Tidy_Data Code Book

Patrick Ball

Original Source & Script

This data set was created using data originally collected from http://archive.isc.uci.edu/ml./datasets/Human+Activity+Recognitition+Using+Smartphones. For this project, it was downloaded from https://d396qusza40orc.cloudfront.net/getdata%2Fprojectfiles%2FUCI%20HAR%20Dataset.zip. The script run analysis.R was run to tidy, subset, and aggregate the data.

Data Characteristics

The data have 180 rows and 82 columns and is 263 KB in size.

Data Variables

"subject" (numeric values 1-30) is the id of the person from whom the data row was collected.

"activity_code" (numeric values 1-6) is the activity id for the action performed while the data row was collected.

"activity_desc" (string values, 6 options) is a descriptive entry of the action performed while the data row was collected. Values can be: LAYING, SITTING, STANDING, WALKING, WALKING_DOWNSTAIRS, WALKING_UPSTAIRS

The remaining columns are considered features.

The features selected for this database come from the acceleromter and gyroscope 3-axial raw signals tAcc-XYZ and tGyro-XYZ. These time domain signals (prefix 't' to denot time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Similarly, the acceleration signal was then separated into body and gravity acceleration signals (tBodyAcc-XYZ and tGravityAcc-XYZ) using another low pass Butterworth filter with a corner frequency of 0.3 Hz.

Subsequently, the body linear aceleration and angular velocity were derived in time to obtain Jerk Signals (tBodyAccJerk-XYZ and tBodyGyroJerk-XYZ). Also the magnitude of these three-dimensional signals were calculated using the Euclidean norm (tBodyAccMag, tGravityAccMag, tBodyAccJerkMag, tBodyGyroMag).

Finally, a Fast Fourier Transform (FFT) was applied to some of these signals producing fBodyAcc-XYZ, fBodyAccJerk-XYZ, fBodyAccJerkMag, fBodyGyroMag, gBodyGyroJerkMag. (Note the 'f' to indicate frequency domain signals).

These signals were used to estimate variables of the feature vector for each pattern: '-XYZ' is used to denote 3-axial signals in the X, Y, and Z directions.

tBodyAcc-XYZ tGravityAcc-XYZ tBodyAccJerk-XYZ tBodyGyro-XYZ tBodyGyroJerk-XYZ tBodyAccMag tGravityAccMag tBodyAccJerkMag tBodyGyroMag tBodyGyroJerkMag fBodyAcc-XYZ fBodyAccJerk-XYZ fBodyGyro-XYZ fBodyAccMag fBodyAccJerkMag fBodyGyroMag fBodyGyroJerkMag

The set of variables that were estimated from the signals are:

mean(): Mean value std(): Standard deviation

Lastly, the mean of each feature was aggregated to each subject and each activity.