Sprawozdanie 2 Metody Powella

Zadanie 2

"Dolina bananowa" Rossenbrocka. Wyznaczyć minimum funkcji:

$$Q(x_1,x_2) = 100(x_2 - x_1^2) + 7(1 - x_1)^2$$

na mapę poziomic doliny nanieść punkty pośrednie poszczególnych kroków oraz położenie baz.

Standardowy zestaw parametrów:

1. wektor początkowy: $x_0 = [0;0]^T$

2. baza: macierz jednostkowa

3. maksymalna ilość iteracji: *maxit = 100*

4. dokładność obliczeń: $e_0 = 10^{-7}$

Wyniki dla pierwszego algorytmu Powella przedstawia wykres 1.

Wykres 1

Na wykresie widzimy tylko jeden kierunek. Wynika to z tego, że algorytm powoduje szybką zbieżność do punktu (1,1).

W przypadku drugiej metody Powella osiągnięto podobne wyniki(Wykres 2).

Wykres 2

W każdej iteracji zapamiętywano punkt w wektorze a. Fragment kodu generujący wykresy:

```
if(index>3)
    x = -4:0.01:4;
    [X Y] = meshgrid(x,x);
    Z = 100*(Y-X.^2).^2 +7*(1-X).^2;
    figure
    contour(X,Y,Z,30);
    hold on;
    plot(a(1),'.');
    for j=2:index
        hold on;
        plot(a(j),'.');
        hold on;
        quiver(a(j-1), a(j));
    end
end
index = index + 1;
```

Zadanie 3

Zbadać działanie metod Powella dla funkcji:

$$Q(x) = 100(x_1^2 - x_2)^2 + 90(x_3^3 - x_4)^2 + 7(1 - x_3)^2 + 10.1[(x_2 - 1)^2 + (x_4 - 1)^2] + 19.8(x_2 - 1)(x_4 - 1)$$

dla punktu startowego $x_0 = [0;0;0;0]^T$

Bazowy zestaw parametrów:

```
im = inf;
maxit = 100;
kier_baz = [];
zm_kier = [];

itp = 1;
xn = [0;0;0;0];
n = length(xn);
dm = eye(n);
d = eye(n);
xa = xn;
qa = inf;
e0 = 1e-7;
```

Tabela 1 prezentuje wyniki dla różnej wartości liczby przeprowadzonych iteracji:

Maksymalna liczba iteracji	I metoda Powella	II metoda Powella
	x optymalne, q optymalne	
1	x = [0.95;0.93;1.04;1.11] q = 0.097	x=[0.95;0.92;1.04;1.13] q = 0.062
2	x=[0;0.16;0.85;0.61] q = 17.769	x=[0.69;0.43;0.89;0.69] q = 13.455
5	x=[0;-0.01;1.24;1.93] q = 0.88	x=[0.87;0.75;0.98;0.97] q = 0.745
50	X=[1.00;1.00;0.99;0.99] q = 0.0002	x=[0.96;0.92;1.00;1.03] q = 0.021574803437987
100	X=[1.00;1.00;0.99;0.99] q = 0.0002	[0.96;0.93;1.00;1.03] q=0.021
1000	X=[1.00;1.00;0.99;0.99] q=0.0002	x=[0.96;0.92;1.00;1.03] q=0.021

Tabela 1

Jak widać w tabeli 1, ilość iteracji wpływa na wynik, lecz istnieje pewna granica, po której nie jesteśmy w stanie poprawić wyniku. Pierwsza Metoda Powella dała lepsze wyniki.

Znalezione usterki/błędy

w skryptach POWE_1.M, POWE_2.M znaleziono niezainicjalizowane zmienne: kier_baz zm_kier, które powodują błąd podczas uruchamiania skryptu . Inicjalizacja wartościami pustymi []; naprawia usterkę.