## Neural Networks, Tensorflow, and Keras

DATA 607 — Session 7 — 18/03/2019

Perceptron and logistic regression classifiers have linear decision boundaries.



Figure: Linearly separable, not linearly separable

Perceptron, logistic regression can learn:

$$f: \{(0,0), (1,0), (1,1), (0,1)\} \longrightarrow \{0,1\}$$
  
 $f(0,0) = 1, \quad f(1,0) = f(1,1) = f(0,1) = 0$ 



Figure: Graph of f

Perceptron, logistic regression can learn:

$$f: \{(0,0), (1,0), (1,1), (0,1)\} \longrightarrow \{0,1\}$$
  
 $f(0,0) = 1, \quad f(1,0) = f(1,1) = f(0,1) = 0$ 



Figure: Graph of f



$$egin{array}{c|cccc} x_1 & x_2 & \widehat{y} & & & \\ \hline 0 & 0 & \sigma(10) &\approx 1 \\ 1 & 0 & \sigma(-10) &\approx 0 \\ 0 & 1 & \sigma(-10) &\approx 0 \\ 1 & 1 & \sigma(-30) &\approx 0 \\ \hline \end{array}$$

Perceptron, logistic regression can't learn...

$$f: \{(0,0), (1,0), (1,1), (0,1)\} \longrightarrow \{0,1\}$$
  
 $f(0,0) = f(1,1) = 1, \quad f(1,0) = f(0,1) = 0$ 



Figure: Graph of f

... unless we introduce new features.



| $x_1$ | <i>x</i> <sub>2</sub> | $\widehat{y}$           |
|-------|-----------------------|-------------------------|
| 0     | 0                     | $\sigma(10) pprox 1$    |
| 1     | 0                     | $\sigma(-10) \approx 0$ |
| 0     | 1                     | $\sigma(-10) \approx 0$ |
| 1     | 1                     | $\sigma(10) \approx 1$  |

## What is a neural network?

A neural network consists of **neurons** or **units**. Neurons have **inputs**, **outputs**, and **activations**. Connections between these neurons have **weights**. Neurons are organized into **layers**. **Hidden layers** are sandwiched between an **input layer** and an **output layer**.

Linear regression, logistic regression, and perceptron classification are all neural networks, degenerate in the sense that they have no hidden layers.

More formally, a neural network is a function

$$N: \mathbb{R}^p \longrightarrow \mathbb{R}^q$$

constructed in a particular way.

depth of network (number of layers): d number of neurons in layer  $\ell$ :  $p_\ell$  activation (output) of neuron k in layer  $\ell$ :  $a_k^{[\ell]}$  bias of neuron k in layer  $\ell$ :  $b_k^{[\ell]}$  weight of the connection between neuron j in layer  $\ell$  and neuron i in layer  $\ell+1$ :  $activation function in layer <math>\ell$ : h

$$a_i^{[\ell+1]} = h\left(z_i^{[\ell+1]}\right), \quad ext{where} \quad z_i^{[\ell+1]} = b_i^{[\ell]} + \sum_{i=1}^{p_\ell} w_{ij}^{[\ell]} a_j^{[\ell]}$$



Figure: A hidden or output unit



Figure: An input unit



Figure: A bias unit



Figure: Logistic regression



Figure: Learning XNOR

| $x_1$ | <i>x</i> <sub>2</sub> | $z_{1}^{[1]}$ | $z_2^{[1]}$ | $a_1^{[1]}$ | $a_{2}^{[1]}$ | $z_1^{[2]}$ | $a_1^{[2]}$ | $\hat{y}$ |
|-------|-----------------------|---------------|-------------|-------------|---------------|-------------|-------------|-----------|
| 0     | 0                     | -30           | -10         | 0           | 10            | 190         | 1.00        | 1         |
| 0     | 1                     | -10           | -10         | 0           | 0             | -10         | 0.00        | 0         |
| 1     | 0                     | -10           | -10         | 0           | 0             | -10         | 0.00        | 0         |
| 1     | 1                     | -10           | -10         | 10          | 0             | 190         | 1.00        | 1         |