. 該 订 线 内 不 要、答

南京邮电大学 2016/2017 学年第 1 学期

《 数字电路与逻辑设计 B 》期末试卷 (A)

院(系)	-					学号			姓名		
题号.		-		四.	五	六	Ł	八:	九	总分	
得分								-		•	
得分	1. † ;	至选择 进制数(2 HBCD 3	28);0对图	立的二进	生制数是				Ŀ訶数是 ^{i421BCD-} •		
194 - 7 set [4]	2. 逻辑	1. 改函量							::	· , X	<u>r</u> .
偶函数 F =。 3. F = ABC + A + B + C 的最简与或表达式为:。 4. 任意两个最小项的乘积恒等于,全部最小项之和恒等于。 5. 当输入信号改变状态时,输出端可能出现短暂错误电平的现象叫。											
7. 两个1 者相加的	6. JK 触发器的次态方程为										
9. 为了位	非门 克由与非	B. D) 触发器 的钟控	RS 触岁	全加 之器的次	器 态为 .	D. 译 RS 的	码器 取值应为		•	•
10、ADC A、把模	拟信号轮	是() 专换为数)。 数字信号	В.	把数字	三信号转	换为模	似信号			•
11. 衡量	A. 把模拟信号转换为数字信号 B. 把数字信号转换为模拟信号 C. 把二进制转换为十进制 D. 把格雷码转换为二进制 11. 衡量 A/D 和 D/A 转换器性能优劣的主要指标是 C. 功率消耗 D. 转换精度和转换速度										
12. 信息可随时读出或写入,断电后信息立即全部消失的存储器是。 A_ ROM B_ RAM. C_ PROM D. Flash Memory											
A计数	13. 在下列电路中,不属于时序逻辑电路的器件是。 A. 计数器 B. 移位寄存器 C. 半导体随机存储器 RAM D. 半导体只读存储器 ROM 14 一片 8K×8 位的 ROM 存储器有个字,字长为位。										

得分

二、己知 $F_1(A,B,C)=A\oplus B\oplus C, F_2(A,B,C)=\sum m(0,1,4,5)$, 求:

F₁ ⊕ F₂ 的最简与或表达式。(8分)

得分

三、已知由3/8译码器实现的逻辑函数如图所示,试改用一个4选 1 数据选注 择器(输出)实现(可附加少量门电路)(12分)。

. 得分

四、分析如图所示电路的逻辑功能。(要求写出函数表达式、画出真值表、确定逻辑功能) (8分)

得分 六。程示的后逻辑电路,写出各触发器的状态方程,画出电路的状态转换图。 A 对输入逻辑变量。(12分)

得分

七、分析图所示电路,试画出 $Q_1Q_1Q_2$ 的状态转移图,并说明能否自启动(设 初态为 $Q_2Q_2Q_3$ Q_4 Q_5 Q_5

(氨字电路与逻辑设计 B) 武岩(A) 差 4 而 ± 。 =

八、写出下图中 74161 输出端的状态编码表及 74151 输出端产生的序列信号 (10 分)

F=

汀

璞

N

不

要

懸

得分

九、由 PROM和 DE 构成的电路如图所示,设 Q1Q2Q3 的初态为 000

- 1) 试填写 QIQ2Q3 酌状态转移表。(12分)
- 2) 试写出序列码下型型。
- 3) 试说明这是什么功能的电路。

状态转移表

74161/74163

	-T	<u> </u>									-		•
ČE.	Lo	P(S ₁)T(S;)	CP	D_3	D_2	D,	\mathbf{D}_{0}	Q_3^n	$^{i}Q_{2}^{n+}$	Q_1^{n+1}	Q_0^{n+1}	功能
0	φ	ф	ф	φ	ф	ф	ф	φ	0	0	0	0.	异步清除
	0	ф	. ф.	4	d_3	ď2	d_1	ďa	\mathbf{d}_3	ďż	ď	d_0	同步并入
: 1	1	1.	T.	Î	ф	φ	ф	- 1			- 11		
<u> </u>	1	0	.1	ф	ф	ф	ф.	ф		Q² 宜(Q _t ⁿ	Qΰ.	
· 1	1	.ф.	0	ф	ф.	ф	ф	φ		• •	Q _i ⁿ O ⁿ =	1	保持

74151

	· .
報入	輸出
Az A1 A0	T
φ φ.φ.	. Q .
0.0.0	D_0
0 0 1	D_1
0 1 0	D_2
0 1 1	D_3 .
1 0 0	D_4 .
1 0 1	D_5
1 1.0	D_6
I. 1. 1.	D_7
	A2 A1 A0 Ø Ø Ø 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 1 1 0

	<u> </u>			-		r—		_						
Į.	能输入	1	Ŕ	λ					iş.		£.4	 _1 _£	-	
Ē	\bar{E}_{24} \bar{E}_{28}	$A_{\overline{2}}$	4	Ág		$\overline{Y}_{\mathfrak{g}}$	į,	· K	ľ	¥,	Ÿ,	10,121		
ψ	Ĩ	÷	Ġ.	£.	1	Ē	Į.	£,	7.2.					
0	. ф	ф	φ	ф	Contract of the Contract of th	l	1	Ę	far.	Į	Į	Ē		
Ĺ	0	0	0	0			Ĺ	Ĺ	E	1	<u>-</u> <u>-</u>];		
Ĺ	Ú	Ü	Ō	į.	1.	l	.0	11					 -	
<u>"</u>	<u> </u>	0	Ę	-()		Į	Ĭ	0	 [_
ğ	0		17	E.	The same	Fred	į.	Įį.	0					وولنه في
22	. 0	1	0	0		ĺ	į	Ĩ	Ĭ.					
<u>.</u>	0	. 1	0	<u>H</u>	, London Comment	1	1	ž.	Į.					dayana,
Ţ	9.	1	ï	Ó	-	ľ.	1	1.	Ţ.					- Contraction
Î.	Ø j	į	Ě	Ē	i i	ã	ĝ.							III etchini
	[17] (2) (2) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E: E24E28 A2 A A0 V V V V V V V V V V V V V V V V V	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E: E2 E28 A2 A A0 V		

南京邮电大学 2013/2014 学年 第一学期

《 数字电路与逻辑设计 B 》期末试卷 (B)

觉

麙

+

4		, .							f.l. fm	•	•.
院(系)_				级		_ 学与	ź	<u></u>	_ 姓名		~
题号			Ë	63	£	六	七	ハ	九	总分	1.
. 得分								-,	-		-
得分	· 一、填	[空选择	题 (23	分,每	· 空 i 分)	· .			-		
			*				•	59.			- · .
数 <i>F</i> =			_	$B + \overline{C}$	D的反i	函数 ₹	=_A·B	· (C+D) <u> </u>	_, 对偶图	ā .
3.F(A,B,C)	C, D, E	= A+.	ABC+A	CD 的是	最简与或	达法 第	为:	A+co			
4. 由 3 个角 均接 Cl 5. 若一个: 时,输 A. 2.56	P: 各级 8 位二运 出电压	A M D // 大会 D // 大	均接成 A 转换器 	TFF 器的满刻	形式, 引度输出	其中 2 电压为	[= 10.20V	T ₂ =	Q ₁ . 頂っ 入为(10	6165i	T. 20, 0,
6. 在 A/D 则最大i	量化误差	差为	Da.	•	立, 若采	第"四	含五入	"方法:	划分量(七电平,	
A. 1/4 7. 信息可随	•				立即委	印准的	的存储器	是_}	a		
A. ROM 8. 存储器名 扩展为 1 9. 在四变量	至量的扩 16K菜16	展有 的 RAI	扩展 M. 则 需	<u> </u>	<u> </u> 上	展两种 AM211	方式。女 1和一个	4	xa 容量	的 RAM. 译码器。	16×10
$\mathcal{M}_{\mathbf{I}}$	m_3	B_{-} n	ı ₄ ,m ₆	C/	m_s, m_1						
10. 逻辑函 11.在以下单 运算 [2] 寻址 16 用十六进 3. GAL16V 端。	元电路 放大器 (×8)容 制书写	中,更量的限	有"记位 放发器 AM 需要	Z"功值 紧 E(↓ DOOG	定的单元 C. TT 根地址 D. H 3	レ门电 L线。可 至 <u>3</u>	略 访问 EFE)	16k 16	22.A	初绕。 第元,若 一个输入	
4.把 2 片计	数器 74	161 通道 17世	对	连接成的	竹计数器	,其最	大模值	是	yb_	°	•
•		《数字印	路与逻辑	程设计 B	(1) 试卷(1	B) 第1	页共	4 页			

南京邮电大学 2012/2013 学年第 2 学期

《 数字电路与逻辑设计 B 》期末试卷(B)

院(系)	,		学号		姓名		
题号 -	. = - =	四五	ホーセー	\.\.\\	九十	总分	
得分							
 余 3 码 100 A. 01010 补码 1. 10 A. +1.0 标准或-与 A. 与项标 根据反演规 A. F=1 	B 7 B 7 DO1600 对 101 B. DO0 的 真值 111 式是由 B. 则,F={A [AC+C(D+	+进制数需要 C. 8 室的 2421 码为 10000101 是()。 B1.0111) 构成的逻 最小项相或 +c) (C+DE)+ E)]-E	D. 9 D. 9 C. 10111011 GQ. 1 辑表达式。 C. 最大巧 E的反函数为 B. F=AC+ D. F=AC+	D 001 (相与 ()。 C(D+E)- C(D+E)	D. −0. D. 或项析 E	1000	
A. =	FD .	•	B. 或门 D. 与非广).	-
· A. 或非	门	B. 与非门	图 1 C. 异或F		D. 同或门	. ,	
9. 要使 JK 触	E 发器在时 E	5. 9 钟作用下的次》 5. JK=01	C. 10	D ,JK端I	. 11 取值应为 (D. JK=1))。 I	
A. 2	E	3. 3	C. 4	n	5		

一· 为财趣(判断各题正误,正确的在括号内记"V", 错误的在括号内记"×",
并在划线处改正。每题 2分,共 10分)
1. 原码和补码均可实现将减法运算转化为加法运算。 ()
A STATE OF THE STA
2. 逻辑函数 $F(A,B,C) = \prod M(1.3,4,6,7), \text{则} F(A,B,C) = \sum m(0.2,5)$ 。 ()
3. 化简完全确定状态表时, <u>最大等效类的数目即最简状态表中的状态数目。(</u>)
4. 并行加法器采用先行进位(并行进位)的目的是 <u>简化电路结构</u> 。 () 5. 图 2 所示是一个 <u>具有两条反馈回路</u> 的电平异步时序逻辑电路。 ()
R. Collinson
s - e - 0
图2
三. 多项选择题(从各题的四个备选答案中选出两个或两个以上正确答案,并将 其代号填写在题后的括号内,每题 2 分,共 10 分)
1. 小剱 "0" 的反码形式有 ()。
A. O. O. O. B. 1. O. O.
C. U. Icanolia P. I. Taraccal
2. 逻辑函数 F=A ⊕ B 和 G=A ⊙ B 满足关系 ()。
A. $F = \overline{G}$ B. $F' = G$ C. $F' = \overline{G}$ D. $F = G \oplus 1$
3. 若逻辑函数 F(A,B,C) = ∑m(1,2,3,6), G(A,B,C) = ∑m(0,2,3,4,5,7), 则 F和 G 相 "与"的结果 .
A. $m_2 + m_3$ B. 1 C. \overline{AB} D. AB
4. 设两输入或非门的输入为 x 和 y, 输出为 z , 当 z 为低电平时, 有 ()。
A. X 科 y 同为高电平: B. x 为高电平, y 为低电平
一一···································
5. 组合逻辑电路的输出与输入的关系可用() 描述。
A. 真值表 B. 流程表
C. 逻辑表达式 D. 状态图
四. 函数化简题 (10分)
1. 用代数法求函数 $F(A,B,C)=AB+AC+B\cdot C+A\cdot B$ 的最简 "与一或" 表达式。(4 · · · 分)
分) 的

2: 用卡诺图化简逻辑函数

 $F(A, B, C, D) = \sum_{m}(2, 3, 9, 11, 12) + \sum_{m} d(5, 6, 7, 8, 10, 13)$ 求出最简 "与-或"表达式和最简 "或-与"表达式。(6分)

五.设计一个将一位十进制数的余3码转换成二进制数的组合电路,电路框图如图3所示。(15分)

要求:

0111.

1. 填写表 1 所示真值表:

WXYZ ABCD XXXX **ABCD** 0000 1000 0001 1001 0010 1010 0011 1011 0100 1100 0101 1101 0110 1110

2. 利用图 4 所示卡诺图, 求出输出函数最简与-或表达式;

1111

- 3. 画出用 PLA 实现给定功能的阵列逻辑图。
- 4 岩采用 PROM 实现给定功能, 要求 PROM 的容量为多大?
- 六、分析与设计(15分)。 某同步时序逻辑电路如图 5 所示。

- (1) 写出该电路激励函数和输出函数:
- (2) 填写表 2 所示次态真值表; 表 2

輸入 現态 激励函数 次恋 输 X Q₂ Q₁ J₂ K₂ J₁ K₁ Q₂ G+11 Q₁ G+11 Z

(3) 填写表 3 所示电路状态表; 表 3

	400	> .		•
	现态	次态 0;	(n+1) Q (n+1)	输出.
	`Q 2 Q 1	X=0 .	. X=1	Z
Language .	00			
	01			
	10			
	11			
			·	

(4)设各触发器的初态均为 0,试画出图 6 中 Q₁、Q₂和 Z 的输出波形。

图 6

(5) 改用 T 触发器作为存储元件,填写图 7 中激励函数 T_2 、 T_1 卡诺图,求出最简表达式。

七. 分析与设计 (15分)

某电平异步时序逻辑电路的结构框图 如图 8 所示。图中:

$$Y_{2} = x_{1}y_{2} + x_{2}y_{2} + x_{2}x_{1}y_{1}$$

$$Y_{1} = x_{1}y_{2}y_{1} + x_{2}x_{1} + x_{2}x_{1}y_{2}$$

$$Z = x_{2}x_{1}y_{2}$$

要求:

1. 根据给出的激励函数和输出函数表。

表 4

	二次状态				
	У2 У1 ·	x ₂ x ₁ =00	$x_z x_i = 01$	$x_2x_1=11$	x ₂ x ₁ =10
L	0 0				
	0 1				
	1 1	,			
	1 0				

2. 判断以下结论是否正确,并说明理由。

- ① 该电路中存在非临界竞争;
- ② 该电路中存在临界竞争;
- 3. 将所得流程表 4 中的 00 和 01 互换, 填写出新的流程表 5, 试问新流程 表对应的电路是否存在非临界竞争或临界竞争?

	_
7/2	47
72-	v

.二次状态	· 激励状态 Y-Y-/输出 Z							
Уз Уг	x2x1=00	1.x:=01	X2X1=11	x.x.=10				
-0- 0								
0 1								
1 1.								
I 0.								

八. 分析与设计(15分)

某组合逻辑电路的芯片引脚图如图 9 所示。

1. 分析图 9 所示电路,写出输出函数 F₁、F₂的逻辑表达式,并说明该电路功能。

2. 假定用四路数据选择器实现图 9 所示电路的逻辑功能, 请确定图 10 所示逻辑电路中各数据输入端的值, 完善逻辑电路。

3. 假定用 EPROM 实现图 9 所示电路的逻辑功能,请画出阵列逻辑图。

《数字电路与逻辑设计B》期末试卷参考答案

- 一. 单项选择题 (每题 1 分,共 10 分)
 - 1. B; 2. C; 3. D; 6. D; 7. D; 8. A;
 - 4. B; 5. A;
- 9. D; 10. B.
- 二、判断题(判断各题正误,正确的在括号内记"V",错误的在括号内记"X",并在划线处记 每题 2 分, 共 10 分)
 - 1. 反码和补码均可实现将减法运算转化为加法运算。

(X)

- 2. 逻辑函数 F(A,B,C) = TIM(1,3,4,6,7), 则
- 3. 化筒完全确定状态衰时,<u>量大等效类的数目即最简状态表中的状态数目</u>。(V)
- 4. 并行加法器采用先行进位(并行进位)的目的是<u>提高运算速度</u>。(×)
- 5、图 2 所示是一个具有一条反馈回路的电平异步时序逻辑电路。
- 三、多项选择题(从各题的四个各选答案中选出两个或两个以上正确答案,并将其代号填写 在题后的括号内, 每题 2 分, 共 10 分)
 - 1. AD; 2. ABD; 3. AC; 4. ABC; 5. AC.
- 四. 函数化简题(10分)
 - 1. 代数化简 (4分)

2. 卡诺图化简 (共6分)

最简"与一或"表达式为:

最简"或-与"表达式为: $F = (A + C) \cdot (B + C)$ 五. 设计 (共15分)

1. 填写表 1 所示真值表; (4分)

	表 1	真值衰	
ABCD W	YZ	ABCD	WXŸZ

	0000	ddda	1000	0101
	0001	dddd .	1001	0110
	0010	dddd	1010 .	0111
	0011	0000	1011	1000
	0100	0001	11,00	1001
	0101	0010	1101	dddd
	0110	0011	1110	dddd
ď	0111	0100	1111	dddd

画出用 PLA 实现给定功能的阵列逻辑图如下: (5分):

4. 若采用 PROM 实现给定功能, 要求 PROM 的容量为。(2.4)

六、分析与设计(15分)

(1) 写出该电路激励函数和输出函数:(3分)

(2) 填写次态真值表;(3分)

输入 X 0 0	现态 Q ₂ Q ₁ 00	激励函数 J ₂ K ₂ J ₁ K ₁ 0 1 0 1	次态 Q ₂ ⁽ⁿ⁺¹⁾ Q ₁ ⁽ⁿ⁺¹⁾ 0 0	输出 Z 0
0 0	00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 0 0 1	. 00
11 11	01 10 11	1010	0 1 1 1 0 1 1 1	0 T

(3) 填写如下所示电路状态表: (3分)

	The area of the control of the contr					
现态	次态 0.2	输出				
Q ₂ Q ₁	X=0	X=1	Z			
00	· 00	01	0			
01	10	11	1			
10	00	01	0			
II	10	11	0			

(4) 设各触发器的初态均为 0, 根据给定波形画出 Q,、Q,和 Z 的输出波形。 (3分)

(5) 改用 T 触发器作为存储元件,填写激励函数 T₂、T₁卡诺图,求出最简表达式。(3分)

最简表达式为:

七. 分析与设计(15分)

1. 根据给出的激励函数和输出函数表达式,填流程表; (5分)

二次状态	激励状态 Y ₂ Y ₁ /输出 Z			
y2 y1	$x_2x_1=00$	$x_2x_1=11$	x ₂ x ₁ =10	
0 0	00/0	00/0	01/0	00/0
0 1	00/0	00/0	01/0	10/0
11	11/0	00/0	11/1	10/0
1. 0	11/0	01/0	11/1	10/0

- 2. 判断以下结论是否正确,并说明理由。(6分)
- ① 该电路中存在非临界竞争;

正确。因为处在稳定总态(00,11),输入由00变为01或者处在稳定总态(11,11),输入由11变为01时,均引起两个状态变量同时改变,会发生反馈回路间的竞争,但由于所到达的列只有一个稳定总态,所以属于非临界竞争。

② 该电路中存在临界竞争;

正确。因为处在稳定总态(11,01),输入由11变为10时,引起两个状态

变量同时改变,会发生反馈回路间的竞争,且由于所到达的列有两个稳定总态, 所以属于非临界竞争。

3. 将所得流程表 3 中的 00 和 01 互换,填写出新的流程表,试问新流程表对应的电路是否存在非临界竞争或临界竞争?(4 分) 新的流程表加下。

二次状态		激励状态 Y.Y./输出 Z			
Y2 Y1-	X₂X₁=00	x ₂ x ₁ =01	x2x1=11	x ₂ x ₁ =10	
0 0	01/0	01/0	00/0	10/0	
0 1.	01/0	01/0	00/0	01/0 -	
. 1 1	. 11/0	01/0	11/1	10/0	
1 0	. 11/0	00/0	11/1	10/0	

新流程表对应的电路不存在非临界竞争或临界竞争。

八. 分析与设计(15分)

1. 写出电路输出函数 F₁、F₂的逻辑表达式,并说明该电路功能。(4分)

该电路实现全减器的功能功能。(1分)

2. 假定用四路数据选择器实现该电路的逻辑功能,请确定给定逻辑电路中各数据输入端的值,完善逻辑电路。(5分)

3. 假定用 EPROM 实现原电路的逻辑功能,可画出阵列逻辑图如下: (5分)

日觉遵守考试规则"我宣传"。

南京邮电大学 2011/2012 学年第 2 学期

《 数字电路与逻辑设计 B 》期末试卷 (A)

院(系)		学号		姓名	
题号	三一四	五一六十一		九 总分	
得分	AND CONTRACTOR CONTRAC	STATE OF CALLAND			
麦. 得分 一、填空选择	题 (22 分,每空)	[分)			
2. 逻辑函数》	$(0)_2 + (100100.00)$ $C = \overline{A} + B + \overline{C}D_{\frac{1}{1}}$	り _{8421BCD} ÷(26) ₁₆ 9反函数 <i>下</i> =		100	·
		*			丞
3. F(A,B,C,D,E)=A+A 4. 以下各电路中属于组合	IBC+ACD+(C+) 逻辑由略早		表达式为:	,	
7. 腱反器 B: 数据选 5. 若一个 8 位二进制 D/A	择器 C. 高	7 TO FIG	计数器 IV,当输λ·	Xr/10100110\	
时,输出电压为V。 A. 2.56 B. 7.12 C. 7		,	· — may ()		
6. 在 A/D 转换器中,已知	II △是量化单位,表	告采用"舍尾法,	,却分号小司	. We have a	
量化误差为△。 A. 1/4 B. 2 C. I D.		may a care	AN BRIT	3下,则最大	
7. 信息可随时读出或写入,	· 1/2 - 新由后信自立m2	177. 10k et et et et	٠.		
D. KAM	C. PROM D	Diagl Br			
· 一和未存储器心片有地拉	一维12冬、新提生	A タ 開出たたいに	器的存储容易	是是 — — — — — — — — — — — — — — — — — —	
~~ 10207(-	T U. ZIEGAXX	4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		=/E	٠,
9. 在四变量卡诺图中,逻辑	上不相邻的一组最	小项为	•		
A. m_1, m_3 B. m_4, m_{12}	C. m_5, m_9	D: m_0, m_2			
10. 逻辑函数 F = A⊕ (A⊕		D.			
11.在以下单元电路中,具有	-	G	•		
A.运算放大器 B. 制12. 逻辑代数的三个言画相图	· C. TI	L 门电路	D. 译码器	3.5	
12. 逻辑代数的三个重要规则 13. 消除竞争冒险的方法有) 走、	*		C.	
13. 消除竞争冒险的方法有	T I			<u></u> 、等。	
15. GAL16V8 的与阵列总共市 端。			l成。 门有	个输入	

得 分

四、某产品有A、B、C、D 四项质量指标,A 为主要指标。检验合格品时, 每件产品如果有包含主要指标 A 在内的三项或三项以上质量指标合格则为正 品,否则即为次品。试用与非门设计一个最简的正品检验机。(10分)

得 分

五、如图 2 所示电路和波形,试根据 A 、B 、C 的波形画出 Y 的波形。(6

分)

六、分析图 3 所示的时序电路。写出电路的激励方程和状态方程; 的状态转移图, 画出时序

图(至少画6个时钟周期)。

分析其是否具有自启动

性。假设触发器的初态均为 0。(12 分)

图 3

七、 试分析图 4 所示电路, 画出它的状态图,说明它是几进制计数器。(10 分)

. 得 分

八、试分析图 5 电路,完成要求 1 和要求 2。(10分)

1、74194 的状态转移表为:

2、F 端输出的序列信号为:

F=__

得 分

九、ROM 的阵列如图 6 所示, 试列出真值表, 并说明其功能。(10 分) ①该阵列的真值表为:

	A	В	C	Fi	F ₂
	0	0	0	1	
	0	0	1		
	0	1	0		.
	0	1	1		
	I	0	0		
	I	0	1		.
ŀ	1	1	ō		
-	1		1		
•		L		1	

②该阵列实现的逻辑功能是

南京邮电大学 2011/2012 学年第二学期

数字电路与逻辑设计 B 》期末试卷 (A)

院(系)	斑纲			
通号 1 - 1 =			_ 姓名	
得分	三四五	5 6 7	九	总分
,		_ <u>l</u>	1	Through .

- I. $(110111101.10101)_2 = (675.52)_8$, $(100)_{16} = (144)_8$ 用 8-121BCD 码表示二进制数(110111)2=(0101 0101)\$421BCD.
- 2. 逻辑函数 $F = \overline{A + B + C + D + E}$ 的反函数 $\overline{F} = \overline{A \cdot B \cdot C \cdot D \cdot E}$,对偶函数 $F' = A \cdot B \cdot \overline{C} \cdot \overline{D \cdot E} .$
- 3. $F = ABC + A + B + \overline{C}$ 的最简与或表达式为: $A + \overline{B}$.
- 4. 任意两个最小项的乘积恒等于_0__,全部最小项之和恒等于_
- 5. 在几个信号同时输入时,只对优先级别最高的进行编码叫<u>优先编码</u>器,两个同 位的数字和来自低位的进位三者相加叫做。全加一器。
- 6. 由与非门构成的基本 RS 触发器的约束条件是R+S=1。
- 7. 为了使由与非门构成的钟控 RS 触发器的次态为 1, RS 的取值应为(B)。

. A. RS=00 B. RS=01 C. RS=10 D. RS=11

- 8. 若一个 8 位二进制 D/A 转换器的滴刻度输出电压为 10.20V, 当输入为(10100110)。 时、输出电压为 DV。
- A. 2.56 B. 7.12 C. 7.08 D. 5.64
- 9 在 A/D 转换器电路中,若输入信号的最大频率为 10kHz, 则取样脉冲的线 应大于 C KHz。

A.5 B.10 C.20 D.30

10. 在 A/D 转换器中,已知 A 是量化单位,若采用"舍尾法"划分量化电平,则最大 量化误差为 C △。

A. 1/4 B. 2 C. 1 D. 1/2

II. 衡量 A/D 和 D/A 转换器性能优劣的主要指标是 D

A.分解度 B.线性度 C.功率消耗 D.转换精度和转换速度

12. 一种只能被编程一次但能被多次读出的存储器件是___

A.PROM B.PLA C.PAL D.CPLD E.FPGA

13. .在下列电路中,不属于时序逻辑电路的器件是<u>D</u>

A. 计数器 B.移位寄存器 C. 半导体随机存储器 RAM D. 半导体只读存储器 ROM

14 一片 8K×8 位的 ROM 存储器有 <u>8K</u>个字,字长为 <u>8</u>位。

二、用卡诺图法化简 $F(A,B,C,D) = \sum_{m} (3,4,5,7,9,13,14,15)$ 为最简与或表达式。

YB CD	00	01	11	10
00			. 1	-
01		1	1	
., 11	-		1	I
10		1		

: A.A. A.

三、试用 74138 设计一个多输出组合网络,它的输入是 4 位二进制码 ABCD,输出为: Fi: ABCD 是 4 的倍数。 Fi: ABCD 比 2 大,

解: 白瀝意, F1 是 4 变量函数, 故须将 74138 扩展为 4-16 线译码器, 让 A、B、C、D 分别接 4-16 线译码器的地址端 A3 、A2 、A1 、A0 ,可写出各函数的表达式如下:

 $F_1(A,B,C,D) = \sum_{m_0+m_4+m_5+m_{12}} m(0,4,8,12) = m_0+m_4+m_5+m_{12}$ = $m_0 \cdot m_4 \cdot m_8 \cdot m_{12} = \overline{Y_0 \cdot Y_4 \cdot Y_8 \cdot Y_{12}}$ 可用两片 74138 和一片 4输入的与非门实现。

 $F_2 = \overline{\sum (m_0, m_1, m_2)} = \overline{m_0 \cdot m_1 \cdot m_2} = \overline{Y}_0 \cdot \overline{Y}_1 \cdot \overline{Y}_2$

可用一片 74138 和一片三输入的与门实现。

四、分析如图所示电路的逻辑功能。(要求写出函数表达式、画出真值表、确定逻辑。

能)

I

1

解: (1)从输入端开始,逐级推导出函数表达式 F1=ABBBC F2=A(BBC)+BC

1

1.

假设变量 A、B、C 和函数 PT 、P2 均表示一位二进制数,那么,由真值表可知,该电路实现了全域器的功能。

五试画出所示电路中Q1、Q2 的波形(要求对应已知信号的时序作图)。

六、图示时序逻辑电路,写出各触发器的状态方程,画出电路的状态转换图。 A 为输入逻辑变量。

$$\underline{Q_2}^{n+1} = A \overline{\underline{Q_2^n} \cdot \underline{Q_1^n}} \cdot CP \uparrow \qquad \underline{Q_1^{n+1}} = (A \cdot \overline{\underline{Q_2^n}}) \cdot CP \uparrow$$

七、74LS161 电路如图所示 (1)列出状态转移关系: (2)指出其模值。

Q3	Q2	Q1	Q0
0	0 .	0	0
0	0	0	1
0	0	1	. 0
0	0	1	Į
0	1	0	0
. 0	, l	0	1 .
0	1	1	0
0	- 1	1	. 1
1	0	0	0
1	0	0	1
ı	0.	1	. 0
1	0	1	1 .
1	1	-0	0
0	0	0] 0
	0 0 0 0 0 0 0 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1	0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0

答: M=13

八、写出下图中 74161 输出端的状态编码表及 74151 输出端产生的序列信号

CP f	$Q_1Q_2Q_1$	$Q_{\mathbf{o}}$	
٠	(A,,A,A,	.)-	
0	000	0	
	000	1	-
2	001	0	
3 _	001	l	
4	610	0	
5	010	I	
6	OIL	Q.	
· 7	011	·Ĭ	.
8	100	G	
.9	.100	1	
10	101	0	

F= 11110001101

1

九、ROM 的阵列如图所示,试列出真值表,并说明其功能。 ①该阵列的真值表为:

A	В	С	F.	F ₂
0.	0.	0	0 .	0
0	,9_	1	Į.	0.
0	1.	0	1	0
0	į,	· I	0	-1
1	0	0	ì	0
1	0	· I	0	i
1	-1 -	- 0	0	1
Į	1	1	Į	1

②该阵列实现的逻辑功能是 一位全加器

南京邮电大学 2011/2012 学年第二学期

数字电路与逻辑设计B》期末试卷参考答案及

院(系)	班级:	· · · · · · · · · · · · · · · · · · ·			
題景十一十二十三		" "		姓名	
得分	.四.五		· [金基]		
		in the second	THE PARTY OF THE P	• . •	
Comments of the same of					

、填空题(1分×17)

1. (3AB6)16=(35266)₈ ·

2 (73.26)10=(0111 0011.0010 0110) BAZIBGO

3. (0011 1001 1000)seraco (365); 4. (27.4); (11011.0110).

- 一个码组中,1的个费总是查数个;它可以检测查数位错误。
- 6. 逻辑代数的基本逻辑运算是5、或和主。
- 7. 把代码的特定含义翻译出来的过程叫译码; n 位二进制译码器有几个输入, 有2"个输出。 码器只有1个输出有效。
- 8. 两个1位二进制数相加叫做半加: 两个同位的数字和来自低位的进位三者相加叫做全加。
- 9. 当输入信号改变状态时,输出端可能出现短暂错误电平的现象叫冒险。
- 10. 一个二进制编码器对 12 个输入信号进行编码;则至少需采用 4位二进制代码

二、选择题 (2分义8分):

1. 已知 XY+YZ+XZ=XY+Z,判断等式 (X+Y)(Y+Z)(X+Z)=(X+Y)Z成立的最 简单方法是依据 B。

A.代入规则 B.对偶规则 C.反演规则 D.互补规则

.2. 逻辑函数 $F = A \oplus B = G = A \odot B$ 满足A关系。

A.互非 B.对偶 C.相等 D.无任何关系:

3.在下列逻辑函数中, F恒为 0 的是 C。

A. $F(ABC) \equiv m_0 \cdot m_2 \cdot m_5$ B. $F(ABC) = m_0 + m_2$

C. $F(ABC) = m_0 \cdot m_7 \cdot m_5$

4.n个变量可以构成 C个最小项。

A.n B.2×n C.2" D. 2"-1

· 5: 标准与或式是由D构成的逻辑表达式。

A. 最大项之积 B. 最小项之积 C. 最大项之和 D. 是小项之和

 $6.ABC + \overline{AD} + \overline{BD} + CD$ 的多余项是 \underline{C} 。

- A *BD*

 \overrightarrow{BAD} CCD

D ABC

7. 要求 JK 触发器状态由 0 o 1,其激励输入端 JK 应为 \underline{B} 。

A. $JK=0\times$ B. $JK=1\times$ C. *JK*=×0

8. 当集成维持一阻塞 D 型触发器的异步置 0 端 $R_D=0$ 时,则触发器的次态 B。

A.与CP.和D有关 B与CP和D无关 C只与CP有关 三、(25分)

1. $(4 \cdot f)$ 直接写出函数 F = A(B + C) + ABC 的反函数及对偶函数表达5

对偶函数 F = (A+BC)(A+B+C)

2. (5分)用卡诺图判别函数 Z和 Y有何关系?

$$Z = AB + \overline{B}C + C\overline{A} := Y = \overline{A}B + BC + \overline{C}A$$

3. (4分)写出图中逻辑电路的函数式并化简。

4. (4 分)将函数 $Y(A,B,C) = \overline{ABC} + \overline{AC} + \overline{BC}$ 化为最小项之和的形式。

 $5.(5\, f)$ 用卡诺图化简函数 $F(A,B,C)=\sum Ia(0,1,3,7)+\sum \phi(2,5)$ 为最简与或式

6. (3 分)乘积项 ABC 的逻辑相邻项有哪些?

四、(10分)分析下图所示电路的逻辑功能。

①从输入依次写点,

$$L_1 = \overline{AB} \qquad L_2 = A + B \qquad L_3 = \overline{L_2 \cdot C} \qquad P = \overline{L_1 \cdot L_3} = \overline{AB \cdot (A + B) \cdot C}$$

	The second second	consumation		
-	Į A.	B	C	F
	.0	g.	0	9
) n	ŷ.	F.	0
	· G ·	Ĩ.	. (0
. [· 1	Ö.		0.
٠.	Ê.	0	1 .	2
ALL PRICES	I.	Ę	0	1
Ë	<u> </u>	ĩ	1 1	1 1

③由逻辑函数真值表可以看出,该电路具有多数衰决的功能。3分 五、(15分) 得分:

1. (5分)设B、F均为三位二进制数,B为输入,F为输出,要求二者之间有下途关系。 $2 \le B \le 5$ 时,F = B + 2;当B < 2时,F = 1;当B > 5时,F = 0。试列出真值表。

					•		
	B	$_{2}B_{1}$	\mathcal{B}_0	F	iF_1	P_0	
	0	0	0	0	0	1	
	0	Q	1	0	0	Ŀ	Tall I
-	0	1	0	1	. 0	0	ĺ
	0	1	Ì	i	0	Į.	ľ
-	- 1	0	0	ĺ	1	0	
	1	0	1	Ĩ	•	1	
	41	- I	0	٠0٠	0	0-	
	1	1	1	0.	0	0	

2. (10 分)用 3一8 译码器 74138 和与非门实现下列多输出函数:

$$F_1 = AB + \overline{A} \overline{B} \overline{C}$$
, $F_2 = A + B + \overline{C}$, $F_3 = \overline{A}B + A\overline{B}$

 $F_1(A,B,C) = \overline{A}B + A\overline{B} \equiv \sum m(2,3,4,5)$

遊 绝 不·题 作

7、(9分)判断下图所示的电路是否存在逻辑冒险?若存在,原表达式应如何修改以消除逻辑冒险:当ABCD从0110向1HTT变化时,是否会出现功能冒险?若会出现,试用加取样脉冲法避免冒险。(须写出判断过程)

得 分

Ė

觉进守考试规则"诚信考试"绝不作装 订 线 内 不 要 答 题

阵

(1) $F = ACD + B\overline{D}$, ACD 和 $B\overline{D}$ 所对应的卡诺图部分相切,且相切部分没有被一个卡诺图包围,所以存在逻辑盲险。应增加多余项 ABC 以消除逻辑冒险,即 $F = ACD + B\overline{D} + ABC$ 。 2 分 2 分

(2) F(0,1,1,0) = F(1,1,1,1): 有 2 个变量同时变化,不变变量构成的乘积项BC 所对应的卡诺图中有 0 也有 1. 所以存在功能冒险。取样脉冲加法如上图所示。 3 分 2 分

七、 $(8\, \mathcal{G})$ JK 触发器及CP、A、B、C 的波形如图所示,设Q 的初始态为 0。(1) 写出电路的次态方程;(2) 画出Q 端的波形。

附表 3—8 线译码器 74138 的功能表

	输		<u> </u>			输	出	•				
Eı	$\overline{E_{1s}} + \overline{E_{1s}}$	A2 .	A ₁	A ₀	Y _e	` <u>F</u>	$\overline{Y_2}$	<u>Y</u> 3	<u>Y</u> 4	<u>7,</u>	<u>Y</u> 6	<u>Y,</u>

第4页共5页

	F	1					:	٠.		•		_		
-	Φ.	ļ <u>i</u>	<u>.</u> ģ	φ.	φ.	I	i i	1 1	1	1.1				
	0.		φ.	•	ф		<u> </u>	<u> </u>	[-	1 1	1	Ī	į
	1	0	0		į	Ē	Ī.	1	Ē.	j. E.	ī	1	11	7
		·		0	0 .	0	ž.	Ī,	1.	\$1-4	Ti	1. 1	 	4
	1.	0	1. 0	0.0	1	- 1	Û	- 1	- 1	1	1	1 . 2	1:1:	ļ
	Ĭ.	. 0	0	1 .	0.		Ī			-	ļ. Ē.	I		Ì
1	ė	0.	0	The state of				0.	I	1:	<u>L,ì</u> ,	. 4	1	Trans.
ľ	î	0	\- - -		Į.,	1	Ē		0	į	10.2	- ' 7	1 7.	١
-				0.	0	. 1	ij.	7 4	.1.	.0				-
***		0	<u>1</u>	. 0	·I	1	i.	No.			L	· Ł ·	Į.	į,
į	. [0	1	1	A			~;	- I	. ! !	0	: 1		1
į	į	()	·		0.	¥, [1.	1.	. <u>5</u>	1.	1	0	I	į.
£_	<u> 1</u>		dir di	<u>. 1 - 1-</u>	1	_1		1	Ł.	1	1	- 1		1
						,			<u> </u>				_0	

南京邮电大学 2010/2011 学年第 2 学期

《 数字电路与逻辑设计 B 》期末试卷 (A)

院(系)	班级		_ 学与	<u> </u>		姓名	•
题号	三四	<u>F</u> -	· 六 ·	· 七		九	总分
得分		-					
1. 计算(110)	手題(22分,を 10) ₂ + (10010(0.001)8421	BCD + (2	26) ₁₆ =	(&&·) ₁₀	0
	$F = \overline{A} + B + \overline{C}$						
3. F(A,B,C,D,E)=A+ 4. 以下各电路中属于组; A. 触发器 B. 数据;	ABC+ACD+(流体验的 合逻辑电路是	20. 方马	o .	T. 31.2	det a cree		
5. 若一个 8 位二进制 D/V时,输出电压为_0_VA. 2.56 B. 7.12 C.	A 转换器的满。 /。 } 7.08 D. 6.6	划度输出 2 <u>428</u> 766 i4	电压为	10.20V.	. 当输》 (. l ,	人为(101) <i>(</i> ,	.90110)2
6. 在 A/D 转换器中, 己 量化误差为 <u>6</u> Δ。	知 4 是氫化单	位,若采	用"舍,	尾法"	3.分量4	比电平.	则最大
A. 1/4 B. 2 C. 1	D. 1/2						• • • •
7. 信息可随时读出或写入 A. ROM B. RAM	い 助电后信息 C. PROM	立即全部 「D Flag	消失的	存储器	是	o "	*
8. 已知某存储器芯片有地	5址线 12 条, 菱	姓 4 4	4. 则该	在砝哭	的存储	· 容量是	R 位。
A. 1024×8 B. 4096 9. 在四变量卡诺图中,逻	×4 C. 2048:	×8 D	4096	×8 .			<u>-</u>
A. m_1, m_3 B. m_4, m_4, m_5	$m_{12} \sim C$	m_{9}		n_0, m_2			
10. 逻辑函数 F=A+(A	$(\oplus B) = \frac{B}{A}$	•		* -	•	·	,
11.在以下单元电路中,具	有"记忆"功	· 能的是	В	•			•
A.运算放大器 B.	触发器	C. TIL	门电路		D. 译	码器	
12. 逻辑代数的三个重要	规则是 <u>有入</u>	5世、1	级		对居_		_6
13. 消除竞争冒险的方法。	日 1700年版 上出 14 m	- 1 15 11 14 12	四级设	也是《	加取	群婚生	· 等。
15. GALÍ6V8 的与阵列总	如 少少 砂 利	18100月	监 两大	で部分组	成.		
端。	~~~~ <u>~~~</u>	7. 个非	饮 坝,	母个与门	J有	16	个输入

用卡诺图法化简 $F_i(A,B,C,D)=\sum_m(0,1,4,7,8,9,13) + \sum_d (2,5,10,12,15)$: 得 分 $F_2(A,B,C,D) = \overline{ACD} + \overline{ABCD}$,且 CD=0 为是简与或表达式。(12分) ABED TABED + ABED CDø

1: g ! 1.

ġ 0

得 分

三、在图 1 所示电路中用%74153 实现函 数 $F(A;B,C,D) = \sum_{m} m(1,2,4,7,15) . (8分)$ F= ABOD T ABO D. TABOD + ABOD TABOD D A, $\vec{D}_0 = \frac{1}{2}74153$ = AB (LDD) + AB (COO) + ABOD D.

Dz 小将烙着作的处伤 日期=01.新出COUD

@ AR =10: 锅出. D 田郎=11,商出 C心

. 图 1 D 四项质量指标, A 为主要指标。检验合格品时,

每件产品如果有包含主要指标 A 在内的三项或三项以上质量指标合格则为正 品、否则即为次品。试用与非门设计一个最简的正品检验机。(10.分)

G g I ABD+ ABC 10 ABOT ABCTAW Đ ABD · ABC · AGD

《数字电路与逻辑设计 B》试卷(A) 第 2 页 共 4 页

得 分

得分

八、试分析图 5 电路,完成要求

1和要求 2。(10分)

1、74194的状态转移表为:

2、F 端输出的序列信号为:

F= . LOLILODO.

得分

九、ROM 的阵列如图 6 所示,试列出真值表,并说明其功能。(10 分) ①该阵列的真值表为:

•					
	A	B	C	F _I .	F ₂
į	0	0	0	0	0
	0	0.	L		0
-	0	1	0	Į.	0
	0	Ī	1.	0	,
	1	0	0)	0
	1	o l	Jacob	0	;
	Ţ	į	0	0	Chess Chess
	Ž.	P.	i	Lawy Lawy	1
	····	J.			<u> </u>

AB为 加敬 緞 加筑 C为作任村 平任心进行

后为其住在

白宽遵守考试规则"诚信考试"绝不作弊

南京邮电大学 2009/2010

《数字电路与逻辑设计B》期末试卷

院(系)	ਮੁ	E级		学	- 号		姓	名		
dx d -		· .								
题号 一	<u> -</u> . 프	57 3	.£.	六	七	入	九	+	急	分
得分 .				•						
			٠				-			
			لـــــــــــــــــــــــــــــــــــــ			L				

得分

- 一、填空、选择题 (20分)。
- 1. $(101.01)_2 = (5.25)_{10} = (5.2)_8 = (5.4)_{16}$
- 2. $(125)_{10}$ = $(0001 0010 0101)_{5421BCD}$ = $(0001 0010 1000)_{5421BCD}$
- 3、(17.39)10=(10001.0110001)2. 要求保持原精度。
- 4、若F(A, B, C)=A⊕B⊕C,则F=∑,(1,2,4,7).
- 5、若 F (A, B, C) =∑" (0.1,2,4,7),则对偶式 F′=∑" (1,2,4)。
- 6. $1 \oplus 1 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \oplus 1 = 1$; $1 \odot 0 \odot 1 \odot 0 \odot 1 \odot 0 \odot 0 \odot 1 = 1$
- 7、二进制数 0000-1111 可以表示 16 个数。
- 8、十进制数 7、8、9 对应的四位循环码分别为 <u>0100</u>、<u>1100</u>、<u>1101</u>。
- · 9、在下列逻辑函数中, F 恒为 0 的是 C。

 - A. $F(ABC) = \overline{m_0 \cdot m_2 \cdot m_5}$ B. $F(ABC) = m_0 + m_2 + m_5$
 - C. $F(ABC) = m_0 \cdot m_2 \cdot m_5$
- D. $F(ABC) = m_0 + m_2 + m_5$
- 10、表示任意两位十进制数,至少需要 1 位二进制数。
- 11、一个16 选一的数据选择器有 4.根地址线、16 根数据输入线、1.根数据输出线。
- 12、函数 $F = \overline{D} + \overline{(A + \overline{B})C}$, 由反演規则可直接得其反函数 $\overline{F} = D \cdot \overline{A \cdot B} + \overline{C}$

- 二、按要求完成下列各题(10分)。
- 1、用公式法将逻辑函数 $F = \overline{AC + \overline{ABC} + BC} + \overline{ABCDE}$ 化简为最简与或

 $F = \overline{AC + \overline{ABC + \overline{BC}}} + AECDE$ t.

- = AC+ BC+ BC+ ABCOE
- = C(A+B+B) + ABCDE
- = C(A+1) + ABCDE
- = C + ABCDE

第1页(共4页)

2、用公式法将逻辑函数 $F = (A \oplus B)C + ABC + \overline{ABC}$ 化简为最简与或

$$F = (A \oplus B)C + ABC + \overline{ABC}$$

$$= (A \oplus B)C + (AB + \overline{AB})C$$

$$= (A \oplus B)C + \overline{(A \oplus B)}C$$

$$= (\{A \oplus B\} + \overline{(A \oplus B)}\}C$$

$$= C$$

否则不得分)(10分)。 └ 月(4, B, C) = ∑_(0,25,7)

R(A,B,C)=30 + 40

2、 $F_2 = \overline{AD} + \overline{BCD}$, 约束条件为 $\overline{BCD} = 0$.

四、已知逻辑函数 $F_1(A,B,C,D) = \sum_m (0,3,4,5,7,9,10,13,14,15)$.

 $F_2(A,B,C,D) = \sum_{m} (2,3,5,6,7,8,9,12,13,15)$,试求 $F = F_1 \cdot F_2$ 的最简与或

式。(10分)

A B	00	ΟĮ	11	10
00			1	I
10		į	1	1
H	Į	Ī	1	
10	1	1		
		F_2		

A B D	00	01	11	10
60			1	
OI		Ì	1.	
11			1	
10		1		
		274		

④确定功能

由真值表分析可知:本电路是一个完成一位二进制数相减的电路,即:一位二进制全减器。

解: 当 B3B2B1B0> (9) 10 时, B3B2B1B0+0110 进行十进制调整。 当 B3B2B1B0≤ (9) 10 时, B3B2B1B0+0000。 本电路完成 4 位二进制数转换成两位 8421BCD 码的功能。

第3页(共4页)

SE.

各分

八、A、B、C、D四人在同一实验室工作。若 A 只要到实验室或有自己的工作版; B 必须 C 到实验室以后才能有工作可能; C 除了为 B 创造工作的条件外; 到实验室是从来不干工作的; D 只有 A 在实验室时,才干工作。请问:在什么情况下,实验室中没有人干工作?请用逻辑函频来描述。并用一片

74138 和一片 8 输入与非门实现。(10 分)

②写出 G 的逻辑函数:

 $G = \underbrace{m_0 + m_1 + m_2 + m_3 + m_4 + m_5}_{= \overline{m_0} \ \overline{m_1} \ \overline{m_2} \ \overline{m_3} \ \overline{m_4} \ \overline{m_5}}_{\overline{y_0} \ \overline{y_1} \ \overline{y_2} \ \overline{y_3} \ \overline{y_4} \ \overline{y_5}}$

得分

九、试用两片 74283(此题不提供任何附加门)设计一个组合逻辑电路。将(A3A2A/A6)8421BCD 转换为(Y3Y2Y3Y6)8421BCD (5分)。

解: ①列表和分析

8421BCD ·	5421BC0
0000	0000
0001	0001
0010	0010
- 0011	0011
0100	. 0100
- 0101 -	1000
0110	1001
0111	1010
1000	1011
1001	1100
· · · · · · · · · · · · · · · · · · ·	1

- 1) 0000~0100 两者是相同的。即: 8421BCD=5421BCD
- 2) 当 8421BCD 码等于 0101 时,5421BCD 码等于 1000。两者相差 0011。即: 8421BCD+0011=5421BCD
- ①当 8421BCD=0000 0100 时、使(I)片的 CO=0,II片为0000+8421BCD。
- ②当 8421BCD ≥ 0101 时;使(I)片的 CO=I(即:10000-0101=1011), II片为 001I+8421BCD。

得分

- 十、已知两级门电路如图 3 所示 (10分)。
- 1、 当信号 ABCD 作 0111→1101 变化时会产生功能和逻辑冒险 冒险 (逻辑冒险、功能冒险), 当信号 ABCD 作 0111→1110 变化时会产生逻辑冒险 [置险 (逻辑冒险、功能冒险)。
- 2、 试用增加多余项法消除该电路的逻辑冒险(须在电路图上增加逻辑门)。

3、试用脉冲取样法避免冒险(须在电路图上标出取样脉冲所加的位置和极处)

階录表

3一条 装泽码器 74138 的功能表

	-					τų.									
	億	是能输入	1	: :	λ				5	á:			ļ.		<u>. </u>
	E,	\(\bar{E}_{24}\)\(\bar{E}_{2}\)	A	2 Å	, À _a	F.	¥		· : 7		 3 T			r, y	-
	Ø	. F	9	-Ø	Ø	- Lunda	ž			÷					
	0.	Ø	10	Ġ	Ø	i	ÿ	1	. 1	E	ĭ				- E
	I	0	0	0	0	1	·(i	-7	1	1	 [Î			-(
	11	0 .	0	. 0	-1	1	I		ī		: 1				4
	1.1	ő.	0	ř	- <u>-</u> -	<u></u>	<u> </u>	3				<u>.</u>	16		<u>- f</u>
	Ĭ	ā ·	0	3	1	<u>0</u>	2			į	-	<u> </u>	<u>[i</u>		1
	1.	Û	1	. . .	0	Ľ.,		1	Ī	0	<u>B</u>		- 1	_Ľ_	₫-
j	· È ·	- 0	ļ			_	<u>E</u>	1	£	Ĭ.	<u>(</u>)	I	į	Ĩ.	right.
			1	₹.	1 .		Ĩ	2	Ē	Ĩ	Ē	0	Ī	1	7
-	1	0	Ã	. Ÿ	0		2	Ĩ	ĩ	Ŀ	Ĩ	Į	0	I	ľ
Town.	1	0	I	£	E		ñ	1	1	Ē	£	7	ſ		-
		-	15.00							<u> </u>	2	4	Ε.	3	Ē.

4位数值比较器 7485 功能表

			- 深度住	ill Ex	在7485	功能是	E		
		緬	- :	戍				á	出
A B	$A_2 B_2$	A, B	A ₀ B ₀	(A>B); (A <b)< td=""><td>(A=B)</td><td></td><td></td><td> _ F3</td></b)<>	(A=B)			 _ F3
' A ₃ >B ₃		00	00	Ø	. Ø	Ø	I A	8A<	
$A_1 \triangleleft B_1$		-L	00	Ø	Ø	Ø	0	1	0
	A2>B2		0 0	9	Ø ·	Ø	1	 0	0
	$A_2 \triangleleft B_7$		00	Ø	Ø	ø	0	1	0
$A_3 = B_3$	'A2=B3	A;>B;	Ø Ø	Ø	29	0		0	0
$A_3=B_3$	$A_2=B_2$	$A_i \triangleleft B_i$	ØØ	Ø.	ø.	øl	0	ĭ	o,
A ₃ =B ₃	$A_2 = B_2$	$A_1=B_1$	A,>B,	Ø	Ø	ø	Į.	0	0
À ₃ -B ₃	$A_2 = B_2$	A -B.	$A_0 \triangleleft B_0$	Ø	. Ø	Ø	0	1	0 -
A3=B3	A ₂ =B ₂	A;=B.	A _o =B _o	j	0		1	0	
$A_1=B_3$	1 ₂ =B ₂	$A_i = B_i$	$A_0 = B_0$	0	F	و	0	ſ	0.
A ₃ =B ₃ A	12-B,	4,=3, .	43=B0	0 .	0 .	1	0.	 0	
A ₃ =B ₃ A	2=B2 /	4=B1 /	i₀≍B₀	0	0	0	1	1	0
A ₃ =B ₃ A	2=B2 /	L=B1.	o=Bo	0	ì	-		<u>^</u>	1
$A_3 = B_3 A$	$_2=B_2$	1=B ₁ A	-0=B0	i	ij			0	
A3=B3 A	$_{2}$ $=$ B_{z} A	$_{1}=B_{1}A$	o=Bo	Į	I				0
$A_3 = B_3 A_3$	=B ₂ A	ı=B₁ A	o=B _o		7	.			_
								,	, i

四位全加器 74283 的功能表示

 $A_1A_2A_1$

 $B_4B_1B_2B_1$

+ CI

CO S4S3S2S1

第6页(共4页)

南京邮电大学 2008/2009 学年第 一 学期

《 数字电路与逻辑设计 B 》期末试卷。

院(系)				学号	•	.· 	·. 生名	-
题号 一 三	= 19	五	六	七.	入	九	·+	. 会 名
得分					-	.•	-	, 5
	(100000)z=(=(10.8)) szzibco = (1006 23.140]] 数最大可表示(位十进制数,至 致验码是(11 乘积恒等于	4)10 0 0000))10 的十进籍 少需要 001 0 对应F	9421BCD 要求转 制数是 〔 7 〕。	(10: /)包 ·	23 ·).		-	-
A.仅互非 B.仅对 11、n个变量可以构成	两 C.相等 D. 即	互非又	对偶					•
12、下列各式中,c 得分 二、按要求	是三变量 A、	B、C 的 (10 分)。	最小项 •	.aA+B	+Ç b.A∙	+BC c.A	ABC d.	ABC
	BC)($A+B+C$)		•			•	:	
2、直接写出 $F = AB$ F' = (A+B)(B+C)(B+C)		对偶函	故表达3	d.				

3、用公式法将逻辑函数 $F = A\overline{B} + \overline{A}CD + B + \overline{D} + \overline{C}$ 化简为最简与或式。

 $F = A + \overline{A}CD + B + \overline{D} + \overline{C} = A + CD + B + \overline{D} + \overline{C} = A + C + B + \overline{D} + \overline{C} = 1$

. 得分

三、试用卡诺图法将下列逻辑函数化简为曼简与或麦达式(要有图解过程,否则不得分)(10分)。

 $I \sim F(A, B, C) = \sum_{m(0, 2, 4, 5)}$

.s	&C00	01	14	10
<u>.41</u>				

$$F(A,B,C) = \overline{AC} + \overline{AB}$$

2、L=AD+BCD+ABCD,约束条件为AB+AC=0。

\ €	Đ:				
- _{71 2} -	<u>, - fk</u>	} €	∂Ĭ	F-F	161-
260°		1	1	71	1
01		11	ī	1.	-4
Į.	X	X	Y	l yr	E
10	(1)		X	T V	j
				-1	

$$F(A,B,C) = \overline{BC} + D$$

得分

四、用卡诺图判别函数 Z和 F有何关系? (5分)。

$$Z = \overline{AC} + \overline{B}$$
:

$$T = AR + ARC$$

S. S. C.	0	(1)	1 2	IG
40	1	1	1	
ł	1	1		-
		Z	,	

:EC00	01	II	. 10
4 0			I
<u> [·]</u>	- 1	1	1

因此Z和 Y 互为反函数

得分

五、某汽车驾驶员培训班进行给业考试。有三名评判员,其中 4 为主评判员, B 和 C 为副评判员。在评判时按照少数服从多数原则通过,但只要主评判员 认为合格就算通过,在双轨输入条件下用最少与非门实现该电路(10 分)。

	-		
Ą	В	С	Y
1	Φ	Ф	1
0	1	Į.	1
0	1	0	0
0	0	F	0
Ό	0	0	0 (

$$F(A,B,C) = A + BC = \overline{A \cdot BC}$$

得分 七、试只用一片数据比较器 7485 和一片全加器 74283 设计一个组合逻辑电路,将(A₃A₂A₄A₀)sq₁BCD 转换为(Y₃Y₂Y₁Y₀)sq₁BCD (10分)。

若A≤4则Y=A+0 若A>4则Y=A+3

- 得 分
- 八、己知两级门电路如图 2 所示 (10分)。
- ·1、当信号 ABCD 作 0100 ↔ 1101 变化时会产生 功能 冒险(逻辑冒险、功能冒险),当信号 ABCD 作 0111 ↔ 1110 变化时会产生 逻辑 冒险(逻辑冒险、功能冒险)。
- 2、 试用增加多余项法消除该电路的逻辑冒险 (须在电路图上增加逻辑门)。
- 3、 试用脉冲取样法避免冒险(须在电路图上标出取样脉冲所加的位置和极性)。

方 九、由与非门构成的基本 SR 触发器的逻辑符号、输入被形如图 3 所示。根据 系、元、输入液形面出 Q、 Q 的液形。设触发器的初态为 0 (10 分)。

 \overline{S}_{B} \overline{R}_{D} \overline{Q}

. 得 分

十、写出上升沿触发的边沿 JK 触发器和边沿 D 触发器的次态方程,并用边沿 JK 触发器构成边沿 D 触发器。要求写出变换关系,画出电路图(10分)。

JK 触发器的次态方程:

$$Q^{ml} = | \overline{JQ''} + \overline{KQ''} | CP \uparrow \cdot$$

D 触发器的次态方程:

$$Q^{ret} = [D]CP\uparrow = [D\overline{Q^r} + DQ^r]CP\uparrow$$
因此

$$J=D, K=\overline{D}$$

图 3

南京邮电大学 2007/2008 学年第

《数字电路与逻辑设计B》期末试卷

Ì.		٠.	·.							•	,	
院(系)		•	22	班级上	88870k		学号					
Ī.	· -						1 9		<u> </u>	生名_		_′
超号		=	Ĭ · ≡ .	129	£.	六	七	1	龙	1+].+	总
得分	•	·							.:			分
(4 A)	2, (1 3, (2 4, (, i (10	58);a=(101011); 101011; 101011); 101011; 1010	(110. ご() OU OU (1.01. 支法把] C,D):	(c))=((c))=((21分 (元) (00 (要) (面数相 +ABC +ABC	3 3 0110 中保持量 + ACD + TAC	72)=() 3218 () 32	26. 80 表达式 (BC) (BC ty	(没有 4BC	过程不	得分)	1. 程序》 十二
2. F ₁ (A,	: B, C, L	(a) = AB	• •			•		=A C	⊊+DH	3+ <u>BC</u>)	
解	Fz (A					+ (A+7		=AC.	Č †B+	B+0)	=A.c.i	CH)
						$\tilde{T} = \tilde{c}$,	•			
•	٠	· . •						1				
		目卡诺爾 (マイン・ロップ) (ロップ・ロップ) (ロップ・ロップ) (ロップ・ロップ) (ロップ・ロップ) (ロップ・ロップ) (ロップ・ロップ) (ロっ) (ロっ) (ロっ) (ロっ) (ロっ) (ロっ) (ロっ) (ロっ)	~				简与或	表达式	、(要有	田解过	程,	•
	AR,		Ŏ P	Managamanapanapanapana, 35	• •	(D) =	ĀBĒ	T ABC	A A Q	7 + ĀCC)	

何器件)将四位二进制数 B, B, B, B, 铁换成 842 IBCD 码 600 D, D, D, D, D, D, D, (其中 $000\,D_{10}$ 、 $D_8D_4D_2D_1$ 分别表示 | 进制数的土役、个位数的8421BCD

码)(10分)。

六、试写出下图电路输出函数 Fi和 Fi的最小项表达式(10分) $F_{i}(A,B,C,D) = \sum_{m} (1,3,5,7,7)$ $F_2(A,B,C,D) = \sum_{a} (24,6,18,15)$

《数字电路与逻辑设计》试卷 第 2 页 共 4 页

七、下田所示数据选择器 MUX 的输出方程为 $Y = EN(\overline{AAD}_0 + \overline{AAD}_1 + \overline{AAD}_1 + \overline{AAD}_1$). 试用该 MUX (不提供其它元器 件),构成检测电路;判断四位自然二进制码 ABCD(ABCD 的位权依次分别 为 8421) 是否是 8421BCD 码非法码 (若是、输出 F=1、否则 F=0) (10 分)。[10]

CP +CP ō

- 八、已知两级与姜门电路如下田所示。(10分)。
- 1、当信号ABCD作0011 +> 1011变化时会产生逻辑 冒险(逻辑冒险、 功能冒险),当信号 ABCD 作1100 ↔ 0101 变化时会产生 13 KC 冒险 (逻辑冒险、功能冒险)。
- 2、 试用增加多余项法畜除该电路的逻辑冒险(须作出逻辑电路)。
- 3、 试用脉冲取样法连免冒险(须在逻辑电路中标曲取样脉冲所加的位置和极性)。

= ADT ACO TAB TBD

(数字电路与逻辑设计) 试卷 第 3 页 共 4 页

等分

十、AB 触发器和 CD 使发器的功能加下表所示。若将 AB 触发器装换取 CD 触发星。试用列综合最接导出转换函数的遗览与或表达式(10分)。

AB 趋发晷的功能表 CD 险发器的功能表

F	-		
11	8	0	
0	0	Q°	7
0	â	0	7
-1	0 ,	ř	Ť.
	0 ;	<u>0</u> -	
		***************************************	ñ

	- ra-	المكائدة	当时从底
	C	D	241
	0	0	Ø
to the	0	Ĩ	0-
-	4	0	$\bar{\mathcal{Q}}^{\sigma}$
	er de	Į.	Q° -
		-	

个下目所示的3-8 线译码是和 相应输出增了。一了,输出低电平。面出该译码电路的逻辑电话(5·分)。 .l At

第4英共4页

ue.

ex//°+10x16

165

逐 4

谑 慶 照内 哉

有景

. 不履

10a101.000