report on "Hidden protocols: Modifying our expectations in an evolving world"

Chen Xin

Department of philosophy (ZhuHai) Sun Yat-Sen University

Shuo-Zhi Seminars, Session 7 Nov.2, 2021

Outline

- Introduction
 - Overview
 - Two Examples
 - Basic settings
- Reasoning via epistemic expectation models
 - Epistemic expectation models
 - public observation logic
 - *bisimulation
 - *epistemic expectation model V.S. epistemic temporal model
- Section Expectation From Protocol
 - protocol expressions
 - protocol models
 - Epistemic protocol logic (EPL)
- 4 Incorporate the fact-changing actions
- 5 100 prisoners & 1 lightbilb

Outline

- Introduction
 - Overview
 - Two Examples
 - Basic settings
- Reasoning via epistemic expectation models
 - Epistemic expectation models
 - public observation logic
 - *bisimulation
 - *epistemic expectation model V.S. epistemic temporal model
- Expectation from protocol
 - protocol expressions
 - protocol models
 - Epistemic protocol logic (EPL)
- 4 Incorporate the fact-changing actions
- 5 100 prisoners & 1 lightbilb

- - update their knowledge.
- protocols (need not be common knowledge)
- => semantics-driven logical framework
- answer:
 - What does it mean that we know a protocol?
 - How does protocol affect our knowledge of reality?
 -

- agents know a protocol

 expectations about future observations.
 - update their knowledge.
- protocols (need not be common knowledge)
- semantics-driven logical framework
- answer:
 - What does it mean that we know a protocol?
 - How does protocol affect our knowledge of reality?
 - ·

- - update their knowledge.
- protocols (need not be common knowledge)
- semantics-driven logical framework
- answer:
 - What does it mean that we know a protocol?
 - How does protocol affect our knowledge of reality?
 -

- - update their knowledge.
- protocols (need not be common knowledge)
- \Longrightarrow semantics-driven logical framework
- answer:
 - What does it mean that we know a protocol?
 - How does protocol affect our knowledge of reality?
 -

- - update their knowledge.
- protocols (need not be common knowledge)
- \Longrightarrow semantics-driven logical framework
- answer:
 - What does it mean that we know a protocol?
 - How does protocol affect our knowledge of reality?
 -

- two PDL-style epistemic logic $\begin{cases} 1.POL \\ 2.EPL \end{cases}$
- epistemic expectation models \mathcal{M}_{exp}
- ullet epistemic protocol model ${\cal A}$

•
$$\mathcal{M}_{exp} = \mathcal{A} \otimes \mathcal{N}_{exp}$$

• Sources
$$\begin{cases} 1.DEL \\ 2.\text{protocol changes} \end{cases}$$
 (Wang Yanjing)

- two PDL-style epistemic logic $\begin{cases} 1.POL \\ 2.EPL \end{cases}$
- epistemic expectation models \mathcal{M}_{exp}
- ullet epistemic protocol model ${\cal A}$

•
$$\mathcal{M}_{exp} = \mathcal{A} \otimes \mathcal{N}_{exp}$$

• Sources
$$\begin{cases} 1.DEL \\ 2.\text{protocol changes} \end{cases}$$
 (Wang Yanjing)

- two PDL-style epistemic logic $\begin{cases} 1.POL \\ 2.EPL \end{cases}$
- epistemic expectation models \mathcal{M}_{exp}
- ullet epistemic protocol model ${\cal A}$

•
$$\mathcal{M}_{exp} = \mathcal{A} \otimes \mathcal{N}_{exp}$$

• Sources
$$\begin{cases} 1.DEL \\ 2.\text{protocol changes} \end{cases}$$
 (Wang Yanjing)

- two PDL-style epistemic logic $\begin{cases} 1.POL \\ 2.EPL \end{cases}$
- epistemic expectation models \mathcal{M}_{exp}
- ullet epistemic protocol model ${\cal A}$
- $\mathcal{M}_{exp} = \mathcal{A} \otimes \mathcal{N}_{exp}$

• two PDL-style epistemic logic $\begin{cases} 1.POL \\ 2.EPL \end{cases}$

100 prisoners & 1 lightbilb

- ullet epistemic expectation models \mathcal{M}_{exp}
- ullet epistemic protocol model ${\cal A}$

$$ullet$$
 $\mathcal{M}_{exp} = \mathcal{A} \otimes \mathcal{N}_{exp}$

$$\bullet \ \, \mathsf{Sources} \begin{cases} 1.DEL \\ 2.\mathsf{protocol\ changes} \ \ \, (\mathit{Wang\ Yanjing}) \end{cases}$$

Outline

- Introduction
 - Overview
 - Two Examples
 - Basic settings
- Reasoning via epistemic expectation models
 - Epistemic expectation models
 - public observation logic
 - *bisimulation
 - *epistemic expectation model V.S. epistemic temporal model
- Expectation from protocol
 - protocol expressions
 - protocol models
 - Epistemic protocol logic (EPL)
- 4 Incorporate the fact-changing actions
- 5 100 prisoners & 1 lightbilb

- Background: caffe, Amsterdam, 1950s. { Kate, Jane, Ann}
- \Rightarrow Kate is gay $\xrightarrow{\text{Kate wants to know}}$ Jane? Ann?
- ⇒Kate: "I'm musical. I like Kathleen Ferrier's voice".
- Jane(gay): Kate is gay; Ann: Kate's taste in music
- ⇒a hidden protocol: In 1950s Amsterdam, "musical" was indeed a code term for "gay", known almost exclusively by gay people.

- Background: caffe, Amsterdam, 1950s. { Kate, Jane, Ann}
- \Rightarrow Kate is gay $\xrightarrow{\text{Kate wants to know}}$ Jane? Ann?
- ⇒Kate: "I'm musical. I like Kathleen Ferrier's voice".
- Jane(gay): Kate is gay; Ann: Kate's taste in music
- ⇒a hidden protocol: In 1950s Amsterdam, "musical" was indeed a code term for "gay", known almost exclusively by gay people.

- Background: caffe, Amsterdam, 1950s. { Kate, Jane, Ann}
- \Rightarrow Kate is gay $\xrightarrow{\text{Kate wants to know}}$ Jane? Ann?
- ⇒Kate: "I'm musical, I like Kathleen Ferrier's voice".
- Jane(gay): Kate is gay; Ann: Kate's taste in music
- → a hidden protocol: In 1950s Amsterdam, "musical" was indeed a code term for "gay", known almost exclusively by gay people.

- Background: caffe, Amsterdam, 1950s. { Kate, Jane, Ann}
- \Rightarrow Kate is gay $\xrightarrow{\text{Kate wants to know}}$ Jane? Ann?
- ⇒Kate: "I'm musical, I like Kathleen Ferrier's voice".
- Jane(gay): Kate is gay; Ann: Kate's taste in music
- ⇒a hidden protocol: In 1950s Amsterdam, "musical" was indeed a code term for "gay", known almost exclusively by gay people.

Example 2. Dutch? or not

- In the Netherlands, people kissing three times on the cheek (left-right-left)
- the rest of Europe, people kiss each other only twice (left-right)
- Is Simon a Dutch?

Outline

- Introduction
 - Overview
 - Two Examples
 - Basic settings
- 2 Reasoning via epistemic expectation models
 - Epistemic expectation models
 - public observation logic
 - *bisimulation
 - *epistemic expectation model V.S. epistemic temporal model
- 3 Expectation from protocol
 - protocol expressions
 - protocol models
 - Epistemic protocol logic (EPL)
- Incorporate the fact-changing actions
- 100 prisoners & 1 lightbilb

Basic settings in this paper

- knowing a protocol ⇒ understanding the underlying meaning of the actions inclued by the protocol.
- 2 protocols need not be common knowledge;
- fix a protocol specification language;
- protocol is given by nature;

Outline

- Introduction
 - Overview
 - Two Examples
 - Basic settings
- 2 Reasoning via epistemic expectation models
 - Epistemic expectation models
 - public observation logic
 - *bisimulation
 - *epistemic expectation model V.S. epistemic temporal model
- Expectation from protocol
 - protocol expressions
 - protocol models
 - Epistemic protocol logic (EPL)
- 4 Incorporate the fact-changing actions
- 100 prisoners & 1 lightbilb

epistemic model

I: a finite set of agents; P: a finite set of propositions;
 Bool(P): all Boolean formulas over P;

Definition

(Epistemic Model): $\mathcal{M}_e = (S, \sim_i, V)$

* bisimulation

pistemic expectation model V.S. epistemic temporal mode

epistemic model

I: a finite set of agents; P: a finite set of propositions;
 Bool(P): all Boolean formulas over P;

Definitior

(*Epistemic Model*): $\mathcal{M}_e = (S, \sim_i, V)$

epistemic model

I: a finite set of agents; P: a finite set of propositions;
 Bool(P): all Boolean formulas over P;

Definition

(Epistemic Model): $\mathcal{M}_e = (S, \sim_i, V)$

- epistemic expectation model ⇒ the expected observations of agents.
- agents observe what is happening around them and reason based on these observations. (e.g.a public announcement)
- Sobservation of action observation of facts

preparations for \mathcal{M}_{exp}

- a finite set of **actions** Σ
- an *observation* is a finite string of actions, e.g.: abcd

Definition

Observation expressions π : strings over Σ (regular expressions)

$$\mathcal{L}_{obs} \ni \pi ::= \delta \mid \varepsilon \mid \mathbf{a} \mid \pi \cdot \pi \mid \pi + \pi \mid \pi^*$$

 $\delta \leadsto \emptyset$; $\epsilon \leadsto$ empty string; $a \in \Sigma$.

Epistemic expectation models

public observation logic

" bisimulation

epistemic expectation model V.S. epistemic temporal mode

Definition

Observation (a set $\mathcal{L}(\pi)$ generated by π):

$$\mathcal{L}(\delta) = \emptyset$$

$$\mathcal{L}(\varepsilon) = \{\epsilon\}$$

$$\mathcal{L}(a) = \{a\}$$

$$\mathcal{L}(\pi \cdot \pi') = \{wv \mid w \in \mathcal{L}(\pi), v \in \mathcal{L}(\pi')\}$$

$$\mathcal{L}(\pi + \pi') = \mathcal{L}(\pi) \cup \mathcal{L}(\pi')$$

$$\mathcal{L}(\pi^*) = \{\epsilon\} \cup \bigcup_{n>0} \mathcal{L}(\underbrace{\pi \cdot \dots \cdot \pi})$$

epistemic expectation model

Definition

epistemic expectation model

$$\mathcal{M}_{exp} := \langle S, \sim_i, V, Exp \rangle = (\mathcal{M}_e, Exp)$$

•
$$Exp: s \mapsto \pi \in \mathcal{L}_{obs}$$
 s.t. $\mathcal{L}(\pi) \neq \emptyset$

•
$$\mathcal{M}_{exp} \rightsquigarrow \mathcal{M}_e$$
 (degenerate)

•
$$\forall s \in \mathcal{M}_e$$
, $Exp(s) = (a_0 + a_1 + \cdots + a_n)^* = \Sigma^*$

epistemic expectation model

Definition

epistemic expectation model

$$\mathcal{M}_{exp} := \langle S, \sim_i, V, Exp \rangle = (\mathcal{M}_e, Exp)$$

•
$$Exp: s \mapsto \pi \in \mathcal{L}_{obs}$$
 s.t. $\mathcal{L}(\pi) \neq \emptyset$

• $\mathcal{M}_{exp} \rightsquigarrow \mathcal{M}_e$ (degenerate)

•
$$\forall s \in \mathcal{M}_e$$
, $Exp(s) = (a_0 + a_1 + \cdots + a_n)^* = \Sigma^*$

Example 2. Dutch or not

- In the Netherlands, people kissing three times on the cheek (left-right-left)
- the rest of Europe, people kiss each other only twice (left-right)
- Is Simon a Dutch?

$$a \cdot b \cdot a$$
 p_D
 $a \cdot b$
 p_D
 $a \cdot b$
 p_D

Example 2. Dutch or not

- In the Netherlands, people kissing three times on the cheek (left-right-left)
- the rest of Europe, people kiss each other only twice (left-right)
- Is Simon a Dutch?

Epistemic expectation models public observation logic * bisimulation

epistemic expectation model V.S. epistemic temporal mode

Outline

- Introduction
 - Overview
 - Two Examples
 - Basic settings
- 2 Reasoning via epistemic expectation models
 - Epistemic expectation models
 - public observation logic
 - *bisimulation
 - *epistemic expectation model V.S. epistemic temporal model
- 3 Expectation from protocol
 - protocol expressions
 - protocol models
 - Epistemic protocol logic (EPL)
- Incorporate the fact-changing actions
- 100 prisoners & 1 lightbilb

public observation logic

* bisimulation

Intuition

- public announcement logic: people update their information by deleting impossible scenarios according to what is publicly announced.
- when observing an action, people delete some impossible scenarios where they wouldn't expect that observation to happen.
- we delete the states where the observation w could not have been happened.

Epistemic expectation models

public observation logic

* bisimulation

Intuition

- public announcement logic: people update their information by deleting impossible scenarios according to what is publicly announced.
- when observing an action, people delete some impossible scenarios where they wouldn't expect that observation to happen.
- we delete the states where the observation w could not have been happened.

Epistemic expectation models

public observation logic

* bisimulation

Intuition

- public announcement logic: people update their information by deleting impossible scenarios according to what is publicly announced.
- when observing an action, people delete some impossible scenarios where they wouldn't expect that observation to happen.
- we delete the states where the observation w could not have been happened.

100 prisoners & 1 lightbilb

Update by observation

Definition

Update by observation: let $w \in \mathcal{L}_{obs}$, $\mathcal{M} = (S, \sim, V, Exp)$, the updated model $\mathcal{M}|_{w} = (S', \sim', V', Exp')$:

•
$$S' = \{s \mid \mathcal{L}(Exp(s) \setminus w) \neq \emptyset\}$$

• $S' = S - \{s \mid \mathcal{L}(Exp(s) \setminus w) = \emptyset\}$

$$\bullet \sim'_i = \sim_i \mid_{S' \times S'}$$

•
$$V' = V|_{S'}$$

•
$$Exp'(s) = Exp(s) \setminus w$$

A regular expression $\pi \setminus w$ is defined with an auxiliary output function o from the set of regular expressions over Σ to $\{\delta, \varepsilon\}$. If $\varepsilon \in \mathcal{L}(\pi)$, the output function o maps a regular expression π to ε ; otherwise, it maps π to δ [17,18]:

$$\begin{split} \pi &= o(\pi) + \sum_{a \in \Sigma} (a \cdot \pi \setminus a) & \varepsilon \setminus a = \delta \setminus a = \delta \quad (a \neq b) \\ o(\varepsilon) &= \varepsilon & a \setminus a = \varepsilon \\ o(\delta) &= o(a) = \delta & (\pi + \pi') \setminus a = \pi \setminus a + \pi' \setminus a \\ o(\pi + \pi') &= o(\pi) + o(\pi') & (\pi \cdot \pi') \setminus a = (\pi \setminus a) \cdot \pi' + o(\pi) \cdot (\pi' \setminus a) \\ o(\pi \cdot \pi) &= o(\pi) \cdot o(\pi') & \pi^* \setminus a = \pi \setminus a \cdot \pi^* \\ o(\pi^*) &= \varepsilon & \pi \setminus a \cdot \cdots \cdot a_n = \pi \setminus a \setminus a_1 \dots \setminus a_n \end{split}$$

Example 2. Dutch or not

•
$$\mathcal{M}|_a = ?$$

Epistemic expectation models public observation logic * bisimulation

epistemic expectation model V.S. epistemic temporal mode

POL

Definition

Public observation logic POL (language)

$$\varphi ::= \top \mid p \mid \neg \varphi \mid \varphi \wedge \varphi \mid K_i \varphi \mid [\pi] \varphi$$

 $\pi \in \mathcal{L}_{obs}$

• $[\pi]\varphi$: after any observation in π , φ holds.

public observation logic

* bisimulation

POL

Definition

Public observation logic POL (language)

$$\varphi ::= \top \mid p \mid \neg \varphi \mid \varphi \wedge \varphi \mid K_i \varphi \mid [\pi] \varphi$$

$$\pi \in \mathcal{L}_{obs}$$

• $[\pi]\varphi$: after any observation in π , φ holds.

Epistemic expectation models public observation logic

pistemic expectation model V.S. epistemic temporal mode

Truth for POL

Definition

Truth

- $\mathcal{M} = (S, \sim, V, Exp), s \in \mathcal{M}$
- $\mathcal{M}, s \models [\pi] \varphi$ iff $\forall w \in \mathcal{L}(\pi), w \in init(Exp(s)) \Longrightarrow \mathcal{M}|w, s \models \varphi$
 - $w \in init(\pi)$ iff $\exists v \in \Sigma^*$, $wv \in \mathcal{L}(\pi)$ ($\mathcal{L}(\pi \backslash w) \neq \emptyset$)

Epistemic expectation model public observation logic

epistemic expectation model V.S. epistemic temporal mode

Example 2 (Dutch or not)

$$a \cdot b \cdot a$$
 $a \cdot b$ $a \cdot b$ p_D p_D

Epistemic expectation models public observation logic *bisimulation

Disimulation

epistemic expectation model V.S. epistemic temporal mode

Outline

- Introduction
 - Overview
 - Two Examples
 - Basic settings
- 2 Reasoning via epistemic expectation models
 - Epistemic expectation models
 - public observation logic
 - *bisimulation
 - *epistemic expectation model V.S. epistemic temporal model
- 3 Expectation from protocol
 - protocol expressions
 - protocol models
 - Epistemic protocol logic (EPL)
- 4 Incorporate the fact-changing actions
- 5 100 prisoners & 1 lightbilb

Epistemic expectation models public observation logic

* bisimulation

epistemic expectation model V.S. epistemic temporal mode

Observation bisimulation

Definition

Observation bisimulation

R is a **bisimulation** between $\mathcal{M}=(S,\sim,V,Exp)$ and $\mathcal{N}=(S',\sim',V',Exp')$ if for any $s\in S$, $s'\in S'$, we have that if $(s,s')\in R$, then

- V(s) = V'(s');
- $\mathcal{L}(Exp(s)) = \mathcal{L}(Exp'(s'));$
- **Zig**: if $s \sim_i t$ then $\exists t' \in \mathcal{N}$ such that $s' \sim_i t'$ and tRt';
- **Zag**: if $s' \sim_i t'$ then $\exists t \in \mathcal{M}$ such that $s \sim_i t$ and tRt'.

$$\mathcal{M}, s \leftrightarrow_{o} \mathcal{N}, s'$$

Epistemic expectation models public observation logic

* bisimulation

epistemic expectation model V.S. epistemic temporal mode

Invariance

Theorem

(Bisimulation invariance)

For any two finite epistemic expectation states \mathcal{M} , s and \mathcal{N} , s':

$$\mathcal{M}, s \underset{\circ}{\longleftrightarrow}_{o} \mathcal{N}, \overline{s'}$$
 iff $\forall \varphi \in \mathbf{POL}: \mathcal{M}, s \models \varphi \iff \mathcal{N}, s' \models \varphi$.

Epistemic expectation models public observation logic * bisimulation

epistemic expectation model V.S. epistemic temporal model

Outline

- Introduction
 - Overview
 - Two Examples
 - Basic settings
- 2 Reasoning via epistemic expectation models
 - Epistemic expectation models
 - public observation logic
 - *bisimulation
 - *epistemic expectation model V.S. epistemic temporal model
- 3 Expectation from protocol
 - protocol expressions
 - protocol models
 - Epistemic protocol logic (EPL)
- Incorporate the fact-changing actions
- 100 prisoners & 1 lightbilb

public observation logic *bisimulation *<u>epistemic expe</u>ctation model V.S. epistemic temporal model

 epistemic expectation models can be seen as compact representations of certain epistemic temporal models.

Outline

- Introduction
 - Overview
 - Two Examples
 - Basic settings
- Reasoning via epistemic expectation models
 - Epistemic expectation models
 - public observation logic
 - *bisimulation
 - *epistemic expectation model V.S. epistemic temporal model
- Section Expectation From Protocol
 - protocol expressions
 - protocol models
 - Epistemic protocol logic (EPL)
- 4 Incorporate the fact-changing actions
- 100 prisoners & 1 lightbilb

 a protocol is a rule telling us what we should do under what conditions.

Definition

$$\mathcal{L}_{prot} \ni \eta ::= \delta \mid \varepsilon \mid a \mid ?\varphi \mid \eta \cdot \eta \mid \eta + \eta \mid \eta^* \\ \delta \leadsto \emptyset; \ \varepsilon \leadsto \text{ empty string; } a \in \Sigma; \ \varphi \in Bool(\mathbf{P})$$

- adding Boolean tests
- $(?love \cdot stay)^* \cdot (?\neg love \cdot separate)$: we should stay together as long as we are in love.
- "?Κφ"
- A protocol without tests corresponds to observations without any conditions.

 a protocol is a rule telling us what we should do under what conditions.

Definition

$$\mathcal{L}_{prot} \ni \eta ::= \delta \mid \varepsilon \mid a \mid ?\varphi \mid \eta \cdot \eta \mid \eta + \eta \mid \eta^* \\ \delta \leadsto \emptyset; \ \varepsilon \leadsto \text{ empty string; } a \in \Sigma; \ \varphi \in Bool(\mathbf{P})$$

- adding Boolean tests
- $(?love \cdot stay)^* \cdot (?\neg love \cdot separate)$: we should stay together as long as we are in love.
- "?Kφ"
- A protocol without tests corresponds to observations without any conditions.

 a protocol is a rule telling us what we should do under what conditions.

Definition

$$\mathcal{L}_{prot} \ni \eta ::= \delta \mid \varepsilon \mid a \mid ?\varphi \mid \eta \cdot \eta \mid \eta + \eta \mid \eta^* \\ \delta \leadsto \emptyset; \ \varepsilon \leadsto \text{ empty string; } a \in \Sigma; \ \varphi \in Bool(\mathbf{P})$$

- adding Boolean tests
- $(?love \cdot stay)^* \cdot (?\neg love \cdot separate)$: we should stay together as long as we are in love.
- "?Kφ"
- A protocol without tests corresponds to observations without any conditions.

 a protocol is a rule telling us what we should do under what conditions.

Definition

$$\mathcal{L}_{prot} \ni \eta ::= \delta \mid \varepsilon \mid a \mid ?\varphi \mid \eta \cdot \eta \mid \eta + \eta \mid \eta^* \\ \delta \leadsto \emptyset; \ \varepsilon \leadsto \text{ empty string; } a \in \Sigma; \ \varphi \in Bool(\mathbf{P})$$

- adding Boolean tests
- $(?love \cdot stay)^* \cdot (?\neg love \cdot separate)$: we should stay together as long as we are in love.
- "?Κφ"
- A protocol without tests corresponds to observations without any conditions.

 a protocol is a rule telling us what we should do under what conditions.

Definition

$$\mathcal{L}_{prot} \ni \eta ::= \delta \mid \varepsilon \mid a \mid ?\varphi \mid \eta \cdot \eta \mid \eta + \eta \mid \eta^* \\ \delta \leadsto \emptyset; \ \varepsilon \leadsto \text{ empty string; } a \in \Sigma; \ \varphi \in Bool(\mathbf{P})$$

- adding Boolean tests
- $(?love \cdot stay)^* \cdot (?\neg love \cdot separate)$: we should stay together as long as we are in love.
- "?Κφ"
- A protocol without tests corresponds to observations without any conditions.

Example 2 Dutch or not

- if you are Dutch-related, then you kiss three times; and if you are non-Dutch-related, then you kiss two times.
- π_k : $?p_D \cdot a \cdot b \cdot a + ? \neg p_D \cdot a \cdot b$

Example 2 Dutch or not

- if you are Dutch-related, then you kiss three times; and if you are non-Dutch-related, then you kiss two times.
- π_k : ? $p_D \cdot a \cdot b \cdot a + ? \neg p_D \cdot a \cdot b$

guarded observation

Definition

(guarded observations) (a set $\mathcal{L}_g(\eta)$ genetated by η)

$$\mathcal{L}_{g}(\delta) = \emptyset$$

$$\mathcal{L}_{g}(\varepsilon) = \mathcal{P}(\mathbf{P})$$

$$\mathcal{L}_{g}(a) = \{\rho a \rho \mid \rho \subseteq \mathbf{P}\}$$

$$\mathcal{L}_{g}(?\varphi) = \{\rho \mid \rho \models \varphi, \rho \subseteq \mathbf{P}\}$$

$$\mathcal{L}_{g}(\eta_{1} \cdot \eta_{2}) = \{w \diamond v \mid w \in \mathcal{L}_{g}(\eta_{1}), v \in \mathcal{L}(\eta_{2})\}$$

$$\mathcal{L}_{g}(\eta_{1} + \eta_{2}) = \mathcal{L}_{g}(\eta_{1}) \cup \mathcal{L}_{g}(\eta_{2})$$

$$\mathcal{L}_{g}(\eta^{*}) = \mathcal{P}(\mathbf{P}) \cup \bigcup_{n>0} \mathcal{L}_{g}(\underbrace{\eta \cdot \cdots \cdot \eta}_{n})$$
• if $w = w' \rho, v = \rho v'$ then $w \diamond v = w' \rho v'$.

401491451451 5 000

guarded observation

Definition

(guarded observations) (a set $\mathcal{L}_g(\eta)$ genetated by η)

$$\mathcal{L}_{g}(\delta) = \emptyset$$

$$\mathcal{L}_{g}(\varepsilon) = \mathcal{P}(\mathbf{P})$$

$$\mathcal{L}_{g}(a) = \{\rho a \rho \mid \rho \subseteq \mathbf{P}\}$$

$$\mathcal{L}_{g}(\gamma \varphi) = \{\rho \mid \rho \models \varphi, \rho \subseteq \mathbf{P}\}$$

$$\mathcal{L}_{g}(\eta_{1} \cdot \eta_{2}) = \{w \diamond v \mid w \in \mathcal{L}_{g}(\eta_{1}), v \in \mathcal{L}(\eta_{2})\}$$

$$\mathcal{L}_{g}(\eta_{1} + \eta_{2}) = \mathcal{L}_{g}(\eta_{1}) \cup \mathcal{L}_{g}(\eta_{2})$$

$$\mathcal{L}_{g}(\eta^{*}) = \mathcal{P}(\mathbf{P}) \cup \bigcup_{n>0} \mathcal{L}_{g}(\underline{\eta \cdot \dots \cdot \eta})$$

• if $w = w'\rho$, $v = \rho v'$ then $w \diamond v = w'\rho v'$,

conversion function

•
$$f_{\rho}: \mathcal{L}_{prot} \to \mathcal{L}_{obs}:$$
 $f_{\rho}(\delta) = \delta$
 $f_{\rho}(\varepsilon) = \varepsilon$
 $f_{\rho}(a) = a$
 $f_{\rho}(\eta \cdot \eta') = f_{\rho}(\eta) \cdot f_{\rho}(\eta')$
 $f_{\rho}(\eta + \eta') = f_{\rho}(\eta) + f_{\rho}(\eta')$
 $f_{\rho}(\eta^*) = (f_{\rho}(\eta))^*$
 $f_{\rho}(?\varphi) = \begin{cases} \varepsilon & \rho \models \varphi \\ \delta & \rho \not\models \varphi \end{cases}$

• e.g. $f_{\{\rho\}}(?p \cdot a + ?\neg p \cdot b) = a$

conversion function

Definitions

Def. 17 (*Characteristic formula*). Let $\rho \subseteq \mathbf{P}$. the *characteristic formula* for ρ :

$$\varphi_{\rho} := \bigwedge_{p \in \rho} p \wedge \bigwedge_{p \notin \rho} \neg p$$

e.g.
$$\varphi_{\{p\}} = p \land \neg p$$

Theorem

Prop. 18

$$\mathcal{L}(f_{\rho}(\eta)) = \{ w \mid w = a_0 \cdot \cdots \cdot a_n, a_i \in \Sigma \cup \{\varepsilon\}, \rho a_0 \rho a_1 \dots \rho a_k \rho \in \mathcal{L}_{g}(\eta) \};$$

Every η has a normal form η° as follows:

$$\eta^{\circ} = \Sigma_{\rho \subseteq \mathbf{P}}(?\varphi_{\rho} \cdot f_{\rho}(\eta))$$

s.t.
$$\mathcal{L}_{g}(\eta) = \mathcal{L}_{g}(\eta^{\circ})$$

• From **Prop. 18**, according to the protocol η , the expected observations on a state s in an epistemic model \mathcal{M} can be computed by $f_{V_{\mathcal{M}(s)}}(\eta)$.

For example:

•
$$f_{\{p\}}(?p \cdot a + ? \neg p \cdot b) = a$$

•
$$f_{V_{M,s}}(\pi_k) = a \cdot b \cdot a$$

•
$$f_{V_{M,t}}(\pi_k) = a \cdot b$$

• From **Prop. 18**, according to the protocol η , the expected observations on a state s in an epistemic model \mathcal{M} can be computed by $f_{V_{\mathcal{M}(s)}}(\eta)$.

For example:

•
$$f_{\{p\}}(?p \cdot a + ? \neg p \cdot b) = a$$

•
$$f_{V_{M,s}}(\pi_k) = a \cdot b \cdot a$$

•
$$f_{V_{M,t}}(\pi_k) = a \cdot b$$

Outline

- Introduction
 - Overview
 - Two Examples
 - Basic settings
- 2 Reasoning via epistemic expectation models
 - Epistemic expectation models
 - public observation logic
 - *bisimulation
 - *epistemic expectation model V.S. epistemic temporal model
- Section Expectation From Protocol
 - protocol expressions
 - protocol models
 - Epistemic protocol logic (EPL)
- Incorporate the fact-changing actions
- 5 100 prisoners & 1 lightbilb

protocol models

Definition

Protocol models $A = (T, \sim, Prot)$

- T is a domain of abstract objects,
- ullet $Prot: \mathcal{T}
 ightarrow \mathcal{L}_{prot}$ assigns to each domain object a protocol.

```
an epistemic protocol : (\mathcal{A},t)
```

a public protocol: (A, t) and the T of A is a singleton set.

- an epistemic observation state uniquely determines an epistemic protocol,
- an epistemic protocol and an epistemic state together uniquely determine an epistemic observation state.
- modal product operation of \mathcal{M}_{exp} and \mathcal{A} .

- an epistemic observation state uniquely determines an epistemic protocol,
- an epistemic protocol and an epistemic state together uniquely determine an epistemic observation state.
- modal product operation of \mathcal{M}_{exp} and \mathcal{A} .

- an epistemic observation state uniquely determines an epistemic protocol,
- an epistemic protocol and an epistemic state together uniquely determine an epistemic observation state.
- modal product operation of \mathcal{M}_{exp} and \mathcal{A} .

protocol update

Definition

protocol update: $\mathcal{M}_{exp} = (S, \sim, V, Exp)$, $\mathcal{A} = (T, \sim, Prot)$; $\mathcal{M}_{exp} \otimes \mathcal{A} = (S', \sim', V', Exp')$:

- $S' = \{(s, t) \in S \times T \mid \mathcal{L}(f_{V_{\mathcal{M}(s)}}(Prot(t))) \neq \emptyset\}$
- $(s,t) \sim_i (s',t')$ iff $s \sim_i s'$ in \mathcal{M}_{exp} and $t \sim_i t'$ in \mathcal{A}
- V'(s,t) = V(s)
- $Exp'((s,t)) = f_{V_{\mathcal{M}(s)}}(Prot(t))$

Example 1 Gay

*some properties about ⊗

Theorem

Given $\mathcal{M}_{exp} = (\mathcal{M}_e, Exp)$, there is an epistemic model \mathcal{M}'_e and an epistemic protocol model \mathcal{A} such that $\mathcal{M} \underset{e}{\longleftrightarrow} \mathcal{M}'_e \otimes \mathcal{A}$

- ask: " $\exists \mathcal{A}$, $\mathcal{M}_{exp} \leftrightarrow_{o} \mathcal{M}_{e} \otimes \mathcal{A}$ " iij§
- \Longrightarrow Theorem 29:
 - if $\mathcal{M}_{exp} = (\mathcal{M}_e, Exp)$ observationally saturated, then there is a \mathcal{A} s.t. $\mathcal{M}_e \otimes \mathcal{A} \xrightarrow{\longleftrightarrow} \mathcal{M}_{exp}$.

*effective equivalence

- **Def. 30** effective equivalence: Two protocol models \mathcal{A} and \mathcal{B} are said to be effectively equivalent $(\mathcal{A} \equiv_{ef} \mathcal{B})$ if for any epistemic expectation model $\mathcal{M}_{exp} \colon \mathcal{M}_{exp} \otimes \mathcal{A} \xrightarrow{\leftarrow} \mathcal{M}_{exp} \otimes \mathcal{B}$.
- **Def. 31** *Protocol emulation* (When restricted to public protocols, $\eta \approx \eta' \Leftrightarrow \mathcal{L}_g(\eta) = \mathcal{L}_g(\eta')$.)
- Theorem 32: For all *finite* protocol models \mathcal{A} and \mathcal{B} : $\mathcal{A} \equiv_{ef} \mathcal{B} \Leftrightarrow \mathcal{A} \approx \mathcal{B}$

*effective equivalence

- **Def. 30** effective equivalence: Two protocol models \mathcal{A} and \mathcal{B} are said to be effectively equivalent $(\mathcal{A} \equiv_{ef} \mathcal{B})$ if for any epistemic expectation model $\mathcal{M}_{exp} \colon \mathcal{M}_{exp} \otimes \mathcal{A} \xrightarrow{\leftarrow} \mathcal{M}_{exp} \otimes \mathcal{B}$.
- **Def. 31** *Protocol emulation* (When restricted to public protocols, $\eta \approx \eta' \Leftrightarrow \mathcal{L}_g(\eta) = \mathcal{L}_g(\eta')$.)
- Theorem 32: For all *finite* protocol models \mathcal{A} and \mathcal{B} : $\mathcal{A} \equiv_{ef} \mathcal{B} \Leftrightarrow \mathcal{A} \approx \mathcal{B}$

*effective equivalence

- **Def. 30** effective equivalence: Two protocol models \mathcal{A} and \mathcal{B} are said to be effectively equivalent $(\mathcal{A} \equiv_{ef} \mathcal{B})$ if for any epistemic expectation model $\mathcal{M}_{exp} \colon \mathcal{M}_{exp} \otimes \mathcal{A} \xrightarrow{\leftarrow} \mathcal{M}_{exp} \otimes \mathcal{B}$.
- **Def. 31** *Protocol emulation* (When restricted to public protocols, $\eta \approx \eta' \Leftrightarrow \mathcal{L}_g(\eta) = \mathcal{L}_g(\eta')$.)
- Theorem 32: For all *finite* protocol models \mathcal{A} and \mathcal{B} : $\mathcal{A} \equiv_{ef} \mathcal{B} \Leftrightarrow \mathcal{A} \approx \mathcal{B}$

Outline

- Introduction
 - Overview
 - Two Examples
 - Basic settings
- Reasoning via epistemic expectation models
 - Epistemic expectation models
 - public observation logic
 - *bisimulation
 - *epistemic expectation model V.S. epistemic temporal model
- Second Expectation from protocol
 - protocol expressions
 - protocol models
 - Epistemic protocol logic (EPL)
- 4 Incorporate the fact-changing actions
- 5 100 prisoners & 1 lightbilb

EPL

Definition

Language of EPL

$$\varphi ::= \top \mid p \mid \neg \varphi \mid \varphi \wedge \varphi \mid K_i \varphi \mid [\pi] \varphi \mid [!A_e] \varphi$$

truth

Definition

Truth

- $\mathcal{M}, s \models [!\mathcal{A}_e]\varphi \text{ iff } \mathcal{L}(f_{V(s)}(Prot(e))) \neq \emptyset \Longrightarrow \mathcal{M} \otimes \mathcal{A}_e, (s, e) \models \varphi$
 - $\mathcal{M}, s \models [\pi] \varphi \text{ iff } \forall w \in \mathcal{L}(\pi), w \in \mathit{init}(\mathit{Exp}(s)) \Longrightarrow \mathcal{M}|w, s \models \varphi$
 - $w \in init(\pi)iff \exists v \in \Sigma^*, wv \in \mathcal{L}(\pi) \text{ (i.e.} \mathcal{L}(\pi \backslash w) \neq \emptyset)$
- after installing the new epistemic protocol \mathcal{A}_e , the formula φ is true.

truth

Definition

Truth

- $\mathcal{M}, s \models [!\mathcal{A}_e]\varphi \text{ iff } \mathcal{L}(f_{V(s)}(Prot(e))) \neq \emptyset \Longrightarrow \mathcal{M} \otimes \mathcal{A}_e, (s, e) \models \varphi$
 - $\mathcal{M}, s \models [\pi] \varphi$ iff $\forall w \in \mathcal{L}(\pi), w \in init(Exp(s)) \Longrightarrow \mathcal{M}|w, s \models \varphi$
 - $w \in init(\pi)iff \exists v \in \Sigma^*, wv \in \mathcal{L}(\pi) \text{ (i.e.} \mathcal{L}(\pi \backslash w) \neq \emptyset)$
- after installing the new epistemic protocol \mathcal{A}_e , the formula φ is true.

|a|

Example 1 Gay

Recall the original model \mathcal{M} :

Now we can verify for the actual state s:

$$\mathcal{M}, s \models [!\mathcal{A}_e][a](K_{Jane}g \land \neg K_{Ann}g), \text{ and}$$

 $\mathcal{M}, s \models [!\mathcal{A}_e][a] \neg K_{Ann}(K_{Jane}g \lor K_{Jane} \neg g).$

motivation

- many actions used in protocols also change the facts.
- e.g. "turn on the light if you see that the light is off".

motivation

- many actions used in protocols also change the facts.
- e.g. "turn on the light if you see that the light is off".

fact-changing actions

Definition

```
(Fact-changing actions). A set of fact-changing actions (fc-actions) is a tuple (\Sigma, \iota) such that \iota : \Sigma \times \mathbf{P} \to Bool(\mathbf{P}). (a, p) \mapsto \phi
```

• after executing action a, the propositional atom p is assigned the truth value of the proposition $\iota(a,p)$.

```
e.g.: \iota(a,p)=	op;\;a: 'slam the door'. p: 'the door is closed' \iota(b,q)=\neg q;\;b: 'toggling the switch'. q: 'the switch is on'
```

fact-changing actions

Definition

(*Fact-changing actions*). A set of fact-changing actions (*fc-actions*) is a tuple (Σ, ι) such that $\iota : \Sigma \times \mathbf{P} \to Bool(\mathbf{P})$. $(a, p) \mapsto \phi$

• after executing action a, the propositional atom p is assigned the truth value of the proposition $\iota(a,p)$.

e.g.:

 $\iota(a,p)=\top$; a: 'slam the door'. p: 'the door is closed'

 $\iota(b,q) = \neg q$; b: 'toggling the switch' . q: 'the switch is on'

Definition

- **Def. 36** (*Factual change system*). A Σ -factual change system (fc-system) \mathcal{F} is a tuple (Q, r) where $Q = \mathcal{P}(\mathbf{P})$ and $r: Q \times \Sigma \to Q$ is a function.
 - Intuitively, a factual change system explicitly represents the post-conditions of actions that can change the facts on states.

Theorem

- **Prop. 37**: sets of fact-changing actions can be seen as factual change systems and vice versa.
- (a) For each set of fc-actions (Σ, ι) there is an equivalent Σ -fc-system.
- (b) For each Σ -fc-system there is an equivalent set of fc-actions (Σ, ι) .

Definition

- **Def. 36** (*Factual change system*). A Σ -factual change system (fc-system) \mathcal{F} is a tuple (Q, r) where $Q = \mathcal{P}(\mathbf{P})$ and $r : Q \times \Sigma \to Q$ is a function.
 - Intuitively, a factual change system explicitly represents the post-conditions of actions that can change the facts on states.

Theorem

- **Prop. 37**: sets of fact-changing actions can be seen as factual change systems and vice versa.
- (a) For each set of fc-actions (Σ, ι) there is an equivalent Σ -fc-system.
- (b) For each Σ -fc-system there is an equivalent set of fc-actions (Σ, ι) .

•
$$\mathcal{L}_{\mathsf{g}}^{\mathcal{F}}(\eta)$$

•
$$\mathcal{L}_{g}^{\mathcal{F}}(a) = \{\rho a \rho' \mid \rho \xrightarrow{a} \rho' \text{ in } \mathcal{F}\}$$

- Prop. 41 *Normal form with respect to* \mathcal{F} (similar Prop. 18)
 - Given an fc-system \mathcal{F} , every η has a normal form $\eta^{\mathcal{F}} = \Sigma_{\rho \subseteq \mathbf{P}}(?\varphi_{\rho} \cdot \pi_{\rho})$ for some $\pi_{\rho} \in \mathcal{L}_{obs}$ s.t. $\mathcal{L}_{g}^{\mathcal{F}}(\eta) = \mathcal{L}_{g}^{\mathcal{F}}(\eta^{\mathcal{F}})$.
- fact-changing epistemic expectation models and protocol models:

•
$$\mathcal{M}_{exp}^{\mathcal{F}} = (\mathcal{M}_{exp}, \mathcal{F})$$

•
$$\mathcal{A}^{\mathcal{F}} = (\mathcal{A}, \mathcal{F})$$

•
$$\mathcal{L}_{\mathsf{g}}^{\mathcal{F}}(\eta)$$

•
$$\mathcal{L}_{g}^{\mathcal{F}}(a) = \{\rho a \rho' \mid \rho \xrightarrow{a} \rho' \text{ in } \mathcal{F}\}$$

- Prop. 41 *Normal form with respect to* \mathcal{F} (similar Prop. 18)
 - Given an fc-system \mathcal{F} , every η has a normal form $\eta^{\mathcal{F}} = \sum_{\rho \subseteq \mathbf{P}} (?\varphi_{\rho} \cdot \pi_{\rho})$ for some $\pi_{\rho} \in \mathcal{L}_{obs}$ s.t. $\mathcal{L}_{g}^{\mathcal{F}}(\eta) = \mathcal{L}_{g}^{\mathcal{F}}(\eta^{\mathcal{F}})$.
- fact-changing epistemic expectation models and protocol models:

•
$$\mathcal{M}_{exp}^{\mathcal{F}} = (\mathcal{M}_{exp}, \mathcal{F})$$

•
$$\mathcal{A}^{\mathcal{F}} = (\mathcal{A}, \mathcal{F})$$

•
$$\mathcal{L}_{\mathsf{g}}^{\mathcal{F}}(\eta)$$

•
$$\mathcal{L}_{g}^{\mathcal{F}}(a) = \{\rho a \rho' \mid \rho \xrightarrow{a} \rho' \text{ in } \mathcal{F}\}$$

- Prop. 41 *Normal form with respect to* \mathcal{F} (similar Prop. 18)
 - Given an fc-system \mathcal{F} , every η has a normal form $\eta^{\mathcal{F}} = \sum_{\rho \subseteq \mathbf{P}} (?\varphi_{\rho} \cdot \pi_{\rho})$ for some $\pi_{\rho} \in \mathcal{L}_{obs}$ s.t. $\mathcal{L}_{g}^{\mathcal{F}}(\eta) = \mathcal{L}_{g}^{\mathcal{F}}(\eta^{\mathcal{F}})$.
- fact-changing epistemic expectation models and protocol models:

•
$$\mathcal{M}_{\mathsf{exp}}^{\mathcal{F}} = (\mathcal{M}_{\mathsf{exp}}, \mathcal{F})$$

•
$$\mathcal{A}^{\mathcal{F}} = (\mathcal{A}, \mathcal{F})$$

update

Definition

(Protocol update with factual changes)

Given $\mathcal{M}_{exp}^{\mathcal{F}}=(S,\sim,V,\textit{Exp},\mathcal{F}),~\mathcal{A}^{\mathcal{G}}=(T,\sim,\textit{Prot},\mathcal{G}),$ define the product:

$$\mathcal{M}_{\text{exp}}^{\mathcal{F}} {\otimes} \mathcal{A}^{\mathcal{F}} {=} (S', {\sim}', V', \textit{Exp}', \mathcal{F}')$$

②
$$(s,t) \sim_i (s',t')$$
 iff $s \sim_i s'$ in \mathcal{M}_{exp} and $t \sim_i t'$ in \mathcal{A}

$$V'(s,t) = V(s)$$

where $Prot^{\mathcal{G}}(t)$ is the normal form of Prot(t) with respect to G.

Truth

Definition

Truth:

- $\mathcal{M}_{\mathsf{exp}}^{\mathcal{F}}, s \models [!\mathcal{A}_{e}^{\mathcal{G}}]\varphi \text{ iff } \mathcal{L}(f_{V(s)}(\mathsf{Prot}^{\mathcal{G}}(e))) \neq \emptyset \Longrightarrow \mathcal{M}_{\mathsf{exp}}^{\mathcal{F}} \otimes \mathcal{A}^{\mathcal{F}}, (s, e) \models \varphi$
- $\mathcal{M}_{\text{exp}}^{\mathcal{F}}$, $s \models [\pi] \varphi$ iff $\forall w \in \mathcal{L}(\pi)$, $w \in \text{init}(\text{Exp}(s)) \Longrightarrow \mathcal{M}_{\text{exp}}^{\mathcal{F}}|_{w}$, $s \models \varphi$
- $w \in init(\pi)iff \exists v \in \Sigma^*, wv \in \mathcal{L}(\pi) \text{ (i.e.} \mathcal{L}(\pi \backslash w) \neq \emptyset)$

- a room where a child is playing with a seat, and Dora standing outside the room. Before Dora enters, she does not have any idea whether the seat is in an upright position.
- p: the seat is in an upright position; a: pulling the seat down;
 b: pulling the seat up.

- a room where a child is playing with a seat, and Dora standing outside the room. Before Dora enters, she does not have any idea whether the seat is in an upright position.
- p: the seat is in an upright position; a: pulling the seat down;
 b: pulling the seat up.

• M :

A^F:

• M :

A^F:

updated product model:

updated product model:

•
$$\mathcal{M}, s \models [!\mathcal{A}_e^{\mathcal{F}}][a]K_{Dora}\neg p$$

updated product model:

updated product model:

•
$$\mathcal{M}, s \models [!\mathcal{A}_{e}^{\mathcal{F}}][a]K_{Dora} \neg p$$

updated product model:

updated product model:

•
$$\mathcal{M}, s \models [!\mathcal{A}_{e}^{\mathcal{F}}][a]K_{Dora} \neg p$$

- 100 prisoners will be interrogated in a room containing a light with an on/off switch.
- common knowledge:
 - the light is initially switched off.
 - There is no fixed order of interrogation, or fixed interval between interrogations.
- When interrogated, a prisoner can
 - do nothing, or
 - toggle the light-switch,
 - or announce that all prisoners have been interrogated.
- If that announcement is true, the prisoners will (all) be set free, otherwise, they will all be executed.
- ⇒ can the prisoners agree on a protocol that will set them
 free?

- 100 prisoners will be interrogated in a room containing a light with an on/off switch.
- common knowledge:
 - the light is initially switched off.
 - There is no fixed order of interrogation, or fixed interval between interrogations.
- When interrogated, a prisoner can
 - do nothing, or
 - toggle the light-switch,
 - or announce that all prisoners have been interrogated.
- If that announcement is true, the prisoners will (all) be set free, otherwise, they will all be executed.
- ⇒ can the prisoners agree on a protocol that will set them
 free?

- 100 prisoners will be interrogated in a room containing a light with an on/off switch.
- common knowledge:
 - the light is initially switched off.
 - There is no fixed order of interrogation, or fixed interval between interrogations.
- When interrogated, a prisoner can
 - do nothing, or
 - toggle the light-switch,
 - or announce that all prisoners have been interrogated.
- If that announcement is true, the prisoners will (all) be set free, otherwise, they will all be executed.
- → can the prisoners agree on a protocol that will set them
 free?

- 100 prisoners will be interrogated in a room containing a light with an on/off switch.
- common knowledge:
 - the light is initially switched off.
 - There is no fixed order of interrogation, or fixed interval between interrogations.
- When interrogated, a prisoner can
 - do nothing, or
 - toggle the light-switch,
 - or announce that all prisoners have been interrogated.
- If that announcement is true, the prisoners will (all) be set free, otherwise, they will all be executed.
- ⇒ can the prisoners agree on a protocol that will set them free?

Protocol 1

- n+1 prisoners, where $n \geq 2$:
 - Protocol 1
 - 1: leader, n:followers.
 - a n followers:
 - first time they enter the room
 - lacktriangledown when the light is off \longrightarrow turn the light on
 - ② on other occasions \longrightarrow they do not toggle the switch.
 - leader:
 - the first n times that the light is on when he enters the interrogation room \longrightarrow turns off;
 - on other occasions, he does not toggle the switch.
 - After turning the light off for the nth time, the leader announces.....

Protocol 2

- Protocol 2
- The leader: does exactly as in **Protocol 1**.
- 2 The followers do all they do in Protocol 1,
 - Each follower counts the number of times the state of the light has changed from off to on according to his own observation.
 - 2 If a follower has observed *n* such changes, he <u>announces</u>....

formalization

```
leader: 0; followers:1, ..., n (n \ge 2).
```

 Σ : the set of possible actions for the n+1 prisoners, i=0,...,n is as follows:

- t_i : i toggles
- a_i: i announces
- e_i : i enters
- x_i : i exits

formalization

P (atomic propositions):

- I: light is on
- fin: protocol terminates
- q_i: i has toggled the switch
- m_i : the light was on, last time when i left the room (where $i \neq 0$)
- p_0^j : 0 has toggled the light for at least j times (where $0 \le j \le n$)
- p_i^j : i has counted off-on changes for at least j times (where $i \neq 0$)

formalization

The post-conditions are given by the following table (where the remaining post-conditions are the identity).

(1)
$$\iota(a_i, fin) = \top$$
 $i \ge 0$

$$(2) \quad \iota(x_i, m_i) = l \qquad \qquad i \geqslant 0$$

(3)
$$\iota(t_i, q_i) = \top$$
 $i \geqslant 0$

$$(4) \quad \iota(t_i, l) = \neg l \qquad \qquad i \geqslant 0$$

(5)
$$\iota(t_0, p_0^j) = p_0^j \vee (p_0^{j-1} \wedge l)$$
 $j > 0$

(6)
$$\iota(e_i, p_i^j) = p_i^j \vee (p_i^{j-1} \wedge ((\neg m_i \wedge l) \vee (\neg q_i \wedge \neg l))) \quad i > 0$$

Protocol 1
$$\eta_1 = (? \neg fin \cdot \sum_{i=0}^n (e_i \cdot \theta_i \cdot x_i))^*$$
, where:

•
$$\theta_0 := ?l \cdot t_0 \cdot (?p_0^n \cdot a_0 + ?\neg p_0^n) + ?\neg l$$

•
$$\theta_i := ?(\neg l \wedge \neg q_i) \cdot t_i + ? \neg (\neg l \wedge \neg q_i)$$

Protocol 2
$$\eta_2 = (? \neg fin \cdot \sum_{i=0}^{n} (e_i \cdot \theta_i' \cdot x_i))^*$$
, where:

$$\bullet \ \theta_0' := \theta_0$$

•
$$\theta_i' := ?p_i^n \cdot a_i + ? \neg p_i^n \cdot \theta_i$$

- three prisoners {0, 1, 2}
- the sequence of interrogations is 1020.
- The initial situation:
 - a singleton expectation model \mathcal{M}, s with the universal protocol Σ_{LB}^* and the valuation assigning \top only to p_i^0 for all $i \ge 0$.

- three prisoners {0, 1, 2}
- the sequence of interrogations is 1020.
- The initial situation:
 - a singleton expectation model \mathcal{M}, s with the universal protocol Σ_{LB}^* and the valuation assigning \top only to p_i^0 for all $i \ge 0$.

$$\mathcal{M}, s \models [!\eta_1^{\mathcal{F}}] < e_1 \cdot t_1 \cdot x_1 \cdot e_0 \cdot t_0 > (\neg < a_0 > \top \land < x_0 \cdot e_2 \cdot t_2 \cdot x_2 \cdot e_0 \cdot t_0 > < a_0 > \top)$$

$$\mathcal{M}, s \models [!\eta_1^{\mathcal{F}}] < e_1 \cdot t_1 \cdot x_1 \cdot e_0 \cdot t_0 > (\neg < a_0 > \top \land < x_0 \cdot e_2 \cdot t_2 \cdot x_2 \cdot e_0 \cdot t_0 > < a_0 > \top)$$

Introduction
Reasoning via epistemic expectation models
Expectation from protocol
Incorporate the fact-changing actions
100 prisoners & 1 lightbilb

Thanks