<u>t 61</u>

a) Nach Erg. 13 mit z = 1.4 und $T_3 = 273 + 950 = 1223 \text{ K sowie } T_1 = 273 + 20 = 293 \text{ K}$ $\pi_{\text{opt}} = (T_3/T_1)^{\frac{1}{2}/(2 \cdot \frac{1}{2} - 2)} = (1223/293)^{\frac{1}{4}/(2 \cdot 1, 4 - 2)}$ $\pi_{\text{opt}} = 12,19 \quad \text{also} \quad \underline{\pi} = 12$ $\pi_{\rm opt} = 12,19$

b) $T_2 = T_1 \cdot \pi^{(n-1)/n}$

Hierbei aus Gl. (10-20) mit geschätzt

 $\eta_{i,s} = \eta_{K,s} = 0.87$; Mittelwert lt. Abschnitt 11.4.4.

$$\frac{n}{n-1} = \eta_{K,s} \cdot \frac{\varkappa}{\varkappa - 1} = 0.87 \cdot \frac{1.4}{1.4 - 1} = 3.045 \quad \text{Hieraus}$$

$$n = 3.045 \cdot (n - 1) \quad - n = 3.045/2.045 = 1.49$$

$$T_2 = 293 \cdot 12^{(1.49 - 1)/1.49} [K] = 663.4 \text{ K}$$

c) $i_K = Y_K / \Delta Y_K$ Mit

$$Y_{K} = W_{t,K} = \frac{n}{n-1} \cdot R \cdot T_{1} \cdot \left[\pi^{(n-1)/n} - 1 \right]$$

$$= \frac{1.49}{1.49-1} \cdot 287 \cdot 293 \cdot \left[12^{(1,49-1)/1,49} - 1 \right] \left[\frac{J}{kg} \right]$$

$$= 323240.95 \text{ J/kg} \approx 323 \text{ kJ/kg} \qquad \text{Oder}$$

 $w_{t,K} = w_{t,K,s}/\eta_{K,s}$ $w_{t,K,s} = \Delta h_{K,s} = \frac{\varkappa}{\varkappa - 1} \cdot \mathbb{R} \cdot \mathbb{T}_1 \cdot \left[\pi^{(\varkappa - 1)/\varkappa} - 1 \right]$ $= \frac{1.4}{1.4-1} \cdot 287 \cdot 293 \cdot \left[12^{(1,4-1)/1,4} - 1 \right] \left[(J/kgK) \cdot K \right]$

= 304306,79 J/kg = 304 kJ/kg

 $w_{t,K} = 304306,79/0,87 = 349777,92 J/kg = 350 kJ/kg$ Genauer Wert! Abweichung (ca. 8%) des vorhergehenden Wertes, da Gl. (10-20) nur Näherungsbeziehung.

 $\Delta Y_{K} = 4 \cdot u^{2}/2$ aus Gl. (4-51) mit angen. $u = 220 \text{ m/s} \text{ und } \Upsilon = 0.8 \text{ gemäß Richtwerten}$ nach Unterabschnitt 11.4.5.1

 $\Delta Y_{\rm w} = 0.8 \cdot 220^2 / 2 \, \left[{\rm m}^2 / {\rm s}^2 \right] = 19360 \, {\rm m}^2 / {\rm s}^2 = 19.36 \, {\rm kJ/kg}$ Mit den Werten ergibt sich

d) D =
$$u/(\pi \cdot n) = 220/(\pi \cdot 50) [(m/s)/s^{-1}] = 1,40 m$$

e) Uberdruckwirkung (r = 0,5) und deshalb Vollbeaufschlagung. Nach Durchflußgleichung gilt dann:

$$\begin{array}{lll} \dot{\mathbf{m}} \cdot \mathbf{v}_2 &= \dot{\mathbf{v}}_2 &= \mathbf{c}_{2\mathbf{m}} \cdot \mathbf{A}_{2\mathbf{m}} &= \mathbf{c}_{2\mathbf{m}} \cdot \mathbf{D} \cdot \boldsymbol{\pi} \cdot \mathbf{b}_2 \cdot \mathbf{1}/\boldsymbol{\tau}_2 & \text{ Hieraus} \\ \mathbf{b}_2 &= (\dot{\mathbf{m}} \cdot \mathbf{v}_2 \cdot \boldsymbol{\tau}_2)/(\mathbf{c}_{2\mathbf{m}} \cdot \mathbf{D} \cdot \boldsymbol{\pi}) \end{array}$$

Mit geschätzt $T_2 = 1.1$ und nach

Unterabschnitt 11.4.5.1 $u/c_2 = 0.75$ sowie $d_2 = 20^\circ$

$$c_2 = u/(u/c_2) = 220/0,75 = 293 \text{ m/s}$$

 $c_{2m} = c_2 \cdot \sin d_2 = 293 \cdot \sin 20^\circ = 100 \text{ m/s}$

Desweiteren aus Gasgleichung $v_2 = R \cdot T_2/p_2$

I. Stufe: T₂ = 293 K; p₂ = 1 bar

$$v_2 = 287 \cdot 293/10^5 \left[(m^2/s^2 K) \cdot K/(N/m^2) \right] = 0.841 m^3/kg$$

Damit und dem obigen Wert

b₂ =
$$\frac{140 \cdot 0.841 \cdot 1.1}{100 \cdot 1.40} \begin{bmatrix} \frac{\text{kg/s} \cdot \text{m}^3/\text{kg}}{\text{m/s} \cdot \text{m}} \end{bmatrix} = 0.295 \text{ m} = 295 \text{ mm}$$

Letzte Stufe: $T_2 \approx 663 \text{ K}$; $p_2 = p_1 \cdot \overline{\Pi} = 12 \text{ bar}$ $v_2 = 287.663/(12.10^5) = 0.159 \text{ m}^3/\text{kg}$ $b_2 = (140.0, 159.1, 1)/(100.1, 4.\pi) = 0,0556 \text{ m} \approx 56 \text{ mm}$

f) $P_K = \Delta h_K \cdot \dot{m}_K = 350 \cdot 140 \left[kJ/kg \cdot (kg/s) \right]$ mit $\dot{m}_K = \dot{m}$ $P_{K} = 49000 \text{ kW} = 49 \text{ MW}$

 $\mathbf{g} \,) \quad \mathbf{P}_{\mathbf{T}} \, = \, \Delta \mathbf{h}_{\mathbf{T}} \boldsymbol{\cdot} \dot{\mathbf{m}}_{\mathbf{T}} \, = \, \dot{\mathbf{m}}_{\mathbf{T}} \boldsymbol{\cdot} \Delta \mathbf{h}_{\mathbf{s}} \boldsymbol{\cdot} \boldsymbol{\eta}_{\mathbf{T},\mathbf{s}}$ geschätzt $\eta_{T.s} = 0.89$ (Abschnitt 11.4.4) $\Delta h_s = \frac{x}{x-1} \cdot R \cdot T_3 \cdot \left[1 - (1/\pi)^{(\kappa-1)/\kappa} \right]$ $= \frac{1.4}{1-1.4} \cdot 287 \cdot 1223 \left[1 - (1/12)^{(1.4-1)/1.4} \right]$ [J/(kg K)-K] = 624500,7 J/kg = 624,5 kJ/kg $\Delta h_{T} = \Delta h_{s} \cdot \eta_{T,s} = 624,5 \cdot 0,89 = 555,8 \text{ kJ/kg}$ $\dot{m}_{T} = 0,92 \cdot \dot{m} = 0,92 \cdot 140 = 128,8 \text{ kg/s}$ $P_{T} = 128,8.555,8 \text{ [kg/s·kJ/kg]} = 71587 \text{ kW}$ $P_T = 71,5 MW$

h)
$$\frac{P_N}{P_N} = P_T - P_K = 71.5 - 49 = 22.5 \text{ MW}$$

 $P_N 31 \% \text{ von } P_T \text{ und } P_K 69 \% \text{ von } P_T$

i) Nach Gl. (11-27):

$$q = 996 \cdot (T_3 - T_2) + 0.11 \cdot (T_3^2 - T_2^2) [J/kg]$$

 $q = 966 \cdot (1223 - 663) + 0.11 \cdot (1223^2 - 663^2) [J/kg]$
 $q = 657137.6 J/kg = 657.14 kJ/kg$

$$\dot{Q}_{Br} = q \cdot \dot{m}_T \cdot 1/\eta_{BK}$$
Angen. Ausbrenngrad $\eta_{BK} = 0.98$ (Unterabschnitt 11.4.4) und $H_u = 42000$ kJ/kg nach Tab. 11-9:

Q_{Br} = 657,14.128,8.1/0,98 [kJ/kg].kg/s] = 86367 kJ/s $\dot{m}_{Br} = \dot{Q}_{Br}/H_{u} = 86367/42000 [(kJ/s)/(kJ/kg)]$ $\dot{m}_{Br} = 2,06 \text{ kg/s}$

 $i_T = \Delta h_T / \Delta h_{T,St}$

Bei Lz =
$$u/c_2$$
 = 0,75 (Frage e) nach Gl.(41-14);
 c_2 = $u/0$,75 = 220/0,75 = 293 m/s Damit
 Δh_{Le} = $c_2^2/2$ = 42924,5 m²/s² = 42,9 kJ/kg
 Δh_{St} = $\Delta h_{Le}/(1 - r)$ da r = 0,5
 Δh_{St} = $2 \cdot \Delta h_{Le}$ = 85,8 kJ/kg = $\Delta h_{T,St}$ Damit
 i_T = 555,8/85,8 = 6,4 also i_T = 6 Stufen

Bemerkung: Für das gleiche Druckverhältnis benötigt der Kompressor 18, die Turbine jedoch nur 6 Stufen.