Fluid Mechanics Machinery

UNIT 1 – Properties of Fluid

1.1 Concept of Fluid

A **fluid** is a substance that **can flow and change its shape easily** when an external force is applied. It includes **liquids**, **gases**, **and vapors**.

* Real-life Example: Water flowing in pipes, air moving through a fan, or engine oil in a machine.

****** Key Characteristics:

- No fixed shape
- · Can be compressed (gases)
- Can take shape of container
- Offers less resistance than solids

• 1.2 Properties of Fluid

1. Density (ρ):

The mass per unit volume of a fluid.

Formula:

$$\rho = \frac{mass}{volume}$$

- Nunit: kg/m³
- * Example: Water = 1000 kg/m³

2. Specific Gravity (SG):

The ratio of the density of a fluid to the density of water (at 4°C).

Formula:

$$\frac{\rho_{fluid}}{\rho_{water}}$$

- ♦ Unit: None (it's a ratio)
- **★** Example: SG of petrol ≈ 0.7

3. Specific Weight (γ):

The weight per unit volume of a fluid.

Formula:

$$\gamma = \rho \times g$$

- Nunit: N/m³ (Newton per cubic metre)

4. Specific Volume (v):

The volume occupied by a unit mass of fluid.

Formula:

$$v = \frac{1}{\rho}$$

1.3 Viscosity & Newton's Law of Viscosity

✓ What is Viscosity?

Viscosity is the internal resistance of a fluid to flow. Thicker the fluid, higher the viscosity.

* Example: Honey has more viscosity than water.

Newton's Law of Viscosity:

"The frictional force (resistance) between layers of fluid is directly proportional to the difference in their speed (velocity) and inversely proportional to the distance between them."

$$au=\mu rac{du}{dy}$$
 Where:

- τ = Shear stress (N/m²)
- μ = Dynamic viscosity (Pa·s)
- $\frac{du}{dy}$ = Velocity gradient (rate of change of velocity)

In simple words:

"Thicker the fluid (like honey), more it resists flow. Newton explained this resistance with a formula."

§ Example:

Water flows easily (low μ), honey flows slowly (high μ).

V Dynamic Viscosity (μ):

Dynamic viscosity is the **internal resistance** of a fluid to flow when a **shear force** is applied.

Or in your words:

"How lazy the fluid is to move when we try to push it."

Nunit: N⋅s/m² or Pa⋅s

Kinematic Viscosity (v):

Kinematic viscosity is the ratio of dynamic viscosity to density of the fluid.

Formula:

$$u = \frac{\mu}{\rho}$$

Number of the N

1.4 Types of Fluids

Fluid Type	Description	Example	
Ideal Fluid	Imaginary fluid with no viscosity	Not real	
Real Fluid	Actual fluids with viscosity	Water, oil, air	
Newtonian Fluid	Fluids with constant viscosity regardless of stress	Water, air	
Non-Newtonian Fluid	Viscosity changes with applied stress	Paint, blood, ketchup	

• 1.5 Cohesion, Adhesion, Surface Tension & Capillarity

Cohesion:

Attractive force between same kind of molecules.

- * Example: Water sticking to itself to form droplets.
- Adhesion:

Attractive force between **different types of molecules**.

Example: Water sticking to glass.

✓ Surface Tension:

Surface tension is the **stretchy skin** on the surface of a liquid caused by the **tight pulling** between liquid molecules.

Example: Small insects walking on water surface.

Capillarity:

It's the **ability of a liquid to flow in narrow spaces** (like a thin tube) **without** external force (even **against gravity** sometimes!).

🖈 Example: Water rising in a plant stem or test tube 🜿

1.6 Vapour Pressure & Compressibility

✓ Vapour Pressure:

Vapour pressure is the **pressure created by the vapor** (gas) of a liquid when the **liquid and vapor are in balance** (closed container).

Basically:

"How hard the liquid is trying to become gas."

▲ Liquids with **high vapour pressure** = **Evaporate fast** (like petrol, alcohol)

★ Important in pumps to avoid cavitation

Compressibility:

Compressibility is the ability of a substance (usually a fluid) to decrease in volume when pressure is applied.

New Formula:

$$C = -rac{1}{V} \cdot rac{dV}{dP}$$

- **C** = Compressibility
- **V** = Volume
- **dV** = Change in volume
- **dP** = Change in pressure
- Q Unit: 1/Pa or Pa⁻¹
- In your words:

"How squishable a fluid is when you press it."

★ Short Questions (2–3 Marks)

- 1. Define fluid. Give 2 examples.
- 2. What is density? State its unit and formula.
- 3. Define viscosity.
- 4. What is kinematic viscosity?
- 5. Write the formula of Newton's law of viscosity.
- 6. What is cohesion and adhesion?
- 7. Define surface tension.
- 8. Define capillarity.
- 9. What is vapor pressure?
- 10. Define compressibility.

Medium Questions (3−4 Marks):

- 1. Explain any three properties of fluid.
- 2. Differentiate between Newtonian and Non-Newtonian fluids.
- 3. Explain surface tension and capillarity with examples.
- 4. Discuss the types of fluids with a proper classification table.
- 5. Explain the concept of viscosity and Newton's law of viscosity.
- 6. Write a note on cohesion, adhesion, and surface tension.

Long Questions (5–7 Marks):

- 1. Describe different types of fluids with neat classification and example.
- 2. Explain Newton's law of viscosity and its terms in detail.

- 3. Write detailed notes on: a) Surface tension b) Capillarity c) Viscosity
- 4. Explain in detail the fluid properties density, specific gravity, specific weight, and specific volume with their formulas.
- 5. Explain the concept of vapor pressure and compressibility with proper examples.

MCQ Sheet

- 1. Which of the following is considered a fluid?
- a) Solid
- b) Gas
- c) Liquid
- d) Both b and c
- 2. The density of water at 4°C is:
- a) 0.1 kg/m^3
- b) 1 g/cm³
- c) 1000 kg/m³
- d) 1 kg/litre
- 3. Specific gravity has:
- a) No unit
- b) Unit of N/m³
- c) Unit of kg/m³
- d) No unit
- 4. Newton's law of viscosity is expressed as:
- a) $\tau = \rho g H$
- b) $\tau = \mu du$
- c) $\tau = \mu (du/dy)$
- d) $\tau = \gamma \times v$

•	5. Viscosity is defined as:
ć	a) Resistance to heat
k	o) Resistance to flow
(c) Resistance to pressure
(d) Resistance to compression
ŧ	6. Which fluid has highest viscosity?
ć	a) Water
Ł	o) Honey
(c) Petrol
(d) Air
7	7. Surface tension is mainly due to:
ć	a) Gravity
Ł	o) Atmospheric pressure
(c) Cohesion
(d) Adhesion
8	3. Capillary rise is more in:
ć	a) Thin tubes
k	o) Thick tubes
(c) Short tubes
(d) Large tanks
9	9. An ideal fluid is:
ć	a) Frictionless and incompressible
k	o) Has no weight
(c) Realistic
	d) Non-flowing

10. Con	pressibility is	more in:			
a) Gase	S				
b) Wate	r				
c) Solids	;				
d) Merc	ury				