3. 識別 一概念学習と決定木一

- 問題設定
 - 教師あり学習
 - ラベル入力 → ラベル出力

• ラベル特徴

• 数值特徵

contact-lenses データ

年齢・処方・ 記視・涙量 Viewer 1: age Nominal Nominal

ı	young	myope	no	reduced	none	
2	young	myope	no	normal	soft	推薦コンタクトレンズ
3	young	myope	yes	reduced	none	none, soft, hard
4	young	myope	yes	normal	hard	Tione, soit, naid
5	young	hypermetrope	no	reduced	none	
6	young	hypermetrope	no	normal	soft	
7	young	hypermetrope	yes	reduced	none	
8	young	hypermetrope	yes	normal	hard	
9	pre-presbyopic	myope	no	reduced	none	
10	pre-presbyopic	myope	no	normal	soft	
11	pre-presbyopic	myope	yes	reduced	none	
12	pre-presbyopic	myope	yes	normal	hard	
13	pre-presbyopic	hypermetrope	no	reduced	none	
14	pre-presbyopic	hypermetrope	no	normal	soft	
15	pre-presbyopic	hypermetrope	yes	reduced	none	
16	pre-presbyopic	hypermetrope	yes	normal	none	
17	presbyopic	myope	no	reduced	none	
18	presbyopic	myope	no	normal	none	
19	presbyopic	myope	yes	reduced	none	
20	presbyopic	myope	yes	normal	hard	
21	presbyopic	hypermetrope	no	reduced	none	
22	presbyopic	hypermetrope	no	normal	soft	
23	presbyopic	hypermetrope	yes	reduced	none	
24	presbyopic	hypermetrope	yes	normal	none	

Undo OK Cancel

contact-lenses データ

表 3.2 コンタクトレンズデータの特徴値

attribute	value
age(年齢) spectacle-prescrip(眼鏡) astigmatism(乱視) tear-prod-rate(涙量) contact-lenses(クラス)	{young, pre-presbyopic, presbyopic} (若年, 老眼前期, 老眼) {myope, hypermetrope} (近視, 遠視) {no, yes} (なし, あり) {reduced, normal} (減少, 正常) {soft, none} (ソフト, なし)

3.2 概念学習とは

- 概念学習とは
 - 正解の概念を説明する特徴ベクトルの性質 (論理 式)を求めること
 - 論理式の例 (乱視 = あり) \wedge (ドライアイ = なし) \Rightarrow soft
- 学習の方法
 - 可能な論理式が少数
 - 正解概念の候補を絞り込んでゆく(候補削除アルゴリズム)
 - 可能な論理式が多数
 - バイアス(偏見)をかけて探索する 💛 決定木

3.3 初歩的な概念学習アルゴリズム

FIND-S アルゴリズム

3.3 初歩的な概念学習アルゴリズム

候補削除アルゴリズム

3.4 決定木の学習

• 学習した決定木の例

3.4 決定木の学習

- 決定木学習の考え方
 - ノードは、データを分割する条件を持つ
 - できるだけ同一クラスのデータがリーフに偏るように
 - 分割後のデータ集合に対して、同様の操作を行う
 - 全てのリーフが単一クラスの集合になれば終了

決定木の構築 (1/2)

Algorithm 3.3 ID-3 アルゴリズム

入力: 正解付学習データ D, クラス特徴 y, 特徴集合 A

出力: 決定木 *T*

root ノードを作成

if D が全て正例 then

return ラベル Yes

else if D が全て負例 then

return ラベル No

else if 特徴集合 $A == \emptyset$ then

return データ中の最頻値のラベル

else

決定木の構築 (2/2)

```
a \leftarrow A 中で最も分類能力の高い特徴
 root ノードの決定特徴 \leftarrow a
 for all a の取りうる値 v do
   a=v に対応する枝を作成
   データの中から値vを取る部分集合D_vを作成
   if D_n == \emptyset then
     return データ中の最頻値のラベル
   else
     ID3(部分集合 D_v, クラス特徴 y, 特徴集合 A-a)
   end if
 end for
end if
return root ノード
```

属性の分類能力 (1/2)

- 分類能力の高い属性を決定する方法
 - その属性を使った分類を行うことによって、なる べくきれいにクラスが分かれるように
 - ・エントロピー
 - データ集合 S の乱雑さを表現
 - 正例の割合: p^+ , 負例の割合: p^-
 - エントロピーの定義

$$Entropy(S) = -p^{+}\log p^{+} - p^{-}\log p^{-}$$

属性の分類能力 (2/2)

- 情報獲得量
 - 属性 A を用いた分類後のエントロピーの減少量
 - 値 v を取る訓練例の集合:Sv
 - Sv の要素数: |Sv|
 - 情報獲得量の定義

$$Gain(S, A) = Entropy(S) - \sum_{v \in Values(A)} \frac{|Sv|}{|S|} Entropy(Sv)$$

決定木構築手順の例

• 学習データ

(テニスをする日; weather.nominal.arff)

結果として得られる決定木

計算例

$$E(D) = -P_{+} \log_{2} P_{+} - P_{-} \log_{2} P_{-}$$

$$Gain(D, a) \equiv E(D) - \sum_{v \in Values(a)} \frac{|D_v|}{|D|} E(D_v)$$

• 情報獲得量

Gain(S, outlook)=0.246

Gain(S, humidity)=0.151

Gain(S, windy)=0.048

Gain(S, temperature)=0.029

バイアスの検討

なぜ単純な木の方がよいか

• オッカムの剃刀

「データに適合する最も単純な仮説を選べ」

- 複雑な仮説
 - → 表現能力が高い
 - → 偶然にデータを説明できるかもしれない
- 単純な仮説
 - → 表現能力が低い
 - → 偶然にデータを説明できる確率は低い
 - → でも説明できた!
 - \rightarrow 必然

連続値属性の扱い

連続値 A を持つ属性から真偽値 (A < c?) を値 とするノードを作成

→c をどうやって決めるか

気温	40	48	60	72	80	90
playTennis	No	No	Yes	Yes	Yes	No