Prédiction des émissions de CO₂ des véhicules

Objectifs

Objectifs:

- Réaliser une analyse exploratoire des données
- Bâtir une modélisation prédictive des émissions de CO₂ des véhicules

Les données :

- Liste des références des véhicules commercialisés en France de 2001 à 2015 ainsi que leurs caractéristiques techniques, administratives, leurs émissions en polluants et gaz à effet de serre (CO, CO₂, NOx ..)
- Provenance : ADEME

Données labellisées et y_i continus \longrightarrow Modèle de régression - apprentissage supervisé Mise en place d'un modèle explicable \longrightarrow Modèle de régression linéaire

La base contient 55 044 lignes et 26 colonnes : ●

- 13 variables catégorielles
- 13 variables numériques

```
Suppression

Suppression

Target manquante: 34 occurrences, véhicules 100 % électriques
```

> Séparation de la base en données d'entraînement (75%) et en données de test (25%)

Variables catégorielles :

- Identification et données administratives
- Marque, désignation du modèle et désignation commerciale lib_mrq lib_mod_doss lib_mod dscom
- Code National d'Identification du Type du véhicule cnit et Type Variante- Version tyv
- Caractéristiques techniques :
- Type de carburant cod cbr, hybridité hybride
- Type de transmission et nombre de vitesses typ_boite_nb_rapp
- Type de gamme gamme et de carrosserie Carrosserie
- Caractéristiques environnementales :
- *Norme Euro* champ v9
- Autre : Date de mise à jour date maj

- Identification et données administratives
- Marque, désignation du modèle et désignation commerciale lib_mrq lib_mod_doss lib_mod dscom
- Code National d'Identification du Type du véhicule cnit et Type Variante- Version tvv
- Caractéristiques techniques :
- Type de carburant cod cbr, hybridité hybride
- Type de transmission et nombre de vitesses typ_boite_nb_rapp
- Type de gamme gamme et de carrosserie Carrosserie
- Caractéristiques environnementales :
- Norme Euro champ v9
- > Autre : Date de mise à jour date maj
- 2 variables présentent des valeurs manquantes soit 7.2%

Variables quantitatives:

- Caractéristiques techniques :
- Puissance administrative puiss admin 98, puissance maximale puiss max
- Masse en ordre de marche minimale masse ordma min et maximale masse ordma max
- Consommations:
- en milieu urbain conso_urb, extra urbain conso_exurb et mixte conso_mixte
- Caractéristiques environnementales :
- Émissions des polluants : CO co_typ_1, hydrocarbures imbrûlés hc , Particules ptcl, NOx nox hcnox
- Émissions en CO2 co2

Variables quantitatives:

- Caractéristiques techniques :
- Puissance administrative puiss admin 98, puissance maximale puiss max
- Masse en ordre de marche minimale masse ordma min et maximale masse ordma max
- Consommations:
- en milieu urbain conso urb, extra urbain conso exurb et mixte conso mixte
- Caractéristiques environnementales :
- Émissions des polluants : CO co_typ_1, hydrocarbures imbrûlés hc , Particules ptcl, NOx nox hcnox
- **■** Émissions en CO2 co2
- **→ 7 variables présentent des valeurs manquantes soit 8.1%**

Suppressions des variables

9 modalités incluant 2 aspects fonctionnels des véhicules :

- Le carburant fossile utilisé,
- Leur nature hybride ou non.

Carburant	Total des véhicules	% des véhicules
DIESEL	37114	90.0%
ESSENCE	4 068	9.8%
AUTRE	70	0.2%

➤ Le type de carburant cod_cbr :

9 modalités incluant 3 aspects fonctionnels des véhicules :

- Le carburant fossile utilisé,
- Leur nature hybride ou non
- → 90 % des véhicules fonctionnent au gasoil.
- La nature hybride hybridité:

Hybride	Total des véhicules	% des véhicules
non	40 971	99.3%
oui	281	0.7%

➤ Le type de carburant cod_cbr :

9 modalités incluant 3 aspects fonctionnels des véhicules :

- Le carburant fossile utilisé,
- Leur nature hybride ou non
- 90 % des véhicules fonctionnent au gasoil.
- > La nature hybride hybride:
 - → 99% des véhicules ont un moteur hybride.
- Le type de transmission et le nombre de vitesses typ_boite_nb_rapp Transmission Total des véhicules véhicules
 - 14 modalités constituées:

 MANUELLE

 24 616

 59.7%

 AUTOMATIQUE

 16 325

 39.6%
 - o du mode de transmission ("A" pour automatique, "M" pour manuelle ... †UTOMATIQUE 16 325 39.69
 - Suivi par le nombre de vitesses
 AUTRE
 311
 0.7%

➤ La gamme gamme:

6 catégories désignant la montée en gamme

→ 88.5 % des véhicules sont de gamme moyenne inférieure à moyenne supérieure

type de gamme	Total des véhicules	% des véhicules
ECONOMIQUE	175	0.5%
INFÉRIEURE	791	1.9%
MOY-INFER	25 157	60.9%
MOY-SUPER	11 371	27.6%
SUPÉRIEURE	1 098	2.7%
LUXE	2 660	6.4%

➤ La gamme gamme:

6 catégories désignant la montée en gamme.

➤ 88.5 % des véhicules sont de gamme moyenne inférieure à moyenne supérieure

➤ La carrosserie Carrosserie : 10 modalités

type de carrosserie	Total des véhicules	% des véhicules
MINISPACE	99	0.2%
MONOSPACE COMPACT	244	0.6%
COMBISPACE	178	0.4%
BERLINE	3 286	8.0%
COUPÉ	649	1.6%
CABRIOLET	395	1%
BREAK	881	2.1%
MONOSPACE	43	0.1%
TS TERRAINS/CHEMINS	819	2.0%
MINIBUS	34 658	84.0%

> La gamme gamme:

6 catégories désignant la montée en gamme.

➤ 88.5 % des véhicules sont de gamme moyenne inférieure à moyenne supérieure

➤ La carrosserie Carrosserie : 10 modalités

→ 84 % des véhicules sont des 'minibus' et seulement 8% des 'berlines'

type de carrosserie	Total des véhicules	% des véhicules
MINISPACE	99	0.2%
MONOSPACE COMPACT	244	0.6%
COMBISPACE	178	0.4%
BERLINE	3 286	8.0%
COUPÉ	649	1.6%
CABRIOLET	395	1%
BREAK	881	2.1%
MONOSPACE	43	0.1%
TS TERRAINS/CHEMINS	819	2.0%
MINIBUS	34 658	84.0%

➤ La gamme gamme:

6 catégories désignant la montée en gamme.

→ 88.5 % des véhicules sont de gamme moyenne inférieure à moyenne supérieure

➤ La carrosserie Carrosserie : 10 modalités

84 % des véhicules sont des 'minibus' et seulement 8% des 'berlines'

type de carrosserie	NASMA	Y NO BREEF	Ombi	Service String	i dugh	Se COLO	Brief	NOOSO	S Little Man	MINDS	total
DIESEL	0.1%	0.5%	0.4%	4.4%	0.4%	0.3%	1.5%	0.1%	1.3%	91.0%	100%
ESSENCE	1.3%	1.7%	0.7%	39.9%	12.5%	7.0%	8.2%	0.1%	7.7%	20.9%	100%

➤ La puissance maximale puiss_max:

Distribution de la puissance maximale des véhicules.

Outliers puiss_max > 500 kW (11 observations)

puiss_max < 40 kW (1 observation)

Distribution de la masse minimale et maximale en ordre de marche des véhicules.

Masse minimale médiane élevée : due à une forte représentativité des véhicules lourds
Note : Seule la masse minimale est retenue pour la suite de l'analyse

Distribution de la consommation urbaine, extra urbaine, mixte de carburant (en L/100km)

Outliers

- conso_mixte > 20 L/100km (2 observations)
- conso_mixte < 3 L/100km (4 observations)

Note: Seule la consommation mixte est retenue pour la suite de l'analyse

> Les émissions de co2 co2:

Distribution des émissions de CO2 des véhicules.

- Outliers = co2 > 500 g/km (2 observations)
 - co2 < 40 g/km (3 observations)

Émissions de C02 vs les modalités des variables catégorielles :

Analyse multivariée // Variables quantitatives

Emissions de CO2 vs variables quantitatives :

- Bonne corrélation en les émissions de CO2 et la masse
- A masse égale, les véhicules essence émettent plus de CO2 que les véhicules diesel
- 2 groupes d'outliers :
 - o 2 outliers pour lesquels CO2 > 500 g/km
 - 7 outliers pour lesquels CO2 < 80g/km (dont 3 déjà définis précédemment + 4 véhicules hybrides rechargeables)

Corrélation entre émissions de CO2 et la puissance max pour les véhicules essence

Émissions de CO2 vs variables quantitatives :

- Les véhicules diesel consomment moins que les véhicules essence
 - Excellente corrélation entre la consommation de carburant et les émissions de CO2 selon les différents carburants utilisés
- À consommation équivalente, les véhicules à moteurs diesel ont tendance à émettre légèrement plus de CO2

/!\ Les observations approchent au plus près la relation entre les émissions de CO2 et la consommation de carburant en considérant une combustion parfaite du carburant

> Matrice de Corrélation

Les émissions de CO2 sont très fortement corrélées à la consommation mixte (coef. = 0.97), suivi par la masse(coef = 0.53), le type de carrosserie, et plus faiblement à la puissance maximale (coef = 0.35).

➤ On observe de fortes corrélations entre variables explicatives, par exemple entre la consommation et la masse (0.53), la puissance (0.47) et la carrosserie (0.45).

Modélisation prédictive // **Préparation des données et setup du modèle**

- 0 0

- Sélection des variables explicatives :
 - *Type de carburant* cod_cbr
 - *hybridité* hybride
 - Type de transmission et nombre de vitesses

 typ_boite_nb_rapp
 - *Type de gamme* gamme
 - *Type de carrosserie* Carrosserie

- *puissance maximale* puiss max
- Masse minimale masse_ordma_min
- Consommation mixte conso_mixte
- Ajout de la variable conso_mixte comme un hyperparamètre
- > Séparation des données en set d'entraînement (70%) et de validation (30%)

> Choix du modèle : LinearRegression() de scikit-learn.

Modélisation prédictive // Préparation des données et setup du modèle

Variables catégorielles

- > Traitement des variables catégorielles :
 - Type de carburant cod_cbr : regroupement des catégories en 3 modalités principales : "ESSENCE", "GAZOIL", "AUTRE"
 - Type de transmission et nombre de vitesses typ_boite_nb_rapp : scindé en 2 variables distinctes :
 - typ boite Vitesse: ayant 3 modalités: "MANUELLE", "AUTOMATIQUE", "AUTRE"
 - O Nb Rapport
- ➤ **Valeur manquante :** Pas de valeur manquante au sein des variables catégorielles sélectionnées
- **➤** Encodage :
 - Type de gamme gamme : Encodage ordinal manuel selon l'ordre de montée en gamme
 - Type de carrosserie Carrosserie : Encodage ordinal manuel selon l'ordre croissant de masse médiane
 - *Type de carburant* cod_cbr
 - hybridité hybride
 - Type de transmission typ_boite_Vitesse
 - Nombre de vitesses Nb_Rapport

Encodage ordinal via ordinalEncoder

Variables numériques

- **➤** Outliers :
 - puiss_max: Imputations de valeurs plafonds:
 - o puiss_max = 500 kW si puiss_max > 500 kW (11 observations)
 - puiss_max = 40 KW si puiss_max < 40 kW (1 observation)</pre>
 - conso_mixte: Imputations de valeurs plafonds :
 - conso_mixte = 20 l/100km si conso_mixte > 20 l/100km (2 observations)
 - o conso_mixte = 3 l/100km si conso_mixte < 3 l/100km (4 observations)</pre>
 - Co2: Calcul des émissions de CO2 en fonction de la conso_mixte et du carburant selon l'équation de combustion parfaite
- Valeurs Manquantes : Pas de valeur manquante au sein des variables quantitatives sélectionnées
- Normalisation: Il n'est pas requis de standardiser les variables numériques dans une même échelle avec l'algo LinearRegression() de scikit-Learn.

Modélisation prédictive // Préparation des données et setup du modèle

➤ Pipeline de transformation :

8 variables explicatives en entrée du modèle + 1 hyperparamètre (conso_mixte)

Modèle 1 (avec conso_mixte)

Métrique	Jeu de train	Jeu de	_e > Equation des émissions de CO2 :				
validat		validation		co2 = -28.39 + 23.69 * conso_mixte + 19.73 * cod_cbr			
MAE	1.34	1.36	+ 0.0031 * masse_ordma_min + 0.77 * Carrosserie				
RMSE	3.2	3.42		+0.0 * puiss_max - 0.35 * Nb_rapports			
R2	0.9911	0.9896		-0.44 * gamme -0.74 * hybride			
NΖ	0.9911	0.9690		-0.78 * Type_Boite_Vitesse			

- Très bonnes métriques en considérant la valeur médiane de la target réelle (205g/km)
- Le biais du modèle est très faible
- Pas de sur-apprentissage
- La target est principalement déterminée par 3 variables : conso mixte , cod cbr et masse ordma min
- L'apport des autres variables est à la marge

➤ Modèle 2 (sans conso_mixte)

Métrique	Jeu de train	Jeu de validation	Equation des émissions de CO2 :
		valluation	$co2 = 99.89 + 0.039 * masse_ordma_min + 0.33 * puiss_max$
MAE	11.89	11.8	+8.75 * Carrosserie
RMSE	16.05	16.04	-23.89 * cod_cbr -67.21 * hybride -6.27 * gamme -5.90 * Type_Boite_Vitesse -5.38 * Nb_rapports
R2	0.776	0.7716	

- Les MAE et RMSE restent relativement correctes en considérant la valeur médiane des observations (205g/km)
- Modèle relativement bien ajusté aux données explicatives
- Pas de sur-apprentissage
- Redistribution des paramètres associés aux variables explicatives en supprimant la variables conso_mixte :
 - Leur poids sont tous à la hausse
 - Avec un apport significatif
 - en positif: des variables masse_ordma_min , puiss_max , Carrosserie
 - en négatif : des variables cod_cbr , hybride

Modèle 2 (sans conso_mixte)

- Pour les observations où les émissions de CO2 < 250 g/km, le modèle surestime légèrement les émissions de CO2
- Pour les observations où les émissions de CO2 > 250 g/km, le modèle sous estime significativement les émissions de CO2
- Erreur résiduelle entre les prédictions et les observations plus importante pour les véhicules essence ainsi que les véhicules hybrides.

- Le modèle capture mieux les véhicules à moteur diesel et non hybride ...
- ... et plus généralement les catégories qui sont suffisamment assez représentées pour être apprises par le modèle.

Modèle 2 - Features polynomiales de second ordre :

Métrique	Jeu de train	Jeu de validation	Jeu de train	Jeu de validation
MAE	11.89	11.8	9.26	9.17
RMSE	16.05	16.04	12.93	13.07
R2	0.776	0.7716	0.8538	0.8485

> Equation des émissions de CO2 :

- Les MAE, RMSE et coefficient de détermination sont nettement améliorés
- Pas de sur-apprentissage
- Contribution significative
 - des features simples: masse_ordma_min , puiss_max , cod_cbr , hybride
 - des combinaisons polynomiales impliquant la variable hybride (en négatif)

- Corrections des surestimations des émissions de CO2 pour les observations dont la target réelle est < à 250 g/km
- Corrections sous-estimations des émissions de CO2 pour les observations sont la target réelle est > à 250 g/km
- Meilleures prédictions pour les véhicules <u>hybrides</u>.

- Corrections des surestimations des émissions de CO2 pour les observations dont la target réelle est < à 250 g/km
- Corrections sous-estimations des émissions de CO2 pour les observations sont la target réelle est > à 250 g/km
- Meilleures prédictions pour les véhicules <u>hybrides</u>.

Modélisation prédictive // **Résultats - Généralisation au set de test**

Métrique	Jeu de train	Jeu de validation	Jeu de test
MAE	1.34	1.36	1.32
RMSE	3.2	3.42	2.81
R2	0.9911	0.9896	0.9932

➤ Modèle 2 - Features polynomiales de second ordre

Métrique	Jeu de train	Jeu de validation	Jeu de test
MAE	9.26	9.17	9.32
RMSE	12.93	13.07	13.19
R2	0.8538	0.8485	0.8517

Les 2 modèles possèdent une bonne capacité de généralisation aux données test avec des métriques très similaires à celles du test d'entraînement et de validation

Conclusion

L'analyse exploratoire de la base de données provenant de l'ADEME a révélé de forts déséquilibres au sein des classes des différentes variables catégorielles :

- o 90.0% des véhicules enregistrés en base fonctionnent au gazoil en régime moteur, contre 9.9 % pour essence.
- Plus de 99% de nos observations sont constituées de véhicules non hybrides
- L'essentiel des véhicules sont des minibus (84%).

Selon les analyses multivariées :

 Les émissions de CO2 sont très fortement corrélées à la consommation de carburant en conduite mixte (avec un coefficient de 0.97), à la masse, au type de carrosserie, et plus faiblement à la puissance maximale (coefficient de corrélation de 0.35).

Création d'un modèle prédictif de régression linéaire basé sur 8 variables explicatives + 1 (consommation mixte - hyperparamètre) :

- En incluant la consommation mixte :
 - Excellentes prédictions d'émission de CO2 caractérisées par une MAE de 1.3 g/km, une RMSE 3.2 g/km sur le set d'entraînement
 - Très bonne généralisation aux données de test avec une MAE de 1.3 g/km, une RMSE de 2.8 g/km et un R2 de 0.99.
- En excluant la consommation mixte :
 - Relativement bonnes prédictions améliorées par l'ajout de feature polynomiales d'ordre 2, les MAE et RMSE sont de 9 et 13 g/km
 - O Bonne généralisation aux données de test avec une MAE de 9.3 g/km, une RMSE de 13.2 g/km et un R2 de 0.85.