Intercepts of the Quadratic

Case1: △>0 $y_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a}$ computes the y-intercepts of multiplicity 1.

Given a quadratic $s(y) = ay^2 + by + c$ compute its discriminant \triangle :

$$y_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 ac}}{2a}$$
 computes the y-intercepts of multiplicity 1.
 $s(0) = c$ computes the single s-intercept.
 Example 1.

 $s(y) = -y^2 - 3y + 54$ compute its discriminant \triangle : ∆=**225**>**0**

 $\triangle = \sqrt{b^2 - 4ac}$

y_{1,2=}6,-9

Case2: △=0

no y-intercepts.

s(0) = 640 s-intercept.

 $\triangle = -2304 < 0$

However there is a s-intercept.

s(0) = 54 s-intercept.

 $y_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a} = \frac{-b \pm 0}{2a} = \frac{-b}{2a}$ single y-intercept of multiplicity 2.

Example 2. $s(y) = 3y^2 + 54y + 243$ compute its discriminant \triangle :

 $y_{1,2} = -9, -9$ s(0) = 243 s-intercept.

Example 3. $s(y) = 9y^2 - 144y + 640$ compute its discriminant \triangle :

 $\sqrt{\,\mathsf{b}^2\,_-\,\!\mathsf{4}\,\!\mathsf{ac}}$ has no value in Real Numbers. Therefore there are