化学实验

胡译文

目录

1	基本	以器	5
	1.1	容器	5
	1.2	量器	5
		1.2.1 温度计	5
		1.2.2 容量瓶	6
		1.2.3 滴定管	6
	1.3	分离仪器	6
		1.3.1 干燥管	7
	1.4	其他	7
		1.4.1 冷凝管	7
		1.4.2 启普发生器	7
	1.5	总结	8
		1.5.1 特殊仪器	8
2	化学	只验安全与试剂保存 	9
	2.1	試剂保存	9
		2.1.1 试剂瓶的选择	9
		2.1.2 危险标志	9
		2.1.3 一些试剂保存方式	9
	2.2	事故外理	0

3	基本	操作	11
	3.1	仪器的洗涤	11
		3.1.1 洗涤试剂的选择	11
	3.2	装置气密性检查	11
		3.2.1 常见方法	11
	3.3	试纸的使用	12
		3.3.1 常见类型	12
		3.3.2 使用方法	12
	3.4	药品的取用	13
		3.4.1 取用固体药品	13
		3.4.2 取用液体药品	13
		3.4.3 取用气体	14
	3.5	配置溶液	14
		3.5.1 固体物质的溶解	14
		3.5.2 液体物质的溶解	14
		3.5.3 气体的溶解	14
	3.6	物质加热	15
		3.6.1 固体的加热	15
		3.6.2 液体的加热	15
	3.7	测定	15
		3.7.1 酸碱中和或氧化还原滴定	15
		3.7.2 中和反应反应热测定	16
4	实验		17
4	头型 4.1		17 17
	4.1		
		4.1.1 常见气体的发生装置	
		4.1.2 常见气体的制备	
		4.1.3 常见气体的除杂装置	19

	4.2	装置选取
	4.3	实验现象
	4.4	收集
	4.5	性质探究与验证
	4.6	事故预防
5	物质	的检验 21
	5.1	离子检验
		5.1.1 焰色反应
	5.2	气体检验
	5.3	官能团检验
6	物质	分离提纯
	6.1	物理法 24
		6.1.1 过滤
		6.1.2
		6.1.3 结晶
		6.1.4 蒸馏
		6.1.5 萃取分液
		6.1.6 升华
		6.1.7 渗析
	6.2	化学法 27
		6.2.1 常见混合物气体除杂 27
		6.2.2 常见混合物固体除杂 2
		6.2.3 常见混合物溶液除杂 28
		6.2.4 沉淀法
		6.2.5 气化法
		6.2.6 杂质转换法
		6.2.7 酸碱溶解法 29

6.2.8	氧化还原法	29
6.2.9	加热分解法	29
6.2.10	调节 pH 法	29
6.2.11	电解法	29

1 基本仪器

1.1 容器

- 直接加热:
 - 试管: 倾斜 45°, 加热时液体不超过 1/3
 - 坩锅: 在泥三角上加热, 用坩埚钳夹取。用于熔化、加热、反应等。 瓷坩锅含 SiO₂。
 - 蒸发皿:玻璃棒搅拌. 用坩埚钳夹取
- 隔网加热:
 - 烧杯(加热时液体不超过1/2的容积)
 - 烧瓶: 圆底烧瓶 (盛装液体占 1/3 至 2/3 的容积)、蒸馏烧瓶、平底烧瓶
 - 锥形瓶 (盛装液体不超过 1/2 的容积)
 - 三颈烧瓶
- 不能加热: 集气瓶、表面皿

1.2 量器

- 粗量仪器: 托盘天平、量筒(平视凹液面最低处)、温度计
- 精量仪器: 容量瓶、滴定管

1.2.1 温度计

温度计使用时注意量程、不能碰壁。

测反应混合物的温度 将温度计插入混合物中间。

• 测物质溶解度、实验室制乙烯

测蒸气的温度 由于液体沸腾时,液体和蒸气的温度相同,所以只要测蒸气的温度。

• 实验室蒸馏石油、测定乙醇的沸点

测水浴温度 要使反应物的温度保持相对稳定,所以恒温水浴加热,温度计则插入水浴中。

• 温度对反应速率影响的反应、中和热的测定、苯的硝化反应、实验室制乙烯、蒸馏

1.2.2 容量瓶

使用方法

- 1. **检漏:** 加水,塞好瓶塞,倒立,瓶塞周围无水漏出,将瓶正立并将瓶塞旋转 180°后塞紧,再倒立,无水漏出
- 2. 计算
- 3. 称量 (天平、药匙) 或量取 (量筒)
- 4. 溶解或稀释: 在烧杯中加适量水溶解或稀释, 玻璃棒搅拌, 冷却。
- 5. 移液:玻璃棒引流
- 6. 洗涤: 洗涤烧杯, 洗涤液也转移到容量瓶内, 次。
- 7. **定容**: 先玻璃棒引流加水至刻度线下 1–2*cm* 处,然后用胶头滴管滴加至平视凹液面最低处与刻度线相平
- 8. 摇匀: 左手顶在瓶塞, 右手五指轻托平底, 反复颠倒上下摇匀

注意事项

- 不能在容量瓶里进行溶质的溶解. 应将溶质在烧杯中溶解、冷却后转移
- 溶液不能超过容量瓶的标线. 一旦超过. 必须重新进行配制
- 容量瓶不能进行加热
- 选用时需要标明规格 $(1/2.5/5 \times 10^n mL)$

1.2.3 滴定管

滴定管度数上小下大。

- 酸式滴定管 (玻璃旋钮): 不能用于碱性物质
- 碱式滴定管 (橡胶管): 不能用于强氧化性物质和有机溶剂

1.3 分离仪器

• 固液分离: 普诵漏斗

• 液液分离: 分液漏斗

• 气气分离: 洗气瓶、干燥管

1.3.1 干燥管

种类 球形干燥管 (盛装固体干燥剂)、U 形干燥管 (盛装液体或固体干燥剂)

常见干燥剂

• 浓 H₂SO₄: 酸性干燥剂, 液体

• P₂O₅ 固体: 酸性干燥剂

• 碱石灰: 碱性干燥剂

• 无水 CaCl₂: 中性干燥剂,不能干燥 NH₃ (生成络合物)

• 无水 CuSO4: 中性干燥剂, 万能干燥剂

• 无水 MgSO4: 中性干燥剂、有机干燥剂

• 无水 Na₂SO₄: 中性干燥剂、有机干燥剂

1.4 其他

• 玻璃棒、胶头滴管(不能: 平放或倒置、碰壁、伸入容器)、冷凝管、水槽、铁架台

酒精灯(酒精需盛装 1/4 至 2/3 的容积)、酒精喷灯

1.4.1 冷凝管

• 直形冷凝管: 必须斜用或平用

• 球形冷凝管: 可以竖用, 用于冷凝回流一般气体

• 蛇形冷凝管: 一般竖用, 用于冷凝回流沸点很低的有机物或冷凝有毒气体

1.4.2 启普发生器

构造 启普发生器由三部分构成: 球型漏斗、容器部分、带活塞的导管部分。

工作原理 以实验室制氢气为例,使用时,开启活塞,酸由球形漏斗流入容器至其与锌粒接触,反应产生氢气。关闭活塞,由于氢气压强增大,酸被压回球形漏斗,与锌粒脱离接触,反应停止。

使用条件 固液不加热制取气体、反应不剧烈、块状固体、气体不能太溶于水

气密性检验 关闭导气管上的活塞,从球形漏斗口处加入水,当水浸没球形漏斗下端后,继续加入水,球形漏斗内外会出现液面差,观察液面,在一段时间内不发生变化,表明气密性良好。

常见反应

- HCl和 FeS 制取 H₂S
- HCl和 CaCO3 制取 CO2
- H₂SO₄ 和金属制取 H₂
- 其余反应均不能用启普发生器

1.5 总结

1.5.1 特殊仪器

需要验漏的仪器 容量瓶、分液漏斗、滴定管

需要标注规格的仪器 量筒、容量瓶

玻璃仪器 (各种)漏斗、酒精灯、温度计、水槽、启普发生器、(各种)杯/瓶/管、玻璃棒

2 化学实验安全与试剂保存

2.1 试剂保存

2.1.1 试剂瓶的选择

• 固体: 广口瓶

• 液体: 细口瓶

• 气体: 集气瓶

• 光解: 棕色瓶(碘、硝酸银、溴化银、浓硝酸、稀硝酸、氯水、溴水、碘水、银氨溶液)

• 玻璃塞: 不能用于碱性物质

• 橡胶塞: 不能用于强氧化性物质和有机溶剂

2.1.2 危险标志

2.1.3 一些试剂保存方式

• 氢氟酸:不能放在玻璃容器内,应该放在塑料容器内避光保存。

• 镁: 无需保存于煤油中, 因为会形成氧化膜保护。

2.2 事故处理

化学实验中常见事故的处理:

意	意外事故	处理方法
酒精及其他易	燃有机物小面积失火	立即用湿布或沙土扑盖
钠、	磷等失火	迅速用沙子覆盖
腐蚀性酸	流到桌子上	用适量 NaHCO3 冲洗,后用水冲洗
腐蚀性碱	<u> </u>	用适量稀醋酸冲洗,后用水冲洗
腐蚀性酸	· · · · · · · · · · · · · · · · · · ·	用水冲洗,再用 NaHCO3 冲洗
腐蚀性碱	心到及欣工	用水冲洗,再用硼酸溶液冲洗
腐蚀性酮	逡、碱溅到眼中	用水反复冲洗,不断眨眼,后就医。不要用手揉眼睛。
苯酚溅至皮肤		用酒精浸洗
误食	重金属盐	应立即口服生蛋清或牛奶
汞滴落在桌上或地上		尽量回收,然后在桌子或地上撒上硫粉

3 基本操作

3.1 仪器的洗涤

使用毛刷,用去污剂和水冲洗。洗净标准:玻璃仪器内壁附着均匀的水膜,既不聚成水滴,也不成股流下。

3.1.1 洗涤试剂的选择

残留物	洗涤剂
容器里附有的油污	热的碱性溶液
容器壁上附着的硫	CS ₂ 或热的 NaOH 溶液
试管壁上的银镜	稀硝酸
制 Cl ₂ 时残留的 MnO ₂	热浓盐酸

3.2 装置气密性检查

装置气密性检查应在药品填装之前。

封闭 \rightarrow 改变内外压强(微热、加水等) → 描述现象(气泡、液面变化等) → 说明气密性良好

3.2.1 常见方法

微热法 将导管插入盛装水的烧杯中,用酒精灯微热,导管口产生气泡,停止加热后导管内倒吸形成一段水柱,证明装置不漏气。

封闭 → 微热 → 观察气泡 → 冷却导管中水柱上升 → 说明气密性良好

液差法 夹紧弹簧夹,从长颈漏斗中注入适量水,使长颈漏斗液面高于锥形瓶液面,且保持不变,证明装置不漏气。

封闭 \rightarrow 加水形成液面高度差热 \rightarrow 停止加水 \rightarrow 观察液面不变化 \rightarrow 说明气密性良好

滴液法 向分液漏斗中注入适量水,关闭弹簧夹,打开分液漏斗活塞,如果水不能持续流下,则装置气密性良好。

抽气法 关闭分液漏斗的活塞,轻轻向外拉动或向里推动注射器的活塞,一段时间后,活塞 能回到原来的位置,表明装置的气密性良好。

吹气法 打开弹簧夹,向导管口吹气,如果长颈漏斗中的液面上升,夹上弹簧夹且停止吹气 后,长颈漏斗液面保持稳定,则表明装置的气密性良好。

3.3 试纸的使用

3.3.1 常见类型

• 石蕊试纸:

- 红色石蕊试纸:用于检验碱性物质。

- 蓝色石蕊试纸: 用于检验酸性物质。

• pH 试纸:测量溶液的 pH。

• 品红试纸: 检验 SO_2 等漂白性物质。

• 淀粉- KI 试纸: 检验 Clo 等氧化性的物质。

3.3.2 使用方法

所测物质	溶液	气体	pH 值
操作	蘸取液体于试纸	润湿 后置于气体中	蘸取液体于试纸,与标准 比色卡对照
注意	无法检验 Cl ₂ 、HCIO 溶液等,因为试纸会褪色		氏会褪色。
润湿		必须润湿	不能润湿。(测得 pH 值: 酸性溶液偏大,碱性溶液 偏小,中性溶液不变。)

检验溶液 取一小块试纸放在玻璃片或表面皿上,用玻璃棒蘸取待测液体,点在试纸中部,观察试纸的颜色变化,确定溶液的性质。

检验气体 先用蒸馏水把试纸润湿,用镊子夹取或粘在玻璃棒的一端,然后再放在集气瓶口或导管口处,观察试纸的颜色变化。

pH 试纸测定溶液 pH 值 取一小块试纸放在玻璃片或表面皿上,用玻璃棒蘸取待测液体,点在试纸中部,观察试纸的颜色变化,与标准比色卡对照确定 pH。

注意事项

- 不能用蒸馏水润湿。(测得 pH 值:酸性溶液偏大,碱性溶液偏小,中性溶液不变。)
- 无法检验 Cl₂、HCIO 溶液等,因为试纸会褪色。

3.4 药品的取用

3.4.1 取用固体药品

- 取用粉末状或小颗粒状固体,用药匙或纸槽,要把药品送入试管底部,而不能沾在管口和管壁上。
- 取用块状和大颗粒固体,用镊子夹取。

3.4.2 取用液体药品

• 取少量液体可用胶头滴管,取用较多的液体用倾倒法,注意试剂瓶上的标签朝向手心; 向容量瓶、漏斗中倾倒液体时,要用玻璃棒引流。

3.4.3 取用气体

难溶干水的气体可以如图所示进行储存和使用。

3.5 配置溶液

3.5.1 固体物质的溶解

- 搅拌、震荡、加热等措施可加快溶解速率。
- 一般将溶剂加入溶质中,但配制氯化铁、硫酸铝等一些易水解的盐溶液时,要将这些 固体用相应酸溶解,再加入蒸馏水、以得到澄清溶液。

3.5.2 液体物质的溶解

- 一般把密度大的加入至密度小的液体中,如浓硫酸的稀释、浓硫酸与浓硝酸的混合等。
- 表述: 将浓硫酸沿器壁缓缓注入水中, 并同时用玻璃棒不断搅拌。

3.5.3 气体的溶解

常见气体的溶解度($V_{{ m t}}(V_{{ m t}})$

- 难溶于水: H₂、CO、CH₄、N₂、NO。
- 微溶于水: O₂。
- 易溶于水: CO₂、Cl₂、H₂S、SO₂ (1:40)、HCl (1:500)、NH₃ (1:700)。

装置选择 溶解度不大的气体,如 CO2、Cl2、H2S 等,可以直接通入水中;极易溶于水的气体,如 HCl、NH₃ 等,需要用防倒吸装置。

3.6 物质加热

比较不同的加热方式:

加热方式	适用范围或特点		
直接加热	瓷质、金属质或小而薄的玻璃仪器 (如试管) 等		
隔石棉网加热	较大的玻璃反应器 (如烧杯、烧瓶等)		
水浴		0 °C-100 °C	
油浴	反应器均匀受热且一定温度恒温加热	100 °C–300 °C	
沙浴		300 °C-500 °C	

3.6.1 固体的加热

- 试管口要略向下倾斜. 防止生成的水倒流. 引起试管**炸裂**。
- 先给试管均匀加热, 受热均匀后再固定在药品部位加热。

3.6.2 液体的加热

- 加热前, 先把玻璃容器外壁的水擦干, 以免炸裂试管;
- 用试管夹夹住试管中上部 $\frac{1}{3}$ 处,试管口擦干倾斜,不得对人,以防液体溅出烫伤。

3.7 测定

3.7.1 酸碱中和或氧化还原滴定

滴定管注意书写酸式还是碱式,读数精确到 0.01mL。

酸碱中和滴定指示剂变色 pH 值

指示剂	使用条件	颜色	临界 pH 值	颜色	临界 pH 值	颜色
石蕊	一般不使用	红	6	紫	8	蓝
甲基橙	终点酸性	红	3.1	橙	4.4	黄
酚酞	终点碱性	无	8.2	浅红	10.0	红

操作流程

- **查**: (关闭滴定管活塞) 装水至水零刻度线, 直立静置不漏水 (将旋钮旋转 180° 后再直立静置不漏水)。
- 洗: 洗净锥形瓶和滴定管. 然后用标准液润洗滴定管 2-3 次。
- 盛: 装入标准液, 转动活塞快速放液 (弯曲橡胶管挤压玻璃球), 排除气泡。
- 调:调节滴定管液面至 0 刻度(或以下),记录读数。

• 滴定:

- 左手: 控制活塞:
- 右手: 不断摇动锥形瓶:
- 眼睛: 注视锥形瓶内溶液颜色及滴定流速.
- 滴定终点: 滴入一滴标准液后. 锥形瓶中发生变色. 且半分钟内不恢复。
- **重复试验**: 3次取平均值, 要去掉差距特别大的数据。

氧化还原滴定指示剂

- 高锰酸钾标准滴定溶液滴定产品草酸时,滴定终点为高锰酸钾标准滴定溶液的紫色。
- 碘量法滴定中, 可溶性淀粉溶液和碘标准滴定溶液生成深蓝色。

3.7.2 中和反应反应热测定

4 实验

4.1 实验室气体制备

从左到右搭建实验装备, 与大气联通。

发生装置 \rightarrow 净化装置 \rightarrow 干燥装置 \rightarrow 性质探究 \rightarrow 收集装置 \rightarrow 吸收装置

4.1.1 常见气体的发生装置

固固加热型

操作注意事项

- 试管要干燥
- 试管口要略低干试管底
- 加热前要均匀预热

固液不加热和液液不加热型

启普发生器 见第一章。

固液加热和液液加热型

操作注意事项

- 烧瓶加热时垫石棉网
- 反应物均为液体时要加沸石

4.1.2 常见气体的制备

气体	反应物	方程式
	$MnO_2(s)$, $H_2O_2(aq)$	$2 \mathrm{H_2O_2} \xrightarrow{\mathrm{MnO_2}} 2 \mathrm{H_2O} + \mathrm{O_2} \uparrow$
O_2	KClO ₃ (s)、MnO ₂ (s)	$2 \text{ KClO}_3 \xrightarrow{\text{MnO}_2} 2 \text{ KCl} + 3 \text{ O}_2 \uparrow$
	KMnO ₄ (s)	$2 \text{ KMnO}_4 \xrightarrow{\Delta} \text{K}_2 \text{MnO}_4 + \text{MnO}_2 + 3 \text{ O}_2 \uparrow$
	NH ₄ Cl(s)、Ca(OH) ₂ (s)	$2 \text{ NH}_4\text{Cl} + \text{Ca}(\text{OH})_2 \xrightarrow{\Delta} \text{CaCl}_2 + 2 \text{ NH}_3 \uparrow + 2 \text{ H}_2\text{O}$
NH ₃	CaO(s)、浓 NH ₃ ·H ₂ O	$NH_3 \cdot H_2O + CaO \longrightarrow NH_3 \uparrow + Ca(OH)_2$
	NaOH(s)、浓 NH ₃ ·H ₂ O	$NH_3 \cdot H_2O \xrightarrow{NaOH(s)} NH_3 \uparrow + H_2O$
CO ₂	CaCO ₃ (s)、HCl(aq)	$CaCO_3 + 2 HCI \longrightarrow CaCl_2 + H_2O + CO_2 \uparrow$
H ₂	Zn(s)、H ₂ SO ₄ (aq) 或 HCl(aq)	$Zn + H_2SO_4 \longrightarrow ZnSO_4 + H_2 \uparrow$
H ₂ S	FeS(s)、H ₂ SO ₄ (aq) 或 HCl(aq)	$FeS + H_2SO_4 \longrightarrow FeSO_4 + H_2S \uparrow$
Cl_2	MnO ₂ (s)、浓 HCl	$MnO_2 + 4 HCl(浓) \xrightarrow{\Delta} MnCl_2 + Cl_2 \uparrow + 2 H_2O$
Cr2	KMnO ₄ (s)、浓 HCl	$2 \operatorname{KMnO_4} + \operatorname{H_2SO_4} \longrightarrow \operatorname{Na_2SO_4} + \operatorname{H_2O} + \operatorname{SO_2} \uparrow$
SO_2	Na ₂ SO ₃ (s)、H ₂ SO ₄ (70 %aq)	$Na_2SO_3 + H_2SO_4 \longrightarrow Na_2SO_4 + H_2O + SO_2 \uparrow$
	NaCl(s)、浓 H ₂ SO ₄	$NaCl + H_2SO_4($ 次) $\xrightarrow{\text{微热}}$ $NaHSO_4 + HCl$ ↑
HC1	NaC1(8)\ 7\ 112304	NaCl + H ₂ SO ₄ ($\mbox{$\stackrel{\Delta}{\raisebox{-1pt}{\sim}}$}$ Na ₂ SO ₄ + 2 HCl↑
	浓 H ₂ SO ₄ (aq)、浓 HCl	物理变化, 圆底烧瓶装浓硫酸, 分液漏斗装浓盐酸
NO	Cu(s)、稀 HNO ₃	$3 \text{ Cu} + 8 \text{ HNO}_3$ (稀) $\longrightarrow 3 \text{ Cu}(\text{NO}_3)_2 + 2 \text{ NO} \uparrow + 4 \text{ H}_2\text{O}$
NO ₂	Cu(s)、浓 HNO ₃	$Cu + 4 HNO_3(浓) \longrightarrow Cu(NO_3)_2 + 2 NO_2 \uparrow + 2 H_2O$
C ₂ H ₄	浓 H ₂ SO ₄ 、C ₂ H ₅ OH(aq)	$C_2H_5OH \xrightarrow{\Re H_2SO_4} CH_2 = CH_2 \uparrow + H_2O$
C2114	71. 112504. C2115011(aq)	因酒精被碳化,混有 CO ₂ 、SO ₂ 杂质
С.Н.	CaC ₂ (s)、饱和 NaCl(aq)	$CaC_2 + H_2O \longrightarrow Ca(OH)_2 + CH \equiv CH \uparrow$
C ₂ H ₂	CaC2(S) ETH INACI(aq)	因电石含有磷和硫元素,混有 H ₂ S、PH ₃ 杂质

4.1.3 常见气体的除杂装置

- 4.2 装置选取
- 4.3 实验现象
- 4.4 收集
- 4.5 性质探究与验证
- 4.6 事故预防
 - 防爆炸: 验纯。
 - 点燃可燃性气体 (H₂、CO、CH₄、C₂H₄)
 - 用还原性气体(CO、H₂)还原金属氧化物前
 - 防暴沸:
 - 液体混合或稀释顺序: 浓度大的加入浓度小的液体里
 - 加热液体用沸石
 - 防中毒:制取有毒气体(Cl2、SO2、NO、NO2)应在通风橱中
 - 防烫伤: 取热的蒸发皿及坩埚要用坩埚钳
 - 防仪器炸裂
 - 加热试管时要先均匀受热, 然后固定在某部位加热
 - 给试管中的固体加热时, 试管口要略向下倾斜
 - 集气瓶中的燃烧反应有固体生成时,加少量水或铺一层细沙
 - 禁止将热的仪器直接放入冷水中冲洗
 - 防倒吸:加热法制取并用排水法收集气体 (NH_3 、HCl)、吸收溶解度较大 (Br_2) 的气体时,要注意**熄灯顺序**或加装**防倒吸装置**
 - 防污染
 - 已取出的未用完的试剂一般不放回原瓶 (块状固体如钠、钾等除外)
 - 用胶头滴管滴加液体时,不伸入瓶内,不接触试管壁(向 $FeSO_4$ 溶液中加 NaOH 溶液制取 $Fe(OH)_2$ 除外)
 - 取用试剂时试剂瓶盖倒放于桌面上

- 药匙和胶头滴管尽可能专用(或洗净、擦干后再取其他药品)
- 凡有污染性气体 (如 Cl_2 、 SO_2 、CO、 NO_x 等) 产生的实验均需对尾气进行处理
 - * 吸收 (碱液吸收 Cl₂、NOx, 蘸 Na₂CO₃ 溶液的棉花吸收 SO₂)
 - * 点燃 (用酒精灯点燃 CO 或将 CO 收集在气球中)
 - * 收集(用气球收集)
- 防堵塞: 如高锰酸钾制取氧气

5 物质的检验

5.1 离子检验

离子	试剂和操作	现象
I-	CCl ₄ 、Cl ₂	先无现象,加入 Cl ₂ 后溶液呈紫色
1	稀 HNO ₃ 、AgNO ₃	产生黄色沉淀,不溶解
Br ⁻	CCl ₄ 、Cl ₂	先无现象,加入 Cl ₂ 后溶液呈橙红色
Di	稀 HNO ₃ 、AgNO ₃	产生淡黄色沉淀,不溶解
Cl-	稀 HNO ₃ 、AgNO ₃	产生白色沉淀,不溶解
	KSCN	溶液变为血红色
Fe ³⁺	K ₄ [Fe(CN) ₆]	产生普鲁士蓝沉淀
	苯酚	溶液变为紫色
	KSCN、Cl ₂	溶液先无现象(排除 Fe ³⁺),再变为血红色
Fe ²⁺	K ₃ [Fe(CN) ₆]	产生滕氏蓝沉淀
	酸性高锰酸钾溶液	溶液褪色
NH ₄ ⁺	浓 NaOH、加热、湿润红 色石蕊试纸	湿润红色石蕊试纸变蓝
SO ₄ ²⁻	HCl 溶液、BaCl ₂ 溶液、 稀 HNO ₃	先无现象(排除 Ag^+ 、 SO_3^{2-}),加入 HCl 溶液后产生不溶 白色沉淀,加入稀 HNO_3 无现象(排除 CO_3^{2-})
CO ₃ ²⁻	CaCl ₂ 溶液;HCl 溶液、 澄清石灰水	先产生白色沉淀(排除 $\mathrm{HCO_3}^-$),加入 $\mathrm{CaCl_2}$ 溶液后产生 无色无味气体(排除 $\mathrm{SO_3}^{2-}$),使澄清石灰水浑浊
SO ₃ ²⁻	BaCl ₂ 溶液、HCl 溶液、 品红溶液	先产生白色沉淀(排除 HSO_3^-),加入 $CaCl_2$ 溶液后产生 无色刺激性气体,使品红溶液褪色(排除 CO_3^{2-})
Al ³⁺	NaOH 溶液	先产生白色沉淀,一会溶解
		接下页

接上页	接上页				
离子	试剂和操作	现象			
Cu ²⁺	NaOH 溶液	产生蓝色沉淀,不溶解			
Ag^+	稀硝酸、稀盐酸	产生白色沉淀,不溶解			
Ba ⁺ 稀硫酸、稀硝酸 产生白色沉淀,不溶解		产生白色沉淀,不溶解			
Na ⁺	用 HCl 清洗的洁净 Pt 丝蘸取溶液,酒精灯外焰加热,观察到黄色火焰				
K ⁺	用 HCl 清洗的洁净 Pt 丝蘸耶	以溶液,酒精灯外焰加热,透过蓝色钴玻璃片观察到紫色火焰			

5.1.1 焰色反应

• 钠盐: 黄色

• 钾盐: 紫色 (透过蓝色钴玻璃观察)

5.2 气体检验

5.3 官能团检验

检验顺序: 取样; 醛基 > 碳碳双键

• 羧基: 用碳酸氢钠溶液检验, 放出气泡(二氧化碳)

• 羟基: 用金属钠检验, 放出气泡(氢气)

• 碳碳双键:

- 加入溴水 (溴的四氯化碳溶液), 溶液褪色

- 加入酸性高锰酸钾溶液,溶液褪色

• 醛基:

- (碱化) 滴加少量银氨溶液, 水浴加热有银镜生成
- (碱化) 滴加新制 Cu(OH)2 溶液,水浴加热产生砖红色沉淀
- 卤原子: 先加碱溶液加热, 然后冷却后加足量稀硝酸, 滴入硝酸银溶液, 产生沉淀

- 白色沉淀: Cl

- 浅黄色沉淀: Br

- 黄色沉淀: I

• 酯基: 加碱加热, 不分层

6 物质分离提纯

- 物质的分离:
- 物质的提纯:

6.1 物理法

- 固体 + 固体
- - 互溶:
 - 不互溶:
- 固体 + 液体
- - 互溶:
 - 不互溶:
- 液体 + 液体
 - 互溶:
 - 不互溶:
- 气体 + 气体:
 - 洗气:
 - 不互溶:

6.1.1 过滤

普通过滤(常压过滤) 一贴、二低、三靠

热过滤 防止因温度下降而导致溶质结晶析出

抽滤(减压过滤) 将固液较快彻底的分离。不适合过滤胶状沉淀或颗粒太小的沉淀

- 6.1.2
- 6.1.3 结晶

蒸发结晶

操作注意事项

• 当出现大量固体时, 应停止加热

使用范围

- 单一溶质. 溶质的溶解度随温度升高变化不大(或减小)、稳定
- 多种溶质. 但目标
 - 蒸发结晶、趁热过滤、洗涤、干燥

冷却结晶

- 原理: 先加热溶液, 配成热的饱和溶液, 再通过
- 操作方法: 蒸发浓缩、冷却过滤、

•

使用范围

- 单一溶质, 溶质不稳定, 受热易分解(如结晶水合物、铵盐)
 - 从 FeCl₃ 溶液中获取 FeCl₃·H₂O
 - 加入少量盐酸、蒸发浓缩、冷却结晶、
- 多种溶质,目标溶质溶解度随温度升高而明显增大

重结晶 提纯

溶解、加热浓缩、冷却结晶、(加活性炭脱色并趁热过滤)、过滤、洗涤、干燥使用范围:晶体与杂质

6.1.4 蒸馏

用蒸馏原理进行多次

实验用品 蒸馏烧瓶、水冷

操作注意事项

- 先通水, 再加热
- 刚开始手机到的馏份应弃去
- 全程控制好温度

6.1.5 萃取分液

萃取条件

- 萃取剂和原溶剂不相溶、密度不同
- 萃取物质在两种溶剂中溶解度不同
- 萃取剂和原溶质、原溶剂均不发生反应

萃取分液的操作步骤

1. 碘水与

注意事项

- 分液漏斗在洗涤干净后,必须检查上口和玻璃旋塞是否漏水。
- 充分震荡, 适当放气, 充分静置,

萃取后先将下层液体从分液漏斗中放出,再将上层液体从上口放出。注意使瓶塞上的凹槽对准小孔以平衡气压。

6.1.6 升华

在加热条件下分离出易升华的固体物质。

- NaCl与 I2 的分离
- 精制砒霜

6.1.7 渗析

渗析	盐析

6.2 化学法

四原则

- 不增
- 不减
- 易分离
- 易复原

四必须

• 除杂试剂必须过量

•

6.2.1 常见混合物气体除杂

混合物	杂质	除杂试剂	主要操作

6.2.2 常见混合物固体除杂

混合物	杂质	除杂试剂	主要操作
碳粉	CuO	足量稀盐酸	过滤
Fe ₂ O ₃	Al ₂ O ₃	足量稀盐酸	过滤
			接下页

接上页			
混合物	杂质	除杂试剂	主要操作
碳粉	CuO	足量稀盐酸	过滤
碳粉	CuO	足量稀盐酸	过滤
碳粉	CuO	足量稀盐酸	过滤
碳粉	CuO	足量稀盐酸	过滤

6.2.3 常见混合物溶液除杂

混合物	杂质	除杂试剂	主要操作
NaHCO ₃ 溶 液	Na ₂ CO ₃	CO ₂	通入气体
FeCl ₃ 溶液	FeCl ₂	Cl_2	通入气体
FeCl ₂ 溶液	FeCl ₃	Fe	通入气体
CuCl ₂ 溶液	FeCl ₃	CuO 或 Cu(OH) ₂	过滤
乙酸乙酯	乙酸	饱和 Na ₂ CO ₃ 溶液	分液

6.2.4 沉淀法

Al₂O₃ 和 MgO 固体

1. NaOH 溶液: 过滤得 Al() 和 MgO 固体

2. 稀 HCl: 得氢氧化铝

3. 加热氢氧化铝: 得氧化铝

Fe₂O₃和 SiO₂固体

1. 稀 HCl: 得 FeCl₃ 溶液和 SiO₂ 固体

2. NaOH 溶液: 得 Fe(OH)₃ 沉淀

3. 加热氢氧化铝: 得氧化铝

AlCl₃ 和 FeCl₃ 的混合溶液

- 1. NaOH 溶液: 得 Fe(OH), 沉淀和 AlCl, 溶液
- 2. 稀 HCl: 得 FeCl₃ 溶液
- 6.2.5 气化法
- 6.2.6 杂质转换法
- 6.2.7 酸碱溶解法
- 6.2.8 氧化还原法
- 6.2.9 加热分解法
- 6.2.10 调节 pH 法
- 6.2.11 电解法

粗金属作阳极, 纯金属作阴极