Um Quadrado & Triângulos Equiláteros

Por Shahriar Manzoor, SEU Bangladesh
Timelimit: 3

As figuras 1, 2, 3, 4, 5, 6 e 7 mostram como 1, 2, 3, 4, 5, 6 e 8 triângulos equiláteros podem ser postos de forma ideal dentro de um quadrado. Obviamente, o tamanho do quadrado permanece igual e os triângulos da figura 1 a 7 irão diminuir. Dado o tamanho do quadrado, você terá que achar os lados dos triângulos para todas as sete figuras. Você pode assumir que a imagem é simétrica ao longo de um certo eixo. Perceba que eu estou pedindo para você mostrar o valor decimal exato da solução e não um valor aproximado.

Entrada

A entrada contém várias linhas. Cada linha contém um único número de ponto flutuante **S** (0<=**S**<=**10000**) no qual denota o lado do quadrado. A entrada é terminada por final de arquivo (EOF).

Saída

Para cada linha de entrada gera-se uma linha de saída. Cada linha conterá sete números de ponto flutuante t1, t2, t3, t4, t5, t6 e t7. Aqui t1, t2, t3, t4, t5, t6 e t7 denota o tamanho do lado do triângulo para cada quadrado mostrado na figura, respectivamente. Todos os números de ponto flutuante devem ter dez dígitos depois da virgula. O saída será checada com um programa especial de correção, então erros pequenos de precisão serão ignorados.

Exemplo de Entrada	Exemplo de Saída
0.000001	0.000001035 0.000000816
0.000002	0.000000676 0.000000634
0.0000003	0.000000554 0.000000526
	0.000000477
	0.0000002071 0.0000001633
	0.0000001353 0.0000001268
	0.000001109 0.000001052
	0.000000953
	0.0000003106 0.0000002449

0.0000002029 0.0000001902 0.0000001663 0.0000001577 0.0000001430