Triple unit

https://github.com/heptagons/meccano/units/triple

Abstract

A **Triple unit** is a group of **five** meccano 1 strips a,b,c,d,e forming **three equal angles** θ intended to build three consecutive perimeter sides of some regular polygons. We look for integer values of strip e in function of integer values of sides a,b,c,d and a particular angle θ . We confirm a generic equation found matches the one used to build pentagons of type 2 2 . Here we found a lot of hexagons and filter some not trivial solutions. We look for octagons, decagons and dodecagons.

Figure 1: At the left we have the Triple unit (three angles θ) with the strips a, b, c, d, e. At the right we use two units to build a regular polygon of side a extending strips b, c, d to fix everthing. This construction is possible only when a > b, c.

1 Algebra

From nodes A and B of fig 1 we get α from θ ($\pi = 180^{\circ}$):

$$\theta = \pi - \alpha$$

$$\alpha = \pi - \theta \tag{1}$$

And from node H we get β from θ :

$$\theta = \alpha + \beta$$

$$\beta = \theta - \alpha = \theta - (\pi - \theta) = 2\theta - \pi$$
(2)

¹ Meccano mathematics by 't Hooft

² Meccano pentagons

We calculate horizontal segment \overline{OK} :

$$\overline{OK} = \overline{MA} + a + \overline{BN} - \overline{PL}$$

$$= b\cos\alpha + a + c\cos\alpha - d\cos\beta$$

$$= a + (b + c)\cos\alpha - d\cos\beta$$

$$= a + (b + c)\cos(\pi - \theta) - d\cos(2\theta - \pi)$$

$$= a - (b + c)\cos\theta + d\cos(2\theta)$$
(3)

And vertical segment \overline{OL} :

$$\overline{OL} = \overline{KN} - \overline{PH} - \overline{HM}
= c \sin \alpha - d \sin \beta - b \sin \alpha
= (c - b) \sin \alpha - d \sin \beta
= (c - b) \sin (\pi - \theta) - d \sin (2\theta - \pi)
= (c - b) \sin \theta + d \sin (2\theta)$$
(4)

So we can express e in function of a, b, c, d and angle θ :

$$e^{2} = (\overline{OK})^{2} + (\overline{OL})^{2}$$

$$= (a - (b + c)\cos\theta + d\cos(2\theta))^{2} + ((c - b)\sin\theta + d\sin(2\theta))^{2}$$

$$= a^{2} + (b^{2} + 2bc + c^{2})\cos^{2}\theta + d^{2}\cos^{2}(2\theta) + (c^{2} - 2cb + b^{2})\sin^{2}\theta + d^{2}\sin^{2}(2\theta)$$

$$- 2a(b + c)\cos\theta + 2ad\cos(2\theta) - 2(b + c)d\cos\theta\cos(2\theta)$$

$$+ 2(c - b)d\sin\theta\sin(2\theta)$$

$$= a^{2} + b^{2} + c^{2} + d^{2} + 2bc\cos^{2}\theta - 2bc\sin^{2}\theta$$

$$- 2a(b + c)\cos\theta + 2ad\cos(2\theta)$$

$$- 2d((b + c)\cos\theta\cos(2\theta) + (b - c)\sin\theta\sin(2\theta))$$

$$= a^{2} + b^{2} + c^{2} + d^{2} + 2bc(\cos^{2}\theta - \sin^{2}\theta) - 2a(b + c)\cos\theta + 2ad\cos(2\theta)$$

$$- 2d(b(\cos\theta\cos(2\theta) + \sin\theta\sin(2\theta)) + c(\cos\theta\cos(2\theta) - \sin\theta\sin(2\theta)))$$

$$= a^{2} + b^{2} + c^{2} + d^{2} + 2bc\cos(2\theta) - 2a(b + c)\cos\theta + 2ad\cos(2\theta)$$

$$- 2d(b\cos(\theta - 2\theta) + c\cos(\theta + 2\theta))$$

$$= a^{2} + b^{2} + c^{2} + d^{2} + 2(bc + ad)\cos(2\theta) - 2a(b + c)\cos\theta - 2d(b\cos\theta + c\cos(3\theta))$$

$$= a^{2} + b^{2} + c^{2} + d^{2} + 2(bc + ad)\cos(2\theta) - 2(ab + ac)\cos\theta - 2(bd\cos\theta + cd\cos(3\theta))$$
(6)

$$e^{2} = a^{2} + b^{2} + c^{2} + d^{2} - 2(ab + ac + bd)\cos\theta + 2(bc + ad)\cos(2\theta) - 2cd\cos(3\theta)$$
(7)

2 Regular polygons

We will test last equation into several polygons. Table 1 show the possible constructions and the angles and cosines. Only when we'll get e integer we'll have a solution.

Polygon	θ	$\cos \theta$	$\cos(2\theta)$	$\cos(3\theta)$
Pentagon	$\frac{3\pi}{5}$	$\frac{1-\sqrt{5}}{4}$	$\frac{-1-\sqrt{5}}{4}$	$\frac{1+\sqrt{5}}{4}$
Hexagon	$\frac{2\pi}{3}$	$-\frac{1}{2}$	$-\frac{1}{2}$	1
Octagon	$\frac{3\pi}{4}$	$-\frac{\sqrt{2}}{2}$	0	$\frac{\sqrt{2}}{2}$
Decagon	$\frac{4\pi}{5}$	$\frac{-1-\sqrt{5}}{4}$	$\frac{-1+\sqrt{5}}{4}$	$\frac{-1+\sqrt{5}}{4}$
Dodecagon	$\frac{5\pi}{6}$	$-\frac{\sqrt{3}}{2}$		

Table 1: Regular polygons internal angles and cosines.

3 Equilateral pentagons

We replace the cosines for pentagon in table 1 in equation 7:

$$e^{2} = a^{2} + b^{2} + c^{2} + d^{2} - 2(ab + ac + bd)\cos\theta + 2(bc + ad)\cos(2\theta) - 2cd\cos(3\theta)$$

$$= a^{2} + b^{2} + c^{2} + d^{2} - 2(ab + ac + bd)\left(\frac{1 - \sqrt{5}}{4}\right) + 2(bc + ad)\left(\frac{-1 - \sqrt{5}}{4}\right) - 2cd\left(\frac{1 + \sqrt{5}}{4}\right)$$

$$= a^{2} + b^{2} + c^{2} + d^{2} - \frac{ab + ac + bd + bc + ad + cd}{2} + \frac{ab + ac + bd - bc - ad - cd}{2}\sqrt{5}$$
(8)

e cannot to be and integer if the factor of $\sqrt{5}$ is not zero so we force this factor to be zero:

$$ab + ac + bd - bc - ad - cd = 0$$

$$ab + ac + bd = bc + ad + cd$$

$$ab + ac - bc = (a - b + c)d$$
(9)

We replace ab + ac + bd by bc + ad + cd in the e^2 equation to get:

$$e^{2} = a^{2} + b^{2} + c^{2} + d^{2} - \frac{(bc + ad + cd) + bc + ad + cd}{2} + \frac{0}{2}\sqrt{5}$$

$$= a^{2} + b^{2} + c^{2} + d^{2} - bc - ad - cd$$
(11)

$$e = \sqrt{a^2 + b^2 + c^2 + d^2 - bc - (a+c)d} \iff ab + ac - bc = (a-b+c)d$$
 (12)

The last formula matches the formula used in the paper Meccano pentagons which finds several pentagons of type 2.

4 Equilateral hexagons

We replace the cosines for hexagon in table 1 in equation 7:

$$e^{2} = a^{2} + b^{2} + c^{2} + d^{2} - 2(ab + ac + bd)\cos\theta + 2(bc + ad)\cos(2\theta) - 2cd\cos(3\theta)$$

$$= a^{2} + b^{2} + c^{2} + d^{2} - 2(ab + ac + bd)\left(-\frac{1}{2}\right) + 2(bc + ad)\left(-\frac{1}{2}\right) - 2cd(1)$$

$$= a^{2} + b^{2} + c^{2} + d^{2} + ab + ac + bd - bc - ad - 2cd$$

$$= (a + b)^{2} + (c - d)^{2} - ab + ac + bd - bc - ad$$

$$= (a + b)^{2} + (c - d)^{2} + (c - d)(a - b) - ab$$

$$= (a + b)^{2} + (c - d)(a - b + c - d) - ab$$
(13)

$$e = \sqrt{(a+b)^2 + (c-d)(a-b+c-d) - ab}$$
 (14)

4.1 Hexagons software

We wrote software code to look for hexagons using the formula for e and set several filters to prevent trivial solutions. We say an hexagon is nice when $e \le a$. Next is a partial list of nice hexagons:

```
7 b=
                              2 d=
                                     6 e=
                      1 c=
 1
      1
 2
                              4 d =
                                     6
                      1 c =
 3
                              5 d= 11 e=
             13
                 b=
                      2 c=
 4
             13
                 b=
                      2 c =
                              6 d = 11
             14
                              6 d = 13
 5
                 b=
                      1 c=
 6
             14
                 b=
                      1 c=
                              7
                                d = 13
 7
             15
                 b=
                        c=
                              5
                                d = 14
 8
      8
                              9
                                d = 14
             15
                 h=
                      1 c=
 9
                 b=
                      2 c =
                              3 d = 17
10
     10
             19
                      2 c= 14 d= 17
                 b=
11
     11
             20
                 b=
                      1 c=
                              4
                                d = 19
12
             20
                      1 c= 15 d=
     12
                b=
13
14
    105
             58
                 b =
                      5 c = 10 d = 53
15
    106
                            43
                                   53
             58
                 b=
                      5
   107
16
             59
                 b =
                      1 c=
                            27
                                d = 58
17
    108
                 b=
                      1 c=
                            31
                                d=
                                   58
                 b =
18
    109
             59
                      4 c = 11
                                d = 55
19
    110
             59
                 b=
                      4
                        c = 44
                                d=
                                   55
20
   111
             59 b=
                      5 c = 19 d = 54
21
                      5 c= 35 d= 54 e= 56
   112
          a = 59 b =
22
    --- PASS: TestHexagonsNice (0.01s)
```

Results from github.com/heptagons/meccano/units/triple/triple_test.go TestHexagonsNice

4.2 Hexagons examples

The nice hexagons results has related pairs and there are several ways to build each case. Figure 2 show different ways to build a nice hexagon.

Figure 2: Constructions options of the nice hexagon side a = 7, b = 1, e = 7. Cases (a) - (e) requires only eleven bolts. Case (f) has the 10 strips of size 7.

Figure 3: Variations of constructions of the nice hexagon side a = 7, b = 1, e = 7. Cases (d1) and (e1) are adaptations of cases (d) and (e) of figure 2 where only the blue strips are displaced. Such changes mantain the internal bolts, red strips and perimeter the same. The original **Triple unit** a, b, c, d, e irregular pentagon is replaced by an irregular hexagon clearly visible in case (e1).

Figure 4: More nice hexagons from sizes 13 - 20.

5 Regular octagons

We replace the cosines for octagon in table 1 in e^2 equation:

$$e^{2} = a^{2} + b^{2} + c^{2} + d^{2} - 2(ab + ac + bd)\cos\theta + 2(bc + ad)\cos(2\theta) - 2cd\cos(3\theta)$$

$$= a^{2} + b^{2} + c^{2} + d^{2} - 2(ab + ac + bd)\left(-\frac{\sqrt{2}}{2}\right) + 2(bc + ad)(0) - 2cd\left(\frac{\sqrt{2}}{2}\right)$$

$$= a^{2} + b^{2} + c^{2} + d^{2} + (ab + ac + bd - cd)\sqrt{2}$$
(15)

e cannot to be and integer if the factor of $\sqrt{2}$ is not zero, so we force this factor to be zero:

$$ab + ac + bd - cd = 0$$

 $a(b+c) = (c-b)d$
 $e^2 = a^2 + b^2 + c^2 + d^2 + (0)\sqrt{2}$

$$e = \sqrt{a^2 + b^2 + c^2 + d^2} \iff a(b+c) = (c-b)d$$
 (16)

5.1 Octagons examples

Conjecture: No possible octagons formed with triple unit.

6 Equilateral decagons

We replace the cosines for decagon in table 1 in e^2 equation:

$$e^{2} = a^{2} + b^{2} + c^{2} + d^{2} - 2(ab + ac + bd)\cos\theta + 2(bc + ad)\cos(2\theta) - 2cd\cos(3\theta)$$

$$= a^{2} + b^{2} + c^{2} + d^{2} - 2(ab + ac + bd)\left(\frac{-1 - \sqrt{5}}{4}\right) + 2(bc + ad)\left(\frac{-1 + \sqrt{5}}{4}\right) - 2cd\left(\frac{-1 + \sqrt{5}}{4}\right)$$

$$= a^{2} + b^{2} + c^{2} + d^{2} + \frac{ab + ac + bd - bc - ad + cd}{2} + \frac{ab + ac + bd + bc + ad - cd}{2}\sqrt{5}$$
(17)

e cannot to be and integer if the factor of $\sqrt{5}$ is not zero so we force this factor to be zero:

$$ab + ac + bd + bc + ad - cd = 0$$

$$ab + ac + bd = cd - bc - ad$$

$$ab + ac + bc = (c - a - b)d$$
(18)

We replace ab + ac + bd by cd - bc - ad in the e^2 equation to get:

$$e^{2} = a^{2} + b^{2} + c^{2} + d^{2} + \frac{(cd - bc - ad) - bc - ad + cd}{2} + \frac{0}{2}\sqrt{5}$$
$$= a^{2} + b^{2} + c^{2} + d^{2} + cd - bc - ad$$

$$e = \sqrt{a^2 + b^2 + c^2 + d^2 - bc - (a - c)d} \iff ab + ac + bc = (c - a - b)d$$
 (20)

6.1 Decagons software

Common routine where $a \ge b, c$ doesn't return solutions. But when we change the condition $c \ge a$ we get other type of solutions.

```
1
   func TestDecagonsCBA(t *testing.T) {
^{2}
       tri := NewTriples()
3
       tri.DecagonsCBA (500)
   }
4
5
6
   func (t *Triples) DecagonsCBA(max int) {
7
     for c := 1; c <= max; c++ {
       for b := 1; b <= c; b++ {
8
9
         for a := 1; a <= c; a++ {
10
            ab_ac_bc := a*b + a*c + b*c
11
            aa_bb_cc := a*a + b*b + c*c
12
            for d := 1; d <= max; d++ {
              if ab_ac_bc != (c-a-b)*d {
13
                continue // condition to reject sqrt{5} from e equation
14
              }
15
              if e, ok := t.squareRoot(aa_bb_cc + d*d - b*c -(a-c)*d); ok {
16
17
                t.Add(a, b, c, d, e)
18
19
         }
20
21
22
     }
23
```

The software solutions are in next listing. As with the case for pentagons, we **conjecture** again the variable e is in the form $10x + 1, x \in \mathbb{Z}$ or simply:

$$e \equiv 1 \mod 10 \tag{21}$$

```
1
               8 b=
                      4 c= 13 d=188 e=191
 ^{2}
      2
               3
                      6
                        c=
                           18 d= 20 e= 31
 3
      3
                            20
                               d = 18
 4
             12
                            36
                               d = 51
                      8
                        c=
 5
                      8
                        c=
                            51
                               d = 96
 6
      6
                     12
                            51 d = 36
                                      e = 71
                 b =
                        c=
 7
                        c=
                            60
                               d = 294
 8
             20
                    30
                        c = 75 d = 174
                                      e = 211
      8
                 b=
 9
      9
                     24
                        c=
                            84 d=423 e=451
                     63
10
     10
                        c = 84 d = 294
                                      e = 341
11
                     57
                        c = 93
                               d = 219
     11
12
     12
                    24 c= 96 d= 51 e=121
13
                    15
                        c = 104 d = 300
     13
             60
                 b=
                    36
                        c=114 d=289 e=341
14
     14
             42
15
     15
            45
                 b =
                    24
                        c=128 d=168 e=241
             15
                    57 c=133 d=171 e=251
16
     16
17
                    39
                        c=152 d=480 e=541
     17
             72
                 b =
18
                    84
                        c=153 d=412 e=491
     18
19
     19
            13
                 b =
                    83
                        c = 167
                               d=241 e=341
20
     20
                    45
                        c=168 d=128 e=241
21
     21
             53
                    55
                        c=169 d=347 e=431
                 b=
22
                               d=133
     22
                     15
                        c = 171
23
     23
             21
                    91 c=171 d=357
                                       e = 451
24
     24
                     20
                        c = 174 d = 75
25
     25
                        c=188 d= 13
                                      e = 191
                      8
26
     26
                      3
                        c = 219
                               d = 269
27
                        c=219 d= 93
     27
          a = 57
                 b =
                      7
                                      e = 271
28
     28
             28 b= 98 c=221 d=322 e=451
29
     29
          a = 34 b = 93 c = 228 d = 318 e = 451
```

30	30	a = 83	b= 13	c = 241	d = 167	e=341
31	31	a = 109	b = 24	c = 264	d=288	e=451
32	32	a=24	b = 144	c=267	d=488	e=641
33	33	a= 3	b = 117	c=269	d=219	e = 401
34	34	a = 36	b= 96	c = 276	d=277	e=451
35	35	a= 96	b= 36	c = 277	d=276	e=451
36	36	a=24	b=109	c=288	d=264	e=451
37	37	a = 36	b = 42	c=289	d = 114	e=341
38	38	a=63	b= 2	c = 294	d= 84	e=341
39	39	a= 7	b = 42	c = 294	d= 60	e=311
40	40	a= 15	b = 60	c = 300	d = 104	e=341
41	41	a = 93	b = 34	c=318	d=228	e=451
42	42	a= 98	b= 28	c=322	d=221	e=451
43	43	a= 55	b= 53	c = 347	d=169	e=431
44	44	a= 91	b = 21	c = 357	d = 171	e=451
45	45	a=105	b = 87	c=363	d = 461	e=671
46	46	a=180	b = 24	c=380	d=465	e=691
47	47	a=105	b = 90	c = 406	d = 420	e=671
48	48	a=84	b = 24	c = 412	d=153	e = 491
49	49	a = 90	b=105	c = 420	d = 406	e=671
50	50	a=24	b = 44	c = 423	d=84	e=451
51	51	a = 222	b= 12	c = 454	d = 495	e=781
52	52	a= 87	b=105	c = 461	d=363	e=671
53	53	a=24	b=180	c = 465	d=380	e=691
54	54	a = 39	b = 72	c = 480	d=152	e=541
55	55	a = 144	b = 24	c = 488	d=267	e=641
56	56	a= 12	b=222	c = 495	d = 454	e=781
57		PASS: 7	ΓestDeo	cagons(CBA (42	2.31s)

Figure 5: Decagons