01RAD - přednáška 10, 12.11.2024

4.4 Transformace

- pokud není splněn některý z předpokladů modelu linearita, normalita chyb, homoskedasticita
- jednou z možností je pokusit se transformovat proměnné, aby transformovaný model předpoklady alespoň "přibližně" splňoval

A) Transformace vysvětlované proměnné y

hledáme funkci $h(\cdot)$ tak, aby model $Y_i^* = h(Y_i) = \beta_0 + \sum_{j=1}^m x_{ij}\beta_j + e_j$ předpoklady splňoval 3 hlavní důvody pro transformaci y:

- 1) transformace škály měření tak, aby pokrývala celé **R**
 - (což může odstranit problémy spodmínkami na eta)
 - např. studie kapacity plic (FEV data, FEV > 0), chtěli bychom, aby model nepredikoval záporné hodnoty
 - lze obejít modelováním $y^* = \ln FEV$
 - pokud y jsou počty a 0 je možná hodnota, často se používá $y^* = \ln(y+1)$ nebo obecně $y^* = \ln(y+c)$

- 2) transformace Y, aby její rozdělení bylo "více" normální
 - typicky se snažíme udělat rozdělení hodnot y více symetrické
 - často se setkáváme s rozděleními vychýlenými vpravo
 - transformace $y^* = \ln y$ nebo $y^* = y^{\lambda}$, $\lambda < 1$ budou redukovat toto vychýlení
 - typický postup: začít s hodnotou $\lambda \approx 1$ a pak snižovat, dokud není dosaženo "přibližné" symetrie reziduí
- 3) možná nejzásadnější motivace: pokusit se dosáhnout konstantní rozptyl
 - např. pro fyzikální veličinu s kladnými hodnotami se často stane, že rozptyl bude malý pro $\mu\approx 0$ a větší pro μ velké (tzv. positive mean-variance relationship)
 - nepřesnost měření kladných veličin se často vyjadřuje pomocí koeficientu variace $CV(Y) = \frac{s.d.Y}{\mathsf{E}Y}$
 - bývá více konstantní než s.d. (variabilitu vyjadřujeme relativně)
 - matematicky to znamená, že ${
 m Var} Y = arphi ({
 m E} Y)^2 = arphi \mu^2$ pro nějaké arphi
 - pro odstranění vztahu mezi EY a VarY se často používají transformace $y^* = y^{\lambda}$ (pro y > 0)

Transformace:
$$\longleftarrow$$
 \cdots y^3 y^2 y \sqrt{y} $\ln y$ $\frac{1}{\sqrt{y}}$ $\frac{1}{y}$ $\frac{1}{y^2}$ \cdots \longrightarrow

Box-Cox λ :

3 2 1 $\frac{1}{2}$ 0 $-\frac{1}{2}$ -1 -2

• pokud Var Y klesá

• pokud Var Y roste s rostoucí E Y

s rostoucí EY

OBECNĚ: předpokládejme vztah $Var Y = \varphi V(\mu)$ a uvažujme transformaci $y^* = h(y)$

Taylorův rozvoj 1. řádu funkce h(y) v bodě μ

$$y^* = h(y) \approx h(\mu) + h'(\mu)(y - \mu)$$

z čehož plyne, že $VarY^* \approx (h'(\mu))^2 \cdot VarY$

transformace $y^* = h(y)$ bude přibližně stabilizovat rozptyl, pokud $h'(\mu)$ je úměrné $(\text{Var}Y)^{-\frac{1}{2}} = V^{-\frac{1}{2}}(\mu)$

- pokud $V(\mu) = \mu^2$ \Rightarrow transformace stabilizující rozptyl je $h(y) = \ln y$ $(h'(\mu) = \frac{1}{\mu})$
- pokud $V(\mu) = \mu$ \Rightarrow transformace stabilizující rozptyl je $h(y) = \sqrt{y}$ $(h'(\mu) = \frac{1}{2\sqrt{\mu}})$

• asi nejvíce užívanou transformací je $y^* = \ln y$ (dobrá interpretovatelnost parametrů β)

Poznámka 4.11 (Interpretace parametrů lineárního modelu)

a) klasický LM: $EY = \beta_0 + \beta_1 x_1 + \cdots + \beta_m x_m$

jednotková změna proměnné
$$x_j \Rightarrow \text{změnu E} Y \text{ o } \beta_j$$
 jednotek (při ostatních proměnných stejných)

b) LM pro ln Y: ln $Y = \beta_0 + \beta_1 x_1 + \cdots + \beta_m x_m + e$, $e \sim N(0, \sigma^2)$

- pokud je to správný model, ln
$$Y \sim N(\mu, \sigma^2)$$
 \Rightarrow $Y \sim LN(\mu, \sigma^2)$ a E $Y = e^{\mu + \frac{\sigma^2}{2}}$ predikce pro E ln Y je $\widehat{\mu} = \widehat{\beta}_0 + \widehat{\beta}_1 x_1 + \cdots + \widehat{\beta}_m x_m$

predikce pro E
$$Y$$
 je $e^{\widehat{\beta}_0+\widehat{\beta}_1x_1+\cdots\widehat{\beta}_mx_m+\frac{\widehat{\sigma}^2}{2}}$

- uvažujme opět jednotkovou změnu proměnné x_j ($x_j o x_j + 1$)

$$\frac{\mathsf{E} \mathsf{Y}_{\mathsf{new}}}{\mathsf{E} \mathsf{Y}} = \frac{e^{\beta_0 + \beta_1 \mathsf{x}_1 + \cdots \beta_j \mathsf{x}_j + \beta_j + \cdots \beta_m \mathsf{x}_m + \frac{\sigma^2}{2}}}{e^{\beta_0 + \beta_1 \mathsf{x}_1 + \cdots \beta_m \mathsf{x}_m + \frac{\sigma^2}{2}}} = e^{\beta_j}$$

jednotková změna proměnné $x_j \Rightarrow \text{multiplikativní změnu EY } e^{\beta_j}$ -krát jinak zapsáno: $100(e^{\beta_j}-1)$ je procentní změna EY spojená s jednotkovou změnou x_i

Box-Cox transformace

- pokud chyby nemají normální rozdělení, hledáme transformaci Y, která by nejenom linearizovala model, ale také transformovala chyby, aby byly přibližně normální
- užitečná třída transformací (power family)

$$\mathbf{y}^{(\lambda)} = \left\{ \begin{array}{l} \frac{\mathbf{y}^{\lambda} - \mathbf{1}}{\lambda}, & \operatorname{pokud} \lambda \neq 0 \\ \ln \mathbf{y}, & \operatorname{pokud} \lambda = 0 \end{array} \right., \qquad \left(\lim_{\lambda \to 0} \frac{\mathbf{y}^{\lambda} - 1}{\lambda} = \ln \mathbf{y} \right)$$

která předpokládá, že data y jsou kladná

• pro nalezení vhodného λ budeme předpokládat, že transformované veličiny $Y_i^{(\lambda)}, i=1,\ldots,n,$ splňují podmínky RM, tj.

$$Y_i^{(\lambda)} = \mathbf{x}_i^T \boldsymbol{\beta} + \mathbf{e}$$
 kde $\mathbf{e} \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I}_n)$ $(Y_i^{(\lambda)} \sim N(\mathbf{x}_i^T \boldsymbol{\beta}, \sigma^2), Y_i^{(\lambda)}$ nezávislé)

ullet úkol je odhadnout zároveň λ, eta, σ^2 , použijeme MLE

Dostali jsme tedy tzv. profile log - likelihood

$$\ell_p^{(\lambda)} = -\frac{n}{2} \ln 2\pi - \frac{n}{2} \ln \widehat{\sigma}^2(\lambda) - \frac{n}{2} + \ln J(\lambda) = C - \frac{n}{2} \ln \widehat{\sigma}^2(\lambda) + (\lambda - 1) \sum_{i=1}^{n} \ln y_i,$$

kde

$$\widehat{\boldsymbol{\beta}}(\lambda) = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}^{(\lambda)}, \qquad \widehat{\sigma}^2(\lambda) = \frac{1}{n} \sum_{i=1}^n (y_i^{(\lambda)} - \widehat{y}_i^{(\lambda)})^2,$$

a

$$oldsymbol{y}^{(\lambda)} = (y_1^{(\lambda)}, \dots, y_n^{(\lambda)})^T, \qquad \widehat{y}_i^{(\lambda)} = oldsymbol{x}_i^T \widehat{oldsymbol{eta}}^{(\lambda)}.$$

Poznámka:

- ullet kvůli komplikované závislosti $\ell_p^{(\lambda)}$ na λ bude třeba numerická metoda pro maximalizaci
- Ize přepsat do tvaru, kde bude možné využít metody LR

Celkem:
$$\max_{\lambda} \ell_p(\lambda) \iff \min_{\lambda} s_{\lambda}^2$$
,

kde

$$s_{\lambda}^{2} = \frac{\widehat{\sigma}^{2}(\lambda)}{[(\dot{\gamma})^{\lambda-1}]^{2}} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_{i}^{(\lambda)}}{(\dot{\gamma})^{\lambda-1}} - \frac{\widehat{y}_{i}^{(\lambda)}}{(\dot{\gamma})^{\lambda-1}} \right)^{2},$$

tzn. s_{λ}^2 je reziduální součet čtverců (SSE/n) v modelu $\frac{y_i^{(\lambda)}}{(\dot{y})^{\lambda-1}}$ v závislosti na x_i^T (tzn. s_{λ}^2 |ze snadno získat pomocí funkce lm())

Algoritmus:

- 1) zvolit oblast hodnot $\lambda, I = \langle \lambda_{min}, \lambda_{max} \rangle$, a body $\lambda \in I$ (typicky $I = \langle -2, 2 \rangle$ a 10-20 rovnoměrně rozdělených bodů)
- 2) naladit model $\frac{y^{(\lambda)}}{(\dot{y})^{\lambda-1}} \sim x$ a spočítat $\frac{1}{n}SSE = s_{\lambda}^2$.
- 3) z grafu (λ, s_{λ}^2) vybrat $\widehat{\lambda}$, které minimalizuje s_{λ}^2
- 4) pro zvolené $\widehat{\lambda}$ naladit model $y^{(\widehat{\lambda})} \sim x$ a pokračovat standardní analýzou

Intervaly spolehlivosti pro λ :

- snadno lze odvodit LRT test pro test H_0 : $\lambda = \lambda_0$ (H_0 : $\lambda = 1$ zda je třeba transformace, pokud zamítneme $H_0 \Rightarrow$ transformace pomocí $\widehat{\lambda}$)
- LRT statistika: $\Lambda = -2 \ln \frac{L(\lambda_0)}{L(\widehat{\lambda})} = 2(\ell_p(\widehat{\lambda}) \ell_p(\lambda_0)), \quad \text{víme že } \Lambda \xrightarrow{L} \chi^2(1)$
- invertováním přípustné oblasti LRT testu, dostaneme as. $100(1-\alpha)\%$ IS pro λ

$$\left\{\lambda\in\mathbb{R}\,|\,n\cdot\lnrac{s_{\lambda}^2}{s_{\lambda}^2}\leq\chi_{1-lpha}^2(1)
ight\}\,,\qquad$$
 kde $\widehat{\lambda}$ je MLE λ

Poznámka 4.12

Kvůli jednoduchosti interpretace se často doporučuje zaokrouhlit $\hat{\lambda}$ na nejbližší $\frac{1}{4}$ nebo $\frac{1}{3}$.

PŘÍKLAD 4.4 (Data TREES)

	Girth	Height	Volume
1	8	70	10
2	9	65	10
3	9	63	10
4	10	72	16
:	:	:	:

mod <- lm(Volume ~ Girth + Height)</pre> summary(mod) ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) -57.9877 8.6382 -6.713 2.75e-07 *** ## Girth 4.7082 17.816 < 2e-16 *** 0.2643 ## Height 0.3393 0.1302 2,607 0.0145 * ## Residual standard error: 3.882 on 28 degrees of freedom ## Multiple R-squared: 0.948, Adjusted R-squared: ## F-statistic: 255 on 2 and 28 DF, p-value: < 2.2e-16


```
y.hat <- predict(mod)
st.res <- rstudent(mod)
plot(y.hat, st.res, pch = c(1), col = c("red"), lwd=2)</pre>
```

 $bc \leftarrow boxcox(mod, lambda = seq(-2,2,1/10))$

lambda.hat <- bc\$x[which.max(bc\$y)]; lambda.hat
0.3030303</pre>

Vol.lambda <- (Volume^lambda.hat-1)/lambda.hat</pre>

mod.t <- lm(Vol.lambda ~ Girth + Height)
summary(mod.t)</pre>

B) Transformace vysvětlujících proměnných x

- ullet pokud diagnostika modelu naznačuje, že vztah mezi $m{y}$ a $m{X}$ není lineární pro jeden nebo více regresorů, může být vhodné přeformulovat model pomocí transformací proměnných $m{x}$
- ullet předpokládejme, že v modelu $Y=eta_0+\sum_{j=1}^meta_jx_j+e$ máme podezření na nelinearitu v j-té proměnné x_j
- jednou z možností jak postupovat je nahrazení x_i proměnnou $z_i = f(x_i)$, model tedy bude

$$Y = \beta_0 + \beta_1 x_1 + \dots + \beta_j z_j + \dots + \beta_m x_m + e$$

- pokud je f známé, jedná se o model LR a lze ho analyzovat standardně,
 pokud je tato transformace vhodná, mělo by se to projevit ve zlepšení statistik R², t, F a zlepšení grafu reziduí pro z_j oproti těm pro x_j
- ullet bohužel f většinou známá není, možný přístup je parametrizovat nějak tuto funkci a pak odhadnout tyto parametry společně s eta
 - typická parametrizace: $z_i = x_i^{\lambda}$, kde $\lambda \in \mathbb{R}$ vhodné
 - aproximace f pomocí polynomu vhodného stupně, tzn. $z_j = \sum_{k=1}^{J} r_k x_j^k$, kde r_k musí být odhadnuty
 - další možností je použití trigonometrických funkcí nebo splines (piecewise polynomials)

Zaměříme se na $z_j = x_j^{\lambda}$:

- možnost je opět zvolit jistou množinu hodnot λ , naladit modely pro všechna λ a vybrat model s nejlepší shodou s daty, např. s nejmenší SSE nebo největší R^2 nebo F
- může být časově náročné, můžeme minout vhodnou hodnotu λ , pokud nebyla v původní množině (nevíme jak R^2, F, SSE závisí na λ)

Box-Tidwell metoda

• předpokládejme, že λ se příliš neliší od $\lambda=1$, Taylorův rozvoj 1. řádu kolem $\lambda=1$ dává

$$x^{\lambda} \approx x^{1} + (\lambda - 1) \frac{\mathrm{d}x^{\lambda}}{\mathrm{d}\lambda} \Big|_{\lambda = 1}, \quad \frac{\mathrm{d}x^{\lambda}}{\mathrm{d}\lambda} \Big|_{\lambda = 1} = x^{\lambda} \ln x \Big|_{\lambda = 1} = x \ln x, \quad \text{tedy} \quad x^{\lambda} \approx x + (\lambda - 1) x \ln x$$

dosazením do modelu

$$Y = \beta_0 + \beta_1 x_1 + \dots + \beta_{j-1} x_{j-1} + \beta_j (x_j + (\lambda - 1) x_j \ln x_j) + \dots + \beta_m x_m + e$$

$$= \beta_0 + \sum_{k=1}^m \beta_k x_k + \underbrace{\beta_j (\lambda - 1)}_{\beta_{m-1}(\lambda)} x_j \ln x_j + e$$

• máme lineární model pro parametry β_k , $0 \le k \le m+1$, protože $\beta_{m+1} = (\lambda-1)\beta_j$, můžeme (λ, β_i) odhadnout následovně

- 1) naladíme původní model a spočteme LSE $\widehat{\beta}_i$ parametru β_i 2) naladíme rozšířený model s $x_{m+1} = x_i \ln x_i$ a spočteme $\widehat{\beta}_{m+1}$
- 3) z rovnosti $\widehat{\beta}_{m+1} = (\widehat{\lambda} 1)\widehat{\beta}_j$ dostaneme $\widehat{\lambda} = \frac{\widehat{\beta}_{m+1}}{\widehat{\beta}_i} + 1$
- tento postup umožňuje testovat potřebu transformace $H_0: \lambda = 1 \times H_1: \lambda \neq 1$ pomocí t-testu pro H_0 : $\beta_{m+1} = 0$

- Poznámka 4.13

 - pokud model s $\widehat{\lambda}$ vypadá neadekvátně, lze postupovat iterativně a získat posloupnost $\widehat{\lambda}(I),\ I \geq 1$
 - - $\widehat{\lambda}(0) = \widehat{\lambda}$ a rozvineme x_i^{λ} kolem $\widehat{\lambda}(0)$, tzn. $x_i^{\lambda} \approx x_i^{\widehat{\lambda}(0)} + (\lambda \widehat{\lambda}(0))x_i^{\widehat{\lambda}(0)} \ln x_i$
 - dosazením do rovnice modelu
 - $Y = \beta_0 = \sum_{\substack{k=1 \ k \neq i}}^{\dots} \beta_k x_k + \beta_j x_j^{\widehat{\lambda}(0)} + \underbrace{\beta_j (\lambda \widehat{\lambda}(0))}_{\beta_{j-1}} x_j^{\widehat{\lambda}(0)} \ln x_j + e$
 - naladíme tento model s a bez přidané proměnné $x_{m+1} = x_i^{\widehat{\lambda}(0)} \ln x_j$, označíme $\widehat{\beta}_j(1)$ a $\widehat{\beta}_{m+1}(1)$ příslušné odhady

potom

$$\widehat{\lambda}(1) = \widehat{\lambda}(0) + rac{\widehat{eta}_{m+1}(1)}{\widehat{eta}_i(1)}$$

můžeme dále iterovat do konvergence nebo skončit po pevném počtu iterací

Poznámka 4.14 (Další užívané transformace v x, y)

a) centrované proměnné: X_C a y_C

$$(\boldsymbol{X}_{C})_{ij} = x_{ij} - \overline{x}_{j}, \ i \in \hat{\boldsymbol{n}}, \ j \in \hat{\boldsymbol{m}}, \ \text{kde } \overline{x}_{j} = \frac{1}{n} \sum_{i=1}^{n} x_{ij}, \ (\boldsymbol{y}_{C})_{i} = y_{i} - \overline{y}$$

$$1) \ \widehat{\beta}_{1}, \dots, \widehat{\beta}_{m} \ \text{je řešením} \ \boldsymbol{X}_{C}^{T} \boldsymbol{X}_{C} \boldsymbol{\beta} = \boldsymbol{X}_{C}^{T} \boldsymbol{y}_{C}, \quad 2) \ \widehat{\beta}_{0} = \overline{y} - \sum_{i=1}^{m} \widehat{\beta}_{j} \overline{x}_{j}$$

b) centrované a škálované proměnné X_{SC} a y_C (y_{SC}):

tzn. každý prvek
$$j$$
-tého sloupce matice \boldsymbol{X} podělíme $s_j = \Big(\sum_{i=1}^n (x_{ij} - \overline{x}_j)^2\Big)^{\frac{1}{2}}$ centrovaná a škálovaná matice \boldsymbol{X}_{SC} pak bude $\boldsymbol{X}_{SC} = \boldsymbol{X}_C \boldsymbol{S}$, $\boldsymbol{S} = \operatorname{diag}\Big(\frac{1}{s_1}, ..., \frac{1}{s_m}\Big)$ model bude $\boldsymbol{Y}_C = \boldsymbol{X}_{SC}\boldsymbol{\beta}_s + e$

(lze použít i Y_{SC} , tedy centrované a škálované Y)

4.5 Vážené nejmenší čtverce (weighted least squares - WLS)

(4.2)

(4.3)

- uvažujeme tedv model

• definujeme
$$\mathbf{Z} = \mathbf{K}^{-1}\mathbf{Y}, \ \mathbf{M} = \mathbf{K}^{-1}\mathbf{X} \ \text{a} \ \varepsilon = \mathbf{K}^{-1}\mathbf{e}$$

• dostaneme model

• definujeme
$$m{Z} = m{K}^{-1}m{Y}, \; m{M} = m{K}^{-1}m{X}$$
 a $m{arepsilon} = m{K}^{-1}m{e}$

(protože $Cov(\varepsilon) = \mathbf{K}^{-1}\sigma^2 \mathbf{W}(\mathbf{K}^{-1})^T = \sigma^2 \mathbf{K}^{-1} \mathbf{K} \mathbf{K}^T (\mathbf{K}^T)^{-1} = \sigma^2 \mathbf{I}_p$)

 $\mathbf{Z} = \mathbf{M}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, kde $\boldsymbol{\varepsilon} \sim N_n(0, \sigma^2 \mathbf{I}_n)$.

• pokud jsou váhy w_i známé, lze MLE odhady parametru β a σ^2 nalézt následovně $\mathbf{W} = \mathbf{K}\mathbf{K}^T$, kde $\mathbf{K} = \mathbf{W}^{\frac{1}{2}} = \operatorname{diag}\left(\frac{1}{\sqrt{W_1}}, ..., \frac{1}{\sqrt{W_n}}\right)$

• budeme předpokládat, že chyby
$$e_i$$
 jsou normální, nezávislé, ale $Var(e_i) = \sigma_i^2$ závisí na i • konkrétně $\sigma_i^2 = \frac{\sigma^2}{w_i}$, kde $w_i > 0, \ i \in \hat{n}$, se nazývají váhy

• to už je standardní model LR, ve kterém platí

$$\widehat{\boldsymbol{\beta}}_{w} = (\boldsymbol{M}^{T} \boldsymbol{M})^{-1} \boldsymbol{M}^{T} \boldsymbol{z} = (\boldsymbol{X}^{T} (\boldsymbol{K}^{-1})^{T} \boldsymbol{K}^{-1} \boldsymbol{X})^{-1} \boldsymbol{X}^{T} (\boldsymbol{K}^{-1})^{T} \boldsymbol{K}^{-1} \boldsymbol{y}$$

$$= (\boldsymbol{X}^{T} \boldsymbol{W}^{-1} \boldsymbol{X})^{-1} \boldsymbol{X}^{T} \boldsymbol{W}^{-1} \boldsymbol{y}$$

$$\widehat{\sigma}_{w}^{2} = \frac{1}{n} \sum_{i=1}^{n} (z_{i} - \widehat{z}_{i})^{2} = \frac{1}{n} \sum_{i=1}^{n} w_{i} (y_{i} - \widehat{y}_{i})^{2} = \frac{1}{n} SSE_{w},$$

kde SSE_w je vážený součet čtverců, $z_i = \sqrt{w_i} y_i$ a $\hat{z}_i = \sqrt{w_i} \mathbf{x}_i^T \hat{\boldsymbol{\beta}}_w = \sqrt{w_i} \hat{\mathbf{y}}_i$

- dále platí
 - a) $\mathbf{E}\widehat{\boldsymbol{\beta}}_w = (\boldsymbol{X}^T \boldsymbol{W}^{-1} \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{W}^{-1} \mathbf{E} \boldsymbol{Y} = \boldsymbol{\beta}$, tzn. $\widehat{\boldsymbol{\beta}}_w$ je nestranný odhad $\boldsymbol{\beta}$

b)
$$E\left(\frac{SSE_w}{n-m-1}\right) = \sigma^2$$
, tedy $s_w^2 = \frac{SSE_w}{n-m-1}$ je nestranný odhad σ^2

Nechť $\widehat{\boldsymbol{\beta}}_{w}$ je WLS odhad $\boldsymbol{\beta}$, jestliže $Cov(\boldsymbol{e}) = \sigma^{2} \boldsymbol{W} = \sigma^{2} \operatorname{diag}\left(\frac{1}{w_{1}}, ..., \frac{1}{w_{n}}\right)$. Potom platí:

- 1) $Cov(\widehat{\boldsymbol{\beta}}_w) = \sigma^2(\boldsymbol{X}^T \boldsymbol{W}^{-1} \boldsymbol{X})^{-1}$
- 2) nechť δ_i je i-tý diagonální prvek $(\boldsymbol{X}^T \boldsymbol{W}^{-1} \boldsymbol{X})^{-1}$, jestliže $e_i \sim N\left(0, \frac{\sigma^2}{w_i}\right)$, $i \in \hat{n}$, potom

$$T_i = rac{\widehat{eta}_{w,i} - eta_i}{s_w \sqrt{\delta_i}} \sim t(n-m-1)$$

- 3) pro $\hat{\mathbf{Y}}_w = \mathbf{X} \hat{\boldsymbol{\beta}}_w$ platí $\mathbf{E} \hat{\mathbf{Y}}_w = \mathbf{X} \boldsymbol{\beta}$ a $Cov(\hat{\mathbf{Y}}_w) = \sigma^2 \mathbf{X} (\mathbf{X}^T \mathbf{W}^{-1} \mathbf{X})^{-1} \mathbf{X}^T$
- 4) Nechť $\hat{\boldsymbol{e}}_w = \boldsymbol{Y} \hat{\boldsymbol{Y}}_w$ jsou rezidua v modelu (4.2) a $\hat{\boldsymbol{\varepsilon}}_w = \boldsymbol{Z} \hat{\boldsymbol{Z}} = \boldsymbol{Z} \boldsymbol{M} \hat{\boldsymbol{\beta}}_w$ jsou rezidua v transformovaném modelu (4.3). Potom

$$\widehat{oldsymbol{arepsilon}}_{w}=\sqrt{oldsymbol{W}^{-1}}\widehat{oldsymbol{e}}_{w}=oldsymbol{W}^{-rac{1}{2}}\widehat{oldsymbol{e}}_{w}\quad \mathsf{a}\quad \mathsf{E}(\widehat{oldsymbol{e}}_{w})=\mathsf{E}(\widehat{oldsymbol{arepsilon}}_{w})=\mathbf{0}.$$

5) nechť $\boldsymbol{H}_{w} = \boldsymbol{X}(\boldsymbol{X}^{T}\boldsymbol{W}^{-1}\boldsymbol{X})^{-1}\boldsymbol{X}^{T}\boldsymbol{W}^{-1}$ je vážená projekční matice, potom

$$\widehat{m{e}}_w = (m{I} - m{H}_w)m{e}, \quad \mathsf{Cov}(\widehat{m{e}}_w) = \sigma^2(m{I} - m{H}_w)m{W}, \quad \mathsf{tzn.} \quad \mathsf{Cov}(\widehat{m{arepsilon}}_w) = \sigma^2m{W}^{-\frac{1}{2}}(m{I} - m{H}_w)m{W}^{\frac{1}{2}}$$

- ullet odhady parametrů eta a σ^2 lze získat použitím transformovaného modelu (4.3)
- protože ale transformovaný model neobsahuje intercept (první sloupec M je $(\sqrt{w_1}, \dots, \sqrt{w_n})^T)$), nefunguje klasický rozklad součtu čtverců a F a R^2 statistiku nelze definovat obvyklým způsobem (viz. regrese skrz počátek)
- nicméně princip "extra sum of squares" funguje, ať má model intercept nebo ne
 - např. celkový F-test lze provést pomocí statistiky

$$F_w = \frac{\frac{SSE_R - SSE_F}{m}}{s_w^2},$$

kde SSE_F je reziduální součet čtverců s_w^2 plného modelu a SSE_R je reziduální součet čtverců redukovaného transformovaného modelu $\mathbf{Z} = \mathbf{M}_0 \beta_0 + \mathbf{e}$, $\mathbf{M}_0 = (\sqrt{w_1}, \dots, \sqrt{w_n})^T$ - pokud mají chyby normální rozdělení, platí za $H_0: \beta_1 = \dots = \beta_m = 0$, že $F_w \sim F(m, n-m-1)$ a H_0 zamítáme, pokud $F_w > F_{1-\alpha}(m, n-m-1)$

• přirozené je definovat $R^2 = \varrho^2(\hat{\mathbf{z}}, \mathbf{z})$, kde $\varrho(\hat{\mathbf{z}}, \mathbf{z})$ je výběrový korelační koeficient (pro $\mathbf{W} = \mathbf{I}$ dostaneme standardní R^2)

Pro analýzu reziduí je třeba uvažovat vhodné grafy reziduí:

máme dva vektory reziduí:

$$\widehat{e}_i$$
 v původním modelu (4.2) $\widehat{\varepsilon}_i$ v transformovaném modelu (4.3)

a tedy dvě možnosti

- pro kontrolu konstantního rozptylu lze uvažovat i standardizovaná nebo studentizovaná rezidua (pomocí bodu 4) a 5) věty lze ukázat, že jsou v obou modelech stejná)
- je třeba být opatrný oproti jakým hodnotám budeme rezidua zobrazovat
- grafy $\hat{\varepsilon}_i$ proti sloupcům M a predikovaným hodnotám \hat{z} jsou OK, neboť např.

$$\sum_{i=1}^n \widehat{z}_i \widehat{\varepsilon}_i = 0$$

(jsou OG, měl by být vidět roztýlený oblak kolem osy x)

- dosazením $\widehat{\varepsilon}_i = \sqrt{w_i} \cdot \widehat{e}_i$ a $\widehat{z}_i = \sqrt{w_i} \cdot \widehat{y}_i$ dostaneme $\sum_{i=1}^n w_i \widehat{e}_i \widehat{y}_i = 0$, tzn. graf \widehat{e}_i proti \widehat{y}_i bude zavádějící
- graf $\sqrt{w_i} \cdot \hat{e}_i$ proti $\sqrt{w_i} \cdot \hat{y}_i$ je ale v pořádku
- podobné závěry platí i pro grafy \widehat{e}_i proti $\boldsymbol{x}_i^c, j=1,\ldots,m$

Poznámka 4.15

- ullet pokud jsou váhy neznámé, bylo by třeba je odhadnou společně s eta a σ^2 z dat
- to ale není obecně možné, protože máme více parametrů než dat
- někdy to možné je, pokud máme další informace o rozdělení chyb (tvar kovarianční matice atd.)

Poznámka 4.16

- celý postup WLS lze použít i na případ $\boldsymbol{e} \sim N_n(\boldsymbol{0}, \sigma^2 \boldsymbol{W})$, kde \boldsymbol{W} je známá, ale není diagonální
- protože \boldsymbol{W} je PD, ex. regulární \boldsymbol{K} tak, že $\boldsymbol{W} = \boldsymbol{K}\boldsymbol{K}^T$
- ullet stejná transformace jako u WLS opět vede na transformovaný model, kde $arepsilon \sim N_m(oldsymbol{0}, \sigma^2 oldsymbol{I}_m)$