E.M.B.

Chapter 7: Groups of Symmetry

Mphako-Banda

LEARNING OUTCOMES FOR THE LECTURE

By the end of this lecture, students will be able to:

- find a composition of two permutations
- find the inverse of a permutation
- identify fixed and moved elements in a permutation
- find the orbit of any element in a permutation
- use cycle notation to represent a permutation

E.M.B.

(NOTE 7.2.3 (2))

Let in S₄,

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}; \beta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$

$$\beta \alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4 \end{pmatrix}; \alpha \beta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 1 \end{pmatrix}$$

Note that $\beta \alpha \neq \alpha \beta$.

(NOTE 7.2.3 (3))

Find Inverses in S_n .

$$\delta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix} \ \textit{then} \ \delta^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 6 & 1 & 3 & 4 & 5 \end{pmatrix}$$

Read from 2nd row of array to 1st row of array.

(NOTE 7.2.3 (4))

 S_n is called symmetric group of n elements.

$$|S_n| = n!$$
 so $|S_4| = 4! = 24$.

E.M.B.

FIXED AND MOVED ELEMENTS

Note:

In Note 7.2.3 (2),
$$\alpha\beta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 1 \end{pmatrix}$$
.

We see that 2 and 3 are fixed and 1 and 4 are moved.

Where as
$$\beta \alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4 \end{pmatrix}$$

has 1 and 4 fixed and 2 and 3 moved.

E.M.B.

Definition (7.3.1)

Let
$$X = \{1, 2, \cdots, n\}$$
 and $\alpha \in S_n$.

- **1** k is fixed by α if $\alpha(k) = k, k \in X$.
- **2** k is moved by α if $\alpha(k) \neq k, k \in X$.
- **3** α and β are disjoint if no element of X is moved by both α and β .

The set of elements moved by α is disjoint from the set of elements moved by β . For example, in Note 7.2.3 (2), $\alpha\beta$ moves $\{1,4\}$ and $\beta\alpha$ moves $\{2,3\}$... $\alpha\beta$ and $\beta\alpha$ are disjoint.

Example (7.3.2 (1))

 $e \in S_n$ moves no elements and fixes all elements.

$$\delta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix}$$
 fixes no elements.

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4 \end{pmatrix}$$
 fixes 1 and 4, moves 2 and 3.

Example (7.3.2 (2))

Let
$$\sigma \in S_n$$
 where $X = \{1, 2, \dots, n\}$. We say $a \equiv b$ iff $b = \sigma^r(a)$ $a, b \in X$, for some $r \in \mathbb{N}$. \mathbb{Z}

E.M.B

EXCERCISE

Show that $a \equiv b$ iff $b = \sigma^r(a)$ $a, b \in X$ defines an equivalence relation on S_n .

(i)
$$a \equiv a$$
 since $\sigma^0 = e$ and $e(a) = a \quad \forall a \in X$.

(ii)

$$a \equiv b \Rightarrow b = \sigma^{r}(a)$$

 $\Rightarrow (\sigma^{r})^{-1}(b) = (\sigma^{r})^{-1}\sigma^{r}(a)$
 $\Rightarrow \sigma^{-r}(b) = a$
 $\Rightarrow b \equiv a \text{ as } -r \in \mathbb{Z}$

$$a \equiv b \Rightarrow b = \sigma^{r}(a) \text{ and } b \equiv c \Rightarrow c = \sigma^{k}(b)$$

$$\Rightarrow c = \sigma^{k}(b) = \sigma^{k}(\sigma^{r}(a)) = \sigma^{k+r}(a)$$

$$\Rightarrow a \equiv c \text{ as } k + r \in \mathbb{Z}.$$

Equivalence Classes:

[a] =
$$\{b \in X | b \equiv a\}$$

= $\{\cdots, \sigma^{-2}(a), \sigma^{-1}(a), a, \sigma(a), \sigma^{2}(a), \cdots\}$
= Orbit of a under σ .

e.g.

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix}$$

$$[1] = \{\sigma^r(1) | r \in \mathbb{Z}\} = \{1, 3, 4, 5, 6, 2\} = X$$

Exactly one orbit or equivalence class under σ .

Part 2 E.M.B.

$$\delta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 3 & 5 & 2 & 4 & 6 \end{pmatrix}$$

```
 \begin{array}{lll} [1] = \{1\} & \text{under} & \delta \\ [2] = \{2,3,5,4\} & \text{under} & \delta \\ [6] = \{6\} & \text{under} & \delta \end{array}
```

EXERCISE

Find the equivalence classes of τ . $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 4 & 1 \end{pmatrix}$ Let \approx be equiv relation $a \approx b$ iff $b = \tau^r(a), \quad r \in \mathbb{Z}$ $[1] = \{1, 3, 5\} = [3] = [5]; \quad [2] = \{2\}; \quad [4] = \{4\}.$ $[1] \cup [2] \cup [4] = X.$

Cycle Decomposition

Definition (7.4.1 (1))

Let $X = \{1, 2, \dots, n\}$ and let k_1, k_2, \dots, k_r be r distinct elements of X. Cycle $\sigma = (k_1 k_2 \cdots k_r)$ is a permutation in S_n is defined by

$$\sigma(k_1) = k_2, \sigma(k_2) = k_3, \dots, \sigma(k_r) = k_1 \text{ and } \sigma(k) = (k) \text{ if } k \notin \{k_1, k_2, \dots, k_r\}.$$

That is: $\sigma(k_i) = k_{i+1}$ for $i = 1, 2, \dots, r-1$ and $\sigma(k_r) = k_1$ and $\sigma(k) = k$ if $k \notin \{k_1, k_2, \dots, k_r\}$.

Part 2 E.M.B.

Let $X = \{1, 2, \dots, n\}$ and let k_1, k_2, \dots, k_r be r distinct elements of X. σ has length r and is an r-cycle. e.g. $\tau = (1 \ 3 \ 5) = (3 \ 5 \ 1) = (5 \ 1 \ 3)$ is a 3-cycle $\sigma = (1 \ 3 \ 4 \ 5 \ 6 \ 2)$ is a 6-cycle which is equal to $(3 \ 4 \ 5 \ 6 \ 2 \ 1) = \dots = (2 \ 1 \ 3 \ 4 \ 5 \ 6)$.

Definition (7.4.1 (3))

Let $X = \{1, 2, \dots, n\}$ and let k_1, k_2, \dots, k_r be r distinct elements of X. Representation is not unique but has a cyclic character.