Appunti dal corso Introduzione ai Sistemi Complessi

Grufoony

24 ottobre 2021

1 Sistema Complesso

Definizione 1.1. Sistema Complesso è un sistema dinamico composto da sottosistemi interagenti tra loro.

Per lo studio di un sistema complesso si usa solitamente un approccio olistico, ossia studiando prevalentemente le proprietà macroscopiche del sistema totale, senza considerare i singoli sottosistemi. Un'osservazione importante che va effettuata è che un sistema complesso **prevede**, non descrive. Alcune delle proprietà principali sono:

- complessità: presenza di molti d.o.f. (molti sottosistemi)
- **proprietà emergenti**: derivano dal grande numero di sottosistemi. Ad esempio possiamo definire *fluido* un insieme di molte particelle ma la particella singola non può essere fluida.
- autorganizzazione: i sistemi complessi sono ibridi, ossia metà stocastici e metà deterministici. Per studiarli devo dare ugual peso a entrambi gli aspetti.

2 Distribuzioni

Vediamo ora una serie di distribuzioni e teoremi ad esse legati che ci aiuteranno nell'analisi dei sistemi.

Definizione 2.1.

- Gaussiana $\rho(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
- Esponenziale $\rho(x) = \frac{1}{k}e^{-\frac{x}{k}}$
- Potenza $\rho(x) \propto \frac{1}{r^a}$, con a > 0

Definizione 2.2. Momenti di una distribuzione: $\langle x^k \rangle = \int_{-\infty}^{+\infty} x^k \rho(x) dx$

Teorema 2.1. Invarianza di scala: se $\rho(x) \propto \frac{1}{x^a}$ allora posto $y = \lambda x$ si ha $\rho(y) = \frac{\lambda^a}{x^a} \propto \frac{1}{y^a}$

Teorema 2.2. Limite centrale:

Siano x_k variabili casuali indipendenti, allora:

$$\lim_{N \to \infty} z = \frac{1}{\sqrt{N}} \sum_{k=1}^{N} x_k = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{z^2}{2\sigma^2}}$$

Ora possiamo dare una definizione di probabilità:

Definizione 2.3. Probabilità:
$$p(x \in [a, b]) = \int_a^b \rho(x) dx$$

Definizione 2.4. Probabilità cumulata:

$$p(x \le a) = \int_{-\infty}^{a} \rho(x) dx$$