Quantitative International Economics

Heitor S. Pellegrina

University of Notre Dame

Weeks 1 and 2 - The Basic Structure of Quantitative Trade Models - Part 2 Spring 2025

Outline

- EK model with 1 sector and no intermediate inputs
 - Solving the model in levels (DONE)
 - Policy counterfactuals (DONE)
 - Solving the model in changes (hat-algebra) (DONE)
 - Inverting the model
 - Estimating trade costs
 - Estimating trade elasticities

Model Inversion

From Previous Lecture

- So far, we have learned how to solve the EK model given parameters
 - What do we need to simulate the model in levels?
 - Productivity shifters T_i
 - Trade costs d_{ni}
 - Population N_i (observable)
 - Trade elasticity θ
 - What do we need to simulate the model in differences?
 - Baseline trade shares π_{ni}^0 , wages w_n^0 and population N_n^0
 - Trade elasticity θ
- This set of lectures
 - How to recover T_i , d_{ni} , and θ
- I will not cover all possible methods, but will give references

Calibrating T_i with Model Inversion

- **GOAL**: Calibrate T_n given d_{ni} and data on X_n and N_n
 - $-d_{ni}$ could come from a first step in which we estimate trade costs
 - Set T_n so that gross output in the model matches the data
- Allen and Arkolakis (2014) prove that T_n is identified "up-to-scale", which means that we need a normalization of T_n . To see this point, notice that identification of T_n comes from the following equation

$$X_{n} = \sum_{i} \frac{T_{n} (w_{n} d_{ni})^{-\theta}}{\sum_{s} T_{s} (w_{s} d_{is})^{-\theta}} X_{i}$$

- If T_n is too low, then county n's gross output will be too low relative to the data
- $-X_n$ is homogeneous of degree zero in T_n (what does that mean?)
- Relative gross output identifies relative T_n

Algorithm

- Step 1: Guess T_n^g (pick a normalization)
- Step 2: Solve the model given T_n^g
- Step 3: Obtain model-implied gross output X_n^{model} (pick a normalization)
- Step 4: Check gross output
 - If $\max_n\{|X_n^{data}-X_n^{model}|\}<\epsilon$, then stop algorithm
 - $\ \ ext{If} \ \max_n \{|X_n^{data} X_n^{model}|\} > \epsilon$, then update T_n^g and go back to step 2
 - Increase T_n^g if $X_n^{data} X_n^{model} > 0$
 - Decrease T_n^g if $X_n^{data} X_n^{model} < 0$
 - Remember to re-normalize T_n^g before starting the algorithm again

Calibration of T_n

• Allen and Arkolakis (2014) \rightarrow First estimate trade cost d_{ni} using data on transportation infrastructure and trade flows between CFS and between MSAs

Calibration of T_n

• Allen and Arkolakis (2014) \rightarrow Then calibrate T_n

Estimation of Trade Costs

Estimation of Trade Costs

- A (very) large literature on the estimation of trade costs
- We will discuss two approaches, each one of them is based on
 - 1. Price data
 - 2. Trade data
- The goal here is not to be exhaustive. I'll provide what I believe are the main intuitions and approaches used in the literature

- Fundamental challenge
 - If we look at the price gap between two regions. Does it tell us something about the trade costs?

- Define d_{in} as the trade cost to take a good from i to n
 - For example, if the good costs 2 at i and d_{in} is 1.5, then price at n is 3
- If a product is not exported from i to n, then it must mean that producers at i found it not
 profitable to sell it to n, therefore

$$p_n < p_i d_{in}$$

Similarly, we get

$$p_i < p_n d_{ni}$$

That puts a bound on price differentials

$$\frac{1}{d_{ni}} < \frac{p_n}{p_i} < d_{in}$$

 Price ratios are bounded above and below by trade costs. If we only look at price ratios, we will understate trade costs!

- Problem 1
 - We do not observe whether regions are actually trading
- Problem 2
 - Even if they are, we might not know if the product is exactly the same
- Problem 3
 - Even if products are exactly the same, price ratios could also reflect regional differences in markups

Solution 1: EK (2002) approach

$$\widehat{d}_{in} = \max_{\omega \in \Omega} \frac{p_n(\omega)}{p_i(\omega)}$$

- where ω is a good from country n and country i
- Solution 2: Donaldson (2018) approach
 - Pick an homogeneous variety of salt ⇒ price differentials do not reflect quality and perfect competition is reasonable assumption for salt
 - Data shows origin and destination ⇒ location of production is unique!
 - Make the following parametric assumption on d_{in}^{v} and take logs

$$p_{n}^{v} = p_{i}^{v} \underbrace{exp\left(eta \mathsf{dist}_{in}
ight)exp\left(\epsilon_{in}^{v}
ight)}_{d_{in}^{v}} = eta \mathsf{dist}_{in} + \epsilon_{in}^{v}$$

- Simulate model using fitted value \hat{d}_{ni} as trade cost, for example

$$\widehat{d}_{ni} = \widehat{\beta} \mathsf{dist}_{in}$$

• Eaton and Kortum (2002) ⇒ Price gaps are negatively correlated with normalized import shares

- Previous approaches are based on perfectly competitive markets
- The following papers address the issue of market power when estimating trade costs
 - See Atkin and Donaldson (2015)
 - See Dominguez-lino (2024)
- A key insight here is that pass-throughs contain information about market power that can be used as additional information to recover trade costs

 Trade data contains information about trade costs. To see why, imagine a world with two countries and the following data structure.

$$\left[\begin{array}{cc} X_{11} & X_{12} \\ X_{21} & X_{22} \end{array}\right]$$

where X_{in} are the sales of country i to country n. We also define $X_1 = X_{11} + X_{12}$ and $X_2 = X_{22} + X_{21}$.

The corresponding equations in the EK model are

$$rac{T_{1}\left(w_{1}d_{11}
ight)^{- heta}}{T_{1}\left(w_{1}d_{11}
ight)^{- heta}+T_{2}\left(w_{2}d_{21}
ight)^{- heta}}X_{1}}{rac{T_{2}\left(w_{2}d_{21}
ight)^{- heta}}{T_{2}\left(w_{2}d_{21}
ight)^{- heta}}+T_{1}\left(w_{1}d_{11}
ight)^{- heta}}X_{1}}$$

$$\begin{bmatrix} \frac{T_{1}\left(w_{1}d_{11}\right)^{-\theta}}{T_{1}\left(w_{1}d_{11}\right)^{-\theta}+T_{2}\left(w_{2}d_{21}\right)^{-\theta}}X_{1} & \frac{T_{1}\left(w_{1}d_{12}\right)^{-\theta}}{T_{1}\left(w_{1}d_{12}\right)^{-\theta}+T_{2}\left(w_{2}d_{21}\right)^{-\theta}}X_{2} \\ \frac{T_{2}\left(w_{2}d_{21}\right)^{-\theta}}{T_{2}\left(w_{2}d_{21}\right)^{-\theta}+T_{1}\left(w_{1}d_{11}\right)^{-\theta}}X_{1} & \frac{T_{2}\left(w_{2}d_{22}\right)^{-\theta}}{T_{2}\left(w_{2}d_{22}\right)^{-\theta}+T_{1}\left(w_{1}d_{12}\right)^{-\theta}}X_{2} \end{bmatrix}$$

- Say we already know θ , then we have 6 parameters T_1 , T_2 , d_{11} , d_{12} , d_{21} , d_{22} , to rationalize 6 observations X_{11} , X_{12} , X_{21} , X_{22} , X_1 and X_2 .
 - However, we already have 2 restrictions $\Rightarrow X_1 = X_{11} + X_{12}$ and $X_2 = X_{22} + X_{21}$
 - Recall that we can only recover relative gross output (we have to pick a numeraire for the economy)
 - We are therefore down to 6 observations and 3 restrictions, with 6 parameters.
 - Normalize $d_{11} = d_{22} = 1$, now we have 4 parameters.
 - Normalize $T_1 = 1$, now we have 3 parameters and 3 degrees of freedom.
- We can perfectly rationalize the data if we pick T_2 , d_{12} and d_{21} . This is for the 2 by 2 case. Here, we are perfectly identified and these 3 parameters fully saturate the data. For N>2 countries, however, we will be under-identified, so that there is more than one combination of TFPs and trade costs that can perfectly rationalize the data. How should we proceed with N countries?

Estimate

$$\log X_{ni} = \alpha_n + \gamma_i + \underbrace{\epsilon_{ni}}_{\log(\tilde{d}_{ni}^{-\theta})}$$

recover residuals from the regression and obtain

$$\tilde{d}_{ni} = \exp\left(\widehat{\epsilon_{ni}}\right)^{-1} \frac{1}{\theta}$$

• Ensure that $\hat{d}_{ii} = 1$ by constructing

$$\widehat{d}_{ni} = rac{\widetilde{d}_{ni}}{\widetilde{d}_{ii}}$$

• Use \widehat{d}_{ni} as your estimates of trade costs to simulate the model

Why don't we need price data here? Let's take the Armington trade expression

$$X_{in} = \frac{\left(p_i d_{in}\right)^{1-\sigma}}{P_n^{1-\sigma}} E_n$$

- $-p_i$ is the price at origin country i, P_n the price index, X_{in} sales of country i to n and E_n total expenditure
- Take logs

$$\log X_{in} = \underbrace{\log p_i^{1-\sigma}}_{\text{origin FE}} + \underbrace{\log \frac{E_n}{P_n^{1-\sigma}}}_{\text{destination DE}} + \underbrace{\log d_{in}^{1-\sigma}}_{\text{trade cost}}$$

- Price is fully absorbed by the origin FE
 - After taking logs, it is additive to trade costs!
 - If I increase price by 1 percent, every country will decrease their imports by $1-\sigma$ percent

Head and Ries approach

$$\frac{X_{21}}{X_{22}} \times \frac{X_{12}}{X_{11}} = \frac{T_2 (w_2 d_{21})^{-\theta}}{T_2 (w_2 d_{22})^{-\theta}} \times \frac{T_1 (w_1 d_{12})^{-\theta}}{T_1 (w_1 d_{11})^{-\theta}}$$
$$= (d_{21})^{-\theta} \times (d_{12})^{-\theta}$$

Assume trade costs are symmetric, then

$$\widehat{d}_{12} = \left(\frac{X_{21}}{X_{22}} \times \frac{X_{12}}{X_{11}}\right)^{-\frac{1}{2\theta}}$$

- Useful statistic for counterfactuals
 - Farrokhi and Pellegrina (2023) recover the symmetric component between 1980 and 2010
 - Jacks, Meissner and Novy (2008) study trade costs changes between 1870 and 2000

Figure 1A. Trade Cost Indices, 1870-1913 (1870 = 100)

Jacks, Meissner and Novy (2008)

Figure 1B. Trade Cost Indices, 1921-1939 (1921 = 100)

Jacks, Meissner and Novy (2008)

Figure 1C. Trade Cost Indices, 1950-2000 (1950 = 100).

Jacks, Meissner and Novy (2008)

Approach 1: Once with estimates of trade costs, we can estimate

$$\log X_{ni} = \alpha_n + \gamma_i - \theta \log \widehat{d_{ni}} + \epsilon_{ni}$$

via OLS and use $\widehat{\theta}^{OLS}$ as the trade elasticity.

- Donaldson (2018), Pellegrina (2022), EK (2002)
- Approach 2: Double ratio estimator. Define

$$d_{in} = \tau_{in} \kappa_{in}^{sym} \mu_n \gamma_i \epsilon_{in}$$

- where κ_{in}^{sym} is a symmetric component of trade cost, μ_n is a destination specific cost, γ_i is an origin specific cost, and τ_{in} is 1 plus the tariff
- Take the triple ratio

$$\log \frac{X_{ni}}{X_{in}} \frac{X_{ih}}{X_{hi}} \frac{X_{hn}}{X_{nh}} = -\theta \log \frac{\tau_{ni}}{\tau_{in}} \frac{\tau_{ih}}{\tau_{hi}} \frac{\tau_{hn}}{\tau_{nh}} + \tilde{e}$$

- It removes κ_{in}^{sym} , μ_n and γ_i . Here, the tariffs τ_{ni} are observable, so we can simply estimate the equation above by OLS

TABLE 1
Dispersion-of-productivity estimates

Sector	Full sample			99% sample			97.5% sample		
	θ^{j}	s.e.	N	θ^{j}	s.e.	N	θ^{j}	s.e.	N
Agriculture	8.11	(1.86)	496	9.11	(2.01)	430	16.88	(2.36)	364
Mining	15.72	(2.76)	296	13.53	(3.67)	178	17.39	(4.06)	152
Manufacturing									
Food	2.55	(0.61)	495	2.62	(0.61)	429	2.46	(0.70)	352
Textile	5.56	(1.14)	437	8.10	(1.28)	314	1.74	(1.73)	186
Wood	10.83	(2.53)	315	11.50	(2.87)	191	11.22	(3.11)	148
Paper	9.07	(1.69)	507	16.52	(2.65)	352	2.57	(2.88)	220
Petroleum	51.08	(18.05)	91	64.85	(15.61)	86	61.25	(15.90)	80
Chemicals	4.75	(1.77)	430	3.13	(1.78)	341	2.94	(2.34)	220
Plastic	1.66	(1.41)	376	1.67	(2.23)	272	0.60	(2.11)	180
Minerals	2.76	(1.44)	342	2.41	(1.60)	263	2.99	(1.88)	186
Basic metals	7.99	(2.53)	388	3.28	(2.51)	288	-0.05	(2.82)	235
Metal products	4.30	(2.15)	404	6.99	(2.12)	314	0.52	(3.02)	186
Machinery n.e.c.	1.52	(1.81)	397	1.45	(2.80)	290	-2.82	(4.33)	186
Office	12.79	(2.14)	306	12.95	(4.53)	126	11.47	(5.14)	62
Electrical	10.60	(1.38)	343	12.91	(1.64)	269	3.37	(2.63)	177
Communication	7.07	(1.72)	312	3.95	(1.77)	143	4.82	(1.83)	93
Medical	8.98	(1.25)	383	8.71	(1.56)	237	1.97	(1.36)	94
Auto	1.01	(0.80)	237	1.84	(0.92)	126	-3.06	(0.86)	59
Other Transport	0.37	(1.08)	245	0.39	(1.08)	226	0.53	(1.15)	167
Other	5.00	(0.92)	412	3.98	(1.08)	227	3.06	(0.83)	135
Test equal parameters			F(17, 7294) = 7.52			Prob > F = 0.00			
Aggregate elasticity	4.55	(0.35)	7212	4.49	(0.39)	5102	3.29	(0.47)	3482

• Caliendo and Parro (2015)

- Donaldson (2018)
- Estimate trade cost

$$\ln p_{dt}^{o} = \beta_{ot}^{o} + \underbrace{\beta_{od}^{o} + \delta \ln LCRED (R_{t}, \alpha)_{odt} + \epsilon_{odt}^{o}}_{T_{odt}^{o}}$$

- $-p_{dt}^{o}$ is price in destination d of type o in period t
- $LCRED(R_t, \alpha)_{odt}$ is the lowest cost route given railroads in period t
- Estimate trade elasticity using

$$\ln X_{odt}^{k} = \beta_{ot}^{k} + \beta_{dt}^{k} + \beta_{od}^{k} - \theta_{k} \hat{\delta} \ln LCRED (R_{t}, \alpha)_{odt} + \epsilon_{odt}^{k}$$

TABLE 2—RAILROADS AND TRADE COSTS: STEP 1

Dependent variable: log salt price at destination	(1)	(2)
log effective distance to source, along lowest-cost route (at historical freight rates)	0.088 (0.028)	
log effective distance to source, along lowest-cost route (at estimated mode costs)		0.169 [0.062, 0.296]
Estimated mode costs per unit distance: Railroad (normalized to 1)		1 N/A
Road		2.375 [1.750, 10.000]
River		2.250 [1.500, 6.250]
Coast		6.188 [5.875, 10.000]
Observations R^2	7,345 0.946	7,345 0.946

• Donaldson (2018)

TABLE 3—RAILROADS AND TRADE FLOWS: STEP 2

Dependent variable: log value of exports	(1)	(2)
log effective distance beween origin and destination along lowest-cost route	-1.603 (0.533)	-1.701 (1.141)
(log effective distance beween origin and destination along lowest-cost route) × (weight per unit value of commodity in 1890)		-0.946 (3.634)
(log effective distance beween origin and destination along lowest-cost route) \times (high-value railroad freight class of commodity in 1859)		1.286 (1.243)
Observations R^2	142,541 0.901	142,541 0.901

• Donaldson (2018)

- What if trade costs or tariffs are measured with error?
 - If we understate their variance, we would overstate the trade elasticity
- Literature finds a large range of values
 - Eaton and Kortum (2002) finds 4.17 to 9.6 (single sector)
 - Simonovska and Waugh (2014) $\rightarrow \approx$ 4.17 (single sector)
 - Caliendo and Parro (2015) →0.37 to 51.08 (multiple sector)
- Many papers pick values from the literature

Conclusion

Recent Developments on these Tools

- Eaton and Kortum (2002) microfoundations
 - EK (2002) formulation can be microfounded with a model in which firms draw ideas and there is a
 probability that the ideas are better than previous ones see the excellent JEP from EK (2012). A few
 papers have explored these microfoundations to study innovation and diffusion.
 - Lind and Ramondo (2022), Buera and Ozberfield (2019)
- Non-parametric approach
 - Large scale CGE models contain thousands of parameters and regions to simulate counterfatuals. EK
 has 1, but it comes at a cost. Can we simulate counterfactuals with fewer parametric assumptions?
 - Adao, Costinot and Donaldson (2016) ⇒ It turns out that the hat-algebra approach does not depend on parametric assumptions such as CES
- Can we test trade models?
 - Because we saturate the data, it is challenging to test the model.
 - Adao, Costinot and Donaldson (2024) \Rightarrow Develop new tests for trade models.

Next class

- Welfare gains from trade
- Multi-sectoral models and input-output structures
- Sectoral comparative advantage