Artificial Intelligence (CS303)

Lecture 13: Knowledge Graph

Hints for this lecture

 A less rigorous (but more practical) way to represent and utilize knowledge.

Outline of this lecture

Overview of Knowledge Graph (KG).

How to construct KG?

I. Overview of knowledge graph

What is Knowledge Graph?

- To make a knowledge base (KB) of practical significance, we need to:
 - Set a proper boundary for "knowledge", which means:
 - bound the scope of the KB (and thus its representation)
 - bound the utility (application) of the KB
- In 2012, Google first proposed the concept of the knowledge graph (KG).
- The idea of KG stems from Semantic Network.
 - Knowledge Graph: Large-scale semantic network

What is Knowledge Graph?

- SN/KG uses vertexes and edges to represent knowledge graphically.
 - Vertexes: entities and concepts
 - Edges: relations and properties

Why Knowledge Graph

- Most human knowledge is expressed in natural language.
- It is more intuitive for human is to remember relationship between entities.
- In some (but significant) applications, we care more about entities, but not knowledge.
 - Recommender System
 - Q&A System
 - Information Retrieval

Why Knowledge Graph

Represent KB with Logic

- What is commonsense knowledge?
- Hard (even for human) to write the KB

hard to express hidden knowledge.

Inference

Applications in multi-domains.

II. How to construct Knowledge Graph?

KG as a Heterogeneous Directed Graph

- Heterogeneous directed graphs.
 - The KG can be represented as a graph G = (V, E), V is vertex set, E is the edge set.
 - V is also the entities set. E is also the relation set.
- RDF: Resource Description Framework, an XML Document standard from W3C
 - use relation triplet < head entity, relation type, tail entity > to describe a relation.
 - Head entity: the subject of this relation
 - Relation type: the category of this relation
 - Tail entity: the object of this relation

Construct a KG

- Suppose we have a lot of document written in natural language (text).
- Having experts manually identify all the entities of interest and annotate the relations between them.
 - Easier than writing a sentence in propositional/first-order logic
 - But still non-trivial
- (Semi-)Automate the construction of KG from documents?
 - Entity Recognition (Vertex set of the graph?)
 - Relation Extraction (Edge set of the graph?)
 - Automatic Annotation

The General (Semi-)Automatic Viewpoint

- Human expert write rules (template) to identify the entities and relations
 - · e.g., use vocabulary/dictionary
- Is there any method to further automatically discover rules?

- Identify meaningful entities across various texts.
- Input: Documents (text)
- Output: A set of entities

- Identify meaningful entities based on the statistical metrics of vocabulary across various texts.
 - **TF-IDF** (Term Frequency–Inverse Document Frequency):
 - If a word appears frequently in one document but infrequently in others, it is more likely to be a meaningful entity.

For a corpus of documents *D*:

- Term frequency (TF): P(w|d)
- Inverse document frequency (IDF): $log\left(\frac{|D|}{|\{d\in D|w\in d\}|}\right)$ (log(0)=0)
- TF-IDF: TF × IDF

 Identify meaningful entities based on the statistical metrics of vocabulary across various texts.

Entropy:

If a word has a rich variety of neighboring words, it is likely be a meaningful entity.

$$H(u) = -\sum_{x \in \mathcal{X}} p(x) \log p(x)$$

- p(x) is the probability of a certain left neighbor (right neighbor) word, \mathcal{X} is the set of all left neighbor (right neighbor) characters of u.
- The larger H(u) is, more abundant the set of u's neighbors is.

- Using machine learning techniques, model the Entity Recognition process as a Sequence Labeling problem.
 - It's also called as NER (Named Entity Recognition)
 - Supervised Learning
- Input is a sentence. Output is the label of each word in the sentence.

Input	Zihan	Zhang	will	join	the	ICPC
Output	B-People	I-People	0	0	0	B-Contest

People: Zihan Zhang

Contest: ICPC

NER task can be solved by the following technologies:

CRF (Conditional Random Field)

RNN (Recurrent Neural Network)

Transformer

Automatic Relation Extraction

- Using machine learning techniques, model the Relation Extraction process as a Text Classification Problem.
 - It's also a supervised learning task.
- Input is a sentence that contains 2 entities. Output is the category of the relation that the sentence express.
 - Input: Zihan Zhang will join the ICPC.
 - Output: participate in

Automatic Relation Extraction

- Relation extraction task can be solved by the following technologies:
 - RNN
 - Transformer
 - ..

- KGC (Knowledge Graph Completion) task is also a method to assist KG construction.
 - Finding missing relations in an existing KG.
- Why we need KGC?
 - It's too expensive to build a thorough rule base. KGC can reduce the cost of rule base building.
 - Current relation extraction technology cannot extract all the relation.
 - The knowledge contained in textual data used to describe relationships is itself not complete.

 There are two kinds of methods for knowledge graph completion tasks.

Path-based method

Embedding-based method

- Path-based methods take the path between two entities in the KG as the feature of this pair of entities.
- Path is a sequence of relation types.
- E.g. In a KG, there is a relations chain between entities Qikun Xue and China: Qikun Xue $\xrightarrow{work \ at}$ SUSTech $\xrightarrow{locate \ at}$ Shenzhen $\xrightarrow{belongs \ to}$ Guangdong $\xrightarrow{belongs \ to}$ China
 - We can extract a path < work at, locate at, belongs to, belongs to >
 - There could be multiple paths between two entities.
- Path-based methods determine the existence and type of relation between two entities based on the paths between them.

 Embedding-based methods represent the entities and relation types in the KG as a low-dimensional real value vector (also called embedding).

- Design a score function g(h, r, t). Get suitable embedding for entities and relation types.
 - h, r, and t are embeddings of head entity h, relation type r, and tail entity t respectively.
 - Higher g(h, r, t) means that the relation (h, r, t) is more possible to be true.

How to get suitable embedding for entities and relation types?

- All the relations in the KG should have higher score than any relation that is not in the KG.
- We can get an objective function:

$$\min \sum_{(h,r,t)\in\mathcal{G}} \sum_{(h',r',t')\notin\mathcal{G}} [g(h',r',t') - g(h,r,t)]_{+}$$

Get suitable embedding by gradient descent.

III. KG-Based Recommender System

The Need for Side Information

- In the construction of the recommender system:
 - The core data is the historical user-item interaction records.
 - Additional side information is also needed.

- The additional side information is used to describe users and items.
 - Sometimes, there is no enough interaction records.
 - Additional side information can provide more prior information would be appreciated.

Use KG as Side Information

- KG serve as a structured description of additional side (prior) information.
 - An intuitive example:胡服骑射→赵武灵王
 - Both KG and interaction data are represented as graph.
 - It is easy to integration the information in KG and interaction record.

Problem Formulation

• Input:

- Historical user-item interaction records.
- A KG that is used to describe items or users (always items).

Output:

 A function used to predict how likely a user would interact with a target.

The key is also the Score Function

- Similar to the conventional recommender system, the key to a KG-based recommender system is also the score function.
- How to calculate the score?
 - Getting the feature of the user and item from historical user-item interaction records and KG.
 - Calculating score by a well-designed model according to the feature of the user and item.

Recommender System under Graph view

Interaction records can be seen as a bipartite graph.

• The score function f(u, w) predicts how probably there is an edge between the user u and item w, or the value of the edge between the user u and item w.

Mix KG and Interaction Records

Interaction records is a bipartite graph.

 KG is a heterogeneous directed graph.

 Mixing KG and interaction records will get a new graph.

Mix KG and Interaction Records

 We can get the feature of the user and item from the new graph that is mixed by KG and interaction records.

- As the content in RS and KG, the features we can get contain:
 - Paths between users and items.
 - Correlation among users or items.
 - Embeddings of users and items.

Constrain the feature of user/item

- We can represent the user/item as an embedding vector according to the interaction records.
 - There may simultaneously exist multiple representations that conform to the interaction records.

- We also can get correlations among users or items according to the KG or the mixed graph.
 - We can add a constraint that the embeddings of users/items should be consistent with the correlation among them.

Get Embedding from Mixed Graph

- We can represent the user/item as an embedding vector according to the mixed graph.
- A typical method is GNN (Graph Neural Network):
 - There is an initial embedding for each node in the graph.
 - The final embedding of each node is calculated by the embeddings of its neighborhood.
 - Result of f(u, w) is calculated according to the final embeddings of user u and item w by a model M, such as MLP or matrix multiplication.

The End of the Knowledge and Reasoning Section