TDT4121 Introduction to algorithms Assignment 2

Claudi Lleyda Moltó

September 2024

- The goal is quantifying how fast a function f(n) grows.
- We do this in relation to other functions we know well, such as
 - Constants k
 - 2 Logarithms log n
 - Polynomials n^k
 - **4** Exponentials k^n
 - Factorials n!

amongst others.

Asymptotic growth rate

- The goal is quantifying how fast a function f(n) grows.
- We do this in relation to other functions we know well, such as
 - Constants k
 - 2 Logarithms log n
 - Polynomials n^k
 - 4 Exponentials k^n
 - Factorials n!

amongst others.

 Intuitively, polynomial runtime (or better) is efficient and to be celebrated, and we should be wary of things under that in the previous list.

Asymptotic growth rate

- The goal is quantifying how fast a function f(n) grows.
- We do this in relation to other functions we know well, such as
 - Constants k
 - 2 Logarithms log n
 - Polynomials n^k
 - 4 Exponentials k^n
 - Factorials n!

amongst others.

• Intuitively, polynomial runtime (or better) is *efficient* and to be celebrated, and we should be wary of things under that in the previous list.

Keep in mind that this is a huge overgeneralization.

big-O notation

Definition (Asymptotic upper bound)

Consider a function f(n) that, after a sufficiently large n, is bounded above by a constant multiple of a function M(n).

big-O notation

Definition (Asymptotic upper bound)

Consider a function f(n) that, after a sufficiently large n, is bounded above by a constant multiple of a function M(n). Then we will say that "f(n) is of order M(n)", or "f(n) is O(M(n))", and we will write f(n) = O(M(n)).

Definition (Asymptotic upper bound)

Consider a function f(n) that, after a sufficiently large n, is bounded above by a constant multiple of a function M(n). Then we will say that "f(n) is of order M(n)", or "f(n) is O(M(n))", and we will write f(n) = O(M(n)).

Example

For example, take $f(n) = 5n^2 + 10n + 10$ and $M(n) = n^2$. Note how, although f(n) is always greater than M(n), this does not hold for 6M(n). In fact, for $n \ge 11$ we will have f(n) < 6M(n). Therefore, we have that f(n) is O(M(n)).

Definition (Asymptotic upper bound)

Consider a function f(n) that, after a sufficiently large n, is bounded above by a constant multiple of a function M(n). Then we will say that "f(n) is of order M(n)", or "f(n) is O(M(n))", and we will write f(n) = O(M(n)).

Example

For example, take $f(n) = 5n^2 + 10n + 10$ and $M(n) = n^2$. Note how, although f(n) is always greater than M(n), this does not hold for 6M(n). In fact, for $n \ge 11$ we will have f(n) < 6M(n). Therefore, we have that f(n) is O(M(n)).

- An upper bound does not have to be tight.
- We could also have said that $f(n) = O(n^3)$, or f(n) = O(n!).

Definition (Asymptotic lower bound)

Consider a function f(n) that, after a sufficiently large n, is bounded from *below* by a constant multiple of a function M(n).

big-O notation

Definition (Asymptotic lower bound)

Consider a function f(n) that, after a sufficiently large n, is bounded from *below* by a constant multiple of a function M(n). Then we will say that "f(n) is $\Omega(M(n))$ ", and we will write $f(n) = \Omega(M(n))$.

Example

Let's take the same functions as before, $f(n) = 5n^2 + 10n + 10$ and $M(n) = n^2$.

As we pointed out before, we will always have f(n) < M(n). Then, we have that f(n) is $\Omega(M(n))$, without the need on introducing any constant multiples, or any "sufficiently large n".

- Similarly, this does not have to be tight.
- We could also have said that $f(n) = \Omega(n)$, or $f(n) = \Omega(0)$.

Definition (Asymptotically tight bound)

Consider a function f(n) such that a function M(n) exists satisfying f(n) = O(M(n)) and $f(n) = \Omega(M(n))$.

Definition (Asymptotically tight bound)

Consider a function f(n) such that a function M(n) exists satisfying f(n) = O(M(n)) and $f(n) = \Omega(M(n))$. Then we will say that "f(n) is $\Theta(M(n))$ ", and we will write $f(n) = \Theta(M(n))$.

Example

In the previous examples we saw how $f(n) = 5n^2 + 10n + 10$ satisfied both f(n) = O(M(n)) and $f(n) = \Omega(M(n))$, for $M(n) = n^2$.

Therefore, we can say that $f(n) = \Theta(M(n))$.

- This DOES have to be tight (hence the name).
- This gives us a good notion for f(n) behaving like M(n).

- This is useful for simple cases, but how do we prove it for more complex situations?
- Ideally, without going through two cumbersome inequalities, finding appropriate multiple factors,...

- This is useful for simple cases, but how do we prove it for more complex situations?
- Ideally, without going through two cumbersome inequalities, finding appropriate multiple factors,...

Theorem (Page 38 of the course book)

Let f and g be two functions such that

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}$$

exists and is equal to some number c > 0. Then $f(n) = \Theta(g(n))$.

Example

Express
$$f(n) = (n+3)^2 \log(2n+1)$$
 using Theta notation.

Example

Express $f(n) = (n+3)^2 \log(2n+1)$ using Theta notation. We first devise a candidate $n^2 \log n$, and we begin to calculate

$$\lim_{n \to \infty} \frac{(n+3)^2 \log(2n+1)}{n^2 \log n} = \lim_{n \to \infty} \frac{(n^2+6n+9) \log(2n+1)}{n^2 \log n} =$$

$$= \lim_{n \to \infty} \left(\frac{n^2 \log(2n+1)}{n^2 \log n} + \frac{6n \log(2n+1)}{n^2 \log n} + \frac{9 \log(2n+1)}{n^2 \log n} \right) =$$

$$= \lim_{n \to \infty} \left(\frac{n^2 \log(2n+1)}{n^2 \log n} + \frac{n}{n^2} \frac{6 \log(2n+1)}{\log n} + \frac{1}{n^2} \frac{9 \log(2n+1)}{\log n} \right) =$$

$$= \lim_{n \to \infty} \frac{\log(2n+1)}{\log n} = 1.$$

Example

Express $f(n) = (n+3)^2 \log(2n+1)$ using Theta notation. We first devise a candidate $n^2 \log n$, and we begin to calculate

$$\lim_{n \to \infty} \frac{(n+3)^2 \log(2n+1)}{n^2 \log n} = \lim_{n \to \infty} \frac{(n^2+6n+9) \log(2n+1)}{n^2 \log n} =$$

$$= \lim_{n \to \infty} \left(\frac{n^2 \log(2n+1)}{n^2 \log n} + \frac{6n \log(2n+1)}{n^2 \log n} + \frac{9 \log(2n+1)}{n^2 \log n} \right) =$$

$$= \lim_{n \to \infty} \left(\frac{n^2 \log(2n+1)}{n^2 \log n} + \frac{n}{n^2} \frac{6 \log(2n+1)}{\log n} + \frac{1}{n^2} \frac{9 \log(2n+1)}{\log n} \right) =$$

$$= \lim_{n \to \infty} \frac{\log(2n+1)}{\log n} = 1.$$

Therefore, $f(n) = \Theta(n^2 \log n)$.