

Lab 8: Virtual Private Networks (VPNs)

Configuring (un)encrypted VPNs

Virtual Private Networks

Goals:

- 1. Learn the basics of Virtual Private Networks (VPNs)
- 2. Use unencrypted tunnels to implement a VPN (GRE)
- 3. Use encrypted tunnels to implement a VPN (OpenVPN)

Evaluation

- Where
 - Lab 8: VPNs on Moodle (already opened)
- Submission due
 - Sunday, January 23, 23h59
- Comments due
 - Thursday, January 27, 23h59

Virtual Private Networks

Basic concepts

Extension of a private network over a public network

 Hosts appear to be <u>directly connected to the private</u> <u>network</u> through a secure <u>point-to-point connection</u>

Generic Routing Encapsulation (GRE)

 A private point-to-point connection (<u>a GRE tunnel</u>) is created between the two routers

- Each endpoint is assigned a different IPv4 address
 - Packets are tunneled through the endpoints

Generic Routing Encapsulation (GRE)

- GRE encapsulates packets to route other protocols over IP
 - Routers along the way do not parse inner packets, only the other GRE packet

Encrypted tunnels OpenVPN

- System that allows to create secure point-to-point tunnels over untrusted networks
 - Does not involve packet encapsulation
 - Communication is secured through the use of cryptographic mechanisms

Encrypted tunnels

Encrypted tunnels

Encrypted tunnels

Handout exercise

ciphered!

