# Alloy-Eyes 开发板硬件技术规格书





深圳市向北直行科技有限公司



# 关于本手册

本文档为用户提供 Alloy-Eyes 硬件技术规格简介

#### 发布说明

| 日期         | 版本    | 发布说明     |
|------------|-------|----------|
| 2019/06/13 | V1.00 | 初始版本     |
| 2019/06/14 | V1.01 | 正式版本     |
| 2019/06/27 | V1.02 | 修改产品规格参数 |
| 2019/07/01 | V1.03 | 修改引脚定义   |

#### 免责声明

本文中的信息,包括参考的 URL 地址,如有变更,恕不另行通知。文档 "按现状" 提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

### 版权公告

版权归深圳市向北直行科技有限公司所有。保留所有权利。



#### 产品介绍

Alloy-Eyes是一款基于嵌入式深度学习视觉算法,基于Fe845核心板具有多种视觉识别算法能力的AI开发板,采用双摄图像分析技术,具有人脸检测识别、活体检测识别,高精度快响应、低成本、低功耗的特点。

可用于人脸门禁考勤、玻璃门锁、智能机器人等多种应用场景。

#### 产品特点

- CPU: RISC-V 双核 64bit@400MHZ (可调) 双精度FPU
- 图像识别: QVGA@60FPS/VGA@30FPS
- 声音识别: 内置高性能麦克风阵列处理器, 支持高达8个麦克风组成的阵列
- 模型算法: 内置基于卷积神经网络(CNN)的高精度人脸识别算法
- 离线比对: 支持本地人脸识别比对, 无需依赖后台服务器
- 活体识别: 支持防伪算法, 有效防止照片、视频、模具攻击
- 人脸识别: 板载红外补光功能, 极好适应各种复杂光线下的人脸识别
- 深度学习框架: 内置神经网络处理器, 支持TensorFlow/Keras/Darknet等主流框架
- OPT: 具有一次可编程的128Kbit 的大容量存储空间
- 安全性能: 内嵌AES 与SHA256 硬件算法加速器
- 丰富外设: 3\*UART、32\*GPIOHS、8\*GPIO、4\*SPI、3\*I<sup>2</sup>C、3\*I<sup>2</sup>S、3\*TIMER、WDT、DVP、PWM、RTC ...
- 网络: 100M快速以太网 (保留)
- 功耗: 超低功耗, 芯片功耗 < 400mw
- 封装: TSMC 28纳米工艺,BAG144(8×8×0:953mm)



| 功能概述                       |                                                 |  |  |
|----------------------------|-------------------------------------------------|--|--|
| 中央处理器 (CPU)                | 基于RISC-V ISA 的双核心64位@400MHZ的高性能低功耗CPU           |  |  |
|                            | 基于开放架构的处理器,具备丰富的社区资源支持                          |  |  |
|                            | 各个核心具备独立FPU,支持单双精度浮点硬件加速                        |  |  |
|                            | 具备用以调试的高速 UART 与 JTAG 接口                        |  |  |
|                            | 支持主流训练框架按照特定限制规则训练出来的定点化模型                      |  |  |
|                            | 对网络层数无直接限制,支持每层卷积神经网络参数单独配置包括输入输出通道数目、输入输 出行宽列高 |  |  |
| 24/7 17/4 H TIBER (1/2011) | 支持两种卷积内核1x1 和3x3                                |  |  |
| 神经网络处理器(KPU)               | 支持任意形式的激活函数                                     |  |  |
|                            | 实时工作时最大支持神经网络参数大小为5.5MiB 到5.9MiB                |  |  |
|                            | 非实时工作时最大支持网络参数大小为(Flash 容量-软件体积)                |  |  |
|                            | 可以支持最多8 路音频输入数据流,即4 路双声道                        |  |  |
|                            | 可以支持多达16个方向的声源同时扫描预处理与波束形成                      |  |  |
|                            | 可以支持一路有效的语音数据流输出                                |  |  |
|                            | 内部音频信号处理精度达到 16-位                               |  |  |
| 音频处理器 (APU)                | 输入音频信号支持 12-位, 16-位, 24-位, 32-位精度               |  |  |
| HIMOSERIA (C. 1. 1)        | 支持多路原始信号直接输出                                    |  |  |
|                            | 可以支持高达 192K 采样率的音频输入                            |  |  |
|                            | 内置 FFT 变换单元,可对音频数据提供 512 点快速傅里叶变换               |  |  |
|                            | 利用系统 DMAC 将输出数据存储到 SoC 的系统内存中                   |  |  |
|                            | 高性能硬件实现复数FFT计算,支持DMA传输                          |  |  |
|                            | 支持多种运算长度,即支持64点、128点、256点及512点运算                |  |  |
| 快速傅里叶变换加速器(FFT)            | 支持两种运算模式,即FFT 以及IFFT 运算                         |  |  |
|                            | 支持可配的输入数据位宽,即支持32 位及64 位输入                      |  |  |
| \(\alpha\)''               | 支持可配的输入数据排列方式                                   |  |  |
| 静态随机存取存储器 (SRAM)           | 片上8MiB,包括6MiB通用SRAM存储器+2MiB AI SRAM存储器          |  |  |
| 现场可编程 IO 阵列 (FPIOA)        | 允许用户将255 个内部功能映射到芯片外围的48 个自由IO 上                |  |  |
| 直接内存存取控制器 (DMAC)           | 高度可配置化,高度可编程,在总线模式下传输数据具有高效率                    |  |  |
| 外置存储器 (FLASH)              | 外置 SPI FLASH,用于固件存放以及数据持久化存储                    |  |  |
| 数字视频接口(DVP)                | 支持YUV422 和RGB565 格式的图像输入                        |  |  |
|                            | 最大支持 640X480 及以下分辨率,每帧大小可配置                     |  |  |
|                            | 支持图像同时输出到KPU 和显示                                |  |  |
| 数字显示接口 (DISPLAY)           | 支持图像输出到DISPLAY                                  |  |  |

| 产品规格参数  |                                         |  |  |
|---------|-----------------------------------------|--|--|
| 产品型号    | Alloy-Eyes                              |  |  |
| 尺寸      | 115 mm x 70 mm                          |  |  |
| 主芯片     | RISC-V 双核 64bit@400MHZ                  |  |  |
| 内存      | 8MiB SRAM                               |  |  |
| 存储      | 16MB/32MB SPI FLASH                     |  |  |
| 系统 (OS) | FreeRtos and Standalone development kit |  |  |
| 摄像头     | 1/6.5"双目VGA CMOS SENSOR                 |  |  |
| 显示      | 320 x 240 TFT LCD(带电阻或电容触摸屏)            |  |  |
| 补光      | 板载2颗红外补光灯                               |  |  |
| 按键      | 3 个按键:BOOT/RESET/IO-KEY                 |  |  |
| LED     | RGB LED                                 |  |  |
| SD -    | MICRO SD CARD                           |  |  |
| 麦克风     | MICROPHONE                              |  |  |
| 喇叭      | 支持左右声道                                  |  |  |
| 网络      | 100M快速以太网(保留)                           |  |  |
| 供电      | TYPE-C/5V                               |  |  |
|         | > 100mA@5V                              |  |  |
| 工作温度    | -30°C ~ 85°C                            |  |  |



Fe845 核心板 pin-map



#### 开发板系统框图

| 产品功能引脚定义(V1.1硬件版本) |           |      |           |      |           |         |        |
|--------------------|-----------|------|-----------|------|-----------|---------|--------|
| 引脚                 | 功能        | 引脚   | 功能        | 引脚   | 功能        | 引脚      | 功能     |
| 100                | JTAG_TCK  | IO18 | DVP_VSYNC | IO36 | LCD_WR    | RST     | RST    |
| IO1                | JTAG_TDI  | IO19 | DVP_HSYNC | 1037 | LCD_RS    | SPI0_D7 | LCD_D7 |
| 102                | JTAG_TMS  | IO20 | DVP_XCLK  | IO38 | LCD_RST   | SPI0_D6 | LCD_D6 |
| IO3                | JTAG_TDO  | IO21 | DVP_PCLK  | IO39 | LCD_CS    | SPI0_D5 | LCD_D5 |
| 104                | ISP_RX    | IO22 | DVP_SDA   | IO40 | LCD_FMARK | SPI0_D4 | LCD_D4 |
| 105                | ISP_TX    | IO23 | DVP_SDA1  | IO41 | LCD_RD    | SPI0_D3 | LCD_D3 |
| 106                | ETH_MSOI  | IO24 | DVP_SCL   | 1042 | IO42      | SPI0_D2 | LCD_D2 |
| 107                | ETH_MISO  | IO25 | DVP_RST   | 1043 | 1043      | SPI0_D1 | LCD_D1 |
| 108                | ETH_SCLK  | IO26 | SPI0_MISO | 1044 | IO_KEY    | SPI0_D0 | LCD_D0 |
| 109                | ETH_RST   | 1027 | SPI0_SCLK | 1045 | LED_R     | DVP_D7  | DVP_D7 |
| IO10               | ETH_INT   | IO28 | SPI0_MOSI | IO46 | LED_B     | DVP_D6  | DVP_D6 |
| IO11               | ETH_CSSN  | IO29 | SPI0_CS0  | 1047 | LED_G     | DVP_D5  | DVP_D5 |
| IO12               | TP_MISO   | 1030 | MIC0_WS   | GND  | GND       | DVP_D4  | DVP_D4 |
| IO13               | TP_SCK    | IO31 | MIC0_BCK  | GND  | GND       | DVP_D3  | DVP_D3 |
| IO14               | T_MOSI    | IO32 | MIC0_DATA | 5V   | 5V0       | DVP_D2  | DVP_D2 |
| IO15               | TP_PEN    | IO33 | I2S_DA    | 5V   | 5V0       | DVP_D1  | DVP_D1 |
| IO16               | воот      | IO34 | 12S_WS    | 1V8  | 1V8       | DVP_D0  | DVP_D0 |
| IO17               | IR_CAMERH | IO35 | I2S_BCK   | 3V3  | 3V3       | GND     | GND    |

#### 说明:

此表为DEMO板默认使用的功能引脚定义。





## 开发板外部接口

| 相关资源             |                             |  |
|------------------|-----------------------------|--|
| github           | https://github.com/ai-alloy |  |
| wiki             | https://wiki.ai-alloy.com/  |  |
| support          | support@ai-alloy.com        |  |
| 向北直行官方QQ群        | 466657212                   |  |
| official website | www.ai-alloy.com            |  |

#### 免责声明和版权声明

本文档中的信息(包括 URL 地址)如有更改,恕不另行通知。 该文档由深圳市向北直行科技有限公司提供,不附带任何形式的担保,包括任何适销性担保,以及其他地方提及 的任何提案,规范或样本。本文档不构成责任,包括使用本文档中的信息侵犯任何专利权。