1 Билеты

1.1 Законы де Моргана

Пусть $\{X_{\alpha}\}_{\alpha\in A}$ - семейство множеств, Y - ммножесттво. Тогда

$$Y \setminus \bigcup_{\alpha \in A} X_{\alpha} = \bigcap_{\alpha \in A} (Y \setminus X_{\alpha}) \tag{1}$$

$$Y \setminus \bigcap_{\alpha \in A} X_{\alpha} = \bigcup_{\alpha \in A} (Y \setminus X_{\alpha}) \tag{2}$$

$$Y \cap \bigcup_{\alpha \in A} X_{\alpha} = \bigcup_{\alpha \in A} (Y \cap X_{\alpha}) \tag{3}$$

$$Y \cup \bigcap_{\alpha \in A} X_{\alpha} = \bigcap_{\alpha \in A} (Y \cup X_{\alpha}) \tag{4}$$

1.2 Аксиомы порядка и их элемеенетарные следствия. Два способа расширения вещественной прямой.

Между элементами

 П определено отношение ≤ со следующими свойствами:

- 1. $\forall x, y : x \leq y \lor y \leq x$
- $2. \ x \le y \land y \le z \Rightarrow x \le z$
- 3. $x \le y \land y \le x \Rightarrow x = y$
- 4. $x \le y \Rightarrow x + z \le y + z \forall z$
- 5. $0 \le x \land 0 \le y \Rightarrow 0 \le xy$

 \mathbb{R} можно расширять с помощью $+\infty$ и $-\infty$.

1.3 Модуль числа

Определение. Пусть $x \in \mathbb{R}$. Число

$$|x| = \begin{cases} x, & x \ge 0, \\ -x, & x < 0 \end{cases}$$

называется **модулем** или **абсолютной величиной** числа x. Свойства модуля:

1.
$$|-x| = x$$

$$2. \pm x < |x|$$

3.
$$|xy| = |x||y|$$

4.
$$\left| \frac{x}{y} \right| = \frac{|x|}{|y|}, y \neq 0$$

5.
$$||x| - |y|| \le |x \pm y| \le |x| + |y|$$

6.
$$|x| < a \Leftrightarrow -a < x < a, \ a > 0$$

1.4 Комплексные числа

Определение. Комплексное число - это упорядоченая пара вещественных чисел (x,y), так что множество $\mathbb{C} = \mathbb{R}^2$.

Определим некоторые свойства для комплексных чисел. Пусть $z_1=(x_1,y_1),\ z_2=(x_2,y_2),$ тогда:

1.
$$z_1 + z_2 = (x_1 + x_2, y_1 + y_2)$$

$$2. \ 0 = (0,0)$$

3.
$$-z = (-x, -y)$$

4.
$$z_1 \cdot z_2 = (x_1x_2 - y_1y_2, x_1y_2 + x_2y_1)$$

$$5. 1 = (1,0)$$

6.
$$\mathbb{R} = (x,0), \mathbb{R} \subset \mathbb{C}$$

7.
$$i = (0,1)$$
 - мнимая еденица

8.
$$(0, y)$$
 - мнимые числа

9.
$$z = (x, y) = x(1, 0) + y(0, 1) = x + iy$$

10.
$$\frac{1}{z} = \frac{x}{x^2 + y^2} + i\frac{-y}{x^2 + y^2}$$

11.
$$x = Rez, y = Imz$$

 $\overline{z} = x - iy$ - сопряжённое к z. Тогда

$$Rez = \frac{z + \overline{z}}{2}, \qquad Imz = \frac{z - \overline{z}}{2i}$$

$$\overline{\overline{z}} = z, \qquad \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$$

Определим модуль комплексного числа:

$$|z| = \sqrt{x^2 + y^2}$$

Он обладает следующимии свойствами:

1.
$$|z_1 z_2| = |z_1||z_2|$$

2.
$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$

3.
$$||z_1| - |z_2|| \le |z_1 \pm z_2| \le |z_1| + |z_2|$$

4.
$$z\overline{z} = |z|^2$$

Определение. Тригонометрическая форма комплекесного числа определяется так - $z=r(\cos\phi+i\sin\phi), \quad r=|z|, \ \phi=\arg z.$

Формула Муавра.

$$z^n = r^n(\cos n\phi + i\sin n\phi)$$

Определение. Показзательной формой комлексного число наззывается $z=r\cdot e^{i\phi},\quad e^{i\phi}=\cos\phi=i\sin\phi$

Определение. Расширенная комплексная плоскость - $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$

Принцип математической индукции. Индуктивные множества. Нера-1.5венство Бернулли.

Определение. Пусть $\{\mathbb{P}\}$ - последовательность утверждений. Если

- 1. \mathbb{P}_1 верно (база индукции)
- 2. $\forall a \in \mathbb{NP}_n \Rightarrow \mathbb{P}_{n+1}$ (индукционный переход, \mathbb{P}_n индукционное предположение)

Тогда \mathbb{P}_n верно $\forall n \in \mathbb{N}$.

Определение. Множество $M \in \mathbb{R}$ называется **индуктивным**, если $1 \in M$ и $\forall x \in M$ $x + 1 \in M$. Теорема (Неравенство Бернулли).

$$(1+x)^n \ge 1 + nx \forall n \ge 1 \in \mathbb{N}$$

1.6 Бином Ньютона.

Теорема. Если $n \in \mathbb{Z}_+, x, y \in \mathbb{R}$ или \mathbb{C} , то

$$(x+y)^n = \sum_{k=0}^n C_n^k x^k y^{n-k}$$

1.7Аксиома Архимеда. Плотность множества рациональных чисел в

Аксиома. $\forall x, y > 0 \in \mathbb{R}, \exists n \in \mathbb{N} : nx > y$ Плотность. $\forall a < b \in \mathbb{R} \ \exists c : a < c < b$

1.8 Ограниченные, односторонне ограниченные множества. Теорема о максимуме и минимуме конечного множества и следствия из нее.

Определение. Пусть $X \subset \mathbb{R}$. Если $\exists b \in \mathbb{R} \ \forall x \in X : x \leq b$, множество X называется огрнаичн-

Определение. Пусть $X \subset \mathbb{R}$. Если $\exists b \in \mathbb{R} \ \forall x \in X: \ x \geq b$, множество X называется огрнаичн-

Определение. Пусть $X \subset \mathbb{R}$. Если X ограниччено сверху и снизу, то оно называется огрничен-

Определение. Верхняя грань множества называется $\sup x$ (supremum)

Определение. Нижняя грань множества называется $\inf_{x \in X} x$ (infinum)

Теорема. Всякое ограниченное сверху непустое числовое множество имеет верхнюю грань, а всякое ограниченное снизу непустое числовое множество имеет нижнюю грань.

Замечания

- 1. Если множество неограничено сверху, то $\sup X = +\infty$
- 2. Если множество неограничено снизу, то inf $X=-\infty$

1.9Инъекции, сюръекции, биекции, обратные отображения. Эквивалентные множества, свойства эквивалентности множеств. Примеры эквивалентных множеств.

Определение. $f: A \to B$ называется инъекцией, если верно $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ Определение. $f:A\to B$ называется сюръекцией, если верно $\forall y\in B\ \exists x\in A: f(x)=y$ **Определение.** $f: A \to B$ называетсяс биекцией, еслли оно инъективно и сюръективно, то есть

$$\begin{cases} f(x_1) = f(x_2) \Rightarrow x_1 = x_2 \ \forall x_1, x_2 \in A \\ \forall y \in B \ \exists x \in A : f(x) = y \end{cases}$$

Определение. $g: B \to A$ называется обратным к $f: A \to B$, если

$$\begin{cases} g \circ f = Id_A \\ f \circ G = Id_B \end{cases}$$

Определение. Два множеста A и B эквивалентны, если можно построить между их элементами отображение $f:A\to B$ такое, что оно будет биективным.

Пусть \sim - отношение эквивалентности. Тогда его **свойства** выглядят так:

- 1. $A \sim S$ (рефлексивность).
- 2. $A \sim B \Rightarrow B \sim A$ (симметричность).
- 3. $A \sim B \wedge B \sim C \Rightarrow A \sim C$ (транзитивность).

Примеры.

- 1. $\mathbb{N} \sim \mathbb{Z}$
- 2. $[a,b] \sim [a+h,b+h] \ \forall a,b,h \in \mathbb{R}$
- 3. $(0,1) \sim (1,+\infty)$, так как $[x \in (0,1)] \leftrightarrow [y = \frac{1}{x} \in (1,+\infty)]$

1.10 Счетные множества, не более чем счетные множества (определения и примеры). Образ счетного множества.

Определение. множество X называется счёным, если $\exists f: N \to X$, которое является биекцией. **Примеры.** $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{A}$

Определение. Непустое множество являющееся конечным или счётным называется не более, чем счётным.

Теорема. При любом отображении образ счётного множества конечен или счётен.

1.11 Две теоремы о счетных подмножествах.

Теорема. Любое подмножество счетного множества не более чем счетно.

Теорема. Любое бесконечное множество содержит счетное подмножество.

1.12 Утверждения о произведении счетных множеств и о не более чем счетном объединении не более чем счетных множеств. Счетность множества рациональных чисел

Теорема. Не более чем счётное (конечное или счётное) объединение не более чем счётных множеств является не более чем счётным множеством.

Теорема. Декартово произведение двух счётных множеств $A \times B$ счётно.