南京林业大学试卷(A卷)(答案)

课程__概率统计 B

2018~2019 学年第 <u>2</u>学期

题号	1	11	111	四	总分
得分					

一、填空题(每题3分,共15分)

1. 对事件A,B,若0 < P(A) < 1,0 < P(B) < 1,且 $P(A \mid B) = 1$,则 $P(\overline{B} \mid \overline{A}) = \underline{1}$.

2. 在 $1 \sim 5$ 五个自然数中任取两数,则两数之积为偶数的概率为 $\frac{7}{10}$.

3. 设随机变量 X 的概率密度为 f(x),且 E(X)=3,则 $\int_{-\infty}^{+\infty} (x-1)f(x)dx = 2$.

4. 设 $X \sim N(0,1)$, $Y \sim N(-2,1)$, 且X和Y独立, Z = 2X - Y + 1, 则 $E(Z^2) = 14$.

5. 设总体 $X\sim N(\mu,\sigma^2)$, X_1,X_2,\cdots,X_n (n>1)为其样本, \overline{X} 和 S^2 分别是样本均值和样本

方差,则 μ 的置信度为 $1-\alpha$ 的置信区间为 $(\overline{X}-\frac{S}{\sqrt{n}}t_{\alpha/2}(n-1),\overline{X}+\frac{S}{\sqrt{n}}t_{\alpha/2}(n-1))$.

二、选择题(每题 3 分,共 15 分)

1. 设 A, B 为任意事件,则关于 P(AB)有 (D).

(A)
$$P(AB) \ge P(A)$$

(B)
$$P(AB) = P(A)P(B)$$

(C)
$$P(AB) \ge P(A) + P(B)$$

(D)
$$P(AB) \le \frac{1}{2} [P(A) + P(B)]$$

2. 设总体 X 的分布函数为 F(x), X_1, X_2 为其样本,又 $Y = \max\{X_1, X_2\}$, 则 Y 的分布函数为 (A).

(A)
$$F^2(v)$$

(B)
$$[1-F(y)]^2$$
 (C) $1-F^2(y)$ (D) $1-F(y)$

(C)
$$1-F^2(v)$$

(D)
$$1 - F(v)$$

3. 设随机变量 X 的概率密度是 $f(x) = \begin{cases} \frac{1}{2}e^{-\frac{x}{2}}, & x > 0 \\ 0, & 其它 \end{cases}$,用切比雪夫不等式估计概率

 $p = P(|X-2| \ge 3)$,有(C).

$$(A) \quad p \le \frac{5}{9}$$

$$(B) p \ge \frac{5}{9}$$

(C)
$$p \leq \frac{4}{9}$$

(A)
$$p \le \frac{5}{9}$$
 (B) $p \ge \frac{5}{9}$ (C) $p \le \frac{4}{9}$ (D) $p \ge \frac{4}{9}$;

4. 设总体 $X\sim N(\mu,1)$, X_1,X_2,\cdots,X_n (n>1)为其样本, $ar{X}$ 是样本均值,则以下统计量服 \mathcal{M}_{χ^2} 分布的是(D).

名 女

出

中 紪

(A)
$$\sum_{i=1}^{n} (X_i - \mu)$$
 (B) $2(X_1 - X_n)^2$ (C) $(\overline{X} - \mu)^2$ (D) $\sum_{i=1}^{n} (X_i - \overline{X})^2$

5. 设总体 X 服从泊松分布 $\pi(\lambda)$, X_1, X_2, \cdots, X_n (n>1)为其样本, \overline{X} 和 S^2 分别是样本均 值和样本方差,则以下统计量中不是 2 的无偏估计量的是 (

(A)
$$\bar{X}$$

$$(B) 2X_1 - X_n$$

(B)
$$2X_1 - X_n$$
 (C) $2X_1 + X_n$ (D) S^2

(D)
$$S^2$$

三、计算下列各题(每题12分,共48分)

1. 设随机变量 X 的分布律为 $\frac{X \mid -2 \mid 1 \mid 3}{P \mid \frac{1}{2} \mid a \mid b}$,且 E(X) = 0.试求:(1)a,b 的值;(2) X 的分

布函数; (3) D(X).

解: (1) 由 E(X) = -1 + a + 3b = 0, a + b = 1/2 解得 a = b = 1/4,从而

$$X$$
的分布律 $\frac{X \mid -2 \quad 1 \quad 3}{P \mid 1/2 \quad 1/4 \quad 1/4}$; (4分)

(2)
$$F(x) = \begin{cases} 0, & x < -2 \\ 1/2, & -2 \le x < 1 \\ 3/4, & 1 \le x < 3 \end{cases};$$

$$(8 \%)$$

(3)
$$E(X) = 0$$
, $E(X^2) = 9/2$, $D(X) = E(X^2) - E^2(X) = 9/2 = 4.5$. (12 $\%$)

2. 设随机变量 X, Y 相互独立,且 X 的分布律为 $P(X=0) = \frac{1}{3}, P(X=1) = \frac{2}{3}$, Y 的概率密度

$$f(y) = \begin{cases} 2y, & 0 < y < 1 \\ 0, & \text{ #. (1)} \quad P(Y \le E(Y)); \quad (2) \quad P(X + Y \le \frac{3}{2}). \end{cases}$$

解:

(1)
$$E(Y) = \int_0^1 2y^2 dy = 2/3, P(Y \le E(Y)) = \int_0^{2/3} 2y dy = 4/9,$$
 (6 $\frac{1}{2}$)

(2)
$$P(X+Y \le \frac{3}{2}) = P(X=0)P(X+Y \le \frac{3}{2} \mid X=0) + P(X=1)P(X+Y \le \frac{3}{2} \mid X=1)$$

$$= \frac{1}{3}P(Y \le \frac{3}{2}) + \frac{2}{3}P(Y \le \frac{1}{2}) = \frac{1}{3} \times 1 + \frac{2}{3} \times \frac{1}{4} = \frac{1}{2}.$$
 (12 \(\frac{1}{2}\))

3. 对于上题中的随机变量Y,求 $Z = Y^2$ 的概率密度 $f_z(z)$.

解:由于

$$z = y^2 (0 < y < 1)$$
 严格单调,反函数 $y = \sqrt{z}$ 连续可导且 $y'_z = \frac{1}{2\sqrt{z}}$ 又 $R(Z) = (0,1)$,(6 分)

由公式得
$$f_z(z) = \begin{cases} 2\sqrt{z} \times \frac{1}{2\sqrt{z}}, & 0 < z < 1 \\ 0, & \text{其它} \end{cases} = \begin{cases} 1, & 0 < z < 1 \\ 0, & \text{其它} \end{cases}$$
 (12 分)

4. 设
$$(X,Y)$$
的概率密度 $f(x,y) = \begin{cases} k \frac{x}{y}, & 0 < x < 1, 1 < y < e \\ 0, & 其它 \end{cases}$

求:(1) k 的值;(2) 求关于 X 和 Y 的边缘概率密度,并判断 X 与 Y 是否独立;(3) 求 P(Y < 2).

解: (1) 由规范性
$$k \int_0^1 x dx \int_1^e \frac{1}{y} dy = k/2 = 1$$
 得 $k = 2$; (4分)

(2)
$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \int_{1}^{e} \frac{2x}{y} dy = 2x$$
, $(0 < x < 1)$,

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \int_0^1 \frac{2x}{y} dx = \frac{1}{y}, \quad (1 < y < e),$$

由于
$$f(x,y) = f_X(x)f_Y(y)$$
, 故 $X 与 Y$ 相互独立;

(3)
$$P(Y < 2) = \iint_{D:y<2} f(x,y) d\sigma = 2 \int_0^1 x dx \int_1^2 \frac{1}{y} dy = \ln 2$$
. (12 $\frac{1}{2}$)

(8分)

四、计算下列各题(第一题 12 分,第二题 10 分,共 22 分)

1. 设总体
$$X$$
 的概率密度 $f(x,\theta) = \begin{cases} \frac{3x^2}{\theta^3}, & 0 < x < \theta \\ 0, & 其他 \end{cases}$,其中 θ 为未知参数,又设 X_1, X_2, \cdots, X_n

为来自总体 X 容量为 n 的样本,试求: (1) θ 的矩估计量 $\hat{\theta}$; (2) θ 的最大似然估计量 $\hat{\theta}_L$.

解: (1)
$$\mu_1 = E(X) = \frac{3}{\theta^3} \int_0^\theta x^3 dx = \frac{3\theta}{4}$$
, 解得 $\theta = \frac{4}{3} \mu_1$, 从而 $\hat{\theta} = \frac{4}{3} \overline{X}$, (6分)

(2)
$$L(\theta) = \prod_{i=1}^{n} \frac{3x_i^2}{\theta^3} = \frac{3^n}{\theta^{3n}} \prod_{i=1}^{n} x_i^2$$
, $\ln L(\theta) = n \ln 3 - 3n \ln \theta + 2 \sum_{i=1}^{n} \ln x_i$,

由于
$$\frac{d \ln L(\theta)}{d \theta} = -\frac{3n}{\theta} < 0$$
,故 $L(\theta)$ 单调减少,又 $0 < x_i < \theta, \theta > \max(x_i), i = 1, 2, \dots, n$,

故
$$\hat{\theta}_L = \max(X_1, X_2, \dots, X_n). \tag{12分}$$

2. 某厂生产的某种铝材长度 $X\sim N(\mu,\sigma^2)$, 其均值 μ 设定为 240 cm. 现从该厂抽取 9 件产品,

测得 $\overline{x}=239.5$ cm, $s^2=0.16$,试判断该厂这批铝材的长度是否满足设定要求?(取 $\alpha=0.05$).(附: $t_{0.05}(8)=1.86$, $t_{0.025}(8)=2.31$)

解: 由题意,即在 $\alpha=0.05$ 下检验假设 $H_0:\mu=\mu_0=240$ vs $H_1:\mu\neq\mu_0$ (2分)

检验统计量
$$T = \frac{\overline{X} - \mu_0}{S / \sqrt{n}}$$
 ,拒绝域 $|T| = \left| \frac{\overline{X} - \mu_0}{S / \sqrt{n}} \right| \ge t_{\alpha/2}(n-1)$ (7分)

又

$$|t| = \left| \frac{239.5 - 240}{0.4/3} \right| = 3.75 > t_{0.025}(8) = 2.31$$
,

从而拒绝 H_0 ,认为不满足设定要求. (10 分)