Econometrics 710 Midterm Exam March 8, 2016 Sample Answers

- 1. Since $\frac{\partial}{\partial x}m(x)=c_1+2c_2x$, then $\theta=E\left[\frac{\partial}{\partial x}m(x_i)\right]=\theta=E\left[c_1+2c_2x_i\right]=c_1+2c_2\mu_x$
- 2. By the formula for the best linear predictor, we know that

$$\beta_1 = \frac{\text{cov}(x, y)}{\text{var}(x)} = \frac{\text{cov}(x, m(x))}{\text{var}(x)} = \frac{\text{cov}(x, c_0 + c_1 x + c_2 x^2)}{\text{var}(x)} = c_1 + c_2 \frac{\text{cov}(x, x^2)}{\sigma_x^2}$$

We can write the cov term in terms of the uncentered moments as

$$cov(x, x^{2}) = E((x - Ex)(x^{2} - Ex^{2})) = E((x - \mu_{x})x^{2}) = E(x^{3}) - \mu_{x}Ex^{2}.$$

Making the substitutions $Ex^2 = \sigma_x^2 + \mu_x^2$ and $Ex^3 = s_x + 3\mu_x\sigma_x^2 + \mu_x^3$ we find

$$cov(x, x^2) = s_x + 3\mu_x \sigma_x^2 + \mu_x^3 - \mu_x \sigma_x^2 - \mu_x^3 = s_x + 2\mu_x \sigma_x^2.$$

Thus

$$\beta_1 = c_1 + c_2 \frac{s_x + 2\mu_x \sigma_x^2}{\sigma_x^2}$$

Since $\theta = E[c_1 + 2c_2x_i] = c_1 + 2c_2\mu_x$ we find

$$\beta_1 - \theta = c_2 \left(\frac{s_x + 2\mu_x \sigma_x^2}{\sigma_x^2} - 2\mu_x \right) = c_2 \frac{s_x}{\sigma_x^2}$$

3. $\beta_1 = \theta$ if either $c_2 = 0$ or $s_x = 0$.

First, $c_2 = 0$ occurs when the true regression is linear. Thus, as seems natural, the linear approximation will equal the average derivative when the true regression is linear.

Second, $s_x = 0$ occurs when the third centered moment of x_i is zero. This occurs when the distribution of x_i is symmetric about its mean. Thus the linear approximation will equal the average derivative when the true regression is quadratic and x_i is symmetric about its mean. This is not so obvious. Roughly, the bias on the two sides of μ_x cancel out.

In general, however, $\beta_1 \neq \theta$

- $4. \ \widehat{\theta} = \widehat{\beta}_1 + 2\widehat{\beta}_2 \mu_x$
- 5. The conditional mean is correctly specified, so the least-squares estimators $\widehat{\beta} = (\widehat{\beta}_0, \widehat{\beta}_1, \widehat{\beta}_2)$ are unbiased for $\beta = (c_0, c_1, c_2)$. $\widehat{\theta}$ is a linear function of $\widehat{\beta}$. Since expectation is a linear operator $\widehat{\theta}$ is therefore unbiased. More formally,

$$E\left(\widehat{\theta} - \theta\right) = E\left(\left(\widehat{\beta}_1 + 2\widehat{\beta}_2\mu_x\right) - (c_1 + 2c_2\mu_x)\right) = E\left(\widehat{\beta}_1 - c_1\right) + 2\mu_x E\left(\widehat{\beta}_2 - c_2\right) = 0$$

Thus $\widehat{\theta}$ is unbiased for θ .

- 6. Since this is a correctly specified regression, $\widehat{\beta} = (\widehat{\beta}_0, \widehat{\beta}_1, \widehat{\beta}_2) \to_p \beta = (c_0, c_1, c_2)$. By the continuous mapping theorem, $\widehat{\theta} = \widehat{\beta}_1 + 2\widehat{\beta}_2\mu_x \to_p c_1 + 2c_2\mu_x = \theta$. Thus $\widehat{\theta}$ is consistent for θ .
- 7. Since this is a correctly specified rgression

$$\sqrt{n}\left(\widehat{\beta} - \beta\right) \to_d N(0, V)$$

where $V = Q^{-1}\Omega Q^{-1}$, $Q = E\left(\widetilde{x}_i\widetilde{x}_i'\right)$, $\Omega = E\left(\widetilde{x}_i\widetilde{x}_i'e_i^2\right)$, and $\widetilde{x}_i = (1, x_i, x_i^2)'$. Set $R = (0, 1, 2\mu_x)'$. Note that $\theta = R'\beta$ and $\widehat{\theta} = R'\widehat{\beta}$. Thus

$$\sqrt{n}\left(\widehat{\theta} - \theta\right) = \sqrt{n}R'\left(\widehat{\beta} - \beta\right) \to_d N(0, R'VR)$$

- 8. The natural estimator is $\hat{\theta} = \hat{\beta}_1 + 2\hat{\beta}_2\hat{\mu}_x$ where $\hat{\mu}_x = n^{-1}\sum_{i=1}^n x_i$
- 9. By the WLLN, $\hat{\mu}_x \to_p \mu_x$. Thus by the continuous mapping theorem $\hat{\theta} = \hat{\beta}_1 + 2\hat{\beta}_2\hat{\mu}_x \to_p c_1 + 2c_2\mu_x = \theta$. Thus it is consistent.

10.

- (a) $\hat{\mu}_x$ is random. So sampling error in the estimate of $\hat{\mu}_x$ for μ_x needs to be taken into account.
- (b) $\widehat{\theta}$ is a nonlinear function of $(\widehat{\beta}_0, \widehat{\beta}_1, \widehat{\beta}_2, \widehat{\mu}_x)$. To use the delta method to find the asymptotic distribution, we need the joint asymptotic distribution of $(\widehat{\beta}_0, \widehat{\beta}_1, \widehat{\beta}_2, \widehat{\mu}_x)$. Thus, we define the augmented parameter vector $\gamma = (c_0, c_1, c_2, \mu_x)$ and calculate the derivative

$$R_{\gamma} = \frac{\partial}{\partial \gamma} \theta = \frac{\partial}{\partial \gamma} \left(c_1 + 2c_2 \mu_x \right) = \begin{pmatrix} R \\ 2c_2 \end{pmatrix}$$

with $R = (0, 1, 2\mu_x)'$ defined earlier. Then we find the asymptotic distribution

$$\sqrt{n}\left(\widehat{\gamma}-\gamma\right)\to_d N(0,V_{\gamma})$$

By the delta method we deduce

$$\sqrt{n}\left(\widehat{\theta}-\theta\right) \to_d N(0, R'_{\gamma}V_{\gamma}R_{\gamma})$$

The relatively new & challenging part is the asymptotic distribution of $\hat{\gamma}$.

(c) The method for finding the asymptotic distribution of $\hat{\gamma}$ is to stack the estimators. We have

$$\begin{split} \sqrt{n} \left(\widehat{\gamma} - \gamma \right) &= \sqrt{n} \left(\begin{array}{c} \widehat{\beta} - \beta \\ \widehat{\mu}_x - \mu_x \end{array} \right) \\ &= \left(\begin{array}{c} \left(\frac{1}{n} \sum_{i=1}^n \widetilde{x}_i \widetilde{x}_i' \right)^{-1} \left(\frac{1}{\sqrt{n}} \sum_{i=1}^n \widetilde{x}_i e_i \right) \\ \frac{1}{\sqrt{n}} \sum_{i=1}^n \left(x_i - \mu_x \right) \end{array} \right) \\ &= \left[\begin{array}{c} \left(\frac{1}{n} \sum_{i=1}^n \widetilde{x}_i \widetilde{x}_i' \right)^{-1} & 0 \\ 0 & 1 \end{array} \right] \frac{1}{\sqrt{n}} \sum_{i=1}^n u_i \end{split}$$

where

$$u_i = \left(\begin{array}{c} \widetilde{x}_i e_i \\ x_i - \mu_x \end{array}\right)$$

Notice that u_i is iid, mean zero, and has variance

$$V_{u} = E\left(u_{i}u_{i}^{\prime}\right) = \left(\begin{array}{cc} E\left(\widetilde{x}_{i}\widetilde{x}_{i}^{\prime}e_{i}^{2}\right) & E\left(\widetilde{x}_{i}^{\prime}e_{i}\left(x_{i}-\mu_{x}\right)\right) \\ E\left(\widetilde{x}_{i}e_{i}\left(x_{i}-\mu_{x}\right)\right) & E\left(x_{i}-\mu_{x}\right)^{2} \end{array}\right) = \left(\begin{array}{cc} \Omega & 0 \\ 0 & \sigma_{x}^{2} \end{array}\right)$$

The off-diagonal terms are zero since $E(e_i|x_i) = 0$ under the assumption that the true conditional mean is quadratic, so the regression is correctly specified. By the CLT

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} u_i \to_d N(0, V_u)$$

and by the CMT

$$\sqrt{n} \left(\widehat{\gamma} - \gamma \right) \rightarrow_d \begin{bmatrix} Q^{-1} & 0 \\ 0 & 1 \end{bmatrix} N(0, V_u) = N(0, V_\gamma)$$

where

$$V_{\gamma} = \left[\begin{array}{cc} Q^{-1} & 0 \\ 0 & 1 \end{array} \right] \left(\begin{array}{cc} \Omega & 0 \\ 0 & \sigma_x^2 \end{array} \right) \left[\begin{array}{cc} Q^{-1} & 0 \\ 0 & 1 \end{array} \right] = \left[\begin{array}{cc} V & 0 \\ 0 & \sigma_x^2 \end{array} \right]$$

which is conveniently block-diagonal. Putting this together with the delta method we find

$$\sqrt{n}\left(\widehat{\theta}-\theta\right) \to_d N(0,V_{\theta})$$

where

$$V_{\theta} = R_{\gamma}' V_{\gamma} R_{\gamma} = R' V R + 4c_2^2 \sigma_x^2$$

This is similar to the distribution in part 7, but the asymptotic variance has been increased by the factor $4c_2^2\sigma_x^2$. (Notice that the change is non-negative.) Notice that the formulas from part 7 and 10 are identical when $c_2=0$. Thus when the true model is linear but we estimate a quadratic model and estimate the average derivative using the estimate $\hat{\mu}_x$, then the asymptotic variance of $\hat{\theta}$ is not increased; there is no penalty from estimation of $\hat{\mu}_x$. In addition, the simple standard errors calculated as in part 7 will still be valid. However, when the true model is quadratic (e.g. $c_2 \neq 0$) then the asymptotic variances are different and it is necessary to use the second formula to obtain a correct standard error for $\hat{\theta}$.