House Price Pridiction

- -> build a model using sklearn and linear regression using banglore home prices dataset from kaggle.com. -> model building we will cover almost all data science concepts such as data load and cleaning, outlier detection and removal, feature engineering, dimensionality reduction, gridsearchev for hyperparameter tunning, k fold cross validation etc. Technology and tools wise this project covers,
- 1) Python 2) Numpy and Pandas for data cleaning 3) Matplotlib for data visualization 4) Sklearn for model building 5) Jupyter notebook

Importing libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')
```

Reading file---> Bangaluru House Data

```
In [2]: data=pd.read_csv("Bengaluru_House_Data.csv")
```

In [3]: data.head()

	area_type	availability	location	size	society	total_sqft	bath	balcony	price
0	Super built-up Area	19-Dec	Electronic City Phase II	2 BHK	Coomee	1056	2.0	1.0	39.07
1	Plot Area	Ready To Move	Chikka Tirupathi	4 Bedroom	Theanmp	2600	5.0	3.0	120.00
2	Built-up Area	Ready To Move	Uttarahalli	3 BHK	NaN	1440	2.0	3.0	62.00
3	Super built-up Area	Ready To Move	Lingadheeranahalli	3 BHK	Soiewre	1521	3.0	1.0	95.00
4	Super built-up Area	Ready To Move	Kothanur	2 BHK	NaN	1200	2.0	1.0	51.00

In [4]: data.tail()

	area_type	availability	location	size	society	total_sqft	bath	balcony	price
13315	Built-up Area	Ready To Move	Whitefield	5 Bedroom	ArsiaEx	3453	4.0	0.0	231.0
13316	Super built-up Area	Ready To Move	Richards Town	4 BHK	NaN	3600	5.0	NaN	400.0
13317	Built-up Area	Ready To Move	Raja Rajeshwari Nagar	2 BHK	Mahla T	1141	2.0	1.0	60.0
13318	Super built-up Area	18-Jun	Padmanabhanagar	4 BHK	SollyCl	4689	4.0	1.0	488.0
13319	Super built-up Area	Ready To Move	Doddathoguru	1 BHK	NaN	550	1.0	1.0	17.0

In [5]: data.shape

(13320, 9)

```
In [6]: data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 13320 entries, 0 to 13319
Data columns (total 9 columns):
# Column Non-Null Count Dtv
```

#	Column	Non-Null Count	Dtype
0	area_type	13320 non-null	object
1	availability	13320 non-null	object
2	location	13319 non-null	object
3	size	13304 non-null	object
4	society	7818 non-null	object
5	total_sqft	13320 non-null	object
6	bath	13247 non-null	float64
7	balcony	12711 non-null	float64
8	price	13320 non-null	float64

dtypes: float64(3), object(6)
memory usage: 936.7+ KB

Data cleaning

```
In [7]: data.groupby('area_type')['area_type'].agg('count')
```

area_type
Built-up Area 2418
Carpet Area 87
Plot Area 2025
Super built-up Area 8790
Name: area_type, dtype: int64

```
data['size'].unique()
            array(['2 BHK', '4 Bedroom', '3 BHK', '4 BHK', '6 Bedroom', '3 Bedroom',
                   '1 BHK', '1 RK', '1 Bedroom', '8 Bedroom', '2 Bedroom',
                  '7 Bedroom', '5 BHK', '7 BHK', '6 BHK', '5 Bedroom', '11 BHK',
                  '9 BHK', nan, '9 Bedroom', '27 BHK', '10 Bedroom', '11 Bedroom',
                   '10 BHK', '19 BHK', '16 BHK', '43 Bedroom', '14 BHK', '8 BHK',
                   '12 Bedroom', '13 BHK', '18 Bedroom'], dtype=object)
          data['total_sqft'].unique()
            array(['1056', '2600', '1440', ..., '1133 - 1384', '774', '4689'],
                 dtype=object)
          data['area type'].unique()
            array(['Super built-up Area', 'Plot Area', 'Built-up Area',
                   'Carpet Area'], dtype=object)
In [11]:
            Index(['area_type', 'availability', 'location', 'size', 'society',
                  'total_sqft', 'bath', 'balcony', 'price'],
                 dtype='object')
          df1=data.drop(['area_type', 'availability', 'balcony', 'society'],axis='columns')
```

```
In [13]: df1.head()
```

	location	size	total_sqft	bath	price
0	Electronic City Phase II	2 BHK	1056	2.0	39.07
1	Chikka Tirupathi	4 Bedroom	2600	5.0	120.00
2	Uttarahalli	3 BHK	1440	2.0	62.00
3	Lingadheeranahalli	3 BHK	1521	3.0	95.00
4	Kothanur	2 BHK	1200	2.0	51.00

```
In [14]:
         df1.isnull().sum()
           location
                       1
           size
                      16
           total_sqft
                       0
           bath
                      73
           price
           dtype: int64
In [15]:
         df1.isnull().sum().sum()
           90
In [16]:
         df2=df1.dropna()
```

```
In [17]:
         df2.isnull().sum()
          location
                      0
          size
                      0
          total_sqft
          bath
          price
                      0
          dtype: int64
In [18]: df2['bhk']=df2['size'].apply(lambda x:int(x.split(' ')[0]))
In [19]:
         df2.head()
```

	location	size	total_sqft	bath	price	bhk
0	Electronic City Phase II	2 BHK	1056	2.0	39.07	2
1	Chikka Tirupathi	4 Bedroom	2600	5.0	120.00	4
2	Uttarahalli	3 BHK	1440	2.0	62.00	3
3	Lingadheeranahalli	3 BHK	1521	3.0	95.00	3
4	Kothanur	2 BHK	1200	2.0	51.00	2

```
In [20]: df2['bhk'].unique()

array([ 2, 4, 3, 6, 1, 8, 7, 5, 11, 9, 27, 10, 19, 16, 43, 14, 12, 13, 18], dtype=int64)
```

```
In [21]: df2[df2.bhk>20]
```

```
location
                                          size total_sqft bath price bhk
          1718 2Electronic City Phase II 27 BHK
                                               8000
                                                          27.0
                                                                230.0 27
          4684 Munnekollal
                                    43 Bedroom 2400
                                                          40.0 660.0 43
In [22]:
          df2['total_sqft'].unique()
           array(['1056', '2600', '1440', ..., '1133 - 1384', '774', '4689'],
                dtype=object)
In [23]:
          def is_float(x):
              try:
                  float(x)
              except:
                  return False
              return True
```

In [24]: df2[df2['total_sqft'].apply(is_float)]

	location	size	total_sqft	bath	price	bhk
0	Electronic City Phase II	2 BHK	1056	2.0	39.07	2
1	Chikka Tirupathi	4 Bedroom	2600	5.0	120.00	4
2	Uttarahalli	3 BHK	1440	2.0	62.00	3
3	Lingadheeranahalli	3 BHK	1521	3.0	95.00	3
4	Kothanur	2 BHK	1200	2.0	51.00	2
13315	Whitefield	5 Bedroom	3453	4.0	231.00	5
13316	Richards Town	4 BHK	3600	5.0	400.00	4
13317	Raja Rajeshwari Nagar	2 BHK	1141	2.0	60.00	2
13318	Padmanabhanagar	4 BHK	4689	4.0	488.00	4
13319	Doddathoguru	1 BHK	550	1.0	17.00	1

13056 rows × 6 columns

```
In [25]: df2[~df2['total_sqft'].apply(is_float)].head(10)
```

	location	size	total_sqft	bath	price	bhk
30	Yelahanka	4 BHK	2100 - 2850	4.0	186.000	4
122	Hebbal	4 BHK	3067 - 8156	4.0	477.000	4
137	8th Phase JP Nagar	2 BHK	1042 - 1105	2.0	54.005	2
165	Sarjapur	2 BHK	1145 - 1340	2.0	43.490	2
188	KR Puram	2 BHK	1015 - 1540	2.0	56.800	2
410	Kengeri	1 BHK	34.46Sq. Meter	1.0	18.500	1
549	Hennur Road	2 BHK	1195 - 1440	2.0	63.770	2
648	Arekere	9 Bedroom	4125Perch	9.0	265.000	9
661	Yelahanka	2 BHK	1120 - 1145	2.0	48.130	2
672	Bettahalsoor	4 Bedroom	3090 - 5002	4.0	445.000	4

Feature Engineering

```
In [31]: df3['cost_per_sqft']=df3['price']*100000/df3['total_sqft']
In [32]: df3.head()
```

	location	size	total_sqft	bath	price	bhk	cost_per_sqft
0	Electronic City Phase II	2 BHK	1056.0	2.0	39.07	2	3699.810606
1	Chikka Tirupathi	4 Bedroom	2600.0	5.0	120.00	4	4615.384615
2	Uttarahalli	3 BHK	1440.0	2.0	62.00	3	4305.555556
3	Lingadheeranahalli	3 BHK	1521.0	3.0	95.00	3	6245.890861
4	Kothanur	2 BHK	1200.0	2.0	51.00	2	4250.000000

```
In [33]: len(df3.location.unique())
```

```
df3.location=df3.location.apply(lambda x:x.strip(""))
          location_stats=df3.groupby('location')['location'].agg('count').sort_values(ascending=False)
In [35]:
          location stats
           location
           Whitefield
                                534
                                392
           Sarjapur Road
           Electronic City
                                302
           Kanakpura Road
                                266
           Thanisandra
                                233
                               . . .
            Banaswadi
                                 1
           Kanakadasa Layout
                                 1
           Kanakapur main road
           Kanakapura Rod
                                 1
           whitefiled
           Name: location, Length: 1304, dtype: int64
In [36]:
          len(location_stats[location_stats<=10])</pre>
           1063
```

```
location_stats_lessthan_10=location_stats[location_stats<=10]</pre>
location_stats_lessthan_10
 location
 Dodsworth Layout
                       10
 1st Block Koramangala
                       10
 Nagappa Reddy Layout
                       10
 Ganga Nagar
                       10
 Dairy Circle
                       10
  Banaswadi
                        1
 Kanakadasa Layout
                        1
 Kanakapur main road
                        1
 Kanakapura Rod
                        1
 whitefiled
                        1
 Name: location, Length: 1063, dtype: int64
len(df3.location.unique())
 1304
df3.location=df3.location.apply(lambda x:'other' if x in location_stats_lessthan_10 else x)
```

```
In [40]: df3.location
```

```
0
                    Electronic City Phase II
                            Chikka Tirupathi
            1
            2
                                Uttarahalli
            3
                          Lingadheeranahalli
            4
                                   Kothanur
            13315
                                 Whitefield
            13316
                                      other
                       Raja Rajeshwari Nagar
            13317
            13318
                             Padmanabhanagar
            13319
                               Doddathoguru
            Name: location, Length: 13246, dtype: object
In [41]:
          len(df3.location.unique())
```

In [42]: df3.head(10)

	location	size	total_sqft	bath	price	bhk	cost_per_sqft
0	Electronic City Phase II	2 BHK	1056.0	2.0	39.07	2	3699.810606
1	Chikka Tirupathi	4 Bedroom	2600.0	5.0	120.00	4	4615.384615
2	Uttarahalli	3 BHK	1440.0	2.0	62.00	3	4305.555556
3	Lingadheeranahalli	3 BHK	1521.0	3.0	95.00	3	6245.890861
4	Kothanur	2 BHK	1200.0	2.0	51.00	2	4250.000000
5	Whitefield	2 BHK	1170.0	2.0	38.00	2	3247.863248
6	Old Airport Road	4 BHK	2732.0	4.0	204.00	4	7467.057101
7	Rajaji Nagar	4 BHK	3300.0	4.0	600.00	4	18181.818182
8	Marathahalli	3 BHK	1310.0	3.0	63.25	3	4828.244275
9	other	6 Bedroom	1020.0	6.0	370.00	6	36274.509804

Outliers

normally square ft per bedroom is 300

In [43]: df3[df3.total_sqft/df3.bhk<300].head()</pre>

	location	size	total_sqft	bath	price	bhk	cost_per_sqft
9	other	6 Bedroom	1020.0	6.0	370.0	6	36274.509804
45	HSR Layout	8 Bedroom	600.0	9.0	200.0	8	33333.333333
58	Murugeshpalya	6 Bedroom	1407.0	4.0	150.0	6	10660.980810
68	other	8 Bedroom	1350.0	7.0	85.0	8	6296.296296
70	other	3 Bedroom	500.0	3.0	100.0	3	20000.000000

```
In [44]:
         df3.shape
           (13246, 7)
         df4=df3[~(df3.total_sqft/df3.bhk<300)]
In [46]:
         df4.shape
           (12502, 7)
            using standard deviation
In [47]:
          df4.cost_per_sqft.describe()
                    12312.000000
           count
                    6323.403514
           mean
                    4187.211055
           std
           min
                     267.829813
                    4208.545855
           25%
           50%
                    5300.000000
           75%
                    6938.987948
```

176470.588235 Name: cost_per_sqft, dtype: float64

max

```
In [48]:

def remove_cps_outliers(df):
    df_out = pd.DataFrame()
    for key, subdf in df.groupby('location'):
        m = np.mean(subdf.cost_per_sqft)
        st = np.std(subdf.cost_per_sqft)
        reduced_df = subdf[(subdf.cost_per_sqft>(m-st)) & (subdf.cost_per_sqft<=(m+st))]
        df_out = pd.concat([df_out,reduced_df],ignore_index=True)
        return df_out
    df5 = remove_cps_outliers(df4)
    df5.shape

[10143, 7]

In [49]: import matplotlib</pre>
```


Total Square Feet Area


```
def remove bhk outliers(df):
    exclude indices = np.array([])
    for location, location df in df.groupby('location'):
        bhk stats = {}
        for bhk, bhk df in location df.groupby('bhk'):
            bhk stats[bhk] = {
                 'mean': np.mean(bhk_df.cost_per_sqft),
                 'std': np.std(bhk df.cost per sqft),
                 'count': bhk df.shape[0]
            }
        for bhk, bhk_df in location_df.groupby('bhk'):
            stats = bhk stats.get(bhk-1)
            if stats and stats['count']>5:
                exclude indices = np.append(exclude indices, bhk df[bhk df.cost per sqft<(stats['mean'])].ir
    return df.drop(exclude_indices,axis='index')
df6 = df5.copy()
df6 = remove bhk outliers(df5)
df6.shape
 (7227, 7)
```



```
import matplotlib
matplotlib.rcParams["figure.figsize"] = (20,10)
plt.hist(df6.cost_per_sqft,rwidth=0.8)
plt.xlabel("Price Per Square Feet")
plt.ylabel("Count")
```

Text(0, 0.5, 'Count')

Outlier Removal Using Bathrooms Feature

```
In [56]: df6.bath.unique()

array([ 2., 3., 4., 5., 8., 1., 6., 7., 9., 12., 16., 13.])
```

```
plt.hist(df6.bath,rwidth=0.8)
plt.xlabel("Number of bathrooms")
plt.ylabel("Count")
```

Text(0, 0.5, 'Count')

In [58]: df6[df6.bath>10]

	location	size	total_sqft	bath	price	bhk	cost_per_sqft
5215	Neeladri Nagar	10 BHK	4000.0	12.0	160.0	10	4000.000000
8385	other	10 BHK	12000.0	12.0	525.0	10	4375.000000
8474	other	16 BHK	10000.0	16.0	550.0	16	5500.000000
9211	other	11 BHK	6000.0	12.0	150.0	11	2500.000000
9541	other	13 BHK	5425.0	13.0	275.0	13	5069.124424

In [59]: df6[df6.bath>df6.bhk+2]

		location	size	total_sqft	bath	price	bhk	cost_per_sqft
1	622	Chikkabanavar	4 Bedroom	2460.0	7.0	80.0	4	3252.032520
5	5176	Nagasandra	4 Bedroom	7000.0	8.0	450.0	4	6428.571429
6	632	Thanisandra	3 BHK	1806.0	6.0	116.0	3	6423.034330
8	309	other	6 BHK	11338.0	9.0	1000.0	6	8819.897689

In [60]: df6.shape

(7227, 7)

In [61]: df6.head(2)

	location	size	total_sqft	bath	price	bhk	cost_per_sqft
1	Devarachikkanahalli	2 BHK	1250.0	2.0	40.0	2	3200.000000
2	Devarachikkanahalli	2 Bedroom	1200.0	2.0	83.0	2	6916.666667

	location	total_sqft	bath	price	bhk
1	Devarachikkanahalli	1250.0	2.0	40.0	2
2	Devarachikkanahalli	1200.0	2.0	83.0	2
3	Devarachikkanahalli	1170.0	2.0	40.0	2

Use One Hot Encoding For Location

dummies = pd.get_dummies(df7.location)
dummies.head(3)

	Devarachikkanahalli	1st Block Jayanagar	1st Phase JP Nagar	2nd Phase Judicial Layout	2nd Stage Nagarbhavi	Hbr	5th Phase JP Nagar	6th Phase JP Nagar	7th Phase JP Nagar	JP	 Vishveshwarya Layout	V i
	1 1	0	0	0	0	0	0	0	0	0	 0	0
2	2 1	0	0	0	0	0	0	0	0	0	 0	0
,	3 1	0	0	0	0	0	0	0	0	0	 0	0

3 rows × 242 columns

	location	total_sqft	bath	price	bhk	Devarachikkanahalli	1st Block Jayanagar	1st Phase JP Nagar	2nd Phase Judicial Layout	2nd Stage Nagarbhavi	 Vijayanaga
1	Devarachikkanahalli	1250.0	2.0	40.0	2	1	0	0	0	0	 0
2	Devarachikkanahalli	1200.0	2.0	83.0	2	1	0	0	0	0	 0
3	Devarachikkanahalli	1170.0	2.0	40.0	2	1	0	0	0	0	 0
4	Devarachikkanahalli	1425.0	2.0	65.0	3	1	0	0	0	0	 0
5	Devarachikkanahalli	947.0	2.0	43.0	2	1	0	0	0	0	 0

5 rows × 246 columns

In [65]: df8.tail()

	location	total_sqft	bath	price	bhk	Devarachikkanahalli	1st Block Jayanagar	1st Phase JP Nagar	2nd Phase Judicial Layout	2nd Stage Nagarbhavi	 Vijayanagar	Vi
10134	other	1200.0	2.0	70.0	2	0	0	0	0	0	 0	0
10135	other	1800.0	1.0	200.0	1	0	0	0	0	0	 0	0
10138	other	1353.0	2.0	110.0	2	0	0	0	0	0	 0	0
10139	other	812.0	1.0	26.0	1	0	0	0	0	0	 0	0
10142	other	3600.0	5.0	400.0	4	0	0	0	0	0	 0	0

5 rows × 246 columns

```
In [66]:
    df9 = df8.drop('location',axis='columns')
    df9.head(2)
```

	total_sqft	bath	price	bhk	Devarachikkanahalli	1st Block Jayanagar	1st Phase JP Nagar		2nd Stage Nagarbhavi	5th Block Hbr Layout	 Vijayanagar	Vishves
1	1250.0	2.0	40.0	2	1	0	0	0	0	0	 0	0
2	1200.0	2.0	83.0	2	1	0	0	0	0	0	 0	0

² rows × 245 columns

Model building

```
In [67]: df9.shape (7227, 245)
```

	total_sqft	bath	bhk	Devarachikkanahalli	1st Block Jayanagar	1st Phase JP Nagar	2nd Phase Judicial Layout	2nd Stage Nagarbhavi	5th Block Hbr Layout	JP	 Vijayanagar	Vishve
1	1250.0	2.0	2	1	0	0	0	0	0	0	 0	0
2	1200.0	2.0	2	1	0	0	0	0	0	0	 0	0
3	1170.0	2.0	2	1	0	0	0	0	0	0	 0	0

3 rows × 244 columns

```
In [69]: X.shape

(7227, 244)

In [70]: y=df9.price
y.head()

1     40.0
2     83.0
3     40.0
4     65.0
5     43.0
Name: price, dtype: float64

In [71]: len(y)
```

```
from sklearn.model_selection import train_test_split
        X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,random_state=10)
In [73]:
        from sklearn.linear model import LinearRegression
        lr clf = LinearRegression()
        lr clf.fit(X train,y train)
        lr clf.score(X test,y test)
          0.8756701257688209
          Use K Fold cross validation to measure accuracy of our LinearRegression model
```

```
from sklearn.model selection import ShuffleSplit
from sklearn.model_selection import cross_val_score
cv = ShuffleSplit(n splits=5, test size=0.2, random state=0)
cross val score(LinearRegression(), X, y, cv=cv)
 array([0.79826963, 0.8119522, 0.89140998, 0.82271717, 0.87656831])
```

Find best model using GridSearchCV

```
In [75]: from sklearn.model_selection import GridSearchCV
        from sklearn.linear model import Lasso
        from sklearn.tree import DecisionTreeRegressor
         def find best model using gridsearchcv(X,y):
            algos = {
                 'linear regression' : {
                     'model': LinearRegression(),
                     'params': {
                         'normalize': [True, False]
                     }
                 },
                 'lasso': {
                     'model': Lasso(),
                     'params': {
                         'alpha': [1,2],
                         'selection': ['random', 'cyclic']
                     }
                 },
                 'decision tree': {
                     'model': DecisionTreeRegressor(),
                     'params': {
                         'criterion' : ['mse','friedman mse'],
                         'splitter': ['best','random']
```

```
scores = []
cv = ShuffleSplit(n_splits=5, test_size=0.2, random_state=0)
for algo_name, config in algos.items():
    gs = GridSearchCV(config['model'], config['params'], cv=cv, return_train_score=False)
    gs.fit(X,y)
    scores.append({
        'model': algo_name,
        'best_score': gs.best_score_,
        'best_params': gs.best_params_
    })
    return pd.DataFrame(scores,columns=['model','best_score','best_params'])
find_best_model_using_gridsearchcv(X,y)
```

	model	best_score	best_params
0	linear_regression	0.840183	{'normalize': False}
1	lasso	0.697018	{'alpha': 2, 'selection': 'random'}
2	decision_tree	0.704098	{'criterion': 'mse', 'splitter': 'best'}

Test the model for few properties

```
In [76]: X.columns
            Index(['total_sqft', 'bath', 'bhk', ' Devarachikkanahalli',
                   '1st Block Jayanagar', '1st Phase JP Nagar',
                  '2nd Phase Judicial Layout', '2nd Stage Nagarbhavi',
                   '5th Block Hbr Layout', '5th Phase JP Nagar',
                   'Vijayanagar', 'Vishveshwarya Layout', 'Vishwapriya Layout',
                  'Vittasandra', 'Whitefield', 'Yelachenahalli', 'Yelahanka',
                  'Yelahanka New Town', 'Yelenahalli', 'Yeshwanthpur'],
                 dtype='object', length=244)
          np.where(X.columns=='2nd Stage Nagarbhavi')
            (array([7], dtype=int64),)
In [78]:
          np.where(X.columns=='2nd Stage Nagarbhavi')[0][0]
            7
```

```
def predict_price(location,sqft,bath,bhk):
            loc_index = np.where(X.columns==location)[0][0]
            x = np.zeros(len(X.columns))
            x[0] = sqft
            x[1] = bath
            x[2] = bhk
            if loc_index >= 0:
                x[loc_index] = 1
            return lr_clf.predict([x])[0]
        predict_price('1st Phase JP Nagar',1000, 2, 2)
         90.32236170239628
        predict_price('Indira Nagar',1000, 2, 2)
         184.7755966586537
In [ ]:
In [ ]:
In [ ]:
In [ ]:
```