1)

Z) Hasenty prints

monitor

bounded-boffer problem (multiple producers, multiple consumers)

monitor Bounded-Buffer (obegin

char buffer[n];

int nextin=0, nextout=0, full_cnt=0;

condition notempty notfull;

deposit(char c) {

Pinner

if (full_cn+==n) not full wait; deposit(c);

buffer[nextin] = C;

hextin=(nextin+1) You;

full ent++; vemove(c);

not empty, signal;

```
if (full ent == 0) not empty. Wait;
      L= buffer[next but];
    next out = (mxtdut+1) You;
    full_int H;
    notfull signal;
monitor readers-writers &
  int read-cut= 0, writing= 0;
  Condition OK-to-read, OK-to-write;
   start_real () }
      if (writing)
        DK_to_read wait;
   Vead_Cut ++;
       OK_to_read.signal;
 finish _ read(){
     vead_cat --;
    if ( vea) _ (1+ == 0)
        Ok_to_write.signal;
  Start_write(){
    if ((vead_cut!=0) || writing)
      Uh. to_write. Wait;
      Writing = 1;
```

}
fin:sh_write(){
witing = 0;
if (lempty (Oh-to-vead))
OK, to_read.signal;
else
UK_to_write. Signul;
}
3
Noger.
Start_read();
filkaccess;
finish_vead();
(1) entry points inctual exclusion
bP(mutex);
body of f;
if (hoxt-cn+70)
V(next); Se unaphobe
ر اړ د
bV(mutex);

(Z) Londition Variables
X_count 1+;
if(hext_1xx+70)
V(next);
e Ise
1)V(motex);
P(X_san);
X_(ount;
(3) Signaler queue
if (x_count =0) {
Mext_count ++;
V(X_Sem);
p(next);
next_Lount;
producer-consumer problem in C
pthred_cond_wait
(ond t empty, fall,
mutext mutexi,
Void * producer (void * avg) }
itant i;
while LI) {

p+hred_mutex_lock (funtex);
while (nont == MAx)
pthrad_cond_halt (fempty, funtex);
put (i);
pthacel_cond_signal ((full);
Pthreed_motos_unlackel& motex),
3
<u>}</u>
void # Lousemer (void + arg) {
item_t i;
wh:le(1) {
pthrad_mitex_lock(funtex);
While (wat == 0)
pthread consumit (of full, donstex);
int tup= get();
pth/md_cond_signal (dempty);
1) Harad-motex_culock (Amotex);
<u> </u>
}
int buffer[mAX];
1.t fill=0;
intuse=0;
int Lount = 0;
void put (int value) } int get () {
buffer[fill]=value, int tup=buffer [USE]

f:(1=(f:11+1) % MAX;	Use= (use+1) % MAX;
(ount ++;	(ount;
3	vetum tmp;
]

MAx = 1

[on summer ((1, (2, (3)) -> produce, | [p1, Pz, P3, P4, P5, P6, P, Pz, ?3)]

-> Lourena ((4)

veusable resources

P,:__ P₂:___

opentfin), opentfz,w),

Jpalfz, w); open(f1, w);

(desurable ves byles

