Electric Motor Temperature Prediction.

Data Science ExcelR Project - P189.

Group Members-

Project Mentors:-

- 1. Ankit Indorkar
- 2. Shreyas Sadavarte
- 3. Bhimaraj Tagadagar
- 4. Kunal Mhaske
- 5. Meenal Patel
- 6. Radhika Jadhav
- 7. Neha Chavan

- Mr. Madishetti Rajashekar
- 2. Mrs. Pallavi B

Project Objective :-

Predict Motor Speed based on other attributes available

Details of given Data Set

- > The dataset comprises several sensor data collected from a permanent magnet synchronous motor (PMSM) deployed on a test bench.
- > All recordings are sampled at 2 Hz. A measurement session can be between one and six hours long.
- Most driving cycles denote random walks in the speed-torque-plane in order to imitate real world driving cycles to a more accurate degree than constant excitations and ramp-ups and -downs would.

Approach towards the Problem-

- > Directly we can't say they that all of the features are important, but they can have an impact on the motor speed.
- > To select the most important features, we can use feature selection techniques like correlation, mutual information, univariate feature selection, and tree-based feature selection methods. These methods will help us to identify the features that have the most impact on the target variable.
- ➤ In this particular project, it may be important to consider the features that are most closely related to the motor speed.
- > The standard approach for this regression problem would be to use a machine learning model to make predictions about the motor speed based on the other attributes in the dataset.

Exploratory Data Analysis Over given Temperature dataset.

- ➤ While Beginning with the EDA, we addressed both Qualitative and Quantitative issues with the data given, which includes Identifying the null values, dropping out the duplicates, handling the missing values and dealing with the Outliers.
- > We succeeded in Validating data through EDA over the given dataset which is now ready for model building.
- > We did not perform the Label Encoding and One Hot Encoding as data is already in the numeric format.
- > Following are the visualisations and Inferences we carried out after performing EDA.

Inferences based on the pair plot-

- There is a linear relationship between i_q (current d-component) and torque (torque induced by current).
- We can also find Distance correlation in between motor speed, u_q (voltage q-component), u_d (voltage d-component), i q (Current q-component), i d(current d-component).
- There is also a linear correlation between, stator_yoke, stator_tooth, stator_winding.

Density Plot

> From the Density plot we came to know that the given dataset is rightly skewed.

Above is the Density plot of the dataset. Here we identify that the data is Rightly Skewed.

Density Plot for all indusial Features

Density Plot over the Dataset- Here we can say that Permanent Magnet is normally distributed.

Box Plot for all indusial Features

From above box plot we came to know that, some of the features have the outlier in the given data set.

Inferences based on Boxplot-

From above box plot we came to know that, some of the features have the outlier in the given data set.

Feature Engineering:

Calculating the VIF Scor

Here we are checking corelation between the features with the VIF Calculation. Variables VIF

0	Ambient	1.688646
1	Coolant	39.402307
2	Voltage_D_component	4.759660
3	Voltage_Q_component	1.519728
4	Torque	193.483442
5	Current_Q_component	189.868569
6	Current_D_component	2.939579
7	PMST	4.247227
8	Stator_Yoke	356.752414
9	Stator_Winding	146.668203
10	Stator_Tooth	606.911896
11	Profile_ID	1.522807

VIF Score

9

10

Variables

Stator_Winding 146.668203

Stator_Tooth 606.911896

VIF

1	Coolant	39.402307	in them.
4	Torque	193.483442	☐ We are going to drop the below features, as they have more
5	Current_Q_component	189.868569	collinearity.
8	Stator_Yoke	356.752414	 Torque Stator Yoke
			2. Statol_1 one

Stator_Tooth

> These are the features which have more collinearity

Final Data Set after Feature Engineering:

After Feature Engineering we reshaped our given data set as follows:

The Feature are:

- 1. Ambient
- 2. Coolant
- 3. Voltage_D_Component
- 4. Voltage_Q_Component
- 5. Current _D_Component
- 6. Current_Q_Component
- 7. PMST
- 8. Stater Wwinding

The Target Feature

Motor Speed

Model Building:-

We have tested our dataset on the following models:

- 1. Multi-Linear Regression
- 2. Decision Tree Regression Model
- 3. Random Forest Regression Model
- 4. Ada-Boosting Regression Model
- 5. Gradient Boost Regression Model
- 6. Bagging Regression Model

Model Building:-

- > All the above listed models has been first built with random parameters.
- > After that, as our data set is very large, so we have taken a sample data for performing hyper parameter tuning. And we have used Randomized Search CV.
- > Optimized parameters obtained by Hyper parameter tuning is then used to get best
- result for each individual model.

1. Multi-Linear Regression

OLS Regression Results

Dep. Variable:	Motor_Speed	R-squared:	0.919
Model:	OLS	Adj. R-squared:	0.919
Method:	Least Squares	F-statistic:	1.412e+06
Date:	Thu, 02 Feb 2023	Prob (F-statistic):	0.00
Time:	11:23:52	Log-Likelihood:	-1.6445e+05
No. Observations:	998070	AIC:	3.289e+05
Df Residuals:	998061	BIC:	3.290e+05
Df Model:	8		
Covariance Type:	nonrobust		

Intercept	0.000742
Ambient	-0.053668
Coolant	0.049495
Voltage_D_component	-0.181347
Voltage_Q_component	0.595396
Current_D_component	-0.650700
Current_Q_component	-0.232008
PMST	0.189161
Stator_Winding	-0.192270

Above are the Multi-Linear Regression Result

Best Results:

Gradient_Boosting

Bagging

0.995836

0.999837

	Model	R_square	Mean_Squared_Error	Mean_Absolute_Error	Root_Mean_Squared_Error	Mean_Absolute_Percentage_Error
0	DecisionTreeRegressor	0.961495	0.038675	0.117855	0.19666	Nan
1	RandomForest	0.999738	0.000263	0.00624	0.016228	0.038014
2	Ada_Boosting	0.989822	0.010223	0.075897	0.101111	0.479641

0.042206

0.003845

Using this data frame we can conclude that, the best results given by Random Forest

0.064673

0.012809

0.467851

0.02891

- Regression Model
- We selected Random Forest Regression as our best model.

0.004183

0.000164

Deployment:

We have performed our deployment using StreamLIT

Prediction of Synchronous Motor Speed Ambient temperature -0.780935 Coolant temperature -1.116764 **Voltage D-Component** 0.333700 **Voltage Q-Component** -1.301852 **Current D-Component** 1.032845 **Current Q-Component** -0.246955

-2.521639 Stator Winding Temperature -2.017632 Predict The Motor speed
-2.017632
Predict The Motor speed
[-1.22174772]

Thank you!