

Semi-Dense 3D Reconstruction with a Stereo Event Camera

Yi Zhou, Guillermo Gallego, Henri Rebecq, Laurent Kneip, Hongdong Li, Davide Scaramuzza

Motivation: Address the problem of stereo reconstruction for VO/SLAM using event cameras alone.

Goal: Unlock the potential of event cameras by exploiting the temporally asynchronous and spatially sparse nature of event data.

What is an event camera?

- Only transmits **brightness changes**.
- Output is a stream of asynchronous events.
- Advantages: low latency, no motion blur, HDR.

Watch video!

Stereo event-camera setup

Cameras	DAVIS
Width	240 pix
Height	180 pix
FOV	62.9°
Baseline	14.7 cm

Events on the left view

Scene

Sponsors:

3D Reconstruction

Approach

Optimize the spatio-temporal consistency of events across stereo image planes in small-baseline setups.

Event representation: Time-Surface Maps_

- An exponential decay kernel on the last spiking time t_{last} at $x = (u, v)^T$.
- The decay rate parameter δ is a small constant (~ 30 ms).

Geometry of the problem and solution_

- ρ^* maximizes the spatio-temporal consistency of events.
- Optimizer: Gauss-Newton method.

Best inverse depth: $\rho^* = \operatorname{argmin}_{\rho} C(x, \rho)$

Depth Map Fusion

- Improve the density or reconstruction.
- Reduce the depth uncertainty.

Fusion steps

Experiments

flying3

(RA-L'18)

(OD E)				
(3D Errors)	Dataset	3 planes	flying1	flying3
	Depth range	2.76 m	4.96 m	5.74 m
	Mean error	0.03 m	0.13 m	0.33 m
Our Method	Median error	0.01 m	0.05 m	0.11 m
	Relative error	1.17 %	2.65 %	5.79 %
	Mean error	0.05 m	0.99 m	1.03 m
FCVF (PAMI'13)	Median error	0.03 m	0.25 m	0.11 m
	Relative error	1.84 %	20.8 %	17.3 %
	Mean error	0.08 m	0.93 m	1.19 m
SGM (PAMI'08)	Median error	0.03 m	0.31 m	0.20 m
	Relative error	3.22 %	18.7 %	20.8 %

