HiOA Big Data Course

Session 6 - Trees

Dirk Hesse

Wine Quality

Wine Quality Tree

Wine Quality Regression Tree

Why trees?

- Simple.
- Easy to explain.
 - Especially to non-experts.
- Powerful.

Calculating Trees

- ullet Divide your data $R_L(j,s)=\{X|X^{(j)}\leq s\},$ $R_R(j,s)=\{X|X^{(j)}>s\}.$
- Find the best a_R, a_L, j, s to minimize

$$\sum_{i,x_i \in R_L(j,s)} (a_L - y_i)^2 + \sum_{i,x_i \in R_R(j,s)} (a_R - y_i)^2$$

- ullet For given j,s, we find that $a_{R,L}=\displaystyle \sup_{i,x_i\in R_{R,L}}y_i.$
- Repeat on the sub-sets.
 - Until a maximum depth is reached.
 - Until a minimum number of samples is reached.

Regression Tree

Our resulting model reads

$$\hat{f}\left(X
ight)=\sum_{m}c_{m}I\left\{ X\in R_{m}
ight\} .$$

Hence trees are an example of a general class of *additive* models.

Tree Vs Linear Regression

How Deep Should You Go?

- Deep trees have many degrees of freedom and hence high variance.
- Too shallow trees can't capture the shape of the data.
 - Hence have high bias.

Bias-Variance Trade-off for Trees

Training and Test Error

The Best Tree

Trees for Classification

Just modifying our tree formulas to use the mode

$$a_{R,L} = \mathop{\mathrm{mode}}\limits_{i,x_i \in R_{R,L}} y_i$$

yields a classification algorithm.

How Find the Splits for Classification?

Define

$$\hat{p}_{mk} = rac{1}{N_m} \sum_{i; x_i \in R_m} I(y_i = k),$$

such that $k(m) = \operatorname{argmax}_k \hat{p}_{mk}$

- Misclassification: $1-\hat{p}_{mk(m)}$.
- Gini index: $\sum_{k=1}^K \hat{p}_{mk} (1 \hat{p}_{mk})$.
- ullet Cross-entropy: $-\sum_{k=1}^K \hat{p}_{mk} \log \hat{p}_{mk}$.

Two-Class impurity Measures

