CIS 560 – Database System Concepts Lecture 28

Query Optimization

November 8, 2013

Credits for slides: Chang, Ullman, Whitehead.

Copyright: Caragea, 2013.

Planning

- Assignment 8 (indexes) due 11/8
- Project DB design revision due 11/11
 - No class that day use the time to work on project
- Assignment 9 (query optimization) due 11/15
- Exam 2 (assignments 6-9) 11/20
- Project DB implementation and queries due 11/22
- Quiz from special topics 12/06
- Project presentations 12/9, 12/11, 12/13
- Project reports finals week

2

Summary of Join Algorithms

- Nested Loop Join: B(R)+B(R)B(S)/M
 - Assuming block-at-a-time refinement, with one block-at-a time, the cost is: B(R)+ B(R)B(S)
- Hash Join: 3B(R) + 3B(S)
 - Assuming: $min(B(R), B(S)) \le M^2$
- Sort-Merge Join: 3B(R) + 3B(S)
 - Assuming $B(R)+B(S) \le M^2$
- Index Nested Loop Join: B(R) + T(R)B(S)/V(S,a)
 - Assuming S has clustered index on attribute a

Query Optimization Goal

- For a query
 - There exists many logical and physical query plans
 - Query optimizer needs to pick a good one

Example

Supplier(<u>sid</u>, sname, scity, sstate) Supply(<u>sid</u>, <u>pno</u>, quantity)

- Some statistics
 - T(Supplier) = 1000 records
 - T(Supply) = 10,000 records
 - B(Supplier) = 100 pages
 - B(Supply) = 100 pages
 - V(Supplier,scity) = 20, V(Supplier,state) = 10
 - V(Supply,pno) = 2,500
 - Both relations are clustered
- M = 10

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno = 2
and x.scity = 'Manhattan'
and x.sstate = 'KS'

Relational Algebra Expressions

 $\pi_{sname}(\sigma_{scity=`Manhattan', \land \ sstate=`KS', \land \ pno=2} \ (Supplier_{\bowtie sid} = _{sid} \ Supply))$

 $\pi_{\text{ sname}}((\sigma_{\text{scity=`Manhattan'}, \land \text{ sstate=`KS'}}(Supplier)) \bowtie_{\text{sid} = \text{sid}} (\sigma_{\text{ pno=2}} \left(Supply) \right))$

Simplifications

- In the previous examples, we assumed that all index pages were in memory
- When this is not the case, we need to add the cost of fetching index pages from disk

Lessons

- Need to consider several physical plans
 - even for one, simple logical plan
- No magic "best" plan: depends on the data
 - In order to make the right choice
 - need to have statistics over the data
 - the B's, the T's, the V's

Query Optimization Algorithm

- Enumerate alternative plans
- Compute estimated cost of each plan
 - Compute number of I/Os
- Choose plan with lowest cost
 - This is called cost-based optimization

Components of an optimizer

We need three things in an optimizer:

- Search space (algebraic laws relational algebra equivalences)
- Algorithm for enumerating query plans
- A cost estimator for a plan

Relational Algebra Equivalences

- We can commute and combine operators
- We just have to be careful that the fields we need are available when we apply the operator

Commutativity, Associativity, Distributivity

$$R \cup S = S \cup R$$
, $R \cup (S \cup T) = (R \cup S) \cup T$
 $R \cap S = S \cap R$, $R \cap (S \cap T) = (R \cap S) \cap T$
 $R \bowtie S = S \bowtie R$, $R \bowtie (S \bowtie T) = (R \bowtie S) \bowtie T$

$$R \bowtie (S \cup T) = (R \bowtie S) \cup (R \bowtie T)$$

Left-Deep Plans and Bushy Plans

Example

Which plan is more efficient? $R \bowtie (S \bowtie T)$ or $(R \bowtie S) \bowtie T$?

- Assumptions:
 - Every join selectivity is 10%
 - That is: T(R ⋈ S) = 0.1 * T(R) * T(S) etc.
 - B(R)=100, B(S) = 50, B(T)=500
 - All joins are main memory joins
 - All intermediate results are materialized

Laws involving selection:

$$\sigma_{C1}(\sigma_{C2}(R)) = \sigma_{C2}(\sigma_{C1}(R))$$

$$\sigma_{C \text{ AND C'}}(R) = \sigma_{C}(\sigma_{C'}(R)) = \sigma_{C}(R) \cap \sigma_{C'}(R)$$

$$\sigma_{C \text{ OR C'}}(R) = \sigma_{C}(R) \cup \sigma_{C'}(R)$$

$$\sigma_{C}(R \cup S) = \sigma_{C}(R) \cup \sigma_{C}(S)$$

When C involves only attributes of R

$$\sigma_{C}(R \cup S) = \sigma_{C}(R) \cup S$$

 $\sigma_{C}(R - S) = \sigma_{C}(R) - S$
 $\sigma_{C}(R \bowtie S) = \sigma_{C}(R) \bowtie S$

Example: Simple Algebraic Laws

■ Example: R(A, B, C, D), S(E, F, G)

$$\sigma_{F=3}(R \bowtie_{D=E} S) =$$

$$\sigma_{A=5 \text{ AND G}=9} (R \bowtie_{D=E} S) =$$
 ?

Example: Simple Algebraic Laws

■ Example: R(A, B, C, D), S(E, F, G)

$$\sigma_{F=3}(R \bowtie_{D=E} S) = R \bowtie_{D=E} (\sigma_{F=3}(S))$$

$$\begin{array}{l} \sigma_{\text{ A=5 AND G=9}}\left(\text{R}\bowtie_{\text{ D=E}}\text{S}\right) = \sigma_{\text{A=5}}\left(\sigma_{\text{G=9}}(\text{R}\bowtie_{\text{D=E}}\text{S})\right) \\ = \left(\sigma_{\text{A=5}}(\text{R})\right)\bowtie_{\text{D=E}}\left(\sigma_{\text{G=9}}(\text{S})\right) \end{array}$$

Laws Involving Projections

$$\begin{split} &\Pi_{\mathsf{M}}(\mathsf{R}\bowtie\mathsf{S})=\Pi_{\mathsf{M}}(\Pi_{\mathsf{P}}(\mathsf{R})\bowtie\Pi_{\mathsf{Q}}(\mathsf{S}))\\ &\Pi_{\mathsf{M}}(\Pi_{\mathsf{N}}(\mathsf{R}))=\Pi_{\mathsf{M}}(\mathsf{R}) \ \ \, /^* \text{ note that } \mathsf{M}\subseteq\mathsf{N} \ ^*/ \end{split}$$

Example R(A,B,C,D), S(E, F, G)
 Π_{A B G}(R ⋈ _{D=F} S) = Π₂ (Π₂(R) ⋈ _{D=F} Π₂(S))

Laws Involving Projections

$$\begin{split} &\Pi_{\mathsf{M}}(\mathsf{R}\bowtie\mathsf{S})=\Pi_{\mathsf{M}}(\Pi_{\mathsf{P}}(\mathsf{R})\bowtie\Pi_{\mathsf{Q}}(\mathsf{S}))\\ &\Pi_{\mathsf{M}}(\Pi_{\mathsf{N}}(\mathsf{R}))=\Pi_{\mathsf{M}}(\mathsf{R}) \ \ \, /^* \text{ note that } \mathsf{M}\subseteq\mathsf{N} \ ^*/ \end{split}$$

■ Example R(A,B,C,D), S(E, F, G) $\Pi_{A,B,G}(R \bowtie_{D=E} S) = \Pi_{A,B,G}(\Pi_{A,B,D}(R) \bowtie_{D=E} \Pi_{E,G}(S))$

Search Space Challenges

- Search space is huge!
 - Many possible equivalent trees
 - Many implementations for each operator
 - Many access paths for each relation
 - File scan or index + matching selection condition
- Cannot consider ALL plans
 - Heuristics: only partial plans with "low" cost

Algorithms for enumerating plans: key decisions

- Logical plan
 - What logical plans do we consider (left-deep, bushy?)
 - Search space
 - Which algebraic laws do we apply, and in which context(s)?
 - Optimization rules
 - In what order do we explore the search space?
 - Optimization algorithm
- Physical plan
 - What join algorithms to use?
 - What access paths to use (file scan or index)?

Types of Optimizers

- Rule-based optimizers:
 - Apply greedily rules that always improve
 - Typically: push selections down, pull projections up
 - Very limited: no longer used today
- Cost-based optimizers
 - Use a cost model to estimate the cost of each plan
 - Select the "cheapest" plan

The Search Space

- Complete plans
- Bottom-up plans
- Top-down plans

Search Strategies

Branch-and-bound:

- Remember the cheapest complete plan P seen so far and its cost C
- Stop generating partial plans whose cost is > C
- If a cheaper complete plan is found, replace P, C

Hill climbing:

Remember only the cheapest partial plan seen so far

Dynamic programming:

Remember all cheapest partial plans

Dynamic Programming

Originally proposed in System R [1979]

- Limited to joins: join reordering algorithm
- Bottom-up
- Only handles single block queries:

```
\begin{array}{ll} \textbf{SELECT list} \\ \textbf{FROM} & \textbf{R1}, \dots, \textbf{Rn} \\ \textbf{WHERE cond}_1 \ \textbf{AND cond}_2 \ \textbf{AND} \ \dots \ \textbf{AND cond}_k \\ \end{array}
```

Dynamic Programming

- Search space = join trees
- Algebraic laws = commutativity, associativity
- Algorithm = dynamic programming ⁽¹⁾

Join Trees

- $\mathsf{R1} \bowtie \mathsf{R2} \bowtie \bowtie \mathsf{Rn}$
- Join tree:

- A partial plan = a subtree of a join tree

Types of Join Trees

■ Left deep:

Types of Join Trees

■ Right deep:

Types of Join Trees

■ Bushy:

Dynamic Programming

Join ordering:

- Given: a query R1 ⋈ R2 ⋈ . . . ⋈ Rn
- Find optimal order
- Assume we have a function cost() that gives us the cost of every join tree

 $\begin{tabular}{ll} SELECT list \\ FROM & R1, ..., Rn \\ WHERE cond_1 AND cond_2 AND ... AND cond_k \\ \end{tabular}$

Dynamic Programming

- Idea: for each subset of {R1, ..., Rn}, compute the best plan for that subset
- In increasing order of set cardinality:
 - Step 1: for {R1}, {R2}, ..., {Rn}
 - Step 2: for {R1,R2}, {R1,R3}, ..., {Rn-1, Rn}
 - .
 - Step n: for {R1, ..., Rn}
- It is a bottom-up strategy
- A subset of {R1, ..., Rn} is also called a *subquery*

 $\begin{array}{ll} \textbf{SELECT list} \\ \textbf{FROM} & \textbf{R1}, \dots, \textbf{Rn} \\ \textbf{WHERE cond}_1 \textbf{AND cond}_2 \textbf{AND} \dots \textbf{AND cond}_k \end{array}$

Dynamic Programming

- For each subquery Q ⊆{R1, ..., Rn} compute the following:
 - Size(Q) = the estimated size of Q
 - Plan(Q) = a best plan for Q
 - Cost(Q) = the estimated cost of that plan

 $\begin{tabular}{lll} SELECT & list \\ FROM & R1, ..., Rn \\ WHERE & cond_1 AND & cond_2 AND ... AND & cond_k \\ \end{tabular}$

Dynamic Programming

- Step 1: For each {R_i} do:
 - Size($\{R_i\}$) = B(R_i)
 - $Plan(\{R_i\}) = R_i$
 - Cost({R_i}) = (cost of scanning R_i)

Dynamic Programming

- Step i: For each Q ⊆{R₁, ..., R_n} of cardinality i do:
 - Size(Q) = estimate it recursively
 - For every pair of subqueries Q', Q" s.t. Q = Q' ∪ Q" compute cost(Plan(Q') ⋈ Plan(Q"))
 - Cost(Q) = the smallest such cost
 - Plan(Q) = the corresponding plan

 $\begin{array}{ccc} \textbf{SELECT list} \\ \textbf{FROM} & \textbf{R1}, \dots, \textbf{Rn} \\ \textbf{WHERE } \textbf{cond}_1 \textbf{AND } \textbf{cond}_2 \textbf{AND} \dots \textbf{AND } \textbf{cond}_k \end{array}$

Dynamic Programming

■ After step n: Return Plan({R₁, ..., R_n})

Example

To illustrate, ad-hoc cost model (from the book ©):

- In practice: more realistic size/cost estimations
- Cost(P₁ ⋈ P₂) = Cost(P₁) + Cost(P₂) + size(intermediate results for P₁, P₂)
 - Intermediate results:
 - If P1 is a join, then the size of the intermediate result is size(P1), otherwise the size is 0
 - Similarly for P2
- Cost of a scan = 0

Dynamic Programming

Example:

- Cost(R5 \bowtie R7) = 0 (no intermediate results)
- Cost((R2 ⋈ R1) ⋈ R7)
 - = $Cost(R2 \bowtie R1) + Cost(R7) + size(R2 \bowtie R1)$
 - = size(R2 \bowtie R1)

SELECT * FROM R, S, T, U WHERE cond₁ AND cond₂ AND . . .

Example

- R⋈S⋈T⋈U
- Assumptions:

T(R) = 2000

T(S) = 5000

T(T) = 3000

T(U) = 1000

All join selectivities = 1%

 $T(R \bowtie S) = 0.01*T(R)*T(S)$ $T(S \bowtie T) = 0.01*T(S)*T(T)$

etc.

	Subquery	Size	Cost	Plan
T(R) = 2000 T(S) = 5000 T(T) = 3000 T(U) = 1000	RS			
	RT			
	RU			
	ST			
	SU			
$T(R \bowtie S) = 0.01*T(R)*T(S)$ $T(S \bowtie T) = 0.01*T(S)*T(T)$ etc.	TU			
	RST			
	RSU			
	RTU			
	STU			
	RSTU			

T(R) = 2000 T(S) = 5000 T(T) = 3000 T(U) = 1000	Subquery	Size	Cost	Plan
	RS	100k	0	RS
	RT	60k	0	RT
	RU	20k	0	RU
	ST	150k	0	ST
	SU	50k	0	SU
T(R ⋈ S) = 0.01*T(R)*T(S) T(S ⋈ T) = 0.01*T(S)*T(T) etc.	TU	30k	0	TU
	RST	3M	60k	(RT)S
	RSU	1M	20k	(RU)S
	RTU	0.6M	20k	(RU)T
	STU	1.5M	30k	(TU)S
	RSTU	30M	60k +50k=110k	(RT)(SU)

Reducing the Search Space

- Restriction 1: only left linear trees (no bushy)
- Restriction 2: no trees with cartesian product

 $R(A,B) \bowtie S(B,C) \bowtie T(C,D)$

Plan: $(R(A,B) \bowtie T(C,D)) \bowtie S(B,C)$

has a cartesian product.

Most query optimizers will not consider it

Dynamic Programming: Summary

- Handles only join queries:
 - Selections are pushed down (i.e. early)
 - Projections are pulled up (i.e. late)
- Takes exponential time in general, BUT:
 - Left linear joins may reduce time
 - Non-cartesian products may reduce time further

Completing the Physical Query Plan

- Choose algorithm for each operator
 - How much memory do we have?
 - Are the input operand(s) sorted?
- Access path selection for base tables
- Decide for each intermediate result:
 - To materialize
 - To pipeline

Summary of Query Optimization

- Three parts:
 - search space, algorithms, size/cost estimation
- Ideal goal: find optimal plan. But
 - Impossible to estimate accurately
 - Impossible to search the entire space
- Goal of today's optimizers:
 - Avoid very bad plans