Title of Card 1

This is a {cloze} deletion test. You can have several {clozes} on the same card. In the pdf preview, they get displayed in different colours.

You can also define a {cloze with a hint : hint }.

Background info: You can display some additional info on the back of the card.

Preimage

A **preimage** of an element $b \in B$ under a map $f: A \to B$ is $\{\text{an element } a \in A \text{ with } f(a) = b. : (\text{think of an element in } A)\}$

User macros

User $\{\text{marcos}\}\$ get expanded by plastex: \mathbb{R} , \mathbb{C}

Tables

LaTeX tabulars get converted to html tables: {

 $egin{array}{c} a & & \\ c & & \end{array}$

}

Aligned equations

Aligned equations that contain cloze deletions are best simulated using tabulars:

$$\begin{cases} f(\vec{v}_1, \dots, \vec{v}_{i-1}, \vec{v}_i + \vec{v}_i', \vec{v}_{i+1}, \dots, \vec{v}_n) \ \} \\ = \{ f(\vec{v}_1, \dots, \vec{v}_{i-1}, \quad \vec{v}_i \quad , \vec{v}_{i+1}, \dots, \vec{v}_n) \\ + f(\vec{v}_1, \dots, \vec{v}_{i-1}, \quad \vec{v}_i' \quad , \vec{v}_{i+1}, \dots, \vec{v}_n) \ \} \\ \end{cases}$$

$$= \{ f(\vec{v}_1, \dots, \vec{v}_{i-1}, s\vec{v}_i, \vec{v}_{i+1}, \dots, \vec{v}_n) \ \}$$

$$= \{ s \cdot f(\vec{v}_1, \dots, \vec{v}_{i-1}, \vec{v}_i, \vec{v}_{i+1}, \dots, \vec{v}_n) \ \}$$

Test Chapter – Example 03