# Machine Learning and Neural Networks

#### Machine Learning

- ▶ What is machine learning, where it is used?
- Types of Machine learning
- ► How to Implement Machine learning models
- Optimization algorithms

#### HOUSING PRICE PREDICTION



#### Data Visualization

- Seaborn
- Plotly
- Matplotlib



#### ► Neural Networks and Tensorflow

- What are neural networks and why?.
- Use of deep learning framework
- Implementation of neural network (digit Recognition)
- Creating dataset with google images to build Classification model





#### ► Neural Style Transfer





### Prerequisites

- Familiarity with programming language (preferably with python)
- Basics of linear algebra (eqn. of a straight line, derivatives) <Not mandatory>



#### Outline:

What's Machine Learning??...

Supervised and Unsupervised Learning

**Hypothesis Function** 

**Gradient Descent Algorithm** 

Feature Scaling and Mean Normalization

**Underfitting and Overfitting** 

**Back Propagation** 

Hands On: Housing Price Prediction



# What's Machine Learning or Artificial Intelligence and Where is it used???.....

- web search
- Facebook recognizes your friends in your picture
- Spam filter in emails
- self-driving cars
- ► Gaming Control



# Need of Machine learning and Al









# Question: What is the Relation between X and Y

| X                                       | Y   |
|-----------------------------------------|-----|
| X<br>2                                  | 2   |
| -3                                      | -3  |
| <ul><li>5</li><li>6</li><li>0</li></ul> | 5   |
| 6                                       | 6   |
| 0                                       | 0   |
| 1.3                                     | 1.3 |
| 10                                      | 10  |





# Question: What is the Relation between X and Y??...

| X  | Y   |
|----|-----|
| 2  | -4  |
| 3  | -6  |
| -2 | 4   |
| 5  | -10 |
| 0  | 0   |





#### Now!!...

What's the relation between X and Y???...

| X  | Y   |
|----|-----|
| 2  | 4   |
| 7  | 19  |
| -5 | -17 |
| 10 | 28  |
| 15 | 43  |





#### **Machine Learning**







# So What's Machine Learning??...

Machine learning is a science of getting computers to learn without being explicitly programmed.



### Types of Machine learning





#### Supervised learning

Supervised learning is where you have input variables (x) and an output variable (Y) and you use an algorithm to learn the mapping function from the input to the output.

Eg: Predicting the house price given the size of the house based on the previous data.



#### supervised learning



#### unsupervised learning





### Classification of Supervised Learning

#### Regression

- A regression problem is when the output variable is a real value, such as "dollars" or "weight".
- Eg: Given a picture of a person, we have to predict their age on the basis of the given picture

#### Classification

- A classification problem is when the output variable is a category, such as "red" or "blue" or "disease" and "no disease".
- Eg: Given a patient with a tumor, we have to predict whether the tumor is malignant or benign.



# Regression





#### Training Set:

#### **Notation:**

m=Number of Training Examples

x's = "input" variable / features

Y's = Output/Target Variables



### Steps





#### Hypothesis function



#### Analogous to how humans learn

• E.g.,: A baby learns to walk by falling down many times (experience)



# Previously,

| X  | Υ   |
|----|-----|
| 2  | 4   |
| 7  | 19  |
| -5 | -17 |
| 10 | 28  |
| 15 | 43  |

$$Y = 3X - 2$$

| X  | Υ     |
|----|-------|
| 2  | 4.3   |
| 7  | 19.1  |
| -5 | -17.5 |
| 10 | 27.8  |
| 15 | 43.12 |

| Prediction 1 | Prediction 2 |
|--------------|--------------|
| 4            | 3.1          |
| 19           | 17.32        |
| -17          | -11.85       |
| 28           | 31.21        |
| 43           | 48.29        |

$$h_{\Theta}(x) = \Theta_0 + \Theta_1 x$$
or
$$h_{W}(x) = W_0 + W_1 x$$



#### How To Choose Parameters???....

$$h_{\Theta}(x) = \Theta_0 + \Theta_1 x$$
  $h_{\Theta}(x) = \Theta_0 + \Theta_1 x_1 + \Theta_2 x_2$ 

$$\Theta_0 = 1.5, \ \Theta_1 = 0$$



$$\Theta_0 = 0, \ \Theta_1 = .5$$



 $\Theta_0 = 1, \Theta_1 = .5$ 

# Choose parameters so that h(x) is close to y for training data

Predicted Price vs. Size



## Cost function [Squared error function]

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m (\hat{y}_i - y_i)^2 = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x_i) - y_i)^2$$

Predicted Price vs. Size







# Cost/Loss Function









Ranjith M S

#### Let us assume $\Theta_0=0$ What is the cost when $\Theta_1=1$ ???....



Cost = 0



## What is the cost when $\Theta_1=2$ ???....





# What is the cost when $\Theta_1$ =0.5 ???....





#### How Error varies with $\theta$









#### Derivative of a function



Positive if increasing Negative if decreasing

- Write a tangent
- Angle of tangent with x-axis
- tan of the angle



#### **Gradient Descent**

It is a method to find the values of  $\Theta$  such that  $J(\Theta)$  will be minimum







#### **Gradient Descent**

- What is the derivative of an increasing Function ??....
- Positive

- What is the derivative of an decreasing Function ??....
- ▶ Negative



#### Gradient descent

- ► Initialize the weights randomly
- Update the weights based on the derivative (i.e, derivative of cost function w.r.t parameter)
- Decrease the initialized/previous weight if derivative is positive
- Increase the initialized/previous weight if the derivative is negative
- Continue the process until you reach minima





# Gradient descent

J(w)

Repeat until convergence {

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$



The size of each step is determined by the parameter  $\alpha$ , which is called the learning rate.



## Debugging gradient descent

- If α is too small then the gradient descent can be slow
- If α is too large then the gradient descent may overshoot the minima and may fail to converge

Repeat until convergence {

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$







#### Debugging gradient descent

MSE vs. Iterations

Now plot the cost function, J(θ) over the number of iterations of gradient descent. If J(θ) ever increases, then you probably need to decrease α.



Ranjith M S



#### Feature Scaling

$$x_i := \frac{x_i - \mu_i}{s_i}$$

Repeat until convergence {

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$





h M S



#### How to choose the curve??.....





## Ways to reduce overfitting

- **▶** Dropout
- ▶ Regularization





## Training a model



