SCHOOL OF MECHANICAL, AEROSPACE & CIVIL ENGINEERING

UNIVERSITY OF MANCHESTER

Examination Question Solution Sheet

Page: 1 of 6

Date: 2023

Made by: Dean Wilson

Name of paper: Engineering Thermodynamics

Code number of paper: MACE32102

Question no & part	Answer	Mark (per part)
no & part Q1(a)	Diagram should be labelled as follows: Critical point Compressed liquid region Superheated vapour region T = const	part)
Q1(a)(i) Q1(a)(ii) Q1(a)(iii) Q1(a)(iv)	Labelling of "Critical point" Labelling of "Saturated liquid line" and "Saturated vapour line" Labelling of the "Compressed liquid region" and "Superheated Vapour region" Drawing and labelling of a single constant-temperature line, as per the blue T= const line on the diagram above. The line should be of the correct shape in each of the three regions.	1 2 2 3
Q1(b)	The specific volume of superheated water vapour at 15 MPa and 400°C is to be determined using three different methods.	
Q1(b)(i)	From Table A-6, the value can be read directly as $v=0.015671~\mathrm{m^3/kg}$	2
Q1(b)(ii)	Using the ideal gas equation with $R = 0.4615 \text{ kJ/kgK}$ $Pv = RT$ $v = \frac{RT}{P} = \frac{(0.4615 \text{ kJ/kgK})(400 + 273)\text{K}}{15,000 \text{ kPa}} = \textbf{0.020706 m}^3/\text{kg}$	2
Q1(b)(iii)	To use the generalized compressibility chart, we need to compute the reduced temperature and reduced temperature. Using $P_{cr}=22.06~\mathrm{MPa}$ and $T_{cr}=647.1~\mathrm{K}$	

I	P 15	I
	$P_r = \frac{P}{P_{cr}} = \frac{15}{22.06} = 0.68$ $T_r = \frac{T}{T_{cr}} = \frac{400 + 273}{647.1} = 1.04$	1
	The value of the compressibility factor Z is read from Figure A-15:	
	Z = 0.76 (accept $0.74 < Z < 0.77$) Answers above 0.77 are incorrect, since this is where the $T_r = 1.05$ line intercepts	2
	$P_r=0.68$ Then the specific volume is calculated as: $v=Zv_{ideal}=0.76(0.020706)=0.015778\ \mathbf{m^3/kg}$	
	Or $v = \frac{ZRT}{P} = \frac{0.76(0.4615 \text{ kJ/kgK})(400 + 273)\text{K}}{15,000 \text{ kPa}} = \mathbf{0.015778 \text{ m}^3/kg}$	
	where the value depends upon the value of Z calculated. For example: $Z = 0.77 \Rightarrow v = Zv_{ideal} = 0.77(0.020706) = \textbf{0.015944 m}^3/\textbf{kg}$ $Z = 0.75 \Rightarrow v = Zv_{ideal} = 0.75(0.020706) = \textbf{0.015530 m}^3/\textbf{kg}$ $Z = 0.75 \Rightarrow v = Zv_{ideal} = 0.74(0.020706) = \textbf{0.015322 m}^3/\textbf{kg}$	1
	NOTE: Accept if they decide to compute v_R , and then use $v=v_RRT_{cr}/P_{cr}$, so long as the answer is similar to $v=0.015778~\rm m^3/kg$	
Q1(b)(iv)	 Value obtained with the ideal gas solution overestimates the specific volume compared to that from the steam tables. Value obtained with the compressibility chart is closer to the value from the steam tables than that from the ideal gas equation. The value obtained by treating superheated water vapour as an ideal gas is much less accurate than that obtained by using the compressibility chart. Using the ideal gas equation leads to an error of around 32%, whereas the error from using the compressibility chart is only 0.68%. 	2
	NOTE: Percentage error not required to get full marks. Give 1 mark if previous errors mean that their conclusion is incorrect.	
Q1(c)(i)	A piston-cylinder device is filled with 100kg of R-134a and has an initial volume of 12.322 m³. The initial specific volume is: $v_1 = \frac{V_1}{m} = \frac{12.322 \text{ m}^3}{100 \text{ kg}} = 0.12322 \text{ m}^3/\text{kg}$	1
	From Table A-12 at $P=200~{\rm kPa}$ we have $v_1>v_g$ and thus the initial state is superheated. The final specific volume is:	
	$v_2=\frac{v_1}{2}=\frac{0.12322~\text{m}^3}{2}=0.06161~\text{m}^3/\text{kg}$ This is a constant pressure process, so the final state is fixed by v_2 and P_1 .	1
	From Table A-12 at $P=200~\rm kPa$ we have $v_f < v_2 < v_g$ and thus we have a saturated mixture. The temperature must be:	1
	$T_{\rm sat@~200~kPa}=-10.09~{ m C}$ The internal energy in the initial state is read from Table A-13 at $P=200~{ m kPa}$: $u_1=263.08~{ m kJ/kg}$	1
	To determine the final internal energy, we need the dryness fraction: $x_2 = \frac{v_2 - v_f}{v_g - v_f} = \frac{0.06161 - 0.0007532}{0.099951 - 0.0007532} = 0.6135$	2
	The final internal energy is then: $u_2 = u_f + x_2 u_{fg}$ $u_2 = 38.26 + 0.6135(186.25) = 152.52 \mathrm{kJ/kg}$	_

	$\Delta U = m(u_2 - u_1) = 100(152.52 - 263.08) = -110.6 \text{ kJ}$	
Q1(c)(ii)	P \(\frac{1}{2} \) NOTE: An unfortunate, but frequent, mistake is that students draw the line on the	1
Q2(a)	question paper. This attracts 0 marks. The diagram should be as below:	
	$T_{H} = 800^{\circ}C$ $Q_{house} = 20 \text{ kW}$	7
Q2(b)(i)	COP of the heat pump: $COP_{HP} = \frac{T_H}{T_H - T_L} = \frac{1}{1 - T_L/T_H} = \frac{1}{1 - (2 + 273)/(22 + 273)} = 14.75$	2
Q2(b)(ii)	If the temperature of the house is to be maintained, then heat must be supplied at the rate it is lost: $\dot{Q}_{H,hp} = \dot{Q}_{house} = 20 \text{ kW}$ Therefore, the power supplied to the heat pump	2
	$COP_{HP} = \frac{\dot{Q}_{H,hp}}{\dot{W}_{net,hp}} \rightarrow \dot{W}_{net,hp} = \frac{\dot{Q}_{H,hp}}{COP_{HP}} = \frac{20 \text{ kW}}{14.75} = 1.356 \text{ kW}$	2
Q2(b)(iii)	Half of the work output from the Carnot heat engine drives the heat pump. Therefore: $\dot{W}_{net,hp} = 0.5\dot{W}_{net,he} \rightarrow \dot{W}_{net,he} = 2(\dot{W}_{net,hp}) = 2(1.356) = \mathbf{2.712 \ kW}$	2
	Since this is a Carnot heat engine, the efficiency is: $\eta_{he} = 1 - \frac{T_L}{T_H} = 1 - \frac{20 + 273 \text{ K}}{800 + 273 \text{ K}} = 0.727$ The rate of heat supply can then be determined from the definition of thermal	2
	efficiency: $\eta_{he} = \frac{\dot{W}_{net,he}}{\dot{Q}_{H,he}} \rightarrow \dot{Q}_{H,he} = \frac{\dot{W}_{net,he}}{\eta_{he}} = \frac{2.712 \text{ kW}}{0.727} = 3.73 \text{ kW}$	2

Q2(b)(iv)	The heat rejected from the Carnot heat engine can be found by applying an energy balance:	2
Q2(c)	 	4
Q3(a)	The diagram should look similar to: The diagram should look similar to:	
	 numbers for state points can start at any point along the cycle but must be in the correct order isobars should be horizontal within the saturated mixture region. 	5
Q3(b)	Steam is the working fluid for the simple ideal Rankine cycle. It enters the turbine at 15 MPa, 500°C and is cooled in the condenser at a pressure of 100 kPa until wet saturated.	
Q3(b)(i)	Fluid enters the pump as a wet saturated liquid at $P_1=100~\mathrm{kPa}$. From Table A-5: $h_1=h_{f@100\mathrm{kPa}}=\mathbf{417.51~kJ/kg}$ $v_1=v_{f@100\mathrm{kPa}}=0.001043~\mathrm{m}^3/\mathrm{kg}$ The pump does work on the fluid at constant volume:	2
	$w_{p,in} = v_1 \int_1^2 \mathrm{d}P = v_1(P_2 - P_1) = 0.001043(15,000 - 100) = 15.54 \mathrm{kJ/kg}$ Applying the steady flow energy equation across the pump: $w_{p,in} = h_2 - h_1 \to h_2 = w_{p,in} + h_1 = 15.54 + 417.51 = \mathbf{433.05 kJ/kg}$	2
	At state 3, $P_3 = 15$ MPa, $T_3 = 500$ °C \rightarrow steam is superheated as per Table A-6: $P_3 = 15$ MPa) $h_3 = 3310.8$ kJ/kg $T_3 = 500$ °C $s_3 = 6.3480$ kJ/kg . K	2

	At state 4, $P_4=100~\mathrm{kPa}$ and since the turbine is reversible adiabatic, this is modelled as isentropic in an ideal cycle, so $s_3=s_4$. From Table A-5: $s_{f@100\mathrm{kPa}}=1.3028~\mathrm{kJ/kg}~\mathrm{K},~~s_{g@100\mathrm{kPa}}=7.3589~\mathrm{kJ/kg}~\mathrm{K}$	
	Since $s_f < s_4 < s_g$, we have a saturated mixture. $x_4 = \frac{s_4 - s_f}{s_{fg}} = \frac{6.3480 - 1.3028}{6.0562} = 0.833$ $h_4 = h_f + x_4 h_{fg} = 417.51 + 0.833(2257.5) = \mathbf{2298 kJ/kg}$	2
Q3(b)(ii)	The heat transferred to working fluid in the boiler: $q_{in}=h_3-h_2 \\ q_{in}=3310.8-433.05=2877.75~{\rm kJ/kg}$	1
	The heat transferred from the working fluid in the condenser: $q_{out} = h_4 - h_1 = 2298 - 417.51 = 1880.49 \text{ kJ/kg}$ Or, we can compute the net work of the cycle: $w_{net} = w_T - w_P = (h_3 - h_4) - (h_2 - h_1)$ $w_{net} = (3310.8 - 2298.0) - (433.05 - 417.51) = 997.26 \text{ kJ/kg}$ The thermal efficiency of the cycle is the cycle in the c	1
	The thermal efficiency of the cycle is then: $\eta_{th}=1-\frac{q_{out}}{q_{in}}=1-\frac{1880.49}{2877.75}=\textbf{0}.\textbf{347}=\textbf{34}.\textbf{7}\%$ Or $\eta_{th}=\frac{w_{net}}{q_{in}}=\frac{997.26}{2877.75}=\textbf{0}.\textbf{347}=\textbf{34}.\textbf{7}\%$	2
Q3(c)	The turbine is now irreversible, and the exit dryness fraction is given as 90%.	
Q3(c)(i)	Our new state 4 is defined by $P_4 = 100 \mathrm{kPa}$ and $x_4 = 0.9$. Therefore: $h_4 = h_f + x_4 h_{fg} = 417.51 + 0.9(2257.5) = 2449.26 \mathrm{kJ/kg}$	2
	The isentropic efficiency of the turbine is defined as: $\eta_T = \frac{h_3 - h_4}{h_3 - h_{4s}}$ where the subscript s refers to the isentropic case. Then: $\eta_T = \frac{3310.8 - 2449.26}{3310.8 - 2298} = 0.851 = \textbf{85.1}\%$	2
Q3(c)(ii)	$q_{out} \ \ becomes:$ $q_{out} = 2449.26 - 417.51 = 2031.76 \ \text{kJ/kg}$ Or w_{net} becomes: $w_{net} = (h_3 - h_4) - (h_2 - h_1) = (3310.8 - 2449.26) - (433.05 - 417.51)$ $w_{net} = 846.0 \ \text{kJ/kg}$ The new thermal efficiency is: $\eta_{th} = 1 - \frac{q_{out}}{q_{in}} = 1 - \frac{2031.76}{2877.75} = \textbf{0}. \ \textbf{294} = \textbf{29}. \ \textbf{4}\%$	2
Q3(c)(iii)	The figure drawn in Q3(a) should be updated to include the red dashed line below: 500 400 200 2 4 6 8 10 Entropy, s(kJ/kgK)	2

	State point 4s must lie to the right of state point 4 and along the same isobar.	
Q4(a)	Using the molar masses provided in Table Q4:	
	$N_{O2} = \frac{m_{O2}}{M_{O2}} = \frac{0.5 \text{ kg}}{32 \text{ kg/kmol}} = \mathbf{0.01563 \text{ kmol}}$	2
	$N_{CO2} = \frac{m_{CO2}}{M_{CO2}} = \frac{2 \text{ kg}}{44 \text{ kg/kmol}} = 0.04545\mathbf{kmol}$	2
	$N_{He} = \frac{m_{He}}{M_{He}} = \frac{0.25 \text{ kg}}{4 \text{ kg/kmol}} = \mathbf{0.0625 \text{ kmol}}$	2
Q4(b)	The mole number of the mixture is:	1
	$N_m = N_{O2} + N_{CO2} + N_{He} = 0.01563 + 0.04545 + 0.0625 = 0.12358 \text{ kmol}$	
	The apparent molecular weight of the mixture is: $m_m = 2.75 \text{ kg}$	2
	$M_m = \frac{m_m}{N_m} = \frac{2.75 \text{ kg}}{0.12358 \text{ kmol}} = 22.253 \text{ kg/kmol}$	
	The gas constant of the mixture is then:	
	$R = \frac{R_u}{M_m} = \frac{8.314 \text{ kJ/kmolK}}{22.253 \text{ kg/kmol}} = 0.374 \text{ kJ/kgK}$	2
	M_m 22.253 kg/kmol where R_u is the universal gas constant, provided in the data sheet.	
Q4(c)	The apparent constant-pressure specific heat of the mixture is given by:	
α (σ)	n	
	$c_{p,m} = \sum_{i} \mathrm{mf}_i c_{p,i}$	
	The mass fractions mf_i are computed for each constituent as:	
	$ \text{mf}_{O2} = \frac{m_{O2}}{m_m} = \frac{0.5 \text{ kg}}{2.75 \text{ kg}} = 0.182 $	1
	$mf_{CO2} = \frac{m_{CO2}}{m} = \frac{2 \text{ kg}}{2.75 \text{ kg}} = 0.727$	1
	mm 2.73 kg	
	$mf_{He} = \frac{m_{He}}{m_{He}} = \frac{0.25 \text{ kg}}{2.75 \text{ kg}} = 0.091$	1
	Then:	
	$c_{p,m} = \sum_{i=1}^{n} \mathrm{mf}_{i} c_{p,i} = \mathrm{mf}_{O2} c_{p,O2} + \mathrm{mf}_{CO2} c_{p,CO2} + \mathrm{mf}_{He} c_{p,He}$	3
	$c_p, m = 0.182(0.918) + 0.727(5.1926) + 0.091(0.846) = 4.019 \text{ kJ/kgK}$	
	where the individual values of $c_{p,i}$ are obtained from Table Q4.	
Q4(d)	We have a steady-flow, adiabatic, reversible expansion process. Therefore:	
,	$\frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{\frac{k-1}{k}}$	2
	where k is the ratio of specific heats.	
	To obtain the ratio of specific heats, we require c_v : $c_v = c_p - R = 4.019 - 0.374 = 3.645 \mathrm{kJ/kgK}$	
	Then:	3
	$k = \frac{4.019}{3.645} = 1.107$	
	Then:	
	$T_2 = T_1 \left(\frac{P_2}{P_1}\right)^{\frac{k-1}{k}} = 600 \left(\frac{100}{1000}\right)^{\frac{1.107-1}{1.107}} = 480.279 \text{ K}$	3