Summary of β Instruction Formats

Operate Class:

31	26	25	21	20	16	15	11	10		0
10xx	XX	R	c	R	la	R	h		unused	

Register	Symbol	Usage
R31	R31	Always zero
R30	XP	Exception pointer
R29	SP	Stack pointer
R28	LP	Linkage pointer
R27	BP	Base of frame pointer

OP(Ra,Rb,Rc): $Reg[Rc] \leftarrow Reg[Ra] \text{ op } Reg[Rb]$

Opcodes: **ADD** (plus), **SUB** (minus), **MUL** (multiply), **DIV** (divided by) **AND** (bitwise and), **OR** (bitwise or), **XOR** (bitwise exclusive or)

CMPEQ (equal), **CMPLT** (less than), **CMPLE** (less than or equal) [result = 1 if true, 0 if false]

SHL (left shift), SHR (right shift w/o sign extension), SRA (right shift w/ sign extension)

31	26	25	21	20	16	15	0_
112	XXXX	R	c	R	Ra	literal (tv	vo's complement)

 $OPC(Ra, literal, Rc): Reg[Rc] \leftarrow Reg[Ra] \text{ op } SEXT(literal)$

Opcodes: ADDC (plus), SUBC (minus), MULC (multiply), DIVC (divided by)

ANDC (bitwise and), ORC (bitwise or), XORC (bitwise exclusive or)

CMPEQC (equal), **CMPLTC** (less than), **CMPLEC** (less than or equal) [result = 1 if true, 0 if false]

SHLC (left shift), SHRC (right shift w/o sign extension), SRAC (right shift w/ sign extension)

Other:

31	26	25	21	20	16	15	0
01xxxx	ζ.	R	c	F	₹a	literal (two's complement	:)

 $\begin{array}{ll} \textbf{LD}(Ra,literal,Rc): & Reg[Rc] \leftarrow Mem[Reg[Ra] + SEXT(literal)] \\ \textbf{ST}(Rc,literal,Ra): & Mem[Reg[Ra] + SEXT(literal)] \leftarrow Reg[Rc] \\ \end{array}$

JMP(Ra,Rc): $Reg[Rc] \leftarrow PC + 4$; $PC \leftarrow Reg[Ra]$

BEQ/BF(Ra,label,Rc): Reg[Rc] \leftarrow PC + 4; if Reg[Ra] = 0 then PC \leftarrow PC + 4 + 4*SEXT(literal) **BNE/BT**(Ra,label,Rc): Reg[Rc] \leftarrow PC + 4; if Reg[Ra] \neq 0 then PC \leftarrow PC + 4 + 4*SEXT(literal)

LDR(label,Rc): Reg[Rc] \leftarrow Mem[PC + 4 + 4*SEXT(literal)]

Opcode Table: (*optional opcodes)

2:0								
5:3	000	001	010	011	100	101	110	111
000								
001								
010								
011	LD	ST		JMP		BEQ	BNE	LDR
100	ADD	SUB	MUL*	DIV*	CMDEO	CMDIT	CMDLE	
	ADD	SUD	MIOL.	DIV.	CMPEQ	CMPLT	CMPLE	
101	AND	OR	XOR	DIV	SHL	SHR	SRA	
				DIVC*	_			