MAD-CB

Regressão Linear

Regressão - Historia

- Termo vem de eugenismo "eugenics" de Sir Francis Galton.
- Estudou alturas de famílias
 - Observou que crianças de pais altos tendiam de ser mais baixo de que os pais e crianças de pais baixos tendiam de ser mais altos - Chamou a tendência "regressão à média"
- Usaremos esses dados clássicos

Método de Mínimos Quadrados

- Solucionamos com o método Mínimos Quadrados
 - Inventado por Carl Friedrich Gauss
 - Método minimiza as divergências entre os valores lineares previstos e os valores dos dados
 - Consegue o melhor relação entre a variável de resultado e as variáveis prognosticas
- Por enquanto, vamos restringir o modelo para forma linear
 - Outras formas existem

Proposito

Prever um resulatdo numa variável dependente baseado em uma ou mais variáveis independentes

- Uma regressão linear *simples*
- Mais regressão linear múltipla

Visualização de Regressão

Linha Reta

$$y = \beta_1 x + \beta_0$$

- β_1 = inclinação da linha (slope)
- β_0 = intercepto (onde cruza o eixo y)
- Os dois parâmetros da regressão
- Com estes parâmetros, Mínimos Quadrados acha a reta que melhor prevê o valor da variável dependente dado o valor de independente

"Melhor" Quer Dizer "Bom"?

- Apesar de ser a melhor maneira de prever y, possível que não descreve bem y
- Bom depende dos dados
- Melhor depende do método

Equação de Regressão

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

- Y_i = valor de variável dependente
- β_0 = intercepto
- β_1 = inclinação da reta de regressão
- X_i = valor da variável independente
- ϵ_i = termo de erro de cada caso

Equação de Regressão - Estimação

$$\hat{Y}_i = b_0 + b_1 X_i + e_i$$

- \hat{Y}_i = valor de variável dependente
- b_0 = intercepto
- $b_1 = \text{inclinação da reta de regressão}$
- X_i = valor da variável independente
- \bullet $e_i = \text{termo de erro de cada caso}$

Termo de Erro (ϵ)

- Também chamado resíduo
- ullet Responsável pela variabilidade em y que a reta não consegue explicar

Mínimos Quadrados

- Faz o cálculo que minimiza o quadrado da soma dos erros
- Erros = resíduos = diferenças entre o valor observado e o valor esperado

$$min \sum (y_i - \hat{y}_i)^2$$

- y_i = valor observado da variável dependente
- ullet $\hat{y}_i = \text{valor estimado da variável dependente}$

Basta de Teoria – Exemplo

- A base de dados de Galton sobre altura nas famílias
- Pergunta é se filhos/as são mais altos ou mais baixos de que os pais
- Mediu 898 filhos/as em 197 famílias
- Base de dados originais (em papel) fica na University College, London (UCL)

Variáveis

• height, father, mother todos medem altura em polegadas

Foco em Pais e Filhos

```
boys <- Galton %>% filter(sex == "M") %>% select(-family, -mother, -sex, -nkids) glimpse(boys)
```

```
## Observations: 465
## Variables: 2
## $ father <dbl> 78.5, 75.5, 75.5, 75.0, 75.0, 75.0, 75.0, 75.0, 75.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0, 76.0,
```

- father é a variável independente
- height é a variável dependente
- Queremos ver se a altura do pai prevê a altura do filho

Pai/Filho - Gráfico de Dispersão

```
grpf <- ggplot(data = boys, aes(x = father, y = height)) + geom_point(shape = 20) +
grpf <- grpf + labs(x = "Altura do Pai", y = "Altura do Filho", title = "Alturas em
grpf</pre>
```

Alturas em Polegadas

O Que Podemos Dizer Agora?

- Parece que mais altos os pais, mais altos os filhos
- Vamos olhar nas estatísticas descritivas das 2 variáveis
 - mais correlação

```
## vars n mean sd median trimmed mad min max range skew
## father 1 465 69.17 2.30 69.0 69.16 1.93 62 78.5 16.5 0.11
## height 2 465 69.23 2.63 69.2 69.25 2.67 60 79.0 19.0 -0.03
## kurtosis se
## father 0.55 0.11
## height 0.29 0.12
```

[1] "Coeficiente de Correlação: 0.391"

O Que É a "Correlação"?

- Coeficiente de Correlação mede o grau da associação linear entre 2 variáveis
- Sempre cai entre -1 e +1
 - -1 significa uma relação perfeitamente inversa (quando x sobe, y desce pela mesma proporcão)
 - ▶ 0 significa que não existe uma relação linear entre as 2 variáveis
 - ► +1 significa uma relação perfeitamente positiva (quando x sobe, y sobe pela mesma proporção)
- V.S.S: quando tem correlação positiva, tem inclinação da linha de tendência positiva, e vice versa

Para Calcular a Linha de Regressão – O Que Queremos?

- Uma linha que minimiza a diferença entre y_i e \hat{y}
- Precisamos trabalhar com o quadrado da diferença
 - ▶ para não ter uma soma de 0

SSE – Um Componente do Soma de Quadrados (SST)

- SST = SSE + SSR
- SST Total
- SSE Relacionados aos Erros/Resíduos
- SSR Relacionados/Explicados pela regressão

SST – O Que Representa?

• A variância total é a diferença entre o valor do modelo para cada valor de X e a média dos valores da variável dependente (\hat{y})

Soma dos Quadrados

- Referimos a esse soma dos quadrados que queremos minimizar como SSE
 - Error sum of squares
- SSE como componente da soma dos quadrados total
 - ► SSE soma dos quadrados relacionados ao resíduo
 - SSR soma dos quadrados relacionados a regressão
- Expressão de SSE

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y})^2$$

$$SSE = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Para Determinar a Formula para β_0 e β_1

- Para minimizar a SSE (determinar a linha mais eficiente), precisamos usar cálculo
- Fazer a derivativo parcial com respeito a β_0 e β_1

$$\frac{\partial}{\partial \beta_0} SSE = \frac{\partial}{\partial \beta_1} SSE = 0$$

- Chamadas as equações normais
- Confiamos nos softwares para calcular os parâmetros da equação

Função em R

- Função 1m ("linear model")
- lm(formula, data, subset, weights, na.action, method =
 "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,
 singular.ok = TRUE, contrasts = NULL, offset, ...)
- Os importantes são formula, data, subset, weights, na.action
- formula: onde mostra quais variáveis você está modelando
 - Variável dependente vem primeiro
 - ▶ Separada da independente(s) por " ~ "
 - ▶ Para os boys: height ~ father
 - data: data frame ou tibble que contem as variáveis
 - subset, weights: parâmetros que permitem que você customizar tratamento das variáveis
 - na.action: como vai tratar os dados missing na base de dados

Função Aplicada aos Pais e Filhos

Função 1m produz uma lista de 12 itens em um formato especial

```
fit1 <- lm(height ~ father, data = boys)
summary(fit1)</pre>
```

```
##
## Call:
## lm(formula = height ~ father, data = boys)
##
## Residuals:
##
      Min 1Q Median 3Q
                                    Max
## -9.3774 -1.4968 0.0181 1.6375 9.3987
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 38.25891 3.38663 11.30 <2e-16 ***
## father 0.44775 0.04894 9.15 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.424 on 463 degrees of freedom
## Multiple R-squared: 0.1531, Adjusted R-squared: 0.1513
## F-statistic: 83.72 on 1 and 463 DF, p-value: < 2.2e-16
```

O Que Diz o Modelo

$$\hat{y} = 38.259 + 0.448x$$

- Se o pai tivesse 0 altura, o filho teria 38.259 polegadas de altura
 - Não faz sentido prático, mas estabelece a base para calculo de altura
 - Para cada polegada incremental da altura do pai, o filho seria 0.448 polegadas mais alto

Extrair os Valores dos Coeficientes

Usar broom::tidy

broom::tidy(fit1) %>% kable()

term	estimate	std.error	statistic	p.value
(Intercept)	38.2589122	3.3866340	11.297032	0
father	0.4477479	0.0489353	9.149788	0

Usar coef

```
coef(fit1)
```

```
## (Intercept) father
## 38.2589122 0.4477479
```

Previsões de Novos Valores

- Pode usar o modelo para prever novos valores da altura dos filhos
- Usar broom::augment

```
fit1 %>% broom::augment(newdata = data_frame(father = 72))
```

```
## father .fitted .se.fit
## 1 72 70.49676 0.1784466
```


Existe Relação Entre Variáveis Independente e Dependentes?

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

• Se β_1 (inclinação da linha) for 0, o que seria a equação?

$$Y_i = \beta_0 + \epsilon_i$$

- X desaparece
- Relação entre Y e X não existe
 - Só tem intercepto e erro
- Faz possível teste eficiente de existência ou não de uma relação entre X e Y
- Cria uma hipótese nula de H_0 : $\beta_1 = 0$

Teste de Hipótese Nula

- Vamos fazer uma simulação de hipótese nula
- Se a nula é correta, qualquer altura do filho podia ter ocorrido com qualquer altura do pai.
- Podemos calcular o modelo de regressão 5.000 vezes com valores de todo a base de alturas dos filhos
- Como resultado, vamos focar nos valores da inclinação, β_1
- Depois, nós vamos comparar nosso valor de β_1 observado e ver onde cai na distribuição dos valores simulados

Histograma dos Modelos

Histograma com Valores Abaixo/Acima do Valor da Amostra

[1] "Número de simulações com beta1 >= obs: 0"

pai >= obs **FALSE**

O Valor-p da Inclinação (β_1)

- Porque nenhuma das simulações produziu um valor superior ao observado (0.448)
 - ▶ Pode concluir que o valor-p deste teste é 0.
 - ▶ Não parece existir nenhuma chance que a inclinação = 0
- Assim, rejeitamos a hipótese nula e concluir que uma relação linear entre as alturas dos pais e filhos realmente existe.

Premissas de Regressão Linear

- 1 Todas as variáveis devem ter a mesma variância
 - ► Gráfico de resíduo deve evitar padrões indo de esquerda até direta
- 2 Todas as observações, resíduos e variáveis independentes: todos devem ser independentes
 - Gráfico de resíduo não deve mostrar um padrão sinuoso
- Resíduos têm uma distribuição perto a normal
 - Gráfico "qq" dos resíduos padronizados

Gráfico de Resíduos

- Gráfico que mostra o valor previsto pelo modelo ("fitted value") vs. o resíduo
- Uso da função broom::augment()
 - ▶ Eficiente para extrair os valores utilizados nos testes dos modelos

Importância dos Resíduos

- Pode usar os erros/resíduos para verificar se as premissas da regressão foram respeitadas
- Não devem mostrar um padrão linear

Gráfico Q-Q

- Verifica a normalidade dos resíduos
 - Mais perto a uma linha reta, melhor o "fit" com uma distribuição normal

Gráficos Q-Q Também Disponível Diretamente em Base R

```
qqnorm(boys$height)
qqline(boys$height, col = 2, lwd = 2)
grid()
```

Normal Q-Q Plot

Theoretical Quantiles

Teste-F das Variâncias do Modelo

- Teste-F é um teste que verifica que as variâncias das variáveis são perto de iguais
- Utiliza a Distribuição F
 - ► Tem 2 graus de libera de como parâmetros
- Serve como um teste de significância total de um modelo
- Produzido pelo função Summary da função 1m

Teste-F do Modelo das Alturas Pai-Filho

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 38.25891 3.38663 11.30 <2e-16 ***

father 0.44775 0.04894 9.15 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.424 on 463 degrees of freedom

Multiple R-squared: 0.1531, Adjusted R-squared: 0.1513

F-statistic: 83.72 on 1 and 463 DF, p-value: < 2.2e-16
```

Resumo de Soma dos Quadrados

Soma Total de Quadrados

$$SST = \sum (y_i - \bar{y})^2$$

Soma dos Quadrados dos Erros

$$SSE = \sum (y_i - \hat{y})^2$$

Soma dos Quadrados de Regressão

$$SSR = \sum (\hat{y}_i - \bar{y})^2 = SST - SSE$$

R^2 – Coeficiente de Determinação

- Medida de quanto a linha de regressão explica a variância em Y
- Relação entre a SSR e a SST

$$R^2 = \frac{SSR}{SST}$$

- Calculado pelo 1m
 - visível em Summary
- Varia entre 0 e 1
- $\sqrt{R^2} = r$ (coeficiente de correlação)

Significância de R^2

- Se 100% da variância ser explicado pela regressão
- SSR = SST
- $\therefore R^2 = SST/SST = 1$
- Variância completamente explicado pela regressão
- Em geral, o grau em que a regressão explica a variância no modelo

Dois Gráficos Mais Avançados

Função plot para Objetos 1m

Função qqPlot() do Pacote car

Próxima Aula

- Análise mais profundas de nossos modelos de regressão
- Regressão com múltiplas variáveis independentes
- Regressão como modelo de machine learning