

המחלקה למדעי היסוד- מתמטיקה Department of Basic Sciences

אלגברה לינארית תרגיל מספר 13 - מכפלה פנימית

שאלה 1

 \mathbb{R}^4 ב $\vec{u} = (1,3,5,7), \vec{v} = (1,-2,3,-4)$ ב גתונים הוקטורים

 \mathbb{R}^4 א. חשב הנורמות של $ec{u}$, $ec{v}$ לפי המכפלה הסקלרית האוקלידית (הסטנדרטית) של

 \vec{u} , \vec{v} את לנרמל (כלומר לנרמל של בכוונים של ב. חשב וקטורי יחידה בכוונים של

 \vec{v} ל \vec{v} ל \vec{v} (זהו המרחק בין \vec{v} ל ל \vec{v} ל ל \vec{v} ל ג. חשב את נורמת ההפרש בין

י. חשב את הזווית θ בין \vec{u} ל ל. האם "ד. חשב את הזווית

שאלה 2

 $(2 \times 2$ מטריצה מסדר A מטריצה וקטורי עמודה, x,y (x,y) את הפעולה הבאה \mathbb{R}^2 את הפעולה הבאה

 \mathbb{R}^2 כאשר כאשר מכפלות פנימיות ב \mathbb{R}^2

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 5 \end{bmatrix} . \lambda \qquad A = \begin{bmatrix} 3 & 0 \\ 0 & -4 \end{bmatrix} . \mathbf{c} \qquad A = \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix} . \mathbf{c}$$

Aשל i,j האיבר ה $e_{i}^{\ T}Ae_{i}=A_{ij}$ מתקיים (\mathbb{R}^{n} ם הסטנדרטי הבסיס (הבסיס הסטנדרטי e_{i}

שאלה 3

: במרחב מתקיים (ממשי) בשרחב במרחב \vec{u} , \vec{v} במרחב שניל שני וקטורים

$$\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + 2\langle \vec{u}, \vec{v} \rangle + \|\vec{v}\|^2$$
.

$$\|\vec{u} + \vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2 = 4\langle \vec{u}, \vec{v} \rangle$$
.

(זהות או נקראת חוק המקבילית)
$$\|\vec{u} + \vec{v}\|^2 + \|\vec{u} - \vec{v}\|^2 = 2(\|\vec{u}\|^2 + \|\vec{v}\|^2)$$
.

שאלה 4

: וקטורים ב \mathbb{R}^n וקטורים הטענות הפרך את הוכח הוכח וקטורים ב \vec{u} , \vec{v} , \vec{w}

 $\vec{v} = \vec{w}$ אז $\vec{u} \neq \vec{0}$ ו $\vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{w}$ א. אם

 $.ec{v}\perpec{w}$ אז $ec{u}\perpec{v}$ ו $ec{u}\perpec{v}$ אז אז $ec{u}\perpec{v}$

 $ec{v}$ פרופורציוניים). $ec{v}$ אז $ec{w}$ אז $ec{w}$ אז $ec{v}$ $ec{v}$ מקביל ל $ec{v}$, כלומר $ec{u} \perp ec{v}$ פרופורציוניים).

, $\mathrm{span}\{\vec{v},\vec{w}\}$ אז ענצב לכל וקטור במרחב, $\mathrm{span}\{\vec{v},\vec{w}\}$ ענצב ל \vec{u} ו אז ענצב לכל וקטור מיט ד. אם ד. אם $\vec{u}\perp \vec{w}$ ו ענצב לכל וקטור במרחב ומסמנים $\vec{u}\perp \mathrm{span}\{\vec{v},\vec{w}\}$

שאלה 5

$$\left\{ \vec{v}_1 = \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right), \ \vec{v}_2 = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right), \ \vec{v}_3 = \left(0, 1, 0\right), \ \vec{v}_4 = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right) \right\}$$
 האם הקבוצה

היא קבוצה אורתוגונלית ? קבוצה אורתונורמלית ? (ב \mathbb{R}^3 ביחס למכפלה הסקלרית האוקלידית). האם יש לה תת קבוצה שהיא אורתוגונלית או אורתונורמלית ?

המחלקה למדעי היסוד- מתמטיקה Department of Basic Sciences

שאלה 6

 $V = \mathrm{span}\{(1,0,0,2)\,,(-1,1,0,1)\,,(2,1,1,0)\,,(1,2,1,1)\}$ \mathbb{R}^4 א. נתון תת המרחב של על V (ביחס למכפלה הסקלרית האוקלידית ב \mathbb{R}^4). הדרכה: קודם כל למצוא בסיס לעל אינו אורתונורמלי. ביס אורתונולי של V שאינו אורתונורמלי. ביס אורתוגונלי של V שאינו אורתונורמלי.

שאלה 7 (מבחן)

במרחב $\langle \vec{x}, \vec{y} \rangle = x_1 y_1 + 2 x_2 y_2 + 3 x_3 y_3$: במרחב הפנימית הפנימית המכפלה מתאימה \mathbb{R}^3

$$.\,\mathbb{R}^3 \text{ בסיס של } B = \left\{v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \, v_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \, v_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\} \text{ יהי } .\left\|\vec{x}\right\| = \sqrt{x_1^2 + 2x_2^2 + 3x_3^2}$$

את ולמצוא , \mathbb{R}^3 לבנות מB בסיס אורתונורמלי לבנות לכנות לידי שימוש בתהליך

. הקואורדינטות של הוקטור
$$u = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$
 לפי בסיס זה

שאלה 8 (מבחן)

במרחב ווקטורי V בעל מכפלה פנימית (לאו דווקא סטנדרטית) נתון בסיס אורתונורמלי $C=\{w_1=u_1\;,\,w_2=u_1+u_2\;,\,w_3=u_1+u_2+u_3\}$ ונתון בסיס נוסף (לא אורתונורמלי) ווקטור כך שעבורו מתקיים: $B=\{u_1\;,u_2\;,u_3\}$ יהי $v\in V$ ווקטור כך שעבורו מתקיים: $B=\{v_1,v_2,v_3\}=0$ מצאו את הקואורדינטות של הווקטור $v\in V$ ביחס לבסיס $v\in V$

שאלה 9 (מבחן)

מרחב וקטורי ממשי עם מכפלה פנימית. V

.
$$\|v_1\|=1$$
 , $\|v_2\|=2$, $\|v_3\|=3$ כך ש V כך של אורתוגונלי אורתוגונלי $B=\left\{v_1\,,\,v_2\,,\,v_3\right\}$ נתון

.
$$\|v\|=1$$
 ממשי כך ש הווקטור . $v=\alpha v_1+3v_2-v_3$ ממשי כך א. נתון הווקטור

. אורתוגונליים ע $u=v_2+\beta v_3$, $v=v_1+\beta v_2-v_3$ היווקטורים β שורתוגונליים עבור אילו ערכים אילו

שאלה 10 (מבחן)

$$W=\{x\in\mathbb{R}^3\,|\,x^Tu=0\}\,:$$
 נתנון ג $U=egin{bmatrix}1\\0\\-1\end{bmatrix}:$ נתנון געווי געוו

- \mathbb{R}^3 א להורנת על W הנא תת מרחד על
- \mathbb{R}^3 ב. למצוא בסיס אורתונורמלי לW ביחס למכפלה הסקלרית הסטנדרטית ב
- . \mathbb{R}^3 אורתונורמלי אורתונורמלי של (מסעיף ב' מסעיף אורתונורמלי של אורתונורמלי של

.(מסעיף ג)
$$\mathbb{R}^3$$
 את הקואורדינטות של $v = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$ מסעיף ג). ד. לרשום את הקואורדינטות של

המחלקה למדעי היסוד- מתמטיקה Department of Basic Sciences

שאלה 11 (מבחן)

יהי V מרחב וקטורי ממשי בעל מכפלה פנימית, ויהי $B=\left\{v_1\ ,v_2\ ,v_3
ight\}$ יהי ניהי מפלה בעל מכפלה בעל מכפלה $\|v\|$ את $\|v\|$ למצוא את $\|v\|$ למצוא את $\|v\|$