Module: Systèmes Asservis

TD N°**6**

Analyse des systèmes à temps continu

Exercice N°1

- 1. Calculer la fonction $G(p) = \frac{Y(p)}{E(p)}$
- 2. Etudier la stabilité en fonction de *K*.

Exercice N°2

$$G(p) = \frac{p^2 + 1}{p^5 + 4p^4 + 3p^2 + p + K}$$

Etudier la stabilité en fonction de *K*.

Exercice N°3

Soit le système suivant :

Etudier la stabilité par critère de Routh.

Module: Systèmes Asservis

Solution de TD N°6

Exercice N°1

1. La fonction G(p):

$$G(p) = \frac{\frac{10K}{p(1+p)^2}}{1 + \frac{10K}{p(1+p)^3}} = \frac{10K(1+p)}{p^4 + 3p^3 + 3p^2 + p + 10K}$$

2. Tableau de Routh:

p^4	1	3
$\frac{p^3}{p^2}$	3	1
p^2	8	10 <i>K</i>
	$\frac{\overline{3}}{3}$	
p^1	$\frac{8}{8} - 10K$	
	3 1011	
	$\frac{8}{2}$	
n^0		
p^1	$ \begin{array}{r} \frac{8}{3} \\ \frac{8}{3} - 10K \\ \hline \frac{8}{3} \\ \hline 10K \end{array} $	

$$\frac{8}{3} - 10K > 0$$

$$\frac{8}{3} > 10K$$

Exercice N°2

 a_3 =0, le système est instable pour toute valeur de K.

Exercice N°3

$$\frac{Y(p)}{E(p)} = \frac{G(p)}{1 + G(p)} = \frac{1000}{p^3 + 10p^2 + 31p + 1030}$$

On crée la table de Routh

p^3	1	31	0
p^2	1	103	0
p^1	-72	0	0
p^0	103	0	0

On a deux changements de signe dans la première colonne, donc deux racines réelles positives ⇒ instable.