PRAKTIKUM ALGORITMA DAN STRUKTUR DATA

Modul 10

Analisi Algoritma

Disusun oleh:

DONI WAHYU SAPUTRO

L200200169

G

PROGRAM STUDI TEKNIK INFORMATIKA

FAKULTAS KOMUNIKASI DAN INFORMATIKA

UNIVERSITAS MUHAMMADIYAH SURAKARTA

Latihan

1.

a

b

a

b

d

f

- 4. Urutkan dari yang pertumbuhan kompleksitasnya lambat ke yang cepat $\log 4n < 10 \log 2n < n \log 2n < 2 \log 2n < 5n2 < n3 < 12n6 < 4n$
- 5. Tentukan O(.) dari fungsi-fungsi berikut, yang mewakili banyaknya langkah yang diperlukan untuk beberapa algoritma

```
a. T(n) = n2 + 32n + 8 = O(n^2)

b. T(n) = 87n + 8n = O(n)

c. T(n) = 4n + 5n \log n + 102 = O(n log n)

d. T(n) = \log n + 3n2 + 88 = O(n^2)

e. T(n) = 3(2n) + n2 + 647 = O(2^n)

f. T(n, k) = kn + \log k = O(kn)

g. T(n, k) = 8n + k \log n + 800 = O(n)

h. T(n, k) = 100kn + n = O(kn)
```

- 6. (Literatur Revew) carilah di internet, kompleksitas metode-metode pada object list di Python. Hint
- Google python list methods complexity. Lihat juga bagian 'Images'-nya
- Kunjungi https://wiki.python.org/moin/TimeComplexity

10.

Operation	Average Case	Amortized Worst Case
k in d	O(1)	O(n)
Copy[2]	O(n)	O(n)
Get Item	O(1)	O(n)
Set Item[1]	O(1)	O(n)
Delete Item	O(1)	O(n)
Iteration[2]	O(n)	O(n)

- Big O dilambangkan dengan notasi O(...) merupakan keadaan terburuk (worst case). Kinerja seubuah algoritma biasanya diukur menggunakan patokan keadaan Big-O ini. Merupakan notasi asymptotic untuk batas fungsi dari atas dan bawah dengan Berperilaku mirip dengan ≤ operator untuk tingkat pertumbuhan.
- Big Theta dilmbangkan dengan notasi $\Theta(...)$ merupakan notasi asymptotic untuk batas atas dan bawah dengan keadaan terbaik (best case). Menyatakan persamaan pada pertumbuhan f (n) hingga faktor konstan (lebih lanjut tentang ini nanti). Berperilaku mirip dengan = operator untuk tingkat pertumbuhan.
- Big Omega dilambangkan dengan notasi Ω(...) merupakan notasi asymptotic untuk batas bawah dengan keadaan rata-rata(average case) yang berperilaku mirip dengan ≥operator untuk tingkat pertumbuhan.

12.

Amortized analysis adalah metode untuk menganalisis kompleksitas algoritma yang diberikan, atau berapa banyak resource nya terutama waktu atau memori yang diperlukan untuk mengeksekusi. Dapat ditunjukkan dengan waktu rata-rata yang diperlukan unyuk melakukan satu urutan operasi pada struktur data terhadap keseluruhan operasi yang dilakukan