1 Zahlenmengen

Natürliche Zahlen $\mathbb{N} = \{0, 1, 2, 3, 4, 5, 6, ...\}$ Ganze Zahlen $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$ Rationale Zahlen $\mathbb{Q} = \left\{\frac{1}{2}, \frac{2}{3}, \frac{5}{4}, -\frac{3}{7}, 0, 1, -2, ...\right\}$ Reele Zahlen $\mathbb{R} = \{-2, 0, 1.5, \sqrt{2}, \pi, e, ...\}$

2 Zahlensysteme

3 Prädikate

3.1 Aussagen

3.2 Quantoren

 $\forall A \text{ (Allquantor)}$ $\exists A \text{ (Existenzquantor)}$

3.3 Junktoren

 $A \neg B$ (Negation) $A \wedge B$ (Konjunktion) $A \vee B$ (Disjunktion) $A \Rightarrow B$ (Implikation) $A \Leftrightarrow B$ (Äquivalenz)

4 Gesetze und Umformungen

Distributiv $A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$ $A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$

Assotiativ $A \land (B \land C) \Leftrightarrow (A \land B) \land C$ $A \lor (B \lor C) \Leftrightarrow (A \lor B) \lor C$

de Morgan $\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$

Lemmas

5.1 Transitivität der Implikation

Für alle Prädikate mit A,B und C mit $A \Rightarrow B$ und $B \Rightarrow C$ gilt $A \Rightarrow C$.

5.2 Kontraposition

Für alle Prädikate mit A und B gilt $A\Rightarrow B\Leftrightarrow \neg B\Rightarrow \neg A$. Beweis. Wir wenden die Junktorenregeln an:

$$A\Rightarrow B$$
 $\Leftrightarrow \neg A \lor B$ Definition von $A\to B$
 $\Leftrightarrow B\lor \neg A$ Kommutativität
 $\Leftrightarrow \neg \neg B\lor \neg A$ Definition von $\neg B\to \neg A$

5.3 Symetrie und Antisymetrie schliessen sich nicht gegenseitig aus

Es sei A eine beliegende Menge und R eine beliebige Relation. auf A. Die folgenden Aussagen sind äquivalent:

- Die Relation R ist in der gleichheitsrelation auf A enthalten: G ⊆ {(x,x)|x ∈ A}
- Die Relation R ist symetrisch und antisymetrisch.