Plan

- ► Langages
- ► Grammaires
 - ► Grammaires régulières
 - ► Grammaires hors contexte
- ► Reconnaisseurs
 - ► Automates finis
 - ► Automates à pile
 - ► Machines de Turing

Le paysage syntaxique

- ► Les symboles sont des éléments indivisibles qui vont servir de briques de base pour construire des mots.
- ▶ Un alphabet est un ensemble fini de symboles. On désigne conventionnellement un alphabet par la lettre grecque Σ .
- ▶ Une suite de symboles, appartenant à un alphabet Σ , mis bout à bout est appelé un mot (ou une *chaîne*) sur Σ . Le mot de longueur zéro est noté ε .
- ▶ On note $|\mathfrak{m}|$ la longueur du mot \mathfrak{m} (le nombre de symboles qui le composent) et $|\mathfrak{m}|_s$ le nombre de symboles s que possède le mot \mathfrak{m} .
- \blacktriangleright L'ensemble de tous les mots que l'on peut construire sur un alphabet Σ est noté Σ^* .
- ▶ Un langage sur un alphabet Σ est un ensemble de mots construits sur Σ. Tout langage défini sur Σ est donc une partie de Σ*.

Exemples de langages

```
\begin{array}{lll} \Sigma = \{a\} & L_1 = \{\epsilon, \alpha, \alpha\alpha, \alpha\alpha\alpha, \ldots\} \\ \Sigma = \{\alpha, b\} & L_2 = \{\epsilon, \alpha b, \alpha\alpha bb, \alpha\alpha abbb, \alpha\alpha abbbb, \ldots\} \\ \Sigma = \{\alpha, b\} & L_3 = \{\epsilon, \alpha\alpha, bb, \alpha\alpha\alpha\alpha, \alphabb\alpha, b\alpha ab, bbbb, \ldots\} \\ \Sigma = \{\alpha, b, c\} & L_4 = \{\epsilon, \alpha bc, \alpha\alpha bbcc, \alpha\alpha abbbccc, \ldots\} \end{array}
```

Opérations sur les langages

Union	$L_1 \cup L_2$	$\{x x\in L_1 \text{ ou } x\in L_2\}$
Intersection	$L_1\cap L_2$	$\{x x\in L_1 \text{ et } x\in L_2\}$
Différence	$L_1 - L_2$	$\{x x\in L_1 \text{ et } x\notin L_2\}$
Complément	Ī	$\{x \in \Sigma^* x \notin L\}$
Concaténation	L_1L_2	$\{xy x \in L_1 \text{ ety} \in L_2\}$
	n 	
Auto concaténation	$\widehat{L\ldotsL}$	L ⁿ
Fermeture de Kleene	L^*	$\bigcup_{k>0} L^k$

Comment décrire un langage?

- ► Enumération $L_2 = \{\epsilon, ab, aabb, aaabbb, aaaabbb, ...\}$
- ► Description littéraire

 Ensemble des mots construits sur l'alphabet {a, b}, commençant

 par des a et se terminant par des b et tel que le nombre de a et

 le nombre de b soit égal
- ► Grammaire de réecriture $G = \langle \{S\}, \{\alpha, b\}, \{S \to \alpha Sb | \epsilon\}, S \rangle$

Grammaires de réécriture

Une grammaire de réécriture est un 4-uplet $\langle N, \Sigma, P, S \rangle$ où :

- ▶ N est un ensemble de symboles non terminaux, appelé l'alphabet non terminal.
- $ightharpoonup \Sigma$ est un ensemble de symboles terminaux, appelé l'alphabet terminal, tel que N et Σ soient disjoints.
- ▶ P est un sous ensemble fini de :

$$(N \cup \Sigma)^* N (N \cup \Sigma)^* \times (N \cup \Sigma)^*$$

un élément (α, β) de P, que l'on note $\alpha \to \beta$ est appelé une règle de production ou règle de réécriture. α est appelé partie gauche de la règle β est appelé partie droite de la règle

▶ S est un élément de N appelé l'axiome de la grammaire.

Notation

Pour alléger les notations, on note :

$$\alpha \to \beta_1 |\beta_2| \dots |\beta_n$$

les n règles:

$$\alpha \rightarrow \beta_1 \ , \ \alpha \rightarrow \beta_2 \ , \ldots , \ \alpha \rightarrow \beta_n$$

Proto-phrases d'une grammaire

Les proto-phrases d'une grammaire $G = \langle N, \Sigma, P, S \rangle$ sont des mots construits sur l'alphabet $\Sigma \cup N$, on les définit récursivement de la façon suivante :

- ▶ S est une proto-phrase de G
- ▶ si $\alpha\beta\gamma$ est une proto-phrase de G et $\beta \to \delta \in P$ alors $\alpha\delta\gamma$ est une proto-phrase de G.

Une proto-phrase de G ne contenant aucun symbole non terminal est appelé un mot généré par G. Le langage généré par G, noté L(G) est l'ensemble des mots générés par G.

Dérivation

▶ L'opération qui consiste à générer une proto-phrase $\alpha\delta\gamma$ à partir d'une proto-phrase $\alpha\beta\gamma$ et d'une règle de production r de la forme $\beta \to \delta$ est appelée l'opération de dérivation. Elle se note à l'aide d'une double flèche :

$$\alpha\beta\gamma \Rightarrow \alpha\delta\gamma$$

- ▶ On note $\alpha \stackrel{k}{\Rightarrow} \beta$ pour indiquer que β se dérive de α en k étapes.
- ▶ On définit aussi les deux notations $\stackrel{+}{\Rightarrow}$ et $\stackrel{*}{\Rightarrow}$ de la façon suivante :

Langage généré par une grammaire

ightharpoonup L(G) est défini de la façon suivante :

$$L(G) = \{m \in \Sigma^* | S \stackrel{+}{\Rightarrow} m\}$$

 \blacktriangleright Deux grammaires G et G' sont équivalentes si L(G) = L(G').

$$L_1 = \{\varepsilon, \alpha, \alpha\alpha, \alpha\alpha\alpha, \ldots\}$$

$$G = \langle \{S\}, \{\alpha\}, \{S \rightarrow S\alpha | \epsilon\}, S \rangle$$

Sous-ensemble des proto-phrases de G

$L_2 = \{\varepsilon, ab, aabb, aaabbb, aaaabbbb, \ldots\}$

$$G = \langle \{S\}, \{\alpha, b\}, \{S \to \alpha Sb | \epsilon\}, S \rangle$$

Sous-Ensemble des proto-phrases de G

$L_3 = \{aa, bb, aaaa, abba, baab, bbbb, \ldots\}$

$$G = \langle \{S\}, \{a, b\}, \{S \rightarrow aSa|bSb|aa|bb\}, S \rangle$$

$L_4 = \{\varepsilon, abc, aabbcc, aaabbbccc, \ldots\}$

$$G=\langle \{S,S_1,S_2\},\{\alpha,b,c\},\{S\rightarrow\alpha S_1c,S_1\rightarrow b|SS_2,cS_2\rightarrow S_2c,bS_2\rightarrow bb\},S\rangle.$$

Sous-Ensemble des proto-phrases de G

Sens de dérivation

$$G = \langle \{E, T, F\}, \{+, *, \alpha\}, \{E \rightarrow T + E | T, T \rightarrow F * T | F, F \rightarrow \alpha\}, E \rangle$$

► Les proto-phrases générées lors d'une dérivation peuvent comporter plus d'un symbole non terminal :

$$E \Rightarrow T + E \Rightarrow T + T \Rightarrow F + T \Rightarrow F + F * T \Rightarrow F + a * T \Rightarrow$$

$$F + a * F \Rightarrow a + a * F \Rightarrow a + a * a$$

- ▶ Dérivation droite : on réécrit le non terminal le plus à droite : $E \Rightarrow T + E \Rightarrow T + T \Rightarrow T + F * T \Rightarrow T + F * F \Rightarrow T + F * \alpha \Rightarrow T + \alpha * \alpha \Rightarrow F + \alpha * \alpha \Rightarrow \alpha + \alpha * \alpha$
- ▶ Dérivation gauche : on réécrit le non terminal le plus à gauche : $E \Rightarrow T + E \Rightarrow F + E \Rightarrow \alpha + E \Rightarrow \alpha + T \Rightarrow \alpha + F * T \Rightarrow \alpha + \alpha * T \Rightarrow \alpha + \alpha * F \Rightarrow \alpha + \alpha * \alpha$

Arbre de dérivation

Un arbre de dérivation pour G $(G = \langle N, \Sigma, P, S \rangle)$ est un arbre ordonné et étiqueté dont les étiquettes appartiennent à l'ensemble $N \cup \Sigma \cup \{\epsilon\}$. Si un nœud de l'arbre est étiqueté par le non terminal A et ses fils sont étiquetés $X_1, X_2, ..., X_n$ alors la règle $A \to X_1, X_2, ..., X_n$ appartient à P.

Alexis Nasr

Arbre de dérivation

- ▶ Un arbre de dérivation indique les règles qui ont été utilisées dans une dérivation, mais pas l'ordre dans lequel elles ont été utilisées.
- ▶ A un arbre de dérivation correspondent une seule dérivation droite et une seule dérivation gauche.

Ambiguïté

Une grammaire G est **ambiguë** s'il existe au moins un mot \mathfrak{m} dans L(G) auquel correspond plus d'un arbre de dérivation.

 $\mathrm{Exemple}: E \to E + E|E*E|\mathfrak{a}$

Types de règles

Les grammaires peuvent être classées en fonction de la forme de leurs règles de production. On définit cinq types de règles de production :

- ▶ Une règle est régulière à gauche si et seulement si elle est de la forme $A \to xB$ ou $A \to x$ avec $A, B \in \mathbb{N}$ et $x \in \Sigma$.
- ▶ Une règle est régulière à droite si et seulement si elle est de la forme $A \to Bx$ ou $A \to x$ avec $A, B \in N$ et $x \in \Sigma$.
- ▶ Une règle $A \to \alpha$ est un règle hors-contexte si et seulement si : $A \in \mathbb{N}$ et $\alpha \in (\mathbb{N} \cup \Sigma)^*$

Types de règles

- ▶ Une règle $\alpha \to \beta$ est une règle contextuelle si et seulement si : $\alpha = gAd$ et $\beta = gBd$ avec $g, d, B \in (N \cup \Sigma)^*$ et $A \in N$.

 Le nom "contextuelle" provient du fait que A se réecrit B uniquement dans le contexte g_d .
- ▶ Une règle $\alpha \to \beta$ est une règle sans restriction si et seulement si : $|\alpha| \ge 1$

Type d'une grammaire

Une grammaire est:

- ▶ régulière ou de type 3 si elle est régulière à droite ou régulière à gauche. Une grammaire est régulière à gauche si toutes ses règles sont régulières à gauche et une grammaire est régulière à droite si toutes ses règles sont régulières à droite.
- ▶ hors contexte ou de type 2 si toutes ses règles de production sont hors contexte.
- ▶ dépendante du contexte ou de type 1 si toutes ses règles de production sont dépendantes du contexte.
- ► sans restrictions ou de type 0 si toutes ses règles de production sont sans restrictions.

Hiérarchie de Chomsky

Type d'un langage

Un langage pouvant être généré par une grammaire de type x et pas par une grammaire d'un type supérieur dans la hiérarchie, est appelé un langage de type x.

Type	Nom	
3	régulier	
2	hors contexte	
1	dépendant du contexte	
0	récursivement énumérable	

$$L = \{m \in \{a,b\}^*\}$$

$$L = \{m \in \{a, b\}^* \mid |m|_a \mod 2 = 0\}$$

$$L = \{m \in \{\alpha,b\}^* | m = x \alpha \alpha \alpha \ \mathrm{avec} \ x \in \{\alpha,b\}^* \}$$

$$L = \{m \in \{\alpha,b\}^* \mid |m|_\alpha \mod 2 = 0 \ \mathrm{et}|m|_b \mod 2 = 0\}$$

$$\begin{split} L &= \{ \mathfrak{m} \in \{ \mathfrak{a}, \mathfrak{b} \}^* \} \\ G &= \langle \{ S \}, \{ \mathfrak{a}, \mathfrak{b} \}, \{ S \to \mathfrak{a} S | \mathfrak{b} S | \epsilon \}, S \rangle \\ \\ L &= \{ \mathfrak{m} \in \{ \mathfrak{a}, \mathfrak{b} \}^* \mid |\mathfrak{m}|_{\mathfrak{a}} \mod 2 = 0 \} \end{split}$$

$$L = \{ \mathfrak{m} \in \{\mathfrak{a},\mathfrak{b}\}^* | \mathfrak{m} = x\mathfrak{a}\mathfrak{a}\mathfrak{a} \text{ avec } x \in \{\mathfrak{a},\mathfrak{b}\}^* \}$$

$$L = \{m \in \{\alpha,b\}^* \mid |m|_\alpha \mod 2 = 0 \ \mathrm{et}|m|_b \mod 2 = 0\}$$

$$\begin{split} L &= \{m \in \{\alpha,b\}^*\} \\ G &= \langle \{S\}, \{\alpha,b\}, \{S \to \alpha S | b S | \epsilon\}, S \rangle \\ L &= \{m \in \{\alpha,b\}^* \mid |m|_{\alpha} \mod 2 = 0\} \\ G &= \langle \{S,T\}, \{\alpha,b\}, \{S \to \alpha T | b S | \epsilon, T \to \alpha S | b T\}, S \rangle \\ L &= \{m \in \{\alpha,b\}^* | m = x \alpha \alpha \alpha \text{ avec } x \in \{\alpha,b\}^*\} \end{split}$$

$$L = \{m \in \{\alpha,b\}^* \mid |m|_\alpha \mod 2 = 0 \ \mathrm{et}|m|_b \mod 2 = 0\}$$

$$\begin{split} L &= \{ m \in \{ a,b \}^* \} \\ G &= \langle \{ S \}, \{ a,b \}, \{ S \to \alpha S | b S | \epsilon \}, S \rangle \\ L &= \{ m \in \{ a,b \}^* \mid |m|_{\alpha} \mod 2 = 0 \} \\ G &= \langle \{ S,T \}, \{ a,b \}, \{ S \to \alpha T | b S | \epsilon, T \to \alpha S | b T \}, S \rangle \\ L &= \{ m \in \{ a,b \}^* | m = x \alpha \alpha \alpha \ \text{avec} \ x \in \{ a,b \}^* \} \\ G &= \langle \{ S,T,U \}, \{ a,b \}, \{ S \to \alpha S | b S | \alpha T, T \to \alpha U, U \to \alpha \}, S \rangle \\ L &= \{ m \in \{ a,b \}^* \mid |m|_{\alpha} \mod 2 = 0 \ \text{et} |m|_{b} \mod 2 = 0 \} \end{split}$$

$$\begin{split} L &= \{ m \in \{a,b\}^* \} \\ G &= \langle \{S\}, \{a,b\}, \{S \to aS|bS|\epsilon\}, S \rangle \\ L &= \{ m \in \{a,b\}^* \mid |m|_a \mod 2 = 0 \} \\ G &= \langle \{S,T\}, \{a,b\}, \{S \to aT|bS|\epsilon, T \to aS|bT\}, S \rangle \\ L &= \{ m \in \{a,b\}^* | m = xaaa \ avec \ x \in \{a,b\}^* \} \\ G &= \langle \{S,T,U\}, \{a,b\}, \{S \to aS|bS|aT, T \to aU, U \to a\}, S \rangle \\ L &= \{ m \in \{a,b\}^* \mid |m|_a \mod 2 = 0 \ et|m|_b \mod 2 = 0 \} \\ G &= \langle \{S,T,U,V\}, \{a,b\}, \{S \to aT|bU, T \to aS|bV, V \to aU|bT, U \to aV|bS|\epsilon\}, S \rangle \end{split}$$

$$L = \{a^nb^n \mid n \ge 0\}$$

$$L = \{mm^{-1} \mid m \in \{a,b\}^*\} \text{ (langage miroir)}$$

$$\begin{split} L &= \{a^nb^n \mid n \geq 0\} \\ G &= \langle \{S\}, \{a,b\}, \{S \rightarrow aSb|\epsilon\}, S \rangle \\ \\ L &= \{mm^{-1} \mid m \in \{a,b\}^*\} \text{ (langage miroir)} \end{split}$$

$$\begin{split} L &= \{a^nb^n \mid n \geq 0\} \\ G &= \langle \{S\}, \{a,b\}, \{S \rightarrow aSb|\epsilon\}, S \rangle \\ L &= \{mm^{-1} \mid m \in \{a,b\}^*\} \text{ (langage miroir)} \\ G &= \langle \{S\}, \{a,b\}, \{S \rightarrow aSa|bSb|aa|bb\}, S \rangle \end{split}$$

$$\begin{split} L &= \{a^nb^n \mid n \geq 0\} \\ G &= \langle \{S\}, \{a,b\}, \{S \rightarrow aSb|\epsilon\}, S \rangle \\ L &= \{mm^{-1} \mid m \in \{a,b\}^*\} \text{ (langage miroir)} \\ G &= \langle \{S\}, \{a,b\}, \{S \rightarrow aSa|bSb|aa|bb\}, S \rangle \end{split}$$

Exemples de langages contextuels

$$L = \{\alpha^n b^n c^n \mid n \geq 0\}$$

Exemples de langages contextuels

$$\begin{split} L = & \{a^nb^nc^n \mid n \geq 0\} \\ G = & \langle \{S,S_1,S_2\}, \{a,b,c\}, \{S \rightarrow aS_1c,S_1 \rightarrow b \mid SS_2, cS_2 \rightarrow S_2c, bS_2 \rightarrow bb\}, S \rangle \end{split}$$

Exemples de langages récursivement énumérables

- ▶ $L = \{m \sharp m \mid avecm \in \{a, b\}^*\}$
- $\blacktriangleright L = \{\alpha^{2^n} \mid \text{avec } n \ge 0\}$
- ▶ $L = \{ \sharp x_1 \sharp x_2 \sharp \dots \sharp x_l \mid x_i \in \{0, 1\}^* \text{ et } x_i \neq x_j \text{ pour tout } i \neq j \}$

Grammaire v/s Reconnaisseur

- ▶ Une grammaire d'un langage L permet de générer tous les mots appartenant à L.
- ▶ Un reconnaisseur pour un langage L est un programme qui prend en entrée un mot m et répond oui si m appartient à L et non sinon.

▶ Pour chaque classe de grammaire, il existe une classe de reconnaisseurs qui définit la même classe de langages.

Type de grammaire	Type de reconnaisseur
régulière	Automate fini
hors contexte	Automate à pile
dépendantes du contexte	$Linear\ Bounded\ Automaton$
sans restriction	Machine de Turing

Représentation graphique d'un reconnaisseur

Eléments d'un reconnaisseur

Un reconnaisseur est composé de quatre parties :

- ▶ 1 une bande de lecture
 - ▶ elle est composée d'une succession de cases.
 - Chaque case pouvant contenir un seul symbole d'un alphabet d'entrée.
 - C'est dans les cases de cette bande de lecture qu'est écrit le mot à reconnaître.
- ▶ 2 une tête de lecture
 - ► Elle peut lire une case à un instant donné.
 - ► La case sur laquelle se trouve la tête de lecture à un moment donné s'appelle la case courante.
 - ► La tête peut être déplacée par le reconnaisseur pour se positionner sur la case immédiatement à gauche ou à droite de la case courante.
- ▶ 3 une mémoire
 - ► Elle peut prendre des formes différentes.
 - ► La mémoire permet de stocker des éléments d'un alphabet de mémoire.

Eléments d'un reconnaisseur

- ▶ 4 une unité de contrôle
 - ► Elle constitue le cœur d'un reconnaisseur.
 - Elle peut être vue comme un progamme qui dicte au reconnaisseur son comportement.
 - ► Elle est définie par un ensemble fini d'états ainsi que par une fonction de transition qui décrit le passage d'un état à un autre en fonction du contenu de la case courante de la bande de lecture et du contenu de la mémoire.
 - L'unité de contrôle décide aussi de la direction dans laquelle déplacer la tête de lecture et choisit quels symboles stocker dans la mémoire.
 - ▶ Parmi les états d'un reconnaisseur, on distingue
 - des états initiaux, qui sont les états dans lesquels doit se trouver le reconnaisseur avant de commencer à reconnaître un mot
 - ▶ des états d'acceptation qui sont les états dans lequel doit se trouver le reconnaisseur après avoir reconnu un mot.

Configuration et mouvement

- ► Configuration d'un reconnaisseur :
 - ► Etat de l'unité de contrôle
 - ► Contenu de la bande d'entrée et position de la tête
 - ► Contenu de la mémoire
- ▶ Mouvement : passage d'une configuration à une autre $(C_1 \vdash C_2)$

Configurations

► configuration initiale

- ▶ L'unité de contrôle est dans un état initial
- ► La tête est au début de la bande
- ► La mémoire contient un élément initial.

► configuration d'acceptation

- ► L'unité de contrôle est dans un état d'acceptation
- ▶ La tête de lecture est à la fin de la bande
- ► La mémoire se trouve dans un état d'acceptation.

Déterminisme

- ► L'unité de contrôle est dite déterministe si à toute configuration correspond au plus un mouvement. S'il peut exister plus d'un mouvement, elle est dite non déterministe.
- ▶ Le déterminisme est une propriété importante :
 - ▶ Un reconnaisseur déterministe reconnaît un mot de longueur $\mathfrak n$ en $O(\mathfrak n)$

Reconnaissance

- ► Un mot m est acceptée par un reconnaisseur si, partant de l'état initial, avec m sur la bande d'entrée, le reconnaisseur peut faire une série de mouvements pour se retrouver dans un état d'acceptation.
- ► Le langage accepté par un reconnaisseur est l'ensemble de tous les mots qu'il accepte.

Automates finis

- ▶ Le modèle le plus simple de reconnaisseur.
- ► Mémoire limitée aux seuls états.

Représentation graphique

Définition

Un automate fini est un 5-uplet $\langle Q, \Sigma, \delta, q_0, F \rangle$

- ► Q est l'ensemble des états,
- $\blacktriangleright\ \Sigma$ est l'alphabet de l'entrée
- \triangleright δ est la fonction de transition :

$$\delta \ : \ Q \times (\Sigma \cup \{\epsilon\}) \to \wp(Q)$$

- ▶ $q_0 \in Q$ est l'état initial,
- ightharpoonup $F\subseteq Q$ est l'ensemble des états d'acceptation.

Equivalence

$$\langle Q, \Sigma, \delta, q_0, F \rangle$$

$$Q = \{0, 1, 2, 3\}$$

$$\Sigma = \{a, b, c\}$$

$$\delta(0, a) = \{1\}$$

$$\delta(0, b) = \{2\}$$

$$\delta(1, a) = \{3\}$$

$$\delta(1, b) = \{0\}$$

$$\delta(2, c) = \{3\}$$

$$\delta(3, a) = \{2\}$$

$$q_0 = 0$$

$$F = \{1, 3\}$$

Configurations et mouvement

$$A = \langle Q, \Sigma, \delta, q_0, F \rangle$$

- ▶ Configuration : $(q, m) \in Q \times \Sigma^*$ où :
 - q représente l'état courant de l'unité de contrôle
 - m est la partie du mot à reconnaître non encore lue. Le premier symbole de m (le plus à gauche) est celui qui se trouve sous la tête de lecture. Si m = ε alors tout le mot a été lu.
- ightharpoonup Configuration initiale : (q_0, m) où m est le mot à reconnaître
- ▶ Configuration d'acceptation : (q, ε) avec $q \in F$
- ▶ Mouvement : $(q, aw) \vdash (q', w)$ si $q' \in \delta(q, a)$.

Reconnaissance

$$L = \{m \in \{a, b\}^*\}$$

$$L = \{m \in \{a, b\}^*\}$$

$$L = \{m \in \{a, b\}^*\}$$

$$G = \langle \{S\}, \{\alpha, b\}, \{S \rightarrow \alpha S | b S | \epsilon\}, S \rangle$$

$$L = \{m \in \{a, b\}^* \mid |m|_a \mod 2 = 0\}$$

$$L=\{m\in\{\alpha,b\}^*\mid |m|_\alpha\mod 2=0\}$$

$$L = \{m \in \{a,b\}^* \mid |m|_a \mod 2 = 0\}$$

$$G = \langle \{S,T\}, \{\alpha,b\}, \{S \rightarrow \alpha T | bS | \epsilon, T \rightarrow \alpha S | bT\}, S_0 \rangle$$

$$L = \{m \in \{a, b\}^* \mid |m|_a \mod 2 = 0 \text{ et } |m|_b \mod 2 = 0\}$$

$$L = \{m \in \{a,b\}^* \mid |m|_a \mod 2 = 0 \text{ et } |m|_b \mod 2 = 0\}$$

$$L = \{m \in \{a, b\}^* \mid |m|_a \mod 2 = 0 \text{ et } |m|_b \mod 2 = 0\}$$

$$G = \langle \{S, T, U, V\}, \{a, b\}, \\ \{S \to aT | bU, T \to aS | bV, V \to aU | bT, U \to aV | bS | \epsilon\}, S \rangle$$

$$L = \{m \in \{a, b\}^* | m = xaaa \text{ avec } x \in \{a, b\}^*\}$$

$$L = \{m \in \{a, b\}^* | m = xaaa \text{ avec } x \in \{a, b\}^*\}$$

$L = \{m \in \{a, b\}^* | m = xaaa \text{ avec } x \in \{a, b\}^*\}$

 $G = \langle \{S, T, U\}, \{\alpha, b\}, \{S \rightarrow \alpha S | b S | \alpha T, T \rightarrow \alpha U, U \rightarrow \alpha\}, S \rangle$

$$L = \{m \in \{a, b\}^* | m = xaaa \text{ avec } x \in \{a, b\}^*\}$$

$L = \{m \in \{a, b\}^* | m = xaaa \text{ avec } x \in \{a, b\}^*\}$

 $(3, \varepsilon)$

Déterminisme

- ► Tout langage régulier peut être reconnu par un automate fini déterministe
- ▶ Pour tout automate fini non détermniste A, on peut construire un automate déterministe A' avec L(A) = L(A')
- ▶ Prix à payer : dans le pire des cas, $|Q(A')| = 2^{|Q(A)|}$

Limite des automates finis

- ► Certains langages ne peuvent pas être reconnus par les automates finis (ne peuvent être générés par une grammaire régulière)
- Exemple : $L = \{a^nb^n \mid n \ge 0\}$
- ▶ Il faut mémoriser le nombre de a que l'on a lu pour vérifier que le mot possède autant de b.
- ▶ Pour mémoriser un nombre potentiellement infini de a, il faut un ensemble infini d'états!

Généralités

- ► Forme simple de mémoire : une pile.
- ► Mode de stockage *Last In First Out*.
- ▶ On ne peut accéder qu'à l'élément se trouvant au sommet de la pile.
- ► Deux opérations possibles :
 - empiler : ajouter un élément au sommet.
 - ▶ dépiler : enlever l'élément se trouvant au sommet.
- ► La pile permet de stocker de l'information sans forcément multiplier le nombre d'états.

Représentation graphique

Si l'automate est en 1, et que la tête de lecture est sur a, l'automate :

- ▶ décale la tête de lecture d'une case vers la droite
- ▶ dépile b (b doit être présent au sommet de la pile)
- ightharpoonup empile c
- ▶ va en 2

cas particuliers

- \blacktriangleright si $\mathfrak{a} = \varepsilon$, l'automate peut franchir cet arc sans lire de symbole.
- ▶ si $b = \varepsilon$, l'automate peut franchir cet arc indépendamment du symbole se trouvant en sommet de pile.
- ightharpoonup si $c = \varepsilon$, l'automate peut franchir cet arc sans rien empiler.

Exemple

Définition

Un automate à pile est un 6-uplet $\langle Q, \Sigma, \Gamma, \delta, q_0, F \rangle$

- ▶ Q est l'ensemble des états
- ightharpoonup est l'alphabet d'entrée
- ightharpoonup Γ est l'alphabet de symboles de pile
- \triangleright δ est la fonction de transition :

$$\delta: Q \times (\Sigma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\}) \to \wp(Q \times \Gamma^*)$$

- $ightharpoonup q_0 \in Q$ est l'état initial
- ightharpoonup F \subseteq Q est l'ensemble des états d'acceptation

Configurations et mouvement

$$A = \langle Q, \Sigma, \Gamma, \delta, q_0, F \rangle$$

- ▶ Configuration : $(q, m, \alpha) \in Q \times \Sigma^* \times \Gamma^*$ où :
 - q représente l'état courant de l'unité de contrôle
 - m est la partie du mot à reconnaître non encore lue. Le premier symbole de m (le plus à gauche) est celui qui se trouve sous la tête de lecture. Si m = ε alors tout le mot a été lu.
 - \triangleright α représente le contenu de la pile. Le symbole le plus à gauche est le sommet de la pile. Si $\alpha = \varepsilon$ alors la pile est vide.
- ▶ Configuration initiale : (q_0, m, ε) où m est le mot à reconnaître
- ▶ Configuration d'acceptation : (q, ϵ, ϵ) avec $q \in F$
- ▶ Mouvement : $(q, aw, Z\alpha) \vdash (q', w, \gamma\alpha)$ si $(q', \gamma) \in \delta(q, a, Z)$.

Equivalence

$$\begin{array}{rcl} \langle Q, \Sigma, \Gamma, \delta, q_0, F \rangle & Q & = & \{0, 1, 2, 3\} \\ \Sigma & = & \{\alpha, b\} \\ \Gamma & = & \{\alpha, b, \$\} \\ \delta(0, \epsilon, \epsilon) & = & \{(1, \$)\} \\ \delta(1, \alpha, \epsilon) & = & \{(1, \alpha)\} \\ \delta(1, b, \alpha) & = & \{(2, \epsilon)\} \\ \delta(2, b, \alpha) & = & \{(2, \epsilon)\} \\ \delta(2, \epsilon, \$) & = & \{(3, \epsilon)\} \\ q_0 & = & 0 \\ F & = & \{3\} \end{array}$$

Reconnaissance

$$L = \{mm^{-1} \mid m \in \{a, b\}^*\}$$

$$L = \{mm^{-1} \mid m \in \{a, b\}^*\}$$

$$L = \{mm^{-1} \mid m \in \{a, b\}^*\}$$

$$G = \langle \{S\}, \{\alpha, b\}, \{S \rightarrow \alpha S\alpha | bSb | \alpha\alpha | bb\}, S \rangle$$

$$L = \{m \in \{a, b\}^*, |m|_a = |m|_b\}$$

$$L=\{m\in\{a,b\}^*,|m|_a=|m|_b\}$$

$$\begin{matrix} \alpha,\alpha \to \alpha\alpha \\ \alpha,b \to \epsilon \end{matrix}$$

$$L = \{m \in \{a, b\}^*, |m|_a = |m|_b\}$$

$$egin{array}{l} a,a
ightarrow aa\ a,b
ightarrow arepsilon \end{array}$$

$$G = \langle \{S\}, \{a, b\}, \{S \rightarrow aSb|bSa|SS|\epsilon\}, S \rangle$$

$L = \{\alpha^i b^j c^k \mid i = j \text{ ou } i = k\}$

Non déterminisme

 $L=\{a^ib^jc^k\mid i=j \text{ ou } i=k\}$ ne peut être reconnu par un automate à pile déterministe!

Langages hors-contexte déterministes

Limites des automates à pile

- ➤ Certains langages ne peuvent être reconnus par les automates à pile (ne peuvent être générés par une grammaire hors-contexte).
- ▶ Exemple : le langage $\mathfrak{m}\sharp\mathfrak{m}$ avec $\mathfrak{m}\in\{0,1\}^*$:
 - 1 L'automate lit le premier m et le stocke dans la pile.
 - 2 Il lit le premier symbole du second m.
 - Somment vérifier qu'il est identique au symbole se trouvant au fond de la pile?

Machines de Turing

- Proches des automates finis mais avec une mémoire infinie et à accès direct.
- ► Modèle plus proche d'un ordinateur.
- ▶ Une machine de Turing (MT) peut faire tout ce qu'un ordinateur peut faire.
- ► Thèse de Church-Turing : tout traitement réalisable par un algorithme peut être accompli par une machine de Turing.

Généralités

- ► La mémoire de la MT est matérialisée par une bande de lecture/écriture.
- ► Elle possède une tête de lecture/écriture pouvant se déplacer vers la gauche et vers la droite.
- ► Au départ, la bande contient le mot à reconnaître et possède des □ dans toutes les autres cases.

Caractéristiques

- ▶ Une MT peut lire et écrire sur la bande de lecture/écriture.
- ► La tête de lecture/écriture peut se déplacer vers la droite et vers la gauche.
- ▶ La bande de lecture écriture est infinie.
- ▶ Lorsque la MT atteint l'état d'acceptation ou l'état de rejet, elle s'arrête et accepte ou rejette le mot.
- ► Si la MT n'atteint pas l'état d'acceptation ou de rejet, elle peut continuer indéfiniment.

Exemple

Principe d'une machine reconnaissant $L = \{m \sharp m \mid m \in \{0, 1\}^*\}$

- Parcours le mot pour vérifier qu'il possède un # unique. Si ce n'est pas le cas, va dans l'état de rejet.
- ② Fait des allers-retours entre les deux occurrences de m pour vérifier qu'elles contiennent bien le même symbole. Si ce n'est pas le cas, va dans l'état de rejet. Les symboles sont éliminés au fur et à mesure qu'ils sont vérifiés.
- Lorsque tous les symboles au gauche de ♯ ont été éliminés, vérifie qu'il ne reste plus de symboles à droite de ♯. Si c'est le cas, va dans l'état d'acceptation, sinon va dans l'état de rejet.

Exemple d'exécution

Représentation graphique

La machine est en 1, la tête de lecture est sur a, elle :

- ▶ écrit un b sur la bande (à la place du a),
- ▶ décale la tête de lecture d'une case vers la droite (D)
- ► va en 2.

cas particuliers

- ightharpoonup a ightharpoonup : la machine n'écrit rien.
- ightharpoonup a, b ightharpoonup c, D : la machine lit un a ou un b.

Exemple

Toutes les transitions manquantes mènent à l'état de rejet.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 豆 釣9@

Définition

Une MT est un 7-uplet $\langle Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R \rangle$ où :

- ► Q est l'ensemble des états,
- ▶ Σ est l'alphabet de l'entrée (qui ne contient pas le symbole spécial □),
- ▶ Γ est l'alphabet de la bande ($\square \in \Gamma$ et $\Sigma \subseteq \Gamma$),
- \triangleright δ est la fonction de transition :

$$\delta: Q \times (\Gamma \cup \{\epsilon\}) \to \wp(Q \times \Gamma \times \{D,G\})$$

- ▶ $q_0 \in Q$ est l'état initial,
- ▶ $a_A \in Q$ est l'état d'acceptation,
- ▶ $a_R \in Q$ est l'état de rejet, avec $q_R \neq q_A$.

Configurations et mouvement

$$M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R \rangle$$

- ► Configuration : $(u, q, av) \in \Gamma^* \times Q \times \Gamma^*$ où :
 - ▶ q représente l'état courant de l'unité de contrôle
 - $\blacktriangleright\,$ u est la partie de la bande se trouvant à gauche de la tête.
 - $\blacktriangleright \ \nu$ est la partie de la bande se trouvant à droite de la tête.
 - ightharpoonup a est le symbole se trouvant sous la tête.
- ▶ Configuration initiale : (ε, q_0, m) où m est le mot à reconnaître
- ► Configuration d'acceptation : (u, q_A, v)
- ► Configuration de rejet : (u, q_R, v)
- ▶ Mouvement : $(ua, q_i, bv) \vdash (u, q_j, acv) \text{ si } (q_j, c, G) \in \delta(q_i, b).$

	Configuration			Transition	Destination
-	(0	1 1	011000#011000) 11000#011000)	$\begin{array}{c} 0 \to D \\ 1 \to D \end{array}$	1 1
⊢ ⊢	(011000 (011000#	1 2	#011000) 011000)	$\begin{array}{c} \sharp \to D \\ 0 \to D \end{array}$	2 2
- -	(011000#011000 (011000#011000	2 3	□) 0)	$\begin{array}{c} \square \to G \\ 0 \to G \end{array}$	3 3
F	(□	3 4	□011000#011000) 011000#011000)	$\begin{array}{c} \square \to D \\ 0 \to x, D \end{array}$	4 6
- - -	(x11000 (x11000# (x11000	6 8 9	#011000) 011000) #x11000)	$\begin{array}{l} \sharp \to D \\ 0 \to x, G \\ \sharp \to G \end{array}$	8 9 9
- - - -	(9 10 10 5	\textsize x11000\psi x1000\psi x1	$ \begin{array}{c} \Box \rightarrow \\ x \rightarrow D \\ 1 \rightarrow x, D \\ 1 \rightarrow D \end{array} $	10 10 5 5

Déterminisme

- ▶ Pour toute MT A non déterministe, il existe une MT A' telle que L(A) = L(A').
- ► Le non déterminisme n'augmente pas la puissance du modèle des MT.

Langages récursivement énumérables

- ▶ Un langage est récursivement énumérable si et seulement si il existe une MT qui le reconnaît.
- ▶ Un langage est récursivement énumérable si et seulement si il existe une MT déterministe qui le reconnaît.

Sources

- ► Michael Sipser Introduction to the Theory of Computation PWS Publishing Company, 1997.
- ▶ John Hopcroft, Rajeev Motwani, Jeffrey Ullman *Introduction to Automata Theory, Languages and Computation*, 2ème édition Pearson Education International, 2001.
- ▶ John Aho, Jeffrey Ullman *The Theory of Parsing, Translation and Compiling, Vol I : Parsing* Prentice-Hall, 1972