

Lecture 4: Aqwa Articulations and Fenders

Introduction to Hydrodynamic Analysis with ANSYS Aqwa

**ANSYS** Release 19.2



# **Aqwa Articulations**

In the previous lecture it was shown that connections, such as moorings, can be defined as a restraining system for a vessel.

We will now consider another form of connection: physical joints, or articulations.



# **Aqwa Articulations**

Joints are added from Connections.

#### Available joint types:

- Ball and Socket (3 free rotational DoFs)
- Universal (2 DoFs)
- Hinged (1 DoF)
- Rigid (locked)

Stiffness, damping and friction may be associated with the joint freedoms.

Joint local axes can be defined to correctly orientate the connection.



### **Aqwa Articulations**

As with mooring lines, joints also require Connection Points to be defined.

Joints may be associated with either two structures, or a structure and ground (via a Fixed Point). Connection Points are assigned to the vessel(s) and/or at Fixed Point locations as required.



### **Aqwa Fenders**

In addition to mooring lines and articulations, Aqwa also offers the fender (compression element) to model structure-to-structure or structure-to-ground interactions.

Aqwa does not detect collisions between structures, but fenders can be used to keep them separate.



## **Aqwa Fenders**

#### There are three types of fender:

- Fixed, Omni-Directional The fender is connected to one of the structures (or ground) and contact with the second structure may be anywhere on the surface of the fender (assumed spherical).
- Fixed, Directional The fender is connected to one of the structures (or ground) and contact with the second structure is assumed to act in a given direction.
- Floating The fender is not connected to either structure. Contact with either structure acts in a given direction. Note that the fender is vertically located at the still water level.



## **Aqwa Fenders**

#### Fender data consists of:

- Connectivity
- Type
- Action
- Contact Points, using previously defined Connection or Fixed Points
- Fender Properties:
  - **Damping Coefficient**
  - **Friction Coefficient**
  - Size
  - Nonlinear stiffness coefficients
- Two sets of fender local axes, to define the fender direction and contact plane normal



Z Direction Only

