

考试安排

一、考试时间: 11月27日(第12周六)下午 2:30-5:00

考试地点: (略) 均以具体通知为准!

二、答疑时间: 11月25日下午2:30-5:30 晚上7:00-9:30

11月26日上午8:30-11:30下午2:30-5:30

晚上7:00-9:30

答疑地点: 科技楼南楼 702 室

- ●自备正规的 2B 铅笔、橡皮擦、黑色中性笔或黑色钢笔。
- ●正确填涂学号;正确填写考生的考号、姓名等信息。
- ◆ 考号、客观题或判断题填涂时,要注意使用 2B 铅笔填涂, 填涂区域要丰满、不要使用划线、打钩等错误填涂方式。
- ●修改客观题答题时,要注意使用橡皮擦擦除干净。
- <u>不要使用</u>涂改液、涂改纸、透明胶粘贴等方式修改主观题 和客观题的答题。
- 直观题使用黑色中性笔或钢笔,在正确的答题区域答题, 且不要使用附加纸进行答题。
- ●在标明禁止答题的区域内,请勿写入答题内容。

●答题卡(纸)样式

注息: (院(系)		专业	班级	识别码附近涂写。 学号(从左至右顺序书写和填涂)										
36.9	-				(000)	E03	(303)	[00]	000	(30)	000	[303]	[303]	£30
书 2. 姓	超卡亚斜、W 名和学号用加	被損等请报告监考; 即色墨水笔书写;	老师处理;			[2]	(20	[2]	[2]	[2]	[2]	[2]	(2)	12
写 4. 4	号涂点和选排题号顺序填资	F题涂点用20份笔均 选择题,要涂满、	真涂: 涂实、涂均匀。涂	点不要超出涂	EXI	E323	CE	[32]	135	CE	(3)	[3]	(3)	1.3
徐 5.不	框。被擦除的要弄脏、折看	的涂点必须擦除干? B、撕破答题卡:	P.			EE	(40)	DET.	(4)	CC	Œ		CE	13
要 6.填	除不規范,后					[5] [6]	E553	[6]	050	[5] [6]	6	[5]	[6]	TE
求 1	E确填涂	情况填涂 🔼				CZO	17	IZI	7		17	17	CZ3	17
300		進紀				183	[8]	[8]	(8)	[8]	(8)	[8]	(8)	138
一、选择						130	E0.3	0	[9]	[19]	[9]	9	19	1.3

- ●两张答题卡都有上述卡头。
- ●正反两面,按照题号答题。
- 勿折叠, 勿破坏定位标记。

● 答题卡(纸)样式

Ti.	(2×5=10分)	
1,		
2.		

● 答题卡(纸)样式

考试题型

- 一、客观题(选择题)
- 二、计算题 构造解析函数
 - 将函数展开为 Laurent 级数
 - 利用留数计算闭路积分
 - 计算定积分
 - 求像区域
 - 构造共形映射
 - ●利用 Laplace 变换求解常微分方程(组)

三、证明题

主要内容

- 复数的几种<u>表示</u>及运算; 区域, 曲线; 初等复变函数.
- Cauchy-Riemann 方程: (1) 判断可导与解析, 求导数;
 - (2) 构造解析函数.
- Cauchy 积分定理, Cauchy 积分公式, 高阶导数公式.
- Laurent 展式.
- 留数: (1) <u>计算闭路积分</u>; (2) <u>计算定积分</u>.
- 共形映射: (1) 求像区域; (2) 构造共形映射.
- Fourier 变换的概念, δ 函数, 卷积.
- 利用 Laplace 变换求解常微分方程(组).

主要内容

一、构造解析函数

问题 已知实部 u, 求虚部 v (或者已知虚部 v, 求实部 u), 使 f(z) = u(x,y) + iv(x,y) 解析,且满足指定的条件.

注意 必须首先检验 u 或 v 是否为调和函数.

- 方法 偏积分法;
 - •全微分法(略).

一、构造解析函数

方法 ●偏积分法(不妨仅考虑已知实部 u 的情形)

$$\left(\frac{\partial v}{\partial y} = \frac{\partial u}{\partial x}\right),\tag{A}$$

$$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}.$$
 (B)

(2) 将 (A) 式的两边对变量 y 进行 (G) 积分,得

$$v(x,y) = \int \frac{\partial v}{\partial y} \, dy = \int \frac{\partial u}{\partial x} \, dy = \widetilde{v}(x,y) + \varphi(x), \quad (C)$$

其中, $\tilde{v}(x,y)$ 已知, 而 $\underline{\varphi(x)}$ 待定.

(3) 将(C)式代入(B)式, 求解即可得到函数 $\varphi(x)$.

二、将函数展开为 Laurent 级数

- 1. 直接展开法(略)
- 2. 间接展开法

方法 根据<u>唯一性</u>,利用一些已知的展开式,通过<u>有理运算</u>、 <u>代换运算、逐项求导、逐项积分</u>等方法展开.

牢记 ●两个重要的已知展开式:

$$\frac{1}{1-z} = \sum_{n=0}^{+\infty} z^n = 1 + z + z^2 + z^3 \cdots, \quad |z| < 1.$$

$$e^z = \sum_{n=0}^{+\infty} \frac{z^n}{n!} = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \cdots, |z| < +\infty.$$

二、将函数展开为 Laurent 级数

注意 无论是<u>直接展开法</u>还是<u>间接展开法</u>,在求展开式之前, 都需要根据函数的奇点位置,将复平面(或者题目指定 的展开区域)分为若干个解析环.

比如 设函数的奇点为 ෭1, ෭2, ෭3,

展开点为 z₀,则复平面 被分为四个解析环:

$$0 \le |z - z_0| < r_1;$$

$$r_1 < |z - z_0| < r_2;$$

$$r_2 < |z - z_0| < r_3;$$

$$r_3 < |z - z_0| < +\infty.$$

三、利用留数计算闭路积分

- 1. 计算留数
- 法则1 若 z_0 为 f(z) 的<u>可去奇点</u>,则 Res[f(z), z_0] = 0.
- 法则 2 若 z_0 为 f(z) 的<u>本性奇点</u>,则<u>只好</u>将 f(z) 在 z_0 点的 去心邻域内展开成洛朗级数.
- 注意 (1) 在具体展开时,并不需要写出较完整的洛朗级数,只需将其中的系数 a_{-1} 求出来就可以了.
 - (2) 其实,即使不是本性奇点,该方法有时也很有效, 而且事先并不需要知道奇点的类型.

三、利用留数计算闭路积分

1. 计算留数

法则3 若 z_0 为f(z)的 \underline{m} 阶极点,则有

Res
$$[f(z), z_0] = \frac{1}{(m-1)!} \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} [(z-z_0)^m f(z)].$$

特别 若 $f(z) = \frac{g(z)}{h(z)}$, 其中, g(z), h(z) 在 z_0 点解析,

且
$$h(z_0) = 0$$
, $h'(z_0) \neq 0$, $g(z_0) \neq 0$, 则有

Res
$$[f(z), z_0] = \frac{g(z_0)}{h'(z_0)}$$
.

三、利用留数计算闭路积分

2. 计算闭路积分

定理 设 f(z) 在区域 D 内除有限个孤立奇点 z_1, z_2, \dots, z_n 外 处处解析, 在闭域 \overline{D} 上连续, 则有

$$\oint_C f(z) dz = 2\pi i \sum_{k=1}^n \text{Res}[f(z), z_k].$$

注意 只需计算积分曲线 C所围成的有限区域内奇点的留数.

 $^{\circ}z_{2}$

 $^{\circ}Z_3$

三、利用留数计算闭路积分

2. 计算闭路积分

定理 设函数 f(z) 在扩充复平面上除有限个

孤立奇点 $z_1, z_2, \dots, z_n, \infty$ 外处处解析,则有

$$\sum_{k=1}^{n} \operatorname{Res}[f(z), z_{k}] + \operatorname{Res}[f(z), \infty] = 0.$$

其中, Res
$$[f(z), \infty] = -\text{Res}[f(\frac{1}{z})\cdot\frac{1}{z^2}, 0].$$

1. 计算 $\int_0^{2\pi} R(\cos\theta, \sin\theta) d\theta$.

要求 R(u,v)是 u,v的 <u>有理函数</u>,即 R(u,v)是以 u,v为变量的二元多项式或分式函数。

方法 (1) $\Leftrightarrow z = e^{i\theta} = \cos\theta + i\sin\theta$,

则
$$dz = ie^{i\theta}d\theta = izd\theta$$
, $\Rightarrow d\theta = \frac{dz}{iz}$,

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} = \frac{z + z^{-1}}{2} = \frac{z^2 + 1}{2z},$$

$$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} = \frac{z - z^{-1}}{2i} = \frac{z^2 - 1}{2iz}.$$

1. 计算 $\int_0^{2\pi} R(\cos\theta, \sin\theta) d\theta$.

要求 R(u,v)是 u,v的有理函数, 即 R(u,v)是以 u,v为变量的二元多项式或分式函数.

方法 (2)
$$\int_0^{2\pi} R(\cos\theta, \sin\theta) d\theta = \oint_{|z|=1} R\left(\frac{z^2+1}{2z}, \frac{z^2-1}{2iz}\right) \frac{1}{iz} dz$$

$$= \oint_{|z|=1} f(z) dz$$

其中, z_k 是 f(z) 在 |z| < 1 内的所有<u>孤立奇点</u>.

 $=2\pi i\sum_{z}\operatorname{Res}[f(z),z_{k}].$

2. 计算 $\int_{-\infty}^{+\infty} R(x) dx$.

要求 (1)
$$R(x) = \frac{P(x)}{Q(x)}$$
, 其中, $P(x)$, $Q(x)$ 为多项式;

- (2) 分母 Q(x) 的次数比分子 P(x) 的次数 $\underline{\underline{2} \underline{y} \underline{a} \underline{c} \underline{x}}$;
- (3) 分母 Q(x) 没有<u>实零点</u>.

方法
$$\int_{-\infty}^{+\infty} R(x) dx = 2\pi i \sum_{k} \text{Res}[R(z), z_{k}].$$

其中, z_k 是 R(z) 在上半平面内的孤立奇点.

3. 计算 $\int_{-\infty}^{+\infty} R(x) e^{iax} dx (a > 0).$

要求 (1)
$$R(x) = \frac{P(x)}{Q(x)}$$
, 其中, $P(x)$, $Q(x)$ 为多项式;

- (2) 分母 Q(x) 的次数比分子 P(x) 的次数 $\underline{\underline{\underline{2}} \underline{\underline{y}} \underline{\underline{n}} \underline{\underline{n}} \underline{\underline{r}}$;
- (3) 分母 Q(x) 没有<u>实零点</u>.

方法
$$\int_{-\infty}^{+\infty} R(x) e^{iax} dx = 2\pi i \sum_{k} \text{Res}[R(z) e^{iaz}, z_k].$$

其中, z_k 是 R(z) <u>在上半平面内</u>的<u>孤立奇点</u>.

3. 计算 $\int_{-\infty}^{+\infty} R(x) e^{iax} dx (a > 0)$.

要求 (1)
$$R(x) = \frac{P(x)}{Q(x)}$$
, 其中, $P(x)$, $Q(x)$ 为多项式;

- (2) 分母 Q(x) 的次数比分子 P(x) 的次数 $\underline{\mathbf{2}}$ 少高一次;
- (3) 分母 Q(x) 没有<u>实零点</u>.

应用 由
$$2\pi i \sum_{k} \text{Res}[R(z)e^{iaz}, z_{k}] \stackrel{\text{结果记为}}{=\!=\!=\!=} A + iB$$
, (复数)

有
$$\int_{-\infty}^{+\infty} R(x) \cos ax \, dx = A;$$
 $\int_{-\infty}^{+\infty} R(x) \sin ax \, dx = B.$

$$\int_{-\infty}^{+\infty} R(x) \sin ax \, \mathrm{d}x = B.$$

五、构造共形映射

• 求共形映射的一般方法与主要步骤.

步骤 (1) 预处理.

(一般)

目标 使区域的边界至多由两个圆弧段构成.

工具 分式线性映射、幂函数、指数函数等.

(2) 将区域映射为<u>角形域</u>(或者<u>带形域</u>).

方法 将区域边界的一个交点 a 映射为 ∞ ; [另一个(交)点 a 映射为 a].

工具
$$w = k \frac{1}{z - z_1}$$
; 或者 $w = k \frac{z - z_2}{z - z_1}$.

五、构造共形映射

• 求共形映射的一般方法与主要步骤.

步骤 (3) 将角形域(或者带形域)映射为上半平面.

(一般)

工具
$$w=z^n$$
, $w=\sqrt[n]{z}$. (对于角形域) $w=e^z$. (对于带形域)

(4) 将上半平面映射为单位圆域。

工具
$$w = \frac{z-i}{z+i}$$
. (无附加条件)
$$w = e^{i\theta_0} \frac{z-z_0}{z-\overline{z_0}}.$$
 (由附加条件确定 θ_0 , z_0)

六、利用 Laplace 变换求解常微分方程(组)

工具
$$\mathcal{L}[f^{(n)}(t)] = s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - f^{(n-1)}(0).$$

- 步骤 (1) 将微分方程(组)化为像函数的代数方程(组);
 - (2) 求解代数方程(组)得到像函数;
 - (3) 求 Laplace 逆变换得到微分方程(组)的解.

六、利用 Laplace 变换求解常微分方程(组)

●几个常用函数的 Laplace 变换.

$$\mathcal{L}[1] = \frac{1}{s}.$$

$$\mathcal{L}[t^m] = \frac{m!}{s^{m+1}}.$$

$$\mathcal{L}[\cos bt] = \frac{s}{s^2 + b^2}.$$

$$\mathcal{L}[\sin bt] = \frac{b}{s^2 + b^2}.$$

$$\mathcal{L}[\delta(t)] = 1.$$

$$\mathcal{L}[\mathbf{e}^{at}] = \frac{1}{s-a}.$$

$$\mathcal{L}[e^{at}t^m] = \frac{m!}{(s-a)^{m+1}}.$$

$$\mathcal{L}[e^{at}\cos bt] = \frac{s-a}{(s-a)^2+b^2}.$$

$$\mathcal{L}[e^{at}\sin bt] = \frac{b}{(s-a)^2 + b^2}.$$

●已知复数的实部与虚部, 求模与(主)辐角.

• 求复数的方根
$$w_k = \sqrt[n]{z} = \sqrt[n]{r} e^{i(\frac{\theta}{n} + \frac{2k\pi}{n})}, (k = 0, 1, \dots, n-1).$$

• 对数函数 $w = \ln z = \ln |z| + i \arg z$.

$$w = \operatorname{Ln} z = \ln |z| + i \arg z + 2k\pi i, (k=0,\pm 1,\pm 2,\cdots).$$

- 幂函数 $w = z^{\alpha} = e^{\alpha \operatorname{Ln} z}$.
- 求导公式 $f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$.

● 柯西积分定理 函数 f(z) 在 D 内解析,在闭域 \overline{D} 上连续, 则 $\oint_C f(z) dz = 0$.

• 柯西积分公式 函数 f(z) 在 D 内解析, 在闭域 \overline{D} 上连续,

则
$$f(z) = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{\zeta - z} d\zeta$$
, $(z \in D)$.

• 高阶导数公式 函数 f(z) 在 D 内解析, 在闭域 \overline{D} 上连续,

则
$$f^{(n)}(z) = \frac{n!}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta, \ (z \in D).$$

- ●幂级数的收敛半径.
 - (1) <u>比值法</u> 如果 $\lim_{n\to+\infty} \frac{|a_{n+1}|}{|a_n|} = \lambda$,则<u>收敛半径</u>为 $R = \frac{1}{\lambda}$.
 - (2) <u>根值法</u> 如果 $\lim_{n\to+\infty} \sqrt[n]{|a_n|} = \rho$, 则<u>收敛半径</u>为 $R = \frac{1}{\rho}$.
 - (3) 函数 f(z) 在 z_0 点展开为泰勒级数,其<u>收敛半径</u>等于 从 z_0 点到 f(z) 的最近一个奇点 z 的距离.
- 求共形映射下的像区域.
 - (1) 分式线性函数、幂函数以及指数函数的映射特点.
 - (2) 共形映射的分解与复合.

● Fourier 变换:

$$[\mathcal{F}[f(t)] = F(\omega) = \int_{-\infty}^{+\infty} f(t) e^{-j\omega t} dt.$$

$$[\mathcal{F}^{-1}[F(\omega)] = f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) e^{j\omega t} d\omega.$$

● Laplace 变换:

$$\begin{bmatrix} \mathcal{L}[f(t)] = F(s) = \int_0^{+\infty} f(t) e^{-st} dt. \\
\mathcal{L}^{-1}[F(s)] = f(t) = \frac{1}{2\pi j} \int_{\beta - j\infty}^{\beta + j\infty} F(s) e^{st} ds, \quad (t > 0).$$

$$= \sum_{k=1}^n \text{Res}[F(s) e^{st}, s_k].$$

- •单位冲激函数.
 - (1) <u>筛选性质</u> $\int_{-\infty}^{+\infty} \delta(t) f(t) dt = f(0).$

$$\int_{-\infty}^{+\infty} \delta(t-t_0) f(t) dt = f(t_0).$$

- (2) 对称性质 $\delta(t) = \delta(-t)$.
- (3) $\underline{\underline{\oplus}} \underline{\varphi} \underline{\wedge} \underline{\wedge} \int_{-\infty}^{+\infty} e^{j\omega t} d\omega = 2\pi \delta(t).$
- 卷积与卷积定理 $f_1(t) * f_2(t) = \int_{-\infty}^{+\infty} f_1(\tau) f_2(t-\tau) d\tau$.

$$\mathcal{F}[f_1(t) * f_2(t)] = F_1(\omega) \cdot F_2(\omega).$$

放松一下吧!