Estimation Procedures

Daniel A. Menascé. Ph.D. Dept. of Computer Science George Mason University

© 2002 D. A. Menascé. All Rights Reserved.

Statistical Inference population statistics inference parameters 2 © 2002 D. A. Menascé. All Rights Reserved.

The interval estimate of the population parameter will have a specified confidence or probability of correctly estimating the population parameter.

3

© 2002 D. A. Menascé. All Rights Reserved.

Properties of Point Estimators

- Example of point estimator: sample mean.
- Properties:
 - Unbiasedness: the expected value of all possible sample statistics (of given size n) is equal to the population parameter.

 $E[\overline{X}] = \mu$

$$E[s^2] = \sigma^2$$

- Efficiency: precision as estimator of the population parameter.
- Consistency: as the sample size increases the sample statistic becomes a better estimator of the population parameter.

Unbiasedness of the Mean

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

$$E[\overline{X}] = \frac{E\left[\sum_{i=1}^{n} X_i\right]}{n} = \frac{\sum_{i=1}^{n} E[X_i]}{n} = \frac{\sum_{i=1}^{n} \mu}{n} = \frac{n\mu}{n} = \mu$$

© 2002 D. A. Menascé. All Rights Reserved.

	Sample siz	e=	15		1.7%	of population	า
	Sample 1	Sample 2	Sample 3				
	0.0739	0.0202	0.2918				
	0.1407	0.1089	0.4696				
	0.1257						
	0.0432						
	0.1784		0.4242				
	0.4106						
	0.1514						
	0.4542						
	0.0485						
	0.1705		0.7820				
	0.3335						
	0.1772						
	0.0242						
	0.2183		0.1892			_	
0	0.0274	0.4079	0.1142	<u> </u>	Population	Error	
Sample Average	0.1718	0.2467	0.3744	0.2643	0.2083	26.9%	
Sample Variance	0.0180	0.0534	0.1204	0.0639	0.0440	45.3%	
Efficiency (average)	18%		80%				
Efficiency (variance)	59%						
© 2002 D. A. M	•			1			6

	Sample size =		87				ulatio	า
	Sample 1	Sample 2	Sample 3					
	0.5725	0.3864	0.4627					
	0.0701	0.0488	0.2317					
	0.2165	0.0611	0.1138					
	0.6581	0.0881	0.0047					
	0.0440	0.5866	0.2438					
	0.1777	0.3419	0.0819					
	0.2380	0.1923	0.6581					
	0.0102			,	Declarie	10/ Dat 1		
Name la	0.0102 0.4325				Population	% Rel. I	Error	
Average		0.0445	0.2959	0.2206	•		Error 5.9%	
Average Sample	0.4325 0.2239	0.0445	0.2959 0.2178		0.2083			
Sample Average Sample Variance Efficiency (average)	0.4325 0.2239	0.0445 0.2203 0.0484057	0.2959 0.2178 0.0440444	0.2206	0.2083		5.9%	

Confidence Interval Estimation of the Mean

- Known population standard deviation.
- Unknown population standard deviation:
 - Large samples: sample standard deviation is a good estimate for population standard deviation. OK to use normal distribution.
 - Small samples and original variable is normally distributed: use *t* distribution with *n-1* degrees of freedom.

8

Confidence Interval Estimation of the Mean

$$\Pr[c_1 \le \mu \le c_2] = 1 - \alpha$$

 (c_1,c_2) : confidence interval

α: significance level (e.g., 0.05)

1-α: confidence coefficient (e.g., 0.95)

 $100(1-\alpha)$: confidence level (e.g., 95%)

9

© 2002 D. A. Menascé. All Rights Reserved.

 $100 (1 - \alpha)$ of the 100 samples include the population mean μ .

10

Central Limit Theorem

• If the observations in a sample are independent and come from the same population that has mean μ and standard deviation σ then the sample mean for **large** samples has a normal distribution with mean μ and standard deviation σ/\sqrt{n} .

$$\overline{x} \sim N(\mu, \sigma / \sqrt{n})$$

• The standard deviation of the sample mean is called the *standard error*.

11

Confidence Interval (large (n>30) samples)

• 100 $(1-\alpha)\%$ confidence interval for the population mean:

$$(\overline{x} - z_{1-\alpha/2} \frac{S}{\sqrt{n}}, \overline{x} + z_{1-\alpha/2} \frac{S}{\sqrt{n}})$$

 \overline{x} : sample mean

s: sample standard deviation

n: sample size

 $z_{1-\alpha/2}$: (1- $\alpha/2$)-quantile of a unit normal variate (N(0,1)).

13

© 2002 D. A. Menascé. All Rights Reserved.

Confidence Interval (small samples, normally distributed population)

• $100 (1-\alpha)\%$ confidence interval for the population mean:

$$(\overline{x} - t_{[1-\alpha/2;n-1]} \frac{s}{\sqrt{n}}, \overline{x} + t_{[1-\alpha/2;n-1]} \frac{s}{\sqrt{n}})$$

 \overline{x} : sample mean

s: sample standard deviation

n: sample size

 $t_{[1-\alpha/2;n-1]}$: critical value of the t distribution with n-1 degrees of freedom for an area of $\alpha/2$ for the upper tail.

15

© 2002 D. A. Menascé. All Rights Reserved

Student's t distribution

$$t(v) \sim \frac{N(0,1)}{\sqrt{\chi^2(v)/v}}$$

v: number of degree of freedom.

 $t(v) \sim \frac{N(0,1)}{\sqrt{\chi^2(v)/v}}$ $\chi^2(v)$: chi-square distribution with v degrees of freedom. Equal to the sum of squares of v unit normal variates.

- the pdf of a t-variate is similar to that of a N(0,1).
- for v > 30 a t distribution can be approximated by N(0,1).

16

Confidence Interval for the Variance

- If the original variable is normally distributed then the chi-square distribution can be used to develop a confidence interval estimate of the population variance.
- The $(1-\alpha)\%$ confidence interval for σ^2 is

$$\frac{(n-1)s^2}{\chi_U^2} \le \sigma^2 \le \frac{(n-1)s^2}{\chi_L^2}$$

 χ_L^2 : lower critical value of χ^2

 χ_U^2 : upper critical value of χ^2

© 2002 D. A. Menascé. All Rights Reserved.

© 2002 D. A. Menascé. All Rights Reserved.

95% confidence interval for the population variance for a sample of size 100 for a N(3,2) population.

The population variance (4 in this case) is in the interval (3.6343, 6.362) with 95% confidence.

© 2002 D. A. Menascé. All Rights Reserved.

20

Confidence Interval for the Variance

If the population is not normally distributed, the confidence interval, especially for small samples, is not very accurate.

2

© 2002 D. A. Menascé. All Rights Reserved.

Prediction Interval for a Future Value

• Interval in which a future value will lie with a degree of confidence.

$$\overline{X} - t_{[1-\alpha/2;n-1]} s \sqrt{1+1/n} \leq X_f \leq \overline{X} + t_{[1-\alpha/2;n-1]} s \sqrt{1+1/n}$$
 (1-\alpha/2)-quantile of t-variate with n-1 degrees of freedom.

	average std deviation	1 E 1 TDN/ 24)
t [1-0.05/2;24]		In Excel: TINV(α ,24)
Lower bound	-1.5197	
Upper bound	7.5254	

A future value will lie in the interval (-1.519,7.525) with 95% confidence.

© 2002 D. A. Menascé. All Rights Reserved.

Confidence Interval for Proportions

- For categorical data:
 - E.g. file types {html, html, gif, jpg, html, pdf, ps, html, pdf ...}
 - If n_1 of n observations are of type html, then the sample proportion of html files is $p = n_1/n$.
- The population proportion is π .
- Goal: provide confidence interval for the population proportion π .

23

© 2002 D. A. Menascé. All Rights Reserved

Confidence Interval for Proportions

- The sampling distribution of the proportion formed by computing p from all possible samples of size n from a population of size N with replacement tends to a normal with mean π and standard error $\sigma_p = \sqrt{\frac{\pi(1-\pi)}{n}}$.
- The normal distribution is being used to approximate the binomial. So, $n\pi \ge 10$.

24

Confidence Interval for Proportions

• The $(1-\alpha)\%$ confidence interval for π is

$$(p-z_{1-\alpha/2}\sqrt{\frac{p(1-p)}{n}}, p+z_{1-\alpha/2}\sqrt{\frac{p(1-p)}{n}})$$

p: sample proportion.

n: sample size

 $z_{1-\alpha/2}$: (1- $\alpha/2$)-quantile of a unit normal variate (N(0,1)).

25

© 2002 D. A. Menascé. All Rights Reserved

Confidence Interval for Proportions

• One thousand entries are selected from a Web log. Six hundred and fifty correspond to gif files. Find 90% and 95% confidence intervals for the proportion of files that are gif files.

Comparing Alternatives

- Suppose you want to compare two cache replacement policies under similar workloads.
- Metric of interest: cache hit ratio.
- Types of comparisons:
 - Paired observations
 - Unpaired observations.

2

Example of Paired Observations

• Six similar workloads were used to compare the cache hit ratio obtained under object replacement policies A and B on a Web server. Is A better than B?

Workload	Cache F		
	Policy A	A-B	
1	0.35	0.28	0.07
2	0.46	0.37	0.09
3	0.29	0.34	-0.05
4	0.54	0.60	-0.06
5	0.32	0.22	0.10
6	0.15	-0.03	
-	0.02000		
	Sample varia	0.00552	
	Sample stand	0.07430	

29

Unpaired Observations (t-test)

- 1. Size of samples for A and B: n_A and n_B
- 2. Compute sample means:

$$\overline{x}_A = \frac{1}{n_A} \sum_{i=1}^{n_A} x_{iA}$$

$$\overline{x}_B = \frac{1}{n_B} \sum_{i=1}^{n_B} x_{iB}$$

33

© 2002 D. A. Menascé. All Rights Reserved.

Unpaired Observations (t-test)

3. Compute the sample standard deviations:

$$S_A = \sqrt{\frac{\left(\sum_{i=1}^{n_A} x_{iA}^2\right) - n_A \left(\overline{x}_A\right)^2}{n_A - 1}}$$

$$S_B = \sqrt{\frac{\left(\sum_{i=1}^{n_B} x_{iB}^2\right) - n_B \left(\overline{x}_B\right)^2}{n_B - 1}}$$

34

Unpaired Observations (t-test)

- 4. Compute the mean difference: $\overline{x}_a \overline{x}_b$
- 5. Compute the standard deviation of the mean difference: $s = \sqrt{\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}}$
- 6. Compute the effective number of degrees of freedom.

$$v = \frac{\left(s_a^2/n_a + s_b^2/n_b\right)^2}{\frac{1}{n_a - 1} \left(\frac{s_a^2}{n_a}\right)^2 + \frac{1}{n_b - 1} \left(\frac{s_b^2}{n_b}\right)^2} - 2$$

35

© 2002 D. A. Menascé. All Rights Reserved.

Unpaired Observations (t-test)

7. Compute the confidence interval for the mean difference:

$$(\overline{x}_a - \overline{x}_b) \pm t_{[1-\alpha/2;v]} \times s$$

8. If the confidence interval includes zero, the difference is not significant at $100(1-\alpha)\%$ confidence level.

Example of Unpaired Observations

• Two cache replacement policies A and B are compared under similar workloads. Is A better than B?

Workload	Cache Hit Ratio			
	Policy A	Policy B		
1	0.35	0.49		
2	0.23	0.33		
3	0.29	0.33		
4	0.21	0.55		
5	0.21	0.65		
6	0.15	0.18		
7	0.42	0.29		
8		0.35		
9		0.44		
Mean	0.2657	0.4011		
St. Dev	0.0934	0.1447		

37

© 2002 D. A. Menascé. All Rights Reserved.

Example of Unpaired Observations

na	7	
nb	9	
mean diff	-0.135	
st. dev. Diff	0.059776	
Eff. Degr. Freedom	12	
alpha	0.1	
1-alpha/2	0.95	
t[1-alpha/2,v]	1.796	In Excel: TINV(1-0.9,12)
90% confidence int	erval	, , ,
lower bound	-0.243	
upper bound	-0.028	

At a 90% confidence level the two policies are not identical since zero is not in the interval. With 90% confidence, the cache hit ratio for policy A is smaller than that for policy B. So, policy B is better at that confidence level.

38

Approximate Visual Test

CIs do not overlap: A is higher than B CIs overlap and mean of A is in B's CI:
A and B are similar

CIs overlap and mean of A is not in B's CI: need to do t-test

39

© 2002 D. A. Menascé. All Rights Reserved.

Example of Visual Test

Workload	Cache Hit Ratio		
	Policy A	Policy B	
1	0.35	0.49	
2	0.23	0.33	
3	0.29	0.33	
4	0.21	0.55	
5	0.21	0.65	
6	0.15	0.18	
7	0.42	0.29	
8		0.35	
9		0.44	
Mean	0.2657	0.4011	
St. Dev	0.0934	0.1447	

nb alpha 0.1 for 1-alpha/2 0.95 Policy B t[1-alpha/2,v] 1.8595 1.9432 90% Confidence Interval lower bound 0.197 0.311 upper bound 0.334 0.491

90% confidence interval

CIs overlap but mean of A is not in CI of B and vice-versa. Need to do a t-test.

One-sided Confidence Intervals

• Useful to test the hypothesis that the mean is greater (or smaller) than a certain value.

$$\Pr[\mu \ge c_1] = 1 - \alpha$$

$$\Pr[\mu \leq c_2] = 1 - \alpha$$

41

One-sided Confidence Intervals

$$(-\infty, \overline{x} + t_{[1-\alpha;n-1]} S / \sqrt{n})$$

$$(\overline{x} - t_{[1-\alpha;n-1]} S / \sqrt{n}, \infty)$$

43

© 2002 D. A. Menascé. All Rights Reserved.

Determining Sample Size

- Large samples imply high confidence.
- Large samples require more data collection effort.
- How to determine the sample size n to estimate the population parameter with accuracy r% and confidence level of 100 (1- α)%?

44

Determining the Sample Size for the Mean

- Perform a set of measurements to estimate the sample mean and the sample variance.
- Determine the sample size to obtain proper accuracy as follows:

$$\overline{x} \pm z \frac{s}{\sqrt{n}} = \overline{x} \pm \frac{\overline{x}r}{100}$$

$$\Rightarrow n = \left(\frac{100zs}{r\overline{x}}\right)^2$$

© 2002 D. A. Menascé. All Rights Reserved.

45

Determining the Sample Size for the Mean

• A preliminary test shows that the sample mean of the response time is 5 sec and the sample standard deviation is 1.5. How many repetitions are needed to get the response time within 2% accuracy at 95% confidence level?

$$r = 2$$
 $\overline{x} = 5$ $s = 1.5$
 $z = 1.96$
 $n = \left(\frac{100 \times 1.96 \times 1.5}{2 \times 5}\right)^2 = 864.36$

865 repetitions would be Needed!

46

Determining the Sample Size for the Mean

Accuracy (r)	Confidence Level (1- alpha)	x	Ø	Sample size
1	0.95	5	0.8	984
2	0.95	5	0.8	246
5	0.95	5	0.8	40
1	0.9	5	0.8	693
2	0.9	5	0.8	174
5	0.9	5	0.8	28

© 2002 D. A. Menascé. All Rights Reserved.

Computing Important Quantiles in Excel

$$\begin{split} z_{1-\alpha/2} &= (1-\alpha/2)\text{-quantile of a unit normal variate (N(0,1)):} \\ &= \text{NORMINV } (1-\alpha/2,0,1) = \text{NORMSINV} (1-\alpha/2) \\ &\text{Half-interval} = \text{CONFIDENCE } (\alpha,\sigma,\textbf{n}) \end{split}$$

 $t_{[1-\alpha/2;n-1]} = (1-\alpha/2)$ -quantile of *t*-variate with *n-1* degrees of freedom = TINV(α ,n-1)

 χ_L^2 : lower critical value of χ^2 = CHIINV (1- α /2,n-1)

 χ_U^2 : upper critical value of χ^2 = CHIINV ($\alpha/2$, n-1)

48