

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 63800 N
                                                                 M_{\star}
                                                                           = 2170000 Nmm
                                                                            = 200 \text{ N/mm}^2
          = 41900 N
                                                                           = 200000 \text{ N/mm}^2
          = 108000 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                  \sigma_{tresca} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 66200 N
                                                                 M_{\star}
                                                                            = 2180000 Nmm
          = 44700 N
                                                                            = 200 \text{ N/mm}^2
                                                                            = 200000 \text{ N/mm}^2
          = 75700 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{IId}}
                                                                                                                                   \sigma_{tresca} =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 79500 N
                                                                 M_{\star}
                                                                            = 2670000 Nmm
                                                                            = 200 \text{ N/mm}^2
          = 33000 N
                                                                            = 200000 \text{ N/mm}^2
          = 90000 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{IId}}
                                                                                                                                   \sigma_{tresca} =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 55400 N
                                                                         M_{\star}
                                                                                    = 2620000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 200 \text{ N/mm}^2
            = 35200 N
                                                                                    = 200000 \text{ N/mm}^2
           = 94700 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                                  \sigma_{tresca} =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 49000 N
                                                                  M_{\star}
                                                                             = 1020000 Nmm
T_y \\ M_t
                                                                             = 200 \text{ N/mm}^2
           = 29800 N
                                                                             = 200000 \text{ N/mm}^2
          = 83900 Nmm
                                                                  \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                     \sigma_{\text{IId}}
                                                                                                                                     \sigma_{tresca} =
                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                                                     \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 52700 N	M _t	= 60700 Nmm	σ_{a}	= 200 N/mm ²	G	$= 73000 \text{ N/mm}^2$
T_{y}	= 31100 N	M_x	= 1040000 Nmm	Ē	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_d$	=	θ_{t}	=
A _*	=	$\tau(M_t)_d$	₁ =	σ_{ls}	=	\mathbf{r}_{u}	=
S_{u}^{n}	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	
_							

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 59400 N
                                                                  M_{\star}
                                                                             = 1240000 Nmm
T_y \\ M_t
                                                                             = 200 \text{ N/mm}^2
           = 23400 N
                                                                             = 200000 \text{ N/mm}^2
          = 68200 Nmm
                                                                  \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                     \sigma_{\text{IId}}
                                                                                                                                     \sigma_{tresca} =
                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                                                     \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 41900 N
                                                                        M_{\star}
                                                                                    = 1190000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 200 \text{ N/mm}^2
            = 24900 N
                                                                                    = 200000 \text{ N/mm}^2
           = 72500 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 63900 N
                                                                 M_{\star}
                                                                           = 2390000 Nmm
                                                                            = 200 \text{ N/mm}^2
          = 48100 N
                                                                           = 200000 \text{ N/mm}^2
          = 111000 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                  \sigma_{tresca} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 67700 N	M _t	= 79500 Nmm	σ_{a}	$= 200 \text{ N/mm}^2$	G	$= 73000 \text{ N/mm}^2$
T_v	= 51100 N	M_x	= 2420000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$	=	$ au_{d}$	=	θ_{t}	=
A _.	=	$\tau(M_t)_c$	₃ =	σ_{ls}	=	r_u	=
S_{u}^{n}	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_{v}	=
C_{w}	=	$\tau(T_{vb})$) _d =	σ_{Id}	=	r_{o}	=
J_u	=	$\tau(T_{v})_{s}$, =	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_c$	₁ =	σ_{tresca}	=	•	

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 79700 N
                                                                 M_{\star}
                                                                            = 2990000 Nmm
                                                                            = 200 \text{ N/mm}^2
          = 36500 N
                                                                            = 200000 \text{ N/mm}^2
          = 92900 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{IId}}
                                                                                                                                   \sigma_{tresca} =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 55400 N
                                                                 M_{\star}
                                                                            = 2920000 Nmm
                                                                            = 200 \text{ N/mm}^2
          = 40100 N
                                                                            = 200000 \text{ N/mm}^2
          = 97500 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{IId}}
                                                                                                                                   \sigma_{tresca} =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{ld}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 60500 N
                                                                        M_{\star}
                                                                                    = 1300000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 200 \text{ N/mm}^2
            = 29600 N
                                                                                    = 200000 \text{ N/mm}^2
           = 98900 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 62800 N	M,	= 69100 Nmm	σ_{a}	= 200 N/mm ²	G	= 73000 N/mm ²
T_y	= 30600 N	M_x	= 1220000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$	=	$ au_{d}$	=	θ_{t}	=
A _.	=	$\tau(M_t)_c$	_i =	σ_{ls}	=	r_u	=
$\hat{S_u}$	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{vb})$	d=	σ_{ld}	=	r_{o}	=
J_u	=	$\tau(T_v)_s$	=	σ_{IId}	=	J_{p}	=
J_v	=	$\tau(T_{v})_{d}$	=	σ_{tresca}	=	•	
		,					

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.28.06.10

28.06.10

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 74500 N
                                                                M_{\star}
                                                                          = -1650000 Nmm
T_y \\ M_t
                                                                          = 200 \text{ N/mm}^2
          = 23100 N
                                                                          = 200000 \text{ N/mm}^2
          = 81300 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
                                                                                  = -1580000 Nmm
Ν
           = 53100 N
                                                                      M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 200 \text{ N/mm}^2
           = 24400 N
                                                                                  = 200000 \text{ N/mm}^2
           = 87400 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 54000 N
                                                                       M_{\star}
                                                                                  = 1510000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 200 \text{ N/mm}^2
           = 36500 N
                                                                                  = 200000 \text{ N/mm}^2
           = 92400 Nmm
                                                                       \tau(M_t)_d =
y_{G}
                                                                                                                                              \sigma_{\text{IId}}
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{ld}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 56300 N	M _t	= 65100 Nmm	σ_{a}	$= 200 \text{ N/mm}^2$	G	$= 73000 \text{ N/mm}^2$
T_y	= 38400 N	M_x	= 1470000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _*	=	$\tau(M_t)_c$	_j =	σ_{ls}	=	r_u	=
$\hat{S_u}$	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_{v}	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_c$	₁ =	σ_{tresca}	=	•	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 68100 N
                                                                       M_{\star}
                                                                                  = 1890000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 200 \text{ N/mm}^2
           = 27900 N
                                                                                  = 200000 \text{ N/mm}^2
           = 77700 Nmm
                                                                       \tau(M_t)_d =
y_{G}
                                                                                                                                              \sigma_{\text{IId}}
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{ld}}
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 46700 N
                                                                       M_{\star}
                                                                                  = 1810000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 200 \text{ N/mm}^2
           = 29900 N
                                                                                  = 200000 \text{ N/mm}^2
           = 80700 Nmm
                                                                       \tau(M_t)_d =
y_{G}
                                                                                                                                              \sigma_{\text{IId}}
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{Id}}
```