MA2202

Misc

- To prove uniqueness, suppose not unique and try to show equality.
- To prove equality of two sets, show that each is a subset of the other.
- To show multiple, use Euclidean algorithm, then show r = 0.

Basic Set Theory

A set is a collection of objects called elements.

Examples of sets

- N is the set of positive integers.
- Z[×] is the set of integers excluding 0.
- \mathbb{Q}^{\times} is the set of rational numbers excluding 0.

Set operations

Let A, B be sets.

- 1. If B is a subset of A, write $B \subseteq A$.
- 2. $A \cup B = \{x : x \in A \text{ or } x \in B\}.$
- 3. $A \cap B = \{x : x \in A \text{ and } x \in B\}.$
- 4. $A \setminus B = \{x : x \in A \text{ and } x \notin B\}.$
- 5. $A \times B = \{(a, b) : a \in A \text{ and } b \in B\}.$

Functions

Let A, B be sets, and let $f: A \to B$ be a function.

- For $a \in A$, denote $f(a) = b \in B$.
- The set A is called the domain, and the set B is called the co-domain.
- The range/image of f is

$$\{b \in B : b = f(a) \text{ for some } a \in A\}$$

• Let $B' \subseteq B$. Define

$$f^{-1}(B') = \{ a \in A : f(a) \in B' \}$$

- If $g:C\to D$ is another function, then we say $f=g\iff A=C, B=D$ and $f(a)=g(a)\ \forall a\in A$
- If S ⊆ A, then f|S denotes the same function except that the domain A is replaced by S. This function f|S is called the restriction of f to S.
- If $h: B \to C$, then the composite of h and f is a function $h \circ f: A \to C$ given by

$$(h \circ f)(a) = h(f(a)) \quad \forall a \in A$$

Notable examples

• The identity function on A is $f: A \to A$ defined by

$$f(x) = x \quad \forall x \in A$$

We also denote the identity function on A by id_A .

The inclusion function on Y for some Y ⊂ X is the function h : Y → X defined by h(y) = y ∀y ∈ Y.

Injection/Surjection/Bijection Let $f: A \to B$ be a function.

- 1. f is an injection if $f(a) = f(a') \implies a = a'$.
- 2. f is a surjection if $\forall b \in B, \exists a \in A \text{ such that } f(a) = b$.
- 3. f is a bijection if it is both an injection and a surjection.
- 4. If f is a bijection, we can define the inverse function $f^{-1}: B \to A$ in the following way:

For every $b \in B$, we have a unique $a \in A$ such that f(a) = b. Then $f^{-1}(b) = a$.

5. A function is a bijection \iff its inverse function exists.

Integers

Divisbility

Given $a, b \in \mathbb{Z}$ where $a \neq 0$.

- We say a divides b if b=ma for some $m\in\mathbb{Z}$. The integer b is called a multiple of a, and we write a|b.
- An integer n is called a unit if it divides 1. Hence n = 1 or -1.
- Transitivity holds, i.e. a|b and $b|c \implies a|c$

Prime

A nonzero $p \in \mathbb{Z}$ is called a prime integer if:

- 1. p is not a unit (i.e $p \neq \pm 1$), and
- 2. if p divides ab for some $a, b \in \mathbb{Z}$, then p|a or p|b.

A positive prime integer is called a prime number.

Irreducible

A nonzero $p \in \mathbb{Z}$ is called a irreducible integer if:

- 1. p is not a unit (i.e $p \neq \pm 1$), and
- 2. if p divides xy for some $x,y\in\mathbb{Z},$ then either x or y is a unit, i.e. x or y is $\pm 1.$

Prime vs irreducible

Let p be an integer. It is an irreducible integer \iff it is a prime integer.

The Euclidean algorithm

Let $x,y\in\mathbb{Z}$ with $y\neq 0$. Then there exist unique integers q and r such that

x = qy + r and $0 \le r < |y|$

This is also known as the division algorithm.

Common divisor

Given two integers x and y where $y \neq 0$.

- A nonzero integer m is called a common divisor if m|x and m|y.
- 1 is always a common divisor.
- If m is a common divisor, -m is also a common divisor.
- Every common divisor lies bewtween -|y| and |y|.
- There are only finitely many common divisors.

Greatest common divisor

There is a largest number d among the common divisors of x and y, which we call the GCD of x and y. Denote it by $d = \gcd(x, y)$.

- Since 1 is always a common factor, $d \ge 1$
- gcd(0, y) = |y|
- gcd(x, y) = gcd(y, x) = gcd(x, |y|) = gcd(|x|, y) = gcd(|x|, |y|)
- gcd(cx, cy) = |c| gcd(x, y)
- gcd(x, y) = gcd(x + y, y) = gcd(x y, y)

Connection with Euclidean algorithm Let x,y be integers where $y \neq 0$. Let x = qy + r where $0 \leq r < |y|$. Then

$$gcd(x, y) = gcd(y, r)$$

Computing GCD

Given $x_1, x_2 \in \mathbb{Z}$.

- If $x_2 = 0$, then $gcd(x_1, x_2) = |x_1|$.
- Else, $x_2 \neq 0$.

Assume $x_2 \neq 0$. Since $\gcd(x_1,x_2) = \gcd(x_1,|x_2|)$, suppose $x_2 > 0$. By the division algorithm,

$$x_1 = qx_2 + x_3$$
 for some $0 \le x_3 < x_2$

By the lemma above,

$$\gcd(x_1, x_2) = \gcd(x_2, x_3)$$

Doing this repeatedly, we get

$$\gcd(x_1, x_2) = \gcd(x_2, x_3) = \dots = \gcd(x_m, 0) = x_m$$

where $|x_2| > x_3 > x_4 > \cdots \geq 0$.

Example gcd(6804, -930) = gcd(6804, 930).

$$6804 = 7(930) + 294$$
$$930 = 3(294) + 48$$
$$294 = 6(48) + 6$$

$$48 = 8(6) + 0$$

Hence,

$$gcd(6804, -930) = gcd(6804, 930) = gcd(930, 294)$$

= $gcd(294, 48) = gcd(48, 6) = gcd(6, 0) = 6$

Then, by reverse engineering,

genering,

$$6 = 294 - 6(48)$$

$$= 294 - 6(930 - 3(294))$$

$$= -6(930) + (19)(294)$$

$$= -6(930) + (19)(6804 - 7(930))$$

$$= 19(6804) - 139(930)$$

$$= (19)(6804) + 139(-930)$$

Hence, 6 = a(6804) + b(-930) for some $a, b \in \mathbb{Z}$.

Proposition Let $d = \gcd(x, y)$ where $y \neq 0$. Then

- 1. We have d = ax + by for some $a, b \in \mathbb{Z}$
- 2. Let $I=\{mx+ny\in\mathbb{Z}:m,b\in\mathbb{Z}\}.$ Then $I=d\mathbb{Z}$ is the set of all the multiples of d.
- 3. If an integer c divides both x and y, then c divides d.

GCD of 3 or more integers

Let $x,y,z\in\mathbb{Z}$, and not all are 0. We say c is a common divisor of x,y,z if c divides x,y,z. The GCD of x,y,z is denoted by $d=\gcd(x,y,z)$.

- 1. If c divides x, y, z then c divides gcd(x, y) and z.
- 2. gcd(x, y, z) = gcd(gcd(x, y), z)
- 3. d = mx + ny + pz for some $m, n, p \in \mathbb{Z}$
- 4. $I = \{mx + ny + pz : m, n, p \in \mathbb{Z}\} = d\mathbb{Z}$

Tut 1 Q2 (GCD given prime factorization)

Suppose

$$x = p_1^{e_1} p_2^{e_2} \cdots p_s^{e_s}, y = p_1^{f_1} p_2^{f_2} \cdots p_s^{f_s}, d = p_1^{g_1} p_2^{g_2} \cdots p_s^{g_s}$$

are prime factorizations of x and y, with p_i being distinct positive prime integers, and $e_i, f_i \geq 0$. Then

- The integer d divides $x \iff g_i \leq e_i$ for all i.
- If d|x and d|y, then $g_i \leq \min\{e_i, f_i\}$ for all i.
- GCD is

$$gcd(x,y) = p_1^{\min\{e_1,f_1\}} p_2^{\min\{e_2,f_2\}} \cdots p_s^{\min\{e_s,f_s\}}$$

• If d|x and d|y, then $d|\gcd(x,y)$

The fundamental theorem of arithmetic

Let n > 1 be a positive integer. Then there exists a factorization

$$n = p_1 p_2 \cdots p_s$$

where p_i is a (positive) prime number for all i, and $p_1 \leq p_2 \leq \cdots \leq p_s$. This factorization is unique.

Mathematical induction

Mathematical induction

Let P(1) be a property that depends on $n \in \mathbb{N}$. If

- 1. P(1) holds and
- 2. if P(k) holds, then P(k+1) holds

then P(n) holds $\forall n \in \mathbb{N}$.

Strong MI

Let P(1) be a property that depends on $n \in \mathbb{N}$. If

- 1. P(1) holds and
- 2. if P(i) holds for $1 \le i \le k$, then P(k+1) holds

then P(n) holds $\forall n \in \mathbb{N}$.

Binomial theorem

$$(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^{n-i} b^i \quad \forall n \in \mathbb{N}$$

Fermat's little theorem

Let p be a prime number. Then

$$p|(n^p - n) \quad \forall n \in \mathbb{Z}$$

i.e.

$$n^p \equiv n \pmod p$$

Equivalence relations

Relation

Let A be a set. A subset R of $A \times A$ is a relation on A. For $a, b \in A$, $a \sim b \iff (a, b) \in R$. We may write it as $a \sim_R b$.

Equivalence relation

Let A be a set. A relation R on A (i.e. $R\subseteq A\times A$) is an equivalence relation on A if for all a,b,c,

- (E1) $a \sim a$ (reflexive)
- (E2) $a \sim b \implies b \sim a$ (symmetric)
- (E3) $a \sim b \wedge b \sim c \implies a \sim c$ (transitive)

Equivalence class

Let R be an equivalence relation on a set A. Let $a \in A$. The equivalence class of $a \in A$ is the subset

$$\{x \in A : a \sim x\}$$

and we denote it by Cl(a).

Partition

Let A be a set and let $\{A_i:i\in I,A_i\subseteq A\}$ be a collection of subsets of A. We say that the collection $\{A_i:i\in I\}$ forms a partition of A if

- (P1) $A = \bigcup_{i \in I} A_i$, and
- (P2) $A_i \cap A_j = \emptyset$ for all $i, j \in I$ and $i \neq j$

Alternatively, P2 can be stated as: If $A_i \cap A_j$ is a nonempty subset, then $A_i = A_j$.

Collection of all equivalence classes

Let R be an equivalence relation on a set A. The set of equivalence classes $\{Cl(a): a \in A\}$ is denoted by A/R, $A/_{\sim R}$, or simply A/\sim .

- \bullet The collection of all equivalence classes forms a partition of A.
- The map $p: A \to A/R$ given by p(a) = Cl(a) is called the quotient map.

Linear Congruences

Congruent modulo m

Let m be a positive integer. Let $a, b \in \mathbb{Z}$. Then $a \equiv b \pmod{m}$ if $m \mid (a - b)$.

Simultaneous congruence equations

Solution to congruence equation

Suppose gcd(a, m) = 1. For $b \in \mathbb{Z}$, the congruence equation

$$ax \equiv b \pmod{m}$$

has a solution $x \in \mathbb{Z}$, that is unique modulo m, i.e. $x' \in \mathbb{Z}$ is another solution iff

$$x \equiv x' \pmod{m}$$

Chinese Remainder Theorem

Suppose gcd(m, m') = 1. Then the congruence equations

$$x \equiv b \pmod{m}$$

$$x \equiv b' \pmod{m'}$$

have a common solution $x\in\mathbb{Z},$ that is unique modulo mm', i.e. if $x'\in\mathbb{Z}$ is another solution, then

$$x \equiv x' \pmod{mm'}$$

Solving simultaneous congruence equations

Solve the simultaneous congruence equations

$$x \equiv 3 \pmod{13}$$

$$x \equiv 5 \pmod{11}$$

By the division algorithm, we have 13 = 11 + 2 and 11 = 5(2) + 1. Hence,

$$\gcd(13,11) = 1 = 11 - 5(2)$$

$$= 11 - 5(13 - 11) = -5(13) + 6(11)$$

This implies

$$6(11) \equiv 1 \pmod{13}$$

$$-5(13) \equiv 1 \pmod{11}$$

Consider x = 5(-5)(13) + 3(6)(11) = -127. We can show that this is a solution, and then by the Chinese Remainder Theorem, all solutions are of the form x = -127 + k(13)(11).

Binary operations

Definition

Let G be a set. A binary op * on G is a function $*: G \times G \to G$

- For $(x, y) \in G$, we denote *(x, y) by x * y.
- Associative if $\forall a, b, c \in G$, (a * b) * c = a * (b * c).
- Commutative/abelian if $\forall a, b \in G, a * b = b * a$.

Multiplication table

Let $G = \{a, b, c\}$. We can represent a binary operation * with a multiplication table:

For * to be abelian, the multiplication table should be symmetric along the diagonal.

Identity

Let (G, *) be a set with a binary op. Let $e \in G$.

- e is a left identity element if $\forall a \in G, e * a = a$.
- e is a right identity element if $\forall a \in G, a * e = a$.
- e is an identity element if $\forall a \in G, e * a = a * e = a$.

Groups

Group axioms

A group (G, *) consists of a set G and a binary operation * on G which satisfies four axioms:

- (G1) (Closure) For all $a, b \in G$, $a * b \in G$.
- (G2) (Associativity) For all $a, b, c \in G$,

$$(a*b)*c = a*(b*c)$$

• (G3) (Existence of identity element) $\exists e \in G$ such that for all $a \in G$,

$$e * a = a * e = a$$

Note that the identity element is unique.

• (G4) (Existence of inverse element) For each $a \in G$, $\exists b \in G$ such that

$$a*b = b*a = e$$

where e is the identity element in (G3). Note that the inverse of an element is unique.

Order

The number of elements in G is called the order of G. We denote it by |G|. If |G| is finite, then we call G a finite group. Otherwise it is an infinite group.

Abelian group

A group (G, *) is called an abelian group if a * b = b * a for all $a, b \in G$.

Some theorems

Let (G,*) be a group. Let $a,b,c\in G.$ Then

- $(a^{-1})^{-1} a$
- $(a*b)^{-1} = b^{-1} * a^{-1}$
- $a^{-1} * \cdots * a^{-1} = (a * \cdots * a)^{-1}$ where there are n copies of a^{-1} and a on
- (Cancellation Law) If a * c = b * c, then a = b. If c * a = c * b, then a = b.
- Given $a, b \in G$, the equation a * x = b (and respectively x * a = b) has a unique solution $x \in G$.
- $a^n * a^m = a^{n+m}$ for $n, m \in \mathbb{Z}$.

Weakened axioms

For (G3) and (G4), if we show either

- just right identity + right inverse,
- or just left identity + left inverse,

and if (G1) and (G2) are already proven, then we have a group.

Examples of groups

nth roots of unity

Given a positive integer n. Let

$$\mu_n = \left\{ e^{\frac{2k\pi i}{n}} : k = 0, \dots, n-1 \right\}$$

Then (μ_n, \times) forms a finite abelian group of order n, where \times is the usual complex number multiplication.

- Identity is 1.
- Inverse of $e^{\frac{2k\pi i}{n}}$ is $e^{\frac{2(n-k)\pi i}{n}}$.

If we set $a = e^{\frac{2\pi i}{n}}$, then G could be written as

$$\mu_n = \left\{1 = a^n, a, a^2, \cdots, a^{n-1}\right\}$$

and we call μ_n a cyclic group of order n.

Integers modulo n

Let $\mathbb{Z}/n\mathbb{Z} = \{0, 1, 2, \cdots, n-1\}$. The binary operation * is given by

$$x*y = \begin{cases} x+y & \text{if } x+y < n\\ x+y-n & \text{if } x+y \geq n \end{cases}$$
 ($\mathbb{Z}/n\mathbb{Z}$) forms a group and is also a cyclic group of order n .

- Identity is 0.
- Inverse element is 0 for 0, n-x for positive x.

Set of bijections

Let Y be a set (could be **infinite**) and let

$$S_Y = \{f: Y \to Y: f \text{ is a bijection.}\}$$

The binary operation \circ is the composite of functions. Then (S_Y, \circ) is a group.

- Identity is the identity function on Y.
- Inverse of a function f is its inverse function.

Symmetric group on n letters

Consider S_Y where $Y = \{1, 2, \dots, n\}$. Then S_Y is a finite group of order n!.

Product group

Let (G, *) and (H, *) be two groups. Consider the Cartesian product $G \times H =$ $\{(g,h):g\in G,h\in H\}$. Define binary operation \cdot on $G\times H$ by

$$(g,h) \cdot (g',h') = (g * g', h \star h')$$

for all $(g,h),(g',h') \in G \times H$. Then $(G \times H,\cdot)$ forms a group, called the product group of (G, *) and (H, *).

- Identity element is (e_G, e_H) where e_G and e_H are the identity elements of G and H respectively.
- Inverse element of (g,h) is (g^{-1},h^{-1}) .

General linear group

Let G be the set of invertible n by n matrices with entries in a field F. The binary operation \times is the usual matrix multiplication. Then (G, \times) is a group called the general linear group of rank n and we denote G by GL(n, F).

- Identity is the n by n identity matrix.
- Inverse of a matrix A is the usual inverse A^{-1} .

Special linear group

SL(n, F) is defined in the same way as in "General linear group", except we only have matrices with determinant 1.

Orthogonal group

O(n) is defined in the same way as in "General linear group", except we only have orthogonal matrices.

Group isomorphisms

Definition

Let (G,*) and (H,*) be two groups. We say that these two groups are isomorphic if there exists a bijection $\phi: G \to H$ such that

$$\phi(g_1 * g_2) = \phi(g_1) \star \phi(g_2)$$

for all $g_1, g_2 \in G$.

- The bijection ϕ is called a group isomorphism.
- We denote $(G,*) \simeq (H,\star)$ and $\phi: (G,*) \stackrel{\sim}{\to} (H,\star)$.
- If (G,*) and (H,*) are isomorphic finite groups, then they have the same order.
- If (G,*) is an abelian group, then (H,*) is an abelian group.
- $\phi: G \to G$ given by $\phi(g) = g^{-1}$ is a group isomorphism $\iff G$ is an abelian group.

Two isomorphisms

Suppose $\phi:(G,*)\to (H,\star)$ and $\psi:(H,\star)\to (K,\cdot)$ are two isomorphisms of groups. Then

- the inverse function $\phi^{-1}:(H,\star)\to(G,*)$ and
- the composite function $\psi \circ \phi : (G, *) \to (K, \cdot)$

are group isomorphisms.

Group homomorphism

Let (G,*) and (H,*) be two groups. A function $\phi: G \to H$ is called a group homomorphism if

$$\phi(x*y) = \phi(x) \star \phi(y)$$

for all $x, y \in G$.

There is no requirement on ϕ to be injective or surjective. But if ϕ is a bijection, then we have a group isomorphism instead.

Subgroups

Definition

Let (G,*) be a group. Let $H\subseteq G$ be a nonempty subset. Suppose (H,*)forms a group, i.e. it satisfies the four group axioms. Then (H,*) is called a subgroup of (G, *). Note that the binary operation is the same for G and H.

Integer multiple

Suppose (I,+) is a subgroup of $(\mathbb{Z},+)$. Then $I=d\mathbb{Z}$ for some non-negative integer d.

Roots of unity

 (μ_m, \times) is a subgroup of (μ_n, \times) if m|n.

Properties of subgroups

Proposition 30

Let (G,*) be a group and let $H\subseteq G$ be a nonempty subset. Then (H,*) is a subgroup iff:

- (S1) For all $a, b \in H$, we have $a * b \in H$.
- (S2) For all $a \in H$, we have $a^{-1} \in H$.

Proposition 31

Let (G,*) be a group and let $H\subseteq G$ be a nonempty subset. Then (H,*) is a subgroup iff:

• (S) For all $a, b \in H$, we have $a * b^{-1} \in H$.

Cyclic group

Let (G, *) be a group and let $x \in G$. We call $H = \{x^n \in G : n\mathbb{Z}\}$ the cyclic subgroup of G generated by x, and we denote H by $\langle x \rangle$.

A group (G,*) is called a cyclic group if $G=\langle x\rangle$ for some $x\in G$, i.e.

$$G = \langle x \rangle = \{ x^n \in G : n \in \mathbb{Z} \}$$

Proposition 32

Let (G,*) be a group and let $H\subseteq G$ be a nonempty finite subset. Then (H,*) is a subgroup iff

• (S1) For all $a, b \in H$, we have $a * b \in H$.

Intersection of subgroups

If $\{(H_i, *) : i \in I\}$ is a collection of subgroups of (G, *), then

$$\left(\bigcap_{i\in I}H_i,*\right)$$

is a non-empty subgroup of (G, *).

Proposition 34

Let (H,*) and (K,*) be subgroups of (G,*). If $(H \cup K,*)$ is a subgroup, then either $H \subseteq K$ or $K \subseteq H$.