

Mestrado Integrado em Engenharia Informática e Computação Arquitetura e Organização de Computadores Teste 1

1º ano 2016-11-17 Duração 1:45 Sem consulta

Nome:	$N^{\underline{o}}$ de estudante:
101110:	11 de estadante.

Atenção: Este teste tem 13 questões em 6 páginas, num total de 200 pontos.

Parte I — Questões de Escolha Múltipla

Cada questão tem uma resposta certa. Respostas erradas não descontam.

As respostas às questões de escolha múltipla devem ser assinaladas com x na grelha seguinte.

Apenas as respostas indicadas na grelha são consideradas para efeitos de avaliação.

					Que	stão				
Opção	1	2	3	4	5	6	7	8	9	10
A					×		×			
В	×		×			×				
С				×				×		×
D		×							×	

Pontos: / 100

- [10] 1. Interpretando 81A_H como um número sem sinal, o seu valor decimal é:
 - A. 2090

- **B. 2074** C. 1050 D. 2076
- [10] 2. Considere os números $S = 1010111_2$ e $T=0111000_2$. Tendo em conta que os números estão representados em sinal e grandeza com 7 bits, o resultado da operação binária S+T é:
 - A. Não é possível representar com 7 bits
- B. 0101001
- C. 1001111
- D. 0100001
- [10] 3. O intervalo de números inteiros representáveis em complemento para dois com 7 bits é:
 - A. [-63; 63]
- **B.** [-64; 63] C. [0; 127] D. [-64; 64]
- [10] 4. Quantas linhas da tabela de verdade da função $F(X,Y,Z) = (X + \overline{Y}) \cdot (\overline{X} + Y + Z)$ estão a 1?
 - A. 3 B. 2 C. 5 D. 6
- [10] 5. Qual das seguintes expressões booleanas é equivalente a $X \cdot Y + \overline{X} \cdot Y \cdot Z$?

 - **A.** $Y \cdot (X + \overline{Y} + Z)$ B. $\overline{X \cdot Y} + \overline{X} \cdot Y \cdot Z$
 - C. $(\overline{X} + \overline{Y}) \cdot (X + \overline{Y} + \overline{Z})$ D. $\overline{(\overline{X \cdot Y}) \cdot \overline{(X \cdot \overline{Y} \cdot \overline{Z})}}$
- [10] 6. Indique a expressão da função F realizada pelo circuito da figura.

A. $(Y+X)\cdot \overline{X}\cdot Y$ B. $X\oplus Y$ C. $\overline{X\cdot Y}\cdot X+Y$ D. $\overline{\overline{X\cdot Y}}+(X+Y)$

[10] 7. Considerar o circuito da figura em que inicialmente $B_2 = B_1 = 0$ e $B_0 = 1$.

- Após 5 ciclos de relógio, o estado do sistema é:
 - **A.** $B_2 = 1$ $B_1 = 0$ $B_0 = 1$
 - B. $B_2 = 1$ $B_1 = 1$ $B_0 = 1$
 - C. $B_2 = 0$ $B_1 = 1$ $B_0 = 1$
 - D. $B_2 = 0$ $B_1 = 0$ $B_0 = 1$
- [10] 8. Quantos bits tem um barramento de endereços de um banco de 64 registos de 32 bits?
 - A. 32 B. 64 **C.** 6 D. 5
- [10] 9. Um CPU tem um barramento de dados de 8 bits e um barramento de endereços de 20 bits. Pretendese dotar o sistema de uma memória RAM de $2^{15} \times 8$ bit, cuja primeira posição corresponda ao endereço D4000_H. Qual é o endereço da última posição assumindo descodificação total?
 - A. DFFFF_H B. D7FFF_H C. D4FFF_H **D. DBFFF**_H
- [10] 10. Um CPU tem um barramento de endereços de 18 bits e um barramento de dados de 8 bits. Supor que apenas dispõe de circuitos RAM com 64 KiB (com 8 bits por posição). Quantos circuitos RAM são necessários para dotar o sistema da maior capacidade de memória possível?
 - A. 8 B. 2 **C. 4** D. 16

(Continua)

2016/17

Arquitetura e Organização de Computadores

Nome: ______ $N^{\underline{o}}$ de estudante: _____

Parte II — Questões de Resposta Aberta

Atenção: Responder diretamente no enunciado. Justificar todas as respostas.

11. Dois números A e B estão representados no formato IEEE 754 (precisão simples). Os seus valores expressos em hexadecimal são:

A: 41B50000_H B: C0240000_H

[10] (a) Indique, justificando, o valor decimal do número B.

Sinal: 1 (o número é negativo)

 $1,01001 \times 2^1 = 10,1001$

Valor decimal: - $(2^{1} + 2^{-1} + 2^{-4}) = -2,5625$

[20] (b) Realize a operação A + B (sem conversão para decimal), indicando todos os passos.

Sinal de A: 0 (Positivo)

Expoente de A: 131. Expoente real: 131 - 127 = 4

- 1 Sinal: Estamos a somar um número negativo a um número positivo, portanto o sinal do resultado será o do número de maior grandeza (número A), ou seja 0 (Positivo).
- 2 Diferença de expoentes: E_A $E_B=4$ 1=3 (é necessário alinhar a mantissa do número de menor expoente). O expoente a usar para o resultado é o do número de maior expoente, ou seja 4.
- 3 Efetuar o cálculo das mantissas (subtração): $M_R = M_A$ $M_B = 1,0110101$ 0,00101001

1.01101010

-0,00101001

1,01000001

4 - Normalização: Uma vez que a mantissa do resultado já está normalizada não é necessário realizar qualquer operação de normalização, logo $E_{\rm R}=4$.

O resultado será então:

Sinal: 0

Expoente: $4 + 127 = 131 = 10000011_2$

Mantissa: 1,010011

 $\begin{array}{c} 0\ 10000011\ 010000010000000000000000\\ 41A08000_{\rm H} \end{array}$

12. O circuito seguinte realiza as funções F(A, B, C, D) e G(A, B, C).

[15] (a) Obtenha uma expressão simplificada da função F.

$$F = \overline{\overline{\overline{A} + D} + \overline{\overline{B} + D} + \overline{C} + D} = (\overline{A} + D) \cdot (\overline{B} + D) \cdot (C + D)$$

Resposta alternativa:

A partir do produto de somas obtido pode escrever-se a expressão na forma de soma de produtos. Atendendo a que D é comum a todos os termos soma, resulta:

$$F = D + \overline{A} \cdot \overline{B} \cdot C$$

[10] (b) Mostre como realizar a função G usando portas NAND com apenas duas entradas.

$$G = \overline{A \cdot C \cdot \overline{B + B}} = \overline{\overline{\overline{A \cdot C}} \cdot \overline{B \cdot B}}$$

A expressão mostra que são necessárias quatro portas NAND de duas entradas, resultando o circuito lógico seguinte.

[10] (c) A figura mostra um circuito com um multiplexador de 4 para 1. Mostre qual a relação entre as funções H(A,B,C) e G(A,B,C).

O multiplexador realiza a função H(A,B,C) que apenas toma o valor 1 se A=1, B=0 e C=1. Para as restantes combinações das entradas H=0. Daqui resulta $H=A\cdot C\cdot \overline{B}$. Como $G=\overline{A\cdot C\cdot \overline{B}}$, conclui-se que $H=\overline{G}$.

Resposta alternativa:

Construir a tabela de verdade das funções H e G e concluir que elas têm valores opostos.

13. Considerar o circuito sequencial indicado na figura.

[15] (a) Inicialmente, $X_2 = X_1 = X_0 = 0$ e $Y_4 = Y_3 = Y_2 = Y_1 = Y_0 = 0$. Determinar o valor do registo $(Y_4Y_3Y_2Y_1Y_0)$ após 12 flancos ativos do sinal de relógio CLK com F = 1. Justificar a resposta.

O contador gera a sequência de valores (um por ciclo): 0, 1, 2, 3, 4, 5, 6, 7, 0, ...

O circuito guarda no registo o resultada da soma do valor anterior do registo e o valor proveniente do contador: i.e., o circuito acumula os valores 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, e 3, cujo total é 34 (em binário 100010_2).

Contudo, o registo tem apenas 5 bits (valor máximo: $31_{10}=11111_2$), pelo que se perde o perde o bit mais significativo da soma. O número que fica armazenado é 34-32=2: $(Y_4Y_3Y_2Y_1Y_0)=(00010)$.

[10] (b) O circuito foi alterado para ter $F(X_2, X_1, X_0) = X_2 \cdot \overline{X_1} + X_0$. Inicialmente, $X_2 = X_1 = X_0 = 0$ e $Y_4 = Y_3 = Y_2 = Y_1 = Y_0 = 0$. Determinar o valor do registo após 10 flancos ativos do sinal de relógio CLK. Justificar a resposta.

O registo só é alterado quando F=1 (entrada de habilitação): neste caso, o registo recebe a soma do seu valor atual com o valor produzido pelo contador. Portanto, esta versão acumula números que são ímpares ($X_0=1$) (i.e., 1, 3, 5 e 7) ou aqueles cuja representação em binário tem a forma (10–), i.e., 4 e 5.

Portanto, dos 10 números gerados pelo contador, o circuito vai acumular os valores 1, 3, 4, 5, 7, e 1, o que dá 21.

 $(Y_4Y_3Y_2Y_1Y_0) = (10101).$

[10] (c) Apresentar a implementação de uma nova função $F(X_2, X_1, X_0)$ que apenas deixa acumular valores que, na representação binária (X_2, X_1, X_0) , tenham exatamente um bit a 1. A implementação deve usar um multiplexer 4:1 e inversores (se necessário).

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 1		X_2	X_1	X_0	$\mid F \mid$
$\begin{array}{c ccccc} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{array}$					0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
1 1 0 0					
A tabela 1 1 1 0	A . 1 1				
	A tabela	1	1	1	0