ResolverFuzz: Automated Discovery of DNS Resolver Vulnerabilities with Query-Response Fuzzing

Qifan Zhang, Xuesong Bai, Xiang Li, Haixin Duan, Qi Li and Zhou Li Accepted by USENIX Security 2024

Feel free to visit my homepage (qifanz.com) for slides Oct 23, 2023

Short Bio

>4th-year Ph.D. student of Department of EECS

> Advisor: Prof. Dr. Zhou Li

> Field of Research:

→ Domain Name System (DNS)

- ➤ [Security'24] **Zhang, Q.,** Bai, X., Li, X., Duan, H., Li, Q. and Li, Z., *ResolverFuzz: Automated Discovery of DNS Resolver Vulnerabilities with Query-Response Fuzzing.*
- ➤ [NDSS'23] Li, X., Liu, B., Bai, X., Zhang, M., **Zhang, Q.,** Li, Z., Duan, H. and Li, Q., *Ghost Domain Reloaded: Vulnerable Links in Domain Name Delegation and Revocation.*
- ➤ [Security'23] Li, X., Lu, C., Liu, B., **Zhang, Q.,** Li, Z., Duan, H. and Li, Q., *The Maginot Line:* Attacking the Boundary of DNS Caching Protection.
- ➤ [IEEE Access'22] Liao, X., Xu, J., **Zhang, Q.** and Li, Z., *A Comprehensive Study of DNS Operational Issues by Mining DNS Forums.*

Short Bio

>4th-year Ph.D. student of Department of EECS

> Advisor: Prof. Dr. Zhou Li

> Field of Research:

➤ Machine Learning and Security

- ➤ [ACSAC'22] **Zhang, Q.,** Shen, J., Tan, M., Zhou, Z., Li, Z., Chen, Q.A. and Zhang, H., *Play the Imitation Game: Model Extraction Attack against Autonomous Driving Localization.*
- ➤ [Under review in ICLR'24] Han, S., Buyukates, B., Hu, Z., Jin, H., Jin, W., Sun, L., Wang, X., Xie, C., Zhang, K., Zhang, Q. and Zhang, Y., 2023. FedMLSecurity: A Benchmark for Attacks and Defenses in Federated Learning and Federated LLMs.
- ➤ [Under review in ICLR'24] Han, S., Wu, W., Buyukates, B., Jin, W., Yao, Y., **Zhang, Q.**, Avestimehr, S. and He, C., 2023. *Kick Bad Guys Out! Zero-Knowledge-Proof-Based Anomaly Detection in Federated Learning.*

Domain Name System

≻Domain Name System (DNS)

- ➤ Entry point of many Internet activities
 - > Interpret domain names into network addresses (IPs)
 - ➤ E.g., translate uci.edu into 128.200.151.40
- >Security guarantee of multiple application services
- ➤ Domain names are widely registered

> Fundamental for other apps

>Web, CDN, Email, Certificate Authentication, etc.

DNS Resolution

- > Recursive/Iterative process
 - ➤ Multiple roles
 - > Forwarder, recursive resolver, authoritative server

DNS Resolution

> Cache Mechanism

- ➤ Cache DNS recourse records (RRs) for future references
- ➤One of the **most vulnerable** parts in DNS
 - ➤ Cache poisoning, e.g., MaginotDNS [Security'23], SAD DNS [CCS'20&21]
 - ➤ Domain delegation (Ghost Domain), e.g., Phoenix Domain [NDSS'23]
- ➤Only involved for recursive resolvers
 - > Focus on recursive resolvers

DNS Vulnerability Detection

> How to find vulnerabilities <u>automatically</u>?

- ➤ Formal analysis
 - ➤ Already applied to nameservers: SCALE [SIGCOMM'22], G-Root [NSDI'20]
 - > Lack <u>rigorous specifications</u> as references for vulnerability detection
- > Fuzzing

Fuzzing

- >Suitable for testing large-size software in large scale
- > Flexible for multiple scenarios
 - ➤ Lexical-based: Blackbox/Graybox/Whitebox fuzzing
 - ➤ Syntactic-based: (Probalistic) Grammar-based fuzzing
 - ➤ Semantic-based: Concolic/Symbolic fuzzing

Fuzzing on DNS

> Previous works

- ➤AFL++/AFLNet
- ➤ SnapFuzz [ISSTA'22], DNS Fuzzer (a github repo)
- > Focus on memory vulnerabilities
 - ➤ Could **only** detect crashes
- ➤ But cache poisoning is **semantic vulnerabilities**
 - > Traditional memory-based fuzzers does not work
- **➤ Need to design a fuzzer to detect semantic bugs in DNS**

Which part is more vulnerable? Where should we focus on?

Check vulnerabilities which <u>have been</u> identified Focus on where they were <u>most</u> spotted

➤ Understand the distribution and root causes of DNS-related vulnerabilities

Table 1: Study results of DNS CVEs for mainstream DNS software.

Software*	# CVE										
		N									
	Cache poison. 1	Res. consumpt. ²	Serv. crash ³	Others	Total	Corrupt.4	Others	Total	Total		
BIND	18	17	73	10	118	22	1	23	141		
Unbound	4	5	5	3	17	8	1	9	26		
Knot Resolver	6	3	2	0	11	0	0	0	11		
PowerDNS Recursor	13	7	7	9	36	6	0	6	42		
MaraDNS	2	3	3	0	8	7	0	7	15		
Technitium	3	1	0	0	4	0	0	0	4		
Total	46	36	90	22	194	43	2	45	239		

^{*:} Recursive or forwarding modes. 1: Cache poisoning. 2: Resource consumption. 3: Service crash. 4: Corruption.

[#] CVE of the forwarding mode only: Total (7), BIND (5), Unbound (0), Knot (1), PowerDNS (0), MaraDNS (0), and Technitium (1).

[#] CVE of the authoritative mode only: Total (45), BIND (19), Unbound (4), Knot (2), PowerDNS (19), MaraDNS (1), and Technitium (0).

[#] CVE of other software: Total (131), Microsoft DNS (90), Simple DNS Plus (1), Dnsmasq (33), CoreDNS (1), NSD (4), Yadifa (1), and TrustDNS (1).

- ➤ Most of the CVEs are about resolvers
 - ≥ 284 CVEs, only 45 related to nameservers

Table 1: Study results of DNS CVEs for mainstream DN
--

Software*	# CVE										
		Memory									
	Cache poison. ¹	Res. consumpt. ²	Serv. crash ³	Others	Total	Corrupt.4	Others	Total	Total		
BIND	18	17	73	10	118	22	1	23	141		
Unbound	4	5	5	3	17	8	1	9	26		
Knot Resolver	6	3	2	0	11	0	0	0	11		
PowerDNS Recursor	13	7	7	9	36	6	0	6	42		
MaraDNS	2	3	3	0	8	7	0	7	15		
Technitium	3	1	0	0	4	0	0	0	4		
Total	46	36	90	22	194	43	2	45	239		

^{*:} Recursive or forwarding modes. 1: Cache poisoning. 2: Resource consumption. 3: Service crash. 4: Corruption.

[#] CVE of the forwarding mode only: Total (7), BIND (5), Unbound (0), Knot (1), PowerDNS (0), MaraDNS (0), and Technitium (1).

[#] CVE of the authoritative mode only: Total (45), BIND (19), Unbound (4), Knot (2), PowerDNS (19), MaraDNS (1), and Technitium (0).

[#] CVE of other software: Total (131), Microsoft DNS (90), Simple DNS Plus (1), Dnsmasq (33), CoreDNS (1), NSD (4), Yadifa (1), and TrustDNS (1).

- ➤ Diversified CVEs among DNS software
 - > BIND has the most CVEs
 - ➤ Only 13 out of 239 CVEs affect all software

Table 1: Study results of DNS CVEs for mainstream DNS software.

Software*	# CVE										
		M									
	Cache poison. 1	Res. consumpt. ²	Serv. crash ³	Others	Total	Corrupt.4	Others	Total	Total		
BIND	18	17	73	10	118	22	1	23	141		
Unbound	4	5	5	3	17	8	1	9	26		
Knot Resolver	6	3	2	0	11	0	0	0	11		
PowerDNS Recursor	13	7	7	9	36	6	0	6	42		
MaraDNS	2	3	3	0	8	7	0	7	15		
Technitium	3	1	0	0	4	0	0	0	4		
Total	46	36	90	22	194	43	2	45	239		

^{*:} Recursive or forwarding modes. 1: Cache poisoning. 2: Resource consumption. 3: Service crash. 4: Corruption.

[#] CVE of the forwarding mode only: Total (7), BIND (5), Unbound (0), Knot (1), PowerDNS (0), MaraDNS (0), and Technitium (1).

[#] CVE of the authoritative mode only: Total (45), BIND (19), Unbound (4), Knot (2), PowerDNS (19), MaraDNS (1), and Technitium (0).

[#] CVE of other software: Total (131), Microsoft DNS (90), Simple DNS Plus (1), Dnsmasq (33), CoreDNS (1), NSD (4), Yadifa (1), and TrustDNS (1).

- ➤ Most of the CVEs are semantic bugs
 - > Cache poisoning, resource consumption and service crash

Table 1: Study results of DNS CVEs for mainstream DNS software.

Software*	# CVE										
			Memory								
	Cache poison. 1	Res. consumpt. ²	Serv. crash ³	Others	Total	Corrupt.4	Others	Total	Total		
BIND	18	17	73	10	118	22	1	23	141		
Unbound	4	5	5	3	17	8	1	9	26		
Knot Resolver	6	3	2	0	11	0	0	0	11		
PowerDNS Recursor	13	7	7	9	36	6	0	6	42		
MaraDNS	2	3	3	0	8	7	0	7	15		
Technitium	3	1	0	0	4	0	0	0	4		
Total	46	36	90	22	194	43	2	45	239		

^{*:} Recursive or forwarding modes. 1: Cache poisoning. 2: Resource consumption. 3: Service crash. 4: Corruption.

[#] CVE of the forwarding mode only: Total (7), BIND (5), Unbound (0), Knot (1), PowerDNS (0), MaraDNS (0), and Technitium (1).

[#] CVE of the authoritative mode only: Total (45), BIND (19), Unbound (4), Knot (2), PowerDNS (19), MaraDNS (1), and Technitium (0).

[#] CVE of other software: Total (131), Microsoft DNS (90), Simple DNS Plus (1), Dnsmasq (33), CoreDNS (1), NSD (4), Yadifa (1), and TrustDNS (1).

- ➤ Nearly every field of a DNS message has related CVEs
 - ➤ Query name, query type, query flag, RCODE, RDATA, TTL, etc.
- ➤ Most of the CVEs are triggered with short message sequence

Table 1: Study results of DNS CVEs for ma	nainstream DNS software.
---	--------------------------

Software*	# CVE										
		N									
	Cache poison. ¹	Res. consumpt. ²	Serv. crash ³	Others	Total	Corrupt.4	Others	Total	Total		
BIND	18	17	73	10	118	22	1	23	141		
Unbound	4	5	5	3	17	8	1	9	26		
Knot Resolver	6	3	2	0	11	0	0	0	11		
PowerDNS Recursor	13	7	7	9	36	6	0	6	42		
MaraDNS	2	3	3	0	8	7	0	7	15		
Technitium	3	1	0	0	4	0	0	0	4		
Total	46	36	90	22	194	43	2	45	239		

^{*:} Recursive or forwarding modes. 1: Cache poisoning. 2: Resource consumption. 3: Service crash. 4: Corruption.

[#] CVE of the forwarding mode only: Total (7), BIND (5), Unbound (0), Knot (1), PowerDNS (0), MaraDNS (0), and Technitium (1).

[#] CVE of the authoritative mode only: Total (45), BIND (19), Unbound (4), Knot (2), PowerDNS (19), MaraDNS (1), and Technitium (0).

[#] CVE of other software: Total (131), Microsoft DNS (90), Simple DNS Plus (1), Dnsmasq (33), CoreDNS (1), NSD (4), Yadifa (1), and TrustDNS (1).

How should we design ResolverFuzz?

Black box, Stateful and Grammar-based fuzzing Two input generators Identify diff. vuln. by adapting diff. oracles

ResolverFuzz Infrastructure

>Input:

- ➤ Query Generator
- ➤ Response Generator

Figure 3: Workflow of RESOLVERFUZZ.

ResolverFuzz Infrastructure

≻Output:

- ➤ Response
- **≻**Cache
- ➤ System logs

Figure 3: Workflow of RESOLVERFUZZ.

ResolverFuzz Infrastructure

≻Oracle:

- ➤ Measure divergence
- ➤ Bug/vuln. analysis

Figure 3: Workflow of RESOLVERFUZZ.

ResolverFuzz: Workflow

- >Initialize DNS Resolvers
- >Test case generation
 - ➤ Query & Responses
- >Test case execution
 - ➤ Data dump
- > Reset for next round
- > Differential analysis

Figure 3: Workflow of RESOLVERFUZZ.

What are the challenges for ResolverFuzz?

Efficiency
Mutation
Stateful Fuzzing
Oracle

Efficiency

- >Some DNS software are slow
 - ➤ E.g., BIND (~0.4s per query) v.s. PowerDNS (>1s per query)
- >Empty cache for each test
- > Preset timeouts
- **≻Pre- and post-processing**
 - >NS initialization
 - ➤ Data collection
- >Solution: Run several test units in parallel
 - ➤ "High efficiency via high throughput"

Mutation

>Coverage-based fuzzers

- ➤ Fail to provide sufficient guidance
- ➤ Poor on deciding which part should be mutated
- **Reason**: no preliminary knowledge on DNS packets

>Input dimension

➤Only one dimension (query or NS response) leads to many invalid tests

Input Generation

>Two dimensions

- **≻**Client-queries
 - > For attacker clients
- ➤ Nameserver (NS)-responses
 - > For attacker NSes

Input Generation

≻Grammar-based Fuzzing

- ➤ Probabilistic context-free grammar (PCFG)
 - ➤ Queries and Responses
- ➤ High prob. for certain fields
 - ➤ Guide fuzzing process

```
⟨start⟩ ::= ⟨query⟩
⟨query⟩ ::= ⟨Header⟩⟨Question⟩
\langle \mathtt{Header} \rangle ::= \langle \mathtt{TransactionID} \rangle \langle \mathtt{Flags} \rangle \langle \mathtt{RRs} \rangle
(TransactionID) ::= (randomly generated 2-byte hex value)
\langle \mathtt{Flags} \rangle ::= \langle \mathtt{QR} \rangle \langle \mathtt{OPCODE} \rangle \langle \mathtt{AA} \rangle \langle \mathtt{TC} \rangle \langle \mathtt{RD} \rangle \langle \mathtt{RA} \rangle \langle \mathtt{Z} \rangle \langle \mathtt{AD} \rangle \langle \mathtt{CD} \rangle \langle \mathtt{RCODE} \rangle
\langle \mathbf{QR} \rangle ::= 0
(OPCODE) ::= QUERY[.80] | IQUERY[.04] | STATUS[.04] |
       NOTIFY[.04] | UPDATE[.04] | DSO[.04]
\langle AA \rangle ::= 0 | 1
⟨TC⟩ ::= 0 | 1
\langle \mathbf{RD} \rangle ::= 0 \mid 1
\langle RA \rangle ::= 0 | 1
\langle \mathbf{Z} \rangle ::= 0 \mid 1
\langle AD \rangle ::= 0 | 1
\langle CD \rangle ::= 0 | 1
(RCODE) ::= NOERROR[.80] | FORMERR[.01] | SERVFAIL[.01] |
       NXDOMAIN[.01] | NOTIMP[.01] | REFUSED[.01] | YXDOMAIN
        [.01] | YXRRSET[.01] | NXRRSET[.01] | NOTAUTH[.01] |
       NOTZONE[.01] | DSOTYPENI[.01] | BADVERS[.01] | BADKEY
       [.01] | BADTIME[.01] | BADMODE[.01] | BADNAME[.01] |
       BADALG[.01] | BADTRUNC[.01] | BADCOOKIE[.01]
\langle RRs \rangle ::= \langle QDCOUNT \rangle \langle ANCOUNT \rangle \langle NSCOUNT \rangle \langle ARCOUNT \rangle
\langle QDCOUNT \rangle ::= 1
\langle ANCOUNT \rangle ::= 0
\langle NSCOUNT \rangle ::= 0
\langle ARCOUNT \rangle ::= 0
\langle Question \rangle ::= \langle QNAME \rangle \langle QTYPE \rangle \langle QCLASS \rangle
(QNAME) ::= (base domain)[.40] |
                 (sub-domain)[.40] |
                 (2-9th sub-domain)[.10]
                 (10-max sub-domain)[.10]
(QTYPE) ::= A | NS | CNAME | SOA | PTR | MX | TXT | AAAA
         RRSIG | SPF | ANY
⟨QCLASS⟩ ::= IN
```

Input Generation

> Byte-level mutation

Some DNS implementations fail to correctly decode strings with special characters embedded

```
➤ E.g., \., \000, @, /, and \
```

- ➤ Jeitner et al. [Security'21]
- >Addition, deletion, and replacement
 - ➤ After PCFG test generation

Stateful Fuzzing

≻DNS resolvers are <u>stateful</u>

- > Depending on cache records, configurations, etc.
- ➤ Major challenge for network fuzzing
 - > Large search space of input sequences

>Solution:

- >Generate one pair of the query and (authoritative) response
 - > Cover most vulnerable cases
- ➤ Deploy the auth. response on the NS side
- >Start to test by sending the query
 - > Communication between DNS resolvers and the NS
 - > Preset timeout (5s) is deployed

> Lack an oracle to detect semantic bugs

- ➤ Memory bugs have their oracle
 - ➤ E.g., AddressSanitizer [USENIX ATC'12]

Differential testing

➤ Used for memory bugs, but none for DNS

>How to connect inconsistency with vulnerabilities?

- ➤ Inconsistencies are common in DNS
- ➤ Many of them do not indicate vulnerabilities

Differential Analysis

- >Runs multiple programs, comparing their outputs for the same input
 - ➤ Detecting rendering regressions in browsers (e.g., R2Z2 [ICSE'22])
 - ➤ Comparing outputs from different versions
 - > Efficient to find divergences

Figure 2: A rendering bug example (Chrome Issue #1122021).

> Different DNS software

➤ Objects of differential analysis

>Three Oracles

- ➤ Cache poisoning oracle
 - > Semi-automatic, differential-analysis based
 - > Record the max # different records of one software from the others
 - ➤ Cluster by Bisecting K-Means
 - > Manually check each cluster to identify possible vulnerabilities

>Three Oracles

- ➤ Resource consumption oracle
 - >4 metrics:
 - > # queries
 - > Sizes of responses
 - > Resolution timeout
 - > Frequency of internal operations (e.g., cache search)
 - ➤ Compare metrics with the value distribution in normal cases

>Three Oracles

- ➤ Crash & Corruption oracle
 - ➤ Monitor DNS software processes
 - ➤ Check if the process is running after each test case

How does ResolverFuzz perform?

Tested in <u>6</u> popular DNS software and <u>4</u> popular modes Good coverage of different field values Efficient runtime performance

Evaluation

≻6 DNS software

- ➤BIND 9, Unbound, PowerDNS, Knot, Technitium and MaraDNS
- ➤ Docker-based
- ➤ Schedulers and oracles implemented in Python

Evaluation

>4 configurations:

> Recur.-only, Fwd-only, CDNS w/ fallback and CDNS w/o fallback

```
options {
options {
                                                                    recursion no;
    recursion yes;
                                                                    // disables recursive resolution
    // includes the entire namespace
                                                                    forwarders {
                                                                         x.x.x.x port 53;
                                                                    // forward the entire zone "." to an upstream server
                             (a)
                                                                                            (b)
options {
                                                               options {
    recursion yes;
                                                                    recursion yes;
// create a forward zone for test-cdns.example.com
                                                               // create a forward zone for test-cdns.example.com
zone "test-cdns.example.com" {
                                                               zone "test-cdns.example.com" {
    type forward;
                                                                    type forward;
    forwarders { x.x.x.x port 53; };
                                                                    forwarders { x.x.x.x port 53; };
    forward only; // fallback mode disabled
                                                                    forward first; // fallback mode enabled
                             (c)
                                                                                            (d)
```

Figure 11: Example BIND configs of a) recursive-only, b) forward-only, c) CDNS without fallback, and d) CDNS with fallback.

Evaluation

>Analysis of tests generation

- ➤ Good coverage of different field values
- ➤ Rule probabilities of PCFG
 - > Test certain code logic more intensively
- >Test cases prone to trigger errors
 - ➤ Potentially bugs
 - ➤ Only 17.8% have RCODE=NOERROR

(a) Client-queries and NS-responses.

(b) Resolver-responses. "RCode & T.o." refers to "RCODE and Timeouts".

Figure 6: Input coverage analysis on: a) client-queries and ns-responses; b) resolver-responses. The client-query and ns-response have the similar distribution for fields from OPCODE to TYPE. AN/NS/ARCOUNT applies to ns-responses. The values marked on bars are standard DNS values from [78].

Evaluation

> Runtime performance

- ➤ Use concurrency to speed up
 - > 5.9 QPS (CDNS w/ f.b.)
 - > BIND and Unbound only
 - ≥ 2.8 QPS (other modes)
 - > MaraDNS, PowerDNS: low on efficiency
- Similar speed with real-world DNS resolution
 - ➤ Google DNS: 300-400 ms per query
 - ➤ i.e., 2.5-3.3 QPS

Figure 7: Throughput ("Thruput") of 4 modes with regard to the number of units. CDNS w/o f.b., CDNS w/ f.b., Recur-only and Fwd-only refers to CDNS without fallback, CDNS with fallback, Recursive-only, and Forwarder-only.

How many new vuln. are discovered?

23 vulnerabilities identified 19 confirmed, 15 CVEs assigned Categorized into 3 classes

>23 vulnerabilities identified

- > 19 vulnerabilities confirmed
- ➤ 15 CVEs assigned
- > Details available in the paper

Table 2: Identified bugs and test cases of six mainstream DNS software.

Software*	Cache poisoning								Crash& Corruption	Total					
	CP1	CP2	CP3	CP4 ¹	Tot. ²	RC1	RC2	RC3	RC4	RC5	RC6	RC7	Tot.	CC1	
BIND	/ †	X	1	1	3	X	X	X	X	X	X	X	0	/	4
Unbound	X	X	1	/ †	2	X	1	1	X	1	1	X	4	-	6
Knot	/ †	×	1	/ †	3	X	X	X	X	X	X	1	1	-	4
PowerDNS	X	1	X	1	2	1	X	1	X	X	X	X	2	-	4
MaraDNS	X	X	-	/ †	1	×	X	X	1	X	X	X	1	_	2
Technitium	/ †	X	-	✓ †	2	X	X	X	/ †	X	X	X	1	-	3
Total	3	1	3	6	13	1	2	1	2	1	1	1	9	1	23

^{*:} Recursive or forwarding modes. 1: They are triggered by different responses and their cache are inconsistent. 2: Total.

[✓]or ✓: Vulnerable. ✓: In discussion. ✓: Confirmed and/or fixed by vendors. ✗: Not vulnerable. †: CVEs are assigned. '-': Not applicable.

[#] Amount of test case: *CP*1 (19), *CP*2 (1,422), *CP*3 (111,328), *CP*4 (7,856), *RC*1 (539,745), *RC*2 (112,126), *RC*3 (88,935), *RC*4 (132), *RC*5 (272) *RC*6 (6,264), *RC*7 (4,448), and *CC*1 (5).

CP1: Out-of-Bailiwick Cache Poisoning

> Bailiwick rule

- ➤NS **should not** return RRs out of **their controlled zone**
- ➤ E.g., RRs from .com server should not contain .org RRs

Header: TXID; QR AA;

Question section:
atkr-fwd.com. A

Answer section:

atkr-fwd.com. A x.x.x.x

Authority section:

com. NS ns.atkr-fwd.com.

Additional section:

ns.atkr-fwd.com. A a.t.k.r

CP1: Out-of-Bailiwick Cache Poisoning

≻Out-of-Bailiwick attack

- > First found in BIND under CDNS without fallback mode
 - > Also identified in Knot and Technitium
- > Forged NS records with AA Flag have higher trust level
- > Resolvers may overwrite cached records with the forged one
 - > Some DNS resolver do not check the response
- ➤ Hijack the whole .com zone into ns.atkr-fwd.com
- ➤ Details analyzed in MaginotDNS [Security'23]

RC1: Excessive cache search operations

- > Forward-only mode, PowerDNS
- >Looks up its local cache for trust anchors and NS records before sending it to a server
 - ➤ E.g., s.atkr-fwd.com
 - > Should be only one search only
 - >PowerDNS: search records in the order of s.atkr-fwd.com, atkrfwd.com, .com and root servers
 - > Until an NS record is found
 - ➤ May cause resource consumption due to excessive cache search

Conclusion

- >Comprehensive study of published DNS CVEs
- > Develop a blackbox fuzzing system for DNS resolvers
- **≻Novel techniques**
 - ➤ Stateful fuzzing
 - ➤ Differential testing
 - ➤ Grammar-based fuzzing
- >12 types of vulnerabilities and 15 CVEs assigned

Future Works

> Fuzzing on DNS Security Extensions (DNSSEC)

- **≻**DNSSEC
 - > Provides origin authentication and integrity protection for DNS data
 - > A means of public key distribution in DNS
- ➤ Built-in security protection protocol based on DNS records
- ➤ Proposed in RFC 4033-4035 since 2005
- > Efficiently defend DNS against multiple kinds of vulnerabilities

Future Works

> Challenges on Fuzzing on DNSSEC

- ➤ Not so many CVEs reported till now
- ➤ Multiple records involved
 - > DNSKEY, RRSIG, NSEC/NSEC3, DS
- ➤ Multiple states and transitions
 - ➤ Zone signing, DNSKEY selection
- ➤ Applied cryptography
 - > Mutation on different crypto. algorithms (mnemonics) will be involved
 - ➤ May need extend PCFG support for mnemonics

Future Works

> ResolverFuzz v2.0: Fuzzing DNS with multiple query-response

- ➤ Hard to trigger
 - ➤ Only 6% of CVEs are triggered by multiple query-response
- ➤ Multiple states and state transitions
 - ➤ May require larger PCFGs
- ➤ Cache state maintenance and reproduction
- >More metrics may be involved to improve fuzzing guidance
 - > E.g., counters of variables related to cache

Acknowledgements

- >This work is not possible with them!
 - >Xuesong Bai from DSP Lab of UC Irvine
 - >Xiang Li from Tsinghua University
 - **Prof. Zhou Li**, my advisor
 - **▶ Prof. Qi Li** and **Prof. Haixin Duan** from Tsinghua University

Thanks for listening! Any questions?

Qifan Zhang, Department of EECS, UC Irvine qifan.zhang@uci.edu

≻Cache poisoning (CP)

- ➤ CP1: Out-of-bailiwick cache poisoning
- ➤ CP2: In-bailiwick cache poisoning
- ➤ CP3: Fragmentation-based cache poisoning
- ➤ CP4: Iterative subdomain caching

Table 2: Identified bugs and test cases of six mainstream DNS software.

Software*		Cach	ne poiso	ning				Crash& Corruption	Total						
	CP1	CP2	CP3	CP4 ¹	Tot. ²	RC1	RC2	RC3	RC4	RC5	RC6	RC7	Tot.	CC1	
BIND	✓†	Х	/	/	3	Х	Х	X	X	Х	X	X	0	/	4
Unbound	×	X	1	/ †	2	X	1	1	X	1	1	X	4	-	6
Knot	✓†	X	1	/ †	3	X	X	X	X	X	X	1	1	-	4
PowerDNS	X	1	X	/ †	2	1	X	1	X	X	X	X	2	-	4
MaraDNS	×	×	-	/ †	1	X	X	X	1	×	X	×	1	-	2
Technitium	✓†	X	-	✓†	2	X	X	X	✓ †	X	X	X	1	-	3
Total	3	1	3	6	13	1	2	1	2	1	1	1	9	1	23

^{*:} Recursive or forwarding modes. 1: They are triggered by different responses and their cache are inconsistent. 2: Total.

✓or ✓: Vulnerable. ✓: In discussion. ✓: Confirmed and/or fixed by vendors. ✗: Not vulnerable. †: CVEs are assigned. '-': Not applicable. # Amount of test case: CP1 (19), CP2 (1,422), CP3 (111,328), CP4 (7,856), RC1 (539,745), RC2 (112,126), RC3 (88,935), RC4 (132), RC5 (272) RC6 (6,264), RC7 (4,448), and CC1 (5).

Header: TXID; QR AA;	Header: TXID; QR AA;
Question section:	Question section:
atkr-fwd.com. A	vctm-fwd.com. A
Answer section:	Answer section:
atkr-fwd.com. A x.x.x.x	vctm-fwd.com. A x.x.x.x
Authority section:	Authority section:
com. NS ns.atkr-fwd.com.	s.vctm-fwd.com. NS ns.vctm-fwd.com.
Additional section:	Additional section:
ns.atkr-fwd.com. A a.t.k.r	ns.vctm-fwd.com. A a.t.k.r

(a) Auth-response for *CP*1.

(b) Auth-response for *CP*2.

Header: TXID; QR AA;	Authority section:
Answer section:	victim.com. NS ns.victim.com.
victim.com. A x.x.x.x	Additional section:
victim.com. RRSIG xxxx	ns.victim.com. A a.t.k. r

(c) 1st fragment for *CP*3.

(d) spoofed 2rd fragment for CP3.

Header: TXID; QR AA;	Header: TXID; QR AA;
Question section:	Question section:
s.atkr-rev.com. A	s.atkr-rev.com. A
Answer section:	Answer section:
s.atkr-rev.com. A a.t.k.r	(Empty)
Authority section:	Authority section:
s.atkr-rev.com. NS ns.atkr-rev.com.	s.atkr-rev.com. NS ns.atkr-rev.com.
Additional section:	Additional section:
ns.atkr-rev.com. A a.t.k.r	ns.atkr-rev.com. A a.t.k.r

(e) Auth-response for *CP*4.

(f) Ref-response for *CP*4.

Figure 9: DNS responses utilized for cache poisoning attacks. Red parts carry the attacking payloads.

≻Resource Consumption Bugs (RC)

- ➤ RC1: Excessive cache search operations
- >RC2: Unlimited cache store operations
- ➤ RC3: Ignoring the RD flag
- ➤ RC4: Following a self-CNAME reference
- ➤ RC5: Large responses to clients
- >RC6: Overlong waiting time over UDP
- ➤RC7: Excessive queries for resolution over TCP

Figure 10: Threat model of resource consumption bugs.

≻Crash & Corruption Bugs

>Assertion failure when receiving queries

Table 2: Identified bugs and test cases of six mainstream DNS software.

Software*		Cach	e poiso	ning					Crash& Corruption	Total					
	CP1	CP2	CP3	CP4 ¹	Tot. ²	RC1	RC2	RC3	RC4	RC5	RC6	RC7	Tot.	CC1	
BIND	/ †	X	1	1	3	X	X	X	X	X	X	X	0	/	4
Unbound	X	X	1	/ †	2	×	1	1	X	1	1	X	4	_	6
Knot	/ †	X	1	/ †	3	X	X	X	X	X	X	1	1	-	4
PowerDNS	X	1	X	/ †	2	1	X	1	X	X	X	X	2	-	4
MaraDNS	X	X	-	/ †	1	×	X	X	/ †	X	X	×	1	_	2
Technitium	✓ †	X	-	✓ †	2	X	X	X	✓ †	X	X	X	1		3
Total	3	1	3	6	13	1	2	1	2	1	1	1	9	1	23

^{*:} Recursive or forwarding modes. 1: They are triggered by different responses and their cache are inconsistent. 2: Total.

[✓]or ✓: Vulnerable. ✓: In discussion. ✓: Confirmed and/or fixed by vendors. ✗: Not vulnerable. †: CVEs are assigned. '-': Not applicable. # Amount of test case: *CP*1 (19), *CP*2 (1,422), *CP*3 (111,328), *CP*4 (7,856), *RC*1 (539,745), *RC*2 (112,126), *RC*3 (88,935), *RC*4 (132), *RC*5 (272) *RC*6 (6,264), *RC*7 (4,448), and *CC*1 (5).