Code: 211202

B.Tech. 2nd Semester Exam., 2014

MATHEMATICS-II

Time: 3 hours

Full Marks: 70

Instructions:

- (i) All questions carry equal marks.
- (ii) There are **NINE** questions in this paper.
- (iii) Attempt **FIVE** questions in all.
- (iv) Question No. 1 is compulsory.

akubihar.com

- 1. Choose the correct or best alternatives of the following (any seven):
 - (a) The series $1 \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + \cdots$ is
 - (i) convergent
 - divergent
 - (iii) oscillatory
 - (iv) None of the above
 - The series whose *n*th term is $\sqrt{n^3 + 1} \sqrt{n^3}$, is
 - convergent
 - divergent
 - (iii) oscillatory
 - (iv) None of the above

2) akubihar.com

- Which one of the following functions is not periodic?
 - (i) $f(x) = \cos 2x + \cos 3x + \cos 5x$
 - (ii) $f(x)=e^{i\,8\pi x}$
 - (iii) $f(x) = e^{(-7x)} \sin 10\pi x$
 - (iv) $f(x) = \cos 2x \cdot \cos 4x$
- The period of a constant function is
 - (i) defined
 - (ii) defined under conditions
 - (iii) not defined
 - (iv) None of the above
- (e) $\int_0^\infty \frac{\sin t}{t} dt$ is equal to
 - π
 - (ii) $\pi/2$
 - (iii) π / 4
 - (iv) $\pi/3$
- Inverse Laplace transform of $\frac{e^{-3s}}{(s-2)^4}$ is
 - (i) $\frac{1}{5} \frac{(t-3)^3}{4} t > 3$ (ii) $\frac{1}{6} \frac{t^3}{6} e^2 t > 3$
- (iv) $\frac{1}{6} \frac{(t-3)^3}{(t-3)^3} e^{2(t-3)} t > 3$

- The area of region bounded by the curve $\frac{y+8}{x} = x-2$ and the x-axis is
 - (i) 54
 - Ht) 36

akubihar.com

- (iii) 18
- (iv) 12
- (h) The value of $\int_0^1 \int_{y^2}^1 \int_0^{1-x} x \, dz \, dx \, dy$ is
 - (ii) $\frac{3}{35}$
 - (iii) $\frac{8}{35}$ (iv) $\frac{6}{35}$
- $\nabla \times (\nabla \times \overrightarrow{A})$, where \overrightarrow{A} is a vector, is equal to
 - (i) $\overrightarrow{A} \times \nabla \times \overrightarrow{A} = \nabla^2 \overrightarrow{A}$
 - (ii) $\nabla^2 \vec{A} + \nabla (\nabla \cdot \vec{A})$
 - (iii) $\nabla^2 \vec{A} + \nabla \times \vec{A}$
 - $(\nabla \vec{A}) = \nabla^2 \vec{A}$
- Stokes' theorem connects
 - (f) a line integral and a surface line integral
 - (ii) a surface integral and a volume integral
 - (iii) a line integral and a volume integral
 - (iv) gradient of a function and its surface integral

Discuss the nature of convergency of an infinite geometric series.

(b) Test the convergence for the series

$$\frac{x}{1\cdot 2} + \frac{x^2}{3\cdot 4} + \frac{x^3}{5\cdot 6} + \frac{x^4}{7\cdot 8} + \cdots \text{ to } \infty$$

- Find the Laplace $(1+\cos 2t)$ for the first principle.
 - Find the Laplace transform of

$$\frac{(1-\cos t)}{t^2}$$

4. (a) Find the Laplace inverse of

$$\frac{s^2}{(s^2+a^2)(s^2+b^2)}$$
 akubihar.com

- Find the Fourier series representing the function f(x) = x, $0 < x < 2\pi$ and sketch its graph from $x = -4\pi$ to $x = 4\pi$.
- Find the Fourier series of the function defined as

$$f(x) = \begin{cases} x + \pi & \text{for } 0 \le x \le \pi \\ -x - \pi & \text{for } -\pi \le x < 0 \end{cases} \text{ and } f(x + 2\pi) = f(x)$$

(b) Expand $f(x) = e^x$ in a cosine series over (0, 1).

(6)

6. (a) Evaluate:

$$\int_0^\infty \int_0^\infty \frac{e^{-x^3}}{\sqrt{x}} y^4 e^{-y^6} dx dy$$

- (b) Evaluate $\iint_R xy \, dx \, dy$, where R is the quadrant of the circle $x^2 + y^2 = a^2$ and $x \ge 0$, $y \ge 0$.
- 7. (a) Find by double integration the area enclosed by the pair of curves y = 2 x and $y^2 = 2(2-x)$.
 - Compute $\iiint \frac{dxdydz}{(x+y+z+1)^3}$ if the region of integration is bounded by the coordinates plane and plane x+y+z=1.
- **8.** (a) A particle moves along a plane curve such that its linear velocity is perpendicular to the radius vector. Show that the path of the particle is a circle.
 - (b) Show that

$$\nabla \left(\frac{\vec{a} \cdot \vec{r}}{r^n} \right) = \frac{\vec{a}}{r^n} - \frac{n(\vec{a} \cdot \vec{r})}{r^{n+2}} (\vec{r})$$

where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, $r = |\vec{r}|$, \vec{a} is a constant vector.

- **9.** (a) If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, then prove that $\operatorname{div}(\operatorname{grad} r^n) = n(n+1)r^{n-2}$
 - (b) Verify Green's theorem for $\oint_C (2xydx y^2dy)$, where C is the boundary of the region bounded by the ellipse $3x^2 + 4y^2 = 12$.

akubihar.com