(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

(43) Date de la publication internationale 16 mai 2002 (16.05.2002)

PCT

(10) Numéro de publication internationale WO 02/38635 A1

(51) Classification internationale des brevets⁷:

C08F 136/08 1

C08F 136/08, 136/04, 4/54

(21) Numéro de la demande internationale :

PCT/EP01/12489

(22) Date de dépôt international :

29 octobre 2001 (29.10.2001)

(25) Langue de dépôt :

français

(26) Langue de publication :

français

(30) Données relatives à la priorité :

00/14677 13 novembre 2000 (13.11.2000) FI

- (71) Déposant (pour tous les États désignés sauf CA, MX, US):
 SOCIETE DE TECHNOLOGIE MICHELIN [FR/FR];
 23, rue Breschet, F-63000 Clermont-Ferrand Cedex 09 (FR).
- (71) Déposant (pour tous les États désignés sauf US): MICHE-LIN RECHERCHE ET TECHNIQUE S.A. [CH/CH]; Route Louis-Braille 10 et 12, CH-1763 Granges-Paccot (CH).
- (72) Inventeur; et
- (75) Inventeur/Déposant (pour US seulement): LAUBRY,

Philippe [FR/FR]; 4, rue de la Pommeraie, F-63200 Marsat (FR).

- (74) Mandataire: HIEBEL, Robert; Michelin & Cie., Service SGD/LG/PI-LAD, F-63040 Clermont-Ferrand (FR).
- (81) États désignés (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GII, GM, IIR, IIU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) États désignés (régional): brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Publiée :

- avec rapport de recherche internationale
- avant l'expiration du délai prévu pour la modification des revendications, sera republiée si des modifications sont reçues

[Suite sur la page suivante]

- (54) Title: SYNTHETIC POLYISOPRENES AND THEIR PREPARATION METHOD
- (54) Titre: POLYISOPRENES DE SYNTHESE ET LEUR PROCEDE DE PREPARATION
- (57) Abstract: The invention concerns synthetic polyisoprenes having a high cis-1,4 chaining rate and the method for preparing same. The inventive polyisoprenes have a cis-1,4 chaining rate, measured according to technique of nuclear magnetic resonance of carbon 13 or by means infrared assay, which is of the order ranging between 99.0 % to 99.6 %. The inventive method for preparing said polyisoprenes consists essentially in reacting a catalytic system in the presence of isoprene, and it consists in: a) using, as catalytic system, a system based on at least a conjugate diene monomer, a salt of one or several rare earths of an organic phosphoric acid, an alkylaluminium alkylating agent of formula AIR₃ or HAIR₂, and, a halogen donor consisting of an alkylaluminium halide, the mol ratio (alkylating agent/rare earth salt) ranging between 1 and 5; and b) carrying out a polymerising reaction of the isoprene at a temperature not higher than 5 °C.
- (57) Abrégé: La présente invention concerne des polyisoprènes de synthèse présentant un taux élevé d'enchaînements cis-1,4 et leur procédé de préparation. Les polyisoprènes de synthèse selon l'invention présentent un taux d'enchaînements cis-1,4, mesuré selon la technique de résonance magnétique nucléaire du carbone 13 ou de dosage par moyen infrarouge, qui appartient à un domaine allant de 99,0% à 99,6%. Le procédé de préparation selon l'invention de ces polyisoprènes de synthèse consiste essentiellement à faire réagir un système catalytique en présence d'isoprène, et il consiste: a) à utiliser, à titre de système catalytique, un système à base d'au moins, un manomère diène conjugué, un sel d'une ou plusieurs terres rare d'un acide phosphorique organique, un agent d'alkylation alkylaluminium de formule AIR₃ ou HAIR₂, et, un donneur d'halogène constitué d'un halogénure d'alkylaluminium, le rapport molaire (agent d'alkylation/sel de terre rare) allant de 1 à 5, et, b) à mettre en oeuvre la réaction de polymérisation de l'isoprène à une température inférieure ou égale à 5°C.

635 A

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

POLYISOPRENES DE SYNTHESE ET LEUR PROCEDE DE PREPARATION

La présente invention concerne des polyisoprènes de synthèse présentant un taux élevé d'enchaînements cis-1,4 et leur procédé de préparation.

Pour la préparation de polyisoprènes présentant un taux élevé d'enchaînements cis-1,4, il est connu d'utiliser des systèmes catalytiques à base :

- d'un sel de terre rare en solution dans un solvant hydrocarboné,
- d'un agent d'alkylation de ce sel constitué d'un alkylaluminium, et
- d'un halogénure d'un alkylaluminium.

5

15

20

25

Il est par exemple connu, d'après le document « Compte-rendu de l'Académie des Sciences d'U. R. S. S., tome 234, n°5, 1977 (Y. B. Monakov, Y. R. Bieshev, A. A. Berg, S. R. Rafikov) » d'utiliser, pour la polymérisation de l'isoprène à une température comprise entre 20° C et 50° C, un système catalytique comprenant:

- un sel de néodyme ou de praséodyme de l'acide bis(2-éthylhexyl)phosphorique, à titre de sel de terre rare, en solution dans du toluène,
- du triisobutylaluminium à titre d'agent d'alkylation, selon un rapport molaire (agent d'alkylation / sel de terre rare) égal à 20, et
 - du chlorure de diéthylaluminium à titre d'halogénure d'un alkylaluminium.

On peut également citer le document « Proceedings of China – U. S. Bilateral Symposium on Polymer Chemistry and Physics, Science Press, pp. 382-398, 1981 (O. Jun, W. Fosong, S. Zhiquan) ». Ce document enseigne notamment l'utilisation d'un sel de néodyme de l'acide bis(2-éthylhexyl)phosphorique, en association avec du triéthylaluminium ou du triisobutylaluminium, et un halogénure d'alkylaluminium de formule Al₂(C₂H₅)₃Cl₃.

Les polyisoprènes qui sont obtenus au moyen d'un tel système catalytique présentent des taux d'enchaînements cis-1,4 variant de 94,2 % à 94,7 % (tableaux 4 et 6, pp. 386 et 387).

Ce document mentionne également l'utilisation de systèmes catalytiques à base de :

- naphténate de terre rare, les taux d'enchaînements cis-1,4 des polyisoprènes correspondants étant compris entre 93,6 % et 96,0 %; et à base de
- trichlorure de terre rare (système catalytique de formule LnCl₃ C₂H₅OH Al(C₂H₅)₃), les taux d'enchaînements cis-1,4 des polyisoprènes correspondants étant compris entre 94,1 % et 98,0 % (ce taux de 98 % étant atteint en utilisant de l'Ytterbium à titre de terre rare, voir tableau 12 p. 391).

Dans la majorité des cas, la détermination de la microstructure est effectuée par la technique de dosage par moyen infrarouge (MIR en abrégé), selon la méthode mise au point par Ciampelli et Al (F. Ciampelli, D. Moreno, M. Cambini, *Makromol. Chem.*, 1963, 61, 250-253). On notera que cette méthode, basée uniquement sur des calculs réalisés dans le domaine infrarouge, ne procure pas toujours des résultats d'une précision satisfaisante lorsqu'elle est utilisée isolément.

Le document de brevet américain US-A-5 859 156 décrit un procédé de préparation de polyisoprènes au moyen d'un système catalytique à base de tétrachlorure de titane, d'un organoaluminium et d'un éther. Le taux maximal d'enchaînements cis-1,4 des polyisoprènes ainsi obtenus, mesuré par résonance magnétique nucléaire du carbone 13 (RMN¹³C), est de 98,0 % (voir exemple 2, colonne 27, les taux d'enchaînements trans-1,4 et 3,4 étant alors de 1,0 % chacun).

Le but de la présente invention est de proposer de nouveaux polyisoprènes de synthèse et leur procédé de préparation, lesdits polyisoprènes présentant des taux d'enchaînements cis-1,4 qui sont nettement supérieurs à ceux obtenus à ce jour.

La demanderesse a découvert d'une manière inattendue qu'un système catalytique de type « préformé » à base d'au moins:

- un monomère diène conjugué,

5

10

15

25

30

- un sel d'un ou de plusieurs métaux de terre rare (métaux ayant un numéro atomique compris entre 57 et 71 dans le tableau périodique des éléments de Mendeleev) d'un acide phosphorique organique, ledit sel étant en suspension dans au moins un solvant hydrocarboné inerte, saturé et de type aliphatique ou alicyclique,
 - un agent d'alkylation constitué d'un alkylaluminium de formule AlR₃ ou HAlR₂, le rapport molaire (agent d'alkylation / sel de terre rare) présentant une valeur allant de 1 à 5, et
 - un donneur d'halogène constitué d'un halogénure d'alkylaluminium,

permet de polymériser l'isoprène avec une activité satisfaisante à des températures de polymérisation qui sont inférieures ou égales à 5° C, et d'obtenir à ces basses températures des polyisoprènes dont les taux d'enchaînements cis-1,4, mesurés à la fois selon la technique de résonance magnétique nucléaire du carbone 13 et selon la technique de dosage par moyen infrarouge, sont strictement supérieurs à 99,0 %.

Ce système catalytique selon l'invention permet par exemple d'obtenir des polyisoprènes qui sont tels que lesdits taux d'enchaînements cis-1, 4, mesurés par l'une et l'autre de ces techniques, peuvent être compris entre 99,0 % et 99,6 %, en incluant 99,6 %.

On notera que les polymérisations peuvent être mises en œuvre dans un solvant hydrocarboné inerte, ou bien en masse, c'est-à-dire sans solvant.

5

10

15

20

25

30

Avantageusement, ce système catalytique permet, à des températures de polymérisation allant de -55° C à -20° C, d'obtenir des polyisoprènes dont les taux d'enchaînements cis-1,4, mesurés par l'une et l'autre des techniques précitées, sont égaux ou supérieurs à 99,3 %, et appartiennent par exemple à un domaine allant de 99,3 % à 99,6 %.

A titre encore plus avantageux, ce système catalytique permet, à des températures de polymérisation allant de -55° C à -40° C, d'obtenir des polyisoprènes dont les taux d'enchaînements cis-1,4, également mesurés par l'une et l'autre des techniques précitées, sont égaux ou supérieurs à 99,5 %, et sont par exemple égaux à 99,6 %.

On notera que ces valeurs de taux d'enchaînements cis-1,4 qui sont très proches de la valeur de 100 % qui caractérise le caoutchouc naturel, n'ont jamais été réellement atteintes à ce jour. Le domaine de taux d'enchaînements cis-1,4 mesuré selon la présente invention tient compte de mesures établies au moyen, d'une part, de la technique de dosage par moyen infrarouge après un calibrage des échantillons de polyisoprène réalisé dans le cadre de l'analyse RMN¹³C et, d'autre part, de l'analyse RMN¹³C, les mesures obtenues par l'une de ces techniques étant confirmées par l'autre (à l'incertitude de mesure près de plus ou moins 0,1 %, qui est inhérente à chacune de ces deux techniques). La précision de ces valeurs de taux d'enchaînements cis-1,4 est ainsi notablement accrue, par rapport à celle des valeurs de taux qui ont été mentionnées dans l'état de la technique à ce jour.

En particulier, l'analyse par RMN¹³C a mis en évidence l'absence totale d'enchaînements 1,2 et d'enchaînements trans-1,4 dans les échantillons de polyisoprène selon l'invention.

On notera en outre que le taux particulièrement élevé d'enchaînements cis-1,4 obtenu pour les polyisoprènes selon l'invention est indépendant de la quantité de système catalytique utilisée.

3

On notera par ailleurs que les polyisoprènes ainsi obtenus présentent une viscosité élevée.

Concernant les systèmes catalytiques selon l'invention, on notera qu'ils sont caractérisés par des rapports molaires (agent d'alkylation / sel de terre rare) compris entre 1 et 5 ce qui, d'une manière surprenante, est extrêmement réduit par rapport aux rapports molaires égaux ou supérieurs à 20 qui ont été utilisés à ce jour pour polymériser l'isoprène.

5

10

15

20

25

30

A titre de monomère diène conjugué utilisable pour « préformer » le système catalytique selon l'invention, on peut citer le 1, 3-butadiène, à titre préférentiel.

On peut également citer le 2-méthyl 1, 3-butadiène (ou isoprène), les 2, 3-di (alcoyle en Cl à C5) 1, 3-butadiène tels que par exemple le 2, 3 diméthyl-1, 3-butadiène, le 2, 3-diéthyl-1, 3-butadiène, le 2-méthyl 3-éthyl 1, 3-butadiène, le 2-méthyl 3-isopropyl 1, 3-butadiène, le phényl 1, 3-butadiène, le 1, 3-pentadiène, le 2, 4-hexadiène, ou tout autre diène conjugué ayant entre 4 et 8 atomes de carbone.

On notera que le rapport molaire (monomère / sel de terre rare) peut présenter une valeur allant de 25 à 50.

Selon une autre caractéristique de l'invention, ledit sel de terre rare est constitué d'une poudre non hygroscopique ayant une légère tendance à s'agglomérer à la température ambiante.

- Selon un mode préférentiel de réalisation de l'invention, le solvant hydrocarboné inerte dans lequel ledit sel de terre rare est en suspension est un solvant aliphatique ou alicyclique de bas poids moléculaire, tel que le cyclohexane, le méthylcyclohexane, le nheptane, ou un mélange de ces solvants.
- Selon un autre mode de réalisation de l'invention, le solvant utilisé pour la suspension du sel de terre rare est un mélange d'un solvant aliphatique de haut poids moléculaire comprenant une huile paraffinique, par exemple de l'huile de vaseline, et d'un solvant de bas poids moléculaire tel que ceux susmentionnés (par exemple le méthylcyclohexane).

On réalise cette suspension en procédant à un broyage dispersif du sel de terre rare dans cette huile paraffinique, de sorte à obtenir une suspension très fine et homogène dudit sel.

Selon une autre caractéristique de l'invention, ledit système catalytique comprend le métal de terre rare selon une concentration égale ou sensiblement égale à 0,02 mol/l.

5

10

15

20

25

30

Selon un exemple préférentiel de réalisation de l'invention, on utilise à titre de sel un tris[bis(2-éthylhexyl)phosphate] dudit ou desdits métaux de terre rare.

A titre encore plus préférentiel, ledit sel de terre rare est le tris[bis(2-éthylhexyl)phosphate] de néodyme.

A titre d'agent d'alkylation utilisable dans le système catalytique selon l'invention, on peut citer des alkylaluminiums tels que:

- des trialkylaluminiums, par exemple le triisobutylaluminium, ou
- des hydrures de dialkylaluminium, par exemple l'hydrure de diisobutylaluminium.

On notera que cet agent d'alkylation est de préférence constitué de l'hydrure de diisobutylaluminium (appelé HDiBA dans la suite de la présente description).

A titre de donneur d'halogène utilisable dans le système catalytique selon l'invention, on peut citer des halogénures d'alkylaluminium, de préférence le chlorure de diéthylaluminium (appelé CDEA dans la suite de la présente description).

On notera que le rapport molaire (donneur d'halogène / sel de terre rare) peut présenter une valeur allant de 2,6 à 3.

Selon l'invention, le procédé de préparation dudit système catalytique consiste:

- dans une première étape, à réaliser une suspension dudit sel de terre rare dans ledit solvant,
 - dans une seconde étape, à ajouter à la suspension ledit monomère diène conjugué,
 - dans une troisième étape, à ajouter ledit agent d'alkylation à la suspension comprenant ledit monomère pour l'obtention d'un sel alkylé, et
 - dans une quatrième étape, à ajouter ledit donneur d'halogène au sel alkylé.

Les caractéristiques précitées de la présente invention, ainsi que d'autres, seront mieux comprises à la lecture de la description suivante de plusieurs exemples de réalisation de l'invention, donnés à titre illustratif et non limitatif.

I. PREPARATION DE SYSTEMES CATALYTIQUES SELON L'INVENTION:

1) Synthèse d'un sel de phosphate organique de néodyme selon l'invention :

On a réalisé une pluralité d'essais pour la synthèse de ce sel. On a utilisé pour chacun de ces essais une même méthode de synthèse, qui est détaillée ci-après. 10

a) Synthèse d'une solution aqueuse de néodyme NdCl₃, 6H₂O:

Dans un bécher de 600 ml de forme «haute», on pèse 96 g de Nd₂O₃ (commercialisé par la société RHODIA), qui a été dosé par complexométrie à 85,3 % en Nd (85,7 % en théorie), soit présentant 0,57 mol de Nd.

On ajoute 80 ml d'eau déminéralisée. Sous une hotte aspirante, avec une agitation magnétique et à température ambiante, on ajoute lentement 150 ml d'HCl concentré à 36 % en poids (d = 1,18), soit 1,75 mol d'HCl (rapport molaire HCl/Nd = 1,75/0,57 = 3,07).

La réaction $Nd_2O_3 + 6 HCl + 9 H_2O \rightarrow 2 NdCl_3$, $6H_2O$ est très exothermique.

Lorsque tout l'acide chlorhydrique a été ajouté, on porte la solution à ébullition sous agitation magnétique, pour éliminer l'excès d'acide chlorhydrique. La solution aqueuse de NdCl₃ est limpide et de couleur mauve. Il ne reste pas de produit insoluble (Nd₂O₃).

On procède ensuite à l'évaporation de cette solution jusqu'à obtenir un volume d'environ 130 ml dans le bécher. La solution de NdCl₃, 6H₂O est alors très concentrée (elle cristallise à température ambiante).

Puis on verse dans un bidon de 10 litres contenant 4500 ml d'eau déminéralisée la solution concentrée de NdCl₃ sous agitation et à température ambiante (en utilisant un moteur avec agitateur en forme d'ancre).

Le pH de la solution, mesuré à 25° C, est voisin de 4.

6

25

20

15

5

30

Puis on ajoute à la solution 1500 ml d'acétone technique. Il ne reste pas de produit insoluble, et la solution ainsi obtenue est de couleur rose.

b) Synthèse d'un phosphate organique de sodium de formule [RO]₂P(O)ONa (R=2-éthylhexyl):

Dans un bécher de 5 litres contenant 1500 ml d'eau déminéralisée, on dissout 68 g de NaOH en pastilles, soit 1,70 mol. Dans un autre bécher de 3 litres contenant 500 ml d'acétone, on dissout 554 g d'un acide phosphorique organique (l'acide bis(2-éthylhexyl) phosphorique, répertorié dans l'ouvrage « Aldrich » sous la référence 23,782-5), soit 1,72 mol de cet acide. Le rapport molaire NaOH / acide phosphorique organique est de 1,70 / 1,72, soit 0,99.

A température ambiante et en agitant à la main à l'aide d'un agitateur en verre, on verse la solution dudit acide phosphorique organique dans la solution de NaOH. La réaction est la suivante :

 $[RO]_2P(O)OH + NaOH \rightarrow [RO]_2P(O)ONa + H_2O.$

Elle est légèrement exothermique, et l'on obtient une solution homogène de couleur jaunâtre. Le pH de la solution, mesuré à 25° C, est voisin de 7.

c) Synthèse d'un sel phosphaté de néodyme de formule [[RO]₂P(O)O]₃Nd:

- On verse sous vive agitation (moteur avec agitateur en forme d'ancre) et à température ambiante la solution de phosphate organique de Na obtenue au paragraphe b) ci-dessus dans la solution aqueuse de NdCl₃,6H₂O obtenue au paragraphe a) ci-dessus.

Il se forme immédiatement un précipité blanc très fin. On maintient le mélange obtenu sous agitation pendant 30 minutes, après l'addition de tout le phosphate organique de Na (selon un rapport molaire $(RO)_2P(O)ONa/NdCl_3 = 1,70/0,57 = 2,98$). La réaction est la suivante :

 $3 [RO]_2P(O)ONa + NdCl_3,6H_2O \rightarrow Nd[OP(O)[OR]_2]_3 + 3 NaCl + 6 H_2O.$

30

25

5

10

15

20

On récupère et on lave le sel phosphaté de néodyme ainsi obtenu dans une centrifugeuse équipée d'une "chaussette".

Le pH des eaux « mères » est compris entre 3 et 4 à 25° C. Ces eaux « mères » sont incolores et limpides.

On scinde en deux échantillons le sel obtenu, puis on lave chaque échantillon avec un mélange acétone/ eau déminéralisée en réalisant trois fois le cycle de lavage décrit ci-dessous, afin d'éliminer tous les chlorures.

5

10

15

20

25

Chaque cycle de lavage est réalisé dans un seau de 10 litres en matière plastique contenant initialement 2 litres d'acétone. On procède à l'homogénéisation de chaque échantillon et de l'acétone au moyen d'un homogénéiseur « Ultra-Turrax » pendant environ 1 minute, afin d'obtenir une solution de type lait.

On ajoute ensuite 4 litres d'eau déminéralisée dans le seau, puis on homogénéise le mélange obtenu au moyen du même homogénéiseur pendant 3 minutes.

On procède à la centrifugation du mélange ainsi obtenu puis on récupère le sel phosphaté de néodyme dans la "chaussette".

Sur la dernière eau de lavage, le test analytique qualitatif des chlorures est quasinégatif (la réaction est: NaCl + AgNO₃ (milieu HNO₃) → AgCl ↓ + NaNO₃).

On sèche le sel de néodyme ainsi lavé dans une étuve à 60° C, sous vide et avec courant d'air pendant environ 80 heures.

Le rendement final pour chacun des essais de synthèse réalisés est compris entre 95 % et 98 %, suivant les pertes dues aux lavages. On obtient à chaque fois environ 600 g de sel phosphaté de néodyme à l'état sec.

Les teneurs massiques en néodyme, déterminées par complexométrie, sont comprises entre 12,9 % et 13,0 % (pour un taux théorique = [144,24 / 1108,50] x 100 = 13,01 %, avec 144,24 g/mol = masse molaire du néodyme).

2) Synthèse de systèmes catalytiques « préformés » selon l'invention:

a) Composition des systèmes catalytiques selon l'invention:

Chacun de ces systèmes comprend un sel phosphaté de néodyme tel que synthétisé selon le paragraphe 1) ci-dessus, qui est en suspension dans un solvant hydrocarboné inerte de bas poids moléculaire (constitué de cyclohexane, « CH » en abrégé ci-après ou de méthylcyclohexane, « MCH » en abrégé ci-après).

Ces systèmes catalytiques sont caractérisés par les rapports molaires relatifs suivants, par rapport au sel de néodyme :

Sel de Nd / butadiène (Bd ci-après) / HDiBA / CDEA = 1 / 50 / 1,8 à 4 / 2,6 ou 3.

b) Procédé de synthèse de ces systèmes catalytiques:

- Première étape:

5

10

15

20

25

En vue de l'obtention de ces systèmes catalytiques, on verse 15,6 g du sel de néodyme, à l'état de poudre, dans un réacteur de 1 litre préalablement nettoyé de ses impuretés. On soumet ensuite ce sel à un barbotage à l'azote par le fond du réacteur, pendant une durée de 15 min.

- Seconde étape :

On introduit 90 % (fraction massique) du solvant mentionné au paragraphe a) cidessus dans le réacteur contenant le sel de néodyme.

Lorsque le solvant utilisé est le cyclohexane, la durée de mise en contact du sel de néodyme avec ce solvant varie de 2 heures à 4 heures, et la température de mise en contact varie de 30° C à 60° C. Lorsque le solvant utilisé est le méthylcyclohexane, la durée de mise en contact du sel de néodyme avec ce solvant est de 30 min., et la température de mise en contact est de 30° C.

- Troisième étape :

On introduit ensuite du butadiène dans le réacteur (selon le rapport molaire sel / butadiène de 1/50 mentionné au paragraphe a) ci-dessus), à une température de 30° C, en vue de la « préformation » de chaque système catalytique.

5

10

15

- Quatrième étape :

On introduit ensuite dans le réacteur de l'hydrure de diisobutylaluminium (HDiBA) à titre d'agent d'alkylation du sel de néodyme, selon une concentration d'environ 1 M, ainsi qu'une quantité du solvant précité à la seconde étape correspondant à une fraction massique de 5 % de la totalité dudit solvant. La durée de l'alkylation est de 15 min. et la température de la réaction d'alkylation est de 30° C.

- Cinquième étape :

On introduit ensuite dans le réacteur du chlorure de diéthylaluminium (CDEA) à titre de donneur d'halogène, selon une concentration d'environ 1 M, ainsi qu'une quantité du solvant précité à la seconde étape correspondant à la fraction massique restante de 5 % de la totalité dudit solvant. La température du milieu réactionnel est portée à 60° C.

- Sixième étape :

20

25

On procède ensuite à une « préformation » (ou vieillissement) du mélange ainsi obtenu en maintenant cette température de 60° C pendant une durée variant de 2 heures à 4 heures.

- Septième étape :

On obtient ainsi environ 700 ml d'une solution de système catalytique. On procède à la vidange du réacteur et l'on transfère cette solution dans une bouteille "Steinie" de 750 ml, préalablement lavée, séchée et soumise à un barbotage à l'azote.

On stocke finalement la solution catalytique sous atmosphère d'azote dans un congélateur, à la température de -15° C.

<u>Tableau récapitulatif des systèmes catalytiques préparés</u>:

Systèmes catalytiques	Solvatation (solvant /	Bd/Nd (mol)	Al/ Nd (mol)	Alkylation Durée / T	Cl/Nd (mol)	Préformation Avec CDEA
0 13 1	durée /T)		4	15 ' /200 O		Durée / T
Système 1	CH	50	4	15 min. / 30° C	3	4 h, 60° C
	2 h, 30° C					
Système 2	CH	50	3	15 min. / 30° C	3	2 h, 60° C
	4 h, 60° C					
Système 3	MCH	50	3	15 min. / 30° C	3	4 h, 60° C
	30 min., 30° C		•.			
Système 4	MCH	50	1,8	15 min. / 30° C	3	2 h, 60° C
	30 min., 30° C	×				
Système 5	MCH	50	1,8	15 min. / 30° C	2,6	2 h, 60° C
,	30 min., 30° C	•			,	
Système 6	CH ·	50	4	15 min. / 30° C	3	2 h, 60° C
	2 h, 60° C					

II. Polymérisation de l'isoprène au moyen des systèmes catalytiques précités :

1) Exemples de polymérisation de l'isoprène à une température de -15° C Au moyen du système catalytique 1 précité:

a) Procédé de polymérisation utilisé :

5

10

15

20

25

30

On a utilisé, à titre de réacteur de polymérisation, une bouteille "Steinie" de 250 ml. On a réalisé chaque réaction de polymérisation, soit dans des conditions statiques dans un congélateur (bouteille placée dans un bain de glycol), soit d'une manière dynamique (par agitation de la bouteille dans un bac à glycol).

On a utilisé une coupe de vapocraquage de naphta en C5, dans le but d'en extraire de l'isoprène présentant une pureté proche de 100 %. A cet effet, on a procédé à une purification classique en laboratoire, consistant successivement en :

- une distillation de cette coupe C5 sur de l'anhydride maléique pour éliminer le cyclopentadiène résiduel, suivie
- d'un passage sur une colonne d'alumine pour éliminer les impuretés polaires, et
- d'un barbotage à l'azote pendant 20 min., juste avant la réaction de polymérisation.

On a déterminé, par la technique de chromatographie en phase gazeuse (CPG), la fraction massique de l'isoprène extrait de cette coupe C5, qui est de 99,2 %.

On a mis en oeuvre chaque réaction de polymérisation de l'isoprène (10 g par bouteille) dans le cyclohexane à -15° C, sous atmosphère inerte d'azote, avec un rapport massique Solvant/Monomère (S/M) égal à 9.

On a fait varier dans les divers exemples de polymérisation la base catalytique en néodyme de 150 µmol à 500 µmol pour 100 g de monomère (quantité de néodyme exprimée en µMcm ci-après). L'étanchéité de la bouteille est assurée par un ensemble de type "joint-capsule percée" permettant l'injection du système catalytique au moyen d'une seringue.

En fin de polymérisation, tout en ajoutant 100 ml de solvant supplémentaire pour fluidifier le milieu, on ajoute de l'acétylacétone (1 ml d'une solution de concentration 1M dans le cyclohexane) pour stopper la réaction et de la N-1,3-diméthylbutyl-N'-phényl-p-phénylènediamine (6PPD en abrégé) comme agent de protection (selon un volume de 2 ml à

une concentration de 10 g/l dans le cyclohexane, soit une masse de 0,02 g).

On extrait ensuite le polyisoprène de chaque solution polymérique ainsi obtenue par stripping à la vapeur d'eau pendant 30 min., en présence de tamolate de calcium (on utilise 2 ml de tamol et 50 ml de CaCl₂ à 30 g/l). On sèche ensuite pendant environ 18 heures chaque solution extraite dans une étuve à 50° C sous vide (à une pression de 200 mm Hg), avec un léger courant d'azote pendant environ 72 heures.

b) Résultats obtenus:

15

20

25

La mesure du taux de conversion de l'isoprène en polyisoprène en fonction du temps de réaction est utilisée pour décrire la cinétique de polymérisation.

La viscosité inhérente η_{inh} à 0,1 g/dl dans le toluène et la viscosité Mooney ML(1+4) (mesurée selon la norme ASTM D-1646), caractérisent la macrostructure de chaque polyisoprène obtenu.

Pour déterminer la microstructure des polyisoprènes, on a utilisé la technique d'analyse RMN¹³C (méthode absolue d'une grande précision) et MIR (moyen infrarouge), comme cela est détaillé à l'annexe 1 jointe. Ces techniques ont permis d'établir, à l'incertitude de 0,1 % près, les taux d'enchaînements cis-1,4 et 3,4 (l'analyse RMN¹³C ayant mis en évidence l'absence d'enchaînements trans-1,4 ou 1,2).

On notera que la seconde technique MIR est d'une grande précision pour la détermination du taux de motifs 3,4, du fait qu'elle utilise les échantillons de polyisoprène ayant été préalablement étalonnés pour l'analyse RMN¹³C.

Le tableau 1 ci-après détaille les conditions opératoires suivies pour chaque polymérisation et les caractéristiques macrostructurales et microstructurales de chaque polyisoprène obtenu.

TABLEAU 1:

	Co	onditions d	e polyméri	sation	Carac	Caractéristiques des polyisoprènes				
Essais	type de	Quantité	Temps	Taux de	Viscosité	ML(1+4)	Taux de	Taux		
	réacteur	de Nd	de	conversion	inhérente		cis-1,4	de cis-		
,		(µMcm)	réaction	(%)	_ (dl/g)		par	1,4 par		
			(heures)				RMN ¹³ C	MIR		
A	Statique	500	64	100	4,9	79	99,2	99,1		
,		400	64	100	5,3	87	~	-		
В	Statique	400	64	100 .	5,2	82	-	-		
	agité	400	64	100	-	83	· -	_		
С	Statique	300	64	100	6,0	93	99,1	99,0		
D	Statique	200	64	100	7,2	-	99,2	-		
		150	64	100	8,5	<u>.</u>	99,2	-		
E	Statique	150	64	100	8,6	-	•	-		
	agité	150	64	100	8,9	-	<u>.</u>			
F	Statique	150	64	100	-	-	-	99,1		
			47.	98	8,0	= .	-	99,2		
	*	*	38	94			<u>.</u>	99,1		
			22	60	7,4		-	99,2		
			14	42	6,8	-	-	99,2		

Ce tableau 1 montre que le système catalytique 1 selon l'invention permet d'obtenir avec une activité satisfaisante, à une température de polymérisation maintenue à -15° C, des polyisoprènes à taux de cis appartenant à un domaine allant de 99,0 % à 99,2 %, quelle que soit la quantité de base catalytique utilisée et quel que soit le taux de conversion atteint pour une quantité de base catalytique donnée.

5

10

Concernant la macrostructure des polyisoprènes obtenus, ces résultats montrent que l'agitation n'a pas d'influence sur le produit final. Bien que les vitesses de réaction soient relativement réduites, l'activité du système catalytique 1 n'est pas affectée et permet d'atteindre 100 % de conversion, même pour des polyisoprènes finaux présentant une viscosité élevée.

2) Exemples de polymérisation de l'isoprène à une température de -25° C Au moyen des systèmes catalytiques 2, 3, 4 et 5 précités:

a) Procédé de polymérisation utilisé:

5

10

15

20

25

On a utilisé, à titre de réacteur de polymérisation, une bouteille "Steinie" de 750 ml, et l'on a mis en œuvre toutes les réactions de polymérisation de l'isoprène en statique dans un congélateur à -25° C (bouteille dans un bain de glycol).

La qualité de l'isoprène est celle décrite au paragraphe 1) ci-dessus. Le taux de conversion est de 100 % dans tous les cas (pour au moins 64 heures de temps de réaction).

On a réalisé chaque polymérisation comme indiqué au paragraphe 1), à ceci près que l'on a testé une pluralité de solvants de polymérisation et de rapports massiques solvant/monomère isoprène (S/M ci-après), pour les essais effectués.

En raison de la viscosité des solutions de polyisoprène obtenues, on leur a ajouté du solvant, avant de leur ajouter les agents de stoppage et de protection mentionnés au paragraphe 1).

On a ensuite extrait le polyisoprène de chaque solution de polyisoprène ainsi « fluidifiée », puis on a séché chaque solution extraite, le tout de la manière qui a été décrite au paragraphe 1).

b) Résultats obtenus:

Le tableau 2 ci-après présente les résultats obtenus (on se réfèrera au paragraphe 1) cidessus pour les conditions de mesures).

TABLEAU 2:

Essais	Syst.	Conc	litions de p	oolymérisat	ion	Polyis	soprènes obt	enus
	Cat.	Solvant De	Quantité Nd	Quantité isoprène	Rapport S/ M	ML(1+4)	Taux de	Taux de cis-
		Polymérisat°	(µМст)	(g)			par RMN ¹³ C	1,4 par MIR
G	2	aucun	500	50	0	52		99,3
			1000	50	0	35	- (99,3
		n-pentane	1000	50	1	30	99,4	99,4
		cyclopentane	1000	50	1	40	-	99,4
		CH	1000	50	. 1	34	-	99,3
		MCH	1000	50	1	39	-	99,3
H	3	MCH	1000	36	9	69	-	99,4
			700	36	9	79	-	99,4
I	3	MCH	700	72	5	80	-	99,5
J	3	МСН	· 700·	72	5	79	-	99,5
K	3	МСН	700	72	. 5	81	-	99,4
L	3 .	МСН	700	72	5	84		99,4
	4	MCH	700	72	5	89	-	99,4
	5	МСН	700	72	5	97	-	99,3

Ces résultats montrent que les systèmes catalytiques 2 à 5 selon l'invention permettent d'obtenir avec une activité satisfaisante, à une température maintenue à -25° C, des polyisoprènes à taux d'enchaînements cis-1,4 qui sont en moyenne égaux à 99,4 %.

5

Dans la mesure où cette température de polymérisation reste constante, la présence ou non de solvant, la nature de ce solvant (aliphatique ou alicyclique) et la quantité de solvant n'ont aucun effet sur les taux d'enchaînements cis-1,4.

Concernant les systèmes catalytiques utilisés, on notera que ces taux d'enchaînements cis-1,4 sont indépendants des rapports molaires HDiBA/Nd et CDEA/Nd.

Concernant les caractéristiques de macrostructure des polyisoprènes obtenus (mesures effectuées au moyen de la technique SEC, voir annexe 2 jointe), le polyisoprène obtenu pour l'essai G (système catalytique 2) avec une quantité de Nd de 500 µMcm présente :

- une masse moléculaire moyenne en nombre Mn de 338 475 g/mol, et
- un indice de polymolécularité Ip de 2,389.

Quant au polyisoprène obtenu pour l'essai K (système catalytique 3), il présente :

- une masse moléculaire moyenne en nombre Mn de 423 472 g/mol, et
- un indice de polymolécularité Ip de 2,483.

15

10

5

3) Exemples de polymérisation de l'isoprène à une température de -45° C Au moyen du système catalytique 3 précité:

a) Procédé de polymérisation utilisé:

20

25

On a utilisé les mêmes conditions de polymérisation que celles détaillées au paragraphe 2) ci-dessus, à ceci près que l'on a maintenu la température de polymérisation à une valeur de -45° C (au lieu de -25° C).

b) Résultats obtenus:

Le tableau 3 ci-après présente les résultats obtenus (on se réfèrera au paragraphe 1) cidessus pour les conditions de mesures).

TABLEAU 3:

Essai	Syst.		Con	Polyiso	oprènes				
	Cat.	Quantité	Quantité	solvant	Rapport	Temps de	Taux de	Viscosité	Taux cis-
		Nd	isoprène		S/ M	réaction	conversion	inhérente	1,4 par
		(µМст)	(g)			(h)	(%)	(dl/g)	MIR (%)
M _.	3	700	72	MCH	5	144	14	6,3	99,6
		1500	72	MCH	5	144	22	5,4	99,6

Ces résultats montrent que le système catalytique 3 selon l'invention présente une activité suffisante pour polymériser l'isoprène à une température maintenue à la valeur constante de -45° C, en dépit de la vitesse de réaction réduite qu'il procure à cette très basse température.

On notera que les polyisoprènes ainsi obtenus présentent chacun un taux d'enchaînements cis-1,4 de 99,6 %, taux extrêmement élevé.

4) Exemples de polymérisation de l'isoprène à une température de 0° C au moyen des systèmes catalytiques 5 et 6 précités:

a) Procédé de polymérisation utilisé:

On a utilisé les mêmes conditions de polymérisation que celles détaillées au paragraphe 1) ci-dessus (bouteille « Steinie de 250 ml avec 10 g d'isoprène par bouteille), à ceci près que l'on a maintenu la température de polymérisation à une valeur de 0° C et que la polymérisation a été mise en œuvre avec agitation dans un bac à glycol.

b) Résultats obtenus:

5

15

20

Le tableau 4 ci-après présente les résultats obtenus (on se réfèrera au paragraphe 1) pour les conditions de mesures).

TABLEAU 4:

Essais	Syst.	Co	onditions de	polyméris	ation		Polyisoprè	nes obtenus	3
]	Cat.	Rapport	Quantité	Temps	Taux de	Viscosité	ML(1+4)	Taux	Taux
		S/M	Nd	de	conversion	inhérente		cis-1,4	cis-1,4
			(μMcm)	réaction	(%)	(dl/g)		(%) par	(%) par
				(h)				RMN ¹³ C	MIR
N	6	9	130	48	100	-	97	99,1	-
0	5	9	300	18	100	7,6	97	-	99,0
			700	18	100	5,8	84	-	99,1
P	5	9	700	0,25	15	-	-	-	-
				1,5	50	•		-	-
				2	60	4,9			99,1
			,	18	100	6,0	86		99,0
Q	5	9	700	18	100		85	-	99,0
		7	700	18	100	_	86	-	99,0

Ces résultats montrent que les systèmes catalytiques 5 et 6 selon l'invention permettent d'obtenir avec une activité satisfaisante, à une température maintenue à 0° C, des polyisoprènes à taux d'enchaînements cis-1,4 qui appartiennent à un domaine allant de 99,0 % à 99,1 %.

Pour un rapport solvant de polymérisation/ monomère (cyclohexane/ isoprène) égal à 9 (soit 10 % en concentration), on notera que les polyisoprènes obtenus avec le système catalytique 5 selon l'invention présentent au bout de 18 heures (100 % de conversion) une viscosité Mooney élevée et reproductible d'environ 85.

Concernant les caractéristiques de macrostructure des polyisoprènes obtenus (mesures effectuées au moyen de la technique SEC, voir annexe 2 jointe), le polyisoprène obtenu pour l'essai N (système catalytique 6) présente :

- une masse moléculaire moyenne en nombre Mn de 930 299 g/mol, et
- un indice de polymolécularité Ip de 2,46.

ANNEXE 1:

5

20

Détermination de la microstructure des polyisoprènes.

1) Par la technique de résonance magnétique nucléaire du carbone 13 (analyse RMN¹³C):

a) Préparation des échantillons:

2 g de polyisoprène sont extraits à l'acétone au reflux pendant 8 heures. Le polyisoprène extrait est ensuite séché à température ambiante et sous vide pendant 24 heures. Puis ce polyisoprène séché est remis en solution dans du chloroforme. La solution de polyisoprène est filtrée et le solvant est éliminé à l'évaporateur rotatif pendant 4 heures (la température du bain est de 40° C).

Pour l'analyse, on solubilise environ 600 mg du polyisoprène ainsi préparé dans du CDCl₃ (2 ml), directement dans un tube RMN¹³C.

b) Caractéristiques de l'appareillage:

- Spectrophotomètre commercialisé sous la dénomination « BRUKER AM250 ».
- Fréquence de résonance (SFO) = 62,9 MHz.
- Programme d'impulsion : INVGATE. AU (suppression de l'effet « NOE » pour l'analyse quantitative en RMN du 13 C).
 - Durée d'impulsion : 9µs (90°).
 - Durée de relaxation : 10 s.
- 25 Nombre de transitoires accumulés (NS) = 8192.

c) Attribution des pics du spectre:

L'identification des pics a été faite d'après :

30 Quang Tho Pham, R. Petiaud, H. Waton, M.F. Llauro Darricades, "Proton and NMR Spectra of Polymers", 1991, Penton Press.

d) Méthode d'intégration:

- Pas de motifs 1-2 détectés.
- Le rapport entre les taux de 3-4 et de 1-4 est déterminé à l'aide des carbones
 éthyléniques. La teneur en enchaînements 1-4 trans et 1-4 cis dans le polyisoprène est calculée avec les carbones aliphatiques.

2) Par la technique de dosage par moyen infrarouge (MIR):

10

15

a) Préparation des échantillons:

Pour ce dosage infrarouge, on utilise le polyisoprène tel que préparé au paragraphe 1) ci-dessus, pour la RMN (l'échantillon est extrait à l'acétone puis est séché en étuve).

Une solution du polyisoprène à 10 g/l exactement dans le CCl₄ est analysée à l'aide d'une cellule de KBr de 0,2 mm d'épaisseur.

b) Appareillage:

- Spectrophotomètre commercialisé sous la dénomination « BRUKER IFS88 ».
 - Conditions d'enregistrement:

```
ouverture du faisceau : maximale ;
```

résolution: 2 cm⁻¹;

vitesse du miroir mobile : 0,639 cm.s⁻¹;

25 détecteur : DTGS ;

accumulations: 64 scan;

temps de purge: 3 mn;

fenêtre spectrale: 4000 à 400 cm⁻¹;

spectres enregistrés en transmittance;

30 référence : solvant CCl₄.

- Traitement des spectres :

transfert sur micro-ordinateur; traitement avec le logiciel « OPUS » de « BRUKER ».

c) Attribution des pics du spectre:

5

30

Des études spectrales et le contenu des documents suivants ont permis de déterminer les bandes caractéristiques des différents modes d'enchaînement :

- Y. Tanaka, Y. Takeuchi, M. Kobayashi, H. Tadokoro, *Journal of Polymer Science*, *Part A-2*, **1971**, 9(1), 43-57.
 - J.P. Kistel, G. Friedman, B. Kaempf, Bulletin de la Société Chimique de France, 1967, n°12.
- F. Asssioma, J. Marchal, C. R. Acad. Sc. Paris, Ser C, 1968, 266(22), 1563-6 et Ser D, 1968, 266(6), 369-72.
 - T.F. Banigan, A.J. Verbiscar, T.A. Oda, Rubber Chemistry and technology, 1982, 55(2), 407-15.

La conformation 3-4 présente deux bandes caractéristiques :

- une bande à 880 cm⁻¹ de forte intensité correspondant aux vibrations de déformation hors du plan (δ C-H) des hydrogènes terminaux du groupement vinylique (=CH₂).
 - une bande à 3070 cm $^{-1}$ correspondant aux élongations ν C-H de ce même groupement (=CH₂).
- La conformation <u>1-4 cis</u> possède une bande caractéristique vers 3030 cm⁻¹. Cette bande correspond aux vibrations d'élongation v C-H du groupement =CH.

La bande correspondant aux vibrations de déformation symétrique des groupements méthyles (δ CH₃) est une bande complexe qui intègre les trois conformations. L'absorption correspondant aux δ CH₃ de la conformation <u>1-4 trans</u> est maximale vers 1385 cm⁻¹; il s'agit d'un épaulement de cette bande.

d) Méthode d'intégration:

Les bandes du 3-4 et du 1-4 cis sont intégrées selon le mode de la surface tangentielle. Le maximum d'absorption du 1-4 trans se situe en épaulement de la bande intense des δ CH₃. La méthode la plus adaptée dans ce cas est la mesure de la hauteur de bande avec comme ligne de base la tangente de la bande des δ CH₃.

e) Courbes d'étalonnage:

Expression de la loi de Beer-Lambert:

 $Do(v \text{ ou } \delta) = \varepsilon(v \text{ ou } \delta) \text{ e c}$

avec:

Do(v ou δ) = densité optique de la bande v ou δ;

 $\varepsilon(v \text{ ou } \delta)$ = coefficient d'extinction molaire de l'analyte responsable de la bande v ou

15 δ ;

25

c = concentration molaire de l'analyte; et

e = épaisseur de l'échantillon.

Des polyisoprènes commerciaux (commercialisés sous les dénominations « IR305 », « NATSYN 2200 » et « SKI-3S »), un polyisoprène synthétisé au laboratoire (MC78) et du caoutchouc naturel (NR) sont pris comme étalons. Comparés à iso-concentration (solutions), la loi peut donc s'écrire :

 $D_X = K X$

avec:

Dx = valeur de l'intégration de la bande correspondant au motif X,

X = taux de motif X dans la gomme (déterminé par RMN¹³C), et

K = constante d'étalonnage.

Les courbes d'étalonnage Dx = f(X) peuvent donc être tracées pour chacun des motifs.

ANNEXE 2:

Détermination de la distribution des masses moléculaires des élastomères obtenus par la technique de chromatographie d'exclusion par la taille (SEC).

a) Principe de la mesure:

La chromatographie d'exclusion par la taille ou SEC (size exclusion chromatography) permet de séparer physiquement les macromolécules suivant leur taille à l'état gonflé sur des colonnes remplies de phase stationnaire poreuse. Les macromolécules sont séparées par leur volume hydrodynamique, les plus volumineuses étant éluées en premier.

Sans être une méthode absolue, la SEC permet d'appréhender la distribution des masses moléculaires d'un polymère. A partir de produits étalons commerciaux, les différentes masses moyennes en nombre (Mn) et en poids (Mw) peuvent être déterminées et l'indice de polydispersité calculé (Ip = Mw/Mn).

15

10

5

b) Préparation du polymère:

Il n'y a pas de traitement particulier de l'échantillon de polymère avant analyse. Celuici est simplement solubilisé dans du tétrahydrofurane à une concentration d'environ 1 g/l.

20

25

30

c) Analyse SEC:

L'appareillage utilisé est un chromatographe « WATERS, modèle 150C ». Le solvant d'élution est le tétrahydrofurane, le débit de 0,7 ml/mn, la température du système de 35°C et la durée d'analyse de 90 min. On utilise un jeu de quatre colonnes en série, de dénominations commerciales « SHODEX KS807 », « WATERS type STYRAGEL HMW7 » et deux « WATERS STYRAGEL HMW6E ».

Le volume injecté de la solution de l'échantillon de polymère est 100 µl. Le détecteur est un réfractomètre différentiel « WATERS modèle RI32X » et le logiciel d'exploitation des données chromatographiques est le système « WATERS MILLENIUM » (version 3.00).

REVENDICATIONS

1) Polyisoprène de synthèse, caractérisé en ce qu'il présente un taux d'enchaînements cis-1,4, mesuré selon la technique de résonance magnétique nucléaire du carbone 13 et selon la technique de dosage par moyen infrarouge, qui est strictement supérieur à 99,0 %.

- 2) Polyisoprène de synthèse selon la revendication 1, caractérisé en ce que ledit taux d'enchaînements cis-1,4, mesuré selon la technique de résonance magnétique nucléaire du carbone 13 et selon la technique de dosage par moyen infrarouge, est égal ou supérieur à 99,3 %.
- 3) Polyisoprène de synthèse selon la revendication 2, caractérisé en ce que ledit taux d'enchaînements cis-1,4, mesuré selon la technique de résonance magnétique nucléaire du carbone 13 et selon la technique de dosage par moyen infrarouge, est égal ou supérieur à 99,5 %.
- 4) Polyisoprène de synthèse selon la revendication 3, caractérisé en ce que ledit taux d'enchaînements cis-1,4, mesuré selon la technique de résonance magnétique nucléaire du carbone 13 et selon la technique de dosage par moyen infrarouge, est égal à 99,6 %.

5) Procédé de préparation d'un polyisoprène de synthèse selon une des revendications précédentes, ledit procédé consistant essentiellement à faire réagir un système catalytique en présence d'isoprène, caractérisé en ce qu'il consiste :

- à utiliser, à titre de système catalytique, un système à base d'au moins :
 - un monomère diène conjugué,
- un sel d'un ou plusieurs métaux de terre rare d'un acide phosphorique organique,
- un agent d'alkylation constitué d'un alkylaluminium répondant à la formule AlR₃ ou HAlR₂, et
 - un donneur d'halogène constitué d'un halogénure d'alkylaluminium,

5

10

15

20

25

ledit sel étant en suspension dans au moins un solvant hydrocarboné inerte, saturé et de type aliphatique ou alicyclique qui est compris dans ledit système catalytique, et le rapport molaire (agent d'alkylation / sel de terre rare) appartenant à un domaine allant de 1 à 5, et

• à mettre en œuvre la réaction de polymérisation de l'isoprène à une température inférieure ou égale à 5° C, dans un solvant de polymérisation hydrocarboné inerte ou en masse, pour que ledit polyisoprène présente un taux d'enchaînements cis-1,4, mesuré selon la technique de résonance magnétique nucléaire du carbone 13 et selon la technique de dosage par moyen infrarouge, qui soit strictement supérieur à 99,0 %.

10

15

20

25

5

- 6) Procédé de préparation selon la revendication 5 d'un polyisoprène de synthèse, caractérisé en ce qu'il consiste à mettre en œuvre ladite réaction de polymérisation à une température allant de -55° C à -20° C, pour que ledit polyisoprène présente un taux d'enchaînements cis-1,4, mesuré selon la technique de résonance magnétique nucléaire du carbone 13 et selon la technique de dosage par moyen infrarouge, qui soit égal ou supérieur à 99,3 %.
- 7) Procédé de préparation selon la revendication 5 d'un polyisoprène de synthèse, caractérisé en ce qu'il consiste à mettre en œuvre ladite réaction de polymérisation à une température allant de -55° C à -40° C, pour que ledit polyisoprène présente un taux d'enchaînements cis-1,4, mesuré selon la technique de résonance magnétique nucléaire du carbone 13 et selon la technique de dosage par moyen infrarouge, qui soit égal ou supérieur à 99,5 %.
- 8) Procédé de préparation d'un polyisoprène de synthèse selon une des revendications 5 à 7, caractérisé en ce qu'il consiste à utiliser, à titre de système catalytique, un système qui est tel que ledit sel de terre rare est un tris[bis(2-éthylhexyl)phosphate] de terre(s) rare(s).
- 9) Procédé de préparation d'un polyisoprène de synthèse selon la revendication 8, caractérisé en ce qu'il consiste à utiliser, à titre de système catalytique, un système qui est tel que ledit sel de terre rare est le tris[bis(2-éthylhexyl)phosphate] de néodyme.

10) Procédé de préparation d'un polyisoprène de synthèse selon une des revendications 5 à 9, caractérisé en ce qu'il consiste à utiliser, à titre de système catalytique, un système comprenant ledit ou lesdits métaux de terre rare selon une concentration égale ou sensiblement égale à 0,02 mol/l.

5

11) Procédé de préparation d'un polyisoprène de synthèse selon une des revendications 5 à 10, caractérisé en ce qu'il consiste à utiliser, à titre de système catalytique, un système qui est tel que le rapport molaire (donneur d'halogène/ sel) appartient à un domaine allant de 2,6 à 3.

10

12) Procédé de préparation d'un polyisoprène de synthèse selon une des revendications 5 à 11, caractérisé en ce qu'il consiste à utiliser, à titre de système catalytique, un système qui est tel que le rapport molaire (monomère diène conjugué / sel) appartient à un domaine allant de 25 à 50.

15

13) Procédé de préparation d'un polyisoprène de synthèse selon une des revendications 5 à 12, caractérisé en ce qu'il consiste à utiliser, à titre de système catalytique, un système qui est tel que ledit monomère diène conjugué est le butadiène.

20

14) Procédé de préparation d'un polyisoprène de synthèse selon une des revendications 5 à 13, caractérisé en ce qu'il consiste à utiliser, à titre de système catalytique, un système qui est tel que ledit agent d'alkylation est l'hydrure de diisobutylaluminium.

25

15) Procédé de préparation d'un polyisoprène de synthèse selon une des revendications 5 à 14, caractérisé en ce qu'il consiste à utiliser, à titre de système catalytique, un système qui est tel que ledit ledit donneur d'halogène est le chlorure de diéthylaluminium.

INTERNATIONAL SEARCH REPORT

Inter nal Application No PCI/EP 01/12489

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 CO8F136/08 CO8F C08F136/04 C08F4/54 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 C08F Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, PAJ C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ° Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Χ US 3 864 278 A (LA HEIJ GERARDUS E ET AL) 1 - 44 February 1975 (1975-02-04) column 3, line 57 - line 59 example 1 1 - 15Α US 4 128 708 A (LIAKUMOVICH ALEXANDR G ET χ 1 - 4AL) 5 December 1978 (1978-12-05) column 5, line 40 - line 42 example 6 1 - 15Α EP 0 846 707 A (JAPAN SYNTHETIC RUBBER CO Α 1-15 LTD) 10 June 1998 (1998-06-10) page 3, line 3 - line 15 page 5, line 20 - line 48 page 6, line 7 - line 34 examples 1,20 claims 1-10 Further documents are listed in the continuation of box C. χ Patent family members are listed in annex. ° Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 28 March 2002 10/04/2002 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo ni, Fax: (+31–70) 340–3016 Denis, C

INTERNATIONAL SEARCH REPORT

Inte Ial Application No
PCI/EP 01/12489

0./0	WALL DOOUGENEDED TO BE BELEVANT	
Category °	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 304 088 A (ASAHI CHEMICAL IND) 22 February 1989 (1989-02-22) page 4, line 26 -page 5, line 32 page 7, line 43 -page 8, line 47 examples 1,5 claims 1-27	1-15
).
		*

INTERNATIONAL SEARCH REPORT

Inte al Application No PCI/EP 01/12489

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 3864278	A	04-02-1975	GB BE CA DE FR IT JP JP JP	1408620 A 807698 A2 1013896 A1 2360152 A1 2208715 A1 1002181 B 1100768 C 49088797 A 56045928 B 7316397 A	01-10-1975 24-05-1974 12-07-1977 06-06-1974 28-06-1974 20-05-1976 18-06-1982 24-08-1974 29-10-1981 06-06-1974
US 4128708	Α	05-12-1978	NONE		
EP 0846707	A	10-06-1998	JP DE EP US	10158316 A 69707623 D1 0846707 A1 6130299 A	16-06-1998 29-11-2001 10-06-1998 10-10-2000
EP 0304088	A	22-02-1989	DE DE EP HK JP JP JP KR US	3877859 D1 3877859 T2 0304088 A1 1000666 A1 1158012 A 2117466 C 8022881 B 9108275 B1 5096970 A	11-03-1993 02-09-1993 22-02-1989 17-04-1998 21-06-1989 06-12-1996 06-03-1996 12-10-1991 17-03-1992

RAPPORT DE RECHERCHE INTERNATIONALE

Derr Internationale No PCT/EP 01/12489

A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 7 CO8F136/08 CO8F136/04 CO8F4/54

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement) CIB 7 CO8F

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés) EPO-Internal, WPI Data, PAJ

C. DOCUME	ENTS CONSIDERES COMME PERTINENTS	
Catégorie °	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
Х	US 3 864 278 A (LA HEIJ GERARDUS E ET AL) 4 février 1975 (1975-02-04) colonne 3, ligne 57 - ligne 59	1-4
A	exemple 1	1–15
X	US 4 128 708 A (LIAKUMOVICH ALEXANDR G ET AL) 5 décembre 1978 (1978-12-05) colonne 5, ligne 40 - ligne 42	1-4
Α	exemple 6	1-15
Α	EP 0 846 707 A (JAPAN SYNTHETIC RUBBER CO LTD) 10 juin 1998 (1998-06-10) page 3, ligne 3 - ligne 15 page 5, ligne 20 - ligne 48 page 6, ligne 7 - ligne 34 exemples 1,20 revendications 1-10	1-15
	-/	

Yoir la suite du cadre C pour la fin de la liste des documents	Les documents de familles de brevets sont indiqués en annexe
"A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent "E" document antérieur, mais publié à la date de dépôt international ou après cette date "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée	T* document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention X* document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément Y* document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier &* document qui fait partie de la même famille de brevets
Date à laquelle la recherche internationale a été effectivement achevée 28 mars 2002	Date d'expédition du présent rapport de recherche internationale 10/04/2002
Nom et adresse postale de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Fonctionnaire autorisé Denis, C

RAPPORT DE RECHERCHE INTERNATIONALE

Dem nternationale No
PCT/EP 01/12489

cation des documents cités, avec, le 2 0 304 088 A (ASAHI 2 février 1989 (1989- 1ge 4, ligne 26 -page 1ge 7, ligne 43 -page 2 exemples 1,5 2 evendications 1-27	CHEMICAL I 02-22) 5, ligne	ND)	ges pertinents	no. des revendid	cations visées
dge 4, ligne 26 -page dge 7, ligne 43 -page exemples 1,5	5, ligne	32		1-15	

RAPPORT DE RECHERCHE INTERNATIONALE

Den iternationale No
PC., ... 01/12489

	ument brevet cité port de recherche		Date de publication		flembre(s) de la mille de brevet(s)	Date de publication
US	3864278	A	04-02-1975	GB BE CA DE FR IT JP JP JP	1408620 A 807698 A2 1013896 A1 2360152 A1 2208715 A1 1002181 B 1100768 C 49088797 A 56045928 B 7316397 A	01-10-1975 24-05-1974 12-07-1977 06-06-1974 28-06-1974 20-05-1976 18-06-1982 24-08-1974 29-10-1981 06-06-1974
US	4128708	A	05-12-1978	AUCUN		
EP	0846707	A	10-06-1998	JP DE EP US	10158316 A 69707623 D1 0846707 A1 6130299 A	16-06-1998 29-11-2001 10-06-1998 10-10-2000
EP	0304088	A	22-02-1989	DE DE EP HK JP JP KR US	3877859 D1 3877859 T2 0304088 A1 1000666 A1 1158012 A 2117466 C 8022881 B 9108275 B1 5096970 A	11-03-1993 02-09-1993 22-02-1989 17-04-1998 21-06-1989 06-12-1996 06-03-1996 12-10-1991 17-03-1992