APELLIDOS:	PL:
APELLIDOS: NOMBRE:	DNI:

ESCUELA DE INGENIERÍA INFORMÁTICA

SISTEMAS INTELIGENTES Examen Final de Teoría. Martes 26 de junio de 2020.

I. Búsqueda

El famoso problema MAX_CUT se puede enunciar del siguiente modo: dado un grafo no dirigido G = (V,E) con costes positivos en los arcos, se trata de calcular una partición del conjunto de nodos V en dos subconjuntos V_1 y V_2 (es decir $V = V_1 \cup V_2$ y $V_1 \cap V_2 = \emptyset$). Si denotamos por E_1 al subconjunto de arcos de E que conectan pares de nodos de V_1 (análogamente E_2), y por Coste(E_1) la suma de los costes de los arcos de E_1 (análogamente Coste(E_2)), el objetivo es encontrar la partición (V_1,V_2) que minimice el valor de Coste(E_1)+ Coste(E_2).

En esta pregunta se pide resolver el problema MAX_CUT utilizando búsqueda en espacios de estados, concretamente el algoritmo A*, y con un algoritmo genético (AG). Mas concretamente:

Solución con A*

- 1.- [1 punto] Describir de forma precisa los estados y las reglas, es decir el espacio de búsqueda, de forma genérica, indicando si es un árbol o un grafo (tened en cuenta que puede haber reglas de coste 0 siempre y cuando no se generen ciclos en el espacio de búsqueda de coste 0, o caminos de longitud infinita y coste 0).
- **2.- [0,5 puntos]** Dibujar una parte representativa del espacio de búsqueda para el problema dado por el siguiente grafo

3.- [1 punto] Diseñar un heurístico razonable, a ser posible utilizando el método de la relajación del problema. Indicar las propiedades del heurístico, y dar sus valores para la fracción del espacio de búsqueda dibujado anteriormente. PISTA: una forma de relajar el problema es prescindir de algunos de los arcos.

Solución con AG

- **4.-** [0,5 puntos] Dar una codificación y un algoritmo de decodificación adecuados. Indicar si con este esquema de codificación/decodificación es posible obtener cualquier solución del problema.
- **5.- [0,5 puntos]** Definir operadores de cruce y mutación adecuados teniendo en cuenta el esquema de codificación/decodificación y el problema MAX_CUT.

II.- Representación

- **6.- [1,5 puntos]** Una de las pruebas de un concurso consiste en que el concursante tiene que elegir entre dos cajas, y solo una de ellas tiene el premio. Para elegir, puede sacar sin mirar dos bolas de forma consecutiva y sin reemplazo de solo una de las cajas. La caja con premio contiene 6 bolas rojas y 4 negras, mientras que la caja sin premio contiene 3 bolas rojas y 7 negras. Modela este problema mediante una red bayesiana, con su estructura y sus probabilidades condicionadas. Calcula, en base a la red creada, cuál será la probabilidad de haber sacado bolas de la caja buena si se han sacado en un caso primero una bola negra y después una roja, y en otro caso primero una bola roja y después una negra.
- **7.-** [1,5 puntos] Dada la siguiente red bayesiana y usando las muestras que vienen debajo, obtén P(E|S,R) mediante el método de inferencia por muestreo con ponderación de la verosimilitud.

Muestra	Р	R	S	T	E
1	Manuela	٧	٧	F	٧
2	Manuela	٧	٧	F	F
3	Manuela	٧	٧	F	>
4	Andrew	٧	٧	F	F
5	Andrew	٧	٧	F	F
6	Manuela	٧	٧	F	٧
7	Andrew	٧	٧	F	٧
8	Andrew	٧	٧	>	>
9	Manuela	٧	٧	F	٧
10	Manuela	٧	٧	F	٧

III.- Aprendizaje

- **8.- [0.5 puntos]** Explica qué es un vector soporte, cuál es su posición relativa con respecto al hiperplano de separación y por qué son importantes en SVM.
- **9.- [0.5 puntos]** Dado el siguiente conjunto de entrenamiento, responde razonadamente si mediante el método C4.5 es posible construir un árbol de decisión que obtenga un porcentaje de acierto del 100% para ese conjunto. Si la respuesta es verdadera dibuja el árbol. Si es falsa explica la razón por la que es falsa.

Α	В	С	Υ
0	1	0	Yes
1	0	1	Yes
0	0	0	No
1	0	1	No
0	1	1	No
1	1	0	Yes

10.- [1.25 puntos] Considera los siguientes ejemplos con un solo atributo real clasificados en dos clases (+,-) y el clasificador KNN, con K=3.

Suponiendo que entrenamos este clasificador con Validación cruzada de 5 cajas, da una posible partición (solo una) y calcula el error cometido en UNA iteración de la validación cruzada.

11.- [1.25 puntos] Tenemos una red neuronal sin capas ocultas y con función de activación lineal. Considera dos entradas x_1 y x_2 donde el valor de la entrada de sesgo es 1 y los pesos asignados a cada entrada son ($w_0 = 2$, $w_1 = 1$, $w_2 = -1$). La función de activación de la neurona es la función signo, de manera que los ejemplos se clasifican como positivos si el valor en el hiperplano es positivo o cero y como negativo en otro caso.

- a) Escribe la ecuación del hiperplano separador inicial e indica cual es la clasificación que daría para el punto (-1, 2).
- b) Supongamos que el punto (-1, 0) es de la clase negativa. Dados los pesos anteriores aplica la regla del perceptrón para que se clasifique correctamente y da la ecuación del hiperplano resultante usando una tasa de aprendizaje de 0,5.

_					
$P(x_1,, x_i) = \sum_{x_{i+1},, x_n} P(x_1,, x_i, x_{i+1},, x_n) = \sum_{x_{i+1}} P(x_1,, x_i, x_{i+1})$					
$P(x y) \equiv P(X = x Y = y) = \frac{P(x,y)}{P(y)}$	P(X,Y) = P(X Y)P(Y) = P(Y X)P(X)				
$P(Y) = \sum_{i=1}^{m} P(Y x_i) P(x_i)$	$P(X_1 = x_1,, X_n = x_n) = \prod_{i=1}^n P(X_i = x_i X_{i+1} = x_{i+1},, X_n = x_n)$				
P(X Y) = P(X)	P(X Y,K) = P(X K)	$P(X Y,K) \neq P(X K)$			
P(A MB(A),B) = P(A MB(A))	$P(x_1,, x_n) = \prod_{i=1}^n P(X_i = x_i Padres(X_i))$				
	P(X Padres(X)) = P(X Padres(X), NoDescendientes(X))				
$E(\mathbf{w}) = \frac{1}{2} \sum_{d} \sum_{k} (y_{kd} - o_{kd})^2$	$\delta_k = o_k (1 - o_k)(y_k - o_k)$ δ_h	$\Delta w_i = \eta (y_d - \mathbf{w} \mathbf{x}_d) x_{di}$ $g(x) = \frac{1}{1 + e^{-x}}$			
1 (0)	$= o_h(1 - o_h) \sum_k w_{kh} \delta_k$ $E(\mathbf{w}) = \frac{1}{2} (y_d - \mathbf{w} x_d)^2$. 1 ' > 0			
$dist(\vec{x}, \vec{y}) = \left(\sum_{i} x_i - y_i ^p\right)^{1/p}$	$E(\mathbf{w}) = \frac{1}{2}(y_d - \mathbf{w}\mathbf{x}_d)^2$	$g(\cdot) = \begin{cases} 1 \text{ si } wx > 0 \\ -1 \text{ en otro caso} \end{cases}$			
$H(X) = -\sum_{i=1}^{k} p_i \log_2 p_i$	$H(X Y) = \sum_{y \in Y} p(y)H(X Y)$ $= y$	$K(x_i, x_j) = \phi(x_i)\phi(x_j)$ $K(x, y) = (xy + 1)^d$			
$b = \frac{1}{ VS } \sum_{i \in VS} y_i - wx_i$	$w = \sum_{i \in VS} \alpha_i y_i x_i$	$d = \frac{2}{\ \boldsymbol{w}\ }$			