AMENDMENTS TO THE CLAIMS

Please amend the claims as follows:

1. (Amended) A compound comprising at least one moiety of the formula

wherein L_1 and L_2 are each a hydrocarbon group of from 1 to 6 carbons or a direct bond, and $Aryl_1$ and $Aryl_2$ are aryl, wherein each of $Aryl_1$ and $Aryl_2$ are substituted by at least one lipophilic group, wherein $Aryl_2$ is substituted with at least one lipophilic group selected from the group consisting of:

-Y-C₁-C₆ alkyl-NR₇R₈

wherein

Y is selected from the group consisting of -CH₂-, -O-, -N(H), -S-, SO₂-, -CON(H)-, -

<u>NHC(O)-, -NHCON(H)-, -NHSO₂-, -SO₂N(H)-, -C(O)-O-, -NHSO₂NH-, -O-CO-,</u>

wherein R₁₈ and R₁₉ are independently selected from the group consisting of aryl, C₁-

C₆ alkyl, C₁-C₆ alkylaryl, C₁-C₆ alkoxy, and C₁-C₆ alkoxyaryl; and

 R_7 and R_8 are independently selected from the group consisting of hydrogen, aryl, C_1 - C_6 alkylaryl; and wherein

Express Mail Cert. No. 367 776 236 US Response to Office Action App. Serial No. 10/611,741 Page 3 of 20

 R_7 and R_8 may be taken together to form a ring having the formula $-(CH_2)_m$ -X- $-(CH_2)_n$ -bonded to the nitrogen atom to which R_7 and R_8 are attached, wherein m and n are, independently, 1, 2, 3, or 4; X is selected from the group consisting of $-CH_2$ -, -O-, -S-, -S(O_2)-, -C(O)-, -C(O)-, -NHC(O)-, -NHC(O)-, -NHC(O)-, -NHC(O)-, -NHC(O)-, -NHSO $_2$ NH-,

wherein R_9 and R_{10} are independently selected from the group consisting of hydrogen, aryl, C_1 - C_6 alkyl, and C_1 - C_6 alkylaryl; and wherein the compound has a molecular weight of less than 1000.

2. (Amended) The compound of Claim 1, wherein at least one of $Aryl_1$ and $Aryl_2$ is substituted with a the lipophilic group is selected from the group consisting of C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkylaryl, or-and C_1 - C_6 alkoxyaryl.

Claims 3-10 (Canceled).

11. (Original) A pharmaceutical composition comprising a compound of claim 1 together with one or more pharmaceutically acceptable carriers or diluents.

- 12. (Original) The pharmaceutical composition of to claim 11, in the form of an oral dosage or parenteral dosage unit.
- 13. (Original) The pharmaceutical composition of claim 11, wherein said compound is administered as a dose in a range from about 0.01 to 500 mg/kg of body weight per day.
- 14. (Original) The pharmaceutical composition of claim 11, wherein said compound is administered as a dose in a range from about 0.1 to 200 mg/kg of body weight per day.
- 15. (Original) The pharmaceutical composition of claim 11, wherein said compound is administered as a dose in a range from about 0.1 to 100 mg/kg of body weight per day.

Claims 16-28 (Canceled).

29. (Original) A method for the inhibition of the interaction of RAGE with its physiological ligands, which comprises administering to a subject in need thereof, at least one compound comprising at least one moiety of the formula

wherein L_1 and L_2 are each a hydrocarbon group of from 1 to 6 carbons or a direct bond, and $Aryl_1$ and $Aryl_2$ are aryl, wherein each of $Aryl_1$ and $Aryl_2$ are substituted by at least one lipophilic group.

- 30. (Original) The method of claim 29, wherein the ligand(s) is(are) selected from advanced glycated end products (AGEs), S100/calgranulin/EN-RAGE, β-amyloid and amphoterin.
 - 31. (Canceled).
- 32. (Original) A method for treating a disease state selected from the group consisting of acute and chronic inflammation, vascular permeability, nephropathy, atherosclerosis, retinopathy, Alzheimer's disease, erectile dysfunction, and tumor invasion and/or metastasis, which comprises administering to a subject in need thereof a therapeutically effective amount of at least one compound comprising at least one moiety of the formula

$$Aryl_{1} \downarrow O$$

$$| 1 \mid | | Aryl_{2}$$

$$| -N - CH - C - N - L_{2}$$

wherein L_1 and L_2 are each a hydrocarbon group of from 1 to 6 carbons, or a direct bond, and $Aryl_1$ and $Aryl_2$ are aryl, wherein each of $Aryl_1$ and $Aryl_2$ are substituted by at least one lipophilic group.

33. (Original) The method of claim 32, further comprising administering to a subject in need thereof at least one adjuvant and/or additional therapeutic agent(s).

Claims 34-43 (Canceled).

44. (Original) A process for preparing a compound of the Formula (II)

Express Mail Cert. No. 367 776 236 US Response to Office Action App. Serial No. 10/611,741 Page 6 of 20

$$H_2N$$
 R_3
 R_4
 O
 O

which comprises the steps:

(a) reacting a compound of the formula

with an amine of the formula R_4 - NH_2 , in the presence of a coupling reagent to form a compound of the formula

followed by removal of the protecting group PG,

wherein R₃ is selected from

a) -C₁₋₆ alkyl;

- b) -aryl; and
- c) -C₁₋₆ alkylaryl;

R₄ is selected from

- a) -C₁₋₆ alkylaryl;
- b) -C₁₋₆ alkoxyaryl; and
- c) –aryl;

and wherein

the aryl and/or alkyl group(s) in R₃ and R₄ may be optionally substituted 1-4 times with a substituent group, wherein said substituent group(s) or the term substituted refers to groups selected from the group consisting of:

- a) -H;
- b) $-Y-C_{1-6}$ alkyl;
 - -Y-aryl;
 - -Y-C-₁₋₆ alkylaryl;
 - -Y-C₁₋₆-alkyl-NR₇R₈; and
 - $-Y-C_{1-6}$ -alkyl-W-R₂₀;

wherein Y and W are, independently selected from the group consisting of $-CH_2$ -, -O-, -N(H), -S-, SO_2 -, -CON(H)-, -NHC(O)-, -NHCON(H)-, $-NHSO_2$ -, $-SO_2N(H)$ -, -C(O)-O-, $-NHSO_2NH$ -, -O-CO-,

c) halogen, hydroxyl, cyano, carbamoyl, or carboxyl; and

 R_{18} and R_{19} are selected from the group consisting of aryl, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, and C_1 - C_6 alkoxyaryl;

R₂₀ is selected from the group consisting of aryl, C₁-C₆ alkyl, and C₁-C₆ alkylaryl;

 R_7 and R_8 are selected from the group consisting of hydrogen, aryl, C_1 - C_6 alkyl, and C_1 - C_6 alkylaryl; and wherein

 R_7 and R_8 may be taken together to form a ring having the formula $-(CH_2)_m$ -X- $-(CH_2)_n$ -bonded to the nitrogen atom to which R_7 and R_8 are attached, wherein m and n are, independently, 1, 2, 3, or 4; X is $-CH_2$ -, -O-, -S-, $-S(O_2)$ -, -C(O)-, -CON(H)-, -NHC(O)-, -NHCON(H)-, $-NHSO_2$ -, $-SO_2N(H)$ -, -C(O)-O-, -O--C(O)-, $-NHSO_2NH$ -,

and PG is an amino protecting group.

45. (Original) A process for preparing a compound of Formula (III)

Express Mail Cert. No. 367 776 236 US Response to Office Action App. Serial No. 10/611,741 Page 9 of 20

$$R_2$$
 N
 R_3
 R_4
(III)

which comprises reacting a compound of Formula (II)

$$H_2N$$
 R_3
 R_4

(II)

(A) with an aldehyde or ketone of the formula $R_{12}C(O)R_{11}$ in the presence of a reducing agent, wherein R_{12} and R_{11} are independently selected from

- a) -H;
- b) $-C_{1-6}$ alkyl;
- c) -aryl;
- d) -C₁₋₆ alkylaryl;
- e) $-C(O)-O-C_{1-6}$ alkyl;
- f) $-C(O)-O-C_{1-6}$ alkylaryl;
- g) -C(O)-NH- C_{1-6} alkyl;
- h) $-C(O)-NH-C_{1-6}$ alkylaryl;
- i) -SO₂-C₁₋₆ alkyl;
- j) -SO₂-C₁₋₆ alkylaryl;
- k) -SO₂-aryl;
- l) -SO₂-NH-C₁₋₆ alkyl;

Express Mail Cert. No. 367 776 236 US Response to Office Action App. Serial No. 10/611,741 Page 10 of 20

n)

$$NR_5$$
 NHR_6 ;
o) -C(O)-C₁₋₆ alkyl; and
p) -C(O)-C₁₋₆ alkylaryl;

and wherein

the aryl and/or alkyl group(s) in R_1 and R_2 may be optionally substituted 1-4 times with a substituent group, wherein said substituent group(s) or the term substituted refers to groups selected from the group consisting of:

b)
$$-Y-C_{1-6}$$
 alkyl;
$$-Y-aryl;$$

$$-Y-C_{1-6}$$
 alkylaryl;
$$-Y-C_{1-6}-alkyl-NR_7R_8; and$$

$$-Y-C_{1-6}-alkyl-W-R_{20};$$

wherein Y and W are, independently selected from the group consisting of $-CH_2$ -, -O-, -N(H), -S-, SO_2 -, -CON(H)-, -NHC(O)-, -NHCON(H)-, $-NHSO_2$ -, $-SO_2N(H)$ -, -C(O)-O-, $-NHSO_2NH$ -, -O-CO-,

Express Mail Cert. No. 367 776 236 US Response to Office Action App. Serial No. 10/611,741 Page 11 of 20

$$R_{18}$$
 R_{18} R_{18} R_{18} R_{18} R_{19} and R_{19}

and

c) halogen, hydroxyl, cyano, carbamoyl, or carboxyl; and

R₇ and R₈ are selected from the group consisting of hydrogen, aryl, C₁-C₆ alkyl, and C₁-C₆ alkylaryl;

 R_{18} and R_{19} are selected from the group consisting of aryl, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, and C_1 - C_6 alkoxyaryl;

 R_{20} is selected from the group consisting of aryl, C_1 - C_6 alkyl, and C_1 - C_6 alkylaryl; and wherein

 R_7 and R_8 may be taken together to form a ring having the formula - $(CH_2)_m$ -X- $(CH_2)_n$ -bonded to the nitrogen atom to which R_7 and R_8 are attached, and/or R_5 and R_6 may, independently, be taken together to form a ring having the formula - $(CH_2)_m$ -X- $(CH_2)_n$ -bonded to the nitrogen atoms to which R_5 and R_6 are attached, wherein m and n are, independently, 1, 2, 3, or 4; X is $-CH_2$ -, -O-, -S-, $-S(O_2)$ -, -C(O)-, -CON(H)-, -NHC(O)-, -NHC(O)-, -NHC(O)-, $-NHSO_2$ -, $-SO_2N(H)$ -, -C(O)-O-, -O-C(O)-, $-NHSO_2NH$ -,

or

- (B) with a tertiary amine base and an alkylating agent of the formula R_2 -Z, wherein Z is a nucleofugal group, and R_2 is as defined above for R_{12} or R_{11} .
 - 46. (Original) A process for preparing a compound of Formula (IV)

$$\begin{array}{c|c}
R3 & H \\
HN & R4 \\
O=S=O & O \\
R_{14} & (IV)
\end{array}$$

which comprises either

(a) treating a compound of the formula

$$H_2N$$
 R_3
 R_2

with a compound of the formula $R_{14}SO_2Cl$, wherein R_{14} is C_{1-6} alkyl, C_{1-6} alkylaryl, or aryl, or

(b) treating an amine compound of the formula R_{15} -NH₂ with sulfuryl chloride, to afford an intermediate which is then contacted with a compound of the formula

$$PG - N \longrightarrow R_4$$

wherein R₃, R₄, and PG are as defined in claim 44.

47. (Original) A process for preparing a compound of Formula (V)

$$O = \begin{pmatrix} R_3 & H \\ N & R_4 \end{pmatrix}$$

$$O = \begin{pmatrix} Q & \\ Q & \\ R_{15} & \\ (V) & \end{pmatrix}$$

which comprises contacting a compound of Formula (II)

$$H_2N$$
 R_3
 R_4
 (II)

wherein R_3 and R_4 are as defined in claim 44,

with a compound of the formula $R_{15}NCO$, optionally in the presence of a tertiary amine, wherein R_{15} is $-C_{1-6}$ alkyl or $-C_{1-6}$ alkylaryl and Q is -NH-.

48. (Original) A process for preparing a compound of Formula (V)

$$O = \begin{pmatrix} R_3 & H \\ N \\ N \\ R_4 \end{pmatrix}$$

$$O = \begin{pmatrix} Q & \\ Q & \\ R_{15} & \\ (V) & \\ \end{pmatrix}$$

which comprises contacting a compound of Formula (II)

$$H_2N$$
 R_3
 R_4
 O
 R_4

as defined in claim 47,

with a compound of the formula $R_{15}O$ -C(O)Cl and a tertiary amine base, wherein R_{14} is $-C_{1-6}$ alkylaryl and Q is -O-.

49. (Original) A process for preparing a compound of Formula (VI)

$$H_2N$$
 OR
 (VI)

which comprises contacting a compound of the formula

with triphenylphosphine and either (a) diisopropyl azodicarboxylate or diethy azodicarboxylate and an alcohol of the formula $R_{16}OH$, followed by treatment with a strong base or strong acid, depending upon the identity of PG;

wherein PG is a urethane-type blocking group; and $R_{16} \text{ is } C_{1\text{-}6} \text{ alkyl}, -C_{1\text{-}6} \text{ alkyl-Si}(C_{1\text{-}6} \text{ alkyl})_3, -C_{1\text{-}6} \text{ alkyl-OSi}(C_{1\text{-}6} \text{ alkylaryl})_3, \text{ or } C_{1\text{-}6} \text{ alkyl-OSi}(C_{1\text{-}6} \text{ alkylaryl})_3, \text{ or } C_{1\text{-}6} \text{ alkyl-OSi}(C_{1\text{-}6} \text{ alkylaryl})_3, \text{ or } C_{1\text{-}6} \text{ alkylaryl})_3, \text{ or } C_{1\text{-}6} \text{ alkyl-OSi}(C_{1\text{-}6} \text{ alkylaryl})_3, \text{ or } C_{1\text{-}6} \text{ alkylaryl})_3, \text$

 $-C_{1-6}$ alkyl-NR₇R₈, provided that neither of R₇ and R₈ are hydrogen.

50. (Original) A process for preparing a compound of Formula (VII)

$$\begin{array}{c|c}
O & R_3 & H \\
N & N \\
N & R_4
\end{array}$$
(VII)

which comprises contacting a compound of the formula

$$H_2N$$
 R_3
 R_4

with either

- (a) a compound of the formula $(R_{17}-CO)_2O$, in the presence of a tertiary amine;
- (b) a compound of the formula R₁₇-C(O)Cl, in the presence of a tertiary amine; or
- (c) a compound of the formula R_{17} -C(O)OH and a coupling reagent. wherein R_{17} is C_{1-6} alkyl or C_{1-6} alkylaryl; and R_3 and R_4 are as defined in claim 44.
 - 51. (Original) A process for preparing a compound of Formula (VIII)

wherein R_3 and R_4 are as defined in claim 43, and R_5 and R_6 are independently selected from the group consisting of hydrogen, C_1 - C_6 alkyl, C_1 - C_6 alkylaryl, and aryl; and/or R_5 and R_6 may, independently, be taken together to form a ring having the formula - $(CH_2)_m$ -X- $(CH_2)_n$ -bonded to the nitrogen atoms to which R_5 and R_6 are attached, wherein m and n are, independently, 1, 2, 3, or 4; X is selected from the group consisting of $-CH_2$ -, -O-, -S-, -

Express Mail Cert. No. 367 776 236 US Response to Office Action App. Serial No. 10/611,741 Page 17 of 20

$$S(O_2)$$
-, $-C(O)$ -, $-CON(H)$ -, $-NHC(O)$ -, $-NHCON(H)$ -, $-NHSO_2$ -, $-SO_2N(H)$ -, $-C(O)$ -O-, $-O$ - $-C(O)$ -, $-NHSO_2NH$ -,

which comprises contacting a compound of the formula

$$H_2N$$
 R_3
 R_4

with an activated amidine reagent of the formula

in the presence of a tertiary amine, followed by treatment with a strong acid, wherein BOC represents tert-butoxycarbonyl-.