Note del corso di Geometria 1

Gabriel Antonio Videtta

11 maggio 2023

Questo avviso sta ad indicare che questo documento è ancora una bozza e non è da intendersi né completo, né revisionato.

Esercitazione: computo della basi di Jordan

Esempio. Sia
$$A = \begin{pmatrix} 0 & 1 & 0 & 1 & 2 \\ 0 & -1 & 1 & -1 & -2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & -1 & -2 \\ 0 & 1 & 0 & 1 & 2 \end{pmatrix}$$
 e se ne ricerchi la forma cano-

nica di Jordan e una base in cui assume tale base.

Si noti che
$$A^2 = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$
, e quindi che $A^3 = 0$. Allora $\varphi_A(t) = t^3$

Poiché A ha ordine di nilpotenza 3, la sua forma canonica di Jordan ammette sicuramente un solo blocco di ordine 3. Inoltre, dim Ker A=3, e quindi devono esservi obbligatoriamente 2 blocchi di ordine 1. Pertanto la sua forma canonica è la seguente:

Si consideri l'identità $\mathbb{R}^5 = \operatorname{Ker} A^3 = \operatorname{Ker} A^2 \oplus U_1$. Poiché dim $\operatorname{Ker} A^2 = 4$, vale che dim $U_1 = \operatorname{dim} \operatorname{Ker} A^3 - \operatorname{dim} \operatorname{Ker} A^2 = 1$. Dacché $\underline{e_3}$ si annulla solo con A^3 , $U_1 = \operatorname{Span}(e_3)$.

Si consideri invece ora Ker $A^2={\rm Ker}\,A\oplus A(U_1)\oplus U_2$. Si osservi che dim U_2 è il numero dei blocchi di Jordan di ordine 2, e quindi è 0. Si deve allora considerare Ker $A=A^2(U_1)\oplus U_3$, dove dim $U_3=2$. Si osservi anche che $A^2(\underline{e_3})=\underline{e_1}-\underline{e_2}-\underline{e_3}+\underline{e_4}$: è sufficiente trovare due vettori linearmente indipendenti appartenenti al kernel di A, ma non nello Span di $A^2(\underline{e_3})$; come per esempio $\underline{e_2}-\underline{e_4}$ e $2\underline{e_2}-\underline{e_5}$. Allora $U_3={\rm Span}(\underline{e_2}-\underline{e_4},2\underline{e_2}-\underline{e_5})$. Una base di Jordan per A sarà allora $(A^2\underline{e_3},A\underline{e_3},\underline{e_3},\underline{e_2}-\underline{e_4},2\underline{e_2}-\underline{e_5})$.

Esempio. Sia
$$A = \begin{pmatrix} 2 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 0 \\ -1 & 1 & 0 & 2 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$
, e se ne calcoli la forma canonica

di Jordan.

Si osserva che $p_A(t)=(1-t)^3(2-t)^2$, e quindi $\mathbb{R}^5=\mathrm{Ker}(A-I)^3\oplus\mathrm{Ker}(A-2I)^2$.

 $(\lambda=1)$ dim $\operatorname{Ker}(A-I)=2,$ quindi ci sono due blocchi relativi all'autovalore 1, uno di ordine 1 e uno di ordine 2.

 $(\lambda=2)$ dim Ker(A-2I)=2, quindi ci sono due blocchi relativi all'autovalore 2, entrambi di ordine 1.

Quindi la forma canonica di A è la seguente:

$$J = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{pmatrix},$$

da cui si ottiene anche che $p_A(t)=(t-2)^2(t-2)$. Si calcola ora una base di Jordan per A.

 $(\lambda = 1)$ Sia $\operatorname{Ker}(A - I)^2 = \operatorname{Ker}(A - I) \oplus U_1$. dim $U_1 = 1$, e poiché $e_5 \in \operatorname{Ker}(A - I)^2$, ma $e_5 \notin \operatorname{Ker}(A - I)$, vale che $U_1 = \operatorname{Span}(e_5)$.

Sia ora invece $\operatorname{Ker}(A-I) = g(U_1) \oplus U_2$, dove $\dim U_2 = 1$. Dacché $\underline{e_5} + \underline{e_1} - \underline{e_3} \in \operatorname{Ker}(A-I)$, ma non appartiene a $\operatorname{Span}(A\underline{e_5})$, si ottiene che una base relativa al blocco di 1 è Ae_5 , e_5 , e_5 , e_5 + e_1 - e_3 .

 $(\lambda = 2)$ Per quanto riguarda invece il blocco relativo a 2, essendo tale blocco diagonale, è sufficiente ricavare una base di Ker(A - 2I), come e_4 e $e_1 + e_3$.

Definizione. (centralizzatore di una matrice) Si definisce **centralizzatore** di una matrice $A \in M(n, \mathbb{K})$ l'insieme:

$$C(A) = \{B \in M(n, \mathbb{K}) \mid AB = BA\},\$$

ossia l'insieme delle matrici che commutano con A.

Proposizione. Vale l'identità $C(J_{0,m}) = \operatorname{Span}(I, J_{0,m}, J_{0,m}^2, ..., J_{0,m}^{m-1}).$

Dimostrazione. Sia $B \in C(J_{0,m})$. Si osserva che vale la seguente identità:

$$J_{0,m}B = \begin{pmatrix} B_2 \\ B_3 \\ \vdots \\ B_m \\ 0 \end{pmatrix},$$

mentre $BJ_{0,m}=\left(0\mid B^1\mid B^2\mid\cdots\mid B^{m-1}\right)$. Per ipotesi deve valere che $J_{0,m}B=BJ_{0,m}$, e quindi, uguagliando le matrici colonna a colonna, si osserva la colonna B^1 è tutta nulla eccetto per il primo elemento; si osserva poi che la colonna B^2 è composta da elementi di B^1 traslata in basso di una posizione; e così via ciclando sulle colonne, ottenendo che, data $B^m=\left(a_0\quad a_1\quad\cdots\quad a_{m-1}\right)^{\top},\ B=a_0I+a_1J_{0,m}+\ldots+a_{m-1}J_{0,m}^{m-1},$ quindi $B\in \mathrm{Span}(I,J_{0,m},J_{0,m}^2,\ldots,J_{0,m}^{m-1})$. Dal momento che ogni elemento generatore di $\mathrm{Span}(I,J_{0,m},J_{0,m}^2,\ldots,J_{0,m}^{m-1})$ commuta con $J_{0,m}$, vale la doppia inclusione, da cui la tesi.

Osservazione. Sul centralizzatore di una matrice ed il suo rapporto con la similitudine si possono fare alcune considerazioni.

▶
$$A \sim B \implies \dim C(A) = \dim C(B)$$
: infatti, se $A = PBP^{-1}$, $AC = CA \implies PBP^{-1}C = CPBP^{-1} \implies BP^{-1}C = P^{-1}CPBP^{-1} \implies BP^{-1}C = P^{-1}CPBP^{-1}$

 $B(P^{-1}CP)=(P^{-1}CP)B,$ e quindi il coniugio fornisce un isomorfismo tra i due centralizzatori.