

Représentation binaire

Comprendre les Microcontrôleurs

Jean-Daniel NICOUD et Pierre-Yves ROCHAT

Comprendre les microcontrôleurs

Représentation binaire

- Système de numération binaire
- Nombres binaires de taille limitée
- Nombres signés

• Hexadécimal, BCD et caractères

Système de numération binaire


```
= 8 + 0 + 2 + 0 = 10
```

Poids: 8 4 2 1

Mémoires binaires

- Une bascule peut mémoriser une valeur binaire (un bit)
- Un registre est un ensemble de plusieurs bascules
- Un registre contient un mot binaire
- Un mot binaire peut avoir une signification quelconque
- Dans certaines situation, un mot binaire représente un nombre

Mots binaires et nombres binaires

• On donne souvent un numéro à chaque bit :

Prenons un exemple. Le mot binaire suivant :

0	0	1	0	0	0	0	1
---	---	---	---	---	---	---	---

La seule chose qu'on peut affirmer, c'est que
 le bit 0 et le bit 5 sont à « 1 » et que les autres à « 0 » !

Nombres binaires de taille limitée

• Si ce mot est vu comme un **nombre binaire**, il vaut :

$$0 + 0 + 32 + 0 + 0 + 0 + 0 + 1 = 33$$

- Mais peut-on calculer en binaire avec des nombres limités à un certaine taille ?
- C'est tout le problème de l'artithmétique modulaire!

Représentation des nombres modulaires

- Prenons pour simplifier l'exemple de mots de 3 bits
- Chaque mot peut représenter 8 nombres différents (= 2³)
- On peut par exemple représenter les nombres positifs de 0 à 7 (de 0 à 2³-1)
- Est-ce que l'addition fonctionne ?

Représentation des nombres modulaires

- Prenons pour simplifier l'exemple de mots de 3 bits
- Chaque mot peut représenter 8 nombres différents (= 2³)
- On peut par exemple représenter les nombres positifs de 0 à 7 (de 0 à 2³-1)
- Est-ce que l'addition fonctionne ?

- On obtient parfois un dépassement de capacité!
- Le résultat obtenu est privé du bit de poids 8 (qui n'existe pas sur 3 bits)
- Arithmétiquement, c'est : (6 + 3) modulo 8

Représentation des nombres modulaires positifs

• Deux représentations aident à comprendre les nombres modulaires :

Un cercle:

Une fonction:

Nombres positifs:

Représentation des nombres négatifs

- Plusieurs solutions sont possibles pour représenter aussi des nombres négatifs
- Voici celle qui est la plus utilisée : (complément à deux)

Représentation des nombres négatifs

Voici les intervalles arithmétiques pour quelques longueurs de nombres binaires :

4 bits	0 à 15	-8 à +7	Nibble
8 bits	0 à 255	-128 à +127	Byte, octet
16 bits	0 à 65'536	-32'768 à +32'767	
32 bits	0 à 4'294'967'296	-2'147'483'648 à 2'147'473'647	

Les noms donnés à ces types de nombres ne sont pas standardisés!

Notation en hexadécimal

6

- L'écriture de nombres en binaire est fastidieuse...
- La conversion en décimal n'est pas immédiate!
- On utilise souvent l'hexadécimal :

- Couper le nombre binaire en tranches de 4 bits (depuis la droite)
- Coder chaque groupe de 4 bits avec les chiffres de 0 à F

0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

BCD: Binary Coded Decimal

- Le code **BCD** est encore parfois utilisé, par exemple dans les circuits horloges
- Il s'agit bien de nombre décimaux, mais chaque chiffre décimal est codé sur 4 bits
- Par exemple, un mot de 16 bits peut coder des nombres BCD entre 0 et 9'999

Exemple de valeur horaire codée en BCD, sur deux octets: 21 h 35

• Le passage du binaire au BCD nécessite de nombreuses opérations (dans les deux sens) Il s'agit bien de la conversion du binaire au décimal et du décimal au binaire.

Codage des caractères

• Le code **ASCII** permet de coder les caractères courants sur 7 bits *(il date de 1963...)* Il ne contient pas de lettres accentuées.

	ASCII Code Chart															
	0	1	2	3	4	5	6	7	8	9	Α	В	C	D	E	<u> </u>
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	S0	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2			=	#	\$	%	&	-	()	*	+	,	•	•	/
3	0	1	2	3	4	5	6	7	8	9	••	;	V	II	^	?
4	0	A	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0
5	Р	Q	R	S	T	U	V	W	X	Y	Z	[\]	^	_
6	•	a	b	С	d	е	f	g	h	i	j	k	ι	m	n	0
7	р	q	r	S	t	u	V	W	X	У	Z	{		}	~	DEL

Représentation des nombres en binaire

Représentation binaire

- Système de numération binaire
- Nombres binaires de taille limitée arithmétique en modulo
- Nombres signés
 notation en complément à deux
- Hexadécimal, BCD et caractères