Rank-74275 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^2 X_2 + X_1^2 X_3 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over GF(2) is 74275

General information

Number of lines	6
Number of points	11
Number of singular points	1
Number of Eckardt points	0
Number of double points	4
Number of single points	6
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^{6}
Type of lines on points	$4, 2^4, 1^6$

Singular Points

The surface has 1 singular points:

$$0: P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0)$$

The 6 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \mathbf{Pl}(1, 0, 0, 0, 0, 0)_0$$

$$\ell_{1} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{11} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{11} = \mathbf{Pl}(0, 0, 1, 0, 0, 1)_{22}$$

$$\ell_{2} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{28} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{28} = \mathbf{Pl}(0, 0, 0, 0, 0, 1)_{19}$$

$$\ell_{3} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{34} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{34} = \mathbf{Pl}(0, 1, 0, 0, 0, 0)_{1}$$

$$\ell_{4} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{25} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{25} = \mathbf{Pl}(0, 1, 1, 0, 0, 1)_{24}$$

$$\ell_{5} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{22} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{22} = \mathbf{Pl}(1, 1, 1, 1, 0, 1)_{28}$$

Rank of lines: (0, 11, 28, 34, 25, 22)

Rank of points on Klein quadric: (0, 22, 19, 1, 24, 28)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 4 Double points: The double points on the surface are:

$$P_5 = (1, 1, 0, 0) = \ell_0 \cap \ell_1$$

$$P_1 = (0, 1, 0, 0) = \ell_0 \cap \ell_2$$

$$P_7 = (0, 1, 1, 0) = \ell_2 \cap \ell_5$$

$$P_{11} = (1, 1, 0, 1) = \ell_4 \cap \ell_5$$

Single Points

The surface has 6 single points: The single points on the surface are:

0: $P_0 = (1,0,0,0)$ lies on line ℓ_0 1: $P_3 = (0,0,0,1)$ lies on line ℓ_3 2: $P_4 = (1,1,1,1)$ lies on line ℓ_4 3: $P_8 = (1,1,1,0)$ lies on line ℓ_1 4: $P_{12} = (0, 0, 1, 1)$ lies on line ℓ_3 5: $P_{13} = (1, 0, 1, 1)$ lies on line ℓ_5

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line: The points on the surface but not on lines are:

Line Intersection Graph

$$\begin{array}{c|c} 012345 \\ \hline 0 & 0111000 \\ 1 & 101110 \\ 2 & 110111 \\ 3 & 011010 \\ 4 & 011101 \\ 5 & 001010 \end{array}$$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2
in point	P_5	P_1

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_3	ℓ_4
in point	P_5	P_2	P_2	P_2

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_3	ℓ_4	ℓ_5
in point	P_1	P_2	P_2	P_2	P_7

Line 3 intersects

Line	ℓ_1	ℓ_2	ℓ_4
in point	P_2	P_2	P_2

Line 4 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_5
in point	P_2	P_2	P_2	P_{11}

Line 5 intersects

Line	ℓ_2	ℓ_4
in point	P_7	P_{11}

3

The surface has 11 points:

The points on the surface are:

$$\begin{array}{lll} 0: \ P_0 = (1,0,0,0) & 4: \ P_4 = (1,1,1,1) & 8: \ P_{11} = (1,1,0,1) \\ 1: \ P_1 = (0,1,0,0) & 5: \ P_5 = (1,1,0,0) & 9: \ P_{12} = (0,0,1,1) \\ 2: \ P_2 = (0,0,1,0) & 6: \ P_7 = (0,1,1,0) & 10: \ P_{13} = (1,0,1,1) \end{array}$$

 $3: P_3 = (0,0,0,1)$ $0: P_7 = (0,1,1,0)$ $1: P_8 = (1,1,1,0)$