

BIOCHIMIE 2 Oussama Essahili

Fiches de révision (1^{ère} lecture des diapositives ++)

EXPLORATION FCT HEPATIQUE

GRANDS FONCTIONS DU FOIE

- 1. Métabolisme intermédiaire : Homéostasie des glucides, lipides et protides
- 2. Synthèse
- 3. Epuration et détoxification
- 5. Sécrétion et excrétion de la bile

6 ANALYSES DE BASE EN HEPATOLOGIE

- Nécrose hépatocellulaire : ASAT, ALAT, LDH Cholestase : PAL, γ-GT, Bilirubine
- Insuffisance hépatocell : Albumine
- Temps de prothrombine : Problème des facteurs de
- coagulation
- Synthèse tumorale (Adulte) : α-foetoprotéine

Métabolisme	Glucides, lipides, protides, vitamines, fer et oligoéléments
Synthèse	Albumine, transferrine, facteurs de coagulation
Epurification et détoxification	Elimine <u>bilirubine libre</u> , <u>alcool</u> et <u>médicaments</u>
Sécrétion biliaire	Entre les repas : Sphincter d'Oddi <u>fermé</u> Nourriture (bouche) : Sphincter d'Oddi <u>ouvert</u> et <u>contraction de la vésiculaire</u> biliaire par CCK.

- Vascularisation du foie : 75% Veine porte 25% Artère hépatique

Exploration de l'atteinte parenchymateuse (Aminotransférases et LDH)

ASAT	ALAT	LDH (5 isoenzymes, LDH	15 dans le foie)
Cœur, muscle, foie	Foie	Myocarde, hématies, reins	, m. squelettiques, foie
Cytoplasmique Cytoplasmique Mitochondrial	Cytosolique		
		↑ : Augmentation de la perméabilité membranaire,	
Stable (conservé) Instable à -20°		nécrose cellulaire	
Sensible à l'hémolyse			
- Infarctus myocarde - Atteinte des	- Nécrose hépatique	Exercice physique, Age	Alcool, médicaments
muscles squelettiques		↑ ASAT	↑ ASAT et ALAT

Cholestase (Rétention biliaire)

Causes	- Obstruction des voies biliaires <u>extrahépatiques</u> et <u>intrahépatiques</u>	PHOSPHATASE ALCALINE PAL - Eviter tout anticoagulant
Conséquences	 Réduction ou absence d'acides biliaires et de bilirubine dans la lumière digestive Reflux des produits de sécrétion biliaire vers le sang : ↑ Acides biliaires, bilirubine conjuqué, cholestérol et phospholipides, triglycérides Induction et libération d'enzymes membranaires vers la circulation : ↑ Phosphatase alcaline PAL et y-GT 	- A jeun 1 Phosphatase alcaline PAL - Enfants et adolescent - Femme enceinte dans la 20e semaine et se normalise 2 ou 3 semaines après l'accouchement - Valeurs élevées chez l'homme que chez les femmes, s'estompe avec l'âge.

Exploration excréto-biliaire

Ictère à bilirubine non conjuguée	- Augmentation de la production de bilirubine libre (Hémolyse) - Anomalie génétique : déficit de la glucuronyl-transférase (enzyme de conjugaison de la BL à l'acide glucuronyl)
Ictère à bilirubine conjuguée	- Obstruction mécanique des voies biliaires
Ictère néonatal	Bilirubine non conjuguée : - Ictère physiologique du nouveau né +++ : Hémolyse - Ictère pathologique : Maladie hémolytique (incompatibilité du rhésus, défaut inné de conjugaison)
	Biliruine conjuguée ou mixte : < 1% des ictères néonataux - Souvent grave - Hépatite néonatale - Atrésie des voies biliaires

Exploration excréto-biliaire

Oussama Essahili

CATABOLIQUE

Ammoniac

- Produit par ++ cellules
- Provient du métabolisme des protéines
- Sang veineux portal
- NH4+ toxique pour l'organisme
- Eliminé exclusivement par le foie (urée)

ANABOLIQUE

Albumine

- Synthèse : Foie Protéine circulante la plus abondante : 40-60% des protéines totales

TP et TQ

- Normal : 10 à 15 secondes
- Si allongement (3s) : risque d'hémorragie

Dosage des facteurs de coagulation

- Facteurs du complexe prothrombinique et 11

Marqueurs spécifiques de maladie

α-foetoprotéine	 Diminue rapidement après la naissance Augmente : Carcinome hépatocellulaire Suivi des patients atteint de cirrhose ou d'hépatite chronique
α- 1-antitrypsnie	 Glycoprotéine synthétisée par le foie Déficit => Maladie hépatique (cirrhose)
Céruloplasmine α-2 globuline	 Protéine de transport du cuivre dans le sang Protéine de la phase aigue de l'inflammation Synthétisée par le foie Diminue : Maladie de Wilson, Insuffisance hépatique et Syndrome de perte de protéines. Augmente : Syndrome inflammatoire en phase aigue

BILAN MARTIAL

- Rôle dans l'érythropoïèse

- Mesure de la ferritine

Répartition	Fer héminique Fe2+ +++	60% au niveau de l'Hémoglobine	
4g de fer		5% au niveau de la Myoglobine	
		0,01g au niveau des enzymes resp cell	
	Fer non héminique Fe3+	35% Réserves (Ferritine et hémosidérine)	
		0,05g Plasma et liquides biologiques : lié à transferrine	

Cycle de fer

Stockée sous forme Ferritine et hémosidérine Macrophage SRH GR vieilli → Fer <

Libérée: Moelle osseuse, Foie, Elimination (urines, desquamation, pertes de phanères, menstruations, grossesse

Besoins

Quotidiens	1 mg/j (homme) 2mg/j (femme) 3mg/j (femme enceinte T1 T2) 10 mg/j (femme enceinte T3)
Chez l'enfant	Plus importants ++ 2 ans et Adolescent
Aliments	Viande, poisson, légumes secs, fruits, légumes

Absorption intestinale

Augmente quand l'activité érythropoïétiques 1

- Lieu : Duodénum ++ et jéjunum
- 10% des apports (10mg chez homme et 20mg chez femme)
- Favorisée par Vitamine C et milieu acide
- Absorption du fer ferreux animale >> végétale

Transfert du fer : Transferrine

- Fixe 2 atomes de fer
- Saturée au 1/3 de sa capacité
- Synthèse : Hépatocytes +++ et Macrophage (M.O et Rate)
- Si ↓ Fe -> Transferrine ↑

Récepteurs de transferrine: RTF

- Toutes les cell de l'organisme (Cellules érythroïdes ++)
- Nombre de RTF : élément régulateur du taux de captation de fer.
- Forme tronquée : Récepteur soluble de la transferrine RSTF, capable de passer dans le plasma où on peut la mesurer.
 - + Bonne corrélation entre activité proliférative de la moelle et RsTF
- + Diagnostic de l'anémie ferriprive des syndromes inflammatoires

Réserves du fer :

- 35% du fer total - 2 formes : Ferritine ++ et Hémosidérine (difficilement mobilisable)

- Foie, rate, moelle osseuse

Ferritine : bon reflet des réserves martiales

	Herritine tissulaire Ubiquitaire	Ferritine plasmatique Faible quantité
Origine	Macrophages Si épuisé -> Hépatocytes	 Macrophages +++ Lyse cellulaire
Constituant	- Apoferritine (protéine) - Fer Fe3+	Macrophages: Pauvre en Fe, Ferritine glycosylée Lyse cellulaire: Riche en Fe, Ferritine non glycosylée

Hémosidérine

Structure	- Forme stable - Libère Fe lentement - Complexe fer-protéine
Origine	- Digestion lysosomial des agrégats de ferritine - Macrophage SRH et hépatocytes
Mise en évidence	Coloration de Péris

Exploration des paramètres

<u>Phase pré analytique</u>

- Sérum, tube sec, hépariné, EDTA
- Matin 08-10H (variations nycthémérales) à jeun
- Proscrire toute thérapie martiale

1 semaine avant prélèvement.

Dosage du fer circulant

Fer plasmatique : Méthode colorimétrique Transferrine: Dosage immunologique (permet de calculer la capacité de synthèse du foie, coef de saturation, capacité totale de fixation)

Dosage du fer hématopoiétique

Le taux d'hémoglobine - VGM et TCMH

Dosage du fer de réserves

Pas de cycle nycthéméral pour la ferritine

Ferritine sérique

Ferritine tissulaire : sang fraichement prélevé, séparé des leucocytes

Système de régulation

- Protéine HFE: Mutation -> Hémochromatose
- Hepcidine (synthèse par hépatocytes) : rôle dans <u>l'homéostasie</u>

Phase post analytique

Interprétation toujours en fct de :

Anémie, syndrome inflammatoire, hépatopathie Age, sexe

Variations pathologiques

<u>Carence martiale</u>: Perte > Apports

Etiologies

- 1. Saignement chronique
- 2. Utilisation intensive
- 3. Carence d'apport

3 Phases

- 1)- Carence latente
- 2)- Carence installée
- 3)- Anémie

- Examen de 1ère intention : ferritine
- Si associé à une anémie : anémie ferriprive
- Stade avancé : CST diminué (médiocre paramètre de diagnostic de carence en fer)

Dégranulation des PNN -> Lactoferrine (grande affinité pour Fe)

-> emprisonnées dans les macrophages du SRH (Moelle osseuse privée du fer)

Surcharge de fer :

Hématochromatose primitive

<u>Signes cliniques :</u>

- 1. Mélanodermie
- 2. Hépatomégalie
- 3. Diabète
- 4. Insuffisance gonadique
- 5. Manifestations cardiaques
- 6. Manifestations osseuses et articulaires <u>Signes biologiques</u>
- ↑ Fer sérique et CS Transferrine
- ↓ Transferrine
- Stades évolués : Ferritine plasmatique ↑
- Accumulation du fer bcp + dans le foie que dans les macrophages SRH

Surcharges secondaires en fer

Secondaires à :

- 1. Anémies
- 2. Maladie métabolique
- 3. Insuffisance rénale
- 4. Maladie hépatique

2 mécanismes de surcharge d'anémies

- Transfusion pour corriger anémie
- Hémolyse : érythropoïèses accrue

Signes biologiques

- 1. Anémie hypochrome
- 2. Fer normal ou augmenté
- 3. Ferritine 1

MARQUEURS CARDIAQUES

Syndrome coronaire aigue	Insuffisance cardiaque	
Troponine	Peptides natriurétiques :	
Marqueurs de nécrose cardiaque	BNP et NT-proBNP	

	ASAT	LDH	CPK-Total
Enzyme	Intracellulaire	Cytoplasmique	Intracellulaire
Lieu	Foie, myocarde, muscle squelettique	++ Organes	Musques squelettiques et cardiaques
Mécanisme	 Transfert réversible NH2 sur les acides αcétonique ↑ Lyse cellulaire 	Pyruvate -> Lactate	Créatinine -> Créatinine P par Mg2++ et ATP
Diagnostic	Atteintes hépatiques Myopathies Infarctus	Infarctus Hémolyse	Infarctus Myopathies

<u>Myoglobine</u>

- Protéine cytoplasmique
- Muscles squelettiques et myocarde
- Transport 02

<u>Diagnostic:</u>

- Infarctus du myocarde : diagnostic précoce Augmente 2h après infarctus du myocarde Atteint le max entre 4 à 12 heures Retombe au niveau normal après 24 heures
- Lésion des muscles
- Insuffisance rénale grave

Dosage non standardisée, valeurs usuelles dépendent de la méthode utilisée

Troponine

- Myocytes : régulent l'activité du muscle en fonction du calcium intracellulaire
- 3 sous unités : T, C, I
- T (2 isoformes): m. striés et myocardes: cTnT
- I (3 isoformes): myocarde: cTnI
- Taux cTnT et cTnI après infarctus myocarde S'élèvent après <mark>2 à 4 heures</mark>

Pic aux alentours de la 14e heure

Restent élevés pdt 75 à 140h (cTnI) 10j (cTnT)

- Déconseillé d'utiliser indifféremment des techniques différentes en cas de suivi du patient
- ↑ : Syndrome coronarien, cardiopathies (Insuffisance ventriculaire aigu, péricardites, myocardites), atteintes non ischémiques

Protéine C Réactive CRP us

- Phase aigue de l'inflammation
- Foie ++
- Initie l'adhésion aux **cell phagocytaires** et active le **système du complément**

Augmente 6 à 7 heures après une agression Max entre 48 et 72 heures Retour à la normale au bout de **1 semaine**.

- Marqueur des pathologies coronarienne
- Si ↑ au-delà de la stabilisation de la réaction inflammatoire : Risque cardiovasculaire élevé

<u>Créatinine Kinase MB (CK - MB)</u>

- Une des 3 isoenzymes de la CPK
- Prédomine dans le <mark>myocarde</mark> et muscle squelettique, rate et prostate
- Diagnostic **précoce** et **récidive** de l'infarctus du myocarde

Détectable dans les 3 à 12 heures après IM Pic vers la 24^e heure

Retour à la norme dans les 72 heures

BNP et NT-proBNP

- Familles des peptides natriurétiques
- Précurseur proBNP -> BNP et NT-proBNP
- Sécrétion : Cardiomyocytes ++
- ↑ avec l'âge et chez les femmes
- Inv. proportionnelle à la masse corporelle
- Insuffisance cardiaque : ↑ BNP et NT-proBNP
- Insuffisance rénale : ↑ NT-proBNP

BNP:

- Effet diurétique, natriurétique et vasodilatateur
- Action antagoniste au SRAA et Vasopressine

BNP	NT-proBNT
Diffère selon la technique	Comparable en interlaboratoires
Prélèvement sur EDTA (interdit sur sérum)	Prélèvement sur sérum/plasma
Tube en plastique	Tube plastique/verre
↓ dès 4 heures ↓ 50% après 48h	Stable pendant 7 jours

EQUILIBRE ACIDO-BASIQUE

[H+] plasmatique	PH = 7,37-7,43
[H+] intracellulaire	PH = 7

[H+] plasmatique	PH = 7,37-7,43
[H+] intracellulaire	PH = 7

Alimentation

- Riche en protides

Concentration

Elevé

Elevé

Métabolisme

Acides volatiles : CO2 + acide faible Elimination par le poumon (Anhydrase carbonique)

Acides fixes : organiques - minéraux Elimination par le rein (Réabsorption des HCO3- en échange de H+)

Système régulateurs (Neutralise excès H+)

Systèmes tampons	Compartiment
HCO3-/H2CO3	Extra
Protéine/Protéinate	Intra/Extracell
NaH2PO4/Na2HPO4 (urine)	Extracell
Hémoglobine/Hémoglobinate	Intracell
Protéines - Phosphates carbamates osseux (acidose)	Intracell

3 formes :

Pouvoir tampon

Elevé Faible

Faible

Elevée

- => Réduite, oxydée, et liée au CO2.
- 2 niveaux de régulation :
- + Cellule : Hb fixe H+ + Poumon : Hb libère H+

- Immédiat

- Evite une baisse rapide du pH
- Efficacité limitée
- <u>Contrôle</u> : Poumon (Ventilation) et Rein

Poumon

- Intervention rapide mais efficacité limitée
- Contrôle : PCO2
- Centres respiratoires bulbaires : sensibles au pH
- + Acidose métabolique : ↓ [HCO3-] ↑ [H+]
- => <u>Hyper</u>ventilation
- + Alcalose métabolique : ↑ [HCO3-] ↓ [H+]
- => Hypoventilation avec hypercapnie

Rein

Tardive mais plus efficace, agit contre acidose et alcalose

- Rôle double :
- + Réabsorption HCO3- et son excrétion si [HCO3-] > 28
- + Excrétion de H+ en excès et régénération de HCO3sous 2 formes.

Libre (faible) Combinée (++) => pH urinaire + 1/3 à tampons non volatiles : Acidité titrable + Si pH = 4,4 : + 2/3 à tampons volatiles : rétrodiffusion H+ + Acidose génère **Ammoniac** hyperkaliémie.

Exploration biologique

Phase pré analytique

Les gaz du sang

- Sang artériel
- Seringue héparinée
- Anaérobiose stricte
- Transport rapide (glace)
- Les bicarbonates
- Plasma/Urines
- Ponction veineuse
- Héparine

Phase analytique

Tient en compte la T° du patient

PCO2: 37 à 43 mmHg PO2: 75 à 100 mmHg

HCO3- plasma : 22 à 26 mmol/L SaO2 : 95 à 99%

<i>AC</i> IDOSE		ALCALOSE	
Métabolique	Respiratoire	Respiratoire	Métabolique
- Hyperventilation - Troubles digestives (vomissement, diarrhée) - Troubles neurologiques	 Dépression respiratoire BPCO Diminution des zones d'échanges pulmonaires M neuro-musculaires Obésité Céphalées, tremblement de mains, confusion, somnolence, convulsion, coma. 	- Maladies respiratoires - Anémie - Altitude	- Perte H+ (vomissement) - Surcharge des bases (médicaments)

EQUILIBRE HYDRO-ELECTROLYTIQUE

Oussama Essahili

- Maintien de la neutralité électrique.

Eau

= 60% (2/3 du poids du corps chez l'homme)

Sexe Age

Femme 50% Nourrisson: 75%

Personne âgé: < 60%

Organes (Varie)

Muscle: 76%

Os: 22% Graisse: 10%

Intracellulaire 40-50% du poids corporel

Extracellulaire 20% du poids corporel

Plasma sanguin 5%

Liquide interstitiel et lymphe 15%

Solutés sous forme dissociés (électrolytes) et non dissociée (glucose, urée...)

Na+: 136 K + : 4

Cl-: 100 HCO3-: 25 Protéines: 70

Pauvres en protéines (charge -) => Equilibre de Donnan

Varie d'un tissu à l'autre

Pauvre: Na+: 10

CI-

Riche: K: cation le plus

abondant

P et Protéines : anions les plus abondants

Bilan hydroélectrolytique

- Electrolytes
- Ionogramme plasmatique
- +/- Ionogramme urinaire

Prélèvement sanguin :

- Veineux, artériel, capillaire
- -Acheminement rapide
- Héparine ou EDTA
- Interférences à des fausses hyponatrémies (hypertriglycéridémies, Hyperprotidémie)

Prélèvement urinaire :

- Urines de 24h
- Centrifugation : élimine les <u>cristaux urinaires</u>

Echanges entre LIC et LEC

- Memb semi-perméable
- Loi d'osmose

Hypotonique -> Hypertonique

- Pression osmotique
- Passage des électrolytes par diffusion passive ou transport actif
- Transport actif affecte les Na+ ++ par la pompe Na+/K+ ATPase

Echanges entre Plasma et liquide interstitiel

- Régule l'hydratation du secteur extracellulaire
- Memb des capillaires : perméable aux électrolytes, moins perméable aux protéines.
- Protéines : abondants dans le plasma que le liquide interstitiel.
- Mouvements par la résultante des forces de part et d'autre
- => Loi de Starling
- Diffusion obéit à la loi de **Donnan**

Pression H > Pression O

=> Extravasation d'eau avec O2

Pression H < Pression O

=> Rappel d'eau dans le capillaire avec CO2 et déchets métaboliques

Régulation Régulation extrarénal rénal - Adaptation générale par mvt d'eau - Adaptation spécifique par la soif Sécrétée au niveau du SNC - Action : Réabsorption d'eau SRAA Rénine (Rein), Angiotensinogène (Foie), Aldostérone (Corticosurrénal) - Action : 1 Volémie et TA par réabsorption d'eau et de sodium FNA (Facteur natriurétique atriale) Sécrétée par l'oreillette du cœur - Action : diurétique, natriurétique, baisse de la TA

SODIUM

Principal cation <u>extracellulaire</u>

90% extracellulaire

5% cellulaire

5% Tissus conjonctifs et os

Rôles du sodium

- 1. Maintien de la pression osmotique du LEC et l'équilibre hydrique
- 2. Rôle dans l'équilibre acido-basique
- 3. Régulation des sorties par le rein

Variations physio-pathologiques

1. Hyponatrémies : excès d'eau

2. Hypernatrémies : déficit d'eau

3. Pertes d'eau : rénal, insensible et intestinale.

CHLORE

Variations

Parallèles à celles de Na+

Inverse à celles des bicarbonates

Rôle : Régulation des sorties par le rein

Variations physio-pathologiques

Hyperchlorémie

Apport excessif Perte des anions Tubulopathies

Déshydratation

Hypochlorémie

Pertes par voie digestive et urinaire

OSMOLALITE

- Nb d'osmoles de particules par Kg d'eau
- Osmolalité plasmatique : seule que l'on peut mesurer (calcul ou osmomètre)

A l'équilibre :

Osmolalité plasmatique = Osmolalité intracell

POTASSIUM

Principal cation intracellulaire

Régulation des sorties par le rein

Rôles du potassium

- 1. Rôle osmotique intracellulaire
- 2. Rôle dans l'excitabilité cellulaire
- 3. Rôle dans l'équilibre acido-basique

Variations physio-pathologiques

Hypokaliémie

Signes cliniques

- Neuromusculaire
- Digestif
- Cardiaque Etiologies
- Pertes digestives et rénales
- Carences d'apport
- Transfert cellulaire

Hyperkaliémie

Signes cliniques

- Neuromusculaire
- Cardiaque Etiologies
- Surcharge

intraveineuse en K+

- Insuffisance rénale
- Augmentation du catabolisme de K+

TROU ANIONIQUE

Correspond au déficit de charges négatives (Na+ + K+) - (Cl- + HCO3-)

OSMOLARITE

- Nb d'osmoles par **unité de volume mOsm/L** Solution hypertonique : concentration > plasma Solution hypotonique : concentration < plasma

<u>Calcul</u>: Cations, Anions, Urée, Glycémie

- Natrémie : bon reflet

Etiologies des troubles hydriques

Déshydratation

Extracell

Perte de liquide isotonique

Globales

Déficit d'eau et léger en sodium

Intracell

Déficit d'eau

Hydratation

Extracell *

Œdème 1 Na+ dans LEC **Globales**Hyperhydratation

intra et extracell

Intracell

Chutes de l'osmolarité plasmatique

EQUILIBRE PHOSPHOCALCIQUE

Oussama Essahili

- Constitue la charge minérale du squelette

	Calcium Ca2+	Phosphore P
Rôles	 Excitabilité musculaire Fonctionnement des systèmes enzymatiques, transports membranaires et action de certaines hormones Coagulation du sang 	 Activation de certaines molécules biologiques Mise en réserve de l'énergie (ATP) Processus de régulation enzymatique Composition de substances organiques indispensables (Phospholipides, Acides N) Système tampon de l'organisme
Besoins	Adulte: 800 à 1000 mg/j Enfant, grossesse, allaitement et ménopause: 1,2 g/j Apports: Lait, fromage, eaux minéraux	Adulte: 1g/j Femme enceinte ou qui allaite: 1,2 - 1,4/j Apport: Lait, laitage, œuf, viandes
Répartition	Os: 99% Tissus mous: 1%	Os: 85% Intracellulaire: 14% Extracellulaire: 1% plasma
Absorption	Siège: Duodénum ++ Ingestion du Ca faible: > Transport actif par 1,25 DHVIT3 Ingestion atteint les 600 mg/j > Transport passif: paracellulaire	Siège : Jéjunum, iléon > Transport actif par 1,25 DHVIT3 > Transport passif : paracellulaire
Elimination	Fécale : Ca alimentaire + sucs digestifs Urinaire : Ca ultrafiltrable (95% réabsorbé)	Fécale : pH alimentaire et pH endogène Rénale : Pi ultrafiltrable (90% réabsorbé)

Calcium	Calcium ionisé (45%)	Phosphate	Organique:	
diffusible (50%)	Calcium complexe (5%)		ATP, Phospholipides	
Calcium non diffusible (50%)	Ca-albumine (80%)		Inorganique : Ultrafiltrable (90%)	
	Ca-globuline (20%)		Non ultrafiltrable (10%)	

Régulation: 3 hormones agissent sur l'intestin, squelette et rein.

	Parathormone donne Prothromone	Calcitonine	Calcitriol 1,25-dihydroxycholécalciférol
Synthèse	Cell parathyroïdienne	Cell parafolliculaires	Métabolite de la Vit D3 (Foie et Rein)
Calcémie	Hypercalcémiante	Hypocalcémiante	Hypercalcémiante
Phosphorémie	Hypophosphorémiante	Hypophosphorémiante	Hyperphosphorémiante
	Résorption Minéralisation	Calcification	Résorption Minéralisation Ca++

Hypercalcémiant	Hypocalcémiant	<u> </u>	X: Inhibition
Hormones sexuelles	Cortisol	Synthèse	Os ++ Cerveau, parath, thymus, foie
Hormones thyroidiennes		Rein	X Réabsorption du phosphate ↓ Calcitriol X Vit D
		Parathyroïdes	X PTH

Activation Calcitriol

Exploration du métabolisme phosphocalcique

Calcémie 85 - 105mg/L	Calciurie
 Matin (cycle circadien à jeun) Garrot (ni trop serré, ni gardé longtemps) : ↑ les protéines et le calcium Tube sec ou hépariné PAS D'EDTA, CITRATE ET OXALATE 	 Urines de 24h Toute variation du taux de protides entraîne une variation de la calcémie Formule de Purfitt
Phosphatémie 30 - 40 mg/L	Phosphaturie
Sérum, ou héparineMatin à jeun, reposQue les phosphates inorganiques	- Urines de 24h - Varie avec le régime alimentaire
PTH1-84	Métabolite de la Vit D
Différencier entre les hypercalcémies : + Hyperparathyroïdie vraie + Paranéoplasique	- Urines de 24h - Varie avec le régime alimentaire

Variations physiopathologiques

	Hypercalcémies	Hypocalcémies		
CAUSES	Avec protidémie normale 1. Hypercalcémies néoplasiques (60%) 2. Hypercalcémies non néoplasiques (40%)	Avec protidémie normale 1. Hypocalcémies extra parathyroïdiennes + Défaut d'apport et d'absorption + Carence en dérivés de la vit D 2. Hypocalcémies parathyroïdiennes + Déficit de sécrétion de PTH 3. Hypocalcémies pseudo parathyroïdiennes + Aucune action périphérique de PTH		
	Hyperphosphorémies	Hypophosphorémies		
CAUSES	 Insuffisance rénale (↓ Filtration) Maladies endocrinniennes (↓ PTH) 	 Hyperparathyroïdie ↓ Vit D circulante ou vitaminorésistantes 		

<u>Insuffisance rénale chronique</u>: Hypocalcémie + Hypophosphorémie

BILAN LIPIDIQUE ET DYSLIPIDEMIES

Oussama Essahil

 Retentit sur la paroi artérielle Facteur de risque cardio-vasculaire ++ 	Triglycérol 3 AG long chaîne Glycérol	Cholestérol	Phospholipides Phosphate, base azoté Glycérol
Origine	Huile, poisson Sucre, alcool, acétylCoA	1/3 : Beurre, fromage 2/3 : Foie	
Rôle	- Constituant de la memb cell - Réserve énergétique	 Constituant de la memb cell Précurseur des stéroïdes et les acides biliaires 	- Constituant de la membrane cellulaire
Elimination	- Dégradé pour donner l'énergie - Excrétion biliaire	Excrétion biliaireCycle entéro-hépatique	

LES LIPIDES

- Insolubles dans l'eau
- Transportés dans le plasma par l'albumine ++ (AG non estérifiés)
- Autres lipides : Circulation sous forme de lipoprotéines

Structure des lipoprotéines (cœur apolaire)

Cholestérol libre

Couche hydrosoluble

Cholestérol estérifié TG

Phospholipides

Apoprotéines

Classification des lipoprotéines (Selon densité) Chylomicrons < VLDL < LDL < HDL

Plus la lipoprotéine est grasse, plus elle est grosse, plus elle flotte, plus sa densité est faible.

Classification des apoprotéines

Solubilisation et transport sanguin des lipoprotéines Double rôle:

- 1)- **Structural** : Transport des sites de synthèse vers les sites d'utilisation
- 2)- **Métabolique** (Effecteur) : Reconnaissance des sites récepteurs à apolipoprotéines 5 classes avec des sous classes :

A: I, II, IV | B: 100, 480 | C: I, II, III

D | E: 2, 3, 4

Métabolisme des lipoprotéines

Apports

- Endogènes : Foie
- + Triglycérides à partir du glucose, ou à partir des acides gras de l'adipocyte
- + Cholestérol à partir de l'Acétyl-CoA
- Exogène : Végétale (AG insaturés) Animale (AG saturés)
- + Triglycérides et phopholipides

Chylomicrons

- Origine : Intestinal en post-prandial (TG exogène)
- Libérés dans la lymphe puis dans le sang

VLDL

- Origine : Foie (TG endogène ++ et 20% exogène)

Chylomicrons et VLDL

- Action : Lipoprotéine lipase LPL de l'endothélium des capillaires
- Devenir : Particules reconnus par le récepteur des apoprotéines B/E

VLDL -> Lipoprotéine intermédiaire IDL -> LDL

Rôle du HDL (Bon cholestérol)

- Estérifie le cholestérol libre par la lécithine cholestérol acyl transférase
- Rôle antiathérogène

Devenir du LDL (Mauvais cholestérol)

- Vers le foie et les tissus périphériques (m. lisse, adipocytes et fibroblastes)
- Activité lysosomiale et hydrolyse en cholestérol libre
- -> Utilisation (cellules) -> Capté par l'HDL (sang)

Exploration usuelle des lipoprotéines

BILAN LIPIDIQUE (5)

- Aspect du sérum
- Dosage du cholestérol total
- Dosage des triglycérides
- Dosage du HDLc
- Dosage du LDLc PAS DE VLDL

CAS DE HYPERTRIGLYCERIDEMIE

- Dosage des apoliprotéines A1 et B
- Lipoprotéinogramme

<u>Prélèvement</u>

A jeun > 12 heures, loin d'une affection aigue Tube sec ou **hépariné**

 $T^{\circ}C$ < 2 heures, éviter l'hémolyse

Ne pas faire : Après atteinte cardiaque (3-4 mois)

- Hyperlipoprotéinémie (4% chez adulte après 30 ans) : primitives (génétique) secondaire (maladies/médocs)
- Hypolipoprotéinémie : primaire (héréditaire) secondaire

- Indiqué si ↑ LDL et ↓ HDL
- Evaluer le risque athérogène (**proportionnel** au taux de <u>l'ApoB</u> et **inversement prop** au taux <u>d'ApoA</u>)

- Valeurs de référence :

TG: 0,5 - 1,5 g/L

Cholestérol total CT : 1,5 à 2 g/L Cholestérol HDL: 0,35 à 0,65 g/L

CT/HDL: facteur de risque cardiovasculaire

Cholestérol LDL:

Si TG < 3,5g/L : Formule de Friedewald (habitude) Si TG > 3,5g/L : Formule de Planella Si facteur cardiovasculaire : LDL < 2,6 mmol/II

(hyperthyroïdie/atteinte hépatique graves)

EXPLORATION FONCTIONNELLE RENALE

PLUSIEURS RÔLES DU NÉPHRON :

- 1)- Régulation de l'équilibre acido-basique
- 2)- Régulation de l'équilibre hydro-électrolytique
- 3)- Elimination des toxines
- 4)- Fonction endocrine et métabolique :
- + Rénine (Régulation de la Pression Artérielle)
- + Erythropoïétine (Régulation de la synthèse des GR)
- + Vitamine D active (Régulation de l'équilibre phosphocalcique)

1)- EXAMENS SANGUINS

Créatinine

- Catabolite de la créatine musculaire
- Déchet métabolique, non protéique
- Indépendant : Apport protéique alimentaire et l'état d'hydratation
- **Reflète** : la masse musculaire, le métabolisme propre, le débit de la filtration glomérulaire (fonction rénal)

Prélèvement :

- Matin (variations nycthémérales)
- Sérum ou plasma hépariné
- Eviter l'hémolyse
- **Jeun** modéré (éviter interférence avec acétoacétone)
- Variations selon âge, sexe, taille et poids.

HOMME: 9-12 mg/L FEMME: 6-11 mg/L ENFANT: 3-8 mg/L

Cystatine C

- Glycoprotéine, production **cst** par toutes les cellules nucléées
- Marqueur de la fonction rénal
- Plus **précis** que la créatinine
- Filtration glomérulaire exclusive
- Réabsorbée au niveau tubulaire
- Peu influencé par l'âge, sexe et masse musculaire (Augmente au-delà de 70 ans)

Prélèvement :

- Sérum ou plasma hépariné
- Variations physiopathologiques :

Corticoïdes (↑ Cystatine C), Mélanome, HIV

Indications: en **seconde** intention (Coûteux)

- Détection du début d'une insuffisance rénale (marqueur précoce)
- Tubulopathies : marqueur de la fct rénale tubulaire proximale
- Sujets dont la masse musculaire est diminuée
- Valeur de référence :

0,5 à 1 mg/L

Calcémie et phosphorémie

- Apprécie l'état osseux et l'activité des glandes parathyroïdes
- Désordres est au cours de l'insuffisance chronique :

↓ Calcémie

1 Phosphorémie et activité PAL

<u>Urée</u>

- Constituant azoté, non protéique
- Synthèse par le **foie** à partir de NH3
- Provient du catabolisme protéique
- Complètement filtrée par le glomérule
- Réabsorbée partiellement au niveau tubulaire
- Dépend :
- + Fonction rénal
- + Diurèse et filtration glomérulaire

(↑ si apport hydrique faible)

+ Apport et catabolisme endogène des protéines

Prélèvement :

- Sérum ou plasma hépariné
- A jeun (car augmente en post-prandial)
- Valeur de référence :

 $0,15 - 0,45 \, g/L$

<u>Acide urique</u>

- Catabolite finale des bases puriques
- Filtration + Réabsorption totale
- Sécrétion au niveau des TCD
- Varie : Régime alimentaire, âge, cycle nycthéméral
- Augmente : Insuffisance rénale
- Non proportionnelle : Urée et créatinine

Prélèvement :

- **Jeun**, repos, régime sans purine pendant les 3 derniers jours
- Sérum ou plasma hépariné
- Proscrire x : Oxalate et fluorure (inhibe l'uricase)

- Valeur de référence :

HOMME: 30-70 mg/L FEMME: 20-60 mg/L ENFANT: 10-35 mg/L

<u>Ionogramme plasmatique</u>

- Indispensable pour l'eq hydro-électrolytique

NATREMIE : Osmolalité plasmatique

KALIEMIE: Provient de la destruction cellulaire

- Electrolytique principal de l'IR **aigue**

- Renseigne sur l'impossibilité du rein à excréter K+
- Si > 6,5 mmol/L: pronostic vital mis en jeu.

BICARBONATES: Désordres acido-basiques

- IR chronique, réduction de capacité tubulaire

OSMOLALITE:

 $[(Na+K) \times 2] + [Urée] + [Glucose] = 290 +/- 5$

2)- EXAMENS URINAIRES

Diurèse

- 0,75 à 2 Litres
- Excrétion de l'eau peut-être conservée
- Filtration glomérulaire est très diminuée
- Polyurie : sup à 2,5 L (IRA, IRC, diabète)
- => Physiologique : apports hydriques élevés
- Oligurie: inf à 0,6 L
- => Physiologique : apports hydriques faibles
- Anurie : inf à 0,1 L (IRA, Insuff cardiaque)

Protéinurie

- Peut-être le seul signe d'atteinte rénale
- Méthode qualitative (Dépistage de l'IRC)

Prélèvement: Urines 24h

Physiologique: 50 - 150 mg/24h

- + caractère intermittent
- + Debout, effort, alimentation, hypertension.

Pathologique: 150 mg/24h + caractère permanent

Dosage spécifique des protéines urinaires

Microalbuminurie

- Excrétion accrue d'albumine isolée dans les urines (signe d'atteinte rénale glomérulaire)
- 30 et 300 mg/24h (on interprète pas d'ici)
- Indice de sélectivité glomérulaire (Indice de Cameron) : IgG/Transferrine

1)- \B2-microglobuline

- Dosage sanguin ou urinaire
- Synthèse par toutes les cellules (surtout lymphocytes et les cellules tumorales)
- Marqueur des affections hématologiques
- Dégradation : par les cellules tubulaires rénales
- Petite : diffuse dans l'espace extravasculaire (LCR ++)
- Prélèvement sanguin : Sérum ou plasma EDTA
- Prélèvement urinaire : Urines de 24 ou 2ème miction du matin (si urines acides => on ajoute NaOH)
- Dans le sang : < 2,5mg/L
- Dans les urines : < 0,37 mg/24h

2)- a1-microglobuline urinaire

- Couramment retrouvée dans les urines
- Marqueur des tubulopathies

Ionogramme urinaire

- Natriurèse et kaliurèse
- Surveillance de l'IR

Créatinine urinaire

- 1-2 g/24H (homme)
- Reflète la masse musculaire

<u>Urée et acide urique</u> <u>urinaire</u>

- Apports + catabolisme endogène
- Témoigne le pouvoir de concentration du rein

<u>Calcium / Phosphore</u> urinaire

- Risque de lithiase rénal
- Troubles secondaires à une atteinte rénal

1)- Débit de filtration glomérulaire

Débit de filtration glomérulaire

A/ Mesure du DFG : Clairance

- DFG: Volume du plasma passant à travers la paroi capillaire du glomérule par unité de temps.
- Clairance d'une substance éliminée par le rein :
 Clairance = U x V / P
- Méthode de référence : Clairance de l'inuline

B/ Clairance de la créatinine

Clairance : volume sanguin épuré par le rein par unité de temps

- Indépendante de la diurèse et mesure directement la filtration glomérulaire
- Erreur au niveau du recueil urinaire
- Varie selon la taille et le poids
- Formule tient en compte de la masse musculaire, la plus utilisée et la plus validée :

Formule de COCKROFT et GAULT

Clairance = $\frac{140 - Age}{[CR]} \times Poids \times k$

- Détermine le degré de l'insuffisance rénale chronique.

Exploration des fonctions tubulaires

A/ Elimination de l'eau et étude de la fct concentration-dilution

- Clairance osmolaire : Volume du plasma en ml épuré par le rein de ses substances dissoutes et osmotiquement actives.
- Epreuve de concentration (restriction hydrique)
- Epreuve de dilution (charge hydrique)

B/ Taux de réabsorption des phosphates

- Indication sur le fonctionnement tubulaire proximal

TRP = 1 - [(Phosphaturie/Phosphatémie) x (Créatinémie/Créatininurie)] x 100

C/ Exploration du contrôle rénale de l'équilibre acidobasique :

- Participation du rein à l'équilibre acidobasique
- + Réabsorption des HCO3-
- + Excrétion de l'acidité titrable
- + Sécrétion de l'ammoniaque

INSUFFISANCE RENALE CHRONIQUE - Désordres

- Phosphocalcique
- Acido-basique
- Hydro-électrolytique
- Toxico-médicamenteuse

PROTÉINES DU SÉRUM

2 techniques

Oussama Essahili

Résultats

- EPP sur gel d'agarose (semi-automatique)

- Electrophorèse capillaire de zone (automatisée)

Protéinogramme (uniquement pour la migration sur gel)

- + Protéines sériques séparées en 5 ou 6 bandes ou fractions.
- + Chaque bande indique la présence d'une protéine particulière :
- Albumine
- Globulines (ensemble de protéines ayant des caractéristiques proches)
- + La largeur et intensité de la coloration de la bande donnent une indication sur la quantité.

Compte rendu pour les 2 techniques (Elements obligatoires)

Densitométrie : Intégration des bandes protéiques

- Profil électrophorétique
- Valeurs chiffrées
- Composition de la fraction en protéines

Organe de synthèse des fractions protéiques :

Foie: Toutes les protéines de mobilité plus rapide que les gammaglobulines Tissu lymphoide : Protéines de l'immunité (zone des gammaglobulines)

Rôle des fractions protéiques

- F. Albumine : protéine de transport, système tampon, maintien de la pression oncotique
- F. alpha 1 : lipoprotéine alpha 1, protéines de la réaction inflammatoire
- F. alpha 2 : protéines de la réaction inflammatoire
- F. béta: lipoprotéine béta, transferrine, hepoxine, composants du complément, glycoprotéine
- F. gamma: Immunoglobulines

Variations physiologiques	<u>Grossesse</u>	<u>Personne âgé</u>	Nourrisson
Albumine	Diminue	Diminue	
Alpha 1 et 2	Augmente	Diminue	
Bêta	Augmente	Augmente (40 à 70)	
Gamma		Faible	Faible

Interprétation d'une électrophorèse des protéines

FRACTION ALBUMINE

Hypoprotidémie ++

Atteinte rénale, hépatique et digestive

- Défaut d'apports (Dénutrition)
- Défaut de synthèse (cirrhose)
- Syndrome néphrotique
- Syndrome inflammatoire sévère

Hyperprotidémie

- Déshydratation
- Acquise ou héréditaire

FRACTION ALPHA 2

- Bêtalactamine chez insuffisant rénal
- Fistule pancréatique

FRACTION ALPHA 1

Diminution

- Déficit congénital
- IHC, dénutrition, fuite

Augmentation

- Sd inflammatoire

Diminution

- Hyperthyroïdies
- M. hépatiques (hémolyse)
- IHC, dénutrition, fuite

Augmentation

- Sd néphrotique
- Sd inflammatoire

Syndrome cirrhotique (stade avancé)

Monoclonale Pic en B

Syndrome inflammatoire aigu

Hypergammaglobulinémie

maglobulinémie polyclonole

Hypergammaglobulinémi noclonale Pic en y (protéine M)

Diminution

- Déficit congénital
- Insuffisance hépatocellulaire
- Dénutrition, fuite

FRACTION BETA

Augmentation

- Carence en fer

Non monoclonale

Augmentation C3

- Obstruction biliaire
- Diminution du catabolisme de Kupffer Bloc BG
- Augmentation IgA polyclonal
- Cirrhose éthylique

FRACTION GAMMA

Diminution

- Désordre immunitaires (immunodépression)

Augmentation

Maladies inflammatoires

<u>Polyclonale</u> Infection

<u>Monoclonal</u>

Myélome, lymphome

