ଚତୁର୍ଭୁଜ

3.1. ଉପକ୍ରମଣିକା (Introduction) :

ପୂର୍ବ ଶ୍ରେଶୀରେ ତୁମେ ଚତୁର୍ଭୁଜ ସହ ପରିଚିତ ହେବା ସହ କେତେକ ବିଶେଷ ଧରଣରେ ଚତୁର୍ଭୁଜ ଯଥା, ସାମାନ୍ତରିକ ଚିତ୍ର, ରୟସ, ଆୟତଚିତ୍ର ଓ ବର୍ଗଚିତ୍ର ସହ ମଧ୍ୟ ପରିଚିତ ହୋଇଛ । ଉପରୋକ୍ତ ବିଶେଷ ଧରଣର ଚିତ୍ର ସୟଦ୍ଧୀୟ ଧର୍ମ ଗୁଡ଼ିକର ସତ୍ୟତା ପରୀକ୍ଷା ମୂଳକ ପ୍ରମାଣ ମାଧ୍ୟମରେ କରାଯାଇଥିଲା ।

ସେହି ଧର୍ମ ଗୁଡ଼ିକର ଯୁକ୍ତି ମୂଳକ ପ୍ରମାଣ କରିବା ଏହି ଅଧ୍ୟାୟର ଉଦ୍ଦେଶ୍ୟ । ଏଥି ସହ ବହୁଭୁଜ (polygon) ସମ୍ବନ୍ଧରେ କିଛି ଆଲୋଚନା ମଧ୍ୟ ଏହି ଅଧ୍ୟାୟର ଅନ୍ୟ ଏକ ଉଦ୍ଦେଶ୍ୟ ।

3.2 ଚତୁର୍ଭୁକ ଓ ଉତ୍କଳ ଚତୁର୍ଭୁକ (Quadrilateral and convex quadrilateral) :

ସଂକ୍ଷା : ମନେକର ସମତଳ ଉପରେ ଅବସ୍ଥିତ ଚାରୋଟି ବିନ୍ଦୁ A,B,C ଓ D ମଧ୍ୟରୁ

- (i) ଯେକୌଣସି ତିନୋଟି ବିନ୍ଦୁ ଏକ ସରଳରେଖାରେ ଅବସ୍ଥିତ ବୃହନ୍ତି ;
- (ii) \overline{AB} , \overline{BC} , \overline{CD} ଓ \overline{DA} ରେଖାଖଣ୍ଡ ସେମାନଙ୍କ ପ୍ରାନ୍ତବିନ୍ଦୁ ବ୍ୟତୀତ ଅନ୍ୟ କୌଣସି ବିନ୍ଦୁରେ ଛେଦ କରୁ ନ ଥିଲେ; ଏହି ଚାରିଗୋଟି ରେଖାଖଣ୍ଡ ଦ୍ୱାରା ଗଠିତ ସେଟ୍ \overline{AB} \cup \overline{BC} \cup \overline{CD} \cup \overline{DA} କୁ ABCD ଚତୁର୍ଭୁଚ୍ଚ କୁହାଯାଏ ।

ଚିତ୍ର 3.1(a) ଓ (b) ପ୍ରତ୍ୟେକରେ ABCD ଗୋଟିଏ ଲେଖାଏଁ ଚତୁର୍ଭୁଚ୍ଚ । ଚିତ୍ର 3.1(c)ରେ \overline{AB} ଓ \overline{CD} ପରସ୍କରକୁ ସେମାନଙ୍କ ପ୍ରାନ୍ତବିନ୍ଦୁ ବ୍ୟତୀତ ଅନ୍ୟ ଗୋଟିଏ ବିନ୍ଦୁରେ ଚ୍ଛେଦ କରୁଥିବାରୁ ABCD ଚତୁର୍ଭୁଚ୍ଚ

ନୁହେଁ । ଚିତ୍ର 4.1(d)ରେ B, C, D ଏକ ସରଳରେଖାରେ ଅବସ୍ଥିତ ହୋଇଥିବାରୁ ABCD କୁ ଚତୁର୍ଭୁଚ୍ଚ କୁହାଯିବ ନାହିଁ ।

 \overline{AB} , \overline{BC} , \overline{CD} ଓ \overline{DA} କୁ ABCD ଚତୁର୍ଭୁକର ବାହୁ (side) ଏବଂ ∠BAD, ∠ABC, ∠BCD, ∠CDA କୁ ଏହାର କୋଶ (Angle) କୁହାଯାଏ I A, B, C, D କୁ ଚତୁର୍ଭୁକର ଶୀର୍ଷବିଦ୍ଦ (Vertex) କୁହାଯାଏ I

ଚତୁର୍ଭୁକର ଯେଉଁ ଦୁଇଟି ବାହୁର ଏକ ସାଧାରଣ ପ୍ରାନ୍ତ ବିନ୍ଦୁ ଥାଏ ସେ ଦ୍ୱୟକୁ **ସନ୍ନିହିତ (adjacent) ବାହୁ** ବା କୌଣସି ସାଧାରଣ ପ୍ରାନ୍ତ ବିନ୍ଦୁ ନଥିବା ବାହୁଦ୍ୱୟକୁ **ବିପରୀତ (Opposite) ବାହୁ** କୁହାଯାଏ । ଚତୁର୍ଭୁକର ଗୋଟିଏ ବାହୁର ଦୁଇଟି ପ୍ରାନ୍ତ ବିନ୍ଦୁକୁ **କ୍ରମିକ ଶୀର୍ଷ** ଓ କ୍ରମିକ ଶୀର୍ଷରେ ଥିବା କୋଣଦ୍ୱୟକୁ **କ୍ରମିକ କୋଣ** କୁହାଯାଏ । ଯେଉଁ ଶୀର୍ଷଦ୍ୱୟ କ୍ରମିକ ଶୀର୍ଷ ନୁହନ୍ତି ସେଦ୍ୱୟକୁ **ବିପରୀତ ଶୀର୍ଷ** କୁହାଯାଏ । ବିପରୀତ ଶୀର୍ଷ ବିନ୍ଦୁରେ ଥିବା କୋଣଦ୍ୱୟକୁ **ବିପରୀତ କୋଣ** କୁହାଯାଏ ।

ଚିତ୍ର 3.1(a)ରେ \overline{AB} ଓ \overline{BC} ସନ୍ନହିତ ବାହୁ ଏବଂ \overline{AB} ଓ \overline{CD} ବିପରୀତ ବାହୁ ; $\angle A\,,\, \angle B\,\,$ କ୍ରମିକ କୋଣ ଓ $\angle A\,,\, \angle C\,\,$ ବିପରୀତ କୋଣ; A ଓ $B\,\,$ କ୍ରମିକ ଶୀର୍ଷ ଏବଂ A ଓ $C\,\,$ ବିପରୀତ ଶୀର୍ଷ $B\,\,$

ବିପରୀତ ଶୀର୍ଷ ବିନ୍ଦୁମାନଙ୍କୁ ଯୋଗ କରୁଥିବା ରେଖାଖଣ୍ଡଦ୍ୱୟକୁ ଚତୁର୍ଭୁଜର କର୍ଣ୍ଣ (diagonal) କୁହାଯାଏ ।

ଚିତ୍ର 3.1 (a) ରେ \overline{AC} ଓ \overline{BD} , ABCD ଚତୁର୍ଭୁଜର ଦୁଇ କର୍ଣ୍ଣ ।

ଲକ୍ଷ୍ୟ କର ଯେ, ଚତୁର୍ଭୁଜର ଶୀର୍ଷ ବିନ୍ଦୁମାନଙ୍କ ମଧ୍ୟରେ ଏକ କ୍ରମାନ୍ୱୟତା (Order) ରହିଛି । କ୍ରମାନ୍ୱୟତାର ପରିବର୍ତ୍ତନ ନକରି ABCD ପରିବର୍ତ୍ତେ BCDA ବା CDAB ବା DABC ଚତୁର୍ଭୁଜ ଲେଖାଯାଇପାରେ । କ୍ରମାନ୍ସୟତାରେ ପରିବର୍ତ୍ତନ କଲେ ଚତୁର୍ଭୁଜ ଗଠିତ ହୋଇ ପାରେ ନାହିଁ ।

ଚିତ୍ର 3.1(a)ରେ କର୍ତ୍ତଦ୍ୱୟ ପରସ୍କରକୁ ଛେଦ କରୁଛନ୍ତି, କିନ୍ତୁ ଚିତ୍ର 3.1(b) ରେ ଛେଦ କରୁନାହାନ୍ତି । ବିଶେଷ ପ୍ରକାରର ଚତୁର୍ଭୁଜ ଗୁଡ଼ିକର କର୍ତ୍ତଦ୍ୱୟ ପରସ୍କରକୁ ସବୁବେଳେ ଛେଦ କରନ୍ତି । ଏହି ପ୍ରକାର ଚତୁର୍ଭୁଜର ସଂଜ୍ଞା ନିମ୍ନରେ ଦିଆଗଲା ।

ସଂଜ୍ଞା : ଯଦି ଏକ ଚତୁର୍ଭୁକର ଯେ କୌଣସି ବାହୁ ଏହାର ବିପରୀତ ବାହୁଦ୍ୱାରା ନିର୍ଣ୍ଣିତ ସରଳରେଖାକୁ ଛେଦ ନକରେ, ତାହେଲେ ଏହାକୁ ଏକ ଉତ୍ତଳ ଚତୁର୍ଭୁଜ (Convex Quadrilateral) କୁହାଯାଏ ।

ଅର୍ଥାତ୍ ABCD ଏକ ଉତ୍ତଳ ଚତୁର୍ଭୁକ ହେଲେ,

- (i) A ଓ B ବିନ୍ଦୁଦ୍ୱୟ CD ର ଏକ ପାର୍ଶ୍ୱରେ
- (ii) B ଓ C ବିନ୍ଦୁଦ୍ୱୟ \overrightarrow{DA} ର ଏକ ପାର୍ଶ୍ୱରେ
- (iii) C ଓ D ବିନ୍ଦୁଦ୍ୱୟ $\stackrel{\longleftrightarrow}{AB}$ ର ଏକ ପାର୍ଶ୍ୱରେ ଏବଂ

(ଚିତ୍ର 3.2)

3.3 : ବହୁଭୁଜ (Polygon) :

ସଂକ୍ଷା : ମନେକର P_1 , P_2 P_n ଏକ ସମତଳରେ ଅବସ୍ଥିତ କେତେକ ବିନ୍ଦୁ ($n \ge 3$) ଏବଂ ଏମାନଙ୍କ ମଧ୍ୟରୁ କୌଣସି ତିନୋଟି ବିନ୍ଦୁ ଏକ ରେଖୀୟ ନୁହନ୍ତି । $\overline{P_1P_2}$, $\overline{P_2P_3}$ $\overline{P_{n-1}P_n}$, $\overline{P_nP_1}$ ସେମାନଙ୍କ ପ୍ରାନ୍ତ ବିନ୍ଦୁ ବ୍ୟତୀତ ଅନ୍ୟ କୌଣସି ବିନ୍ଦୁରେ ଛେଦ କରୁନଥିଲେ ଏହି n ସଂଖ୍ୟକ ରେଖାଖଣ୍ଡ ଦ୍ୱାରା ଗଠିତ ସେଟ୍ $\overline{P_1P_2}$ \cup $\overline{P_2P_3}$ \cup \cup $\overline{P_{n-1}P_n}$ \cup $\overline{P_nP_1}$ କୁ P_1 P_2 P_n ବହୁଭୁଜ କୁହାଯାଏ ।

 $\overline{P_1P_2}$, $\overline{P_2P_3}$ $\overline{P_nP_1}$ ବହୁଭୁଜର ବାହୁ ଏବଂ P_1 , P_2 P_n ବହୁଭୁଜର ଶୀର୍ଷବିଦୁ ଅଟନ୍ତି । n ସଂଖ୍ୟକ ବାହୁ ବିଶିଷ୍ଟ ଏକ ବହୁଭୁଜରେ n ସଂଖ୍ୟକ ଅଞ୍ଜସ୍ଥ କୋଣ ଥାଏ ।

ଉତ୍ତଳ ବହୁଭୁଜ (Convex Polygon) :

 P_1 P_2 P_3 P_n ବହୁଭୁଜର ପ୍ରତ୍ୟେକ ବାହୁ ଦ୍ୱାରା ନିର୍ଣ୍ଣିତ ରେଖାର ଏକ ପାର୍ଶ୍ୱରେ ଯଦି ବହୁଭୁଜର ଅନ୍ୟ ସମୟ ଶୀର୍ଷ ଅବସ୍ଥାନ କରନ୍ତି ତେବେ ବହୁଭୁଜଟିକୁ **ଉତ୍ତଳ ବହୁଭୁଜ** (Convex Polygon) କୁହାଯାଏ ।

ସୁଷମ ବହୁଭୁକ (Regular Polygon) :

ଯେଉଁ ବହୁଭୁଜର ସମୟ ବାହୁର ଦୈର୍ଘ୍ୟ ସମାନ ଏବଂ ସମୟ କୋଶର ପରିମାଣ ସମାନ, ସେପରି ବହୁଭୁଜକୁ ସୁଷମ ବହୁଭୁଜ କୁହାଯାଏ।

ବହୁଭୁଜର ବାହୁ ସଂଖ୍ୟା ଉପରେ ବହୁଭୁଜର ନାମକରଣ ନିର୍ଭର କରେ । ବହୁଭୁଜ ମଧ୍ୟରେ ସର୍ବାଧିକ ମୌଳିକ ହେଉଛି ତ୍ରିଭୁଜ ଯାହାର ବାହୁ ସଂଖ୍ୟା 3.

ବାହୁସଂଖ୍ୟା	ବହୁଭୁକର ନାମ	
3	ତ୍ରିଭୁକ (Triangle)	
4	ଚତୁର୍ଭୁକ (Quadrilateral)	
5	ପଞ୍ଚଭୁକ (Pentagon)	
6	ଷଡ଼ିଭୁଜ (Hexagon)	

ସେହିପରି ବାହୁ ସଂଖ୍ୟା 7, 8, 9 ଏବଂ 10 ପାଇଁ ବହୁଭୁଜକୁ ଯଥାକ୍ରମେ Heptagon (ସପ୍ତଭୁଜ), Octagon (ଅଷ୍ଟଭୁଜ), nonagon (ନଅଭୁଜ) ଓ Decagon (ଦଶଭୁଜ) କୁହାଯାଏ । ଆମେ ସାଧାରଣତଃ ଚତୁର୍ଭୁଜ, ପଞ୍ଚଭୁଜ, ଷଡ଼ଭୁଜ... ଇତ୍ୟାଦିକୁ ନେଇ ବହୁଭୁଜ ସମ୍ପର୍କରେ ଆଲୋଚନା କରିବା ।

ଲକ୍ଷ୍ୟ କର ଗୋଟିଏ ତ୍ରିଭୁଜର ବାହୁଗୁଡ଼ିକର ଦୈର୍ଘ୍ୟ ପରୟର ସମାନ \Leftrightarrow କୋଣଗୁଡ଼ିକର ପରିମାଣ ସମାନ; କିନ୍ତୁ ବହୁଭୁଜ ସ୍ଥଳରେ ନୁହେଁ । ତେଣୁ ତ୍ରିଭୁଜ, ବହୁଭୁଜ ପରିବାରର ଏକ ସଦସ୍ୟ ନୁହେଁ । ଏ ସବୁ ସତ୍ତ୍ୱେ 'ତିନି'କୁ 'ବହୁ' ଭାବରେ ଗ୍ରହଣ କରାଯାଇଥିବାରୁ ଏବଂ ବହୁଭୁଜର ବହିଃସ୍ଥ ଏବଂ ଅନ୍ତଃସ୍ଥ କୋଣର ପରିମାଣର ସୂତ୍ର ସମୂହ ତ୍ରିଭୁଜ ପାଇଁ ପ୍ରଯୁଜ୍ୟ ହୋଇଥିବାରୁ, ତ୍ରିଭୁଜକୁ ବେଳେ ବେଳେ ବହୁଭୁଜ ପରିବାରରେ ଅନ୍ତର୍ଭୁକ୍ତ କରାଯାଏ ।

3.4 (A) ବହୁଭୁକର ଅନ୍ତଃଷ୍ଥ କୋଶ ମାନଙ୍କର ପରିମାଶର ସମଷ୍ଟି (Sum of the measures of the interior angles of a polygon) :

ତ୍ରିଭୁକର ଅବଃୟ କୋଣମାନଙ୍କର ପରିମାଣର ସମଷ୍ଟି = 180° ଚତୁର୍ଭୁକଟି ଦୁଇଗୋଟି ତ୍ରିଭୁକରେ ପରିଣତ କରାଯାଇପାରିବ । ତେଣୁ ଚତୁର୍ଭୁକର ଅବଃୟ କୋଣମାନଙ୍କର ପରିମାଣର ସମଷ୍ଟି = $2 \times 180^\circ = (4-2) \times 180^\circ$ ପଞ୍ଚଭୁକଟି ତିନିଗୋଟି ତ୍ରିଭୁକରେ ପରିଣତ ହୁଏ ତେଣୁ ଏହାର ଅବଃୟ କୋଣମାନଙ୍କର ପରିମାଣର ସମଷ୍ଟି

ସେହିପରି ଷଡ଼ଭୁଜକ୍ଷେତ୍ର କ୍ଷେତ୍ରରେ ଅନ୍ତଃୟ କୋଣ ମାନଙ୍କର ସମଷ୍ଟି= $4 \times 180^\circ = (6-2) \times 180^\circ$ n- ଭୁଜକୁ ($n \ge 3$) (n-2) ସଂଖ୍ୟକ ତ୍ରିଭୁଜରେ ପରିଶତ କରିହେବ । ତେଣୁ ଏହାର ଅନ୍ତଃୟ କୋଣମାନଙ୍କର ପରିମାଣ ସମଷ୍ଟି = (n-2) $\times 180^\circ = (n-2) \times 2$ ସମକୋଣ = (2n-4) ସମକୋଣ

 ${f n}$ ସଂଖ୍ୟକ ବାହୁ ବିଶିଷ୍ଟ ${f (n \geq 3)}$ ବହୁଭୁଜର ଅନ୍ତଃସ୍ଥ କୋଣମାନଙ୍କର ପରିମାଣର ସମଷ୍ଟି ${f (2n-4)}$ ସମକୋଣ ।

(B) ବହୁଭୁକର ବହିଃସ୍ଥ କୋଣମାନଙ୍କର ପରିମାଶର ସମଷ୍ଟି (Sum of the measures of the exterior angles of a polygon) :

ବହୁଭୁଜର ପ୍ରତ୍ୟେକ ଶୀର୍ଷ (Vertex) ରେ ଗୋଟିଏ ଲେଖାଏଁ ବହିଃସ୍ଥ କୋଣ ସୃଷ୍ଟି ହୁଏ । (ଅନ୍ତଃସ୍ଥ କୋଣମାନଙ୍କର ଗୋଟିଏ ଲେଖାଏଁ ସନ୍ନିହିତ ପରିପ୍ରରକ କୋଣକୁ ବିଚାରକୁ ନେଇ)

ଲକ୍ଷ୍ୟ କର ପ୍ରତ୍ୟେକ n ଭୂଜ $(n \ge 3)$ ବିଶିଷ୍ଟ ବହୁଭୁଜର ବହିଃସ୍ଥ କୋଣ ସଂଖ୍ୟା n (ଚିତ୍ର 3.4 କୁ ଅନୁଧାନ କର)

ପ୍ରତ୍ୟେକ ଶୀର୍ଷରେ ବହିଃକ୍ଷ କୋଶର ପରିମାଶ + ଅନ୍ତଃକ୍ଷ କୋଶର ପରିମାଶ $=180^\circ=2$ ସମକୋଶ ଗୋଟିଏ n ଭୁଜ ବିଶିଷ୍ଟ ବହୁଭୁଜର ବହିଃକ୍ଷ କୋଶମାନଙ୍କର ପରିମାଶର ସମଷ୍ଟି

 $= n \times 2$ ସମକୋଣ - n ସଂଖ୍ୟକ ଅନ୍ତଃଷ୍ଟ କୋଣର ପରିମାଣର ସମଷ୍ଟି $= n \times 2$ ସମକୋଣ - (2n - 4) ସମକୋଣ = 4 ସମକୋଣ $= 360^{\circ}$

ଏଠାରେ ଲକ୍ଷ୍ୟକର ବହିଃସ୍ଥ କୋଶମାନଙ୍କର ପରିମାଶର ସମଷ୍ଟି ବହୁଭୁକର ବାହୁସଂଖ୍ୟାର ନିରପେକ୍ଷ (indepedent of the sides of the polygon) ଅଟେ ।

ମନେରଖ : ପ୍ରତ୍ୟେକ ବହୁଭୁଜର ବହିଃସ୍ଥ କୋଶମାନଙ୍କର ପରିମାଣ ସମଷ୍ଟି 360°

ଉପରୋକ୍ତ ଆଲୋଚନା ପରିପ୍ରେକ୍ଷୀରେ ଆମେ ସୁଷମ ବହୁଭୁଜର ଅନ୍ତଃସ୍ଥ କୋଣର ପରିମାଣ ଏବଂ ବହିଃସ୍ଥ କୋଣର ପରିମାଣ ସ୍ଥିର କରିପାରିବା ।

ତୁମେମାନେ ଜାଣିଛ ଯେଉଁ ବହୁଭୁଜର ସମୟ ବାହୁର ଦୈର୍ଘ୍ୟ ପରୟର ସମାନ ହେବା ସଂଗେ ସଂଗେ ସମୟ କୋଣର ପରିମାଣ ମଧ୍ୟ ପରୟର ସମାନ ତାହାକୁ **ସମବହୁଭୁଜ ବା ସୁଷମ ବହୁଭୂଜ (Regular Polygon**) କୁହାଯାଏ ।

ଏଣୁ n ବାହୁ ବିଶିଷ୍ଟ ସୁଷମ ବହୁଭୁଜର ପ୍ରତ୍ୟେକ ଅନ୍ତଃସ୍ଥ କୋଣର ପରିମାଣ = $(\frac{2n-4}{n})$ ସମକୋଣ ଏବଂ n ବାହୁ ବିଶିଷ୍ଟ ସୁଷମ ବହୁଭୁଜର ପ୍ରତ୍ୟେକ ବହିସ୍ଥ କୋଣର ପରିମାଣ = $\frac{360^{0}}{n}$

ମନେରଖ : n ବାହୁ ବିଶିଷ୍ଟ ସୂଷମ ବହୁଭୁଜର ଏକ ଅନ୍ତଃସ୍ଥ କୋଣର ପରିମାଣ $= \frac{2n-4}{n}$ ସମକୋଣ ଏବଂ ଏକ ବହିଃସ୍ଥ କୋଣର ପରିମାଣ $= \frac{360^{\circ}}{n}$

ନିମ୍ନରେ ପ୍ରଦତ୍ତ ସାରଣୀରେ କେତେଗୋଟି ବହୁଭୁକମାନଙ୍କ ଅନ୍ତଃସ୍ଥ ଓ ବହିଃସ୍ଥ କୋଣମାନଙ୍କ ପରିମାଣର ସମଷ୍ଟି ଓ ବହୁଭୁକଟି ସୁଷମ ହୋଇଥିଲେ ପ୍ରତ୍ୟେକ କୋଣମାନଙ୍କ ପରିମାଣ ଦିଆଯାଇଛି ।

ବହୁଭୁଜ	ଅତ୍ତଃସ୍ଥ କୋଣମାନଙ୍କ	ବହିଃସ୍ଥ କୋଣମାନଙ୍କର	ବହୁଭୁଜ ସୁଷମ ହୋଇଥିଲେ
	ପରିମାଣର ସମଷ୍ଟି	ପରିମାଣର ସମଷ୍ଟି	ପ୍ରତ୍ୟେକ ଅନ୍ତଃସ୍ଥ କୋଶର ପରିମାଣ
ତ୍ରିଭୁଜ	2 ସମକୋଶ	4 ସମକୋଶ	60°
ଚର୍ତୁଭୁଜ	4 ସମକୋଶ	4 ସମକୋଶ	900
ପଞ୍ଚଭୁଜ	େ ସମକୋଶ	4 ସମକୋଶ	1080
ଷଡ଼ଭୁଜ	8 ସମକୋଶ	4 ସମକୋଣ	1200

ଉଦାହରଣ - 1:

ଗୋଟିଏ ସୁଷମ ବହୁଭୁଜର ପ୍ରତ୍ୟେକ ଅତ୍ତଃଷ୍ଟ କୋଣର ପରିମାଣ 140º ହେଲେ, ବହୁଭୁଜର ବାହୁ ସଂଖ୍ୟା ସ୍ଥିର କର ।

ସମାଧାନ : ମନେକର ବହୁଭୁଜର ବାହୁସଂଖ୍ୟା n

 \therefore n ସଂଖ୍ୟକ ବାହୁ ବିଶିଷ୍ଟ ସୁଷମ ବହୁଭୁଜର ପ୍ରତ୍ୟେକ ଅନ୍ତଃସ୍ଥ କୋଶର ପରିମାଣ = $\frac{2n-4}{n}$ ସମକୋଣ

ପ୍ରଶାନୁସାରେ
$$\frac{2n-4}{n} \ge 90^{\circ} = 140^{\circ} \implies (2n-4) = 90 = n \ge 140$$

 $\implies 2n \ge 90 - 4 \ge 90 = 140$ $\implies 180n - 360 = 140$ $\implies 180n - 140$ $\implies 180n - 140$ $\implies 180$ $\implies 190$ $\implies 190$

∴ ସୁଷମବହୁଭୁଜର ବାହୁ ସଂଖ୍ୟା ୨ ।

ଉଦାହରଣ - 2:

ଗୋଟିଏ ବହୁଭୁଜର ଅନ୍ତଃସ୍ଥ କୋଶର ପରିମାଶର ସମଷ୍ଟି, ଏହାର ବହିଃସ୍ଥକୋଶର ପରିମାଶର ସମଷ୍ଟିର ତିନି ଗୁଣ ହେଲେ, ବହୁଭୁଜର ବାହୁସଂଖ୍ୟା ସ୍ଥିର କର ।

ସମାଧାନ : ମନେକର ବହୁଭୁଜର ବାହୁସଂଖ୍ୟା n

 \therefore n ବାହୁ ବିଶିଷ୍ଟ ବହୁଭୁଜର ଅନ୍ତଃସ୍ଥ କୋଶର ପରିମାଶର ସମଷ୍ଟି = $(2n-4) \times 90^{0}$ ଏବଂ ବହିଃସ୍ଥ କୋଶର ପରିମାଶର ସମଷ୍ଟି = 360^{0}

ପ୍ରଶ୍ନାନୁସାରେ,
$$(2n-4) \times 90^\circ = 3 \times 360^\circ \Rightarrow 180n - 360 = 1080$$
 $\Rightarrow 180n = 1440 \Rightarrow n = \frac{1440}{180} = 8, \therefore ବହୁଭୁଜର ବାହୁସଂଖ୍ୟା $8 \text{ I}$$

ଉଦାହରଣ - 3:

ଗୋଟିଏ ସୁଷମ ବହୁଭୁଜର ଅନ୍ତଃସ୍ଥ କୋଶର ପରିମାଶ 144º। ଉକ୍ତ ବହୁଭୁଜର ଦୁଇଗୁଣ ସଂଖ୍ୟକ ବାହୁ ବିଶିଷ୍ଟ ସୁଷମ ବହୁଭୁଜର ଅନ୍ତଃସ୍ଥ କୋଣର ପରିମାଣ ସ୍ଥିର କର ।

ସମାଧାନ : ସୁଷମ ବହୁଭୁଜର ଅନ୍ତଃସ୍ଥ କୋଣର ପରିମାଣ 144º।

 \therefore ବହୁଭୁଜର ବହିଃୟ କୋଶର ପରିମାଶ = $180^{\rm o} - 144^{\rm o} = 36^{\rm o}$

$$\Rightarrow$$
 ବହୁଭୁଜର ବାହୁସଂଖ୍ୟା $=\frac{360^{0}}{36^{0}}=10$

ନୂତନ ସୁଷମ ବହୁଭୁଜର ବାହୁସଂଖ୍ୟା = 2 x 10 = 20

$$\therefore$$
 ବହୁଭୁକର ବହିଃସ୍ଥ କୋଶର ପରିମାଣ = $\frac{360^{\circ}}{20}$ = 18°

 \Rightarrow ବହୁଭୁଜର ଅନ୍ତଃସ୍ଥ କୋଶର ପରିମାଶ = 180° – 15° = 162° ।

ଅନୁଶୀଳନୀ - 3 (a) (କ) ବିଭାଗ

- 1. ଶୂନ୍ୟସ୍ଥାନ ପୂରଣ କର ।
 - (i) ଗୋଟିଏ ଉତ୍ତଳ ଚତୁର୍ଭୁଜର କୋଣମାନଙ୍କର ପରିମାଣର ସମଷ୍ଟି ----।
 - (ii) ଗୋଟିଏ ପଞ୍ଚଭୁଜର ଅବଃୟ କୋଣମାନଙ୍କର ପରିମାଣର ସମଷ୍ଟି----।
 - (iii) ଗୋଟିଏ ଅଷ୍ଟଭୁଜର ବହିଃସ୍ଥ କୋଶର ପରିମାଶର ସମଷ୍ଟି ----।

- (iv) ଗୋଟିଏ ସୁଷମ ଷଡ଼ୁଭୁକର ପ୍ରତ୍ୟେକ ଅନ୍ତଃୟ କୋଶର ପରିମାଣ ----।
- (v) ଗୋଟିଏ ସୁଷମ ବହୁଭୁଜର ବହିଃ ଅକୋଣର ପରିମାଣ 45° ହେଲେ ବହୁଭୁଜର ବାହୁସଂଖ୍ୟା ---।
- (vi) ଗୋଟିଏ ସୁଷମ ବହୁଭୁଜର ପ୍ରତ୍ୟେକ ଅନ୍ତଃଷ୍ଟ କୋଶର ପରିମାଶ 150º ହେଲେ, ବହୁଭୁଜର ବାହୁସଂଖ୍ୟା--- ।
- (vii) ଗୋଟିଏ ସୁଷମ ବହୁଭୁଜର ପ୍ରତ୍ୟେକ ଅନ୍ତଃସ୍ଥ କୋଶର ପରିମାଶର ସମଷ୍ଟି 1440º ହେଲେ, ବହୁଭୁଜର ବାହୁସଂଖ୍ୟା----।
- (viii) ଗୋଟିଏ ସୁଷମ ବହୁଭୁଜର ବାହୁସଂଖ୍ୟା ୨ ହେଲେ, ଏହାର ପ୍ରତ୍ୟେକ ବହିଃସ୍ଥ କୋଶର ପରିମାଣ---- ।
- (ix) n ସଂଖ୍ୟକ ବାହୁ ବିଶିଷ୍ଟ ଗୋଟିଏ ସୁଷମ ବହୁଭୁଜର ପ୍ରତ୍ୟେକ ଅନ୍ତଃୟ କୋଶର ପରିମାଣ ---।
- $(x)\,n$ ସଂଖ୍ୟକ ବାହୁ ବିଶିଷ୍ଟ ଗୋଟିଏ ସୁଷମ ବହୁଭୁଜର ପ୍ରତ୍ୟେକ ବହିଃସ୍ଥ କୋଣର ପରିମାଣ ---- ।

(ଖ) ବିଭାଗ

- 2. (i) ଗୋଟିଏ ଚତୁର୍ଭୁଜର କୋଣମାନଙ୍କର ଅନୁପାତ 2:3:4:6 ହେଲେ, ସେମାନଙ୍କର ପରିମାଣ୍ଡ ସ୍ଥିର କର ।
 - (ii) ଏକ ସାମାନ୍ତରିକ ଚିତ୍ରର ଦୁଇ କ୍ରମିକ କୋଶ ମଧ୍ୟରୁ ଗୋଟିକର ପରିମାଣ ଅନ୍ୟର ପରିମାଣର $\frac{3}{2}$ ଗୁଣ ହେଲେ କୋଣଗୁଡ଼ିକର ପରିମାଣ ସ୍ଥିର କର ।
 - (iii) ଗୋଟିଏ ପଞ୍ଚଭୁକର କୋଣମାନଙ୍କର ପରିମାଣର ଅନୁପାତ 2:3:4:5:6 ହେଲେ ବୃହତ୍ତମ କୋଣର ପରିମାଣ ସ୍ଥିର କର ।
 - (iv) ଗୋଟିଏ ଉତ୍ତଳ ଚତୁର୍ଭୁକର ଦୁଇଟି କୋଣ ସମକୋଣ ଏବଂ ଅନ୍ୟ କୋଣମାନଙ୍କର ପରିମାଣ ପ୍ରତ୍ୟେକ 120º ହେଲେ, ବହୁଭୁକର ବାହୁ ସଂଖ୍ୟା ସ୍ଥିର କର ।
 - (v) ଗୋଟିଏ ପଞ୍ଚଭୁଜର କୋଶମାନଙ୍କର ପରିମାଣ x^0 , $(x-10)^0$, $(x-20)^0$, $(2x-40)^0$, $(2x-90)^0$ ହେଲେ 'x' ର ମାନ ସ୍ଥିର କର ।
 - (vi) ଗୋଟିଏ ଅଷ୍ଟଭୁଜର ଅନ୍ତଃସ୍ଥ କୋଣ ମାନଙ୍କର ପରିମାଣର ସମଷ୍ଟି ଏବଂ ବହିଃସ୍ଥ କୋଣମାନଙ୍କର ପରିମାଣ ସମଷ୍ଟି ସ୍ଥିର କର ।
 - (vii) ଗୋଟିଏ ସାମାନ୍ତରିକ ଚିତ୍ରର ଦୁଇ କ୍ରମିକ କୋଣଦ୍ୱୟର ପରିମାଣର ଅନୁପାତ 2:3 ହେଲେ, ସାମାନ୍ତରିକ ଚିତ୍ରର ଅନ୍ୟକୋଣ ମାନଙ୍କର ପରିମାଣ ସ୍ଥିର କର ।

(ଗ) ବିଭାଗ

- 3. ଦର୍ଶାଅ ଯେ, ଗୋଟିଏ ସୁଷମ ପଞ୍ଚଭୁକର ଗୋଟିଏ ଅନ୍ତଃସ୍ଥକୋଣର ପରିମାଣ ଏହାର ପ୍ରତ୍ୟେକ ବହିଃସ୍ଥ କୋଣର ପରିମାଣର ତିନିଗୁଣ ।
- 4. ABCDE ଗୋଟିଏ ସୁଷମ ପଞ୍ଚଭୁକ ହେଲେ, ତ୍ରିଭୁକ $\Delta {
 m BED}$ ର ପ୍ରତ୍ୟେକ କୋଶର ପରିମାଶ ସ୍ଥିର କର ।
- 5. ଗୋଟିଏ ସୁଷମ ବହୁଭୁଜର ପ୍ରତ୍ୟେକ ଅନ୍ତଃସ୍ଥ ଏବଂ ବହିଃସ୍ଥ କୋଶର ପରିମାଶର ଅନୁପାତ 5:1 ହେଲେ, ବହୁଭୁଜର ବାହୁସଂଖ୍ୟା ସ୍ଥିର କର ।
- 6. n ସଂଖ୍ୟକ ବାହୁ ବିଶିଷ୍ଟ ଏକ ସୁଷମ ବହୁଭୁଜର ବହିଃସ୍ଥ କୋଣର ପରିମାଣ ଓ (n+2) ସଂଖ୍ୟକ ବାହୁ ବିଶିଷ୍ଟ ଏକ ସୁଷମ ବହୁଭୁଜର ବହିଃସ୍ଥ କୋଣର ପରିମାଣ ମଧ୍ୟରେ ଅନ୍ତର ୨ $^{\circ}$ ହେଲେ, ବହୁଭୁଜର ବାହୁସଂଖ୍ୟା ସ୍ଥିର କର ।
- 7. ଗୋଟିଏ ସୁଷମ ବହୁଭୁଜର ଏକ ଅନ୍ତଃସ୍ଥ କୋଶର ପରିମାଶ 120º ହେଲେ, ବହୁଭୁଜର ବାହୁସଂଖ୍ୟା ସ୍ଥିର କର ।
- 8. (n–1) ସଂଖ୍ୟକ ଏବଂ (n+2) ସଂଖ୍ୟକ ସୁଷମ ବହୁଭୁକର ବହିଃସ୍ଥ କୋଣଦ୍ୱୟର ଅନ୍ତର 6º ହେଲେ, ଦର୍ଶାଅ ଯେ, 'n' ର ମାନ 13 ହେବ ।
- 9. ଗୋଟିଏ ପଞ୍ଚଭୁକର ଗୋଟିଏ ଅନ୍ତଃସ୍ଥ କୋଶର ପରିମାଶ 140° । ଅନ୍ୟ କୋଶଗୁଡ଼ିକର ପରିମାଶର ଅନୁପାତ 1:2:3:4 ହେଲେ ଦର୍ଶାଅ ଯେ, ବୃହତ୍ତମ କୋଶର ପରିମାଣ 160° ।
- 10. ABCDE ଗୋଟିଏ ସୁଷମ ପଞ୍ଚଭୁଜର \overline{AD} , \angle CDEକୁ ଦୁଇଭାଗ କରୁଥିଲେ, ଦର୍ଶାଅ ଯେ, m \angle ADE : m \angle ADC = 1 : 2 \Box

3.5 କେତେକ ବିଶେଷ ଚତୁର୍ଭୁଜ :

ଚତୁର୍ଭୁକର ବିପରୀତ ବାହୁଯୋଡ଼ା ମଧ୍ୟରେ ଥିବା ସମାନ୍ତରଣର ସର୍ତ୍ତ ଅନୁଯାୟୀ ଚତୁର୍ଭୁକ ମୁଖ୍ୟତଃ ଦୁଇ ଭାଗରେ ବିଭକ୍ତ, ଯଥା : (1) ଟ୍ରାପିଜିୟମ୍, (2) ସାମାନ୍ତରିକ ଚିତ୍ର ।

1. ଟ୍ରାପିକିୟମ୍ : ଯେଉଁ ଚତୁର୍ଭୁକର କେବଳ ଏକ ଯୋଡ଼ା ବିପରୀତ ବାହୁ ସମାନ୍ତର ତାହାକୁ ଟ୍ରାପିକିଅମ୍ (Trapezium) କୁହାଯାଏ । ଚିତ୍ର 3.5(a) ରେ ABCD ଚତୁର୍ଭୁକର \overline{AD} ॥ \overline{BC} ହେତୁ ABCD ଚତୁର୍ଭୁକଟି ଏକ ଟ୍ରାପିକିଅମ୍ । ଏ କ୍ଷେତ୍ରରେ \overline{AB} ଓ \overline{DC} ଦ୍ୱୟ ଅସମାନ୍ତର ।

ଟ୍ରାପିକିଅମ୍ର ଦୁଇ ସମାନ୍ତର ବାହୁ ମଧ୍ୟବର୍ତ୍ତୀ ଦୂରତାକୁ ଟ୍ରାପିକିଅମ୍ର ଉଚ୍ଚତା (Height) କୁହାଯାଏ । ଚିତ୍ର 3.5(a) ରେ ABCD ଟ୍ରାପିକିଅମ୍ର ଉଚ୍ଚତା PQ ।

2. ସାମାନ୍ତରିକ ଚିତ୍ର

ଯେଉଁ ଚତୁର୍ଭୁକର ଦୁଇଯୋଡ଼ା ବିପରୀତ ବାହୁ ସମାନ୍ତର ତାହା ଏକ ସାମାନ୍ତରିକ ଚିତ୍ର (Parallelogram) ।

M

(b)

ଚିତ୍ର 3.5(b) ରେ ABCD ଚତୁର୍ଭୁକର ବିପରୀତ ବାହୁ $\overline{AB} \parallel \overline{CD}$ ଏବଂ $\overline{AD} \parallel \overline{BC}$ । ଉକ୍ତ ଚତୁର୍ଭୁକକୁ ସାମାନ୍ତରିକ ଚିତ୍ର କହାଯାଏ ।

ଚିତ୍ର 3.5(b)ରେ ଥିବା ସାମାନ୍ତରିକ ଚିତ୍ରରେ ବିପରୀତ ବାହୁ \overline{AD} ଓ \overline{BC} ମଧ୍ୟବର୍ତ୍ତୀ ଦୂରତା \overline{AM} ଏବଂ \overline{AB} ଓ \overline{CD} ମଧ୍ୟବର୍ତ୍ତୀ ଦୂରତା \overline{CN} । \overline{ABCD} ସାମାନ୍ତରିକଚିତ୍ରର \overline{BC} ଅଥବା \overline{AD} ବାହୁକୁ ଭୂମି ନିଆଗଲେ \overline{AM} କୁ ଉଚ୍ଚତା ରୂପେ ନିଆଯାଏ । ସେହିପରି \overline{AB} ଅଥବା \overline{DC} ଭୂମି ହେଲେ ସାମାନ୍ତରିକ ଚିତ୍ରର ଉଚ୍ଚତା \overline{CN} ହୁଏ ।

(i) ଆୟତଚିତ୍ର : ଯେଉଁ ଚତୁର୍ଭୁକର ପ୍ରତ୍ୟେକ କୋଣ ସମକୋଣ ତାହା ଏକ ଆୟତ ଚିତ୍ର (Rectangle) । ଆଗକୁ ପ୍ରମାଣ କରାଯିବ ଯେ ପ୍ରତ୍ୟେକ କୋଣ ସମକୋଣ ହେଲେ ବିପରୀତ ବାହୁମାନ ସମାନ୍ତର ହେବେ । ତେଣୁ ଆୟତ ଚିତ୍ର ଏକ ସ୍ୱତନ୍ତ $_{\rm B}$ ପ୍ରକାରର ସାମାନ୍ତରିକ ଚିତ୍ର, ଯାହାର ପ୍ରତ୍ୟେକ କୋଣର ପରିମାଣ 90 $^{\rm o}$ । ଚିତ୍ର 3.6 ରେ ଏକ ଆୟତଚିତ୍ର ABCD ପ୍ରଦର୍ଶିତ ହୋଇଛି ।

(ii) ରୟସ: ଯେଉଁ ଚତୁର୍ଭୁକର ବାହୁମାନଙ୍କ ଦୈର୍ଘ୍ୟ ସମାନ ତାହା ଏକ ରୟସ୍ (Rhombus) । ଆଗକୁ ପ୍ରମାଣ କରାଯିବ ଯେ ବାହୁମାନଙ୍କର ଦୈର୍ଘ୍ୟ ସମାନ ହେଲେ ବିପରୀତ ବାହୁମାନ

D

ମଧ୍ୟ ସମାନ୍ତର ହେବେ । ତେଣୁ ରୟସ୍ ମଧ୍ୟ ଗୋଟିଏ ସ୍ୱତନ୍ତ ପ୍ରକାରର ସାମାନ୍ତରିକ ଚିତ୍ର, ଯାହାର ବାହୁମାନଙ୍କର ଦୈର୍ଘ୍ୟ ସମାନ । ଚିତ୍ର 3.7 ରେ ABCD ଏକ ରୟସ୍ ।

(iii) ବର୍ଗଚିତ୍ର : ଯେଉଁ ଚତୁର୍ଭୁକର ବାହୁମାନଙ୍କର ଦୈର୍ଘ୍ୟ ସମାନ ଓ ପ୍ରତ୍ୟେକ କୋଣର ପରିମାଣ 90% ତାହା ଏକ ବର୍ଗଚିତ୍ର (Square) । ଏଣୁ ବର୍ଗଚିତ୍ର ଏକ ସମକୋଣ ବିଶିଷ୍ଟ ରୟସ୍ ଅଟେ । ଚିତ୍ର 3.8 ରେ ABCD ଏକ ବର୍ଗଚିତ୍ର ।

ଉପରେ ଆଲୋଚିତ ଚତୁର୍ଭୁକମାନଙ୍କର ପ୍ରକାରଭେଦକୁ ନିମ୍ନ ଚାର୍ଟରେଦର୍ଶାଯାଇଛି, ଦେଖ-

3.6 କେତେକ ଉପପାଦ୍ୟ :

ଗୋଟିଏ ଚତୁର୍ଭୁକ ଯେଉଁ ବିକଳ୍ପ ସର୍ତ୍ତରେ ଏକ ସାମାନ୍ତରିକ ଚିତ୍ର ବା ରୟସ ବା ଆୟତଚିତ୍ର ହୋଇପାରେ, ସେପରି କେତେକ ବିକଳ୍ପ ସର୍ତ୍ତ ନିମୁଲିଖିତ ଉପପାଦ୍ୟ ମାନଙ୍କରେ ଦିଆଯାଇଛି ।

ଉପପାଦ୍ୟ - 20

ଗୋଟିଏ ଚତୁର୍ଭୁକର ଦୁଇଟି ବିପରୀତ ବାହୁ ସର୍ବସମ ଓ ସମାନ୍ତର ହେଲେ ଚତୁର୍ଭୁକଟି ଏକ ସାମାନ୍ତରିକ ଚିତ୍ର l (If two opposite sides of a quadrilateral are congruent and parallel, the quadrilateral is a parallelogram.)

 \mathbf{Q} : ABCD ଚତୁର୍ଭୁଜରେ $\overline{\mathrm{AB}} \cong \overline{\mathrm{CD}}$ ଏବଂ $\overline{\mathrm{AB}} \ \mathbb{I} \ \overline{\mathrm{CD}}$

ପ୍ରାମାଣ୍ୟ : ABCD ଏକ ସାମାନ୍ତରିକ ଚିତ୍ର ଅର୍ଥାତ୍ \overline{AD} $\mathbb I$ \overline{BC}

ଅଙ୍କନ : କର୍ଷ $\overline{\mathrm{BD}}$ ଅଙ୍କନ କର ।

ପୁମାଣ : Δ ABD ଓ Δ BDC ରେ

$$\therefore \Delta \ ABD \cong \Delta \ BCD \ (ବା-କୋ-ବା ସ୍ୱୀକାର୍ଯ୍ୟ)$$
 $\Rightarrow m\angle ADB = m\angle DBC \ (ସର୍ବସମ ତ୍ରିଭୁଜର ଅନୁରୂପ କୋଣ) କିନ୍ତୁ ଏମାନେ ଏକାନ୍ତର $\Rightarrow \overline{AD} \ \mathbb{1} \ \overline{BC}$$

∴ ABCD ଏକ ସାମାତ୍ତରିକ ଚିତ୍ର । (ପ୍ରମାଣିତ)

ଉପପାଦ୍ୟ - 21

ସାମାନ୍ତରିକ ଚିତ୍ରର ବିପରୀତ ବାହୁମାନେ ସର୍ବସମ।

(The opposite sides of a parallelogram are congruent.)

ଦର: ABCD ଏକ ସାମାନ୍ତରିକ ଚିତ୍ର, ଅର୍ଥାତ୍

$$\overline{AB}$$
 \mathbb{I} \overline{CD} ଏବଂ \overline{AD} \mathbb{I} \overline{BC}

ପ୍ରାମାଶ୍ୟ :
$$\overline{AB}\cong\overline{CD}$$
 ଏବଂ $\overline{AD}\cong\overline{BC}$

ଅ**ଙ୍କନ :** କର୍ଣ୍ଣ BD ଅଙ୍କନ କର ।

ପ୍ରମାଣ : Δ ABD ଓ Δ BCD ରେ

$$Arr \cdot \left\{ egin{array}{ll} \angle ABD \cong \angle BDC & (ଏକାନ୍ତରକୋଣ) \ & \angle ADB \cong \angle DBC & (ଏକାନ୍ତରକୋଣ) \ & ଏବଂ & \overline{BD} & ସାଧାରଣ ବାହୁ \ & \end{array}
ight.$$

$$\therefore$$
 \triangle ABD \cong \triangle BDC (କୋ-ବା-କୋ ଉପପାଦ୍ୟ)

$$\Rightarrow$$
 AB = CD ଏବ $^{\circ}$ AD = BC

$$\Rightarrow$$
 $\overline{AB} \cong \overline{CD}$ ଏବଂ $\overline{AD} \cong \overline{BC}$ (ପ୍ରମାଶିତ)

ଉପପାଦ୍ୟ - 22

ଗୋଟିଏ ଚତୁର୍ଭୁଜର ବିପରୀତ ବାହୁମାନ ସର୍ବସମ ହେଲେ ଏହା ଏକ ସାମାନ୍ତରିକ ଚିତ୍ର । (A quadrilateral is a parallelogram if both pairs of its opposite sides are congruent.)

ଦତ୍ତ : ABCD ଚତ୍ରର୍ଭୁକରେ $\overline{AB}\cong\overline{CD}$, $\overline{AD}\cong\overline{BC}$

ପ୍ରମାଶ୍ୟ : ABCD ଏକ ସାମାନ୍ତରିକ ଚିତ୍ର, ଅର୍ଥାତ୍ $\overline{AB} \ \mathbb{I} \ \overline{CD}$ ଓ $\overline{AD} \ \mathbb{I} \ \overline{BC}$

ଅଙ୍କନ : କର୍ଣ୍ଣ \overline{BD} ଅଙ୍କନ କର ।

ପ୍ରମାଶ : Δ ABD ଓ Δ BDC ରେ

$$\cdot : \begin{cases} \overline{AB} \cong \overline{CD} & (ଦୃତ୍ତ) \\ \overline{AD} \cong \overline{BC} & (ଦୃତ୍ତ) \\ orall Qବ° \overline{BD} & ସାଧାରଣ ବାହୁ$$

 $\therefore \Delta \ ABD \cong \Delta \ BDC \ (ବା-ବା-ବା ଉପପାଦ୍ୟ)$

 \Rightarrow m \angle ABD = m \angle BDC ଏବଂ m \angle ADB = m \angle CBD (ସର୍ବସମ ତ୍ରିଭୂଜର ଅନୁରୂପ କୋଣ)

 \Rightarrow \overline{AB} $\mathbb{1}$ \overline{CD} ଏବଂ \overline{AD} $\mathbb{1}$ \overline{BC}

= ABCD ଏକ ସାମାନ୍ତରିକ ଚିତ୍ର ।

(ପ୍ରମାଣିତ)

ଉପପାଦ୍ୟ - 23

ସାମାନ୍ତରିକ ଚିତ୍ରର ବିପରୀତ କୋଣମାନେ ସର୍ବସମ । (The opposite angles of a parallelogram are congruent.)

ଦଉ : ABCD ଏକ ସାମାନ୍ତରିକ ଚିତ୍ର । ଅର୍ଥାତ୍ \overline{AB} $\mathbb I$ \overline{CD} ଏବଂ \overline{AD} \overline{ID} \overline{BC}

ପ୍ରମାଶ୍ୟ : $\angle A \cong \angle C$, $\angle B \cong \angle D$

ଅ**ଙ୍କନ :** କର୍ଷ \overline{BD} ଅଙ୍କନ କର ।

ପ୍ରମାଣ : Δ ABD ଓ Δ BDC ମଧ୍ୟରେ

 $\cdot \cdot \Delta$ ABD $\cong \Delta$ BDC (କୋ-ବା-କୋ ଉପପାଦ୍ୟ)

$$\Rightarrow$$
 m \angle A = m \angle C \Rightarrow \angle A \cong \angle C

ସେହିପରି Δ ABC ଓ Δ ADC ନେଇ ପ୍ରମାଣ କରାଯାଇପାରେ ଯେ,

$$m\angle B = m\angle D \Rightarrow \angle B \cong \angle D$$
 (ପ୍ରମାଶିତ)

ଉପପାଦ୍ୟ - 24

ଗୋଟିଏ ଚତୁର୍ଭୁକର ବିପରୀତ କୋଣମାନ ସର୍ବସମ ହେଲେ ଏହା ଏକ ସାମାନ୍ତରିକ ଚିତ୍ର । (A quadrilateral whose opposite angles are congruent, is a parallelogram.)

ଦର : ଚତୁର୍ଭୁଜ ABCD ରେ $\angle A \cong \angle C$ ଓ $\angle B \cong \angle D$

ପ୍ରାମାଣ୍ୟ : ABCD ଏକ ସାମାନ୍ତରିକ ଚିତ୍ର ।

ପ୍ରମାଣ : ABCD ଏକ ଉତ୍ତଳ ଚତୁର୍ଭୁକ ।

$$\therefore$$
 m \angle A + m \angle B + m \angle C + m \angle D = 360°
ପୁନଣ୍ଟ : m \angle A = m \angle C ଏବଂ m \angle B= m \angle D (ବୃତ୍ର)

$$\Rightarrow$$
 m \angle A + m \angle B = m \angle C + m \angle D = $\frac{360^{\circ}}{2}$ =180°

$$\Rightarrow \overline{AD}$$
 $\mathbbm{1}$ \overline{BC} (i) ପୁନଣ୍ଟ $m\angle A + m\angle D = m\angle B + m\angle C = \frac{360^0}{2} = 180^0$ $\Rightarrow \overline{AB}$ $\mathbbm{1}$ \overline{CD} (ii) (i) ଓ (ii) ରୁ ପାଇବା ABCD ଏକ ସାମାନ୍ତରିକ ଚିତ୍ର ।

ଉପପାଦ୍ୟ - 25

ଏକ ସାମାନ୍ତରିକ ଚିତ୍ରର କର୍ତ୍ତଦ୍ୱୟ ପରସ୍କରକୁ ସମଦ୍ୱିଖଣ୍ଡ କରନ୍ତି । (Diagonals of a parallelogram bisect each other.)

ଦଉ : ABCD ସାମାନ୍ତରିକ ଚିତ୍ରର କର୍ଷଦ୍ୱୟ \overline{AC} ଓ \overline{BD} ପରସ୍କରକୁ O ବିନ୍ଦୁରେ ଚ୍ଛେଦ କରନ୍ତି ।

ପ୍ରାମାଶ୍ୟ : AO = CO ଏବଂ BO = DO

ପ୍ରମାଶ : Δ AOB ଓ Δ COD ରେ

$$\cdot \cdot \begin{cases}
\overline{AB} \cong \overline{CD} \\
\angle ABO \cong \angle ODC \\
\forall \neg \circ \angle BAO \cong \angle OCD
\end{cases}$$
(ଏକାନ୍ତର କୋଣ)

(ପ୍ରମାଣିତ)

ଉପପାଦ୍ୟ - 26

ଯେଉଁ ଚତୁର୍ଭୁକର କର୍ଷଦ୍ୱୟ ପରସ୍କରକୁ ସମଦ୍ୱିଖଣ୍ଡ କରନ୍ତି ତାହା ଏକ ସାମାନ୍ତରିକ ଚିତ୍ର। (A quardrilateral whose diagonals bisect each other is a parallelogram.)

ଦଉ : ABCD ଚତୁର୍ଭୁଜର କର୍ଷ \overline{AC} ଓ \overline{BD} ର ଛେଦବିନ୍ଦୁ $O;\ AO=CO$ ଏବଂ BO=DO

ପାମାଶ୍ୟ : ABCD ଏକ ସାମାନ୍ତରିକ ଚିତ୍ର । ଅର୍ଥାତ୍ \overline{AB} $\mathbbm{1}$ \overline{CD} ଏବଂ \overline{AD} $\mathbbm{1}$ \overline{BC}

ପ୍ରମାଣ : Δ AOB ଓ Δ COD ରେ

AO = CO (ଦୃତ୍ର) BO = DO (ଦୃତ୍ର) $m\angle AOB = m\angle COD$ (ପ୍ରତୀପ କୋଣ)

 \therefore Δ AOB \cong Δ COD (ବା-କୋ-ବା ସ୍ୱୀକାର୍ଯ୍ୟ)

 \Rightarrow m \angle ABO = m \angle ODC (ସର୍ବସମ ତ୍ରିଭୁଜର ଅନୁରୂପ କୋଣ)

 $\Rightarrow \overline{AB} \mathbb{1} \overline{DC}$

ସେହିପରି Δ AOD ଏବଂ Δ BOC ନେଇ ପ୍ରମାଣ କରାଯାଇପାରେ ଯେ, $\overline{\mathrm{AD}}$ $\mathbbm{1}$ $\overline{\mathrm{BC}}$ \therefore ABCD ଏକ ସାମାନ୍ତରିକ ଚିତ୍ର । (ପ୍ରମାଣିତ)

ଉପପାଦ୍ୟ - 27

ଆୟତଚିତ୍ରର କର୍ଷ୍ୱଦ୍ୟ ସର୍ବସମ l (The diagonals of a rectangle are congruent.)

ଦଉ : ABCD ଏକ ଆୟତ ଚିତ୍ର ଓ \overline{AC} , \overline{BD} ଏହାର କର୍ତ୍ତ ।

ପାମାଶ୍ୟ : AC \cong BD

ପ୍ରମାଶ : Δ ADC ଓ Δ BDC ମଧ୍ୟରେ

$$\cdot : \begin{cases}
\overline{AD} \cong \overline{BC} \\
\angle ADC \cong \angle BCD \quad (ସମକୋଣ) \\
ଏବଂ \overline{DC} \quad 2|\lambda| ରଣ ବାହୁ |$$

$$\therefore$$
 \triangle ADC \cong \triangle BDC

$$\Rightarrow \overline{AC} \cong \overline{BD}$$

(ଚିତ୍ର 3.16)

ଉପପାଦ୍ୟ - 28

ଯେଉଁ ସାମାନ୍ତରିକ ଚିତ୍ରର କର୍ଣ୍ଣଦ୍ୱୟ ସର୍ବସମ ତାହା ଏକ ଆୟତଚିତ୍ର । (If the diagonals of a parrallelogram are congruent, it is a rectangle.)

ଦଉ : ABCD ସାମାନ୍ତରିକ ଚିତ୍ରରେ କର୍ଷ $\overline{AC} \cong \overline{BD}$ କର୍ଷ ।

ପ୍ରାମୀଣ୍ୟ : ABCD ଏକ ଆୟତଚିତ୍ର ଅର୍ଥାତ୍ $\angle A$, $\angle B$, $\angle C$, $\angle D$ ପ୍ରତ୍ୟେକ ସମକୋଶ ।

ପ୍ରମାଣ : Δ ADC ଓ Δ BDC ମଧ୍ୟରେ

(ସର୍ବସମ ତ୍ରିଭୁଜର ଅନୁରୂପ କୋଣ ହେତୁ)

(ସାମାନ୍ତରିକ ଚିତ୍ରର ବିପରୀତ ବାହୁ ହେତୁ)

$$\therefore$$
 Δ ADC \cong Δ BDC

ପ୍ନଣ୍ଟ, AD I BC

$$\Rightarrow$$
 m \angle ADC + m \angle BCD = 180 $^{\circ}$

$$\therefore$$
 m \angle ADC = m \angle BCD = 90°

ସେହିପରି ପ୍ରମାଣ କରାଯାଇ ପାରିବ ଯେ m $\angle DAB = m\angle ABC = 90^{\circ}$

∴ ABCD ଏକ ଆୟତ ଚିତ୍ର ।

(ପ୍ରମାଣିତ)

ଉପପାଦ୍ୟ - 29

ଗୋଟିଏ ରୟସ୍ର କର୍ଷିଦ୍ୱୟ ପରସ୍କର ପ୍ରତି ଲୟ । (The diagonals of a rhombus are perpendicular to each other.)

ଦଉ : ABCD ଗୋଟିଏ ରୟସ ଏବଂ \overline{AC} , \overline{BD} ଏହାର ଦୃଇ କର୍ତ୍ତ ।

ପାମାଣ୍ୟ : AC \perp BD

ପ୍ରମାଣ : ମନେକର \overline{AC} ଓ \overline{BD} ପର୍ୟରକୁ O ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତି ।

 Δ AOD ଓ Δ DOC ରେ

$$AO = CO$$
 $AD = DC$ $[: ABCD ଗୋଟିଏ ରୟସ]$ ଏବଂ \overline{DO} ସାଧାରଣ ବାହୁ

 $egin{array}{ll} \therefore & \Delta \ \mathrm{AOD} \cong & \Delta \ \mathrm{DOC} \ \left(\mathrm{SI-SI-SI} \ \mathrm{ @ CIClose}
ight) \end{array}$

 \Rightarrow m \angle AOD = m \angle DOC

କିନ୍ତୁ $m\angle AOD + m\angle DOC = 180^{\circ}$

 $\therefore m\angle AOD = m\angle DOC = 90^{\circ}$

ଅର୍ଥାତ୍ \overline{AC} \perp \overline{BD} ।

(ପ୍ରମାଣିତ)

ଅନୁସିଦ୍ଧାନ୍ତ - 1 : ଏକ ସାମାନ୍ତରିକ ଚିତ୍ରର କର୍ଣ୍ଣଦ୍ୱୟ ସର୍ବସମ ଓ ପରୟର ପ୍ରତି ଲୟ ହେଲେ ଏହା ଏକ ବର୍ଗଚିତ୍ର ।

ଅନୁସିଦ୍ଧାନ୍ତ -2 : ଗୋଟିଏ ବର୍ଗଚିତ୍ରର କର୍ଣ୍ଣଦ୍ୱୟ ସର୍ବସମ ଓ ପରୟର ପ୍ରତି ଲୟ ।

ଅନୁସିଦ୍ଧାନ୍ତ -3 : ଯେଉଁ ସାମାନ୍ତରିକ ଚିତ୍ରର କର୍ଣ୍ଣଦ୍ୱୟ ପରସ୍କର ପ୍ରତି ଲୟ,ତାହା ଏକ ରୟସ ।

ଅନୁଶୀଳନୀ- 3 (b) (କ) ବିଭାଗ

- 1. ନିମ୍ନଲିଖିତ ଉକ୍ତିଗୁଡ଼ିକ ଭୁଲ୍ କି ଠିକ୍ ଲେଖ।
 - (a) ଚତୁର୍ଭୁଜର ଚାରୋଟି ବାହୁ ସର୍ବସମ ହେଲେ, ତାହା ଏକ ବର୍ଗଚିତ୍ର।
 - (b) ପ୍ରତ୍ୟେକ ରୟସ ଏକ ସାମାନ୍ତରିକଚିତ୍ର।
 - (c) ପ୍ରତ୍ୟେକ ସାମାନ୍ତରିକଚିତ୍ର ଏକ ରୟସ୍।
 - (d) ଗୋଟିଏ ସାମାନ୍ତରିକ ଚିତ୍ରର ଦୁଇ ସନ୍ନିହିତ ବାହୁର ଦୈର୍ଘ୍ୟ ସମାନ ହେଲେ, ତାହା ଏକ ରୟସ୍।
 - (e) ରୟସର କର୍ତ୍ତିଦ୍ୱୟ ସର୍ବସମ।
 - (f) ଗୋଟିଏ ଆୟତଚିତ୍ରର କର୍ତ୍ତଦ୍ୟ ପରସ୍କରକୁ ସମଦ୍ୱିଖଣ୍ଡ କରନ୍ତି।
 - (g) ଗୋଟିଏ ରମ୍ଭସର ଗୋଟିଏ କୋଣର ପରିମାଣ ୨0º ହେଲେ, ତାହା ଏକ ବର୍ଗଚିତ୍ର।

- (h) ଗୋଟିଏ ବର୍ଗଚିତ୍ରର କର୍ଷଦ୍ୱୟ ପରୟରକୁ ସମକୋଣରେ ସମଦ୍ୱିଖଣ୍ଡ କରନ୍ତି।
- (i) ଯଦି ଏକ ଚତୁର୍ଭୁଜର କର୍ଷଦ୍ୱୟ ପରୟର ପ୍ରତି ଲୟ ହୁଅନ୍ତି, ତେବେ ଚତୁର୍ଭୁଜଟି ଏକ ବର୍ଗଚିତ୍ର।
- (j) ପ୍ରତ୍ୟେକ ସାମାନ୍ତରିକ ଚିତ୍ର ଏକ ଟ୍ରାପିଜିୟମ୍।
- (k) ପ୍ରତ୍ୟେକ ବର୍ଗଚିତ୍ର ଏକ ଆୟତ ଚିତ୍ର।
- (1) ରୟସ ଏକ ବର୍ଗଚିତ୍ର।
- 2. ନିମ୍ନଚିତ୍ରଗୁଡ଼ିକ ଦେଖି "x"ର ମୂଲ୍ୟ ସ୍ଥିର କର।

- 3. ଶୁନ୍ୟସ୍ଥାନ ପୂରଣ କର।
 - (a) ---- ର କର୍ଣ୍ଣଦ୍ୱୟ ସର୍ବସମ ଏବଂ ପରସ୍କର ପ୍ରତି ଲୟ।
 - (b) ABCD ଚର୍ଡୁଭୁଜରେ ∠A ଓ ∠B ପରସର ପରିପୂରକ ହେଲେ, ଚତୁର୍ଭୁଜଟି ----।
 - (c) ଗୋଟିଏ ରୟସର କର୍ଣ୍ଣଦ୍ୱୟ ସର୍ବସମ ହେଲେ ରୟସଟି ---।
 - (d) ABCD ଚତୂର୍ଭୁଜର $AB=CD, \overline{AB}$ II \overline{CD} ହେଲେ ଚତୁର୍ଭୁଜଟି ----I
 - (e) ABCD ଚତୁର୍ଭୁଜର AB = BC ଏବଂ AC = BD ଏବଂ∠B ଏକ ସମକୋଶ ହେଲେ ଚତୁର୍ଭୁଜଟି --I
 - (f) ଗୋଟିଏ ରୟସ୍ର ଗୋଟଏ କୋଶର ପରିମାଣ ୨0º ହେଲେ, ରୟସ୍ଟି ----।
- (g) ABCD ଚତୁର୍ଭୁଜର \overline{AC} ଓ \overline{BD} କର୍ଣ୍ଣଦ୍ୱୟ ପରସ୍କରକୁ ସମଦ୍ୱିଖଣ୍ଡ କରନ୍ତି ଏବଂ m∠A = 90° ହେଲେ, ଚତୁର୍ଭୁଜଟି ----।
- (h) ABCD ଚତୁର୍ଭୁଜର \overline{AC} ଓ \overline{BD} କର୍ଣ୍ଣଦ୍ୱୟ ପରୟରକୁ ସମଦ୍ୱିଖଣ୍ଡ କରନ୍ତି ଏବଂ $\overline{AC}\cong \overline{BD}$ ହେଲେ, ଚତୁର୍ଭୁଜଟି ----।

(ଖ) ବିଭାଗ

- 4.(i) ABCD ସାମାନ୍ତରିକ ଚିତ୍ରରେ m \angle B= $(x+30^{\circ})$ ଓ m \angle C= $(2x-60^{\circ})$ ହେଲେ m \angle A କେତେ ?
 - (ii) ABCD ଏକ ସାମାନ୍ତରିକ ଚିତ୍ର। $\angle A$ ଓ $\angle B$ ର ସମଦ୍ୱିଖଣ୍ଡକଦ୍ୱୟ ପରସ୍କରକୁ P ବିନ୍ଦୁରେ ଛେଦକରନ୍ତି। $\angle APB$ ର ପରିମାଣ କେତେ?
 - (iii) ଗୋଟିଏ ରୟସର କ୍ଷୁଦ୍ରତର କର୍ଣ୍ଣର ଦୈର୍ଘ୍ୟ ଏକ ବାହୁର ଦୈର୍ଘ୍ୟ ସହ ସମାନ ହେଲେ, ରୟସର ବୃହତ୍ତର କୋଶର ପରିମାଣ କେତେ?
 - (iv) ଗୋଟିଏ ସାମାନ୍ତରିକ ଚିତ୍ରର ଦୁଇଟି କ୍ରମିକ ଶୀର୍ଷରେ ଉତ୍ପନ୍ନ କୋଣମାନଙ୍କର ପରିମାଣର ଅନୁପାତ 2 : 3 ହେଲେ, ବୃହତ୍ତର କୋଶର ପରିମାଣ କେତେ?
 - m (v) ଗୋଟିଏ ସାମାନ୍ତରିକ ଚିତ୍ରର ଗୋଟିଏ କୋଣର ପରିମାଣ ଏହାର ଏକ ସନ୍ନିହିତ କୋଣର $rac{4}{5}$ ହେଲେ, ସନ୍ନିହିତ କୋଣଦୃୟର ପରିମାଣ ସ୍ଥିର କର ।

- 5.(i) ABCD ଏକ ଉତ୍ତଳ ଚତୁର୍ଭୁଚ୍ଚ। ଏଥିରେ $\angle B$, $\angle C$, $\angle D$ ର ପରିମାଣ ଯଥାକ୍ରମେ $\angle A$ ର ପରିମାଣର ଦୁଇଗୁଣ, ତିନିଗୁଣ, ଚାରିଗୁଣ ହେଲେ, ଦର୍ଶାଅ ଯେ, ଏହା ଏକ ଟ୍ରାପିକିୟମ୍।
- (ii) ABCD ଚତୁର୍ଭୁ କରେ ∠A ଓ ∠B ର ସମଦ୍ୱିଖଣ୍ଡକ ପରୟରକୁ O ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତି ଏବଂ ∠AOB ଏକ ସମକୋଣ ହେଲେ, ପ୍ରମାଣକର ଯେ, ABCD ଏକ ଟ୍ରାପଜିୟମ୍ ।
- (iii) ABCD ଚତୁର୍ଭୁକରେ ∠ADC ଏକ ସମକୋଶ, m∠BAC = m∠ACB = 45º ଏବଂ AD = DC ହେଲେ, ପ୍ରମାଶକର ଯେ, ଏହା ଏକ ବର୍ଗଚିତ୍ର ।
- (iv) ABCD ଚତୁର୍ଭୁ ଜରେ AD = BC = 3 ସେ.ମି, AB = 8 ସେମି। \overline{AB} ଉପରେ E ଓ F ଦୁଇଟି ବିନ୍ଦୁ। ଯେପରିକି A-E-F ଏବଂ EF = 2 ସେମି। m \angle BCF = m \angle BFC = m \angle AED = m \angle ADE = 45° ହେଲେ ପ୍ରମାଣ କର ଯେ, ABCD ଏକ ଆୟତଚିତ୍ର।
- (v) ABCD ଏକ ସାମାନ୍ତରିକ ଚିତ୍ର । ଯଦି AB = 2AD ଏବଂ P, $\overline{\text{CD}}$ ର ମଧ୍ୟବିନ୍ଦୁ ହୁଏ, ତେବେ ଦର୍ଶାଅ ଯେ, $\angle{\text{APB}} = 90^\circ$
- 6. ABCD ଚତୁର୍ଭୁଜ ରେ m \angle ABD = m \angle BDC ଏବଂ m \angle ADB = m \angle CBD ହେଲେ, ପ୍ରମାଣକର ଯେ, ଏହା ଏକ ସାମାନ୍ତରିକ ଚିତ୍ର ଏବଂ Δ ABC $\cong \Delta$ ADC

(ଗ) ବିଭାଗ

- 7. ABCD ଚତୁର୍ଭୁଜରେ \overline{BC} II \overline{AD} I \overline{AC} ଓ \overline{BD} ଯଥାକ୍ରମେ ∠BAD ଓ ∠CDA କୁ ସମଦ୍ୱିଖଣ୍ଡ କରୁଥିଲେ ପ୍ରମାଣକର ଯେ, $\overline{AB} = \overline{BC} = \overline{CD}$
- 8. ABCD ସାମାନ୍ତରିକ ଚିତ୍ର । \angle A ଓ \angle C ର ସମଦ୍ୱିଣ୍ଡକ ଯଥାକ୍ରମେ \overrightarrow{AP} ଓ \overrightarrow{CQ} । ଏମାନେ ଯଦି \overrightarrow{BC} ଓ \overline{AD} କୁ ଯଥାକ୍ରମେ P ଓ Q ବିନ୍ଦୁରେ ଛେଦକରନ୍ତି, ପ୍ରମାଣ କରଯେ, APCQ ଏକ ସାମାନ୍ତରିକ ଚିତ୍ର ।
- 9. ABCD ସାମାନ୍ତରିକ ଚିତ୍ରରେ M ଓ N ଯଥାକ୍ରମେ $\overline{
 m DC}$ ଓ $\overline{
 m AB}$ ର ମଧ୍ୟବିନ୍ଦୁ। ପ୍ରମାଣ କରଯେ,
 - (i) MCBN ଗୋଟିଏ ସାମାନ୍ତରିକ ଚିତ୍ର,
 - (ii) DMBN ଗୋଟିଏ ସାମାନ୍ତରିକ ଚିତ୍ର ଏବଂ
 - (iii) \overline{DB} ଓ \overline{MN} ପରସ୍କରକୁ ସମଦ୍ୱିଖଣ୍ଡ କରନ୍ତି।
- 10. ABCD ସାମାନ୍ତରିକ ଚିତ୍ରରେ \overline{AC} ଓ \overline{BD} କର୍ତ୍ତଦ୍ୱୟ ପରସ୍କରକୁ O ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତି । \overline{DO} ର ମଧ୍ୟବିନ୍ଦୁ X ଓ \overline{BO} ର ମଧ୍ୟବିନ୍ଦୁ Y ହେଲେ, ପ୍ରମାଣ କରଯେ, AXCY ଗୋଟିଏ ସାମାନ୍ତରିକ ଚିତ୍ର ।
- 11. ABCD ଗୋଟିଏ ସାମାନ୍ତରିକ ଚିତ୍ର । \overline{AC} ଉପରେ K, L ଦୁଇଟି ବିନ୍ଦୁ ଯେପରିକି AK = CL, ପ୍ରମାଣକରଯେ, DKBL ଏକ ସାମାନ୍ତରିକ ଚିତ୍ର ।
- 12. ABCD ଗୋଟିଏ ସାମନ୍ତରିକ ଚିତ୍ର । \overline{BD} ଉପରେ P ଓ Q ଦୁଇଟି ବିନ୍ଦୁ ଯେପରିକି \overline{AP} ॥ \overline{CQ} । ପ୍ରମାଣକର ଯେ, DP = BQ ଏବଂ APCQ ଏକ ସାମାନ୍ତରିକ ଚିତ୍ର ।
- 13. ABCD ସାମାନ୍ତରିକ ଚିତ୍ରରେ $\overline{\rm DK} \perp \overline{\rm AC}$, $\overline{\rm BL} \perp \overline{\rm AC}$ ଏବଂ K ଓ L ଯଥାକ୍ରମେ ଲନ୍ଦଦ୍ୱୟର ପାଦବିନ୍ଦୁ । ପ୍ରମାଣ କର ଯେ, DKBL ଏକ ସାମାନ୍ତରିକ ଚିତ୍ର ।

- 14. ABCD ଏକ ସାମାନ୍ତରିକଚିତ୍ର । \overline{AD} ଉପରେ P ଏକ ବିନ୍ଦୁ ଯେପରିକି DC = DP, \overrightarrow{CP} ଓ \overrightarrow{BA} ପରସ୍କରକୁ Q ବିନ୍ଦରେ ଛେଦ କର୍ଥିଲେ, ପ୍ରମାଣ କର ଯେ,
 - (i) AQ = AP
- (ii) BC = BQ
- (iii) AD = CD + AQ
- 15. ABCD ସାମାନ୍ତରିକଚିତ୍ରରେ \overline{DC} ବାହୁ ଉପରେ X ଏକ ବିନ୍ଦୁ ଯେପରିକି AD = AX I ପ୍ରମାଣକର ଯେ, m∠XAB = m∠ABC ଏବଂ AC = BX
- 16. ପ୍ରମାଣ କର ଯେ, ସାମାନ୍ତରିକ ଚିତ୍ରର କୋଣମାନଙ୍କର ସମଦ୍ୱିଖଣ୍ଡକ ରେଖାମାନଙ୍କ ଦ୍ୱାରା ଗଠିତ ଚତୁର୍ଭୁକଟି ଏକ ଆୟତଚିତ୍ର।
- 17. ପ୍ରମାଶ କର ଯେ, ଗୋଟିଏ ସାମାନ୍ତରିକ ଚିତ୍ରର କର୍ଣ୍ଣଦ୍ୱୟର ଛେଦବିନ୍ଦୁ ମଧ୍ୟଦେଇ ଅଙ୍କିତ ଓ ସାମାନ୍ତରିକ ଚିତ୍ରର ବାହୁମାନଙ୍କ ଦ୍ୱାରା ସୀମାବଦ୍ଧ ରେଖାଖଣ୍ଡ କର୍ଣ୍ଣମାନଙ୍କ ଛେଦବିନ୍ଦୁଠାରେ ସମଦ୍ୱିଖଣ୍ଡିତ ହୁଏ।
- 18. ପାର୍ଶ୍ୱୟ ଚିତ୍ର 3.20 ରେ \overline{RP} II \overline{AB} , \overline{RQ} II \overline{BC} ଏବଂ \overline{PQ} II \overline{AC} ହେଲେ, ଦର୍ଶାଅ ଯେ, $\overline{BC} = \frac{1}{2}$ QR

3.7. ସମାନ୍ତର ସରଳରେଖା ଏବଂ ତ୍ରିଭୁକ (Parallel lines and Triangles) :

ଆଲୋଚିତ ସମୟ ସାମାନ୍ତରିକ ଚିତ୍ର ସୟନ୍ଧୀୟ ଉପପାଦ୍ୟର ସହାୟତାରେ ଆମେ ତ୍ରିଭୁକ ସୟନ୍ଧୀୟ କେତେଗୁଡ଼ିଏ ଉପାଦେୟ ଉପପାଦ୍ୟର ଆଲୋଚନା ଏଠାରେ କରିବା। ଏହି ଉପପାଦ୍ୟ ଗୁଡ଼ିକୁ ପରେ ଅନ୍ୟାନ୍ୟ ଚିତ୍ର ଗୁଡ଼ିକରେ ପ୍ରୟୋଗ କରି ବିଭିନ୍ନ ଜ୍ୟାମିତିକ ତଥ୍ୟର ଅବତାରଣା କରି ପାରିବା। ଏହି ଉପପାଦ୍ୟ ଗୁଡ଼ିକ ଆଲୋଚିତ ଉପପାଦ୍ୟ ଗୁଡ଼ିକର ପ୍ରୟୋଗରେ ହିଁ ପ୍ରମାଣିତ ହୋଇଛି ।

ଉପପାଦ୍ୟ - 30

ଗୋଟିଏ ତ୍ରିଭୂଜର ଏକ ବାହୁର ମଧ୍ୟବିନ୍ଦୁରୁ ଅନ୍ୟ ଏକ ବାହୁ ସହ ସମାନ୍ତର ଭାବେ ଅଙ୍କିତ ସରଳରେଖା ତୃତୀୟ ବାହୁକୁ ସମଦ୍ୱିଖଣ୍ଡ କରେ ।

(In a triangle, a line drawn through the mid-point of one side parallel to another side, bisects the third side)

ଦଉ : Δ ABC ରେ \overline{AB} ର ମଧ୍ୟବିନ୍ଦୁ D ଏବଂ \overrightarrow{DG} I \overline{BC}

ପ୍ରାମାଣ୍ୟ : $\overrightarrow{\mathrm{DG}}$ ଓ $\overline{\mathrm{AC}}$ ର ଛେଦବିନ୍ଦୁ E, $\overline{\mathrm{AC}}$ ର ମଧ୍ୟବିନ୍ଦୁ ହେବ ।

ପ୍ରମାଶ : \cdot \cdot \overline{DE} I \overline{BF} (ଦଉ) ଓ \overline{EF} I \overline{BD} (ଅଙ୍କନ)

∴ BDEF ଏକ ସାମାନ୍ତରିକ ଚିତ୍ର ।

$$\Rightarrow$$
 BD = EF \Rightarrow AD = EF (\cdot : AD = BD)

Δ ADE ଓ Δ EFC ରେ

 $\therefore \Delta \text{ ADE } \cong \Delta \text{ EFC}$

(କୋ-କୋ-ବା ଉପପାଦ୍ୟ)

$$\Rightarrow$$
 AE = EC (ଅନୁରୂପ ବାହୁ) \Rightarrow \overline{AC} ର ମଧ୍ୟବିନ୍ଦୁ E (ପ୍ରମାଣିତ)

ମନ୍ତବ୍ୟ - 1 (ନିମ୍ନ ଆଲୋଚନା ଶିକ୍ଷକ ତଥା ଜିଜ୍ଞାସୁ ଛାତ୍ରଛାତ୍ରୀଙ୍କ ଲାଗି ଉଦ୍ଦିଷ ।)

ଜପରୋକ୍ତ ଜପପାଦ୍ୟର ପ୍ରାମାଣ୍ୟରେ \overrightarrow{DG} , \overline{AC} ବାହୁକୁ ଛେଦ କରିବ ବୋଲି ଚିତ୍ରାଙ୍କନ ଜନିତ ଧାରଣାରୁ ଧରିନିଆଯାଇଛି । ମାତ୍ର ପୂର୍ବରୁ ପଢ଼ିଥିବା ସ୍ୱୀକାର୍ଯ୍ୟ ଓ ଜପପାଦ୍ୟ ମାନଙ୍କର ସାହାଯ୍ୟରେ ପ୍ରମାଣ କରାଯାଇପାରେ ଯେ \overrightarrow{DG} , \overline{AC} ବାହୁକୁ ଛେଦ କରେ (ପ୍ରମାଣ ଦେଖ)

ପ୍ରମାଣ : A ଓ B, \overrightarrow{DG} ର ବିପରୀତ ପାର୍ଶ୍ୱରେ ଅବସ୍ଥିତ । $(\cdot\cdot\cdot A-D-B)$

ଏବଂ B ଓ C, \overrightarrow{DG} ର ଏକ ପାର୍ଶ୍ୱରେ ଅବସ୍ଥିତ । $(\cdot \cdot \cdot \overrightarrow{BC} \ \mathbb{I} \ \overrightarrow{DG})$

∴ A ଓ C, DG ର ବିପରୀତ ପାର୍ଶ୍ୱରେ ଅବସ୍ଥିତ ।

 $\Rightarrow\stackrel{\longleftrightarrow}{\mathrm{DG}},\;\overline{\mathrm{AC}}\,$ କୁ ଛେଦ କରେ ।

ଉପପାଦ୍ୟ - 31

ଗୋଟିଏ ତ୍ରିଭୂଜର ଯେ କୌଣସି ଦୁଇବାହୁର ମଧ୍ୟବିନ୍ଦୁକୁ ଯୋଗ କରୁଥିବା ରେଖାଖଣ୍ଡ ତୃତୀୟ ବାହୁ ସହ ସମାନ୍ତର ଓ ଏହାର ଅର୍ଦ୍ଧ-ଦୈର୍ଘ୍ୟ ବିଶିଷ୍ଟ ।

(The segment joining the midpoints of two sides of a triangle is parallel to the third side and its length is half of that of the third side.) ${\rm \ A}$

ଦଭ : Δ ABC ରେ D ଓ E ଯଥାକ୍ରମେ \overline{AB} ଓ \overline{AC} ର ମଧ୍ୟବିନ୍ଦୁ ।

ପ୍ରାମାଶ୍ୟ : (i) \overline{DE} I \overline{BC} ଏବଂ (ii) $DE = \frac{1}{2}$ BC

ପ୍ରମାଣ : (i) ମନେକର D ବିନ୍ଦୁ ମଧ୍ୟ ଦେଇ ଅଙ୍କିତ; \overline{BC}

ପ୍ରତି ସମାନ୍ତର ସରଳରେଖା, \overline{AC} କୁ G ବିନ୍ଦୁରେ ଛେଦକରେ \overline{B}

 \therefore \overline{AC} ର ମଧ୍ୟବିନ୍ଦୁ G

 \Rightarrow G = E \Rightarrow G ଓ E ବିନ୍ଦୁଦ୍ୱୟ ଏକ ଏବଂ ଅଭିନ୍ନ ।

ମାତ୍ର $\overline{\mathrm{DG}}$ I $\overline{\mathrm{BC}}$ (ଧରିନିଆଯାଇଛି) \Rightarrow $\overline{\mathrm{DE}}$ I $\overline{\mathrm{BC}}$

(ii) ମନେକର E ବିନ୍ଦୁ ମଧ୍ୟଦେଇ ଅଙ୍କିତ \overline{AB} ପ୍ରତି ସାମାନ୍ତର ସରଳରେଖାଖଣ୍ଡ \overline{BC} କୁ F ବିନ୍ଦୁରେ ଛେଦ କରେ ।

$$\therefore$$
 $\overline{\mathrm{BC}}$ ର ମଧ୍ୟବିନ୍ଦୁ F \Rightarrow BF = CF = $\frac{1}{2}$ BC

ପୁନଣ୍ଟ, BDEF ଏକ ସାମାନ୍ତରିକ ଚିତ୍ର
$$(\cdot, \overline{DE} \ I \ \overline{BC} \ \sqrt{qe} \ \overline{EF} \ \overline{I} \ \overline{AB})$$

$$\therefore DE = BF \Rightarrow DE = \frac{1}{2} BC \qquad \qquad (ପ୍ରମାଶିତ)$$

3.8 ଛେଦାଂଶ (Intercepts) :

ସଂଜ୍ଞା : ଏକ ସମତଳରେ ଅବସ୍ଥିତ । ଓ m ଦୁଇଟି ସରଳ ରେଖା । ଯଦି ଏକ ଛେଦକ n, ସରଳରେଖା ଦ୍ୱୟକୁ P ଓ Q ଦୁଇଟି ବିନ୍ଦୁରେ ଛେଦ କରେ, ତେବେ \overline{PQ} କୁ ଛେଦକ ର ଏକ ଛେଦାଂଶ ବା ଛେଦିତ ଅଂଶ କୁହାଯାଏ । ଦଉ ଚିତ୍ର ଦ୍ୱୟକୁ ଅନୁଧାନ କର ।

ଯଦି ଏକ ସମତଳରେ ଦୁଇ ବା ତତୋଃଧିକ ସରଳରେଖା (ପରସ୍କର ସମାନ୍ତର କିୟା ସମାନ୍ତର ନ ହୋଇବି ପାରନ୍ତି)କୁ ଗୋଟିଏ ଛେଦକ ଦୁଇ ବା ତତୋଃଧିକ ବିନ୍ଦୁରେ ଛେଦ କରେ, ତେବେ ଛେଦକର ଛେଦିତାଂଶ (Intercepts) ମଧ୍ୟ ଥାଏ । ନିମ୍ନ ଚିତ୍ରରୁ ଏହା ସୁସ୍କଷ୍ଟ ।

ଟୀକା: (1) ପ୍ରତ୍ୟେକ କ୍ଷେତ୍ରରେ ଛେଦିତାଂଶ ବା ଛେଦାଂଶ ର ଦୈର୍ଘ୍ୟ ସମାନ ବା ଅସମାନ ହୋଇପାରନ୍ତି।

(2) ଏଠାରେ ଲକ୍ଷ୍ୟ କରିବାର କଥା ଯେ, ଛେଦକର ଛେଦାଂଶ ମାନ, ଛେଦିତ ସରଳରେଖାମାନଙ୍କ ଦ୍ୱାରା ଉପ୍ତନ୍ନ ହୋଇଥାଏ।

ଉପପାଦ୍ୟ - 32

ତିନି ବା ତତୋଃଧିକ ସମାନ୍ତର ସରଳରେଖାକୁ ଛେଦ କରୁଥିବା ଏକ ଛେଦକର ଛେଦିତ ଅଂଶଗୁଡ଼ିକ ସର୍ବସମ ହେଲେ, ଅନ୍ୟ ଯେ କୌଣସି ଛେଦକର ଛେଦିତ ଅନୁରୂପ ଅଂଶ ଗୁଡ଼ିକ ମଧ୍ୟ ସର୍ବସମ ହେବ ।

(If three or more parallel lines have congruent intercepts on any transversal, they have congruent intercepts on any other transversal.)

(ଉପପାଦ୍ୟ ଟି ଡିନୋଟି ସରଳରେଖା ପାଇଁ ପ୍ରମାଣ କଲେ ଯଥେଷ୍ଟ ।)

ଦଉ : ମନେକର L_1 I L_2 II L_3 ; T_1 ଛେଦକ L_1 , L_2 , L_3 କୁ ଯଥାକୁମେ A, B, Cରେ ଛେଦ କରେ ଏବଂ \overline{AB} \cong \overline{BC} ଅର୍ଥାତ୍ AB = BC I L_1 , L_2 , L_3 କୁ ଅନ୍ୟ ଏକ ଛେଦକ T_2 ଯଥାକୁମେ D, E, F ରେ ଛେଦ କରେ I

ପ୍ରାମାଣ୍ୟ : T, ର ଛେଦିତ ଅଂଶ ଦୃୟ ସର୍ବସମ ଅର୍ଥାତ୍ DE = EF

ଅଙ୍କନ : E ବିନ୍ଦୁ ମଧ୍ୟ ଦେଇ T, ସହିତ ସମାନ୍ତର ସରଳରେଖା L, ଓ L, କୁ P ଓ Q ରେ ଛେଦ କରୁ I

ପ୍ରମାଣ : L_1 I L_2 (ଦଉ) ଓ T_1 \mathbb{I} $\overset{\longleftrightarrow}{PE}$ (ଅଙ୍କନ)

 \therefore APEB ଏକ ସାମାନ୍ତରିକ ଚିତ୍ର \Rightarrow AB = PE

ସେହିପରି $BC = EQ \Rightarrow PE = EQ (:AB = BC (ହଉ))$

 Δ DPE ଓ Δ EFQ ରେ

$$\cdots$$
 $\begin{cases} m\angle DEP = m\angle FEQ & (ପ୍ରତୀପକୋଶ) \\ m\angle DPE = m\angle EQF & (ଏକାନ୍ତର କୋଶ) \\ PE = EQ & (ପୂର୍ବରୁ ପ୍ରମାଣିତ) \end{cases}$

 \therefore Δ DPE \cong Δ EFQ (କୋ-ବା-କୋ ଉପପାଦ୍ୟ)

$$\Rightarrow$$
 DE = EF \Rightarrow $\overline{DE} \cong \overline{EF}$

ଅର୍ଥାତ୍ T_{γ} ର ଛେଦିତ ଅଂଶଦ୍ୱୟ ସର୍ବସମ । (ପ୍ରମାଣିତ)

ଦ୍ରଷ୍ଟବ୍ୟ: ଉପରୋକ୍ତ ଉପପାଦ୍ୟ- 32 ର ସହାୟତାରେ ଉପପାଦ୍ୟ- 30 ''ଗୋଟିଏ ତ୍ରିଭୁଜର ଏକ ବାହୁରେ ମଧ୍ୟବିନ୍ଦୁରୁ ଅନ୍ୟ ଏକ ବାହୁ ସହ ସମାନ୍ତର ଭାବେ ଅଙ୍କିତ ସରଳରେଖା, ତୃତୀୟ ବାହୁକୁ ସମଦ୍ୱିଖଣ୍ଡ କରେ।'' ର ପ୍ରମାଣ ସୟବ।

ଦତ: $D, \ \overline{AB}$ ର ମଧ୍ୟବିନ୍ଦୁ ଏବଂ \overline{DE} ॥ \overline{BC} ।

ପ୍ରାମାଣ୍ୟ: E, \overline{AC} ର ମଧ୍ୟବିନ୍ଦ୍ର।

ଅଙ୍କନ: A ବିନ୍ଦୁ ମଧ୍ୟଦେଇ, \overline{BC} ସହ ସମାନ୍ତର କରି

 $\stackrel{\leftrightarrow}{\rm XY}$ ସରଳରେଖା ଅଙ୍କନ କରା

ପ୍ରମାଣ:
$$\overrightarrow{XY}$$
 ॥ \overline{DE} ॥ \overline{BC} ;

 \overline{AB} ଓ \overline{AC} , ସମାନ୍ତର ସରଳରେଖାଦ୍ୱୟକୁ ଯଥାକ୍ରମେ, A, D, B ଏବଂ A, E, C ରେ ଛେଦକରେ । \overline{AB} ଛେଦକର ଛେଦିତାଂଶ (intercepts) ଦ୍ୱୟ \overline{AD} ଓ \overline{BD} ର ଦୈର୍ଘ୍ୟ ସମାନ । (ଦତ୍ତ) ଅର୍ଥାଚ୍ AD = BD ।

ଜପପାଦ୍ୟ 32 ଅନୁଯାୟୀ ଅନ୍ୟଏକ ଛେଦକ \overline{AC} ର ଛେଦିତାଂଶ ଦ୍ୱୟ \overline{AE} ଓ \overline{EC} ର ଦୈର୍ଘ୍ୟ ସମାନ ହେବ । ଅର୍ଥାତ \overline{AE} = \overline{EC} \Rightarrow \overline{EC} ର ମଧ୍ୟବିନ୍ଦୁ । (ପ୍ରମାଶିତ)

ଅନୁଶୀଳନୀ- 3(c) (କ) ବିଭାଗ

- 1. ନିମ୍ମ ଚିତ୍ରରେ L_1 \parallel L_2 \parallel L_3 \parallel L_4 , $\stackrel{\longleftrightarrow}{AD}$ \parallel $\stackrel{\longleftrightarrow}{PS}$ ଓ AB=BC=CD
- (a) ଶ୍ୱନ୍ୟ ସ୍ଥାନ ପ୍ରଣ କର।

(i)
$$AQ = =$$

(ii) PQ =
$$\frac{1}{3}$$
 (...)

(iii) EF =
$$\frac{1}{3}$$
 (...)

(iv) BQ =
$$\frac{1}{2}$$
 (...)

(v) RF =
$$\frac{1}{2}$$
 (....)

(b) ନିମ୍ବଲିଖ୍ତ ଉକ୍ତି ମାନଙ୍କ ମଧ୍ୟରୁ ଭୁଲ ଓ ଠିକ୍ ଉକ୍ତି ଚିହ୍ନାଅ।

(i) AQ =
$$\frac{1}{2}$$
 AE,

(ii) BQ =
$$\frac{1}{2}$$
 DF,

(iii) AF
$$=2AQ$$
,

(iv)
$$AP = DS$$
,

(v) RE =
$$\frac{1}{2}$$
 SF, (vi) 3QE = AF

(vi)
$$3QE = AF$$

 \overline{AB} ର ମଧ୍ୟବିନ୍ଦୁ D, \overline{AD} ର ମଧ୍ୟବିନ୍ଦୁ F ହେଲେ, ନିମୁ ଅନ୍ପାତଗ୍ଡ଼ିକ ସ୍ଥିର କର।

- (i) AG:GE (ii) AG:GC (iii) GE:EC (iv) AG:AC (v) GE:AC (vi) EC:AC
- 3. ଶୁନ୍ୟସ୍ଥାନ ପୂରଣ କର।
 - (a) ଗୋଟିଏ ଚତୁର୍ଭୁଜର ବାହୁ ମାନଙ୍କର ମଧ୍ୟବିହୁକ କ୍ମାନୃୟରେ ଯୋଗକଲେ, ଉପ୍ନ ଚତୁର୍ଭୁଜ ଟି... ହେବ।
 - (b) ଗୋଟିଏ ଆୟତଚିତ୍ର ବାହୁମାନଙ୍କର ମଧ୍ୟବିହୁକୁ କ୍ମାନ୍ସୟରେ ଯୋଗକଲେ, ଉପ୍ନନ ଚତୁର୍ଭୁକଟି... ହେବ ।
 - (c) ଗୋଟିଏ ବର୍ଗଚିତ୍ରର ବାହମାନଙ୍କର ମଧ୍ୟବିହ୍ନକ କ୍ମାନୃୟରେ ଯୋଗକଲେ, ଉପନ୍ନ ଚତ୍ର୍ଭ୍ଜଟି ହେବ।
- (d) କର୍ଷଦ୍ୱୟ ପରୟରକୁ ସମକୋଣରେ ଛେଦ କରୁଥିବା ଚତୁର୍ଭୁକର ବାହୁମାନଙ୍କର ମଧ୍ୟବିନ୍ଦୁକୁ କ୍ରମାନ୍ସୟରେ ଯୋଗକଲେ, ଉପ୍ନ ଚତୁର୍ଭୁକଟି ହେବ।
- (e) ଗୋଟିଏ ସାମାନ୍ତରିକ ଚିତ୍ର ବାହ୍ମାନଙ୍କର ମଧ୍ୟବିହ କ କ୍ମାନ୍ୟରେ ଯୋଗକଲେ, ଉପ୍ନ ଚତ୍ର୍ଭକଟି ହେବ ।

(ଖ) ବିଭାଗ

- 4. ଏକ ସମବାହୁ Δ ABCର ବାହୁମାନଙ୍କର ମଧ୍ୟବିନ୍ଦୁ D, E, ଓ F ହେଲେ, ଦର୍ଶାଅଯେ, Δ DEF ସମବାହୁ I
- 5. ଗୋଟିଏ ତ୍ରିଭୁଜର ବାହୁମାନଙ୍କର ମଧ୍ୟବିନ୍ଦୁଗୁଡ଼ିକୁ ଯୋଗକଲେ, ଯେଉଁ ଚାରିଗୋଟି ତ୍ରିଭୁଜ ଉତ୍ପନ୍ନ ହୁଏ, ସେମାନେ ସର୍ବସମ।
- 6. ଚିତ୍ର 3.29ରେ ABCD ଏକ ଟ୍ରାପିଜିୟମ୍ । \overline{DC} । \overline{AB} , E, \overline{AD} ର ମଧ୍ୟବିନ୍ଦୁ । \overline{EF} । \overline{AB} ହେଲେ, ଦର୍ଶାଅଯେ, F, \overline{BC} ର ମଧ୍ୟବିନ୍ଦୁ । \overline{A} (ଚିତ୍ର 3.29)
- 7. ପାର୍ଶ୍ୱୟ ଚିତ୍ର 3.30ରେ $\overline{\mathrm{AD}} \perp \mathit{l}$ ଏବଂ $\overline{\mathrm{BE}} \perp \mathit{l}$, C, $\overline{\mathrm{AB}}$ ର ମଧ୍ୟବିନ୍ଦୁ ହେଲେ $\mathrm{CD} = \mathrm{CE}$ l

(ଗ) ବିଭାଗ

- 8. Δ ABC ରେ M ଓ N \overline{AB} ବାହୁକୁ ସମତ୍ରିଖଣ୍ଡ କରନ୍ତି । \overline{MP} ଓ \overline{NQ} ପ୍ରତ୍ୟେକେ \overline{BC} ସହ ସମାନ୍ତର ଏବଂ ସେମାନେ \overline{AC} କୁ ଯଥାକ୍ରମେ P ଓ Q ବିନ୍ଦୁରେ ଚ୍ଛେଦକରନ୍ତି । ପ୍ରମାଣକରଯେ, P ଏବଂ Q, \overline{AC} କୁ ସମତ୍ରିଖଣ୍ଡ କରିବେ ।
- 9. Δ ABC ରେ M, P ଓ Q ଯଥାକ୍ରମେ \overline{BC} , \overline{AB} ଓ \overline{AC} ର ମଧ୍ୟବିନ୍ଦୁ ଏବଂ \overline{PQ} ଓ \overline{AM} ର ଛେଦବିନ୍ଦୁ R । ପ୍ରମାଶ କରଯେ, AR = RM, PR = RQ
- 10. ABCD ସାମାନ୍ତରିକ ଚିତ୍ରରେ X ଓ Y ଯଥାକ୍ରମେ \overline{AD} ଓ \overline{BC} ର ମଧ୍ୟବିନ୍ଦୁ । \overline{CX} ଓ \overline{AY} , \overline{BD} କୁ ଯଥାକ୍ରମେ P ଓ Q ରେ ଛେଦକଲେ ପ୍ରମାଣ କରଯେ, DP = PQ = QB ।
- Δ ABC ରେ $\overline{\mathrm{AM}}$ ମଧ୍ୟମାର ମଧ୍ୟବିନ୍ଦୁ R । $\overrightarrow{\mathrm{BR}}$ ଓ $\overline{\mathrm{AC}}$ ପରୟରକୁ S ବିନ୍ଦୁରେ ଛେଦ କରୁଥିଲେ, ପ୍ରମାଣ କରଯେ, $\mathrm{AS} = \frac{1}{3}~\mathrm{AC}$
- 12. ABCD ସାମାନ୍ତରିକ ଚିତ୍ରରେ \overline{BC} ର ମଧ୍ୟବିନ୍ଦୁ P । \overrightarrow{DP} ଓ \overrightarrow{AB} ପରସ୍କରକୁ Q ବିନ୍ଦୁରେ ଛେଦକଲେ ପ୍ରମାଣ କରଯେ, AQ = 2AB ।
- 13. Δ ABC ରେ $\overline{\text{CM}}$, $\overline{\text{AB}}$ କୁ M ବିନ୍ଦୁରେ ସମଦ୍ୱିଖଣ୍ଡ କରେ ଓ $\overline{\text{BQ}}$, $\overline{\text{CM}}$ କୁ P ବିନ୍ଦୁରେ ସମଦ୍ୱିଖଣ୍ଡ କରେ । Q, $\overline{\text{AC}}$ ଉପରେ ଅବସ୍ଥିତ ହେଲେ, ପ୍ରମାଣ କର ଯେ, AQ = 2QC

- 14. ପ୍ରମାଣକର ଯେ, ଟ୍ରାପିଜିୟମ୍ର ଦୁଇ ଅସମାନ୍ତର ବାହୁର ମଧ୍ୟବିନ୍ଦୁ ଦ୍ୱୟକୁ ଯୋଗକରୁଥିବା ରେଖାଖଣ୍ଡ, ସମାନ୍ତର ବାହୁମାନଙ୍କ ସହ ସମାନ୍ତର ଏବଂ ଏହାର ଦିେର୍ଘ୍ୟ, ସମାନ୍ତର ବାହୁମାନଙ୍କ ଦୈର୍ଘ୍ୟର ସମଷ୍ଟିର ଅର୍ଦ୍ଧେକ।
- 15. \triangle ABC ରେ ∠B ସମକୋଶ ା \overline{AC} ର ମଧ୍ୟବିନ୍ଦୁ P ହେଲେ ଦର୍ଶାଅଯେ, PA = PB = PC ା
- 16. ଗୋଟିଏ ଟ୍ରାପିଜିୟମ୍ର କର୍ଷଦ୍ୱୟର ମଧ୍ୟବିନ୍ଦୁ କୁ ଯୋଗକରୁଥିବା ରେଖାଖଣ୍ଡ, ସମାନ୍ତର ବାହୁମାନଙ୍କ ସହ ସମାନ୍ତର ଏବଂ ସମାନ୍ତର ବାହୁଦ୍ୱୟର ଦୈର୍ଘ୍ୟର ଅନ୍ତର ର ଅର୍ଦ୍ଧେକ।
- 17. ପ୍ରମାଣ କର ଯେ, କୌଣସି ଚତୁର୍ଭୁକର ବାହୁମାନଙ୍କର ମଧ୍ୟବିନ୍ଦୁ ଗୁଡ଼ିକୁ ପର୍ଯ୍ୟାୟକ୍ରମେ ଯୋଗକଲେ, ଉତ୍ପନ୍ତ ଚତୁର୍ଭୁଜଟି ଏକ ସାମାନ୍ତରିକ ଚିତ୍ର।
- 18. ପ୍ରମାଣ କର ଯେ, ଆୟତଚିତ୍ରର ବାହୁମାନଙ୍କର ମଧ୍ୟବିନ୍ଦୁଗୁଡ଼ିକୁ ପର୍ଯ୍ୟାୟକ୍ରମେ ଯୋଗକଲେ, ଉତ୍ପନ୍ଧ ଚତୁର୍ଭୁଜଟି ଏକ ରୟସ ହେବ ।
- 19. ପ୍ରମାଶକର ଯେ, ବର୍ଗଚିତ୍ରର ବାହୁମାନଙ୍କର ମଧ୍ୟବିନ୍ଦୁଗୁଡ଼ିକୁ ପର୍ଯ୍ୟାୟକ୍ରମେ ଯୋଗକଲେ, ଉତ୍ପନ୍ନ ଚତୁର୍ଭୁଜଟି ବର୍ଗଚିତ୍ର ହେବ । D . . P C
- 20. ପାର୍ଶ୍ୱସ୍ଥ ଚିତ୍ର 3.31 ରେ P ଓ Q ଯଥାକ୍ରମେ $\overline{\text{CD}}$ ଓ $\overline{\text{CB}}$ ର ମଧ୍ୟବିନ୍ଦୁ ଯଥାକ୍ରମେ $\overline{\text{PQ}}$, $\overline{\text{AC}}$ କର୍ଷ୍ଣକୁ R ବିନ୍ଦୁରେ ଛେଦ କରୁଥିଲେ, $\overline{\text{Q}}$ ବର୍ଷାଅଯେ, 4CR = AC ।