints must be observed by the designer when specifying these two values of cavity thickness, the third procedure is found to be more general and more flexible than the first or second procedures studied previously. The necessary constraints are incorporated in the computer logic for the method. The fact that linearized theory is used tends to limit the applicability of the procedure to conceptual design and feasability studies. The computer program for the procedure has been found to be economical and well suited for its intended purpose.

Abstract:

The third design procedure for fully cavitating hydrofoils is based upon a linearized inverse theory of two-dimensional cavity flows at arbitrary cavitation number. The cavity surfaces are assumed to originate at the leading and trailing edges of the wetted surface. This report reviews and completes the basic theory and gives detailed examples obtained from the resulting parametric design technique. In the third design procedure, one specifies the design lift coefficient, the cavitation number and the upper cavity thickness at two points along the profile chord. A prescribed pressure distribution shape is also selected. These quantities determine the profile design which consists of the upper cavity and wetted surface contours, the design angle of attack, the cavity length, the drag coefficient, the moment coefficient and the lift-to-drag ratio. The method also includes off-design calculations in accordance with the direct linearized theory of cavity flows which determines the flow states for which interference can occur between the upper surface of the cavity and the upper nonwetted surface of the profile. The hydrodynamic performance of specific "point designs" is also given by these direct calculations.

The chief new feature of the third design procedure is the ability of the designer to prescribe two points on the cavity

surface instead of one as heretofore. Although certain constraints must be observed by the designer when specifying these two values of cavity thickness, the third procedure is found to be more general and more flexible than the first or second procedures studied previously. The necessary constraints are incorporated in the computer logic for the method. The fact that linearized theory is used tends to limit the applicability of the procedure to conceptual design and feasability studies. The computer program for the procedure has been found to be economical and well suited for its intended purpose.

Acknowledgment:

This research was carried out under the Naval Sea Systems Command General Hydromechanics Research Program, Subproject SR 023 01 01, administered by the David W. Taylor Naval Ship Research and Development Center, Contract N00017-73-C-1418.

Table of Contents

	Page
Abstract	1
Acknowledgment	2
List of Figures	5
Nomenclature	9
INTRODUCTION	11
THEORETICAL PRELIMINARIES	13
Flow Geometry and Characteristic Parameters	13
Conformal Transformations and the Complete Solution	15
Boundary Conditions for the Inverse Problem	20
THE DESIGN PROCEDURE	25
Provisions for a Determinate Procedure	25
The Sequence of Calculations	29
Formulae for Profile Design at Zero Cavitation Number	35
Preliminary Analyses	37
Rectangular Pressure Distributions	39
Data for Semi-Elliptic Pressure Distributions	36
The Design Procedure for Arbitrary Cavitation Number	51
THE THIRD DESIGN PROCEDURE SUMMARY OF RESULTS	57
Preliminary Remarks	57
Hydrodynamic Performance Trends	58
Profile Geometric Trends	64
Off-Design Performance	71
CONCLUSIONS	
DEEDBENCE	75

Table of Contents (Cont.)

															Page
APPENDIX				•			•							•	76
FIGURES .															145

				Page
Figure	1	-	Schematic Diagram of Two-Dimensional Flow Geometry and Prescribed Pressure Distribution	145
Figure	2	-	Mathematical Representation of the Hydrofoil and Cavity in the Complex z-Plane	146
Figure	3	-	The Hydrofoil and its Cavity in the ν and $\zeta\text{-Planes}$ After the Application of Conformal Mappings	146
Figure	4	-	Parametric Representations of Rectangular Pressure Distributions for Nose-Loaded (a) and Tail-Loaded (b) Hydrofoil Sections	147
Figure	5	-	Limiting Values of $C_{\underline{L}}/T$ for Rectangular Pressure Distributions at Zero Cavitation Number	148
Figure	6	-	Permissible Values of μ at Zero Cavitation Number and Lift Parameter m for Rectangular Pressure Distributions and Three Nose Control Points, x $_{o}$	149
Figure	7	-	Permissible Values of μ at Shockless Entry for Rectangular Pressure Distributions at Zero Cavitation Number	150
Figure	8	-	Semi-Elliptical Pressure Distributions for Nose and Tail Loadings	151
Figure	9	-	Effect of Pressure Distribution Shape on Permissible Values of $\boldsymbol{\mu}$ at the Ideal Attack Angle .	152
Figure	10	-	Limiting Values of C_{χ}/T as Affected by Pressure Distribution Shape at the Ideal Attack Angle	153
Figure	11	-	Limiting Value of C_L/T for Semi-Elliptical Pressure Distributions	154
			Permissible Values of μ for Semi-Elliptical Pressure Distributions at K=0 and m=0	155
Figure	13	-	Permissible Values of μ for Semi-Elliptical Pressure Distribution at x = .04 and K=0 at the Ideal Attack Angle	156
Figure	14	-	Permissible Values of μ for Semi-Elliptical Pressure Distributions at x = .10 and K=0 at the Ideal Attack Angle	157
Figure	15	-	Permissible Values of μ for Semi-Elliptical Pressure Distributions at x = .16 and K=0 at the Ideal Attack Angle	158

				Page
Figure	16	-	Three $\textbf{C}_{\underline{\textbf{L}}}$ Intervals which Govern the Computation of the Permissible Range of μ	159
Figure	17	-	Effect of Permissible Values of μ on L/D for Semi-Elliptical Pressure Distributions at K=0 and Various C_L	160
Figure	18	-	Effect of Permissible Values of μ on L/D for Semi-Elliptical Pressure Distributions at K=0.2 and Various $^{C}_{L}$	161
Figure	19	-	Effect of Permissible Values of μ on L/D for Semi-Elliptical Pressure Distributions at Various Cavitation Numbers and Fixed C $_L$	162
Figure	20	-	Effect of Permissible Values of μ on L/D for a Fixed Peak Pressure Location and Ranges of K and c_L	163
Figure	21	-	Effe Permissible Values of μ on L/D for Var Thicknesses and Lift Coefficients	164
Figure	22	-	General Effect of μ on L/D for Two Values of $^{C}_{L}$ and Fixed Values of K, T and X $_{o}$	165
Figure	23	-	Cross Plots from Figure 22 Showing Trends of L/D for Various Fixed Values of μ	166
Figure	24	-	General Effect of μ on L/D for Two Values of ^{C}L at K=.2	167
Figure	25	-	Replot of Figure 24 Showing the Effect of μ on L/D when K=.2 and C _L =.08	168
Figure	26	-	Third Design Procedure L/D Performance Map, K=0.000, MU MAX	169
Figure	27	-	Third Design Procedure L/D Performance Map, K=0.000, MU MIN	170
Figure	28	-	Third Design Procedure L/D Performance Map, K=0.050, MU MAX	171
Figure	29	-	Third Design Procedure L/D Performance Map, K=0.050, MU MIN	172
Figure	30		Third Design Procedure L/D Performance Map,	173

		Pag	e
Figure	31 -	Third Design Procedure L/D Performance Map, K=0.100, MU MIN	4
Figure	32	- Third Design Procedure L/D Performance Map, K=0.150, MU MAX	5
Figure	33 -	- Third Design Procedure L/D Performance Map, K=0.150, MU MIN	6
Figure	34 -	- Third Design Procedure L/D Performance Map, K=0.200, MU MAX	7
Figure	35 -	- Third Design Procedure L/ D Peformance Map, K=0.200, MU MIN	8
Figure	36 -	- Profile and Pressure Distribution for s=.2 17	9
Figure	37 -	- Profile and Pressure Distribution for s=.2 18	0
Figure	38 -	- Profile and Pressure Distribution for s=.3 18	1
Figure	39 -	- Profile and Pressure Distribution for s=.3 18	2
Figure	40 -	- Profile and Pressure Distribution for s=.3 18	3
Figure	41 -	- Profile and Pressure Distribution for s=.3 18	4
Figure	42 -	- Profile and Pressure Distribution for s=.3' 18	5
Figure	43 -	- Profile and Pressure Distribution for s=.7 18	6
Figure	44 -	- Profile and Pressure Distribution for s=.7 18	7
Figure	45 -	- Profile and Pressure Distribution for s=.7 18	8
Figure	46 -	- Profile and Pressure Distribution for s=.3 18	9
Figure	47 -	- Profile and Pressure Distribution for s=.3 19	0
Figure	48 -	- Profile and Pressure Distribution for s=.3 19	1
Figure	49 -	Three-Term Pressure Distributions at C, = .12 19	2
Figure	50 -	Nose-Loaded Pressure Distribution and Profile Shape for a Three-Term Profile	3
Figure	51 -	Nose-Loaded Pressure Distribution and Profile Shape for a Three-Term Profile	4

	Page
Figure 52 - Three-Term Pressure Distribution and Profile Shape for a Tail-Loaded Hydrofoil	195
Figure 53 - Three-Term Prescribed Pressure Distribution and Profile Shape for a Tail-Loaded Hydrofoil	196
Figure 54 - Off-Design Characteristics for the Hydrofoil Section Section of Figure 40	197

Nomenclature

Roman Symbols

cavity length parameter a CT. section lift coefficient C^{D} section drag coefficient section moment coefficient CM cavitation number = $(P_{\infty}-P_{k})/(\rho U^{2}/2)$ K cavity length, $l = a^2 + 1$ L/D lift-to-drag ratio pressure amplification factor used in the second design m method nondimensional perturbation pressure p cavity pressure Po free-stream static pressure peak pressure location, measured from the nose t(x)upper (non-wetted) surface of the hydrofoil T cavity thickness at the trailing edge U free stream velocity W(a)function used to compute the angle of attack corresponding to the cavity-foil interference in the off-design calculations absissa, taken as positive downstream, with the origin at the nose distance of the center of pressure from the nose chord wise location of second cavity-thickness control point $y_{11}(x)$ - cavity contour (upper surface) $y_c(x)$ cavity thickness due to the complementary function (not total thickness)

complex variable in physical plane, z=x+iy

Greek Symbols

 α - angle of attack of the chord line with respect to the free stream

β - cavity parameter, $1 - \frac{1}{\sqrt{1+K}}$

η(x) - wetted surface shape

μ - ratio of cavity thickness to T at x=x

ρ - density

 $\Xi_1(a,x)$,

E2(a,x) - functions used to compute the cavity contour in the off-design calculations

Superscript

- prime indicates differentiation with respect to x

INTRODUCTION

This study is the second of two investigations intended to provide a two-dimensional linearized theory and companion numerical methods [1] for the preliminary design of supercavitating or superventilated hydrofoil sections which will be consistant with the linearized mixed-foil theory of Wang and Shen [2,3]. Reference 2 describes the design of hydrofoil sections which embody good performance in both fully cavitating and noncavitating flows. In order to provide a profile of high lift-to-drag ratio in a cavity flow the designer prescribes the shape of the lower surface with the foreknowledge that his prescription of the wetted surface contour will achieve the intended performance. On the other hand, he must provide a low-drag section in noncavitating flow and also provide a profile which can tolerate a prescribed sea-state without suffering cavitation inception until after the take-off speed has been reached. Thus the pressure distribution of the upper surface of the noncavitating hydrofoil must also be controlled by the designer.

The linearized mixed-foil theory of Wang and Shen [2] pertains to two-dimensional foils in an unbounded fluid. The lower surface contour is specified in terms of high-speed superventilating or supercavitating performance and the upper surface pressure distribution is specified in terms of sea-state requirements for moderate speeds. The hydrofoil section of streamlined shape is then computed from the theory. The purpose of the present investigation is to arm the designer with the prerequisite knowledge of wetted surface shape and related cavity-flow parameters so that he will have a chance to execute his preliminary mixed-foil design without inordinant travail.

The first of the two studies noted above was a numerical design study
[4] which explored the hydrodynamic aspects of fully cavitating hydrofoil
section design in accordance with the linearized inverse theory of cavity
flows [5,6]. In these calculations the cavity springs from the leading
and the trailing edges of the hydrofoil so that the upper surface of the
foil is contained inside the upper cavity contour and only the lower surface
of the profile is wetted by the flow. A typical flow geometry and a
prescribed pressure distribution is illustrated schematically in Figure 1.

Two design procedures were used in Reference 4. In the first of these procedures, the design is carried out at the ideal attack angle (or at "shockless entry"). The thin-airfoil analog of this first design procedure is given in Reference 7. In the cavity-flow problem the airfoil thickness distribution is replaced by the cavity thickness. In the first design procedure interference between the upper surface of the hydrofoil and the upper cavity contour is eliminated by use of the "point-drag" solution of linearized cavity-flow theory. In the second design procedure cavity interference is eliminated by increasing the attack angle above the shockless entry condition. The point-drag solution is not used in this procedure. In both of these design procedures one prescribes the cavity thickness, T, at the trailing edge, the cavitation number, K, the design lift coefficient, C, and the pressure distribution on the wetted surface of the profile. Then the hydrodynamic moment coefficient, $C_{\underline{M}}$, the cavity drag coefficient $C_{\overline{D}}$ and the section lift-to-drag ratio are calculated. The design attack angle, the wetted surface contour, the upper cavity contour and the cavity length also follow from the theory.

The theoretical developments of References 5 and 6 also contain the ingredients of a third design procedure in which the cavity thickness is

controlled by a combination of the point-drag solution and the use of an attack angle which is greater than the ideal angle. Evidently the third design procedure contains the first and second procedures as special cases. Until now the third procedure has not been worked out in detail even though, as we shall see below, this procedure offers the designer somewhat more control of the upper cavity contour than he can obtain with the first or the second design procedures. Therefore, it is useful to complete the theoretical development for this procedure and to program the resulting numerical methods for a computer [1]. In the following sections, this development is described. Then some hydrodynamic and geometric consequences of the third design procedure are presented.

THEORETICAL PRELIMINARIES

In order to give a reasonably self-contained account of the third design procedure, we will outline the basic theory which underlies the method. Further details are given in References 5 and 6.

Flow Geometry and Characteristic Parameters

In the present linearized theory, we work with velocity perturbations created by the foil-cavity system in an otherwise steady rectilinear flow. Let us suppose that the chord of the profile is inclined at the small angle α with respect to the free stream velocity, U, as illustrated in Figure 1. The flow direction is from left to right as shown. Let us fix an x-y coordinate system at the profile nose and with the x axis parallel to the free stream direction. In this coordinate system, the trailing edge of the wetted surface (of unit chord) will be at x=1, y=- α .

With respect to this system, we can write the free stream velocity as

$$\overrightarrow{q}_{m} = \{v,o\}$$
.

The magnitude of the velocity on the cavity surface is

$$q_{c} = U\sqrt{1+K} \quad , \tag{1}$$

which follows from the definition of the cavitation number,

$$K = \frac{P_{\infty} - P_k}{\frac{1}{2} \rho U^2} , \qquad (2)$$

and the application of Bernoulli's equation with P_{∞} being the free stream static pressure, P_k the cavity pressure and ρ the liquid density.

If we use the cavity speed $\boldsymbol{q}_{\boldsymbol{c}}$ to normalize the velocities we can write

$$\overrightarrow{q}(x,y) = \begin{cases} 1+u \\ v \end{cases} q_c , \qquad (3)$$

where the dimensionless disturbance velocities u and v are created by the foil and its cavity. Far upstream of the foil, the perturbation velocity components are

$$\begin{cases} u \\ v \end{cases} = \begin{cases} \beta \\ 0 \end{cases} ,$$

with

$$\beta = 1 - \frac{1}{\sqrt{1+K}} \quad . \tag{4}$$

Let us define the dimensionless perturbation pressure p as

$$p = \frac{P - P_k}{\frac{1}{2} \rho U^2} \qquad . \tag{5}$$

Then to first order terms, we must have

$$p(x,y) = -2(1+K) u(x,y)$$
, (6)

and on the cavity, p=u=0.

Conformal Transformations and the Complete Solution

We can use certain conformal mappings in order to transform the domain of the flow in the z-plane (z=x+iy), in such a way that many key elements of the solution for the complex disturbance velocity,

$$w(z) = u - iv \qquad (7)$$

can be found by inspection. In these transformations the complex velocity, w(z), is taken to be invariant at corresponding points. The method of solution is conveniently illustrated by a study of the geometry of the flow boundaries in the various planes. The first step in this process is the representation of the flow boundaries in the z-plane in a way that is consistant with the linearization implied by the use of the perturbation quantities u, v and p. All of these will be much smaller than unity as

long as α and K are also small quantities. Generally the wetted surface of the profile will be cambered with a camber distribution $\eta(x)$. The magnitude of η will also be much less than unity at every x along the wetted surface and in particular, η =0 at x=0 and x=1. That is, η is measured with respect to the profile chord line.

In order to simplify the following considerations let us imagine that the total complex perturbation velocity consists of two parts: the first part being that of a flat plate profile at an attack angle α and the second part being due only to the camber distribution $\eta(x)$. To first order accuracy we can replace the foil and cavity in the x-y plane of Figure 1 by a cut of length ℓ along the real axis as shown in Figure 2. This figure also shows the boundary values which apply to ℓ for the flat-plate part of the solution. We can transform the flow outside the cut in the z-plane into the region outside of the unit semicircle in the upper half of the ℓ plane. As illustrated in Figure 3, the transformation can be carried out by a sequence of mappings. In the first of these, we transform the point ℓ into the point at ℓ with a bilinear transformation which leaves the points 0 and 1 invariant. Then we take the square root of this mapping to get the configuration shown in the ℓ plane of Figure 3. One can verify that the resultant mapping is

$$v = a \sqrt{\frac{z}{z-\ell}} \quad , \quad \ell = a^2 + 1 \quad . \tag{8}$$

Since the foil and cavity are mapped into the real axis in the ν plane, one now applies the Joukowski transformation,

$$v = \frac{1}{4}(\zeta + \frac{1}{\zeta}) - \frac{1}{2} , \qquad (9)$$

in order to map the wetted surface of the foil into the upper unit semicircle in the ζ plane. The boundary values on w which would apply to a flat plate hydrofoil at corresponding points in the z, ν and ζ planes are so marked in Figures 2 and 3.

In the ζ plane, one can write the solution for $w(\zeta)$ as follows:

$$w(\zeta) = \frac{2iA}{\zeta - 1} + i \frac{B}{4} (\zeta - \frac{1}{\zeta}) + i(A + \alpha) - i[C_0 + \sum_{n=1}^{\infty} C_n/\zeta^n] . \qquad (10)$$

In order to see that this is the solution for a cambered supercavitating profile, we note that the first term, $2iA/(\zeta-1)$, is equal to

$$A[\cot \frac{\theta}{2} - i] \tag{11}$$

on $\zeta=e^{i\theta}$. Therefore its imaginary part is simply the constant -A on the unit circle. On the real axis where ζ is real this term is purely imaginary. Therefore it satisfies the condition u=0 on the cavity. The second term, $iB(\zeta-1/\zeta)/4$, equals

$$-\frac{B}{2}\sin\theta\tag{12}$$

on the unit circle. Therefore it does not contribute to the imaginary part of $w(\zeta)$ on the wetted surface of the profile. Moreover, when ζ is real this term is purely imaginary and so it also satisfies the condition u=0 on the cavity, as does the third term and also the Laurent series, provided that the C_n are real. The first three terms from Equation (10), and the Fourier coefficient C_0 can be thought of as those terms which allow for the angle of attack (or flat plate) part

of the solution. We note also that these terms also provide for the branching of the streamlines at the profile nose $\zeta=1$ and at the end of the cavity, $x=\ell\leftrightarrow \zeta=\infty$. Both of these points are singularities of $w(\zeta)$, as one expects for linearized stagnation points. Thus the first term involving the constant A opens up the cavity and the second term involving the constant B closes it again. The Fourier series represents the contribution of camber to the solution. In the case of the direct problem the camber function $\eta(x)$ is known in advance. The coefficients C_n are determined by the derivative $d\eta/dx$ in the usual way.

Of course, in the present inverse problem the camber function $\eta(x)$ remains to be determined. Instead of specifying η , we prescribe the pressure distribution p(x) on the foil. Therefore we will modify the form of Eq. (10) to make the specification convenient. This modification is guided by the fact that on the wetted surface of the foil the expression (12) shows that the second term of Equation (10) contributes to u but not to v when $\zeta=e^{i\theta}$. Therefore, if we add a term $iB/2\zeta$ to the solution, the above contribution to $u(\theta)$ will be cancelled by the added term and we can relate the prescribed pressure distribution,

$$p(\theta) = -2(1+K) u(\theta)$$

to the camber term in Equation (10). Note that we will still have a separate contribution to the pressure on the profile from the first term of Equation (10) which is due to attack angle as shown by the real part of expression (11). This part of the total pressure distribution can not quite be prescribed arbitrarily although one can find an ideal

attack angle at which this first term (and the resulting singularity at the profile nose) will vanish, corresponding to shockless entry.

Finally we do not wish to be restricted to a Fourier series representation for the pressure distribution $p(\theta)$. Therefore we will write the modified complex velocity as

$$w_p(\zeta) = iA + \frac{2iA}{\zeta - 1} + \frac{iB}{4} (\zeta - \frac{1}{\zeta}) + \frac{iB}{2\zeta} + iD + w_1(\zeta)$$
, (13)

where

$$D = \alpha - C_o$$
.

The term $w_1(\zeta)$ is an analytic function of ζ which is regular everywhere in the flow and represents the effect of profile shape or pressure distribution upon the <u>particular</u> solution w_p . Now the particular solution has been designed to satisfy the boundary conditions on the profile and on the cavity as discussed above. We can add to this particular solution any other solution which is regular at infinity, which satisfies u=0 on the cavity and on the foil, and which produces a closed body in the interval $0 \le x \le \ell$. Such a <u>complementary</u> function is given by

$$w_{c}(z) = -\frac{E}{2} \left[\sqrt{\frac{z}{z-\ell}} + \sqrt{\frac{z-\ell}{z}} \right] , \qquad (14)$$

and it is known as the point-drag solution of linearized cavity flow theory. The complete solution of the problem is then given by the sum of Equations (13) and (14):

$$w(z) = w_p + w_c$$
 (15)

Boundary Conditions for the Inverse Problem

Equation (15) is the form of solution which must now be applied so as to satisfy the boundary conditions on the present inverse problem.

These conditions can be listed as follows:

- (i) $w(z) = -\beta$ at $z=\infty$
- (ii) $u(x,0\pm)=0$ on the cavity surfaces
- (iii) $v = -\alpha + \frac{d\eta}{dx}$ on the wetted surface of the foil
- (iv) the cavity together with the wetted surface of the foil is a closed body. Thus

$$Im \oint w(z)dz = -2\pi a_1 = 0 ,$$

where a_1 is the real part of the residue of w(z) at z=0.

- (v) w(z) is continuous at z=1 (Kutta condition).
- (vi) u≤0 everywhere in the flow. In particular, the cavity pressure is the lowest pressure in the flow.

Before we can apply these conditions and determine the various constants such as A, B, D, and E in Equation (15), we must determine the analytic function $\mathbf{w}_1(\mathbf{z})$ in terms of the prescribed pressure distribution $\mathbf{p}(\mathbf{x})$. For our purposes, it is sufficient to determine the value of $\mathbf{w}_1(\mathbf{z})$ on the cavity and on the foil. In the \mathbf{v} plane, this can be done by means of the Hilbert transform or by certain direct integral-superposition

techniques as were used in References 5 and 6. In either case, the above boundary conditions give a system of equations involving definite integrals in the \vee plane. These equations can then be transformed back to the z plane with the help of Equation (8). Because we are working with the function $\mathbf{w_1}$ only, we can work with the various boundary conditions directly in the integral superposition without calculating $\mathbf{w_1}$ explicity. However, we can not apply integral superposition to the problem as a whole because of the nonlinear involvement of the cavity length in the problem.

In any event we obtain from conditions (i) through (vi) a series of equations involving integrals over the wetted surface which contain the function p(x) as one factor in the integrands. We will simply list the results below; but before we can do so we need to determine the relative importance of the individual contributions from the prescribed pressure distribution and from the angle-of-attack or flat-plate part of the solution to the design lift coefficient C_L . In order to evaluate these effects, let us denote the contribution of the prescribed pressure distribution by

$$C_{L}^{\prime} = \int_{0}^{1} p(x) dx \qquad . \tag{16}$$

Then the difference, $C_L - C_L'$, is equal to the contribution of the flat plate part of the solution and it is known that this contribution will be equal to $4\pi(1+K)b_1$, where b_1 is equal to the imaginary part of the residue at z=0 as derived from Equation (13) with the term w_1 deleted. The point-drag solution does not contribute to the lift. The final result can be written as

$$(1-m)C_{L} = -\frac{A}{2}\pi(1+K)\frac{\delta-a\varepsilon}{\sqrt{a}}, \qquad (17)$$

where

$$mC_{L} = C_{L}^{\dagger} \tag{18}$$

and

$$\begin{cases} \delta \\ \varepsilon \end{cases} = \left[\sqrt{\ell} + 1\right]^{1/2} \pm \left[\sqrt{\ell} - 1\right]^{1/2} . \tag{19}$$

Returning to the employment of the boundary conditions, one finds that condition (iv) leads to

$$B = -\frac{A}{4} \frac{\varepsilon + a\delta}{a \ell \sqrt{a}} + \frac{m}{4\pi (1+K)a\ell} \int_{0}^{1} \frac{(\ell - 2x)p(x)}{\sqrt{x(\ell - x)}} dx , \qquad (20)$$

provided that p(0)=0. After some manipulation the two equations resulting from condition (i) can be written as

$$\frac{B}{2} + D = -\frac{A}{2} \frac{\delta}{\sqrt{a}} + \frac{m}{4\pi (1+K)} \int_{0}^{1} \frac{p(x)}{\ell - x} dx$$
 (21)

and

$$(1+K)\beta = \frac{(1-m)C_{L}}{2\pi\ell} \frac{(2a^{2}+3)\epsilon + a\delta}{\delta - a\epsilon} + (1+K)E + \frac{m}{2\pi\ell} \int_{0}^{1} \sqrt{\frac{\ell - x}{x}} p(x) dx . \quad (22)$$

Condition (ii) has been satisfied by the construction of the solution,

Equation (15). Moreover, condition (v) is satisfied by the flat plate

part of the solution as can be seen from Equations (11) and (12). It will

also be satisfied by that part due to the prescribed pressure as long as we require that p(1)=0. In fact it has been found [5] that the strict condition to be satisfied is

$$p(x) \sim 2(1+K) \lambda \sqrt{1-x}$$
 (23)

near x=1, where $\lambda \ge 0$ may be selected arbitrarily. Condition (iii) gives the equation for the shape of the wetted surface. The result is

$$\eta(x) = (C_0 - \frac{B}{2})x + aB[\ell \ \tan^{-1}\sqrt{\frac{x}{\ell-x}} - \sqrt{x(\ell-x)}] - E\sqrt{x(\ell-x)} + \frac{m}{2\pi(1+K)} \begin{cases} \frac{1}{x} \int_{0}^{1} \frac{p(x)dx}{\ell-x} dx \\ \frac{1}{2} \int_{0}^{1} \frac{p(x)dx}{\ell-x} dx \end{cases}$$

$$- \frac{1}{2} \left[\sqrt{x(\ell-x)} + \ell \tan^{-1}\sqrt{\frac{x}{\ell-x}} \right] \int_{0}^{1} \frac{p(x)dx}{\sqrt{x(\ell-x)}} + \tan^{-1}\sqrt{\frac{x}{\ell-z}} \int_{0}^{1} p(x)\sqrt{\frac{x}{\ell-x}} dx$$

$$+ \frac{C_L}{2} \ln(\frac{\ell}{\ell-x}) - \int_{0}^{1} p(t) \ln \left| 1 - \sqrt{\frac{x(\ell-t)}{t(\ell-x)}} \right| dt$$
, (24)

where we have used Equations (16) and (18) in order to introduce the term which depends on ${\rm C_L}$. The satisfaction of condition (vi) will be strict in the following design method. We shall insist that the contributions of both flat-plate and prescribed pressure distributions shall always exceed zero on the wetted surface between the leading and trailing edges, 0 < x < 1.

One last formula which is an important ingredient in profile design is the upper cavity contour. It is obtained from considerations similar to those leading to $\eta(x)$. When the cavity ordinate is measured from the profile chord line the result is

$$y(x) = \alpha x - 2a^{2} \ell AF_{1}(x,a) + aB[\sqrt{x(\ell-x)} - \ell tan^{-1} \sqrt{\frac{x}{\ell-x}}] - (\frac{B}{2} + D)x$$

$$+ E \sqrt{x(\ell-x)} + \frac{m}{2\pi(1+K)} G(x,a;p) , \qquad (25)$$

where

$$G(x,a;p) = \frac{x}{2} \int_{0}^{1} \frac{p(x)dx}{\ell-x} + \frac{1}{2} \left[\sqrt{x(\ell-x)} + \ell_{tan}^{-1} - \sqrt{\frac{x}{\ell-x}} \right] \int_{0}^{1} \frac{p(x)dx}{\sqrt{x(\ell-x)}}$$

$$- \tan^{-1} - \sqrt{\frac{x}{\ell-x}} \int_{0}^{1} p(x) - \sqrt{\frac{x}{\ell-x}} dx + \frac{c_{L}}{2} \ell_{n} \left(\frac{\ell}{\ell-x}\right)$$

$$- \int_{0}^{1} p(t) \ell_{n} \left| 1 + \sqrt{\frac{x(\ell-t)}{t(\ell-x)}} \right| dt$$
(26)

and

$$F_{1}(x,a) = \frac{1}{2a^{2}} \left[\frac{v\sqrt{v(v+1)}}{v^{2}+a^{2}} + \frac{\beta_{1}}{4\omega^{2}} L(v,a) + \frac{\beta_{2}}{2\omega^{2}} T(v,a) \right]$$
 (27)

with v=a $\sqrt{\frac{x}{\ell-x}}$ for $x\geq 0$ on the upper cavity surface and $\omega^2=a\sqrt{\ell}$, $\beta_1=-\sqrt{(\omega^2-a^2)/2}$, $\beta_2=-\sqrt{(\omega^2+a^2)/2}$. The L and T functions are

$$L(v,a) = \ln \left\{ a^2 \left[\frac{\{\gamma_1 v + \delta_1 - \sqrt{v(v+1)}\}^2 + (\gamma_2 v + \delta_2)^2}{(\delta_1^2 + \delta_2^2)(v^2 + a^2)} \right] \right\}$$
(28)

and

$$T(v,a) = \tan^{-1} \frac{\gamma_2 v + \delta_2}{\gamma_1 v + \delta_1 - \sqrt{v(v+1)}} - \tan^{-1} \frac{\delta_2}{\delta_1} - \tan^{-1} \frac{v}{a} , \qquad (29)$$

$$\delta_1 = \frac{a\beta_2}{2\omega^2}$$
, $\delta_2 = \frac{a\beta_1}{2\omega^2}$, $\gamma_1 = \frac{a\beta_2 + \beta_1/2}{\omega^2}$ and $\gamma_2 = \frac{a\beta_1 - \beta_2/2}{\omega_2}$

THE DESIGN PROCEDURE

As explained at the outset, the third design procedure contains the first and second procedures as special cases because both flat plate and point drag solutions are used to control the cavity geometry. Thus if it should happen that A=0 or E=0, these special cases will be the outcome of calculations based upon the prescribed input parameters. Neither A nor E will have been set equal to zero from the start. The various parameters which have been identified in the problem thus far are the constants A, B, C_0 , E, α , ℓ , K, m, C_1 and the functions p(x), $\eta(x)$ and y(x).

In the formulation of the design process the two constants K and C_L will be prescribed from the outset and of the three functions, p, η and y, only p(x) will be an input quantity. The outputs of the design process will be the geometric parameters, α and ℓ and the cavity and profile shapes, y(x) and η (x). The hydrodynamic performance parameters C_D , C_m and related parameters such as L/D and center of pressure location \overline{x} at the design point will also be considered as primary output quantities.

Provisions for a Determinate Procedure

Naturally, the determination of the above primary output quantities depends upon the evaluation of A, B, C_0 , m and E in terms of the inputs. Thus, when we add these five parameters to the two unknowns, α and m, we find that there is a total of seven unknown quantities to be determined. At present, we have found only four relationships between them. These are Equations (17), (20), (21) and (22). Three more relation-

ships are needed to produce a determinate design procedure. These may be found from additional conditions on the functions $\eta(x)$ and y(x).

For example, consider the camber function $\eta(x)$. We have stated that these ordinates are to be measured from the profile chord line. This can only be true if the arbitrary constants in Eq. (23) satisfy explicitly the condition $\eta(1)=0$. Thus, we must have the added relationship,

$$0 = \alpha - (\frac{B}{2} + D) + aB[\ell \tan^{-1} \frac{1}{a} - a] - aE + \frac{m}{2\pi (1+K)} \left\{ \frac{1}{2} \int_{0}^{1} \frac{p(x) dx}{\ell - x} \right\}$$

$$- \frac{1}{2} (a + \ell \tan^{-1} \frac{1}{a}) \int_{0}^{1} \frac{p(x) dx}{\sqrt{x(\ell - x)}} + \tan^{-1} \frac{1}{a} \int_{0}^{1} p(x) \sqrt{\frac{x}{\ell - x}} dx + \frac{C_{L}}{2} \ln \frac{\ell}{a^{2}}$$

$$- \int_{0}^{1} p(x) \ell n \left| 1 - \frac{1}{a} \sqrt{\frac{\ell - x}{x}} dx \right| dx$$
(30)

Another point is that we have not yet made any provision to insure that the upper cavity contour will clear the wetted surface of the profile and still leave enough room for the hydrofoil structure inside the cavity. Since we require two more relationships to make the problem determinate, we can impose two conditions on the upper contour of the cavity and use them to control the cavity clearance. One of these can be the specification of the cavity thickness at the trailing edge of the profile. Recalling from Eq. (25) that y(x) is measured from the profile chord, we take y(1)=T, where the cavity thickness T is now an input parameter as it was in the first and second design procedures [4]. The resulting relationship is

$$T = \alpha + \frac{(1-m)C_{L}}{\pi(1+K)} \cdot \frac{4a^{2} \ell \sqrt{a}}{\delta - a\epsilon} F_{1}(1,a) + [a-\ell \tan^{-1} \frac{1}{a}] \begin{cases} \frac{(1-m)C_{L}}{2\pi(1+K)} \cdot \frac{\epsilon + a\delta}{\ell(\delta - a\epsilon)} \\ + \frac{m}{4\pi(1+K)\ell} \int_{0}^{1} \frac{(\ell - 2x)p(x)}{\sqrt{x(\ell - x)}} dx \\ - \frac{(1-m)C_{L}}{\pi(1+K)} \cdot \frac{\delta}{\delta - a\epsilon} - \frac{m}{4\pi(1+K)} \int_{0}^{1} \frac{p(x)dx}{\ell - x} \\ + a\beta - \frac{(1-m)C_{L}}{2\pi(1+K)} \cdot \frac{a}{\ell} \cdot \frac{(2a^{2} + 3)\epsilon + a\delta}{\delta - a\epsilon} - \frac{m}{2\pi(1+K)} \cdot \frac{a}{\ell} \int_{0}^{1} \sqrt{\frac{\ell - x}{x}} p(x)dx \\ + \frac{m}{2\pi(1+K)} G(1,a;p) , \qquad (31)$$

where the functions F_1 and G have already been defined in Equations (26) and (27).

Next we will require the cavity to have a specified ordinate equal to μT , measured from the profile chord line at a point x_0 near the nose. Obviously the factor μ will be in the range $0<\mu<1$. We can not specify the value of μ with complete arbitrariness. For example, if the cavity pressure is to be the lowest pressure in the flow field, it follows that the cavity must be convex. Therefore if T is prescribed, it follows that we must have $\mu>x_0$, because $\mu=x_0$ corresponds to $y(x_0)$ being on a line drawn between the nose and the point (1,T), where these ordinates are measured with respect to the chord line. As a practical matter, it is desirable to make the cavity as thick as possible in the vicinity of the nose so that the leading edge of the profile can be strengthened.

The condition $y(x_0)=\mu T$ is certainly not the only possibility for the last condition needed to make the design procedure determinate. For example

an alternative condition which we have not investigated but which could have some advantages in a design procedure, is $y(x_0) - \eta(x_0) = \omega T$, where ω is a new parameter which measures the clearance between the upper surface of the cavity and the wetted surface of the foil at the point x_0 . This alternate condition could be used to make certain from the outset that there is no interference between cavity and foil near the nose. The condition which we have adopted in the present method will not permit us to guarantee non-interference from the start. However, as we shall see, μ can be prescribed in a limited range which depends in each instance upon the input parameters K, C_L and T as well as upon the shape of the pressure distribution, p(x). Therefore, one can avoid interference by designing a number of profiles for various μ -values in the permissible range and selecting the preferred design from the several possibilities.

Use of the condition $y(x_0)=\mu T$ in Equation (25) leads to

$$\frac{\mu_{T}}{x_{o}} = \alpha + \frac{(1-m)C_{L}}{\pi(1+K)} \cdot \frac{4a^{2}\ell\sqrt{a}}{\delta-a\epsilon} \frac{F_{1}(x_{o},a)}{x_{o}} + \left[\sqrt{\frac{(\ell-x_{o})}{x_{o}}} - \frac{\ell}{x_{o}} \tan^{-1} \sqrt{\frac{x_{o}}{\ell-x_{o}}}\right] \\
\times \left\{ \frac{(1-m)C_{L}}{2\pi(1+K)} \cdot \frac{\epsilon+a\delta}{\ell(\delta-a\epsilon)} + \frac{m}{4\pi(1+K)\ell} \int_{0}^{1} \frac{(\ell-2x)p(x)}{\sqrt{x(\ell-x)}} dx \right\} - \frac{(1-m)C_{L}}{\pi(1+K)} \frac{\delta}{\delta-a\epsilon} \\
- \frac{m}{4\pi(1+K)} \int_{0}^{1} \frac{p(x)dx}{\ell-x} + \sqrt{\frac{\ell-x_{o}}{x_{o}}} \left\{ \beta - \frac{(1-m)C_{L}}{2\pi(1+K)\ell} \frac{(2a^{2}+3)\epsilon+a\delta}{\delta-a\epsilon} - \frac{m}{2\pi(1+K)\ell} \int_{0}^{1} \sqrt{\frac{\ell-x_{o}}{x_{o}}} p(x)dx \right\} + \frac{m}{x_{o}} \frac{G(x_{o},a;p)}{2\pi(1+K)} \quad . \tag{32}$$

In Equations (31) and (32) the parameter E has been eliminated by using Eq. (22). The same step could also have been taken in order to eliminate

E from Equation (30). Equations (30), (31) and (32), when combined with Equations (17), (20), (21) and (22), provide a determinate system.

The Sequence of Calculations

The preceding formulae permit the determination of all unknowns for a profile design. This determination can be shown to depend solely on the cavity length parameter, a, by means of a tedious process which eliminates the other unknowns and results in a nonlinear equation defining In an important step in deriving this key result, one eliminates α from the system of equations by subtracting Equation (32) from Equation (31). Then Equations (17), (20), (21) and (22) can be used to reduce this equation to one involving only the unknowns m and a. Operating with these first four equations on Equation (30), one can reduce it to a second equation involving m and a. Fortunately, m can be separated out as a linear factor in the combined equations resulting from the difference of (32) and (31). The reduced form of Equation (30) can be factored in the same way. One then eliminates the quantity m by dividing one of these equations by the other in order to obtain a single nonlinear equation with the only unknown being the cavity-length parameter a. The resulting expression is:

$$[(1 - \frac{\mu}{x_o})T - (a - \sqrt{\frac{\ell - x_o}{x_o}})\beta - \frac{C_L}{\pi(1 + K)} \begin{cases} \frac{4a^2 \ell \sqrt{a}}{\delta - a\epsilon} & (F_1(1, a) - \frac{F_1(x_o, a)}{x_o}) \\ \frac{\ell - x_o}{x_o} - \ell(\tan^{-1} \frac{1}{a} - \frac{1}{x_o} \tan^{-1} \sqrt{\frac{x_o}{\ell - x_o}}) \frac{\epsilon + a\delta}{2\ell(\delta - a\epsilon)} \end{cases}$$

where

$$\begin{split} H_{\eta} &= C_{L} \left[\frac{4a^{2} \ell \sqrt{a}}{\delta - a\epsilon} F_{1}(1, a) + (a - \ell \tan^{-1} \frac{1}{a}) \frac{\epsilon + a\delta}{\ell (\delta - a\epsilon)} - \frac{a}{\ell} \frac{(2a^{3} + 3)\epsilon + a\delta}{\delta - a\epsilon} \right] \\ &- \frac{1}{2} \ell \left(a - \ell \tan^{-1} \frac{1}{a} \right) \int_{0}^{1} \frac{(\ell - 2x)p(x)}{\sqrt{x(\ell - x)}} dx + \frac{a}{\ell} \int_{0}^{1} \sqrt{\frac{\ell - x}{x}} p(x) dx \\ &- \frac{1}{2} \left(a + \ell \tan^{-1} \frac{1}{a} \right) \int_{0}^{1} \frac{p(x) dx}{\sqrt{x(\ell - x)}} + \tan^{-1} \frac{1}{a} \int_{0}^{1} p(x) \sqrt{\frac{x}{\ell - x}} dx \\ &+ \frac{1}{2} \int_{0}^{1} p(x) \ell n \left| \frac{a\sqrt{x} + \sqrt{\ell - x}}{a\sqrt{x} - \sqrt{\ell - x}} \right| dx \quad , \end{split}$$
(34)

$$H_{T} = C_{L} \left[\frac{4a^{2} \ell \sqrt{a}}{\delta - a\epsilon} \left(F_{1}(1, a) - \frac{F_{1}(x_{o}, a)}{x_{o}} \right) - \left(a - \sqrt{\frac{\ell - x_{o}}{x_{o}}} \right) \frac{\epsilon}{\delta - a\epsilon} - \left(\tan^{-1} \frac{1}{a} \right) \right]$$

$$- \frac{1}{x_{o}} \tan^{-1} \sqrt{\frac{x_{o}}{\ell - x_{o}}} \frac{\epsilon + a\delta}{2(\delta - a\epsilon)} - \frac{1}{2} \left(G(1, a; p) - \frac{G(x_{o}, a; p)}{x_{o}} \right) - \left[a - \sqrt{\frac{\ell - x_{o}}{x_{o}}} \right]$$

$$- \ell \left(\tan^{-1} \frac{1}{a} - \frac{1}{x_{o}} \tan^{-1} \sqrt{\frac{x_{o}}{\ell - x_{o}}} \right) \frac{1}{4\ell} \int_{0}^{1} \frac{\ell - 2x}{\sqrt{x(\ell - x)}} p(x) dx + \frac{1}{2\ell} \left[a \right]$$

$$- \sqrt{\frac{\ell - x_{o}}{x_{o}}} \int_{0}^{1} \sqrt{\frac{\ell - x}{x}} p(x) dx , \qquad (35)$$

and where the functions F_1 and G are defined by Equations (26) and (27). The known quantities in Equation (33) are K, C_L , T, μ , κ_0 and $p(\kappa)$. The unknown quantity is $\ell=a^2+1$. The value of a can be found by trial and error for each set of known quantities.

We can also introduce the additional notation

$$F_{\eta} = T - 2a\beta - \frac{C_{L}}{\pi(1+K)} \left[\frac{4a^{2}k\sqrt{a}}{(\delta-a\epsilon)} F_{1}(1,a) + (a - \ell \tan^{-1}\frac{1}{a}) \frac{\epsilon+a\delta}{\ell(\delta-a\epsilon)} \right]$$

$$\cdot - \frac{a}{\ell} \frac{(2a^{2}+3)\epsilon+a\delta}{(\delta-a\epsilon)} , \qquad (34a)$$

in order to write the simultaneous conditions $\eta(1)=0$ and y(1)=T from Equations (30) and (31) as

$$F_{\eta} = \frac{-m}{\pi (1+K)} H_{\eta} .$$

Similarly, we can introduce the expression

$$F_{T} = (1 - \frac{\mu}{x_{o}})T - \beta(a - \sqrt{\frac{\ell - x_{o}}{x_{o}}}) - \frac{c_{L}}{\pi(1 + K)} \left\{ \frac{4a^{2}\ell\sqrt{a}}{\delta - a\epsilon} \left[F_{1}(1, a) - \frac{F_{1}(x_{o}, a)}{x_{o}} \right] + \left[a - \sqrt{\frac{\ell - x_{o}}{x_{o}}} - \ell(\tan^{-1}\frac{1}{a} - \frac{1}{x_{o}}\tan^{-1}\sqrt{\frac{x_{o}}{\ell - x_{o}}}) \right] \frac{\epsilon + a\delta}{2\ell(\delta - a\epsilon)} - \frac{(2a^{2} + 3)\epsilon + a\delta}{2\ell(\delta - a\epsilon)} (a - \sqrt{\frac{\ell - x_{o}}{x_{o}}}) \right\} ,$$
(35a)

and write the simultaneous conditions $y(x_0) = \mu T$ and y(1) = T from Equations (31) and (32) as

$$F_{T} = \frac{-m}{\pi (1+K)} H_{T}$$

Then in accordance with the discussion at the start of this section, we can divide these two expressions in order to eliminate m and write Equation (33) in abreviated form as

$$f(a) = F_T H_n - F_n H_T = 0$$
 (33a)

Once the solution of Equation (33) has been found, we can solve for m from the condition following Equation (35):

$$m = -\frac{\pi(1+K)}{H_{\eta}} F_{\eta}$$
 (36)

Then in accordance with Equation (17), we can find A from

$$A = -\frac{2(1-m)C_L}{\pi(1+K)} \frac{\sqrt{a}}{\delta - a\varepsilon} .$$

The design attack angle follows from

$$\alpha = a\beta + \frac{(1-m)C_L}{\pi(1+K)} \left\{ \frac{\delta}{\delta - a\epsilon} + \frac{1}{2\ell} \left(a - \ell \tan^{-1} \frac{1}{a} \right) \frac{\epsilon + a\delta}{\delta - a\epsilon} - \frac{a}{2\ell} \frac{(2a^2 + 3)\epsilon + a\delta}{\delta - a\epsilon} \right\}$$

$$+ \frac{m}{2\pi(1+K)} \left\{ -\frac{a}{\ell} \int_{0}^{1} \sqrt{\frac{\ell - x}{x}} p(x) dx + \frac{1}{2\ell} \left(a - \ell \tan^{-1} \frac{1}{a} \right) \int_{0}^{1} \frac{\ell - 2x}{\sqrt{x(\ell - x)}} p(x) dx - \frac{C_L}{2} \ln \frac{\ell}{a^2} + \frac{1}{2} (a + \ell \tan^{-1} \frac{1}{a}) \int_{0}^{1} \frac{p(x) dx}{\sqrt{x(\ell - x)}} - \tan^{-1} \frac{1}{a} \int_{0}^{1} p(x) \sqrt{\frac{x}{\ell - x}} dx + \int_{0}^{1} p(x) \ln \left(1 - \frac{1}{a} \sqrt{\frac{\ell - x}{x}} \right) dx \right\} . \tag{37}$$

After we have calculated m, $\boldsymbol{\alpha}$ and A, we can calculate the remaining parameters in accordance with

$$B = -\frac{A}{4} \frac{\varepsilon + a\delta}{a\ell\sqrt{a}} + \frac{m}{4\pi (1+K)a\ell} \int_{0}^{1} \frac{(\ell-2x)}{\sqrt{x(\ell-x)}} p(x) dx , \qquad (38)$$

$$D = \alpha - C_0 = -\frac{A}{2} \frac{\delta}{\sqrt{a}} - \frac{B}{2} + \frac{m}{4\pi (1+K)} \int_{0}^{1} \frac{p(x)}{\ell - x} dx$$
 (39)

and for $E = y_c(1)/a$ we have

$$E = \beta - \frac{(1-m)C_L}{2\pi(1+K)} \frac{(2a^2+3)\varepsilon + a\delta}{\ell(\delta-a\varepsilon)} - \frac{m}{2\pi(1+K)\ell} \int_{0}^{1} \sqrt{\frac{\ell-x}{x}} p(x) dx \qquad (40)$$

The hydrodynamic force coefficients $\mathbf{C}_{\overline{\mathbf{D}}}$ and $\mathbf{C}_{\overline{\mathbf{m}}}$ follow from

$$C_{D} = 2\pi (1+K)\ell \left(aB + \frac{E}{2}\right)^{2} = \frac{\ell}{2\pi (1+K)} \left\{ \frac{(1-m)C_{L}}{\ell} \frac{\varepsilon+a\delta}{\delta-a\varepsilon} + \frac{m}{2\ell} \int_{0}^{1} \frac{\ell-2x}{\sqrt{x(\ell-x)}} p(x) dx + \pi (1+K)E \right\}^{2}, \qquad (41)$$

and

$$C_{m} = -(1-m)C_{L} \frac{(3+a^{2})\delta - 2a(2+a^{2})\epsilon}{8\epsilon\sqrt{k}} - m \int_{0}^{1} xp(x)dx$$
 (42)

The wetted surface contour, $\eta(x)$, and the shape of the upper surface of the cavity, y(x), follow from Equations (24) and (25) respectively. In addition, the slope of the wetted surface is

$$\frac{d\eta}{dx} = \alpha - \frac{B}{2} \left(1 - 2a \sqrt{\frac{x}{\ell - x}} \right) - D - \frac{E}{2} \frac{\ell - 2x}{\sqrt{x(\ell - x)}} + \frac{m}{2\pi (1 + K)} \begin{cases} \frac{1}{2} \int_{0}^{1} \frac{p(t)dt}{\ell - t} \\ - \frac{1}{2} \sqrt{\frac{\ell - x}{x}} \int_{0}^{1} \frac{p(t)dt}{\sqrt{t(\ell - t)}} + \frac{1}{2\sqrt{x(\ell - x)}} \int_{0}^{1} p(t) \sqrt{\frac{t}{\ell - t}} dt + \frac{C_{L} x}{2(\ell - x)} \end{cases} + \frac{\ell}{2\sqrt{x}(\ell - x)^{3/2}} P \int_{0}^{1} \frac{p(t)dt}{\sqrt{\frac{t}{\ell - t}}} , \qquad (43)$$

where P denotes the Cauchy principal value of the integral so designated. This result is required for off-design calculations of profile performance. For reference, one can also tabulate the perturbation pressure on the wetted surface. This pressure is the sum of the prescribed pressure m p(x) and the pressure $\overline{p}(x)$ which is due to the nose singularity. This latter pressure is obtained from those terms involving A in Equation (13) when $\zeta = e^{i\theta}$ or when $z = xe^{2\pi i}$. The expression for $\overline{p}(x)$ is

$$\overline{p}(x) = \begin{cases} \frac{4(1-m)C_L}{\pi(\delta-a\epsilon)} & \frac{\sqrt{\ell-x} - a\sqrt{x}}{\sqrt{x}}, & K>0 \\ \\ \frac{4(1-m)C_L}{\pi} & \frac{1-\sqrt{x}}{\sqrt{x}}, & K=0 \end{cases},$$

where the second form for $\overline{p}(x)$ is simply the limit of the first as $K \to 0$ and as $a \to \infty$. Then the total pressure is $\overline{p}(x) + mp(x)$.

Formulae for Profile Design at Zero Cavitation Number

For example, it can be seen from Equation (20) that B o 0 as K o 0, and since $a o \infty$ in this case no iterative solution such as that associated with (33) or (33a) is needed. Therefore we can proceed at once to the calculation of m:

$$m = \frac{2C_{L} J(x_{o}) - \pi[1 + 1/\sqrt{x_{o}} - 2\mu/x_{o}]T}{2 C_{L} J(x_{o}) + \frac{1}{2}(\frac{1}{\sqrt{x_{o}}} - 1) \int_{0}^{1} p(x) \ln \frac{1+\sqrt{x}}{1-\sqrt{x}} dx + \int_{0}^{1} p(x) \left[\ln(1+\frac{1}{\sqrt{x}}) - \frac{1}{x_{o}} \ln(1+\sqrt{x_{o}/x})\right] dx}$$
(44)

where

$$J(x_{o}) = \frac{1}{2} (1 + \frac{1}{\sqrt{x_{o}}}) [3\sqrt{2} - \ln(1 + \sqrt{2})] + \frac{1}{x_{o}} \ln(x_{o}^{1/4} + \sqrt{1 + \sqrt{x_{o}}})$$

$$- (1 + 2\sqrt{x_{o}}) \sqrt{1 + \sqrt{x_{o}}} / x_{o}^{3/4} . \tag{45}$$

Then we can find the design attack angle from

$$\alpha = y_{c}(1) + \frac{2(1-m)}{\pi} C_{L} + \frac{m}{2\pi} \left\{ \int_{0}^{1} \frac{p(x)dx}{\sqrt{x}} + \int_{0}^{1} p(x) \ln \left| 1 - \frac{1}{\sqrt{x}} \right| dx \right\} . \tag{46}$$

We have noted above that $a \rightarrow \infty$ as $K \rightarrow 0$. This fact requires that we return to the meaning of the coefficient E in terms of its contribution to the cavity thickness, T=y(1). As we have seen in Equation (25), the contribution of

the point drag singularity is $E\sqrt{x(\ell-x)}=aE$ at x=1. If we denote this contribution to T by the designation $y_c(1)$, we can write $E=y_c(1)/a$. That is, recognizing that $y_c(1)$ will be bounded as K+0, we require that E=0(1/a) in this limit. We note that this finding is consistant with the result which can be deduced from Equation (22), for example. Now if we replace E by $y_c(1)/a$ in Equation (25) and let $a \to \infty$ and x=1 so that y(1)=T we get

$$y_{c}(1) = \frac{T}{2} - \frac{(1-m)C_{L}}{2\pi} \left[3\sqrt{2} - \ln(1+\sqrt{2})\right] - \frac{m}{2\pi} \left\{ \int_{0}^{1} \frac{p(x)dx}{\sqrt{x}} - \frac{1}{2} \int_{0}^{1} p(x) \ln \frac{1+\sqrt{x}}{1-\sqrt{x}} dx \right\}. \quad (47)$$

Also in this case, we see that

$$A = -\frac{2(1-m)C_{L}}{\pi} . (48)$$

Then we can write

$$\eta(x) = (\alpha - \frac{2(1-m)C_L}{\pi})x - \frac{m}{2\pi} \left\{ \sqrt{x} \int_0^1 \frac{p(x)dx}{\sqrt{x}} + \int_0^1 p(t) \ln \left| 1 - \sqrt{x/t} \right| dt \right\} - y_c(1)\sqrt{x}$$
 (49)

and

$$y(x) = \alpha x + \frac{(1-m)C_L}{\pi} \left\{ (1+2\sqrt{x})x^{1/4} \sqrt{1+\sqrt{x}} - 2x - \ln(x^{1/4} + \sqrt{1+\sqrt{x}}) \right\}$$

$$+ y_c(1)\sqrt{x} + \frac{m}{2\pi} \left\{ \sqrt{x} \int_0^1 \frac{p(x)dx}{\sqrt{x}} - \int_0^1 p(t) \ln(1+\sqrt{x/t})dt \right\} . \tag{50}$$

The hydrodynamic coefficients $C_{\overline{D}}$ and $C_{\overline{m}}$ become

$$C_{D} = \frac{1}{2\pi} \left\{ 2(1-m)C_{L} + \frac{m}{2} \int_{0}^{1} \frac{p(x)}{\sqrt{x}} dx + \pi y_{c}(1) \right\}^{2}$$
 (51)

and

$$C_{\rm m} = -\frac{5}{16} (1-m)C_{\rm L} - m \int_{0}^{1} x p(x) dx$$
 (52)

Note also that the slope of the wetted surface is

$$\eta'(x) = \alpha - \frac{2(1-m)}{\pi} c_L - \frac{y_c(1)}{2\sqrt{x}} + \frac{m}{4\pi\sqrt{x}} \left\{ P \int_0^1 \frac{p(t)dt}{\sqrt{t} - \sqrt{x}} - \int_0^1 \frac{p(x)dx}{\sqrt{x}} \right\} . \quad (53)$$

Preliminary Analyses

The analyses of the preceding two sections have been formulated with the thought that one specifies the design pressure distribution, p(x), the cavitation number, K, the cavity thickness at the trailing edge, T, and the design lift coefficient, C_L . He also prescribes the cavity thickness, μT , at the chord location, x_0 . The computation sequence outlined above then produces the cavity length, ℓ , the wetted surface shape of the hydrofoil, $\eta(x)$, the upper contour of the cavity, $\gamma(x)$, the design attack angle, $\gamma(x)$, and the hydrodynamic performance parameters $\gamma(x)$ and $\gamma(x)$.

However, one is not able to specify the parameter μ with complete arbitrariness. This situation arises as long as one insists that the pressure on the wetted surface is greater than the cavity pressure except at the trailing edge, and possibly at the nose. The wetted surface pressure will certainly be positive if the parameters $y_c(1)$ and m satisfy the conditions

$$y_{\mathbf{c}}(1) \ge 0 ,
 0 \le m \le 1 .$$
(54)

Depending upon the specific values of C_L , T, K, x_o and the nature of p(x), the added constraints specified by (54) indicate that permissible values of μ will lie in restricted ranges. Therefore as a prelude to the execution of any profile design, the designer needs to have some knowledge of the permissible range of μ values which he can specify. The purpose of this paragraph is to explore this matter in detail sufficient for us to continue our study of the third design procedure.

The basic nature of the constraints noted above is probably most conveniently illustrated when K=0. Then we can determine the relationships between C_L , T, $y_c(1)$, m, x_o and μ quite simply. In fact the basic equations needed to carry out this investigation are given by Equations (47) and (50), with the latter of these being written for the particular case in which $y(x_o)=\mu T$. Equation (46) is used to eliminate α from the final expression. As a result we find that

$$\frac{y_{c}(1)}{T} = \frac{1}{2} \left\{ 1 - \frac{C_{L}}{T} \left[(1-m) \frac{3\sqrt{2} - \ln(1+\sqrt{2})}{\pi} - \frac{m}{\pi C_{L}} \left(\int_{0}^{1} \frac{p(x) dx}{\sqrt{x}} \right) \right] - \frac{1}{2} \int_{0}^{1} p(x) \ln \frac{1+\sqrt{x}}{1-\sqrt{x}} dx \right\}$$
(55)

and

$$\mu = x_o + (\sqrt{x_o} - x_o) \frac{y_c(1)}{T} + \frac{C_L}{T} \left[\frac{1-m}{\pi} \left\{ (1+2\sqrt{x_o}) - \sqrt{x_o} + \sqrt{x_o} - x_o \left[3\sqrt{2} - \ln(1+\sqrt{2}) \right] \right] - \ln(x_o^{1/4} + \sqrt{1+\sqrt{x_o}}) \right\} + \frac{m}{2\pi C_L} \left\{ (\sqrt{x_o} - x_o) - \int_0^1 \frac{p(x) dx}{\sqrt{x}} - \int_0^1 p(x) dx \right\} \times \left[\ln(1+\sqrt{\frac{x_o}{x}}) - x_o \ln(1+\frac{1}{\sqrt{x}}) \right] dx \right\} .$$
 (56)

Thus when K=0, we can prescribe values of m, $\frac{c_L}{T}$ and x_o and determine corresponding values of y_(1)/T and μ .

Rectangular Pressure Distributions

In order to continue the analysis we can introduce a specific pressure distribution into Eqs. (55) and (56). For our purposes, it is particularly convenient to study pressure distributions of rectangular shape. We will specify these by the following equations:

(a) for $0 \le 1/2$,

$$p(x) = \begin{cases} C_{L}/2s & , & 0 \le x \le 2s \\ & & \\ 0 & , & 2s \le x \le 1 \end{cases}$$

(b) for $1/2 \le s < 1$,

$$p(x) = \begin{cases} 0 & \text{, } 0 \leq x \leq (2s-1) & \text{,} \\ \\ C_{L}/2(1-s) & \text{, } (2s-1) \leq x \leq 1 & \text{.} \end{cases}$$

These equations specify a series of nose-loaded or tail-loaded profiles, depending upon the value of s selected, as illustrated in the diagrams of Figure 4. When s=1/2, the profile is uniformly loaded over the entire chord. The contribution of the prescribed pressure distribution to the design lift coefficient is ${
m mC}_{\rm L}$. This form of the prescribed pressure distribution also illustrates the general nature of the function ${
m p(x)}$ which can always be written as

Thus we see that the integrals have integrands which depend on the "normalized" pressure, f(x), which is defined to satisfy the condition

$$\int_{0}^{1} f(x) dx = 1 .$$

As a result, the step of factoring the quantity ${\rm C}_{\rm L}$ from Equations (55) and (56), or more generally in any of the equations of the section on "The Sequence of Calculations," leads to no difficulties.

When rectangular pressure distributions are used in Equations (55) and (56), they reduce to

$$\frac{y_c(1)}{T} = \frac{1}{2} [1 - \frac{C_L}{T} D(m,s)]$$
 (57)

and

$$\mu = x_0 + (\sqrt{x_0} - x_0) \frac{y_c(1)}{T} + \frac{c_L}{T} \{ (1-m) F(x_0) + mg(x_0, s) ,$$
 (58)

where

$$D(m,s) = (1-m) \frac{3\sqrt{2} - \ln(1+\sqrt{2})}{\pi} + \frac{m}{\pi} \begin{cases} \frac{1}{\sqrt{2s}} + \frac{1-2s}{4s} \ln \frac{1+\sqrt{2s}}{1-\sqrt{2s}}, & 0 \le s \le \frac{1}{2} \\ \frac{1}{1+\sqrt{2s-1}} - \frac{1}{2} \ln \frac{1+\sqrt{2s-1}}{1-\sqrt{2s-1}}, & \frac{1}{2} \le s \le 1 \end{cases},$$

$$F(x_0) = \frac{1}{\pi} \{ (1 + 2\sqrt{x_0}) \sqrt{x_0 + \sqrt{x_0}} - x_0 [3\sqrt{2} - \ln(1 + \sqrt{2})] - \ln(x_0^{1/4} + \sqrt{1 + \sqrt{x_0}}) \} .$$

Moreover for 0<s≤1/2 we have

$$g(x_{o},s) = (\frac{x_{o}}{2\pi}) \left[\frac{1}{\sqrt{2s}} \left(\frac{1}{\sqrt{x_{o}}} - 1 \right) + \frac{2s-1}{2s} \ln (1+\sqrt{2s}) - \frac{2s-x_{o}}{2s x_{o}} \ln (1+\sqrt{2s/x_{o}}) + \frac{1}{2x_{o}} \ln \frac{2s}{x_{o}} - \frac{1}{2} \ln (2s) \right]$$

and for 1/2<x≤1 we have

$$g(x_{o},s) = \left(\frac{x_{o}}{2\pi}\right) \left[\frac{1}{1+\sqrt{2s-1}} \left(\frac{1}{\sqrt{x_{o}}} - 1\right) + \ln\left(1+\sqrt{2s-1}\right) + \frac{2s-1}{4(1-s)} \ln(2s-1) - \frac{1}{2(1-s)} \right]$$

$$\times \left(\frac{1}{x_{o}} - 1\right) \ln\left(1 + \frac{1}{\sqrt{x_{o}}}\right) + \frac{1}{4x_{o}(1-s)} \ln\frac{1}{x_{o}} + \frac{2s-1-x_{o}}{2x_{o}(1-s)} \ln\left(1 + \sqrt{\frac{2s-1}{x_{o}}}\right)$$

$$- \frac{2s-1}{4x_{o}(1-s)} \ln\frac{2s-1}{x_{o}} ,$$

These closed-form expressions can be evaluated in accordance with the discussion following Equations (55) and (56). In order to determine a range of possible μ values for prescribed values of C_L/T , s and x_o , it is sufficient for us to evaluate Equations (57) and (58) for m=0 and m=1. In the course of these evaluations, we must be certain that $y_o(1) \ge 0$ is satisfied.

In this context, we note that Equation (57) shows for a fixed positive value of D, corresponding to prescribed values of s and m, that $y_c(1)/T$ decreases as C_L/T increases. Thus the greatest allowable value of C_L/T is limited by the condition $y_c(1)/T=0$ in accordance with Equation (54). These limiting values of C_L/T can be calculated for a range of m and s by finding the reciprocal of D(s,m). Results of such calculations are plotted in Figure 5. It may be recalled that when $y_c(1)\approx 0$ and m<1, the second design procedure

is being employed and that in this circumstance, occasions were found [4] for which no solution could be obtained. This situation was attributed to the fact that C, and T could not be prescribed with complete independence. The curves of Figure 5 show more quantitatively the nature of the limiting relationship between C, and T which had only been described qualitatively in Reference 4. Moreover, when m=1, the shockless entry condition prevails and a limiting form of the first design procedure applies because $y_c(1)=0$ also. The condition $y_c(1) \neq 0$ shows that the first design procedure also has a limit for permissible values of the ratio C,/T. The range of parameters used in the first procedure did not exceed $C_L/T=.15$, in Reference 3. Evidently, this range was not broad enough to encounter the limit illustrated in Figure 5. Further, Figure 5 shows that the first design procedure permits a broader range of C_L/T values than can be used for the second design procedure. We notice also that the influence of peak pressure location is greatest in the case when m=1. When m=0, the values of s have no effect on the permissible range of C1/T. However, aside from the case of m=0, we see that the designer will have more latitude with respect to C,/T values for tail-loaded profiles than for noseloaded hydrofoils. In any event, the design values of C, /T must be selected to be less than those shown in Figure 5 for the various rectangular pressure distributions. In terms of the third design method, values of C,/T must be in the region of $C_{\underline{I}}/T$ vs s of Figure 5 which is bounded by the curve m=1 and the C_L/T axis. For then, as we see from Equation (57), $0 \le y_c(1)/T \le 1/2$ and Equations (54) will certainly be satisfied. We note also that the m=1 curve has an asymptote at x=.659 indicating for tail-loaded profiles that we can often choose C, /T to be as large as we please provided we are willing to move in the direction of shockless entry (m=1). Notice also that these results are completely independent of the values of x or μ .

Having surveyed various limitations on the specification of the design point, we now turn to the influence of these factors on permissible values of μ . As noted above, for prescribed values of C_L/T , s and x_o , it will suffice if we consider the two limiting cases m=0 and m=1 provided only that $y_c(1) \ge 0$. First let us consider the case m=0 which corresponds to the flat plate profile with a point-drag singularity at an attack angle,

$$\alpha = y_{c}(1) + 2C_{L}/\pi$$
,

as can be seen from Equation (46). Clearly, the values of μ are independent of any prescribed pressure distribution and therefore of the parameter s. The results of calculations from Equations (57) and (58) for three values of \mathbf{x}_0 are plotted in Figure 6. The locus of points for which $\mathbf{y}_c(1)=0$ is shown as the dashed vertical line in this figure. Only values of \mathbf{C}_L/\mathbf{T} to the left of this line are permissible.

When m=1, Equations (57) and (58) can be evaluated again with the results plotted as shown in Figure 7. The three values of \mathbf{x}_{o} selected for these calculations are the same as those used in Figure 6. For each of these \mathbf{x}_{o} values, curves for nine values of s are shown with the corresponding boundary for $\mathbf{y}_{c}(1)$ =0 shown as a dotted line intersecting the constant -s curves. For a prescribed value of s, only points to the left of the intersection give permissible μ and C_{L}/T values. Figure 7 also shows that the lines from each value of s converge to a common point on the μ -axis. The location of this point on the μ axis depends only on \mathbf{x}_{o} . This ordinate is determined from Equations (54) and (55) when C_{L}/T =0. Thus,

$$\mu_0 = (x_0 + \sqrt{x_0})/2$$
.

These focal points are also plotted on the μ axis in Figure 7.

The preceding trends, obtained from rectangular pressure distributions, have been considered chiefly because the analysis in these cases is greatly simplified and the exploration of basic theoretical trends and limitations is facilitated. On the other hand, comparison of these results at zero cavitation number with corresponding results for semi-elliptic pressure distributions [4] gives some indication of the effect of pressure-distribution shape on corresponding values of μ . This prescribed pressure distribution is illustrated for nose and tail loaded profiles in Figure 8 and its analytical description is

$$p(x) = \begin{cases} (h/s)\sqrt{x(2s-x)} &, & h=2C_{L}/\pi s & \text{for } 0 < s \le 1/2 \\ [h/(1-s)\sqrt{(1-x)(1-2s+x)} &, & h=2C_{L}/\pi(1-s) & \text{for } 1/2 \le s < 1 \end{cases}$$
 (59)

Results obtained using this distribution are consistent with those of Reference 4.

Comparison of various quantities in Figure 8 with those of Figure 4 shows that the nomenclature for the rectangular and semielliptical pressure distributions has been made mutually consistent in order to facilitate comparisons of results from rectangular and semielliptical shapes. Figure 9 provides such a comparison at K=0 for values of the other parameters which are most sensitive to the details of p(x). These results were obtained numerically from Equations (55), (56) and (59) and from Equations (57) and (58). The curves labeled $C_L/T=2$ and m=1 show the variation to be expected in μ resulting from these two pressure distributions when $x_0=.1$. For example, when s=.2 these curves show a difference in μ of about 10%. For more rearward locations of the peak pressure, the difference in

the two values of μ is seen to decrease and to change sign for tail loaded sections. The line for $C_L/T=0$ shows μ values which are independent of pressure distribution shape. Thus we expect variations in μ caused by shaping of the prescribed pressure to decrease with decreasing C_L/T and with decreasing m.

A second comparison of the effect of pressure distribution shape is shown by Figure 10. In this figure, limiting values of $\mathrm{C}_{L}/\mathrm{T}$ are compared for semi-elliptic and rectangular pressure distributions. Again, only the value of m=1 is considered in order to emphasize differences which arise due to the shaping of otherwise similar pressure distributions. The curve labeled "rectangular" is simply the curve from Figure 5 for m=1. The curve labeled "elliptic" was obtained numerically from Equations (47) and (59) with m=1 and $y_c(1)=0$. The asymptote for the rectangular distribution is at s=.659. The asymptote for the semi-elliptic case was not determined. However, we believe that the asymptotic value of s lies slightly to the right of the value for the rectangular case because the two curves cross at a high value of $C_{\underline{I}}/T$ which is off the graph. We also believe that the asymptotic value of s will be less than s=.7. The important point illustrated by Figure 10 is that the shape of p(x) affects the permissible $C_{\underline{I}}/T$ range within which the constraints of Equations (54) can be satisfied. Taken together, Figures (9) and (10) suggest that there are two factors which one needs to consider when laying down profile design specifications. The more important of these is the chordwise center of pressure location for the prescribed distribution. We take this view because at m=1.0, shockless entry exists and the value of s is the center of pressure location for both rectangular and semi-elliptic shapes. The less important factor is that details of the pressure distribution shape will also affect the range of parameters

for which one can expect to obtain satisfactory profile designs. But this effect is seen to be considerably less pronounced than the primary influence of center of pressure location although it can lead to some uncertainty in the initial formulation of design specifications.

Data for Semi-Elliptic Pressure Distributions

The foregoing considerations show that the designer must accept certain constraints in the specification of the design parameters C_L/T , μ , x_o , K and p(x). Moreover, he can not be expected to arrive at a consistant set of specifications without some knowledge of the way these factors interact. In order to arm him with such knowledge, we present in this subsection a series of graphs which apply strictly to the semi-elliptic pressure distribution but which can also be used as a qualitative guide for other distributions. Unfortunately it will be expedient for us to restrict ourselves to the case of zero cavitation number. However, since foil design at K=0 is of considerable practical interest, these limited results are worth presenting. The reasons for restricting these data to zero cavitation number can be seen from the form of the general equations when the cavitation number is greater than zero.

For example, we can start the general calculations for consistant parameters with the formula for the determination of the limiting values of C_L/T . This result is obtained from the condition that y(1)=T as expressed by Equation (31) with the added condition that $y_c(1)=0$. Equation (30), which corresponds to the condition $\eta(1)=0$, is used to eliminate α from Equation (31). In order to show how the term $y_c(1)$ enters the resulting equation, we replace Equation (31), with Equation (30) used to eliminate α , and write

$$\frac{T}{2} - y_{c}(1) = \frac{C_{L}}{\pi(1+K)} \left\{ (1-m) \left[\frac{2a^{2}\ell\sqrt{a}}{\delta - a\epsilon} F_{1}(1,a) + (a - \ell \tan^{-1}\frac{1}{a}) \frac{\epsilon + a\delta}{2\ell(\delta - a\epsilon)} \right] + m \left[\frac{1}{2\ell} \int_{0}^{1} \frac{(\ell - 2x)f(x)}{\sqrt{x(\ell - x)}} dx + \frac{1}{2}(a + \ell \tan^{-1}\frac{1}{a}) \int_{0}^{1} \frac{f(x)dx}{\sqrt{x(\ell - x)}} \right] - \tan^{-1}\frac{1}{a} \int_{0}^{1} f(x) \sqrt{\frac{x}{\ell - x}} dx - \int_{0}^{1} f(x)\ell \ln \left| \frac{a\sqrt{x} + \sqrt{\ell - x}}{a\sqrt{x} - \sqrt{\ell - x}} \right| dx \right\} .$$
(60)

Once the cavity length parameter, a, has been determined and $y_c(1)$ set equal to zero, the limiting value of C_L/T can be determined from Equation (60) for values of m in the range, $0 \le m \le 1$. Note again that the pressure distribution p(x) can be written in the form

$$p(x) = C_L f(x)$$
,

where the function f is required to satisfy

$$\int_{0}^{1} f(x)dx = 1 .$$

The last integral is made equal to unity simply by scaling all ordinates of f uniformly if the integral should be found to differ from one. Therefore the three integrals in (60) depend only on f(x), the shape of p(x), and not explicitly upon the value of C_L because this factor can now be factored out of the right hand side of Equation (60) as shown.

Before we can caluclate the limiting value of C_L , we must find the cavity length parameter a for prescribed values of m and K. This can be done if we put $aE=y_C(1)=0$ in Equation (40). For then we have

$$\beta = 1 - \frac{1}{\sqrt{1+K}} = \frac{C_L}{2\pi (1+K)} \left\{ (1-m) \frac{(2a^2+3)\varepsilon + a\delta}{\ell (\delta - a\varepsilon)} + \frac{m}{\ell} \int_0^1 \sqrt{\frac{\ell - x}{x}} f(x) dx \right\} . \quad (40a)$$

This equation can be used to eliminate C_L from Equation (60) after we put $y_c(1)=0$. Then we have

$$2\frac{\beta}{T}\left\{(1-m)\left[\frac{2a^{2}\ell\sqrt{a}}{\delta-a\epsilon}F_{1}(1,a) + (a-\ell\tan^{-1}\frac{1}{a})\frac{\epsilon+a\delta}{2\ell(\delta-a\epsilon)}\right] + m\left[\frac{1}{2\ell}\int_{0}^{1}\frac{(\ell-2x)f(x)}{\sqrt{x(\ell-x)}}dx\right]\right\} + \frac{1}{2}(a+\ell\tan^{-1}\frac{1}{a})\int_{0}^{1}\frac{f(x)dx}{\sqrt{x(\ell-x)}} - \tan^{-1}\frac{1}{a}\int_{0}^{1}f(x)\sqrt{\frac{x}{\ell-x}}dx$$
$$-\int_{0}^{1}f(x)\ln\left|\frac{\sqrt{\ell-x}+a\sqrt{x}}{\sqrt{\ell-x}-a\sqrt{x}}\right|dx\right\} = (1-m)\frac{(2a^{3}+3)\epsilon+a\delta}{\ell(\delta-a\epsilon)} + \frac{m}{\ell}\int_{0}^{1}\sqrt{\frac{\ell-x}{x}}f(x)dx \quad . \quad (61)$$

Since m, $\beta(K)$ and T are specified, the cavity length parameter a is the only unknown in Equation (61). Equation (61) can now be solved for the parameter a by iteration. Once values of a have been found for m=0 and m=1, say, Equation (60) can be used to determine limiting values of C_{1}/T , corresponding to these two limiting values of m.

Having found the limiting values of C_L/T for prescribed values of m and β/T , one can now turn to the calculation of μ for various values of m, β/T and for values of C_L/T less than or equal to the limiting values. The first task requires that we determine the value of a when m, β/T and C_L/T are specified and the normalized pressure distribution f(x) is given. This determination requires that we solve Equation (36) by trial and error. Once appropriate values of a have been found, Equation (32) can be used to solve directly for μ .

By proceeding in the manner described above, one can calculate limiting values of C_L and consistant values of μ for various values of C_L , T, K, m

and \mathbf{x}_{o} . Having the limiting values of \mathbf{C}_{L} enables one to be certain that $\mathbf{y}_{c}(1)\geq 0$. However it is apparent from Equation (36) that although the quantities \mathbf{C}_{L}/T , β/T and m are involved, the quantity $1+\mathbf{K}=(1-\beta)^{-2}$ also appears. Evidently it is not possible to reduce the problem to one involving \mathbf{C}_{L}/T , β/T and μ as primary variables except for the special case of $\mathbf{K}=\beta=0$. In this special case we have already seen that \mathbf{C}_{L}/T and μ serve as useful parameters for the correlation of consistant values of m, \mathbf{x}_{o} and characteristics of the pressure distribution shape. Therefore we will give further examples of permissible ranges of μ for $\mathbf{K}=0$ because this is a practically important case and because the trends displayed will have qualitative value for the interpretation of results at other values of \mathbf{K} .

For the case of K=0, we can use the special formulae of Equations (55) and (56), with Equation (59) for p(x), to calculate the set of consistant values which satisfy Equations (54). The first set of results is shown in Figure 11 which gives the limiting values of C_L/T for m=1 and m=0 for values of s between .1 and .5. These values of s are more than sufficient to cover the practically useful range of C_L/T . Figure 12 shows values of μ for μ for μ for three values of μ when m=0 and K=0. Figures 13, 14 and 15 show consistant values of μ when K=0 and m=1 for the three values of μ given in Figure 12. In these three figures, it is also necessary to show the effect of the peak pressure location s. As we have seen already, there is no dependence on s when m=0. In all of these figures the values of μ (1)=0 for each μ correspond to those shown in Figure 11.

It is found by comparing Figure 12 data with those from Figures 13, 14 and 15 that there is only one permissible value of μ for all values of

m in the range 0≤m≤1 when s is close to .2. If s is less than .2 the value of μ at m=0 is greater than that at m=1. On the other hand, if s exceeds .2, the value of μ at m=0 will be less than that for m=1. For any particular design-value of C_{1}/T the permissible range of μ will lie between the value for m=0 and the value determined by m=1 and the design value of s. We also note that the cut-off values of C_1/T for $y_c(1)=0$ differ when m=0 or m=1. This is illustrated in Figure 11 for the semi-elliptic pressure distribution and in Figure 5 for rectangular distributions. This fact means that these preliminary data for semi-elliptic distributions are not entirely complete even for the zero-cavitation number case. There will be cases in which the design value of $C_{\underline{I}}/T$ will require that the lowest permissible value for m (=m', say) must be greater than zero. This simply means that the permissible values of m will now lie in the inteval $0 \le m \le 1$ if $y_c(1) \ge 0$. In spite of the uncertainty remaining in Figures 13, 14 and 15 regarding the value of μ corresponding to the lowest m-value for the design value of s, we can still start the calculation by the third design method using the data from Figures 12, 13, 14 and 15. If one finds that $y_c(1)<0$ for some value of µ which was thought to be permissible this case can be discarded in favor of a value of μ nearer to that for m=1.

Alternatively, one can assume that the design value of C_L is the limiting value. Then, when $y_c(1)=0$, Equation (55) shows that the necessary value of m can be determined by

$$m' = \frac{3\sqrt{2} - \ln(1+\sqrt{2}) - \pi T/C_{L}}{3\sqrt{2} - \ln(1+\sqrt{2}) + \int_{0}^{1} \frac{f(x)dx}{\sqrt{x}} - \frac{1}{2} \int_{0}^{1} f(x) \ln \frac{1+\sqrt{x}}{1-\sqrt{x}} dx}$$
(55a)

We can then put m=m' in Equation (56), along with prescribed values of C_L , T and \mathbf{x}_0 in order to find the corresponding limiting value of μ . This value of μ and the value obtained for m=1 determine the admissible range of μ for the case when the design value of C_L lies between the two limiting values of C_L for $m \ge m' > 0$ and m = 1.

The Design Procedure for Arbitrary Cavitaton Number

and

For nonzero cavitation numbers, it is not possible to present the kind of preliminary data as compactly as we did for K=0. The primary reason is that now both $\beta(K)$ and the quantity (1+K) appear in the equations. Therefore these input parameters together with other prescribed quantities which are C_L , x_0 and T, in addition to the pressure function p(x), seem to make the task of reducing the number of governing parameters not too useful. Moreover, the selection of values for the several input quantities must always be such that the constraints,

$$\begin{pmatrix}
0 \le m \le 1 \\
y_c(1) \ge 0
\end{pmatrix}$$
(54)

are satisfied. For otherwise, our calculations could represent a physically unrealistic solution, as we have noted previously.

We have already seen in the case of K=0 when C_L and T are prescribed that the constraints of Equation (54) can lead to certain "cut-off" values for the parameter μ which correspond to m=0 and $y_c(1)=0$. In these examples the shape of the prescribed pressure distribution is represented by the single parameter s. For nonzero values of K, we will continue to use this parameter for purposes of preliminary analysis. However, we will now

abandon the use of the parameter C_L /T and simply treat μ , C_L , T, x_o and K as input quantities along with the value of s. Now we will envisage the constraints defined by Equations (54) as providing an admissible region in a C_L - μ plane. The extent of this region will depend on the values assigned to K, T, x_o and arbitrarily, it will encompass values of s between .1 and .9. The admissible region of the C_L - μ plane is determined by Equations (30), (31) and (32) which follow from

$$\eta(1) = 0$$
 ,

$$y(1) = T ,$$

and

$$y(x_0) = \mu T ,$$

respectively. The boundaries of this region are found from the constraints of Equation (54).

If one prescribes a design value of C_L in addition to values of K, T, x_0 and s three different cases can be represented in the C_L - μ plane. These cases, which are illustrated schematically in Figure 16, arise from the fact that the limiting values of C_L for m=0 and m=1 will be different. Such differences for the special case of K=0 have been shown already in Figures 5 and 7. Similar behavior will also occur when K>0. As we have seen, the limiting value of C_L for m=0 does not depend on any prescribed pressure distribution. This is illustrated in Figure 12 for K=0. Similar trends for μ versus C_L occur when m=0 and K>0. For any cavitation number one can calculate the limiting value of C_L , regardless of the form chosen for p(x), once T, x_0 and K have been prescribed. This limiting value of C_L , which corresponds to m=0 and $y_c(1)=0$, is denoted by C_{L_0} in Figure 16. In terms of the value of s

which characterizes the semi-elliptic pressure distribution, it is found in the $C_{\underline{I}}$ - μ plane that the slope of the ray for m=0 from the focal point on the $C_{I,}$ axis is very close to the ray for s=.2 when m=1. Since s defines the abcissa of the centroid of the semi-elliptic pressure distribution one may suspect that other nose-loaded pressure distributions, having their centroids located at about 20% of the chord, will be similarly related with respect to the slope of the ray for m=0 in the $C_{\underline{I}}$ - μ plane. When the ray for m=0 and the ray for m=1 coincide for a centroidal location s, a single value of μ is defined as long as the design $C_{\underline{I}}$ is less than or equal to C_{L_0} . This value of μ for such a value of C_L is denoted by μ_O in Figure 16a. Physically this means that it is possible to prescribe pressure distributions p(x) and values of C_{I} , K, T and x_{O} for which only one value of μ is permissible regardless of the values of m and y (1) which can then be paired to produce a series of profiles of varying performance and geometry. This is a rather special circumstance which will not often be encountered. It is far more likely that the m=1 ray for the prescribed pressure distribution will lie above the m=0 ray or below it as illustrated in Figure 16a. For the permissible range of μ which can be prescribed when the design C_L lies well to the left of $C_{L_{\mbox{\scriptsize 0}}}$ will then lie between μ_1 and μ_0 or μ_0 and μ_2 , depending on whether the prescribed value of s lies below the m=0 ray as is the case for s_1 , or above the ray for m=0, as is the case for s, in Figure 16a.

With the foregoing qualitative description of the circumstances surrounding the case illustrated by Figure 16a in mind we now turn to the calculation required to implement the determination of permissible values of the parameter μ . The first task is to calculate the limiting value, C_{L_0} . This calculation can be carried out by means of Equations (60) and

(61) with m=0 and $y_c(1)$ =0. First, Equation (61) can be solved by iteration to determine the value of the cavity-length parameter, a, for the prescribed values of T and K. Then C_{L_0} can be found from Equation (60). Next when m=1, we can put $y_c(1)$ =0 and repeat the iteration of Equation (61) in order to find the value of a and then the corresponding value of C_L can be found from Equation (60). The value of C_L determined by this second sequence of calculations corresponds to the intersection of the ray s_1 or s_2 with the solid curve labeled $y_c(1)$ =0 in Figure 16a. These limiting C_L values are denoted by C_{L_1} and C_{L_2} in Figure 16a.

Now, in order to consider the case in which the design C_L is less than the values C_{L_0} and C_{L_1} which have just been established, we note from Equations (34) and (34a) that the relationship immediately following Eq. (34a),

$$f(a) = F_{\eta} + \frac{m}{\pi(1+K)} H_{\eta} = 0$$
 (62)

does not depend upon x_0 or μ . Therefore if design values of C_L , K, T and p(x) are used in (62) along with m=0 and m=1 the value of the cavity length parameter can be found iteratively. Then the two pairs of quantities, (m,a), and the design quantities C_L , K, T, p(x) and the remaining parameter x_0 , can be used in the equation

$$F_{T} = -\frac{m}{\pi (1+K)} H_{T}$$
 (63)

in order to determine μ and μ_1 or μ_2 . The functions H_T and F_T are defined by Equations (35) and (35a) respectively. The permissible range of μ which one can specify for subsequent design calculations will then be in the interval (μ_1, μ_0) or (μ_0, μ_2) as noted previously.

The foregoing discussion, while helpful for describing the basic nature of the calculation process for the estimating mode, indicates a rather cumbersome numerical procedure. It has been found more effective to program the estimating-mode calculations for ${\rm C_{L0}}$ and ${\rm C_{L_1}}$ or ${\rm C_{L_2}}$ to follow a different path from that discussed above. A more efficient determination of these limiting values of $C_{\overline{I}}$ can be based upon Equations (62) and (63) because they are also needed for other parts of the design process. In particular, since Equation (62) does not depend upon x or μ , if m is chosen in advance this equation contains the unknowns C_{I} and a. Then if we put $E=y_{C}(1)=0$ in Equation (40), thereby obtaining Equation (40a), we can solve it for $C_{_{\rm I}}$ in terms of a, m, K and p(x). The iteration of a is then conducted by calculating an estimate for $C_{\underline{I}}$ for each estimate of a from Equation (62). This estimate for $C_{\underline{I}}$ along with the prescribed values of K, T, m and p(x)can be used in a regula-falsi routine to find that value of a which satisfies Equation (62). Clearly, this process will produce the limiting values C_{L_0} and C_{L_1} or C_{L_2} illustrated in Figure 16a. Corresponding values of μ_0 and μ_1 or μ_2 then follow from Equation (63).

Of course, if the design pressure distribution is such that the ray for m=1 lies above the ray for m=0 as illustrated for s $_2$ in Figure 16a the procedure just outlined for the estimating mode holds without modification for values of the design C_L less than or equal to C_{L_0} . However, suppose that the design value of C_L lies between C_{L_1} and C_{L_0} and that the value of s is such that the ray for m=1 is below that for m=0, as shown by the ray for s $_1$ in Figure 16a. Then the calculations for the estimating mode must be modified in accordance with the illustration of Figure 16b. In this case the value of μ_0 can be found from the procedure

described above when m=0 and the design values of C_L , K, T and x_o are prescribed as usual. However when m=1 the design value of C_L exceeds C_{L1} so that this value of m is not available for profile design. Instead, we must find a value of m which is less than unity but which is just large enough to permit the design C_L to be the limiting value of C_L for y_c (1)=0. This value of m=m' will lie on a ray between m=m' and m=0 as shown in Figure 16b. The value of m' can be found from Equation (40a) by solving it for m. Thus we find

$$m' = \frac{2\pi\beta(1+K)/C_{L} - [(2a^{2}+3)\epsilon+a\delta]/\ell(\delta-a\epsilon)}{\frac{1}{\ell}\int_{0}^{1} \sqrt{\frac{\ell-x}{x}} f(x)dx - [(2a^{2}+3)\epsilon+a\delta]/\ell(\delta-a\epsilon)}$$
(40b)

Then since C_L in this equation is the design C_L , Equations (40b) and (62) can be used in a regula falsi routine to determine a and m'. Then m', a and the other design parameters can be used in Equation (63) to calculate μ '. Permissible μ values will lie between μ ' and μ_0 .

The third case for the estimation mode calculations arises when the design C_L lies between C_{L0} and C_{L2} and the pressure distribution leads to a ray, such as s_2 in Figure 16c, which lies above the m=0 ray. In this case, the value of μ_2 for m=1 can be found by iterating for a in Equation (62) and then solving for μ_2 from Equation (63). However, the value of m=0 is not accessible for profile design in this case. Instead we must find an intermediate value of m between 0 and 1. The lowest such value, m', which corresponds to the design value of C_L will be found when y_c (1)=0. Thus we can use Equations (40b) and (62) in a regula falsi routine to determine limiting values of a and m', as noted above. Then the

corresponding parameter μ' follows from Equation (63) and the permissible range of μ lies between μ' and μ_2 .

It can be seen that, as the design C_L increases and the other parameters are held fixed, the value of s (or the centroid of the prescribed pressure distribution) must move nearer to the profile trailing edge. Indeed, if the design C_L is greater than C_{L2} in Figures 16a and b, no solution can be found. Of course, it is evident from calculations of the sort which lead to Figure 5 that this rearward motion of the centroid of the prescribed pressure does not continue indefinitely because it is found that a centroidal distance between .6 and .7 will lead to infinite values for the limiting C_L when m=1. For values of m less than unity, this asymptotic value moves farther to the rear of the profile. However, for practically interesting values of C_L and the other design parameters this restriction is not too limiting.

In the <u>design mode</u> the calculations can go forward using the permissible μ values from the estimating mode. These calculations are carried out as described in the section on The Sequence of Calculations. In this case the iteration for a is executed using Equation (33a).

THE THIRD DESIGN PROCEDURE -- SUMMARY OF RESULTS

Preliminary Remarks

Nearly all of the calculated results to be discussed in this section are based on the semi-elliptical pressure distribution of Figure 8. Since the third design procedure contains the First and Second procedures as special cases, the numerical results presented here for the case of m=1, corresponding to shockless entry, will permit some regions on the wetted surface of the foil to be at the cavity pressure. This situation

violates the basic restriction that the pressure on the profile should be greater than the cavity pressure except at the trailing edge (and for shockless entry at the leading edge too.) Nonetheless, the basic boundary condition (vi) is satisfied. We could have avoided this contradiction if we had used the double-ellipse pressure distribution which was used for the first procedure in Reference 3. It was shown in that study that the hydrodynamic performance at shockless entry resulting from the semi-elliptical pressure distribution or the double-ellipse distribution exhibited only small differences. Therefore, we decided to overlook this contradiction for this one limiting case in the interest of simplicity and with the knowledge that valid design trends would still be obtained. All other cases, corresponding to m<1, involve the angle of attack or nose singularity so that the pressure on the profile will always exceed the cavity pressure except at the trailing edge.

For the sake of completeness, all hydrodynamic performance trends calculated in the course of this study are tabulated in the Appendix. The numerical methods used and the computer program developed for the calculations are described by Mr. Fernandez in a separate report [1]. Hydrodynamic Performance Trends

Perhaps the single most critical measure of hydrodynamic performance for fully cavitating profiles is the lift-to-drag ratio. Accordingly, our investigations have concentrated on the relationship between this factor and other design parameters. For example, Figure 17 shows the influence of peak pressure location on lift-to-drag ratio at zero cavitation number for a range of lift coefficients. For each lift coefficient, two curves are plotted corresponding to the largest and the smallest permissible value of μ when x = .1 and T = .1. This illustration shows that the selection

of μ can have an important effect on hydrofoil performance depending upon the location of peak pressure. It appears that for s-values in the neighborhood of .3 the effect of μ on L/D is minimal and that for tail-loaded profiles , it is best to use the smallest permissible μ -value, at least when K=0. For nose-loaded profiles the trend is reversed. However, it was found that maximum values of C_L/T as illustrated in Figure 10 were exceeded at all C_L values except C_L =.08. Thus no data are available at values of s equal to .2 and .1 for the higher lift coefficients.

Figure 18 provides the same information as Figure 17 except that now the cavitation number is .2. The most important factor revealed by this illustration is the significant decrease in L/D-values when K is increased from 0 to .2. We also see that at lower values of \mathbf{C}_{L} the effect of μ on L/D increases for tail-loaded profiles as \mathbf{C}_{L} is increased. For nose-loaded hydrofoil sections the effect of \mathbf{C}_{L} changes is not large.

Both Figures 17 and 18 show the consistant trend of increasing L/D with increasing C_L . This same trend was found for the first and the second design procedures [4].

Figure 19 shows the effect of peak pressure location on L/D when the cavitation number varies and C_L is fixed at .16. Again, T=.1 and x_0 =.1. This figure also shows that the effect of permissible μ variations is not too great for nose-loaded profiles, but for tail-loaded sections it can be significant, especially at very low K values.

Figure 20 shows the effect of increasing cavitation number on L/D. The value of s=.3 has been selected as a fixed parameter so that the variations due to the range of permissible μ values is small. From our preceding discussion we recognize that had we selected a tail-loaded

profile instead of the particular loading given by s=.3, the effect of μ variations would have been much more pronounced. However, the chief trend illustrated is the decrease of L/D with increasing K. The present trend agrees with that found for the first and second design procedures [4].

The influence on L/D of cavity thickness, T, for the range of design C_L values is shown in Figure 21. These curves are drawn for the fixed values of K=0, s=.3 and x_0 =.1. As noted already the effect of variations in μ is not great because of the s-value selected. The general trend shown in this graph is the dramatic decrease in L/D with increasing cavity thickness. This trend has also been observed for the first and second design procedures [4].

The chief new aspect of the present investigation is the introduction of the two-point specification of cavity thickness. For a prescribed value of T, the parameter μ controls the specification of the cavity thickness near the nose. Further information on the effect of μ variations upon the values of L/D is given in Figure 22. In this figure the values of K=0, T=.1 and x =.1 are held fixed. Corresponding values of L/D and μ are plotted at the two design \textbf{C}_{1} 's of .08 and .16 for the range of s values. Among other things, this illustration shows how L/D is independent of μ when s is somewhat greater than .3 but less than .4. We also see that in the neighborhood of s=.2 there will be only one permissible value of µ for the whole range of L/D within which m varies between 0 and 1. This figure also shows that in most cases L/D tends to decrease as µ increases. The exceptions to this situation occur when s lies between .2 and .3, roughly. We also see that at the higher C value of .16 most of this region is denied us by the cut-off corresponding to $y_c(1)=0$ and the permissible value of $C_{L_{max}}$.

Figure 23 is a cross plot of data from Figure 22 for constant values of μ . The purpose of this plot is to examine in some detail the L/D trends for various peak pressure locations for the two values of design \mathbf{C}_{L} and for selected values of μ . The point at issue is whether or not one preserves the trends of increasing L/D as he prescribes peak pressure locations which move towards the nose when μ is held fixed. As Figure 23 shows, the answer to this question is yes in most cases, at least when K=0. On the other hand, for some $C_{\underline{I}}$ values this trend is reversed. This reversal occurs when the μ value selected lies to the left of the vertex at m=0, as shown for C_L =.08 in Figure 22. Indeed, as already noted, if μ is selected so as to coincide with the vertex, one finds only one permissible value of s for the entire range of L/D corresponding to 0≤m≤1. In this case the trend line in Figure 23 would be vertical. Thus, the idea that nose loading is best from a purely hydrodynamic viewpoint is not always valid as already noted in Reference [4]. However, it appears to be true in most cases so that we might regard it as a useful rule of thumb. Another point illustrated again by Figure 23 is the fact that for constant μ values, the permissible range of s is limited by the constraints on m and $y_c(1)$.

Figure 24 is similar to Figure 22 except that now K=.2. The effect of this increase in cavitation number on the trends described above is remarkable. In many ways the situation is reversed. This is definitely true with respect to the effect m on L/D for nose-loaded profiles. For example, when s=.1, L/D increases as μ increases and at the same time m decreases from 1 to zero. We do see that near s=.2 there is only one value of μ for all values of L/D corresponding to m values between 0 and 1. In both plots of Figure 24 m is zero at the vertex where all

rays intersect. Then as a point moves from the vertex to the end of a ray, the value of m increases from 0 to 1. The plot for C_L =.08 and K=.2 is shown to a larger scale in Figure 25 so that the effects of μ upon L/D can be seen more clearly. Evidently, at this value of cavitation number and at this low value of C_L , better L/D's can be achieved if s is between .6 and .7 and m=1. On the other hand if C_L =.16, the best value of s is near .4 with m=1. However, even then, the L/D values obtained are low.

In the course of our numerical studies we carried out some computations to test the sensitivity of L/D to the accuracy of the lowest and highest permissible values of μ . It was found for x_0 =.1 that if L/D and m were to be determined to four significant figures, these limiting values of μ needed to be known to five significant figures.

The preceding data have been presented in order to highlight some of the more important performance trends exhibited by third-design-procedure data. In order to present a somewhat more systematic overview of hydrodynamic performance, we present in Figures 26 through 35 plots of L/D versus C_D . These performance maps show contours of design C_L and s for cavity thickness values of T=.10, .15 and .20. Separate maps have been prepared for five values of the cavitation number, K=.00, .05, .10, .15, .20. For each value of K individual maps are given for the greatest and the least values of μ , consistant with the constraints $0 \le m \le 1$ and μ (1) ≥ 0 . Since the value of the greatest μ and the least μ will vary widely from point to point on each map, the two maps for each K-value are simply designated by "MU MAX" or "MU MIN" on the plots. All maps have been contructed for μ complete tabulations of hydrodynamic data for these ten maps are given in the Appendix. Therefore one can look up other

pertinent data not presented on these plots should he need more detailed information. These maps seem to be rather self explanatory. Therefore we will only comment that they show again that nose-loaded profiles most often seem to have larger L/D values than tail-loaded sections. They also show ranges of design parameters for which the third design procedure can give a solution. Of course, not all cases investigated are presented in these performance maps. However, in order to present the hydrodynamic data behind all plots presented in this study these additional results are also given in supplementary tables in the Appendix.

In Reference 4, it was found useful to introduce the concept of "hydrodynamic equivalence". In this concept the design point (K, C_{L} , T) and the center of pressure location, x, are the primary factors which govern hydrodynamic performance. It was found that if these parameters were the same for two profiles, their performance would be closely the same even though the shape of their pressure distributions is different. This concept was found to be useful even for comparing the performance of profiles designed by the first and second design procedures. Therefore we would expect this concept to be of value for comparisons of profiles designed in accordance with the third design procedure. In fact the center of pressure location is given in all tabulations in the Appendix so that one can test the concept of hydrodynamic equivalence again. We have not made this test in the present study. Instead we have preferred to explore the consequences of the third design procedure on the profile geometry. As we found in Reference 3, profile geometry is sensitive to the shape of the pressure distribution while hydrodynamic performance is less so.

Profile Geometric Trends

Typical profiles resulting from the third design procedure are illustrated starting with Figure 36. In all of these illustrations the upper graph shows to scale the profile wetted surface and the upper cavity contour in accordance with the nomenclature defined in Figure 1. In these figures the chord lines of all profiles are on the x-axis from x=0 to x=1.0. The y-axis shows contour ordinates to the same scale as the abscissa of each point. Note that only that portion of the cavity upper surface which lies directly above the wetted surface of the profile is plotted in these graphs. The trailing edge of the wetted surface is located at the point x=1.0 on all plots, and the lower surface of the cavity, which would extend beyond the trailing edge is not shown at all. The cavity thickness, T, for each design can be measured directly from the graphs as the vertical distance from the trailing edge of the profile (1.0, 0) to the upper surface of the cavity (1.0, T). The space between these two contours from the profile nose at (0,0) and on into the cavity beyond the trailing edge of the wetted surface if need be, is available for hydrofoil structure. We have not drawn in any foil structure in these plots, preferring to restrict our attention to the hydrodynamics of these flows. Of course we would assume that there would be some clearance between the upper surface of the cavity and the uppermost parts of the profile structure at the design condition. The lower plot in each figure shows the pressure distribution along the chord of the wetted surface with positive pressures plotted downward. These plots show the net perturbation pressure due to the prescribed pressure distribution plus the "flat plate" distribution due to the angle of attack above the ideal value for shockless entry, as discussed in the text following Equation (43).

The examples selected for study have not been chosen because the profiles exhibited have good or poor performance or show favorable or unfavorable geometry. Instead our purpose has been to illustrate typical geometric trends which follow from changes in key hydrodynamic parameters. In this regard, we note that many of these general trends have already been discussed in Reference 4, where profiles designed by the first and second procedures are illustrated. Therefore the present discussion centers on the chief new ingredient contained in the third design procedure, namely; the influence of μ , the cavity thickness parameter at the nose, upon geometry and net pressure distribution.

For example, Figures 36 and 37 show two designs at zero cavitation number having the peak pressure of the prescribed semi-elliptic pressure distribution at s=.2. Figure 36 corresponds to the limiting case of m=1 so that it is a "first-design-procedure" hydrofoil section. We have noted previously that the value of s=.2 corresponds closely to a case as illustrated in Figures 22 and 23 for which μ is near the vertex corresponding to m=0 in a plot of L/D vs μ . Accordingly the value of μ changes very little over the permissible range of m. In this case, μ values shown in Figures 36 and 37 differ only in the fourth decimal place. The value of $y_c(1)$ for the profile of Figure 36 is .0081 so that the nose in this design is almost sharp. The value of $y_c(1)$ for the foil of Figure 37 is zero and the nose is sharp. The value of m is .6382 for this case so that the pressure distribution shows significant flat plate contribution. Because of this fact, the reduced amplitude of the prescribed semi-elliptical pressure distribution leads to less camber of the wetted

surface when compared to the case for m=1 shown in Figure 36. The corresponding difference in lift-to-drag ratio for the two cases is seen to be fairly small. Of course, neither of these designs is suitable for practical application. There is little or no clearance between the wetted surface and the upper-cavity contour near the profile noses. In addition, the design of Figure 36 shows an extensive region of zero pressure on its wetted surface. This situation is easily remedied by use of an additional quarter-elliptical distribution of low intensity distributed over the interval which now has zero pressure, as was done for the first procedure foils of Reference 1. The reason that this measure was not adopted in the present study is because our interest centers upon designs in which the flat plate contribution will cause the wetted surface pressure to exceed zero everywhere between the leading and trailing edges. The limiting case for m=1 is already treated adequately in Reference 1. The resulting comparisons of performance and geometric trends are influenced very little by this minor violation of one of our basic constraints. Of course one can not recommend such a prescribed pressure distribution for practical applications.

The next five illustrations, presented in Figures 38 through 42, illustrate the case in which s=.3 and K=0 and one expects to see a greater permissible range of μ values. We expect this because as can be seen from Figure 22, when s=.3, a considerable range of μ can take place with relatively small changes in L/D resulting. In fact if one can select an s-value which is on a horizontal line through the vertex at m=0, then L/D wll not vary over the permissible range of μ . In Figures 38 through 42, we have $19.906 \le L/D \le 20.135$ so that the condition of L/D invariance with respect to μ is nearly satisfied for the

permissible range, .1464 $\leq \mu \leq$.1577. The profile and pressure distribution shapes show descernible variations in this range. These variations can be understood quite readily if one examines the values of m and y_C(1) for each of these profiles as given in Table I. For then, the general discussions

***		-		-
т.	21	۱ <i>ا</i>	0	I

Fig.	38	39	40	41	42
m	.9998	.8537	.7075	.5609	.4148
y _c (1)	.0200	.0150	.0100	.0050	.0000

which relate to the importance of these factors on profile and cavity shapes as noted for hydrofoil sections designed at s=.2 are applicable to this case also.

Continuing our study of geometric trends at K=0 and T=.10 in Figures 43, 44 and 45, we show profiles designed for s=.7. For such tail-loaded sections the values of $y_c(1)$ needed to provide the required cavity thickness are higher than is the case for nose-loaded designs. Therefore, these profiles show higher drag and more nose rounding. As expected, the region of under camber moves to the rear and the moment coefficients of these profiles are greater in magnitude than is the case for nose-loaded designs. The values of m and $y_c(1)$ for these profiles are given in Table II below.

Table II

Fig.	43	44	45
m	.9998	.6079	.2158
$y_{c}(1)$.0516	.0258	.0001

In Figures 46, 47, and 48 we return to nose-loading with s=.3. The values of μ selected for these graphs have been chosen to produce values of m as close as possible to .5 in order to retain pressure distributions which are the same for the three cases. values of m were .4995, .4994 and .4994. Therefore the changes of profile shape are due to input parameters other than the pressure distribution. That is, we have made certain in these comparisons that x, the center of pressure location, does not change. For example, Figure 46 shows the effect of changing cavity thicness for K=0. The case shown has an m-value between those of Figures 41 and 42 as indicated in Table I. An interpolation based upon the values in Table I indicates that $y_c(1)=.0029$ for m=.4995. These values pertain to T=.1. In Figure 46, T=.2 and $y_c(1)$ =.0529, which is about 18 times larger than the value of $y_c(1)$ when T=.1. Thus the change of cavity thickness from .1 to .2 can be ascribed entirely to the increase in the value of $y_c(1)$. As a result of this increase in y (1) there is rounding of the profile nose. In Figures 47 and 48, we return the cavity thickness, T, to its previous value of .1. However, the value of K is increased to .1 and then to .2. Again, because m is held constant, the cavity thickness requirement of T=.1 for these K values results in increased values of y (1) as shown in Table III.

Table III

Fig.	-	47	48
K=	0	.1	. 2
$y_{c}(1)$.0029	.0190	.0322

Again the increased rounding of the profile nose which accompanies this increase in $y_c(1)$ is observed.

As our final study of profile geometry to be expected from designs developed from the third design procedure, we consider some sections based upon a modified "three-term" pressure distribution [4,6]. This distribution is shown in Figure 49 for a design lift coefficient of .12. As illustrated in the figure, two uses are made of this distribution. First we reverse the distribution so as to produce a nose-loaded profile. Then we use the distribution in the customary way to provide a tail-loaded section.

Four profiles, resulting from the third design procedure when T=.1 and K=0, are shown in Figures 50, 51, 52 and 53 for reversed-three term and three-term pressure distributions. We believe that the study of hydrodynamic equivalence reported in Reference 4 supports the view that the value of peak pressure location, s, recorded on these plots is no longer a significant parametric quantity for comparison of performance with results from semi-elliptic pressure distributions, for example. Instead the important parameter as far as hydrodynamic performance is concerned is the center of pressure location, x. These values are tabulated in the Appendix. On the other hand, since profile geometry is sensitive to details of the prescribed pressure distribution and the point-drag amplitude these distributions tend to be in a class by themselves with respect to the geometry resulting from the application of the third design procedure. We might consider these profiles as being more representative of the kind of pressure distribution one might wish to specify for actual use.

Figures 50 and 51 show the profiles derived from the third design procedure for the reversed three-term prescribed pressure distribution. In Figure 50, m=1.0 and $y_c(1)$ =.0228. Figure 51 shows the profile and net pressure distribution obtained when m=.3840 and $y_c(1)$ =0. Therefore the value of μ shown on Figures 50 and 51 are $\mu|_{max}$ and $\mu|_{min}$ respectively. Note that the L/D value for the profile of Figure 51 exceeds slightly that shown in Figure 50. This increase is caused by the fact that the location of \overline{x} moves forward because of the flat plate solution, shown to be part of the pressure distribution of Figure 51.

Figures 52 and 53 show the geometric trends obtained for the threeterm prescribed pressure, corresponding to tail-loading. Again, Figure 52 corresponds to the limiting case for m=1 and Figure 53 to the limit for $y_c(1)=0$. In this latter case, the value of m is .2274 so that x is moved towards the nose compared to the profile of Figure 52. Accordingly, the value of L/D is increased for this case as compared to that shown in Figure 52. Again the values of μ shown for these two profiles are limiting permissible values, $\mu|_{\text{max}}$ = .2085 and $\mu|_{\text{min}}$ = .1543. It is worth noting that the value of L/D for the profile of Figure 53 is nearly as good as that for the shockless entry case of Figure 50. These two cases show again the important influence on performance of the center of pressure location as distinct from peak pressure location. On the other hand, the effect of distributing the prescribed pressure gradually over the chord instead prescribing the more concentrated peaks as obtained in many of the semi-elliptical examples given previously, is shown by the more gradual camber of the wetted surfaces in these last four examples. Perhaps, one conclusion which can be drawn from these comparisons is that the designer can, by a judicious selection of

prescribed pressure distribution and the value of μ , obtain profiles of better than average performance and still provide sufficient clearance between the upper surface of the cavity and the wetted surface to allow realistic structural criteria to be satisfied. The perusal of this objective is beyond the scope of the present study.

Off-Design Performance

Once a profile has been designed, it is important to examine its performance at possible operating conditions which differ from those considered in its design. Considerations of this sort depend upon the solution of the direct problem and the literature is replete with various approaches to its solution. One approach which appears to work well with the present inverse technique is that described in Reference 4. This particular linearized approach has been designed to permit one to determine the operating range of a particular design in terms of cavitation number and minimum attack angle for cavity profile interference.

In order to illustrate the off-design performance, one might expect to achieve with the third design procedure we have selected one profile from those presented in the preceding section. The profile of Figure 40 has been analyzed for off-design performance and the results are presented in Figure 54. In this figure, the lift-to-drag ratio is plotted against the cavitation number for selected values of attack angle, α , and cavity length, ℓ . Regions of cavity-foil interference have also been delineated on this figure. In arriving at the boundary between interference and noninterference, we used a rather simple shape for the upper surface of the hydrofoil section. It was assumed that, t, the ordinates of the upper surface of the hydrofoil is θ times the ordinates of the upper surface of the cavity at the design point. That

is, $t=\theta y(x)$. In the example of Figure 54, θ is 80% and the hydrofoil has a kind of wedge shape. The boundary marked in Figure 54 defines the locus of points at which the upper surface of the cavity at off-design is just tangent to the upper surface of the foil at some chordwise point.

CONCLUSIONS

The work completed to date has provided a rather flexible preliminary design tool which one can use to explore the important hydrodynamic parameters surrounding the design of a supercavitating hydrofoil section. The work has been carried out with the needs of the designer who wants to explore mixed-foil concepts in mind. Naturally, we have limited our considerations to the hydrodynamic aspects of the design process. We hope that the methods proposed will enable the important compromises between hydrodynamic and structural criteria to be addressed more efficiently than might otherwise be possible.

It has been found that the results of the present study reinforce conclusions of our work on the first and second design procedures with respect to the effect of center of pressure location and other parameters on hydrodynamic performance and the influence of the prescribed pressure distribution shape on wetted surface geometry.

The chief new result from the third method of profile design results from the two-point cavity thickness control which is possible with this more general theory. In calculations based upon this theory, one specifies the cavity thickness at a point \mathbf{x}_0 near the nose to be μT , where $\mu < 1$. Because of the fact that the pressure on the wetted surface must exceed the cavity pressure, it is found that μ can not be prescribed

with complete arbitrariness. The permissible range of μ is found to depend on T, \mathbf{x}_{o} , \mathbf{C}_{L} , K and, to some extent, upon the shape of the prescribed pressure distribution. In spite of these restrictions on the range of μ , the addition of this parameter to those already available from the first and second design procedures significantly enhances the flexibility of the third design procedure.

Of course this procedure, being based upon linearized theory, like Wang and Shen's mixed foil theory, is chiefly useful for preliminary design. Once a few candidate hydrofoil sections have been designed, we must make a final selection using more exact analysis methods. Another point has been noted already which is peculiar to the way we have formulated the problem. It will be noted that because the chord line passes through the trailing edge of the profile in this theory, the cavity thickness T is a clearance between the wetted surface of the profile and the upper surface of the cavity. In the case of the cavity thickness near the nose, the distance µT is measured from the chord line and not the wetted surface. Therefore µT is only indirectly related to the clearance between the wetted surface and the upper surface of the cavity. As a result our study shows that occasionally one can obtain profiles which have cavity contours which cut the wetted surface. Therefore one can not guarantee from the outset that his design will be entirely satisfactory. As we have noted already, if one were to change the condition $y(x_0) = \mu T$ to read $y(x_0) - \eta(x_0) = \omega T$ and implement the design process accordingly, the occasional interference between cavity and wetted surface could be eliminated. However in this case too, the parameter, w, would be limited in its range to certain permissible values which must be searched out before a design can be completed. In the

present somewhat simpler theory the limited range of μ makes it possible for one to explore the possibilities afforded by various selections of μ when other design parameters are held fixed. Thus he can determine from the resulting profile and cavity contours which of the several designs if any, is the most satisfactory, not only from the viewpoint of profile geometry but of hydrodynamic performance also. Thus we feel that the procedure proposed in this study offers a flexible design tool for the preliminary design of fully cavitating hydrofoil sections employing any one of the three design procedures studied. The new computer program for the design method has been written to operate in accordance with either the first, second or the third procedure. However the added flexibility of the third procedure which enables the designer to examine a variety of geometric and hydrodynamic aspects relating to his practical design goals by varying μ within the permissible range for systematic families of pressure distribution shape should make the third procedure the most useful of the three methods.

REFERENCES

- [1] Fernandez, J., "Design Implementation for Supercavitating Hydrofoils with Two-Point Cavity Thickness Control," ARL Internal Memorandum, File No. 77-199, June 1977.
- [2] Wang, D. P. and Shen, Y. T., "A Theory for High-Speed Hydrofoils," NSRDC Evaluation Report SPD-478-14, June 1975.
- [3] Wang, D. P. and Shen, Y. T., "A Validation Study of the Mixed-Foil Concept for High-Speed Hydrofoils," Journal of Ship Research, Vol. 20, No. 2, June 1976, pp. 85-94.
- [4] Parkin, B. R., Davis, R. F. and Fernandez, J., "A Numerical Design Study of Fully Cavitating Hydrofoil Sections Having Prescribed Pressure Distributions," ARL Technical Memorandum, File No. 75-170, June 30, 1975.
 - Cavitating Hydrofoil Sections," Marine Technology, Vol. 14, No. 1,
 January 1977.
- [5] Parkin, B. R., "The Inverse Problem of the Linearized Theory of Fully-Cavitating Hydrofoils," the RAND Corporation Memorandum, RM-3566-PR, 1700 Main Street, Santa Monica, California, September 1964 (AD 606038).
- [6] Parkin, B. R. and Grote, R. S., "Inverse Methods in the Linearized Theory of Fully-Cavitating Hydrofoils," Trans. ASME, Journal of Basic Engineering, Vol. 86, Series D, No. 4, December 1964.
- [7] Milne-Thomson, L. M., <u>Theoretical Aerodynamics</u>, Fourth Edition, Dover Publications, New York, 1973, pp. 147-156.

APPENDIX

TABLES OF HYDRODYNAMIC PERFORMANCE

NOTATION

K - cavitation number

T - cavity thickness at trailing edge

XO - location of second cavity thickness control point on

chord line, x

CL - lift coefficient, C_I

S - peak pressure location, s

MU - nose cavity thickness parameter, μ

L/D - lift to drag ratio

CM - moment coefficient, C_M

CD - drag coefficient, C_D

XBAR - center of pressure location along chord line, x

ALPHA - angle of attack α

L - cavity length parameter, l=1+a²

YC(1) - point-drag solution strength, $y_c(1)=E/a$

M - fraction of lift born by prescribed pressure distribution, m

ACAP - strength of leading edge or "flat plate" solution, A

BINT - cavity closure singularity strength, B

DINT - value of α - C_0 where C_0 is the first Fourier coefficient for the camber function

		ACAP		000000-0-	10,05093	0000000	-0.05093	000000-0-	-0.05093	000000-0-	54040.0-	000000	00000	000000	000000	-0.050.03	000000	200000-0-	000000-0-		-0-05165	00000	-0.05586	-0.00000	-0.05739	000000-0-	-0.05834	00000-0-	10.00.01	000000-0-	-0.05960	-0.00000	-0.05996	10.06035	0000001
0.100		Σ		\$6666.0	000000	1.00000	0.00007	0.99992	0.00004	26666	0.00005	7 6666 0	20000	0.00002	0.0000	0.00002	0000000	0.00001	86666.0		0.18863	1.00000	0.12262	0.99993	64860.0	966660	0.08363	16666.0	0.07035	0000000	0.06377	0.99998	0.05822	0 C C C C C C C C C C C C C C C C C C C	6666660
WITH XO=	BUTIONS	YC(1)		0.00603	0.00720	0.02203	0.00720	0.03002	0.00720	0,03561	07/00.0	0.04066	0.00.00	0.00720	0.05107	0.00720	0.05525	0.00720	600		0-0000	0.01504	0000000	0.02503	0000000	0.03201	0.00000	0.03832	0000000	12950*0	0000000	0.05134	0.00000	0.00000	0.06369
DESIGN METHOD	ELLIPTICAL PRESSURE DISTRIBUTIONS	ALPHA		3.73419	3-33076	3.43643	3.33075	3.23419	3-33074	3.05901	2.22074	2-86480	2.6705	3.33074	7.69532	3.33074	2.20236	3.33074	1.99713		3.47216	3.57935	3.43244	3.32654	3.41379	3.10756	3.39854	5/498.7	3.33918	56179.7	3.38065	2.40295	3.37175	7.35000 2.35000	1.78021
FOIL	ICAL PRESS	XBAR		0.09991	0.31250	0.19980	0.31250	0.29969	0.31250	0.39959	16216.0	0.43948	0.50030	0.27.00	0.559.0	0.31251	0.79919		60668.0		0.29124	0.15980	0.31093	0.29969	0.32108	0.39959	0.32814	0.49948	0.33268	0.00000	0.23/1/	0.69930	408	61861-0	60668.0
THIRD	ELLIPT	9		0.00458	0.00531	26400.0	0.00531	0.00524	0.00531	0.00553	1900000	0.00606	84400-0	0.00533	9690000	0.00531	0.00760	0.00531	0.00368		0.00559	0.00519	0.00567	0.00559	0.00572	0.00604	0.00577	0.00667	6/500.0	17/00-0	0.00581	0.00785	0.00584	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.01016
		N U		96200-0-	-0.02500	-0.01598	-0.02500	-0.02398	-0.02500	-0.03197	00620.01	-0.03996	-0.04795	10.02500	-0.05594	-0.02200	-0.06394	-0.02200	6		-0-02912	-0.01998	-0.03109	-0.02997	-0.03211	-0.03996	-0.03281	0.04995	-0.03327	\$4400.01 00000	-0.03372	-0.06993	-0.03408	26670-0-	10660-0-
	0.100	6/1		17.45013	15.07061	16.26080								15-07053	11.49883	15.07052	10.52690	15.07052	9.21634							16.55725	17-34541	14.99876	17.27805	15200.51	17-20068	12.74002	17.11044	14.096.24	9.84318
	-	Š	CL= 0.08	0.13966														0.16162	0.23299	CL= 0.10	20051-0	0.15016	0.15196	0.16607	1.15277	0.17821	0-15334	19004	0.15376	0.503.0	0.15406	0.21379	0.15433		0.23921
	00000	v		COC	0.70	0.20	0.30	0.30	0000	0.40	2000	2000	0.40	0.70	0.70	0.80	0.90		06.0		0.20		0.30	0.30	0.40	0.40	0.00	00.00	09.0	000	0.10	0.70	00	30	0.00

				THIRD	FOIL	DESIGN METHOD WITH	= 0×	0.100	
00000	<u>"</u>	0.100		ELLIP'	ELLIPTICAL PRESSURE DISTRIBUTIONS	SURE DISTRI	BUTIONS		
vı	× 5	5	8	8	XBAR	ALPHA	YC(1)	Σ	ACAP
	CL= 0.12								
20	0.13849	21.13365		0.00568	0.24057	3.66491	0.00000	0.63825	-0.02764
0.50	0.13857	21.98557	-0.02398	0.00546	0.19980	3,72226	0.00805	1.00000	0.00000
00	0.14637	19.90634		0.00603	0.30719	3.50366	0000000	0.41474	-0.04471
00	0.15766	20.13481		0.00596	0.29969	3.41939	0.02003	96665 0	-0.00000
Ct	0.14955	19,28735		0.00622	0.34152	3.42793	0000000	0.33316	-0.05094
0	0.17223	13,41469		0.00652	0.39959	3.15611	0.02842	266660	000000-0-
0	0.15196	18,71475		0.00641	0.36540	3,36600	0.00000	0.28290	-0.05478
00	0.18642	16.43433		0.00730	0.49943	2.86479	0,03599	0.99998	-0.00000
09	0.15368	13.43719		0.00651	0.38078	3.32802	0.00000	0.23800	-0,05821
09	0.20270	15.01850		0.00799	0.59940	2.57336	0,04545	86666.0	-0.00000
20	0.15488	18-12416		0.00662	0.39595	3.29338	0000000	0.21574	-0.05991
0	0.21492	13.64390		0.00880	0.69930	2-31059	0.05161	66666.0	-0.00000
0	0.15599	17.76637		0.00675	0.40836	3.25724	0000000	96961.0	-0.06135
0	0.22782	12.13784		0.00989	0.79919	2,00764	0.05788	66666	-0.00000
0	0.15722	17.28581		4690000	0.41579	3.71148	0.0000	0.17609	0629
0	0.24543	10.20870		0.01175	60668-0	1.56328	0.06642	55555	00000
	CL= 0.14								
0.20	797210	24.27583		7750000	0-20437	3285766	00000	0.05040	-0.00362
0.20	0.12698	24.39972	-0.02797	0,00574	0.19980	3,36517	0,00105	1,00000	0.0000
0.30	0.14078	21,90018		0.00639	0.30452	3.57488	0000000	0.62340	-0.03357
0.30	0.14925	22.08302	-0.0419	0.00634	0.29969	3.51124	0.01504	96566.0	-0.00000
0.40	0.14653	20.75934	9640.0-	47900.0	0.35611	3,44207	0.00000	0.50078	-0.04449
0+0	0.16625	19.96704	-0.0559	0.00701	0.39959	3.20467	0.02482	16666.0	-0.00000
05.0	0.15058	19.73692	-0.0548	0.00709	0.39201	3.33347	0000000	0.42523	-0.05123
04.20	0.18281	17.57643	6690.0-	0.00797	84664.0	2.86479	0,03365	86666 0	-0.00000
09+0	0.15359	19.25252	-0.0581	0.00727	0.41514	3.26687	0000000	0.35774	-0.05724
09.0	0.20180	15.89789	-0.0839	0.00081	0.59940	2.52479	0.04470	66666.0	-0.00000
0.10	0.15571	18.71472	-0.0613	0.00748	0.43794	3.20611	0.00000	0.32429	-0.06022
0.10	0.21606	14.29335	6260.0-	0.00979	0.68930	2.21821	0.05187	66666.0	-0.00000
0.80	0.15764	18.11102	-0.0639	0.00773	0.45659	3-14273	0.00000	0.29606	-0.06274
0.00	0.23111	12,56450	-0.1118	0.01114	0.79919	1.36478	0.05919	66666 0	000000-0-
06.0	0*12980	17.31834		0.00808	0.46777	3.06248	0.00000	0.26469	-0.06554
06 * 3	0.25164	10.39628	-0.1258	0.01347	0.89910	1.34637	0.06916	66666.0	-0.00000

	ACAP		-0.02242	-0.00000	-0.03805	-0.00000	-0.04767	-0.00000	-0.05627	-0.00000	-0.06053	-0.00000	-0.06413	-0.00000	-0.06813	-0.00000	
0.100	Σ		0.77989	95666.0	0.62649	85666.0	0,53198	86666.0	0.44755	66666.0	0.40570	66656.0	0.37039	66656.0	0.33114	66666.0	
	70(1)		0.00000	0.01005	0.00000	0.02122	0000000	0.03132	0000000	0.04394	0000000	0.05214	00000000	0.06051	0000000	0.07190	
N METHOD I	ALPHA		3.64609	3.60358	3.45622	3.25322	3.30054	2.86478	3.20572	2.47621	3-11384	2.12584	3.02823	1.72192	2.91348	1.12945	
THIRD FOIL DESIGN METHOD WITH XO= ELLIPTICAL PRESSURE DISTRIBUTIONS	XBAR		0.30251	0.29969	0.36706	0.39959	0.41197	0.49948	0604400	0.59940	0.46943	0.69930	0.49277	0,79919	0.50674	0.89910	
THIRD	9		0.00677	0.00673	0.00729	0.00752	0.00781	0,00866	0.00808	99600.0	0.00639	0.01085	0.00877	0.01247	0.00931	0.01529	
	ξ		-0.04840	-0.04795	-0.05873	-0.06393	-0.06 72	-0.07972	-0.07054	-0.09590	-0.07511	-0-11189	-0.07884	-0.12787	-0.08108	-0.14386	
0.100	۲/۵		23,64160	23.76942	21.35618	21,26335	20.48938	18,48112	19.30367	16.55986	19.06366	14.74898	18,24055	12.82701	17.18102	10.46140	
K= 0.000 T= 0.100	Σ	CL= 0.16		0.14085	0.14341						0.15653	0.21719	0.15929		0.16238	0.25736	
W W	v		0.30	0.30	0.40	0.40	0.50	0	0.60	0.80	0.10	0.0	0.00	0.80	05.0	06.0	

		ACAP		0000-0- 6666	0001 -0.0509	0000 -0.0509	0000 0 0000	0011 -0.0509	0000-0-0000	00000 -0.05090	9050-0- 900C	0000-0- 5666	0003 -0.0509	00000-0- 9666	9003 -0.0509	000000- 2666	0002 -0.0509	00000-0- 2666	3002 -0.0509	0000.0- 8666		0- 0	0- 0	0- 0	0		0	0-	0	0-	0	-0-	0-	-0-	0-	-0-	0-	0
x0= 0.100	SNS	YC(1)		103	520	220 0.0	103 1.0	221 0	0 200	0.03220 0.000	220	566 0 99	520	161	220 0.0	507 0.9	220 0.0	025	5.20	262		400	150	150	500	100	151	701	151	332	191	121 0.9	151 0.0	634 0.9	150 0+0	157 0.9	150	869
HIT	DISTRIBUTIONS			557 0	318	315 0	383	374	666	500	113	611	313	167	313	172 0	312 0	576	312 0	553		0.0	0.0	0.0		0 0	962 0.02	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0		0.0
DESIGN METHOD	PRESSURE D	R ALPHA		5.16	4.76	4.76	4.86	4.76	99.7	6.4.0	75-7	4.29	4.76	4.10	4.76	3.92	4.76	3.72	4.76	3.42		16	64	20	0 0	0 0	50 4.87962	50	51	00	21	33	27	00	7.0	3,	-4	60
THIRD FOIL D	ELLIPTICAL P	XBAR		0.0	0.3	, 0.3	0.1	0.0	0.5	6 0.31251		7	0.3	0.5	0.3	9.0	0.3	0.1	0.3	8.0		660.0	0.312	0.312	0.199	0.200	0.812	0.399	0.312	0.499	0.312	0.599	0.312	669.0	0.312	0.799	0.312	668.0
THI	נר	8								0.01086																	0.01139											
		Š		-0.00799	-0.02500	-0.02500	-0.01598	-0.02500	-0.02398	-0.02500	10.02001	-0.039996	-0.02500	-0.04795	-0.02500	-0.05594	-0.02500	-0.06393	-0.02500	-0.07193		6600.0-	-0.0312	-0.0312	-0.0199	2150.01	-0.03125	-0.0399	-0.0312	6670.0-	-0.0312	-0.0599	-0.0312	6690.0-	-0.0312	-0.0799	-0.0312	6680.0-
	0,150	7/0		8 - 15554	7.36938	7.35933	7.76925	7.35933	7.44103	7.36931	7.26020	6-71024	7.35929	6.39890	7.35929	6.07631	7,36928	5.69631	7.36927	5.16117		9.93977	8.77715	8.77708	9.36349	201118 8-38185	8.77707	8.40940	8.77705	7.83345	8.77705	7.39757	8.77704	6.95269	8 - 7 7 7 0 4	6.43747	8-77732	5.72321
	5,000	2	CL. 0.08	0.16248	0.17711	0.17711	0.17720	0-17712	0.18569	0.17712	0.17713	0-19847	0-17712	0.20571	0.17712	0.21114	0.17712	0.21687	0.17712	0.22470	CL= 0.10	0	0	0	0 0	5 0	0.16937	0	0	0	0	0	0	0	0	0	0	0.5
		**		01.0	0.10	0.50	0.20	0.30	0	0.0	0.80	0.50	0.60	0.60	0.73	0.70	0.80	0.80	06.0	05.0		0.10	0.10	0.20	0.20	0.00	0.40	0440	0.50	0.50	0,60	0.60	0.10	0.10	0.80	0.8	0.90	0.90

		ACAP		-0.00000	763	763	0.00000	000	763	000	163	000	163	0000	900	2007	66970-0-	0000	0000000		0.00	100	0	000	168	000	6 6	000	400	0 0	000	6	000	-0.08913	000	0 0	0
0.100		Σ		6	00	00	1.00000	0 0	00	00	00	00	000) (0 0	n C	2 0	A C	00			1000	0000	0000	9000	8666	2003	9666	7000 7000	2000	8666	0000	8666	100	8666	1000	7
	SISTERNIST	YC(1)		0.00905	.010	.010	03	040	010	.053	.010	090	• 010	0 0	010	0 0	0 0	000	.091		C	2 0	00.	.02	00.	000	00.	40.	5 C	0	0.0	00.	.01	0.00011	000	000	
DESIGN METHOD WITH XO#	OKE DISTRI	ALPHA		.6012	1966	1966	5-15465	1000	1966	885	1966	116	9961	1400	.9961	6747	10%	0000	9666		-	5-11265												5.11260			
	ICAL PRESSURE	XBAR		16660.0	0.31249	0.31250	0.19980	0.216.00	0.31250	0.39959	0.31251	87667.0	0.31251	656650	0.31251	0.00000	0.0010	0.37.77	60668.0		"	1 6	(.)	-	(c)	14	. (2)		.1	(4)	U	(6)	0	0.31251	- (41 0	
THIRD	ELLIPTICAL	9		0	0	0	0.01107	50	0	0	07	0	0	3 6	5 6	5 6	5 6	50	0.01953		70.0	127	0125	0114	0125	0123	0125	132	2770	0125	0156	0125	0169	0.01251	0187	0125	021
		δ		119	5	375	-0.02398												-0.10789		0.222	-0.04375	-0.04375	-0.02797	-0.04375	-0.04196	-0.04375	10.00094	10.04979	-0.04375	-0.08392	-0.04375	-0.09790	-0.04375	•0•11189	50	.12
	061.0	2		1.63	0.04	0.04	10.84055	60140.0	0.04706	9.55644	.04703	8.79872	204702	8.73418	20/ 40*	600000	7.04704	06440	.14423		2070	0380	9251	0968	9353	7191	2220	(32)	0 0 0 0 0 0	9347	3510	9346	4577		7101	0 0	1
	000	M	CL= 0.12	96	16	15	0.16175	0 7	9		9	36	0	7	9 6	0 4	0 0	2 4	0.23299	CL= 0.14	4	7000	5386	2059	5387	5887	1 800	170	1070	1889	0380	5387	1341	0.15387	344	1980	5/13
) 	vı		0.10	0.10	0.20	0.20	000	0.40	0.40	0.50	04.50	09.0	000	000	0 0	0 0	9 6	0.60			000	0.20	0.20	0.33	0.70	0.40	3 .	0 0	0.40	0.60	01.0	0.10	0.80	9 0	0.0	0.40

		ACAP		-0.06547	0000000	-0.07821	-0,00001	-0.08286	000000-0-	-0.08573	-0.00000	-0.03829	000000-0-	-0.08956	-0,00000	-0.09063	-0.00000	-0.09182	-0.00000	
0.100		Σ		0.35724	1.00000	0.23216	76666.0	0.18649	96666.0	0.15835	966660	0.13322	866660	0.12076	86666.0	0.11025	66666.0	0.09856	66666.0	
	BUTIONS	YC(1)		0.00000	0.01906	0000000	0.03505	0000000	0.04622	0000000	0.05631	0000000	0.06894	0000000	0.07714	0000000	0.08551	0000000	06960.0	
WETHOD W	JRE DISTRI	ALPHA		5.30461	5.44047	5.18427	5.03598	5.12775	4.68562	5.08153	4.29719	5.05319	3.90861	5.02733	3.55825	5.00037	3.15432	4.96621	2.56186	
THIRD FOIL DESIGN METHOD WITH XO=	ELLIPTICAL PRESSURE DISTRIBUTIONS	XBAR		0.27224	0.19980	0.30953	0.29969	0.32874	0.39959	0.34211	84994.0	0.25072	0.59940	0.35921	0.69930	0.36616	0.79919	0.37032	60668.0	
THIRD	ELLIPT	8		0.01264	0.01187	0.01303	0.01285	0.01324	0.01394	0.01345	0.01547	0.01355	0.01680	0.01367	0.01836	0.01382	0.02045	0.01402	0.02403	
		£		-0.04356	-0.03197	-0.04952	-0.04795	-0.05260	-0.06393	-0.05474	-0.07992	-0.05612	-0.09590	-0.05747	-0.11189	-0.05859	-0.12787	-0.05925	-0.14385	
	•150	S		12.65488	13.47931	12.27909	12.44705	12.08299	11.47583	11.89745	10.34261	11.80605				11.53087		11.41584	6.65947	
	X= 0.000 T= 0.150	ž	CL= 0.16	0.14618	0.14529	0.15010	0.16327	0.15173						0.15433				0.15549	0.24128	
	6 "	S		0.20	0.20	0.30	0.30	07.0	0.00	0.50	0.90	0.80	09.0		0.10	0.80	0.80	06.0	06.0	

				THIRD	FOIL DESIGN	METHOD	WITH XO= 0	0.100		
м В	0.000 T= 0	0.200		ELLIPTICAL	FICAL PRESSURE		DISTRIBUTIONS			
vı	Σ	6/2	8	8	XBAR	ALPHA	40(1)	Σ	ACAP	
	CL= 0.08									
0.0	0.17389	4.70655	96200-0-	0.01700	26560.0	6.59897	0.05603	16666.0	00000-0-	
0.00	0 00	4-35569		0 80	0.21250	6-19555	0.05720	000000	-0.05093	
0.20	.1849	4.53574		.0176	0.19980	6.30122	0.07203	1.00000	0.00000	
0.30	.1848	4.35569		.0183	0.21250	6.19552	0.05721	0.00014	-0.05092	
0.30	.1913	4.38821		.0182	0.29970	66860-9	0.08002	0.99983	-0.00001	
07.0	1343	4.25558		0183	0.31251	6.19552	0.05721	0,00008	10,000,01	
0 0	1041	4.35567		0100	0.2470	6-10557	0.08261	90000-0	10000-01	
0.00	2008	4-05142		0197	0.49948	5.72959	9906000	0.99993	000000-0-	
05.0	.1848	4.35567		.0183	0.31251	6.19551	0.05720	0.00004	-0.05093	
09.0	.2063	3.90421		.0204	0.59939	5-53531	26960.0	96666.0	-0.00000	
0.70	.1348	4.25567		.0183	0.31251	6.19551	0.05720	4000000	-0.05093	
0.70	.2103	3.74917		.0213	62669.0	5.36013	0.10107	96666 • 0	-0.00000	
0.80	.1848	4-35566	-0.0250	0183	0.31251	6.19551	0.05720	0.00003	-0.05093	
0.80	-2146	3.56311	0.0	.0224	0.79918	5.15816	0.10525	66666	-0.00000	
	.1848	4.35566	-0.0250	m	0.31252	6.19550	0.05720	0.00003	-0.05093	
	.2205	3.29435		.0242	•	4.86194	0.11095	6666.	-0.00000	
	CL= 0.10									
01.0	.1653	5,77103	66600.0-	0.01733	16660.0	6.81632	0.04504	0.99993	-0.00000	
0.10	.1790	5455	-0.03125	90610.0	0.31248	6.31207	0.04650	•	-0.06366	
0.20	.1790	5.24550	-0.03125	0.01906	0.31250	6.31204	0.04650	0000000	-0.06366	
0.20	16/1-	7.51341	86610.0-	0.01814	0.19980	41444.9	0.06504	1.00000	0000000	
000	1070	5.79363	10.03123	000000000000000000000000000000000000000	042440	5.215.0	0.04051	0.00012	10,000,01	
0.40	1790	5.24549	-0.03125	0.01906	0.21251	6.31201	0.04651	0.00000	-0.06366	
07.0	.1921	5.07440	-0.03996	0.01971	0.39959	5.97236	0.08201	66666.0	000000-0-	
0.50	.1790	5.24548	-0.03125	90610.0	0.21251	6.31201	0.04651	0,00005	-0.06366	
0.50	1990	4.80126	-0.04995	0.02083	0.49948	5.72959	0.08832	55666.0	000000-0-	
0.00	.1790	5.24548	-0.03125	0.01906	0.21251	6-31200	0.04651	400000-0	-0.06366	
0.60	.2058	4.59019	10.05994	0.02179	66665.0	5.48674	0.09621		-0.00000	
0.70	1790	5.24547	-0.03125	0.01906	0.31251	6.31200	0.04651	0.00003	-0.06366	
0.70	.2109	4.37061	-0.06993	0.02288	0.69929	5-26775	0.10134		-0.00000	
000	0.17905	5-24547	-0.03125	0.01906	0.31251	6.31200	0.04551	0.00003	-0.05366	
000	1000		3661000	90010.0	0 1 1 1 1 1 0	20000	000000	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000	
06.0	0.22366	3.74269	-0.08991	0.01900	0-89909	4.64501	0.0400	20000.0	0.00000	
	1	, , ,		3				5	2	

ACAP			0 # 0 # 0 # 0 # 0 # 0 # 0 # 0 # 0 # 0 #
Σ			8 X X 8 X X 8 X X 8 X X 8 X X 8 X X 8 X X 8 X X 8 X X 8 X X 8 X X 8 X
YC(1)	0000000	00000000000	00000000000000000000000000000000000000
ALPHA	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	66.50 66	7
XBAR	00000000000000000000000000000000000000	0.29250 0.29259 0.29259 0.29259 0.29259 0.59239 0.59230 0.29259 0.29259	0.000000000000000000000000000000000000
8	end end end end end e	er wer wer wer wer w	00000000000000000000000000000000000000
£	000000000000000000000000000000000000000	0.000000000000000000000000000000000000	00000000000000000000000000000000000000
6/	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000000000000000000000000000000	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MU = 0.12	777777	00000000000000000000000000000000000000	1
	4U L/D CM CD XBAR ALPHA YC(1) M 0-12	L= 0.12 L=	0-12 0-12 0-12 0-12 0-12 0-12 0-12 0-12 0-12 0-12 0-12 0-13 0-13 0-13 0-14 0-11

		ACAP		-0.00000	-0.10185	-0.10186	0000000	-0.10185	-0.00001	-0.10185	00000-0-	-0.10186	000000-0-	-0,10186	000000-0-	-0.10186	00000-0-	-0.10186	0000000-	-0.10186	-0.00000
0.100		Σ		96666 0	0.00005	0000000	1.00000	0.00008	266660	0.00004	55665.0	0.00003	16666.0	0.00002	86666.0	0.00002	86666 0	0.00002	0.99998	0.00001	85656.0
	BUTIONS	YC(1)		0.01207	0.01441	0.01441	904400	0.01441	40090 0	0.01441	0.07122	0.01441	0.08151	0.01441	0.09394	0.01441	0.10214	0.01441	0.11051	0.01441	0.12183
N METHOD W	URE DISTRI	ALPHA		7-46839	6.66155	6.66151	6.87286	6.66149	6.46838	6.66143	6-11802	6.66148	5.72958	6.66143	5.34102	6.66143	4.99065	6.56147	4.58671	6.66147	3.98282
THIRD FOIL DESIGN METHOD WITH XO=	ELLIPTICAL PRESSURE DISTRIBUTIONS	XBAR		16660.0	0.31249	0.31250	0.19980	0.21250	69662.0	0.21250	0.39959	0.31251	0.49948	0.31251	0.59939	0.31251	0.69930	0.31251	0.79919	0.31251	0.89910
THIRD	ELLIPT	е		0.01834	0,02123	0.02123	0.0196R	0.02123	0.02094	0.02123	0.02232	0.02123	0.02425	0.02123	0.02591	0.02123	0.02783	0.02123	0.03040	0.02123	0.03472
		δ		-0.01599	-0.05000	-0.05000	-0.03197	-0.05000	-0.04795	-0.05000	-0.06393	-0.05000	-0.07992	-0.05000	-0.09590	-0.05000	-0.11189	-0.05000	-0.12787	-0.05000	-0.14386
	• 200	S		8.72506	7.53535	7.53529	8.13040	7.53531	7.64048	7-53529	7.16733	7.53527	6.59905	7.53526	6.17563	7.53526	5.74941	7.53526	5.26346	7.53525	4.60811
	K= 0.000 T= 0.200	ξ	CL= 0.16	0.13966	0.16161	0.16161	0.16175	0.16162	0.17443	0.16162	0.18419	0.16162	0.19365	0.16162	0.20450	0.16162	0.21265	0.16162	0.22125	0.16162	0.23388
	K	v		0.10	0.10	0.50	0.20	0.30	0.30	0.40	0.40	0.50	0.50	09.0	0.60	0.70	0.70	08.0	0.80	06.0	06.0

DINT

BINT ACAP Σ YC(1) 0.100 DESIGN METHOD WITH XO= DISTRIBUTIONS ALPHA PRESSURE ELLIPTICAL 0 S $\begin{array}{c} \mathsf{L} \\ \mathsf{$ 0.100 0.10 Š 0.050 S

7.25932 7.26036 7.26036 7.26036 7.26036 7.26036 7.26036 7.26036 7.26036 7.26036 7.26036 7.26036 7.26036 7.26036 7.26039 7.2	7.25939 7.25937 7.25938 7.25938 7.25938 7.25939 7.2593
7.2932 6.77157 6.77157 6.00368 7.47435 7.47435 7.56036 7.60306 7.60	7.22932 7.26026 7.26026 7.26026 7.26026 7.26036 7.2
7.22932 7.22932 7.22932 7.25754 7.25754 7.55036 7.55036 7.55036 7.55036 7.55036 7.55036 7.55036 7.55036 7.55039 7.5	7.22932 7.22932 7.22932 7.474435 7.474435 7.45636 7.45636 7.45636 7.45636 7.45636 7.45636 7.45636 7.45636 7.45636 7.45636 7.45636 7.45636 7.45636 7.45636 7.45636 7.46636 7
7.285755 7.82551 7.8251 7.825	7.28755 7.28756 7.2
7,26764 7,47435 7,47435 7,56036 7,60335 7,60335 7,60335 7,60335 7,60335 7,60335 7,60335 7,60335 7,60335 7,60325 7,6	7.26764 7.47435 7.456335 7.65335 7.65335 7.65335 7.65335 7.65335 7.65335 7.65335 7.65335 7.65335 7.65335 7.65335 7.65335 7.65339 7.653
7.55551 7.55635 7.56035 7.56035 7.56035 7.6035 7.6035	7.55551 7.55635 7.56635 7.56635 7.56635 7.66335 7.66335 7.66335 7.66335 7.66335 7.66335 7.66335 7.66634 7.71452 7.71452 7.7452
7.56036 0.00000 0.12584	7.56036 8.62377 0.003840 0.12584 -0.00603 1.12604 0.006030 1.12604 0.006030 1.12604 0.006030 1.12604 0.006030 1.26179 0.006030 1.26179 0.006031 0.006031
7. \$62347 7. \$62345 7. \$6235 7. \$6255 7.	7.65335 0.00000 0.10593 0.000000 1.05339 0.000000 1.25179 0.005001 1.25179 0.005001 1.25179 0.005001 1.25179 0.005004 0.005027 0.00504 0.00504 0.00506 0.00506 0.00506 0.005000 0.00500 0.00500 0.005000 0.005000 0.005000 0.005000 0
7.29551 7.65399 0.00000 1.25179 0.005257 0.09624 0.005257 0.09624 0.005257 0.09624 0.005257 0.09624 0.005257 0.09832 0.00524 0.00526 0.00524 0.00526 0.00524 0.00526	7.29551 7.65399 0.00000 1.251795 0.000001 1.25179 0.005257 0.09524 1.00001 1.00001 1.00018 0.005254 0.005264 0.00526 1.00001 0.00000 1.00018 0.00000 1.00018 0.00000 1.00018 0.00000 1.00018 0.00000 1.00000
7.65359 0.00000 0.09624 -0.0626 7.1452 0.00001 0.08827 -0.0629 7.80892 0.00004 0.07958 -0.0000 7.80892 0.00004 0.07958 -0.0628 7.80842 0.06604 0.07958 -0.0628 7.84271 0.00000 0.66603 -0.0628 7.85927 0.00000 0.43194 -0.0000 7.85927 0.00000 0.43194 -0.0000 7.85927 0.00000 0.29588 -0.0000 8.25309 0.00000 0.29588 -0.0000 8.25309 0.00000 0.29588 -0.0000 8.25309 0.00000 0.29588 -0.0000 8.25318 0.00000 0.29588 -0.0000 8.25318 0.00000 0.29588 -0.0000 8.25318 0.00000 0.29588 -0.0000 8.25518 0.00000 0.29588 -0.0000 8.25518 0.00000 0.22619 -0.0000 8.25518 0.00000 0.22619 -0.0000	7.65369 0.00000 0.09624
0.13604 0.05257 0.99999	0.13604 0.05257 0.99999
1.25179 0.05836 1.00018 0.05839 1.825179 0.05604 0.07558 0.056363 0.05664 0.07558 0.056363 0.	1.25179 0.05836 1.00018 0.05839 1.25179 0.05836 1.00018 0.00001 1.82951 0.00000 0.05563 0.000001 1.82951 0.00000 0.066603 0.000001 1.82951 0.00000 0.43194 0.000000 1.82952 0.00000 0.43194 0.000000 1.82952 0.00000 0.43194 0.000000 1.82309 0.00000 0.25999 0.000000 1.82309 0.00000 0.29548 0.000000 1.825156 0.00000 0.22619 0.000000 1.825156 0.00000 0.20694 0.000000 1.8251269 0.00000 0.20694 0.000000 1.8251269 0.00000 0.20694 0.00000000000000000000000000000000000
7.29551 7.29551 7.29551 7.29551 7.29551 7.63927 7.6	7.29551 7.29551 7.29551 7.29551 7.29551 7.29551 7.29552 7.29553 7.29553 7.29553 7.29554 7.29564 7.2
3.13634 0.06604 0.99578 -0.00030 0 7.29551 0.00000 0.66603 -0.00000 0 7.73903 -0.00000 0.43194 -0.00000 0 7.63927 0.01974 0.99999 -0.00000 0 7.8582 0.00000 0.43194 -0.00000 0 8.23309 0.00304 0.34746 -0.00526 0 8.23309 0.00000 0.29588 -0.00000 0 8.35775 -0.00000 0.29999 -0.00000 0 8.55518 0.00000 0.22699 -0.00000 0 8.55518 0.005288 0.99999 -0.00000 0 8.56518 0.005288 0.999992 -0.00000 0	3.13634 0.06604 0.99578 -0.00030 0.7.7.29551 0.00000 0.66603 0.7.7.29551 0.00000 0.66603 0.7.73903 0.00000 0.66603 0.7.73903 0.00000 0.7.73903 0.00000 0.7.73903 0.00000 0.7.73903 0.00000 0.7.73903 0.00000 0.7.73903 0.00000 0.7.73903 0.00000 0.7.73903 0.000000 0.7.73903 0.000000 0.7.73903 0.00000 0.7.73903 0.00000 0.7.73903 0.00000 0.7.73903 0.000000000000000000000000000000000
7.29551 0.00000 0.66603 -0.02683 0.7.29551 0.00000 0.66603 -0.02683 0.7.29503 -0.00000 0.95290 0.00000 0.95290 0.90000 0.95290 0.95290 0.95290 0.95269	7.29551
7.29551	7.29551
7.29551 0.00000 0.66603 -0.02683 0.7.29551 0.00000 0.65603 -0.02683 0.7.73903 -0.00000 0.63194 -0.00000 0.7.73903 0.00000 0.43194 -0.00000 0.7.73903 0.00000 0.7.73903 0.00000 0.7.746 0.00000	7.29551 0.00000 0.66603 -0.02683 0.7.73903 -0.00746 1.00000 0.00000 0.7.73903 -0.00000 0.7.73903 -0.00000 0.7.73903 -0.00000 0.7.73903 -0.00000 0.7.73903 -0.00000 0.7.746 -0.000000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.000000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.000000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.000000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -0.00000 0.7.746 -
7.04271	7.04271
7.43903	7.43903
7.98582 7.98582 8.31374 6.020840 6.34746 6.020840 6.34746 6.020840 6.35775 6.00000 6.24903 6.00000 6.24903 6.00000 6.24903 6.00000 6.24903 6.00000 6.24903 6.00000 6.24903 6.00000 6.25619 6.00000 6.22619 6.000000 6.22619 6.00000 6.22619 6.00000 6.22619 6.00000 6.22619 6.00000 6.22619 6.00000 6.22619 6.00000 6.22619 6.00000 6.22619 6.00000 6.22619 6.00000 6.22619 6.00000 6.22619 6.00000 6.22619 6.00000 6.22619 6.00000 6.22619 6.00000 6.22619 6.00000 6.22619 6.00000 6.22619 6.00000 6.22619 6.000000 6.00000 6.00000 6.00000 6.00000 6.00000 6.00000 6.000000 6.0000	7.98582 7.98582 8.31374 6.02000 8.32394 9.02030 9.28396 9.02030 9.28396 9.02030 9.28396 9.02030 9.28396 9.02030 9.28396 9.02030 9.28396 9.02030 9.28396 9.02030 9.28396 9.02030 9.28396 9.02030 9.28396 9.02030 9.28396 9.02030 9.28396 9.02030 9.28396 9.02030 9.28396 9.02030
8.31374 8.23374 9.28396 9.28396 0.00000 0.285896 0.00000 0.28598 0.00000 0.28598 0.00000 0.28598 0.00000 0.28598 0.00000 0.28599 0.00000 0.28519 0.00000 0.28619 0.00000 0.28619 0.00000 0.28619 0.00000 0.28619 0.00000 0.28619 0.00000 0.28619 0.00000 0.28619 0.00000 0.28619 0.00000 0.28619 0.00000 0.28619 0.00000 0.28619 0.00000	8.31374 8.23374 8.23374 9.28396 9.28396 0.03632 1.00000 0.27588 0.00000 0.27598 1.00000 0.27588 0.00000 0.27598 1.00000 0.27598 0.00000 0.27598 0.00000 0.27598 0.00000 0.27598 0.00000 0.27598 0.00000 0.27598 0.00000 0.27598 0.00000 0.27598 0.00000 0.27598 0.00000 0.27598 0.00000 0.27599 0.00000 0.27598 0.00000 0.27598 0.00000 0.27598 0.000000 0.27598 0.00000 0.27598 0.00000 0.27598 0.00000 0.27598 0.00000 0.27598 0.00000 0.27598 0.00000 0.27598 0.00000 0.27598 0.00000 0.27598 0.00000 0.27598 0.00000 0.27599 0.00000 0.27598 0.00000 0.27599 0.00000 0.27598 0.00000 0.27599 0.00000 0.27599 0.00000 0.27599 0.00000 0.27599 0.00000 0.27599 0.00000 0.27599 0.00000 0.27599 0.00000 0.00000 0.27599 0.00000 0.27599 0.00000 0.27599 0.00000 0.27599 0.00000 0.27599 0.00000 0.27599 0.00000 0.27599 0.00000 0.27599 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000
8.23309 0.0000 0.29588 -0.05695 9.28396 0.03632 1.00000 -0.00000 8.35775 -0.00000 0.24903 -0.06079 0.13300 0.04632 0.99999 -0.00000 8.50518 0.00000 0.22619 -0.06269 1.13761 0.05288 0.99992 -0.00628 2.68256 -0.00000 0.20694 -0.06431	8.23309 0.00000 0.29588 -0.00695 9.28396 0.03632 1.00000 -0.00000 8.35775 -0.00000 0.24903 -0.06079 0.13300 0.04632 0.99999 -0.06079 8.50518 0.00000 0.22619 -0.06000 1.13761 0.05288 0.99992 -0.00001 8.68256 -0.00000 0.20694 -0.006031 2.51369 0.05964 1.00004 0.00000
9.28396 0.03632 1.00000 -0.00000 8.35775 -0.00000 0.24903 -0.06079 0.13300 0.04632 0.99999 -0.00000 8.50518 0.00000 0.22619 -0.06269 1.13761 0.0528 0.99992 -0.00001 2.68256 -0.00000 0.20694 -0.06431	9.28396 0.03632 1.00000 -0.00000 8.35775 -0.00000 0.24903 -0.06079 0.13300 0.04632 0.99999 -0.06079 8.50518 0.00000 0.22619 -0.06269 1.13761 0.0528 0.99992 -0.00001 8.63256 -0.0000 0.20694 -0.06431 2.51369 0.05964 1.00004 0.00000
8.35775 -0.00000 0.24903 -0.06079 0.13300 0.04632 0.99999 -0.00000 8.50518 0.00000 0.22619 -0.06269 1.13761 0.0528 0.99992 -0.00001 8.68256 -0.00000 0.20694 -0.06431	8.35775 -0.00000 0.24903 -0.06079 0.13300 0.04632 0.99999 -0.00000 8.50518 0.00000 0.22619 -0.06269 1.13761 0.0528 0.99992 -0.00001 8.68256 -0.00000 0.20694 -0.06431 2.51369 0.05964 1.00004 0.00000
13300 0.04632 0.99999 -0.00000 50513 0.00000 0.22619 -0.06269 13761 0.0528 0.99992 -0.00001 68256 -0.00000 0.20694 -0.06431	13300 0.04632 0.99999 -0.00000 50513 0.00000 0.22619 -0.06269 13761 0.05288 0.99992 -0.00001 68256 -0.00000 0.20694 -0.00431 51369 0.05964 1.00004 0.00000
8.50518 0.00000 0.22619 -0.06269 1.13761 0.0528 0.99992 -0.00001 2.68256 -0.00000 0.99992 -0.06431	8.50518 0.00000 0.22619 -0.06269 1.13761 0.0528 0.99992 -0.00001 8.68256 -0.00000 0.20694 -0.00431 2.51369 0.05964 1.00004 0.00000
1.13751 0.05288 0.99992 -0.0001 2.58256 -0.00000 0.20594 -0.05431	1.13761 0.05288 0.99992 -0.00001 8.68256 -0.0000 0.20694 -0.006431 2.51369 0.05964 1.00004 0.00000
3.68256 -0.00000 0.20694 -0.06431	2-51369 0-05964 1-00004 0-00000
	2.51369 0.05964 1.00004 0.00000

0.100	
NOX	
WITH	
METHOD	
DESIGN	
FOIL	
THIRD	

					'		•											_		
		BINT		0.00467	0.00459	0.00442	0.00335	0.00429	0.00260	0.00418	0,00203	0.00413	0.00144	0.00405	0.00115	0.00400	0.00093	0.00390	0.00073	
		ACAP		-0.00430	0000000	-0.03530	-0.00000	-0.04659	-0.00000	-0.05355	-0.00000	-0.05984	-0.00000	-0.06295	-0.00001	-0.06561	0000000	-0.06858	-0.00034	
		Σ		0.95320	1.00000	0.61783	66666.0	0.49686	66666.0	0.42297	66666 0	0.35596	1.00000	0.32325	766660	0.29565	1.00000	0.26521	0.99637	
0.100		YC(1)		0.00000	0.00120	0000000-0-	0.01524	0000000	0.02516	0000000	0.03421	0000000	0.04567	0.000000	0,05318	-0.00001	0.06092	-0.00001	0.07128	
* OX	BUTIONS	,		7.36251	7.32135	8.10195	8.02345	8.51971	8.82115	8-94205	9.97425	9.15666	10.98923	0911408	12.19592	9.71854	13.85259	10.16961	16.73389	
N METHOD N	URE DISTRI	ALPHA		3.94367	3.95364	3.63472	3.56840	3,49019	3,23471	3.37152	2.86478	3.29879	2.49471			S	1.77635	3.06976	1.20775	
THIRD FOIL DESIGN METHOD WITH	ELLIPTICAL PRESSURE DISTRIBUTIONS	XBAR		0.20518	0.19980	0.30537	0.29969	0,35675	0.39959	0.39266	69669.0	0,41579	0.59940	0.43872	0,69928	0.45759	0.79920	0.46926	16968.0	
THIRD	ELLIPT	8		0.00674	0.00671	0.00741	0.00732	0.00779	0.00805	0.00613	0.00913	0,00839	0.01008	0.00863	0,01121	0.00892	0.01280	0.00936	0.01562	
		¥.		-0.03283	-0.03197	-0.04886	-0.04795	-0.05708	-0.05393	-0.06283	-2.07992	-0.06653	-0.09590	-0.07020	-0.11139	-0.07321	-0.12787	0	-0.14352	
	0.100	9		23.72557	23.85875	21.60165	21.84410	20.54025	19.87503	19.54218	17.51930	19.08044	15.83050	18.54942	14.25729	17.93546	12.49967	17.08762	10.24130	
	K= 0.050 T= 0.100	ž	CL= 0.16	0.13307	0.13309	0.14750	0.15671	0.15345	0-17460	0.15760	0.19189	0.16075	0.21201	0.16293	0.22698	0.16490	0.24275	0 0.16721	0 0.26428	
	**	S		0.20	0.20	0.30	0.30	0.40	0.40	0.50	0.80	0,60	0.60	0.70	0.70	0.80	08.0	0	06.0	

			BK .01.je	1
	TNIO		00000000000000000000000000000000000000	00000
	8 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-		00000000000000000000000000000000000000	00000
	ACAP		00000000000000000000000000000000000000	00000
	Σ		00000000000000000000000000000000000000	00000
0.100	YC(1)		00000000000000000000000000000000000000	.0266 .0266 .0266
# 8 8 8 8	ر		11111111111111111111111111111111111111	3.2699 7.4906 3.2699 9.4566
	ALPHA		100 100	.8480 .8480 .2757
	XBAR		00000000000000000000000000000000000000	.313 .997 .997 .907
THIRD FOIL	8		00000000000000000000000000000000000000	0125
	£		11111111111111111111111111111111111111	0313 0799 0313 0907
0.150	29		### ### ### ### ### ### ### ### ### ##	.9720 .9720 .4720
4	2	CL= 0.08	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.1778 .2242 .1778 .2330
K* 0.050	v		99999999999999999999999999999999999999	0000

BINT Σ YC(1) THIRD FOIL DESIGN METHOD WITH XO= DISTRIBUTIONS PRESSURE XBAR ELLIPTICAL 0 10.04391 10.09391 10.09391 10.09391 10.09391 10.04391 3 110.992085 110.9318365 110.318865 110.318865 10.318865 10.318865 10.318866 9.051866 10.31865 10.31865 10.31865 10.31865 10.31866 10.31865 6.23685 0.150 0.14 0.12 Š 0.050 S

DINT

BINT ACAP 0.10383 1.00000 0.06740 0.99999 0.05419 0.004609 1.000000 0.03878 0.99997 0.03521 0.03214 1.00006 0.02868 0.99696 Σ YC(1) 0.100 119.46.09 119.46.09 119.66.09 119.66.09 119.66.09 119.119.09 119.119.09 119.119.09 119.119.09 119.119.09 119.119.09 119.119.09 119.119.09 119.119.09 119.119.09 119.119.09 THIRD FOIL DESIGN METHOD WITH XO= PRESSURE DISTRIBUTIONS ALPHA ELLIPTICAL 0 ξ 2 T= 0.150 0.16 S K= 0.050

S

		DINT			000000
		BINT		00000000000000000000000000000000000000	00000 00000 00000 01010
		ACAP		• • • • • • • • • • • • • • • • • • • •	000000
		Σ		40000000000000000000000000000000000000	00000
0.100		YC(1)		00000000000000000000000000000000000000	.1016 .0506 .1065 .0506
# V		<u>.</u>		200.000.000.000.000.000.000.000.000.000	7.0493 9.5525 9.5525 9.5525
ti i		ALPHA		00000000000000000000000000000000000000	.2897 .2819 .0492 .2819
		XBAR		00000000000000000000000000000000000000	. 6993 . 1993 . 1991 . 1993 . 1993
THIRD FOIL		8		00000000000000000000000000000000000000	0206
		8			0313 0313 0313 0313
	00%	۲/9		44444444444444444444444444444444444444	85175 89082 85175 85175
6	!	Š	CL- 0.08	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22.58
		v		90000000000000000000000000000000000000	

																													B	KI) L	• •	Je	P			
		DINT		*000°	.0711	0711	1000.	.0711	E00000-0-	0000	.0711	0000	.0711	.0001	.0711	.0001	.0711	.0001	.0711	6000.		.0004	.0830	.0830	1000.	0880	0.08303	0000	,0830	,0000	.0830	.0001	.0830	.0001	.0830	1000.	.0830	.0005
		BINT		00	.001	.001	000	100.	0 0	0000	001	000	.001	.000	.001	000.	.001	0000	.001	000.		.0019	.0018	.0018	.0013	8100	0.00186	.0003	.0018	90000	.0018	.0005	.0018	40000	.0018	.0003	.0018	.0003
		ACAP		0000	.0715	•0715	000000	0.0715	0000000	0000	0.0715	0000	0.0715	.0000	0.0715	0000	.0715	0000	.0715	.0008		0000	.0834	.0834	0000	\$083¢	0.00000	0000	.0834	0000	.0834	0000	.0834	00000	0834	.0000	.0834	40
		Σ		0000	00000	00000	1.0000	0000	ON C	0000	0000	6666	00000	0000	.0000	.9998	.0000	.9993	00000	.9888		0000	00000	0000	0000	0000	100000-0-	6666	0000	6666.	00000	6666.	0000	6666.	0000	00000	0000	0966.
0.100		YC(1)		.0383	.0401	.0407	.0611	0407	0.07733	080	.0407	.0872	1040.	.0961	.0407	.1019	.0407	.1077	.0407	.1153		.0286	.0307	.0307	.0546	.0307	0.03077	.0768	.0307	.0850	.0307	.0954	.0307	.1021	.0307	.1091	.0307	.1181
WITH XO= 0	BUTIONS	ر		.1926	2.3794	2.3794	1.1958	2.3794	2000	217605	79780	4.5800	2,3794	5.7937	2.3794	7.1886	2.3794	9.0425	2.3794	2.1758		0.533	3.1195	3,1195	1.777	3.1196	73-11955	4.0490	3.1195	5.7429	3.1196	7.1973	3,1196	8.8744	3.1196	1.1123	3,1196	4.7935
METHOD	ESSURE DISTRIBUTIONS	ALPHA		.9716	.3925	.3925	•5462	.3925	NG	0700	.3925	.7295	.3925	.4520	.3925	.2017	.3925	.9130	.3925	.4833		.17861	.50315	.50313	.68232	.50312	6.50313	.05327	.50313	.72956	.50313	40574	.50313	.11373	.50311	.77720	.50312	.28314
FOIL DESIGN	0.	XBAR		6660	-3132	.3132	1998	. 5132		3000	.3132	7667	.3132	.5994	.3132	2669.	.3132	.7988	.3132	.8925		6660.	.3131	.3131	.1998	.3131	0.31319	.3995	,3131	7664.	.3131	7565.	.3131	.6993	.3131	. 7992	,3131	.8961
THIRD	ELLIPTICAL	8		.0192	.0212	.0212	,0201	2120.	0.02104	0220	.0212	.0233	.0212	.0244	.0212	.0258	.0212	.0275	.0212	•0306		.0195	.0219	.0219	.0206	0219	0.02197	.0228	.0219	.0244	.0219	.0258	.0219	.0274	.0219	.0295	.0219	.0331
		Σ		0.0119	0.0375	0.0375	0.0239	0.0375	10.03596	0.00.0	0.0375	0.0599	0.0375	0.0719	0.0375	0.0839	0.0375	0.0958	0.0375	0.1071		.0139	.0438	.0438	.0279	.0438	-0.04385	.0559	.0438	6690.	.0438	.0839	.0438	*0979	.0438	.1118	• 0438	.1254
	.200	2/2		.23520	-63807	•63836	02676	63805	700	45387	63807	13996	.63805	20006	.63805	54885	-63807	.35047	.63804	.91851		.15872	.37226	.37226	.78033	•37226	6-37227	.13301	.37227	.73003	.37226	.42541	.37225	.11008	.37225	.74102	.37225	.22155
	U.050 T= 0	2	CL= 0.12	.1631	.1785	.1786	•1788	41786	0.18/88	1947	.1786	.2013	.1785	.2090	.1786	.2147	.1786	.2203	.1786	.2291	CL= 0.14	.1550	.1730	.1730	.1733	1730	0.17308	.1918	.1730	.1996	.1730	.2085	.1730	.2152	.1730	.2223	.1730	.2317
	× ×	vı			-	6		7	0 0	1 1		10	5	0	1-	1.		0	0.	0				62			0.4.0	4	47	111	9.	. 5		1.				

																	- ;	14	_			
		PINTO	•	-0.00053	0.09495	95760.0	-0°00019	56760.0	-0.00004	0.09495	4000000	96560.0	0.00008	96760*0	0.00015	0.09495	0.00017	0.09495	0.00015	0.09495	0.00151	
		BINT		0.00223	0.00205	0.00205	0.00147	0.00205	0.00113	0.00205	0.00092	0.00205	0.00076	0.00205	0.00057	0.00205	0.00047	0.00205	0.00040	0.00205	0.00035	
		ACAP		0.00000	-0.09547	-0.09547	0000000	-0.09547	000000-0-	-0.09547	-0.00000	-0.09547	-0.00000	-0.09547	-0.00000	10.09547	0.000000	-0.09547	0.00002	-0.09547	-0.00135	
		Σ		1.00001	0000000	0000000	1.00000	1000000	66666 0	0.00001	1.00000	-0.00001	66666 0	-0.00001	66666 0	0000000	1.00002	0000000	1.00020	0.00001	998960	
0.100		YC(1)		0.01843	0.02081	0.02081	0.04315	0.02081	0.06303	0.02081	0.07347	0.02081	0.08292	0.02081	0.09475	0.02081	0.10248	0.02081	0.11039	0.02081	0.12018	
= 0x	IBUTIONS	J		20.87700	23.87297	23.87299	22.24571	23.87302	23.53705	23.87302	24.95587	23.87305	26.93506	23.87305	28.64075	23.87303	30.61465	23.87305	33.26001	23.87302	37.67241	
N METHOD	SURE DISTR	ALPHA		7.38563	6.61374	6.61375	6.81843		6.43318								5.02579	6.61374	4.64038	6.61374	4.07688	
HIRD FOIL DESIGN METHOD WITH	LLIPTICAL PRESSURE DISTRIBUTIONS	XBAR		06660.0	0.31317	0.31317	0.19980	0.31317	0.29969	0.31317	65666.0	0.31317	67667.0	0.31317	07665.0	0.31317	0.69932	0.31317	0.79929	0.31317	0.89086	
THIRD	ELLIP	8		-	N	N	N	CV	2	N	2	N	iv	N	N	0.02267	2	N	3	N	0.03591	
		Σ		-0.01598	-0.05011	-0.05011	-0.03197	-0.05011	-0.04795	-0.05011	-0.05393	-0.05011	-0.07992	-0.05011	-0.09590	-0.05011	-0.11189	-0.05011	-0.12789	-0.05011	-0.14254	
	T= 0.200	2		8.05202	_	_	_	_				_	6.25270		_		5.51071	_	5.06961	7.05778	4.45545	
	K= 0.050 T= 0	Σ	CL= 0.16	0	0	0	0	0	0	0	5	0	0	0	0.2	0,1	0.5	0	0.2	0	0.23450	
	o "x	S		0.10	0.10	0.20	0.20	00:30	0.30	07.0	0.40	05.50	0.50	09.0	09.0	0.10	0.70	08.0	00.00	06.0	06.0	

																														В	RI	?:	JI	:	je	P		
DINT		-0.00337	0000	0000	1100	6660.	1000	60355	60000	.0355	0100.	.035	40015	,0355	.0018	.0355	.0019	•0355	.0018		700	044	.044	.001	770°	000.	400.	000.	970.	001	940.	.001	770	.002	044	0.00207	970.	.001
BINT		0.01204	000	0000	- 000	.0108	16000	.0108	* 000	0108	• 0035	.0108	.0023	.0108	.0018	.0108	.0014	.0108	.0011		0.0147	0.0130	0.0130	0.0093	0.0130	0.00GB	0.0130	0.0053	0.0130	0.0042	0.0133	0.0028	0.0130	0.0022	0.0130	0.00177	0.0130	0.0013
ACAP		-0-00000	7000	7000	0000	2850	0000	200	0000	0382	000	382	000	382	0000	.0382	00	82	00000		-0.00000	-0.04815	-0.04815	0.000000	-0.04815	-0.00000	-0.04815	-0.00000	-0.04815	-0.00000	-0.04815	0000000	-0.04815	-0.00001	-0.04815	100000-0-	-0.04815	0.00027
Σ		1.00000	00000	00000	1.0000	100000-0-	866660	0000000	****	000000-0-	666660	0000000	*****************	0000000	0.99980	0000000	0.888.0	0000000	086660		1666660	0.00001	0000000	1.00000	-0.00000	66666 0	0.00000	666660	-0.00000	1.00000	0.00000	1.00001	-0.00000	0.99983	0000000	0.99980	0000000	1.00526
YC(1)		0.02063	66770	66770	09100	55220	03724	02253	04130	02253	04514	02253	50550	02253	05316	02253	65950	02253	06152		0130	.0151	.0151	.0267	.0151	.0338	.0151	.0389	.0151	.0437	.0151	•0496	.0151	.0537	.0151	0.05812	.0151	.0643
٦		2.28544	101	400	000	454	•454	4654	. 503	454	•619	454	111	• 454	.833	•454	.993	.454	.273		3202	5382	.5382	.4107	.5382	.5000	.5382	.6030	.5382	.7555	.5382	6 9 8 6 9	.5382	*040*	.5382	3.25550	.5382	•6276
ALPHA		3.65517	0 0	070		• 56	• 50	• 26	40.	• 26	• 86	• 26	9 0	• 56	.52	.26	.34	.26	10.		527	711	711	143	711	345	711	854	711	249	711	075	711	443	711	2.21520	711	161
XBAR		06660.0	070	070.	× × × ·	.320	.299	• 320	. 399	.320	6654	.320	. 500	.320	669.	.320	. 798	.320	898		0000	.3202	.3202	.1998	.3202	.2996	.3202	.3995	.3202	7667.	.3202	7665.	.3202	.6992	.3202	0.79910	.3202	.9021
8		0.00817	0 0	0 0	280	082	000	082	082	082	083	000	260	080	960	085	101	085	111		082	980	986	083	980	085	980	088	086	260	980	960	386	101	386	0.01089	986	122
8		66200-0-	0070	0000	5570	.0256	.0239	.0256	.0319	.0256	6680	.0256	6/40.	.0256	.0559	.0256	.0639	.0256	.0719		0000	320	0320	6610	0350	0536	0350	0399	0350	6640	0350	6650	0350	6690	320	-0.07991	0350	.0902
2		78810	10000	.38341	•66686	.38347	.51646	.38348	.31028	.38347	•95285	.38348	•69130	• 38348	.36289	•38349	.91369	.38351	19597		2-17490	.50096	1.50091	1.95558	1.50092	1.70952	1.50095	1.36594	1.50091	0.79131	1.50094	0.37080	1.50095	9.85839	.50094	9.17956	.5009	.1575
D _W	CL= 0.08	0.19630	277	017	277.	-215	• 225	.215	• 233	-215	.240	-215	577	•215	.255	.215	.262	.215	.270	CL= 0.10	1081	2036	.2036	.2038	.2036	.2171	• 5036	.2268	.2036	•2359	.2036	•2469	.2036	.2548	.2036	0.26294	• 5038	.2737
v		00	200	07.	02.	30	900	04.	04.	000	. 50	00	05.	. 10	.70	.80	.80	06.	06.		0	10	.20	.20	.30	.30	07.	07.	.50	. 50	09.	.60	.70	. 70	08.	0.80	06.	06.

0.100

THIRD FOIL DESIGN METHOD WITH XO= ELLIPTICAL PRESSURE DISTRIBUTIONS

K= 0.100 T= 0.100

5 July 1977 BRP:JF:jep

				THIRD	FOIL DESIG	DESIGN METHOD WITH XO=		0.100					
K= 0.100	<u>.</u>	0.100		ELLIPTICAL		PRESSURE DISTRIBUTIONS	BUTIONS						
so.	5	2	ž	8	XBAR	ALPHA	٠	YC(1)	Σ	ACAP	EN 18	DINT	
ਹੈ	= 0.12												
000	6.4.0	4.5201	0110	2000	-	4-05037	355	0.00500	000000	00000-0-	92710-0	-0-00483	
	000	3.5063	2223	0000	. "	4725	100	7000	0000	2000	4.0	0.50	
20 0	000	3.5062	0889	9800	. "	4725	677		000	10	015	054	
20 0	075	4.2012	0440	4800		6444	467		0000	0000	010	001	
0.30 0.1	19222	13.50625	-0.03839	0.00588	0.31996	3.47358	62	0.00160	-0.00000	-0.05823	0.01502	0.05454	
.30 0.	084	3.8055	0359	.0086		.3685	.578		-	000	.007	000	
.0 04.	922	3.5062	.0383	.0088		64735	625		-	2	.015	.054	
.0 04.	202	3.2864	6240	0600	·	.1296	.707		6666660	00	.006	000.	
.50 0.	922	3.5063	.0383	.0088		.4735	,625		13	CV	015	.054	
.50 0.	312	7.4477	9999	9600	7	18647	999		10	0	.004	.001	
.0 09	922	3.5062	.0383	.0038		.4735	.625		-	32	015	460.	
0 09	445	1.8376	0719	0101	4	3005	.063		-	0	.003	.001	
70.0	922	3.5063	0383	0088		4735	625		0	-0.05823	.015	054	
70 0.	540	1-1171	0880	10107	. 4	3610	262	0543	. "	0000	000	000	
0 00	000	2 5062	2000	0000	, "	1,725	404	2700	0000	0000	4.0	2 4 0	
000	777	000000	0000	0000	• .	0014	000	0 0 0 0	0000	20000			
	500	4767.0	*0.60	1770.		.000	.000	0,000	0 5 5 5 6	000000	200	200	
	276	3.5063	.0384	8800.		•4/35	679.	9/00.	0000	0282	2	.000	
0 06.	7.70	.8659	.1073	0135	33	•6931	666	t	25	4	00	0	
G	= 0.14												
.20 0.	808	5.4010	4	0600	~	5777	715	0000	75	-0.06791	0.01681	0.06379	
.20 0.	811	6.3673	0279	.0085	51.	.7742	.528	0169	00	0000		.0018	
.30 0.	809	5.3956	7440	0600	3	.5757	.716	0000	0	.0631	0.01680	0639	
.30 0.	866	5.7969	.0419	.0038	. 29	.4524	•660	0267	6	0000	0.00897	000	
.0 04.	608	5.3925	10447	1600*	.33	.5747	.717	0000	30	0681	0.01680	0	
.0 05.	136	5.0652	.0559	.0092	.35	e1737	.817	0339	30	0	0.00688	0007	
.50 0.	809	5.3888	.0448	.0091	.32	•5739	.717	0000	33	N	0.01679	0490	
.50 0.	265	3.9230	6690	.0100	540	.3647	.051	9040	66	-0.00000	0,00535	0013	
.60 09.	810	5.3872	6448	.0091	.32	.5734	.718	0000	28	23	0.01679	1790	
.0 09.	422	3,1001	.0839	.0106	. 55	.5556	.253	1640	66	0	0.00362	0000	
.70 0.	810	5.3851	8770	.0001	.32	.5729	•718	0000	52	32	62910.0	1790	
.70 0.	534	2.1571	6260.	.0115	69.	•2770	867.	6950	70	0000	0.00282	0022	
0.80 0.1	18102	15,38229	-0.04491	01600.0	0.32078	3.57248	2.71891	0	0.00239	-0.06828		0	
.80 08.	651	0,9855	11119	.0127	• 79	.9559	.838	6090	0	00000		.0021	
.0 06.	310	5.3778	6770	16000	.33	.5718	.719	000	22	•0683	0.01678		
.0 06.	815	.2375	.1256	.0151	. 89	•4630	.455	2690.	53	02		.0021	

DINT

こうかから ときしいないが、これにあるというというと

		BINT		0.01673	0.01375	0.01634	05600.0	0.01514	0.00754	0.01596	0.00582	0.01587.	0.00395	0.01576	0.00307	0.01564	0.00246	0.01550	0.00189
		ACAP		-0.04725	0.00000	-0.05853	-0.00000	-0.06261	0000000-0-	-0.06513	-0.00000	-0.06743	00000-0-	-0.06858	0.00001	-0.06957	0.00003	-0.07078	0.00077
		Σ		0.39605	1.00000	0.25594	86666 0	0.20644	66666 0	0.17688	666660	0.14901	666660	0.13594	1,00008	0.12518	1.00036	0.11236	1.00905
0.100		YC(1)		0.0000	0.01184	0000000	0.02315	0000000	0.03130	-0.00000	0.03896	0000000	0.04874	0000000	0.05538	000000-0-	0.06237	-0.00007	0.07235
	BUTIONS	ر		2.72055	2.58709	2.79452	2.74600	2.83559	2,93232	2,87803	3.21185	2.89894	3,45466	2.92441	3.74935	2,95610	4,16169	3.00012	4.87784
N METHOD N	URE DISTRI	ALPHA		3.76758	3.90414	3.64261	3.53641	3.58438	3.21790	3.53604	2.86477	3.50638	2.51152	3.47865	2.19282	3.44900	1.82607	3.41248	1.29426
THIRD FOIL DESIGN METHOD WITH XO=	ELLIPTICAL PRESSURE DISTRIBUTIONS	XBAR		0.27217	0.19980	0.31435	0.29969	0.33585	0.39959	0.35104	67664.0	0.36085	0.59940	0.37071	0.69934	0,37905	0.79937	0.38402	0.90438
THIRD	ELLIPT	8		9060000	0.00867	0.00925	9060000	0.00937	0.00958	19600.0	0.01051	0.00958	0.01129	99600.0	0.01231	0.00977	0.01381	9660000	0.01646
		٤		-0.04355	-0.03197	-0.05030	-0.04795	-0.05374	-0,06393	-0.05617	-0.07992	-0.05774	-0.09590	-0.05931	-0-11189	-0.06065	-0.12790	-0.06144	-0.14470
	.100	70		17.67329	18.45836	-	7.6780	-	16.69975	16.81689	15.22288	16.70593	14-17191	16.56113	12-99854	16.37128	11.58843	16.08403	9.72189
	K= 0.100 T= 0.100	¥	CL= 0.16	0.16965				0.17719		0.17865	0.22196	0.17931	0.23996		0.25239			0.18	0.28499
	*	v		0.20	0.20	0.30	0.30	0.40	0.40	0.50	0.50	0.60	09.0	0.10	0.10	0.80	0.30	0.90	06.0

BINT 0.000 YC(1) THIRD FOIL DESIGN METHOD WITH XO= ELLIPTICAL PRESSURE DISTRIBUTIONS J 4.07640 4.81400 3.87728 4.81400 3.54750 4.81400 5.28516 4.81401 4.81400 4.94678 4.31400 4.71695 4.81400 4.51788 4.81400 4-29718 ALPHA XBAR 8 S 7.06708 6.59683 6.59683 6.59683 6.59683 6.59683 6.59683 5.68647 6.59683 5.36229 5.41139 4.81244 5.41140 4.59038 5.41140 4.23692 5.94258 6.59683 6-16942 6.59632 2 0.150 0.10 # 0.08 5 0.100

			THIRD FOIL		DESIGN METHOD WITH XO=		0.100				
K= 0.100 T= 0	0.150		ELLIPTICAL	TICAL PRESSURE		DISTRIBUTIONS					
N N	2	8	8	XBAR	ALPHA	,	YC(1)	Σ	ACAP	BINT	DINT
CL= 0.12											
10 0-169	8-39078	19	.0143	6660	827	3.93673	0.02381	1.00001	00	600	00024
1001-0	71.62	0.0000	0010	27/6	27.00	20	0 0		900	000	0000
.20 0-1853	10001	0.02	14	0.19980	10	N	1 4	000	000	0.00607	-0.00032
.30 0.1891	.7163	0.0379	.0155	.3165	9178	m	•02	000	.063	.0085	6090
•30 0-2003	.8376	0.0359	.0153	.2996	8008	-	• 05	666	000.	.0045	1000
.40 0.1391	-7163	0379	0155	3165	4.91789	0 0	02	000	.063	.0085	6090
1981-0 08-	7164	0.0379	0100	3163	0173) L.	000	000	000	0088	0000
.50 0.2164	.1127	0.0599	.0168	7667	2971	1	90	000	000	.0030	0000
.60 0.1891	.7163	0.0379	.0155	3165	9178	m	.02	000	.063	.0085	6090
.60 0.2257	.7976	0.0719	.0176	\$565.	0322	in	.07	000	00	.0021	6000
.70 0.1891	.7163	0.0379	.0155	.3165	9116	m	.02	000	.063	.0085	6050
.70 0.2325	+4474	0.0339	.0186	.6993	7933	10	100	566	000	.0017	.0010
1681.0 08.	.7164	0.0379	•0155	.3165	9118	(1)	• 05	000	• 063	.0085	6090
.80 0.2395	.0121	0.0958	.0199	6862	5177	C.	.08	1666	.000	,0014	0
.90 0.1891	.7164	.0379	.0155	.3165	9178	00	• 05	000	•063	.0085	6090.
.90 0.2493	.3697	0 74	.0223	.8954	1001	-	60	0.99366	-0.00041	N	J
CL= 0.14					•						
.10 0.1593	.6837	0.0139	.0144	6660.	.6803	9663	.0151	6666	-0.00000	.0106	0027
.10 0.1817	.7714	.0443	0129	.3164	.0219	4811	0175	0000	-0.07378	96000	0713
-20 0-1817	.7714	.0443	.0159	.3164	.0219	4811	00175	0000	-0.07378	96000	0713
7 0	9.27963	16/20-0-	0.01505	0.316.0	2000	4,20820	0.03713	1.00000	0.00000	15000.0	0.00033
30 0 1948	9312	0419	0156	2996	.8348	4128	.0482	0000	-0.00000	60057	1000
.40 0.1817	.7714	.0443	.0159	.3164	.0219	4811	.0175	0000	-0.07378	96000	0713
•40 0-2045	.5255	6950	.0164	-3995	+6061	6430	.0562	6656	-0.00000	.0041	0003
.50 0.1817	.7714	.0443	0129	.3164	.0219	4811	.0175	0000	-0.07378	9600*	0713
.50 0.2137	1996.	6690.	0115	4664.	.2971	6216	• 0635	6666	-0.00000	.0033	9000
.60 0.1817	.7714	0443	.0159	.3164	.0219	487	.0175	0000	-0.07378	9600	0713
.63 0.2245	.5561	0839	0162	1666.	9886	2552	•0726	6666	000000	.0024	6000
100000000000000000000000000000000000000	+T//1.	2000	¥010.	1000	4170	7701	0100		80000	0,00	900
7181-0 08-	77714	0443	0 4 1 0	2770	0407	0 1 0 0	2010		0.00000	V 0 0 0 0	2100
80 0.2408	5585	1118	0213	7007	33333	0385	08891	0000	0.00001	00016	1100
.90 0.1317	.7714	0443	.0159	.3164	.0219	4811	.0175	0000	-0.07378	9600.	.0713
.90 0.2519	7397	1247	.0243	.8910	0	.8148	.0933	0	-0.00105	.0014	.0020

THIRD FOIL DESIGN METHOD WITH XO# 0.100

ELLIPTICAL PRESSURE DISTRIBUTIONS

K= 0.100 T= 0.150

The second of th

TNIO		-0.00309	0.08195	0.08195	-0.00104	0.06195	-0.00015	0.08195	0.00035	0.08195	0.00063	0.08195	0.00103	0.08195	0.00115	0.08195	0.00118	0.08195	0.00038
FINT		0.01202	0.01067	0.01067	0.00771	0.01067	0.00576	0.01067	0.00456	0.01067	0.00367	0.01067	0.00263	0.01067	0.00213	0.01067	0.00176	0.01067	0.00139
ACAP		0000000	-0.08459	-0.03459	0.000000	-0.08458	-0.00000	-0.08459	-0.00000	-0.08459	-0.00000	-0.06459	-0.00000	-0.08459	-0.00000	-0.08459	-0.00002	-0.08459	0.00071
Σ		1.00000	0.00001	0000000	1.00000	100000-0	66666.0		666660	0000000	666660	0000000	6666660	0.00000	966660	0000000	92666.0	0.00000	1.00809
YC(1)		0.00638	0.00894	0.00894	0.03155	76800.0	0.04431	0.00894	0.05336	0.00894	0.06170	0.00894	0.07220	0.00894	0.07918	0.00894	0.08642	0.00894	0.09681
_		4.05681	4.62141	4.62141	4.30311	4.62141	4.54220	4.62141	4.81208	4.62141	5.20036	4.62141	5.53442	4.62141	5.92900	4.62141	6.46867	4.62141	7.37080
ALPHA		5.87796	5.12611	5.12611	5.33654	5.12610	4.96881	5.12611	4.65030	5.12611	4.29718	5.12611	3.94394	5.12611	3,62552	5.12611	3.25725	5.12611	2.72075
XBAR		06660.0	0.31630	0.31630	0.19980	0.31630	0.29969	0.31630	0.39959	0.31630	65665.0	0.31630	0.59940	0.31630	0.69929	0.31630	0.79908	0.31630	0.90383
6		0.01462	•	•	0.01532	•	90910.0	0.01639	0.01694	0.01639	0.01830	0.01639	0.01945	0.01639	0.02085	0.01639	0.02283	0.01639	0.02623
Σ		-0.01598	-0.05061	-0.05061	-0.03197	-0.05061	-0.04795	-0.05061	-0.06393	-0.05061	-0.07992	-0.05061	-0.09590	-0.05061	-0.11189	-0.05061	-0-12785	-0.05061	-0.14461
0		10.94594	9.76361	9.76361	10.44339	9.76362	64596.6	9.76360	9.44505	9.76360	8.74187	9.76360		9.76361		9.76351	7.00732	9.76350	6.10102
2	CL= 0.16	0 0.14872					0 0-18940			0 0.17439	0 0.21102			0 0-17439	0 0.23262		0 0.24220	0-1743	0 0.25537
v		0.1	0.10	0.2	0.2	0.30	0.30	7.0	0.46	0.50	0.50	0.5	09.0	0.70	0.10	0.80	0.80	06.0	0.90

0.100 T= 0.200	00		THIRD FOIL	FOIL DESIGN MI	LLJ	THOD WITH XO= O	0.100				
	?	×	8	XSAR	ALPHA	٠.	YC(1)	Σ	ACAP	BINT	DINT
	9.	-0.00799	0.02196	0.09990	5	5.93056	0.06383	1.00000	000000	0.00395	960000-0-
	4000	0.0252	1020-	21150	1466	2 4 8 7 8	60000		10,04341	0000	7240
	5625	0.0159	.0224	1998	.2492	.0883	.0771	000	0.0000	.0026	.0003
	6657	0.0252	.0231	.3152	.1466	.2818	.0653	.000	-0.04340	.0038	.0424
	4875	0.0239	.0229	.2996	•0654	.2372	.0838	666.	-0.00000	.0020	00000
	6657	0.0252	.0231	.3152	.1466	.2818	.0653	000.	-0.04340	.0038	.0424
	4062	0.0319	•0234	.3995	1906	3995	•0886	666	-0.00000	.0017	1000.
	200	• 02552	0231	.3152	466	6.200 to 100 to	•0653	000.	-0.04340	.0038	0424
	1467	V V V V V V V V V V V V V V V V V V V	2470.	4 7 7 7 8	0571.	2020	4240°	700	0000001	4 6000	2000
	1000	0.0470	1020	5007	. 55.70	0107.	0000	000	0.00000	0000	1 0000
	4 500 4	0.00.0	0231	4150	1766	2818	0669		-0.04340	0000	4000
	1121	0.0559	0257	6993	3937	0328	1019	000	-0.00000	6000	7000
	4539	0.0252	.0231	.3152	.1466	.2818	.0653	0000	-0.04340	.0038	.0424
	9896	0.0638	.0267	.7984	.2095	.3228	.1055	866	0	9000.	.0005
	6657	0.0252	.0231	.3152	1466	.2818	•0653	0000		.0038	.0424
N	8164	0.0730	.0284	.9127	6246.	.7983	.1111	•023		9000 6	-0005
					•						
	5037	6600	.0222	6660	•7175	.0109	.0547		000	.0048	.0012
	2218	.0315	.0236	.3151	.2511	.4565	.0565	•	.0543	9400	.0532
	218	.0315	.0236	,3151	.2511	.4565	•0565	•	.0543	.0046	.0532
	3738	.0199	.0228	.1998	*3791	.2113	.0713	•	0000	.0032	*000°
	2218	.0315	•0236	.3151	.2511	.4565	•0565	•	.0543	9700.	.0532
	2635	6620.	•0234	• 2996	.1493	93999	1610.	•	00000	. 0025	0000
	2777	0350	0070	1015.	1162.	.4267	0000		60043	9400	25000
	1000	4 4 6 6 6	7000		2007		0000	•	0000	0000	4000
	9711	0070	0000	4004	77705	2000	000	•	0000	0017	0000
	2218	.0315	.0236	.3151	.2511	.4565	.0565		0543	.0046	.0532
	6178	6650.	.0260	.5994	.5087	.1402	8760.	•	0000	.0013	4000.
	2218	.0315	.0236	.3151	,2511	.4565	.0565	•	.0543	.0046	.0532
	6669	6690.	.0270	.6993	.3096	.4219	.1023	•	.0000	.0010	*000
	.22185	-0.03151	0.02369	0.31513	6.25117	4 5	0.05658	0.00000		00	0.05320
	5217	6620.	.0284	1661.	.0805	7962.	.1069		00000	6000.	.0005
	2218	.0315	.0236	.3151	.2511	.4565	•0565	•	-0.05436	.0046	.0532
	2434	.0889	.0308	.8896	,7304	4161	.1127		.0008	.0008	.0014

5 July 1977 BRP:JF:jep

1 1)))

		DINT		014	9400	()	in	0	0	()	00015	()	MI	0	10	0	·n	040	900	040	1.5		016	748	7484	tta t	1 0	2 4		4	2.	40	12	10	.0	COL	00	748	007
		ō.		-0.0	0.0	0.0	-0.0	0	-0.0	ò	0	o	o	o	0	ó	ò	0	0	0.0	0.0		-0.0-	0.0	0	9	5	0	0	o	0	o	ò	ó	Š	ò	0.0	0.0	3
		BINT		.0057	0.00546	.0054	.0038	,0054	.0029	.0054	.0024	.0054	.0020	+000+	.0014	·0054	.0012	\$400°	.0010	.0054	60000		.0066	.0061	.0061	.0043	1000	000	0027	.0061	.0022	.0061	.0016	.0061	.0013	.0001	0.00118	.0061	6000.
		ACAP		0.00000	56 93	653	0000	0653	0000	1653	0000	5653	0000	3653	0000	1653	0000	5693	0000	1653	0		0.00000	-0.07637	•	000000	00000	-0.07697	-0.00000	-0.07637	-0.00000	-0.07637	0000000	-0.07637	0.00000	-0.07637	1000000	-0.07637	
		Σ		•		٠	•	•		•		•	•			•	•		•		0.98630		00000	00000	00000	0000		0000	6666	0000	6666	.0000	.0000	00000	.0000	00000	1.00016	00000	6866.
0.100		40(1)		.0455	0.04772	.0477	•0655	+0477	.0756	.0477	.0827	•0477	.0892	.0477	.0973	•0477	.1027	.0477	.1082	.0477	.1152		.0364	.0388	.0388	1650.	0000	2000	.0798	.0388	.0873	.0388	8950	.0388	.1031	.0338	0.10957	.0388	,1182
	SNOTTONS			.092	34	•634	.335	•634	.565	.634	.819	•634	.174	.634	.475	•634	.824	.634	.290	.634	9.06981		.174	.816	.816	195.	9810	200	036	.816	.460	.816	.821	.816	.241	.816	8.80399	.815	• 749
DESIGN METHOD WITH XO=	URE DISTR	ALPHA		9151	6.35577	.3557	.5090	.3557	.2333	.3557	7766.	.3557	.7295	.3557	94949	.3557	.2258	.3557	.9504	.3557	.5471		-	7.	7.	9.	• "	. 4	0	7		70	7.	7	7	7, .	4.82093	4	6
	TICAL PRESSURE	XBAR		6660	0.31505	3150	1998	3150	2995	3150	3668	3150	7667	3150	2665	3150	6992	3150	7991	3150	8910		6660.	.3149	•3149	.1998	40000	3140	3995	.3149	7067	.3149	4565.	.3149	6669	.3149	~	.3149	. 3985
THIRD FOIL	ELLIPTICAL	8		.0224	0.02427	.0242	.0232	.0242	.0239	•0242	.0248	.0242	.0261	.0242	.0271	.0242	.0284	.0242	.0301	.0242	.0330		.0227	.0248	•024B	0220	0000	0248	.0255	.0248	.0270	.0248	.0283	.0248	.0298	.0248	0.03192	•0248	.0353
		£		0.0119	-0.03781	0.0378	0.0239	0.0378	C.0359	0.0378	0.0479	0.0378	0.0599	0.0378	0.0719	0.0378	0.0839	0.0378	0.0959	0.0378	C-1069		0.0139	0.0441	0.0441	6/20-0	440.0	0.0441	0.0559	0.0441	0.0699	0.0441	0.0839	0.0441	0.0979	0.0441	-0.11190	0.0441	0.1257
	0.200	5		.3446	4.94508	.9450	.1665	.9450	•0030	.9450	.8287	.9450	.5950	-9450	.4170	.9450	.2229	.9450	.9837	.9450	.6277		.1660	.6310	,6310	97.60	2707	6310	.4760	.6310	.1695	.6310	.9381	.6310	.6883	.6310	4.38580	.6310	.9579
	0.100 T= 0	2	CL= 0.12	.1755	0.19013	1061.	.1902	.1901	1981.	.1901	.2050	1061°	.2111	.1901	.2182	.1901	.2235	.1901	.2290	1901	.2363	CL= 0.14	167	.1346	1846	.1343	10010	1946	.2021	.1846	.2392	.1346	.2175	.1846	.2237	·1846	.2301	.1646	.2385
	.0	v			0.10	.2	. 2			7.	7.		3	5	. 6			0	a;	0	6.				. 2			1 4	4	10	4			1.			0.80		0,

DINT

			THIRD	THIRD FOIL DESIGN METHOD WITH	SN METHOD	# 0 ×	0.100				
K= 0.100 T=	0.200		ELLIPTICAL	TICAL PRESSURE	SURE DISTR	DISTRIBUTIONS					
S K	2	S	8	XBAR	ALPHA	ر	YC(1)	Σ	ACAP	8 INT	
CL= 0.16											
.10 0.	.968	-0.01598	0.02296	•	7.31035	6.25728	0.02724	666660	-0.00000	0-00746 -0	0
0	6.28113	-0.05038	0.02547	0.31491	6.56519	7.00105	0.02986	0.00000	-0.08743	0 88900 0	0
.20 02.	.281	-0.05039	0.02547	0.31491	6.56519	7.00106	0.02986	0000000	-0.08743	0.00688	0
.20 0.	•658	-0.03197	0.02403	0.19980	6.75894	6.59007	0.05391	1.00000	0000000		0
.30 0.	.281	-0.05039	0.02547	0.31491	6.56518	7,00106	0.02986	0000000	-0.08743		0
.30 0.	.377	-0.04795	0.02509	0.29969	6.40121	96906.9	0.06734	0.99998	-0.00000	2.	0
.0 07.	.281	-0.05039	0.02547	0.31491	6.56519	7.00106	0.02986	0.000000	-0.08743	8	0
• 0 05	.083	-0.06393	0.02630	0.39959	6.03270		0.07632	1.00000	-0.00000		0
.50 0.	.231	-0.05039	0.02547	0.31491	6.56517	7.00106	0.02986	0.00000	-0.08743	0.00688	0
.50 06.	169.	-0.07992	0.02808	67667.0	5.72957	7.75388	0.08549	66666.0	-0.00000		0
.60 69.	.281	-0.05039	0.02547	0.31491	6.56517		0.02986	0.00001	-0.08743		0
.00 09.	6000	-0.09590	0.02958	0.59940	5.37633	8.17791	0.09634	1.00001	0.000000		0
.70 0.	.281	-0.05039	0.02547	•	6.56519		0.02986	0000000	-0.08743		0
.70 0.2	.101	-0.11189	0.03136	0.69930	5.05777	8.67184	0.10349	866660	-0.00000	0.00151	0
.80 08.	.281	S	0.02547	.33	6.56519		298	0000000	-0.08743		0
.80 08.	.733	2	0.03380	0.19943	4.69128	9.33507	108	1.00048	0.00004		0
.90 06.	.281	203	0.02547	0.31491		7.00105	0	0.00001		co	0
.90 06.	6		0.03792	0.90757	4.14891	10.45833	0.12184	1.01447	0.00129	0-00101 -0	0

22659 3.23241 1.66522 0.002963 0.00000 1.9980 3.23241 1.66522 0.002963 0.00	, F	.100	8	כס	ELLIPTICAL PRESSURE CD XBAR A		DISTRIBUTIONS PHA L	YC(1)	Σ	ACAP	FNIO	DINT
1.000799				1								
73		0	0.0079	-0124	6660.	.6207	.5973	.0273	6666.	0000	•0196	2
78	.42	1	0.0261	.0124	.3265	.2384	.6652	.0296	00000	.0318	0	0.02755
16	.42	~	0.0261	.0124	.3265	.2383	*6652	•0296	00000	.0318	.0171	00275
73	.45	~	0.0159	.0124	.1998	.3618	,6236	•0359	00000	00000	.0123	.0022
1.00 1.00	•	1-	0.0261	.0124	.3265	.2383	.6652	.0296	.0001	.0318	,0171	.0275
73		10	0.0239	.0123	.2997	.1860	66490	·0404	8666.	00000	.0088	.0002
Coloniary Colo		1-	0.0261	.0124	.3265	.2383	.6652	.0296	00000	.0318	.0171	.0275
78		0	0.0319	.0123	.3995	,0336	,6808	.0437	66666	.0000	.0065	.0011
7.559 -0.02996 0.01255 0.49948 2.86480 1.72833 0.04704 0.099995 -0.01000 0.02478 0.02613 0.01245 0.032660 3.23837 1.66524 0.02563 0.00003 -0.023180 0.02265 0.		247	0.0261	.0124	.3266	.2383	.6652	.0296	0000	.0318	.0171	.0275
2.25 -0.04795 0.01245 0.32660 3.23837 1.66524 0.05263 0.00003 -0.03380 0.02255 -0.04795 0.01245 0.59939 2.69585 1.76734 0.05263 0.00003 -0.03380 0.02265 0.01245 0.01245 0.05265 0.0022		765	0.0399	.0125	7667.	.8648	.7283	.0470	6666.	00000	.0048	.0022
2.225 -0.04795 0.01265 0.59939 2.69585 1.76734 0.05100 0.90996 -0.00000 0.0 2.479 -0.05261 0.02266 0.52660 1.81528 0.05263 0.00000 -0.00000 0.0 2.479 -0.05261 0.01246 0.52660 3.28836 1.86524 0.02963 0.00000 -0.00000 0.0 2.479 -0.02613 0.01245 0.52660 3.28836 1.86524 0.02963 0.00000 -0.00000 0.0 2.479 -0.02613 0.01245 0.32661 3.28836 1.86524 0.02963 0.00000 -0.00000 0.0 2.470 -0.02613 0.01245 0.32661 3.28836 1.86524 0.02963 0.00000 -0.00000 0.0 2.470 -0.02613 0.01245 0.32661 3.28836 1.86524 0.02963 0.00000 -0.00000 0.0 2.470 -0.02613 0.01245 0.32661 3.28836 1.86524 0.02663 0.00000 0.0 2.480 -0.0262 0.01244 0.32617 3.32296 1.61019 0.02408 0.00000 0.0 2.480 -0.0297 0.01234 0.19980 3.48644 1.64466 0.02248 0.00000 0.0 2.480 -0.0297 0.01234 0.19980 3.48644 1.64466 0.02248 0.00000 0.0 2.481 -0.02362 0.01244 0.32617 3.33292 1.69781 0.02408 0.00000 0.0 2.481 -0.03262 0.01244 0.32617 3.33292 1.69781 0.02408 0.00000 0.0 2.481 -0.03262 0.01244 0.32617 3.33292 1.69781 0.02408 0.00000 0.0 2.481 -0.03262 0.01244 0.32617 3.33292 1.69781 0.02408 0.00000 0.0 2.481 -0.03262 0.01244 0.32617 3.33292 1.69781 0.02408 0.00000 0.0 2.481 -0.03262 0.01244 0.32617 3.33292 1.69781 0.02408 0.00000 0.0 2.481 -0.03262 0.01244 0.32617 3.33292 1.69781 0.02408 0.00000 0.0 2.481 -0.03262 0.01244 0.32617 3.33292 1.69781 0.02408 0.00000 0.0 2.481 -0.03262 0.01244 0.32617 3.33292 1.69781 0.02408 0.00000 0.0 2.481 -0.03262 0.01244 0.32617 3.33292 1.69781 0.02408 0.00000 0.0 2.481 -0.03262 0.01244 0.32617 3.33291 1.69781 0.02408 0.00000 0.00000 0.0 2.481 -0.03262 0.01244 0.32617 3.33291 1.69781 0.02408 0.000000		247	0.0261	.0124	.3266	.2383	,6652	.0296	.0000	.0318	.0171	.0275
2.479 -0.02613		222	0.0479	.0126	.5993	.6958	.7673	.0510	6666.	00000	.0027	.0035
2061 -0.05594 0.01286 0.69931 2.54350 1.01525 0.05583 1.00000 -0.00000 0.0 0.00000 0.0 0.00000 0.0 0.		247	0.0261	.0124	.3266	.2333	.6652	.0296	00000	.0318	.0171	.0275
2477 -0.02613 0.01245 0.32660 3.23836 1.66524 0.02963 0.00002 -0.02180 0.06392 0.01325 0.79905 2.36836 1.86285 0.05694 0.99969 -0.001325 0.01245 0.026392 0.01245 0.026392 0.01245 0.026392 0.01245 0.026392 0.01245 0.026392 0.01245 0.026392 0.01245 0.026392 0.01247 0.026392 0.001243 0.09991 3.80979 1.61019 0.02408 0.09996 -0.00000 0.0 0.02408 0.002408 0.		206	0.0559	.0128	.6993	.5435	.8152	.0538	0000	.0000	.0016	.0042
2480 -0.05292 0.01325 0.79905 2.36836 1.88285 0.05694 0.99969 -0.00001 0.0 2480 -0.02013 0.01245 0.32661 3.23837 1.66524 0.02963 0.00003 -0.03180 0.0 2480 -0.02013 0.01245 0.32661 2.11808 2.00147 0.06140 0.99846 -0.00000 0.0 3981 -0.02262 0.01244 0.32617 3.33296 1.69781 0.02408 0.00000 -0.00000 0.0 3978 -0.012262 0.01244 0.32617 3.33292 1.69781 0.02408 0.00000 -0.004015 0.0 3980 -0.01244 0.32617 3.33292 1.69781 0.02408 0.00000 -0.004015 0.0 3980 -0.01244 0.32617 3.33292 1.69781 0.02408 0.00000 -0.004015 0.0 3980 -0.01262 0.01244 0.32617 3.33292 1.69781 0.02408 0.00000 -0.004015 0.0 3980 -0.01262 0.01244 0.32617 3.33292 1.69781 0.02408 0.00000 -0.004015 0.0 3980 -0.01262 0.01244 0.32617 3.33292 1.69781 0.02408 0.00000 0.0 3980 -0.002997 0.01262 0.02261 3.33291 1.69781 0.02408 0.00000 0.0 3980 -0.002997 0.01244 0.32617 3.33291 1.69781 0.02408 0.00000 0.0 3980 -0.002997 0.01244 0.32617 3.33291 1.69781 0.02408 0.00000 0.00000 0.0 3980 -0.002997 0.01244 0.32617 3.33291 1.69781 0.02408 0.00000 0.0		247	0.0261	.0124	.3266	.2383	.6652	.0296	.0000	.0318	.0171	.0275
2480 -0.026613 0.01245 0.32661 3.23837 1.66524 0.02963 0.00003 -0.02180 0.01248 0.01411 0.89821 2.11808 2.00147 0.05140 0.99846 -0.00000 0.000000000000000000000000000		357	0.0639	,0132	.7990	.3683	.8828	.0569	96666	000000	60000	.0046
4746 -0.002999 0.01244 0.32516 3.33293 1.69780 0.02143 0.99846 -0.00000 0.002282 0.01244 0.32516 3.33293 1.69780 0.02243 0.99996 -0.00244 0.32516 3.33293 1.69780 0.022493 0.00244 0.32516 3.33293 1.69780 0.022493 0.00244 0.32517 3.33293 1.69780 0.002403 0.002403 0.00244 0.32517 3.33293 1.69780 0.002403 0.0024		248	0.0261	0124	.3266	.2383	.6652	.0296	.0000	2.0318	.0171	,0275
4746 -0.00999 0.01243 0.09991 3.80979 1.61019 0.02143 0.99996 -0.00000 0.0 3981 -0.03262 0.01244 0.32516 3.33295 1.69780 0.02408 0.00005 -0.04015 0.0 052362 0.01234 0.19993 3.45214 1.69781 0.02408 0.00005 -0.04015 0.0 05262 0.01234 0.29970 3.42514 1.69781 0.02408 0.00007 -0.04015 0.0 05262 -0.02997 0.01234 0.29970 3.2252 1.69781 0.02408 0.00007 -0.04015 0.0 05262 -0.02997 0.01234 0.29970 3.22632 1.69781 0.02408 0.00007 -0.04015 0.0 05262 0.01244 0.32617 3.33292 1.69781 0.02408 0.00007 -0.04015 0.0 05262 0.01264 0.32617 3.33292 1.69781 0.02408 0.00002 -0.00000 0.0 0527 -0.02995 0.01264 0.32617 3.33291 1.69781 0.02408 0.00002 -0.04015 0.0 0527 -0.02562 0.01244 0.32617 3.33291 1.69781 0.02408 0.00002 -0.04015 0.0 0527 -0.02562 0.01244 0.32617 3.33291 1.69781 0.02408 0.00002 -0.04015 0.0 0527 -0.02562 0.01244 0.32617 3.33291 1.69781 0.02408 0.00002 -0.04015 0.0 0527 -0.02562 0.01244 0.32618 3.33291 1.69781 0.02408 0.00002 -0.04015 0.0 0527 -0.02562 0.01244 0.32618 3.33291 1.69781 0.02408 0.00002 -0.04015 0.0 0527 -0.03262 0.01244 0.32618 3.33291 1.69781 0.02408 0.00002 -0.04015 0.0 0527 -0.03262 0.01244 0.32618 3.33291 1.69781 0.02408 0.00002 -0.04015 0.0		692	0.0718	.0141	.8982	.1180	.0014	.0614	4866	.0000	.0005	8
04746 -0.00999												
04746 -0.00999												
03981 -0.03262 0.01244 0.32516 3.33295 1.69780 0.02408 0.00005 -0.04015 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		0474	6600.	.0124	6660*	.8097	.6101	.0214	6666	0000	.0242	.0075
1.00 1.00		398	0.0326	.0124	.3251	.3329	.6978	.0240	0000	1040	.0208	.0349
0528 -0.01998 0.01234 0.19980 3.48614 1.64406 0.03225 1.00000 0.000078 0.01234 0.32617 3.33292 1.69781 0.02408 0.00007 -0.04015 0.0 22627 0.01234 0.29970 3.26630 1.69781 0.02408 0.00007 -0.04015 0.0 3981 -0.03262 0.01244 0.32617 3.3292 1.69781 0.02408 0.00007 -0.04015 0.0 3981 -0.03262 0.01244 0.32617 3.3292 1.69781 0.02408 0.09094 -0.04015 0.0 3981 -0.03262 0.01244 0.32617 3.33292 1.69781 0.02408 0.09994 -0.04015 0.0 3981 -0.02262 0.01264 0.32617 3.33291 1.69781 0.02408 0.099995 -0.00000 0.0 3981 -0.05994 0.01244 0.32617 3.33291 1.69781 0.02408 0.099995 -0.00000 0.0 3981 -0.05994 0.01244 0.32617 3.33291 1.69781 0.02408 0.099997 -0.00000 0.0 3981 -0.05999 0.01244 0.32617 3.33291 1.69781 0.02408 0.099997 -0.00000 0.0 3981 -0.05999 0.01244 0.32617 2.46316 1.69781 0.02408 0.00002 -0.00000 0.0 3981 -0.03262 0.01244 0.32617 2.46316 1.69781 0.02408 0.00002 -0.00000 0.0 3981 -0.03262 0.01244 0.32618 3.33291 1.69781 0.02408 0.00002 -0.00000 0.0 3981 -0.03262 0.01244 0.32618 3.33291 1.69781 0.02408 0.00002 -0.00000 0.00002 -0.00000 0.00002 -0.00000 0.00002 -0.00000 0.00002 -0.00000 0.00		397	0.0326	.0124	.3261	.3329	.6978	.0240	0000	1040	0	0.03499
2522 -0.02262 0.01244 0.22617 3.33292 1.69781 0.02408 0.00007 -0.04015 0.0 2522 -0.02997 0.01231 0.29970 3.26630 1.67817 0.03789 0.99991 -0.00000 0.0 3981 -0.03262 0.01234 0.32617 3.33292 1.69781 0.02408 0.09094 -0.04015 0.0 3982 -0.03262 0.01234 0.32617 3.33292 1.69781 0.02408 0.99995 -0.00000 0.0 2225 -0.03262 0.01234 0.32617 3.33292 1.69781 0.02403 0.99995 -0.00000 0.0 3973 -0.04995 0.01244 0.32617 3.33291 1.69781 0.02403 0.99995 -0.00000 0.0 3973 -0.05994 0.01234 0.59939 2.65326 1.83313 0.05403 0.99995 -0.00000 0.0 3981 -0.05994 0.01244 0.32617 3.33291 1.69781 0.02403 0.09002 -0.04015 0.0 3981 -0.05994 0.01244 0.32617 3.33291 1.69781 0.02403 0.00002 -0.04015 0.0 3981 -0.05994 0.01244 0.32617 3.33291 1.69781 0.02403 0.00002 -0.04015 0.0 3981 -0.03262 0.01244 0.32618 3.33291 1.69781 0.02403 0.00002 -0.04015 0.0 3981 -0.03262 0.01244 0.32618 3.33291 1.69781 0.02403 0.00002 -0.04015 0.0 3981 -0.03262 0.01244 0.32618 3.33291 1.69781 0.02403 0.00002 -0.04015 0.0		052	0.0199	.0123	.1993	.4861	.5440	.0322	0000	0000	.0151	.0027
12222 -0.02997 0.01231 0.29940 3.26630 1.67817 0.03789 0.99991 -0.00000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	8	8650	0.0326	.0124	.3261	.3329	.6978	.0240	00000	1050	.0208	.0349
03981 -0.03262 0.01244 0.32617 3.33292 1.69781 0.02408 0.00004 -0.04015 0.0 0.88816 -0.03996 0.01236 0.39959 3.07590 1.71857 0.04205 0.99995 -0.00000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0	1222	0.0299	.0123	.2997	.2663	.6781	.0378	6666.	0000	.0107	.0003
08816 -0.03996 0.01236 0.39959 3.07590 1.71857 0.04205 0.99995 -0.00000 0.0 03980 -0.04295 0.01244 0.32617 3.33292 1.69781 0.02402 0.00002 -0.04015 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	œ	0398	0.0326	.0124	.3261	.3329	.6978	.0240	00000	0401	.0208	\$ 0349
03980 -0.03262 0.01244 0.32617 3.33292 1.69781 0.02408 0.00002 -0.04015 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0	0881	0.0399	.0123	.3995	•0759	.7185	.0450	6656.	0000	.0079	.0013
92254 -0.04995 0.01262 0.49948 2.86480 1.78115 0.04613 0.99995 -0.00000 0.0 03978 -0.03262 0.01244 0.32617 3.33291 1.69781 0.02408 0.00002 -0.04015 0.0 03981 -0.05994 0.01280 0.59939 2.65262 1.83313 0.05112 0.99995 -0.00000 0.0 03981 -0.05993 0.01244 0.32617 3.33291 1.69781 0.02408 0.00002 -0.04015 0.0 03981 -0.05262 0.01244 0.32618 3.33292 1.69781 0.02408 0.00002 -0.04015 0.0 03981 -0.03262 0.01244 0.32618 3.33291 1.69781 0.02408 0.00002 -0.04015 0.0 03981 -0.03262 0.01244 0.32618 3.33291 1.69781 0.02408 0.00002 -0.04015 0.0	0	0398	0.0326	.0124	.3261	.3329	.6978	.0240	.0000	1050	.0208	.0349
0.9978 -0.02262 0.01244 0.22617 3.33291 1.69781 0.02408 0.00002 -0.04015 0.0 0.9953 -0.01280 0.59939 2.65362 1.83313 0.05112 0.99995 -0.00002 -0.00002 -0.00000 0.0 0.9994 0.01244 0.32617 3.33291 1.69781 0.02408 0.00002 -0.04015 0.0 61869 -0.05993 0.01313 0.69929 2.46316 1.89725 0.05469 0.99997 -0.04015 0.0 0.3981 -0.05262 0.01244 0.32618 3.33292 1.69781 0.02408 0.00002 -0.00000 0.0 0.9981 -0.07994 0.01371 0.79941 2.24314 1.98881 0.05408 0.00002 -0.0000 0.0 0.9981 -0.03262 0.01244 0.32618 3.33291 1.69781 0.02408 0.00002 -0.00002 0.0	-	9225	0.0499	.0126	7667.	.8643	.7811	.0461	6666.	0000	.0059	.0026
80953 -0.05994 0.01280 0.59939 2.65362 1.83313 0.05112 0.99995 -0.00000 0.0 03980 -0.03262 0.01244 0.32617 3.33291 1.69781 0.02408 0.00002 -0.04015 0.0 61869 -0.05993 0.01313 0.69929 2.46316 1.89725 0.05469 0.99997 -0.00000 0.0 03981 -0.03262 0.01244 0.32618 3.33292 1.69781 0.02408 0.00002 -0.04015 0.0 29561 -0.07994 0.01371 0.79941 2.24314 1.998881 0.05863 1.00044 0.00002 0.0	2	0397	0.0326	.0124	.3261	.3329	.6978	.0240	0000	1070	.0208	.0349
03983 -0.03262 0.01244 0.32617 3.33291 1.69781 0.02408 0.00002 -0.04015 0.00000 0.00002 -0.04015 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	7	8095	0.0599	.0128	.5993	.6536	.8331	.0511	6666.	0000	.0033	.0040
61869 -0.06993 0.01313 0.69929 2.46316 1.69725 0.05469 0.99997 -0.00000 0.0 03981 -0.03262 0.01244 0.32618 3.33292 1.69781 0.02408 0.00002 -0.04015 0.0 29561 -0.07994 0.01371 0.79941 2.24314 1.98881 0.05863 1.00044 0.00002 0.0	0)	0398	0.0326	.0124	.3261	.3329	8769.	.0240	0000	0401	.C20B	.0349
3981 -0.03262 0.01244 0.32618 3.33292 1.69781 0.02408 0.00002 -0.04015 0.0 9561 -0.07994 0.01371 0.79941 2.24314 1.98881 0.05863 1.00044 0.00002 0.0 3981 -0.03262 0.01244 0.32618 3.33291 1.69781 0.02408 0.00002 -0.04015 0.0		186	0.0699	.0131	.6992	.4631	.8972	.0546	6666.	0000	.0021	.0047
9561 -0.07994 0.01371 0.79941 2.24314 1.98881 0.05863 1.00044 0.00002 0.0 3981 -0.03262 0.01244 0.32618 3.33291 1.69781 0.02408 0.00002 -0.04015 0.0		398	0.0326	.0124	.3261	.3329	.6978	.0240	00000	0401	.0208	.0349
3981 -0.03262 0.01244 0.32618 3.33291 1.69781 0.02408 0.00002 -0.04015 0.0		956	0.0799	.0137	+ 466L ·	.2431	.9888	.0586	.0004	0000	,0014	.0051
o strong of ection of tenant strong of tenant		398	0.0326	.0124	.3261	.3329	.6978	.0240	0000.	1040.	,0208	.0349
0.0 3000000 0.03430 0.00500 0.		8 4 3	8080	0149	2003	9242	1503	.0642	7886	0000	00100	0000

0.100

THIRD FOIL DESIGN METHOD WITH XO=

THIRD FOIL DESIGN METHOD WITH XO= 0.100 ELLIPTICAL PRESSURE DISTRIBUTIONS	XBAR ALPHA L YC(1) M ACAP BINT	38 0.09991 3.99880 1.62336 0.01548 0.99996 -0.00000 0.02873 - 45 0.32575 3.42792 1.73182 0.01833 0.00003 -0.04865 0.02454 45 0.32575 3.42790 1.73183 0.01833 0.00000 -0.04865 0.02434 29 0.19980 3.61041 1.66517 0.02848 1.00000 0.01778 -	45 0.32575 3.42790 1.73182 0.01854 0.00007 10 229970 3.34661 1.70765 0.03525 0.99993 1.73183 0.01854 0.00003 1.73183 0.01854 0.00003 1.73183 0.01854 0.00003 1.73183 0.01834 0.00003 1.73183 0.01834 0.00003 1.73183 0.01834 0.00003 1.73183 0.01834 0.000002 1.73183 0.01834 0.000002 1.73183 0.01834 0.000002 1.73183 0.01834 0.000002 1.73183 0.01834 0.000002 1.73183 0.01834 0.000002 1.73183 0.01834 0.000002 1.73183 0.01834 0.000002 1.73183 0.01834 0.000002 1.73183 0.01834 0.000002 1.73183 0.01834 0.000002 1.73183 0.01834 0.000000 1.73183 0.000000 1.73183 0.000000 1.73183 0.000000 1.73183 0.000000 1.73183 0.000000 1.73183 0.000000 1.73183 0.000000 1.73183 0.000000 1.73183 0.000000 1.73183 0.000000 1.73183 0.000000 1.73183 0.000000 1.73183 0.000000 1.73183 0.000000 1.73183 0.000000 1.73183 0.000000 1.73183 0.000000 1.73183 0.000000 1.73183 0.0000000 1.73183 0.000000 1.73183 0.0000000 1.73183 0.0000000 1.73183 0.0000000 1.73183 0.000000 1.73183 0.00000000000000000000000000000000000	45 0.32576 3.42789 1.73163 0.01834 0.00002 -0.04865 0.02434 48 0.69932 2.38268 1.98594 0.05552 1.00003 0.00000 0.00271 45 0.32576 3.42783 1.73183 0.01834 0.00001 -0.04665 0.027434 58 0.79910 2.11975 2.10323 0.0633 0.99981 -0.00001 0.00138 58 0.32576 3.42789 1.73183 0.01834 0.00002 -0.00009 0.00146 59 0.89811 1.72685 2.31445 0.06703 0.99829 -0.00009 0.00146	0.09991
001.0	76(1)	00000		0	00000000000000000000000000000000000000
WITH XO	٦	46 44 46		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	20000000000000000000000000000000000000
SN METHOD	ALPHA	. 9988 4279 . 6179	6 1 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	24278 24278 24274 24274 24274 2638	######################################
	BA	000000000000000000000000000000000000000	10 10 10 10 10 10 10 10 10 10 10 10 10 1	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B B B B B B B B B B B B B B B B B B B
THIRD	8	00123		0.0000 0.000 0.000 0.000 0.000 0.000 0.000	0.01248 0.012248 0.01224 0.01224 0.01224 0.01248 0.01248 0.01248 0.01248 0.01248 0.01248
	£	00390	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	00000000000000000000000000000000000000
0.100	72	6699	99999999999999999999999999999999999999	00000 0000 0000 0000 0000 0000 0000	11.35193 11.21768 11.21768 11.21768 11.21766 11.21766 11.21766 11.21765 11.21765 11.21765 11.21765 11.21765 11.21765
.150 T= 0	¥	- 2333 2333 2333 2333 2333 2333 2333 233	00000000000000000000000000000000000000	1 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.00
•		00000	000000000		000000000000000000000000000000000000000

		pint		-0.01147	585	0.05353	040	585	003		0	0.05853	4	0.05853	.0050	0.05653	.0056	.0535	.0057	.0585	4
		BINT		0.03723	0.03065	0.03065	0.02277	0.03065	0.01600	0.03065	5	0.03065	0.00873	5	.0052	0.03065	.0037	0.03065	0.00278	0.03065	0.00218
		ACAP		-0.00000	-0.06605	60990.0-	0.000000	-0.06609	-0.00000	60990 • 0-	-0.00000	-0.06609	-0.00000	-0.06609	-0.00000	-0.06609	-0.00000	-0.06609	-0.00002	-0.06609	0.1
		Σ		86666.0	4000000	0000000	1.00000	0.00003	0.99993	0.00003	16666.0	0.00002	16666.0	0.00001	86666.0	1000000	86666.0	0000000	0.99975	1000000	1.00224
0.100		70(1)		.0033	.0063		.0206	.0063				0.00631						.0063	90.	.0063	0.07218
	DISTRIBUTIONS	J		.650	.304	60	.709	1.80430	1.77048	1.80430	1.84414	1.80431	1.96002	1.80431	2.05917	1.80431	2.18288	1.80431	.3603	.804	2.67846
DESIGN METHOD WITH XO=		ALPHA		4.37681								3.61909		.619	.526	619.	.222	•619	0	•619	1.37339
	ICAL PRESSURE	XBAR		660.	.324	0.32495	.199		0.29970			0.32496	0.49948		68665.0	0.32496	0.68930	0.32496	0.79908	0.32496	0.90040
THIRD FOIL	ELLIPTICAL	0		.0122	.0125	.0125	.0122	.0125	.0122	.0125	.0125	0	.0131	.0125	.0136	0.	.0144	.0125	.01	.0125	.0182
		ž		0159	0519	0519	0319	3519	0479	0519	3639	-0.05199	5610	0519	0959	0519	1118	0519	18	0519	1440
	T= 0.100	6/0		3,0	2.	2.1	3.0	2.1	3.	2.	2.1	12,76372	2.	2.1	:	0	7:	2.	0	2	
		M S	CL* 0.16	.181	.216	.216	.216	.216	.235	.216	.250	0.21638	*252	-216	.278	• 216	.289	•216	.301	.216	
	K= 0.150	v	J	.10	.10	.20	.20	.30	.30	64.	07.	0.50	.50	.63	• 60	.70	.70	000	08.	06.	06.

	TNIO				0339	.0011	.0339	.0001	.0339	.0005	.0339	.0010	.0339	.0016	.0339	,0019	0330	0000	0000	4000	,		0.00387	.042	.042	.001	.042		7000	0 0	100	200	100	1000	700	000	045	0000	0.04271	.002
	BINT		,	010	40	0073	0104	0054	0104	0043	0104	0034	0104	0023	0104	0017	0104	7100	40.00	0000	*		0.01390 -	.0127	.0127	6800	.0127	0000	17700	2000	2700	7010	100	0 0 0	7770	2700.	0127	1000	~	*100*
	ACAP			03648	.03648	00000	-03647	10000	.03647	00000	.03648	000000	.03648	000000	.03648	000000	0.03648	80000	03669	1000			00000-0-		-0.04584				10,000		100000				10000		0		-0.04584	•
	Σ		0000	0.00005	0000	00000	00012	18656	00000	06666	90000	55656	00000	16666	90000	76666	0000	8000		70000	1			00000	00000	00000	.0001	0,000	0000	10000	20000	90000	20000	00000	1000	*8555	00000	0000	0000	2666.
	, (1))		7770		.0488	.0573	.0488	.0628	.0488	.0667	•0488	•0704	,0438	.0750	.0488	.0781	0488	4180	1000	00000	•		0	•0416	•0419	• 0528	• 0419	0,000	N - 1 - 1 - 1	100	10401	0170	0 1 1 0	0		96.00	6150	6780	• 0416	.0886
SNOTE	٦.		2220	2.43470	.4347	.3704	-4347	.4153	17870	.4661	.4347	• 5339	•4347	6009.	14347	.6732	74347	777.4	1,24,7	7080			34	.4885	•4885	•4063	• 4865	, 000 v	1000	7007	4267	2000	400	100	000	V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 4 8 8 5	5176.	• 4885	.1490
RE DISTRIBUTIONS	ALPHA		2 2 2 2 3	4-68375	6337	7942	5837	6134	5837	4660	6836	2972	6836	1282	6836	9759	6836	0000	7007	3-54489			2	7810	808	5182	809	1000		1000	2072	7800	0800	100	000	0000	7809	00113	4.78096	• 3543
CAL PRESSURE	XBAR		0000	0.32070	.3207	.1998	.3207	.2997	.3207	\$665.	.3207	7664.	.3207	.5993	.3207	.6992	3207	7995	7008	2000			60	.3204	.3204	.1998	4025.	1673.	9000	2000	7007	3204	2000	0000	4000	76.00	. 3205	0000	.3505	.8963
ELLIPTICAL	8			0.01907	.01	0.	.01	.01	.01	.01	.01	.01	0	.01	.01	.02	10	0		200			0.01863	0165	0192	.0188	2610.	0 6 7 5 0	20.00	0101	0000	0102	5050	2000	2010	1770.	2610.	0770.	•0192	•0238
	ξ		070	0	0.0256	0.0159	0.0256	.0239	0.0256	0.0319	0.0256	6650.0	0.0256	0.0479	0.0256	0.0559	0.0256	0.0639	75000	0.0276			66600.0-	.0350	.0320	66TC+	0350	V V V V V	0000	0000	0670	.0320	0000	0000	0000	****	0350	n	.0350	•0836
0.150	S		37/6	4-19530 -	.19526	.27294	.19526	.23248	.19527	.1777	.19526	09610.	19527	.00875	.19529	.91754	19526	78845	70501	56136			36628	·18403	18396	.31001	16581.	00000	79191	00000	40400	18300	10070	2000	73310	41001.	18397	97000	.18398	.18993
0.150 T= 0.	D N	CL= 0.08	73167	0.22871	.2287	.2288	.2287	.2355	.2287	*2404	.2287	.2450	.2287	.2506	.2287	.2545	.2287	7850	2207	2634		CL= 0.10	0.20645	.2214	.2214	6777	7177.	2222	2261	2224	2410	2274	0870	32.7	26 30	2007.	-5274	5007.	.2514	.2655
, 0	v		0.	0.10	02.	.20	.30	• 30	07.	04.	000.	06.	.60	09.	01.	.70	Ca.	08	0	00			0.10	5	07.	77.	000		, (0 0	200	609		100			000		06.	0

THIRD FOIL DESIGN METHOD WITH XO= 0.100

Column C
CAP CAP CAP A PAPER CAP A P
Column C
1999 1999
1999 1999
18 18 18 18 18 18 18 18
1.000 1.00
1.00 1.00
1.25 1.25
1,1,1,2,
1985 1985 1986
14.15 6.14403 -0.03843 0.02953 0.22027 4.87711 2.54286 0.00447 0.00000 0.00489 0.001451 0.051563 0.001451 0.001563 0.001451 0.001563 0.001451 0.001563 0.001653
14.18 5.61593 -0.01593 0.01593 0.23027 4.67973 2.711902 0.05674 0.79997 -0.00000 0.056289 0.001593 0.051639 0.0
1,415 6,14402 -0,03843 0,01093 0,52027 4,8746 2,54286 0,00347 0,0004 -0,00389 0,01093 0,0004 -0,00389 0,000193 0,0004 -0,00389 0,000193 0,0004 -0,00389 0,000193 0,0004 -0,00389 0,000193 0,000193 0,000194 0,0004 -0,00389 0,000193 0,000193 0,000194
1,472 5,4849 -0.01843 0.02943 4.04779 2.64173 0.04944 0.09942 -0.01843 0.00164 2.64173 0.02184 0.021
14.15 6.14398
2.5.3.7 5.4.706 -0.08591 0.02191 0.65924 3.81318 2.93107 0.07944 0.99932 -0.000031 0.00259 0.00264
Colone C
2.55937 5.18745 -0.02583 0.02313 0.79582 3.55206 3.05932 0.05940 0.09003 -0.05530 0.01693 0.02525 0.90447 2.54385 0.05497 0.09003 -0.05530 0.01691 0.05162 0.05162 0.00294 0.002943 0.01695 0.02525 0.90447 0.02525 0.90447 0.02525 0.90447 0.02525 0.90497 0.00597 0.
C
-26770 4.75243 -C.10857 0.02525 0.90477 3.17172 3.37067 0.09160 1.00976 0.00057 0.00159 0.00220 0.0159 0.00220 0.0159 0.00220 0.0159 0.00220 0.0159 0.00220 0.0159 0.00220 0.0159 0.00220 0.0159 0.00220 0.0159 0.00220 0.0159 0.00220 0.0159 0.00220 0.0159 0.00220 0.0159 0.0159 0.00220 0.0159
L= 0.14 15.589 7.46009 -0.01399 0.01877 0.09991 5.62020 2.39447 0.02492 0.99994 -0.00000 0.01895 -0.00525 2.0588 7.07364 -0.04481 0.01979 0.32004 4.97625 2.60072 0.02492 0.99994 -0.00000 0.01879 0.01695 0.06688 2.0588 7.07354 -0.04481 0.01979 0.32005 4.97625 2.60076 0.02787 0.00001 -0.06484 0.01695 0.06688 2.0588 7.07354 -0.04481 0.01979 0.32005 4.97625 2.60076 0.02787 0.00001 -0.06484 0.01695 0.06688 2.0588 7.07354 -0.04481 0.01979 0.32005 4.97620 2.60076 0.02787 0.00001 0.01879 0.02693 2.2688 7.07351 -0.04481 0.01979 0.32005 4.97620 2.60076 0.05787 0.00001 0.00695 0.06688 2.2688 7.07354 -0.04481 0.01979 0.32005 4.97620 2.60076 0.05787 0.00001 0.00695 0.06688 2.2688 7.07354 -0.04481 0.01979 0.32005 4.97620 2.60074 0.02787 0.00001 0.00695 0.00608 2.2688 7.07357 -0.04481 0.01979 0.32005 4.97620 2.60074 0.02787 0.00001 0.00695 0.00608 2.2688 7.07357 -0.04481 0.01979 0.32005 4.97620 2.60074 0.02787 0.00001 0.00695 0.00608 2.2688 7.07357 -0.04481 0.01979 0.32005 4.97620 2.60074 0.02787 0.00001 0.00698 0.00698 2.2688 7.07751 -0.04481 0.01979 0.32005 4.97620 2.60074 0.02787 0.00001 0.00698 2.2688 7.07752 -0.04481 0.01979 0.32005 4.97620 2.60076 0.02787 0.00001 0.00698 2.2688 7.07752 -0.04481 0.01979 0.32005 4.97620 2.60076 0.02787 0.00001 0.00001 0.000976 0.00001 0.
L= 0.14 1.15.59
1559 7.46009 -0.01399 0.01877 0.09991 5.62020 2.39447 0.02292 0.99994 -0.00030 0.01895 -0.00525
7.46009
7.07351 -0.04481 0.01979 0.32004 4.97620 2.60072 0.02287 0.0006484 0.01695 0.06668 7.07351 -0.064481 0.01979 0.32005 4.97620 2.60076 0.02287 0.00000 -0.06484 0.01695 0.06668 7.07351 -0.064481 0.01979 0.32005 4.97620 2.60075 0.02787 0.00000 0.01009 0.01695 0.06668 7.07353 -0.06481 0.01979 0.32004 4.97619 2.60075 0.02787 0.00007 -0.06484 0.01695 0.06668 7.07351 -0.06481 0.01979 0.32004 4.97619 2.60075 0.02787 0.00007 -0.06484 0.01695 0.06668 7.07351 -0.06481 0.01979 0.32005 4.97619 2.60075 0.02787 0.00007 -0.06484 0.01695 0.06668 7.07351 -0.06481 0.01979 0.32005 4.97619 2.60075 0.05287 0.00000 0.01695 0.06688 7.07351 -0.06481 0.01979 0.32005 4.97620 2.60075 0.05287 0.00000 0.01695 0.06688 7.07357 -0.06484 0.01979 0.22005 4.97620 2.60075 0.05287 0.06688 7.07357 -0.06481 0.01979 0.42972 2.80477 0.06446 0.09998 -0.06484 0.01695 0.06688 7.07357 -0.06484 0.01695 0.06688 7.07357 -0.06484 0.01979 0.42972 2.80477 0.06446 0.09998 -0.06484 0.01695 0.06688 7.07357 -0.06484 0.01695 0.06688 7.07357 -0.06484 0.01695 0.06688 7.07357 -0.06484 0.01695 0.06688 7.07357 -0.06484 0.01695 0.06688 7.07357 -0.06484 0.01695 0.06688 7.07357 -0.06484 0.01695 0.02000 0.02787 0.06688 7.07357 -0.06484 0.01695 0.06688 7.07357 -0.06484 0.01695 0.06688 7.07357 -0.06484 0.01695 0.06688 7.07357 -0.06484 0.01695 0.06688 7.07358 7.07358 -0.06484 0.01695 0.06688 7.07358 7.073
7.07357 -0.04481 0.01979 0.32004 4.97619 2.66076 0.06484 0.01699 0.01893 7.02787 0.01979 0.32004 4.97619 2.66078 0.06484 0.01699 0.01893 7.02787 0.01979 0.32004 4.97619 2.66078 0.00007 -0.06484 0.01695 0.06074 0.00074 0.00007 -0.06484 0.01695 0.06074 0.02787 0.01893 7.07351 -0.04481 0.01979 0.32004 4.97618 2.66076 0.02787 0.00007 -0.06484 0.01695 0.06068 7.07351 -0.04481 0.01979 0.32005 4.597618 2.66076 0.05999 0.99992 -0.00001 0.00894 -0.00648 7.07354 0.000993 0.02599 0.02
7.07353
7.1888 7.07351 -0.04481 0.01977 0.22970 4.97518 2.60076 0.02787 0.00003 -0.06484 0.01695 0.06088 7.07351 -0.04481 0.01979 0.32005 4.97618 2.60076 0.02787 0.00003 -0.06484 0.01695 0.06088 7.07354 -0.04481 0.01979 0.32005 4.97620 2.60075 0.02787 0.00004 -0.06484 0.01695 0.06088 7.07354 -0.04481 0.01979 0.32005 4.97620 2.60075 0.02787 0.00004 -0.06484 0.01695 0.06088 7.07357 -0.06488 0.01979 0.32006 4.97620 2.60074 0.02787 0.00004 -0.06484 0.01695 0.06088 7.07357 -0.06488 0.01979 0.32006 4.97620 2.60074 0.02787 0.00004 -0.06484 0.01695 0.06088 7.07351 -0.04481 0.01979 0.32006 4.97618 2.60076 0.02787 0.00002 -0.00000 -0.00090 0.00031 0.00264 0.01695 0.06088 7.07351 -0.04481 0.01979 0.32006 4.97618 2.60076 0.02002 -0.05080 0.00293 0.00264 0.02787 0.02002 -0.05088 7.07351 -0.04481 0.01979 0.32006 4.97618 2.60076 0.02787 0.02002 -0.05080 0.00293 0.00264 0.02787 0.02002 -0.05080 0.00293 0.00293 0.00264 0.02787 0.02002 -0.05080 0.00293 0.00293 0.00264 0.02787 0.02002 -0.00003 -0.00293 0.00293 0.00264 0.02787 0.02002 -0.00003 -0.00293 0.00293 0.00264 0.02787 0.02002 -0.00003 -0.00293 0.0
22767
.22767 6.99503 -0.05594 0.02001 0.39959 4.59274 2.66215 0.05999 0.99995 -0.00000 0.00697 0.00088 7.07354 -0.04481 0.01979 0.32005 4.97620 2.60075 0.02787 0.00004 -0.06484 0.01695 0.06088 7.07354 -0.04481 0.01979 0.32005 4.97620 2.60074 0.05646 0.99998 -0.00000 0.00553 0.0148 7.07357 -0.04481 0.01979 0.32006 4.97620 2.60074 0.02787 0.00004 -0.06484 0.01695 0.06088 7.07357 -0.04481 0.01979 0.32006 4.97620 2.60074 0.02787 0.00000 -0.00376 0.01695 0.06088 7.07351 -0.04481 0.01979 0.32005 4.97618 2.60075 0.02787 0.00002 -0.05484 0.01695 0.06088 7.07351 -0.04481 0.01979 0.32005 4.97618 2.60075 0.02787 0.00002 -0.05484 0.01695 0.06088 7.07353 -0.04481 0.01979 0.32005 4.97618 2.60075 0.02787 0.00002 -0.05484 0.01695 0.06088 7.07358 -0.04481 0.01979 0.32005 4.97618 2.60075 0.02787 0.00002 -0.05484 0.01695 0.06088 7.07358 -0.04481 0.01979 0.32005 2.60074 0.02787 0.00073 -0.05484 0.01695 0.00028 0.00278 7.07358 -0.04481 0.01979 0.32005 2.60074 0.02787 0.00003 -0.00095 0.00008 0.
*20688 7.07354 -0.04481 0.01979 0.32005 4.97620 2.60075 0.02787 0.00004 -0.06484 0.01695 0.06568 7.07354 -0.06993 0.49948 4.2972 2.80477 0.06646 0.99998 -0.00000 0.00553 0.0146 7.07357 -0.04481 0.01979 0.32006 4.97620 2.60074 0.02787 0.00004 -0.06484 0.01695 0.06068 7.07357 -0.04481 0.01979 0.32006 4.97618 2.60074 0.02787 0.00000 -0.00000 0.00576 0.06068 7.07351 -0.04481 0.01979 0.32005 4.97618 2.60075 0.02787 0.00002 -0.05484 0.01695 0.06068 7.07351 -0.04481 0.01979 0.32005 4.97618 2.60075 0.02787 0.00002 -0.05484 0.01695 0.06068 7.07353 -0.04481 0.01979 0.32005 4.97618 2.60075 0.02787 0.00002 -0.05484 0.01695 0.06068 7.07353 -0.04481 0.01979 0.32005 4.97618 2.60075 0.02787 0.00002 -0.05484 0.01695 0.06068 7.07353 -0.04481 0.01979 0.32005 2.60074 0.02787 0.00073 0.00023 0.00235 0.00023 0.00235 0.00008 7.07353 -0.04481 0.01979 0.32005 2.60074 0.02787 0.00073
-25581 6-67380 -0.06993 0.02298 0.49948 4.29722 2.80477 0.06646 0.99998 -0.00000 0.00553 0.00148
*26688 7.07357 -0.04481 0.01979 0.22006 4.97620 2.60074 0.02787 0.00004 -0.06484 0.01695 0.06068 *24569 6.42800 -0.08392 0.02175 0.59940 4.00155 2.92531 0.07454 1.00000 -0.00000 0.00376 0.00231 *20688 7.07351 -0.04481 0.01979 0.32005 4.97618 2.60075 0.02787 0.00002 -0.05484 0.01695 0.06068 *25273 6.15058 -0.09779 0.02276 0.59927 3.72494 3.05955 0.02005 0.99591 -0.00001 0.02293 0.00264 *25273 6.15058 -0.09779 0.02276 0.59927 3.72494 3.05955 0.02005 0.99591 -0.00001 0.00293 0.00264 *25573 6.15058 -0.04481 0.01979 0.22006 4.97618 2.60075 0.02787 0.00002 -0.05484 0.01695 0.06068 *25698 7.07258 -0.011994 0.022427 0.77955 3.42768 3.26759 0.02787 0.00033 -0.00485 0.001895 0.00578 3.26788 5.77858 -0.00484 0.01979 0.22006 2.60074 0.02787 0.02787 0.00033 -0.00485 0.001895 0.006068 7.07258 -0.00484 0.01979 0.22006 2.60074 0.02787 0.00033 -0.00485 0.001895 0.006068
*24569 6*43800 -0.08392 0.02175 0.59940 4.00155 2.92531 0.07454 1.000000 -0.00300 0.00376 0.00231
*20688 7.07351 -0.04481 0.01979 0.32005 4.97618 2.60076 0.02787 0.00002 -0.05484 0.01695 0.06068 *25273 6.15058 -0.09790 0.02276 0.69927 3.73494 3.05955 0.08005 0.99991 -0.00001 0.00293 0.00264 *20688 7.07353 -0.04481 0.01979 0.32006 4.97618 2.60075 0.02787 0.00002 -0.05484 0.01695 0.06068 *256988 5.76832 -0.11194 0.02427 0.79955 3.42768 3.26758 0.08590 1.00073 0.03005 0.00235 0.00270 *25688 5.77258 -0.04481 0.01979 0.32006 2.60074 0.02244 1.00739 0.0003 0.01695 0.00668 *25688 5.77252 -0.104451 0.01979 0.32006 2.60074 0.02444 1.00739 0.0005 0.001695 0.00078
*25273 6.15058 -0.09790 0.02276 0.69927 3.73494 3.06955 0.08005 0.999991 -0.00001 0.00293 0.00264 3.20688 7.07353 -0.04481 0.01979 0.22006 4.97618 2.60075 0.02787 0.00002 -0.06484 0.01695 0.06068 3.26988 5.76832 -0.011194 0.02427 0.79955 3.42768 3.26758 0.08590 1.00073 0.03005 0.00235 0.00270 3.20688 7.07358 -0.004481 0.01979 0.22006 4.97620 2.60074 0.0270 0.00033 0.001695 0.00668 3.77735 -0.02448 0.0277 0.0277
.20688 7.07353 -0.04481 0.01979 0.22006 4.97618 2.60075 0.02787 0.00002 -0.05484 0.01695 0.06068 2.55998 5.76832 -0.11194 0.02427 0.79955 3.42768 3.26758 0.028590 1.00073 0.00035 0.00239 0.00270 2.25998 7.07358 -0.04481 0.01979 0.32006 4.97620 2.60074 0.02767 0.00003 -0.05484 0.01695 0.05068 7.07772 -0.12652 0.02707 0.90775 2.97079 3.61469 0.05444 1.00779 0.00065 0.00185 0.00730
-25998 5-76832 -0.11194 0.02427 0.79955 3-42768 3.26758 0.08590 1.00073 0.00005 0.00235 0.00270 3.26988 7.07358 -0.04481 0.01979 0.32006 4.97620 2.60074 0.02767 0.00003 -0.06484 0.01695 0.06068 3.67684 5.17272 -0.12652 0.02707 0.90375 2.97079 3.61469 0.06444 1.00799 0.00065 0.00185 0.00710
*20688 7*07358 -0*04481 0*01979 0*32006 4*97620 2*60074 0*02787 0*00003 -0*05484 0*01695 0*0606 4*06 4*
256984 5-17272 -6-12652 0-02707 0-90375 2-97079 3-61469 0-06444 1-00799 0-00185 0-00185

1)

		DINT		-0.00591	0.06983	0.06983	-0,00201	0.06983	-0.00020	0.06983	06000.0	0,06983	09100.0	0.06983	0.00247	0.06983	0.00278	0.06983	0.00287	O	0.00228
		BIN T		0.02138	0.01887	0.01837	0.01358	0.01387	66600.0	0.01887	0.00776	0.01887	0.00613	0.01887	0.00417	0,01887	0.00325	.0188	0.00263	.0188	0.00210
		ACAP		-0.00000	-0.07447	-0.07447	0000000	-0.07447	-0.00001	-0.07447	-0.00000	-0.07447	-0.00000	-0.07447	-0.00000	-0.07447	0.00001	-0.07447	-0.00001	-0.07447	0.00042
		Σ		96666.0	0000000	0000	1.00000	0.00007	26666.0	0.00004	96666.0	0.00004	16556.0	0.00002	96666 0	0000	1.0001	0000	98666 0	0.00003	1.00533
0.100		YC(1)		0.01755	0.02065	0.02065	0.03886	0.02065	0.04978	0.02065	0.05765	0.02065	0.06504	0.02065	0.07430	0.02065	0.08063	0.02065	0.08730	0.02065	0.09664
	DISTRIBUTIONS	J		2.41374	2.65916	2.65919	2.51900	2.65919	2.61797	2.65919	2.73186	2.65919	2.90001	2.65920	3.04296	2.65920	3.21454	2.65919	3.45240	2.65919	3.84841
DESIGN METHOD WITH X0=	URE DISTR	ALPHA		5.80921	5.07419	5.07413	5.29134	5.07413	4.93962	5.07413	4.63496	5.07412	4.29720	5.07412	3.95932	5.07412	3.65452	5.07413	3.30228	5.07413	2.79685
FOIL DESIG	ICAL PRESSURE	XBAR		0.09991	0.31984	0.31984	0.19980	0.31983	0.29970	0.31984	0.39959	0.31984	87567.0	0.31984	0.59939	0.31985	0.69935	0.31985	0.79913	0.31985	0.90220
THIRD FOIL	ELLIPTICAL	8		•	-		0.01923		•	•		.0200	0.02152	9	.0224		.0236		0.02553	G.02007	0.02877
		ξ			-0.05117		-0.03197	-0.05117	-0.04795	-0.05117	-0.06393	-0.05117	-0.07992	-0.05117	-0.09590	-0.05118	-0.11190	-0.05118	-0.12786	-0.05118	-0.14435
	0.150	673		8-49278	7.97126	.9711	8.32217	.9711	.1214	.97113	.86020		.43636	.97111	12604	.9711	.7543	.9711	678	.9711	5.56069
	K= 0.150 T= 0	N N	CL= 0.16	0	o	o	0	o	o	0	0	Ö	ó	o	o	o	o	o	o	ò	ó
	٥	v		0.10	0.10	0.20	0.2	0.30	0.3	0.40	0.4	0.5	0.5	0:0	0.5	0.70	0.7	0.8	0.8	0.90	0.90

		BINT		0.00723 -0.00189	.00695 0.0373 .00480 -0.0006	.00695 0.0373	00695 0.0373	.00299 0.0002	00695 0.0373	.00695 0.0373	000178 0.0009	.00695 0.0373	.00146 0.0010	.00595 0.0373	00122 0.0011	ELED*O 65900*	K0000 KK000.		00893 -0.0023	5970 0 67800	00849 0.0469	800000 06000	00451 -0.0001	00849 0.0468	00364 0.0003	00301 0.0006	00849 0.0469	00516 0.0010	00849 0.0469	00176 0,0012	47 0.0012	00849
		ACAP		3907	900	3906	3907	0000	3907	3907	0000	3907	000000	0.03907	0.00001	200	77000.		00000	66870.	66870	00000	10000	66890	00000	00000	66870	00000	66840	0000	.00000	0.00098
		Σ.		0.99987	00000	1000	.0001	8665.	00000	00000	6666.	00000	8666	0000	7666.	0000	0000		066660	9000000	0.00000	00000	500000	6000000	0666660	2000000	0.00000	966660	0.00005	1.00002	1.00108	0.00003
0.100		YC(1)		0.06847	0703	0703	0000	7060	0703	0703	2660	0703	1025	0703	1059	200	0011		9090	0627	0627	40,00	0826	0627	0879	0929	0627	0660	0627	1031	1074	0.06272
	DISTRIBUTIONS	ر		3.32593	.392	.478	473	.526	67.7	478	.707	.473	.803	6473	6931	4 (8	1 -1		.3595	.5535	.5536	7555	00000	.5536	66143	07474	.5536	.8476	.5536	50715	.1380	3.55363
DESIGN METHOD WITH XO=		ALPHA		6.48558	1226 2266	.1226	.1226	+868.	.1226	.1226	,5606	.1226	44084	.1226	.2328	1226	0000		6745	2213	2213	7000	1311	2213	9407	7296	2213	5184	2213	3279	1088	6-22128
FOIL DESIG	ICAL PRESSURE	XBAR		0.09993	.199	2000	.317	4399	400	.317	.599	.317	669.	317	799	7100	706.		660.	.317	.317	7.7.7	.299	.317	. 299	667.	.317	665.	.317	6699	199	0.31767
THIRD	ELLIPTICAL	8		0.02691	278	278	1 0	280	2 4 6 7 4 6 7 4 6	7 2	293	278	300	0) (0	310	7 0	0		170	82	382	0 0	100	382	86	0 0	32	302	382	1 2 2 2	324	0.02828
		ž.		-0.00799	0.0254	0.0254	0.0254	0.0319	0.0399	0.0254	0.0479	0.0254	0.0559	0.0254	0.0639	4470.0	77.0.		6600 0	0.0317	0.0317	V V V V V V V V V V V V V V V V V V V	0.0299	0.0317	6660.0	6650.0	0.0317	0.0599	0.0317	0.0699	0.0799	-0.03177
	0.200	5		2.97236	.9334	.8726	.8726	.8481	7784	.8726	.7259	-3725	.6635	.8726	5798	02/20	710.		.6926	.5357	.5357	* 00 0 W	.5689	.5357	40000	3882	.5357	.3066	.5357	-2106	.0851	3.53570
	-150 T=	ş	CL= 0.08	00	0.2163	0.2163	0.2163	0.2255	0.2163	0.2163	0.2335	0.2163	0.2366	0.2163	0.2398	0.27.00	65-7-0	CL= 0.10	.1996	-2110	.2110	2110	.2176	.2110	.2225	.2270	.2110	.2325	.2110	-2364	.2405	0.21104
		v		0.10	44	40 0	. 4	7.	יו ניו	. 0	0	-		0) (00 0	. 0			7		20	9 0	. 60	4.	4 "	1 11		9	- 1		(1)	0.90

5	Ju	1 y	197	7
BF	RP:	JF:	jer)

																-														B	RF	:	JF	:	je	P			
FNIO		-0.00277	.0565	0.0565	60000	.0565	1000	0565	.0003	.0565	.000	.0565	,0012	•0565	.0014	.0565	.0014	.0565	7100			.0031	.0661	.0662	-0.00110	1990	.0001	.0661	.0004	.0661	.0008	.0661	.0013	.0661	.0015	.0661	.0015	.0661	,0014
BINT		0.01059	6600 •	6600.	69000	6600 •	.0052	6600.	.0042	6600	.0035	6600.	.0025	6600.	,0020	66000	. 0017	6600	4100			.0122	0113	0113	0.00798	.0113	0900.	.0113	0048	.0113	.0039	.0113	. UD 28	.0113	.0023	0113	.0019	.0113	0016
ACAP		-0.00001	n	0	1	n. 1	-		1	n	-	fr.	(7	n.	-	Ch	0	0	-	1		0	0.	0	0.0000.0	0,	0	C	0	C	0	C	0	0	0	9	000	.0689	.0001
Σ		166660	00000	00000	0000	.0000	8666	00000	56666	0000	55656	0000	66666	00000	86650	0000	8666	0000	7500			6666	0000	0000	1.00000	0000	8666	0000	6666	0000	6666	0000	6666	0000	6666	0000	1000	0000	0017
YC(1)		0.05248	0660.	00000	10/0	• 0550	0610.	.0550	.0854	•0220	•0913	•0220	• 0987	.0550	.1036	.0550	.1087	.0550	71158			40444	.0472	.0472	0.06502	•0472	•0754	•0472	.0829	.0472	.0898	.0472	.0983	.0472	.1041	.0472	.1101	.0472	.1181
ر		3.39359	.629	629	9649	.629	• 594	.629	407.	•629	•860	•629	.992	.629	.145	629	353	623	696			.4279	.7077	.7077	3.54967	.7077	*999	.7077	.7971	.7077	.9837	.7077	.1413	.7077	.3262	.7077	.5767	· 7077	• 9856
ALPHA		6.86358	.3201	.3201	04/52	.3200	.2114	.3200	.9829	•3200	.7296	.3200	•4762	.3200	.2477	.3200	9844	3200	6037			.0525	.4190	.4190	6.59948	.4189	.2917	•4189	.0251	.4189	.7296	.4189	.4339	.4189	.1673	.4189	.8593	.4189	4344
XBAR		26660.0	.31/5	.3175	.1998	.3175	.2997	.3175	3662	.3175	4664.	.3175	9666	.3175	•6992	.3175	1661	3175	3964			6660.	.3173	.3174	0.19980	.3174	.2997	.3174	.3995	+3174	7667.	.3174	.5993	.3174	*6663	.3174	.7992	.3174	.9001
9		0.02725	.0287	.0287	.02/8	.0287	.0234	.0287	1620.	.0287	.0302	.0287	.0311	.0287	.0323	.0287	.0339	0287	0367			•0274	.0292	.0292	0.02811	.0292	.0288	.0292	.0297	.0292	.0310	.0292	.0321	.0292	.0335	.0292	.0355	· 0292	.0387
ğ		-0.01199	1880-0	0.0381	0.0239	0.0381	0.0359	0.0381	62 40 0	0.0381	0.0599	0.0381	0.0719	0.0381	0.0839	0.0381	0.0958	0.0381	0-1075			.0139	7770.	7770	-0.02797	5550	.0419	• 0444	.0559	\$ 0444	6690 .	7770.	.0839	0444	6160.	5550	.1119	.0444	.1260
?		4.40331	7911.	11/61	.3134	.1751	.2232	.1761	1185	.1761	6896	11161	.8477	11761	.7126	1761	.5369	1761	2688			.10434	00762.	.79395	79086	.79396	.85699	.79395	.71440	.79395	.50622	.79396	.35025	16264.	.17117	.79394	66076.	76861.	.61582
\$	CL= 0.12	0.19198	1502.	.2057	*2058	.2051	•2136	-2057	• 5195	-2057	-2250	.2057	.2315	.2057	.2363	.2057	.2412	73057	.7477	,	CL= 0.14	.1843	.2003	.2003	0.20054	.2003	.2096	.2003	•2165	.2003	•2225	£002 ·	•2306	.2003	.2361	.2003	.2419	.2003	*5495
v		0.10	:						1			9.	.5	-	7.			6	0				-	.2	0.20	4	4	7.	7.		5	9.	0		1.			G.	

THIRD FOIL DESIGN METHOD WITH XO# 0.100

ELLIPTICAL PRESSURE DISTRIBUTIONS

K= 0.150 T= 0.200

.)

		Dint		0.00360	.0759	•0759	100.	.0759	10000	.0759	400	.0759	80000	.0759	.001	.0759	.0016	759	.0016	0.	0.00144	
		E NI 8		0.0137	0.012	0.0126	0.008	0.012	900.0	0.012	0.00541	0.012	0.004	0.012	0.003	0.012	0.002	0.012	0.002	0.012	0000	
		ACAP		-0.00001	079	079	000	079	-0.00001	079	-0.00001	079	000	179	000000-0-	179	-0.00000	079	00	079	0.00019	
		Σ		0.99993	•	•	•	•	•		76566.0	•		•	•	•	•	•		.0000	1.00230	
0.100		YC(1)		0	9	٩	0	9	3	9	0.08034	9	9	9	0		.1046	.0394	7	.0394	0.12110	
# 0 X	DISTRIBUTIONS	ر		7.			•				3.39172										5.30691	
THIRD FOIL DESIGN METHOD WITH		ALPHA		2415	4.1	u,	-	uv	(1)	61	6.06737	4 1	1-	u	(,)	U	\circ	51	36	.518	4.21661	
FOIL DESIG	ICAL PRESSURE	XBAR		0.09991		•	•	•					•	•	•	•	•	•	•	•	0.90044	
THIRD	ELLIPTICAL	8		0.02761	.0296	.0296	.0284	.0296	.0292	.0296	0	.0296	.0319	.0296	.0332	.0296	.0348	.0296	.0371	.0296	.0413	
		ξ		-0.01599	9	9	9	3	0	3	-0.06393	9	9	•		-0.05077	-4	0		-0.05077	7	
	• 200	7/0		5.79552	.3391	.3890	.6324	.3890	6694.	.3890	.283	.3890	.0156	.3890	.81558	.38905	.58847	.38905	•30249	.3890	.8720	
	0.150 T= 0.200	Σ	CL= 0.16	0.1767	0.1950	0.1950	0.1952	0.1950	0.2057	0.1950	0.21	0.1950	0.2209	0.1950	0.2296	0.1950	0.2360	0.1950	0.2427	0-1950	0.2518	
	o #	v		0.10		4			4	1	4		3	.0	9.			(I)	•	0	0.	

5 July 1977 BRP:JF:jep

ò

0.100	
THIRD FOIL DESIGN METHOD WITH XO# 0.100	ELLIPTICAL PRESSURE DISTRIBUTIONS

	Ø
	ACAP
	Σ
	YC(1)
ELLIPTICAL PRESSURE DISTRIBUTIONS	_
ELLIPTICAL PRESSURE DISTRIBUTIONS	ALPHA
ICAL PRESS	XBAR ALPHA
ELLIPT	9
	ð
-100	2
K= 0.200 T= 0.100	Э́
(= 0.20	v

		DINT		-0.01688	0.04586	0.006987	0.04586	66000.0	0.04587	16200.0	0.04585	0.00589	98570.0	0.00882	0.04587	0.01025	0.04587	0.01085	0.04586	0.01013
		B 1N1		•		0.03049		0.02091		0.01472					79070.0	0.00255		0.00116	0.04064	89000.0
		ACAP		00000-0-	-0.05606	90990000	-0.05606	-0.00000	-0.05606	000000-0-	-0.05606	-0.00000	-0.05606	-0.00000	-0.05606	10000.0-	-0.05606	-0.00002	-0.05606	0.00001
		Σ.		86666.0		000000	0.00003	0.99993	0.00001	966660		66666*0							0.00001	1.00010
0.100		YC(1)		0.01292	0.01655	0.01655	0.01655	0.03434	0.01655	0.03990	0.01655	0.04552	0.01655	0.05248	0.01655	0.05763	0.01655	0.06349	0.01655	0.07208
	DISTRIBUTIONS	ر .		1.37791	1.45556	1,45556	1.45556	1.43525	1,45556	1.47138	1.45556	1.53068	1.45556	1.58056	1.45556	1.64450	1.45556	.7396	1.45556	t
W METHOD W		ALPHA		4.31380	3.56609	3.81753	3.56606	3.48044	3.56607	3.18848	3.56606	2.86479	3.56606	2.54101	3.56605	2.24891	3.56606	1.91038	3.56607	1.41814
THIRD FOIL DESIGN METHOD WITH XO=	ICAL PRESSURE	XBAR		0.09991	0.33015	0.19980	0.33016	0.29970	0.33016	0.39959	0.33016	64664.0	0.33016	0.59940	0.33016	0.69927	0.33016	0.79901	0.33016	0.89916
THIRD	ELLIPTICAL	8		0.01788	•	0.01729	•	•	•		•	•	•	•	•	•	0.01729	•	•	0.02121
		ફ		-0.01598	528	-0.05283	528	0	528	O.	0528	661	0528	626	0528	.1118	528	0)	00	-0.14387
	•100	20		76.	.25476	-1 t	.25473	.32266	.25473	.40333	125477	.28001	.25480	19342	-25475	.95223	.25478	44787.	.25484	.5432
	0.200 T= 0.100	Ω×	CL= 0.16	0.2339	0.2670	0.26710	0.2670	0.2850	0-2670	0-2976	0.2570	0.3086	0.2670	0.3230	0.2570	0.3325	0.2670	13	670	0.35384
	× 0 .	v		0.10	0.10	00.50	0.30	0.30	0.40	0+40	0.50	0.50	09.0	0.50	0.70	0.70	08.0	æ	06.0	06.0

(

(

(

1/0										
	δ	8	XBAR	ALPHA	ب	40(1)	Σ	ACAP	BINT	DIN
	6100	•0247	6660	0216	• 7860	.0513	6666	0000000	.0157	1 4000
	0000	0000	0000	4664	10000	0000		0000	7410.	2000
	0159	7470	800	7735	2000	0603	0000	0000	0100	7100
	.0259	6720.	3245	.6594	.8451	.0537	.0001	0319	.0142	.0284
	.0239	.0247	.2997	.6050	.8329	.0650	8556.	0000	.0073	.0001
	.0259	•0249	.3245	•6594	*8451	.0537	00000	0319	.0142	.0284
	.0319	.0248	.3995	•4590	• 8595	•0684	3666.	0000	.0055	.0000
	-0.02596	0.02490	0.32456		1,84513	0.05370	9000000	-0.03197	0.01425	0.02849
	, 000 m	1020	277.0	2/620	1 to 1 to 2 to 2 to 2 to 2 to 2 to 2 to	1100	NOC.	0000	0100	100.
	0479	6520	2003	2 5 2	1040	7570	00000	4100	24100	72700
	.0259	0240	3745	4554	8451	.0537	0000	0319	0142	2820
	.0559	.0256	6992	6686	9016	.0785	3666.	0000	.0017	.0033
	.0259	.0249	.3245	.6594	.8451	.0537	.0000	0319	.0142	.0284
	.0639	.0262	. 7992	·8241	*0245	.0815	1000.	0000	.0011	.0037
	.0259	.0249	.3245	*659	.8451	.0537	00000	0319	.0142	.0284
	.0720	00274	.9002	.5736	.1187	•0880•	•0050	0000	.0000	•0039
	6600.0	.0247	6660.	202	7797.	.0452	6666	-0.00000	.0194	.0058
	0.0324	0770	2476	1000	10.00	00000		20000	1770	V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	0.0199	.0247	.1998	.892	.8279	.0565	0000	0000	.0123	.0020
	0.0324	.0249	.3242	0	.8731	.0480	0000	20	.0174	.0359
	0.0299	.0247	.2997	.681	.8576	,0624	8666	0000	0600.	.0002
	0.0324	•0249	.3242	• 750	.8731	.0480	0000	0402	.0174	.0359
	0.0399	0549	.3995	664.	.8919	•0666	6666	0000	.0068	.0011
	0.0324	•0249	.3242	• 750	.8731	.0480	0000	0405	+0174	.0359
	0.0499	.0253	7667.	•297	* 8434	•0708	6666	0000	.0052	.0021
	0.0324	•0249	.3242	•750	.8731	.0480	0000	0405	.0174	.0359
	0.0599	.0256	.5993	160.	9886.	.0758	0666	0000	.0032	.0032
	0.0324	•0249	.3243	.750	.8731	•0480	0000	• 0405	.0174	.0359
	6690 0	.0250	• 6992	.915	.0366	.0793	8666	0000.	.0022	.0039
	0.0324	.0249	.3243	.750	.8731	.0480	0000	402	.0174	.0359
	U.0798	0200	1.000							
	0	. 7400	1861.	.701	.1078	.0831	5006	00000	.0015	.0043
	-0.03243	0.02495	0.32430	3,70166	2.10785	0.08316	86866.0	.0000	0.00152	000

		BINT		0	202	2052	54	2052	1901	2052	0807	0.02052	56190	.02052	.00380	.02052	0266	2002	(1)	10	0139
		m		0.0	0.0	0.0	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0018	0.0	0.0
		ACAP		-0.00000	-0.04854	-0.04854	0.000000	-0.04854	-0.00001	-0.04854	000000-0-	-0.04854	000	-0.04854	000000-0-	-0.04854	-0.00000	-0.04854	0.0000.0	10.04854	0.00001
		Σ		5666	0000	0000000	0000	6000000	0.99988	4000000	265	4	568	00	66666.0	00	0	0.00002	1.00003	0.00002	1.00022
0.100		YC(1)		-	423	0.04232	527	0.04232	265	6.53	548	0.04232	868	423	753	423	801	423	847	423	0.09134
# 0 X	DISTRIBUTIONS			.8096	1.90198	.9019	68465	.9019	.8831	.9019	.9255	1.90198	.9893	.9019	.0421	.9019	.1062	.9019	.1955	.9019	2.35208
THIRD FOIL DESIGN METHOD WITH		ALOHA		5.38393	4.84231	2	5.01173	N	4.75893	4.84226	4.53996	4.84226	.2972	4.84226	4.05434	4.84226	3,83529	2	3,58328	.3422	3.21119
FOIL DESIG	ICAL PRESSURE	XBAR			0.32401	0.32402		0.32402	0.29970	0.32403		0.32403	0.49948	0.32403	0.59940	0.32403	0.69927	0.32403	0.79921	0.32403	0.89923
THIRD	ELLIPTICAL	8		0.02469	0.02502	0.02502	0.02469	0.02502	0.02477	0.02502	0.02498	0.02502	0.02554	0.02502	0.02594	0.02502	0	0.02502	0	0.02502	0.02966
		ξ		-	38	38	53	-0.03888	35	38	1.	33	+6650°0-	-0.03888	-0.07193	-0.03888	-0.08391	-0.03883	-0.09591	-0.03888	-0.10791
	0.150	7/0		4.86018		-		_	~	~	-	~		~~		-	~	~	~		
	K= 0.200 T= 0	₹ 6	71.0 = 77	0.22546	0.24240	0.24240	0.24252	0.24240	0.25190	0.24240	0.25870	0-24240	0.26484	0.24240	0.27250	0.24240	0.27778	•	0.28303	0.24240	0.29011
	0	S		0.10	10	.20	.20	.30	.30	04.	04.	.50	000	09.	09.	.70	. 70	08.	.80	06.	06.0

-0.00793	0.05120	0.05120	-0.00281	0.05119	-0.00026	0.05120	0.00143	0.05120	0.00265	0.05120	0.00410	0.05120	0.00478	0.05120	0.00513	0.05120	0.00440
0.02665	0.02345	0.02345	0.01681	0.02345	0.01217	0.02345	0.00923	0.02345	0.00708	0.02345	0.00439	0.02345	0.00312	0.02345	0.00229	0.02345	0.00157
-0.00000	-0.05697	-0.05697	0000000	-0.05697	-0.00001	-0.05697	-0.00000	-0.05697	000001-	-0.05697	-0.00000	10.05697	00000-0-	16990-0-	-0.00002	-0.05697	0.00000
56666.0	9000000	0000000	1.00000	0.000.0	06666 0	4000000	766660	6000000	56666.0	0.00003	16666.0	0.00003	86566 0	0.00002	01666.0	0,00002	1.01140
0.03303	0.03646	0.03646	0.04886	0.03646	0.05705	0.03646	0.06303	0.03646	0.06879	0.03546	0.07589	0.03646	0,08088	0.03646	0.08627	0.03646	0.09457
1.32169	1.93162	1.93163	1.86559	1.93163	1.90926	1.93163	1.96016	1.93164	2.03715	1.93164	2.10130	1,93164	2.17928	1.93164	2.28875	1,93164	2.48326
5.56505	4.93412	4.93407	5.13083	4.93406	4.83589	4.93405	4.53043	4.93405	4.29721	4.93404	4.01386	4.93404	3.75837	4.93404	3.46300	4.93404	3.01948
16660.0	0.32376	0.32377	0.19980	0.32377	0.29970	0.32377	0.39959	0.32377	87667.0	0.32378	0.59939	0.32378	0.69990	0.32378	0.79905	0.32376	0.90570
0.02467	0.02511	0,02511	0.02469	0.02511	0.02481	0.02511	0.02509	0.02511	0.02580	0.02511	0.02633	0.02511	0.02712	0.02511	0.02844	0.02511	0.03106
-0-01399	-0.04533	-0.04533	-0.02797	-0.04533	-0.04196	-0.04533	-0.05594	-0.04533	-0.06993	-0.04533	-0.08392	-0.04533	-0.09790	-0.04533	-0.11187	-0.04533	-0.12680
																	4.50682
0.10 0.21550	0.10 0.23526	0.20 0.23527	0.20 0.23541	0.30 0.23527	0.30 0.24638	0.40 0.23527	0.40 0.25433	0.50 0.23527	0.50 0.26155	0.60 0.23527	0.60 0.27054	0.70 0.23527	0.70 0.27676	0.80 0.23527	0.80 0.28302	0.90 0.23527	0.90 0.29160
	0.21550 5.67493 -0.01399 0.02467 0.09991 5.56505 1.32169 0.03303 0.99995 -0.00000 0.02665	0.21550 5.67493 -0.01399 0.02467 0.09991 5.56505 1.32169 0.03303 0.99995 -0.00000 0.02665 0.23526 5.57509 -0.04533 0.02511 0.32376 4.93412 1.93162 0.03646 0.00006 -0.05697 0.02345	0.21550 5.67493 -0.01399 0.02467 0.09991 5.56505 1.82169 0.03303 0.99995 -0.00000 0.02665 0.22526 0.22526 0.02511 0.32376 4.93412 1.93162 0.03646 0.00006 -0.05697 0.02345 0.22352 0.22527 5.57509 -0.04533 0.02511 0.32377 4.93407 1.93163 0.03646 0.00000 -0.05697 0.02345	0.21550 5.67493 -0.01399 0.02467 0.09991 5.56505 1.82169 0.03303 0.99995 -0.00000 0.02665 0.23526 0.0257509 -0.04533 0.02511 0.32376 4.93412 1.93162 0.03646 0.00006 -0.05697 0.02345 0.23527 0.23527 0.02343 0.02511 0.32377 4.93407 1.93163 0.03646 0.00000 -0.05697 0.02345 0.23541 5.67102 -0.02797 0.02469 0.19980 5.13033 1.886559 0.04886 1.00000 0.00000 0.01681	0.21550 5.67493 -0.01399 0.02467 0.09991 5.56505 1.82169 0.03303 0.99995 -0.00000 0.02665 0.23526 0.02569 0.02511 0.32376 4.93412 1.93162 0.03646 0.00006 -0.05697 0.02345 0.23527 5.57509 -0.04533 0.02511 0.32377 4.93407 1.93163 0.03646 0.00000 -0.05697 0.02345 0.23541 5.67102 -0.02797 0.022469 0.19980 5.13033 1.86559 0.04886 1.00000 0.00000 0.01681 0.23577 4.93406 1.93163 0.03646 0.00010 -0.05697 0.02345	0.21550 5.67493 -0.01399 0.02467 0.09991 5.56505 1.82169 0.03304 0.99995 -0.00000 0.02665 0.02345 0.022481 0.22970 4.83589 1.99976 0.05705 0.99999 -0.00001 0.01217 0.02245	0.21550 5.67493 -0.01399 0.02467 0.09991 5.56505 1.32169 0.03303 0.99995 -0.00000 0.02665 0.22526 5.57509 -0.04533 0.02511 0.3237 4.93412 1.93162 0.03646 0.00006 -0.05697 0.02345 0.22552 5.57509 -0.04533 0.02511 0.32377 4.93407 1.93163 0.03646 0.00000 -0.05697 0.02345 0.22571 5.67102 -0.02797 0.02249 0.19980 5.13033 1.88559 0.04886 1.00000 0.00000 0.01681 0.22527 5.57509 -0.04533 0.02511 0.32377 4.93406 1.93163 0.03646 0.00010 -0.05697 0.02345 0.022481 -0.04533 0.02511 0.32377 4.93405 1.993163 0.03646 0.00000 -0.05697 0.02345 0.02481 0.02591 0.32377 4.93405 1.993163 0.03646 0.00000 -0.05697 0.02345 0.02581 0.32377 4.93405 1.993163 0.03646 0.00000 -0.05697 0.02345 0.02345	0.21550 5.67493 -0.01399 0.02467 0.09991 5.56505 1.32169 0.03303 0.99995 -0.00000 0.02665 0.22526 5.57509 -0.04533 0.02511 0.32376 4.93412 1.93162 0.03646 0.00006 -0.05697 0.02345 0.22527 5.57509 -0.04533 0.02511 0.32377 4.93407 1.93163 0.03646 0.00000 -0.05697 0.02345 0.23541 5.67102 -0.02797 0.02249 0.19980 5.13033 1.86559 0.04886 1.00000 0.00000 0.01681 0.22453 0.02541 0.22377 4.93406 1.93163 0.03646 0.00010 -0.05697 0.02345 0.22453 0.02541 0.22377 4.93405 1.90026 0.09999 -0.005697 0.02345 0.02343 0.02541 0.32377 4.93405 1.93163 0.03646 0.00001 -0.05697 0.02345 0.22453 0.02599 0.02481 0.32377 4.93405 1.93163 0.03646 0.00001 0.005999 -0.005999 0.00001 0.00345 0.22453 0.02543 0.02541 0.22579 0.22593 0.02543 0.02543 0.02543 0.02543 0.02543 0.02543 0.02543 0.02543 0.02543 0.02543 0.02592 0.00001 0.00923	0.21550 5.67493 -0.01399 0.02467 0.09991 5.56505 1.32169 0.03303 0.99995 -0.00000 0.02665 0.22526 0.22526 0.02511 0.32376 4.93412 1.93162 0.03646 0.00006 -0.05697 0.02345 0.22527 5.57509 -0.04533 0.02511 0.32377 4.93407 1.93163 0.04886 1.00000 -0.05697 0.02345 0.22527 5.57509 -0.04533 0.02581 0.32377 4.93405 1.90926 0.09999 -0.005697 0.02345 0.02345 0.02581 0.32377 4.93405 1.99163 0.09999 -0.005697 0.02345 0.02345 0.02581 0.32377 4.93405 1.99163 0.09999 -0.005697 0.02345 0.02345 0.02583 0.02581 0.32377 4.93405 1.99163 0.09999 -0.005697 0.02345 0.02345 0.02581 0.32377 4.93405 1.99163 0.003446 0.005697 0.005697 0.02345 0.02345 0.02581 0.32377 4.93405 1.99163 0.003446 0.005697 0.005697 0.02345 0.02583 0.02581 0.32377 4.93405 1.99164 0.036446 0.00003 -0.05697 0.02345 0.02345 0.02581 0.32377 4.93405 1.99164 0.036446 0.00003 -0.05697 0.02345 0.02345 0.02587 0.02581 0.32377 4.93405 1.99164 0.036446 0.00003 -0.05697 0.02345	0.21550 5.67493 -0.01399 0.02467 0.09991 5.56505 1.82169 0.03364 0.00000 0.02697 0.02345 0.23526 5.57509 -0.04533 0.02511 0.23377 4.93407 1.93163 0.03646 0.00006 -0.05697 0.02345 0.23527 5.57509 -0.04533 0.02511 0.32377 4.93407 1.86559 0.00000 -0.05697 0.02345 0.23527 5.57509 -0.04533 0.02511 0.32377 4.93405 1.99766 0.09999 -0.05697 0.02345 0.23527 5.57509 -0.04533 0.02511 0.32377 4.93405 1.99766 0.09999 -0.05697 0.02345 0.23637 5.57508 -0.04533 0.02511 0.32377 4.93405 1.99164 0.00504 -0.05697 0.02345 0.23637 5.57508 -0.04533 0.02511 0.32377 4.93405 1.99164 0.00000 -0.05697 0.02545 0.23627 5.57508 -0.04533 0	0.21550 5.67493 -0.01399 0.02467 0.09991 5.56505 1.82169 0.03304 0.99995 -0.00000 0.02657 0.02569 0.23526 5.57509 -0.04533 0.02511 0.32377 4.93407 1.93162 0.00006 -0.05697 0.02345 0.23527 5.57509 -0.04533 0.02511 0.32377 4.93405 1.93163 0.00000 -0.05697 0.02345 0.23527 5.57509 -0.04533 0.02481 0.32377 4.93405 1.93163 0.06000 -0.05697 0.02345 0.23527 5.57509 -0.04533 0.02511 0.32377 4.93405 1.93163 0.06000 -0.05697 0.02345 0.23527 5.57508 -0.04533 0.02511 0.32377 4.93405 1.93164 0.05504 -0.05697 0.02345 0.23527 5.57508 -0.04533 0.02511 0.32377 4.93405 1.93164 0.05000 -0.05697 0.02345 0.23527 5.57508 -0.04533	0.21550 5.67493 -0.01399 0.02467 0.09991 5.56505 1.93162 0.03304 0.99995 -0.00000 0.02657 0.02657 0.02657 0.02657 0.02657 0.02657 0.02657 0.02657 0.02657 0.02657 0.02657 0.02657 0.02657 0.02657 0.02657 0.02657 0.02657 0.02657 0.02667 0.02665 0.02665 0.02667	0.21550 5.67493 -0.01399 0.02467 0.09991 5.56505 1.82169 0.03303 0.99995 -0.00000 0.02465 0.02467 0.02467 0.02462 1.93162 0.03646 0.00006 -0.05697 0.02345 0.23527 5.57509 -0.04533 0.022461 0.19980 5.13003 0.03646 0.00000 -0.05697 0.02345 0.23527 5.57509 -0.04533 0.022461 0.19980 5.13003 0.03646 0.00000 -0.05697 0.02345 0.23527 5.57509 -0.04136 0.02511 0.32377 4.93406 1.93163 0.06304 -0.05697 0.02345 0.23527 5.57508 -0.04533 0.02511 0.32377 4.93405 1.93163 0.05607 0.025697 0.02345 0.23527 5.57508 -0.04533 0.02511 0.32377 4.93404 1.93164 0.05697 0.005697 0.02345 0.23527 5.57508 -0.04533 0.02511 0.32377 4.93404 1.93164	0.23526 5.57509 -0.04533 0.02511 0.32377 4.93412 1.93162 0.03646 0.00000 0.02365 0.02345 0.02511 0.32376 4.93412 1.93162 0.03646 0.00006 -0.05697 0.02345 0.023512 0.02511 0.32377 4.93407 1.93163 0.03646 0.00000 0.02697 0.02345 0.23541 5.67102 -0.04533 0.02241 0.32377 4.93407 1.93163 0.03646 0.00000 0.005697 0.02345 0.23541 5.67102 -0.04533 0.02511 0.32377 4.93405 1.993163 0.03646 0.00000 0.005697 0.02345 0.23537 5.57508 -0.04533 0.02511 0.32377 4.93405 1.993163 0.03646 0.00000 -0.05697 0.02345 0.23527 5.57508 -0.04533 0.02511 0.32377 4.93405 1.993164 0.03646 0.00000 -0.05697 0.02345 0.23527 5.57508 -0.04533 0.02511 0.32377 4.93405 1.993164 0.06303 0.99994 -0.00000 0.00923 0.02345 0.02511 0.32377 4.93405 1.993164 0.06303 0.99994 -0.05697 0.02345 0.02345 0.02593 0.02511 0.32377 4.93404 1.93164 0.03646 0.00003 -0.05697 0.00345 0.00345 0.002511 0.32377 4.93404 1.93164 0.03646 0.00003 -0.05697 0.02345 0.02345 0.02511 0.32377 4.93404 1.93164 0.03646 0.00003 -0.05697 0.02345 0.002345 0.02511 0.32378 4.93404 1.93164 0.03646 0.00003 -0.05697 0.02345 0.00246 0.00003 -0.06593 0.02511 0.32378 4.93404 1.93164 0.03646 0.00003 -0.05697 0.003345 0.02345 0.02511 0.32378 4.93404 1.93164 0.03646 0.00003 -0.005697 0.00000 0.003145 0.22375 0.02511 0.32377 0.02693 0.02511 0.32378 4.93404 1.93164 0.03646 0.00003 -0.005697 0.002345 0.005697 0.005697 0.00000 0.003145 0.22375 0.02511 0.22377 0.02693 0.02511 0.32378 4.93404 1.93164 0.00600 0.00003 -0.005697 0.00000 0.003145 0.22375 0.00600 0.00000 0.003145 0.22375 0.00600 0.002145 0.000000 0.002145 0.00600 0.002145 0.00600 0.00000 0.002145 0.00600 0.00000 0.002145 0.00600 0.00000 0.002145 0.00600 0.00000 0.002145 0.00600 0.00000 0.00000 0.002145 0.00600 0.00000 0.00000 0.002145 0.00600 0.00000 0.0	0.21550 5.67493 -0.01399 0.02467 0.09991 5.56505 1.93162 0.03646 0.09995 -0.01399 0.02511 0.93412 1.93162 0.03646 0.00006 -0.05697 0.02345 0.25526 5.57509 -0.04533 0.02511 0.32377 4.93407 1.93163 0.03646 0.00006 -0.05697 0.02345 0.25527 0.02469 0.02469 0.02469 0.02469 0.02646 0.00006 -0.05697 0.02345 0.25527 0.02469 0.02469 0.02469 0.02469 0.02469 0.02469 0.02466 0.00000 0.02545 0.25547 0.02469 0.02469 0.02466 0.02646 0.00000 0.02545 0.02345 0.25527 0.02467 0.02511 0.32377 4.93405 1.93163 0.03646 0.00000 0.02545 0.25527 0.02511 0.32377 4.93405 1.93164 0.02646 0.00000 0.002645 0.02345 0.25527 0.02511 0.32377<	0.21550 5.57509 -0.04539 0.02467 0.09991 5.56505 1.32169 0.03304 0.99995 -0.00000 0.02345 0.02245 0.02511 0.32377 4.93402 1.93162 0.03646 0.00000 -0.05697 0.02345 0.02511 0.32377 4.93402 1.93163 0.03646 0.00000 -0.05697 0.02345 0.22541 5.67509 -0.04533 0.02511 0.32377 4.93405 1.93163 0.03646 0.00000 -0.05697 0.02345 0.23527 5.57509 -0.04533 0.02511 0.32377 4.93405 1.93163 0.03646 0.00000 -0.05697 0.02345 0.23527 5.57509 -0.04533 0.02511 0.32377 4.93405 1.93163 0.03646 0.09999 -0.05697 0.02345 0.22543 5.57508 -0.04533 0.02511 0.32377 4.93405 1.93163 0.03646 0.09999 -0.05697 0.02345 0.025633 0.02511 0.32377 4.93405 1.93164 0.03646 0.00000 -0.05697 0.02345 0.025633 0.02511 0.32377 4.93405 1.93164 0.03646 0.00003 -0.05697 0.02345 0.025511 0.32377 4.93405 1.93164 0.03646 0.00003 -0.05697 0.02345 0.025511 0.32377 4.93405 1.93164 0.03646 0.00003 -0.05697 0.02345 0.025511 0.32377 4.93405 1.93164 0.03646 0.00003 -0.05697 0.02345 0.025511 0.32377 4.93405 1.93164 0.03646 0.00003 -0.05697 0.02345 0.025511 0.32378 4.93405 1.93164 0.03646 0.00003 -0.05697 0.02345 0.025511 0.32378 4.93405 1.93164 0.03646 0.00003 -0.05697 0.003345 0.02345 0.025511 0.32378 4.93405 1.93164 0.03646 0.00003 -0.05697 0.003345 0.02345 0.02511 0.32378 4.93404 1.93164 0.03646 0.00003 -0.05697 0.00345 0.02345 0.025511 0.32378 4.93404 1.93164 0.03646 0.00003 -0.05697 0.003245 0.02345 0.02512 0.02512 0.02512 0.02545 0.00003 -0.00000 0	493 -0.01399 0.02467 0.09991 5.56505 1.82169 0.03303 0.99995 -0.00000 0.02657 0.02345 50.9 -0.04533 0.02511 0.32376 4.93412 1.93162 0.03646 0.00006 -0.05697 0.02345 102 -0.04533 0.02511 0.32377 4.93407 1.89559 0.04886 1.00000 -0.05697 0.02345 102 -0.02797 0.02511 0.32377 4.93406 1.99163 0.00000 -0.05697 0.02345 509 -0.04533 0.02511 0.32377 4.93406 1.99164 0.003646 0.00000 0.01561 0.02345 508 -0.04533 0.02511 0.32377 4.93405 1.99164 0.02646 0.00000 0.02345 508 -0.04533 0.02511 0.32377 4.93404 1.93164 0.02646 0.00000 0.005697 0.00345 508 -0.04533 0.02511 0.32378 4.93404 1.93164 0.03646 0.00000

)

0

.)

C

0

		FNIO		6,00895	0000	6	590	0.00029	290	015	290	0.00289	£0550°0	.0044	0.05903	.0050	60550.0	0.00542	0.05903	0.00570
		FNIS		0.03015 -		31893 -		- 99810	929	01034	2	.0079	.0262	96700.0	0.02626	0.00357	.0262	0.00269	0.02626	0.00221
		ACAP		00000-0-	-0.06549	000	-0.06549	-0.00001	-0.06549	-0.00000	-0.06549	-0.00000	64590.0-	000000-0-	-0.06549	0.00000	-0.06549	0	-0.06549	-0.00058
		Σ		96666.0	0000000	-					0.00002	96666 0			0.00001	1.00001			0.00001	0.99184
0.100		YC(1)		0.02683	0.03048	0.04492	0.03048	0.05429	304	0.06113	304	577	•	.0758	0.03048	0.08159	.0304	0.08773	0.03048	80960.0
WITH XO# 0	DISTRIBUTIONS	ر		.833	1.96211	00	1.96211	0	0	.995	1.96211	•086	1.96211	.163	.962	2.25599		.386	1.96212	6005
N METHOD W	URE DISTRI	ALPHA		5.74619	5.02612	5.24992	.0261	.9128	.0260	4.62088	5.02609	4.29720	5.02609	3.97339	5.02609	3.68143	0	.3436	5.02609	2.86349
THIRD FOIL DESIGN METHOD	ELLIPTICAL PRESSURE	XBAR		2,	0.32352	.199	0.32352	0.565.0	0.32352	636660	0.32352	87667.0	3		.32	0.69931	.32	.79	0.32353	0.89438
THIRD	ELLIPT	8		•0245	0.02323	.0247	.0252	.0248	.0252	.0252	0	.0261	.0252	.0267	.0252	.0277	.0252	.0294	.02	.0325
		£		0159	-0.05176	.0319	.0517	6140.	.0517	.0639	-0.05176	6640.	17	6960.	.0517	1118	517	1278	0517	-0.14310
	.150	2		14897	47	44784	.3425	.4331	.3425	.3402	·3425	•1276	.3425	6716	525	.7620	25	.4426	25	
	K* 0.200 T* 0.150	N W	CL= 0.16		0.22	0.22	0.22	0.24	0.22	6.24	0.22	0.25	0.22	0.26	0.22	0.27	0.22	0 0.28	90 0.22	0 0.29
	ž			00	00	o	o	ò	0	0	0	0	ó	ó	0	o	0			

(

			THIRD	FOIL DESIG	DESIGN METHOD	WITH XO=	0.100					
K= 0.200 7	T= 0.200		ELLIP	LLIPTICAL PRESSURE		DISTRIBUTIONS						
S	۲/۵	Š	0	XBAR	ALPHA		YC(1)	Σ	ACAP	BINT	DINT	
CL= 0.	.03											
.10 0.225	8 2.3921	0.0079	.0334	6660.	.4540	.3859	•0726	.9993	.0000	.0104	.0028	
*10 0.234	0 2.3462	0.0256	.0341	.3205	.1003	64695	.0747	0000	.0350	.0098	.0326	
.20 0.234	2,3462	0.0256	.0341	.3205	.1003	• 4695	•0747	0000	.0350	8600.	.0326	
.20 0.234	8 2.3778	0.0159	.0336	1998	•2059	•4215	•0859	• 0000	0000	.0063	0100	
0.30 0.2342	2294622	-0.02564	0.03410	0.32056	6.10031	2,46955	0.07476	0.00018	-0.03507	0.00987	0,03265	
A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2105.2	20000	2000	- 1000	1000	10000	0000	- ハウス・	0000	1000	00000	
242 0 042	701667	0.020.0	1450	3000	4100.	4000	1000	3000	0000	0.000	0000	
50 0.234	1 2.3467	0.0256	0341	3006	1001	4697	7770	0000	0350	8500	0326	
.50 0.245	7 2-2997	6680.0	.0347	1667	.7296	5478	.0956	66666	00000	.0033	5000	
.60 0.234	1 2.3462	0.0255	.0341	.3205	.1003	4695	.0747	.0000	0380	.0098	.0326	
.60 0.249	7 2.2714	0.0479	.0352	.5993	.5577	75927	.1000	66666	0000	.0022	.0015	
.70 0.234	1 2,3462	0.0256	.0341	.3205	.1003	.4695	0747	.0000	.0350	.0098	.0326	
.70 0.252	8 2.2348	0.0559	.0358	.6992	.4216	.6456	.1030	66660	0000	.0017	.0018	
.80 0.234	1 2.3462	0.0255	.0341	.3205	.1002	64695	.0747	00000	.0350	.0098	.0326	
.80 0.255	1 2.1820	6690.0	.0366	.7991	.2537	.7169	.1061	8666.	.0000	,0013	.0021	
.90 0.234	1 2,3462	.0256	.0341	.3206	.1002	.4695	.0747	.0000	.0350	8500	.0326	
.90 0.259	5 2.0914	0.0719	.0382	8987	.0113	.8366	.1106	£686°	.0000	.0010	.0022	
CL= 0.	10											
				,								
10 0.218	2.9827	6600.	.0335	60	•6352	• 4035	•0655	8666.		.0129	.0035	
10 0.228	2.9036	320	.0343	32	.1935	.5097	•0682	0000	-0.04402	.0121	0170	
877.0 07.	2.0502	0000	0000	00	00000	・いつい・	0000		20440.01	7770	0140	
30 0.228	2.9085	0350	0343	100	1934	1000	0400	1000	10.04402	1000	0170	
.30 0.235	4 2.9321	6620	.0341	29	.1143	.4914	.0852	8666	-0.00001	.0063	.0001	
.40 0.228	8 2.9085	0320	.0343	32	.1934	.5097	.0682	00000	-0.04402	.0121	.0410	
•40 0 539	0 2.8958	6660	.0345	6	.9319	.5400	6680.	6666.	00000-0-	.0050	.00062	
.50 0.228	8 2.9085	0350	.0343	32	.1934	.5097	.0682	.0000	-0.04402	.0121	.04105	131
.50 0.243	3 2.8329	6650	.0353	65	.7296	.6101	7760.	66666	-0.00000	00000	91100.	T
.60 0.228	8 2.9085	0320	.0343	32	.1934	. 5097	.0682	00000	-0.04402	.0121	.04105	
*60 0*248	5 2.7872	6650	.0358	50	.5272	.6681	6660.	66666	-0.00000	.0027	.00186	T.
.70 0.228	8 2.9035	0350	.0343	32	.1934	18081	.0682	0000	-0.04402	.0121	.04105	• 1
.70 0.252	2 2 2 2 3 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2	6590	•0366	69	.3447	. 7365	.1037	.0001	0000000	.0021	.00221	GI
0.80 0.2289	2 90358	-6.03204	0.03438	0.32042	6.19342	2,50973	0.06822	900000	-0.04402	0.01210	50150	,
000000000000000000000000000000000000000	79497	10000		, ;		.8238	9/01	0000	•	9100.	42004	
0.40.00.00	2,4085	0250	00000	0 0	41934	7 2000	• 065K	00000	-0.04402	1210.	0150	
002.0 05.	C+0C+7 6	かかのつ	へんのつ。	のかかの	*07D.	2000.	7511.	0000.	•	9100.	*200·	

.)

				THIRD	FOIL DESIGN	METHOD	WITH XO=	0.100			
	.200 7= 0	002-0		ELLIPTICAL	œ a	ESSURE DISTRI	STRIBUTIONS				
v	Š	5	ξ	8	XBAR	ALPHA		YC(1)	Σ	ACAP	BINT
	CL= 0.12										
01.0	00	3.57007	-0.01199	0.03361	0.09992	6.81634	2.42143	0.05869	0.99990	-0.00001	0.01534 -
. "	0.2237	.4598	0.0384	.0346	.3202	.2867	.5507	.0616	0000	0.0530	.0142
20	0.2238	65348	0.0239	0339	.1998	14441	4759	.0741	0000	000	66000
	0.2311	4938	0.0359	0343	.2997	1913	.5286	.0821	8666	0000	4000
.5	0.2237	.4598	.0384	.0346	.3202	.2867	.5507	•0616	0000	00	.0142
1 1	0.2365	9654	0.04/9	0348	3202	5216.	.5880	9/80.	6666	000000000000000000000000000000000000000	60000
in	0.2415	.3471	6650.0	.0358	4664.	.7296	.6743	.0932	66666	0000	.0047
0	0.2237	.4598	0.0384	.0346	.3202	.2867	.5507	.0616	0000	0530	.0142
01	0.2475	•2794	0.0719	.0365	6993	• 4867	.7460	8660.	5666	00000	.0032
- 1	0.2237	1037	0.0384	0346	.3202	.2867	.5507	•0616	0000	0530	.00142
- 03	0.2237	6654.	0.0384	0346	.3202	.2867	.5507	.0616	00000	0230	.0142
00)	0.2561	.0744	0.0959	0360	.7992	.0156	.9461	.1091	.0001	0000	.0020
0	0.2237	44598	0.0384	.0346	.3202	.2867	.5507	.0616	0000	0530	.0142
0	0.2620	.8852	0.1084	.0415	0706	06 99	.1431	,1159	000	0000	.0015
	נוב מיוי										
	0.2034	.1537	0.0139	.0337	6660.	4766.	4394	.0516	6666.	.0000	.0177
	0.2185	.9993	0.0448	.0350	.3200	.3802	.5925	.0548	0000	0.0621	.0163
0.20	0.21854	3.99934	-0.04481	0.03501	0.32008	6.38018	2,59260	0.05489	0.00000	-0.06210	0.01630
•	0.2185	2666.	0.0448	.0350	.3200	3801	2000	.0548	0000	0.0620	01630
	0.2272	.0458	0.0419	.0346	.2997	.2683	.5664	.0790	86669	0000	.0085
	0.2185	.9993	0.0448	•0320	.3200	.3801	•5926	.0548	0000	0620	.0163
	0.2334	9696	0.0559	.0352	. 3995	•0128	.6373	•0356	6666	000	.0067
	0.2185	56663	0.0448	0350	0028.	.3801	2255	0000	00000	0620	00103
	0.2185	2666	0.0448	0350	3200	.3801	5000	.0548	0000	200	0163
	0.2463	.7473	0.0839	.0373	. 5993	.4462	.8266	9660.	6666.	0000	.0036
	0.2185	2666.	0.0448	.0350	.3200	.3801	.5926	.0548	0000	.0621	.0153
	0.2514	•6298	0.0979	.0385	.6992	9061.	•9289	,1049	8666.	00000	.0028
22.00	0.2185	6666.	0.0448	.0350	.3200	.3801	,5926	0548	0000	0621	.0163
000	0.2565	.4616	0.1118	.0403	. 7986	89962	0685	1105	68666	0000	.0023
000	0 37.93	97.50	2 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	00000	1025.	.3801	00000	00040	0000	0700	90100
0.	0.262	. 1966	7521	•0438	. 8943	11950	.3083	7911.	155.	• 0000	6100.

以上 徳子山

1 -)

)

)

)

		DIN		-0.00553	0.06674	\sim	6100	5990	-0.00019	0567	0000	7890	9100	.0667	0.00256	.0667	C	.06	.0031	.0667	0.00329
		BINT		.0200	.018	.018	.012	,018	0.00963	.018	+001	.018	.006	.018	,000	.018	•	0.01827	.002	0.01827	0.00218
		ACAP			-				-0.00001		-0.00000			-0.07122		-0.07123	100000-0-	-0.07123	-0,00003	-0.07123	-0.00027
		Σ		6666.	00000	0	0000	6000000	88666.0	9000000	76666.0	5000000	16666.0	0.00005	56666*0	00000	66.	00000	95666.0	00000	0.99636
0.100		40(1)		•				9	0.07588		•	9			0				-		0.12070
# OX	DISTRIBUTIONS	J		.4577	.635	.635	.532	635	2.60513	.635	.687	.635	.808	•635	606.	.635	030	633	.195	.635	•478
THIRD FOIL DESIGN METHOD WITH	w	ALPHA		.178	.473	•473	•632	6473	6.34525	.473	.053	.473	.729	.473	•405	.473	6.	.473	4.77764	6-47378	4.28671
FOIL DESIG	ICAL PRESSUR	XBAR		6660.	.3199	.3199	.1998	.3199	0.29970	.3199	9666.	.3199	7667.	.3199	. 5993	.3199	.6992	.319	1.	.319	0.89698
THIRD	ELLIPTICAL	8		.0338	.0353	.0353	.0342	.0353	0.03488	.0353	.0356	.0353	.0370	.0353	.0381	.0353	.0396	,0353	.0417	.0353	.0457
		£		0159	0511	0511	0319	0511	-0.04795	0511	0639	0511	6610	0511	6560	0511	1118	1150	1278	0511	1435
	T= 0.200	5		.7336	265	.5266	657	.5266	4.58730	256	.4850	.5266	154	.5266	.1905	266	•0369	256	.3288	.5266	2767.
	0.200 T= 0	Σ	CL= 0.16	.1960	.2133	.2133	.2134	.2133	0.22324	.2133	.2304	.2133	.2371	.2133	.2452	133	510	.2133	2569	•2133	647
	•	v		•	•			•	0.30												

The state of the s

		ACAP		000000-0-	-0.00102	-0.00204	-0.00306	-0.00407	-0.00407	10.00306	-0.00102	000000-0-	-0.00407	-0.00306	-0.00204	-0.00102	00000.01	10,000.0-	-0.00300	10.00.01	00000-0-	-0.00407	-0.00306	-0.00204	-0.00102	-0.00000	10.00407	-0.00204	-0.00102	-0-00000	10.00407	000000	-0.00102	000000-0-	-0.00407	-0.00306	-0.00204	-0.00102	-0.00000	-0.00407	-0.00306	-0.00204	20100-0-	000000-01
0.100		Σ		66666	0.75000	0.50000	0.25001	0.00001	0.00036	01647.0			0000		66667.0		66666 0	0,00000			60666						0.00000				0.0000.0	0.65000	5000	0000	00000	0.25000	0.0000	0.75000	1.00000	0.00000	0.25000	0.50000	11 3	1.00000
WITH XOE	BUTIONS	YC(1)		0.00603	0.00633	0.00662	0.00691	0.00720	0.00/21	0.01091	0.01830	0.02201	0.00720	0.01291	0.01861	0.02432	20060.0	02,00.0	0.01431	0.02851	0.03561	0.00720	0.01557	0.02393	0.03229	0.04066	0.00120	0.02709	0.03703	16940.0	0.00720	41010	0.04010	0.05107	0.00720	0.01922	0.03123	0.04324	0.05525	0.00720	0.02064	0.03408	15/000	0.06075
DESIGN METHOD V	PRESSURE DISTRIBUTIONS	ALPHA		3.73421	3-63335	3.53249	3.43162	3.33076	3.33019	2.28.25	3.40988	3.43632	3.33076	3.30661	3.28247	3.25833	3.23418	3.32015	30,000	3-12694	3.05900	3,33075	3.21426	3.09777	2.98128	2.86478	3.33073	3.00063	2.83556	2.67050	3.33075	2.01303	2.70417	2.49531	3.33075	3.07140	2.81205	2.55270	2.29334	3.33075	2.99735	2.66393	2.33052	1.99711
FOIL DESIG	ICAL PRESS	XBAR		06660.0	0.15305	0.20620	0.25935	0.31250	0.21246	0.25624	0.22812	0.19992	0.31250	0.30930	0.30610	0.30250	69667.0	0.51250	0.35405	0.37782	65668.0	0.31250	0.35925	0.40599	0.45274	0.49949	0.31250	0.45595	0.52768	0.59940	0.31250	0.50500	0.60260	0.59931	0.51250	0.43417	0.55585	0.67752	0.79919	0.31250	0.45915	8503	- :	01668-0
THIRD	ELLIPTICAL	8		0.00458	0.00476	o.	0.00512	0.00531	0.00531	0.00511	0.00502	0.00492	0.00531	0.00529	0.00527	0.00525	9.00524	00000000000000000000000000000000000000	0.00000	0.00551	0.00558	0.00531	0,00549	0.00568	0.00587	909000	0.00559	0.00588	0.00617	0.00648	0.00531	0.000.0	0.00652	96900.0	0.00531	0.00584	0.00640	66900.0	0.00760	0.00531	0.00607	0.00689	9//00.0	0.00868
		¥.		-0.00799		-0.01650	-0.02075	-0.02500	00620.0-	-0.02050	-0.01825	-0.01599	-0.02500	-0.02474	-0.02449	-0.02423	86520.0-	000000	10.02848	-0.03023	-0.03197	-0.02500	-0.02874	-0.03248	-0.03622	96650-0-	-0.620.0-	-0.03648	-0.04221	-0.04795	-0.02500	1350.0-	-0.04821	-0.05594	-0.02500	-0.03473	-0.04447	-0.05420	-0.06394	-0.02500	-0.03673	-0.04846		561/0.0-
	0.100	2		17.45026	.8050	16.19510	15.61772	15.07063	15.07102	15.64735	15.94882	16.25946	15.07063	15.12280	15.17527	15-22/95	15.28099	10.01000	14.69574	14.51349	14.33465	15.07063	14.55678	14.08779	13.63203	13-19805	14-31219	13.60962	12.95754	12.35121	15.07062	13-10409	12.26212	11.49876	15.07062	13.69224	12.49469	11.44761	10.52687	15.07063	13-17092	11.67903	10.30733	7.612.7
	0.000 T=	Š	CL= 0.08		.14515																												0.19989	0.21265	0.16161	0-17652	0.19143	0.20634	0.22125	0.16161	0.17945	0.19730	23300	6757.
	, ,	vı		0.10	0.10	0.10	0.10	0.0	000	0.23	0.20	0.50	0.30	0.30	0.30	000	0.0	0 0	0 0	0,40	0.40	0.50	0.50	0.50	0.50	000	0.00	09.0	09.0	09.0	0.0	0.70	0.10	0.70	0.80	0.83	0.80	0.80	0.90	0.90	0.40	0.00	000	2/.0

			ACAP		-0.00359	.0026	0.0017	06000-0-	2000	0.0045	030	5	0000	9700	1057	033	0019	.0000	060	067	0045	022	-0.00000	9600	.0072	0048	0024	0000	.0102	+0077	.0051	-0.00257	-0.00000	-0.01090	5	.0054	-0.00273	0
0.100		•	Σ		7798	0.83489	0.88992	96776.0	1.00000	0.71985	0.31323	0.90661	1.00000	0.53197	0.64897	0.76598	0.88299	1.00000	75277	58565	72377	86188	1.00000	0.40569	0.55427	0.70284	0.85142	1.00000	0.37038	0.52779	0.68519	0.84259	1.00000	0.33113	0.49835	0.66556	0.83278	0000
#0X	DISTRIBUTIONS		YC(1)		0.00000	0.00251	0.00502	0.00754	00000	0.00531	0.01061	0.01592	0.02122	0.00000	0.00783	0.01566	0.02349	0.03132	0000000	0.01098	0.02197	0.03295	0.04394	0.000000	0.01304	0.02607	0.03911	0.05214	0.00000	0.01513	0.03025	0.04538	0.06051	0.00000	0.01797	0.03595	0.05392	0.07190
DESIGN METHOD WITH			ALPHA		.6461	.6354	.6248	3.61421	24844	4604.	3.35472	3.30396	3.25320	3.30096	3.19191	3.05286	2.97382	2.86477	3.20573	3.02335	2.84097	2.65858	2.47620	3.11886	.8706	2.62234	2.37409	.1258	.0282	.7016	.3750	.0484	•7219	.9135	.4674	.0214	.5754	•1294
FOIL DESIG	ICAL PRESSURE		XBAR				.,	0.30040	• "						7.		7.		7.		•		•	7.	•			•		•							•	•
THIRD	ELLIPTICAL		8		.0067	0.00676	0.00675	0.00674	00000	0.00735	0.00741	0.00746	0.00752	0.00781	0.00802	0.00823	0.00844	0.00866	0.00808	0.00846	0.00885	0.00925	99600.0	0.00839	0.00898	0.00958	0.01020	0.01085	0.00877	0.00964	0.01054	0.01149	0.01247	0.00931	0.01067	0.01212	0.01366	0.01529
			Σ		-0.04840			-0.04806				-0.06263			-0.06942	-0.07292	-0.07642	-0.07992	-0.07054		-0.08322		-0.09590	-0.07511		-0.09350	-0.10269	-0.11189	-0.07884	-0.09110	-0.10336		-0.12787	-0.08108	•			38
	0.100		L/b		23.64156	23.67345	23.70540	23.73737	23.05621	21.77985	21.60558	21.43346	21.26332	20.48944	19.95772	19-44644	18.95454	18.48106	19.80875	18.91226	18.07529	17.29268	16.55980	19.06374	17.82285	16.69930	15.67874	14.74895	18.24063	16.60405	5.1782	3.9284	2.8269	7	5.8	13.20249	.7125	13
	-1 000·		M O	CL= 0.16	.1351	•1366	.1380	0.13943	0001	1476	.1518	-1560	.1602	.1492	-1567	.1642	17171	.1792	.1535	•1653	•1772	.1890	•2009	.1565	1716	.1868	.2020	.2171	.1592	.1780	.1968	.2156	.2343	.1623	.1862	.2101	.2339	.2578
	0 8 2		S		.3	.3	m)	0.30				7	4	5	.0	10	10		.6	0.	9 *	.5	9.	1 .			1.	1.	0)	a		(I)	0	0	5.	0	C	0.

the state of the state of the state of

-0.00000--0.00306 -0.00306 -0.00306 -0.00407 -0.00103 -0.00306 -0.00204 -0.00000 -0.00407 -0.00306 -0.00407 -0.00102 -0.00306 0000000-0--0.00407 -0.00306 -0.00204 -0.00102 -0.00000 -0.00407 -0.00102 -0.00306 -0.00407 -0.00306 -0.00204 00000-0--0.00407 -0.00102 -0.00204 000000-0--0.00204 -0.00102 -0.00000 -0.00407 -0.00407 0.75000 0.50001 0.25002 0.00001 0.25000 0.25000 0.00001 0.00001 66665.0 86666.0 66667.0 0.74999 66666.0 0000000 0.74999 66666 • 0 66667.0 66671.0 56666.0 0000000 0.25000 66665.0 0.74999 66666.0 0000000 66666.0 0000000 0.25000 000005.0 0.74999 66666.0 0.24975 86672.0 0000000 0.25000 0.99882 0.4934 0.7471 Σ 0.100 0.06459 0.06828 0.07201 0.05720 0.05603 0.05633 0.05662 0.05691 0.05720 0.05720 0.06431 0.07141 0.07851 0.05720 0.009914 0.009010 0.009010 0.009020 0.009324 0.009328 0.05720 0.09751 0.07432 0.08002 PRESSURE DISTRIBUTIONS WITH 66.11 66.11 66.12 66.12 66.12 66.13 66 6-19554 6-12761 6-05966 6.19554 6.07904 5.96255 5.84606 5.72958 6.19554 6.03048 5.86541 5.70035 5.53528 6.19554 5.98668 5.56897 5.99173 6.39727 METHOD 6.29642 DESIGN 0.31250 0.50590 XBAR THIRD FOIL ELLIPTICAL 0.01887 0.01837 0.01871 0.01905 0.01975 0.01837 0.01982 0.01837 0.01935 0.02036 0.02139 0.01837 0.01977 0.02122 0.02273 0.01995 0.01941 0 -0.02275 -0.02051 -0.01826 -0.01599 -0.00799 -0.01224 -0.01650 -0.02075 -0.03996 -0.02874 -0.04221 -0.04821 -0.02449 -0.02423 -0.03274 -0.02500 -0.05420 -0.06394 -0.03673 -0.07193 -0.02499 -0.02500 -0.02474 -0.03622 -0.03648 -0.02500 -0.04047 -0.03473 -0.04447 -0.02500 -0.04846 -0.06020 3 4.32616 4.32616 4.29694 4.26800 4.23936 4.35569 4.12441 4.05141 4.35569 4.23574 4.13442 3.92959 3.73961 3.56309 4.38006 4.27649 3.88832 4.35569 3.51997 3.90419 4.35569 4.36379 4.12058 4.01025 4.35569 4.19095 4.03539 4.35569 3.29433 4.38822 0.200 0.0 0.20271 3 K* 0.000 S

-0.00000 -0.01630 -0.01222 -0.01630 -0.01630 -0.01222 -0.00815 -0.00407 -0.00815 -0.01222 -0.01630 -0.01223 -0.01630 -0.01222 -0.00815 -0.00407 -0.01630 -0.00815 -0.00407 -0.01222 -0.01630 -0.00407 -0.01630 -0.00407 -0.00000 -0.00815 -0.00407 -0.00000 -0.00000 -0.00407 60700-0--0.00002 -0.00815 -0.00000 -0.00407 1.00000 0.75000 0.50000 0.25000 0.00001 0.24975 0.99882 0.99999 0.99999 0.50000 0.25000 0.25000 66667.0 0.00000 1.00000 1.00000 0.75000 0.74999 0.000000 00000-1 0.50000 0000001 0000000 0.25000 0.0003.0 0.49986 0.74934 00.00 0.04403 0.01441 0.02582 0.03723 0.04864 ELLIPTICAL PRESSURE DISTRIBUTIONS YC(1) WITH METHOD 6.33138 6.00125 5.67112 5.56151 5.99468 5.32786 4.66104 3.99423 6.66151 5.82606 ALPHA DESIGN 0.09999 0.159865 0.20620 0.25935 0.31250 0.21247 0.25616 XBAR THIRD FOIL 0 -0.04898 -0.04846 -0.04795 -0.05000 -0.05348 -0.05697 -0.06045 -0.06393 -0.05000 -0.07244 -0.07992 -0.05000 -0.06148 -0.07295 -0.08443 -0.09590 -0.05000 -0.06547 -0.08094 -0.03199 -0.05748 -0.14386 -0.04949 Š 8.72512 8.40254 7.500834 7.500834 7.500834 7.500834 7.501766 7.501766 7.501766 7.501766 7.501766 7.59330 7.244069 7.24436 7.25634 7.25330 7.28338 7.28338 6.81602 7.559902 7.559902 7.559902 7.55990 6.5590 6.55203 6.13105 5.74938 7.53531 6.84612 6.24734 5.72380 7.26343 6.58545 5.80451 5.15466 4.5081 0.200 0.16 3 00000 S

The second secon

THIRD FOIL DESIGN METHOD WITH XO* 0.100 ELLIPTICAL PRESSURE DISTRIBUTIONS

K= 0.100 T= 0.100

																														Bl	RP	:.	JF	:	je	p				
DINT		000	0159	.0257	.0355	0000	0000	.0176	0.00879	-0.00011	•0355	0.02684	0.01810.0	0.0093	0.0005.	0.03555	0.02704	0.01845	0.00977	0.00101	0.03555	0.02729	0.01886	0.01029	0.00157	0.03555	0.02745	0.01912	0.01056	0.00182	0.03555	0.02764	0.01934	0.01077	.0019	.0355	.0277	0.01952	1976	.0018
BINT		0.01204	0.011	0.011	0.010	0.00	0000	0.008	0.007	0.005	0.010	0.009	0.007	0.006	400.0	0.010	0.008	0.007	0.005	0.003	0.010	0.008	0.006	0.004	0.002	0.010	0.003	0.005	0.003	0.001	0.010	0.008	0.005	0.003	0.001	0.010	0.00	0.005	0.002	0.0011
ACAP		-0.00000	-0.01892	-0.02852	-0.03821	02850-01	10.07865	-0.01909	-0.00954	-0.00000	-0.03821	-0.02858	-0.01913	-0.00957	-0.00000	-0.03821	-0.02872	-0.01919	-0.00962	-0.00000	-0.03821	-0.02876	-0.01924	-0.00955	-0.00000	-0.03821	-0.02881	-0.01930	69500.0-	-0.00001	-0.03821	-0.02886	-0.01936	-0.00975	-0.0000v	-0.03821	-0.02889	-0.01941	-0.00976	-0.00001
Σ		1.00000	0.50029	0.25022	0000000	0.00026	0.24969	0.49958	0.74967	86666.0	0.00000	0.25039	0.50052	0.75039	66656.0	-0.00000-	0.25130	0.50173	0.75128	65666.0	0000000	0.25186	0.50243	0.75179	66666.0	0000000	0.25265	0.50342	0.75254	08666.0	0.000000	0.25369	0.50475	0.75318	0.99910	0.000000	0.25671	0.50805	0.75582	9666.
YC(1)		0.02063	0.02160	0.02207	0.02253	0.02254	0.02622	0.02820	0.03357	0.03724	0.02253	0.02720	0.03189	0.03659	0.04130	0.02253	0.02811	0.03374	0.03941	0.04514	0.02253	0.02924	0.03604	0.04293	0.04989	0.02253	0.03000	0.03760	0.04532	0.05316	0.02253	0.03079	0.03923	0.04784	0.05659	0.02253	0.03194	0.04157	0.05141	•
_		2.28544	.368	.410	454	. 474	4 4 4 4	.439	.432	•424	•454	•456	.478	.491	.503	• 454	•464	.535	.577	.519	• 454	.517	.582	.648	.717	•454	.544	.637	.734	.833	•454	.580	.712	.850	.993	.454	.642	.839	.047	.273
ALPHA		3.55840	7		2		• •						-	0	3		-		5	•		~	0	•			9	•			.2	9	a)	a,					.3731	1.0
XBAR		0.09990			., .					. 4		.,	.,				.,	,	7.	7.			7.						9	0.69923	.,	7.	-	0.68073		4	7.		0.75738	•
9		0.00817	0.00834	0.00843	0.00853	0.00853	0.00850	0.00847	0.00844	0.00841	0.00853	0.00854	0.00856	0.00857	0.00859	0.00853	0.00862	0.00872	0.00883	0.00894	0.00853	0.00868	0.00885	0.00902	0.00920	0.00853	0.00876	0.00901	0.00928	0.00957	0.00853	0.00887	0.00925	19600.0	0.01011	0.00853	0.00908	0.00970	0.01038	0.01112
8		-0.00799	0168	0212	0256	9670	0250	0248	.0244	0239	.0256	0272	0288	0303	0316	.0256	2620	.0328	0363	5660.	.0256	.0312	.0368	.0424	.0479	.0256	0332	.0408	.0484	.0559	.0256	.0353	6950.	244	633	.0256	3.0374	.0491	•0605	•0719
2		9.78810	50	67.	38	000	000	7,4.	.48	.5.	3.00	.36	.34	.32	18.	.38	.21	.1.	90.	.95	.38	.21	+ C4	•36	69.	33	.13	. 9 B	•62	.36	.38	.01	79.	.27	.61	.38	.80	.24	.70	•19
₹	CL= 0.08	0.19630	.2056	.2103	.2150	0412.	7717	.2204	.2231	.2257	.2150	-2196	.2243	.2289	.2335	.2150	.2214	6122.	.2343	.2407	-2150	.2236	.2322	.2409	.2495	.2150	.2252	.2354	*5455	.2557	.2150	.2768	.2385	.2502	.2620	.2150	.2288	.2425	.2563	.2701
S		0.10				•					•				•		•				•		•	•							•									•

			30	m c	0	,	2	0	v .) n	0		5	2	>	-4	- 1	+,	0	o c	. 4	0	S	9	-	S	-4	۵						0
	PN10		0	0.04123	0	0	5	0.	5	3	5 5	3	0	0	5	0	0.		0	3	2 0	0	0	50	90.	0	03	5	ě	.06	0	0	0	5
	FN18		.0163		0115	6600.	.0161	.0139	1110.	0000	0000	0131	.0105	.0081	.0058	.0158	.0123	.0092	• 900 •	• 0039	9110	.0084	.0055	.0030	.0156	.0112	.0077	.0048	.0024	.0155	105	.0058	4 1	.0018
	ACAP		-0.05853	•	0	•			-0.03136			-0.04899					-0.05082	-0.03403	-0.01708	000000-0-	-0-05338 -0-05178	-0.03472	-0.01744	•	•	•		•	•	-0.07078	•	•	•	.0000
	Σ		0.25594	0.44167	0.81370	866660	0.20644	0.40527	6,609.0	0.80204	0-17508	0.38411	0.59034	0.79561	66666.0	0.14901	0.36389	0.57727	0.78926	55555	003890	0.57191	0.78701	1.00008	0.12518	0.34843	0.56758	0.78508	1.00036	0.11236	0.33710	0.56369	0.78204	1.00905
0.100	YC(1)		.0000	2 5	.0173	.0231	00000	.0077	0070	4620	0000	9600	.0192	. 1290	.0389	0000	.0118	•0239	•0362	•0487	66.00	.0271	.0411	.0553	-0.00000	•0146	.0303	•0462	.0623	0000	.0169	349	.0533	.0723
	ر		7945		.7581	.7460	.8355	.8593	0000		8780	. 9583	.0410	.1254	.2118	.8989	.0304	.1669	•3084	95550	1163	.3180	.5289	.7493	.9561	.2309	.5246	.8340	.1616	.0001	.4305	.8790	.3738	.8778
DESIGN METHOD WITH XO= PRESSURE DISTRIBUTIONS	ALPHA		6426	580	.5629	.5364	•5843	.4927	11000	07000	64360	.3676	1661.	.0320	.8647	.5063	•2562	•0010	.7588	.5115	1541	.8317	.5115	.1928	0077.	.0374	•6594	• 22262	.8260	•4124	.8630	•3356	3	.2942
	XBAR		0.31435	9 6	9	.29	.00	9		ם מ	ור	1 60	.42	• 45	649	• 36	• 45	. 48	. 54	200	4 5	.53	.61	69.	.37	.48	. 53	.69	. 79	• 38	.51	• 64		96.
THIRD FOIL	8		0	7600	1600	0600.	.0093	7600°	1000	0000	0000	1600.	6600.	.0102	-0105	9600.	6600.	.0103	.0108	-0112	0102	.0108	.0115	.0123	16000	.0106	.0116	.0126	.0138	60000	.0114	.0129	.0147	.0164
	S.		9.05	1040-0	0485	0.0479	0.0537	.0562	0000	0640	0561	0621	.0880	.0740	•0199	.0577	•0673	.0769	.0864	0959	.0725	.0857	.0988	0.1118	9090.0	0.0777	0.0945	.1113	.1279	.0614	.0822	1032	.1235	.1447
0.100	?		1-1	46874	7.5794	7.6780	7.0585	6.9787	70000	4.6997	6.8168	6.4138	6.0128	5.6154	5.2228	6.7059	6.0519	2.4086	4.7808	4.1719	5.6071	4069.4	3.8209	5.9985	6.3712	5.0174	3.7549	2.6174	1.5884	6.0840	4.0173	2.3445	0.8745	.7218
1000	Σ	CL= 0.16	17503	1881	11871	.1912	.1771	.1846	1761	20707	1786	1894	.2003	.2111	.2219	.1798	.1948	.2098	.2249	.2399	1986	.2167	.2348	.2529	.1812	.2025	.2238	.2425	.2665	.1819	.2076	•2334	.2592	.2849
, 0 "	s	J	99	00000	.30	.30	07.	0 0		0 4	200	200	000	.50	05.	09.	09.	09.	09.	99.	70	.70	.70	.70	.80	00.	08.	03.	000	06.	06.	06.	06.	06.

THIRD FOIL DESIGN METHOD WITH XO= 0.100 ELLIPTICAL PRESSURE DISTRIBUTIONS

K- 0.100 T- 0.200

	BRP:JF:jep
TNIO	00000000000000000000000000000000000000
BINT	00000000000000000000000000000000000000
ACAP	00000000000000000000000000000000000000
Σ	00000000000000000000000000000000000000
70(1)	00000000000000000000000000000000000000
	0.0 0
ALPHA	$\begin{array}{c} \textbf{0.00} & \textbf{0.00} &$
XBAR	00000011111000000000000000000000000000
8	00000000000000000000000000000000000000
δ	00000000000000000000000000000000000000
۲/۵	$\begin{array}{c} \mathbf{u}\mathbf{u}\mathbf{u}\mathbf{u}\mathbf{u}\mathbf{u}\mathbf{u}\mathbf{u}$
MU MU	0.19130 0.194130 0.194130 0.20102 0.20102 0.20102 0.20103
v	000000000000000000000000000000000000000

0.100	
THIRD FOIL DESIGN METHOD WITH XOM 0.100	ELLIPTICAL PRESSURE DISTRIBUTIONS
	0.200

DINT

ACAP

Σ

YC(1)

ALPHA

XBAR

8

N.

2

2

S

K= 0.100 T=

																														D			J	:	16	ep								
	-0.00185	.0417	.0637	.0857	0.6700	0.6594	.6483	0.6366	0.6240	.0857	.0542	.0427	.0213	.0001	.0857	.0643	.0430	.0216	.0001	.0857	.0644	.0431	.0217	.0003	.0857	.0646	.0433	.0220	.0006	.0857	.0647	.0435	.0221	.0007	.0857	.0667	.0436	.0222	.0006	.0857	.0648	.0436	.0216	.0005
	0.00746	.0071	.0070	.0068	.0276	0.0266	.0256	0.0247	0.0236	.0068	.0081	.0053	• 0045	.0037	9000.	.0058	6700	.0039	.0030	.0058	.0056	• 0045	.0034	.0024	.0068	.0054	1700.	.0029	.0018	.0068	.0053	.0039	.0026	.0015	.0068	.0051	.0036	.0023	.0012	.0068	6700.	.0033	.0020	.0010
	-0.00000	0.0435	0.0654	.0374	.6860	6479	.6633	.6511	.6381	0.0374	.0655	0.0437	0.0218	000000	0.0874	0.0655	0.0437	0.0218	000000	0.0874	0.0656	0.0437	0.0219	000000	0.0874	0.0656	0.0438	0.0219	00000	.0874	0.0656	0.0438	0.0219	00000	0.0874	.0657	0.0439	0.0219	00000	.0874	0.0657	• 0439	.0215	.0012
	0.99999	.5000	.2500	0000	.3072	.1619	.0100	.8504	.6815	0000	.2499	6664.	.7493	6666.	0000	.2502	.5002	.7501	00000	00000	.2505	.5007	.7505	6666.	00000	.2508	.5010	.7507	.0000	00000	.2511	.5014	.7509	6666.	00000	.2515	.5021	.7515	·000·	0000	.2529	.5035	.7571	.0144
	0.02724	.0285	.0292	.0298	.2314	.2288	.2261	.2232	.2201	.0298	•0392	•0486	•0579	.0673	•0298	•0415	.0533	•0650	.0768	•0298	.0437	.0575	.0715	.0854	.0298	•0463	.0629	.0796	• 0 9 6 3	.0298	.0481	• 0664	.0849	.1034	.0298	.0499	•0700	*060	.1108	.0298	.0524	.0751	.0982	.1218
	6.25728	.6222	.8099	.0010	.7589	.7992	.8418	.8870	.9353	.0010	.9775	.9539	.9304	6906	.0010	• 0647	.1288	.1934	.2583	.0010	.1848	.3715	.5612	.7538	.0010	.2845	.5757	.8734	.1779	.0010	.3992	.8104	.2346	.6718	.0010	.5490	.1203	.7153	.3350	.0010	.7931	•6396	.5282	.4583
	7.31035	.9374	.7512	.5651	.5571	.5235	.4385	.4519	.4133	.5851	.5241	.4831	• 4421	.4012	.5651	64445	.3239	.2033	.0827	.5651	.3560	•1470	.9382	•7295	.5651	.2673	6696.	•6729	•3763	.5651	.1871	6608	.4334	.0577	.5651	£760.	.6253	•1576	.6912	.5651	*9545	*3454	.7436	•1489
	0.09990	.2074	.2612	.3149	0.7765	0.7589	.7406	0.7213	0.7010	.3149	.3111	.3073	.3035	.2996	.3149	•3360	.3572	.3784	.3995	.3149	,3611	.4072	.4534	4664.	.3149	.3851	.4573	.5284	* 2 6 6 6 6 9 6	.3149	.4113	.5075	.6034	6669	.3149	.4365	.5579	.6787	· 7664	.3149	.4624	.6088	.7570	.9075
	0.02396	0241	.0248	0254	0147	0148	.0149	0151	.0152	.0254	.0253	.0252	.0251	.0220	.0254	.0258	.0258	.0260	.0263	.0254	.0261	.0267	.0274	.0280	,0254	.0264	.0274	.0285	0295	.0254	.0268	0283	.0298	.0313	.0254	.0274	.0294	.0315	.0338	.0254	.0283	.0314	.0346	.0379
	-0.01598	0.0331	0.0417	0.0503	.1242	.1214	.1185	.1154	.1121	0.0503	1650.	0.0491	0.0485	0.0479	0.0503	0.0537	0.0571	0.0605	0.0639	0.0503	0.0577	0.0651	0.0725	0.0799	0.0503	0.0617	0.0731	0.0845	6560.0	0.0503	0.0658	0.0812	960.0	0.1118	0.0503	6690.0	0.0892	0.1086	0.1279	0.0503	0.0740	·0974	0.1211	.1452
	6.96812	.6151	.4458	6.2811	.8482	0.7642	0.6759	0.5832	0.4851	.2811	•3049	.3289	.3531	.3774	.2811	.2311	.1815	.1322	.0832	.2811	.1288	6086.	.8373	6269.	.2811	•0419	.8251	•6124	7604*	.2811	.9561	•6210	.3673	.1014	.2811	.8373	*4345	.0672	.7336	.2811	•6451	.0923	.6217	.2195
CL. 0.16	0.15980	0.1695	0-1743	0.1792	0.1792	0-1793	0-1793	0.1794	0.1794	0.1792	0.1821	0.1849	0.1878	0.1907	0.1792	0.1842	0.1892	0.1942	0.1991	0.1792	0.1862	0.1933	0,2003	0.2073	0.1792	0.1886	0.1980	0.2074	0.2168	0-1792	0.1904	0.2015	0.2127	0.2239	0.1792	0.1922	0.2052	0.2182	0.2312	0.1792	0.1948	0.2104	0,2260	0.2416
	0.10	-	-		4				.2		4			4	.5	4	5.	4	7.	.5			e.		9.	.0	.6	.6	00	1.			1				0)	00	0	0	00	0.	0	0

-0.00071 0.002713 0.0014830 0.00922 9000000 1.42297 1.46194 1.38711 1.41267 1.43951 1.49699 1.42699 1.46935 1.51448 1.56202 DISTRIBUTIONS J WITH 2.38858 2.21208 2.93710 2.66692 2.46007 2.13733 DESIGN METHOD ALPHA PRESSURE XBAR THIRD FOIL ELLIPTICAL 0017884 00017884 00017884 00017884 00017884 00017784 00017784 00017784 00017784 00017784 00017784 00017784 00017784 0 -0.02928 -0.03061 -0.03197 -0.02654 -0.02930 -0.03996 -0.02654 -0.03192 -0.04262 -0.00799 -0.01264 -0.01727 -0.02191 -0.02654 -0.04864 -0.03601 -0.02654 -0.03818 -0.04951 -0.02790 -0.02654 -0.03395 -0.02654 -0.06393 -0.06078 -0.07202 -0.04132 -0.05471 -0.02654 S 4.34412 4.40253 4.42929 4.45436 4.45436 4.48646 4.45437 4.51414 4.50115 4.51975 4.51975 4.53515 4.52382 4.53358 4.45437 4.43191 4.41957 4.40650 4.455435 4.455336 4.39761 4.45437 .46436 4.50103 4.48433 4.50767 4.48348 4.49859 04754.4 4.46574 4.45437 4.45692 0.100 0.08 0.32651 0.331160 0.3311126 0.321493 0.331126 0.331126 0.31126 0.33511 0.335310 0.3370126 0.3370126 0.3370126 0.3371126 0.3371136 0.337136 = 3 0.200 S

0.05038 0.04756 0.04514 0.04230 0.04064

BINT

0.02919

0.04064

0.04064 0.02782 0.01721 0.00842

1.73884 1.555518 1.66495 1.91853

-0.12787 -0.05283 -0.07651 -0.09967

.25482 .99026 .58679

8.08275

-0.09100

.79812

-0.07207

9.19688 .03640 468334

.96270

-0.00010

94866.0

ACAP Σ YC(1) 0.100 DESIGN METHOD WITH XO= PRESSURE DISTRIBUTIONS $\begin{array}{c} \textbf{44} & \textbf{84} &$ XBAR THIRD FOIL ELLIPTICAL 0 -0.07317 10.03722 10.03197 10.05282 10.05162 -0.04919 -0.04795 -0.05830 -0.05830 -0.05831 -0.058313 -0.058313 -0.058313 -0.09733 -0.11189 -0.05283 -0.06368 -0.05283 -0.06640 -0.05283 -0.08522 -0.09590 -0.08264 -0.04244 S 25478 25478 25478 25476 25475 27475 19993 16887 25473 27302 29645 .25472 9.36693 9.40332 9.25477 9.27728 .28986 .28969 25477 9.25994 9.19345 .22440 333002 120 0,000 0.16 3 -70 0.200 S

-0.05093 -0.05093 -0.03820 10.002020 10.002020 10.002020 10.002020 10.002020 -0.04189 -0.02793 -0.01397 -0.05834 -0.064375 -0.02917 -0.01459 -0.01273 -0.02980 -0.03820 -0.00000 -0.05093 -0.03820 -0.02546 -0.01273 -0.00000 -0.05093 -0.03820 -0.02546 -0.00000 -0.05960 -0.04470 -0.01274 0.99998 0.500091 0.250039 0.000005 0.250039 0.49999 0.25000 0.74998 0.999997 0.00000 0.25001 0.74999 0.99998 0.25001 0.55001 0.74999 0.99998 0.12262 0.34195 0.56127 0.99993 0.91271 0.591863 0.591871 0.59180 0.06377 0.29783 0.53188 0.99998 0.74995 0.00003 0.99992 Σ 0.100 THIRD FOIL DESIGN METHOD WITH XO= YC(1) PRESSURE DISTRIBUTION 2.99 2.99 2.91 2.91 2.91 2.91 2.99 3.44 3.3.44 3.3.45 3.3.45 3.3.45 3.3.45 3.3.45 4.45 3.38,165 3.13621 2.89178 2.64735 2.40292 ALPHA 0.31251 0.51251 0.51251 0.65996 0.65990 0.75245 0.89910 0.09991 0.49949 0.60260 XHAR ELL IPTICAL 0.00506 0.00531 0.00570 0.00510 0.00567 0.00565 0.00563 0.00561 0.00531 0.00529 0.00527 0.00525 0.00549 0.00568 0.00587 0.00531 0.00607 0.00689 0.00776 0.00598 0.000667 0.000667 0.000681 0.000679 0.00458 0.00512 0.00652 0.00696 96700.0 0.00524 0.00531 0.00577 0 -0.00799 -0.01224 -0.01650 -0.02075 -0.02500 -0.02474 -0.02449 -0.02423 -0.02398 -0.02500 -0.02874 -0.03996 -0.02500 -0.03274 -0.04047 -0.03081 -0.03053 -0.03025 -0.02997 -0.03281 -0.03710 -0.04138 -0.04567 -0.04821 -0.06020 -0.03372 -0.05182 -0.06088 -0.06993 -0.03249 -0.02500 -0.03673 -0.03622 -0.04846 6.19508 5.61776 5.61776 5.07764 5.12280 5.23726 5.23726 5.23726 17.62262 17.68738 17.75243 17.81787 17.88370 17.34540 16.70959 16.10808 15.53848 14.99856 17.20068 15.83810 14.72022 13.57651 7.45015 14.03590 13.1/081 13-19/96 9.21622 4.56670 4.08/70 2.26213 5.07050 3.63194 12.74000 1.49851 6/1 0.100 0.08 0.16963 0.19365 0.16162 0.17438 0.21266 0.16162 0.17968 0.19775 0.21532 0.17126 0.13714 0.19990 0.16162 0.18564 2 2.000 22222222 0000000 05.5 0.10 S

マールンできる かきているかん

-0.05478 -0.04109 -0.02739 -0.01370 -0.03357 -0.02518 -0.01678 -0.00839 -0.00000 -0.04526 -0.03017 -0.01509 10.05991 10.04493 10.02996 -0.06293 -0.04720 -0.03147 -0.01573 -0.00000 -0.02236 -0.01118 -0.00000 -0.02561 00000-0--0.03353 -0.03842 0.05209 0.28906 0.52604 0.76301 0.99999 0.41474 Σ 0.100 000012990 000018990 000018990 00001890 00001890 00001890 00001889 0.00000 0.01591 0.03182 0.04/73 # OX YC(1) DISTRIBUTION METHOD WITH $\begin{array}{c} \mathbf{u} \, \mathbf{$ 3.36005 2.96330 2.56655 2.16981 1.77306 ALPHA PRESSURE DESIGN 0.41586 0.53667 0.65748 0.7829 0.89910 0.62108 0.76609 0.89910 0.547179 0.54305 0.39595 0.62346 0.69930 XHAR ELLIPTICAL 0.00589 0.00585 0.00788 0.00898 3 -0.05651 -0.05572 -0.07482 10004223 10004213 10004213 10005488 -0.06440 -0.07890 -0.09339 -0.06241 -0.06617 -0.06993 -0.03431 -0.04821 -0.06211 -0.07641 -0.08392 -0.04263 -0.03664 -0.03636 -0.04751 5 21.90cu18 22.94566 22.093201 19.156666 19.16666 118.666951 118.666951 16.98564 14.65544 12.69260 11.13235 9.84305 0.100 0.14 01.0 0.12 0.15470 0.1761J 0.19751 0.21892 0.24033 " =70 CLa 000.00 33333 S

		ACAP		-0.06022	0.04517	-0.03011	0.01506	0000000	0.06552	0.04914	0.03276	0.01638	-0.00000		0.02242	-0.01682	0.01121	-0.00561	0000000	-0.04767	-0.03576	0.02384	-0.01192	0.000000	0.06053	-0.04540	-0.03027	-0.01513	-0.00000	-0.06811	0.05108	-0.03405	-0.01703	0000000
0.100	•	Σ		.32429	• 49322	•65214	83106				0.63243 -				- 98977.0		88992		96666							0.55428 -				0.33136 -			0.83283 -	
	BUTTONS	YC(1)		0.000000	0.01297	0.02594	0.03890	0.05187	0000000	0.01727	0.03455	0.05132	0.06910		0.00000	0.00251	0.00502	0.00754	0.01005	0.00000	0.00783	0.01566	0.02349	0.03132	0000000	0.01304	0.02507	0.03911	0.05214	0.00000	0.01796	0.03591	0.05387	0.07183
DESIGN METHOD WITH XO=	ELLIPTICAL PRESSURE DISTRIBUTIONS	ALPHA		3.20608	2.95910	2.71212	2.46515	2.21817	3.05942	2.62865	2.19789	1.76713	1.33636		3.64609	3.63546	3.62484	3.61421	3.60358	3.30093	3.19189	3.03284	2.97380	2.86475	3.11880	2.87055	2.62230	2.374.04	2-12579	2.90910	2,46133	2.01356	1.56579	1.11801
THIRD FOIL DESIG	TICAL PRESS	XBAR		0.43794	0.50328	0.56862	0.63396	0.69930	0.46787	0.57568	0.68349	0.79129	0.89910		0.30251	0.30181	0.30110	0.30040	0.29969	0.41198	0.43385	0.45573	0.47761	67667*0	0.46943	0.52690	0.58437	0.64183	0.69930	0.50688	0.60493	0.70299	0.80105	0.89910
THIRD	ELLIP	8		0.00748	0.00803	0.00860	0.00919	0.00979	0.00809	0.00930	0.01061	0.01199	0.01347		0.00677	0.00676	0.00675	0.00674	0.00673	0.00781	0.00302	0.00823	77800.0	99800.0	0.00839	0.00893	0.00958	0.01020	0.01085	0.00931	0.01067	0.01212	0.01366	0.01529
		Š		-0.06131	-0.07046	-0.07961	-0.03875	06160-0-	-0.05550	-0.08059	-0.09569	-0.11078	-0.12587		-0.04840	-0.04829	-0.04818	-0.04806	-0.04795	-0.06592	-0.06942	-0.07292	-0.07642	-0.07992	-0.07511	-0.08430	-0.09350	-0.10269	-0.11189	-0.08110	-0.09679	-0.11248	-0.12817	-0.14386
	0.100	٢٧٥		18.71459	17.43446	16.28125	15.23878	14.29332	17.31586	15.04983	13.20114	11.67329	10.39610		23.64160	23.67348	23.70540	23.73737	23.75941	20.48921	19.95749	19.44617	18.95427	18.48080	19.06358	17.82274	16.69925	15.67874	14.74899	17-1/172	14.99377	13.20125	11.71198	10.46122
	** 0.00 • C **	S MO	CL= 0.14	0.70 0.15571		0.70 0.19589							0.90 0.25321	CL= 0.16		0.30 0.13660	6.30 0.13802	0.30 0.13943	0.30 0.14085	0.50 0.14921	0.50 0.15670	0.50 0.16420	0.50 0.17170	0.50 0.17920	0.70 0.15653	0.17 0.17170	0.70 0.18687	0.70 0.20204	0.70 0.21720	0.90 0.16301	0.90 0.18717	0.90 0.21133	0	0

-0.01273 10.03819 10.05093 10.05092 10.03819 -0.01273 -0.05093 -0.01273 -0.01592 -0.03183 -0.04774 -0.06366 -0.01592 -0.04775 -0-01274 -0.05093 -0.03820 -0.02547 -0.05093 -0.03820 -0.02547 -0.01273 000000-0--0.02546 -0.04774 -0.03183 -0.06366 -0.00000 -0.00001 ACAP 0.00002 0.99998 0.99995 0.50001 0.25004 0.00006 0.00009 0.25004 66664.0 746641.0 68666.0 0.00003 66664.0 76647.0 96666 0 0.25001 Σ 0.100 0.03103 0.031333 0.0318162 0.032191 0.03221 0.03231 0.04932 ELLIPTICAL PRESSURE DISTRIBUTIONS DESIGN METHOD WITH XO= YC(1) 3-52770 4-76312 4-42829 4-09347 3-75864 3-42381 5.25787 5.12180 5.00573 4.87957 4-81328 4-78911 4-75894 4-87961 4.58840 4.29717 4.84946 ALPHA 0.49949 0.31251 0.40921 0.50590 0.69929 0.31251 0.45916 0.60580 0.09999 0.15305 0.25620 0.25934 0.31256 0.31256 0.300290 0.3302990 0.331251 0.35925 0.45274 0.15245 0.60260 0.30610 THIRD FOIL 0.01308 0.01426 0.01550 0.01086 0.010981 0.01317 0 -0001224 -0001650 -0002500 -0002500 -0002500 -0002500 -0.02997 -0.03125 -0.03593 -0.04060 -0.02423 -0.04821 -0.06020 -0.04047 -0.02500 -0.03673 94840-0-66600.0-3 8.15555 7.94762 7.74754 7.55492 7.36938 7.36934 7.36934 7.46206 7.36930 7.36930 7.36930 7.36930 7.36929 7.36929 7.36928 6.70034 6.11852 5.60932 9.62838 9.33137 9.04791 8.77716 8.77716 8.88146 8.77705 8.52577 8.82302 8.28511 6.36562 6.67610 9.93978 8.85519 7.83338 0.150 0.10 0.17712 0.21114 0.17712 0.18916 0.20120 0.21325 0.15564 0.16022 0.16479 0.15936 0.15937 0.17604 0.17604 0.18939 0.18939 0.16248 0.17205 CL= 0.08 0.16990 9920200 0.17741 3 000000 222222 S

0.150 CM CD CD XBAR ALPHA YC(1) M R.25891	T= 0.150 CD				THIRD FOIL		DESIGN METHOD WITH XOR		0.100		
## ALPHA YC(1) ## 7705	## ALPH A YC(1) M ## ALPHA YC(1) M ## AL	<u></u>	0.150		ELLIP	TICAL PRESS	URE DISTR	BUTIONS			
8.7705	8-7705	D.	6/3	W O	9	XBAR	ALPHA	YC(1)	Σ	ACAP	
8.77705 8.77705 7.25136 6.05269 7.25136 6.05269 7.25136 6.05269 7.25136 7.25137 7.2	8.77705 -0.03125 0.0123 0.31251 4.87961 0.02520 0.00002	0.10									
1.53544	8-25891	6937	8.77705		0.01139	0.31251	4.87961	0.02150	0.00002	-0.06366	
7.78534 -0.05059 0.01234 0.50590 4.35747 0.04592 0.49599 7.78534 -0.05059 0.00236 0.69590 3.52532 0.07634 0.99997 7.78534 -0.05059 0.00236 0.69590 3.52532 0.07634 0.99997 7.01051 -0.06059 0.00139 0.45254 4.65639 0.07634 0.99997 7.01051 -0.06059 0.00139 0.45254 4.65639 0.07634 0.99997 7.01051 -0.06059 0.00139 0.45254 4.65639 0.07634 0.99997 7.01051 -0.06059 0.00139 0.45254 7.02254 0.05557 0.550001 7.02234 1.02234 1.02234 0.01037 0.02501 0.05999 0.07634 0.05999 1.02334 1.0233	7.78534 -0.05026 0.01284 0.50500 4.35747 0.06626 0.40999 0.40926 0.01284 0.60526 0.01284 0.60526 0.01284 0.60526 0.01284 0.60526 0.01284 0.60526 0.01284 0.60526 0.01284 0.012	0000	8-25891		0.01211	0.40921	4.61854	0.03521	0.25001	-0.04775	
6.55136 -0.00020 0.00130 0.00320 0.003	11	9063	7.78534		0.01284	0.50590	4.35747	0.04892	0.49999	-0.03183	
1.63344	11.63344	1210	0.35130		0.01360	0.60260	4.09640	0.05263	0 00007	28510.01	
1.63344	11.63344	6037	8-77703		0.01130	0.84550	4-87961	0.00.00	2000000	-0.05366	
7.01051 -0.06058 0.01426 0.00586 4.04254 0.05507 0.50000 0.07186 0.07524 0.01582 0.75245 3.62400 0.077186 0.74999 0.01032 0.01746 0.89910 3.20546 0.08364 0.99998 0.74998 0.01033 0.01032 0.01031 0.01032 0.00909 0.00909 0.01033 0.01033 0.01034 0.01032 0.00909 0.00	7.01051 -0.06058 0.01426 0.60580 4.04254 0.05507 0.50000	2770	7.81949		0.01279	0.45916	4.46108	0.03829	0.25001	-0.04775	
11.53344	6.32087 -0.07524 0.01746 0.49910 3.26240 0.07186 0.74993 11.63344 -0.01899 0.01746 0.89910 3.26240 0.08864 0.99998 11.53344 -0.01897 0.01032 0.09991 5.60129 0.009999 11.20338 -0.01837 0.01071 0.15365 5.45000 0.00949 0.74998 10.44118 -0.02474 0.01111 0.25534 5.45000 0.00949 0.74998 10.44118 -0.02476 0.01111 0.25534 5.47745 0.01081 0.55003 10.44118 -0.02476 0.01119 0.31250 4.99611 0.01081 0.55003 10.44118 -0.02476 0.01119 0.31250 4.99611 0.01081 0.55003 10.44118 -0.02476 0.01119 0.31250 4.99611 0.01081 0.50000 10.44118 -0.02470 0.01118 0.31251 4.99611 0.01081 0.74998 10.11878 -0.01860 0.01118 0.31251 <td>a 766</td> <td>7.01051</td> <td></td> <td>0.01426</td> <td>0.60580</td> <td>4.04254</td> <td>0.05507</td> <td>0.50000</td> <td>-0.03183</td> <td></td>	a 766	7.01051		0.01426	0.60580	4.04254	0.05507	0.50000	-0.03183	
11.63344	11.63344 -0.018991 0.89910 3.20546 0.08864 0.99998 11.63344 -0.01837 0.01932 0.09991 5.60129 0.00999 10.73938 -0.01837 0.015305 5.46000 0.00999 0.74998 10.73938 -0.02474 0.01111 0.20520 5.29872 0.00999 0.74998 10.04139 0.01131 0.25934 5.14745 0.01037 0.25934 0.00999 0.74998 10.04709 -0.02750 0.01194 0.31249 4.99611 0.01037 0.25934 0.01037 0.25934 0.01037 0.25934 0.01037	1453	6.32087		0.01582	0.75245	3.62400	0.07186	0.74999	-0.01592	
11.63344 -0.01199 0.01032 0.09991 5.60129 0.00905 0.74998 10.79573 -0.02474 0.011032 0.09991 5.60129 0.00905 0.74998 10.74715 -0.02474 0.011191 0.25626 5.29672 0.00999 0.74998 10.41194 -0.03750 0.01194 0.31249 4.99611 0.01037 0.25003 10.41194 -0.03712 0.01194 0.31249 4.99611 0.01037 0.25003 10.04709 -0.03712 0.01194 0.31249 4.99611 0.01037 0.25003 10.04709 -0.03712 0.01194 0.31249 4.99611 0.01037 0.25003 10.04709 -0.03712 0.01194 0.31250 4.99611 0.01036 0.25003 10.15189 -0.03712 0.01194 0.30230 4.99611 0.01036 0.25003 10.15189 -0.03750 0.01194 0.30250 4.99611 0.01036 0.25003 10.04704 -0.03750 0.01174 0.31251 4.99611 0.01031 0.00003 9.741114 -0.04431 0.01182 0.35925 4.95123 0.01239 0.550010 9.74995 11.044704 -0.04722 0.01324 0.49944 0.499611 0.01031 0.00002 9.35724 -0.05994 0.01324 0.49944 0.499610 0.01031 0.00002 9.35724 -0.05994 0.01324 0.49944 0.499610 0.01031 0.00002 9.35724 -0.05994 0.01324 0.49944 0.00002 9.36623 0.06015 0.74999 1.00002 9.35724 -0.06939 0.01324 0.49944 0.00002 9.36623 0.06015 0.74999 1.00002 9.35724 -0.06939 0.01324 0.49944 0.00002 9.36623 0.06015 0.02099 0.25001 0.26999 0.01254 0.26994 0.02099 0.02099 0.01254 0.29999 0.01254 0.29999 0.01254 0.29999 0.01254 0.29999 0.02099 0.01254 0.29999 0.02099 0.25000	11.63344 -0.01199 0.01032 0.09991 5.60129 0.00905 0.99995 11.70338 -0.01837 0.01031 0.15305 5.45000 0.00949 0.704998 10.79573 -0.02137 0.01031 0.25934 5.14745 0.00949 0.74998 10.44715 -0.02475 0.01194 0.31249 4.99511 0.01037 0.25033 10.04715 -0.023750 0.01194 0.31249 4.99511 0.01081 0.25033 10.04715 -0.03573 0.01194 0.31250 4.99591 0.01081 0.25033 10.11685 -0.03573 0.01184 0.31250 4.95991 0.01081 0.25003 10.11685 -0.03573 0.01184 0.32594 4.95991 0.01081 0.25003 10.11685 -0.03573 0.01184 0.32594 4.95991 0.01081 0.25003 10.11685 -0.03573 0.01184 0.32594 4.95131 0.01081 0.25003 0.99992 10.04704 -0.03596 0.01184 0.35925 4.95137 0.02335 0.25003 0.99993 10.04704 -0.04311 0.01234 0.35925 4.95137 0.02335 0.25003 0.99993 10.04702 -0.05433 0.01324 0.4964 0.49644 0.04999 0.99993 10.04702 -0.05433 0.01324 0.49544 0.02335 0.25003 0.99999 0.01324 0.01324 0.49961 0.001081 0.00002 0.99999 0.013250 0.01329 0.49999 0.01329 0.01329 0.49999 0.01329 0.01329 0.49999 0.01329 0.01329 0.49999 0.01329 0.01329 0.49999 0.01329 0.01329 0.49999 0.01329 0.01329 0.49999 0.01329 0.01329 0.49999 0.01329 0.01329 0.49999 0.01329 0.01329 0.49999 0.01329 0.01329 0.01329 0.49999 0.01329 0.01329 0.49999 0.01329 0.01329 0.01329 0.49999 0.01329 0.01329 0.49999 0.01329 0.01329 0.49999 0.01329 0.01329 0.49999 0.01329	5959	5.72821		0.01746	0.89910	3.20546	0.08364	6666.	-0.00000	
11.63344 -0.01199 0.01032 0.09991 5.60129 0.00995 0.74998 10.79573 -0.02474 0.01111 0.20520 0.00949 0.74998 10.79573 -0.02474 0.01111 0.20520 5.29572 0.00949 0.74998 10.79573 -0.02474 0.01111 0.20520 5.29572 0.009949 0.76998 10.04718 -0.03750 0.01194 0.31259 4.99511 0.01037 0.25900 10.04715 -0.03750 0.01194 0.31259 4.99511 0.01037 0.25900 10.01186 0.30510 0.01081 0.01091 0.00007 10.01186 0.03091 0.01186 0.25900 0.30691 0.01186 0.25900 0.30691 0.01186 0.25900 0.25003 0.29969 10.0118731 -0.03573 0.01186 0.30510 0.01091 0.01091 0.00007 0.20633 0.01186 0.30590 4.95710 0.01091 0.00003 0.29969 10.0118731 -0.03590 0.0118731 0.02596 0.25001 0.02596 0.25001 0.01091 0.01091 0.00003 0.29969 0.29969 0.0118731 0.01279 0.04999 0.01279 0.04999 0.01279 0.04999 0.02590 0.05099 0.02590 0.05099 0.02590 0.05099 0.02590 0.05099 0.01280 0.04999 0.02590 0.02590 0.02590 0.05099 0.02590 0.02590 0.02590 0.05099 0.02720 0.0	11.63344 -0.01199 0.01032 0.09991 5.60129 0.00905 0.74998 10.720338 -0.01837 0.01011 0.22652 5.29572 0.00949 0.74998 10.41134 -0.01837 0.01111 0.22652 5.29572 0.00949 0.74998 10.42134 -0.03152 0.25934 5.14745 0.01037 0.25003 10.04715 -0.03750 0.01119 0.25934 5.14745 0.01037 0.25003 10.04715 -0.03750 0.01194 0.31254 4.99611 0.01037 0.25003 10.04715 -0.03750 0.01194 0.31254 4.99611 0.01037 0.25003 10.01194 0.30934 4.99611 0.01037 0.25003 10.01194 0.30934 4.99611 0.01037 0.25003 10.01194 0.30934 4.99611 0.01037 0.29999 10.115158 -0.03595 0.01185 0.30934 4.99611 0.01936 0.29999 10.015158 -0.03595 0.01184 0.31251 4.99611 0.01031 0.000000000000000000000000000										
11.63344 -0.01199 0.01032 0.09991 5.60129 0.00999 0.74998 11.20338 -0.01837 0.01071 0.20520 5.25020 0.00949 0.74673 0.01071 0.25534 5.14745 0.00993 0.74998 10.47115 0.01312 0.01194 0.31249 4.95011 0.00993 0.25003 10.47115 0.01372 0.01194 0.31249 4.95011 0.01037 0.25003 10.4715 0.01372 0.01194 0.31249 4.95011 0.01037 0.25003 10.11685 0.01194 0.31249 4.95091 0.01037 0.25003 10.11685 0.01194 0.30930 4.95991 0.01037 0.25003 10.11685 0.01194 0.30930 4.95991 0.01091 0.00003 0.25003 10.11685 0.01186 0.30930 4.95991 0.01091 0.00003 0.25	11.63344	0.12									
11.20338	11.20338 -0.01837 0.010/1 0.15305 5.45000 0.00949 0.74998 10.79673 -0.02474 0.01111 0.20620 5.29872 0.000949 0.74998 10.79673 -0.02474 0.01111 0.20620 5.29872 0.000937 0.50000 10.04715 -0.023750 0.01194 0.31259 4.99611 0.01081 0.00007 10.04709 -0.023750 0.01194 0.31259 4.99611 0.01081 0.00007 10.08137 -0.02375 0.01194 0.30930 4.95991 0.01936 0.25003 10.11685 -0.03673 0.01182 0.30930 4.95991 0.01936 0.29999 10.11685 -0.03673 0.01184 0.30930 4.95991 0.01936 0.29999 10.11685 -0.03673 0.01186 0.30990 4.95991 0.01936 0.29999 10.11685 -0.03750 0.01184 0.32969 4.95137 0.02792 0.49999 10.11683 -0.03750 0.01184 0.31251 4.99611 0.01081 0.00003 9.71114 -0.04371 0.01236 0.35925 4.97137 0.02335 0.74999 0.771114 -0.04371 0.01282 0.49694 4.97131 0.01081 0.00003 9.751114 -0.04371 0.01282 0.49694 4.97131 0.01081 0.00003 9.751114 -0.05939 0.01184 0.49694 4.97131 0.01081 0.00003 9.751114 -0.05939 0.01184 0.49694 4.97131 0.01081 0.00003 9.7520 0.01081 0.00003 9.76509 -0.02335 0.01184 0.95930 0.01081 0.00003 9.76599 0.01746 0.31251 4.99610 0.01081 0.00003 9.76599 0.017270 0.01528 0.000395 0.000395 0.000397 0.0000397 0.000039 0.000039 0.000039 0.0000	3966	11.63344	-0.01199	0.01032	16660.0	5.60129	9060000	56666.0	-0.00000	
10.79573 -0.02474 0.01111 0.20520 5.29572 0.009993 0.50000 10.41154 -0.03112 0.01194 0.31250 4.99615 0.01061 0.00005 10.044715 -0.03750 0.01194 0.31250 4.99615 0.01061 0.00005 10.047715 -0.03750 0.01194 0.31250 4.99611 0.01081 0.00005 10.018157 -0.03750 0.01194 0.31250 4.995911 0.01081 0.00005 10.11685 -0.03673 0.01184 0.30930 4.95991 0.01994 0.02792 10.11685 -0.03673 0.01186 0.30610 4.95991 0.02792 0.49999 10.15158 -0.03635 0.01186 0.30550 4.98750 0.02792 0.49999 10.18731 -0.03696 0.01178 0.29969 4.85129 0.02792 0.049999 10.018731 0.01178 0.29969 4.85129 0.02393 0.00003 0.00003 0.00003 0.01286 0.49969 4.85129 0.02395 0.00003 0.00003 0.00003 0.00003 0.00003 0.01286 0.49969 4.85129 0.01289 0.01289 0.49969 0.00003 0.01280 0.49969 0.45650 0.00003 0.00003 0.01280 0.49969 0.49969 0.00003 0.01280 0.49969 0.00003 0.00003 0.01280 0.49969 0.00003 0.000003 0.000003 0.000003 0.000003 0.00003 0.00003 0.00003 0.00003 0.000003 0.000003 0.000003 0.000	10.79573 -0.02474 0.01111 0.20520 5.29572 0.000993 0.50000 10.41184 -0.03112 0.01194 0.31259 4.95911 0.01037 0.25503 10.04709 -0.03750 0.01194 0.31259 4.95991 0.01096 0.02005 10.04709 -0.03712 0.01194 0.31259 4.95991 0.01096 0.02005 10.01685 -0.03673 0.01194 0.32954 4.95991 0.01991 0.02009 10.11685 -0.03673 0.01186 0.30610 4.95991 0.01992 0.25003 10.11685 -0.03673 0.01186 0.30610 4.95991 0.01992 0.25003 10.116873 -0.03635 0.01178 0.29995 4.95913 0.02564 0.74999 10.15198 -0.03635 0.01178 0.29995 4.95123 0.02659 0.99992 10.18731 0.01178 0.29995 4.95123 0.02659 0.99992 10.04704 -0.04375 0.01178 0.29995 4.95123 0.02659 0.00003 9.77114 -0.04375 0.01178 0.29995 4.95123 0.02699 0.909992 10.04872 0.01178 0.29995 4.95131 0.01081 0.020003 9.29180 -0.04872 0.01178 0.49960 4.94961 0.02699 0.999997 10.04872 0.01178 0.49960 0.49961 0.02699 0.999997 10.02693 0.01178 0.49960 0.49960 0.01189 0.999997 10.02699 0.01189 0.01189 0.49999 0.999997 10.02699 0.01189 0.01189 0.999997 10.02699 0.90000 0.01189 0.01189 0.99999 0.00000 0.01189 0.909999 0.00000 0.01189 0.01189 0.90999 0.90999 0.90999 0.00000 0.01189 0.01189 0.02699 0.00000 0.01189 0.000000 0.01189 0.000000 0.01189 0.000000 0.01189 0.000000 0.01189 0.000000 0.0000000 0.0000000000000000	4515	11.20338	-0.01837	0.010.1	0.15305	5.45000	64600.0	0.74998	-0.01910	
10.447150.03112 0.01153 0.25934 5.14745 0.01037 0.25503 10.047150.03750 0.01194 0.31249 4.99615 0.01060 0.00007 10.0447150.03750 0.01194 0.31250 4.99611 0.01081 0.20007 10.0281570.03750 0.01194 0.31250 4.99611 0.01093 0.020007 10.018150.03673 0.01194 0.30930 4.995911 0.01093 0.020007 10.0151580.03635 0.01184 0.30290 4.95791 0.01936 0.020007 10.0187310.03635 0.01182 0.30290 4.95750 0.02792 0.49992 10.0187310.04311 0.01182 0.39995 4.95713 0.02235 0.00003 0.00003 0.01178 0.29969 4.95713 0.02235 0.00003 0.00003 0.01274 0.499611 0.00003 0.00003 0.01274 0.499611 0.00003 0.00002 9.07994 0.049949 0.00003 0.01282 0.01374 0.49949 0.00003 0.01282 0.01194 0.49949 0.00003 0.01282 0.01282 0.049949 0.00003 0.01282 0.01194 0.49949 0.00003 0.01282 0.01282 0.049949 0.00003 0.01282 0.01282 0.00003 0.01282 0.00003 0.01282 0.00003 0.01081 0.000001 0.000001 0.000001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.000001 0.00	10.44715 -0.03112 0.01153 0.25934 5.14745 0.01037 0.25503 10.04715 -0.03750 0.01194 0.31249 4.99615 0.01081 0.00007 10.04715 -0.03750 0.01194 0.31249 4.99611 0.01091 0.00007 10.08137 -0.03750 0.01194 0.31250 4.99611 0.01091 0.00007 10.08137 -0.03753 0.01194 0.30290 4.95991 0.01936 0.02792 10.11685 -0.03673 0.01186 0.30590 4.95991 0.012792 0.49993 10.11685 -0.03696 0.01186 0.30590 4.95791 0.02792 0.49999 10.116873 -0.03596 0.01186 0.30590 4.95137 0.02792 0.49999 10.116731 -0.03596 0.01178 0.29969 4.85129 0.04503 0.99999 10.04704 -0.04311 0.01274 0.40504 4.99611 0.01081 0.00003 9.71114 -0.04311 0.01274 0.40504 4.97611 0.01081 0.00003 9.71114 -0.04311 0.01274 0.40504 4.97611 0.01081 0.00002 9.05794 -0.05794 0.01284 0.49944 4.29717 0.05099 0.99997 10.04702 -0.05799 0.01364 0.49944 4.29717 0.05099 0.99997 10.04702 -0.02795 0.01384 0.49944 4.29717 0.05099 0.99997 10.04702 -0.08392 0.01384 0.49944 4.29717 0.05099 0.999997 10.04702 -0.08392 0.01384 0.49944 0.02726 0.02726 0.99999 10.02726 0.01281 0.01081 0.00001 8.78659 -0.08392 0.01194 0.29250 0.05099 0.07660 0.09999 0.00001 8.78659 -0.08392 0.01194 0.29920 0.02726 0.02095 0.02099 0.00001 8.78956 -0.09029 0.01194 0.75245 3.48936 0.07123 0.74999 0.74999 0.001287 0.001387 0.05199 0.05199 0.50000 0.01287 0.01091 0.001387 0.09137 0.99998 0.74446 -0.07899 0.01789 0.01789 0.09999 0.01786 0.01789 0.09137 0.99998	2064	10.79573	-0.02474	0.01111	0.20620	5.29872	0.00993	0.50000	-0.03820	
10.044/15 -0.03750 0.01194 0.31249 4.99615 0.01080 0.00007 10.04709 -0.02750 0.01194 0.31250 4.99611 0.01081 0.00007 10.04709 -0.02750 0.01194 0.31250 4.99611 0.01081 0.00007 10.01185 -0.03673 0.01186 0.30610 4.99611 0.01081 0.02792 10.118731 -0.03635 0.01186 0.30630 4.99611 0.01081 0.02792 0.49993 10.118731 -0.03696 0.01178 0.29969 4.85129 0.03648 0.74999 10.04704 -0.048311 0.01184 0.31251 4.99611 0.01081 0.00003 0.25901 0.00003 0.25918 0.04831 0.01184 0.49949 4.62717 0.02335 0.25901 0.00003 0.25918 0.04949 0.49994 0.49994 0.49994 0.049994 0.049994 0.00003 0.01370 0.01384 0.49949 0.00003 0.01384 0.49949 0.00003 0.01384 0.69990 0.01081 0.00002 0.25001 0.00003 0.01384 0.69990 0.01081 0.00003 0.01081 0.00003 0.01081 0.000000 0.01081 0.00000 0.01081 0.000000 0.01081 0.000000 0.01081 0.000000 0.01081 0.000000 0.01081 0.000000 0.01081 0.000000 0.0000000000	10.044715 -0.03750 0.01194 0.31249 4.99615 0.01080 0.000007 10.04709 -0.02750 0.01194 0.31250 4.99611 0.01081 0.00007 10.04819 -0.03673 0.011194 0.31250 4.99611 0.010936 0.000007 10.01818 -0.03673 0.011186 0.30610 4.95270 0.01936 0.020003 10.11818 -0.03635 0.01186 0.30610 4.99611 0.01093 0.026003 10.118731 -0.03596 0.01186 0.30620 4.88750 0.03648 0.74995 10.018731 -0.03596 0.01184 0.31251 4.99611 0.01081 0.00003 9.371114 -0.04311 0.01184 0.31251 4.99611 0.01081 0.00003 9.371114 -0.04311 0.01184 0.31251 4.99611 0.01081 0.00003 9.37180 -0.04311 0.01279 0.49644 4.25717 0.02359 0.55000 9.37984 -0.05994 0.01184 0.49640 4.64664 0.02359 0.55000 9.37984 -0.05994 0.01184 0.31251 4.99610 0.01081 0.00002 9.35720 -0.05994 0.01184 0.31251 4.99610 0.01081 0.00002 9.35720 -0.04910 0.01184 0.31251 4.99610 0.01081 0.00002 9.35720 -0.08392 0.01184 0.31251 4.99610 0.01081 0.00002 0.99997 7.66589 -0.08392 0.01184 0.31251 4.99610 0.01081 0.02095 0.25001 8.73930 -0.08392 0.01184 0.31251 4.49386 0.02766 0.02766 0.99999 0.50000 0.00002 0.000002 0.000002 0.000002 0.000002 0.00002 0.00002 0.00002 0.000002 0.000002 0.000002 0.000002 0.	5613	10.41194	-0.03112	0.01153	0.25934	5.14745	0.01037	0.25003	-0.05729	
10.04709 -0.03750 0.01194 0.31250 4.99511 0.01081 0.00007 10.08137 -0.03712 0.01189 0.30939 4.95991 0.01936 0.25003 10.08137 -0.03573 0.01186 0.30050 4.95991 0.01936 0.25003 10.15158 -0.03595 0.01182 0.30250 4.95975 0.02259 0.02599 0.02599 10.15158 -0.03596 0.01182 0.30250 4.95513 0.02563 0.049999 10.04734 -0.03756 0.01184 0.31251 4.99511 0.01081 0.00003 9.71114 -0.04311 0.01236 0.35925 4.82137 0.02235 0.55001 9.23180 -0.04872 0.01279 0.40600 4.64664 0.02599 0.500003 9.23180 -0.04872 0.01279 0.40600 4.64664 0.02590 0.50000 9.08797 -0.05433 0.01279 0.49949 4.24717 0.05099 0.50000 9.08799 0.01279 0.49949 4.24717 0.05099 0.50000 9.08770 0.01284 0.49949 1.00002 0.02590 0.00002 9.3572 0.00002 0.00002 9.3572 0.0000	10.04709 -0.03750 0.01194 0.31250 4.99511 0.01081 0.00007 10.01857 -0.03712 0.01184 0.30930 4.95991 0.01936 0.25003 10.1868 -0.03673 0.01186 0.30930 4.95991 0.01936 0.25003 10.18731 -0.03595 0.01182 0.302909 4.95123 0.02594 0.25999 10.18731 -0.03596 0.01178 0.29969 4.95123 0.02596 0.74999 10.08734 -0.03750 0.01184 0.31251 4.99611 0.01081 0.00003 9.39180 -0.04531 0.01279 0.40600 4.64664 0.02599 0.50000 9.39180 -0.04532 0.01324 0.40600 4.64664 0.02359 0.50000 9.39180 -0.04572 0.01320 0.40600 4.64664 0.02359 0.50000 9.39180 -0.04572 0.01320 0.40600 4.64664 0.02359 0.50000 9.39784 -0.05780 0.01364 0.40600 4.64684 0.02599 0.50000 9.35720 -0.05780 0.01364 0.40929 0.40929 0.50000 0.01364 0.40929 0.001081 0.001081 0.00001 9.35720 -0.08392 0.01364 0.40929 0.40929 0.01364 0.40929 0.02095 0.02095 0.00001 9.39998 10.0001291 0.001291 0.001391 0.01669 0.02095 0.02099 0.50000 0.01264 0.01265 0.02760 0.01091 0.001391 0.02095 0.02095 0.00001 9.39998 0.01265 0.001391 0.01658 0.02999 0.001391 0.01658 0.001391 0.001	5151	10.04715	-0.03750	0.01194	0.31249	4.99615	0.01080	0.00005	-0.07639	
10.11685 -0.03712 0.01190 0.30930 4.95991 0.01936 0.25902 10.11685 -0.03673 0.01186 0.30610 4.95370 0.02792 0.49999 10.11685 -0.03673 0.01186 0.30610 4.95370 0.02792 0.49999 10.1168731 -0.03596 0.01188 0.32959 4.85123 0.02559 0.05648 0.99992 10.04704 -0.04311 0.01184 0.31251 4.99513 0.02535 0.59992 10.04704 -0.04312 0.01236 0.35925 4.82137 0.02535 0.59000 0.523180 -0.04872 0.01279 0.49600 4.64664 0.02535 0.50000 0.523180 -0.04872 0.01279 0.49949 4.447191 0.01281 0.02359 0.50000 0.50000 0.52726 0.02535 0.50000 0.52726 0.02535 0.05000 0.52720 -0.05994 0.01364 0.49949 4.447191 0.01081 0.00002 0.50000 0.52720 -0.04999 0.99997 10.04999 0.00002 0.50000 0.52720 0.01282 0.04999 0.00002 0.52500 0.52720 0.01282 0.04999 0.00002 0.52500 0.52720 0.01281 0.01688 0.65280 0.02726 0.02726 0.99998 0.50000 0.01287 0.01551 0.60580 0.02724 0.07660 0.99999 0.50000 0.01287 0.01281 0.00001 0.01081 0.00001 0.00001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.00000001	U.	5162	10.04/09	-0.03750	0.01194	0.31250	11966.4	0.01081	0.00007	-0.07639	
10.11558 -0.03673 0.01185 0.30250 4.38750 0.022792 0.74999 10.11568 -0.03635 0.01186 0.30250 4.38750 0.03648 0.74999 10.15158 -0.03759 0.01182 0.302590 4.38750 0.037648 0.74999 10.104734 -0.037596 0.01178 0.32259 4.52137 0.02335 0.52503 0.99992 0.2371114 -0.04311 0.01236 0.35925 4.92137 0.02335 0.55003 0.59000 0.2371114 -0.04372 0.01234 0.49600 4.64664 0.02335 0.50000 0.50000 0.52712 0.01279 0.04949 4.447191 0.02335 0.50000 0.50000 0.52712 0.02335 0.05000 0.50000 0.52712 0.02335 0.01364 0.49949 4.42717 0.02599 0.99997 0.99997 0.004702 -0.02756 0.01284 0.49949 4.429717 0.05099 0.99999 0.50000 0.50000 0.01364 0.65299 0.602726 0.2726 0.29999 0.50000 0.50000 0.01364 0.65299 0.06018 0.602726 0.02726 0.29999 0.50000 0.01371 0.01688 0.60289 0.02726 0.02726 0.99999 0.50000 0.01367 0.05038 0.05039 0.02726 0.02729 0.00001 0.00001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.00001 0.00001 0.00001 0.0001 0.0001 0.0001 0.000001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.000001 0.000001 0.000001 0.00000000	10.1158 -0.03673 0.01185 0.39250 4.58750 0.022792 0.45797 0.02351 0.00003 0.03648 0.02355 0.01187 0.39250 4.58750 0.03648 0.74999 0.01873 0.01873 0.01873 0.02355 0.00003 0.99992 0.01873 0.01875 0.01875 0.01875 0.01875 0.01875 0.0235 0.0235 0.00003 0.99992 0.0187	2000	10.08187	-0.03/12	061100	0.30930	16656.4	0.01936	0.25003	-0.05/29	
C	C	7126	10-15198	10.03635	0.01180	0.30510	4.98750	0.03648	0.44999	10.01910	
10.04704 -0.03750 0.01194 0.31251 4.99511 0.01081 0.00003 9.71114 -0.04311 0.01236 0.35925 4.92137 0.02335 0.2235 0.25901 9.29180 -0.04872 0.01279 0.40600 4.64664 0.023590 0.50000 9.08797 -0.05433 0.01324 0.49949 4.29717 0.05999 0.74998 8.75605 -0.05994 0.01364 0.49949 4.29717 0.05999 0.99997 10.04702 -0.03750 0.01194 0.49920 4.565282 0.06018 0.00002 9.35720 -0.06071 0.01194 0.505990 4.65282 0.06371 0.50000 8.17476 -0.07231 0.01682 0.60250 4.05523 0.06015 0.74999 7.66589 -0.08392 0.01555 0.69990 3.74294 0.07660 0.99998 7.66589 -0.08392 0.01551 0.69939 0.05000 6.87285 -0.09250 0.01746 0.75524 5.99916 0.017123 0.76599 0.50000 6.87285 -0.09029 0.01746 0.75545 9.997163 0.0017123 0.775499	10.04704 -0.03750 0.01194 0.31251 4.99511 0.01081 0.00003 9.71114 -0.04311 0.01236 0.35925 4.92137 0.02335 0.25001 9.24180 -0.04872 0.01279 0.40600 4.64664 0.02359 0.50000 9.08797 -0.05433 0.01320 0.49574 4.47191 0.04644 0.74998 8.75864 -0.05994 0.01364 0.49949 4.25717 0.060994 0.99997 10.04702 -0.03794 0.01154 0.49920 0.01081 0.00002 9.35720 -0.04910 0.01184 0.50590 4.56220 0.01081 0.00002 8.75605 -0.06071 0.01874 0.50590 4.36952 0.04371 0.50000 8.17476 -0.07231 0.01658 0.60260 4.05623 0.06015 0.74999 7.66589 -0.08392 0.01545 0.62994 0.02095 0.05000 8.78055 -0.05510 0.01194 0.31251 4.99610 0.01091 0.00001 8.78056 -0.007270 0.01154 0.75245 3.46936 0.02095 0.50000 6.87285 -0.09029 0.01746 0.75245 3.46936 0.07123 0.74999 6.14416 -0.10789 0.01953 0.89910 2.98771 0.09137 0.99998	7443	10.18731	-0.03596	0.01178	0.29969	4.85123	0.04503	0.99992	-0.00001	
9.711140.04311 0.01236 0.35925 4.92137 0.02335 0.25001 9.29180 -0.04872 0.01279 0.40600 4.64664 0.02590 0.50000 9.08797 -0.05433 0.01320 0.49574 4.29717 0.05099 0.74998 8.79864 -0.05994 0.01364 0.49949 4.29717 0.05099 0.74998 10.04702 -0.05750 0.01184 0.31251 4.99610 0.01081 0.00002 9.35747 -0.05994 0.01384 0.49920 4.99610 0.01081 0.00002 8.75605 -0.06071 0.01382 0.49920 4.36922 0.04371 0.50000 8.17476 -0.07231 0.01468 0.60260 4.05623 0.06015 0.74999 7.66589 -0.08392 0.01565 0.69930 3.74294 0.07660 0.99998 10.04700 -0.03750 0.01194 0.31251 4.99610 0.01081 0.00001 8.78055 -0.05510 0.01551 0.60580 3.99160 0.02199 0.50000 6.87293 -0.09029 0.01746 0.75245 3.99160 0.07123 0.74999	9.71114 -0.04311 0.01236 0.35925 4.92137 0.02335 0.25001 9.39180 -0.04872 0.01279 0.40600 4.64664 0.02590 0.50000 9.08197 -0.05433 0.01320 0.49574 4.47191 0.04844 0.74998 8.75864 -0.05994 0.01354 0.49949 4.29717 0.06999 0.99997 10.04702 -0.03910 0.01134 0.31251 4.59510 0.01081 0.00002 9.35720 -0.04910 0.01134 0.50590 4.58282 0.02726 0.25001 8.75605 -0.06071 0.01374 0.50590 4.36952 0.04371 0.50000 8.17476 -0.07231 0.01658 0.60260 4.05623 0.06015 0.74999 7.66589 -0.08392 0.01545 0.64930 3.74294 0.07660 0.99998 10.04700 -0.07270 0.01154 0.45916 4.49386 0.02095 0.25001 8.78055 -0.057270 0.01557 0.45916 4.49386 0.02095 0.50000 6.87285 -0.09029 0.01746 0.75245 3.48936 0.07123 0.74999 6.14416 -0.10789 0.01953 0.89910 2.98711 0.09137 0.99998	5919	10.04734	-0.03750	0.01194	0.31251	4.996:1	0.01091	0.00003	-0.07639	
9.39180 -0.04872 0.01279 0.40600 4.64664 0.02590 0.50000 9.297180 -0.05433 0.01320 0.45274. 4.47191 0.04844 0.74998 8.79364 -0.05994 0.01364 0.49949 4.29717 0.06099 0.99997 10.04702 -0.02750 0.01184 0.31251 4.99610 0.01081 0.00002 9.35720 -0.06971 0.01282 0.49920 4.65282 0.01081 0.00002 8.75605 -0.06071 0.01374 0.50599 4.65282 0.02726 0.25001 8.75605 -0.06392 0.01374 0.50599 4.65523 0.06015 0.74999 7.66589 -0.08392 0.01565 0.69993 3.74294 0.07660 0.99998 10.04700 -0.03750 0.01194 0.31251 4.99610 0.01081 0.00001 8.78055 -0.09279 0.01194 0.31251 4.99610 0.01081 0.00001 8.78055 -0.09279 0.01194 0.31251 4.99610 0.01081 0.00001 8.78056 -0.09029 0.01194 0.75245 3.99160 0.01191 0.0001 8.78050 0.01191 0.0001 8.78050 0.01191 0.0001 8.78050 0.01191 0.0001 8.78050 0.01191 0.0001 8.78050 0.001191 0.0001 8.78050 0.001191 0.0001 8.780100 0.01191 0.001746 0.75245 8.78039 0.0011123 0.77249 0.77246 8.78030 0.071123 0.77249 0.77241	9.39180 -0.04872 0.01279 0.40600 4.64664 0.02590 0.50000 9.297180 -0.05433 0.01320 0.49574. 4.47191 0.04844 0.74998 8.72954 -0.05994 0.01364 0.499449 4.25717 0.06099 0.99997 0.04702 -0.05994 0.011894 0.21251 4.99610 0.01081 0.00002 9.35720 -0.04971 0.011894 0.49920 4.56523 0.02726 0.25001 8.73605 -0.06071 0.012874 0.50599 4.36952 0.04371 0.50000 7.66589 -0.08392 0.01545 0.60560 4.05623 0.06015 0.74999 7.66589 -0.08392 0.01545 0.69730 0.01081 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.0000001 0.0000001 0.00000000	6963	9.71114	-0.04311	0.01236	0.35925	4.92137	0.02335	0.25001	-0.05729	
9.08797 -0.05433 0.01320 0.452/4. 4.47191 0.04844 0.74998 8.75954 -0.05994 0.01364 0.49949 4.29717 0.05099 0.99997 10.04702 -0.02756 0.01281 0.02002 4.567817 0.05099 0.99997 10.04702 -0.04371 0.01281 0.02002 4.56782 0.02726 0.25001 8.75505 -0.06071 0.01282 0.050920 4.56782 0.02726 0.25001 8.75505 -0.06392 0.01584 0.50599 4.76593 0.06015 0.74999 7.66589 -0.08392 0.01665 0.059998 0.006700 -0.03750 0.01565 0.059930 3.74294 0.07660 0.99998 10.04700 -0.03750 0.01194 0.31251 4.99510 0.01081 0.00001 8.78055 -0.05510 0.01551 0.65580 3.99160 0.02095 0.55000 6.872936 0.01746 0.75293 0.05019 0.50000 6.87246 -0.07271 0.01743 0.75249 0.50000	9.08797 -0.05433 0.01320 0.452/4. 4.47191 0.04844 0.74998 8.79844 -0.05994 0.01364 0.49949 4.29717 0.05099 0.99997 10.04702 -0.02756 0.01194 0.31251 4.99610 0.01081 0.00002 9.35720 -0.04910 0.01184 0.50599 4.68282 0.02726 0.25001 8.75605 -0.06071 0.01374 0.50599 4.56282 0.004371 0.50000 8.17476 -0.07331 0.01146 0.69590 4.65623 0.00615 0.50000 10.00470 -0.01592 0.01154 0.69930 3.74294 0.07660 0.99998 10.04700 -0.03750 0.01194 0.31251 4.99610 0.01081 0.00001 8.78055 -0.05510 0.01194 0.31251 4.99610 0.01081 0.00001 17.72930 -0.07270 0.01194 0.31251 0.469386 0.02095 0.50001 17.72930 -0.017270 0.01194 0.75245 3.48936 0.07123 0.74999 6.87285 -0.09029 0.01746 0.75245 3.48936 0.07123 0.74999 6.14416 -0.10789 0.01953 0.699910 2.988711 0.09137 0.99998	1763	9.39180	-0.04872	0.01279	0.40600	4.64664	0.03590	0.50000	-0.03820	
8.75%64 -0.05994 0.01364 0.49949 4.29717 0.05099 0.99997 10.04702 -0.023750 0.01081 0.00002 9.35720 -0.049750 0.01081 0.00002 9.35720 -0.04971 0.01282 0.40920 4.868282 0.02726 0.25901 8.75605 -0.06071 0.01374 0.50590 4.36952 0.04371 0.50000 8.17476 -0.07231 0.01468 0.660260 4.76523 0.06015 0.76499 7.66589 -0.08392 0.01665 0.69993 0.76294 0.07660 0.99998 10.04700 -0.03750 0.01164 0.31251 4.99610 0.01081 0.00001 8.78055 -0.05510 0.01357 0.45916 4.49386 0.02095 0.25001 7.72930 -0.01746 0.75245 9.99160 0.02095 0.50000 6.87245 -0.09029 0.01746 0.75245 9.99160 0.07123 0.74999	8.75%64 -0.05994 0.01364 0.49949 4.25717 0.05099 0.99997 10.04702 -0.03750 0.01194 0.31251 4.99610 0.01081 0.00002 9.35720 -0.04910 0.01282 0.40920 4.68282 0.02726 0.25001 8.73605 -0.06071 0.01374 0.50590 4.36952 0.04371 0.500000 8.17476 -0.07231 0.01648 0.60260 4.05623 0.06015 0.74999 7.66599 -0.08392 0.01154 0.31251 4.99610 0.077660 0.99998 10.04709 -0.08392 0.01194 0.31251 4.49986 0.02095 0.99998 7.72930 -0.07270 0.01194 0.31251 4.499610 0.01091 0.00001 8.78955 -0.09029 0.01194 0.31251 4.499610 0.010981 0.00001 7.72930 -0.017270 0.01194 0.31251 0.469386 0.02095 0.50000 6.817285 -0.09029 0.011746 0.75245 3.48936 0.07123 0.74999 6.14416 -0.10789 0.011953 0.89910 2.98771 0.09137 0.99998	8564	9.08797	-0.05433	0.01320	0.452/4.	4.47191	0.04844	0.74998	-0.01910	
10.04702 -0.03750 0.01194 0.31251 4.99610 0.01081 0.00002 9.35720 -0.04910 0.01282 0.40920 4.68282 0.02726 0.25001 8.73605 -0.06071 0.01374 0.50590 4.36952 0.004371 0.50000 8.173605 -0.06731 0.01746 0.65050 4.36952 0.004371 0.50000 1.000750 0.01545 0.69993 3.74294 0.07560 0.99998 10.04700 -0.08392 0.01595 0.069930 3.74294 0.07560 0.99998 10.04700 -0.08392 0.01164 0.31251 4.99610 0.01081 0.00001 8.78055 -0.05510 0.01357 0.45916 4.49386 0.02095 0.55000 4.772930 -0.01746 0.75545 3.99160 0.07123 0.77499 0.50000 6.87255 -0.09029 0.001746 0.75245 3.99160 0.07123 0.74999	10.04702 -0.03750 0.01194 0.31251 4.99610 0.01081 0.00002 9.35720 -0.04910 0.01282 0.40920 4.58282 0.02726 0.25001 8.75605 -0.06071 0.01374 0.50590 4.36952 0.04371 0.50000 0.17476 -0.07231 0.01768 0.60260 4.05623 0.06015 0.74999 7.66589 -0.08392 0.01154 0.29393 0.74294 0.07766 0.99998 10.04590 -0.01550 0.01194 0.31251 4.99610 0.01081 0.00001 8.78055 -0.05510 0.01194 0.31521 4.49386 0.02095 0.50000 7.72930 -0.07277 0.01194 0.31521 4.49386 0.02099 0.50000 6.87285 -0.09029 0.01746 0.75245 3.48936 0.07123 0.74999 6.14416 -0.10789 0.01953 0.699910 2.98771 0.09137 0.99998	9365	8.79364	-0.05994	0.01364	64664.0	4.29717	0.05099	16666.0	-0.00000	
9.35720 -0.04910 0.01282 0.40920 4.65282 0.02726 0.25001 8.75605 -0.06071 0.01374 0.50590 4.36952 0.04371 0.50000 8.17476 -0.07231 0.01468 0.60260 4.05623 0.06015 0.74999 7.66589 -0.08392 0.01565 0.69930 3.74294 0.07660 0.99998 10.04700 -0.033750 0.01194 0.31251 4.99610 0.01081 0.00001 8.78055 -0.05510 0.01367 0.45916 4.49386 0.02095 0.25001 7.72930 -0.09029 0.01746 0.75246 3.46936 0.07123 0.74999	9.35720 -0.04910 0.01282 0.40920 4.65282 0.02726 0.25001 8.73605 -0.06071 0.01374 0.50590 4.36952 0.04371 0.50000 8.17476 -0.07231 0.01548 0.60260 4.05623 0.06015 0.74999 7.65599 -0.08392 0.01545 0.649394 0.07660 0.99999 10.04090 -0.08392 0.01194 0.44931 3.74294 0.07660 0.99999 8.7895 -0.05150 0.01184 0.45916 0.02095 0.25001 7.72930 -0.07270 0.01351 0.60580 3.99160 0.05109 0.50000 6.87285 -0.09029 0.01746 0.75245 3.48936 0.07123 0.74999 6.14416 -0.10789 0.01953 0.89910 2.98711 0.09137 0.99998	6162	10.04702		0.01194	0.31251	4.99610	0.01081	0.00002	-0.07639	
8.75605 -0.06071 0.01374 0.50590 4.36952 0.04371 0.50000 8.17476 -0.07231 0.01458 0.60260 4.05623 0.06015 0.74999 7.66599 -0.08392 0.01555 0.69260 4.05623 0.06015 0.74999 1.06599 -0.08392 0.01555 0.69393 0.74294 0.07660 0.99998 1.0604700 -0.083750 0.01194 0.31251 4.99610 0.01081 0.00001 8.78055 -0.05510 0.01367 0.45916 0.02095 0.02091 0.00001 7.72930 -0.09029 0.01764 0.75245 0.05109 0.50000 0.60364 -0.09029 0.01746 0.75245 0.07123 0.74999	8.75605 -0.06071 0.01374 0.50590 4.36952 0.04371 0.50000 8.17476 -0.07231 0.01468 0.60260 4.05623 0.06015 0.74999 7.66589 -0.08392 0.01565 0.699930 3.74294 0.07660 0.999998 10.046755 0.01194 0.31251 4.995610 0.07660 0.999998 10.045910 -0.07273 0.01184 0.45916 4.469386 0.02095 0.20001 7.72930 -0.07272 0 0.01185 0.60580 3.99189 0.05109 0.50000 6.87285 -0.09029 0.01746 0.75245 3.48936 0.07123 0.74999 6.14416 -0.10789 0.01953 0.89910 2.98711 0.09137 0.99998	7438	9.35720		0.01282	0.40920	4.58282	0.02726	0.25001	-0.05730	
\$.17476 -0.07231 0.01468 0.60260 4.05623 0.06015 0.74999 7.66589 -0.08392 0.01555 0.69930 3.74294 0.07560 0.99998 10.04700 -0.43750 0.01194 0.31251 4.99610 0.01081 0.00001 8.78055 -0.405510 0.01267 0.45916 4.49386 0.02095 0.25001 7.72930 -0.07270 0.01551 0.60580 3.99160 0.05109 0.50000 6.87285 -0.49029 0.01746 0.75245 3.48936 0.07123 0.74999	\$-17476 -0.07231 0.01458 0.60260 4.05623 0.06015 0.74999 7.66589 -0.08392 0.01565 0.64930 3.74294 0.07660 0.99998 10.04700 -0.403750 0.01194 0.31251 4.99610 0.01081 0.00001 8.78955 -0.05210 0.01257 0.45916 4.49386 0.02095 0.25001 7.72930 -0.07270 0.01551 0.66580 3.9916 0.05109 0.50000 6.87285 -0.09029 0.01746 0.75245 3.48936 0.07123 0.74999 6.14416 -0.10789 0.01953 0.89910 2.98711 0.09137 0.99998	B714	8-73605		0.01374	0.50590	4.36952	0.04371	0.50000	-0.03820	
7.66589 -0.08392 0.01555 0.64930 3.74294 0.07560 0.99998 10.04700 -0.03750 0.01194 0.31251 4.99510 0.01081 0.0001 8.78055 -0.0510 0.01357 0.45915 4.49386 0.023095 0.25001 7.72930 -0.07270 0.01551 0.60580 3.99160 0.05109 0.50000 6.87285 -0.49929 0.01746 0.75245 3.46936 0.07123 0.74999	7.66589 -0.08392 0.01565 0.64930 3.74294 0.07660 0.99998 10.04700 -0.03750 0.01194 0.31251 4.99610 0.01081 0.00001 8.78055 -0.05510 0.01367 0.45916 4.49386 0.02095 0.25001 7.72930 -0.07270 0.01551 0.60580 3.99160 0.05109 0.50000 6.87285 -0.09029 0.01746 0.75245 3.48936 0.07123 0.74999 6.14416 -0.10789 0.01953 0.89910 2.98711 0.09137 0.99998	0666	8.17476		0.01468	0.60260	4.05623	0,06015	0.74999	-0.01910	
10.04709 -0.03750 0.01194 0.31251 4.99610 0.01081 0.00001 8.78055 -0.05510 0.01357 0.45916 4.49386 0.023095 0.25001 7.72930 -0.07270 0.01551 0.60580 3.99160 0.05109 0.50000 8.87285 -0.09029 0.01746 0.75245 3.46936 0.07123 0.74999	10.04709 -0.03750 0.01194 0.31251 4.99610 0.01081 0.00001 8.78055 -0.05510 0.01367 0.45916 4.49386 0.03095 0.25001 7.72930 -0.07270 0.01551 0.60580 3.99163 0.05109 0.50000 6.87285 -0.09029 0.01746 0.75245 3.48936 0.07123 0.74999 6.14416 -0.10789 0.01953 0.89910 2.98711 0.09137 0.99998	1266	7.66589	-0.08392	0.01565	0.69930	3.74294	0.07660	86656.0	-0.00000	
8 278055 -0.05510 0.01257 0.45916 4.49386 0.02095 0.25001 7.72930 -0.07270 0.01551 0.60580 3.99160 0.050109 0.50000 8.687285 -0.09029 0.01746 0.75245 3.46936 0.07123 0.74999 7.141.4 0.117700 0.01043 0.00171 0.00137 0.50008	8.78955 -0.05510 0.01257 0.45916 4.49386 0.02095 0.25001 7.72930 -0.07270 0.01551 0.60580 3.99163 0.05109 0.50000 6.87285 -0.09029 0.01746 0.75245 3.48936 0.07123 0.74999 6.14416 -0.10789 0.01953 0.89910 2.98711 0.09137 0.99998	2919	10.04700	-0.03750	0.01194	0.31251	01965.4	0.01081	0.00001	-0.07659	
7.12430 -0.01270 0.01251 0.02580 5.99180 0.03109 0.50000 0.6887285 -0.09029 0.01746 0.75245 3.46936 0.07123 0.74999 0.746346 0.07123 0.74999	6.87285 -0.09029 0.01746 0.75245 3.48936 0.07123 0.74999 6.814416 -0.10789 0.01953 0.89910 2.98711 0.09137 0.99998	7968	8 - 78055	-0.05510	0.01357	0.45916	4.49386	0.02095	0.25001	-0.05/30	
0.010010 0.010010 0.010010 0.010010 0.00010 0.000000 0.010010 0.010010 0.010010 0.010010 0.010010 0.00000000	6.14416 -0.10789 0.01953 0.68910 2.98711 0.09137 0.99998	2000	000000	01710-01	1001000	0.000000	0010000	0.03103	000000	0.0000	
	0.14410 10.10189 0.01935 0.59910 0.09151 0.09151	7967	0.8/285	67060-0-	04/10-0	0.0240	2 .	0.00123	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	01610.0-	

		•																																							
		ACAP		0845	.0856	.0668	8	1680	15.00	10.0000	-0.02229	-0.00001	-0.08912	-0.06684	-0.04456	-0.02228	-0.00000	-0.08913	40000000	10.00.00	000000-0-	-0.08913		-0.04456	-0.02228	000000-0-		178/0.0-	0.0000	10.00	-0.00001	-0.08573	-0.06430	-0.04287	-0.02143	000000-0-	-0.08956	-0.06717	-0.04478	-0.02239	000000-0-
0.100		Σ		0.05141	0.03857	0.02573	0.01289	0.00004	0.00008	000007-0	0.74996	86666.0	0.00002	0.25001	0.50000	0.74998	26666.0	0.00001	10002.0	0000000	85555	0.00001	0.25000	0.50000	66674.0	66666.0		0.23216	0.42410	00000000	70656	0.15835	0.36876	0.57916	0.78957	16666.0	0.12076	0.34057	0.56037	0.78018	86666.0
# 0 X	DISTRIBUTIONS	YC(1)		0.00000	0.00003	0.00005	0.00008	0.00011	0.00011	60010-0	90020-0	0.04004	0.00011	0.01474	0.02938	0.04401	0.05865	0.00011	0 0 0 0 0 0 0	0.05768	0.07687	0.00011	0.02360	0.04710	0.07060	110		0.00000	0.000.0	0.0000	0.03505	0000000	0.01408	0.02816	0.04224	0.05632	0000000	0.01929	0.03857	0.05785	0.07714
DESIGN METHOD WITH		ALPHA		5.14891	5.13985	5-13078	5-12171	5-11265	5-11261	5.02012	4.98588	4.94363	5.11260	4.90874	4.70488	4.50102	4-29716	5.11259	4.20169	4.01607	3.65055	5-11259	4.52663	3.94068	3.35472	2.76876		12401.0	211013	202200	5.03598	5.03153	4.88543	4.68935	4.49325	4.29716	5.02732	70099-7	4.29276	3.92547	3.55819
FOIL DESIG	ICAL PRESSURE	XBAR		0.30157	0.30430	0.30703	0.30976	0.31249	0.31250	0.30510	0.30290	0.29969	0.31250	0.35925	0.40500	0.45274	67667.0	0.50551	000000000000000000000000000000000000000	0.60240	0.69930	0.31251	0.45915	0.60580	0.75245	0.89910	•	0.50955	0.00.0	0-3023	0.29969	0.34211	0.38146	0.42080	0.46014	64664.0	0.35921	0.44423	0.52926	0.61428	0.69930
THIRD	ELLIPTICAL	8		0.01240	0.01243	0.01246	0.01248	0.01251	0.01251	0-01240	0.01236	0.01231	0.01251	0.01300	0.01350	0.01402	0.01454	0.01251	0-01666	0.01580	0.01698	0.01251	0.01457	0.01680	0.01918	0.02172		50510-0	0.01294	09210-0	0.01285	0.01345	0.01394	0.01444	0.01495	0.01547	0.01357	0.01478	0.01593	0.01712	0.01836
		δ		-0.04222	-0.04260	-0.04298	-0.04337	0.04979	10.04375	10.04293	-0.04241	-0.04196	-0.04375	-0.05030	-0.05684	-0.06338	-0.06993	0.04970	10.03123	-0.08436	06160-0-	-0.04375	-0.06428	-0.03481	-0.10534	-0-12587		20640-0-	01640.0-	-0-04834	-0.04795	-0.05474	-0.06103	-0.06733	-0.07352	-0.07992	-0.05747	-0.07108	-0.08468	-0.09828	-0.11189
	0.150	6/7					11.21681																																10.04461		
	0.000 1= 0	M D	CL= 0.14				0.15353																				CL= 0.16												0.18425		
	.0	v		0.10	0.10	0.10	0.10	200	200	000	0.30	0.30	0.50	0.50	0.50	0.30	0.00	200	2.0	0.10	0.70	06.0	06.0	06.0	06.0	06													0.10		

		ACAP					-0.02295	
0.100		Σ					0.77465	66666.0
"ITH XO"	BUTIONS	YC(1)		0000000	0.02421	0.04841	0.07262	0.09683
N METHOD V	URE DISTRI	ALPHA		16796.4	4.35128	3.75765	3.15404	2.55042
THIRD FOIL DESIGN METHOD WITH XO= 0.100	ELLIPTICAL PRESSURE DISTRIBUTIONS	XBAR		0.37036	0.50254	0.63473	0.76691	0.89910
THIRD	ELLIPT	8		0.01402	0.01627	0.01869	0.02127	0.02403
		δ		-0.05926	-0.08041	-0.10156	-0.12271	-0.14386
	0.150	57		11.41529	9.83561	8.56250	7.52149	6.65938
	K= 0.000 T= 0.150	NO.	CL= 0.16	0.15562	0.90 0.17733	0.90 0.19905	0.90 0.22076	0.90 0.24247
	м в	S		05.0	0.90	06.0	06.0	0.90

-0.01273 -0.60000 -0.05093 -0.001273 -0.000000 -0.05093 -0.03820 -0.000000 -0.01592 -0.03183 -0.03183 -0.03820 -0.06366 -0.03183 -0.06366 -0.04774 -0.00001 0.100 # OX YC(1) DISTRIBUTIONS THIN DESIGN METHOD ALPHA PRESSURE XBAR THIRD FOIL ELLIPTICAL 00 S 4.43966 4.35569 4.36330 4.70656 4.388219 4.338821 4.35567 4.27647 4.12941 2 0.200 0.08 0.10 -16876 177965 17796 1779 00000 3000000000000000 222222222222222 w

-0.000000 -0.001910 -0.003820 -0.005729 -0.05730 -0.03820 -0.01910 -0.00000 Σ 0.100 # OX DISTRIBUTIONS YC(1) WITH DESIGN METHOD ALPHA PRESSURE THIRD FOIL ELLIPTICAL 0 -0.06071 -0.07231 -0.08392 -0.03750 -0.05994 -0.05510 -0.09029 -0.04910 S 5.24548 4.34548 4.356738 4.34547 4.39939 4.05114 5.43911 5.16051 4.30278 6.06850 5.46095 99067.7 4-09974 0.200 0.10 0.12 00.17909 00.17909 00.17909 00.17099 00.27099 00.27099 00.27199 2 170 00000 S

-0.08912 -0.08913 -0.06684 -0.04456 -0.07639 -0.10185 -0.07639 -0.05073 -0.02228 -0.02547 -0.00001 -0.04456 -0.00000 -0.05093 000000-0-0.99990 0.99996 0.50000 0.250000 0.000000 0.000000 0.49999 0.14999 0.74998 0.999996 0.00002 0.25001 0.50000 0.99998 0.00001 0.25001 0.50000 0.74999 0.00003 0.25001 0.50000 0.74998 Σ 0.100 NOX ELLIPTICAL PRESSURE DISTRIBUTIONS DESIGN METHOD WITH 6.39806 6.54506 6.54506 6.56502 6.54500 6.54500 6.376031 6.376031 6.37603 7.26655 7.26655 7.06497 6.86326 6.66155 6.66149 6.56493 6.56493 6.51666 6.46838 6.96148 6-19552 5-96254 5-72956 7.25103 ALPHA 0.09991 0.15305 0.20620 THIRD FOIL 0.02613 0.02050 0.02312 0.02890 0.02884 0.02123 0.02197 0.02271 0.02347 0 -0.06993 -0.06993 -0.04375 -0.05729 -0.01399 -0.03631 -0.04375 -0.04330 -0.04285 -0.04241 -0.04375 -0.04375 -0.01599 -0.05000 -0.05748 -0.05496 -0.07244 -0.05684 -0.05000 -0.05000 -0.04795 -0.02887 -0.04196 -0.08436 06160-0--0.03299 -0.04149 67670.0--0.04898 Š 7.05037 6.93024 6.93019 6.93019 6.95124 6.95124 6.99363 6.06640 6.83015 6.41012 8.067253 7.80838 7.53536 7.53532 7.56140 7.61398 7.64048 7.53528 7.24335 5.67846 6.83014 6.05521 5.40505 4.85425 4.38355 7.52380 6.62623 66716.9 6.33016 6.24496 6.59898 6.43131 5.35874 7.04395 6.5159 0.200 0.14 0.16 0.21485 000000 S

u V

		9		-0.10186	-0.07639	-0.05093	-0.02547	-0.00000	-0-10186	-0.07639	-0.05093	-0.02547	-0.00000
0.100		Σ		0.00002	0.25001	0.50000	66674.0	86666 0	0.00001	0.25001	0.50000	0.74999	86666.0
THIRD FOIL DESIGN METHOD WITH XO=	ELLIPTICAL PRESSURE DISTRIBUTIONS	, X		0.01441	0.03634	0.05827	0.08021	0.10214	0.01441	0.04126	0.06812	16760.0	0.12183
		910		6.66147	6.24376	5.82604	5.40831	65066.4	6.66147	5.99180	5.32215	4.65248	3.99282
		SA SA		0.31251	0.40920	0.50590	0.60260	0.68930	0.31251	0.45916	0.50580	0.75245	0.89910
		8		0.02123	0.02280	0.02442	0.02610	0.02783	0.02123	0.02430	0.02756	0.03104	0.03472
		3		-0.05000	-0.06547	-0.08094	-0.09642	-0-11189	-0.05000	-0.07346	-0.09693	-0.12039	-0.14386
	K= 0.000 T= 0.200	170		7.53527	7.01790	6.55204	6.13107	5.74941	7.53525	6.58541	5.80447	5.15463	4.60811
		2	CL= 0.16	0.70 0.16162	0.17439	0.18714	0.70 0.19990	0.21266	0.16162	89611.0 00.0	0.90 0.10775	0.21582	0.23338
	× 0	v		0.70	0.70	0.70	0.70	0.10	06.0	00.0	06.0	00.00	0.00

Third Foil Design Method with X0=0.100

こうちょう できずいれる いちきと いちかんしまっ 一方とないべいとかい

Three Term Pressure Distributions

M ACAP	.22743 -0.05902	.00001 0.00000
YC(1)	0.39342 3.30530 0.00000 0.22743	0.04823 1.00001
ALPHA	3.30530	2.42737
XBAR		0.66830
₿	0.00661	0.00860
CM	-0.04721 0.00661	-0.08020 0.00860 0.66830
T/D	18.14859	13.95578
MU	0.75 0.15432	0.75 0.20850
S	0.75	0.75

K = 0.000

T = 0.100

CL = 0.12

Third Foil Design Method with X0=0.100 Reversed Three Term Pressure Distributions

ACAP	-0.04706	0.00000
×	0.38398	1.00000
YC(1)	0.00000	0.02278
ALPHA	3.46331	0.36454 3.30220
XBAR	0.33248	0.36454
8	0.00618	0.00635
CM	-0.03990	-0.04375
T/D	19.41006	18.88766
MU	0.14778	0.16289
S	0.25	0.25

K = 0.000

T = 0.100

CL = 0.12

中一日 からからなる あったな

Figure 1 - Schematic Diagram of Two-Dimensional Flow Geometry and Prescribed Pressure Distribution

Figure 2 - Mathematical Representation of the Hydrofoil and Cavity in the Complex z-Plane

Figure 3 - The Hydrofoil and its Cavity in the ν and ζ -Planes After the Application of Conformal Mappings

(b) TAIL-LOADED PROFILE

Figure 4 - Parametric Representations of Rectangular Pressure
Distributions for Nose-Loaded (a) and Tail-Loaded
(b) Hydrofoil Sections

Figure 5 - Limiting Values of $\mathrm{C}_{L}/\mathrm{T}$ for Rectangular Pressure Distributions at Zero Cavitation Number

Figure 6 - Permissible Values of μ at Zero Cavitation Number and Lift Parameter m for Rectangular Pressure Distributions and Three Nose Control Points, x

7 - Permissible Values of μ at Shockless Entry for Rectangular Pressure Distributions at Zero Cavitation Number Figure

Figure 8 - Semi-Elliptical Pressure Distributions for Nose and Tail Loadings

Figure 9 - Effect of Pressure Distribution Shape on Permissible Values of μ at the Ideal Attack Angle

Figure 10 - Limiting Values of $C_{\rm L}/T$ as Affected by Pressure Distribution Shape at the Ideal Attack Angle

Figure 11 - Limiting Value of $\mathrm{C}_{\mathrm{L}}/\mathrm{T}$ for Semi-Elliptical Pressure Distributions

Figure 16 - Three C Intervals which Govern the Computation of the Permissible Range of $\boldsymbol{\mu}$

Figure 17 - Effect of Permissible Values of μ on L/D for Semi-Elliptical Pressure Distributions at K=0 and Various $^{\rm C}_L$

Figure 18 - Effect of Permissible Values of μ on L/D for Semi-Elliptical Pressure Distributions at K=0.2 and Various $C_{T_{\rm c}}$

Figure 19 - Effect of Permissible Values of μ on L/D for Semi-Elliptical Pressure Distributions at Various Cavitation Numbers and Fixed C_L

Figure 20 - Effect of Permissible Values of μ on L/D for a Fixed Peak Pressure Location and Ranges of K and c_L

Figure 21 - Effect of Permissible Values of μ on L/D for Various Cavity Thicknesses and Lift Coefficients

Figure 22 - General Effect of u on L/D for Two Values of $\rm C_L$ and Fixed Values of K, T and $\rm X_0$

Figure 23 - Cross Plots from Figure 22 Showing Trends of L/D for Various Fixed Values of μ

Figure 24 - General Effect of μ on L/D for Two Values of c_L at K=.2

Figure 25 - Replot of Figure 24 Showing the Effect of μ on L/D when K=.2 and $C_L^{}\!\!=\!.08$

Kan-000

THIRD DESIGN PROCEDURE LEGEND LEGEND

MINTHIRD DESIGN PROCEDURE TEEGAVITANTHIGKNESSATERALUKS HOES ZITE GAVITIY THICKNESS AT 105% CHORO S T PEAK PRESSURE LOCATION MEASURED FROM NOSE K • CAVITATION NUMBER CLESECTION LIFT COEFFICIENT

Figure 30 + Third Design Procedu K=0.100, MU MAX

K= 0.100, MU MAX

LEGENO

THIRD DESIGN PROCEDURE

- T CAVITY THICKNESS AT TRAILING EDGE
- ДТ CAVITY THICKNESS AT 10% CHORD
 - REPEAK PRESSURE LOCATION MEASURED FROM NOSE
 - K = CAVITATION NUMER
- CE SECTION LIFT COEFFICIENT

an Procedure L/D Performence Map,

ke de'toe we wek LEGEND TY CAVITY THICKNESS AT TRAILING EDGE AT # CAVITY THICKNESS AT 10% CHORD LE PEAKEPRESSURE LOCATION MEASURED FROM NOSE K = CAVITATION NUMBER CASECTION DET COEFFICIENT 0-027 0-029 0-031

150, YU YAX i i i jilênski. German LÉGEND HU GIRO DESIGN PROJEDURE I CAVITY THICKNESS AT TRAIL AT ECAVITY THICKNESS AT 10% C * * PEAK PRESSURE LOCATION M K = CAVITATION NUMBER SECTION LIFT COEFFICIEN

K= 0.200 MU MIN

LEGENO

HIRD DESIGN PROCEOURE

T . CAVITY THICKNESS AT TRAILING EDGE

AT - CAVITY THICKNESS AT 10% CHORD

"S - PEAK PRESSURE LOCATION MEASURED FROM NOSE

K - CAVITATION NUMBER

G - SECTION LIFT COEFFICIENT

680 0.482 17034 7.036 0.488 0.488 0.482 0.484 0.488 0.488 0.488 0.488 0.488 0.488 0.488 0.488 0.488 0.488 0.488

Figure 36 - Profile and Pressure Distribution for s=.2

Figure 37 - Profile and Pressure Distribution for s=.2

こうしていますのであるというです。

Figure 39 - Profile and Pressure Distribution for s=.3

Figure 40 - Profile and Pressure Distribution for s=.3

Figure 42 - Profile and Pressure Distribution for s=.3

Figure 43 - Profile and Pressure Distribution for s=.7

The state of the s

Figure 44 - Profile and Pressure Distribution for s=.7

Figure 45 - Profile and Pressure Distribution for s=.7

Figure 46 - Profile and Pressure Distribution for s=.3

Figure 47 - Profile and Pressure Distribution for s=.3

Figure 48 - Profile and Pressure Distribution for s=.3

Figure 49 - Three-Term Pressure Distributions at $\mathrm{C_L}\text{=-}.12$

Figure 50 - Nose-Loaded Pressure Distribution and Profile Shape for a Three-Term Profile

The second secon

Figure 51 - Nose-Loaded Pressure Distribution and Profile Shape for a Three-Term Profile

Figure 52 - Three-Term Pressure Distribution and Profile Shape for a Tail-loaded Hydrofoil

Figure 54 - Off-Design Characteristics for the Hydrofoil Section of Figure 40

DISTRIBUTION LIST FOR UNCLASSIFIED TM 77-180 by B. R. Parkin and J. Fernandez, dated 5 July 1977

Commander
Naval Sea Systems Command
Department of the Navy
Washington, DC 20362
Attn: Library
Code NSEA-09G32

(Copy Nos. 1 and 2)

Naval Sea Systems Command Attn: A. Bress Code NSEA-03

(Copy No. 3)

Naval Sea Systems Command Attn: L. Benen Code NSEA-0322

(Copy No. 4)

Naval Sea Systems Command Attn: T. E. Peirce Code NSEA-0351 (Copy No. 5)

Naval Sea Systems Command Attn: D. Creed Code NSEA-03132A

(Copy No. 6)

Commander
Naval Ship Engineering Center
Washington, DC 20360
Attn: R. J. Cauley
Code NSEC-6140B
(Copy No. 7)

Naval Ship Engineering Center Attn: F. Welling Code NSEC-6144 (Copy No. 8)

Commanding Officer
Naval Underwater Systems Center
Newport, RI 02840
Attn: Library
Code LA15
(Copy No. 9)

Naval Underwater Systems Center Attn: J. D. Powers Code SE34 (Copy No. 10) Commanding Officer
Naval Ocean Systems Center
San Diego, CA 92132
Attn: A. G. Fabula
Code 5002
(Copy No. 11)

Commanding Officer & Director
David W. Taylor Naval Ship R&D Center
Department of the Navy
Bethesda, MD 20084
Attn: W. E. Cummins
Code 15
(Copy No. 12)

David W. Taylor Naval Ship R&D Center Attn: S. F. Crump Code 1505 (Copy Nos. 13 - 32)

David W. Taylor Naval Ship R&D Center Attn: R. Wermter Code 152 (Copy No. 33)

David W. Taylor Naval Ship R&D Center Attn: W. B. Morgan Code 154 (Copy No. 34)

David W. Taylor Naval Ship R&D Center Attn: R. Cumming Code 1544 (Copy No. 35)

David W. Taylor Naval Ship R&D Center Attn: J. McCarthy Code 1552 (Copy No. 36)

David W. Taylor Naval Ship R&D Center Attn: T. Brockett Code 1544 (Copy No. 37)

David W. Taylor Naval Ship R&D Center Attn: Y. T. Shen Code 1524 (Copy No. 38) DISTRIBUTION LIST FOR UNCLASSIFIED TM 77-186 by B. R. Parkin and J. Fernandez, dated 5 July 1977 (continued)

David W. Taylor Naval Ship R&D Center Attn: M. Sevik
Code 19
(Copy N. 39)

David W. Taylor Naval Ship R&D Center Attn: W. Blake Code 1942 (Copy No. 40)

David W. Taylor Naval Ship R&D Center Attn: T. C. Mathews Code 1942 (Copy No. 41)

David W. Taylor Naval Ship R&D Center Attn: Tech. Info. Lib. Code 522.1 (Copy No. 42)

Commanding Officer & Director
David W. Taylor Naval Ship R&D Center
Department of the Navy
Annapolis Laboratory
Annapolis, MD 21402
Attn: J. G. Stricker
Code 2721
(Copy No. 43)

Commander
Naval Surface Weapon Center
Silver Spring, MD 20910
Attn: J. L. Baldwin
Code WA-42
(Copy No. 44)

Office of Naval Research Department of the Navy 800 N. Quincy Street Arlington, VA 22217 (Copy No. 45)

California Institute of Technology Division of Eng. and Appl. Sci. Pasadena, CA 91125 Attn: A. J. Acosta (Copy No. 46) California Institute of Technology Attn: T. Y. Wu (Copy No. 47)

Mr. J. Fernandez
The Pennsylvania State University
APPLIED RESEARCH LABORATORY
Post Office Box 30
State College, PA 16801
(Copy No. 48)

GTWT Library
The Pennsylvania State University
APPLIED RESEARCH LABORATORY
Post Office Box 30
State College, PA 16801
(Copy No. 49)

Defense Documentation Center 5010 Duke Street Cameron Station Alexandria, VA 22314 (Copy Nos. 50 - 61)