線形代数学・同演習 B

演習問題 1

1.
$$(1)$$
 $\begin{pmatrix} 4 \\ -1 \\ 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} -2 \\ -1 \\ 1 \\ 0 \end{pmatrix}$ (2) 解なし

(解説) (1) 係数行列を簡約化すれば $\begin{pmatrix} 1 & 0 & 2 & 0 & 4 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$. (2) 簡約化すれば $\begin{pmatrix} 1 & 0 & -9 & 3 & 0 \\ 0 & 1 & -2 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$.

- 2. (1) -1 (2) -12 (3) 223
- 3. (1) $ax^2 + bx + c \ (a, b, c \in \mathbb{R})$
 - $(2) ax^2 + bx a b (a, b \in \mathbb{R})$
 - (3) $x^3/3 + x^2/2 + c \ (c \in \mathbb{R})$
 - (4) $ax^2 + bx + c \ (a, b, c \in \mathbb{R}, \ a \neq 0)$
- 4. $(1) \times (2) \bigcirc$

(解説) 考えている集合に属する要素に対して ,その和やスカラー倍を考えたときに ,元 の集合に留まっているかどうかを調べる . (1) $x,y\in W_1$ とすれば , $A(x+y)=\begin{pmatrix}2\\-6\end{pmatrix}$ なので $x+y\notin W_1$. よって部分空間でない . $(A\mathbf{0}=\mathbf{0}\neq\begin{pmatrix}1\\-3\end{pmatrix}$ なので部分空間でない , でも可) . (2) $x,y\in W_2$ とすれば , $A(x+y)=\mathbf{0}$ なので $x+y\in W_2$. スカラー倍も同様 . よって部分空間 .

 $5.^{\dagger}$ (1) × (2) \bigcirc (3) \bigcirc (4) ×

(解説) 考えている集合に属する要素に対して,その和やスカラー倍を考えたときに,元の集合に留まっているかどうかを調べる.(1) x^2 と $-x^2$ はどちらも 2 次多項式であるが,その和は 0 であり,これは 2 次の多項式ではない.よって部分空間でない.(2) (x-1) で割り切れるような 3 次多項式は,適当な 2 次以下の多項式 p(x) を用いて (x-1)p(x) と書ける.例えば和を考えると, $(x-1)p_1(x)+(x-1)p_2(x)=(x-1)(p_1(x)+p_2(x))$ となるので和をとっても元の集合に留まっている.スカラー倍も同様.よって部分空間.(3) 定数項が 0 である多項式は ax^3+bx^2+cx $(a,b,c\in\mathbb{R})$ という形をしている.このような多項式の和・スカラー倍をとっても定数項は 0 のままであるので,部分空間になる.(4)各係数の和が 1 であるような多項式同士を足せば,各係数の和は 2 になるので,和を取ったら元の集合からはみ出してしまう.よって部分空間でない.

 $6.^{\dagger}$ (1) \bigcirc (2) \bigcirc (3) \times

(解説) 命題 1.9 の三条件を確認すれば良い . (1) $\lambda, \mu \in \mathbb{K}, \, oldsymbol{u}, oldsymbol{v} \in W_1 \cap W_2$ とす

る.このとき $m u, m v \in W_1$ かつ $m u, m v \in W_2$ である.i=1,2 に対して W_i は V の部分空間なので, $m 0 \in W_i$ かつ $\lambda m u + \mu m v \in W_i$ である.したがって, $m 0 \in W_1 \cap W_2$ かつ $\lambda m u + \mu m v \in W_1 \cap W_2$ なのでこれは部分空間.m (2) (1) と同様に $m 0 = m 0 + m 0 \in W_1 + W_2$ である.また, $m u_1 + m u_2, \ m v_1 + m v_2 \in W_1 + W_2$ $(m u_i, m v_i \in W_i)$ とすれば,

$$\lambda(u_1 + u_2) + \mu(v_1 + v_2) = (\lambda u_1 + \mu v_1) + (\lambda u_2 + \mu v_2)$$

であり , $W_1,\,W_2$ は部分空間なので , W_1+W_2 も部分空間となる.(3) 例えば , $V=\mathbb{R}^2$ とし , $W_1=\{({x\atop 0});\;x\in\mathbb{R}\},\,W_2=\{({0\atop y});\;y\in\mathbb{R}\}$ とすれば明らかに W_1,W_2 は部分空間であり , $W_1\cup W_2=\{({x\atop y});\;x=0\;\mbox{又は}\;y=0\}$ となる.しかしながら , $({1\atop 0})\in W_1$, $({0\atop 1})\in W_2$ であるが , $({1\atop 1})=({0\atop 0})+({0\atop 1})\not\in W_1\cup W_2$ である.

 7^{\dagger} 部分空間になるのは (1),(2) で , ならないのは (3),(4) である.考え方は他の問題と同じなので解説は省略.