Contents

1	Uvod		
	1.1	Općenito o video sekvencama	3
		1.1.1 Video fajlovi	3
	1.2	Definicija opsega rada	3
	1.3	Primjene video interpolacije	3
2	Osn	novne tehnike	4
	2.1	Duplikacija frejmova	4
	2.2	Linearna interpolacija	4
	2.3	Područja primjene	4
3	Algoritmi uparivanja blokova		
	3.1	Uvod	5
	3.2	Osnovni algoritmi	7
		3.2.1 Potpuna pretraga	7
		3.2.2 3SS	8
		3.2.3 4SS	8
		3.2.4 Dijamantna pretraga	8
	3.3	Adaptive Rood Pattern Search - ARPS	8
	3.4	Fazna korelacija	8
4	Ukl	anjanje grešaka	9
5	Inte	erpolacija frejmova korištenjem optičkog toka	10
6	Par	alelno izvršavanje tehnika interpolacije	11
7	Implementacija interpolatora korištenjem OpenCV biblioteke		
	_	enchmark testovi	12

8 Zaključak 13

Uvod

- 1.1 Općenito o video sekvencama
- 1.1.1 Video fajlovi
- 1.2 Definicija opsega rada
- 1.3 Primjene video interpolacije

Osnovne tehnike

- 2.1 Duplikacija frejmova
- 2.2 Linearna interpolacija
- 2.3 Područja primjene

Algoritmi uparivanja blokova

3.1 Uvod

Prva klasa algoritama koje ćemo proučavati kreću od iste osnovne ideje: Podijeliti prvi frejm na blokove, za svaki blok pronaći vektor pomaka iz prvog u drugi frejm, te primijeniti jedan dio tog vektora pomaka na blok. Ako nam je cilj samo kreirati jedan novi frejm između svaka dva postojeća, svaki blok ćemo pomjeriti duž pola izračunatog vektora pomaka. Ako nam je cilj interpolirati dva frejma između dva postojeća, blok ćemo pomjeriti duž jedne trećine vektora pomaka za prvi, i dvije trećine za drugi interpolirani frejm, itd. Cilj slijedećih algoritama jeste uparivanje blokova prvog frejma sa blokom iste veličine u drugom frejmu. Međutim, postoji nekoliko pitanja na koja moramo odgovoriti prije nego što možemo primijeniti ove algoritme:

- Koju veličinu bloka ćemo koristiti?
- Koliki će biti prozor pretrage, odnosno koliko će se svaki blok moći maksimalno pomjeriti između prvog i drugog frejma?
- Koji je kriterij sličnosti dva bloka?
- Kako odrediti uspješnost uparivanja?

U praksi se koriste blokovi veličine 16x16 piksela, te prozor pretrage veličine 30x30 piksela. To znači da pretpostavljamo da se između dva susjedna frejma blokovi neće pomjeriti više od 7 piksela u bilo kojem od 4 kardinalna smjera. To nam daje 225 mogućih lokacija za svaki blok. Naravno, ne postoji definitivna, optimalna veličina bloka ili prozora pretrage za sve slučajeve. Manje blokove je brže uporediti, ali je njihov broj veći, te je veća vjerovatnoća da će dva bloka biti slučajno veoma slična. Veći prozor pretrage

nam omogućava pronalaženje ispravnih vektora pomaka i u slučaju kada se desi pomak veći od 7 piksela, ali značajno povećava vrijeme potrebno za izračunavanje te, slično kao u slučaju blokova, povećanjem prozora pretrage se povećava i vjerovatnoća uparivanja dva bloka koji su slični, ali zapravo ne predstavljaju isti blok. U svim slijedećim algoritmima ćemo koristiti blokove i prozore pretrage navedene veličine.

Sljedeće pitanje se tiče kriterija sličnosti dva bloka. Svaki blok je sastavljen od 256 piksela, koji se sastoje od 3 komponente: crvene, zelene, i plave. Svaka komponenta ima cjelobrojnu jačinu u rasponu od 0 do 255, uključivo. Za upoređivanje blokova se prvo pikseli pretvore u crno-bijele, sa jednom komponentom koja predstavlja jačinu bijele boje piksela. Korišteni kriteriji sličnosti blokova su veoma jednostavni. Jedan je Mean Absolute Difference (MAD), odnosno srednja apsolutna razlika. Ova mjera nije ništa drugo nego suma apsolutnih vrijednosti razlika jačina odgovarajućih piksela u blokovima, podijeljena sa veličinom bloka. Drugim riječima, zadana je formulom

$$MAD = \frac{1}{N^2} \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} |A_{ij} - B_{ij}|$$

Pri čemu N predstavlja visinu i širinu bloka (u našem slučaju 16), dok A_{ij} i B_{ij} predstavljaju vrijednosti piksela na koordinatama i,j (sa početkom u gornjem lijevom uglu bloka) prvog, odnosno drugog razmatranog bloka.

Druga, veoma slična mjera jeste Mean Squared Error (MSE), odnosno srednji kvadrat greške. Umjesto uzimanja apsolutne vrijednosti razlika piksela, ova mjera kvadrira razlike piksela, čime se više kažnjavaju veće razlike. MSE je zadana formulom

$$MSE = \frac{1}{N^2} \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} (A_{ij} - B_{ij})^2$$

Mi ćemo ove funkcije ubuduće zvati zajedničkim imenom funkcije cijene. Cilj svih algoritama u ovom poglavlju jeste minimizacija funkcije cijene, bilo MAD ili MSE.

Još jedno veoma važno pordučje primjene algoritama uparivanja blokova (i zapravo područje gdje se najviše primjenjuju) jeste kompresija video sekvenci. U dijelu vezanom za osnovne algoritme i ARPS, obrađuju se algoritmi koji su korišteni u standardima H.261, H.262 i H.263. U novijim standardima (pri čemu je najnoviji H.265, čija je prva verzija izašla 2013. godine) korišteni su napredniji algoritmi, koji u ovom radu neće biti obrađeni.

3.2 Osnovni algoritmi

Sada ćemo se osvrnuti na neke od osnovnih algoritama uparivanja blokova. Pretpostavit ćemo da su blokovi veličine 16x16 piksela, a prozori pretrage veličine 30x30 piksela, te da su svi pikseli monohromatski (crno-bijeli). Od svih slijedećih algoritama, samo prvi pronalazi optimalno uparivanje. Svi ostali ostali algoritmi su aproksimacije. Preciznije rečeno, postoji 225 mogućih lokacija gdje se počtni blok može nalaziti u prozoru pretrage. Definišimo matricu C_{15x15} , pri čemu svakom elementu matrice C odgovara vrijednost funkcije cijene (MAD ili MSE) koju dobijemo ako postavimo blok na to mjesto u prozoru pretrage (drugim riječima, elementu 1,1 odgovara vrijednost funkcije cijene koju dobijemo ako blok postavimo u gornji lijevi ugao prozora pretrage, pomjeranjem bloka dobijamo druge vrijednosti matrice). Aproksimativni algoritmi pretpostavljaju da ova matrica ima jednu najmanju (optimalnu) vrijednost, i da vrijednosti elemenata matrice monotono rastu kako se udaljavamo od ovog elementa. Kontinualni analogon ove osobine bi bila funkcija 2 realne promjenljive koja ima samo jedan lokalni minimum, koji je ujedno i globalni minimum. Za funkciju koja ima ovu osobinu kažemo da je unimodalna. U slučaju kad ova osobina postoji, možemo pronaći minimalnu vrijednost matrice jednostavnim spuštanjem po gradijentu, odnosno, počevši od proizvoljnog početnog elementa, u svakom koraku pređemo na bilo koji od manjih elemenata dok ne dođemo do nekog koji je manji od svih svojih susjednih elemenata.

Naravno, ne postoji ništa da nam garantuje ovu osobinu, što znači da će aproksimativni algoritmi samo u rijetkim slučajevima pronaći optimalno rješenje.

3.2.1 Potpuna pretraga

Ovaj algoritam se zasniva na potpunom pretraživanju svih mogućih lokacija za blok, te pronalaženju lokacije koja daje najmanju vrijednost funkcije cijene. Postoji 225 mogućih lokacija za blok unutar prozora pretrage, a za izračunavanje vrijednosti funkcije cijene moramo uporediti 16*16=256 piksela. To nam daje 225*256=57600 upoređivanja piksela po bloku. HD video (dimenzija 1280x720 piksela) sadrži frejmove koji se sastoje od 3600 blokova, što nam ukupno daje preko 200 miliona upoređivanja piksela za svaki frejm video sekvence. Tako da nije teško vidjeti zašto se ovaj algoritam ne koristi u praksi.

- 3.2.2 3SS
- 3.2.3 4SS
- 3.2.4 Dijamantna pretraga
- 3.3 Adaptive Rood Pattern Search ARPS
- 3.4 Fazna korelacija

Uklanjanje grešaka

Interpolacija frejmova korištenjem optičkog toka

Paralelno izvršavanje tehnika interpolacije

Implementacija interpolatora korištenjem OpenCV biblioteke i benchmark testovi

Zaključak