

Introduction to Computer Graphics (CS360A)

Instructor: Soumya Dutta

Department of Computer Science and Engineering Indian Institute of Technology Kanpur (IITK) email: soumyad@cse.iitk.ac.in

- A subset of the slides that I will present throughout the course are adapted/inspired by excellent courses on Computer Graphics offered by Prof. Han-Wei Shen, Prof. Wojciech Matusik, Prof. Frédo Durand, Prof. Abe Davis, Klaus Mueller, and Prof. Cem Yuksel
- Engel, Hadwiger, Salama; Real time volume graphics tutorial, EuroGraphics 2006

3D Scientific Visualization

Volume Rendering

Applications: Medical Science

CT Angiography

Applications: Medical Science

Applications: Geology

Deformed plastic model

Applications: Archeology

Historical Statute

Applications: Materials Science

Quality control

Applications: Biology

Biological soil samples

Applications: Computational Sciences

Study Combustion process

Often obtained by scanning

• X-ray, CT, MRI, PET, etc.

- Often obtained by scanning
 - X-ray, CT, MRI, PET, etc.

How is Volume Data Generated?

• Numerical Simulations in another large source of Volume data

Indirect Visualization of Volume Data

- Isosurface based rendering for 3D data
 - Example of indirect technique for volume data exploration
 - Using geometric representations
 - Points, meshes, surfaces, etc.

Isosurface

Geometric mesh of the isosurface

Volume Rendering

- Surface visualization is a way of showing data as opaque objects
 - Though you can apply transparency on surfaces
- Many applications demand techniques that allows <u>"see-through"</u> capability
 - Make parts of the data (semi)transparent so the data behind can be seen
- Volume Rendering technique is the answer!
 - Direct mapping of underlying 3D data into an image space
 - Assumes data as a <u>translucent gel</u> that allows light to go through

Semi-transparent

- Data is considered as a translucent gel
- Rays are cast into the volume data through each pixel to observe data values
- Rays accumulate color and opacity values along the ray for final pixel color

IITK CS360A: Introduction to Computer Graphics: Soumya Dutta

Sampling via Trilinear Interpolation

A single cube cell of the data

- Image-order techniques
 - Ray casting approaches
- Object-order techniques
 - Splatting
 - Texture mapping

- Image-order techniques
 - Ray casting approaches
- Object-order techniques
 - Splatting
 - Texture mapping

Image-Order Volume Rendering Techniques

- Typically known as Ray casting methods
- Given an image plane, for each pixel, we compute the color by casting a ray through each pixel to the data
- We evaluate the data along the ray using some prespecified functions for computing the final pixel color

- How do we accumulate the data values along the ray to produce a final pixel color?
- 1. Maximum Intensity Projection (MIP)
- 2. Average Value
- 3. Distance to a value
- 4. Composite

1. Maximum Intensity Projection

 Compute the maximum intensity (data) value along each casted ray and the map the value to a color using a color scale

2. Average Intensity Projection

Compute the average intensity (data)
 value along each casted ray and the
 map the value to a color using a color
 scale

3. Distance to a Value Projection

- Distance to value 30 is shown in the rendered image
 - Provides the notion of the depth as to where the data value 30 is encountered

4. Composite Values Along the Ray

 Use an alpha (opacity) composting technique to blend the color values obtained from data samples along the ray

MIP vs Composite-based Volume Rendering

Maximum Intensity Projection

Direct Volume Rendering using Compositing

- The quality of the image produced from the data depends on the step size when each ray is traversed through the data
 - Large hop/step size causes artifacts in the final image
 - Smaller step size makes image more accurate but also computationally more expensive

- Other than RGB color values, there is one more channel opacity (A)
 - Compute RGBA color components
 - Opacity (A) = 1 transparency (T)
 - Range [0.0 ... 1.0]

Opacity (A) multiplied by RGB color creates a weighting effect

opacity 1.0	opacity 0.9	opacity 0.8	opacity 0.7	opacity 0.6	opacity 0.5				
----------------	----------------	----------------	----------------	----------------	----------------	--	--	--	--

- Shading is the process of computing final color for each pixel considering its color, opacity, location of the viewer, distance and direction of the light, etc.
- Phong Illumination = ambient + diffuse + specular

• Illumination = ambient + diffuse + specular

Opacity and Color Blending: Compositing

Back-to-front rendering

$$C'_{i} = C_{i}A_{i} + (1 - A_{i})C'_{i-1}$$

A: Opacity = 1- Transparency = 1 - T

C: Color

Opacity and Color Blending: Compositing

Back-to-front rendering

$$C'_{i} = C_{i}A_{i} + (1 - A_{i})C'_{i-1}$$

Front-to-back rendering

$$C_{i}' = C_{i-1}' + (1 - A_{i-1}')C_{i} A_{i}$$

$$A_{i}' = A_{i-1}' + (1 - A_{i-1}')A_{i}$$

A: Opacity = 1- Transparency = 1 - T

C: Color