EPFL - Printemps 2022	Prof. Z. Patakfalvi
Anneaux et Corps	Exercices
Série 6	4 Avril 2022

Cette semaine, il n'y a pas d'exercice bonus.

Exercice 1.

Entiers de Gauss.

- 1. L'anneau $\mathbb{Z}[i]$ est euclidien avec $N(a+ib) = |a+ib|^2$. (Exemple 2.1.7(c)) Pour $a, b \in \mathbb{Z}[i], a \neq 0$ on appelle une égalité de la forme b = aq + r, avec $q, r \in \mathbb{Z}[i]$ et N(r) < N(a) une division avec reste. Effectuer la division avec reste de 5 + 5i par 4 + 2i et montrer que quotient et reste de la division dans $\mathbb{Z}[i]$ ne sont pas uniques.
- 2. Les entiers de Gauss 2, 3 et 5 sont-ils irréductibles dans $\mathbb{Z}[i]$? Et 2i et 2-3i?
- 3. Montrer que le quotient $\mathbb{Z}[i]/(3)$ est un corps de cardinalité 9.

Exercice 2.

Entiers d'Eisenstein. Soit $\omega = e^{\frac{2\pi i}{3}}$ et $\mathbb{Z}[\omega]$ l'anneau des entiers d'Eisenstein.

- 1. Montrer que $N(a+b\omega)=a^2-ab+b^2$ coïncide avec le module au carré dans le plan complexe de $a+b\omega$.
- 2. Montrer que $N(a+b\omega)=a^2-ab+b^2$ munit $\mathbb{Z}[\omega]$ d'une fonction euclidienne. On pourra par exemple montrer que le point milieu d'une maille du réseau $(a+b\omega)$ se trouve à une distance strictement plus petite que $\sqrt{N(a+b\omega)}$ de chacun des quatre sommets de cette maille.
- 3. Trouver les éléments inversibles de $\mathbb{Z}[\omega]$ (quelle est leur norme?).

Exercice 3.

L'anneau $\mathbb{Z}[\sqrt{5}]$.

- 1. Montrer que la norme $N \colon \mathbb{Z}[\sqrt{5}] \to \mathbb{Z}$ définie par $N(a+b\sqrt{5}) = a^2 5b^2$ est une fonction multiplicative (où N(ab) = N(a)N(b) et définir $a+b\sqrt{5} = a-b\sqrt{5}$) et que $a+b\sqrt{5}$ est inversible si et seulement si $N(a+b\sqrt{5}) = \pm 1$.
- 2. Montrer que $9 + 4\sqrt{5}$ est inversible et en déduire que $(\mathbb{Z}[\sqrt{5}])^{\times}$ est infini.
- 3. Montrer qu'il n'existe aucun élément de norme 2 si bien que tout élément de norme 4 est irréductible.
- 4. Trouver deux décompositions de 4 en produit d'irréductibles dans $\mathbb{Z}[\sqrt{5}]$.
- 5. L'idéal $(3 + \sqrt{5})$ est-il premier?

Exercice 4.

L'anneau $\mathbb{Z}[i\sqrt{5}]$.

1. Montrer que le polynôme $3 + 2t + 2t^2$ est irréductible sur $\mathbb{Z}[i\sqrt{5}]$, mais pas sur le corps des fractions de $\mathbb{Z}[i\sqrt{5}]$

- 2. **Généralisation.** Soient a, b, c, d des éléments irréductibles non associés d'un anneau commutatif et intègre A tels que ab = cd. Calculer (a + ct)(b + ct) et conclure que le polynôme $d + (a + b)t + ct^2$ est irréductible sur A, mais pas sur son corps des fractions K.
- 3. Montrer que la norme n'est pas une fonction euclidienne sur $\mathbb{Z}[i\sqrt{5}]$.

Exercice 5.

Idéaux dans un anneau de polynômes.

- 1. Décrire tous les idéaux premiers et tous les idéaux maximaux de $\mathbb{C}[t]$ et de $\mathbb{R}[t]$. (Without proof, we note that irreducible polynomials of degree higher than 2 do not exist in $\mathbb{R}[t]$.)
- 2. Soit K un corps et $a \in K$. Montrer que (t-a) est un idéal premier de K[s,t], mais non maximal.
- 3. Montrer que l'anneau quotient $\mathbb{C}[s,t]/(s-t^2)$ est principal
- 4. Polynôme d'interpolation de Lagrange. Soit K un corps, a_1, \ldots, a_n des éléments de K distincts et $b_1, \ldots, b_n \in K$. Montrer qu'il existe un polynôme $f \in K[t]$ de degré au plus n-1 tel que $f(a_i) = b_i$ pour tout $1 \le i \le n$.

Exercice 6.

Trouver tous les idéaux de $\mathbb{Z}[i]$ qui contiennent l'idéal (5) et tous les idéaux de $\mathbb{Z}[i]$ qui contiennent l'idéal (2).

Exercice 7.

Soit A un anneau intègre et soit $S \subseteq A$ multiplicativement clos, c'est a dire $1_A \in S$, et $\forall a, b \in S \Rightarrow a \cdot b \in S$. On définit $S^{-1}A := \{\frac{a}{b} \in \operatorname{Frac}(A) \mid b \in S\}$.

- 1. Montrer que $S^{-1}A$ est un anneau (un sous-anneau de Frac(A)).
- 2. Montrer que si $\mathfrak p$ est un idéal premier de A, alors $S:=A\setminus \mathfrak p$ est multiplicativement clos. Dans ce cas, on dénote $A_{\mathfrak p}:=S^{-1}A=\{\frac{a}{b}\in\operatorname{Frac}(A)\mid b\in S\}$, la localisation de A en $\mathfrak p$.
- 3. Considerons l'idéal premier (2) de \mathbb{Z} . Quels sont les idéaux maximaux et les ideaux premiers de $\mathbb{Z}_{(2)}$?
- 4. Soit $f \in A$. Le sous-ensemble $S := \{1, f, f^2, f^3 \dots\}$ est multiplicativement clos. Dans ce cas, on dénote $A_f = S^{-1}A = \{\frac{a}{b} \in \operatorname{Frac}(A) \mid b \in S\}$. Quels sont les éléments irréductible de \mathbb{Z}_2 ?