Cryptography Exercise Sheet 5

Prof. Dr. Thomas Wilke, Dr.-Ing. Kim-Manuel Klein

29. April 2020

1. **Problem:** Double encryption (Exercise 5.1 in BS)

Let $\mathcal{E} = (E, D)$ be a cipher. Consider the cipher $\mathcal{E}_2 = (E_2, D_2)$, where $E_2(k, m) = E(k, E(k, m))$. One would expect that if encrypting a message once with E is secure then encrypting it twice as in E_2 should be no less secure. However, that is not always true.

- (a) Show that there is a semantically secure cipher \mathcal{E} such that \mathcal{E}_2 is not semantically secure.
- (b) Prove that for every CPA secure ciphers \mathcal{E} , the cipher \mathcal{E}_2 is also CPA secure. That is, show that for every CPA adversary \mathcal{A} attacking \mathcal{E}_2 there is a CPA adversary \mathcal{B} attacking \mathcal{E} with about the same advantage and running time.
- 2. **Problem:** An alternate definition of CPA security (Exercise 5.3 in BS)

This exercise develops an alternative characterization of CPA security for a cipher $\mathcal{E} = (E, D)$, defined over $(\mathcal{K}, \mathcal{M}, \mathcal{C})$. As usual, we need to define an attack game between an adversary \mathcal{A} and a challenger. Initially, the challenger generates

$$b \stackrel{\mathbf{R}}{\leftarrow} \{0, 1\}, k \stackrel{\mathbf{R}}{\leftarrow} \mathcal{K}. \tag{1}$$

Then \mathcal{A} makes a series of queries to the challenger. There are two types of queries:

Encryption: In an encryption query, \mathcal{A} submits a message $m \in \mathcal{M}$ to the challenger, who responds with a ciphertext $c \stackrel{\mathbb{R}}{\leftarrow} E(k, m)$. The adversary may make any (poly-bounded) number of encryption queries.

Test: In a test query, \mathcal{A} submits a pair of messages $m_0, m_1 \in \mathcal{M}$ to the challenger, who responds with a ciphertext $c \stackrel{\mathbb{R}}{\leftarrow} E(k, m_b)$. The adversary is allowed to make only a single test query (with any number of encryption queries before and after the test query).

At the end of the game, \mathcal{A} outputs a bit $\hat{b} \in \{0, 1\}$.

As usual, we define \mathcal{A} s advantage in the above attack game to be $|Pr[\hat{b}=b]-1/2|$. We say that \mathcal{E} is Alt-CPA secure if this advantage is negligible for all efficient adversaries.

Show that \mathcal{E} is CPA secure if and only if \mathcal{E} is Alt-CPA secure.

3. **Problem:** Ciphertext expansion vs. security (Exercise 5.10 in BS)

Let $\mathcal{E} = (E, D)$ be an encryption scheme where messages and ciphertexts are bit strings.

(a) Suppose that for all keys and all messages m, the encryption of m is the exact same length as m. Show that (E, D) cannot be semantically secure under a chosen plaintext attack.

