Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 17

Math 237 – Linear Algebra

Fall 2017

Version 4

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard V3.	Mark:						
Determine if the vectors	$\begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$,	$ \begin{bmatrix} 3 \\ 1 \\ 0 \\ -3 \end{bmatrix} $,	$\begin{bmatrix} 0 \\ 3 \\ 0 \\ -2 \end{bmatrix}$, and	$\begin{bmatrix} -1 \\ 1 \\ -1 \\ -1 \end{bmatrix}$	span \mathbb{R}^4 .

Solution:

$$RREF \left(\begin{bmatrix} 1 & 3 & 0 & -1 \\ 0 & 1 & 3 & 1 \\ 2 & 0 & 0 & -1 \\ 1 & -3 & -2 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Since every row contains a pivot, the vectors span \mathbb{R}^4 .

Standard V4.

Let W be the set of all complex numbers a + bi satisfying a = 2b. Determine if W is a subspace of \mathbb{C} .

Solution: Yes, because $c(2b_1 + b_1i) + d(2b_2 + b_2i) = 2(cb_1 + db_2) + (cb_1 + db_2)i$ belongs to W. Alternately, yes because W is isomorphic to \mathbb{R} .

Standard S2.

Determine if the set $\{x^2+x-1,3x^2-x+1,2x-2\}$ is a basis of \mathcal{P}_2

Solution:

RREF
$$\left(\begin{bmatrix} 1 & 3 & 2 \\ 1 & -1 & 0 \\ -1 & 1 & -2 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Since the resulting matrix is the identity matrix, it is a basis.

Additional Notes/Marks