VE401 Probabilistic Methods in Eng. RC 4

CHEN Xiwen

UM-SJTU Joint Institute

March 25, 2020

Table of contents

Reliability

Failure Density, Reliability and Hazard Rate Weibull Distribution

Basic Statistics

Samples and Data Estimating Parameters Estimating Intervals

Failure Density, Reliability and Hazard Rate

Weibull Distribution

Basic Statistics

Samples and Data
Estimating Parameters
Estimating Intervals

Definitions

Suppose A is a black box unit.

- **Failure density** f_A : distribution of the time T that A fails.
- ▶ Reliability function R_A : the probability that A is working at time t, $R_A(t) = 1 F_A(t)$.
- **Hazard rate** ρ_A :

$$\rho_{A}(t) := \lim_{\Delta t \to 0} \frac{P[t \le T \le t + \Delta t | t \le T]}{\Delta t}$$

$$= \lim_{\Delta t \to 0} \frac{P[t \le T \le t + \Delta t]}{P[T \ge t] \cdot \Delta t} = \frac{f_{A}(t)}{R_{A}(t)},$$

$$R_{A}(t) = e^{-\int_{0}^{t} \rho_{A}(x) dx}.$$

One often has information on ρ_A , but not F_A or R_A .

Series and Parallel Systems

► Series system with *k* components.

$$R_s(t) = \prod_{i=1}^k R_i(t),$$

where R_i is the reliability of the i-th component.

► Parallel system with *k* components.

$$R_p(t) = 1 - \prod_{i=1}^k (1 - R_i(t)).$$

Failure Density, Reliability and Hazard Rate Weibull Distribution

Basic Statistics

Samples and Data
Estimating Parameters
Estimating Intervals

Weibull Distribution

▶ Density function. $\alpha, \beta > 0$ are parameters,

$$f(x) = \left\{ egin{array}{ll} lpha eta x^{eta-1} e^{-lpha x^eta}, & x > 0, \\ 0, & ext{otherwise.} \end{array}
ight.$$

► Mean.

$$\mu = \alpha^{-1/\beta} \Gamma(1 + 1/\beta).$$

Variance.

$$\sigma^2 = \alpha^{-2/\beta} \Gamma(1 + 2/\beta) - \mu^2.$$

Failure Density, Reliability and Hazard Rate Weibull Distribution

Basic Statistics

Samples and Data

Estimating Parameters
Estimating Intervals

Definitions

- Statistics aims to gain information about the parameters of a distribution by conducting experiments.
- Population: a large collection of instances which we want to describe probability.
- ▶ Random sample of size n from distribution of X: a collection of n independent random variables X_1, \ldots, X_n , each with the same distribution as X. ($\Leftrightarrow n$ i.i.d. random variables.)
- ▶ x-th percentiles: d_x such that x% of values in sampled data are less than or equal to d_x . (first, second, third quartile \Rightarrow x = 25, 50, 75.)
- ▶ *Interquartile range*: $IQR = q_3 q_1$, measures the dispersion of the data.
- **Precision**: smallest decimal place of data $\{x_1, \ldots, x_n\}$.
- ▶ *Sample range*: $\max\{x_i\} \min\{x_i\}$.

Visualization — Histograms

Choose bin width / number of bins.

1. Sturges's rule.

$$k = \lceil \log_2(n) \rceil + 1, \qquad h = \frac{\max\{x_i\} - \min\{x_i\}}{k},$$

rounding *up* to the precision of the data.

2. Freedman-Diaconis rule.

$$h = \frac{2 \cdot \mathsf{IQR}}{\sqrt[3]{n}}.$$

Failure Density, Reliability and Hazard Rate Weibull Distribution

Basic Statistics

Samples and Data

Estimating Parameters

Estimating Intervals

Failure Density, Reliability and Hazard Rate Weibull Distribution

Basic Statistics

Estimating Parameters

Estimating Intervals

Thanks for your attention!