Übungsblatt 12 zu Modellkategorien

Aufgabe 1. Schwache Äquivalenzen zwischen simplizialen Mengen

Sei $f: X \to Y$ ein Morphismus simplizialer Mengen. Seien $X \to \overline{X}$ und $Y \to \overline{Y}$ anodyne Erweiterungen, wobei \overline{X} und \overline{Y} Kan-Komplexe sind. Zeige, dass f genau dann eine schwache Äquivalenz ist, wenn ein Lift $\overline{f}: \overline{X} \to \overline{Y}$ von f eine Homotopieäquivalenz ist.

Aufgabe 2. Modelle für den Einheitskreis

Zeige oder widerlege: Die simpliziale Menge \mathbb{S}^1 (eine Untermenge von $\Delta[2]$) und der Quotient $\Delta[1]/\sim$ aus Blatt 9, Aufgabe 2c) sind zueinander homotopieäquivalent.

Aufgabe 3. Die lange exakte Sequenz von Homotopiegruppen

Für einen Kan-Komplex X und einen Basispunkt $x \in X_0$ ist die n-te Homotopiegruppe $\pi_n(X,x)$ die Menge der Homotopieklassen von Basispunkt-bewahrenden Morphismen $\Delta[n]/\partial \Delta[n] \to X$.

- a) Sei $p: E \to X$ eine Kan-Faserung, $F:=p^{-1}[x]$ die Faser über x und $e \in F_0$ ein Punkt. Verwende die Rechtshochhebungseigenschaft von p bezüglich der Inklusion $\Lambda^0[n] \to \Delta[n]$, um eine Abbildung $\delta: \pi_n(X, x) \to \pi_{n-1}(F, e)$ zu konstruieren.
- b) Zeige, dass folgende Sequenz punktierter Mengen exakt ist.

$$\cdots \to \pi_n(F, e) \to \pi_n(E, e) \to \pi_n(X, x) \xrightarrow{\partial} \pi_{n-1}(F, e) \to \cdots \to \pi_0(F) \to \pi_0(E) \to \pi_0(X)$$

Aufgabe 4. Das Theorem von Whitehead für Kan-Komplexe

Sei $f: X \to Y$ ein Morphismus von Kan-Komplexen. Seien die induzierten Abbildungen $\pi_0(X) \to \pi_0(Y)$ und $\pi_n(X,x) \to \pi_n(Y,f(x))$ für alle $x \in X_0$ und $n \ge 1$ bijektiv. Zeige, dass f eine Homotopieäquivalenz ist.

Aufgabe 5. Rückzüge von starken Deformationsretrakten

Sei $p: E \to X$ eine Serre-Faserung und $i: A \to X$ ein Monomorphismus. Sei A in X ein starker Deformationsretrakt. Zeige, dass $p^{-1}[A]$ in E ein starker Deformationsretrakt ist.