1. Let $g_n = n\chi_{[0,\frac{1}{n}]}$. Prove that for every x and $\epsilon > 0$ there is an $N \ge 0$ such that $|g_n(x)| < \varepsilon$ for all $n \ge N$. Prove that

$$\int_{[0,1]} g_n \, \mathrm{d}m = 1$$

for all n.

First we look at what happens when N=n=0. Then we have $g_0=0\chi_{[0,\frac{1}{0}]}$. We could just define $g_0=0$ which is fine I guess, but then observe that $g_1=1$ and so we never really want to set N=0 and so we will just say N>0. Notice that $g_n(0)=n$ for all n>0. So clearly, no matter our choice of ε we can find some $n\geq N>\varepsilon$. Let us just be clear and define x>0. So, now that I've changed the problem to what I want it to be, lets restate:

Let $g_n(x) = n\chi_{[0,\frac{1}{n}]}(x)$.

(a) Prove that for every x > 0 and $\varepsilon > 0$ there is an N > 0 such that $|g_n(x)| < \varepsilon$ for all $n \ge N$.

proof

First we observe that for any x>0 we can find N>0 such that $\frac{1}{N} < x$. Of course then for any $n \geq N$ we have $\frac{1}{n} \leq \frac{1}{N} < x$. And because $\frac{1}{n} < x$ then $x \notin [0, \frac{1}{n}]$ and so $g_n(x) = 0 < \varepsilon$ and we are done.

(b) Prove that

$$\int_{[0,1]} g_n \, \mathrm{d}m = 1$$

for all n.

proof

By definition we have that

$$\int_{[0,1]} g_n \, dm = n \cdot m * \left[0, \frac{1}{n}\right] + 0 \cdot m * \left(\frac{1}{n}, 1\right]$$
$$= n \cdot \frac{1}{n} + 0 \cdot \left(1 - \frac{1}{n}\right)$$
$$= 1$$

A little light on words but not so heavy on math either, so may be it's okay. \Box

2. Prove that ψ is simple if and only if $a\psi$ is simple for every $a \in \mathbb{R}$

proof

Let's assume that ψ is simple. Then by definition $\psi = \{\alpha_1, \dots, \alpha_n\}$. We say that $E_i = \psi^{-1}(\{a_i\})$ and then $\psi = \sum_{i=1}^n \alpha_i \chi_{E_i}$. We note that all our E_i 's are disjoint $(E_i \cap E_j = \emptyset \forall i \neq j)$.

Now then
$$a\psi = a \sum_{i=1}^{n} \alpha_i \chi_{E_i} = \sum_{i=1}^{n} a \alpha_i \chi_{E_i}$$
.

Furthermore, because our E_i 's are disjoint, then $a\psi(E_i) = a\alpha_i$. And so $a\psi = \{a\alpha_1, \ldots, a\alpha_n\}$. Which is the definition of simple.

Now if we assume that $a\psi$ is simple, then we have a nearly identical argument. Let $a\psi=\{\alpha_1,\ldots,\alpha_n\}$ and for $E_i=(a\psi)^{-1}(\{a_i\})$ then $a\psi=\sum_{i=1}^n\alpha_i\chi_{E_i}$. Now $\psi=\frac{1}{a}a\psi=\frac{1}{a}\sum_{i=1}^n\alpha_i\chi_{E_i}=\sum_{i=1}^n\frac{1}{a}\alpha_i\chi_{E_i}$. Again we note that our E_i 's are disjoint and so $\psi=\{\frac{1}{a}\alpha_1,\ldots,a\alpha_n\}$. Then ψ fits the definition of simple, and we are done. \square

References

None