### Asset Allocation and Risk Assessment with Gross Exposure Constraints

Forrest Zhang

Bendheim Center for Finance Princeton University

A joint work with Jianqing Fan and Ke Yu, Princeton

## Introduction

### Markowitz's Mean-variance analysis

- Problem:  $\min_{\mathbf{W}} \mathbf{W}^T \mathbf{\Sigma} \mathbf{W}$ , s.t.  $\mathbf{W}^T \mathbf{1} = 1$ , and  $\mathbf{W}^T \boldsymbol{\mu} = r_0$ . Solution:  $\mathbf{W} = c_1 \mathbf{\Sigma}^{-1} \boldsymbol{\mu} + c_2 \mathbf{\Sigma}^{-1} \mathbf{1}$ 
  - Cornerstone of modern finance where CAPM and many portfolio theory is built upon.
  - Too sensitive on input vectors and their estimation errors.
  - Can result in extreme short positions (Green and Holdfield, 1992).
  - More severe for large portfolio.

#### Markowitz's Mean-variance analysis

- Problem:  $\min_{\mathbf{W}} \mathbf{w}^T \mathbf{\Sigma} \mathbf{w}$ , s.t.  $\mathbf{w}^T \mathbf{1} = 1$ , and  $\mathbf{w}^T \boldsymbol{\mu} = r_0$ . Solution:  $\mathbf{w} = c_1 \ \mathbf{\Sigma}^{-1} \boldsymbol{\mu} + c_2 \ \mathbf{\Sigma}^{-1} \mathbf{1}$ 
  - Cornerstone of modern finance where CAPM and many portfolio theory is built upon.
  - Too sensitive on input vectors and their estimation errors.
  - Can result in extreme short positions (Green and Holdfield, 1992).
  - More severe for large portfolio.

### Challenge of High Dimensionality

- Estimating **high-dim** cov-matrices is intrinsically challenging.
  - Suppose we have 500 (2000) stocks to be managed. There are 125K (2 m) free parameters!
  - Yet, 2-year daily returns yield only about sample size n=500. Accurately estimating it poses significant challenges.
  - Impact of dimensionality is large and poorly understood: Risk:  $\mathbf{w}^T \hat{\Sigma} \mathbf{w}$ . Allocation:  $\hat{c}_1 \hat{\Sigma}^{-1} \mathbf{1} + \hat{c}_2 \hat{\Sigma}^{-1} \hat{\mu}$ .
  - Accumulating of millions of estimation errors can have a devastating effect.

### Challenge of High Dimensionality

- Estimating **high-dim** cov-matrices is intrinsically challenging.
  - Suppose we have 500 (2000) stocks to be managed. There are 125K (2 m) free parameters!
  - Yet, 2-year daily returns yield only about sample size n=500. Accurately estimating it poses significant challenges.
  - Impact of dimensionality is large and poorly understood: Risk:  $\mathbf{w}^T \hat{\Sigma} \mathbf{w}$ . Allocation:  $\hat{c}_1 \hat{\Sigma}^{-1} \mathbf{1} + \hat{c}_2 \hat{\Sigma}^{-1} \hat{\mu}$ .
  - Accumulating of millions of estimation errors can have a devastating effect.

#### Efforts in Remedy

- Reduce sensitivity of estimation.
  - Shrinkage and Bayesian: —Expected return (Klein and Bawa, 76; Chopra and Ziemba, 93; ) —Cov. matrix (Ledoit & Wolf, 03, 04)
  - Factor-model based estimation (Fan, Fan and Lv, 2008; Pesaran and Zaffaroni, 2008)
- Robust portfolio allocation (Goldfarb and Iyengar, 2003)
- No-short-sale portfolio (De Roon et al., 2001; Jagannathan and Ma, 2003; DeMiguel et al., 2008; Bordie et al., 2008)
- None of them are far enough; no theory.

#### Efforts in Remedy

- Reduce sensitivity of estimation.
  - Shrinkage and Bayesian: —Expected return (Klein and Bawa, 76; Chopra and Ziemba, 93; ) —Cov. matrix (Ledoit & Wolf, 03, 04)
  - Factor-model based estimation (Fan, Fan and Lv, 2008; Pesaran and Zaffaroni, 2008)
- Robust portfolio allocation (Goldfarb and Iyengar, 2003)
- No-short-sale portfolio (De Roon et al., 2001; Jagannathan and Ma, 2003; DeMiguel et al., 2008; Bordie et al., 2008)
- None of them are far enough; no theory.

#### About this talk

- Propose utility maximization with gross-sale constraint. It bridges no-short-sale constraint to no-constraint on allocation.
- Oracle (Theoretical), actual and empirical risks are very close.
  - No error accumulation effect.
  - Elements in covariance can be estimated separately; facilitates the use of non-synchronized high-frequency data.
  - Provide theoretical understanding why wrong constraint can even beat Markowitz's portfolio (Jagannathan and Ma, 2003).
- Portfolio selection and tracking.
  - Select or track a portfolio with limited number of stocks.
  - Improve any given portfolio with modifications of weights on limited number of stocks.

#### About this talk

- Propose utility maximization with gross-sale constraint. It bridges no-short-sale constraint to no-constraint on allocation.
- Oracle (Theoretical), actual and empirical risks are very close.
  - No error accumulation effect.
  - Elements in covariance can be estimated separately; facilitates the use of non-synchronized high-frequency data.
  - Provide theoretical understanding why wrong constraint can even beat Markowitz's portfolio (Jagannathan and Ma, 2003).
- Portfolio selection and tracking.
  - Select or track a portfolio with limited number of stocks.
  - Improve any given portfolio with modifications of weights on limited number of stocks.

#### Outline

- Portfolio optimization with gross-exposure constraint.
- Portfolio selection and tracking.
- Simulation studies
- Empirical studies:

### Short-constrained portfolio selection

$$\label{eq:energy_energy} \begin{split} \max_{\mathbf{W}} \quad & E[U(\mathbf{w}^T\mathbf{R})] \\ s.t. \quad & \mathbf{w}^T\mathbf{1} = 1, \ \|\mathbf{w}\|_{\mathbf{1}} \leq \mathbf{c}, \ \mathbf{A}\mathbf{w} = \mathbf{a}. \end{split}$$

#### **Equality Constraint:**

- $\bullet A = \mu \Longrightarrow \text{expected portfolio return.}$
- •A can be chosen so that we put constraint on sectors.

<u>Short-sale constraint</u>: When c=1, no short-sale allowed. When  $c=\infty$ , problem becomes Markowitz's.

Portfolio selection: solution is usually sparse.

#### Short-constrained portfolio selection

$$\label{eq:energy_energy} \begin{aligned} \max_{\mathbf{W}} \quad & E[U(\mathbf{w}^T\mathbf{R})] \\ s.t. \quad & \mathbf{w}^T\mathbf{1} = 1, \ \|\mathbf{w}\|_1 \leq \mathbf{c}, \ \mathbf{A}\mathbf{w} = \mathbf{a}. \end{aligned}$$

#### **Equality Constraint:**

- $ullet {f A}={m \mu}\Longrightarrow$  expected portfolio return.
- •A can be chosen so that we put constraint on sectors.

<u>Short-sale constraint</u>: When c=1, no short-sale allowed. When  $c=\infty$ , problem becomes Markowitz's.

Portfolio selection: solution is usually sparse.

### Risk optimization Theory

#### **Actual and Empirical risks:**

$$\begin{split} \overline{R(\mathbf{w})} &= \mathbf{w}^T \mathbf{\Sigma} \mathbf{w}, \qquad R_n(\mathbf{w}) = \mathbf{w}^T \hat{\mathbf{\Sigma}} \mathbf{w}. \\ \mathbf{w}_{opt} &= \underset{||\mathbf{w}||_1 \leq c}{\operatorname{argmin}} R(\mathbf{w}), \qquad \hat{\mathbf{w}}_{opt} = \underset{||\mathbf{w}||_1 \leq c}{\operatorname{argmin}} \mathsf{R}_n(\mathbf{w}) \\ &\bullet \mathsf{Risks:} \ \sqrt{R(\mathbf{w}_{opt})} \ \text{—oracle}, \ \sqrt{R_n(\hat{\mathbf{w}}_{opt})} \ \text{—empirical}; \\ \sqrt{R(\hat{\mathbf{w}}_{opt})} \ \text{—actual risk of a selected portfolio}. \end{split}$$

Theorem 1: Let  $a_n = \|\hat{\Sigma} - \Sigma\|_{\infty}$ . Then, we have

$$|R(\hat{\mathbf{w}}_{opt}) - R(\mathbf{w}_{opt})| \leq 2a_n c^2$$

$$|R(\hat{\mathbf{w}}_{opt}) - R_n(\hat{\mathbf{w}}_{opt})| \leq a_n c^2$$

$$|R(\mathbf{w}_{opt}) - R_n(\hat{\mathbf{w}}_{opt})| \leq a_n c^2.$$

### Risk optimization Theory

#### **Actual and Empirical risks:**

$$\overline{R(\mathbf{w}) = \mathbf{w}^T \mathbf{\Sigma} \mathbf{w}}, \qquad R_n(\mathbf{w}) = \mathbf{w}^T \hat{\mathbf{\Sigma}} \mathbf{w}.$$

$$\mathbf{w}_{opt} = \operatorname*{argmin}_{||\mathbf{w}||_1 \leq c} R(\mathbf{w}), \qquad \hat{\mathbf{w}}_{opt} = \operatorname*{argmin}_{||\mathbf{w}||_1 \leq c} \mathsf{R}_n(\mathbf{w})$$

 $\bullet \text{Risks: } \sqrt{R(\mathbf{w}_{opt})} \text{ —oracle, } \sqrt{R_n(\hat{\mathbf{w}}_{opt})} \text{ —empirical; } \\ \sqrt{R(\hat{\mathbf{w}}_{opt})} \text{ —actual risk of a selected portfolio. }$ 

Theorem 1: Let  $a_n = \|\hat{\Sigma} - \Sigma\|_{\infty}$ . Then, we have

$$|R(\hat{\mathbf{w}}_{opt}) - R(\mathbf{w}_{opt})| \leq 2a_n c^2$$
  

$$|R(\hat{\mathbf{w}}_{opt}) - R_n(\hat{\mathbf{w}}_{opt})| \leq a_n c^2$$
  

$$|R(\mathbf{w}_{opt}) - R_n(\hat{\mathbf{w}}_{opt})| \leq a_n c^2.$$

### Accuracy of Covariance: I

**Theorem 2**: If for a sufficiently large x,

$$\max_{i,j} P\{\sqrt{n}|\sigma_{ij} - \hat{\sigma}_{ij}| > x\} < \exp(-Cx^{1/a}),$$

for some two positive constants a and C, then

$$\|\mathbf{\Sigma} - \hat{\mathbf{\Sigma}}\|_{\infty} = O_P\left(\frac{(\log p)^a}{\sqrt{n}}\right).$$

•Impact of dimensionality is limited.

### Accuracy of Covariance: I

**Theorem 2**: If for a sufficiently large x,

$$\max_{i,j} P\{\sqrt{n}|\sigma_{ij} - \hat{\sigma}_{ij}| > x\} < \exp(-Cx^{1/a}),$$

for some two positive constants a and C, then

$$\|\mathbf{\Sigma} - \hat{\mathbf{\Sigma}}\|_{\infty} = O_P\left(\frac{(\log p)^a}{\sqrt{n}}\right).$$

•Impact of dimensionality is limited.

### **Algorithms**

$$\min_{\mathbf{W}^T\mathbf{1}=1,\ \|\mathbf{W}\|_1\leq c}\mathbf{w}^T\mathbf{\Sigma}\mathbf{w}.$$

- **①** Quadratic programming for each given c (**Exact**).
- Coordinatewise minimization.
- LARS approximation.

### Connections with penalized regression

**Regression problem**: Letting  $Y = R_p$  and  $X_j = R_p - R_j$ ,

$$\operatorname{var}(\mathbf{w}^{T}\mathbf{R}) = \min_{b} E(\mathbf{w}^{T}\mathbf{R} - b)^{2}$$
$$= \min_{b} E(Y - w_{1}X_{1} - \dots - w_{p-1}X_{p-1} - b)^{2},$$

Gross exposure:  $\|\mathbf{w}\|_1 = \|\mathbf{w}^*\|_1 + |1 - \mathbf{1}^T \mathbf{w}^*| \le c$ , not equivalent to  $\|\mathbf{w}^*\|_1 \le d$ . •d = 0 picks  $X_p$ , but c=1 picks multiple stocks.

### Connections with penalized regression

**Regression problem**: Letting  $Y = R_p$  and  $X_j = R_p - R_j$ ,

$$\operatorname{var}(\mathbf{w}^{T}\mathbf{R}) = \min_{b} E(\mathbf{w}^{T}\mathbf{R} - b)^{2}$$
$$= \min_{b} E(Y - w_{1}X_{1} - \dots - w_{p-1}X_{p-1} - b)^{2},$$

Gross exposure:  $\|\mathbf{w}\|_1 = \|\mathbf{w}^*\|_1 + |1 - \mathbf{1}^T \mathbf{w}^*| \le c$ , not equivalent to  $\|\mathbf{w}^*\|_1 \le d$ . •d = 0 picks  $X_p$ , but c=1 picks multiple stocks.

### Approximate solution

**LARS**: to find solution path  $\mathbf{w}^*(d)$  for PLS

$$\min_{b, ||\mathbf{W}^*||_1 \le d} E(Y - \mathbf{w}^{*T}\mathbf{X} - b)^2,$$

**Approximate solution**: PLS provides a **suboptimal** solution to risk optimization problem with

$$c = d + |1 - \mathbf{1}^T \mathbf{w}_{opt}^*(d)|.$$

- •Take Y = optimal no-short-sale constraint (c = 1).
- •Multiple Y helps. e.g. Also take Y= solution to c=2

### Portfolio tracking and improvement

- PLS regarded as finding a portfolio to minimize the expected tracking error — portfolio tracking.
- PLS interpreted as modifying weights to improve the performance of *Y* Portfolio improvements.
- with ♠limited number of stocks ♠limited exposure.
- empirical risk path  $R_n(d)$  helps decision making.

<u>Remark</u>: PLS  $\min_{b, \|\mathbf{W}^*\|_1 \le d} \sum_{t=1}^n (Y_i - \mathbf{w}^{*T} \mathbf{X}_t^* - b)^2$  is equivalent to PLS using **sample covariance** matrix.

#### An illustration

<u>Data</u>: Y = CRSP; X = 10 industrial portfolios. Today = 1/8/05. Sample Cov: one-year daily return. <u>Actual</u>: hold one year.





#### Fama-French three-factor model

<u>Model</u>:  $R_i = b_{i1}f_1 + b_{i2}f_2 + b_{i3}f_3 + \varepsilon_i$  or  $\mathbf{R} = \mathbf{Bf} + \varepsilon$ . ★  $f_1 = \mathsf{CRSP}$  index; ★  $f_2 = \mathsf{size}$  effect; ★  $f_3 = \mathsf{book}$ -to-market effect

 $\underline{\mathbf{Covariance}} \colon \mathbf{\Sigma} = \mathbf{Bcov}(\mathbf{f})\mathbf{B}^T + \mathrm{diag}(\sigma_1^2, \cdots, \sigma_p^2).$ 

| Parameters for factor loadings |       |       |       | Parameters for factor returns |       |      |      |  |
|--------------------------------|-------|-------|-------|-------------------------------|-------|------|------|--|
| $\mu_{\mathbf{b}}$             |       | covb  |       | $\mu_{\mathbf{f}}$            |       | COVf |      |  |
| .783                           | .0291 | .0239 | .0102 | .024                          | 1.251 | 035  | 204  |  |
| .518                           | .0239 | .0540 | 0070  | .013                          | 035   | .316 | 002  |  |
| .410                           | .0102 | 0070  | .0869 | .021                          | 204   | 002  | .193 |  |

Parameters: Calibrated to market data (5/1/02–8/29/05, from Fan, Fan and Lv, 2008)

#### — Parameters:

- •Factor loadings:  $\mathbf{b}_i \sim_{i.i.d.} N(\mu_{\mathbf{b}}, \text{cov}_{\mathbf{b}})$
- •Noise:  $\sigma_i \sim_{i.i.d.}$  Gamma(3.34, .19) conditioned on  $\sigma_i > .20$ .
- **Simulation**: Factor returns  $\mathbf{f}_t \sim_{i.i.d.} N(\mu_{\mathbf{f}}, \mathbf{cov}_{\mathbf{f}})$ ,  $\varepsilon_{it} \sim_{i.i.d.} \sigma_i t_{\mathbf{f}}^*$

#### Fama-French three-factor model

Model: 
$$R_i = b_{i1}f_1 + b_{i2}f_2 + b_{i3}f_3 + \varepsilon_i$$
 or  $\mathbf{R} = \mathbf{Bf} + \varepsilon$ .  
★  $f_1 = \mathsf{CRSP}$  index; ★  $f_2 = \mathsf{size}$  effect; ★  $f_3 = \mathsf{book}$ -to-market effect

**Covariance**:  $\Sigma = \mathbf{B} \mathbf{cov}(\mathbf{f}) \mathbf{B}^T + \mathbf{diag}(\sigma_1^2, \cdots, \sigma_p^2).$ 

| Parameters for factor loadings |       |       |       |    | Parameters for factor returns |       |      |      |  |
|--------------------------------|-------|-------|-------|----|-------------------------------|-------|------|------|--|
| $\mu_{b}$                      |       | covb  |       | =' | $\mu_{f}$                     |       | covf |      |  |
| .783                           | .0291 | .0239 | .0102 |    | .024                          | 1.251 | 035  | 204  |  |
| .518                           | .0239 | .0540 | 0070  |    | .013                          | 035   | .316 | 002  |  |
| .410                           | .0102 | 0070  | .0869 |    | .021                          | 204   | 002  | .193 |  |

Parameters: Calibrated to market data (5/1/02–8/29/05, from Fan, Fan and Lv, 2008)

#### — Parameters:

- •Factor loadings:  $\mathbf{b}_i \sim_{i.i.d.} N(\mu_{\mathbf{b}}, \text{cov}_{\mathbf{b}})$
- •Noise:  $\sigma_i \sim_{i.i.d.}$  Gamma(3.34, .19) conditioned on  $\sigma_i > .20$ .
- Simulation: Factor returns  $\mathbf{f}_t \sim_{i.i.d.} N(\mu_{\mathbf{f}}, \text{cov}_{\mathbf{f}})$ ,  $\varepsilon_{it} \sim_{i.i.d.} \sigma_i t_6^*$

#### Risk Improvements and decision making



Factor-model based estimation is more accurate.

# **Empirical studies (I)**

#### Some details

<u>Data</u>: 100 portfolios from the website of Kenneth French from 1998–2007 (10 years)

<u>Portfolios</u>: two-way sort according to the size and book-to-equity ratio, 10 categories each.

**Evaluation**: Rebalance monthly, and record daily returns.

<u>Covariance matrix</u>: Estimate by sample covariance matrix, factor model used last twelve months daily data, and RiskMetrics.

### Risk, Sharpe-Ratio, Maximum Weight, Annualized return



### Short-constrained MV portfolio (Results I)

| Methods                            | Mean  | Std   | Sharpe-R | Max-W | Min-W | Long | Short |  |  |
|------------------------------------|-------|-------|----------|-------|-------|------|-------|--|--|
| Sample Covariance Matrix Estimator |       |       |          |       |       |      |       |  |  |
| No short(c = 1)                    | 19.51 | 10.14 | 1.60     | 0.27  | -0.00 | 6    | 0     |  |  |
| Exact(c = 1.5)                     | 21.04 | 8.41  | 2.11     | 0.25  | -0.07 | 9    | 6     |  |  |
| Exact(c = 2)                       | 20.55 | 7.56  | 2.28     | 0.24  | -0.09 | 15   | 12    |  |  |
| Exact(c = 3)                       | 18.26 | 7.13  | 2.09     | 0.24  | -0.11 | 27   | 25    |  |  |
| Approx. $(c = 2)$                  | 21.16 | 7.89  | 2.26     | 0.32  | -0.08 | 9    | 13    |  |  |
| Approx. $(c = 3)$                  | 19.28 | 7.08  | 2.25     | 0.28  | -0.11 | 23   | 24    |  |  |
| GMV                                | 17.55 | 7.82  | 1.82     | 0.66  | -0.32 | 52   | 48    |  |  |
| Unmanaged Index                    |       |       |          |       |       |      |       |  |  |
| Equal-W                            | 10.86 | 16.33 | 0.46     | 0.01  | 0.01  | 100  | 0     |  |  |
| CRSP                               | 8.2   | 17.9  | 0.26     |       |       |      |       |  |  |

## **Empirical studies (II)**

#### Some details

<u>Data</u>: 1000 stocks with missing data selected from Russell 3000 from 2003-2007 (5 years).

<u>Allocation</u>: Each month, pick 400 stocks at random and allocate them (mitigating survivor biases).

**Evaluation**: Rebalance monthly, and record daily returns.

<u>Covariance matrix</u>: Estimate by sample covariance matrix, factor model used last <u>twenty-four</u> months daily data, and RiskMetrics.





#### Conclusion

- Utility maximization with gross-sale constraint bridges no-short-sale constraint to no-constraint on allocation.
- It makes oracle (theoretical), actual and empirical risks close:
  - No error accumulation effect for a range of c;
  - Elements in covariance can be estimated separately; facilitates use of non-synchronize high-frequency data.
  - Provide theoretical understanding why wrong constraint help.
- Portfolio selection, tracking, and improvement.
  - Select or track a portfolio with limited number of stocks.
  - Improve any given portfolio with modifications of weights on limited number of stocks.
  - Provide tools for checking efficiency of a portfolio.

#### Conclusion

- Utility maximization with gross-sale constraint bridges no-short-sale constraint to no-constraint on allocation.
- It makes oracle (theoretical), actual and empirical risks close:
  - No error accumulation effect for a range of c;
  - Elements in covariance can be estimated separately; facilitates use of non-synchronize high-frequency data.
  - Provide theoretical understanding why wrong constraint help.
- Portfolio selection, tracking, and improvement.
  - Select or track a portfolio with limited number of stocks.
  - Improve any given portfolio with modifications of weights on limited number of stocks.
  - Provide tools for checking efficiency of a portfolio.