Estudo matemático do reconhecimento de caracteres

Carlos Henrique Venturi Ronchi Orientador: Abel Soares Siqueira

Universidade Federal do Paraná - UFPR

16 de maio de 2017

- 1 Introdução
- 2 Modelagem
- 3 Métodos

Método do gradiente Método dos gradientes conjugados Método do gradiente estocástico Redes Neurais

- 4 Reconhecimento de caracteres
 Testes
- 6 Referências

Motivação

- Prever a inflação;
- saber se choverá ou não;
- demanda de estoque;
- reconhecimento de caracteres.

Ferramentas

- Método do gradiente;
- método dos gradientes conjugados;
- método do gradiente estocástico;
- redes neurais;
- outros.

Para a regressão (e quadrados mínimos), temos

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - m_{\theta}(x^{(i)}))^{2}.$$

Já para classificação,

$$J(\theta) = \sum_{i=1}^{m} \left[-y^{(i)} log(m_{\theta}(x^{(i)})) - (1 - y^{(i)}) log(1 - m_{\theta}(x^{(i)})) \right].$$

Direção de descida $-\nabla f(x)$.

Teorema 1

Sejam f uma função convexa e L-Lipschitz e $x^* \in \arg\min_{x:\|x\| \le B} f(x)$. Se rodarmos o método do gradiente em f

para T passos com $\eta = \sqrt{\frac{B^2}{L^2 T}}$, então o vetor de retorno \bar{x} satisfaz

$$f(\bar{x}) - f(x^*) \le \frac{BL}{\sqrt{T}}$$

Ainda mais, dado $\epsilon > 0$, para obter $f(\bar{x}) - f(x^*) \le \epsilon$, ϵ necessario rodar o algoritmo com um número T de iterações que satisfaz

$$T \geq \frac{B^2L^2}{\epsilon^2}.$$

Método do gradiente

Figura 1: Passos do método do gradiente

Método dos gradientes conjugados

Teorema 2

Seja $f: \mathbb{R}^n \to \mathbb{R}$ e denote por x^* seu minimizador global. Então para qualquer $x^0 \in \mathbb{R}^n$, o método das difereções conjugadas gera uma sequência

$$x^{k+1} = x^k + t_k d^k$$
, $t_k = \frac{-\nabla f(x^k)^T d^k}{(d^k)^T A d^k} \ \forall k = 0, ..., n-1$,

onde $x^n = x^*$.

Método dos gradientes conjugados

Figura 2: Passos do método dos gradientes conjugados em verde. Em vermelho os passos do método do gradiente

Método do gradiente estocástico

Expectativa de um vetor aleatório ser um subgradiente.

$$x^k = x^{k-1} - \alpha d^k$$
, onde $\mathbb{E}[d^k \mid x^k] \in \partial f(x^k)$

No caso das funções citadas anteriormente,

$$d^{k} = (m_{\theta}(x^{(i)}) - y^{(i)})x^{(i)}$$

Redes Neurais

Figura 3: Esquema de uma rede neural artificial.

Redes Neurais

- Backpropagation
- Alta capacidade para aprender
- Reconhecimento de caracteres
- Computação visual em geral
- Mercado financeiro

- Detexify
- Write-math
- HASYv2 dataset
- 168233 dados, 369 classes.

Figura 4: Caracteres do banco de dados HASYv2

Metodologia

- TensorFlow
- Redes neurais convolucionais
- Adam
- 10 épocas, batch de tamanho 500
- tamanho do passo de 0.0005
- ReLU (ao invés de softmax).

Figura 5: Imagem utilizada para teste prático do modelo.

Tabela 1: Letras reconhecidas da Figura 5 pelo modelo.

Letra Original	∂	U	F	Р	R
Letra reconhecida	∂	U	F	∇	\mathcal{R}

Figura 6: Imagem para utilizar no teste do programa.

Tabela 2: Letras reconhecidas da Figura 6 pelo modelo.

Letra Original	∇	М	Α	T	Е	М	Α	Т	ı	С	A
Letra reconhecida	∇	М	Δ	Т	€	М	λ	Т	&	C	A

Próximos passos

- Segmentação de caracteres
- Desenvolvimento de modelos state-of-the-art
- Código no Github

Referências I