

Feature Reduction in Time Series CNC Machine Data

Autonomous Multisensor Systems Group Institute for Intelligent Cooperating Systems Faculty of Computer Science Otto von Guericke University, Magdeburg

Team Members: Debapriya, Shweta, Jayanthee

Supervisor: Hafez

16.09.2025

Contents

- Project Objective
- Dataset Description
- Feature Reduction Workflow, Architecture Selection
- Model Description
 - PCA
 - Autoencoders
 - LSTM+CNN-Autoencoders
- Evaluation
 - Evaluation Workflow
 - Results
- Model Interpretability
 - ☐ Shapely Additive Explanations for Interpretability
 - Interpretability Results
- Conclusion
- Future Enhancement
- References

Why Feature Reduction Matters for CNC Data

Objective: To reduce high-dimensional CNC (Computer Numerical Control) Machine sensor data to a compact feature set to retire redundant sensors and cut computational cost.

Fig 1: CNC Machine Overview [7]

Understanding Data

Dataset

Dataset Description

Size: (42,016, 52)

Data Type: Numerical, Multivariate time-series data

Components: Steel (S)

Features: LOAD|6, ENC_POS|1, DES_POS|1, TORQUE_FFW|1, CTRL_DIFF|2

Targets: CURRENT|6 (Spindle), CURRENT|1 (X), CURRENT|2 (Y), CURRENT|3 (Z)

LOAD 1	LOAD 2	LOAD 3	LOAD 6	ENC_POS 1	ENC_POS 2	ENC_POS 6	CTRL_DIFF2 1	DES_POS 1	TORQUE_FFW 1	CURRENT 6	•••
0.341797	6.47583	0.421143	0	22.200148	284.270207	181.730994	-0.00001	22.200139	0	-0.273438	
0.341797	6.481934	0.415039	0	22.200139	284.270197	181.730994	0	22.200139	0	-0.273438	
0.341797	6.481934	0.415039	0	22.200139	284.270197	181.730994	0	22.200139	0	-0.273438	•••
		•••	•••	•••							•••

Table 1: DMC_S_CP2 Dataset

Reducing High-Dimensional Data to Compressed Meaningful Features

Feature Reduction Workflow

Feature Reduction Workflow

1. Data Scaling and Splitting	2. Data Sequencing	3. Hyperparameter Configuration	4. Model Training	5. Output
StandardScaler	Sliding Windows	Latent_Dim = 25 or 14	Monitor Training Loss	Reduced Features
Training Set = 60%	Important to learn temporal features	Window Size = 60 or	Early Stopping	
Validation Set = 20% Test Set = 20%	Depends on the model	120		

Identifying the Best Architecture for Feature Selection

Architecture Selection

Principal Component Analysis

Linear Variance-maximizing Orthogonal Components

Autoencoder

Non-Linear Neural Encoder-Decoder Network

LSTM+CNN Autoencoder

Hybrid Temporal-Spatial Encoder-Decoder Network

PCA for Feature Reduction

Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

1. Simple and fast

2. Deals with multicollinearity

3. Strong Compression

4. Interpretable

5. Reproducible

PCA Architecture

Hyperparameter	Value
Scaler	StandardScaler
Variance	0.98

Mean Centering: $X_{centered} = X - \bar{X}$

Covariance Matrix: $\Sigma = \frac{1}{n-1} (X_{centered})^T X_{centered}$

Eigen Decomposition: $\Sigma v = \lambda v$

Projection: $Z = X_{centered}W$

Symbol	Description
X	Input data matrix
Σ	Covariance matrix
v, λ	Eigenvectors and eigenvalues
W	Projection matrix (top k eigenvectors)
Z	Projected data

Fig 2: PCA Architecture and Hyperparameters

Autoencoders for Feature Reduction

Autoencoder

Autoencoder for Feature Reduction

1. Non-Linear Machine dynamics

2. Task relevant compression

3. Time awareness

4. Denoising

5. Flexible

Autoencoder Architecture

Hyperparameters	Value
Scaling	StandardScaler()
Window Size	60
Latent Dim Size	25
Encoder Layers	2 Layers; ReLu Dropout = 0.2
Decoder Layers	2 Layers; ReLu Linear as Output layer Dropout = 0.2
Optimizer	Adam
Learning Rate	0.001
Training Strategy	Early Stopping; Patience = 10
Batch_size	64

Fig 3: Autoencoder Architecture and Hyperparameters [2]

LSTM + CNN - Autoencoder for Feature Reduction

LSTM + CNN - Autoencoder

LSTM+CNN Autoencoder

 Captures Temporal Dynamics via LSTM

2. Extraction Local Features through CNN

3. Temporal-Spatial Fusion with Hybrid LSTM+CNN

4. Noise Robustness using CNN filters + LSTM smoothing

5. Better Generalization to Complex Machine States

LSTM+CNN Autoencoder Architecture

Hyperparameters	Value
Scaling	StandardScaler()
Window Size	60 (Autoencoder), 10 (Predictor)
Latent Dim Size	25
Encoder Layers	2 Conv1D; ReLu, 2 LSTM (BiLSTM, LSTM), 1 Dense, Dropout(0.1)
Decoder Layers	2 LSTM, 1 RepeatVector (60 timesteps) TimeDistributed Dense; Linear
Regression Layers	2 Dense Layers; ReLu; Linear, Dropout (0.2)
CNN Filters, Kernels, Dilation_rate	Filters = 64, Kernel size 5 and 3, Dilation = 2
Optimizer	Adam
Loss Function	MSE (Reconstruction) + α * MSE (Predictor) α = 0.5
Learning Rate	0.001
Training Strategy	Early Stopping; Patience = 10
Batch_size	64

Fig 4: Supervised LSTM+CNN Autoencoder and Hyperparameters [1]

Assessing the Quality of Reduced Features

Evaluation

Evaluation Workflow

1. Data Input	2. Data Splitting	3. Data Sequencing	4. LSTM Training	5. Evaluation Results
Reduced Features Sets	Training Set = 60%	Sliding Windows	Hyperparameter Configuration	Metrics used : MAE, RMSE, R ²
14 (PCA)	Validation Set = 20%	Important to learn Temporal Features	Monitor Training Loss	Higher R² = Reduced
25 (Autoencoders)	Test Set = 20%		EarlyStopping	Features effectively capture underlying data patterns

Our Results

Evaluation Results

Results - Principal Component Analysis

Model Predictions vs Ground Truth

Fig 5: Model Prediction Performance on PCA-Reduced Features

Results - Autoencoder

Fig 5: Model Prediction Performance on Autoencoder-Reduced Features

Results - LSTM+CNN-Autoencoder

Fig 5: Model Prediction Performance on Autoencoder-Reduced Features

Model	Num. of Features	MAE	RMSE	R ²	Training Time (sec)
Original Dataset	52	0.59	1.79	0.70	200.30
PCA	14	1.15	1.82	0.68	51.41
Autoencoder	25	1.22	2.37	0.70	110.60
LSTM+CNN-Autoencoder	25	0.86	2.38	0.85	121.95

From Black-Box to Transparent Insights

Interpretability

Interpretability Results - PCA

Fig 7: PCA Loadings for Feature Importance

SHapley Additive exPlanations (SHAP) Workflow

Window Size = 60

Latent Dim

(Test Windows = 200, Timesteps = 60, Original Features = 52, Latent

Shape:

Dim = 25)

Target	2. Prepare Data	Explainer	4. Compute SHAP Values	SHAP Values
Target: Latent Dimension (25)	Training Subset as Baseline -	GradientExplainer	Run GradientExplainer on Test Subset	Average Absolute SHAP
Explain which	300 Windows Test Windows as explain set. (200 Windows)	Inputs: Encoder and Baseline (Training subset)	Output : SHAP Tensor	One Score per Feature (52 total)
Original Features (52) influenced most.			Contribution of Each Feature, at Each Timestep to Each	

2 Initialia

Interpretability for Autoencoder

Fig 7: SHAP Scores for Feature Importance

Key Findings and Takeaways

Conclusion

- Achieved effective dimensionality reduction while preserving predictive performance of original features.
- 2. **Supervised LSTM+CNN Autoencoder** delivered the highest R² (~0.80) and reduced training time by ~40%.
- 3. Identified **key contributing** and **redundant** features. enabling potential **cost savings** in sensor deployment and computation.
 - a. Important Features: CTRL_POS|3, Encoder_POS|3
 - b. Least Contributing Features: TORQUE_FFW|1, TORQUE_FFW|2
- 4. **Demonstrated that Interpretable Feature Reduction** is possible in Black-Box Autoencoders using Explainable AI.

Opportunities for Further Development and Improvement

Future Work

Future Improvement of our project

- 1. To Explore Advanced Dimensionality Reduction Architectures for smoother Latent Spaces and Better Generalization. For Ex:
 - a. Variational/Transformer-based Autoencoders
 - b. MultiTask Elastic Net
 - c. Hyperparameter Tuning for better RMSE values.
- Enhance Model Interpretability by validating Feature Importance across multiple XAI techniques
- Target-level Explainability: Use SHAP on CURRENT|6 Regressor to Rank Original Features/Sensors driving Energy (Current) usage

References

- 1. Xingchen Ran, Weidong Chen, Blaise Yvert, Shaomin Zhang, *A hybrid autoencoder framework of dimensionality reduction for brain-computer interface decoding*, Computers in Biology and Medicine, Volume 148, 2022, 105871. ISSN 0010-4825. https://doi.org/10.1016/j.compbiomed.2022.105871
- 2. M. Ashraf *et al.*, "A Survey on Dimensionality Reduction Techniques for Time-Series Data," in *IEEE Access*, vol. 11, pp. 42909-42923, 2023, doi: 10.1109/ACCESS.2023.3269693. https://ieeexplore.ieee.org/document/10107391
- 3. Wan, X., Li, H., Zhang, L. *et al.* "Dimensionality reduction for multivariate time-series data mining". *J Supercomput* 78, 9862–9878 (2022). https://doi.org/10.1007/s11227-021-04303-4
- 4. W. Todo, B. Laurent, J.-M. Loubes, and M. Selmani, "Dimension Reduction for Time Series with Variational AutoEncoders", arXiv:2204.11060, Apr. 2022. https://doi.org/10.48550/arXiv.2204.11060
- 5. Ruisheng Ran, Tianyu Gao, Bin Fang, "Transformer-based dimensionality reduction", 15 Oct 2022. https://arxiv.org/abs/2210.08288
- 6. Xingchen Ran, Weidong Chen, Blaise Yvert, Shaomin Zhang, "A hybrid autoencoder framework of dimensionality reduction for brain-computer interface decoding", Computers in Biology and Medicine, Volume 148, 2022,105871, ISSN 0010-4825, https://doi.org/10.1016/j.compbiomed.2022.105871.
- 7. https://www.researchgate.net/figure/Sketch-map-of-the-machine-tool-structure fig1 334580700
- 8. https://deepai.org/machine-learning-glossary-and-terms/feature-reduction
- 9. https://medium.com/aimonks/a-comparative-analysis-of-dimensionality-reduction-techniques-in-machine-learning-3389c5103348
- 10. https://medium.com/data-science/dimensionality-reduction-for-data-visualization-pca-vs-tsne-vs-umap-be4aa7b1cb29
- 11. https://www.geeksforgeeks.org/dimensionality-reduction/

Feature Reduction in Time Series CNC Machine Data

Thank You For Your Attention!

