Konrad Kotlicki TECY lab 4 Grupa 2

2 kwietnia 2021

Spis treści

1	Zad	anie 1																			
	1.1	Część 1														 					
	1.2	Część 2														 					
	1.3	Część 3																			
2	Zad	anie 2																			
	2.1	Część 1														 					
	2.2	Część 2														 					
	2.3	Część 3	•																		
3		anie 3																			
	3.1	Część 1														 					
	3.2	Cześć 2																			

1 Zadanie 1

1.1 Część 1

Dowolny tekst nr. 1 Dowolny tekst nr. 2

1.2 Część 2

Produkt	Ilość	Cena (\$)
Czekolada	20	25,34
Mleko	15	12,00
Bułki	10	11,50
Masło	2	10,20

1.3 Część 3

		Rok	
Miasto	2018	2019	2020
Warszawa	45789	46551	51298
Poznań	34549	32543	29870
Kraków	49835	51009	51970
Wrocław	49835	51009	51970

2 Zadanie 2

2.1 Część 1

Rysunek 1: Przykładowy rysunek

2.2 Część 2

```
2 import sys
3 #if
4 if __name__ == "__main__":
      def count_words():
    data = open(f'./{sys.argv[1]}')
           return_data = {}
           nums = data.read().split()
9
10
           distinct_nums = list(set(nums))
           for distinct_num in distinct_nums:
11
                return_data[distinct_num] = nums.count(distinct_num)
12
13
           data.close()
14
15
           return return_data
16
       if len(sys.argv) < 2:</pre>
17
       print('Za malo argumentow')
elif len(sys.argv) > 2:
18
19
           print('Za duzo argumentow')
20
21
           counter_dict = count_words()
22
23
           count_words()
           f = open(f'./{sys.argv[1]}.par', "w+")
24
           f.write(f'Liczba roznych wyrazow: {len(counter_dict)}\n')
25
26
           f.write(str(counter_dict))
           f.close()
27
```

2.3 Część 3

$$e = mc^{2}$$

$$\pi = \frac{c}{d}$$

$$\frac{d}{dx}e^{x} = e^{x}$$

$$\frac{d}{dx}\int_{0}^{\infty} f(s)ds = f(x)$$

$$f(x) = \sum_{i} = 0^{\infty} \frac{f^{(i)}(0)}{i!}x^{i}$$

$$x = \sqrt{\frac{x_{i}}{z}y}$$

3 Zadanie 3

3.1 Część 1

Wbrew pozorom, korelacja śmierci spowodowanych utonięciem w basenie[2] a wydawanymi filmami wydawanymi rocznie z określonym aktorem[1] nie tworzy związku przyczynowego.

3.2 Część 2

References

- [1] Franklin Fearing. "Influence of the Movies on Attitudes and Behavior". In: *The ANNALS of the American Academy of Political and Social Science* 254.1 (1947), pp. 70–79.
- [2] Gitanjali Saluja et al. "Swimming pool drownings among US residents aged 5-24 years: understanding racial/ethnic disparities". In: American journal of public health 96.4 (2006), pp. 728-733.