Advanced Computer Contest Preparation Lecture 17

INTERVAL DP

Sample Problem: Coins in a Row

- There are $N(1 \le N \le 1,000)$ coins in a straight line
- The i^{th} coin has a value of v_i
- You play this game with a friend:
 - Alternating turns, starting with you, remove one coin from one end of the line
 - Add that coin's value to your score
- Your friend plays perfectly
 - Plays in a way to maximize his score
- What is your maximum possible score?

Sample Problem: Coins in a Row

```
Example game:
```

```
4, 4, 9, 4
```

4, 9, 4 (you get 4)

9, 4 (friend gets 4)

4 (you get 9)

(friend gets 4)

Maximum score is 13

Solutions?

- Greedy?
 - What are possible greedy criteria?
 - O(N log N) greedy is possible, but algorithm is complex
- Brute force?
 - At each possible turn (there are N turns), there are 2 possibilities
 - Runtime is $O(2^N)$
- DP?
 - What are the subproblems?
 - How does a problem relate to its subproblems?

Interval DP

- A sub-type of the DP technique
- Subproblems are answers to all possible ranges, [l,r], $l \le r$
- Also called left-right DP or L-R DP

Coins in a Row - DP Solution

- The overall problem is:
 - What is the maximum score if all coins from 1 to N are present, and we go first?
- The subproblems are:
 - What is the maximum score we can achieve if the only coins present are those in the range [l,r], $l \le r$, and we go first?

DP Solution

- Let p(l,r) be the maximum score we can achieve if coins in the range [l,r] are the only ones present, and we go first
- Base case: $p(l,r) = v_l$ if l = r
 - There is only one coin; we simply take that coin

DP Solution

- Case 1: We take coin l
 - Coins in the range [l+1,r] are left
 - Since friend plays perfectly, he gains points equal to p(l+1,r)
 - We get all other coins, so our score will be $\sum_{i=l}^{r} v_i p(l+1,r)$
- Case 2: We take coin r
 - Coins in the range [l,r-1] are left
 - Friend gains p(l,r-1) points
 - Our score is $\sum_{i=l}^{r} v_i p(l, r-1)$
- We choose which case gives us a better score
- Therefore, $p(l,r) = \sum_{i=l}^{r} v_i \min(p(l+1,r), p(l,r-1))$

Example 1

Coins: 4, 4, 9, 4

$l \setminus r$	1	2	3	4
1	4	4	13	13
2	-	4	9	8
3	-	-	9	9
4	-	-	-	4

Example 2

Coins: 4, 5, 12, 3, 4, 2

$l \setminus r$	1	2	3	4	5	6
1	4	5	16	16	12	20
2	_	5	12	8	16	10
3	_	_	12	12	15	16
4	_	_	_	3	4	5
5	_	_	_	_	4	4
6	_	_	_	_	_	2

Pseudocode - Recursive

```
int solve(int 1, int r){
    if (dp[1][r]) return dp[1][r];
    if (l == r) dp[1][r] = sum[r]-sum[1-1];
    else dp[1][r] = sum[r]-sum[1-1]-min(solve(l+1,r),solve(l,r-1));
    return dp[1][r];
}
print(solve(1,N));
```

Pseudocode - Iterative

print(dp[1][N]);

```
for (int size = 0; size < N; size++){
    for (int l = 1; l+size <= N; l++) {
        int r = l + size;
        if (l == r) dp[l][r] = sum[r]-sum[l-1];
        else dp[l][r] = sum[r]-sum[l-1]-min(dp[l+1][r],dp[l][r-1]);
    }
}</pre>
```

Analysis

- How many states are there?
 - \bullet $O(N^2)$
- How many subproblems does each state depend on?
 - O(1)
- What is the time complexity needed to compute the solution to a problem?
 - O(1)
- Therefore, the final time complexity is $O(N^2)$

THANK YOU!