Tone Detection in Vietnamese Speech with CNNs

Ramon Casas

Introduction

Vietnamese is a tonal language (6 tones) where meaning of words change depending on pitch contour.

Goal: Automatically classify spoken Vietnamese syllables (in isolation) by tone.

Motivation:

- Help Automatic Speech Recognition tasks.
- Use it as a learning Tool.

Introduction

State of the Art

- Tone Classification of Mandarin using CNNs: ToneNet (Gao et al. 2019)
- Vietnamese Voice Classification based on DL (Bui Thanh Hung, 2020)
- End-to-End Mandarin Tone Classification with short term context information (Tang and Li, 2021)
- Mandarin Tone Modelling Using RNNs (Huang, Hu and Xu, 2017)

State of the Art

ToneNet: A CNN Model of Tone Classification of Mandarin Chinese

Qiang Gao, Shutao Sun*, Yaping Yang

School of Computer and Cyberspace Security, Communication University of China Beijing, China

qiangao, stsun, yyp berry@cuc.edu.cn

MANDARIN TONE MODELING USING RECURRENT NEURAL NETWORKS

Hao Huang*, Ying Hu

School of Information Science and Engineering Xinjiang University Urumqi, China, 830046 Haihua Xu

Temasek Laboratories Nanyang Technological University Singapore, 637553

End-to-End Mandarin Tone Classification with Short Term Context Information

Jiyang Tang* and Ming Li*

* Data Science Research Center, Duke Kunshan University, Kunshan, China
E-mail: {jiyang.tang, ming.li369}@dukekunshan.edu.cn

International Journal of Machine Learning and Networked Collaborative Engineering

Journal Homepage: http://www.mlnce.net/home/index.html

DOI: https://doi.org/10.30991/IJMLNCE.2020v04i04.004

Vietnamese Voice Classification based on Deep Learning Approach

^aBui Thanh Hung

^aFaculty of Information Technology,Ton Duc Thang University, 19 Nguyen Huu Tho Street, Tan Phong Ward,
District 7, Ho Chi Minh City, Vietnam, buithanhhung@tdtu.edu.vn

Methodology: Data Analysis and Preprocessing

Methodology: Data Analysis and Preprocessing

Building the datasets: Synthetic Data

Google TTS

Cloud Text-To-Speech

Real Voice

ba - bá - bà - bả - bạ

Building the datasets: Real Voices

PRONUNCIATION DRILLS

- 1. Listen to and repeat after the speaker. Pay attention to the production of syllables with the finals m and ng following the rounded nuclear vowels.
- 1) um ung đùm đùng túm túng bủm bủng lũm lũng cum cung

× Pronunc-08 ▼

Mute Solo Effects

Mono, 44100Hz 32-bit float ▲ Select

- 2) ôm ông xốm xống đốm đống chốm chống ngỗm ngỗng nhôm nhông
- 3) om ong còm còng ngóm ngóng nhỏm nhỏng chốm chống khom khong
- 4) úp úc cup cuc đúp đúc sup suc húp húc ngup nguc

- 5) ộp ộc 6) óp óc phốp phốc hop học hộp hộc ngóp ngóc lốp lốc cop coc độp độc tóp tóc tốp tốc dop doc
- 2. Listen to and repeat after the speaker.

Pronunc-08 Drills-Unit-04

- 1) ung bung dung khung cung hung lung xung sung phung trung tung mung nung rung nhung chung
- 2) mồng cổng tổng phổng bổng chống nống sống đồng rồng hồng vống lồng ngồng
- 3) mỏng tổng đồng nhỏng lỏng phỏng hỏng ngỏng dỏng bỏng
- 4) úc túc đúc múc rúc xúc lúc phúc nhúc súc cúc húc núc thúc

TUTTLE

Building the datasets: Forvo Syllables

Building the datasets: Final Data

	Samples
Synthetic Data Small	1800
Synthetic Data Large	11217
Pronunciation Drills	1557
Forvo Syllables	52

	Samples
Combined Small	3357
Combined Large	12774

Methodology: Models and Optimization

Custom CNN

Transfer Learning: Loading Weights from ToneNet

Results: Custom CNN

Results: Custom CNN

Test Set

Results: Fine-Tuning - Wav2Vec2

Epoch

Name

Results: Fine-Tuning - ToneNet

Table 1: The ToneNet architecture, the f is the size of convolution kernels and the s is stride.

Name	ToneNet
Input	Image
Part-1	$Conv2d(f=5 \times 5 \times 64, s=3)$
	BatchNormalization
	MaxPooling2d($f=3 \times 3, s=3$)
	$Conv2d(f=3 \times 3 \times 128, s=1)$
	BatchNormalization
	MaxPooling2d($f=2 \times 2$, $s=2$)
	$Conv2d(f=3 \times 3 \times 256, s=1)$
	BatchNormalization
	MaxPooling2d($f=2 \times 2$, $s=2$)
Part-2	$Conv2d(f=3 \times 3 \times 256, s=1)$
	BatchNormalization
	MaxPooling2d($f=2 \times 2$, $s=2$)
	$Conv2d(f=3 \times 3 \times 512, s=1)$
	BatchNormalization
	MaxPooling2d($f=2 \times 2$, $s=2$)
Flatten	Flatten
Part-3	FC-1024
	BatchNormalization
	FC-1024
	BatchNormalization
	FC-4
	SoftMax

Results: Fine-Tuning - ToneNet

Results: Fine-Tuning - ToneNet

Results: ToneNet and Performance on Unseen Voices

Results: ToneNet and Performance on Unseen Voices

Another approach: Data Augmentation (Park, 2019)

IDEA: Randomly masks out contiguous frequency and time regions in a mel-spectrogram to simulate missing information

Frequency Masking

- Chooses ≈ (freq_mask_pct × 64) consecutive mel bins
- Sets those rows to –80 dB (silence) across all time frames

Time Masking

- Chooses ≈ (time_mask_pct × 225) consecutive time frames
- Sets those columns to –80 dB (silence) across all frequency bins

Results: Data Augmentation

	Testing Set: Forvo Syllables	
Training Set	Without Data Augmentation	With Data Augmentation
Synthetic Data	0.4423	0.3846
Real Voices	0.5769	0.6154
Mixed	0.5192 (large set) 0.6538 (small set)	0.6923

Final Reflections and Conclusions

- 1. Syllables (and specially tones) in isolation behave way differently than in contact, so data from full sentences corpus poses a difficulty for the task.
- 2. Existing models like Wav2Vec do not focus on tone recognition and transfer learning has been proven challenging.
- 3. A combination of synthetic+real data has been seen to be effective and perform well on new data.
- 4. Sometimes the challenge can be in the data more than in the Deep Learning architecture and/or hyperparameter tuning.

Future Steps

- 1. Gather more data from real speakers: variety is important.
- Explore more data augmentation techniques.
- 3. Extend the work to other tonal languages.
- 4. Keep exploring transfer learning and fine-tuning.
- 5. Deploy the model into an application.

COURSE EVENTS

Models

Datasets

Spaces

Community

Docs

Introduction to audio data

By nature, a sound wave is a continuous signal, meaning it contains an infinite number of signal values in a given time. This poses problems for digital devices which expect finite arrays. To be processed, stored, and transmitted by digital devices, the continuous sound wave needs to be converted into a series of discrete values, known as a digital representation.

References

Gao, Q., Sun, S., & Yang, Y. (2019). ToneNet: A CNN model of tone classification of Mandarin Chinese. In *Proceedings of Interspeech 2019* (pp. 3367–3371).

Bui, T. H. (2020). Vietnamese voice classification based on deep learning approach. *International Journal of Machine Learning and Networked Collaborative Engineering*, *4*(4), 171–180.

Huang, H., Hu, Y., & Xu, H. (2017). Mandarin tone modeling using recurrent neural networks [Preprint]. arXiv. arXiv:1711.01946

Park, D. S., Chan, W., Zhang, Y., Chiu, C.-C., Zoph, B., Cubuk, E. D., & Le, Q. V. (2019). SpecAugment: A simple data augmentation method for automatic speech recognition. In *Proceedings of Interspeech 2019* (pp. 2613–2617).

Tang, J., & Li, M. (2021). End-to-end Mandarin tone classification with short-term context information [Preprint]. arXiv. arXiv:2104.05657

```
SimpleToneCNN(
  (net): Sequential(
    (0): Conv2d(1, 16, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (1): ReLU()
    (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (3): Conv2d(16, 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
    (4): ReLU()
    (5): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
    (6): Flatten(start dim=1, end dim=-1)
    (7): Linear(in features=28672, out features=128, bias=True)
    (8): ReLU()
    (9): Linear(in features=128, out features=6, bias=True)
```

Layer (type) Output Shape Param # Conv2d-1 [1, 16, 64, 224] 416 ReLU-2 [1, 16, 64, 224] 0 MaxPool2d-3 [1, 16, 32, 112] 0 Conv2d-4 [1, 32, 32, 112] 4,640 ReLU-5 [1, 32, 32, 112] 0 MaxPool2d-6 [1, 32, 16, 56] 0 Flatten-7 [1, 28672] 0 Linear-8 [1, 128] 3,670,144 ReLU-9 [1, 128] 0 Linear-10 [1, 6] 774			
ReLU-2 [1, 16, 64, 224] 0 MaxPool2d-3 [1, 16, 32, 112] 0 Conv2d-4 [1, 32, 32, 112] 4,640 ReLU-5 [1, 32, 32, 112] 0 MaxPool2d-6 [1, 32, 16, 56] 0 Flatten-7 [1, 28672] 0 Linear-8 [1, 128] 3,670,144 ReLU-9 [1, 128] 0	Layer (type)	Output Shape	Param #
	ReLU-2 MaxPool2d-3 Conv2d-4 ReLU-5 MaxPool2d-6 Flatten-7 Linear-8	[1, 16, 64, 224] [1, 16, 32, 112] [1, 32, 32, 112] [1, 32, 32, 112] [1, 32, 16, 56] [1, 28672] [1, 128]	0 4,640 0 0 0 3,670,144
			774

Total params: 3,675,974 Trainable params: 3,675,974 Non-trainable params: 0 Input size (MB): 0.05 Forward/backward pass size (MB): 6.13 Params size (MB): 14.02 Estimated Total Size (MB): 20.20

Total parameters: 3,675,974

