Transitive	$t(C_1, rdfs:subClassOf, C_3) \leftarrow t(C_1, rdfs:subClassOf, C_2) \land$
subsumption	$t(C_2, rdfs:subClassOf, C_3)$
Inheritance	$t(X, rdf:type, C_2) \leftarrow t(C_1, rdfs:subClassOf, C_2) \land t(X, rdf:type, C_1)$
	$t(X, rdf:type, C_2) \leftarrow t(C_1, owl:equivalentClass, C_2) \land t(X, rdf:type, C_2)$
Domain	$t(X, rdf:type, C) \leftarrow t(P, rdfs:domain, C) \land t(X, P, O)$
Range	$t(Y, rdf:type, C) \leftarrow t(P, rdfs:range, C) \land t(S, P, Y)$
Transitivity	$t(X, P, Z) \leftarrow t(P, rdf:type, owl:TransitiveProperty) \land t(X, P, Y) \land t(Y, P, Z)$
Subsumption	$t(C_1, rdfs:subClassOf, C_2) \leftarrow t(C_1, owl:someValuesFrom, D_1) \land$
of existential	$t(C_1, owl: onProperty, P) \land t(C_2, owl: someValuesFrom, D_2) \land$
formulae	$t(C_2, owl: onProperty, P) \land t(D_1, rdfs: subClassOf, D_2)$
Intersection	$t(C, \mathit{rdfs}: \mathit{subClassOf}, D) \leftarrow t(C, \mathit{owl}: \mathit{intersectionOf}, I) \land D \in I$
Disjointness	$\bot \leftarrow t(C_1, owl:disjointWith, C_2) \land t(X, rdf:type, C_1) \land t(X, rdf:type, C_2)$