Спектральное разложение

Собственные числа и векторы

• Собственные числа и собственные векторы матрицы.

- Собственные числа и собственные векторы матрицы.
- Характеристический многочлен.

- Собственные числа и собственные векторы матрицы.
- Характеристический многочлен.
- Алгебраическая кратность.

От оператора к матрице

Определение

Если для оператора $\mathsf{L}:\mathbb{R}^n \to \mathbb{R}^n$ найдётся такой ненулевой вектор \mathbf{v} , что $\mathsf{L}\,\mathbf{v} = \lambda \cdot \mathbf{v}$, где $\lambda \in \mathbb{R}$, то:

- вектор v называется собственным вектором;
- число λ называется собственным числом.

Собственные числа и векторы матрицы

Определение

Собственными числами и собственными векторами матрицы размера $n \times n$ называются собственные числа и векторы соответствующего линейного оператора.

Собственные числа и векторы матрицы

Определение

Собственными числами и собственными векторами матрицы размера $n \times n$ называются собственные числа и векторы соответствующего линейного оператора.

Для абстрактного векторного пространства V матрица L_{ee} линейного оператора $\mathsf{L}:V\to V$ зависит от выбора базиса $\mathsf{e}.$ При этом выбор базиса e никак не влияет на собственные числа и собственные векторы.

Из уравнения L $\mathbf{v} = \lambda \mathbf{v}$ находим вектор \mathbf{v} и число λ .

Из уравнения L $\mathbf{v} = \lambda \mathbf{v}$ находим вектор \mathbf{v} и число λ .

Если найдётся один собственный вектор $\mathbf{v} \neq \mathbf{0}$, то любой вектор $\mathbf{v}' = c \cdot \mathbf{v}$ также будет собственным:

Из уравнения L $\mathbf{v} = \lambda \mathbf{v}$ находим вектор \mathbf{v} и число λ .

Если найдётся один собственный вектор $\mathbf{v} \neq \mathbf{0}$, то любой вектор $\mathbf{v}' = c \cdot \mathbf{v}$ также будет собственным:

$$L \mathbf{v}' = L c \mathbf{v} = c L \mathbf{v} = c \lambda \mathbf{v} = \lambda \mathbf{v}'.$$

Из уравнения L $\mathbf{v} = \lambda \mathbf{v}$ находим вектор \mathbf{v} и число λ .

Если найдётся один собственный вектор $\mathbf{v} \neq \mathbf{0}$, то любой вектор $\mathbf{v}' = c \cdot \mathbf{v}$ также будет собственным:

$$L \mathbf{v}' = L c \mathbf{v} = c L \mathbf{v} = c \lambda \mathbf{v} = \lambda \mathbf{v}'.$$

Система уравнений L ${f v}=\lambda{f v}$ должна иметь бесконечное количество решений!

Перепишем систему L $\mathbf{v} = \lambda \mathbf{v}$ в виде $(\mathsf{L} - \lambda \mathsf{I})\mathbf{v} = \mathbf{0}$.

Перепишем систему L $\mathbf{v} = \lambda \mathbf{v}$ в виде $(\mathsf{L} - \lambda \mathsf{I})\mathbf{v} = \mathbf{0}$.

Система имеет бесконечное количество решений, если и только если $\det(\mathbf{L} - \lambda \mathbf{I}) = 0$.

Перепишем систему L $\mathbf{v} = \lambda \mathbf{v}$ в виде $(L - \lambda I)\mathbf{v} = \mathbf{0}$.

Система имеет бесконечное количество решений, если и только если $\det(\mathbf{L} - \lambda \mathbf{I}) = 0$.

Алгоритм

1. Из уравнения $\det(\mathsf{L}-\lambda\mathsf{I})=0$ находим собственные числа $\lambda_1,...,\lambda_k$.

Перепишем систему L $\mathbf{v} = \lambda \mathbf{v}$ в виде $(L - \lambda I)\mathbf{v} = \mathbf{0}$.

Система имеет бесконечное количество решений, если и только если $\det(\mathbf{L} - \lambda \mathbf{I}) = 0$.

Алгоритм

- 1. Из уравнения $\det(\mathsf{L}-\lambda\mathsf{I})=0$ находим собственные числа $\lambda_1,...,\lambda_k$.
- 2. Для каждого λ_i решаем систему $\det(\mathbf{L} \lambda_i \mathbf{I}) \mathbf{v} = \mathbf{0}$ относительно \mathbf{v} , то есть находим все собственные векторы.

Определение

Многочлен $\mathrm{char}_{\mathsf{L}}(\lambda) = \det(\mathsf{L} - \lambda \mathsf{I})$ называется

характеристическим многочленом линейного оператора L.

Определение

Многочлен $\operatorname{char}_{\mathsf{L}}(\lambda) = \det(\mathsf{L} - \lambda \mathsf{I})$ называется характеристическим многочленом линейного оператора L.

Характеристическим многочленом матрицы называется характеристический многочлен соответствующего линейного оператора.

Рассмотрим матрицу
$$A = \begin{pmatrix} 4 & 6 & 0 \\ 6 & 4 & 0 \\ 0 & 0 & 7 \end{pmatrix}$$
 .

Рассмотрим матрицу
$$A = \begin{pmatrix} 4 & 6 & 0 \\ 6 & 4 & 0 \\ 0 & 0 & 7 \end{pmatrix}$$
 .

$$\operatorname{char}_A(\lambda) = \det(A - \lambda \operatorname{I}) = \begin{bmatrix} 4 - \lambda & 6 & 0 \\ 6 & 4 - \lambda & 0 \\ 0 & 0 & 7 - \lambda \end{bmatrix} = \begin{bmatrix} 4 - \lambda & 6 & 0 \\ 6 & 4 - \lambda & 0 \\ 0 & 0 & 7 - \lambda \end{bmatrix}$$

Рассмотрим матрицу
$$A = \begin{pmatrix} 4 & 6 & 0 \\ 6 & 4 & 0 \\ 0 & 0 & 7 \end{pmatrix}$$
 .

$$\operatorname{char}_A(\lambda) = \det(A - \lambda \operatorname{I}) = \begin{bmatrix} 4 - \lambda & 6 & 0 \\ 6 & 4 - \lambda & 0 \\ 0 & 0 & 7 - \lambda \end{bmatrix} =$$

$$= (7 - \lambda) \begin{vmatrix} 4 - \lambda & 6 \\ 6 & 4 - \lambda \end{vmatrix} = (7 - \lambda)((4 - \lambda)^2 - 36) =$$

Рассмотрим матрицу
$$A=\begin{pmatrix} 4&6&0\\ 6&4&0\\ 0&0&7 \end{pmatrix}$$
 .
$$\operatorname{char}_A(\lambda)=\det(A-\lambda \mathsf{I})=\begin{bmatrix} 4-\lambda&6&0\\ 6&4-\lambda&0\\ 0&0&7-\lambda \end{bmatrix}=\\ =(7-\lambda)\begin{vmatrix} 4-\lambda&6\\ 6&4-\lambda \end{vmatrix}=(7-\lambda)((4-\lambda)^2-36)=\\ =-(\lambda-7)(\lambda+2)(\lambda-10)=-\lambda^3+15\lambda^2-36\lambda-140$$

По характеристическому многочлену можно найти:

По характеристическому многочлену можно найти:

1. Собственные числа из уравнения ${\sf char}_A(\lambda) = 0.$

$$\mathrm{char}_A(\lambda) = -(\lambda-7)(\lambda+2)(\lambda-10)$$

$$\lambda_1 = 7, \ \lambda_2 = -2, \ \lambda_3 = 10.$$

По характеристическому многочлену можно найти:

1. Собственные числа из уравнения $\operatorname{char}_A(\lambda)=0$.

$$\mathrm{char}_A(\lambda) = -(\lambda-7)(\lambda+2)(\lambda-10)$$

$$\lambda_1 = 7, \ \lambda_2 = -2, \ \lambda_3 = 10.$$

2. Определитель $\det \mathbf{L}$ из равенства $\mathrm{char}_A(0) = \det \mathbf{L}$.

$$\operatorname{char}_A(\lambda) = -\lambda^3 + 15\lambda^2 - 36\lambda - 140$$

$$\det A = \operatorname{char}_A(0) = -140.$$

Алгебраическая кратность

Утверждение

По основной теореме алгебры любой многочлен f с действительными коэффициентами можно единственным образом представить в виде:

$$f(x) = (x - x_1)^{k_1} \dots (x - x_p)^{k_p} g(x),$$

где $x_1, ..., x_p \in \mathbb{R}$ — различные корни многочлена f, а многочлен g действительных корней не имеет.

Алгебраическая кратность

Утверждение

По основной теореме алгебры любой многочлен f с действительными коэффициентами можно единственным образом представить в виде:

$$f(x) = (x - x_1)^{k_1} \dots (x - x_p)^{k_p} g(x),$$

где $x_1, ..., x_p \in \mathbb{R}$ — различные корни многочлена f, а многочлен g действительных корней не имеет.

Определение

Число k_i называется алгебраической кратностью корня x_i .

Алгебраическая кратность: пример

Если $\mathrm{char}_A(\lambda) = -(\lambda-7)^2(\lambda+3)$, то собственное число $\lambda=7$ имеет алгебраическую кратность 2, а собственное число $\lambda=-3$ имеет алгебраическую кратность 1.

Алгебраическая кратность: пример

Если $\operatorname{char}_A(\lambda) = -(\lambda-7)^2(\lambda+3)$, то собственное число $\lambda=7$ имеет алгебраическую кратность 2, а собственное число $\lambda=-3$ имеет алгебраическую кратность 1.

Если L : $\mathbb{R}^n \to \mathbb{R}^n$, то сумма алгебраических кратностей k_i действительных собственных чисел $\lambda_i \in \mathbb{R}$ не превосходит n:

$$\sum_{i=1}^{p} k_i \le n.$$

Теорема Гамильтона-Кэли

Утверждение

Если подставить матрицу A в характеристический многочлен $\mathrm{char}_A(\lambda)$, то получится матрица из нулей,

$$\operatorname{char}_A(A) = \mathbf{0};$$

Теорема Гамильтона-Кэли

Утверждение

Если подставить матрицу A в характеристический многочлен $\mathrm{char}_A(\lambda)$, то получится матрица из нулей,

$$\operatorname{char}_A(A) = \mathbf{0};$$

Пример. Если $\mathrm{char}_A(\lambda)=\lambda^2-3\lambda+8$, то $A^2-3A+8\mathrm{I}=\mathbf{0}$ и $A^2=3A-8\mathrm{I}.$

Нахождение собственных чисел и векторов

Это видеофрагмент с доской, слайдов здесь нет:)

Диагонализация матрицы

• Собственные векторы как линейное пространство.

- Собственные векторы как линейное пространство.
- Геометрическая кратность собственного вектора.

- Собственные векторы как линейное пространство.
- Геометрическая кратность собственного вектора.
- Диагонализация матрицы.

Оператор L : $\mathbb{R}^n \to \mathbb{R}^n$ имеет собственное число $\lambda \in \mathbb{R}$.

Рассмотрим множество ${\rm Eig}_{\lambda}$ — множество всех собственных векторов, растягивающиеся в λ раз дополненное нулевым вектором 0:

$$\operatorname{Eig}_{\lambda} L = \{ \mathbf{v} \mid L \mathbf{v} = \lambda \mathbf{v} \}.$$

Оператор L : $\mathbb{R}^n \to \mathbb{R}^n$ имеет собственное число $\lambda \in \mathbb{R}$.

Рассмотрим множество ${\rm Eig}_{\lambda}$ — множество всех собственных векторов, растягивающиеся в λ раз дополненное нулевым вектором ${\bf 0}$:

$$\operatorname{Eig}_{\lambda} L = \{ \mathbf{v} \mid L \mathbf{v} = \lambda \mathbf{v} \}.$$

Утверждение

Множество $\operatorname{Eig}_{\lambda} \operatorname{L}$ является векторным пространством:

Оператор L : $\mathbb{R}^n \to \mathbb{R}^n$ имеет собственное число $\lambda \in \mathbb{R}$.

Рассмотрим множество ${\rm Eig}_{\lambda}$ — множество всех собственных векторов, растягивающиеся в λ раз дополненное нулевым вектором ${\bf 0}$:

$$\mathsf{Eig}_{\lambda} \, \mathsf{L} = \{ \mathbf{v} \mid \mathsf{L} \, \mathbf{v} = \lambda \mathbf{v} \}.$$

Утверждение

Множество Eig , L является векторным пространством:

Если вектор ${\bf v}$ растягивается в λ раз, то и вектор $t{\bf v}$ растягивается в λ раз.

Оператор L : $\mathbb{R}^n \to \mathbb{R}^n$ имеет собственное число $\lambda \in \mathbb{R}$.

Рассмотрим множество ${\rm Eig}_{\lambda}$ — множество всех собственных векторов, растягивающиеся в λ раз дополненное нулевым вектором ${\bf 0}$:

$$\operatorname{Eig}_{\lambda} L = \{ \mathbf{v} \mid L \mathbf{v} = \lambda \mathbf{v} \}.$$

Утверждение

Множество $\operatorname{Eig}_{\lambda} \operatorname{L}$ является векторным пространством:

Если вектор ${\bf v}$ растягивается в λ раз, то и вектор $t{\bf v}$ растягивается в λ раз.

Если векторы ${\bf a}$ и ${\bf b}$ растягивается в λ раз, то и их сумма ${\bf c}={\bf a}+{\bf b}$ растягивается в λ раз.

Геометрическая кратность

Определение

Размерность пространства $\operatorname{Eig}_{\lambda} \mathsf{L}$ называется

геометрической кратностью собственного числа λ .

Геометрическая кратность

Определение

Размерность пространства $\operatorname{Eig}_{\lambda} \mathsf{L}$ называется геометрической кратностью собственного числа λ .

Эквивалентное определение

Максимальное количество линейно независимых собственных векторов, соответствующих собственному числу λ называют его геометрической кратностью.

Утверждение

Если векторы набора $A = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$ относятся к различным собственным числам, то набор A линейно независимый.

Утверждение

Если векторы набора $A = \{ \mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k \}$ относятся к различным собственным числам, то набор A линейно независимый.

Идея доказательства

Пусть вектора ${\bf v}_1$, ${\bf v}_2$ и ${\bf v}_3$ растягиваются в 2, 3 и 8 раз соответственно, и ${\bf v}_3=7{\bf v}_1-4{\bf v}_2$.

Утверждение

Если векторы набора $A = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$ относятся к различным собственным числам, то набор A линейно независимый.

Идея доказательства

Пусть вектора ${\bf v}_1$, ${\bf v}_2$ и ${\bf v}_3$ растягиваются в 2, 3 и 8 раз соответственно, и ${\bf v}_3=7{\bf v}_1-4{\bf v}_2$.

Домножим A на обе части равенства. $8{f v}_3=2\cdot 7{f v}_1-3\cdot 4{f v}_2.$

Утверждение

Если векторы набора $A = \{ \mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k \}$ относятся к различным собственным числам, то набор A линейно независимый.

Идея доказательства

Пусть вектора ${\bf v}_1$, ${\bf v}_2$ и ${\bf v}_3$ растягиваются в 2, 3 и 8 раз соответственно, и ${\bf v}_3=7{\bf v}_1-4{\bf v}_2$.

Домножим A на обе части равенства. $8{f v}_3=2\cdot 7{f v}_1-3\cdot 4{f v}_2$.

Поделим на большее собственное число.

$$\mathbf{v}_3 = \frac{2}{8} \cdot 7\mathbf{v}_1 - \frac{3}{8} \cdot 4\mathbf{v}_2.$$

Утверждение

Если векторы набора $A = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$ относятся к различным собственным числам, то набор A линейно независимый.

Идея доказательства

Пусть вектора ${\bf v}_1$, ${\bf v}_2$ и ${\bf v}_3$ растягиваются в 2, 3 и 8 раз соответственно, и ${\bf v}_3=7{\bf v}_1-4{\bf v}_2$.

Домножим A на обе части равенства. $8{f v}_3=2\cdot 7{f v}_1-3\cdot 4{f v}_2$.

Поделим на большее собственное число.

$$\mathbf{v}_3 = \frac{2}{8} \cdot 7\mathbf{v}_1 - \frac{3}{8} \cdot 4\mathbf{v}_2.$$

Повторим бесконечно много раз. ${f v}_3={f 0}$. Противоречие.

Базис из собственных векторов

Векторы отвечающие различным собственным числам независимы.

Базис из собственных векторов

Векторы отвечающие различным собственным числам независимы.

В каждом пространстве Eig_{λ_i} L найдётся базис из $\gamma_i = \dim \mathrm{Eig}_{\lambda_i}$ L собственных векторов.

Базис из собственных векторов

Векторы отвечающие различным собственным числам независимы.

В каждом пространстве Eig_{λ_i} L найдётся базис из $\gamma_i = \mathrm{dim}\,\mathrm{Eig}_{\lambda_i}$ L собственных векторов.

Если $\sum_i \gamma_i = n$, то в \mathbb{R}^n существует базис из n векторов, являющихся собственными векторами оператора L.

Диагонализация: обозначения

Допустим, у оператора $\mathsf{L}:\mathbb{R}^n\to\mathbb{R}^n$ нашлось n линейно независимых собственных векторов $\{\mathbf v_1,\mathbf v_2,\dots,\mathbf v_n\}$, которым соответствуют собственные числа $\{\lambda_1,\lambda_2,\dots,\lambda_n\}$.

Диагонализация: обозначения

Допустим, у оператора $\mathsf{L}:\mathbb{R}^n\to\mathbb{R}^n$ нашлось n линейно независимых собственных векторов $\{\mathbf v_1,\mathbf v_2,\dots,\mathbf v_n\}$, которым соответствуют собственные числа $\{\lambda_1,\lambda_2,\dots,\lambda_n\}$.

Запишем все собственные векторы в матрицу P столбцами друг за другом.

А в матрицу D поместим все собственные числа на главную диагональ.

$$P = \begin{pmatrix} \vdots & \vdots & \vdots & \vdots \\ \mathbf{v}_1 & \mathbf{v}_2 & \vdots & \mathbf{v}_n \\ \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix}, \ D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

Утверждение

Если у оператора $\mathsf{L}:\mathbb{R}^n\to\mathbb{R}^n$ нашлось n линейно независимых собственных векторов $\{\mathbf v_1,\mathbf v_2,\dots,\mathbf v_n\}$, то L представим в виде

$$L = PDP^{-1}.$$

Утверждение

Если у оператора $\mathsf{L}:\mathbb{R}^n\to\mathbb{R}^n$ нашлось n линейно независимых собственных векторов $\{\mathbf v_1,\mathbf v_2,\dots,\mathbf v_n\}$, то L представим в виде

$$L = PDP^{-1}.$$

Доказательство

Заметим, что $P\mathbf{e}_i = \mathbf{v}_i$, и L $P\mathbf{e}_i = \lambda_i P\mathbf{e}_i$.

Утверждение

Если у оператора $\mathsf{L}:\mathbb{R}^n\to\mathbb{R}^n$ нашлось n линейно независимых собственных векторов $\{\mathbf v_1,\mathbf v_2,\dots,\mathbf v_n\}$, то L представим в виде

$$L = PDP^{-1}.$$

Доказательство

Заметим, что $P\mathbf{e}_i = \mathbf{v}_i$, и L $P\mathbf{e}_i = \lambda_i P\mathbf{e}_i$.

Домножаем на P^{-1} и получаем P^{-1} L $P\mathbf{e}_i=\lambda_i\mathbf{e}_i$.

Утверждение

Если у оператора $\mathsf{L}:\mathbb{R}^n\to\mathbb{R}^n$ нашлось n линейно независимых собственных векторов $\{\mathbf v_1,\mathbf v_2,\dots,\mathbf v_n\}$, то L представим в виде

$$L = PDP^{-1}.$$

Доказательство

Заметим, что $P\mathbf{e}_i = \mathbf{v}_i$, и L $P\mathbf{e}_i = \lambda_i P\mathbf{e}_i$.

Домножаем на P^{-1} и получаем P^{-1} L $P\mathbf{e}_i=\lambda_i\mathbf{e}_i$.

Диагональная матрица растягивает базисные вектора,

$$P^{-1} \operatorname{L} P \mathbf{e}_i = D \mathbf{e}_i.$$

Утверждение

Если у оператора $\mathsf{L}:\mathbb{R}^n\to\mathbb{R}^n$ нашлось n линейно независимых собственных векторов $\{\mathbf v_1,\mathbf v_2,\dots,\mathbf v_n\}$, то L представим в виде

$$L = PDP^{-1}.$$

Доказательство

Заметим, что $P\mathbf{e}_i = \mathbf{v}_i$, и L $P\mathbf{e}_i = \lambda_i P\mathbf{e}_i$.

Домножаем на P^{-1} и получаем P^{-1} L $P\mathbf{e}_i=\lambda_i\mathbf{e}_i$.

Диагональная матрица растягивает базисные вектора,

$$P^{-1} \operatorname{L} P \mathbf{e}_i = D \mathbf{e}_i.$$

$$D = P^{-1} \, \mathsf{L} \, P$$
, или $\mathsf{L} = P D P^{-1}$

Диагонализация матрицы

Это видеофрагмент с доской, слайдов здесь нет:)

Нахождение проектора

Это видеофрагмент с доской, слайдов здесь нет:)

Прогнозирование с помощью мнк

Это скринкаст, слайдов здесь нет:)

Бонус: задача про Чабана и 101 овцу

Это видеофрагмент с доской, слайдов здесь нет:)