Structured Matrices

We have seen how algebraic operations (+, -, *, /) are well-defined for floating point numbers. Now we see how this allows us to do (approximate) linear algebra operations on structured matrices. That is, we consider the following structures:

- 1. *Dense*: This can be considered unstructured, where we need to store all entries in a vector or matrix. Matrix multiplication reduces directly to standard algebraic operations. Solving linear systems with dense matrices will be discussed later.
- 2. *Triangular*: If a matrix is upper or lower triangular, we can immediately invert using back-substitution. In practice we store a dense matrix and ignore the upper/lower entries.
- 3. *Banded*: If a matrix is zero apart from entries a fixed distance from the diagonal it is called banded and this allows for more efficient algorithms. We discuss diagonal, tridiagonal and bidiagonal matrices.
- 4. Permutation: A permutation matrix permutes the rows of a vector.
- 5. Orthogonal: An orthogonal matrix Q satisfies $Q^{\top}Q=I$, in other words, they are very easy to invert. We discuss the special cases of simple rotations and reflections.

```
In [1]:
using LinearAlgebra, Plots, BenchmarkTools
```

1. Dense vectors and matrices

A Vector of a primitive type (like Int or Float64) is stored consecutively in memory. E.g. if we have a Vector{Int8} of length n then it is stored as 8n bits (n bytes) in a row. A Matrix is stored consecutively in memory, going down column-by-column. That is,

Is actually stored equivalently to a length 6 vector:

This is known as *column-major* format.

Remark Note that transposing A is done lazyily and so A' stores the entries by row. That is, A' is stored in *row-major* format.

Matrix-vector multiplication works as expected:

Note there are two ways this can be implemented: either the traditional definition, going rowby-row:

$$\left[egin{array}{c} \sum_{j=1}^n a_{1,j}x_j \ dots \ \sum_{j=1}^n a_{m,j}x_j \end{array}
ight]$$

or going column-by-column:

$$x_1\mathbf{a}_1+\cdots+x_n\mathbf{a}_n$$

It is easy to implement either version of matrix-multiplication in terms of the algebraic operations we have learned, in this case just using integer arithmetic:

```
In [5]:
         # go row-by-row
         function mul rows(A, x)
             m,n = size(A)
             c = zeros(eltype(x), m) # eltype is the type of the elements of a vector/matrix
             for k = 1:m, j = 1:n
                 c[k] += A[k, j] * x[j]
             end
             C
         end
         # go column-by-column
         function mul(A, x)
             m,n = size(A)
             c = zeros(eltype(x), m) # eltype is the type of the elements of a vector/matrix
             for j = 1:n, k = 1:m
                 c[k] += A[k, j] * x[j]
             end
             C
         end
         mul_rows(A, x), mul(A, x)
```

Out[5]: ([23, 53, 83], [23, 53, 83])

Either implementation will be O(mn) operations. However, the implementation mul accesses the entries of A going down the column, which happens to be $significantly\ faster$ than mul_rows , due to accessing memory of A in order. We can see this by measuring the time it takes using ${\it Obtime}$:

```
In [6]:
    n = 1000
    A = randn(n,n) # create n x n matrix with random normal entries
    x = randn(n) # create length n vector with random normal entries
```

```
@btime mul_rows(A,x)
@btime mul(A,x)
@btime A*x; # built-in, high performance implementation. USE THIS in practice
```

```
2.895 ms (1 allocation: 7.94 KiB) 858.813 \mus (1 allocation: 7.94 KiB) 172.372 \mus (1 allocation: 7.94 KiB)
```

Here ms means milliseconds ($0.001 = 10^{(-3)}$ seconds) and μ s means microseconds ($0.000001 = 10^{(-6)}$ seconds). So we observe that mul is roughly 3x faster than mul_rows , while the optimised * is roughly 5x faster than mul .

Remark (advanced) For floating point types, A*x is implemented in BLAS which is generally multi-threaded and is not identical to mul(A,x), that is, some inputs will differ in how the computations are rounded.

Note that the rules of arithmetic apply here: matrix multiplication with floats will incur round-off error (the precise details of which are subject to the implementation):

```
In [7]:

A = [1.4 0.4;
2.0 1/2]
A * [1, -1] # First entry has round-off error, but 2nd entry is exact
```

And integer arithmetic will be prone to overflow:

```
In [8]:

A = fill(Int8(2^6), 2, 2) # make a matrix whose entries are all equal to 2^6

A * Int8[1,1] # we have overflowed and get a negative number -2^7
```

```
Out[8]: 2-element Vector{Int8}: -128 -128
```

Solving a linear system is done using \:

```
Out[9]: 3-element Vector{Float64}: 41.000000000000036 -17.00000000000014
```

Despite the answer being integer-valued, here we see that it resorted to using floating point arithmetic, incurring rounding error. But it is "accurate to (roughly) 16-digits". As we shall see, the way solving a linear system works is we first write A as a product of simpler matrices, e.g., a product of triangular matrices.

Remark (advanced) For floating point types, $A \setminus x$ is implemented in LAPACK, which like BLAS is generally multi-threaded and in fact different machines may round differently.

2. Triangular matrices

Triangular matrices are represented by dense square matrices where the entries below the diagonal are ignored:

Out[10]: 3×3 UpperTriangular{Int64, Matrix{Int64}} 1 2 3 · 5 6 · . 9

We can see that U is storing all the entries of A:

```
In [11]: U.data
Out[11]: 3x3 Matrix{Int64}:
    1    2    3
    4    5    6
    7    8    9
```

Similarly we can create a lower triangular matrix by ignoring the entries above the diagonal:

If we know a matrix is triangular we can do matrix-vector multiplication in roughly half the number of operations. Moreover, we can easily invert matrices. Consider a simple 3×3 example, which can be solved with $\$:

```
In [13]: b = [5,6,7] x = U \ b

Out[13]: 3-element Vector{Float64}:
```

Behind the seens, $\$ is doing back-substitution: considering the last row, we have all zeros apart from the last column so we know that x[3] must be equal to:

```
In [14]: b[3] / U[3,3]
```

Out[14]: 0.77777777777778

Once we know x[3], the second row states U[2,2]*x[2] + U[2,3]*x[3] == b[2], rearranging we get that x[2] must be:

```
In [15]: (b[2] - U[2,3]*x[3])/U[2,2]
```

Out[15]: 0.26666666666666

Finally, the first row states U[1,1]*x[1] + U[1,2]*x[2] + U[1,3]*x[3] == b[1] i.e. x[1] is equal to

Out[16]: 2.13333333333333333333

More generally, we can solve the upper-triangular system

$$egin{bmatrix} u_{11} & \cdots & u_{1n} \ & \ddots & dots \ & u_{nn} \end{bmatrix} egin{bmatrix} x_1 \ dots \ x_n \end{bmatrix} = egin{bmatrix} b_1 \ dots \ b_n \end{bmatrix}$$

by computing $x_n, x_{n-1}, \ldots, x_1$ by the back-substitution formula:

$$x_k = rac{b_k - \sum_{j=k+1}^n u_{kj} x_j}{u_{kk}}$$

The problem sheet will explore implementing this method, as well as forward substitution for inverting lower triangular matrices. The cost of multiplying and solving linear systems with a triangular matrix is $O(n^2)$.

3. Banded matrices

A *banded matrix* is zero off a prescribed number of diagonals. We call the number of (potentially) non-zero diagonals the *bandwidths*:

Definition (bandwidths) A matrix A has lower-bandwidth l if A[k,j]=0 for all k-j>l and upper-bandwidth u if A[k,j]=0 for all j-k>u. We say that it has strictly lower-bandwidth l if it has lower-bandwidth l and there exists a j such that $A[j+l,j]\neq 0$. We say that it has strictly upper-bandwidth u if it has upper-bandwidth u and there exists a u such that u such that u if it has upper-bandwidth u and there exists a u such that u such that u if it has upper-bandwidth u and there exists a u such that u if it has upper-bandwidth u and there exists a u such that u if it has upper-bandwidth u and there exists a u such that u if it has upper-bandwidth u and there exists a u such that u if it has upper-bandwidth u and there exists a u such that u if it has upper-bandwidth u and there exists a u such that u if u if

Diagonal

Definition (Diagonal) Diagonal matrices are square matrices with bandwidths l=u=0.

Diagonal matrices in Julia are stored as a vector containing the diagonal entries:

It is clear that we can perform diagonal-vector multiplications and solve linear systems involving diagonal matrices efficiently (in O(n) operations).

Bidiagonal

Definition (Bidiagonal) If a square matrix has bandwidths (l, u) = (1, 0) it is *lower-bidiagonal* and if it has bandwidths (l, u) = (0, 1) it is *upper-bidiagonal*.

We can create Bidiagonal matrices in Julia by specifying the diagonal and off-diagonal:

Multiplication and solving linear systems with Bidiagonal systems is also O(n) operations, using the standard multiplications/back-substitution algorithms but being careful in the loops to only access the non-zero entries.

Tridiagonal

Definition (Tridiagonal) If a square matrix has bandwidths l = u = 1 it is *tridiagonal*.

Julia has a type Tridiagonal for representing a tridiagonal matrix from its sub-diagonal, diagonal, and super-diagonal:

Tridiagonal matrices will come up in second-order differential equations and orthogonal polynomials. We will later see how linear systems involving tridiagonal matrices can be solved in O(n) operations.

4. Permutation Matrices

Permutation matrices are matrices that represent the action of permuting the entries of a vector, that is, matrix representations of the symmetric group S_n , acting on \mathbb{R}^n . Recall every $\sigma \in S_n$ is a bisection between $\{1, 2, \dots, n\}$ and itself. We can write a permutation σ in *Cauchy notation*:

$$\begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ \sigma_1 & \sigma_2 & \sigma_3 & \cdots & \sigma_n \end{pmatrix}$$

where $\{\sigma_1,\ldots,\sigma_n\}=\{1,2,\ldots,n\}$ (that is, each integer appears precisely once). We denote the *inverse permutation* by σ^{-1} , which can be constructed by swapping the rows of the Cauchy notation and reordering.

We can encode a permutation in vector $\boldsymbol{\sigma} = [\sigma_1, \dots, \sigma_n]^{\top}$. This induces an action on a vector (using indexing notation)

$$\mathbf{v}[oldsymbol{\sigma}] = egin{bmatrix} v_{\sigma_1} \ dots \ v_{\sigma_n} \end{bmatrix}$$

Example (permutation of a vector) Consider the permutation σ given by

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
1 & 4 & 2 & 5 & 3
\end{pmatrix}$$

We can apply it to a vector:

```
In [21]: \sigma = [1, 4, 2, 5, 3]

v = [6, 7, 8, 9, 10]

v[\sigma] # we permutate entries of v
```

Its inverse permutation σ^{-1} has Cauchy notation coming from swapping the rows of the Cauchy notation of σ and sorting:

$$\begin{pmatrix} 1 & 4 & 2 & 5 & 3 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 4 & 3 & 5 \\ 1 & 3 & 2 & 5 & 4 \end{pmatrix}$$

Julia has the function invperm for computing the vector that encodes the inverse permutation: And indeed:

And indeed permuting the entries by σ and then by σ^{-1} returns us to our original vector:

```
In [23]:     v[σ][σ-1] # permuting by σ and then σ<sup>i</sup> gets us back

Out[23]:     6
     7
     8
     9
     10
```

Note that the operator

$$P_{\sigma}(\mathbf{v}) = \mathbf{v}[\boldsymbol{\sigma}]$$

is linear in v, therefore, we can identify it with a matrix whose action is:

$$P_{\sigma} \left[egin{array}{c} v_1 \ dots \ v_n \end{array}
ight] = \left[egin{array}{c} v_{\sigma_1} \ dots \ v_{\sigma_n} \end{array}
ight].$$

The entries of this matrix are

$$P_{\sigma}[k,j] = \mathbf{e}_k^ op P_{\sigma} \mathbf{e}_j = \mathbf{e}_k^ op \mathbf{e}_{\sigma_j^{-1}} = \delta_{k,\sigma_j^{-1}} = \delta_{\sigma_k,j}$$

where $\delta_{k,j}$ is the Kronecker delta:

$$\delta_{k,j} := \left\{ egin{array}{ll} 1 & k=j \ 0 & ext{otherwise} \end{array}
ight. .$$

This construction motivates the following definition:

Definition (permutation matrix) $P \in \mathbb{R}^{n \times n}$ is a permutation matrix if it is equal to the identity matrix with its rows permuted.

Example (5×5 permutation matrix) We can construct the permutation representation for σ as above as follows:

```
In [24]: P = I(5)[σ,:]
Out[24]: 5x5 SparseMatrixCSC{Bool, Int64} with 5 stored entries:
1 · · · · ·
```

And indeed, we see its action is as expected:

6 9 7 10

Remark (advanced) Note that P is a special type SparseMatrixCSC. This is used to represent a matrix by storing only the non-zero entries as well as their location. This is an important data type in high-performance scientific computing, but we will not be using general sparse matrices in this module.

Proposition (permutation matrix inverse) Let P_{σ} be a permutation matrix corresponding to the permutation σ . Then

$$P_\sigma^ op = P_{\sigma^{-1}} = P_\sigma^{-1}$$

That is, P_{σ} is orthogonal:

$$P_{\sigma}^{ op}P_{\sigma}=P_{\sigma}P_{\sigma}^{ op}=I.$$

Proof

We prove orthogonality via:

$$\mathbf{e}_k^ op P_\sigma^ op P_\sigma \mathbf{e}_j = (P_\sigma \mathbf{e}_k)^ op P_\sigma \mathbf{e}_j = \mathbf{e}_{\sigma_k^{-1}}^ op \mathbf{e}_{\sigma_j^{-1}} = \delta_{k,j}$$

This shows $P_{\sigma}^{ op}P_{\sigma}=I$ and hence $P_{\sigma}^{-1}=P_{\sigma}^{ op}$.

Permutation matrices are examples of sparse matrices that can be very easily inverted.

4. Orthogonal matrices

Definition (orthogonal matrix) A square matrix is *orthogonal* if its inverse is its transpose:

$$Q^\top Q = QQ^\top = I.$$

We have already seen an example of an orthogonal matrices (permutation matrices). Here we discuss two important special cases: simple rotations and reflections.

Simple rotations

Definition (simple rotation) A 2×2 *rotation matrix* through angle θ is

$$Q_{ heta} := egin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix}$$

In what follows we use the following for writing the angle of a vector:

Definition (two-arg arctan) The two-argument arctan function gives the angle θ through the point $[a,b]^{\top}$, i.e.,

$$\sqrt{a^2+b^2}egin{bmatrix}\cos heta\ \sin heta\end{bmatrix}=egin{bmatrix}a\b\end{bmatrix}$$

It can be defined in terms of the standard arctan as follows:

$$atan(b,a) := egin{cases} atanrac{b}{a} & a > 0 \ atanrac{b}{a} + \pi & a < 0 ext{ and } b > 0 \ atanrac{b}{a} + \pi & a < 0 ext{ and } b < 0 \ atanrac{b}{a} + \pi & a < 0 ext{ and } b < 0 \ atanrac{b}{a} - \pi/2 & a = 0 ext{ and } b > 0 \ -\pi/2 & a = 0 ext{ and } b < 0 \end{cases}$$

This is available in Julia:

```
In [26]: atan(-1,-2) # angle through [-2,-1]
```

101+[26]. -2.67794504458898

We can rotate an arbitrary vector to the unit axis. Interestingly it only requires basic algebraic functions (no trigonometric functions):

Proposition (rotation of a vector) The matrix

$$Q = rac{1}{\sqrt{a^2 + b^2}} \left[egin{array}{cc} a & b \ -b & a \end{array}
ight]$$

is a rotation matrix satisfying

$$Q \left[egin{array}{c} a \ b \end{array}
ight] = \sqrt{a^2 + b^2} \left[egin{array}{c} 1 \ 0 \end{array}
ight]$$

Proof

The last equation is trivial so the only question is that it is a rotation matrix. Define $\theta = -\mathrm{atan}(b,a)$. By definition of the two-arg arctan we have

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} \cos(-\theta) & \sin(-\theta) \\ -\sin(-\theta) & \cos(-\theta) \end{bmatrix} = \frac{1}{\sqrt{a^2 + b^2}} \begin{bmatrix} a & b \\ -b & a \end{bmatrix}.$$

Reflections

In addition to rotations, another type of orthognal matrix are reflections:

Definition (reflection matrix) Given a vector ${\bf v}$ satisfying $\|{\bf v}\|=1$, the reflection matrix is the orthogonal matrix

$$Q_{\mathbf{v}} \triangleq I - 2\mathbf{v}\mathbf{v}^{ op}$$

These are reflections in the direction of v. We can show this as follows:

Proposition $Q_{\mathbf{v}}$ satisfies:

- 1. Symmetry: $Q_{\mathbf{v}} = Q_{\mathbf{v}}^{ op}$
- 2. Orthogonality: $Q_{\mathbf{v}}^{ op}Q_{\mathbf{v}}=I$
- 3. ${f v}$ is an eigenvector of $Q_{f v}$ with eigenvalue -1
- 4. $Q_{\mathbf{v}}$ is a rank-1 perturbation of I
- 5. $\det Q_{\mathbf{v}} = -1$

Proof

Property 1 follows immediately. Property 2 follows from

$$Q_{\mathbf{v}}^{\top}Q_{\mathbf{v}} = Q_{\mathbf{v}}^2 = I - 4\mathbf{v}\mathbf{v}^{\top} + 4\mathbf{v}\mathbf{v}^{\top}\mathbf{v}\mathbf{v}^{\top} = I$$

Property 3 follows since

$$Q_{\mathbf{v}}\mathbf{v} = -\mathbf{v}$$

Property 4 follows since $\mathbf{v}\mathbf{v}^{\top}$ is a rank-1 matrix as all rows are linear combinations of each other. To see property 5, note there is a dimension n-1 space W orthogonal to \mathbf{v} , that is, for all $\mathbf{w} \in W$ we have $\mathbf{w}^{\top}\mathbf{v} = 0$, which implies that

$$Q_{\mathbf{v}}\mathbf{w} = \mathbf{w}$$

In other words, 1 is an eigenvalue with multiplicity n-1 and -1 is an eigenvalue with multiplicity 1, and thus the product of the eigenvalues is -1.

Example (reflection through 2-vector) Consider reflection through $\mathbf{x} = [1, 2]^{\top}$. We first need to normalise \mathbf{x} :

$$\mathbf{v} = rac{\mathbf{x}}{\|\mathbf{x}\|} = egin{bmatrix} rac{1}{\sqrt{5}} \ rac{2}{\sqrt{5}} \end{bmatrix}$$

Note this indeed has unit norm:

$$\|\mathbf{v}\|^2 = \frac{1}{5} + \frac{4}{5} = 1.$$

Thus the reflection matrix is:

$$Q_{\mathbf{v}} = I - 2\mathbf{v}\mathbf{v}^ op = egin{bmatrix} 1 & \ & 1 \end{bmatrix} - rac{2}{5}egin{bmatrix} 1 & 2 \ 2 & 4 \end{bmatrix} = rac{1}{5}egin{bmatrix} 3 & -4 \ -4 & -3 \end{bmatrix}$$

Indeed it is symmetric, and orthogonal. It sends \mathbf{x} to $-\mathbf{x}$:

$$Q_{\mathbf{v}}\mathbf{x} = rac{1}{5} \left[egin{array}{c} 3-8 \\ -4-6 \end{array}
ight] = -\mathbf{x}$$

Any vector orthogonal to \mathbf{x} , like $\mathbf{y} = [-2, 1]^{\mathsf{T}}$, is left fixed:

$$Q_{\mathbf{v}}\mathbf{y} = \frac{1}{5} \begin{bmatrix} -6 - 4 \\ 8 - 3 \end{bmatrix} = \mathbf{y}$$

Note that *building* the matrix Q_v will be expensive $(O(n^2))$ operations, but we can apply Q_v to a vector in O(n) operations using the expression:

$$Q_{\mathbf{v}}\mathbf{x} = \mathbf{x} - 2\mathbf{v}(\mathbf{v}^{\top}\mathbf{x}).$$

Just as rotations can be used to rotate vectors to be aligned with coordinate axis, so can reflections, but in this case it works for vectors in \mathbb{R}^n , not just \mathbb{R}^2 :

Lemma (Householder reflection) Define $\mathbf{y}=\pm\|\mathbf{x}\|\mathbf{e}_1+\mathbf{x}$ and $\mathbf{w}=\frac{\mathbf{y}}{\|\mathbf{y}\|}.$ Then

$$Q_{\mathbf{w}}\mathbf{x} = \|\mathbf{x}\|\mathbf{e}_1$$

Proof Note that

$$\|\mathbf{y}\|^2 = 2\|\mathbf{x}\|^2 \pm 2\|\mathbf{x}\|x_1,$$

 $\mathbf{y}^{\top}\mathbf{x} = \|\mathbf{x}\|^2 \pm \|\mathbf{x}\|x_1$

where $x_1 = \mathbf{e}_1^{ op} \mathbf{x}$. Therefore:

$$Q_{\mathbf{w}}\mathbf{x} = (I - 2\mathbf{w}\mathbf{w}^{ op})\mathbf{x} = \mathbf{x} - 2rac{\mathbf{y}\|\mathbf{x}\|}{\|\mathbf{y}\|^2}(\|\mathbf{x}\| \pm x_1) = \mathbf{x} - \mathbf{y} = \mp \|\mathbf{x}\|\mathbf{e}_1.$$