

12C

Преглед Начин функционисања Имплементације

ЦИЉЕВИ

- Након завршетка овог предавања имаћете:
 - Боље разумевање:
 - Како I2С функционише
 - Како исправно повезати и подесити
 - Како се на хардверском нивоу изводе операције
 - Кратак преглед:
 - Практичних разматрања

ПРЕГЛЕД СТРУКТУРЕ ПРЕДАВАЊА

- •12С синхрона серијска комуникација
 - Преглед
 - Употреба
 - Могућности
 - Ожичење
 - Слање/пријем
 - Такт

СЕРИЈСКЕ МАГИСТРАЛЕ НЕДОСТАЦИ

U(S)ART

- Договор о брзини: унапред, не може у лету
- Такт: мала одступања, иначе збрчкано
- Премашај: додатни бити (старт и стоп)
- Повезивање само 2 уређаја: додатни изазивају надметање, сударе и оштећења
- Подршка за дефинисане брзине

• SPI :

- Већи број линија
- Ограничења за проширења: број уређаја ограничен новим линијама
- Тешко имплементирати само у софтверу
- Предност: више брзине, дуплекс, једноставни померачки регистри

I2C ПРЕГЛЕД

- •12C (Inter Integrated Circuit)
- Оригинално патентирао *Philips/NXP* истекла примена
- •Двожични серијски комуникационо сучеље (енг. Two Way Interface TWI)
- Једноставан хардвер
- •Више брзине
- •12С Покушава да примени најбоље из оба света

12С<u>примена</u>

- •Повезивање микроконтролера са периферијама
- •Оригинално употребљивано у телевизорима
- •Врсте подржаних периферија:
 - Наменски системи:
 - EPROMS, Flash, and some RAM memory, real-time clocks,
 - watchdog timers, and microcontrollers
 - Лични рачунари:
 - RTC
 - Temperature sensors
 - Variant is the SMBus (system management bus)

I2C <u>БРЗИНА КОМУНИКАЦИЈЕ</u>

Standard Mode: 100 kb/s

•Fast Mode: 400 kb/s

•Fast Mode plus: 1 Mb/s

•High Speed Mode: 3.4 Mb/s

•Ultra Fast Mode: 5 Mb/s

•Квиз: шта ограничава брзине I2C?

12С линије

- •Две двосмерне линије
 - SDA (serial data)
 - SCL (serial clock)
- Имплементација преко отвореног колектора (*open-drain*)
 - Подршка за више уређаја
 - Једноставно спајање и за различите напоне
 - Подршка за више напоне од Vdd
 - Напони: од 0V за V_{OL} , до напона напајања (типично 3.3 V или 5 V) за V_{OH}
 - Потребни *pull-up* отпорници
 - Понашање као ожичено логичко И
 - Подршава посредовање и решавање судара

12С УРЕЂАЈИ/ЧВОРОВИ

- •Руководилац: генерише такт и иницира комуникацију
- •Подређени: прима такт и одговара на прозивку руководиоца
- •Улоге се могу заменити након стоп секвенце

12С ПОВЕЗИВАЊЕ

12СПРОШИРИВАЊЕ - АДРЕСЕ

- •Већи број уређаја дели исту магистралу
- •Магистрала подржава више руководилаца
- •Сваки уређај има јединствену адресу
- •Додељивање адреса је вршио Philips/NXP
 - Пре се наплаћивало због патента
 - Сада је патент истекао

12C ФОРМАТ АДРЕСЕ

•Адресно поље

• Изворно: 7 бита + 1 бит за статус R/W

• Проширено: 10 бита

•Изворно: виших 7 бита је сама адреса а најнижи бит за статус R/W

• 1 означава читање

• 0 означава упис

- •Проширено: слање у 2 октета
 - Водећи октет: контролна секвенца (11110) + 2 горња бита адресе + R/W
 - Нижи октет: 8 доњих бита адресе

I2C проширивање - ограничења

- •Максималан број уређаја на магистрали ограничен:
 - Бројем расположивих адреса
 - Укупном капацитивношћу магистрале (максимално 400 pF)
- •Максимална дужина линије: неколико метара

I2CПРИМЕР АРХИТЕКТУРЕ

Fig 1. Example of I²C-bus applications

I2C<u>ПРЕНОС ПОДАТАКА</u>

•Терминологија:

- Пошиљалац (енг. transmitter) и прималац (енг. receiver)
- Не мора да буде изједначено са руководилац и подређени
- Руководилац започиње пренос, подређени одговара
- Пошиљалац поставља податке на SDA линију, прималац потрврди

•Могућности:

- Руководилац шаље или прима
- Подређени шаље или прима

•Начин рада

- За читање: подређени је пошиљалац
- За упис: руководилац је пошиљалац

I2C CTAPT / CTOΠ CEKBEHЦA

- •Руководилац започиње комуникацију старт секвенцом
- •Пренос података се завршава стоп секвенцом
- •Стар и стоп секвенца су јединствене
- •Поновљени старт: уместо стоп, руководилац шаље старт (енг. repeated start)

I2C СТАРТНИ УСЛОВ

- Руководилац повуче SDA на ниско (0) док је SCL на високом (1)
 (силазна ивица)
- Редовне промене **SDA** се једино дешавају када је **SCL** ниско (0)

I2CУСЛОВ ЗА ЗАУСТАВЉАЊЕ

- •Руководилац повуче *SDA* на високо (0) док је *SCL* на високом (1) (узлазна ивица)
- •Могуће прекинути пренос на исти начин

12С УПИС

- Руководилац шаље податке, подрђени потврђује (енг. acknowledge)
- Након старт секвенце се шаље адресно поље (7+1) (write = 0)(read = 1)
- •Прозвани зависни потврђује (ACKNOWLEDGE = 0)
- •Након потврде иду подаци (8) а затим потврда
- •Могуће послати више података одједном
- •Завршава се стоп секвенцом

12С <u>читање</u>

- •Руководилац шаље адресу, потврду, и такт а подрђени податке
- Након старт секвенце се шаље адресно поље (7+1) (write = 0)(read = 1)
- •Прозвани зависни потврђује (ACKNOWLEDGE = 0)
- •Након потврде иду подаци (8) а затим потврда од руководиоца
- Могуће послати више података заредом
- •Завршава се стоп секвенцом

I2C КОМБИНОВАНИ ПРЕНОС

- •Служи за промену смера трансакције (упис-читање)
- •Руководилац уместо стоп шаље продужени старт
- •Затим шаље ново адресно поље са R/W битом

12C<u>TAKT</u>

- •Нестандардан такт
- •Редовном стање је високо (1) користи се *pull-up*
- •Осцилује по команди руководиоца током преноса
- •Руководилац командује независно од врсте преноса (упис/читање)

12С "РАЗВЛАЧЕЊЕ" ТАКТА

- •Руководилац контролише такт НЕ генерише га!
- •Подређени може да обори такт уколико му је потребно више времена
- •Могуће извести због магистрале sa *pullup* отпорницима
- •Подршка за контролу тока: промена брзине у лету

I2C ВРЕМЕНСКИ ДИЈАГРАМ

- •Подешавање бита података се врши за време ниског нивоа такта
- •Узорковање бита података се врши за време високог нивоа такта
- •Битно обавити промене на време
- •Да би се избегло лажно препознавање пожељно радити на ивицу

I2C<u>ВРЕМЕНСКИ ДИЈАГРАМ</u>

I2C <u>АРБИТРАЖА МАГИСТРАЛЕ</u>

- •Магистрала са више руководилаца
- •Могућност симултаног започињања преноса
- •Арбитража се континуално одвија за сваки бит
- •Руководилац са преимућством за слање: шаље 0 (активно обара)
- •Повлачи се руководилац: шаље 1 (пасивно задржавање)
- •Приоритет: чворови са нижом адресом

ЗАКЉУЧЦИ ЗА ПОНЕТИ

Шта смо радили

ЗАКЉУЧЦИ ЗА ПОНЕТИ

- •12С: намењен за проширење микроконтролера са периферијама
- •Комбинује најбоље из оба света ((а)синхро)
- •Лако проширивање: симултано додавање
- •Обезбеђена једноставна арбитража