



DDC/TISIR

HEADQUARTERS

OGDEN AIR LOGISTICS CENTER

UNITED STATES AIR FORCE

HILL AIR FORCE BASE, UTAH 84406

PROPELLANT SURVEILLANCE REPORT LGM-30A, B, F&G STAGE 1 TP-H 1043

PROPELLANT LAB. SECTION

MANCP REPORT

NR 385(77)

DECEMBER 1977





APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

MANCP REPORT NR 385(77) MMWRM PROJECT M82937C and M82938C

PROPELLANT SURVEILLANCE REPORT

LGM-30 A, B, F & G STAGE I

TP-H1043 AFT CLOSURE PROPELLANT

Author

JOHN A. THOMPSON Chemist Component & Combustion Test Unit

Engineering & Statistical Review By

JOHN K. SCAMBIA, Project Engineer Service Engineering

EDWARD J. FRICKSON, Statistician
Data Analysis Unit

Recommended Approval By

LEONIDAS A. BROWN, Chief Component & Combustion Test Unit

RONALD F. LARSEN, Chief Physical & Mechanical Test Unit

Approved By

DON F. WOODS, Chief Propellant Laboratory Section

December 1977

Industrial Products & Ldg Gear Division
Directorate of Maintenance
Ogden Air Logistics Center
United States Air Force
Hill Air Force Base, Utah 84406

See 1473)

DISTRIBUTION STATEMENT A

Approved for public releases
Distribution Unlimited

| RH8           | White Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 006           | Butt Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| UNIXMEDIACED  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DUSTIFICATION |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|               | The second secon |
| BY.           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BISTRIBUTION  | AVAILABILITY CODES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| BISTRIBUTION  | /AVAILABILITY CODES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| BISTRIBUTION  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BISTRIBUTION  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### ABSTRACT

This report contains propellant test results from cartons of TP-H1043 propellant representing selected batches used in the aft closure of First Stage Minuteman Motors. Data from TP-H1043 propellant obtained from the aft closures of the LGM-30A, B, F and G Motors are reported in regression analyses for the fourth time and the third time using the GO85 computer system. Testing was accomplished in accordance with MMWRME Project M82937C and M82938C.

An analysis of all parameters indicate that no significant degradation is anticipated for at least two years past the oldest data point.

Each point on the regression plot represents all samples at that particular age. The number of samples at each point is indicated on the sample size summary sheet on the page accompanying each regression plot. The data range at any age can be found by suitable inquiry of the GO85 system.

# TABLE OF CONTENTS

|                                              | Page |
|----------------------------------------------|------|
| Abstract                                     | ii   |
| List of Figures                              | iv   |
| List of References                           | v    |
| Glossary of Terms and Abbreviations          | vi   |
| Section I, Introduction                      |      |
| A. Purpose                                   | 1    |
| B. Background                                | 1    |
| C. Sampling Plan                             | 2    |
| D. Statistical Approach                      | 2    |
| Section II, Test Results                     | 3    |
| Section III, Conclusions and Recommendations | 4    |
| Distribution List                            | 23   |
| DD 1473                                      | 24   |

# LIST OF FIGURES

| Figure Nr | TP-H1043                           | Page |
|-----------|------------------------------------|------|
|           | Regression Plot, Low Rate Tensile  | W.   |
| 100       | Strain at Maximum Stress           | 6    |
| 2         | Maximum Stress                     | 7    |
| 3         | Strain at Rupture                  | 8    |
| 4         | Stress at Rupture                  | 9    |
| 5         | Modulus                            | 10   |
|           | Regression Plot, High Rate Tensile |      |
| 6         | Strain at Maximum Stress           | 12   |
| 7         | Maximum Stress                     | 13   |
| 8         | Strain at Rupture                  | 14   |
| 9         | Stress at Rupture                  | 15   |
| 10        | Modulus                            | 16   |
|           | Regression Plot, Hardness          |      |
| 11        | Shore A, Initial Average           | 18   |
| 12        | Shore A, 10 Second Average         | 19   |
| 13        | Shore C, Initial Average           | 21   |
| 14        | Shore C, 10 Second Average         | 22   |

# LIST OF REFERENCES

| Report Nr | Title                                            | Repor | t Date |
|-----------|--------------------------------------------------|-------|--------|
|           | LGM-30 First Stage, Wing I Test Reports          |       |        |
| 29D       | Zero Time Test Results (Aft Closure)             | 9 Ju  | n 64   |
| 29E       | Zero Time (Aft Closure Supplement 1)             | 24 Ju | n 64   |
| 32B       | Zero Time, Wings II-V Test Results (Aft Closure) | 18 Ma | r 65   |
| 185       | ATP Phase I, Wing VI Series III                  | Ju    | n 70   |
| 195       | ATP Phase III, Wing II-V                         | No    | v 70   |
| 239       | Propellant Surveillance Report (TP-H1043)        | Ap    | r 72   |
| 288       | Propellant Surveillance Report (TP-H1043)        | Ma    | r 74   |
| 337       | Propellant Surveillance Report (TP-H1043)        | Fe    | b 76   |

## GLOSSARY OF TERMS AND ABBREVIATIONS

Aging Trend A change in properties or performance result-

ing from aging of material or component

CSA Cross Sectional Area

DB Dogbone

Degradation Gradual deterioration of properties or performance

E Modulus (psi), defined as stress divided by strain along the initial linear portion of the

curve

EB End Bonded

EGL. Effective Gage Length

Strain at maximum stress

Strain at rupture er

"F" ratio The ratio of the variance accounted for by the

regression function to the random unexplained variance. The regression function having the most significant "F" ratio is used for plotting data. The ratio is also used in detecting signi-

ficant changes in random variation between

succeeding time points.

**JANNAF** Joint Army, Navy, NASA, Air Force Committee

MAGCP Propellant Lab Section at OOAMA

**OOAMA** Ogden Air Materiel Area, Air Force Logistics

Command

The general form of the regression equation Regression

Equation is Y = a + bx

Regression Line representing mean test values with respect

Line to time

Standard error of estimate of the regression

coefficient

S or S Standard deviation of the data about the

regression line

## GLOSSARY OF TERMS AND ABBREVIATIONS (cont)

SM Maximum Stress

Sr Stress at rupture

Standard

Deviation(S) Square root of variance

Strain Rate Crosshead speed divided by the EGL

"t" test

A statistical test used to detect significant differences between a measured parameter and an expected value of the parameter (determines if regression slope differs from zero at the 95%

confidence level)

Variance The sum of squares of deviations of the test results from the mean of the series after divi-

sion by one less than the total number of test

results

3 Sigma Band The area between the upper and lower 3 sigma limit. It can be expected that 99.73% of the

inventory represented by the test samples would fall within this range assuming that the popu-

lation is normally distributed.

90-90 Band It can be stated with 90% confidence that 90% of

the inventory represented by the test samples would fall within this range assuming that the

population is normally distributed.

# SECTION I

#### A. PURPOSE:

Quality assurance tests have been conducted for 10 1/2 years on First Stage LGM-30 TP-H1043 aft closure propellant.

Statistical analysis of the tests performed, as directed by Engineering, should provide early warning if serious degradation trends occur.

Evaluation of the propellant provides data that can be put directly into engineering reliability and service life predictions. Testing was performed in accordance with MMWRME Directive GTD-1C, Amendments 1 and 2.

B. BACKGROUND:

TP-H1043 propellant is used in the aft closure of LGM-30A, B, F and G First Stage Motors.

This test period represents the fourth time that TP-H1043 propellant has been reported by regression analysis. This is also the third time that data has been processed utilizing the G085 system.

This report represents a large increase in the number of samples tested. Moreover, the age distribution increased to cover a 10 1/2 year time period (4 to 14 1/2 years).

The slope of the respective regressions for this report (Figures 1 thru 14) and the previous report (1976) are very close. This is the first time that the regression slopes of two successive test periods matched well. This is probably due to the increased number of samples and the stabilizing of post cure chemical changes in the binder.

#### C. SAMPLING PLAN:

As many as four aft closures are cast from the one TP-H1043 propellant mix. In order to reduce the number of tests, only one batch from each mix will be tested to obtain uniform test results. The selected batches are from the same batch as those previously tested and reported in MAGCP Reports 185(70), 195(70), 239(72), and 288(74).

Low rate tensile, high rate tensile and hardness tests were performed on each propellant batch mix.

#### D. STATISTICAL APPROACH:

Linear regression analysis was used as the method of data evaluation. Data from different time periods were used to establish a least squares trend line for the data. The variance about the regression line, obtained using individual values of the dependent variable, was used to compute a tolerance interval such that at the 90% confidence level, 90% of the sample distribution fall within this interval. This tolerance interval was extrapolated to a maximum of 24 months. The "t" values and the significance of this statistic, which are reported for each regression model, give an indication of the "statistical significance" of the slope of the trend line as compared to a line of zero slope.

Each point on the regression analysis is a calculation of all samples at that particular age. The number of samples at each point is indicated on the sample size summary sheet accompanying each regression plot. The data range at any age can be found by suitable inquiry of the GO85 system.

#### SECTION II

## TEST RESULTS

#### A. LOW RATE TENSILE:

All of the low rate test parameters show a statistically significant decrease (Figures 1 thru 5). The strain regressions (Figures 1 and 3) show a very gradual decrease. Regression slopes for stresses and modulus (Figures 2, 4 and 5) show a change with respect to time. This change is less than in the previous report. Although all of the regression trends show a decrease, the propellant still shows good stability and from this analysis the propellant will perform satisfactorily for at least two years beyond the last data point.

#### B. HIGH RATE TENSILE:

The strain and stress regressions show a statistically significant decrease with the modulus showing a statistically significant increase (Figures 6 thru 10). For all of the regressions, the slopes are gradual.

#### C. HARDNESS:

Shore A and C initial hardness test data regressions show a statistically significant gradual decrease and the 10 second test data regression shows no significant change.

#### SECTION III

## CONCLUSIONS AND RECOMMENDATIONS

The slopes of the regressions are gradual and closer to a line of zero slope than in the previous report. From this analysis, no significant degradation seems likely and the propellant service life may be extended for at least two years from the date of last testing.

It is recommended that testing be continued to assure service life extension and confirm the present trend.

\*\*\* SAMPLE SIZE SUMMARY \*\*\*

| N<br>N | SAMPLES   | 18    | 9     | 15    | 6     | 2     | 3     | 12    | 9      | 5     | 6     | 12       | 12    | 80    | ø     | 12    | 0     | 9     | 6      | 6     | 12    | 17    | 6     | 10    | 12    | m     | 12    | 6     |
|--------|-----------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------|----------|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| AGE    | (MONTHS)  | 146.0 | 147.0 | 148.0 | 149.0 | 150.0 | 151.0 | 152.0 | 154 .0 | 155.0 | 156.0 | 157.0    | 158.0 | 159.0 | 160.0 | 161.0 | 162.0 | 163.0 | 164.0  | 165.0 | 166.0 | 167.0 | 168.0 | 169.0 | 170.0 | 171.0 | 172.0 | 173.0 |
| Œ      | SAMPLES   | m     | 15    | 21    | 3     | 12    | σ     | 9     | ю      | 12    | 9     | ç        | 0     | 12    | 12    | ç     | 0     | 12    | 12     | o     | 12    | 12    | 12    | 17    | 6     | 15    |       |       |
| AGE    | (MONTHS)  | 119.0 | 120.0 | 121.0 | 122.0 | 123,0 | 124.0 | 126.0 | 127.0  | 128°C | 130.0 | 131.0    | 132.0 | 133.0 | 134.0 | 135.0 | 136.0 | 137.0 | 138.0  | 139.0 | 140.0 | 141.0 | 142.0 | 143.0 | 144.0 | 145.0 |       |       |
| 2      | SANDLES   | 54    | 93    | 33    | 27    | m     | 8     | 9     | 9      | 6     | 6     | m        | 9     | ç     | 21    | 33    | 33    | 27    | 33     | 27    | 33    | 56    | 15    | 12    | 6     | 23    |       |       |
| AGE    | ( MONTHS) | 93.3  | 64.0  | 95.0  | 6.96  | 0.79  | 93.0  | 0.66  | 101.0  | 102,0 | 133.0 | 104.0    | 105.0 | 106.0 | 107,3 | 198.0 | 109.0 | 110.0 | 1111.0 | 112.0 | 113.0 | 114.0 | 115.0 | 116.0 | 117.0 | 118.0 |       |       |
| œ      | SANPLES   | r,    | 0.    | (P)   | Q     | 6     | 9     | 3     | 9      | σ     | 9     | <b>F</b> | u)    | 6     | 12    | Q     | 15    | 39    | 28     | 59    | 33    | 30    | 56    | 19    | 151   | 144   |       |       |
| AGE    | (MUNTHS)  | 57.0  | 59.0  | 60.0  | 61.0  | 62.0  | 63.0  | 64.0  | 65,0   | 6699  | 67.0  | 69.0     | 79.0  | 80.0  | 81.0  | 82.1  | 83.0  | 84.0  | 85.0   | 86.0  | 67.0  | 88.0  | 89.0  | 90,0  | 91.0  | 92.0  |       |       |

TENSILE STRAIN AT MAX STRESS (EM), CHS=2.0 IN/MIN.TP-H1043.WING 286

This sample size summary applies to Figures 1 thru 5



TENSILE STRRIN AT MAX STRESS (EM), CHS=2.0 IN/MIN, TP-H1043, WING 246

Figure 1





- 8 -

9 4 TENSILE STRAIN AT RUPTURE (ER), CHS=2.0 IN/MIN, TP-HIO43, WINGS 2



9 TENSILE STRESS AT RUPTURE (SR), CHS=2.0 IN/MIN, TP-H1043, WINGS 2



\*\* SAMPLE SIZE SUMMARY \*\*\*

| 24 122.0 21 146.0 27 121.0 21 146.0 28 122.0 3 148.0 29 124.0 9 150.0 21 126.0 3 151.0 21 126.0 3 152.0 12 125.0 9 153.0 12 125.0 9 155.0 3 130.0 6 156.0 24 134.0 6 160.0 28 136.0 9 162.0 29 136.0 9 162.0 29 136.0 9 162.0 29 136.0 9 165.0 29 136.0 9 165.0 29 136.0 9 165.0 29 136.0 9 165.0 29 136.0 9 165.0 29 136.0 9 165.0 29 136.0 9 165.0 28 140.0 12 169.0 29 143.0 21 170.0 23 144.0 12 171.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | α<br>α           |           | A6.2 | NF         | AGE      | αZ      | AGE      | ď       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|------|------------|----------|---------|----------|---------|
| 120.0<br>121.0<br>121.0<br>122.0<br>123.0<br>124.0<br>126.0<br>126.0<br>127.0<br>127.0<br>127.0<br>127.0<br>137.0<br>137.0<br>138.0<br>138.0<br>138.0<br>140.0<br>140.0<br>141.0<br>141.0<br>141.0<br>142.0<br>143.0<br>144.0<br>144.0<br>144.0<br>144.0<br>173.0<br>173.0<br>173.0<br>173.0<br>173.0<br>173.0<br>173.0<br>173.0<br>173.0<br>173.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SAMPLES (MONTHS) | ( MONTHS) | 3    | SAMPLES    | (MONTHS) | SANPLES | (MONTHS) | SAMPLES |
| 121.0<br>122.0<br>123.0<br>124.0<br>124.0<br>126.0<br>126.0<br>126.0<br>126.0<br>126.0<br>137.0<br>133.0<br>133.0<br>133.0<br>133.0<br>133.0<br>134.0<br>135.0<br>135.0<br>135.0<br>137.0<br>136.0<br>137.0<br>137.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>14 | 2 93.0           | 93.0      |      | 15         | 120.0    | 15      | 146.0    | 15      |
| 122.0<br>123.0<br>124.0<br>126.0<br>126.0<br>126.0<br>126.0<br>130.0<br>131.0<br>131.0<br>131.0<br>132.0<br>133.0<br>133.0<br>134.0<br>135.0<br>136.0<br>137.0<br>137.0<br>137.0<br>138.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>17 | 3 6 6 2          | 3446      |      | 27         | 121.0    | 21      | 147.0    | 80      |
| 123.0<br>124.0<br>126.0<br>126.0<br>127.0<br>127.0<br>127.0<br>130.0<br>131.0<br>131.0<br>133.0<br>133.0<br>133.0<br>134.0<br>135.0<br>136.0<br>136.0<br>137.0<br>136.0<br>137.0<br>137.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>14 | 95,0             | 95.0      |      | 15         | 122.0    | E)      | 148.0    | 10      |
| 124.0<br>126.0<br>127.0<br>127.0<br>127.0<br>137.0<br>133.0<br>133.0<br>134.0<br>135.0<br>135.0<br>137.0<br>137.0<br>137.0<br>137.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>17 | 6 96.0           | 6.96      |      | 24         | 123.0    | 12      | 140.0    | 9       |
| 126.0<br>127.0<br>125.0<br>125.0<br>130.0<br>131.0<br>131.0<br>132.0<br>132.0<br>132.0<br>132.0<br>132.0<br>133.0<br>135.0<br>135.0<br>135.0<br>135.0<br>135.0<br>135.0<br>135.0<br>135.0<br>135.0<br>135.0<br>135.0<br>135.0<br>135.0<br>135.0<br>135.0<br>135.0<br>135.0<br>140.0<br>12 165.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0    | 0.86             | 0.86      |      | 6          | 124.0    | 6       | 150.0    | 9       |
| 127.0 125.0 125.0 125.0 125.0 131.0 131.0 132.0 132.0 132.0 132.0 132.0 132.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 135.0 145.0 12 155.0 145.0 145.0 12 155.0 145.0 145.0 171.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.66 6           | 3.66      |      | 21         | 126.0    | Ю       | 151.0    | 9       |
| 125.0<br>129.0<br>130.0<br>131.0<br>132.0<br>132.0<br>132.0<br>133.0<br>134.0<br>135.0<br>135.0<br>135.0<br>135.0<br>135.0<br>135.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>17 | 3 100.0          | 100.0     |      | <b>r</b> ) | 127.0    | 3       | 152.0    | 3       |
| 129.0<br>130.0<br>131.0<br>132.0<br>133.0<br>134.0<br>135.0<br>135.0<br>135.0<br>135.0<br>135.0<br>135.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>140.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>170.0<br>17 | 6 101 5          | 101.0     |      | 12         | 128.0    | o       | 153.0    | 12      |
| 130.0 131.0 3 157.0 132.0 133.0 134.0 6 160.0 135.0 135.0 135.0 135.0 135.0 12 162.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 150.0 160.0 160.0 160.0 170.0 140.0 140.0 170.0 140.0 170.0 170.0 170.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6 102.0          | 102.0     |      | 12         | 129.0    | 6       | 155.0    | 9       |
| 131.0<br>132.0<br>133.0<br>134.0<br>134.0<br>135.0<br>135.0<br>135.0<br>135.0<br>135.0<br>12<br>162.0<br>140.0<br>12<br>164.0<br>141.0<br>141.0<br>141.0<br>142.0<br>143.0<br>143.0<br>143.0<br>145.0<br>145.0<br>171.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 103.0          | 103.0     |      | 3          | 130.0    | 9       | 156.0    | 9       |
| 132.0 133.0 133.0 134.0 6 159.0 135.0 135.0 135.0 137.0 12 162.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 15 160.0 160.0 140.0 160.0 110 110 110 110 110 110 110 110 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e 105.0          | 105.0     |      | S          | 131.0    | 3       | 157.0    | 0       |
| 133.0<br>134.0<br>134.0<br>135.0<br>135.0<br>135.0<br>137.0<br>12<br>162.0<br>139.0<br>12<br>164.0<br>141.0<br>141.0<br>141.0<br>142.0<br>143.0<br>143.0<br>144.0<br>171.0<br>174.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6 106.0          | 106.0     |      | 3          | 132.0    | 12      | 158.0    | 0       |
| 134.0 6 160.0 135.0 15 161.0 136.0 9 162.0 137.0 12 164.0 140.0 12 166.0 141.0 6 167.0 143.0 21 169.0 145.0 12 170.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 107.0          | 107.0     |      | 12         | 133.0    | 11      | 159.0    | 12      |
| 135.c 15 161.0<br>136.0 9 162.0<br>137.c 12 163.c<br>138.c 12 164.0<br>140.0 12 166.0<br>141.0 6 167.0<br>142.0 12 168.0<br>144.0 12 170.0<br>145.c 12 170.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | 108.0     |      | 24         | 134.0    | 9       | 160.0    | o       |
| 136.0 9 162.0 1 137.0 12 163.0 1 138.0 12 164.0 1 140.0 12 166.0 1 141.0 6 167.0 1 143.0 21 169.0 1 145.0 12 171.0 1 145.0 1 171.0 1 171.0 1 171.0 1 171.0 1 171.0 1 171.0 1 171.0 1 171.0 1 171.0 1 171.0 1 171.0 1 171.0 1 171.0 1 171.0 1 171.0 1 171.0 1 171.0 1 1 171.0 1 1 171.0 1 1 171.0 1 1 171.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | 100.0     |      | 32         | 135.0    | 15      | 161.0    | 0       |
| 137.0 12 163.0<br>138.0 12 164.0<br>139.0 9 165.0<br>140.0 12 166.0<br>141.0 6 167.0<br>142.0 12 168.0<br>143.0 21 169.0<br>144.0 12 170.0<br>145.0 12 171.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | 110.0     |      | 56         | 136.0    | 6       | 162.0    | 12      |
| 138.0 12 164.0<br>139.0 9 165.0<br>140.0 12 166.0<br>141.0 6 167.0<br>142.0 12 168.0<br>144.0 12 170.0<br>145.0 12 171.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | 1111.0    |      | 27         | 137.0    | 12      | 163.0    | 0       |
| 139.0 9 165.0 1<br>140.0 12 166.0 1<br>141.0 6 167.0 1<br>142.0 12 168.0 1<br>143.0 21 169.0 1<br>145.0 12 170.0 1<br>145.0 12 171.0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32 112.0         | 112.0     |      | 33         | 138.0    | 12      | 164.0    | 9       |
| 140.0 12 166.0<br>141.0 6 167.0<br>142.0 12 168.0<br>143.0 21 169.0<br>145.0 12 170.0<br>145.0 12 171.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30 113.0         | 113.9     |      | 30         | 139.0    | 6       | 165.0    | 10      |
| 141.0 6 167.0 1<br>142.0 12 168.0 1<br>143.0 21 169.0 1<br>144.0 12 170.0 1<br>145.0 12 171.0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30 114.0         | 114.0     |      | 28         | 140.0    | 12      | 166.0    | 0       |
| 142.0 12 168.0 1<br>143.0 21 169.0<br>144.0 12 170.0<br>145.0 12 171.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28 115,7         | 115,7     |      | 28         | 141.0    | 9       | 167.0    | 12      |
| 143.0 21 169.0<br>144.0 12 170.0<br>145.0 12 171.0<br>173.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | 116.0     |      | 54         | 142.0    | 12      | 168.0    | 18      |
| 144.0 12 170.0 1<br>145.c 12 171.0 1<br>173.0 174.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34 117.0         | 117.0     |      | 6          | 143.0    | 21      | 169.0    | 0       |
| 5.c 12 171.0 1<br>173.0<br>174.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37 118,0         | 118,0     |      | 23         | 144.0    | 12      | 170.0    | 15      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 39 119.3         | 119.0     |      | 6          | 145.0    | 12      | 171.0    | 18      |
| 174.0 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |      |            |          |         | 173.0    | 15      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |           |      |            |          |         | 174.0    | 80      |

TENSILE STRAIN AT MAX STRESS, CHS=1750.0 IN/MIN. TP-H1043. WINGS 2 &

This sample size summary applies to figures 6 thru 10



9 TENSILE STRAIN AT MAX STRESS, CHS=1750.0 IN/MIN, TP-H1043, WINGS 2



- 13 -



9 • TENSILE STRAIN AT RUPTURE, CHS=1750.0 IN/MIN, TP-H1043, WINGS 2



- 15 -



\*\*\* SAMPLE SIZE SUMMARY \*\*\*

| NR<br>SA MP LE S | 15    | 6     | 2     | 2     | S     | S     | S     | 01    | 52    | 2     | 2     | 15    | 2     | 5     | 01    | 25    | 21    | 15    | 5     | 10    | 15    | 01         | S     |       |       |
|------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------------|-------|-------|-------|
| AGE              | 148.0 | 149.0 | 150.0 | 151.0 | 152.0 | 153.0 | 155.0 | 156.0 | 158.0 | 159.0 | 160.0 | 161.0 | 163.0 | 164.0 | 165.0 | 166.0 | 167.0 | 168.0 | 169.0 | 170.0 | 171.0 | 173.0      | 174.0 |       |       |
| NR<br>SAMPLES    | 20    | 0,4   | 20    | 13    | 9     | 3     | 12    | 9     | 9     | 0     | 15    | 6     | 12    | 9     | 21    | 3     | 6     | 15    | 6     | 18    | 12    | <b>6</b> 0 | 16    | 18    | e.    |
| AGE              | 120.0 | 121.0 | 123.0 | 124.0 | 126.0 | 127.0 | 128.0 | 130.0 | 131.0 | 132.0 | 133.0 | 134.0 | 135.0 | 136.0 | 137.0 | 138.0 | 139.0 | 140.0 | 141.0 | 142.0 | 143.0 | 144.0      | 145.0 | 146.0 | 147.0 |
| NR<br>S AMPL ES  | o     | 9     | 11    | 9     | 6     | -     | -     | 10    | 11    | 15    | 10    | 2     | 20    | 30    | 35    | 04    | 25    | 35    | 35    | 35    | 30    | 20         | 15    | 40    | 10    |
| AGE              | 92.0  | 93.0  | 0.46  | 95.0  | 0.96  | 98.0  | 0.66  | 101.0 | 102.0 | 103.0 | 105.0 | 106.0 | 107.0 | 108.0 | 109.0 | 110.0 | 111.0 | 112,0 | 113.0 | 114.0 | 115.0 | 116.0      | 117.0 | 118.0 | 119.0 |
| NR               | S     | S     | 01    | 2     | 15    | 10    | 10    | 01    | 10    | 10    | 11    | 2     | 7     | 4     | 1     | 14    | 16    | 52    | 32    | 19    | 21    | 22         | 28    | 14    | 13    |
| A GE<br>MONTHS   | 56.0  | 58.0  | 59.0  | 60.09 | 61.0  | 62.0  | 63.0  | 64.0  | 65.0  | 0.99  | 67.0  | 68.0  | 78.0  | 80.0  | 81.0  | 82.0  | 83.0  | 84.0  | 85.0  | 6.98  | 87.0  | 88.0       | 69.0  | 0.06  | 0.16  |

WING 2-6 HARDNESS SHORE A 10 SECOND TP/H1043 PRGPELLANT

This sample size summary applies to Figures 11 and 12



TP-H1043 PROPELLANT (NITIAL MING 246 HARDNESS SHORE A

Figure 11



\*\*\* SAMPLE SIZE SUMMARY \*\*\*

| SAMPLES        | 15    | 0     | 2     | 5     | 5     | 5     | •     | 01    | 30    | 5     | •     | 15    | 5     | 5     | 91    | 25    | 21    | 15    | ~     | 01    | 15    | 2            | 5     |       |       |  |
|----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------------|-------|-------|-------|--|
| AGE            | 148.0 | 149.0 | 150.0 | 151.0 | 152.0 | 153.0 | 155.0 | 156.0 | 158.0 | 159.0 | 160.0 | 161.0 | 163.0 | 164.0 | 165.0 | 166.0 | 167.0 | 168.0 | 169.0 | 170.0 | 171.0 | 173.0        | 174.0 |       |       |  |
| NR<br>SAMPLES  | 20    | 40    | 50    | 15    | 9     | 9     | 12    | 9     | 9     | 0     | 15    | 6     | 12    | •     | 21    | 6     | •     | 15    | 6     | 18    | 12    | <b>&amp;</b> | 16    | 18    | 6     |  |
| AGE            | 120.0 | 121.0 | 123.0 | 124.0 | 126.0 | 127.0 | 128.0 | 130.0 | 131.0 | 132.0 | 133.0 | 134.0 | 135.0 | 136.0 | 137.0 | 138.0 | 139.0 | 140.0 | 141.0 | 142.0 | 143.0 | 144.0        | 145.0 | 146.0 | 147.0 |  |
| NR<br>SAMPLES  | 7     | 4     | 1     | 4     | 6     | 1     | -     | 10    | 11    | 15    | 10    | 2     | 20    | 30    | 35    | 40    | 25    | 35    | 35    | 35    | 30    | 20           | 15    | 640   | 10    |  |
| AGE            | 92.0  | 93.0  | 0.46  | 95.0  | 0.96  | 98.0  | 99.0  | 101.0 | 102.0 | 103.0 | 105.0 | 106.0 | 107.0 | 108.0 | 109.0 | 110.0 | 111.0 | 112.0 | 113.0 | 114.0 | 115.0 | 116.0        | 117.0 | 118.0 | 119.0 |  |
| NR             | 6     | S     | 10    | s     | 15    | 01    | 01    | 10    | 01    | 01    | 11    | ~     | 2     | *     | -     | 14    | 16    | 25    | 32    | 19    | 21    | 22           | 25    | 13    | ==    |  |
| A GE<br>MONTHS | 56.0  | 58.0  | 59.0  | 0.09  | 61.0  | 62.0  | 63.0  | 64.0  | 65.0  | 0.99  | 67.0  | 68.0  | 78.0  | 80.0  | 81.0  | 82.0  | 83.0  | 84.0  | 85.0  | 86.0  | 67.0  | 88.0         | 89.0  | 0.06  | 91.0  |  |

WING 2-6 HARDNESS SHORE C 10 SECOND TP/H1043 PROPELLANT

This sample size summary applies to Figures 13 and 14





# DISTRIBUTION

| OOALC                                                                                                               | NR<br>COPIES |
|---------------------------------------------------------------------------------------------------------------------|--------------|
| MMWRME                                                                                                              | 1            |
| MMWRMT                                                                                                              | 1            |
| DDC (TISIR) Cameron Station, Alexandria, VA 22314                                                                   | 2            |
| SAMSO, Norton AFB, CA 92409<br>MNNP                                                                                 | 1            |
| TRW Systems, Norton AFB, CA 92409                                                                                   |              |
| Attn: Mr. J. C. Metcalf, Bldg 523/315                                                                               | 1            |
| AFPRO, Thiokol Chemical Corporation Wasatch Division                                                                | 2            |
| P. O. Box 524                                                                                                       |              |
| Brigham City, Utah 84302<br>(Cy to R. E. Keating)                                                                   |              |
| AFRPL (MKPB) Edwards AFB, CA 93523                                                                                  | 1            |
| SAC (LGMB) Offutt AFB, NB 68113                                                                                     | 1            |
| U. S. Naval Ordance Station, Indian Head, MA 20640<br>Attn: Dr. James H. Wiegand<br>Fleet Support Dept., Propulsion | 1            |
| System Development Division, Code FS7                                                                               |              |
| CPIA, Applied Physics Laboratory John Hopkins University Johns Hopkins Road                                         | 1            |
| Laurel, MD 20810<br>Attn: Dr. Pl L. Nichols                                                                         |              |

Naval Plant Branch Representative Attn: Mr. David W. Pratt P.O. Box 157 Bacchus Works Magna, Utah 84044 SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS BEFORE COMPLETING FORM

ANCP I -385 (77) 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

TITLE (and Subtitle)

Propellant Surveillance Report

LGM-30A, B, F and G Stage I TP-H1943 Aft Closure Propellant.

5. TYPE OF REPORT & PERIOD COVERED Test Results -

6. PERFORMING ORG.

Semi Annual

7. AUTHOR(s)

8. CONTRACT OR GRANT NUMBER(a)

John A. Thompson

9. PERFORMING ORGANIZATION NAME AND ADDRESS Propellant Lab Section Directorate of Maintenance Hill AFB, UT 84406

10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS Service Engineering Division Directorate of Materiel Management

Hill AFB, UT 84406

Dec NUMBER OF PAGES

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling

LASS. (of this report)

Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for Public Release, Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Solid Propellant Minuteman Aft Closure

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

This report contains propellant test results from cartons of TP-H1043 propellant representing selected batches used in the aft closure of First Stage-Minuteman Motors. Data from TP-H1043 propellant obtained from the aft closures of the LGM-30A, B, F and G Motors are reported in regression analyses for the fourth time and the third time using the GO-85 computer system. Testing was accomplished in accordance with MMWRME Projects M82937C and M82938C.

An analysis of all parameters indicate that no significant degradation is

DD , FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE

- 24 SECURITY CLASS ICATION OF THIS PAGE (When Date Entered)

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

anticipated for at least two years past the oldest data point.

Each point on the regression plot represents all samples at that particular age. The number of samples at each point is indicated on the sample size summary sheet on the page accompanying each regression plot. The data range at any age can be found by suitable inquiry of the GO-85 system.

