Module4

1. Graph the equation below.

$$f(x) = (x-4)^2 - 16$$

Α.

С.

В.

E. None of the above.

2. Factor the quadratic below. Then, choose the intervals that contain the constants in the form (ax + b)(cx + d); $b \le d$.

$$24x^2 + 50x + 25$$

A. $a \in [11.05, 12.72], b \in [2, 14], c \in [1.98, 2.67], and <math>d \in [3, 6]$

B. $a \in [2.45, 3.13], b \in [2, 14], c \in [7.5, 8.29], and <math>d \in [3, 6]$

C. $a \in [0.43, 1.83], b \in [19, 28], c \in [0.26, 1.26], and <math>d \in [30, 32]$

D. $a \in [4.46, 7.71], b \in [2, 14], c \in [3.96, 4.37], and <math>d \in [3, 6]$

E. None of the above.

3. Solve the quadratic equation below. Then, choose the intervals that the solutions belong to, with $x_1 \leq x_2$ (if they exist).

$$-13x^2 - 7x + 7 = 0$$

2958-5637

test

Module4 Version A

- A. $x_1 \in [-21.31, -20.06]$ and $x_2 \in [19.89, 20.13]$
- B. $x_1 \in [-1.26, -0.99]$ and $x_2 \in [-0.2, 0.73]$
- C. $x_1 \in [-6.81, -6.12]$ and $x_2 \in [13.07, 13.86]$
- D. $x_1 \in [-0.66, -0.16]$ and $x_2 \in [0.58, 1.16]$
- E. There are no Real solutions.

4. Write the equation of the graph presented below in the form $f(x) = ax^2 + bx + c$, assuming a = 1 or a = -1. Then, choose the intervals that a, b, and c belong to.

- A. $a \in [1, 5], b \in [-10, -3], and <math>c \in [7, 13]$
- B. $a \in [-2, 0], b \in [-10, -3], \text{ and } c \in [-10, -8]$
- C. $a \in [1, 5], b \in [6, 9], and <math>c \in [19, 24]$
- D. $a \in [-2, 0], b \in [6, 9], and c \in [-10, -8]$
- E. $a \in [1, 5], b \in [-10, -3], \text{ and } c \in [19, 24]$

5. Solve the quadratic equation below. Then, choose the intervals that the solutions belong to, with $x_1 \leq x_2$ (if they exist).

$$-10x^2 - 13x + 5 = 0$$

A. $x_1 \in [-4.4, -2.8]$ and $x_2 \in [15.4, 16.9]$

2958-5637 test

Module4 Version A

- B. $x_1 \in [-20.3, -19.3]$ and $x_2 \in [18.4, 19.6]$
- C. $x_1 \in [-1.2, -0.1]$ and $x_2 \in [1.4, 2.9]$
- D. $x_1 \in [-2.1, -0.6]$ and $x_2 \in [0, 1]$
- E. There are no Real solutions.
- 6. Solve the quadratic equation below. Then, choose the intervals that the solutions x_1 and x_2 belong to, with $x_1 \leq x_2$.

$$25x^2 - 10x - 24 = 0$$

- A. $x_1 \in [-0.52, -0.22]$ and $x_2 \in [1.92, 2.66]$
- B. $x_1 \in [-1.68, -1.57]$ and $x_2 \in [0.27, 0.67]$
- C. $x_1 \in [-20.14, -19.49]$ and $x_2 \in [29.9, 30.1]$
- D. $x_1 \in [-1.1, -0.68]$ and $x_2 \in [0.61, 1.79]$
- E. $x_1 \in [-4.51, -3.63]$ and $x_2 \in [0.05, 0.37]$
- 7. Solve the quadratic equation below. Then, choose the intervals that the solutions x_1 and x_2 belong to, with $x_1 \leq x_2$.

$$25x^2 - 15x - 54 = 0$$

- A. $x_1 \in [-30.04, -29.15]$ and $x_2 \in [44.8, 45.08]$
- B. $x_1 \in [-4.93, -3.14]$ and $x_2 \in [0.55, 0.7]$
- C. $x_1 \in [-6.3, -4.62]$ and $x_2 \in [0.15, 0.51]$
- D. $x_1 \in [-1.15, 0.07]$ and $x_2 \in [3.46, 3.65]$
- E. $x_1 \in [-1.91, -1.14]$ and $x_2 \in [1.53, 2.08]$
- 8. Factor the quadratic below. Then, choose the intervals that contain the constants in the form (ax + b)(cx + d); $b \le d$.

$$54x^2 + 69x + 20$$

2958-5637 test

Module4 Version A

A. $a \in [26.3, 28.3], b \in [-1, 10], c \in [1.95, 2.38], and <math>d \in [5, 8]$

- B. $a \in [2.7, 5], b \in [-1, 10], c \in [11.99, 12.1], and <math>d \in [5, 8]$
- C. $a \in [0, 2.2], b \in [24, 26], c \in [0.91, 1.89], and <math>d \in [44, 50]$
- D. $a \in [8.6, 10.1], b \in [-1, 10], c \in [5.85, 6.2], and <math>d \in [5, 8]$
- E. None of the above.
- 9. Graph the equation below.

$$f(x) = -(x+3)^2 - 18$$

C.

В.

E. None of the above.

10. Write the equation of the graph presented below in the form f(x) = $ax^2 + bx + c$, assuming a = 1 or a = -1. Then, choose the intervals that a, b, and c belong to.

2958-5637 test Module4 Version A

- A. $a \in [-2.9, -0.5], b \in [3, 8], \text{ and } c \in [-11, -3]$
- B. $a \in [0.9, 2], b \in [-5, -1], \text{ and } c \in [-2, 2]$
- C. $a \in [0.9, 2], b \in [3, 8], and c \in [-2, 2]$
- D. $a \in [-2.9, -0.5], b \in [-5, -1], \text{ and } c \in [-11, -3]$
- E. $a \in [-2.9, -0.5], b \in [-5, -1], \text{ and } c \in [-2, 2]$

2958-5637 test