Device-Independent Quantum Key Distribution Secure Against Collective Attacks

Non-Locality and Contextuality (2nd Semester - 2023/2024) Técnico Lisboa, ULisboa

ьу Rúben André Barreiro

Contents

1. Introduction

- Cryptography in the post-quantum era
- What is a Quantum Key Distribution (QKD) protocol?

2. Problem

- Can we trust the quantum devices employed on a QKD protocol?

3. Motivation

- What is a Device-Independent - Quantum Key Distribution (DI-QKD) protocol?

4. Results

- What are the ingredients of a DI-QKD protocol?
- How to prove the security of a DI-QKD protocol?

5. Conclusions

Some closing thoughts

Introduction

Introduction 1/32

- Some future quantum threats are expected to impact modern classical cryptography we use today
 - Grover's Algorithm
 - ▶ Unstructured searches, with a complexity of $O(\sqrt{N})$
 - Brute-force attacks on cryptographic key spaces
 - Halves the security strength of Advanced Standard Encryption (AES)
 - AES-128 and AES-192 are no longer secure!
 - Simon's Algorithm
 - Queries to black boxes, with complexity of O(N)
 - Brute-force attacks on cryptographic key spaces
 - Not clear yet how can affect the security strength of Advanced Standard Encryption (AES)

Introduction 2/32

- Some future quantum threats are expected to impact modern classical cryptography we use today (cont.)
 - Brassard-Høyer-Tapp (BHT) Algorithm
 - Also known as Quantum Birthday Attack
 - Combination of Grover's algorithm and Birthday Paradox
 - ► Collision searches, with a complexity of $O(\sqrt[3]{N})$
 - Reduces the security strength of Secure Hash Algorithm 3 (SHA-3) by $\frac{1}{3}$
 - ► SHA-3-224 and SHA-3-256 are no longer secure!
 - Shor's Algorithm
 - Solves factorization, discrete logarithm, and period finding problems, with a complexity of $O(\log(N)^2 \times \log(\log(N)) \times \log(\log(\log(N))))$
 - Completely breaks Rivest-Shamir-Adleman (RSA), Finite Field Diffie-Hellman (FF-DH), and Elliptic Curve Cryptography (ECC)!

Introduction 3/32

New cryptographic primitives are needed! Specially:

- Asymmetric public-key cryptography
- Key exchange protocols

Two new main approaches arise:

- (Classical) Post-Quantum Cryptography
 - Relies on mathematical problems (still believed) to be hard on both classical and quantum contexts
 - Uses classical information
 - Several cryptographic families:
 - Lattice-based, Code-based, Hash-based, Isogeny-based, Multivariate, and Zero-Knowledge Proofs (ZKPs)
 - New standards already chosen include:
 - Lattice-based: CRYSTALS-Kyber, CRYSTALS-Dilithium, FALCON

- Hash-based: SPHINCS+

Introduction 4/32

Two new main approaches arise (cont.):

- Quantum Cryptography
 - Relies on quantum mechanics and physics
 - Uses (mainly) quantum information
 - ▶ Based on Discrete-Variable (DV) for qubits
 - ▶ Based on Continuous-Variables (CV) for gumodes
 - Applies Prepare-and-Measure or Entanglement strategies
 - Popular cryptographic primitives include:
 - Quantum Key Distribution (QKD)
 - Semi-Quantum Key Distribution (SQKD)
 - Quantum Conference Key Agreement (QCKA)
 - Quantum Digital Signature Scheme (QDSS)
 - Quantum Bit Commitment (QBC)
 - Quantum Oblivious Transfer (QOT)
 - Quantum Multi-Party Computation (QMPC)

Introduction 5/32

QKD protocol

QKD protocol

QKD protocol

Introduction 6/32

Figure 2: Flowchart of a QKD protocol

Preparation of Quantum States

Single Particles, Entangled Particles, Coherent States, Fock States, etc.

Transmission of Quantum States

- Uses a quantum communication channel with a certain efficiency η_C
- * "Flying" quantum states can be eavesdropped, with noisy effects ϵ

3. Measurement of Quantum States

- Uses quantum measurement devices with a certain efficiency η_D
- Composes a raw key

Secret Key Sifting

Identifies which protocol rounds can be used to compose a sifted key

Introduction 7/3

Figure 2: Flowchart of a QKD protocol

Parameter Estimation

- Samples and evaluates the Quantum Bit Error Rate (QBER) δ of the quantum communication channel
- Estimates the key rate
- Estimates the secure mutual information between Alice and Bob

6. (Eavesdropping detected?)

$$\Rightarrow \delta > (1 - \eta_{\mathcal{C}}) + (1 - \eta_{\mathcal{D}}) + \epsilon$$
?

7a. Yes! ⇒ Information Reconciliation

- Applies an Error Correction Code (ECC) to correct the sifted into an error-free key
- These ECC algorithms include:
 - Cascade protocol, Winnow protocol, and Low-Density Parity-Check (LDPC) codes
- Can be accelerated by classical software and hardware (e.g., OpenMP, CUDA, etc.)

7b. No! \Rightarrow Abort? (or Retry?)

Introduction 8/32

Figure 2: Flowchart of a QKD protocol

8. Privacy Amplification Estimation

- Applies a Universal Hash Function on the error-free key, composing the final (and amplified) secret key
- This Universal Hash Function can be a Toeplitz Hashing procedure, usually applied using a random seed as well
- Can be accelerated by classical software and hardware (e.g., OpenMP, CUDA, etc.)
- The Secret Key Sifting, Parameter Estimation, Information Reconciliation, and Privacy Amplification steps require an authenticated and interactive exchange of classical information
 - We can achieve it with a Carter-Wegman Message Authentication Code (CW-MAC), requiring an initial small secret defined a priori

Introduction 9/32

Problem

Problem 10/32

Can a QKD protocol with untrusted quantum devices be secure?

- Considering Entanglement-based QKD protocols:
 - ▶ The entangled particles are emitted from a common source
 - The parties measure each particle on a randomly chosen basis
 - The measurement outcomes:
 - Are kept private and secret
 - Compose the (initial) raw key
 - Here, we assume that:
 - ► The locations of the parties (Alice and Bob) are secure
 - The parties (Alice and Bob) trust their measuring devices
 - The source of the entangled particles:
 - It is not trusted by the parties (Alice and Bob)
 - Might be under the control of an eavesdropper (Eve)

Problem 11/32

Can a QKD protocol with untrusted quantum devices be secure?

- Considering Entanglement-based QKD protocols:
 - The source of the entangled particles is **not trusted**:
 - Example:
 - The eavesdropper could replace the original source of entangled particles by a new one
 - This new source of entangled particles produces quantum states that give it useful information about the parties' measurement outcomes
 - ► However, the parties (Alice and Bob) can...
 - 1. Perform measurements in well-chosen bases on a random subset of particles
 - 2. Compare their measurement results
 - 3. Estimate the quantum states they receive from the eavesdropper
 - 4. Decide whether a secret key can be extracted from those quantum states

Problem 12/32

Can a QKD protocol with untrusted quantum devices be secure?

- Considering Entanglement-based QKD protocols:
 - And about the cases that even the measuring devices are **not trusted**?
 - Examples:
 - The measurement directions may drift with time due to manufacture imperfections
 - A malicious party might have fabricated them
 - ▶ In those cases, the parties (Alice and Bob)...
 - Have no guarantee that the actual measurement bases correspond to the expected ones
 - Cannot even make assumptions about the dimension of the Hilbert Space defined in those physical apparatuses
- QKD protocols can often ensure unconditional security
 - If combined with One-Time Pad (OTP)
 - But... They can be susceptible to side-channel attacks!

Problem 13/32

Motivation

Motivation 14/32

- Device-Independent Quantum Key Distribution (DI-QKD) is a concept of security for QKD protocols that:
 - Seeks to ensure the security of QKD protocols:
 - Without considering any details about the internal working of the quantum devices being used
 - Therefore, guarantees the security of a QKD protocol even when the quantum devices are imperfect, untrusted, or manipulated by a malicious party
 - ▶ Based on the violation of Bell Inequalities, ensuring that:
 - There are quantum correlations between the quantum devices being used
 - The security is inferred directly from those quantum correlations observed on the outcomes from the quantum measurement devices
 - Do not exist any local hidden variables
 - It is considered a "holy-grail" on Quantum Cryptography!

Motivation 15/32

- Device-Independent Quantum Key Distribution (DI-QKD) is a concept of security for QKD protocols that:
 - However... Needs basic assumptions to be ensured:
 - ► The physical locations of the parties are secure
 - No unwanted information can leak out to the outside
 - The parties have a Trusted Random Number Generator (TRNG), producing a classical random output
 - Possibly, one derived from thermal noise or based on a Quantum Random Number Generator (QRNG)
 - The parties have trusted classical devices
 - Capable of storing and processing the classical data generated by their quantum devices
 - The parties share a public authenticated classical communication channel
 - The parties can start with a small shared secret
 - Quantum Mechanics is correct (and well-defined)

Motivation 16/32

- How can DI-QKD protocols possibly be secure?
 - Some reasons lead the (usual) QKD protocols to be insecure in Device-Independent scenarios:
 - Sometimes they produce classical correlations
 - We can reproduce them without invoking quantum mechanics at all
 - We can generate them from a set of classical random data shared by the parties' systems
 - ► Those classical correlations can be written as:
 - $P(ab|XY) = \sum_{\lambda} P(\lambda) \times D(a|X,\lambda) \times D(b|Y,\lambda)$ Where:
 - λ is a classical variable with probability distribution $P(\lambda)$, shared by the parties' quantum devices
 - $D(a|X, \lambda)$ is a function that completely specifies Alice's outputs once the input X and the variable λ are given
 - $D(b|Y, \lambda)$ is a function that completely specifies Bob's outputs once the input Y and the variable λ are given

Motivation 17/32

- How can DI-QKD protocols possibly be secure?
 - Some reasons lead the (usual) QKD protocols to be insecure in Device-Independent scenarios:
 - A copy of the variable λ will give the full information about the parties' outputs a and b to an eavesdropper (Eve), once the inputs X and Y are announced
 - However... The strategy for these correlations is not available to the eavesdropper if the outputs a and b of the parties' quantum devices
 - Are correlated in a non-local way
 - Violate a Bell Inequality
 - Therefore, the violation of a Bell Inequality is a key requirement for the security of DI-QKD protocols!

Motivation 18/32

Results

Results 19/32

- Let's consider the following QKD protocol:
 - The parties (Alice and Bob) share a quantum communication channel between them
 - Consisting of common source of entangled particles
 - Producing an entangled Werner quantum state $ho_{AB}=p|\Phi^+
 angle\langle\Phi^+|+(1-p)^{\frac{\mathbb{I}}{4}}$

Where:
$$|\Phi^{+}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$
 and

the term $\frac{\sqrt{1}}{4}$ represents white noise

- The parties choose a measurement to apply to their particles for each round, resulting on binary outcomes
 - ► Alice has three measurements choices: $X \in \{A_0, A_1, A_2\}$
 - Where: $A_0=\sigma_z$, $A_1=rac{(\sigma_z+\sigma_x)}{\sqrt{2}}$, $A_2=rac{(\sigma_z-\sigma_x)}{\sqrt{2}}$
 - ▶ Bob has two measurements choices: $Y \in \{B_0, B_1\}$
 - Where: $B_1 = \sigma_z$, $B_2 = \sigma_x$
 - ▶ The binary outcomes are denoted as $\{+1, -1\}$

Results 20/32

- Let's consider the following QKD protocol:
 - Recall that:

$$\rho_{AB} = \begin{bmatrix} \frac{(1+p)}{4} & 0 & 0 & \frac{p}{2} \\ 0 & \frac{(1-p)}{4} & 0 & 0 \\ 0 & 0 & \frac{(1-p)}{4} & 0 \\ \frac{p}{2} & 0 & 0 & \frac{(1+p)}{4} \end{bmatrix}$$

$$A_0 = B_1 = \sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$B_2 = \sigma_{\mathsf{x}} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Results 21/32

- Let's consider the following QKD protocol:
 - The (initial) raw key is extracted from the resulting outcomes of the pair of measurements $\{A_0, B_1\}$
 - The Quantum Bit Error Rate (QBER) is defined as:

•
$$Q = P(a \neq b|01) = P(a \neq b|A_0, B_1) =$$

= $P(a = 0, b = 1|A_0, B_1) + P(a = 1, b = 0|A_0, B_1)$

- Estimates the amount of quantum correlations between the parties, using the same measurement
- Quantifies the amount of classical communication required for the Error Correction protocol/code during the Information Reconciliation step

Results 22/32

- Let's consider the following QKD protocol:
 - ► The measurements A₁, A₂, B₁, and B₂ are used on a subset of the particles to estimate the Clauser-Horne-Shimony-Holt (CHSH) polynomial:

- Where the correlators are defined as $\langle a_i b_i \rangle = P(a = b|i,j) P(a \neq b|i,j)$
- The CHSH polynomial is used by the parties to:
 - Bound the eavesdropper's potential partial information about the (weak) error-free key
 - Define how much secret information available to a potential eavesdropper needs to be reduced during the Privacy Amplification step
- The parameters Q and S are used to estimate the information available to a potential eavesdropper

Results 23/32

- Let's consider the following QKD protocol:
 - ► The CHSH polynomial's correlations satisfy:

$$ightharpoonup S = 2\sqrt{2}p = 2\sqrt{2}(1-2Q)$$

- In order to bound the potential eavesdropper's available information, the parties do not need to assume that:
 - ▶ They perform the measurements A_0 , A_1 , A_2 , B_1 , and B_2
 - ▶ The quantum systems ρ_{AB} are of dimension 2
- Regarding the CHSH polynomial, we have:
 - Classically correlated data, for $p \leq \frac{1}{\sqrt{2}}$, and thus, $S \leq 2$
 - In this case, secure DI-QKD protocol is not possible
 - Maximal quantum violation, for p=1, and thus, $S=2\sqrt{2}$ - In this case, the potential eavesdropper has
 - has no available information about the secret key
 - Now, we can interpolate for the range $\frac{1}{\sqrt{2}} to prove the security of the DI-QKD protocol$

Results 24/32

- Let's consider the following eavesdropping strategies:
 - For the most general attacks:
 - The only data available to the parties to bound the eavesdropper's knowledge is:
 - The observed relation between the inputs and outputs
 - No assumptions on the type of quantum measurements and quantum physical systems used are made
 - ▶ Generally, we can model these attacks as a tripartite entangled quantum state $|\Psi\rangle_{ABE} \in \mathcal{H}_A^{\otimes n} \otimes \mathcal{H}_B^{\otimes n} \otimes \mathcal{H}_E$
 - Where: *n* is the number of bits of the raw key
 - The size d of the Hilbert Space of the parties' quantum physical systems is:
 - Unknown to the parties
 - Fixed (and known) to the eavesdropper

Results 25/32

- Let's consider the following eavesdropping strategies:
 - Focusing on collective attacks:
 - The eavesdropper applies the same attack to each quantum physical system of the parties
 - The respective quantum states are independent and identically distributed (i.i.d.), and thus, $|\Psi\rangle_{ABF} = |\psi\rangle_{ABF}^{\otimes n}$
 - The quantum measurement devices
 - Have no memory register
 - Behave independent and identically distributed (i.i.d.) in every round of the QKD protocol
 - ► The (asymptotic) secret key rate r has a lower bound given by the Devetak-Winter key rate r_{DW} formula:

•
$$r \ge r_{DW} = \underbrace{I(A_0:B_1)}_{\mbox{Mutual information between Alice and Bob}} - \underbrace{\chi(B_1:E)}_{\mbox{Holevo quantity between Eve and Bob}}$$

Results 26/32

- Let's consider the following eavesdropping strategies:
 - Focusing on collective attacks:
 - ▶ The mutual information between Alice and Bob is given as:

•
$$I(A_0:B_1) = \underbrace{H(A_0)}_{\mbox{Individual (binary)}} + \underbrace{H(B_1)}_{\mbox{Shannon entropy}} - \underbrace{H(A_0,B_1)}_{\mbox{Shannon entropy}}$$

Shannon entropy

for Alice

Individual (binary)

Shannon entropy

for Bob

Shannon entropy

for Bob

Since we assume uniform marginals, we also have:

•
$$I(A_0:B_1)=1-H(Q)$$
 Individual (binary) Shannon entropy on QBER

► The Holevo quantity between Eve and Bob is given as:

•
$$\chi(B_1 : E) = S(\rho_E) - \frac{1}{2} \sum_{b_1 = +1} S(\rho_{E|b_1})$$

Where:

- ρ_E denotes the Eve's quantum state after (partially) tracing out Alice and Bob's particles, i.e., $\rho_E = Tr_{AB} \left(|\psi\rangle_{ABF} \langle \psi|_{ABF} \right)$
- $\rho_{E|b_1}$ denotes the Eve's quantum state when Bob has obtained the outcome result b_1 for the measurement setting $B_1 = \sigma_z$

Results 27/32

- Let's consider the following eavesdropping strategies:
 - Security against collective attacks:
 - The optimal collective attack occurs when:
 - The tripartite entangled quantum state $|\psi\rangle_{ABE}$ is the purification of the (original) bipartite entangled quantum state ρ_{AB}
 - The Holevo quantity $\chi(B_1:E)$ achieves its possible largest value (compatible with the parameters Q and S)
 - When the parties symmetrize their uniform marginals:

$$\chi(B_1:E) \leq h\left(\frac{1+\sqrt{(\frac{5}{2})^2-1}}{2}\right)$$
 Theorem for DI-QKD

Considering the optimal collective attack:

• We have to consider
$$\chi(B_1:E)=h\left(\frac{1+\sqrt{\left(\frac{5}{2}\right)^2-1}}{2}\right)$$

► The key rate is given by $r \ge 1 - h(Q) - h\left(\frac{1 + \sqrt{(\frac{S}{2})^2 - 1}}{2}\right)$

Results 28/32

- Simplifying the calculations for the DI-QKD protocol...
 - Recall that for the CHSH polynomial, we have:

$$S = 2\sqrt{2}(1-2Q)$$

• We can simplify the (maximum) Holevo bound $\chi(B_1:E)$ and Devetak-Winter key rate r_{DW} for the DI-QKD protocol:

$$\chi(B_1:E) = h\left(\frac{1+\sqrt{(\frac{5}{2})^2-1}}{2}\right) = h\left(\frac{1+\sqrt{(\frac{2\sqrt{2}(1-2Q)}{2})^2-1}}{2}\right)$$

$$r \ge r_{DW} = 1 - h(Q) - h\left(\frac{1 + \sqrt{\left(\frac{5}{2}\right)^2 - 1}}{2}\right) =$$

$$= 1 - h(Q) - h\left(\frac{1 + \sqrt{\left(\frac{2\sqrt{2}(1 - 2Q)}{2}\right)^2 - 1}}{2}\right)$$

Results 29/32

- Simplifying the calculations for the (usual) Entanglement-based QKD protocol...
 - Recall that for the CHSH polynomial, we have:

$$S = 2\sqrt{2}(1-2Q)$$

The respective Holevo bound is given as follows:

$$\chi(B_1:E) \leq h\left(Q + \frac{s}{2\sqrt{2}}\right)$$

We can simplify the (maximum) Holevo bound $\chi(B_1:E)$ and the Devetak-Winter key rate r_{DW} for the (usual) Entanglement-based QKD protocol:

$$\chi(B_1:E) = h\left(Q + \frac{s}{2\sqrt{2}}\right) = h\left(Q + \frac{2\sqrt{2}(1-2Q)}{2\sqrt{2}}\right) =$$

$$= h\left(Q + (1-2Q)\right) = h\left(1-Q\right)$$

$$r \ge r_{DW} = 1 - h(Q) - h\left(Q + \frac{s}{2\sqrt{2}}\right) =$$

$$= 1 - h(Q) - h\left(Q + \frac{2\sqrt{2}(1-2Q)}{2\sqrt{2}}\right)$$

$$= 1 - h(Q) - h\left(Q + (1-2Q)\right) = 1 - h(Q) - h(1-Q)$$

Results 30/32

What are the differences between the (usual) Entanglement-based QKD and DI-QKD protocols?

· For Holevo bounds:

- Greater Holevo bounds for the DI-QKD protocol
- We can easily detect the presence of an eavesdropper for the DI-QKD protocol, allowing to better tolerate a QBER, in comparison to the Entanglement-Based QKD protocol
- For a QBER Q around 14%, the eavesdropper has all the information about the raw key in the DI-QKD protocol

· For Devetak-Winter key rates:

Lower Devetak-Winter key rates for the DI-QKD protocol
 The noise introduced by the eavesdropper will have greater
impact on the DI-QKD protocol, reducing more the key rate,
 compared to the Entanglement-Based QKD protocol
 - For a QBER Q around 7%, no extractable secure raw key
 will be possible in the DI-OKD protocol

Quantum Bit Error Rate (0) in %
Figure 3: Holevo bounds with respect to QBER Q

6.0 8.0 10.0 12.0 14.0

00 20

Figure 4: Devetak-Winter key rates with respect to QBER Q

Results 31/32

Conclusion

Conclusion 32/32