Number Representation

Narendiran S

20-05-2021

1 Binary Numbers

1.1 Negative Numbers

If x < 0, then the number is $2^N + x$. eg) N = 8, for x = -10, then the number is $2^8 + (-10) = 246$

1.2 Fractional numbers/ Real numbers

If x is a Fractional number, for M bit Fractional part x can be represented as $x*2^-4$. For example the number x='01101.101=13.625' is represented as $01101101*2^-3=109/8=13.625$ For example the number x='101.01101=5.40625' is represented as $10101101*2^-5=173/32=5.40625$

Hence, a scaling factor is used.

1.3 Range of Numbers

For N-bit 2's complement integer.

$$-2^{N-1}$$
 to $2^{N-1} - 1$
(for example N=8) -2^{8-1} to $2^{8-1} - 1 \implies -128$ to $+127$

For M.L representation of 2's complement real number - M bit for integer and L bit for Fractional.

$$-2^{M-1}$$
 to $2^{M-1}-2^{-L}$ (for example 7.3) -2^{7-1} to $2^{7-1}-2^{-3} \implies -64$ to $+63.875$

1.4 Dynamic Range

for an 8-bit Integer: smallest positive number = 1 and largest positive number is +127.

Then the Dynamic range $=\frac{127}{1}=2^7-1=2^{8-1}-1$

for an 8-bit 4.4 Number: smallest positive number = 2^{-4} and largest positive number is $7.875 = 2^3 - 2^-4 = 2^{M-1} - 2^{-L}$

Then the Dynamic range is $=\frac{2^3-2^{-4}}{2^{-4}}=2^7-1=2^{M+L}-1$.

From this, the Dynamic range of M.L format depends on M+L and not no where the decimal point is.

Therefore, for a 32-bit fixed point number the Dynamic range is 2^{31}

1.5 Fixed Point Arithmetic Operations

We can represented Fixed point as

$$F = I.S$$

where F is the fixed point, I is the integer and S is the scaling factor.

An example woule be to represent F = 12.5 in 6.2 format, then the I would be 50 and scaling factor S would 2^{-2} . So we get $50 * 2^{-2} = 12.5$

1.5.1 Addition

$$F_1 + F_2 = I_1.S + I_2.S$$

= $(I_1 + I_2).S$

For same scaling factor, from the above, we can use normal adders used for integers to perform Addition.

For differnt scaling factor alignment must be done.

1.5.2 Subtraction

$$F_1 - F_2 = I_1.S - I_2.S$$

= $(I_1 - I_2).S$

For same scaling factor, from the above, we can use normal subtractors used for integers to perform Subtraction.

For differnt scaling factor alignment must be done.

1.5.3 Multiplication

$$F_1 \times F_2 = I_1.S \times I_2.S$$
$$= (I_1 \times I_2).(S \times S)$$

FOr example, for 4.4 number \times 4.4 number, we get a 16-bit result - which is a 8.8 (4+4.4+4) number. FOr example, for 2.6 number \times 5.3 number, we get a 16-bit result - which is a 7.9 (2+5.6+3) number.

Multiplication causes more precision in the Fractional part. Now, we can drop either of the integer part or ractional part depending on our application and requirement.

1.6 Disadvantage of Fixed-Point

• Dynamic range is poor.

2 Single-Point Precision Floating numbers

Sources: Steve Hollasch Blog

In fixed-point, we explicitly say the scaling factor. But in Floating point, we have the scaling factor embedded along with the number to store.

The standard is IEEE 754. For a 32-bit number we have a sign bit, 8-bit Exponent and 23-bit mantinsa. 23-bit mantinsa is always positive.

- Mantisa is the actual value.
- Mantisa decides the precision.
- Exponent provides the Dynamic range.
- We use normalized notation. ie.) Matisa has always 1 followed by 23 bits of number but we wont' store the one it is implicitly assumed.
 - mantisa is 24-bit $1.m_{23}m_{22}...m_2m_1m_0$
 - But we store only the 23-bit $m_{23}m_{22}...m_2m_1m_0$
- the Exponent e is an unsigned 8-bit integer. (0-255)
- Minimum value of mantinsa = $[1 \cdot 0 \cdot 0 \cdot 0 \cdot 0 \cdot 0] = 1$
- Maximum value of mantinsa = $[1 . 1 1 1 ... 1 1] = 2 2^{23} \approx 2$
- 23-bit Mantisa actually holds 24 bit of implied 'one'.

Hence, the number can be:

$$x = (-1)^S \times [1.m_{23}m_{22}...m_2m_1m_0] \times 2^{e-127}$$

The smallest positive value is \implies S=0, e=1 (0 reserved), m=0 \implies $[1.000\dots0]2^{1-127}=1.0\times2^{-126}$

The largest positive value is \implies S=0, e=254 (255 reserved), $m=2 \implies [1.111\dots 1]2^{254-127}=(2-2)\times 2^{127}$

Hence, the Dynamic range is $\frac{2^{128}}{2^{-126}} = 2^{254}$

2.1 Normalized number

Assume leading 1 before the binary point. There will be an 1 before the mantisa

Sign (S)	Exponent (e)	Mantisa (m)	Value		
0	00000001	000 00	Smallest Positive normalized number $= (-1)^{0} \times [1.00000] \times 2^{1-127}$ $= +1.0 \times 2^{1-127}$ $= +2^{-126}$		
1	00000001	00000	Smallest Negative normalized number $ = (-1)^{1} \times [1.00000] \times 2^{1-127} $ $ = -1.0 \times 2^{-126} $ $ = -2^{-126} $		
0	11111110	11111	Largest Positive normalized number = $(-1)^0 \times [1.11111] \times 2^{254-127}$ = $+(2-2^{-23}) \times 2^{127}$		
1	11111110	11111	Largest Negative normalized number = $(-1)^1 \times [1.11111] \times 2^{254-127}$ = $-(2-2^{-23}) \times 2^{127}$		
0	00000001 11111110	XXXXX	Positive normalized Range =+ $[1.m_{23}m_{22}m_2m_1m_0]2^{e-127}$		
1	00000001 111111110	XXX XX	Negative normalized Range = $-[1.m_{23}m_{22}m_2m_1m_0]2^{e-127}$		

2.2 Denormalized Numbers

Special Case occurs when all the bits of exponent are 0s. Assume leading 0 before the binary point. There will be an 0 before the mantisa. The value can be written as $(-1)^S \times [0.m_{23}m_{22}...m_2m_1m_1 \times 2^{-126}]$. The exponent is -126 and not 0-127=-127, because of the implict one assumed in this special case.

Hence, the smallest posivie number can now go beyound 2^{-126} when exponent is all zeros and the mantinsa can provide with values. So the Denormalized number can be represented as shown below:

Sign (S)	Exponent (e)	Mantisa (m)	Value		
0	00000000	000 01	Smallest Positive Denormalized number $ = (-1)^{0} \times [0.00001] \times 2^{-126} $ $ = +2^{-23}2^{-126} $ $ = +2^{-149} $		
1	00000000	000 01	Smallest Negative Denormalized number $ = (-1)^{1} \times [0.00001] \times 2^{-126} $ $ = -2^{-23}2^{-126} $ $ = -2^{-149} $		
0	00000000	11111	Largest Positive Denormalized number = $(-1)^0 \times [0.11111] \times 2^{-126}$ = $(1 - 2^{-23}) \times 2^{-126}$		
1	00000000	11111	Largest Negative Denormalized number = $(-1)^1 \times [0.11111] \times 2^{-126}$ = $-(1-2^{-23}) \times 2^{-126}$		
0	00000000	000 01 : 111 11	Positive denormalized Range =+ $[0.m_{23}m_{22}m_2m_1m_0]2^{-126}$		
1	00000000	000 01 : 111 11	Negative denormalized Range = $-[0.m_{23}m_{22}m_2m_1m_0]2^{-126}$		

2.3 Special Cases

NaN - Not A Numbers

Sign (S)	Exponent (e)	Mantisa (m)	Value
0	00000000	000 00	+0
1	00000000	000 00	-0
0	11111111	000 00	$+\infty$
1	11111111	000 00	$-\infty$
0	11111111	0XX XX	SNaN
1	11111111	0XX XX	SNaN
0	11111111	1XX XX	QNaN
1	11111111	1XX XX	QNaN

2.4 Numbers which can't be represented

- Positive number greater than $(2-2^{-23}) \times 2^{127}$ (positive overflow)
- Negative number less than $-(2-2^{-23}) \times 2^{127}$ (negative overflow)
- Zero
- Positive numbers less than 2^{-149} (positive underflow)
- Negative numbers greater than -2^{-149} (neagative underflow)

2.5 Conversion base-10 to Floating point

Value	Calculation	Sign (S)	Exponent (e)	Mantisa (m)	Hex Rep
+0		0	00000000	00000	0x00000000
-0		0	00000000	00000	0x80000000
$+\infty$		0	11111111	000 00	0x7F800000
$-\infty$		1	11111111	000 00	0xFF800000
0.2	$\begin{array}{c} 0.2_{10} = 0.00110011001100110011001100_2 \\ = 1.10011001100110011001100 \times 2^3 \end{array}$	0	127 - 3 = 124	10011001100110011001100	0x3E4CCCCC
1.0	$1.0_{10} = 1.00000000000000000000000000000000000$	0	127 - 0 = 127	000000000000000000000000000000000000000	0x3F800000
1.99999988	$\begin{array}{c} 1.99999988_{10} = 1.1111111111111111111111_2 \\ = 1.111111111111111111111111 \times 2^0 \end{array}$	0	127 - 0 = 127	111111111111111111111111111111111111111	0x3FFFFFFE
16,777,215	$16777215_{10} = 111111111111111111111111_2$ $1.11111111111111111111111111111 \times 2^{-23}$	0	127 - (-23) = 150	111111111111111111111111111111111111111	0x4B7FFFFF
3.40282347e + 38	I DONT' KNOW	0	254	1111111111111111111111111	0x7F7FFFFF

- Floating point Addition (Subtraction) is toughter than Fixed point Addition (Subtraction)
- Floating point Multiplication is easier than Fixed point Multiplication