上海海栎创微电子有限公司

CST816S 数据手册

高性能自电容触控芯片

Rev: V1.4

www.hynitron.com

概述

CST816S 自电容触控芯片,采用高速 MCU 内核并内嵌 DSP 电路,结合自身的快速自电容感应技术,可广泛支持三角形在内的多种自电容图案,在其上实现单点手势和真实两点操作,实现极高灵敏度和极低待机功耗。

芯片特点

- ◆ 内置快速自电容检测电路及高性能 DSP 模块
 - ◇ 支持在线编程;
 - ◇ 内置看门狗;
 - ◇ 多个按键支持;
 - ◇ 支持待机手势唤醒功能;

◆ 电容屏支持

- ◆ 最多支持 14 个感应通道;
- ◇ 通道悬空/下拉设计支持;
- ◇ 模组参数自动调校;

◆ 性能指标

- ◆ 刷新率 > 100Hz;
- ◇ 单点手势和真实两点操作;
- ◆ 动态模式下典型功耗 < 1.6mA;
- ◆ 待机模式下典型功耗 < 6.0uA;
- ◆ 休眠模式下典型功耗 < 1.0uA;

◆ 通讯接口

- ♦ I2C 主/从通讯接口,速率 10Khz~400Khz 可配置;
- ◆ 兼容 1.8V/3.3V 接口电平。

◆ 电源供电

- ◆ 单电源供电 2.7V~3.6V, 电源纹波 <= 50mv;</p>
- ◆ 封装类型: QFN20 3mm*3mm*0.55mm (pitch 0.4mm);

引脚分布/说明

名称	说明	备注	
S1~S13	感应通道		
VDDA	电源	2.7V~3.6V,接 2.2uF~ 10uF 电容	
CMOD0	稳压电容 接 1nF~5.6nF 稳压电容		
CMOD1/S14	稳压电容/	接 1nF~5.6nF 稳压电容 , 也可做复用	
	复用感应通道	感应通道	
IRQ	中断输出	上升/下降沿可选	
SCL/SDA	I2C	可选内部上拉/开漏模式	
RST	复位输入	低有效	

备注:

- 1. CMOD0 必须接稳压电容,大小在 1nF~5.6nF;
- 2. Pin15 作为 CMOD1 使用时,必须接 1nF~5.6nF 的稳压电容。

功能描述

CST816S 自电容触控芯片,通过其内置的快速自电容感应模块,可无需任何外接器件(电路旁路电容除外),即可在三角形等图案上实现单点手势和真实两点功能;在实现快速反应的同时,具有极其优异的抗噪、防水、低功耗表现。

工作模式

→ 动态模式

当频繁有触摸操作时,处于此模式;在此模式下,触控芯片快速对触摸屏进行自电容扫描,以及时检测触摸并上报给主机。

在没有触摸 2S 后,自动进入待机模式。自动进入待机模式的功能可以通过寄存器进行控制。

▶ 待机模式

在此模式下,触控芯片以较低频率对触摸屏进行扫描,检测到手指触摸后进入动态模式,同时通过IRQ引脚唤醒主机;也可通过复位引脚切换到动态模式。

▶ 休眠模式

当接收到睡眠命令后,处于此模式;在此模式下,触控芯片处于深度睡眠状态,以最大限度节省功耗,可通过复位引脚切换到动态模式。

通道/节点配置

CST816S 自电容触控芯片最多可提供 13 个感应通道,每个通道无需外接器件便可支持自电容扫描。

每通道可支持的自电容大小范围: 1pF~400pF

上电/复位

内置上电复位模块将使芯片保持在复位状态直至电压正常,当电压低于某阈值时,芯片也会被复位; 当外部复位引脚 RSTn 为低时将复位整个芯片,该引脚内置上拉电阻兼 RC 滤波;芯片内置看门狗确保 在异常情况发生时,芯片仍能在规定时间内回到正常工作状态。

低功耗模式

CST816S 触控芯片支持以下低功耗方式:

- ▶ 休眠模式:主机向芯片发送睡眠命令后,芯片会立即进入深睡眠模式以实现最低功耗;通过复位,芯片会唤醒并进入动态工作模式;
- ▶ 待机模式:该模式下,芯片一直处于较低频率,作最低限度扫描以匹配预定义唤醒手势;

12C 通讯

该芯片支持标准的 I2C 通讯协议标准,可实现 10Khz~400Khz 的可配通信速率。 两个 I2C 引脚 SCL 和 SDA,除支持开漏模式外,还支持内部上拉模式,供灵活选择。

中断方式

触控芯片仅在检测到有效触摸,并需要上报给主机时,才会通过 IRQ 引脚通知主机读取有效数据,以提高效率,减轻 CPU 负担;

中断边沿可根据需要配置为上升沿或者下降沿有效;

当在待机模下匹配预定义手势时, IRQ 引脚还用作唤醒主机。

应用设计规范

电源退耦电容

一般在芯片的 VDD 和 VSS 端并接一个 0.1uF 和 10uF 的瓷片电容就可以起到退藕和旁路的作用。 退藕电容应该尽量接近芯片放置,尽量减少电流环路面积。

COMD 滤波电容

滤波电容使用至少 10%精度的 NPO/COG 材质电容 其电容值的选择范围为 1nF 到 5.6nF 之间 ,一般选择 1nF。 具体的最佳值和相应的本体电容有关。COMD 滤波电容必须靠近芯片相应管脚放置 ,与芯片之间的走线越短越好。

防水注意事项

Sensor 及其走线周围不要有大块的实地,对于大面积的地,必须打碎处理。

ESD 注意事项

FPC 的设计会直接影响到 ESD 的效果,在设计时,必须注意以下事项:

- ▶ FPC 尽量使用磁膜进行全屏蔽,同时磁膜必须接地。
- FPC 与 Sensor 的压和位置尽量远离组装的机构缝隙,以减少 ESD 的影响。
- ▶ 电源接入处可以考虑增加 TVS 管到地,以增强抗 ESD 干扰性能。

电磁干扰注意事项

Sensor 走线必须与可能产生干扰的线隔离开,如电源走线、音频线、LCD 驱动线、蓝牙天线、RF 天线等。特别的,TP 采用全贴合设计时,有可能会受到 LCD 的干扰,此时 TP 的参数需要特别调试。

地线

触摸芯片内部的高精度检测线路对于地线比较敏感,如有可能用户应使用星型接地以隔绝其它芯片的噪声。 同时,尽可能地在接地处串入磁珠以增强抗干扰能力。

如星型接地难以实现,用户也需尽量将大电流器件的地与触控芯片地走线分开。

电气特性

环境温度 25 °C , VDDA=3.3V。

参数	最小值	典型值	最大值	単位
工作电压	2. 7	3. 3	3. 6	V
工作温度 -40 +25		+25	+85	°C
存储温度	-60	_	+150	°C
工作湿度	-	-	95	%
电源纹波	_	_	50	mV
工作电流(动态模式)	_	1. 6	-	mA
工作电流 (待机模式)	_	6. 0	7-7	uA
工作电流 (休眠模式)	_	1. 0	-	uA

产品封装

DIM SYMBOL	MIN.	NDM.	MAX.	
Α	0.50	0.55	0.60	
A1	0	0.02	0.05	
A3	_	0.152 REF	-	
b	0,15	0.20	0.25	
D	3.00BSC			
E	3.00BSC			
D2	1.60	1.70	1.80	
E2	1.60	1.70	1.80	
е		0.40BSC		
L	0,25	0.30	0,35	
K	0.20	-		
aaa	0.10			
bbb	0.07			
ccc	0.10			
ddd	0.05			
666	0.08			
fff	0.10			

QFN20 外形尺寸

参考电路

修订历史

版本	修订内容
V1.4	修改Pin15的引脚说明
V1.3	优化算法后,修订功耗数据
V1.2	增加示意电路图
V1.1	增加电气特性等说明
V1.0	初始发行

