ระบบน้ำหมุนเวียนเพื่อเป็นการประหยัดการใช้น้ำ ตู้ปลูกผักไร้ดินนี้จะเป็นตัวที่ช่วยให้มีความ สะดวกสบายในการปลูกผักกินเองภายในครอบครัว การนำเทคโนโลยีด้าน Internet of Things หรือ IoT มาใช้ในการทำงานของตู้ปลูกผักไร้ดินนี้ เพื่อช่วยให้การทำงานของตู้ปลูกผักไร้ดินนี้เป็นระบบ อัตโนมัติ ซึ่งเทคโนโลยีด้าน IoT คือ การนำอินเทอร์เน็ตที่เชื่อมต่อกับอุปกรณ์ และเครื่องมือต่าง ๆ เช่น สมาร์ทโฟน โทรทัศน์ ตู้เย็น หรืออุปกรณ์อิเล็กทรอนิกส์ต่าง ๆ เข้าไว้ด้วยกัน โดยเครื่องมือต่าง ๆ นั้นจะสามารถเชื่อมโยงและสื่อสารกันผ่านระบบอินเทอร์เน็ตได้ ปัจจุบันนี้เทคโนโลยีทางด้าน IoT มี ความนิยมเพิ่มขึ้นเป็นอย่างมาก มีการนำมาพัฒนาเพื่อทำให้เกิดความสะดวกสบายในการทำกิจกรรม ต่าง ๆ จึงเป็นแนวทางที่ดี ที่จะนำ IoT มาประยุกต์ใช้ในการปลูกผักแบบไร้ดิน

ตู้ปลูกผักไร้ดินนี้จะช่วยให้การปลูกผักไร้ดินเป็นเรื่องง่ายขึ้น รวมถึงยังทำให้การปลูกผักใน อาคารหรือพื้นที่ที่แสดงแดดเข้าไม่ถึงเป็นเรื่องที่เป็นไปได้ โดยผักที่ปลูกนั้นจะสามารถเจริญเติบโตได้ เหมือนกับผักที่ปลูกกลางแสงแดด และสามารถรับประทานได้แล้วผักที่ปลูกภายในตู้ปลูกผักนั้นยัง ปลอดจากสารพิษปนเปื้อน รวมถึงป้องกันแมลงที่เป็นศัตรูพืช ทำให้ผักที่ได้นั้นเป็นผักที่มีคุณภาพ สะอาดและปลอดภัย เหมาะกับการนำไปรับประทานเพื่อสุขภาพ

1.2 วัตถุประสงค์ของการจัดทำโครงงานพิเศษ

- 1.2.1 เพื่อใช้ IoT ช่วยในการปลูกพืชแบบไร้ดิน
- 1.2.2 เพื่อเป็นแนวทางการศึกษาทางด้าน IoT และสามารถนำไปประยุกต์ใช้ได้ในอนาคต
- 1.2.3 เพื่อเป็นแนวคิดที่อาจนำไปพัฒนาให้มีความเหมาะสมต่อไป
- 1.2.4 เพื่อเป็นการเรียนรู้การประยุกต์ใช้อุปกรณ์ต่าง ๆ
- 1.2.5 เพื่อเป็นการศึกษาข้อมูลต่างๆที่ใช้ในการปลูกพืชไร้ดิน
- 1.2.6 เพื่อให้ได้รับประทานผักที่สะอาด และปลอดจากสารพิษปนเปื้อน
- 1.2.7 เพื่อให้การปลูกผักไร้ดินเป็นเรื่องง่ายสำหรับผู้ที่มีพื้นที่ในการปลูกน้อย

1.3 ขอบเขตของการจัดทำโครงงานพิเศษ ภาคการศึกษาที่ 1/2559

- 1.3.1 ภายในตู้ปลูกผักต้องสามารถตรวจวัดค่าอุณหภูมิ และค่าความชื้นได้
- เมื่อค่าความชื้นมากเกินกว่าที่ได้กำหนดไว้ พัดลมระบายอากาศจะทำงาน เพื่อทำให้ อากาศภายในตู้มีการถ่ายเท
- 1.3.2 ตู้ปลูกผักต้องสามารถตรวจวัดค่า pH และค่า EC ในน้ำ โดยสามารถเก็บข้อมูลไว้ใน Google sheets ได้
- การตรวจวัดค่า pH และค่า EC จะทำการกำหนดให้มีการตรวจค่าทุก ๆ 7 วัน หรือ เมื่อต้องการ แล้วทำการเก็บข้อมูลไว้ที่ Google Sheets
 - 1.3.3 ออกแบบ ประกอบและติดตั้งอุปกรณ์ในตู้ปลูกผักไร้ดิน

- ออกแบบตู้ปลูกผักให้มีความเหมาะสม และสะดวกในการใช้งาน โดยคำนึงถึงความ ประหยัดในการเลือกใช้อุปกรณ์ เพื่อทำให้ตู้ปลูกผักไร้ดินนี้ราคาไม่สูงและมีคุณภาพ
 - 1.3.4 ระบบน้ำสามารถไหลเวียนภายในตู้ได้
- ระบบน้ำที่ไหลเวียนภายในตู้ จะมีการฆ่าเชื้อด้วยแสง UV ที่ได้จากหลอดไฟ UV เพื่อ ทำให้น้ำที่ใช้ในการให้สารอาหารกับผัก มีคุณภาพที่ดี
 - สามารถนำน้ำกลับมาใช้ได้ใหม่
 - 1.3.5 ปั๊มน้ำ และ หลอดไฟ LED สามารถทำงานได้อัตโนมัติ
- ปั๊มน้ำ และ หลอดไฟ LED จะสามารถทำงานได้ตามเงื่อนไขที่กำหนดไว้ โดยปั๊มน้ำจะ ถูกกำหนดให้หยุดทำงานเป็นระยะเวลาหนึ่ง เพื่อทำการตรวจสอบค่า pH และค่า EC ภายในน้ำ

1.4 ขอบเขตของการจัดทำโครงงานพิเศษ ภาคการศึกษาที่ 2/2559

- 1.4.1 ทำการเก็บข้อมูลการปลูกผักในตู้ปลูกผักไร้ดิน
- การเก็บข้อมูลการปลูกผัก จะทำการเก็บข้อมูลทั้งหมด เช่น ชนิดของผัก และค่า สารอาหารต่าง ๆ ที่ผักได้รับเพื่อนำข้อมูลที่ได้ไปใช้ในการปรับปรุงตู้ปลูกผักให้มีความเหมาะสมกับผัก ที่ใช้ปลูก ให้ผักที่ได้มีคุณภาพที่ดี
 - สรุปค่าสถิติสภาพแวดล้อม ที่ใช้ในการปลูกผัก
 - คำนวณค่าผลตอบแทนจากการลงทุนในการปลูกผักแต่ละครั้ง (ROI)
 - 1.4.2 ปรับค่าตู้ให้เหมาะสมในการปลูกผักชนิดต่าง ๆ
- ทำการปรับค่าตู้ให้เหมาะสมกับการปลูกผักแต่ละชนิด คือ สลัดแก้ว, กรีนโอ๊ค, เรด โอ๊ค และคอส
 - 1.4.3 สามารถแสดงผลผ่าน Web Application ได้
- การแสดงข้อมูลผ่าน Web Application โดยจะทำการนำข้อมูลที่ได้ทำการเก็บไว้ใน Google Sheets มาแสดง เพื่อทำให้สามารถดูข้อมูลง่ายขึ้น และสะดวกขึ้น โดยภายใน Web Application นี้ จะสามารถทำการควบคุมการทำงานของอุปกรณ์ต่าง ๆ ภายในตู้ได้
 - สามารถสั่งให้ถ่ายรูปและแสดงบนหน้าเว็บได้ เพื่อดูสถานะของผักภายในตู้
 - สามารถควบคุมการเปิดปิดหลอดไฟ LED Grow Light ได้ ทั้ง Manual และ Auto
- สามารถตรวจสอบสถานะของผักว่าเป็นผักชนิดใด มีอายุกี่วัน สามารถรับประทานได้ วันไหนได้จากหน้าเว็บ โดยอาศัย Tag จากหน้าเว็บและ Tag จากผักที่อยู่ในตู้

1.5 วิธีดำเนินการจัดทำโครงงานพิเศษ

- 1.5.1 ศึกษาข้อมูลต่าง ๆ เกี่ยวกับการปลูกพืชไร้ดิน
 - 1.5.1.1 ศึกษาการปลูกพืชไร้ดิน

- 1.5.1.2 ออกแบบตู้สำหรับปลูกผักไร้ดิน
- 1.5.2 ศึกษาการทำงานของอุปกรณ์ต่างๆที่ในมาใช้
 - 1.5.2.1 ศึกษาการทำงานของ Board Microcontroller
 - 1.5.2.2 ศึกษาการทำงานของ Sensor และ Module ต่าง ๆ
 - 1.5.2.3 ทดลองใช้อุปกรณ์ต่าง ๆ
- 1.5.3 นำข้อมูลที่ได้มาลงมือปฏิบัติ
 - 1.5.3.1 เริ่มทดลองการปลูกพืชไร้ดิน
 - 1.5.3.2 เริ่มทำการตรวจวัดค่าต่าง ๆ จากการใช้ Sensor
 - 1.5.3.3 สร้างตู้สำหรับปลูกผักไร้ดิน
- 1.5.4 พัฒนาระบบตามที่ได้ออกแบบไว้
- 1.5.4.1 เขียนโปรแกรมให้ตัวบอร์ดไมโครคอนโทรลเลอร์ เพื่อให้สามารถทำงานร่วมกับ Sensor และ Module ได้ตามที่ต้องการ
 - 1.5.4.2 เขียนโปรแกรมการแสดงผลที่ได้ออกมาไว้อย่างคร่าว ๆ
 - 1.5.5 ทดสอบและแก้ไขระบบงาน
 - 1.5.5.1 ทดสอบการทำงานต่าง ๆ และทำการแก้ไข้ข้อผิดพลาด
 - 1.5.6 ตรวจสอบความถูกต้องว่าสามารถใช้งานได้จริง
 - 1.5.7 ทดสอบการปลูกพืชไร้ดินในตู้ที่ได้ออกแบบไว้
 - 1.5.7.1 ทดสอบโดยการปลูกพืชชนิดที่ต่างกัน
 - 1.5.7.2 ทำบันทึกการเจริญเติบโตของพืชแต่ละชนิด
 - 1.5.8 ลงมือพัฒนาระบบตามที่ได้ออกแบบไว้
 - 1.5.8.1 เขียนโปรแกรมการแสดงผลในรูปแบบ Web Application
 - 1.5.8.2 ปรับค่าตู้ให้เหมาะสมกับการปลูกผัก
 - 1.5.9 ทดสอบประสิทธิภาพของระบบ
 - 1.5.9.1 ทดสอบการทำงานของระบบต่าง ๆ
 - 1.5.10 ปรับปรุงแก้ไขข้อผิดพลาด
 - 1.5.11 ตรวจสอบว่าระบบใช้งานได้ตามที่ได้ออกแบบไว้
 - 1.5.12 จัดทำเอกสารเพื่อประกอบการใช้งาน

1.6 แผนกิจกรรมและตารางเวลาในการจัดทำโครงงานพิเศษ ภาคการศึกษา 1/2559

ตารางที่ 1-1 แสดงแผนกิจกรรม และตารางเวลาในการจัดทำภาคการศึกษาที่ 1/2559

	ภาคการศึกษาที่ 1															
ขั้นตอนการดำเนินงาน		สิงหาคม			กันยายน					ตุลา	าคม		พฤษจิกายน			
	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
1.ศึกษาข้อมูลต่างๆเกี่ยวกับการปลูก																
พืชไร้ดิน																
2.ศึกษาการทำงานของอุปกรณ์ต่างๆ																
3.นำข้อมูลที่ได้มาลงมือปฏิบัติ																
4.พัฒนาระบบตามที่ได้ออกแบบไว้																
5.ทดสอบและแก้ไขระบบงาน																
6.ตรวจสอบความถูกต้องว่าสามารถ																
ใช้งานได้จริง																
7.จัดทำเอกสารเพื่อประกอบการใช้																
งาน																

1.7 แผนกิจกรรมและตารางเวลาในการจัดทำโครงงานพิเศษ ภาคการศึกษา 2/2559

ตารางที่ 1-2 แสดงแผนกิจกรรม และตารางเวลาในการจัดทำภาคการศึกษาที่ 2/2559

ภาคการศึกษาที่ 2																
ขั้นตอนการดำเนินงาน		มกร	าคเ	1	กุมพาพันธ์			มีนาคม				เมษายน				
	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
1.ทดสอบการปลูกพืชไร้ดินในตู้ที่ได้																
ออกแบบไว้																
2.ลงมือพัฒนาระบบตามที่ได้ทำการ																
ออกแบบไว้																
3.ทดสอบประสิทธิภาพของระบบ																
4.ปรับปรุงแก้ไขข้อผิดพลาด																
5.ตรวจสอบว่าระบบใช้งานได้ตามที่																
ได้ออกแบบไว้																

ตารางที่ 1-2 แสดงแผนกิจกรรม และตารางเวลาในการจัดทำภาคการศึกษาที่ 2/2559 (ต่อ)

		ภาคการศึกษาที่ 2														
ขั้นตอนการดำเนินงาน		มกราคม			กุมพาพันธ์				มีนาคม				เมษายน			
	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
6.จัดทำเอการเพื่อประกอบการใช้																
งาน																

1.8 เครื่องมือในการจัดทำโครงงานพิเศษ

1.8.1 เครื่องมือในการจัดทำโครงงานพิเศษ

ด้านวัสดุอุปกรณ์

ม เหายม่ถึกแาเห	
- ปั๊มน้ำ	1 ตัว
- หลอดไฟ LED Grow Light	6 หลอด
- พัดลมระบายอากาศ	6 ตัว
ด้าน Hardware	
- เครื่องคอมพิวเตอร์ 1 ชุด	
- อุปกรณ์ที่ใช้เชื่อมต่อเครือข่าย	
- Smartphone	
- Node MCU ESP8266	1 ตัว
- Arduino UNO R3	1 ตัว
- Module Camera	1 ตัว
- Module Temperature and Humidity Sensor DHT22	1 ตัว
- Module Relay 16 Channel	1 ตัว
- Module Analog pH Sensor	1 ตัว
- Module Analog EC Sensor	1 ตัว

ด้าน Software

- ระบบปฏิบัติการ Windows
- Sublime Editor
- Arduino Editor
- HTML
- C
- Java Script

1.9 ผลที่คาดว่าจะได้รับ

- 1.9.1 ได้บริโภคผักที่สะอาด ปลอดสารพิษ
- 1.9.2 ประหยัดเงินในการซื้อผักมาทานเอง
- 1.9.3 ผู้ใช้งานเห็นว่า IoT มีประโยชน์ในการช่วยปลูกผัก
- 1.9.4 สร้างความสะดวกสบายในการปลูกผักโดยใช้เทคโนโลยี IoT
- 1.9.5 สามารถนำไปต่อยอดการใช้งาน IoT เพิ่มเติมในอนาคตได้
- 1.9.6 สามารถนำความรู้เกี่ยวกับ Analog pH Meter และ Analog Electrical Conductivity Meter มาประยุกต์ใช้ในชีวิตประจำวัน