Cryptography as a Tool against White-Box Time-Bounded Adversaries

Ying Feng, Aayush Jain, David P. Woodruff

(CMU)

- The dataset is chosen adaptively by an adversary who sees the internal state of the algorithm
- Motivation: It captures richer adversarial scenarios such as
 - Dynamic algorithms: Maintain a dynamic data structure that correctly answers queries across sequentially arrived updates
 Dynamic model often considers an adaptive adversary that sees the entire data structure
 - Machine learning: Design robust models
 Many successful adversarial attacks use knowledge of internal algorithmic parameters and training weights

Definition

Definition

Definition

Definition

Definition

Definition

Two-player game between **StreamAlg** and **Adversary**:

Ying Feng, Aayush Jain, David P. Woodruff (Cryptography as a Tool against White-Box Ti

Main Problem

k-Sparse Recovery

Given an input vector x, if x contains at most k non-zero entries, recover x. Otherwise, report *invalid input*.

ullet Extensions to low-rank matrix and tensor recovery, Robust PCA, L_0 norm estimation

Main Problem

k-Sparse Recovery

Given an input vector x, if x contains at most k non-zero entries, recover x. Otherwise, report *invalid input*.

- Extensions to low-rank matrix and tensor recovery, Robust PCA, L₀ norm estimation
- Space lower bound of detecting k-sparsity, against white-box unbounded adversary: $\Omega(n)$.
 - consider time-bounded adversaries

- Existing deterministic k-sparse recovery scheme, plus
 - assumes that the input vector x is k-sparse, and only under this promise, recovers the k-sparse x
- A secure tester that verifies whether the input and the recovery output matches

- Existing deterministic k-sparse recovery scheme, plus
 - assumes that the input vector x is k-sparse, and only under this promise, recovers the k-sparse x
- A secure tester that verifies whether the input and the recovery output matches

- Existing deterministic k-sparse recovery scheme, plus
 - assumes that the input vector x is k-sparse, and only under this promise, recovers the k-sparse x
- A secure **tester** that verifies whether the input and the recovery output matches

- Tester ≈ Streaming Friendly Collision-Resistant Hash Functions, satisfying:
 - Small-sized hash key
 - Updatable
 - White-box adversarially robust
 - Time and space efficient
- The same framework also works for low-rank matrix and tensor recovery and RPCA, by changing the deterministic recovery scheme

Using Short Integer Solution Problem

Definition (SIS)

Given a uniformly random matrix $A \in \mathbb{Z}_q^{r \times n}$, find a nonzero integer vector $x \in \mathbb{Z}^n$ such that $Ax = 0 \mod q$ and $\|x\|_{\infty} \leq \beta$.

From lattice-based cryptography

Using Short Integer Solution Problem

Definition (SIS)

Given a uniformly random matrix $A \in \mathbb{Z}_q^{r \times n}$, find a nonzero integer vector $x \in \mathbb{Z}^n$ such that $Ax = 0 \mod q$ and $\|x\|_{\infty} \leq \beta$.

From lattice-based cryptography

Given adversarially generated x, define hash of x as Ax,

Claim

Assuming subexponential hardness of SIS and $r \geq \tilde{O}(k)$: If x' is k-sparse and Ax = Ax', then x' = x

Using Short Integer Solution Problem

Definition (SIS)

Given a uniformly random matrix $A \in \mathbb{Z}_q^{r \times n}$, find a nonzero integer vector $x \in \mathbb{Z}^n$ such that $Ax = 0 \mod q$ and $\|x\|_{\infty} \leq \beta$.

From lattice-based cryptography

Given adversarially generated x, define hash of x as Ax,

Claim

Assuming subexponential hardness of SIS and $r \geq \tilde{O}(k)$: If x' is k-sparse and Ax = Ax', then x' = x

- Otherwise adversary can brute-force all k-sparse vectors to find x'
- x x' is a SIS solution
- Robust against subexp-time adversary

Removing Dependency on k

Claim

Assuming subexponential hardness of SIS and $r \ge \ddot{O}(k)$: If x' is k-sparse and Ax = Ax', then x' = x

ullet Otherwise adversary can brute-force all k-sparse vectors to find x'

Removing Dependency on k

Claim

Assuming subexponential hardness of SIS and $r \geq \tilde{O}(k)$:

If x' is k-sparse and Ax = Ax', then x' = x

ullet Otherwise adversary can brute-force all k-sparse vectors to find x'

Efficient reduction:

Claim

If x' is outputted by a polytime recovery algorithm and Ax = Ax', then x' = x

- Standard collision-resistance
- Robust against polytime adversary

- ullet A is a uniformly random matrix o expensive to store
- Want to find a pseudorandom matrix, with similar collision-resistance property

- A is a uniformly random matrix → expensive to store
- Want to find a pseudorandom matrix, with similar collision-resistance property

Definition (FHE)

An encryption scheme that enables function evaluation on **ciphertexts**, while yielding a ciphertext that encrypts the result as if the function was evaluated on plaintexts

• Store ct₁, ct₂, ..., ct_{log n} as seeds: think of them as encrypting a log *n*-bit message msg \in [*n*]

- Store ct₁, ct₂, ···, ct_{log n} as seeds: think of them as encrypting a log *n*-bit message msg \in [*n*]
- Derive n ciphertexts $c\hat{t}_1, c\hat{t}_2, \dots, c\hat{t}_n$ by evaluating n functions f_1, f_2, \dots, f_n on $(ct_1, ct_2, \dots, ct_{\log n})$
 - ct
 _i = the *i*-th column of sketching matrix
 Can be generated on the fly

- Store ct₁, ct₂, ···, ct_{log n} as seeds: think of them as encrypting a log *n*-bit message msg \in [*n*]
- Derive n ciphertexts $c\hat{t}_1, c\hat{t}_2, \dots, c\hat{t}_n$ by evaluating n functions f_1, f_2, \dots, f_n on $(ct_1, ct_2, \dots, ct_{\log n})$
 - ct
 _i = the *i*-th column of sketching matrix
 Can be generated on the fly
 - $f_i(msg) = \begin{cases} 1 & \text{if } msg == i \\ 0 & \text{otherwise} \end{cases}$

- Store ct₁, ct₂, ···, ct_{log n} as seeds: think of them as encrypting a log *n*-bit message msg \in [*n*]
- Derive n ciphertexts $c\hat{t}_1, c\hat{t}_2, \dots, c\hat{t}_n$ by evaluating n functions f_1, f_2, \dots, f_n on $(ct_1, ct_2, \dots, ct_{\log n})$
 - ct̂_i = the *i*-th column of sketching matrix
 Can be generated on the fly
 - $f_i(msg) = \begin{cases} 1 & \text{if msg} == i \\ 0 & \text{otherwise} \end{cases}$
- Hash h(x) is the matrix-vector product
 - what is this linear combination of ciphertexts?

What is this linear combination of ciphertexts?

Additional Property 1. (Linear Homomorphism)

If $\hat{\operatorname{ct}}_i$ encrypts a bit $b \in \{0,1\}$ and x_i is a small-normed integer, then there is a decryption algorithm that uniquely decodes $\sum_{i \in [n]} \hat{\operatorname{ct}}_i x_i$ to $\sum_{i \in [n]} b_i x_i$

Satisfied by most known FHE schemes

What is this linear combination of ciphertexts?

Additional Property 1. (Linear Homomorphism)

- Satisfied by most known FHE schemes
- $h(x) = h(x') \Rightarrow \sum_{i \in [n]} b_i x_i = \sum_{i \in [n]} b_i x_i'$

What is this linear combination of ciphertexts?

Additional Property 1. (Linear Homomorphism)

- Satisfied by most known FHE schemes
- $h(x) = h(x') \Rightarrow \sum_{i \in [n]} b_i x_i = \sum_{i \in [n]} b_i x_i'$
- $b_i = f_i(\text{msg}) = 1$ iff i = msg, so $h(x) = h(x') \Rightarrow x_{\text{msg}} = x'_{\text{msg}}$

What is this linear combination of ciphertexts?

Additional Property 1. (Linear Homomorphism)

- Satisfied by most known FHE schemes
- $h(x) = h(x') \Rightarrow \sum_{i \in [n]} b_i x_i = \sum_{i \in [n]} b_i x_i'$
- $b_i = f_i(\text{msg}) = 1$ iff i = msg, so $h(x) = h(x') \Rightarrow x_{\text{msg}} = x'_{\text{msg}}$
- How to choose msg?
 - random msg $\leftarrow [n]$

What is this linear combination of ciphertexts?

Additional Property 1. (Linear Homomorphism)

- Satisfied by most known FHE schemes
- $h(x) = h(x') \Rightarrow \sum_{i \in [n]} b_i x_i = \sum_{i \in [n]} b_i x_i'$
- $b_i = f_i(\text{msg}) = 1 \text{ iff } i = \text{msg},$ so $h(x) = h(x') \Rightarrow x_{\text{msg}} = x'_{\text{msg}}$
- How to choose msg?
 - random msg $\leftarrow [n]$
 - if msg is hidden from the adversary: $\Pr[x_{\text{msg}} \neq x'_{\text{msg}}] \ge \Pr[x \neq x']/n$

Remaining question: Because all algorithm parameters (including sk) are revealed, we cannot securely encrypt/hide anything

Remaining question: Because all algorithm parameters (including sk) are revealed, we cannot securely encrypt/hide anything

Additional Property 2. (Pseudorandomness)

The distribution of public keys and ciphertexts are indistinguishable, respectively, from some **truly random distributions** from the perspective of the adversary.

Satisfied by most known FHE schemes

Remaining question: Because all algorithm parameters (including sk) are revealed, we cannot securely encrypt/hide anything

Additional Property 2. (Pseudorandomness)

The distribution of public keys and ciphertexts are indistinguishable, respectively, from some **truly random distributions** from the perspective of the adversary.

- Satisfied by most known FHE schemes
- Allow us to sample truly random seeds \tilde{ct}_1 , \tilde{ct}_2 , \cdots , $\tilde{ct}_{\log n}$ for the streaming algorithm
 - We switch to real ciphertexts ct_1 , ct_2 , \cdots , $ct_{\log n}$ that encrypt msg only in the security proof
 - We can derive collision-resistant hash function using these random seeds, in the same way as using real ciphertexts

Using the FHE scheme in [GSW], which is based on the hardness of the Learning-with-Error (LWE) problem:

- Assuming sub-exponential hardness of LWE, our construction takes poly log(n) space and update time^a in the stream.
- Assuming polynomial hardness of LWE, our construction takes
 n^c · poly log(n) space and update time, for an arbitrarily small
 constant c > 0.

^aplus the space and time taken by the deterministic recovery scheme

White-Box Adversarial Distributed Model

We also consider a related distributed model:

- A message-passing coordinator model with t servers and one central coordinator
- Each server receives a white-box adversarially generated data vector
 x_i and communicates with the coordinator
- Goal: design a communication protocol that allows the coordinator to compute some function on the aggregated data $\sum_{i \in [t]} x_i$

White-Box Adversarial Distributed Model

We also consider a related distributed model:

- A message-passing coordinator model with t servers and one central coordinator
- Each server receives a white-box adversarially generated data vector
 x_i and communicates with the coordinator
- **Goal**: design a communication protocol that allows the coordinator to compute some function on the aggregated data $\sum_{i \in [t]} x_i$

Use a strong definition of white-box adversary:

- Before the communication starts, the adversary observes the complete random string that is going to be used by all parties
- It then generates data for each server

We can adapt our streaming algorithm to construct a communication protocol for the distributed model. Using the LWE-based FHE in [GSW]:

- ullet Bits of communication pprox space of streaming algorithm
- Process time $\approx n \cdot \text{stream}$ update time

We can adapt our streaming algorithm to construct a communication protocol for the distributed model. Using the LWE-based FHE in [GSW]:

- ullet Bits of communication pprox space of streaming algorithm
- Process time $\approx n \cdot \text{stream}$ update time

Using a FHE scheme in [BV], which is based on a more structured Ring Learning-with-Error problem:

• Assuming **polynomial** hardness of Ring-LWE, our protocol takes $n \cdot \text{poly} \log(n)$ process time (as opposed to $n^{1+c} \cdot \text{poly} \log(n)$ assuming polynomial LWE)

We can adapt our streaming algorithm to construct a communication protocol for the distributed model. Using the LWE-based FHE in [GSW]:

- ullet Bits of communication pprox space of streaming algorithm
- Process time $\approx n \cdot \text{stream}$ update time

Using a FHE scheme in [BV], which is based on a more structured Ring Learning-with-Error problem:

- Assuming **polynomial** hardness of Ring-LWE, our protocol takes $n \cdot \text{poly} \log(n)$ process time (as opposed to $n^{1+c} \cdot \text{poly} \log(n)$ assuming polynomial LWE)
- By packing partitioned segments of the input vector as ring elements
- Efficiently operations on ring elements using FFT

40.40.47.47. 7.000