전력 사용량 예측 공모전

인공지능 기반 건물 유형별 전력소비량 예측

CONTENTS

Ι

프로젝트 개요

- 1. 프로젝트 필요성
- 2. 프로젝트 설명
- 3. 프로젝트 개념도

П

데이터 이해

- 1. 개발 환경
- 2. 데이터 설명

Ш

데이터 전처리

- 1. building 전처리
- 2. train 전처리
- 3. test 전처리

IV

모델 설계 및 개발

- 1. 모델 선정
- 2. 모델 개발 및 평가
- 3. 최종 모델 선정

Part 1, 프로젝트 개요

1. 프로젝트 개요

꾸준한 <mark>전력 소비량과 전기세 상승에</mark> 따른 효율적인 에너지 공급의 필요성 증가 <u>따라서 전력 사용량 예측 시뮬레이션을 통한 효율적인</u> 인공지능 알고리즘 필요

1. 프로젝트 개요

건물정보 데이터와 시공간 날씨 데이터를 이용해 특정 시점의 전력 사용량 예측 SMAPE 값을 평가 기준으로 가장 낮은 점수를 받는 사람이 우승하는 방식으로 진행

1. 프로젝트 개요

01. 데이터 수집

Building (건물 정보 데이터)

> Train (학습 데이터)

> Test (예측 데이터)

Submission (예측 값 제출 파일) 02. 분석 및 전처리

데이터 이해

데이터 분석 및 시각화

데이터 전처리

03. 모델 생성 및 개발

모델 설계

모델 개발

모델 결과

모델 평가

Part 2, 데이터 이해

Building - 건물정보 데이터

Building H스田	다르으프 메이터	데이터 자르혀	шД	서면
변수명	데이터 Shape	데이터 자료형	변수	20
			1. 건물기타	7. 상용
	100행 7열 (100, 7)	Int64	2. 공공	8. 아파트
거무ㅇ혀			3. 대학교	9. 연구소
건물유형			4. 데이터센터	10. 지식산업센터
			5. 백화점및아울렛	11. 할인마트
			6. 병원	12. 호텔및리조트
건물번호		Object	건물1 ~ 건물1	00 (총 100개)
연면적		Float64	모든 층의 ㅂ	나닥 면적 합
냉방면적		Float64	냉방이 필요한	· 공간의 면적
태양광용량		Object	태양광이 생성 가능한 전력 총량	
ESS 저장용량		Object	저장할 수 있는	최대 에너지 양
PCS 저장용량		Object	시스템이 처리 가	능한 최대 전력량

train - 시공간/날씨 데이터 (2022.06.01 ~ 2022.08.24)

변수명	데이터 Shape	데이터 자료형	변수 설명
num_date_time		Object	건물번호 + 일시
건물번호		Int64	건물1 ~ 건물100 (총 100개)
일시		Object	2022.06.01~2022.08.24
기온	204000행 10열 (204000, 10)	Float64	온도(C)
강수량		Float64	강수량(mm)
풍속		Float64	바람의 속도
습도		Float64	대기 중 수증기 량
일조		Float64	땅 위에 비치는 태양광 시간
일사		Float64	태양으로부터 방출되는 에너지
전력소비량		Float64	Target Data

Test - 시공간/날씨 데이터 (2022.08.25 ~ 2022.08.31)

변수명	데이터 Shape	데이터 자료형	변수 설명
num_date_time		Object	건물번호, 기록일시(1시간)
건물번호		Int64	1~100
일시	16800행 7열	Object	2022.08.25~2022.08.31
기온	(16800,7)	Float64	온도(C)
강수량		Float64	강수량(mm)
풍속		Float64	바람의 속도
습도		Int64	대기 중 수증기 량

Test 데이터에는 전력사용량 (Target)과 일조, 일사 데이터가 없음

Submission – 예측 값 제출 파일

변수명	데이터 Shape	데이터 자료형	변수 설명
num_date_time	16800행 7열 (16800,2)	Object	건물번호, 기록일시(1시간)
answer		Int64	전력사용량 예측 값 작성

Part 3, 데이터 전처리

Building 데이터 결측치 비율

변수	처리 전	처리 후	근거
태양광용량	'_'	0	
ESG저장용량	,_,	0	해당 값이 비어 있는 이유 가 태양광 시설이 없기 때 문에 관련 컬럼값을 모두 0 값으로 처리
PCS용량	,_,	0	

세 변수의 데이터 타입을 FLOAT64로 변경

냉방면적이 0인 행

건물번호	건물유형	연면적	냉방면적(전)	냉방면적(후)
64	아파트	183839.000	0	14475
65	아파트	105073.000	0	82735
67	아파트	389395.928	0	306611

추정된 냉방면적(m²)=연면적(m²)×평균 냉방면적 비율

데이터 상의 일관성, 기존 데이터의 패턴, 추정의 편의성, 실용적 접근을 근거로 해당 공식을 사용

파생변수 생성

1 휴일

평일과 주말의 유의미한 전력사용량 차이가 존재

2 년/월/일/시

기존의 'num_date_time' 변수로 시간을 제대로 설 명하기 어려워 해당 변수 생성

3 cos_time, sin_time 시간의 주기성을 표현하기 위해 생성

태양광용량, ESG저장용량, PCS용량, 강수량, 풍속, 습도, 일조, 일사에 <mark>결축치</mark>가 있음을 확인가능

건물 유형별 전력소비량 차이가 유의미함

- 따라서 건물 유형별로 모델링이 필요함
- Building / train을 건물번호를 기준으로 병합
- 편의성을 위해 건물유형별 숫자 할당

기상 데이터 (강수량, 풍속, 습도, 일조, 일사)

선형보간법 (Linear Interpolation)

기상청에서 결측치 처리를 위해 사용하는 방식

- 1. 연속성 유지
- 2. 시간적 또는 공간적 경향 보존
- 3. 단순하고 빠른 계산

→ 유의미한 차이가 있다고 판단하여 해당 <u>컬</u>럼값을 <u>유(1), 무(0)</u>로 변경

태양광용량 결측치 처리 방식

태양광용량 有: 2150.252 kWh

태양광용량 無: 2985.764 kWh

사제 피처: ESS저장용량 / PCS용량 / 강수량 / 일조 / 일사

-> 해당 피처의 결측치 비율이 너무 높고 유의미한 활용방안이 없어 삭제

파생변수	수식	사용근거	
불쾌지수	1.8*기온 – 0.55*(1-습도/100) * (1.8*습도-26) + 32	1. 소비자 행동의 예측 2. 에너지 소비와의 관련성	
체감온도	13.12 + 0.6125*기온 – 11.37*풍속 ^{0.16} + 0.3965*풍속 ^{0.16} *기온	3. 기상정보를 반영하는 추가정보	
냉방효율	냉방면적 / 연면적	1. 냉방 시스템의 효율성 반영 2. 건물 에너지의 효율성 평가	

인간의 체감정보와 에너지 효율과 관련된 파생변수 추가

Part 4, 모델 설계 및 개발

4. 모델 설계 및 개발

XGBOOST

- 분류와 회귀 문제를 다루는데 주로 사용
- 과적합 방지와 대용량 데이터 처리에 적합

RANDOM FOREST

- 분류와 회귀, 이상치 탐지에 주로 사용
- <u>과적합 방지</u> 및 복잡한 데이터 패턴에서 높은 예측 성능 제공

건물 유형별로 각 모델과 파라미터를 모두 적용해보고 더 성능이 좋은 모델을 선택하는 방식으로 진행

3. 직접 하나씩 파라미터 조절

1. 독립변수 변경해보기

2. 하이퍼파라미터 수정하기

4. 모델 설계 및 개발

3. SMAPE값에 따른 변수 조정

07. 상용

08. 아파트

09. 연구소 10. 지식산업센터 11. 할인마트 12. 호텔및리조트

모델 개발 Flow

하이퍼 파라미터 튜닝 건물 유형 선택 독립변수 선정 모델 선정 SMAPE 값 확인 01. 건물기타 02. 공공 SMAPE 값 결과 확인 후 더 낮 03. 대학교 1. 기본 하이퍼파라미터로 설정 1. 건물 유형별 특징 파악 은 SMAPE 값을 만들기 위해 04. 데이터센터 05. 백화점및아울렛 1. XGBOOST 해당 과정을 반복 2. 전력사용량과의 상관계수 파악 2. RandomSearchCV 사용 06. 병원

2. RandomForest

4. 모델 설계 및 개발

최종 선정 모델 및 SMAPE 값

건물번호	건물 종류	사용 모델	SMAPE 값
1	건물기타	XGB	2.707804287261775
2	공공	XGB	1.693074893884348
3	대학교	XGB	1.4108827372864488
4	데이터센터	RF	0.20070267546541584
5	백화점및아울렛	XGB	2.483556526151787
6	병원	XGB	1.1682674470756518
7	상용	XGB	2.195836185578673
8	아파트	XGB	1.5008256459603424
9	연구소	XGB	1.4790367625271783
10	지식산업센터	XGB	1.4166271265393378
11	할인마트	XGB	2.452081973136936
12	호텔및리조트	XGB	2.6227837119866395

최종 점수: 7.53 최종 등수: 113등 / 1200명