Eingebettete RK-Verfahren: RK 5(4) von Dormand & Prince

Idee von eingebetteten RK-Verfahren:

Die Stufen k_i , $i=1,\ldots,s$, können zu 2 verschiedenen Inkrementfunktionen

$$\Phi^1 := \sum_{i=1}^s b_i^1 k_i, \qquad \Phi^2 := \sum_{i=1}^s b_i^2 k_i,$$

kombiniert werden. Dabei entsteht zwei Verfahren unterschiedlicher Ordnung.

Ein populäres Beispiel ist das RK 5(4)-Verfahren von Dormand & Prince: hier können die Stufen zu einem Verfahren der Ordnung 4 und einem Verfahren der Ordnung 5 kombiniert werden.

Beispiel: RK 5(4) von Dormand & Prince

0								
$\frac{1}{5}$	$\frac{1}{5}$							
$\frac{3}{10}$	$\frac{3}{40}$	$\frac{9}{40}$						
$\frac{4}{5}$	$\frac{44}{45}$	$-\frac{56}{15}$	$\frac{32}{9}$					
$\frac{8}{9}$	$\frac{19372}{6561}$	$-\frac{25360}{2187}$	$\frac{64448}{6561}$	$-\frac{212}{729}$				
1	$\frac{9017}{3168}$	$-\frac{355}{33}$	$\frac{46732}{5247}$	$\frac{49}{176}$	$-\frac{5103}{18656}$			
1	$\frac{35}{384}$	0	$\frac{500}{1113}$	$\frac{125}{192}$	$-\frac{2187}{6784}$	$\frac{11}{84}$		
	$\frac{35}{384}$	0	$\frac{500}{1113}$	$\frac{125}{192}$	$-\frac{2187}{6784}$	$\frac{11}{84}$	0	$(5.\ Ordnung)$
	$\frac{5179}{57600}$	0	$\frac{7571}{16695}$	$\frac{393}{640}$	$-\frac{92097}{339200}$	$\frac{187}{2100}$	$\frac{1}{40}$	$(4.\ Ordnung)$

Beispiel: y' = y auf [0,1] mit y(0) = 1

Schrittweitensteuerung bei eingebetteten RK-Verfahren

```
	t \% input: Toleranz 	au_0; minimale Schrittweite h_{min}; Anfangsschrittweite h;
% input: Sicherheitsfaktor \rho \in (0,1]; Vergrößerungsschranke \eta \geq 1
\% Voraussetzung: \Phi ist Inkrementfunktion eines eingebetteten RK Verfahrens
                       mit Ordnungen p+1, p
t := t_0; \ y := y_0
while (t < T) do {
    bestimme Approximationen 	ilde{y}_{p+1}, 	ilde{y}_p mit einem eingebetteten RK Verfahren
    EST := |\tilde{y}_{p+1} - \tilde{y}_p|
                                                                          % schätze Fehler
    if ((EST/h) \le \tau_0 \text{ or } h \le h_{min}){
                                                                                           %
Genauigkeit oder minimale Schrittweite erreicht
                                 % akzeptiere beste Approximation \tilde{y}_{p+1}; y_{i+1} := \tilde{y}_p
       y := \tilde{y}_{p+1}
                                                     % nächster Knoten: t_{i+1} = t_i + h
       t := t + h
      h := \max \left\{ h_{min}, \min \left\{ \eta h, \rho \left( \frac{\tau_0}{\text{EST}} h^{p+1} \right)^{1/p} \right\} \right\}
neuer Schrittweitenvorschlag
    else h:=h/2 % andernfalls: verwerfe Probeschritt und probiere h/2
```

Beispiel: $y' = -200ty^2$ auf [0,1] mit y(0) = 1

Toleranz $ au_0$	10^{-4}	10^{-5}	10^{-6}	10^{-7}	10^{-8}	10^{-9}
# Schritte RK4	33	55	93	163	286	506
# Funktionsauswertungen RK4	363	605	1023	1793	3146	5566
Fehler	0.20_{-6}	0.27_{-7}	0.10_{-7}	0.45_{-9}	0.85_{-10}	0.48_{-11}
# Schritte RK 5(4)	19	33	58	97	170	298
# Funktionsauswertungen RK $5(4)$	133	231	406	679	1190	2086
Fehler	7.12_{-6}	8.77_{-6}	2.19_{-8}	2.14_{-9}	5.11_{-11}	1.10_{-11}

Bemerkungen:

- eingebettetes Verfahren schätzt den Fehler des "schlechteren" Verfahrens und akzeptiert den Wert des "besseren" Verfahrens. Schrittweitenvorschlag ist eigentlich angepaßt an das "schlechtere" Verfahren
- ullet DOPRI5 benötigt 7 f-Auswertungen pro Schritt, adaptives Verfahren basierend auf RK4 benötigt 11 f-Auswertungen

Beispiel: $y' = -200ty^2$ auf [0,1] mit y(0) = 1 als Graphik

