Электростатика 1

- 13.10. Два положительных точечных заряда Q и 4Q закреплены на расстоянии $l=60\,\mathrm{cm}$ друг от друга. Определить, в какой точке на прямой, проходящей через заряды, следует поместить третий заряд Q_1 так, чтобы он находился в равновесии. Указать, какой знак должен иметь этот заряд для того, чтобы равновесие было устойчивым, если перемещения заряда возможны только вдоль прямой, проходящей через закрепленные заряды.
- 13.6. Расстояние между двумя точечными зарядами $Q_1=1$ мкКл и $Q_2=-Q_1$ равно 10 см. Определить силу F, действующую на точечный заряд Q=0,1 мкКл, удаленный на $r_1=6$ см от первого и на $r_2=8$ см от второго зарядов.
- **Задача 3**. Лепестки электроскопа представляют собой проводящие нити длиной 60 см, на которых подвешены одинаковые шарики массой по 25 г. В начальном положении шарики соприкасаются и нити вертикальны. При сообщении электроскопу заряда Q нити отклоняются на угол 30° от вертикали. Чему равен заряд Q?

Сила взаимодействия точечного заряда с равномерно распределенным:

- 1) по нити, отрезку
- 2) по кольцу
- 13.15. Тонкий длинный стержень равномерно заряжен с линейной плотностью τ заряда, равной $10^4\,\mathrm{hKn/m}$. На продолжении оси стержня на расстоянии $a=20\,\mathrm{cm}$ от его конца находится точечный заряд $Q=10\,\mathrm{hKn}$. Определить силу F взаимодействия заряженного стержня и точечного заряда.

Напряженность

Задача 4. Пылинка массой 17 мкг покоится в однородном электрическом поле. Величина напряженности поля составляет 2,5 мВ/см, силовые линии поля перпендикулярны поверхности Земли. Вычислите величину заряда пылинки в микрокулонах.

Поле заряженной нити, кольца на оси

13.21. Тонкое полукольцо радиусом $R=10\,\mathrm{cm}$ несет равномерно распределенный заряд с линейной плотностью $\tau=10^3\,\mathrm{nK}_{\mathrm{J}/\mathrm{M}}$. В центре кривизны полукольца находится заряд $Q=20\,\mathrm{nK}_{\mathrm{J}}$. Определить силу F взаимодействия точечного заряда и заряженного полукольца.

Электрический диполь

ОСНОВНЫЕ ФОРМУЛЫ

Диполь есть система, состоящая из двух равных по модулю и противоположных по знаку зарядов. Вектор 1, проведенный от отрицательного к положительному заряду, называется плечом диполя.

• Электрический момент диполя

$$\mathbf{p} = |Q|\mathbf{1}$$

где |Q| — заряд диполя.

ullet Диполь называется точечным, если расстояние r от центра диполя до точки, в которой действие диполя рассматривается, много больше плеча диполя l.

Напряженность поля точечного диполя:

а) на оси диполя

$$\mathbf{E}=rac{1}{4\piarepsilon_0}rac{2\mathbf{p}}{arepsilon r^3},$$
 или $E=rac{1}{4\piarepsilon_0}rac{2p}{arepsilon r^3};$

б) на перпендикуляре к оси диполя

$$\mathbf{E} = -rac{1}{4\piarepsilon_0}rac{\mathbf{p}}{arepsilon r^3},$$
 или $E = rac{1}{4\piarepsilon_0}rac{p}{arepsilon r^3};$

в) в общем случае

$$\mathbf{E} = rac{1}{4\piarepsilon_0arepsilon} \left(rac{3(\mathbf{pr})}{r^4}rac{\mathbf{r}}{r} - rac{\mathbf{p}}{r^3}
ight),$$
 или $E = rac{1}{4\piarepsilon_0arepsilon}rac{p}{r^3}\sqrt{1+3\cos^2 heta},$

где θ — угол между радиус-вектором ${\bf r}$ и электрическим дипольным моментом ${\bf p}$ (рис. 16.1).

 Механический момент, действующий на диполь с электрическим моментом р, помещенный в однородное электрическое поле с напряженностью E,

 $\mathbf{M} = [\mathbf{pE}],$ или $M = pE \sin \alpha$,

где α — угол между направлениями векторов ${\bf p}$ и ${\bf E}$.

Пример 1. Диполь с электрическим моментом $p=2\,\mathrm{nKn\cdot m}$ находится в однородном электрическом поле напряженностью $E=30\,\mathrm{kB/m}$. Вектор р составляет угол $\alpha_0=60^\circ$ с направлением силовых линий поля. Определить произведенную внешними силами работу A поворота диполя на угол $\beta=30^\circ$.