DDA6050 Assignment 3

Zihan, Zhou 119010484@link.cuhk.edu.cn

Due by: 23:59, Nov 17th

If you have any questions about grading, please feel free to reach out to me via email at 119010484@link.cuhk.edu.cn or visit me during my office hours, which are held every Wednesday from 16:00 to 17:00 at the SDS Research Lab, Seat 88, Zhi Xin Building.

1 Amortized Analysis. (20 marks)

- (a). Assuming we possess two stacks capable of performing push and pop operations at a constant O(1) cost per operation, construct a queue with enqueue and dequeue operations in such a way that the amortized time for each queue operation remains within O(1). Also prove that the implemented queue indeed has the O(1) amortized time per operation. (10 marks)
- (b). Suppose that we run a program over a sequence of n days. On the i-th day, if $\log_2(i)$ is an integer, then this program costs i units of computation resources to examine the outputs obtained so far. Otherwise, it only costs 1 unit of computation resource this day. Compute the amortized computation cost per day. (10 marks)

2 Governing Set Problem. (35 marks)

In this question, we only consider the connected graph. A **governing set** in a graph G = (V, E) is a subset of vertices $S \subseteq V$ such that every vertex $v \in V \setminus S$ is adjacent to a vertex $s \in S$. Now, the governing set problem is that, given a graph G = (V, E) and an integer k, we want to determine the existence of a **governing set** $S \subseteq V$ such that $|S| \leq k$. Show that the vertex-cover problem \leq_p governing set problem. (Hint: You may consider the following algorithm. Try to prove the correctness of the following algorithm. This algorithm claims a necessary and sufficient condition, so you must demonstrate both aspects.)

Algorithm 1 Vertex cover problem to governing set reduction

Input: graph G = (V, E) and and integer k.

Output: Graph H = (V', E') such that G has a vertex cover of size k if and only if H has a governing set of size k.

- 1: Initialize $V' \leftarrow V, E' \leftarrow E$.
- 2: for every edge $\{u, v\} \in E$ do
- 3: Add vertex w_{uv} to V'.
- 4: Add edges $\{u, w_{uv}\}, \{v, w_{uv}\}$ to E'.
- 5: end for
- 6: return H = (V', E')

3 NP-complete. (35 marks)

Prove that the following problem is NP-complete. Given a set X and a family \mathcal{F} of subsets of X, whether there are two disjoint sets S_1, S_2 such that $S_1 \cup S_2 = X$ and for any set A in \mathcal{F} , A is not a subset of S_1 and S_2 . The following is an example. Let $X = \{1, 2, 3, 4, 5\}$, $\mathcal{F} = \{\{1, 2\}, \{3, 4\}, \{1, 2, 4\}\}$. A possible assignment is $S_1 = \{1, 4\}, S_2 = \{2, 3, 5\}$. The assignment of $S_1 = \{1, 3, 4\}, S_2 = \{2, 5\}$ is infeasible since a subset $\{3, 4\}$ of \mathcal{F} is a subset of S_1 . (Hint: consider not-all-equal 3-satisfiability (NAE3SAT, see Wikipedia) which is NP-complete)

4 Randomized Algorithm. (10 marks)

Suppose we have n servers and m tasks. Each task is independently and uniformly randomly assigned to a server among n of them. In this question, you do not need to rigorously consider if a value is integer. Suppose that $m = 2n \log n$.

- (a) We focus on the first server. Show that the probability of it receiving at least $2e \cdot \log n$ tasks is no larger than $1/n^2$. (5 marks)
- (b) Following (a), show that when n is large enough, then with high probability, no server receives at least $2e \log n$ tasks. (5 marks)