

planetmath.org

Math for the people, by the people.

Hensel's lemma

Canonical name HenselsLemma

Date of creation 2013-03-22 15:08:30 Last modified on 2013-03-22 15:08:30

Owner alozano (2414) Last modified by alozano (2414)

Numerical id 5

Author alozano (2414)

Entry type Theorem
Classification msc 13H99
Classification msc 12J99
Classification msc 11S99

The following results are used to show the existence of a solution to polynomial equations over local fields. Notice the similarities with Newton's method.

Theorem (Hensel's Lemma). Let K be a http://planetmath.org/LocalFieldlocal field, complete with respect to a valuation $|\cdot|$. Let \mathcal{O}_K be the ring of integers in K (i.e. the set of elements of K with $|k| \leq 1$). Let f(x) be a polynomial with coefficients in \mathcal{O}_K and suppose there exist $\alpha_0 \in \mathcal{O}_K$ such that

$$|f(\alpha_0)| < |f'(\alpha_0)^2|.$$

Then there exist a root $\alpha \in K$ of f(x). Moreover, the sequence:

$$\alpha_{i+1} = \alpha_i - \frac{f(\alpha_i)}{f'(\alpha_i)}$$

converges to α . Furthermore:

$$|\alpha - \alpha_0| \le \left| \frac{f(\alpha_i)}{f'(\alpha_i)} \right| < 1.$$

Corollary (Trivial case of Hensel's lemma). Let K be a number field and let \mathfrak{p} be a prime ideal in the ring of integers \mathcal{O}_K . Let $K_{\mathfrak{p}}$ be the completion of K at the finite place \mathfrak{p} and let $\mathcal{O}_{\mathfrak{p}}$ be the ring of integers in $K_{\mathfrak{p}}$. Let f(x) be a polynomial with coefficients in $\mathcal{O}_{\mathfrak{p}}$ and suppose there exist $\alpha_0 \in \mathcal{O}_{\mathfrak{p}}$ such that

$$f(\alpha_0) \equiv 0 \mod \mathfrak{p}, \quad f'(\alpha_0) \neq 0 \mod \mathfrak{p}.$$

Then there exist a root $\alpha \in K_{\mathfrak{p}}$ of f(x), i.e. $f(\alpha) = 0$.