Data Exploration & Machine learning project: Rossman Sales

Presentation Guidelines

- Reading through data
- Data Preparation and cleaning
- Exploring and visualising data
- Predictive machine learning model

Reading through data

Reading through data

rossman_store

Store	StoreType	Assortment	CompetitionDistance	CompetitionOpenSinceMonth	CompetitionOpenSinceYear	Promo2	Promo2SinceWeek	Promo2SinceYear	PromoInterval
1	С	a	1270	9	2008	0			
2	а	a	570	11	2007	1	13	2010	Jan, Apr, Jul, Oct
3	a	a	14130	12	2006	1	14	2011	Jan, Apr, Jul, Oct
4	С	С	620	9	2009	0			
5	a	a	29910	4	2015	0			

rossman_train

Store	Ŧ	DayOfWeek =	Da	ite =	Sales =	Customers =	Open =	Promo =	StateHoliday =	SchoolHolid =
	1	5	5	2015-07-31	5263	555	1	1	0	1
	2	5	5	2015-07-31	6064	625	1	1	0	1
	3	5	5	2015-07-31	8314	821	1	1	0	1
	4	5	5	2015-07-31	13995	1498	1	1	0	1
	5	5	5	2015-07-31	4822	559	1	1	0	1

4

Data Preparation and Cleaning

Data cleaning

PromoInterval	544
Promo2SinceYear	544
Promo2SinceWeek	544
CompetitionOpenSinceYear	354
CompetitionOpenSinceMonth	354
CompetitionDistance	3
Promo2	0
Assortment	0
StoreType	0
Store	0

count	1112.00
mean	5404.90
std	7663.17
min	20.00
25%	717.50
50%	2325.00
75%	6882.50
max	75860.00

Merge data sets

Exploring and visualising data

The average sales in each store type

Sales in: Holidays, weekdays and weekend

Best day for shopping

Best time to do shopping

Sales after Competition shop open

Average sales & customers per month (2013 - 2015)

Predictive machine learning model

Methodology

Process of Random Forest Regression Model

- Dependent / Independent Variable(s) Specification
 - Dependent Variable(Y): Sales
 - Independent Variables(X1, X2, ...): (Customers), StoreType_a, ...
- Split the data: 80% (model training) & 20% (data testing)
- Create model with random regression trees (100x)
- Fit the output / data
- Get the importance of the features
- Get predictions using our test data
- Calculate the root mean square error

Features Importance - excluding 'Customers'

Random Forest Regression result:

- Took 10 min for 100 samples
- RMSE = 828
- More accurate for our case!!

Linear Regression result:

- Runs very fast
- But RMSE = 2508
- Works better when data is linear which not our case!!

Conclusion and Outlook

- Through data analytics:
 - shows a more complete picture
 - use data to build knowledge
- What is next:
 - Continue learning
 - Apply to work

Thank you!!