

# Trigonometry

Dipam Sen (Fun Planet)

### Degree Measurement of Angles

Usually, we measure angles in degrees, where 360° is one complete rotation.

$$1^{\circ} = 60'$$

$$1' = 60''$$

### Radian Measurement of Angles

Radians is another unit for measuring angles, where a complete rotation is marked as  $2\pi$  radians.

$$360^{\circ} = 2\pi$$





Figure 1: Some angles in Degrees and Radians

- A unit circle is a circle with radius 1 unit.
- The unit 'radian' is often omitted while writing radian angles.



# Definition

The angle subtended at the centre by an arc of length x in a unit circle is x rad.



Figure 2: Definition



Figure 3: Illustration

$$\boxed{ \text{Radian measure} = \frac{\text{Arc length}}{\text{Radius}} }$$



# Degree-Radian Conversion

$$180^{\circ} = \pi$$

$$1 \text{ radian} = \frac{180^{\circ}}{\pi} = 57^{\circ}16'$$

$$1^{\circ} = \frac{\pi}{180} = 0.01746 \text{ radian}$$

Radian measure 
$$=\frac{\pi}{180} \times \text{Degree measure}$$

Degree measure 
$$=\frac{180}{\pi} \times \text{Radian measure}$$

### **Trigonometric Functions**

(See Figure 4)

 $\sin \theta = \text{The } \mathbf{y}\text{-coordinate}$  of the point on the unit circle  $\cos \theta = \text{The } \mathbf{x}\text{-coordinate}$  of the point on the unit circle

Quadrantal Angles: Integral multiples of  $\frac{\pi}{2}$ 

| Angle    | 0 | $rac{\pi}{2}$ | $\pi$ | $rac{3\pi}{2}$ | $2\pi$ |
|----------|---|----------------|-------|-----------------|--------|
| $\sin x$ | 0 | 1              | 0     | -1              | 0      |
| $\cos x$ | 1 | 0              | -1    | 0               | 1      |

#### Value of 0

 $\sin \theta$  is 0 for the values  $\theta = 0, \pi, 2\pi, \cdots$ 

 $\cos \theta$  is 0 for the values  $\theta = \frac{\pi}{2}, 3\frac{\pi}{2}, \cdots$ 

$$\therefore \sin \theta = 0 \implies \theta = n\pi$$

$$\cos \theta = 0 \implies \theta = (2n+1)\frac{\pi}{2}$$

$$\begin{cases} n \in \mathbb{Z} \end{cases}$$





Figure 4: Trigonometric Functions in a unit circle



### Other Trigonometric Functions

$$\tan x = \frac{\sin x}{\cos x}$$

$$\cot x = \frac{\cos x}{\sin x}$$

$$\csc x = \frac{1}{\sin x}$$

$$\sec x = \frac{1}{\cos x}$$

### Pythagorean Identities

$$\sin^2 \theta + \cos^2 \theta = 1$$
$$1 + \tan^2 \theta = \sec^2 \theta$$
$$1 + \cot^2 \theta = \csc^2 \theta$$

# Sign of Trigonometric Functions

### Negative Angle

From the unit circle, we can determine the value of functions for a negative angle.



Figure 5: Negative Angle



We can see that  $\sin x = b$ ;  $\cos x = a$ 

For negative value of x (Figure 5), the x coordinate remains unchanged, while the y coordinate becomes negative.

$$\cos(-x) = \cos x$$
$$\sin(-x) = -\sin x$$

### Sign in different Quadrants

Quadrant 1: a and b are both positive

**Quadrant 2:** a is negative and b is positive

**Quadrant 3:** a and b are both negative

**Quadrant 4:** a is positive and b is negative

From the signs of  $\sin x$  and  $\cos x$ , we can find out the signs of all other trigonometric functions.



Figure 6: Signs of Trigonometric Functions



### Domain and Range

 $\sin x$ 

Domain = R

Range = [-1, 1]

 $\cos x$ 

Domain = R

Range = [-1, 1]

cosec x

$$Domain = \{x : x \in R; x \neq n\pi, n \in Z\}$$

Range =  $(-\infty, -1] \cup [1, \infty)$ 

 $\sec x$ 

Domain = 
$$\{x : x \in R; x \neq (2n+1)\frac{\pi}{2}, n \in Z\}$$

Range = 
$$(-\infty, -1] \cup [1, \infty)$$

 $\tan x$ 

Domain = 
$$\{x : x \in R; x \neq (2n+1)\frac{\pi}{2}, n \in Z\}$$

 $\mathrm{Range} = R$ 

 $\cot x$ 

$$Domain = \{x : x \in R; x \neq n\pi, n \in Z\}$$

Range = R





Figure 7: Graphs of Trigonometric Functions



# Trigonometric Identities

#### • Negative Angle\*

1. 
$$\sin(-a) = -\sin a$$

$$2. \cos(-a) = \cos a$$

3. 
$$tan(-a) = -tan a$$

#### • Sum or Difference of Angles

4. 
$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

5. 
$$\sin(a-b) = \sin a \cos b - \cos a \sin b$$

6. 
$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

7. 
$$cos(a - b) = cos a cos b + sin a sin b$$

8. 
$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$$

9. 
$$\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \tan b}$$

10. 
$$\cot(a+b) = \frac{\cot a \cot b - 1}{\cot b + \cot a}$$

11. 
$$\cot(a-b) = \frac{\cot a \cot b + 1}{\cot b - \cot a}$$

### • Multiples of $\frac{\pi}{2}$ \*

$$12. \sin\left(\frac{\pi}{2} - x\right) = \cos x$$

13. 
$$\sin\left(\frac{\pi}{2} + x\right) = -\cos x$$

$$14. \sin(\pi - x) = \sin x$$

$$15. \sin(\pi + x) = -\sin x$$

$$16. \sin(2\pi - x) = -\sin x$$

17. 
$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$

$$18. \cos\left(\frac{\pi}{2} + x\right) = \sin x$$



19. 
$$\cos(\pi - x) = -\cos x$$

$$20. \cos(\pi + x) = -\cos x$$

$$21. \cos(2\pi - x) = \cos x$$

#### • Double Angle

$$22. \sin 2x = 2\sin x \cos x$$

23. 
$$\cos 2x = 2\cos^2 x - 1$$
  
=  $1 - 2\sin^2 x$   
=  $\cos^2 x - \sin^2 x$ 

24. 
$$\tan 2x = \frac{2\tan x}{1 + \tan^2 x}$$

#### • Triple Angle

25. 
$$\sin 3x = 3\sin x - 4\sin^3 x$$

26. 
$$\cos 3x = 4\cos^3 x - 3\cos x$$

27. 
$$\tan 3x = \frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x}$$

#### • Sum/Difference of Sines and Cosines

28. 
$$\cos a + \cos b = 2\cos\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right)$$

29. 
$$\cos a - \cos b = -2\sin\left(\frac{a+b}{2}\right)\sin\left(\frac{a-b}{2}\right)$$

30. 
$$\sin a + \sin b = 2\sin\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right)$$

31. 
$$\sin a - \sin b = 2\cos\left(\frac{a+b}{2}\right)\sin\left(\frac{a-b}{2}\right)$$

#### • Product of Sines and Cosines (Inverse of 28-31)

32. 
$$2\cos a \cos b = \cos(a+b) + \cos(a-b)$$

33. 
$$-2\sin a \sin b = \cos(a+b) - \cos(a-b)$$

34. 
$$2\sin a \cos b = \sin(a+b) + \sin(a-b)$$

35. 
$$2\cos a \sin b = \sin(a+b) - \sin(a-b)$$



### • Zero Values\*

36. 
$$\sin x = 0 \implies x = n\pi, n \in \mathbb{Z}$$

37. 
$$\cos x = 0 \implies x = (2n+1)\frac{\pi}{2}, n \in \mathbb{Z}$$

### • Equal Values\*

38. 
$$\sin x = \sin y \implies x = n\pi + (-1)^n y$$

39. 
$$\cos x = \cos y \implies x = 2n\pi \pm y$$

40. 
$$\tan x = \tan y \implies x = n\pi + y$$

<sup>\*</sup>These identities can be easily represented by the Unit Circle.