ROBEM I Prove that if $(X_n : n \ge 0)$ is a simple random walk, then so is $(-X_n : n \ge 0)$.

SOLITON. Let $\xi_n := X_n - X_{n-1}$ for $n \in \mathbb{N}^+$. Then Since $(X_n : n \in \mathbb{N})$ is simple random walk we have $X_0, \xi_1, \xi_2, \cdots$ are independent r.v. ranges in \mathbb{Z} , and $\xi_i, i = 1, 2 \cdots$ are i.i.d., and $\mathbb{P}(|\xi_i| = 1) = 1$. So we easily get $-X_0, -\xi_1, -\xi_2, \cdots$ are independent r.v. ranges in \mathbb{Z} , and $-\xi_i, i = 1, 2, \cdots$ are i.i.d., and $\mathbb{P}(|-\xi_i| = 1) = 1$. Since $-X_n = X_0 + \sum_{k=1}^n \xi_k$, by the definition of simple random walk we obtain $(-X_n : n \in \mathbb{N})$ is a simple random walk.

ROBEM II Let $(X_n : n \ge 0)$ be a d-dimentional random walk with $\mathbb{P}(|\xi_i| \ge 1) > 0$, prove that $\mathbb{P}(\sup_n |X_n| = \infty) = 1$.

SOUTON. Let $t \in \mathbb{Z}^d$, $t \neq 0$ and $\mathbb{P}(\xi_i = t) > 0$. Since $\mathbb{P}(\sup_n |X_n| = \infty) = \inf_{k \in \mathbb{N}} \mathbb{P}(\sup_n |X_n| \geq k)$, we only need to prove $\mathbb{P}(\sup_n |X_n| \geq k) = 1$ for every $k \in \mathbb{N}$. Take $K > 3k, K \in \mathbb{N}$. Let $A_s := \{\xi_i = t : i = sK + 1, sK + 2, \cdots, sK + K - 1\}$. Then for $\omega \in A_s$, we have $|X_{sK+K} - X_{sK}| = |\sum_{u=1}^{K-1} t| = K|t| \geq K \geq 3k$. Then $\sup_n |X_n| \geq \max\{|X_{sK+K}|, |X_{sK}|\} \geq \frac{1}{2}|X_{sK+K} - X_{sK}| \geq k$. So we get $\forall s, A_s \subset \{\sup_n |X_n| \geq k\}$. Since ξ_i are independent, easily get $A_s, s = 1, 2, \cdots$ are independent. Noting $\mathbb{P}(A_s) = \mathbb{P}(\xi_i = t)^K > 0$, we get $\sum_{s \in \mathbb{N}} \mathbb{P}(A_s) = \infty$. So from BC-theorem we get $\mathbb{P}(A_s, i.o.) = 1$, thus $\mathbb{P}(\bigcup_{s \in \mathbb{N}} A_s) = 1$. Thus, $\mathbb{P}(\sup_n |X_n| \geq k) = 1$, for every $k \in \mathbb{N}$. Thus, $\mathbb{P}(\sup_n |X_n| = \infty) = \mathbb{P}(\bigcap_{k \in \mathbb{N}} \{\sup_n |X_n| \geq k\}) = 1$.

ROBEM III Let $(S_n : n \ge 0)$ be a symmetry simple random walk with $S_0 = 0$, for d = 2, prove that

$$\mathbb{P}(S_{2n} = 0) = \frac{1}{4^{2n}} \left(\frac{(2n)!}{(n!)^2}\right)^2$$

For d = 3, prove that

$$\mathbb{P}(S_{2n} = 0) = \frac{1}{2^{2n}} \frac{(2n)!}{(n!)^2} \sum_{i+j+k=n} \left(\frac{1}{3^n} \frac{n!}{i!j!k!} \right)^2$$

SOLITION. First we consider d = 2. Write $\xi_i = S_i - S_{i-1}$. Then we know S_{2n} occur \iff the number of (1,0) and (-1,0) in $\{\xi_i : i = 1, \dots, 2n\}$, and the number of (0,1) and (0,-1) in $\{\xi_i : i = 1, \dots, 2n\}$. We assume there is k pairs of (1,0), (-1,0), then easily there is n-k pairs of (0,1), (0,-1). The probability is $\binom{2n}{k} \binom{2n-k}{k} \binom{2n-2k}{n-k} \frac{1}{4^{2n}}$. So the total probability is $\mathbb{P}(S_{2n} = 0) = \sum_{k=0}^{n} \binom{2n}{k} \binom{2n-k}{n-k} \frac{2n-2k}{n-k} \frac{1}{4^{2n}} = \sum_{k=0}^{n} \frac{(2n)!}{k!k!(n-k)!(n-k)!4^{2n}}$. Noting that $\sum_{k=0}^{n} \frac{(n!)^2}{k!k!(n-k)!(n-k)!} = \sum_{k=0}^{n} \binom{n}{k} \binom{n}{n-k} = \binom{2n}{n} = \frac{(2n)!}{n!n!}$, we finally get $\mathbb{P}(S_{2n} = 0) = \frac{1}{4^{2n}} \left(\frac{(2n)!}{n!n!}\right)^2$.

Use the same method, consider d = 3, we have $\mathbb{P}(S_{2n} = 0) = \sum_{i+j+k=n}^{n} {2n \choose i} {2n-i \choose j} {2n-2i \choose j} {2n-2i-j \choose j} {2n-2i-2j-1 \choose k}$ So easily to get $\mathbb{P}(S_{2n} = 0) = \frac{1}{2^{2n}} \frac{(2n)!}{(n!)^2} \sum_{i+j+k=n} \left(\frac{1}{3^n} \frac{n!}{i!j!k!}\right)^2$.

ROBEM IV Assume $(S_n : n \ge 0)$ is a symmetry simple random walk with $S_0 = i \in \mathbb{Z}$. Prove that $\forall a \in \mathbb{Z}$, let $\tau_a := \min\{n \in \mathbb{N} : S_n = a\}$, then $\mathbb{P}(\tau_a < \infty) = 1$.

SOLION. Without loss of generality assume a < 0, i = 0. Take $N \in \mathbb{N}^+$. Consider $\tau := \min\{n \in \mathbb{N} : S_n = a \vee S_n = N\}$. From Problem ?? we can easily know $\mathbb{P}(\tau < \infty) = 1$ because $\{\sup_n |S_n| = \infty\} \subset \{\tau < \infty\}$, a.s. So we get $\{\tau_a = \tau\} \subset \{\tau_a < \infty\}$, a.s. Let $Y_n := S_{n \wedge \tau} := S_{\min\{n,\tau\}}$. Easily

 $(S_n:n\in\mathbb{N})$ is a martingale, and τ is a stopping time, so we get $(Y_n:n\in\mathbb{N})$ is a martingale, too. And easily $Y_n\in[a,N]$, so Y_n is bounded. So we get $\mathbb{E}(S_\tau)=\lim_{n\to\infty}\mathbb{E}(Y_n)=\mathbb{E}(Y_0)=0$. Easily to know $\mathbb{E}(S_\tau)=\mathbb{P}(\tau=\tau_a)a+\mathbb{P}(\tau\neq\tau_a)N=0$. And $\mathbb{P}(\tau=\tau_a)+\mathbb{P}(\tau\neq\tau_a)=1$, so easily $\mathbb{P}(\tau=\tau_a)=\frac{N}{N-a}$. So $\mathbb{P}(\tau_a<\infty)\geq\frac{N}{N-a}$. Let $N\to\infty$, we get $\mathbb{P}(\tau_a<\infty)=1$.