A. Determinant

随机 n 个数把矩阵补全成 $n \times n$ 的。 那么就是要算伴随矩阵的第一行,也就是逆矩阵的第一列,高斯 消元即可。

B. Roads

考虑 Kruskal 的过程,肯定是同样权值的边连通了一个点集。如果要让 MST 变大,就是要让某个权值的边不再连通。这是全局最小割问题,可以网络流也可以用 Stoer-Wagner 算法。

C. Intersection

首先高斯消元把 A 和 B 变成线性无关组。 之后就是求方程 $\sum a_i x_i = \sum b_j y_j$ 的解数,再次高斯消元得到零空间的维数 d,答案就是 2^d .

D. Super Resolution

直接输出。

E. Partial Sum

 $|\sum_{j=l+1}^{r}|a_{j}=\max\{S_{r}-S_{l},S_{l}-S_{r}\}$,其中 $S_{i}=a_{1}+a_{2}+\cdots+a_{l}$ 所以等价于选择 2m 个前缀和,其中 m 是正号,m 个是负号。自然是最大的 m 作为正号,最小的 m 个作为负号。只需要对前缀和排序,枚举 m 并更新答案。

F. Longest Common Subsequence

首先对 a 离散化,之后可以 $O(n^3)$ 枚举序列 X. 如果之后用 O(n) 的 LCS dp 会使复杂度变成 $O(n^4)$. std 用的方法是 2^3 枚举 X 的一个子序列,通过预处理一个 next(i,c) 表示 i 位置后 c 字符第一次出现的位置,来 O(1) 判断是否是 A 的子序列。

G. Parentheses

括号序列就是要求前 (2k+1) 个里面至少要有 k 个左括号。那么先把所有括号翻成右括号,之后重新翻回左括号。那么从左到右贪心,用一个堆维护现在可以翻回左括号的位置。每次相当于加两个当前段的字符,取一个最小的。所以事件只有最小的被拿完了,或者当前段拿完了。模拟即可。

H. Highway

按照 Prim 算法计算生成树。

假设初始点 v_0 是某条直径的端点。那么距离 v_0 最远的 v_1 必然是直径的另一个端点。

又因为距离任意点最远的要么是 v_0 要么是 v_1 ,所以剩下的点只需要连往 v_0 和 v_1 中较远的一个即可。

I. Strange Optimization

首先,
$$\{\frac{i}{n}-\frac{j}{m}:i,j\in\mathbb{Z}\}=\{\frac{\gcd(n,m)k}{nm}:k\in\mathbb{Z}\}$$

取 $\frac{1}{2}+\alpha=\frac{\gcd(n,m)}{2nm}$,即可取得最大值 $\frac{\gcd(n,m)}{2nm}$.

J. Similar Subsequence

设 f(i, j, x, y) 表示分别匹配到 a_i 和 b_j ,数字的上界和下界分别是 x 和 y 的方案数。注意到 x 和 y 总有一个等于 b_j ,所以状态数是 nm^2 的。

转移就是枚举 a_{i+1} 匹配的是 b_k ,要求 b_k 落在 [x, y] 中。这个可以用树状数组优化。复杂度是 $O(nm^2 \log m)$.