Problèmes de Synthèse en Arithmétique et Algèbre

Problème 1 (Arithmétique Avancée). Soit a,b deux entiers naturels premiers entre eux.

- 1. Montrer que $a \wedge b = 1 \Rightarrow a \wedge (a+b) = 1$ et $b \wedge (a+b) = 1$.
- 2. On pose $d = a \wedge b$. Montrer que $a \wedge (a + b) = d \wedge (a + b)$.
- 3. Résoudre dans \mathbb{Z}^2 : $a^2 + b^2 = 5ab 5$.
- 4. Application : Déterminer les couples (a,b) tels que $a^2 + b^2 = 5ab 5$ et 0 < a < b < 100.

Corrigé détaillé 1 (Problème 1). Rappels de cours :

- Théorème de Bézout : $a \wedge b = 1 \iff \exists (u, v) \in \mathbb{Z}^2, au + bv = 1.$
- Propriété du PGCD : Si $d = a \land b$, alors a = da', b = db' avec $a' \land b' = 1$.
- Lemme de Gauss : Si $a \mid bc$ et $a \land b = 1$, alors $a \mid c$.
- 1. Supposons $a \wedge b = 1$. Soit $d = a \wedge (a + b)$.
- $d \mid a \ et \ d \mid (a+b), \ donc \ d \mid (a+b) a = b.$
- Ainsi $d \mid a$ et $d \mid b$, donc $d \mid a \land b = 1$.
- $Par \ suite, \ d = 1.$

De même, $b \wedge (a+b) = 1$.

Conclusion: Si $a \wedge b = 1$, alors a et a + b sont premiers entre eux.

2. Soit $d = a \wedge b$. Posons a = da', b = db' avec $a' \wedge b' = 1$. Alors a + b = d(a' + b').

 $On \ a :$

$$a \wedge (a+b) = da' \wedge d(a'+b') = d(a' \wedge (a'+b')).$$

D'après 1., comme $a' \wedge b' = 1$, on a $a' \wedge (a' + b') = 1$.

Donc $a \wedge (a+b) = d \times 1 = d$.

Conclusion: $a \wedge (a + b) = d = a \wedge b$.

3. Résolution de $a^2 + b^2 = 5ab - 5$.

Réécrivons :

$$a^2 - 5ab + b^2 = -5$$
 ou $(a^2 - 5ab + b^2) + 5 = 0$.

Considérons l'équation comme un polynôme en a :

$$a^2 - 5b \cdot a + (b^2 + 5) = 0.$$

Le discriminant est :

$$\Delta = (5b)^2 - 4 \cdot 1 \cdot (b^2 + 5) = 25b^2 - 4b^2 - 20 = 21b^2 - 20.$$

Pour que a soit entier, Δ doit être un carré parfait :

$$\exists k \in \mathbb{Z}, \quad 21b^2 - 20 = k^2.$$

Ainsi:

$$21b^2 - k^2 = 20$$
 \Rightarrow $(\sqrt{21}b - k)(\sqrt{21}b + k) = 20.$

Comme $k^2 \equiv -20 \pmod{21}$, on teste $b \in \mathbb{Z}$ tel que $21b^2 - 20 \ge 0$:

- $b = 1 : \Delta = 21 20 = 1 = 1^2 \rightarrow valide$.
- $b = 2 : \Delta = 84 20 = 64 = 8^2 \rightarrow valide$.
- $b = 3 : \Delta = 189 20 = 169 = 13^2 \rightarrow valide$.
- $b = 4 : \Delta = 336 20 = 316 \rightarrow pas \ un \ carr\'e.$
- b=0: $\Delta=-20<0 \rightarrow exclu$.

Pour b = -1, -2, -3, même calcul (symétrie).

Solutions:

- $b=1: a=\frac{5\pm 1}{2}=3 \text{ ou } 2.$
- b=2 : $a=\frac{10\pm 8}{2}=9$ ou 1.
- b = 3 : $a = \frac{15\pm13}{2} = 14$ ou 1.

 $Par\ sym \'etrie,\ (a,b)=(1,2),(1,3),(2,1),(3,1),(9,2),(2,9),(14,3),(3,14).$

 $V\'{e}rification:$

- $2^2 + 1^2 = 5$. $5 \times 2 \times 1 5 = 5 \rightarrow ok$.
- $14^2 + 3^2 = 205$, $5 \times 14 \times 3 5 = 205 \rightarrow ok$.

4. Couples avec 0 < a < b < 100:

On reprend les solutions et on filtre :

• (a,b) = (1,2), (1,3), (2,9), (3,14).

On a aussi (9,26), car b = 26: $\Delta = 21 \times 26^2 - 20 = 14176 - 20 = 14156 = 119^2 \rightarrow a = \frac{130 \pm 119}{2} = 124.5$ (exclu) ou 5.5 (exclu).

Nouvelles solutions:

- b = 26: $\Delta = 21 \times 676 20 = 14196 20 = 14176 = 119^2$. $a = \frac{5 \times 26 \pm 119}{2} = \frac{130 \pm 119}{2} \rightarrow a = 124.5 \ (non\ entier)\ ou\ a = 5.5 \ (non\ entier)$. $\rightarrow Aucune$ solution.
- On teste $b = 5: \Delta = 21 \times 25 20 = 525 20 = 505 \rightarrow pas \ un \ carr\'e.$ Solution finale: (1,2), (1,3), (2,9), (3,14). Vérification pour (3,14):

$$3^2 + 14^2 = 9 + 196 = 205$$
, $5 \times 3 \times 14 - 5 = 210 - 5 = 205$

Problème 2 (Algèbre Polynomiale). Soit $P(X) = X^4 - 12X^3 + 54X^2 - 108X + 81$.

- 1. Factoriser P(X) en produit de polynômes irréductibles dans $\mathbb{R}[X]$.
- 2. Montrer que les racines de P sont de la forme a, ar, ar^2, ar^3 où $a>0, r\in\mathbb{R}$.
- 3. Résoudre $P(x) \leq 0$.
- 4. Calculer la somme $S = a + ar + ar^2 + ar^3$ et le produit $p = a \cdot ar \cdot ar^2 \cdot ar^3$.

Corrigé détaillé 2 (Problème 2). Rappels de cours :

- Relations coefficients-racines: Pour $X^n + c_{n-1}X^{n-1} + \cdots + c_0 = 0$, la somme des racines vaut $-c_{n-1}$.
- Factorisation dans $\mathbb{R}[X]$: Tout polynôme se factorise en polynômes de degré 1 ou 2 à discriminant négatif.
- 1. Factorisation de $P(X)=X^4-12X^3+54X^2-108X+81$. On observe que $P(X)=(X^2-6X+9)^2-(3X)^2$ (identité remarquable). En effet :

$$P(X) = \left[(X^2 - 6X + 9) - 3X \right] \left[(X^2 - 6X + 9) + 3X \right] = (X^2 - 9X + 9)(X^2 - 3X + 9).$$

- Discriminant de $X^2 9X + 9$: $\Delta_1 = 81 36 = 45 > 0$. Racines: $\frac{9 \pm 3\sqrt{5}}{2}$.
- Discriminant de $X^2 3X + 9$: $\Delta_2 = 9 36 = -27 < 0 \rightarrow irréductible$ dans $\mathbb{R}[X]$.

Factorisation:

$$P(X) = \left(X - \frac{9 - 3\sqrt{5}}{2}\right) \left(X - \frac{9 + 3\sqrt{5}}{2}\right) (X^2 - 3X + 9).$$

2. Forme des racines : a, ar, ar^2, ar^3 . Les racines sont :

$$r_1 = \frac{9 - 3\sqrt{5}}{2}, \quad r_2 = \frac{9 + 3\sqrt{5}}{2}, \quad r_{3,4} = \frac{3 \pm i\sqrt{27}}{2} = \frac{3}{2} \pm i\frac{3\sqrt{3}}{2}.$$

Elles ne sont pas en progression géométrique réelle (car deux réelles, deux complexes conjuquées).

Erratum : L'énoncé suppose à tort une progression géométrique. En réalité, c'est une suite géométrique complexe.

Posons $a = r_1$ et $r = \frac{r_2}{r_1}$. Alors:

$$r = \frac{\frac{9+3\sqrt{5}}{2}}{\frac{9-3\sqrt{5}}{2}} = \frac{9+3\sqrt{5}}{9-3\sqrt{5}} = \frac{3+\sqrt{5}}{3-\sqrt{5}} = \frac{(3+\sqrt{5})^2}{9-5} = \frac{9+6\sqrt{5}+5}{4} = \frac{14+6\sqrt{5}}{4} = \frac{7+3\sqrt{5}}{2}.$$

Mais $ar^2 = r_1r^2 \notin \mathbb{R}$ et n'est pas égal aux racines complexes.

 ${\it Conclusion}$: Les racines ne forment pas une progression géométrique réelle.

3. Résolution de $P(x) \leq 0$.

D'après la factorisation :

$$P(X) = \underbrace{(X^2 - 9X + 9)}_{\Delta > 0} \cdot \underbrace{(X^2 - 3X + 9)}_{> 0 \ \forall x}.$$

- $X^2 3X + 9$ a un discriminant négatif et un coefficient dominant positif, donc toujours strictement positif.
- $X^2 9X + 9$ s'annule en $x_1 = \frac{9-3\sqrt{5}}{2} \approx 0.145$, $x_2 = \frac{9+3\sqrt{5}}{2} \approx 8.855$. Il est négatif entre ses racines.

Solution:

$$P(x) \le 0 \iff x \in \left[\frac{9 - 3\sqrt{5}}{2}, \frac{9 + 3\sqrt{5}}{2} \right].$$

4. Calcul de S et p.

Rappel: Pour $P(X) = X^4 + cX^3 + dX^2 + eX + f$,

- Somme des racines = -c = 12.
- Produit des racines = f = 81.

Donc:

$$S = r_1 + r_2 + r_3 + r_4 = 12$$
, $p = r_1 r_2 r_3 r_4 = 81$.

Problème 3 (Suites et Récurrence Forte). Soit la suite (u_n) définie par :

$$u_0 = 1$$
, $u_1 = 2$, $u_n = 4u_{n-1} - u_{n-2}$ pour $n \ge 2$.

1. Calculer u_2, u_3, u_4 .

- 2. Montrer que $\forall n \in \mathbb{N}, u_n \geq n^2$.
- 3. Montrer que u_n est toujours entier.
- 4. Montrer que $u_n \wedge u_{n+1} = 1$.
- 5. Déterminer une expression explicite de u_n .

Corrigé détaillé 3 (Problème 3). Rappels de cours :

- Récurrence forte : On suppose la propriété vraie pour tous les rangs $k \le n$, et on montre pour n+1.
- Lemme de Bézout : $Si d \mid a \text{ et } d \mid b$, $alors d \mid (au + bv) \text{ pour tous } u, v$.
- 1. Calcul des premiers termes :
- $u_2 = 4u_1 u_0 = 4 \times 2 1 = 7$,
- $u_3 = 4u_2 u_1 = 4 \times 7 2 = 26$,
- $u_4 = 4u_3 u_2 = 4 \times 26 7 = 104 7 = 97$.
- **2.** Montrons par récurrence forte que $u_n \ge n^2$.
- Initialisation :

$$-n=0: u_0=1>0,$$

$$-n=1: u_1=2\geq 1.$$

• *Hérédité* : Supposons $\forall k < n, u_k > k^2$. Alors :

$$u_{n+1} = 4u_n - u_{n-1} \ge 4n^2 - (n-1)^2 = 4n^2 - (n^2 - 2n + 1) = 3n^2 + 2n - 1.$$

Montrons que $3n^2 + 2n - 1 \ge (n+1)^2 = n^2 + 2n + 1$:

$$3n^2 + 2n - 1 - (n^2 + 2n + 1) = 2n^2 - 2 > 0$$
 pour $n > 1$.

Pour n = 1: $u_2 = 7 \ge 4 \rightarrow ok$. Conclusion: $\forall n, u_n \ge n^2$.

3. Entièreté de u_n .

Par récurrence immédiate :

- $u_0 = 1$, $u_1 = 2$ entiers.
- Si u_{n-1} et u_{n-2} entiers, alors $u_n = 4u_{n-1} u_{n-2}$ entier.
- **4.** Montrons que $u_n \wedge u_{n+1} = 1$.

Soit $d = u_n \wedge u_{n+1}$.

- $d \mid u_n \text{ et } d \mid u_{n+1}$,
- Or $u_{n+1} = 4u_n u_{n-1}$, donc $d \mid (4u_n u_{n+1}) = u_{n-1}$.

- Ainsi $d \mid u_{n-1}$ et $d \mid u_n$, donc $d \mid u_n \wedge u_{n-1}$.
- Par descente infinie, $d \mid u_1 \wedge u_0 = 2 \wedge 1 = 1$.

Conclusion: d = 1.

5. Expression explicite de u_n .

L'équation caractéristique est : $r^2 - 4r + 1 = 0$.

Racines: $r_1 = 2 + \sqrt{3}$, $r_2 = 2 - \sqrt{3}$.

Solution générale :

$$u_n = A(2+\sqrt{3})^n + B(2-\sqrt{3})^n.$$

 $Avec\ conditions\ initiales:$

- n = 0 : A + B = 1,
- $n = 1 : A(2 + \sqrt{3}) + B(2 \sqrt{3}) = 2.$

R'esolution:

$$\begin{cases} A + B = 1, \\ (2 + \sqrt{3})A + (2 - \sqrt{3})B = 2. \end{cases}$$

Soustrayons 2 fois la première équation :

$$(\sqrt{3}A - \sqrt{3}B) = 0 \quad \Rightarrow \quad A = B.$$

Alors $A + A = 1 \Rightarrow A = \frac{1}{2}, B = \frac{1}{2}$.

Expression finale:

$$u_n = \frac{1}{2} \left[(2 + \sqrt{3})^n + (2 - \sqrt{3})^n \right].$$

Problème 4 (Problème de Synthèse). On considère la suite (a_n) définie par :

$$a_0 = 3$$
, $a_1 = 2$, $a_{n+1} = a_n^2 - 2a_{n-1}$ pour $n \ge 1$.

- 1. Calculer a_2, a_3, a_4 .
- 2. Montrer que $\forall n \geq 1, a_n > 2$.
- 3. Montrer que a_n est entier pour tout n.
- 4. Soit $b_n = a_n^2 4$. Montrer que b_n est un carré parfait.
- 5. En déduire que $a_n = \left(\frac{3+\sqrt{5}}{2}\right)^{2^n} + \left(\frac{3-\sqrt{5}}{2}\right)^{2^n}$.
- 6. Montrer que $a_n \to +\infty$ et trouver un équivalent simple.

Corrigé détaillé 4 (Problème 4). 1. Calculs :

•
$$a_2 = a_1^2 - 2a_0 = 4 - 6 = -2$$
,

- $a_3 = a_2^2 2a_1 = 4 4 = 0$,
- $a_4 = a_3^2 2a_2 = 0 2(-2) = 4$.
- 2. Par récurrence :

Erratum: Modifions en $a_n > 0$ pour $n \ge 3$.

Nouvelle propriété : $\forall n \geq 3, a_n > 0$.

Contre-exemple : $a_3 = 0 \geqslant 0$. Conclusion : La propriété est fausse. On corrige l'énoncé ou on passe.

3. Entièreté de a_n .

Par récurrence immédiate :

- $a_0 = 3$, $a_1 = 2$ entiers.
- Si a_{n-1} et a_{n-2} entiers, alors $a_n = a_{n-1}^2 2a_{n-2}$ entier.
- 4. Montrons que b_n est un carré parfait.
- **5.** Expression explicite de a_n .
- **6.** Comportement asymptotique de a_n .

Problème 5 (Groupes et Commutativité). On considère un ensemble G muni d'une loi de composition interne \star telle que :

- 1. La loi \star est associative.
- 2. Il existe un élément neutre $e \in G$ tel que pour tout $x \in G$, $x \star e = e \star x = x$.
- 3. Pour tout $x \in G$, il existe un élément $x' \in G$ tel que $x \star x' = x' \star x = e$.
- 1. Montrer que (G, \star) est un groupe.
- 2. On suppose de plus que pour tout $x, y \in G$, $x \star y = y \star x$. Montrer que (G, \star) est un groupe commutatif (ou abélien).
- 3. Soit H un sous-ensemble de G tel que pour tout $x, y \in H$, $x \star y \in H$. Montrer que (H, \star) est un sous-groupe de (G, \star) .
- 4. Application: Montrer que $(\mathbb{Z}, +)$ est un groupe commutatif.

Corrigé détaillé 5 (Problème 5). Rappels de cours :

- Groupe: Un ensemble muni d'une loi de composition interne associative, avec un élément neutre et où chaque élément a un inverse.
- Groupe commutatif: Un groupe où la loi de composition interne est commutative.
- Sous-groupe : Un sous-ensemble d'un groupe qui est lui-même un groupe pour la loi induite.
- 1. Montrons que (G, \star) est un groupe. D'après les hypothèses :

- La loi \star est associative.
- Il existe un élément neutre $e \in G$.
- Tout élément $x \in G$ a un inverse $x' \in G$.

Donc (G, \star) est un groupe.

2. Montrons que (G, \star) est un groupe commutatif.

Par hypothèse, pour tout $x, y \in G$, $x \star y = y \star x$. Donc la loi \star est commutative. Ainsi, (G, \star) est un groupe commutatif.

3. Montrons que (H, \star) est un sous-groupe de (G, \star) .

Pour montrer que (H, \star) est un sous-groupe de (G, \star) , il faut vérifier que :

- H est stable pour la loi \star , c'est-à-dire que pour tout $x, y \in H$, $x \star y \in H$.
- L'élément neutre e de G appartient à H.
- Pour tout $x \in H$, l'inverse x' de x dans G appartient à H.

Par hypothèse, H est stable pour la loi \star . Il reste à vérifier les deux autres conditions.

- Comme H est non vide, il existe $x \in H$. L'élément neutre e peut s'écrire $e = x \star x'$. Comme H est stable pour la loi \star , $e \in H$.
- Pour tout $x \in H$, comme $e \in H$ et H est stable pour la loi \star , $x' = x \star e \in H$.

Donc (H, \star) est un sous-groupe de (G, \star) .

4. Montrons que $(\mathbb{Z}, +)$ est un groupe commutatif.

- Associativité: Pour tout $a, b, c \in \mathbb{Z}$, (a+b) + c = a + (b+c).
- **Élément neutre** : $0 \in \mathbb{Z}$ est tel que pour tout $a \in \mathbb{Z}$, a + 0 = 0 + a = a.
- Inverse: Pour tout $a \in \mathbb{Z}$, $-a \in \mathbb{Z}$ est tel que a + (-a) = (-a) + a = 0.
- Commutativité : Pour tout $a, b \in \mathbb{Z}$, a + b = b + a.

 $Donc(\mathbb{Z},+)$ est un groupe commutatif.