Question Set

Problem 1. 1.3.2 Let K_2 denote the collection of all closed convex sets in the plane. Show that $D(n, K_2) = o(n)$ and $\operatorname{disc}(n, K_2) \geq \frac{n}{2}$.

Solution. We choose a triangular lattice of points. This obtains a Lebesgue-measure discrepancy of about $\sqrt{n} \in o(n)$ according to the book (page 3). To show that $\operatorname{disc}(n, \mathcal{K}_2) \geq \frac{n}{2}$ consider the following set of points P in the plane where |P| = n. Let P be n points evenly spaced about the circle of radius $\frac{1}{2}$ centered at $(\frac{1}{2}, \frac{1}{2})$ within the unit cube. Denote this circle by C. By the pigeon hole principle every coloring χ of C will color one at least $\frac{n}{2}$ of the points of P the same color. Let the closed convex polygon formed by these points be denoted by C. Then $|\chi(P \cap G)| \geq \frac{n}{2}$.

Problem 2. 4.2.4 Let $A = \frac{1}{2}(H + J)$ be the incidence matrix of set system S. Show that the eigenvalue bound is quite weak for A, namely that the smallest eigenvalue of A^TA is O(1)

Proof. Similar to the proof of Proposition 4.4 (Hadamard set system) in the book we first calculate A^TA :

$$A^{T}A = \frac{1}{4} (H^{T} + J^{T}) (H + J)$$

$$= \frac{1}{4} (H^{T}H + J^{T}J + H^{T}J + J^{T}H)$$

$$= \frac{n}{4} (I + J + R + R^{T})$$

where R is the $n \times n$ matrix whose first row is all ones and all the remaining entries are zeros. The eigenvalue bound says that $\operatorname{disc}(A) \ge \operatorname{disc}_2(A) \ge \sqrt{\lambda_n}$ where λ_n is the smallest eigenvalue. Since $\lambda_n = \min_{\|x\|=1} x^T A^T A x$ we will find an x such that $\|x\| = 1$ and $x^T A^T A x \in O(1)$. Consider

$$x = \left\langle -\sqrt{\frac{n-1}{n+3}}, \frac{2}{\sqrt{(n-1)(n+3)}}, \frac{2}{\sqrt{(n-1)(n+3)}}, \dots, \frac{2}{\sqrt{(n-1)(n+3)}} \right\rangle.$$

Observe that:

$$x^{T}A^{T}Ax = \frac{n}{4}x^{T} \left(I + J + R + R^{T}\right) x$$

$$= \frac{n}{4} \left(\sum_{i=1}^{n} (x_{i})^{2} + \left(\sum_{i=1}^{n} x_{i}\right)^{2} + 2x_{1} \left(\sum_{i=1}^{n} x_{i}\right) + \right)$$

$$= \frac{n}{4} \left(1 + \frac{n-1}{n+3} - \frac{2(n-1)}{n+3}\right)$$

$$= \frac{n}{4} \left(1 - \frac{(n-1)}{n+3}\right)$$

$$= \frac{n}{n+3} \le 1$$

Thus the eigenvalue bound is not tight.

Problem 3. 4.3.2 Find a set system (X, S) and a set $A \subset X$ such that $\operatorname{disc}(S) = 0$ but $\operatorname{disc}(S \cup \{A\})$ is arbitrarily large.

Solution. Let $X = Y \cup Z$ where Y and Z are two disjoint sets of size n. Let S be the set of all subsets of X of the form $Y' \cup Z'$ where $Y' \subset Y$, $Z' \subset Z$ and |Y'| = |Z'|. As we have discussed, $\operatorname{disc}(S) = 0$ by coloring elements of Y color 1 and the elements of Z color -1. Next let A = Y. Consider $\operatorname{disc}(S \cup \{A\})$. Consider any coloring χ of X. Suppose without loss of generality that $Y' \subseteq Y$ such that for all $y \in Y'$, $\chi(y) = 1$ and $|Y'| \geq \frac{n}{2}$. Either $|Y'| - (|Y| - |Y'|) \geq \frac{n}{4}$ or $|Y'| - (|Y| - |Y'|) < \frac{n}{4}$. In the former case $\operatorname{disc}(S \cup \{A\}) \geq \frac{n}{4} \in O(n)$. In the latter case |Y'| and |Y| - |Y'| (i.e. the number of elements colored 1 and -1 respectively by χ) differ by at most $\frac{n}{4}$. Consider a subset $Z' \subset Z$ such that |Z'| = |Y'|. And let $Z' = Z_1 \cup Z_{-1}$ such that for all $z \in Z_1$, $\chi(z) = 1$ and for all $z \in Z_{-1}$, $\chi(z) = -1$ Either $|Z_1| \geq \frac{n}{4}$ or $|Z_{-1}| \geq \frac{n}{4}$. In the former case $\chi(Y' \cup Z') \geq \frac{n}{4}$. In the latter case $\chi((Y - Y') \cup Z'') \geq \frac{n}{4}$ where $Z'' \subset Z'$, $Z_{-1} \subset Z''$ and |Z''| = |Y - Y'|. Since $Y' \cup Z'$ and $(Y - Y') \cup Z'' \in S$, in both case we have $\operatorname{disc}(S \cup \{A\}) \geq \frac{n}{4} \in O(n)$.

Problem 4. 4.3.5 Let A be an $m \times n$ real matrix and set

$$\Delta = \max_{w \in \{-1,0,1\}^n} \min_{x \in \{-1,1\}^n} \|A(x-w)\|_{\infty}$$

(linear discrepancy with weights -1, 0, 1). Prove that $\operatorname{lindisc}(A) \leq 2\Delta$.

Proof. From our discussion two weeks ago, we observe that the proof of lindisc $\leq 2 \cdot \text{herdisc}$ is essentially the same as that for $\text{lindisc}(A) \leq 2 \cdot \Delta$. We will reproduce the proof here in our own words to make sure it sticks. Δ can be interpreted as the moment when $B = \bigcup_{a \in \{-1,1\}^n} U + a$ covers the points $w \in \{-1,0,1\}^n$. We claim that at the same moment $C = \bigcup_{a \in \{-1,1\}^n} 2U + a$ covers all points $x \in [-1,1]^n$. Since C is closed (all boundary points of C are in C), we can restrict our attention to the dense set of dyadic rationals of the form $v = \frac{z}{2^k} \in [-1,1]^n$ where $z \in \mathbb{Z}^n$. The base case holds since B covers the points w described above. Consider any point $v = \frac{z}{2^k} \in [-1,1]^n$. Then $2v = \frac{z}{2^{k-1}} \in [-2,2]^n$. There exists $b \in \{-1,1\}^n$ such that $2v - b \in [-1,1]^n$. Since $2v - b = \frac{z+2^{k-1}b}{2^{k-1}}$, by the induction hypothesis there exists some $a \in \{-1,1\}^n$ such that $2v - b \in U + a$ and $v \in U + \frac{a+b}{2}$ (1). $\frac{a+b}{2} \in \{-1,0,1\}^n$. Since B covers all such points, there exists some $c \in \{-1,1\}^n$ such that $\frac{a+b}{2} \in U + c$. By substituting this into (1) we have

$$v \in U + (U + c) = 2U + c$$
.

It is important to note that U is convex here. Otherwise it might not be the case that elements of U are closed under addition.

Problem 5. 4.3.4 Show that the $1 \times n$ matrix $[1, 2, 2^2, ..., 2^{n-1}]$ has hereditary discrepancy 2^{n-1} and linear discrepancy at most 2.

Proof. (I know you talked about solution to this problem last time, but I just want to write it down to make sure.) Consider the subset of the universe consisting of the element 2^{n-1} . Coloring this element ± 1 will yield hereditary discrepancy of 2^{n-1} . Consider any $w \in [0,1]^n$ and let $[1,2,2^2,...,2^{n-1}] \cdot w = k \in [0,2^n-1]$. Observe that each of the 2^n elements of $x \in -1,1^n$ yields a distinct integer in the range $\{0,1,...,2^n-1\}$. Thus $[1,2,2^2,...,2^{n-1}] \cdot x$ is within distance 1 to any value k. Now if we consider the definition of linear discrepancy where $w \in [-1,1]^n$ and $x \in \{-1,1\}^n$, we see that the linear discrepancy is at most 2.