单相交流电子负载

摘要: 本系统为单相交流电子负载,能模拟电阻性、电感性、电容性负载并以 50Hz 交流电回馈能量。该装置以全桥 PWM 整流、单相全桥逆变器为主拓扑,采用数字锁相环获取电网电压相位,对网侧电压电流进行 dq 变换后,闭环控制直流母线电压和整流器输入电流。系统在 30V 输入电压、2A 输入电流的额定工况下可模拟电阻性、电感性、电容性负载,输入功率因数在 0.50~1.00 的范围内步进可调,电流控制误差不超过 0.02A,功率因数控制误差不超过 0.002,模拟纯电阻性负载时系统损耗功率 ΔP 低至 1.925W。此外具有输入电压电流测量、输入过压过流保护功能,以及恒电流、恒电阻、恒功率三种额外的负载模拟模式,并具有良好的人机交互界面。

关键词: 电力电子负载 能量回馈 PWM 整流 dq 坐标变换

一、方案论证

1.1 比较与选择

1.1.1 整流器拓扑方案选择

方案一: Boost PFC 电路。不控整流电路结构简单,响应迅速,方便整体电路的控制。但是无法控制无功电流,且整流二极管通态损耗大,整体效率低。

方案二: PWM 整流电路。电路拓扑结构更为复杂。但是稳定性好,功率因数可以 更稳定地控制,同步整流损耗远小于整流二极管通态损耗,效率更高。

综合考虑,为了控制无功电流,选择方案二,PWM 整流电路。

1.1.2 逆变器拓扑方案选择

方案一:全桥逆变电路。使用全桥电路级联 LC 低通滤波器组成逆变电路。此方案电路结构较为复杂,但在相同情况下其损耗更低。

方案二: 半桥逆变电路。使用半桥电路与两只电容组成逆变电路。此方案电路结构 简单,但通过开关管的电流为全桥逆变电路的两倍,损耗更高。

综合考虑,为了减小系统的功耗,使用方案一,全桥逆变电路。

1.2 系统总体方案描述

图 1 系统总框图

系统由主电路、测量电路、辅助电源电路、控制电路、人机交互电路组成,系统总框图如图 1 所示。

其中主电路由单相整流电路与单相逆变器级联组成。前级采用 PWM 整流器实现 AC-DC 变换并控制输入电流大小及功率因数;后级单相逆变器实现了题目要求的能量 回馈功能,将整流后的能量变换为 50Hz 交流电,并输出到外接的负载电阻器上。测量电路实现了对输入电压、电流和中间直流电压的测量。

1

二.理论分析与计算

2.1 不同类型负载的模拟

前级 PWM 整流器通过对输入电流的有功分量与无功分量进行控制,以实现不同类型负载的模拟,PWM 整流器控制部分包括锁相环与电流控制环路。系统通过数字锁相环获取输入电压的频率和相位,并根据相位建立同步旋转的 dq 坐标系。由于是以输入电压 U_1 的相位建立 d 轴,因此电流 I_1 的 d 轴分量为有功电流,而 q 轴分量为无功电流。通过对其分别控制,即可实现改变有功、无功电流的大小的功能,对输入侧功率因数进行调控。

电流控制环路引入输入电压前馈,独立控制 dq 变换后的输入电流的 d 轴(有功)分量和 q 轴(无功)分量。根据功率因数的目标值计算 d 轴电流和 q 轴电流的目标值,而后通过调控输出的 SPWM 改变电流的有功无功分量至目标值。其控制框图如图 2 所示。

图 2 电流环路控制框图

2.2 能量回馈的方法

后级逆变器将直流电逆变为交流电,实现 50Hz 的交流电回馈。其电压控制环路通过调控后级 SPWM 的调制比维持直流母线电压 U_{dc} 稳定。

当直流侧电压 U_{dc} 超过给定值 U_{dc} *时,PI 调节器输出增大,即逆变器调制比增加,可使逆变器输出回馈功率增加。此时直流母线电容储能减小,直流母线电压回落,使电压保持稳定。在直流母线电压低于给定值时同理。其控制框图如图 3 所示。

图 3 电压环路控制框图

三.电路与程序设计

3.1 主回路与器件选择

3.1.1 主电路设计

该主电路前后级均采用单相全桥拓扑,前级电路作为 PWM 整流器控制输入侧电压电流及功率因数,后级电路采用单相逆变器将能量反馈回电力系统。

系统主电路拓扑图如图 4 所示。

图 4 主电路拓扑图

3.1.2 输入交流侧电感参数计算

交流侧电感的设计主要考虑两个因素:一是输入电流的跟踪性能;二是其对输入电流波动的抑制作用。它们分别决定了电感取值的上下限。

经过计算可得, 电感大小的取值范围是:

$$\frac{U_1(U_{dc} - U_1)}{u_{dc} \Delta i_{\text{smax}}} T_S \le L \le \frac{u_{dc}}{I_1 \omega} \tag{1}$$

其中, U_1 为输入电压幅值, U_{dc} 为输出直流电压, T_S 为开关周期, Δi_{smax} 为一个开关周期内允许的最大电流波动,考虑到后级的稳定性,取 $\Delta i_{smax} = 30\% I_1$, ω 为输入电压角频率, I_1 为输入电流幅值。

代入参数计算得,电感最小值 $L_{min} = 813 \, \mu H$,电感最大值 $L_{max} = 500 \, mH$,实际中留取裕量,电感取值为 $1 \, mH$ 。

3.1.3 输出交流侧电感、电容参数计算

输出交流侧电感、电容组成一个 LC 低通滤波器。为了更好的滤波效果,需要综合 考虑设计电感、电容的大小。在设计电感大小时,主要考虑电感上的最大电压降和纹波 抑制效果。这分别决定了电感大小的上下限。根据计算可以得到,

$$\frac{U_{dc}T_S}{8\Delta i_{smax}I_2} \le L \le \frac{0.05U_2}{\omega I_2} \tag{2}$$

其中, U_{dc} 为直流母线电压, T_{S} 为开关周期, Δi_{smax} 为一个开关周期内允许的最大电流波动,考虑到后级的稳定性,取 $\Delta i_{smax}=30\%$ I_{2} , U_{2} 为输出电压幅值, I_{2} 为输出电流幅值。

代入参数计算得,电感最小值 $L_{\min} = 348 \, \mu H$,电感最大值 $L_{\max} = 15 \, \text{mH}$ 。

电容的取值应当考虑如下两个条件:一是滤波器截止频率应当小于载波频率的 0.1 倍,并大于基波频率的 10 倍;二是在基波频率下滤波电容吸收的无功功率不大于系统有功功率的 5%。根据计算可以得到,电容大小需要同时满足

$$\frac{(2000 \times 2\pi)^{-2}}{L} \le C \le \frac{(500 \times 2\pi)^{-2}}{L} \tag{3}$$

$$C \le \frac{0.05P_2}{2\pi f \cdot U_2^2} \tag{4}$$

其中,L 为实际选择的电感大小, P_2 为交流侧输出功率,f 为逆变器开关频率, U_2 为交流侧输出电压幅值。

经过综合考虑,取电感大小为 470 μH, 电容大小为 20 μF。

3.1.4 直流电容参数计算

为了抑制直流侧纹波,需要设计合理的直流母线电容。经过计算,在 $\cos \varphi = 1$ 的情况下,直流电容的大小有

$$C \ge \frac{U_1 I_1}{2\omega U_{dc} \Delta u_{dc \max}} \tag{5}$$

其中, U_1 为输入电压幅值, I_1 为输入电流幅值, ω 为输入电压角频率, U_{dc} 为输出直流电压, Δu_{dcmax} 为输出直流电压允许的最大波动,取 Δu_{dcmax} = 3% U_{dc} 。

代入参数计算可得电容 $C = 892 \mu F$,实际中留取裕量,电容取值为 $1000 \mu F$ 。

3.1.5 开关管的选择

开关管承受电压和导通电流为整流器输出电压和电流分别为 50V 和 2A, 开关管选取时应留有余量。最终选择 TI 公司生产的 CSD19501KCS, 其最大耐压 80V, 可导通 100A 电流, 其导通电阻为 5.5mΩ, 栅极电荷总量为 38nC, 输出电容为 784pF。

3.2 控制电路与控制程序

系统采用 STM32F407 系列单片机作为控制器。控制系统分为 PWM 整流器输入电流控制和逆变器输出控制两部分,两部分同时运行。其中,逆变器输出控制采用开环控制的方法,按照预先设置的调制方法生成 50Hz 的正弦波。

控制系统首先读取母线电压和输入电压电流,并构造一个滞后实际单相系统 90°的

虚拟正交分量来构建两相静止 $\alpha\beta$ 坐标系;锁相环由输入电压解算出频率与相位信息。根据相位信息对输入电压与输入电流进行 $\alpha\beta$ - dq 坐标变换;由电压环控制直流母线电压,根据功率因数的待调值计算得到输入 d 轴电流和 q 轴电流的目标值,对前后级的 SPWM 进行调控。程序流程图如图 5 所示。

图 5 控制流程图

四.测试方案与测试结果

4.1 测试方案和测试条件

4.1.1 测试方案

- (1)调节输入电压 $U_1 = 30$ V。设定输入电流 $I_1 = 2$ A。设定输入侧功率因数 $\cos \varphi_1$ 在 $0.50 \sim 1.00$ (超前)与 $0.50 \sim 1.00$ (滞后)的范围内变化,每次变化 0.1。使用功率分析 仪测量实际输入侧电压 U_1 、电流 I_1 与功率因数。
- (2) 在(1)条件下设定输入侧功率因数 $\cos \varphi_1 = 1$ 。使用功率分析仪测量实际输入侧电压 U_1 、电流 I_1 、功率因数 $\cos \varphi_1$,回馈侧电压 U_2 、电流 I_2 、功率因数 $\cos \varphi_2$,并计算得到输入功率 P_1 、回馈功率 P_2 和 ΔP 。
- (3)设定工作模式为恒电阻模式,模拟 15Ω 电阻性负载。设定 U_1 在 $24V \sim 36V$ 的范围内调节。使用万用表测量实际输入侧电压 U_1 、电流 I_1 ,并计算得到等效电阻 R。
- (4)设定工作模式为恒功率模式,模拟电阻性负载并使得功率稳定为 60W。在 24V ~ 36V 的范围内调节输入电压 U_1 。使用万用表测量实际输入侧电压 U_1 、电流 I_1 ,并计算得到输入功率 P_1 。

4.1.2 测试仪器

自耦变压器、隔离变压器、手持万用表 CA5212、功率分析仪 PW3390-03

4.2 测试结果及其完整性

4.2.1 额定工况下的输入电流和功率因数调整测试

测试条件:调节输入电压 $U_1 = 30$ V。设定输入电流 $I_1 = 2$ A。设定输入侧功率因数 $\cos \varphi_1$ 在 $0.50 \sim 1.00$ (超前)与 $0.50 \sim 1.00$ (滞后)的范围内变化。使用功率分析仪测量实际输入侧电压 U_1 、电流 I_1 与功率因数。

输入电压	输入电流	设定的输入侧	在共民 县	实际输入侧功
U_1 / V	I_1 / A	功率因数	负载属性	率因数
30.02	1.99	1.00	电阻性	0.998
30.02	2.00	0.50	电感性	0.498
29.98	1.98	0.70	电感性	0.699
30.02	2.01	0.90	电感性	0.899
30.02	1.99	0.50	电容性	0.500
30.00	2.01	0.70	电容性	0.699
29.99	1.98	0.90	电容性	0.901

表 1 额定工况的输入电流和功率因数调整测试结果记录表

由上表可知,输入电流最大绝对误差为 0.02A,最大相对误差为 1%,功率因数最大绝对误差为 0.002,最大相对误差为 0.4%。

4.2.2 额定工况下的功率损耗测试

测试条件:调节输入电压 $U_1 = 30$ V。设定输入电流 $I_1 = 2$ A。设定输入侧功率因数 $\cos \varphi_1 = 1$ 。使用功率分析仪测量实际输入侧电压 U_1 、电流 I_1 、功率因数 $\cos \varphi_1$,回馈侧电压 U_2 、电流 I_2 、功率因数 $\cos \varphi_2$,并计算得到输入功率 P_1 、回馈功率 P_2 和 ΔP 。

输入电压 <i>U</i> ₁ / V	输入电流 I ₁ / A	输入侧功 率因数 cosφ ₁	回馈电压 <i>U</i> ₂ / V	回馈电流 I ₂ / A	回馈侧功 率因数 cosφ ₂
30.00	1.99	0.999	25.01	2.31	0.999

表 2 额定工况下的功率损耗测试结果记录表

$$P_1 = U_1 I_1 \cos \varphi_1 = 59.640$$
 (6)

$$P_2 = U_2 I_2 \cos \varphi_2 = 57.715$$
 (7)

则可得 $\Delta P = P_1 - P_2 = 1.925$ W。

4.3 测试结果分析

通过测试可知,本系统在额定工作条件下电流控制误差不超过 0.02A,功率因数控

制误差不超过 0.002。额定工况下损耗 ΔP 为 1.925W。此外,也可以单独设置负载等效电阻或输入功率,两种模式下其相对误差均不超过 0.93%。

五.总结

本系统实现了对交流电源模拟不同特性负载并回馈能量的功能。前级采用 PWM 整流器实现了电阻性、电感性、电容性负载的模拟;后级采用全桥逆变器实现了能量回馈功能。系统在输入电压 U_1 为 30.02 V 时, I_1 为 1.99A;在模拟感性和容性负载时,输入侧功率因数均在 $0.50\sim1.00$ 范围内步进可调,步进值为 0.01,跟踪误差大小不超过 0.002,且在额定工况下,系统回馈损失功率 ΔP 低至 1.925W。与此同时,系统还实现了输入电压电流测量、过压过流保护功能,以及恒电流、恒电阻、恒功率三种额外的负载运行模式,并具有良好的人机交互界面。