Radiative heat transfer solver with fluid motion

Jan I.C. Vermaak $^{1,2},$ Jim E. Morel 1,2

¹Center for Large Scale Scientific Simulations, Texas A&M Engineering Experiment Station, College Station, Texas, USA.

Abstract:

Work is work for some, but for some it is play.

Keywords: hydrodynamics

Contents

1	Definitions	3			
	.1 Independent variables				
	.2 Dependent variables				
	.3 Blackbody radiation	4			
2	Conservation equations				
	2.1 Conservation equation - Radiative transfer	Ę			
	2.2 Radiative transfer assuming isotropic Thompson scattering	Ę			
	2.3 Radiative transfer with material motion corrections				
	Radiative transfer with material velocity dependencies expanded to $\mathcal{O}(v/c)$				
	7.5 Grey Radiative Transfer	6			
	G.6 Grey Diffusion Approximation	7			
	2.7 Conservation equation for fluid flow				
3	Solver A - Radiation Hydrodynamics Grey Diffusion				
	Definitions				
	5.2 Finite Volume Spatial Discretization	11			
	3.2.1 Hydrodynamic and Radiation-energy advection	11			
	3.2.2 Density and momentum updates				
	3.2.3 Energy equations				
	3.2.3.1 The diffusion term				
	3.2.3.2 The kinetic energy term				
	3.3 Temporal scheme - Implicit Euler Predictor, Crank-Nicolson Corrector				
	3.3.1 Predictor phase				
	3.3.2 Corrector phase				
	3.3.3 General energy equations, Predictor and Corrector phase, with θ factors				
	3.3.4 Using the energy related algebra for both the predictor and the corrector	18			
4		19			
	.1 Auxiliary notation and variables for \mathcal{F}_0				
	.2 Using the auxiliary notation in the primary equation				
	.3 Auxiliary equations	21			
5	Solver C - Radiation Hydrodynamics Grey Radiation with the Variable Eddington Factor (VEF)				
	method	22			
	Definitions				
	2.2 Temporal scheme - Implicit Euler Predictor, Crank-Nicolson Corrector				
	5.2.1 Transport prephase				
	5.2.2 Predictor phase				
	5.2.3 Corrector phase	2.4			

²Nuclear Engineering Department, Texas A&M University, College Station, Texas, USA.

		5.2.4	General energy equations, Predictor and Corrector phase, with θ factors	2^{\sharp}	
			Finite Element Method	27	
		5.3.1	The radiation-flux at $n=0$	27	
		5.3.2	The radiation-flux at $n+1$		
			Using the expression for \mathcal{F}^{n+1} in the primary equation		
		5.3.4	Using the expression for \mathcal{F}^{n+1} in the auxiliary equations $\dots \dots \dots \dots \dots \dots$	30	
A	Angular integration identities				
В	Bou	ındary	and initial conditions for radiation hydrodynamic problems	33	
	B.1	Hydro	dynamics only	33	
	B.2	Hydro	dynamics with radiation energy	34	
\mathbf{C}	Ten	sor Al	gebra	36	
	C.1	Identit	ties	36	
	C.2	Tensor	reproduct of two vectors $\mathbf{a} \otimes \mathbf{b}$	36	
			roduct of a vector with a tensor, $\mathbf{a} \bullet \{t\}$		
	C.4	Finite	element discretization of the divergence of a tensor, i.e., $\nabla \cdot \tau$	37	
D	Roc	lerigue	es's formula	40	

1 Definitions

1.1 Independent variables

We refer to the following independent variables:

- Position in the cartesian space $\{x, y, z\}$ is denoted with **x** and each component having units [cm].
- Direction, $\{\varphi, \theta\}$, is denoted with Ω which takes on the form

$$\mathbf{\Omega} = \begin{bmatrix} \Omega_x \\ \Omega_y \\ \Omega_z \end{bmatrix} \text{ and/or } \mathbf{\Omega} = \begin{bmatrix} \sin \theta \cos \varphi \\ \sin \theta \sin \varphi \\ \cos \theta \end{bmatrix},$$

where φ is the azimuthal-angle and θ is the polar-angle, both in spherical coordinates. Commonly, $\cos \theta$, is denoted with μ . The general dimension of angular phase space is [steridian].

- Photon frequency, ν in [Hertz] or $[s^{-1}]$.
- Time, t in [s].

1.2 Dependent variables

We use the following basic dependent variables:

• The foundation of the dependent unknowns is the **radiation angular intensity**, $I(\mathbf{x}, \mathbf{\Omega}, \nu, t)$ with units $[Joule/cm^2 - s - steradian - Hz]$. We often use the corresponding angle-integral of this quantity, $\phi(\mathbf{x}, \nu, t)$, and define it as

$$\phi(\mathbf{x}, \nu, t) = \mathcal{E}c = \int_{4\pi} I(\mathbf{x}, \mathbf{\Omega}, \nu, t) \ d\mathbf{\Omega}$$
(1.1)

with units $[Joule/cm^2-s-Hz]$. Where c is the speed of light.

• The radiation energy density, \mathcal{E} , is

$$\mathcal{E}(\mathbf{x}, \nu, t) = \frac{\phi}{c} = \frac{1}{c} \int_{A_{\tau}} I(\mathbf{x}, \mathbf{\Omega}, \nu, t) \ d\mathbf{\Omega}$$
 (1.2)

with units $[Joule/cm^3 - Hz]$.

• The radiation energy flux, \mathcal{F} , is

$$\mathcal{F}(\mathbf{x}, \nu, t) = \int_{\Lambda} \mathbf{\Omega} I(\mathbf{x}, \mathbf{\Omega}, \nu, t) d\mathbf{\Omega}$$
 (1.3)

• Radiation pressure, \mathcal{P} , is

$$\mathcal{P}(\mathbf{x}, \nu, t) = \frac{1}{c} \int_{4\pi} \mathbf{\Omega} \otimes \mathbf{\Omega} I(\mathbf{x}, \mathbf{\Omega}, \nu, t) d\mathbf{\Omega}$$
(1.4)

and is a tensor.

1.3 Blackbody radiation

A blackbody radiation source, $B(\nu, T)$, is properly described by **Planck's law**,

$$B(\nu, T) = \frac{2h\nu^3}{c^2} \frac{1}{e^{\frac{h\nu}{k_B T}} - 1}$$
 (1.5)

with units $[Joule/cm^2-s-steridian-Hz]$ where h is Planck's constant and k_B is the Boltzmann constant.

If we integrate the blackbody source over all angle-space and frequencies then we get the mean radiation intensity from a blackbody at temperature T as

$$\int_{0}^{\infty} \int_{4\pi} B(\nu, T) \ d\Omega d\nu = \int_{0}^{\infty} \int_{4\pi} \frac{2h\nu^{3}}{c^{2}} \frac{1}{e^{\frac{h\nu}{k_{B}T}} - 1} \ d\Omega d\nu$$

$$= 4\pi \int_{0}^{\infty} \frac{2h\nu^{3}}{c^{2}} \frac{1}{e^{\frac{h\nu}{k_{B}T}} - 1} \ d\nu$$

$$= acT^{4},$$
(1.6)

with units $[Joule/cm^2-s-steridian]$ and where a is the blackbody radiation constant given by

$$a = \frac{8\pi^5 k_B^4}{15h^3 c^3}. (1.7)$$

In both cases this unfortunately is only the intensity. Following Kirchoff's law, which states that the emission and absorption of radiation must be equal in equilibrium, we can determine the **blackbody emission rate**, S_{bb} , from the absorption rate as

$$S_{bb}(\nu, T) = \rho \kappa(\nu) B(\nu, T), \tag{1.8}$$

with units $[Joule/cm^3-s-steridian-Hz]$ where ρ is the material density $[g/cm^3]$ and κ is the opacity $[cm^2/g]$. The combination $\rho\kappa$ is also equal to the macroscopic absorption cross section σ_a , therefore $\rho\kappa(\nu) = \sigma_a$. Data for the opacity of a material is normally available in the form of either the **Rosseland opacity**, κ_{Rs} , or the **Planck opacity**, κ_{Pl} .

2 Conservation equations

2.1 Conservation equation - Radiative transfer

The basic statement of conservation, is

$$\frac{1}{c} \frac{\partial I(\mathbf{x}, \mathbf{\Omega}, \nu, t)}{\partial t} = -\mathbf{\Omega} \cdot \nabla I(\mathbf{x}, \mathbf{\Omega}, \nu, t) - \sigma_t(\mathbf{x}, \nu) I(\mathbf{x}, \mathbf{\Omega}, \nu, t)
+ \int_0^\infty \int_{4\pi} \frac{\nu}{\nu'} \sigma_s(\mathbf{x}, \nu' \to \nu, \mathbf{\Omega}' \cdot \mathbf{\Omega}) I(\mathbf{x}, \mathbf{\Omega}', \nu', t) d\nu' d\mathbf{\Omega}'
+ \sigma_a(\mathbf{x}, \nu) B(\nu, T(\mathbf{x}, t)) + S$$
(2.1)

where S is any other sources/sinks of radiation intensity.

2.2 Radiative transfer assuming isotropic Thompson scattering

Assuming Thomson-scattering¹ is the only form of scattering, gives

$$\frac{1}{c} \frac{\partial I(\mathbf{x}, \mathbf{\Omega}, \nu, t)}{\partial t} = -\mathbf{\Omega} \cdot \nabla I(\mathbf{x}, \mathbf{\Omega}, \nu, t) - \sigma_t(\mathbf{x}, \nu) I(\mathbf{x}, \mathbf{\Omega}, \nu, t) + \frac{\sigma_s(\mathbf{x}, \nu)}{4\pi} c \mathcal{E}(\mathbf{x}, \nu) + \sigma_a(\mathbf{x}, \nu) B(\nu, T(\mathbf{x}, t)) + S$$
(2.2)

where S is any other sources/sinks of radiation intensity.

Using energy instead of frequency, $\nu \to E$:

$$\frac{1}{c} \frac{\partial I(\mathbf{x}, \mathbf{\Omega}, E, t)}{\partial t} = -\mathbf{\Omega} \cdot \nabla I(\mathbf{x}, \mathbf{\Omega}, E, t) - \sigma_t(\mathbf{x}, E) I(\mathbf{x}, \mathbf{\Omega}, E, t) + \frac{\sigma_s(\mathbf{x}, E)}{4\pi} c \mathcal{E}(\mathbf{x}, E) + \sigma_a(\mathbf{x}, E) B(E, T(\mathbf{x}, t)) + S$$
(2.3)

where S is any other sources/sinks of radiation intensity.

2.3 Radiative transfer with material motion corrections

Applying relativistic corrections for a material in motion, we can derive (e.g., see NUEN 627 lecture 4) the laboratory-frame transport equation

$$\frac{1}{c} \frac{\partial I(\mathbf{x}, \mathbf{\Omega}, E, t)}{\partial t} = -\mathbf{\Omega} \cdot \nabla I(\mathbf{x}, \mathbf{\Omega}, E, t) - \left(\frac{E_0}{E}\right) \sigma_t(\mathbf{x}, E_0) I(\mathbf{x}, \mathbf{\Omega}, E, t)
+ \left(\frac{E}{E_0}\right)^2 \frac{\sigma_s(\mathbf{x}, E)}{4\pi} \int_{4\pi} \left(\frac{E_0}{E'}\right) I(\mathbf{x}, \mathbf{\Omega}', E', t) d\mathbf{\Omega}' + \left(\frac{E}{E_0}\right)^2 \sigma_a(\mathbf{x}, E_0) B(E_0, T(\mathbf{x}, t)) + S,$$
(2.4)

where

$$E_0 = E\gamma \left(1 - \mathbf{\Omega} \cdot \frac{\mathbf{u}}{c}\right) \tag{2.5}$$

$$\gamma = \left[1 - \left(\frac{||\mathbf{u}||}{c}\right)^2\right]^{-\frac{1}{2}} \tag{2.6}$$

$$\frac{E_0}{E'} = \gamma \left(1 - \mathbf{\Omega}' \cdot \frac{\mathbf{u}}{c} \right) \tag{2.7}$$

$$E' = E \frac{1 - \Omega \cdot \frac{\mathbf{u}}{c}}{1 - \Omega' \cdot \frac{\mathbf{u}}{c}}$$
 (2.8)

¹Thomson scattering is the elastic scattering of electromagnetic radiation by a free charged particle. The particle's kinetic energy- as well as the photon's frequency, does not change in such a scattering. The scattering is also isotropic.

2.4 Radiative transfer with material velocity dependencies expanded to $\mathcal{O}(v/c)$

Very ugly derivations in NUEN 627 lecture 5 to get to,

$$\frac{1}{c} \frac{\partial I(\mathbf{x}, \mathbf{\Omega}, E, t)}{\partial t} + \mathbf{\Omega} \cdot \nabla I(\mathbf{x}, \mathbf{\Omega}, E, t) + \sigma_t(\mathbf{x}, E) I(\mathbf{x}, \mathbf{\Omega}, E, t)
= \frac{\sigma_s(\mathbf{x}, E)}{4\pi} \phi(E) + \sigma_a(\mathbf{x}, E) B(E, T(\mathbf{x}, t))
+ \left[\left(\sigma_t + E \frac{\partial \sigma_a}{\partial E} \right) I + \frac{\sigma_s}{4\pi} \left(2\phi - E \frac{\partial \phi}{\partial E} \right) + 2\sigma_a B(E, T) - B(E, T) E \frac{\partial \sigma_a}{\partial E} - \sigma_a E \frac{\partial B(E, T)}{\partial E} \right] \mathbf{\Omega} \cdot \frac{\mathbf{u}}{c}
- \frac{\sigma_s}{4\pi} \left(\mathbf{F} - E \frac{\partial \mathbf{F}}{\partial E} \right) \cdot \frac{\mathbf{u}}{c}$$
(2.9)

Voodoo magic Grey Radiation Transport equation:

Somehow, determined by integrating over energy

$$\frac{1}{c}\frac{\partial I}{\partial t} + \mathbf{\Omega} \cdot \nabla I + \sigma_t(\mathbf{x})I = \frac{\sigma_s}{4\pi}\phi + \frac{\sigma_a}{4\pi}acT^4 - \frac{\sigma_t}{4\pi}\mathbf{\mathcal{F}}_0 \cdot \frac{\mathbf{u}}{c} + \frac{\sigma_t}{\pi}\mathbf{\mathcal{E}} \ \mathbf{\Omega} \cdot \mathbf{u}$$
 (2.10)

Radiation energy equation:

Obtained by integrating the transport equation over energy and angle

$$\frac{\partial \mathcal{E}(\mathbf{x},t)}{\partial t} + \nabla \cdot \mathcal{F}(\mathbf{x},t) = \int_0^\infty \sigma_a(\mathbf{x}, E) \left(4\pi B(E, T) - \phi(\mathbf{x}, E, t) \right) dE
+ \int_0^\infty \left(\sigma_a + E \frac{\partial \sigma_a}{\partial E} - \sigma_s(E) \right) \mathcal{F} \cdot \frac{\mathbf{u}}{c} dE$$
(2.11)

Radiation momentum equation:

Obtained by first multiplying by $\frac{1}{c}\Omega$, then integrating over all directions and energies,

$$\frac{1}{c^2} \frac{\partial \mathcal{F}}{\partial t} + \nabla \cdot \mathcal{P} = -\int_0^\infty \frac{\sigma_t}{c} \mathcal{F} dE
+ \int_0^\infty \left(\sigma_s \phi + \sigma_a 4\pi B(E, T) \right) \frac{\mathbf{u}}{c^2} dE
+ \int_0^\infty \left(\sigma_a + E \frac{\partial \sigma_a}{\partial E} + \sigma_s \right) \mathcal{P} \cdot \frac{\mathbf{u}}{c} dE$$
(2.12)

2.5 Grey Radiative Transfer

$$\frac{1}{c} \frac{\partial I(\mathbf{x}, \mathbf{\Omega}, t)}{\partial t} + \mathbf{\Omega} \cdot \nabla I(\mathbf{x}, \mathbf{\Omega}, t) + \sigma_t(\mathbf{x}) I(\mathbf{x}, \mathbf{\Omega}, t)
= \frac{\sigma_s}{4\pi} \phi + \frac{\sigma_a}{4\pi} a c T^4
+ \left[\sigma_t I + \frac{\sigma_s}{4\pi} 2\phi + 2\sigma_a \frac{1}{4\pi} a c T^4 - \sigma_a E \frac{\partial B(E, T)}{\partial E} \right] \mathbf{\Omega} \cdot \frac{\mathbf{u}}{c}
- \frac{\sigma_s}{4\pi} \mathbf{F} \cdot \frac{\mathbf{u}}{c}$$
(2.13)

Radiation energy equation:

Obtained by integrating Eq. (2.13) over energy and angle

$$\frac{\partial \mathcal{E}(\mathbf{x}, t)}{\partial t} + \nabla \cdot \mathcal{F}(\mathbf{x}, t) = \sigma_a c \left(a T^4 - \mathcal{E} \right) + \left(\sigma_a - \sigma_s \right) \mathcal{F} \cdot \frac{\mathbf{u}}{c}
= \sigma_a c \left(a T^4 - \mathcal{E}_0 \right) - \sigma_t \mathcal{F} \cdot \frac{\mathbf{u}}{c}$$
(2.14)

Radiation momentum equation:

Obtained by first multiplying Eq. (2.13) by $\frac{1}{c}\Omega$, then integrating over all directions and energies,

$$\frac{1}{c^{2}} \frac{\partial \mathcal{F}}{\partial t} + \nabla \cdot \mathcal{P} = -\frac{\sigma_{t}}{c} \mathcal{F} + \left(\sigma_{s} c \mathcal{E} + \sigma_{a} a c T^{4}\right) \frac{\mathbf{u}}{c^{2}} + \sigma_{t} \mathcal{P} \cdot \frac{\mathbf{u}}{c}
= -\frac{\sigma_{t}}{c} \mathcal{F} + \left(\left(\sigma_{a} + \sigma_{s} - \sigma_{a}\right) \mathcal{E} + \sigma_{a} a T^{4}\right) \frac{\mathbf{u}}{c} + \sigma_{t} \mathcal{P} \cdot \frac{\mathbf{u}}{c}
= \frac{1}{c} \left[-\sigma_{t} \mathcal{F} + \left(\left(\sigma_{t} - \sigma_{a}\right) \mathcal{E} + \sigma_{a} a T^{4}\right) \mathbf{u} + \sigma_{t} \mathcal{P} \cdot \mathbf{u} \right]
= -\frac{1}{c} \left[\sigma_{t} \mathcal{F} - \left(\left(\sigma_{t} - \sigma_{a}\right) \mathcal{E} + \sigma_{a} a T^{4}\right) \mathbf{u} - \sigma_{t} \mathcal{P} \cdot \mathbf{u} \right]
\frac{1}{c^{2}} \frac{\partial \mathcal{F}}{\partial t} + \nabla \cdot \mathcal{P} = -\frac{\sigma_{t}}{c} \mathcal{F}_{0} + \sigma_{a} c \left(a T^{4} - \mathcal{E}\right) \frac{\mathbf{u}}{c^{2}}$$
(2.15)

2.6 Grey Diffusion Approximation

Approximating the angular dependence of $I(\Omega)$ with a P_1 spherical harmonic expansion, such that the entries of \mathcal{P} are given by

$$(\mathbf{\mathcal{P}})_{i,j} = \frac{1}{3} \mathcal{E} \delta_{i,j}, \tag{2.16}$$

the radiation energy equation is unaffected but the radiation momentum equation changes. We repeat the radiation energy equation below, and the altered radiation moment equations:

$$\frac{\partial \mathcal{E}}{\partial t} + \nabla \cdot \mathcal{F}(\mathbf{x}, t) = \sigma_a c (aT^4 - \mathcal{E}) + (\sigma_a - \sigma_s) \mathcal{F} \cdot \frac{\mathbf{u}}{c}, \tag{2.17}$$

$$\frac{1}{3}\nabla\mathcal{E} = -\frac{\sigma_t}{c}\mathcal{F} + \left(\sigma_s c \mathcal{E} + \sigma_a a c T^4\right) \frac{\mathbf{u}}{c^2} + \sigma_t \frac{1}{3} \mathcal{E} \frac{\mathbf{u}}{c}.$$
 (2.18)

Useful transformations:

$$\mathcal{E}_0 = \mathcal{E} - \frac{2}{c^2} \mathbf{\mathcal{F}} \cdot \mathbf{u} \tag{2.19a}$$

$$\mathcal{E} = \mathcal{E}_0 + \frac{2}{c^2} \mathcal{F}_0 \cdot \mathbf{u} \tag{2.19b}$$

$$\mathcal{F}_0 = \mathcal{F} - (\mathcal{E}\mathbf{u} + \mathcal{P} \cdot \mathbf{u}) \tag{2.19c}$$

$$\mathcal{F} = \mathcal{F}_0 + (\mathcal{E}_0 \mathbf{u} + \mathcal{P}_0 \cdot \mathbf{u})$$
 (2.19d)

$$\mathcal{P}_0 = \mathcal{P} - \frac{2}{c^2} \mathbf{u} \otimes \mathcal{F} \tag{2.19e}$$

$$\mathcal{P} = \mathcal{P}_0 + \frac{2}{c^2} \mathbf{u} \otimes \mathcal{F}_0 \tag{2.19f}$$

With the P_1 approximation

$$\mathcal{F}_0 = \mathcal{F} - \frac{4}{3}\mathcal{E}\mathbf{u} \tag{2.19g}$$

$$\mathcal{F} = \mathcal{F}_0 + \frac{4}{3}\mathcal{E}\mathbf{u} \tag{2.19h}$$

Applying these transformations the radiation energy- and moment equation can be expressed as

$$\frac{\partial \mathcal{E}}{\partial t} + \nabla \cdot \mathcal{F}(\mathbf{x}, t) = \sigma_a c \left(a T^4 - \mathcal{E}_0 \right) - \sigma_t \mathcal{F} \cdot \frac{\mathbf{u}}{c}, \tag{2.20}$$

$$\frac{1}{3}\nabla \mathcal{E} = -\frac{\sigma_t}{c}\mathcal{F}_0 + \sigma_a c \left(aT^4 - \mathcal{E}\right) \frac{\mathbf{u}}{c^2}.$$
(2.21)

Several simplifications to these equations are made. Firstly arriving at the expression for the radiation energy equation,

$$\frac{\partial \mathcal{E}}{\partial t} + \nabla \cdot \mathcal{F}(\mathbf{x}, t) = \sigma_a c \left(a T^4 - \mathcal{E} \right) - \sigma_t \mathcal{F}_0 \cdot \frac{\mathbf{u}}{c}, \tag{2.22}$$

then the radiation momentum equation,

$$\frac{1}{3}\nabla\mathcal{E} = -\frac{\sigma_t}{c}\mathcal{F}_0 \tag{2.23}$$

from which we can get expression for \mathcal{F}_0 and \mathcal{F} in terms of \mathcal{E} as

$$\mathcal{F}_0 = -\frac{c}{3\sigma_t} \nabla \mathcal{E} \tag{2.24}$$

and

$$\frac{1}{3}\nabla\mathcal{E} = -\frac{\sigma_t}{c}\left(\mathcal{F} - \frac{4}{3}\mathcal{E}\mathbf{u}\right)$$

$$\therefore \mathcal{F} = -\frac{c}{3\sigma_t}\nabla\mathcal{E} + \frac{4}{3}\mathcal{E}\mathbf{u}.$$
(2.25)

These expressions for \mathcal{F}_0 and \mathcal{F} are both then inserted into the radiation energy equation as follows

$$\frac{\partial \mathcal{E}}{\partial t} + \nabla \cdot \mathcal{F}(\mathbf{x}, t) = \sigma_a c \left(a T^4 - \mathcal{E} \right) - \sigma_t \mathcal{F}_0 \cdot \frac{\mathbf{u}}{c}$$

$$\rightarrow \frac{\partial \mathcal{E}}{\partial t} + \nabla \cdot \left(-\frac{c}{3\sigma_t} \nabla \mathcal{E} + \frac{4}{3} \mathcal{E} \mathbf{u} \right) = \sigma_a c \left(a T^4 - \mathcal{E} \right) - \sigma_t \left(-\frac{c}{3\sigma_t} \nabla \mathcal{E} \right) \cdot \frac{\mathbf{u}}{c}$$

$$\rightarrow \frac{\partial \mathcal{E}}{\partial t} + \nabla \cdot \left(-\frac{c}{3\sigma_t} \nabla \mathcal{E} \right) + \frac{4}{3} \nabla \cdot (\mathcal{E} \mathbf{u}) = \sigma_a c \left(a T^4 - \mathcal{E} \right) + \frac{1}{3} \nabla \mathcal{E} \cdot \mathbf{u}.$$
(2.26)

Arriving at a diffusion form of the radiation energy equation,

$$\frac{\partial \mathcal{E}}{\partial t} + \nabla \cdot \left(-\frac{c}{3\sigma_t} \nabla \mathcal{E} \right) + \frac{4}{3} \nabla \cdot (\mathcal{E}\mathbf{u}) = \sigma_a c \left(a T^4 - \mathcal{E} \right) + \frac{1}{3} \nabla \mathcal{E} \cdot \mathbf{u}. \tag{2.27}$$

2.7 Conservation equation for fluid flow

The governing equations we consider here are the Euler equations defined as

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0 \tag{2.28}$$

$$\frac{\partial(\rho \mathbf{u})}{\partial t} + \nabla \cdot \{\rho \mathbf{u} \otimes \mathbf{u}\} + \nabla p = \mathbf{f}, \tag{2.29}$$

$$\frac{\partial E}{\partial t} + \nabla \cdot [(E+p)\mathbf{u}] = q \tag{2.30}$$

where ρ is the fluid density, $\mathbf{u} = [u_x, u_y, u_z] = [u, v, w]$ is the fluid velocity in cartesian coordinates, p is the fluid pressure, E is the material energy-density comprising kinetic energy-density, $\frac{1}{2}\rho||\mathbf{u}||^2$, and internal energy-density, ρe , such that $E = \frac{1}{2}\rho||\mathbf{u}||^2 + \rho e$, where e is the specific internal energy. The values q and \mathbf{f} are abstractly used here as energy- and moment- sources/sinks, respectively.

The ideal gas law provides the closure relation

$$p = (\gamma - 1)\rho e \tag{2.31}$$

where γ is the ratio of the constant-pressure specific heat, c_p , to the constant-volume specific heat, c_v , i.e., $\gamma = \frac{c_p}{c_v}$, and is a material property.

Coupling terms:

$$\mathbf{f} = \frac{\sigma_t}{c} \mathcal{F}_0$$

$$= -\frac{1}{3} \nabla \mathcal{E}$$
(2.32)

 $\quad \text{and} \quad$

$$q = -\left(\sigma_a c (aT^4 - \mathcal{E}) - \sigma_t \mathcal{F}_0 \cdot \frac{\mathbf{u}}{c}\right)$$

$$= \sigma_a c (\mathcal{E} - aT^4) - \frac{1}{3} \nabla \mathcal{E} \cdot \mathbf{u}$$
(2.33)

3 Solver A - Radiation Hydrodynamics Grey Diffusion

The set of Radiation Hydrodynamics Grey Diffusion Equations are

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0 \tag{3.1a}$$

$$\frac{\partial(\rho\mathbf{u})}{\partial t} + \nabla \cdot \{\rho\mathbf{u} \otimes \mathbf{u}\} + \nabla p = -\frac{1}{3}\nabla \mathcal{E},\tag{3.1b}$$

$$\frac{\partial E}{\partial t} + \nabla \cdot [(E+p)\mathbf{u}] = \sigma_a c(\mathcal{E} - aT^4) - \frac{1}{3} \nabla \mathcal{E} \cdot \mathbf{u}$$
(3.1c)

$$\frac{\partial \mathcal{E}}{\partial t} + \nabla \cdot \left(-\frac{c}{3\sigma_t} \nabla \mathcal{E} \right) + \frac{4}{3} \nabla \left(\mathcal{E} \mathbf{u} \right) = \sigma_a c \left(a T^4 - \mathcal{E} \right) + \frac{1}{3} \nabla \mathcal{E} \cdot \mathbf{u}. \tag{3.1d}$$

where

$$E = \frac{1}{2}\rho||\mathbf{u}||^2 + \rho e,\tag{3.1e}$$

$$p = (\gamma - 1)\rho e, (3.1f)$$

$$T = \frac{1}{C_v}e\tag{3.1g}$$

$$\sigma_t(T) = \sigma_s(T) + \sigma_a(T) \tag{3.1h}$$

$$\sigma_s(T) = \rho \kappa_s(T) \tag{3.1i}$$

$$\sigma_a(T) = \rho \kappa_a(T) \tag{3.1j}$$

3.1 Definitions

First we define the following terms

• The radiation emission and absorption, the radiation momentum source, and the radiation energy source

$$S_{ea} = \sigma_a c \left(a T^4 - \mathcal{E} \right) \tag{3.2a}$$

$$\mathbf{S}_{rp} = \frac{1}{3} \nabla \mathcal{E} \tag{3.2b}$$

$$S_{re} = S_{ea} + \frac{1}{3} \nabla \mathcal{E} \cdot \mathbf{u} \tag{3.2c}$$

• The conserved hydrodynamic variables, U, and associated hydrodynamic flux, \mathcal{F}^H ,

$$\mathbf{U} = \begin{bmatrix} \rho \\ \rho \mathbf{u} \\ E \end{bmatrix} \qquad \mathcal{F}^{H} = \begin{bmatrix} \rho u \\ \rho u u + p \\ \rho u v \\ \rho u w \\ (E+p)u \end{bmatrix}$$
(3.2d)

• The stationary reference frame radiation energy flux

$$\mathcal{F}_0 = -\frac{c}{3\sigma_t} \nabla \mathcal{E} \tag{3.2e}$$

Next, we use these terms to define a more condensed version of the RHGD equations.

$$\frac{\partial \mathbf{U}}{\partial t} + \mathbf{\nabla} \cdot \mathcal{F}^{H}(\mathbf{U}) = \begin{bmatrix} 0 \\ -\mathbf{S}_{rp} \\ -S_{re} \end{bmatrix}$$
(3.3)

$$\frac{\partial \mathcal{E}}{\partial t} + \nabla \cdot \mathcal{F}_0 + \frac{4}{3} \nabla \cdot (\mathcal{E}\mathbf{u}) = S_{ea} + \frac{1}{3} \nabla \mathcal{E} \cdot \mathbf{u}. \tag{3.4}$$

3.2 Finite Volume Spatial Discretization

To apply a finite volume spatial discretization we integrate our time-discretized equations over the volume, V_c , of cell c, and afterwards divide by V_c . This leaves all the terms containing τ unchanged. In this process we develop the following terms:

3.2.1 Hydrodynamic and Radiation-energy advection

$$\frac{1}{V_c} \int_{V_c} \mathbf{\nabla} \cdot \mathcal{F}^H(\mathbf{U}) dV = \frac{1}{V_c} \sum_f \mathbf{A}_f \cdot \mathcal{F}^H(\mathbf{U}_f)$$
(3.5)

$$\frac{1}{V_c} \int_{V_c} \left(\frac{4}{3} \nabla \cdot (\mathcal{E} \mathbf{u}) \right) dV = \frac{1}{V_c} \sum_f \frac{4}{3} \mathbf{A}_f \cdot (\mathcal{E} \mathbf{u})_f$$
 (3.6)

The face values are reconstructed from gradients in both the predictor and corrector phases. In the corrector-phase the hydrodynamic flux, \mathcal{F}^H , is used in its earlier defined form, whilst in the corrector-phase the flux is determined by an approximate Riemann-solver, i.e., the HLLC Riemann solver.

Predictor phases:

For the predictor phase we have the following:

$$\nabla \cdot \mathcal{F}^{H}(\mathbf{U}) \mapsto \frac{1}{V_{c}} \sum_{f} \mathbf{A}_{f} \cdot \mathcal{F}^{H}(\mathbf{U}_{f})$$
(3.7)

$$\left(\frac{4}{3}\nabla \cdot (\mathcal{E}\mathbf{u})\right) \mapsto \frac{1}{V_c} \sum_{f} \frac{4}{3}\mathbf{A}_f \cdot (\mathcal{E}\mathbf{u})_f \tag{3.8}$$

$$\mathbf{U}_f = \mathbf{U}_c + (\mathbf{x}_f - \mathbf{x}_c) \cdot \{\nabla \mathbf{U}\}_c \tag{3.9}$$

$$\mathcal{E}_f = \mathcal{E}_c + (\mathbf{x}_f - \mathbf{x}_c) \cdot \{\nabla \mathcal{E}\}_c \tag{3.10}$$

Corrector phases:

For the corrector phase we have the following:

$$\nabla \cdot \mathcal{F}^{H}(\mathbf{U}) \mapsto \frac{1}{V_c} \sum_{f} \mathbf{A}_{f} \cdot \mathbf{F}^{*hllc}(\mathbf{U}_{f})$$
(3.11)

$$\left(\frac{4}{3}\nabla \cdot (\mathcal{E}\mathbf{u})\right) \mapsto \frac{1}{V_c} \sum_{f} \frac{4}{3} \mathbf{A}_f \cdot (\mathcal{E}\mathbf{u})_{upw}$$
(3.12)

where

$$\mathbf{U}_f = \mathbf{U}_c + (\mathbf{x}_f - \mathbf{x}_c) \cdot \{\nabla \mathbf{U}\}_c \tag{3.13}$$

$$(\mathcal{E}\mathbf{u})_{upw} = \begin{cases} (\mathcal{E}\mathbf{u})_{c,f}, & \text{if } \mathbf{u}_{c,f} \cdot \mathbf{n}_f > 0 \text{ and } \mathbf{u}_{cn,f} \cdot \mathbf{n}_f > 0 & \rightarrow | \rightarrow | \\ (\mathcal{E}\mathbf{u})_{cn,f}, & \text{if } \mathbf{u}_{c,f} \cdot \mathbf{n}_f < 0 \text{ and } \mathbf{u}_{cn,f} \cdot \mathbf{n}_f < 0 & \leftarrow | \leftarrow | \\ (\mathcal{E}\mathbf{u})_{cn,f} + (\mathcal{E}\mathbf{u})_{c,f}, & \text{if } \mathbf{u}_{c,f} \cdot \mathbf{n}_f > 0 \text{ and } \mathbf{u}_{cn,f} \cdot \mathbf{n}_f < 0 & \rightarrow | \leftarrow | \\ 0, & \text{if } \mathbf{u}_{c,f} \cdot \mathbf{n}_f < 0 \text{ and } \mathbf{u}_{cn,f} \cdot \mathbf{n}_f > 0 & \leftarrow | \rightarrow | \end{cases}$$

$$(3.14)$$

$$\mathcal{E}_{c,f} = \mathcal{E}_c + (\mathbf{x}_f - \mathbf{x}_c) \cdot \{\nabla \mathcal{E}\}_c \tag{3.15}$$

3.2.2 Density and momentum updates

We apply the same process as before:

$$-\frac{1}{V_c} \int_{V_c} \mathbf{S}_{rp} dV = -\frac{1}{V_c} \sum_f \frac{1}{3} \mathbf{A}_f \mathcal{E}_f, \tag{3.16}$$

however, here we want \mathcal{E}_f to satisfy the following relationship

$$\frac{D_c}{\|\mathbf{x}_{cf}\|}(\mathcal{E}_f - \mathcal{E}_c) = \frac{D_{cn}}{\|\mathbf{x}_{fcn}\|}(\mathcal{E}_{cn} - \mathcal{E}_f)$$
(3.17)

where

$$D_c = -\frac{c}{3\sigma_{t,c}} \tag{3.18}$$

and where \mathbf{x}_{cf} is the vector from cell c's centroid to the face centroid, \mathbf{x}_{fcn} is the vector from the face centroid to cell cn's centroid (where cell cn is the neighbor to c at face f). The norm $||\cdot||$ refers to the L_2 norm.

Solving the above relationship for \mathcal{E}_f we first set

$$k_c = \frac{D_c}{||\mathbf{x}_{cf}||}, \qquad k_{cn} = \frac{D_{cn}}{||\mathbf{x}_{fcn}||}$$

then get

$$k_{c}\mathcal{E}_{f} - k_{c}\mathcal{E}_{c} = k_{cn}\mathcal{E}_{cn} - k_{cn}\mathcal{E}_{f}$$

$$\rightarrow (k_{c} + k_{cn})\mathcal{E}_{f} = k_{cn}\mathcal{E}_{cn} + k_{c}\mathcal{E}_{c}$$

$$\therefore \mathcal{E}_{f} = \frac{k_{cn}\mathcal{E}_{cn} + k_{c}\mathcal{E}_{c}}{k_{c} + k_{cn}}.$$
(3.19)

Predictor and corrector phases:

We do the same for both,

$$-\mathbf{S}_{rp} \mapsto -\frac{1}{V_c} \sum_{f} \frac{1}{3} \mathbf{A}_f \mathcal{E}_f \tag{3.20}$$

3.2.3 Energy equations

Only two terms require special consideration here. They are: the divergence of the co-moving frame radiation energy flux, and the kinetic energy terms source terms,

$$\frac{1}{V_c} \int_{V_c} \mathbf{\nabla} \cdot \mathbf{\mathcal{F}}_0 \ dV = \frac{1}{V_c} \sum_f \mathbf{A}_f \cdot (\mathbf{\mathcal{F}}_0)_f$$

$$\frac{1}{V_c} \int_{V_c} \frac{1}{3} \mathbf{\nabla} \mathcal{E} \cdot \mathbf{u} \ dV = \frac{1}{V_c} \sum_f \frac{1}{3} \mathbf{A}_f \cdot (\mathcal{E}\mathbf{u})_f.$$
(3.21)

3.2.3.1 The diffusion term

Considering the \mathcal{F}_0 -term first, we apply Gauss' divergence theorem to get

$$\nabla \cdot \mathcal{F}_0 \mapsto \frac{1}{V_c} \sum_f \mathbf{A}_f \cdot (\mathcal{F}_0)_f. \tag{3.22}$$

For $(\mathcal{F}_0)_f$ we have

$$(\mathcal{F}_0)_f = -\frac{c}{3\sigma_{tf}} (\nabla \mathcal{E})_f. \tag{3.23}$$

Now define

$$D_f = -\frac{c}{3\sigma_{tf}}. (3.24)$$

To find D_f we seek the equivalence:

$$D_f \frac{\mathcal{E}_{cn} - \mathcal{E}_c}{||\mathbf{x}_{cn} - \mathbf{x}_c||} = D_c \frac{\mathcal{E}_f - \mathcal{E}_c}{||\mathbf{x}_f - \mathbf{x}_c||} = D_{cn} \frac{\mathcal{E}_{cn} - \mathcal{E}_f}{||\mathbf{x}_{cn} - \mathbf{x}_f||}$$
(3.25)

Now let us define

$$k_c = \frac{D_c}{||\mathbf{x}_f - \mathbf{x}_c||}$$

$$k_{cn} = \frac{D_{cn}}{||\mathbf{x}_{cn} - \mathbf{x}_f||}$$
(3.26)

Now

$$k_c(\mathcal{E}_f - \mathcal{E}_c) = k_{cn}(\mathcal{E}_{cn} - \mathcal{E}_f)$$

$$(k_c + k_{cn})\mathcal{E}_f = k_{cn}\mathcal{E}_{cn} + k_c\mathcal{E}_c$$

$$\therefore \mathcal{E}_f = \frac{k_{cn}\mathcal{E}_{cn} + k_c\mathcal{E}_c}{k_c + k_{cn}}$$
(3.27)

Now we choose any of the right-two terms in the three way equality and plug the expression for \mathcal{E}_f ,

$$k_{c}(\mathcal{E}_{f} - \mathcal{E}_{c})$$

$$= k_{c} \left(\frac{k_{cn}\mathcal{E}_{cn} + k_{c}\mathcal{E}_{c}}{k_{c} + k_{cn}} - \mathcal{E}_{c} \right)$$

$$= k_{c} \left(\frac{k_{cn}\mathcal{E}_{cn} + k_{c}\mathcal{E}_{c} - k_{c}\mathcal{E}_{c} - k_{cn}\mathcal{E}_{c}}{k_{c} + k_{cn}} \right)$$

$$\therefore D_{f} \frac{\mathcal{E}_{cn} - \mathcal{E}_{c}}{||\mathbf{x}_{cn} - \mathbf{x}_{c}||} = \frac{k_{c}k_{cn}}{k_{c} + k_{cn}} (\mathcal{E}_{cn} - \mathcal{E}_{c})$$

$$\therefore D_{f} = \frac{k_{c}k_{cn}}{k_{c} + k_{cn}} ||\mathbf{x}_{cn} - \mathbf{x}_{c}||$$

$$\therefore D_{f} = \frac{k_{c}k_{cn}}{k_{c} + k_{cn}} ||\mathbf{x}_{cn} - \mathbf{x}_{c}||$$
(3.28)

From the earlier expression for $(\mathcal{F}_0)_f$, we can write

$$(\mathcal{F}_0)_f = D_f \left(\mathcal{E}_{cn} - \mathcal{E}_c \right) \frac{\mathbf{x}_{cn} - \mathbf{x}_c}{||\mathbf{x}_{cm} - \mathbf{x}_c||^2}$$
(3.29)

for which we can define

$$\mathbf{k}_f = D_f \frac{\mathbf{x}_{cn} - \mathbf{x}_c}{||\mathbf{x}_{cn} - \mathbf{x}_c||^2} \tag{3.30}$$

such that we finally arrive at

$$(\mathcal{F}_0)_f = \mathbf{k}_f (\mathcal{E}_{cn} - \mathcal{E}_c). \tag{3.31}$$

3.2.3.2 The kinetic energy term

For the kinetic energy source terms, we similarly have

$$\left(\frac{1}{3}\nabla \mathcal{E} \cdot \mathbf{u}\right)^n \mapsto \frac{1}{V_c} \sum_f \frac{1}{3} \mathbf{A}_f \cdot (\mathcal{E}_f^n \mathbf{u}_f^n)$$
(3.32)

where we use the reconstructed values as in the Hydrodynamic and radiation-energy advection portion.

3.3 Temporal scheme - Implicit Euler Predictor, Crank-Nicolson Corrector

$$\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \mathcal{F}^{H}(\mathbf{U}) = \begin{vmatrix} 0 \\ -\mathbf{S}_{rp} \\ -S_{re} \end{vmatrix}$$
 (3.33a)

$$\frac{\partial \mathcal{E}}{\partial t} + \nabla \cdot \mathcal{F}_0 + \frac{4}{3} \nabla \cdot (\mathcal{E}\mathbf{u}) = S_{re}. \tag{3.33b}$$

3.3.1 Predictor phase

$$\tau = \frac{1}{\frac{1}{2}\Delta t}$$

$$\tau(\mathbf{U}^{n*} - \mathbf{U}^n) + \nabla \cdot \mathcal{F}^H(\mathbf{U}^n) = \mathbf{0}$$
(3.34a)

$$\tau \left(\begin{bmatrix} \rho \\ \rho \mathbf{u} \end{bmatrix}^{n + \frac{1}{2}} - \begin{bmatrix} \rho \\ \rho \mathbf{u} \end{bmatrix}^{n*} \right) = \begin{bmatrix} 0 \\ -\frac{1}{3} \nabla \mathcal{E} \end{bmatrix}^{n}$$
 (3.34b)

$$\tau(\mathcal{E}^{n*} - \mathcal{E}^n) + \left(\frac{4}{3}\nabla \cdot (\mathcal{E}\mathbf{u})\right)^n = 0 \tag{3.34c}$$

$$\tau(E^{n+\frac{1}{2}} - E^{n*}) = -\theta_1 S_{ea}^{n+\frac{1}{2}} - \theta_2 S_{ea}^n - \left(\frac{1}{3} \nabla \mathcal{E} \cdot \mathbf{u}\right)^n$$
(3.34d)

$$\tau(\mathcal{E}^{n+\frac{1}{2}} - \mathcal{E}^{n*}) + \theta_1 \nabla \cdot \mathcal{F}_0^{n+\frac{1}{2}} + \theta_2 \nabla \cdot \mathcal{F}_0^n = \theta_1 S_{ea}^{n+\frac{1}{2}} + \theta_2 S_{ea}^n + \left(\frac{1}{3} \nabla \mathcal{E} \cdot \mathbf{u}\right)^n$$
(3.34e)

For S_{ea} and \mathcal{F}_0 both at $n+\frac{1}{2}$:

$$\sigma^{n+\frac{1}{2}} = \rho^{n+\frac{1}{2}}\kappa(T^n) \tag{3.34f}$$

$$T^{4,n+\frac{1}{2}} = T^{4,n*} + \frac{4T^{3,n*}}{C_n} \left(e^{n+\frac{1}{2}} - e^{n*}\right)$$
(3.34g)

3.3.2 Corrector phase

$$\tau = \frac{1}{\Delta t}$$

$$\tau(\mathbf{U}^{n+\frac{1}{2}*} - \mathbf{U}^n) + \nabla \cdot \mathcal{F}^H(\mathbf{U}^{n+\frac{1}{2}}) = \mathbf{0}$$
(3.35a)

$$\tau \left(\begin{bmatrix} \rho \\ \rho \mathbf{u} \end{bmatrix}^{n+1} - \begin{bmatrix} \rho \\ \rho \mathbf{u} \end{bmatrix}^{n+\frac{1}{2}*} \right) = \begin{bmatrix} 0 \\ -\frac{1}{3} \nabla \mathcal{E} \end{bmatrix}^{n+\frac{1}{2}}$$
(3.35b)

$$\tau(\mathcal{E}^{n+\frac{1}{2}*} - \mathcal{E}^n) + \left(\frac{4}{3}\nabla \cdot (\mathcal{E}\mathbf{u})\right)^{n+\frac{1}{2}} = 0$$
(3.35c)

$$\tau(E^{n+1} - E^{n+\frac{1}{2}*}) = -\theta_1 S_{ea}^{n+1} - \theta_2 S_{ea}^n - \left(\frac{1}{3} \nabla \mathcal{E} \cdot \mathbf{u}\right)^{n+\frac{1}{2}}$$
(3.35d)

$$\tau(\mathcal{E}^{n+1} - \mathcal{E}^{n+\frac{1}{2}*}) + \theta_1 \nabla \cdot \mathcal{F}_0^{n+1} + \theta_2 \nabla \cdot \mathcal{F}_0^n = \theta_1 S_{ea}^{n+1} + \theta_2 S_{re}^n + \left(\frac{1}{3} \nabla \mathcal{E} \cdot \mathbf{u}\right)^{n+\frac{1}{2}}$$
(3.35e)

For S_{ea} and \mathcal{F}_0 both at n+1:

$$\sigma^{n+1} = \rho^{n+1} \kappa(T^{n+\frac{1}{2}}) \tag{3.35f}$$

$$T^{4,n+1} = T^{4,n+\frac{1}{2}*} + \frac{4T^{3,n+\frac{1}{2}*}}{C_n} (e^{n+1} - e^{n+\frac{1}{2}*})$$
(3.35g)

3.3.3 General energy equations, Predictor and Corrector phase, with θ factors

Time integration scheme A uses **implicit Euler** for the predictor phase and **Crank-Nicolson** in the corrector phase. Both these schemes can be represented wit a general θ -scheme where we define:

$$\theta_1 \in [0, 1]$$
 $\theta_2 = 1 - \theta_1.$
(3.36)

For implicit Euler, $\theta_1 = 1$, $\theta_2 = 0$, and for Crank-Nicolson, $\theta_1 = \theta_2 = \frac{1}{2}$. With these factors defined we can repeat the energy equations and apply a series of manipulations. First we attempt to segregate known terms from all unknown terms. Thereafter we eliminate the internal energy, e, from the two sets of equations to get a single formulation for the radiation energy, \mathcal{E} . The latter formulation forms a diffusion system that needs to be assembled and solved for \mathcal{E} .

$$\tau(E^{n+1} - E^{n+\frac{1}{2}*}) = -\theta_1 \sigma_a^{n+1} c \left(a T^{4,n+1} - \mathcal{E}^{n+1} \right) - \theta_2 S_{ea}^n - \left(\frac{1}{3} \nabla \mathcal{E} \cdot \mathbf{u} \right)^{n+\frac{1}{2}}$$
(3.37a)

$$\tau(\mathcal{E}^{n+1} - \mathcal{E}^{n+\frac{1}{2}*}) + \nabla \cdot \left(\theta_1 \mathcal{F}_0^{n+1} + \theta_2 \mathcal{F}_0^n\right) = \theta_1 \sigma_a^{n+1} c \left(a T^{4,n+1} - \mathcal{E}^{n+1}\right) + \theta_2 S_{re}^n + \left(\frac{1}{3} \nabla \mathcal{E} \cdot \mathbf{u}\right)^{n+\frac{1}{2}}$$
(3.37b)

$$T^{4,n+1} = T^{4,n+\frac{1}{2}*} + \frac{4T^{3,n+\frac{1}{2}*}}{C_n} (e^{n+1} - e^{n+\frac{1}{2}*})$$
(3.37c)

Define:

$$k_1 = \theta_1 \sigma_a^{n+1} c$$

$$k_2 = \frac{4T^{3,n+\frac{1}{2}*}}{C_v}$$
(3.38)

and plug them into the equations above,

$$\tau(E^{n+1} - E^{n+\frac{1}{2}*}) = -k_1 \left(aT^{4,n+1} - \mathcal{E}^{n+1} \right) - \theta_2 S_{ea}^n - \left(\frac{1}{3} \nabla \mathcal{E} \cdot \mathbf{u} \right)^{n+\frac{1}{2}}$$
(3.39a)

$$\tau(\mathcal{E}^{n+1} - \mathcal{E}^{n+\frac{1}{2}*}) + \nabla \cdot \left(\theta_1 \mathcal{F}_0^{n+1} + \theta_2 \mathcal{F}_0^n\right) = k_1 \left(aT^{4,n+1} - \mathcal{E}^{n+1}\right) + \theta_2 S_{re}^n + \left(\frac{1}{3} \nabla \mathcal{E} \cdot \mathbf{u}\right)^{n+\frac{1}{2}}$$
(3.39b)

$$T^{4,n+1} = T^{4,n+\frac{1}{2}*} + k_2(e^{n+1} - e^{n+\frac{1}{2}*})$$
(3.39c)

ungroup right-hand side elements by multiplying out terms within parentheses,

$$\tau(E^{n+1} - E^{n+\frac{1}{2}*}) = -k_1 a T^{4,n+1} + k_1 \mathcal{E}^{n+1} - \theta_2 S_{ea}^n - \left(\frac{1}{3} \nabla \mathcal{E} \cdot \mathbf{u}\right)^{n+\frac{1}{2}}$$
(3.40a)

$$\tau(\mathcal{E}^{n+1} - \mathcal{E}^{n+\frac{1}{2}*}) + \nabla \cdot \left(\theta_1 \mathcal{F}_0^{n+1} + \theta_2 \mathcal{F}_0^n\right) = k_1 a T^{4,n+1} - k_1 \mathcal{E}^{n+1} + \theta_2 S_{re}^n + \left(\frac{1}{3} \nabla \mathcal{E} \cdot \mathbf{u}\right)^{n+\frac{1}{2}}$$
(3.40b)

$$T^{4,n+1} = T^{4,n+\frac{1}{2}*} + k_2(e^{n+1} - e^{n+\frac{1}{2}*})$$
(3.40c)

now plug in the temperature equation into both the energy equations,

$$\tau(E^{n+1} - E^{n+\frac{1}{2}*}) = -k_1 a \left(T^{4,n+\frac{1}{2}*} + k_2 (e^{n+1} - e^{n+\frac{1}{2}*})\right) + k_1 \mathcal{E}^{n+1} - \theta_2 S_{ea}^n - \left(\frac{1}{3} \nabla \mathcal{E} \cdot \mathbf{u}\right)^{n+\frac{1}{2}}$$
(3.41a)

$$\tau(\mathcal{E}^{n+1} - \mathcal{E}^{n+\frac{1}{2}*}) + \nabla \cdot \left(\theta_1 \mathcal{F}_0^{n+1} + \theta_2 \mathcal{F}_0^n\right) = k_1 a \left(T^{4,n+\frac{1}{2}*} + k_2 (e^{n+1} - e^{n+\frac{1}{2}*})\right) - k_1 \mathcal{E}^{n+1} + \theta_2 S_{re}^n + \left(\frac{1}{3} \nabla \mathcal{E} \cdot \mathbf{u}\right)^{n+\frac{1}{2}}$$
(3.41b)

ungroup elements on the both the right-hand sides,

$$\tau(E^{n+1} - E^{n+\frac{1}{2}*}) = -k_1 a T^{4,n+\frac{1}{2}*} - k_1 a k_2 e^{n+1} + k_1 a k_2 e^{n+\frac{1}{2}*} + k_1 \mathcal{E}^{n+1} - \theta_2 S_{ea}^n - \left(\frac{1}{3} \nabla \mathcal{E} \cdot \mathbf{u}\right)^{n+\frac{1}{2}}$$
(3.42a)

$$\tau(\mathcal{E}^{n+1} - \mathcal{E}^{n+\frac{1}{2}*}) + \nabla \cdot \left(\theta_1 \mathcal{F}_0^{n+1} + \theta_2 \mathcal{F}_0^n\right) = k_1 a T^{4,n+\frac{1}{2}*} + k_1 a k_2 e^{n+1} - k_1 a k_2 e^{n+\frac{1}{2}*} - k_1 \mathcal{E}^{n+1} + \theta_2 S_{re}^n + \left(\frac{1}{3} \nabla \mathcal{E} \cdot \mathbf{u}\right)^{n+\frac{1}{2}}$$
(3.42b)

Define:

$$k_{3} = -k_{1}aT^{4,n+\frac{1}{2}*} + k_{1}ak_{2}e^{n+\frac{1}{2}*} - \theta_{2}S_{ea}^{n} - \left(\frac{1}{3}\nabla\mathcal{E}\cdot\mathbf{u}\right)^{n+\frac{1}{2}}$$

$$k_{4} = -k_{1}ak_{2}$$
(3.43)

and plug them into the equations above,

$$\tau(E^{n+1} - E^{n+\frac{1}{2}*}) = k_4 e^{n+1} + k_1 \mathcal{E}^{n+1} + k_3 \tag{3.44a}$$

$$\tau(\mathcal{E}^{n+1} - \mathcal{E}^{n+\frac{1}{2}*}) + \nabla \cdot (\theta_1 \mathcal{F}_0^{n+1} + \theta_2 \mathcal{F}_0^n) = -k_4 e^{n+1} - k_1 \mathcal{E}^{n+1} - k_3$$
(3.44b)

Note:

$$E^{n+1} = (\frac{1}{2}\rho||\mathbf{u}||^2)^{n+1} + \rho^{n+1}e^{n+1}$$
(3.45)

which gives,

$$\tau\left(\left(\frac{1}{2}\rho||\mathbf{u}||^2\right)^{n+1} + \rho^{n+1}e^{n+1} - E^{n+\frac{1}{2}*}\right) = k_4e^{n+1} + k_1\mathcal{E}^{n+1} + k_3 \tag{3.46a}$$

$$\tau(\mathcal{E}^{n+1} - \mathcal{E}^{n+\frac{1}{2}*}) + \nabla \cdot (\theta_1 \mathcal{F}_0^{n+1} + \theta_2 \mathcal{F}_0^n) = -k_4 e^{n+1} - k_1 \mathcal{E}^{n+1} - k_3$$
(3.46b)

ungroup the material energy in the first equation,

$$\tau(\frac{1}{2}\rho||\mathbf{u}||^2)^{n+1} + \tau\rho^{n+1}e^{n+1} - \tau E^{n+\frac{1}{2}*} = k_4e^{n+1} + k_1\mathcal{E}^{n+1} + k_3$$
(3.47a)

$$\tau(\mathcal{E}^{n+1} - \mathcal{E}^{n+\frac{1}{2}*}) + \theta_1 \nabla \cdot \mathcal{F}_0^{n+1} + \theta_2 \nabla \cdot \mathcal{F}_0^n = -k_4 e^{n+1} - k_1 \mathcal{E}^{n+1} - k_3$$
(3.47b)

and isolate the internal energy in the first equation,

$$(\tau \rho^{n+1} - k_4)e^{n+1} = k_1 \mathcal{E}^{n+1} + k_3 - \tau (\frac{1}{2}\rho||\mathbf{u}||^2)^{n+1} + \tau E^{n+\frac{1}{2}*}$$
(3.48a)

$$\tau(\mathcal{E}^{n+1} - \mathcal{E}^{n+\frac{1}{2}*}) + \theta_1 \nabla \cdot \mathcal{F}_0^{n+1} + \theta_2 \nabla \cdot \mathcal{F}_0^n = -k_4 e^{n+1} - k_1 \mathcal{E}^{n+1} - k_3$$
(3.48b)

Define:

$$k_{5} = \frac{k_{1}}{\tau \rho^{n+1} - k_{4}}$$

$$k_{6} = \frac{k_{3} - \tau(\frac{1}{2}\rho||\mathbf{u}||^{2})^{n+1} + \tau E^{n+\frac{1}{2}*}}{\tau \rho^{n+1} - k_{4}}$$
(3.49)

and plug these constants into the first equation above,

$$e^{n+1} = k_5 \mathcal{E}^{n+1} + k_6 \tag{3.50a}$$

$$\tau(\mathcal{E}^{n+1} - \mathcal{E}^{n+\frac{1}{2}*}) + \theta_1 \nabla \cdot \mathcal{F}_0^{n+1} + \theta_2 \nabla \cdot \mathcal{F}_0^n = -k_1 \mathcal{E}^{n+1} - k_3 - k_4 e^{n+1}$$
(3.50b)

now plug the first equation into the second,

$$\tau(\mathcal{E}^{n+1} - \mathcal{E}^{n+\frac{1}{2}*}) + \theta_1 \nabla \cdot \mathcal{F}_0^{n+1} + \theta_2 \nabla \cdot \mathcal{F}_0^n = -k_1 \mathcal{E}^{n+1} - k_3 - k_4 k_5 \mathcal{E}^{n+1} - k_4 k_6$$
 (3.51a)

now collect all the \mathcal{E}^{n+1} terms on the left-hand side,

$$(\tau + k_1 + k_4 k_5) \mathcal{E}^{n+1} + \theta_1 \nabla \cdot \mathcal{F}_0^{n+1} = -k_3 - k_4 k_6 + \tau \mathcal{E}^{n+\frac{1}{2}*} - \theta_2 \nabla \cdot \mathcal{F}_0^n$$
(3.52a)

Recall:

$$\nabla \cdot \mathcal{F}_0 \mapsto \frac{1}{V_c} \sum_f \mathbf{A}_f \cdot (\mathcal{F}_0)_f \tag{3.53}$$

and

$$(\mathcal{F}_0)_f = \mathbf{k}_f (\mathcal{E}_{cn} - \mathcal{E}_c) \tag{3.54}$$

which gives the system,

$$\left(\tau + k_1 + k_4 k_5\right) \mathcal{E}^{n+1} + \frac{\theta_1}{V_c} \sum_f \mathbf{A}_f \cdot \mathbf{k}_f^{n+1} \left(\mathcal{E}_{cn}^{n+1} - \mathcal{E}_c^{n+1}\right) = -k_3 - k_4 k_6 + \tau \mathcal{E}^{n+\frac{1}{2}*} - \frac{\theta_2}{V_c} \sum_f \mathbf{A}_f \cdot \mathbf{k}_f^n \left(\mathcal{E}_{cn}^n - \mathcal{E}_c^n\right)$$

$$(3.55a)$$

This system is SPD and in one dimension forms a tridiagonal system.

3.3.4 Using the energy related algebra for both the predictor and the corrector

To perform the energy related algebra for the corrector step we need the following inputs:

κ_a^n	For σ_a^n in S_{ea}^n
κ^n_t	For σ^n_t in $\nabla \cdot \mathcal{F}^n_0$
$\kappa_a^{n+rac{1}{2}}$	For σ_a^{n+1} in S_{ea}^{n+1}
$\kappa_t^{n+rac{1}{2}}$	For σ_t^{n+1} in $\mathbf{\nabla}\cdot\boldsymbol{\mathcal{F}}_0^{n+1}$
C_v	For the linearization of $T^{4,n+1}$
au	For the time constant
$ heta_1, heta_2$	For the time scheme
\mathbf{U}^n	For T, ρ in S_{ea}^n
$\mathrm{U}^{n+rac{1}{2}}$	For \mathbf{u} in $\left(\frac{1}{3}\mathbf{\nabla}\mathcal{E}\cdot\mathbf{u}\right)^{n+\frac{1}{2}}$
$\mathbf{U}^{n+rac{1}{2}*}$	For $E^{n+\frac{1}{2}*}$ and $e^{n+\frac{1}{2}*}$
$\mathbf{U}_{0,1}^{n+1} = \begin{bmatrix} \rho \\ \rho \mathbf{u} \end{bmatrix}_{n+1}$	For the kinetic energy in E^{n+1} , and $\rho^{n+1} \to \sigma_a^{n+1}, \sigma_t^{n+1}$
$\mathbf{ abla}\mathbf{U}^{n+rac{1}{2}}$	For the reconstructions in $\left(\frac{1}{3}\nabla\mathcal{E}\cdot\mathbf{u}\right)^{n+\frac{1}{2}}$
\mathcal{E}^n	For S_{ea}^n
$\mathcal{E}^{n+rac{1}{2}}$	For \mathcal{E} in $\left(\frac{1}{3}\mathbf{\nabla}\mathcal{E}\cdot\mathbf{u}\right)^{n+\frac{1}{2}}$
$\mathcal{E}^{n+rac{1}{2}*}$	For itself
$oldsymbol{ abla} \mathcal{E}^{n+rac{1}{2}}$	For the reconstructions in $\left(\frac{1}{3}\nabla\mathcal{E}\cdot\mathbf{u}\right)^{n+\frac{1}{2}}$

To following remapping(s) then applies to the predictor:

4 Solver B - Radiation Hydrodynamics Grey Diffusion - Mixed finite element

We now derive a general mixed finite element approach for

$$\nabla \cdot \mathcal{F}_0(\mathbf{x}) = 1, \quad \mathbf{x} \in \mathcal{D} \tag{4.1a}$$

$$\mathcal{F}_0(\mathbf{x}) = 0, \quad \mathbf{x} \in \partial \mathcal{D}$$
 (4.1b)

where

$$\mathcal{F}_0(\mathbf{x}) = D(\mathbf{x}) \nabla \mathcal{E}(\mathbf{x}). \tag{4.2}$$

4.1 Auxiliary notation and variables for \mathcal{F}_0

First we discretize \mathcal{F}_0 on N_n number of nodes per cell c, using continuous basis functions $b_j(\mathbf{x})$ such that

$$\mathcal{F}_0(\mathbf{x}) \approx \sum_{j=1}^{N_n} (\mathcal{F}_0)_j b_j(\mathbf{x}),$$
 (4.3)

whilst keeping the cell-centered representation for \mathcal{E} . Next we discretize eq. (4.2) by applying a weight function $b_i(\mathbf{x})$ and integrating over the volume of the cell c,

$$\int_{V_c} b_i \mathcal{F}_0 dV = \int_{V_c} b_i D \nabla \mathcal{E} dV$$

$$\sum_{j} \left[\int_{V_c} b_i b_j dV \right] (\mathcal{F}_0)_j = \int_{V_c} b_i D \nabla \mathcal{E} dV. \tag{4.4}$$

The integral coefficients on the left-hand side are generally known as the ij coefficients in the standard finite element mass-matrix, which we shall use in a moment to define a general scheme. The right hand side of the equation requires some treatment. We introduce the values $\mathcal{E}_{c,j}$ at the cell surface to remedy the discontinuities in the cell-centered \mathcal{E} and to define auxiliary unknowns for developing the \mathcal{F}_0 in finite element form. With these new variables declared, we next apply integration by parts to the right-hand side,

$$\int_{V} b_{i} D \nabla \mathcal{E} dV = \int_{V} D \nabla (b_{i} \mathcal{E}) dV - \int_{V} D \mathcal{E} \nabla b_{i} dV. \tag{4.5}$$

Next we apply Gauss's divergence theorem on the first term on the right-hand side,

$$\int_{V_c} b_i D \nabla \mathcal{E} dV = \sum_f \int_{S_f} D \mathbf{n}_f b_i \mathcal{E} dA - \int_{V_c} D \mathcal{E} \nabla b_i dV, \tag{4.6}$$

after which we insert $\mathcal{E}_{c,j}$ in the first term on the right, since they are designated unknowns on the surface of the cell, and \mathcal{E}_c into the right most term. Since \mathcal{E}_c is cell-constant within the cell-domain, the D coefficient is also dependent only on \mathcal{E}_c and therefore constant within cell c, hence denoted as D_c ,

$$\int_{V} b_{i} D \nabla \mathcal{E} dV = \sum_{f} \sum_{j} \left[D_{c} \mathbf{n}_{f} \int_{S_{f}} b_{i} b_{j} dA \right] \mathcal{E}_{c,j} - \left[D_{c} \int_{V} \nabla b_{i} dV \right] \mathcal{E}_{c}. \tag{4.7}$$

Putting the developed right- and left-hand sides back together we then get,

$$\sum_{i} \left[\int_{V} b_{i} b_{j} dV \right] (\mathcal{F}_{0})_{j} = \sum_{f} \sum_{i} \left[D_{c} \mathbf{n}_{f} \int_{S_{f}} b_{i} b_{j} dA \right] \mathcal{E}_{c,j} - \left[D_{c} \int_{V} \nabla b_{i} dV \right] \mathcal{E}_{c}. \tag{4.8}$$

This equation can be written in more succinct form as

$$\bar{M}_c \bar{\mathbf{F}}_c = D_c \bar{C}_c \boldsymbol{\mathcal{E}}_c \tag{4.9}$$

where the structure still needs to be defined (which follows). \bar{M}_c is a square block-matrix with block-dimension $N_n \times N_n$, $\bar{\mathbf{F}}_c$ is a block-vector with block-dimension $N_n \times 1$, \bar{C}_c is a rectangular block-matrix with block-dimension $N_n \times (N_f + 1)$. The vector $\boldsymbol{\mathcal{E}}_c$ is simply the cell-centered and surface unknowns for cell c, i.e., $\boldsymbol{\mathcal{E}}_c = [\mathcal{E}_c, \mathcal{E}_{n=0}, \dots, \mathcal{E}_{n=N_n-1}]^T$.

The dimension of the inner blocks of \bar{M}_c , $\bar{\mathbf{F}}_c$ and \bar{C}_c , depend on the number of dimensions, N_d , in the problem. For further reference we shall denote dimensions with d but it generally refers to $d \in [0, 1, 2] \mapsto [x, y, z]$ and vice-versa.

The block entries of \bar{M} are small diagonal matrices,

$$(\bar{M})_{ij} = \operatorname{diag}(M_{ij}, \dots, M_{ij})^{N_d \times N_d}$$
(4.10)

where M_{ij} are the elements of the standard finite element mass-matrix for cell c, i.e.,

$$M_{ij} = \int_{V} b_i b_j dV. \tag{4.11}$$

The block entries of $\bar{\mathbf{F}}$ are

$$(\bar{\mathbf{F}})_i = \begin{bmatrix} (\mathcal{F}_0)_{i,x} \\ (\mathcal{F}_0)_{i,y} \\ (\mathcal{F}_0)_{i,z} \end{bmatrix}^{N_d \times 1}$$

$$(4.12)$$

obviously only up to y for 2D and only up to x for 1D. The entries of \bar{C}_c are formed as follows. First the structure of \bar{C}_c is such that

block-row
$$i$$
 of $\bar{C}_c = \text{columns} \left(\mathbf{C}_i^c \quad \mathbf{C}_{i,j=0}^s \quad \dots \quad \mathbf{C}_{i,j=N_n-1}^s \right)^{N_d \times (N_n+1)}$. (4.13)

We then define the vectors

$$\mathbf{G}_{i} = \int_{V} \nabla b_{i} dV$$

$$M_{ij}^{f} = \int_{S_{f}} b_{i} b_{j} dA$$

$$(4.14)$$

Then,

$$\mathbf{C}_{i}^{c} = \begin{bmatrix} -(\mathbf{G}_{i})_{x} \\ -(\mathbf{G}_{i})_{y} \\ -(\mathbf{G}_{i})_{z} \end{bmatrix}^{N_{d} \times 1}$$

$$(4.15)$$

and

$$\mathbf{C}_{ij}^{s} = \begin{bmatrix} \sum_{f} n_{f,x} M_{ij}^{f} \\ \sum_{f} n_{f,y} M_{ij}^{f} \\ \sum_{f} n_{f,z} M_{ij}^{f} \end{bmatrix}^{N_{d} \times 1}$$
(4.16)

With these definitions in-hand we can see that the true dimensions of \bar{M} is $N_dN_n\times N_dN_n$, that of $\bar{\mathbf{F}}$ is $N_dN_n\times 1$, and the true dimensions of \bar{C} is $N_dN_n\times (N_n+1)$.

Finally, we have the vector $\boldsymbol{\mathcal{E}}$ as

$$\boldsymbol{\mathcal{E}}_{c} = \begin{bmatrix} \boldsymbol{\mathcal{E}}_{c} \\ \boldsymbol{\mathcal{E}}_{n=0} \\ \vdots \\ \boldsymbol{\mathcal{E}}_{n=N_{n}-1} \end{bmatrix}^{(N_{n}+1)\times 1} . \tag{4.17}$$

To get an expression for all of the nodal \mathcal{F}_0 's we take the system form of the equation and we invert \bar{M} to get, in coefficient form, expressions for nodal \mathcal{F}_0 's,

$$\mathbf{F}_{c} = \begin{bmatrix} (\mathcal{F}_{0})_{0} \\ \vdots \\ (\mathcal{F}_{0})_{N_{n}-1} \end{bmatrix} = \bar{M}_{c}^{-1} \bar{C}_{c} \boldsymbol{\mathcal{E}} = C_{c}^{*} \boldsymbol{\mathcal{E}}_{c}, \tag{4.18}$$

where $C_c^* = \bar{M}_c^{-1} \bar{C}_c$.

With this expression-form of the individual nodal \mathcal{F}_0 's we need to modify the primary equation, eq. (4.1). Additionally, since we introduced additional variables in the form of the face-baced \mathcal{E}_f 's, we need to define additional equations to close the system. For the primary equations we will simply plug in the expressions for \mathcal{F}_0 , which is detailed in the next subsection. For additional equations we will use the interface between cells to enforce continuity of \mathcal{F}_0 at the face, for each cell of the face.

4.2 Using the auxiliary notation in the primary equation

Using this coefficient-form in the primary equations is done by first integrating eq. (4.1) over the volume of cell c, assuming the coefficient matrix $\bar{M}^{-1}\bar{C}$ has been developed for cell c, after which we apply Gauss's divergence theorem,

$$\int_{V_c} \mathbf{\nabla} \cdot \mathbf{\mathcal{F}}_0 dV = V_c(\mathbf{\nabla} \cdot \mathbf{\mathcal{F}}_0)$$

$$\int_{S_c} \mathbf{n} \cdot \mathbf{\mathcal{F}}_0 dA = V_c(\mathbf{\nabla} \cdot \mathbf{\mathcal{F}}_0)$$

$$\sum_{f} \left[\mathbf{n}_f \cdot \int_{S_f} \mathbf{\mathcal{F}}_0 dA \right] = V_c(\mathbf{\nabla} \cdot \mathbf{\mathcal{F}}_0).$$
(4.19)

We now expand \mathcal{F}_0 ,

$$\sum_{j} \sum_{f} \left[\mathbf{n}_{f} \cdot (\mathcal{F}_{0})_{j} \int_{S_{f}} b_{j} dA \right] = V_{c}(\nabla \cdot \mathcal{F}_{0}), \tag{4.20}$$

define

$$S_{i,f} = \int_{S_f} b_i dA \tag{4.21}$$

$$\sum_{j} \sum_{f} \left[n_{f,x} S_{j,f}(\mathcal{F}_0)_{j,x} + n_{f,y} S_{j,f}(\mathcal{F}_0)_{j,y} + n_{f,z} S_{j,f}(\mathcal{F}_0)_{j,z} \right] = V_c(\nabla \cdot \mathcal{F}_0), \tag{4.22}$$

or

$$\sum_{j} \sum_{f} \sum_{d} \left[n_{f,d} S_{j,f}(\mathcal{F}_0)_{j,d} \right] = V_c(\nabla \cdot \mathcal{F}_0), \tag{4.23}$$

where d denotes dimension such that $d \in [0, 1, 2] \mapsto [x, y, z]$, the indices (j, d) of $(\mathcal{F}_0)_{j,d}$ maps to a row in C^* , i.e.,

$$(j,d) \mapsto k : k = N_d j + d, \tag{4.24}$$

from which we get

$$\nabla \cdot \mathcal{F}_0 = \frac{1}{V_c} \sum_j \sum_f \sum_d \left[n_{f,d} S_{j,f} C^*_{(j,d) \mapsto \text{row } k} \cdot \mathcal{E}_c \right], \quad \forall c,$$
(4.25)

If the indices of \mathcal{E}_c are then mapped to global system indexes for the corresponding \mathcal{E}_c and collection of \mathcal{E}_f 's then the system can be constructed.

4.3 Auxiliary equations

For each face-node we now require continuity of flux. This can generally be expressed as

$$\sum_{f} \sum_{f} \int_{S_f} \mathbf{n}_f \cdot (\mathcal{F}_0)_j dA = 0 \tag{4.26}$$

from which we get

$$\sum_{c} \sum_{f} \sum_{d} \left[n_{f,d} S_{j,f} C_{(j,d) \mapsto \text{ row } k}^* \cdot \boldsymbol{\mathcal{E}}_c \right] = 0, \qquad \forall j.$$

$$(4.27)$$

5 Solver C - Radiation Hydrodynamics Grey Radiation with the Variable Eddington Factor (VEF) method

We first repeat eqs. (2.14) and (2.15),

$$\frac{1}{c}\frac{\partial I}{\partial t} + \mathbf{\Omega} \cdot \mathbf{\nabla} I + \sigma_t(\mathbf{x})I = \frac{\sigma_s}{4\pi}\phi + \frac{\sigma_a}{4\pi}acT^4 - \frac{\sigma_t}{4\pi}\mathbf{\mathcal{F}}_0 \cdot \frac{\mathbf{u}}{c} + \frac{\sigma_t}{\pi}\mathbf{\mathcal{E}} \ \mathbf{\Omega} \cdot \mathbf{u}$$
 (5.1a)

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0 \tag{5.1b}$$

$$\frac{\partial(\rho\mathbf{u})}{\partial t} + \nabla \cdot \{\rho\mathbf{u} \otimes \mathbf{u}\} + \nabla p = \frac{\sigma_t}{c} \mathcal{F}_0, \tag{5.1c}$$

$$\frac{\partial E}{\partial t} + \nabla \cdot [(E+p)\mathbf{u}] = \sigma_a c(\mathcal{E} - aT^4) + \frac{\sigma_t}{c} \mathcal{F}_0 \cdot \mathbf{u}$$
 (5.1d)

$$\frac{\partial \mathcal{E}}{\partial t} + \nabla \cdot \mathcal{F} = \sigma_a c \left(a T^4 - \mathcal{E} \right) - \frac{\sigma_t}{c} \mathcal{F}_0 \cdot \mathbf{u}. \tag{5.1e}$$

$$\frac{1}{c^2} \frac{\partial \mathcal{F}}{\partial t} + \nabla \cdot \mathcal{P} = -\frac{\sigma_t}{c} \mathcal{F} + \frac{\sigma_t}{c} (\mathcal{E} \mathbf{u} + \mathcal{P} \cdot \mathbf{u})$$
(5.1f)

where the radiation moment equation has been obtained by dropping the energy exchange terms,

$$\frac{1}{c^2} \frac{\partial \mathcal{F}}{\partial t} + \nabla \cdot \mathcal{P} = -\frac{\sigma_t}{c} \mathcal{F}_0 + \frac{\sigma_a c (aT^4 - \mathcal{E}) \mathbf{r}^4}{c^2}$$

$$= -\frac{\sigma_t}{c} \left[\mathcal{F} - \mathcal{E} \mathbf{u} - \mathcal{P} \cdot \mathbf{u} \right]$$

$$= -\frac{\sigma_t}{c} \mathcal{F} + \frac{\sigma_t}{c} (\mathcal{E} \mathbf{u} + \mathcal{P} \cdot \mathbf{u}).$$

Now, recall the definition of the radiation pressure tensor, \mathcal{P} ,

$$\mathcal{P}(\mathbf{x}, \nu, t) = \frac{1}{c} \int_{4\pi} \mathbf{\Omega} \otimes \mathbf{\Omega} \ I(\mathbf{x}, \mathbf{\Omega}, \nu, t) d\mathbf{\Omega}. \tag{5.2}$$

If we expand the tensor-product we get

$$\mathcal{P} = \frac{1}{c} \int_{4\pi} \begin{bmatrix} \Omega_x \Omega_x & \Omega_x \Omega_y & \Omega_x \Omega_z \\ \Omega_y \Omega_x & \Omega_y \Omega_y & \Omega_y \Omega_z \\ \Omega_z \Omega_x & \Omega_z \Omega_y & \Omega_z \Omega_z \end{bmatrix} I(\Omega) \ d\Omega.$$
 (5.3)

The VEF-method involves the approximation

$$\mathcal{P} \approx \{f\} \frac{1}{c} \int_{4\pi} I(\mathbf{\Omega}) d\mathbf{\Omega}$$

$$\therefore \mathcal{P} = \{f\} \mathcal{E}$$
(5.4)

where $\{f\}$ is the variable Eddington factor computed as an angular-intensity weighted-average such that the entries of the tensor are given by

$$\{f\}: f_{ij} = \frac{\frac{1}{c} \int_{4\pi} \mathbf{\Omega}_i \mathbf{\Omega}_j I(\mathbf{\Omega}) d\mathbf{\Omega}}{\frac{1}{c} \int_{4\pi} I(\mathbf{\Omega}) d\mathbf{\Omega}} \qquad i, j \in [x, y, z].$$
 (5.5)

Now, rewriting our set of equations we get

$$\frac{1}{c}\frac{\partial I}{\partial t} + \mathbf{\Omega} \cdot \nabla I + \sigma_t(\mathbf{x})I = \frac{\sigma_s}{4\pi}\phi + \frac{\sigma_a}{4\pi}acT^4 - \frac{\sigma_t}{4\pi}\mathbf{\mathcal{F}}_0 \cdot \frac{\mathbf{u}}{c} + \frac{\sigma_t}{\pi}\mathbf{\mathcal{E}} \ \mathbf{\Omega} \cdot \mathbf{u}$$
 (5.6a)

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0 \tag{5.6b}$$

$$\frac{\partial(\rho\mathbf{u})}{\partial t} + \nabla \cdot \{\rho\mathbf{u} \otimes \mathbf{u}\} + \nabla p = \frac{\sigma_t}{c} \mathcal{F}_0, \tag{5.6c}$$

$$\frac{\partial E}{\partial t} + \nabla \cdot [(E+p)\mathbf{u}] = \sigma_a c(\mathcal{E} - aT^4) + \frac{\sigma_t}{c} \mathcal{F}_0 \cdot \mathbf{u}$$
 (5.6d)

$$\frac{\partial \mathcal{E}}{\partial t} + \nabla \cdot \mathcal{F} = \sigma_a c \left(a T^4 - \mathcal{E} \right) - \frac{\sigma_t}{c} \mathcal{F}_0 \cdot \mathbf{u}. \tag{5.6e}$$

$$\frac{1}{c^2} \frac{\partial \mathcal{F}}{\partial t} + \nabla \cdot (\{f\}\mathcal{E}) = -\frac{\sigma_t}{c} \mathcal{F} + \frac{\sigma_t}{c} (\mathcal{E}\mathbf{u} + \{f\}\mathcal{E} \cdot \mathbf{u})$$
(5.6f)

with

$$\mathcal{F}_0 = \mathcal{F} - (\mathcal{E}\mathbf{u} + \{f\}\mathcal{E} \cdot \mathbf{u}) \tag{5.6g}$$

5.1 Definitions

We can cast the above equations into the following form

$$\frac{1}{c}\frac{\partial I}{\partial t} + \mathbf{\Omega} \cdot \nabla I + \sigma_t(\mathbf{x})I = \frac{\sigma_s}{4\pi}\phi + \frac{\sigma_a}{4\pi}acT^4 - \frac{\sigma_t}{4\pi}\mathbf{\mathcal{F}}_0 \cdot \frac{\mathbf{u}}{c} + \frac{\sigma_t}{\pi}\mathbf{\mathcal{E}} \mathbf{\Omega} \cdot \mathbf{u}$$
 (5.7a)

$$\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \mathcal{F}^{H}(\mathbf{U}) = \begin{bmatrix} 0 \\ -\mathbf{S}_{rp} \\ -S_{re} \end{bmatrix}$$
 (5.7b)

$$\frac{\partial \mathcal{E}}{\partial t} + \nabla \cdot \mathcal{F} = \sigma_a c \left(a T^4 - \mathcal{E} \right) - \frac{\sigma_t}{c} \mathcal{F}_0 \cdot \mathbf{u}. \tag{5.7c}$$

$$\frac{1}{c^2} \frac{\partial \mathcal{F}}{\partial t} + \nabla \cdot (\{f\}\mathcal{E}) = -\frac{\sigma_t}{c} \mathcal{F} + \frac{\sigma_t}{c} (\mathcal{E}\mathbf{u} + \{f\}\mathcal{E} \cdot \mathbf{u})$$
(5.7d)

where

$$\mathbf{S}_{rp} = -\frac{\sigma_t}{c} \mathcal{F}_0 \tag{5.7e}$$

$$S_{ea} = \sigma_a c (aT^4 - \mathcal{E}) \tag{5.7f}$$

$$S_{re} = S_{ea} - \frac{\sigma_t}{c} \mathcal{F}_0 \cdot \mathbf{u} \tag{5.7g}$$

5.2 Temporal scheme - Implicit Euler Predictor, Crank-Nicolson Corrector

$$\frac{1}{c}\frac{\partial I}{\partial t} + \mathbf{\Omega} \cdot \nabla I + \sigma_t(\mathbf{x})I = \frac{\sigma_s}{4\pi}\phi + \frac{\sigma_a}{4\pi}acT^4 - \frac{\sigma_t}{4\pi}\mathbf{\mathcal{F}}_0 \cdot \frac{\mathbf{u}}{c} + \frac{\sigma_t}{\pi}\mathbf{\mathcal{E}} \ \mathbf{\Omega} \cdot \mathbf{u}$$
 (5.8a)

$$\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \mathcal{F}^{H}(\mathbf{U}) = \begin{bmatrix} 0 \\ -\mathbf{S}_{rp} \\ -S_{re} \end{bmatrix}$$
 (5.8b)

$$\frac{\partial \mathcal{E}}{\partial t} + \nabla \cdot \mathcal{F} = \sigma_a c \left(a T^4 - \mathcal{E} \right) - \frac{\sigma_t}{c} \mathcal{F}_0 \cdot \mathbf{u}. \tag{5.8c}$$

5.2.1 Transport prephase

$$\frac{1}{c}\frac{\partial I}{\partial t} + \mathbf{\Omega} \cdot \mathbf{\nabla} I + \sigma_t(\mathbf{x})I = \frac{\sigma_s^n}{4\pi} c \mathcal{E}^n + \frac{\sigma_a^n}{4\pi} a c (T^4)^n - \frac{\sigma_t^n}{4\pi} \mathcal{F}_0^n \cdot \frac{\mathbf{u}^n}{c} + \frac{\sigma_t^n}{\pi} \mathcal{E}^n \mathbf{\Omega} \cdot \mathbf{u}^n$$
(5.9a)

Develop $\{f\}^n$.

5.2.2 Predictor phase

 $\tau = \frac{1}{\frac{1}{2}\Delta t}$

$$\tau(\mathbf{U}^{n*} - \mathbf{U}^n) + \nabla \cdot \mathcal{F}^H(\mathbf{U}^n) = \mathbf{0}$$
(5.10a)

$$\tau \left(\begin{bmatrix} \rho \\ \rho \mathbf{u} \end{bmatrix}^{n+\frac{1}{2}} - \begin{bmatrix} \rho \\ \rho \mathbf{u} \end{bmatrix}^{n*} \right) = \begin{bmatrix} 0 \\ \frac{\sigma_t}{c} \mathcal{F}_0 \end{bmatrix}^n$$
 (5.10b)

$$\tau(E^{n+\frac{1}{2}} - E^{n*}) = -\theta_1 S_{ea}^{n+\frac{1}{2}} - \theta_2 S_{ea}^n + \left(\frac{\sigma_t}{c} \mathcal{F}_0 \cdot \mathbf{u}\right)^n$$

$$(5.10c)$$

$$\tau(\mathcal{E}^{n+\frac{1}{2}} - \mathcal{E}^n) + \theta_1 \nabla \cdot \mathcal{F}^{n+\frac{1}{2}} + \theta_2 \nabla \cdot \mathcal{F}^n = \theta_1 S_{ea}^{n+\frac{1}{2}} + \theta_2 S_{ea}^n - \left(\frac{\sigma_t}{c} \mathcal{F}_0 \cdot \mathbf{u}\right)^n$$
(5.10d)

For S_{ea} and \mathcal{F} both at $n + \frac{1}{2}$:

$$\sigma^{n+\frac{1}{2}} = \rho^{n+\frac{1}{2}} \kappa(T^n) \tag{5.10e}$$

$$T^{4,n+\frac{1}{2}} = T^{4,n*} + \frac{4T^{3,n*}}{C_n} (e^{n+\frac{1}{2}} - e^{n*})$$
(5.10f)

5.2.3 Corrector phase

 $au = rac{1}{\Delta t}$

$$\tau(\mathbf{U}^{n+\frac{1}{2}*} - \mathbf{U}^n) + \nabla \cdot \mathcal{F}^H(\mathbf{U}^{n+\frac{1}{2}}) = \mathbf{0}$$
(5.11a)

$$\tau \left(\begin{bmatrix} \rho \\ \rho \mathbf{u} \end{bmatrix}^{n+1} - \begin{bmatrix} \rho \\ \rho \mathbf{u} \end{bmatrix}^{n+\frac{1}{2}*} \right) = \begin{bmatrix} 0 \\ \frac{\sigma_t}{c} \mathcal{F}_0 \end{bmatrix}^{n+\frac{1}{2}}$$
 (5.11b)

$$\tau(E^{n+1} - E^{n+\frac{1}{2}*}) = -\theta_1 S_{ea}^{n+1} - \theta_2 S_{ea}^n + \left(\frac{\sigma_t}{c} \mathcal{F}_0 \cdot \mathbf{u}\right)^{n+\frac{1}{2}}$$
(5.11c)

$$\tau(\mathcal{E}^{n+1} - \mathcal{E}^n) + \theta_1 \nabla \cdot \mathcal{F}^{n+1} + \theta_2 \nabla \cdot \mathcal{F}^n = \theta_1 S_{ea}^{n+1} + \theta_2 S_{ea}^n - \left(\frac{\sigma_t}{c} \mathcal{F}_0 \cdot \mathbf{u}\right)^{n+\frac{1}{2}}$$
(5.11d)

For S_{ea} and \mathcal{F} both at n+1:

$$\sigma^{n+1} = \rho^{n+1} \kappa(T^{n+\frac{1}{2}}) \tag{5.11e}$$

$$T^{4,n+1} = T^{4,n+\frac{1}{2}*} + \frac{4T^{3,n+\frac{1}{2}*}}{C_v} (e^{n+1} - e^{n+\frac{1}{2}*})$$
(5.11f)

5.2.4 General energy equations, Predictor and Corrector phase, with θ factors

Time integration scheme uses **implicit Euler** for the predictor phase and **Crank-Nicolson** in the corrector phase. Both these schemes can be represented wit a general θ -scheme where we define:

$$\theta_1 \in [0, 1]$$
 $\theta_2 = 1 - \theta_1.$
(5.12)

For implicit Euler, $\theta_1 = 1$, $\theta_2 = 0$, and for Crank-Nicolson, $\theta_1 = \theta_2 = \frac{1}{2}$. With these factors defined we can repeat the energy equations and apply a series of manipulations. First we attempt to segregate known terms from all unknown terms. Thereafter we eliminate the internal energy, e, from the two sets of equations to get a single formulation for the radiation energy, \mathcal{E} . The latter formulation forms a diffusion system that needs to be assembled and solved for \mathcal{E} .

$$\tau(E^{n+1} - E^{n+\frac{1}{2}*}) = -\theta_1 \sigma_a^{n+1} c \left(a T^{4,n+1} - \mathcal{E}^{n+1} \right) - \theta_2 S_{ea}^n + \left(\frac{\sigma_t}{c} \mathcal{F}_0 \cdot \mathbf{u} \right)^{n+\frac{1}{2}}$$
 (5.13a)

$$\tau(\mathcal{E}^{n+1} - \mathcal{E}^n) + \nabla \cdot \left(\theta_1 \mathcal{F}^{n+1} + \theta_2 \mathcal{F}^n\right) = \theta_1 \sigma_a^{n+1} c \left(a T^{4,n+1} - \mathcal{E}^{n+1}\right) + \theta_2 S_{re}^n - \left(\frac{\sigma_t}{c} \mathcal{F}_0 \cdot \mathbf{u}\right)^{n+\frac{1}{2}}$$
(5.13b)

$$T^{4,n+1} = T^{4,n+\frac{1}{2}*} + \frac{4T^{3,n+\frac{1}{2}*}}{C_n} (e^{n+1} - e^{n+\frac{1}{2}*})$$
(5.13c)

Define:

$$k_1 = \theta_1 \sigma_a^{n+1} c$$

$$k_2 = \frac{4T^{3,n+\frac{1}{2}*}}{C_v}$$
(5.14)

and plug them into the equations above,

$$\tau(E^{n+1} - E^{n+\frac{1}{2}*}) = -k_1 \left(aT^{4,n+1} - \mathcal{E}^{n+1} \right) - \theta_2 S_{ea}^n + \left(\frac{\sigma_t}{c} \mathcal{F}_0 \cdot \mathbf{u} \right)^{n+\frac{1}{2}}$$
 (5.15a)

$$\tau(\mathcal{E}^{n+1} - \mathcal{E}^n) + \nabla \cdot \left(\theta_1 \mathcal{F}^{n+1} + \theta_2 \mathcal{F}^n\right) = k_1 \left(aT^{4,n+1} - \mathcal{E}^{n+1}\right) + \theta_2 S_{re}^n - \left(\frac{\sigma_t}{c} \mathcal{F}_0 \cdot \mathbf{u}\right)^{n+\frac{1}{2}}$$
(5.15b)

$$T^{4,n+1} = T^{4,n+\frac{1}{2}*} + k_2(e^{n+1} - e^{n+\frac{1}{2}*})$$
(5.15c)

ungroup right-hand side elements by multiplying out terms within parentheses,

$$\tau(E^{n+1} - E^{n+\frac{1}{2}*}) = -k_1 a T^{4,n+1} + k_1 \mathcal{E}^{n+1} - \theta_2 S_{ea}^n + \left(\frac{\sigma_t}{c} \mathcal{F}_0 \cdot \mathbf{u}\right)^{n+\frac{1}{2}}$$
(5.16a)

$$\tau(\mathcal{E}^{n+1} - \mathcal{E}^n) + \nabla \cdot \left(\theta_1 \mathcal{F}^{n+1} + \theta_2 \mathcal{F}^n\right) = k_1 a T^{4,n+1} - k_1 \mathcal{E}^{n+1} + \theta_2 S_{re}^n - \left(\frac{\sigma_t}{c} \mathcal{F}_0 \cdot \mathbf{u}\right)^{n+\frac{1}{2}}$$
(5.16b)

$$T^{4,n+1} = T^{4,n+\frac{1}{2}*} + k_2(e^{n+1} - e^{n+\frac{1}{2}*})$$
(5.16c)

now plug in the temperature equation into both the energy equations,

$$\tau(E^{n+1} - E^{n+\frac{1}{2}*}) = -k_1 a \left(T^{4,n+\frac{1}{2}*} + k_2 \left(e^{n+1} - e^{n+\frac{1}{2}*}\right)\right) + k_1 \mathcal{E}^{n+1} - \theta_2 S_{ea}^n + \left(\frac{\sigma_t}{c} \mathcal{F}_0 \cdot \mathbf{u}\right)^{n+\frac{1}{2}}$$
(5.17a)

$$\tau(\mathcal{E}^{n+1} - \mathcal{E}^n) + \nabla \cdot \left(\theta_1 \mathcal{F}^{n+1} + \theta_2 \mathcal{F}^n\right) = k_1 a \left(T^{4, n + \frac{1}{2}*} + k_2 \left(e^{n+1} - e^{n + \frac{1}{2}*}\right)\right) - k_1 \mathcal{E}^{n+1} + \theta_2 S_{re}^n - \left(\frac{\sigma_t}{c} \mathcal{F}_0 \cdot \mathbf{u}\right)^{n + \frac{1}{2}}$$

$$(5.17b)$$

ungroup elements on the both the right-hand sides,

$$\tau(E^{n+1} - E^{n+\frac{1}{2}*}) = -k_1 a T^{4,n+\frac{1}{2}*} - k_1 a k_2 e^{n+1} + k_1 a k_2 e^{n+\frac{1}{2}*} + k_1 \mathcal{E}^{n+1} - \theta_2 S_{ea}^n + \left(\frac{\sigma_t}{c} \mathcal{F}_0 \cdot \mathbf{u}\right)^{n+\frac{1}{2}}$$
(5.18a)

$$\tau(\mathcal{E}^{n+1} - \mathcal{E}^n) + \nabla \cdot \left(\theta_1 \mathcal{F}^{n+1} + \theta_2 \mathcal{F}^n\right) = k_1 a T^{4,n+\frac{1}{2}*} + k_1 a k_2 e^{n+1} - k_1 a k_2 e^{n+\frac{1}{2}*} - k_1 \mathcal{E}^{n+1} + \theta_2 S_{re}^n - \left(\frac{\sigma_t}{c} \mathcal{F}_0 \cdot \mathbf{u}\right)^{n+\frac{1}{2}}$$

$$(5.18b)$$

Define:

$$k_{3} = -k_{1}aT^{4,n+\frac{1}{2}*} + k_{1}ak_{2}e^{n+\frac{1}{2}*} - \theta_{2}S_{ea}^{n} + \left(\frac{\sigma_{t}}{c}\mathcal{F}_{0} \cdot \mathbf{u}\right)^{n+\frac{1}{2}}$$

$$k_{4} = -k_{1}ak_{2}$$
(5.19)

and plug them into the equations above,

$$\tau(E^{n+1} - E^{n+\frac{1}{2}*}) = k_4 e^{n+1} + k_1 \mathcal{E}^{n+1} + k_3$$
(5.20a)

$$\tau(\mathcal{E}^{n+1} - \mathcal{E}^n) + \nabla \cdot (\theta_1 \mathcal{F}^{n+1} + \theta_2 \mathcal{F}^n) = -k_4 e^{n+1} - k_1 \mathcal{E}^{n+1} - k_3$$

$$(5.20b)$$

Note:

$$E^{n+1} = (\frac{1}{2}\rho||\mathbf{u}||^2)^{n+1} + \rho^{n+1}e^{n+1}$$
(5.21)

which gives,

$$\tau\left(\left(\frac{1}{2}\rho||\mathbf{u}||^2\right)^{n+1} + \rho^{n+1}e^{n+1} - E^{n+\frac{1}{2}*}\right) = k_4e^{n+1} + k_1\mathcal{E}^{n+1} + k_3$$
(5.22a)

$$\tau(\mathcal{E}^{n+1} - \mathcal{E}^n) + \nabla \cdot (\theta_1 \mathcal{F}^{n+1} + \theta_2 \mathcal{F}^n) = -k_4 e^{n+1} - k_1 \mathcal{E}^{n+1} - k_3$$
(5.22b)

ungroup the material energy in the first equation,

$$\tau(\frac{1}{2}\rho||\mathbf{u}||^2)^{n+1} + \tau\rho^{n+1}e^{n+1} - \tau E^{n+\frac{1}{2}*} = k_4e^{n+1} + k_1\mathcal{E}^{n+1} + k_3$$
(5.23a)

$$\tau(\mathcal{E}^{n+1} - \mathcal{E}^n) + \theta_1 \nabla \cdot \mathcal{F}^{n+1} + \theta_2 \nabla \cdot \mathcal{F}^n = -k_4 e^{n+1} - k_1 \mathcal{E}^{n+1} - k_3$$
(5.23b)

and isolate the internal energy in the first equation,

$$(\tau \rho^{n+1} - k_4)e^{n+1} = k_1 \mathcal{E}^{n+1} + k_3 - \tau (\frac{1}{2}\rho||\mathbf{u}||^2)^{n+1} + \tau E^{n+\frac{1}{2}*}$$
(5.24a)

$$\tau(\mathcal{E}^{n+1} - \mathcal{E}^n) + \theta_1 \nabla \cdot \mathcal{F}^{n+1} + \theta_2 \nabla \cdot \mathcal{F}^n = -k_4 e^{n+1} - k_1 \mathcal{E}^{n+1} - k_3$$
(5.24b)

Define:

$$k_{5} = \frac{k_{1}}{\tau \rho^{n+1} - k_{4}}$$

$$k_{6} = \frac{k_{3} - \tau(\frac{1}{2}\rho||\mathbf{u}||^{2})^{n+1} + \tau E^{n+\frac{1}{2}*}}{\tau \rho^{n+1} - k_{4}}$$
(5.25)

and plug these constants into the first equation above,

$$e^{n+1} = k_5 \mathcal{E}^{n+1} + k_6 \tag{5.26a}$$

$$\tau(\mathcal{E}^{n+1} - \mathcal{E}^n) + \theta_1 \nabla \cdot \mathcal{F}^{n+1} + \theta_2 \nabla \cdot \mathcal{F}^n = -k_1 \mathcal{E}^{n+1} - k_3 - k_4 e^{n+1}$$
(5.26b)

now plug the first equation into the second,

$$\tau(\mathcal{E}^{n+1} - \mathcal{E}^n) + \theta_1 \nabla \cdot \mathcal{F}^{n+1} + \theta_2 \nabla \cdot \mathcal{F}^n = -k_1 \mathcal{E}^{n+1} - k_3 - k_4 k_5 \mathcal{E}^{n+1} - k_4 k_6$$
(5.27a)

now collect all the \mathcal{E}^{n+1} terms on the left-hand side,

$$(\tau + k_1 + k_4 k_5) \mathcal{E}^{n+1} + \theta_1 \nabla \cdot \mathcal{F}^{n+1} = -k_3 - k_4 k_6 + \tau \mathcal{E}^n - \theta_2 \nabla \cdot \mathcal{F}^n$$
(5.28a)

5.3 Mixed Finite Element Method

We now turn our attention to just the radiation momentum equation,

$$\frac{1}{c^2} \frac{\partial \mathcal{F}}{\partial t} + \nabla \cdot (\{f\}\mathcal{E}) = -\frac{\sigma_t}{c} \mathcal{F} + \frac{\sigma_t}{c} (\mathcal{E}\mathbf{u} + \{f\}\mathcal{E} \cdot \mathbf{u}). \tag{5.29}$$

We assume that all the unknowns in this equation have a linear FE representation on a cell, except $\mathcal E$ and $\mathbf u$.

5.3.1 The radiation-flux at n = 0

One of the first items we will need in any temporal discretization is the old \mathcal{F}^n . In order to get value of \mathcal{F}^n , when starting the iterations, we simply use the radiation-momentum equation with no time derivative to get

$$\mathcal{F}^{n} = -\frac{c}{\sigma_{+}^{n}} \nabla \cdot (\{f\}^{n} \mathcal{E}^{n}) + (\mathcal{E}\mathbf{u} + \{f\} \mathcal{E} \cdot \mathbf{u})^{n}, \quad \text{if } n = 0.$$
 (5.30)

This equation, however, still requires a suitable spatial discretization. Applying a linear FEM first requires multiplying by a trial function, then integrating over volume

$$\int_{V} b_{i} \left[\mathcal{F}^{n} = -\frac{c}{\sigma_{t}^{n}} \nabla \cdot (\{f\}^{n} \mathcal{E}^{n}) + (\mathcal{E}\mathbf{u} + \{f\} \mathcal{E} \cdot \mathbf{u})^{n} \right] dV$$
(5.31)

Let us now consider the terms one-by-one. First are the \mathcal{F} terms. Since $\mathcal{F} \approx \sum_j \mathcal{F}_j b_j(\mathbf{x})$ we get

$$\int_{V} b_{i} \mathcal{F} dV = \sum_{j} \mathcal{F}_{j} \int_{V} b_{i} b_{j} dV \tag{5.32}$$

Second are the divergence terms. First we rewrite

$$\int_{V} b_{i} \nabla \cdot (\{f\}\mathcal{E}) dV = \int_{S} \mathbf{n} \cdot (b_{i}\{f\}\mathcal{E}) dA - \int_{V} \{f\}\mathcal{E} \cdot \nabla b_{i} dV$$

$$= \sum_{f} \int_{S_{f}} \mathbf{n}_{f} \cdot (b_{i}\{f\}\mathcal{E}) dA - \int_{V} \{f\}\mathcal{E} \cdot \nabla b_{i} dV$$

$$= \sum_{j} \sum_{f} \mathbf{n}_{f} \cdot (\{f\}\mathcal{E})_{j} \int_{S_{f}} b_{i} b_{j} dA - \sum_{j} (\{f\}\mathcal{E})_{j} \cdot \int_{V} b_{j} \nabla b_{i} dV$$
(5.33)

Last are the advection terms. If the velocity and radiation-energy are only considered to be cell-constant then we

$$\int_{V} b_{i} (\mathcal{E}\mathbf{u} + \{f\}\mathcal{E} \cdot \mathbf{u}) dV = (\mathcal{E}\mathbf{u} + \{f\}\mathcal{E} \cdot \mathbf{u})_{c} \int_{V} b_{i} dV$$
(5.34)

Putting all this together, we get

$$\sum_{j} \mathcal{F}_{j}^{n} \int_{V} b_{i} b_{j} dV = -\frac{c}{\sigma_{t}^{n}} \left[\sum_{j} \sum_{f} \mathbf{n}_{f} \cdot (\{f\}\mathcal{E})_{j}^{n} \int_{S_{f}} b_{i} dA - (\{f\}\mathcal{E})_{c}^{n} \cdot \int_{V} \nabla b_{i} dV \right] + \left(\mathcal{E}\mathbf{u} + \{f\}\mathcal{E} \cdot \mathbf{u}\right)_{c}^{n} \int_{V} b_{i} dV \quad (5.35)$$

and for 1D $\{f\}$

$$\sum_{j} \mathcal{F}_{j}^{n} \int_{V} b_{i} b_{j} dV = -\frac{c}{\sigma_{t}^{n}} \left[\sum_{j} \sum_{f} \mathbf{n}_{f} \cdot (f\mathcal{E})_{j}^{n} \int_{S_{f}} b_{i} dA - (f\mathcal{E})_{c}^{n} \int_{V} \nabla b_{i} dV \right] + \left(1 + f_{c}^{n}\right) (\mathcal{E}\mathbf{u})_{c}^{n} \int_{V} b_{i} dV$$
(5.36)

which can be written as

$$\bar{M}_c \bar{\mathbf{F}}_c^n = -\frac{c}{\sigma_t} \bar{C}_c (\mathbf{f} \boldsymbol{\mathcal{E}})_c^n + (1 + f_c^n) \mathcal{E}_c^n C_{vol} \mathbf{u}_c^n$$
(5.37)

where \bar{M}_c is the dimension-extended mass-matrix as defined for Solver B and the matrix \bar{C}_c is also the same as defined for Solver B. The nodal vector ($\mathbf{f}\boldsymbol{\mathcal{E}}$) is a stack of firstly the cell-centered $f\boldsymbol{\mathcal{E}}$, then the list of nodal values,

$$(\mathbf{f}\boldsymbol{\mathcal{E}}) = \begin{bmatrix} f_c \mathcal{E}_c \\ f_{c,0} \mathcal{E}_{c,0} \\ \vdots \\ f_{c,N_n-1} \mathcal{E}_{c,N_n-1} \end{bmatrix}$$
 (5.38)

the matrix C_{vol} is a square block-matrix with block dimension $N_n \times 1$ with block-structure

$$C_{vol} = \begin{bmatrix} V_{c,0}I\\ \vdots\\ V_{c,N_n-1}I \end{bmatrix}$$

$$(5.39)$$

where the identity matrices, I, all have dimension $N_d \times N_d$ and the coefficients $V_{c,i}$ are given by

$$V_{c,i} = \int_{V} b_i dV. \tag{5.40}$$

The resulting true dimensions of C_{vol} is therefore $N_dN_n \times N_d$.

In order to obtain an expression for the nodal radiation-fluxes we then take the inverse of \bar{M}_c to get

$$\bar{\mathbf{F}}_c^n = -\frac{c}{\sigma_t} \bar{M}_c^{-1} \bar{C}_c(\mathbf{f}\boldsymbol{\mathcal{E}})_c^n + (1 + f_c^n) \mathcal{E}_c^n \bar{M}_c^{-1} C_{vol} \mathbf{u}_c^n$$
(5.41)

which we can express as

$$\bar{\mathbf{F}}_c^n = -\frac{c}{\sigma_t} \bar{C}_c^* (\mathbf{f} \boldsymbol{\mathcal{E}})_c^n + (1 + f_c^n) \mathcal{E}_c^n C_{vol}^* \mathbf{u}_c^n$$
(5.42)

where $\bar{C}_c^* = \bar{M}_c^{-1}\bar{C}_c$ and $C_{vol}^* = \bar{M}_c^{-1}C_{vol}$. However, using the identity Additionally we require an expression for \mathcal{F}_0 . If we use the same notation for building $\bar{\mathbf{F}}$ from \mathcal{F} , for $\bar{\mathbf{F}}_0$ from \mathcal{F}_0 , we get

$$\bar{\mathbf{F}}_{0,c}^{n} = \bar{\mathbf{F}}_{c}^{n} - (1 + f_{c}^{n}) \mathcal{E}_{c}^{n} C_{vol}^{*} \mathbf{u}_{c}^{n}$$

$$(5.43)$$

5.3.2 The radiation-flux at n+1

We now seek a similar expression for the radiation-flux at timestep n + 1. Our first discretization is a temporal theta-scheme discretization where we lag the advection terms,

$$\frac{\tau}{c^2} (\mathcal{F}^{n+1} - \mathcal{F}^n) + \theta_1 \nabla \cdot (\{f\}\mathcal{E})^{n+1} + \theta_2 \nabla \cdot (\{f\}\mathcal{E})^n$$

$$= -\frac{\theta_1}{c} \sigma_t^{n+1} \mathcal{F}^{n+1} - \frac{\theta_2}{c} \sigma_t^n \mathcal{F}^n + \frac{\sigma_t^{n+\frac{1}{2}}}{c} (\mathcal{E}\mathbf{u} + \{f\}\mathcal{E} \cdot \mathbf{u})^{n+\frac{1}{2}} \tag{5.44}$$

where $\tau = \frac{1}{\Delta t}$. We then multiply by $\frac{c^2}{\tau}$

$$\mathcal{F}^{n+1} - \mathcal{F}^{n} + \theta_{1} \frac{c^{2}}{\tau} \nabla \cdot (\{f\}\mathcal{E})^{n+1} + \theta_{2} \frac{c^{2}}{\tau} \nabla \cdot (\{f\}\mathcal{E})^{n}$$

$$= -\frac{\theta_{1}c^{2}}{c\tau} \sigma_{t}^{n+1} \mathcal{F}^{n+1} - \frac{\theta_{2}c^{2}}{c\tau} \sigma_{t}^{n} \mathcal{F}^{n} + \frac{\sigma_{t}^{n+\frac{1}{2}}c^{2}}{c\tau} (\mathcal{E}\mathbf{u} + \{f\}\mathcal{E} \cdot \mathbf{u})^{n+\frac{1}{2}}.$$
(5.45)

Next we define,

$$a_{1} = \theta_{1} \frac{c^{2}}{\tau}$$

$$a_{2} = \theta_{2} \frac{c^{2}}{\tau}$$

$$a_{3} = \sigma_{t}^{n+\frac{1}{2}} \frac{c}{\tau}$$
(5.46)

to get,

$$\mathcal{F}^{n+1} - \mathcal{F}^n + a_1 \nabla \cdot (\{f\}\mathcal{E})^{n+1} + a_2 \nabla \cdot (\{f\}\mathcal{E})^n$$

$$= -\frac{a_1}{c} \sigma_t^{n+1} \mathcal{F}^{n+1} - \frac{a_2}{c} \sigma_t^n \mathcal{F}^n + a_3 (\mathcal{E}\mathbf{u} + \{f\}\mathcal{E} \cdot \mathbf{u})^{n+\frac{1}{2}}.$$
(5.47)

which we can rearrange as

$$\left(1 + \frac{a_1}{c}\sigma_t^{n+1}\right)\mathcal{F}^{n+1} + a_1\nabla\cdot(\{f\}\mathcal{E})^{n+1} = \left(1 - \frac{a_2}{c}\sigma_t^n\right)\mathcal{F}^n - a_2\nabla\cdot(\{f\}\mathcal{E})^n + a_3\left(\mathcal{E}\mathbf{u} + \{f\}\mathcal{E}\cdot\mathbf{u}\right)^{n+\frac{1}{2}}.$$
(5.48)

Next we define

$$a_{4} = \frac{a_{1}}{1 + \frac{a_{1}}{c_{1}}\sigma_{t}^{n+1}}$$

$$a_{5} = \frac{1 - \frac{a_{2}}{c_{2}}\sigma_{t}^{n}}{1 + \frac{a_{1}}{c_{t}}\sigma_{t}^{n+1}}$$

$$a_{6} = \frac{a_{2}}{1 + \frac{a_{1}}{c_{c}}\sigma_{t}^{n+1}}$$

$$a_{7} = \frac{a_{3}}{1 + \frac{a_{1}}{c_{1}}\sigma_{t}^{n+1}}$$

$$(5.49)$$

to get

$$\mathcal{F}^{n+1} + a_4 \nabla \cdot (\lbrace f \rbrace \mathcal{E})^{n+1} = a_5 \mathcal{F}^n - a_6 \nabla \cdot (\lbrace f \rbrace \mathcal{E})^n + a_7 (\mathcal{E}\mathbf{u} + \lbrace f \rbrace \mathcal{E} \cdot \mathbf{u})^{n+\frac{1}{2}}. \tag{5.50}$$

Now we apply our spatial discretization scheme by multiplying by trial functions, defined as the basis functions on each cell, then integrating over volume

$$\int_{V} b_{i}(\mathbf{x}) \left[\mathcal{F}^{n+1} + a_{4} \nabla \cdot (\{f\}\mathcal{E})^{n+1} = a_{5} \mathcal{F}^{n} - a_{6} \nabla \cdot (\{f\}\mathcal{E})^{n} + a_{7} \left(\mathcal{E}\mathbf{u} + \{f\}\mathcal{E} \cdot \mathbf{u} \right)^{n+\frac{1}{2}} \right] dV.$$
 (5.51)

For 1D $\{f\}$

$$\int_{V} b_{i}(\mathbf{x}) \left[\mathcal{F}^{n+1} + a_{4} \nabla \cdot (f\mathcal{E})^{n+1} = a_{5} \mathcal{F}^{n} - a_{6} \nabla (f\mathcal{E})^{n} + a_{7} \left(1 + f_{c}^{n+\frac{1}{2}}\right) \mathcal{E}_{c}^{n+\frac{1}{2}} \mathbf{u}_{c}^{n+\frac{1}{2}} \right] dV.$$
 (5.52)

Using the expressions we developed for the n=0 case, we can similarly write

$$\bar{M}_c \bar{\mathbf{F}}_c^{n+1} + a_4 \bar{C}_c (\mathbf{f} \mathcal{E})_c^{n+1} = a_5 \bar{M}_c \bar{\mathbf{F}}_c^n - a_6 \bar{C}_c (\mathbf{f} \mathcal{E})_c^n + a_7 (1 + f_c^{n+\frac{1}{2}}) \mathcal{E}_c^{n+\frac{1}{2}} C_{vol} \mathbf{u}_c^{n+\frac{1}{2}}.$$
(5.53)

An expression for the nodal fluxes is then obtained by multiplying with the inverse of \bar{M}_c to get

$$\bar{\mathbf{F}}_{c}^{n+1} = -a_{4}\bar{M}_{c}^{-1}\bar{C}_{c}(\mathbf{f}\boldsymbol{\mathcal{E}})_{c}^{n+1} + a_{5}\bar{\mathbf{F}}_{c}^{n} - a_{6}\bar{M}_{c}^{-1}\bar{C}_{c}(\mathbf{f}\boldsymbol{\mathcal{E}})_{c}^{n} + a_{7}(1 + f_{c}^{n+\frac{1}{2}})\mathcal{E}_{c}^{n+\frac{1}{2}}\bar{M}_{c}^{-1}C_{vol}\mathbf{u}_{c}^{n+\frac{1}{2}}.$$
(5.54)

which we can express as

$$\bar{\mathbf{F}}_{c}^{n+1} = -a_{4}\bar{C}_{c}^{*}(\mathbf{f}\boldsymbol{\mathcal{E}})_{c}^{n+1} + a_{5}\bar{\mathbf{F}}_{c}^{n} - a_{6}\bar{C}_{c}^{*}(\mathbf{f}\boldsymbol{\mathcal{E}})_{c}^{n} + a_{7}(1 + f_{c}^{n+\frac{1}{2}})\mathcal{E}_{c}^{n+\frac{1}{2}}C_{vol}^{*}\mathbf{u}_{c}^{n+\frac{1}{2}}.$$
(5.55)

using the definitions of \bar{C}_c^* and C_{vol}^* as developed for the n=0 case.

5.3.3 Using the expression for \mathcal{F}^{n+1} in the primary equation

We start with the form that \mathcal{F} appears in the radiation-energy equation,

$$\nabla \cdot \mathcal{F} = \frac{1}{V_c} \int_{V} \nabla \cdot \mathcal{F} dV$$

$$= \frac{1}{V_c} \int_{S} \mathbf{n} \cdot \mathcal{F} dA$$

$$= \frac{1}{V_c} \sum_{f} \mathbf{n}_{f} \cdot \int_{S_f} \mathcal{F} dA$$

$$= \frac{1}{V_c} \sum_{j} \sum_{f} \mathbf{n}_{f} \cdot \mathcal{F}_{j} \int_{S_f} b_{j} dA$$

$$\nabla \cdot \mathcal{F} = \frac{1}{V_c} \sum_{f} \sum_{j} \sum_{d} n_{f,d} (\mathcal{F}_{j})_{d} \int_{S_f} b_{j} dA.$$

$$(5.56)$$

This now serves as a template for each of the terms in the expression. The term containing \mathcal{F}^n is already covered by the template itself, therefore, by substituting $\int_{S_{\epsilon}} b_j dA = S_{j,f}$, we get

$$\nabla \cdot \bar{\mathbf{F}}_c^n \mapsto \frac{1}{V_c} \sum_f \sum_j \sum_d n_{f,d} S_{j,f}(\mathcal{F}_j)_d. \tag{5.57}$$

The second set of terms we need to address have the general form,

$$-a\bar{C}_c^*(\mathbf{f}\boldsymbol{\mathcal{E}})_c$$

where a is either a_4 or a_6 and thus,

$$-a\bar{C}_{c}^{*}(\mathbf{f}\boldsymbol{\mathcal{E}})_{c} \mapsto \frac{-a}{V_{c}} \sum_{f} \sum_{j} \sum_{d} \left[n_{f,d} S_{j,f} C_{(j,d) \mapsto \text{row } k}^{*} \cdot (\mathbf{f}\boldsymbol{\mathcal{E}}) \right].$$

$$(5.58)$$

The last term to consider is the advection term,

$$a_7(1 + f_c^{n+\frac{1}{2}})\mathcal{E}_c^{n+\frac{1}{2}}C_{vol}^*\mathbf{u}_c^{n+\frac{1}{2}} \mapsto \frac{a_7}{V_c} \sum_f \sum_j \sum_d \left[n_{f,d} S_{j,f} * C_{vol,(j,d)\mapsto \text{row } k}^* \cdot \mathbf{u}_c^{n+\frac{1}{2}} \right]$$
(5.59)

5.3.4 Using the expression for \mathcal{F}^{n+1} in the auxiliary equations

For each face-node we now require continuity of flux. This can generally be expressed as

$$\sum_{c} \sum_{f} \int_{S_f} \mathbf{n}_f \cdot \mathcal{F}_j^{n+1} dA = 0$$
 (5.60)

from which we again have to develop the three types of term, i.e., the term with \mathcal{F} , the term with $\{f\}\mathcal{E}$ and the term with $\mathcal{E}\mathbf{u}$. Fortunately, the previously determined forms are easily extended to here, i.e., with only the relevant face and node indices changing.

$$\sum_{c} \sum_{f} \sum_{d} n_{f,d} S_{j,f} \left[-a_{4} C_{(j,d)\mapsto \text{row } k}^{*} \cdot (\mathbf{f} \boldsymbol{\mathcal{E}})^{n+1} \right]$$

$$= \sum_{c} \sum_{f} \sum_{d} n_{f,d} S_{j,f} \left[-a_{5} (\boldsymbol{\mathcal{F}}_{j})_{d}^{n} + a_{6} C_{(j,d)\mapsto \text{row } k}^{*} \cdot (\mathbf{f} \boldsymbol{\mathcal{E}})^{n} - a_{7} n_{f,d} S_{j,f} * C_{vol,(j,d)\mapsto \text{row } k}^{*} \cdot \mathbf{u}_{c}^{n+\frac{1}{2}} \right]$$

$$(5.61)$$

A Angular integration identities

Identity A-1

$$\int_{4\pi} d\mathbf{\Omega} = 4\pi.$$

Identity A-2

$$\int_{4\pi} \mathbf{\Omega} \ d\mathbf{\Omega} = 0.$$

Identity A-3 Given the known three component vector, **v**,

$$\int_{A\pi} \mathbf{\Omega} \cdot \mathbf{v} \ d\mathbf{\Omega} = 0.$$

Identity A-4 Given the known three component vector, **v**,

$$\int_{4\pi} \mathbf{\Omega} \cdot \mathbf{\nabla} (\mathbf{\Omega} \cdot \mathbf{v}) \ d\mathbf{\Omega} = \frac{4\pi}{3} \mathbf{\nabla} \cdot \mathbf{v}.$$

Identity A-5 Given the scalar, a,

$$\int_{4\pi} \mathbf{\Omega} \bigg(\mathbf{\Omega} \cdot \mathbf{\nabla} a \bigg) \ d\mathbf{\Omega} = \frac{4\pi}{3} \mathbf{\nabla} a.$$

Identity A-6 Given the known three component vector, \mathbf{v} ,

$$\int_{4\pi} \mathbf{\Omega} \left(\mathbf{\Omega} \cdot \mathbf{v} \right) \, d\mathbf{\Omega} = \frac{4\pi}{3} \mathbf{v}.$$

Identity A-7 Given the known three component vector, v,

$$\int_{4\pi} \mathbf{\Omega} \bigg(\mathbf{\Omega} \cdot \mathbf{\nabla} (\mathbf{\Omega} \cdot \mathbf{v}) \bigg) \ d\mathbf{\Omega} = 0.$$

B Boundary and initial conditions for radiation hydrodynamic problems

In a one dimensional simulation we can simulate steady-state shocks by setting the appropriate pre- and post-shock conditions. Pre-shock conditions will be denoted with a subscript L whereas post-shock conditions will be denoted with a subscript R.

B.1 Hydrodynamics only

With no radiation energy present we wish to have $\mathcal{F}_L^H = \mathcal{F}_R^H,$ therefore

$$\begin{bmatrix} \rho u \\ \rho u^2 + p \\ (E+p)u \end{bmatrix}_L = \begin{bmatrix} \rho u \\ \rho u^2 + p \\ (E+p)u \end{bmatrix}_R.$$
 (B.1)

Here we have three equations but 4 unknowns, i.e., ρ , u, p and e. Fortunately, we can express both e and p in terms of temperature since

$$p = (\gamma - 1)\rho e$$

and

$$e = C_v T$$
.

Therefore,

$$p = (\gamma - 1)\rho C_v T$$

and

$$\begin{bmatrix} \rho u \\ \rho u^2 + (\gamma - 1)\rho C_v T \\ \frac{1}{2}\rho u^3 + \rho C_v T u + p u \end{bmatrix}_L = \begin{bmatrix} \rho u \\ \rho u^2 + (\gamma - 1)\rho C_v T \\ \frac{1}{2}\rho u^3 + \rho C_v T u + p u \end{bmatrix}_R.$$
 (B.2)

When the left state is known then we can frame these equations as seeking the non-linear solution of

$$\mathbf{F} \begin{pmatrix} \rho_R \\ T_R \\ u_R \end{pmatrix} = \begin{bmatrix} \rho u \\ \rho u^2 + (\gamma - 1)\rho C_v T \\ \frac{1}{2}\rho u^3 + \gamma \rho C_v T u \end{bmatrix}_R - \mathcal{F}_L^H = \mathbf{0}$$
(B.3)

or simply

$$\mathbf{F}(\mathbf{x}) = \mathcal{F}^H(\mathbf{x}_R) - \mathcal{F}_L^H = \mathbf{0}.$$
 (B.4)

to which Newton-iteration can be applied in the form

$$\mathbf{x}_R^{\ell+1} = \mathbf{x}_R^\ell - J^{-1}(\mathbf{x}_R^\ell)\mathbf{F}(\mathbf{x}_R^\ell)$$

where the Jacobian matrix, J, is given by

$$J = \begin{bmatrix} u & 0 & \rho \\ u^2 + (\gamma - 1)C_v T & (\gamma - 1)\rho C_v & 2\rho u \\ \frac{1}{2}u^3 + \gamma C_v T u & \gamma \rho C_v u & \frac{3}{2}\rho u^2 + \gamma \rho C_v T \end{bmatrix}$$
(B.5)

Note: The initial guess, \mathbf{x}^0 cannot be the same as \mathbf{x}_L since the iteration will terminate immediately. Generally the values need to be perturbed sufficiently such that $\rho_R > \rho_L$, $T_R > T_L$ and $u_R < a_R$ where a is the sound-speed.

B.2 Hydrodynamics with radiation energy

With radiation energy present we are concerned with the following set of equations

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0 \tag{B.6a}$$

$$\frac{\partial(\rho\mathbf{u})}{\partial t} + \nabla \cdot \{\rho\mathbf{u} \otimes \mathbf{u}\} + \nabla p = -\frac{1}{3}\nabla \mathcal{E},\tag{B.6b}$$

$$\frac{\partial E}{\partial t} + \nabla \cdot [(E+p)\mathbf{u}] = \sigma_a c(\mathcal{E} - aT^4) - \frac{1}{3}\nabla \mathcal{E} \cdot \mathbf{u}$$
(B.6c)

$$\frac{\partial \mathcal{E}}{\partial t} + \nabla \cdot \left(-\frac{c}{3\sigma_t} \nabla \mathcal{E} \right) + \frac{4}{3} \nabla \left(\mathcal{E} \mathbf{u} \right) = \sigma_a c \left(a T^4 - \mathcal{E} \right) + \frac{1}{3} \nabla \mathcal{E} \cdot \mathbf{u}. \tag{B.6d}$$

which for a steady-steady, one dimensional simulation becomes

$$\nabla \cdot (\rho u) = 0 \tag{B.7a}$$

$$\nabla \cdot (\rho u^2) + \nabla p = -\frac{1}{3} \nabla \mathcal{E}, \tag{B.7b}$$

$$\nabla \cdot [(E+p)u] = \sigma_a c(\mathcal{E} - aT^4) - \frac{1}{3} \nabla \mathcal{E} \cdot u$$
(B.7c)

$$\nabla \cdot \left(-\frac{c}{3\sigma_t} \nabla \mathcal{E} \right) + \frac{4}{3} \nabla \left(\mathcal{E}u \right) = \sigma_a c \left(aT^4 - \mathcal{E} \right) + \frac{1}{3} \nabla \mathcal{E}u. \tag{B.7d}$$

Additionally, far away from the interface the co-moving frame radiation flux, \mathcal{F}_0 , is zero, therefore

$$\mathcal{F}_0 = -\frac{c}{3\sigma_t} \nabla \mathcal{E} = 0$$

and the equation set becomes

$$\nabla \cdot (\rho u) = 0 \tag{B.8a}$$

$$\nabla \cdot (\rho u^2) + \nabla p = -\frac{1}{3} \nabla \mathcal{E}, \tag{B.8b}$$

$$\nabla \cdot [(E+p)u] = \sigma_a c(\mathcal{E} - aT^4) - \frac{1}{3} \nabla \mathcal{E} \cdot u$$
(B.8c)

$$\frac{4}{3}\nabla(\mathcal{E}u) = \sigma_a c(aT^4 - \mathcal{E}) + \frac{1}{3}\nabla\mathcal{E}u. \tag{B.8d}$$

Now, adding the last equation to the third, we get

$$\nabla \cdot (\rho u) = 0 \tag{B.9a}$$

$$\nabla \cdot (\rho u^2) + \nabla p + \frac{1}{3} \nabla \mathcal{E} = 0, \tag{B.9b}$$

$$\nabla \cdot [(E+p)u] + \frac{4}{3}\nabla (\mathcal{E}u) = 0.$$
 (B.9c)

We now express internal energy, e, the pressure, p, and the radiation energy, \mathcal{E} , in terms of temperature

$$\nabla \cdot (\rho u) = 0 \tag{B.10a}$$

$$\nabla \cdot (\rho u^2) + \nabla ((\gamma - 1)\rho C_v T) + \frac{1}{3} \nabla a T^4 = 0, \tag{B.10b}$$

$$\nabla \cdot \left[\left(\frac{1}{2} \rho u^2 + \rho C_v T + (\gamma - 1) \rho C_v T \right) u \right] + \frac{4}{3} \nabla \left(a T^4 u \right) = 0.$$
 (B.10c)

Finally we integrate this equation set over the entire domain to get

$$\begin{bmatrix} \rho u \\ \rho u^{2} + (\gamma - 1)\rho C_{v}T + \frac{1}{3}aT^{4} \\ \frac{1}{2}\rho u^{3} + \gamma\rho C_{v}Tu + \frac{4}{3}aT^{4}u \end{bmatrix}_{L} = \begin{bmatrix} \rho u \\ \rho u^{2} + (\gamma - 1)\rho C_{v}T + \frac{1}{3}aT^{4} \\ \frac{1}{2}\rho u^{3} + \gamma\rho C_{v}Tu + \frac{4}{3}aT^{4}u \end{bmatrix}_{R}$$
(B.11a)

Similar to the previous case we can now define

$$\mathbf{F} \begin{pmatrix} \rho_R \\ T_R \\ u_R \end{pmatrix} = \begin{bmatrix} \rho u \\ \rho u^2 + (\gamma - 1)\rho C_v T + \frac{1}{3}aT^4 \\ \frac{1}{2}\rho u^3 + \gamma \rho C_v T u + \frac{4}{3}aT^4 u \end{bmatrix}_R - \begin{bmatrix} \rho u \\ \rho u^2 + (\gamma - 1)\rho C_v T + \frac{1}{3}aT^4 \\ \frac{1}{2}\rho u^3 + \gamma \rho C_v T u + \frac{4}{3}aT^4 u \end{bmatrix}_L = \mathbf{0},$$
 (B.12)

where the subscript L quantities are all known. Applying Newton-iteration to this equation again is

$$\mathbf{x}_R^{\ell+1} = \mathbf{x}_R^{\ell} - J^{-1}(\mathbf{x}_R^{\ell})\mathbf{F}(\mathbf{x}_R^{\ell})$$

where the Jacobian matrix, J is given by

$$J = \begin{bmatrix} u & 0 & \rho \\ u^2 + (\gamma - 1)C_v T & (\gamma - 1)\rho C_v + \frac{4}{3}aT^3 & 2\rho u \\ \frac{1}{2}u^3 + \gamma C_v T u & \gamma \rho C_v u + \frac{16}{3}aT^3 u & \frac{3}{2}\rho u^2 + \gamma \rho C_v T + \frac{4}{3}aT^4 \end{bmatrix}$$
(B.13)

Example mach 3 conditions, $C_v = 0.14472799784454$ and $\gamma = \frac{5}{3}$:

[0] rho0 1.00000000e+00 u0 3.80431331e-01 T0 1.00000000e-01 e0 1.44727998e-02 radE0 1.37223549e-06 [0] rho1 3.00185103e+00 u1 1.26732249e-01 T1 3.66260705e-01 e1 5.30081785e-02 radE1 2.46939153e-04

Note: The initial guess, \mathbf{x}^0 cannot be the same as \mathbf{x}_L since the iteration will terminate immediately. Generally the values need to be perturbed sufficiently such that $\rho_R > \rho_L$, $T_R > T_L$, $u_R < a_R$ where a is the sound-speed, and $\mathcal{E}_R > \mathcal{E}_L$.

C Tensor Algebra

Most of these notations are obtained from [3].

C.1 Identities

Identity C-1 Given f(x, y, z) and $\mathbf{a} = [a_x, a_y, a_z]$.

$$f \nabla \cdot \mathbf{a} = \nabla \cdot (f \mathbf{a}) - \mathbf{a} \cdot \nabla f$$

Proof:

$$f \nabla \cdot \mathbf{a} = f \left(\frac{\partial a_x}{\partial x} + \frac{\partial a_y}{\partial y} + \frac{\partial a_z}{\partial z} \right)$$
 (C.1)

$$= f \frac{\partial a_x}{\partial x} + f \frac{\partial a_y}{\partial y} + f \frac{\partial a_z}{\partial z}, \tag{C.2}$$

applying the product rule of differentiation,

$$= \frac{\partial}{\partial x}(fa_x) - a_x \frac{\partial f}{\partial x} \tag{C.3}$$

$$+\frac{\partial}{\partial y}(fa_y) - a_y \frac{\partial f}{\partial y} \tag{C.4}$$

$$+\frac{\partial}{\partial z}(fa_z) - a_z \frac{\partial f}{\partial z} \tag{C.5}$$

by observing the vertical alignment here we get

$$f \nabla \cdot \mathbf{a} = \nabla \cdot (f \mathbf{a}) - \mathbf{a} \cdot \nabla f \tag{C.6}$$

C.2 Tensor product of two vectors $\mathbf{a} \otimes \mathbf{b}$

Also called the *dyadic product*. Given vector **a** of size $N \times 1$ and vector **b** of size $M \times 1$, then the tensor product of **a** and **b** results in a rank 2 tensor and is given by

$$\mathbf{a} \otimes \mathbf{b} = \begin{bmatrix} a_0 b_0 & a_0 b_1 & \dots & a_0 b_{M-1} \\ a_1 b_0 & a_1 b_1 & \dots & a_1 b_{M-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N-1} b_0 & a_{N-1} b_1 & \dots & a_{N-1} b_{M-1} \end{bmatrix}$$
(C.7)

with resulting dimensions $N \times M$.

C.3 Dot-product of a vector with a tensor, a \bullet $\{t\}$

Under the same topic of tensor product notation we can also discuss the **dot product of scalar and a rank 2 tensor**. The dot-product of a vector **a** and a tensor $\{\mathbf{t}\}$, commonly written as $\mathbf{a} \cdot \{\mathbf{t}\}$, which results in a vector of size N, can be understood using one of two thought patterns:

• Thought pattern 1: Classical component-wise dot product

$$\mathbf{a} \cdot \{\mathbf{t}\} = \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{N-1} \end{bmatrix} \cdot \begin{bmatrix} t_{00} & t_{01} & \dots & t_{0(N-1)} \\ t_{10} & t_{11} & \dots & t_{1(N-1)} \\ \vdots & \vdots & \ddots & \vdots \\ t_{(N-1)0} & t_{(N-1)1} & \dots & t_{(N-1)(N-1)} \end{bmatrix}$$

$$= \begin{bmatrix} a_0 t_{00} & + & a_1 t_{01} & + & \dots & + & a_{N-1} t_{0(N-1)} \\ a_0 t_{10} & + & a_1 t_{11} & + & \dots & + & a_{N-1} t_{1(N-1)} \\ \vdots & + & \vdots & + & \ddots & + & \vdots \\ a_0 t_{(N-1)0} & + & a_1 t_{(N-1)1} & + & \dots & + & a_{N-1} t_{(N-1)(N-1)} \end{bmatrix}$$

$$= \{t\} \cdot \mathbf{a}$$

$$(C.8)$$

• Thought pattern 2 (preferred): Dot product of vectors

$$\mathbf{a} \cdot \{\mathbf{t}\} = \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{N-1} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{t}_0 \\ \mathbf{t}_1 \\ \vdots \\ \mathbf{t}_{(N-1)} \end{bmatrix} = \begin{bmatrix} \mathbf{a} \cdot \mathbf{t}_0 \\ \mathbf{a} \cdot \mathbf{t}_1 \\ \vdots \\ \mathbf{a} \cdot \mathbf{t}_{(N-1)} \end{bmatrix} = \{t\} \cdot \mathbf{a}$$
(C.9)

where the latter thought pattern requires the rank 2 tensor two be represented as a vector of vectors (or a matrix if you prefer).

C.4 Finite element discretization of the divergence of a tensor, i.e., $\nabla \cdot \tau$

Short-hand notation. $b_i \equiv b_i(\mathbf{x})$. For this section we seek a general way to handle

$$\int_{V} b_{i} \nabla \cdot \boldsymbol{\tau} dV. \tag{C.10}$$

We start by writing the tensor as a block vector

$$\boldsymbol{\tau} = \begin{bmatrix} \mathbf{t}_0 \\ \mathbf{t}_1 \\ \vdots \\ \mathbf{t}_{N-1} \end{bmatrix}, \tag{C.11}$$

therefore,

$$\nabla \cdot \boldsymbol{\tau} = \begin{bmatrix} \nabla \cdot \mathbf{t}_0 \\ \vdots \\ \nabla \cdot \mathbf{t}_{N-1} \end{bmatrix}. \tag{C.12}$$

If we now multiply by the trial space function, b_i , and integrate then we essentially have

$$\int_{V} b_{i} \nabla \cdot \boldsymbol{\tau} dV = \begin{bmatrix}
\int_{V} b_{i} \nabla \cdot \mathbf{t}_{0} dV \\
\vdots \\
\int_{V} b_{i} \nabla \cdot \mathbf{t}_{N-1} dV
\end{bmatrix},$$
(C.13)

after we use identity C-1 to get

$$\int_{V} b_{i} \nabla \cdot \boldsymbol{\tau} dV = \begin{bmatrix}
\int_{V} b_{i} \nabla \cdot \mathbf{t}_{0} dV \\
\vdots \\
\int_{V} b_{i} \nabla \cdot \mathbf{t}_{N-1} dV
\end{bmatrix} = \begin{bmatrix}
\int_{V} \nabla \cdot (b_{i} \mathbf{t}_{0}) dV - \int_{V} \mathbf{t}_{0} \cdot \nabla b_{i} dV \\
\vdots \\
\int_{V} \nabla \cdot (b_{i} \mathbf{t}_{N-1}) dV - \int_{V} \mathbf{t}_{N-1} \cdot \nabla b_{i} dV
\end{bmatrix},$$
(C.14)

Now we apply Gauss' divergence theorem on the first terms

$$\int_{V} b_{i} \nabla \cdot \boldsymbol{\tau} dV = \begin{bmatrix}
\int_{S} \mathbf{n} \cdot (b_{i} \mathbf{t}_{0}) dA \\
\vdots \\
\int_{S} \mathbf{n} \cdot (b_{i} \mathbf{t}_{N-1}) dA
\end{bmatrix} - \begin{bmatrix}
\int_{V} \mathbf{t}_{0} \cdot \nabla b_{i} dV \\
\vdots \\
\int_{V} \mathbf{t}_{N-1} \cdot \nabla b_{i} dV
\end{bmatrix},$$
(C.15)

which we can write as

$$\int_{V} b_{i} \nabla \cdot \boldsymbol{\tau} dV = \int_{S} \mathbf{n} \cdot (b_{i} \boldsymbol{\tau}) dA - \int_{V} \boldsymbol{\tau} \cdot \nabla b_{i} dV. \tag{C.16}$$

We can now expand τ into basis functions and segregate the surface-integrals into face-integrals to get

$$\int_{V} b_{i} \nabla \cdot \boldsymbol{\tau} dV = \sum_{j} \sum_{f} \left[\mathbf{n}_{f} \cdot \boldsymbol{\tau}_{j} \int_{S_{f}} b_{i} b_{j} dA \right] - \sum_{j} \left[\boldsymbol{\tau}_{j} \cdot \int_{V} b_{j} \nabla b_{i} dV \right]. \tag{C.17}$$

What we can additionally do here is to lump the τ_j 's in the last term to cell-centered values τ_c so that we have

$$\int_{V} b_{i} \nabla \cdot \boldsymbol{\tau} dV = \sum_{j} \sum_{f} \left[\mathbf{n}_{f} \cdot \boldsymbol{\tau}_{j} \int_{S_{f}} b_{i} b_{j} dA \right] - \boldsymbol{\tau}_{c} \cdot \int_{V} \nabla b_{i} dV, \tag{C.18}$$

which enables us to develop a system form.

Define the following,

$$M_{ij}^f = \int_{S_f} b_i b_j dA$$
$$\mathbf{G}_i = \int_{V} \nabla b_i dV.$$

We then start to define the matrix C_c as

$$\tau_{c} \cdot \int_{V} \nabla b_{i} dV = \begin{bmatrix} \mathbf{G}_{i,x} & \mathbf{G}_{i,y} & \mathbf{G}_{i,z} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathbf{G}_{i,x} & \mathbf{G}_{i,y} & \mathbf{G}_{i,z} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \mathbf{G}_{i,x} & \mathbf{G}_{i,y} & \mathbf{G}_{i,z} \end{bmatrix} \begin{bmatrix} \mathbf{t}_{c,x} \\ \mathbf{t}_{c,y} \\ \mathbf{t}_{c,z} \end{bmatrix} \\
= \begin{bmatrix} \mathbf{G}_{i}^{T} & 0 & 0 \\ 0 & \mathbf{G}_{i}^{T} & 0 \\ 0 & 0 & \mathbf{G}_{i}^{T} \end{bmatrix} \begin{bmatrix} \mathbf{t}_{c,x} \\ \mathbf{t}_{c,y} \\ \mathbf{t}_{c,z} \end{bmatrix} \tag{C.19}$$

References

- [1] John I. Castor, *Radiation Hydrodynamics*, UCRL-BOOK-134209-Rev-1, Lawrence Livermore National Laboratory, November 2003.
- [2] Toro E.F., Riemann Solvers and Numerical Methods for Fluid Dynamics A Practical Introduction, third edition, Springer, 2009.
- [3] Moukalled F., Mangani L., Darwish M., The Finite Volume Method in Computational Fluid Dynamics An Advanced Introduction with OpenFOAM® and Matlab®, Springer, 2016.
- [4] McClarren R.G., Lowrie R.B., The effects of slope limiting on asymptotic-preserving numerical methods for hyperbolic conservation laws, Journal of Computational Physics, vol 227 p9711-9726, 2008.
- [5] Timmers F.X., Exact Riemann Solver, Website: https://cococubed.com/code_pages/exact_riemann.shtml, accessed April 22, 2022.

D Roderigues's formula

Roderigues' formula for the rotation of a vector ${\bf v}$ about a unit vector ${\bf a}$ with right-hand rule

$$\mathbf{v}_{rotated} = \cos \theta \mathbf{v} + (\mathbf{a} \cdot \mathbf{v})(1 - \cos \theta)\mathbf{a} + \sin \theta(\mathbf{a} \times \mathbf{v})$$
 (D.1)

In matrix form

$$\mathbf{v}_{rotated} = A\mathbf{v} \tag{D.2}$$

where

$$A = \begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix}$$
 (D.3)

and

$$R = I + \sin \theta A + (1 - \cos \theta)A^2 \tag{D.4}$$