Department Of Mathematics Indian Institute of Technology Delhi MAL 466 / MTL766 – Multivariate Statistical Analysis Minor Examination

Time: 1hr 30 Mins

Date 25-03-2017

Total Marks: 40

- Q1. Let X be a $n \times p$ data matrix. Suppose \widetilde{x} and S are the sample mean vector and sample covariance matrix, respectively, computed from X.
 - (a) Prove that S is positive definite if the columns of the mean corrected matrix $X-1\overline{x}^{T}$ are linearly independent.
 - (b) Justify that $(\underline{x} \overline{x})^T S^{-1} (\underline{x} \overline{x})$ is a valid statistical distance measure of an observation vector \underline{x} from the data mean vector \overline{x} , whose value does not depend on the scales of measurement of components of x.

[4+4=8]

Q2. Use the geometric interpretation in n-space of the generalised sample variance computed

from $n \times p$ data matrix X to justify that it gives a joint measure of variation of p-component variables of the measurement x.

What is a major weakness of this measure of joint variation?

[7]

1 Q3. Let $X^T = [X_1, X_2, X_3]$ be a multi-normal random vector having a $N_3(\mu, \Sigma)$

Use the above information to compute

- (a) Maximum likelihood estimate of regression of $[X_1, X_2]$ on X_3 .
- **(b)** An unbiased estimate of covariance matrix $Cov\begin{bmatrix} X_1 X_2 \\ X_1 X_3 \end{bmatrix}$ $\begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix}$

Q4. Let a population distribution be $N_p(\mu, \Sigma)$. Based on a random sample of size n from this population, develop a large sample approximate likelihood ratio test for the hypothesis $H_0: \Sigma = \Sigma_0$ against $H_1: \Sigma \neq \Sigma_0$, Σ_0 being a given positive definite matrix.

[7]

Q5. 42 observations on variables

 $X_1 = (radiations with doors closed)^{1/4}$

 $X_2 = (radiations with doors opened)^{1/4}$

taken on each of 42 randomly selected microwave ovens used by households. The following gives summary statistics of the data.

$$\overline{x} = \begin{bmatrix} 0.564 \\ 0.603 \end{bmatrix}$$
 and $S = \begin{bmatrix} 0.0144 & 0.0117 \\ 0.0117 & 0.0146 \end{bmatrix}$

- (a) Stating the assumptions made, test at 5% level of significance the hypothesis that $[\mu_1, \mu_2] = [0.57, 0.59]$ against any other values, where $\mu_1 = E(X_1)$ and $\mu_2 = E(X_2)$.
- (b) Find the simultaneous 95% T^2 confidence intervals for μ_1 , μ_2 , and μ_1 μ_2 .
- (c) Use the confidence intervals found in part (b) to test at 5% level of significance the hypothesis $\mu_1 = \mu_2 = 0.58$. Comment on the validity of the test for this hypothesis.
- (d) If the sample size 42 is regarded as large in comparison with variable size p = 2, will the assumptions and conclusions of the test in part (a) change? If so how?

[4+3+2+2=11]