ML Reading Group (Fall 2015)

Lecture: 5

Learning Feature Representations with K-means

Lecturer: Krishnan Srinivasan Scribe: Jonathon Cai

1 Today

- Paper Discussion

2 Derivation of arg max term

We would like to minimize

$$\min_{s^{(i)}} ||Ds^{(i)} - x^{(i)}||_2^2$$

given $D \in \mathbb{R}^{n \times k}$, $x^{(i)} \in \mathbb{R}^n$, and $s^{(i)} \in \mathbb{R}^k$. The *j*-th column vector of D is denoted by $D^{(j)}$, where $\forall j$, the l_2 norms of $D^{(j)}$ are 1 and $s^{(i)}$ has at most one nonzero coordinate. It turns out that both these assumptions – the restriction on $D^{(j)}$ and the fact that $||s^{(i)}||_0 \leq 1$ – are important for the analysis.

For the moment assume that $s^{(i)}$ has a nonzero coordinate at $r = s_j^{(i)}$, where r is a constant number. Then $Ds^{(i)} = rD^{(j)}$. So we would like to solve the equation:

$$\frac{\partial}{\partial r} ||rD^{(j)} - x^{(i)}||_2^2 = 0$$

Expanding yields

$$\frac{\partial}{\partial r} \sum_{k} (rd_k - x_k)^2 = 0$$

$$\sum_{k} 2(rd_k - x_k)d_k = 0$$

$$r \sum_{k} d_k^2 = \sum_{k} x_k d_k$$

$$r = \sum_{k} x_k d_k \qquad \text{normalized } D^{(j)} \text{ assumption}$$

$$r = D^{(j)} x^{(i)}$$

Now we will consider the minimum of the norm over all j. Let r_j denote the r corresponding to j. Note that:

$$\sum_{k} (r_{j}d_{k} - x_{k})^{2} = \sum_{k} r_{j}^{2}d_{k}^{2} + x_{k}^{2} - 2r_{j}d_{k}x_{k}$$

$$= r_{j}^{2} + \sum_{k} x_{k}^{2} - 2r_{j}^{2}$$

$$= C - r_{j}^{2}$$

$$C = l_{2} \text{ norm squared of } x^{(i)}$$

Thus, for $||s^{(i)}||_0 \le 1$, the norm is minimized when we maximize $|r_j|$, or when $j = \arg\max_j |r_j|$.