重庆师范大学

实验报告

实验课程名称				算法设计与分析
实	验	序	号	4
实	验	内	容	数组逆序对计数与排序
班			级	23 计科 6 班
姓			名	周子依
学			号	2023051603162

实验目的与要求

1. 学习目标

- 1) 掌握逆序对计数的核心概念,明晰逆序对在数组中的定义与判定准则, 能够准确识别给定数组中的逆序对。
- 2) 熟练运用合并排序算法思想实现逆序对计数功能,深入理解排序过程中 元素移动与逆序对数量统计之间的内在联系,完成对给定数组的逆序对 计数操作。

实验内容

1. 算法原理与设计思路

(1) 学习伪代码

逆序对计数通过两个函数 CountInver 和 MergeCount 来实现:

CountInver 函数

功能:用于计算数组中逆序对的数量。

流程:

首先判断 left 是否大于等于 right,如果是,说明子数组只有一个元素或为空,直接返回数组 A[left...right]。

递归计算左子数组的逆序对数量 S1, 即 S1=CountInver(A, left, mid)。 递归计算右子数组的逆序对数量 S2, 即 S2 = CountInver(A, mid + 1, right)。

调用 MergeCount 函数合并左右子数组,并计算跨越子数组的逆序对数量 S3,即 S3 = MergeCount(A, left, mid, right)。

总逆序对数量 S = S1 + S2 + S3 ,最后返回总逆序对数量 S 以及合并后的数组 A[left...right] 。

MergeCount 函数

功能:输入数组 A[1..n] 以及下标 left、mid、right,负责合并左右子数组并计算跨越子数组的逆序对数量。

流程:

先将原数组 A[left...right] 复制到临时数组 A'[left...right],并初始化跨越子数组的逆序对数量 S3=0,设置指针 i=left,j=mid+1,k=0。进入循环,当 i <= mid 且 j <= right 时: 如果 A'[i] <= A'[j],说明左子数组元素较小,将 A'[i] 直接放入临时数组 A[left+k],k 自增 1,i 自增 1,此过程不产生逆序对。 否则,即 A'[j] 较小,将 A'[j] 放入临时数组 A[left+k],此时左子数组剩余元素 A'[i...mid] 都与 A'[j]构成逆序对,所以 S3=S3+(mid-i+1),k 自增 1,j 自

增 1。最后返回跨越子数组的逆序对数量 S3 以及合并后的数组 A[left...right]。 图一为伪代码笔记。

图 1 伪代码笔记

(2) 实现代码

注意创建数组时使用 vector。

图 2 为手撕一遍代码。

# include < vector >	int CountInver (vector < int > & A,
# include < iostream>	int l. int r)
using namespace std;	if (l>=r) }
	return 0; }
int Merge Count (vector < int> & A,	int m = l + (1-l)/2;
int l, int m, int r) {	int si = Countliner;
// 创建临时数组	int s2 = Countlnver;
vector < int > temp (r-l+1);	int s3 = Countlnver;
int i = l > j = m + l , k = 0 ;	return SI + S2 + S3;
while (A[i] <= m && A[j] <= r) }	}
if (A[i] < = A[j]) {	int main(){
temp [k++] = A[i++];	vector < int> arr = {13,8,10,6,15.18,
k+=1; i+=1;}	12,20,9.14,17.19};
else {	int inversions = CountInver (arr, 0,
temp[K++] = A[j++];	arr. size()-1);
S3 += (m-i+1); }	cout << "逆序对数量," << inversions
}	<pre><< endl;</pre>
while (i <= mid) {	cout << "排序后数组,";
$temp[K++] = A[\hat{i}+t];$	for (int num : arr) cout << num << "
while (j <= right) 1	return 0;
temp[k++] = A[j++];	}
// 将临时数组内容写回数组A	
for (int p=0; p < temp. size(); ++p){	
A[left+p] = temp[p];	
return S3;	
}	

图 2 手撕代码笔记

(3) 复杂度分析

时间复杂度: 算法基于归并排序的分治思想,将数组不断拆分为子数组。每次合并子数组时,需遍历元素完成逆序对计数与数组合并,时间复杂度为(0(n))。设总数据规模为 n,递归拆分的深度为 $(\log n)$,满足递推公式:

$$T(n) = 0(1)$$
 $n < 1$
 $T(n) = 2T(n/2) + 0(n)$ $n >= 1$

通过主定理推导可得整体时间复杂度为 $(0(n \log n))$, 相比插入排序的 $(0(n^2))$, 更适合大规模数据的逆序对计数。

空间复杂度: 合并过程中使用临时数组 temp 存储当前处理区间的元素, 空间大小与输入数组规模相关,为(0(n))。该空间用于辅助合并操作,确保原数 组有序更新,虽占用额外空间,但换取了更优的时间复杂度。

实验代码

附在最后。

实验结果

总逆序对数为20。

\$ stdout

逆序对数量: 20

排序后的数组: 6 8 9 10 12 13 14 15 17 18 19 20

总结与体会

1. 实验总结

通过本次实验,深入掌握了逆序对的核心概念,能够精准判定数组中的逆序对。基于插入排序思想实现逆序对计数时,深刻理解了元素移动与逆序对统计的关联:插入排序中元素移动次数直接对应逆序对数量,例如对小规模数组计数时,每一次元素移位都隐含着逆序对的统计。同时,结合伪代码分析归并排序实现逆序对计数的流程,明晰了分治思想下"子数组逆序对统计"与"跨子数组逆序对统计"的逻辑,从算法执行流程中体会到不同规模数据下算法性能的差异,如插入排序在小规模数据中实现直观,但时间复杂度限制其处理大规模数据的效率。

2. 踩坑与解决

(1) 逻辑理解偏差:

初期对伪代码中 MergeCount 函数的跨子数组逆序对统计逻辑理解模糊,尤其在计算 S3 = S3 + (mid - i + 1) 时,未清晰关联左子数组剩余元素与当前右子数组元素的逆序关系。通过对照实例推演,逐步明确每一步操作对应的逆序对生成逻辑,最终正确实现计数功能。

(2) 代码实现细节:

在复现算法代码时,因临时数组复制边界处理不当,导致合并数组结果错误。 通过细化代码调试,严格检查数组下标范围,确保原数组与临时数组复制操作的 准确性,解决了结果偏差问题。

3. 学习收获

深化了对算法分治思想的应用理解, 归并排序实现逆序对计数的过程, 展现

了分治策略在复杂问题拆解(子问题求解、合并)中的高效性。

认识到逆序对计数在算法分析中的意义,其不仅是一个计数问题,更能反映数组元素的有序程度,为后续学习排序算法性能分析(如排序算法的最优、最坏情况与逆序对关联)奠定了实践基础。

通过伪代码分析与代码实现的结合,提升了算法逻辑转化为代码的能力,对"算法设计——伪代码描述——代码实现"的完整流程有了更系统的认知。

附完整 C++代码

1197	TEC. 1 (M)					
1	#include <vector></vector>					
2	#include <iostream></iostream>					
3	using namespace std;					
4						
5	// 合并数组并计算跨越区间的逆序对					
6	// 输入:数组 A, 左边界 left, 中间位置 mid, 右边界 right					
7	// 输出: 跨越左右子数组的逆序对数量					
8	int MergeCount(vector <int>& A, int left, int mid, int right) {</int>					
9	// 创建临时数组,存储当前处理区间的元素,用于合并操作					
10	vector <int> temp(right - left + 1);</int>					
11	int i = left; // 左子数组([left, mid])的遍历指针					
12	int j = mid + 1; // 右子数组([mid+1, right])的遍历指针					
13	int k = 0; // 临时数组 temp 的写入指针					
14	int s3 = 0; // 存储跨越左右子数组的逆序对数量					
15						
16	// 合并左右子数组,直到其中一个子数组遍历完毕					
17	while (i \leq mid && j \leq right) {					
18	$if(A[i] \le A[j]) \{$					
19	// 左子数组当前元素较小,直接放入临时数组,不产生跨越逆序对					
20	temp[k++] = A[i++];					
21	} else {					
22	// 右子数组当前元素较小,此时左子数组剩余元素(mid-i+1个)					
23	// 都与 A[j]构成逆序对(因为左子数组剩余元素都比 A[j]大)					
24	temp[k++] = A[j++];					
25	s3 += (mid - i + 1); // 累加跨越逆序对数量					
26	}					
27	}					
28	ルトロナフ料の利人・主ノサナン					
29	// 处理左子数组剩余元素(若有)					
30	while (i <= mid) {					
31	temp[k++] = A[i++];					
32	} ル					
33	// 处理右子数组剩余元素(若有)					
34	while (j <= right) {					
35	temp[k++] = A[j++];					

```
36
       }
37
38
        // 将临时数组的内容写回原数组 A, 保证 A[left..right]有序
39
        for (int p = 0; p < temp.size(); ++p) {
40
            A[left + p] = temp[p];
41
        }
42
        return s3; // 返回跨越逆序对数量
43
    }
44
45
    // 递归计算数组区间[left, right]的逆序对总数
    // 输入:数组 A, 左边界 left, 右边界 right
    // 输出:区间[left, right]的逆序对总数
47
48
    int CountInver(vector<int>& A, int left, int right) {
        // 递归终止条件:区间只有一个元素或没有元素,逆序对为0
49
50
        if (left \geq= right) {
51
            return 0;
52
53
        int mid = left + (right - left) / 2; // 计算中间位置, 避免 (left+right)/2 溢出
54
        // 递归计算左子数组[left, mid]的逆序对
55
56
        int s1 = CountInver(A, left, mid);
        // 递归计算右子数组[mid+1, right]的逆序对
57
58
        int s2 = CountInver(A, mid + 1, right);
59
        // 合并左右子数组并计算跨越逆序对
61
        int s3 = MergeCount(A, left, mid, right);
62
63
        // 总逆序对 = 左子数组逆序对 + 右子数组逆序对 + 跨越逆序对
64
        return s1 + s2 + s3;
65
66
67
    int main() {
        // 测试用例,使用图片中的数组
68
69
        vector<int> arr = {13, 8, 10, 6, 15, 18, 12, 20, 9, 14, 17, 19};
70
        // 计算逆序对数量, 初始调用时处理整个数组区间[0, arr.size()-1]
71
        int inversions = CountInver(arr, 0, arr.size() - 1);
72
        // 输出逆序对数量
73
74
        cout << "逆序对数量: " << inversions << endl:
        // 输出排序后的数组(算法执行过程中会对数组排序)
75
76
        cout << "排序后的数组: ";
        for (int num : arr) {
77
            cout << num << " ";
78
79
```

80	return 0;
81	}