平成24年度(2012年度)日本留学試験

理科

(80分)

【物理・化学・生物】

- ※ 3科目の中から、2科目を選んで解答してください。
- ※ 1科目を解答用紙の表面に解答し、もう1科目を裏面に解答してください。
- I 試験全体に関する注意
 - 1. 係員の許可なしに、部屋の外に出ることはできません。
 - 2. この問題冊子を持ち帰ることはできません。
- Ⅱ 問題冊子に関する注意
 - 1. 試験開始の合図があるまで、この問題冊子の中を見ないでください。
 - 2. 試験開始の合図があったら、下の欄に、受験番号と名前を、受験票と同じように記入してください。
 - 3. 各科目の問題は、以下のページにあります。

科目	1	° — :	ジ
物理	1	~	21
化学	23	~	34
生物	35	~	48

- 4. 足りないページがあったら、手をあげて知らせてください。
- 5. 問題冊子には、メモや計算などを書いてもいいです。

Ⅲ 解答用紙に関する注意

- 1. 解答は、解答用紙に鉛筆 (HB) で記入してください。
- 2. 各問題には、その解答を記入する行の番号 **1**. **2**. **3**. …がついています。解答は、解答用紙(マークシート)の対応する解答欄にマークしてください。
- 3. 解答用紙に書いてある注意事項も必ず読んでください。
- ※ 試験開始の合図があったら、必ず受験番号と名前を記入してください。

受験番号	*		*			
名 前						

物理

「解答科目」記入方法

解答科目には「物理」、「化学」、「生物」がありますので、この中から2科目を選んで解答してください。選んだ2科目のうち、1科目を解答用紙の表面に解答し、もう1科目を裏面に解答してください。

「物理」を解答する場合は、右のように、解答用紙にある「解答科目」の「物理」を○で囲み、その下のマーク欄をマークしてください。

<解答用紙記入例>
解答科目 Subject
物理化学生物
Physics Chemistry Biology
● ○ ○

科目が正しくマークされていないと、採点されません。

- $oxed{I}$ 次の問い $oxed{A}$ (問 1), $oxed{B}$ (問 2), $oxed{C}$ (問 3), $oxed{D}$ (問 4), $oxed{E}$ (問 5), $oxed{F}$ (問 6), $oxed{G}$ (問 7) に答えなさい。ただし,重力加速度(acceleration due to gravity)の大きさを $oxed{g}$ とし,空気の抵抗は無視できるものとする。
 - \mathbf{A} 次の図のように、なめらかな水平面上に物体 A、B、C が置かれている。A、B、C の質量はすべて等しい。 \mathbf{A} を水平方向右向きに大きさ \mathbf{F} の力で押し続けたところ、これら3つの物体は接したまま右に動き続けた。

- 問1 CがBを左向きに押す力の大きさはいくらか。正しいものを、次の① \sim ④の中から -つ選びなさい。
- $3 \quad \frac{2}{3}F$
- 4

- ${f B}$ ある惑星の表面での,重力加速度の大きさは $\frac{g}{2}$ (地球の $\frac{1}{2}$)であった。この惑星 の表面上から、物体をある角度、ある速さで斜めに投げ上げ、放物運動をさせた。
- 問2 この惑星表面上での、投げ上げた点から落下点までの水平距離は、地球で同じ物体 を同じ角度,同じ速さで投げ上げたときと比べて何倍になるか。最も適当な値を,次 の①~⑤の中から一つ選びなさい。 2
 - ① $\frac{1}{4}$ ② $\frac{1}{2}$ ③ 1 ④ 2 ⑤ 4

物体A(質量m)と物体B(質量 $\frac{5}{2}m$)を軽くて伸びない糸の両端につけた。次の 図のように、糸をなめらかに回転する滑車(pulley)にかけ、AとBをそれぞれ異な る平面上に置いた。Aを置いた平面とAとの間には摩擦がなく、Bを置いた平面とB との間には摩擦がある。図1. 図2. 図3の3つの場合に対し、糸はたるむことなく それぞれの平面に平行な状態で、AとBは静止していた。

図1, 図2, 図3の場合において、Bにはたらく摩擦力 (frictional force) の大きさ 問3 をそれぞれ、 F_1 、 F_2 、 F_3 とする。 F_1 、 F_2 、 F_3 の大小関係はどうなるか。正しいもの 3 を. 次の①~⑥の中から一つ選びなさい。

- ① $F_1 < F_2 < F_3$ ② $F_1 < F_3 < F_2$ ③ $F_2 < F_1 < F_3$

- (4) $F_2 < F_3 < F_1$ (5) $F_3 < F_1 < F_2$ (6) $F_3 < F_2 < F_1$

4

 $oldsymbol{D}$ 次の図1のように、物体A(質量M)がなめらかで水平な床の上に置かれ、さらに A の上側のなめらかで水平な面上に物体B(質量m)が置かれている(M>m)。B は、この面上を動き、A の両端にある壁と弾性衝突(elastic collision)を繰り返して いる。B の A との相対速度の大きさv は運動の間一定であった。A は、時間 $\frac{T}{2}$ ごと に、「距離L の移動」と「静止」を繰り返している。図2 は A の移動距離の時間変化を 示すグラフである。

問 4 v はいくらか。正しいものを,次の① \sim ⑤の中から一つ選びなさい。

- ① $\frac{2L}{T}$ ② $\frac{4M}{M+m} \cdot \frac{L}{T}$ ③ $\frac{4m}{M+m} \cdot \frac{L}{T}$

 ${f E}$ 図1のように、一端を壁に固定したばねの他端に小球をつけ、なめらかで水平な床の上で小球を単振動させる。ばねに沿ってx軸をとり、ばねが自然長になっているときの小球の位置を原点Oとする。図2は、小球の位置xの時間変化を示すグラフである。

問5 図2の時間 t_A の時の小球の速度の向きは、x軸の正の向き、負の向きのどちらか。また、時間 t_A の時にばねが壁に及ぼす力の向きは、x軸の正の向き、負の向きのどちらか。正しい組み合わせを、次の1~4の中から一つ選びなさい。

	小球の速度の向き	ばねが壁に及ぼす力の向き
1	x軸の正の向き	x 軸の正の向き
2	x軸の正の向き	x 軸の負の向き
3	x 軸の負の向き	x軸の正の向き
4	x 軸の負の向き	x軸の負の向き

F 次の図のように、質量 M の物体 A が等しい長さの2本の糸で天井からつり下げら れて、静止している。質量mの粘土の小球Bが左から水平方向に速さvで飛んでき て、Aに瞬間的にはりついた。その後、AとBは一体となって運動をはじめた。Aの 達した最高点は初めの位置から高さんであった。

hはいくらか。正しいものを、次の①~⑤の中から一つ選びなさい。 問 6

6

①
$$\frac{m}{2(M+m)g}v^2$$
 ② $\frac{m^2}{2(M+m)^2g}v^2$ ③ $\frac{v^2}{2g}$

$$3 \frac{v^2}{2q}$$

G 次の図のように、地上から速さ v_0 で物体を鉛直上方に打ち上げたところ、地表か らの高さがhまで到達してから落下した。地球の半径をRとし、地表での重力加速度 の大きさを g とする。地球の自転(rotation of the earth)の影響は無視できるものと する。

問7 hはいくらか。正しいものを、次の① \sim ⑥の中から一つ選びなさい。

7

①
$$\frac{{v_0}^2 R}{gR + {v_0}^2}$$
 ② $\frac{{v_0}^2 R}{gR - {v_0}^2}$ ③ $\frac{{v_0}^2 R}{2gR + {v_0}^2}$

$$\textcircled{4} \quad \frac{{v_0}^2 R}{2gR - {v_0}^2} \qquad \qquad \textcircled{5} \quad \frac{2{v_0}^2 R}{2gR + {v_0}^2} \qquad \qquad \textcircled{6} \quad \frac{2{v_0}^2 R}{2gR - {v_0}^2}$$

$$\frac{2v_0^2R}{2aR + v_0^2}$$

- | II | 次の問い A (問 1). B (問 2). C (問 3) に答えなさい。
 - **A** 5つの物質の比熱(specific heat)が次の表で与えられている。これら5つの物質のいずれかでつくられた質量150gの容器がある。最初、温度10°Cであった容器の中に75°Cの水を100g入れて、じゅうぶん時間がたった後、容器と水の温度はともに60°Cとなった。水の比熱を4.2 J/(g·K)とし、外部との熱の出入りはないものとする。

物質	銀	銅	鉄	ガラス	アルミニウム
比熱 (J/(g·K))	0.24	0.39	0.45	0.84	0.90

- 問1 容器はどの物質でつくられているか。最も適当なものを、次の①~⑤の中から一つ選びなさい。8
 - ① 銀 ② 銅 ③ 鉄 ④ ガラス ⑤ アルミニウム

B 酸素分子が,体積 400 L,圧力 7.0 × 10⁵ Pa,温度 27°C の状態で容器に入っている。 酸素分子 1.0 mol は,温度 0.0°C,圧力 1.0 × 10⁵ Pa のとき 22.4 L の体積を占める。酸素分子 1.0 mol の質量は 32 g である。

問2 この容器に入っている酸素分子の全質量は何 kg か。最も適当な値を、次の① \sim ⑥ の中から一つ選びなさい。 **9** kg

- ① 0.11
- ② 0.36
- ③ 1.1

- 4 3.6
- **⑤** 11
- **6** 36

 \mathbf{C} 次の図のように、断熱材でできたシリンダーと断熱材でできたピストンからなる容 器に単原子分子理想気体(monatomic ideal gas)が入っている。シリンダー内には気 体を通さない固定されたしきり板があり、体積の変わらない空間 A とピストンで体 積が変化する空間 B に分けられている。ピストンはなめらかに動き、B内の圧力は常 に大気圧に保たれている。BにはAの3倍のモル数の単原子分子理想気体が入ってい る。最初 A 内の気体の絶対温度は $2T_0$, B 内の気体の絶対温度は T_0 であった。その後、 じゅうぶんに時間がたった後、A内の気体とB内の気体の絶対温度はともに T_1 となっ た。しきり板は熱をよく通し、その熱容量(heat capacity)は無視できるものとする。

T₁はいくらか。正しいものを、次の①~④の中から一つ選びなさい。 問3

10

- ① $\frac{5}{4}T_0$ ② $\frac{7}{6}T_0$ ③ $\frac{11}{8}T_0$ ④ $\frac{7}{2}T_0$

- III 次の問いA(問1), B(問2), C(問3)に答えなさい。
 - ${f A}$ 次の図は、x 軸上を正の向きに速さ $10~{
 m cm/s}$ で進む波の時刻 $t=0~{
 m s}$ における形を示している。 $x=10~{
 m cm}$ の位置には壁があり、波は固定端反射される。

問1 t=0.70 s における波の形を図で示すとどうなるか。最も適当なものを、次の① \sim ④ の中から一つ選びなさい。

 ${f B}$ x軸上をx軸の負の領域から正の領域に向かって一定の速さで移動する音源(sound source)がある。この音源からの音波を原点で測定した。図 1,図 2 は空気の圧力変化 Δp が時間 t とともにどのように変化したかをグラフで示したものである(ここで、図中の t の単位 ms は 10^{-3} s である)。図 1 は音源が原点に近づくとき、図 2 は音源が原点から遠ざかるときの結果を示している。

問2 音源の振動数はいくらか。最も適当なものを、次の①~④の中から一つ選びなさい。 **12** Hz

① 290 ② 590 ③ 620 ④ 1200

 ${f C}$ 次の図のように、レーザー光源から出た単色光の平行光線が2つのスリット S_1 、 S_2 を 通り、十分遠方のスクリーンに干渉縞をつくる。スリット S_2 の前には屈折率 (refractive index) を変えることのできる薄い透明な板が置かれている。

問3 板の屈折率を大きくしていくと、スクリーンの中心近くの暗線は図中のa, b どちらの方向に移動するか。また、隣り合う暗線の間隔はどうなるか。正しい組み合わせを、次の①~⑥の中から一つ選びなさい。 13

	①	2	3	4	⑤	6
移動方向	a	a	a	b	b	b
暗線の間隔	広くなる	同じ	狭くなる	広くなる	同じ	狭くなる

IV 次の問いA(問1), B(問2), C(問3), D(問4), E(問5), F(問6)に答えなさい。

A 次の図のように、xy 平面上の点 (3a.0) と点 (-3a,0) に、それぞれ電気量 Q (>0) をもった小球が固定されている。ただし、a>0 とする。

問1 点 (0.4a) から原点 (0.0) まで、電気量 Q をもった別の小球をゆっくり移動させる。このときに必要な外力のする仕事として最も適当なものを、次の① \sim ⑥の中から一つ選びなさい。ただし、クーロンの法則(Coulomb's law)の比例定数をkとする。 **14**

- $3 \frac{kQ^2}{6a}$

B 次の図1のように、極板間の距離がdの平行平板コンデンサー(parallel plate capacitor)を、起電力Vの電池につないで充電した。充電が終わった後、コンデンサーから電池を取り外し、図2のように極板間の距離を2dまで広げ、極板間全体に比誘電率(relative permittivity) ε_r で厚さ 2d の誘電体を挿入した。

- (2) ε
- (3) $2\varepsilon_r$

- $4 \frac{1}{2\varepsilon_n}$
- \bigcirc $\frac{1}{\epsilon}$
- \bigcirc $\frac{2}{\varepsilon_r}$

 ${f C}$ 抵抗値がRの抵抗を2個、2Rの抵抗を4個、および起電力Vの電池をつないで、次の図のような回路をつくった。抵抗値2Rの抵抗に、図のように、A、B、C、D と名前を付けた。電池を流れる電流をI とし、A、B、C に流れる電流をそれぞれ I_1 、 I_2 、 I_3 とする。

問3 I_1 , I_2 , I_3 はいくらか。正しい組み合わせを、次の① \sim ⑤の中から一つ選びなさい。 **16**

	I_1	I_2	I_3
1	$\frac{1}{2}I$	$\frac{1}{4}I$	$\frac{1}{8}I$
2	$\frac{1}{2}I$	$\frac{1}{4}I$	$\frac{1}{6}I$
3	$\frac{1}{2}I$	$\frac{1}{4}I$	$\frac{1}{16}I$
4	$\frac{1}{2}I$	$\frac{1}{3}I$	$\frac{1}{4}I$
(5)	$\frac{1}{2}I$	$\frac{1}{9}I$	$\frac{1}{16}I$

D 次の図のように、抵抗値 $4.0 \text{ k}\Omega$ と $1.0 \text{ k}\Omega$ の抵抗、電気容量 $2.0 \mu\text{F}$ のコンデンサー 1 個と $3.0 \mu\text{F}$ のコンデンサー 2 個、および起電力 20 V の電池とスイッチ S でつくった 回路がある。電池の内部抵抗は無視できるものとし、S を閉じるまではコンデンサー には電荷はなかった。

① 4.0 ② 5.0 ③ 6.0 ④ 8.0 ⑤ 9.0

 ${f E}$ 次の図のように、一辺が $0.10\,{
m m}$ の正三角形の頂点 A、B、Cを通る導線に、それぞれ $10\,{
m A}$ の電流が流れている。 $3\,{
m x}$ 本の導線それぞれは三角形の平面に対して垂直である。 ${
m A}$ を通る導線に流れる電流の向きは紙面の裏から表の向き、B、Cについては紙面の表から裏の向きである。

問5 三角形 ABC の重心での磁場の大きさはいくらか。最も適当なものを、次の① \sim ⑤ の中から一つ選びなさい。ただし、 $\pi=3.1$ 、 $\sqrt{3}=1.7$ として計算してよい。

18 A/m

- ① 0
- ② 37
- ③ 55
- 4) 75
- (5) 83

 \mathbf{F} 次の図のように、xy 平面上の円形導線に電流が流れており、z 軸に沿って棒磁石が 置かれている。電流の向きはz 軸の正の向きから見て右回り(時計回り)であり、棒 磁石の N 極はz 軸の正の向きを向いている。

問6 棒磁石が電流がつくる磁場から受ける力の向きは、z軸の正の向きか、負の向きか。また、円形導線が棒磁石のつくる磁場から受ける力の向きはz軸の正の向きか、負の向きか。正しい組み合わせを、次の \mathbb{Q} へ \mathbb{Q} の中から一つ選びなさい。

	棒磁石が受ける力の向き	円形導線が受ける力の向き
1	z軸の正の向き	z 軸の正の向き
2	z軸の正の向き	<i>z</i> 軸の負の向き
3	z軸の負の向き	z 軸の正の向き
4	z 軸の負の向き	z軸の負の向き

物理の問題はこれで終わりです。解答欄の **20** ~ **75** はマークしないでください。 解答用紙の科目欄に「物理」が正しくマークしてあるか、もう一度確かめてください。

この問題冊子を持ち帰ることはできません。

化学

「解答科目」記入方法

解答科目には「物理」、「化学」、「生物」がありますので、 この中から2科目を選んで解答してください。選んだ2科 目のうち、1科目を解答用紙の表面に解答し、もう1科目 を裏面に解答してください。

「化学」を解答する場合は、右のように、解答用紙にあ る「解答科目」の「化学」を○で囲み、その下のマーク 欄をマークしてください。

科目が正しくマークされていないと、探点されません。

計算には次の数値を用いること。また,体積の単位リットル(liter)はLで表す。

標準状態 (standard state): 0° C, 1.0×10^{5} Pa (= 1.0 atm)

標準状態における理想気体 (ideal gas) のモル体積 (molar volume): 22.4 L/mol

気体定数 (gas constant): $R = 8.31 \times 10^3 \text{ Pa·L/(K·mol)}$

アボガドロ定数 (Avogadro constant): $N_A = 6.02 \times 10^{23}$ /mol

ファラデー定数(Faraday constant): $F = 9.65 \times 10^4$ C/mol

原子量 (atomic weight): H:1.0 C:12 N:14 O:16 Na:23 Mg:24

S: 32 Ca: 40 Fe: 56 Zn: 65 Pb: 207

- 次の①~⑤のそれぞれに示した三つの元素 (element) すべてが周期表 (periodic table) の同じ族 (group) に属するものを, 一つ選びなさい。
 - ① Al, B, S
- ② Be, Ca, Mg ③ Br, O, S

- (4) Ca, K, Li
- ⑤ Cl, F, Ne

問2 次の分子①~⑤のうち、共有結合 (covalent bond) に使われている価電子 (valence electron) の数が最も多いものを一つ選びなさい。

- ① エタン (ethane) ② エチレン (エテン) (ethylene (ethene))
- ③ 窒素 (nitrogen) ④ 二酸化炭素 (carbon dioxide)
- ⑤ 水

問3 CH_4 , H_2O , NH_3 はそれぞれ何組の非共有電子対 (unshared electron pair) をもつか。 正しい数の組み合わせを、次表の①~⑥の中から一つ選びなさい。

	CH ₄	H ₂ O	NH ₃
①	0	0	2
2	0	1	0
3	0	2	1
4	1	0	2
5	1	1	0
6	1	2	1

6

	記)	D~⑤のうち, 誤っているもの を一つ選びなさい。
		4
	1	族元素 (group 1 element) は、1 価 (monovalent) の陽イオン (cation) になり
		Pすい。
	2	8 族元素のイオン化エネルギー(第一イオン化エネルギー: first ionization energy)
		t, 同じ周期(period)の他の元素より大きい。
	3	I から始まる周期を除き, 同じ族 (group) の典型元素 (main group element) は,
		むいによく似た化学的性質をもつ。
	4	I から始まる周期を除き,金属元素(metallic element)は周期表の左側に位置
		している。
	⑤	la から始まる周期には,遷移元素(transition element)も含まれる。
問 5	ī	秦 X を含む三つの化合物 A, B および C の 1.0 mol 中の元素 X の質量 (mass) は,
	それ	ぞれ 38 g, 57 g および 76 g であった。元素 X の原子量として最も適当な値を,
	次の	D~⑥の中から一つ選びなさい。 5
	①	9 ② 38 ③ 57 ④ 76 ⑤ 95 ⑥ 114
問 6	Ů	り物質それぞれ 1.0 g が同温・同体積の容器内で理想気体 (ideal gas) として存在
	して	いるとき、内部の圧力が最も低くなるものを、次の①~⑤の中から一つ選び

問4 周期表 (periodic table) において、Hから Arまでの元素 (element) に関する次の

① CO_2 ② O_2 ③ N_2 ④ $CH_3CH=CH_2$ ⑤ CH_3CH_2OH

なさい。

問 7 炭素 C および一酸化炭素 CO の燃焼熱 (heat of combustion) は,それぞれ 394 kJ/mol および 283 kJ/mol である。1.00 mol の炭素が燃焼して 0.500 mol の一酸化炭素と 0.500 mol の二酸化炭素 CO₂ が生成した。発生する熱量は何 kJ か。最も近い値を,次の①~ ⑥の中から一つ選びなさい。

- ① 111 ② 253 ③ 299 ④ 323 ⑤ 338 ⑥ 677
- 問8 0.10 mol/L の酢酸ナトリウム水溶液 CH₃COONa aq に含まれる各イオンをモル濃度 (molar concentration) の高いものから順に並べたものとして正しいものを,次の①~ ⑥の中から一つ選びなさい。
 - ① $CH_3COO^- > Na^+ > OH^- > H^+$
 - ② $CH_3COO^- > OH^- > Na^+ > H^+$
 - $3 \text{ Na}^{+} > \text{CH}_{3}\text{COO}^{-} > \text{OH}^{-} > \text{H}^{+}$
 - $4 \text{ Na}^{+} > \text{OH}^{-} > \text{CH}_{3}\text{COO}^{-} > \text{H}^{+}$
 - ⑤ $Na^{+} > OH^{-} > H^{-} > CH_{3}COO^{-}$

問9 体積が変わらない容器に封じこめた理想気体 (ideal gas) の温度 T[K] と圧力 P[Pa] との関係を表すグラフとして最も適当なものを、次の \mathbb{D} \sim \mathbb{S} の中から一つ選びなさい。

9

2

3

4

(5)

問 10 鉛蓄電池 (lead storage battery) の放電 (discharge) 時の負極 (anode) と正極 (cathode) での反応は次のように表される。

(負極)
$$Pb + SO_4^{2-} \longrightarrow PbSO_4 + 2e^-$$

(正極) $PbO_2 + SO_4^{2-} + 4H^+ + 2e^- \longrightarrow PbSO_4 + 2H_2O_4$

放電により 10.0 A で 965 秒電流が流れたとき、負極、正極の質量 (mass) はそれぞれ何 g 増加するか。最も適当な組み合わせを、次表の①~⑥の中から一つ選びなさい。ただし、生成した PbSO4 はすべて電極 (electrode) の表面に析出 (deposition) するものとする。

	負極〔g〕	正極 [g]
①	4.80	3.20
2	4.80	6.40
3	9.60	6.40
4	9.60	15.2
5	15.2	3.20
6	15.2	15.2

問 11 次の化合物①~⑥のうち、窒素原子 N の酸化数 (oxidation number) が最も小さいものを一つ選びなさい。

① HNO_2 ② HNO_3 ③ NH_3 ④ NO ⑤ NO_2 ⑥ N_2O_4

問 12 次の反応①~⑤のうち、金属 $1.0 \, \mathrm{g} \, \mathrm{e}$ じゅうぶんな量の水あるいは塩酸 $\mathrm{HCl} \, \mathrm{aq} \, \mathrm{e}$ 反応させたとき、発生する水素 H_2 の同温・同圧での体積が最も大きい反応はどれか。 正しいものを、次の①~⑤の中から一つ選びなさい。

- ① $Ca + 2H_2O \longrightarrow Ca(OH)_2 + H_2$
- ② Fe + 2HCl \longrightarrow FeCl₂ + H₂
- 3 Mg + 2HCl \longrightarrow MgCl₂ + H₂
- 4 2Na + 2H₂O \longrightarrow 2NaOH + H₂
- 5 Zn + 2HCl \longrightarrow ZnCl₂ + H₂
- 問 13 水素 (hydrogen) に関する次の記述①~⑤のうち, <u>誤っているもの</u>を一つ選び なさい。
 - ① すべての気体の中で最も軽い。
 - ② 水に溶けにくい。
 - ③ 高温で金属の酸化物 (oxide) に対して、還元剤 (reducing agent) としてはたらく。
 - ④ 水を電気分解 (electrolysis) すると、陽極 (anode) から発生する。
 - ⑤ 燃料電池 (fuel cell) に使用される。

- 問 14 アルカリ金属 (alkali metal) に関する記述として最も適当なものを、次の①~⑤の中から一つ選びなさい。
 - ① ナトリウム Na は塩化ナトリウム水溶液 NaCl aq の電気分解 (electrolysis) によって得られる。
 - ② ナトリウムはエタノール(エチルアルコール)(ethanol (ethyl alcohol)) と反応しない。
 - ③ 2価 (divalent) の陽イオン (cation) になりやすい。
 - ④ アルカリ金属の原子は1個の価電子 (valence electron) をもつ。
 - ⑤ 原子番号が大きくなるにつれて、アルカリ金属のイオン化エネルギー(第一 イオン化エネルギー: first ionization energy) は大きくなる。

問 15 次の図の装置を用いて、化合物 A と濃塩酸 conc. HCl から、乾燥した塩素 Cl₂をつくりたい。化合物 A と図の B, C に入れる物質はそれぞれ何か。また、発生した気体を集めるのに下の(i)、(ii)のどちらの方法が適当か。最も適当な組み合わせを、下表の①~⑥の中から一つ選びなさい。

- (i) 上方置換 (upward delivery)
- (ii) 下方置換 (downward delivery)

	Α	В	С	気体を 集める方法
①	CuO	conc. H ₂ SO ₄	H ₂ O	i
2	CuO	conc. H ₂ SO ₄	H ₂ O	ii
3	CuO	H ₂ O	conc. H ₂ SO ₄	ii
4	MnO_2	conc. H ₂ SO ₄	H ₂ O	i
(5)	MnO ₂	H ₂ O	conc. H ₂ SO ₄	i
6	MnO ₂	H ₂ O	conc. H ₂ SO ₄	ii

conc. H2SO4: 濃硫酸 (concentrated sulfuric acid)

- 問 16 アルケン (alkene) の反応に関する次の記述①~⑤のうち、**誤っているもの**を一つ 選びなさい。 **16**
 - ① エチレン (エテン) (ethylenc (ethone)) を臭素水 (bromine water) に通じると,臭素水が脱色される。
 - ② エチレンを触媒(catalyst)の存在下で水素(hydrogen)と反応させると、エタン (ethane)が生成する。
 - ③ エチレンを付加重合 (addition polymerization) させると、ベンゼン (benzene) が 生成する。
 - ④ プロピレン (プロペン) (propylene (propene)) とベンゼンから, クメン (イソ プロピルベンゼン) (cumene (isopropylbenzene)) が合成される。
 - ⑤ 2-メチルプロペン (2-methylpropene) と臭素 (bromine) の反応では、立体異性体 (stereoisomer) は生成しない。
- 問 17 次の化学反応①~⑤のうち、1-プロパノール(プロピルアルコール)(1-propanol (propyl alcohol)) と 2-プロパノール (イソプロピルアルコール) (2-propanol (isopropyl alcohol)) を区別できる反応を、一つ選びなさい。
 - ① 濃硫酸 conc. H₂SO₄による脱水反応 (dehydration reaction)
 - ② 銀鏡反応 (silver mirror test)
 - ③ 塩化鉄(Ⅲ) FeCl₃による呈色反応 (color reaction)
 - ④ フェーリング液 (Fehling's solution) の還元反応 (reduction reaction)
 - ⑤ ヨードホルム反応 (iodoform reaction)

- 問 18 エタノール (エチルアルコール) (ethanol (ethyl alcohol)) 2.3 g を完全燃焼 (complete combustion) させるために必要な酸素 (oxygen) は, 標準状態で何 L か。最も近い値を, 次の①~⑥の中から一つ選びなさい。
 - ① 1.1 ② 3.4 ③ 6.8 ④ 11 ⑤ 34 ⑥ 68
- 問 19 次の反応(a)~(c)で生じた化合物 X, Y, Z を酸性 (acidity) の強いものから順に 並べたものとして最も適当なものを,下の①~⑥の中から一つ選びなさい。 **19**

(a)
$$\frac{\text{conc. HNO}_3, \text{ conc. H}_2\text{SO}_4}{}$$
 \times

(b)
$$CH_3$$
 $KMnO_4$ $dil. H_2SO_4$ Y

- ① X > Y > Z ② X > Z > Y ③ Y > X > Z
- (4) Y > Z > X (5) Z > X > Y (6) Z > Y > X

問 20 次の芳香族化合物 (aromatic compound) (a)~(e)の中に、塩化鉄(Ⅲ)水溶液 FeCl₃ aq を加えると青~紫色の呈色反応 (color reaction) を示すものが二つある。それらの組み合わせとして最も適当なものを、下の①~⑥の中から一つ選びなさい。

① a, c ② a, d ③ b, c ④ b, e ⑤ c, d ⑥ c, e

化学の問題はこれで終わりです。解答欄の **21** ~ **75** はマークしないでください。 解答用紙の科目欄に「化学」が正しくマークしてあるか、もう一度確かめてください。

この問題冊子を持ち帰ることはできません。

生物

「解答科目」記入方法

解答科目には「物理」,「化学」,「生物」がありますので, この中から2科目を選んで解答してください。選んだ2科目のうち,1科目を解答用紙の表面に解答し,もう1科目を裏面に解答してください。

「生物」を解答する場合は、右のように、解答用紙にある「解答科目」の「生物」を〇で囲み、その下のマーク欄をマークしてください。

科目が正しくマークされていないと、探点されません。

- 問1 次に示す生物 A~D は、原核生物(prokaryote)、単細胞の真核生物(eukaryote)、葉緑体(chloroplast)を含む真核生物のうちのどれに当てはまるか。組み合わせとして正しいものを下の①~⑥の中から一つ選びなさい。
 - A 酵母菌 (yeast) B 乳酸菌 (lactobacillus) C アメーバ (amoeba)
 - D ミドリムシ (euglena)

	原核生物	単細胞の真核生物	葉緑体を含む真核生物
1	А	B, C	D
2	В	A, C, D	D
3	В	A, C, D	A, D
4	A, B	C, D	なし
(5)	A, B	С	D
6	С	A, B, D	なし

問2 次の文 a~e は、細胞小器官 (cell organelle) の働きについて述べたものである。ゴルジ体 (Golgi body) と中心体 (centrosome) に当てはまるものの正しい組み合わせを、下の①~9 の中から一つ選びなさい。

- a 老廃物や栄養物を蓄える。
- b 細胞内で合成された物質の細胞外への分泌 (secretion) にかかわる。
- c 細胞分裂 (cell division) のときに紡錘糸 (spindle fiber) 形成の起点となる。
- d 有機物 (organic compound) を合成する。
- e エネルギーをつくり出す。

	_2 0 52/4-	ets 3 /de
	ゴルジ体	中心体
(1)	а	b
2	а	С
3	þ	а
4	b	С
(5)	O	а
6	C	b
7	d	Ь
8	d	e
9	е	а

問3	植物細胞を低張液	(hypotonic solution	on)に浸したところ	, 細胞は吸水して体積が	増加し,
	ある時点で体積変化	が止まり安定した。	次の a~f のうち,	このときの圧力の関係と	して正し
	いものを二つ選び,	その組み合わせを下	の①~⑥の中から-	一つ選びなさい。	3

- a 細胞内の浸透圧 (osmotic pressure) > 外液の浸透圧
- b 細胞内の浸透圧 = 外液の浸透圧
- c 細胞内の浸透圧 < 外液の浸透圧
- d 吸水力 (suction force) < 膨圧 (turgor pressure)
- e 吸水力 > 膨圧
- f 吸水力 = 膨圧
- ① a, d ② a, f ③ b, d ④ b, e ⑤ c, e ⑥ c, f

問 4 次の文 a~e は、ウニ (sea urchin) の受精 (fertilization) の過程について述べたものである。文を進行順に並べると、どのようになるか。正しいものを下の①~⑤の中から一つ選びなさい。

- a 精子 (sperm) が卵の細胞膜 (cell membrane) に達する。
- b 精子が卵のゼリー層 (jelly layer) に到達する。
- c 精子の核 (nucleus) と卵の核が近づく。
- d 精子の先端(先体 acrosome)が変化する。
- e 受精膜 (fertilization membrane) が生じる。
- $\textcircled{3} \quad b \rightarrow d \rightarrow a \rightarrow e \rightarrow c \qquad \qquad \textcircled{4} \quad d \rightarrow b \rightarrow a \rightarrow e \rightarrow c$
- 5 d \rightarrow b \rightarrow e \rightarrow a \rightarrow c

- 問 5 有性生殖 (sexual reproduction) では遺伝的に多様な配偶子 (gamete) がつくられる。これに関する次の問い(1)、(2)に答えなさい。
 - (1) 一般に減数分裂 (meiosis) では、相同染色体 (homologous chromosomes) の一部で乗換え (crossing-over) が起こり、新たな遺伝子 (gene) の組み合わせが生じる。この乗換えが起こる時期として正しいものを、次の①~⑥の中から一つ選びなさい。
 - ① 第一分裂(meiosis I)前期(prophase)
- ② 第一分裂後期 (anaphase)

③ 第一分裂終期 (telophase)

④ 第二分裂 (meiosis II) 前期

- ⑤ 第二分裂中期 (metaphase)
- ⑥ 第二分裂後期
- (2) 次の図は、キイロショウジョウバエ(*Drosophila melanogaster*)の雄における体細胞(somatic cell)の染色体(chromosome)構成と、常染色体(autosome)上にある 3 対の対立遺伝子(allele) A と a. B と b, C と c の位置を示している。これらの遺伝子に注目したとき、一個体由来の精子(sperm)には理論上、最大何種類の遺伝子型(genotype)が考えられるか。正しいものを下の①~⑤の中から一つ選びなさい。

- ① 1種類
- ② 2種類
- ③ 4種類
- ④ 8種類
- ⑤ 16 種類

問 6 次の図は、ヒトのある家系を示している。○は女性を、□は男性を示しており、○あるいは □の中のアルファベットはABO 式血液型(ABO blood type)を示している。図中のIの女性 の遺伝子型(genotype)は何か。また、IIの男性の表現型(phenotype)はどのようなものが 考えられるか。すべて挙げたものの正しい組み合わせを、下の①~⑧の中から一つ選びなさい。

7

	Iの遺伝子型	Ⅱの表現型
①	AB	A型かO型
2	AB	A 型か B 型か O 型
3	BB	A 型か B 型
4	BB	A 型か B 型か AB 型
(5)	ВО	A型かO型
6	ВО	A 型か B 型か O 型
7	00	A 型か B 型
8	00	A 型か B 型か AB 型

理科-40

- 問7 ヒトの腎臓 (kidney) のつくりと働きについて述べた文として<u>誤っているもの</u>を、次の①~ ⑤の中から一つ選びなさい。
 - ① 腹部の背側に左右一つずつあって、内部にはネフロン (nephron、腎単位 kidney unit) とよばれる構造がある。
 - ② ネフロンは、腎小体 (renal corpuscle, マルピーギ小体 Malpighian corpuscle) と毛細血管 (capillary) に取り囲まれた腎細管 (kidney tubule, 細尿管 uriniferous tubule) とからできている。
 - ③ 腎小体では、糸球体 (glomerulus) からボーマンのう (Bowman's capsule) に、血しょう (blood plasma) 中のグルコース (glucose) 以外の血しょう成分がろ過される。
 - ④ 糸球体からボーマンのう内へとろ過されたものを原尿 (primitive urine) といい,原尿が腎細管を通る間に,腎細管をとり巻く毛細血管にさまざまな成分が再吸収される。
 - ⑤ 腎細管におけるさまざまな成分の再吸収には、細胞の能動輸送(active transport) が関与している場合もあり、それは血液の浸透圧(osmotic pressure)を一定に保つように調節される。

問 8	B 自律神経(autonomic nerve)は2種類あり,互いに拮抗的(antagonistic)な働きをする
	ことで体の恒常性 (homeostasis) が保たれている。次の a~f のうち, 交感神経 (sympathetic
	nerve)の働きとして正しいものの組み合わせを、下の①~⑧の中から一つ選びなさい。

9

瞳孔 (pupil) の拡大

瞳孔の収縮

皮膚 (skin) の血管の拡大 С

d 皮膚の血管の収縮

心臓の拍動(pulsation)の抑制

f 心臓の拍動の促進

① a, c, e

② a, c, f

③ a, d, e ④ a, d, f

⑤ b, c, e

6 b, c, f

⑦ b, d, e

8 b, d, f

間9 ヒトのしつがい腱反射 (patellar tendon reflex) について述べた次の文 a~e のうち正しい 10 ものの組み合わせを、下の①~⑨の中から一つ選びなさい。

- 型にはまった一定の反応で、意識的にすばやい反応を示す。 а
- しつがい腱(patellar tendon)とそれに続く筋肉(muscle)が打たれて引き伸ばされる b と,筋肉中の効果器 (effector) である筋紡錘 (muscle spindle) が興奮 (excitation) する。
- 反射中枢(reflex center)は脊髄(spinal cord)にあり、興奮が脊髄内の一つのシナプス (synapse)を介して運動神経 (motor nerve) に伝えられる。
- 運動神経は、脊髄の背根 (dorsal root) から出て、ももの筋肉を弛緩 (relaxation) させ る。その結果、足が上がる。
- 反射が起こるときの興奮の伝わる経路を反射弓 (reflex arc) という。

① a, b

② a, c

③ a, d

④ a, e

⑤ b, c

⑦ b, e

8 c, d

(9) c, e

理科-42

問10 ゾウリムシ (paramecium) の入った培養液を次の図のように三つの容器に入れたところ, ゾウリムシは上の部分に集まった。これらの実験結果からこの行動について述べた下の文 a~e のうち, 正しいものの組み合わせを下の①~⑥の中から一つ選びなさい。ただし, 光はそれ ぞれの容器全体に対して均一に当たっているものとする。

- a ゾウリムシは、重力を感じて上に集まった。
- b ゾウリムシは、空気を感じて上に集まった。
- c ゾウリムシは、重力と空気の両方を感じて上に集まった。
- d ゾウリムシのこの行動は、正の走性(taxis)である。
- e ゾウリムシのこの行動は、負の走性である。
- ① a, d ② a, e ③ b, d ④ b, e ⑤ c, d ⑥ c, e

問 11 ヒトのだ液 (saliva) のアミラーゼ (amylase), 胃液 (gastric juice) のペプシン (pepsin), すい液 (pancreatic juice) のトリプシン (trypsin) は、消化酵素 (digestive enzyme) である。 アミラーゼの作用が最も大きくなるときの pH を X とすると、ペプシンとトリプシンの作用は それぞれどのような pH のときに大きくなるか。組み合わせとして最も適当なものを、次の① ~⑦の中から一つ選びなさい。ただし、pH 以外の酵素反応の条件は最適なものとする。

12

	ペプシン	トリプシン
①	X	X-5
2	X	X+1
3	X+1	X-5
4	X+1	X
5	X+1	X+1
6	X-5	X-5
7	X-5	X+1

理科-44

間 12 十分に吸水させたレタス (lettuce) の種子に, それぞれ 5 分間, 赤色光 (red light: R, 波長 660nm 付近) または遠赤色光 (far red light: FR, 波長 730nm 付近) を次の表に示す順で当てた。その後, 25℃の暗所で 3 日間培養して発芽率 (germination rate) を調べたところ, 表のような結果を得た。

この表を参考にして、レタスの種子の発芽 (germination) に関する下の問い(1), (2)に答えなさい。

光の処理	発芽率 (%)
暗所	4
R→暗所	98
FR→暗所	3
R→FR→暗所	2
R→FR→R→暗所	97
R→FR→R→FR→暗所	0
R→FR→R→FR→R→暗所	95

(1) 光の処理を FR→R→暗所にして同じ実験を行うと、発芽率はどうなるか。正しいものを次の ①~④の中から一つ選びなさい。

- ① 発芽率は0%付近になる。
- ② 発芽率は100%近くになる。
- ③ 発芽率は50%前後になる。
- ④ 発芽率は25%前後になる。

- (2) 光の処理が暗所のみのとき、植物ホルモン (plant hormone) X を同時に与えたところ、発 芽率が 100%近くになった。これと同様に、光の処理が R→FR→R→FR→暗所のとき、X を同 時に与えると、発芽率はどうなるか。X の名称とこのときの発芽率について述べた文として最 も適当なものを、次の①~④の中から一つ選びなさい。
 - ① X はアブシシン酸 (abscisic acid) で、発芽率は 100%近くになる。
 - ② Xはアブシシン酸で, 発芽率は 0%付近になる。
 - ③ X はジベレリン (gibberellin) で、発芽率は 100%近くになる。
 - ④ X はジベレリンで, 発芽率は 0%付近になる。

問13 葉緑体 (chloroplast) で行われる光合成 (photosynthesis) は、一般に次のような四つの過程で示される。これに関する下の問い(1)、(2)に答えなさい。

光化学系 II (photosystem II), 電子伝達系 (electron transport system), 光化学系 I (photosystem I), カルビン・ベンソン回路 (Calvin-Benson cycle), グルコース (glucose)

- (1) 四つの過程のうち、反応の進行に伴って ATP の合成が行われる過程はどれか。すべて挙げたものを、次の①~⑥の中から一つ選びなさい。
 - ① 光化学系 II
 - ② 電子伝達系
 - ③ 光化学系 I
 - ④ カルビン・ベンソン回路
 - ⑤ 光化学系 II と光化学系 I
 - ⑥ 電子伝達系とカルビン・ベンソン回路
- (2) 四つの過程のうち、チラコイド (thylakoid) で行われる過程はどれか。すべて挙げたもの を、次の①~⑥の中から一つ選びなさい。 **16**
 - ① 光化学系 II
 - ② 光化学系Ⅱ,電子伝達系
 - ③ 光化学系Ⅱ, 電子伝達系, 光化学系Ⅰ
 - ④ カルビン・ベンソン回路
 - ⑤ 光化学系 I, カルビン・ベンソン回路
 - ⑥ 電子伝達系, 光化学系 I, カルビン・ベンソン回路

- **問 14** ヒトの骨格筋 (skeletal muscle) では長時間収縮し続けると酸素が不足する状態になり、筋肉中の乳酸 (lactic acid) が増加する。筋肉中の ATP の量はほとんど変化しないが、クレアチンリン酸 (phosphocreatine) の量は減少する。筋収縮 (muscle contraction) に伴って ATP とクレアチンリン酸がどのように使われるかを説明した文として、正しいものを次の①~④の中から一つ選びなさい。
 - ① 筋収縮の直接のエネルギー源としてATPが消費される。クレアチンリン酸は消費されたATP を再合成するのに使われる。
 - ② 筋収縮の直接のエネルギー源としてATPが消費されるが、解糖 (glycolysis) により直ち に再合成される。クレアチンリン酸は解糖により乳酸を生じる過程で使われる。
 - ③ 筋収縮の直接のエネルギー源としてクレアチンリン酸が消費される。ATPは消費されたクレアチンリン酸を再合成するのに使われるが、解糖により直ちに再合成される。
 - ④ 筋収縮の直接のエネルギー源としてクレアチンリン酸が消費される。ATPは解糖により生じるが、乳酸からグリコーゲン(glycogen)を合成するのに使われる。

問 15	真核生物	(eukaryote)	の染色体	(chromosome)	と DNA につい	て述べた次の文	で中の空欄
	W ~ Z	こに当てはま	る語句の紹	組み合わせとして	こ正しいものを,	下の①~⑧の中	コから一つ
選	選びなさい。						18

染色体のおもな構成物質は DNA と W である。 DNA は遺伝子(gene)の本体で、構成単位のヌクレオチド(nucleotide)が多数結合している物質である。ヌクレオチドは、リン酸(phosphate)、 X 、塩基(base)とよばれる部分からなる。塩基には A、T、G、C と略される 4 種類があり、その配列が遺伝情報となる。また、DNA が二重らせん構造 (double helix structure)をつくるとき、A と Y 、G と Z が結合する。

	W	Х	Υ	Z
1	脂質(lipid)	糖(sugar)	Т	С
2	脂質	糖	С	Т
3	脂質	アミノ酸 (amino acid)	Т	С
4	脂質	アミノ酸	С	Т
5	タンパク質	糖	Т	С
6	タンパク質	糖	С	Т
7	タンパク質	アミノ酸	Т	С
8	タンパク質	アミノ酸	С	Т

生物の問題はこれで終わりです。解答欄の $\boxed{19} \sim \boxed{75}$ はマークしないでください。解答用紙の科目欄に「生物」が正しくマークしてあるか、もう一度確かめてください。

この問題冊子を持ち帰ることはできません。

〈理 科〉

物理					
5	問 解答欄 正解				
	問 1	1	1		
	問 2	2	4		
	問 3	3	1		
I	問 4	4	5		
	問 5	5	3		
	問 6	6	2		
	問 7	7	4		
	問 1	8	4		
п	問 2	9	4		
	問3	10	2		
	問 1	11	4		
Ш	問 2	12	2		
	問 3	13	5		
	問 1	14	5		
	問 2	15	6		
N	問3	16	1		
10	問 4	17	2		
	問 5	18	3		
	問 6	19	2		

	化学				
問	解答欄	正解			
問 1	1	2			
問 2	2	1			
問 3	3	3			
問 4	4	5			
問 5	5	1			
問 6	6	5			
問 7	7	2			
問 8	8	3			
問 9	9	5			
問10	10	1			
問11	11	3			
問12	12	3			
問13	13	4			
問14	14	4			
問15	15	6			
問16	16	3			
問17	17	5			
問18	18	2			
問19	19	4			
問20	20	6			

生物				
問	解答欄	正解		
問 1	1	2		
問 2	2	4		
問 3	3	1		
問 4	4	3		
問 5	5	1		
PJ 3	6	4		
問 6	7	6		
問 7	8	3		
問 8	9	4		
問 9	10	9		
問10	11	2		
問11	12	7		
問12	13	2		
P] Z	14	3		
問13	15	2		
[P] 13	16	3		
問14	17	1		
問15	18	5		