# 실습 8. (집계함수+문자열함수) 활용 / 그룹핑컬럼 가공

## 8-1. 부서별 급여를 가장 많이 받는 사원의 이름(first\_name+last\_name)과 급여(salary)

## 출력 결과

| DEPT_NAME            | ⊕ EMP_NAME         | SALARY |
|----------------------|--------------------|--------|
| 1 Research           | Ramachenga Soicher | 130211 |
| 2 Development        | Khosrow Sgarro     | 144434 |
| 3 Quality Management | Shin Luck          | 132103 |
| 4 Human Resources    | Yinlin Flowers     | 141953 |
| 5 Customer Service   | Vidya Hanabata     | 144866 |
| 6 Production         | Youjian Cronau     | 138273 |
| 7 Finance            | Lunjin Swick       | 142395 |
| 8Sales               | Tokuyasu Pesch     | 158220 |
| 9 Marketing          | Akemi Warwick      | 145128 |

Big Data Intelligence Series

32

# 실습 8. (집계함수+문자열함수) 활용 / 그룹핑컬럼 가공

## 8-2. 현직 사원에 대한 입사연도별 급여 평균

입사연도 순으로 정렬된 결과를 얻기 위해서 Sort group by를 활용하기 위한 hint

### 출력 결과

|     | ∯ 입사연도 | ∜ 급여평균 |
|-----|--------|--------|
| - 1 | 1985   | 78870  |
| 2   | 1986   | 77411  |
| 3   | 1987   | 75928  |
| 4   | 1988   | 74202  |
| 5   | 1989   | 73053  |
| 6   | 1990   | 71484  |
| - 7 | 1991   | 69813  |
| 8   | 1992   | 68286  |
| 9   | 1993   | 67091  |
| 10  | 1994   | 65333  |
| 11  | 1995   | 63705  |
| 12  | 1996   | 62425  |
| 13  | 1997   | 60795  |
| 14  | 1998   | 59673  |
| 15  | 1999   | 58199  |
| 16  | 2000   | 58192  |

Big Data Intelligence Series

## 실습 9. UNION ALL을 활용한 실행계획 분리

9-1. 사원 이름으로 사원정보(성명, 연령, 입사일자, 소속부서명, 직급명, 급여) 검색 (first\_name으로 찾기 / last\_name으로 찾기)

#### 9-1-① 인덱스 생성 (first\_name)

create index employees\_idx3 on employees (first\_name) ;

9-1-② 비효율은 없을까? ( eg. first\_name : Shigeu, last\_name : Matzen )



Big Data Intelligence Series

34

# 실습 9. UNION ALL을 활용한 실행계획 분리

9-1. 사원 이름으로 사원정보(성명, 연령, 입사일자, 소속부서명, 직급명, 급여) 검색 (first\_name으로 찾기 / last\_name으로 찾기)

9-1-③ 실행계획 분리 (first\_name으로 검색하는 경우와 last\_name으로 검색하는 경우를 분리하여 SQL 작성)



Big Data Intelligence Series

## 실습 10. 부분합 / 데이터복제 / ROLLUP과 CUBE

## 10-1. 현재 부서별 사원들의 급여 합계와 급여 총합계 산출 (데이터복제를 활용한 부분합)

#### 10-1-① 복제 테이블 생성

create table copy\_t ( no number(2) not null. no2 varchar2(2) not null );

### 10-1-② 복제 테이블 데이터 생성

#### ROWNUM의 이해

- 정의
  - 오라클에서 지원하는 가상컬럼으로 쿼리의 결과에 1부터 하나씩 증가하여 붙는 가상(pseudo) 컬럼
- 주요용도

주로 여러개의 결과를 출력하는 쿼리문을 실행 후 결과의 개수를 제한하여 가져오는데 사용 (stop key라고 불림)

■ 주의할 점

rownum이 결과에서 1부터 순서대로 증가하여 붙기 때문에 rownum=2 나 rownum>1과 같은 방식으로는 원하는 결과를 얻을 수 있음

Big Data Intelligence Series

36

## 실습 10. 부분합 / 데이터복제 / ROLLUP과 CUBE

10-1. 현재 부서별 사원들의 급여 합계와 급여 총합계 산출 (데이터복제를 활용한 부분합)

10-1-③ 데이터복제를 통한 급여 부분합(엑셀 부분합과 유사) 산출

- copy\_t 테이블과의 곱집합(cartesian product)을 통한 데이터복제 ・ copy\_t.no = 1 → 부서별 급여합 산출에 사용 ・ copy\_t.no = 2 → 전체 급여합 산출에 사용

#### 출력 결과

| ∜ 부서명                | (∜ 급여합      |
|----------------------|-------------|
| 1 Customer Service   | 1182134209  |
| 2 Development        | 4153249050  |
| 3 Finance            | 977049936   |
| 4 Human Resources    | 824464664   |
| 5 Marketing          | 1188233434  |
| 6 Production         | 3616319369  |
| 7 Quality Management | 951919236   |
| 8 Research           | 1048650423  |
| 9 Sales              | 3349845802  |
| 10 합계                | 17291866123 |

## 실습 10. 부분합 / 데이터복제 / ROLLUP과 CUBE

## <u>10-2. 현재</u> 부서별 사원들의 급여 합계와 급여 총합계 산출 (rollup() 함수를 활용한 부분합)

rollup() 함수 사용

앞의 데이터복제 활용결과와 동일

#### 출력 결과

| ∜ 부서명                | ∜ 급여합       |
|----------------------|-------------|
| Customer Service     | 1182134209  |
| 2 Development        | 4153249050  |
| 3 Finance            | 977049936   |
| 4 Human Resources    | 824464664   |
| 5 Marketing          | 1188233434  |
| 6 Production         | 3616319369  |
| 7 Quality Management | 951919236   |
| 8 Research           | 1048650423  |
| 9 Sales              | 3349845802  |
| 10 합계                | 17291866123 |

Big Data Intelligence Series

38

# 개념 이해 10. Rollup() / Cube() / Grouping Sets() 함수

### → Rollup()

- ROLLUP에 지정된 Grouping Columns의 List는 Subtotal을 생성하기 위해 사용됨
- Grouping Columns의 수를 N이라고 했을 때 N+1 Level의 Subtotal이 생성됨
- Rollup(A, B) = (group by A, B)  $\cup$  (group by A)  $\cup$  (group by NULL)

### → Cube()

- 결합 가능한 모든 값에 대하여 다차원 집계를 생성
- Grouping Columns의 수를 N이라고 했을 때 2<sup>N</sup> Level의 Subtotal이 생성됨
- Cube(A, B) = (group by A, B)  $\cup$  (group by A)  $\cup$  (group by B)  $\cup$  (group by NULL)

#### Grouping Sets()

- GROUPING SETS에 표시된 인수들에 대한 개별 집계를 구하기 위해 사용됨
- Grouping Columns의 수를 N이라고 했을 때 N Level의 Subtotal이 생성됨
- Grouping Sets(A, B) = (group by A) ∪ (group by B)

### Grouping()

- ROLLUP, CUBE, GROUPING SETS 등 새로운 그룹 함수를 지원하기 위해 추가된 함수
- If expr = (ROLLUP이나 CUBE에 의한 소계가 계산된 결과), grouping(expr) = 1. if not, grouping(expr) = 0
- CASE/DECODE를 이용해, 소계를 나타내는 필드에 원하는 문자열을 지정할 수 있음

## 실습 10. 부분합 / 데이터복제 / ROLLUP과 CUBE

10-3. 현재 부서별/직급별 급여합 및 전체 급여합 산출 (cube() 함수를 활용한 부분합)



Big Data Intelligence Series

40