★☆☆☆ Exercice 1 /7

On donne les complexes $z_1 = -\frac{\sqrt{3} + \mathrm{i}}{4}$ et $z_2 = \frac{1}{2} \mathrm{e}^{\mathrm{i} \frac{\pi}{4}}$.

- 1. Écrire sous forme exponentielle z_1 et z_2 sous forme algébrique. /1.5
- 2. Déduire de la question précédente l'écriture de $\frac{z_1}{z_2}$ sous forme exponentielle.
- 3. Écrire $\frac{z_1}{z_2}$ sous forme algébrique. /1.5
- 4. En déduire que $\cos\left(\frac{7\pi}{12}\right) = \frac{\sqrt{2} \sqrt{6}}{4}$ et $\sin\left(\frac{7\pi}{12}\right) = \frac{\sqrt{6} + \sqrt{2}}{4}$.

**** Exercice 2

- 1. Soient p et q deux réels.
 - À l'aide d'une formule d'Euler, démontrer que $\frac{\sin p + \sin q}{2} = \sin \left(\frac{p+q}{2}\right) \cos \left(\frac{p-q}{2}\right)$. /2
- 2. En déduire $I = \int_0^{\frac{\pi}{6}} \sin(3x) \cos(x) dx$. /2

★★☆☆ Exercice 3 /6

- 1. Déterminer, sous forme exponentielle, les racines quatrièmes de l'unité. /1.5
- 2. Développer l'expression $(1+i)^4$. /1.5
- 3. En déduire, sous forme algébrique, l'ensemble des solution de l'équation $z^4 = -4$.

**** Exercice 4 /3

Soient $n \in \mathbb{N}^*$ et $z \in \mathbb{C}$.

On considère la somme $S_n = \sum_{k=0}^{n-1} z^k$.

- 1. Quelle est la valeur de S_n si z = 1?
- 2. On suppose désormais que $z \neq 1$.
 - (a) Démontrer que $S_n = \frac{z^n 1}{z 1}$. /1
 - (b) En déduire les solutions dans \mathbb{C} de l'équation $S_n = 0$.