Design made by the team comprising of:

- Mayank Gupta, 210101002
- Ayush Joshi, 210100036
- Soham Rahul Inamdar, 210100149
- Harsh Amit Shah, 210100063

RST: Reset State

'1' → Register_reset	

S0: Common Initial State

PC → Mem_Address	Memory Read
Mem Data → T1	T1-Enable
if $(T1_{15-14} = 00 \text{ and } T1_{12} = 0)$ then	
Go to S1	
else	
Go to S2	

ADD:

S1: Fetching instruction

PC → ALU-A	ADD
$+2 \rightarrow ALU-B$	
ALU-C → PC	PC enable
if $((!Z \text{ and } T1_0) \text{ or } (!C \text{ and } T1_1) = 1)$ then	
Back to S1	

S3: Understand and read operands

$T1_{11-9} \rightarrow RF-A1$	T2-Enable
$T1_{8-6} \rightarrow RF-A2$	T3-Enable
$RF-D1 \rightarrow T2$	
$RF-D2 \rightarrow T3$	

S6: Execution

$T2 \rightarrow ALU-A$	
$T3 \rightarrow ALU-B$	

$ALU-C \rightarrow T2$	ADD
if $(TL_{15} = 0)$ then	Set zero flag
ALU -zero $\rightarrow Z$	
if $(T1_{15-12} = 0000)$ then	Set carry flag
ALU-carry → C	

S13: Store

if $(T1_{15-14} = 00 \text{ and } T1_{12} = 1)$ then	RFW-Enable
$T1_{5-3} \rightarrow RF-D3$	
elsif $(T1_{15-12} = 0001)$ then	
$T1_{8-6} \rightarrow RF-D3$	
else	
$T1_{11-9} \rightarrow RF-D3$	
if $(T1_{15-13} = 100)$ then	
$PC \rightarrow RF-A3$	
else	
$T2 \rightarrow RF-A3$	

ADC:

S1: Fetching instruction

$PC \rightarrow ALU-A$	ADD
$+2 \rightarrow ALU-B$	
$ALU-C \rightarrow PC$	PC enable
if $((!Z \text{ and } T1_0) \text{ or } (!C \text{ and } T1_1) = 1)$ then	
Back to S1	

S3: Understand and read operands

$T1_{11-9} \rightarrow RF-A1$	T2-Enable
$T1_{8-6} \rightarrow RF-A2$	T3-Enable
$RF-D1 \rightarrow T2$	
$RF-D2 \rightarrow T3$	

S6: Execution

$T2 \rightarrow ALU-A$	
$T3 \rightarrow ALU-B$	
$ALU-C \rightarrow T2$	ADD
if $(TL_{15} = 0)$ then	Set zero flag

ALU-zero → Z	
if $(T1_{15-12} = 0000)$ then	Set carry flag
ALU -carry $\rightarrow C$	

S13: Store

if $(T1_{15-14} = 00 \text{ and } T1_{12} = 1)$ then	RFW-Enable
$T1_{5-3} \rightarrow RF-D3$	
elsif $(T1_{15-12} = 0001)$ then	
$T1_{8-6} \rightarrow RF-D3$	
else	
$T1_{11-9} \rightarrow RF-D3$	
if $(T1_{15-13} = 100)$ then	
$PC \rightarrow RF-A3$	
else	
$T2 \rightarrow RF-A3$	

ADZ:

S1: Fetching instruction

PC → ALU-A	ADD
$+2 \rightarrow ALU-B$	
$ALU-C \rightarrow PC$	PC enable
if $((!Z \text{ and } T1_0) \text{ or } (!C \text{ and } T1_1) = 1)$ then	
Back to S1	

S3: Understand and read operands

$T1_{11-9} \rightarrow RF-A1$	T2-Enable
$T1_{8-6} \rightarrow RF-A2$	T3-Enable
$RF-D1 \rightarrow T2$	
$RF-D2 \rightarrow T3$	

S6: Execution

$T2 \rightarrow ALU-A$	
$T3 \rightarrow ALU-B$	
$ALU-C \rightarrow T2$	ADD
if $(TL_{15} = 0)$ then	Set zero flag
ALU -zero $\rightarrow Z$	
if $(T1_{15-12} = 0000)$ then	Set carry flag

ALU-carry → C	

S13: Store

if $(T1_{15-14} = 00 \text{ and } T1_{12} = 1)$ then	RFW-Enable
$T1_{5-3} \rightarrow RF-D3$	
elsif $(T1_{15-12} = 0001)$ then	
$T1_{8-6} \rightarrow RF-D3$	
else	
$T1_{11-9} \rightarrow RF-D3$	
if $(T1_{15-13} = 100)$ then	
$PC \rightarrow RF-A3$	
else	
$T2 \rightarrow RF-A3$	

<u>ADI:</u>

S2: Fetching instruction

$PC \rightarrow Mem_Address$	Memory Read
Mem_Data → T1	T1-Enable
PC → ALU-A	ADD
$+2 \rightarrow ALU-B$	
$ALU-C \rightarrow PC$	PC enable

S4: Understand and read operands

$T1_{11-9} \rightarrow \text{RF-A1}$	T2-Enable
$RF-D1 \rightarrow T2$	

S7: Execution

$T2 \rightarrow ALU-A$	
$T1_{5-0} \rightarrow SE 10 \rightarrow ALU-B$	ADD
$ALU-C \rightarrow T2$	
if $(TL_{14} \text{ xor } TL_{12} = 1)$ then	Set zero flag
ALU-zero → Z	
if $(!TL_{14} \cdot T1_{12} = 1)$ then	Set carry flag
ALU-carry → C	

if $(T1_{15-14} = 00 \text{ and } T1_{12} = 1)$ then	RFW-Enable
$T1_{5-3} \rightarrow RF-D3$	
elsif $(T1_{15-12} = 0001)$ then	
$T1_{8-6} \rightarrow RF-D3$	
else	
$T1_{11-9} \rightarrow RF-D3$	
if $(T1_{15-13} = 100)$ then	
$PC \rightarrow RF-A3$	
else	
$T2 \rightarrow RF-A3$	
$T2 \rightarrow RF-D3$	RFW-Enable
$T1_{8-6} \rightarrow RF-A3$	

NDU:

S1: Fetching instruction

$PC \rightarrow ALU-A$	ADD
$+2 \rightarrow ALU-B$	
$ALU-C \rightarrow PC$	PC enable
if $((!Z \text{ and } T1_0) \text{ or } (!C \text{ and } T1_1) = 1)$ then	
Back to S1	

S3: Understand and read operands

$T1_{11-9} \rightarrow \text{RF-A1}$	T2-Enable
$T1_{8-6} \rightarrow RF-A2$	T3-Enable
RF-D1 → <i>T</i> 2	
$RF-D2 \rightarrow T3$	

S6: Execution

$T2 \rightarrow ALU-A$	
$T3 \rightarrow ALU-B$	
$ALU-C \rightarrow T2$	NAND
if $(TL_{15} = 0)$ then	Set zero flag
ALU -zero $\rightarrow Z$	
if $(T1_{15-12} = 0000)$ then	Set carry flag
ALU -carry $\rightarrow C$	

if $(T1_{15-14} = 00 \text{ and } T1_{12} = 1)$ then	RFW-Enable
$T1_{5-3} \rightarrow RF-D3$	
elsif $(T1_{15-12} = 0001)$ then	
$T1_{8-6} \rightarrow RF-D3$	
else	
$T1_{11-9} \rightarrow RF-D3$	
if $(T1_{15-13} = 100)$ then	
$PC \rightarrow RF-A3$	
else	
$T2 \rightarrow RF-A3$	

NDC:

S1: Fetching instruction

PC → ALU-A	ADD
$+2 \rightarrow ALU-B$	
ALU-C → PC	PC enable
if $((!Z \text{ and } T1_0) \text{ or } (!C \text{ and } T1_1) = 1)$ then	
Back to S1	

S3: Understand and read operands

$T1_{11-9} \rightarrow RF-A1$	T2-Enable
$T1_{8-6} \rightarrow RF-A2$	T3-Enable
$RF-D1 \rightarrow T2$	
$RF-D2 \to T3$	

S6: Execution

$T2 \rightarrow ALU-A$	
$T3 \rightarrow ALU-B$	
$ALU-C \rightarrow T2$	NAND
if $(TL_{15} = 0)$ then	Set zero flag
ALU -zero $\rightarrow Z$	
if $(T1_{15-12} = 0000)$ then	Set carry flag
ALU-carry → C	

if $(T1_{15-14} = 00 \text{ and } T1_{12} = 1)$ then	RFW-Enable
$T1_{5-3} \rightarrow RF-D3$	
elsif $(T1_{15-12} = 0001)$ then	

$T1_{8-6} \rightarrow RF-D3$	
else	
$T1_{11-9} \rightarrow RF-D3$	
if $(T1_{15-13} = 100)$ then	
$PC \rightarrow RF-A3$	
else	
$T2 \rightarrow RF-A3$	

NDZ:

S1: Fetching instruction

PC → ALU-A	ADD
$+2 \rightarrow ALU-B$	
$ALU-C \rightarrow PC$	PC enable
if $((!Z \text{ and } T1_0) \text{ or } (!C \text{ and } T1_1) = 1)$ then	
Back to S1	

S3: Understand and read operands

$T1_{11-9} \rightarrow RF-A1$	T2-Enable
$T1_{8-6} \rightarrow RF-A2$	T3-Enable
RF-D1 → <i>T</i> 2	
$RF-D2 \rightarrow T3$	

S6: Execution

$T2 \rightarrow ALU-A$	
$T3 \rightarrow ALU-B$	
$ALU-C \rightarrow T2$	NAND
if $(TL_{15} = 0)$ then	Set zero flag
ALU-zero → Z	
if $(T1_{15-12} = 0000)$ then	Set carry flag
ALU -carry $\rightarrow C$	

if $(T1_{15-14} = 00 \text{ and } T1_{12} = 1)$ then	RFW-Enable
$T1_{5-3} \rightarrow RF-D3$	
elsif $(T1_{15-12} = 0001)$ then	
$T1_{8-6} \rightarrow RF-D3$	
else	
$T1_{11-9} \rightarrow RF-D3$	

if $(T1_{15-13} = 100)$ then	
$PC \rightarrow RF-A3$	
else	
$T2 \rightarrow RF-A3$	

LHI:

S2: Fetching instruction

PC → ALU-A	ADD
$+2 \rightarrow ALU-B$	
$ALU-C \rightarrow PC$	PC-Enable

S4: Understand and read operands

$T1_{11-9} \rightarrow RF_A1$	
$RF_D1 \rightarrow T2$	T2-Enable

S8: Execution

$T1_{8-0} \rightarrow T2$	T2-Enable
T2 → 7LShifter	Left_Shift_by_7bits
7LShifter → T2	T2-Enable

S19: Store

$T2 \rightarrow RF_D3$	RF-WE
$T1_{11-9} \rightarrow RF_A3$	

<u>LW:</u>

S2: Fetching instruction

$PC \rightarrow ALU-A$	ADD
$+2 \rightarrow ALU-B$	
$ALU-C \rightarrow PC$	PC-Enable

S5: Understand and read operands

$T1_{8-6} \rightarrow RF A1$	
_	

RF D1 \rightarrow T2	T2-Enable
<u> </u>	

S7: Execution

$T2 \rightarrow ALU-A$	
$T1_{5-0} \rightarrow SE 10 \rightarrow ALU-B$	ADD
$ALU-C \rightarrow T2$	
if $(TL_{14} \text{ xor } TL_{12} = 1)$ then	Set zero flag
ALU -zero $\rightarrow Z$	
if $(!TL_{14} \cdot T1_{12} = 1)$ then	Set carry flag
ALU-carry → C	

S14: Load memory into register

T2 → Mem_Address	MRD
Mem_Data → T2	T2-E

S13: Store

if $(T1_{15-14} = 00 \text{ and } T1_{12} = 1)$ then	RFW-Enable
$T1_{5-3} \rightarrow RF-D3$	
elsif $(T1_{15-12} = 0001)$ then	
$T1_{8-6} \rightarrow RF-D3$	
else	
$T1_{11-9} \rightarrow RF-D3$	
if $(T1_{15-13} = 100)$ then	
$PC \rightarrow RF-A3$	
else	
$T2 \rightarrow RF-A3$	

<u>SW:</u>

S2: Fetching instruction

$PC \rightarrow ALU-A$	ADD
+2 → ALU-B	
$ALU-C \rightarrow PC$	PC-Enable

S3: Understand and read operands

$T1_{8-6} \rightarrow RF_A1$	
$RF_D1 \rightarrow T2$	T2-Enable

$T1_{11-9} \rightarrow RF_A2$	
$RF_D2 \rightarrow T3$	

S7: Execution

$T2 \rightarrow ALU-A$	
$T1_{5-0} \rightarrow SE 10 \rightarrow ALU-B$	ADD
$ALU-C \rightarrow T2$	
if $(TL_{14} \text{ xor } TL_{12} = 1)$ then	Set zero flag
ALU-zero → Z	
if $(!TL_{14} \cdot T1_{12} = 1)$ then	Set carry flag
ALU-carry → C	

S15: Store value to memory

T2 → Mem_Address	Memory write
T3 → Mem_Data	

S19: Store

$T1_{11-9} \rightarrow RF_A3$	RF-WE
$T2 \rightarrow RF_D3$	

LM:

S2: Fetching instruction

$PC \rightarrow ALU-A$	ADD
$+2 \rightarrow ALU-B$	
$ALU-C \rightarrow PC$	PC-Enable

S4: Understand and read operands

$T1_{11-9} \rightarrow RF_A1$	
$RF_D1 \rightarrow T2$	T2-Enable

S9: Execution

For loop i (0 to 7){	Used for loop to check which bit is 1.
If $(T1_i = 1)$ then	

T2→ Memory_address	If the bit is 1, we need to load the memory of
Memory_data→ T3	address stored in T2.
$R(i) \rightarrow RF A3$	If for loop isn't possible to fabricate on the
$T3 \rightarrow RF D3$	FPGA board, then 32 states will have to be
$T2 \rightarrow ALU-A$	defined.
$+2 \rightarrow ALU-B$	
ALU-C→ T2	
}	

<u>SM:</u>

S2: Fetching instruction

PC → ALU-A	ADD
$+2 \rightarrow ALU-B$	
$ALU-C \rightarrow PC$	PC-Enable

S4: Understand and read operands

$T1_{11-9} \rightarrow RF_A1$	
$RF_D1 \rightarrow T2$	T2-Enable

S10: Execution

For loop i (0 to 7){	Used for loop to check which bit is 1.
If $(T1_i = 1)$ then	If the bit is 1, we need to store the value of R(i)
$R(i) \rightarrow RF_A1$	in the memory of address stored in T2.
$RF_D1 \rightarrow T3$	If for loop isn't possible to fabricate on the
T2→ Memory_address	FPGA board, then 32 states will have to be
T3→ Memory_data	defined.
T2→ ALU-A	
$+2 \rightarrow ALU-B$	
ALU-C→ T2	
}	

BEQ:

S2: Fetching instruction

$PC \rightarrow ALU-A$	ADD
+2 → ALU-B	
$ALU-C \rightarrow PC$	PC-Enable

S3: Understand and read operands

$T1_{11-9} \rightarrow RF_A1$	
$RF_D1 \to T2$	T2-Enable
$T1_{8-6} \rightarrow RF_A2$	
$RF_D2 \to T3$	

S6: Execution

$T2 \rightarrow ALU-A$	
$T3 \rightarrow ALU-B$	
$ALU-C \rightarrow T2$	SUBTRACT
if $(TL_{15} = 0)$ then	Set zero flag
ALU-zero → Z	
if $(T1_{15-12} = 0000)$ then	Set carry flag
ALU-carry → C	

S16: Update PC

$PC+4 \rightarrow ALU_A$	ADD
$T1_{5-0} \rightarrow SE \rightarrow ALU_B$	
if (z) then $ALU C \rightarrow PC$	

JAL:

S2: Fetching instruction

PC → ALU-A	ADD
$+2 \rightarrow ALU-B$	
$ALU-C \rightarrow PC$	PC-Enable

S11: Execution

PC→ ALU-A	
$T1_{8-0} \rightarrow SE 7 \rightarrow ALU-B$	
$ALU-C \rightarrow PC$	PC-Enable
$T1_{8-0} \rightarrow T2$	T2-Enable

if $(T1_{15-14} = 00 \text{ and } T1_{12} = 1)$ then	RFW-Enable
$T1_{5-3} \rightarrow RF-D3$	
elsif $(T1_{15-12} = 0001)$ then	
$T1_{8-6} \rightarrow RF-D3$	
else	
$T1_{11-9} \rightarrow RF-D3$	
if $(T1_{15-13} = 100)$ then	
$PC \rightarrow RF-A3$	
else	
$T2 \rightarrow RF-A3$	

JLR:

S2: Fetching instruction

PC → ALU-A	ADD
$+2 \rightarrow ALU-B$	
$ALU-C \rightarrow PC$	PC-Enable

S5: Understand and read operands

$T1_{8-6} \rightarrow RF_A1$	
$RF_D1 \rightarrow T2$	T2-Enable

S12: Execution

PC→ ALU-A	
T2→ ALU-B	
$ALU-C \rightarrow PC$	PC-Enable

if $(T1_{15-14} = 00 \text{ and } T1_{12} = 1)$ then	RFW-Enable
$T1_{5-3} \rightarrow RF-D3$	KI W-Enable
elsif $(T1_{15-12} = 0001)$ then	
$T1_{8-6} \rightarrow RF-D3$	
else	
$T1_{11-9} \rightarrow RF-D3$	
if $(T1_{15-13} = 100)$ then	
$PC \rightarrow RF-A3$	
else	
$T2 \rightarrow RF-A3$	