

Computational Intelligence

Subject10: Evolutionary Computation

Instructor: Ali Tourani

A.Tourani1991@gmail.Com

Agenda

- A brief review
- Main concepts
- Evolutionary algorithms

Darwin's Theory of Evolution

- Species living today had been changed over time
- Organisms better suited to conditions > more likely to reproduce

Long-necked giraffes are randomly born and have more offspring due to their competitive advantage

Applying theory of evolution to Computer Science

- ► Novel technologies/methods/approaches/data structures/solutions/etc form from combinations of existing ones
- **Evolutionary Computation**: a family of algorithms for global optimization
- Generally:
 - ▶ Generating and iteratively updating an initial set of candidate solutions
 - ▶ Producing new items by removing less desired solutions and small random changes
 - ► Applying a simulation of Natural Selection
 - Evolving to increase the fitness factors
- We need Searching Algorithms

Search algorithms and methods

Have information on the goal state

- More efficient searching
- Decision-making based on a heuristic function (how close a state is to the goal state)
- Samples: **Greedy, A***

- AKA Blind search
- No additional information on the goal node
- Samples: BFS, DFS, Uniform Cost

- Based on mathematics
 - Generally used for numerical analysis and root-finding purposes
- Sample: **Newton's method**

Search algorithms and methods - Analytical methods

Newton's method (Newton-Raphson)

Search algorithms and methods - Uninformed Search

Depth-first search (DFS) and Breadth-first search (BFS)

DFS nodes: 9 7 5 1 DFS indices: 0 1 3 4

9	7	3	5	1	2	4
0	1	2	3	4	5	6

BFS nodes: 9 7 3 5 1 BFS indices: 0 1 2 3 4

Search algorithms and methods - Informed Search

Greedy and A* algorithms

Search space

► The set or domain through which an algorithm searches

Fitness landscapes (adaptive landscapes)

- ► Visualizing the distribution of fitness values as a kind of landscape
 - Peaks and valleys
- ► Height: a visual metaphor for fitness

Fitness landscapes - Application in a routing system

Lowest cost (faster)

► Finding the shortest path and alternates routes in real time

Optimal route

► Guiding through highways and freeways

Google maps is using Dijkstra's Shortest Path Algorithm

Two important concepts

- Exploration
 - ▶ **Discovery** of new opportunities through experimentation
 - Associated with random behavior (solutions that are yet to be refined)
 - ► For instance, Random Search Algorithm
- Exploitation
 - ▶ Refinement of existing products through local search
 - Associated with systematic behavior (the hope of improving a promising solution)
 - ► For instance, Hill-Climb Algorithm

Concepts inspired by the process of Natural Selection

- Gene
 - ▶ The functional unit to store data and inheritance
 - One parameter of the optimization problem
- Chromosome (genome)
 - Characteristics of individuals (represents candidate solutions)
 - ► All solutions → Population
 - Contains at least one Gene
 - A set of parameters/properties to define a proposed solution
 - ▶ **Genotype**: the genetic <u>composition</u> of an individual inherited from its parents
 - ▶ **Phenotype**: expressed <u>behavioral</u> traits of an individual in an environment

Concepts inspired by the process of Natural Selection

- Fitness Function
 - ► The most important component of an Evolutionary Algorithm
 - Quantifies the quality of a chromosome
 - ► How close the solution is to the optimal solution?
 - ► Who are the best parents to reproduce new solution?

Generic diagram of EC algorithms

Methodology - Chromosome (Genome) definition

- ► A standard representation of each candidate solution
 - ► A point in search space
- ► Has a huge impact on the final result
- ► Some of the most common Chromosomes
 - ► A binary vector → Genes: 0s and 1s
 - ► A range of numbers → Genes: real numbers
 - ► A set or structure → Genes: objects
 - ► A tree or graph → Genes: nodes and relations

Methodology - Chromosome (Genome) definition

► Sample chromosomes

|--|

2.51 -3.8 12.9 0.01 9.83 -99)
------------------------------	---

5 2	4	1	6	3
-----	---	---	---	---

Methodology - Initial Population

- ► The first step of an EA
- Different method to generate an
- Initial population:
 - ► Random: a uniform representation of the entire search space
 - ► **Intelligent**: generate a population of Chromosomes with highest fitness values

Methodology - Initial Population

- ► The size of an initial population is extremely important:
 - ► Small: does not cover all data
 - ► Large: needs more time and resources
- ► Increasing the size of population during the process leads to an increase in exploration value

Methodology - Fitness function

► The heart of an EA

- ► How well each individual can solve the problem?
 - ▶ How well it fulfills whatever criteria the algorithm is optimizing for
- Must be calculated for all chromosomes
 - Usually represented by a real number
- ► Sometimes it is hard to calculate the fitness
- ► Main application: in the **Selection** phase

- ▶ One of the most important phases in an EA
- ► Goal: selecting the fittest element for reproduction
- **Evolutionary/Selection Pressure:**
 - Usually expressed as a selection coefficient
 - ▶ The more EP we apply, the more concentration on the Fitness function
 - ► Too much EP will cause:
 - ► Concentration on a <u>limited population</u> + Decrease in the <u>variety</u> of elements

- Selection methods Random
 - ► Chromosomes with equal chances to be selected

- Selection methods Fitness proportionate selection
 - AKA Roulette Wheel Selection
 - ► A proportion of the wheel is assigned to each of the chromosomes
 - ▶ Based on their fitness value
 - ▶ Optimized chromosomes → More chance of selection

$$P_i = \frac{f_i}{\sum f_i}$$

No.	Chromosome	Fitness	Chance
1	01101	169	14.4
2	11000	576	49.2
3	01000	64	5.5
4	10011	361	30.9

 $P_i = \frac{f_i}{\sum_i f_i}$

Evolutionary Algorithms

- Selection methods Rank Selection
 - ► Choosing the of individuals in descending fitness value order
 - ▶ Fittest solution first, then other solutions with lower fitness values
 - ► A loss in the selection pressure towards fitter individuals
 - ► Also works with negative fitness values

- Selection methods Tournament selection
 - ▶ Running several **tournaments** among a few randomly chosen individuals
 - ▶ Randomly select a group of elements and then, find the fittest
 - Very large groups?
 - ▶ Getting closer to the main population with a high Selection Pressure
 - ► Very small groups?
 - ▶ Getting closer to the Random Selection method

- Selection methods Truncation selection
 - ► Here is the process:
 - 1. Order chromosomes based on their Fitness values
 - 2. Select the best T-percent
 - 3. Choose N elements from them
 - 4. Repeat until reaching the goal
 - ► $T=100 \rightarrow$ the same as Random Selection
 - ▶ The bigger T is, the lower the Selection Pressure will be

Methodology - Reproduction

- Recombination/Crossover
 - Combining the genetic information of two parents
 - Generating new solutions from an existing population
 - ▶ **Outcome**: new offspring
 - ▶ More Crossover operator → more cautious behavior

Methodology - Reproduction

Recombination/Crossover

Single-point crossover

- A random point (Crossover Point) is picked
- Swapping items from the selected point
- ▶ **Outcome**: two offspring, each with some data from both parents

Methodology - Reproduction

Recombination/Crossover

Two-point crossover

- Two random points (Crossover Points) are picked
- Swapping items between the two points
- ▶ **Outcome**: two offspring, each with some data from both parents

Methodology - Reproduction

► Recombination/Crossover

Uniform crossover

- ► Requires a random distribution to choose offspring genes
- ► Each bit is chosen from either parent with equal probability

Methodology - Reproduction

Recombination/Crossover

Simple arithmetic recombination (real numbers)

- ightharpoonup Choose a single gene and define a proper coefficient α
- ► For chromosomes A and B:

$$C_1 = (A_i + B_i) * \alpha \text{ and } C_2 = (A_i + B_i) * (1 - \alpha)$$

 $\alpha = 0.5$

Methodology - Reproduction

Recombination/Crossover

Whole arithmetic recombination (real numbers)

- ightharpoonup Define a proper coefficient α
- ► For all chromosomes A and B:

$$C_1 = (A_i + B_i) * \alpha \text{ and } C_2 = (A_i + B_i) * (1 - \alpha)$$

0.1	0.2	0.4	0.5	8.0	0.3	0.7	0	0.2	0.2	0.45	0.45	0.65	0.5	0.2	0.35	0.1	0.25
0.3	0.7	0.5	0.6	0.2	0.1	0	0.2	0.3	0.2	0.45	0.45	0.65	0.5	0.2	0.35	0.1	0.25

$$\alpha = 0.5$$

Methodology - Reproduction

- Mutation
 - Used to maintain genetic diversity from one generation to the next
 - ► Alters one or more gene values in a chromosome from its initial state

 Original sequence

Point mutation

Methodology - Reproduction

Family resemblance: Crossover

We can use other operators such as regrouping, colonization-extinction, or migration besides Mutation and Crossover

Methodology - Reproduction

Different eye colors: Mutation

We can use other operators such as regrouping, colonization-extinction, or migration besides Mutation and Crossover

Methodology - Reproduction

Mutation

Bit Flip (binary)

► Reverse the values of some genes

Methodology - Reproduction

Mutation

Complementary mutation (real number)

► Choose one or more genes and subtract them from the Max value

Methodology - Reproduction

Mutation

Relocation

Choose some genes and replace them

Methodology - Reproduction

Mutation

Insertion

▶ Randomly select two genes and shift the items between

Methodology - Reproduction

Mutation

Hashing

Randomly select two genes and hash the items between

Methodology - Selection from the new generation

- ► Calculation based on the current and new generation
- ► Two common methods:
 - ► Steady-State Replacement
 - ► Generational Replacement

Methodology - Selection from the new generation

- Steady-State Replacement
 - ► Keep a large portion of the parents chromosomes
 - ► Replace **some** of the offspring set with parents
 - Maintaining the overall variation of items
 - Some methods:
 - ▶ Worst
 - ▶ Best
 - ▶ Oldest
 - Conservative

Methodology - Selection from the new generation

- Generational Replacement
 - ► Replace **all** of the offspring set with parents
 - Example: replacing the best items with the worst ones
 - ► Fast convergence of the algorithm

Methodology - Termination condition

- ▶ Important in determining when a EA run will end
- We may find the best (fittest) solution (not always)
- Some common termination conditions:
 - ▶ No improvement in the population for X iterations
 - ▶ Reaching an absolute number of generations
 - ▶ The objective function value has reached a pre-defined value

What's Next?

Common Evolutionary Algorithms

Genetic Algorithms

Questions?

