Example 1

Choose a complex number z_0 and look at the sequence:

$$z_0$$
 z_1 z_2 z_3 ... where $z_{n+1} = z_n^2$

If we choose:

$$z_0 = 4 e^{i\pi/5}$$

We get:

$$4e^{i\pi/5}$$

$$16e^{i2\pi/5}$$

$$256e^{i4\pi/5}$$

$$65536e^{i8\pi/5}$$
 ...

If we choose:

$$z_0 = \frac{1}{3}e^{i\pi/5}$$

We get:

$$\frac{1}{3}e^{i\pi/5}$$

$$\frac{1}{9}e^{i2\pi/5}$$

$$\frac{1}{91}e^{i4\pi/5}$$

$$\frac{1}{9}e^{i2\pi/5} \qquad \qquad \frac{1}{81}e^{i4\pi/5} \qquad \qquad \frac{1}{6561}e^{i8\pi/5} \dots$$

If $mod(z_0)>1$ then $mod(z_n)$ tends to infinity as n tends to infinity.

If $mod(z_0) < 1$ then $mod(z_n)$ does not tend to infinity as n tends to infinity.

We could colour the number plane.

 z_0 is in the red region if $mod(z_0) > 1$ and z_0 is in the blue region if $mod(z_0) < 1$

The Julia set is the boundary between the red region and the blue region.

A circle.

So far, so boring ...

Example 2

Choose a complex number z_0 and look at the sequence:

$$z_0 = z_1 = z_2 = z_3 \dots$$
 where $z_{n+1} \to z_n^2 = 0.5 + 0.3i$

For some values of z_0 we find $mod(z_n)$ tends to infinity as n tends to infinity.

For other vales of z_0 we find $mod(z_n)$ does not tend to infinity as n tends to infinity.

We could colour the number plane.

 z_0 is in the red region if $mod(z_n)$ tends to infinity as n tends to infinity.

 z_0 is in the blue region if $mod(z_n)$ does not tend to infinity as n tends to infinity.

The Julia set is the boundary between the red region and the blue region.

A slightly deformed circle.

WE NEED A DIAGRAM

So far, so slightly interesting ...

In general:

Choose a complex number z_0 and look at the sequence:

$$z_0$$
 z_1 z_2 z_3 ... where $z_{n+1} \rightarrow z_n^2 + c$

Look at the Julia set for different values of *c* The results are truly amazing.

WE NEED DIAGRAMS