Algoritmos y Estructuras de Datos

Recursividad

Recursivas
Problema ejemplo

Ejemplos de recursividad

Factoria

Referencias

Algoritmos y Estructuras de Datos Recursividad

Universidad Peruana de Ciencias Aplicadas

2020

Outline

Recursividad

Recursivas
Problema ejemplo

Ejemplos de recursividad

Referencias

1. Recursividad

- 1.1 Funciones Recursivas
- 1.2 Problema ejemplo

2. Ejemplos de recursividad

- 2.1 Factorial
- 3. Referencias

Outline I

Recursividad

Recursivas
Problema ejemple

Ejemplos de recursividado Factorial

Referencias

1. Recursividad

- 1.1 Funciones Recursivas
- 1.2 Problema ejemplo
- 2. Ejemplos de recursividad
- 2.1 Factorial
- 3. Referencias

Recursividad

Recursivas

- Es un método para definir una función en términos de si misma.
- ► En programación se denomina así a una función que para cumplir su objetivo se llama a si misma. En otras palabras una función que se llama a si misma.
- ¿ Por qué escribir funciones recursivas?
 - ▶ Es una buena estrategia para resolver problemas al simplificar el problema progresivamente en cada llamada sucesiva a la misma función. Eventualmente el problema será tan simple que su solución será trivial.
 - Esta estrategia es la base para técnicas de programación como Divide v vencerás. Programación dinámica v otras.
 - ► Son sencillas de entender, diseñar, implementar y verificar.

Partes de un algoritmo recursivo

Recursivida

Funciones Recursivas

roblema eiemp

Ejemplos d recursividad

Referencias

- ► Generalmente un algoritmo recursivo consta de tres partes:
 - La llamada a si mismo
 - Condición de parada
 - ▶ Instrucciones si la condición de parada es cumplida.

Reglas para el buen uso de recursividad

Recursivas

- Caso base: el caso base es el que se puede resolver de manera trivial sin recursión. Se debe tener al menos un caso base el cual a su ves está asociado a la condición de parada y permite evitar entrar en bucles infinitos.
- ▶ Progreso: la llamada recursiva debe siempre acercarse al caso base. Para ello debe hacer cambios en el tamaño del problema reduciéndolo.
- Solamente se debe usar recursividad si la complejidad asociada es menor a la solución equivalente usando estructuras repetitivas convencionales.
- Solamente se debe usar más de una llamada incondicional cuando se tiene la seguridad de no incurrir en un crecimiento exponencial si existe otra alternativa.

¿Es la recursividad eficiente?

Recursividad

Funciones Recursivas

roblema ejem

Ejemplos o recursivida Factorial

Referencia

- ► La respuesta es: no necesariamente, de hecho son solo casos especiales en los que la recursividad es eficiente.
- ▶ La principal ventaja es que puede simplificar enormemente la implementación de la solución a un problema (por código, fácil corrección de errores).
- ▶ Debe usarse con cuidado, siempre teniendo en cuenta las reglas de buen uso de recursividad.

Contar de triángulos

Problema ejemplo

► Cuántos triángulos se pueden contar en la figura mostrada?

Outline I

Recursividad

Recursivas
Problema ejemplo

Ejemplos de recursividad

Factorial

Referencia

1. Recursividad

- 1.1 Funciones Recursivas
- 1.2 Problema ejemplo
- 2. Ejemplos de recursividad
- 2.1 Factorial
- 3. Referencias

December 1

Funciones Recursivas

Ejemplos de

Factorial

```
factorial(n) = n!
n! = n * (n-1)!
(2)
```

 $n! = \prod_{i=1}^n i$

Factorial

Recursividad

Recursivas
Problema ejemplo

Ejemplos de recursividad

Factorial

Deferencias

```
int factorial(int n) {
   if (n == 0) {
      return 1;
   } else {
      return n * factorial(n-1);
   }
}
```

So...

Outline I

Recursividad

Recursivas
Problema ejemple

Ejemplos de recursividad

Referencias

1. Recursividad

- 1.1 Funciones Recursivas
- 1.2 Problema ejemplo
- 2. Ejemplos de recursividad
- 2.1 Factorial
- 3. Referencias

12/13

Referencias

Recursividad

Recursivas
Problema ejemplo

recursivida

Referencias

Thomas H. Cormen, Charles E. Leirserson, Ronald L. Rivest, Clifford Stein. *Introduction to Algorithms*. Third edition, The MIT Press, Cambridge, Massachusetts, 2009.