RF TEST REPORT

Report No.: 15070962-FCC-R2 Supersede Report No.: N/A

Applicant	Verykool USA Inc				
Product Name	Mobile pho	ne			
Model No.	SL6010				
Serial No.	N/A				
Test Standard	FCC Part 1	5.247: 2014	4, ANSI C63.10: 2	2013	
Test Date	October 27	to Novemb	er 18, 2015		
Issue Date	November	November 18, 2015			
Test Result	Pass	Pass Fail			
Equipment compl	ied with the	specification	n 🔽		
Equipment did no	t comply with	n the specifi	cation		
Winnie.Zi	hang	David	Huang		
	Winnie Zhang David Huang Test Engineer Checked By				

This test report may be reproduced in full only

Test result presented in this test report is applicable to the tested sample only

Issued by:

SIEMIC (SHENZHEN-CHINA) LABORATORIES

Zone A, Floor 1, Building 2 Wan Ye Long Technology Park
South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China 518108
Phone: +86 0755 2601 4629801 Email: China@siemic.com.cn

Test Report	15070962-FCC-R2
Page	2 of 59

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

Country/Region	Scope
USA	EMC, RF/Wireless, SAR, Telecom
Canada	EMC, RF/Wireless, SAR, Telecom
Taiwan	EMC, RF, Telecom, SAR, Safety
Hong Kong	RF/Wireless, SAR, Telecom
Australia	EMC, RF, Telecom, SAR, Safety
Korea	EMI, EMS, RF, SAR, Telecom, Safety
Japan	EMI, RF/Wireless, SAR, Telecom
Singapore	EMC, RF, SAR, Telecom
Europe	EMC, RF, SAR, Telecom, Safety

Test Report	15070962-FCC-R2
Page	3 of 59

This page has been left blank intentionally.

Test Report	15070962-FCC-R2
Page	4 of 59

CONTENTS

1.	REPORT REVISION HISTORY	5
2.	CUSTOMER INFORMATION	5
 3.	TEST SITE INFORMATION	
4 .		
	TEST SUMMARY	
	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	
	ANTENNA REQUIREMENT	
6.2	CHANNEL SEPARATION	11
	20DB BANDWIDTH	
6.4	PEAK OUTPUT POWER	19
6.5	NUMBER OF HOPPING CHANNEL	23
6.6	TIME OF OCCUPANCY (DWELL TIME)	25
6.7	BAND EDGE	29
6.8	AC POWER LINE CONDUCTED EMISSIONS	36
6.9	RADIATED SPURIOUS EMISSIONS	42
ANN	NEX A. TEST INSTRUMENT	47
ANN	NEX B. EUT AND TEST SETUP PHOTOGRAPHS	48
ANN	NEX C. TEST SETUP AND SUPPORTING EQUIPMENT	54
ANI	NEX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST	58
ANN	NEX E. DECLARATION OF SIMILARITY	59

Test Report	15070962-FCC-R2
Page	5 of 59

1. Report Revision History

Report No.	Report Version	Description	Issue Date
15070962-FCC-R2	NONE	Original	November 18, 2015

2. Customer information

Applicant Name	Verykool USA Inc
Applicant Add	3636 Nobel Drive, Suite 325, San Diego, CA 92122 USA
Manufacturer	HUIZHOU QIAOXING ELECTRONICS TECHNOLOGY CO.,LTD
Manufacturer Add	Room 1906 of VIA Building, No.9966 Shennan Avenue, Yuehai Street in
	Nanshan District, Shenzhen

3. Test site information

Lab performing tests	SIEMIC (Shenzhen-China) LABORATORIES
	Zone A, Floor 1, Building 2 Wan Ye Long Technology Park
Lab Address	South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China
	518108
FCC Test Site No.	718246
IC Test Site No.	4842E-1
Test Software	Radiated Emission Program-To Shenzhen v2.0

Test Report	15070962-FCC-R2
Page	6 of 59

4. Equipment under Test (EUT) Information

Description of EUT: Mobile phone

Main Model: SL6010

Serial Model: N/A

Date EUT received: October 26, 2015

Test Date(s): October 27 to November 18, 2015

Equipment Category : DSS

GSM850: 1.7 dBi PCS1900: 3.7 dBi

UMTS-FDD Band V: 1.7 dBi UMTS-FDD Band IV: 3.6 dBi UMTS-FDD Band II: 3.7 dBi Bluetooth/BLE: 3.0 dBi

Antenna Gain: WIFI: 2.8 dBi

LTE Band 2: 3.7 dBi LTE Band 4: 3.6 dBi LTE Band 5: 1.7 dBi LTE Band 7: 2.8 dBi LTE Band 17: 1.7 dBi

GPS:1.8 dBi

GSM / GPRS: GMSK EGPRS: GMSK,8PSK

UMTS-FDD: QPSK, 16QAM 802.11b/g/n: DSSS, OFDM

Type of Modulation:

Bluetooth: GFSK, π /4DQPSK, 8DPSK

BLE: GFSK

LTE Band: QPSK, 16QAM

GPS:BPSK

Test Report	15070962-FCC-R2
Page	7 of 59

GSM850 TX: 824.2 ~ 848.8 MHz; RX: 869.2 ~ 893.8 MHz

PCS1900 TX: 1850.2 ~ 1909.8 MHz; RX: 1930.2 ~ 1989.8 MHz

UMTS-FDD Band V TX: 826.4 ~ 846.6 MHz; RX: 871.4 ~ 891.6 MHz

UMTS-FDD Band IV TX:1712.4 ~ 1752.6 MHz;

RX: 2112.4 ~ 2152.6 MHz

UMTS-FDD Band II TX:1852.4 ~ 1907.6 MHz;

RX: 1932.4 ~ 1987.6 MHz

WIFI:802.11b/g/n(20M): 2412-2462 MHz RF Operating Frequency (ies):

WIFI:802.11n(40M): 2422-2452 MHz

Bluetooth& BLE: 2402-2480 MHz

LTE Band 2 TX: 1852.5 ~ 1907.5 MHz; RX : 1932.5 ~ 1987.5 MHz LTE Band 4 TX: 1712.5 ~ 1752.5 MHz; RX : 2112.5 ~ 2152.5 MHz

LTE Band 5 TX: 826.5 ~ 846.5 MHz; RX: 871.5 ~ 891.5 MHz

LTE Band 7 TX: 2502.5 ~ 2567.5 MHz; RX : 2622.5 ~ 2687.5 MHz LTE Band 17 TX: 706.5 ~ 713.5 MHz; RX : 736.5 ~ 743.5 MHz

GPS RX:1575.42 MHz

Max. Output Power: 0.889dBm

Number of Channels:

GSM 850: 124CH PCS1900: 299CH

UMTS-FDD Band V: 102CH UMTS-FDD Band IV: 202CH UMTS-FDD Band II: 277CH

WIFI:802.11b/g/n(20M): 11CH

WIFI:802.11n(40M): 7CH

Bluetooth: 79CH

BLE: 40CH GPS:1CH

Port: Power Port, Earphone Port, USB Port

Adapter:

Model:STC-A515A-Z

Input: AC 100-240V; 50/60Hz; 300mA

Input Power: Output: DC 5.0V,1500mA

Battery: Model:Q600

Spec:3.7V,2500mAh(9.25Wh)

Test Report	15070962-FCC-R2
Page	8 of 59

Limited charger voltage:4.2V

Trade Name : verykool

GPRS/EGPRS Multi-slot class 8/10/12

FCC ID: WA6SL6010

Test Report	15070962-FCC-R2
Page	9 of 59

5. Test Summary

The product was tested in accordance with the following specifications.

All testing has been performed according to below product classification:

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliance
§15.247(a)(1)	Channel Separation	Compliance
§15.247(a)(1)	20 dB Bandwidth	Compliance
§15.247(b)(1)	Peak Output Power	Compliance
§15.247(a)(1)(iii)	Number of Hopping Channel	Compliance
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance
§15.247(d)	Band Edge	Compliance
§15.207(a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Radiated Emissions	Compliance

Measurement Uncertainty

Emissions			
Test Item	Description	Uncertainty	
Band Edge and Radiated Spurious Emissions	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	+5.6dB/-4.5dB	
-	-	-	

Test Report	15070962-FCC-R2
Page	10 of 59

6. Measurements, Examination And Derived Results

6.1 Antenna Requirement

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has 3 antennas:

A permanently attached PIFA antenna for Bluetooth/BLE/WIFI, the gain is 3.0dBi for Bluetooth/BLE, the gain is 2.8dBi for WIFI.

A permanently attached PIFA antenna for GSM/PCS/LTE and UMTS, the gain is 1.7dBi for GSM850, 3.7dBi for PCS1900,1.7dBi for UMTS-FDD Band V, 3.6dBi for UMTS-FDD Band IV, 3.7dBi for UMTS-FDD Band II, 3.7dBi for LTE Band 2, 3.6dBi for LTE Band 4, 1.7dBi for LTE Band 5, 2.8dBi for LTE Band 7, 1.7dBi for LTE Band 17.

A permanently attached PIFA antenna for GPS, the gain is 1.8dBi for GPS.

The antenna meets up with the ANTENNA REQUIREMENT.

Result: Compliance.

Test Report	15070962-FCC-R2
Page	11 of 59

6.2 Channel Separation

Temperature	22°C
Relative Humidity	55%
Atmospheric Pressure	1013mbar
Test date :	November 13, 2015
Tested By:	Winnie Zhang

Requirement(s):	1		,		
Spec	Item Requirement		Applicable		
S 45 047()(4)		Channel Separation < 20dB BW and 20dB BW <	~		
	۵)	25KHz ; Channel Separation Limit=25KHz			
§ 15.247(a)(1)	(a)	Chanel Separation < 20dB BW and 20dB BW >			
		25kHz; Channel Separation Limit=2/3 20dB BW			
Test Setup	Spectrum Analyzer EUT				
	The to	est follows FCC Public Notice DA 00-705 Measurement	Guidelines.		
	Use the following spectrum analyzer settings:				
	- The EUT must have its hopping function enabled				
	- Span = wide enough to capture the peaks of two adjacent				
	channels				
	- Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span				
Test Procedure	- Video (or Average) Bandwidth (VBW) ≥ RBW				
100t1 1000daile	- Sweep = auto				
	- Detector function = peak				
	- Trace = max hold				
	- Allow the trace to stabilize. Use the marker-delta function to				
	determine the separation between the peaks of the adjacent				
		channels. The limit is specified in one of the subparagraphs of this			
		Section. Submit this plot.			

Test Report	15070962-FCC-R2
Page	12 of 59

Rema	rk				
Resu	lt	Pass	Fail		
Test Data	Yes	.	□ _{N/A}		
Test Plot Yes (See below)		□ _{N/A}			

Channel Separation measurement result

Type/ Modulation	СН	CH Freq (MHz)	CH Separation (MHz)	Limit (MHz)	Result
	Low Channel	2402	1.005	0.607	Dees
	Adjacency Channel	2403	1.005	0.687	Pass
CH Separation	Mid Channel	2440	1.005	0.605	Desc
GFSK	Adjacency Channel	2441	1.005	0.685	Pass
	High Channel	2480	1.005	0.607	Desc
	Adjacency Channel	2479	1.005	0.687	Pass
	Low Channel	2402	1.005	0.869	Desc
	Adjacency Channel	2403	1.005	0.009	Pass
CH Separation	Mid Channel	2440	1.005	0.873	Door
π /4 DQPSK	Adjacency Channel	2441	1.005	0.673	Pass
	High Channel	2480	1.005	0.867	Door
	Adjacency Channel	2479	1.005	0.007	Pass
	Low Channel	2402	1.005	0.867	Door
	Adjacency Channel	2403	1.005	0.007	Pass
CH Separation	Mid Channel	2440	1.005	0.070	Desc
8DPSK	Adjacency Channel	2441	1.005	0.870	Pass
	High Channel	2480	1.005	0.866	Door
	Adjacency Channel	2479	1.000	0.000	Pass

Test Report	15070962-FCC-R2
Page	13 of 59

Test Plots

Channel Separation measurement result

Test Report	15070962-FCC-R2
Page	14 of 59

Test Report	15070962-FCC-R2
Page	15 of 59

6.3 20dB Bandwidth

Temperature	22°C
Relative Humidity	55%
Atmospheric Pressure	1013mbar
Test date :	November 13, 2015
Tested By :	Winnie Zhang

Requirement(s):						
Spec	Item	Item Requirement Applicable				
		Frequency hopping systems shall have hopping				
§15.247(a)	٥)	channel carrier frequencies separated by a minimum	V			
(1)	(a)	of 25 kHz or the 20 dB bandwidth of the hopping				
		channel, whichever is greater.				
Test Setup		Spectrum Analyzer EUT				
	The te	st follows FCC Public Notice DA 00-705 Measurement Gu	uidelines.			
	Use the following spectrum analyzer settings:					
	- Span = approximately 2 to 3 times the 20 dB bandwidth, centered on					
	a hopping channel					
	- RBW ≥ 1% of the 20 dB bandwidth					
	- VBW≥ RBW					
Test	- Sweep = auto					
Procedure	- Detector function = peak					
l roodda.c	- Trace = max hold.					
	The EUT should be transmitting at its maximum data rate. Allow the					
	trace to stabilize. Use the marker-to-peak function to set the marker					
	to the peak of the emission. Use the marker-delta function to					
	measure 20 dB down one side of the emission. Reset the marker-					
		delta function, and move the marker to the other side of the				
		emission, until it is (as close as possible to) even with the	reference			

Test Report	15070962-FCC-R2
Page	16 of 59

		marker level. The marker-delta reading at this point is the 20 dB					
		bandwidth	bandwidth of the emission. If this value varies with different modes of				
		operation	(e.g., data rate, modulation format, etc.), repeat this test for				
		each varia	ation. The limit is specified in one of the subparagraphs of				
		this Section	on. Submit this plot(s).				
Remark							
Result		Pass	Fail				
Test Data	Y	'es	□ _{N/A}				
Test Plot	Y	es (See below)	□ _{N/A}				

Measurement result

Modulation CH		CH Freq (MHz)	20dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
	Low	2402	1.031	0.8882
GFSK	Mid	2441	1.028	0.8946
	High	2480	1.031	0.8911
π /4 DQPSK	Low	2402	1.303	1.1714
	Mid	2441	1.310	1.1797
	High	2480	1.301	1.1696
8-DPSK	Low	2402	1.301	1.1802
	Mid	2441	1.305	1.1885
	High	2480	1.299	1.1739

Test Report	15070962-FCC-R2
Page	17 of 59

Test Plots

20dB Bandwidth measurement result

Test Report	15070962-FCC-R2
Page	18 of 59

Test Report	15070962-FCC-R2
Page	19 of 59

6.4 Peak Output Power

Temperature	22°C
Relative Humidity	55%
Atmospheric Pressure	1013mbar
Test date :	November 13, 2015
Tested By :	Winnie Zhang

Spec	Item	Requirement	Applicable		
§15.247(b)	a)	>			
	b)	FHSS in 5725-5850MHz: ≤ 1 Watt			
	c)	For all other FHSS in the 2400-2483.5MHz band: ≤ 0.125 Watt.			
(2)	d)	FHSS in 902-928MHz with ≥ 50 channels: ≤ 1 Watt			
	e)	FHSS in 902-928MHz with ≥ 25 & <50 channels: ≤ 0.25 Watt			
	f)	f) DSSS in 902-928MHz, 2400-2483.5MHz, 5725- 5850MHz: ≤ 1 Watt			
Test Setup	Spectrum Analyzer EUT				
Test Procedure	The test follows FCC Public Notice DA 00-705 Measurement Guidelines. Use the following spectrum analyzer settings: - Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel - RBW > the 20 dB bandwidth of the emission being measured - VBW ≥ RBW - Sweep = auto - Detector function = peak - Trace = max hold				

Test Report	15070962-FCC-R2
Page	20 of 59

	- Allow the trace to stabilize.
	- Use the marker-to-peak function to set the marker to the peak of the
	emission. The indicated level is the peak output power (see the note
	above regarding external attenuation and cable loss). The limit is
	specified in one of the subparagraphs of this Section. Submit this
	plot. A peak responding power meter may be used instead of a
	spectrum analyzer.
Remark	
Result	Pass Fail

Test Data	Yes	□ _{N/A}
Test Plot	Yes (See below)	□ _{N/A}

Peak Output Power measurement result

Туре	Modulation	СН	Freq (MHz)	Conducted Power (dBm)	Limit (mW)	Result
		Low	2402	-0.928	125	Pass
	GFSK	Mid	2441	0.186	125	Pass
		High	2480	0.889	125	Pass
Outtout		Low	2402	-1.793	125	Pass
Output	π /4 DQPSK	Mid	2441	-0.549	125	Pass
power		High	2480	-0.050	125	Pass
		Low	2402	-1.545	125	Pass
	8-DPSK	Mid	2441	-0.909	125	Pass
		High	2480	0.114	125	Pass

Test Report	15070962-FCC-R2
Page	21 of 59

Test Plots

Output Power measurement result

Test Report	15070962-FCC-R2
Page	22 of 59

Test Report	15070962-FCC-R2
Page	23 of 59

6.5 Number of Hopping Channel

Temperature	22°C
Relative Humidity	55%
Atmospheric Pressure	1013mbar
Test date :	November 13, 2015
Tested By :	Winnie Zhang

Requirement(s):					
Spec	Item	Requirement	Applicable		
§15.247(a) (1)(iii)	a)	FHSS in 2400-2483.5MHz ≥ 15 channels			
Test Setup		Spectrum Analyzer EUT			
Test Procedure	Use the The El	st follows FCC Public Notice DA 00-705 Measurement Gue following spectrum analyzer settings: JT must have its hopping function enabled. Span = the frequency band of operation RBW ≥ 1% of the span VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold	iidelines.		
	-	Allow trace to fully stabilize. It may prove necessary to break the span up to sections, clearly show all of the hopping frequencies. The limit is spone of the subparagraphs of this Section. Submit this plot	ecified in		
Remark					
Result	Pas	ss Fail			
	Yes Yes (See	below)			

Test Report	15070962-FCC-R2
Page	24 of 59

Number of Hopping Channel measurement result

Туре	Modulation	Frequency Range	Number of Hopping Channel	Limit
Number of	GFSK	2400-2483.5	79	15
Number of	π /4 DQPSK	2400-2483.5	79	15
Hopping Channel	8-DPSK	2400-2483.5	79	15

Test Plots

Number of Hopping Channels measurement result

Test Report	15070962-FCC-R2
Page	25 of 59

6.6 Time of Occupancy (Dwell Time)

Temperature	22°C
Relative Humidity	55%
Atmospheric Pressure	1013mbar
Test date :	November 13, 2015
Tested By :	Winnie Zhang

Spec	Item	Requirement	Applicable
§15.247(a) (1)(iii)	a)	Dwell Time < 0.4s	V
Test Setup		Spectrum Analyzer EUT	
		st follows FCC Public Notice DA 00-705 Measurement G	Guidelines.
	Use the	e following spectrum analyzer	
	-	Span = zero span, centered on a hopping channel	
	-	RBW = 1 MHz	
Test	-	VBW ≥ RBW	
Procedure	-	Sweep = as necessary to capture the entire dwell time p	er hopping
		channel	
	-	Detector function = peak	
	-	Trace = max hold	
	-	use the marker-delta function to determine the dwell tim	е
Remark			
Result	Pas	s Fail	

Test Data	Yes	□ _{N/A}
Test Plot	Yes (See below)	□ _{N/A}

Test Report	15070962-FCC-R2
Page	26 of 59

Dwell Time measurement result

Modulation	СН	Pulse Width (ms)	Dwell Time (ms)	Limit (ms)	Result
	Low	2.87	306.133	400	Pass
GFSK	Mid	2.86	305.067	400	Pass
	High	2.87	306.133	400	Pass
π /4 DQPSK	Low	2.87	306.133	400	Pass
	Mid	2.86	305.067	400	Pass
	High	2.87	306.133	400	Pass
8-DPSK	Low	2.88	307.200	400	Pass
	Mid	2.85	304.000	400	Pass
	High	2.86	305.067	400	Pass
	GFSK π /4 DQPSK	Low GFSK Mid High Low π /4 DQPSK Mid High Low 8-DPSK Mid	Modulation CH (ms) Low 2.87 Mid 2.86 High 2.87 Low 2.87 Mid 2.86 High 2.87 Low 2.88 B-DPSK Mid 2.85	Modulation CH (ms) (ms) GFSK Low 2.87 306.133 Mid 2.86 305.067 High 2.87 306.133 Low 2.87 306.133 Mid 2.86 305.067 High 2.87 306.133 Low 2.88 307.200 8-DPSK Mid 2.85 304.000	Modulation CH (ms) (ms) Low 2.87 306.133 400 Mid 2.86 305.067 400 High 2.87 306.133 400 Low 2.87 306.133 400 High 2.86 305.067 400 High 2.87 306.133 400 Low 2.88 307.200 400 8-DPSK Mid 2.85 304.000 400

Note: Dwell time=Pulse Time (ms) \times (1600 ÷ 6 ÷ 79) \times 31.6

Test Report	15070962-FCC-R2
Page	27 of 59

Test Plots

Dwell Time measurement result

Test Report	15070962-FCC-R2
Page	28 of 59

Test Report	15070962-FCC-R2
Page	29 of 59

6.7 Band Edge

Temperature	21°C
Relative Humidity	55%
Atmospheric Pressure	1002mbar
Test date :	November 05, 2015
Tested By :	Winnie Zhang

Spec	Item	Requirement	Applicable
§15.247(a) (1)(iii)	a)	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.	\
Test Setup	Ant. Tower Support Units Ground Plane Test Receiver		
Test Procedure	The test follows FCC Public Notice DA 00-705 Measurement Guidelines. Radiated Method Only 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator. 2. Position the EUT without connection to measurement instrument. Put it on the Rotated table and turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range,		

Test Report	15070962-FCC-R2
Page	30 of 59

	and make sure the instrument is operated in its linear range.
	- 3. First, set both RBW and VBW of spectrum analyzer to 100 kHz with a
	convenient frequency span including 100kHz bandwidth from band edge, check
	the emission of EUT, if pass then set Spectrum Analyzer as below:
	a. The resolution bandwidth and video bandwidth of test receiver/spectrum
	analyzer is 120 kHz for Quasiy Peak detection at frequency below 1GHz.
	b. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and
	video bandwidth is 3MHz with Peak detection for Peak measurement at
	frequency above 1GHz.
	c. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the
	video bandwidth is 10Hz with Peak detection for Average Measurement as
	below at frequency above 1GHz.
	- 4. Measure the highest amplitude appearing on spectral display and set it as a
	reference level. Plot the graph with marking the highest point and edge
	frequency.
	- 5. Repeat above procedures until all measured frequencies were complete.
Remark	
Result	Pass Pail
Test Data	Yes N/A
Test Plot	∕es (See below)

Test Report	15070962-FCC-R2	
Page	31 of 59	

Test Plots

GFSK Mode:

Test Report	15070962-FCC-R2	
Page	32 of 59	

π /4 DQPSK Mode:

Test Report	15070962-FCC-R2
Page	33 of 59

Test Report	15070962-FCC-R2	
Page	34 of 59	

8-DPSK Mode:

Test Report	15070962-FCC-R2
Page	35 of 59

Test Report	15070962-FCC-R2	
Page	36 of 59	

6.8 AC Power Line Conducted Emissions

Temperature	21°C
Relative Humidity	55%
Atmospheric Pressure	1002mbar
Test date :	November 05, 2015
Tested By:	Winnie Zhang

Spec	Item	Requirement			Applicable
47CFR§15. 207, RSS210 (A8.1)	a)	For Low-power radio-freconnected to the public voltage that is conducted frequency or frequencies not exceed the limits in [mu]H/50 ohms line implower limit applies at the Frequency ranges (MHz) 0.15 ~ 0.5 0.5 ~ 5 5 ~ 30	e utility (AC) power line and back onto the AC poses, within the band 150 the following table, as pedance stabilization notes boundary between the	the radio frequency ower line on any kHz to 30 MHz, shall measured using a 50 etwork (LISN). The	
Test Setup	Vertical Ground Reference Plane Test Receiver				
Procedure	 The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table. The power supply for the EUT was fed through a 50W/50mH EUT LISN, connected to filtered mains. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss 				

Test Report	15070962-FCC-R2
Page	37 of 59

	coaxial cable.						
	4. All other supporting equipment were powered separately from another main supply.						
5. The EUT was switched on and allowed to warm up to its normal operating							
6. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC							
	over the required frequency range using an EMI test receiver.						
	7. High peaks, relative to the limit line, The EMI test receiver was then tuned to the						
	selected frequencies and the necessary measurements made with a receiver bandwidth						
	setting of 10 kHz.						
	8. Step 7 was then repeated for the LIVE line (for AC mains) or DC line (for DC power).						
Remark							
Result	Pass Pail						

Test Data	Yes	□ _{N/A}
Test Plot	Yes (See below)	□ _{N/A}

Test Report	15070962-FCC-R2
Page	38 of 59

Test Mode:

Phase Line Plot at 120Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB)	(dBuV)	(dBuV)	(dB)
1	L1	0.4854	37.58	QP	10.02	47.60	56.25	-8.65
2	L1	0.4854	26.12	AVG	10.02	36.14	46.25	-10.11
3	L1	0.8793	32.08	QP	10.03	42.11	56.00	-13.89
4	L1	0.8793	20.80	AVG	10.03	30.83	46.00	-15.17
5	L1	1.0665	32.57	QP	10.03	42.60	56.00	-13.40
6	L1	1.0665	21.81	AVG	10.03	31.84	46.00	-14.16
7	L1	2.3730	29.43	QP	10.04	39.47	56.00	-16.53
8	L1	2.3730	19.01	AVG	10.04	29.05	46.00	-16.95
9	L1	3.6006	30.93	QP	10.06	40.99	56.00	-15.01
10	L1	3.6006	20.32	AVG	10.06	30.38	46.00	-15.62
11	L1	6.2136	30.24	QP	10.09	40.33	60.00	-19.67
12	L1	6.2136	19.65	AVG	10.09	29.74	50.00	-20.26

Test Report	15070962-FCC-R2
Page	39 of 59

Test Mode:

Phase Neutral Plot at 120Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB)	(dBuV)	(dBuV)	(dB)
1	Ν	0.3450	33.82	QP	10.02	43.84	59.08	-15.24
2	Ζ	0.3450	26.70	AVG	10.02	36.72	49.08	-12.36
3	Ζ	0.4269	31.60	QP	10.02	41.62	57.31	-15.69
4	Ζ	0.4269	21.88	AVG	10.02	31.90	47.31	-15.41
5	Ζ	0.5478	29.72	QP	10.02	39.74	56.00	-16.26
6	Ζ	0.5478	17.73	AVG	10.02	27.75	46.00	-18.25
7	Ζ	1.0080	27.03	QP	10.03	37.06	56.00	-18.94
8	Ζ	1.0080	14.92	AVG	10.03	24.95	46.00	-21.05
9	N	1.1718	26.93	QP	10.03	36.96	56.00	-19.04
10	Ν	1.1718	14.76	AVG	10.03	24.79	46.00	-21.21
11	Ν	2.4939	22.52	QP	10.04	32.56	56.00	-23.44
12	N	2.4939	11.09	AVG	10.04	21.13	46.00	-24.87

Test Report	15070962-FCC-R2
Page	40 of 59

Test Mode:	Bluetooth Mode

Phase Line Plot at 240Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB)	(dBuV)	(dBuV)	(dB)
1	L1	0.3489	36.27	QP	10.03	46.30	58.99	-12.69
2	L1	0.3489	29.68	AVG	10.03	39.71	48.99	-9.28
3	L1	0.4659	29.32	QP	10.03	39.35	56.59	-17.24
4	L1	0.4659	19.79	AVG	10.03	29.82	46.59	-16.77
5	L1	0.7389	27.59	QP	10.03	37.62	56.00	-18.38
6	L1	0.7389	17.90	AVG	10.03	27.93	46.00	-18.07
7	L1	1.1367	29.96	QP	10.03	39.99	56.00	-16.01
8	L1	1.1367	19.65	AVG	10.03	29.68	46.00	-16.32
9	L1	2.3886	27.20	QP	10.05	37.25	56.00	-18.75
10	L1	2.3886	17.74	AVG	10.05	27.79	46.00	-18.21
11	L1	4.7901	23.79	QP	10.08	33.87	56.00	-22.13
12	L1	4.7901	12.94	AVG	10.08	23.02	46.00	-22.98

Test Report	15070962-FCC-R2
Page	41 of 59

Test Mode:

Phase Neutral Plot at 240Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB)	(dBuV)	(dBuV)	(dB)
1	N	0.3450	40.44	QP	10.02	50.46	59.08	-8.62
2	Ν	0.3450	33.45	AVG	10.02	43.47	49.08	-5.61
3	Ν	0.4893	36.38	QP	10.02	46.40	56.18	-9.78
4	Ν	0.4893	26.36	AVG	10.02	36.38	46.18	-9.80
5	Ν	0.5946	33.23	QP	10.02	43.25	56.00	-12.75
6	N	0.5946	23.51	AVG	10.02	33.53	46.00	-12.47
7	Ν	1.0587	35.03	QP	10.03	45.06	56.00	-10.94
8	Ν	1.0587	25.09	AVG	10.03	35.12	46.00	-10.88
9	N	1.4487	33.15	QP	10.03	43.18	56.00	-12.82
10	N	1.4487	22.50	AVG	10.03	32.53	46.00	-13.47
11	N	2.3925	32.98	QP	10.04	43.02	56.00	-12.98
12	N	2.3925	22.49	AVG	10.04	32.53	46.00	-13.47

Test Report	15070962-FCC-R2
Page	42 of 59

6.9 Radiated Spurious Emissions

Temperature	21°C
Relative Humidity	55%
Atmospheric Pressure	1002mbar
Test date :	November 05, 2015
Tested By :	Winnie Zhang

Requirement(s):

Spec	Item	Requirement Applicable					
47CFR§15. 205, §15.209, §15.247(d)	a)	Except higher limit as specified else emissions from the low-power radio-exceed the field strength levels specified the level of any unwanted emissions the fundamental emission. The tighteedges Frequency range (MHz) 30 - 88 88 - 216	V				
		216 960 Above 960	200 500				
Test Setup		Ant. Tower Support Units Turn Table Ground Plane Test Receiver					
Procedure	 The EUT was switched on and allowed to warm up to its normal operating condition. The test was carried out at the selected frequency points obtained from the EUT characterization. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner: 						

Test Report	15070962-FCC-R2
Page	43 of 59

		_	Madia la chaireada la claireada de la chaireada de la chairead
		a.	Vertical or horizontal polarization (whichever gave the higher emission
			level over a full rotation of the EUT) was chosen.
		b.	The EUT was then rotated to the direction that gave the maximum
			emission.
		C.	Finally, the antenna height was adjusted to the height that gave the
			maximum emission.
	3.	The r	esolution bandwidth and video bandwidth of test receiver/spectrum analyzer is
		120 k	Hz for Quasiy Peak detection at frequency below 1GHz.
	4.	The re	solution bandwidth of test receiver/spectrum analyzer is 1MHz and video
		bandv	vidth is 3MHz with Peak detection for Peak measurement at frequency above
		1GHz	
		The r	esolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video
		band	width is 10Hz with Peak detection for Average Measurement as below at
		freque	ency above 1GHz.
	5.	Steps	s 2 and 3 were repeated for the next frequency point, until all selected
		frequ	ency points were measured.
Domark		_	
Remark			
Result	₽ P	ass	☐ Fail

Test Data	Yes	□ _{N/A}
Test Plot	Yes (See below)	□ _{N/A}

Test Report	15070962-FCC-R2
Page	44 of 59

Test Mode: Bluetooth Mode

Below 1GHz

Test Data

Horizontal Polarity Plot @3m

No.	P/L	Frequency	Readin g	Detector	Corrected	Result	Limit	Margin	Height	Degree
		(MHz)	(dBuV/ m)		(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	()
1	Н	101.2945	47.50	QP	-10.56	36.94	43.50	-6.56	100	161
2	Н	106.8727	48.22	QP	-9.58	38.64	43.50	-4.86	100	164
3	Н	193.9017	45.16	QP	-9.04	36.12	43.50	-7.38	100	258
4	Н	214.7624	43.64	QP	-8.87	34.77	43.50	-8.73	100	146
5	Н	334.8589	41.61	peak	-5.90	35.71	46.00	-10.29	100	89
6	Н	383.9318	36.37	peak	-4.67	31.70	46.00	-14.30	100	104

Test Report	15070962-FCC-R2
Page	45 of 59

Below 1GHz

Test Data

Vertical Polarity Plot @3m

No.	P/L	Frequency	Readin g	Detector	Corrected	Result	Limit	Margin	Height	Degree
		(MHz)	(dBuV/ m)		(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	()
1	V	81.2117	46.98	peak	-13.71	33.27	40.00	-6.73	100	136
2	V	99.9177	49.63	QP	-10.82	38.81	43.50	-4.69	100	229
3	V	103.7327	51.49	QP	-10.14	41.35	43.50	-2.15	100	241
4	V	106.8827	49.41	QP	-9.58	39.83	43.50	-3.67	100	244
5	V	193.0945	43.47	peak	-9.08	34.39	43.50	-9.11	100	192
6	V	321.0608	39.87	peak	-6.29	33.58	46.00	-12.42	100	192

Test Report	15070962-FCC-R2
Page	46 of 59

Test Mode: Transmitting Mode

Mode: GFSK (Worst Case)

Low Channel (2402 MHz)

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre- Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4804	38.13	AV	V	33.83	6.86	31.72	47.10	54	-6.90
4804	37.97	AV	Η	33.83	6.86	31.72	46.94	54	-7.06
4804	46.22	PK	٧	33.83	6.86	31.72	55.19	74	-18.81
4804	46.14	PK	Н	33.83	6.86	31.72	55.11	74	-18.89

Middle Channel (2441 MHz)

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre- Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4882	38.07	AV	V	33.86	6.82	31.82	46.93	54	-7.07
4882	37.91	AV	Η	33.86	6.82	31.82	46.77	54	-7.23
4882	46.15	PK	٧	33.86	6.82	31.82	55.01	74	-18.99
4882	46.08	PK	Н	33.86	6.82	31.82	54.94	74	-19.06

High Channel (2480 MHz)

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre- Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4960	37.96	AV	V	33.9	6.76	31.92	46.70	54	-7.30
4960	37.92	AV	Η	33.9	6.76	31.92	46.66	54	-7.34
4960	46.11	PK	٧	33.9	6.76	31.92	54.85	74	-19.15
4960	46.03	PK	Н	33.9	6.76	31.92	54.77	74	-19.23

Test Report	15070962-FCC-R2
Page	47 of 59

Annex A. TEST INSTRUMENT

Instrument	Model	Serial #	Cal Date	Cal Due	In use
AC Line Conducted					
EMI test receiver	ESCS30	8471241027	09/17/2015	09/16/2016	<u><</u>
Line Impedance	LI-125A	191106	09/25/2015	09/24/2016	<u> </u>
Line Impedance	LI-125A	191107	09/25/2015	09/24/2016	~
LISN	ISN T800	34373	09/25/2015	09/24/2016	~
Double Ridge Horn Antenna (1 ~18GHz)	AH-118	71283	09/24/2015	09/23/2016	\
Transient Limiter	LIT-153	531118	09/01/2015	08/31/2016	>
RF conducted test					
Agilent ESA-E SERIES	E4407B	MY45108319	09/17/2015	09/16/2016	~
Power Splitter	1#	1#	09/01/2015	08/31/2016	<u><</u>
DC Power Supply	E3640A	MY40004013	09/17/2015	09/16/2016	<u><</u>
Radiated Emissions					
EMI test receiver	ESL6	100262	09/17/2015	09/16/2016	~
Positioning Controller	UC3000	MF780208282	11/20/2014	11/19/2015	~
OPT 010 AMPLIFIER (0.1-1300MHz)	8447E	2727A02430	09/01/2015	08/31/2016	•
Microwave Preamplifier (1 ~ 26.5GHz)	8449B	3008A02402	03/25/2015	03/24/2016	<u><</u>
Bilog Antenna (30MHz~6GHz)	JB6	A110712	09/21/2015	09/20/2016	<u>\</u>
Double Ridge Horn Antenna (1 ~18GHz)	AH-118	71283	09/24/2015	09/23/2016	V
Universal Radio Communication Tester	CMU200	121393	09/25/2015	09/24/2016	V

Test Report	15070962-FCC-R2
Page	48 of 59

Annex B. EUT And Test Setup Photographs

Annex B.i. Photograph: EUT External Photo

Test Report	15070962-FCC-R2
Page	49 of 59

EUT - Top View

EUT - Left View

EUT - Right View

Test Report	15070962-FCC-R2
Page	50 of 59

Mainbard with Shielding - Front View

Annex B.ii. Photograph: EUT Internal Photo

Mini Mainbard - Rear View

Test Report	15070962-FCC-R2
Page	51 of 59

Mainbard without Shielding - Front View

Mainbard - Rear View

LCD - Front View

LCD - Rear View

WIFI/BT/BLE - Antenna View

Test Report	15070962-FCC-R2
Page	52 of 59

GPS - Antenna View

Test Report	15070962-FCC-R2
Page	53 of 59

Annex B.iii. Photograph: Test Setup Photo

Conducted Emissions Test Setup Front View

Conducted Emissions Test Setup Side View

Radiated Spurious Emissions Test Setup Below 1GHz

Radiated Spurious Emissions Test Setup Above 1GHz

Test Report	15070962-FCC-R2
Page	54 of 59

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

Annex C.ii. TEST SET UP BLOCK

Block Configuration Diagram for AC Line Conducted Emissions

Test Report	15070962-FCC-R2
Page	55 of 59

Block Configuration Diagram for Radiated Emissions (Below 1GHz).

Test Report	15070962-FCC-R2
Page	56 of 59

Block Configuration Diagram for Radiated Emissions (Above 1GHz) .

Test Report	15070962-FCC-R2
Page	57 of 59

Annex C. il. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Manufacturer	Equipment Description	Model	Calibration Date	Calibration Due Date
N/A	N/A	N/A	N/A	N/A

Test Report	15070962-FCC-R2
Page	58 of 59

Annex D. User Manual / Block Diagram / Schematics / Partlist

Please see attachment

Test Report	15070962-FCC-R2
Page	59 of 59

Annex E. DECLARATION OF SIMILARITY

N/A