1 Umsetzung eines ER-Diagramms ins Relationenmodell

1.1 (a)

AUFENTHALT(von, bis, von)
GAST(KundenNr, Name, Adresse(Strasse, Ort))
RECHNUNG(ReNr, Datum, Summe, zu)
ZIMMER(Nummer, Betten, in)
KATEGORIE(Bezeichnung, Ausstattung, hat)
RESTAURANT(ID, RestaurantName, Plätze)
GETRÄNK(ProdNr, Preis, ProduktName, Größe)
SPEISE(ProdNr, Preis, ProduktName, Gewicht)
PRODUKT(ProdNr, Preis, ProduktName)

 $\begin{array}{l} \textbf{RESTORAUNTBESUCH}(\underline{von}, \underline{ID}, \underline{ProdNr}, Datum, Tisch) \\ \textbf{MINIBARKONSUM}(von, \underline{ProdNr}, Anzahl) \end{array}$

1.2 (b)

 $\begin{array}{l} \textbf{AUFENTHALT}(von) - \text{\mathcal{i} } \textbf{GAST}(KundenNr) \ \textbf{RECHNUNG}(zu) - \text{\mathcal{i} } \textbf{AUFENTHALT}(von) \ \textbf{ZIMMER}(in) - \text{\mathcal{i} } \textbf{AUFENTHALT}(von) \ \textbf{KATEGORIE}(hat) \\ - \text{\mathcal{i} } \textbf{ZIMMER}(Nummer) \ \textbf{AUSSTATTUNG}(Bezeichnung) - \text{\mathcal{i} } \textbf{KATEGORIE}(Bezeichnung) \\ \textbf{RESTORAUNTBESUCH}(von) - \text{\mathcal{i} } \textbf{AUFENTHALT}(von) \ \textbf{RESTORAUNTBESUCH}(ProdNr) - \text{\mathcal{i} } \textbf{PRODUKT}(ProdNr) \ \textbf{MINIBARKONSUM}(von) - \text{\mathcal{i} } \textbf{AUFENTHALT}(von) \\ \textbf{MINIBARKONSUM}(ProdNr) - \text{\mathcal{i} } \textbf{PRODUKT}(ProdNr) \end{array}$

1.3 (c)

Partitionierungsmodell: GETRÄNK (ProdNr, Größe) SPEISE(ProdNr, Gewicht)

Weitere FK für Partitionierungsmodell: GETRÄNK(ProdNr) -; PRODUKT(ProdNr) SPEISE(ProdNr) -; PRODUKT(ProdNr)

Beim Hauskastenmodell ist eine **volle Redundanz** vorhanden, wobei hier das Partitionierungsmodell nur den Schlüsselwert von Produkt und die eigenen Attribute darstellt

2 Anfragen in der Relationenalgebra

2.1 (a)

Geben Sie Namen und Raum aller Professoren vom Rang 'C4' aus $(\Pi_{Name,Raum}(\sigma_{Rang='C4'}Professoren))$

2.2 (b)

Geben Sie die Namen aller Hörer der Vorlesung 'Logik' aus. $(\Pi_{Name}((Student) \bowtie horen \bowtie (\sigma_{Titel='Logik'}Vorlesung)))$

2.3 (c)

Erstellen Sie eine Liste die Name n aller Assistenten und jeweils den Namen des zugehörigen Vorgesetzten ('Boss') enthält. Formulieren Sie diese Anfrage einmal mit und einmal ohne Join-Operator

ohne Join ($\Pi_{Name,Boss}Assistenten$)

(Kann auch trival sein, da beide Spalten parallel sind und jeder Assisten ein Boss benötigt)

mit Join ($\Pi_{Name}Assistenten$) \bowtie ($\Pi_{Boss}Assistenten$)

2.4 (d)

Erstellen Sie eine Liste aller Namen. Es sollen Namen von Professoren, Studenten und Assistenten berücksichtigt werden.

 $((\Pi_{Name}Professoren) \cup (\Pi_{Name}Studenten) \cup (\Pi_{Name}Assistenten))$

2.5 (e)

Welche Studenten (MatrNr) haben noch an keiner Prüfung teilgenommen? $((\Pi_{MatrNr}Studenten) - (\Pi_{MatrNr}pruefen))$

2.6 (f)

Welches ist die durchschnittliche Semesteranzahl aller Studenten? $(\mathbf{Sum}(\Pi_{Semester}Studenten)) \div (\mathbf{Count}(Studenten))$

2.7 (g)

Wieviele Hörer gibt es pro Vorlesung? Erstellen Sie eine Liste pro Vorlesung (VorlNr).

 $(\Pi_{VorlNr}Vorlesung) \bowtie (\mathbf{Count}(Student) \bowtie horen \bowtie (Vorlesung))$

2.8 (h)

Welche Studierenden hören alle von Professor Kant angebotenen Lehrveranstaltungen. Nutzen Sie den Divisionsoperator zur Formulierung des entsprechenden Algebraausdrucks.

 $(Studenten \div ((Studenten) \bowtie hoeren \bowtie (\sigma_{gelesenVon='Kant'}Vorlesung)))$