Ex. No.: 7.1 Date: 18.05.24

Register No.: 231901015 Name: JAYGANESH

KANNAN

Binary String

Coders here is a simple task for you, Given string str. Your task is to check whether it is a binary string or not by using python set.

Examples:

```
Input: str = "01010101010"
Output: Yes
Input: str = "REC101"
Output: No
Program:
a = input()
try:
  c = int(a)
  print("Yes")
except:
  print("No")
```

Ex. No. : 7.2Date: 18.05.24

Register No.: 231901015 Name: JAYGANESH

KANNAN

DNA Sequence

The DNA sequence is composed of a series of nucleotides abbreviated as 'A', 'C', 'G', and 'T'.

For example, "ACGAATTCCG" is a **DNA sequence**.

When studying **DNA**, it is useful to identify repeated sequences within the DNA.

Given a string s that represents a DNA sequence, return all the 10-letterlong sequences (substrings) that occur more than once in a DNA molecule. You may return the answer in any order.

Example 1:

Input: s = "AAAAACCCCCAAAAACCCCCCAAAAAGGGTTT"

Output: ["AAAAACCCCC","CCCCCAAAAA"]

Example 2:

Input: s = "AAAAAAAAAAA" Output: ["AAAAAAAAA"]

Program: def findRepeatedSequences(s): sequences = {} result = [] for i in range(len(s) - 9): seq = s[i:i+10]sequences[seq] = sequences.get(seq, 0) + 1if sequences[seq] == 2: result.append(seq) return result s1 = input()for i in findRepeatedSequences(s1): print(i)

Ex. No.: 7.3 Date: 18.05.24

Register No.:231901015 Name: JAYGANESH

KANNAN

American keyboard

Given an array of strings words, return the words that can be typed using letters of the alphabet on only one row of American keyboard like the image below.

In the American keyboard:

- the first row consists of the characters "qwertyuiop",
- the second row consists of the characters "asdfghjkl", and
- the third row consists of the characters "zxcvbnm".
- Example 1:
- Input: words = ["Hello","Alaska","Dad","Peace"]
- Output: ["Alaska","Dad"]
- Example 2:
- **Input:** words = ["omk"]
- Output: []
- Example 3:
- **Input:** words = ["adsdf", "sfd"]
- Output: ["adsdf", "sfd"]

Program:

```
def findWords(words):
  row1 = set('qwertyuiop')
  row2 = set('asdfghjkl')
  row3 = set('zxcvbnm')
  result = []
  for word in words:
    w = set(word.lower())
    if w.issubset(row1) or w.issubset(row2) or w.issubset(row3):
```

```
result.append(word)
  if len(result) == 0:
    print("No words")
  else:
    for i in result:
       print(i)
a = int(input())
arr = [input() for i in range(a)]
findWords(arr)
```

Ex. No.: 7.4 Date: 18.05.24

Register No.: 231901015 Name JAYGANESH

KANNAN

Print repeated no

Given an array of integers nums containing n+1 integers where each integer is in the n] inclusive.There is only **one** repeated number in nums, return this repeated number. Solve the problem using set.

```
Example 1:
```

```
Input: nums = [1,3,4,2,2]
Output: 2
Example 2:
Input: nums = [3,1,3,4,2]
Output: 3
Program:
n =input().split(" ")
n = list(n)
for i in range(len(n)):
```

if n[i] == n[j]:

print(n[i])

for j in range(i+1,len(n)):

Ex. No.: 7.5Date: 18.05.24

Register No.:231901015 Name: JAYGANESH

KANNAN

Check Pair

Given a tuple and a positive integer k, the task is to find the count of distinct pairs in the tuple whose sum is equal to K.

```
Examples:
Input: t = (5, 6, 5, 7, 7, 8), K = 13
Output: 2
Explanation:
Pairs with sum K(=13) are \{(5, 8), (6, 7), (6, 7)\}.
Therefore, distinct pairs with sum K(=13) are \{(5, 8), (6, 7)\}.
Therefore, the required output is 2.
Program:
def count_distinct_pairs(t, K):
  distinct pairs = set()
  for i in range(len(t)):
     for j in range(i + 1, len(t)):
       if t[i] + t[j] == K:
          distinct_pairs.add((min(t[i], t[j]), max(t[i], t[j])))
  return len(distinct_pairs)
t_input = input()
t = tuple(map(int, t input.split(',')))
K = int(input())
print(count distinct pairs(t, K))
```