MATH 4108: Abstract Algebra II

Frank Qiang Instructor: Jennifer Hom

Georgia Institute of Technology Spring 2024

Contents

1	Jan	. 8 — Rings and Fields	2
	1.1	Lots of Definitions	2
2	Jan. 10 — Field of Fractions, Polynomials		5
	2.1	Isomorphisms	5
	2.2	Field of Fractions	6
	2.3	The Characteristic of a Field	7
	2.4	Polynomials	8

Lecture 1

Jan. 8 — Rings and Fields

1.1 Lots of Definitions

Recall the definitions of a ring and a field:

Definition 1.1 (Ring). A ring $R = (R, +, \cdot)$ is a non-empty set R together with two binary operations + and \cdot , called addition and multiplication respectively, which satisfy:

- (R1) Associative law for addition: (a+b)+c=a+(b+c) for all $a,b,c\in R$.
- (R2) Commutative law for addition: a + b = b + a for all $a, b \in R$.
- (R3) Existence of zero: There exists $0 \in R$ such that a + 0 = a for all $a \in R$.
- (R4) Existence of additive inverses: For all $a \in R$, there exists $-a \in R$ such that a + (-a) = 0.1
- (R5) Associative law for multiplication: (ab)c = a(bc) for all $a, b, c \in R$.
- (R6) Distributive laws: a(b+c) = ab + ac and (a+b)c = ac + bc for all $a, b, c \in R$.

Definition 1.2 (Commutative ring). In this class, we will mostly be interested in *commutative rings*, which satisfy the following additional property for multiplication:

(R7) Commutative law for multiplication: ab = ba for all $a, b \in R$.

Definition 1.3 (Ring with unity). A ring with unity satisfies the additional property that

(R8) Existence of unity: There exists $1 \neq 0 \in R$ such that and a1 = 1a = a for $a \in R$.

Note that a ring need not be commutative to have a unity.

Definition 1.4 (Domain). A commutative ring with unity is called a *(integral) domain* if it has the following cancellation property:

- (R9) Cancellation: For all $a, b \in R$ and $c \neq 0$, ca = cb implies a = b.
- (R9') No zero divisors: For all $a, b \in R$, ab = 0 implies a = 0 or b = 0.

The conditions (R9) and (R9') are equivalent.

Definition 1.5 (Field). A commutative ring with unity is called a *field* if it has the following additional property for multiplicative inverses:

(R10) Existence of multiplicative inverses: For all $a \neq 0 \in R$, there exists $a^{-1} \in R$ such that $aa^{-1} = 1$.

¹Note that we'll usually write a - b in place of a + (-b).

Example 1.5.1. Some examples of rings are $\mathbb{Z}/2\mathbb{Z}$, which also happens to be a field. The ring \mathbb{Z} is a domain. The set $M_{2\times 2}(\mathbb{R})$ is a non-commutative ring with unity, and has zero divisors. The ring \mathbb{Q} is a field. The real polynomials in a single variable $\mathbb{R}[x]$ form a ring, which is a domain but not a field. The complex numbers \mathbb{C} and the real numbers \mathbb{R} both form a field. The even integers $2\mathbb{Z}$ form a commutative ring without unity. In general, $\mathbb{Z}/n\mathbb{Z}$ is a commutative ring with unity, and is a field if and only if n is prime (and has zero divisors otherwise, if n is composite).

Remark. If $(R, +, \cdot)$ is a ring, then (R, +) is an abelian group. If $(K, +, \cdot)$ is a field, then (K^*, \cdot) is an abelian group, where $K^* = K \setminus \{0\}$.

Definition 1.6 (Group of units). Let R be a commutative ring with unity. The group of units of R is

$$U = \{u \in R \mid \text{there exists } v \in R \text{ such that } uv = 1\}.$$

Exercise 1.1. Show that U is in fact a group under multiplication.

Definition 1.7 (Associate). If $a, b \in R$ such that a = ub for some $u \in U$, then a and b are called associates, denoted by $a \sim b$.

Exercise 1.2. Show that \sim is in fact an equivalence relation.

Example 1.7.1. The group of units of \mathbb{Z} is $\{1, -1\}$. The group of units of a field K is $K^* = K \setminus \{0\}$.

Exercise 1.3. Let $R = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$. Check the following:

- 1. R is a commutative ring with unity.
- 2. The group of units of R is $\{a+b\sqrt{2} \mid a,b\in\mathbb{Z}, |a^2-2b^2|=1\}$.

Definition 1.8 (Divisor). Let D be an integral domain, $a \in D \setminus \{0\}$, $b \in D$. Then a divides b, or a is a divisor or factor of b, denoted by a|b, if there exists $z \in D$ such that az = b. We write $a \nmid b$ if a does not divide b. We say that a is a proper divisor or that a properly divides b if z is not a unit.

Remark. Equivalent, a is a proper divisor of b if and only if a|b and $b\nmid a$.

Definition 1.9 (Subring). A subring U of a ring R is a non-empty subset of R with the property that for all $a, b \in R$, $a, b \in U$ implies $a + b \in U$ and $ab \in U$, and $a \in U$ implies $-a \in U$.

Remark. Equivalently, U is a subring of R if and only if $a, b \in U$ implies $a - b \in U$ and $ab \in U$.

Remark. We automatically have $0 \in U$ since we can pick any $a \in U$, and then $0 = a - a \in U$.

Definition 1.10 (Subfield). A *subfield* of a field K is a subset E containing at least two elements such that $a, b \in E$ implies $a - b \in E$ and $a \in E, b \in E \setminus \{0\}$ implies $ab^{-1} \in E$. If E is a subfield and $E \neq K$, then we say E is a *proper* subfield.

Remark. As before, we can replace the last condition with the equivalent statement that $a, b \in E$ implies $ab \in E$ and $a \in E \setminus \{0\}$ implies $a^{-1} \in E$.

Definition 1.11 (Ideal). An *ideal* of R is a non-empty subset I of R with the properties that $a, b \in I$ implies $a - b \in I$ and $a \in I, r \in R$ implies $ra \in I$.

Remark. All ideals are subrings, but the converse is not true in general.

Example 1.11.1. The integers \mathbb{Z} form a subring of \mathbb{R} but not an ideal.

²In fact, \mathbb{Q} is somehow the smallest field containing \mathbb{Z} .

Remark. We trivially have that $\{0\}$ and R are both ideals of R. An ideal I is called *proper* if $\{0\} \subseteq I \subseteq R$.

Theorem 1.1. Let $A = \{a_1, \ldots, a_n\}$ be a finite subset of a commutative ring R. Then the set

$$Ra_1 + \dots + Ra_n = \{x_1a_1 + \dots + x_na_n \mid x_i \in R\}$$

is the smallest ideal of R containing A.

Proof. See Howie. Check this is indeed an ideal and is contained in any other ideal containing A. \square

Definition 1.12 (Ideals generated by elements of a ring). The set $Ra_1 + \cdots + Ra_n$ is the *ideal generated* by a_1, \ldots, a_n , denoted by $\langle a_1, \ldots, a_n \rangle$. If the ideal is generated by a single element $a \in R$, then we say that $Ra = \langle a \rangle$ is a *principal ideal*.

Example 1.12.1. In \mathbb{Z} , the ideal $\langle 2 \rangle = 2\mathbb{Z}$ are the even numbers. We have $\langle 2, 3 \rangle = \mathbb{Z}$, but $\langle 6, 8 \rangle = \langle 2 \rangle$.

Theorem 1.2. Let D be an integral domain with group of units U and let $a, b \in D \setminus \{0\}$. Then

- 1. $\langle a \rangle \subseteq \langle b \rangle$ if and only if b|a,
- 2. $\langle a \rangle = \langle b \rangle$ if and only if $a \sim b$,
- 3. $\langle a \rangle = D$ if and only if $a \in U$.

Proof. See Howie.

Definition 1.13 (Homomorphism of rings). A homomorphism from a ring R to a ring S is a mapping $\varphi: R \to S$ such that $\varphi(a +_R b) = \varphi(a) +_S \varphi(b)$ and $\varphi(ab) = \varphi(a)\varphi(b)$ for all $a, b \in R$.

Example 1.13.1. The zero mapping $\varphi(a) = 0$ is always a homomorphism. The inclusion map $\iota : 2\mathbb{Z} \to \mathbb{Z}$ or $\iota : \mathbb{Z} \to \mathbb{Q}$ is a homomorphism.

Theorem 1.3. Let R, S be rings and $\varphi: R \to S$ a homomorphism. Then

- $1. \ \varphi(0_R) = 0_S,$
- 2. $\varphi(-r) = -\varphi(r)$ for all $r \in R$,
- 3. the image $\varphi(R)$ is a subring of S.

Proof. See Howie. \Box

Definition 1.14 (Monomorphism). Let $\varphi : R \to S$ be a homomorphism. If φ is injective, we say that φ is a *monomorphism* or an *embedding*.

Example 1.14.1. The inclusion map $\varphi : \mathbb{Z} \to \mathbb{R}$ given by $\varphi(n) = n$ is an embedding.

Lecture 2

Jan. 10 — Field of Fractions, Polynomials

2.1 Isomorphisms

Definition 2.1 (Isomorphism). If a homomorphism $\varphi : R \to S$ is both one-to-one and onto, then φ is an *isomorphism* and we say R and S are *isomorphic*, denoted $R \cong S$.

Definition 2.2 (Automorphism). An isomorphism $\varphi: R \to R$ is called an *automorphism*.

Example 2.2.1. For any ring R, the identity map $\varphi: R \to R$ with $\varphi = \mathrm{id}$ is an automorphism.

Exercise 2.1. The complex conjugation $\varphi : \mathbb{C} \to \mathbb{C}$ with $\varphi(z) = \overline{z}$ is an automorphism.

Definition 2.3 (Kernel). Let $\varphi: R \to S$ be a homomorphism. The kernel of φ is

$$\ker \varphi = \phi^{-1}(0_S) = \{ a \in R : \varphi(a) = 0_S \}.$$

Exercise 2.2. For any homomorphism φ , ker φ is an ideal.

Definition 2.4 (Residue class). Let I be an ideal of a ring R and $a \in R$. The set

$$a+I=\{a+x\mid x\in I\}$$

is the $residue\ class$ of a modulo I.

Exercise 2.3. The set R/I of residue classes modulo I forms a ring with respect to the operations

$$(a+I) + (b+I) = (a+b) + I$$
 and $(a+I)(b+I) = ab + I$.

Exercise 2.4. The map $\theta_I : R \to R/I$ with $\theta_I(a) = a + I$ is a surjective homomorphism onto R/I with kernel I. This map θ_I is called the *natural homomorphism* from R to R/I.

Example 2.4.1. Consider \mathbb{Z} and $I = \langle n \rangle = n\mathbb{Z}$. Then $\theta_I : \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ with $\theta_I(a) = a + \langle n \rangle$ is the natural homomorphism. There are n residue classes, which are

$$\langle n \rangle$$
, $1 + \langle n \rangle$, ..., $(n-1) + \langle n \rangle$.

Theorem 2.1. Let $n \in \mathbb{Z}_{>0}$. Then $\mathbb{Z}/n\mathbb{Z}$ is a field if and only if n is prime.

Proof. See Howie.
$$\Box$$

Remark. If n = 0, then $\mathbb{Z}/0\mathbb{Z} \cong \mathbb{Z}$.

Theorem 2.2. Let $\varphi: R \to S$ be a surjective homomorphism with kernel K. Then there is an isomorphism $\alpha: R/K \to S$ such that the following diagram commutes (i.e. $\varphi = \alpha \circ \theta_K$):

Proof. See Howie. But the general idea is to define $\alpha : R/K \to S$ by $\alpha(a+K) = \varphi(a)$. Then need to check that α is well-defined and an isomorphism.

2.2 Field of Fractions

The motivating question is: How do we get from \mathbb{Z} to \mathbb{Q} ? Recall that

$$\mathbb{Q} = \{ a/b \mid a, b \in \mathbb{Z}, b \neq 0 \},\$$

where a/c = b/d if ad = bc. We add and multiply fractions by

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$
 and $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$.

How do we do this more generally (construct a field out of an arbitrary integral domain)?

Definition 2.5 (Field of fractions of a domain). Let D be an integral domain and

$$P = D \times (D \setminus \{0\}) = \{(a, b) \mid a, b \in D, b \neq 0.\}$$

Define an equivalence relation \equiv on P by $(a,b) \equiv (a',b')$ if ab'=a'b. Then the field of fractions of D is

$$Q(D) = P/\equiv.$$

We denote the equivalence class [a,b] by a/b, i.e. a/b=c/d if ad=bc. We define addition and multiplication on Q(D) by

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$
 and $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$.

Exercise 2.5. Do the following:

- 1. Check that \equiv is an equivalence relation.
- 2. Check that these operations are well-defined.
- 3. Check that Q(D) is a commutative ring with unity.
 - The zero element is 0/b for $b \neq 0$.
 - The unity element is a/a for $a \neq 0$.
 - The negative of a/b is (-a)/b or equivalently a/(-b).
 - The multiplicative inverse of a/b is b/a for $a, b \neq 0$.
- 4. Complete the previous exercise and check that Q(D) is a field.

Exercise 2.6. The map $\phi: D \to Q(D)$ defined by $\phi(a) = a/1$ is a monomorphism. In particular, the field of fractions Q(D) contains D as a subring and Q(D) is the smallest field containing D, in the sense that if K is a field with the property that there exists a monomorphism $\theta: D \to K$, then there exists a monomorphism $\psi: Q(D) \to K$ such that the following diagram commutes:

$$D \xrightarrow{\theta} K$$

$$\varphi \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Q(D)$$

2.3 The Characteristic of a Field

Note that for $a \in R$, we might write a + a as 2a and $a + a + \cdots + a$ (n times) as na. Furthermore, $0a = 0_R$ and (-n)a = n(-a) for $n \in \mathbb{Z}_{>0}$. Thus na has meaning for all $n \in \mathbb{Z}$.

Exercise 2.7. For $a, b \in R$ and $m, n \in \mathbb{Z}$, we have (ma)(nb) = (mn)(ab).

Definition 2.6 (Characteristic of a ring). For an arbitrary ring R, there are two possibilities:

- 1. $m1_R$ for $m \in \mathbb{Z}$ are all distinct. In this case, we say that R has characteristic 0.
- 2. There exists $m, n \in \mathbb{N}$ such that $m1_R = (m+n)1_R$. In this case, we say that R has *characteristic* n, where n is the least positive n for which this property holds.

We denote the characteristic of R by char R. If char R = n, then $na = 0_R$ for all $a \in R$ since

$$na = (n1_R)a = 0a = 0.$$

Example 2.6.1. We have char $\mathbb{Z}/n\mathbb{Z} = n$.

Theorem 2.3. The characteristic of a field is either 0 or a prime.

Proof. Let K be a field and suppose char $K = n \neq 0$ and n is not prime. Then we can write n = rs where 1 < r, s < n. The minimal property of n implies that $r1_K \neq 0$ and $s1_K \neq 0$. But then

$$r1_K \cdot s1_K = rs1_K = n1_K = 0,$$

which is impossible since K is a field and thus has no zero divisors.

Remark. Note the following:

1. If K is a field with char K = 0, then K has a subring isomorphic to \mathbb{Z} , i.e. elements of the form $n1_K$ for $n \in \mathbb{Z}$, and K has a subfield isomorphic to \mathbb{Q} , i.e.

$$P(K) = \{ m1_K / n1_K \mid m, n \in \mathbb{Z}, n \neq 0 \}.$$

This is the prime subfield of K, and any subfield of K must contain P(K).

2. If K is a field with char K = p, then the prime subfield of K is

$$P(K) = \{1_K, 2 \cdot 1_K, \dots, (p-1) \cdot 1_K\},\$$

which is isomorphic to $\mathbb{Z}/p\mathbb{Z}$.

¹This is saying that any abelian group is naturally a module over the integers \mathbb{Z} .

Remark. In other words, every field of characteristic 0 is an *extension* of \mathbb{Q} (contains \mathbb{Q} as a subfield), and every field of characteristic p is an *extension* of $\mathbb{Z}/p\mathbb{Z}$ (contains $\mathbb{Z}/p\mathbb{Z}$ as a subfield).

Remark. If char K = 0, then writing $a/n1_K$ as a/n is fine. But if char K = p, then a/n does not make sense when p|n (since $p \cdot 1_K = 0$).

Theorem 2.4. If K is a field with char K = p, then for all $x, y \in K$, $(x + y)^p = x^p + y^p$.

Proof. See Howie. Uses the binomial theorem.

2.4 Polynomials

Let R be a ring, then we have the polynomial ring over R

$$R[X] = \{a_0 + a_1X + \dots + a_nX^n \mid a_i \in R, n \in \mathbb{N}\}.$$

If $f \in R[X]$, then it has degree n if the last nonzero element in the sequence $\{a_0, a_1, \dots\}$ is a_n , denoted $\partial f = n$. By convention, the zero polynomial has degree $-\infty$. The coefficient a_n is called the *leading coefficient*, and if $a_n = 1$, then f is *monic*. Addition and multiplication work as expected:

$$(a_0 + a_1X + \dots + a_mX^m) + (b_0 + b_1X + \dots + b_nX^n) = (a_0 + b_0) + (a_1 + b_1)X + \dots$$

and

$$(a_0 + a_1X + \dots + a_mX^m)(b_0 + b_1X + \dots + b_nX^n) = c_0 + c_1X + \dots$$

where

$$c_k = \sum_{i+j=k}^k a_i b_j.$$

The ground ring R sits inside of the polynomial ring R[X]. Take the monomorphism $\theta: R \to R[X]$ by $\theta(a) = a$, i.e. an element a maps to the constant polynomial a.

Theorem 2.5. Let D be an integral domain. Then

- 1. D[X] is an integral domain.
- 2. If $p, q \in D[X]$, then $\partial(p+q) \leq \max(\partial p, \partial q)$.
- 3. If $p, q \in D[X]$, then $\partial(pq) = \partial p + \partial q$.
- 4. The group of units of D[X] coincides with the group of units of D.

Proof. Statements (2) and (3) are left as exercises.

- (1) We need to show that D[X] has no zero divisors. For this, suppose that p, q are nonzero polynomials with leading coefficients a_m and b_n respectively. Then the leading coefficient of pq is $a_m b_n$, which is nonzero since D is an integral domain and thus has no zero divisors. So pq is nonzero.
- (4) Let $p, q \in D[X]$ and suppose pq = 1. Since $\partial(pq) = \partial(1) = 0$, we must have $\partial p = \partial q = 0$. Thus $p, q \in D$ and pq = 1 if and only if p and q are in the group of units of D.

Since D[X] is a domain, we can consider polynomials in the variable Y with coefficients in D[X]:

$$D[X,Y] = (D[X])[Y].$$

We can repeat this to get polynomials in n variables: $D[X_1, X_2, \dots, X_n]$, which is an integral domain.