Графы с точностью до изоморфизма.

Графы G_1 и G_2 называются изоморфными, если существует взаимно однозначное отображение $f \colon V(G_1) \to V(G_2)$, удовлетворяющее условию: вершины $a,b \in V(G_1)$ соединены ребром в том и только в том случае, если их образы $f(a), f(b) \in V(G_2)$ соединены ребром.

- K_n полный граф на n вершинах.
- $K_{m,n}$ полный двудольный граф с долями из m и n вершин.
- Клика подграф, являющийся полным графом.
- **1.** Для произвольных $k, l, m, n \in \mathbb{N}$ найдите количество
 - (a) клик размера k в графе K_n ;
 - (b) клик размера k в графе $K_{m,n}$;
 - (c) независимых множеств размера k в графе K_n ;
 - (d) независимых множеств размера k в графе $K_{m,n}$;
 - (e) подграфов, изоморфных $K_{k,l}$, в графе K_n ;
 - (f) подграфов, изоморфных $K_{k,l}$, в графе $K_{m,n}$.

Будьте внимательны: эти задачи простые, но почти все требуют разбора случаев.

- 2. Перечислите все попарно неизоморфные
 - (а) графы с четырьмя вершинами,
 - (b) связные графы с пятью вершинами и пятью ребрами,
 - (с) несвязные графы с пятью вершинами.
- **3.** Докажите, что неизоморфных деревьев на n вершинах не более 4^n .

Задача-звёздочка

4* Докажите, что число неизоморфных связных мультиграфов (графов с, возможно, кратными рёбрами) без петель с m рёбрами не превосходит $(4m)^m$.

Плоские графы

5. (а) Докажите формулу Эйлера: для любого связного плоского графа с n вершинами, e ребрами и f гранями имеет место равенство n-e+f=2.

- (b) Найдите аналог формулы Эйлера для плоского графа с k компонентами связности.
- 6. Применения формулы Эйлера. Докажите следующие утверждения:
 - (a) Для любого плоского связного графа без петель и кратных ребер, имеющего более двух вершин, выполнены соотношения $2e\geqslant 3f$ и $e\leqslant 3n-6$.
 - (b) Графы K_5 и $K_{3,3}$ невозможно нарисовать на плоскости без самопересечений.
 - (с) В любом плоском графе есть вершина степени не более 5.
 - (d) Если каждая вершина плоского связного графа имеет степень d, а граница каждой грани состоит из ровно $k\geqslant 3$ ребер, то $\frac{1}{d}+\frac{1}{k}=\frac{1}{2}+\frac{1}{e}$.
- 7. Докажите, что вершины планарного графа можно так раскрасить в шесть цветов, что никакие две одноцветные вершины не соединены ребром (то есть любой планарный граф шестидольный). А в пять цветов?