12

Table 2.1: Comparison of the parameters used in the present simulations and those in the corresponding experiments for colloids in KCl solutions.

Parameters in	Symbols	Corresponding experimental	Present simulation
physical units		values (KCl solution)	values
Radius of colloids	a	$100 \times 10^{-9} \text{ [m]}$	5 [Δ]
Diameter of colloids	d	$200 \times 10^{-9} \text{ [m]}$	$10 \ [\Delta]$
Bjerrum length	λ_B	$0.7 \times 10^{-9} \text{ [m]}$	$1/4\pi \ [\Delta]$
Elementary charge	e	$1.6 \times 10^{-19} \; [A \cdot s]$	1[e]
Thermal energy	k_BT	$298.15k_B = 4.11 \times 10^{-21} [\text{m}^2 \cdot \text{kg/s}^2]$	$1 \left[\eta^2 \Delta / \rho \right]$
Zeta potential (typical value)	ζ	$2.57 \times 10^{-2} \ [\text{kg} \cdot \text{m}^2/\text{A} \cdot \text{s}^3]$	$1 \left[\eta^2 \Delta / \rho e \right]$
Phoretic velocity (typical value)	V	$2.5 \times 10^{-6} \text{ [m/s]}$	$5 \times 10^{-3} \ [\eta/\rho\Delta]$
Permittivity of solvent	ϵ	$78.5\epsilon_0 = 6.95 \times 10^{-10} \left[A^2 \cdot s^4 / \text{kg} \cdot \text{m}^3 \right]$	$1 \left[\rho e^2 / \Delta^2 \eta^2 \right]$
Viscosity of solvent	η	$8.90 \times 10^{-4} \; [kg/m \cdot s]$	$12.7 [\eta]$
Density of solvent	ho	$997 \; [kg/m^3]$	$0.1 [\rho]$
Diffusion constant of ions (typical value)	D	$2 \times 10^{-9} \text{ [m}^2/\text{s]}$	$0.285 \ [\eta/\rho]$
Frequency of AC field	ω	$10^5 - 10^9 [1/s]$	$5\times10^{-3}-50\ [\eta/\rho\Delta^{2}]$
Parameters in	Symbols	Corresponding experimental	Present simulation
dimensionless units		values (KCl solution)	values
Zeta potential	$y = e\zeta/k_BT$	1	1
Friction constant of ions	$m_{\alpha} = 2\epsilon (k_B T)^2 / 3\eta e^2 D$	0.184	0.184
Reynolds number of colloids	$\mathrm{Re} = \rho dV_0/\eta$	1×10^{-3}	1×10^{-3}
Frequency of external electric field	$\omega^* = \omega \rho a^2 / \eta$	$10^{-3} - 10$	$10^{-3} - 10$
Frequency of momentum diffusion	$\omega_{\nu}^* = (\nu/d^2)\rho a^2/\eta$	0.25	0.25
Frequency of ionic diffusion	$\omega_D^* = (D/d^2)\rho a^2/\eta$	5.6×10^{-4}	5.6×10^{-4}