Hausdorff spaces

2016-02-11 9:00 -0500

Definition (Hausdorff space)

We say that the space X is Hausdorff if for any $x, y \in X$ such that $x \neq y$, there are disjoint neigborhoods U, V of x, y, respectively.

Definition (Hausdorff space)

We say that the space X is Hausdorff if for any $x, y \in X$ such that $x \neq y$, there are disjoint neigborhoods U, V of x, y, respectively.

Definition (Hausdorff space)

We say that the space X is Hausdorff if for any $x, y \in X$ such that $x \neq y$, there are disjoint neigborhoods U, V of x, y, respectively.

Examples

• If d is a metric on X, (X, τ_d) is Hausdorff.

Definition (Hausdorff space)

We say that the space X is Hausdorff if for any $x, y \in X$ such that $x \neq y$, there are disjoint neigborhoods U, V of x, y, respectively.

- If d is a metric on X, (X, τ_d) is Hausdorff.
- Any totally ordered set with the order topology is Hausdorff

Definition (Hausdorff space)

We say that the space X is Hausdorff if for any $x, y \in X$ such that $x \neq y$, there are disjoint neigborhoods U, V of x, y, respectively.

- If d is a metric on X, (X, τ_d) is Hausdorff.
- Any totally ordered set with the order topology is Hausdorff.
- The product of two Hausdorff spaces is Hausdorff.

Definition (Hausdorff space)

We say that the space X is Hausdorff if for any $x, y \in X$ such that $x \neq y$, there are disjoint neigborhoods U, V of x, y, respectively.

- If d is a metric on X, (X, τ_d) is Hausdorff.
- Any totally ordered set with the order topology is Hausdorff.
- The product of two Hausdorff spaces is Hausdorff.
- Any subspace of a Hausdorff space is Hausdorff.

Definition (Hausdorff space)

We say that the space X is Hausdorff if for any $x, y \in X$ such that $x \neq y$, there are disjoint neigborhoods U, V of x, y, respectively.

- If d is a metric on X, (X, τ_d) is Hausdorff.
- Any totally ordered set with the order topology is Hausdorff.
- The product of two Hausdorff spaces is Hausdorff.
- Any subspace of a Hausdorff space is Hausdorff.
- The Sierpiński space is not Hausdorff.

Definition (Hausdorff space)

We say that the space X is Hausdorff if for any $x, y \in X$ such that $x \neq y$, there are disjoint neigborhoods U, V of x, y, respectively.

- If d is a metric on X, (X, τ_d) is Hausdorff.
- Any totally ordered set with the order topology is Hausdorff.
- The product of two Hausdorff spaces is Hausdorff.
- Any subspace of a Hausdorff space is Hausdorff.
- The Sierpiński space is not Hausdorff.
- Is the cofinite topology on N Hausdorff?

Theorem (Points in Hausdorff)

Every singleton in a Hausdorff space X is a closed set.

Theorem (Points in Hausdorff)

Every singleton in a Hausdorff space X is a closed set.

Proof

For $x \in X$, let $y \notin \{x\}$. If U, V are disjoint neigborhoods of x, y respectively, then $V \subseteq X - \{x\}$. Hence $X - \{x\}$ is open.

Theorem (Points in Hausdorff)

Every singleton in a Hausdorff space X is a closed set.

Proof

For $x \in X$, let $y \notin \{x\}$. If U, V are disjoint neigborhoods of x, y respectively, then $V \subseteq X - \{x\}$. Hence $X - \{x\}$ is open.

Theorem (Limit points in Hausdorff)

Let X be a Hausdorff space and $A \subseteq X$. Then $x \in X$ is a limit point of A if and only if every neigborhood of x contains infinitely many points of A.

Theorem (Points in Hausdorff)

Every singleton in a Hausdorff space X is a closed set.

Proof

For $x \in X$, let $y \notin \{x\}$. If U, V are disjoint neigborhoods of x, y respectively, then $V \subseteq X - \{x\}$. Hence $X - \{x\}$ is open.

Theorem (Limit points in Hausdorff)

Let X be a Hausdorff space and $A \subseteq X$. Then $x \in X$ is a limit point of A if and only if every neigborhood of x contains infinitely many points of A.

Proof.

Exercises

• We say that a space is a T_1 space if for any two different points x, y, each has a neighborhood that does not contain the other point. Show that all singletons are closed in X if and only if X is T_1 .

Exercises

- We say that a space is a T_1 space if for any two different points x, y, each has a neighborhood that does not contain the other point. Show that all singletons are closed in X if and only if X is T_1 .
- Show that If X is Hausdorff, then X is T_1 . Give an example of a T_1 space that is not Hausdorff.

Exercises

- We say that a space is a T_1 space if for any two different points x, y, each has a neighborhood that does not contain the other point. Show that all singletons are closed in X if and only if X is T_1 .
- Show that If X is Hausdorff, then X is T_1 . Give an example of a T_1 space that is not Hausdorff.
- We say that a space is a T_0 space if for any two different points x, y, one of them has a neighborhood that does not contain the other point. Show that a T_1 space is T_0 . Give an example of a T_0 space that is not T_1 . Give an example of a space that is not T_0 .

Links

• Hausdorff space - Wikipedia, the free encyclopedia