15

20

25

Claims

- 1. A solid electrolyte comprising an inorganic substance comprising a lithium ion conductive crystalline and being substantially free of an organic substance and an electrolytic solution.
- 2. A solid electrolyte as defined in claim 1 wherein the inorganic substance comprising a lithium ion conductive crystalline is substantially free of a pore or a crystal grain boundary which obstructs ion conduction.
 - 3. A solid electrolyte as defined in claim 1 wherein the inorganic substance comprising a lithium ion conductive crystalline is lithium ion conductive glass-ceramics.
 - 4. A solid electrolyte as defined in claim 1 comprising an inorganic substance powder comprising a lithium ion conductive crystalline and an inorganic substance comprising Li.
 - 5. A solid electrolyte as defined in claim 4 wherein the inorganic substance powder comprising a lithium ion conductive crystalline has ion conductivity of $10^{-4}\,\mathrm{SCm^{-1}}$ or over, has an average particle diameter of $9\,\mu$ m or below, and is contained in the solid electrolyte in an amount within a range from 50 mass% to 95 mass%.
 - 6. A solid electrolyte as defined in claim 3 wherein the ion conductive glass-ceramics are in the form of a thin plate.
- 7. A solid electrolyte as defined in claim 6 wherein the lithium ion conductive glass-ceramics have a thickness within a range from 15 μ m to 200 μ m.
- 8. A solid electrolyte as defined in claim 1 having ion conductivity which is 10⁻⁵SCm⁻¹ or over.

9. A solid electrolyte as defined in claim 1 wherein the anorganic substance comprising a lithium ion conductive crystalline has a predominant crystal phase of Lii+ χ + $_{\nu}$ Al χ Ti₂- χ SiyP_{3- ν}O.i₂ where $Q \le x \le$ 1 and $0 \le y \le 1$.

-- 5

10. A solid electrolyte as defined in claim 1 wherein the inorganic substance comprising a lithium ion conductive crystalline comprises, in mol %;

	Li ₂ O	12 - 18%
10	$Al_2O_3 + Ga_2O_3$	5 - 10%
	$TiO_2 + GeO_2$	35 - 45%
	SiO_2	1 - 10% and
	P_2O_5	30 - 40%.

15

11. A solid electrolyte as defined in claim 1 wherein the inorganic substance comprising a lithium ion conductive crystalline comprises, in mass %;

Li₂O 3 - 10% $Al_2O_3 + Ga_2O_3$ 5 - 20% $TiO_2 + GeO_2$ 20 25 - 40% SiO₂ 0.5 - 8% and P_2O_5 40 - 55%.

12. A lithium ion secondary battery comprising a solid electrolyte 25 as defined in any of claims 1—11.

13. A lithium ion secondary battery as defined in claim 12 comprising an inorganic substance comprising a lithium ion conductive crystalline in a positive electrode and/or a negative electrode.

30

35

14. A lithium ion secondary battery as defined in claim 13 wherein the inorganic substance comprising a lithium ion conductive crystalline contained in the positive electrode and/or the negative electrode is substantially free of a pore or a crystal grain boundary which obstructs ion conduction.

5

10

20

25

30

- 15. A lithium ion secondary battery as defined in claim 13 wherein the inorganic substance comprising a lithium ion conductive crystalline contained in the positive electrode and/or the negative electrode is a lithium ion conductive glass-ceramics.
- 16. A lithium ion secondary battery as defined in claim 13 wherein an average particle diameter of the inorganic substance comprising a lithium ion conductive crystalline contained in the positive electrode and/or the negative electrode is 1/5 or below of an average particle diameter of an active material of the positive electrode and/or the negative electrode comprising an inorganic substance comprising a lithium ion conductive crystalline.
- 17. A lithium ion secondary battery as defined in claim 13 wherein an amount of the inorganic substance comprising a lithium ion conductive crystalline contained in the positive electrode and/or the negative electrode is 2—35 mass % of an active material of the positive electrode and/or the negative electrode.

18. A lithium ion secondary battery as defined in claim 13 wherein the inorganic substance comprising a lithium ion conductive crystalline contained in the positive electrode and/or the negative electrode comprises, in mol %:

Li ₂ O		12 - 18%
Al ₂ O	$_3$ + Ga $_2$ O $_3$	5 - 10%
$Ti\tilde{O}_2$	+ GeO ₂	35 - 45%
SiO_2^2	2	1 - 10% and
P_2O_5		30 - 40%.

19. A lithium ion secondary battery as defined in claim 13 wherein the inorganic substance comprising a lithium ion conductive crystalline contained in the positive electrode and/or the negative electrode comprises, in mass %;

35
$$\text{Li}_2\text{O}$$
 3 - 10% $\text{Al}_2\text{O}_3 + \text{Ga}_2\text{O}_3$ 5 - 20%

WO 2006/059794

41

PCT/JP2005/022506

$TiO_2 + GeO_2$	25 - 40%
SiO_2	0.5 - 8% and
P_2O_5	40 - 55%.

5 20. A lithium ion secondary battery as defined in claim 13 wherein the inorganic substance comprising a lithium ion conductive crystalline contained in the positive electrode and/or the negative electrode has a predominant crystal phase of $\text{Lii+}_{x+y}\text{Al}_x\text{Ti}_2$ SiyP3-yO₁₂ where $0 \le x \le 1$ and $0 \le y \le 1$.

10

15

21. A lithium ion secondary battery as defined in any of claims 13—17 which comprises, in the positive electrode and/or the negative electrode, the same inorganic substance as the inorganic substance comprising a lithium ion conductive crystalline contained in the solid electrolyte.