Problem Set - 2 MTH-204, MTH-204A Abstract Algebra

- 1. Let G be a group such that the intersection of all its subgroups which are different from $\{e\}$ is a subgroup different from $\{e\}$. Prove that every element in G has finite order.
 - 2. If G has no nontrivial subgroups, show that G must be finite of prime order.
- 3. If H is a subgroup of G, and $a \in G$, let $aHa^{-1} = \{aha^{-1} : h \in H\}$. Show that aHa^{-1} is a subgroup of G. If H is finite, what is $o(aHa^{-1})$?
- 4. Suppose that H is a subgroup of G such that whenever $Ha \neq Hb$ then $aH \neq bH$. Prove that $gHg^{-1} \subseteq H$ for all $g \in G$.
 - 5. For $m, n \in \mathbb{Z}$, compute $m\mathbb{Z} \cap n\mathbb{Z}$.
- 6. Let G be an abelian group and suppose that G has elements of orders m and n, respectively. Prove that G has an element whose order is the least common multiple of m and n.
 - 7. Prove that every subgroup of a cyclic group is cyclic.
- 8. Let G be a cyclic group of order n, then prove that for each d dividing n, G has a unique subgroup of order d.
 - 9. Let G be a cyclic group of order n. Prove that G has $\phi(n)$ generators.
- 10. Let G be a cyclic group of order n. If d divides n, show that the number of elements of order d in G is $\phi(d)$. It is 0 otherwise.
 - 11. Show that U_9, U_{17}, U_{18} are cyclic groups whereas U_8, U_{20} are not cyclic.
 - 12. If p is a prime, prove that $\phi(p^a) = p^a p^{a-1}$.
 - 13. If gcd(m, n) = 1, prove that $\phi(mn) = \phi(m).\phi(n)$.