The geometric Satake correspondence

Daniel Miller

August 7, 2016

First, recall that if $X_{/S}$ and $Y_{/S}$ are schemes, there is a "hom-scheme" defined by

$$\mathbf{hom}(X,Y)(T) = \mathrm{hom}_T(X_{/T},Y_{/T}).$$

In general, hom(X, Y) will only be an fpqc sheaf.

Let $\mathbf{D} = \operatorname{Spec}(\mathbf{Z}[\![t]\!])$ and $\mathbf{D}^* = \operatorname{Spec}(\mathbf{Z}(\!(t)\!))$. Then we have a pullback diagram:

$$egin{array}{ccc} \mathbf{D}^* & \longrightarrow \mathbf{D} \ & & \downarrow \ & & \downarrow \ & & \mathbf{G}_{\mathrm{m}} & \longrightarrow \mathbf{A}^1 \end{array}$$

Thus, if $X_{/S}$ is an arbitrary scheme, we get a commutative diagram:

$$\begin{array}{ccc} \mathbf{hom}(\mathbf{D}^*,X) & \longleftarrow & \mathbf{hom}(\mathbf{D},X) \\ & & \uparrow & & \uparrow \\ \mathbf{hom}(\mathbf{G}_{\mathrm{m}},X) & \longleftarrow & \mathbf{hom}(\mathbf{A}^1,X) \end{array}$$

In particular, if T is a torus, there is a natural map

$$X_*(T) = \mathbf{hom}(G_m, T) \to \mathbf{hom}(D^*, T) = G((t)).$$

For $\lambda \in \mathcal{X}_*(T)$, write t^{λ} for the image in G((t)). Let G be a reductive group, and put $\mathrm{Gr}_G = G((t))/G[\![t]\!]$. It turns out that perverse sheaves on Gr_G are best understood in light of orbits $\mathrm{Gr}_G^{\lambda} = \overline{G[\![t]\!]} \cdot t^{\lambda}$ for $\lambda \in \mathcal{X}_*(T)$, where $T \subset G$ is a maximal torus.

If G = T is already a torus, then $Gr_T = X_*(T)$, and each Gr_T^{λ} is a single point.

Note that
$$X_*(T)(A) = T(A[t^{\pm 1}])$$
.