Computer Science

Theory of Computation

Regular Languages & Non Regular Languages

Lecture No.- 5

Recap of Previous Lecture

Topic Regular Grammar

Topics to be Covered

Regular Language

I) NFA to DFA: [Subset Construction]

Z={a,b}

II) NFA to DFA [subset construction]

(Wilk & money)

Initial State of DFA = \(\xi-clo(2) = \xi_1,2\)

$$\delta(1,a)=11$$
 $\delta(1,b)=0$
 $\delta(2,a)=0$
 $\delta(2,b)=0$

NFA wilkout & moves => DFA:

$$S'(\{P,q\},i) = S(P,i)US(q,i)$$

NFA wilk & moves
$$\Longrightarrow$$
 DFA
$$S'(P, \lambda) = \varepsilon \cdot \operatorname{clo}\left(S(P, i)\right)$$

$$S'(P, N, i) = \varepsilon \cdot \operatorname{clo}\left(S(P, i) \cup S(N, i)\right)$$

Pw

III) NFA wilk & moves) NFA willow & moves

8 (1,6)=42}

8(2,0)=0

8(2/5)=423

=
$$\varepsilon$$
-clo $\{ \xi(41,2), \alpha \}$
= ε -clo $\{ \xi(41,2), \alpha \}$
= ε -clo $\{ \xi(1,a) \cup \xi(2,a) \}$
= ε -clo $\{ \xi(1,a) \cup \xi(2,a) \}$
= ξ -clo $\{ \xi(1,a) \cup \xi(2,a) \}$

$$\delta(1,a)=\{1\}$$
 $\delta(1,b)=\{0\}$
 $\delta(2,a)=\{0\}$
 $\delta(2,b)=\{2\}$

NFA Wilk & moves (8)

NFA ? DFA

3) a.b

3() a 3() 5 3() b 3()

RI. RZ

P1 Emp P2

(4) å

(s) a^{\dagger}

ab/ (ab)*/

al abor bor

abtaaav

(ab+aaa)* a / ba/ (ab+aaa)* a + ba/

bo

I) FA => Reg EXP

Algo 1: State climination meltod

Algo2: Brden's melbod

Algo3: Kleene mettod

State elimination Melbod:

- i) If more Ikan one final state then convert into one final.
- ii) Delete all states except initial and final using elimination meltod.

D

$$R = a$$

$$\rightarrow 0$$

$$\rightarrow 0$$

$$R = (ab)^* \alpha$$

Delete cycle by covering Self loop at 1

(a+bd*c) b d*

Delete cycle
by covering self loop
and 2

 $a^*b(d+ca^*b)^*$

Step1: Delete state 2

1 ab

Stepa: Delete state 3


```
DFA =>NFA
 A190:
       NFA DFA
 Algo:
       FA => Reg Exp -
 Algo:
      Ruseup => FA
A 60:
      LLa =) RIGI
Algo:
       RIG = 114
A130-
      LLG P) FAV
 A150:
      FA DILLAN
 100 =
```


2 mins Summary

Topic

Topic **NFA to DFA Conversions** Regular Expression to FA Conversion

FA to Regular Expression Conversion Topic

FA to Regular Grammar Conversion Topic

Regular Grammar to FA Conversion Topic

FA, RG and Reg exp comparison Topic

THANK - YOU