

<u>计算机网络实验报告</u>

- 1.实验报告如有雷同,雷同各方当次实验成绩均以0分计。
- 2.当次小组成员成绩只计学号、姓名登录在下表中的。
- 3.在规定时间内未上交实验报告的,不得以其他方式补交,当次成绩按0计。
- 4.实验报告文件以 PDF 格式提交。

院系	数据科学与计算机学院		班级	16 级计科教务 2 班		组长	钟哲灏		
学号	16337331		16337327		16337341				
学生	钟哲灏		郑映雪		朱志儒				
	实验分工								
钟哲灏		进行实验、数据分析			朱志儒	辅助实验、数据分析、撰写实			
						验报告			
郑映雪		辅助实验、数据分析、完善实验							
	报告及排版								

实验题目

OSPF 多区域路由协议实验

实验目的

掌握 OSPF 协议多区域的配置和使用方法。

实验内容

以下面的拓扑完成实验,参考文件"OSPF多区域 pdf",然后用 ping 检查两台主机之间的连通性,并对一台 PC ping 其它 PC 进行截屏

实验要求

一些重要信息比如 VLAN 信息需给出截图。最重要的一点:一定要注意实验步骤的前后 对比!

实验记录

拓扑图

步骤 0:

(1) 按拓扑图配置 PC1、PC2 的 IP 地址、子网掩码、网关,并测试它们的连通性。 PC1 ping PC2 如图所示。


```
C: Wsers Administrator > ping 192.168.2.2
正在 Ping 192.168.2.2 具有 32 字节的数据:
请求超时。
请求超时。
请求超时。
192.168.2.2 的 Ping 统计信息:
数据包:已发送 = 4,已接收 = 0,丢失 = 4 (100% 丢失),
```

(2) 在交换机和路由器,SW1、SW2、R1、R2上执行 show ip route,记录路由表。 交换机 SW1 的路由表如图所示。

交换机 SW2 的路由表如图所示。

路由器 R1 的路由表如图所示。

路由器 R2 的路由表如图所示。

<u>计算机网络实验报告</u>

```
19-RSR20-2#show ip route

Codes: C - connected, S - static, R - RIP, B - BGP
O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default

Gateway of last resort is no set
```

步骤 1: 三层交换机 SW1 基本配置

步骤 2: 路由器 R1 基本配置

步骤 3:路由器 R2 基本配置

步骤 4:路由器 R2 基本配置

步骤 5: 配置各设备 OSPF

步骤 6: 实验验证

(1) 查看路由表

Sw1# show ip route

R1# show ip route

【分析】表中有6个O条目,路由器R1具有全网链路状态的数据库后,采用SPF算法,形成全网路由信息,产生这6个O条目。

```
19-RSR20-1(config) #show ip route
  Codes: C - connected, S - static, R - RIP, B - BGP
O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS le
  vel-2
                ia - IS-IS inter area, * - candidate default
  Gateway of last resort is no set 0 1.1.1.1/32 [110/1] via 202.103.1.1, 00:02:05, FastEthernet 0/1
           2.2.2.0/24 is directly connected, Loopback 1
           2.2.2.2/32 is local host.
3.3.3.3/32 [110/50] via 202.103.2.2, 00:02:02, Serial 2/0
  0 IA 4.4.4.4/32 [110/50] via 202.103.2.2, 00:01:02, Serial 2/0  
0 IA 92.168.1.0/24 [110/2] via 202.103.1.1, 00:02:05, FastEthernet 0/1  
0 IA 192.168.2.0/24 [110/52] via 202.103.2.2, 00:01:02, Serial 2/0
           202.103.1.0/24 is directly connected, FastEthernet 0/1
           202.103.1.2/32 is local host.
           202.103.2.0/24 is directly connected, Serial 2/0 202.103.2.1/32 is local host.
     IA 202.103.3.0/24 [110/51] via 202.103.2.2, 00:01:57, Serial 2/0
R2# show ip route
    19-RSR20-2(config) #show ip route
   Codes: C - connected, S - static, R - RIP, B - BGP
O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
                 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS le
    Wel-2
                 ia - IS-IS inter area, * - candidate default
```

Gateway of last resort is no set O IA 1.1.1.1/32 [110/51] via 202.103.2.1, 00:02:26, Serial 2/0 O 2.2.2.2/32 [110/50] via 202.103.2.1, 00:02:26, Serial 2/0 C 3.3.3.0/24 is directly connected, Loopback 1 3.3.3.3/32 is local host. C 3.3.3.3/32 is local host. 4.4.4.4/32 [110/1] via 202.103.3.2, 00:01:27, FastEthernet 0/1 0 IA 192.168.1.0/24 [110/52] via 202.103.2.1, 00:02:26, Serial 2/0 0 192.168.2.0/24 [110/2] via 202.103.3.2, 00:01:27, FastEthernet 0/1 0 IA 202.103.1.0/24 [110/51] via 202.103.2.1, 00:02:26, Serial 2/0 C 202.103.2.0/24 is directly connected, Serial 2/0 202.103.2.2/32 is local host. 202.103.3.0/24 is directly connected, FastEthernet 0/1

Sw2# show ip route

202.103.3.1/32 is local host.

```
19-S5750-2(config) #show ip route
             C - connected, S - static, R - RIP, B - BGP
O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
              i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS le
vel-2
              ia - IS-IS inter area, * - candidate default
Gateway of last resort is no set
O IA 1.1.1.1/32 [110/52] via 202.103.3.1, 00:00:28, VLAN 50
O IA 2.2.2.2/32 [110/51] via 202.103.3.1, 00:00:28, VLAN 50
O IA 3.3.3.3/32 [110/1] via 202.103.3.1, 00:00:28, VLAN 50
         4.4.4.0/24 is directly connected, Loopback 1
   4.4.4.4/32 is local host.

IA 192.168.1.0/24 [110/53] via 202.103.3.1, 00:00:28, VLAN 50 192.168.2.0/24 is directly connected, VLAN 10
         192.168.2.1/32 is local host.
O IA 202.103.1.0/24 [110/52] via 202.103.3.1, 00:00:28, VLAN 50 IA 202.103.2.0/24 [110/51] via 202.103.3.1, 00:00:28, VLAN 50
         202.103.3.0/24 is directly connected, VLAN 50
         202.103.3.2/32 is local host.
```


(2) 查看邻居表

Sw1# show ip ospf nei

19-S5750-1(config) #show ip ospf nei

OSPF process 1, 1 Neighbors, 1 is Full:
Neighbor ID Pri State Dead Time Address I nterface
2.2.2.2 1 Full/BDR 00:00:30 202.103.1.2 V
LAN 50

R1# show ip ospf nei

19-RSR20-1(config) #show ip ospf nei OSPF process 2, 2 Neighbors, 2 is Full: Neighbor ID Pri State BFD State Dead Time Addres Interface 1 00:00:30 1.1.1.1 Full/DR 202.10 3.1.1 FastEthernet 0/1 00:00:36 202.10 3.3.3.3 3.2.2 Serial 2/0

R2# show ip ospf nei

19-RSR20-2(config) #show ip ospf nei OSPF process 3, 2 Neighbors, 2 is Full: Pri State Neighbor ID BFD State Dead Time Addres Interface 2.2.2.2 1 Full/ -00:00:38 202.10 3.2.1 Serial 2/0 4.4.4.4 1 Full/BDR 00:00:30 202.10 3.3.2 FastEthernet 0/1

Sw2# show ip ospf nei

19-S5750-2(config) #show ip ospf nei

OSPF process 4, 1 Neighbors, 1 is Full:
Neighbor ID Pri State Dead Time Address I nterface
3.3.3.3 1 Full/DR 00:00:33 202.103.3.1 V
LAN 50

步骤 7: 测试连通性

(1) PC1 ping PC2

<u>计算机网络实验报告</u>

```
C: Wsers Administrator>ping 192.168.2.2

正在 Ping 192.168.2.2 具有 32 字节的数据:
来自 192.168.2.2 的回复: 字节=32 时间=23ms TTL=124
来自 192.168.2.2 的回复: 字节=32 时间=22ms TTL=124
来自 192.168.2.2 的回复: 字节=32 时间=22ms TTL=124
来自 192.168.2.2 的回复: 字节=32 时间=23ms TTL=124

192.168.2.2 的 Ping 统计信息:
数据包: 已发送 = 4, 已接收 = 4, 丢失 = 0 (0% 丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 22ms,最长 = 23ms,平均 = 22ms
```

(2) PC2 ping PC1

```
C: Users Administrator>ping 192.168.1.2

正在 Ping 192.168.1.2 具有 32 字节的数据:
来自 192.168.1.2 的回复: 字节=32 时间=20ms TTL=124
来自 192.168.1.2 的回复: 字节=32 时间=21ms TTL=124
来自 192.168.1.2 的回复: 字节=32 时间=21ms TTL=124
来自 192.168.1.2 的回复: 字节=32 时间=23ms TTL=124

192.168.1.2 的 Ping 统计信息:
数据包: 已发送 = 4, 已接收 = 4, 丢失 = 0 (0% 丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 20ms,最长 = 23ms,平均 = 21ms
```

(3) Tracert PC2, 分析执行结果

【分析】根据显示结果可以看到追踪由 5 跳组成,首先从 PC1 到 192.168.1.1,接着到 202.103.1.2,再到 202.103.2.2,到 202.103.3.2,最后到 192.168.2.2即 PC2 的 IP 地址。

```
C:\Users\Administrator>tracert 192.168.2.2
通过最多 30 个跃点跟踪
  STU57 [192.168.2.2] 的路由:
                〈1 臺
                          2 ms 192.168.1.1
                          <1 毫秒 202.103.1.2
      31 ms
               32 ms
                        31 ms
                              202.103.2.2
      33 ms
                        33 ms
                              202.103.3.2
               33 ms
      29
               29
                        29 ms
                              STU57 [192.168.2.2]
眼踪完成。
```

(4) 捕获数据包,分析 OSPF 头部结构

捕获到多个 OSPF Hello 分组,如图所示。

No.		Time	Source	Destination	Protocol	Length	Info
	13	4.344872	192.168.1.1	224.0.0.5	OSPF	78	Hello Packet
	40	13.343670	192.168.1.1	224.0.0.5	OSPF	78	Hello Packet
	57	24.343292	192.168.1.1	224.0.0.5	OSPF	78	Hello Packet
	64	34.343320	192.168.1.1	224.0.0.5	OSPF	78	Hello Packet
	66	43.344560	192.168.1.1	224.0.0.5	OSPF	78	Hello Packet
	71	54.342573	192.168.1.1	224.0.0.5	OSPF	78	Hello Packet
	82	64.343282	192.168.1.1	224.0.0.5	OSPF	78	Hello Packet

- > Frame 13: 78 bytes on wire (624 bits), 78 bytes captured (624 bits) on interface 0
- > Ethernet II, Src: RuijieNe_5a:02:05 (14:14:4b:5a:02:05), Dst: IPv4mcast_05 (01:00:5e:00:00
- > Internet Protocol Version 4, Src: 192.168.1.1, Dst: 224.0.0.5
- ▼ Open Shortest Path First
 - ▼ OSPF Header

Version: 2

Message Type: Hello Packet (1)

Packet Length: 44

Source OSPF Router: 1.1.1.1

Area ID: 0.0.0.1

Checksum: 0x38f2 [correct]

Auth Type: Null (0)

Auth Data (none): 0000000000000000

> OSPF Hello Packet

分析 OSPF 头部结构:

Version 代表 OSPF 的版本号, 值为 2;

Message Type 代表 OSPF 数据报的类型,此处类型代码为 1,代表 hello 包;

Source OSPF Router 代表发送该数据包的源路由器,此处为 1.1.1.1;

Area ID 代表该数据包所属的区域, 此处为 0.0.0.1;

Checksum 为整个 OSPF 数据包的校验和,此处为 0x38f2,代表 correct;

Auth Type 代表认证类型 ,此处为 Null,即 0;

自评分数:

学号	学生	自评分
16337331	钟哲灏	99
16337327	郑映雪	99
16337341	朱志儒	99