HEALTHCARE ASSISTANT

Submitted by

Remya Mavila Samridhi Agrawal Ashwini Rudrawar

Deleted: ¶

Deleted: ¶

Abstract	Error! Bookmark not defined.
1.Introduction	5
2.Related Work	7
3.DataSet Overview	7
3.1 What is Mimic 3?	8
3.2 Why is it important?	8
3.3 Methods to access Mimic III	9
3.4 Overview of the MIMIC-III data	9
4.Length of Stay	10
4.1 Data Analysis and Model Evaluation	10
4.2 Exploratory Data Analysis and Visualization:	10
4.2.1 ADMISSIONS	11
LOS	11
ETHNICITY	12
RELIGION	13
ADMISSION_TYPE	14
INSURANCE	15
MARITAL_STATUS	15
4.2.2 PATIENTS	16
GENDER	17
AGE	17
4.2.3 DIAGNOSES_ICD	18
4.2.4 ICUSTAY	20
4.3 Model Building and Evaluation	21
4.3.1 Experiments and Results	22
5. Chances of Readmission	22
5.1 Data Analysis and Model Evaluation	22
5.2 Exploratory Data Analysis and Visualization	23
5.2.1 ADMISSIONS	23
5.2.2 PATIENTS	29

5.2.3 DRGCODES	30
5.2.4 LABEVENTS	Error! Bookmark not defined.
5.2.5 D_LABITEMS	
Pre-processing	
Socio_Economic Bias Check	36
For Gender	36
For Religion	37
For Ethnicity	33
Model Building and Evaluation	38
Experiments and Results	38
Train Test Split Method	Error! Bookmark not defined.
Cross Validation	38
	37
Future Work	39
References	41

Abstract

The purpose of this study is to improve the current health care system using machine learning by developing ML models that can predict the length of hospital stay and risk of readmission in advance, based on electronic health records. The study is focussed on using machine learning techniques to predict patient length of stay at the time of admission and suggest the risk of readmission of a patient within 30 days of discharge using MIMIC-III clinical dataset. The main purpose of this thesis is to build models to predict the variables that can be used in a hospital prediction software by applying machine learning techniques for regression and classification models we learned. The metrics used to define the performance for length of stay is root-mean-square error (RMSE). The metrics used to evaluate the chances of Readmission are precision, recall, roc_auc. We were able to achieve good results for both Length of Stay and Readmission models. The results obtained are better than many existing models.

1. Introduction

The requirements for application of Machine Learning techniques within the Healthcare domain is rapidly expanding with improvement of modern computing systems. For example, modern ICUs provide continuous monitoring of critically ill patients susceptible to many complications and mortality, which require a high staff-to-patient ratio and generate a sheer volume of data. For clinicians, the real-time interpretation of these data and decision-making is a challenging task. Machine Learning, powered by increasing availability of healthcare data, can be used in such areas of healthcare for applications ranging from early detection of high-risk events to outcome prediction. In the perspective of a patient and hospital in general, there are multiple unknowns to the patient and hospital like patient length of stay, chances of readmission etc. Supervised machine learning is a good fit for optimizing these hospital procedures.

The healthcare sector is facing ever increasing challenges like economical challenges, lack of expertise, staff and hospital beds. In order to face these challenges, hospitals need to be equipped with administrative planning tools that can allow them to allocate the available resources in an efficient manner. There are various methods identified, applied and restructured with new ways of patient interaction that have been tested by using for example mobile apps. Therefore, a new area of interest that could bring new tools to the hospital's administrative toolbox, namely machine learning (ML). Machine learning has been on the rise in several fields for the last decade following improved computational power, availability of data and improved algorithms. It has excelled in tasks such as image segmentation and classification, machine translation and recommender systems.

Predictive analytics has become an important tool in the healthcare field since modern machine learning (ML) methods can use large amounts of available data to predict individual outcomes for patients. For example, ML predictions can help healthcare providers determine likelihoods of disease, aid in diagnosis, recommend treatment, and predict future wellness. So, in this project we will focus on two most important factors: length-of-stay of patients at the time of admission and risk of readmission of patients within 30days of discharge. Our project is entirely based on the MIMIC-III clinical database. MIMIC is an openly available dataset developed by the MIT Lab for Computational Physiology, comprising de-identified health data associated with approximately 40,000 critical care patients. It includes demographics, vital signs, laboratory tests and medications details.

Patient length of stay is most commonly defined as the total hospitalization time, i.e. from admission to discharge. LoS predictions can be used in many different ways and serve as a very valuable method for resource planning. Not only could it provide an overview of future bed capacity, but it could also be used as a precautionary warning that extra measures should be taken given that a patient's LoS might be longer than usual, such as social planning or extra medical attention. Additionally, certain ML methods can potentially provide valuable insights into what features affect LoS and hence be used as a way to evaluate procedures in order to more efficiently treat patients and reduce unnecessary workload. Reduction in the number of inpatient days results in decreased risk of infection and medication side effects, improvement in the quality of treatment, and increased hospital profit with more efficient bed management.

There has been a study on U.S. hospital stays that cost the health system at least \$377.5 billion per year and recent Medicare legislation standardizes payments for procedures performed, regardless of the number of days a patient spends in the hospital. This incentivizes hospitals to identify patients of high LOS risk at the time of admission. Once identified, patients with high LOS risk can have their treatment plan optimized to minimize LOS and lower the chance of getting a hospital-acquired condition such as staph infection. Another benefit is that prior knowledge of LOS can aid in logistics such as room and bed allocation planning.

The second part of the project will focus on hospital readmission. Hospital readmission is costly for hospitals and is associated with worse outcomes for patients. Many readmissions are avoidable if patients receive further care during their initial admission. Therefore, a predictive model that can indicate whether a patient is likely to be readmitted is very valuable. A study has been done on hospital readmission using CNN(convolutional neural network)[7] which also takes unstructured data like diagnosis notes into account. The hospitals are given a score which is used by many other hospitals to score the readmission risk which is considered as an important factor to decide.

We can learn how data processing techniques and machine learning models can help us to build better health care systems. We can also learn how these models help us to better visualize, summarize and classify this data to observe similarities and differences in each patient's recovery path.

One of the limitations of our project is that it is not tested on real time data. MIMIC -III is a structured clinical database but it is still being maintained and not as real time. The results may differ after deployment on actual data. Like every other model the quality of the model is dependent on the quality of data used to train the model and there could be some unknown or unidentified features correlation between the features that could induce a significant impact on our model.

2. Related Work

Previous studies have examined effective management of LOS. Majority of these involved subjects stratified by condition or admitting unit, for example, patients admitted to specialized departments, such as psychiatric wards or the intensive care unit (ICU) or for patients with hip fractures or undergoing coronary artery surgery. And there are models predicting Length of stay for patients admitted with a specific diagnosis, such as heart failure or pulmonary disease.

Among the numerous works aiming to provide decision-making tools for ICU clinicians at discharge time, two in particular caught our attention in terms of performance and similarity of setting to our own. One of the previous researches proposed an advanced neural network for 30-day ICU readmission prediction (LSTM-CNN based model) achieving an Area Under Curve of the Receiver Operating Characteristic (AUROC) metric of 0.791 on MIMIC-III, using chart events 48h time series, diagnostic ICD-9 codes embeddings, and demographic information of the patients. The authors claim to offer higher sensitivity (0.742) compared to existing solutions, regardless of the specificity trade-off. There is no mention of precision nor F1-score. Another research trained a simpler and more interpretable gradient boosting model (XGBoost) for predicting risk of ICU bounceback and readmission at a variety of time points using MIMIC-III, achieving AUROC of 0.76 and 0.75, F1-score of 0.20 and 0.34, for 72h and 30-days ICU readmission respectively. They use chart events, time series, ICD-9 codes indicators, as well as admission, demographic and length-of-stay information of the patients.

3. Data

In order to discuss health data analytics and the role it plays in the health care sector, we must first understand the data that is being collected and analyzed. There is data being collected on the processes and procedures of the business side of healthcare, but there is also an enormous amount of health data being gathered, stored and analyzed. Health data is any data relating to

the health of an individual patient or collective population. This information is gathered from a series of health information systems (HIS) and other technological tools utilized by health care professionals, insurance companies and government organizations.

There are a variety of tools and systems used to collect, store, share and analyze health data gathered through various means. These tools include:

- Electronic Health Records (EHRs)
- Personal Health Records (PHRs)
- Electronic Prescription Services (E-prescribing)
- Patient Portals
- Master Patient Indexes (MPI)
- Health-Related Smart Phone Apps and more

These data sets are so complex that traditional processing software and storage options cannot be used.

What is Mimic 3?

MIMIC-III ('Medical Information Mart for Intensive Care') is a large, single-center database comprising information relating to patients admitted to critical care units at a large tertiary care hospital. Data includes vital signs, medications, laboratory measurements, observations and notes charted by care providers, fluid balance, procedure codes, diagnostic codes, imaging reports, hospital length of stay, survival data, and more. The database supports applications including academic and industrial research, quality improvement initiatives, and higher education coursework.

Why is it important?

The MIMIC-III critical care database is notable for the following reasons:

- It is the one of few freely accessible critical care database of its kind;
- The dataset spans more than a decade, with detailed information about individual patient care.
- Analysis is unrestricted once a data use agreement is accepted, enabling clinical research and education around the world.

It was de-identified in accordance with Health Insurance Portability and Accountability Act (HIPAA) standards using structured data cleansing and date shifting. Protected health information was removed from free text fields, such as diagnostic reports and physician notes,

using a rigorously evaluated de-identification system based on extensive dictionary look-ups and pattern-matching with regular expressions.

Methods to access Mimic III

This data is collected from patients who were admitted to Beth Israel Deaconess Medical Center in Boston, Massachusetts from 2001 to 2012.

Below are the steps to access this data

- complete CITI training course
- create a PhysioNet account
- request access to MIMIC III
- accessing MIMIC III

The MIMIC-III database is also available on two major cloud platforms: Google Cloud Platform (GCP) and Amazon Web Services (AWS). To access the data on the cloud, simply add the relevant cloud identifier to your PhysioNet profile.

Overview of the MIMIC-III data

MIMIC is a relational database containing tables of data relating to patients who stayed within the intensive care units at Beth Israel Deaconess Medical Center. A table is a data storage structure which is similar to a spreadsheet: each column contains consistent information (e.g., patient identifiers), and each row contains an instantiation of that information (e.g. a row could contain the integer 340 in the patient identifier column which would imply that the row's patient identifier is 340).

The tables are linked by identifiers which usually have the suffix "ID". For example HADM_ID refers to a unique hospital admission and SUBJECT_ID refers to a unique patient. One exception is ROW ID, which is simply a row identifier unique to that table.

Tables prefixed with "D_" are dictionaries and provide definitions for identifiers. For example, every row of OUTPUTEVENTS is associated with a single ITEM_ID which represents the concept measured, but it does not contain the actual name of the drug. By joining OUTPUTEVENTS and D_ITEMS on ITEMID, it is possible to identify what concept a given ITEM ID represents.

The Tables are divided into 4 types

1) The following tables are used to define and track patient stays: ADMISSIONS:, CALLOUT, ICU STAYS, PATIENTS, SERVICES, TRANSFERS

- 2) The following tables contain data collected in the critical care unit: CAREGIVERS, CHARTEVENTS, DATETIMEEVENTS, INPUTEVENTS_CV, INPUTEVENTS_MV, NOTEEVENTS, OUTPUTEVENTS, PROCEDUREEVENTS MV
- 3) The following tables contain data collected in the hospital record system: CPTEVENTS, DIAGNOSES_ICD, DRG CODES, LABEVENTS, MICROBIOLOGYEVENTS, PRESCRIPTIONS:, PROCEDURES ICD
- 4) The following tables are dictionaries: D_CPT:, D_ICD_DIAGNOSES, D_ICD_PROCEDURES, D_ITEMS, D_LABITEMS

4. Length of Stay

4.1 Data Analysis and Model Evaluation

The model building to predict the Length of stay has been done using the MIMIC III dataset. This section explains some of the preprocessing methods followed, filling missing data and some exploratory analysis. Problem understanding and model evaluation is also presented.

From the initial analysis conducted on the MIMIC III dataset, it has been identified that the most relevant features that can be selected in or to predict the Length of Stay of are distributed mainly among the four tables listed below. Hence the

The tables used for the Length of Stay Prediction using MIMIC III dataset are,

- 1.Admission
- 2.Patients
- 3.ICUStay
- 4.Diagnoses_ICD

4.2 Exploratory Data Analysis and Visualization:

Under this section, the process of data exploration and different visualization methods used to identify the underlying relationships in the data has been presented.

4.2.1 ADMISSIONS

From further analysis on MIMIC III data to explore the target variable, it has been figured out that the Admission table has the important features to extract the LOS in days along with many other contributing features. The admission table columns are listed below.

_	eIndex: 58976 entries,		
	columns (total 19 col		
#	Column	Non-Null Count	Dtype
0	ROW_ID	58976 non-null	int64
1	SUBJECT_ID	58976 non-null	int64
2	HADM_ID	58976 non-null	int64
3	ADMITTIME	58976 non-null	object
4	DISCHTIME	58976 non-null	object
5	DEATHTIME	5854 non-null	object
6	ADMISSION_TYPE	58976 non-null	object
7	ADMISSION_LOCATION	58976 non-null	object
8	DISCHARGE_LOCATION	58976 non-null	object
9	INSURANCE	58976 non-null	object
10	LANGUAGE	33644 non-null	object
11	RELIGION	58518 non-null	object
12	MARITAL_STATUS	48848 non-null	object
13	ETHNICITY	58976 non-null	object
14	EDREGTIME	30877 non-null	object
15	EDOUTTIME	30877 non-null	object
16	DIAGNOSIS	58951 non-null	object
17	HOSPITAL_EXPIRE_FLAG	58976 non-null	int64
18	HAS_CHARTEVENTS_DATA	58976 non-null	int64
dtyp	es: int64(5), object(1	4)	
memo	ry usage: 8.5+ MB		

	ROW_ID	SUBJECT_ID	HADM_ID	ADMITTIME	DISCHTIME	DEATHTIME	ADMISSION_TYPE	ADMISSION_LOCATION	DISCHARGE_LOCATION	INSURANC
0	21	22	165315	4/9/2196 12:26	4/10/2196 15:54	NaN	EMERGENCY	EMERGENCY ROOM ADMIT	DISC-TRAN CANCER/CHLDRN H	Privat
1	22	23	152223	9/3/2153 7:15	9/8/2153 19:10	NaN	ELECTIVE	PHYS REFERRAL/NORMAL DELI	HOME HEALTH CARE	Medicar
2	23	23	124321	10/18/2157 19:34	10/25/2157 14:00	NaN	EMERGENCY	TRANSFER FROM HOSP/EXTRAM	HOME HEALTH CARE	Medicar
3	24	24	161859	6/6/2139 16:14	6/9/2139 12:48	NaN	EMERGENCY	TRANSFER FROM HOSP/EXTRAM	HOME	Privat
4	25	25	129635	11/2/2160 2:06	11/5/2160 14:55	NaN	EMERGENCY	EMERGENCY ROOM ADMIT	HOME	Privat
4										•

LOS

The length of Stay is calculated in number of days using the ADMITTIME and DISCHTIME by subtracting ADMITTIME from DISCHTIME and dividing by 24*60*60 (number of seconds in a day)

LOS = (DISCHTIME – ADMITTIME) / 24*60*60

For the following analysis, length of stay is kept as the primary variable along the y-axis of the plots I create since it is the predictor variable for this project. First, the distribution of length of stay is visualized.

The above distribution shows that even though the hospital stay ranges for a few months, the distribution is very skewed, with most of the patients in the data having lengths of stay between ~1 to 7 days or most of the patients staying for less than 10 days in the hospital.

ETHNICITY

Next let's look at the length of stay distribution of various Ethnicities. As in the figure below there were many Ethnicity categories and to get the best result it has been combined and categorized to 5 different categories like Asian, Black, Hispanic, White and Other. The distribution of Ethnicity categories before and after are shown below.

RELIGION

Similarly, the length of stay distribution of different religious groups has been visualized and analyzed to identify the category wise distribution. Based on the number of people belonging to each category, the religious categories are combined into six different groups as in figure below.

ADMISSION_TYPE

Another feature that can contribute to LOS prediction is Admission Type. There are four different types of admissions present in the dataset which are, Emergency, Newborn, Elective and Urgent. The admission type distribution is as given below.

INSURANCE

The Length of Stay distribution has been visualized and analyzed for the multiple insurance types present in the dataset. The diagram below shows Medicare has the most number of days of average length of stay.

MARITAL_STATUS

After filling all the missing values as unknown, the marital status of all the hospital admissions records shows the below listed categories where the distribution shows Median LOS is more in the cases of Separated status.

4.2.2 PATIENTS

The second important table that was used in the LOS prediction is Patients. It has the information regarding the Gender and Date Of Birth of all the patients having SUBJECT_ID as it's Key. The columns of the Patients table are listed below.

```
RangeIndex: 46520 entries, 0 to 46519
Data columns (total 8 columns):
# Column
                 Non-Null Count Dtype
    ROW ID
                 46520 non-null int64
0
1
    SUBJECT_ID
                 46520 non-null int64
    GENDER
                 46520 non-null object
    DOB
                 46520 non-null object
4
    DOD
                 15759 non-null object
    DOD HOSP
                 9974 non-null
                                object
6
    DOD_SSN
                 13378 non-null object
    EXPIRE_FLAG 46520 non-null int64
dtypes: int64(3), object(5)
memory usage: 2.8+ MB
```

	ROW_ID	SUBJECT_ID	GENDER	DOB	DOD	DOD_HOSP	DOD_SSN	EXPIRE_FLAG
0	234	249	F	2075-03-13 00:00:00	NaN	NaN	NaN	0
1	235	250	F	2164-12-27 00:00:00	2188-11-22 00:00:00	2188-11-22 00:00:00	NaN	1
2	236	251	M	2090-03-15 00:00:00	NaN	NaN	NaN	0
3	237	252	M	2078-03-06 00:00:00	NaN	NaN	NaN	0
4	238	253	F	2089-11-26 00:00:00	NaN	NaN	NaN	0

GENDER

The Length of stay Distribution of different patients based on their Gender is given below. Both men and women have almost similar distribution of LOS in the data.

AGE

The DOB information of Patients table can be used to calculate the Age of a Patient. The Age of a patient will be the date of birth subtracted from the first admit time and divided by the number of days in a year.

AGE = (FIRST ADMIT TIME - DOB)/ 365

To extract the first admit time the minimum value of the ADMITTIME column of the Admissions table is used for each SUBJECT_ID and converted to date and subtracted the DOB date from the Patients table to calculate the Age.

MIMIC III data values are encoded for patients who are more than 89 years old. The age values above 100 are aggregated to 100. The below given scatter plot shows the distribution of LOS for ages of admitted Patients ranging from 0 to 100.

4.2.3 DIAGNOSES_ICD

The diagnoses_ICD table has all the details of each diagnosis for hospital admissions encoded with ICD codes which can be used to predict the Length of stay for the admission. The columns are given below.

```
RangeIndex: 651047 entries, 0 to 651046
Data columns (total 5 columns):
   Column
               Non-Null Count
                               Dtype
    -----
               -----
0
    ROW ID
               651047 non-null
                               int64
    SUBJECT_ID 651047 non-null
1
                               int64
               651047 non-null int64
    HADM ID
    SEQ NUM
               651000 non-null float64
4 ICD9_CODE 651000 non-null object
dtypes: float64(1), int64(3), object(1)
memory usage: 24.8+ MB
```

	ROW_ID	SUBJECT_ID	HADM_ID	SEQ_NUM	ICD9_CODE
0	1297	109	172335	1.0	40301
1	1298	109	172335	2.0	486
2	1299	109	172335	3.0	58281
3	1300	109	172335	4.0	5855
4	1301	109	172335	5.0	4254

The first three digits of the ICD code indicate the main category of the diagnoses. Hence using the ICD Code category Ranges the ICD9_CODE can be classified into 18 Categories. The International Classification of Diagnoses codes and corresponding Categories are given below.

International Statistical Classification of Diseases and Related Health Problems

- 001–139: infectious and parasitic diseases
- 140–239: neoplasms
- 240–279: endocrine, nutritional, and metabolic diseases, and immunity disorders
- 280–289: diseases of the blood and blood-forming organs
- 290–319: mental disorders
- 320–389: diseases of the nervous system and sense organs
- 390–459: diseases of the circulatory system
- 460-519: diseases of the respiratory system
- 520–579: diseases of the digestive system
- 580–629: diseases of the genitourinary system
- 630–679: complications of pregnancy, childbirth, and the puerperium
- 680–709: diseases of the skin and subcutaneous tissue
- 710–739: diseases of the musculoskeletal system and connective tissue
- 740–759: congenital anomalies
- 760–779: certain conditions originating in the perinatal period
- 780–799: symptoms, signs, and ill-defined conditions
- 800–999: injury and poisoning
- E and V codes: external causes of injury and supplemental classification

ICD-9 Categories

0: 'infectious', 1: 'neoplasms', 2: 'endocrine', 3: 'blood', 4: 'mental', 5: 'nervous', 6: 'circulatory', 7: 'respiratory', 8: 'digestive', 9: 'genitourinary', 10: 'pregnancy', 11: 'skin', 12: 'muscular', 13: 'congenital', 14: 'prenatal', 15: 'misc', 16: 'injury', 17: 'misc'

	SUBJECT_ID	HADM_ID	LOS	GENDER	blood	circulatory	congenital	digestive	endocrine	genitourinary	
count	58878.000000	58878.000000	58878.000000	58878.000000	58878.000000	58878.000000	58878.000000	58878.000000	58878.000000	58878.000000	
mean	33761.791382	149966.149886	10.151266	0.558613	0.395988	2.379089	0.070587	0.654880	1.217178	0.556592	
std	28092.613275	28882.995648	12.459774	0.496557	0.678072	2.278877	0.343045	1.163365	1.354162	0.872232	
min	2.000000	100001.000000	0.001389	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	11999.250000	124942.750000	3.755556	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
50%	24141.000000	149987.000000	6.489583	1.000000	0.000000	2.000000	0.000000	0.000000	1.000000	0.000000	
75%	53862.750000	174958.000000	11.805556	1.000000	1.000000	4.000000	0.000000	1.000000	2.000000	1.000000	
max	99999.000000	199999.000000	294.660417	1.000000	7.000000	17.000000	11.000000	11.000000	12.000000	7.000000	

4.2.4 ICUSTAY

The ICUSTAY table contains the information regarding the icustay for the hospital admissions which is an important feature that can determine the Length of Stay. The table columns are as listed below from which the first care unit and the length of stay can be more useful for the model.

RangeIndex: 61532 entries, 0 to 61531 Data columns (total 12 columns): Non-Null Count Dtype # Column 0 ROW ID 61532 non-null int64 ROW_ID 61532 non-null int64 SUBJECT_ID 61532 non-null int64 1 61532 non-null int64 61532 non-null int64 61532 non-null object HADM_ID 3 ICUSTAY_ID 4 DBSOURCE FIRST_CAREUNIT 61532 non-null object LAST_CAREUNIT 61532 non-null object FIRST_WARDID 61532 non-null int64 8 LAST_WARDID 61532 non-null int64 9 INTIME 61532 non-null object 61522 non-null object 10 OUTTIME 61522 non-null float64 11 LOS dtypes: float64(1), int64(6), object(5) memory usage: 5.6+ MB

	SUBJECT_ID	HADM_ID	ICUSTAY_ID	FIRST_CAREUNIT	LOS
0	268	110404	280836	MICU	3.2490
1	269	106296	206613	MICU	3.2788
2	270	188028	220345	CCU	2.8939
3	271	173727	249196	MICU	2.0600
4	272	164716	210407	CCU	1.6202

The First care unit categories are aggregated to ICU and NICU where the various other categories other than the NICU can be classified as ICU for simplification. The final structure of ICUSTAY data will look like below.

	SUBJECT_ID	HADM_ID	ICUSTAY_ID	FIRST_CAREUNIT	LOS
0	268	110404	280836	ICU	3.2490
1	269	106296	206613	ICU	3.2788
2	270	188028	220345	ICU	2.8939
3	271	173727	249196	ICU	2.0600
4	272	164716	210407	ICU	1.6202

4.3 Model Building and Evaluation

After combining all the various processed data together and final verification of non-null values or any unwanted data, the data has been standardized and normalized and made ready for using the algorithm. The final data has all the categorical columns along with the main attributes. In order to check the model performance built a model and calculated the r2 score which was .374.

Algorithm Used:

The below algorithms were experimented during model creation,

- 1. Linear Regression
- 2. Random Forest Regressor
- 3. KNN Regression
- 4. Gradient Boosting Regressor
- 5. SGD Regression

Evaluation: The model has been evaluated using Kfold cross validation with K =10 and the performance metrics such as MSE, RMSE, MAE and R2 Score are calculated. The performance of the model using 10 fold cross validation with various algorithms are as below.

4.3.1 Experiments and Results

Results/ Model	R2- SCORE	MAE	MSE	RMSE
Linear	0.360723251073	0.019684999337	0.001100453934	0.033173090522
Regression	1572	371663	8199005	589245
Random Forest	0.344540531563	0.019320084907	0.001128310942	0.033590216218
	5881	308688	58733	057675
KNN Regression	0.212346912193	0.020146242192	0.001355869646	0.036822135282
	54593	356844	7605277	470074
Gradient	0.433261445368	0.017837393360	0.000975586353	0.031234374597
Boosting	66024	655686	6491177	513086
SGD Regression	0.309826442388	0.019894266511	0.001188067935	0.034468355102
	6207	280696	2988754	61455

Since the performance was the highest when using GradientBoostingRegressor, the model is created using GradientBoostingRegressor. Feature selection is performed using SelectKBest with K=62..

5. Chances of Readmission

5.1 Data Analysis and Model Evaluation

The model building to predict binary classification of Chances of Readmission has been done using the MIMIC III dataset. This section explains some of the preprocessing methods followed, filling missing data and some exploratory analysis. Problem understanding and model evaluation is also presented. From the initial analysis conducted on the MIMIC III dataset, it has been identified that the most relevant features that can be selected in or to predict the Chances of Readmission are distributed mainly among the five tables listed below.

Tables Used	
ADMISSIONS	
PATIENTS	
DRGCODES	
LABEVENTS	
D_LABITEMS	

5.2 Exploratory Data Analysis and Visualization

5.2.1 ADMISSIONS

Each row of this table contains a unique HADM_ID, which represents a single patient's admission to the hospital. HADM_ID ranges from 1000000 - 1999999. It is possible for this table to have duplicate SUBJECT_ID, indicating that a single patient had multiple admissions to the hospital. The ADMISSIONS table is linked to the PATIENTS table using SUBJECT_ID as Foreign Key. ADMISSIONS table also contains admit time and discharge time with this we can create CHANCE_OF_READMISSION.

	SUBJECT_ID	HADM_ID	ADMITTIME	DISCHTIME	DEATHTIME	ADMISSION_TYPE	ADMISSION_LOCATION	DISCHARGE_LOCATION	INSURANCE
0	22	165315	2196-04-09 12:26:00	2196-04-10 15:54:00	NaN	EMERGENCY	EMERGENCY ROOM ADMIT	DISC-TRAN CANCER/CHLDRN H	Private
1	23	152223	2153-09-03 07:15:00	2153-09-08 19:10:00	NaN	ELECTIVE	PHYS REFERRAL/NORMAL DELI	HOME HEALTH CARE	Medicare
2	23	124321	2157-10-18 19:34:00	2157-10-25 14:00:00	NaN	EMERGENCY	TRANSFER FROM HOSP/EXTRAM	HOME HEALTH CARE	Medicare
3	24	161859	2139-06-06 16:14:00	2139-06-09 12:48:00	NaN	EMERGENCY	TRANSFER FROM HOSP/EXTRAM	НОМЕ	Private
4	25	129635	2160-11-02 02:06:00	2160-11-05 14:55:00	NaN	EMERGENCY	EMERGENCY ROOM ADMIT	НОМЕ	Privat
	df_admission		02:06:00		NaN	EMERGENCY		НОМЕ	
	df_admission	h['LOS'].de	02:06:00		NaN	EMERGENCY		номе	Private
✓	df_admission ′ 0.8s unt 58976.	h['LOS'].de	02:06:00		NaN	EMERGENCY		номе	
cou	df_admission ′ 0.8s unt 58976. an 10.	n['LOS'].de	02:06:00		NaN	EMERGENCY		номе	
cou	df_admission O.8s unt 58976. nn 10.	n['LOS'].de 000000 133916	02:06:00		NaN	EMERGENCY		номе	
cou mea std	df_admission	n['LOS'].de 000000 133916 456682	02:06:00		NaN	EMERGENCY		номе	
cou mea std	df_admission 7 0.8s unt 58976. un 10. d 12. un -0. un 3.	0['LOS'].de 000000 133916 456682 945139	02:06:00		NaN	EMERGENCY		номе	
cou mea std min 25%	df_admission	n['LOS'].de 000000 133916 456682 945139 743750	02:06:00		NaN	EMERGENCY		номе	
cou mea std min 25% 50%	df_admission 7 0.8s unt 58976. un 10. d 12. un -0. un 3. un 6. un 11.	n['LOS'].de 000000 133916 456682 945139 743750 467014	02:06:00		NaN	EMERGENCY		номе	

CHANCE OF READMISSION

A new Column has been created for Next admit time by grouping using Subject_Id and the Chances of Readmission is calculated using the below Steps.

Step 1. DAYS_TO_NEXT_ADMIT= NEXT_ADMITTIME- DISCHTIME

Step 2. IF DAYS_TO_NEXT_ADMIT <= 30

THEN CHANCE_OF_READMISSION'] = 1

Step 3. FILLNA 0

Below is the distribution of the target variable Chance of Readmission

LOS

The length of Stay is calculated in number of days using the ADMITTIME and DISCHTIME by subtracting ADMITTIME from DISCHTIME and dividing by 24*60*60 (number of seconds in a day)

LOS = (DISCHTIME - ADMITTIME) / 24*60*60

For the following analysis, length of stay is kept as the primary variable along the y-axis of the plots I create since it is the predictor variable for this project. the distribution of length of stay is visualized.

The negative LOS columns were removed after calculating the LOS. Performed more processing on other categorical features such as admission Type. Removed newborn and elective type admissions and combine emergency, urgent admission type, merge categories with less number of samples need to be performed.

Below are some of the figures and plots with the processed features.

 WHITE	30252			
BLACK/AFRICAN AMERICAN	4224			
UNKNOWN/NOT SPECIFIED	3535			
HISPANIC OR LATINO	1169			
OTHER	961			
UNABLE TO OBTAIN	697			
ASIAN	695			
PATIENT DECLINED TO ANSWER	296			
HISPANIC/LATINO - PUERTO RICAN	204			
ASIAN - CHINESE	189			
BLACK/CAPE VERDEAN	148			
WHITE - RUSSIAN	145			
BLACK/HAITIAN	93			
MULTI RACE ETHNICITY	89			
ASIAN - ASIAN INDIAN	66			
HISPANIC/LATINO - DOMINICAN	66			
PORTUGUESE	50			
WHITE - OTHER EUROPEAN	47			
WHITE - BRAZILIAN	46			
ASIAN - VIETNAMESE	38			
BLACK/AFRICAN	37			
HISPANIC/LATINO - GUATEMALAN	35			
MIDDLE EASTERN	35			
AMERICAN INDIAN/ALASKA NATIVE	22	WHITE	30507	
ASIAN - FILIPINO	22	OTHER	5715	
show more (open the raw output data in a text editor) \dots		BLACK	4502	
CARIBBEAN ISLAND	7	DLACK	4302	
ASIAN - JAPANESE	5	HISPANIC	1541	
HISPANIC/LATINO - HONDURAN	4			
ASIAN - THAI	3	ASIAN	1057	
AMERICAN INDIAN/ALASKA NATIVE FEDERALLY RECOGNIZED TRIBE	3			
Name: ETHNICITY, dtype: int64		Name: ETHN.	ICITY, dtype: i	nt64

Reducing number of 21 religion type columns to 6 columns

CATHOLIC	15275
NOT SPECIFIED	8700
PROTESTANT QUAKER	5620
UNOBTAINABLE	5037
JEWISH	4241
OTHER	2087
EPISCOPALIAN	573
NaN	425
GREEK ORTHODOX	364
CHRISTIAN SCIENTIST	260
BUDDHIST	174
MUSLIM	161
JEHOVAH'S WITNESS	110
UNITARIAN-UNIVERSALIST	80
7TH DAY ADVENTIST	62
ROMANIAN EAST. ORTH	57
HINDU	52
BAPTIST	23
HEBREW	15
METHODIST	5
LUTHERAN	1
Name: RELIGION, dtype:	int64

CATHOLIC	15275
NOT SPECIFIED	8700
PROTESTANT QUAKE	ER 5620
UNOBTAINABLE	5462
JEWISH	4241
OTHER	4024
Name: RELIGION,	dtype: int64

5.2.2 PATIENTS

The Patients table has the patient related data such as Gender, DOB etc. Calculated the age of patients using date of birth and first admit time and classify patients 5 categories like young_child, youth, adult, middle_adult, senior_adult, old age based on their age. Below are the calculation steps and visualization of Age Vs Readmission.

$$AGE = (FIRST ADMIT TIME - DOB)/365$$

To extract the first admit time the minimum value of the ADMITTIME column of the Admissions table is used for each SUBJECT_ID and converted to date and subtracted the DOB date from the Patients table to calculate the Age.

MIMIC III data values are encoded for patients who are more than 89 years old. The age values above 100 are aggregated to 100. The below given scatter plot shows the distribution of LOS for ages of admitted Patients ranging from 0 to 100.

Used LabelEncoder to convert string values of M, F of Gender to 1(M) and 0(F). Create dummy columns for Categorical features and merge them into a single dataframe.

5.2.3 DRGCODES

Contains diagnosis related groups (DRG) codes for patient's diagnosis. Number of rows in this table is 125,557. Links to PATIENTS on SUBJECT_ID and ADMISSIONS on HADM_ID.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 125557 entries, 0 to 125556
Data columns (total 8 columns):
                 Non-Null Count Dtype
# Column
0 ROW_ID
                  125557 non-null int64
    SUBJECT_ID 125557 non-null int64
    HADM_ID
                  125557 non-null int64
                 125557 non-null object
    DRG_TYPE
 4 DRG_CODE
 5 DESCRIPTION 125494 non-null object
 6 DRG_SEVERITY 66634 non-null float64
 7 DRG_MORTALITY 66634 non-null float64
dtypes: float64(2), int64(4), object(2)
memory usage: 7.7+ MB
```

- 1. SUBJECT_ID is unique to a patient and HADM_ID is unique to a patient's hospital stay.
- DRG_TYPE: DRG_TYPE provides the type of DRG code in the entry. There are two types
 of DRG codes in the database which have overlapping ranges but distinct definitions for
 the codes. The three types of DRG codes in the MIMIC-III database are 'HCFA' (Health
 Care Financing Administration), 'MS' (Medicare), and 'APR' (All Payers Registry).
- 3. DRG_CODE: DRG_CODE contains a code which represents the diagnosis billed for by the hospital.

4. DESCRIPTION: DESCRIPTION provides a human understandable summary of the meaning of the given DRG code. The description field frequently has acronyms which represent comorbidity levels (comorbid conditions or "CC"). The following table provides a definition for some of these acronyms:

Acronym	Description
w CC/MCC	with CC or Major CC
w MCC	with Major CC
w CC	with CC and without Major CC
w NonCC	with NonCC and without CC or Major CC
w/o MCC	with CC or Non CC and without Major CC
w/o CC/MCC	with nonCC and without CC or Major CC

There are three levels of comorbidities: none, with comorbid conditions, and with major comorbid conditions. These acronyms are primarily used in HCFA/MS DRG codes.

5. DRG_SEVERITY, DRG_MORTALITY: DRG_SEVERITY and DRG_MORTALITY are the Severity and Mortality scores of diagnosis ranging from 0-4 and provide additional granularity to DRG codes in the 'APR' DRG type. Below are the box plots that shows the distribution of DRG_SEVERITY and DRG_MORTALITY.

After preprocessing steps such as removing unwanted columns, combining descriptions per admission and filling out severity, mortality scores used those features for the model.

We used Natural language ToolKit, NLTK to process the description column of the DRGCODES table. It provides us with various text processing libraries. Using snowball stemmer we stemmed the description. Below is a sample output.

```
diabet w cc diabet diabet

peptic ulcer gastriti peptic ulcer gastriti gi...

chronic obstruct pulmonari diseas

major small larg bowel procedur w cc w major g...

coronari bypass wo cardiac cath or percutan ca...

Name: DESCRIPTION, dtype: object
```

Using TFIDFvectorizer created word arrays from the stemmed description by excluding any word with more than 50% occurrence and used top 100 words from the remaining.

Combined severity, mortality and description features into the main dataframe

	acut	age	ami	bowel	bwt	bypass	card	cardiac	cardiothorac	cardiovascular	 term	tracheostomi	tract	trauma	unrel	valv
0	0.0	0.0	0.0	0.000000	0.0	0.000000	0.0	0.000000	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	0.0	0.0	0.000000	0.0	0.000000	0.0	0.000000	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	0.000000	0.0	0.000000	0.0	0.000000	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0
3	0.0	0.0	0.0	0.513495	0.0	0.000000	0.0	0.000000	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0
4	0.0	0.0	0.0	0.000000	0.0	0.429431	0.0	0.418934	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0

Removed all the columns with missing values more than 1/5th of its length and imputed the remaining with median for all the new columns added to the dataframe.

5.2.4. LABEVENTS

Contains all laboratory measurements for a given patient, including out patient data. Number of rows is 27,854,055. Links to PATIENTS on SUBJECT_ID and ADMISSIONS on HADM_ID and D_LABITEMS on ITEMID. The LABEVENTS data contains information regarding laboratory based measurements.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 27854055 entries. 0 to 27854054
Data columns (total 9 columns):
# Column
Ø ROW ID
    SUBJECT ID int64
    HADM_ID
    ITEMID
                int64
    CHARTTIME object
    VALUE
    VALUENUM
                float64
    VALUEUOM
                object
                object
dtypes: float64(2), int64(3), object(4)
```

5.2.5 D_LABITEMS

Definition table for all laboratory measurements. Number of rows is 753. Links to: LABEVENTS on ITEMID.

D_LABITEMS contains definitions for all ITEMID associated with lab measurements in the MIMIC database. All data in LABEVENTS link to the D_LABITEMS table. Each unique LABEL in the hospital database was assigned an ITEMID in this table, and the use of this ITEMID facilitates efficient storage and querying of the data. Note that lab items are kept separate while most definitions are contained in the D_ITEMS table, and there were good reasons to keep the lab items separate.

As the laboratory data is acquired from the hospital database, the data is consistent across all years in the database. Consequently, there is usually only one ITEMID associated with each concept in the database. Furthermore, the data contains information collected in departments outside the ICU. This includes both wards within the hospital and clinics outside the hospital. Most concepts in this table have been mapped to LOINC codes, an openly available ontology which provides a rich amount of information about the laboratory measurement including reference ranges, common units of measurement and other further detail regarding the measurement.

<class 'pandas.core.frame.DataFrame'> RangeIndex: 753 entries, 0 to 752 Data columns (total 6 columns): # Column Non-Null Count Dtype 0 ROW ID 753 non-null int64 753 non-null ITEMID 2 LABEL 753 non-null 3 FLUID 753 non-null object 4 CATEGORY 753 non-null object 5 LOINC_CODE 585 non-null object dtypes: int64(2), object(4) memory usage: 35.4+ KB

	ROW_ID	ITEMID	LABEL	FLUID	CATEGORY	LOINC_CODE
0	546	51346	Blasts	Cerebrospinal Fluid (CSF)	Hematology	26447-3
1	547	51347	Eosinophils	Cerebrospinal Fluid (CSF)	Hematology	26451-5
2	548	51348	Hematocrit, CSF	Cerebrospinal Fluid (CSF)	Hematology	30398-2
3	549	51349	Hypersegmented Neutrophils	Cerebrospinal Fluid (CSF)	Hematology	26506-6
4	550	51350	Immunophenotyping	Cerebrospinal Fluid (CSF)	Hematology	NaN

Combined all the Mean Var and Counts for each Labevent and used for the model. Below is the Correlation matrix that shows the correlation of the Counts which was showing the highest correlation among other features.

5.2.6 Pre-processing

As part of preprocessing, imputed any missing values with mean and made sure there is no missing value in the dataframe.

The data was severely imbalanced. Hence before building the model needed to correct the data imbalance. To correct the imbalance performed over sampling using SMOTE(). The distribution of Chance of Readmission after oversampling is given below.

The final dataframe has 237 columns. Feature selection has been performed and selected 200 columns by using Best K Select.

5.2.7 Socio Economic Bias Check

Using FairMLHealth library Fairness and bias analysis has been performed with the entire dataframe. Features like Gender, Ethnicity and Religion were used for the analysis and the results are given below.

Gender

		GENDER
Metric	Measure	
	AUC Difference	0.0171
	Balanced Accuracy Difference	0.0305
	Balanced Accuracy Ratio	1.0322
	Disparate Impact Ratio	1.7415
Group Fairness	Equal Odds Difference	0.0629
	Equal Odds Ratio	1.4360
	Positive Predictive Parity Difference	0.0040
	Positive Predictive Parity Ratio	1.0040
	Statistical Parity Difference	0.2519
Individual Fairness	Between-Group Gen. Entropy Error	0.0000
ilidividuai Faililess	Consistency Score	0.7331
	Accuracy	1.0000
	F1-Score	1.0000
Model Performance	FPR	0.0000
Model Performance	Mean CHANCE_OF_READMISSION	0.4792
	Precision	1.0000
	TPR	1.0000
Data Metrics	Prevalence of Privileged Class (%)	45.0000

		RELGN_CATHOLIC	RELGN_JEWISH	RELGN_NOT SPECIFIED	RELGN_PROTESTANT QUAKER	RELGN_UNOBTAINABLE
Metric	Measure					
	AUC Difference	0.0422	0.0531	0.0475	0.0635	0.106
	Balanced Accuracy Difference	0.0629	0.1069	0.0785	0.1118	0.217
	Balanced Accuracy Ratio	1.0688	1.1240	1.0880	1.1303	1.290
	Disparate Impact Ratio	2.0936	3.0205	3.5806	3.3481	18.288
Group Fairness	Equal Odds Difference	0.1276	0.2167	0.1582	0.2135	0.44
oroup runnoo	Equal Odds Ratio	1.4628	2.0974	1.3097	0.2761	0.000
	Positive Predictive Parity Difference	0.0059	0.0071	0.0187	0.0714	-0.008
	Positive Predictive Parity Ratio	1.0060	1.0072	1.0192	1.0772	0.99
	Statistical Parity Difference	0.2870	0.3340	0.3795	0.3563	0.48
Individual Fairness	Between-Group Gen. Entropy Error	0.0001	0.0000	0.0000	0.0000	0.00
rdilliess	Consistency Score	0.7331	0.7331	0.7331	0.7331	0.73
	Accuracy	1.0000	1.0000	1.0000	1.0000	1.00
	F1-Score	1.0000	1.0000	1.0000	1.0000	1.00
Model	FPR	0.0000	0.0000	0.0000	0.0000	0.00
Performance	Mean CHANCE_OF_READMISSION	0.4792	0.4792	0.4792	0.4792	0.47
	Precision	1.0000	1.0000	1.0000	1.0000	1.00
	TPR	1.0000	1.0000	1.0000	1.0000	1.00
Data Metrics	Prevalence of Privileged Class (%)	24.0000	6.0000	12.0000	8.0000	7.00

Ethnicity

		ETHN BLACK	ETHN ASIAN	ETHN HISPANIC	ETHN OTHER	ETHN WHITE
Metric	Measure					
	AUC Difference	0.0436	0.1635	0.1827	0.0677	0.0199
	Balanced Accuracy Difference	0.0721	0.3518	0.2775	0.2095	0.0282
	Balanced Accuracy Ratio	1.0803	1.5717	1.4019	1.2763	1.0296
	Disparate Impact Ratio	1.8667	33.6418	8.3631	19.6164	1.5682
Group Fairness	Equal Odds Difference	0.1372	0.7088	0.5404	0.4227	0.0590
	Equal Odds Ratio	0.3808	4.0714	2.3510	3.0004	1.6087
	Positive Predictive Parity Difference	0.0248	-0.0051	0.2896	0.0618	0.0021
	Positive Predictive Parity Ratio	1.0255	0.9949	1.4103	1.0662	1.0021
	Statistical Parity Difference	0.2302	0.4708	0.4287	0.4873	0.2227
Individual Fairness	Between-Group Gen. Entropy Error	0.0000	0.0000	0.0000	0.0000	0.0000
ilidividual Fairliess	Consistency Score	0.7309	0.7309	0.7309	0.7309	0.7309
	Accuracy	1.0000	1.0000	1.0000	1.0000	1.0000
	F1-Score	1.0000	1.0000	1.0000	1.0000	1.0000
Model Performance	FPR	0.0000	0.0000	0.0000	0.0000	0.0000
woder Performance	Mean CHANCE_OF_READMISSION	0.4792	0.4792	0.4792	0.4792	0.4792
	Precision	1.0000	1.0000	1.0000	1.0000	1.0000
	TPR	1.0000	1.0000	1.0000	1.0000	1.0000
Data Metrics	Prevalence of Privileged Class (%)	7.0000	1.0000	2.0000	7.0000	61.0000

5.3 Model Building and Evaluation

We build the model using train test split and 10 fold cross validation using various models like Decision Tree, Random Forest, Balanced Random Forest, AdaBoost and XGB. Results are given below.

Algorithm Used:

XGBoost

Training and Evaluation Method:

Train and Split

Results:

5.3.1 Experiments and Results

Cross Validation (K=10)

Results/ Model	Accuracy	Precision	Recall	F1	AUC
Decision Tree	0.814	0.767	0.935	0.838	0.813
Random Forest	0.840	0.828	0.894	0.847	0.915

Balanced Random Forest	0.824	0.821	0.895	0.851	0.909
Ada Boost	0.853	0.857	0.930	0.884	0.816
XGB	0.630	0.612	0.934	0.706	0.917

6. Future Work

We calculated binary classification for chances of readmission for all diseases in the dataset. This classification would help to assess hopital resources, approximate cost of stay for patients and their caretakers. We can extend this work to calculate resources required like medicines, hospital staff, food on a monthly basis for the hospital and calculate effort or cost of stay in advance for patients with chances of Readmission. We can also calculate the percentage of chances of readmission. This would help doctors and patients incorporate various risk factors in post hospital care. We could also build different models to calculate the chance of readmission for different diseases for more accuracy and efficiency.

It has also been observed from current data, patients transferred from the intensive care unit to the wards who are later readmitted to the intensive care unit have increased length of stay, healthcare expenditure, and mortality compared with those who are never readmitted. Improving risk stratification for patients transferred to the wards could have important benefits for critically ill hospitalized patients. A machine learning algorithm built using Patient characteristics, nursing assessments, International Classification of Diseases, Ninth Revision codes from prior admissions, medications, intensive care unit interventions, diagnostic tests, vital signs, and laboratory results and combined with SWIFT (Stability and Workload Index for Transfer score) and MEWS (Modified EarlyWarning Score) is more precise in predicting chances of readmission. Implementation of this approach could target patients who may benefit from additional time in the intensive care unit or more frequent monitoring after transfer to the hospital ward. All these above things have already been achieved in the research community. As part of future work, we could study and implement current research and build better datasets and models for industrial use which are currently needed and more suitable in the real world.

7. Conclusion

The Health Care Assistant project has analysed the possibility of predicting the length of stay for patients and the chances of readmission within 30 days of discharge and created Machine learning Models using the MIMIC III dataset for taining . The Length of Stay prediction problem was formulated as a regression type whereas the Chances of Readmission is a classification problem. The results showed that it was possible to achieve a balanced accuracy of more than 90% on the testing set for the Chance of readmission and 0.0009 MSE for the Length of Stay prediction. The learnings related to ICD9 codes and classification have been used to predict the LOS. For the readmission prediction the severely imbalanced data was over samples and used for the prediction which was able to provide good results in terms of metrics used.Gradient Boosting algorithms such as GradientBoosting Regressor and XGBoosing algorithms gave the best results for the LOS and Readmission predictions respectively. The Random Forest algorithm was also performing well in both the cases and almost equally good. These models provided good accuracy, reasonable training and testing speed even with two million rows of LABEVENTS table and processing of description, which would allow for a light-weight implementation using limited resources.

8. Acknowledgements

Dr. Muhammad Aurangzeb Ahmad (Professor)

9. References

- 1. https://online.shrs.pitt.edu/blog/data-analytics-in-health-care/
- 2. https://www.frontiersin.org/articles/10.3389/frai.2020.561802/full
- 3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5898738/
- 4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7325854/
- 5. http://www.diva-portal.org/smash/get/diva2:1338294/FULLTEXT01.pdf
- 6. https://cs.brown.edu/research/pubs/theses/ugrad/2020/baruah.prakrit.pdf
- 7. https://www.researchgate.net/publication/331487868_An_Exploration_of_Data_Mining_with_Analysis_for_a_Healthcare_System
- 8. https://en.wikipedia.org/wiki/List_of_ICD-9_codes
- 9. https://www.nejm.org/doi/full/10.1056/NEJMsa1702321
- 10. https://ieeexplore.ieee.org/abstract/document/8513181