

## Song Recommendation System

By: Shefali Khatri and Jason Miller

#### Background

- Problem: How to identify songs to recommend to users that they will enjoy?
  - Predictive
  - Supervised
- Data used: Million Songs Subset Dataset and Echo Nest Taste Profile
- Why?
  - Increased user engagement
  - Better user experience
  - Decreased customer attrition
  - Increased revenue generation

#### Challenges

- Cold-start problem
  - What do you do when you have a new user?
- Implicit Data
  - What do you do when there is no measure of user preference (i.e. ratings)?
- Lack of Domain Knowledge
- How do you split your Train and Test Set?
  - How do you split a user-item interaction matrix?
    - ▶ Item-user interaction matrix is used to fit model, but the same data represented as user-item interaction matrix is used for predict for a given user id
  - How do you split raw data using song as target feature?
  - User must exist in the train set and test set to be able to generate a prediction

#### Echo Nest Taste Profile

| [4]: |        | user                                     | song               | count |
|------|--------|------------------------------------------|--------------------|-------|
|      | 0      | fd50c4007b68a3737fe052d5a4f78ce8aa117f3d | SOBONKR12A58A7A7E0 | 1     |
|      | 1      | fd50c4007b68a3737fe052d5a4f78ce8aa117f3d | SOEGIYH12A6D4FC0E3 | 1     |
|      | 2      | fd50c4007b68a3737fe052d5a4f78ce8aa117f3d | SOFLJQZ12A6D4FADA6 | 1     |
|      | 3      | fd50c4007b68a3737fe052d5a4f78ce8aa117f3d | SOHTKMO12AB01843B0 | 1     |
|      | 4      | fd50c4007b68a3737fe052d5a4f78ce8aa117f3d | SODQZCY12A6D4F9D11 | 1     |
|      |        |                                          |                    |       |
|      | 772657 | 7eaf05ee4d1e2a3489ccd59d39d49f6712c61dbc | SOHFGKG12A6701C429 | 1     |
|      | 772658 | 7eaf05ee4d1e2a3489ccd59d39d49f6712c61dbc | SOZXSEC12A67020AB5 | 1     |
|      | 772659 | 7eaf05ee4d1e2a3489ccd59d39d49f6712c61dbc | SOSJRXV12A8C136E1B | 1     |
|      | 772660 | 7eaf05ee4d1e2a3489ccd59d39d49f6712c61dbc | SOHLQRL12A6D4F71DE | 1     |
|      | 772661 | 7eaf05ee4d1e2a3489ccd59d39d49f6712c61dbc | SOTFOAE12A6D4F4511 | 1     |

772662 rows × 3 columns

#### Million Songs Subset Dataset

Contains 10,000 songs, and 76 features including genres, audio data, beats, key, tempo, and more

| ar         | analysis_songs_analysis_sample_rate | analysis_segments_timbre                       | analysis_segments_start                        | analysis_segments_pitches                 |
|------------|-------------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------------|
| ad27a50d9b | 22050                               | [[0.0, 171.13, 9.469, -28.48, 57.491, -50.067, | [0.0, 2.30331, 2.67125, 2.84449, 3.07365, 3.25 |                                           |
| ad27a50d9b | 22050                               | [[0.0, 171.13, 9.469, -28.48, 57.491, -50.067, | [0.0, 2.30331, 2.67125, 2.84449, 3.07365, 3.25 | [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| ad27a50d9b | 22050                               | [[0.0, 171.13, 9.469, -28.48, 57.491, -50.067, | -                                              | [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| ad27a50d9b | 22050                               | [[0.0, 171.13, 9.469, -28.48, 57.491, -50.067, | [0.0, 2.30331, 2.67125, 2.84449, 3.07365, 3.25 | [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| ad27a50d9b | 22050                               | [[0.0, 171.13, 9.469, -28.48, 57.491, -50.067, | [0.0, 2.30331, 2.67125, 2.84449, 3.07365, 3.25 | [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |

#### Million Songs Subset Dataset - Preprocessing

- Eliminated 49 features
  - Missing Data (2 features)
  - No variance (21 features)
  - Unusable format(24 features)
    - Audio data stored in arrays
    - ► Inconsistent format for Artist Location (i.e. NY vs New York)
  - Irrelevant Data (2 features)
- Transformed arrays containing words into a string
  - From: [b'classic pop and rock', b'folk]
  - ► To: b'classic pop and rock' | b'folk
- Standardized Data using z-score normalization

#### Million Songs Subset Dataset - Preprocessing

Why are there so many 0's?



#### Million Songs Subset Dataset- Preprocessing

#### 8 Features found with values of 0

- 1 feature used 0 to represent categorical values
- 3 features had a range between 0-1
- 3 features used 0 to represent missing data
- 1 feature had an outlier

#### **Outliers**

- 3 features used algorithmic estimation
- 2 were found to have ranges of 0-1
- 1 had a maximum value of 1.08 indicating an outlier
- Min-Max scaling was performed to bring values in range



#### Missing Data

- Equal width binning was used
- Mean imputation

#### Alternating Least Squares Matrix Factorization

- Method introduced in 2008 paper "Collaborative Filtering for Implicit Feedback Datasets"
- Create a User Item Interaction Matrix



Latent Factors = hidden features obtained from mathematical models

#### Alternating Least Squares Matrix Factorization

- ► Each user-item interaction in the matrix has an associated confidence measure which defines a user's preference towards the item
- Items with more interactions for a given user will have a stronger confidence
- Confidence measures are calculated based on the following equation:

$$C_{ui} = 1 + \alpha r_{ui}$$

 $C_{ui}$  = confidence for a given user and item

 $\alpha$  = constant

 $r_{ui}$  = the number of interactions for a given user item interaction

### Alternating Least Squares vs. Traditional Matrix Factorization

- ALS relies on information contained in unobserved user item interactions as these also indicate a user's preference
- ALS uses the alternating least squares approach to minimize loss function.
   Traditional matrix factorization uses stochastic gradient descent
  - Alternating least squares alternates between recomputing the user factors and item factors with stochastic gradient descent until convergence.
- ALS uses L2 regularization to prevent overfitting
  - □ L2 regularization adds a penalty term to reduce variance

# Alternating Least Squares Our Approach

Used Implicit Package in Python

Train Set = Subset of data that included at least 5 interactions per user

Model is fit on a Item-user interaction matrix while predictions are made on User-Item interaction matrix

Model's hyperparameter's tuned using K-Stratified fold with User as the target feature and k = 5

#### Alternating Least Squares - Our Approach

Evaluated model parameters on hit ratio:

$$Hit\ Ratio = \frac{Number\ of\ songs\ correctly\ recommended}{Total\ number\ of\ observations}$$

#### Alternating Least Squares - Our Approach

Alpha = 15



*Iterations* = 30

#### *Latent Factors* = 35



#### Lambda = 0.01



## Bayesian Personalized Ranking (BPR)



Figure 13.6 Practical Recommender Systems by Kim Falk

#### Bayesian Personalized Ranking (BPR)

- Why not construct an algorithm that optimizes for ranking itself?
- ▶ This is the goal of **Learning to Rank (LTR) algorithms**
- BPR is a pairwise LTR algorithm
  - ► Take two items and return the ordering of the two
- $>_u$ : the ordering of items for a user U

$$\forall i, j \in I : i \neq j \implies i >_u j \land j >_u i$$

$$p(\Theta|>_u) \propto p(>_u|\Theta) p(\Theta)$$

- If a perfect ranking exists, then there must be some model that produces a perfect ranking.
- BPR seeks to find the model **Θ** that has the highest probability of producing a perfect ranking for all users.
- ><sub>u</sub>
  - Let's adjust our definition of this: represents the ranking of items (songs) for all users
  - One step further: assume there is a *perfect ranking*
- 0
  - The list of parameters used in a model
  - Think of it as the recommendation system itself

## Training data "triplets"

- (u, i, j) is used in the training data
- Semantically, user *u* is assumed to prefer item *i* over item *j*



Model: "model"

| Layer (type)                    | Output Shape   | Param #   | Connected to                                                   |
|---------------------------------|----------------|-----------|----------------------------------------------------------------|
| positive_item_input (InputLayer | [(None, 1)]    | 0         |                                                                |
| negative_item_input (InputLayer | [(None, 1)]    | 0         |                                                                |
| user_input (InputLayer)         | [(None, 1)]    | 0         |                                                                |
| item_embedding (Embedding)      | (None, 1, 350) | 1286250   | <pre>positive_item_input[0][0] negative_item_input[0][0]</pre> |
| user_embedding (Embedding)      | (None, 1, 350) | 146388200 | user_input[0][0]                                               |
| flatten (Flatten)               | (None, 350)    | 0         | item_embedding[0][0]                                           |
| flatten_1 (Flatten)             | (None, 350)    | 0         | item_embedding[1][0]                                           |
| flatten_2 (Flatten)             | (None, 350)    | 0         | user_embedding[0][0]                                           |
| lambda (Lambda)                 | (None, 1)      | 0         | flatten[0][0]<br>flatten_1[0][0]<br>flatten_2[0][0]            |

Total params: 147,674,450 Trainable params: 147,674,450

Non-trainable params: 0

#### Hyperparameter optimization

#### Latent dimensions

How many latent features are there in the matrix factorization?

#### Learning rates

In our stochastic gradient descent, how big are the steps we're taking to find the minimum of the loss function?

|              | precision | recall   | hit_ratio |
|--------------|-----------|----------|-----------|
| latent_dim   |           |          |           |
| 200          | 0.839399  | 0.140424 | 0.760135  |
| 250          | 0.847948  | 0.141944 | 0.768363  |
| 300          | 0.851909  | 0.142688 | 0.772392  |
| 350          | 0.858071  | 0.143770 | 0.778249  |
| learning_rat | e         |          |           |
| 0.001        | 0.923205  | 0.162472 | 0.879481  |

0.967822 0.169617

0.656968 0.094532

0.918158

0.511715

0.010

0.100

#### **Model Evaluation Metrics**

$$Hit\ Ratio = \frac{Number\ of\ songs\ correctly\ recommended}{Total\ number\ of\ observations}$$

$$Recall = average \left( \frac{Number\ of\ songs\ correctly\ recommended\ per\ user}{Number\ of\ songs\ listened\ to\ per\ user} \right)$$

$$Precision = average \left( \frac{Number\ of\ songs\ correctly\ recommended\ per\ user}{Number\ of\ songs\ recommended\ per\ user} \right)$$

## Model Evaluation - Performance

- ALS model results were found to severely overfit
- A paired t-test was conducted using test results and recommending the top 10 most popular songs. A statistically significant difference was not found.
- ► ALS predictions were correct roughly 5% of the time, while the top 10 most popular songs were correct ~2.5% of the time



#### Model Performance

 Initial comparison of ALS and BPR validation results suggest the following model performance

| Model | Hit Ratio | Mean Avg Recall | Mean Avg Precision |
|-------|-----------|-----------------|--------------------|
| ALS   | 35%       | 36%             | 5%                 |
| BPR*  | 92%       | 17%             | 97%                |

<sup>\*</sup>Performance metrics for BPR were based on training/validation dataset

#### Summary

- Recommendation systems are very complex
  - Many different methods and techniques
  - Not too much publicly available information for state-of-the-art systems
- Requires ML and DL approaches

### Questions?