Partial orderings

Dr. Son P. Nguyen

UEL VNU-HCMC

October 22, 2014

Introduction Example

- Let the set $S = \{1, 2, 3, 4, 6\}$ and the relation $R = \{(a, b) \in S \times S \text{ such that } a|b\}.$
- Let the set $S = \{1, 2, 3, 4\}$ and the relation $R = \{(a, b) \in S \times S \text{ such that } a \leq b\}.$
- Let the set $S = \{a, b, c\}$, the power set $P(S) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$ and the relation $R = \{(A, B) \in P(S) \times P(S) \text{ such that } A \subseteq B\}$.

What are the common properties of these relations?

Partial Ordering

Definition

A relation R on a set S is called a **partial ordering** or **partial order** if it is reflexive, antisymmetric, and transitive. A set S together with a partial ordering R is called a **partially ordered set**, or **poset**, and is denoted by (S,R). Members of S are called **elements** of the poset.

Notation

In a partially ordered set (S, R), the notation $a \leq b$ denotes that $(a, b) \in R$.

This notation is used because the "less than or equal to" relation on a set of real numbers is the most familiar example of a partial ordering and the symbol \leq is similar to the \leq symbol.

The notation $a \prec b$ denotes that $a \preccurlyeq b$, but $a \neq b$. Also we say "a is less than b" or "b is greater than a" if $a \prec b$.

Comparable Elements

Definition

The elements a and b of a poset (S, \preceq) are called **comparable** if either $a \preceq b$ or $b \preceq a$.

When a and b are elements of S such that neither $a \leq b$ nor $b \leq a$, then a and b are called **incomparable**.

Total Order

Definition

If (S, \preccurlyeq) is a poset and every two elements of S are comparable, then S is called a **totally ordered set** or **linearly ordered set**, and \preccurlyeq is called a **total order** or a **linear order**. A totally ordered set is also called a **chain**.

Lexicographic Order

The words in the dictionary are listed in alphabetic, or lexicographic, order, which is based on the ordering of the letters in the alphabet. This is a special case of an ordering of strings on a set constructed from a partial ordering on the set.

Definition

if and only if

Let the two posets (S_1, \preccurlyeq_1) and (S_2, \preccurlyeq_2) . The **lexicographic** order \preccurlyeq on the Cartesian product $S_1 \times S_2$ is defined by specifying that one pair is less than the other pair, i.e.

$$(a_1, a_2) \prec (b_1, b_2)$$
$$a_1 \prec_1 b_1$$

or

$$a_1 = b_1$$
 and $a_2 \prec_2 b_2$.

We obtain a partial ordering \leq by adding equality to the ordering \prec on $A_1 \times A_2$.

Example of Lexicographic Order

Let S_1 be the alphabet and \leq_1 be the usual alphabetic order. Let S_2 be the set $\{0,1,2,3,...,9\}$ and \leq_2 be the usual partial order \leq . Then

- $(A,7) \prec (B,1)$ because $A \prec_1 B$.
- $(C,4) \prec (C,7)$ because C=C and $4 \prec_2 7$.

Lexicographic Order (*n*-tuple)

Definition

A lexicographic ordering can be defined on the Cartesian product of n posets (A_1, \preccurlyeq_1) , (A_2, \preccurlyeq_2) , ..., (A_n, \preccurlyeq_n) . Define the partial ordering \preccurlyeq on $A_1 \times A_2 \times \cdots \times A_n$ by

$$(a_1, a_2, ..., a_n) \prec (b_1, b_2, ..., b_n)$$

if $a_1 \prec_1 b_1$, or if there is an integer i > 0 such that $a_1 = b_1$, ..., $a_i = b_i$ and $a_{i+1} \prec_{i+1} b_{i+1}$.

On other words, one n-tuple is less than a second n-tuple if the entry of the first n-tuple in the first position where the two n-tuples disagree is less than the entry in that position in the second n-tuple.

Example of Lexicographic Order

Let S_1 be the alphabet and \preccurlyeq_1 be the usual alphabetic order. Let S_2 be the set $\{0,1,2,3,...,9\}$ and \preccurlyeq_2 be the usual partial order \leq . Let P, the set of postal codes. $P = S_1 \times S_2 \times S_1 \times S_2 \times S_1 \times S_2$. Then

- $(G, 9, X, 8, W, 7) \prec (H, 1, A, 2, B, 1)$ because $G \prec_1 H$.
- $(G, 1, K, 2, P, 4) \prec (G, 1, K, 7, A, 1)$ because $G = G, 1 = 1, K = K, 2 \prec_2 7.$

Lexicographic Order (Strings)

Definition

Consider the strings $a_1a_2\cdots a_m$ and $b_1b_2\cdots b_n$ on a partially ordered set S. Suppose these strings are not equal. Let t be the minimum of m and n. The definition of lexicographic ordering is that the string $a_1a_2\cdots a_m$ is less than the string $b_1b_2\cdots b_n$ if and only if

$$(a_1, a_2, ..., a_t) \prec (b_1, b_2, ..., b_t)$$

or

$$(a_1, a_2, ..., a_t) = (b_1, b_2, ..., b_t)$$

and m < n, where \prec in this inequality represents the lexicographic ordering of S^t .

Helmut Hasse

Born: 25 Aug 1898 in Kassel, Germany. Died: 26 Dec 1979 in Ahrensburg (near Hamburg), Germany

www-groups.dcs.st-and.ac.uk/ ~history/Mathematicians/Hasse.html

Example $(\{1, 2, 3, 4\}, \leq)$

Let S be the set $S = \{1, 2, 3, 4\}$ and the relation R be " $a \le b$ ". This relation is given by $R = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)\}.$

This relation is reflexive, antisymmetric and transitive.

Step 1 of 4: We remove all loops caused by reflexivity.

Step 2 of 4: We remove all edges implied by the transitivity property.

Step 3 of 4: We redraw edges and vertices such that the initial vertex of each edge is below its terminal vertex.

Step 4 of 4: Remove all arrows from the directed edges, since they are all upward. The diagram at right is the Hasse diagram.

Example ({2, 4, 5, 10, 12, 20, 25}, |)

Suppose the following poset $S = (\{2, 4, 5, 10, 12, 20, 25\}, R)$ where R is the partial order $a \mid b$.

$$R = \{(2,2), (2,4), (2,10), (2,12), (2,20), (4,4), (4,12), (4,20), (5,5), (5,20), (5,25), (10,10), (10,20), (20,20), (25,25)\}.$$

Example $({2,4,5,10,12,20,25},|)$

This relation is reflexive, antisymmetric and transitive.

Step 1 of 4: We remove all loops caused by reflexivity.

Step 2 of 4: We remove all edges implied by the transitivity property.

Step 3 of 4: We redraw edges and vertices such that the initial vertex of each edge is below its terminal vertex.

Step 4 of 4: Remove all arrows from the directed edges, since they are all upward. The diagram at right is the Hasse diagram.

Maximal and Minimal Elements

Definition

An element a is **maximal** in the poset (S, \preceq) if there is no element $b \in S$ such that $a \preceq b$.

In other words, an element of a poset is called maximal if it is not less than any *comparable* element of the poset.

Definition

An element a is **minimal** in the poset (S, \preceq) if there is no element $b \in S$ such that $b \preceq a$.

In other words, an element of a poset is called minimal if it is not greater than any *comparable* element of the poset.

Example $({2, 4, 5, 10, 12, 20, 25}, |)$

- 2 and 5 are minimal elements.
- 12, 20 and 25 are maximal elements.
- The minimal and the maximal elements may not be unique.

Example $(\{1, 2, 3, 4\}, \leq)$

- 1 is the minimal element.
- 4 is the maximal element.
- There is at most one minimal element and one maximal element in a totally ordered set.

Greatest and Least Elements

Definition

The element a is the **greatest element** of the poset (S, \preccurlyeq) if $b \preccurlyeq a$ for all $b \in S$. The greatest element is unique when it exists.

In other words, an element a in a poset (S, \preceq) is the greatest element if it is greater than *every* other elements of S.

Definition

The element a is the **least element** of the poset (S, \preccurlyeq) if $a \preccurlyeq b$ for all $b \in S$. The least element is unique when it exists.

In other words, an element a in a poset (S, \leq) is the least element if it is less than *every* other elements of S.

Example ({2, 4, 5, 10, 12, 20, 25}, |)

- There is no least element.
- There is no greatest element.

Example $(\{1, 2, 3, 4\}, \leq)$

- 1 is the least element.
- 4 is the greatest element.

Compatible Ordering and Topological Sorting

Definition

A total ordering \preccurlyeq is said to be **compatible** with the partial ordering R if $a \preccurlyeq b$ whenever a R b. Constructing a compatible total ordering from a partial ordering is called **topological sorting**.

Lemma

Every finite non empty poset (S, \preceq) has at least one minimal element.

```
procedure topological sort ((S, \leq)): finite poset)
k := 1
while S \neq \emptyset
begin
      a_k := a minimal element of S
            {such element exists by Lemma 1}
      S := S - \{a_k\}
      k := k + 1
end
\{a_1, a_2, ..., a_n \text{ is a compatible total ordering of } S\}
```

Step 1 of 9: We arbitrarily choose the minimal element a

g

Step 2 of 9: We arbitrarily choose the minimal element c

 $a \preccurlyeq c$

Step 3 of 9: We arbitrarily choose the minimal element h

 $a \leq c \leq h$

Step 4 of 9: We arbitrarily choose the minimal element b

$$a \preccurlyeq c \preccurlyeq h \preccurlyeq b$$

Step 5 of 9: We arbitrarily choose the minimal element d

 $a \leq c \leq h \leq b \leq d$

Step 6 of 9: We arbitrarily choose the minimal element g

f i • •

e

g

$$a \leq c \leq h \leq b \leq d \leq g$$

Step 7 of 9: We arbitrarily choose the minimal element f

f i

e

 $a \leq c \leq h \leq b \leq d \leq g \leq f$

Step 8 of 9: We arbitrarily choose the minimal element i

6

 $a \leq c \leq h \leq b \leq d \leq g \leq f \leq i$

Step 9 of 9: We arbitrarily choose the minimal element e

The total ordering $a \le c \le h \le b \le d \le g \le f \le i \le e$ is compatible with the partial ordering $R = \{(a, a), (a, b), (a, c), (a, d), (a, e), (a, f), (a, i), (b, b), (c, b), (c, c), (c, f), (c, i), (d, i), (d, d), (d, e), (e, e), (f, f), (g, g), (h, g), (h, h), (i, i)\}.$