Particle spectrograph

Wave operator and propagator

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{6ik}{(3+2k^2)^2t_3}$	$\frac{3i\sqrt{2}k}{(3+2k^2)^2t_3}$	0	$\frac{6k^2}{(3+2k^2)^2t_3}$
$\tau_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{3\sqrt{2}}{(3+2k^2)^2t_3}$	$\frac{3}{(3+2k^2)^2t_3}$	0	$-\frac{3i\sqrt{2}k}{(3+2k^2)^2t_3}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{6}{(3+2k^2)^2t_3}$	$-\frac{3\sqrt{2}}{(3+2k^2)^2t_3}$	0	$\frac{6ik}{(3+2k^2)^2t_3}$
$\tau_{1}^{\#1}_{+}$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3}{(3+k^2)^2 t_2}$	$-\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	$\frac{6}{(3+k^2)^2 t_2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$-\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	0	0	0	0
	$^{1}_{+}$ $^{+}$	'2 †αβ	$^{1}_{+}$ $^{+}$ $^{\alpha\beta}$	$_{1}^{#1}$ $+^{\alpha}$	$^{\#2}_{1}$ $^{\#}$	$_{1}^{#1}$ $+^{\alpha}$	$\frac{1}{1}$ $+^{\alpha}$

Quadratic (free) action
S _F ==
$\iiint (\frac{1}{6} (4t_3 \omega_{\alpha'}^{\alpha'} \omega_{\kappa\alpha}^{\ \ \ } + 4t_2 \omega_{\kappa\lambda}^{\ \ \ \prime} + 2t_2 \omega_{\kappa\lambda}^{\ \ \prime} + 2t_2 \omega_{\kappa\lambda}^{\ \ \prime} \omega_{\kappa\lambda}^{\ \ \prime} + 6 f^{\alpha\beta} \tau_{\alpha\beta} + 6 \omega^{\alpha\beta\chi}$
$\sigma_{\alpha\beta\chi} + 4r_2\partial^\beta\omega^{\theta\alpha}_{\alpha}\partial_\theta\omega^{\kappa}_{\beta} - 2r_2\partial_\theta\omega^{\kappa}_{\beta}\partial_\kappa\omega^{\alpha\beta\theta} - 4r_2\partial_\theta\omega^{\kappa}_{\beta}\partial_\kappa\omega^{\theta\alpha\beta} +$
$t_2 \partial^\alpha f_{ \theta \kappa} \partial^\kappa f_{ \alpha}^{\ \ \theta} - t_2 \partial^\alpha f_{ \kappa \theta} \partial^\kappa f_{ \alpha}^{\ \ \theta} + t_2 \partial^\alpha f^\lambda_{\ \ \kappa} \partial^\kappa f_{ \alpha \lambda}^{\ \ -} - 4 t_3 \omega_{\kappa \alpha}^{\ \ \alpha} \partial^\kappa f'_{ , -}$
$4t_3\omega_{\kappa\lambda}^{\lambda}\partial^\kappa f^{}_{\prime$
$4t_2\omega_{_{IK}\theta}\partial^{\kappa}f^{'\theta}-2t_2\omega_{_{\theta_{IK}}}\partial^{\kappa}f^{'\theta}+4t_2\omega_{_{\theta_{K}'}}\partial^{\kappa}f^{'\theta}+4t_3\omega_{_{I}\alpha}^{\alpha}\partial^{\kappa}f^{'}_{\kappa}+$
$4t_3\omega_{_{I}\lambda}^{\lambda}\partial^\kappa f_{_{\kappa}}^{}-t_2\partial^\alpha f_{\kappa}^{I$
$4t_{\scriptscriptstyle 3}\partial^{\alpha} f^{\lambda}_{\alpha}\partial^{\kappa} f_{\lambda\kappa} + 2r_{\scriptscriptstyle 2}\partial_{\kappa}\omega^{\alpha\beta\theta}\partial^{\kappa}\omega_{\alpha\beta\theta} + 4r_{\scriptscriptstyle 2}\partial_{\kappa}\omega^{\theta\alpha\beta}\partial^{\kappa}\omega_{\alpha\beta\theta} -$
$4 r_2 \partial^{eta} \omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$

$f_{1^-}^{\#2}$	0	0	0	$-\frac{2}{3} I k t_3$	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	<u>t3</u> 3	0	$-\frac{1}{3}i\sqrt{2}kt_3$
$\omega_{1^{\bar{-}}\alpha}^{\#1}$	0	0	0	$\frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	2 i k t 3 3
$f_1^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\#2}{}_+\alpha\beta$	$\frac{\sqrt{2} t_2}{3}$	£ 3	$-\frac{1}{3}\bar{l}kt_2$	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$\frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0
	$+^{\alpha\beta}$	$+^{\alpha\beta}$	$+^{\alpha\beta}$	$1 + \alpha$	2 †α	1 $^{+}$	$^{2}+^{\alpha}$
	$\omega_1^{\#1}$	$\omega_1^{\#2}$	$f_1^{\#1}$	$\omega_{1^-}^{\#}$	$\omega_{1}^{\#2}$	$f_1^{\#}$	$f_{1}^{\#}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
$\omega_{2}^{\#1} \dagger^{lphaeta}$	0	0	0
$f_{2+}^{#1} \dagger^{\alpha\beta}$	0	0	0
$\omega_2^{\#1}$ † $^{lphaeta\chi}$	0	0	0

$\sigma_{2^{+}\alpha\beta}^{\sharp1}$ $\tau_{2^{+}\alpha\beta}^{\sharp1}$ $\sigma_{2^{-}\alpha\beta\chi}^{\sharp1}$							
$\sigma_{2^{+}}^{\sharp 1}\dagger^{lphaeta}$	0	0	0				
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	0	0	0				
$\sigma_{2}^{\#1}\dagger^{\alpha\beta\chi}$	0	0	0				

Source constraints/gauge generators						
SO(3) irreps	Multiplicities					
$\tau_{0+}^{\#2} == 0$	1					
$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	1					
$\tau_{1}^{\#2\alpha} - \bar{l} k \sigma_{1}^{\#1\alpha} == 0$	3					
$\tau_{1}^{\#1\alpha} == 0$	3					
$\sigma_1^{\#1\alpha} + 2 \sigma_1^{\#2\alpha} = 0$	3					
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#1}{}^{\alpha\beta} == 0$	3					
$\sigma_{1+}^{\#1\alpha\beta} == \sigma_{1+}^{\#2\alpha\beta}$	3					
$\sigma_2^{\#1\alpha\beta\chi} == 0$	5					
$\tau_{2+}^{\#1}{}^{\alpha\beta} == 0$	5					
$\sigma_{2^{+}}^{\#1\alpha\beta}==0$	5					
Total constraints:	32					

	_				
$\omega_{0}^{\#1}$	0	0	0	$k^2 r_2 + t_2$	
$f_{0}^{\#2}$	0	0	0	0	
$f_0^{\#1}$	-i $\sqrt{2} kt_3$	$2 k^2 t_3$	0	0	
$\omega_{0}^{\#1}$	<i>t</i> ³	$i\sqrt{2}kt_3$	0	0	
	$\omega_0^{\#1}$ †	$f_0^{\#1}$ †	$f_0^{#2} \uparrow$	$\omega_{0}^{\#1}$ †	

$\sigma_{0}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2 + t_2}$
$\tau_0^{\#_2'}$	0	0	0	0
$ au_0^{\# 1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\sigma_{0}^{\#_1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
	r#1 + 0	r#1 +	r#2 +	$r_{0}^{\#1}$ \dagger

Massive and massless spectra

Massive particle
Pole residue:
$$-\frac{1}{r_2} > 0$$
Polarisations: 1
Square mass: $-\frac{t_2}{r_2} > 0$
Spin: 0
Parity: Odd

(No massless particles)

Unitarity conditions