Simulation results in the main text of the Double calibration

September 24, 2024

1 Case I: Sparse PS & Dense OR

First, we consider the case where the PS is a sparse logistic-linear model and the OR is a dense nonlinear model:

$$T|X = x \sim \text{Bernoulli}\left(\pi(x) = \psi(x^{\top}\gamma)\right),$$

$$Y|X = x, T = t \sim (r(x, t), 1),$$

where $\psi(z) \equiv 1/(1+\exp(-z))$ in this section. In particular, we choose γ to satisfy the following: $\|\gamma\|_2 = 1$, $\gamma_j \sim \text{Uniform}([1,2])$ for $j=1,\cdots,s$ and $\gamma_{s+1}=\cdots=\gamma_p=0$ so only the first s coordinates of γ are active. For the outcome model r(x,t), we first transform the covariates X nonlinearly as follows:

$$\begin{split} \tilde{X}_1 &\equiv \text{bs}(X_1, 100)^\top \cdot (1, 1/2, 1/3, \cdots, 1/100), \\ \tilde{X}_2 &\equiv 2/(1 + \exp(-X_2)), \\ \tilde{X}_3 &\equiv \exp(X_3/2), \\ \tilde{X}_4 &\equiv X_4/(1 + \exp(X_3)), \\ \tilde{X}_5 &= X_4X_5/10, \end{split}$$

and then scale X_2, \cdots, X_5 to have zero mean and unit variance. Here bs(x, 100) denotes the B-spline transformation of x with 100 degrees-of-freedom. We then define the outcome model r(x,t) as

$$r(x,t) \equiv (|\tilde{x}_1 + \tilde{x}_2 - \tilde{x}_3/2 + \tilde{x}_4/3 - \tilde{x}_5/4| + 0.05)^{-1} + x^{\top}\beta - t,$$

where $\|\beta\|_2 \equiv 1$ and $\beta_j \propto j^{-1}$ for $j = 1, \dots, p$.

The simulation results are displayed in Figure 1 and Table 1.

Tables 1 below summarize the coverage probabilities and the lengths of 95% confidence intervals, Mean/Median Absolute Biases, standard errors, and Root-Mean-Squared-Errors (RMSE) of different estimators for the Sparse PS & Dense OR simulation setting from the main text.

Table 1: Mean Absolute Bias (MAB[†]), Median Absolute Bias (MAB[‡]), standard error (std), root-mean-squared error (RMSE), Coverage probability of 95% confidence intervals (Coverage), length of 95% confidence intervals (CI length) and Computation time (in minutes) for estimating τ under the *sparse PS & dense OR* setting from the main text.

Setting	measure	g-formula	IPW	AIPW	TMLE	ARB	hdCBPS	RCAL	$RCAL^{\star}$	DCal
	MAB^\dagger	1.34	1.06	0.98	0.70	0.53	0.78	0.78	0.80	0.47
	MAB^{\ddagger}	1.39	1.08	1.00	0.71	0.50	0.80	0.80	0.82	0.41
s = 10,	std	0.02	0.58	0.31	0.67	0.49	0.50	0.32	0.33	0.53
p = 400,										
n = 200				1						

Table 1 continued from previous page

	RMSE	1.38	1.09	1.03	0.79	0.64	0.88	0.87	0.88	0.60
	CP	0.00%	57.00%	15.00%	90.5%	92.00%	53.50%	32.00%	32.00%	96.00%
	Length	0.06	2.28	1.21	2.64	1.92	1.98	1.27	1.29	2.09
	Time						0.08	0.62	0.16	0.02
	MAB^\dagger	1.35	1.02	0.92	0.56	0.48	0.60	0.77	0.79	0.40
	MAB^{\ddagger}	1.41	1.02	0.93	0.54	0.44	0.56	0.80	0.80	0.33
s = 10,	std	0.01	0.45	0.25	0.53	0.37	0.46	0.24	0.25	0.43
p = 800,	RMSE	1.39	1.05	0.97	0.63	0.57	0.74	0.84	0.85	0.50
n = 400	CP	0.50%	28.50%	8.50%	93.5%	82.00%	60.50%	15.50%	16.00%	91.50%
	Length	0.05	1.77	0.97	2.06	1.45	1.81	0.94	0.97	1.69
	Time						0.10	4.33	0.97	0.06
	MAB^\dagger	1.11	0.91	0.70	0.32	0.40	0.32	0.61	0.64	0.33
	MAB^{\ddagger}	1.11	0.93	0.71	0.28	0.39	0.23	0.59	0.58	0.30
s = 10,	std	0.02	0.35	0.19	0.41	0.27	0.44	0.20	0.19	0.33
p = 1000,	RMSE	1.15	0.93	0.75	0.39	0.47	0.44	0.67	0.71	0.40
n = 800	CP	0.00%	18.00%	11.50%	97.5%	72.00%	88.00%	22.00%	15.00%	89.00%
	Length	0.09	1.38	0.75	1.62	1.05	1.71	0.77	0.73	1.28
	Time						0.64	60.77	6.84	0.16
	MAB^\dagger	0.87	0.81	0.51	0.20	0.37	0.20	0.45	0.45	0.34
	MAB^{\ddagger}	0.86	0.82	0.51	0.18	0.37	0.14	0.43	0.45	0.34
s = 10,	std	0.03	0.29	0.15	0.30	0.19	0.34	0.15	0.15	0.24
p = 1000,	RMSE	0.89	0.83	0.55	0.25	0.41	0.26	0.50	0.51	0.38
n = 1600	CP	0.00%	15.50%	18.00%	99.5%	49.00%	98.50%	24.12%	25.00%	75.50%
	Length	0.10	1.12	0.59	1.19	0.73	1.33	0.58	0.59	0.93
	Time						3.37	437.60	22.48	0.36
	MAB^\dagger	1.44	1.15	1.08	0.66	0.51	0.84	0.84	0.88	0.47
	MAB^{\ddagger}	1.48	1.15	1.11	0.62	0.48	0.87	0.82	0.87	0.36
s = 20,	std	0.01	0.56	0.29	0.96	0.52	0.49	0.32	0.32	0.56
p = 400,	RMSE	1.49	1.20	1.15	0.77	0.62	0.96	0.95	1.00	0.59
n = 200	CP	0.00%	38.00%	11.50%	98.5%	95.00%	47.00%	32.50%	30.50%	96.00%
	Length	0.05	2.21	1.15	3.75	2.04	1.92	1.27	1.25	2.18
	Time						0.10	0.59	0.15	0.02
	MAB [†]	1.36	1.06	0.94	0.40	0.40	0.59	0.70	0.72	0.34
	MAB^{\ddagger}	1.38	1.05	0.94	0.35	0.36	0.53	0.69	0.74	0.29
s = 20,	std	0.02	0.41	0.22	0.71	0.38	0.43	0.23	0.24	0.42
p = 800,	RMSE	1.39	1.09	0.99	0.50	0.49	0.71	0.79	0.80	0.44
n = 400	CP	0.00%	15.00%	6.50%	97.5%	92.00%	64.00%	22.00%	23.00%	93.00%
	Length	0.06	1.61	0.87	2.79	1.49	1.68	0.92	0.93	1.65
	Time						0.20	5.15	1.01	0.06
	MAB^{\dagger}	1.26	0.98	0.80	0.29	0.33	0.36	0.62	0.64	0.28
	MAB^{\ddagger}	1.27	0.98	0.81	0.25	0.29	0.27	0.59	0.60	0.23
s = 20,	std	0.02	0.33	0.18	0.58	0.28	0.41	0.17	0.18	0.34
p = 1000,	RMSE	1.28	1.00	0.84	0.38	0.40	0.47	0.68	0.70	0.35
n = 800	CP	0.00%	10.00%	7.50%	100.00%	85.50%	82.50%	12.00%	13.50%	95.50%

Table 1 continued from previous page

						1				
	Length	0.08	1.29	0.72	2.28	1.11	1.61	0.68	0.69	1.34
	Time						0.30	43.52	7.18	0.16
	MAB^{\dagger}	1.03	0.89	0.61	0.32	0.26	0.25	0.46	0.48	0.22
	MAB^{\ddagger}	1.00	0.90	0.60	0.29	0.24	0.21	0.46	0.46	0.19
s = 20,	std	0.02	0.26	0.14	0.46	0.20	0.34	0.14	0.14	0.25
p = 1000,	RMSE	1.05	0.91	0.65	0.38	0.30	0.31	0.52	0.53	0.27
n = 1600	CP	0.00%	7.50%	6.00%	99.5%	82.50%	92.50%	20.92%	19.50%	93.50%
	Length	0.09	1.03	0.56	1.79	0.77	1.32	0.57	0.56	0.97
	Time						1.87	513.17	24.26	0.34
	MAB^{\dagger}	1.24	1.09	1.00	0.60	0.51	0.71	0.77	0.79	0.47
	MAB^{\ddagger}	1.25	1.09	1.04	0.56	0.45	0.67	0.78	0.81	0.40
s = 50,	std	0.02	0.55	0.27	1.26	0.52	0.45	0.32	0.32	0.54
p = 400,	RMSE	1.29	1.13	1.07	0.74	0.62	0.84	0.87	0.89	0.59
n = 200	CP	0.50%	43.00%	10.00%	99%	94.00%	62.00%	31.00%	29.50%	96.50%
	Length	0.09	2.15	1.08	4.96	2.04	1.77	1.26	1.26	2.11
	Time						0.06	0.45	0.11	0.02
	MAB^{\dagger}	1.14	0.98	0.85	0.42	0.37	0.44	0.58	0.61	0.34
	MAB^{\ddagger}	1.17	0.98	0.87	0.36	0.31	0.36	0.58	0.63	0.27
s = 50,	std	0.02	0.41	0.21	0.97	0.38	0.38	0.24	0.24	0.41
p = 800,	RMSE	1.17	1.01	0.89	0.54	0.45	0.55	0.66	0.68	0.43
n = 400	CP	0.00%	17.00%	7.00%	99.5%	94.00%	79.50%	37.00%	31.50%	95.50%
	Length	0.10	1.60	0.82	3.82	1.50	1.48	0.93	0.93	1.61
	Time						0.05	4.81	0.88	0.06
	MAB^{\dagger}	1.06	0.92	0.73	0.40	0.25	0.32	0.49	0.51	0.23
	MAB^{\ddagger}	1.07	0.93	0.73	0.32	0.20	0.30	0.49	0.50	0.18
s = 50,	std	0.03	0.31	0.16	0.78	0.28	0.30	0.18	0.18	0.32
p = 1000,	RMSE	1.08	0.94	0.76	0.51	0.31	0.38	0.54	0.56	0.29
n = 800	CP	0.00%	8.50%	4.00%	100%	93.50%	89.50%	23.00%	20.00%	97.50%
	Length	0.11	1.22	0.63	3.05	1.11	1.16	0.69	0.70	1.25
	Time						0.19	48.06	6.01	0.16
	MAB^{\dagger}	0.94	0.84	0.60	0.48	0.19	0.26	0.45	0.46	0.18
	MAB^{\ddagger}	0.94	0.88	0.61	0.45	0.16	0.25	0.47	0.48	0.16
s = 50,	std	0.03	0.25	0.13	0.62	0.20	0.23	0.13	0.13	0.24
p = 1000,	RMSE	0.95	0.86	0.62	0.57	0.23	0.30	0.48	0.49	0.22
n = 1600	CP	0.00%	7.00%	5.50%	98%	94.50%	85.50%	13.50%	12.00%	98.50%
	Length	0.11	0.99	0.51	2.44	0.80	0.91	0.51	0.51	0.94
	Time						0.62	328.59	26.79	0.34

Figure 1: Boxplots of the \sqrt{n} -scaled estimation error $\sqrt{n}|\hat{\tau} - \tau|$ under different sample size n, dimension p and sparsity level s under the *Sparse PS & Dense OR* setting. The white dots correspond to mean.

2 Case II: Dense PS & Sparse OR

Next, we consider the case where the PS is a dense nonlinear model bounded between 0 and 1 and the OR is a sparse linear model:

$$T|X = x \sim \text{Bernoulli}(\pi(x)),$$

 $Y|X = x, T = t \sim (r(x, t), 1).$

Here we take the PS model to be

$$\pi(X) \equiv \min\{\max\{\psi(\check{X}_1 - \frac{1}{2}\check{X}_2 + \frac{1}{4}\check{X}_3 - \frac{1}{8}\check{X}_4 + \gamma^\top X), 0.05\}, 0.95\},\$$

where $\check{X}_1 \coloneqq e^{0.5X_1}$, $\check{X}_2 \coloneqq 10 + X_2/(1 + e^{X_1})$, $\check{X}_3 \coloneqq (0.05X_1X_3 + 0.6)^2$, $\check{X}_4 \coloneqq (X_2 + X_4 + 10)^2$, and $\gamma_j \propto j^{-1}$ with $\|\gamma\|_2 \equiv 2$. We take the OR model to be

$$r(X,t) \equiv \beta^{\top} X - 1 + 2t$$

where we first draw $\beta_j \sim \text{Uniform}([1,2])$ for $j=1,\cdots,s$ and set $\beta_j \equiv 0$ for $j=s+1,\cdots,p$. We eventually normalize β such that $\|\beta\|_2=1$.

The simulation results are displayed in Figure 2, and Table 2.

Table 2: Mean Absolute Bias (MAB[†]), Median Absolute Bias (MAB[‡]), standard error (std), root-mean-squared error (RMSE), Coverage probability of 95% confidence intervals (Coverage), length of 95% confidence intervals (CI length) and Computation time (in minutes) for estimating τ under the *dense PS & sparse OR* setting from the main text.

Setting	measure	g-formula	IPW	AIPW	TMLE	ARB	hdCBPS	RCAL	RCAL*	DCal
	MAB^{\dagger}	0.47	1.03	0.30	0.20	0.18	0.19	0.29	0.29	0.17
	MAB^{\ddagger}	0.48	1.05	0.27	0.17	0.15	0.15	0.27	0.29	0.14
s = 10,	std	0.14	0.56	0.21	0.25	0.18	0.32	0.20	0.20	0.26
p = 400,	RMSE	0.51	1.08	0.35	0.26	0.22	0.25	0.34	0.34	0.21
n = 200	CP	17.50%	37.50%	66.00%	87.00%	87.50%	94.00%	68.50%	71.50%	99.00%
	Length	0.56	2.21	0.81	0.99	0.71	1.25	0.77	0.77	1.03
	Time						1.40	0.45	0.11	0.02
	MAB^\dagger	0.35	0.73	0.18	0.13	0.11	0.13	0.18	0.18	0.13
	MAB^{\ddagger}	0.35	0.75	0.17	0.11	0.08	0.10	0.15	0.16	0.09
s = 10,	std	0.11	0.69	0.19	0.17	0.13	0.24	0.14	0.14	0.23
p = 800,	RMSE	0.37	0.82	0.22	0.16	0.14	0.17	0.21	0.21	0.18
n = 400	CP	13.50%	56.00%	83.00%	91.00%	92.00%	98.50%	80.50%	80.00%	98.00%
	Length	0.42	2.69	0.73	0.66	0.50	0.94	0.56	0.56	0.90
	Time						3.10	2.71	0.55	0.07
	MAB^\dagger	0.28	0.52	0.12	0.12	0.07	0.09	0.11	0.11	0.10
	MAB^{\ddagger}	0.28	0.49	0.11	0.11	0.06	0.07	0.10	0.10	0.09
s = 10,	std	0.08	0.84	0.16	0.13	0.09	0.16	0.11	0.11	0.21
p = 1000,	RMSE	0.29	0.62	0.15	0.14	0.08	0.11	0.13	0.14	0.13
n = 800	CP	7.00%	79.00%	92.50%	83.00%	97.50%	99.50%	84.00%	85.00%	100.00%

Table 2 continued from previous page

	Length	0.31	3.31	0.64	0.50	0.36	0.64	0.41	0.41	0.82
	Time	2.5:					7.47	24.41	2.72	0.19
	MAB [†]	0.24	0.42	0.09	0.10	0.05	0.06	0.07	0.07	0.07
	MAB [‡]	0.24	0.33	0.08	0.09	0.04	0.05	0.06	0.06	0.06
s = 10,	std	0.06	0.89	0.14	0.07	0.06	0.12	0.08	0.08	0.18
p = 1000,	RMSE	0.25	0.53	0.12	0.12	0.06	0.08	0.09	0.09	0.09
n = 1600	СР	2.00%	98.50%	98.00%	66.50%	96.50%	99.50%	90.67%	89.50%	100.00%
	Length	0.23	3.48	0.56	0.28	0.25	0.46	0.30	0.30	0.70
	Time						22.58	254.20	5.99	0.44
	MAB^{\dagger}	0.47	1.24	0.31	0.22	0.16	0.21	0.29	0.30	0.16
	MAB^{\ddagger}	0.46	1.27	0.28	0.20	0.14	0.17	0.27	0.27	0.13
s = 20,	std	0.19	0.72	0.25	0.25	0.18	0.34	0.23	0.23	0.30
p = 400,	RMSE	0.51	1.30	0.36	0.28	0.21	0.27	0.34	0.35	0.21
n = 200	CP	31.50%	41.50%	76.00%	83.50%	90.00%	94.00%	78.50%	77.50%	99.00%
	Length	0.73	2.82	0.98	0.98	0.71	1.34	0.92	0.92	1.17
	Time						2.06	0.46	0.12	0.02
	MAB [†]	0.40	0.90	0.20	0.16	0.12	0.13	0.21	0.21	0.13
	MAB^{\ddagger}	0.39	0.97	0.19	0.14	0.10	0.10	0.20	0.20	0.11
s = 20,	std	0.14	0.83	0.21	0.18	0.13	0.25	0.17	0.17	0.25
p = 800,	RMSE	0.42	1.00	0.24	0.20	0.15	0.17	0.25	0.25	0.16
n = 400	CP	13.50%	56.00%	84.50%	84.00%	92.00%	98.00%	78.00%	81.00%	98.50%
	Length	0.54	3.24	0.81	0.70	0.51	0.98	0.66	0.66	0.99
	Time						4.52	2.67	0.51	0.07
	MAB [†]	0.30	0.65	0.13	0.12	0.07	0.09	0.14	0.14	0.10
	MAB^{\ddagger}	0.29	0.63	0.12	0.11	0.06	0.06	0.13	0.13	0.08
s = 20,	std	0.10	0.98	0.18	0.12	0.09	0.17	0.12	0.12	0.23
p = 1000,	RMSE	0.31	0.77	0.16	0.15	0.08	0.11	0.16	0.17	0.14
n = 800	CP	11.50%	74.50%	95.50%	79.50%	98.50%	98.00%	85.43%	85.00%	100.00%
	Length	0.40	3.86	0.71	0.49	0.37	0.68	0.48	0.49	0.90
	Time						10.19	24.30	2.36	0.21
	MAB [†]	0.24	0.46	0.09	0.11	0.05	0.06	0.08	0.08	0.08
	MAB^{\ddagger}	0.24	0.35	0.07	0.10	0.04	0.05	0.07	0.08	0.07
s = 20,	std	0.07	1.05	0.15	0.07	0.06	0.13	0.09	0.09	0.19
p = 1000,	RMSE	0.24	0.58	0.12	0.12	0.06	0.08	0.10	0.10	0.10
n = 1600	CP	6.50%	96.00%	98.50%	59.50%	95.50%	100.00%	92.46%	92.50%	100.00%
	Length	0.29	4.11	0.59	0.28	0.25	0.49	0.35	0.35	0.75
	Time						27.20	248.58	5.03	0.41
	MAB [†]	0.50	1.39	0.38	0.28	0.22	0.28	0.34	0.34	0.20
	MAB^{\ddagger}	0.48	1.43	0.36	0.28	0.20	0.25	0.34	0.33	0.17
s = 50,	std	0.23	0.79	0.28	0.24	0.18	0.31	0.27	0.27	0.32
p = 400,	RMSE	0.54	1.45	0.42	0.33	0.27	0.34	0.39	0.39	0.25
n = 200	CP	44.50%	43.50%	77.50%	70.00%	80.50%	92.00%	83.50%	79.50%	97.00%
	Length	0.89	3.11	1.09	0.92	0.71	1.22	1.05	1.05	1.24

Table 2 continued from previous page

	Time						2.08	0.47	0.12	0.02
	MAB^\dagger	0.39	1.04	0.22	0.18	0.13	0.14	0.23	0.24	0.12
	MAB^{\ddagger}	0.39	1.07	0.21	0.15	0.12	0.12	0.22	0.22	0.11
s = 50,	std	0.17	0.86	0.23	0.16	0.13	0.25	0.19	0.19	0.27
p = 800,	RMSE	0.41	1.13	0.26	0.22	0.15	0.18	0.27	0.27	0.16
n = 400	CP	32.50%	54.00%	87.00%	76.50%	91.00%	98.50%	87.00%	85.00%	99.50%
	Length	0.65	3.37	0.89	0.64	0.51	0.97	0.76	0.76	1.05
	Time						4.55	2.67	0.51	0.08
	MAB^\dagger	0.32	0.75	0.14	0.14	0.08	0.09	0.17	0.17	0.11
	MAB^{\ddagger}	0.31	0.72	0.13	0.13	0.06	0.08	0.15	0.16	0.09
s = 50,	std	0.12	0.99	0.19	0.12	0.09	0.18	0.14	0.14	0.24
p = 1000,	RMSE	0.33	0.88	0.17	0.17	0.10	0.12	0.19	0.19	0.14
n = 800	CP	20.00%	71.50%	93.00%	72.00%	91.00%	99.00%	86.00%	85.50%	100.00%
	Length	0.48	3.87	0.74	0.46	0.37	0.70	0.55	0.55	0.93
	Time						10.09	24.24	2.26	0.18
	MAB^\dagger	0.24	0.44	0.09	0.11	0.05	0.08	0.09	0.09	0.08
	MAB^{\ddagger}	0.24	0.38	0.08	0.10	0.04	0.07	0.09	0.09	0.06
s = 50,	std	0.09	1.06	0.15	0.07	0.06	0.13	0.10	0.10	0.20
p = 1000,	RMSE	0.24	0.55	0.12	0.13	0.06	0.10	0.11	0.11	0.09
n = 1600	CP	14.50%	96.50%	99.00%	59.00%	92.50%	99.00%	92.00%	92.50%	100.00%
	Length	0.35	4.17	0.61	0.27	0.25	0.51	0.40	0.40	0.77
	Time						27.19	244.39	4.58	0.43

Figure 2: Boxplots of the \sqrt{n} -scaled estimation error $\sqrt{n}|\hat{\tau}-\tau|$ under different sample size n, dimension p and sparsity level s under the *Dense PS & Sparse OR* setting. The white dots correspond to mean.