Course intro

Course staff

Hadas Volkov - teacher

hadasvol@mail.tau.ac.il

Prof. Itay Mayrose - academic supervisor

itaymay@post.tau.ac.il

Date and time

We meet every Sunday - 09:15 - 12:00

Sherman 009

Lesson	Date
1	31.12.2
2	07.01.2
3	14.01.2
4	21.01.2
5	28.01.2
6	04.01.2
7	11.02.2
8	18.02.2
9	25.02.2
10	03.03.2
11	10.03.2

Final project: <u>01.05.24</u>

Course objectives

• Give students a broad introduction to NGS and genomic data analysis

Provide actual tools for performing various tasks

More practice and relevent theory

At the end of the course you will...

- Be able to independently work with NGS data related to your research
- Be familiar with many common tasks related to NGS
- Know how to use a variety of computational tools to perform these tasks
- Understand the basic theory behind these tools
- Be able to use and interpret file formats common in NGS/genomics
- Be able to use a modern computational working environment
- Have some experience with real-world NGS data
- Be familiar with modern terminology and technologies

The Genomics Toolbox

Course modules and lessons

Lesson structure

Theoretical lesson

Class exercise

Final grade

- 30% exercises
 - Starting on lesson 2
 - Two weeks to submit each exercise on Moodle
 - o Pass
 - Must submit at least 10 out of 11 exercises

- 70% final project
 - Can be done in pairs (or solo)
 - Submission deadline: 01.05.2024

Course resources

- GitHub
 - Slides
 - Resources
 - Exercises

- Moodle
 - HW Submissions
 - Announcements