통신이론

- 1. 발생 확률이 동일한 심벌 0과 1을 이진 통신 시스템의 채널을 통하여 전송한다. 심벌 0이 송신되었을 때 수신기에서 심벌 0과 1로 판정할 확률은 각각 0.7과 0.3이고, 심벌 1이 송신되었을 때 심벌 0과 1로 판정할 확률은 각각 0.4와 0.6이다. 수신기에서 수신된 신호가 심벌 1로 판정되었을 때, 송신기에서 심벌 1을 송신했을 확률은?
 - $\bigcirc \frac{1}{3}$
 - $2 \frac{1}{2}$
 - $3\frac{2}{3}$
 - $4) \frac{7}{9}$
- 2. 잡음이 발생하지 않는 이상적인 저항 R과 커패시터 C로 구성된 1차 저역통과필터에 평균이 0인 백색 가우시안 잡음(white Gaussian noise)을 입력했을 때, 이 필터의 출력에 대한 설명으로 옳은 것은? (단, 저역통과필터의 통과 대역폭은 입력 신호의 대역폭보다 좁다)
 - ① 통계적 특성은 가우시안이다.
 - ② 스펙트럼 특성은 백색 잡음과 같다.
 - ③ 자기상관 함수는 임펄스 함수이다.
 - ④ 신호의 주파수가 $\frac{1}{RC}$ [Hz]일 때, 필터의 최대 이득 대비 3 [dB]의 전력이 감소한다.

- 3. 연속 시간 신호 x(t)를 주파수 영역 신호 X(f)로 변환할 때, 이 신호의 특성에 대한 설명으로 옳지 않은 것은?
 - ① X(f)를 신호 x(t)의 주파수 스펙트럼이라 하며, 일반적으로 위상 스펙트럼과 크기 스펙트럼으로 구분할 수 있다.
 - ② x(t)가 주기 신호이면 X(f)는 이산 스펙트럼 형태로 나타난다.

 - ④ x(t)를 일정 시간 지연하면 주파수 영역에서는 주파수 천이로 나타난다.

- 4. 가산적(additive) 백색 가우시안 잡음 채널에서 섀넌(Shannon)의 채널용량 공식에 대한 설명으로 옳지 않은 것은?
 - ① 채널용량이 커질수록 동일한 오류 확률 성능을 제공하기 위한 채널의 최대 전송 속도는 작아진다.
 - ② 사용 대역폭이 증가하더라도 채널용량은 선형적으로 증가하지 않는다.
 - ③ 신호의 전력 크기가 증가하면 채널용량도 커진다.
 - ④ 동일한 신호 전력에서 사용 대역폭을 증가시키면 신호대 잡음 전력비는 감소한다.

- 5. 디지털 변조된 신호가 다중경로 페이딩 채널을 통해 전송될 때, 이 신호가 겪는 현상으로 옳지 않은 것은?
 - ① 지연확산(delay spread)이 심벌 주기보다 크면 심벌 간 간섭이 박생하다
 - ② 코히런스 시간(coherence time)은 통신 채널의 응답이 거의 변화하지 않는 시간을 말한다.
 - ③ 짧은 코히런스 시간은 작은 도플러 확산(Doppler spread)을
 - ④ 지연확산이 심벌 주기보다 크면 통신 채널은 주파수 선택적(frequency selective)이다.

- 6. 각 변조에 대한 설명으로 옳지 않은 것은?
 - ① 전압제어발진기(VCO)를 이용하여 직접 변조가 가능하다.
 - ② 음성 신호로 변조된 신호는 비주기적으로 불규칙하게 영점을 교차한다.
 - ③ 주파수 변조(FM)된 신호는 최대 주파수 편이가 클수록 대역폭이 넓어진다.
 - ④ 위상 변조(PM) 신호는 중첩의 원리를 만족시키지만, FM 신호는 중첩의 원리를 만족시키지 않는다.

① 단일 패리티 검사 부호는 오류 정정이 불가능하다.

② 터보부호는 선형블록부호의 일종으로 인터리버를 사용한다.

경판정(hard decision) 복호에 비해 복호 성능이 좋다.

12. 메시지 신호 m(t)로 주파수 변조된 신호 s(t)의 최대 주파수 편이

13. 반송파가 10cos(2000πt)인 FM 변조기의 주파수 편이 상수가 8이고

메시지 정보 신호 $m(t) = 2\cos(16\pi t)$ 일 때, FM 변조된 신호의 평균

[GHz]는? (단, $f_c = 1$ [GHz], $k_f = 10^7$, $-1 \le m(t) \le 1$, s(t) = 1

③ 인터리빙 기법은 채널에서 발생하는 연집(burst) 오류를 랜덤 오류로

④ 가산적 백색 가우시안 잡음 채널에서 연판정(soft decision) 복호는

11. 채널 부호화에 대한 설명으로 옳지 않은 것은?

 $10\cos\left[2\pi(f_ct+k_f\int_0^t m(\tau)d\tau)\right]$ 이다)

- 7. 신호 x(t)의 대역폭이 B[Hz]로 제한되어 있을 때 $x^2(t)$ 를 에일리어싱 (aliasing) 없이 표본화하기 위한 최소 표본화 주파수[Hz]는?
 - ① $2\pi B$
 - ② 2B
 - 34B
 - $4\pi B$

8. 임펄스 응답 $h(t) = 100 \operatorname{sinc}(100t)$ 인 이상적인 저역통과필터를 사용하여 신호를 여파할 때, 이 신호가 가질 수 있는 최대 주파수 대역폭[Hz]은?

(단,
$$\operatorname{sinc}(x) = \begin{cases} \frac{\sin(\pi x)}{\pi x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$$
이다)

- ① 50
- 2 100
- ③ 150
- **4** 200
- 시스템에 신호 x[0] = x[1] = 1을 입력할 때, 출력 y[n]의 값으로 옳지 않은 것은?
 - ① y[0] = 1
 - ② y[1] = -2
 - 3 y[2] = -1
 - (4) y[3] = 1
- 9. h[0] = 1, h[1] = -2, h[2] = 1의 임펄스 응답을 갖는 이산 선형 시불변
- ① 5 ② 10

전송 전력은?

① 0.01

② 0.1

③ 1

4 10

- 3 20
- **4** 50
- 10. 3개의 정보원 A, B, C의 발생 확률이 각각 $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{4}$ 이고 정보원 심벌 발생률이 1000 [symbols/s]일 때, 정보율[bps]은?
 - ① 1000
 - ② 1500
 - ③ 2000
 - 4 2500

- 14. 반송파 주파수 $f_c = 711 \, [\mathrm{kHz}]$ 를 이용하여 AM 변조된 신호를 수신하고, 이 신호를 복조하기 위해 국부발진주파수 $f_L = 1166 \; [\mathrm{kHz}]$ 를 사용하여 중간 주파수 $f_{IF} = 455 \, [\mathrm{kHz}]$ 로 주파수 하향 변환할 때, 동일 채널 간섭을 일으키는 이미지 주파수[kHz]는?
 - ① 455
 - 2 910
 - ③ 1621
 - 4 2076

- 15. 주파수 f_1 , f_2 $(f_2 > f_1)$ 를 사용하는 이진 주파수 편이 변조(BFSK)에서 $f_1 = 1$ [MHz]이고, 심벌률은 2×10^5 [symbols/s]이다. 동기 검출 방식을 사용할 때, 직교 조건을 만족하는 최소 f_2 [MHz]는?
 - ① 1.1
 - ② 1.2
 - ③ 1.3
 - **4** 1.4

- 16. 비트 지속 시간이 T_0 일 때, 가산적 백색 가우시안 잡음 채널에서 사용되는 디지털 변조 방식에 대한 설명으로 옳지 않은 것은?
 - ① MPSK 변조 방식에서 M이 증가할수록 대역폭 효율은 감소한다.
 - ② DPSK(differential PSK) 변조된 신호는 반송파의 복구 없이 복조가 가능하다.
 - ③ 1개의 전압제어발진기(VCO)를 사용하여 FSK 신호를 발생시키면 심벌이 변화하는 시점에서도 위상은 연속이다.
 - ④ 이진 디지털 변조된 신호를 동기 복조할 때 사용되는 정합필터 수신기와 상관 수신기는 $t=T_b$ 시점에서의 출력 표본화 값이 동일하다.

- 17. 대역폭이 12 [kHz]인 기저 대역 전송로를 통하여 4진 PAM 디지털 데이터를 롤 오프(roll-off) 인자 r=1인 상승 코사인 필터로 펄스 성형한 후 전송할 때, 심벌 간 간섭 없이 수신 가능한 최대 전송 비트율[kbps]은?
 - ① 12
 - ② 18
 - ③ 24
 - 48

- 18. 주파수 분할 다중접속(FDMA) 시스템에 할당된 전체 대역폭은 1.45 [MHz] 이고, 사용자 주파수 채널 대역폭과 인접 채널 간 보호 대역폭은 각각 250 [kHz], 50 [kHz]일 때, 할당 가능한 최대 주파수 채널의 수는? (단, 보호 대역은 할당된 전체 대역폭 내의 주파수 채널 간에서만 고려한다)
 - ① 4
 - ② 5
 - 3 6
 - 4 7

- 19. PN 부호의 발생에 길이가 m인 선형 귀환 천이 레지스터를 이용하는 m 계열 최장 부호열(maximum length code sequence)의 특성으로 옳지 않은 것은?
 - ① 칩(chip) 동기된 부호열 간 자기상관 함수는 두 개의 값만 갖는다.
 - ② 한 주기 부호에는 2^{m-1} 개의 0이 존재한다.
 - ③ 한 주기 부호에서 모든 런(run, 길이가 1 이상인 연속된 1 또는 연속된 0)의 개수가 8일 때, 길이가 2인 런은 2개이다.
 - ④ 부호의 반복 주기는 $2^m 1$ 이다.

- 20. (7,4) 체계적 순환 부호(systematic cyclic code)의 벡터 표현이 [1011]인 생성 다항식이 $g(X) = X^3 + X + 1$ 이고, 메시지 벡터가 [1010]일 때 생성되는 부호어는? (단, 부호어는 [메시지|패리티]로 표현한다)
 - ① [1010011]
 - ② [1010101]
 - ③ [1010010]
 - ④ [1010001]

- 21. 메시지 블록 $\{00,01,10,11\}$ 에 대하여 순서대로 각각 선형블록부호어 $\{00000000,11110001,00111110,11001111\}$ 를 사용하는 채널 부호화의 오류 정정 능력은?
 - ① 1
 - ② 2
 - ③ 4
 - **4** 5

- 22. 메시지 신호 $m(t)=\cos\left(2\pi f_m t+\frac{\pi}{2}\right)$ 로 AM 변조된 신호 $s(t)=4\left[1+\frac{1}{2}m(t)\right]\cos(2\pi f_c t)$ 일 때, 신호 s(t)의 전력은? (단, $f_c\gg f_m$ 이다)
 - ① 3
 - ② 4
 - 3 8
 - 4
 9

- 23. 16 QAM 변조된 신호 $x_i(t) = I_i\phi_1(t) + Q_i\phi_2(t)$, $i = 1, 2, \cdots, 16$ 에 해당하는 각 심벌들이 신호 공간 성상도상의 좌표 (I_i, Q_i) 에 배치될 때, 심벌 평균 에너지는? (단, I_i 와 Q_i 는 각각 동일한 확률로 $\{\pm 1, \pm 3\}$ 중 1개의 값을 가지며, $\phi_1(t) = \sqrt{\frac{2}{T}}\cos(2\pi f_c t)$, $\phi_2(t) = \sqrt{\frac{2}{T}}\sin(2\pi f_c t)$ 이고, T는 심벌 주기, f_c 는 반송파 주파수를 의미한다)
 - \bigcirc $\sqrt{2}$
 - 2 2
 - $\sqrt{10}$
 - **4** 10

- 24. PCM 과정에서 입력신호 x의 표본 범위를 [-x_{max}, +x_{max}]로 하여 표본화하고, 256레벨로 균일 양자화를 수행하여 8 [bits] 이진수로 표현하였다. 동일한 표본 범위에 대하여 균일 양자화 레벨을 1024로 세분화하고 10 [bits]로 표현할 때, 신호대 양자화 잡음 전력비(SQNR)의 증가량[dB]은?
 - ① 6
 - 2 9
 - ③ 12
 - 4 18

- **25.** 전달함수 $H(\omega) = 0.5e^{-j0.2\omega}$ 인 시스템의 입력신호 $s(t) = m(t)\cos(\omega_c t)$ 일 때, 이 시스템의 출력신호 표현으로 옳은 것은?
 - ① $m(t-0.2)\cos(0.2\omega_c t)$
 - ② $m(t)\cos(\omega_c t 0.2)$
 - $3 \ 0.5m(t-0.2)\cos(\omega_c t)$
 - $(4) 0.5m(t-0.2)\cos[\omega_c(t-0.2)]$