

Contents

- Review PS08
- Group work (GW)
 - Introduction
 - Planning
- GW01: Single NMPC step
 - Formulate NLP
 - Solve using SQP
 - Implement in MATLAB and Simulink

Review PS08

Constrained nonlinear programming

Single shooting IPOPT 0.71 s

Multiple shooting
IPOPT
0.15 s

SQP using multiple shooting qpOASES 0.06 s

Group Work

Control task

Input variables

 $u_{\rm vtg}$ Guide vane position

 $u_{\rm egr}$ EGR valve position

Control variables

 $p_{\rm im}$ Intake manifold pressure

 $x_{\rm bg}$ Burnt gas ratio

Challenges

MIMO, non-minimal phase, non-linear, input constraints

Group Work

Optimal control problem

$$\begin{aligned} & \min_{\boldsymbol{x}(\cdot|k),\,\boldsymbol{u}(\cdot|k)} \quad J(\boldsymbol{x}(\cdot|k),\boldsymbol{u}(\cdot|k)) \\ & \text{s.t.} \quad \boldsymbol{x}(k+i+1|k) = f_{\text{ROM}}(\boldsymbol{x}(k+i|k),\boldsymbol{u}(k+i|k)) \\ & 0 \leq u_{\text{vtg}}(\cdot|k) \leq 1 \\ & 0 \leq u_{\text{egr}}(\cdot|k) \leq 1 \\ & \boldsymbol{x}_0 = \boldsymbol{x}(k|k) \end{aligned}$$

- Track references for p_{im} and x_{bg}
- Penalize changes in control action
- Use ROM as internal model
- Several design parameters: $N, T_s, Q_u, R_u, n_{SOP}$, etc.

with

$$J(x(\cdot|k), \Delta u(\cdot|k)) = Q_1 \cdot \sum_{i=1}^{N} \left(p_{\text{im}}(k+i|k) - p_{\text{im,ref}}(k) \right)^2 + Q_2 \cdot \sum_{i=1}^{N} \left(x_{\text{bg}}(k+i|k) - x_{\text{bg,ref}}(k) \right)^2 + R_1 \cdot \sum_{i=0}^{N-1} \left(\Delta u_{\text{vtg}}(k+i|k) \right)^2 + R_2 \cdot \sum_{i=0}^{N-1} \left(\Delta u_{\text{egr}}(k+i|k) \right)^2$$

Group Work

Timeline definitions

Prediction/control horizon

Shorthand notation: x(i) = x(k + i|k)

Group WorkPlanning

GW	Date	Content	Comments
01	08.05.2020	Single NMPC step in MATLAB and Simulink	
02	15.05.2020	Offset-free NMPC in Simulink and parameter tuning	Hand in your NMPC #1 for review by TAs until 20.05.2020 (23:59)
03	22.05.2020	Code optimization and advanced formulations	Hand in two final NMPCs until 27.05.20 (23:59). One NMPC is allowed to be non-causal
	29.05.2020	"Competition"	Controller design and performance will be presented and discussed in exercise session

Instructions how and which files to hand in will follow

GW01

Goal

For first MPC step (as in this group work): k = 0

GW01

Steps

- 1. Generate NLP from OCP using CasADi and create functions Solution from PS08 exercise 1 is a good starting point
- 2. Solve the NLP using qpOASES in MATLAB Solution from PS08 exercise 2 is a good starting point
- 3. Analyze performance when changing some tuning parameters
- 4. Implement single NMPC step in Simulink
- 5. Compare implementations and correct bug(s) if present

GW01

Files

For group work: • MATLAB 2017b

Windows only

Provided:

- main_GW01.m Defines options and parameters, compiles C code, triggers simulations, plots results
- NMPC.slx Template Simulink implementation of NMPC
- providedCode/SfunctionGeneration folder Generates C code for Simulink

To be created by you:

- createCasadiFunctions.m Formulate NLP using CasADi and create functions
- NMPC_Matlab_singlestep.m Solve NLP using qpOASES in MATLAB