CVIČENÍ MODELOVÁNÍ A SIMULACE

Cvičení 9- LS 2015 - Michel Kana

Co uděláme ve dnešním cvičení?

1. Identifikace parametrů modelu

Identifikace parametrů modelu

- Parametry modelu jsou obvykle neznámé, např. $x = [k_{11}, V_1]$
- Lékaři jsou jen schopni dávkovat vstupu u_1 a měření koncentrace léku Y_1 .
- Inženýři jsou si jisté ze měřené proměnné jsou dostatečné pro odhad neznámých parametrů (t.z. model identifikovatelné)
- Naměřené údaje jsou pozorované chování systému C(t)
- Počítačový model vytváří prediktivní hodnoty výstupního vektoru, tzv. **simulované chování** systémů systémů $Y_1(x,t)$.
- Cílem identifikace parametrů je najít jedinečnou hodnotu parametrů, pro které je rozdíl mezi simulované a pozorované chování minimální. Tento rozdíl se nazývá **účelová funkce** $f(x,t) = Y_1(x,t) C(t)$.

Time t (hour)	Concentration $C(t)$ (mg/l)
0	19
0.5	10
1	7
1.5	5
2	4

pozorované chování – C(t)

Identifikace parametrů modelu 1-Kompartmentového modelu


```
function Fi = f(param, C, t, modelName)
set_param([modelName '/V1'], 'Value', num2str(param(1)));
set_param([modelName '/k11'], 'Gain', num2str(param(2)));
[T, x, Y1] = sim(modelName, t);
Fi = Y1-C;
```

```
x0=[5, 0.3];
lowerBounds = [4 \ 0];
upperBounds = [5 1];
C = [27 \ 19 \ 10 \ 9 \ 7 \ 6.5 \ 4 \ 3.1 \ 2.6 \ 2.1 \ 1 \ 0.3 \ 0.1]';
t= 0:0.5:6;
modelName='model';
options = optimset('lsqnonlin');
options = optimset(options ,...
   'GradObj', 'off', ...
   'Hessian', 'on', ...
   'Diagnostics', 'on', ...
   'TolFun', 4e-10, ...
   'MaxIter', 10e5, ...
   'Display', 'iter', ...
   'DiffMaxChange', 1e5, ...
   'DiffMinChange', 1e-5 ...
[x,resnorm] = Isgnonlin(@f,x0, lowerBounds, upperBounds, options, C,t, modelName);
```

Identifikace parametrů modelu 2-Kompartmentové modely


```
function F = f(param, C, t, modelName)

set_param([modelName '/V1'], 'Value', num2str(param(1)));

set_param([modelName '/k11'], 'Gain', num2str(param(2)));

set_param([modelName '/k12'], 'Gain', num2str(param(3)));

set_param([modelName '/k21'], 'Gain', num2str(param(4)));

[T, x, Y1] = sim(modelName, t);

F = Y1-C;
```

```
x0=[5, 0.3, 0.6, 0.2];
lowerBounds = [0\ 0\ 0\ 0];
upperBounds = [10 \ 10 \ 10 \ 10];
C = [27 19 10 9 7 6.5 4 3.1 2.6 2.1 1 0.3 0.1]';
t= 0:0.5:6;
modelName='model';
options = optimset('lsqnonlin');
options = optimset(options ,...
  'GradObj', 'off', ...
  'Hessian', 'on', ...
  'Diagnostics', 'on', ...
  'TolFun', 4e-10, ...
  'MaxIter', 10e5, ...
  'Display', 'iter', ...
  'DiffMaxChange', 1e5, ...
  'DiffMinChange', 1e-5 ...
[x,resnorm] = Isgnonlin(@f,x0, lowerBounds, upperBounds, options, C,t, modelName);
```

Identifikace parametrů logistického populačního modelu

$$\frac{dX(t)}{dt} = \rho \cdot \left(1 - \frac{X(t)}{K}\right) \cdot X(t)$$

t	X(t)
0	0
1	10
2	60
3	180
4	200
5	200
6	200

```
function F = f(param, P, t, modelName)
set_param([modelName '/ro'], 'Value', num2str(param(1)));
set_param([modelName '/K'], 'Value', num2str(param(2)));
[T, x, X] = sim(modelName, t);
F = X-P;
```

```
x0=[1, 200];
lowerBounds = [0 0];
upperBounds = [10 1000];
P = [0\ 10\ 60\ 180\ 200\ 200\ 200]';
t= 0:1:6;
modelName='model';
options = optimset('lsqnonlin');
options = optimset(options ,...
  'GradObj', 'off', ...
  'Hessian', 'on', ...
  'Diagnostics', 'on', ...
  'TolFun', 4e-10, ...
  'MaxIter', 10e5, ...
  'Display', 'iter', ...
  'DiffMaxChange', 1e5, ...
  'DiffMinChange', 1e-5 ...
[x,resnorm] = Isgnonlin(@f,x0, lowerBounds, upperBounds, options, P,t, modelName);
```

- □ Projekt 1 Simulátor modely populace
 - Uživatel si vybere model
 - Uživatel zadává hodnoty parametrů a počáteční velikost populace
 - Systém zobrazí vývoj populace v casu

- Projekt 2 Simulator kompartmentové modely
 - Uživatel zadává popis modelu
 - Uživatel zadává hodnoty parametrů a počáteční množství látku.
 - Systém vygeneruje diferenciální rovnice
 - Systém vypočítavá a zobrazí vývoj množství a koncentraci látku v čase

- Projekt 3 Analyzátor kompartmentové modely
 - Uživatel zadává popis modelu
 - Systém vygeneruje matice A, B, C, U, X, Y
 - Systém vypočítavá a zobrazí přenosovou funkci
 - Systém vypočítavá a zobrazí pozorovací parametru
 - Systém udělá analýzu identifikatelnosti a zobrazí výsledky

Projekt 4 – Identifikace kompartmentové modely

- Uživatel zadává popis modelu
- Uživatel zadává hodnoty měření
- Systém vygeneruje diferenciální rovnice
- Systém udělá identifikaci parametrů a zobrazí výsledky

Co budete cvičit po celém semestru?

Až 11 bodů lze získat za aktivní účast na cvičení (1 bod za hodinu).

Až 15 bodů lze získat za zápočtový test, který se uskuteční 6.5.

Až 14 bodů lze získat za finální prezentaci, která se uskuteční v 13. hodině.