Module 6 Final Project | Nutrition Data

Trang Tran

CPS Analytics, Northeastern University

ALY6020 | Predictive Analytics

Professor Prashant Mittal

Dec 16, 2023

Introduction

With a cleaned version of the original Nutrition data, which is sourced from the Food and Drug Administration (FDA), the analysis focuses on nutrient information of around nine thousand food items. The objectives include four main parts: Data Cleaning, Imputation, Preprocessing, and Predictive Modeling. Selected predictors undergo imputation, preprocessing, and outlier detection, paving the way for various classification techniques like KNN, Logistic Regression, SVM, Random Forest, Gradient Boosting, and XGBoost. The report concludes by prescribing the best-performing model for predicting a binary calorie response variable, offering insights for informed decision-making in food nutrition labeling.

Data Cleaning and Imputation

The cleaned Nutrition dataset consists of 8789 rows and 45 columns. We chose to keep 15 predictors and one target variable, 'Calories_binary', for the analysis. Figure 1 below shows the number of missing values (NAs) per column in the dataset.

all_nutrition.isn	a().sum()
Sugar_Tot_g	1832
Vit_B6_mg	905
Vit_C_mg	818
Magnesium_mg	739
Zinc_mg	706
Niacin_mg	637
Thiamin_mg	634
Riboflavin_mg	616
Fiber_TD_g	594
Phosphorus_mg	579
Potassium_mg	426
Cholestrl_mg	410
Calcium_mg	348
Iron_mg	144
Sodium_mg	83
Calories_binary dtype: int64	3083

Figure 1: Missing Values Checking

Subsequently, we randomly chose three predictors, 'Vit_B6_mg', 'Sugar_Tot_g', 'Vit_C_mg' for imputation purposes. After applying three multidimensional imputation methods, including

MICE (Multiple Imputation by Chained Equations), KNN-based Imputer, and Random Forest Imputer, we have three versions of imputation values for three chosen variables as follows (Figure 2).

MICE				KN	KNN				Random Forest			
Original data with missing values				0rigi	Original data with missing values				Original data with missing values			
	Vit_B6_mg	Sugar_Tot_g	Vit_C_mg		Vit_B6_mg	Sugar_Tot_g	Vit_C_mg	-	Vit B6 mg	Sugar_Tot_g	Vit C mg	
7	0.074	NaN	0.0	7	0.074	NaN	0.0	7	0.074	NaN	- 0.0	
9	0.074	NaN	0.0	9	0.074	NaN	0.0	9	0.074	NaN	0.0	
20	0.271	NaN	0.0	20	0.271	NaN	0.0	20	0.271	NaN	0.0	
38	0.124	NaN	0.0	38	0.124	NaN	0.0	38	0.124	NaN	0.0	
40	0.065	NaN	0.0	40	0.065	NaN	0.0	40	0.065	NaN	0.0	
8540	0.084	2.83	NaN	8540	0.084	2.83	NaN	8540	0.084	2.83	NaN	
8541	0.085	0.75	NaN	8541	0.085	0.75	NaN	8541	0.085	0.75	NaN	
8542	0.077	4.20	NaN	8542	0.077	4.20	NaN	8542	0.077	4.20	NaN	
8543	0.382	0.00	NaN	8543	0.382	0.00	NaN	8543	0.382	0.00	NaN	
8544	0.613	NaN	NaN	8544	0.613	NaN	NaN	8544	0.613	NaN	NaN	
[2938	rows x 3 c	olumnsl		[2938	[2938 rows x 3 columns]				[2938 rows x 3 columns]			
Imputed Data					Imputed Data				Imputed Data			
±puc	Vit B6 mg	Sugar_Tot_g	Vit C mg	p.u.c	Vit_B6_mg	Sugar_Tot_g	Vit_C_mg	Imput	Vit B6 mg	Sugar_Tot_g	Vit_C_mg	
7	0.074	8.026649	0.000000	7	0.074	3.612	0.00	7	0.074	8.600540	0.000	
9	0.074	8.026649	0.000000	9	0.074	3.612	0.00	9	0.074	8.600540	0.000	
20	0.271	8.365787	0.000000	20	0.271	2.396	0.00	20	0.271	1.254025	0.000	
38	0.124	8.112724	0.000000	38	0.124	1.386	0.00	38	0.124	2.857915	0.000	
40	0.065	8.011155	0.000000	40	0.065	18.832	0.00	40	0.065	14.129800	0.000	
				•••								
8540	0.084	2.830000	0.829390	8540	0.084	2.830	15.08	8540	0.084	2.830000	4.644	
8541	0.085	0.750000	0.317606	8541	0.085	0.750	3.74	8541	0.085	0.750000	1.376	
8542	0.003	4.200000	0.957257	8542	0.077	4.200	0.28	8541 8542	0.085	4.200000	1.376	
8543	0.077	0.000000	9.920145	8543	0.382	0.000	0.08					
8544		9.184172	19.946978	8544	0.613	0.280	2.70	8543	0.382	0.000000	0.063	
0344	0.613	9.1041/2	19.9409/8	0344	Ø.013	U.20U	2.70	8544	0.613	12.335000	37.472	

Figure 2: Imputation Results

There is a big difference between the imputation results of the three techniques. We decided to keep the KNN method's result because we believe that the dataset exhibits localized patterns and relationships that take advantage of KNN's principle of proximity. KNN is also well-suited for datasets with multiple predictors and suitable for imputing missing values while avoiding overfitting to noise. In this case, the result of KNN imputation is not unusually large fluctuation amplitude like the other two methods.

Data Preprocessing

With the imputed dataset in place, we proceed to remove the remaining missing values from the data. The final dataset comprises 4413 observations and 16 columns. After defining predictors and response variables, we conducted the standardization process for all numerical predictors. The next step involves applying three outlier detection methods, including Local Outlier Factor,

Isolation Forest, and One-class SVM. Figures 3 and 4 present a summary of the outlier detection process, indicating that the total number of outliers detected by all three methods is less than 1% (~0.63%) of the data.

3D Scatter Plot of Nutrition Data with Outliers Highlighted

Figure 4: An example of 3D scatter plot with Outliers Highlighted

Predictive Modeling (Classification Models)

Gradient Boosting: Overall Accuracy on Test Set: 0.9682899207248018

This section illustrates various classification techniques applied to the dataset for predicting the "Calories_binary" (High – Low) target variable. We divided the data into training and test sets with an 80-20 ratio and performed Randomized Search cross-validation for hyperparameter tuning to identify optimal configurations for each model. Here are the results for six models:

	precision	recall f	1-score	support	р	recision	recall	f1-score	support	
High	0.98	0.96	0.97	522	High	0.93	0.89	0.91	522	
Low	0.95	0.97	0.96	361	Low	0.85	0.89	0.88	361	
Low	0.33	0.57	0.30	301	Low	0.05	0.91	0.00	301	
accuracy			0.97	883	accuracy			0.90	883	
macro avg	0.96	0.97	0.96	883	macro avg	0.89	0.90	0.89	883	
weighted avg	0.97	0.97	0.97	883	weighted avg	0.90	0.90	0.90	883	
mergineed drg	0.57	0.57	0.57	003	weighted dvg	0.50	0.50	0.50	005	
KNN:Overall Ac	Logistic Regres	sion: Over	all Accura	acy on Test	Set: 0.896	59422423556059				
	precision	recall	f1-score	support		precision	recall	f1-score	support	
Hic	ih 0.94	0.95	0.95	522	High	0.97	0.97	0.97	522	
Lo		0.91	0.92	361	Low	0.96	0.96	0.96	361	
	0155	0.51	0.52	501						
accurac	CV		0.94	883	accuracy			0.97	883	
macro av	•	0.93	0.93	883	macro avg	0.97	0.97	0.97	883	
weighted av		0.94	0.94	883	weighted avg	0.97	0.97	0.97	883	
SVM: Overall Accuracy on Test Set: 0.9354473386183465					Random Forest:	Overall A	accuracy on	Test Set:	0.967157417	78935447
	precision	recall f	-1-score s	support		precision	recall	f1-score	support	
High	0.97	0.97	0.97	522	0	0.97	0.97	0.97	522	
Low		0.96	0.97	361	1	0.96	0.96	0.96	361	
LOW	0.90	0.90	0.90	301						
accuracy	,		0.97	883	accuracy			0.97	883	
macro avo		0.97	0.97	883	macro avg	0.97	0.97	0.97	883	
weighted avg		0.97	0.97	883	weighted avg	0.97	0.97	0.97	883	
	,			- 3-						

Figure 5: Classification Model Results

XGBoost: Overall Accuracy on Test Set: 0.9671574178935447

Among the six classification models, KNN, Random Forest Classifier, Gradient Boosting Classifier, and XGBoost stand out with an impressive overall accuracy score of approximately 97% and well-balanced highest scores in other metrics such as precision, recall, and F1. In contrast, the Logistic Regression model exhibits a lower overall accuracy score of around 90%. It also presents other metrics, including precision, recall, and F1 score, lower than those of other models. The SVM model achieves a median accuracy score of 94%. While it may not surpass the

top models, it still demonstrates competitive performance. If the highest accuracy is the primary consideration, models like KNN, Random Forest Classifier, Gradient Boosting Classifier, or XGBoost may be preferred.

Lastly, we delved deeper into the variable importance information by evaluating the feature importance of the Random Forest model. Figure 6 indicates that the nutrient 'Phosphorus' is the most important feature in predicting the binary calorie response (with a weight of >0.12), followed by 'Niacin', 'Sugar', 'Iron', 'Zinc', etc.

Figure 6: Variable Importance Information