Homework 3 - Polynomial & Piecewise Polynomial Interpolation

1. **Polynomial interpolation.** Consider the 3 points (x_i, y_i) , i = 1, 2, 3 given by (-2,1), (0,-2), and (3,1). We want to first determine the Lagrange form of the interpolating polynomial and then evaluate the polynomial at a given point to given us an approximation there. That is, we want to write the polynomial as

$$p_2(x) = y_1 L_1(x) + y_2 L_2(x) + y_3 L_3(x)$$

where each $L_i(x)$ is a quadratic polynomial satisfying $L_i(x_i) = 1$ and $L_i(x_j) = 0$ for $i \neq j$.

(a) Determine the quadratic polynomials $L_1(x), L_2(x), L_3(x)$ and verify that they satisfy the conditions

$$L_1(x_1) = 1$$
, $L_1(x_2) = L_1(x_3) = 0$ $L_2(x_2) = 1$, $L_2(x_1) = L_2(x_3) = 0$ $L_3(x_3) = 1$, $L_3(x_1) = L_3(x_2) = 0$

Simplify each expression and write as $ax^2 + bx + c$ for constants a, b, c.

- (b) Write out $p_2(x)$ in terms of these 3 quadratic polynomials. You do not have to simplify it.
- (c) Evaluate the polynomial at x = 1. Show your work.
- 2. **Piecewise Linear Polynomial interpolation**. Consider the 3 points (x_i, y_i) , i = 1, 2, 3 given by (0,-2), (-2,1), and (3,1). We want to determine the piecewise linear interpolating polynomial for these points and evaluate it at a point.
 - (a) Give the number of linear polynomials needed and the interval where each is defined.
 - (b) Determine the piecewise linear interpolating polynomial for these points; write each line in the form y(x) = ax + b for constants a and b. Be sure to give the interval where each linear polynomial is defined in your definition.
 - (c) Evaluate your piecewise linear interpolant at x=1. Show your work.
 - (d) Compare your result in (c) with those from (1c). Are they the same? Why or why not?
- 3. Linear Regression. The line which fits the points

$$(1,3)$$
 $(2,-2)$ $(3,-1)$ $(4,-5)$

using linear regression is -2.3x + 4.5. These points and the line are plotted on the next page.

- (a) On the given plot draw the vertical distances whose sum of the squares of these distances are minimized in the regression process.
- (b) Compute the actual variance (the sum of the squares of the distance from each point to the line). Leave your answer as the sum of the squares of numbers; you do not need to simplify. You may check your answers using Python but you should do this by hand.
- (c) Using this linear fit to the data, what is the prediction for x = 2.5?

