Equations

Canopy Radiation

$$\delta = -23.5 \cdot \cos\left(\frac{360(D_j + 10)}{365}\right) \tag{1}$$

$$\cos(\theta) = \sin(\Omega)\sin(\delta) + \cos(\Omega)\cos(\delta)\cos(15\cdot(t - t_{sn}))$$
 (2)

$$I_{dir} = I_s \alpha^{\frac{(P/P_o)}{\cos(\theta)}} \tag{3}$$

$$I_{diff} = 0.5 \cdot I_s \cdot (1 - \alpha^{(P/P_o)/\cos(\theta)}) \cos(\theta)$$
 (4)

$$\frac{1}{2}\cos((15 \cdot t_{len})) = -\tan(\lambda)\tan(\delta) \tag{5}$$

(6)

Weather Downscaling

$$Mean = T_1 + T_2 \cdot \sin\left(2\pi \frac{D_j - D_{\text{start}}}{365}\right) \tag{7}$$

Range =
$$T_3 + (T_4 - T_3) \cdot \sin\left(2\pi \frac{D_j - D_{\text{start}}}{365}\right)$$
 (8)

Excursion =
$$\sin\left(2\pi \frac{h_r - 10}{24}\right)$$
 (9)

$$T_{air} = \text{Mean} + \text{Range} \cdot \text{Excursion}$$
 (10)

(11)

Not sure what these are

$$q = \frac{n_r}{n} \tag{12}$$

$$q = \frac{n_r}{n}$$

$$N_{eff} = \frac{\frac{(1-q)}{q}}{C_{ov}^2}$$

$$r^{\sim} = \frac{m_r}{n}$$

$$h = \frac{r^{\sim}}{q}$$

$$(12)$$

$$(13)$$

$$(14)$$

$$r^{\sim} = \frac{m_r}{n} \tag{14}$$

$$h = \frac{r^{\sim}}{q} \tag{15}$$

(16)

C4 Photosynthesis

$$V_{\max} = V_{\max,o} \cdot Kt(E_{vc\,max}) \tag{17}$$

$$R_d = R_o \cdot Kt(E_{Rd}) \tag{18}$$

$$M = \min \frac{(V_{\text{max}} + \alpha_{\text{slope}} I_{\text{abs}}) \pm \sqrt{(V_{\text{max}} + \alpha_{\text{slope}} I_{\text{abs}})^2 - 4(V_{\text{max}} \alpha_{\text{slope}} I_{\text{abs}})\theta_{\text{curve}}}}{2\theta_{\text{curve}}}$$
(19)

$$M = \min \frac{\frac{(M + k_t \cdot \frac{c_i}{P}) \pm \sqrt{(M + k_t \cdot \frac{c_i}{P})^2 - (4 \cdot M \cdot k_t \cdot \frac{c_i}{P} \cdot \beta)}}{2\theta_{\text{curve}}}$$

$$A_{\text{gross}} = \min \frac{\left(M + k_t \cdot \frac{c_i}{P}\right) \pm \sqrt{(M + k_t \cdot \frac{c_i}{P})^2 - (4 \cdot M \cdot k_t \cdot \frac{c_i}{P} \cdot \beta)}}{2 \cdot \beta}$$

$$(20)$$

(21)

C3 Photosynthesis

From Appendix 2 in Bernacchi et al 2003 Plant, Cell and Environment 26, 14191430 doi: 10.1046/j.0016-8025.2003.01050.x

$$A = (1 - \Gamma^*/C_i) \tag{22}$$

$$W_c = \frac{V_{\text{cmax}}c_i}{c_i + K_c(1 + O/K_0)}$$
 (23)

$$W_j = \frac{Jc_i}{4.5c_i + 10.5\Gamma^*} \tag{24}$$

$$\Gamma^* = \exp(19.02 - 37.83/(R(T_1 + 273.15))) \tag{25}$$

$$K_c = exp(38.05 - 36.38/R(T_1 + 273.15))$$
 (26)

$$K_0 = \exp(20.30 - 36.38/R(T_1 + 273.15)) \tag{27}$$

$$V_{c,\text{max}} = V_{c,\text{max},25^{\circ}C} exp(26.35 - 65.33/R(T_1 + 273.15))$$
 (28)

$$J = \frac{Q_2 + J_{\text{max},T} - \sqrt{(Q_2 + J_{\text{max},T})^2 - 4\Theta_{PSII}Q_2J_{\text{max},T}}}{2\Theta_{PSII}}$$
(29)

$$J_{\text{max},T} = J_{\text{max},25^{\circ}} exp(17.57 - 43.54/(R(T_1 + 273.15)))$$
(30)

From Appendix 1, Equations 7-9 in Long 1991 Plant, Cell and Environment 14, 729-739. doi:10.1111/j.1365-3040.1991.tb01439.x

$$c_i = 0.7c_a \left(\frac{1.6740 - 6.1294 \cdot 10^{-2}T + 1.1688 \cdot 10^{-3}T^2 - 8.8741 \cdot 10^{-6} + T^3}{0.73547} \right)$$
(32)

$$c_i = 0.7c_a \text{ at } 25^{\circ}C \tag{33}$$

$$O_i = 210 \left(\frac{4.7000 \cdot 10^{-2} - 1.3087 \cdot 10^{-3} T + 2.5603 \cdot 10^{-5} T^2 - 2.1441 \cdot 10^{-7} T^3}{2.6934 \cdot 10^{-2}} \right)$$
(34)

$$O_i = O_a \text{ at } 25^{\circ}C$$
 (35)

$$\phi = \frac{A_{I=50} - A_{I=25}}{25f} \tag{36}$$

Leaf Water Potential

$$h_s = \frac{e_l - VPD}{e_l} \cdot 100 \tag{37}$$

$$g_s = g_0 + g_1 \cdot A_{\text{gross}} \cdot \frac{h_s}{C_a} \tag{38}$$

$$g_{w,\text{mod}} = \left(\frac{\Psi_l - \Psi_t}{1000}\right) \cdot g_{ws} \tag{39}$$

$$g_1 = g_1 \cdot (1 - g_{w,\text{mod}})$$
 (40)

$$A_{n,\text{water stress}} = A_n \cdot h_s \tag{41}$$

(42)

????

$$J_a = 2 \cdot I_{\text{abs}} \cdot \left(\frac{1 - r - \tau}{1 - \tau}\right) \cdot \ell \tag{43}$$

$$L_b = (2.126 \cdot 10^{-5} + 1.48 \cdot 10^{-7} \cdot T_{\text{air}}) / 0.004 \cdot \sqrt{L_w / u_{\text{layer}}}$$
(44)

$$u_a = \frac{u \cdot 0.41}{\log((u - d)/z_o)} \tag{45}$$

$$g_a = \frac{(u_a^2/u_{\text{layer}}) \cdot L_b}{(u_a^2/u_{\text{layer}}) + L_b} \tag{46}$$

$$\rho_v' = 610.78 \cdot e^{\left(17.269 \cdot \frac{T_a}{T_a + 237.3}\right)} \tag{47}$$

$$\Delta \rho_{va} = \rho_v' \cdot \left(1 - \frac{h_s}{100}\right) \tag{48}$$

$$\gamma = \frac{\rho \cdot c_p}{\lambda} \tag{49}$$

$$s = 18 \cdot (2501 - 2.373 \cdot T_a) \cdot \left(\frac{\rho_v'}{8.314 \cdot (T_a + 273)^2}\right) \tag{50}$$

$$R_{lc} = 4 \cdot 5.67 \cdot 10^{-8} \cdot (273 + T_{air})^3 \cdot \Delta T \tag{51}$$

$$\Phi_N = J_a - R_{lc} \tag{52}$$

$$\Delta T = T_{\text{leaf}} - T_{\text{air}} = \frac{\Phi_n \left(\frac{1}{g_a} + \frac{1}{g_c}\right)}{\lambda \left[s + \gamma \left(1 + \frac{g_a}{g_c}\right)\right]} - \frac{\lambda \Delta \rho_{va}}{\lambda \left[s + \gamma \left(1 + \frac{g_a}{g_c}\right)\right]}$$
(53)

$$E = \frac{s \cdot \Phi_N + \lambda \cdot g_a \cdot \Delta \rho_{va}}{\lambda \cdot [s + \lambda \cdot (1 + g_a/g_c)]}$$
(54)

$$\mathbf{E_c} = \sum_{\text{layer}N}^{\text{layer1}} (\mathbf{E_{\text{sun}}} \cdot l_{\text{sun}}) + (\mathbf{E_{\text{shade}}} \cdot l_{\text{shade}})$$
 (55)

$$\mathbf{E}_{\text{tot}} = \int_{D=365}^{D_j=1} \int_{\text{hr}=24}^{hr=0} \mathbf{E_c}$$
 (56)

(57)

Sun / Shade Canopy

$$k = \frac{\sqrt{\chi^2 + \tan^2(\theta)} \cdot \cos(\theta)}{\chi + 1.744 \cdot [\chi + 1.183]^{-0.733}}$$
 (58)

$$F_{\text{sun}} = \frac{1 - e^{(-k \cdot F_{\text{canopy}}/\cos(\theta))} \cdot \cos(\theta)}{k}$$
 (59)

$$F_{\text{shade}} = F_{\text{canopy}} - F_{\text{sun}} \tag{60}$$

$$F_{\text{canopy}} = F_{\text{sun}} + F_{\text{shade}} \tag{61}$$

$$I_{\text{sun}} = I_{dir} \cdot k / \cos(\theta) + I_{\text{shade}}$$
 (62)

$$I_{\text{shade}} = I_{\text{diff}} \cdot e^{(-0.5 \cdot F_{\text{canopy}}^{0.7})} + I_{\text{scat}}$$

$$\tag{63}$$

$$I_{\text{scat}} = 0.07 \cdot I_{\text{dir}} \cdot (1.1 - 0.1 \cdot f) \cdot e^{-\cos(\theta)}$$
 (64)

$$I_{\text{total}} = I_{\text{dir}} + I_{\text{dif}} \tag{65}$$

(66)

Total Canopy Assimilation

$$A_c = (A_{c,\text{sun}} \cdot F_{\text{sun}}) + (A_{c,\text{shade}} \cdot F_{\text{shade}})$$
(67)

$$F_{\text{sun}} = \sum_{\text{layer}N}^{\text{layer}1} l_{\text{sun}}; \ l_{\text{sun}} = \frac{1 - e^{(-k \cdot F_{\text{sun}})}}{k}$$

$$(68)$$

$$F_{\text{shade}} = \sum_{\text{layer}N}^{\text{layer1}} \ell_{\text{shade}}; \ \ell_{\text{shade}} = F_{\text{sun}} - \ell_{\text{sun}}$$
(69)

$$F_{\text{canopy}} = F_{\text{sun}} + F_{\text{shade}} \tag{70}$$

$$I_d = I_{\text{diff}} \cdot e^{(-k \cdot F_{sun})} \tag{71}$$

$$I_{\ell,d} = k \cdot I_d \tag{72}$$

$$I_{\ell,s} = k \cdot I_{\text{dir}} + I_{\ell,d} \tag{73}$$

$$A_c = \sum_{\text{layer}N}^{layer1} (A_{c,\text{sun}} \cdot F_{\text{sun}}) + (A_{c,\text{shade}} \cdot F_{\text{shade}})$$
 (74)

$$A_{c,\text{tot}} = \int_{D_j=365}^{D_j=1} \int_{\text{hr}=24}^{\text{hr}=0} A_c$$
 (75)

$$g_c = \sum_{\text{laver } N}^{\text{layer1}} (g_{s,\text{sun}} \cdot l_{\text{sun}}) + (g_{s,\text{shade}} \cdot l_{\text{shade}})$$
 (76)

$$g_{c,\text{tot}} = \int_{D_i=365}^{D_j=1} \int_{\text{hr}=24}^{\text{hr}=0} g_c$$
 (77)

(78)

Allocation

$$A_{\text{stroot}} = abs(\omega_{\text{stroot}} \cdot k_{\text{stroot}}); k_{\text{stroot}} < 0$$

$$A_{\text{total}} = A_c + A_{\text{seed}} + A_{\text{stroot}}$$

$$\omega_{\text{leaf}} = \omega_{\text{leaf}} + (A_{\text{total}} \cdot k_{\text{leaf}})$$

$$\omega_{\text{stem}} = \omega_{\text{stem}} + (A_{\text{total}} \cdot k_{\text{stem}})$$

$$\omega_{\text{sroot}} = \omega_{\text{sroot}} + (A_{\text{total}} \cdot k_{\text{sroot}})$$

$$\omega_{\text{froot}} = \omega_{\text{froot}} + (A_{\text{total}} \cdot k_{\text{froot}})$$

$$\Psi_{\text{adl}} < \Psi_{\text{pt}};$$

$$k_{\text{leaf}} = k_{\text{leaf}} \cdot k_{\text{mod}};$$

$$k_{\text{stem}} = k_{\text{stem}} \cdot k_{\text{mod}};$$

$$k_{\text{stroot}} = k_{\text{stroot}} \cdot k_{\text{mod}};$$

$$k_{\text{mod}} = (\Psi_{\text{adl}} - \Psi_{\text{pt}}) \cdot \Psi_{g}; 0 \le k_{\text{mod}} \le 1$$

$$\Delta F_{\text{canopy}} = \frac{\omega_{\text{leaf}}}{Sp_{\text{leaf}}}$$

$$\Delta L_{\text{stem}} = \frac{\omega_{\text{stem}}}{Sp_{\text{stem}}}$$

$$\Delta L_{\text{sroot}} = \frac{\omega_{\text{root}}}{Sp_{\text{stoot}}}$$

$$(88)$$

Soil Evaporation

$$E_{\text{soil}} = \sum \frac{(\Psi_{\text{si}} - g \cdot z_i - \Psi_x)}{R_{\text{si}} + R_{\text{ri}}}$$

$$(90)$$

$$R_{\rm ri} = R_r \cdot \frac{\sum L_i}{L_i} \tag{91}$$

$$\Psi_x = \sum \frac{(\Psi_{si} - q_w \cdot z_i)}{R_{si} + R_{ri}} / \sum \frac{1}{R_{si} + R_{ri}}$$
(92)

$$\Psi_L = \Psi_x - E \cdot R_L \tag{93}$$

$$E_{d} = \begin{cases} E_{p}, & \theta^{*} \geq \theta_{1} \\ E_{p} \left(\frac{\theta - \theta_{2}}{\theta_{1} - \theta_{2}} \right), & \theta_{2} < \theta^{*} < \theta_{1} \\ 0, & \theta^{*} \leq \theta_{2} \end{cases}$$

$$(94)$$

$$\theta_{i+1} = \theta_i - \frac{E_i \cdot \theta_i}{\rho_w \cdot d_s} \tag{95}$$

$$g_{a,\text{soil}} = \frac{(2.126 \cdot 10^{-5}) + (1.48 \cdot 10^{-7}) \cdot T_{\text{soil}}}{\left(0.004 \cdot \sqrt{\frac{S_{size}}{u_{\text{soil}}}}\right)}$$
(96)

$$R_{lc,\text{soil}} = ((4 \cdot 5.67 \cdot 10^{-8}) \cdot (273 + T_{\text{soil}})^3 \cdot \Delta T)$$
(97)

$$J_{a,\text{soil}} = 2 \cdot I_{\text{soil}} \cdot \left(\frac{1 - S_r - S_\tau}{1 - S_\tau}\right) \tag{98}$$

$$\Phi_{N,soil} = J_{a,soil} - R_{lc,soil} \tag{99}$$

$$E = \frac{s \cdot \Phi_{N,soil} + \lambda \cdot g_{a,soil} \cdot \Delta \rho_{va}}{\lambda \cdot [s + \gamma]}$$
(100)

(101)

Respiration

$$R_{\text{total}} = (a \cdot A_n) + (b_{\text{stem}} \cdot \omega_{\text{stem}}) + (b_{\text{root}} \cdot \omega_{\text{root}})$$
 (102)

(103)

Energy Balance

$$HS_{\text{soil}} = HO_{\text{soil}} \cdot exp \left[\frac{h_{\text{soil}}}{46.97 \cdot (T_s + 273.16)} \right]$$
 (104)

$$HO_{\text{soil}} = 1.323 \cdot exp \left[\frac{17.27 \cdot T_s}{273.3 + T_s} \right] / T_s + 273.16$$
 (105)

$$G_{\text{soil}} = -\lambda_{\text{soil}} \frac{\delta T}{\delta x} \tag{106}$$

$$G_{\text{soil}} = -\lambda_{\text{soil}} \cdot \left[\frac{T_2 - T_s}{\Delta z} \right] + (T_s - T_l) \cdot C \cdot \frac{\Delta z}{(2 \cdot \Delta t)}$$
 (107)

Definition of Terms

Term	Units	Definition	Value
$A_{\rm gross}$	$\mu mol mol^{-1}$	Gross rate of CO ₂ uptake per unit leaf area	-
$A_{ m net}$	$\mu mol mol^{-1}$	Net rate of CO ₂ uptake per unit leaf area	-
A_c	$\mu mol mol^{-1}$	Net canopy rate of CO ₂ uptake per unit ground area	-
$A_{c,\mathrm{tot}}$	$g m^{-2} yr^{-1}$	A_c integrated over the course of a year	-
$A_{c,\mathrm{sun}}$	$mol \ mol^{-1}$	Net rate of CO ₂ uptake per unit area sunlit leaves	-
$A_{c,\text{shade}}$	$mol m^{-2} s^{-1}$	Net rate of CO ₂ uptake per unit area shaded leaves	-
A	$\mu mol mol^{-1}$	Predicted rate of CO ₂ uptake	-
C_a	$\mu mol mol^{-1}$	Atmospheric CO ₂ concentration	378
a	Dimensionless	Coefficient for growth respiration	0.2
c_i	$\mu mol mol^{-1}$	Intercellular concentration of CO ₂ in air corrected for sol-	Calculated
		ubility relative to 25°C	based on
			A, c_a and
			h_s
$b_{ m leaf}$	Dimensionless	Coefficient for maintenance respiration for leaf	0.03
$b_{ m stem}$	Dimensionless	Coefficient for maintenance respiration for stem	0.015
$b_{ m root}$	Dimensionless	Coefficient for maintenance respiration for root	0.01
c_p	$J kg^{-1} K - 1$	Specific heat capacity of dry air	1010
\tilde{C}_{ov}	Dimensionless	Coefficient of Variation for probability of rain in each	_
		month	
D_j	d	day of year	_
$D_{ m start}^{j}$	d	Day of year on which the sinusoidal temperature function	45
— 50ar 0		is assumed to start	
d	dimensionless	Zero plane displacement	0.77
E	$J mol^{-1}$	Activation energy	$R_d =$
_	· · · · · · ·		66405
			$V_{\rm max} =$
			6800
E_l	$mmolm^{-2}s^{-1}$	Evapo/transpiration rate at sunlit/shaded leaves in a	-
— t		canopy layer	
E_c	$mmolm^{-2}s^{-1}$	Instantaneous canopy evapo/transpiration rate	_
E_{tot}	$mmolm^{-2}yr^{-1}$	E_c integrated over the course of a year	_
e_l	kPa	Saturated water VPD in the leaf	_
$F_{\rm canopy}$	$m^2 m^{-2}$	Canopy leaf area index	9
$F_{\rm shade}$	$m^2 m^{-2}$	Canopy shaded leaf area index	-
F_{sun}	$m^2 m^{-2}$	Canopy sunlit leaf area index	_
F_{sum}	$m^2 m^{-2}$	Summed leaf area index from top of canopy to layer con-	
1 sum	110 110	sidered in calculation	
a	$mmolm^{-2}s^{-1}$	Leaf boundary layer conductance	_
g_a	$mmol m^{-2} s^{-1}$	Leaf stomatal conductance	_
g_s	$mmol m^{-2} s^{-1}$	Canopy conductance of CO ₂	_
g_c	dimensionless	Stomatal slope factor	3
g_0	dimensionless	Stomatal intercept factor	0.08
g_1	$mmol m^{-2} s^{-1}$	The sum of stomatal conductance of sunlit leaves	-
$g_{s,\mathrm{sun}}$	$mmol m^{-2} s^{-1}$	The sum of stomatal conductance of shaded leaves	_
$g_{s,\mathrm{shade}}$	h	Hour of day	_
h_r	n %	Relative humidity	_
h_s		Height of canopy	5
$h_{\rm canopy}$	m m	Wind speed measurement height	2
h_{ms}	m	Height of canopy layer above ground	۷
h_{layer}	$\begin{array}{c} \mathrm{m} \\ \mu mol \ m^{-2} \ s^{-1} \end{array}$		-
I	$mmday^{-1}$	Photon flux The amount of water received on a given rainy day	-
h	$mmaay$ $\mu mol m^{-2} s^{-1}$	The amount of water received on a given rainy day	-
$I_{ m abs}$	$\mu moi m - s$	Photon flux absorbed by either sunlit or shaded leaves	-
		within a canopy layer	

Table 1 – continued from previous page

${\bf Table} {\bf 1-continued} {\bf from} {\bf previous} {\bf page}$					
Term	Units	Definition	Value		
$I_{ m dir}$	$\mu mol m^{-2} s^{-1}$	Photon flux in direct solar beam	-		
$I_{ m diff}$	$\mu mol m^{-2} s^{-1}$	Photon flux in diffuse radiation	-		
$I_{ m total}$	$\mu mol m^{-2} s^{-1}$	Total photon flux incident on canopy	-		
I_s	$\mu mol m^{-2} s^{-1}$	Solar constant, photon flux in a plane perpedicular to the solar beam above the atmosphere	2600		
$I_{ m short}$	$\mu mol m^{-2} s^{-1}$	Short wave radiation component of incident light	_		
$I_{ m soil}$	$\mu mol m^{-2} s^{-1}$	Solar radiation incident upon soil surface			
$I_{ m sun}$	$\mu mol m^{-2} s^{-1}$	Mean I for leaves which receive direct solar radiation, i.e.	-		
T	$\mu molm^{-2}s^{-1}$	are sunlit			
I_{shade}	$\mu mol m^{-2} s^{-1}$	Mean I for leaves shaded from direct solar radiation	-		
$I_{ m scat}$		Direct beam radiation scattered by surfaces within the canopy	-		
J_a	$\mu mol m^{-2} s^{-1}$	Total solar radiation absorbed by either sunlit or shaded leaves within a canopy layer	-		
k	dimensionless	Foliar absorption coefficient	-		
K_c	$\mu mol mol^{-1}$	Michaelis constant for CO ₂	460		
$K_{\rm CO_2}$	$mol m^{-2} s^{-1}$	Initial slope of photosynthetic CO ₂ response	0.7		
K_{o}	$mmol mol^{-1}$	Michaelis constant for O ₂	330		
$k_{\rm slope}$	Dimensionless	Initial slope of photosynthetic light response	0.04		
LN	gm^{-2}	Leaf nitrogen concentration	_		
k_{leaf}	Dimensionless	Partitioning coefficient for leaf	_		
$k_{ m stem}$	Dimensionless	Partitioning coefficient for stem	_		
$k_{ m sroot}$	Dimensionless	Partitioning coefficient for storage root	_		
$k_{ m froot}$	Dimensionless	Partitioning coefficient for fine root	_		
$k_{ m stroot}$	Dimensionless	Partitioning coefficient for structural root	_		
$\omega_{ m leaf}$	gram	Leaf biomass	_		
$\omega_{ m stem}$	gram	Stem biomass	_		
$\omega_{ m sroot}$	gram	Biomass of storage root	_		
$\omega_{ m froot}$	gram	Biomass of fine root	_		
$\omega_{ m stroot}$	gram	Biomass of structural root	_		
Sp_{leaf}	${\rm gram}~{\rm m}^{-2}$	Specific leaf area	50		
$Sp_{ ext{stem}}$	${\rm gram}~{\rm m}^{-1}$	Specific stem elongation factor	60		
$Sp_{ ext{froot}}$	gram m ⁻¹	Specific fine root elongation factor	10		
$Sp_{ ext{stroot}}$	gram m ⁻¹	Specific structural root elongation factor	60		
L_w	m	Leaf width in the direction of the wind	0.04		
O_a	$mmol mol^{-1}$	Atmospheric O_2 concentration	210		
	Dimensionless	The probability that there is no rainfall	210		
$rac{q}{n}$	Day	The number of days in a month	29, 30, or 31		
nr	Day	The number of rainy days in a month	-		
O_i	$mmol m^{-2} s^{-1}$	Intercellular concentration of O_2 in air corrected for solubility relative to 25°C	-		
P	kPa	Atmospheric pressure at Lake Naivasha	80		
P_o	kPa	Standard atmospheric pressure at sea level	101.324		
P_s	kPa	Leaf surface partial pressure of CO ₂	-		
v	m a	Saturated water vapour concentration	_		
Q_{10}	dimensionless	Is the proportional rise in a parameter for a 10°C increase in temperature	2		
r	dimensionless	Leaf reflection coefficient for total solar radiation	0.2		
r R	$J k^{-1} mol^{-1}$	Real gas constant			
	$mol \ m^{-2} \ s^{-1}$	Real gas constant Dark respiration rate at $25^{\circ}C$	8.314		
R_o	$mol \ m \ ^2 \ s \ ^1 \ mol \ m^{-2} \ s^{-1}$		3		
R_d	$mol \ m \ ^2 \ s \ ^1 \ mol \ m^{-2} \ s^{-1}$	Dark respiration at a given temperature	-		
$R_{\rm lc}$	$mol \ m \ ^2 \ s$ kPa K $^{-1}$	Longwave radiation	-		
s	кга К	Slope of saturated water vapor pressure change with respect to temperature (look up table)	-		

Table 1 – continued from previous page

Term	\mathbf{Units}	Definition	Value
s_p	dimensionless	Spectral imbalance	-
$S_{ m size}$	m	Average size of soil particles	0.04
S_r	Dimensionless	Soil reflectance	0.2
S_t	Dimensionless	Soil transmission	0.01
-	Dimensionless	Leaf transmittance coefficient	
L	h	Time of day	_
sn	h	Time of solar noon	12
$T_{ m leaf}$	$^{\circ}\mathrm{C}$	Leaf temperature	_
$T_{ m air}$	$^{\circ}\mathrm{C}$	Ambient air temperature	_
$T_{ m soil}$	$^{\circ}\mathrm{C}$	Soil surface temperature	_
T_1	$^{\circ}\mathrm{C}$	Annual mean air temperature	18
T_2	$^{\circ}\mathrm{C}$	Annual range in air temperature	2
T_3	$^{\circ}\mathrm{C}$	Average daily range in air temperature	7
-	$^{\circ}\mathrm{C}$		7
Γ_4	${ m m~s^{-1}}$	Maximum daily range in air temperature	
u		Measured wind speed at known height (2m)	2
u_{layer}	${ m m \ s^{-1}} \\ { m -1}$	Wind speed in a given canopy layer	-
$u_{ m soil}$	${\rm m\ s^{-1}}$	Wind speed at soil surface	-
$V_{ m max}$	$mol\ m^{-2}\ s^{-1}$	Maximum rubP saturated rate of carboxylation at a given	-
	, 9 1	temperature	
V_{c,\max_o}	$mol \ m^{-2} \ s^{-1}$	Maximum rubP saturated rate of carboxylation at $25^{\circ}C$	39
VPD	kPa	Leaf-air water vapour pressure deficit	-
z_o	m	Roughness length	0.234
χ	dimensionless	The ratio of horizontal:vertical projected area of leaves in	1
		the canopy segment	
α	dimensionless	Atmospheric transmittance	0.85
slope	$mol m^{-1}$	Initial slope of photosynthetic CO ₂ response	0.7
Θ_{curve}	dimensionless	Curvature parameter	-
5	degrees	Solar declination	_
Ω	degrees	Latitude	_
Э	degrees	Solar zenith angle	_
curve	dimensionless	Curvature parameter	0.83
λ	MJ/Kg	Latent heat of vapourisation	-
γ	Pa K ⁻¹	psychrometer constant	_
	mol mol ⁻¹	The quantum yield of CO ₂ uptake determined by the initial	0.04
$\alpha_{ m slope}$	mor mor		0.04
ρ		slope of the response of A versus I_{abs}	0.02
3 V 1		C ₄ curvature parameter	0.93
Kt	MDa	C ₄ slope factor	-
Ψ_l	MPa MPa	Leaf water potential	-
Ψ_t	MPa	Threshold leaf water potential for decreasing gs	-
Φ_N	$\mathrm{W}~\mathrm{m}^{-2}$	Net radiation	-
$\Psi_{ m adl}$	MPa	Average daily plant water potential	-
$\Psi_{ m pt}$	MPa	Threshold water potential	-
Z	m	Thickness of a soil layer	-
Ψ_x	MPa	xylem water potential	-
$\Psi_{ m si}$	MPa	Soil water potential of the ith layer	-
q_w	$\mathrm{Kg}\;\mathrm{s}^{-1}$	Flux of water	-
$R_{\rm si}$	$m^3ka^{-1}s^{-1}$	Soil resistance of the ith zone	-
$R_{\rm ri}$	$M^3kq^{-1}s^{-1}$	root resistance of the ith zone	-
L_i	$cm cm^{-3}$	Root density of ith zone	-
g	$m s^{-2}$	Gravitional constant	9.8
R_L	$m^3 kg^{-1} s^{-1}$	Leaf resistance	-
E_d	$g m^{-2} s^{-1}$	Potential soil evaporation	_
-a	$\frac{gm}{gm^{-2}}\frac{s}{s^{-1}}$	Actual soil evaporation	_
F_c			
E_p Θ^*	Kgm^{-3}	Actual volumetric water content	_

Table 1 – continued from previous page

Term	Units	Definition	Value
Θ_2	$Kg m^{-3}$	The volumetric water content for wilting point	-
d_s	m	Soil depth	-
$ ho_w$	Kgm^{-3}	Density of water	1000
$R_{lc,soil}$	$mol m^{-2} s^{-1}$	Soil longwave radiation	-
$I_{ m soil}$	$W m^{-2}$	Solar radiation on soil	-
Θ_i	Kgm^{-3}	The volumetric water content of the ith day	-
$\Delta ho_{ m va}$	KPa	Vapor pressure deficit	-
HO_{soil}	$Kg m^{-3}$	Saturated humidity of the air at the soil surface	-
$HS_{\rm soil}$	Kgm^{-3}	Humidity of the air at the soil surface	-
$h_{ m soil}$	m	Water pressure head	-
λ	$W/(m^{\circ}C)$	Thermal conductivity for the soil surface	-
G_{soil}	$W m^{-2}$	Soil heat flux	-