Skill, Scale, and Value Creation in the Mutual Fund Industry

Laurent Barras, Patrick Gagliardini, and Olivier Scaillet.

Nov 3, 2023

目录

- Introduction
- 2 Measuring Skill, Scalability, and Value-Added
- 3 Data and Benchmark Model
- 4 Empirical Results
- Conclusions

Introduction

Main work

Main work

- This paper quantifies the number of funds that create value and assess whether they do so with more profitable or scalable ideas. $\alpha_i^* = a_i b_i q$
 - Examines whether funds create more value over time as investors learn about skill and scalability.
- **3** Measures how far fund value-added is from its optimal level as given by skill and scalability.
- Examines whether the industry delivers negative alpha to investors because it is populated by unskilled funds or by funds that scale their ideas too far.

Introduction

Motivation

Motivation

- \bullet BvB $(2015)^1$ define value-added as the product of the fund's gross alpha and size.
- ② The extensive panel evidence documented by Zhu $(2018)^2$ confirms such diseconomies of scale.
- 3 $\alpha_i^* = a_i b_i q$: The fund-level approach is key to incorporate the suspected heterogeneity in skill and scalability across funds and to determine how many of them create value.

Measuring Skill, Scalability, and Value-Added

Skill and Scalability

$$\alpha_i^* = a_i - b_i q_{i,t-1}$$

- Skill: a_i , which captures the profitability of the fund's investment ideas. This coefficient is equal to the gross alpha of the first dollar (when $q_{i,t-1} = 0$). As such, it can be interpreted as a paper return that is unencumbered by the drag of real-world implementation (Perold and Salomon ,1991)³.
- Scalability $:b_i$, which captures the fund's sensitivity to diseconomies of scale. This coefficient determines how the gross alpha changes when the fund deploys more capital to its investment ideas.

Measuring Skill, Scalability, and Value-Added

Value-Added

Value-added

- $va_i = a_i E[q_{i,t-1}] b_i E[q_{i,t-1}^2] = \alpha_i p \lim_{T \to \infty} \overline{q}_i b_i p \lim_{T \to \infty} \overline{q}_{i,2}$
- where $p\lim_{T\to\infty} \overline{q}_i$ and $p\lim_{T\to\infty} \overline{q}_{i,2}$ denote the time-series averages of (real) fund size and its squared value, and plim denotes the limit in probability.

Measuring Skill, Scalability, and Value-Added Method

Method

1. Estimation of the Fund Measure

• $r_{i,t} = a_i - b_i q_{i,t-1} + \beta'_i f_t + \psi_i \epsilon_{q_i,t} + v_{i,t}$

2. Kernel Density Estimation

• Estimate the density function ϕ using a standard nonparametric approach based on kernel smoothing.

3. Adjustment for the Error-in-Variable Bias

• $\tilde{\phi}(m) = \hat{\phi}(m) - \hat{bs}_1^r(m) - \hat{bs}_2^r(m)$

Data and Benchmark Model Data

Data

- CRSP database.
- between January 1975 and December 2019.
- The entire population of open-end actively managed U.S. equity funds with a well-defined equity style (as described below), and a weight invested in equities above 80%. Eliminate funds if they are tiny (below a minimum size of \$15 million).

Data and Benchmark Model

Benchmark Model

Benchmark Model

- Cremers, Petajisto, and Zitzewitz (2012)⁴ four factor model.
- The distinguishing feature of this model is to proxy for the market factor using the SP500, and to use index-based versions of the size and value factors obtained from the Russell indices.

Analysis of Skill and Scalability

Figure: Table II Distributions of Skill and Scalability

	Moments				Proportions		Quantiles	
	Mean	Std. Dev.	Skewness	Kurtosis	Negative	Positive	5%	95%
			Panel	A: Skill Coefficier	nt			
All Funds	3.0 (0.1)	4.1 (0.2)	1.6 (0.7)	23.4 (6.0)	16.9 (0.8)	83.1 (0.8)	-2.2 (0.1)	8.9 (0.2)
Small-Cap	4.6 (0.2)	4.5 (0.4)	1.8 (1.1)	18.3 (10.6)	11.5 (1.3)	88.5 (1.3)	-1.8 (0.3)	11.2 (0.3)
Large-Cap	1.7 (0.1)	2.9 (0.2)	1.7 (0.6)	15.8 (2.9)	23.1 (1.3)	76.9 (1.3)	-2.1 (0.2)	6.1 (0.2)
Low-Turnover	2.5 (0.2)	3.3 (0.3)	0.0 (0.8)	13.9 (2.8)	17.0 (1.3)	83.0 (1.3)	-1.9 (0.2)	7.3 (0.2)
High-Turnover	3.4 (0.2)	4.9 (0.4)	2.0 (0.9)	22.0 (6.3)	18.7 (1.4)	81.3 (1.4)	-2.8 (0.2)	10.7 (0.3)
Broker-Sold	2.9 (0.2)	4.2 (0.4)	2.0 (1.1)	26.5 (9.5)	17.3 (1.2)	82.7 (1.2)	$-2.1 (0.2) \\ -1.1 (0.2)$	9.2 (0.2)
Direct-Sold	3.3 (0.2)	3.2 (0.2)	0.9 (0.5)	9.2 (1.8)	11.6 (1.1)	88.4 (1.1)		8.4 (0.2)
			Panel	B: Scale Coefficie	nt			
All Funds	1.3 (0.1)	1.7(0.1)	1.6 (0.7)	16.7 (11.0)	17.6 (0.8)	82.4 (0.8)	-0.9 (0.1)	3.9 (0.1)
Small-Cap	1.6 (0.1)	1.7 (0.1)	0.0 (0.8)	7.1 (6.6)	16.3 (1.5)	83.7 (1.5)	-1.1 (0.1) $-0.9 (0.1)$	4.5 (0.1)
Large-Cap	0.9 (0.1)	1.3 (0.1)	1.2 (0.6)	10.4 (4.7)	21.8 (1.3)	78.2 (1.3)		3.0 (0.1)
Low-Turnover	0.9 (0.1)	1.1 (0.1)	0.2 (0.5)	5.7 (2.7)	18.7 (1.4)	81.3 (1.4)	$-0.7 (0.1) \\ -1.1 (0.1)$	2.8 (0.1)
High-Turnover	1.8 (0.1)	2.1 (0.2)	1.0 (0.6)	9.7 (4.3)	17.3 (1.3)	82.7 (1.3)		5.1 (0.2)
Broker-Sold	1.4 (0.1)	1.8 (0.1)	0.9 (0.5)	10.4 (1.6)	17.6 (1.2)	82.4 (1.2)	-0.9(0.1)	4.2 (0.1)
Direct-Sold	1.4 (0.1)	1.4 (0.1)	1.0 (0.4)	8.3 (2.0)	13.3 (1.2)	86.7 (1.2)	-0.6(0.1)	3.6 (0.1)

- On average, the skill coefficient equals 3.0% per year and is positive for 83.1% of the funds in the population.
- 82.4% of the funds in the population experience diseconomies of scale.on average, a one-standard-deviation increase in size reduces the gross alpha by 1.3% per year.

Correlated Skill and Scale Coefficients

- The pairwise correlation between $\hat{a_i}$ and $\hat{b_i}$ is equal to 0.78. Put differently, great investment ideas are difficult to scale up
- Small-cap funds have both higher skill and scale coefficients than large-cap funds.
- High-turnover funds are able to exploit more investment opportunities (higher a_i). However, they also incur higher trading costs (higher b_i), as a result of excessive trading

Figure: 1. Distributions of skill and scalability across fund groups

Magnitude of the Value-Added

Figure: Table III Distribution of Value-Added

	Moments				Proportions		Quantiles	
	Mean	Std. Dev.	Skewness	Kurtosis	Negative	Positive	5%	95%
All Funds	1.9 (0.3)	13.6 (1.1)	5.6 (0.8)	68 (8.3)	40.0 (1.0)	60.0 (1.0)	-6.7 (0.3)	20.4 (0.4)
Small-Cap	4.0 (0.5)	10.6 (1.1)	3.6 (0.7)	27.6 (6.1)	33.4 (1.9)	66.6 (1.9)	-5.8(0.4) $-10.5(0.4)$	21.7 (0.7)
Large-Cap	-0.6 (0.4)	10.9 (1.6)	5.6 (1.8)	86.7 (16.2)	53.0 (1.6)	47.0 (1.6)		10.5 (0.4)
Low-Turnover	5.9 (0.8)	22.9 (2.2)	3.9 (0.6)	32.1 (4.3)	34.2 (1.7)	65.8 (1.7)	-11.1(0.7) $-10.5(0.4)$	43.8 (1.4)
High-Turnover	-0.8 (0.3)	8.7 (1.1)	1.0 (3.0)	54.3 (29.6)	57.0 (1.7)	43.0 (1.7)		8.7 (0.4)
Broker-Sold	0.8 (0.4)	11.8 (1.5)	4.4 (1.9)	71.4 (12.1)	44.5 (1.5)	55.5 (1.5)	-8.5 (0.4) $-7.3 (0.5)$	16.0 (0.5)
Direct-Sold	3.7 (0.7)	17.9 (1.9)	4.2 (0.8)	39.4 (6.3)	35.6 (1.7)	64.4 (1.7)		30.7 (0.9)

- \bullet 60% of them produce a positive value-added equal to \$1.9M per year on average.
- Both small-cap and low-turnover funds create more value, but rely on a very different skill-scalability combination: high investment skills for small-cap funds, but high scalability for low-turnover funds.
- Finally, direct-sold funds exhibit a higher value-added than broker-sold funds as they take advantage of a more attractive skill-scalability combination (i.e., higher a_i and similar b_i).

Last Subperiod Value-Added

- The standard measure va_i considered so far captures the value created by the fund over its entire life. To the extent that size varies over time, it may therefore not provide a precise measure of the value created by the fund when it gets older.
- Split the total observations of each fund into 10 subperiods (S = 10). For each subperiod s(s = 1, ..., 10), we then compute the difference $\Delta q_i(s) = \overline{q_i}(s) - \overline{q_i}$, where $\overline{q_i}(s)$ and $\overline{q_i}$ denote the averages over subperiod s and the full sample.

- In subperiod 1, the median size gap equals -\$134M, which represents -78% of the average fund size.
- Fund size reaches its maximum value in sub-7 before falling back close to qi—in the last subperiod, the median size gap is a mere -\$13M (-13%) in relative terms).

Figure: Table IV Distribution of Last Subperiod Value-Added

	Moments				Proportions		Quantiles	
	Mean	Std. Dev.	Skewness	Kurtosis	Negative	Positive	5%	95%
All Funds	5.4(0.5)	22.7 (1.4)	4.1 (0.6)	42.0 (5.3)	29.5 (0.9)	70.5 (0.9)	-6.7 (0.4)	42.1 (0.8)
Small-Cap	8.3 (1.1)	28.2 (2.9)	3.6 (0.6)	27.9 (4.8)	32.3 (1.8)	67.7 (1.8)	-15.6 (0.9) $-4.5 (0.4)$	57.3 (1.9)
Large-Cap	3.6 (0.5)	16.2 (1.4)	3.0 (1.0)	32.3 (4.6)	26.2 (1.4)	73.8 (1.4)		32.6 (1.0)
Low-Turnover	8.9 (1.3)	36.3 (3.4)	3.7 (0.6)	31.0 (3.0)	32.4 (1.7)	67.6 (1.7)	-15.9 (1.0)	64.7 (2.0)
High-Turnover	2.9 (0.5)	14.4 (1.6)	0.4 (1.7)	38.1 (5.5)	32.6 (1.7)	67.4 (1.7)	-5.9 (0.5)	22.9 (0.7)
Broker-Sold	5.1 (0.6)	18.5 (1.6)	3.0 (1.2)	34.2 (10.9)	26.0 (1.4)	74.0 (1.4)	-5.9 (0.5)	38.2 (1.0)
Direct-Sold	7.7 (1.0)	28.1 (2.7)	2.9 (1.0)	30.6 (4.8)	31.6 (1.6)	68.4 (1.6)	-13.3 (0.8)	58 (1.9)

- \bullet The proportion of funds with a positive value-added is higher (70.5% versus 60.0%).
- Some of the large funds see a reduction in size as they get older. As a result, their value-added is negative on average $(va_i < 0)$ but positive during the last subperiod $(va_i(10) > 0)$.

Figure: Table IV Distribution of Last Subperiod Value-Added

	Moments				Proportions		Quantiles	
	Mean	Std. Dev.	Skewness	Kurtosis	Negative	Positive	5%	95%
All Funds	5.4(0.5)	22.7 (1.4)	4.1 (0.6)	42.0 (5.3)	29.5 (0.9)	70.5 (0.9)	-6.7 (0.4)	42.1 (0.8)
Small-Cap	8.3 (1.1)	28.2 (2.9)	3.6 (0.6)	27.9 (4.8)	32.3 (1.8)	67.7 (1.8)	-15.6 (0.9) $-4.5 (0.4)$	57.3 (1.9)
Large-Cap	3.6 (0.5)	16.2 (1.4)	3.0 (1.0)	32.3 (4.6)	26.2 (1.4)	73.8 (1.4)		32.6 (1.0)
Low-Turnover	8.9 (1.3)	36.3 (3.4)	3.7 (0.6)	31.0 (3.0)	32.4 (1.7)	67.6 (1.7)	-15.9 (1.0)	64.7 (2.0)
High-Turnover	2.9 (0.5)	14.4 (1.6)	0.4 (1.7)	38.1 (5.5)	32.6 (1.7)	67.4 (1.7)	-5.9 (0.5)	22.9 (0.7)
Broker-Sold	5.1 (0.6)	18.5 (1.6)	3.0 (1.2)	34.2 (10.9)	26.0 (1.4)	74.0 (1.4)	-5.9 (0.5)	38.2 (1.0)
Direct-Sold	7.7 (1.0)	28.1 (2.7)	2.9 (1.0)	30.6 (4.8)	31.6 (1.6)	68.4 (1.6)	-13.3 (0.8)	58 (1.9)

- Investors need time to learn about skill and scalability and allocate the right amount of capital to each fund.
- The uncertainty about skill and scalability is an important source of short-term capital misallocation.

Actual versus Optimal Value-Added

Actual versus Optimal Value-Added

- The analysis so far shows that most funds create value—especially when we focus on the last part of their return history.
- However, these results do not imply that the size of the fund industry is consistent with a rational model of fund capital allocation
- $V_i = \max_q q(a_i b_i q)$
- $FOC: q^* = \frac{a_i}{2b_i}$

Actual versus Optimal Value-Added

Figure: Table V Optimal Versus Actual Value-Added

	Fund Selection								
	FDR =	10%	FDR =	20%	FDR = 30%				
	Mean	Ratio	Mean	Ratio	Mean	Ratio			
Panel A: 1	No Trimming o	on the Esti	nated Skill and	l Scale Coe	efficients				
Optimal Value-Added	26.9 (2.1)		21.7 (1.4)		18.6 (1)				
Actual Value-Added									
Entire Period	6.7(0.8)	25.1	4.3(0.5)	19.7	1.8(0.3)	9.7			
Last Subperiod	14.7 (1.9)	54.8	10.2(1.3)	46.8	8.7 (0.9)	47.0			
Panel B: 1	0% Trimming	on the Esti	mated Skill an	d Scale Co	efficients				
Optimal Value-Added	27.5 (2.5)		21.8 (1.6)		18.7 (1)				
Actual Value-Added									
Entire Period	7.7(1.1)	28.1	4.8 (0.6)	21.9	1.9(0.3)	10.3			
Last Subperiod	17.3(2.1)	63.0	10.9 (1.5)	49.8	9.2 (0.9)	49.1			
Panel C: 2	0% Trimming	on the Esti	mated Skill an	d Scale Co	efficients				
Optimal Value-Added	29 (3.3)		21.6 (1.8)		18.2 (1.1)				
Actual Value-Added									
Entire Period	8.7(0.7)	30.1	4.5(0.4)	20.9	0.6(1)	3.2			
Last Subperiod	18.2(2.4)	62.9	10.8 (1.6)	50.2	8.7 (0.9)	47.9			

- The average of actual value-added only represents 9.7% to 25.1% of the optimal value-added. Funds largely fail to optimally exploit their investment abilities.
- The value-added approaches its optimal level as funds get older.

Actual versus Optimal Value-Added

- The median value of $q_i^*(s)$ is highly negative in subperiod 1, and then increases substantially before narrowing to a level that is 23% higher than the optimal active size.
- Negative difference: Funds are unsure of their own skill and scale coefficients and must learn about them alongside with investors.

Figure: 4. Difference between actual and optimal active fund size over time 60 40 20 -20 -40 -60 -80 -100 -120 -140

-160

10

From Value-Added to Performance

Figure: Table VI Distribution of Net Alpha

	Moments				Proportions		Quantiles	
	Mean	Std. Dev.	Skewness	Kurtosis	Negative	Positive	5%	95%
All Funds	-0.4 (0.1)	1.4 (0.1)	-0.3 (0.3)	5.7 (1.2)	62.9 (1)	37.1 (0.9)	-2.7 (0.1)	1.9 (0.1)
Small-Cap	0.5 (0.1)	1.9 (0.2)	0.8 (0.6)	9.0 (3.7)	40.4 (1.9)	59.6 (1.9)	-2.2 (0.1)	3.5 (0.2)
Large-Cap	-0.9 (0.1)	1.1 (0.1)	-0.5 (0.4)	6.2 (1.8)	79.8 (1.3)	20.2 (1.3)	-2.5 (0.1)	0.8 (0.1)
Low-Turnover	-0.1 (0.1)	1.3 (0.1)	0.1 (0.2)	3.5 (0.9)	53.8 (1.8)	46.2 (1.8)	-2.2 (0.1)	2.1 (0.1)
High-Turnover	-0.8 (0.1)	1.6 (0.1)	-0.6 (0.4)	6.3 (1.9)	69.2 (1.6)	30.8 (1.6)	-3.3 (0.1)	1.8 (0.1)
Broker-Sold	-0.7 (0.1)	1.3 (0.1)	-0.2 (0.2)	4.0 (1.0)	67.6 (1.4)	32.4 (1.4)	-2.7 (0.1)	1.5 (0.1)
Direct-Sold	0.1 (0.1)	1.4 (0.1)	-0.3 (0.4)	5.6 (2.0)	50.5 (1.8)	49.5 (1.8)	-2.1 (0.1)	2.4 (0.1)

- An average alpha close to 0 (-0.4% per year) and a proportion of positive-alpha funds equal to 37.1%.
- \bullet Explanation: unskilled funds manage to sell their shares to disadvantaged investors.
- \bullet These investors are either ignorant of underperformance (e.g., Gruber , 1996)⁵, or willing to pay extra fees for financial advice (Del Guercio and Reuter , 2014)⁶.
- The proportions of funds with positive value-added $(va_i > 0)$ and negative alpha $(\alpha_i^n < 0)$ are both large. why?

Distribution of Last Subperiod Value-Added

Figure: 5. Example of a fund with positive value-added and negative alpha

Conclusions

- Most funds are skilled and thus able to extract value from capital markets.
- ② The value-added distribution is shaped by the strong heterogeneity in the skill and scale coefficients, as well as their strong positive correlation.
- 3 Value-added approaches optimality once we allow for an adjustment period, possibly due to investor learning.

- [1] Jonathan B Berk and Jules H Van Binsbergen. "Measuring skill in the mutual fund industry". In: *Journal of financial economics* 118.1 (2015), pp. 1–20.
- [2] Min Zhu. "Informative fund size, managerial skill, and investor rationality". In: *Journal of Financial Economics* 130.1 (2018), pp. 114–134.
- [3] André F Perold and Robert S Salomon Jr. "The right amount of assets under management". In: Financial Analysts Journal 47.3 (1991), pp. 31–39.
- [4] Martijn Cremers, Antti Petajisto, and Eric Zitzewitz. "Should Benchmark Indices Have Alpha? Revisiting Performance Evaluation". In: *Critical Finance Review* 2 (2013).
- [5] Martin J Gruber. "Another puzzle: The growth in actively managed mutual funds". In: *The journal of finance* 51.3 (1996), pp. 783–810.

[6] Diane Del Guercio and Jonathan Reuter. "Mutual fund performance and the incentive to generate alpha". In: *The Journal of Finance* 69.4 (2014), pp. 1673–1704.