Exercice 1

Exercice 1.1

On a $dim\mathbb{R}^2 = 2$ et $dim\mathbb{R}^3 = 3$

Exercice 1.2

Exercice 2

Non. Car une application linéaire doit satisfaire $f(\lambda x) = \lambda f(x)$. On sait que $f(\lambda x)$ et f(x) sont dans le cercle C(0,1). Donc pour un $\lambda > 1$, on ne peut pas avoir $f(\lambda x) = \lambda f(x)$.

Exercice 3

Famille libre? Il faut résoudre:

$$\begin{cases} \lambda_1 + 2\lambda_2 + 0\lambda_3 &= 0\\ \lambda_1 + \lambda_2 - 1\lambda_3 &= 0\\ -1\lambda_1 + 3\lambda_2 + 5\lambda_3 &= 0 \end{cases}$$

$$\begin{vmatrix} 1 & 2 & 0 & 0\\ 1 & 1 & -1 & 0\\ -1 & 3 & 5 & 0 \end{vmatrix} \Leftrightarrow \begin{vmatrix} 1 & 0 & -2 & 0\\ 0 & 1 & 1 & 0\\ 0 & 0 & 0 & 0 \end{vmatrix}$$

$$\begin{cases} \lambda_1 + -2\lambda_3 &= 0\\ \lambda_2 + \lambda_3 &= 0 \end{cases}$$

Famille non libre car on peut λ_3 n'est pas égal à 0.

Famille génératrice? Non car du résultat précédent, on peut exprimer λ_1 et λ_2 en fonction de λ_3 .

On a
$$\lambda_1 = -2\lambda_2$$
. Donc, $\forall k \in \mathbb{R}, v_3 = -2k.v_1 + kv_2$.

Exercice 4

Exercice 4.1

Soit $a, b \in \mathcal{H}_n$, on a $\sum_{k=1}^n a_{kk} = 0$ et $\sum_{k=1}^n b_{kk} = 0$.

Vérifions que $(a + \lambda b) \in \mathcal{H}_n$? La diagonale de la matrice $(a + \lambda b)$ sont les termes $a_{kk} + \lambda b_{kk}$. Donc $\sum_{k=1}^n (a_{kk} + \lambda b'_{kk}) = \sum_{k=1}^n a'_{kk} + \lambda \sum_{k=1}^n b'_{kk} = 0 + \lambda 0 = 0$. Comme la somme des coefficients diagonaux est nulle, alors $(a,b) \in \mathcal{H}_n$ est un sous espace vectoriel de $M_n(\mathbb{C})$.

Exercice 4.2

Soit

$$m_1 = \begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix}, m_2 = \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix}, m_3 = \begin{vmatrix} 0 & 0 \\ 1 & 0 \end{vmatrix}$$

Montrons que $B=(m_1,m_2,m_3)$ est une base de \mathscr{H}_2 . B est génératrice? Tout élément de \mathscr{H}_2 est de la forme $m=\begin{vmatrix} a & b \\ c & -a \end{vmatrix}$. Montrons qu'il existe $\lambda_1,\lambda_2,\lambda_3$, tel que $\lambda_1m_1+\lambda_2m_2+\lambda_3m_3=m$. Vrai en prenant, $\lambda_1=a,\,\lambda_2=b$ et $\lambda_3=c$

B est libre? Montrons que si $\lambda_1 m_1 + \lambda_2 m_2 + \lambda_3 m_3 = 0$ alors $\lambda_1 = \lambda_2 = \lambda_3 = 0$.

$$\begin{cases} \lambda_1 + 0\lambda_2 + 0\lambda_3 &= 0\\ 0\lambda_1 + \lambda_2 + 0\lambda_3 &= 0\\ 0\lambda_1 + 0\lambda_2 + 1\lambda_3 &= 0\\ -1\lambda_1 + 0\lambda_2 + 0\lambda_3 &= 0 \end{cases}$$

Vrai. Donc famille libre et B est une base de \mathcal{H}_2 . La dimension de \mathcal{H}_2 est 3.

Exercice 4.3

???

Exercice 4.4

???

Exercice 5

Exercice 5.1

Pour que \mathscr{F} soit une base, il faut qu'il soit libre.

$$\begin{cases} 2\lambda_1 + 8\lambda_2 + 7\lambda_3 &= 0\\ 0\lambda_1 + -4\lambda_2 + 2\lambda_3 &= 0\\ 0\lambda_1 + 0\lambda_2 + \alpha\lambda_3 &= 0 \end{cases}$$

Pour que la famille \mathscr{F} soit libre, il faut que $\alpha \neq 0$.

Exercice 5.2

Exercice 6

Exercice 6.1

Pour n = 1, $A_1 = |c|$ et $-A_1 = |-c|$, donc $det(A_1) = -det(-A_1)$, pour n = 2, $A_2 = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$ et $-A_2 = \begin{vmatrix} -a & -b \\ -c & -d \end{vmatrix}$, donc $det(A_1) = det(-A_1)$. Supposons que pour n impair, $det(M_n) = -det(M_n)$ et n pair, $det(M_n) = det(M_n)$. Faisons une preuve par récurrence de cette hypothèse.

Cas n+1 impair, montrons que $det(A_{n+1} = det(-A_{n+1}))$.

$$det(-A_{n+1}) = (-a_11).det(-A_{11}) - (-a_12).det(-A_{11}) + \ldots + (-a_1(n)).det(-A_{1(n)}) - (-a_1(n+1)).det(-A_{1(n+1)}) + \ldots + (-a_1(n)).det(-A_{1(n)}) - (-a_1(n+1)).det(-A_{1(n+1)}) + \ldots + (-a_1(n)).det(-A_{1(n)}) - (-a_1(n+1)).det(-A_{1(n+1)}) + \ldots + (-a_n(n)).det(-A_{1(n)}) - (-a_n(n+1)).det(-A_{1(n+1)}) + \ldots + (-a_n(n)).det(-A_{1(n)}) + \ldots + (-a_n(n)).det(-A_{1(n)})$$

par hypothése de récurrence on a

$$det(-A_{n+1}) = (-a_11).det(A_{11}) - (-a_12).det(A_{11}) + \ldots + (-a_1(n)).det(A_{1(n)}) - (-a_1(n+1)).det(A_{1(n+1)}) = -(a_11.det(A_{11}) - a_11.det(A_{11}) - a_11.det(A_{11}) + \ldots + (-a_1(n)).det(A_{1(n)}) - (-a_1(n+1)).det(A_{1(n+1)}) = -(a_11.det(A_{11}) - a_11.det(A_{11}) - a_11.det(A_{11}) - a_11.det(A_{11}) + \ldots + (-a_1(n)).det(A_{1(n)}) - (-a_1(n+1)).det(A_{1(n+1)}) = -(a_11.det(A_{11}) - a_11.det(A_{11}) - a_11.det(A_{$$

Cas n + 1 pair, montrons que $det(A_{n+1} = det(-A_{n+1}))$.

$$det(-A_{n+1}) = (-a_11).det(-A_{11}) - (-a_12).det(-A_{11}) + \dots - (-a_1(n)).det(-A_{1(n)}) + (-a_1(n+1)).det(-A_{1(n+1)})$$

par hypothése de récurrence on a

$$det(-A_{n+1}) = (-a_11). - det(A_{11}) - (-a_12). - det(A_{11}) + \dots - (-a_1(n)). - det(A_{1(n)}) + (-a_1(n+1)). - det(A_{1(n+1)}) = a_11. det(A_{11}) + \dots + (-a_1(n)). - det(A_{1(n)}) + (-a_1(n+1)). - det(A_{1(n+1)}) = a_11. det(A_{11}) + \dots + (-a_1(n)). - det(A_{1(n)}) + (-a_1(n+1)). - det(A_{1(n+1)}) = a_11. det(A_{11}) + \dots + (-a_1(n)). - det(A_{1(n)}) + (-a_1(n+1)). - det(A_{1(n+1)}) = a_11. det(A_{11}) + \dots + (-a_1(n)). - det(A_{1(n)}) + (-a_1(n+1)). - det(A_{1(n+1)}) = a_11. det(A_{11}) + \dots + (-a_1(n)). - det(A_{1(n)}) + (-a_1(n$$

Exercice 6.2

Vérifié.

n est impair donc det(A) = -det(-A), une matrice et sa transposée ont le même déterminant donc $det(^tA) = det(A)$. On a $^tA = -A$ donc $det(^tA) = det(-A)$. Ceux qui fait $det(-A) = det(^tA) = det(A) = -det(-A)$. Donc la seule valeur possible pour det(-A) est 0. Donc det(A) = -det(-A) = -0 = 0.

Exercice 7

Exercice 7.1

$$det(A_1) = a_1.x - (-1)a_0 = a_1.x + a_0$$

$$det(A_2) = a_2.det \begin{pmatrix} x & 0 \\ -1 & x \end{pmatrix} - a_1.det \begin{pmatrix} -1 & 0 \\ 0 & x \end{pmatrix} + a_0.det \begin{pmatrix} -1 & x \\ 0 & -1 \end{pmatrix} = a_2.x^2 + a_1.x + a_0$$

Exercice 7.2

Preuve par récurrence. Supposons que $det(A_n) = a_n x^n + \ldots + a_1 x + a_0$, montrons que $det(A_{n+1}) = a_{n+1} x^{n+1} + a_n x^n + \ldots + a_1 x + a_0$

$$det(A_{n+1}) = a_{n+1}. \begin{vmatrix} x & 0 & 0 & \dots & 0 \\ -1 & x & 0 & \dots & 0 \\ 0 & -1 & x & \dots & 0 \\ \vdots & \vdots & \vdots & -1 & x \end{vmatrix} - (-1)det(A_n) = a_{n+1}x^{n+1} + det(A_n)$$