

Objective

- The goal of labs 1 and 2 is to implement the subset construction algorithm (NFA to DFA).
- The goal of lab1 is to implement e-closure and move functions

```
\varepsilon\text{-}closure(s) = \{s\} \cup \{t \mid s \to_{\varepsilon} \dots \to_{\varepsilon} t\}
\varepsilon\text{-}closure(T) = \bigcup_{s \in T} \varepsilon\text{-}closure(s)
move(T,a) = \{t \mid s \to_{a} t \text{ and } s \in T\}
```


Getting Started

 Download the template file (lab1.py) and the input file (input.txt) from Blackboard

Description of Closure

- ε -closure(s) = $\{s\} \cup \{t \mid s \rightarrow_{\varepsilon} \dots \rightarrow_{\varepsilon} t\}$
 - -A set of NFA states that can be reached from *s* only by ε transitions
- ε -closure(T) = $\bigcup_{s \in T} \varepsilon$ -closure(s)
 - A set of NFA states that can be reached from the states in T only by ε transitions
- $move(T,a) = \{t \mid s \rightarrow_a t \text{ and } s \in T\}$
 - A set of NFA states that can be reached from the states in T
 by input a

ε-closure and move Examples

 ϵ -closure($\{0\}$) = $\{0,1,3,7\}$ $move(\{0,1,3,7\},\mathbf{a}) = \{2,4,7\}$ ϵ -closure($\{2,4,7\}$) = $\{2,4,7\}$ $move(\{2,4,7\},\mathbf{a}) = \{7\}$ ϵ -closure($\{7\}$) = $\{7\}$ $move(\{7\},\mathbf{b}) = \{8\}$ ϵ -closure($\{8\}$) = $\{8\}$ $move(\{8\},\mathbf{a}) = \emptyset$

Given Classes

- Edge
 - Represents an edge in the graph by (from, to, input)
- Graph
 - Represents the graph by a collection of edges
 - Edges are stored in a list
 - Read an input file
 - Each line of the input file represents an edge
 - The format of one line is "from,to,input"
 - The input is optional. If it is not present, it means an empty string

 Implement the following three functions of the Graph class (marked with #TODO)

```
getEClosureS(self, s_)
getEClosureT(self, t_)
getMove(self, t_, a_)
```



```
$ python main.py input.txt
{0, 1, 2, 4, 7}
{8, 3}
{1, 2, 3, 4, 6, 7, 8}
{5}
{1, 2, 4, 5, 6, 7}
```