Bayesian Networks

CS161

Prof. Guy Van den Broeck

Motivation: Maximum Expected Utility

Basic Properties of Probability

Betting Semantics

Inconsistent Beliefs

Agent 1		Agent 2		Outcomes and payoffs to Agent 1			
Proposition	Belief	Bet	Stakes	a, b	$a, \neg b$	$\neg a, b$	$\neg a, \neg b$
a	0.4	a	4 to 6	-6	-6	4	4
b	0.3	b	3 to 7	– 7	3	– 7	3
$a \lor b$	0.8	$\neg(a \lor b)$	2 to 8	2	2	2	-8
				-11	-1	-1	-1

Computing Probabilities: Example

	toot	hache	$\neg toothache$		
	catch	$\neg catch$	catch	$\neg catch$	
cavity	0.108	0.012	0.072	0.008	
$\neg cavity$	0.016	0.064	0.144	0.576	

Independence

Independence

Naïve Bayes Assumption

$$\mathbf{P}(Cause, Effect_1, \dots, Effect_n) = \mathbf{P}(Cause) \prod_i \mathbf{P}(Effect_i \mid Cause)$$

This is how spam filters work!

Bayesian Networks

Conditional Independence and Order

Conditional Independence and Order

Topological Semantics

What knowledge is encoded in Bayesian network structure?

Markovian Assumptions

Markov Blanket

Example Network

Markov Chains and Hidden Markov Models

Inference by Enumeration

Factors Multiplication

A	B	$\mathbf{f}_1(A,B)$
T	T	.3
T	F	.7
F	T	.9
F	F	.1

B	C	$\mathbf{f}_2(B,C)$
T	T	.2
T	F	.8
F	T	.6
F	F	.4

	A	B	C	$\mathbf{f}_3(A,B,C)$
_	T	T	T	$.3 \times .2 = .06$
	T	T	F	$.3 \times .8 = .24$
	T	F	T	$.7 \times .6 = .42$
	T	F	F	$.7 \times .4 = .28$
	F	T	T	$.9 \times .2 = .18$
	F	T	F	$.9 \times .8 = .72$
	F	F	T	$.1 \times .6 = .06$
	F	F	F	$.1 \times .4 = .04$

Summing out Variable from Factor

A	B	C	$\mathbf{f}_3(A,B,C)$
T	T	T	$.3 \times .2 = .06$
T	T	F	$.3 \times .8 = .24$
T	F	T	$.7 \times .6 = .42$
T	F	F	$.7 \times .4 = .28$
F	T	T	$.9 \times .2 = .18$
F	T	F	$.9 \times .8 = .72$
F	F	T	$.1 \times .6 = .06$
F	F	F	$.1 \times .4 = .04$

$$\mathbf{f}(B,C) = \sum_{a} \mathbf{f}_{3}(A,B,C) = \mathbf{f}_{3}(a,B,C) + \mathbf{f}_{3}(\neg a,B,C)$$
$$= \begin{pmatrix} .06 & .24 \\ .42 & .28 \end{pmatrix} + \begin{pmatrix} .18 & .72 \\ .06 & .04 \end{pmatrix} = \begin{pmatrix} .24 & .96 \\ .48 & .32 \end{pmatrix}.$$

Variable Elimination

