РЕФЕРАТ

Пояснювальна записка до дипломного проекту «Інтегрована інерціальносупутникова система навігації, що базується на принципах комплексної обробки інформації з використанням калманівської фільтрації»: стор. — 35 , рис. — 3, використаних джерел — 9.

ІНЕРЦІАЛЬНА НАВІГАЦІЙНА СИСТЕМА, МЕТОДИ КОМПЛЕКСНОЇ ОБРОБКИ ІНФОРМАЦІЇ,ФІЛЬТР КАЛМАНА, КОМП'ЮТЕРНО ІНТЕГРО-ВАНИЙ КОМПЛЕКС.

Об'єкт дослідження — методи та алгоритми комплексної обробки інформації, принципи побудови інтегрованих навігаційних комплексів, на базі процедури оптимальної калманівської фільтрації.

Мета диплому — наліз та вибір схеми комплексної інерціально-супутникової навігаційної системи та схем оцінювання та корекції в цій системі і, як наслідок, розробка слабко зв'язаної схеми інтеграції, дослідження ступеню впливу похибок датчиків первинної інформації безплатформної інерціальної системи та точнісні характеристики числення навігаційних параметрів і динаміку зміни похибок, впливу перерв у роботі СНС на траекторний рух ЛА, моделювання зміни похибок комплексної інерціально-супутникової навігаційної системи.

Метод дослідження — математичне моделювання.

Розробленей алгоритм авіаційного бортового навігаційного комплексу, що включає безплатформенну інерціальну навігаційну систему, супутникову навігаційну систему та баровисотомір, дозволяє ефективно оцінити навігаційні параметри, залишивши переваги кожної із підсистем і значно знизити вплив їх недоліків.

Матеріали дипломного проекту рекомендується використовувати при проведені наукових досліджень та у навчальному процесі.

Перелік позначень

ІНС інерціальна навігаційна система

АТ авіаційна техніка

БІНС безплатформенна інерціальна навігаційна система

ЛА літальний апарат

НК навігаційний комплекс

ПС повітряне судно

САК система автоматичного керування

СПС система поавітряних сигналів

ТОіР технічне обслуговування та ремонт

Зм.	Лист	№ докум.	Підп.	Дата

Зміст

В	ступ		4
1	Обі	рунтування необхідності розробки	5
2	Ана	аліз та вибір навігаційного забезпечення	10
	2.1	Аналіз і вибір варіанта супутникової навігаційної системи	10
	2.2	Алгоритми роботи трикомпонентної ВІНС	20
П	ерел	ік посилань	35

3м. Лист № докум. Підп. Дата

HAУ 11 00 75 000 $\Pi 3$

Аркуп

ВСТУП

Сформована в даний момент практика створення і застосування навігаційних систем заснована на використанні інтегрованих інерціально-супутникових систем навігації. Інтеграція інерціальної та супутникової систем реалізується шляхом комплексування двох систем.

При вирішенні задачі комплексної обробки інформації в інерціальносупутникових сист емах навігації найбільш привабливою є, безумовно, Калмановська фільтрація. Проте, використання фільтра Калмана зустрічає певних труднощів при його практичній реалізації на борті ЛА. При комплексуванні оцінюється положення і швидкість ЛА, причому ці дані надходять не тільки споживачам, але і контурам спостереження за затримкою і за фазою приймачів СНС. Причому зв'язок блоку фільтра Калмана з контурами приймача СНС дуже жорсткий, тому фільтр Калмана повинний бути дуже швидкодіючій, що обмежується характеристиками процесорів бортових ЦОМ.

Основною перевагою Калманівської фільтрації є те, що при комплексуванні СНС і БІНС на виході фільтра Калмана відновлюються оцінки інструментальних похибок БІНС (похибки зсуву нулів гіроскопів і акселерометрів, похибки масштабних коефіцієнтів і т. ін.), які використовуються для корекції інерціальних датчиків. Тому при перервах надходження даних із приймача отримані раніше оцінки похибок ІНС і її вимірювальних елементів дозволяють поліпшити точнісні характеристики ІНС в автономному режимі.

Зм.	Лист	№ докум.	Підп.	Дата

1 Обгрунтування необхідності розробки

Для реалізації польотного завдання літальний апарат, повинен містити у складі бортового устаткування пілотажний та навігаційний комплекси. Під пілотажним комплексом у найпростішому випадку розуміється система автоматичного керування (автопілот), а під навігаційним комплексом (НК) розуміють сукупність бортових систем і пристроїв, призначених для рішення задач навігації (навігаційна система). До складу НК і ПК входять датчики пілотажнонавігаційної інформації, навігаційні обчислювачі пристрою керування, індикації та сигналізації.

Датчики навігаційної інформації слугують для вимірювань параметрів різноманітних фізичних полів, на базі яких визначаються навігаційні елементи польоту. Їх можна поділити на дві групи: 1. датчики навігаційних параметрів положення, які визначають координати місцезнаходження літального апарата відносно опорних ліній і навігаційних точок; 2. датчики навігаційних параметрів руху, які вимірюють параметри вектора швидкості літака та його складові: шляхову швидкість, вертикальну швидкість, напрямок польоту.

Датчики пілотажної інформації вимірюють параметри польоту, які характеризують кутовий рух ЛА: кути крену, тангажу, рискання і кутові швидкості.

Найважливішими з пілотажно-навігаційних датчиків є: інерціально-навігаційно система, інерціальна курсовертикаль, система курсу і вертикалі, допплерівський вимірник швидкості і кута знесення типу ДВШЗ, інформаційний комплекс висотно-швидкісних параметрів типу ІК ВШП або система повітряних сигналів типу СПС.

Найбільш інформативною є інерціально – навігаційна система (ІНС). Це така навігаційна система, у якій отримання інформації про швидкість і координати забезпечується шляхом інтегрування сигналів, що відповідають прискоренням ЛА. Інформація про прискорення надходить від розташованих на борту ЛА акселерометрів. Процедура інтегрування векторних величин, швидкості і

					НАУ 11 00 75 0	00 П	3	
Зм.	Лист	№ докум.	Підп.	Дата				
Розг	робив	Hовік M . B .			Інтегрована	Лит.	Аркуш	Aркушів
Пер	евірив	Φ іляшкін $M.K$			інерціально-супутникова система		5	35
					навігації, що базується на принципах комплексної обробки			
Н. к	контр.	K озлов A . Π .			інформації з використанням	I	ACY ϵ	<i>608</i>
Зата	вердив	СинєглазовВ	M.		калманівської фільтрації			

прискорення, забезпечується шляхом відтворення на борту ЛА відповідної системи координат, для цього, частіше за все, використовують гіростабілізатори чи гіроскопічні датчики кутової швидкості з обчислювачем.

В залежності від способу розташування акселерометрів розрізняють платформні і безплатфомні ІНС. У першому випадку акселерометри встановлюються на гіростабілізуючій платформі, у другому — безпосередньо на корпусі ЛА чи у спеціальному блоці чутливих елементів. Обидві системи мають свої переваги та недоліки. До переваг платформних ІНС відносять простоту алгоритмів обробки інформації про кутове положення і лінійні прискорення та високу точність, зумовлену сприятливими умовами роботи вимірювачів, оскільки вони розміщуються на гіростабілізаційній платформі, а не безпосередньо на корпусі об'єкта.

Зараз інтенсивно розвивається БІНС, перспективність яких визначається такими перевагами: висока надійність, низькі масогабаритні характеристики, зручність експлуатації. Характерна особливість таких ІНС, полягає у відсутності гіростабілізаційної платформи, яка являє собою складний електромеханічний пристрій та відкриває широкі можливості у плані зменшення масогабаритних характеристик й енергоспоживання.

До навігаційних датчиків, що визначають положення ЛА відносно навігаційних точок і базових ліній необхідно віднести радіотехнічні системи ближньої і дальньої навігації, літаковий далекомір, супутникову систему навігації (СНС), бортову радіолокаційну станцію, різні візирні пристрої, автоматичний компас, астрономічну навігаційну систему, кореляційно-екстремальну навігаційну систему. Найсучаснішими є супутникова навігаційна система і кореляційно-екстремальна навігаційна система.

СНС призначені для визначення місцеположення транспортних засобів, а також положення нерухомих об'єктів. Особливість дії СНС – це використання штучних супутників Землі як радіонавігаційних точок, координати яких, на відміну від наземних радіолокаційних точок, змінні.

Ці системи досить обґрунтовано довели високу експлуатаційну якість у різноманітних навігаційних галузях. Зокрема, вони визнані найбільш перспективними й економічно ефективними в більшості авіаційних сферах застосування. Поряд з цим, у зв'язку з можливою короткочасною втратою сигналів, які поступають із супутників, ці системи не можуть забезпечити необхідно-

				·
Зм.	Лист	№ докум.	Підп.	Дата

го рівня надійності навігаційних вимірів за такими показниками як цілісність, доступність і безперервність. Вирішити задачу підвищення цих показників можна шляхом комплексування супутникових навігаційних систем з іншими системами. Найбільш перспективним варіант полягає у інтеграції супутникових та інерціальних навігаційних систем. Така інтеграція дозволяє ефективно використовувати переваги кожної із систем.

Інерціальні навігаційні системи, як найбільш інформативні системи, дають змогу одержувати всю сукупність необхідних параметрів для керування об'єктом, включаючи кутову орієнтацію. При цьому, такі системи цілком автономні, тобто для їхнього нормального функціонування не потрібно використання будь-якої інформації від інших систем. Ще одна з переваг цих систем полягає у високій швидкості надання інформації зовнішнім споживачам: швидкість відновлення кутів орієнтації складає до 100 Гц, навігаційної - від 10 до 100 Гц. Цей показник для супутникових систем складає для кращих приймачів 10 Гц, а для звичайних, як правило, 1 Гц. Разом з тим, інерціальним системам притаманні недоліки, що не дозволяють використовувати їх довгий час в автономному режимі. Вимірювальним елементам ІНС, насамперед, гіроскопам та акселерометрам, притаманні методичні й інструментальні помилки, вихідні данні не можуть бути введені абсолютно точно, обчислювач, що входить до складу ІНС, вносить свої похибки. Під впливом цих факторів ІНС працює в так званому «збуреному» режимі, і отримана від ІНС інформація, буде містити похибки, що викликані впливом цих збурень, і, головне, які з часом збільшуються. Для корекції ІНС застосовують різні методи і засоби.

Корекція ІНС також може здійснюватися від радіотехнічних систем навігації (далекомірних, різницево-далекомірних), що складаються з наземної і бортової підсистем. Вони забезпечують одночасний вимір пеленга (азимута) і похилої дальності літального апарата щодо радіонавігаційної точки, і по цій інформації визначається місце розташування літака в заданій системі координат. До радіотехнічних систем варто віднести і супутникову систему навігації. Численні дослідження та практика експлуатації супутникових систем показують, що найбільш перспективним засобом корекції ІНС є супутникові системи, які володіють найбільш високою точністю і глобальністю застосування. При цьому можливо поліпшення характеристик автономних БІНС не тільки за координатами і швидкістю, але й за кутовою орієнтацією.

Зм	Лист	№ докум.	Підп.	Дата

Недоліком всіх радіотехнічних методів навігації, у тому числі і супутникових, є те, що на переданий і прийнятий радіосигнал можуть накладатися природні й штучно створювані радіозавади. Мала потужність сигналу, велика дальність джерел сигналу від приймачів (26000 км), мале відношення "сигналшум" приводить до слабкої перешкодозахищеності приймачів СРНС. Контури зрушення по фазі і за часом можуть легко "втратити" відповідний супутник при наявності активних перешкод. Особливо чуттєвим щодо цього є контур спостереження за фазою.

До того ж, існує явище періодичного зникнення сигналу від СНС. При збільшенні періоду "радіомовчання" супутника величина помилки навігаційних визначень збільшується аж до зриву керування (стабілізації на заданій траєкторії).

Виникає потреба у автономних засобах навігації, які не вимагають зовнішніх сигналів, а тому й не зазнають впливу радіоелектронного придушення. Цим умовам відповідає так звана інерціальна навігація. Використання інтегрованих інерціально-супутникових систем обумовлюється наступним: інерціальна і супутникова навігаційні системи вимірюють різні параметри: СНС - лінійні параметри (вектор положення ЛА в деякій геоцентричній системі координат і вектор його швидкості), а ІНС - як лінійні, так і кутові параметри.

Взагалі, СНС можна використовувати і для виміру кутових координат, але для цього необхідне використання декількох антен, установлених на визначеній відстані один від одного, і декількох приймачів, що різко ускладнюють й підвищують собівартість системи. Проте, використання корегованої від СНС, наприклад, за допомогою фільтра Калмана, ІНС дозволяє вимірювати кутове положення ЛА з досить малою похибкою. До того ж, ІНС дозволить екстраполювати сигнали СНС при значному періоді квантування сигналів.

Використання інтегрованих інерціально-супутникових систем навігації (ІССН) компенсує недоліки окремих систем, і забезпечує високу точність і надійність виміру параметрів польоту. Це підтверджує необхідність включення до складу навігаційного забезпечення ЛА комплексної інерціально-супутникової системи навігації, а також, розробки та дослідження працездатності алгоритмів її роботи, ступінь впливу похибок датчиків первинної інформації безплатформної інерціальної системи (БІНС) та супутникової навігаційної системи (СНС) на точнісні характеристики числення навігаційних параметрів і динаміку зміни

Зм.	Лист	№ докум.	Підп.	Дата

				НАУ 11 00 75 000	ПЗ	Арку. 9
(склад	ним марш Саме том		сить актуальною на сьогод	нішній час.	
				СНС на траєкторний рух Л	А при польот	і за

2 Аналіз та вибір навігаційного забезпечення

Задача створення комплексної навігаційної системи на базі супутникової та інерціальної систем навігації для визначення координат місцеположення рухомого об'єкта, передбачає попередній аналіз існуючих варіантів компонентів комплексної навігаційної системи, тобто варіантів побудови супутникової й інерціальної систем навігації та вибір за певними критеріями найбільш оптимальних.

2.1 Аналіз і вибір варіанта супутникової навігаційної системи

На сьогодні має сенс розглядати лише дві супутникові навігаційні системи : GPS (Global Positioning System), ГЛОНАСС (Глобальна Навігаційна Супутникова Система).

Двадцять чотири супутники системи GPS знаходяться на 12-годинних орбітах висотою metricconverterProductID20 146 км20 146 км із нахиленням орбіти, рівним 55. Таким чином, у будь-якій крапці земної кулі в межах прямої видимості мається не менш чотирьох супутників у конфігурації, сприятливої для місцевизначення.

Система заснована на обчисленні відстані від користувача до супутника за обмірюваним часом від передачі сигналу супутником до прийому цього сигналу користувачем.

Глобальна Навігаційна Супутникова Система (ГЛОНАСС) - це сума унікальних технологій, плід багаторічної праці російських конструкторів і вчених. Вона складається з 24 супутників, що, знаходячись у заданих крапках на високих орбітах, безупинно випромінюють убік Землі спеціальні навігаційні сигна-

2					HAY 11 00 75 0	00 П	3	
Зм.	Лист	№ докум.	Π ідп.	Дата				
Розр	робив	Hовік M . B .			. Інтегрована	Лит.	Аркуш	Аркушів
Πep	евірив	Φ іляшкін $M.K$	i		інерціально-супутникова система		10	35
		КозловА.П. СинєглазовВ	M.		навігації, що базується на принципах комплексної обробки інформації з використанням калманівської фільтрації	-	IACY	608

ли. Люба людина або транспортний засіб, оснащені спеціальним приладом для прийому й обробки цих сигналів, можуть з високою точністю в будь-якій крапці Землі і навколоземного простору визначити власні координати і швидкість руху, а також здійснити прив'язку до точного часу.

У складі сучасної супутникової радіонавігаційної системи (СРНС) типу ГЛОНАСС і GPS функціонують три основні підсистеми:

- а) Підсистема космічних апаратів (ПКА), що складається з навігаційних супутників (НС) (мережа навігаційних супутників космічний сегмент). ПКА СРНС складається з визначеного числа навігаційних супутників. Основні функції НС формування і випромінювання радіосигналів, необхідних для навігаційних визначень споживачів СРНС, контролю бортових систем супутника підсистемою контролю і керування СРНС. Відповідні характеристики сигналів НС і способи їхньої обробки дозволяють проводити навігаційні виміри з високою точністю.
- б) Підсистема контролю і керування (ПКК) (наземний командно-вимірювальн комплекс (КВК)) сегмент керування. ПКК являє собою комплекс наземних засобів (КВК), що забезпечують спостереження і контроль за траєкторіями руху НС, якістю функціонування їхньої апаратури, керування режимами її роботи і параметрами супутникових радіосигналів, складом, обсягом і дискретністю переданої із супутників навігаційної інформації та ін.
- в) Апаратура споживачів (AC) СРНС (прийомоіндикатори (ПІ)) сегмент споживачів. Апаратура споживачів призначена для визначення просторових координат, вектора швидкості, часу й інших навігаційних параметрів у результаті прийому й обробки радіосигналів багатьох навігаційних супутників (НС).

На вхід ПІ надходять сигнали від НС, що знаходяться в зоні радіо видимості. Оскільки для рішення навігаційної задачі необхідно вимірити псевдодальності і псевдошвидкості відносно, як мінімум, чотирьох НС, то ПІ повинний бути багатоканальним (більш 24 у сполучених ГЛОНАСС і GPS).

Зм.	Лист	№ докум.	Підп.	Дата

Сучасні ПІ є аналого-цифровими системами, що здійснюють аналогову і цифрову обробку сигналів. Перехід на цифрову обробку здійснюється на одній із проміжних частот, при цьому має місце тенденція до підвищення цієї проміжної частоти.

Основа типового варіанту Π І – два конструктивно роздільних блоків: антенний блок (AБ) та прийомообчислювач (Π O), які призначені для прийому й обробки навігаційних сигналів супутників з метою визначення необхідної споживачам інформації (просторово-тимчасових координат, напрямки і швидкості і т.п.).

В антенному блоці (рис. 2.1.1) сукупність сигналів НС, прийнятих антеною, попередньо підсилюється і фільтрується по всій смузі несучих частот НС у попередньому підсилювачі (ПП) зі смуговим фільтром (СФ).

Рисунок 2.1.1 – Схема антенного блоку СНС

Прийомообчислювач виконаний у вигляді блоку, у якому розташовані модулі вторинних джерел живлення і плати — прийомокорелятора, навігаційного обчислювача та інтерфейсного пристрою (рис. 2.1.2). Вхід ПО через фідерну лінію з'єднаний з виходом антенного блоку. В аналоговому приймачі АП сигнали підсилюються, фільтруються і переносяться з несучої частоти на проміжну (зниження частоти). В аналого-цифровому перетворювачі АЦП аналоговий сигнал перетвориться в цифрову форму.

В кореляторі (КОР) у цифровій формі формуються синфазні і квадратурні відліки, що є основою роботи алгоритмів пошуку сигналів по затримці і частоті спостереження за псевдодальністю, фазою сигналу і виділення навігаційного повідомлення.

Навігаційний обчислювач НО є цифровим процесором, у якому реалізується обчислювальний процес і керування роботою ПІ. Навігаційний обчислювач зручно представити у виді сигнального процесора СП, що реалізує алгоритми первинної обробки квадратурних складових, і навігаційного процесора НП, що

Зм.	Лист	№ докум.	Підп.	Дата

Рисунок 2.1.2 - Схема прийомообчислювача

реалізує алгоритми низькочастотної обробки, тобто рішення навігаційної задачі.

У прийнятого радіосигналу виміряються затримка t або доплерівський зсув частоти fдоп, які є радіонавігаційними параметрами, а відповідні їм дальність до об'єкта $\mathcal{L} = c$ t і радіальна швидкість зближення Vр = fдопl служать навігаційними параметрами (c — швидкість світла; l - довжина хвилі радіосигналу).

Просторове положення споживача визначається в прийомоіндикаторі в два етапи: спочатку визначаються поточні координати супутників і первинні навігаційні параметри (дальність, її похідні й ін.) щодо відповідних НС, а потім розраховуються вторинні — географічна широта, довгота, висота споживача і т.д.

Вектор швидкості споживача обчислюють шляхом обробки результатів вимірів доплерівських зсувів частоти сигналів НС з урахуванням відомого вектора швидкості супутника.

Інтерфейсний пристрій (ІП) призначений для забезпечення взаємодії прийомоіндикатора з зовнішніми пристроями такими, наприклад, як пульт керування й індикації (ПКІ). Додатково до складу ІП входять два підсилювачі П, що формують ознаку відмови ПІ і сигнали дискретного керування, а також 8розрядний регістр Рг, що приймає сигнали дискретного керування. Цей регістр доступний для читання з боку НО. Останній, у залежності від інформації, що знаходиться в регістрі, вибирає той або інший режим роботи.

Таким чином, основною операцією, що виконуваної в СНС за допомогою космічного сегменту, сегменту керування та сегменту споживача, є визначення просторових координат місця розташування споживачів і часу, тоб-

Зм.	Лист	№ докум.	Підп.	Дата

то просторово-тимчасових координат (ПТК). Як було показано, цю операцію здійснюють відповідно до концепції незалежної навігації, що передбачає обчислення шуканих навігаційних параметрів безпосередньо в апаратурі споживача. У рамках цієї концепції в СРНС обраний позиційний спосіб визначення місця розташування споживачів на основі беззапитних (пасивних) далекомірних вимірів по сигналах декількох навігаційних штучних супутників Землі з відомими координатами. Висока точність визначення місця розташування споживачів обумовлена багатьма факторами, включаючи взаємне розташування супутників і параметри їхніх навігаційних сигналів. Структура космічного сегмента забезпечує для споживача постійну видимість необхідного числа супутників.

Використання СНС в інтересах місцезнаходження і навігації рухливих об'єктів, а також у рішенні спеціальних задач (спостереження, аерофотознімання, пошук корисних копалин, пошук і порятунок транспортних засобів, що терплять нещастя, і людей) висуває високі вимоги.

Вимоги до точнісних характеристик, таких як середньоквадратичне відхилення помилки (СКП) визначення навігаційних параметрів, показників надійності навігаційного забезпечення, тощо наступні:

- доступність (готовність), мірою якої є імовірність працездатності СРНС перед виконанням тієї або іншої задачі та у процесі її виконання. Чисельні значення доступності складають 0,95..... 0,997;
- цілісність, мірою якої є імовірність виявлення відмови протягом часу,
 рівному заданому або менше. Вимоги до цілісності для маршрутних польотів складає 0,999;
- безперервність обслуговування, мірою якої служить імовірність працездатності системи протягом найбільш відповідальних відрізків часу. На етапах заходу на посадку вимоги до безперервності обслуговування складають 10^{-5} 10^{-4} для проміжків часу від 15 до 150 с.

Основні навігаційні параметри, що визначаються в СРНС – дальність і радіальна швидкість. Відповідними їм радіонавігаційними параметрами (параметрами радіосигналу) служать затримка t сигналу і доплерівський зсув частоти $f_{\text{доп}}$. Оскільки головною вимогою до СРНС є висока точність виміру навігаційних параметрів, отже, й основною вимогою до радіосигналів так само є висока точність виміру затримки t сигналу і доплерівського зсуву частоти $f_{\text{доп}}$.

Зм.	Лист	№ докум.	Підп.	Дата

Вимоги до підвищення точності затримки сигналу і доплерівського зсуву частоти суперечливі. Для підвищення точності виміру затримки необхідно розширювати спектр сигналу, а для підвищення точності виміру доплерівського зсуву частоти— збільшувати тривалість сигналу.

Дане протиріччя вирішується при вирішенні задачі спільної оцінки t та $f_{\text{доп}}.$

Підвищення точності спільних оцінок затримки сигналу і доплерівського зсуву частоти можна досягти за рахунок збільшення так званої бази сигналу — B (добуток ефективної тривалості сигналу на ефективну ширину спектра сигналу) і основною вимогою до радіосигналів у СРНС є збільшення бази сигналу B 1. Такі сигнали називають шумоподібними. Відомо, що стійкість до перешкод радіотехнічної системи визначається значенням бази сигналу, а для більшості ЛА скритність і перешкодозахищеність є одним з визначальних вимог.

Інша істотна вимога — забезпечення багатостанційного доступу. При визначенні навігаційних параметрів у споживача повинна бути можливість одночасного доступу до сигналів від різних супутників. Проблема багатостанційного доступу вирішується шляхом тимчасового, частотного або кодового поділу сигналів, наприклад, у супутниковій навігаційній системі GPS використовується кодовий поділ, у СРНС ГЛОНАСС - частотний.

З результатів аналізів стає очевидно, що не має принципової різниці між супутниковими навігаційними системами GPS та ГЛОНАСС.

В залежності від області використання апаратура споживача (AC) має свої особливості, тому виробники AC завжди вказують на область застосування відповідного зразка. Крім основних блоків, таких, як антена, приймач, індикатор, AC може містити допоміжні, що забезпечують виконання спеціальних сервісних функцій, наприклад, діагностику вузлів транспортного засобу, зв'язок з диспетчерським пунктом і т.п.

В табл. 2.1.1 наведені коротка інформація про основні зразки АС, що працюють за сигналами СРНС ГЛОНАСС та GPS. Наведена інформація не претендує на повноту відомостей як про існуючі зразки АС, так і про іх характеристики, а дається для ілюстрації досягнутого рівня в розробці та виробництві АС СРНС.

Апаратура споживачів

З огляду на, те що супутникова система навігації буде працювати в ком-

Зм.	Лист	№ докум.	Підп.	Дата

Таблиця 2.1.1 – Апаратура споживачів

Найменування	Область	Виробник	Число ка-	Точність (в	в ав-	Maca,
апаратури	викори-		налів	тономному	pe-	КГ
	стання			жимі)		
				координат,	швидкості,	
				M	м/с	
Станція моніто-	Моніторинг	РНИИ КЛ	24	13	12	6,0
рингу та фор-						
мування ДП						
"Гном-М"	Авіація		612	8090	1215	3,2
ACH-22	Авіація	РИРВ	18	2530		0,4
НАВИС СН	Авіація		14	1520	810	2,4
3301						
"Интер-А"	Авіація	МКБ	12	2530	1030	3,5
		КОМПАС				
A-744	Авіація	Фирма	6	3035	1520	2,0
		"Кодтик"				

плексі з інерціальною системою навігації, то навряд варто встановлювати на борт ЛА повний комплект супутникової системи. Досить обмежитися прийомоіндикатором і сигнальним процесором, думаючи, що алгоритми рішення навігаційної задачі будуть вирішуватися в спільному процесорі інерціально - супутникової системи навігації.

Виходячи з вищенаведеного, а також враховуючи умови застосування ЛА та вимоги ТЗ можна сформулювати вимоги, яким повинний задовольняти обраний тип прийомоіндикатора СРНС.

Розв'язувані задачі:

- автоматичне, безперервне, глобальне, всепогодне визначення поточних ЗD-координат місця розташування, вектора шляхової швидкості шляхового кута ЛА при роботі: по сигналу стандартної точності частотного діапазону L1 ГЛОНАСС; по сигналі З/А-коду GPS; при спільній обробці вищевказаних сигналів;
- видача поточних ЗD-координат місця розташування ЛА, що є складовими вектора швидкості і шляхового кута в системі координат СК-42 або ПЗ-90 у географічному форматі, а також ознак режиму роботи

				·
Зм.	Лист	№ докум.	Підп.	Дата

апаратури;

- стійке визначення навігаційних параметрів при русі з лінійними прискореннями і при стрибкоподібних змінах прискорення;
- можливість переключення з антени носія на антену ЛА;
- інтегральна оцінка очікуваної точності визначення поточних координат місця розташування;
- автоматичний вибір оптимального з погляду очікуваної точності сузір'я НС ГЛОНАСС і GPS при роботі в сполученому режимі;
- автоматичне рішення навігаційної задачі в географічній системі координат:

Джерела похибок СНС

Визначення координат вимагає точний час, позицію супутників і затримки вимірів отриманого сигналу. Точність позиціонування переважно залежить від координат супутників і затримки сигналу. Загальним недоліком любої СНС є те, що сигнал при деяких умовах може не доходити до приймача, або приходити із значними затримками та спотвореннями. Далі розглянуто основні джерела похибок СНС.

Вибіркова доступність

Суттєвим недоліком є повна залежність умов отримання сигналу від міністерства оборони США у випадку GPS, методом додавання похибки елалону часу супутниками, що впливає на визначення координат для не авторизованих користувачів. В травні 2000 року таке обмеження було знято, але немає гарантії, що це не станеться знову. Так, наприклад, під час бойових дій в Іраці, весь цивільний сектор був відключений.

Атмосферні явища

Атмосферні ефекти представляються наступними помилками. Тропосфера знаходиться на висоті від 6 до 18 км. Вона електрично нейтральна і недисперсна для частот до 15 $\Gamma\Gamma\Pi$ [10,12]. Але через наявність водяного пару, атмосферної температури та тиску, спричиняє затримки.

Зм.	Лист	№ докум.	Підп.	Дата

Іоносфера знаходиться на вистоті від 50 до 1500 км і включає велику кількість вільних електронів і позитивно заряджених іонів. Це створює групову затримку сигналу, а також рефракційні та дифракційні ефекти[10]. Іоносферна активність значно залежить від кількості плям на Сонці. Використання деяких моделей та DGPS може значно поліпшити визначення координат.

Помилки ефемерид та еталону часу

Інше джерело похибок – це неточність визначення ефемерид. Хоча ефемериди і передаються кожні 30 секунд, сама інформація може бути вже 2 години як застарілою.

Атомні годинники в супутниках мають бути синхронізовані з часом всієї системи. Найменші відхилення моніторяться спеціальними станціями і помилка передається як коефіцієнти поліному другого порядку. Більші помилки утворються в приймачах і варіюється від мікро- до мілі- секунд.

Ефекти відбивання

Сигнали СНС може спотворюватись ефектами не прямолінійності траєкторії проходження сигналу, де радіосигнал відбивається від навколишнього ландшафту, будинків гірської поверхні. Ці затримки сигналу впливають на виміри псевдодальності та фази.

Затримки сигналу

Для виміру затримки, приймач порівнює послідовність бітів, отриманих з супутника, з генерованою версією. Через порівняння наростання і спадання імпульсів, сучасна електроніка може визначати зміщення сигналу імпульсу кожного біта в межах одного відсотку, або приблизно 10 нс для С/А коду. Так як сигнал СНС розповсюджується із швидкістю світла, виникає помилка приблизно 3м. Точність може бути покращена приблизно в 10 разів, за рахунок викорисання більш високочастоного сисгналу, помилка зменшуєтья приблизно до 0.3 м.

Зниження точності (DOP)

DOP - зниження точності (англ. Dilution of precision, DOP) - термін, що використовується в області систем глобального позиціонування для параметричного опису геометричного розташування супутників щодо антени приймача. Коли супутники в області видимості знаходяться дуже близько один до одного гово-

Зм	Лист	№ докум.	Підп.	Дата

рять про «слабку» геометрії розташування (високе значення DOP), і, навпаки, при достатній віддаленості геометрію вважають «сильною» (низьке значення DOP). Фактори, що впливають на геометричне зниження точності.

Орбіти супутників присутність об'єктів перешкод, що затіняють необхідну область неба вплив атмосфери відбивання радіохвиль

Поимилки псевдодальностей $\delta \rho$ може бути отримана з позиційних помилок та помилок еталону часу $\delta e = [\delta x, \delta y, \delta z, c \cdot p \delta t]^T$

Основні параметри:

- HDOP (Horizontal Dilution of Precision) зниження точності в горизонтальній площині;
- VDOP (Vertical) зниження точності у вертикальній площині;
- PDOP (Position) зниження точності за місцем розташування;
- TDOP (Time) зниження точності за часом;
- GDOP (Geometric) геометричне зниження точності.

Зм.	Лист	№ докум.	Підп.	Дата

2.2 Алгоритми роботи трикомпонентної БІНС

Алгоритм функціонування БІНС містить у собі сукупність аналітичних залежностей, які дозволяють за вимірюваним значенням уявного прискорення й абсолютної кутової швидкості ЛА безперервно визначати поточне значення координат місця розташування, складові шляхової швидкості та кутове положення ЛА в обраній навігаційній системі координат.

В алгоритмах роботи трикомпонентної БІНС, як і в алгоритмах платформної ІНС, точність зчислення навігаційних параметрів досягається за рахунок виключення із сигналів уявного прискорення, яке вимірюють акселерометри, складові прискорення сили ваги і коріолісового прискорення. Але вплив цих складових компенсується на відміну від платформної ІНС тільки аналітично.

Кінематичні рівняння інерціальної навігації в основному визначаються вибраною системою координат, тобто навігаційним базисом, в якому визначаються навігаційні параметри (координати і проекції швидкості). У свою чергу, вибір навігаційного базису залежить від типу літального апарата, особливостей його траєкторного руху, характеру розв'язуваних задач.

Наприклад, для БІНС, що інтегруються зі супутниковими навігаційними системами, можна застосовувати інерціальну систему координат, яка використовується супутниковою системою навігації. При цьому, позиційну інформацію одержують у формі декартових прямокутних координат, швидкісну — у формі проекцій абсолютної швидкості на осі вибраної інерціальної системи координат, а інформацію про кутову орієнтацію — у вигляді відповідної матриці або трьох кутів орієнтації ЛА відносно вибраного базису. Подальше перерахування отриманих координат в обертову систему координат ПЗ-90 (WGS-84) здійснюється за алгоритмами супутникової системи навігації.

Для БІНС літальних апаратів, які здійснюють рух в атмосфері Землі, найбільш часто використовуються обертові системи координат з базовою площиною місцевого горизонту і певною орієнтацією горизонтальних осей в азимуті. Під орієнтацією осей в азимуті розуміється можливість їхньої орієнтації, наприклад, за сторонами світу, коли дві горизонтальні осі спрямовані в східному і північному напрямках. При цьому позиційну інформацію визначають

Зм.	Лист	№ докум.	Підп.	Дата

широтою φ , довготою λ і висотою h, що виміряні на еліпсоїді Красовського або на еліпсоїді міжнародної системи WGS-84, швидкість визначають проекціями на східну V_E , північну V_N і вертикальну осі V_H , якщо за навігаційну систему вибрана система з орієнтацією осей за сторонами світу, або проекціями на осі горизонтального базису з іншою орієнтацією. Орієнтація при цьому визначається кутами крену, тангажа і аправжнього курсу.

Типову схему побудови БІНС зображено на **рис. 8.5**. Цей варіант реалізує алгоритм системи, яка працює в обертовій земній системі координат.

Датчики первинної інформації БІНС – датчики кутової швидкості й акселерометри встановлюються жорстко на ЛА. Складні умови роботи датчиків інформації призводять до появи значних похибок, тому в алгоритмах роботи БІНС бажано здійснити аналітичну компенсацію похибок вимірників (здійснювати їх польотне калібрування), перш ніж ці сигнали будуть використані для розрахунку параметрів орієнтації і для визначення складових уявного прискорення уздовж навігаційних осей.

Для корекції показань датчиків первинної інформації необхідна математична модель вимірника, в якій, зазвичай, враховують: нелінійність; неспіввісність осей датчиків; дрейф; викривлення масштабного коефіцієнта.

Сигнали $\omega_{x,y,z}$ з виходу аналітичного компенсатора похибок використовуються для обчислення параметрів матриці напрямних косинусів B, яка визначає зв'язок між двома системами координат. Оскільки матриця напрямних косинусів B визначається між зв'язаними з Π осями й осями обертової навігаційної системи координат, то при розрахунках параметрів матриці B необхідно залучити обчислені проекції вектора кутової швидкості навігаційної системи координат, що відображено на схемі додатковими зв'язками, які враховують кутову швидкість, що виникає при обльоті сферичної Землі $(\dot{\lambda}, \dot{h}, \dot{\varphi})$, і кутову швидкість обертання самої Землі (Ω_3) .

Перетворення складових уявного прискорення $a_{x,y,z}$ від осей ЛА до осей навігаційної системи координат здійснюється за допомогою матриці напрямних косинусів B. Навігаційний обчислювач вирішує задачі, властиві всім платформним системам, оскільки на вході цього обчислювача сформовані проекції уявного прискорення на осі навігаційної системи координат і нічого принципово нового в розв'язанні цієї задачі немає. На виході БІНС формуються радіус-вектор місця розташування ЛА, вектор швидкості, а також кути орієнтації ЛА.

				·
Зм.	Лист	№ докум.	Підп.	Дата

В окремому випадку, коли за навігаційний базис вибраний горизонтальний орієнтований за сторонами світу тригранник, на виході системи будуть сформовані географічні (геодезичні) координати радіуса-вектора місця розташування B, L, H, проекції відносної швидкості руху V_N, V_E, V_H , а також кути орієнтації ЛА в географічній системі координат — справжній курс ψ , тангаж ϑ і крен γ .

Обсяг обчислень у БІНС значний. Це пояснюється в основному тим фактом, що БЦОМ розв'язує задачі, які пов'язані з динамікою обертання ЛА, а також з динамікою поступального руху ЛА. Поступальні швидкості ЛА відносно малі. Наприклад, швидкість при польоті ЛА в напрямку на північ 1100 км/год відповідає швидкості зміни широти усього на 10 град/год.

Таким чином, інтегрування для одержання швидкості і місця розташування можуть здійснюватися досить точно з використанням дуже простих методів чисельного інтегрування при низькій частоті повторення в типовому випадку $10...20~\Gamma$ ц .

Кутові швидкості ЛА в типовому випадку за величиною на кілька порядків більші поступальних швидкостей. Зокрема, для маневрених ЛА кутові швидкості обертання можуть складати сотні градусів за секунду. В результаті цього інтегрування кутового положення в БІНС зв'язано з жорсткими вимогами до БЦОМ.

Оскільки для забезпечення високої точності інерціальної навігації потрібно, щоб похибки інтегрування кутового положення обмежувалися декількома частками кутової хвилини, необхідно застосовувати алгоритми інтегрування більш високого порядку при типових частотах повторення 80...50 Гц.

З огляду на вище сказане, наведемо варіант побудови алгоритмів БІНС для випадку, коли за навігаційний базис вибраний горизонтальний орієнтований за сторонами світу тригранник.

Алгоритми БІНС, яка працює в географічній системі координат

За навігаційний тригранник візьмемо тригранник *NHE*, зв'язаний з земною поверхнею. Виберемо наступний напрямок осей *NHE* (рис. 2.2.1):

Рисунок 2.2.1 – Системи координат

Зм.	Лист	№ докум.	Підп.	Дата

ОН -збігається з вертикаллю;

ON – дотична до меридіана;

OE – утворює праву трійку.

В алгоритмах БІНС, зазвичай, виділяють динамічні та кінематичні рівняння. Динамічні рівняння реалізують трикомпонентну схему БІНС, у якій географічні координати $L,\ B,H$ визначаються інтегруванням рівнянь вигляду

$$\dot{L} = \frac{V_E}{(R_2 + H)\cos B};$$

$$\dot{B} = \frac{V_N}{R_1 + H};$$

$$\dot{H} = V_H,$$

де V_N, V_E — північна та східна проєкції шляхової швидкості (проєкції на осі системи координат NHE (див. рис. 2.2.1);

 R_1 , R_2 – два радіуси кривизни земного сфероїда (еліпсоїда обертання);

 R_1 – радіус кривизни меридіонального перетину еліпсоїда (площиною HN);

 R_2 – радіус кривизни перетину еліпсоїда площиною HE (площиною першого вертикала);

$$R_1 = \frac{a(1 - e^2)}{(1 - e^2 \sin(B)^2)^{\frac{3}{2}}}; R_2 = \frac{a}{\sqrt{1 - e^2 \sin(B)^2}}.$$

де a — велика піввісь еліпсоїда (a=6378388 м);

e — ексцентриситет еліпсоїда ($^2 = 6,7310^{-3}$);

H – висота польоту.

Тут можна застосовувати такі ж спрощення, що й у платформних інерціальних системах. Зокрема, функції $\frac{1}{R_1+H}$ та $\frac{1}{R_2+H}$ з точністю до членів порядку малості 10^{-5} можна представити в наступному вигляді:

$$\begin{split} &\frac{1}{R_1 + H} = \frac{1}{a} [1 - e^2 - \frac{H}{a} - \frac{3}{2} e^2 \sin^2 B - 2 e^2 \frac{H}{a} + 3 e^2 \frac{H}{a} \sin^2 B + (\frac{H}{a})^2 + \\ &+ e^4 (1 - 3 \sin^2 B + \frac{3}{8} \sin^4 B); \\ &\frac{1}{R_2 + H} = \frac{1}{a} [1 - \frac{H}{a} - \frac{1}{2} e^2 \sin^2 B + (\frac{H}{a})^2 + e^2 \frac{H}{a} \sin^2 B + \\ &+ e^4 (\frac{1}{4} \sin^2 B - \frac{3}{8}) \sin^2 B] \end{split}$$

Якщо у формулах $\frac{1}{R_1+H}$ та $\frac{1}{R_2+H}$ зберегти лише члени порядку малості

Зм.	Лист	№ докум.	Підп.	Дата

 10^{-2} , то вони приймуть вигляд

$$\frac{1}{R_1 + H} \approx \frac{1}{a} \left[1 - e^2 - \frac{H}{a} - \frac{3}{2} e^2 \sin(B)^2 \right];$$

$$\frac{1}{R_2 + H} \approx \frac{1}{a} \left[1 - \frac{H}{a} - \frac{1}{2} e^2 \sin(B)^2 \right].$$
(2.2.1)

Слід відзначити, що використання спрощень (??) може призвести до похибок, порівняних з похибками високоякісних гіроскопічних вимірників, які використовуються в БІНС.

Складові шляхової швидкості ЛА V_E , V_N , V_H одержують в результаті інтегрування проекцій сигналів акселерометрів, виключаючи із них складові коріолісового прискорення і прискорення сили ваги:

$$\dot{V}_E = a_E - (V_N \omega_{H_\Sigma} - V_H \omega_{N_\Sigma}) + g_E;
\dot{V}_H = a_H - (V_E \omega_{N_\Sigma} - V_N \omega_{E_\Sigma}) + g_H;
\dot{V}_N = a_N - (V_H \omega_{E_\Sigma} - V_E \omega_{H_\Sigma}) + g_N,$$
(2.2.2)

де $a_{E,H,N}$ – проекції уявного прискорення ЛА, вимірювані акселерометрами, на осі навігаційного тригранника;

 $g_{E,H,N}$ — проекції вектора прискорення сили ваги, які враховують прискорення земного тяжіння, і прискорення, що викликається відцентровою силою інерції і зв'язане з обертанням Землі;

складові в дужках — проекції коріолісового прискорення на осі навігаційного тригранника;

 $\omega_{E_{\Sigma}} \, \omega_{H_{\Sigma}} \, \omega_{N_{\Sigma}}$ — проекції кутової швидкості навігаційного тригранника відносно інерціального простору, які враховують проекції кутової швидкості обертання Землі $\Omega_E \, \Omega_H \, \Omega_N$ і складові відносної кутової швидкості навігаційного тригранника, які обумовлені рухом ЛА відносно Землі $\omega_{E_V} \, \omega_{H_V} \, \omega_{N_V}$:

$$\omega_{N_{\Sigma}} = \omega_{N_V} + 2\Omega_N; \omega_{H_{\Sigma}} = \omega_{H_V} + 2\Omega_H; \omega_{E_{\Sigma}} = \omega_{E_V} + 2\Omega_E.$$

У свою чергу, складові відносної кутової швидкості навігаційного тригранника і швидкості обертання Землі визначаються співвідношеннями

$$\begin{split} &\omega_{E_{V}} = -\frac{V_{N}}{R_{1}+} = -\dot{B}; \\ &\omega_{H_{V}} = \frac{V_{E}}{(R_{2}+H)} tgB = \dot{L}\sin B; \\ &\omega_{N_{V}} = \frac{V_{E}}{(R_{2}+H)} = \dot{L}\cos B; \end{split}$$

Зм.	Лист	№ докум.	Підп.	Дата

$$\Omega_N = \Omega_3 \cos B; \Omega_H = \Omega_{text} \sin B; \Omega_E = 0,$$

де Ω_7 — кутова швидкість обертання Землі ($\Omega_3 = 7, 27 \cdot 10^{-5} \; \mathrm{pag/c}$).

Детермінована математична модель прискорення сили ваги існує тільки для нормальної складової поля сили ваги, що відповідає земному еліпсоїду з рівномірним розподілом мас в об'ємі цієї фігури. Градієнт цього поля в будьякій точці, що належить поверхні еліпсоїда, спрямований за нормаллю до неї і розташований у площині меридіонального перетину. Оскільки точка місцеположення ЛА не належить поверхні Землі, то вектор градієнта нормального поля сили ваги \bar{g} в цій точці не буде спрямований за лінією нормалі, опущеної з неї до поверхні земного еліпсоїда (вісь OH). Разом з тим, цей вектор буде розташований у площині меридіана точки O, тобто в площині NOH. Тоді, використовуючи потенційну функцію нормального поля тяжіння земного сфероїда, з точністю до членів порядку малості 10–5 співвідношення для проєкцій складових поля сили ваги \bar{g} мають такий вигляд:

$$g_E = 0;$$

$$g_N = \frac{1}{2}g\left[\frac{H}{a}(e^2 - 5q) + qe^2\sin^2 B\right]\sin 2B;$$

$$g_H = -g\left\{1 - 2\frac{H}{a} - (e^2 + 2q - 3\frac{H}{a})\frac{H}{a} + \left[\frac{1}{2}(5q - e^2) - \frac{1}{8}e^4 + \frac{17}{18}qe^2 + (3e^2 - 5q)\frac{H}{a}\right]\sin^2 B - \frac{1}{2}qe^2\sin^4 B + \frac{1}{16}e^2(\frac{1}{2}e^2 - 7q)\sin^2 2B\right\},$$

де $g=9,78049~{\rm m/c2}$ прискорення сили ваги на екваторі; $q=\Omega_{text}^2a/g=0,00346775$ — відношення відцентрової сили, обумовленої обертанням Землі, до сили ваги на екваторі.

З точністю до величин порядку малості 10^{-4} співвідношення для проекцій складових поля сили ваги \bar{g} декілька спрощуються:

$$g_E = 0;$$

$$g_N = g \sin 2B + \frac{5}{2}q \sin^2 B + \frac{6}{2}(e^2 - 2q);$$

$$g_H = -g \left[1 - \frac{e^2}{2} \sin^2 B + \frac{3}{2}q \sin^2 B + e^4(-\frac{1}{8} \sin^2 B + \frac{1}{32} \sin^2 2B) + e^2q \left(-\frac{17}{28} \sin^2 B - \frac{5}{16} \sin^2 2B \right) + \frac{H}{a}e^2(3 \sin^2 B - 1) + \frac{Hq}{a}(-1 - 6 \sin^2 B) - 2\frac{H}{a} + 3\frac{H^2}{a^2} \right],$$

Зм.	Лист	№ докум.	Підп.	Дата

а при малих значеннях висоти (≤ 100 км) проекції вектора \bar{g} на осі NHE, якщо в них зберегти лише члени порядку малості 10^{-2} , взагалі мають простий вигляд:

$$g_E = 0;$$

 $g_N = 0;$
 $g_H = -g(1+5, 2884 \cdot 10^{-3} \sin^2 B)[1 - \frac{2H}{a}(1 - e \sin^2 B)]$

Є й інші форми запису даної складової.

При розв'язанні кінематичних рівнянь розраховуються проєкції $0_{E,H,N}$ уявного прискорення ЛА на осі навігаційного тригранника NHE за показаннями акселерометрів зі зв'язаної з ЛА системи координат XYZ з використанням матриці напрямних косинусів B

$$\left[egin{array}{c} a_N \ a_H \ a_E \end{array}
ight] = B \left[egin{array}{c} a_{x_{
m JA}} \ a_{y_{
m JA}} \ a_{z_{
m JA}} \end{array}
ight]$$

Матриця напрямних косинусів має такий вигляд:

$$B = \begin{bmatrix} \cos \psi \cos \vartheta & \sin \psi \sin \gamma - \cos \psi \sin \vartheta \cos \gamma & \sin \psi \cos \gamma + \sin \gamma \sin \vartheta \cos \psi \\ \sin \vartheta & \cos \vartheta \cos \gamma & -\cos \vartheta \sin \gamma \\ -\sin \psi \cos \vartheta & \cos \psi \sin \gamma + \sin \psi \sin \vartheta \cos \gamma & \cos \psi \cos \gamma - \sin \psi \sin \vartheta \sin \gamma \end{bmatrix}$$

де γ , ϑ , ψ – кути крену, тангажа і рискання. Кут рискання відрізняється від географічного курсу ψ г знаком, тобто ψ г = ψ .

Матриця напрямних косинусів B може бути отримана в різні способи. Наведемо приклади деяких з них.

Матриця напрямних косинусів B може бути отримана в результаті розв'язання узагальненого рівняння Пуассона за інформацією про кутову швидкість ЛА відносно інерціального простору $\omega \Lambda A$ і кутову швидкість навігаційної системи координат відносно інерціального простору ωNHE , яка враховує кутову швидкість обертання Землі і кутову швидкість, обумовлену обльотом ΛA сферичної Землі

$$\dot{}=\omega-\omega_{NHE},$$

Зм.	Лист	№ докум.	Підп.	Дата

$$\omega = \begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix}; \ \omega_{NHE} = \begin{bmatrix} 0 & -(\omega_{E_V} + \Omega_E) & (\omega_{H_V} + \Omega_H) \\ (\omega_{E_V} + \Omega_E) & 0 & -(\omega_{N_V} + \Omega_N) \\ -(\omega_{H_V} + \Omega_H) & (\omega_{N_V} + \Omega_N) & 0 \end{bmatrix}$$

 $\omega x \Pi A$, $\omega y \Pi A$, $\omega z \Pi A$ – кутові швидкості ΠA відносно зв'язаних осей, вимірювані датчиками кутової швидкості; Ω , Ω , Ω_N і ω_V , ω_V , ω_{N_V} були визначені раніше.

За елементами матриці B визначаються кути орієнтації ЛА: крен γ , тангаж ϑ рискання (курс) ψ :

$$\gamma = \arctan\left(\frac{-b_{23}}{b_{22}}\right) = \arcsin\left(\frac{-b_{23}}{\sqrt{1 - b_{21}^2}}\right) = \arccos\left(\frac{b_{22}}{\sqrt{1 - b_{21}^2}}\right);
\vartheta = \arctan\left(\frac{b_{21}}{\sqrt{b_{22}^2 + b_{33}^2}}\right) = \arcsin(b_{21}) = \arccos\left(\sqrt{1 - b_{21}^2}\right);
\psi = -\arctan\left(\frac{b_{31}}{b_{11}}\right) = \arcsin\left(\frac{-b_{31}}{\sqrt{1 - b_{21}^2}}\right) = \arccos\left(\frac{b_{11}}{\sqrt{1 - b_{21}^2}}\right) .$$
(2.2.3)

Інший алгоритм отримання матриці напрямних косинусів припускає її формування безпосередньо за кутами $\gamma,\, \vartheta,\, \psi.$

Кінематичні співвідношення між кутами γ , ϑ , ψ і проекціями вектора абсолютної кутової швидкості на осі зв'язаної системи координат $\omega_{x_{\Sigma}}$, $\omega_{y_{\Sigma}}$, $\omega_{z_{\Sigma}}$ можна одержати з рис. 8.7, на якому показано перетворення навігаційної системи координат $OLR\Phi$ у зв'язану OXYZ шляхом трьох поворотів: 1 навколо осі OR; 2 навколо проміжної осі OZ^* ; 3 навколо осі OX.

Звичайно, що кутові швидкості $\dot{\psi}$, $\dot{\vartheta}$, $\dot{\gamma}$, які спрямовані уздовж відповідних осей, є складовими абсолютної кутової швидкості ЛА.

Проектуючи $\dot{\psi}, \dot{\vartheta}, \dot{\gamma}$ на осі зв'язаної системи координат, отримаємо:

$$\omega_{x_{\Sigma}} = \dot{\gamma} + \dot{\psi}\sin\vartheta;$$

$$\omega_{y_{\Sigma}} = \dot{\vartheta}\sin\gamma + \dot{\psi}\cos\vartheta\cos\gamma;$$

$$\omega_{z_{\Sigma}} = \dot{\vartheta}\cos\gamma - \dot{\psi}\cos\vartheta\sin\gamma.$$

Розв'язуючи ці співвідношення, одержимо такі кінематичні рівняння:

Зм.	Лист	№ докум.	Підп.	Дата

$$\dot{\psi} = (\omega_{y_{\Sigma}} \cos \gamma - \omega_{z_{\Sigma}} \sin \gamma) \sec \vartheta;$$

$$\dot{\gamma} = \omega_{x_{\Sigma}} + \operatorname{tg}\vartheta \ (\omega_{z_{\Sigma}} \sin \gamma - \omega_{y_{\Sigma}} \cos \gamma);$$

$$\dot{\vartheta} = \omega_{y_{\Sigma}} \sin \gamma + \omega_{z_{\Sigma}} \cos \gamma.$$

У свою чергу

$$\omega_{y_{\Sigma}} = \omega_{y} - \omega_{y_{NHE}};$$

$$\omega_{x_{\Sigma}} = \omega_{x} - \omega_{x_{NHE}};$$

$$\omega_{z_{\Sigma}} = \omega_{z} - \omega_{z_{NHE}};$$

де $\omega_y,\ \omega_x,\ \omega_z$ — проекції кутової швидкості ЛА відносно інерціального простору на осі зв'язаної системи координат, вимірювані датчиками кутових швидкостей;

— проекції кутової швидкості навігаційного тригранника відносно інерціального простору на осі зв'язаної системи координат, які враховують проекції кутової швидкості обертання Землі $\Omega_H,~\Omega_E,~\Omega_N$ і складові відносної кутової швидкості навігаційного тригранника, що обумовлені рухом ЛА відносно Землі $\omega_{H_V},~\omega_{E_V},~\omega_{N_V}$. Ці проекції кутової швидкості визначаються в результаті розв'язання матричного рівняння

$$\begin{bmatrix} \omega_{x_{NHE}} \\ \omega_{y_{NHE}} \\ \omega_{z_{NHE}} \end{bmatrix} = B^{B} \begin{bmatrix} \omega_{N_{V}} + \Omega_{N} \\ \omega_{H_{V}} + \Omega_{H} \\ \omega_{E_{V}} + \Omega_{E} \end{bmatrix}.$$

Перевагою такого підходу до визначення кутів орієнтації ЛА (інтегруванням диференціальних рівнянь, що описують швидкості зміни кутів Ейлера, а не за арктангенсами відношення елементів матриці напрямних косинусів) є відсутність обмежень у ± 90 \circ , що особливо важливо при визначенні курсу ЛА на віражах.

Тривимірні матриці напрямних косинусів досить зручні для обчислень у бортовій ЦОМ. Однак формування матриці B з використанням тригонометричних функцій вимагає значних обчислювальних витрат.

Для визначення орієнтації ЛА можна використовувати не тільки напрямні косинуси, але і параметри Родрига-Гамільтона у формі кватерніонів. Достоїнство методу кватерніонів полягає в тому, що він дозволяє описувати перехід від

				·
Зм.	Лист	№ докум.	Підп.	Дата

однієї системи координат до іншої за допомогою всього лише чотирьох чисел, а не 9 напрямних косинусів.

Кватерніонний метод ґрунтується на теоремі Ейлера, яка доводить, що будь-який поворот однієї системи координат відносно іншої можна подати, як поворот на деякий кут навколо однієї нерухомої осі.

Кватерніон є компактною формою запису орієнтації зазначеної осі (векторна частина кватерніона $\lambda_1, \lambda_2, \lambda_3$) і кута повороту (скалярна частина кватерніона λ_0) відповідно до теореми Ейлера.

Застосування кватерніонів дозволяє подати ортогональні перетворення у формі множення кватерніонів. Дії над кватерніонами допускають матричні операції з використанням симетризованих матриць, що дуже зручно при створенні програм бортових обчислювачів.

Відповідно до теореми Ейлера-Шаля усяке переміщення твердого тіла, яке має нерухому точку, можна зобразити як результат повороту навколо незмінного напрямку (ейлерової осі) на певний кут φ . Якщо зв'язати з розглянутим твердим тілом правий ортогональний координатний тригранник, то параметри Родрига-Гамільтона $\lambda_0, \lambda_1, \lambda_2, \lambda_3$,що однозначно характеризують згадані переміщення, можна задати такими виразами:

$$\lambda_1 = \frac{l_1 \sin \varphi}{2}; \quad \lambda_2 = \frac{l_2 \sin \varphi}{2}; \quad \lambda_3 = \frac{l_3 \sin \varphi}{2}; \quad \lambda_0 = \frac{\cos \varphi}{2},$$

де l_1, l_2, l_3 —косинуси кутів, утворених ейлеровою віссю з осями тригранника в його вихідному та кінцевому положенні. Зв'яжемо з ЛА, на якому встановлена БІНС, ортонормований базис \mathbf{E} — праву трійку взаємно ортогональних одиничних векторів e_1, e_2, e_3 . Орієнтацію базису \mathbf{E} відносно ортонормованого інерціального базису \mathbf{I} , складеного з ортів i_1, i_2, i_3 , охарактеризуємо параметрами Родрига-Гамільтона $\lambda_0, \lambda_1, \lambda_2, \lambda_3$. Матриця напрямних косинусів, що обчислена за параметрами Родрига-Гамільтона (кватерніонами), має такий вигляд:

$$= \begin{vmatrix} 1 - 2(\lambda_2^2 + \lambda_3^2) & 2(\lambda_1 \lambda_2 - \lambda_0 \lambda_3) & 2(\lambda_1 \lambda_3 + \lambda_0 \lambda_2) \\ 2(\lambda_1 \lambda_2 + \lambda_0 \lambda_3) & 1 - 2(\lambda_1^2 + \lambda_3^2) & 2(\lambda_2 \lambda_3 - \lambda_0 \lambda_1) \\ 2(\lambda_1 \lambda_3 - \lambda_0 \lambda_2) & 2(\lambda_2 \lambda_3 + \lambda_0 \lambda_1) & 1 - 2(\lambda_1^2 + \lambda_2^2) \end{vmatrix}.$$

Вимірники кутової швидкості, що входять до складу БІНС, вимірюють координати $\omega_x, \omega_y, \omega_z$ вектора $\bar{\Omega}$ абсолютної кутової швидкості базису \mathbf{E} , що задані в цьому базисі. Необхідно, знаючи значення параметрів Родрига-Гамільтона

Зм.	Лист	№ докум.	Підп.	Дата

в момент часу $t=t_0$ і використовуючи сигнали вимірників кутової швидкості, обчислювати параметри Родрига-Гамільтона при $t>t_0$. У початковий момент часу за інформацією про кути крену тангажа і курсу можна розрахувати вихідні значення параметрів Родрига-Гамільтона:

$$\begin{split} \lambda_{0_0} &= \sin \, \left(\gamma_0/2 \right) \sin \, \left(\vartheta_0/2 \right) \sin \, \left(\psi_0/2 \right) + \cos \, \left(\gamma_0/2 \right) \cos \, \left(\vartheta_0/2 \right) \cos \, \left(\psi_0/2 \right); \\ \lambda_{1_0} &= -\sin \, \left(\vartheta_0/2 \right) \sin \, \left(\psi_0/2 \right) \cos \, \left(\gamma_0/2 \right) + \sin \left(\gamma_0/2 \right) \cos \, \left(\vartheta_0/2 \right) \cos \, \left(\psi_0/2 \right); \\ \lambda_{2_0} &= \sin \left(\gamma_0/2 \right) \cos \, \left(\vartheta_0/2 \right) \sin \, \left(\psi_0/2 \right) + \sin \, \left(\vartheta_0/2 \right) \cos \, \left(\gamma_0/2 \right) \cos \, \left(\psi_0/2 \right); \\ \lambda_{3_0} &= \sin \, \left(\psi_0/2 \right) \cos \, \left(\gamma_0/2 \right) \cos \, \left(\vartheta_0/2 \right) - \sin \, \left(\gamma_0/2 \right) \sin \, \left(\vartheta_0/2 \right) \cos \, \left(\psi_0/2 \right). \end{split}$$

Поточні значення параметрів $\lambda_0, \lambda_1, \lambda_2, \lambda_3$ можна визначити, знаючи проекції кутової швидкості ЛА $\omega_x, \omega_y, \omega_z$ на зв'язаній осі XYZ, шляхом розв'язання лінійного диференціального рівняння зі змінними коефіцієнтами. У цьому випадку параметри $\lambda_0, \lambda_1, \lambda_2, \lambda_3$ кватерніона описують положення осей ЛА XYZ відносно інерціального простору:

$$\dot{\lambda} = \frac{1}{2}\Omega(t) \cdot \lambda(t) ,$$

де $\Omega\left(t\right)$ — кососиметрична (4×4) -матриця, яка відповідає вектору $\omega=\omega_x\omega_y\omega_z$

$$\Omega(t) = \begin{bmatrix} 0 & -\omega_x & -\omega_y & -\omega_z \\ \omega_x & 0 & \omega_z & -\omega_y \\ \omega_y & -\omega_z & 0 & \omega_x \\ \omega_z & \omega_y & -\omega_x & 0 \end{bmatrix}; \lambda = \begin{bmatrix} \lambda_0 \\ \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix}.$$

Цей вираз є кватерніонним однорідним лінійним диференціальним рівнянням першого порядку зі змінним коефіцієнтом у вигляді гіперкомплексного числа з дійсною частиною, що дорівнює нулю. У скалярній формі це рівняння має такий вигляд:

$$\dot{\lambda}_0 = -0, 5 \left(\omega_x \lambda_1 + \omega_y \lambda_2 + \omega_z \lambda_3 \right);
\dot{\lambda}_1 = -0, 5 \left(\omega_x \lambda_0 + \omega_z \lambda_2 + \omega_y \lambda_3 \right);
\dot{\lambda}_2 = -0, 5 \left(\omega_y \lambda_0 + \omega_z \lambda_1 + \omega_x \lambda_3 \right);
\dot{\lambda}_3 = -0, 5 \left(\omega_z \lambda_0 + \omega_y \lambda_1 + \omega_x \lambda_2 \right).$$

Зм.	Лист	№ докум.	Підп.	Дата

Динаміка зміни параметрів кватерніона у випадку, коли кватерніон характеризує взаємне положення зв'язаних з ΠA осей XYZ і обертових навігаційних осей NHE, описується рівняннями

$$\begin{bmatrix} \dot{\lambda}_{0} \\ \dot{\lambda}_{1} \\ \dot{\lambda}_{2} \\ \dot{\lambda}_{3} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 0 & -\omega_{x\Sigma} & -\omega_{y\Sigma} & -\omega_{z\Sigma} \\ \omega_{x\Sigma} & 0 & \omega_{z\Sigma} & -\omega_{y\Sigma} \\ \omega_{y\Sigma} & -\omega_{z\Sigma} & 0 & \omega_{x\Sigma} \\ \omega_{z\Sigma} & \omega_{y\Sigma} & -\omega_{x\Sigma} & 0 \end{bmatrix} \cdot \begin{bmatrix} \lambda_{0} \\ \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \end{bmatrix}. (??)$$

$$V \text{ CBOIO ЧЕРГУ}$$

$$\omega_{x_{\Sigma}} = \omega_x - \omega_{x_{NHE}}; \ \omega_{y_{\Sigma}} = \omega_y - \omega_{y_{NHE}}; \ \omega_{z_{\Sigma}} = \omega_z - \omega_{z_{NHE}},$$

де $\omega_y,\ \omega_x,\ \omega_z$ — проекції кутової швидкості ЛА відносно інерціального простору на осі зв'язаної системи координат, вимірювані датчиками кутових швидкостей;

 $\omega_{x_{NHE}}$, $\omega_{y_{NHE}}$, $\omega_{z_{NHE}}$ – проекції кутової швидкості навігаційної системи координат відносно інерціального простору на осі зв'язаної системи координат, що визначаються в результаті розв'язання матричного рівняння

$$\begin{bmatrix} \omega_{x_{NHE}} \\ \omega_{y_{NHE}} \\ \omega_{z_{NHE}} \end{bmatrix} = B^{B} \begin{bmatrix} \omega_{N_{V}} + \Omega_{N} \\ \omega_{H_{V}} + \Omega_{H} \\ \omega_{E_{V}} + \Omega_{E} \end{bmatrix}.$$

Ці складові розраховуються й у раніше розглянутих алгоритмах. У скалярній формі рівняння (??) мають вигляд:

$$\dot{\lambda}_0 = -0, 5(\omega_{x\Sigma}\lambda_1 + \omega_{y\Sigma}\lambda_2 + \omega_{z\Sigma}\lambda_3);
\dot{\lambda}_1 = -0, 5(\omega_{x\Sigma}\lambda_0 + \omega_{z\Sigma}\lambda_2 + \omega_{y\Sigma}\lambda_3);
\dot{\lambda}_2 = -0, 5(\omega_{y\Sigma}\lambda_0 + \omega_{z\Sigma}\lambda_1 + \omega_{x\Sigma}\lambda_3);
\dot{\lambda}_3 = -0, 5(\omega_{z\Sigma}\lambda_0 + \omega_{y\Sigma}\lambda_1 + \omega_{x\Sigma}\lambda_2).$$

Матрицю B перерахування зі зв'язаної в географічну систему координат можна також отримати шляхом перемножування двох матриць, з яких одна перераховує зі зв'язаних у інерціальні осі, друга — з інерціальних у географічні. Кожна з двох матриць також обчислюється на основі параметрів Родрига-Гамільтона, які у свою чергу визначаються чисельним алгоритмом другого по-

Зм.	Лист	№ докум.	Підп.	Дата

рядку, побудованим на основі методу послідовних наближень Пікара:

$$=!^{T}A;$$

$$A = \begin{vmatrix} 1 - 2(\lambda_{2}^{2} + \lambda_{3}^{2}) & 2(\lambda_{1}\lambda_{2} - \lambda_{0}\lambda_{3}) & 2(\lambda_{1}\lambda_{3} + \lambda_{0}\lambda_{2}) \\ 2(\lambda_{1}\lambda_{2} + \lambda_{0}\lambda_{3}) & 1 - 2(\lambda_{1}^{2} + \lambda_{3}^{2}) & 2(\lambda_{2}\lambda_{3} - \lambda_{0}\lambda_{1}) \\ 2(\lambda_{1}\lambda_{3} - \lambda_{0}\lambda_{2}) & 2(\lambda_{2}\lambda_{3} + \lambda_{0}\lambda_{1}) & 1 - 2(\lambda_{1}^{2} + \lambda_{2}^{2}) \end{vmatrix};$$

$$\lambda_{0}^{(k+1)} = \lambda_{0}^{(k)} - \lambda_{0}^{(k)}e/8 - 0, 5\left(\lambda_{1}^{(k)}\Delta\beta_{x} + \lambda_{2}^{(k)}\Delta\beta_{y} + \lambda_{3}^{(k)}\Delta\beta_{z}\right);$$

$$\lambda_{1}^{(k+1)} = \lambda_{1}^{(k)} - \lambda_{1}^{(k)}e/8 - 0, 5\left(\lambda_{0}^{(k)}\Delta\beta_{x} + \lambda_{3}^{(k)}\Delta\beta_{y} + \lambda_{2}^{(k)}\Delta\beta_{z}\right);$$

$$\lambda_{2}^{(k+1)} = \lambda_{2}^{(k)} - \lambda_{2}^{(k)}e/8 - 0, 5\left(\lambda_{3}^{(k)}\Delta\beta_{x} + \lambda_{0}^{(k)}\Delta\beta_{y} + \lambda_{1}^{(k)}\Delta\beta_{z}\right);$$

$$\lambda_{3}^{(k+1)} = \lambda_{3}^{(k)} - \lambda_{3}^{(k)}e/8 - 0, 5\left(\lambda_{2}^{(k)}\Delta\beta_{x} + \lambda_{1}^{(k)}\Delta\beta_{y} + \lambda_{0}^{(k)}\Delta\beta_{z}\right);$$

$$\beta_{1}e = \Delta\beta_{x}^{2} + \Delta\beta_{y}^{2} + \Delta\beta_{z}^{2};$$

$$\beta_{2}e = \Delta\beta_{x}^{2} + \Delta\beta_{y}^{2} + \Delta\beta_{z}^{2};$$

$$(2.2.4)$$

$$\Delta \beta_x = \int_{t_k}^{t_k+1} \omega_x dt; \quad \Delta \beta_y = \int_{t_k}^{t_k+1} \omega_y dt; \quad \Delta \beta_z = \int_{t_k}^{t_k+1} \omega_z dt;$$

 $\Delta \beta x$, $\Delta \beta y$, $\Delta \beta z$ – збільшення інтегралів від проекцій абсолютної кутової швидкості ЛА на осі чутливості гіроскопів (показання датчиків кутової швидкості БІНС, які вимірюють не проекції кутових швидкостей, а збільшення кутів повороту навколо своїх осей чутливості, тобто показання інтегруючих датчиків кутової швидкості):

$$! = \begin{vmatrix} 1 - 2(\mu_2^2 + \mu_3^2) & 2(\mu_1\mu_2 - \mu_0\mu_3) & 2(\mu_1\mu_3 + \mu_0\mu_2) \\ 2(\mu_1\mu_2 + \mu_0\mu_3) & 1 - 2(\mu_1^2 + \mu_3^2) & 2(\mu_2\mu_3 - \mu_0\mu_1) \\ 2(\mu_1\mu_3 - \mu_0\mu_2) & 2(\mu_2\mu_3 + \mu_0\mu_1) & 1 - 2(\mu_1^2 + \mu_2^2) \end{vmatrix};$$

$$\mu_0^{(k+1)} = \mu_0^{(k)} - 0, 5\left(\mu_1^{(k)}\Omega_x + \mu_2^{(k)}\Omega_y + \mu_3^{(k)}\Omega_z\right) dt;$$

$$\mu_1^{(k+1)} = \mu_1^{(k)} - 0, 5\left(\mu_0^{(k)}\Omega_x + \mu_3^{(k)}\Omega_y + \mu_2^{(k)}\Omega_z\right) dt;$$

$$\mu_2^{(k+1)} = \mu_2^{(k)} - 0, 5\left(\mu_3^{(k)}\Omega_x + \mu_0^{(k)}\Omega_y + \mu_1^{(k)}\Omega_z\right) dt;$$

$$\mu_3^{(k+1)} = \mu_3^{(k)} - 0, 5\left(\mu_2^{(k)}\Omega_x + \mu_1^{(k)}\Omega_y + \mu_0^{(k)}\Omega_z\right) dt;$$

$$\mu_3^{(k+1)} = \mu_3^{(k)} - 0, 5\left(\mu_2^{(k)}\Omega_x + \mu_1^{(k)}\Omega_y + \mu_0^{(k)}\Omega_z\right) dt;$$

де $\Omega_x = \omega_{N_V} + \Omega_N$; $\Omega_y = \omega_{H_V} + \Omega_H$; $\Omega_z = \omega_{E_V} + \Omega_E$ – проекції абсолютної кутової швидкості географічного базису на його осі .

Зм.	Лист	№ докум.	Підп.	Дата

До переваг цього методу побудови матриці орієнтації відноситься гарантована ортогональність матриці орієнтації, обчисленої за співвідношеннями (2.2.4). Крім цього, практика показує, що обчислення з використанням параметрів Родрига-Гамільтона дає найменші обчислювальні витрати в порівнянні з іншими методами за умови забезпечення однакових точностних характеристик. Разом з тим, визначення матриці B через параметри Родрига-Гамільтона призводить до необхідності рішення двох однотипних систем лінійних диференціальних рівнянь четвертого порядку кожна.

За елементами матриці B відповідно до (2.2.3) визначаються кути орієнтації ЛА: крен γ , тангаж ϑ та рискання (курс) ψ :

Після знаходження матриці B система рівнянь для проведення навігаційних розрахунків замикається.

Алгоритм проведення навігаційних розрахунків у випадку формування матриці напрямних косинусів безпосередньо за кутами γ , ϑ , ψ можна представити у вигляді (2.2.5)...(2.2.10). У випадку недостатньої швидкодії бортового процесора навігаційного обчислювача алгоритм роботи БІНС може бути розділений за необхідною швидкістю розрахунку (за тривалістю періоду дискретизації) на два або навіть на три рівні, що характеризують відповідно швидкий, середній і повільний темпи розрахунків.

Швидкий темп

$$\omega_{y_{\Sigma}} = \omega_{y} - \omega_{y_{NHE}};
\omega_{x_{\Sigma}} = \omega_{x} - \omega_{x_{NHE}};
\omega_{z_{\Sigma}} = \omega_{z} - \omega_{z_{NHE}}.$$
(2.2.5)

$$\dot{\psi} = (\omega_{y_{\Sigma}} \cos \gamma - \omega_{z_{\Sigma}} \sin \gamma) \sec \vartheta;
\dot{\gamma} = \omega_{x_{\Sigma}} + \operatorname{tg}\vartheta \ (\omega_{z_{\Sigma}} \sin \gamma - \omega_{y_{\Sigma}} \cos \gamma);
\dot{\vartheta} = \omega_{y_{\Sigma}} \sin \gamma + \omega_{z_{\Sigma}} \cos \gamma;
\psi_{3} = -\psi.$$
(2.2.6)

$$B = \begin{bmatrix} \cos \psi \cos \vartheta & \sin \psi \sin \gamma - \cos \psi \sin \vartheta \cos \gamma & \sin \psi \cos \gamma + \sin \psi \cos \vartheta \sin \gamma \\ \sin \vartheta & \cos \vartheta \cos \gamma & -\cos \vartheta \sin \gamma \\ -\sin \psi \cos \vartheta & \cos \psi \sin \gamma + \sin \psi \sin \vartheta \cos \gamma & \cos \psi \cos \gamma - \sin \psi \sin \vartheta \sin \gamma \end{bmatrix}$$
(??)

Середній темп

Зм.	Лист	№ докум.	Підп.	Дата

$$\begin{bmatrix} 0_{N} \\ 0_{H} \\ 0_{E} \end{bmatrix} = \begin{bmatrix} 0_{x} \\ 0_{y} \\ 0_{z} \end{bmatrix} . (??)$$

$$\dot{V}_{E} = a_{E} - V_{N}(\omega_{H_{V}} + 2\Omega_{H}) + V_{H}(\omega_{N_{V}} + 2\Omega_{N});$$

$$\dot{V}_{H} = a_{H} - V_{E}(\omega_{N_{V}} + 2\Omega_{N}) + V_{N}\omega_{E_{V}} + g_{H};$$

$$\dot{V}_{N} = a_{N} - V_{H}\omega_{E_{V}} + V_{E}(\omega_{H_{V}} + 2\Omega_{H}).$$
(2.2.7)

Повільний темп

$$\dot{L} = \frac{V_E}{(R_2 + H)\cos B};$$

$$\dot{=} \frac{V_N}{R_1 + H};$$

$$\dot{H} = V_H.$$
(2.2.8)

$$\omega_{E_V} = -\dot{B};$$

$$\omega_{H_V} = \dot{L}\sin B;$$

$$\omega_{N_V} = \dot{L}\cos B;$$

$$\Omega_N = \Omega_7 \cos B;$$

$$\Omega_H = \Omega_7 \sin B.$$
(2.2.9)

$$\begin{bmatrix} \omega_{x_{NHE}} \\ \omega_{y_{NHE}} \\ \omega_{z_{NHE}} \end{bmatrix} = B^{B} \begin{bmatrix} \omega_{N_{V}} + \Omega_{N} \\ \omega_{H_{V}} + \Omega_{H} \\ \omega_{E_{V}} + \Omega_{E} \end{bmatrix}. (??)$$

$$\frac{1}{(R_1+H)} \approx \frac{1}{a} \left[1 - e^2 - \frac{H}{a} - \frac{3}{2} e^2 \sin^2 B \right];$$

$$\frac{1}{(R_2+H)} \approx \frac{1}{a} \left[1 - \frac{H}{a} - \frac{1}{2} e^2 \sin^2 B \right];$$

$$g_H = -g \left(1 + 5,2884 \cdot 10^{-3} \sin^2 \right) \left[1 - \frac{2}{0} \left(1 - e \sin^2 \right) \right].$$
(2.2.10)

				·
Зм.	Лист	№ докум.	Підп.	Дата

Перелік посилань

- 1. Биргер И.А. Техническая диагностика. М.: Машиностроение, 1978.
- 2. Сапелюк Е.А. Диагностика авиационной техники. К.: КИИГА, 1988.
- 3. Глухов В.В. Техническое диагностирование динамических систем. М.: Транспорт, 2000. 96c.
- 4. Корнеев В.В. Танковые автоматические системы. М.: ВАБТВ, 1968. 477с.
- 5. Г. Д'Анджело. Линейные системы с переменными параметрами. М.: Машиностроение, 1974. 132с.
- 6. Бабак В.П., Синеглазов В.М., Таранов С.Г. Проблемы анализа и синтеза систем автоматического управления: уч. пособие. К.: КН НАУ, 2005. 172c.
- 7. E. Anderson, Z. Bai, C. Bischoff. LAPACK: A portable linear algebra package for high-performance computers. //In Proceedings of Supercomputing '90, pages 1-10. IEEE Press, 1990.
- 8. Netlib BLAS http://www.netlib.org/blas/index.html.
- 9. Blitz++ C++ Class Library for Scientific Computing http://oonumerics.org/blitz, 1996.

Зм.	Лист	№ докум.	Підп.	Дата