

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Cornélio Procópio

AULA 4

ECDR – SARKIS MELCONIAN

Professor: Dr. Paulo Sergio Olivio Filho

CONTEÚDO DA AULA

DIMENSIONAMENTO BÁSICO DE ENGRENAGENS

- ECDR Engrenagens Cilíndricas de Dentes Retos.
- 2. Calculo de cargas aplicadas ao dente
- Calculo do volume mínimo do dente
- 4. Calculo de resistência do dente

DEFINIÇÃO

• Denomina-se engrenagem a peça de formato cilíndrico (engrenagem cilíndrica), cônico (engrenagem cônica) ou reto (cremalheira), dotada de dentes externos ou internos, cuja finalidade é transmitir movimento sem deslizamento e potência, multiplicando os esforços com a finalidade de gerar trabalho.

CARACTERÍSTICAS GERAIS

- → Alto custo;
- → Rigidez na transmissão;
- → A relação de transmissão é constante;
- → Possuem bom rendimento (Alto rendimento);
- → Custo com manutenção reduzido (Pouca manutenção);
- → O índice de ruído é maior em relação a outras transmissões;
- Dimensões reduzidas, para distância entre centros pequena;
- → Seu funcionamento é seguro e resistem bem as sobrecargas;
- → Transmitem forças sem deslizamento (Sem escorregamento);
- → São utilizadas em eixos paralelos ou reversos (dentes helicoidais);
- → Possuem vida útil longa em relação a outros tipos de transmissões;
- → Amplamente utilizada em sistemas mecânicos e equipamentos mecânicos;

ESCOLHA DO SISTEMA DE TRANSMISSÃO

Condição para a escolha da forma e do tipo de transmissão

- Conhecimento das exigências e condições de funcionamento: potencia nominal, rotação de serviço, relação de transmissão, momento de partida, número de partidas, tempo de funcionamento por dia, grau de solicitação
- Familiaridade com as propriedades e com as formas construtivas das transmissões que podem ser adotadas
- Dados suficientes para determinas as dimensões principais em função da potencia a transmitir
- Ou dados para comparação de peso e custo em função das dimensões principais

ECDR

 As engrenagens cilíndricas de dentes retos, têm dentes paralelos ao eixo de rotação e são utilizadas para transmitir movimento entre dois eixos paralelos.

ECDH

 As engrenagens helicoidais, têm dentes inclinados em relação ao eixo de rotação. Podem ser utilizadas nas mesmas aplicações que as engrenagens de dentes retos, porém sem ser tão barulhentas quanto aquelas, devido ao engajamento mais gradual dos dentes durante o engranzamento.

ENGRENAGENS CILÍNDRICAS

Característica das Engrenagens Cilíndricas:

Dentes retos

- conhecida como ECDR;
- trabalham em eixos paralelos;
- mais baratas e mais fáceis de fabricar;
- apresentam rendimento maior;
- não geram cargas axiais na engrenagem.

Dentes Helicoidais

- Trabalham com eixos reversos (mais comum eixos à 90°)
- mais silenciosas
- resistem a maiores potências numa mesma largura

Dados:

- relação de transmissão: até 8 (limite prático: 5)
- potência: até 25.000 Cv
- rotação: até 100.000 rpm
- velocidade tangencial: até 200 m/s
- rendimento: 99% (dentes retos) a 97% (helicoidais).

Dentes Helicoidais

Dentes retos

ENGRENAGENS CÔNICAS

• As engrenagens cônicas, têm dentes formados em superfícies cônicas e são utilizadas para transmitir movimento entre eixos que se interceptam.

ENGRENAGENS CÔNICAS

UTTPR CORNÉLIO PROCÓPIO

- Característica das Engrenagens Cônicas:
- Dentes retos
 - Dentes não apresentam a mesma espessura;
 - Transmissão (i) de 1 a 6;
 - Trabalham com eixos concorrentes.
- Dentes Inclinados
 - Trabalham com eixos concorrentes
- Dentes Helicoidais
 - Dentes apresentam a mesma espessura;
 - Trabalham com eixos concorrentes.
- Dados:
 - relação de transmissão: até 6
 - potência: até 125.000 Cv
 - rotação: até 100.000 rpm
 - velocidade tangencial: até 200 m/s
 - rendimento: 95 a 98 %.

Dentes Inclinados

Dentes retos

Dentes Helicoidais

ENGRENAGENS DE COROA E SEM FIM

 O par parafuso-coroa sem-fim, representa o quarto tipo básico de engrenagem. Como mostrado, o pinhão sem-fim assemelha-se a um parafuso. Transmite movimento rotativo entre eixos não paralelos e não interceptantes.

FABRICAÇÃO DE ENGRENAGENS

Processos de fabricação de engrenagens são divididos em:

- Usinagem de engrenagens
- Fundição
- Sem retirada de cavaco
 - ✓ Forjamento
 - ✓ Estampagem

FUNDIÇÃO: A fabricação de engrenagens por fundição utiliza, basicamente os processos por gravidade, sob pressão e em casca.

SEM RETIRADA DE CAVACO: Esse processo é dividido em dois subgrupos.

- Classificam-se como forjamento: extrusão, trefilação, laminação e forjamento em matriz
- > O processo de estampagem resume-se em ferramenta de corte.

USINAGEM DE ENGRENAGENS

O processo de obtenção de engrenagens por meio da usinagem é dividido em dois subgrupos.

- Usinagem com ferramentas
 - ✓ A usinagem com ferramenta de forma consiste na utilização de fresa módulo, fresa de ponta, brochamento.
- Usinagem por geração
 - ✓ A usinagem por geração é efetuada com a utilização de fresa caracol (hob), cremalheira de corte, engrenagem de corte.
 - ✓ É o processo mais utilizados na indústria.

QUALIDADE DA ENGRENAGEM

• A norma DIN especifica 12 qualidades de tolerância:

Qualidade	Aplicações			
01	Atualmente não é utilizada. Foi criada prevendo-se uma utilização futura.			
02	São utilizadas em indústrias de precisão (relojoaria e aparelhos de precisão)			
03	São utilizadas como padrão em laboratórios de controle. São consideradas engrenagens de precisão.			
04	Utilizam-se na fabricação de engrenagens padrão, engrenagens para aviação, engrenagens de alta precisão (exemplo: torres de radar)			
05	São utilizadas em aviões, máquinas operatrizes, instrumentos de medidas, turbinas, etc.			
06	Utiliza-se em automóveis, ônibus, caminhões, navios, em mecanismos de alta rotação.			
07	Empregadas em veículos, máquinas operatrizes, máquinas de levantamento e transporte, etc.			
08 e 09	08 e 09 São as mais empregadas, pois não precisam ser retificadas. Utiliza-se em máquinas em geral.			
10 até 12	São engrenagens mais rústicas, normalmente utilizadas em máquinas agrícolas.			

QUALIDADE DA ENGRENAGEM

- A escolha da qualidade da engrenagem pode ser baseada na sua velocidade periférica:
- A velocidade periférica é dada por

$$V = \omega r_p$$

Velocidade Periférica (m/s)	Qualidade	Velocidade Periférica (m/s)	Qualidade
< 2	11 – 12	5 até 10	7 – 8
2 até 3	10 – 11	10 até 15	6 – 7
3 até 4	9 – 10	> 15	6
4 até 5	8 – 9		

PERFIL DO DENTE

- A maioria da engrenagem é constituída de dentadura com perfil envolvente.
- Círculo de um arranjo de engrenagens.

PERFIL DO DENTE

• Construção da curva evolvente a partir do círculo base.

ECDR - NOMENCLATURA

	•
Número de dentes	Módulo
$Z = \frac{d_0}{m}$	$m = \frac{t_0}{\pi}$
Passo Circular (t ₀)	Espessura do dente no circulo primitivo
$t_0 = m\pi$	$S_0 = \frac{t_0}{2}$
Altura do dente	Altura da cabeça do dente
h=2m	$h_k = m$
	8
Vão entre os dentes no circulo primitivo	Angulo de Pressão
$I_0 = \frac{t_0}{2}$	$\alpha = 20^{\circ}$
Altura total do dente	Altura do pé do dente
$h_k = 2,2m$	$h_f = 1, 2m$
Folga da cabeça do dente engr.	Relação de transmissão
$S_k = 0, 2m$	$i = \frac{Z_2}{Z_1} = \frac{d_{02}}{d_{01}} = \frac{n_1}{n_2}$
Largura do dente	Distância entre centros
A ser dimensionado ou adotado	$C_c = \frac{d_{01} + d_{01}}{2}$

- Diâmetro primitivo: $d_0 = m \cdot Z$
- Diâmetro de base: $d_g = d_0 \cdot \cos \alpha$
- Diâmetro interno ou pé do dente: $d_f = d_0 2h_f$
- Diâmetro externo ou cabeça do dente: $d_k = d_0 + 2h_k$

No dimensionamento de um par de engrenagens, o pinhão (engrenagem menor) é o dimensionado, pois se ele resistir ao esforço aplicado, a coroa (engrenagem maior) suportará com folga a mesma carga por ser uma engrenagem maior.

O dimensionamento de engrenagens consiste de duas etapas.

- > A primeira é o dimensionamento verificando-se o desgaste da engrenagem, desta forma o pinhão é analisado pelo *critério de pressão*.
- Após feita a analise pelo critério de pressão, o pinhão é verificado utilizando-se o critério de resistência à flexão no pé do dente que analisará se o dente tem resistência mecânica suficiente para suportar os esforços transmitidos pelo par de engrenagens.

• Torque no Pinhão

$$M_T = \frac{30000 \, P}{\pi} [N.mm]$$

Relação de Transmissão

$$i = \frac{Z_2}{Z_1}$$

Fator de Durabilidade

$$W = \frac{60n_p h}{10^6}$$

• Cálculo de Pressão admissível

$$P_{adm} = \frac{0,487HB}{w^{1/6}}$$

Brinell		Resistência N/mm²	Rockwell				
Impr. mm Carga 30kN Esfera	Dureza HB (NV mm²)	Aço Carbono HB x 0,36	2 O	B Rb	A Ra	Shore	Vickers
10mm							
(2.05)	(8990)	3233		()		1	
(2.10)	(8570)	3085					
(2.15)	(8170)	2941	0.5,400				
(2.20)	(7800)	2808	70			106	1150
(2.25)	(7450)	2682	68		84.1	100	1050
(2.30)	(7120)	2563	66			95	960
(2.35)	(6820)	2455	64		82.2	91	885
(2.40)	(6530)	2351	62	AUTO STATE OF	81.2	87	820
(2.45)	(6270)	2257	60	British	80.5	84	765
(2.50)	(6010)	2164	58	1104441600	80.2	81	717
2.55	5780	2081	57		79,4	78	675
2.60	5550	1998	55	(120)	78.6	75	533
2.65	5340	192.2	53	(119)	77.9	72	598

Brinell		Resistência N/mm²	Rockwell				
Impr. mm Carga 30kN Esfera	Dureza HB (N/ mm²)	Aço Carbono HB x 0,36	o R	B Rb	A Ra	Shore	Vickers
2.65	5340	192.2	53	(119)	77.9	72	598
2.70	5140	1850	52	(119)	77.0	70	
2.75	4950	1782	50	(117)	76.5	67	
2.80	4770	1717	49	(117)	75.7	65	515
2.85	4610	166.0	47	(116)	75.0	63	567
2.90	4440	159.8	46	(115)	74.2	61	540
2.95	4290	1544	45	(115)	73.4	59 155	SER 454
3.00	4150	1494	44	(114)	72.8	57	437
3.05	4010	1444	42	(113)	72.0	55	420
3.10	3880	1387	41	(112)	71.4	54	404
3.15	3750	1350	40	(112)	70.6	52	389
3.20	3630	1307	38	(110)	70.0	, 51	375
3.25	3520	1267	37	(110)	69.3	49	363
3.30	3410	1228	36	(109)	68.7	48	350

Brinell		Resistência N/mm²	Rockwell		100		
Impr. mm Carga 30kN Esfera	Dureza HB (NV mm²)	Aço Carbono HB x 0,36	C Rc	B Rb	A Ra	Shore	Vickers
3.35	3310	1192	35	(109)	68.1	46	339
3.40	3210	1156	34	(108)	67.5	45	327
3.45	3110	1120	35	(108)	68.9	44	316
3.50	3020	1087	32	(107)	66.3	43	305
3.55	2930	1055	31	(106)	65.7	42	296
3.60	2850	1026	30	(105)	65.3	40	287
3.65	2770	99.7	29	(104)	64.6	39	279
3.70	2690	969	28	(104)	64.1	38	270
3.75	2620	943	26	(103)	63.6	37	263
3.50	2550	918	25	(102)	63.0	37	256
3.85	2480	893	24	(102)	62.5	36	248
3.90	2410	868	23	100	61.8	35	241
3.95	2350	846	22	99	61.4	34	235
4.00	2290	824	21	98	60.8	33	223

• Fator de Serviço $oldsymbol{arphi}$

Tabela 1 - Acionamento por motores elétricos ou turbinas

Aplicações	Serviços		
	10h	24h	
AGITADORES			
Líquidos	1,00	1,25	
Misturadores de polpa	1,25	1,50	
Semilíquidos de densidade variável	1,25	1,50	
ALIMENTADORES			
Alimentadores helicoidais	1,25	1,50	
Alimentadores recíprocos	1,75	2,00	
Transportadores (esteira e correia)	1,25	1,50	

Aplicações	Serviços		
	10h	24h	
Descascadores			
Mecânicos e hidráuticos	1,25	1,80	
Tambores e descascadores	1,75	2,00	
Embobinadeiras	1,00	1,25	
Esticadores de feltro	1,25	1,50	
Jardanas	1,75	2,00	
Prensas	1,00	1,28	
Secadoras	1,25	1,80	
GERADORES 1,00 1,25			
GUINCHOS E GRUAS			
Cargas uniformes	1.25	1,80	
Cargas pesadas	1,75	2,00	
GUINDASTES (consulte)			
INDÚSTRIA ALIMENTÍCIA			
Cozinhadores de cereais	1,00	1,25	
Enlatadoras e engarrafadoras	1,00	1,25	
Misturadores de massa	1,25	1,80	
Moedores de carne	1,25	1,80	
Picadores	1,25	1,80	

	OOMITEEN	J 1 11000
INDÚSTRIA DE BORRACHA E PLÁSTICO		
Calandras		1,80
Equipamentos de laboratório	1,25	1,80
Extrusoras (entubadoras)	•	1,50
Moinhos		
Moinhos citindricos	•	1,50
2 em linha	•	1,50
3 em linha	•	1,25
Refinadores '	•	1,80
Trituradores e misturadores	•	2,00
INDÚSTRIA MADEIREIRA		
Alimentadoras de plaina	1,25	1,50
Serras	1,50	1,75
Tombadores despolpadores	1,75	2,00
Transportadores de tora	1,75	2,00
INDÚSTRIA TÊXTIL		
Calandras	1,25	1,50
Cordas	1,25	1,50
Filatórios e retorcedeiras	1,25	1,50
Maçaroqueiras	1,25	1,50
Máquinas de tinturaria	1,25	1,50
INDÚSTRIA METALÚRGICA		
Cortadores de chapa	1,25	1,50

Aplicações	Serviços	
	10h	24h
BOMBAS		
Centrifugas	1,00	1,25
Dupla ação multicilíndrica	1,25	1,50
Recíprocas de descargas livres	1,25	1,50
Rotativas de engrenagens ou lobos	1,00	1,25
BRITADORES		
Pedra e minérios	1,75	1,00
CERVEJARIAS E DESTILARIAS		
Cozinhadores - serviço contínuo	1,00	1,25
Tachos de fermentação - serviço contínuo	1,00	1,25
Misturadores	1,00	1,25
CLARIFICADORES	1,00	1,25
CLASSIFICADORES	1,00	1,25
DRAGAS		
Guinchos, transportadores e bombas	1,25	1,50
Cabeçotes rotativos e peneiras	1,75	2,00
EIXO DE TRANSMISSÃO		
Cargas uniformes	1,00	1,25
Cargas pesadas	1,25	1,50

ELEVADORES		
Caçambas - carga uniforme	1,00	1,25
Caçambas - carga pesada	1,25	1,50
Elevadores de carga	1,25	1,50
EMBOBINADEIRAS		
Metais	1,25	1,50
Papel	1,00	1,25
Têxtil	1,25	1,50
ENLATADORAS E ENGARRAFADORAS	1,00	1,25
ESCADAS ROLANTES	1,00	1,25
FÁBRICA DE CIMENTO		
Britadores de mandíbulas	1,75	2,00
Fomosrotativos	1,75	1,50
Moinhos de bolas e rolos	1,75	1,50
FÁBRICAS DE PAPEL		
Agitadores (Misturadores)	1,25	1,50
Alvejadores	1,00	1,25
Batedores e despolpadores	1,25	1,50
Calandras	1,25	1,80
Hipercalandras	1,75	3,00
Cilindros	1,25	1,50

Volume mínimo do Pinhão

A expressão seguinte dever ser utilizada no dimensionamento de pinhões com ângulo de pressão α = 20º e número de dentes entre 18 e 40

$$b_1 \cdot d_{0_1}^2 = 5.72 \cdot 10^5 \cdot \frac{M_T}{p_{adm}^2} \cdot \frac{i \pm 1}{i \pm 0.14} \cdot \phi$$

Módulo de Engrenamento

$$b_1 d_{o1}^2 = x e \frac{b_1}{d_{o1}} = y$$

$$m = \frac{d_{o1}}{Z_1}$$

ENGRENAGEM BIAPOIADA b/d₀ ≤ 1,2

ENGRENAGEM EM BALANÇO b/d₀ ≤ 0,75

Módulo (mm)	Incremento (mm)
0,3 a 1,0	0,10
1,0 a 4,0	0,25
4,0 a 7,0	0,50
7,0 a 16,0	1,00 .
16,0 a 24,0	2,00
24,0 a 45,0	3,00
45,0 a 75,0	5,00

Diâmetro Primitivo (Recalculado)

$$d_{o1(R)} = m_n Z_1$$

Largura do Pinhão

$$b_1 = \frac{x}{d_{o1}^2}$$

Resistência à Flexão no Pé do Dente

Somente o dimensionamento ao critério de desgaste é insuficiente para projetar a engrenagem. É necessário que seja verificada a resistência à flexão no pé do dente. A engrenagem estará apta a suportar os esforços da transmissão quando a tensão atuante no pé do dente for menor ou igual à tensão admissível do material indicado.

• A força tangencial (F_t) é responsável pelo movimento das engrenagens, sendo também a carga que origina o momento fletor, tendendo a romper por flexão o pé do dente.

Critério Resistência à Flexão no Pé do Dente

Força Tangencial

$$F_T = \frac{2M_T}{d_{o1}}[N]$$

• Fator de forma (q)

Obtém-se o fator de forma em função do número de dentes do pinhão. É necessário interpolar os valores.

Fator de forma (q)

Engrenamento Externo								
nº de dentes	10	11	12	13	14	15	16	
fator q	5,2	4,9	4,5	4,3	4,1	3,9	3,7	
nº de dentes	17	18	21	24	28	34	40	
fator q	3,6	3,5	3,3	3,2	3,1	3,0	2,9	
nº de dentes	50	65	80	100				
fator q	2,8	2,7	2,6	2,5				
Engrenameno Interno								
nº de dentes	20	24	30	38	50	70	100	200
fator q	1,7	1,8	1,9	2,0	2,1	2,2	2,3	2,4

Tensão máxima atuante no pé do dente

$$\sigma_{m\acute{a}x} = \frac{F_T.\,q.\,\varphi}{b.\,m_n} \leq \sigma_{mat}$$

MATERIAL	MP _a (N/mm ²)
FoFo cinzento	40
FoFo nodular	80
Aço fundido	90
SAE 1010/1020	90
SAE 1040/1050	120
SAE 4320/4340	170
SAE 8620/8640	200
Mat. Sintético - Resinas	35

Dimensionar o par de engrenagens cilíndricas de dentes retos (ECDR) **Z1** e **Z2** para que possa atuar com segurança na transmissão representada na figura. O acionamento será por meio de motor elétrico, com potência P=11kW e rotação n = 1140 rpm.

- O material das engrenagens é o SAE 4340, a dureza prevista é 58 HRC e a vida útil do par especificada em \rightarrow 10000h.
- Características de serviço: eixo de transmissão, carga uniforme 10h/dia.

Considere:

$$\begin{split} \frac{b_2}{d_{o_1}} &= \text{0,25(relação largura e diametro primitivo);} \\ \alpha_{n_0} &= 20^{\circ} (\text{ângulo de pressão}); \\ Z_1 &= 29 \text{ dentes (pinhão);} \\ Z_2 &= 110 \text{ dentes (coroa);} \end{split}$$

Desprezar as perdas na transmissão.

• Torque do pinhão

$$M_{T} = \frac{30 P}{\pi \cdot n} = \frac{30 \cdot 11000}{\pi \cdot 1140}$$

$$M_T = 92,14 \text{ Nm}$$

$$M_T = 92140 \text{ Nmm}$$

• Relação de transmissão

$$i = \frac{Z_2}{Z_1} = \frac{110}{29} = 3,79$$

• Fator de durabilidade

$$W = \frac{60 \cdot n_p \cdot h}{10^6}$$

$$W = \frac{60 \cdot 1140 \cdot 10^4}{10^6}$$

$$W = 684$$

$$W^{\frac{1}{y_5}} = 2,97$$

	Resistência N/mm²	Rockwell
Dureza HB (IW mm²)	Aço Cartono HB x 0,36	S 0
(8980)	3233	
(8570)	3085	
(8170)	2941	
(7800)	2803	70
(7450)	2682	68
(7120)	2563	66
(6820)	2455	64 CT
(6530)	2351	62
(6270)	2257	60
(6010)	2164	58
5780	2081	57
5550	1998	55
5340	192.2	53

Pressão admissível

$$p_{adm} = \frac{0.487 \cdot 6000}{2.97}$$

$$p_{adm} \cong 984 \, \text{N/mm}^2 = 9.84 \cdot 10^2 \, \text{N/mm}^2$$

• Fator de serviço e volume do dente

Tabela 1 - Acionamento por motores elétricos ou turbinas

Aplicações	Serviços		
507 (SWI) (SWI)	10h	24h	
AGITADORES			
Líquidos	1,00	1,25	
Misturadores de polpa	1,25	1,50	
Semilíquidos de densidade variável	1,25	1,50	

$$b_1 \cdot d_{0_1}^2 = 5.72 \cdot 10^5 \cdot \frac{M_T}{p_{adm}^2} \cdot \frac{i \pm 1}{i \pm 0.14} \cdot \phi$$

$$b_1 d_{0_1}^2 = 5.72 \cdot 10^5 \cdot \frac{92140}{\left(9.84 \cdot 10^2\right)^2} \cdot \frac{3.79 + 1}{3.79 + 0.14} \cdot 1$$

$$b_1 d_{o_1}^2 \cong 66343 \,\text{mm}^3$$

$$b_1 d_{0_1}^2 \cong 6,6343 \cdot 10^4 \text{ mm}^3$$

Calculo do Diâmetro Primitivo

$$\widetilde{b_1}~d_{o_1}^2 \cong 66343~\text{mm}^3$$

$$\frac{b_1}{d_{o_1}} = 0.25 \Rightarrow b_1 = 0.25 d_{o_1}$$

$$0.25 d_{0_1} \cdot d_{0_1}^2 = 66343$$

$$d_{0_1}^3 = \frac{66343}{0.25}$$

$$d_{o_1} = \sqrt[3]{\frac{66343}{0.25}}$$

$$d_{o_i} \cong 64,3$$
mm

Calculo do modulo real padronizado

$$m = \frac{1}{Z_1} = \frac{1}{29}$$
 $d_{o_{1(A)}} = \frac{1}{d}$
 $d_{o_{1(A)}} = \frac{1}{d}$

$$d_{o_{1(R)}} = m_n \cdot Z_1$$

$$d_{o_{1(R)}} = 2,25 \cdot 29$$

$$d_{o_{1(R)}} = 65,25 \text{mm}$$

Calculo da largura do pinhão

$$b_1 d_{o_{1(R)}}^2 = 66343$$

$$b_1 = \frac{66343}{d_{o_{1(R)}}^2} = \frac{66343}{65,25^2}$$

Resistência a Flexão do Pé do Dente

$$F_{T} = \frac{2 M_{T_{1}}}{d_{O_{1(R)}}} = \frac{2 \cdot 92140 \text{ Nmm}}{65,25 \text{ part}}$$

$$F_T = 2825 \, \text{N}$$

$$\sigma_{\text{máx}} = \frac{F_{\text{T}} \cdot q \cdot \phi}{b \cdot m_{\text{n}}} \leq \overline{\sigma}_{\text{mat}}$$

$$\sigma_{\text{máx}} = \frac{2825 \cdot 3,0835 \cdot 1}{16 \cdot 2,25}$$

$$\sigma_{\text{máx}} = 242 \, \text{N/mm}^2$$

Calculo do modulo real padronizado

$$\sigma_{4340} = 170 \text{ N/mm}^2 \text{ (página 110)}$$

$$\sigma_{\text{máx}} = 242 \text{ N/mm}^2 > \overline{\sigma}_{4340} = 170 \text{N/mm}^2$$

O material falhará

• Recalculo da largura

$$b = \frac{F_T \cdot q \cdot \varphi}{m_n \cdot \sigma_{4340}} = \frac{2825 \cdot 3,0835 \cdot 1}{2,25 \cdot 170}$$

$$b = 23 \text{ mm}$$

 Calculo da relação de largura e Diâmetro primitivo

$$\frac{b_1}{d_{0_1}} = \frac{23}{65,25} \cong 0,35$$

portanto
$$\frac{b_1}{d_{0_1}} = 0.35 < 1.2$$

 Aumento da resistência sem alterar a largura do dente - modulo 2,75

$$d_{o_{1(R)}} = Z_1 \cdot m_n = 29 \cdot 2,75$$

$$d_{o_{1(n)}} = 79,75$$
mm

• Recalculo da força tangencial

$$F_{T} = \frac{2M_{T_{1}}}{d_{o_{1(n)}}} = \frac{2 \cdot 92140}{79,75}$$

$$F_T \cong 2310 \,\mathrm{N}$$

Recalculo da Resistência a Flexão do Pé do Dente

$$\sigma_{\text{max}} = \frac{F_{\text{T}} \cdot q \cdot \varphi}{b_1 \cdot m_0} = \frac{2310 \cdot 3,0835 \cdot 1}{16 \cdot 2,75}$$

$$\sigma_{\text{max}} \cong 162 \, \text{N/mm}^2$$

$$\frac{b_1}{d_{o_1}} = \frac{16}{79,75} = 0.2$$

O material não falhará

portanto,
$$\frac{b_1}{d_{o_1}} = 0.2 < 1.2$$
,

EXERCÍCIO PARA ENTREGAR

Dimensionar o par de engrenagens cilíndricas de dentes retos (ECDR) **Z3** e **Z4** para que possa atuar com segurança na transmissão representada na figura. O acionamento será por meio de motor elétrico, com potência P=5,5kW e rotação n=1400rpm.

- O material das engrenagens é o SAE 8640, a dureza prevista é 60 HRC e a vida útil do par especificada em \rightarrow 10000 h.
- Características de serviço: eixo de transmissão, carga uniforme 24h/dia.

```
\alpha_{n_0} = 20^{\circ} (\text{\^{a}} \text{nuglodepress\~{a}} \text{o});
Z_1 = 23 \text{dentes}(\text{pinh\~{a}} \text{o});
Z_2 = 56 \text{dentes}(\text{coroa});
Z_3 = 27 \text{dentes}(\text{pinh\~{a}} \text{o});
Z_4 = 68 \text{dentes}(\text{coroa});
Desprezar as perdas na transmiss\~{a} o.
```

Crie um programa em python para resolução do problema

