Frontiers in Networked Control

Lecture 1

Royal Institute of Technology (KTH)

8 March 2006

A Simple But Intractable Example

Lecturer: Michael Rotkowitz

Instructor: Michael Rotkowitz Scribe: Elin Hallander

Review of 2 Input-2 Output Framework

Consider Figure 1. w are the exogenous inputs, z are the exogenous outputs, y are the controller inputs and u are the control signals. We typically want to minimize the map from w (e.g. wind gust) to z, "error signals".

Figure 1: Classical 2 Input-2 Output Framework

$$\begin{array}{rcl}
 z & = & P_{11}w + P_{12}u \\
 y & = & P_{21}w + P_{22}u
 \end{array}
 \tag{1}$$

u = Ky gives

$$y = P_{21}w + P_{22}Ky$$

$$(I - P_{22}K)y = P_{21}w$$

$$y = (I - P_{22}K)^{-1}P_{21}w$$

$$u = K(I - P_{22}K)^{-1}P_{21}w$$

$$z = [P_{11} + P_{12}K(I - P_{22}K)^{-1}P_{21}]w$$

$$z = f_l(P, K)w$$

E.g. we want to keep $||f_l(P, K)||$ small

Considering 3-dimensional vectors this gives

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \underbrace{\begin{bmatrix} * & & \\ * & * & \\ * & * & * \end{bmatrix}}_{G} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \qquad \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \underbrace{\begin{bmatrix} * & 0 & 0 \\ * & * & 0 \\ * & * & * \end{bmatrix}}_{K} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

This holds when we have

- *) Classical Information Pattern
- *) Linear Dynamics
- *) Quadratic Cost
- *) Gaussian Noise

 \Rightarrow

- -Separation of estimation and control.
- -Optimal controller is linear.

Witsenhausen showed that without a Classical Information Pattern the rest of the theory brakes down.

Witsenhausen Counterexample (1968)

Consider Figure 2

 ${\bf Figure~2:~Block~diagram~to~show~Witsenhausen's~Counterexample}$

$$x_0 = \sigma w_1$$
 $y_1 = x_0$ $J = E(ku_1^2 + x_2^2)$ $u_1 = \gamma_1(y_1)$ $x_1 = x_0 + u_1$ $w_2 = v$ In the 2nd time step: $y_2 = x_1 + v$ have only access to y_2 $u_2 = \gamma_2(y_2)$ $x_2 = x_1 - u_2$

Now

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \underbrace{\begin{bmatrix} * \\ * & * \end{bmatrix}}_{C} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \qquad \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \underbrace{\begin{bmatrix} * \\ * \end{bmatrix}}_{K} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

Where K is not triangular!

The result of some "usual" control strategies are summarized in Table 1;

- (0) -classical case, can choose $u_2 = *y_1$
- (1) -no input cost
- (2) -no output cost

Consider now
$$u_1 = -y_1 + \sigma sign(y_1)$$

 $x_1 = \sigma sign(y_1)$
 $u_2 = \sigma sign(y_2)$
 \Rightarrow
 $u_1 = -y_1 + \sigma sign(y_1) = -\sigma w_1 + \sigma sign(w_1)$
 $u_1^2 = \sigma^2 w_1^2 + \sigma^2 - 2\sigma^2 w_1 sign(w_1) =$
 $\sigma^2(w_1^2 + 1) - 2\sigma^2 |w_1|$
 $E(u_1^2) = 2\sigma^2 - 2\sigma^2 E(|w_1|)$
We have

$$E(|w_1|) = 2 \cdot \frac{1}{\sqrt{2\pi}} \int_0^\infty x e^{-\frac{x^2}{2}} dx = \sqrt{\frac{2}{\pi}} \left[-e^{-\frac{x^2}{2}} \right]_0^\infty = \sqrt{\frac{2}{\pi}}$$

$$\Rightarrow E(u_1^2) = 2\sigma^2 \left(1 - \sqrt{\frac{2}{\pi}} \right)$$

$$\sim 0.4\sigma^2 \qquad \text{(MATLAB)}$$

$$x_2 = \begin{cases} -2\sigma & w_1 < 0, \quad v > 0 \\ 2\sigma & w_1 > 0, \quad v < 0 \\ 0 & else \end{cases}$$

This controller, denoted (3), is compared with some the other control strategies in Table 1, using

$$\begin{cases} k = 0.01 \\ \sigma = 10 \end{cases} \Rightarrow k\sigma^2 = 1$$

An optimal linear controller arrives at

$$J \sim 0.9$$

	γ_1	γ_2	$E(u_1^2)$	x_2	$E(x_2^2)$	J
(0) full info	0	y_1	0	0	0	0
(1) No Input Cost	0	y_2	0	v	1	1
(2) No Output Cost	$-y_1$	0	σ^2	0	0	$k\sigma^2 = 1$
(3) M&S	$-y_1 + \sigma sign(y_1)$	$\sigma sign(y_2)$	$\sim 0.4\sigma^2$	$\{0,\pm 2\sigma\}$	~ 0	$\sim 0.4k\sigma^2 \sim 0.4$

Table 1: Result for different strategies