Задача А. Игра на графе

 Имя входного файла:
 graphgame.in

 Имя выходного файла:
 graphgame.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мегабайт

Дан ориентированный граф. Узнать для каждой вершины является ли игра, начинающаяся в этой вершине, выигрышной, проигрышной или ничейной.

Формат входного файла

В первой строке входного файла содержится два целых числа n и m ($1 \le n \le 50000$; $0 \le m \le 250000$) — число вершин и ребер в графе.

Далее следуют m строк по два целых числа x_i, y_i в каждой, означающие, что в графе есть ребро из вершины с номером x_i в вершину с номером y_i . Вершины нумеруются с единицы.

Формат выходного файла

В выходной файл выведите n строк. В i-ой строке выведите «Win», если игра начинающаяся в вершине с номером i выигрышная, «Loss» — проигрышная, и «Draw» в случае ничейной игры.

graphgame.in	graphgame.out
3 3	Loss
1 2	Win
2 1	Loss
2 3	
4 5	Draw
1 2	Draw
2 1	Win
2 3	Loss
3 2	
3 4	

Задача В. Игра престолов

Имя входного файла: gameofthrones.in Имя выходного файла: gameofthrones.out

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

На шахматной доске размера $n \times n$ прошли жаркие баталии. На поле остались лишь два короля. Но они решили продолжить сражение.

Из-за долгой войны *т* клеток доски стали непригодными для жизни, то есть король, попадающий на такое поле моментально умирает. Короли ходят по очереди. В свой ход король может передвинуться в любую из восьми соседних клеток, как и обычный шахматный король. Если на клетке, куда был совершен ход, находится король противника, то походивший король убивает своего соперника и становится победителем сражения.

Вам известны позиции клеток непригодных для жизни и начальное расположение королей. Напишите программу, которая определит победителя сражения. Первым ходит белый король.

Формат входного файла

В первой строке входного файла два целых числа n и m $(2 \le n \le 50; 0 \le m \le n^2 - 2)$ — размер доски и число непригодных для жизни клеток. Во второй строке находятся четыре целых числа r_w , c_w , r_b и c_b $(1 \le r_w, c_w, r_b, c_b \le n)$ — начальные позиции белого и черного королей соответственно. Гарантируется, что начальные положения королей различны и короли не находятся на клетках, непригодных для жизни.

Далее следуют m строк по два целых числа в каждой — позиции клеток, не пригодных для жизни. Все позиции различны.

Формат выходного файла

В единственной строке выходного файла выведите «White», если победит белый король, «Black», если победит черный, и «Draw», если при оптимальной игре ни один из королей не сможет одержать победу.

gameofthrones.in	gameofthrones.out
3 1	Draw
1 1 3 3	
2 2	
3 2	White
1 1 3 3	
2 2 2 3	

Задача С. Функция Гранди

Имя входного файла: grundy.in Имя выходного файла: grundy.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дан ориентированный ациклический граф. Для каждой вершины найдите функцию Гранди игры, начинающейся в этой вершине.

Формат входного файла

В первой строке входного файла содержится два целых числа n и m ($1 \le n \le 10000$; $0 \le m \le 100000$) — число вершин и ребер в графе.

Далее следуют m строк по два целых числа x_i, y_i в каждой, означающие, что в графе есть ребро из вершины с номером x_i в вершину с номером y_i . Вершины нумеруются с единицы.

Формат выходного файла

В выходной файл выведите n строк. В i-ой строке выведите единственное целое число — функция Гранди игры, начинающейся в вершине i.

grundy.in	grundy.out
4 5	1
1 2	0
1 4	1
3 2	2
4 2	
4 3	

Задача D. Малыш и Карлсон

Имя входного файла: karlsson.in Имя выходного файла: karlsson.out Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

На свой День рождения Малыш позвал своего лучшего друга Карлсона. Мама испекла его любимый пирог прямоугольной формы $a \times b \times c$ сантиметров. Карлсон знает, что у Малыша еще есть килограмм колбасы. Чтобы заполучить ее, он предложил поиграть следующим образом: они по очереди разрезают пирог на две ненулевые по объему прямоугольные части с целыми измерениями и съедают меньшую часть (в случае, когда части равные, можно съесть любую). Проигрывает тот, кто не может сделать хода (то есть когда размеры будут $1 \times 1 \times 1$). Естественно, победителю достается колбаса.

Малыш настаивает на том, чтобы он ходил вторым.

Помогите Карлсону выяснить, сможет ли он выиграть, и если сможет — какой должен быть его первый ход для этого.

Считается, что Малыш всегда ходит оптимально.

Формат входного файла

Во входном файле содержится 3 целых числа $a, b, c \ (1 \le a, b, c \le 5\,000)$ — размеры пирога.

Формат выходного файла

В случае, если Карлсон не сможет выиграть в Малыша, выведите NO. В противном случае в первой строке выведите YES, во второй — размеры пирога после первого хода Карлсона в том же порядке, что и во входном файле.

karlsson.in	karlsson.out
1 1 1	NO
2 1 1	YES
	1 1 1

Задача E. Green Hackenbush

Имя входного файла: greenhackenbush.in Имя выходного файла: greenhackenbush.out

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дан неориентированный граф. Требуется выяснить, кто выигрывает в игру «Зеленый Хакенбуш» на таком графе. Землей считается вершина с номером 1.

Формат входного файла

В первой строке входного файла содержится два целых числа n и m ($1 \le n \le 10000$; $0 \le m \le 100000$) — число вершин и ребер в графе.

Далее следуют m строк по два целых числа x_i , y_i в каждой, означающие ребро, соединяющее вершины с номерами x_i и y_i . Вершины нумеруются с единицы.

Формат выходного файла

В первой строке выведите «First», если при оптимальной игре выигрывает первый игрок. Если выигрывает второй, выведите «Second»

greenhackenbush.in	greenhackenbush.out
4 4	Second
1 2	
1 3	
2 4	
3 4	
7 9	First
1 2	
1 4	
2 3	
4 5	
3 2	
4 6	
2 3	
5 7	
6 7	

Самостоятельная работа по курсу теории игр. Справедливые игры.

Задача F. \sqrt{Nim}

Имя входного файла: sqrtnim.in Имя выходного файла: sqrtnim.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Корневой ним — игра со следующими правилами. Имеются n кучек, по a_i камней в каждой. Игроки ходят по очереди. Ход заключается в том, что игрок выбирает одну из непустых кучек с a_i камней и берет из нее от 1 до $\lfloor \sqrt{a_i} \rfloor$ камней. Например, из кучки с 10 камнями можно взять только 1, 2 или 3 камня. Игрок, который не может сделать ход проигрывает.

Вам даны число и размеры кучек, определите, кто выигрывает при оптимальной игре.

Формат входного файла

В первой строке дано целое число n ($0 \le n \le 500$) — число кучек. В следующей строке n целых чисел a_i ($1 \le a_i \le 10^{10}$) — начальные размеры кучек.

Формат выходного файла

В единственную строку выходного файла выведите «First», если при оптимальной игре выигрывает первый игрок, и «Second» иначе.

sqrtnim.in	sqrtnim.out
1	First
1	
2	Second
100 100	

Задача G. Короткие игры

Имя входного файла: short.in
Имя выходного файла: short.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Дана короткая игра G. Найдите игру H = G без доминируемых и обратимых ходов (опций).

Формат входного файла

Единственная строка входного файла содержит запись игры G — строку s ($3 \le |s| \le 200$).

Формат выходного файла

В первой строке выходного файла выведите запись игры H в аналогичном формате.

short.in	short.out
{{ { }}} }	{ }
{{ } {{ }} ,{{ }} ,{{ }}}}	{{ } {{ }} {{ }} {{ }}}}

Задача Н. Распил шоколада

Имя входного файла: chocolate.in Имя выходного файла: chocolate.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

У Вовы и его финского друга Гены есть набор из n шоколадок. Шоколадка с номером i имеет размеры $a_i \times b_i$ долек. Вместо того, чтобы просто съесть сладости, мальчики хотят сначала поиграть в увлекательную игру. Игроки ходят по очереди. Ход состоит в том, чтобы выбрать один из оставшихся кусочков шоколадок и распилить его одной прямой на две непустые части. Вове разрешается пилить шоколадки только вертикальной прямой, а Гене — только горизонтальной. Естественно ни один распил не должен ломать долек шоколадки. Также ребята договорились, что не будут поворачивать кусочки шоколадок. Например, шоколадку размером 4×2 Вова может разделить единственным способом на два кусочка размера 4×1 , а Гена — на два кусочка 2×2 или на кусочки 3×2 и 1×2 .

Игрок, который не может сделать ход проигрывает. Поворачивать кусочки шоколадок запрещено.

Вам требуется написать программу, которая по размерам шоколадок назовет имя победителя, если известно, что первым пилить шоколадки будет Вова.

Формат входного файла

В первой строке дано одно целое число n $(1 \le n \le 1000)$ — число шоколадок. Далее следуют n строк по два целых числа a_i и b_i $(1 \le a_i, b_i \le 300)$ в каждой — размеры шоколадок.

Формат выходного файла

В единственной строке выведите имя победителя.

chocolate.in	chocolate.out
1	Gena
2 2	
2	Vova
3 4	
3 2	

Задача І. Дерево

Имя входного файла: hackentree.in Имя выходного файла: hackentree.out

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дан неориентированный граф, являющийся деревом, ребра которого покрашены в синий и красный цвета. Требуется выяснить, какому числу эквивалентна игра Хакенбуш на таком графе. Землей считается вершина с номером 1.

Формат входного файла

В первой строке входного файла содержится одно целое число $n\ (1 \le n \le 1000)$ — число вершин в дереве.

Далее следуют n-1 строка, по три целых числа x_i , y_i и c_i в каждой, означающие ребро цвета c_i , соединяющее вершины с номерами x_i и y_i . c_i равно нулю в случае синего цвета и единице в случае красного. Вершины нумеруются с единицы.

Формат выходного файла

В единственной строке выведите несократимую дробь $\frac{p}{q}$ (q>0) — число которому оказалась эквивалентна игра. Следуйте формату, используемому в примерах.

hackentree.in	hackentree.out
4	3 4
1 2 0	
2 3 1	
3 4 0	
4	-1 4
1 2 1	
2 3 0	
2 4 0	

Задача J. Blue-Red Hackenbush

Имя входного файла: bluered.in Имя выходного файла: bluered.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дан неориентированный граф, ребра которого покрашены в синий и красный цвета. Требуется выяснить, какому числу эквивалентна игра Хакенбуш на таком графе. Землей считается вершина с номером 1.

Формат входного файла

В первой строке входного файла содержится два целых числа n и m $(1 \le n \le 21; 0 \le m \le 20)$ — число вершин и ребер в графе.

Далее следуют m строк, по три целых числа x_i , y_i и c_i в каждой, означающие ребро цвета c_i , соединяющее вершины с номерами x_i и y_i . c_i равно нулю в случае синего цвета и единице в случае красного. Вершины нумеруются с единицы.

Формат выходного файла

В единственной строке выведите несократимую дробь $\frac{p}{q}$ (q>0) — число которому оказалась эквивалентна игра. Следуйте формату, используемому в примерах.

bluered.in	bluered.out
4 3	3 4
1 2 0	
2 3 1	
3 4 0	
4 4	0 1
1 2 0	
1 3 1	
2 4 1	
3 4 0	