TD Sur Les Equations Différentielles

Destiné aux élèves de Terminale S Lycée de Dindéfelo Présenté par M. BA

20 avril 2025

Généralités. Équations du premier ordre

Exercice 1

- Montrer que chacune des fonctions f est solution de l'équation différentielle (E):
 - $-f(x) = \cos(2x+3)$ (E): y'' = 16y
 - $-f(x) = \sin(2x)$ (E): $y'' + 3y = -2\sin x \cos x$
 - $-f(x) = xe^x \quad (E) : y' y = e^x$
 - $f(x) = e^x \ln x$ (E) : $y'' 2y' + y = \frac{-1}{x^2} e^x$

Exercice 2

- Déterminer la solution f de chacune des équations différentielles (E) suivantes vérifiant la condition $f(x_0) = y_0$:
 - -(E): -3y' + 2y = 0, avec $x_0 = 3$ et $y_0 = 1$.
 - (E): 3y + 6y = 0, avec $x_0 = -4$ et $y_0 = 2$
 - -(E): 5y' + y = 0, avec $x_0 = -5$ et $y_0 = 1$.
 - (E): 2y 5y' = 0, avec $x_0 = 1$ et $y_0 = -3$

Équations du second ordre

Exercice 3

- Déterminer la solution f de chacune des équations différentielles (E) suivantes vérifiant les conditions $f(x_0) = y_0$ et $f'(x_0) = y'$:
 - -2y'' 3y' 2y = 0, f(0) = 2 et f'(0) = 3
 - -- y'' + y' + y = 0, f(0) = 1 et f'(0) = -1
 - -4y'' 4y' + y = 0, f(0) = -3 et f'(0) = 2
 - -y'' 5y' + 6y = 0, f(0) = 0 et f'(0) = 6
 - -9y'' + 6y' + y = 0, f(0) = 1 et f'(0) = 2
 - -y'' 4y' + 5y = 0, f(0) = -1 et f'(0) = 3

Exercice 4

— Soit (E) l'équation différentielle du second ordre :

$$y'' - 3y' + 2y = 0.$$

— a) Quelles sont les solutions de (E)?

- b) Quelle est la solution de (E) dont la courbe représentative \mathcal{C} admet au point d'abscisse x=0 la même tangente que la courbe \mathcal{C}' représentative de y=x?
- c) Préciser les positions relatives de \mathcal{C}_{λ} et \mathcal{C}'_{λ} .

Exercice 5

1. Résoudre l'équation différentielle :

$$y'' + 16y = 0.$$

2. Trouver la solution f de cette équation vérifiant :

$$f(0) = 1$$
 et $f'(0) = 4$.

- 3. Trouver deux réels positifs ω et φ tels que pour tout réel t, $f(t) = \sqrt{2}\cos(\omega t \varphi)$.
- 4. Calculer la valeur moyenne de f sur l'intervalle $\left[0, \frac{\pi}{8}\right]$.

Équations différentielles linéaires du second ordre avec un second membre non nul

Exercice 6

On considère l'équation (E): y'' + my' + py = g(x) où m et p sont deux réels et g une fonction continue sur \mathbb{R} .

I. Étude générale

On suppose qu'il existe une solution f_1 de (E).

1. Prouver que si f est solution de (E), alors $f-f_1$ est solution de l'équation différentielle :

$$(E_0)$$
: $y'' + my' + py = 0$.

- 2. Prouver que si h est solution de (E_0) , alors $h + f_1$ est solution de (E).
- 3. En déduire toutes les solutions de (E) si on connaît une solution de (E).

II. Cas où g est un polynôme

- 1. On considère l'équation (E) : y'' 3y' + 2y = x + 1.
 - (a) Déterminer a et b réels tels que : $f_1: x \mapsto ax + b$ soit solution de (E).
 - (b) Résoudre (E).
- 2. On considère l'équation (E) : $y'' 3y' + 2y = x^2 + 2x + 3$.
 - (a) Déterminer a et b réels tels que : f_1 : $x \mapsto ax^2 + bx + c$ soit solution de (E).
 - (b) Résoudre (E).

Soit P une fonction polynômiale du second degré.

- 3. Résoudre:
 - (a) $y'' 8y' + 17y = x^2 x + 2$.
 - (b) $y'' + 4y' + 4y = x^2 + 1$.

III. Cas où $g(x) = \alpha \cos(\omega x) + \beta \sin(\omega x)$

- 1. On considère l'équation (E) : $y'' + 4y' + 5y = 2\cos 3x \sin 3x$.
 - (a) Déterminer a et b réels tels que : $f_1: x \mapsto a \cos 3x + b \sin 3x$ soit solution de (E).
 - (b) Résoudre (E).
- 2. On considère l'équation (E) : $y'' + 4y' + 5y = \alpha \cos 3x + \beta \sin 3x$.
 - (a) Déterminer a et b réels tels que : $f_1: x \mapsto a \cos 3x + b \sin 3x$ soit solution de (E).
 - (b) Résoudre (E).
- 3. Résoudre:
 - (a) $y'' 6y' + 8y = \cos x + 2\sin x$.
 - (b) $y'' + 4y' + 4y = \sin 5x$.

IV. Cas où $q(x) = e^{ax}$

- 1. On considère l'équation (E) : $y'' 4y' + 4y = e^{-2x}$.
 - (a) Déterminer a réel tels que : $f_1 : x \mapsto ae^{-2x}$ soit solution de (E).
 - (b) Résoudre (E).

- 2. On considère l'équation (E) : $y'' 5y' + 6y = e^{2x}$.
 - (a) Peut-on déterminer une solution particulière de (E) sous la forme $x \mapsto ae^{2x}$?
 - (b) Déterminer a et b réels tels que : $f_1: x \mapsto (ax+b)e^{2x}$ soit solution de (E).
 - (c) Résoudre (E).
- 3. On considère l'équation (E) : $y'' 4y' + 4y = e^{2x}$.
 - (a) Peut-on déterminer une solution particulière de (E) sous la forme $x\mapsto a\mathrm{e}^{2\,x}\,?$
 - (b) Peut-on déterminer une solution particulière de (E) sous la forme $x \mapsto (ax + b)e^{2x}$?
 - (c) Déterminer a et b réels tels que : $f_1: x \mapsto (ax^2 + bx + c)e^{2x}$ soit solution de (E).
 - (d) Résoudre (E).
- 4. On considère l'équation (E) : $y'' + my' + py = e^{ax}$.
 - (a) Prouver que si a n'est pas solution de $r^2 + mr + p = 0$, il existe une solution du type $x \mapsto ae^{ax}$.
 - (b) Prouver que si a est une racine simple de $r^2 + mr + p = 0$, il n'existe pas de solution du type $x \mapsto ae^{ax}$ mais une solution du type $x \mapsto (ax + b)e^{ax}$
 - (c) Prouver que si a est une racine double de $r^2 + mr + p = 0$, il n'existe pas de solution du type $x \mapsto ae^{ax}$, ni du type $x \mapsto (ax + b)e^{ax}$, mais une solution du type $x \mapsto (ax^2 + bx + c)e^{ax}$
 - (d) Résoudre:

i.
$$y'' - 2y' + 2y = e^{3x}$$

ii.
$$y'' + 2y' - 3y = e^x$$
.