TD3 - groupes et anneaux 2

RaphBi

30 mars 2024

Exercice 1. Exprimer le groupe

$$G = \left\{ \begin{pmatrix} a & 0 & d \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} \middle| a, b, c, d \in \mathbb{K}, abc = 1 \right\} < GL_3(\mathbb{K})$$

comme un produit semi-direct $G=K\times$ H où K $\cong \mathbb{K}$ et $H\cong \mathbb{K}^\times\times \mathbb{K}^\times.$

Exercice 2. Soit $\langle _, _ \rangle : \mathbb{R}^n \to \mathbb{R}$ le produit scalaire standat $\langle x, y \rangle = x^T y$, et soit

$$O_n = \{ A \in GL_n(\mathbb{R}) \mid \langle Ax, Ay \rangle = \langle x, y \rangle \}$$

le groupe orthogonal.

- (i) Montrer que det $A = \pm 1$ pour tout $A \in O_n$.
- (ii) Exprimer le groupe \mathcal{O}_n comme un produit semi-direct $\mathcal{O}_n = \mathcal{SO}_n \rtimes H$ où $\mathcal{SO}_n = \{A \in \mathcal{O}_n \mid \det A = 1\}$ et $H \cong \mu_2$.
- (iii) Montrer que, si n est impair, alors $O_n \cong SO_n \times \mu_2$.

Exercice 3. Soit p un nombre premier et soit 0 < n < p un entier. Montrer que, si $G = K \times H$ est un groupe qui s'écrit comme produit semi-direct de deux sous-groupes K et H de cardinal |K| = n et |H| = p, alors $G \cong K \times \mu_p$.