Note for the Virtual Fundamental Class

Xiaolong Liu

April 16, 2024

Contents

1	Int	roduction	1
2			2
	2.1 2.2	Localized Chern Class	
3	Fundations of Virtual Fundamental Class		8
	3.1	A Brief of Cotangent Complexes	8
	3.2	About Cones	8
	3.3	Cone Stack	16
	3.4	A Stack of Special Type	17
	3.5	Intrinsic Normal Cone	17
	3.6	Obstruction Theory and Virtual Class	17
	3.7	Examples	17
4	Atiyah-Bott Localization		17
5	Loc	alization of Virtual Fundamental Class	18
\mathbf{R}	References		

1 Introduction

We will follows [BF97][AB84][GP99] and we will also use [Ric22]. We need [Har77][Ful98][EH16].

Here we will consider $\mathbb{P}(-) = \mathbf{Proj} \operatorname{Sym}(-)^{\vee}$ for bundles and the vector bundle is both space and sheaf via $\mathbf{Spec} \operatorname{Sym}(-)^{\vee}$. For a cone $C = \mathbf{Spec}_X \mathscr{S}^*$, we define $\mathbb{P}(C) := \mathbf{Proj}_X \mathscr{S}^*$ and $\mathbb{P}(C \oplus \mathscr{O}) := \mathbf{Proj}_X \mathscr{S}^*[z]$ which is the projective cone and projective completion, respectively. For more details we refer Appendix B.5 of [Ful98].

2 Review of Basic Intersection Theory

We will follows [Ful98]. We will omit the basic things such as Segre classes of bundles and cones, Chern classes of bundles and the technique of the deformation to the normal cone. We refer Chapter 1-5 in [Ful98]. We work over schemes of finite type over some field k.

2.1 Basic Facts of Refined Gysin Pullback

Here we will follows Chapter 6,8,9 of [Ful98]. We will state the results without the most of the proof.

Definition 2.1 (Intersection Product). Let $i: X \hookrightarrow Y$ be a closed regular embedding of codimension d with normal bundle $N_{X/Y}$. Pick V be a scheme of pure dimension k. Consider the cartesian diagram

$$\begin{array}{ccc}
W & \stackrel{j}{\longleftrightarrow} V \\
\downarrow g & \uparrow & \downarrow \\
X & \stackrel{i}{\longleftrightarrow} Y
\end{array}$$

Let $\mathscr I$ be the ideal of i and $\mathscr J$ be the ideal of j, then we have surjection

$$\bigoplus_n f^*(\mathscr{I}^n/\mathscr{I}^{n+1}) \to \bigoplus_n \mathscr{J}^n/\mathscr{J}^{n+1} \to 0$$

which induce embedding $C_{W/V} \hookrightarrow g^*N_{X/Y}$. Note that $C_{W/V}$ is also a scheme of pure dimension k since $\mathbb{P}(C_{W/V} \oplus \mathcal{O})$ is the exceptional divisor of $\mathrm{Bl}_W(Y \times \mathbb{A}^1)$. Let $0: W \to g^*N_{X/Y}$ be the zero-section of $\pi: g^*N_{X/Y} \to W$, then we define

$$X \cdot V := 0^* [C_{W/V}] := (\pi^*)^{-1} [C_{W/V}] \in \mathsf{CH}_{k-d}(W)$$

as the intersection class.

Proposition 2.2. Consider the situation of Definition 2.1.

- (a) We have $X \cdot V = \{c(g^*N_{X/Y}) \cap s(W, V)\}_{k-d}$.
- (b) Let \mathcal{Q} be the universal quotient bundle of $q: \mathbb{P}(g^*N_{X/Y} \oplus \mathscr{O}) \to W$, then

$$X \cdot V = q_*(c_d(\mathcal{Q}) \cap [\mathbb{P}(C_{W/V} \oplus \mathcal{O})]).$$

(c) If $j: W \hookrightarrow V$ is a regular embedding of codimension d', then $X \cdot V = c_{d-d'}(g^*N_{X/Y}/N_{W/V}) \cap [W]$.

Proof. Easy, one omitted. See Proposition 6.1 and Example 6.1.7 in [Ful98].

Definition 2.3 (Refined Gysin Pullback). Let $i: X \hookrightarrow Y$ be a closed regular embedding of codimension d with normal bundle $N_{X/Y}$. Pick $f: Y' \to Y$ be a morphism. Consider the cartesian diagram

$$X' \xrightarrow{j} Y'$$

$$g \downarrow \qquad f \downarrow$$

$$X \xrightarrow{i} Y$$

Then we define $i^!: \mathsf{Z}_k Y' \to \mathsf{CH}_{k-d} X'$ as $\sum_i n_i [V_i] \mapsto \sum_i n_i X \cdot V_i$. Now $i^!$ can be decomposed as:

$$i^!: \mathsf{Z}_k \, Y' \stackrel{\sigma}{\to} \mathsf{Z}_k \, C_{X'/Y'} \to \mathsf{CH}_k(g^*N_{X/Y}) \stackrel{0^*}{\to} \mathsf{CH}_{k-d} \, X'$$

where $\sigma: \mathsf{Z}_k \, Y' \to \mathsf{Z}_k \, C_{X'/Y'}$ given by $[V] \mapsto [C_{V \cap X'/V}]$. By the technique of deformation to the normal cone, this can be descend to the Chow-group level as $\sigma: \mathsf{CH}_k \, Y' \to \mathsf{CH}_k \, C_{X'/Y'}$ (see Proposition 5.2 in [Ful98]) which is called the specialization to the normal cone. Hence this induce the refined Gysin pullback

$$i^!: \operatorname{CH}_k Y' \to \operatorname{CH}_{k-d} X', \quad \sum_i n_i[V_i] \mapsto \sum_i n_i X \cdot V_i.$$

Proposition 2.4. Consider the situation of Definition 2.3. Consider

$$X'' \stackrel{i''}{\hookrightarrow} Y''$$

$$q \downarrow \qquad \qquad p \downarrow$$

$$X' \stackrel{i'}{\hookrightarrow} Y'$$

$$g \downarrow \qquad \qquad f \downarrow$$

$$X \stackrel{i}{\hookrightarrow} Y$$

- (a) If p proper and $\alpha \in \mathsf{CH}_k(Y'')$, then $i^!p_*(\alpha) = q_*i^!(\alpha) \in \mathsf{CH}_{k-d}(X')$.
- (b) If p is flat of relative dimension n and $\alpha \in \mathsf{CH}_k(Y'')$, then $i^!p^*(\alpha) = q^*i^!(\alpha) \in \mathsf{CH}_{k+n-d}(X'')$.
- (c) If i' is also a regular embedding of codimension d and $\alpha \in \mathsf{CH}_k(Y'')$, then $i^!\alpha = (i')^!(\alpha) \in \mathsf{CH}_{k-d}(X'')$.
- (d) If i' is a regular embedding of codimension d', then for $\alpha \in \mathsf{CH}_k(Y'')$ we have

$$i^!(\alpha) = c_{d-d'}(q^*(g^*N_{X/Y}/N_{X'/Y'})) \cap (i')^!(\alpha) \in \mathsf{CH}_{k-d}(X'').$$

We call $g^*N_{X/Y}/N_{X'/Y'}$ the excess normal bundle.

(e) Let F be any vector bundle on Y', then for $\alpha \in \mathsf{CH}_k(Y'')$ we have

$$i^!(c_m(F) \cap \alpha) = c_m((i')^*F) \cap i^!(\alpha) \in \mathsf{CH}_{k-d-m}(X').$$

Proof. See Theorem 6.2, Theorem 6.3 and Proposition 6.3 in [Ful98]. \Box

Corollary 2.5. Let $i: X \hookrightarrow Y$ be a regular embedding of codimension d, then

$$i^*i_*(\alpha) = c_d(N_{X/Y}) \cap \alpha \in \mathsf{CH}_*(X).$$

Proof. By Proposition 2.4(d) directly.

Proposition 2.6. The refined Gysin pullback have the following properties.

(a) Let $i: X \hookrightarrow Y$ and $j: S \hookrightarrow T$ are regular embeddings of codimension d, e, respectively. Consider cartesians:

Then for any $\alpha \in CH_k(Y'')$, we have

$$j^!i^!(\alpha) = i^!j^!(\alpha) \in \mathsf{CH}_{k-d-e}(X'').$$

(b) Let $i: X \hookrightarrow Y$ and $j: Y \hookrightarrow Z$ are regular embeddings of codimension d, e, respectively. Consider cartesians:

$$X' \stackrel{i'}{\hookrightarrow} Y' \stackrel{j'}{\hookrightarrow} Z'$$

$$\downarrow_h \stackrel{g}{\searrow} \stackrel{f}{\searrow} f \downarrow$$

$$X \stackrel{i}{\hookrightarrow} Y \stackrel{j}{\hookrightarrow} Z$$

Then ji is a regular embedding of codimension d + e and for all $\alpha \in \mathsf{CH}_k(Z')$ we have

$$(ji)^!(\alpha) = i^!j^!(\alpha) \in \mathsf{CH}_{k-d-e}(X').$$

Proof. See Theorem 6.4 and Theorem 6.5 in [Ful98].

Proposition 2.7. Consider cartesians:

$$X' \xrightarrow{i'} Y' \xrightarrow{p'} Z'$$

$$\downarrow^{h} \qquad g \downarrow \qquad f \downarrow$$

$$X \xrightarrow{i} Y \xrightarrow{p} Z$$

(a) If i is a regular embedding of codimension d and p and p are flat of relative dimension n, n-d, respectively. Then i' is a regular embedding of codimension d and p', p'i' are flat, and for $\alpha \in \mathsf{CH}_k(Z')$ we have

$$(p'i')^*(\alpha) = (i')^*((p')^*\alpha) = i!((p')^*\alpha).$$

(b) If i is a regular embedding of codimension d and p is smooth of relative dimension n, and pi is a regular embedding of codimension d-n Then for $\alpha \in \mathsf{CH}_k(Z')$ we have

$$(pi)!(\alpha) = i!((p')^*\alpha).$$

Proof. See Proposition 6.5 in [Ful98].

Remark 2.8. Some remarks.

- (a) For local complete intersection morphism $f: X \to Y$, we can decompose it into $f: X \xrightarrow{i} P \xrightarrow{p} Y$ where i is a closed regular embedding of constant codimension and p is smooth of constant relative dimension. Then we can define $f^! := i^!(p')^*$. See Section 6.6 in [Ful98] for more properties.
- (b) If Y is nonsingular of dimension n, then we can define the following intersection product: Let $f: X \to Y$ and $p: X' \to X$ and $q: Y' \to Y$. Let $x \in \mathsf{CH}_k(X')$ and $y \in \mathsf{CH}_l(Y')$, consider the cartesian

$$\begin{array}{ccc} X' \times_Y Y' & \longrightarrow X' \times Y' \\ \downarrow & & \downarrow^{p \times q} \\ X & \xrightarrow{\gamma_f} & X \times Y \end{array}$$

and define $x \cdot_f y := \gamma_f^!(x \times y) \in \mathsf{CH}_{k+l-n}(X' \times_Y Y').$

So when $x, y \in \mathsf{CH}_*(Y)$, then let X = Y and X' = |x|, Y' = |y|, then we get the new intersection product. Note that this is compactible as the definition before. See Chapter 8 in [Ful98] for more properties. In this case $CH_*(Y)$ is a ring which is called Chow ring.

Finally we will discuss something about equivalence and supportness.

Definition 2.9. Let $i: X \hookrightarrow Y$ be a closed regular embedding of codimension d with normal bundle $N_{X/Y}$. Pick V be a scheme of pure dimension k. Consider the cartesian diagram

$$\begin{array}{ccc}
W & \xrightarrow{j} V \\
g \downarrow & & f \downarrow \\
X & \xrightarrow{i} Y
\end{array}$$

Let $C_1, ..., C_r$ be the irreducible components of $C_{W/V}$, then $[C_{W/V}] = \sum_{i=1}^r m_i [C_i]$. Let $Z_i = \pi(C_i)$ where $\pi: g^*N_{X/Y} \to W$ and we call them the distinguished varieties of the intersection of V by X. Let $N_i := (g^*N_{X/Y})|_{Z_i}$ and let $0_i: Z_i \to N_i$ be the zero-sections. Let $\alpha_i: = 0_i^*[C_i] \in \mathsf{CH}_{k-d}(Z_i)$ and hence we have $X \cdot V = \sum_{i=1}^r m_i \alpha_i \in \mathsf{CH}_{k-d}(W)$.

Pick any closed set $S \subset W$, we define

$$(X \cdot V)^S := \sum_{Z_i \subset S} m_i \alpha_i \in \mathsf{CH}_{k-d}(S)$$

as the part of $X \cdot V$ supported on S.

Definition 2.10. Let $X_i \hookrightarrow Y$ be closed regular embeddings of codimension d_i . Let $V \subset Y$ be a k-dimensional subvariety. Consider

$$\bigcap_{i} X_{i} \cap V & \longrightarrow V \\
\downarrow & \qquad \qquad \downarrow \delta \\
X_{1} \times \cdots \times X_{r} & \longrightarrow Y \times \cdots \times Y$$

Then we can get $X_1 \cdot \ldots \cdot x_r \cdot V \in \mathsf{CH}_{\dim V - \sum_i d_i}(\bigcap_i X_i \cap V)$. Let Z be a connected component of $\bigcap_i X_i \cap V$, we will consider

$$(X_1 \cdot \ldots \cdot X_r \cdot V)^Z \in \mathsf{CH}_{\dim V - \sum_i d_i}(Z)$$

as before.

Proposition 2.11. As in the previous situation, we have

$$(X_1 \cdot \ldots \cdot X_r \cdot V)^Z = \left\{ \prod_{i=1}^r c(N_{X_i/Y}|_Z) \cap s(Z,V) \right\}_{\dim V - \sum_i d_i}.$$

If $Z \hookrightarrow V$ is a regular embedding, then

$$(X_1 \cdot \ldots \cdot X_r \cdot V)^Z = \left\{ \prod_{i=1}^r c(N_{X_i/Y}|_Z) \cdot c(N_{Z/V})^{-1} \cap [Z] \right\}_{\dim V - \sum_i d_i}.$$

If V, Z are both non-singular, then

$$(X_1 \cdot \ldots \cdot X_r \cdot V)^Z = \left\{ \prod_{i=1}^r c(N_{X_i/Y}|_Z) c(T_V|_Z)^{-1} c(T_Z) \cap [Z] \right\}_{\dim V - \sum_i d_i}.$$

Proof. See Proposition 9.1.1 in [Ful98].

2.2 Localized Chern Class

Here we will follows Chapter 14.1 of [Ful98]. This is the most important part which is the local case of the virtual fundamental class.

Definition 2.12. Let $E \to X$ be a vector bundle of rank e over a purely n-dimensional scheme X. Let $s: X \to E$ be a section, consider the cartesian

$$Z(s) \xrightarrow{} X$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

with zero-section $0: X \to E$ which is a regular section by trivial reason. We define

$$c_{\text{loc}}(E, s) := 0!([X]) = 0^*(C_{Z(s)/X}) \in \mathsf{CH}_{n-e}(Z(s))$$

be the localized (top) Chern class of E with respect to s.

Proposition 2.13. Consider the situation of Definition 2.12.

- (a) We have $i_*(c_{loc}(E, s)) = c_e(E) \cap [X]$.
- (b) Each irreducible component of Z(s) has codimension at most e in X. If $\operatorname{codim}_{Z(s)}X = e$, then $c_{\operatorname{loc}}(E,s)$ is a positive cycle whose support is Z(s).
- (c) If s is a regular section, then $c_{loc}(E, s) = [Z(s)]$.
- (d) Let $f: X' \to X$ be a morphism, $s' = f^*s$ be a induced section of f^*E . Let $g: Z(s') \to Z(s)$ be the induced morphism.
 - (d1) If f flat, then $g^*c_{loc}(E,s) = c_{loc}(f^*E,s')$.
 - (d2) If f is proper of varieties, then $g_*c_{loc}(f^*E, s') = \deg(X'/X)c_{loc}(E, s)$.

Proof. For (a), by Proposition 2.4(a) and Corollary 2.5, we have

$$i_*0![X] = 0^*s_*[X] = s^*s_*[X] = c_e(E) \cap [X].$$

For (b),(c), these follows from the trivial arguments of intersection multiplicities, see Lemma 7.1 and Proposition 7.1 in [Ful98]. Finally (d) follows from the following cartesians

$$Z(s') \longrightarrow X'$$

$$\downarrow \qquad \qquad s' \downarrow$$

$$X' \stackrel{0_{f^*E}}{\longleftrightarrow} f^*E$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \stackrel{0_E}{\longleftrightarrow} E$$

and Proposition 2.4.

3 Fundations of Virtual Fundamental Class

We will follows [BF97]. Here an algebraic stack (or Artin stack) over a field k is assumed to be quasi-separated and locally of finite type over k.

3.1 A Brief of Cotangent Complexes

3.2 About Cones

We will let X be a Deligne-Mumford stack now.

Definition 3.1. Let X be a DM-stack.

- (a) We call an affine X-scheme $C = \underline{\operatorname{Spec}}_X \mathscr{S}$ is a cone over X if the quasi-coherent algebra \mathscr{S} is graded as $\mathscr{S} = \bigoplus_{i \geq 0} \mathscr{S}^i$ with $\mathscr{S}^0 = \mathscr{O}_X$ and \mathscr{S}^1 is coherent and \mathscr{S} is generated by \mathscr{S}^1 .
- (b) A morphism of cones over X is an X-morphism induced by a graded morphism of graded sheaves of \mathcal{O}_X -algebras. A closed subcone is the image of a closed immersion of cones.

Remark 3.2. (a) The fiber product of cones over X is still a cone over X.

- (b) For every cone $C \to X$, it has a zero section $0: X \to C$ induced by $\mathscr{S} \to \mathscr{S}^0$.
- (c) For every cone $C \to X$, the grade induce a \mathbb{G}_m -action $\mathbb{G}_m \times C = \underbrace{\operatorname{Spec}_X \mathscr{S}[t,t^{-1}]} \to C$ induced by $\mathscr{S} \to \mathscr{S}[t,t^{-1}]$ via $s_0 + \cdots s_d \mapsto \overline{\sum_i a_i t^i}$ where $s_i \in \mathscr{S}^i$. Since no negative power of t occurs, we can in fact replace \mathbb{G}_m by \mathbb{A}^1 . So we have the \mathbb{A}^1 -action $\gamma : \mathbb{A}^1 \times C \to C$ induced by $\mathscr{S} \to \mathscr{S}[x]$ via $\mathscr{S}^i \ni s \mapsto sx^i$. Note that here \mathbb{A}^1 is not a

group scheme and the action here, as expected, to be the commutativity of the following diagrams:

where m(x, y) = xy.

(d) So a morphism of cones $f: C \to D$ over X is just the \mathbb{A}^1 -equivariant X-morphism respecting the zero section, that is, the following commutativity of the diagram:

$$\begin{array}{cccc}
\mathbb{A}^1 \times C & \longrightarrow C & \stackrel{0_C}{\longleftrightarrow} X \\
\downarrow^{id \times f} & & \downarrow^{id \times f} & \downarrow^{id \times f}
\end{array}$$

$$\begin{array}{cccc}
\mathbb{A}^1 \times D & \longrightarrow D
\end{array}$$

Definition 3.3. Let \mathscr{F} be a coherent sheaf of X, then we can define $C(\mathscr{F}) := \frac{\operatorname{Spec}_X \operatorname{Sym}(\mathscr{F})}{\operatorname{as} C(\mathscr{F})(T)}$ which is a group scheme over X since it can be represented as $C(\mathscr{F})(T) = \operatorname{Hom}(\mathscr{F}_T, \mathscr{O}_T)$. We call a cone of this form is an abelian cone over X.

Remark 3.4. (a) A fibered product of abelian cones is an abelian cone.

- (b) A vector bundle $E = \operatorname{Spec}_{\mathbf{v}} \operatorname{Sym}(\mathscr{E}^{\vee})$ is a special case.
- (c) Any cone $C = \underline{\operatorname{Spec}}_X \bigoplus_{i \geq 0} \mathscr{S}^i$ is canonically a closed subcone of an abelian cone $A(C) = \underline{\operatorname{Spec}}_X \operatorname{Sym} \mathscr{S}^1$, called the abelian hull of C. The abelian hull is a vector bundle if and only if \mathscr{S}^1 is locally free.
- (d) The abelianization $C \mapsto A(C)$ is a functor has the forgetful functor as a right adjoint. So we have

$$\operatorname{Hom}_{\mathbf{AbCone}_X}(A(C),A) \cong \operatorname{Hom}_{\mathbf{Cone}_X}(C,A).$$

(e) Let \mathbf{Alg}_X^o as the category of quasicoherent graded \mathcal{O}_X -algebras satisfying the condition in the definition of cones. So we have the following commutative diagram of functors:

$$\begin{array}{ccc} \mathbf{Alg}_X^o & \xrightarrow{\underline{\mathrm{Spec}}_X} & \mathbf{Cone}_X^\mathrm{op} \\ & & & & & & & \\ \mathrm{Sym}^{\uparrow} & & & & & \uparrow \\ \mathbf{LocFree}_X & \xrightarrow{\underline{\mathrm{Spec}}_X \, \mathrm{Sym}(-)^{\vee}} & \mathbf{Vect}_X^\mathrm{op} \\ & & & & & \downarrow \\ & & & & & \downarrow \\ \mathbf{Coh}_X & \xrightarrow{\underline{\mathrm{Spec}}_X \, \mathrm{Sym}} & \mathbf{AbCone}_X^\mathrm{op} \end{array}$$

Example 3.5. Tow important examples. Let $X \hookrightarrow Y$ be a closed immersion of ideal \mathscr{I} . Then $C_{X/Y} := \underline{\operatorname{Spec}}_X \bigoplus_{n \geq 0} \mathscr{I}^n/\mathscr{I}^{n+1}$ is called the normal cone of X in Y. The associated abelian cone $N_{X/Y} = \underline{\operatorname{Spec}}_X \operatorname{Sym} \mathscr{I}/\mathscr{I}^2$ is called the normal sheaf of X in Y.

Lemma 3.6. About smoothness:

- (a) Let $C = \operatorname{Spec}_{X} \mathscr{S}$ be a cone over X. Then $C_{X/C} \cong \mathscr{S}^{1} \cong 0^{*}\Omega_{C/X}$.
- (b) A cone C over X is a vector bundle if and only if it is smooth over X.
- (c) Let $C \to D$ be a smooth morphism of cones of relative dimension n over X. Then the induced morphism $A(C) \to A(D)$ is also smooth of relative dimension n.

Proof. For (a), note that $C_{X/C}\cong \mathscr{S}^1$ is trivial by definition. Morever, $0:X\to C$ is the zero section and we have $0\to C_{X/C}\to 0^*\Omega_{C/X}\to \Omega_{X/X}=0$ exact (see Tag 0474). Well done.

For (b), let $C = \underline{\operatorname{Spec}}_X \bigoplus_{i \geq 0} \mathscr{S}^i$ and assume that $C \to X$ has constant relative dimension r. Then $\mathscr{S}^1 = 0^*\Omega_{C/X}$ is locally free of rank r. As $C \hookrightarrow A(C)$ where A(C) is a vector bundle and $\dim C = \dim A(C)$, we know that C is a vector bundle.

For (c), apply the exact triangle of cotangent complex to $X \to C \to D$ and (a), we have an exact sequence

$$0\to \mathcal{T}^1\to \mathcal{S}^1\to 0_C^*\Omega_{C/D}\to 0$$

where $C = \underline{\operatorname{Spec}}_X \mathscr{S}$ and $D = \underline{\operatorname{Spec}}_X \mathscr{T}$. So locally we have $A(C) = A(D) \times_X \operatorname{Spec}_X \operatorname{Sym}(0_C^*\Omega_{C/D})$. Well done.

Definition 3.7. A sequence of cone morphisms

$$0 \to E \xrightarrow{i} C \to D \to 0$$

is called exact if E is a vector bundle and locally over X there is a morphism of cones $C \to E$ splitting i and inducing an isomorphism $C \cong E \times_X D$.

Remark 3.8. As $E \to X$ is smooth and surjective by Lemma 3.6, if $0 \to E \xrightarrow{i} C \to D \to 0$ then locally we have $C \cong E \times_X D$ which force that $C \to D$ is smooth and surjective! Similarly $i : E \to C$ is a closed embedding.

Lemma 3.9. We have the following useful results.

(a) Given a short exact sequence $0 \to \mathscr{F}' \to \mathscr{F} \to \mathscr{E} \to 0$ of coherent sheaves on X, with \mathscr{E} locally free, then $0 \to C(\mathscr{E}) \to C(\mathscr{F}) \to C(\mathscr{F}') \to 0$ is exact, and conversely is also true.

- (b) Let $0 \to E \to F \xrightarrow{f} G \to 0$ be an exact sequence of abelian cones over X with E a vector bundle. Assume that $D \subset G$ is a closed subcone, then the induced sequence $0 \to E \to f^{-1}(D) =: C \to D \to 0$ is exact.
- (c) Let $f:C\to D$ be a morphisms of cones over X which is smooth surjective, then the induced diagram

$$C \xrightarrow{f} D$$

$$\downarrow \qquad \qquad \downarrow$$

$$A(C) \xrightarrow{A(f)} A(D)$$

is cartesian. Moreover, we have D = [C/E] (see Lemma 3.12(a)) and A(D) = [A(C)/E], where $E := C \times_{D,0} X = A(C) \times_{A(D),0} X$.

(d) Let E be a vector bundle over X and then the sequence $0 \to E \to C \to D \to 0$ is exact if and only if the abelian hulls $0 \to E \to A(C) \to A(D) \to 0$ is exact and $C \to D$ is smooth and surjective.

Proof. For (a), we refer Example 4.1.6 and Example 4.1.7 in [Ful98]. As exactness is local, we may assume $\mathscr E$ is free. Then the first sequence is exact if and only if $\mathscr F' \oplus \mathscr E = \mathscr F$ if and only if the second sequence is exact as cones, since $\operatorname{Sym}(\mathscr F' \oplus \mathscr E) = \operatorname{Sym}(\mathscr F') \otimes \operatorname{Sym}(\mathscr E) = \operatorname{Sym}(\mathscr F)$.

For (b), note that this can be checked locally, so we can let we can assume that $\mathscr{F}=\mathscr{G}\oplus\mathscr{E}^\vee$ where $E=\underline{\operatorname{Spec}}_X\operatorname{Sym}\mathscr{E}^\vee$ and $F=\underline{\operatorname{Spec}}_X\operatorname{Sym}\mathscr{F}$ and $G=\underline{\operatorname{Spec}}_X\operatorname{Sym}\mathscr{G}$. Let $D=\underline{\operatorname{Spec}}_X\mathscr{T}$, then we have surjection $\operatorname{Sym}(\mathscr{G})\to\mathscr{T}$. By definition, we have

$$\begin{split} C &= F \times_G D = \underline{\operatorname{Spec}}_X(\operatorname{Sym}(\mathscr{F}) \otimes_{\operatorname{Sym}(\mathscr{G})} \mathscr{T}) \\ &= \underline{\operatorname{Spec}}_X((\operatorname{Sym}(\mathscr{G}) \otimes \operatorname{Sym}\mathscr{E}^\vee) \otimes_{\operatorname{Sym}(\mathscr{G})} \mathscr{T}) \\ &= \operatorname{Spec}_Y(\operatorname{Sym}\mathscr{E}^\vee \otimes \mathscr{T}). \end{split}$$

This means locally $C=E\oplus D$ and the splitting $C\to E$ is induced by $F\to E$. Well done.

For (c), let $E := C \times_{D,0} X$ and $E' := A(C) \times_{A(D)} D$ with embedding $E \hookrightarrow E'$, then both of them are vector bundles by Lemma 3.6(b)(c) and hence E = E'. We have cartesians

$$\begin{array}{cccc} E & \longrightarrow & X & & & E & \longrightarrow & X \\ \downarrow & & & & \downarrow & & \downarrow & & \downarrow \\ C & \longrightarrow & D & & & A(C) & \longrightarrow & A(D) \end{array}$$

By the properties of commutative affine group schemes, we have A(D) =

[A(C)/E]. But how about [C/E]? Now we have

Since $C \to [C/E]$ and $C \to D$ are both smooth and surjective, we know that $[C/E] \to D$ is flat and surjective. But by closed embeddings $[C/E] \to A(D)$ and $D \to A(D)$, we know that $[C/E] \to D$ is also a closed embedding. Thus D = [C/E], well done.

For (d), note that all the question is locally on X. First we assume $0 \to E \xrightarrow{i} C \xrightarrow{f} D \to 0$ is exact. Then by (a), to show that $0 \to E \to A(C) \to C$ $A(D) \to 0$ is exact, we only need to show that $0 \to \mathcal{T}^1 \to \mathcal{E}^1 \to \mathcal{E}^\vee \to 0$ is exact where $E = \underline{\operatorname{Spec}}_X \operatorname{Sym} \mathscr{E}^\vee$ and $C = \underline{\operatorname{Spec}}_X \mathscr{S}$ and $D = \underline{\operatorname{Spec}}_X \mathscr{T}$. First since f is faithfully flat and quasi-compact, we know that $\mathcal{T}^1 \to \mathcal{S}^1$ is injective. And since i is a closed embedding, $\mathscr{S}^1 \to \mathscr{E}^\vee$ is surjective. Now by local splitting, we know that locally we have $\operatorname{Sym}(E^{\vee}) \otimes \mathscr{T} = \mathscr{S}$. In particular, we have $\mathscr{T}^1 \oplus \mathscr{E}^{\vee} = \mathscr{S}^1$. Thus the exactness of $0 \to \mathscr{T}^1 \to$ $\mathscr{S}^1 \to \mathscr{E}^{\vee} \to 0$ is obtained. Conversely we assume that after taking abelian hull, the sequence is exact. Now the result follows from (a) and (c).

Proposition 3.10. Let $C \to D$ be a smooth, surjective morphism of cones. If we let $E = C \times_{D,0} X$, then the sequence

$$0 \to E \to C \to D \to 0$$

is exact. Conversely if $0 \to E \to C \to D \to 0$ is exact, then $E \cong C \times_{D,0} X$.

 $\begin{array}{l} \textit{Proof.} \ \, \text{Let} \,\, C = \underbrace{\operatorname{Spec}_X}_{D,0} \bigoplus_{i \geq 0} \mathscr{S}^i \,\, \text{and} \,\, D = \underbrace{\operatorname{Spec}_X}_{X} \bigoplus_{i \geq 0} \mathscr{T}^i. \\ \text{Let} \,\, E = C \times_{D,0} X = \underbrace{\operatorname{Spec}_X}_{X} \operatorname{Sym} \mathscr{E}^\vee, \,\, \text{by Lemma 3.9(d) we just need to} \end{array}$ show that $0 \to E \to A(C) \to A(D) \to 0$ is exact, that is, $0 \to \mathcal{I}^1 \to \mathcal{I}^$ $\mathscr{E}^{\vee} \to 0$ is exact by Lemma 3.9(a). Note that Sym $\mathscr{E}^{\vee} = \mathscr{S} \otimes_{\mathscr{T}} (\mathscr{T}/\mathscr{T}^{\geq 1})$ which force $\mathscr{E}^{\vee} \cong \mathscr{S}^1/\mathscr{T}^1$. Well done.

Conversely, assume that the sequence $0 \to E \to C \to D \to 0$ is exact and $F = C \times_{D,0} X$. Then by the universal property of fibre product, we get a morphism $E \to F$. From the construction, it is easy to see that $\mathscr{F}^{\vee} \to \mathscr{E}^{\vee}$ surjective. Since they are both bundles of the same rank over X, we know that E = F. П

- **Definition 3.11.** (a) If E is a vector bundle and $f: E \to C(\mathscr{F})$ a morphism of abelian cones. The there is an E-action as $E \times_X C(\mathscr{F}) \to C(\mathscr{F})$ as $(\nu, \gamma) \mapsto f\nu + \gamma$.
 - (b) If E is a vector bundle and $d: E \to C$ a morphism of cones, we say that C is an E-cone, if C is invariant under the action of E on A(C).
 - (c) A morphism ϕ from an E-cone C to an F-cone D is a commutative diagram of cones

$$E \xrightarrow{d_E} C$$

$$\downarrow^{\phi} \qquad \downarrow^{\phi}$$

$$F \xrightarrow{d_F} D$$

(d) If $\phi: (E, d_E, C) \to (F, d_F, D)$ and $\psi: (E, d_E, C) \to (F, d_F, D)$ are morphisms, we call them homotopic, if there exists a morphism of cones $k: C \to F$, such that $kd_E = \psi - \phi = d_F k$.

Lemma 3.12. Some useful lemmas:

- (a) Let $f: C \to D$ be a smooth surjective cone morphism with $E = C \times_{D,0} X$, then C is an E-cone.
- (b) Let $0 \to E \xrightarrow{i} C \xrightarrow{f} D = [C/E] \to 0$ be a sequence of algebraic X-spaces with E a bundle, C is a E-cone, i a closed embedding and $f: C \to D = [C/E]$ is the universal family. Then locally on X, there is a $j: C \to E$ split i and induces an isomorphism $(f, j): C \to D \times_X E$.
- (c) Let $0 \to E \xrightarrow{i} C \xrightarrow{f} D \to 0$ be a sequence of algebraic X-spaces with sections and \mathbb{A}^1 -actions such that E a bundle, C is a E-cone, i is a closed embedding and f is \mathbb{A}^1 -equivariant. Then D is a cone with the sequence exact if and only if $D \cong [C/E]$.

Proof. For (a), this follows from directly check. We omit it.

For (b), since the question is local we can assume that E is a trivial bundle and X is a scheme. Let $i': E \to A(C)$ and $C = \underline{\operatorname{Spec}}_X \mathscr{S}$ and $E = \underline{\operatorname{Spec}}_X \operatorname{Sym} \mathscr{E}^\vee$. Then the surjection $\mathscr{S}^1 \twoheadrightarrow \mathscr{E}^\vee$ has a splitting $\mathscr{E}^\vee \hookrightarrow \mathscr{S}^1$, which gives $j': A(C) \to E$ such that $j' \circ i' = \operatorname{id}_E$. Then we just define $j: C \to E$ as composition with $C \to A(C)$ and j'. Hence $j \circ i = \operatorname{id}_E$.

Now since $C \to D$ is also a principal E-bundle, and we have a E-equivariant D-morphism $(f,j): C \to D \oplus E$ from C to the trivial principal bundle. Since they are both E-principal bundle, we know that (f,j) is an isomorphism.

For (c), let D = [C/E]. We know that $D \to X$ is affine since locally on X we have $C \cong D \times_X E \to E$ is affine and (b) and faithfully flat descent. By construction we have $E = C \times_{D,0} X$, hence by Proposition 3.10 we just

need to show D is a cone. Now as $D \to X$ affine we have $D = \underline{\operatorname{Spec}}_X \mathscr{T}$. If $C = \underline{\operatorname{Spec}}_X \mathscr{F}$, then $\mathscr{T} \subset \mathscr{S}$ as $C \to D$ is faithfully flat. Hence it has graded structure $\mathscr{T} = \bigoplus_{i \geq 0} \mathscr{T} \cap \mathscr{S}^i$ as f is \mathbb{A}^1 -equivariant. As it have zero section, we have $\mathscr{T}^0 = \mathscr{O}_X$. Finally we have \mathbb{A}^1 -equivariant embedding $D \hookrightarrow [A(C)/E]$ and [A(C)/E] is a cone by Lemma 3.9(c). Hence \mathscr{T} generated by the coherent sheaf \mathscr{T}^1 .

Conversely, we assume D is a cone and that sequence is exact. Let D' = [C/E]. By the universal property of quotient, we have a natural map $g: D' \to D$. Since $0 \to E \to C \to D' \to 0$ is also exact by the first case, by exactness we have locally $C \cong E \times_X D \cong E \times_X D'$. Note that these isomorphisms compatible with $g: D' \to D$, hence by faithfully flat descent we have g is an isomorphism.

Proposition 3.13. Let X be a DM-stack.

(a) Let E be a vector bundle. Consider the sequence of cone morphisms $0 \to E \xrightarrow{i} C \xrightarrow{\phi} D \to 0$ with i a closed embedding. Then it is exact if and only if C is a E-cone, $\phi: C \to D$ is faithfully flat and the diagram

$$E \times C \xrightarrow{\sigma} C$$

$$\downarrow^{p} \qquad \downarrow^{\phi}$$

$$C \xrightarrow{\phi} D$$

is cartesian with projection p and action σ .

(b) Let $(C,0,\gamma)$ and $(D,0,\gamma)$ be algebraic X-spaces with sections and \mathbb{A}^1 -actions and let $\phi: C \to D$ be an \mathbb{A}^1 -equivariant X-morphism, which is smooth and surjective. Let $E = C \times_{D,0} X$. Assume that E is a vector bundle. Then C is an E-cone (resp. abelian cone, vector bundle) over X if and only if D is a cone (resp. abelian cone, vector bundle) over X and C is affine over X.

Proof. For (a), if it is exact, locally we have $C \cong E \times_X D$. So E act on C locally as $E \times E \times_X D \to E \times_X D$ given by $(f, (e, d)) \mapsto (i(f) + e, d)$. So C is a E-cone. Now $\phi : C \to D$ is trivially faithfully flat. The cartesian diagram follows from Lemma 3.12(c).

Conversely, since ϕ is fppf, this diagram is also cocartesian by Proposition V.1.3.1 in [Li18] which force D=[C/E]. Hence the results follows from Lemma 3.12(c).

For (b), let C is an E-cone over X. Then we have $g:[C/E]\to D$. We claim that g is an isomorphism. Indeed, by the diagram in (a), we know that g induces an isomorphism $g':E\times_XC=C\times_{[C/E]}C\to C\times_DC$. Note

that we have a cartesian diagram:

$$C \times_{[C/E]} C \longrightarrow C \times_D C$$

$$\downarrow \qquad \qquad \downarrow$$

$$[C/E] \longleftarrow [C/E] \times_D [C/E]$$

where $C \times_D C \to [C/E] \times_D [C/E]$ is faithfully flat, hence $[C/E] \hookrightarrow [C/E] \times_D [C/E] \times_D [C/E]$ is an isomorphism. So g is a monomorphism. But since $C \to [C/E]$ and $C \to D$ are faithfully flat, hence epimorphism. Thus g is also an epimorphism, hence an isomorphism. Thus $D \cong [C/E]$ and the result follows from Lemma 3.12(c).

Now assume that C = A(C) is an abelian cone, then taking hull to $0 \to E \to C \to D = [C/E] \to 0$. By Lemma 3.9(c)(d) we have A(D) = [A(C)/E] = [C/E] = D. Hence D is also an abelian cone.

Finally assume that C is a bundle. Then by the previous case we know that D is an abelian cone. The $\mathscr{T}^1 = \ker(\mathscr{S}^1 \twoheadrightarrow \mathscr{E}^\vee)$ is clearly locally free since \mathscr{C}^1 and \mathscr{E} are where $C = \underline{\operatorname{Spec}}_X \mathscr{F}$, $D = \underline{\operatorname{Spec}}_X \mathscr{F}$ and $E = \operatorname{Spec}_X \operatorname{Sym} \mathscr{E}^\vee$.

Conversely we let D is a cone and C is affine over X. Hence we have $C = \underline{\operatorname{Spec}}_X \mathscr{S}$ where $\mathscr{S} = \bigoplus_{i \geq 0} \mathscr{S}^i$ and $\mathscr{S}^1 = \mathscr{O}_X$. By the same reason E is affine over X. Hence we have $C = \underline{\operatorname{Spec}}_X \mathscr{F}$ where $\mathscr{F} = \bigoplus_{i \geq 0} \mathscr{F}^i$ and $\mathscr{F}^1 = \mathscr{O}_X$. If we let $D = \operatorname{Spec}_X \mathscr{F}$, then $\mathscr{F} = \mathscr{S}/(\mathscr{T})$.

Apply the exact triangle of cotangent complex to $X \xrightarrow{0_C} C \to D$, we have an exact sequence

$$0 \to \mathscr{T}^1 \to \mathscr{S}^{\geq 1}/(\mathscr{S}^{\geq 1})^2 = C_{X/C} \to \mathscr{E}^\vee := 0_C^*\Omega_{C/D} \to 0.$$

As $\mathscr{S}^{\geq 1}/(\mathscr{S}^{\geq 1})^2=\mathscr{S}^1\oplus\mathscr{S}^{\geq 2}/(\mathscr{S}^{\geq 1})^2$, we have a commutative diagram with exact rows and columns:

Locally on X we can assume that \mathscr{E} is free and $\mathscr{T}^1 \oplus \mathscr{E}^\vee = \mathscr{S}^{\geq 1}/(\mathscr{S}^{\geq 1})^2$. Then as $\mathscr{F}^1 \subset \mathscr{E}^\vee$, we know that \mathscr{F}^1 . Since \mathscr{T}^1 is also coherent, we know that so is \mathscr{S}^1 . Finally we just need to show \mathscr{S} generated by \mathscr{S}^1 as by Lemma 3.12(a) here C will be an E-cone.

Then locally on X we can choose generators of $\mathscr{T}^1,\mathscr{F}^1,\mathscr{E}^\vee/\mathscr{F}^1=\mathscr{S}^{\geq 2}/(\mathscr{S}^{\geq 1})^2$ such that gives a surjective \mathscr{O}_X -algebra morphism $\phi:\mathscr{T}\oplus\operatorname{Sym}\mathscr{E}^\vee\twoheadrightarrow\mathscr{F}$ which induce $\mathscr{T}\oplus\operatorname{Sym}\mathscr{F}^1\to\mathscr{T}\oplus\operatorname{Sym}\mathscr{E}^\vee\twoheadrightarrow\mathscr{F}$ is graded. Tensoring $(-)\otimes_{\mathscr{T}}\mathscr{O}_X$ with ϕ we get surjection $\phi':\operatorname{Sym}\mathscr{E}^\vee\twoheadrightarrow\mathscr{F}$. This induce the closed immersion $E\hookrightarrow \underline{\operatorname{Spec}_X}\operatorname{Sym}\mathscr{E}^\vee$. Since they are both smooth of a same relative dimension over X and $\underline{\operatorname{Spec}_X}\operatorname{Sym}\mathscr{E}^\vee$ is a vector bundle, hence $E\cong \underline{\operatorname{Spec}_X}\operatorname{Sym}\mathscr{E}^\vee$ and ϕ' is an isomorphism. Hence $\mathscr{F}=\operatorname{Sym}(\mathscr{F}^1)$ and \mathscr{F}^1 is locally free. As $\operatorname{Sym}(\mathscr{F}^1)\subset\operatorname{Sym}\mathscr{E}^\vee\overset{\phi'}{\to}\mathscr{F}=\operatorname{Sym}(\mathscr{F}^1)$ is identity, this force $\mathscr{E}^\vee=\mathscr{F}^1$. As this can be check locally, we have $\mathscr{E}^\vee=\mathscr{F}^1$ in whole X. By the diagram above, we have $\mathscr{F}^{\geq 2}/(\mathscr{F}^{\geq 1})^2=\mathscr{E}^\vee/\mathscr{F}^1=0$. This means \mathscr{F} generated by \mathscr{F}^1 . Well done.

Remark 3.14. In the original paper [BF97] they claim (a) is enough for the surjectivity of f.

3.3 Cone Stack

Let X be a Deligne-Mumford stack.

Definition 3.15. Let \mathfrak{C} be an algebraic stack over X, together with a section $0: X \to \mathfrak{C}$. An \mathbb{A}^1 -action on $(\mathfrak{C}, 0)$ is given by a morphism of X-stacks $\gamma: \mathbb{A}^1 \times \mathfrak{C} \to \mathfrak{C}$ and three 2-isomorphisms θ_1, θ_0 and θ_{γ} between the 1-morphisms in the following diagrams.

$$\mathfrak{C} \xrightarrow[\mathrm{id}/0]{(1,\mathrm{id})/(0,\mathrm{id})} \mathbb{A}^1 \times \mathfrak{C}$$

$$\mathbb{A}^{1} \times \mathbb{A}^{1} \times \mathfrak{C} \xrightarrow{\operatorname{id} \times \gamma} \mathbb{A}^{1} \times \mathfrak{C}$$

$$\downarrow^{m \times \operatorname{id}} \qquad \stackrel{\theta_{\gamma}}{\Longrightarrow} \mathbb{C}$$

$$\mathbb{A}^{1} \times \mathfrak{C} \xrightarrow{\gamma} \mathfrak{C}$$

The 2-isomorphisms θ_1, θ_0 and θ_{γ} are required to satisfy certain compatibilities.

Definition 3.16. Let $(\mathfrak{C}, 0, \gamma)$ and $(\mathfrak{D}, 0, \gamma)$ be X-stacks with sections and \mathbb{A}^1 -actions. Then an \mathbb{A}^1 -equivariant morphism $\phi : \mathfrak{C} \to \mathfrak{D}$ is a triple $(\phi, \eta_0, \eta_{\gamma})$,

where $\phi: \mathfrak{C} \to \mathfrak{D}$ is a morphism of algebraic X-stacks and η_0 and η_{γ} are 2-isomorphisms between the morphisms in the following diagrams.

$$\begin{array}{ccc}
\mathbb{A}^1 \times \mathfrak{C} & \xrightarrow{\operatorname{id} \times \phi} & \mathbb{A}^1 \times \mathfrak{D} \\
\downarrow^{\gamma} & & \nearrow^{\eta_{\gamma}} & & \downarrow^{\gamma} \\
\mathfrak{C} & \xrightarrow{\phi} & & \mathfrak{D}
\end{array}$$

Again, the 2-isomorphisms have to satisfy certain compatibilities.

Definition 3.17. Let $(\phi, \eta_0, \eta_\gamma) : \mathfrak{C} \to \mathfrak{D}$ and $(\psi, \eta'_0, \eta'_\gamma) : \mathfrak{C} \to \mathfrak{D}$ be two \mathbb{A}^1 -equivariant morphisms. An \mathbb{A}^1 -equivariant isomorphism $\zeta : \phi \to \psi$ is a 2-isomorphism $\zeta : \phi \to \psi$ such that the diagrams

commute.

Example 3.18. Let C be a E-cone, then consider the quotient stack [C/E]. We claim that [C/E] a zero section and an \mathbb{A}^1 -action. Indeed, the zero section $0: X \to [C/E]$ given by $X \leftarrow E \to C$.

Proposition 3.19.

- 3.4 A Stack of Special Type
- 3.5 Intrinsic Normal Cone
- 3.6 Obstruction Theory and Virtual Class
- 3.7 Examples
- 4 Atiyah-Bott Localization

We will follows [AB84].

5 Localization of Virtual Fundamental Class

We will follows [GP99].

References

- [AB84] M. Atiyah and R. Bott. The moment map and equivariant cohomology. *Topology*, 23:1–28, 1984.
- [BF97] K. Behrend and B. Fantechi. The intrinsic normal cone. *Invent. Math.*, 128:45–88, 1997.
- [EH16] David Eisenbud and Joe Harris. 3264 and All That: A Second Course in Algebraic Geometry. Cambridge University Press, 2016.
- [Ful98] William Fulton. Intersection Theory. Springer New York, 1998.
- [GP99] T. Graber and R. Pandharipande. Localization of virtual classes. *Invent. Math.*, 135:487–518, 1999.
- [Har77] Robin Hartshorne. *Algebraic geometry*. Springer-Verlag, New York-Heidelberg, 1977.
- [Li18] Kezheng Li. Group Schemes and Their Actions (in Chinese). Tsinghua University Press, 2018.
- [Ric22] Andrea Ricolfi. An Invitation to Modern Enumerative Geometry. Springer Cham, 2022.