神秘模板库

Toy ASM Truck
Huazhong University of Science and Technology
March 21, 2021

Contents

一切的开始	;	2
宏定义	:	2
数据结构	:	2
ST表		2
数学	:	2
数す 类欧几里得	:	2
图论	:	2
LCA	:	2
计算几何	;	3
다 되었다며 二维几何: 点与向量	:	3
字符串	4	4
子付申 后缀自动机		4
多项式	4	4
多坝ス NTT 模数		4
FFT		4
NTT		5

一切的开始

宏定义

数据结构

ST 表

二维

```
int f[maxn][maxn][10][10];
    inline int highbit(int x) { return 31 - __builtin_clz(x); }
    inline int calc(int x, int y, int xx, int yy, int p, int q) {
        return max(
            \max(f[x][y][p][q], f[xx - (1 << p) + 1][yy - (1 << q) + 1][p][q]),
            \max(f[xx - (1 << p) + 1][y][p][q], f[x][yy - (1 << q) + 1][p][q])
        );
   }
    void init() {
        FOR (x, 0, highbit(n) + 1)
        FOR (y, 0, highbit(m) + 1)
11
            FOR (i, 0, n - (1 << x) + 1)
12
            FOR (j, 0, m - (1 << y) + 1) {
13
                if (!x && !y) { f[i][j][x][y] = a[i][j]; continue; }
14
                f[i][j][x][y] = calc(
16
                    i + (1 << x) - 1, j + (1 << y) - 1,
17
                    max(x - 1, 0), max(y - 1, 0)
18
                );
19
            }
21
    inline int get_max(int x, int y, int xx, int yy) {
22
        return calc(x, y, xx, yy, highbit(xx - x + 1), highbit(yy - y + 1));
23
24
```

数学

类欧几里得

- $m = \lfloor \frac{an+b}{a} \rfloor$.
- $f(a,b,c,n) = \sum_{i=0}^n \lfloor \frac{ai+b}{c} \rfloor$: 当 $a \geq c$ or $b \geq c$ 时, $f(a,b,c,n) = (\frac{a}{c})n(n+1)/2 + (\frac{b}{c})(n+1) + f(a \bmod c,b \bmod c,c,n)$; 否则 f(a,b,c,n) = nm f(c,c-b-1,a,m-1)。
- $g(a,b,c,n) = \sum_{i=0}^{n} i \lfloor \frac{ai+b}{c} \rfloor$: 当 $a \geq c$ or $b \geq c$ 时, $g(a,b,c,n) = (\frac{a}{c})n(n+1)(2n+1)/6 + (\frac{b}{c})n(n+1)/2 + g(a \mod c,b \mod c,c,n)$;否则 $g(a,b,c,n) = \frac{1}{2}(n(n+1)m-f(c,c-b-1,a,m-1)-h(c,c-b-1,a,m-1))$ 。
- $h(a,b,c,n) = \sum_{i=0}^{n} \lfloor \frac{ai+b}{c} \rfloor^2$: 当 $a \geq c$ or $b \geq c$ 时, $h(a,b,c,n) = (\frac{a}{c})^2 n(n+1)(2n+1)/6 + (\frac{b}{c})^2 (n+1) + (\frac{a}{c})(\frac{b}{c})n(n+1) + h(a \bmod c, b \bmod c, c, n) + 2(\frac{a}{c})g(a \bmod c, b \bmod c, c, n) + 2(\frac{b}{c})f(a \bmod c, b \bmod c, c, n)$;否则 h(a,b,c,n) = nm(m+1) 2g(c,c-b-1,a,m-1) 2f(c,c-b-1,a,m-1) f(a,b,c,n)。

图论

LCA

● 倍增

```
void dfs(int u, int fa) {
    pa[u][0] = fa; dep[u] = dep[fa] + 1;
    FOR (i, 1, SP) pa[u][i] = pa[pa[u][i - 1]][i - 1];

for (int& v: G[u]) {
    if (v == fa) continue;
    dfs(v, u);
}

}
```

```
int lca(int u, int v) {
11
12
        if (dep[u] < dep[v]) swap(u, v);</pre>
        int t = dep[u] - dep[v];
13
        FOR (i, 0, SP) if (t & (1 << i)) u = pa[u][i];
14
15
        FORD (i, SP - 1, -1) {
             int uu = pa[u][i], vv = pa[v][i];
16
             if (uu != vv) { u = uu; v = vv; }
17
18
        return u == v ? u : pa[u][0];
19
20
    }
```

计算几何

二维几何: 点与向量

```
#define y1 yy1
1
   #define nxt(i) ((i + 1) % s.size())
   typedef double LD;
   const LD PI = 3.14159265358979323846;
   const LD eps = 1E-10;
    int sgn(LD x) \{ return fabs(x) < eps ? 0 : (x > 0 ? 1 : -1); \}
   struct L:
   struct P;
   typedef P V;
   struct P {
10
11
        LD x, y;
        explicit P(LD x = 0, LD y = 0): x(x), y(y) {}
12
        explicit P(const L& l);
13
   };
14
15
   struct L {
        Ps, t;
16
17
        L() {}
        L(P s, P t): s(s), t(t) {}
18
19
20
21
    P operator + (const P& a, const P& b) { return P(a.x + b.x, a.y + b.y); }
   P operator - (const P& a, const P& b) { return P(a.x - b.x, a.y - b.y); }
22
   P operator * (const P& a, LD k) { return P(a.x * k, a.y * k); }
23
   P operator / (const P& a, LD k) { return P(a.x / k, a.y / k); }
24
    inline bool operator < (const P& a, const P& b) {</pre>
25
        return sgn(a.x - b.x) < 0 \mid | (sgn(a.x - b.x) == 0 && sgn(a.y - b.y) < 0);
27
   bool operator == (const P& a, const P& b) { return !sgn(a.x - b.x) && !sgn(a.y - b.y); }
28
   P::P(const L& l) { *this = l.t - l.s; }
29
   ostream &operator << (ostream &os, const P &p) {
30
        return (os << "(" << p.x << "," << p.y << ")");
31
32
    istream &operator >> (istream &is, P &p) {
34
        return (is >> p.x >> p.y);
35
36
   LD dist(const P& p) { return sqrt(p.x * p.x + p.y * p.y); }
37
   LD dot(const V& a, const V& b) { return a.x * b.x + a.y * b.y; }
   LD det(const V& a, const V& b) { return a.x * b.y - a.y * b.x; }
   LD cross(const P& s, const P& t, const P& o = P()) { return det(s - o, t - o); }
   // ----
```

字符串

后缀自动机

多项式

NTT 模数

```
NTTPrimes = {1053818881, 1051721729, 1045430273, 1012924417, 1007681537, 1004535809, 998244353, 985661441,

    976224257, 975175681};

   NTTPrimitiveRoots = {7, 6, 3, 5, 3, 3, 3, 3, 17};
    FFT
    namespace FFT{
        const db pi=acos(-1);
        struct cp{
            db re,im;
            cp(db _re=0,db _im=0){re=_re;im=_im;}
            cp operator +(cp b){return cp(re+b.re,im+b.im);}
            cp operator -(cp b){return cp(re-b.re,im-b.im);}
            cp operator *(cp b){return cp(re*b.re-im*b.im,re*b.im+im*b.re);}
        int r[N];cp c[N<<1];</pre>
        inline void fft(cp *a,int f,int n){
11
            rep(i,0,n-1) if(r[i]>i) swap(a[r[i]],a[i]);
12
            for(int i=1;i<n;i<<=1){</pre>
```

```
cp wn(cos(pi/i),f*sin(pi/i));
14
15
                 for(int j=0,p=(i<<1);j<n;j+=p){</pre>
16
                     cp w(1,0);
                     for(int k=0; k<i; ++k, w=w*wn){</pre>
17
                          cp x=a[j+k],y=w*a[j+k+i];
                          a[j+k]=x+y;a[j+k+i]=x-y;
19
20
                 }
21
22
            if(f==-1){rep(i,0,n-1) a[i].re/=n,a[i].im/=n;}
23
24
25
        inline int mul(db *a,db *b,int n,int m){
26
            n+=m;rep(i,0,n) c[i]=cp(a[i],b[i]);
             int l=0;m=n;for(n=1;n<=m;n<<=1) ++l;</pre>
27
            rep(i,0,n-1) r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
28
            rep(i,m+1,n) c[i]=cp(0,0);
29
             fft(c,1,n);rep(i,0,n-1) c[i]=c[i]*c[i];
            fft(c,-1,n);
31
            rep(i,0,m) a[i]=c[i].im/2;
33
            return n;
        }
34
   }
    NTT
    namespace NTT{
        const int P=998244353,g=3,ig=332748118;
2
        inline int qpow(int a,int b){int q=1;while(b){if(b&1)q=1LL*q*a%P;a=1LL*a*a%P;b>>=1;}return q;}
        int r[N],ow[N],inv[N];
        inline void ntt(int *a,int f,int n){
            rep(i,0,n-1) if(r[i]>i) swap(a[i],a[r[i]]);
             for(int i=1;i<n;i<<=1){</pre>
                 int wn=qpow(f,(P-1)/(i<<1));</pre>
                 ow[0]=1; rep(k,1,i-1) ow[k]=1LL*ow[k-1]*wn%P;
                 for(int j=0,p=(i<<1);j<n;j+=p){</pre>
                     for(int k=0;k<i;++k){</pre>
11
                          int x=a[j+k],y=1LL*ow[k]*a[j+k+i]%P;
                          a[j+k]=(x+y)%P;a[j+k+i]=(x+P-y)%P;
13
14
                     }
                 }
15
16
            if(f==ig){
17
                 int iv=qpow(n,P-2);
18
                 rep(i,0,n-1) a[i]=1LL*a[i]*iv%P;
            }
20
21
        int tma[N],tmb[N];
22
        inline int mul(int *a,int *b,int n,int m,int ci){
23
             int _n=n,_m=m,l=0;m+=n;for(n=1;n<=m;n<<=1) ++l;</pre>
            rep(i,0,n-1) r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
25
            rep(i,0,n-1) tma[i]=a[i];rep(i,0,n-1) tmb[i]=b[i];
26
27
            rep(i,_n+1,n) tma[i]=0;rep(i,_m+1,n) tmb[i]=0;
            ntt(tma,g,n);ntt(tmb,g,n);
28
29
            while(ci){
                 if(ci&1) rep(i,0,n-1) tma[i]=1LL*tma[i]*tmb[i]%P;
30
31
                 rep(i,0,n-1) tmb[i]=1LL*tmb[i]*tmb[i]%P;
32
                 ci>>=1;
33
34
            ntt(tma,ig,n);
            rep(i,0,n-1) a[i]=tma[i];
35
            return n;
        }
37
    inline void prepare(){
39
        //NTT inv
40
41
        using NTT::inv;using NTT::P;
        inv[1]=1;rep(i,2,N-1) inv[i]=1LL*(P-P/i)*inv[P%i]%P;
42
   }
43
```