

P V ν ν

 \mathcal{V}

ν _P ν

 $\mathcal{P}\mathcal{V}$ \mathcal{V}

 \mathcal{VP} \mathcal{P}

 ${\cal V} \ {\cal P}\,50\%$

$$\mathcal{L} \in \textit{NP}$$

$$\mathcal{M}$$

PV

 $\langle \mathcal{P}(,),\mathcal{V}()\rangle \mathcal{P}\,\mathcal{V}\,\mathcal{P}$ $_{\mathcal{V}}\langle\mathcal{P}(,),\mathcal{V}()\rangle\mathcal{V}$

 $\in \mathcal{L} \Leftrightarrow \exists \in \{0,1\}^{(||)} : (,) = 1$

 $=\langle,\,:\langle\rangle=\mathbb{Z}^*,\,\in\mathbb{Z}^*\rangle$

$$\mathcal{L}\langle\mathcal{P}(,),\mathcal{V}()
angle$$

 $\in \mathcal{L}(,)=1$

 $[v\langle \mathcal{P}(,), \mathcal{V}()\rangle()=1]=1$

$$\mathcal{PP}^*\mathcal{V} \notin \mathcal{L} \forall (\mathcal{P}^*, ^*)$$

 \mathcal{P}^* $\mathcal{P}^*\mathcal{EV}$ $[_{\mathcal{V}}\langle\mathcal{P}^*(,^*),\mathcal{V}()\rangle()=1]=(\lambda)$

VPVP

 \mathcal{S} \mathcal{P}

$$\mathcal{V}^*\mathcal{S} \in \mathcal{L}(,) = 1$$

 \mathcal{P} \mathcal{V} $\langle \mathcal{S} \mathcal{V} \rangle \langle \mathcal{P} \mathcal{V} \rangle$

VS

ν _{PS} _S _{VPS} \mathcal{SP}^*

 \mathcal{P}^*

 \mathcal{V}^*

 \mathcal{S}

 \mathcal{V}

$$\mathcal{P}_1, \mathcal{P}_2$$

 $\mathcal{P}_{1}\mathcal{P}_{2}\mathcal{P}_{1}$

```
\begin{array}{c} \exists \mathcal{S} \forall \mathcal{V}^* \\ \mathcal{V}^* \langle \mathcal{P}(,), \mathcal{V}^*() \rangle ()_{\mathcal{V}^*} \langle \mathcal{S}^{\mathcal{V}^*}(), \mathcal{V}^*() \rangle () \\ \mathcal{S} \\ \mathcal{V} \\ \mathcal{V} \end{array}
```


 $\Delta(,) = \frac{1}{2} \sum_{\in} |_{[} =] - [=]| = (\lambda)$

 \mathcal{V}

J.

 $\mathcal{S}\left\langle \mathcal{P}(,),\mathcal{V}()\right\rangle$

 \mathcal{V}

 \mathcal{V} \mathcal{S}

 \mathcal{V}

 \mathcal{VP}

$\mathcal{EP}\,\mathcal{V}$

$$_{0}=(_{0},_{0})_{1}=(_{1},_{1})|_{0}|=|_{1}|$$

 $_0 \cong {}_1\pi: {}_0 \to {}_1(,) \in {}_0 \Leftrightarrow (\pi(),\pi()) \in {}_1$

$$\pi$$

 π

$$\pi$$

 $\mathcal{P} \pi_{11}$ $_1\cong\mathcal{V}$ \mathcal{V}

 $\mathcal{V}\phi()=$

 $=1\phi=\pi_1:_1\to$ $= 0\phi = \pi_1.\pi : _0 \to _0 \cong$

$$\mathcal{P}\,,\mathcal{V}$$

$$P$$
,

 $\mathcal{P} \pi_0 \cong 1$

 $\mathcal{V} \frac{1}{2} \mathcal{P} * \phi_0 \phi_1$

 $= 1 : \phi() = \pi_1(_1) =$

 $= 0 : \phi() = \pi_1.\pi(_0) = \pi_1(_1) =$

$$\mathcal{S}_{'\pi'}$$

$$\begin{aligned}
'\pi' \\
&= \pi'(\iota) \\
&= '\pi' \\
2^- \\
\sum_{i=1}^{\infty} 2^- &=
\end{aligned}$$

$$= (,)$$

$$\mathcal{P} : \to \{1, 2, 3\}$$

$$(,) \in \Rightarrow () \neq ()$$

$$\mathcal{P}\,\pi\{1,2,3\}$$

$$\pi.$$

$$((\pi.)(),)\forall\in\mathcal{V}$$

$$\mathcal{V}\left(,\right)\in\mathcal{P}$$

$$\mathcal{P} \pi.(), \pi.(),$$

 $\mathcal{V} \pi.() \neq \pi.()$

 π . \mathcal{V}

$$\mathcal{P}^*$$

$$\begin{array}{c} \mathcal{V} \frac{1}{||} \\ \mathcal{P}^* 1 - \frac{1}{||} \\ ||^2 \end{array}$$

 \mathcal{P}^*

 $(1 +) \le$

 $(1-\tfrac{1}{||})^{||^2} \leq {}^{-||}$

 $\mathcal{V} \frac{2}{3}$ $\mathcal{V} \frac{1}{3}$ \mathcal{V} $\frac{3/2}{3}$

 $\mathcal{S}\,\mathcal{P}$

PS

 \mathcal{P}

 \mathcal{V} \mathcal{P}

$$\mathbb{Z}^* \in \mathbb{Z}^*$$

 $\mathcal{P} \in \mathbb{Z}^* = \pmod{\mathfrak{I}}$

$$\in \mathbb{Z}$$

 $\{(i): i = i \pmod{n}, i, j \in \mathbb{Z}^*\}$

$$\mathcal{P} \to \mathcal{V}$$

$$\in \mathbb{Z}^*$$

$$= \mod \mathcal{V}$$

$$\mathcal{V} \to \mathcal{P}$$

$$\in \mathbb{Z}^*$$

$$\mathcal{P} \to \mathcal{V}$$

$$\mathcal{P} = + \mod \mathcal{V}$$

$$\mathcal{V}$$

$$= \pmod{0}$$

 $= t^+ = t^- \pmod {t}$

$$\mathcal{P}^{*\frac{1}{2}}$$

$$= ' = ' \Rightarrow ^- = '^{-'} \Rightarrow$$

$$= '^{-'} \Rightarrow - = ' - ' \Rightarrow$$

$$= ' - ' \Rightarrow - = ' - ' \Rightarrow$$

$$\mathcal{SV}$$

$$\mathcal{S} = , \in \mathbb{Z}^*$$
 $\mathcal{V} \in \mathbb{Z}^*$
 \mathcal{S}

$$\mathcal{V}$$

$$\mathcal{S} = ^-, \in \mathbb{Z}^*$$
 $\mathcal{V} \in \mathbb{Z}^*$
 $\mathcal{S} = ^-$

_ _ _ _

 $(\in \mathbb{Z}; ^-, \in \mathbb{Z},)(, \in \mathbb{Z}; , , +)$

S

 \mathcal{S}

 \mathcal{VP} $\{0,1\}$ \mathcal{V} \mathcal{S}

$$1, 2\mathbb{Z}^* 1, 2 \in \mathbb{Z}^*$$

$$\mathcal{P} \in \mathbb{Z}_1 = 1 \mod 2 = 2 \mod 2$$

$$\{(): 1 = 1 \pmod{n} \land 2 = 2 \pmod{n}, 1, 1, 2, 2 \in \mathbb{Z}^*\}$$

$$\mathcal{P} \in \mathbb{Z}$$

$$1 = 1 \mod 2 = 2 \mod 1, 2\mathcal{V}$$

 $\mathcal{V} \in \mathbb{Z}$

$$\mathcal{P} \,=\, + \,\bmod\, \mathcal{V}$$

$$V_1 = {}_{11} \pmod{}_2 = {}_{22} \pmod{}$$

$$_1 = _{12} = _2$$

 $=\frac{-'}{\cdot}$

((1,2),,)((1,2),',')

 $_{1}=_{1}^{+}=_{11}$ $_{2}=_{2}^{+}=_{22}$

 $_{1} = _{111}^{'} = _{11}^{'} \Rightarrow _{11}^{-} = _{11}^{'-'}$ $_{2}=_{222}^{'}=_{22}^{'}\Rightarrow_{22}^{-}=_{22}^{'}$

$$\in \mathbb{Z}$$

 $\in \mathbb{Z}$

 $=_{11} = _{22}$

 $(\in \mathbb{Z}; (1, 2), \in \mathbb{Z}, + \text{ mod })$

 $(, \in \mathbb{Z}; (1, -1, 2, -1),)$

$$(,,) = CP(_1 = ,_2 = ,_1 = ,_2 = =)$$

$$\mathbb{Z}^*(_1,_2)$$

$$({}_1,{}_2)=(,\,\cdot\,)$$

$$_1 = (\frac{2}{-})$$

AND

 \mathcal{P}

 Σ


```
(,,)(,,)
(,,)
EQ
```

OR

```
= \{1, ..., \}
\mathcal{P}
\mathcal{P} \mathcal{S} \mathcal{V}
\mathcal{S}
\mathcal{V}
```

 \mathcal{P}

$$\{(1,2): 1 = \frac{1}{1} \pmod{0} \vee 2 = \frac{2}{2} \pmod{0}\} \mathcal{P}_1$$

V

 \mathcal{P} , \mathcal{V}

 \mathcal{H}

$$\mathbb{Z}^* \in \mathbb{Z}^*$$

 \mathcal{P}

 $\mathcal{P} \in \mathbb{Z}^* = \mod$

$$\in \mathbb{Z}$$

$$= \mod$$

$$= \mathcal{H}(\mathcal{H}\mathbb{Z})$$

$$= + \mod$$

(,,)

 $=\mathcal{H}(^{-})$

$$+ \mod$$

 $() = \{ : (,) = 1 \}$

 $\mathcal{P}\mathcal{V}\in()$

 $\mathcal{V}^* \in ()$ $\mathcal{V}^* \in ()\mathcal{P}$

 \mathcal{V}^*

 \rightarrow

 $\forall \mathcal{V}^{\,*}$

$$\{\langle \mathcal{P}_{n}\left(x),\mathcal{V}_{n}^{*}\left(x)\right)\rangle(x)\}_{n\in\mathbb{N}}, \in\{\langle \mathcal{P}_{n}\left(x'\right),\mathcal{V}_{n}^{*}\left(x)\right)\rangle(x)\}_{n\in\mathbb{N}}\}_{n\in\mathbb{N}}$$

$$\mathbb{G}_1,{}_2\in\mathbb{G}\in\mathbb{G}_1,{}_{21},{}_2\in\mathbb{Z}={}_{12}^{{}_{12}}$$

 $_1,_{221}$

$$\begin{cases} (1,2) : = \frac{12}{12}, \mathbb{G}, , 1, 2, \in \mathbb{G}, \\ \mathcal{P}_{1,2} \leftarrow \mathbb{Z} \\ \leftarrow \frac{12}{12} \end{cases}$$

$$\leftarrow {}^{1\,2}_{1\,2}$$

 $\mathcal{P}_{1,2} \leftarrow \mathbb{Z}$

 $\mathcal{P}_1 = 1 + 12 = 2 + 2$

$$\mathcal{V} \leftarrow \mathbb{Z}$$

1,2 $V_{12}^{\frac{1}{2}} =$

$$= {}^{12}_{12} = {}^{'1'}_{12}$$

$$(,,1,2)_1,2_1,2'_1,2'_1,2'_1,2'_2$$

 $\frac{1-1}{1}\frac{2-2}{2} = -1 = 1$

 $' = {}_{12}^{'1} = {}_{1}^{1+(1-1)} {}_{2}^{1+(2-2)} =$

 $=\frac{12}{121}\frac{(1-1)(2-2)}{2}=$

 $_{1}^{\prime} = _{1} + (_{1} - _{1}^{\prime})$ $_{2}^{\prime} = _{2} + (_{2} - _{2}^{\prime})$

