Mathematics Methods for Computer Science

Nonlinearity

Root-finding

Bisection

Fixed Point Iteration

Newton's Method

Secant Method

 ${\sf Conclusion}$

Mathematics Methods for Computer Science

Instructor: Xubo Yang

SJTU-SE DALAB

Mathematics Methods for Computer Science

Nonlinearity

Root-findir

Bisection

Fixed Point Iteration

Newton's Method

Secant Method

Conclusion

Lecture

Nonlinear Systems I

Root-findir

Bisection

Fixed Point Iteration

Newton's Method

Socant Motho

Not all numerical problems can be solved with \ in Matlab.

Root-findir

Risection

Fixed Point Iteration

Newton's Method

Secant Method

Conclusion

Have we already seen a nonlinear problem?

Root-findin

Bisection

Fixed Point Iteration

Newton's Method

Carana Martina

Conclusion

Have we already seen a nonlinear problem?

Root-Finding Problem

Nonlinearity

Root-finding

Bisection

Fixed Point Iteration

Newton's Method

Secant Method

Given:
$$f: \mathbb{R}^n \to \mathbb{R}^m$$

Find:
$$\vec{x}^*$$
 with $f(\vec{x}^*) = \vec{0}$

Root-Finding Applications

Nonlinearity

Root-finding

Bisection

Fixed Point Iteration

Newton's Metho

Secant Metho

- Collision detection (graphics, astronomy)
- Graphics rendering (ray intersection)
- Robotics (kinematics)
- Optimization (line search)

Issue: Regularizing Assumptions

Nonlinearity

Root-finding

Bisection

Fixed Point Iteration

Newton's Method

Secant Method

$$f(x) = \begin{cases} -1 \text{ when } x \le 0\\ 1 \text{ when } x > 0 \end{cases}$$

Issue: Regularizing Assumptions

Nonlinearity

Root-finding

Bisection

Fixed Point Iteration

Newton's Method

Secant Method

$$f(x) = \begin{cases} -1 \text{ when } x \le 0\\ 1 \text{ when } x > 0 \end{cases}$$

$$g(x) = \begin{cases} -1 \text{ when } x \in \mathbb{Q} \\ 1 \text{ when } x \notin \mathbb{Q} \end{cases}$$

Monlingarity

Nonlinearit

 $f(\vec{x}) \to f(\vec{y}) \text{ as } \vec{x} \to \vec{y}$

Continuous

Root-finding

Risection

Fixed Point Iteration

Newton's Method

secant Method

Nonlinearity

Root-finding

Risection

Fixed Point Iteration

Newton's Method

occarre ivicerios

Continuous

$$f(\vec{x}) \to f(\vec{y}) \text{ as } \vec{x} \to \vec{y}$$

Lipschitz

$$||f(\vec{x}) - f(\vec{y})||_2 \le c||\vec{x} - \vec{y}||_2$$
 for all \vec{x}, \vec{y} (same c)

Root-finding

$f(\vec{x}) \rightarrow f(\vec{y})$ as $\vec{x} \rightarrow \vec{y}$

Lipschitz

Continuous

$$||f(\vec{x}) - f(\vec{y})||_2 \le c||\vec{x} - \vec{y}||_2$$
 for all \vec{x}, \vec{y} (same c)

Differentiable

$$f'(\vec{x})$$
 exists for all \vec{x}

Nonlinearit

Root-finding

Bisection

Fixed Point Iteration

Newton's Method

Secant Method

Conclusion

Continuous

$$f(\vec{x})
ightarrow f(\vec{y})$$
 as $\vec{x}
ightarrow \vec{y}$ 函数连续又被称为C^O

Lipschitz

$$||f(\vec{x}) - f(\vec{y})||_2 \le c||\vec{x} - \vec{y}||_2$$
 for all \vec{x}, \vec{y} (same c)

Differentiable

$$f'(\vec{x})$$
 exists for all \vec{x}

C^k

k derivatives exist and are continuous

 C^{∞} : all derivatives of f exist and are continuous

Examples

Nonlinearity

Root-finding

Bisection

Fixed Point Iteration

Newton's Method

Socant Mothod

$$f(x) = cos x$$
 C^{∞} and Lipschitz on R

$$g(x) = x^2$$
 C^{∞} but not Lipschitz on R

$$|g(x) - g(0)| = x^2$$
 [0,1] "local Lipschitz"

$$h(x) = |x|$$
 C⁰, Lipschitz, not differentiable

Root-finding

Risection

Fixed Point Iteration

Newton's Method

Secant Method

$$f: \mathbb{R} \to \mathbb{R}$$

Property of Continuous Functions

Nonlinearity

Root-findir

Bisection

Fixed Point Iteration

Newton's Method

Secant Metho

Conclusior

(中值定理)

Intermediate Value Theorem

Suppose that $f:[a,b]\to\mathbb{R}$ is continuous and that f(a)< u< f(b) or f(b)< u< f(a). Then, there exists $z\in (a,b)$ such that f(z)=u

Reasonable Input

Nonlinearity

Root-findi

Bisection

Fixed Point Iteration

Newton's Metho

Socant Mothe

- Continuous function f(x)
- $\ell, r \in \mathbb{R}$ with $f(\ell) \cdot f(r) < 0$ (why?)

由于连续,中间一定存在一个自变量的取值使得函数值为0

Bisection Algorithm

(二分法)

Bisection

- Compute $c = (\ell + r)/2$.
- If f(c) = 0, return $x^* = c$.
- If $f(\ell) \cdot f(c) < 0$, take $r \leftarrow c$. Otherwise take $\ell \leftarrow c$
- Return to step 1 until $|r-\ell| < \varepsilon$; then return c.

可以理解为可以接受的根的误差

Bisection: Illustration

Nonlinearity

Root-findir

Bisection

Fixed Point Iteration

Newton's Method

_ . . .

Two Important Questions

Nonlinearity

Root-findin

Bisection

Fixed Point Iteration

Newton's Method

Secant Method

 ${\sf Conclusion}$

Does it converge?

Two Important Questions

Nonlinearity

oot-findin

Bisection

Fixed Point Iteration

Newton's Methoc

Socant Motho

Conclusion

Does it converge?
 Yes! Unconditionally.

Root-finding

Bisection

Fixed Point Iteration

Newton's Method

Secant Metho

Conclusion

Does it converge?
 Yes! Unconditionally.

How quickly?

Convergence Analysis

Nonlinearity

Root-findir

Bisection

Fixed Point Iteration

Newton's Method

Secant Method

Examine
$$E_k$$
 with $|x_k - x^*| < E_k$

Bisection: Linear Convergence

Nonlinearity

Root-findir

Bisection

Fixed Point Iteration

Newton's Method

Socant Mothod

$$E_{k+1} \le \frac{1}{2} E_k$$

for
$$E_k \equiv |r_k - \ell_k|$$

Root-findi

Bisection

Fixed Point Iteration

Newton's Method

Secant Method

$$g(x^*) = x^*$$

Root-findir

Bisection

Fixed Point Iteration

Newton's Method

Secant Method

Conclusion

$$g(x^*) = x^*$$

Question:

Same as root-finding?

Disaction

Fixed Point Iteration

Newton's Method

Secant Method

$$x_{k+1} = g(x_k)$$

Convergence of fixed point interation

Fixed Point Iteration

由此图可以看出,即使初始点已经离最终结果很近,但是仍然可能 发散而得不到最终正确解。

Convergence Criterion

Nonlinearity

Root-findir

Bisection

Fixed Point Iteration

Newton's Method

Secant Method

$$E_k \equiv |x_k - x^*|$$

= $|g(x_{k-1}) - g(x^*)|$

Convergence Criterion

Nonlinearity

Root-findir

Bisection

Fixed Point Iteration

Newton's Method

Secant Method

$$\begin{split} E_k &\equiv |x_k - x^*| \\ &= |g(x_{k-1}) - g(x^*)| \\ &\leq \frac{c|x_{k-1} - x^*|}{c|x_{k-1} - x^*|} \text{ if } \frac{g \text{ is Lipschitz}}{g} \\ &= cE_{k-1} \\ &\Rightarrow E_k \leq c^k E_0 \\ &\to 0 \text{ as } k \to \infty \ (c < 1) \end{split}$$

Alternative Criterion

Nonlinearity

Root-findin

Bisection

Fixed Point Iteration

Newton's Method

Socant Motho

Conclusion

Lipschitz near x^* with good starting point.

Root-findin

Bisection

Fixed Point Iteration

Newton's Method

Canalysias

Lipschitz near x^* with good starting point.

e.g.
$$C^1$$
 with $|g'(x^*)| < 1$

Convergence Rate of Fixed Point

Nonlinearity

Root-findir

Bisection

Fixed Point Iteration

Newton's Method

secant ivietnod

Conclusion

When it converges... Always linear

Convergence Rate of Fixed Point

Nonlinearity

Root-findir

Bisection

Fixed Point Iteration

Newton's Method

C - - - 1 - - 1 - - 1

When it converges... Always linear

Often quadratic!

Convergence Rate of Fixed Point

Nonlinearity

Root-findir

Bisection

Fixed Point Iteration

Newton's Method

Secant Metho

occant wicthou

Suppose g is differentiable with
$$g'(x^*) = 0$$

$$\begin{split} \mathbf{g}(x_k) &= g\left(x^*\right) + \frac{1}{2}g''\left(x^*\right)\left(x_k - x^*\right)^2 + O\left(\left(x_k - x^*\right)^3\right) \\ E_k &= |x_k - x^*| \\ &= |g\left(x_{k-1}\right) - g\left(x^*\right)| \text{ as before} \\ &= \frac{1}{2}\left|g''\left(x^*\right)\right|\left(x_{k-1} - x^*\right)^2 + O\left(\left(x_{k-1} - x^*\right)^3\right) \text{ from the Taylor argument} \\ &\leq \frac{1}{2}\left(|g''\left(x^*\right)| + \varepsilon\right)\left(x_{k-1} - x^*\right)^2 \text{ for some } \varepsilon \text{ so long as } x_{k-1} \text{ is close to } x^* \\ &= \frac{1}{2}\left(|g''\left(x^*\right)| + \varepsilon\right)E_{k-1}^2. \end{split}$$

Fixed Point Iteration

Example (Fixed point interation)

Example 8.2 (Fixed point iteration). We can apply fixed point iteration to solving $x = \cos x$ by iterating $x_{k+1} = \cos x_k$. A numerical example starting from $x_0 = 0$ proceeds as follows:

k			2	3	4	5	6	7	8	9
x_k	0	1.000	0.540	0.858	0.654	0.793	0.701	0.764	0.722	0.750

In this case, fixed point iteration converges linearly to the root $x^* \approx 0.739085$.

The root-finding problem $x = \sin x^2$ satisfies the condition for quadratic convergence near $x^* = 0$. For this reason, fixed point iteration $x_{k+1} = \sin x_k^2$ starting at $x_0 = 1$ converges more quickly to the root:

k			2	3	4	5	6	7	8	9
x_k	1	0.841	0.650	0.410	0.168	0.028	0.001	0.000	0.000	0.000

Finally, the roots of $x=e^x+e^{-x}-5$ do not satisfy convergence criteria for fixed point iteration. Iterates of the failed fixed point scheme $x_{k+1}=e^{x_k}+e^{-x_k}-5$ starting at $x_0=1$ are shown below:

k		1	2	3	4	5	6	7
x_k	1	-1.914	1.927	2.012	2.609	8.660	5760.375	

Approach for Differentiable f(x)

Nonlinearity

Root-findir

Bisection

Fixed Point Iteration

Newton's Method

Jecant Method

Newton's Method

Nonlinearity

Disaction

Fixed Point Iterati

Newton's Method

Secant Method

$$f(x) \approx f(x_k) + f'(x_k)(x - x_k)$$

Newton's Method

Nonlinearity

Root-findir

Bisection

Fixed Point Iteration

Newton's Method

Jecant Method

$$f(x) \approx f(x_k) + f'(x_k)(x - x_k)$$

$$\Rightarrow \mathbf{x}_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Nonlinearity

Root-findi

Bisection

Fixed Point Iteration

Newton's Method

Secant Method

Conclusion

$$f(x) \approx f(x_k) + f'(x_k)(x - x_k)$$

$$\Rightarrow \mathbf{x}_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Fixed point iteration on

$$g(x) \equiv x - \frac{f(x)}{f'(x)}$$

Convergence of Newton's Method

Nonlinearity

Root-findir

Bisection

Fixed Point Iteration

Newton's Method

Secant Method

Conclusion

Define
$$g(x) = x - \frac{f(x)}{f'(x)}$$

Differentiating

$$g'(x) = 1 - \frac{f'(x)^2 - f(x)f''(x)}{f'(x)^2}$$
$$= \frac{f(x)f''(x)}{f'(x)^2}$$

Convergence of Newton

Nonlinearity

Root-findin

Bisection

Fixed Point Iteration

Newton's Method

Secant Method

Conclusion

Simple Root

A root x^* with $f'(x^*) \neq 0$.

Convergence of Newton

Nonlinearity

Root-finding

Bisection

Fixed Point Iteration

Newton's Method

Cocont Moth

Secant Method

C---l---

Simple Root

A root x^* with $f'(x^*) \neq 0$.

Quadratic convergence in this case! (Otherwise, can be linear or worse)

Newton's Method

Example (Newton's method)

Example 8.3 (Newton's method). The last part of Example 8.2 can be expressed as a root-finding problem on $f(x) = e^x + e^{-x} - 5 - x$. The derivative of f(x) in this case is $f'(x) = e^x - e^{-x} - 1$, so Newton's method can be written

$$x_{k+1} = x_k - \frac{e^{x_k} + e^{-x_k} - 5 - x_k}{e^{x_k} - e^{-x_k} - 1}.$$

This iteration quickly converges to a root starting from $x_0 = 2$:

k		1	2	3	4
x_k	2	1.9161473	1.9115868	1.9115740	1.9115740

Example 8.4 (Newton's method failure). Suppose $f(x)=x^5-3x^4+25$. Newton's method applied to this function gives the iteration

$$x_{k+1} = x_k - \frac{x_k^5 - 3x_k^4 + 25}{5x_k^4 - 12x^3}.$$

These iterations converge when x_0 is sufficiently close to the root $x^* \approx -1.5325$. For instance, the iterates starting from $x_0 = -2$ are shown below:

k	0	1	2	3	4	
x_k	-2	-1.687500	-1.555013	-1.533047	-1.532501	

Farther away from this root, however, Newton's method can fail. For instance, starting from $x_0=0.25$ gives a divergent set of iterates:

k	-0	1	2	3	4	
x_k	0.25	149.023256	119.340569	95.594918	76.599025	

Nonlinearity

Risection

Fixed Point Iteration

Newton's Method

Secant Method

Conclusion

Differentiation is hard!

Example

Secant Method

Example (Rocket design)

Suppose we are designing a rocket and wish to know how much fuel to add to the engine.

For a given number of gallons x, we can write a function f(x) giving the maximum height of the rocket during flight; our engineers have specified that the rocket should reach a height h, so we need to solve f(x) = h.

Evaluating f(x) involves simulating a rocket as it takes off and monitoring its fuel consumption, which is an expensive proposition. Even if f is differentiable, we might not be able to evaluate f' in a practical amount of time.

用割线代替切线

Nonlinearity

Disaction

Fixed Point Iteration

Newton's Method

Secant Method

$$f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

Nonlinearity

Root-findir

Bisection

Fixed Point Iteration

Newton's Method

Secant Method

$$f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$

Nonlinearity

rvommeanty

Disastian

Fixed Point Iteration

Newton's Method

Secant Method

Conclusion

$$f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$

Trivia:

Converges at rate $\frac{1+\sqrt{5}}{2}\approx 1.6180339887...$ ("Golden Ratio")

Nonlinearity

Risection

Fixed Point Iteration

Newton's Method

Secant Method

Example (Secant method)

Nonlinearity

rvormicarity

Risection

Fixed Point Iteration

Newton's Method

Secant Method

Conclusion

Example 8.6 (Secant method). Suppose $f(x) = x^4 - 2x^2 - 4$. Iterates of Newton's method for this function are given by

$$x_{k+1} = x_k - \frac{x_k^4 - 2x_k^2 - 4}{4x_k^3 - 4x_k}.$$

Contrastingly, iterates of the secant method for the same function are given by

$$x_{k+1} = x_k - \frac{(x_k^4 - 2x_k^2 - 4)(x_k - x_{k-1})}{(x_k^4 - 2x_k^2 - 4) - (x_{k-1}^4 - 2x_{k-1}^2 - 4)}.$$

By construction, a less expensive way to compute these iterates is to save and reuse $f(x_{k-1})$ from the previous iteration. We can compare the two methods starting from $x_0=3$; for the secant method we also choose $x_{-1}=2$:

k	0	1	2	3	4	5	6
x_k (Newton)	3	2.385417	2.005592	1.835058	1.800257	1.798909	1.798907
x_k (secant)	3	1.927273	1.882421	1.809063	1.799771	1.798917	1.798907

The two methods exhibit similar convergence on this example.

Hybrid Methods

Nonlinearity

Root-findii

Bisection

Fixed Point Iteration

Newton's Method

Secant Method

Conclusion

Want: Convergence rate of secant/Newton with convergence guarantees of bisection

Nonlinearity

Risection

Fixed Point Iteration

Newton's Method

Secant Method

Conclusion

Want: Convergence rate of secant/Newton with convergence guarantees of bisection

e.g. **Dekker's Method:** Take secant step if it is in the bracket, bisection step otherwise

Root-findin

Bisection

Fixed Point Iteration

Newton's Method

occant wictho

- Unlikely to solve exactly, so we settle for iterative methods
- Must check that method converges at all
- Convergence rates:
 - Linear: $E_{k+1} \leq CE_k$ for some $0 \leq C < 1$
 - Superlinear: $E_{k+1} \leq CE_k^r$ for some r > 1
 - ullet Quadratic: r=2
 - Cubic: r=3
- Time per iteration also important