Lecture 3.3 Qualitative Analysis

UNIVERSITY OF AUCKLAND

COMPSCI 705 / SOFTENG 702

Dr. Danielle Lottridge

Let's get some data to analyse

- Use the two interview questions that you generated on travel
- Get in pairs for a 4-minute semi-structured interview
- Interviewer takes at least 8 notes while listening
- Switch roles. Share your notes.

Learning Objectives

- Understand basic concepts in qualitative analysis
- Be able to analyse qualitative data

Outline

- Qualitative data
- Approaches to qualitative analysis
 - Affinity diagram
 - Grounded theory method
 - Thematic analysis

Qualitative data

- Verbal data from open ended questions
- Interview data
 - observation data
 - document data
 - audiovisual data
- Text and images

Qualitative data example from Google

CHROME BROWSER

kodiak cakes cinnamon rolls - Google Search Cinnamon Roll Microwave Mug Cake | Kodiak CakesKodiak Cakes

MYFITNESSPAL MyFitnessPal

Approaches to qualitative analysis

- Forms of "coding"
- Approaches to qualitative analysis
 - Affinity diagram
 - Grounded theory method
 - Thematic analysis
- Standards for rigour
 - referenced method
 - clear definition of saturation
 - emerging: positionality

Saturation

- Arrive at a point in research where no new themes are learned
 - stop data collection / participant recruitment
 - stop data analysis
- Defining saturation has been debated

Forms of "coding" qualitative data

- Open: identify categories
- Axial: "flesh out" and link to subcategories
- Selective: form theoretical scheme

11

Grounded Theory

- Derives theory from systematic analysis of data
- Based on categorization approach
- Curiosity, Creativity, Surprise
- Based on categorization approach

Case Study in Human Robot Interaction using Grounded Theory

Mutlu, B., & Forlizzi, J. (2008, March). Robots in organizations: the role of workflow, social, and environmental factors in human-robot interaction. In 2008 3rd ACM/IEEE International Conference on Human-Robot Interaction (HRI) (pp. 287-294). IEEE.

13

THE PROCESS

Reading (and re-reading) a textual database (e.g., a corpus of field notes

"Discovering" or labeling variables (called categories, concepts and properties)

Identifying interrelationships

OPEN CODING

Coding for concepts that are significant in the data as abstract representations of events, objects, relationships, interactions, etc.

Reliability analysis ensures objectivity of coding

Cohen's Kappa, >.70 acceptable

{abusing the robot}

I kicked it before and I was told not to...

[laughs]...when it first came.

^{*} Mutlu, B. & Forlizzi, J. (2008). Robots in Organizations: Workflow, Social, and Environmental Factors in Human-Robot Interaction. In Proceedings of HRI'08 — Winner of the best paper award.

AXIAL CODING

Concepts are categorized into explanations of arising phenomena (e.g., repeated events, actions, and interactions)

SELECTIVE CODING

Integrate categories into a central paradigm—a "big picture" of the findings through building relationship across categories and contextualizing phenomena in data

Diagramming or tables could be used to build relational models

COMPARATIVE ANALYSIS

Compare the central phenomenon across several dimensions to understand how it is affected by social, physical, or organizational structures

THEORY BUILDING

Build a final theoretical model based on the results of the comparative analysis

"Embed" existing theory in this model

RECAP OF PROCESS

Thematic Analysis

Phase		Examples of procedure for each step
1.	Familiarising oneself with the data	Transcribing data; reading and re-reading; noting down initial codes
2.	Generating initial codes	Coding interesting features of the data in a systematic fashion across the
		data-set, collating data relevant to each code
3.	Searching for the themes	Collating codes into potential themes, gathering all data relevant to each
		potential theme
4.	Involved reviewing the themes	Checking if the themes work in relation to the coded extracts and the
		entire data-set; generate a thematic 'map'
5.	Defining and naming themes	Ongoing analysis to refine the specifics of each theme; generation of clear
	30.9 F (time)	names for each theme
6.	Producing the report	Final opportunity for analysis selecting appropriate extracts; discussion of
	7.75 CT0.	the analysis; relate back to research question or literature; produce report

Your turn...

Share your notes with a new peer. Code them with thematic analysis.

Thematic Analysis

i			
Phase		Examples of procedure for each step	
1.	Familiarising oneself with the data	Transcribing data; reading and re-reading; noting down initial codes	
2.	Generating initial codes	Coding interesting features of the data in a systematic fashion across the	
		data-set, collating data relevant to each code	
3.	Searching for the themes	Collating codes into potential themes, gathering all data relevant to each	
		potential theme	
4.	Involved reviewing the themes	Checking if the themes work in relation to the coded extracts and the	
		entire data-set; generate a thematic 'map'	
5.	Defining and naming themes	Ongoing analysis to refine the specifics of each theme; generation of clear	
		names for each theme	
6.	Producing the report	Final opportunity for analysis selecting appropriate extracts; discussion of	
		the analysis; relate back to research question or literature; produce report	

Practice Problem

Use these words to fill in the sentences below.

grouping descriptive labels/themes

coding theory

Affinity diagrams involves _____ and gives _____.

Grounded theory method involves ____ and gives _____.

Thematic analysis involves ____ and gives ____.