6.2,3,4 Find derivatives and integrals of exponential and logarithmic functions.

Compounded twice
$$f_{1000} = \frac{6 m}{50 \times} f_{1500} = \frac{6 m}{50 \times} f_{2250}$$

Monthly? $f_{1000} = \frac{6 m}{50 \times} f_{1500} = \frac{6 m}{50 \times} f_{2250}$

Monthly? $f_{1000} = \frac{6 m}{50 \times} f_{1500} = \frac{6 m}{50 \times} f_{2250}$

Daily? $f_{1000} = \frac{6 m}{50 \times} f_{1500} = \frac{6 m}{50 \times} f_{2250}$

Daily? $f_{1000} = \frac{6 m}{50 \times} f_{1000} = \frac{6 m}{50 \times} f_{2250}$
 $f_{1000} = \frac{6 m}{50 \times} f_{1000} = \frac{6 m}{50 \times} f_{2250}$
 $f_{1000} = \frac{6 m}{1000} f_{1000}$
 $f_{1000} = \frac{6 m}{10000} f_{1000}$
 $f_{1000} = \frac{6 m}{1000} f_{1000}$
 $f_{1000} = \frac{6$

Po 418

31
$$f(x) = e^{5}$$
 $f(x) = 0$

32 $k(i) = e^{i} + e^{e}$ $k'(i) = e^{i} + e^{e-1}$

Exp Proof Me Note

33 $f(x) = (3x^{2} - 5x) e^{x}$

Product rule

 $f'(x) = (6x - 5) e^{x} + (3x^{2} - 5x) e^{x}$
 $= e^{x}(6x - 5 + 3x^{2} - 5x)$
 $= e^{x}(3x^{2} + x - 5)$

37 $y = e^{\tan \theta} = f(g(\theta))$

Chain rule: $e^{i} = f(\theta)$ $g'(\theta) = e^{i}$

inner: $tan \theta = g(\theta)$ $g'(\theta) = sec^{2}\theta$
 $= e^{\tan \theta} sec^{2}\theta$

#83 $\int_{0}^{1} x^{e} + e^{x} dx$
 $\frac{1}{e^{x}} x^{e+1} + e^{x} \Big|_{0}^{1}$

$$\left(\frac{1}{e+1}(1)^{e+1} + e^{t}\right) - \left(\frac{1}{e+1}(0)^{e+1} + e^{6}\right)$$

$$\left(\frac{1}{e+1} + e\right) - \left(0 + \frac{1}{e+1}(0)^{e+1} + e^{6}\right)$$

$$\left(\frac{1}{e+1} + e\right) - \left(0 + \frac{1}{e+1}(0)^{e+1} + e^{6}\right)$$

$$\left(\frac{1}{e+1} + e\right) - \left(0 + \frac{1}{e+1}(0)^{e+1} + e^{6}\right)$$

$$\left(\frac{1}{e+1} + e\right) - \left(0 + \frac{1}{e+1}(0)^{e+1} + e^{6}\right)$$

$$\left(\frac{1}{e+1} + e\right) - \left(0 + \frac{1}{e+1}(0)^{e+1} + e^{6}\right)$$

$$\left(\frac{1}{e+1} + e\right) - \left(0 + \frac{1}{e+1}(0)^{e+1} + e^{6}\right)$$

$$\left(\frac{1}{e+1} + e\right) - \left(0 + \frac{1}{e+1}(0)^{e+1} + e^{6}\right)$$

$$\left(\frac{1}{e+1} + e\right) - \left(0 + \frac{1}{e+1}(0)^{e+1} + e^{6}\right)$$

$$\left(\frac{1}{e+1} + e\right) - \left(0 + \frac{1}{e+1}(0)^{e+1} + e^{6}\right)$$

$$\left(\frac{1}{e+1} + e\right) - \left(0 + \frac{1}{e+1}(0)^{e+1} + e^{6}\right)$$

$$\left(\frac{1}{e+1} + e\right) - \left(0 + \frac{1}{e+1}(0)^{e+1} + e^{6}\right)$$

$$\left(\frac{1}{e+1} + e\right) - \left(0 + \frac{1}{e+1}(0)^{e+1} + e^{6}\right)$$

$$\left(\frac{1}{e+1} + e\right) - \left(0 + \frac{1}{e+1}(0)^{e+1} + e^{6}\right)$$

$$\left(\frac{1}{e+1} + e\right) - \left(0 + \frac{1}{e+1}(0)^{e+1} + e^{6}\right)$$

$$\left(\frac{1}{e+1} + e\right) - \left(0 + \frac{1}{e+1}(0)^{e+1} + e^{6}\right)$$

$$\left(\frac{1}{e+1} + e\right) - \left(0 + \frac{1}{e+1}(0)^{e+1} + e^{6}\right)$$

$$\left(\frac{1}{e+1} + e\right) - \left(0 + \frac{1}{e+1}(0)^{e+1} + e^{6}\right)$$

$$\left(\frac{1}{e+1} + e\right) - \left(0 + \frac{1}{e+1}(0)^{e+1} + e^{6}\right)$$

$$\left(\frac{1}{e+1} + e\right) - \left(0 + \frac{1}{e+1}(0)^{e+1} + e^{6}\right)$$

$$\left(\frac{1}{e+1} + e\right) - \left(0 + \frac{1}{e+1}(0)^{e+1} + e^{6}\right)$$

$$\left(\frac{1}{e+1} + e\right) - \left(0 + \frac{1}{e+1}(0)^{e+1} + e^{6}\right)$$

$$\left(\frac{1}{e+1} + e\right) - \left(0 + \frac{1}{e+1}(0)^{e+1} + e^{6}\right)$$

$$\left(\frac{1}{e+1} + e\right) - \left(\frac{1}{e+1}(0)^{e+1} + e^{6}\right)$$

$$\left(\frac{1}{e+1} + e\right) - \left(\frac{1}{e+1} + e\right) - \left(\frac{1}{e+1} + e\right)$$

$$\left(\frac{1}{e+1} + e\right) - \left(\frac{1}{e+1} + e\right) - \left(\frac{1}{e+1} + e\right)$$

$$\left(\frac$$

$$\log_2 32 = 5$$
 $32 = 2^5$

$$\log 4 = \frac{1}{2}$$
 $4 = 16^{2}$

$$\log_8 32 = \frac{5}{3}$$

$$37 = 8^{\frac{1}{3}}$$

$$log(-1) = vndef$$

Logarithmic function b > 0.

$$f(x) = (og(x) O < b$$
and $b \neq 0$

Grows very very slowly.

$$\log(\log(x)) < 5$$

6.3 Expand and collect logarithmic expressions. (Have the logarithm laws memorized!)

Log rules (not derivative rules!)

$$\log_b(xy) = \log_b x + \log_b y$$

$$b^{x}b^{y}=b^{x+y}$$

$$\log_{\mathfrak{p}}\left(\frac{x}{y}\right) = \log_{\mathfrak{p}} x - \log_{\mathfrak{p}} y$$

$$\int_{x}^{x} y = \int_{x-x}^{x-y}$$

$$\log_b(x^n) = n \cdot \log_b(x)$$

$$(P_x)_v = P_{xv}$$

PS 426

10
$$\log_{10}(\frac{x-1}{x+1}) = \frac{1}{2}\log_{10}(\frac{x-1}{x+1}) = \frac{1}{2}(\log_{10}(x-1) - \log_{10}(x+1))$$

There is no rule for $\log_{10}(x+y)$.

Earlierse

13 $2 \ln x + 3 \ln y - \ln z$ $\ln(x) = \log_{10}(x)$
 $\ln(x^2) + \ln(y^3) - \ln(z)$ $\ln(x^2) + \ln(y^3) - \ln(z)$ $\log x = \log_{10}(x)$
 $\ln(x^2y^3) - \ln(z)$ $\log x = \log_{10}(x)$
 $\ln(x^2y^3) - \ln(z)$ $\log x = \log_{10}(x)$
 $\log \log x = \log_{10}(x)$

Change-of-base (aw:
$$\log_b x = \frac{\log x}{\log b} = \frac{\ln x}{\ln b} = \frac{\log_c x}{\log_c b}$$

$$\log_2 10$$
 on calc? $=\frac{\log 10}{\log 2} = \frac{1}{\log 2} \approx \frac{1}{301} = 3.321$