第一册

大青花鱼

目录

第一章	从自然数到有理数	5
1.1	分数、整数、有理数	5
1.2	有理数的大小	7
1.3	乘方	9
第二章	从变量到方程(上)	15
2.1	数和代数	15
2.2	代数式	20
2.3	等式和方程	23
第三章	集合和映射	25
3.1	集合	25
3.2	概念和集合	27
3.3	判断和集合	29
3.4	映射	33

4		录
第四章	有理数的运算	37
4.1	有理数的加减法	37
4.2	有理数的乘除法	40
4.3	数轴	44
第五章	代数式的运算	45
5.1	整式的运算	45
5.2	分式的运算	49
第六章	从变量到方程(下)	51
6.1	一元一次方程	51
6.2	一元一次不等式	53

第一章 从自然数到有理数

1.1 分数、整数、有理数

我们已经学过自然数: $0,1,2,3,\cdots$ 。自然数是 0 和 1 相加得到的数。从 0 开始,不断加 1,就能得到任何自然数。

比如: 4 = 0 + 1 + 1 + 1 + 1。

自然数之间做加法和乘法,得到的还是自然数。

加法和乘法都满足结合律和交换律,乘法对加法有分配律。

自然数是自然产生的。当我们发现两头牛和两天有共同之处时,自然数的概念就诞生了。

为了回答类似"三个人平分七只鸡"的问题,人们发明了除法。**除法是乘法的逆运算**。

比如: $3 \times 7 = 21$, 于是 $3 = 21 \div 7$, $7 = 21 \div 3$ 。

除法产生了分数。自然数可以看作分母是 1 的分数。分数之间可以做加法、乘法和除法,得到的还是分数。

为了回答类似"五个鸡蛋吃了两个还剩几个"的问题,人们发明了减 法。**减法是加法的逆运算**。 比如, 3+2=5, 于是 3=5-2, 2=5-3。

既然可以写出 5-2,那么可不可以写 0-2 呢? 0-2 有什么含义呢?

借用"五个鸡蛋吃了两个还剩几个"的思路,0-2可以表示"本没有鸡蛋,借鸡蛋来吃了两个还剩几个"。剩下的是"欠两个鸡蛋",是一种负债状态。因此,这样的数称为**负数**。

我们一般把 0-2 中的 0 去掉,只记为 -2。-2 满足 -2+2=0。对某个数,比如 3 来说,3+(-2)=3+(0-2)=3-2。也就是说,一个数加上 -2,就和减去 2 一样。以此类推,可以得到:

$$-1, -2, -3, \cdots$$

它们由 $1,2,3,\cdots$ 前加上减号得到,表示 0 减去 $1,2,3,\cdots$ 的结果,读作 "负一"、"负二"、"负三"等等。我们把负数带的减号称为**负号**(读作"负"),和一般减法区别开来。

一般来说,在任何分数前加上负号,也可以得到一个负数,表示 0 减去它的结果。

有没有 -0 呢? -0 就是 0-0,也就是 0 自己,所以就没有必要加负 号了。

自然数和它们的负数合称**整数**。我们把 $-1,-2,-3,\cdots$ 这些负数称为**负整数**,把原来 $1,2,3,\cdots$ 这些数称为**正整数**,和负整数相对。由于 -0 就是 0,约定 0 既不是正数,也不是负数。于是整数分为正整数、负整数和 0。

分数和它们的负数合称**有理数**,我们把带负号的分数称为**负有理数**或**负分数**,把原来的分数(除了 0)称为**正有理数**或**正分数**。正有理数包括正整数,负有理数也包括负整数,有理数包括整数。

自然数或分数前面加负号得到的负数,叫做它的**相反数**。反过来,一个负整数或负分数去掉负号得到的数,也叫做它的相反数。约定 0 的相反数 就是 0。于是,每个有理数都有唯一的相反数。

除了 0 以外,相反数总是成对的。比如,3 的相反数是 -3, -3 的相反数就是 3。一个有理数的相反数的相反数,就是它自己。

思考 1.1.1. 一个有理数前面加上负号,一定会得到一个负数吗?

加上一个负数,就和减去它的相反数一样。所以,现实中遇到和加法对应的概念,可以用减法和负数表示相反或相对的概念。比如,如果把"往东走"视作"加",那么"往西走"就可以视作"减"。"原地往东走三步,再往西走两步",就可以视作"0+3-2"。计算得到 1。它表示最终和原来比,往东走了一步。

1.2 有理数的大小

加法不仅可以表达累加的概念,还可以用于比较大小。比如,5比3大,3比5小。

我们用大于号 ">"和小于号 "<"记录大小关系。5 比 3 大就写作 5 > 3, 读作 "5 大于 3";3 比 5 小就写作 3 < 5,读作 "3 小于 5"。

大小关系有哪些基本性质呢?

首先,大小关系用来形容不相等的数。所有不相等的数都能比大小。两个数如果不相等,那么总有一个比较大,另一个比较小。

大小关系是**互反**的。说一个数比另一个数大,就是说另一个数比它小。 反之亦然。

大小关系还是**传递**的,甲数比乙数大(小),乙数比丙数大(小),那么 甲数就比丙数大(小)。

5 比 3 大,可以理解为 5 是 3 再加自然数 2 得到的,而 3 却没法通过 5 加上一个自然数得到。一般来说,如果一个数加上某个自然数或分数等于 另一个数,那么它比另一个数小,另一个数比它大。

我们希望大小关系对所有的有理数都成立,这样,我们就可以比较任何有理数的大小。首先,任何正有理数都大于0。负有理数的相反数是分数,而任何负有理数加上它的相反数都得到0。所以,按照大小关系的定义,我们规定0大于任何负有理数。于是任何正有理数大于0,从而大于任何负有理数。

我们约定大于 0 的数叫做**正数**,小于 0 的数叫做**负数**。正整数、正有理数都是正数,负整数、负有理数都是负数。这样的约定和前面负数的定义是一致的。之前的结论可以这么说:**任何正数大于任何负数**。

负有理数之间如何比较大小呢?举例来说,0 = -3 + 3 = -3 + 1 + 2,所以 -3 + 1 = 0 - 2 = -2。一-2 由 -3 加上自然数 1 得到,所以 -3 小于 -2。进一步分析,我们发现,自然数 1 来源于"3 可以写成 2 + 1"。所以我们可以总结出两个负有理数比较大小的方法:看它们的相反数。相反数中较大的,可以写成较小数加上一个分数,于是,相反数较大的负有理数加上这个分数,就等于相反数较小的负有理数。因此,相反数较大的负有理数比较小,相反数较小的负有理数比较大。

正数和负数可以比较大小。所以,现实问题中涉及到相反或相对的概念比较大小时,可以用有理数表示。

比如,今天延安的气温是 3.4 摄氏度,长春的气温是 -8.2 摄氏度,哈尔滨的气温是 -15.1 摄氏度,那么延安气温最高,长春气温比延安低,而哈尔滨气温又比长春低。

思考 1.2.1.

- 1. 用自己的话总结: 我们是怎样定义负数的大小关系的?
- 2. 怎么评价这样定义的大小关系?

1.3 乘方 9

1.3 乘方

乘法可以更方便地表示若干个相同的数相加。比如,我们用 3×4 表示 3+3+3+3。那么,能不能方便地表示若干个相同的数相乘呢?

我们把 3×3 称为 3 乘 2 次方, 把 $7 \times 7 \times 7 \times 7 \times 7$ 称为 7 乘 5 次方。

同一个数连乘几次,叫做它乘几次方。连乘的结果,叫做它的几**次方**或 几**次幂**。这种运算叫做**乘方**或**乘幂**。

我们把 7 的 5 次方记作 7^5 ,把 7 称为**底数**,把 5 称为**指数**。这样记法,比 $7 \times 7 \times 7 \times 7 \times 7$ 更方便。

一个数的 1 次方就是它自己。一个数的 2 次方也叫做它的**平方**。一个数的 3 次方也叫做它的**立方**。

约定任何数的 0 次方是 1。

 $7 \times 7 \times 7 \times 7 \times 7 = (7 \times 7 \times 7) \times (7 \times 7)$ 。用乘方表示这个关系,就是: $7^5 = 7^3 \times 7^2$ 。注意到 5 = 3 + 2。用日常的话来说,5 个 7 相乘,等于 3 个 7 相乘,再和 2 个 7 相乘。

同底数乘方的积,是指数之和的乘方。乘方的乘法,可以转化为指数的加法。因此,乘方的除法,也可以转化为指数的减法。

比如,
$$7^3 \times 7^2 = 7^{3+2} = 7^5$$
,所以,

$$7^{5-2} = 7^3 = 7^5 \div 7^2.$$

同底数乘方的商,是指数之差的乘方。

既然乘方的乘除可以转化为指数的加减,那么是否有负指数?能否定义一个数的负数次方?

如果定义 7^{-3} 为: $7^{-3} \times 7^3 = 7^0 = 1$,那么 $7^{(-3)}$ 就等于 $\frac{1}{7^3}$ 。一个数的 负几次方,就是 1 除以它的几次方。

显然,0没有负数次方。

再来看乘方的乘方。考虑 $(2^3)^4$ 。按照定义,这表示把 2^3 连乘 4 次。而 2^3 本身表示把 2 连乘 3 次。把它写出来,就是:

$$(2^3)^4 = (2^3) \times (2^3) \times (2^3) \times (2^3)$$
$$= 2^{3+3+3+3}$$
$$= 2^{4\times 3} = 2^{12} = 4096.$$

乘方的乘方,就是乘方的连乘积;而乘方的乘法就是指数的加法,所以乘方的连乘就是把指数重复相加,也就是对指数做乘法。因此,一般来说,乘方的乘方,就是乘方的指数的积。

例题 1.3.1. 计算:

1.
$$2^5 \times 2^2 \times 2^{-3}$$

2.
$$3^4 \times (3^2)^3$$

解答.

1. 按照规则,

$$2^5 \times 2^2 \times 2^{-3} = 2^{5+2-3}$$

= $2^4 = 16$.

2. 按照规则,

$$3^4 \times (3^2)^3 = 3^4 \times 3^{3 \times 2}$$

= $3^{4+3 \times 2}$
= $3^10 = 59049$.

最后来看底数的运算对乘方的影响。比如,如何计算 $(7 \times 5)^3$? 按照定

1.3 乘方 11

义, $(7 \times 5)^3$ 就是把 7×5 连乘 3 次。将它写出来,可以发现:

$$(7 \times 5)^3 = (7 \times 5) \times (7 \times 5) \times (7 \times 5)$$
$$= (7 \times 7 \times 7) \times (5 \times 5 \times 5)$$
$$= 7^3 \times 5^3.$$

一般来说,底数的积的乘方,是乘方的积。

要注意的是: $(7 \times 5)^3$ 和 $7 \times (5^3)$ 是不一样的。那么,可不可以写 7×5^3 呢?

我们约定,**乘方运算比乘法优先**。也就是说, 7×5^3 表示 $7 \times (5^3)$, 而 不是 $(7 \times 5)^3$ 。

乘方的底数相乘,可以转换为乘方相乘。那么底数相除,如何计算呢? 让我们考虑一个简单的例子: $\left(\frac{7}{5}\right)^3$ 。按照定义, $\left(\frac{7}{5}\right)^3$ 就是把 $\frac{7}{5}$ 连乘 3 次。将 它写出来,可以发现:

$$\left(\frac{7}{5}\right)^3 = \frac{7}{5} \times \frac{7}{5} \times \frac{7}{5}$$
$$= \frac{7 \times 7 \times 7}{5 \times 5 \times 5}$$
$$= \frac{7^3}{5^3}.$$

一般来说,底数的商的乘方,是乘方的商。

和底数的乘积一样,要注意: $\left(\frac{7}{5}\right)^3$ 和 $\frac{7^3}{5}$ 是不一样的。我们约定,**乘方 运算比除法优先**。也就是说, $\frac{7}{5}$ 表示 $\frac{73}{5}$,而不是 $\left(\frac{7}{5}\right)^3$ 。 $7 \div 5^3$ 表示 $7 \div (5^3)$, 而不是 $(7 \div 5)^3$ 。

例题 1.3.2. 计算:

1.
$$3^3 \times (\frac{1}{3})^4$$

2.
$$\left(\frac{6}{5}\right)^3 \times \left(\frac{5}{6}\right)^3$$

3.
$$\left(\frac{2}{15}\right)^3 \times \left(\frac{35}{4}\right)^2$$

4. $\left(\frac{3}{4}\right)^{-2} \times \left(\frac{7}{2}\right)^3$

4.
$$\left(\frac{3}{4}\right)^{-2} \times \left(\frac{7}{2}\right)^{3}$$

解答.

1. 按照规则,

$$3^{3} \times \left(\frac{1}{3}\right)^{4} = 3^{3} \times \frac{1^{4}}{3^{4}}$$
$$= \frac{\cancel{3}^{\cancel{8}}}{\cancel{3}^{\cancel{4}} \cancel{1}}$$
$$= \frac{1}{3}.$$

从这个例子可以看到, $\frac{1}{3}$ 的 4 次方就是 1^4 除以 3^4 的商,而 1^4 就是 1,所以,3 的倒数的 4 次方就是 3 的 4 次方的倒数,也就是它的 -4 次方。

- 一般来说,非零的数,**倒数的乘方就是乘方的倒数**。或者说,取倒数的乘方,就是取指数为相反数的乘方。
 - 2. 按照规则,

$$\left(\frac{6}{5}\right)^3 \times \left(\frac{5}{6}\right)^3 = \frac{6^3}{5^3} \times \frac{5^3}{6^3}$$
$$= \frac{\cancel{6}^{\cancel{8}} \times \cancel{5}^{\cancel{8}}}{\cancel{5}^{\cancel{8}} \times \cancel{6}^{\cancel{8}}}$$
$$= 1.$$

从这个例子可以看到,如果两个乘方的底数互为倒数,指数相同,那么它们的乘积等于 1。再次验证了:倒数的乘方就是乘方的倒数。

我们也可以换个角度理解: $\frac{6}{5}$ 的倒数的 3 次方,就是它的 -3 次方。因此,我们要计算的是 $\frac{6}{5}$ 的 3 次方乘以它的 -3 次方,即它的 3-3=0 次方。因此结果是 1。

1.3 乘方

3. 按照规则,

$$\left(\frac{2}{15}\right)^{3} \times \left(\frac{35}{4}\right)^{2} = \frac{2^{3}}{15^{3}} \times \frac{35^{2}}{4^{2}}$$

$$= \frac{2^{3} \times 35^{2}}{15^{3} \times 4^{2}}$$

$$= \frac{2^{3} \times (5 \times 7)^{2}}{(3 \times 5)^{3} \times (2^{2})^{2}}$$

$$= \frac{2^{3} \times 5^{2} \times 7^{2}}{3^{3} \times 5^{3} \times 2^{2 \times 2}}$$

$$= \frac{2^{3} \times 5^{2} \times 7^{2}}{3^{3} \times 5^{3} \times 2^{4}}$$

$$= \frac{7^{2}}{3^{3} \times 5 \times 2}$$

$$= \frac{49}{90}.$$

4. 按照规则,

$$\left(\frac{3}{4}\right)^{-2} \times \left(\frac{5}{2}\right)^{3} = \left(\frac{4}{3}\right)^{2} \times \frac{5^{3}}{2^{3}}$$

$$= \frac{4^{2}}{3^{2}} \times \frac{5^{3}}{2^{3}}$$

$$= \frac{(2^{2})^{2} \times 5^{3}}{3^{2} \times 2^{3}}$$

$$= \frac{2^{2 \times 2} \times 5^{3}}{3^{2} \times 2^{3}}$$

$$= \frac{2^{\cancel{1}} \times 5^{3}}{3^{2} \times 2^{\cancel{2}}}$$

$$= \frac{2 \times 5^{3}}{3^{2} \times 2}$$

$$= \frac{250}{18}.$$

综上所述, 我们总结出乘方的运算法则:

- 1. 一个数的几次方,就是把它连续乘几次。
- 2. 任何数的 0 次方是 1。
- 3. 一个数的负几次方,就是1除以它的几次方。
- 4. 两个同底数乘方的积,是该底数的乘方,指数是两者指数的和。
- 5. 两个同底数乘方的商,是该底数的乘方,指数是两者指数的差。
- 6. 乘方的乘方,是同底数的乘方,指数是两次乘方的指数的积。
- 7. 底数的积的乘方,是乘方的积。
- 8. 底数的商的乘方,是乘方的商。

思考 1.3.1.

- 1. 约定任何数的 0 次方是 1, 有什么好处?
- 2. 计算乘方的乘方,和乘法的结合律,有什么相似之处?为什么?
- 3. 计算底数乘除法的乘方,和乘法对加减法的分配律,有什么相似之处? 为什么?
 - 4. 为什么要约定乘方运算比乘除法优先?
 - 5. 为什么说一个数的倒数就是它的 -1 次方?
- 6. 乘方中,指数的倒数,代表什么,是否有意义?指数的除法,代表什么,是否有意义?
 - 7. 是否有关于两数之和的乘方的运算方法?

第二章 从变量到方程(上)

2.1 数和代数

讨论数的性质时,我们常常发现,总结一些普遍的规律,需要用很多话来说清楚。比如:

例子 2.1.1.

$$4 = 3 + 1$$
, $4^2 - 3^2 = 4 + 3$.
 $5 = 4 + 1$, $5^2 - 4^2 = 5 + 4$.

$$(2 \times 4 + 1)^2 = 8 \times 10 + 1.$$

 $(2 \times 5 + 1)^2 = 8 \times 15 + 1.$

我们想总结两个对所有数都适用的规律,但只举了几个例子。这种方法不好。

有没有更好的方法呢?

对于第一个规律,我们可以说:如果天元比地元大 1,那么天元的平方减去地元的平方等于天元加地元。对于第二个规律,我们可以说,每个自然数两倍加 1 的平方除以 8 余 1。

我们用"天元"、"地元"、"每个自然数"代替了具体的4和5,以说明这是更普遍的规律,而不是只对4和5成立的等式。这种思想叫做代数的

思想。代数可以让我们暂时忽略具体的数,把重点放在数与数之间的关系上。我们能轻松看出这些关系是普遍的,不依赖特定的数。我们把这样的关系叫做**代数关系**。

为了和数区别,"天元"、"地元"、"每个自然数"等称为量。量是对可以运算的概念的称呼。量可以有现实意义,比如物理学里会讨论物理量,也可以没有现实意义,比如数学中代替数的量可以称为数量。

在讨论问题的时候,如果我们认为一个量代替的数不会变化,就说这个量是**常量**;如果会变化,就说它是**变量**。

我们可以用变量描述上面两个规律:

如果天 = 地 + 1, 那么天² - 地² = 天 + 地.
$$(2 \times \mathbb{P} + 1)^2$$
 除以 8 余 1.

为了方便, 我们一般用字母命名的变量来指代数。

如果
$$a = b + 1$$
, 那么 $a^2 - b^2 = a + b$.
$$(2 \times x + 1)^2$$
除以8余1.

其中变量 a,b,x 可以变成 3,4,5 或任何一个自然数。

用变量代替数,可以用简明的语言表示更复杂、更普遍的规律。

例题 2.1.1. 用代数的方法,说明加法的结合律。

解答. 用文字表示加法的结合律: 任意三个数相加, 先把前两个数相加, 或者先把后两个数相加, 和不变。

考虑任意三个数,记这三个数为a、b、c,那么:

$$(a + b) + c = a + (b + c).$$

也就是说,加法的结合律可以写成:

对任意三个数
$$a, b, c, (a+b)+c=a+(b+c)$$
.

2.1 数和代数 17

例题 2.1.2. 用代数的方法,证明:

- 1. 先减一个数后加另一个数,等于先加另一个数后减这个数。
- 2. 减去两个数的差,等于先减被减数,再加上减数。

解答.

1. 把被减数记作 a, 先减的数记作 b, 后加的另一个数记作 c。我们要证明:

$$a - b + c = a + c - b.$$

设 a+c-b 的结果为 d,则按照减法的定义:

$$a + c = d + b$$
.

因此,根据加法交换律,

$$c = b + d - a.$$

代入 a-b+c, 得到:

$$a-b+c=a-b+b+d-a$$

$$=a+d-a=d+a-a \qquad (加法交换律)$$

$$=d=a+c-b.$$

2. 把减去的两个数分别记作 b 和 c, 被 b-c 的差减的数记为 a。我们要证明:

$$a - (b - c) = a - b + c.$$

设 a-(b-c) 的结果为 d,则按照减法的定义:

$$a = d + (b - c).$$

根据加法交换律和前面的结论,

$$d + (b - c) = (b - c) + d = b - c + d = b + d - c.$$

18

所以,

$$a+c=b+d$$
.

因此,根据加法交换律和前面的结论,

$$a + c = d + b$$
$$d = a + c - b = a - b + c.$$

即

$$a - (b - c) = d = a - b + c.$$

例题 2.1.3. 用代数的方法,说明同底数乘方的乘除法。

解答. 设底数为 a,考虑两个乘方: a^m 和 a^n ,其中正整数 m,n 是乘方的指数。它们的乘积可以这样计算:

$$a^m \times a^n = a^{m+n}$$
.

这是因为按照乘方的定义, a^m 和 a^n 分别是 $m \uparrow a$ 和 $n \uparrow a$ 连乘的结果,因此,两者的乘积就是:

$$a^{m} \times a^{n} = \overbrace{a \times a \times \cdots \times a}^{m \uparrow a} \times \overbrace{a \times a \times \cdots \times a}^{n \uparrow a}$$

$$= \overbrace{a \times a \times \cdots \times a}^{m+n \uparrow a}$$

$$= a^{m+n}.$$

任何数 a 的 0 次方是 1。如果 n=0,那么 $a^n=1$,于是

$$a^m \times a^n = a^m \times 1 = a^m = a^{m+n}.$$

m=0 时也是如此。因此:

对任意自然数 $m, n, a^m \times a^n = a^{m+n}$.

2.1 数和代数 19

乘方的除法就是乘法的逆运算。 $a^m \times a^n = a^{m+n}$, 因此, 当 $m \ge n$ 的时候,

$$a^{m-n} \times a^n = a^{m-n+n} = a^m.$$

我们把这个定义扩展到任意自然数 m, n, 也就是说, 只要不出现 0 的负数 次方, 那么

对任意自然数
$$m, n, a^m \div a^n = a^{m-n}$$
.

因此, 只要不出现 0 的负数次方, 那么

对任意整数 $m, n, a^m \times a^n = a^{m+n}, a^m \div a^n = a^{m-n}$.

思考 2.1.1.

- 1. 用代数的方法,说一说怎样比较两个负有理数的大小。
- 2. 用代数的方法,说明乘方的运算法则:

只要不出现除以 0 的情况¹⁰, 那么:

(1). 对任何数 a 和任何正整数 m,

$$a^m = \overbrace{a \times a \times \cdots \times a}^{m \uparrow a}.$$

- (2). 对任何数 a, $a^0 = 1$ 。
- (3). 对任何数 a 和任何自然数 m, $a^{-m} = \frac{1}{a^m}$.
- (4). 对任何数 a 和任何整数 $m, n, a^m \times a^n = a^{m+n}$ 。
- (5). 对任何数 a 和任何整数 $m, n, a^m \div a^n = a^{m-n}$ 。
- (6). 对任何数 a 和任何整数 m, n, $(a^m)^n = a^{m \times n}$ 。
- (7). 对任何数 a, b 和任何整数 $m, (a \times b)^m = a^m \times b^m$ 。
- (8). 对任何数 a,b 和任何整数 m, $\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$ 。
- 3. 用代数的方法,描述加法结合律、加法交换律、乘法结合律、乘法 交换律和分配律。
 - 4. 用代数的方法证明:
 - 4.1. 先除以一个数后乘以另一个数,等于先乘以另一个数后除以这个

⁰0 的负数次方实际上就是除以 0。

20

数。

4.2. 除以两个数的商,等于先除以被除数,再乘以除数。

2.2 代数式

含有变量的算式叫做**代数式**。为了区别,我们把只有数的算式叫做**数** 式。

$$a+2$$
, $1.84 \times x^2 - 3$, $\frac{2 \times x^3 - 1}{a^n + 1}$, $0.79 \times j^2 - \frac{h+1}{n} + 5$ 等等都是代数式。

数式既表示计算过程,也表示计算的结果:一个数。把数式中的数用变量代替,我们不再计算结果,只关心计算过程本身。这对我们找出并解释计算过程中的规律很有帮助。掌握了计算的规律后,我们再用具体的数代替变量(称为赋值或代入),就能更快更好地算出结果。

乘号 × 和 x 或 X 很像,为了避免混淆,一般省略乘号,或用·代替乘号。 $1.84 \times x - 3$ 可以写成 1.84x - 3 或 $1.84 \cdot x - 3$

代数式中不同的变量称为元。只与一个变量有关的式子叫做**一元式**,和 多个变量有关的式子叫做**多元式**。

变量和数通过四则运算得到的代数式,叫做**有理式**。变量和数通过加法、减法和乘法得到的代数式,叫做**整式**。如果除法中涉及了变量,就叫**分式**。有理式中除了整式,就是分式。

例子 2.2.1.

整式: $x^3 + 5x - 3.32$, $a + b^2 - 2C$, $(b - 4)^9$.

分式: $\frac{1-0.9r+v^2}{3B-k}$, $n^2-7+\frac{0.88}{(H-6)^3}$, $t-(t+0.382g)^{-3}$.

我们知道,数的乘法比加减法优先。比如,计算4+3×6时,我们要

2.2 代数式 21

先计算 $3 \times 6 = 18$,再计算 4 + 18 = 22。先计算加法是不对的。代数式特别是整式中,我们也更关心乘法。我们把变量和数相乘的部分称为**项**。举例来说,0.54xba, $-1.24 \cdot gb \cdot 1.19 \cdot g^2$, $u \cdot 98K$ 分别是一项,10b - V 是两项的差。

项是变量和数的乘积。变量之间不一定能运算,但数与数之间可以运算。我们可以把一项中所有的数相乘,放在最前面,叫做项的**系数**。其次,一项之中,同一个变量多次相乘,可以放在一起,作为连乘,用乘方表示。这样把项变得更简洁的过程,叫做**化简**。

比如,考虑代数式 $x \cdot 3 \cdot y \cdot 2 \cdot x$ 。它只有一项。这一项中,可以先把所有的数相乘,得到 6,放在前面。然后找出相同的变量多次相乘的情况。这里 x 乘了两次,因此可以写成 x^2 。整理后我们得到 $6x^2y$ 。这就是化简的结果。

代数式某一项化简后, 总是一个数乘以若干个变量的乘幂。

要注意的是,项的某个变量前有负号,说明它是 -1 乘以这个变量的结果。这时要把 -1 计到系数里面。比如,化简 $x \cdot 2 \cdot (-y) \cdot 3 \cdot x$ 时,系数为 $-1 \cdot 2 \cdot 3 = -6$,化简结果为: $-6x^2y$ 。

如果两项变量部分相同,只有系数不同,就说它们是**同类项**。同类项的一项就是另一项乘以某个(不是零的)数。

同类项的变量部分相同,系数不同。因此,根据乘法分配律,可以合并,规则是把系数相加。比如,代数式 $3.52x^2y + 0.19x^2y$ 由两项组成,而 $3.52x^2y$ 和 $0.19x^2y$ 可以合并,得到 $3.71x^2y$ 。**合并同类项**也是代数式化简的一部分。

例题 2.2.1. 对以下代数式合并同类项:

1.
$$3x^2y - y^22x + 1 + yx^2 - 6y \cdot (xy + 4)$$

2.
$$aha - 5a(h + ah) + 4ha^2 + hab$$

3.
$$\frac{a+2b}{a-b} + \frac{2a^2-b}{(a-b)(a+b)}$$

解答.

1. 首先用乘法分配律将每一项展开出来,

$$3x^{2}y - y^{2}2x + 1 + yx^{2} - 6y \cdot (xy + 4)$$
$$= 3x^{2}y - y^{2}2x + 1 + yx^{2} - 6yxy + 6y \cdot 4.$$

然后按同一顺序把每项的字母排好,最左边是系数,然后按字母表顺序排列。比如: y^22x 改写为 $2xy^2$ 。这样,我们就能方便地找出同类项,然后合并。

$$3x^{2}y - y^{2}2x + 1 + yx^{2} - 6yxy + 6y \cdot 4$$

$$= 3x^{2}y - 2xy^{2} + 1 + x^{2}y - 6xy^{2} + 24y$$

$$= (3x^{2}y + x^{2}y) + (-2xy^{2} - 6xy^{2}) + 24y + 1$$

$$= 4x^{2}y - 8xy^{2} + 24y + 1$$

2. 同上,

$$aha - 5a(h + ah) + 4ha^{2} + hab$$

$$= a^{2}h - 5ah - 5a^{2}h + 4a^{2}h + abh$$

$$= (a^{2}h - 5a^{2}h + 4a^{2}h) - 5ah + abh$$

$$= 0a^{2}h - 5ah + abh$$

$$= -5ah + abh$$

这里几个 a^2h 相关的同类项合并之后系数为 0,这说明几个同类项相互抵消了。同类项抵消是代数式化简的主要原因。

3. 分式的化简需要考虑分子和分母。为了方便,通常会先进行通分,然后

2.2 代数式 23

对分子做合并同类项,最后约分。

$$\frac{a+2b}{a-b} + \frac{2a^2 - b}{(a-b)(a+b)}$$

$$= \frac{(a+2b)(a+b) + 2a^2 - b}{(a-b)(a+b)}$$

$$= \frac{a^2 + 2ba + ab + 2b^2 + 2a^2 - b}{(a-b)(a+b)}$$

$$= \frac{(a^2 + 2a^2) + (2ab + ab) + 2b^2 - b}{(a-b)(a+b)}$$

$$= \frac{3a^2 + 3ab + 2b^2 - b}{(a-b)(a+b)}$$

一项中所有变量的指数的和,叫做它的**次数**。比如 $3.71x^2y$ 的次数是 3, 它可以叫3次项。不含变量部分的项叫常数项。我们约定,常数项次数为 0_{\circ}

整式是变量和数通过加减法和乘法得到的代数式。由于乘法优先计算, 可以认为整式是一些项做加减法得到的。合并同类项后,如果只剩下一项, 就说它是单项式。一般来说剩下不止一项, 称为多项式。多项式的每一项都 是单项式。多项式次数最高的项叫做**最高次项**。最高次项的次数就叫多项 式的次数。如果多项式每一项的次数都相等,就称它为齐次多项式。

习题 2.2.1.

1. 合并同类项:

- $3+9x^3+5x-7x^3-3.32-1.05x$
- $ab^2 + (c-b)a^2 ba(b-c) + c(b+a)c + (a-c)b(c+a) (b+c)bc$.

2. 判断是否是齐次多项式:

- $\frac{(a+b)^3}{a-b}$ $a^4 bx^3$ $a^4b^4\left(\frac{a^2}{b} + \frac{c^2}{a}\right)^4$

2.3 等式和方程

等式就是把两个式子或多个式子用等号连起来。**不等式**就是把两个式子或多个式子用不等号连起来。一般情况,默认是两个式子。

等式可以是真的,也可以是假的。前者也叫等式成立,后者也叫等式不成立。

按大小关系,**不等号**分为两类:大于类和小于类。按是否包含相等关系,不等号分为两类:严格类和可等于类。一共有四个不等号:"<"(严格小于),"≤"(小于等于),">"(严格大于),"≥"(大于等于)。

等式的基本性质:两边同时加、减、乘、除同一个量,成立的等式仍然成立。

为了解决生活中的问题,我们学过简单的方程。把未知的数,用变量表示。问题中的相等关系,就变成了含变量的等式,称为**方程**。解决这个问题,求出使得等式成立的变量值,称为**解方程**,这时变量的值称为**方程的解**。

如果问题中的条件是不等关系,我们就得到了含变量的**不等式**。解决 这个问题,求出使得不等式成立的变量值,称为**解不等式**。变量的值称为**不 等式的解**。

习题 2.3.1. 以下哪些是等式? 哪些是不等式? 哪些是方程?

(1).
$$3x + 1 = 4$$
, (2). $6 = 4$, (3). $a = b = c + 1$

(4).
$$v \le 4r^2 - v$$
, (5). $2 > 3$, (6). $h \ge f > g - f$

第三章 集合和映射

3.1 集合

我们用集合表示一类事物。把不同性质的事物聚集在一起,合起来考虑,就是集合,简称集。构成集合的事物称为集合的元素。

- 1. 集合的元素互不相同。
- 2. 集合的元素没有顺序。
- 3. 集合的元素是确定的:一个事物要么属于该集合,要么不属于。

某个事物 a 属于集合 A, 记作 $a \in A$ 。某个事物 a 不属于集合 A, 记作 $a \notin A$ 。

例子 3.1.1.

可以在大括号中列出集合的元素,比如: {1,2,3} 是一个集合, {1,2,2,3} 不是集合。

也可以在大括号中用条件描述集合。集合的元素是满足条件的元素,比如: {a|a是偶数}。竖线左边是元素的样子,右边是它满足的条件。

还可以直接用文字描述集合,比如: {一年的十二个月份} 是一个集合。除了以上方式,也可以用示意图、图表、列表等方式表示集合。

没有元素的集合称为**空集**,记为 Ø。

自然数、整数、分数、有理数都是集合。自然数一般简记为 N, 分数一

般简记为 \mathbb{F} ,整数一般简记为 \mathbb{Z} ,有理数一般简记为 \mathbb{Q} 。"a 是自然数"可以记为 $a \in \mathbb{N}$ 。

如果集合 A 的元素都是集合 B 的元素,就说 A 是 B 的子集,或者说 A 包含于 B,记为 $A \subseteq B$, B 是 A 的母集,或者说 A 包含 B,记为 $B \supseteq A$ 。如果两者不相同,就说 A 是 B 的真子集,记为 $A \subset B$,B 是 A 的真母集,记为 $B \supset A$ 。

如果 $A \neq B$ 的子集,那么 B 中不属于 A 的元素也构成一个集合,称为 A 在 B 中的**补集**,记为 $B\setminus A$ 。讨论问题的时候,我们可能会默认某个集合是问题涉及的所有事物的集合,其他集合都是它的子集。这样的集合一般称为**全集**。全集存在的时候,集合 A 在全集中的补集可以简称为 A 的补集,记为 \bar{A} 或 A^c 。

例子 3.1.2.

- 1. 集合 $\{1,2\}$ 是集合 $\{1,2,3\}$ 的真子集,集合 $\{1,2,3\}$ 是集合 $\{1,2\}$ 的真母集: $\{1,2\} \subset \{1,2,3\}$, $\{1,2,3\} \supset \{1,2\}$ 。
 - 2. 任何集合 S 总是空集 \emptyset 的母集: $\emptyset \subseteq S$ 。
- 3. {1,2} 在集合 {1,2,3} 中的补集是 {3}。{3} 在集合 {1,2,3} 中的补集是 {1,2}。

自然数集、整数集、分数集和有理数集有以下关系:

 $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}$ $\mathbb{N} \subset \mathbb{F} \subset \mathbb{O}$

以上每个集合中的正数与负数,构成它的子集,一般用上标 + 和 - 标示。 比如, \mathbb{Z}^+ 就表示正整数集合, \mathbb{Q}^- 就表示负有理数集合。

考虑若干个集合。由属于其中至少一个集合的元素构成的集合,称为这些集合的**并集**;由属于所有集合的元素构成的集合,称为这些集合的**交 集**。两个集合 A,B 的并集记为 $A \cup B$,交集记为 $A \cap B$ 。 3.2 概念和集合 27

几个集合交集为空集,就说它们**不相交**,否则就说它们相交。几个集合中任取两个,都不相交,就说它们两两不相交。如果集合 A 的一些子集两两不相交,而且它们的并集是 A,就说这些集合是 A 的**分划**。

例子 3.1.3.

- 1. 集合 $\{1,2\}$ 和 $\{2,3\}$ 的并集是集合 $\{1,2,3\}$, $\{1,2\}$ 和 $\{2,3\}$ 的交集是 $\{2\}$ 。
- 2. 集合 $A = \{1,2\}$ 、 $B = \{3,4\}$ 、 $C = \{5,6\}$ 两两不相交。它们的并集是 $S = \{1,2,3,4,5,6\}$ 。A,B,C是 S的分划。
- 3. 集合 $\{1,2,3\}$ 、 $\{3,4,5\}$ 、 $\{1,5,6\}$ 两两的交集都不是空集,但它们的交集为空集。它们不相交,但不是两两不相交。

习题 3.1.1. 验证集合满足以下性质:

- $A \cup B = B \cup A$
- $A \cap B = B \cap A$
- $A \cup A = A \cap A = A$
- $A \cap (B \cap C) = (A \cap B) \cap C$
- $A \cup (B \cup C) = (A \cup B) \cup C$
- $A \cap \emptyset = \emptyset$
- 如果 $A \subseteq B$, 那么 $A \cap B = A$, $A \cup B = B$
- $(A \cap B) \cup (A \cap C) = A \cap (B \cup C)$
- $(A \cup B) \cap (A \cup C) = A \cup (B \cap C)$

3.2 概念和集合

概念和集合有密切的关系。下面让我们从集合的角度,重新理解"概念"。一个概念的范围,其实就是一个集合。而概念的含义,就是用来描述 这个集合的语言形式。

比如,"五行"这个概念的范围,就是"金、木、水、火、土"。所以,

我们考虑"五行"这个概念,其实就是考虑集合 {金,木,水,火,土}。又比如,"自然数"这个概念的范围,也就是一个个具体的自然数。所以"自然数"这个概念就对应自然数的集合。

考虑"偶数"这个概念,我们可以定义"偶数就是能被2整除的数", 所以,作为集合的"偶数",就可以写成:

 $\{x \mid x$ 能被2整除 $\}$.

这说明,概念的定义就是描述它对应的集合的语言。概念的特性,就是集合的元素需要满足的条件。

再来看概念的关系。概念的关系有:等同关系,从属和包含关系,交叉 关系,互斥关系和矛盾关系。

设有甲、乙两概念,分别对应集合 A、B。

- 概念甲从属于乙,就是说 A 是 B 的子集。同理,甲包含乙,就是说 A 是 B 的母集。
- Ψ 、乙交叉,表示 A、B 不相同,且 A、B 的交集不是空集。
- 甲、乙互斥, 就是说 A、B 的交集是空集, 两个集合不相交。
- 甲、乙(关于两者都从属的概念丙)矛盾,就表示 A、B 不相交,而且是丙对应的集合 C 的分划。A 关于 C 的补集是 B, B 关于 C 的补集是 A。

为了更好理解,我们可以用叠圈图直观理解集合的关系。

如下图,每个圈表示一个集合[®],圈内的区域表示属于该集合的元素, 圈外的区域表示不属于该集合的元素,也就是该集合(关于全集的)补集。 两个圈重叠的部分就表示同时属于两者的元素的集合,也就是两个集合的 交集。而两个圈各自的部分加上重叠的部分,就是至少属于其中之一的元 素的集合,也就是两个集合的并集。

①也可以用其他形状的区域。

3.3 判断和集合 29

- 1. 等同关系, 2. 从属关系, 3. 包含关系,
- 4. 交叉关系、5. 互斥关系、6. 矛盾关系。

叠圈图可以让我们直接看到集合之间的关系。可以看到,用集合来解释概念,方便得多。

习题 3.2.1.

- 1. 请用集合解释概念的属加种差定义方法。
- 2. 用叠圈图表示"偶数"、"3 的倍数"、"自然数"之间的关系。
- 3. 三个集合 A,B,C 都是集合 $\{1,2,3,4,5,6\}$ 的子集,它们都不是空集,而且构成集合 $\{1,2,3,4,5,6\}$ 的分划。
 - 3.1. 请写出一个符合条件的 A, B, C 的例子。
 - 3.2. 符合条件的 A, B, C 一共有几种?

3.3 判断和集合

理解了概念和集合的关系,我们可以用集合的概念来重新看待判断和 命题。

简单的性质判断,只涉及一个概念和一个性质。在对应的命题里,概念是主语,性质是谓语。我们把主语的概念记为 A,把谓语的性质记为 b,那

么简单的性质判断可以写成:

A 是 *b*.

如果把 a 看成集合,把用 B 表示所有具有性质 b 的东西的集合。那么,性质判断 "A 是 b" 就是说:

$A \subseteq B$

所以,简单的性质判断,就是描述概念的从属关系,也就是集合的子集关系。判断为真,就是说 $A \subset B$ 成立;判断为假,就是说 $A \subset B$ 不成立。

如果判断的概念 A 是单独概念,那么它对应的子集只有一个元素。我们把这种只含有一个元素的集合称为**单元集**。

如果把 A 的元素记为 a, 那么 $A = \{a\}$ 。 $\{a\} \subseteq B$ 实际上就是说 $a \in B$ 。

命题:兔子是动物。

也就是说,判断的概念 A 是单独概念时,我们实际在判断概念是否属于有某个性质的集合。

我们可以给判断的概念 A 加上全称和有称,比如 "所有 A 都是 b"。"所有"的意思是,概念 A 的范围里所有的元素,都是 b。于是,"所有"其实只是再次强调了子集关系。

在数学语言里,我们引进表示全称的符号: \forall 。它读作"任一"、"任何"、"每个"。全命题: "所有 A 都是 b" 可以记作" $\forall x \in A, x \in B$ "。它的意思是"A 中任一元素都是 B 的元素"。也就是说,A 是 B 的子集。

如果我们说"有些 $A \in b$ ",我们要表达的意思是,A 的元素里,有些元素是 b。这些元素构成 A 的子集,但不一定是 A。所以,有命题其实表示 A 和 B 相交,交集不是空集。

在数学语言里,我们引进表示有称的符号: \exists 。它读作"存在","有","至少有一个"。有命题"有些 A 是 b"可以记作" $\exists x \in A, x \in B$ "。它的意思是"A 中至少有一元素是 B 的元素"。也就是说,A 和 B 的交集不是空集。

3.3 判断和集合 31

左:有些鱼是海洋动物,右:所有的鱼都是动物。

举例来说,"所有偶数都是自然数"可以写作" $\forall x \in \{\text{偶数}\}, x \in \{\text{自然数}\}$ ",换句话说,偶数集是自然数集的子集。"有些偶数是 3 的倍数"可以写作" $\exists x \in \{\text{偶数}\}, x \in \{3\text{的倍数}\}$ ",换句话说,偶数集和 3 的倍数的集合相交,交集不是空集。

例题 3.3.1. 用代数的方法,表示加法和乘法的交换律、结合律。

解答. 加法的交换律: 任意两个数相加,交换次序,和不变。把两个数用 a、b 表示,加法交换律可以表示成:

$$\forall a, b, a+b=b+a.$$

加法的结合律:任意三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。把三个数用 a、b、c 表示,加法结合律可以表示成:

$$\forall \ a,b,c, \quad (a+b)+c=a+(b+c).$$

乘法的交换律:任意两个数相乘,交换次序,积不变。把两个数用 a、b 表示,乘法交换律可以表示成:

$$\forall~a,b,~~a\times b=b\times a.$$

乘法的结合律:任意三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。把三个数用 a、b、c 表示,乘法结合律可以表示成:

$$\forall a, b, c, (a \times b) \times c = a \times (b \times c).$$

复合判断, 也可以用集合的方式表达。

联言判断是多个判断的全判断。考虑这样的联言判断: A 不仅是 b,也是 c。它表达的意思是,A 不仅包含于性质 b 对应的集合 B,也包含于性质 c 对应的集合 C。A 的元素同时在 B、C 中。换句话说,A 是 B、C 的交集的子集。

一般来说,考虑关于概念 A 的联言判断,它表达的是 A 包含于多个性质对应的集合的交集。如果把这些性质的集合记为 I,把每个性质对应的集合记为 B_i ,那么联言判断就是说,A 包含于它们的交集,记为:

$$A \subseteq \bigcap_{i \in I} B_i.$$

或言判断是多个判断的有判断。考虑这样的或言判断: A 也许 b,也许 c。它表达的意思是,A 可能包含于性质 b 对应的集合 B,也可能包含于性质 c 对应的集合 C。A 的元素至少在 B、C 中的一个里。换句话说,A 是 B、C 的并集的子集。

一般来说,考虑关于概念 A 的或言判断,它表达的是 A 包含于多个性质对应的集合的并集。如果把这些性质的集合记为 I,把每个性质对应的集合记为 B_i ,那么或言判断就是说,A 包含于它们的交集,记为:

$$A\subseteq \bigcup_{i\in I}B_i.$$

右图中,每个圈代表一个分支判断对 应的集合。联言判断对应着所有圈交叠的 区域(颜色最深的部分),而或言判断对 应着所有蓝色的区域的总和。

思考 3.3.1. 有个理发师,坚持只给那些不给自己理发的人理发。那么,他是否该给自己理发呢?

3.4 映射

习题 3.3.1.

1. 用代数的方法,表示乘法对加法的分配律。

- 2. 用代数的方法,表示乘方的运算法则。
- 3. 考虑假言判断:如果 $A \neq b$,那么 $A \neq c$ 。设性质 b、c 对应的集合是 B、C,集合 A、B、C 之间有什么关系?

4. 从集合的角度,解释这句话: "如果全部 A 都是 b, 那么有些 A 是 b"。

3.4 映射

我们用**映射**表示事物之间的对应关系。把一个事物对应到另一个事物,可以理解为事物的变换或对事物进行操作。因此映射也叫做**变换或操作**。把数量对应到数量的映射,叫做**函数**。

例子 3.4.1.

1. 把现有《道德经》各个版本和它的字数对应起来,就是一个映射:

王弼《老子道德经注》(通行本)→ 5162字河上公《道德经章句》→ 5201字傅奕《道德经古本》→ 5450字马王堆帛书甲本→ 5344字马王堆帛书乙本→ 5342字郭店楚墓本→ 2046字

- 2. 把事物对应到自己的映射叫做**恒等映射**或**等映射**。比如,把每个自然数对应到自己的映射就叫自然数集上的恒等映射,也叫恒等函数。任何非空集合上都有恒等映射。恒等映射的定义域和值域相同。
- 3. 把事物对应到同一个对象的映射叫做**恒映射**或**常映射**。比如,把任意自然数对应到 0 的映射就是恒映射。

我们把映射涉及的事物用两个集合记录: 出发集和到达集。映射把出发集的一个元素对应到到达集的一个元素。用变量 x 指代出发集的元素,x 的取值在出发集里变化时,映射对应的元素也在到达集里变化,可以用变量 y 表示。一般称 x 为自变量,y 为应变量。出发集和到达集都是数集的时候,映射就叫做函数。

需要强调的是,映射可以把多个元素对应到同一个元素,但不会把一个元素对应到多个元素。

映射把图形对应到它的颜色

如果把映射记作 f,那么可以用 y = f(x) 或 $f: x \mapsto y$ 表达"映射把出发集的元素和到达集的元素对应起来"这件事。对出发集的元素 x 来说,如果映射 f 把它和到达集的元素 y 对应起来,就说 y 是 x (经过 f 映射)的**值**,记作 f(x) = y。

出发集中,某个映射涉及的元素集合称为映射的**定义域**;到达集里,某个映射涉及的元素集合则称为映射的**值域**。定义域是出发集的子集,值域是到达集的子集。

3.4 映射 35

举例来说,映射 f 的定义域是 $\{1,2,3,4,5\}$,它把 1,2,3,4,5 分别对应 到 6,7,8,7,6。那么它的值域是 $\{6,7,8\}$ 。具体来说,f(2)=7,f(3)=8。

考虑映射 f 的定义域的子集 S。S 中元素经过 f 映射的值,构成值域的子集。我们把它叫做 S (关于 f) 的**像集**,简称 S 的**像**,记作 f(S)。

反之,考虑映射 f 的值域的子集 T 。T 中元素总是 f 的定义域中元素的值。我们把 f 的定义域里值属于 T 的元素集合起来。这个集合叫做 T 关于 f 的**原像**。

举例来说,映射 f 的定义域是 $\{1,2,3,4,5\}$,它把 1,2,3,4,5 分别对应 到 6,7,8,7,6。那么,集合 $\{1,2,3,4\}$ 的像集是 $\{6,7,8\}$; 集合 $\{1,2\}$ 的像 集是 $\{6,7\}$ 。集合 $\{7,8\}$ 的原像是 $\{2,3,4\}$; 集合 $\{6,8\}$ 的原像是 $\{1,3,5\}$ 。

我们约定,空集的像集是空集,空集的原像是空集。

每个一元式都可以用来定义映射。比如,设定定义域是自然数集 N 后,代数式 $4-0.3x+9x^2+\frac{(1-x+2.69x^4)}{0.5x-1.385}$ 就可以定义映射:

$$\forall x \in \mathbb{N}, \quad x \mapsto 4 - 0.3x + 9x^2 + \frac{(1 - x + 2.69x^4)}{0.5x - 1.385}.$$

如果把定义域设成另一个集合,比如 $\{1,2,3\}$ 或全体偶数,就定义了另一个映射。

我们知道,每个概念都对应某种集合。如果我们把这个集合作为定义 域或者出发集,那么,确定了定义域后,每个含有变量的简单性质判断就可 以定义一个映射。

比如,考虑这样一个命题: " $\{1,2,5,6\}$ 中的任何数 n 都能被 5 整除"。 我们可以看到,定义域是 $\{1,2,5,6\}$,而"n 能被 5 整除"就可以定义以下的映射:

$$\forall n \in \{1, 2, 5, 6\}, \quad n \mapsto n \text{ the } 5 \text{ Ewg.}$$

这个映射从简单判断的主语出发。主语的概念对应集合 {1,2,5,6}。

对集合中每个单独的元素 n, "n 能被 5 整除"这个判断要么是真的,要么是假的。因此,如何我们考虑集合 {真,假},那么这个集合就是上面的映射的到达集,因为对每个 n 来说,"n 能被 5 整除"这个判断要么是真的,要么是假的。而它的值域就是集合 {真,假} 的子集。

"真"、"假"就是命题的真值,所以我们一般把这个集合称为**真值集**或者二**元集**。很多时候,我们也会用0表示"假",1表示"真" $^{\circ}$ 。

思考 3.4.1.

1. 全判断 $\forall x \in A, P(x)$ 和映射 $x \mapsto P(x)$ 之间存在什么关系?

习题 3.4.1.

- 1. 映射 f 的定义域是 $\{1,2,3\}$, 值域是 $\{4,5\}$ 。
- 1.1. 写出一个满足条件的映射 f。
- 1.2. 你能写出几个满足条件的映射 f?
- 2. 判断以下说法是否正确。
- 2.1. 到达集中的元素, 总是映射的结果。
- 2.2. 出发集中的元素经过映射的值,总在映射的值域中。
- 2.3. 映射的定义域的元素构成的集合,其像集的原像总是自己。
- 2.4. 映射的值域的元素构成的集合,其原像的像集总是自己。
- 3. 考虑以下映射和集合,给出相应的像集或原像。
- 3.1. 映射 f 把正整数对应到它的 3 倍数。比如: f(1) = 3, f(2) = 6, 等等。求集合 $\{21,39,87\}$ 的像集和原像。
- 3.2. 映射 g 把月份对应到它的天数(不考虑闰年)。比如一月的值是 31,二月的值是 28,等等。求集合 $\{30\}$ 的原像。
- 3.3. 映射 h 把汉字对应到它的笔画数。比如"数"的值是 13,"学"的值是 8,等等。设集合 S 是 $\{1,2\}$ 的原像,请写出它的十个元素。

① 也有的时候会反过来。

第四章 有理数的运算

我们已经学过自然数和分数的运算。两个自然数可以做加法、减法和乘法,任两个分数可以做加法、减法、乘法和(不为零的)除法。把自然数、分数扩展到有理数后,两个有理数可以做加法、减法、乘法和不为零的除法。

有理数的运算和自然数、分数相比,多了与负数有关的运算。为了讨论方便,我们首先介绍一个表示负数的方法:每个负数都能表示成-a的形式,其中a是它的相反数,是一个正数。

4.1 有理数的加减法

我们先来看与负数有关的加减法。按照负数的定义,任何负数 -a = 0 - a。所以,一个数加上一个负数,就等于减去它的相反数:

$$b + (-a) = b + (0 - a) = (b + 0) - a = b - a.$$

换句话说,减去一个正数,就等于加上它的相反数。另一方面:

$$b - (-a) = b + a - a - (-a) = b + a + (-a) - (-a) = b + a.$$

换句话说,减去一个负数,也等于加上它的相反数。

两者可以用同一句话描述:减去一个数,等于加上它的相反数。

于是,有理数的减法总可以转化为有理数的加法。

例子 4.1.1. 1. 计算:

(1).
$$3.4 - (-2.1)$$
 (2). $2.8 - (-5)$

(3).
$$9.1 - (-4.6)$$
 (4). $1.2 - (-4.4)$

2. 把以下减法改为加法:

(1).
$$3.4 - 2.1$$
 (2). $2.8 - 5$

(3).
$$-9.1 - (-4.6)$$
 (4). $-1.2 - (-4.4)$

解答.

1.

(1).
$$3.4 - (-2.1) = 3.4 + 2.1 = 5.5$$

(2).
$$2.8 - (-5) = 2.8 + 5 = 7.8$$

(3).
$$9.1 - (-4.6) = 9.1 + 4.6 = 13.7$$

(4).
$$1.2 - (-4.4) = 1.2 + 4.4 = 5.6$$

2.

(1).
$$3.4 - 2.1 = 3.4 + (-2.1)$$

(2).
$$2.8 - 5 = 2.8 + (-5)$$

(3).
$$-9.1 - (-4.6) = -9.1 + 4.6$$

(4).
$$-1.2 - (-4.4) = -1.2 + 4.4$$

再来看两个有理数的加法。我们要计算:

如果两者都是正数,就是我们熟悉的分数加法。

如果两者都是负数,那么-a、-b都是正数:

$$0 = 0 + 0 = (a + (-a)) + (b + (-b)) = a + b + ((-a) + (-b)).$$

因此,和是(-a)+(-b)的相反数。

如果 a、b 一正一负,不妨设 a 正 b 负 $^{\circ}$,于是 -b 是正数。

$$a + b = a - (-b)$$

式子中 a 和 -b 都是正数。如果 a > -b,那么 a - (-b) 是正数。如果 a < (-b),那么 a - (-b) 是负数。而由于:

$$0 = 0 + 0 = a - a + (-b) - (-b) = (a - (-b)) + ((-b) - a),$$

因此 a - (-b) 和 (-b) - a 互为相反数。也就是说,a + b 是正数 (-b) - a 的相反数。

看得出,上面讨论中 a 和 -b 的大小关系很重要。为了方便总结,我们引进**绝对值**的概念:

定义 4.1.1. 正数的**绝对值**是它自身,负数的绝对值是它的相反数。0 的绝对值是 0。

按照这个定义,可以把前面讨论的结果简化:

如果两个有理数同为正数(负数),那么它们的和也是正数(负数),绝对值是它们绝对值的和。如果两个有理数一正一负,那么它们的和的正负与绝对值较大者的正负一致,和的绝对值是绝对值较大者减去绝对值较小者的差。

总结两个有理数的加减法:

 $^{^{\}circ}$ 如果 a 负 b 正,根据加法交换律,可以转化成 a 正 b 负的情形。

- 1. 将减法转为加法。
- 2. 任何数与 0 相加都得到自身。
- 3. 计算两个数的绝对值。
- 4. 如果两个数同正负,取绝对值的和,加上对应的正负号。
- 5. 如果两个数一正一负,用较大的绝对值减去较小的绝对值, 加上绝对值较大的数的正负号。

例子 4.1.2. 计算:

- (1). 3.4 (-2.1) (2). 2.8 5 (3). -7 + 2.3

- (4). -9.1 + (-4.6) (5). -1.2 + 4.4 (6). -0.9 3.4

解答.

- (1). 3.4 (-2.1) = 3.4 + 2.1 = 5.5
- (2). 2.8 5 = 2.8 + (-5) = -(5 2.8) = -2.2
- (3). -7 + 2.3 = -(7 2.3) = -4.7
- (4). -9.1 + (-4.6) = -(9.1 + 4.6) = -13.7
- (5). -1.2 + 4.4 = 4.4 1.2 = 3.2
- (6). -0.9 3.4 = -0.9 + (-3.4) = -(0.9 + 3.4) = -4.3

习题 4.1.1. 算一算:

- 1. 2.56 (-1.9), (-4) + 3.29, 10.8 + (-42.15).
- 2. -59.76 + 40.3, -2.8 6.6, -5.09 (-2.9).
- 3. -1.76 (-5.21) 1.874, 3.202 (-1.94) 1.57, 2 + (-9.18) (20.354).
- 4. 3-2-(-8)+(-2.2), -8.1-((-1.6)-1.96+(-3.9+1.203)).

有理数的乘除法 4.2

讨论有理数的乘除法,可以从最简单的情况开始: $(-1) \times 1$ 和 $(-1) \times 1$ (-1)。按照定义,

$$0 = 0 \times 1 = (-1 + 1) \times 1 = (-1) \times 1 + 1 \times 1 = (-1) \times 1 + 1.$$

于是

$$(-1) \times 1 = 0 - 1 = -1.$$

同理, $(-1) \times 0 = 0$ 。根据乘法交换律, $1 \times (-1) = -1$, $0 \times (-1) = 0$ 。 最后:

$$0 = 0 \times (-1) = (-1+1) \times (-1)$$
$$= (-1) \times (-1) + 1 \times (-1)$$
$$= (-1) \times (-1) - 1.$$

于是 $(-1) \times (-1) = 1$.

所以, -1 的乘法性质可以归纳为"负零得零,负正得负,负负得正"。 同理,把乘数换成一般的数,也有:

$$(-1) \times a = 0 - a = -a, \quad (-1) \times (-a) = 0 - (-1) \times a = a.$$

也就是说,一个数乘以-1,总得到它的相反数。

从绝对值的角度来看,任何正数都等于它的绝对值,任何负数都等于它的绝对值乘以 -1。换句话说,在乘法中,任何有理数都可以分成两部分考虑:绝对值和正负号。

因此,两个有理数 a、b 相乘,可以分别把两部分相乘。比如:

$$(-3.3) \times 6 = (-1) \times 3.3 \times (+1) \times 6 = ((-1) \times (+1)) \times (3.3 \times 6).$$

其中 3.3、6 分别是乘数和被乘数的绝对值, -1 和 +1 是它们的正负号。

两个有理数的乘积,是两者绝对值的乘积,乘以两者正负号的乘积。绝对值的乘积总是正数,正负号的乘积总是±1。因此,两个有理数的乘积,绝对值是两者绝对值的乘积,正负号是两者正负号的乘积。具体来说,看—1的个数,就可以确定乘积的正负了。如果正负号都是正数,那么不需要

考虑 -1 的问题。如果两者一正一负,那么乘积是负数,如果正负号都是负数,"负负得正",于是乘积是正数。

如果乘数或被乘数是 0, 结果是 0。

除法是乘法的逆运算。除以一个正有理数 a,等于乘以它的倒数: $\frac{1}{a}$ 。我们只需要把涉及负数的除法也转为乘法即可。

除数是负有理数 -a 的时候,我们首先找到 $b \div (-a)$ 的商,也就是使得 $c \times (-a) = b$ 的数 c。根据前面对乘法的推导,

$$b \times (-1) \times \frac{1}{a} = c \times (-a) \times (-1) \times \frac{1}{a} = c \times a \times \frac{1}{a} = c$$

或者说

$$c = b \times \left((-1) \times \frac{1}{a} \right) = b \times \left(-\frac{1}{a} \right).$$

即

$$b \div (-a) = b \times \left(-\frac{1}{a}\right).$$

最后, 我们说明 $-\frac{1}{a}$ 是 -a 的倒数:

$$(-a) \times \left(-\frac{1}{a}\right) = a \times (-1) \times (-1) \times \frac{1}{a}$$
$$= (-1) \times (-1) \times a \times \frac{1}{a}$$
$$= 1 \times 1 = 1.$$

所以,无论除数是正有理数还是负有理数,**除以一个数,等于乘以它的倒数**。

4.2 有理数的乘除法

43

于是,有理数的除法总可以转化为有理数的乘法。

综上所述,可以这样总结有理数的乘除法:

- 1. 将除法转为乘法。
- 2. 任何数与 0 相乘都得到 0。
- 3. 计算两个数的绝对值。
- 4. 如果两个数同正负,取绝对值的乘积。
- 5. 如果两个数一正一负,取绝对值乘积的相反数。

例子 4.2.1. 计算:

(1).
$$3.3 \times (-5)$$
 (2). $-\frac{3}{7} \times (-\frac{5}{6})$ (3). $(-2.4) \times \frac{1}{6}$

(1).
$$3.3 \times (-5)$$
 (2). $-\frac{3}{7} \times (-\frac{5}{6})$ (3). $(-2.4) \times \frac{1}{6}$ (4). $4.8 \div (-1.6)$ (5). $-\frac{3}{7} \div (-\frac{5}{14})$ (6). $(-2.8) \div \frac{2}{3}$

解答.

(1).
$$3.3 \times (-5) = -(3.3 \times 5) = -16.5$$

(2).
$$-\frac{3}{7} \times (-\frac{5}{6}) = \frac{3}{7} \times \frac{5}{6} = \frac{5}{14}$$

(3).
$$(-2.4) \times \frac{1}{6} = -(2.4 \times \frac{1}{6}) = -0.4$$

(4).
$$4.8 \div (-1.6) = 4.8 \times (-\frac{5}{8}) = -(4.8 \times \frac{5}{8}) = -3$$

(5).
$$-\frac{3}{7} \div \left(-\frac{5}{14}\right) = -\frac{3}{7} \times \left(-\frac{14}{5}\right) = \frac{3}{7} \times \frac{14}{5} = 1.2$$

(6).
$$(-2.8) \div \frac{2}{3} = (-2.8) \times \frac{3}{2} = -(2.8 \times \frac{3}{2}) = -4.2$$

习题 4.2.1.

算一算:

$$4.51 \times (-2.2), (-1.2) \times (-3.9), (-1.8) \times 0.8.$$

$$1.98 \div (-0.3), -2.8 \div (-0.7), 5.2 \div (3 \div (-1.5)), (-3) \div (0.5 \times (-2.4)).$$

思考:

- 1. 为什么"任何数与 0 相加都得到自身"?
- 2. 为什么"任何数与 0 相乘都得到 0"?
- 3. 为什么说"涉及负数的乘法也满足交换律和分配律"?

4.3 数轴

为了直观表示有理数,我们引入数轴的概念。

从左往右画一条直线,在直线上取一点表示 0,称为**原点**。选择适当长度作为**单位长度**,规定右边是**正方向**,往右移动一个单位长度就是"+1"。

从原点出发往右移动,每移动一个单位长度就是"+1"。因此,每隔单位长度取一个点,就可以表示出 $1,2,3\cdots$ 。相对的,往左移动一个单位长度就是"-1",类似可以表示出 $-1,-2,-3\cdots$ 。这就是数轴。

数轴可以用来做加减法。比如, 计算 3+2, 可以先在数轴上找到 3, 然后向右移动 2 个单位长度, 到达 5 对应的点, 这说明 3+2=5。

数轴上的点,越往右就越大,越往左就越小。正数都在 0 右边,负数都在 0 左边。比较两个数的大小,可以在数轴上找对应的点:靠右的比较大,靠左的比较小。

思考 4.3.1.

- 1. 数轴的用法和有理数的运算法则是否有矛盾?
- 2. 所有的有理数都在数轴上吗? 怎么在数轴上找到一个有理数?

第五章 代数式的运算

代数式是含有变量的算式。代数式的运算和数式并没有区别。毕竟,代数式里的变量只是用来代替数的。对代数式做运算,使用和数式运算一样的规则:加法结合律、乘法结合律、加法交换律、乘法交换律,以及乘法对加法的分配律。

5.1 整式的运算

与整式有关的计算,一个常见的目标是把式子**展开**,也就是把几个整式的乘积转成一个整式:单项式或多项式。展开整式,可以按照以下步骤操作:

- 1. 用分配律把整式乘积转为整式中各项的乘积之和。
- 2. 合并同类项(用到结合律和交换律)。

例子 5.1.1. 计算:

1. 展开并化简 (a+b)(a-b)

解:

$$(a+b)(a-b) = a \cdot (a-b) + b \cdot (a-b)$$

$$= a \cdot a - a \cdot b + b \cdot a - b \cdot b$$

$$= a^2 + (-1+1)ab - b^2$$

$$= a^2 + 0ab - b^2$$

$$= a^2 - b^2$$
(分配律展开)
$$(合并同类项)$$

2. 展开并化简 $(a^2 + ab - b^2)(a - b)$

解:

$$(a^{2} + ab - b^{2})(a - b)$$

$$= a^{2} \cdot (a - b) + ab \cdot (a - b) + (-b^{2}) \cdot (a - b) \qquad (分配律展开)$$

$$= a^{2} \cdot a - a^{2} \cdot b + ab \cdot a - ab \cdot b + (-b^{2}) \cdot a + (-b^{2}) \cdot (-b)$$

$$= a^{2} \cdot a - a^{2} \cdot b + a^{2}b - ab^{2} - b^{2} \cdot a + b^{2} \cdot b$$

$$= a^{3} + (-1 + 1)a^{2}b + (-1 - 1)ab^{2} + b^{3} \qquad (合并同类项)$$

$$= a^{3} + 0a^{2}b - 2ab^{2} + b^{3}$$

$$= a^{3} - 2ab^{2} + b^{3}$$

在第一个例子中,我们首先把 a-b 看成一个整体,把 a+b 看成两项相加。使用分配律,就把 (a+b)(a-b) 转为 $a\cdot(a-b)$ 与 $b\cdot(a-b)$ 的和。接下来,我们把 a-b 看成两项相减,再次使用分配律,就把 (a+b)(a-b) 完全转成若干项的和:

$$a \cdot a - a \cdot b + b \cdot a - b \cdot b$$

接着,我们合并同类项。使用交换律,可以知道 ab = ba,所以这两项是同类项,可以合并。合并后,系数是 -1+1=0,所以这 ab 项被消去了。剩下的两项无法合并同类项了。于是我们最后得到:

$$(a+b)(a-b) = a^2 - b^2$$
.

5.1 整式的运算 47

第二个例子中的计算步骤也是如此。需要注意的是,展开 $(-b^2)\cdot(a-b)$ 这样带有多个减号(负号)的式子时,要仔细处理正负号。为了防止出错,可以先将容易出错的减法转为加法。比如,计算 ab-b(a-c) 时,可以把它化为: $ab+(-b)\cdot(a+(-c))$ 。使用分配律展开各项之后,再用"负正得负,负负得正"的法则,消去负号,化简各项。比如,展开 ab-b(a-c):

$$ab - b(a - c) = ab + (-b) \cdot (a + (-c))$$
 (減法化加法)
 $= ab + (-b) \cdot a + (-b) \cdot (-c)$ (分配律展开)
 $= ab - ba + bc$ (消去负号)
 $= bc$.

另一种常见的代数式计算叫做**变量代换**。我们知道,变量是用来代替数的。其实,变量也可以用来代替变量。用变量代替变量,可以变化代数式的形式,很多时候,可以帮助我们更好地理解事物间的关系。

举例来说,我们想展开 (a-2b+1)(a-2b-1),除了像上面的例子一样直接使用分配律然后合并同类项,还有什么别的方法吗?

我们可以观察到,这个式子是两个整式的乘积,第一个是 a-2b 与 1 的和,第二个是 a-2b 与 1 的差。于是,我们可以把 a-2b 看成一个整体,把 1 看成一个整体。我们用变量 x 代替 a-2b,y 代替 1,那么原式就变成了 (x+y)(x-y),于是等于 x^2-y^2 。

我们再把 x 和 y 代替的变量和数代回去,就得到原式等于 $(a-2b)^2-1^2$ 。 $1^2=1$,所以我们现在只需要展开 $(a-2b)^2$ 了。展开 $(a-2b)^2$:

$$(a-2b)^{2} = (a-2b)(a-2b)$$

$$= (a-2b) \cdot a - (a-2b) \cdot 2b$$

$$= a^{2} - 2b \cdot a - a \cdot 2b + 2b \cdot 2b$$

$$= a^{2} + (-2-2)ab + 4b^{2}$$

$$= a^{2} - 4ab + 4b^{2}$$

因此,

$$(a-2b+1)(a-2b-1) = (a-2b)^2 - 1 = a^2 - 4ab + 4b^2 - 1.$$

数学中常用的整式等式:

1.
$$(a+b)^2 = a^2 + b^2 + 2ab$$

2.
$$(a-b)^2 = a^2 + b^2 - 2ab$$

3.
$$(a+b)(a-b) = a^2 - b^2$$

4.
$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

5.
$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

6.
$$a^3 + b^3 = (a^2 - ab + b^2)(a+b)$$

7.
$$a^3 - b^3 = (a^2 + ab + b^2)(a - b)$$

8.
$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$$

9.
$$(a+b)(a+c) = a(a+b+c) + bc$$

10.
$$(a+b)(b+c)(c+a) + abc = (a+b+c)(ab+bc+ca)$$

11.
$$a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2+b^2+c^2-ab-bc-ca)$$

习题 5.1.1.

1. 展开并化简:

1.1.
$$(4a+2b-1)(a-3b+1)$$
.

1.2.
$$(a+b^2-b-2a^2)(a^2-2b^2+a+b)$$
.

2. 验证以下等式:

2.1.
$$(a+b)^2 + (a-b)^2 = 2a^2 + 2b^2$$
.

2.2.
$$a^4 + a^2 + 1 = (a^2 + a + 1)(a^2 - a + 1)$$
.

2.3.
$$3(a-b)(b-c)(c-a) = (a-b)^3 + (b-c)^3 + (c-a)^3$$

3. 求以下代数式中 x^3 的系数:

3.1.
$$(x-2)^5$$
.

3.2.
$$(x^2 - x + 1)(x^3 - x^2 + 2x - 1)$$
.

5.2 分式的运算

49

分式的运算 5.2

和分数一样、分式运算常见的目的有约分和通分。约分是把分子和分 母中共有的式子消去, 让分式更简洁。无法继续约分的分式叫做既约分式。 通分是让几个分式的分母相同,以便相加。约分和通分的方法和分数相同。

例子 5.2.1. 通分:

$$1. \ \frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c}$$

$$\frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c} = \frac{(b+c)bc + (a+c)ac + (a+b)ab}{abc}$$
$$= \frac{a^2b + b^2c + c^2a + ab^2 + bc^2 + ca^2}{abc}$$

2.
$$\frac{a+2b}{a+b-1} - \frac{a+b+1}{a-b+1}$$

解:

$$\frac{a+2b}{a+b-1} - \frac{a+b+1}{a-b+1} = \frac{(a+2b)(a-b+1) - (a+b+1)(a+b-1)}{(a+b-1)(a-b+1)}$$

$$= \frac{a^2 - ab + a + 2ab - 2b^2 + 2b - (a^2 + 2ab + b^2 - 1)}{(a+b-1)(a-b+1)}$$

$$= \frac{-ab - 3b^2 + a + 2b + 1}{(a+b-1)(a-b+1)}$$

习题 5.2.1.

1. 通分:

1.2.
$$\frac{1}{a+b} + \frac{1}{2a-b}$$
.

1.2.
$$\frac{a^2}{a+1} + \frac{a+1}{a-1}$$

1.2.
$$\frac{1}{a+b} + \frac{1}{2a-b}$$
.
1.2. $\frac{a^2}{a+1} + \frac{a+1}{a-1}$.
1.1. $\frac{a+b}{a+b+c} + \frac{c-a}{a+b-c}$.

2. 验证以下等式:

2.1.
$$\frac{1}{a+b} + \frac{1}{a-b} = \frac{2a}{a^2-b^2}$$

2.1.
$$\frac{1}{a+b} + \frac{1}{a-b} = \frac{2a}{a^2-b^2}$$
.
2.2. $\frac{a}{a+b} + \frac{b}{a-b} = \frac{a^2+b^2}{a^2-b^2}$.

- 3. 求以下代数式中x的系数:

3.1.
$$(x^2 - \frac{1}{x})^5$$
.
3.2. $(x - x^2 - \frac{1}{x} + 1)(x^2 + x + 3 - \frac{2}{x})$.

第六章 从变量到方程(下)

6.1 一元一次方程

例子 6.1.1. 根据以下问题,设未知数并列出方程:

- (1). 用一条 50 厘米长的丝带给一个正方形的盒子包装,捆好一周后,还有 26 厘米可以用于打结。盒子的边长是多少?
- (2). 把一箱书分给某组学生阅读。如果每人分 3 本,则剩余 20 本;如果每人分 4 本,则还差 16 本。这个班有多少学生?

解答.

(1) 解:设盒子的边长是 x 厘米,列方程:

$$4x + 26 = 50$$
.

(2) 解:设这个班有x个学生,列方程:

$$3x + 20 = 4x - 16$$
.

以上的方程都有这样的性质:恰好含有一个变量来表示未知数,而且含有变量的项都是一次项。这样的方程叫做一元一次方程。一元一次方程是由关于未知数的一元一次式构成的方程,它的一般形式是:ax + b = cx + d。其中变量 x 是方程的未知数,a,b,c,d 称为方程的系数。实际的问题中,系数 a,b,c,d 是已知数,根据等式的基本性质,我们可以求出未知数 x 的值。

首先,我们把含有变量 x 的项移到等式一边,把常数项移到等式另一边。利用等式的基本性质,我们将等式两边同时减去 b,再同时减去 cx,得到 ax-cx=d-b。

ax 和 cx 都是只含有 x 的一次项,它们之间只差一个系数,所以可以合并同类项: ax-cx=(a-c)x。

如果 $a \neq c$,那么可以把等式两边同除以 a - c,得到 $x = \frac{d - b}{a - c}$ 。这就是 方程的解。

如果 a = c,那么我们得到 0 = d - b。如果 $b \neq d$,那么这个等式总是不成立的。任何 x 的值都不能使等式成立。我们说方程无解。如果 b = d,那么我们得到 0 = 0。这个等式总是成立的。任何 x 的值都能使等式成立。我们说方程有任意解。

使方程的等式成立的值是一个集合,称为它的**解集**。我们把上面的说法用集合的说法再表述一次:方程无解,就是说方程的解集是空集。方程有任意解,就是说方程的解集是全集。方程有唯一解 $x = \frac{d-b}{a-c}$,就是说方程的解集就是 $\{\frac{d-b}{a-c}\}$ 。

解答. 按这个方法, 我们可以解以上两个问题中的方程:

(1) 解:设盒子的边长是 x 厘米,列方程:

$$4x + 26 = 50.$$

等式右边没有含变量的项, 我们将等式两边同时减去 26, 得到:

$$4x = 50 - 26$$
.

即:

$$4x = 24$$
.

再将等式两边同时除以 4, 就得到解: x = 6。

答: 盒子的边长是 6 厘米。

(2) 解:设这个班有 x 个学生,列方程:

$$3x + 20 = 4x - 16$$
.

将等式两边同时减去 20, 再将等式两边同时减去 4x, 得到:

$$3x - 4x = -20 - 16$$
.

左边合并同类项,右边计算减法,就得到:

$$-x = -36$$
.

再将等式两边同时除以-1,就得到解: x = 36。

答: 这个班有 36 个学生。

我们可以这样总结一元一次方程 ax + b = cx + d 的解:

$$\begin{cases} a \neq c & \text{有唯一解: } \frac{d-b}{a-c} \\ \\ a = c & \begin{cases} b \neq d & \text{无解} \\ \\ b = d & \text{有任意解} \end{cases} \end{cases}$$

思考 6.1.1. 以下方程如何求解?

$$\frac{ax+b}{cx+d} = 1$$

它的解有哪些情况? 试和一元一次方程对比。

6.2 一元一次不等式

例子 6.2.1. 根据以下问题,设未知数并列出不等式:

(1). 海水的盐度是 0.351%, 生理盐水的盐度是 0.9%, 一千克海水中至少要

加入多少克纯水,才能让盐度降到生理盐水的盐度以下?

(2). 100 亩地规划种植葡萄。食用葡萄每亩年收益为 0.4 万元,酿酒葡萄每亩年收益为 0.6 万元。规划年收益 52 万元。要如何安排种植?

解答.

(1) 解: 设要加x克水,题目条件可以写成:

$$\frac{1000 \times 0.351\%}{1000 + x} < 0.9\%.$$

由题目条件,可以假设 1000+x 是正数,两边乘以左式分母,得到:

$$1000 \times 0.351\% < 0.9\% \times (1000 + x).$$

(2) 解:设x 亩地种食用葡萄,那么100-x 亩地种酿酒葡萄,题目条件可以写成:

$$0.4 \times x + 0.6 \times (100 - x) \ge 52.$$

一元一次不等式和一元一次方程很像,也涉及关于变量的一元一次式。 一元一次方程中,两个一元一次式有相等关系,一元一次不等式中,两个一 元一次式有不等关系。区别在于,相等关系只有一种,而不等关系有两类四 种。

不等式的基本性质和等式有什么共同点,又有什么区别呢?

例子 6.2.2. 观察以下不等式, 你能发现什么规律?

- $(1). \quad 2 < 3, \quad 3 < 4, \quad 6 < 7$
- (2). $4 \le 7$, $6 \le 10.5$, $1.2 \le 2.1$, $28 \le 49$
- (3). 3 < 5, 9 < 15, -6 > -10, -0.36 > -0.6
- $(4). \quad -7 \leqslant 1, \quad 7 \geqslant -1, \quad -1.4 \leqslant 0.2, \quad 1.19 \geqslant -0.17$

等式的基本性质是:等式两边加、减、乘、除以同一个量,成立的等式仍然成立。

不等式两边加减同一个量,成立的不等式仍然成立。不等式两边乘以 或除以同一个量,成立的不等式不一定成立。

我们观察到,只有当不等式两边同时乘以或除以正数的时候,不等式仍然成立;不等式两边同时乘以或除以负数的时候,不等式不再成立,反号的不等式反而成立。

为什么乘除法和加减法有这样的区别呢? 我们可以看以下的例子:

例子 6.2.3. 观察以下的式子, 不等关系之间有什么联系?

- (1). 2 < 3, 3 > 2, -2 > -3, -3 < -2
- (2). $4 \le 7$, $7 \ge 4$, $-7 \le -4$, $-4 \ge -7$

一般来说,两个数 a,b 的不等关系是**互反**的:如果 a < b,那么 b > a,反之亦然;如果 $a \le b$,那么 $b \ge a$,反之亦然。左右边互换的时候,不等号要反过来。而两个数的相等关系是**自反**的:如果 a = b,那么 b = a。左右边互换的时候,等号仍然是等号。

从 2 < 3 到 -2 > -3,可以理解为两边同时乘以 -1;也可以理解为两边同时减去 2,再同时减去 3,然后左右边互换。左右边互换时,不等式反号。如果两个数相等,那么左右边互换时不需要反号,或者说,等号的反号仍然是等号(因此说相等关系是自反的)。

追根究底,不等关系反映了数与数之间的顺序,相等关系反映了数与 数之间有共同之处。它们代表了数的不同性质。

一元一次不等式的解法,思路和一元一次方程类似。我们都希望把一次项整理到不等式一边,把常数项整理到不等式另一边,然后合并同类项,最后两边同时除以变量 x 的系数,求出 x 的解。

因此,在处理一元一次不等式的时候,可以有两种方式。要么用加减法使一次项的系数变成正数,然后两边同时除以系数得到解。这个方法不需考虑做除法时不等式反号的问题;要么不要求一次项的系数是正数,两边同时除以一次项系数的时候,视情况决定不等号是否要反号。

解答. 按这个方法, 我们可以解以上两个问题中的不等式:

(1) 解: 设要加 x 克纯水, 题目条件可以写成:

$$\frac{1000 \times 0.35\%}{1000 + x} < 0.9\%.$$

由题目条件,可以假设 1000+x 是正数,两边乘以左式分母,得到:

$$1000 \times 0.351\% < 0.9\% \times (1000 + x)$$

 $3.51 < 9 + 0.009x$
 $3.51 - 0.9 < 0.009x$
 $2.61 < 0.009x$

两边同时除以正数 0.009, 得到:

$$\frac{2.61}{0.009} < x$$

即:

$$x > \frac{2.61}{0.009} = 290.$$

此时 1000 + x > 1290 > 0, 符合假设。

答: 至少要加 290 克纯水。

(2) 解:设x 亩地种食用葡萄,那么100-x 亩地种酿酒葡萄,题目条件可以写成:

$$0.4 \times x + 0.6 \times (100 - x) \geqslant 52$$

 $0.4x - 0.6x + 60 \geqslant 52$
 $-0.2x \geqslant 52 - 60$
 $-0.2x \geqslant -8$

一次项系数 -0.2 是负数, 所以两边同时除以 -0.2, 不等式反号:

$$x \leqslant \frac{-8}{-0.2}$$

得到 $x \le 40$ 。由问题条件, x 还需要满足 $0 \le x \le 100$,所以解为: $x \le 40$ 且 $0 \le x \le 100$,也就是 $0 \le x \le 40$.

答: 至多 40 亩地种食用葡萄, 其余的地种酿酒葡萄。

可以看到,一元一次不等式的解与一元一次方程的解是不一样的。一元一次方程的解总是单元集、全集或空集,一元一次不等式的解一般既不是全集、也不是单元集或空集。

另外要注意的是,在解决实际问题的时候,往往需要根据题目条件做一些额外的假设,才能列出方程或不等式。解完方程、不等式后,应该及时检验得到的解,看是否能让这些假设成立。

综上所述,可以这样总结解一元一次不等式的方法:

方法一:

- 1. 通过两边同时加减法,将一次项移到不等式一边,将常数项移到另一边,并保证一次项系数不是负数。
- 2. 如果一次项系数等于 0, 比较不等式两边:
- 2.1. 如果不等式成立,则原不等式有任意解。
- 2.2. 如果不等式不成立,则原不等式无解。
- 3. 如果一次项系数大于 0,将两边同时除以一次项系数,得到不等式的解。

方法二:

- 1. 通过两边同时加减法,将一次项移到不等式一边,将常数项移到另一边。
- 2. 如果一次项系数等于 0, 比较不等式两边:
- 2.1. 如果不等式成立,则原不等式有任意解。
- 2.2. 如果不等式不成立,则原不等式无解。
- 3. 如果一次项系数大于 0,将两边同时除以一次项系数,得到不等式的解。
- 4. 如果一次项系数小于 0,将两边同时除以一次项系数,并将不等式反号,得到不等式的解。

思考 6.2.1. 以下不等式如何求解?

$$\frac{ax+b}{cx+d} < 1$$

它的解和一元一次不等式有什么不同?