I Grundbegriffe

2 Abbildungen

2.1 Überblick

Abbildung Eine Abbildung f von einer Menge X in eine Menge Y ist eine Vorschrift, die jedem $x \in X$ auf eindeutige Weise genau ein $f(x) \in Y$ zuordnet.

Schreibweise: $f: X \to Y, x \mapsto f(x)$ Wichtiges:

- X heißt Definitionsmenge.
- ullet Y heißt Zielmenge
- Zwei Abbildungen sind gleich, wenn
 - Definitionsmenge gleich,
 - Zielmenge gleich,
 - jedem $x \in X$ das gleiche Element $y \in Y$ zugeordnet wird.
- Abb(X,Y): Menge der Abbildungen von X nach Y.
- ullet Funktionen Abbildungen mit Zielmenge $\mathbb R$.

2.3 Beispiel

- (a) Identische Abbildung für jede Menge X ist $id_X: X \to X, x \mapsto x$.
- (b) Inklusionsabbildung für jede Teilmenge $A\subseteq X$ ist $\iota_A:A\to X, x\mapsto x$
- (c) Konstante Abbildung zu je 2 Mengen X, Y und $y_0 \in Y$ ist $c_{y_0}: X \to Y, x \mapsto y_0$
- (d) Charakteristische Funktion zu jeder Menge X und Teilmenge $A\subseteq X$ ist

$$\chi_A: X \to \mathbb{R}, x \mapsto \begin{cases} 1, \text{falls } x \in A \\ 0, \text{falls } x \notin A \end{cases}$$

(e) Kroneckersymbol zu jeder Menge X die Abbildung:

$$X \times X \to \mathbb{R}, (x, y) \mapsto \delta_{x, y} := \begin{cases} 1 \text{ falls } x = y \\ 0 \text{ falls } x \neq y \end{cases}$$

2.4 Definition (Eigenschaften Abbildung)

Mit $f: X \to Y$ Abbildung:

- 1. f surjektiv, falls $\forall x, x' \in X : f(x) = f(x') \Rightarrow x = x'$
- 2. f injektiv, falls $\forall y \in Y \exists x \in X : f(x) = y$
- 3. f bijektiv, falls f surjektiv und injektiv

2.6 Definition (Restriction, Urbild, Bild)

Sei $f: X \to Y$ Abbildung. Dann

- Restriktion / Einschränkung Mit $A \subseteq X$ ist $f|_A : A \to Y, a \mapsto f(a)$
- Bild von $A \subset X$ unter f ist $f(A) := \{f(a) | \forall a \in A\}$
- <u>Urbild</u> von $B \subset Y$ unter f ist $f^{-1}(B) := \{x \in X | f(x) \in B\}$ Bild von f Im(f) := f(X)

2.9 Definition (Komposition)

Mit Abbildungen $f: X \to Y$ und $g: Y \to Z$ ist Komposition $g \circ f: X \to Z, x \mapsto g(f(x))$.

Abstrakt: \circ : Abb $(Y, Z) \times$ Abb $(X, Y) \rightarrow$ Abb(X, Z)

2.10 Satz

Die Komposition von Abbildungen \circ ist assoziativ. $h \circ (g \circ f) = (f \circ g) \circ f$ mit entsprechend definierten Abbildungen.

2.11 Definition

Ist $f: X \to Y$ bijektive Abbildung, so existiert zu jedem $y \in Y$ ein $x_y \in X$ mit $f(x_y) = y$, folglich $f^{-1}: Y \to X, y \mapsto x_y$ ist Umkehrabbildung

2.12 Satz

Ist $f: X \to Y$ bijektiv, so ist $\mathrm{id}_X = f^{-1} \circ f = f \circ f^{-1}$

2.14 Definition (Familie)

Mit I, X Mengen heißt Abbildung $x: I \to X, i \mapsto x_i$ Familie von Elementen X mit Indexmenge I bzw. I-Tupel von Elementen von X.

2.15 Beispiel

<u>Folge</u> ist Familie $(x_i)_{i\in\mathbb{N}_0}$ mit Indexmenge \mathbb{N}_0

2.16 Definition (Graph)

<u>Graph</u> einer Abbildung $f: X \to Y$ ist $\Gamma_f := \{(x, y) \in X \times Y | y = f(x)\}$

3 Gruppen

3.1 Definition

Sei G Menge. Verknüpfung auf G ist Abbildung $*: G \times G \to G, (x,y) \mapsto x * y.$

- Halbgruppe ist ein Paar (G, *), wenn gilt:
- (G1) Assoziativität Für $x, y, z \in G : (x * y) * z = x * (y * z)$
 - Monoid ist Halbgruppe, wenn noch gilt:
- (G2) Es gibt ein $e \in G$, mit dem für alle $x \in G$: x * e = e * x = x
 - Neutrales Element der Verknüpfung *: ein $e \in G$ wie in (G2)

3.3 Satz (Eindeutigkeit des neutralen Elements)

Ein Monoid (G, *) besitzt genau ein neutrales Element

3.4 Definition

Gruppe ist ein Monoid (G,*) mit neutralem Element $e \in G$, für den noch gilt

(G3) Für jedes $x \in G$ existiert ein $x' \in G$: x * x' = x' * x = e

Kommutativität Für alle $x, y \in G : x * y = y * x$. Damit

- abelsch Gruppe, welche das Kommutativgesetz einhält
- Inverses Element heißt ein $x' \in G$ wie in (G3).

3.6 Satz (Eindeutigkeit des Inversen)

Ist (G,*) eine Gruppe, so gibt es zu jedem $x \in G$ genau ein inverses Element.

3.7 Beispiel

- (a) Triviale Gruppe besteht nur aus dem neutralen Element: $G := \{e\}$
- (b) Permutation ist Menge $\operatorname{Sym}(X) := \{ f \in \operatorname{Abb}(X, X) \mid f \text{ bijektiv} \}$ auf Menge X, die mit der Komposition Gruppe bildet: $\overline{(\operatorname{Sym}(X), \circ)}$, genannt symmetrische Gruppe auf X (für $n \in \mathbb{N}$ geschrieben als $S_n := \operatorname{Sym}(\{1, ..., n\})$).

3.10 Satz

 $\mbox{Mit } (G,\cdot) \mbox{ Gruppe und } x,y \in G \mbox{ gilt: } (x^{-1})^{-1} = x, (xy)^{-1} = y^{-1}x^{-1}.$

3.11 Satz

Mit (G, \cdot) und $a, b \in G$ haben die Gleichungen $a \cdot x = b, y \cdot a = b$ eindeutige Lösungen $(x = a^{-1} \cdot b, y = b \cdot a^{-1})$, damit existieren die Kürzungsregeln.

3.12 Bemerkung

- Endlich Eine Gruppe (G, \cdot) ist endlich, falls Menge G endlich
- ullet Ordnung ist die Mächtigkeit von G
- Endliche Gruppen können durch Verknüpungstafeln beschrieben werden.

3.13 Definition

Untergruppe einer Gruppe (G,\cdot) ist nichtleere Teilmenge $H\subseteq G$ mit

(UG1) $x, y \in H : x \cdot y \in H$ (Abgeschlossenheit unter Multiplikation)

(UG2) $x \in H : x^{-1} \in X$ (Abgeschlossenheit Inversem)

3.14 Satz

Sei (G, \cdot) Gruppe und $\emptyset \neq H \subseteq G$. Genau dann ist H Untergruppe von G, wenn sich die Verknüpfung \cdot zu einer Abbildung $\cdot_H : H \times H \to H$ einschränken lässt (d.h. $\cdot|_{H \times H} = \iota_H : H \to G$ die Inklusionsabbildung ist) und (H, \cdot_H) Gruppe ist.

Notation: $H \leq G$

3.16 Beispiel

(a) Jede Gruppe enthält triviale Untergruppe $H = G, H = \{e\}$.

3.17 Lemma

Ist G eine Gruppe, $(H_i)_{i\in I}$ eine Familie von Untergruppen von G, so ist auch $H:=\bigcap_{i\in I}H_i$ Untergruppe von G. (Für $I=\emptyset$ setzt man $\bigcap_{i\in I}\in I$) $H_i=G$).

3.18 Satz

Ist G Gruppe und $X \subseteq G$ Teilmenge, so gibt es eindeutlich bestimmte <u>kleinste</u> Untergruppe H von G, die X enthält, d.h. H enthält X, und ist H' weitere Untergruppe von G, die X enthält, so gilt $H \subseteq H'$.

3.19 Definition

Ist G Gruppe und $X \subseteq G$ Teilmenge, so nennt man die kleinste Untergruppe von G, die X enthält, die von X erzeugte Untergruppe von G. Wird G selbst von endlicher Menge erzeugt, so heißt G endlich erzeugt.

Notation: $\langle X \rangle$ (falls $X = \{x_1, \dots, x_n\}$ endlich auch $\langle x_1, \dots, x_n \rangle$).

4 Ringe

4.1 Definition (Ring)

Ein Ring ist ein Tripel $(R, +, \cdot)$ aus Menge R und Verknüpfungen $+: R \times R \to R$ ("Addition") bzw. $\cdot: R \times R \to R$ ("Multiplikation"), das erfüllt:

- (R1) (R, +) ist abelsche Gruppe
- (R2) (R, \cdot) ist Halbgruppe
- (R3) Distributivgesetze gelten für $a, x, y \in R$:

$$a \cdot (x+y) = a \cdot x + a \cdot y$$
 und $(x+y) \cdot a = (x\dot{a}) + (y \cdot a)$

Weiterhin:

- kommutativ ist ein Ring $(R, +, \cdot)$, wenn $x \cdot y = y \cdot x \ \forall x, y \in \mathbb{R}$
- Einselement ist das neutrale Element der Multiplikation $e \in R : e \cdot x = x \cdot e = x$.
- <u>Unterring</u> eines Ringes $(R, +, \cdot)$ ist Teilmenge $S \subseteq R$ mit geeigneter Einschränkung von Addition, Multiplikation. Aus Übung 31

Ist R ein Ring und $\emptyset \neq S \subseteq R$, dann ist S genau dann Unterring von R, wenn folgende Bedingungen gelten:

- (UR1) S ist abgeschlossen bzgl. Addition
- (UR2) S ist abgeschlossen bzgl. Bildung additiver Inverser
- (UR3) S ist abgeschlossen bzgl. Multiplikation

4.3 Beispiel

(a) Nullring ist $R = \{0\}$ mit den einzig möglichen Verknüpfungen $+, \cdot$ und ist kommutativ mit 0 als Einselement.

4.4 Bemerkung

Ist R ein Ring, so gelten für $x, y \in R$:

- (a) $0 \cdot x = x \cdot 0 = 0$
- (b) $x \cdot (-y) = (-x) \cdot y = -xy$
- (c) $(-x) \cdot (-y) = xy$

4.6 Theorem (Division mit Rest in \mathbb{Z})

Für jedes $a \in \mathbb{Z}$ gibt es eindeutig bestimmte $q, r \in \mathbb{Z}$ mit a = qb + r und $0 \le r < |b|$

4.9 Definition (Charakteristik)

Sei R ein Ring mit Einselement 1. Die <u>Charakteristik</u> von R ist das kleinste $n \in \mathbb{N}$ mit $\underbrace{1 + \ldots + 1}_{n \text{ viele}} = 0$, falls so ein n existiert

- andernfalls hat R die Charakteristik 0.

4.10 Definition (Nullteiler)

Sei R ein Ring. Ein $0 \neq x$ heißt <u>Nullteiler</u> von R, wenn es ein $0 \neq y \in R$ gibt mit xy = 0 oder yx = 0. Ein Ring ohne Nullteiler heißt nullteilerfrei.

4.11 Definition (Einheit)

Sei R ein Ring mit Einselement 1. Ein $x \in R$ heißt invertierbar, oder Einheit von R, wenn es $x' \in R$ mit xx' = x'x = 1 gibt.

Notation: R^{\times} ist Menge der invertierbaren Elemente.

4.13 Satz

Sei R ein Ring mit Einselement 1.

- (a) Ist $x \in R$ invertierbar, so ist x kein Nullteiler in R.
- (b) Die invertierbaren Elemente R^{\times} von R bilden mit der Multiplikation eine Gruppe.

5 Körper

5.1 Definition

Ein Körper ist ein kommutativer Ring $(K, +, \cdot)$ mit Einslement $1 \neq 0$, indem jedes $0 \neq x \in K$ invertierbar ist.

5.2 Bemerkung

Ein Körper K ist stets nullteilerfrei, und es gelten

- (K1) (K, +) ist abelsche Gruppe mit neutralem Element 0.
- (K2) $(K \setminus \{0\}, \cdot)$ ist abelsche Gruppe mit neutralem Element 1.
- (K3) Es gelten die Distributivgesetze (R3).

5.4 Definition (Teilkörper)

Ein <u>Teilkörper</u> eines Körpers $(K, +, \cdot)$ ist Teilmenge $L \subseteq K$, die mit geeigneter Einschränkung von + und \cdot wieder Körper ist.

5.6 Beispiel (Komplexe Zahlen)

Komplexe Zahlen ist Menge $\mathbb{C} := \mathbb{R} \times \mathbb{R}$, mit Addition / Multiplikation definiert als $((x_1, y_1), (x_2, y_2) \in \mathbb{C})$

$$(x_1, y_1) + (x_2, y_2) := (x_1 + x_2, y_1 + y_2)$$
 $(x_1, y_1) \cdot (x_2, y_2) := (x_1x_2 - y_1y_2, x_1y_2 + x_2y_1)$

und sind damit Körper. Die <u>imaginäre Einheit</u> i := (0,1) erfüllt $i^2 = -1$, und jedes Element $z \in \mathbb{C}$ lässt sich als z = x + iy schreiben, $x, y \in \mathbb{R}$.

5.7 Lemma

Sei $a \in \mathbb{Z}$ eine ganze Zahl und $p \in \mathbb{Z}$ eine Primzahl, die a nicht teilt. Dann gibt es $b, k \in \mathbb{Z}$ mit ab + kp = 1.

5.8 Beispiel (Endlicher Primzahlkörper)

Für jede Primzahl $p \in \mathbb{Z}$ ist $\mathbb{Z}/p\mathbb{Z}$ ein Körper. Ist $\bar{a} \neq \bar{0}$, so gilt $p \nmid a$, und somit gibt es nach 5.7 $b, k \in \mathbb{Z}$ mit

$$\bar{1} = \overline{ab + kp} = \bar{a} + \bar{b}.$$

Zusammen mit 4.12 und 4.13 erhalt man, dass für ein $n \in \mathbb{N}$ die folgenden Aussagen äquivalent sind:

- (1) Der Ring $\mathbb{Z}/n\mathbb{Z}$ ist ein Körper.
- (2) Der Ring $\mathbb{Z}/p\mathbb{Z}$ ist nullteilerfrei.
- (3) n ist Primzahl.

6 Polynome

Hier ist R kommutativer Ring mit Einslement.

6.2 Definition (Polynomring)

Sei R[X] die Menge der Folgen in R, die fast überall 0 sind, also $R[X] := \{(a_k)_{k \in \mathbb{N}_0} | \forall k : a_k \in R \text{ und } \exists n_0 \, \forall k > n_0 : a_k = 0\}$. Addition und Multiplikation ist gegeben durch

$$(a_k)_{k \in \mathbb{N}_0} + (b_k)_{k \in \mathbb{N}_0} = (a_k + b_k)_{k \in \mathbb{N}_0} \qquad (a_k)_{k \in \mathbb{N}_0} \cdot (b_k)_{k \in \mathbb{N}_0} = (c_k)_{k \in \mathbb{N}_0}, c_k = \sum_{i+j=k} a_i b_j$$

Damit ist R[X] ein kommutativer Ring mit Einselement, der Polynomring (in einer Variablen X) über R.

Weiterhin

- Polynom ist $(a_k)_{k \in \mathbb{N}_0} \in R[X]$ mit Koeffizienten a_0, a_1, \ldots
- Mit $x \in R$ und (x, 0, 0, ...) ist R Unterring von R[X]
- Mit X als Folge (0, 1, 0, ...) lässt sich $X^n = (\delta_{k,n})_{k \in \mathbb{N}_0}$ definieren. Damit schreibt sich auch jedes $(a_k)_{k \in \mathbb{N}_0}$ mit $a_k = 0$ für alle $k > n_0$ als

Notation:

$$f = f(X) = \sum_{k=0}^{n_0} a_k X^k = a_0 + a_1 X + \dots$$
 $f = \sum_{k \ge 0} a_k X^k = \sum_{k \in \mathbb{N}_0} a_k X^k$

• Der <u>Grad</u> eines Polynoms f ist $\deg(f) := \max\{n \in \mathbb{N}_0 | a_n \neq 0\}$ für $0 \neq f(X) = \sum_{n \geq 0} a_k X^k \in R[X]$.

- $\deg(0) = -\infty$ (Grad des Nullpolynoms)
- Konstanter Term ist a_0
- <u>Leitkoeffizient</u> ist $a_{\text{deg}(f)}$ von f.
- Hat f den Grad 0,1 oder 2, so heißt f konstant, linear bzw. quadratisch.

6.4 Satz

Seien $f, g \in R[X]$.

- (a) Es ist $deg(f + g) \le max\{deg(f), deg(g)\}$
- (b) Es ist $deg(fg) \le deg(f) + deg(g)$
- (c) Ist R nullteilerfrei, dann ist $\deg(fg) = \deg(f) + \deg(g)$ und R[X] ist nullteilerfrei.

6.5 Theorem (Polynomdivision)

Sei K Körper und sei $0 \neq g \in K[X]$. Für jedes $f \in K[X]$ gibt es eindeutig bestimmte $h, r \in K[X]$ mit f = gh + r und $\deg(r) < \deg(g)$.

6.7 Definition (Polynomauswertung)

Sei $f(X) = \sum_{k \ge 0} a_k X^k \in R[X]$. Für $\lambda \in R$ ist die <u>Auswertung</u> von f in λ als $f(\lambda) = \sum_{k \ge 0} a_k \lambda^k \in R$.

Das Polynom f definiert so eine Abb. $\tilde{f}: R \to R, \lambda \mapsto f(\lambda)$. Ein $\lambda \in R$ mit $f(\lambda) = 0$ heißt Nullstelle von f.

6.8 Lemma

Für $f, g \in R[X]$ und $\lambda \in R$ ist $(f+g)(\lambda) = f(\lambda) + g(\lambda)$ und $(fg)(\lambda) = f(\lambda)g(\lambda)$.

6.9 Satz

Ist K Körper und $\lambda \in K$ Nullstelle von $f \in K[X]$, so gibt es eindeutiges $h \in K[X]$ mit $f(X) = (X - \lambda) \cdot h(x)$.

6.10 Korollar

Sei K ein Körper. Ein Polynom $0 \neq f \in K[X]$ hat höchstens $\deg(f)$ viele Nullstellen in K.

6.11 Korollar

Ist K ein unendlicher Körper, so ist die Abbildung $K[X] \to \mathrm{Abb}(K,K), f \mapsto \tilde{f}$ injektiv.

6.13 Satz

Für einen Körper K sind äquivalent:

- (1) Jedes $f \in K[X]$ vom Grad $\deg(f) > 0$ hat eine Nullstelle in K.
- (2) Jedes $0 \neq f \in K[X]$ zerfällt über K in Linearfaktoren, also $f(X) = a \cdot \prod_{i=1}^{n} (X \lambda_n)$ mit $n = \deg(f)$, $a \in K$ und $\lambda_1, \ldots, \lambda_n \in K$.

6.14 Definition

Ein Körper K heißt algebraisch abgeschlossen, wenn er eine Bedingung aus Satz 6.13 erfüllt.

6.15 Theorem (Fundamentalsatz der Algebra, D'ALEMBERT 1746, GAUSS 1799)

Der Körper $\mathbb C$ der komplexen Zahlen ist algebraisch abgeschlossen.

II Vektorräume

1 Definition und Beispiele

1.2 Definition (Vektorraum)

Ein K-Vektorraum (oder auch Vektorraum über K) ist ein Tripel $(V, +, \cdot)$ bestehend aus einer Menge V, einer Verknüpfung $+: V \times V \to V$, genannt Addition, und einer Abbildung $\cdot: K \times V \to V$, genannt Skalarmultiplikation, mit

- (V1) (V, +) ist abelsche Gruppe,
- (V2) Skalarmultiplikation ist verträglich, d.h. für $\lambda, \mu \in K, x, y \in V$:
 - (i) $\lambda \cdot (x+y) = \lambda x + \lambda y$
 - (ii) $(\lambda + \mu) \cdot x = \lambda \cdot x + \mu \cdot x$
 - (iii) $\lambda \cdot (\mu \cdot x) = (\lambda \cdot \mu) \cdot x$
 - (iv) $1 \cdot x = x$

Das neutrale Element von (V, +) ist $\mathbf{0}$ und heißt Nullvektor.

1.4 Beispiel (Standardraum)

Standardraum Für $n \in \mathbb{N}$ ist $V = K^n := \prod_{i=1}^n K = \{(x_1, \dots, x_n) | x_i \in K\}$ mit komponentenweiser Addition und komponentenweiser Skalarmultiplikation ein K-Vektorraum.

Nullraum ist der Standardraum für n = 0, d.h. $V = \{0\}$.

1.5 Satz

Ist V ein K-Vektorraum, so gelten für $\lambda \in K$ und $x \in V$:

- (a) $0 \cdot x = 0$
- (b) $\lambda \cdot \mathbf{0} = \mathbf{0}$
- (c) $(-\lambda) \cdot x = \lambda \cdot (-x) = -(\lambda \cdot x)$ (insbes. $-1 \cdot x = -x$)
- (d) $\lambda \cdot x = \mathbf{0} \Rightarrow \lambda = 0 \lor x = \mathbf{0}$

1.7 Definition (Untervektorraum)

Sei V ein K-Vektorraum. Ein Untervektorraum von V ist nichtleere Teilmenge $W\subseteq V$ mit

- (UV1) Für $x, y \in W : x + y \in W$
- (UV2) Für $x \in W, \lambda \in K : \lambda x \in W$

1.8 Satz

Sei V ein K-Vektorraum, und $W \subseteq V$ eine Teilmenge. Genau dann ist W ein Untervektorraum von V, wenn W mit geeigneter Einschränkung von Addition und Skalarmultiplikation ein K-Vektorraum ist.

1.9 Beispiel

Triviale Untervektorräume hat jeder K-Vektorraum V, nämlich $W = \{0\}$ und W = V.

1.10 Lemma

Ist V ein K-Vektorraum und $(W_i)_{i\in I}$ eine Familie von Untervektorräumen von V, so ist auch $W:=\bigcap_{i\in I}W_i$ ein Untervektorraum von V.

1.11 Satz

Ist V ein K-Vektorraum und $X \subseteq V$ eine Teilmenge, so gibt es einen eindeutig bestimmten kleinsten Untervektorraum W von V, der X enthält.

1.12 Definition

Ist V ein K-Vektorraum und $X \subseteq V$ eine Teilmenge, so nennt man den kleinsten Untervektorraum von V, der X enthält, den von X erzeugten Untervektorraum.

Notation: $\langle X \rangle$

Eine Menge $X \subseteq V$ mit $\langle X \rangle = V$ heißt auch <u>Erzeugendensystem</u> von V. Der Vektorraum V heißt <u>endlich erzeugt</u>, wenn er ein endliches Erzeugendensystem $X \subseteq V$ besitzt.

2 Linearkombination und lineare Abhängigkeit

Sei V ein K-Vektorraum.

2.1 Definition (Linearkombination)

- 1. Sei $n \in \mathbb{N}_0$. Ein $x \in V$ ist eine (K-)<u>Linearkombination</u> eines n-Tupels (x_1, \ldots, x_n) von Elementen von V, wenn es $\lambda_1, \ldots, \lambda_n \in K$ gibt mit $x = \lambda_1 x_1 + \ldots + \lambda_n x_n$.
 - Der Nullvektor ist stets Linearkombination, auch für n = 0.
- 2. Ein $x \in V$ ist eine Linearkombination einer Familie $(x_i)_{i \in I}$ von Elementen von V, wenn es $n \in \mathbb{N}_0$ und $i_1, \ldots, i_n \in I$ gibt, für die x eine Linearkombination von $(x_{i_1}, \ldots, x_{i_n})$ ist.
- 3. Die Menge $x \in V$, die eine Linearkombination von $\mathcal{F} = (x_i)_{i \in I}$ sind, wird mit $\operatorname{span}_K(\mathcal{F})$ bezeichnet.

2.3 Lemma

Für jede Teilmenge $X \subseteq V$ ist $\operatorname{span}_{K}(X)$ ein Untervektorraum von V.

2.4 Satz

Für jede Teilmenge $X \subseteq V$ ist $\operatorname{span}_K(X) = \langle X \rangle$ der von X erzeugte Untervektorraum von V.

2.5 Bemerkung

Man nennt $\operatorname{span}_K(X)$ auch den von X aufgespannten Untervektorraum, oder die lineare Hülle von X.

2.6 Beispiel

Sei $V = K^n$ der Standardraum. Für i = 1, ..., n sei $e_i = (\delta_{i,1}, ..., \delta_{i,n})$. Dann ist $\operatorname{span}_K(e_1, ..., e_n) = K^n$, und K^n ist endlich erzeugt. Die $e_1, ..., e_n$ heißen Standardbasis.

2.7 Definition (Lineare Abhängigkeit)

- 1. Sei $n \in \mathbb{N}_0$. Ein n-Tupel (x_1, \ldots, x_n) von Elementen von V sind (K-) linear abhängig, wenn es $\lambda_1, \lambda_n \in K$ gibt, die nicht alle gleich Null sind, und $\lambda_1 x_1 + \ldots + \lambda_n x_n = 0$. Andernfalls heißt (x_1, \ldots, x_n) linear unabhängig
- 2. Eine Familie $(x_i)_{i\in I}$ von Elementen von V ist linear abhängig, wenn es $n\in\mathbb{N}_0$ und paarweise verschiedene $i_1,\ldots,i_n\in I$ gibt, für welche das n-Tupel (x_{i_1},\ldots,x_{i_n}) linear abhängig ist. Andernfalls heißt $(x_i)_{i\in I}$ linear unabhängig.

2.9 Satz

Genau dann ist eine Familie $(x_i)_{i \in I}$ linear abhängig, wenn es ein $i_0 \in I$ mit $x_{i_0} \in \operatorname{span}_K ((x_i)_{i \in I \setminus \{i_0\}})$ gibt. In diesem Fall ist $\operatorname{span}_K ((x_i)_{i \in I}) = \operatorname{span}_K ((x_i)_{i \in I \setminus \{i_0\}})$.

2.10 Satz

Genau dann ist eine Familie $(x_i)_{i\in I}$ linear unabhängig, wenn sich jedes $x\in \operatorname{span}_K\left((x_i)_{i\in I}\right)$ in eindeutiger Weise als Linearkombination der $(x_i)_{i\in I}$ schreiben lässt, d.h. ist $x=\sum_{i\in I}\lambda_ix_i=\sum_{i\in I}\lambda_i'x_i$ mit $\lambda_i,\lambda_i'\in K$, fast alle gleich Null, so ist $\lambda_i=\lambda_i'$ für alle $i\in I$.

3 Basis und Dimension

Sei V ein K-Vektorraum.

3.1 Definition (Basis)

Eine Familie $(x_i)_{i\in I}$ von Elementen von V heißt (K-)Basis von V, wenn gilt:

- (B1) Die Familie $(x_i)_{i \in I}$ ist linear unabhängig
- (B2) Die Familie $(x_i)_{i \in I}$ erzeugt V, d.h. $\operatorname{span}_K((x_i)_{i \in I}) = V$.

3.3 Satz

Sei $(x_i)_{i\in I}$ eine Familie von Elementen von V. Genau dann ist $(x_i)_{i\in I}$ eine Basis von V, wenn sich jedes $x\in V$ eindeutig als $x=\sum_{i\in I}\lambda_ix_i$ mit $\lambda_i\in K$, fast alle gleich Null, schreiben lässt.

3.5 Satz

Für eine Familie $\mathcal{B} = (x_i)_{i \in I}$ von Elementen von V sind folgende Aussagen äquivalent:

- (1) \mathcal{B} ist eine Basis von V.
- (2) \mathcal{B} ist minimales Erzeugendensystem, d.h. \mathcal{B} ist Erzeugendensystem, aber jede Teilmenge $J \subsetneq I$ ist $(x_i)_{i \in J}$ kein Erzeugendensystem.
- (3) \mathcal{B} ist maximal linear unabhängig, d.h. \mathcal{B} ist linear unabhängig, aber jede Familie $(x_i)_{i\in J}$ mit $J\supseteq I$ ist linear abhängig.

3.6 Theorem (Basisauswahlsatz)

Jedes endliche Erzeugendensystem von V besitzt eine Basis von V als Teilfamilie: ist $(x_i)_{i\in I}$ ein endliches Erzeugendensystem, so gibt es eine Teilmenge $J\subseteq I$, für die $(x_i)_{i\in J}$ eine Basis ist.

3.7 Korollar

Jeder endlich erzeugte K-Vektorraum besitzt eine endliche Basis.

3.10 Lemma (Austauschlemma)

Sei $\mathcal{B} = (x_1, \dots, x_n)$ eine Basis von V. Sind $\lambda_1, \dots, \lambda_n \in K$ und $y = \sum_{i=1}^n \lambda_i x_i$, so ist für jedes $j \in \{1, \dots, n\}$ mit $\lambda_j \neq 0$ auch $\mathcal{B}' = (x_1, \dots, x_{j-1}, y, x_{j+1}, \dots, x_n)$ eine Basis von V.

3.11 Theorem (Steinitz'scher Austauschsatz)

Sei $\mathcal{B} = (x_1, \dots, x_n)$ eine Basis von V und $\mathcal{F} = (y_1, \dots, y_n)$ eine linear unabhängige Familie in V. Dann ist $r \leq n$ und es gibt $i_1, \dots, i_{n-r} \in \{1, \dots, n\}$, für die $\mathcal{B}' = (y_1, \dots, y_r, x_{i_1}, \dots, x_{i_{n-r}})$ eine Basis von V ist.

3.12 Korollar (Basisergänzungssatz)

Ist V endlich erzeugt, so lässt sich jede linear unabhängige Familie zu einer Basis ergänzen: ist (x_1, \ldots, x_n) linear unabhängig, so gibt es $m \ge n$ und $x_{n+1}, \ldots, x_m \in V$ derart, dass (x_1, \ldots, x_m) eine Basis von V ist.

3.13 Korollar

Sind $(x_i)_{i\in I}$ und $(y_i)_{i\in J}$ Basen von V, und ist I endlich, so ist |I|=|J|.

3.14 Korollar

Ist V endlich erzeugt, so haben alle Basen von V dieselbe Mächtigkeit.

3.15 Definition (Dimension)

Ist V endlich erzeugt, so ist die <u>Dimension</u> von V die Mächtigkeit $\dim_K(V)$ eine Basis von V. Andernfalls sagt man, dass V unendliche Dimension hat, und schreibt $\dim_K(V) = \infty$.

3 18 Satz

Sei V endlich erzeugt, und $W \subseteq V$ ein Untervektorraum.

- (a) Es ist $\dim_K(W) \leq \dim_K(V)$. Insbesondere ist W endlich erzeugt.
- (b) Ist $\dim_K(W) = \dim_K(V)$, so ist V = W.

4 Summen von Vektorräumen

Sei V ein K-Vektorraum und $(W_i)_{i \in I}$ eine Familie von Untervektorräumen von V.

4.1 Definition (Summe von Untervektorräumen)

Die Summe $(W_i)_{i \in I}$ ist der Untervektorraum $\sum_{i \in I} W_i = \operatorname{span}_K \left(\bigcup_{i \in I} W_i\right)$ von V. Im Fall $I = \{1, \dots, n\}$ schreibt man auch $W_1 + \dots + W_n$ für $\sum_{i \in I} W_i$.

4.2 Lemma

Es ist $\sum_{i \in I} = \left\{ \sum_{i \in I} x_i \middle| x_i \in W_i, \text{ fast alle gleich Null} \right\}$

4.4 Satz

Es sind äquivalent:

- (1) Jedes $x \in \sum_{i \in I} W_i$ ist eindeutig als $\sum_{i \in I} \min x_i \in W_i$ darstellbar.
- (2) Für jedes $i \in I$ ist $W_i \cap \sum_{j \in I \setminus \{i\}} W_j = \{0\}$

4.5 Definition (Direkte Summe von Untervektorräumen)

Ist jedes $x \in \sum_{i \in I} W_i$ eindeutig als $\sum_{i \in I} x_i$ mit $x_i \in W_i$ darstellbar, so sagt man das $\sum_{i \in I} W_i$ die <u>direkte Summe</u> der Untervektorräume $(W_i)_{i \in I}$ ist, und schreibt $\bigoplus_{i \in I} W_i$ für $\sum_{i \in I} W_i$. Im Fall $I = \{1, \ldots, n\}$ schreibt man auch $W_i \oplus \cdots \oplus W_n$ für $\bigoplus_{i \in I} W_i$.

4.8 Korollar

Seien W_1, W_2 Untervektorräume von V. Es sind äquivalent:

- (1) $V = W_1 \oplus W_2$
- (2) $V = W_1 + W_2$ und $W_1 \cap W_2 = \{0\}.$

4.9 Satz

Seien W_1, W_2 Untervektorräume von V mit den Basen $(x_i)_{i \in I_1}$ bzw. $(x_i)_{i \in I_2}$, wobei $I_1 \cap I_2 = \emptyset$. Es sind äquivalent:

- (1) $V = W_1 \oplus W_2$
- (2) $(x_i)_{i \in I_1 \cup I_2}$ ist eine Basis von V.

4.10 Korollar

Ist V endlichdimensional, so ist jeder Untervektorraum eine direkte Summe, d.h. ist W ein Untervektorraum von V, so gibt es (i.A. nicht eindeutig bestimmten) Untervektorraum W' von V (genannt <u>lineares Komplement</u> zu W) mit $V = W \oplus W'$. Es ist $\dim_K(W') = \dim_K(V) - \dim_K(W)$.

4.12 Theorem (Dimensionsformel)

Ist V endlichdimensional und sind W_1, W_2 Untervektorräume von V, so ist $\dim_K(W_1 + W_2) + \dim_K(W_1 \cap W_2) = \dim_K(W_1) + \dim_K(W_2)$.

4.13 Definition (Externes Produkt von Vektorräumen)

Das (externe) Produkt einer Familie $(V_i)_{i \in I}$ von K-Vektorräumen ist der K-Vektorraum $\prod_{i \in I} V_i$ bestehend aus dem kartesischen Produkt der V_i mit komponentenweiser Addition und Skalarmultiplikation.

4.14 Definition (Externe direkte Summe von Vektorräumen)

Die (externe) direkte Summe einer Familie $(V_i)_{i\in I}$ von K-Vektorräumen ist der Untervektorraum $\bigoplus_{i\in I} V_i := \{(x_i)_{i\in I} \in \prod_{i\in I} V_i | x_i = 0 \text{ für fast alle } i\}$ des Produktes $\prod_{i\in I} V_i$.

4.16 Lemma

Sei $(V_i)_{i\in I}$ eine Familie von K-Vektorräumen und $V:=\bigoplus_{i\in I}V_i$. Für jedes $j\in I$ ist $\tilde{V}_j=V_j\times\prod_{i\in I\setminus\{j\}}\{0\}$ ein Untervektorraum von V, und $V=\bigoplus_{i\in I}\tilde{V}_i$.

III Lineare Abbildungen

In diesem Kapitel sei K ein Körper.

1 Matrizen

1.1 Definition (Matrix)

Seien $m, n \in \mathbb{N}_0$. Eine $m \times n$ -Matrix über K ist en rechteckiges Schema

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$

mit $a_{ij} \in K$ für i = 1, ..., m; j = 1, ..., n. Man schreibt dies auch als

$$A = (a_{ij})_{i=1,\dots,m}$$
$$_{j=1,\dots,n}$$

, oder einfach $A = (a_{ij})_{i,j}$, wenn m und n aus dem Kontext hervorgehen.

- Die $a_{i,j}$ heißen Koeffizienten der Matrix, und wir definieren $(A)_{ij} := a_{ij}$.
- Die Menge der $m \times n$ -Matrizen wird mit $\mathrm{Mat}_{m \times n}(K)$ oder $K^{m \times n}$ bezeichnet.
- Man nennt das Paar (m, n) auch den <u>Typ</u> (manchmal auch <u>Dimension</u>) der Matrix Ist m = n, so spricht man von quadratischen Matrix, und schreibt $\operatorname{Mat}_n(K) := \operatorname{Mat}_{n \times n}(K)$.
- Zu einer Matrix $A = (a_{ij})_{i,j} \in \operatorname{Mat}_{m \times n}(K)$ definiert man die <u>transponierte</u> Matrix $A^t := (a_{ij})_{j,i} \in \operatorname{Mat}_{n \times m}(K)$.

1.2 Beispiel

Seien $m, n \in \mathbb{N}$ fest.

- (a) Die Nullmatrix ist $0 = (0)_{i,j} \in \operatorname{Mat}_{m \times n}(K)$.
- (b) Für $k \in \{1, ..., m\}$ und $l \in \{1, ..., n\}$ ist die (k, l)-Basismatrix gegeben durch $E_{kl} = (\delta_{ik}\delta_{jl})_{i,j} \in \operatorname{Mat}_{m \times n}(K)$.
- (c) Die Einheitsmatrix ist $\mathbb{1}_n = (\delta_{i,i})_{i,j} \in \operatorname{Mat}_n(K)$. Insbesondere ist $\mathbb{1}_n = \operatorname{diag}(1,\ldots,1)$
- (d) Für die Permutation $\sigma \in S_n$ definiert man die <u>Permutationsmatrix</u> $P_{\sigma} = (\delta_{i,1}\sigma(i), j)_{i,j} \in \operatorname{Mat}_n(K)$
- (e) Für $a_1, \ldots, a_n \in K$ hat man den <u>Zeilenvektor</u> $(a_1, \ldots, a_n) := (a_1 \ldots a_n) \in \operatorname{Mat}_{1 \times n}(K)$, sowie den <u>Spaltenvektor</u> $(a_1, \ldots, a_n)^t = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \in \operatorname{Mat}_{n \times 1}(K)$.

1.3 Definition

Seien $A = (a_{ij})_{i,j}, B = (b_{ij})_{i,j} \in \operatorname{Mat}_{m \times n}(K)$ und $\lambda \in K$. Man definiert auf $\operatorname{Mat}_{m \times n}(K)$ koeffizientenweise Addition und Skalarmultiplikation.

1.4 Satz

 $(\operatorname{Mat}_{m \times n}(K), +, \cdot)$ ist ein K-Vektorraum der Dimension $\dim_K(\operatorname{Mat}_{m \times n}(K)) = mn$ mit Basis $\mathcal{B} = (E_{ij})_{(i,j) \in \{1,\dots,m\} \times \{1,\dots,n\}}$.

1.5 Definition (Matrizenmultiplikation)

Seien $m, n, r \in \mathbb{N}_0$. Sind

$$A = (a_{ij})_{\substack{i=1,\dots,m\\j=1,\dots,n}} \in \operatorname{Mat}_{m \times n}(K) \quad \text{und} \quad B = (b_{jk})_{\substack{j=1,\dots,n\\k=1,\dots,r}} \in \operatorname{Mat}_{m \times r}(K)$$

, so definieren wir $C = A \cdot B$ als die Matrix $C = (c_{ik})_{i=1,\dots,m} \in \text{Mat}_{m \times r}(K)$ mit $c_{ik} = \sum_{j=1}^{n} a_{ij}b_{jk}$ $k=1,\dots,r$

1.7 Lemma

Für $m, n, r \in \mathbb{N}_0, A \in \operatorname{Mat}_{m \times n}(K), \mathcal{B} \in \operatorname{Mat}_{n \times r}(K)$ und $\lambda \in K$ gilt $A(\lambda \cdot B) = (\lambda \cdot A)B = \lambda \cdot AB$.

1.8 Lemma

Matrizenmultiplikation ist assoziativ: für $m, n, r, s \in \mathbb{N}_0, A \in \operatorname{Mat}_{m \times n}(K), B \in \operatorname{Mat}_{n \times r}, C \in \operatorname{Mat}_{r \times s}$ ist A(BC) = (AB)C.

1.9 Lemma

Für $m, n, r \in \mathbb{N}_0, A, A' \in \operatorname{Mat}_{m \times n}(K)$ und $B, B' \in \operatorname{Mat}_{n \times r}(K)$ ist (A + A')B = AB + A'B und A(B + B') = AB + AB'.

1.10 Satz

Mit der Matrizenmultiplikation wird $\operatorname{Mat}_n(K)$ zu einem Ring mit Einselement $\mathbb{1}_n$.

1.12 Definition

Eine Matrix $A \in \operatorname{Mat}_n(K)$ heißt invertierbar oder regulär, wenn sie im Ring $\operatorname{Mat}_n(K)$ invertierbar ist, sonst singulär.

die Gruppe $\mathrm{GL}_n(K) = \mathrm{Mat}_n(K)^{\times}$ der invertierbaren Matrizen heißt die allgemeine lineare Gruppe.

1.14 Lemma

Für $A, A_1, A_2 \in \text{Mat}_{m \times n}(K)$ und $B \in \text{Mat}_{n \times r}(K)$ ist $(A_1 + A_2)^t = A_1^t + A_2^t, (A^t)^t = A$ und $(AB)^t = B^t A^t$.

1.15 Satz

Für $A \in \operatorname{GL}_n(K)$ ist $A^t \in \operatorname{GL}_n(K)$ und $(A^t)^{-1} = (A^{-1})^t$.

2 Homomorphismen von Gruppen

Seien G und H zwei multiplikativ geschriebene Gruppen.

2.1 Definition

Eine Abbildung $f:G\to H$ heißt <u>Gruppenhomomorphismus</u> (oder ein <u>Homomorphismus</u> von Gruppen), wenn für alle $x,y\in G$ gilt:

(GH)
$$f(xy) = f(x)f(y)$$

Die Menge der Homomorphismen $f: G \to H$ bezeichnet man mit hom(G, H).

2.4 Satz

Sei $f: G \to H$ ein Gruppenhomomorphismus. Dann gilt:

- (a) f(1) = 1
- (b) Für $x \in G$ ist $f(x^{-1}) = f(x)^{-1}$
- (c) Für $x_1, \ldots, x_n \in G$ ist $f(x_1, \ldots, x_n) = f(x_1) \ldots f(x_n)$
- (d) Ist $G_0 \leq G$ eine Untergruppe, so ist $f(G_0) \leq H$.
- (e) Ist $H_0 \leq H$ eine Untergruppe, ist ist $f^{-1}(H_0) \leq G$.

2.5 Satz

Seien G_1, G_2 und G_3 Gruppen. Sind $f_1: G_1 \to G_2$ und $f_2: G_2 \to G_3$ Gruppenhomomorphismen, so ist auch $f_2 \circ f_1: G_1 \to G_3$ ein Gruppenhomomorphimus.

2.6 Definition

Ein Homomorphismus $f: G \to H$ ist ein Monomorphismus, wenn f injektiv ist, ein Epimorphismus, wenn f surjektiv ist, und ein Isomorphismus, wenn f bijektiv ist.

Die Gruppen G und H heißen isomorph, wenn es einen Isomorphismus $f: G \to H$ gibt.

Notation: $G \cong H$.

2.7 Lemma

Ist $f: G \to H$ ein Isomorphismus, so ist auch $f^{-1}: H \to G$ ein Isomorphismus.

2.8 Satz

Sei $f: G \to H$ ein Homomorphismus. Genau dann ist f ein Isomorphismus, wenn es einen Homomorphismus $f': H \to G$ mit $f' \circ f = \mathrm{id}_G$ und $f \circ f' = \mathrm{id}_H$ gibt.

2.9 Korollar

Isomorphie von Gruppen ist eine Äquivalenzrelation: Sind G, G_1, G_2, G_3 Gruppen, so gilt:

- (i) $G \cong G$ (Reflexivität)
- (ii) Ist $G_1 \cong G_2$, so auch $G_2 \cong G_1$ (Symmetrie)
- (iii) Ist $G_1 \cong G_2$ und $G_2 \cong G_3$, so auch $G_1 \cong G_3$. (Transitivität)

2 12 Definition

Der Kern eines Gruppenhomomorphismus $f:G\to H$ ist $\mathrm{Ker}(f):=f^{-1}(\{1\})=\{x\in G\,|\,f(x)=1\}$

2.13 Lemma

Ist $f: G \to H$ ein Homomorphismus, so ist $N:= \mathrm{Ker}(f)$ eine Untergruppe von G mit $x^{-1}yx \in N$ für alle $x \in G, y \in N$.

2.14 Satz

Sei $f: G \to H$ ein Homomorphismus. Genau dann ist f injektiv, wenn $Ker(f) = \{1\}$.

2.15 Definition

Ist N eine Untergruppe von G mit $x^{-1}yx \in N$ für alle $x \in G, y \in N$, so nennt man N einen Normalteiler von G. Notation: $N \subseteq G$.

3 Homomorphismus von Ringen

Seien R, S, T Ringe.

3.1 Definition

Eine Abbildung $f: R \to S$ heißt Ringhomomorphismus (oder ein Homomorphismus von Ringen), wenn für $x, y \in R$ gilt:

- (RH1) f(x+y) = f(x) + f(y)
- (RH2) f(xy) = f(x)f(y)
 - Die Menge der Homomorphismen $f: R \to S$ wird mit hom(R, S) bezeichnet.
 - Ein Homomorphismus $f: R \to S$ ist ein Monomorphismus, Epimorphismus oder Isomorphismus, wenn f injektiv, surjektiv oder bijektiv ist.
 - Gibt es einen Isomorphismus $f:R\to S$, so nennt man S und R isomorph. Notation: $S\cong R$
 - Ein Element aus $\operatorname{End}(R) := \operatorname{Hom}(R,R)$ nennt man Endomorphismus von R.
 - Der Kern eines Ringhomomorphismus $f: R \to S$ ist $Ker(f) := f^{-1}(\{0\})$

3.4 Satz

Sind $f: R \to S$ und $g: S \to T$ Ringisomorphismen, so ist auch $g \circ f: R \to T$ ein Ringisomorphismus.

3.5 Lemma

Ist $f: R \to S$ ein Ringisomorphismus, so auch $f^{-1}: S \to S$.

3.6 Satz

Sei $f: R \to S$ ein Ringhomomorphismus. Genau dann ist f ein Ringisomorphismus, wenn es einen Ringhomomorphismus $f': S \to R$ mit $f' \circ f = \mathrm{id}_R$ und $f \circ f' = \mathrm{id}_S$ gibt.

3 7 Lemma

Der Kern $I := \operatorname{Ker}(f)$ eines Ringhomomorphismus $f : R \to S$ ist eine Untergruppe von (R, +) und $xa \in I$ und $ax \in I$ für alle $x \in R, a \in I$.

3.8 Satz

Sei $f: R \to S$ ein Ringhomomorphismus. Genau dann ist f injektiv, wenn $Ker(f) = \{0\}$.

3.9 Definition

Ist I eine Untergruppe von (R, +) mit $xa \in I$ und $ax \in I$ für alle $x \in R$ und $a \in I$, so nennt man I <u>Ideal</u> von R und schreibt $I \subseteq R$.

4 Homomorphismen von Vektorräumen

Seien V, W und U drei K-Vektorräume.

4.1 Definition (Lineare Abbildung)

Eine Abbildung $f: V \to W$ heißt (K-)linear (oder auch ein Homomorphismus von K-Vektorräumen), wenn für alle $x, y \in V$ und $\lambda \in K$ gilt:

- (L1) f(x+y) = f(x) + f(y) (Additivität)
- (L2) $f(\lambda x) = \lambda f(x)$ (Homogenität)
 - Die Menge der K-linearen Abbildungen $f \in Abb(V, W)$ wird mit $Hom_K(V, W)$ bezeichnet.
 - Die Elemente $\operatorname{End}_K(V) := \operatorname{Hom}(V, V)$ nennt man Endomorphismus von V.
 - Eine lineare Abbildung $f:V\to W$ ist ein Monomorphismus, Epimorphismus bzw. Isomorphismus, falls f injektiv, surjektiv oder bijektiv ist.
 - Einen Endomorphismus $f: V \to V$, der auch Isomorphismus ist, nennt man <u>Automorphismus</u> von V. Notation: $\operatorname{Aut}_K(V)$ (Menge der Automorphismen)
 - Der Kern einer linearen Abbildung $f: V \to W$ ist $Ker(f) := f^{-1}(\{0\})$

4.3 Satz

Eine Abbildung $f: V \to W$ ist genau dann K-linear, wenn für alle $x, y \in V$ und $\lambda, \mu \in K$ gilt:

(L)
$$f(\lambda x + \mu y) = \lambda f(x) + \mu f(y)$$

4.5 Beispiel

Sei $V = K^n$ und $W = K^m$. Wir fassen die Elemente von V und W als Spaltenvektoren auf. Zu einer Matrix $A \in \operatorname{Mat}_{m \times n}(K)$ definieren wir eine Abbildung $f_A : V \to W$ durch $f_a(x) = Ax$.

4.6 Satz

Sei $f: V \to W$ eine K-lineare Abbildung. Dann gilt:

- (a) f(0) = 0
- (b) Für $x, y \in V$ ist f(x y) = f(x) f(y)
- (c) Sind $(x_i)_{i \in I}$ aus V und $(\lambda_i)_{i \in I}$ aus K, fast alle gleich Null, so ist $f(\sum_{i \in I} \lambda_i x_i) = \sum_{i \in I} \lambda_i f(x_i)$.
- (d) Ist $(x_i)_{i\in I}$ linear abhängig in V, so ist $f((x_i)_{i\in I})$ linear abhängig in W.
- (e) Ist $V_0 \subseteq V$ ein Untervektorraum, so auch $f(V_0) \subseteq W$ von W.
- (f) Ist $W_0 \subseteq W$ ein Untervektorraum, so auch $f^{-1}(W) \subseteq V$ von V.

4.7 Satz

Die Komposition K-linearer Abbildungen ist wieder K-linear: sind $f: V \to W$ und $g: W \to U$ zwei K-lineare Abbildungen, so auch $g \circ f: V \to U$.

4.8 Lemma

Ist $f: V \to W$ ein Isomorphismus, so ist auch $f^{-1}: W \to V$.

4.9 Satz

Sei $f:V\to W$ linear. Genau dann ist f ein Isomorphismus, wenn eine lineare Abbildung $f':W\to V$ existiert mit $f'\circ f=\mathrm{id}_V, f\circ f'=\mathrm{id}_W$.

4.11 Satz

Ist $f: V \to W$ eine lineare Abbildung, so ist Ker(f) ein Untervektorraum von V. Genau dann ist f ein Monomorphismus, wenn $Ker(f) = \{0\}$.

5 Der Vektorraum der linearen Abbildungen

Seien V, W zwei K-Vektorräume.

5.1 Satz

Sei $(x_i)_{i\in I}$ eine Basis von V und $(y_i)_{i\in I}$ eine Familie in W. Dann gibt es genau eine lineare Abbildung $f:V\to W$ mit $f(x_i)=y_i$. für alle i. Diese ist durch $f(\sum_{i\in I}\lambda_i x_i)=\sum_{i\in I}\lambda_i f(x_i)$ gegeben und erfüllt

- (a) $\operatorname{Im}(f) = \operatorname{span}_{K} ((y_i)_{i \in I}),$
- (b) genau dann ist f injektiv, wenn $(y_i)_{i \in I}$ linear unabhängig ist.

5.2 Korollar

Ist V endlich dimensional, (x_1, \ldots, x_n) eine linear unabhängige Familie in V und (y_1, \ldots, y_n) eine Familie in W, so gibt es eine lineare Abbildung $f: V \to W$ mit $f(x_i) = y_i$ für alle i.

5.3 Korollar

Ist $(x_i)_{i\in I}$ eine Basis von V und $(y_i)_{i\in I}$ eine Basis von W, so gibt es genau einen Isomorphismus $f:V\to W$ mit $f(x_i)=y_i$ für alle i.

5.4 Korollar

Zwei endlichdimensionale K-Vektorräume sind genau dann zueinander isomorph, wenn sie dieselbe Dimension haben.

5.5 Korollar

Ist $\mathcal{B} = (v_1, \dots, v_n)$ eine Basis von V, so gibt es genau einen Isomorphismus $\Phi_{\mathcal{B}} : K^n \to V$ mit $f(e_i) = v_i$ für $i = 1, \dots, n$. Insbesondere ist jeder endlich dimensionale K-Vektorraum V isomorph zu einem Standardvektorraum K^n , nämlich für $n = \dim(V)$.

5.6 Definition

Die Abbildung ΦB heißt Koordinatensystem zu \mathcal{B} . Für $v \in V$ ist $(x_1, \dots, x_n)^t = \Phi B^{-1}(v) \in K^n$ der Koordinatenvektor zu v bezüglich \mathcal{B} , und x_1, \dots, x_n sind die Koordinaten von v bezüglich \mathcal{B} .

5.7 Satz

Die Menge $\operatorname{Hom}_K(V,W)$ ist ein Untervektorraum von $\operatorname{Abb}(V,W)$.

5.8 Lemma

Sei U ein weiterer K-Vektorraum. Sind $f, f_1, f_2 \in \operatorname{Hom}_K(V, W)$ und $g, g_1, g_2 \in \operatorname{Hom}_K(U, W)$, so ist $f \circ (g_1 + g_2) = f \circ g_1 + f \circ g_2$ und $(f_1 + f_2) \circ g = f_1 \circ g + f_2 \circ g$.

5.9 Korollar

Mit der Komposition wird $\operatorname{End}_K(V)$ zu einem Ring mit Einselement id_V , und $\operatorname{End}_K(V)^{\times} = \operatorname{Aut}_K(V)$.

5.11 Lemma

Seien $m, n, r \in \mathbb{N}$ und $A \in \operatorname{Mat}_{m \times n}(K), B \in \operatorname{Mat}_{n \times r}(K)$. Für die linearen Abbildungen $f_A \in \operatorname{Hom}_K(K^n, K^m), f_B \in \operatorname{Hom}_K(K^n, K^r), f_{AB} \in \operatorname{Mat}_K(K^r, K^m)$ gilt dann $f_{AB} = f_A \circ f_B$.

5.12 Satz

Die Abbildung $A \mapsto f_A$ liefert einen Isomorphismus von K-Vektorräumen $F_{m \times n} : \operatorname{Mat}_{m \times n}(K) \xrightarrow{\cong} \operatorname{Hom}_K(K^n, K^m)$ sowie einen Ringisomorphismus $F_{n \times n} : \operatorname{Mat}_n(K) \xrightarrow{\cong} \operatorname{End}_K(K^n)$, der GL_n auf $\operatorname{Aut}_K(K^n)$ abbildet.

6 Koordinationdarstellung lineare Abbildungen

Seinen V und W zwei endlichdimensionale K-Vektorräume mit Basen $\mathcal{B} = (x_1, \ldots, x_n)$ und $\mathcal{C} = (y_1, \ldots, y_m)$

6.1 Definition (Darstellende Matrix)

Sei $f \in \operatorname{Hom}_K(V, W)$. Für $j = 1, \dots, n$ schreiben wir

$$f(x_j) = \sum_{i=1}^{m} a_{ij} y_i$$

mit eindeutig bestimmten $a_{ij} \in K$. Die Matrix

$$M_{\mathcal{C}}^{\mathcal{B}}(f) = (a_{ij})_{i,j} \in \mathrm{Mat}_{m \times n}(K)$$

heißt die darstellende Matrix von f bezüglich der Basen \mathcal{B} und \mathcal{C} .

6.2 Satz

Sei $f \in \text{Hom}_K(V, W)$. Die darstellende Matrix $M_{\mathcal{C}}^{\mathcal{B}}(f)$ ist die eindeutige Matrix $A \in \text{Mat}_{m \times n}(K)$, für das Diagramm

$$\begin{array}{ccc} K^n & \xrightarrow{f_A} & K^m \\ & & & \downarrow^{\Phi_{\mathcal{C}}} \\ V & \xrightarrow{f} & W \end{array}$$

kommutiert, d.h. für die $\Phi_{\mathcal{C}} \circ f_A = f \circ \Phi_{\mathcal{B}}$ gilt.

6.3 Korollar

Die Abbildung

$$M_{\mathcal{C}}^{\mathcal{B}} \colon \operatorname{Hom}_{K}(V, W) \longrightarrow \operatorname{Mat}_{m \times n}(K)$$

ist ein Isomorphismus von K-Vektorräumen.

6.4 Lemma

Sei U ein weiterer endlichdimensionaler K-Vektorraum mit Basis A. Sind $f \in \text{Hom}_K(V, W)$ und $g \in \text{Hom}_K(U, V)$, so ist

$$M_{\mathcal{C}}^{\mathcal{B}}(f) \cdot M_{\mathcal{B}}^{\mathcal{A}}(q) = M_{\mathcal{C}}^{\mathcal{B}\mathcal{A}}(f \circ q).$$

6.5 Korollar

Sei $f \in \operatorname{Hom}_K(V, W)$. Genau dann ist f ein Isomorphismus, wenn m = n und $M_{\mathcal{C}}^{\mathcal{B}}(f) \in \operatorname{GL}_n(K)$. In diesem Fall ist $M_{\mathcal{C}}^{\mathcal{B}}(f))^{-1} = M_{\mathcal{B}}^{\mathcal{C}}(f^{-1})$.

6.6 Korollar

Die Abbildung

$$M_{\mathcal{B}} := M_{\mathcal{B}}^{\mathcal{B}} : \operatorname{End}_{K}(V) \longrightarrow \operatorname{Mat}_{n}(K)$$

ist ein Ringhomomorphismus, der $\operatorname{Aut}_K(V)$ auf $\operatorname{GL}_n(K)$ abbildet.

6.7 Definition (Transformationsmatrix)

Sind \mathcal{B} und \mathcal{B}' Basen von V, so nennt man

$$T_{\mathcal{B}'}^{\mathcal{B}} := M_{\mathcal{B}'}^{\mathcal{B}}(\mathrm{id}_V) \in \mathrm{GL}_n(K)$$

die Transformationsmatrix des Basiswechsels von \mathcal{B} nach \mathcal{B}' .

6.9 Satz (Transformationsformel)

Seien \mathcal{B} und \mathcal{B}' Basen von V sowie \mathcal{C} und \mathcal{C}' Basen von W, und sei $f \in \text{Hom}_K(V, W)$. Dann ist

$$M_{\mathcal{C}'}^{\mathcal{B}'}(f) = T_{\mathcal{C}'}^{\mathcal{C}} \cdot M_{\mathcal{C}}^{\mathcal{B}}(f) \cdot \left(T_{\mathcal{B}'}^{\mathcal{B}}\right)^{-1}.$$

6.10 Korollar

Sind \mathcal{B} und \mathcal{B}' Basen von V und $f \in \operatorname{End}_K(V)$, so gilt

$$M_{\mathcal{B}'} = T_{\mathcal{B}'}^{\mathcal{B}} \cdot M_{\mathcal{B}}^{\mathcal{B}}(f) \cdot (T_{\mathcal{B}'}^{\mathcal{B}})^{-1}.$$

7 Quotienträume

Seien V und W zwei K-Vektorräume und U ein Untervektorraum von V.

7.1 Definition

Ein affiner Unterraum von V ist eine Teilmenge der Form

$$x + U := \{x + u \colon u \in U\} \subseteq V,$$

wobei U ein beliebiger Untervektorraum von V ist und $x \in V$.

7.2 Lemma

für $x, x' \in V$ sind äquivalent:

- (1) x + U = x' + U
- (2) $x' \in x + U$
- $(3) \ x' x \in U$

7.3 Lemma

Sei $f \in \text{Hom}_K(V, W)$ und U Ker(f). Für $y \in f(V)$ ist die <u>Faser</u> $f^{-1}(y)$: $= f^{-1}(\{y\})$ von f der affine Unterraum x + U für ein beliebiges $x \text{ inf}^{-1}(y)$.

7.4 Beispiel

Sind $V = \mathbb{R}^2$ und $W = \mathbb{R}$ und $f(x_1, x_2) = 2x_1 - x_2$, so sind die Fasern von f genau die Geraden $L \subseteq \mathbb{R}^2$ der Steigung 2.

7.5 Lemma

Seien $x_1, x_1', x_2, x_2' \in V$ und $\lambda \in K$. Ist $x_1 + U = x_1' + U$ und $x_2 + U = x_2' + U$, so ist $(x_1 + x_2) + U = (x_1' + x_2') + U$ und $\lambda x_1 + U = \lambda x_1' + U$.

7.6 Definition (Quotientvektorraum)

Der Quotientenvrktorraum von V modulo U ist Menge der affinen Unterräume:

- 1) $V/U := \{x + U : x \in V\}$
- 2) zusammen mit Addition: $(x_1 + U) + (x_2 + U) := (x_1 + x_2) + U$
- 3) und der Skalarmultiplikation $\lambda \cdot (x+U) := \lambda x + U$

Definiere Abbildung $\pi_U: V \to V/U$ durch $\pi_U(x) = x + U$.

7.7 Satz

Der Quotientenraum V/U ist ein K-Vektorraum und π_U ist ein Epimorphismus mit Kern U.

7.8 Theorem (Homomorphiesatz)

Sei $f \in \operatorname{Hom}_K(V, W)$ mit $U \subseteq \operatorname{Ker}(f)$. Dann gibt es genau eine lineare Abbildung $\bar{f}: V/U \to W$ mit $f = \bar{f} \circ \pi_U$.

Diese erfüllt $\operatorname{Ker}(\bar{f}) = \operatorname{Ker}(f)/U = \{x + U : x \in \operatorname{Ker}(f)\}.$

7.9 Korollar

Für $f \in \operatorname{Hom}_K(V, W)$ ist $\operatorname{Im}(f) \cong V/\operatorname{Ker}(f)$. Insbesondere gilt: Ist f ein Epimorphismus, so ist $W \cong V/\operatorname{Ker}(f)$.

7.10 Satz

Seien U und U' Unterräume von V. Genau dann ist $V = U \oplus U'$, wenn $\pi_{U|U'} : U' : \to V/U$ ein Isomorphismus ist.

7.11 Korollar

Ist V endlichdimensional, so ist $\dim_K(V/U) = \dim_K(V) - \dim_K(U)$.

7.12 Korollar

Ist V endlichdimensional und $f \in \operatorname{Hom}_K(V, W)$, so ist $\dim_K(V) = \dim_K(\operatorname{Ker}(f)) + \dim_K(\operatorname{Im}(f))$.

7.13 Korollar

Ist V endlichdimensional und $f \in \operatorname{End}_K(V)$, so sind äquivalent:

- (1) $f \in \operatorname{Aut}_K(V)$
- (2) f ist injektiv
- (3) f ist surjektiv

8 Rang

V und W endlichdimensional K-Vektorräume, $F \in \text{Hom}_K(V, W)$.

8.1 Definition

Der Rang einer Abbildung f ist $rank(f) := dim_K(Im(f))$.

8.3 Lemma

Sei U ein weiterer K-Vektorraum und $g \in \text{Hom}_K(U, V)$.

- (a) Ist g surjektiv, so ist $rank(f \circ g) = rank(f)$
- (b) Ist f surjektiv, so ist $rank(f \circ q) = rank(q)$

8.4 Satz

Sei $r \in \mathbb{N}_0$. Genau dann ist rank(f) = r, wenn es Basen \mathcal{B} von V und \mathcal{C} von W gibt, für die $M_{\mathcal{B}}^{\mathcal{C}} = E_r := \sum_{i=1}^r E_{ii}$.

8.5 Definition

Der Rang einer Matrix $A \in \operatorname{Mat}_{m \times n}$ ist $\operatorname{rank}(A) := \operatorname{rank}(f_A)$, wobei $f_A : K^n \to K^m$ die durch A beschriebene lineare Abbildung ist.

8.6 Bemerkung

Sei $A = (a_{ij})_{i,j} \in \operatorname{Mat}_{m \times n}(K)$.

- fasst Spalten $a_j = (a_{1j}, \dots, a_{mj})^t$ als Elemente des K^m auf und definiert den <u>Spaltenraum</u> $SR(A) = \operatorname{span}_K(a_1, \dots, a_n) \subseteq K^m$.
- entsprechend definieren die Zeilen $\tilde{a_i} = (a_{i1}, \dots, a_{in})$ und definiert den <u>Zeilenraum</u> $ZR(A) = \operatorname{span}_K(a_1, \dots, a_m^t) \subseteq K^n$

Dann gelten noch:

- $\operatorname{Im}(f_A) = \operatorname{SR}(A)$ und damit $\operatorname{rank}(A) = \dim_K(\operatorname{SR}(A))$.
- $SR(A^t) = ZR(A)$, deshalb $rank(A^t) = dim_K(ZR(A))$

8.7 Lemma

Ist $A \in \operatorname{Mat}_{m \times n}(K), S \in \operatorname{GL}_m(K)$ und $T \in \operatorname{GL}_n(K)$ mit $SAT = E_r$, wobei $r = \operatorname{rank}(A)$.

8.8 Satz

Für jedes $A \in \operatorname{Mat}_{m \times n}(K)$ gibt es $S \in \operatorname{GL}_m(K)$ und $T \in \operatorname{GL}_n(K)$ mit $SAT = E_r$, wobei $r = \operatorname{rank}(A)$.

8.9 Korollar

Seien $A, B \in \operatorname{Mat}_{m \times n}(K)$. Genau dann gibt es $S \in \operatorname{GL}_m(K)$ und $T \in \operatorname{GL}_n$ mit B = SAT, wenn $\operatorname{rank}(A) = \operatorname{rank}(B)$.

8.10 Satz

Für $A \in \operatorname{Mat}_{m \times n}(K)$ ist $\operatorname{rank}(A) = \operatorname{rank}(A^t)$.

8.11 Korollar

Für $A \in Mat_n(K)$ sind äquivalent:

- (1) $A \in GL_n(K)$, d.h. A sind linear unabhängig
- (2) $\operatorname{rank}(A) = n$
- (3) Die Zeilen von A sind linear unabhängig.
- (4) Die Spalten von A sind linear unabhängig.
- (5) Es gibt $S \in GL_n(K)$ mit $SA = \mathbb{1}_n$
- (6) Es gibt $T \in GL_n(K)$ mit $AT = \mathbb{1}_n$

9 Lineare Gleichungssysteme

Sei $A \in \operatorname{Mat}_{m \times n}(K)$ und $b \in K^m$.

9.1 Definition

Unter einem lineare Gleichungssystem verstehen wir eine Gleichung der Form

$$Ax = b$$
.

Dieses heißt homogen, wenn b = 0, sonst inhomogen, und

$$L(A,b) = \{x \in K^n : Ax = b\}$$

ist sein Lösungsraum.

9.3 Bemerkung

- homogene System Ax = 0 hat als Lösungsraum den <u>Untervektorraum</u> $L(A, 0) = \text{Ker}(f_A)$ der Dimension $\dim_K(L(A, 0)) = n rk(A)$.
- inhomogene System Ax = b hat entweder $L(A, b) = \emptyset$, oder <u>affine Unterraum</u> $L(A, b) = f_A^{-1}(b) = x_0 + L(A, 0), x_0 \in L(A, b)$ bel.
- erhält alle Lösungen des inhomogenen Systems, wenn eine Lösung des inhomogenen Systems und alle Lösungen des homogenen Systems
- Im Klartext! Wie sieht der Lösungsraum aus? Die Anzahl der Lösungen lässt sich dann an den b_i ablesen.
 - Ist mindestens eines der b_{k+1}, \ldots, b_m ungleich null, so gibt es keine Lösung.
 - Sind alle b_{k+1}, \ldots, b_m gleich null (oder k = m) so gilt:
 - * Ist k=n, so ist das Gleichungssystem eindeutig lösbar.
 - * Ist k < n, gibt es une
ndlich viele Lösungen. Der Lösungsraum hat die Dimension
 n-k.

9.4 Definition

Die Matrix $A = (a_{ij})_{i,j}$ hat Zeilenstufenform, wenn es $0 \le r \le m$ und $1 \le k_1 < k_2 < \cdots < k_r \le n$ gibt mit:

- (i) für $1 \le i \le r$ und $1 \le j < k_i$ ist $a_{ij} = 0$
- (ii) für $1 \le i \le r$ ist $a_{ik_i} \ne 0$ (sogenanntes Pivotelement)
- (iii) für $1 < i \le m$ und $1 \le j < n$ ist $a_{ij} = 0$

$$\begin{pmatrix} 0 & \dots & 0 & a_{1k_1} & * & \dots & \dots & * \\ 0 & \dots & \dots & 0 & a_{2k_2} & * & \dots & * \\ \vdots & \vdots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots & a_{rk_r} \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots & 0 \\ \vdots & & & & & \vdots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots & 0 \end{pmatrix}$$

9.5 Lemma

Sei A in Zeilenstufenform wie in 9.4. Dann ist f = rk(A).

9.6 Satz

Sei A in Zeilenstufenform wie in 9.4.

- (a) Ist $b_i \neq 0$ für ein $r < i \le m$, so ist $L(A, b) = \emptyset$.
- (b) Ist $b_i = 0$ für alle $r < i \le m$, so erhält man alle $x \in L(A, b)$, indem erst $x_j \in K$ für $j \in \{1, ..., n\} \setminus \{k_1, ..., k_r\}$ beliebig wählt unf für i = r, ..., 1 rekursiv

$$x_{k_i} = a_{ik_i}^{-1} \cdot \left(b_i - \sum_{j=k_i+1}^n a_{ij} x_j \right)$$

setzt.

9.7 Definition (Elementarmatrizen)

Für $i, j \in \{1, \dots, m\}$ mit $i \neq j, \lambda \in K^{\times}$ und $\mu \in K$ definiere $m \times m$ -Matrizen

$$S_i(\lambda) := \mathbb{1}_m + (\lambda - 1) \cdot E_{ii} = \text{diag}(1, \dots, 1, \lambda, 1, \dots, 1),$$

$$Q_{i,j}(\mu) := \mathbb{1}_m + \mu E_{ii},$$

$$P_{i,j} := \mathbb{1}_m + E_{ij} + E_{ji} - E_{ii} - E_{jj}.$$

9.8 Lemma

Es sind $S_i(\lambda), Q_{ij}(\mu), P_{i,j} \in GL_m(K)$: Es ist $S_i(\lambda^{-1}) = S_1(\lambda^{-1}), Q_{i,j}(\mu)^{-1} = Q_{i,j}(-\mu), P_{i,j}^{-1} = p_{i,j}$. Insbesondere gilt: Ist E eine der Elementarmatrizen $S_i(\lambda), Q_{i,j}(\lambda), P_{i,j}$, so ist ZR(A) und L(EA, 0) = L(A, 0), insbesondere rank(EA) = RA(A).

9.9 Theorem (Eliminationsverfahren von Gauß)

Zu jeder Matrix $A \in \operatorname{Mat}_{m \times n}(K)$ gibt es $l \in \mathbb{N}_0$ und Elementarmatrizen E_1, \ldots, E_l vom Typ II, III, für die $E_l \cdots E_1 A$ in Zeilenstufenform.

9.11 Korollar

Zu jeder Matrix $A \in \operatorname{Mat}_{m \times n}(K)$ gibt es eine invertierbare Matrix $S \in \operatorname{GL}_m(K)$, für die SA in Zeilenstufenform ist.

9.13 Korollar

Jedes $A \in GL_n(K)$ ist ein Produkt von Elementarmatrizen.

Determinanten

Sei $n \in \mathbb{N}$.

Sei
$$n \in \mathbb{N}$$
.

1.1 Beispiel

Für $i, j \in \{1, ..., n\}$ mit $i \neq j$ bezeichne $\tau_{ij} \in S_n$ die Transposition $\tau_{ij}(k) = \begin{cases} j & k = i \\ i & k = j \\ k & \text{sonst} \end{cases}$

Offenbar gilt $\tau_{ij}^2 = \tau_{ij}^{-1} = \tau_{ij} = \tau_{ji}$.

1.2 Satz

Für jedes $\sigma \in S_n$ gibt es $r \in \mathbb{N}_0$ und Transposition $\tau_1, \ldots, \tau_r \in S_n$ mit $\sigma = \tau_1 \cdots \tau_r$.

1.3 Definition

Sei $\sigma \in S_n$, dann

- (1) Ein Fehlstand von σ ist ein Paar (i,j) mit $1 \le i \le j \le n$ und $\sigma(i) > \sigma(j)$
- (2) Das Vorzeichen (oder Signum) von σ ist $\operatorname{sgn}(\sigma) = (-1)^{f(\sigma)} \in \{+1, -1\} = \mu_2$, wobei $f(\sigma)$ die Anzahl der Fehlstände von σ ist
- (3) Man nennt σ gerade, wenn $sgn(\sigma) = +1$, sonst ungerade

- (a) Genau dann hat σ keine Fehlstände, wenn $\sigma = id$ und insbesondere gilt sgn(id) = +1.
- (b) die Permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \in S_n$ hat Fehlstände (1,3) und (2,3), sonst $sgn(\sigma) = (-1)^2 = 1$
- (c) Die Transposition $\tau_{1,3} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$, hat Fehlstände (1,2), (2,3) und (1,3), somit $\operatorname{sgn}(\tau_{1,3}) = (-1)^3 = -1$
- (d) Eine Transposition $\tau_{ij} \in S_n$ ist ungerade. Ist i < j, so sind die Fehlstände $(i, i+1), \ldots, (i, j)$ und $(i+1, j), \ldots, (j-1, j)$ also j - (i + 1) + i + (j - 1) + 1 - (i + 1) = 2(j - i) - 1 viele

1.5 Lemma

Für
$$\sigma \in S_n$$
 ist $\operatorname{sgn}(\sigma) = \prod_{1 \le i < j \le n} \frac{\sigma(j) - \sigma(i)}{j - i} \in \mathbb{Q}$

Die Abbildung sgn: $S_n \to \mathbb{Z}^{\times} = \mu_2$ ist ein Gruppenhomomosphismus.

1.7 Korollar

Für $\sigma \in S_n$ ist $sgn(\sigma^{-1}) = sgn(\sigma)$.

1.8 Korollar

Sei $\sigma \in S_n$. Sind τ_1, \ldots, τ_r Transpositionen mit $\sigma = \tau_1 \cdots \tau_r$, so ist $\operatorname{sgn}(\sigma) = (-1)^r$

1.9 Korollar

Die geraden Permutationen

$$A_n := \{ \sigma \in S_n \colon \operatorname{sgn}(\sigma) = +1 \}$$

bilden einen Normalteiler der S_n , genannt die alternierende Gruppe A_n . Ist $\tau \in S_n$ mit $\mathrm{sgn}(\tau) = -1$, so gilt für $A_n \tau :=$ $\{\sigma\tau\colon \sigma\in A_n\}$:

- $A_n \cup A_n \tau = S_n$ und
- $A_n \cap A_n \tau = \emptyset$

2 Determinanten

Sei $n \in \mathbb{N}$.

2.1 Bemerkung

Wir werden nun auch Matrizen mit Koeffzienten im Ring R anstatt K betrachten. Mit der gewohnten Additon und Multiplikation bilden die $n \times n$ -Matrizen einen Ring $\operatorname{Mat}_n(R)$ und wir definieren wieder $\operatorname{GL}_n(R) = \operatorname{Mat}_n(R)^{\times}$.

2.2 Bemerkung

- $(a_1,\ldots,a_n)\in R^m$ Spaltenvektoren, so bezeichnen wir mit $A=(a_1,\ldots,a_n)\in \mathrm{Mat}_{m\times n}(R)$ die Matrix mit Spalten
- $(\tilde{a}_1,\ldots,\tilde{a}_m)\in R^n$ Spaltenvektoren, so bezeichnen wir mit $\tilde{A}=(\tilde{a}_1,\ldots,\tilde{a}_m)\in \mathrm{Mat}_{m\times n}(R)$ die Matrix mit Zeilen $(\tilde{a}_1,\ldots,\tilde{a}_m)$

2.3 Bemerkung

Wir hatten in III.2.15 definiert:

$$\det A = ad - bc, A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{Mat}_2(K)$$

und festgestellt: $\det A \neq 0 \Leftrightarrow A \in GL_2(K)$.

Interpretation in \mathbb{R}^2 (Determinante von A, ist die Fläche, welche aufgespannt wird von $x_1 = (a, b)$ und $x_2 = (c, d)$, siehe Bild)

Bemerkung

- (i) Für $\lambda \in R$ ist $\det(\lambda x_1, x_2) = \det(x_1, \lambda x_2) = \lambda \det(x_1, x_2)$ und für $x_i = \tilde{x}_1 + \tilde{x}_2$ ist
 - a) $\det(x_1, x_2) = \det(\tilde{x}_1, x_2) + \det(\tilde{x}_2, x_2)$
 - b) $\det(x_1, x_2) = \det(x_1, \tilde{x}_1) + \det(\tilde{x}_1, x_2)$.
- (ii) Ist $x_1 = x_2$, so ist $\det A = 0$.
- (iii) $\det \mathbb{1}_2 = 1$.

Sei R kommutativer Ring mit Einselement, K Körper und $n \in \mathbb{N}$.

2.5 Definition

Eine Abbildung $\delta: \operatorname{Mat}_n(R) \to R$ heißt Determinantenabbildung, wenn gilt:

(D1) δ ist linear in jeder Zeile:

Sind $\overline{a_1, \ldots, a_n}$ die Zeilen von $A \in \operatorname{Mat}_n(R)$ und ist $i \in \{1, \ldots, n\}$ und $a_i = \lambda' a' + \lambda'' a''$ mit $\lambda', \lambda'' \in R$ und Zeilenvektoren a_i', a_i'' , so ist

$$\delta(A) = \lambda^{'}(a_{1}^{'}, \dots, a_{i}^{'}, \dots, a_{n}^{'}) + \lambda^{''}(a_{1}^{''}, \dots, a_{i}^{''}, \dots, a_{n}^{''})$$

- (D2) δ ist <u>alternierend</u>. Sind a_1, \ldots, a_n die Zeilen von $A \in \operatorname{Mat}_R$ und $i, j \in \{1, \ldots, n\}, i \neq j$, mit $a_i = a_j$, so ist $\delta(A) = 0$
- (D3) δ ist normiert $\delta(\mathbb{1}_n)$

2.6 Beispiel

Sei $\delta : \operatorname{Mat}_n(K) \to K$ eine Determinantenabbildung. Ist $A \in \operatorname{Mat}_n(K)$ <u>nicht</u> invertierbar so ist die Zeile a_1, \ldots, a_n von A linear abhängig, es gibt also i mit $a_i = \sum_{j=1} \lambda_j a_j$ mit $(\lambda_i \in K)$. Es folgt

$$\delta(A) = \delta(a_1, \dots, a_n) \stackrel{\text{(D1)}}{=} \sum_{j=1} \lambda_j \delta(a_1, \dots, a_j, \dots, a_n)$$

$$\stackrel{\text{(D2)}}{=} \sum_{j=1} \lambda_j \cdot 0 = 0$$

2.7 Lemma

Erfüllt die Abbildung $\delta: \operatorname{Mat}_n(R) \to R$ die Axiome (D1) und somit für jedes $\sigma \in S_n$ und Zeilenvektoren a_1, \ldots, a_n :

$$\delta(a_{\sigma(1)}, \dots, a_{\sigma(n)}) = \operatorname{sgn}(\sigma) \cdot \delta(a_1, \dots, a_n).$$

2.8 Lemma

Erfüllt die Abbildung $\delta: \operatorname{Mat}_n(R) \to R$ die Axiome (D1) und (D2), so gilt für $A = (a_{ij_{i,j}}) \in \operatorname{Mat}_n(R)$

$$\delta(A) = \delta(\mathbb{1}_n) \cdot \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}.$$

2.9 Theorem

Es gibt genau eine Determinantenabbildung

$$\det \operatorname{Mat}_n(R) \to R$$

und diese ist gegeben durch die Leibniz-Formel.

2.10 Beispiel

(a) n = 2, damit $S_2 = \{id, \tau_{12}\}$

$$\det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \sum_{\sigma \in S_2} a_{1\sigma(1)} a_{2\sigma(2)} = a_{11} a_{22} - a_{12} a_{21}$$

19

(b)
$$n = 3$$
, damit $s_3 = \{ id, \tau_{12}, \tau_{13}, \tau_{23}, \sigma_1, \sigma_2 \}$ mit $\sigma_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$, $\sigma_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$
 $A_3 = \{ id, \sigma_1, \sigma_2 \}$ und $S_3 \setminus A_3 = \{ \tau_{12}, \tau_{13}, \tau_{23} \}$

$$\det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \sum_{\sigma \in S_3} a_{1\sigma(1)} a_{2\sigma(2)} a_{2\sigma(3)} a_{2\sigma(2)}$$
$$= a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{31} a_{22} a_{13} - a_{32} a_{23} a_{11} - a_{33} a_{21} a_{12}$$

die sogenannte Regel von Sarrus.

(c) Ist $A=(a_{ij})_{i,j}$ eine obere Dreiecksmatrix (siehe A108), also $a_{ij}=0$ für i=j, so ist

$$\det A = \det \begin{pmatrix} a_{ii} & \cdots \\ 0 & a_{nn} \end{pmatrix} = \prod_{i=1}^{n} a_{ii}$$

- (d) Für $i \neq j, \lambda \in K^{\times}, \mu \in K$ ist $\det(S_i(\lambda)) = \lambda, \det(Q_{ij}(\mu)) = 1, \det(P_{ij}) = -1$ (gibt nur eine Permutation $\sigma_{ij} = -1$ und $\operatorname{sgn}(\sigma_{ij}) = -1$)
- (e) Ist A Blockmatrix[Matrix] der Gestalt

$$A = \begin{bmatrix} A_1 & C \\ 0 & A_2 \end{bmatrix} \text{ mit } A_1, A_2, C \in \text{Mat}_n(R)$$

So ist $det(A) = det(A_1) \cdot det(A_2) + 0$.

2.11 Korollar

Für $A \in \operatorname{Mat}_n(R)$ ist $\det(A) = \det(A^t)$. Insbesondere erfüllt det die Axiome (D1) und (D2) auch für Spalten statt Zeilen.

2.12 Theorem (Determinantenmultiplikationssatz)

Für $A, B \in \operatorname{Mat}_n(R)$ ist $\det(AB) = \det(A) \cdot \det(B)$.

2.13 Korollar

Die Abbildung det: $\operatorname{Mat}_n(R) \to R$ schränkt sich zu einem Gruppenhomomorphismus $\operatorname{GL}_n(R) \to R^{\times}$. Ist R = K ein Körper, so ist $A \in \operatorname{Mat}_n(K)$ also genau dann invertierbar, wenn $\det(A) \neq 0$, und in diesem Fall ist $\det(A^{-1}) = (\det(A))^{-1}$.

2.14 Korollar

Die Matrizen von Determinanten 1 bilden einen Normalteiler $SL_n(K) = \{A \in GL_n(K) : det(A)\}$ der allgemeinen linearen Gruppe, die sog. spezielle lineare Gruppe.

2.15 Korollar

Elementare Zeilenumformungen von $\underline{\text{Typ II}}$ ändern die Determinante der Matrix A nicht. Elementare Zeilenumformungen von Typ III ändern nur das Vorzeichen.

V Minoren

Sei $m, n \in \mathbb{N}$.

1.1 Definition

Sei $A = (a_{ij})_{i,j} \in \operatorname{Mat}_n(R)$. Für $i,j \in \{1,\ldots,n\}$ definiere die $n \times n$ -Matrix

$$A_{ij} = \begin{pmatrix} a_{11} & \dots & a_{1j-1} & 0 & a_{1j+1} & \dots & a_{1n} \\ \vdots & & & \vdots & & & \vdots \\ a_{i-11} & \dots & a_{i-1j-1} & 0 & a_{i-1j+1} & \dots & a_{i-1n} \\ 0 & \dots & 0 & 1 & a_{i-1j+1} & \dots & 0 \\ a_{i+11} & \dots & a_{i+1j-1} & 0 & a_{i+1j+1} & \dots & a_{i+1n} \\ \vdots & & & & \vdots & & \vdots \\ a_{n1} & \dots & a_{nj-1} & 0 & a_{nj+1} & \dots & a_{nn} \end{pmatrix}$$

die durch Ersetzen der i-ten Zeile durch e_i und j-ten Spalte durch e_i aus A hervorgeht,

$$A_{ij} = \begin{pmatrix} a_{11} & \dots & a_{1j-1} & a_{1j+1} & \dots & a_{1n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{i-11} & \dots & a_{i-1j-1} & a_{i-1j+1} & \dots & a_{i-1n} \\ a_{i+11} & \dots & a_{i+1j-1} & a_{i+1j+1} & \dots & a_{i+1n} \\ \vdots & & & \vdots & & \vdots \\ a_{n1} & \dots & a_{nj-1} & a_{nj+1} & \dots & a_{nn} \end{pmatrix}$$

die durch Streichen der *i*-ten Zeile und der *j*-ten Spalte entsteht. Weiter definiere die zu A <u>adjungierte Matrix</u> als $A^{\#} = (a_{ij}^{\#})_{i,j} \operatorname{Mat}_n(R)$, wobei $a_{ij}^{\#} = \det(A_{ij})$.

1.2 Lemma

Sei $A \in \operatorname{Mat}_n(R)$ mit Spalten a_1, \ldots, a_n . Für $i, j \in \{1, \ldots, n\}$ gilt:

(a)
$$\det(A_{ij}) = (-1)^{+j} \det(A'_{ij})$$

(b)
$$\det(A_{ij}) = \det(a_1, \dots, a_{j-1}, e_i, a_{j+1}, \dots, a_n)$$

1.3 Satz

Für $A \in \operatorname{Mat}_n(R)$ ist $A^{\#}A = A \cdot A^{\#} = \det(A) \mathbb{1}_n$.

1.4 Korollar

Es ist $\operatorname{GL}_n(R) = \{ A \in \operatorname{Mat}_n(R) \colon \det(A) \in R^{\times} \}$ und für $\operatorname{GL}_n(R)$ ist

$$A^{-1} = \frac{1}{\det(A)} A^{\#}.$$

1.5 Korollar

Sei $A = (a_{ij})_{i,j} \in \operatorname{Mat}_n(R)$. Für jedes $i \in \{1, \dots, n\}$ gilt dir Formel für die Entwicklung nach der *i*-ten Zeile

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det(A'_{ij}),$$

für jedes $j \in \{1, ..., n\}$ gilt die Formel für die Entwicklung nach der j-ten Spalte

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det(A'_{ij}).$$

1.6 Korollar (Cramersche Regel)

Sei $A \in GL_n(R)$ mit Spalten a_1, \ldots, a_n und sei $b \in R^n$. Weiter sei $x = (x_1, \ldots, x_n)^t \in R^n$ die (eindeutige) Lösung des Linearen Gleichungssystems Ax = b. Dann ist für $i \in \{1, \ldots, n\}$:

$$x_i = \frac{\det(a_1, \dots, a_{i-1}, b, a_{i+1}, \dots, a_n)}{\det(A)}.$$

1.7 Definition (Minoren)

Sei $A(a_{ij})_{i,j} \in \operatorname{Mat}_n(R)$ und $1 \le r \le m, 1 \le s \le n$. Eine $\underline{r \times s}$ - Teilmatrix von A ist eine Matrix der Form $(a_{i\mu,j\nu})_{\mu,\nu} \in \operatorname{Mat}_{r \times s}(R)$ mit $1 \le i_1, \ldots, i_r \le m$ und $1 \le j_1, \ldots, j_r \le n$. Ist A' eine $r \times s$ -Teilmatrix A, so bezeichnet man $\det(A')$ als einen r-Minor von A.

1.8 Beispiel

Ist $A \in \operatorname{Mat}_n(R)$ und $i, j \in \{1, \dots, n\}$, so ist A'_{ij} eine Teilmatrix von A und $\det(A'_{i,j}) = (-1)^{i+j} a^{\#}_{ji}$ ein (n-1)-Minor von A.

1.9 Satz

Sei $A \in \operatorname{Mat}_{m \times n}(K)$ und $r \in \mathbb{N}$. Genau dann is $\operatorname{rank}(A) \geq r$, wenn es eine $r \times r$ Teilmatrix A' von A mit $\operatorname{det}(A') \neq 0$ gibt.

1.10 Korollar

Sei $A \in \operatorname{Mat}_{m \times n}(K)$. Der Rang von A ist das größte $r \in \mathbb{N}$, für das A eine von Null verschiedenen r-Minor hat.

Index

Leibniz-Formel, 19	Gruppenhomomorphismus, 11
Abbildung, 1	Halbgruppe, 2
bijektiv, 1	homogen, 16
Bild, 1	Homomorphiesatz, 15
Charakteristische Funktion, 1	Homomorphismus, 11
Definitionsmenge, 1	Homomorphismus von Ringen, 12
Funktionen, 1	fromomorphismus von tungen, 12
Graph, 2	Ideal, 12
	inhomogen, 16
Identische Abbildung, 1	isomorph, 11
injektiv, 1	Isomorphismus, 11, 12
Inklusionsabbildung, 1	isomorphismus, 11, 12
Konstante Abbildung, 1	Körper, 4
Kroneckersymbol, 1	Kern, 11, 12
Restriktion / Einschränkung, 1	Komplexe Zahlen, 4
surjektiv, 1	imaginäre Einheit, 4
Umkehrabbildung, 1	Komposition, 1
Urbild, 1	assoziativ, 1
Zielmenge, 1	Koordinaten, 13
adjungierte Matrix, 21	
affiner Unterraum, 15	Koordinatensystem, 13
algebraisch abgeschlossen, 5	Koordinatenvektor, 13
alternierend, 19	Lösungsraum, 16
alternierende Gruppe, 18	linear, 12
Assoziativität, 2	linear abhängig, 7
Auswertung, 5	
Automorphismus, 12	linear unabhängig, 7
	lineare Gleichungssystem, 16
Basis, 7	lineare Hülle, 7
Bild von f, 1	lineares Komplement, 8
Blockmatrix, 20	Linearkombination, 7
O 1 D 1 01	Matrix, 10
Cramersche Regel, 21	Addition, 10
darstellende Matrix, 14	allgemeine lineare Gruppe, 11
	Basismatrix, 10
Determinantenabbildung, 19 Determinantenabbildung, 19	Einheitsmatrix, 10
Determinantenmultiplikationssatz, 20 Dimension, 8	invertierbar, 11
· · · · · · · · · · · · · · · · · · ·	Koeffizienten, 10
Distributivgesetze, 3	Nullmatrix, 10
Einselement, 3	
Elementarmatrizen, 17	Permutationsmatrix, 10 quadratisch, 10
Eliminationsverfahren von Gauß, 17	
Endlicher Primzahlkörper, 4	regulär, 11
Endomorphismus, 12	singulär, 11
	Skalarmultiplikation, 10
Epimorphismus, 11, 12 Erzeugendensystem, 6	transponiert, 10
Erzeugendensystem, o	Typ, 10
Familie, 2	Minoren, 21
Folge, 2	Monoid, 2
Faser, 15	Monomorphismus, 11, 12
Fehlstand, 18	N
Temstand, 10	Neutrales Element, 2
Gruppe, 2	Normalteiler, 11
abelsch, 2	normiert, 19
Endlich, 2	Nullraum, 6
endlich erzeugt, 3	Nullvektor, 6
Inverses Element, 2	ahara Draigalramatriar 20
Kommutativität, 2	obere Dreiecksmatrix, 20
Ordnung, 2	Pivotelement, 17
Permutation, 2	Polynom, 4
symmetrische Gruppe, 2	
	Grad, 4
Triviale Gruppe, 2	${ m Koeffizienten,\ 4} \ { m konstant,\ 5}$
Verknüpungstafeln, 2	

```
Konstanter Term, 5
    Leitkoeffizient, 5
    linear, 5
    Nullstelle, 5
    quadratisch, 5
Polynomring, 4
Quotientenvrktorraum, 15
Rang einer Abbildung, 16
Rang einer Matrix, 16
Regel von Sarrus, 20
Ring, 3
    Charakteristik, 3
    Einheit, 3
    invertierbar, 3
    kommutativ, 3
    Nullring, 3
    Nullteiler, 3
    nullteilerfrei, 3
Ringhomomorphismus, 12
Signum, 18
Spaltenraum, 16
Spaltenvektor, 10
spezielle lineare Gruppe, 20
Standardbasis, 7
Standardraum, 6
Teilkörper, 4
Transformationsmatrix, 14
Transposition, 18
Tupel, 2
Untergruppe, 2
    triviale Untergruppe, 3
    von X erzeugte Untergruppe, 3
Unterring, 3
Untervektorraum, 6
    aufgespannten, 7
    direkte Summe, 8
    erzeugten, 6
    Summe, 8
    Triviale Untervektorräume, 6
Vektorraum, 6
    (externe) Produkt, 8
    (externe) direkte Summe, 9
    endlich erzeugt, 6
    Skalarmultiplikation, 6
Verknüpfung, 2
Vorzeichen, 18
Zeilenraum, 16
Zeilenstufenform, 17
Zeilenvektor, 10
```