

Presentación del equipo

Brigith Lorena Giraldo

Luisa Fernanda Ciro

Simón Marín

Mauricio Toro

Proceso de entrenamiento

Imágenes de ganado enfermo

Imágenes del ganado sano

Proceso de validación

Diseño del algoritmo de compresión

10	4	22		10	10	4	4	22	22
2	18	7		10	10	4	4	22	22
9	14	25	7	2	2	18	18	7	7
				2	2	18	18	7	7
				9	9	14	14	25	25
				9	9	14	14	25	25

Algoritmo de compresión con perdida de imágenes para la clasificación automática de la salud animal (Escalado de imágenes), usando la función del vecino más cercano para la compresión.

Diseño del algoritmo de compresión

Ejemplo codificación Huffman

Caracter	Código
'1'	0
'2'	100
'3'	101
'4'	110
'5'	111

Complejidad del algoritmo de compression (Escalado)

	Complejidad del tiempo	Complejidad de la memoria
Algoritmo de compresión	O(N)	O(N)
Algoritmo de decompresión	O(N)	O(N)

La complejidad del tiempo de acuerdo a cuanto tarda en ejecutar el algoritmo y la memoria que depende de la cantidad de archivos extra en memoria que puede generar el algoritmo.

N = Cantidad de archivos csv.

Complejidad del algoritmo de compression (Huffman)

	Complejidad del tiempo	Complejidad de la memoria
Algoritmo de compresión	O(N)	O(N)
Algoritmo de decompresión	O(M*N)	O(N)

La complejidad del tiempo de acuerdo a cuanto tarda en ejecutar el algoritmo y la memoria que depende de la cantidad de archivos extra en memoria que puede generar el algoritmo.

N = cadena de caracteres.

M = dígitos binarios

Consumo de tiempo y memoria (Escalado)

0,82	0,3			<u> </u>				
1,12 4,05	0,4 1,08	12 ⊤						
22,7	4,84							
48,6	10,93	10						
		(s) odu						
		del Tien						
		Consumo del Tiempo (s)						
		රි 2						
		0						
			0,82	1,12 Ta	4,05 amaño de la li	22,7	48,6	

Consumo de tiempo y memoria (Huffman)

1,12 4,05	10,84 52,15	1000					
22,7 48,6	382,09 928,22	900 800 700 600 500 400 300 200					
		100	0,78	1,12 Tam	4,05 año de la Imagen	22,7 (MB)	48,6

Tasa de compresión promedio (Escalado)

	Tasa de compresión
Ganado sano	2:1
Ganado enfermo	2:1

Tasa de compresión promedio para el ganado sano y el ganado enfermo con el algoritmo Escalado de imágenes. En este caso comprime la imagen a la mitad de lo que era originalmente.

Tasa de compresión promedio (Huffman)

	Tasa de compresión
Ganado sano	2,8 : 1
Ganado enfermo	2,5 : 1

Tasa de compresión promedio para el ganado sano y el ganado enfermo con el algoritmo Escalado de imágenes. En este caso comprime la imagen un poco más de mitad de lo que era originalmente.

GRACIAS!

Apoyado por

El primer autor es apoyado por una beca Sapiencia "Mejores Bachilleres" financiada por el municipio de Medellín, y el segundo autor es apoyado por una beca Eafit. Todos los autores quieren agradecer a la Vicerrectoría de Descubrimiento y Creación, de la Universidad EAFIT, por su apoyo en esta investigación.