Projekt i implementacja aplikacji realizującej operacje arytmetyczne na kwantyfikatorach lingwistycznych

Bartosz Taczała

Wydział Informatyki, ZUT

1 grudnia 2009

Spis treści

- 1 Cel pracy
- 2 Przedstawienie problemu
- 3 Część teoretyczna
- 4 Opis programu
- 5 Rozwiązanie przykładowego problemu

Cel pracy

Opracowanie programu pozwalającego na wykonywanie podstawowych operacji arytmetycznych $(+,-,\cdot,\setminus)$ na zmiennych losowych ciągłych wyrażonych poprzez funkcję gęstości rozkładu prawdopodobieństwa (co można utożsamić z kwantyfikatorem lingwistycznym).

Opracowanie programu pozwalającego na wykonywanie podstawowych operacji arytmetycznych $(+,-,\cdot,\setminus)$ na zmiennych losowych ciągłych wyrażonych poprzez funkcję gęstości rozkładu prawdopodobieństwa (co można utożsamić z kwantyfikatorem lingwistycznym).

matematyka statystyczna + matematyka rozmyta + ... + aplikacja =rozwiązywanie problemów przedstawionych za pomocą pojeć lingwistycznych

Opis przykładowego problemu rozwiązywalnego poprzez aplikację będącą celem pracy

- W biznesie pierwszym prawdopodobieństwo wygranej bliskiej 10 milionów złotych jest duże.
- W biznesie drugim prawdopodobieństwo wygranej bliskiej 20 milionów złotych jest małe.
- W który biznes ze statystycznego punktu widzenia lepiej zainwestować?

Opis przykładowego problemu rozwiązywalnego poprzez aplikację będącą celem pracy

- W biznesie pierwszym prawdopodobieństwo wygranej bliskiej 10 milionów złotych jest duże.
- W biznesie drugim prawdopodobieństwo wygranej bliskiej 20 milionów złotych jest małe.
- W który biznes ze statystycznego punktu widzenia lepiej zainwestować?
- W którym biznesie wartość oczekiwana z rozkładu łącznego jest większa?

Prawdopodobieństwo

 Operacje na funkcjach rozkładu gestości prawdopodobieństwa zmiennych losowych

$$F(x) = \int_{-\infty}^{x} f(u) du$$

traktowanych jako kwantyfikatory lingwistyczne

 Zmienne losowe powstałe w wyniku operacji arytmetycznych na innych zmiennych losowych

$$X = X_1 + X_2$$
$$X = X_1 \cdot X_2$$

Prawdopodobieństwo

Rozkłady gestości dla zmiennych losowych powstałych w wyniku przeprowadzenia operacji arytmetycznych, posłużą nam jako baza wiedzy dla zadanego problemu. Wyliczanie cech rozkładu prawdopodobieństwa (takich jak wartość oczekiwana) można uznać jako odpowiedź na postawione pytanie.

Operacja na rozkładach gęstości

Operacja na rozkładach gestości są operacjami splotopodobnymi. Oznacza to że, każda operacja na kwantyfikatorach lingwistycznych, będzie w rezultacie dawała funkcję rozkładu gęstości prawdopodobieństwa podobną do sploty funkcji, a w przypadku operacji e, utożsamionej z sumą dwóch zmiennych losowych, da dokładnie splot funkcji gęstości zmiennych składowych

Operacje na rozkładach gęstości

■ Operacja + (⊕ na rozkładach)

$$S = X_1 + X_2$$

$$F(s) = \int_0^{x_1} f_1(x_1) f_2(s - x_1) dx_1$$

■ Operacja - (⊕ na rozkładach)

$$S = X_1 - X_2$$

$$F(s) = \int_0^{x_1} f_1(x_1) f_2(x_1 - s) dx_1$$

Operacje na rozkładach gęstości

■ Operacja · (⊗ na rozkładach)

$$S = X_1 \cdot X_2$$

$$F(s) = \int_{0}^{x_1} f_1(x_1) f_2(\frac{s}{x_1}) \frac{1}{x_1} dx_1$$

■ Operacja \(() na rozkładach)

$$S = \frac{X_1}{X_2}$$

$$F(s) = \int_{0}^{x_1} f_1(x_1) f_2(\frac{x_1}{s}) x_1 dx_1$$

Bartosz Taczała

Aplikacja

Opis

Graficzna aplikacja umożliwiająca wprowadzanie funkcji rozkładu gestości w postaci

punktów

$$X = [0, 1, 2, ...]$$

$$X = [0, 1, 2...]$$

 $Y = [1, 2, 4...],$

Opis programu

Opis

Graficzna aplikacja umożliwiająca wprowadzanie funkcji rozkładu gęstości w postaci

punktów

$$X = [0, 1, 2...]$$

$$Y = [1, 2, 4...],$$

wzoru

$$f(x) = gauss(x - 4, 0, 1) \cdot sin(pow(x, 2)),$$

Aplikacja

Opis

funkcji określonej przedziałami

$$f(x) = \begin{cases} 10.331 * x - 5.785, & \text{dla } 0.56 < x \le 0.78 \\ 2.273, & \text{dla } 0.78 < x <= 1, \end{cases}$$

oraz na wykonywanie podstawowych operacji arytmetycznych na tych rozkładach (kwantyfikatorach lingwistycznych).

Język programowania C++

Język programowania

C++

Biblioteki zewnętrzne

Qt

Język programowania

C++

Biblioteki zewnętrzne

- Qt
- Boost

Język programowania

C++

Biblioteki zewnętrzne

- Qt
- Boost
- KPlot

Język programowania

C++

Biblioteki zewnętrzne

- Qt
- Boost
- KPlot
- Eigen2

Konwersja problemu

 Należy zredefionwać problem z języka naturalnego do języka statystyki matematycznej.

Konwersja problemu

- Należy zredefionwać problem z języka naturalnego do języka statystyki matematycznej.
- Każdemu kwantyfikatorowi należy przypisać funkcję rozkładu gęstości

Konwersja problemu

- Należy zredefionwać problem z języka naturalnego do języka statystyki matematycznej.
- Każdemu kwantyfikatorowi należy przypisać funkcję rozkładu gęstości
- Za pomocą aplikacji wykonać odpowiednie operacje

Redefinicja dla funkcji rozkładu gęstości prawdopodobieństwa

Biznes pierwszy

W biznesie pierwszym prawdopodobieństwo wygranej bliskiej 10 milionów złotych jest duże.

$$X_{\text{biznes1}} = X_{duze} \cdot X_{bliskie10mln} + X_{male} \cdot X_{niebliskie10mln}$$
 $f_{biznes1} = f_{duze} \otimes f_{bliskie10mln} \oplus f_{male} \otimes f_{nie} \text{ bliskie10mln}$

Redefinicja dla funkcji rozkładu gęstości prawdopodobieństwa

Biznes drugi

W biznesie drugim prawdopodobieństwo wygranej bliskiej 20 milionów złotych jest małe.

$$X_{\text{biznes1}} = X_{male} \cdot X_{bliskie20mln} + X_{duze} \cdot X_{niebliskie10mln}$$
 $f_{biznes1} = f_{\text{male}} \otimes f_{\text{bliskie20mln}} \oplus f_{\text{duze}} \otimes f_{\text{nie}} \text{ bliskie20mln}$

Kwantyfikatory lingwistyczne

■ Kwantyfikator *duże* oraz *małe* zdefiniowane przez doktora Landowskiego

Kwantyfikatory lingwistyczne

- Kwantyfikator *duże* oraz *małe* zdefiniowane przez doktora Landowskiego
- Kwantyfikatory bliskie 10 mln, nie bliskie 10 mln, bliskie 20 mln oraz nie bliskie 20 mln to przeskalowane kwantyfikatory duże oraz małe

Szukana zależność

 $EX_{biznes1} > EX_{biznes2}$?

Szukana zależność

$$EX_{biznes1} > EX_{biznes2}$$
 ?

$$\int_{-\infty}^{\infty} f_{\text{biznes}1}(x) dx > \int_{-\infty}^{\infty} f_{\text{biznes}2}(x) dx ?$$

Funkcje gęstości rozkładu prawdopodobieństwa dochodu dla obu biznesów

Wartości oczekiwane dla obu biznesów

W przeprowadzonych badań wynika, że wartość oczekiwana z biznesu pierwszego wynosi ≈ 7.4. Warość oczekiwana z biznesu drugiego wynosi \approx 8.46. Ze statystycznego punktu widzenia bardziej opłacalne jest inwestowanie w biznes drugi, oczywiście jeśli uważać, że miarodajna cechą jest sama wartość oczekiwana.