Preferential Distributions of Harmful and Beneficial Experiences Across a Neutral and Homogeneous Population

Andrew Scutt, Supervised by Norman Zeng and Paul Bloom

Centre for Mind and Morality, Department of Psychology, University of Toronto

Introduction

The research investigated how people prefer to spread positive and negative experiences across a neutral and homogeneous population. According to Kahneman and Tversky's (1979) prospect theory [1], agents asymmetrically feel losses greater than that of an equivalent gain. Its mathematical equivalent is stated as follows:

$$V = \sum_{i=1}^{n} \pi(p_i) \cdot v(x_i) \tag{1}$$

where $v(x_i)$ is described by the following graph:

Figure 1: Value Function in Prospect Theory

Using this model, assuming that spreading harms is a mechanism of harm reduction, distributing harms yields a faster growth in value relative to spreading positive experiences. Therefore, we predicted that people would be more willing to spread negative experiences across a population than positive experiences.

Methods

Critical Assumption

Assume that every human experience can be ranked on a scale from -100 to +100, such that:

- A -100 experience corresponds to the worst thing a human could possibly experience
- A +100 experience corresponds to the best thing a human could possibly experience
- A 0 experience corresponds to an experience that is exactly neutral

Using this assumption, we could ask questions such as, "Would you prefer that 4 people experience a +25 event, or that 1 person experiences a +100 event?"

Participants: 32 participants ($\overline{y}_{age} = 34.78$, $s_{age} = 14.16$, 17 females, 15 males) completed an online survey

Statistical analyses: As a first step, we may collect our preferential distribution data using a series of pairwise comparisons. However, this approach may lead to intransitive preferences. Therefore, we adapted Thurstone's (1927) Method of Paired Comparisons for Social Values [2] to create preference scales with ranking data.

As a result, z_a = z_b = z_c = 0

Figure 2: Computational Representation of Thurstone's Approach

using Ranking Data

The stimuli a, b, and c represented different distributions of positive or negative experiences.

Furthermore, we decomposed these items into bundles that each contain the number of people and the per-person magnitude and valence of the experience.

Then, we associated a utility value for each bundle using the values from our preference scale, such that we obtain a 3D graph. Pushing our analysis further, we used a symbolic regression software (PySR [3]) that uses machine-learning and genetic algorithms to derive our participants' average utility functions for positive and negative experiences.

Design and Procedure:

- Randomized within-subjects design
- Condition 1: Rank the following set of items in order of increasing preference: [1,+100], [2,+50], [4,+25], [100,+1], [10,+20], and [40,+5].
- Condition 2: Rank the following set of items in order of increasing preference: [1,-100], [2,-50], [4,-25], [100,-1], [10,-20], and [40,-5].

Results

Number of People	Per-person Ex-	Preference
(\mathbf{x}_0)	perience Value	Value
	(\mathbf{x}_1)	
10	+20	0.82
2	+50	0.78
1	+100	0.68
4	+25	0.50
40	+5	0.38
100	+1	0.0

Utility function for positive items: $f(x_0,x_1) = 0.717 - 0.00726x_0$ [2] Thurstone, L. L. (1927). The method of paired comparisons for

Number of People	Per-person Ex-	Preference
(\mathbf{x}_0)	perience Value	Value
	(\mathbf{x}_1)	
100	-1	1.82
40	-5	1.19
4	-25	0.70
10	-20	0.68
2	-50	0.30
1	-100	0.0

Figure 3: Graphical Representation of Utility Functions (red:+, blue:-)

Discussion

From our results, we deduce that when distributing positive experiences, our participants were attentive to the number of people. Conversely, when spreading negative experiences participants considered per-person experience value and the number of people, placing greater emphasis on the number of people. Finally, from the preference scale values, we infer that participants had a stronger proclivity to spread negative experiences than positive experiences.

References

- [1] Kahneman, D., Tversky, A. (1979). Prospect Theory: An Analysis of Decision under Risk. *Econometrica*, 47(2), 263–291. https://doi.org/10.2307/1914185
 - Thurstone, L. L. (1927). The method of paired comparisons for social values. *Journal of Abnormal and Social Psychology*, 21(4), 384–400. https://doi.org/10.1037/h0065439
- [3] Cranmer, M. (2023). Interpretable Machine Learning for Science with PySR and SymbolicRegression.jl. https://doi.org/10.48550/arxiv.2305.01582

Utility function for negative items: $f(x_0,x_1) = 2.42e^{x_1 \cdot (0.00264x_0 + 0.0381)}$