

(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 932 185 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
28.07.1999 Patentblatt 1999/30

(51) Int. Cl.⁶: H01J 61/44, C09K 11/80,
C09K 11/81, C09K 11/78,
C09K 11/59, C09K 11/64

(21) Anmeldenummer: 97122800.2

(22) Anmeldetag: 23.12.1997

(84) Benannte Vertragsstaaten:
AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC
NL PT SE
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(72) Erfinder:
• Zachau, Martin, Dr.
82269 Geltendorf (DE)
• Müller, Ulrich
81479 München (DE)

(71) Anmelder:
Patent-Treuhand-Gesellschaft
für elektrische Glühlampen mbH
81543 München (DE)

(54) Signallampe und Leuchtstoffe dazu

(57) Die Erfindung behandelt eine Signallampe mit VUV-Leuchtstoffanregungen, insbesondere für Anwendungen im Verkehr. Sie bezieht sich ferner auch auf die Verwendung von Leuchtstoffmischungen für rote, grüne und gelbe Signallampen und auf eine entsprechend aufgebaute Verkehrsampel.

FIG. 1

Beschreibung**Technisches Gebiet**

5 [0001] Die vorliegende Erfindung bezieht sich auf Signallampen, insbesondere im Bereich von Verkehrssignalen und -schildern. Nach einem besonderen Gesichtspunkt bezieht sie sich auf Signallampen für eine Verkehrsampel.

10 [0002] Allgemein findet die Lampentechnik nicht nur bei Beleuchtungsaufgaben Anwendung. So ist auch der Bereich der Signallampen ein wichtiges Gebiet der Lampentechnik. Signallampen werden in sehr vielen Bereichen des täglichen Lebens eingesetzt, so z.B. im Straßenverkehr, bei der Schifffahrt und bei der Bahn. Ferner spielen sie praktisch bei jeder Form von einer Bedienungsperson zu bedienenden oder zu überwachenden technischen Einrichtungen eine Rolle, sei es im Bereich der Haushaltsgeräte oder bei der Unterhaltungselektronik. Ferner ist die Sicherheitsbeschilderung von Gebäuden oder Verkehrs-, Gewerbe- oder Industrieanlagen zu erwähnen, z.B. Flughäfen, Bahnhöfe, Kinos, öffentliche Gebäude und dergleichen mehr. Dabei sind beispielsweise Signallampen für die Ausweisung von Fluchtwegen, zum Hinweis auf Gefahrenstellen, zum Hinweis auf besondere Situationen wie etwa Brandalarm und der gleichen mehr im Einsatz.

Stand der Technik

20 [0003] Typisch für den Bereich der Signallampen sind besondere Anforderungen an die Zuverlässigkeit, die einerseits von Sicherheitsgesichtspunkten herrühren, andererseits durch die große zahlenmäßige und örtliche Verbreitung und die damit verbundenen erheblichen Aufwendungen für Wartung und Instandsetzung bedingt sind. Darüber hinaus ist es in vielen Anwendungsfällen notwendig oder erwünscht, besondere Bauformen, z.B. besonders flache Signallampen, verwenden zu können.

25 [0004] Konventionell werden bei Signallampen im allgemeinen normale Glühlampen oder Halogenglühlampen verwendet. Dies gilt insbesondere für die zahlreichen Signallampen, die im Betrieb ein- und ausgeschaltet werden müssen.

30 [0005] Glühlampen einschließlich Halogenglühlampen weisen aber wesentliche Nachteile auf: Durch die Verwendung einer mehr oder weniger filigranen Glühwendel sind sie grundsätzlich relativ vibrationsempfindlich, was insbesondere im Verkehrsbereich zu Einschränkungen im Einsatz führt.

35 [0006] Darüber hinaus ist ihre Betriebsdauer je nach Lampentyp und nach verwandelter Betriebsspannung auf einige tausend Stunden beschränkt. Ein frühes Ende dieser Betriebsdauer ist aber wegen der wie erwähnt häufig großen Zahl und großen örtlichen Verbreitung von Signallampen genauso wie eine anderweitige Defektanfälligkeit sehr nachteilig.

40 [0007] Bei vielen Anwendungen müssen die Glühlampen in einem optischen System, z.B. mit einem Reflektor und/oder mit Linsen, eingebaut werden. Solche Systeme sind anfällig bezüglich der Fehljustage eines Lampensockels oder anderer Elemente. Darüber hinaus ist eine gewisse innere Verschmutzung, vor allem im Verkehrsbereich, grundsätzlich unvermeidlich, so daß es auch nach aufwendigen Innenreinigungen im allgemeinen nicht gelingt, die anfängliche Leistung der Lampe wieder herzustellen.

45 [0008] Vor allem bei Glühlampenanwendungen, die z.B. zur Beleuchtung einer größeren Signalisierungsfläche oder zur Steuerung der Ausstrahlungsrichtung der Signallampen ein optisches System mit Reflektoren oder Linsen aufweisen, ist eine relativ unhandliche Baugröße und -form oder ein entsprechendes Gewicht unvermeidlich, in vielen Fällen jedoch sehr unerwünscht.

[0009] Im Bereich von Signallampen sind außerdem LEDs, also lichtemittierende Dioden, bekannt. Sie haben jedoch den Nachteil, daß der für Signallampenanwendungen wichtige und häufig genormte Farbort nicht einstellbar ist. Gelegentlich sind sie auch wegen der Abstrahlcharakteristik ungeeignet.

Darstellung der Erfindung

50 [0010] Dieser Erfindung liegt somit das technische Problem zugrunde, eine neue Signallampe mit neuen Möglichkeiten zur Vermeidung der erwähnten Schwierigkeiten anzugeben. Die Erfindung bezieht sich ferner auf bevorzugte Mittel zur Herstellung einer erfundungsgemäßigen Signallampe, und zwar die Verwendung bestimmter Leuchtstoffe oder Leuchtstoffmischungen, wie im folgenden ausgeführt.

55 [0011] Erfundungsgemäß sind vorgesehen eine Signallampe nach Anspruch 1 und ihre Verwendungen nach den Ansprüchen 14, 15 und 16. Ferner gibt die Erfindung in den Ansprüchen 3, 4, 10 und 12 Leuchtstoffe bzw. Leuchtstoffmischungen zur Verwendung in einer grünen, einer gelben bzw. einer roten Signallampe an.

[0012] Erfundungsgemäß ist also eine Leuchtstofflampe vorgesehen, und zwar konkret eine Leuchtstofflampe mit einer besonders kurzweligen Anregung im VUV-Bereich (Vakuum-Ultraviolet-Bereich), d.h. bei einer Wellenlänge unter 200 nm. Besonders bevorzugt sind dabei Anregungswellenlängen unter 185 nm bzw. unter 180 nm. Leuchtstofflampen haben hinsichtlich ihrer Betriebsdauer, Zuverlässigkeit und auch hinsichtlich der erzielbaren Bauformen und -

größen wesentliche Vorteile gegenüber Glühlampen. Dabei sind VUV-Leuchtstofflampen ein technisch relativ neuer und besonders interessanter Bereich.

[0013] Dies betrifft vor allem die dielektrisch behinderten Entladungen, vor allem von Edelgasen, und vor allem auch die dielektrisch behinderte Xe-Excimerlampe. Zu den baulichen und elektrotechnischen Einzelheiten dielektrisch 5 behinderter Gasentladungslampen wird verwiesen auf die Anmeldungen DE-P 43 11 197.1 (WO 94/23442), DE 195 26 211.5 (WO 97/04625), DE 196 36 965.7 und hinsichtlich der speziellen Anwendungen einer Verkehrsamplel vor allem auf die Parallelanmeldung „Flache Signallampe mit dielektrisch behinderter Entladung“ von der gleichen Anmelderin und mit dem gleichen Anmeldetag, wobei der jeweilige Offenbarungsgehalt der genannten Anmeldungen durch Inbezugnahme in dieser Anmeldung mit eingeschlossen ist. Dies betrifft vor allem die Pulstechnik beim elektrischen 10 Betrieb, die Elektrodenkonfigurationen für besonders gleichmäßig ausgeleuchtete Lampen und spezielle, vor allem flache, Bauformen sowie wie erwähnt den Aufbau einer Verkehrsamplel aus dielektrisch behinderten Gasentladungslampen.

[0014] Im Bereich der Signallampen haben die Farben Rot, Grün und Gelb besondere Bedeutung, z.B. bei Verkehrsampleln, Kraftfahrzeugsignallampen (Gelb und Rot), Schiffslampen (Grün und Rot für Steuerbord und Backbord) usw.

15 Die Erfindung betrifft daher insbesondere Leuchtstoffe und Leuchtstoffmischungen, mit denen sich bei VUV-Anregungen entsprechende Signallampen realisieren lassen. In vielen Fällen sind dabei auch Normierungen zu beachten, so etwa bei den Kraftfahrzeigrückleuchten oder Verkehrsamplen.

[0015] Um mit den grünen Signallampen zu beginnen, haben sich erfindungsgemäß die in den Ansprüchen aufgeführten Leuchtstoffe $\text{BaMgAl}_{10}\text{O}_{17}:\text{Mn}$, $\text{Zn}_2\text{SiO}_4:\text{Mn}$, $\text{Sr}_4\text{Al}_{14}\text{O}_{25}:\text{Eu}$, $\text{BaMgAl}_{10}\text{O}_{17}:\text{Eu}$, $\text{LaPO}_4:\text{Ce,Tb}$ und $\text{Y}_3\text{Al}_5\text{O}_{12}:\text{Ce}$ 20 als im VUV-Anregungsbereich verwendbare Leuchtstoffe herausgestellt, aus denen sich ein Signalgrün durch entsprechende Mischung herstellen lässt. Insbesondere lassen sich mit dem Leuchtstoff $\text{Sr}_4\text{Al}_{14}\text{O}_{25}:\text{Eu}$ allein bereits in vielen Anwendungsfällen auf besonders einfache und damit vorteilhafte Weise grüne Signallampen herstellen. Es hat sich erfindungsgemäß nämlich herausgestellt, daß der entsprechende Farbort bei VUV-Anregung - vergleiche das Ausführungsbeispiel - besonders günstig liegt.

25 [0016] Ferner hat sich herausgestellt, daß sich durch eine Mischung aus $\text{BaMgAl}_{10}\text{O}_{17}:\text{Mn}$ und/oder $\text{Zn}_2\text{SiO}_4:\text{Mn}$ auf der einen und $\text{Sr}_4\text{Al}_{14}\text{O}_{25}:\text{Eu}$ und/oder $\text{BaMgAl}_{10}\text{O}_{17}:\text{Eu}$ auf der anderen Seite in flexibler Weise Signalgrün töne mischen lassen, wobei sich entsprechende Normierungen z.B. für Ampelgrün (wie im Ausführungsbeispiel für den Fall der deutschen DIN-Norm gezeigt) erfüllen lassen.

[0017] Zusätzliche Freiheit gewinnt man durch Hinzufügen einer dritten Komponente aus $\text{LaPO}_4:\text{Ce,Tb}$ und/oder 30 $\text{Y}_3\text{Al}_5\text{O}_{12}:\text{Ce}$, die in der xy-Farbebene bei deutlich höheren x-Werten liegen. Demgegenüber läßt sich durch die ersten beiden genannten Mischungskomponenten aus $\text{BaMgAl}_{10}\text{O}_{17}:\text{Mn}$ und $\text{Zn}_2\text{SiO}_4:\text{Mn}$ bei höheren y-Werten und $\text{Sr}_4\text{Al}_{14}\text{O}_{25}:\text{Eu}$ und insbesondere $\text{BaMgAl}_{10}\text{O}_{17}:\text{Eu}$ bei niedrigeren y-Werten der Bereich niedrigerer x-Werte erfassen. Unter den genannten und/oder-verknüpften Leuchtstoffpaaren wird im Sinne der Erfindung bevorzugt wie folgt gewählt:

[0018] Es hat sich herausgestellt, daß der Leuchtstoff $\text{BaMgAl}_{10}\text{O}_{17}:\text{Eu}$ bei VUV-Bestrahlung eine relativ schlechte 35 Maintenance, d.h. Aufrechterhaltung der Ausbeute und des Farborts über die Betriebszeit, zeigt, weswegen $\text{Sr}_4\text{Al}_{14}\text{O}_{25}:\text{Eu}$ demgegenüber bevorzugt ist. $\text{Sr}_4\text{Al}_{14}\text{O}_{25}:\text{Eu}$ weist im übrigen die gegenüber dem bezüglich der visuellen Wirkung (d.h. der Empfindlichkeit des menschlichen Auges) optimalen Spektralgrünpunkt bei 550 nm auf dem Spektralzug nähere Lage im xy-Farbdigramm auf.

[0019] Andererseits lassen sich die Maintenance-Eigenschaften des Leuchtstoffs $\text{BaMgAl}_{10}\text{O}_{17}:\text{Eu}$ durch einen überstöchiometrischen Mg-Anteil erheblich verbessern, wie in der US-Parallelanmeldung „Barium Magnesium Aluminate Phosphor“ von der gleichen Anmelderin sowie der Mitanmelderin Osram Sylvania Inc. und mit dem gleichen Anmeldetag im einzelnen dargestellt und beansprucht wird. Der Offenbarungsgehalt dieser US-Parallelanmeldung ist hierdurch unter Bezugnahme mit eingeschlossen. Insgesamt ist $\text{Sr}_4\text{Al}_{14}\text{O}_{25}:\text{Eu}$ aber auch gegenüber dem $\text{BaMgAl}_{10}\text{O}_{17}:\text{Eu}$ -Leuchtstoff mit überstöchiometrischem Mg-Anteil vor allem hinsichtlich der Maintenance-Eigenschaften zu bevorzugen.

[0020] In der Paarung $\text{BaMgAl}_{10}\text{O}_{17}:\text{Mn}$ und $\text{Zn}_2\text{SiO}_4:\text{Mn}$ liegt zunächst der Farbwert von $\text{Zn}_2\text{SiO}_4:\text{Mn}$ näher am 45 550 nm-Punkt auf dem Spektralzug und erscheint damit zunächst als naheliegende Wahl. Andererseits hat sich erfindungsgemäß herausgestellt, daß $\text{Zn}_2\text{SiO}_4:\text{Mn}$ herstellungstechnisch sehr problematisch ist und insbesondere bei VUV-Bestrahlung zu Instabilitäten neigt und außerdem $\text{BaMgAl}_{10}\text{O}_{17}:\text{Mn}$ vor allem bei der erfindungsgemäß bevorzugten Anregung durch eine Xe-Excimerentladung die bessere Quantenausbeute zeigt.

[0021] Bei dem verbleibenden Paar $\text{LaPO}_4:\text{Ce,Tb}$ und $\text{Y}_3\text{Al}_5\text{O}_{12}:\text{Ce}$ hat sich herausgestellt, daß $\text{LaPO}_4:\text{Ce,Tb}$ bei VUV-Anregung eine deutlich bessere Ausbeute als $\text{Y}_3\text{Al}_5\text{O}_{12}:\text{Ce}$ zeigt und daher zu bevorzugen ist.

[0022] Es ist aber grundsätzlich auch möglich, mit nur zwei Leuchtstoffen im Grünbereich auszukommen, was sich 50 im Fall der Kombination $\text{BaMgAl}_{10}\text{O}_{17}:\text{Mn}$ und $\text{BaMgAl}_{10}\text{O}_{17}:\text{Eu}$ auf eine Doppelaktivierung des gleichen Wirtsgitters, also den Leuchtstoff $\text{BaMgAl}_{10}\text{O}_{17}:\text{Mn,Eu}$, reduziert. Dann kann durch die relative Konzentration der Aktivierungselemente Eu und Mn der richtige Grünfarbwert eingestellt werden.

[0023] Bei den gelben Signalfarbwerten muß relativ nahe am Spektralzug gearbeitet werden, wo die einschlägigen Normierungen liegen. Dazu ist erfindungsgemäß eine Mischung aus $(\text{Y},\text{Gd})\text{BO}_3:\text{Eu}$ einerseits und $\text{Zn}_2\text{SiO}_4:\text{Mn}$

und/oder LaPO₄:Ce,Tb andererseits vorgesehen. LaPO₄:Ce,Tb zeigt dabei gegenüber Zn₂SiO₄:Mn bei VUV-Anregung die bessere Ausbeute, weswegen die Kombination (Y,Gd)BO₃:Eu und LaPO₄:Ce,Tb bevorzugt ist. Dadurch kann der interessante Bereich in der Nähe des Spektralzugs erreicht werden, wobei jedoch nicht zu übersehen ist, daß Zn₂SiO₄:Mn durch seine nähere Lage zum Spektralzug einen Vorteil gegenüber LaPO₄:Ce,Tb hat. Wenn also ein Farbort besonders nahe am Spektralzug erwünscht ist, kann auf Zn₂SiO₄:Mn nicht verzichtet werden.

[0024] Besondere Schwierigkeiten haben sich bei Signalrot ergeben. Der Leuchtstoff (Y,Gd)BO₃:Eu mit einer orangefarbenen Hauptemission hat dabei einen bei zu kurzen Wellenlängen liegenden Farbwert. Andere Rotleuchtstoffe wie etwa Y₂O₂S:Eu oder YVO₄:Eu liegen in dieser Hinsicht sehr viel günstiger im Farbwertdiagramm.

[0025] Andererseits hat sich erfahrungsgemäß herausgestellt, daß gerade bei Signalrot erhebliche Ausbeuteprobleme auftreten und (Y,Gd)BO₃:Eu im VUV-Bereich unter den Rotleuchtstoffen die bei weitem beste Ausbeute zeigt, und zwar in der realen Lampe noch deutlicher als in der Pulverprobe. Erfahrungsgemäß wird also die nicht ganz optimale Lage von (Y,Gd)BO₃:Eu in Kauf genommen, um eine für die praktische Anwendung ausreichende Ausbeute zu erzielen. Je nach zu erreichender Rotnorm wird dann ein zusätzliches Rotfilter verwendet. Es hat sich nämlich gezeigt, daß trotz der Filterverluste die Kombination (Y,Gd)BO₃:Eu und zusätzliche Farbfilterung letztlich effizienter ist als die Verwendung eines anderen Rotleuchtstoffs mit schlechterer Ausbeute. Das Filter sollte dabei möglichst scharfkantig und beispielsweise hinsichtlich der deutschen Norm für Ampelrot eine Abschneidkante etwa bei 595 nm zeigen.

[0026] Bevorzugte Anwendungsgebiete einer erfahrungsgemäß Signallampe sind leuchtende Verkehrsschilder oder Verkehrssignale, und zwar sowohl im Straßenverkehr als auch im Schienen- oder Schiffsverkehr. Dabei bezieht sich die Erfindung insbesondere im Hinblick auf die oben erläuterten Leuchtstoffmischungen für die Farben Grün, Gelb, Rot vor allem auf eine Verkehrsampel. Ein weiteres wichtiges Anwendungsgebiet liegt aber daneben auch bei Kraftfahrzeuglampen, etwa roten Rücklichtern, Bremslichtern oder gelben Richtungsanzeigern.

[0027] Die oben verwendeten Kurzformeln für die verschiedenen Leuchtstoffe sind für diese Anmeldung wie folgt zu verstehen, wobei die engeren unteren und (unabhängig von den unteren) die engeren oberen Grenzen als jeweils entsprechend bevorzugt zu verstehen sind:

Tabelle 1

25

30

35

40

45

50

55

5

10

jeweils mit:

- $0; 0,05; 0,1; 0,15 \leq e \leq 0,2; 0,25; 0,3; 0,4$; (bei 0 gilt <);
- $0; 0,05; 0,1; 0,15 \leq m \leq 0,2; 0,25; 0,3$; (bei 0 gilt <);
- $0,01; 0,015; 0,02; 0,025; 0,03 \leq \delta \leq 0,04; 0,05; 0,06; 0,07; 0,08; 0,09; 0,10$;
- $0; 0,1; 0,2 \leq f \leq 0,3; 0,4; 0,5; 0,7; 1$;

20

25

30

mit:

- $0; 0,1; 0,15 \leq a \leq 0,3; 0,4; 0,6$;
- $0,05 \leq b \leq 0,2; 0,3; 0,5$;
- $0 \leq f \leq 0,1$;

40

45

mit:

- $0 \leq a \leq 0,05; 0,1; 0,2$;
- $0,02; 0,05 \leq b \leq 0,15; 0,2; 0,3$;

50

55

5
 - $0 \leq f \leq 0,2;$

mit:

15
 - $0,01; 0,05 \leq a \leq 0,15; 0,3; 0,5;$

20
 - $0 \leq f \leq 0,5;$

mit:

30
 - $0,01; 0,05 \leq a \leq 0,15; 0,3;$

- $0 \leq f \leq 1$

40
 mit:

45
 - $0 \leq a \leq 0,25; 0,5; 0,99;$

- $0,01; 0,03; 0,05 \leq b \leq 0,15; 0,2; 0,3;$

50
 - $a+b \leq 1;$

- $0 \leq f \leq 0,2.$

55 Neben den beschriebenen Idealzusammensetzungen sind auch Zusammensetzungen inbegriffen, die aus den genannten Konzentrationsbereichen herausfallen, jedoch in der Nachbarschaft dazu liegen und phasengleich sind.

Beschreibung der Zeichnungen

[0028] Im folgenden werden einige Ausführungsbeispiele für die Erfindung anhand der Figuren erläutert. Dabei zeigt:

5 Fig. 1 ein xy-Normfarbwertdiagramm mit Farbörtern der hier interessierenden Leuchtstoffe und einem als Beispiel
eingezzeichneten Normbereich für Ampelgrün;

10 Fig. 2 einen Ausschnitt aus Fig. 1 in vergrößerter Darstellung mit weiteren Beispielen für rote und gelbe Normsi-
gnalfarben.

15 [0029] Für die erfindungsgemäße Mischung der Leuchtstoffe zur Erfüllung bestimmter Signalfarbnormen durch die
Leuchtstoffmischung ist es zunächst erforderlich, die Farbörter der interessierenden Leuchtstoffe bei VUV-Anregung zu
messen. Ohne daß dies einschränkend zu verstehen wäre, liegen dabei der Beschreibung der Ausführungsbeispiele
folgende Meßwerte für typische Beispiele aus den zuvor angegebenen Zusammensetzungsbereichen zugrunde:

Tabelle 2

20	1. BaMgAl ₁₀ O ₁₇ :Eu: 2. BaMgAl ₁₀ O ₁₇ :Mn: 3. LaPO ₄ :Ce,Tb: 4. Zn ₂ SiO ₄ :Mn: 5. Y ₃ Al ₅ O ₁₂ :Ce: 6. Sr ₄ Al ₁₄ O ₂₅ :Eu: 25 25	x = 0,155; y = 0,058; x = 0,141; y = 0,741; x = 0,338; y = 0,577; x = 0,228; y = 0,694; x = 0,391; y = 0,483; x = 0,141; y = 0,368; x = 0,640; y = 0,359.
----	--	---

30 [0030] Die der Erfindung zugrundeliegenden Farbörter der einzelnen Leuchtstoffe waren nicht bekannt und entspre-
chen nicht den im allgemeinen dokumentierten Daten zu Hg-Entladungsanregungen.

[0031] In Fig. 1 ist eine xy-Normfarbwertebene als Diagramm dargestellt. Zu erkennen sind der geschwungene Spek-
tralfarbenzug und in der eingeschlossenen Fläche die den in den beiden Tabellen spezifizierten Leuchtstoffen entspre-
chenden Farbörter. Dabei entsprechen die Bezugsziffern der Numerierung der obigen Tabelle 2. Etwa zwischen x=0
35 und x=0,3 sowie y=0,35 und y=0,7 ist ein Bereich grüner Farbwerte zu erkennen (einschließlich des schraffierten Dre-
iecks am rechten Rand), der die hier für das bevorzugte Ausführungsbeispiel herangezogene deutsche Norm für Ver-
kehrsamplelgrün DIN 6163,5 darstellt.

[0032] Man erkennt, daß der Leuchtstoff Sr₄Al₁₄O₂₅:Eu, der mit dem Bezugzeichen 6 bezeichnet ist, an der Grenze
der DIN-Norm liegt. Er kann damit im Rahmen der DIN-Norm auch als einzelner Leuchtstoff ohne zweite Komponente
40 verwendet werden, allerdings nur bei sehr gut kontrollierten Herstellungsbedingungen, weil er bei den im allgemeinen
üblichen Schwankungen leicht aus dem normierten Bereich herausstreten kann.

[0033] Alle weiteren hier betrachteten VUV-anregbaren Leuchtstoffe liegen außerhalb des Normbereichs. Man
erkennt jedoch, daß bereits Zweikomponentenmischungen in den Normbereich führen. Dabei ist das BaMgAl₁₀O₁₇:Eu
45 mit überstöchiometrischem Mg-Anteil wegen seiner besseren VUV-Beständigkeit bevorzugt. Eine besonders vorteil-
hafte Wahl ist darüber hinaus auch die Doppelaktivierung von BaMgAl₁₀O₁₇ mit Eu und Mn (als Einkomponentensy-
stem), was der Verbindungsline zwischen den mit dem Bezugzeichen 1 und 2 bezeichneten Punkten entspricht.

[0034] Eine weitere vorteilhafte Kombination ist die Zweierkombination aus Sr₄Al₁₄O₂₅:Eu, Bezugsziffer 6, und
BaMgAl₁₀O₁₇:Mn, Bezugsziffer 2.

[0035] Erfindungsgemäß hat sich jedoch der als schraffierte Dreieck markierte Bereich der Normgrünfläche als der
50 Bereich mit dem besten visuellen Nutzeffekt herausgestellt. Dies ergibt sich nicht einfach aus dem bereits erwähnten
Kriterium der Entfernung zu dem 550 nm-Punkt auf dem Spektralzug, das nur für Einzelemissionen gilt. Jedoch hat sich
bei wiederholten Computersimulationen der schraffierte eingezeichnete Bereich auch hinsichtlich des visuellen Nutze-
fekts der Leuchtstoffmischungen als günstig herausgestellt. Dieser Bereich läßt sich am besten mit einer erfindungs-
gemäßigen Dreierkombination aus Sr₄Al₁₄O₂₅:Eu (6), BaMgAl₁₀O₁₇:Mn (2) und LaPO₄:Ce,Tb (3) treffen. Dabei ist
55 insbesondere zu berücksichtigen, daß eine Zweierkombination aus Sr₄Al₁₄O₂₅:Eu (6) und LaPO₄:Ce,Tb (3) vor allem
bei in der bevorzugten rechten Spitze des schraffierten Dreiecks liegenden Farbörtern zu nahe an der nach rechts
unten im Diagramm weisenden Grenze der DIN-Norm liegt.

[0036] Das Ausführungsbeispiel für Signalgrün einer DIN-gerechten Verkehrsampel betrifft daher, in Gewichtspro-

zent, die Mischung 50% $\text{Sr}_4\text{Al}_{14}\text{O}_{25}:\text{Eu}$, 45% $\text{LaPO}_4:\text{Ce}, \text{Tb}$ sowie 5% $\text{BaMgAl}_{10}\text{O}_{17}:\text{Mn}$. Daraus ergibt sich der mit dem Bezugszeichen 10 ($x=0,284$, $y=0,520$) bezeichnete Farbort.

[0037] Die hier am Beispiel der deutschen DIN-Norm veranschaulichte Mischung einer normgerechten grünen Leuchtstoffmischung ist analog auch bei anderen Normen für Signalgrün durchzuführen.

[0038] In der Nähe des Spektralfarbenzugs bei relativ großen x-Werten in Fig. 1 ist mit dem Bezugszeichen 7 der Leuchstoff $(\text{Y,Gd})\text{BO}_3:\text{Eu}$ eingezeichnet. Seine Lage ergibt sich deutlicher aus Fig. 2, in der zusätzlich einige Normen für Signalgelb und Signalrot dargestellt sind.

[0039] Zunächst stellt der größere, nicht schraffierte Bereich im linken oberen Teil von Fig. 2 die Norm für das Signalgelb einer Verkehrsampel nach DIN 6163,5 dar. Erfindungsgemäß wird dieses Signalgelb realisiert durch eine Leuchtstoffmischung aus $(\text{Y,Gd})\text{BO}_3:\text{Eu}$, Bezugszeichen 7, $\text{Zn}_2\text{SiO}_4:\text{Mn}$, Bezugszeichen 4, und $\text{LaPO}_4:\text{Ce}, \text{Tb}$, Bezugszeichen 3. Dabei wird im vorliegenden Fall der Leuchstoff $\text{Zn}_2\text{SiO}_4:\text{Mn}$ (4) dazu verwendet, den Farbort der $(\text{Y,Gd})\text{BO}_3:\text{Eu}$ - $\text{LaPO}_4:\text{Ce}, \text{Tb}$ - Mischung (7,3) näher an den Spektralfarbenzug zu schieben, weil $\text{Zn}_2\text{SiO}_4:\text{Mn}$ (4), wie Fig. 1 zeigt, etwas näher am Spektralfarbenzug liegt. Dabei wird allerdings möglichst wenig $\text{Zn}_2\text{SiO}_4:\text{Mn}$ zugegeben. Bei diesem Ausführungsbeispiel wird eine Zusammensetzung von 58% $(\text{Y,Gd})\text{BO}_3:\text{Eu}$ und 42% $\text{LaPO}_4:\text{Ce}, \text{Tb}$ und kein $\text{Zn}_2\text{SiO}_4:\text{Mn}$ verwendet (jeweils Gewichtsprozent). Der Farbort dieses Beispiels trägt das Bezugszeichen 14.

[0040] Es ist je nach genauem Verlauf der zu erfüllenden Norm und je nach den zu berücksichtigenden Fertigungstoleranzen bzw. Farbortschwankungen in der Produktion möglich und dann auch bevorzugt, mit einer Zweikomponentenmischung nur aus $(\text{Y,Gd})\text{BO}_3:\text{Eu}$ und $\text{LaPO}_4:\text{Ce}, \text{Tb}$ zu arbeiten. Die zweite eingezeichnete und schraffierte Normfläche innerhalb der eben behandelten DIN-Normfläche betrifft die europäische Norm ECE-R6 für gelbe Kraftfahrzeuglampen, also Richtungsanzeiger. Diese Norm kann erfüllt werden durch die beschriebene gelbe Leuchtstoffmischung in Verbindung mit einem zusätzlichen Filter, das Wellenlängen etwa unter 500 nm sperrt (und zwar einem Schrumpfschlauch, Farbe 93046, Firma Rehau AG und Co., 95104 Rehau). Dabei wird der mit 11 bezeichnete Farbort realisiert.

[0041] Schließlich zeigt die rechte untere Ecke in Fig. 2 zwei Normen für Signalrot. Die nicht-schraffierte Fläche mit dem mit 12 bezeichneten Farbort in der rechten oberen Ecke entspricht der DIN 6163,5 für Ampelrot. Eine VUV-Leuchtstofflampe mit einem Farbort in dieser Norm wird nach der Erfindung realisiert durch den Leuchstoff $(\text{Y,Gd})\text{BO}_3:\text{Eu}$, mit 7 bezeichnet, in Verbindung mit einem geeigneten Filter.

[0042] Hier wie auch im zuvor beschriebenen Fall des Kraftfahrzeuggelbs kommt es bei den Filtern neben den optischen Eigenschaften auch auf eine gewisse Beständigkeit gegen Stöße, Kratzer, Temperaturen bis etwa 100°C und UV-Strahlung an. Zusammen mit einer etwa 595 nm angestrebten Abschneidekante des Filters haben sich dabei für den Fall des Ampelrots im Beispiel ein Filter aus Plexiglasformmasse in 3 mm Wandstärke (Einfärbung Nr. 33700) der Röhm GmbH in Darmstadt, ein Polyester-Farbeffektfilter Nr. 182 von Lee Filters aus Andover, Hampshire, England, deutscher Vertrieb Kobold, Wolfratshausen oder auch eine Spinnwebstreuscheibe (Typ „Niedervolt“) der DESAG in 31073 Grünplan als geeignet erwiesen. Das letztgenannte Filter ist eine konventionelle rote Ampelstreuscheibe für Niedervolttechnik.

[0043] Im Falle der zweiten, schraffiert gezeichneten europäischen Norm ECE-R7 für Kraftfahrzeugrot (d.h. Bremslichter und Rückleuchten) muß etwas weniger gefiltert werden, so daß die Gesamtausbeute steigt. Dies liegt daran, daß die in Fig. 2 rechte obere Ecke dieses genormten Bereiches näher am Farbort des Leuchstoffs $(\text{Y,Gd})\text{BO}_3:\text{Eu}$ (7) liegt. Der eingezeichnete Farbort mit dem Bezugszeichen 13 entspricht dabei der Verwendung eines Farbeffektfilters Nr. 164 von Lee Filters.

[0044] Bezuglich des konkreten technischen Aufbaus einer VUV-Leuchtstofflampe zur Verwendung der soeben beschriebenen Leuchtstoffmischungen wird nochmals verwiesen auf die Parallelanmeldung ..., in der eine Xe-Excimerlampe insbesondere für eine Verkehrsampel dargestellt ist. Die Offenbarung dieser Anmeldung ist hierdurch in Bezugnahme ausdrücklich mit eingeschlossen. Es ist klar, daß in analoger Weise verschiedene Signallampenformen realisiert werden können, z.B. Kraftfahrzeuglampen oder Leuchten für Verkehrsschilder, wobei je nach Anwendung auch andere als die vorstehend beschriebenen Normen und Farbörter relevant sein können.

Patentansprüche

- 50 1. Signallampe als Gasentladungslampe mit einer Leuchtstoffanregung im VUV-Bereich bei einer Wellenlänge unter 200 nm.
2. Signallampe nach Anspruch 1 als dielektrisch behinderte Gasentladungslampe, insbesondere als Xe-Excimerlampe.
- 55 3. Verwendung einer Leuchtstoffmischung aus zumindest
 - $\text{Sr}_4\text{Al}_{14}\text{O}_{25}:\text{Eu}$

zur Herstellung einer grünen Signallampe nach Anspruch 1 oder 2.

4. Verwendung einer Leuchtstoffmischung aus zumindest

5 - erstens $\text{BaMgAl}_{10}\text{O}_{17}:\text{Mn}$ und/oder $\text{Zn}_2\text{SiO}_4:\text{Mn}$ und
- zweitens $\text{Sr}_4\text{Al}_{14}\text{O}_{25}:\text{Eu}$ und/oder $\text{BaMgAl}_{10}\text{O}_{17}:\text{Eu}$

zur Herstellung einer grünen Signallampe nach Anspruch 1 oder 2.

10 **5. Verwendung einer Leuchtstoffmischung nach Anspruch 3 oder 4, wobei die Leuchtstoffmischung zusätzlich**

- $\text{LaPO}_4:\text{Ce,Tb}$ und/oder $\text{Y}_3\text{Al}_5\text{O}_{12}:\text{Ce}$

15 **enthält.**

6. Verwendung einer Leuchtstoffmischung nach Anspruch 3 oder 4, wobei die Leuchtstoffmischung

- $\text{LaPO}_4:\text{Ce,Tb}$,

20 - aber kein $\text{Y}_3\text{Al}_5\text{O}_{12}:\text{Ce}$

enthält.

25 **7. Verwendung einer Leuchtstoffmischung nach einem der Ansprüche 3 bis 6, wobei die Leuchtstoffmischung**

- $\text{BaMgAl}_{10}\text{O}_{17}:\text{Mn}$,

- aber kein $\text{Zn}_2\text{SiO}_4:\text{Mn}$

30 **enthält.**

8. Verwendung einer Leuchtstoffmischung nach einem der Ansprüche 3 bis 7, wobei die Leuchtstoffmischung

35 - doppelt aktiviertes $\text{BaMgAl}_{10}\text{O}_{17}:\text{Eu,Mn}$

enthält.

9. Verwendung einer Leuchtstoffmischung nach einem der Ansprüche 3 bis 8, wobei die Leuchtstoffmischung

40 - $\text{Sr}_4\text{Al}_{14}\text{O}_{25}:\text{Eu}$,

- aber kein $\text{BaMgAl}_{10}\text{O}_{17}:\text{Eu}$

45 **enthält.**

10. Verwendung einer Leuchtstoffmischung aus zumindest

50 - erstens $(\text{Y,Gd})\text{BO}_3:\text{Eu}$ und

- zweitens $\text{Zn}_2\text{SiO}_4:\text{Mn}$ und/oder $\text{LaPO}_4:\text{Ce,Tb}$

zur Herstellung einer gelben Signallampe nach Anspruch 1 oder 2.

55 **11. Verwendung einer Leuchtstoffmischung nach Anspruch 10, wobei die Leuchtstoffmischung**

- $\text{LaPO}_4:\text{Ce,Tb}$,

- aber kein $Zn_2SiO_4:Mn$

enthält.

5 **12.** Verwendung einer Leuchtstoffmischung aus zumindest

- $(Y,Gd)BO_3:Eu$

zur Herstellung einer roten Signallampe nach Anspruch 1 oder 2.

10 **13.** Verwendung einer Leuchtstoffmischung nach Anspruch 12, wobei zur Herstellung eines normierten Signalrots zusätzlich ein Filter verwendet wird.

15 **14.** Verwendung einer Signallampe nach Anspruch 1 oder 2, insbesondere in Verbindung mit einer Verwendung einer Leuchtstoffmischung nach einem der Ansprüche 3 bis 13, zur Herstellung eines Verkehrsschilds oder Verkehrssignals.

20 **15.** Verwendung nach Anspruch 14 zur Herstellung einer Verkehrsampel.

25 **16.** Verwendung nach Anspruch 14 zur Herstellung einer Kraftfahrzeugsignallampe.

30

35

40

45

50

55

Europäisches
Patentamt

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 97 12 2800

EINSCHLÄGIGE DOKUMENTE					
Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Betreift Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.Cl.6)		
X	US 4 085 351 A (K.TAKAHASHI & AL) 18.April 1978 * Ansprüche 1-9 * ---	1,2,4,7	H01J61/44 C09K11/80 C09K11/81 C09K11/78 C09K11/59 C09K11/64		
X	EP 0 331 738 A (MITSUBISHI) 13.September 1989 * Seite 4, Zeile 9-32; Ansprüche 1-4 * ---	1,2			
X	PATENT ABSTRACTS OF JAPAN vol. 097, no. 003, 31.März 1997 & JP 08 306341 A (MATSHITA ELECTRIC WORKS LTD), 22.November 1996, * Zusammenfassung * ---	1,2			
X	DATABASE WPI Section Ch, Week 8019 Derwent Publications Ltd., London, GB; Class L03, AN 80-33656C XP002064946 & JP 55 043 101 A (KASEI OPTONIX LTD) , 26.März 1980 * Zusammenfassung * ---	1,2			
X	WO 97 26312 A (RHONE-POULENC) 24.Juli 1997 * Seite 6, Zeile 37 - Seite 7, Zeile 3; Ansprüche 15-24; Beispiel 5 * ---	1,12	H01J C09K		
X	PATENT ABSTRACTS OF JAPAN vol. 002, no. 034 (C-005), 8.März 1978 & JP 52 133092 A (DAINIPPON TORYO CO LTD; OTHERS: 01), 8.November 1977, * Zusammenfassung * ---	1,12			
A	EP 0 393 754 A (PHILIPS') 24.Oktober 1990 * das ganze Dokument * ---	1,3,4,9			
A	EP 0 286 180 A (PHILIPS') 12.Oktober 1988 * Ansprüche 1-4 * -----	1,3,9			
Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt					
Recherchenort	Abschlußdatum der Recherche	Prüfer			
DEN HAAG	19.Mai 1998	Drouot, M-C			
KATEGORIE DER GENANNTEN DOKUMENTE					
X : von besonderer Bedeutung allein betrachtet Y : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie A : technologischer Hintergrund O : nichtschriftliche Offenbarung P : Zwischenliteratur					
T : der Erfindung zugrunde liegende Theorien oder Grundsätze E : älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D : In der Anmeldung angeführtes Dokument L : aus anderen Gründen angeführtes Dokument & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument					