Lycée Chateaubriand MPSI 3 • 2024 – 2025

William GREGORY

Colle 15 • INDICATIONS Matrices

Dans tous les exercices, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

Exercice 15.1

Calculer le noyau de la matrice

$$A := \begin{pmatrix} 3 & 5 & -6 \\ -6 & 0 & 12 \\ 5 & 10 & -10 \end{pmatrix} \in \mathsf{M}_3(\mathbb{R})$$

résultat

$$\mathsf{Ker}(A) = \left\{ \lambda egin{pmatrix} 2 \ 0 \ 1 \end{pmatrix} \;\; ; \;\; \lambda \in \mathbb{R}
ight\}.$$

Exercice 15.2

Calculer le noyau de la matrice

$$A := egin{pmatrix} 1 & 8 & -3 & 2 \ -7 & 5 & 21 & -14 \ -3 & 4 & 9 & -6 \ 6 & 1 & -18 & 12 \end{pmatrix} \in \mathsf{M}_4(\mathbb{R})$$

résultat

$$\mathsf{Ker}(\mathcal{A}) = \left\{ \lambda egin{pmatrix} -2 \ 0 \ 0 \ 1 \end{pmatrix} + \mu egin{pmatrix} 3 \ 0 \ 1 \ 0 \end{pmatrix} \;\; ; \;\; \lambda, \mu \in \mathbb{R}
ight\}.$$

1

Exercice 15.3

On définit trois suites $(u_n)_n$, $(v_n)_n$ et $(w_n)_n$ par

$$\begin{cases} u_0, v_0, w_0 \in \mathbb{K} \\ \forall n \in \mathbb{N}, & \begin{cases} u_{n+1} = v_n - u_n \\ v_{n+1} = w_n - v_n \\ w_{n+1} = v_n - w_n. \end{cases} \end{cases}$$

Déterminer, pour $n \in \mathbb{N}$, les expressions de u_n , v_n et w_n , en fonction de n, u_0 , v_0 et w_0 .

On pose

indication

$$X_n := \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$$

et on montre par récurrence que $X_n = A^n X_0$, où $A \in M_3(\mathbb{K})$ indépendante de n.

résultat

$$\forall n \in \mathbb{N}^*, \quad \begin{cases} u_n = (-2)^{n-1}(v_0 - w_0) + (-1)^n(u_0 - w_0) \\ v_n = (-2)^{n-1}(w_0 - v_0) \\ w_n = (-2)^{n-1}(v_0 - w_0). \end{cases}$$

Exercice 15.4

Soit $n \in \mathbb{N}$. Soient $a, b \in \mathbb{K}$. On pose

$$M := egin{pmatrix} a & b & \cdots & b \ b & \ddots & \ddots & dots \ dots & \ddots & \ddots & b \ b & \cdots & b & a \end{pmatrix} \in \mathsf{M}_n(\mathbb{K}).$$

Déterminer, lorsqu'elle est inversible, l'inverse de M, en fonction de M, I_n , a, b et n.

indication

Écrire
$$M = (a - b)I_n + bJ$$
 où $J := \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & & \vdots \\ 1 & \cdots & 1 \end{pmatrix}$, puis écrire M^2 selon M et I_n .

$$a = b \text{ ou } a + (n-1)b = 0 \implies M \notin GL_n(\mathbb{K})$$

 $a \neq b \text{ et } a + (n-1)b \neq 0 \implies M^{-1} = \frac{(2a + (n-2)b)I_n - M}{(a-b)(a+(n-1)b)}.$

2

Exercice 15.5

Soit $n \in \mathbb{N}$. Soient $A, B \in M_n(\mathbb{K})$ telles que $AB = 0_n$. Montrer que

$$\forall k \in \mathbb{N}^*, \quad \mathsf{Tr}ig((A+B)^kig) = \mathsf{Tr}(A^k) + \mathsf{Tr}(B^k).$$

- indication **–**

Il s'agira de comprendre les termes intervenant dans le développement de $(A+B)^k$ et d'utiliser les propriétés de la trace (linéarité et Tr(MN) = Tr(NM)).

En formalisant, on peut écrire que $(A+B)^k = \sum_{f \in \mathscr{F}\left([\![1,k]\!],\{A,B\}\right)} f(1) \cdots f(k)$.

Exercice 15.6

Soit $n \in \mathbb{N}$. Soit $A \in M_n(\mathbb{R})$. Montrer que

$$Ker(A^{T}A) = Ker(A).$$

· indication ·

- ♦ L'inclusion ⊃ se fait sans difficulté.
- ♦ Pour ⊂, on pourra d'abord établir que

$$\operatorname{Tr}(B^{\top}B) = 0 \implies B = 0_n.$$

Exercice 15.7

On pose, pour $\theta \in \mathbb{R}$,

$$\mathsf{R}(\theta) := egin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}.$$

- **1.** Soient $\theta_1, \theta_2 \in \mathbb{R}$. Montrer que $R(\theta_1)$ et $R(\theta_2)$ commutent.
- **2.** Soit $\theta \in \mathbb{R}$. Soit $n \in \mathbb{N}$. Calculer la matrice $R(\theta)^n$.

— indication

On utilisera les relations donnant cos(a + b) et sin(a + b).

résultat

$$\forall n \in \mathbb{N}, \quad A^n = \begin{pmatrix} \cos(n\theta) & -\sin(n\theta) \\ \sin(n\theta) & \cos(n\theta) \end{pmatrix}.$$

3

Exercice 15.8

Soit $n \in \mathbb{N}$. Soient $A, B \in M_n(\mathbb{R})$. Résoudre l'équation en $X \in M_n(\mathbb{R})$

$$X = \operatorname{Tr}(X)A + B.$$

indication -

On raisonnera par analyse-synthèse, en passant d'abord l'équation à la trace pour distinguer différents cas.

résultat

En notant \mathcal{S} l'ensemble des solutions de l'équation,

$$\begin{cases} \mathsf{Tr}(A) = 1, \mathsf{Tr}(B) \neq 0 & \Longrightarrow \quad \mathcal{S} = \varnothing \\ \mathsf{Tr}(A) = 1, \mathsf{Tr}(B) = 0 & \Longrightarrow \quad \mathcal{S} = \{\lambda A + B \; ; \; \lambda \in \mathbb{R} \} \\ \mathsf{Tr}(A) \neq 1 & \Longrightarrow \quad \mathcal{S} = \left\{ \frac{\mathsf{Tr}(B)}{1 - \mathsf{Tr}(A)} A + B \right\}. \end{cases}$$

Exercice 15.9

Soit $n \in \mathbb{N}^*$. Soit $A \in GL_n(\mathbb{R})$ telle que

$$A + A^{-1} = I_n$$

Calculer, pour $k \in \mathbb{N}$, $A^k + A^{-k}$.

—— indication -

On commence par calculer $A^k + A^{-k} = (A^k + A^{-k})I_n$ et, en posant $B_k = A^k + A^{-k}$, on détermine une relation de récurrence vérifiée par $(B_k)_k$.

On montre ensuite que $B_k = \lambda_k I_n$ et on détermine λ_k à l'aide des techniques habituelles sur les suites.

résultat

$$\forall k \in \mathbb{N}, \quad A^k + A^{-k} = 2\cos\left(\frac{k\pi}{3}\right)I_n.$$

Exercice 15.10

Soit $n \in \mathbb{N}$. Soient $A, B, C \in M_n(\mathbb{K})$.

Montrer que

— indication —

On multipliera la relation par C et on utilisera que Tr(MN) = Tr(NM).