иЗадание III. Фаизова Алсу Наиловна гр. 09-913 (ZIII_48)

Задание III.1.

- 1. Согласно новому исследованию ученых по межгалактическим путешествиям, полёт на Марс изменяет общий уровень тревоги жителей Земли.
- 2. Чтобы проверить это предположение 83 туриста до "красной планеты" прошли тест Тейлора перед и после безопасной(в том смысле, что все дальнепланетцы вернулись, инопланетяне не подменяли(см. Задание III.4), романов не заводили) космической миссии.
- 3. Полагая нормальность распределения уровня тревожности, статистические измерения получаются из $N(\mu, \sigma^2)$, где μ -математическое ожидание показателя тревожности, σ^2 -дисперсия, характеризующая степень изменчивости этого показателя от испытуемого к испытуемому. До $\mu = \mu_1$, $\sigma^2 = \sigma_1^2$, после $\mu = \mu_2$, $\sigma^2 = \sigma_2^2$.
- 4. Ожидается, что $\theta = \mu_1 \mu_2 \neq 0$, то есть в среднем уровень беспокойства останется прежним. Нулевая гипотеза H_0 : $\theta = 0$ при альтернативе H_1 : $\theta \neq 0$.
- 5. Уровень значимости $\alpha = 0.075$.
- 6. Ввиду предположения нормальности следует применить одновыборочный (разностный) критерий Стьюдента, основанный на разностях $\overline{X} \overline{Y}$ выборочных средних значений до и после . Для вычисления статистики Стьюдента необходимо найти их среднее арифметическое \overline{U} и дисперсию (смещенную) S_U^2 разностей $u_i = x_i y_i$, i = 1,..., n. Статистика Стьюдента равна

$$T = \frac{\overline{U}}{\sqrt{S_U^2}} \sqrt{n-1}.$$

В соответствии с теоретическим предположениями ожидается, что абсолютная величина $|x_i-y_i|$ будет принимать большие положительные значения. Нулевая гипотеза должна отвергать, когда абсолютное значение статистики Стьюдента $|T| \geq C$.

- 7. Функция распределения тестовой статистики в граничной точке $\theta_0 = 0$ совпадает с функцией распределения Стьюдента $\mathfrak{St}_{(n-1)}$ с n-1=82 степенями свободы.
- 8. Критическая константа C_{α} находится из уравнения

$$P\{|T| \ge C\} = 2(1 - \mathbb{St}_{82}(C)) = 0.075,$$

т.е. равна верхней 0.075-квантили распределения Стьюдента с 82 степенями свободы. Воспользовавшись таблицей, нашли, что $C_{\alpha}=1.803$.

9. Окончательный вид критической области $|T| \ge 1.803$.

а. По предоставленным данным найдено

-		До	После	По разностям	
Объём выборки	n	83	83	83	
Среднее	$\frac{1}{x}$	78.811	77.419	1.392	
Станд.отклонение	S	5.830	9.636	11.042	
Станд.ошибка среднего	m	0.640	1.058	1.212	
Статистика Стьюдента			$T = 1.142 = t_{\text{эксп}}$		
7.5%-ая критическая область			<i>T</i> ≥1.803		
Гипотеза отсутствия эффекта			принимается		
с критическим уровнем значимости			p - val = 0.26		
Вывод. Отклонение от нулевой гипотезы статистически не значимо.					

$$p - val = 2(1 - \mathbb{St}_{82}(|T|)) = 2(1 - \mathbb{St}_{82}(1.142)) = 0.26.$$

Т.к. p-val >0.075, следует считать наблюдения не противоречащими гипотезе отсутствия эффекта предлагаемого внеземного туризма.

Задание III.2.

- 1. Требуется сравнить меткость исполнения межпространственного прыжка двух аппаратов, одну из которых произвела команда тропических доцентов, а вторую команда "SpaceX" при консервативном предположении превышения качества второй технологии над первой.
- 2. Применяя технологию первой группы изобретателей, было произведено 25 испытаний добровольнопринудительцев, 67 вверило себя второй.
- 3. Можно предположить, что промах каждого прыжка носит случайный характер и имеет нормальное распределение со средним ноль и дисперсиями σ_1^2 и σ_2^2 .
- 4. Ожидается, что $\sigma_1^2 > \sigma_2^2$. То есть в терминах параметра $\theta = \frac{\sigma_1^2}{\sigma_2^2}$ нулевая гипотеза H_0 : $\theta \leq 1$ при альтернативе H_1 : $\theta > 1$.
- 5. Уровень значимости $\alpha = 0.075$.
- 6. В силу нормальности распределения наблюдений, можно применить критерий Фишера. Тестовая статистика Фишера

$$F = \frac{\widehat{S_1^2}}{\widehat{S_2^2}},$$

где $\widehat{S_j^2}$ - несмещенная оценка дисперсии в j-й группе. Ожидания успешности дилетантов будут подтверждены, если Fпримет достаточно большие значения, т.е. критическая область имеет вид $\{F > C\}$.

- 7. В граничной точке $\theta_0 = 1$ распределение статистики Фишера совпадает с распределением Фишера $\mathbb{F}_{(n_1-1,\,n_2-1)}$ с $n_1-1=24$ и $n_2-1=66$ степенями свободы.
- 8. Критическая константа C_{α} находится как решение уравнения

$$P\{F > C_{\alpha}\} = 1 - \mathbb{F}_{(24,66)}(C) = 0.075,$$

т.е. равна верхней 0.075-квантили распределения Фишера. По таблице распределения Фишера находим $C_{\alpha}=1.577$.

- 9. Окончательный вид критической области $\{F > 1.577\}$.
 - а) По представленным данным:

	1-й прибор	2-й прибор
n	67	
$\frac{\overline{x}}{x}$	125.020	98.685
\hat{S}^2	156.852	95.926
Статистика Фишера $F = s_1^2/s_2^2$	1. 635	
7.5%-ая критическая область	F > 1.577	
Гипотеза H_0 : $\sigma_1^2 \le \sigma_2^2$	отвергается	
Вывод: предположение о надежност команды "SpaceX" статистически по		
р-значение	0.060	

10. p-value вычисляется по формуле

$$p - val = 1 - \mathbb{F}_{(24,66)}(T) = 1 - \mathbb{F}_{(24,66)}(1.635) = 0.060.$$

Поскольку p-val меньше 7.5%-го уровня значимости, можно сделать вывод, что первой команде ещё есть над чем работать.

Задание III.3.

- 1. Ежегодно 30% жителей страны Бабочкарий улетают в Нектарий каждую пятницу понедельника(≡ Д). Исследователи уловили идею если ежедневно в течение месяца решать упражнения из Демидовича, то число нелетающих в день Д понизится.
- 2. Для проверки этого заявления методика применяется к группе n=60 случайно пойманных добровольцев.
- 3. Таким образом в эксперименте наблюдаются бернуллиевские случайные величины с вероятностью успеха(посетить Нектарий в день **Q**) θ.
- 4. Ожидается, что $\theta > 0$. 7. Нулевая гипотеза H_0 : $\theta \leq 0$. 7при альтернативе H_1 : $\theta > 0$. 7.
- 5. Уровень значимости $\alpha = 0.025$.
- 6. Применим критерий знаков, основанный на числе T отправившихся за границу после "вакцинации" Демидовичем, если T примет достаточно большое значение, т.е. критическая область имеет вид $\{T > C\}$.
- 7. В граничной точке $\theta_0=0.7$ функция распределения статистики T есть функция биномиального распределения \mathbb{B} im $(k|n,\theta_0)=P_{\theta_0}\{T\leq k\}$ с n=60, k = 0,1,...,n.
- 8. Критическая константа C_{α} находится как решение неравенства

$$P\{T > C_{\alpha}\} = 1 - \mathbb{Bim}(C_{\alpha}|n, \theta_{0}) \le 0.025,$$

причём из всех таких констант нужно выбрать наименьшую, т.е. C_{α} равна квантили порядка 0.975 биномиального распределения. По таблице находим, что $C_{\alpha}=49$.

- 9. Окончательный вид критической области: нулевая гипотеза отвергается, если $\{T > 49\}$.
 - а. По представленным данным:

	0.9		
Частота появления А (оказавшихся в Нектарии в 🎗)	54 из 60		
2.5%-ая критическая область	T > 49		
Гипотеза H_0 : $p < 0.7$	отвергается		
Вывод. Отклонение от нулевой гипотезы статистически значимо. Имеются основания			
одобрить применении методики.			
Критический уровень значимости	$a_{crit} = 0.00005$		

10. p-value вычисляется по формуле

$$p - val = 1 - \mathbb{B}im(54|60; 0.7) = 0.00005.$$

Поскольку p-val значительно меньше 2.5%-го уровня значимости, можно сделать вывод о высокой значимости согласия данных с ожиданиями исследователей.

Задание III.4.

- 1. Марсианин выносливее землянина?
- 2. Проверкой служит бег с препятствиями, проводимый четвертой к 2021-му году земного календаря планетой. Зарегистрировались m = 90 бегунов принимающей стороны и n = 91 прибывших с одной из экспедиций(упомянутой в Задание III.1) землян.
- 3. Нетерпимость каждого существа есть случайная величина с функций распределения F_1 (для марсиан - 1-я выборка) или \boldsymbol{F}_2 (для землян - 2-я выборка).
- 4. Ожидается, что $F_1(x) < F_2(x)$ для $\forall x > 0$ (т.е. более вероятнее. что землянин сойдёт с бесконечной дистанции скорее жителя Марса, что то же, что: $\xi_1 > \xi_2$ - продолжительность активного пребывания на дистанции марсианина стохастически больше). Нулевая гипотеза H_0 : $F_1(x) \equiv F_2(x)$, $\forall x$.
- 5. Уровень значимости $\alpha = 0.05$.
- 6. Применим критерий Вилкоксона, основанный на сумме Wрангов 1-й выборки в общем ряду данных. Если справедлива альтернатива(наблюдения в 1-й выборке стохастически больше наблюдений во 2-й), то ожидаются большие значения W. Другими словами, критическая область имеет вид $\{W \ge C\}$.
- Если верна нулевая гипотеза, распределение статистики Wесть распределение Уилкоксона с параметрами (90, 91). Можно применить нормальную аппроксимацию с математическим ожиданием $\mu_W = 8190$ и стандартным отклонением $\sigma_W = 352.441$.
- 8. Т.о., критическая константа C_{α} находится как целая часть решение уравнения

$$P\{W \ge C\} \approx 1 - \Phi(\frac{C-8190}{352.441}) = 0.05$$

 $P\{W \geq \mathit{C}\} \approx 1 - \Phi(\frac{\mathit{C}-8190}{352.441}) = 0.05 \; ,$ т.е. C_{α} равна квантили порядка 0.95 нормального закона. По таблице находим $\mathit{C}_{\alpha} = 8769 .$

9. Окончательный вид критической области: нулевая гипотеза отвергается, если $\{W \ge 8769\}.$

а) По представленным данным:

y 110 HO GO TO STORING ANTHERING					
Объемы вы	m=90	n=91			
Сумма рангов 1-й выборки W			7373		
Математическое ожидание μ_W			8190		
Стандартное отклонение $\sigma_W^{}$			352.441		
95%-я критическая область			W ≥ 8769		
Вывод	Нулевая гипотеза о совпадении распределений	не отвергается			
	с критическим уровнем значимости $a_{crit} = 0.988$				
Заключение. Остерегайтесь внутригалактического расизма.					

10. p-value вычисляется по формуле

$$p - val \approx 1 - \Phi(\frac{7373 - 8190}{352.441}) = 0.988.$$

Видим, что p-value больше 95%-го уровня значимости. Следовательно нет оснований считать межпланетные расы отличающимися в предложенной форме испытания.

*Замечание

Однако график ЭФР наводит сомнения и последующее желание проверить альтернативу $F_1(x) > F_2(x)$ для $\forall x > 0$ (т.е. более вероятнее. что марсианин сойдёт с дистанции скорее жителя Земли, или что: $\xi_2 > \xi_1$ - продолжительность активного пребывания на дистанции нашего однопланетца стохастически больше). Нулевая гипотеза H_0 : $F_1(x) \equiv F_2(x)$, $\forall x$.

Повторим несколько этапов.

- Снова обратимся к критерию Вилкоксона. Подсчет рангов первой выборки 6. относительно всего набора данных приведет к тому же значению статистики W. Если справедлива альтернатива (наблюдения во 2-й выборке стохастически больше наблюдений в 1-й), то ожидаются небольшие значения W. Другими словами, критическая область имеет вид $\{W \leq C\}$.
- Аналогично, если верна нулевая гипотеза, распределение статистики Wесть распределение Уилкоксона с параметрами (90, 91), и можно применить нормальную аппроксимацию с математическим ожиданием $\mu_{_{I\!\!M}}=8190$ и стандартным отклонением $\sigma_{W} = 352.441.$
- Т.о., критическая константа \mathcal{C}_{α} находится как целая часть решение уравнения

$$P\{W \le C\} \approx \Phi(\frac{C-8190}{352.441}) = 0.05$$

 $P\{W \leq C\} \approx \Phi(\frac{C-8190}{352.441}) = 0.05 \; ,$ т.е. C_{α} равна квантили порядка 0.05 нормального закона. По таблице находим $C_{\alpha} = 7610$.

Окончательный вид критической области: нулевая гипотеза отвергается, если $\{W \le 7610\}.$

b) По представленным данным:

у по предетавленивым данивым.						
Объемы выб	m=90	n=91				
Сумма рангов 1-й выборки W			7373			
Математиче	8190					
Стандартно	352.441					
5%-я критич	$W \le 7610$					
Вывод	отве	ргается				
с критическим уровнем значимости $\alpha_{crit} = 0.01$						
Заключение. Разница в преодолении беговой дистанции с препятствиями между двух						
исследуемых групп есть: выносливее оказывается житель "зелёной" планеты.						

10.

p-value вычисляем по формуле
$$p-val=\Phi(\frac{7373-8190}{352.441})=0.01,$$

т.е., меньше установленного 5%-го уровня значимости. Следовательно нет оснований считать произведение Берроуза вымыслом, либо благоприятствовала смена обстановки на данный вид землян.

**Замечание

В случае вычисление статистики второй группы относительно всего набора данных при тех же нулевой и альтернативной гипотезах: W = 8970. Критическая

константа и p-value будут находится из уравнений
$$P\{W \geq C\} \approx 1 - \Phi(\frac{C-8190}{352.441}) = 0.05 \Rightarrow C_{\alpha} = 8769 < 8970$$

$$p - val = 1 - \Phi(\frac{8970-8190}{352.441}) = 0.99 > 0.95.$$

Заключения на основе полученных значений совпадают с выводами предыдущего замечания.

Задание III.5.

- 1. "Не мешает ли я, беспокойный программист, своим домашним растениям?"-таким вопросом задался программист Женя.
- 2. Измерено содержание жизненной энергии в $n_1 = 85$ саженцах хурмы в саду у храма и $n_2 = 91$ саженцах в однушках программистов, за которыми замечены признаки неудовлетворенности(расстройство пищевого поведения, посещение публичных страниц с депрессивными мемами).
- 3. Содержаний жизненной энергии в деревце есть случайная величина с функцией распределения F_1 (для первой группы) или F_2 (для второй группы).
- 4. Женя за благоприятную атмосферу, поэтому выясним справедливость $F_1(x) = F_2(x)$, $\forall x$ (то есть содержание жизненной энергии стохастически одинаково). Т.о., нулевая гипотеза H_0 : $F_1 \equiv F_2$ -гипотеза однородности совокупностей(без альтернативы).
- 5. Уровень значимости $\alpha = 0.1$.
- 6. Применим критерий однородности хи-квадрат, основанный на статистике X^2 , равной сумме квадратов разностей частот попадания данных в r=12интервалов группировки. Ожидания будут подтверждены, если X^2 примет маленькое значение, т.е. критическая область имеет вид $\{X^2 \geq C\}$.
- 7. При справедливости нулевой гипотезы функцию распределения статистики X^2 можно приблизить функцией хи-квадрат распределения \mathbb{K} hі $(x|r-1) = P_{H_0}\{X^2 < x\}$ с r-1=11степенями свободы.
- 8. Критическая константа C_{α} находится как решение неравенства

$$P_{H_0}\{X^2 \ge C\} = 1 - \mathbb{Khi}(C_{\alpha}|11) = 0.1,$$

т.е. равна квантили порядка 0.9 хи-квадрат распределения с 11-ю степенями свободы. По таблице хи-квадрат распределения находим $\mathcal{C}_{\alpha}=17.275$.

9. Окончательный вид критерия: гипотеза однородности отвергается, если $\{X^2 \ge 17.275\}$.

	П	
а	По представленным	панным:

		частоты					
Границы		Груг	руппа А Группа В		χ^2		
	52.75	3	0.0353		0	0.0000	3.2118
	55.85	21	0.2471		8	0.0879	6. 7555
	58.95	18	0.2118	1	6	0.1758	0. 2939
	62.05	17	0.2000	1	5	0.1648	0. 2989
	65.15	16	0.1882	2	4	0.2637	1. 1023
	68.25	5	0.0588		8	0.0879	0.5035
	71.35	3	0.0353		9	0.0989	2. 6079
	74.35	0	0.0000		4	0.0440	3.7363
	77.55	2	0.0235		3	0.0330	0. 1378
	80.65	0	0.0000		3	0.0330	2.8022
	83.75	0	0.0000		0	0.0000	0.0000
	8	0	0.0000		1	0.0110	0.9341
Σ		85	1	91		1	22.384
90%-я критическая область					$X^2 > 17.275$		
Вывод	Гипот	геза однородности групп				отвергается	
p-value	с критическим уровнем значимости				0.02		
Вывод. Содержание жизненной энергии в саженцах хурмы двух выборок высоко значимо различаются.							

10. p-value вычисляется по формуле

$$p - val = 1 - Khi(22.384|11) = 0.02.$$

Поскольку p-val значительно меньше заявленного 10%-го уровня значимости, теоретически есть основания усомниться в невлияемости присутствия Жени рядом с растениями.

