Part 1: Machine learning theory

- 1. Learning framework
- 2. Uniform convergence
- 3. Learnability of infinite size hypotheses set
 - 1. No-Free-Lunch theorem
 - 2. Infinite hypothesis class: Exemple
 - 3. VC dimension
 - 4. Covering number
- 4. Tradeoff Bias/Variance
- 5. Non-Uniform learning

Supervised Learning Passive Offline Algorithm (SLPOA)

Recall (classification)

Definition: shuttering

Let **H** be a set of functions from X to $\{0,1\}$ and $A \subseteq X$ a finite set.

We say that H shutters A if the restriction of H over A is of finite cardinality:

$$|H_A|=2^{|A|}$$

Such that:

$$H_A = \{h(a_1), \dots, h(a_{|A|}): h \in H\}$$

Recall (classification)

Definition: VC Dimension

The VC dimension is a property of H which measures the maximum size of a set A to be shuttered by H:

$$d_{VC}(H) = \begin{cases} \max\{|A|, A \text{ is shuttered by } H\} \\ +\infty \text{ there is no maximum for } A \end{cases}$$

Definition: Growth function

Let H be a class of hypothesis, the **growth function** of H is $\Pi_H: \mathbb{N} \longrightarrow \mathbb{N}$, such that:

$$\Pi_H(m) = \max_{\substack{A \subset X \ |A| = m}} |H_A|$$
 H_A is the restriction of H on A .

Recall (classification)

Theorem:

Let H be a class of hypotheses such that $d_{VC}(H) = +\infty$. So H is not PAC.

Notice:

- $\forall H$ and $\forall m, \Pi_H(m) \leq 2^m$
- If H shutters the class of size m, So: $\Pi_H(m) = 2^m$
- If $d_{VC}(H) = \max\{|A|, A \text{ is shuttered by } H\} < m$, So: $\Pi_H(m) < 2^m$

Lemma:

 $\forall H \text{ and } \forall A \subseteq X \colon |H_A| \leq |\{B \subseteq A : H \text{ shutters } B\}|$

Lemma: Sauer

Let H be a class of hypotheses such that: $d_{VC}(H)(\approx) \leq d < +\infty$

Then:
$$\forall m$$
, $\Pi_H(m)(\approx) \leq \sum_{i=0}^d \mathsf{C}_m^i \Longrightarrow \log \Pi_H(m) \leq \log \sum_{i=0}^d \mathsf{C}_m^i$

In particular, if
$$m > d+1$$
, so: $\Pi_H(m)(\approx) \le \left(\frac{me^1}{d}\right)^d \Longrightarrow \log \Pi_H(m) \le \log \left(\frac{me^1}{d}\right)^d$

$$\Rightarrow 4 + \sqrt{\log(\Pi_H(m))} \le 4 + \log\left(\frac{me^1}{d}\right)^d$$

Recall(classification)

Theorem: Generalization bound of VC

Let H be a class of hypotheses and Π_H is its growth function. So, for any D and for any $\delta \in [0,1]$:

$$P_{S \sim D^m}(|L_D(h) - L_S(h)| \leq \varepsilon) \geq 1 - \delta$$

Such that:
$$m{arepsilon} = rac{4 + \sqrt{logigl(\Pi_H(2m)igr)}}{\delta\sqrt{2m}}$$

Lemma: Sauer

Let H be a class of hypotheses such that: $d_{VC}(H)(\approx) \leq d < +\infty$

Then:
$$\forall m$$
, $\Pi_H(m)(\approx) \leq \sum_{i=0}^d \mathsf{C}_m^i \Longrightarrow \log \Pi_H(m) \leq \log \sum_{i=0}^d \mathsf{C}_m^i$

In particular, if
$$m > d + 1$$
, so: $\Pi_H(m)(\approx) \le \left(\frac{me^1}{d}\right)^d \Longrightarrow \log \Pi_H(m) \le \log \left(\frac{me^1}{d}\right)^d$

$$\Rightarrow 4 + \sqrt{\log(\Pi_H(m))} \le 4 + \sqrt{\log\left(\frac{me^1}{d}\right)^d}$$

Recall(classification)

Theorem:

Let H be a class of hypotheses in $X \times \{0,1\}$.

Let l be the classification loss function.

We have equivalence between:

- 1. H follows a uniform convergence.
- 2. H is agnostic PAC learnable by ERM.
- 3. H is agnostic PAC learnable.
- 4. H is PAC learnable.
- 5. *H* is PAC learnable by ERM.
- 6. $d_{VC}(H)$ is finite.

Notice:

The VC dimension is a tool characterizing the PAC learning.

Covering number

- 1. Background
- 2. Covering numbers in a general metric space
- 3. Covering numbers in Euclidean space
- 4. Uniform convergence in a Real-valued Function class H

1. Background

Definition: Metric space

(M,d) is called a metric space that consists of a set M together with a metric $d: M \times M \to [0,\infty)$ that satisfies the following for all $x,y,z \in M$:

- $d(x,y) = 0 \implies x = y.$
- d(x,y) = d(y,x).
- $d(x,z) \le d(x,y) + d(y,z).$

Definition: Open *d***-ball**

An open d-ball centered at $x \in M$ is defined as:

$$B_{d,\varepsilon}(x) = \{ y \in M \mid d(x,y) < \varepsilon \}$$

2. Covering numbers in a general metric space

Definition: ε **-cover**

Let (M, d) be a metric space. Let $W \subseteq M$ and let $\varepsilon > 0$

• **Def1:** A set $C \subseteq W$ is said to be ε -cover of W with respect to d if $(\forall w \in W)(\exists c \in C)$ such that: $d(w,c) < \varepsilon$

• **Def2:** $C \subseteq W$ is an ε -cover of W with respect to d if the union of (open) d-balls of radius ε

centered at points in C contains $W: \bigcup_{c \in C} B_{d,\varepsilon}(c) \supseteq W$

2. Covering numbers in a general metric space

Definition: ε **-covering number**

The ε -covering number $\mathcal{N}(\varepsilon, W, d)$ of W with respect to d is defined as the cardinality of the smallest ε -cover of W if W has a finite ε -cover with respect to d. Otherwise, if W does not have a finite ε -cover with respect to d, ε -covering number is equal to infinity.

$$\mathcal{N}(\varepsilon, W, d) = \begin{cases} \min\{|C|, C \text{ is an } \varepsilon - cover \text{ of } W \text{ with respect to } d\} \\ \infty \text{ if } W \text{ does not have a finite } \varepsilon - cover \end{cases}$$

2. Covering numbers in a general metric space

Example:

For instance, for the H shown in the figure the set of points $\{1, 2, 3, 4, 5, 6\}$ is a covering. However, the covering number is 5 as point 6 can be removed from the set C and the resulting points are still a covering. $C = \{1, 2, 3, 4, 5\}$

3. Covering numbers in Euclidean space

Consider now $M = \mathbb{R}^n$. We can define a number of different metrics on \mathbb{R}^n , including in particular the following:

$$d_1(x,y) = \frac{1}{n} \sum_{i=1}^{n} |x_i - y_i|$$

$$d_2(x,y) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - y_i)^2}$$

$$d_{\infty}(x,y) = \max_{i} |x_{i} - y_{i}|$$

3. Covering numbers in Euclidean space

Accordingly, for any $W \subseteq \mathbb{R}^n$, we can define the corresponding covering numbers $\mathcal{N}(\varepsilon, W, d)$ for $p = 1, 2, \infty$.

It is easy to see that:

$$d_1(x, y) \le d_2(x, y) \le d_{\infty}(x, y)$$

Therefore, the corresponding covering numbers satisfy the relation:

$$\mathcal{N}(\varepsilon, W, d_1) \leq \mathcal{N}(\varepsilon, W, d_2) \leq \mathcal{N}(\varepsilon, W, d_{\infty})$$

4. Uniform covering numbers for a real-valued function class H

Definition: uniform covering number

Let *H* be a class of real-valued functions on *X*:

$$H = \{h | h: X \longrightarrow \mathbb{R}\}$$

And let $S = \{x_1, ..., x_m\} \subset X$. Then the $H(S) = H_S \subseteq \mathbb{R}$.

For any $\varepsilon > 0$ and $m \in N$, the uniform d_p covering numbers of H for $p = 1,2,\infty$ are defined as:

defined as:
$$\mathcal{N}_p(\varepsilon,H,m) = \begin{cases} \max_{S \subset X: \, |S| = m} \mathcal{N}(\varepsilon,H_S,d_p) \ \text{if } \mathcal{N}\big(\varepsilon,H_S,d_p\big) \ \text{is finite for all } S \subset X \\ \infty \qquad \text{otherwise} \end{cases}$$

Notice: The number of "uniform" refers to the maximum over all $S \subset X$. It has no relationship with uniform convergence.

4. Uniform covering numbers for a real-valued function class H

Background:

- $S = \{(x, y)\} \subseteq X \times Y$: is data set with $Y \subseteq \mathbb{R}$
- \mathbb{R}^X : real space Function
 - $\mathbb{R}^{X} = \{ h \in \mathbb{R}^{X} | h: X \to \mathbb{R} \} \implies \forall x \in X \ h(x) \in \mathbb{R}$
- $S_h = \{(x, h(x))\} \subseteq X \times \hat{Y}$: is data set with label h(x)
- $\hat{Y} \subset \mathbb{R}$ then $\hat{Y}^X \subset \mathbb{R}^X$
 - $\hat{\mathbf{Y}}^X = H = \{ h \in \hat{\mathbf{Y}}^X | h: X \longrightarrow \hat{\mathbf{Y}} \} \subseteq \hat{\mathbf{Y}}^X \Longrightarrow \forall x \in X \ h(x) \in \hat{Y}$
 - $l: Y \times \hat{Y} \longrightarrow \mathbb{R}^+$ such that $l(y, \hat{y} \in \hat{Y})$ is loss function betwen y and \hat{y}
 - $l_h: X \times Y \longrightarrow \mathbb{R}^+$ such that $l(y, h(x) \in \hat{Y})$ is loss function betwen y and h(x)

4. Uniform covering numbers for a real-valued function class H

Let's assume that H takes values in some set $\widehat{Y} \subseteq \mathbb{R}$, so that $H \subseteq \widehat{Y}^X$.

We will require the **loss function** l to be bounded. we will assume $\exists B > 0$ such that:

$$(\forall y \in Y)(\forall \hat{y} \in \hat{Y})$$
 $0 \le l(y, \hat{y}) \le B$ and $l: Y \times \hat{Y} \longrightarrow [0, B]$

Definition: The loss function class

We will find it useful to define for any function class $H \subseteq \widehat{Y}^X$ and loss $l: Y \times \widehat{Y} \to [0, B]$ the loss function class $l_H \subseteq [0, B]^{X \times Y}$ given by:

$$l_H = \{l_h: X \times Y \longrightarrow [0, B] \mid l_h(x, y) = l(y, h(x) \in \widehat{Y}) \text{ for some } h \in H\}$$

Uniform convergence in a Real-valued Function class H

Theorem: generalization bound

Let the sets $Y, \hat{Y} \subseteq \mathbb{R}$. Let $H \subseteq \hat{Y}^X$, and let $l: Y \times \hat{Y} \longrightarrow [0, B]$.

Let D be any distribution on $X \times Y$.

For any $\varepsilon > 0$:

$$\Pr_{S \sim D^m} \left(\sup_{h \in H} |L_D(h) - L_S(h)| \ge \varepsilon \right) \le \delta = 4 \,\mathcal{N}_1 \left(\frac{\varepsilon}{8}, l_H, 2m \right) e^{-m\varepsilon^2/32B^2}$$

Uniform convergence in a Real-valued Function class H

Lemma: L-Lipschitz loss

Let $Y, \hat{Y} \subseteq \mathbb{R}$.

Let $H \subseteq \hat{Y}^X$, and let $l: Y \times \hat{Y} \longrightarrow [0, B]$.

l is Lipschitz in its second argument with Lipschitz constant L>0, if and only if:

$$|l(y, \hat{y}_1) - l(y, \hat{y}_2)| \le L|\hat{y}_1 - \hat{y}_2| \quad \forall y \in Y, \hat{y}_1, \hat{y}_2 \in \hat{Y}$$

Then for any $m \in N$

$$\mathcal{N}_1(\varepsilon, l_F, m) \leq \mathcal{N}_1(\frac{\varepsilon}{L}, H, m)$$

Uniform convergence in a Real-valued Function class H

Corollary: generalization bound

Let $Y, \hat{Y} \subseteq \mathbb{R}$.

Let $H \subseteq \widehat{Y}^X$, and let $l: Y \times \widehat{Y} \longrightarrow [0, B]$ such that l is Lipchitz in its second argument with Lipschitz constant L > 0.

Let D be any distribution on $X \times Y$.

For any $\varepsilon > 0$:

$$\Pr_{S \sim D^m} \left(\sup_{h \in H} |L_D(h) - L_S(h)| \ge \varepsilon \right) \le \delta = 4 \,\mathcal{N}_1 \left(\frac{\varepsilon}{8L}, H, 2m \right) e^{-m\varepsilon^2/32B^2}$$