Pattern Recognition Lecture 03-1

Gradient Descent & Kernel Trick

Prof. Jongwon Choi Chung-Ang University Fall 2022

This Class

- Gradient Descent
- Robust Regression
- Regularization
- RANSAC
- Kernel Trick

Stationary/Critical Points

- 'w' with $\nabla f(w) = 0$ is called a stationary point or critical point
 - The slope is zero so the tangent plane is "flat"

Stationary/Critical Points

- 'w' with $\nabla f(w) = 0$ is called a stationary point or critical point
 - The slope is zero so the tangent plane is "flat"

• If we're minimizing, we would ideally like to find a global minimum!

- Motivation Large-scale Least Squares
 - Normal equations find 'w' with $\nabla f(w) = 0$ in $O(nd^2 + d^3)$ time
 - It is very slow if 'd' is large

- Alternatively, we can utilize "gradient descent" method
 - The most important class of algorithms in machine learning! (i.e. Deep learning)

- Mechanism Iterative optimization algorithm
 - It starts with a "guess" w⁰
 - It uses the gradient $\nabla f(w^0)$ to generate a better guess w^1
 - It uses the gradient $\nabla f(w^1)$ to generate a better guess w^2
 - It uses the gradient $\nabla f(w^2)$ to generate a better guess w^3
 -
 - The limit of w^t as 't' goes to ∞ has $\nabla f(w^t) = 0$
- It converges to a global optimum if 'f' is "convex"

Gradient Descent for a Local Minimum

- We start with some initial guess, w^0
- Generate new guess by moving in the negative gradient direction:
 - - ullet This decreases 'f' if the "step size" α^0 is small enough
 - Usually, we decrease α^0 if it increases 'f'
- Repeat to successively refine the guess:
 - $w^{t+1} = w^t \alpha^t \nabla f(w^t)$
- Stop if not making progress
 - $\|\nabla f(w^t)\| \le \epsilon$

Gradient Descent in 2D

Gradient Descent for Least Squares

• The least squares objective and gradient:

•
$$f(\mathbf{w}) = \frac{1}{2} ||\mathbf{X}\mathbf{w} - \mathbf{y}||^2$$
 \rightarrow $\nabla f(\mathbf{w}) = \mathbf{X}^{\mathrm{T}}(\mathbf{X}\mathbf{w} - \mathbf{y})$

- Gradient descent iterations for least squares:
 - $\bullet \mathbf{w}^{t+1} = \mathbf{w}^t \alpha^t \mathbf{X}^{\mathrm{T}} (\mathbf{X} \mathbf{w}^{\mathrm{t}} \mathbf{y})$

- Cost of gradient descent iteration is O(nd)
 - Much smaller than the normal equations of $O(nd^2 + d^3)$ with large d
- •Can cover many problems other than the least square!

Beyond Gradient Descent

- There are many variations on gradient descent
 - Netwon's method uses second derivative for the step size
 - Quasi-Newton and Hessia-free Newton methods small computation
 - Stochastic gradient sample-wise approach

Gradient Descent for Least Squares

• The least squares objective and gradient:

• Gradient descent iterations for least squares:

$$\bullet \mathbf{w}^{t+1} = \mathbf{w}^t - \alpha^t \mathbf{X}^{\mathrm{T}} (\mathbf{X} \mathbf{w}^{\mathrm{t}} - \mathbf{y})$$

Cost of gradient descent iteration is O(nd)

- Sequence of iterations of the form:
 - $w^{t+1} = w^t \alpha^t \nabla f(w^t)$
- Converges to a stationary point where $\nabla f(w)$ under weak conditions
 - Will be a global minimum if the function is "convex"

- Convex?
 - Second derivative is non-negative (1D functions)
 - Closed under addition, multiplication by non-negative, maximization
 - Any [squared-] norm is convex
 - Composition of convex function with linear function is convex

Convex?

- Second derivative is non-negative (1D functions)
- Closed under addition, multiplication by non-negative, maximization
- Any [squared-] norm is convex
- Composition of convex function with linear function is convex

Convex and Gradient Descent

- With the convex function,
 - The gradient descent can converge to the global minimum!
 - The stochastic gradient descent also converges to the global minimum

- Unfortunately, many real applications cannot be represented as a convex form
 - Approximate the function by a convex form
 - Find the local minimum that is close to the global minimum (Deep learning)

Least Squares with Outliers

Let's consider least square problem with outliers in 'y':

Least Squares with Outliers

- Because squaring error shrinks small errors, and magnifies large errors:
 - Thus, outliers (large error) influence 'w' much more than other points

Robust Regression

- Objectives: Focus less on large errors (outliers)
- For example, the absolute error can be a good alternative:
 - $f(\mathbf{w}) = \sum_{i=1}^{n} |\mathbf{w}^{\mathrm{T}} \mathbf{x}_i y_i|$
 - Then, decreasing 'small' and 'large' errors is equally important

Robust Regression with L1-Norm

- Unfortunately, minimizing the absolute error is harder
 - We don't have "normal equations"
 - Absolute value is non-differentiable at 0
 - Generally, harder to minimize non-smooth than smooth functions
 - Unlike smooth functions, the gradient may not get smaller near a minimizer
 - To apply gradient descent, we'll use a smooth approximation

Robust Regression with L1-Norm

- There are differentiable approximations to absolute value
 - Common example is Huber loss:

$$f(w) = \sum_{i=1}^n h(w^T x_i - y_i)$$

- Note that 'h' is differentiable
- This 'f' is convex but setting $\nabla f(x) = 0$ does not give a linear system
 - But, we can minimize the Huber loss using gradient descent!

Infinite Norm Regression

- What if we should care about the outliers?
- Then, we can consider the infinity-norm:
 - $f(w) = \|\mathbf{X}\mathbf{w} \mathbf{y}\|_{\infty} \quad \text{where } \|r\|_{\infty} = \max_{i} \{|r_{i}|\}$
 - Very sensitive to outliers, but worst case will be better!
 - lacktriangle However, L_{∞} -norm is convex but non-smooth as L1-norm
 - We approximate the max function by log-sum-exp function
 - $\max_{i} \{|z_i|\} \approx \log(\sum_{i} \exp(z_i))$
 - Intuition: $\sum_i \exp(z_i) \approx \max_i \{\exp(z_i)\}$ (largest element is magnified exponentially!)

Controlling Complexity

- Usually "true" mapping from x_i to y_i is complex
 - Might need high-degree polynomial (i.e. n=p)
- But complex models can overfit!!
- Solutions
 - Model averaging: average over multiple models to decrease variance
 - Regularization: add a penalty on the complexity of the model

L2-Regularization

One of standard regularization strategies

•
$$f(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{w}^{T} \mathbf{x}_{i} - y_{i})^{2} + \frac{\lambda}{2} \sum_{j=1}^{d} \mathbf{w}_{j}^{2}$$

•
$$f(\mathbf{w}) = \frac{1}{2} ||\mathbf{X}\mathbf{w} - \mathbf{y}||^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

- Intuition: Large slopes tend to lead to overfitting
 - Consider only a part of features!
- The regularization parameter $\lambda>0$ controls "strength" of regularization
 - \bullet λ is a kind of hyperparameters (need cross-validation)

L2-Regularization and Normal Equations

•
$$f(w) = \frac{1}{2} ||\mathbf{X}\mathbf{w} - \mathbf{y}||^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

- - Interestingly, unlike $\mathbf{X}^{\mathrm{T}}\mathbf{X}$, $\mathbf{X}^{\mathrm{T}}\mathbf{X} + \lambda \mathbf{I}$ is always invertible!
 - Thus, $\mathbf{w} = (\mathbf{X}^{\mathrm{T}}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$

L2-Regularization and Gradient Descent

•
$$f(w) = \frac{1}{2} ||\mathbf{X}\mathbf{w} - \mathbf{y}||^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

$$\bullet \mathbf{w}^{t+1} = \mathbf{w}^t - \alpha^t [\mathbf{X}^T (\mathbf{X} \mathbf{w} - \mathbf{y}) + \lambda \mathbf{w}]$$

Other types of regularization

- L1-Regularization $f(w) = \frac{1}{2} ||\mathbf{X}\mathbf{w} \mathbf{y}||^2 + \frac{\lambda}{2} ||\mathbf{w}||_1$
 - Outlier-robust regularization
 - Approximate the L1-regularization by Hubor norm
 - In deep learning, ignore the non-differentiable point due to the large parameters
- LO-Regularization $f(w) = \frac{1}{2} \|\mathbf{X}\mathbf{w} \mathbf{y}\|^2 + \frac{\lambda}{2} \|\mathbf{w}\|_0$
 - Weight sparsity regularization
 - Approximate the L0-regularization by <u>standard sigmoid function</u> / L1 norm
 - In deep learning, this sparsity is considered in the activation function

This Class

- Gradient Descent
- Robust Regression
- Regularization
- RANSAC
- Kernel Trick