AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings of claims in the application:

Claims 1-53. (Cancelled)

54. (New): An electrophotographic photoreceptor, comprising:

an electroconductive substrate which is an aluminum drum,

on the electroconductive substrate, an intermediate layer comprising titanium oxide,

and

a photosensitive layer on the intermediate layer,

wherein said intermediate layer is obtained by coating an intermediate layer coating liquid on a peripheral surface of said aluminum drum;

wherein the photosensitive layer comprises:

a charge generation layer, and

a charge transport layer,

wherein the charge generation layer comprises, as charge generation materials which have spectral sensitivity in differing wavelength regions, at least one phthalocyanine pigment and at least one asymmetric bisazo pigment having the following formula (II):

$$Cp_1-N=N$$
 $N=N-Cp_2$ (II)

wherein Cp₁ and Cp₂ each, independently, represent a residual group of a coupler, wherein Cp₁ is different from Cp₂;

wherein Cp₁ and Cp₂ each, independently, are selected from the group consisting of the following formulae (C1)-(C8) with the R group as shown in the Table following the respective (C) group:

wherein (C1) is

No.	R	No.	R
C1-1	phenyl	-17	2-cyanophenyl
-2	2-chlorophenyl	-18	3-cyanophenyl
-3	3-chlorophenyl	-19	4-cyanophenyl
-4	4-chlorophenyl	-20	1-naphthyl
-5	2-nitrophenyl	-21	2-anthraquinolyl
-6	3-nitrophenyl	-22	3,5-bistrifluoromethylphenyl
-7	4-nitrophenyl	-23	4-pyrazolyl
-8	2-trifluoromethyl	-24	2-thiazolyl
-9	3-trifluoromethyl	-25	4-carboxyl-2-thiazolyl
-10	4-trifluoromethyl	-26	2-pyridyl
-11	2-methylphenyl	-27	2-pyrimidinyl
-12	3-methylphenyl	-28	2-carbazolyl
-13	4-methylphenyl	-29	2-quinolyl
-14	2-methoxyphenyl		
-15	3-methoxyphenyl		
-16	4-methoxyphenyl		

with the proviso that Cp₁ and Cp₂ are not a combination of (i) a phenyl group and a 2-chlorophenyl group or (ii) a 3-methylphenyl and a 2-chlorophenyl group;

Application No. 09/679,480 Reply to Office Action of October 13, 2006

wherein (C2) is

No.	R	No.	R.
C2-1	phenyl	-17	2-cyanophenyl
-2	2-chlorophenyl	-18	3-cyanophenyl
-3	3-chlorophenyl	-19	4-cyanophenyl
-4	4-chlorophenyl	-20.	1-naphthyl
-5	2-nitrophenyl	-21	2-anthraquinolyl
-6	3-nitrophenyl	-22	3,5-bistrifluoromethylphenyl
-7	4-nitrophenyl	-23	4-pyrazolyl
-8	2-trifluoromethyl	-24	2-thiazolyl
-9	3-trifluoromethyl	-25	4-carboxyl-2-thiazolyl
-10	4-trifluoromethyl	-26	2-pyridyl
-1.1	2-methylphenyl	-27	2-pyrimidinyl
-12	3-methylphenyl	-28	2-carbazolyl
-13	4-methylphenyl	-29	2-quinolyl
-14	2-methoxyphenyl		
-15	3-methoxyphenyl		
-16	4-methoxyphenyl		

wherein (C3) is

No.	R	No.	R
C1-1	phenyl	-17	2-cyanophenyl
-2	2-chlorophenyl	-18	3-cyanophenyl
-3	3-chlorophenyl	-19	4-cyanophenyl
-4	4-chlorophenyl	-20	1-naphthyl
-5	2-nitrophenyl	-21	2-anthraquinolyl
-6	3-nitrophenyl	-22	3,5-bistrifluoromethylphenyl
-7	4-nitrophenyl	-23	4-pyrazolyl
-8	2-trifluoromethyl	-24	2-thiazolyl
-9	3-trifluoromethyl	-25	4-carboxyl-2-thiazolyl
-10	4-trifluoromethyl	-26	2-pyridyl
-11	2-methylphenyl	-27	2-pyrimidinyl
-12	3-methylphenyl	-28	2-carbazolyl
13	4-methylphenyl	-29	2-quinolyl
-14	2-methoxyphenyl		
-15	3-methoxyphenyl		
-16	4-methoxyphenyl		

wherein (C4) is

No.	Ŕ	No.	Ř
C4-1	Phenyl	-17	2-cyanophenyl
-2	2-chlorophenyl	-18	3-cyanophenyl
-3	3-chlorophenyl	-19	4-cyanophenyl
-4	4-chlorophenyl	-20	1-naphthyl
-5	2-nitrophenyl	-21	2-anthraquinolyl
-6	3-nitrophenyl	-22	3,5-bistrifluoromethylphenyl
-7	4-nitrophenyl	-23	4-pyrazolyl
-8	2-trifluoromethyl	-24	2-thiazolyl
-9	3-trifluoromethyl	- 25	4-carboxyl-2-thiazolyl
-10	4-trifluoromethyl	-26	2-pyridyl
-11	2-methylphenyl	-27	2-pyrimidinyl
-12	3-methylphenyl	-28	2-carbazolyl
-13	4-methylphenyl	-29	2-quinolyl
-14	2-methoxyphenyl		
-15	3-methoxyphenyl		
-16	4-methoxyphenyl		

wherein (C5) is

No.	R	No.	R
C5-1	methyl	-11	hexyl
-2	ethyl	-12	heptyl
-3	propyl	-13	octyl
-4	isopropyl	-14	capryl
-5	butyl	-15	nonyl
-6	isobutyl	-16	decyl
-7	sec-butyl	-17	undecyl
-8	tert-butyl	-18	lauryl
-9	pentyl	-19	tridecyl
-10	isoamyl	-20	pentadecyl

wherein (C6) is

No.	R	No.	R
C6-1	methyl	-11	hexyl
-2	ethyl	-12	heptyl
-3	propyl	-13	octyl
-4	isopropyl	-1.4	capryl
-5	butyl	-15	nonyl
-6	isobutyl	-16	decyl
-7	sec-butyl	-17	undecyl
-8	tert-butyl	-18	lauryl
-9	pentyl	-19	tridecyl
-10	isoamyl	-20	pentadecyl

wherein (C7) and (C8) are

No.				
C7-1		но	0	
C7-2		HO,	$ \checkmark^{N}) $	
C8		но —	O N—CH.	
			•	

wherein the phthalocyanine pigment and the asymmetric bisazo pigment are present in the photosensitive layer in a ratio of 1:5 to 5:1 by weight;

and wherein the charge transport layer comprises from 0.1 to 5 parts by weight of an organic sulfur-containing compound, based on 100 parts by weight of a charge transport material;

wherein said organic sulfur-containing compound is selected from the group consisting of compounds having the following formulas III, S-1, S-2 and S-3:

$$S-(CH2CH2COOCnH2n+1)2 (III)$$

$$C_4H_9(t)$$
 $C_4H_9(t)$
 $C_4H_9(t)$

wherein n is an integer of from 8 to 25;

wherein said photoreceptor is suitable for a reverse developing method in an electrophotographic image forming apparatus which comprises a contact charger.

- 55. (New): The electrophotographic photoreceptor according to Claim 54, wherein the phthalocyanine pigment comprises at least one of a τ -form metal-free phthalocyanine pigment or an X-form metal-free phthalocyanine pigment.
- 56. (New): The electrophotographic photoreceptor according to Claim 55, wherein the phthalocyanine pigment comprises a τ -form metal-free phthalocyanine pigment having an X-ray diffraction spectrum in which main peaks are observed at Bragg 2θ angle of 7.6°, 9.2°,

16.8°, 17.4°, 20.4°, 20.9°, 21.7° and 27.6° when a specific X-ray of Cu-Kα having a wavelength of 1.541 Å irradiates the pigment.

- 57. (New) The electrophotographic photoreceptor according to Claim 55, wherein the phthalocyanine pigment comprises an X-form metal-free phthalocyanine pigment having an X-ray diffraction spectrum in which main peaks are observed at Bragg 2θ angle of 7.5°, 9.1°, 16.7°, 17.3°, 22.3° and 28.8° when a specific X-ray of Cu-K α having a wavelength of 1.541 Å irradiates the pigment.
 - 58. (New): An electrophotographic image forming apparatus comprising: an electrophotographic photoreceptor;
 - a charging device which charges the photoreceptor;
- a light irradiation device which irradiates the charged photoreceptor to form an electrostatic latent image on the photoreceptor;
- a developing device which reversely develops the electrostatic latent image with a developer including a toner, to form a toner image on the photoreceptor;
 - an image transfer device which transfers the toner image to a receiving material; and a cleaning device which cleans the photoreceptor,

wherein the electrophotographic photoreceptor comprises:

- an electroconductive substrate which is an aluminum drum,
- on the electroconductive substrate, an intermediate layer comprising titanium oxide, and
 - a photosensitive layer on the intermediate layer,
 - wherein said intermediate layer is obtained by coating an intermediate layer coating liquid on a peripheral surface of said aluminum drum;

and wherein the photosensitive layer comprises:

a charge generation layer, and

a charge transport layer,

wherein the charge generation layer comprises, as charge generation materials which have spectral sensitivity in differing wavelength regions, at least one phthalocyanine pigment and at least one asymmetric bisazo pigment having the following formula (II):

$$Cp_1-N=N-Cp_2$$
 (II)

wherein Cp_1 and Cp_2 each, independently, represent a residual group of a coupler, wherein Cp_1 is different from Cp_2 ;

wherein Cp₁ and Cp₂ each, independently, are selected from the group consisting of the following formulae (C1)-(C8) with the R group as shown in the Table following the respective (C) group:

wherein (C1) is

No.	R	No.	R
C1-1	phenyl	-17	2-cyanophenyl
-2	2-chlorophenyl	-18	3-cyanophenyl
-3	3-chlorophenyl	-19	4-cyanophenyl
-4	4-chlorophenyl	-20	1-naphthyl
-5	2-nitrophenyl	-21	2-anthraquinolyl
-6	3-nitrophenyl	-22	3,5-bistrifluoromethylphenyl
-7	4-nitrophenyl	-23	4-pyrazolyl
-8	2-trifluoromethyl	-24	2-thiazolyl
-9	3-trifluoromethyl	-25	4-carboxyl-2-thiazolyl
-10	4-trifluoromethyl	-26	2-pyridyl
-11	2-methylphenyl	-27	2-pyrimidinyl
-12	3-methylphenyl	-28	2-carbazolyl
-13	4-methylphenyl	-29	2-quinolyl
-14	2-methoxyphenyl		
-15	3-methoxyphenyl		
-16	4-methoxyphenyl		

with the proviso that Cp_1 and Cp_2 are not a combination of (i) a phenyl group and a 2-chlorophenyl group or (ii) a 3-methylphenyl and a 2-chlorophenyl group;

wherein (C2) is

No	R	No.	R
C2-1	phenyl	-17	2-cyanophenyl
-2	2-chlorophenyl	-18	3-cyanophenyl
-3	3-chlorophenyl	-19	4-cyanophenyl
-4	4-chlorophenyl	-20.	1-naphthyl
-5	2-nitrophenyl	-21	2-anthraquinolyl
-6	3-nitrophenyl	-22	3,5-bistrifluoromethylphenyl
-7	4-nitrophenyl	-23	4-pyrazolyl
-8	2-trifluoromethyl	-24	2-thiazolyl
-9	3-trifluoromethyl	-25	4-carboxyl-2-thiazolyl
-10	4-trifluoromethyl	-26	2-pyridyl
-11	2-methylphenyl	- <u>2</u> 7	2-pyrimidinyl
-12	3-methylphenyl	-28	2-carbazolyl
-13	4-methylphenyl	-29	2-quinolyl
-14	2-methoxyphenyl		
-15	3-methoxyphenyl		
-16	4-methoxyphenyl		

wherein (C3) is

No.	R	No.	R
C1-1	phenyl	-17	2-cyanophenyl
-2	2-chlorophenyl	-18	3-cyanophenyl
-3	3-chlorophenyl	-19	4-cyanophenyl
-4	4-chlorophenyl	-20	1-naphthyl
-5	2-nitrophenyl	-21	2-anthraquinolyl
-6	3-nitrophenyl	-22	3,5-bistrifluoromethylphenyl
-7	4-nitrophenyl	-23	4-pyrazolyl
-8	2-trifluoromethyl	-24	2-thiazolyl
-9	3-trifluoromethyl	-25	4-carboxyl-2-thiazolyl
-10	4-trifluoromethyl	-26	2-pyridyl
-11	2-methylphenyl	-27	2-pyrimidinyl
12	3-methylphenyl	-28	2-carbazolyl
-13	4-methylphenyl	-29	2-quinolyl
-14	2-methoxyphenyl		
-15	3-methoxyphenyl		
-16	4-methoxyphenyl		

wherein (C4) is

		,	
No.	R	No.	Ř
C4-1	Phenyl	-17	2-cyanophenyl
-2	2-chlorophenyl	-18	3-cyanophenyl
-3	3-chlorophenyl	-19	4-cyanophenyl
-4	4-chlorophenyl	-20	1-naphthyl
-5	2-nitrophenyl	-21	2-anthraquinolyl
-6	3-nitrophenyl	-22	3,5-bistrifluoromethylphenyl
7	4-nitrophenyl	-23	4-pyrazolyl
-8	2-trifluoromethyl	-24	2-thiazolyl
-9	3-trifluoromethyl	-25	4-carboxyl-2-thiazolyl
-10	4-trifluoromethyl	-26	2-pyridyl
-11	2-methylphenyl	-27	2-pyrimidinyl
-12	3-methylphenyl	-28	2-carbazolyl
-13	4-methylphenyl	-29	2-quinolyl
-1:4:	2-methoxyphenyl		
-15	3-methoxyphenyl		
-16	4-methoxyphenyl		

wherein (C5) is

No.	R	No.	R
C5-1	methyl	-11	hexyl
-2	ethyl	-12	heptyl
-3	propyl	-13	octyl
-4	isopropyl	-14	capryl
-5	butyl	-15	nonyl
-6	isobutyl	-16	decyl
-7	sec-butyl	-17	undecyl
-8	tert-butyl	-18	lauryl
-9	pentyl	-19	tridecyl
-10	isoamyl	-20	pentadecyl

wherein (C6) is

No.	R	No.	R
C6-1	methyl	-11	hexyl
-2	ethyl	-12	heptyl
-3	propyl	-13	octyl
-4	isopropyl	-1.4	capryl
-5	butyl	-15	nonyl
-6	isobutyl	-16	decyl
-7	sec-butyl	-17	undecyl
-8	tert-butyl	-18	lauryl
-9	pentyl	-19	tridecyl
-10	isoamyl	-20	pentadecyl

wherein (C7) and (C8) are

No.				
C7-1	H		O	
C7-2	H	。 ~~~	, N	
			`°	
C8	но			
			CH.	

wherein the phthalocyanine pigment and the asymmetric bisazo pigment are present in the photosensitive layer in a ratio of 1:5 to 5:1 by weight;

and wherein the charge transport layer comprises from 0.1 to 5 parts by weight of an organic sulfur-containing compound, based on 100 parts by weight of a charge transport material;

wherein said organic sulfur-containing compound is selected from the group consisting of compounds having the following formulas III, S-1, S-2 and S-3:

$$S-(CH2CH2COOCnH2n+1)2 (III)$$

$$C_4H_9(t)$$
 $C_4H_9(t)$
 $C_4H_9(t)$

wherein n is an integer of from 8 to 25.

- 59. (New): The electrophotographic image forming apparatus according to Claim 58, wherein the charging device charges the photoreceptor while contacting the photoreceptor.
- 60. (New): The electrophotographic image forming apparatus according to Claim 58, wherein the phthalocyanine pigment comprises at least one of a τ -form metal-free phthalocyanine pigment or an X-form metal-free phthalocyanine pigment.

- 61. (New): The electrophotographic image forming apparatus according to Claim 60, wherein the phthalocyanine pigment comprises a τ -form metal-free phthalocyanine pigment having an X-ray diffraction spectrum in which main peaks are observed at Bragg 2θ angle of 7.6°, 9.2°, 16.8°, 17.4°, 20.4°, 20.9°, 21.7° and 27.6° when a specific X-ray of Cu-K α having a wavelength of 1.541 Å irradiates the pigment.
- 62. (New): The electrophotographic image forming apparatus according to Claim 60, wherein the phthalocyanine pigment comprises an X-form metal-free phthalocyanine pigment having an X-ray diffraction spectrum in which main peaks are observed at Bragg 2θ angle of 7.5°, 9.1°, 16.7°, 17.3°, 22.3° and 28.8° when a specific X-ray of Cu-K α having a wavelength of 1.541 Å irradiates the pigment.
 - 63. (New): An electrophotographic process cartridge comprising:
 - a photoreceptor; and
 - at least one device selected from the group consisting of:
 - a charging device which charges the photoreceptor;
- a light irradiation device which irradiates the charged photoreceptor to form an electrostatic latent image on the photoreceptor;
- a developing device which reversely develops the electrostatic latent image with a developer including a toner to form a toner image on the photoreceptor;
 - an image transfer device which transfers the toner image to a receiving material; and a cleaning device which cleans the photoreceptor,

wherein the photoreceptor comprises:

an electroconductive substrate which is an aluminum drum,

on the electroconductive substrate, an intermediate layer comprising titanium oxide, and

a photosensitive layer on the intermediate layer,

wherein said intermediate layer is obtained by coating an intermediate layer coating liquid on a peripheral surface of said aluminum drum; and wherein the photosensitive layer comprises:

a charge generation layer, and

a charge transport layer,

wherein the charge generation layer comprises, as charge generation materials which have spectral sensitivity in differing wavelength regions, at least one phthalocyanine pigment and at least one asymmetric bisazo pigment having the following formula (II):

$$Cp_1-N=N$$
 $N=N-Cp_2$ (II)

wherein Cp₁ and Cp₂ each, independently, represent a residual group of a coupler, wherein Cp₁ is different from Cp₂;

wherein Cp₁ and Cp₂ each, independently, are selected from the group consisting of the following formulae (C1)-(C8) with the R group as shown in the Table following the respective (C) group:

wherein (C1) is

No.	R	No.	R
C1-1	phenyl	-17	2-cyanophenyl
-2	2-chlorophenyl	-18	3-cyanophenyl
-3	3-chlorophenyl	-19	4-cyanophenyl
-4	4-chlorophenyl	-20	1-naphthyl
-5	2-nitrophenyl	-21	2-anthraquinolyl
-6	3-nitrophenyl	-22	3,5-bistrifluoromethylphenyl
-7	4-nitrophenyl	-23	4-pyrazolyl
-8	2-trifluoromethyl	-24	2-thiazolyl
-9	3-trifluoromethyl	-25	4-carboxyl-2-thiazolyl
-10	4-trifluoromethyl	-26	2-pyridyl
-11	2-methylphenyl	-27	2-pyrimidinyl
-12	3-methylphenyl	-28	2-carbazolyl
-13	4-methylphenyl	-29	2-quinolyl
-14	2-methoxyphenyl	:	
-15	3-methoxyphenyl		
-16	4-methoxyphenyl		

with the proviso that Cp₁ and Cp₂ are not a combination of (i) a phenyl group and a 2-chlorophenyl group or (ii) a 3-methylphenyl and a 2-chlorophenyl group;

wherein (C2) is

No.	R .	No.	R
C2-1	phenyl	-17	2-cyanophenyl
-2	2-chlorophenyl	-18	3-cyanophenyl
-3	3-chlorophenyl	-19	4-cyanophenyl
-4	4-chlorophenyl	-20	1-naphthyl
-5	2-nitrophenyl	-21	2-anthraquinolyl
-6	3-nitrophenyl	-22	3,5-bistrifluoromethylphenyl
-7	4-nitrophenyl	-23	4-pyrazolyl
-8	2-trifluoromethyl	-24	2-thiazolyl
-9	3-trifluoromethyl	-25	4-carboxyl-2-thiazolyl
-10	4-trifluoromethyl	-26	2-pyridyl
-11	2-methylphenyl	-27	2-pyrimidinyl
-12	3-methylphenyl	-28	2-carbazolyl
-13	4-methylphenyl	-29	2-quinolyl
-14	2-methoxyphenyl		
-15	3-methoxyphenyl		
-16	4-methoxyphenyl		

wherein (C3) is

No.	R	No.	R
C1-1	phenyl	-17	2-cyanophenyl
-2	2-chlorophenyl	-18	3-cyanophenyl
-3	3-chlorophenyl	-19	4-cyanophenyl
-4	4-chlorophenyl	-20	1-naphthyl
-5	2-nitrophenyl	-21	2-anthraquinolyl
-6	3-nitrophenyl	22	3,5-bistrifluoromethylphenyl
-7	4-nitrophenyl	-23	4-pyrazolyl
-8	2-trifluoromethyl	-24	2-thiazolyl
-9	3-trifluoromethyl	-25	4-carboxyl-2-thiazolyl
-10	4-trifluoromethyl	-26	2-pyridyl
-11	2-methylphenyl	-27	2-pyrimidinyl
-12	3-methylphenyl	-28	2-carbazolyl
. –13	4-methylphenyl	-29	2-quinolyl
-14	2-methoxyphenyl		
-15	3-methoxyphenyl		
-16	4-methoxyphenyl		

wherein (C4) is

No.	R	No.	Ŕ
C4-1	Phenyl	-17	2-cyanophenyl
-2	2-chlorophenyl	-18	3-cyanophenyl
-3	3-chlorophenyl	-19	4-cyanophenyl
-4	4-chlorophenyl	-20	1-naphthyl
-5	2-nitrophenyl	-21	2-anthraquinolyl
-6	3-nitrophenyl	-22	3,5-bistrifluoromethylphenyl
-7	4-nitrophenyl	-23	4-pyrazolyl
-8	2-trifluoromethyl	-24	2-thiazolyl
-9	3-trifluoromethyl	-25	4-carboxyl-2-thiazolyl
-10	4-trifluoromethyl	-26	2-pyridyl
-11	2-methylphenyl	-27	2-pyrimidinyl
-12	3-methylphenyl	-28	2-carbazolyl
-13	4-methylphenyl	-29	2-quinolyl
-1:4	2-methoxyphenyl		
-15	3-methoxyphenyl		
-16	4-methoxyphenyl		·

wherein (C5) is

No.	R	No.	R
C5-1	methyl	-11	hexyl
-2	ethyl	-12	heptyl
-3	propyl	-13	octyl
-4	isopropyl	-14	capryl
-5	butyl	-15	nonyl
-6	isobutyl	-16	decyl
-7	sec-butyl	-17	undecyl
-8	tert-butyl	-18	lauryl
-9	pentyl	-19	tridecyl
-10	isoamyl	-20	pentadecyl

wherein (C6) is

No.	r R	No.	R
C6-1	methyl	-11	hexyl
-2	ethyl	-12	heptyl
-3	propyl	-13	octyl
-4	isopropyl	-1.4	capryl
-5	butyl	-15	nonyl
-6	isobutyl	-16	decyl
-7	sec-butyl	-17	undecyl
-8	tert-butyl	-18	lauryl
-9	pentyl	-19	tridecyl
-10	isoamyl	-20	pentadecyl

wherein (C7) and (C8) are

No.			
C7-1	но	O	
	$\langle \bigcirc \rangle$		
		N	
C7-2	но		
	$\rightarrow \langle \bigcirc \rangle$	~NYO	
	\bowtie		
		ે	
C8	HO		1 公益的
			
	\bowtie	H-CH.	
			- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1

wherein the phthalocyanine pigment and the asymmetric bisazo pigment are present in the photosensitive layer in a ratio of 1:5 to 5:1 by weight;

and wherein the charge transport layer comprises from 0.1 to 5 parts by weight of an organic sulfur-containing compound, based on 100 parts by weight of a charge transport material;

wherein said organic sulfur-containing compound is selected from the group consisting of compounds having the following formulas III, S-1, S-2 and S-3:

$$S-(CH2CH2COOCnH2n+1)2 (III)$$

$$C_4H_9(t)$$
 $C_4H_9(t)$
 $C_4H_9(t)$

wherein n is an integer of from 8 to 25;

wherein said developing device which reversely develops the electrostatic latent image is present.

- 64. (New): The electrophotographic process cartridge according to Claim 63, wherein the phthalocyanine pigment comprises at least one of a τ -form metal-free phthalocyanine pigment or an X-form metal-free phthalocyanine pigment.
- 65. (New): The electrophotographic process cartridge according to Claim 64, wherein the phthalocyanine pigment comprises a τ -form metal-free phthalocyanine pigment having an X-ray diffraction spectrum in which main peaks are observed at Bragg 2θ angle of 7.6°, 9.2°, 16.8°, 17.4°, 20.4°, 20.9°, 21.7° and 27.6° when a specific X-ray of Cu-K α having a wavelength of 1.541 Å irradiates the pigment.

- 66. (New): The electrophotographic process cartridge according to Claim 64, wherein the phthalocyanine pigment comprises an X-form metal-free phthalocyanine pigment having an X-ray diffraction spectrum in which main peaks are observed at Bragg 2θ angle of 7.5°, 9.1°, 16.7°, 17.3°, 22.3° and 28.8° when a specific X-ray of Cu-K α having a wavelength of 1.541 Å irradiates the pigment.
 - 67. (New) An electrophotographic image forming method, comprising: providing an electrophotographic photoreceptor; charging the electrophotographic photoreceptor;

irradiating the electrophotographic photoreceptor with light to form an electrostatic latent image on the electrophotographic photoreceptor;

reversely developing the electrostatic latent image with a developer including a toner to form a toner image on the electrophotographic photoreceptor;

transferring the toner image to a receiving material; and cleaning the electrophotographic photoreceptor, wherein the electrophotographic photoreceptor comprises:

an electroconductive substrate which is an aluminum drum,
on the electroconductive substrate, an intermediate layer comprising titanium
oxide, and

a photosensitive layer on the intermediate layer,

wherein said intermediate layer is obtained by coating an intermediate layer coating liquid on a peripheral surface of said aluminum drum; and wherein the photosensitive layer comprises:

a charge generation layer, and

a charge transport layer,

wherein the charge generation layer comprises, as charge generation materials which have spectral sensitivity in differing wavelength regions, at least one phthalocyanine pigment and at least one asymmetric bisazo pigment having the following formula (II):

$$Cp_1-N=N-Cp_2$$
 (II)

wherein Cp₁ and Cp₂ each, independently, represent a residual group of a coupler, wherein Cp₁ is different from Cp₂;

wherein Cp₁ and Cp₂ each, independently, are selected from the group consisting of the following formulae (C1)-(C8) with the R group as shown in the Table following the respective (C) group:

wherein (C1) is

No.	R	No.	R
C1-1	phenyl	-17	2-cyanophenyl
-2	2-chlorophenyl	-18	3-cyanophenyl
-3	3-chlorophenyl	-19	4-cyanophenyl
-4	4-chlorophenyl	-20	1-naphthyl
-5	2-nitrophenyl	-21	2-anthraquinolyl
-6	3-nitrophenyl	-22	3,5-bistrifluoromethylphenyl
-7	4-nitrophenyl	-23	4-pyrazolyl
-8	2-trifluoromethyl	-24	2-thiazolyl
-9	3-trifluoromethyl	-25	4-carboxyl-2-thiazolyl
-10	4-trifluoromethyl	-26	2-pyridyl
-11	2-methylphenyl	-27	2-pyrimidinyl
-12	3-methylphenyl	-28	2-carbazolyl
-13	4-methylphenyl	-29	2-quinolyl
-14	2-methoxyphenyl		
-15	3-methoxyphenyl		·
-16	4-methoxyphenyl		

with the proviso that Cp_1 and Cp_2 are not a combination of (i) a phenyl group and a 2-chlorophenyl group or (ii) a 3-methylphenyl and a 2-chlorophenyl group;

wherein (C2) is

No.	R	No.	Ř.
C2-1	phenyl	-17	2-cyanophenyl
-2	2-chlorophenyl	-18	3-cyanophenyl
-3	3-chlorophenyl	-19	4-cyanophenyl
-4	4-chlorophenyl	-20	1-naphthyl
-5	2-nitrophenyl	-21	2-anthraquinolyl
-6	3-nitrophenyl	-22	3,5-bistrifluoromethylphenyl
-7	4-nitrophenyl	-23	4-pyrazolyl
-8	2-trifluoromethyl	-24	2-thiazolyl
-9	3-trifluoromethyl	-25	4-carboxyl-2-thiazolyl
-1.0	4-trifluoromethyl	-26	2-pyridyl
-11	2-methylphenyl	-27	2-pyrimidinyl
-12	3-methylphenyl	-28	2-carbazolyl
-13	4-methylphenyl	-29	2-quinolyl
-14	2-methoxyphenyl		
-15	3-methoxyphenyl		
-16	4-methoxyphenyl		

wherein (C3) is

No.	R	No.	R
C1-1	phenyl	-17	2-cyanophenyl
-2	2-chlorophenyl	-18	3-cyanophenyl
-3	3-chlorophenyl	-19	4-cyanophenyl
-4	4-chlorophenyl	-20	1-naphthyl
-5	2-nitrophenyl	-21	2-anthraquinolyl
-6	3-nitrophenyl	-22	3,5-bistrifluoromethylphenyl
-7	4-nitrophenyl	-23	4-pyrazolyl
-8	2-trifluoromethyl	-24	2-thiazolyl
-9	3-trifluoromethyl	-25	4-carboxyl-2-thiazolyl
-10	4-trifluoromethyl	-26	2-pyridyl
-11	2-methylphenyl	-27	2-pyrimidinyl
-12	3-methylphenyl	-28	2-carbazolyl
. - 13	4-methylphenyl	-29	2-quinolyl
-14	2-methoxyphenyl		
-15	3-methoxyphenyl		
-16	4-methoxyphenyl		

wherein (C4) is

	r	Υ	
No.	R	No.	R:
C4-1	Phenyl	-17	2-cyanophenyl
-2	2-chlorophenyl	-18	3-cyanophenyl
-3	3-chlorophenyl	-19	4-cyanophenyl
-4	4-chlorophenyl	-20	1-naphthyl
-5	2-nitrophenyl	-21	2-anthraquinolyl
-6	3-nitrophenyl	-22	3,5-bistrifluoromethylphenyl
-7	4-nitrophenyl	-23	4-pyrazolyl
-8	2-trifluoromethyl	-24	2-thiazolyl
-9	3-trifluoromethyl	-25	4-carboxyl-2-thiazolyl
-10	4-trifluoromethyl	-26	2-pyridyl
-11	2-methylphenyl	-27	2-pyrimidinyl
-12	3-methylphenyl	-28	2-carbazolyl
-13	4-methylphenyl	-29	2-quinolyl
-14	2-methoxyphenyl	:	
-15	3-methoxyphenyl		
-16	4-methoxyphenyl		

wherein (C5) is

No.	R	No.	R
C5-1	methyl	-11	hexyl
-2	ethyl	-12	heptyl
-3	propyl	-13	octyl
-4	isopropyl	-14	capryl
-5	butyl	-15	nonyl
-6	isobutyl	-16	decyl
-7	sec-butyl	-17	undecyl
-8	tert-butyl	-18	lauryl
-9	pentyl	-19	tridecyl
-10	isoamyl	-20	pentadecyl

wherein (C6) is

No.	R	No.	R
C6-1	methyl	-11	hexyl .
-2	ethyl	-12	heptyl
-3	propyl	-13	octyl
-4	isopropyl	-1.4	capryl
-5	butyl	-15	nonyl
-6	isobutyl	-16	decyl
-7	sec-butyl	-17	undecyl
-8	tert-butyl	-18	lauryl
-9	pentyl	-19	tridecyl
-10	isoamyl	-20	pentadecyl

wherein (C7) and (C8) are

No.		· .				
C7-1			но)\~°		
)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0	
C7-2	, ,		но) \ ^^\	$\hat{\Box}$	
			Č		9	
C8			но	_{\00000000000000000000000000000000000		
			Ö)—°	B .	

wherein the phthalocyanine pigment and the asymmetric bisazo pigment are present in the photosensitive layer in a ratio of 1:5 to 5:1 by weight;

and wherein the charge transport layer comprises from 0.1 to 5 parts by weight of an organic sulfur-containing compound, based on 100 parts by weight of a charge transport material;

wherein said organic sulfur-containing compound is selected from the group consisting of compounds having the following formulas III, S-1, S-2 and S-3:

$$S-(CH2CH2COOCnH2n+1)2 (III)$$

$$C_4H_9(t)$$
 $C_4H_9(t)$
 $C_4H_9(t)$

wherein n is an integer of from 8 to 25.

68. (New): The electrophotographic image forming method according to Claim 67, wherein the phthalocyanine pigment comprises at least one of a τ -form metal-free phthalocyanine pigment or an X-form metal-free phthalocyanine pigment.

69. (New): The electrophotographic image forming method according to Claim 68, wherein the phthalocyanine pigment comprises a τ -form metal-free phthalocyanine pigment having an X-ray diffraction spectrum in which main peaks are observed at Bragg 2θ angle of 7.6°, 9.2°, 16.8°, 17.4°, 20.4°, 20.9°, 21.7° and 27.6° when a specific X-ray of Cu-K α having a wavelength of 1.541 Å irradiates the pigment.

- 70. (New): The electrophotographic image forming method according to Claim 68, wherein the phthalocyanine pigment comprises an τ -form metal-free phthalocyanine pigment having an X-ray diffraction spectrum in which main peaks are observed at Bragg 2θ angle of 7.5°, 9.1°, 16.7°, 17.3°, 22.3° and 28.8° when a specific X-ray of Cu-K α having a wavelength of 1.541 Å irradiates the pigment.
- 71. (New): The electrophotographic photoreceptor according to Claim 54, wherein the asymmetric bisazo pigment having the formula (II) is a compound having the formula (VII):

72. (New): The electrophotographic photoreceptor according to Claim 54, wherein the asymmetric bisazo pigment having the formula (II) is a compound having the formula (VIII):

73. (New): The electrophotographic image forming apparatus according to Claim 58, wherein the asymmetric bisazo pigment having the formula (II) is a compound having the formula (VII):

74. (New): The electrophotographic image forming apparatus according to Claim 58, wherein the asymmetric bisazo pigment having the formula (II) is a compound having the formula (VIII):

75. (New): The electrophotographic process cartridge according to Claim 63, wherein the asymmetric bisazo pigment having the formula (II) is a compound having the formula (VII):

76. (New): The electrophotographic process cartridge according to Claim 63, wherein the asymmetric bisazo pigment having the formula (II) is a compound having the formula (VIII):

77. (New): The electrophotographic image forming method comprising according to Claim 67, wherein the asymmetric bisazo pigment having the formula (II) is a compound having the formula (VII):

78. (New): The electrophotographic image forming method comprising according to Claim 67, wherein the asymmetric bisazo pigment having the formula (II) is a compound having the formula (VIII):

- 79. (New) The electrophotographic photoreceptor according to Claim 54, wherein said intermediate layer has a dry thickness of 3 μ m.
- 80. (New) The electrophotographic photoreceptor according to Claim 54, wherein said intermediate layer has a thickness of up to $10\mu m$, excluding 0.
- 81. (New) The electrophotographic image forming apparatus according to Claim 58, wherein said charging device is a contact charger.
- 82. (New) The electrophotographic process cartridge according to Claim 58, wherein said charging device is present and is a contact charger.
- 83. (New) The electrophotographic image forming method according to Claim 67, wherein the photoreceptor is charged using a contact charger.

BASIS FOR THE AMENDMENT

Claims 1-53 have been cancelled in favor of new Claims 54-83. The new claims are identical to the previously pending claims except formulae (C1) to (C8) have been added to the independent claims as supported at pages 14-20 of the specification.

No new matter is believed to have been added by entry of this amendment. Entry and favorable reconsideration are respectfully requested.

Upon entry of this amendment Claims 54-83 will now be active in this application.