Esame di Ricerca Operativa del 09/06/14

	(C	Cognome)		(Nome)		(Co	orso di laurea)
Esercizio	1. Con	npletare la	a seguente tabel	la considerando il problema	a di progra	mmazione line	eare:	
				$\begin{cases} \max & 4 \ x_1 - x_2 \\ -x_2 \le 3 \\ -4 \ x_1 + x_2 \le 21 \\ 3 \ x_1 - 2 \ x_2 \le -3 \\ x_1 + x_2 \le -1 \\ -x_1 + 2 \ x_2 \le 7 \\ x_2 \le 2 \end{cases}$				
Γ	Base	Soluzio	ne di base			Ammissibile	Degenere	
_						(si/no)	(si/no)	
	$\{1, 2\}$	x =						
	{4, 6}	y =						
L			., 1 111	1 '4 11 ' 1 '	1	1 11 11	1,	
Esercizio	2. Ene	ttuare du	e iterazioni den	algoritmo del simplesso pri	maie per i	i probiema dei	resercizio 1.	
		Base	x	y	Indice	Ra	apporti	Indic
					uscente	9		entran
1° iterazio	one	$\{5,6\}$						
2° iterazio	one							
al quintale del totale. I ore) dei rep	rispetti Nella se parti ed	ivamente, eguente ta il costo c	in due reparti (abella sono indicorario.	0.19 0.23 90 0.21 0.18 85	A bisogna lei farinaco Costo 2.81 3.19	produrne tra	il 40 ed il 60 p	er cento
variabili de			_	ne che massimizzi il profitto).			
		CON	MANDI DI MAT	CLAB (DEL PROBLEMA	O DEL R	ILASSATO?)		1
C=								
A=				b=				
Aeg=				hea=				

ub=

1b=

Esercizio 4. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) (3,2) (4,3)				
(4,6) (5,7) (6,7)	(2,5)	x =		
(1,4) (2,5) (3,7)				
(4,3) (5,7) (6,7)	(1,3)	$\pi = (0,$		

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,4) (3,2) (3,5) (4,3) (4,6) (5,7)	
Archi di U	(2,5)	
x		
π		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	ite	r 1	ite	r 2	ite	r 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p												
nodo visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
$\stackrel{\text{insieme}}{Q}$										·				

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Taglio di capacità minima: $N_s = N_t = N_t$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max 13 \ x_1 + 8 \ x_2 \\ 12 \ x_1 + 11 \ x_2 \le 63 \\ 7 \ x_1 + 16 \ x_2 \le 42 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_S(P)$ =

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = $v_I(P)$ =

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	9	87	61	41
2		24	53	55
3			8	9
4				12

a) Trovare una valutazione inferiore del valore ottimo calcolando il 4-albero di costo minimo.

4-albero:	$v_I(P) =$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 2.

ciclo: $v_S(P) =$

c) Applicare il metodo del *Branch and Bound*, utilizzando il 4-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{35} , x_{34} , x_{45} .

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = -x_2^2 + 4x_1$ sull'insieme

$${x \in \mathbb{R}^2 : x_1^2 - 36 \le 0, x_1 - x_2 + 5 \le 0}.$$

Soluzioni del sistema LKT			Mass		Mini	imo	Sella
x	λ	μ	globale	locale	globale	locale	
	$\left(\frac{3}{2}, -22\right)$						
	$\left(\frac{1}{2},2\right)$						
	$\left(\frac{1}{3},0\right)$						
	(0, -4))						

Esercizio 10. Si consideri il seguente problema:

$$\left\{ \begin{array}{l} \min \ 4 \ x_1^2 + 4 \ x_1 \ x_2 + 2 \ x_1 + 5 \ x_2 \\ x \in P \end{array} \right.$$

e i vertici di P sono (-4, -5), (1, 2), (1, -5) e (-4, -0). Fare un passo del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento	Passo	Nuovo punto
				possibile		
$\left(-\frac{7}{2} - 5 \right)$						
$\left(-\frac{3}{3},-5\right)$						

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \max & 4 \ x_1 - x_2 \\ -x_2 \le 3 \\ -4 \ x_1 + x_2 \le 21 \\ 3 \ x_1 - 2 \ x_2 \le -3 \\ x_1 + x_2 \le -1 \\ -x_1 + 2 \ x_2 \le 7 \\ x_2 \le 2 \end{cases}$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere (si/no)
{1, 2}	x = (-6, -3)	SI	NO
{4, 6}	y = (0, 0, 0, 4, 0, -5)	NO	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso primale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				uscente		entrante
1° iterazione	$\{5, 6\}$	(-3, 2)	(0, 0, 0, 0, -4, 7)	5	$\frac{10}{3}$, 0	4
2° iterazione	{4, 6}	(-3, 2)	(0, 0, 0, 4, 0, -5)	6	5, 2	3

Esercizio 3.

COMANDI DI MATLAB

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) (3,2) (4,3)				
(4,6) (5,7) (6,7)	(2,5)	x = (6, 0, 0, 8, -4, 0, 0, -8, 6, 1, 2)	NO	NO
(1,4) (2,5) (3,7)				
(4,3) (5,7) (6,7)	(1,3)	$\pi = (0, 1, 8, 5, 11, 13, 17)$	SI	NO

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione				
Archi di T	(1,4) (3,2) (3,5) (4,3) (4,6) (5,7)	(1,2) (1,4) (3,2) (3,5) (4,6) (5,7)				
Archi di U	(2,5)	(2,5)				
x	(0, 0, 6, 8, 2, 2, 0, 0, 4, 3, 0)	(0, 0, 6, 8, 2, 2, 0, 0, 4, 3, 0)				
π	(0, 18, 8, 5, 15, 15, 21)	(0, 6, -4, 5, 3, 15, 9)				
Arco entrante	(1,2)	(2,5)				
ϑ^+,ϑ^-	8,0	10, 2				
Arco uscente	(4,3)	(3,2)				

Esercizio 5. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter 1		iter	2	iter	. 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		4		2		ę	3	Ē	Ď	(j	7	7
nodo 2	16	1	16	1	16	1	16	1	16	1	16	1	16	1
nodo 3	16	1	16	1	16	1	16	1	16	1	16	1	16	1
nodo 4	13	1	13	1	13	1	13	1	13	1	13	1	13	1
nodo 5	$+\infty$	-1	$+\infty$	-1	21	2	21	2	21	2	21	2	21	2
nodo 6	$+\infty$	-1	21	4	21	4	21	4	21	4	21	4	21	4
nodo 7	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	33	3	32	5	31	6	31	6
$\begin{matrix} \text{insieme} \\ Q \end{matrix}$	2, 3	, 4	2, 3	, 6	3, 5	, 6	5, 6	5, 7	6,	7	7	7	Q	ý

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
			U
1 - 3 - 7	5	(0, 5, 0, 0, 0, 0, 5, 0, 0, 0, 0)	5
1 - 2 - 5 - 7	9	(9, 5, 0, 0, 9, 0, 5, 0, 0, 9, 0)	14
1 - 4 - 6 - 7	6	(9, 5, 6, 0, 9, 0, 5, 0, 6, 9, 6)	20

Taglio di capacità minima: $N_s = \{1, 2, 3, 4, 5\}$ $N_t = \{6, 7\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max & 13 \ x_1 + 8 \ x_2 \\ 12 \ x_1 + 11 \ x_2 \le 63 \\ 7 \ x_1 + 16 \ x_2 \le 42 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(\frac{21}{4}, 0\right)$$
 $v_S(P) = 68$

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile =
$$(5,0)$$

c) Calcolare un taglio di Gomory.

$$r = 1$$
 $x_1 \le 5$ $5x_1 + 4x_2 \le 26$

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	9	87	61	41
2		24	53	55
3			8	9
4				12

a) Trovare una valutazione inferiore del valore ottimo calcolando il 4-albero di costo minimo.

4-albero:
$$(1,2)(2,3)(3,4)(3,5)(4,5)$$
 $v_I(P)=62$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 2.

ciclo:
$$2 - 1 - 5 - 3 - 4$$
 $v_S(P) = 120$

c) Applicare il metodo del *Branch and Bound*, utilizzando il 4-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{35} , x_{34} , x_{45} .

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = -x_2^2 + 4x_1$ sull'insieme

$$\{x \in \mathbb{R}^2 : x_1^2 - 36 \le 0, \quad x_1 - x_2 + 5 \le 0\}.$$

Soluzioni del sis	Massimo		Mini	Sella			
x	λ	μ	globale	locale	globale	locale	
(6, 11)	$\left(\frac{3}{2}, -22\right)$		NO	NO	NO	NO	SI
(-6, -1)	$\left(\frac{1}{2},2\right)$		NO	NO	NO	SI	NO
(-6, 0)	$\left(\frac{1}{3},0\right)$		NO	NO	NO	NO	SI
(-3, 2)	(0, -4)		SI	SI	NO	NO	NO

Esercizio 10. Si consideri il seguente problema:

$$\left\{ \begin{array}{l} \min \ 4 \ x_1^2 + 4 \ x_1 \ x_2 + 2 \ x_1 + 5 \ x_2 \\ x \in P \end{array} \right.$$

dove P è il poliedro di vertici (-4,-5), (1,2), (1,-5) e (-4,0). Fare una iterazione del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento	Passo	Nuovo punto
				possibile		
$\left(-\frac{7}{3}, -5\right)$	(0, -1)	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	$\left(\frac{110}{3}, 0\right)$	$\frac{1}{11}$	$\frac{1}{11}$	(1, -5)