PassGAN Implementation

Taylor Barmak, Rachel Benton, Tanay Bapat, and Nithin Vijayakumar

Motivation

Paper: https://arxiv.org/pdf/1709.00440.pdf

Paper Motivation

- Makes the case for using stronger passwords
- To improve on HashCat and John the Ripper
- To discover more passwords by comparing hashes
- Novel application of GANs (applying to text instead of images)

Our Motivation

- Learn more about Generative Adversarial Networks
- Gain experience with Deep Learning applications
- Learn how to protect against password cracking

Background

- PassGAN is a tool that can generate passwords based on an input dataset.
- This tool uses a Generative Adversarial Network, which utilize Generator/Discriminator subnetworks that constantly evaluate the other, so each gets more adept at their task.
- The Generator therefore gets trained on how to generate passwords that are similar to the input distribution, to "trick" the Discriminator, which tries to distinguish between generated and real passwords.
- The end tool would just be the Generator Network, which can generate billions of passwords.

Related Work

- Two popular rule-based password guessing tools are John The Ripper and HashCat. They use multiple types of password guessing strategies.
- Markov models were used to generate password guesses by Narayanan. Markov models use manually defined password rules.
- This technique was improved on with Probabilistic Context-Free Grammars in a paper by Weir. These PCFGs demonstrated how to learn rules from password distributions.
- Ma and Durmuth have extended the work on PCFG.
- The first paper using neural networks on passwords is in 2006 by Ciaramella.
- Recently, Melicher et al. wrote a paper about using recurrent neural networks on passwords. This, however, was used to assess the strength of a password.

Claim / Target Task

- Our target task is to reproduce this paper and implement PassGAN, and attempt to find areas for improvement.
- We will use PyTorch to build a Generative Adversarial Network to create passwords and test them against known hashes.
- We want to reproduce the novel results found in the paper on the RockYou and LinkedIn datasets.
- In addition, we would like to test our implementation on several other similar data sets that were leaked after the paper's initial release.
- We will show the importance of not using common passwords or the same password for multiple websites.

Why needed (I)

- Current bleeding-edge password-guessing tools:
 - HashCat & John the Ripper
 - Check billions of passwords per second against password hashes
 - Utilizes dictionary-generation rules
 - Issues
 - limited success due to <u>specialized expertise needed</u>
 - Very <u>laborious</u> algorithms
 - Needs to be tuned on new data to work effectively
- Figures demonstrating need for password security research:
 - (See Next Slide)

Why needed (II)

Data Breaches Over Time

Proposed Solution

- Recreate PassGAN tool exactly according to the Paper
- Use a series of Residual blocks composed of 1-dimensional convolutional layers for the Generator and Discriminator
- Will create passwords using a Generative Adversarial Network (GAN) on PyTorch
- Planning to use LinkedIn and RockYou datasets (from paper)
 - to test tool and two of the paper's main claims
- Additionally, test tool on Dubsmash dataset
 - a leak of 160M+ passwords
 - so far, roughly 20M have been cracked publicly

Implementation

- Built using Pytorch following the exact architecture and techniques used in the paper
- Relied on the WGAN-GP paper, on which PassGAN built off of

```
1: while \theta has not converged do
  2:
              for t = 1, ..., n_{\text{critic}} do
                     for i = 1, ..., m do
  3:
                            Sample real data x \sim \mathbb{P}_r, latent variable z \sim p(z), a random number \epsilon \sim U[0,1].
 4:
                            \tilde{\boldsymbol{x}} \leftarrow G_{\theta}(\boldsymbol{z})
  5:
                            \hat{\boldsymbol{x}} \leftarrow \epsilon \boldsymbol{x} + (1 - \epsilon)\tilde{\boldsymbol{x}}
 6:
                            L^{(i)} \leftarrow D_w(\tilde{x}) - D_w(x) + \lambda (\|\nabla_{\hat{x}} D_w(\hat{x})\|_2 - 1)^2
 7:
                     end for
 8:
                     w \leftarrow \operatorname{Adam}(\nabla_w \frac{1}{m} \sum_{i=1}^m L^{(i)}, w, \alpha, \beta_1, \beta_2)
 9:
              end for
10:
              Sample a batch of latent variables \{z^{(i)}\}_{i=1}^m \sim p(z).
11:
              \theta \leftarrow \operatorname{Adam}(\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} -D_{w}(G_{\theta}(\boldsymbol{z})), \theta, \alpha, \beta_{1}, \beta_{2})
12:
13: end while
```

Implementation

- Generator and Discriminator composed of Residual Blocks
- Residual Blocks have shortcut connections which help prevent vanishing/exploding gradients

Data Summary

- Dubsmash dataset contains 22,119,460 cracked passwords
- Each line in the dataset had a hashed version of the password separated from the plaintext version by '=:'.
 - o pbkdf2_sha256\$12000\$00Lj5R6V38Kz\$+dnX5a0ILWN
 /7vomuw1KCtebUP3jEXVeOE1pIJgKpW8=:purple11
- We processed the data by extracting the plaintext password from each row.
- We only used passwords that were 10 characters in length or less.
 - 20,482,352 passwords (92.5%)
- '|' was added to pad passwords fewer than 10 characters.
 - o password|| hello|||| 12345||||

Data Summary

Password	Frequency	
12345	2497511	
123456	600495	
123456789	504007	
12345678	279592	
1234567890	173441	
dubsmash	144141	
1234567	110885	
password	95766	
qwerty	95478	
00000	77946	

Code Walkthrough

Experimental Results

- Later iterations learned more natural sequences of characters
- Every 15,000 iterations, the dataset was shuffled and repeated

Iteration 1	00[' qJsx3P	M63VK}],hZ	{ wY*Zn9MK
Iteration 1,000	Sacdmama	1utn1 34	cdbdb123
Iteration 5,000	lucex0Q0Q@	12315	chschos122
Iteration 10,000	Veyminop9	morebbet	gasmort
Iteration 25,000	pugharda	almarty8ip	1234567893
Iteration 75,000	madia	brace2013	pania
Iteration 158,000	gameett!	asheelee18	12345678on

Experimental Analysis

- We generated 1,000,000,000 passwords
- The passwords captured 47.68% of the passwords of the unseen test set
- Sample of matched passwords
 - o mollyy angles99 sahara123 melinda 28082003
- Sample of unmatched test set passwords
 - o joey1021 1607681 9946805264 purple01 07272001
- Sample of unmatched generated passwords
 - o miay1333 to412515 Porthe608 Perkla98 Aohstriey

Contributions

We have built an implementation of the PassGAN paper

Why ours is new/significant:

- Ours is at a higher level of Python and PyTorch
 - 'Most updated' version of PassGAN
- Previous papers used deprecated software and libraries
 - Our code makes this process more accessible for people to experiment with
- Applying it to a new dataset
 - Demonstrates ability of tool to be generalized
- Reemphasize the importance of having different passwords
 - Show one of the ways passwords can be found

Constraints and Limitation

- Time Constraints:
 - Running the code took a significant amount of time
 - Didn't allow for as much adjustment/finetuning throughout the project period
 - Datasets: Limit on how many different datasets could be used each takes a significant amount of time
 - Iterations: Limited number of iterations can be done, limited our results, which limits the demonstrable capability of our tool
- Availability of password data to use
 - Limited selection options for password datasets
 - Limits how we can demonstrate ability of tool
- Couldn't have worked with multiple datasets efficiently
 - Difficult to parallelize related to time constraints

Conclusion and Future Work

- Using GANs is an effective way to generate passwords from a set of known passwords
- It can be generalized to datasets outside of the datasets used in the original paper
- These concepts are still SOTA in higher levels of Python
 - Reasserts efficacy of the PassGAN method
- We would like to do further research with
 - Training and testing splits within a single dataset vs training on multiple websites
 - Training with datasets on sites that have passwords with greater requirements
 - Trying passwords with different length requirements

References

- Hitaj, Briland, et al. "PassGAN: A Deep Learning Approach for Password Guessing." *Applied Cryptography and Network Security Lecture Notes in Computer Science*, 14 Feb. 2019, pp. 217–237., doi:10.1007/978-3-030-21568-2_11.
- "More than 96% of Consumers Are Sharing up to Six Passwords with Other People." SaferPass Blog, 14 July 2016, blog.saferpass.net/more-than-96-of-consumers-are-sharing-up-to-six-pass words-with-other-people/.
- Reklaitis, Victor. "How the Number of Data Breaches Is Soaring in One Chart." *MarketWatch*, MarketWatch, 25 May 2018, www.marketwatch.com/story/how-the-number-of-data-breaches-is-soaring -in-one-chart-2018-02-26.
- s3in!c. "Leak 'Dubsmash.com'." Hashes.org Leak 'Dubsmash.com', hashes.org/leaks.php?id=1793.