ADVANCED BAYESIAN MODELING

ROBUST INFERENCE:

MODELING WITH THE t DISTRIBUTION

When the ideal model would be a normal distribution, but the data have outliers, a (location-scale) t distribution is a viable alternative.

Using the t requires a way to handle the degrees of freedom parameter $\nu > 0$. Smaller values give long tails, larger values give short tails.

Fixed ν

A Bayesian model for a *t*-distributed sample:

$$y_1, \dots, y_n \mid \mu, \sigma^2 \sim \text{iid } t_{\nu}(\mu, \sigma^2)$$

$$p(\mu) \propto 1 \qquad -\infty < \mu < \infty$$

$$p(\sigma^2) \propto (\sigma^2)^{-1} \qquad \sigma^2 > 0$$

 ν is chosen arbitrarily, in this case.

Note: Using same improper joint prior as for a normal sample.

Provided $\nu \geq 1$ and all n > 1 values y_i are distinct, the posterior is proper.

(Otherwise, be careful!)

Generally, we consider only $\nu>1$, to retain interpretation of the mean (and to avoid possible issues with propriety and computation).

Random ν

To avoid specifying ν , we can give it a prior.

Because t_{ν} converges to normal as $\nu \to \infty$, instead consider the reciprocal $1/\nu$:

$$0 < 1/\nu < 1$$

The lower bound represents the normal and the upper bound the Cauchy.

BDA3 suggests

$$1/\nu \sim U(0,1)$$

The resulting Bayesian model for a *t*-distributed sample:

$$y_1, \dots, y_n \mid \mu, \sigma^2, \nu \sim \text{iid } t_{\nu}(\mu, \sigma^2)$$

$$p(\mu) \propto 1 \qquad -\infty < \mu < \infty$$

$$p(\sigma^2) \propto (\sigma^2)^{-1} \qquad \sigma^2 > 0$$

$$1/\nu \sim \text{U}(0, 1)$$

Remarks

- ► Can extend to (fixed effect) linear regression: Replace normally distributed observations with *t* distributed observations.
- ► Can use the *t* distribution in the prior portion of the hierarchy see schools example in BDA3, Sec. 17.4.
- There are robust alternatives to binomial and Poisson models (BDA3, Sec. 17.2), some of which use the t distribution.