Given a triangle with one angle is 120°. If all sides are integers, find all possible solutions.

This document was created by Mr. Francis Hung, last updated: April 18, 2024.

$$c^2 = a^2 + b^2 - 2ab \cos 120^\circ$$

$$c^2 = a^2 + b^2 + ab$$

$$c^2 = (a+b)^2 - ab$$

$$ab = (a+b)^2 - c^2$$

$$ab = (a+b+c)(a+b-c)$$

$$\frac{a+b+c}{a} = \frac{b}{a+b-c} = k$$
, where k is a positive constant.

$$a + b + c = ak$$
; $b = (a + b - c)k$

$$\Rightarrow \begin{cases} a(1-k)+b+c=0\cdots\cdots(1)\\ ak+b(k-1)-ck=0\cdots\cdots(2) \end{cases}$$

From (1):
$$c = a(k-1) - b$$
(3)

Sub. (3) into (2):
$$ak + b(k-1) - a(k^2 - k) + bk = 0$$

$$b(2k-1) = a(k^2 - 2k)$$

Let
$$a = (2k-1)p$$
, $b = (k^2-2k)p$, then $c = (k^2-k+1)p$; where p is a positive integer.

$$a:b:c=(2k-1):(k^2-2k):(k^2-k+1)$$

Let
$$a = (2k-1)p$$
, $b = k(k-2)p$, $c = (k^2 - k + 1)p$; where p is a positive integer. Let $p = 1$.

k	а	b	С
3	5	3	7
4	7	8	13
5	9	15	21
6	11	24	31

Given a triangle with one angle is 60°. If all sides are integers, find all possible solution.

Given the above triangle with $\angle C = 120^{\circ}$, we can construct another triangle ABD with $\angle D = 60^{\circ}$

So, if (a, b, c) is a solution to a 120° triangle, then (a, a+b, c) or (a+b, b, c) is a solution to a 60° Δ .

The general solution are: $((2k-1)p, (k^2-1)p, (k^2-k+1)p)$ or $((k^2-1)p, (k^2-2k)p, (k^2-k+1)p)$. Let p=1.

k	а	a+b	С	a+b	b	С
2	3	3	3			
3	5	8	7	8	3	7
4	7	15	13	15	8	13
5	9	24	21	24	15	21
6	11	35	31	35	24	31