PRACTICUM

```
In [1]:
```

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.metrics.pairwise import cosine_similarity
import math

C:\Users\venka\Anaconda3\lib\site-packages\statsmodels\tools\_testing.py:19: FutureWarning:
pandas.util.testing is deprecated. Use the functions in the public API at pandas.testing instead.
import pandas.util.testing as tm
```

In [2]:

```
## Read the User Data
userColumns = ['userId', 'age', 'sex', 'occupation', 'zipCode']
userData = pd.read_csv('ml-100k/u.user', sep='|', names=userColumns)
userData.head()
```

Out[2]:

	userld	age	sex	occupation	zipCode
0	1	24	М	technician	85711
1	2	53	F	other	94043
2	3	23	М	writer	32067
3	4	24	М	technician	43537
4	5	33	F	other	15213

In [3]:

```
## Read the Ratings Data
ratingsColumns = ['userId', 'itemId', 'ratings', 'timeStamp']
ratingsData = pd.read_csv('ml-100k/u.data', sep='\t', names=ratingsColumns)
ratingsData
```

Out[3]:

	userld	itemId	ratings	timeStamp
0	196	242	3	881250949
1	186	302	3	891717742
2	22	377	1	878887116
3	244	51	2	880606923
4	166	346	1	886397596
99995	880	476	3	880175444
99996	716	204	5	879795543
99997	276	1090	1	874795795
99998	13	225	2	882399156
99999	12	203	3	879959583

100000 rows × 4 columns

```
In [4]:
```

"" D 1 1 1 26 1 D 1

```
## Read the Movies Data
moviesColumns =
['movieId','movieTitle','releaseDate','videoReleaseDate','IMDbURL','unknown','Action','Adventure',
'Animation','Children','Comedy','Crime','Documentary','Drama','Fantasy',
'Film-Noir','Horror','Musical','Mystery','Romance','Sci-Fi','Thriller', 'War','Western']
moviesData = pd.read_csv('ml-100k/u.item', sep='|',names=moviesColumns, encoding='latin-1')
moviesData
```

Out[4]:

	movield	movieTitle	releaseDate	videoReleaseDate	IMDbURL	unknown	Action	Adventure	Animation	Children
0	1	Toy Story (1995)	01-Jan-1995	NaN	http://us.imdb.com/M/title- exact?Toy%20Story%2	0	0	0	1	1
1	2	GoldenEye (1995)	01-Jan-1995	NaN	http://us.imdb.com/M/title-exact?GoldenEye%20(0	1	1	0	0
2	3	Four Rooms (1995)	01-Jan-1995	NaN	http://us.imdb.com/M/title- exact? Four%20Rooms%	0	0	0	0	0
3	4	Get Shorty (1995)	01-Jan-1995	NaN	http://us.imdb.com/M/title-exact?Get%20Shorty%	0	1	0	0	0
4	5	Copycat (1995)	01-Jan-1995	NaN	http://us.imdb.com/M/title- exact? Copycat%20(1995)	0	0	0	0	0
					•••					
1677	1678	Mat' i syn (1997)	06-Feb- 1998	NaN	http://us.imdb.com/M/title- exact?Mat%27+i+syn+	0	0	0	0	0
1678	1679	B. Monkey (1998)	06-Feb- 1998	NaN	http://us.imdb.com/M/title- exact?B%2E+Monkey+ (0	0	0	0	0
1679	1680	Sliding Doors (1998)	01-Jan-1998	NaN	http://us.imdb.com/Title? Sliding+Doors+(1998)	0	0	0	0	0
1680	1681	You So Crazy (1994)	01-Jan-1994	NaN	http://us.imdb.com/M/title- exact? You%20So%20Cr	0	0	0	0	0
1681	1682	Scream of Stone (Schrei aus Stein) (1991)	08-Mar- 1996	NaN	http://us.imdb.com/M/title- exact?Schrei%20aus%	0	0	0	0	0

1682 rows × 24 columns

4

In [5]:

```
ratings_matrix = ratingsData.pivot_table(index=['userId'],columns=['itemId'],values='ratings').rese
t_index(drop=True)
ratings_matrix.fillna( 0, inplace = True )
ratings_matrix.head()
```

Out[5]:

itemId	1	2	3	4	5	6	7	8	9	10	 1673	1674	1675	1676	1677	1678	1679	1680	1681	1682
0	5.0	3.0	4.0	3.0	3.0	5.0	4.0	1.0	5.0	3.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	4.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

5 rows × 1682 columns

In [6]:

```
ratings_matrix_mean = ratings_matrix.mean(axis=1)
ratings_matrix_mean
```

```
Out[6]:
0
     0.583829
      0.136742
1
       0.089774
3
       0.061831
      0.299049
     0.124257
938
     0.219976
939
940
       0.052913
941
       0.200357
     0.340666
942
Length: 943, dtype: float64
In [7]:
ratings matrix centered = ratings matrix - ratings matrix mean
ratings matrix centered = ratings matrix centered.where((pd.notnull(ratings matrix centered)),0)
ratings_matrix_noNull = ratings_matrix.where((pd.notnull(ratings_matrix)),0)
ratings matrix centered.head()
Out[7]:
                                         5 6 7
                                                               8 9 ... 1673 1674 1675 1676 1677 1
0 0.0 4.863258 2.910226 3.938169 2.700951 2.543995 4.049941 3.866825 0.944114 4.539834 ...
                                                                                  0.0
                                                                                       0.0
                                                                                             0.0
                                                                                                  0.0
                                                                                                      0.0
 1 0.0 3.863258 0.089774 0.061831 0.299049 0.456005 0.950059 0.133175 0.055886 0.460166 ...
                                                                                  0.0
                                                                                       0.0
                                                                                                 0.0
                                                                                                      0.0
                                                                                             0.0
2 0.0 0.136742 0.089774 0.061831 0.299049 0.456005 0.950059 0.133175 0.055886 0.460166 ···
                                                                                       0.0
                                                                                             0.0
                                                                                                  0.0
                                                                                                      0.0
 3 0.0 0.136742 0.089774 0.061831 0.299049 0.456005 0.950059 0.133175 0.055886 0.460166 ...
                                                                                  0.0
                                                                                       0.0
                                                                                             0.0
                                                                                                 0.0
                                                                                                      0.0
4 0.0 3.863258 2.910226 0.061831 0.299049 0.456005 0.950059 0.133175 0.055886 0.460166 ····
                                                                                  0.0 0.0 0.0 0.0 0.0
5 rows × 1683 columns
4
In [8]:
movieFeatures = moviesData.iloc[:,5:24]
movieFeatures
Out[8]:
```

	unknown	Action	Adventure	Animation	Children	Comedy	Crime	Documentary	Drama	Fantasy	Film- Noir	Horror	Musical	Myst
0	0	0	0	1	1	1	0	0	0	0	0	0	0	
1	0	1	1	0	0	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	0	0	0	0	0	0	0	
3	0	1	0	0	0	1	0	0	1	0	0	0	0	
4	0	0	0	0	0	0	1	0	1	0	0	0	0	
1677	0	0	0	0	0	0	0	0	1	0	0	0	0	
1678	0	0	0	0	0	0	0	0	0	0	0	0	0	
1679	0	0	0	0	0	0	0	0	1	0	0	0	0	
1680	0	0	0	0	0	1	0	0	0	0	0	0	0	
1681	0	0	0	0	0	0	0	0	1	0	0	0	0	

1682 rows × 19 columns

[n [9]:

4

user_Profile = np.dot(ratings_matrix_noNull,movieFeatures)

```
In [10]:
```

```
cosine = cosine_similarity(user_Profile, moviesData[moviesData.movieId==95].iloc[:,5:24])
```

In [11]:

```
print("Cosine Similarity for the User 200 is :", cosine[199])
print("Cosine Distance for the User 200 is :", 1-cosine[199])
print('*'*50)
print("Cosine Similarity for the User 15 is :", cosine[199])
print("Cosine Distance for the User 15 is :", 1-cosine[199])
```

```
Cosine Similarity for the User 200 is: [0.38745727]
Cosine Distance for the User 200 is: [0.61254273]
***********************
Cosine Similarity for the User 15 is: [0.38745727]
Cosine Distance for the User 15 is: [0.61254273]
```

The Movie 95 is suggested to the User 200 as he has the highest similarity and lowest distance

Problem 2.2

In [12]:

```
userData.head()
```

Out[12]:

	userld	age	sex	occupation	zipCode
0	1	24	М	technician	85711
1	2	53	F	other	94043
2	3	23	М	writer	32067
3	4	24	М	technician	43537
4	5	33	F	other	15213

In [13]:

```
ratingsData.head()
```

Out[13]:

	userld	itemId	ratings	timeStamp
0	196	242	3	881250949
1	186	302	3	891717742
2	22	377	1	878887116
3	244	51	2	880606923
4	166	346	1	886397596

In [14]:

```
ratings_matrix1 = ratingsData.pivot_table(index=['userId'],columns=['itemId'],values='ratings').res
et_index(drop=True)
ratings_matrix1.fillna( 0, inplace = True )
ratings_matrix1.head()
```

Out[14]:

```
itemld 1 2 3 4 5 6 7 8 9 10 ... 1673 1674 1675 1676
                                        1677
                                           1678 1679
                                                 1680
  0.0
                                0.0
                                   0.0
                                      0.0
                                         0.0
                                            0.0
                                               0.0
                                                  0.0
                                                     0.0
                                                        0.0
  0.0
                                   0.0
                                      0.0
                                         0.0
                                            0.0
                                               0.0
                                                  0.0
                                                     0.0
                                                        0.0
  0.0
                                   0.0
                                      0.0
                                         0.0
                                            0.0
                                               0.0
                                                  0.0
                                                     0.0
                                                        0.0
```

5 rows × 1682 columns

```
In [15]:
```

```
ratings_matrix_mean1 = ratings_matrix1.mean(axis=1)
ratings_matrix_mean1
```

Out[15]:

```
0.583829
0
      0.136742
1
       0.089774
       0.061831
      0.299049
      0.124257
938
       0.219976
939
940
      0.052913
941
      0.200357
942
      0.340666
```

Length: 943, dtype: float64

In [16]:

```
ratings_matrix_centered1 = ratings_matrix1 - ratings_matrix_mean1
ratings_matrix_centered1 = ratings_matrix_centered1.where((pd.notnull(ratings_matrix_centered1)),0)
ratings_matrix_noNull1 = ratings_matrix1.where((pd.notnull(ratings_matrix)),0)
ratings_matrix_centered1.head()
```

Out[16]:

	0	1	2	3	4	5	6	7	8	9	 1673	1674	1675	1676	1677	1
0	0.0	4.863258	2.910226	3.938169	2.700951	2.543995	4.049941	3.866825	0.944114	4.539834	 0.0	0.0	0.0	0.0	0.0	
1	0.0	3.863258	0.089774	0.061831	0.299049	0.456005	0.950059	0.133175	0.055886	0.460166	 0.0	0.0	0.0	0.0	0.0	
2	0.0	0.136742	0.089774	0.061831	0.299049	0.456005	0.950059	0.133175	0.055886	0.460166	 0.0	0.0	0.0	0.0	0.0	
3	0.0	0.136742	0.089774	0.061831	0.299049	0.456005	0.950059	0.133175	0.055886	0.460166	 0.0	0.0	0.0	0.0	0.0	
4	0.0	3.863258	2.910226	0.061831	0.299049	0.456005	0.950059	0.133175	0.055886	0.460166	 0.0	0.0	0.0	0.0	0.0	

5 rows × 1683 columns

| • | |

In [17]:

```
ratings_matrix_New = ratings_matrix1.where((pd.notnull(ratings_matrix1)),0)
user_1 = ratings_matrix_New.iloc[:1,]
user_1
```

Out[17]:

itemlo	l	1	2	3	4	5	6	7	8	9	10	 1673	1674	1675	1676	1677	1678	1679	1680	1681	1682
C	5.	0	3.0	4.0	3.0	3.0	5.0	4.0	1.0	5.0	3.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

1 rows × 1682 columns

In [18]:

```
ratings_matrix_Other = ratings_matrix_New.iloc[1:,]
ratings_matrix_Other.head()
```

Out[18]:

ite	mld	1	2	3	4	5	6	7	8	9	10	 1673	1674	1675	1676	1677	1678	1679	1680	1681	1682
	1	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	4	4.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	5	4.0	0.0	0.0	0.0	0.0	0.0	2.0	4.0	4.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

5 rows × 1682 columns

```
In [19]:
```

```
cosine1 = cosine_similarity(user_1,ratings_matrix_Other)
top10Users= np.argsort(cosine1[0])[-10:]
top10Values=[]
for i in top10Users:
    top10Values.append(cosine1[0][i])
```

In [20]:

```
count = 0
ratings = [0,0,0,0,0,0,0,0,0,0]
for i in range(len(top10Users)):
    ratings[i] = ratings_matrix_Other[508][top10Users[i]]
    if ratings[i] != 0.0:
        count+=1
sum = math.fsum(ratings)
mean = sum/count
print("Mean: ", mean)
```

Mean: 4.0

RECITATION

Problem 9.3.1 (C)

```
In [21]:
```

```
In [23]:
```

xpDF=pd.DataFrame(xp.T,columns=['A','B','C'])

```
xpDF
```

```
Out[23]:
   A B C
0 1 0 0
1 1 1 0
2 0 1 0
3 1 1 1
4 0 0 0
5 0 0 1
6 1 0 1
7 0 0 1
In [24]:
from scipy.spatial.distance import jaccard
from scipy.spatial.distance import cosine
In [25]:
print("Jaccard(A,B)",jaccard(xpDF['A'], xpDF['B']))
print("Jaccard(B,C)",jaccard(xpDF['B'], xpDF['C']))
print("Jaccard(A,C)",jaccard(xpDF['A'], xpDF['C']))
Jaccard(A,B) 0.6
Jaccard(B,C) 0.8333333333333334
Problem 9.3.1 (D)
In [26]:
print("cosine(A,B)",cosine(xpDF['A'], xpDF['B']))
print("cosine(B,C)",cosine(xpDF['B'], xpDF['C']))
print("cosine(A,C)",cosine(xpDF['A'], xpDF['C']))
cosine (A,B) 0.42264973081037416
cosine(B,C) 0.7113248654051871
cosine(A,C) 0.5
Problem 9.3.1 (E)
In [27]:
xp1=np.array([[4,5,0,5,1,0,3,2],[0,3,4,3,1,2,1,0],[2,0,1,3,0,4,5,3]])
xp1.T
Out [27]:
array([[4, 0, 2],
       [5, 3, 0],
       [0, 4, 1],
       [5, 3, 3],
       [1, 1, 0],
       [0, 2, 4],
       [3, 1, 5],
       [2, 0, 3]])
In [28]:
xpDF1=pd.DataFrame(xp1.T,columns=['A','B','C'])
xpDF1
```

```
Out[28]:
   A B C
1 5 3 0
2 0 4 1
3 5 3 3
4 1 1 0
5 0 2 4
6 3 1 5
7 2 0 3
In [29]:
for i in xpDF1.columns:
    xpDF1[i]=xpDF1[xpDF1[i]>0][i]-xpDF1[i].sum(axis=0)/xpDF1[xpDF1[i]>0].shape[0]
xpDF1=xpDF1.fillna(0)
In [31]:
xpDF1
Out[31]:
                   С
        Α
                В
0 0.666667 0.000000 -1.0
1 1.666667 0.666667 0.0
2 0.000000 1.666667 -2.0
3 1.666667 0.666667 0.0
4 -2.333333 -1.333333 0.0
5 0.000000 -0.333333 1.0
6 -0.333333 -1.333333 2.0
7 -1.333333 0.000000 0.0
Problem 9.3.1 (F)
In [30]:
print("cosine(A,B)",cosine(xpDF1['A'], xpDF1['B']))
print("cosine(B,C)",cosine(xpDF1['B'], xpDF1['C']))
print("cosine(A,C)",cosine(xpDF1['A'], xpDF1['C']))
```

cosine(A,B) 0.41569345253185686
cosine(B,C) 1.739573996953447
cosine(A,C) 1.1154700538379252