

STRUCTURE OF KÄHLER GROUPS, I : SECOND COHOMOLOGY

Alexander REZNIKOV

April 1, 1998

0. Introduction.

Fundamental groups of complex projective varieties are very difficult to understand. There is a tremendous gap between few computed examples and few general theorems. The latter all deal with either linear finite dimensional representations ([Sim]) or actions on trees ([Gr-Sch]); besides, one knows almost nothing.

This paper presents a new general theorem, partially settling a well-known conjecture of Carlson-Toledo (cf [Ko]).

MAIN THEOREM. — *Let Γ be a fundamental group of a compact Kähler manifold. Assume Γ is not Kazhdan. Then $H^2(\Gamma, \mathbb{R}) \neq 0$. Moreover, let Δ be a finitely presented group which is not Kazhdan and let $\Gamma \rightarrow \Delta$ be a central extension. If Γ is a fundamental group of a compact Kähler manifold, then the natural map in the second real cohomology $H^2(\Delta, \mathbb{R}) \rightarrow H^2(\Gamma, \mathbb{R})$ is nonzero.*

COROLLARY. — *Suppose Δ is not Kazhdan. Let $\tilde{\Delta}$ be the universal central extension $0 \rightarrow H_2(\Delta, \mathbb{Z}) \rightarrow \tilde{\Delta} \rightarrow \Delta \rightarrow 1$. Then Γ is not a fundamental group of a compact Kähler manifold.*

Examples.

1. Any amenable group is not Kazhdan, so their universal central extensions are not Kähler.
2. Any lattice in $SU(n, 1)$ is not Kazhdan. However, in this case one can do better, see remark in section 8 below. It follows from the Corollary to the Main Theorem that a universal central extension of such a lattice is not a Kähler group. In contrast with this, any central extension with finite cyclic group as a center,

Mots-clés : Kähler groups, property T .

whose extension class is a reduction *mod n* of the Kähler class *is* a Kähler group, as shown by Deligne, Kollar and Catanese [Ko].

THEOREM 0.1. — *Let Γ be a fundamental group of a complex projective variety. Suppose Γ has a Zariski dense rigid representation in $SO(2, n)$, n odd. Then*

- (i) $H^2(\Gamma, \mathbb{R}) \neq 0$.
- (ii) *Moreover, $H_b^2(\Gamma, \mathbb{R}) \neq 0$ and the canonical map $H_b^2 \rightarrow H^2$ is not zero.*

COROLLARY 0.1. — *Let Δ be a lattice in $SO(2, n)$, n odd, uniform or not. Let $\tilde{\Delta}$ be a universal central extension of Δ . Then Δ is not a fundamental group of a complex projective variety.*

THEOREM 0.2. — *Let Γ be a fundamental group of a complex projective variety. Suppose Γ has a Zariski dense rigid representation in $Sp(4)$. Then*

- (i) $H^2(\Gamma, \mathbb{R}) \neq 0$.
- (ii) *Moreover, $H_b^2(\Gamma, \mathbb{R}) \neq 0$ and the canonical map $H_b^2 \rightarrow H^2$ is not zero.*

COROLLARY 0.2. — *Let Δ be a lattice in $Sp(4)$. Then $\tilde{\Delta}$ is not a fundamental group of a complex projective variety.*

COROLLARY 0.3. — *Lattices in $Spin(2, n)$, n odd, and $\widetilde{Sp(4)}$ are not fundamental groups of a complex projective variety.*

The next result shows that three-manifold groups which are rich in the sense of [Re2] are not Kähler .

THEOREM 10.3. — *(Rich Three-manifold groups are not Kähler). Let M^3 be an irreducible atoroidal three-manifold. Suppose there exists a Zariski dense homomorphism $\rho : \pi_1(M) \rightarrow SL_2(\mathbb{C})$. Then $\Gamma = \pi_1(M)$ is not Kähler.*

1. A geometric picture for rigid representations.

Let Y be a compact Kähler manifold. All rigid irreducible representations $\rho : \pi_1(Y) \rightarrow SL(N, \mathbb{C})$ are conjugate to representations landing in a $SU(m, n) \subset SL(N, \mathbb{C})$ with $m + n = N$ ([Sim 1]) and have a structure of complex variation of Hodge structure ([Sim 1]). Moreover, we can always arrange that this conjugate representation is defined over $\overline{\mathbb{Q}}$ (see e.g. [Re 1]). Relabeling , we assume that ρ itself is defined over $\overline{\mathbb{Q}}$. We assume that moreover, ρ is defined over $\mathcal{O}(\overline{\mathbb{Q}})$; by a conjecture of Carlos Simpson ([Sim 1]) this is always the case. Let $\{\rho_i\}$ be all the

Galois twists of ρ , then ρ_i are rigid therefore land in $SU(m_i, n_i)$. The image of $\pi_1(Y)$ in $\prod_i SU(m_i, n_i)$ is discrete; call it Γ .

Coming back to ρ , consider a corresponding θ -bundle E ([Sim 1]). It has the following structure: $E = \bigoplus_{p+q=k} L^{p,q}$ and θ maps $L^{p,q}$ to $L^{p-1,q+1} \otimes \Omega^1$. Any θ -invariant subbundle of E has negative degree; in particular, the degree of $L^{k,0}$ is positive. A harmonic metric K in E is the unique metric satisfying the equation ([Hit]) $F_K = [\theta, \theta^*]$. The hermitian connection ∇_K leaves all $E^{p,q}$ invariant. The connection $\nabla_K + \theta + \theta^*$ is flat with monodromy ρ . Let V be the corresponding flat holomorphic bundle. In V , we have a flag of holomorphic subbundles $F^p = V^{k,0} \oplus \dots \oplus V^{p,k-p}$, where $V^{p,q}$ are $E^{p,q}$ thought as C^∞ -subbundles of V with its new holomorphic structure. We have therefore a ρ -equivariant map $\tilde{Y} \xrightarrow{s} D$, where D is a corresponding Griffiths domain ([G], ch. I-II). Changing the sign of K alternatively on $V^{p,q}$ we obtain a flat pseudo-hermitian metric in V .

So if $m = \bigoplus_{p \text{ even}} \dim V^{p,q}$, $n = \bigoplus_{p \text{ odd}} \dim V^{p,q}$, then ρ lands in $SU(m, n)$.

The Griffiths domain D carries a horizontal distribution defined by the condition that the derivative of F_p lies in F_{p+1} . The developing map s is horizontal. Differentiating this condition we obtain a second order equation ([Sim 1]) $[\theta, \theta] = 0$, in other words for $Z, W \in T_x Y$, $\theta(Z)$ and $\theta(W)$ commute.

Since the image of $\pi_1(Y)$ in $\prod_i SU(m_i, n_i)$ is discrete, we obtain

PROPOSITION 1.1 (Geometric picture for rigid representations). — *Let $\rho : \pi_1(Y) \rightarrow SL(N, \mathbb{C})$ be a rigid irreducible representation, defined over $\mathcal{O}(\overline{\mathbb{Q}})$. Then there exist Griffiths domains $D_i = SU(m_i, n_i)/K_i$, a discrete group Γ in $\prod_i SU(m_i, n_i)$ and a horizontal holomorphic map*

$$S : Y \longrightarrow \prod D_i / \Gamma$$

which induces ρ and all its Galois twists.

Remark. — Though a Griffiths domain D is topologically a fibration over a hermitian symmetric space with fiber a flag variety, generally it does not have a $SU(m, n)$ -invariant Kähler metric. So the complex manifold $\prod D_i / \Gamma$ is not Kähler.

Remark. — This proposition tells us that one cannot expect too many compact Kähler manifolds to have a nontrivial linear representation of their fundamental group, of finite dimension.

LEMMA 1.2 (Superrigidity).

(1) Let $X = \Gamma \setminus SU(m, n)/S(U(m) \times U(n))$ be a compact hermitian locally symmetric space of Siegel type I. Let Y be compact Kähler and let $f : Y \rightarrow X$ be continuous. If $f_* : \pi_1(Y) \rightarrow SU(n, m)$ is rigid and Zariski dense, e.g. $f_* : \pi_1(Y) \rightarrow \Gamma$ an isomorphism, then either f is homotopic to a holomorphic map, or there exists a compact complex analytic space Y' , $\dim Y' < \dim X$, and a holomorphic map $\varphi : Y \rightarrow Y'$ such that f is homotopic to a composition $Y \xrightarrow{\varphi} Y' \xrightarrow{f_1} X$.

(2) Let $X = \Gamma \setminus SO(2, n)/S(O(2) \times O(n))$ be of Siegel type IV. Let Y be compact Kähler and let $f : Y \rightarrow X$ be continuous. If $f_* : \pi_1(Y) \rightarrow SO(2, n)$ is rigid and Zariski dense then either f is homotopic to a holomorphic map f_0 , or n is even and there exists a compact complex analytic space Y' , $\dim Y' < \dim X$, and a holomorphic map $\varphi : Y \rightarrow Y'$ such that f is homotopic to a composition $Y \xrightarrow{\varphi} Y' \xrightarrow{f_1} X$.

(3) Let $X = \Gamma \setminus Sp(2n)/U(n)$ be of Siegel type III. Let Y be compact Kähler and let $f : Y \rightarrow X$ be continuous. If $f_* : \pi_1(Y) \rightarrow Sp(2n)$ is rigid and Zariski dense, then either f is homotopic to a holomorphic map f_0 , or there exists a compact complex analytic space Y' , $\dim Y' < \dim Y$, and a holomorphic map $\varphi : Y \rightarrow Y'$, such that f is homotopic to a composition $Y \xrightarrow{\varphi} Y' \xrightarrow{f_1} X$.

(4) Let $X = \Gamma \setminus Sp(4)/U(2)$ be a Shimura threefold. Let Y be compact Kähler and let $f : Y \rightarrow X$ be continuous. Then either f is homotopic to a holomorphic map f_0 , or there exists a (singular) proper curve S , and a holomorphic map $\varphi : Y \rightarrow S$, such that f is homotopic to a composition $Y \xrightarrow{\varphi} S \rightarrow X$.

Remarks.

1. I leave the case of Siegel type II to the reader (the proof is similar).
2. If f_* is *not* rigid, one has strong consequences for $\pi_1(Y)$, see 9.1.
3. The lemma should be viewed as a final (twistorial) version of the superrigidity theorem ([Si]).

2. Proof of the Superrigidity Lemma (1).

(1) Since we are given a continuous map $Y \xrightarrow{f} X = \Gamma \setminus SU(m, n)/S(U(m) \times U(n))$ the map S of Proposition 1.1 is simply a holomorphic map $Y \rightarrow D/\Gamma$, where D is a Griffiths domain corresponding to the complex variation of Hodge structure, defined by $\rho = f_* : \pi_1(Y) \rightarrow SU(m, n)$. Suppose the Higgs bundle looks like $\bigoplus E^{p,q}$ where $E^{p,q}$ have dimensions $m_1, n_1, m_2, n_2, \dots, m_s, k_s$ where k_s is possibly missing. Then $\sum m_i = m$, $\sum n_i = n$. Now, the dimension of the horizontal distribution is

$$m_1 \cdot n_1 + n_1 \cdot m_2 + m_2 \cdot n_2 + \cdots + m_s \cdot k_s .$$

We notice that this number is strictly less than $m \cdot n = \dim X$ except for the cases:

- I) $s = 1$, i.e. $E = E^{1,0} \oplus E^{0,1}$
- II) $s = 2$, $k_2 = 0$, i.e. $E = E^{2,0} \oplus E^{1,1} \oplus E^{0,2}$.

In the first case, D is the symmetric space, and $D/\Gamma = X$ so we arrive to a holomorphic map to. $Y \rightarrow X$. In the second case the second order equation reads $\theta_1(Z)\theta_2(W) - \theta_1(W)\theta_2(Z) = 0$ where $\theta_1 : TY \otimes E^{0,2} \rightarrow E^{1,1}$ and $\theta_2 : TY \otimes E^{1,1} \rightarrow E^{2,0}$ are the components of the (horizontal) derivative DS . So the image of DS is strictly less than $\text{Hom}(E^{0,2}, E^{1,1}) \oplus \text{Hom}(E^{1,1}, E^{1,0}) = m \cdot n = \dim X$. In other words, $\dim Y' < \dim X$ where $Y' = S(Y)$.

3. Variation of Hodge structure, corresponding to rigid representations to $SO(2, n)$.

Let $\rho : \pi_1(Y) \rightarrow SO(2, n)$ be a Zariski dense rigid representation. Complexifying, we obtain a variation of Hodge structure $E = \bigoplus E^{p,q}$. Since ρ is defined over reals, we deal with real variation of Hodge structure ([Sim 1]) that is to say, $E^{p,q} = \overline{E^{q,p}}$ with respect to a flat complex conjugation. For $n \geq 3$, this leaves exactly two possibilities:

- I) $E = E^{2,0} \oplus E^{1,1} \oplus E^{0,2}$, $\dim E^{1,1} = n$, $\dim E^{2,0} = \dim E^{0,2} = 1$.
- II) n is even, $E = E^{2,0} \oplus E^{1,1} \oplus E^{0,2}$, $\dim E^{1,1} = 2$, $\dim E^{2,0} = \dim E^{0,2} = n/2$.

In case I) the Griffiths domain is the symmetric spaces $SO(2, n)/S(O(2) \times O(n))$ so the harmonic metric viewed as a harmonic section of the flat bundle with fiber a symmetric space, is holomorphic. In the second case the second order equation implies that the rank of the derivative DS of the ρ -equivariant holomorphic map $\tilde{Y} \rightarrow D$ is strictly less than n .

Proof of the Superrigidity Lemma (2).

This follows immediately from the previous discussion in the same manner as in (1)

4. Variations of Hodge structure, corresponding to rigid representation to $Sp(4)$.

Let $\rho : \pi_1(Y) \rightarrow Sp(2n)$ be a Zariski dense rigid representation. Complexifying, we obtain a representation $\pi : \pi_1(Y) \rightarrow SU(n, n)$ and a real variation of Hodge structure $E = \bigoplus_{p+q=k} E^{p,q}$, $E^{p,q} = \overline{E^{q,p}}$ and k odd. For $n = 2$ this leaves two possibilities:

(I) $E = E^{1,0} \oplus E^{0,1}$, and both $E^{1,0}$ and $E^{0,1}$, or rather $V^{1,0}$ and $V^{0,1}$ viewed as C^∞ -subbundles of the flat bundle V , are lagrangian with respect to the flat complex symplectic structure. This means first, that the Griffiths domain D is the symmetric space $SU(2,2)/S(U(2) \times U(2))$, second, that the image of the equivariant horizontal holomorphic map $S : \tilde{Y} \rightarrow D$ lies in the copy of the Siegel upper half-space $Sp(4)/U(2)$ under the Satake embedding ([Sa]). In other words, the unique ρ -equivariant harmonic map $\tilde{Y} \rightarrow Sp(4)/U(2)$ is holomorphic.

II) n is even, $E = E^{2,0} \oplus E^{1,1} \oplus E^{0,2}$, $\dim E^{1,1} = 2$, $\dim E^{2,0} = \dim E^{0,2} = n/2$.

In case I) the Griffiths domain is the symmetric spaces $SO(2,n)/S(O(2) \times O(n))$ so the harmonic metric viewed as a harmonic section of the flat bundle with fiber a symmetric space, is holomorphic. In the second case the second order equation implies that the rank of the derivative DS of the ρ -equivariant holomorphic map $\tilde{Y} \rightarrow D$ is strictly less than n .

Proof of the Superrigidity Lemma (2).

This follows immediately from the previous discussion in the same manner as in (1)

4. Variations of Hodge structure, corresponding to rigid representation to $Sp(4)$.

Let $\rho : \pi_1(Y) \rightarrow Sp(2n)$ be a Zariski dense rigid representation. Complexifying, we obtain a representation $\pi : \pi_1(Y) \rightarrow SU(n,n)$ and a real variation of Hodge structure $E = \bigoplus_{p+q=k} E^{p,q}$, $E^{p,q} = \overline{E^{q,p}}$ and k odd. For $n = 2$ this leaves two possibilities:

(I) $E = E^{1,0} \oplus E^{0,1}$, and both $E^{1,0}$ and $E^{0,1}$, or rather $V^{1,0}$ and $V^{0,1}$ viewed as C^∞ -subbundles of the flat bundle V , are lagrangian with respect to the flat complex symplectic structure. This means first, that the Griffiths domain D is the symmetric space $SU(2,2)/S(U(2) \times U(2))$, second, that the image of the equivariant horizontal holomorphic map $S : \tilde{Y} \rightarrow D$ lies in the copy of the Siegel upper half-space $Sp(4)/U(2)$ under the Satake embedding ([Sa]). In other words, the unique ρ -equivariant harmonic map $\tilde{Y} \rightarrow Sp(4)/U(2)$ is holomorphic.

(II) $E = E^{3,0} \oplus E^{2,1} \oplus E^{1,2} \oplus E^{0,3}$ and $\dim E^{p,q} = 1$. The second order equation for θ implies immediately that D_s has rank at most one everywhere on Y .

Proof of the Superrigidity Lemma (4).

Follows from the discussion above.

6. Variations of Hodge structure, corresponding to rigid representation to $Sp(2n)$, and proof of the Superrigidity Lemma (3).

In general, the Higgs bundle is $E = \bigoplus_{p+q=2s+1} E^{p,q}$, $E^{p,q} = \overline{E^{p,q}}$. The dimension of the horizontal distribution is

$$d = \sum_{p < s} \dim E^{p,q} \cdot \dim E^{p+1,q-1} = \frac{\dim E^{s,s+1} \cdot (\dim E^{s,s+1} + 1)}{2},$$

since $\theta : E^{s,s+1} \rightarrow E^{s+1,s}$ viewed as bilinear form, should be symmetric. Moreover, $\sum_{p \leq s} \dim E^{p,q} = n$. An elementary exercise shows that if $s > 1$, $d < \frac{n(n+1)}{2}$. If $s = 1$, we get a holomorphic map to the Siegel upper half-plane.

7. Regulators, I: proof of the Main Theorem.

The reader is supposed to be familiar with the geometric theory of regulators ([Re 1], [Co]).

Let \mathbb{H} be a complex Hilbert space. The constant Kähler form (dX, dX) is invariant under the affine isometry group $\text{Iso}(\mathbb{H})$, and \mathbb{H} is contractible, therefore there is a regulator class in $H^2(\text{Iso}^\delta(\mathbb{H}), \mathbb{R})$. In fact, there is a class ℓ in $H^1(\text{Iso}^\delta(\mathbb{H}), \mathbb{H})$ defined by a cochain $(x \mapsto Ux + b) \mapsto b$. The regulator class is simply (ℓ, ℓ) .

If $\pi_1(Y)$ does not have property T , then there exist a representation $\rho : \pi_1(Y) \rightarrow \text{Iso}(\mathbb{H})$ and a holomorphic nonconstant section S of the associated flat holomorphic affine bundle with fiber \mathbb{H} ([Ko-Sch]). It follows that the pull-back $\rho^*((\ell, \ell))$ of the regulator class to $H^2(\pi_1(Y), \mathbb{R})$ restricts to a cohomology class in $H^2(Y, \mathbb{R})$, given by a non-zero semi-positive $(1, 1)$ form. Multiplying by the ω^{n-1} , where ω is a Kähler form, and $n = \dim Y$, and integrating over Y we get a positive number, therefore this cohomology class is non-zero. Therefore $H^2(\pi_1(Y), \mathbb{R}) \neq 0$.

Now if Δ does not have property T , and if $\pi_1(Y) \rightarrow \Delta$ is a central extension, then the construction of [Ko-Sch] gives us an isometric uniform action on a real Hilbert space $\pi_1(Y) \rightarrow \text{Iso}(\mathbb{H})$, which factors through Δ , and a harmonic section of an associated flat bundle. Since the action is uniform, the corresponding linear representation $\rho : \Delta \rightarrow U(\mathbb{H})$ does not have fixed vectors. It follows from the Lyndon-Serre-Hochschild spectral sequence that the map $H^1(\Delta, \mathbb{H}) \rightarrow H^1(\pi_1(Y), \mathbb{H})$ is an isomorphism. By [Ko-Sch], there exists an isometric action of $\pi_1(Y)$ on the complexified Hilbert space, extending the previous one, such that the corresponding

flat bundle has a holomorphic section. This act ion necessarily factors through Δ . Arguing as above, we deduce the theorem.

Remark. — Historically, the first break through in this direction has been made in [JR], under assumption of having a nontrivial variation of a finite-dimensional unitary representation. Compare Proposition 9.1 below.

Proof of the Corollary 0.2. — The Lyndon-Serre-Hochschild spectral sequence implies that the map $H^2(\Delta, \mathbb{R}) \rightarrow H^2(\tilde{\Delta}, \mathbb{R})$ is zero. So $\tilde{\Delta}$ is not a Kähler group.

Remark. — Suppose $\pi_1(Y)$ does not have property T . Suppose moreover that that $\pi_1(Y)$ has a permutation representation in $\ell^2(B)$, where B is a countable set, and $H^1(\pi_1(Y), \ell^2(B)) \neq 0$. Then we actually proved that $H^2(\pi_1(Y), \ell^1(B)) \neq 0$. That is because the scalar product $\ell^2(B) \times \ell^2(B) \rightarrow \mathbb{C}$ factors through $\ell^1(B)$. Moreover, the canonical map $H^2(\pi_1(Y), \ell^1(B)) \rightarrow H^2(\pi_1(Y), \mathbb{C})$ is nonzero.

8. Regulators, II: proof of Theorems 0.1, 0.2.

Let G be an isometry group of a classical symmetric bounded domain D . With the exception of $SO(2, 2)$, $H^1(G, \mathbb{Z}) = \mathbb{Z}$. This defines a central extension $1 \rightarrow \mathbb{Z} \rightarrow \tilde{G} \rightarrow G \rightarrow 1$ and an extension class $e \in H^2(G^\delta, \mathbb{Z})$. On the other hand, the Bergman metric on D is G -invariant, so it defines a regulator class $r \in H_{\text{cont}}^2(G, \mathbb{R})$. It is proved in [Re 2], [Re 3] that, first, these classes coincide up to a factor, and second, lie in the image of the bounded cohomology: $H_b^2(G^\delta, \mathbb{R}) \rightarrow H^2(G^\delta, \mathbb{R})$.

If Y is a compact Kähler manifold, $\rho : \pi_1(Y) \rightarrow G$ a representation , s a holomorphic nonconstant section of the associated flat D -bundle, then one sees immediately that $(\rho^*(r), \omega^{n-1}) > 0$, so $\rho^*(r), \rho^*(e) \neq 0$. Theorem 0.1 follows now from the analysis of VHS given in sections 3, 4. To prove Theorem 0.2 notice that the case when Y fibers over a curve is obvious, otherwise Y admits a holomorphic map to a quotient of the Siegel half-plane and the proof proceeds as before.

Remark. — By [CT 1], the result of Theorem 0.1 is true for lattices in $SU(n, 1)$.

9. Nonrigid representations.

PROPOSITION 9.1. — *Let Y be compact Kähler and let $\rho : \pi_1(Y) \rightarrow SL(n, \mathbb{C})$ be a nonrigid irreducible representation. Then $H^2(\pi_1(Y), \mathbb{R}) \neq 0$.*

Proof. — Let $\mathfrak{g} = \mathfrak{sl}(n, \mathbb{C})$ and let $\bar{\rho}$ be the adjoint representation. We know that $H^1(\pi_1(Y), \mathfrak{g}) \neq 0$. Therefore $H^1(Y, \underline{\mathfrak{g}}) \neq 0$ where $\underline{\mathfrak{g}}$ is the local system. By the Simpson's hard Lefschetz ([Sim 1]), the multiplication by ω^{n-1} gives an isomorphism $H^1(Y, \underline{\mathfrak{g}}) \rightarrow H^{2n-1}(Y, \underline{\mathfrak{g}})$, where ω is the polarization class and $n = \dim_{\mathbb{C}} Y$. The Poincaré duality implies that the Goldman's pairing $H^1(Y, \mathfrak{g}) \times H^1(Y, \mathfrak{g}) \rightarrow \mathbb{C}$ is nondegenerate. Let z be homology class in $H_2(Y)$, dual to ω^{n-1} , and \bar{z} its image in $H_2(\pi_1(Y))$. It follows that the pairing $H^1(\pi_1(Y), \mathfrak{g}) \times H^1(\pi_1(Y), \mathfrak{g}) \rightarrow \mathbb{C}$ defined by $f, g \mapsto [(f, g), \bar{z}]$ is nondegenerate. Here $(f, g) \in H^2(\pi_1, \mathbb{C})$ is the pairing defined by the Cartan-Killing form. In particular, $\bar{z} \neq 0$.

COROLLARY 10.1. — *Let Y a compact Kähler manifold. If $\pi_1(Y)$ has a Zariski dense representation in either $Sp(4)$ or $SO(2, n)$, n odd, then $H^2(\pi_1(Y), \mathbb{R}) \neq 0$.*

Proof. — For rigid representations, this is proved in Theorems 0.1, 0.2. For nonrigid representations, this follows from Proposition 9.1.

COROLLARY 9.2. — *Let Γ be any overgroup of a Zariski dense countable subgroup of $Sp(4)$ or $SO(2, n)$, n odd. Suppose $b_1(\Gamma) = 0$. Then the universal central extensions $\widetilde{\Gamma}$ is not Kähler.*

10. Three-manifolds groups are not Kähler.

In this section, based on the previous development, we will present a strong evidence in favour of the following conjecture, which we formulated in 1993 (Domingo Toledo informs us that a similar conjecture had been discussed by Goldman and Donaldson in 1989):

CONJECTURE 10.1. — *Let M^3 be irreducible closed 3-manifold with $\Gamma = \pi_1(M)$ infinite. Then Γ is not Kähler.*

PROPOSITION 10.2 (Seifert fibration case). — *A cocompact lattice in $\widetilde{SL(2, \mathbb{R})}$ is not Kähler.*

Proof. — Passing to a subgroup of finite index, we can assume that Γ is a central extension of a surface group:

$$1 \longrightarrow \mathbb{Z} \longrightarrow \Gamma \longrightarrow \pi_1(S) \longrightarrow 1$$

with a nontrivial extension class. In particular, $H^1(\Gamma, \mathbb{Q}) \simeq H^1(\pi_1(S), \mathbb{Q})$, so the multiplication in $H^1(\Gamma, \mathbb{Q})$ is zero, which is impossible if Γ is Kähler.

Recall that “most” of closed three-manifolds admit a Zariski dense homomorphism $\pi_1(M) \xrightarrow{\rho} SL_2(\mathbb{C})$ ([CGLS], [Re 1]).

THEOREM 10.3. — *Let M^3 be atoroidal. Suppose there exists a Zariski dense homomorphism $\rho : \pi_1(M) \rightarrow SL_2(\mathbb{C})$. Then $\Gamma = \pi_1(M)$ is not Kähler.*

Proof. — By a theorem of [Zi] $\pi_1(M)$ does not have property T . By the Main Theorem, $H^2(\Gamma, \mathbb{R}) \neq 0$, hence by [Th], M is hyperbolic, which is impossible by [CT 1].

Alternatively, ρ is not rigid by [Sim 1], so $H^2(\Gamma, \mathbb{R}) \neq 0$ by Proposition 9.1, and then one procedes as before.

Remark. — In view of [CGLS], [Re 1], we obtain a huge number of groups which are not Kähler.

11. Central extensions of lattices in $PSU(2, 1)$.

We saw a general result, that, if $\Gamma \subset SU(n, 1)$ a cocompact lattice and $[\omega] \in H^2(\Gamma, \mathbb{Z})$ is given by any ample line bundle, then a central extension

$$0 \longrightarrow \mathbb{Z} \longrightarrow \tilde{\Gamma} \longrightarrow \Gamma \longrightarrow 1$$

with the extension class $[\omega]$ is not Kähler. For $n = 2$ one can also prove:

THEOREM 11.1. — *Let $\omega \in H^2(B^2/\Gamma, \mathbb{Z}) \cap (H^{2,0} \oplus H^{0,2})$, $\omega \neq 0$. Then an extension*

$$0 \longrightarrow \mathbb{Z} \longrightarrow \tilde{\Gamma}_\omega \longrightarrow \Gamma \longrightarrow 1$$

with the extension class ω is not Kähler.

Remark. — $H^{2,0}$ becomes big on étale finite coverings of B^2/Γ by Riemann-Roch.

Proof. — Suppose $\tilde{\Gamma}_\omega = \pi_1(Y)$. The representation $\pi_1(Y) \rightarrow \Gamma \rightarrow SU(2, 1)$ is rigid by the Lyndon-Serre-Hochschild spectral sequence. It follows that there exists a dominating holomorphic map $Y \rightarrow B^2/\Gamma$. But then the pullback map on $H^{2,0}$ is injective, a contradiction.

12. Smooth hypersurfaces in ball quotients which are not $K(\pi, 1)$.

We saw that under various algebraic assumptions on $\Gamma = \pi_1(Y)$, there is a class in $H^2(Y, \mathbb{R})$ which vanishes on the Hurewitz image $\pi_2(Y) \rightarrow H_2(Y, \mathbb{Z})$, therefore defining a nontrivial element of $H^2(\Gamma, \mathbb{R})$. On the contrary, we will show now that there are hypersurfaces Y in ball quotients B^n/Γ , $n \geq 3$ with a surjective map $\pi_1(Y) \rightarrow \Gamma$ such that $\pi_i(Y) \neq 0$ for some i . The proof is very indirect and we don't know the exact value of i . The varieties Y were in fact introduced in [To] where it is proved that $\pi_1(Y)$ is not residually finite. We will show that $cd(\pi_1(Y)) \geq 2n - 1$, therefore Y is not $K(\pi, 1)$.

Let X^n be an arithmetic ball quotient and let $X_0 \subset X$ be a totally geodesic smooth hypersurface. Let $D = X - X_0$, then D is covered topologically by \mathbb{C}^n minus a countable union of hyperplanes, so D is $K(\pi, 1)$. Let S be a boundary of a regular neighbourhood of X_0 , so S is a circle bundle over X_0 , in particular S is $K(\pi, 1)$ and $\pi_1(S)$ is a central extension $0 \rightarrow \mathbb{Z} \rightarrow \pi_1(S) \rightarrow \pi_1(X_0) \rightarrow 1$ with a nontrivial extension class (this is because the normal bundle to X_0 is negative). Let V be a finite dimensional module over $\pi_1(X)$ with an invariant nondegenerate form $V \rightarrow V'$. We have an exact sequence

$$\begin{aligned} H^{2n-1}(\pi_1(X), V) &\longrightarrow H^{2n-1}(\pi_1(X_0), V) \oplus H^{2n-1}(\pi_1(D), V) \\ &\longrightarrow H^{2n-1}(\pi_1(S), V) \longrightarrow H^{2n}(\pi_1(X), V) \longrightarrow \dots \end{aligned}$$

Now, we make a first assumption:

$$1) H^0(\pi_1(X), V) = 0.$$

It follows that $H_0(\pi_1(X), V) = 0$, so $H^{2n}(\pi_1(X), V) = 0$; we make a second assumption :

$$2) H^1(\pi_1(X), V) = 0.$$

It follows that $H^{2n-1}(\pi_1(X), V) = 0$. So we have (remember that X_0 has dimension $n - 1$)

$$H^{2n-1}(\pi_1(D), V) \simeq H^{2n-1}(\pi_1(S), V).$$

Now, in the E^2 of the Lyndon-Serre-Hochschild spectral sequence for $H^*(\pi_1(S), V)$ the term $H^{2n-2}(\pi_1(X_0), H^1(\mathbb{Z}, V))$ is not hit by any differential. Since \mathbb{Z} acts trivially, this is just $H^{2n-2}(\pi_1(X_0), V) \simeq H_0(\pi_1(X_0), V)$. We now make a third assumption:

$$3) H^0(\pi_1(X_0), V) \neq 0.$$

Then we will have $H^{2n-1}(\pi_1(D), V) \neq 0$. Let Y be a generic hyperplane section of X/X_0 , constructed in [To], then [GM], $\pi_1(Y) = \pi_1(D)$ and we are done.

Now, we take for V the adjoint module. The assumption 2) follows from Weil's rigidity. The assumption 3) is satisfied for standard examples of X_0 ([To]).

Remark. — The construction of [To] is given for lattices in $SO(2, n)$, but it applies verbatim here.

References

- [Co] K. CORLETTÉ. — *Rigid representations of Kählerian fundamental groups*, J.D.G. **33** (1991), 239–252.
- [CT 1] J. CARLSON, D. TOLEDO. — *Harmonic maps of Kähler manifolds to locally symmetric spaces*, Publ. IHES **69** (1989), 173–201.
- [CGLS] M. CULLER, C. GORDON, J. LUECKE, P. SHALEN. — *Dehn surgery on knots*, Annals of Math. **125** (1987), 237–308.
- [G] PH. GRIFFITHS, ED.. — *Topics in transcendental algebraic geometry*, Princeton UP, 1984.
- [Gr-Sch] M. GROMOV, R. SCHOEN. — *Harmonic maps into singular spaces and p -adic superrigidity for lattices in groups of rank one*, Publ. Math. Inst. Hautes Étud. Sci. **76** (1992), 165–246.
- [GS] PH. GRIFFITHS, W. SCHMIDT. — *Locally homogeneous complex manifolds*, Acta Math. **123** (1969), 253–302.
- [H] P. de la HARPE, A. VALETTE. — *La propriété (T) de Kazhdan pour les groupes localement compacts*, Astérisque, 1989.
- [Hit] N. HITCHIN. — *The self-duality equation on a Riemann surface*, Proc. London Math. Soc. **55** (3) (1987), 59–126.
- [JR] F.E.A. JOHNSON, E.G. REES. — *On the fundamental group of a complex algebraic manifold*, Bull. Lond. Math. Soc. **19** (1987), 463–466.
- [Ko] J. KOLLAR. — *Shafarevich maps and automorphic forms*, Princeton UP, 1995.
- [Ko-Sch] N. KOREVAAR, R. SCHOEN. — *Global existence theorems for harmonic maps to non locally compact spaces*, Commun. Anal. Geom. **5** (2) (1997), 333–387.
- [Re 1] A. REZNIKOV. — *Rationality of secondary classes*, J. Differential Geom. **43** (1996), 674–692.
- [Re 2] A. REZNIKOV. — *Three-manifolds class field theory*, Selecta Math. **3** (1997), 361–399.
- [Sa] I. SATAKE. — *Algebraic structures of symmetric domains*, Princeton UP, 1980.
- [Sim 1] C. SIMPSON. — *Higgs bundles and local systems*, Publ. IHES **75** (1992), 5–95.
- [Sim 2] C. SIMPSON. — *Moduli of representations of the fundamental group of smooth projective variety*, Publ. IHES **79–80** (1994), 47–129, 5–79.
- [Si] Y.-T. SIU. — *The complex-analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds*, Ann. Math. **112** (1980), 73–111.
- [Th] W. THURSTON. — *The geometry and topology of three manifolds*, Lecture notes, Princeton University.
- [To] D. TOLEDO. — *Projective varieties with non-residually finite fundamental group*, Publ. IHES **77** (1993), 103–119.
- [Zi] R. ZIMMER. — *Kazhdan groups acting on compact manifolds*, Invent. Math. **75** (1984), 425–436.

—◇—

Department of Mathematical Sciences
 University of Durham
 South Road
 Durham DH1 3LE(UK)

Current address :
 Université de Grenoble I

Institut Fourier
UMR 5582
UFR de Mathématiques
B.P. 74
38402 St MARTIN D'HÈRES Cedex (France)
Alexander.Reznikov@durham.ac.uk