

Introduction

- In this course, the successful landing of Falcon 9 first stage was predicted.
- SpaceX advertises the launch of Falcon 9 with price much less than other competitors due to the ability to reuse the first stage.
- Therefore, prediction of the first stage landing can help to determine the entire launch cost.
- This information can be used if an alternate company wants to bid against SpaceX for a rocket launch.

METHODOLOGY

- Data collection and Data Wrangling:
 - Falcon 9 Launch data will be collected from Wiki pages using web scraping.
 - Another way of gathering data is SpaceX REST API.
 - Raw data from table would be transformed to clean data.
 - Functions such as Booster, Launchpad, payload, and core will be used to deal with null values etc. to get actual values.

METHODOLOGY

- Data Visualization:
 - Use Catplot to visualize the data by choosing different groups of data
 - For example, compare between payload mass and flight number to see if successful
 - launch is dependent on the payload mass

METHODOLOGY

- Predictive Analysis
 - Using machine learning methods to predict the launch
 - First need to standardize the dataset
 - Split into train and test sets
 - Use different methods to train the datasets and compare the accuracy

FLIGHT NUMBER VS. LAUNCH SITE

```
[6]: ### TASK 1: Visualize the relationship between Flight Number and Launch Site
                                                       sns.catplot(y="LaunchSite", x="FlightNumber", hue="Class", data=df, aspect = 5)
                                                       plt.xlabel("Flight Number", fontsize=20)
                                                       plt.ylabel("Launch Site",fontsize=20)
                                                       plt.show()
                                                                                                                                                                             The contract of the track
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      and the contract of the contra
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        rather than a first the control of t
                                                                              KSC LC 29A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Flight Number
```

PAYLOAD VS. LAUNCH SITE

```
### TASK 2: Visualize the relationship between Payload and Launch Site
  sns.catplot(y="LaunchSite", x="PayloadMass", hue="Class", data=df, aspect = 5)
  plt.xlabel("PayloadMass",fontsize=20)
plt.ylabel("Launch Site",fontsize=20)
plt.show()
                                                                              the control of the state of the
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1:
           CCAPS SLC 40 -
                                                                                                                                                                              化环烷二烷 化二氯甲烷 美国人
                RSC LE 39A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     30303
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                22/30/0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            14000
                                                                                                                                                                                                                                                                                                                                                                                                                  PayloadMass
```

FLIGHT NUMBER VS. ORBIT TYPE

```
### TASK 3: Visualize the relationship between success rate of each orbit type
sns.catplot(x='FlightNumber', y = 'Orbit', hue = 'Class', data = df, aspect = 5)
plt.xlabel("FlightNumber", fontsize=20)
plt.ylabel("Orbit type",fontsize=20)
plt.show()
  660 -
                                                          FlightNumber
```

PAYLOAD VS. ORBIT TYPE

```
[9]: ### TASK 5: Visualize the relationship between Payload and Orbit type
     sns.catplot(x='PayloadMass', y = 'Orbit', hue = 'Class', data = df, aspect = 5)
     plt.xlabel("Payload", fontsize=20)
     plt.ylabel("Orbit type",fontsize=20)
     plt.show()
       VL50
                                                                                                                               . .
       660
                           2000
                                                                                      10000
                                                                                                     12000
                                                                                                                    14000
                                                         6000
                                                                      Payload
```

LAUNCH SUCCESS YEARLY TREND

ALL LAUNCH SITE NAMES

```
Display the names of the unique launch sites in the space mission
In [19]:
          %sql select distinct(Launch_Site) from SPACEXTBL
         * sqlite:///my_data1.db
        Done.
Out[19]:
           Launch_Site
           CCAFS LC-40
           VAFB SLC-4E
            KSC LC-39A
          CCAFS SLC-40
```

LAUNCH SITE NAMES BEGIN WITH 'CCA'

```
Display 5 records where launch sites begin with the string 'CCA'
In [23]:
          %sql select Launch_Site from SPACEXTBL where Launch_Site like "CCA%" limit 5
         * sqlite:///my_data1.db
        Done.
Out[23]: Launch_Site
          CCAFS LC-40
          CCAFS LC-40
          CCAFS LC-40
          CCAFS LC-40
          CCAFS LC-40
```

TOTAL PAYLOAD MASS

AVERAGE PAYLOAD MASS BY F9 V1.1

FIRST SUCCESSFUL GROUND LANDING DATE

List the date when the first succesful landing outcome in ground pad was acheived.

Hint:Use min function

SUCCESSFUL DRONE SHIP LANDING WITH PAYLOAD BETWEEN 4000 AND 6000

Task 6

List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000

TOTAL NUMBER OF SUCCESSFUL AND FAILURE MISSION OUTCOMES

[34]: %sql SELECT Count(Mission_Outcome), Mission_Outcome FROM SPACEXTBL group by Mission_Outcome

* sqlite:///my_data1.db

Done.

[34]: Count(Mission_Outcome) Mission_Outcome

0 None

1 Failure (in flight)

98 Success

1 Success

1 Success (payload status unclear)

BOOSTERS CARRIED MAXIMUM PAYLOAD

List the names of the booster_versions which have carried the maximum payload mass. Use a subquery [44]: %sql select Booster Version, PAYLOAD MASS KG from SPACEXTBL where PAYLOAD MASS KG =(select max(PAYLOAD MASS KG)\ from SPACEXTBL) * sqlite:///my_data1.db Done. Booster_Version PAYLOAD_MASS_KG_ F9 B5 B1048.4 15600.0 F9 B5 B1049.4 15600.0 15600.0 F9 B5 B1051.3 F9 B5 B1056.4 15600.0 F9 B5 B1048.5 15600.0 F9 B5 B1051.4 15600.0 F9 B5 B1049.5 15600.0 F9 B5 B1060.2 15600.0 F9 B5 B1058.3 15600.0 F9 B5 B1051.6 15600.0 F9 B5 B1060.3 15600.0 F9 B5 B1049.7 15600.0

2015 LAUNCH RECORDS

RANK LANDING OUTCOMES BETWEEN 2010-06-04 AND 2017-03-20

FOLIUM MAP WITH MARKERS OF LANDING SITES

CONFUSION MATRIX

CONCLUSIONS

- Accuracy for Decision tree method: 0.77777777777778

