Direct Current Optimal Power Flow

Anthony Papavasiliou, National Technical University of Athens (NTUA)

Source: section 5.1, Papavasiliou [1]

Outline

- The OPF using PTDFs
- The OPF using reactance

Transmission constraints

Lines can carry a limited amount of power

- Thermal limits
- Stability limits
- Voltage drop limits

Power flow equations

- Non-linear mapping: power injection in buses → power flow on lines
- We will linearize these

Optimal power flow (OPF): Maximize welfare (minimize cost) subject to power flow equations + transmission limits

Network representation

Transmission system is represented as a directed graph

- *N*: set of nodes
- K: set of lines (denoted by k = (m, n))
- G_n : set of generators located in node n, $G = \bigcup_{n \in N} G_n$
- L_n : set of loads located in node n, $L = \bigcup_{n \in N} L_n$

Two equivalent models

Decisions:

- p_g : amount of power produced by generator g
- d_l : amount of power consumed by load l

Two equivalent models, depending on system state and input data

- Model 1
 - System state: nodal injections
 - Input data: power transfer distribution factors (depend on physical characteristics of lines)
- Model 2
 - System state: nodal phase angles
 - Input data: reactance (depend on physical characteristics of lines)

The OPF using PTDFs

Model 1: power transfer distribution factors

Net injection

Hub node: reference node that "absorbs" all injections

Injection r_n : amount of power shipped from node n to the hub

$$r_n = \sum_{g \in G_n} p_g - \sum_{l \in L_n} d_l, n \in N$$

Not amount of power flowing over line connecting n and hub

Conservation of energy:

$$\sum_{n\in\mathbb{N}}r_n=0$$

Power flows

- Power transfer distribution factor (PTDF) F_{kn} : amount of power flowing on line k ως συνέπεια αποστολής 1 MW as a result of shipping 1 MW from n to hub
 - $F_{k,\text{hub}} = 0$
 - PTDF: input data, depend on physical characteristics of lines
 - PTDFs depend on choice of hub
 - Flow f_k is

$$f_k = \sum_{n \in N} F_{kn} \cdot r_n$$
 , $k \in K$

- Flow can be positive or negative (interpretation?)
- T_k : limit on power that each line can carry

$$-T_k \le f_k \le T_k$$

Example

All lines have identical electrical characteristics

- 1. $F_{1-2,1} = ?, F_{1-2,2} = ?$
- 2. Express shipment of 30 MW from 1 to 2 as transaction through hub
- 3. Compute flow f_{1-2} from steps 1, 2
- 4. Note: r_1 and $f_{1-\text{hub}}$ are different

The OPF using PTDFs

(DCOPF): $\max_{p,d,f,r} \sum_{l \in L} \int_0^{a_l} MB_l(x) dx - \sum_{g \in G} \int_0^{p_g} MC_g(x) dx$ $f_k \le T_k, k \in K$ (λ_k^+) : (λ_k^-) : $-f_k \le T_k, k \in K$ (ψ_k) : $f_k - \sum_{n \in N} F_{kn} \cdot r_n = 0, k \in K$ (ρ_n) : $r_n - \sum_{g \in G_n} p_g + \sum_{l \in I_m} d_l = 0, n \in N$ $(-\varphi)$: $\sum_{n\in N} r_n = 0$ $p_g \ge 0, g \in G$ $d_l \ge 0, l \in L$

Optimal solution

• Denote P_g , D_l as maximum production/consumption of generators/loads (imposed through domain of objective function)

There exists a threshold ρ_n for all n such that:

- If $0 < p_g < P_g$, then $\rho_n = MC_g(p_g)$. If $0 < d_l < D_l$, then $\rho_n = MB_l(d_l)$.
- If $p_g = P_g$, then $\rho_n \ge MC_g(P_g)$. If $d_l = D_l$, then $\rho_n \le MB_l(D_l)$.
- If $p_g = 0$, then $\rho_n \leq MC_g(0)$. If $d_l = 0$, then $\rho_n \geq MB_l(0)$.

Proof

Use KKT conditions

$$0 \le p_g \perp MC_g(p_g) - \rho_{n(g)} + \mu_g \ge 0$$
$$0 \le \mu_g \perp P_g - p_g \ge 0$$

$$0 \le d_l \perp -MB_l(d_l) + \rho_{n(l)} + \nu_l \ge 0$$

$$0 \le \nu_l \perp D_l - d_l \ge 0$$

- n(g): node where generator g is located
- n(l): node where load l is located

Sensitivity

Helpful in understanding transmission pricing

- φ : marginal change in welfare from marginal increase in production/marginal decrease in consumption
- λ_k^+ and λ_k^- : marginal impact of increasing line capacity
- ρ_n : marginal impact of marginal increase of consumption/decrease of generation in node n (what if demand is inelastic?)

What sign do we expect for these dual variables?

Components of ρ_n

Useful identity for computing prices:

$$\rho_n = \varphi + \sum_{k \in K} F_{kn} \cdot \lambda_k^- - \sum_{k \in K} F_{kn} \cdot \lambda_k^+$$

Proof: KKT conditions

Example

Case 1

- $D_2 = 50$ MW, T_{1-2} unlimited
- $\rho_1 = \rho_2 = 20 \frac{\$}{\text{MWh}}$

Case 2

- $D_2 = 50$ MW, $T_{1-2} = 50$ MW
- $\rho_1 = 20 \frac{\$}{\text{MWh}}, 20 \frac{\$}{\text{MWh}} \le \rho_2 \le 40 \frac{\$}{\text{MWh}}$

Case 3

- $D_2 = 60$ MW, $T_{1-2} = 50$ MW
- $\rho_1 = 20 \frac{\$}{\text{MWh}}, \rho_2 = 40 \frac{\$}{\text{MWh}}$

The OPF using reactance

Model 2: reactance

Power flows

- Reactance: input data, depends on physical characteristics of lines
- Independent of choice of hub
- Flow f_k is

$$f_{(m,n)} = B_{(m,n)} \cdot (\theta_m - \theta_n)$$

- Translation of θ results in identical flows, fix $\theta_{\rm hub}=0$
- Conservation of energy:

$$\sum_{g \in G_n} p_g + \sum_{k=(\cdot,n)} f_k = \sum_{k=(n,\cdot)} f_k + \sum_{l \in L_n} d_l \text{ , } n \in N$$

 Input data is independent of network topology: transmission line investment, transmission line outages

The OPF using reactance

(DCOPF2):	$\max_{p,d,f,\theta} \sum_{l \in L} \int_0^{d_l} MB_l(x) dx - \sum_{g \in G} \int_0^{p_g} MC_g(x) dx$
(λ_k^+) :	$f_k \le T_k$, $k \in K$
(λ_k^-) :	$-f_k \le T_k, k \in K$
(γ_k) :	$f_k - B_k \cdot (\theta_m - \theta_n) = 0, k = (m, n) \in K$
(ρ_n) :	$-\sum_{g \in G_n} p_g - \sum_{k = (\cdot, n)} f_k + \sum_{k = (n, \cdot)} f_k + \sum_{l \in L_n} d_l = 0, n \in \mathbb{N}$
	$p_g \geq 0$, $g \in G$
	$d_l \ge 0, l \in L$

References

[1] A. Papavasiliou, Optimization Models in Electricity Markets, Cambridge University Press

https://www.cambridge.org/highereducation/books/optimization-models-in-electricity-markets/0D2D36891FB5EB6AAC3A4EFC78A8F1D3#overview