1.	设 Z ⁺ ={x x ∈ Z ∧x>0}, *表示求最小公倍数,	则*在 Z ⁻ 中]
	A . 只满足交换律	B . 只满足结合律		
	C.满足交换律、幂等律和结合律	D. 前述性质均不满足		
2.	设集合 $S=\{x x=2^n, n \in \mathbf{Z}^+\}$,则集合 S 是的普	音通加法和普通乘法分别是:	[]
	A . 不封闭,封闭	B. 封闭,封闭		
	C. 封闭,不封闭	D. 不封闭,不封闭		
3.	设 S= {0, 1, 2, 3}, ≤是小于等于关系,	则 <s, <=""></s,>	[]
	A . 不构成代数系统	B . 是半群,不是独异点		
	C . 是独异点,不是群	D . 是群		
4.	下列代数系统中,构成群的系统是		[]
	A . <z+,+></z+,+>	B . <n,×></n,×>		
	C . <r, +=""></r,>	D . <r, ×=""></r,>		
5.	设 A={0, 1, 2, 3}, +4 为模 4 加法,则系统 </td <td>A, +₄>中 2 的逆元是</td> <td>ľ</td> <td>]</td>	A, + ₄ >中 2 的逆元是	ľ]
	A . 0	B . 1		
	C . 2	D . 3		
6.	在实数集 R 上定义二元运算*为: $a*b=a+1$	b+ab,试判断下列论断是否正征	确?	为什么?
	(1) <r,*>是一个代数系统。</r,*>			
	(2) <r, *="">是一个半群。</r,>			
	(3) < R, *> 是一个独异点。			

- 7. 设<A, *>是半群,对A中任意元a和b,若a*b=b*a,则必有a=b,证明:
 - (1) 对 A 中每个元 a, 有 a*a=a。
 - (2) 对 A 中任意元 a 和 b, 有 a*b*a=a。
 - (3) 对 A 中任意元 a、b 和 c, 有 a*b*c=a*c。
- 8. 设 Z 是整数集合,在 Z 上定义二元运算*为: x*y=x+y-2,那么 Z 和*是否构成群?为什么?
- 9. 设<G, *>是群,请证明 x 和 $^{x^{-1}}$ 的阶数相同。
- 10. 设<G,*>是一群,令 $R = \{ \langle a, b \rangle | a, b \in G, 存在 g \in G 使 b = g*a*g^{-1} \}$,证明 R 是 G 上的等价关系。
- 11. 设<G,*>是群,对任一 a \in G,令 H={y|y*a=a*y, y \in G},试证明<H,*>是<G,*>的子群。
- 12. 假设 $+_6$ 是模6加法, $Z_6=\{[0],[1],[2],[3],[4],[5]\}$,则< $Z_6,+_6>$ 是一个群。试写出< $Z_6,+_6>$ 中所有的生成元和所有的子群,以及3阶子群关于[3]的左陪集。

- 1. C
- 2. A
- 3. A
- 4. C
- 5. C
- 6. (1)由 a*b=a+b+ab∈R 知,运算*是封闭的,所以<R,*>是一个代数系统。
 - (2)对任意的 a、b、c∈R,有

$$(a*b)*c=(a+b+ab)*c=a+b+ab+c+(a+b+ab)c=a+b+c+ab+ac+bc+abc$$
 $a*(b*c)=a*(b+c+bc)=a+b+c+bc+a(b+c+bc)=a+b+c+ab+ac+bc+abc$ 所以运算*满足结合率,故是一个半群。

- (3)对任意的 $a \in \mathbb{R}$,a*0=a=0*a,0 是关于运算*的幺元,所以 $< \mathbb{R}$,*>是一个独异点。
- 7. (1)由(a*a)*a=a*(a*a),所以 a*a=a。
 - (2)由 a*(a*b*a)=(a*a)*(b*a)=a*b*(a*a)=(a*b*a)*a,所以有 a*b*a=a。
 - (3)由(a*c)*(a*b*c)=(a*c*a)*(b*c)=a*(b*c)=(a*b)*c=(a*b)*(c*a*c)=(a*b*c)*(a*c),所以有 a*b*c=a*c。
- 8. 由 x*y=x+y-2 可知,运算*是封闭的。

又(
$$x*y$$
)* $z=(x+y-2)*z=x+y+z-4$, $x*(y*z)=x*(y+z-2)=x+y+z-4$, 即有($x*y$)* $z=x*(y*z)$, 运算*满足结合率。

因为 x*2=x+2-2=x=2*x, 所以 2 是关于运算*的幺元。

对任意 $x \in Z$,令 y=4-x,则 x*y=x+y-2=2=y*x,所以 Z 中的每个元素均有逆元。 综上可知,Z 和*是否构成群。

9. 假设 x 与 x⁻¹ 互为逆元。

若 x=e,则显然 $x 与 <math>x^{-1}$ 都是 1 阶元。

若 $x \neq e$,令 x 与 x^{-1} 互为逆元,且 x 是 n 阶元, x^{-1} 为 m 阶元, $n \neq m$,即 $x^m = e$,(x^{-1}) $^n = e$ 。已知 $x*x^{-1} = e = x^m = x*x^{m-1}$,所以 $x^{-1} = x^{m-1}$,

同理, $x*x^{-1}=e=(x^{-1})^n=(x^{-1})*(x^{-1})^{n-1}$,所以 $x=(x^{-1})^{n-1}$

$$=x^{-1}*x^{-1}*...*x^{-1}*x^{*1}*x^{*1}...*x$$

因为 $n \neq m$,所以 $x*x^{-1} \neq e$,和 x = 5 与 x^{-1} 互为逆元矛盾,所以 x = 1 所以 x = 1 的阶数相同。

10. 对任意 x∈G,因为 $x=e^*x^*e^{-1}$,所以 xRx,故 R 是自反的。

对任意 x、 $y \in G$,若 $x \in R$ y,由 R 的定义知,存在 $g \in G$ 使 $y = g^* x^* g^{-1}$, $x = g^{-1} * y^*$ $(g^{-1})^{-1}$,因为< G,*>是一群, $g \in G$,于是 $g^{-1} \in G$,所以 $y \in R$,故 R 是对称的。

对任意 x、 y、 $z \in G$,若 xR y且 yR z,由 R 的定义知,存在 g_1 、 $g_2 \in G$ 使 $y = g_1*$ $x*g_1^{-1}$, $z = g_2*y*g_2^{-1}$,于是 $z = g_2*y*g_2^{-1} = g_2*(g_1*x*g_1^{-1})*g_2^{-1} = (g_2*g_1)*$ $x*((g_2*g_1)^{-1}$,因为<G,*>是一群, g_1 、 $g_2 \in G$,于是 $g_2*g_1 \in G$,所以 zRx,故 R 是传递的。

综上可得, R是G上的等价关系。

11. 证明一:

对于任意的 x, $y \in H$, 以及任意的 $a \in G$,

有
$$(x*y)*a = x*y*a = x*(y*a) = x*a*y = a*x*y = a*(x*y)$$

所以, $x*y \in H$, *关于 H 是封闭的。

因为 $H = \{y \mid y*a = a*y, y \in G\}$,有 $H \subseteq G$ 。又因为<G,*>是群,所以*在 H 中可满足结合性。

又因为 $e^*a=a^*e$,所以 $e \in H$,即存在幺元。

对任意的 $x \in H$, 在 G 上有 $x*x^{-1}=x^{-1}*x=e$, 所以

$$a * x^{-1} = (x^{-1} * x) * (a * x^{-1}) = x^{-1} * (x * a) * x^{-1} = x^{-1} * a * x * x^{-1} = x^{-1} * a$$

所以,有 $a*x^{-1} = x^{-1}*a$ 。即 $x^{-1} \in H$ 。

综上所述, <H.*>是<G.*>的子群

证明二:

令 x, y∈H, 即 x*a=a*x, y*a=a*y

由 y*a=a*y, 可对等式两端同时左乘 y-1 和右乘 y-1, 得到 a*y-1=y-1*a

故 x*y-1*a=x*a*y-1=a*x*y-1

即 **x*v**⁻¹∈H, 所以, ⟨H, *⟩是⟨G, *⟩的子群。

12. 生成元有: [1], [5]。

子群有: <{[0]}, +₆>, <{[0], [3]}, +₆>, <{[0], [2], [4]}, +₆>和<Z₆, +₆>。
3 阶子群是<{[0], [2], [4]}, +₆>, 它关于[3]的左陪集是{[1], [3], [5]}。