6 Divisors

Exercise 6.1. Let X be a scheme satisfying (*). Then $X \times \mathbb{P}^n$ also satisfies (*) and $Cl(X \times \mathbb{P}^n) \cong Cl(X) \times \mathbb{P}^n$.

Solution. As in the proof of Proposition II.6.6 we see immediately that $X \times \mathbb{P}^1$ is noetherian, integral, and separated. To see that it is regular in codimension one, note that it can be covered by (two) open affines of the form $X \times \mathbb{A}^1$. Each of these is shown to be regular in codimension one in the proof of II.6.6 and so $X \times \mathbb{P}^1$ is regular in codimension one.

After Proposition II.6.5 and II.6.5 we have an exact sequence

$$\mathbb{Z} \xrightarrow{i} \operatorname{Cl}(X \times \mathbb{P}^1) \xrightarrow{j} \operatorname{Cl} X \to 0$$

The first map sends n to nZ where Z is the closed subscheme $\pi_2^{-1} \infty \subset X \times \mathbb{P}^1$ (where $\pi_2: X \times \mathbb{P}^1 \to \mathbb{P}^1$ is the second projection), and the second is the composition of $\operatorname{Cl}(X \times \mathbb{P}^1) \to \operatorname{Cl}(X \times \mathbb{A}^1) \overset{\sim}{\leftarrow} \operatorname{Cl} X$. Consider the map $\operatorname{Cl} X \to \operatorname{Cl}(X \times \mathbb{P}^1)$ that sends $\sum n_i Z_i$ to $\sum n_i \pi_1^{-1} Z_i$. The composition $\operatorname{Cl}(X) \to \operatorname{Cl}(X \times \mathbb{P}^1) \to \operatorname{Cl}(X \times \mathbb{A}^1) \overset{\sim}{\leftarrow} \operatorname{Cl}(X)$ sends a prime divisor Z to $\pi_1^{-1} Z$, then $(X \times \mathbb{A}^1) \cap \pi_1^{-1} Z$, and then back to Z since $(X \times \mathbb{A}^1) \cap \pi_1^{-1} Z$ is the preimage of Z under the projection $X \times \mathbb{A}^1 \to X$. Hence, the epimorphism in the exact sequence above is split.

We now show that the morphism $\mathbb{Z} \to \operatorname{Cl}(X \times \mathbb{P}^1)$ is split as well, by defining a morphism $\operatorname{Cl}(X \times \mathbb{P}^1) \to \mathbb{Z}$ which splits i. Let $k : \operatorname{Cl} X \to \operatorname{Cl}(X \times \mathbb{P}^1)$ denote the morphism we used to split j. Then we send a divisor ξ to $\xi - kj\xi$. This is in the kernel of j (since jk = id) and therefore in the image of i. So it remains only to see that i is injective.

Suppose that $nZ \sim 0$ for some integer n. Taking the "other" $X \times \mathbb{A}^1$ we have Z as $\pi_2^{-1}0$ under the projection $\pi_2: X \times \mathbb{P}^1 \to \mathbb{P}^1$. In the open subset $X \times \mathbb{A}^1$ we have Z as X embedded at the origin. So the local ring of Z in the function field K(t) (where K is the function field of X) is $K[t]_{(t)}$. Since $nZ \sim 0$ there is a function $f \in K(t)$ such that $v_Z(f) = n$ and $v_Y(f) = 0$ for every other prime divisor Y. So f is of the form $t^n \frac{g(t)}{h(t)}$ where $g, h \in K[t]$ and $t \not| g(t), h(t)$. If the degree of g and h is 0 then changing coordinates back $t \mapsto t^{-1}$ we see that $v_Y(f) = -n$ where Y is another copy of X embedded at the origin, or infinity, depending on which coordinates we are using; the one opposite to Z at any rate. If one of g or h has degree higher than zero then, it will have an irreducible factor in K[t], which will correspond to a prime divisor of the form $\pi_2^{-1}x$ for some $x \in \mathbb{P}^1$, and the value of f will not be zero at this prime divisor. Hence, there is no rational function with (f) = nZ and so i is injective. Hence $Cl(X \times \mathbb{P}^1) \cong Cl(X) \times \mathbb{Z}$.

Exercise 6.2.

Exercise 6.3.

Exercise 6.4. Let k be a field of characteristic $\neq 2$. Let $f \in k[x_1, ..., x_n]$ be a square free nonconstant polynomial, i.e., in the unique factorization of f into ir-

reducible polynomials, there are no repeated factors. Let $A = k[x_1, \ldots, x_n, z]/(z^2 - f)$. Show that A is an integrally closed ring.

Solution. Let $B=k[x_1,\ldots,x_n], L=\operatorname{Frac} B$ and consider the quotient field K of A. In this field we have $\frac{1}{g+zh}\frac{g-zh}{g-zh}=\frac{g-zh}{g^2-fh^2}$ since $z^2=f$ in A, and so every element can be written in the form g'+zh' where $g',h'\in L$. Hence, $K=L[z]/(z^2-f)$. This is a degree 2 extension of L with automorphism $\sigma:z\mapsto -z$ and is therefore Galois. So we have the situation of Problem 5.14 from Atiyah-Macdonald (with badly chosen notation). Let A^c be the integral closure of A in K. We will show that $A=A^c$ by showing that for $\alpha=f+zg\in K$ (with $g,h\in L$) we have $\alpha\in A^c$ if and only if $f,g\in B$.

The minimal polynomial of α is $X^2 - 2gX + (g^2 - h^2f)$. So if $g, h \in B$ then $\alpha \in A^c$. Conversely, suppose that $\alpha \in A^c$. Then $\alpha + \sigma \alpha = 2f$ and $\alpha - \sigma \alpha = 2g$ are both σ invariant and in A^c and are therefore in B, by the Atiyah-Macdonald exercise.

Exercise 6.5. Quadric Hypersurfaces. Let char $k \neq 2$, and let X be the affine quadric hypersurface Spec $k[x_0, \ldots, x_n]/(x_0^2 + x_1^2 + \cdots + x_r^2)$.

- a Show that X is normal if r > 2.
- b Show by a suitable linear change of coordinates that the equation of X could be written as $x_0x_1 = x_2^2 + \cdots + x_r^2$. Now imitate the method of (6.5.2) to show that:
 - (a) If r = 2 then $\operatorname{Cl} X \cong \mathbb{Z}/2\mathbb{Z}$;
 - (b) If r = 3 then $\operatorname{Cl} X \cong \mathbb{Z}$;
 - (c) If $r \geq 4$ then $\operatorname{Cl} X = 0$.
- c Now let Q be the projective quadric hypersurface in \mathbb{P}^n defined by the same equation. Show that:
 - (a) If r=2, $ClQ\cong \mathbb{Z}$, and the class of a hyperplane section Q.H is twice the generator;
 - (b) If r = 3, $\operatorname{Cl} Q \cong \mathbb{Z} \oplus \mathbb{Z}$;
 - (c) If $r \geq 4$, $\operatorname{Cl} Q \cong \mathbb{Z}$, generated by Q.H.
- d Prove Klein's theorem, which says that if $r \geq 4$, and if Y is an irreducible subvariety of codimension 1 on Q, then there is an irreducible hypersurface $V \subseteq \mathbb{P}^n$ such that $Y \cap Q = Y$, with multiplicity one. In other words, Y is a complete intersection.
- Solution. a Let $A = \operatorname{Spec} k[x_0, \dots, x_n]/(x_0^2 + x_1^2 + \dots + x_r^2)$. By taking $f = x_1^2 + \dots + x_r^2$, if we can show that f is square free, then we will have the situation of Exercise II.6.4 and so A will be integrally closed, implying that X is normal. But the polynomial f has degree 2 and so it is a product of at most 2 other nonconstant polynomials, which by degree, must be linear. Suppose $\sum a_i x_i$ is a linear polynomials such that $(\sum a_i x_i)^2 = f$.

Then $a_i^2 = 1$ for all i = 0, ..., r, and $2a_i a_j = 0$ for $i \neq j \in \{0, ..., r\}$. But this implies that $2 = 2a_i^2 a_j^2 = 0$ and we have assumed that k doesn't have characteristic 2. Hence f is square free.

b We assume -1 has a square root i in k, otherwise there isn't a suitable change of coordinates. Take the change of coordinates $x_0 \mapsto \frac{y_0 + y_1}{2}$ and $x_1 \mapsto \frac{y_0 - y_1}{i2}$. Then $x_0^2 + x_1^2 = y_0 y_1$.

Let $A = \operatorname{Spec} k[x_0, \dots, x_n]/(x_0x_1 + x_2^2 + \dots + x_r^2)$. Now we imitate Example II.6.5.2. We take the closed subscheme of \mathbb{A}^{n+1} with ideal $\langle x_1, x_2^2 + \dots + x_r^2 \rangle$. This is a subscheme of X and is in fact $V(x_1)$ considering $x_1 \in A$. We have an exact sequence

$$\mathbb{Z} \to \mathrm{Cl}(X) \to \mathrm{Cl}(X-Z) \to 0$$

Now since $V(x_1) \cap X = X - Z$ the coordinate ring of X - Z is

$$k[x_0, x_1, x_1^{-1}, x_2, \dots, x_n]/(x_0x_1 + x_2^2 + \dots + x_r^2)$$

As in Example II.6.5.2 since $x_0 = -x_1^{-1}(x_2^2 + \dots + x_r^2)$ in this ring we can eliminate x_0 and since every element of the ideal $(x_0x_1 + x_2^2 + \dots + x_r^2)$ has an x_0 term, we have an isomorphism between the coordinate ring of X - Z and $k[x_1, x_1^{-1}, x_2, \dots, x_n]$. This is a unique factorization domain so by Proposition II.6.2 Cl(X - Z) = 0. So we have a surjection $\mathbb{Z} \to Cl(X)$ which sends n to $n \cdot Z$.

- r=2 In this case the same reasoning as in Example II.6.5.2 works. Let $\mathfrak{p}\subset A$ be the prime associated to the generic point of Z. Then $\mathfrak{m}_{\mathfrak{p}}$ is generated by x_2 and $x_1=x_0^{-1}x_2^2$ so $v_Z(x_1)=2$. Since Z is cut out by x_1 there can be no other prime divisors Y with $v_Y(x_1)\neq 0$. It remains to see that Z is not a principle divisor. If it were then $\mathrm{Cl}(X)$ would be zero and by Proposition II.6.2 this would imply that A is a unique factorization domain (since A is normal by the first part of this exercise) which would imply that every hieght one prime ideal is principle. Consider the prime ideal $\langle x_1, x_2 \rangle$ of A which defines Z. Let $\mathfrak{m}=(x_0,x_1,\ldots,x_n)$. we have $\mathfrak{m}/\mathfrak{m}^2$ is a vector space of dimension n over k with basis $\{\overline{x}_i\}$. The ideal \mathfrak{m} contains \mathfrak{p} and its image in $\mathfrak{m}/\mathfrak{m}^2$ is a subspace of dimension at least 2. Hence, \mathfrak{p} cannot be principle.
- r=3 We use Example II.6.6.1 and Exercise II.6.3(b). Using a similar change of coordinates as the beginning of this part of this exercise, we see that X is the affine cone of the projective quadric of Example II.6.6.1. This, by Exercise II.6.3(b) we have an exact sequence $0 \to \mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z} \to \operatorname{Cl}(X) \to 0$. We already know that $\operatorname{Cl}(X)$ is $\mathbb{Z}, \mathbb{Z}/n$ or 0. Tensoring with \mathbb{Q} gives an exact sequence $\mathbb{Q} \to \mathbb{Q}^2 \to \operatorname{Cl}(X) \otimes \mathbb{Q} \to 0$ of \mathbb{Q} vector spaces. Hence, $\operatorname{Cl}(X) = \mathbb{Z}$, as the other two cases contradict the exactness of the sequence of \mathbb{Q} -vector spaces.

- r > 4 In this case we claim that Z is principle. Consider the ideal (x_1) in A. Its corresponding closed subset is Z and so if we can show that (x_1) is prime, then Z will be the principle divisor associated to the rational function x_1 . Showing that (x_1) is prime is the same as showing that $A/(x_1)$ is integral, which is the same as showing that $\frac{k[x_0,\dots,x_n]}{(x_1,x_2^2+\dots+x_r^2)}$ is integral since $(x_1,x_0x_1+x_2^2+\dots+x_r^2)=(x_1,x_2^2+\dots+x_r^2)$. This is the same as showing that $\frac{k[x_0,x_2,\dots,x_n]}{(x_2^2+\dots+x_r^2)}$ is integral (where the variable x_1 is missing on the top) which is the same as showing that $f = x_2^2 + \cdots + x_r^2$ is irreducible. Suppose f is a product of more than one nonconstant polynomial. Since it has degree two, it is the product of at most two linear polynomials, say $a_0x_0+a_2x_2+\cdots+a_nx_n$ and $b_0x_0 + b_2x_2 + \cdots + b_nx_n$. Expanding the product of these two linear polynomials and comparing coefficients with f we find that (I) $a_ib_i = 1$ for $2 \le i \le r$, and (II) $a_ib_j + a_jb_i = 0$ for $2 \le i, j \le r$ and $i \neq j$. Without loss of generality we can assume that $a_2 = 1$. The relation (I) implies that $b_2=1$, and in general, $a_i=b_i^{-1}$ for $2\leq i\leq r$. Putting this in the second relation gives (III) $a_i^2+a_j^2=0$ for $2\leq i\neq r$ $j \leq r$ and this together with the assumption that $a_2 = 1$ implies that (IV) $a_j^2 = -1$ for each $2 < j \le r$. But if $r \ge 4$ then we have from (III) that $a_3^2 + a_4^2 = 0$ which contradicts (IV). Hence $x_2^2 + \cdots + x_r^2$ is irreducible, so $\frac{k[x_0, x_2, \dots, x_n]}{(x_2^2 + \cdots + x_r^2)}$ is integral, so $A/(x_1)$ is integral, so (x_1) is prime and hence Z is the principle divisor corresponding to x_1 . So Cl(X) = 0.
- c For each of these we use the exact sequence of Exercise II.6.3(b).
- r=2 We have an exact sequence $0\to\mathbb{Z}\to\operatorname{Cl}(Q)\to\mathbb{Z}/2\to 0$ where the first mophism sends 1 to the class of $H\cdot Q$ a hyperplane section. Tensoring with \mathbb{Q} we get an exact sequence $\mathbb{Q} \overset{2}\to\operatorname{Cl}(Q)\otimes\mathbb{Q}\to 0\to 0$ and so since $\operatorname{Cl}(Q)$ is an abelian group we see that it is $\mathbb{Z}\oplus T$ where T is some torsion group. Tensoring with \mathbb{Z}/p for a prime p we get either $\mathbb{Z}/2\overset{0}\to\operatorname{Cl}(Q)\otimes(\mathbb{Z}/2)\to\mathbb{Z}/2\to 0$ if p=2 or $\mathbb{Z}/p\overset{2}\to\operatorname{Cl}(Q)\otimes(\mathbb{Z}/p)\to 0\to 0$ if $p\neq 2$. Hence, T=0, and so $\operatorname{Cl}(Q)\cong\mathbb{Z}$ and the class of a hyperplane section is twice the generator.
- r=3 This is Example II.6.6.1.
- $r \geq 4$ We have an exact sequence $0 \to \mathbb{Z} \to \mathrm{Cl}(Q) \to 0 \to 0$, hence, $\mathrm{Cl}(Q) = \mathbb{Z}$ and it is generated by $Q \cdot H$.

Exercise 6.6. Let X be the nonsingular plane cubic curve $y^2z = x^3 - xz^2$ of (6.10.2).

a Show that three points P, Q, R of X are collinear if and only if P+Q+R=0 in the group law on X. (Note that the point $P_0=(0,1,0)$ is the zero element in the group structure on X).

- b A point $P \in X$ has order 2 in the group law on X if and only if the tangent line at P passes through P_0 .
- c A point $P \in X$ has order 3 in the group law on X if and only if P is an inflection point (an inflection point of a plane curve is a nonsingular point P of the curve, whose tangent line (Exercise I.7.3) has intersection multiplicity ≥ 3 with the curve at P.)
- d Let $k = \mathbb{C}$. Show that the points of X with coordinates in \mathbb{Q} form a subgroup of the group X. Can you determine the structure of this subgroup explicitly?
- Solution. a Suppose that P,Q,R are collinear. Then there is a line L on which they all lie and since every line meets X in exactly three points (counting multiplicities) P,Q,R are the only points where L meets X. In \mathbb{P}^2 any line is equivalnt to z and so $P+Q+R\sim 3P_0$ as divisors, hence $(P-P_0)+(Q-P_0)+(R-P_0)\sim (P_0-P_0)$ as divisors, and therefore P+Q+R=0 in the group law on X.
 - Conversely, suppose that P+Q+R=0 in the group law on X. If P,Q,R are not all distinct, then they are collinear in \mathbb{P}^2 since any two points are collinear in \mathbb{P}^2 . Suppose they are distinct and consider the unique line L on which P and Q lie. This line intersects X in a unique third point T and we have $P+Q+T\sim 3P_0$. Hence, P+Q+T=0 in the group law on X and therefore R=-P-Q=T. So P,Q,R are collinear.
 - b Recall that the tangent line to P is the unique line $T_P(X)$ whose intersection multiplicity with X at P is > 1 (Exercise I.7.3).
 - If $P = P_0$ then certainly the tangent line passes through P_0 . Suppose that $P \neq P_0$ has order 2 and consider the tangent line $T_P(X)$ to P. This line intersects X in three points (counting multiplicities) and since it hits P with multiplicity greater than one, these three points are P, P and R for some other point R (which is possibly also P). Now P, P and R being collinear means that P + P + R + 0 in the group law on X. But P has order 2 and so we see that $R = 0 = P_0$. Hence, the tangent line $T_P(X)$ passes through P_0 .

Conversely, suppose that the tangent line $T_P(X)$ passes through P_0 . Since P_0 is the identity, it has order 2 so suppose that $P \neq P_0$. Again, $T_P(X)$ hits X in three points (counting multiplicities) of which at least two are P, and since we have assumed that $P_0 \neq P$ these three points are P, P and P_0 . Hence, $P + P + P_0 = 0$ and since $P_0 = 0$ we see that P has order 2.

c If P is an inflection point then the intersection multiplicity of $T_P(X)$ and X at P is ≥ 3 . Since X has degree three it can't be more than three and so we see that it is exactly three. So the three points of X that $T_P(X)$ hits, counting multiplicites, are all P, and so P + P + P = 0 in the group law. Hence, P has order three.

Conversely, if P has order three then P+P+P=0 then the three points P,P,P are collinear. That is, there is a line L such that L intersects X in the unique point P with intersection multiplicity three. Since there is a unique line of \mathbb{P}^2 that intersects X at P with multiplicity greater than one—the tangent line—we see that the tangent line intersects X at P with multiplicity three, and therefore P is an inflection point.

d If the base field is \mathbb{C} then the elliptic curve is isomorphic as an abelian variety to the quotient of the complex plane by a lattice \mathbb{Z}^2 .

Exercise 6.7. Let X be the nodal cubic curve $y^2z = x^3 + x^2z$ in \mathbb{P}^2 . Imitate (6.11.4) and show that the group of Cartier divisors of degree θ , $\operatorname{CaCl}^0 X$, is naturally isomorphic to the multiplicative group \mathbb{G}_m .

- **Exercise 6.8.** a Let $f: X \to Y$ be a morphism of schemes. Show that $\mathscr{L} \mapsto f^* \mathscr{L}$ induces a homomorphim of Picard groups, $f^* : \operatorname{Pic} Y \to \operatorname{Pic} X$.
 - b If f is a finite morphism of nonsingular curves, show that this homomorphism corresponds to the homomorphism $f^*: \operatorname{Cl} Y \to \operatorname{Cl} X$ defined in the text, via the isomorphism of (6.16).
 - c If X is a locally factorial integral closed subscheme of \mathbb{P}^n_k , and if $f: X \to \mathbb{P}^n$ is the inclusion map, then f^* on Pic agrees with the homomorphism on divisor class groups defined in (Ex. 6.2) via the isomorphisms of (6.16).

Exercise 6.9. Singular curves.

Exercise 6.10. The Grothendieck Group K(X). Let X be a noetherian scheme. We define K(X) to be the quotient of the free abelian group generated by all the coherent sheaves on X, by the subgroup generated by all expressions $\mathscr{F} - \mathscr{F}' - \mathscr{F}''$, whenever there is an exact sequence $0 \to \mathscr{F}' \to \mathscr{F} \to \mathscr{F}'' \to 0$ of coherent sheaves on X. If \mathscr{F} is a coherent sheaf, we denote by $\gamma(\mathscr{F})$ its image in K(X).

- a If $X = \mathbb{A}^1_k$, then $K(X) \cong \mathbb{Z}$.
- b If X is any integral scheme, and \mathscr{F} a coherent sheaf, we define the rank of \mathscr{F} to be $\dim_k \mathscr{F}_{\xi}$ where ξ is the generic point of X, and $K = \mathcal{O}_{\xi}$ is the function field of X. Show that the rank function defines a surjective homomorphism rank : $K(X) \to \mathbb{Z}$.
- $c\ \mathit{If}\ \mathit{Y}\ \mathit{is}\ \mathit{a}\ \mathit{closed}\ \mathit{subscheme}\ \mathit{of}\ \mathit{X},\ \mathit{there}\ \mathit{is}\ \mathit{an}\ \mathit{exact}\ \mathit{sequence}$

$$K(Y) \to K(X) \to K(X-Y) \to 0$$

where the first map is extension by zero, and the second map is restriction.

Solution. a Let \mathscr{F} be a coherent sheaf on X. Then \mathscr{F} corresponds to a finitely generated k[t]-module M. We take a presentation $k[t]^{\oplus n} \to k[t]^{\oplus m} \to M \to 0$ of M and since k[t] is a principle ideal domain, we can

choose the first morphism to be injective.¹ Hence, we arrive at an exact sequence $0 \to \mathcal{O}_X^{\oplus n} \to \mathcal{O}_X^{\oplus m} \to \mathscr{F} \to 0$ so in the Grothendieck group we have $\gamma(\mathscr{F}) = (m-n)\gamma(\mathcal{O}_X)$. So the morphism $\mathbb{Z} \to K(X)$ sending n to $n\gamma(\mathcal{O}_X)$ is surjective. To see that this morphism is injective, we use the rank homomorphism from the next part of this exercise to split it.

b First we show that it defines a homomorphism. Let $0 \to \mathscr{F}' \to \mathscr{F} \to \mathscr{F}'' \to 0$ be an exact sequence of coherent sheaves on X. Since this sequence is exact, it is exact at every stalk. In particular, it is exact at the stalk at the generic point ξ . So we have an exact sequence of finitely generated \mathcal{O}_{ξ} -modules $0 \to \mathscr{F}'_{\xi} \to \mathscr{F}_{\xi} \to \mathscr{F}''_{\xi} \to 0$. Hence, $\dim_K \mathscr{F}_{\xi} = \dim_K \mathscr{F}''_{\xi} + \dim_K \mathscr{F}'_{\xi}$. So rank is a well-defined homomorphism.

To see that it is surjective, notice that $\gamma(\mathcal{O}_X) \mapsto 1$, and so $n \cdot \gamma(\mathcal{O}_X) \mapsto n$.

c Surjectivity on the right. Every coherent sheaf \mathscr{F} on X-Y can be extended to a coherent sheaf \mathscr{F}' on X such that $\mathscr{F}'|_{X-Y}=\mathscr{F}$ by Exercise II.5.15. So the morphism on the right is surjective.

Exactness in the middle. Suppose that \mathscr{F} is a coherent sheaf on X with support in Y. We will show (below) that there is a finite filtration $\mathscr{F} = \mathscr{F}_0 \supseteq \mathscr{F}_1 \supseteq \cdots \supseteq \mathscr{F}_n = 0$ such that each $\mathscr{F}_i/\mathscr{F}_{i+1}$ is the extension by zero of a coherent sheaf on Y. Assuming we have such a finite filtration, we have $\gamma(\mathscr{F}_i) = \gamma(\mathscr{F}_{i+1}) + \gamma(\mathscr{F}_i/\mathscr{F}_{i+1})$ in K(X) and so $\gamma(\mathscr{F}) = \sum_{i=0}^{n-1} \gamma(\mathscr{F}_i/\mathscr{F}_{i+1})$. Hence, the class represented by \mathscr{F} is in the image of $K(Y) \to K(X)$. Now if $\sum n_i \gamma(\mathscr{F}_i)$ is in the kernel of $K(X) \to K(X-Y)$ the Proof of claim. Let $i:Y \to X$ be the closed embedding of Y into X and consider the two functors $i_*:Coh(X) \to Coh(Y)$ (Exercise II.5.5) and $i^*:Coh(Y) \to Coh(X)$. These functors are adjoint (page 110) and so we have a natural morphism $\eta:\mathscr{F} \to i_*i^*\mathscr{F}$ for any coherent sheaf \mathscr{F} on X. Let Spec A be an open affine subscheme of X on which \mathscr{F} has the form \widetilde{M} . Closed subschemes of affine schemes correspond to ideals bijectively and so Spec $A \cap Y = \operatorname{Spec} A/I$ for some ideal $I \subset A$ and the morphism $\eta: \mathscr{F} \to i_*i^*\mathscr{F}$ restricted to Spec A has the form $M \to M/IM$. Thus we see that η is surjective. Let $\mathscr{F}_0 = \mathscr{F}$ and define \mathscr{F}_j inductively as $\mathscr{F}_j = \ker(\mathscr{F}_{j-1} \to i_*i^*\mathscr{F}_j)$. It follows from our

¹ If N is a submodule of a free A-module M of rank n where A is an integral PID then N is free. Induction on n. If n = 1 then a submodule is an ideal and since A is a PID the ideal is of the form (a) for some a ∈ A. Since A is integral the map $b \mapsto ab$ is an isomorphism of modules. Now suppose $M = A^n$. Consider the submodule A^{n-1} of elements whose last component is zero. Then by the inductive hypothesis $N' = A^{n-1} \cap N$ is free; let m_1, \ldots, m_r be a basis for N' as a free A-module. If π : $A^n \to A$ is projection onto the last component then its image is an ideal I of A. If I = 0 then N' = N and we are done. If not, choose an elemen $n \in N$ such that $\pi n = a$ where (a) = I. Then we claim that $N = N' \oplus An$. Certainly, $N' + An \subseteq N$. If $m \in N$ then $m = (m - (\pi m)n) + (\pi m)n$ is a decomposition into an element of N' and of An so N' + An ⊇ N and therefore N' + An = N, so it remains to see that N' ⊕ An → N' + An is injective. Suppose (x, bn) is in the kernel. Then x + bn = 0 and so $\pi(x + bn) = 0$. But $\pi(x + bn) = ba$ and since A is integral this implies that b = 0. Hence, x + 0n = 0 and so x = 0. So N' ⊕ An → N' + An = N is an isomorphism.

definition that each $\mathscr{F}_i/\mathscr{F}_{i+1}$ is the extension by zero of a coherent sheaf on Y so we just need to show that the filtration $\mathscr{F} \supseteq \mathscr{F}_1 \supseteq \dots$ is finite.

On our open affine we have $\mathscr{F}_j|_{\operatorname{Spec} A}=I^jM$. Now the support of \widetilde{M} contained in the closed subscheme $\operatorname{Spec} A/I=V(I)$ so by Exercise II.5.6(b) we have $\sqrt{\operatorname{Ann} M}\supseteq\sqrt{I}\supseteq I$. Since A is noetherian, every ideal is finitely generated. In particular, I is finitely generated. So there exists some N such that $\operatorname{Ann} M\supseteq I^N$ (see the proof of Exercise II.5.6(d) for details). Hence, $0=I^NM$ and so the filtration is finite when restricted to an open affine. Since X is noetherian, there is a cover by finitely many affine opens $\{U_i\}$ and so if n_i is the point at which $\mathscr{F}_i|_{U_i}=0$ then $\mathscr{F}_{\max\{n_i\}}=0$. So the filtration is finite.

Exercise 6.11. The Grothendieck Group of a Nonsingular Curve. Let X be a nonsingular curve over an algebraically closed field k.

- a For any divisor $D = \sum n_i P_i$, let $\psi(D) = \sum n_i [k(P_i)] \in K(X)$ where $k(P_i)$ is the skyscraper sheaf k at P_i and 0 elsewhere. If D is an effective divisor, let \mathcal{O}_D be the stucture sheaf of the associated subscheme of codimension 1, and show that $\psi(D) = [\mathcal{O}_D]$. Then use (6.18) to show that for any $D, \psi(D)$ depends only on the linear equivalence class of D, so ψ defines a homomorphism $\psi: \operatorname{Cl} X \to K(X)$.
- b For any coherent sheaf \mathscr{F} on X, show that there exists locally free sheaves \mathscr{E}_0 and \mathscr{E}_1 and an exact sequence $0 \to \mathscr{E}_1 \to \mathscr{E}_0$ to $\mathscr{F} \to 0$. Let $r_0 = \operatorname{rank} \mathscr{E}_0$, $r_1 = \operatorname{rank} \mathscr{E}_1$, and define $\det \mathscr{F} = (\wedge^{r_0} \mathscr{E}_0) \otimes (\wedge^{r_1} \mathscr{E}_1)^{-1} \in \operatorname{Pic} X$. Show that $\det \mathscr{F}$ is independent of the resolution chosen, and that it goves a homomorphism $\det : K(X) \to \operatorname{Pic} X$. Finally show that if D is a divsor, then $\det(\psi(D)) = \mathscr{L}(D)$.
- c If \mathscr{F} is any coherent sheaf of rank r, show that there is a divisor D on X and an exact sequence $0 \varnothing \mathscr{L}(D)^{\oplus r} \to \mathscr{F} \to \mathscr{T} \to 0$, where \mathscr{T} is a torsion sheaf. Conclude that if \mathscr{F} is a sheaf of rank f, then $[\mathscr{F}] r[\mathcal{O}_X] \in \operatorname{im} \psi$.
- d Using the maps ψ , det, rank, and $1 \mapsto [\mathcal{O}_X]$ from $\mathbb{Z} \to K(X)$, show that $K(X) \cong \operatorname{Pic} X \oplus \mathbb{Z}$.

Solution. a We denote the associated subscheme of D also by D. So its sheaf of ideals is \mathscr{I}_D . For each closed point $P \in X$ let \mathscr{F}_P be the skyscraper sheaf $\operatorname{coker}((\mathscr{I}_D)_P \to \mathcal{O}_P)$ at P and zero elsewhere. There are surjections $\mathcal{O}_X \to \mathscr{F}_P$ for each P and so we have an exact sequence

$$0 \to \mathscr{I}_D \to \mathscr{O}_X \to \bigoplus_{P \in X} \mathscr{F}_P \to 0$$

Hence, $\mathcal{O}_D \cong \oplus \mathscr{F}_P$ and so $\gamma(\mathcal{O}_D) = \sum \gamma(\mathscr{F}_P)$. Now consider \mathscr{F}_P for some $P \in X$ with \mathscr{F}_P nonzero (there are only finitely many as there are only finitely many points in D). Choose a representation $\{(U_i, f_i)\}$ of the Cartier divisor corresponding to the Weil divisor D. Since D is effective,

this can be chosen so that $f_i \in \Gamma(U_i, \mathcal{O}_{U_i})$ for each i, and in this case the sheaf of ideals \mathscr{I}_D is locally generated by f_i (by the definition on page 145). If U_i is an open that contains P then $v_P(f_i) = n$, where n is the coefficient of P in the sum D. So in the local ring \mathcal{O}_P we have $f_i = t^n$ where t is a generator of \mathfrak{m}_P . The stalk of \mathscr{F}_P at P is by our definition above $\operatorname{coker}((\mathscr{I}_D)_P \to \mathcal{O}_P)$ which we can now see to be $\mathcal{O}_P/\mathfrak{m}_P^n$. For each i we have an exact sequence of \mathcal{O}_P modules $0 \to \mathfrak{m}_P^i/\mathfrak{m}_P^{i+1} \to \mathcal{O}_P/\mathfrak{m}_P^{i+1} \to \mathcal{O}_P/\mathfrak{m}_P^{i+1} \to 0$ and we have isomorphisms of \mathcal{O}_P -modules $\mathfrak{m}_P^i/\mathfrak{m}_P^{i+1} \cong \mathfrak{m}_P/\mathfrak{m}_P^2 \cong k$ so it follows that $\gamma(\mathscr{F}_P) = n\gamma(k(P))$. Combining this with the equality $\gamma(\mathcal{O}_D) = \sum \gamma(\mathscr{F}_P)$ shows that $\psi(D) = \gamma(\mathcal{O}_D)$.

If D' is some other effective divisor in the same linear equivalence class as D then we have

$$\psi(D) = \gamma(\mathcal{O}_D) = \gamma(\mathcal{O}_X) - \gamma(\mathcal{I}_D)$$

$$\stackrel{6.18}{=} \gamma(\mathcal{O}_X) - \gamma(\mathcal{L}(-D)) \stackrel{6.13}{=} \gamma(\mathcal{O}_X) - \gamma(\mathcal{L}(-D'))$$

$$\stackrel{6.18}{=} \gamma(\mathcal{O}_X) - \gamma(\mathcal{I}_{D'}) = \gamma(\mathcal{O}_{D'}) = \psi(D')$$

So ψ defines a homomorphism (for an arbitrary divisor D, write it as a difference of two effective divisors $D = D_+ - D_-$ and then we have $\psi(D) = \gamma(\mathcal{O}_{D_+}) - \gamma(\mathcal{O}_{D_-})$).

b Existence of the exact sequence. By Corollary II.5.18 we can write \mathscr{F} as the quotient of a finite direct sum $\mathscr{E}_0 = \oplus \mathcal{O}(n_i)$ of twisted structure sheaves $\mathcal{O}(n_i)$ for various n_i . Let \mathscr{E}_1 be the kernel of the map $\mathscr{E}_0 \to \mathscr{F}$. At each closed point we then have an exact sequence

$$0 \to (\mathscr{E}_1)_x \to \mathcal{O}_x^{\oplus n} \to \mathscr{F}_x \to 0$$

That is, $(\mathscr{E}_1)_x$ is a submodule of $\mathcal{O}_x^{\oplus n}$. But each \mathcal{O}_x is a reduced regular local ring of dimension one, and therefore a principle ideal domain (the only two ideals are zero since it is reduced, and \mathfrak{m} which is principle since \mathcal{O}_x is regular) and every submodule of a free module over a principle ideal domain is free. Hence $(\mathscr{E}_1)_x$ is free for every closed point x. Then by Exercise II.5.7 \mathscr{E}_1 is locally free.

Independence of \mathcal{E}_1 and \mathcal{E}_0 . Suppose that we choose another locally free resolution $0 \to \mathcal{E}'_1 \to \mathcal{E}'_0 \to \mathcal{F} \to 0$. Consider the sequence $0 \to \mathcal{G} \to \mathcal{G}$

 $\mathcal{E}_0 \oplus \mathcal{E}_0' \to \mathcal{F} \to 0$. We have a diagram

and we know that the rows and the two right columns are exact. Hence, the left column is exact as well by the nine lemma. We also get a similar diagram using $\mathcal{E}'_1, \mathcal{E}'_0$ in the top row which gives an exact sequence $0 \to \mathcal{E}'_1 \to \mathcal{G} \to \mathcal{E}_0 \to 0$ as the left column. We know that \mathcal{G} is a locally free sheaf by the same argument we used to show that existence of the exact sequence and so using the isomorphism of exercise II.5.16(d) we see that

$$\begin{split} (\wedge\mathscr{E}_0)\otimes(\wedge\mathscr{E}_1)^{-1}&\cong(\wedge\mathscr{E}_0)\otimes(\wedge\mathscr{E}_1)^{-1}\otimes(\wedge\mathscr{E}_0')^{-1}\otimes(\wedge\mathscr{E}_0')\\ &\cong(\wedge\mathscr{E}_0)\otimes(\wedge\mathscr{G})^{-1}\otimes(\wedge\mathscr{E}_0')\\ &\cong(\wedge\mathscr{E}_0)\otimes(\wedge\mathscr{E}_1')^{-1}\otimes(\wedge\mathscr{E}_0)^{-1}\otimes(\wedge\mathscr{E}_0')\\ &\cong(\wedge\mathscr{E}_0')\otimes(\wedge\mathscr{E}_1')^{-1} \end{split}$$

So the determinant is independent of the resolution chosen.

The map det defines a homomorphism $K(X) \to \operatorname{Pic}(X)$. We need to show that whenever we have an exact sequence $0 \to \mathscr{F}' \to \mathscr{F} \to \mathscr{F}'' \to 0$ of coherent sheaves, it holds that det $\mathscr{F} \cong (\det \mathscr{F}') \otimes (\det \mathscr{F}'')$. Let $0 \to \mathscr{E}'_1 \to \mathscr{E}'_0 \to \mathscr{F}' \to 0$ be an exact sequence, and $\mathscr{E}_0 \to \mathscr{F}$ a surjective morphism with $\mathscr{E}_0, \mathscr{E}'_0, \mathscr{E}'_1$ all locally free. We define $\mathscr{G} = \ker(\mathscr{E}_0 \oplus \mathscr{E}'_0 \to \mathscr{F})$

and $\mathcal{H} = \ker \mathcal{E}_0 \to \mathcal{F}''$ to obtain a diagram

whose columns and the lower two rows are exact by construction. Hence, by the nine lemma the top row is exact. \mathcal{G} and \mathcal{H} are locally free sheaves by the same argument we used to show the existence of the exact sequence above. using the isomorphism of exercise II.5.16(d) we see that

$$\begin{split} \det \mathscr{F} &\cong (\wedge \mathscr{E}_0) \otimes (\wedge \mathscr{E}_0') \otimes (\wedge \mathscr{G})^{-1} \\ &\cong (\wedge \mathscr{E}_0) \otimes (\wedge \mathscr{E}_0') \otimes (\wedge \mathscr{H})^{-1} \otimes (\wedge \mathscr{E}_1')^{-1} \\ &\cong \det \mathscr{F}' \otimes \det \mathscr{F}'' \end{split}$$

Hence, $\det: K(X) \to \operatorname{Pic}(X)$ is a well defined homomorphism.

For a divisor D, $\det(\psi(D)) = \mathcal{L}(D)$. Suppose D is an effective divisor. Then we have an exact sequence $0 \to \mathscr{I}_Y \to \mathcal{O}_X \to \mathcal{O}_D \to 0$ where Y is the corresponding closed subscheme. Since both \mathcal{O}_X and \mathscr{I}_Y are locally free of one, and by definition $\psi(D) = \gamma(\mathcal{O}_D)$ we have $\det(\psi(D)) = \mathcal{O}_X \otimes \mathscr{I}_Y^{-1} = \mathscr{I}_Y^{-1}$. Then using Proposition II.6.18 this is equal to $\mathscr{L}(-D)^{-1}$ and then by Proposition II.6.13 this is isomorphic to $\mathscr{L}(D)$. If D is not effective, write it as a difference of effective divisors and use the fact that det and ψ are both group homomorphisms together with Proposition II.6.13.

c To construct the injective morphism, the idea is to take a basis for the K(X)-vector space \mathscr{F}_{ξ} , and find a suitable $\mathscr{L}(D)$ such that this basis gives global sections of $\mathscr{L}(D) \otimes \mathscr{F}$. This defines a morphism $\mathcal{O}_X^{\oplus n} \to \mathscr{L}(D) \otimes \mathscr{F}$ which we show to be injective, and then tensor everything with $\mathscr{L}(D)^{-1}$. Cover X with finitely many open affines $\{U_i = \operatorname{Spec} A_i\}_{i=1}^n$. On each of these, the restriction of \mathscr{F} has the form M_i for some A_i -module M_i . Now consider the stalk \mathscr{F}_{ξ} of \mathscr{F} at the generic point. Since X is integral each A_i is integral and so the generic point appears as (0) in each U_i , so we have isomorphisms $\mathscr{F}_{\xi} \cong (\operatorname{Frac} A_i) \otimes_{A_i} M_i$ for each i. If e_1, \ldots, e_n is a

basis for \mathscr{F}_{ξ} as a K(X)-vector space, then these isomorphisms gives each e_j as $\frac{m_{ij}}{a_i}$ for some $m_{ij} \in M_i$ and $a_i \in A_i$ (if for some i the denominators of each $\frac{m_{ij}}{a_{ij}}$ were not the same, multiply by $\frac{\prod_{k \neq j} a_{ik}}{\prod_{k \neq j} a_{ik}}$ to get $\frac{m'_{ij}}{\prod_{a_{ij}}}$). Now we want to use the a_i to define a Cartier divisor but $\frac{a_i}{a_j}$ might not be in $\mathcal{O}_X(U_i \cap U_j)$. We rectify this by shrinking the U_i as follows. First define $U_i' = U_i \backslash V(a_i)$ for each i. If $\cup U_i' \neq X$ then its complement is a finite set of points (since X is a curve), each one of which is contained in $V(a_i)$ for some i (since $\{U_i\}$ was a cover). For each of these points x, choose a $V(a_i)$ that it is in, and put it back in U_i . So if Z_i is the set of points in $V(a_i)$ that we have decided to leave in U_i , we have $U_i' = U_i \backslash (V(a_i) \backslash Z_i)$. The end result is that for $i \neq j$, if x is a point in $V(a_i) \cup V(a_j)$ then $x \notin U_i' \cap U_j'$. So $V(a_i) \cap (U_i' \cap U_j')$ and $V(a_j) \cap (U_i' \cap U_j')$ are both empty. It follows that a_i and a_j are both invertible in $\mathcal{O}_X(U_i' \cap U_j')$.

So we can define a Cartier divisor $D' = \{(U_i', a_i\} \text{ whose associated sheaf is locally generated by } \frac{1}{a_i} \text{ on } U_i'.$ The point is that our basis vectors e_j from \mathscr{F}_{ξ} are now sections $\frac{1}{a_i} \otimes m_{ij}$ of $\Gamma(U_i', \mathscr{L}(D') \otimes_{\mathcal{O}_X} \mathscr{F})$. Futhermore, these sections agree on the intersections and so we have global sections $e_i \in \Gamma(X, \mathscr{L}(D') \otimes_{\mathcal{O}_X} \mathscr{F})$ and this we obtain a morphism $\mathcal{O}_X^{\oplus n} \to \mathscr{L}(D') \otimes \mathscr{F}$. We claim that this is injective. To see this, it will be enough to show that the $\frac{1}{a_i} \otimes m_{ij}$ generate a free submodule of $\Gamma(U_i', \mathscr{L}(D') \otimes_{\mathcal{O}_X} \mathscr{F})$. To see this let $M = \Gamma(U_i', \mathscr{L}(D') \otimes_{\mathcal{O}_X} \mathscr{F})$ and consider the morphism $M \to M \otimes K(X)$. Let $A = \mathcal{O}_X(U_i')$ and let $A^n \to M$ be the morphism defined by sending (a_1, \ldots, a_n) to $\sum_j a_j \frac{1}{a_i} \otimes m_{ij}$. If $A^n \to M$ were to have a kernel, say N, then we would have an exact sequence

$$N \otimes K \to A^n \otimes K \to M \otimes K$$

but the second morphism is an isomorphism and so $N \otimes K$ is zero. Hence the composition $N \to N \otimes K \to A^n \otimes K$ is zero. But this is the same as the composition $N \to A^n \to A^n \otimes K$, and both of these maps are injective. Hence, N=0.

So we have an injective morphism of sheaves $\mathcal{O}_X \to \mathcal{L}(D') \otimes \mathcal{F}$. Now we need just tensor with $\mathcal{L}(D')^{-1} = \mathcal{L}(D)$ and we obtain an exact sequence $0 \to \mathcal{L}(D)^{\oplus n} \to \mathcal{F} \to \mathcal{T} \to 0$ where \mathcal{T} is the cokernel of $\mathcal{L}(D)^{\oplus n} \to \mathcal{F}$. To see that \mathcal{T} is torsion, consider the stalk of this exact sequence at the generic point. We get an exact sequence of K(X)-vector spaces $0 \to V' \to V \to V'' \to 0$ and the ranks of V' and V are the same. Hence $\mathcal{T}_{\xi} = 0$ and \mathcal{T} is torsion.

To show that $[\mathscr{F}] - r[\mathcal{O}_X]$ is in the image of ψ we first use the exact sequence $0 \to \mathscr{L}(D)^{\oplus r} \to \mathscr{F} \to \mathscr{T} \to 0$ to see that $[\mathscr{F}] - r[\mathcal{O}_X] = r[\mathscr{L}(D)] + [\mathscr{T}] - r[\mathcal{O}_X]$. So if $[\mathscr{T}]$ and $[\mathscr{L}(D)] - [\mathcal{O}_X]$ are in the image of ψ then we are done.

²For any affine scheme Spec A, if a is not invertible, then (a) is a proper ideal of A, and therefore contained in some maximal idea (Zorn's Lemma) \mathfrak{m} which implies that $a \in \mathfrak{m}$ and so $\mathfrak{m} \in V(a)$. Therefore, if $V(a) = \emptyset$ then a is invertible.

(i) $[\mathcal{L}(D)] - [\mathcal{O}_X]$ is in the image of ψ . As we saw in part (a) of this exercise, for effective divisors D there is an exact sequence $0 \to \mathcal{L}(D) \to \mathcal{O}_X \to \mathcal{O}_D \to 0$ (c.f. Proposition II.6.18) so in K(X) we have $[\mathcal{O}_D] = [\mathcal{O}_X] - [\mathcal{L}(D)]$. Now if D is not necassarily effective, then it can be written as a difference $D = D_+ - D_-$ of effective divisors. Then we have $\psi(D) = [\mathcal{O}_{D_+}] - [\mathcal{O}_{D_-}] = [\mathcal{O}_X] - [\mathcal{L}(D_+)] - [\mathcal{O}_X] + [\mathcal{L}(D_-)] = [\mathcal{L}(D_-)] - [\mathcal{L}(D_+)]$. Now since $\mathcal{L}(D_-)^{-1}$ is locally free, tensoring with it preserves exact sequences, so $\Phi: [\mathscr{F}] \mapsto [\mathscr{F} \otimes \mathcal{L}(D_-)^{-1}]$ is a well defined (set) function on K(X). So $\Phi(\psi(D)) = \Phi([\mathcal{L}(D_-)] - [\mathcal{L}(D_+)]) = [\mathcal{O}_X] - [\mathcal{L}(D)]$. But $\psi(D) = \sum n_i [k(P_i)]$ where $D = \sum n_i P_i$. and so $\psi(D)$ is unchanged by Φ . Hence $[\mathcal{O}_X] - [\mathcal{L}(D)]$ is in the image of ψ .

(ii) $[\mathcal{T}]$ is in the image of ψ . By Exercise II.5.6 the support of \mathcal{T} is a closed subset of X. Since X is a curve, this is a finite set of points, so $\mathscr{T} = \oplus \mathscr{T}_{P_i}$ is a finite sum of skyscraper sheaves. If we can show that $[\mathscr{T}_P]$ is in the image of ψ for every coherent skyscraper sheaf \mathscr{T}_P then we are done. As we are not assuming X complete, it is enough to do this in the affine case. So suppose that $X = \operatorname{Spec} A$ and that M is a coherent skyscraper sheaf, concentrated at the maximal prime $\mathfrak{p} \in \operatorname{Spec} A$. For each i we have an exact sequence $0 \to \mathfrak{p}^{i+1}M \to \mathfrak{p}^iM \to \mathfrak{p}^iM/\mathfrak{p}^{i+1}M \to$ 0. The A-module $\mathfrak{p}^i M/\mathfrak{p}^{i+1} M$ is a finite rank A/\mathfrak{p} -module; that is, a finite dimensional vector space. Hence, $\mathfrak{p}^i M/\mathfrak{p}^{i+1} M \cong (A/\mathfrak{p})^{\oplus n_i}$ for some n_i . The associated sheaf to A/\mathfrak{p} is the skyscraper sheaf k(P) and so by induction, we have $[M] = \sum_{i>0} n_i[k(P)]$, if this sum is finite. As the support of M is \mathfrak{p} , Exercise II.5.6(b) shows that $\sqrt{\operatorname{Ann} M} = \mathfrak{p}$. The ring Ais noetherian and so $\mathfrak{p}^N \subseteq \operatorname{Ann} M$ for some N. ³ This means that $\mathfrak{p}^N M =$ 0. Hence, $n_i = 0$ for each j > N and so the sum $[M] = \sum_{i>0} n_i [k(P)]$ is finite. Therefore, $[\mathcal{T}]$ is in the image of ψ .

d The diagram is

$$\operatorname{Pic} X \xrightarrow{\operatorname{det}} K(X) \xrightarrow[\operatorname{rank}]{n\gamma(\mathcal{O}_X)} \mathbb{Z}$$

It is fairly evident that $\operatorname{rank}(n\gamma(\mathcal{O}_X)) = n$ and $\det(n\gamma(\mathcal{O}_X)) = \mathcal{O}_X^{\otimes n} = \mathcal{O}_X = 1 \in \operatorname{Pic}(X)$. Furthermore, since ψ takes a divisor to a sum of skyscraper sheaves, and the rank of a skyscraper sheaf is zero, we have $\operatorname{rank} \circ \psi = 0$. So we just need to show that $\det \circ \psi = id_{\operatorname{Pic} X}$.

Suppose that D is an effective divisor and $\mathscr{L}(D)$ the corresponding invertible sheaf. Then by part (a) ψ sends D to $\gamma(\mathcal{O}_D) = \gamma(\mathcal{O}_X) - \gamma(\mathscr{I}_D)$. By Proposition II.6.18 this is equal to $\gamma(\mathcal{O}_X) - \gamma(\mathscr{L}(-D))$. The homomorphism det then takes this to $\mathcal{O}_X \otimes (\mathscr{L}(-D))^{\vee} \cong (\mathscr{L}(-D))^{\vee} \cong \mathscr{L}(D)$. Hence $\det \circ \psi = id_{\operatorname{Pic} X}$.

³Since A is noetherian, \mathfrak{p} is finitely generated. Let a_1, \ldots, a_n be generators. For each i there is some n_i such that $a_i^{n_i} \in \operatorname{Ann} M$. Taking N high enough, every monomial of degree N in the a_i will contain at least one term of the form a_i^m with $m > n_i$. Hence, $\mathfrak{p}^N \subseteq \operatorname{Ann} M$.

Exercise 6.12. Let X be a complete nonsingular curve. Show that there is a unique way to define the degree of any coherent sheaf on X, $\deg \mathscr{F} \in \mathbb{Z}$, such that:

- a If D is a divisor, $\deg \mathcal{L}(D) = \deg D$;
- b If \mathscr{F} is a torsion sheaf then $\deg \mathscr{F} = \sum_{P \in X} \operatorname{length}(\mathscr{F}_P)$; and
- c If $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ is an exact sequence, then $\deg \mathcal{F} = \deg \mathcal{F}' + \deg \mathcal{F}''$.