附件3: 试卷格式样张

复旦大学计算机科学技术学院 2015 ~2016 学年第二学期期末考试试卷 □ √A卷 □B卷

课程名	果程名称:计算机原理 课程代码:COMP130007.01									
开课院	开课院系:计算机科学技术学院 考试形式:开卷 √/闭卷/课程论文/									
姓 名:										
	题	号	_	<u> </u>	三	四	五	六	总 分	
	得	分								

- 一、选择题(每小题2分,共20分)
- 1. 假定有四个整数用 8 位补码分别表示 r1 = 0xFE, r2 = 0xF2, r3 = 0x90, r4 = 0xF8。若将运算结果存放在一个 8 位寄存器中,则下列运算会发生溢出的是 ()。
 - A. r1 * r2
 - B. r2 * r3
 - C. r1 * r4
 - D. r2 * r4
- 2. 浮点数加减运算过程一般包括对阶、尾数运算、规格化、舍入和判溢出步骤. 设浮点的阶码和尾数均采用补码表示,且位数分别为 4 位和 6 位(均含 1 位符号位). 若有两个数 $X=2^{7}*29/32,Y=2^{5}*5/8$,则用浮点加法计算 X+Y 的结果是()。
 - A. 00111 1100010
 - B. 00111 0100010
 - C. 01000 0010001
 - D. 发生溢出
- 3. 某机器字长 16 位,主存按字节编址,转移指令采用相对寻址,由两个字节组成,第一字节为操作码字段,第二字节为相对位移量字段。假定取指令时,每取一个字节 PC 自动加1。若某转移指令所在主存地址为 2000H,相对位移量字段的内容为 06H,则该转移指令成功转移后的目标地址是(____)。
 - A. 2006H
 - B. 2007H
 - C. 2008H
 - D. 2009H

```
M, N 是被#define 定义的常量:
4. 考虑下面的代码,
   int mat1[M][N];
   int mat2[N][M];
   int sum_element( int i, int j ){
       return mat1[i][j] + mat2[j][i];
   }
   编译这段程序,GCC产生的汇编代码如下:
   i 位置在 %ebp + 8, j 位置在 %ebp + 12
   1 movl 8(%ebp), %ecx
   2 movl 12(%ebp), %edx
   3 leal 0(,%ecx,6), %eax
   4 subl %ecx, %eax
   5 addl %edx, %eax
   6 leal (%edx,%edx,8), %edx
   7 addl %ecx, %edx
   8 mov1 mat1(,%eax,4), %eax
   9 addl mat2(,%edx,4), %eax
    根据逆向工程,下列选项正确的是(
       A. M = 7, N = 6
       B. M = 5, N = 9
       C. M = 5, N = 7
       D. M = 9, N = 5
5. 对于结构声明
   struct {
       char *a;
       short b;
       double c;
       char d:
       float e;
       char f;
       long long g;
       void *h;
   } foo;
       假设在 Windows 机器上编译它,这里每个 K 字节的基本数据结构的偏移量必需是 K
   的倍数。你可以重新排列这个结构体中的字段,使得结构体所占字节总和变化,则这个
   结构体(
              ):
       A. 最大占用 40 字节, 最少占用 32 字节
       B. 最大占用 48 字节, 最少占用 32 字节
       C. 最大占用 56 字节, 最少占用 40 字节
       D. 最大占用 48 字节, 最少占用 40 字节
```

6.	由多个源文件组成的 C 程序,经过编辑、预处理、编译,链接等阶段会生成最终的可执行程序。下面哪个阶段可以发现被调用的函数未定义?答:()。
	在户。下面哪个所投可以及现被调用的函数不足义: 台: ()。 A. 预处理
	B. 编译
	C. 链接
	D. 执行

- 7. 下列命中组合情况中,一次访存过程中不可能发生的是()。
 - A. TLB 未命中, Cache 未命中, Page 未命中
 - B. TLB 未命中, Cache 命中, Page 命中
 - C. TLB 命中, Cache 未命中, Page 命中
 - D. TLB 命中, Cache 命中, Page 未命中
- 8. 假定主存地址为 32 位,按字节编址,主存和 Cache 之间采用直接映射方式,主存块大小为 4 个字,每字 32 位,采用回写(Write Back)方式,则能存放 4K 字数据的 Cache 的总容量的位数至少是()。
 - A. 146k
 - B. 147K
 - C. 148K
 - D. 158K
- 9. 下列存储器中,在工作期间需要周期性刷新的是()。
 - A. SRAM
 - B. DRAM
 - C. ROM
 - D. FLASH
- 10. NEMU 作为一个程序,在下列哪一层上运行?答:()。
 - A. Micro operating system
 - B. GNU/Linux
 - C. Computer hardware
 - D. Simulated x86 hardware
- 二、(15分)
- 1. 考虑下面两种基于 IEEE 浮点数格式的 9 比特位长度的浮点数表示格式
- 格式 A
 - * 一个符号位
 - * 有 k = 5 个阶码位, 阶码偏置量为 15.
 - * 有 n=3 个小数位
- 格式 B
 - * 一个符号位

- * 有 k = 4 个阶码位, 阶码偏置量为 7.
- * 有 n=4 个小数位

下面给出了一些格式 A 表示的位模式, 你的任务是把他们转换成最接近的格式 B 表示的值。如果需要舍入,要向正无穷舍入。另外,请给出格式 A 和格式 B 表示的位模式对应的值。要么是整数(例如 17),要么是小数(例如 17/64 或 17 / 2^(6))

Forn	nat A	Format B				
Bits	Value	Bits	Value			
1 01110 001	-9/16	1 0110 0010	-9/16			
0 10110 011						
1 00111 010						
0 00000 111						
1 11100 000						
0 10111 100			_			

三、(22分)

下面代码是一个函数(不太好)的实现,这个函数从标准输入读入一行,将字符串复制到新分配的存储中,并返回一个指向结果的指针。

1	80485c0 <	(getline>:	
2	485c0:	55	push %ebp
3	0485c1:	89 e5	mov %esp,%ebp
4	0485c3:	83 ec 28	sub \$0x28,%esp
5	0485c6:	89 5d f4	mov %ebx,-0xc(%ebp)
6	0485c9:	89 75 f8	mov %esi,-0x8(%ebp)
7	0485cc:	89 7d fc	mov %edi,-0x4(%ebp)
8	0485cf:	8d 75 ec	lea -0x14(%ebp),%esi
9	0485d2:	89 34 24	mov %esi,(%esp)
10	0485d5:	e8 a3 ff ff ff	call 804857d <gets></gets>

C 语言代码

对 gets 调用的反汇编代码

考虑下面的场景。调用过程 getline, 返回地址等于 0x8048643, 寄存器%ebp 等于 0xbffffc94, 寄存器%ebx 等于 0x1, 寄存器%edi 等于 0x2, 而寄存器%esi 等于 0x3, 输入字符串为 "012345678901234567890123",程序会因为段错误而中止。运行 GDB, 确定错误是在执行 getline 的 ret 指令时发生。

A. 填写下图,尽可能多的说明在执行完反汇编代码中第七行指令后栈的相关信息,在右边标出存储在栈中数字的含义,如返回地址,在方框中写出他们的十六进制值,如08048643。每个方框都代表4个字节。并指出%ebp的位置。(11分)

08 04 86 43	返回地址

B. 程序应该试图返回到什么地址? (3分)

C. 当 getline 返回时,哪个(些)寄存器的值被破坏了? (8分)

寄存器	值

四、(20分)

2. 假设一个 C 语言程序有两个源文件, main.c 和 proc1.c, 它们的内容如下:

```
1
      #include <stdio.h>
2
      unsigned x = 257;
3
      short y, z = 2;
       void proc1(void);
5
      void main()
6
7
             proc1();
8
            printf("x = %u, z = %d\n",x, z);
9
            return 0;
10
      }
                                     main.c 文件
```

```
1 double x;

2 3 void proc1()

4 {

5 x = -1.5;

6 }
```

回答下列问题:

- 1) 在上述两个文件中出现的符号哪些是强符号哪些是弱符号。(8分)
- 2) 程序执行后打印的结果是什么?请分别画出执行第七行的 proc1()函数调用前、后,在 地址&x 和&z 存放的内容。(8分)

3) 修改文件 proc1.c, 使得 main.c 能够输出正确的结果(即 x = 257, z = 2)。要求修改时不能改变任何变量的数据类型和名字。(4分)

五、(15分)

假定一个计算机系统中有一个 TLB 和一个 L1 Data Cache。该系统按字节编址,虚拟地址 14 位,物理地址 12 位,页大小为 64B; TLB 采用 4 路组相联方式,共有 16 个页表项; L1 Data Cache 采用直接映射方式,块大小为 4B,共 16 行。

位 标记位 PPN 有效位 标记位 PPN 有效位 标记位 PPN 有效位 标记位 PPN 有效位

0	03	-	0	09	0D	1	00	-	0	07	02	1
1	03 -	2D	1	02	-	0	04	-	0	0A	-	0
2	02	-	0	08		.0	06	-	0	03	-	0
3	07	-	0	03	0D	1	0A	.34	1	02	11-11	0

a) TLB: 四组, 16 个条目, 四路组相联

VPN	PPN :	有效位	VPN	PPN 有效位			
00	28	1	08	13	1		
01	-	0	09	17	1		
02	33	1	0A	09	1		
03	02	1	0B	-	0		
04	-	0	0C	-	0		
05	16	1	0D	2D	1		
06		0	0E	11	1		
07	_	0	OF	0D	1		

b) 页表: 只展示了前 16 个 PTE

収引	标记位	有效位	换0	换1	块 2	决3
0	19	1	99	11	23	11
1	15	0	_	_	_	_
2	1B	1	00	02	04	08
3	36	0	_	_	-	-
4	32	1	43	6D -	8F	09
5	0D	.1	36	72	- F0	1D
6	31	0		_	_	_
7	16	1	11 -	C2	DF	03
8	24	1	3A	00	51	89
9	2D	0	_		_	
Α	2D	1	93	15	,DA	.3B
В	0B	0	_	-	_	_
C	12	0	_	_	_	$_{r}$ $-$
D	. 16	1	04	96	34	15
E	13	1	83	77	1B	D3
T.	14					

c) 高速緩存: 16 个组, 4 字节的块, 直接映射

针对虚拟地址: 0x03d7 填写下表:

a. 虚拟地址 (2分)

13	12	11	10	9	8	7	6	5	4	3	2	1	0

b. 地址翻译 (6分)

参数	值
虚拟页号	
TLB 索引	
TLB 标记	
TLB 命中? (是/否)	
缺页? (是/否)	
物理页号	

c. 物理地址 (2分)

11	10	9	8	7	6	5	4	3	2	1	0

d. 物理存储器引用 (5分)

参数	值
字节偏移	
缓存索引	
缓存标记	
缓存命中? (是/否)	
返回的缓存字节	

六、(8分)

A. 解释在 PAO 阶段运行 NEMU 会出现 assertion fail 的错误信息的原因,并写出解决方法。(3 分)

B. 简述 PA1 阶段中添加和删除监视点的步骤。 (5分)