АЛГОРИТМИЧЕСКАЯ ГЕНЕРАЦИЯ МУЗЫКИ В РЕЖИМЕ РЕАЛЬНОГО ВРЕМЕНИ

По материалам магистерской диссертации А. Чубарьяна

Из истории алгоритмов в музыке

Пифагор (500 г. до н.э.):
 «Музыка и математика едины»

• И. Кеплер (1619 г.): «Музыка сфер», построенная на расчете орбит планет Солнечной системы

Из истории алгоритмов в музыке

В.А. Моцарт (1792 г.):
 «Музыкальная игра в кости»

Pithoprakta (1955-56), mesures 52-59 : graphique de Xenakis Source : Iannis Xenakis, Musique. Architecture, Tournai, Casterman, 1976, p. 167

Я. Ксенакис (1954 г.): введение в технику музыкальной композиции методов теории вероятностей

ZAHLENTAFEL.

	Α	В	C	D	E	F	G	н
ę			\bigcirc	10			0	
2 (96	29	141	+1	103	122	11	30
3 (32	6	128	63	146	+6	194	81
· 4 (69	95	158	13	153	55	110	25
Farme.	+0	17	113	H.S	161	2	159	100
E 6 () 1+8	7+	163	45	80	97	36	107
. 7 (104	137	27	167	1.54	68.	118	91
8 6	139	60	171	53	99	133	21	127
E 9 (11.9	54	114	50	140	86	169	94
10	80. (149	42	156	7.5	129	62	125
- 11 () 3	87	165	61	195	47	147	33
12	1 54	130	10	103	28	37	106	5

Задачи и проблемы

Поставленные задачи:

- Формализация структуры музыкального произведения.
- Построение алгоритма генерации мелодий, второстепенных голосов и аккомпанемента.
- Построение алгоритма гармонизации мелодии.

Проблемы:

- Проблема представления музыкальной структуры.
- Гармонизация мелодии.
- Видоизменение и отклонения от мелодии.
- Выявление закономерностей в мелодии.

Структурные компоненты

- Музыкальный паттерн последовательность из двух или более нот (или более мелких паттернов), имеющих относительную длительность, не привязанная к какойлибо тональности или аккорду.
- **Мотив** набор простейших и составных паттернов.
- **Аккомпанемент** любой инструментальный голос, построенный нотами мелкой длительности с использованием аккомпанементных паттернов.
- Второстепенный голос любой инструментальный голос, построенный нотами крупной длительности с использованием аккомпанементных паттернов.

Модель музыкального произведения

Архитектура генератора

Основной управляющий модуль

Интерфейс пользователя

Гармонизатор

Генератор мелодий

Генератор второстепенных голосов

Генератор аккомпанемента

Плееры

Графический плеер

Музыкальный плеер

Файловый плеер

Генератор основной мелодии

- Строит основной мотив мелодии с использованием простых и составных паттернов.
- Видоизменяет мотив и модулирует его.

Модуль гармонизации

- Потактово гармонизирует мелодию согласно правилам классической гармонии.
- Отвечает за гармоническое движение на протяжении всего предложения.

Модуль второстепенных голосов и аккомпанемента

- Строит по имеющейся мелодии и гармонии второстепенные голоса и аккомпанемент.
- Следит за пересечением голосов и рисунком аккомпанемента.

Модуль воспроизведения

- Графический плеер выводит мелодию в виде нот на экран.
- Музыкальный плеер воспроизводит мелодию в реальном времени.
- Файловый плеер сохраняет мелодию в MIDI-файл.

Пользовательский интерфейс

- Общие настройки произведения (тональность, темп, громкость).
- Настройка каждого инструмента в отдельности (диапазон игры, тип голоса, тембр, громкость).
- Возможность добавления/отключения инструментов.
- Изменение любых настроек возможно и в процессе генерации музыки.

Использованные технологии

- Java Development Kit 1.7
- jMusic (music programming library for Java by A.Sorensen and A.Brown)
- JAVE 1.0.2 (Java Audio Video Encoder)
- MIDI

Полученные результаты

- Сформулирована упрощенная модель музыкального произведения.
- Разработаны алгоритмы построения мелодий и гармонизации.
- Реализован инкрементный генератор музыкальных произведений.

Области применения

- Генерация музыки к видеоряду, играм, презентациям.
- Генерация «фоновой музыки» для торговых центров, магазинов, отелей.
- Применение в образовательных целях в ДМШ и музыкальных колледжах.