- 1. There are totally **12 features** in the training set. They are **PassengerId**, **Survived**, **Pclass**, **Name**, **Sex**, **Age**, **SibSp**, **Parch**, **Ticket**, **Fare**, **Cabin**, **Embarked**.
- 2. The features that are categorial are: Survived, Pclass, Sex and Embarked.
- 3. The features that are numerical are PassengerID, Survived, Pclass, Age, SibSp, Parch and Fare
- 4. The features that have mixed data type are **Ticket and Cabin**.
- 5. In training data, the features that contain blank, null or empty values are Age (714 values), Cabin (204 values) and Embarked (889 values). Similarly, in the test data, the features that contain blank, null or empty values are Age (332 values), Fare (417 values) and Cabin (91 values).
- 6. The different data types in the training set are **float 64** (Age and Fare), **Object/String** (Name, Ticket, Cabin, Embarked) and **int 64** (PassengerId, Survived, Pclass, Sex, SibSp, and Parch)

Output for the training set:

RangeIndex: 891 entries, 0 to 890

Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	int64
5	Age	714 non-null	float64

6	SibSp	891	non-null	int64
7	Parch	891	non-null	int64
8	Ticket	891	non-null	object
9	Fare	891	non-null	float64
10	Cabin	204	non-null	object
11	Embarked	889	non-null	object

dtypes: float64(2), int64(6), object(4)

Output for the test set:

RangeIndex: 418 entries, 0 to 417 Data columns (total 11 columns):

		,	
#	Column	Non-Null Count	Dtype
0	PassengerId	418 non-null	int64
1	Pclass	418 non-null	int64
2	Name	418 non-null	object
3	Sex	418 non-null	object
4	Age	332 non-null	float64
5	SibSp	418 non-null	int64
6	Parch	418 non-null	int64
7	Ticket	418 non-null	object
8	Fare	417 non-null	float64
9	Cabin	91 non-null	object
10	Embarked	418 non-null	object

dtypes: float64(2), int64(4), object(5)

Number of missing values in each feature of the training set:

PassengerId	0
Survived	0
Pclass	0

Name	0
Sex	0
Age	177
SibSp	0
Parch	0
Ticket	0
Fare	0
Cabin	687
Embarked	2
dtype: int64	

Number of missing values in each feature of the testing set:

PassengerId	0
Pclass	0
Name	0
Sex	0
Age	86
SibSp	0
Parch	0
Ticket	0
Fare	1
Cabin	327
Embarked	0
dtype: int64	

7. The following are the statistical data to understand the distribution of numerical feature values across the samples:

6.000000 512.329200

HOMEWORK 1

[aal	hana@MacBook-Pr	o homework-1	% python3 mai	n.py					
	PassengerI	d Survived	Pclass	Sex	Age	SibSp	Parch	Fare	
co	unt 891.00000	0 891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000	
me	an 446.00000	0.383838	2.308642	0.647587	29.699118	0.523008	0.381594	32.204208	
st	d 257.35384	2 0.486592	0.836071	0.477990	14.526497	1.102743	0.806057	49.693429	
mi	n 1.00000	0.000000	1.000000	0.000000	0.420000	0.000000	0.000000	0.000000	
25	% 223.50000	0.000000	2.000000	0.000000	20.125000	0.000000	0.000000	7.910400	
509	% 446.00000	0.000000	3.000000	1.000000	28.000000	0.000000	0.000000	14.454200	
75	% 668.50000	1.000000	3.000000	1.000000	38.000000	1.000000	0.000000	31.000000	
ma	x 891.00000	1.000000	3.000000	1.000000	80.000000	8.000000	6.000000	512.329200	
	PassengerId	Survived	Pclass	Sex	Age	e SibS	p Par	rch Fa	re
count	891.000000	891.000000	891.000000	891.000000	714.000000	891.00000	0 891.0000	00 891.0000	00
mean	446.000000	0.383838	2.308642	0.647587	29.699118	0.52300	8 0.3815	94 32.2042	80
std	257.353842	0.486592	0.836071	0.477990	14.526497	1.10274	3 0.8060	57 49.6934	29
min	1.000000	0.000000	1.000000	0.000000	0.420000	0.00000	0.0000	0.0000	00
25%	223.500000	0.000000	2.000000	0.000000	20.125000	0.00000	0.0000	00 7.9104	00
50%	446.000000	0.000000	3.000000	1.000000	28.000000	0.00000	0.0000	00 14.4542	00
75%	668.500000	1.000000	3.000000	1.000000	38.000000	1.00000	0.0000	00 31.0000	00

80.000000

8.000000

1.000000

8. First, the dtype of all the categorical features are converted to category and then the output is printed.

3.000000

	Survived	Pclass	Sex	Embarked
count	891	891	891	889
unique	2	3	2	3
top	0	3	male	S
freq	549	491	577	644

1.000000

891.000000

max

9. Yes, we should include this feature. When **Pclass = 1 there were 136 out of 216 passengers survived** which gives a surviving ratio of 0.62.

Page 5 of 16

Survived	0	1
Pclass		
1	80	136
2	97	87
3	372	119

10. Yes, women (233) are more likely to survive compared to men (189).

Output for question 10:

Survived	0	1
Sex		
0	81	233
1	468	109

- 11. A) Yes, infants under the age of 4 have high survival rate.
 - B) Yes, the oldest passenger survived.
 - C) Yes, a large number of people between the age 15 25 did not survive (79 survived, 144 did not survive).

- D) Yes, we should consider age for our model training.
- E) Yes, it makes it easier to analyze the data set.

- 12. A) Yes, Pclass = 3 had most passengers, out of which many did not survive.
 - B) Yes, infant passengers (age <= 4) tend to survive.
 - C) Yes, most passengers in Pclass = 1 survive.
 - D) Yes, Pclass varies in terms of age distribution of passengers.
 - E) Yes, Pclass data set seems to provide vital information for our machine learning model.

- 13. A) Yes, those passengers that embarked to Southampton and Cherbourg with higher fare tickets seemed to have a higher survival rate as compared to those that traveled with lower fare tickets. Passengers that embarked to Queenstown seem to have very similar survival rate irrespective of the ticket fare.
 - B) Yes, we should consider banding fare feature. The fare feature seems to group well in those intervals of probably 10 20..

14. There is a total of 891 ticket entries out of which about 681 are unique ticket values. Hence, **the duplication rate is 23.56%** and remaining 76.43% of the ticket values are unique. Duplication rate is calculated using the formula, rate of duplicates = (total records - unique records)/total records. However, the ticket feature does not seem to provide any useful information and thus we can drop this column.

```
Total number of ticket entries 891
Number of unique ticket values 681
Total ticket duplicate rate is 23.569023569023567 %
```

15. Yes, I would drop the Cabin feature. There are 891 entries in the train_df data set and 418 features in the test_df data set. The total number of entries for each feature in the combined data set is 1309 entries. Out of this, **the cabin feature has**1014 entries that are null valued. Hence, we can go ahead and drop this feature.

Train_df:

PassengerId	0
Survived	0
Pclass	0
Name	0
Sex	0
Age	177
SibSp	0
Parch	0

Ticket	0
Fare	0
Cabin	687
Embarked	2
dtvpe: int64	

Test_df:

PassengerId	6
Pclass	6
Name	6
Sex	6
Age	86
SibSp	9
Parch	9
Ticket	9
Fare	1
Cabin	327
Embarked	9
dtype: int64	

Out of 1309 entries in the cabin feature, the number of null values in Cabin feature are: 1014 entries.

16. All female entries in the Sex feature are assigned as 1 and all male entries in the Sex feature are assigned as 0.

0 0 1 1 2 1

17. All Nan values in the Age feature are replaced using K-Nearest Neighbor algorithm, where k = 5.

Some of the original and modified (using KNN algorithm) Age values are:

```
22.0 22.0
38.0 38.0
26.0 26.0
35.0 35.0
35.0 35.0
nan 29.69911764705882
54.0 54.0
2.0 2.0
27.0 27.0
14.0 14.0
4.0 4.0
58.0 58.0
20.0 20.0
39.0 39.0
14.0 14.0
```

```
55.0 55.0
2.0 2.0
nan 29.69911764705882
31.0 31.0
nan 29.69911764705882
35.0 35.0
```

The number of Nan values in the Age column is: 0

18. The training data set has 2 missing values. The common frequency (mode) in the 'Embarked' feature is S. Hence, the two empty values are filled with S.

```
The mode for Embarked freature is: 0 S dtype: object
The number of empty values in Embarked feature is: 2
After filling the empty values, the number of empty values in the Embarked feature is: 0
The following are the values in the Embarked feature: 0 S
```

1 C 2 S S 3 S S 886 887 S S 888 889 C 890 Q Name: Embarked, Length: 891, dtype: object

19. There is only one empty data in the Fare feature of the testing data set. This empty value is filled with the mode (most common frequency) of the fare feature. The mode is 7.75.


```
In the testing dataset, The mode for Fare freature is: 0 7.75
```

dtype: float64

The number of empty values in Fare feature is: 1

After filling the empty values, the number of empty values in the Fare feature is: 0

The following are the values in the Fare feature: 0 7.8292

```
1
        7.0000
2
        9.6875
3
        8.6625
       12.2875
        . . .
413
        8.0500
      108.9000
414
       7.2500
415
416
       8.0500
417
       22.3583
```

Name: Fare, Length: 418, dtype: float64

20. The Fare feature has been binned and corresponding ordinal values (0, 1, 2 and 3) are assigned.

	PassengerId	Survived	Pclass	 Cabin	Embarked	Fare_bin
0	1	0	3	 NaN	S	0
1	2	1	1	 C85	C	3
2	3	1	3	 NaN	S	1
3	4	1	1	 C123	S	3
4	5	0	3	 NaN	S	1

[5 rows x 13 columns]

GitHub link to the code:

https://github.com/monicabernard/CAP-5610_Machine-Learning.git