

milliFlow: Scene Flow Estimation on mmWave Radar Point Cloud for Human Motion Sensing

Fangqiang Ding¹, Zhen Luo¹, Peijun Zhao², Chris Xiaoxuan Lu³
¹University of Edinburgh, ²Massachusetts Institute of Technology, ³University College London

Motivation

> Advantages of mmWave radar for human sensing, over

© Camera:

- Robust to visual degradation (e.g., low lighting, smoke and fog)
- Privacy-preserving and non-intrusive for scenarios like smart house

Other RF signals (e.g., WiFi):

More trustworthy and fine-grained data – radar point cloud

LiDAR:

- Smaller size, lower cost and power consumption
- Unaffected by airborne particles (e.g., rain, snow and smoke)

> Scene flow as point-wise motion feature

Research insight:

- Point-wise velocity can facilitate cross-frame movement analysis
- Estimate and use scene flow as an intermediate feature to better support radar-based human motion sensing tasks

Problem Formulation

- Goal: estimate a 3D motion field that describes the scene dynamics
- Input: two consecutive 3D point clouds collected by mmWave radar
- Output: a set of 3D translation vectors that represent the inter-frame displacement for each point in the first frame

Proposed Method

> Technical challenges

- **Sparsity and noise**: ~100 points per frame, often missing data for specific body parts; multi-path effect, presence of ghost points
- Lack of temporal cues: low-resolution or no Doppler velocity; absence of consistent radar point data across frames
- Scene flow annotation: labor-intensive and expensive; lack real-world correspondence; non-rigid nature of human movement

Scene flow network

- Overcome the sparsity and noise by local-global feature integration
- Address the lack of temporal cues by propagate temporal information

> Automatic scene flow labelling

- **Assumption**: The non-rigid human body can be segmented into multiple rigid-motion skeletons, which induce the scene flow in their vicinity.
- Generate pseudo labels from 3D skeletons without any anno. efforts.

Evaluation

Dataset collection

- Vayyar vTrigB imaging radar (bespoke designed for fine-grained sensing)
- **Diversity** in subjects, activities, environments.

(c) Pseudo Pose Labels

In-Set Activities

(d) Subject Activities

Squatting Sitting

Out-of-Set Activities

> Scene flow results

- cm-level accuracy though trained with pseudo labels automatically generated
- Generalizable to 'out-of-set' activities

milliFlow (Ours)	0.046	0.703
Bi-FPNet (ECCV'22)	0.159	0.264
NSFP (optim. based)	0.197	0.143
RaFlow (sup. version)	0.107	0.427
Method	EPE [m] ↓	AccR 个

Downstream task results

Human parsing:
 S1 – add point-level scene flow
 S2 – learn and use latent features

Method	Raw	w. S1	w. S2
mloU (%)	49.09	52.72	51.04
oA (%)	65.75	69.27	68.21

Human activity recognition

Method	Raw	w. S1	w. S2
Ours	47.32	57.88	57.78
MMPointGNN	52.46	60.16	59.94
RadHAR	44.65	49.98	50.53
Average	48.14	56.01	56.08

Human body part tracking

Tracking length – mJE (m)							
Activity	1	2	3	4			
Arm swing	0.028	0.076	0.097	0.124			
Leg swing	0.016	0.071	0.105	0.130			
Arm & leg	0.030	0.108	0.146	0.178			