

CSEN1095 Data Engineering

Lecture 6 **Data Integration**

Mervat Abuelkheir mervat.abuelkheir@guc.edu.eg

Data Integration

- Merging data from multiple data stores/sources
 - Can be local, within same organization perimeters (e.g. across departments)
 - Can be due to mergers/acquisitions of different organizations
 - Can be due to need to use external data sources (e.g. sensors, social feeds)
- Techniques help reduce and avoid inconsistencies and redundancies in the resulting consolidated dataset

• Challenges:

- <u>Semantic heterogeneity</u> \rightarrow different representations of data, different data scales
- <u>Entity identification problem</u> → join/match keys
- Redundancy → records (numerocity) or attributes (dimensionality)
- Structure of data → functional dependencies and referential constraints

Data Integration – Structure of Data Sources

Data formats

- Proprietary formats are troublesome
- Sensor data formats need vendor-specific interpretation
- XML and JSON are accepted as universal formats, but not all systems abide in production

Data modalities

- Image data, audio data, video data
- Medical data
- No explicit attributes feature extraction is complex

Functional dependencies

- Consolidating business rules defined over different database schemas
- Constraint prioritization is problematic

Data Integration – Heterogeneity Levels

Schema

- Schema mismatch
 - e.g. single student table in one DB, multiple student tables (for different academic years) in another
- Domain mismatch
 - e.g. single name attribute in one DB versus first name and last name attributes in another DB
- Constraint mismatch
 - e.g. GPA constraints for student enrollment

Instance

- Entity identification
 - e.g. same patient in two different hospital databases, with no clear identification value
- Format conflict
 - e.g. DOB for same customer is recorded differently in two databases

Data Integration – Semantic Heterogeneity

Different definitions

- Different views of same entity. Need to agree on meaning or mapping
- e.g. sales amount means money or # units sold

Different representations or encodings

- Need to unify
- e.g. name stored as first-last in one attribute versus name stored as last-first in two attributes

Different scales

- Need to convert or unify
- e.g. profits measured per month and profits measured per day, grades maintained differently across educational systems

Different timeframes/granularities

- Need to timestamp, synchronize, and align
- e.g. network traffic data and network performance data

Data Integration – Tuple Redundancy and Entity Identification

- Two records within the same DB table representing the same entity duplicate records
- Duplicate records can usually be matched using a name or ID attribute that should be unique
 - But unifying attribute may actually not be identical!

Methods

- Schema integration and exact joins over explicit keys
- Metadata → attribute name, meaning (semantics), data type, range of values permitted, null rules for handling blank, zero, or null values
 - helps avoid errors in schema integration and data transformation
 - BUT you don't have control over how and how much metadata are documented if you are not the data collector

Data Integration – Tuple Redundancy and Entity Identification

Methods (Cont.)

- If no explicit keys exist to perform exact join, use approximate joins over messy attributes
 - Use most probable attribute (with most unique values in both sources) for join (e.g. Name)
 - May have to use corroborating matches over other attributes! (e.g. Name and Phone #, Address)
 - No standardized representation > needs a lot of manipulation!
- If approximate joins are not possible, maybe infer joins?
 - e.g. do two attributes from two different data sources look like they represent a user's phone number? Use them to join!
 - We can use Regular Expressions for that
 - Or use Approximate Matching (String Matching) e.g. Levenshtein distance
- Easier method to resolve tuple redundancy is to perform Feature Vector Matching
 - Compute distance (or similarity) between two records incorporating all (or most discriminating)
 object attributes

Entity Identification Problem – Example

• Two transaction records from two stores:

Ted Johnson, 3 apples, 09-01-2001

Theodore Johnson, 2 CDs, 09-02-2001

- No explicit ID to join both records representing the same entity
- We can use approximate matching or similarity algorithms
- But then we will also match Ed Johnson, Eddy Johnson, Todd Johnson to the same entity, which they're not!

Entity Identification – Approximate String Matching

- Measure how far apart two strings are
 - How many edit operations (substitute, insert, delete) are required to change one string into another
- \circ Levenshtein distance between two strings a,b of length |a| and |b| respectively is given by

$$\circ lev_{a,b}(i,j) = \begin{cases} \max(i,j) & if \min(i,j) = 0 \\ lev_{a,b}(i-1,j) + 1 \\ lev_{a,b}(i,j-1) + 1 \\ lev_{a,b}(i-1,j-1) + 1_{(a_i \neq b_j)} \end{cases}$$

- $lev_{a,b}(i,j)$ is distance between the first i characters of a and the first j characters of b
- $1_{(a_i \neq b_i)}$ equals 0 when $a_i = b_j$ and equals 1 otherwise
- $lev_{a,b}$ is equal to zero if and only if the strings are equal
- $lev_{a,b}$ is at most the length of the longer string

Entity Identification – Approximate String Matching

Step	How
1	Set $ a $ to be the length of a and set $ b $ to be the length of b . If $ a =0$, return $ b $ and exit. If $ b =0$, return $ a $ and exit. Construct a matrix containing $0 \dots a $ rows and $0 \dots b $ columns.
2	Initialize the first row to $0 \dots a $. Initialize the first column to $0 \dots b $.
3	For each character of a (i from 1 to $ a $). For each character of b (j from 1 to $ b $). If $a[i] = b[j]$, the cost is 0. If $a[i] \neq b[j]$, the cost is 1.
4	Set cell $d[i,j]$ of the matrix to be equal to the minimum of: a. The cell immediately above plus 1: $d[i-1,j]+1$. b. The cell immediately to the left plus 1: $d[i,j-1]+1$. c. The cell diagonally above and to the left plus the cost : $d[i-1,j-1]+cost$.
5	After the iteration steps (3, 4) are complete, the distance is found in cell $d[a , b]$.

Approximate String Matching Example

		G	U	М	В	0
	0	0	1	2	3	4
G	1					
Α	2					
М	3					
В	4					
0	5					
L	6					

		G	U	М	В	0
	0	1	2	3	4	5
G	1	0	1	2	3	4
Α	2	1	1	2	3	4
М	3	2	2	1	2	3
В	4	3	3	2	1	2
0	5	4	4	3	2	1
L	6	5	5	4	3	2

2 edits needed for GUMBO to become GAMBON

Approximate String Matching Example Details

		G	U	М	В	0
	0	1	2	3	4	5
G	1					
Α	2					
М	3					
В	4					
0	5					
L	6					

		G	U	М	В	0
	0	1	2	3	4	5
G	1	0	1	1	1	1
Α	2					
М	3					
В	4					
0	5					
L	6					

		G	J	М	В	0
	0	1	2	3	4	5
G	1	0	1	2	3	4
Α	2	1	1	1	1	1
М	3					
В	4					
0	5					
L	6					

		G	J	М	В	0
	0	1	2	3	4	5
G	1	0	1	2	ന	4
Α	2					
М	თ					
В	4					
0	5					
L	6					

		G	U	М	В	0
	0	1	2	3	4	5
G	1	0	1	2	3	4
Α	2	1	1	2	3	4
M	3					
В	4					
0	5					
L	6	E	ata E	nginee	ring -	Data I

Approximate String Matching Example Details

		G	U	М	В	0
	0	1	2	3	4	5
G	1	0	1	2	3	4
Α	2	1	1	2	3	4
М	3	1	1	0	1	1
В	4					
0	5					
L	6					

		G	J	М	В	0
	0	1	2	3	4	5
G	1	0	1	2	3	4
Α	2	1	1	2	3	4
М	3	2	2	1	2	3
В	4	3	3	2	1	2
0	5					
L	6			_	_	_

		G	U	М	В	0
	0	1	2	3	4	5
G	1	0	1	2	3	4
Α	2	1	1	2	3	4
М	3	2	2	1	2	3
В	4					
0	5					
L	6					

		G	J	Μ	В	0
	0	1	2	3	4	5
G	1	0	1	2	3	4
Α	2	1	1	2	3	4
М	3	2	2	1	2	3
В	4	3	3	2	1	2
0	5	1	1	1	1	0
L	6					

		G	U	М	В	0
	0	1	2	3	4	5
G	1	0	1	2	3	4
Α	2	1	1	2	3	4
М	3	2	2	1	2	3
В	4	1	1	1	0	1
0	5					
L	6					

		G	U	М	В	0
	0	1	2	3	4	5
G	1	0	1	2	3	4
Α	2	1	1	2	3	4
М	3	2	2	1	2	3
В	4	3	3	2	1	2
0	5	4	4	3	2	1
L	6		ata Ei	nginee	rina -	Data

Data Integration – Attribute Redundancy and Correlation Analysis (Again)

- An attribute is redundant if it can be "derived" from another attribute(s)
- Attribute redundancy is related to Multicollinearity
 - Multicollinearity negatively affects some ML algorithms (can exaggerate performance, can mess up parameter estimation)
- Redundancy can be detected by correlation analysis → measure how strongly one attribute *implies* the other, based on the available data
 - Nominal attributes \rightarrow chi-square (χ^2) test
 - Numeric attributes \rightarrow correlation coefficient and covariance

chi-square (χ^2) test for nominal attributes

• Example: Are gender and preferred reading correlated in a dataset with the following observations?

ID	Name	Gender	Preferred reading	Last visit	Last book bought
1	Adam	M	Fiction	9/7/2021	Game of Thrones
2	Ali	M	Non-fiction	12/5/2020	Sophie's World
3	Sarah	F	Fiction	13/5/2020	Grapes of Wrath
•••		•••			
	•••	•••		•••	

chi-square (χ^2) test for nominal attributes

- Example: Are gender and preferred reading correlated in a dataset with the following observations?
 - Contingency table → summary of observed values

		gender		
		male	female	Total
	Fiction	250	200	450
Preferred reading	Non- fiction	50	1000	1050
	Total	300	1200	1500

Hypothesis: the two attributes are <u>independent</u> (not correlated) – **Null hypothesis**

o expected (independent) frequencies
$$\rightarrow e_{ij} = \frac{count (A=a_i) \times count (B=b_j)}{n}$$

o e.g.
$$e_{11} = \frac{count (male) \times count (fiction)}{n} = \frac{300 \times 450}{1500} = 90$$

		gender		
		male	female	Total
	Fiction	250 (90)	200 (360)	450
Preferred reading	Non- fiction	50 (210)	1000 (840)	1050
	Total	300	1200	1500

$$\chi^2 = \sum_{i=1}^{c} \sum_{j=1}^{r} \frac{\left(o_{ij} - e_{ij}\right)^2}{e_{ij}} = \frac{(250 - 90)^2}{90} + \frac{(50 - 210)^2}{210} + \frac{(200 - 360)^2}{360} + \frac{(1000 - 840)^2}{840} = 507.93$$

- $o_{ij} \rightarrow$ observed frequency
- $e_{ij} \rightarrow$ expected frequency

		gender		
		male	female	Total
Preferred reading	Fiction	250 (90)	200 (360)	450
	Non- fiction	50 (210)	1000 (840)	1050
	Total	300	1200	1500

- For one degree of freedom at p-value = 0.001 significance level, the χ^2 value needed to reject the hypothesis is 10.828
 - (source: http://www.medcalc.org/manual/chi-square-table.php)
 - Degrees of freedom:
 - If r > 1 and c > 1, then df = (r 1)(c 1)
 - If r = 1 and c > 1, then df = c 1 or if r > 1 and c = 1, then df = r 1
 - r = c = 1 is not allowed
 - ➤ 507.93 >> 10.828 → reject hypothesis that preferred reading and gender are independent!
 - : Gender and preferred reading are strongly correlated


```
        DF
        0.995
        0.975
        0.20
        0.10
        0.05
        0.025
        0.02
        0.01
        0.005
        0.025
        0.02
        0.01
        0.005
        0.002
        0.001
        0.005
        0.002
        0.001

        1
        0.0000393 0.000982
        1.642
        2.706
        3.841
        5.024
        5.412
        6.635
        7.879
        9.550
        10.828

        2
        0.0100
        0.0506
        3.219
        4.605
        5.991
        7.378
        7.824
        9.210
        10.597
        12.429
        13.816

        3
        0.0717
        0.216
        4.642
        6.251
        7.815
        9.348
        9.837
        11.345
        12.838
        14.796
        16.266

        4
        0.207
        0.484
        5.989
        7.779
        9.488
        11.143
        11.668
        13.277
        14.860
        16.924
        18.467

        5
        0.412
        0.831
        7.289
        9.236
        11.070
        12.833
        15.086
        16.750
        18.907
        20.515

        6
        0.676
        1.237
        8.558
        10.645
        12.592
```

Correlation coefficient for numeric attributes

$$r_{A,B} = \frac{\sum_{i=1}^{n} (a_i - \bar{A})(b_i - \bar{B})}{n\sigma_A \sigma_B} = \frac{\sum_{i=1}^{n} (a_i b_i) - (n\bar{A}\bar{B})}{n\sigma_A \sigma_B}$$

- \circ -1 $\leq r_{A,B} \leq +1$
- \circ If $r_{A,B}$ is *greater* than 0, then A and B are *positively* correlated
 - The higher the value, the stronger the correlation
- o If $r_{A,B} = 0$, then A and B are independent

• Correlation does not imply causality!

Redundancy and Correlation Analysis Example

Stock prices for two companies

- \bar{A} (AllElectronics) = 20/5 = \$4
- \bar{B} (HighTech) = 54/5 = \$10.80

$$r_{A,B} = \frac{\frac{(6 \times 20 + 5 \times 10 + 4 \times 14 + 3 \times 5 + 2 \times 5) - (5 \times 4 \times 10.80)}{5 \times 1.4 \times 5.7}}{\frac{251 - 216}{39.9}} \approx 0.88$$

Time point	AllElectronics	HighTech
T1	6	20
T2	5	10
Т3	4	14
T4	3	5
T5	2	5

• +ve correlation \rightarrow stock prices of the two companies rise together

Data Integration – Schema Integration

https://fivetran.com/

Data Integration – Schema Integration

Data Integration - Schema Integration

Two main challenges:

- Identify and unify schema elements that relate to the same concept/phenomena
- Identify and resolve conflicts across schemas

Correspondences relate schema elements that describe same phenomena

Data Integration - Mediated/View Schema Integration

- Service-Oriented Architecture (SOA) Approach
- Provide a unified query-interface to access real time data
 - Allow information to be retrieved directly from original databases
- Mappings between the mediated schema and the schema of original sources
 - Mapping from entities in the mediated schema to entities in the original sources – Global-as-View (GAV) approach
 - Mapping from entities in the original sources to the mediated schema
 Local-as-View (LAV) approach
- Translating a query into decomposed queries to match the schema of the original databases

Data Integration - Mediated Schema Integration

o Global as View

- Define a global schema that acts as a view over existing source schemas
 - Global schema is a function of the local schemas
- Data is only stored at the sources
- Given a query over the global schema, mediator will follow the existing rules and templates to convert query into source-specific queries
- Wrappers execute source-specific query on their local schema
- Results from local sources are merged back together to form final result
- Addition of new sources is a challenge because schema must be redefined

Desktop Applications and Portals

Data Integration - Mediated Schema Integration

o Global as View

- Define a global schema that acts as a view over existing source schemas
 - Global schema is a function of the local schemas
- Data is only stored at the sources
- Given a query over the global schema, mediator will follow the existing rules and templates to convert query into source-specific queries
- Wrappers execute source-specific query on their local schema
- Results from local sources are merged back together to form final result
- Addition of new sources is a challenge
- No new information can be modeled if not present in local schemas

(b) Mapping for global relation Book_Price

V1(ISBN, title, sug_retail, authorName, "PH")
V2(ISBN, "B&N", sug_retail, instock)

Data Integration – Mediated Schema Integration

Local as View

- Each local schema is described as a view over a global schema (a complete vision of what is needed)
- View which data in schema is present in source?
- Data is still stored at sources
- Global schema is not altered as new sources join/leave – only mappings change
- Addition of new sources is flexible

Think of the example local schemas on the right –
 what would they look like if GAV was used?

Data Integration - Mediated Schema Integration

Local as View

- Each local schema is described as a view over a global schema (a complete vision of what is needed)
- View which data in schema is present in source?
- Data is still stored at sources
- Global schema is not altered as new sources join/leave – only mappings change
- Addition of new sources is flexible
- Information in sources not easily handled in global schema
- No unique global database is possible because of the suggested mapping (virtual mediation)

seller

price

https://dbucsd.github.io/paperpdfs/2009 7.pdf

(b) Mapping for local relation BNNewDeliveries

Thank You

