TU/

Cl0121 Computer Networks

Network taxonomy and packet transmission

Profesores ECCI

Communications networks

Communication networks

Switched networks

Broadcast networks

end nodes send to one (or more) end nodes

End nodes share a common channel (TV, radio...)

Circuit switching

Dedicated circuit per call (telephone, ISDN) (physical)

Packet switching

Data sent in discrete portions (the Internet)

Datagram networks

Each packet switched independently

Virtual circuit networks

Pre-established path (logical)

Circuit switching

 A dedicated communication path (sequence of links-circuit) is established between the two end nodes through the nodes of the network

• <u>Bandwidth:</u> A circuit <u>occupies a fixed capacity</u> of each link for the entire lifetime of the connection. Capacity unused by the circuit cannot be used by other circuits.

• <u>Latency</u>: Data is not delayed at switches

Circuit switching (cnt'd)

Three phases involved in communication process:

- 1. Establish the circuit
- 2. Transmit data
- 3. Terminate circuit

If circuit not available: busy signal (congestion)

Time diagram of circuit switching

Delay calculation

Total delay: $d_{proc} + d_{prop} + d_{trans}$

- Processing delay: dproc
- Propagation delay: dprop
 - time required for transmission of the first bit of the data packet from its source to its ultimate destination
 - $d_{prop} =$
 - I: length of the physical link [m]
 - c: propagation speed in medium [m/s]
- Transmission delay: dtrans
 - time required to push a complete data packet into a network
 - $d_{\text{trans}}=$
 - p packet length [bits]; r transmission rate [bps]

Delay calculation

- Analogy with transmission and propagation delay
 - Toll booths on the highway
 - Toll booth router
 - A highway between 2 toll booths link
- Imagine a caravan of cars, traveling as a group in a fixed order that is entering the highway segment, crossing the first toll both
- The time required to push out the cars onto the highway by the tollbooth is analogous to the transmission delay in the communication network
- The time taken by the cars to traverse the highway segment is analogous to the propagation delay in the network

Communications networks

Communication networks

Switched networks

Broadcast networks

end nodes send to one (or more) end nodes

End nodes share a common channel (TV, radio...)

Circuit switching

Dedicated circuit per call (telephone, ISDN) (physical)

Packet switching

Data sent in discrete portions (the Internet)

Datagram networks

Each packet switched independently

Virtual circuit networks

Pre-established path (logical)

Packet switching

Why not message switching?

10121

Why not message switching?

Message size *M* [bits]

Address info, size A [bits];

A should be << M

Setting up a communication delay S [s]

Number of hops *m*

Channel throughput R [bps]

- transmission delay: $m \times s + \frac{(A+M)}{R}$
- bad latency: $(m-1) \times s + \frac{(A+M)}{R}$
- excessive buffer requirements

Latency:

1. The time it takes for a packet to cross a network connection, from sender to receiver.

10121

Message switching

M = 7.5 Mb

R=1.5 Mbps

transmission delay:

$$3 \cdot \frac{M}{R} = 15[s]$$

Store complete message and than forward

Message switching versus packet switching

host 1 node 2 host 2

- For simplicity ignore processing and propagation delays
- Split the message into 5000 packets each 1500 bites long
- Store <u>only 1 packet</u> and then <u>forward it</u>
- 1 ms to transmit packet on 1 link
- Pipelining: each link works in parallel
- Delay reduced from 15 s to 5.002 s!!!`

Message switching versus packet switching

Source

switch

switch

Destination

4

– transmission delay:

$$(m-1)\times\left(s+\frac{A+P}{R}\right)+\frac{M}{P}\times\left(s+\left(\frac{A+P}{R}\right)\right)$$

- Note: M+mP rather than Mm
- latency:

$$(m-1)\times\left(\frac{A+P}{R}\right)$$

Time (msec)

- End-to-end (e2e) data flow transmission divided in packets
- header + trailer carry control information for switching (the source and the final destination addresses, etc.)
- Each packet is transmitted through the network independently from the others. It follows a certain path between the nodes (routers)
- QUESTION: Where is the control information in circuit switching?

Packet switching

Inside the packet switching router

A node in packet switching network

Packet switching: resources

- 1. Each packet waits for its turn at the output link
- 2. On its turn, a packet uses full link bandwidth
 - Resources used as needed (pro)
 - Aggregate resource demand can exceed amount available (con)

Congestion: packets queue, wait for link use

Communications network

Communication networks

2025

Switched networks

Broadcast networks

end nodes send to one (or more) end nodes

End nodes share a common channel (TV, radio...)

Circuit switching

Dedicated circuit per call (telephone, ISDN)

Packet switching

Data sent in discrete portions (the Internet)

Datagram networks

Each packet switched independently

Virtual circuit networks

Pre-established path

Datagram switching

- Example: IP network (the Internet)
- Each packet (datagram) is switched independently

- Packet header contains a complete destination address
- Receiving a packet, a router looks at the packet's destination address and searches its current routing table to determine the next hop
- Routes may change during session
- Routers do not keep any state about a flow

Datagram switching

The network nodes process each packet independently

When host A sends several packets to host B over a datagram packet network, the network cannot tell that the packets belong together. In fact, the packets can take different routes.

Implications of datagram packet switching:

- A sequence of packets can be received in a different order than it was sent
- 2. Each packet header must contain the full address of the destination

Example out of order in order

Delays in packet switching networks

A packet experiences delay at each hop

- 4 types of delays at each hop
- 1. nodal *Processing delay*: checks errors & routing
- 2. Queuing delay: time waiting for its turn at the output link
- 3. Transmission delay: time to pump packet onto a link at a link speed
- 4. *Propagation delay:* router to router propagation

A packet is waiting to be transmitted onto the link

Queuing delay depends on # of packets already
waiting in the queue

Introduce buffers

- The larger the buffer the larger the # of stored packets
- If the buffer is full than drop the packet

Delays in packet switching networks

Delays in datagram networks

Delay calculation

R = link bandwidth (bps)

L = packet length (bits)

 λ = average packet arrival rate (pkt/sec)

L λ = average bits arrival rate (b/sec)

1012

Communication networks

Communication networks

2025

Switched networks

Broadcast networks

end nodes send to one (or more) end nodes

End nodes share a common channel (TV, radio...)

Circuit switching

Dedicated circuit per call (telephone, ISDN)

Packet switching

Data sent in discrete portions (the Internet)

Datagram networks

Each packet switched independently

Virtual circuit networks

Pre-established path

Virtual circuit networks

- Combination of circuit-switched and packet-switched networks
- All the packets are transmitted along the pre-established path
- A switched virtual circuit is a virtual circuit in which a connection session is set up for a user only for the duration of a connection
- The two hosts can communicate as though they have a dedicated connection
- An example: X.25 connection, Asynchronous Transfer Mode (ATM)
- Guarantees in-sequence delivery of packets
- However: Packets from different virtual circuits may be interleaved

Virtual circuit networks - example -SVC₁ SVC 2

0121

Virtual circuit networks

2025

Note: Packet headers don't need to contain the full destination address of the packet - only contain *virtual circuit identifier* (VCI)

Packet switching vs. circuit switching

Packet switching allows more users to use network!

1 Mb link

- each user:
 - 100 kbps when "active"
 - active 10% of time
- circuit-switching:
 - 10 users
- packet switching:
 - with 35 users, probability > 10 active less than .0004

Packet switching versus circuit switching (cnt'd)

- Advantages of packet switching over circuit switching
 - Statistical multiplexing, and therefore efficient bandwidth usage
 - Simple to implement

- Disadvantages of packet switching over circ. switching
 - Excessive congestion: packet delay and high loss
 - Protocols needed for reliable data transfer, congestion control
 - Packet header overhead
 - Provides no transparency to a user
 - Analogy: a road versus a railroad

The Internet versus ATM

The Internet

- data exchange among computers
- no strict timing requirements
- "smart" end systems (computers)
- can adapt, perform control, error recovery
- simple inside network, complexity at "the edge"

ATM

- evolved from telephony
- human conversation:
 - strict timing
 - reliability requirements
- need for guaranteed service
- "dumb" end systems
 - telephones
 - complexity inside network

10121

A reminder

Bandwidth

- 2025
- **1.** telecommunications: **range of radio frequencies:** a range of radio frequencies used in radio or telecommunications transmission and reception
- **2.** computing: **communications capacity:** the capacity of a communications channel, for example, a connection to the Internet, often measured in bits per second
- 3. a data transmission rate; the maximum amount of information (bits/second) that can be transmitted along a channel

Latency

A synonym for *delay*, is an expression of how much time it takes for a *packet* of data to get from one designated point to another (single transaction).

The contributors to network latency include:

1. propagation

3. node processing

2. transmission

4. queuing

Where is latency important?

Example:

internet interactive games video conferencing

Bandwidth-Latency

2025

Telephone modems

9 600 bps: smaller bandwidth, lower latency

56 000 bps: larger bandwidth, higher latency

more complex modulation techniques require longer processing time

QUESTION:

For downloading large files what is more important 1. larger bandwidth, or

2. smaller latency?

Homework assignment

- A server sends 1024 Mb of data to a client over a 16.4 Mbps link with 2.5% of packet loss. The server sends the data in packets of 8 Mb and after sending a packet awaits to receive an acknowledgment packet of 8 bytes from the client before sending the next packet. If it takes 10 minutes to complete the transfer of data, determine the latency of the link.
- Explain the logic behind the phrase:
 - "You can buy more bandwidth, but you cannot buy less delay." Exemplify and motivate your answer.
- Compare *Datagram* to the *Virtual Circuit* networks with respect to:
 - circuit setup; addressing scheme; routing; router failure; Quality of Service;

Homework assignment (cnt'd)

Calculate the total delay to transfer a 10 Mb file from the host 1 to the host 2 (from the beginning until the host 2 receives the last bit of the file) using circuit switching, message switching and datagram switching networks. Datagram size is 75 kb. The following is known:

The distance between the two hosts is 2000 km.

There are 3 routers (nodes) at the same distance in between the hosts.

Propagation speed is 200 000 km/s.

Transmission *bandwidth* is 1 Mbps.

Node processing delay is 100 ms.

Neglect processing delays in hosts.

Comment on the obtained results.