Dạng 2. Sự phụ thuộc của điện trở suất, điện trở vào nhiệt độ

1. Phương pháp giải

- Để tính điện trở suất khi biết các giá trị nhiệt độ, áp dụng các công thức:

$$\rho = \rho_0 [1 + \alpha(t - t_0)]$$

- Để tính điện trở của dây dẫn kim loại khi biết các giá trị nhiệt độ, áp dụng các công thức:

$$R = R_0[1 + \alpha(t - t_0)]$$

Trong đó:

- $+ \alpha$ là hệ số nhiệt điện trở (K⁻¹);
- + ρ_o điện trở suất của vật liệu tại nhiệt độ t_0 (Ωm). Thường lấy $t_0 = 20$ °C
- $+ \rho$ điện trở suất của vật liệu tại nhiệt độ t (Ω m).
- + R là điện trở của dây dẫn ở nhiệt độ t (Ω)
- $+ R_o$ là điện trở của dây dẫn ở nhiệt độ $t_0 (\Omega)$
- Tính hệ số nhiệt điện trở:

$$\alpha = \frac{\rho - \rho_0}{\rho_0(t - t_0)} = \frac{R - R_0}{R_0(t - t_0)}$$
 (Thường lấy $t_0 = 20$ °C)

- Nếu R_1 , R_2 lần lượt là điện trở của dây dẫn ở nhiệt độ t_1 , t_2 (t_1 , $t_2 \neq 20$ °C) ta có:

$$R_{1} = R_{0}[1 + \alpha(t_{1} - 20)]$$

$$R_{2} = R_{0}[1 + \alpha(t_{2} - 20)]$$

$$\Rightarrow \frac{R_{1}}{R_{2}} = \frac{1 + \alpha(t_{1} - 20)}{1 + \alpha(t_{2} - 20)}$$

$$\Rightarrow \frac{\rho_{1}}{\rho_{2}} = \frac{1 + \alpha(t_{1} - 20)}{1 + \alpha(t_{2} - 20)}$$

2. Bài tập ví dụ

Bài 1. Một sợi dây đồng có điện trở 74Ω ở 50 °C, có điện trở suất $\alpha = 4,1.10^{-3}\,\mathrm{K}^{-1}$. Điện trở của sợi dây đó ở 100 °C là:

A. 87,5 Ω

Β. 89,2 Ω

C. 95 Ω

D. 82 Ω

Hướng dẫn giải:

Áp dụng công thức: $\frac{R_1}{R_2} = \frac{1 + \alpha(t_1 - 20)}{1 + \alpha(t_2 - 20)}$

$$=> \frac{74}{R_2} = \frac{1+4,1.10^{-3}(50-20)}{1+4,1.10^{-3}(100-20)}$$

$$=> R_2 = 87,5 \Omega$$

Chọn đáp án A

Bài 2. Một sợi dây bằng nhôm có điện trở 120Ω ở nhiệt độ 20° C, điện trở của sợi dây đó ở 179° C là 204Ω . Điện trở suất của nhôm là:

A. 4,8.10⁻³K⁻¹

B. 4,4.10⁻³K⁻¹

C. 4,3.10⁻³K⁻¹

D. 4,1.10⁻³K⁻¹

Hướng dẫn giải:

Áp dụng công thức:

$$\alpha = \frac{R - R_0}{R_0(t - t_0)} = > \alpha = \frac{204 - 120}{120(179 - 20)} \simeq 0,0044 \text{ K}^{-1}$$

Chọn đáp án B

Bài 3. Một sợi dây đồng có điện trở 37 Ω ở 50 °C. Điện trở của dây đó ở t °C là 43

 Ω . Biết hệ số nhiệt điện trở của đồng $\alpha=0{,}004~{\rm K}^{\text{-1}}$. Nhiệt độ t $\,^{\rm o}$ C có giá trị bằng:

A. 25°C.

B. 75°C.

C. 90°C.

D. 95,4 °C.

Hướng dẫn giải:

Áp dụng công thức:

$$=> \frac{R_1}{R_2} = \frac{1 + \alpha(t_1 - 20)}{1 + \alpha(t_2 - 20)}$$

$$\Rightarrow \frac{37}{43} = \frac{1+0,004(50-20)}{1+0,004(t-20)}$$

$$=> t = 95,4 \, {}^{\circ}\text{C}$$

Chọn đáp án C