1

a)

 $p\ \hat{\ } (p\ v\ q) <=>p$

p	q	p ^ (p v q)	р
1	1	1	1
1	0	1	1
0	1	0	0
0	0	0	0

b)

 $p\ v\ (p\ \hat{\ }q) <=>p$

p	q	p v (p ^ q)	р
1	1	1	1
1	0	1	1
0	1	0	0
0	0	0	0

c

$$(p -> q) \ v \ (p -> r) <=> p -> (p \ v \ r)$$

p	q	r	(p -> q) v (p -> r)	p -> (p v r)
1	1	1	1	1
1	1	0	1	1
1	0	1	1	1
1	0	0	0	1
0	1	1	1	1
0	1	0	1	1
0	0	1	1	1
0	0	0	1	1

Não há equivalência lógica

d)

p	q	p + q	(p v q) ^ ~(p ^ q)
1	1	0	0
1	0	1	1
0	1	1	1
0	0	0	0

e) $(p <-> q) \ v \ (p -> r) <=> (p -> q) \ v \ r$

p	q	r	(p -> q) v r	$(p \leftarrow p \rightarrow q) \ v \ (p \rightarrow r)$
1	1	1	1	1
1	1	0	1	1
1	0	1	1	1
1	0	0	0	0
0	1	1	1	1
0	1	-		1
0	0	1	1	1
0	0	0	1	1

 $\mathbf{2}$

Não é verdade que Pedro é pobre e Alberto é alto

$${\sim}(p\ \hat{\ }q)<=>{\sim}p\ v\ {\sim}q$$

Não é verdade que Pedro é pobre ou Não é verdade que Alberto é alto

3

Não é verdade que Se Pedro é pobre então Alberto é alto

$$\sim (p \rightarrow q)$$

4

Não é verdade que Pedro é pobre sse Alberto é alto

$$p + q$$

Pedro é pobre e não é verdade que Alberto é alto

5

Algum carro é veloz

Nenhum carro é veloz

6

Algum livro não é ilustrado

Todo o livro é ilustrado

7

b)
$$(\sim X \hat{Y}) = \sim (\sim X \hat{Y}) = X \vee \sim Y$$

c)
$$(\sim X ^\sim Y) = X v Y$$

d)
$$(X \vee Y) = \sim (X \vee Y) = \sim X ^ \sim Y$$

e)
$$(\sim X \vee Y) = X ^\sim Y$$

$$f) (\sim X \vee \sim Y) = X ^ Y$$

g)
$$(X -> Y) = \sim (X -> Y) = X ^ \sim Y$$

h)
$$(\sim X -> Y) = \sim (\sim X -> Y) = \sim X ^ \sim Y$$

i)
$$(\sim X \rightarrow \sim Y) = \sim X \hat{Y}$$

j)
$$(X < -> Y) = \sim (X < -> Y) = X + Y$$

k) (
$$\sim X < -> Y$$
) = $\sim X + Y$

8

a) A contrapositiva de $(p \rightarrow q)$

b) A contrária da contrapostiva de $[(\sim p \rightarrow q) \rightarrow (\sim p \vee q)]$

c) A recíproca da contrapositiva da contrária de $[(p \rightarrow \neg q) \rightarrow q]$

```
d)
 A recíproca da contrapositiva de {[(~p ^ ~q) -> q] -> p}
~p -> ~[(~p ^ ~q) -> q] | contrapositiva
\sim [(\sim p \ ^ \sim q) \ -> \ q] \ -> \ \sim p \ | \ recíproca
9
a) Pedro não é arquiteto ou Paulo é programador.
p = Pedro é arquiteto
q = Paulo é programador
~p v q
q v ~p | comutativa
b) João é programador sse Lucas é artista
p = João é programador
q = Lucas é artista
p <-> q
q <-> p | comutativa
c) Paulo e Lucas são desenvolvedores
p = Paulo é desenvolvedor
q = Lucas é desenvolvedor
p ^ q
q \hat{p} \mid comutativa
d) Paulo ou Lucas ou João são desenvolvedores.
p = Paulo é desenvolvedor
q = Lucas é desenvolvedor
r = João é desenvolvedor
pvqvr
p v (q v r) | associativa
10
a)
(p->q) v (p v q) | original
(p \ v \ q) \ v \ (p->q) \ | \ comutativa
(~p v q) v (p v q) | condicional
```

 $(p\rightarrow q)$ v $(\sim p \rightarrow q)$ | condicional

b)

$$(p \leftrightarrow q) v (\sim (p \sim q) \rightarrow r) \mid original$$

$$(p \leftarrow p) v ((p \hat{q}) v r) \mid condicional$$

$$(q \leftrightarrow p) v (\sim (p \uparrow q) \rightarrow r) \mid comutativa$$

((p v q)
$$\hat{}$$
 (~p v ~q)) v (~(p $\hat{}$ q) \rightarrow r) | bicondicional

12

a) O tempo será frio e chuvoso.

O tempo não será frio ou não será chuvoso

b) Ele cometeu um erro ou não foi responsável.

$$p^q$$

Ele não cometeu um erro e foi responsável

c) Marina não é morena ou Ana é baixa.

Marina é morena e Ana não é baixa

d) Se o tempo está chuvoso então está frio.

$$\sim$$
(p -> q)

O tempo está chuvoso e não está frio

e) Todos os corvos são negros.

Alguns corvos não são negros

f) Nenhum triângulo é retângulo.

Algum triângulo é retângulo

g) Alguns sapos são bonitos.

Nenhum sapo é bonito

h) Algumas vidas não são importantes

Todas as vidas são importantes

13

Verifique se as proposições abaixo são equivalentes, referenciando as regras de equivalência utilizadas. a)

```
r v r <=> r
3 - Idem potente
p -> ~q <=> ~(p ^ q) | original
~(p ^ q) <=> ~p v ~q | 1° lei de morgan
p -> ~q <=> ~p v ~q
1 - condicional
~p ^ (q v r) <=> (~p ^ q) v (~p ^ r)
9 - distributiva
~p -> ~q <=> q -> p
1 - condicional (contrapositiva)
2 - dupla negação
\sim (\sim p \ v \ q) \iff (p \ \sim q)
~~p ^ ~q
2 lei de morgan e dupla negação
p v q <=> ~(~p ^ ~ q)
~(~p ^ ~q) <=> ~~p v ~~q <=> p v q
1 lei de morgan e dupla negação
g)
p \rightarrow p \ll p
\sim p \rightarrow p <=> \sim p v p <=> p v p
```

- 2 dupla negacao
- 3 Idem Potente

14

Q: A aula termina mais cedo ou não há festa hoje

a) Especifique a operação lógica envolvida em Q.

A operação lógica envolvida em Q é a OU

b) Escreva Q em linguagem simbólica.

p = A aula termina mais cedo

q = há festa hoje

p v ~q

c) Escreva pelo menos duas proposições logicamente equivalentes a Q, referenciando as equivalências utilizadas.

 $Q = p v \sim q$

$$Q \iff (^p -> ^q) \iff (^q v p)$$

Condicional e comutativa

d) Sabendo que a aula acabou mais cedo o que se pode afirmar sobre o valor lógico de ${\bf Q}$

$$Q = p v \sim q$$

O valor lógico de Q é verdade.

15

Se não estudarmos, não seremos bons profissionais

p = Se estudarmos

q = seremos bons profissionais

~p -> ~q

a) Determine a contrária da proposição dada.

p -> q

b) Determine a contrária da recíproca da contrapositiva da proposição gerada na alternativa a.

~q -> ~p

~p -> ~q

p -> q

c) Utilizando TVs verifique as equivalências lógicas existentes entre a contrapropositiva, a contraria a contrapositiva da proposição gerada na alternativa a.

p	q	p -> q	~p -> ~q	~q -> ~p	q -> p
1	1	1	1	1	1
1	0	0	1	1	0
0	1	1	0	0	1
0	0	1	1	1	1

reciproca <=> original
contrária <=> contrapositiva