EE23BTECH11054 - Sai Krishna Shanigarapu*

Exercise 9.2

13 If the sum of n terms of an A.P. is $3n^2 + 5n$ and its m^{th} term is 164, find the value of m.

Solution: :

$$Y(z) = \sum_{n=0}^{\infty} y(n) z^{-n}$$
 (1)

$$=\frac{2(4-z^{-1})}{(1-z^{-1})^3}, \qquad |z|>1 \tag{2}$$

$$U(z) = \frac{1}{1 - z^{-1}}, \qquad |z| > 1$$
 (3)

$$X\left(z\right) = \frac{Y\left(z\right)}{U\left(z\right)}\tag{4}$$

$$= 2\left(\frac{1}{1-z^{-1}}\right) + 6\left(\frac{1}{1-z^{-1}}\right)^2 \qquad (5)$$

$$=\frac{8z^2 - 2z}{(z-1)^2} \tag{6}$$

Using Contour Integration to find the inverse Z-transform,

$$x[n] = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz \tag{7}$$

$$= \frac{1}{2\pi j} \oint_C \frac{(8z^{n+1} - 2z^n) dz}{(z-1)^2}$$
 (8)

We can observe that the pole is repeated 2 times and thus m = 2,

$$x[n] = \frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} ((z-a)^m f(z))$$

 $= \lim_{z \to 1} \frac{d}{dz} \left((z-1)^2 \frac{8z^{n+1} - 2z^n}{(z-1)^2} \right)$ (10)

$$= \lim_{z \to 1} \left(8 (n+1) z^{n} - 2nz^{n-1} \right)$$
 (11)

$$=6n+8\tag{12}$$

$$\implies x(n) = (6n+8)(u(n)) \tag{13}$$

$$164 = (6m + 8)(u(n)) \tag{14}$$

$$\implies m = 26 \tag{15}$$

Symbol	Remarks
$y(n) = (3n^2 + 11n + 8)(u(n))$	Sum of n terms
x(m-1)	164
$y\left(n\right)$	x(n) * u(n)

TABLE I PARAMETERS

Fig. 1. Plot of x(n) vs n