Assignment for University of Jyvaskyla

Application overview

Web application for stock brokerage who wants to do off market trades (Orders are matched outside of a stock exchange) for single stock - APPLE (AAPL).

The web application interacts with end users through a REST API.

Web application should fetch latest market data of the stock from a feed in order to validate the price of the input orders.

System Requirement

- 1. Web application should provide a REST end point for the end users to submit orders, An order consists of
 - a. Whether its a Bid or an Offer
 - i. Bid User want's to buy
 - ii. Offer User want's to sell
 - b. Price Up to two decimal places
 - i. In case of a Bid Max price the user is willing to pay per unit quantity
 - ii. In case of an Offer Min price the user is willing to get for the sale of unit quantity
 - c. Quantity Integer
 - i. Amount of stock the user is willing to Buy or Sell
- 2. Any input order's price should be validated against market data of AAPL's last traded price
 - a. To verify the brokerage execution prices are inline with actual trade prices
 - b. Fetch last traded price from the third party API @ Introduction | Market Data Docs
 - i. Fetch last trade price ('last') of AAPL from endpoint GET /v1/stocks/quotes/AAPL
 - c. Respect the rate limitations mentioned here @ Rate Limiting | Market Data Docs
 - i. Configure the application to fetch the data hourly
 - d. System should validate that at the input, Price of an order is within +- 10% of the last traded price
- 3. Input orders should be matched with existing orders on the other side
 - a. If they match, system should record a trade, Trade should contain
 - i. Traded time
 - ii. Traded price (Highest value of the Bid and Offer prices)
 - iii. Traded quantity (Min of Bid and Offer Quantity)
 - b. If the input order does not match or only matches partially, then the remaining quantity should be stored in the system, Any upcoming order will match with these.
 - c. If there are multiple orders in the system eligible for matching, then
 - i. System should start according to order priority
 - 1. Bid order priority Highest Price to Lowest price
 - 2. Offer order priority Lowest price to Highest price
 - ii. If there are multiple orders with the same priority / price, then System should start matching from the oldest order
 - d. Refer example below
- 4. System should provide a REST end point to get the trade information, ordered in the trade time ascending order.

Expected Outcome

- 1. Develop the above system with CI setup
- 2. CI should be configured to provide:
 - a. Unit test report including code coverage

- b. E2E testing for given scenarios Refer scenarios below
- c. Automated Releases generation with:
 - i. Change log
 - ii. version number

Additional items

- 1. Setup code quality testing in the CI and generate code quality report
- 2. Setup code security analysis (Eg. Static Application Security Testing in GitLab SAST)

Example

- 1. Initial order submission Market last traded price 190.00
 - a. Input Bid of Qty: 1000, Price: 200.00 is stored in the system Ord 1

Bid	Offer
Ord1 - 1000 @ 200.00	

- 2. Second order Market last traded price 200.00
 - a. Input Bid of Qty: 500, Price: 210.00 Ord 2

Bid	Offer
Ord2 - 500 @ 210.00	
Ord1 - 1000 @ 200.00	

- 3. Third order Market last traded price 200.00
 - a. Input Offer of Qty 750, Price: 225.00
 - b. Order is rejected Price 225 is outside market's last traded price range (+- 10%)

Bid	Offer
Ord2 - 500 @ 210.00	
Ord1 - 1000 @ 200.00	

- 4. Fourth order Market last traded price 200.00
 - a. Input Offer of Qty 500, Price: 205 Ord 4 $\,$
 - b. Trade happens between Ord 2 and Ord 4 at time T1
 - i. Price 210 (Max of Ord 2, Ord 4)
 - ii. Qty 500 (Min of Ord2, Ord4)

Bid	Offer
Ord1 - 1000 @ 200.00	

Trades			
Trades			

Time	Price	Quantity
T1	210	500

- 5. Fifth Order Market last traded price 200.00
 - a. Input Offer Qty 1500, Price: 200 Ord5
 - b. Trade happens between Ord 1 and Ord 5 at time T2
 - i. Price 200 (Max of Ord 1 and Ord 5)
 - ii. Qty 1000 (Min of Ord 1 and Ord 5)

Bid	Offer
	Ord 5 - 500 @ 200.00

Trades		
Time	Price	Quantity
T1	210	500
T2	200	1000

- 6. Sixth order Market last traded price 200.00
 - a. Input Offer Qty 750, Price 200 Ord 6

Bid	Offer
	Ord 5 - 500 @ 200.00
	Ord 6 - 750 @ 200.00

- 6. Seventh order Market last traded price 200.00
 - a. Input Bid Qty 1000, Price 200 Ord 7
 - b. Trade is possible with Ord 7 Ord 5 and Ord 7 Ord 6
 - c. System should start matching with the oldest order (Ord 7 Ord 5, Ord 7 Ord 6)
 - i. Trade 1 happens between Ord 7 Ord 5,
 - 1. Price: 200
 - 2. Qty: 500
 - ii. Trade 2, Ord 7 Ord 6
 - 1. Price: 200
 - 2. Qty: 500

Bid	Offer
	Ord 6 - 250 @ 200.00

Trades			

Time	Price	Quantity
T1	210	500
T2	200	1000
Т3	200	500
ТЗ	200	500

E2E scenarios

- 1. Verify input prices are validated based on latest market data
 - a. Fetch current market last trade price of AAPL example M1
 - b. Verify Bid order at Price M1 x 1.08 is accepted
 - c. Verify Offer order at Price M1 \times 0.90 is accepted
 - d. Verify Bid order at Price M1 x 1.11 is rejected
 - e. Verify Offer order at Price M1 x -1.01 is rejected
 - f. Verify no trades have happened
- 2. Verify input quantity is valid
 - a. Fetch current market last trade price of AAPL M2
 - b. Bid order at Price M2, Qty 0 is rejected
 - c. Bid order at Price M2, Qty 10.1 is rejected
 - d. Offer order at Price M2, Qty -100 is rejected
 - e. Verify no trades have happened
- 3. Verify Trades happen according to the given logic
 - a. Fetch current market last trade price of AAPL M3
 - b. Ord 1 Bid Price: M3, Qty: 100
 - c. Ord 2 Offer, Price: M3 x 0.8, Qty: 200
 - d. Ord 3 Bid Price: M3 x 1.01, Qty: 200
 - e. Ord 4 Bid Price: M3 x 0.95, Qty: 50
 - f. Ord 5 Bid Price: M3, Qty: 30
 - g. Ord 6 Offer, Price: M3, Qty 250 T1
 - h. Fetch trades
 - i. Expected:

Trades		
Time	Price	Quantity
T1	M3 x 1.01	200
T1	МЗ	50