

Subject Code: KEE10									01T				
Roll No:													

Printed Page: 1 of 3

BTECH (SEM I) THEORY EXAMINATION 2021-22 BASIC ELECTRICAL ENGINEERING

Time: 3 Hours Total Marks: 100

Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECT	ION-A	Attempt All of the following Questions in brief	Marks (10 X2=20)		
Q1(a)	Q1(a) What is use of form factor and peak factor?				
Q1(b)	What is the ratio of no-load speed to full load speed of a 200 kVA, 12 poles, 2200 V, 3 phase				
	60 Hz synchronous motor?				
Q1(c)	Write Difference between EMF and Potential Difference				
Q1(d)	Define power factor				
Q1(e)	Is the superposition theorem valid for direct calculation of power? Explain briefly.				
Q1(f)	What is the need of commutator in DC generator?				
Q1(g)	Why is Transformer Ratings done in Volt Amperes (VA).				
Q1(h)	Draw the no load phasor diagram of a transformer				
Q1(i)	For heavy loads, What is the relation between torque (T) and slip (S) in induction motor.				
Q1(j)	What is the difference between asynchronous motor and synchronous motor?				

SECT	ION-B	Attempt ANY THREE of the following Questions	Marks (3X10=30)
Q2(a)	(i) Derive	the emf equation of a transformer	9,
	(ii) Derive	the condition for maximum efficiency in single phase	e transformer
Q2(b)	i) List all	the important parts of a D.C. Motor and explain the in	nportance of each
	ii) Calcula	ate the emf generated by 4 pole wave wound generator	r having 65 slots with 12
	conductor	s per slot when driven at 1200 rpm. The flux per pole	is 0.02 wb.
Q2(c)	Using 7	The venin theorem, find current in 1 Ω resistor in the continuous	ircuit shown in figure below:

Q2(d) Use nodal analysis to find the voltage across and current through 4 Ω resistor in Figure given below:

Q2(e) Use superposition theorem to find current I in the circuit shown in Figure below. All resistance are in ohms.

Subject Code: KEE101T
Roll No:

Printed Page: 2 of 3

BTECH (SEM I) THEORY EXAMINATION 2021-22 BASIC ELECTRICAL ENGINEERING

SECTION-C Attempt ANY ONE following Question Marks (1X10=10)

- Q4(a) A series R L C circuit consists of R = 1000 Ohm, L = 100 mH and $C = 10 \mu F$. The applied voltage across the circuit is 100 V.
 - (i) Find the resonant frequency of the circuit.
 - (ii) Find the quality factor of the circuit at the resonant frequency.
 - (iii) At what angular frequencies do the half power points occur?
 - (iv) Calculate the bandwidth of the circuit.
- Q4(b) Three impedances of (70.7 + j 70.7) Ohm, (120 + j 160) Ohm and (120 + j 90) Ohm are connected in parallel across a 250 V supply. Determine (i) admittance of the circuit (ii) supply current and (iii) circuit power factor.

ON-C	Attempt ANY ONE following Question	Marks (1X10=10)			
Q5(a) A transformer on no-load has a core loss of 50W, draws a current of 2A and has an induced					
emf of 230V. Determine the no-load power factor, core loss current and magnetizing current.					
Also, calculate the no-load circuit parameters of the transformer. Neglect winding resistance					
and leakage flux.					
Explain the performance of principal of operation of single phase transformer.					
2	A transfor emf of 230 Also, calc and leakag	A transformer on no-load has a core loss of 50W, draws a cuemf of 230V. Determine the no-load power factor, core loss calculate the no-load circuit parameters of the transformend leakage flux.			

Printed Page: 3 of 3
Subject Code: KEE101T
Roll No:

BTECH (SEM I) THEORY EXAMINATION 2021-22 BASIC ELECTRICAL ENGINEERING

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)
Q6(a) A 4-pole §		generator with 400 armature conductors has a usefu	l flux of 0.04Wb per pole. What
	is the		
	emf produ	aced if the machine is wave wound and runs at 1200	Orpm? What must be the speed
at which the machine should be driven to generate the same emf i		emf if machine is lap wound?	
Q6(b)	An 8-pole	e, 400V shunt motor has 960 wave connected arm	nature conductors. The full load
	armature current is 40A and flux per pole is 0.02Wb. The armature resistance is 0.1Ω and the		
	contact dr	op is 1V per brush. Calculate the full load speed of	the motor.

SECTION-C	Attempt ANY ONE following Question	Marks (1X10=10)
	n the slip torque characteristics of the three-phase induction	` '
	oltage applied to the stator of a three phase, 4 pole induction	
	frequency of the emf induced in the rotor is 15.5 Hz. De	
	· · .	
	short notes on MCB and MCCB	
	short notes on characteristics of batteries.	
	short notes on MCB and MCCB short notes on characteristics of batteries.	3/125.2/1249.90
	25.Mat.2022	