Departamento de Matemática y Estadística

Resolución Guía de Trabajo. Geometría Analítica.

Fundamentos de Matemáticas.

Profesores: P. Valenzuela - A. Sepúlveda - A. Parra - L. Sandoval - J. Molina - E. Milman - M. Choquehuanca - H. Soto - E. Henríquez.

Ayudante: Pablo Atuán.

1 Hipérbola.

- 1. Solución: "Estos ejercicios quedan propuestos para el estudiante"
- 2. **Solución:** Tenemos que:

$$2a = d[V_1 : V_2]$$

$$2a = d[(0,3) : (0,-3)]$$

$$2a = 6$$

$$a = 3$$

Por otra parte, tenemos que:

$$2c = d[F_1 : F_2]$$

$$2c = d[(0,5) : (0,-5)]$$

$$2c = 10$$

$$c = 5$$

Luego, b = 4. Además, C(0,0). Por lo tanto, la ecuación de la hipérbola queda determinada por:

$$\frac{y^2}{9} - \frac{x^2}{16} = 1$$

Longitud eje transverso igual a 6, longitud eje conjugado igual a 8. Longitud del lado recto igual a $\frac{32}{3}$. Su excentricidad es $\frac{5}{3}$

3. | Solución: | Tenemos que:

$$2a = d[V_1 : V_2]$$

$$2a = d[(2,0) : (-2,0)]$$

$$2a = 4$$

$$a = 2$$

Por otra parte, tenemos que:

$$2c = d[F_1 : F_2]$$

$$2c = d[(3,0) : (-3,0)]$$

$$2c = 6$$

$$c = 3$$

Luego, $b = \sqrt{5}$. Además, C(0,0). Por lo tanto, la ecuación de la hipérbola queda determinada por:

$$\frac{x^2}{4} - \frac{y^2}{5} = 1$$

Su excentricidad es $\frac{3}{2}$.

4. **Solución:** Tenemos que c = 5, luego $a = \frac{5}{3}$. Por lo tanto $b = \frac{10\sqrt{2}}{2}$. Luego, la ecuación de la hipérbola queda determinada por:

$$\frac{y^2}{\frac{25}{9}} - \frac{x^2}{\frac{200}{9}} = 1$$

Donde, la longitud del lado recto es $\frac{2b^2}{a} = \frac{2 \cdot \frac{200}{9}}{\frac{5}{3}} = \frac{80}{3}$

5. Solución: Tenemos que 2b = 6, es decir, b = 3. Como $\frac{2b^2}{a} = 6$, tenemos que a = 3. Por lo tanto, $c = 3\sqrt{2}$. Luego, la ecuación de la hipérbola queda determinada por:

$$\frac{x^2}{9} - \frac{y^2}{9} = 1$$

Su excentricidad es $\sqrt{2}$.

6. **Solución:** Tenemos que:

$$2a = d[V_1 : V_2]$$

$$2a = d[(0, 4) : (0, -4)]$$

$$2a = 8$$

$$a = 4$$

Como $e = \frac{c}{a} = \frac{3}{2}$, tenemos que 6. Por lo tanto, $b = 2\sqrt{5}$. Además, C(0,0). Luego, la ecuación de la hipérbola queda determinada por:

$$\frac{y^2}{16} - \frac{x^2}{20} = 1$$

Las coordenadas de los focos son $F_1(0,6)$ y $F_2(0,-6)$.

7. Solución: Sea $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ la ecuación buscada. Como $e = \frac{c}{a} = \frac{\sqrt{6}}{2}$, tenemos que $c = \frac{\sqrt{6}a}{2}$. Tomando la relación, $a^2 + b^2 = c^2$ llegamos a que $a^2 = 2b^2$ Reemplazando el punto (2,1) en nuestra ecuación, concluímos que b = 1, por ende, $a = \sqrt{2}$ y $c = \sqrt{3}$. Luego, la ecuación de la hipérbola queda determinada por:

$$\frac{x^2}{2} - \frac{y^2}{1} = 1$$

8. Solución: Sea $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$ la ecuación buscada. Como $\frac{2b^2}{a} = \frac{2}{3}$, tenemos que $b^2 = \frac{a}{3}$. Reemplazando el punto (-1,2) en la ecuación, llegamos a la relación $4b^2 - a^2 = a^2b^2$. De donde, concluímos que a = 1, $b = \frac{\sqrt{3}}{3}$. Luego, la ecuación de la hipérbola queda determinada por:

$$\frac{y^2}{1} - \frac{x^2}{3} = 1$$

9. Solución: Sea $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ la ecuación buscada. Reemplazando los puntos (3, -2) y (7, 6) en la ecuación y resolviéndo el sistema de ecuaciones, concluímos que a = 2 y $b = \frac{4\sqrt{5}}{5}$. Luego, la ecuación de la hipérbola queda determinada por:

$$\frac{x^2}{4} - \frac{5y^2}{16} = 1$$

10. Solución: Sea $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ la ecuación buscada. Reemplazando el punto (6,2) en la ecuación, llegamos a la relación $36b^2 - 4a^2 = a^2b^2$. Como la recta 2x - 5y = 0 es la ecuación de la asíntota de la hipérbola, tenemos que $b = \frac{2a}{5}$. Resolviéndo el sistema de ecuaciones, tenemos que $a = \sqrt{11}$ y $b = \frac{2\sqrt{11}}{5}$. Luego, la ecuación de la hipérbola queda determinada por:

$$\frac{x^2}{11} - \frac{25y^2}{44} = 1$$

- 11. Solución: Tenemos que $a=\frac{\sqrt{7}}{2},\,b=\frac{\sqrt{35}}{5}.$ La ecuación de las asíntotas es: $y=\pm\frac{2\sqrt{5}}{5}\cdot x$
- 12. **Solución:** Tenemos que $a = \frac{\sqrt{11}}{2}$, $b = \frac{\sqrt{11}}{3}$, luego la ecuación de las asíntotas de la hiperbola son: $y = \pm \frac{2}{3} \cdot x$. Resolviéndo el sistema de ecuaciones, llegamos a que las intersecciones son los puntos (3,2) y $(-\frac{4}{3},\frac{8}{9})$.
- 13. Solución: Sea $\frac{x^2}{a^2} \frac{y^2}{b^2}$ la ecuación de la hipérbola pedida. Reemplazando el punto (3, -1) en la ecuación, llegamos a la relación $9b^2 a^2 = a^2b^2$. Por otra parte, tenemos que $\frac{b}{a} = -\frac{\sqrt{2}}{3}$. Resolviéndo el sistema de ecuaciones, llegamos a la solución:

$$\frac{2x^2}{9} - \frac{y^2}{1} = 1$$

14. Solución: Sea $\frac{y^2}{a^2} - \frac{x^2}{b^2}$ la ecuación de la hipérbola pedida. Reemplazando el punto (2,3) en la ecuación, llegamos a la relación $9b^2 - 4a^2 = a^2b^2$. Por otra parte, tenemos que $\frac{b}{a} = \frac{\sqrt{7}}{2}$. Resolviéndo el sistema de ecuaciones, llegamos a la solución:

$$\frac{7x^2}{47} - \frac{4y^2}{47} = 1$$

15. Solución: De la relación $2a=d[V_1:V_2]$, tenemos que a=2. Por otra parte, tenemos que el centro (h,k) de la hipérbola es el punto (1,3). Como $\frac{c}{a}=\frac{3}{2}$, tenemos que c=3, por lo tanto, $b=\sqrt{5}$. Luego la ecuación de la hipérbola queda determinada por:

$$\frac{(x-1)^2}{4} - \frac{(y-3)^2}{5} = 1$$

Donde $F_1(4,3), F_2(-2,3)$. Longitud del eje transverso igual 4. Longitud del eje conjugado igual a $2\sqrt{5}$. Longitud del lado recto igual a 5.

16. Solución: De la relación $2a = d[V_1 : V_2]$, tenemos que a = 3. Por otra parte, tenemos que el centro (h,k) de la hipérbola es el punto (-2,-1). Como $\frac{2b^2}{a} = 2$, tenemos que $b = \sqrt{3}$, por lo tanto $c = 2\sqrt{3}$. Luego la ecuación de la hipérbola queda determinada por:

$$\frac{(y+1)^2}{9} - \frac{(x+2)^2}{3} = 1$$

Donde $F_1(-2, -1 + 2\sqrt{3}), F_2(-2, -1 - 2\sqrt{3})$. Su excentricidad es $\frac{2\sqrt{3}}{3}$.

17. Solución: De la relación $a = d[C:V_2]$, tenemos que a = 2. Por otra parte, de $\frac{2b^2}{a} = 8$, tenemos que $b = 2\sqrt{2}$. Por lo tanto, $c = 2\sqrt{3}$. Luego la ecuación de la hipérbola queda determinada por:

$$\frac{(x-2)^2}{4} - \frac{(y+2)^2}{8} = 1$$

Donde la longitud del eje conjugado igual a $4\sqrt{2}$. Su excentricidad es $\sqrt{3}$.

18. Solución: De la relación $2c = d[F_1 : F_2]$, tenemos que c = 3. Además a = 2. Por lo tanto, $b = \sqrt{5}$. Por otra parte, tenemos que el centro (h, k) de la hipérbola es el punto (4, -5). Luego la ecuación de la hipérbola queda determinada por:

$$\frac{(y+5)^2}{4} - \frac{(x-4)^2}{5} = 1$$

Donde la longitud del lado recto es igual a 5. Su excentricidad es $\frac{3}{2}$

19. **Solución:** De la relación $d[C:F_1]$, tenemos que c=4. Como $\frac{c}{a}=2$, tenemos que: a=2. Por lo tanto, $2\sqrt{3}$. Luego la ecuación de la hipérbola queda determinada por:

$$\frac{(x-4)^2}{4} - \frac{(y-5)^2}{12} = 1$$

Donde la longitud del eje tranverso es igual a 4, la longitud del eje conjugado es $4\sqrt{3}$.

20. **Solución:** De la relación $2a = d[V_1 : V_2]$. Además b = 3. Por lo tanto, $c = \sqrt{13}$. Tenemos que el centro (h, k) de la hipérbola es el punto (-3, 0). Luego la ecuación de la hipérbola queda determinada por:

$$\frac{y^2}{4} - \frac{(x+3)^2}{9} = 1$$

Donde $F_1(-3,\sqrt{13})$, $F_2(-3,-\sqrt{13})$. Su excentricidad es $\frac{\sqrt{13}}{2}$.

21. **Solución:** De las asíntotas de la hipérbola tenemos que el centro de la hipérbola es el punto (h, k) es el punto (1,1) y la relación b=2a. Reemplazando el punto (4,6) en la ecuación de la hipérbola, tenemos que $a=\frac{\sqrt{11}}{2}$ y $b=\sqrt{11}$. Luego la ecuación de la hipérbola queda determinada por:

$$\frac{4(x-1)^2}{11} - \frac{(y-1)^2}{11} = 1$$