Les points précédés d'un astérisque sont l'objet de questions de cours. On privilégie la bonne maîtrise de cas particuliers dans les démonstrations longues. Les exercices portent sur le chapitre 10 : limites de fonctions, continuité.

Chapitre 10 : Limites de fonctions, continuité

I intervalle réel non vide et non réduit à un point, $f: I \to \mathbb{K}$, a adhérent à I (éventuellement infini), $\ell \in \mathbb{K} \cup \{\pm \infty, \infty\}$.

Limite en un point adhérent à l

f admet une limite ℓ en a lorsque pour tout voisinage V de ℓ , il existe un voisinage de W de a tel que $\forall x \in W \cap I, f(x) \in V$. Tous les cas particuliers doivent être sus. (*) Unicité de la limite en un point, sous réserve d'existence. Démonstration dans le cas particulier $a \in \mathbb{R}$. Notations $\lim_{x \to a} f(x)$, $\lim_{x \to a} f(x)$, $\lim_{x \to a} f(x)$ Limites à gauche en a, à droite en a. (*) Caractérisation séquentielle de la limite en un point :

$$f(x) \xrightarrow[x \to a]{} \ell \iff \forall (a_n)_{n \in \mathbb{N}} \in I^{\mathbb{N}}, a_n \to a \Rightarrow f(a_n) \to \ell$$

Démonstration dans le cas particulier $a \in \mathbb{R}, \ell \in \mathbb{K}$. Opérations sur les limites, combinaison linéaire, produit. (\star) Composée de limites. Passage à la limite dans les inégalités de fonctions au voisinage de a. Si f admet une limite finie en a, elle est bornée au voisinage de a. Théorème d'encadrement pour les limites finies, adaptation pour les limites $\pm \infty$. (\star) Théorème de la limite monotone : $f:I \to \mathbb{R}$ monotone dans un voisinage W de a, alors f admet des limites à gauche à et droite en a. Si f est croissante, $\lim_{a^-} f = \sup_{x \in W \cap]-\infty, a[} f(x)$ et $\lim_{a^+} f = \inf_{x \in W \cap]a, +\infty[} f(x)$. En particulier, si a est intérieur à I, ces limites sont finies et $\lim_{a^-} f \le f(a) \le \lim_{a^+} f$ pour f croissante. Cas particuliers lorsque a est une extrémité de I.

Continuité en un point de l

 $a \in I$. f continue en a ssi f admet une limite finie en a égale à f(a). Continuité à gauche, à droite. (\star) Caractérisation séquentielle de la continuité en a: f est continue en a ssi pour toute suite $(a_n)_n \in I^{\mathbb{N}}$ convergente de limite a, $f(a_n)_n$ est convergente. Opérations sur les fonctions continues en a. Prolongement par continuité de fonctions définies sur un intervalle privé d'un point.

Continuité sur un intervalle

Continuité globale. Fonctions Lipschitziennes. Toutes fonction Lipschitzienne est continue. Opérations sur les fonctions continues. (\star) Théorème des valeurs intermédiaires : $f:I\to\mathbb{R}$ continue. Pour tout $a\le b$ dans I, pour tout y compris entre f(a) et f(b), il existe $c\in [a,b]$ tel que y=f(c). Corollaire sur les changements de signes de fonctions continues. (\star) $f:I\to\mathbb{R}$ continue, alors f(I) est un intervalle de \mathbb{R} . Nature de ces intervalles lorsque f est monotone. (\star) Théorème des bornes atteintes : toute fonction continue sur un segment est bornée et atteint ses bornes. Toute fonction injective et continue sur un intervalle est strictement monotone. Théorème de la bijection : soit f fonction continue strictement monotone sur un intervalle I, alors elle induit une bijection de I dans f(I) et sa réciproque est continue, strictement monotone de même monotonie. Etude de suites implicites.

* * * * *