Modèles de Markov cachés principes et exemples

Master IVI, module VisA

Un petit exemple qui sert à rien

- Deux états : 'Soleil' et 'Pluie'.
- Probabilité de transition: P('Pluie'|'Pluie')=0.3, P('Soleil'|'Pluie')=0.7, P('Pluie'|'Soleil')=0.2, P('Soleil'|'Soleil')=0.8
- Proba initiales: P('Pluie')=0.4, P('Soleil')=0.6.
- La probabilité d'occurrence d'une séquence {'Soleil', 'Soleil', 'Pluie', Pluie'}: P('Pluie'|'Pluie') P('Pluie'|'Soleil') P('Soleil') P('Soleil')= = 0 3*0 2*0 8*0 6

Principe

- Un ensemble d'états possibles : $\{S_1, S_2, ..., S_N\}$
- Processus passe d'un état à l'autre, générant ainsi une séquence

 $S_{i1}, S_{i2}, \dots, S_{ik}, \dots$

• Principe des chaines de Markov: probabilité d'occurence d'un état dépend uniquement de l'état précédent:

$$P(s_{ik} \mid s_{i1}, s_{i2}, ..., s_{ik-1}) = P(s_{ik} \mid s_{ik-1})$$

• Un modèle de markov est défini par les probabilités de transitions, $a_{ii} = P(s_i | s_i)$ and initial probabilities $\pi_i = P(s_i)$

Modèle de Markov cachés

- $\{S_1, S_2, ..., S_N\}$
- •Processus passe d'un état à un autre, générant une suite où les éléments
- appartiennent à l'ens. d'etat : $s_{i1}, s_{i2}, \dots, s_{ik}, \dots$ propriété de la chaine de markov: probabilité dépend uniquement de l'état précédent:
- $P(s_{ik} \mid s_{i1}, s_{i2}, ..., s_{ik-1}) = P(s_{ik} \mid s_{ik-1})$ les états ne sont pas visibles, mais chaque état génère un état observable parmi un certain nombre: $\{v_1, v_2, \dots, v_M\}$
- To define hidden Markov model, the folBasing probabilities have to be specified: matrice des proba de transition $A=(a_{ii})$, $a_{ii}=P(s_i|s_i)$, matrice des proba des états observables $B=(b_i(v_m)), b_i(v_m)=P(v_m|s_i)$ et un vecteur de proba initiales $\pi = (\pi_i)$, $\pi_i = P(s_i)$. Le modèle est donné par $M=(A, B, \pi)$.

Le même petit exemple qui sert à rien, revisité

0.3

0.7

Haut

0.6

Pluie

Soleil

Le même petit exemple qui sert à rien, revisité

•Si l'on veut calculer la probabilité d'observation d'une séquence, par ex. {'Soleil', 'Pluie'}.

•On considère toutes les séquences possibles d'état caché, et leur proba:

$$\begin{split} P(\{\text{`Soleil','Pluie'}\}) &= P(\{\text{`Soleil','Pluie'}\}, \{\text{`Bas','Bas'}\}) + P\\ (\{\text{`Soleil','Pluie'}\}, \{\text{`Bas','Haut'}\}) &+ P(\{\text{`Soleil','Pluie'}\}, \{\text{`Haut','Bas'}\}) + P(\{\text{`Soleil','Pluie'}\}, \{\text{`Haut','Haut'}\}) \end{split}$$

Pour le premier terme :

```
\begin{split} &P(\{\text{`Soleil','Pluie'}\}, \{\text{`Bas','Bas'}\}) = \\ &P(\{\text{`Soleil','Pluie'}\} \mid \{\text{`Bas','Bas'}\}) \ P(\{\text{`Bas','Bas'}\}) = \\ &P(\text{`Soleil'|'Bas'})P(\text{`Pluie'|'Bas'}) \ P(\text{`Bas'})P(\text{`Bas'}|\text{`Bas'}) \\ &= 0.4*0.4*0.6*0.4*0.3 \end{split}
```

Classes de problèmes génériques

Evaluation . En considérant le HMM $M=(A, B, \pi)$ et la séquence d'observation $O=o_1 o_2 ... o_K$, comment calculer la probabilité que M ait généré O .

- Decodage. En considérant le HMM $M=(A,B,\pi)$ et la séquence d'observation $O=o_1\,o_2\dots\,o_K$, calculer la séquence d'état caché la plus probable S_i qui génère la séquence observée O.
- Apprentissage. Etant donné des séquences observées de référence $O=o_1 o_2 ... o_K$ et une structure générique de HMM (états cachés et observables), trouver les paramètres du HMM $M=(A, B, \pi)$ qui correspond au mieux aux séquences observées.

 $O=o_1...o_K$ est ici une séquence d'observation, donc $o_k \in \{v_1,...,v_m\}$.

Un exemple un peu plus utile: reconnaissance de mots (2)

- Les états cachés du HMM = lettres.
- Observations = Les images segmentées depuis l'image globale du mot, on les note v_{α} . Il peut y avoir un nombre infini d'observations.
 - Proba des observations = efficacité de la reconnaissance de caractère.

$$B = (b_i(v_\alpha)) = (P(v_\alpha \mid s_i))$$

•Les proba de transition vont etre dérivée en deux exemples

Un exemple un peu plus utile: reconnaissance de mots (3)

• Si on a un dictionnaire, on peut construire un HMM pour chaque mot

- reconnaissance du mot -> calcul de probabilité sur quelques HMM
- Probleme d'Evaluation.

Un exemple un peu plus utile: reconnaissance de mots (4)

- Autre approche: un seul HMM pour l'ensemble des mots
- Etats cachés = les lettres de l'alphabet.
- Les proba de transition et proba initiales sont calculées à partir du modèle de langage.
- Observations et proba d'observation: inchangés.

- Ici on doit déterminer la meilleure séquence d'état caché qui a la plus forte probabilité d'avoir produit l'image du mot
- Application du probleme de Decodage.

Reconnaissance de caractère par HMM.

• On fixe la structure des états cachés.

• Observations: *features* extraites de la structure de tranche verticales (par exemple).

• Mapping probabiliste depuis les états cachés vers les features : modèles de proba gausienne, Features Quantifiées

Reconnaissance de caractère par HMM.

• Structure des états cachés:

- Observation = nombre de parties connexes dans la tranche.
 - •HMM pour la lettre 'A':

Proba des transition :
$$\{a_{ij}\}=\begin{pmatrix} .8 & .2 & 0 \\ 0 & .8 & .2 \\ 0 & 0 & 1 \end{pmatrix}$$

Proba des Observations: $\{b_{jk}\}=\begin{pmatrix} .9 & .1 & 0 \\ .1 & .8 & .1 \\ .9 & .1 & 0 \end{pmatrix}$

•HMM pour 'B':

Proba des transitions:
$$\{a_{ij}\}= \begin{pmatrix} .8 & .2 & 0 \\ 0 & .8 & .2 \\ 0 & 0 & 1 \end{pmatrix}$$

Proba des observations:
$$\{b_{jk}\}=\begin{bmatrix} 0.2.8 \\ 0.2.8 \\ 0.4.0 \end{bmatrix}$$

B

Reconnaissance de caractère par HMM.

• Supposons par exemple que la séquence d'état observée soit la suivante, en 4 tranches:

• Lequel des deux HMM aura la plus forte probabilité de reconnaissance, celui associé à 'A', ou celui associé à 'B'?

Reconnaissance de caractère par HMM.

On évalue la probabilité de générer l'observation pour tous les HMM disponibles, en tenant compte de toutes les chaines cachées possibles:

Proba de transitions

• HMM pour 'A':

Sequence d'états cachés

$s_1 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3$.8 * .2 * .2	*	.9 * 0 * .8 * .9 = 0
$s_1 \rightarrow s_2 \rightarrow s_2 \rightarrow s_3$.2 * .8 * .2	*	.9 * .1 * .8 * .9 = 0.0020736
$s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_3$.2 * .2 * 1	*	.9 * .1 * .1 * .9 = 0.000324
• HMM pour 'B':			Total = 0.0023976
Sequence d'état cachés	Proba de transitions		Proba d'observation
$s_1 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3$.8 * .2 * .2	*	.9 * 0 * .2 * .6 = 0
$s_1 \rightarrow s_2 \rightarrow s_2 \rightarrow s_3$.2 * .8 * .2	*	.9 * .8 * .2 * .6 = 0.0027648
$s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_3$.2 * .2 * 1	*	.9 * .8 * .4 * .6 = 0.006912
			Total = 0.0096768
	1490 TO TO		

proba d'observation

Evaluation d'un HMM.

- •Problème d'evaluation. Etant donné un HMM $M=(A,B,\pi)$ et une séquence observée $O=o_1o_2...o_K$, calculer la probabilité que M génère la séquence O.
- Essayer de trouver la séquence $O=o_1o_2...o_K$ En considérant toutes les chaines possibles d'état est pas le plus intelligent en pratique, car il y a N^K séquences de K symboles pris parmi N
- Algorithme du Forward-Backward plus efficace
- On définit la «forward variable» $\alpha_k(i)$ comme la probabilité d'observer la séquence d'observation partielle $o_1 o_2 \dots o_k$ AVEC l'etat caché à la date k qui est S_i : $\alpha_k(i) = P(o_1 o_2 \dots o_k, q_k = s_i)$

Representation en treillis d'un HMM $O_1 \qquad O_k \qquad O_{k+1} \qquad O_K = \text{Observations}$ $S_1 \qquad S_1 \qquad S_1 \qquad S_1 \qquad S_1 \qquad S_1 \qquad S_2 \qquad S_2$

Forward recursion for HMM

• Initialisation:

$$\alpha_1(i) = P(o_1, q_1 = S_i) = \pi_i b_i(o_1), 1 \le i \le N.$$

· récursivité «en avant»:

$$\alpha_{k+1}(i) = P(o_1 o_2 \dots o_{k+1}, q_{k+1} = S_j) =$$

$$\sum_i P(o_1 o_2 \dots o_{k+1}, q_k = S_i, q_{k+1} = S_j) =$$

$$\sum_i P(o_1 o_2 \dots o_k, q_k = S_i) a_{ij} b_i(o_{k+1}) =$$

- $[\Sigma_i \alpha_k(i) a_{ij}] b_i(o_{k+1}), 1 \le j \le N, 1 \le k \le K-1.$
- Terminaison:

$$P(o_1 o_2 ... o_K) = \sum_i P(o_1 o_2 ... o_{K_i} q_K = S_i) = \sum_i \alpha_K(i)$$

- Complexité:
 - N²K operations.

Récursivité arrière pour les HMM

- On définit $\beta_k(i)$ comme la proba d'observer la séquence partielle $O_{k+1}O_{k+2}...O_K$ ET que l'état caché à la date k est $S_i:\beta_k(i)=P(O_{k+1}O_{k+2}...O_K|Q_k=S_i)$
- Initialisation:

$$\beta_{\kappa}(i)=1$$
 , $1 <= i <= N$.

· Backward recursion:

$$\beta_k(j) = P(o_{k+1} o_{k+2} ... o_K | q_k = s_j) =$$

$$\sum_{i} P(o_{k+1} o_{k+2} ... o_{K_i} q_{k+1} = S_i | q_k = S_i) =$$

$$\sum_{i} P(o_{k+2}o_{k+3}...o_{k}|q_{k+1}=s_{i}) a_{ii} b_{i}(o_{k+1}) =$$

$$\sum_{i} \beta_{k+1}(i) a_{ii} b_{i}(o_{k+1})$$
, 1<=j<=N, 1<=k<=K-1.

• Terminaison:

$$P(o_1 o_2 ... o_K) = \sum_i P(o_1 o_2 ... o_K q_1 = S_i) =$$

$$\sum_{i} P(o_1 o_2 ... o_K | q_1 = s_i) P(q_1 = s_i) = \sum_{i} \beta_1(i) b_i(o_1) \pi_i$$

Decodage

- •Probleme du décodage: étant donné $M=(A, B, \pi)$ et la séquence observée $O=o_1o_2...$
- O_K, déterminer la séquence d'état caché la plus probable qui a généré cette séquence.
- On cherche la séquence d'état $Q = q_1 \dots q_K$ qui maximise $P(Q \mid o_1 o_2 \dots o_K)$, ou, de manière équivalente $P(Q, o_1 o_2 \dots o_K)$.
- Evaluation brutale se fait en temps exponentiel. On peut aussi utiliser l'algorithm de Viterbi.
- Define variable $\delta_k(i)$ as the maximum probability of producing observation sequence $O_1 O_2 ...$
- O_k when moving along any hidden state sequence $Q_1 \dots Q_{k-1}$ and getting into $Q_k = S_i$.

$$\delta_k(i) = \max P(q_1 ... q_{k-1}, q_k = S_i, O_1 O_2 ... O_k)$$

where max is taken over all possible paths $q_1 \dots q_{k-1}$

Algo de Viterbi (1)

· Principe:

Si un meilleur chemin se terminant en $q_k = S_j$ passe par $q_{k-1} = S_i$ alors il devrait coincider avec le meilleur chemin terminant en $q_{k-1} = S_i$.

- $\delta_k(i) = \max P(q_1 ... q_{k-1}, q_k = S_j, O_1 O_2 ... O_k) =$ $\max_i [a_{ij} b_i(O_k) \max P(q_1 ... q_{k-1} = S_i, O_1 O_2 ... O_{k-1})]$
- Pour remonter le chemin, garder l'info que le prédécesseur de S_j était S_i.

Algo de Viterbi (2)

• Initialisation:

$$\delta_1(i) = \max P(q_1 = s_i, o_1) = \pi_i b_i(o_1), 1 \le i \le N.$$

•Récursion avant:

$$\begin{split} & \delta_k(j) = \max \ P(q_1 \dots q_{k-1}, q_k = s_j \,, o_1 o_2 \dots o_k) = \\ & \max_i \left[\ a_{ij} \ b_j(o_k) \ \max \ P(q_1 \dots q_{k-1} = s_i \,, o_1 o_2 \dots o_{k-1}) \ \right] = \\ & \max_i \left[\ a_{ij} \ b_j(o_k) \ \delta_{k-1}(i) \ \right], \qquad 1 <= j <= N, \ 2 <= k <= K. \end{split}$$

- <u>Terminaison</u>: choix de la «meilleure fin» (proba maximale) à la date K $\max_i [\delta_K(i)]$
- On reconstruit le meilleur chemin.

Algorithme similaire à la récursion avant du probleme d'évaluation, en substituant Σ par max, associé à une remontée de chemin.

Algo d'apprentissage (1)

- •Problème d'apprentissage: Etant donné une séquence d'observation $O=o_1\,o_2\dots o_K$ et une structure de HMM (nombres d'états visibles et invisibles), determiner les paramètres du HMM $M=(A,\,B,\,\pi)$ qui collent au mieux aux données d'apprentissage data, i.e. qui maximisent P $(O\mid M)$.
- Aucun algorithme existant produisant un optimal à ce problème.
- Solution: approche relaxation-maximisation pour maximiser localement $P(O\mid M)$ Algo de Baum-Welch.

algo d'apprentissage (2)

• Si la séquence d'apprentissage donne aussi les séquences d'états cachés (ex: reconnaissance de mots), alors on utilise la probabilité maximale pour chaque paramètres:

$$a_{ij} = P(s_i | s_j) = \frac{\text{Nombres de transitions de } S_j \text{ à } S_i}{\text{Nombre de transitions sortantes de } S_j}$$

$$b_{i}(v_{m}) = P(v_{m}|s_{i}) = \frac{\text{Nombre de fois où l'observation } V_{m} \text{ survient à l'état } S_{i}}{\text{Nombre d'occurrence de l'état } S_{i}}$$

Algo de Baum-Welch

Principe:

$$a_{ij} = P(s_i | s_j) = \frac{\text{Nombre de transitions attendues de l'état } S_i \text{ à } S_i}{\text{Nombre de transitions sortantes attendues de } S_i}$$

$$b_i(v_m) = P(v_m | s_i) = \frac{\text{Nombre d'observation } V_m \text{ attendues dans l'état } S_i}{\text{Nombre d'occurence attendues de l'état } S_i}$$

$$\pi_i = P(s_i) = Fréquence attendue de s_i à la date $k=1$.$$

Algo de Baum-Welch : étape de relaxation

• On définit $\gamma_k(i)$ comme la proba d'etre dans l'état caché S_i à la date k, étant donné la séquence d'observation $O_1\,O_2\dots\,O_K$.

$$\gamma_k(i) = P(q_k = s_i \mid o_1 o_2 \dots o_K)$$

$$\gamma_k(i) = \quad \frac{P(q_k = s_i , o_1 o_2 \dots o_k)}{P(o_1 o_2 \dots o_k)} \quad = \quad \frac{\alpha_k(i) \beta_k(i)}{\sum_i \alpha_k(i) \beta_k(i)}$$

Algo de Baum-Welch : étape de relaxation

• On définit $\xi_k(i,j)$ comme la proba d'etre à l'état caché S_i à la date k et à l'état S_j à la date k+1, en fonction de la séquence d'observation $O_1O_2...O_K$. $\xi_k(i,j) = P(q_k = S_i, q_{k+1} = S_i \mid O_1O_2...O_K)$

$$\xi_{k}(i,j) = \frac{P(q_{k} = s_{i}, q_{k+1} = s_{j}, o_{1} o_{2} ... o_{k})}{P(o_{1} o_{2} ... o_{k})} = \frac{P(q_{k} = s_{i}, o_{1} o_{2} ... o_{k}) a_{ij} b_{j} (o_{k+1}) P(o_{k+2} ... o_{K} | q_{k+1} = s_{j})}{P(o_{1} o_{2} ... o_{k})}$$

$$\frac{\alpha_{k}(i) \ a_{ij} \ b_{j}(o_{k+1}) \ \beta_{k+1}(j)}{\Sigma_{i} \Sigma_{i} \ \alpha_{k}(i) \ a_{ij} \ b_{j}(o_{k+1}) \ \beta_{k+1}(j)}$$

Algo de Baum-Welch : étape de relaxation

•On a calculé
$$\xi_k(i,j) = P(q_k = s_i, q_{k+1} = s_j \mid o_1 o_2 \dots o_K)$$

et $\gamma_k(i) = P(q_k = s_i \mid o_1 o_2 \dots o_K)$

- Nombre de transitions attendues de S_i à $S_j = \sum_k \xi_k(i,j)$
- Nombre de transitions sortantes de $S_i = \sum_k \gamma_k(i)$
- Nombre de fois où l'observation V_m survient dans l'état $S_i = \sum_k \gamma_k(i)$, k est tel que $O_k = V_m$
- Fréquence attendue de S_i à la date k=1 : $\gamma_1(i)$.

Algo de Baum-Welch : étape de maximisation $a_{ij} = \frac{\text{Nombre de transitions attendues de l'état } S_j \text{ à } S_i}{\text{Nombre de transitions sortantes attendues de } S_i} = \frac{\sum_k \xi_k(i,j)}{\sum_k M_k(i,j)}$

$$b_i(v_m) = \frac{\text{Nombre d'observation } V_m \text{ attendues dans l'état } S_i}{\text{Nombre d'occurence attendues de l'état } S_i} = \frac{\sum_k \xi_k(i,j)}{\sum_{k,o_k = v_m} \gamma_k(i)}$$

$$\pi_i = (Fréquence d'occurrence attendue de S_i à la date k=1) = \gamma_1(i)$$
.

Exemple d'utilisation des HMM: Reconnaissance de la voix

Étant donné un signal acoustique O, quelle est la phrase la plus probable se cachant derrière, parmi toutes les phrase d'un langage L?

Reconnaissance de la voix

- Étant donné un signal acoustique O, quelle est la phrase la plus probable se cachant derrière parmi toutes les phrase d'un langage L?
- On décompose O en une séquence de trames :

On définit la phrase par une séquence de mots :

$$W=W_1, W_2, ..., W_n$$

Le problème de la reconnaissance vocale revient à trouver \hat{w} tel que

$$\hat{W} = \underset{W \in I}{\operatorname{arg\,max}} P(W \mid O)$$

Vecteur des traits acoustiques

 Transformée en cosinus inverse du logarithme des coefficients tirés de la banque de filtres

$$c_i = (2/N)^{1/2} \sum_{j=1}^{N} \log m_j \cos \left(\frac{\pi i}{N} (j - 0.5) \right)_j$$

- Donne les « Mel Frequency Cepstral Coefficients (MFCC) ». Seuls les ~12 premiers cœfficients sont retenus.
- Les MFCC sont presque indépendants (à l'encontre des cœfficients de la banque de filtres)
- On utilise aussi le Delta (vitesse / dérivée) et Delta² (accélération / dérivée seconde) des MFCC (+ ~24 traits)
- Et aussi le logarithme de l'énergie de la trame et son Delta et Delta², pour un total de 39 traits

Extraction des traits acoustiques

- Banque de filtres
 - Réduit le nombre de paramètre FFT à déterminer par filtrage suivant ~20 filtres triangulaires uniformément espacés dans l'échelle mel
 - Chaque filtre fournit un coefficient qui donne l'énergie du signal dans la bande couverte par le filtre

Échelle de fréquences mel m5

 Modélise la non-linéarité de la perception audio humaine au niveau des fréquences

$$mel(f) = 2595 \log_{10}(1 + f/700)$$

À peu près linéaire jusqu'à 1kHz, ensuite compression logarithmique

Le problème de la reconnaissance

- Trouver la séquence la plus vraisemblable de « mots » w étant donnée une séquence d'observations acoustiques.
- Revient à considérer deux aspects :

Reconnaissance de la parole

- Etape 1 : L'observable est le signal de parole
 - Le HMM modélise un phonème en une suite d'états
 - un HMM par phonème
- Etape 2 : L'observable est une suite de phonèmes
 - le HMM modélise un mot en une suite de phonèmes
 - Un HMM par mot du dictionnaire
- Etape 3 : L'observable est une suite de mots
 - Le HMM modélise une phrase en une suite de mots

Reconnaissance du texte écrit

- Etape 1 : L'observable est le signal issu d'une tablette graphique
 - Le HMM modélise une lettre en une suite d'états
 - un HMM par lettre
- Etape 2 : L'observable est une suite de lettres
 - le HMM modélise un mot en une suite de lettres
 - Un HMM par mot du dictionnaire
- Etape 3 : L'observable est une suite de mots
 - Le HMM modélise une phrase en une suite de mots

Le geste

Figure 1. Movement of the example arc gesture.

Conclusions

- HMM = technique de référence dans de nombreux domaines
- Bons résultats malgré les hypothèses (indép., stationnarité)
- Apprentissage coûteux
- Il existe :
 - D'autres méthodes d'apprentissage (ex: RNA)
 - D'autres principes d'apprentissage existent (spécialisation/généralisation)
 - Autres architectures (factorial HMM, input/output HMM, parallel LR HMM, etc ...)
 - Autres modèles (ex: HMM auto-regressif)

Quelques références

[BGC00] L. Bréhelin, O. Gascuel, G. Caraux, Hidden Markov Models with patterns and their application to intregated circuit testing, ECML 2000.

[Bier97] C. Biernacki, Choix de modèles en classification, thèse de l'Université Technologique de Compiègne, 1997.

[BPSW70] L-E Baum, T. Petrie, G. Soules and N. Weiss, *A maximization technique occuring in statistical analysis of probabilistic functions in Markov chains*, The annals of Mathematical Statistics, 41(1):164-171,1970.

[DEKM98] R. Durbin, S Eddy, A, Krogh, G Mitchison, Biological sequence analysis probabilistic models of proteins and nucleic acids. Cambridge University Press, 1998. [KHB88] A. Kundu, Y. He, P. Bahl, Recognition of handwritten word: First and second order Hidden Markov Model based approach, in the proceedings of CVPR 88, pp 457-462,1988. [Rab89] L.R. Rabiner, A tutorial on Hidden Markov Models and selected applications in speech recognition, In the proceedings of IEEE, 77(2):257-285,1989.

[Raph98] C. Raphael, Automatic segmentation of acoustic musicals signals using Hidden Markov Models. IEEE PAMI, 21(4):360-370,1998.