Análisis de Datos Financieros y Diseño de Indicadores – Examen 1

Instrucciones:

- Este examen utiliza el método del caso para evaluar tu capacidad de analizar datos, comprender quiénes son los clientes de Gabu, y predecir el valor del tiempo de vida (LTV) de los mismos.
- En cada pregunta, explica claramente tu razonamiento y muestra todos los cálculos necesarios.
- Puedes utilizar Python (Pandas, Matplotlib, Seaborn, statsmodels) para los cálculos y visualizaciones.
- Sé conciso y directo en tus explicaciones.

Estudio de Caso: Gabu

Gabu es una startup que supervisa las sesiones de juego de los niños mientras juegan en línea, proporcionando informes detallados a los padres sobre el tiempo de juego y el tipo de contenido con el que interactúan sus hijos. La empresa busca entender mejor a sus clientes y, sobre todo, predecir el valor de tiempo de vida de cada cliente (LTV) para optimizar sus estrategias de retención y adquisición.

La empresa ha recopilado datos por cliente que incluyen características demográficas y económicas como:

- ID del Cliente: Identificador único del cliente.
- Edad del Niño: Edad del niño para el que se supervisa el juego.
- Sexo del Niño: Hombre o mujer.
- Nivel de Estudios del Padre: El nivel de estudios del padre que registro al niño.
- Duración de la Subscripción: Tiempo en meses que el cliente ha estado suscrito al servicio.
- Plan de Subscripción: El tipo de plan (Básico, Premium, Familiar).
- Ingresos del Hogar: Ingresos anuales del hogar del cliente (USD).
- Gasto Total en Subscripción: Gasto acumulado del cliente en el servicio.
- **Número de Sesiones por Semana**: Número promedio de sesiones de juego supervisadas por semana.
- Nivel de Satisfacción del Cliente: Puntuación de satisfacción del cliente (1 a 5).
- Churn: Variable binaria que indica si el cliente ha cancelado el servicio (1 = canceló, 0 = activo).

• Valor del Tiempo de Vida (LTV): Valor total proyectado que Gabu espera obtener de un cliente a lo largo de su relación.

Sección 1: Comprendiendo a los Clientes (20 puntos)

Pregunta 1: Exploración de los Datos de los Clientes

Con base en los datos proporcionados:

- 1. Segmenta a los clientes en función de sus características demográficas.
- 2. Analiza las características demográficas y económicas de los segmentos. Explica cómo estos segmentos podrían ayudar a Gabu a diseñar estrategias más efectivas de marketing o producto.

Sección 2: Selección y Cálculo de KPIs (20 puntos)

Pregunta 2: Selección del KPI Correcto

Gabu quiere identificar un KPI clave que les permita medir la retención de clientes y la capacidad de generar ingresos a largo plazo.

A continuación, se te presentan cuatro KPIs posibles. Solo uno de estos es el KPI correcto que Gabu debería usar para medir la retención de clientes y su impacto en los ingresos futuros. Selecciona el KPI correcto, calcúlalo usando los datos proporcionados, y justifica por qué es el más adecuado.

Opciones de KPI:

Opción 1: Tasa de Sesiones por Cliente

- Definición: Número promedio de sesiones supervisadas por cliente.
- Fórmula: \$ \text{Tasa de Sesiones por Cliente} = \frac{\text{Número de Sesiones por Semana}}{\text{Clientes Existentes}}\$

Opción 2: Tasa de Retorno de Inversión en Marketing (ROI de Marketing)

- Definición: Mide el retorno generado por los gastos de marketing en relación con los ingresos obtenidos.
- Fórmula: \$\text{ROI de Marketing} = \frac{\text{Ingresos Totales} \text{Gastos de Marketing}}}\\text{Gastos de Marketing}}\$

Opción 3: Tasa de Crecimiento de Nuevos Clientes

- *Definición*: El porcentaje de aumento o disminución en la cantidad de nuevos clientes adquiridos.
- Fórmula: \$\text{Tasa de Crecimiento de Nuevos Clientes} = \frac{\text{Nuevos Clientes}_{\text{mes actual}} \text{Nuevos Clientes}_{\text{mes anterior}}}\$
 {\text{Nuevos Clientes}_{\text{mes anterior}}}\$

Opción 4: Tasa de Churn

- Definición: El porcentaje de clientes que cancelan el servicio durante un período de tiempo determinado.
- Fórmula: \$\text{Tasa de Churn} = \frac{\text{Número de Clientes que Cancelaron}}
 {\text{Número Total de Clientes Activos al Inicio del Periodo}}\$

Instrucciones:

- 1. Selecciona el KPI correcto que mejor mida la retención de clientes.
- 2. Explica por qué este KPI es el más adecuado para Gabu y cómo ayudará a medir

Sección 3: Predicción del Valor del Tiempo de Vida (LTV) (40 puntos)

Pregunta 3: Construcción de un Modelo de Regresión para Predecir LTV

El equipo de Gabu desea predecir el valor del tiempo de vida (LTV) de sus clientes usando las características demográficas y económicas del dataset.

1. Preparación de los Datos:

- Usa las siguientes variables como independientes:
 - Edad del Niño
 - Ingresos del Hogar
 - Plan de Subscripción
 - Número de Sesiones por Semana
 - Nivel de Satisfacción del Cliente
 - Segmento del cliente
- Usa el Valor del Tiempo de Vida (LTV) como la variable dependiente.

2. Construcción del Modelo:

- Ajusta un modelo de regresión lineal utilizando las variables mencionadas.
- Escribe la ecuación de la regresión (incluye los coeficientes de cada variable).

3. Interpretación de los Coeficientes:

• Explica el significado de los coeficientes obtenidos en el modelo. ¿Cómo afecta cada variable independiente al LTV?

• Identifica los factores que parecen tener el mayor impacto en el valor de tiempo de vida y discute por qué podrían ser importantes para Gabu.

Sección 4: Insights y Estrategia de Retención (20 puntos)

Pregunta 4: Estrategias Basadas en el Análisis

Basándote en el análisis realizado y los resultados del modelo de regresión, responde a las siguientes preguntas:

- 1. ¿Qué acciones estratégicas recomendarías para mejorar el LTV de los clientes de Gabu?
- 2. Considera la tasa de churn. ¿Qué medidas concretas podría tomar Gabu para reducir esta tasa y aumentar la lealtad de los clientes?

Criterios de Evaluación:

- Exploración de Datos (20 puntos): Profundidad y claridad de los insights obtenidos de la segmentación y el análisis demográfico y económico de los clientes.
- **Identificación de KPIs** (20 puntos): Selección adecuada de KPIs estratégicos y justificación clara de su importancia.
- Construcción del Modelo de Regresión (40 puntos): Aplicación correcta de la regresión lineal, interpretación de los coeficientes y calidad de los análisis realizados.
- Insights y Estrategia de Retención (20 puntos): Calidad de las recomendaciones estratégicas basadas en el análisis de los datos y los resultados del modelo.

```
In [2]: import pandas as pd
import numpy as np
from sklearn.cluster import KMeans, DBSCAN
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import set_config
import statsmodels.api as sm
set_config(working_memory=1024)
```

Sección 1

Pregunta 1: Exploración de los Datos de los Clientes

Con base en los datos proporcionados:

1. Segmenta a los clientes en función de sus características demográficas.

```
In [5]: data = pd.read_csv('gabu_data.csv')
   data.head()
```

Out[5]:

		ID del Cliente	Edad del Niño	Sexo del Niño	Nivel de Estudios del Padre	Duración de la Subscripción (meses)	Plan de Subscripción	Ingresos del Hogar (USD)	G Sul
	0	1	10	Masculino	Undergraduate	22.0	Básico	60983.52	
	1	2	7	Femenino	Undergraduate	26.0	Premium	46799.12	
	2	3	16	Femenino	Undergraduate	11.0	Básico	59820.15	
3		4	14	Masculino	Undergraduate	21.0	Premium	42901.02	
	4	5	11	Masculino	Undergraduate	24.0	Premium	85253.09	

```
In [6]: # Separar variables numéricas y categóricas
        numerical features = ['Edad del Niño', 'Ingresos del Hogar (USD)']
        categorical_features = ['Sexo del Niño', 'Nivel de Estudios del Padre']
        # Hacer las categóricas dummies
        encoded_features = pd.get_dummies(data[categorical_features],
                       columns=categorical features,
                       drop first=True)
        # Estandarizar variables numéricas
        data_to_model_standarized = StandardScaler().fit_transform(data[numerical_fe
        # Hacer dataframe variables numéricas
        data to model df = pd.DataFrame(data to model standarized,
                                        columns=numerical_features).reset_index()
        # Acomodar variables categóricas
        encoded_features_df = encoded_features.reset_index()
        # Juntar ambas variables
        data_to_model = data_to_model_df.merge(encoded_features_df, on='index')
        data_to_model = data_to_model.drop('index', axis=1)
```

```
In [7]: columns_from_education = data_to_model.loc[:, 'Sexo del Niño_Masculino':].se
    data_to_model[columns_from_education] = data_to_model[columns_from_educatior
    data_to_model
```

Out[7]:

	Edad del Niño	Ingresos del Hogar (USD)	Sexo del Niño_Masculino		Nivel de Estudios del Padre_Undergraduate
0	-0.103677	0.755915	1	0	1
1	-0.837964	-0.221592	0	0	1
2	1.364896	0.675743	0	0	1
3	0.875371	-0.490227	1	0	1
4	0.141085	2.428435	1	0	1
	•••			•••	
1513	-0.348439	0.564749	0	1	0
1514	1.120134	1.409065	1	0	0
1515	-1.572250	-1.426295	1	0	1
1516	-1.327488	-0.204638	1	0	0
1517	1.609658	-0.632380	1	0	1

1518 rows × 5 columns

```
In [8]: # Determinar el número óptimo de clusters usando el método del codo
    sum_of_squared_distances = []
    K = range(1, 15)  # Ajuste el rango según sea necesario
    for k in K:
        km = KMeans(n_clusters=k, random_state=42)
        km = km.fit(data_to_model)
        sum_of_squared_distances.append(km.inertia_)

# Plot the Elbow curve
plt.figure(figsize=(10, 6))
plt.plot(K, sum_of_squared_distances, 'bx-')
plt.xlabel('Number of clusters (k)')
plt.ylabel('Sum of Squared Distances')
plt.title('Elbow Method For Optimal k')
plt.show()
```

Elbow Method For Optimal k


```
In [9]: # Aplicar K-means clustering para identificar segmentos de clientes
kmeans = KMeans(n_clusters=4, random_state=42)
labels = kmeans.fit_predict(data_to_model)

# Agregar las etiquetas del cluster al DataFrame original para análisis
data_to_model['Cluster'] = labels
data['Cluster'] = labels
data.head()
```

Out[9]:

0		ID del Cliente	Edad del Niño	Sexo del Niño	Nivel de Estudios del Padre	Duración de la Subscripción (meses)	Plan de Subscripción	Ingresos del Hogar (USD)	G Sul
	0	1	10	Masculino	Undergraduate	22.0	Básico	60983.52	
	1	2	7	Femenino	Undergraduate	26.0	Premium	46799.12	
	2	3	16	Femenino	Undergraduate	11.0	Básico	59820.15	
	3	4	14	Masculino	Undergraduate	21.0	Premium	42901.02	
	4	5	11	Masculino	Undergraduate	24.0	Premium	85253.09	

```
In [10]: def boxplot_clusters(columns):
    for col in columns:
        plt.figure(figsize=(5, 5))
        sns.boxplot(x='Cluster', y=col, data=data, hue='Cluster', palette='S
        plt.title(f'Boxplot de {col} por Clusters')
        plt.show()
```

In [11]: boxplot_clusters(numerical_features)

Boxplot de Ingresos del Hogar (USD) por Clusters


```
In [13]: barplot_clusters(categorical_features)
```


Count of Entries by Cluster

2. Analiza las características demográficas y económicas de los segmentos. Explica cómo estos segmentos podrían ayudar a Gabu a diseñar estrategias más efectivas de marketing o producto.

Los clusters 0 y 1 se encuentran los niños de mayor edad, y los clusters 0 y 2 están las familias con un mayor ingreso. Además en todos los clusters hay más hombres que mujeres por una ligera diferencia. De igual forma en todos los clusters la mayoría tiene padres con nivel de estudios Undergraduate.

Identificar los clientes en los clusters 0 y 1 y hacer anuncios enfocados a niños de entre 12 y 16 años para que conozcan la empresa. Lo más importante para gabu es dar con los padres pues son quienes van a contratar los servicios, por lo que es importante analizar padres con hijos hombres pues la mayoría de sus clientes son hombres, además analizar que tipo de contenido y redes sociales ven padres con niveles de estudio de Undergraduate pues son la mayoría y así hacer que conozcan la empresa y se preocupen por la seguridad de sus hijos y decidan contratar a la empresa.

Sección 2

Pregunta 2: Selección del KPI Correcto

Gabu quiere identificar un KPI clave que les permita medir la retención de clientes y la capacidad de generar ingresos a largo plazo.

A continuación, se te presentan cuatro KPIs posibles. Solo uno de estos es el KPI correcto que Gabu debería usar para medir la retención de clientes y su impacto en los ingresos futuros. Selecciona el KPI correcto, calcúlalo usando los datos proporcionados, y justifica por qué es el más adecuado.

Instrucciones:

- 1. Selecciona el KPI correcto que mejor mida la retención de clientes.
- 2. Explica por qué este KPI es el más adecuado para Gabu y cómo ayudará a medir

Opción 4: Tasa de Churn

- Definición: El porcentaje de clientes que cancelan el servicio durante un período de tiempo determinado.
- Fórmula: \$\text{Tasa de Churn} = \frac{\text{Número de Clientes que Cancelaron}}
 {\text{Número Total de Clientes Activos al Inicio del Periodo}}\$

La tasa de churn es un indicador directamente relacionado con la retención de clientes, pues nos da el porcentaje de clientes que se van, lo cual a su vez nos dice cuantos se quedan, esto nos dice directamente cuantos clientes estamos reteniendo mes a mes.

Además al saber tu retención de clientes puedes hacer buena estimación del impacto en tus ingresos a futuro pues sabes el tipo de suscripción y cuanto pagan, entonces si sabes cuantos se van mes a mes es fácil calcular cuanto pueden reducirse tus ingresos a futuro (sin contar posibles nuevos clientes).

Sección 3

Pregunta 3: Construcción de un Modelo de Regresión para Predecir LTV

El equipo de Gabu desea predecir el valor del tiempo de vida (LTV) de sus clientes usando las características demográficas y económicas del dataset.

1. Preparación de los Datos:

- Usa las siguientes variables como independientes:
 - Edad del Niño
 - Ingresos del Hogar
 - Plan de Subscripción
 - Número de Sesiones por Semana
 - Nivel de Satisfacción del Cliente
 - Segmento del cliente
- Usa el Valor del Tiempo de Vida (LTV) como la variable dependiente.

2. Construcción del Modelo:

- Ajusta un modelo de regresión lineal utilizando las variables mencionadas.
- Escribe la ecuación de la regresión (incluye los coeficientes de cada variable).

```
In [20]: # Separar variables numéricas y categóricas
         numerical features = ['Edad del Niño','Ingresos del Hogar (USD)','Número de
         categorical_features = ['Plan de Subscripción','Cluster']
         # Hacer las categóricas dummies
         encoded features = pd.get dummies(data[categorical features],
                        columns=categorical features)
         # Estandarizar variables numéricas
         data_to_model_standarized = StandardScaler().fit_transform(data[numerical_fe
         # Hacer dataframe variables numéricas
         data to model df = pd.DataFrame(data to model standarized,
                                         columns=numerical_features).reset_index()
         # Acomodar variables categóricas
         encoded_features_df = encoded_features.reset_index()
         # Juntar ambas variables
         data_to_model = data_to_model_df.merge(encoded_features_df, on='index')
         data to model = data to model.drop('index', axis=1)
         data_to_model.head()
```

Out[20]:		Edad del Niño	Ingresos del Hogar (USD)	Número de Sesiones por Semana	Nivel de Satisfacción del Cliente	Plan de Subscripción_Básico	Subscripción_l
	0	-0.103677	0.755915	-1.423380	-0.886681	True	
	1	-0.837964	-0.221592	0.475985	1.058627	False	
	2	1.364896	0.675743	-0.232816	-1.415919	True	
	3	0.875371	-0.490227	1.262311	1.616473	False	
	4	0.141085	2.428435	0.088359	0.343440	False	
In [21]:	da		l[columns_			, 'Plan de Subscrip _to_model[columns_f	
Out[21]:		Edad del Niño	Ingresos del Hogar (USD)	Número de Sesiones por Semana	Nivel de Satisfacción del Cliente	Plan de Subscripción_Básico	Subscripción_l
	0	-0.103677	0.755915	-1.423380	-0.886681	1	
	1	-0.837964	-0.221592	0.475985	1.058627	0	
	2	1.364896	0.675743	-0.232816	-1.415919	1	
	3	0.875371	-0.490227	1.262311	1.616473	0	
	4	0.141085	2.428435	0.088359	0.343440	0	
In [22]:		= data_to_ = data['Va	'Pl 'Cl	an de Subs uster_0','	cripción_Bás Cluster_1','	del Hogar (USD)',' sico','Plan de Subso Cluster_2','Cluster	ripción_Famil
In [23]:	X :	= sm.add_c Ajustar el	onstant(X) modelo us		to) a las va	riables independier	ites
	re	del = sm.0 sults = mo	del.fit()				
		<i>Mostrar el</i> int(result					

OLS Regression Results

=======================================	=========	=======	=====	-=====	====	=========	======
=========							
Dep. Variable: 0.730	Valor del T	iempo de V	√ida ((LTV)	R-sq	uared:	
Model:				0LS	Adj.	R-squared:	
0.728 Method:		Loo	ct Sai	12 ros	E ct	atistic:	
452.6		Leas	st Sqt	iai es	r-5 t	atistic:	
Date:		Tue, 08	3 Oct	2024	Prob	(F-statistic)	:
0.00 Time:			10.5	54:35	I og_	Likelihood:	
-10039.			19.5			LIKE CIHOOU.	
No. Observations 2.010e+04	:			1518	AIC:		
Df Residuals:				1508	BIC:		
2.015e+04 Df Model:				9			
Covariance Type:			nonro				
=======================================	========	:======:			====	=========	======
=======================================	======		=	_			
[0.025	0.0751		coef	std	err	t	P> t
[0.023							
const 0 747.386	705 5/18	771	4674	12.	277	62.841	0.00
Edad del Niño	793.340	-7	2439	9.	377	-0.772	0.44
	11.150						
Ingresos del Hoga 0 144.102	ar (USD) 177.152	160	6266	8.	425	19.067	0.00
Número de Sesion		29	6188	7.	479	3.960	0.00
0 14.948 Nivel de Satisfa	44.289	n+o F2	0012	7	120	7 207	0.00
	66.095	inte 52	.0913	/.	139	7.297	0.00
Plan de Subscrip		-74	8023	17.	726	-4.220	0.00
0 -109.572 Plan de Subscrip	-40.033 ción Familiar	635	4292	40.	182	15.814	0.00
0 556.610	714.248	033			102	131011	0.00
Plan de Subscrip		210	8406	15.	375	13.713	0.00
0 180.682 Cluster_0	240.999	193	5224	13.	816	14.007	0.00
0 166.421	220.624						
Cluster_1 0 175.325	227.217	201	2711	13.	227	15.216	0.00
Cluster_2	22/•21/	189	3368	14.	411	13.139	0.00
0 161.070	217.604						
Cluster_3	212 021	187	. 3372	12.	997	14.414	0.00
0 161.844	212.831 =======	:=======	=====	======	====	=========	
==							
Omnibus:		34.479	Durbi	in-Watso	n:		1.9
94 Prob(Omnibus):		0.000	Jardi	ue-Bera	(JR)	:	48.5
10			·		(35)	-	
Skew:		0.244	Prob((JB):			2.92e-

11
Kurtosis: 3.727 Cond. No.
15

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 7.88e-29. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

```
In [25]: # Agregar la constante (intercepto) a las variables independientes
X1 = sm.add_constant(X1)

# Ajustar el modelo usando OLS
model1 = sm.OLS(y1, X1)
results1 = model1.fit()

# Mostrar el resumen del modelo
print(results1.summary())
```

6.53e+

OLS Regression Results

==========		=======	=====	======	=====	=========	=====
======== Dep. Variable:	Valor del Ti	.empo de \	/ida ((LTV)	R–sqı	uared:	
0.730 Model:				0LS		R-squared:	
0.728 Method:		Leas	st Squ	uares	F-sta	atistic:	
509.3 Date:		Tue 08	R Oct	2024	Proh	(F-statistic)	
0.00		140, 00					•
Time: -10039.			19:5	54:35	Log-L	_ikelihood:	
No. Observations: 2.010e+04				1518	AIC:		
Df Residuals: 2.014e+04				1509	BIC:		
Df Model:				8			
Covariance Type:	========		nonro		=====		=====
=======================================	======		coef	c+d	err	t	P> t
[0.025 	0.975] 						
const		771.	5807	12	274	62.863	0.00
0 747.505 Ingresos del Hoga	r (USD)	160.	5632	8	423	19.062	0.00
Número de Sesione		29.	2821	7	465	3.922	0.00
Nivel de Satisfac		ite 52.	0476	7	138	7.292	0.00
0 38.046 Plan de Subscripc 0 -110.013	ión_Básico	-75 .	2685	17	713	-4.249	0.00
Plan de Subscripc 0 557.173		635.	9695	40	. 171	15.832	0.00
Plan de Subscripc 0 180.725		210.	8797	15	373	13.718	0.00
Cluster_0 0 165.926	207.357	186.	6418	10	561	17.673	0.00
Cluster_1		195.	9369	11	280	17.370	0.00
0 173.810 Cluster_2	218.064	194.	7702	12	576	15.488	0.00
0 170.102 Cluster_3	219.438	194.	2317	9	446	20.561	0.00
0 175.702 =============	212.761 		.====				
== Omnibus:		34.909	Durb.	in–Wats	on:		1.9
96 Prob(Omnibus):		0.000					49.2
45				ue-Bera	(JD):		
Skew: 11		0.246	Prob	(JB):			2.03e-
Kurtosis:		3.732	Cond	No.			6.47e+

15

==

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 7.95e-29. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

```
771.58 + 160.5632 * Ingresos + 29.28 * Número de sesiones + 52.04 * Satisfacción del cliente - 75.26 * Plan Básico + 635.96 * Plan Familiar + 210.87 * Plan Premium + 186.64 * Cluster 0 + 195.93 * Cluster 1 + 194.77 * Cluster 2 + 194.23 * Cluster 3
```

3. Interpretación de los Coeficientes:

- Explica el significado de los coeficientes obtenidos en el modelo. ¿Cómo afecta cada variable independiente al LTV?
- Identifica los factores que parecen tener el mayor impacto en el valor de tiempo de vida y discute por qué podrían ser importantes para Gabu.

Los coeficientes multiplican al camnio en la variable y eso afecta al LTV, por cada unidad de aumento en ingresos del hogar el LTV sube 160.56, por cada unidad de aumento en Plan Básico el LTV decrece 75.26, por cada unidad de aumento en el Plan Premium el LTV sube 210, para los clusters significa que si es del cluster 0 sube 186 al LTV, si es del 1 sube 195 el LTV, si es del 2 sube 194 igual que si es del 3.

De acuerdo a los resultados del modelo los factores que tienen mayor impacto en el LTV son el Plan familiar y el Plan Premium pues son los que tienen los coeficientes más altos. Esto es importante pues saben que lo que más afecta al LTV es el tipo de plan al que se suscriben por lo que es útil impulsar más la contratación del Plan Familiar y Plan Premium pues de acuerdo al modelo les de más LTV.

Sección 4

Pregunta 4: Estrategias Basadas en el Análisis

Basándote en el análisis realizado y los resultados del modelo de regresión, responde a las siguientes preguntas:

- 1. ¿Qué acciones estratégicas recomendarías para mejorar el LTV de los clientes de Gabu?
- 2. Considera la tasa de churn. ¿Qué medidas concretas podría tomar Gabu para reducir esta tasa y aumentar la lealtad de los clientes?

```
In [31]: churn_rate = data.Churn.mean()
    churn_rate
```

Out[31]: 0.7628458498023716

Como recomendación sería impulsar la contratación del plan familiar pues es lo que más aporta al LTV, además buscar padres con hijos hombres pues son la mayoría de sus clientes y ver que sean Undergraduate pues usan bastante el servicio.

El churn rate es bastante alto por lo que es de mucha importancia atender el problema, se puede analizar el nivel de satisfacción de quienes se van y quienes se quedan, para ver que es lo que hace que los clientes se queden, además de ver que segemntos siguen en la empresa para dar prioridad a ellos y replicar los servicios que haya con ellos.

Sin estandarizar

```
In [33]: # Separar variables numéricas y categóricas
         numerical features = ['Edad del Niño','Ingresos del Hogar (USD)','Número de
         categorical_features = ['Plan de Subscripción','Cluster']
         # Hacer las categóricas dummies
         encoded_features = pd.get_dummies(data[categorical_features],
                        columns=categorical features)
         # Estandarizar variables numéricas
         data to model standarized = data[numerical features]
         # Hacer dataframe variables numéricas
         data to model df = pd.DataFrame(data to model standarized,
                                         columns=numerical features).reset index()
         # Acomodar variables categóricas
         encoded_features_df = encoded_features.reset_index()
         # Juntar ambas variables
         data to model = data to model df.merge(encoded features df, on='index')
         data_to_model = data_to_model.drop('index', axis=1)
         data_to_model.head()
```

Out[33]:

_		dad del Niño	Ingresos del Hogar (USD)	Número de Sesiones por Semana	Nivel de Satisfacción del Cliente	Plan de Subscripción_Básico	Plan de Subscripción_Familia
	0	10	60983.52	1.00	3.25	True	False
	1	7	46799.12	4.43	4.61	False	False
	2	16	59820.15	3.15	2.88	True	False
;	3	14	42901.02	5.85	5.00	False	False
	4	11	85253.09	3.73	4.11	False	False

```
In [34]: columns_from_education = data_to_model.loc[:, 'Plan de Subscripción_Básico':
    data_to_model[columns_from_education] = data_to_model[columns_from_educatior
    data_to_model.head()
```

Out[34]:

	Edad del Niño	Ingresos del Hogar (USD)	Numero de Sesiones por Semana	Nivel de Satisfacción del Cliente	Plan de Subscripción_Básico	Plan de Subscripción_Familia
0	10	60983.52	1.00	3.25	1	(
1	7	46799.12	4.43	4.61	0	(
2	16	59820.15	3.15	2.88	1	(
3	14	42901.02	5.85	5.00	0	(
4	11	85253.09	3.73	4.11	0	(

```
In [36]: # Agregar la constante (intercepto) a las variables independientes
X = sm.add_constant(X)

# Ajustar el modelo usando OLS
model = sm.OLS(y, X)
results = model.fit()

# Mostrar el resumen del modelo
print(results.summary())
```

OLS Regression Results

==========							
=======================================							
Dep. Variable: 0.730	Valor del T	iempo de	Vida ((LTV)	R-sq	uared:	
Model:				0LS	Adj.	R-squared:	
0.728 Method:		Lea	st Sai	iarec	F_c+	atistic:	
452.6		Lec	ist squ	iai es	1-50	aciscic.	
Date:		Tue, 0	08 Oct	2024	Prob	(F—statisti	c):
0.00 Time: -10039.			19:5	54:35	Log-	Likelihood:	
No. Observations	:			1518	AIC:		
2.010e+04 Df Residuals:				1508	BIC:		
2.015e+04					510.		
<pre>Df Model: Covariance Type:</pre>			nonro	9 Shust			
==========					====	========	======
==========	======		coef	c+d	err	t	P> t
[0.025	0.975]						
const		214	3772	38	852	5.518	0.00
0 138.167	290.587						
Edad del Niño 0 -6.275	2.729	-1	//30	2	. 295	-0.772	0.44
Ingresos del Hog	ar (USD)	0	.0111	0	001	19.067	0.00
0 0.010 Número de Sesion	0.012 es por Semana	16	.4014	4	142	3.960	0.00
0 8.278 Nivel de Satisfa	24.525	n+o 7/	E 100	10	212	7 207	0.00
0 54.480	94.540				212	7.297	0.00
Plan de Subscrip 0 -293.137		-260	4991	16	639	-15.656	0.00
Plan de Subscrip		449	.7324	44	216	10.171	0.00
0 363.000 Plan de Subscrip	536.465	25	1438	10	651	1.280	0.20
1 –13.403	63.691	23	1430	19	.031	1.200	0.20
Cluster_0 6 15.429	02 070	54	2498	19	791	2.741	0.00
Cluster_1	93.070	61	. 9985	15	501	4.000	0.00
0 31.592	92.405	Ε.0	0642	17	600	2 020	0.00
Cluster_2 5	84.781	50	.0642	1/	699	2.829	0.00
Cluster_3	74 040	48	.0647	11	702	4.107	0.00
0 25.111 =======	71.018 ======	=======					======
== Omnibus:		34.479	Durb:	in-Watso	nn:		1.9
94		34:4/9	נטוטע	ııı—wats(JII i		1.9
<pre>Prob(Omnibus): 10</pre>		0.000	Jarqu	ue-Bera	(JB)	:	48.5
Skew:		0.244	Prob((JB):			2.92e-

11

Cond. No. Kurtosis: 3.727 20

1.52e+

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is corre ctly specified.

[2] The smallest eigenvalue is 1.79e-28. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

afecta más Plan Familiar al LTV