1. Let $E_0(f)$ and $E_1(f)$ be the quadrature errors in (9.6) and (9.12). Prove that $|E_1(f)| \simeq 2|E_0(f)|$.

$$E_{0}(f) = \frac{h_{0}^{3}}{3} f''(\overline{s}), h_{0} = \frac{b-a}{2} \quad \text{and} \quad E_{1}(f) = -\frac{h_{1}^{3}}{12} f''(\overline{s}), h_{1} = b-a$$

$$\text{Let } h = b-a, \text{ then } h_{1} = h \text{ and } h_{0} = \frac{h}{2}$$

$$|E_{0}(f)| = \frac{h^{3}}{2H} f''(\overline{s}) \quad \text{and} \quad |E_{1}(f)| = \frac{h^{3}}{12} f''(\overline{s})$$

$$\text{Therefore, } |E_{1}(f)| \simeq 2 \cdot |E_{0}(f)|$$

- 3. Let $I_n(f) = \sum_{k=0}^n \alpha_k f(x_k)$ be a Lagrange quadrature formula on n+1 nodes. Compute the degree of exactness r of the formulae: (a) $I_2(f) = (2/3)[2f(-1/2) - f(0) + 2f(1/2)]$
 - (b) $I_4(f) = (1/4)[f(-1) + 3f(-1/3) + 3f(1/3) + f(1)].$

Which is the order of infinitesimal p for (a) and (b)? [Solution: r = 3 and p = 5 for both $I_2(f)$ and $I_4(f)$.]

(1) When $f(x) = (1 - I_2(1)) = \frac{2}{3} (z \cdot (1) - 1 + z \cdot (1)) = z$ and $\int_{-1}^{1} 1 dx = z$ When f(x) = x, $I_{z}(x) = \frac{2}{3} [z \cdot (-\frac{1}{2}) + z \cdot (\frac{1}{2})] = 0$ and $\int_{-\infty}^{\infty} x \, dx = 0$ When $f(x) = \chi^2 I_2(x) = \frac{2}{3} \left[2 \cdot (\frac{1}{4}) + 2 \cdot (\frac{1}{4}) \right] = \frac{2}{3}$ and $\int \frac{1}{3} dx = \frac{2}{3}$ When $f(x) = x^3$, $I_2(x^3) = \frac{2}{3} \left[z \cdot (-\frac{1}{8}) + z \cdot (\frac{1}{8}) \right] = 0$ and $\int_{-\infty}^{\infty} x^3 dx = 0$ When $f(x) = x^4$, $I_2(x^0) = \frac{2}{3} \left[z \cdot (\frac{1}{16}) + z \cdot (\frac{1}{16}) \right] = \frac{1}{6}$ and $\int_{-1}^{1} x^4 dx = \frac{2}{5}$ Therefore, the degree of exactness is v=3

By the general error theory of Lagrange-type quadrature, if the rule integrates exactly all polynomials up to degree r, then the error involves the derivative of order n+1:

$$E(f) = C \cdot f^{(r+1)}(\tau)$$
, $\tau \in (-1,1)$ for some nonzero constant C

Here Y=3, so the error depends on $f^{(4)}(\overline{s})$. Moreover, since the integration is over an interval of length h=b'-a=z , one more factor of h arises from the integration of the interpolation error polynomial. Thus E(f) = O(hr+2) = O(hs) Therefore, the order of infinitesimal is p=5

(b) When $f(x) = [1, I_{+}(1) = \frac{1}{4}[1 + 3 \cdot (1) + 3 \cdot (1) + 1] = 2$ and $\int_{-1}^{1} 1 dx = 2$ When $f(x) = \chi$, $I_4(x) = \frac{1}{2} \left(-\frac{1}{2} + 3 \cdot \left(-\frac{1}{3} \right) + 3 \cdot \left(\frac{1}{3} \right) + 1 \right) = 0$ and $\int_1^1 x \, dx = 0$ When $f(x) = \chi^2 \int_{\alpha} [x] = \frac{1}{4} \left[1 + 3 \left(\frac{1}{4} \right) + 3 \left(\frac{1}{4} \right) + 1 \right] = \frac{2}{3}$ and $\int_{\alpha}^{1} x^{2} dx = \frac{2}{3}$ When $f(x) = \chi^3$, $I_4(\vec{x}) = \frac{1}{4} \left(1 + 3 \cdot (\frac{1}{27}) + 3 \cdot (\frac{1}{27}) + 1 \right) = 0$ and $\int_{-1}^{1} \chi^2 dx = 0$ When $f(x) = x^4$, $I_4(x^0) = \frac{1}{4} \left(1 + 3 \cdot \left(\frac{1}{81} \right) + 3 \cdot \left(\frac{1}{81} \right) + 1 \right) = \frac{14}{21}$ and $\int_1^1 x^4 dx = \frac{2}{5}$ Therefore, the degree of exactness is v=3By (a.), the order of infinitesimal is p=5

5. Let $I_w(f) = \int_0^1 w(x)f(x)dx$ with $w(x) = \sqrt{x}$, and consider the quadrature formula $Q(f) = af(x_1)$. Find a and x_1 in such a way that Q has maximum degree of exactness r.

[Solution: a = 2/3, $x_1 = 3/5$ and r = 1.]

When
$$f(x) = 1$$
, $I_{\omega}(1) = \int_{0}^{1} x^{\frac{1}{2}} dx = \frac{2}{3}$ and $Q(1) = Q(1) = Q$

When
$$f(x) = \chi$$
, $I_{\omega}(\chi) = \int_{0}^{1} \chi^{\frac{3}{2}} d\chi = \frac{2}{5}$ and $Q(\chi) = \frac{2}{3} \cdot \chi$.
 $I_{\omega}(\chi) = Q(\chi) \Rightarrow \frac{2}{5} = \frac{2}{3} \chi_{1} \Rightarrow \chi_{1} = \frac{3}{5}$

When
$$f(x) = \chi^2$$
, $I_w(\chi^2) = \int_0^1 \chi^{\frac{5}{2}} d\chi = \frac{2}{7}$ and $Q(\chi^2) = \frac{2}{3} \cdot (\frac{3}{5})^2 = \frac{6}{25}$

Therefore,
$$a=\frac{2}{3}$$
, $n_1=\frac{3}{5}$ and $r=1$

6. Let us consider the quadrature formula $Q(f) = \alpha_1 f(0) + \alpha_2 f(1) + \alpha_3 f'(0)$ for the approximation of $I(f) = \int_0^1 f(x) dx$, where $f \in C^1([0,1])$. Determine the coefficients α_j , for j = 1, 2, 3 in such a way that Q has degree of exactness r = 2.

[Solution:
$$\alpha_1 = 2/3$$
, $\alpha_2 = 1/3$ and $\alpha_3 = 1/6$.]

$$f(x) = 1$$
, $Q(1) = \alpha_1 + \alpha_2$ and $I(1) = \int_0^1 1 dx = 1 \Rightarrow \alpha_1 + \alpha_2 = 1$
 $f(x) = x_1$, $Q(x) = \alpha_2 + \alpha_3$ and $I(x) = \int_0^1 x dx = \frac{1}{2} \Rightarrow \alpha_2 + \alpha_3 = \frac{1}{2}$
 $f(x) = x_1^2$, $Q(x^2) = \alpha_2$ and $I(x^2) = \int_0^1 x^2 dx = \frac{1}{3} \Rightarrow \alpha_2 = \frac{1}{3}$
Therefore, $\alpha_1 = \frac{2}{3}$, $\alpha_2 = \frac{1}{3}$ and $\alpha_3 = \frac{1}{6}$
 $f(x) = x_1^3$, $Q(x^3) = \frac{1}{3}$ and $I(x^2) = \frac{1}{4}$
 $\Rightarrow Y = Z$