Formelsammlung

für die HB3/9 Prüfung

Charpoan Kong HB9HJN

Inhaltsverzeichnis

T	SI-V	/orzeichen & Einheiten	1
2	Ohr	nisches/Leistungs Dreieck & Wellenlänge	2
	2.1	Spannung	2
	2.2	Strom	2
	2.3		2
	2.4		2
	2.5	Wellenlänge & Frequenz	2
3	Wid	lerstand & Leistung	3
	3.1	Serieschaltung	3
	3.2		3
	3.3		3
	3.4	Spannungsteiler	3
	3.5	•	3
4	Wed	chselstrom	4
	4.1	Effektivspannung	4
		4.1.1 Sinus	4
		4.1.2 Dreieck	4
		4.1.3 Rechteck	4
5	Kon	ndensator	5
	5.1	Kapazität	5
	5.2	Serieschaltung	5
	5.3		5
	5.4	τ /Zeitkonstante	5
	5.5	Dreh-/Plattenkondensator	
	5.6	Kapazitiver Blindwiederstand	6
	5.7	Verlustfaktor/Güte	

6	Spule			
	6.1	Induktivität	7	
	6.2	Induktion- & Selbstinduktionspannung	7	
	6.3	Serieschaltung	7	
	6.4	Paralellschaltung	7	
	6.5	τ /Zeitkonstante	7	
	6.6 6.7	Verlustfaktor/Güte	8 8	
	0.7	induktiver billidwiederstand	0	
7	Impe	edanz	9	
	7.1	Serieschaltung	9	
	7.2	Paralellschaltung	9	
8	Tran	nsformator/Übertrager	10	
U	8.1	Spannungs-/Strom-/Windungs-/ Wiederstandsüberset-	10	
	0.1	zung	10	
	8.2	•	10	
9		Glied	11	
		Grenzfrequenz	11	
	9.2	Shape-Faktor	11	
10	Dezi	ibel	12	
		Dezibel bei Leistug	12	
		Dezibel bei Spannung	12	
11		Schwingkreis	13	
		Resonanzfrequenz	13	
		Bandbreite	13 13	
	11.5	Güte	13	
12	Dioc	de	14	
		Vorwiderstand	14	
	12.2	Spannungsfestigkeit/Max. Spannung	14	

13	Tran	nsistor/FET	15
	13.1	Stromverstärkungsfaktor	15
	13.2	R_1	15
	13.3	R_C	16
	13.4	I_C	16
	13.5	P_V	16
14	Ope	erationsverstärker	17
	14.1	Invertierender Verstärker	17
	14.2	Nichtnvertierender Verstärker	17
	14.3	Differenzialverstärker	18
15	Elek	ktromagnetisches Feld	19
		Elektrische Feldstärke	19
		Magnetische Feldstärke	19
		Magnetische Flussdichte	19
		Strahlungsdichte Kuglestrahler	19
		Feldwellenwiederstand	19
		Ersatzfeldstärke	20
		15.6.1 Allgemein	20
		15.6.2 Dipol	20
	15.7	Brauchbare Grenzfrequenz	20
		Optimale Grenzfrequenz	20
16	Ante	ennentechnik	21
	16.1	Dipol	21
		16.1.1 Länge	21
		16.1.2 Verkürzung	21
	16.2	Antennengewinn	21
		16.2.1 zum Dipol	21
		16.2.2 zum isotropen Strahler	22
		16.2.3 ERP	22
		16.2.4 ERIP	23

		16.2.5 Q-Match/ $\frac{\lambda}{4}$ - Trafo	23
17	Leitı	ungen	24
	17.1	Wellenwiederstand	24
			24
		17.1.2 Koaxialleitung	24
	17.2	Verkürzungsfaktor	24
			24
			25
		17.4.1 Koaxialleitung	25
18	Sign	ale	26
	_		26
			26
			26
			26
	18.2		26
			26
		18.3.1 DSB	26
			27
		18.3.3 FM	27
		18.3.4 CW	27
			27
	18.4		27
	18.5	Besselfunktion	27
			28
19	Mod	lulation - Demodulation	29
			29
20	Fred	uenzaufbereitung	30
_5		·	30 30
	_0.1		30

		20.1.2 $f_{osc} < f_e$	30
	20.2	Frequenz 3.Ordnung	
21	Übe	rtragungstechnik	31
	21.1	Nquisttheorem	31
	21.2	Dynamik	31
	21.3	Baudrate	31
		FSK	31
		21.4.1 Bandbreite	31
	21.5	PSK	32
		21.5.1 Bandbreite	32
	21.6	Totales Verbindungssystem	
22	Mes	stechnik	33
22			
22	22.1	Wheatstonsche Messbrücke	33
22	22.1 22.2		33 33
	22.1 22.2 22.3	Wheatstonsche Messbrücke	33 33
	22.1 22.2 22.3 Gerä	Wheatstonsche Messbrücke Shunt	33 33 34 35
23	22.1 22.2 22.3 Gerä 23.1	Wheatstonsche Messbrücke	33 33 34 35
23	22.1 22.2 22.3 Gerä 23.1	Wheatstonsche Messbrücke Shunt	33 33 34 35 35
23	22.1 22.2 22.3 Gerä 23.1 EMN 24.1	Wheatstonsche Messbrücke Shunt	33 33 34 35 35 36 36

1 SI-Vorzeichen & Einheiten

Т	Tera	10^{12}	1000000000000
G	Giga	10 ⁹ 1000000000	
М	Mega	10^6 1000000	
k	Kilo 10^3		1000
m	Milli	10^{-3}	0.001
μ	Mikro	10^{-6}	0.000001
n	Nano	10^{-9}	0.00000001
р	Pico	10^{-12}	0.000000000001

Ladung	Q	Coulomb	C = As
Spannung	U	Volt	V
Leistung	L	Watt	W
Arbeit	W	Wattsekunde	VAs
Impedanz	R	Ohm	$\Omega = \frac{V}{A}$
Leitwert	G	Siemens	$S = \frac{1}{\Omega}$
Kapazität	С	Farad	$F = \frac{As}{V}$
Induktivität	L	Henry	$H = \frac{Vs}{A}$
El. Feldstärke	Е	Volt pro Meter	$\frac{V}{m}$
Mag. Feldstärke	Н	Ampere pro Meter	$\frac{A}{m}$
Flussdichte	В	Tesla	$T = \frac{Vs}{m^2}$
Frequenz	f	Herz	$Hz = \frac{1}{s}$

2 Ohmisches/Leistungs Dreieck & Wellenlänge

2.1 Spannung

$$U = RI = \frac{P}{I} = \sqrt{PR}$$

2.2 Strom

$$I = \frac{P}{U} = \frac{U}{R} = \sqrt{\frac{P}{R}}$$

2.3 Wiederstand

$$R = \frac{U}{I} = \frac{P}{I^2} = \frac{U^2}{P}$$

2.4 Leistung

$$P = UI = \frac{U^2}{R} = RI^2$$

2.5 Wellenlänge & Frequenz

$$\lambda = \frac{c}{f}$$

$$c = \text{Lichtgeschwindugkeit} \approx 3*10^8$$

$$c = 2.99792458*10^8$$

$$f = \frac{c}{\lambda}$$

3 Widerstand & Leistung

3.1 Serieschaltung

$$R_{\Sigma} = \sum R_i$$

3.2 Paralellschaltung

$$R_{\sum} = \frac{1}{\sum \frac{1}{R_i}}$$

3.3 Leiterwiderderstand

$$R = \frac{\rho l}{A}$$
 $\rho = spezifischer Widerstand$

3.4 Spannungsteiler

$$U_x = R_x \frac{U}{R_{ges}}$$

3.5 Wirkungsgrad

$$\eta = \frac{P_{out}}{P_{in}}$$

$$P_{V} = Verlustleistung$$

$$P_{in} = P_{out} + P_{V}$$

4 Wechselstrom

4.1 Effektivspannung

4.1.1 Sinus

$$U_{eff} = \frac{\hat{\mathsf{U}}}{\sqrt{2}}$$

4.1.2 Dreieck

$$U_{eff} = \frac{\hat{\mathbf{U}}}{\sqrt{3}}$$

4.1.3 Rechteck

$$U_{eff} = \hat{\mathbf{U}}\sqrt{DutyCycle}$$

KONDENSATOR

5

Kondensator

5.1 Kapazität

$$C = \varepsilon_0 \varepsilon_r \frac{A}{d}$$

 $\varepsilon_0 = Elektrische Feldkonstante$

 $\varepsilon_r = Permittivit \ddot{a}t$

 $\varepsilon_0 = 8.854187817 * 10^{-12}$

Serieschaltung

$$C_{\sum} = \frac{1}{\sum \frac{1}{C_i}}$$

5.3 Paralellschaltung

$$C_{\sum} = \sum C_i$$

5.4 τ /Zeitkonstante

$$\tau = RC$$

$$\lim_{U \to 0\%/100\%} \Delta t = 5\tau$$

5.5 Dreh-/Plattenkondensator

$$C_p = \frac{f_u^2 \Delta C}{f_o^2 - f_u^2} - C_a \begin{tabular}{c} C_p = Paralellkapazität \\ C_a = Anfangskapazität \\ f_u = untere\ Frequenz \\ f_o = obere\ Frequenz \\ \Delta C = Kapazität\ des\ Drehko \\ \end{tabular}$$

5 KONDENSATOR 6

5.6 Kapazitiver Blindwiederstand

$$X_c = \frac{U}{I} = \frac{1}{\omega C} = \frac{1}{2\pi f C}$$

$$C = \frac{1}{\omega X_c} = \frac{1}{2\pi f X_c}$$

$$f = \frac{1}{2\pi X_c C}$$

$$I = \frac{U}{X_c}$$

5.7 Verlustfaktor/Güte

$$\tan \delta = \frac{I_R}{I_c} = \frac{X_c}{R_p}$$

$$Q = \frac{R_p}{X_c}$$

$$\begin{split} R_p &= paraleller \ Verlustwieder stand \\ I_R &= Strom \ durch \ R_v \\ I_C &= Strom \ durch \ Kondensator \end{split}$$

6 SPULE 7

6 Spule

6.1 Induktivität

$$L = \frac{\mu_0 \mu_r A N^2}{l} = A_L N^2$$
$$A_L = \frac{\mu_0 \mu_r A}{l}$$

 $\mu_0 = Permeabilität im luftleeren Raum$ $<math>\mu_r = Permeabilität des Kernmaterials$ $<math>A_L = Wert vorgefertigter Kerne$

6.2 Induktion- & Selbstinduktionspannung

$$U_{ind} = -L \frac{\Delta I}{\Delta t}$$
$$L = -U_{ind} \frac{\Delta t}{\Delta I}$$

6.3 Serieschaltung

$$L_{\Sigma} = \sum L_i$$

6.4 Paralellschaltung

$$L_{\sum} = \frac{1}{\sum \frac{1}{L_i}}$$

6.5 au/Zeitkonstante

$$\tau = \frac{L}{R}$$

6 SPULE 8

6.6 Verlustfaktor/Güte

$$\tan \delta = \frac{I_R}{I_L} = \frac{R_s}{X_L}$$

$$R_s = \text{serielle Verlustwieder stand}$$

$$I_R = \text{Strom durch } R_v$$

$$I_L = \text{Strom durch Spule}$$

$$Q = \frac{X_L}{R_s}$$

6.7 Induktiver Blindwiederstand

$$X_{L} = \omega L = 2\pi f L$$

$$L = \frac{X_{L}}{\omega} = \frac{X_{L}}{2\pi f}$$

$$f = \frac{X_{L}}{2\pi L}$$

7 IMPEDANZ 9

7 Impedanz

7.1 Serieschaltung

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

7.2 Paralellschaltung

$$Z = \sqrt{\frac{1}{R}^2 + \left(\frac{1}{X_L} - \frac{1}{X_C}\right)^2}$$

8 Transformator/Übertrager

8.1 Spannungs-/Strom-/Windungs-/ Wiederstandsübersetzung

$$\ddot{u} = \frac{U_1}{U_2} = \frac{N_1}{N_2} = \frac{I_2}{I_1} = \sqrt{\frac{Z_1}{Z_2}}$$

$$I_1 = I_2 \frac{U_2}{U_1} = I_2 \frac{N_2}{N_1} = I_2 \sqrt{\frac{Z_2}{Z_1}}$$

$$I_2 = I_1 \frac{U_1}{U_2} = I_1 \frac{N_1}{N_2} = I_1 \sqrt{\frac{Z_1}{Z_2}}$$

8.2 Stromdichte

$$S = \frac{I}{A}$$

9 RC-GLIED 11

9 RC-Glied

9.1 Grenzfrequenz

$$f_g = \frac{1}{2\pi RC}$$

$$C = \frac{1}{2\pi f_g R}$$

$$R = \frac{1}{2\pi f_g C}$$

9.2 Shape-Faktor

$$ShapeFaktor = \frac{Bandbreite\ bei\ 60db}{Bandbreite\ bei\ 6db}$$

10 DEZIBEL 12

10 Dezibel

10.1 Dezibel bei Leistug

$$\nu = 10 \log \left(\frac{P_{out}}{P_{in}} \right)$$

10.2 Dezibel bei Spannung

$$\nu = 20 \log \left(\frac{U_{out}}{U_{in}} \right)$$

11 LC-Schwingkreis

11.1 Resonanzfrequenz

$$f_{res} = \frac{1}{2\pi\sqrt{LC}} = \frac{f_{max} + f_{min}}{2}$$

$$L = \frac{1}{(2\pi f)^2 C}$$

$$C = \frac{1}{(2\pi f)^2 L}$$

11.2 Bandbreite

$$b = f_{max} - f_{min} = \frac{f_{res}}{Q}$$

11.3 Güte

$$Q = \frac{1}{R_s} * \sqrt{\frac{L}{C}} = \frac{f_{res}}{b} = \frac{R_p}{X_L} = \frac{X_L}{R_s}$$

$$b = \frac{R_s}{2\pi L}$$

$$R_s = serieller \ Verlustwiederstand$$

$$R_{res} = Resonanz \ Verlustwiederstand$$

$$R_p = paraleller \ Verlustwiederstand$$

$$R_p = paraleller \ Verlustwiederstand$$

$$R_{res} = \frac{2\pi f_{res} L}{Q}$$

12 DIODE 14

12 Diode

12.1 Vorwiderstand

$$R = \frac{U_{cc} - U_F}{I_F}$$

12.2 Spannungsfestigkeit/Max. Spannung

$$U = U_{in} * \sqrt{2}_{oder\ anderer\ Faktor\ Spitzenspannung}$$

13 Transistor/FET

13.1 Stromverstärkungsfaktor

$$\beta = \frac{I_C}{I_B}$$

13.2 R_1

$$I_B = \frac{I_E}{\beta + 1}$$

$$I_{R_1} = 11 * I_B$$

$$U_{R_1} = U - U_{BE}$$

$$R_1 = \frac{U_{R_1}}{I_{R_1}}$$

13.3 R_C

$$I_B = \frac{I_2}{9}$$

$$I_C = I_B \beta$$

$$U_{R_C} = U - U_C$$

$$R_C = \frac{U_{R_C}}{I_c}$$

13.4 *I*_C

$$I_E = \frac{U_E}{R_E}$$

$$I_B = \frac{I_E}{\beta + 1}$$

$$I_C = I_B \beta$$

13.5 P_V

$$U_{R_C} = R_C I_C$$

 $U_{Transistor} = U - U_{R_C}$
 $P_{Verlust} = U_{Transistor} * I_C$

14 Operationsverstärker

14.1 Invertierender Verstärker

$$U_{out} = -U_{in} \frac{R_2}{R_1}$$

14.2 Nichtnvertierender Verstärker

$$U_{out} = 1 + \frac{R_2}{R_1}$$

14.3 Differenzialverstärker

$$\nu_{U1} = \frac{R_3}{R_1}$$

$$\nu_{U2} = \frac{1 + \frac{R_3}{R_1}}{1 + \frac{R_2}{R_4}}$$

$$U_{out} = U_{in2} * \nu_{U2} - U_{in1} * \nu_{U1}$$

15 Elektromagnetisches Feld

15.1 Elektrische Feldstärke

$$E = \frac{U}{d}$$

$$\frac{E_1}{E_2} = \frac{d_2}{d_1}$$

15.2 Magnetische Feldstärke

$$H = \frac{I}{d}$$

15.3 Magnetische Flussdichte

$$B = \mu_0 \mu_r H$$

$$\mu_0 = Permeabili at 4\pi * 10^{-7} \frac{Vs}{Am}$$

$$\mu_r = Permeabili at des Materials$$

15.4 Strahlungsdichte Kuglestrahler

$$S = \frac{P_{ERP}}{4\pi r^2}$$
 $P_{ERP} = Leistung \ isotroper \ Strahler$

15.5 Feldwellenwiederstand

$$Z_0 = \frac{E}{H} = \sqrt{\frac{\mu_0}{\varepsilon_0}} = 120\pi\Omega$$
 $Z_0 = Feldwellenwiederstand$

15.6 Ersatzfeldstärke

15.6.1 Allgemein

$$E = \frac{\sqrt{30\Omega P_{ERIP}}}{r}$$

$$E = \frac{1}{r} \sqrt{\frac{Z_0}{4\pi} P_{ERIP}}$$

 $P_{ERIP} = Leistung isotroper Strahler$

15.6.2 Dipol

$$E \approx 7 \frac{\sqrt{P}}{r}$$

15.7 Brauchbare Grenzfrequenz

$$MUF \approx \frac{f_k}{\sin \alpha}$$

 $\begin{aligned} MUF &= maximum \ usable \ frequency \\ f_k &= kritische \ Frequenz \end{aligned}$

15.8 Optimale Grenzfrequenz

$$f_{opt} \approx 0.85 \ MUF$$

 $MUF = maximum \ usable \ frequency$ $f_{opt} = optimale \ Frequenz$

16 Antennentechnik

16.1 Dipol

16.1.1 Länge

$$l = n \frac{\lambda}{2} \quad n \in \mathbb{N}$$

16.1.2 Verkürzung

$$l = k \frac{\lambda}{2}$$
 $n \in [0.93, 0.97]$

16.2 Antennengewinn

16.2.1 zum Dipol

$$G_D = \frac{P_V}{P_D}$$

$$g_d = 10 \log_{10} \left(\frac{P_V}{P_D}\right) dbd$$

$$g_d = 20 \log_{10} \left(\frac{E_V}{E_D}\right) dbd$$

16.2.2 zum isotropen Strahler

$$G_{i} = \frac{P_{V}}{P_{i}}$$

$$g_{i} = 10 \log_{10} \left(\frac{P_{V}}{P_{i}}\right) dbd$$

$$g_{i} = 20 \log_{10} \left(\frac{E_{V}}{E_{i}}\right) dbd$$

16.2.3 ERP

$$P_{ERP} = \frac{P_{ERIP}}{1.64}$$

$$P_{ERP} = G_D P_S$$

$$P_{ERP} = P_S 10 \frac{g_d}{10 db}$$

$$P_{ERP} = G_D (P_{Sender} - P_{Verlust})$$

16.2.4 ERIP

$$\begin{split} P_{ERIP} &= 1.64 \; P_{ERP} \\ P_{ERIP} &= G_i P_S \\ P_{ERIP} &= P_S \; 10 \overline{10 db} \\ P_{ERIP} &= G_i \; (P_{Sender} - P_{Verlust}) \end{split}$$

16.2.5 Q-Match/
$$\frac{\lambda}{4}$$
 - Trafo
$$Z_{Kabel} = \sqrt{Z_{Ant}Z_{Leitung}}$$

7 LEITUNGEN 24

17 Leitungen

17.1 Wellenwiederstand

$$Z_w = \sqrt{\frac{L'}{C'}}$$

17.1.1 Paralleldrahtleitung

$$Z_w = \frac{120\Omega}{\sqrt{\varepsilon_r}} \ln\left(\frac{2a}{d}\right)$$

17.1.2 Koaxialleitung

$$Z_w = \frac{60\Omega}{\sqrt{\varepsilon_r}} \ln\left(\frac{D}{d}\right)$$

17.2 Verkürzungsfaktor

$$\nu = \frac{1}{\sqrt{L'C'}}$$

$$k = \frac{\nu}{c}$$

$$k = \frac{1}{\sqrt{\varepsilon_r}}$$

17.3 Dämpfung

$$n = \sqrt{\frac{f_{hoch}}{f_{niedrig}}}$$

17 LEITUNGEN 25

17.4 Transformationsleitung

$$R_i = Z_w = Z_{ant}$$

$$Z = \sqrt{Z_1 Z_2}$$

$$l = (2n - 1) \frac{\lambda}{4} k$$

17.4.1 Koaxialleitung

$$Z = \frac{138\Omega}{\sqrt{\varepsilon_r}} \left(\frac{D}{d}\right)$$
$$D = d \cdot 10 \cdot \overline{138\Omega}$$

18 SIGNALE 26

18 Signale

18.1 Effektivspannung

18.1.1 Sinus

$$U_{eff} = \frac{\hat{\mathbf{U}}}{\sqrt{2}}$$

18.1.2 Dreieck

$$U_{eff} = \frac{\hat{\mathbf{U}}}{\sqrt{3}}$$

18.1.3 Rechteck

$$U_{eff} = \hat{\mathbf{U}}\sqrt{DutyCycle}$$

18.2 Wellenlänge & Frequenz

$$\lambda = \frac{c}{f}$$

$$f = \frac{c}{\lambda}$$

$$c = \text{Lichtgeschwindugkeit} \approx 3*10^8$$

$$c = 2.99792458*10^8$$

$$u = \sin(\omega t + \varphi)$$

18.3 Bandbreite

18.3.1 DSB

$$b_{AM} = 2f_{mod}$$

18 SIGNALE 27

18.3.2 SSB

$$b_{SSB} = f_{NFmax} - f_{NFmin}$$
$$b_{SSB} \approx f_{mod}$$

18.3.3 FM

$$b_{FM} = 2(\Delta f_T + f_{mod})$$

$$b_{FM} \approx 2 \Delta f_T \qquad f_{mod} \ll \Delta f_T$$

$$b_{FM} \approx 2 f_{mod} \qquad m < 0.5$$

18.3.4 CW

$$b_{CW} = \frac{5 * WPM}{1.2}$$

18.3.5 RTTY

$$b_{RTTY} = 2 \left(\frac{\Delta f}{2} + 1.6Bd \right)$$

18.4 Modulationsindex FM

$$m = \frac{\Delta f_t}{f_{mod}}$$

18.5 Besselfunktion

$$u = 0\sin(\omega_t t - m\cos(\omega_m t))$$

18 SIGNALE 28

18.6 Peak Envelope Power

$$PEP = PeakEnvelopePower \\ P_c = Carrier - Power(Trägerleistung) \\ m = Modulationsgrad bei AM$$

19 Modulation - Demodulation

19.1 Modulationsgrad

$$m = \frac{\hat{\mathsf{U}}_{mod}}{\hat{\mathsf{U}}_T}$$

20 Frequenzaufbereitung

20.1 Überlagerung

20.1.1
$$f_{osc} > f_e$$

$$f_z = \frac{f_{sp} - f_e}{2}$$
$$f_{osc} = f_e + f_z$$

$$\begin{split} f_e &= Eingangs frequenz \\ f_{osc} &= Ueberlagerungs frequenz \\ f_z &= Zwischen frequenz \\ f_{sp} &= Spiegel frequenz \end{split}$$

20.1.2
$$f_{osc} < f_e$$

$$f_z = f_e - f_{osc}$$
$$f_{sp} = f_e - 2f_z$$

$$\begin{split} f_e &= Eingangs frequenz \\ f_{osc} &= Ueberlagerungs frequenz \\ f_z &= Zwischen frequenz \\ f_{sp} &= Spiegel frequenz \end{split}$$

20.2 Frequenz 3.Ordnung

$$2f_1 - f_2 \wedge 2f_2 - f_1$$

21 Übertragungstechnik

21.1 Nquisttheorem

$$f_{abt} > 2f_{imax}$$

21.2 Dynamik

$$D = 20 \log \left(\frac{U_{max}}{U_{min}}\right) dB$$

21.3 Baudrate

$$\nu_u = \frac{1}{t_{1hit}} Bd$$

21.4 FSK

21.4.1 Bandbreite

$$b_{FSK} = 2(\Delta f_T + f_{mod})$$

$$b_{FSK} \approx 2 \left(\frac{\Delta F}{2} + 1.6 f_u \right)$$

21.5 PSK

21.5.1 Bandbreite

$$b_{PSK} = 2(\Delta f_T + f_{mod})$$

$$b_{PSK} = 2\frac{\nu_u}{2} = \nu_u$$

21.6 Totales Verbindungssystem

$$N = S \frac{S - 1}{2}$$

$$N = Strecken$$

 $S = Stationen$

22 MESSTECHNIK 33

22 Messtechnik

22.1 Wheatstonsche Messbrücke

$$R = \frac{R_4 R_1}{R_3}$$

22.2 Shunt

$$U = R_{Instr}I_{Instr} = R_pI_P$$

 $I_p = I_{Messbereich} - I_{Instrument}$

$$R_p = \frac{U}{I_p}$$

$$R_p = \frac{R_{Instr}}{n-1}$$

$$R_s = R_{Instr}(n-1)$$

 $R_{Instr} = Instrument wider stand$ $R_p = Shunt wider stand parallel$ $R_s = Shunt wider stand seriell$ $I_p = Strom durch Shunt$ $I_{instr} = Instrument enstrom$ n = Messbereich serweiter ungs fraktor

22 MESSTECHNIK 34

22.3 SWR/VSWR

$$\begin{split} s &= \frac{U_{max}}{U_{min}} = \frac{U_v + U_r}{U_v - U_r} = \frac{1 + |r|}{1 - |r|} = \frac{\sqrt{P_v} + \sqrt{P_r}}{\sqrt{P_v} - \sqrt{P_r}} \\ |r| &= \frac{U_r}{U_v} = \sqrt{\frac{P_r}{P_v}} = \frac{s - 1}{s + 1} & s = SWR/VSWR \\ r &= Reflexions faktor \\ Z &= Wellenwiederstand (der Leitung) \\ R_2 &= Abschlusswiederstand \\ U_v &= hinlaufende Welle \\ U_r &= rcklaufende Welle \\ S &= \frac{Z}{R_2} & R_2 \leq Z \end{split}$$

23 Gerätetechnik

23.1 Empfindlichkeit

$$P_R = kT_0bF$$

$$U_R = \sqrt{kT_0bRF}$$

 $\begin{array}{l} k = 1.38*10^{-23} \; (Boltzmann \; Konstante) \\ T_0 = Temperatur \; [K] \\ b = Bandbreite \; [Hz] \\ R = Eingangswiederstand \end{array}$

F = Rauschfaktor $P_R = Rauschleistung$ $U_R = Rauschspannung$

24 EMV und Sicherheit

24.1 Windlast

$$F_A = pA$$

$$p = Staudruck \left[\frac{N}{m^2}\right]$$

$$A = Wirckflche \left[m^2\right]$$

24.2 Biegemoment

$$M_A = \sum F_i l_i$$

24.3 Sicherheitsabstand

$$d = \frac{\sqrt{30\Omega P_{ERIP}}}{E}$$