學號:R06921066 系級:電機碩一姓名:劉宇閎

請實做以下兩種不同 feature 的模型, 回答第 (1)~(3) 題:

- (1) 抽全部 9 小時內的污染源 feature 的一次項(加 bias)
- (2) 抽全部 9 小時內 pm2.5 的一次項當作 feature(加 bias)

備註:

- a. NR 請皆設為 0, 其他的數值不要做任何更動
- b. 所有 advanced 的 gradient descent 技術(如: adam, adagrad 等) 都是可以用的
- 1. (2%)記錄誤差值 (RMSE)(根據 kaggle public+private 分數), 討論兩種 feature 的影響

	public	private	Public + private
全考慮	7.59076	5.52561	6.63897
只有 PM2.5	7.84189	6.29361	7.11001

若只單考慮一種污然物的影響在整體結果來說都是較差的 , 有可能是因為忽略了某些預測時重要的參數

2. (1%)將 feature 從抽前 9 小時改成抽前 5 小時, 討論其變化

	public	private	Public + private
全考慮	9.24716	6.73486	8.0891
只有 PM2.5	9.73083	6.48558	8.2689

當考慮的 feature 數較少時,此時產生誤差較大的原因可能為 P M 2.5 不單單只受到這 5 個小時的影響,所以當忽略了其他四小時資訊時產生了相當大的影響

3. (1%)Regularization on all the weight with λ =0.1、0.01、0.001、0.0001,並作圖

第一張圖為 kaggle 上的直計算出的 RMSE 而第二張則是 train 的時候 validation 的誤差

6.426798	6.426351	6.42631	6.42631
5.403014	5.402591	5.402551	5.402541

4. (1%)在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 \mathbf{x}^n ,其標註(label)為一存量 \mathbf{y}^n ,模型參數為一向量 \mathbf{w} (此處忽略偏權值 b),則線性回歸的損失函數(loss function)為 $\sum_{n=1}^{N}$ $(\mathbf{y}^n - \mathbf{x}^n \cdot \mathbf{w})^2$ 。若將所有訓練資料的特徵值以矩陣 $\mathbf{X} = [\mathbf{x}^1 \ \mathbf{x}^2 \ ... \ \mathbf{x}^N]^T$ 表示,所有訓練資料的標註以向量 $\mathbf{y} = [\mathbf{y}^1 \ \mathbf{y}^2 \ ... \ \mathbf{y}^N]^T$ 表示,請問如何以 \mathbf{X} 和 \mathbf{y} 表示可以最小化損失函數的向量 \mathbf{w} ?請寫下算式並選出正確答案。(其中 $\mathbf{X}^T\mathbf{X}$ 為 invertible)

- (a) $(X^TX)X^Ty$
- (b) $(X^{T}X)^{-0}X^{T}y$
- (c) $(X^TX)^{-1}X^Ty$
- (d) $(X^{T}X)^{-2}X^{T}y$

y = Xw 為無解,其中 w'為最佳近似解 故 y - Xw'屬於 $N(X^T)$,可得 $X^T(y - XW)$ ') = 0 亦等於 $X^Ty = X^TXw$ ' 可知 w' = $(X^TX)^{-1}X^Ty$ 得證, 故答案為 c