THEOREM 2.66 -----

An endmarked language is generated by an LR(1) grammar iff it is a DCFL.

We've already shown that every DCFL has an LR(0) grammar, because an LR(0) grammar is the same as a DCFG. That proves the reverse direction of the theorem. What remains is the following lemma, which shows how to convert an LR(1) grammar to a DPDA.

LEMMA **2.67** -----

Every LR(1) grammar has an equivalent DPDA.

PROOF IDEA We construct P_1 , a modified version of the DPDA P that we presented in Lemma 2.67. P_1 reads its input and simulates DK_1 , while using the stack to keep track of the state DK_1 would be in if all reduce steps were applied to this input up to this point. Moreover, P_1 reads 1 symbol ahead and stores this lookahead information in its finite state memory. Whenever DK_1 reaches an accept state, P_1 consults its lookahead to see whether to perform a reduce step, and which step to do if several possibilities appear in this state. Only one option can apply because the grammar is $\mathsf{LR}(1)$.

EXERCISES

2.1 Recall the CFG G_4 that we gave in Example 2.4. For convenience, let's rename its variables with single letters as follows.

$$\begin{split} E &\rightarrow E + T \mid T \\ T &\rightarrow T \times F \mid F \\ F &\rightarrow \textbf{(E)} \mid \mathbf{a} \end{split}$$

Give parse trees and derivations for each string.

a. ab. a+ac. a+a+ad. ((a))

- **2.2** a. Use the languages $A = \{a^mb^nc^n|m, n \ge 0\}$ and $B = \{a^nb^nc^m|m, n \ge 0\}$ together with Example 2.36 to show that the class of context-free languages is not closed under intersection.
 - **b.** Use part (a) and DeMorgan's law (Theorem 0.20) to show that the class of context-free languages is not closed under complementation.

^A2.3 Answer each part for the following context-free grammar G.

$$\begin{split} R &\rightarrow XRX \mid S \\ S &\rightarrow \mathsf{a}T\mathsf{b} \mid \mathsf{b}T\mathsf{a} \\ T &\rightarrow XTX \mid X \mid \varepsilon \\ X &\rightarrow \mathsf{a} \mid \mathsf{b} \end{split}$$

- **a.** What are the variables of G?
- **b.** What are the terminals of G?
- **c.** Which is the start variable of G?
- **d.** Give three strings in L(G).
- **e.** Give three strings *not* in L(G).
- **f.** True or False: $T \Rightarrow aba$.
- **g.** True or False: $T \stackrel{*}{\Rightarrow}$ aba.
- **h.** True or False: $T \Rightarrow T$.

- i. True or False: $T \stackrel{*}{\Rightarrow} T$.
- **j.** True or False: $XXX \stackrel{*}{\Rightarrow} aba$.
- **k.** True or False: $X \stackrel{*}{\Rightarrow} aba$.
- 1. True or False: $T \stackrel{*}{\Rightarrow} XX$.
- **m.** True or False: $T \stackrel{*}{\Rightarrow} XXX$.
- **n.** True or False: $S \stackrel{*}{\Rightarrow} \varepsilon$.
- **o.** Give a description in English of L(G).
- **2.4** Give context-free grammars that generate the following languages. In all parts, the alphabet Σ is $\{0,1\}$.
 - ^Aa. $\{w | w \text{ contains at least three 1s} \}$
 - **b.** $\{w | w \text{ starts and ends with the same symbol}\}$
 - **c.** $\{w | \text{ the length of } w \text{ is odd} \}$
 - ^Ad. $\{w | \text{ the length of } w \text{ is odd and its middle symbol is a 0} \}$
 - **e.** $\{w | w = w^{\mathcal{R}}, \text{ that is, } w \text{ is a palindrome}\}$
 - f. The empty set
- **2.5** Give informal descriptions and state diagrams of pushdown automata for the languages in Exercise 2.4.
- 2.6 Give context-free grammars generating the following languages.
 - ^Aa. The set of strings over the alphabet $\{a,b\}$ with more a's than b's
 - **b.** The complement of the language $\{a^nb^n|\ n\geq 0\}$
 - ^Ac. $\{w \# x | w^{\mathcal{R}} \text{ is a substring of } x \text{ for } w, x \in \{0,1\}^*\}$
 - **d.** $\{x_1 \# x_2 \# \cdots \# x_k | k \geq 1, \text{ each } x_i \in \{a, b\}^*, \text{ and for some } i \text{ and } j, x_i = x_j^{\mathcal{R}}\}$
- ^A2.7 Give informal English descriptions of PDAs for the languages in Exercise 2.6.
- ^A2.8 Show that the string the girl touches the boy with the flower has two different leftmost derivations in grammar G_2 on page 103. Describe in English the two different meanings of this sentence.
- **2.9** Give a context-free grammar that generates the language

$$A = \{ \mathbf{a}^i \mathbf{b}^j \mathbf{c}^k | i = j \text{ or } j = k \text{ where } i, j, k \ge 0 \}.$$

Is your grammar ambiguous? Why or why not?

- **2.10** Give an informal description of a pushdown automaton that recognizes the language *A* in Exercise 2.9.
- **2.11** Convert the CFG G_4 given in Exercise 2.1 to an equivalent PDA, using the procedure given in Theorem 2.20.

- **2.12** Convert the CFG *G* given in Exercise 2.3 to an equivalent PDA, using the procedure given in Theorem 2.20.
- **2.13** Let $G = (V, \Sigma, R, S)$ be the following grammar. $V = \{S, T, U\}; \Sigma = \{0, \#\};$ and R is the set of rules:

$$\begin{array}{c} S \rightarrow TT \mid U \\ T \rightarrow \mathsf{0}T \mid T\mathsf{0} \mid \# \\ U \rightarrow \mathsf{0}U\mathsf{0}\mathsf{0} \mid \# \end{array}$$

- **a.** Describe L(G) in English.
- **b.** Prove that L(G) is not regular.
- **2.14** Convert the following CFG into an equivalent CFG in Chomsky normal form, using the procedure given in Theorem 2.9.

$$A \to BAB \mid B \mid \varepsilon$$
$$B \to 00 \mid \varepsilon$$

- **2.15** Give a counterexample to show that the following construction fails to prove that the class of context-free languages is closed under star. Let A be a CFL that is generated by the CFG $G = (V, \Sigma, R, S)$. Add the new rule $S \to SS$ and call the resulting grammar G'. This grammar is supposed to generate A^* .
- **2.16** Show that the class of context-free languages is closed under the regular operations, union, concatenation, and star.
- 2.17 Use the results of Exercise 2.16 to give another proof that every regular language is context free, by showing how to convert a regular expression directly to an equivalent context-free grammar.

PROBLEMS

- A2.18 a. Let C be a context-free language and R be a regular language. Prove that the language $C \cap R$ is context free.
 - **b.** Let $A = \{w | w \in \{a, b, c\}^* \text{ and } w \text{ contains equal numbers of a's, b's, and c's} \}$. Use part (a) to show that A is not a CFL.
- *2.19 Let CFG G be the following grammar.

$$S
ightarrow aSb \mid bY \mid Ya$$

 $Y
ightarrow bY \mid aY \mid \varepsilon$

Give a simple description of L(G) in English. Use that description to give a CFG for $\overline{L(G)}$, the complement of L(G).

- **2.20** Let $A/B = \{w | wx \in A \text{ for some } x \in B\}$. Show that if A is context free and B is regular, then A/B is context free.
- *2.21 Let $\Sigma = \{a,b\}$. Give a CFG generating the language of strings with twice as many a's as b's. Prove that your grammar is correct.
- *2.22 Let $C = \{x \neq y \mid x, y \in \{0,1\}^* \text{ and } x \neq y\}$. Show that C is a context-free language.

- *2.23 Let $D = \{xy | x, y \in \{0,1\}^* \text{ and } |x| = |y| \text{ but } x \neq y\}$. Show that D is a context-free language.
- *2.24 Let $E = \{a^i b^j | i \neq j \text{ and } 2i \neq j\}$. Show that E is a context-free language.
- **2.25** For any language A, let $SUFFIX(A) = \{v | uv \in A \text{ for some string } u\}$. Show that the class of context-free languages is closed under the SUFFIX operation.
- **2.26** Show that if G is a CFG in Chomsky normal form, then for any string $w \in L(G)$ of length $n \ge 1$, exactly 2n 1 steps are required for any derivation of w.
- *2.27 Let $G = (V, \Sigma, R, \langle STMT \rangle)$ be the following grammar.

```
 \langle \text{STMT} \rangle \rightarrow \langle \text{ASSIGN} \rangle \mid \langle \text{IF-THEN} \rangle \mid \langle \text{IF-THEN-ELSE} \rangle \\ \langle \text{IF-THEN} \rangle \rightarrow \text{if condition then } \langle \text{STMT} \rangle \\ \langle \text{IF-THEN-ELSE} \rangle \rightarrow \text{if condition then } \langle \text{STMT} \rangle \text{ else } \langle \text{STMT} \rangle \\ \langle \text{ASSIGN} \rangle \rightarrow \text{a:=1} \\ \Sigma = \{ \text{if, condition, then, else, a:=1} \} \\ V = \{ \langle \text{STMT} \rangle, \langle \text{IF-THEN} \rangle, \langle \text{IF-THEN-ELSE} \rangle, \langle \text{ASSIGN} \rangle \}
```

G is a natural-looking grammar for a fragment of a programming language, but G is ambiguous.

- **a.** Show that *G* is ambiguous.
- **b.** Give a new unambiguous grammar for the same language.
- *2.28 Give unambiguous CFGs for the following languages.
 - **a.** $\{w | \text{ in every prefix of } w \text{ the number of a's is at least the number of b's} \}$
 - **b.** $\{w \mid \text{ the number of a's and the number of b's in } w \text{ are equal}\}$
 - **c.** $\{w \mid \text{ the number of a's is at least the number of b's in } w\}$
- *2.29 Show that the language A in Exercise 2.9 is inherently ambiguous.
- **2.30** Use the pumping lemma to show that the following languages are not context free.

```
a. \{0^n 1^n 0^n 1^n | n \ge 0\}

<sup>A</sup>b. \{0^n \# 0^{2n} \# 0^{3n} | n \ge 0\}

<sup>A</sup>c. \{w \# t | w \text{ is a substring of } t, \text{ where } w, t \in \{a, b\}^*\}

d. \{t_1 \# t_2 \# \cdots \# t_k | k \ge 2, \text{ each } t_i \in \{a, b\}^*, \text{ and } t_i = t_j \text{ for some } i \ne j\}
```

- **2.31** Let *B* be the language of all palindromes over {0,1} containing equal numbers of 0s and 1s. Show that *B* is not context free.
- **2.32** Let $\Sigma = \{1, 2, 3, 4\}$ and $C = \{w \in \Sigma^* | \text{ in } w$, the number of 1s equals the number of 2s, and the number of 3s equals the number of 4s $\}$. Show that C is not context free.
- *2.33 Show that $F = \{a^i b^j | i = kj \text{ for some positive integer } k\}$ is not context free.
- **2.34** Consider the language B = L(G), where G is the grammar given in Exercise 2.13. The pumping lemma for context-free languages, Theorem 2.34, states the existence of a pumping length p for B. What is the minimum value of p that works in the pumping lemma? Justify your answer.
- **2.35** Let G be a CFG in Chomsky normal form that contains b variables. Show that if G generates some string with a derivation having at least 2^b steps, L(G) is infinite.

- **2.36** Give an example of a language that is not context free but that acts like a CFL in the pumping lemma. Prove that your example works. (See the analogous example for regular languages in Problem 1.54.)
- *2.37 Prove the following stronger form of the pumping lemma, wherein *both* pieces v and y must be nonempty when the string s is broken up.

If A is a context-free language, then there is a number k where, if s is any string in A of length at least k, then s may be divided into five pieces, s = uvxyz, satisfying the conditions:

- **a.** for each $i \ge 0$, $uv^i x y^i z \in A$,
- **b.** $v \neq \varepsilon$ and $y \neq \varepsilon$, and
- **c.** |vxy| < k.
- A2.38 Refer to Problem 1.41 for the definition of the perfect shuffle operation. Show that the class of context-free languages is not closed under perfect shuffle.
- **2.39** Refer to Problem 1.42 for the definition of the shuffle operation. Show that the class of context-free languages is not closed under shuffle.
- *2.40 Say that a language is *prefix-closed* if all prefixes of every string in the language are also in the language. Let C be an infinite, prefix-closed, context-free language. Show that C contains an infinite regular subset.
- *2.41 Read the definitions of NOPREFIX(A) and NOEXTEND(A) in Problem 1.40.
 - a. Show that the class of CFLs is not closed under NOPREFIX.
 - **b.** Show that the class of CFLs is not closed under *NOEXTEND*.
- *2.42 Let $Y = \{w | w = t_1 \# t_2 \# \cdots \# t_k \text{ for } k \ge 0, \text{ each } t_i \in 1^*, \text{ and } t_i \ne t_j \text{ whenever } i \ne j\}.$ Here $\Sigma = \{1, \#\}$. Prove that Y is not context free.
- **2.43** For strings w and t, write $w \stackrel{\circ}{=} t$ if the symbols of w are a permutation of the symbols of t. In other words, $w \stackrel{\circ}{=} t$ if t and w have the same symbols in the same quantities, but possibly in a different order.

For any string w, define $SCRAMBLE(w) = \{t | t \stackrel{\circ}{=} w\}$. For any language A, let $SCRAMBLE(A) = \{t | t \in SCRAMBLE(w) \text{ for some } w \in A\}$.

- a. Show that if $\Sigma = \{0,1\}$, then the *SCRAMBLE* of a regular language is context free.
- b. What happens in part (a) if Σ contains three or more symbols? Prove your answer.
- **2.44** If A and B are languages, define $A \diamond B = \{xy | x \in A \text{ and } y \in B \text{ and } |x| = |y|\}$. Show that if A and B are regular languages, then $A \diamond B$ is a CFL.
- *2.45 Let $A = \{wtw^{\mathcal{R}} | w, t \in \{0,1\}^* \text{ and } |w| = |t|\}$. Prove that A is not a CFL.
- **2.46** Consider the following CFG *G*:

$$S o SS \mid T$$
 $T o aTb \mid ab$

Describe L(G) and show that G is ambiguous. Give an unambiguous grammar H where L(H) = L(G) and sketch a proof that H is unambiguous.

- **2.47** Let $\Sigma = \{0,1\}$ and let B be the collection of strings that contain at least one 1 in their second half. In other words, $B = \{uv | u \in \Sigma^*, v \in \Sigma^* 1\Sigma^* \text{ and } |u| \ge |v|\}$.
 - a. Give a PDA that recognizes B.
 - **b.** Give a CFG that generates B.
- **2.48** Let $\Sigma = \{0,1\}$. Let C_1 be the language of all strings that contain a 1 in their middle third. Let C_2 be the language of all strings that contain two 1s in their middle third. So $C_1 = \{xyz | x, z \in \Sigma^* \text{ and } y \in \Sigma^* 1\Sigma^*, \text{ where } |x| = |z| \ge |y|\}$ and $C_2 = \{xyz | x, z \in \Sigma^* \text{ and } y \in \Sigma^* 1\Sigma^* 1\Sigma^*, \text{ where } |x| = |z| \ge |y|\}$.
 - **a.** Show that C_1 is a CFL.
 - **b.** Show that C_2 is not a CFL.
- *2.49 We defined the rotational closure of language A to be $RC(A) = \{yx | xy \in A\}$. Show that the class of CFLs is closed under rotational closure.
- *2.50 We defined the CUT of language A to be $CUT(A) = \{yxz | xyz \in A\}$. Show that the class of CFLs is not closed under CUT.
- 2.51 Show that every DCFG is an unambiguous CFG.
- A*2.52 Show that every DCFG generates a prefix-free language.
 - *2.53 Show that the class of DCFLs is not closed under the following operations:
 - a. Union
 - b. Intersection
 - c. Concatenation
 - d. Star
 - e. Reversal
 - **2.54** Let G be the following grammar:

$$\begin{array}{l} S \, \to \, T \text{--l} \\ T \, \to \, T \text{a} T \text{b} \mid T \text{b} T \text{a} \mid \varepsilon \end{array}$$

- a. Show that $L(G) = \{w \dashv | w \text{ contains equal numbers of a's and b's} \}$. Use a proof by induction on the length of w.
- **b.** Use the *DK*-test to show that *G* is a DCFG.
- **c.** Describe a DPDA that recognizes L(G).
- **2.55** Let G_1 be the following grammar that we introduced in Example 2.45. Use the DK-test to show that G_1 is not a DCFG.

$$\begin{array}{l} R \to S \mid T \\ S \to \mathbf{a} S \mathbf{b} \mid \mathbf{a} \mathbf{b} \\ T \to \mathbf{a} T \mathbf{b} \mathbf{b} \mid \mathbf{a} \mathbf{b} \mathbf{b} \end{array}$$

- *2.56 Let $A = L(G_1)$ where G_1 is defined in Problem 2.55. Show that A is not a DCFL. (Hint: Assume that A is a DCFL and consider its DPDA P. Modify P so that its input alphabet is $\{a, b, c\}$. When it first enters an accept state, it pretends that c's are b's in the input from that point on. What language would the modified P accept?)
- *2.57 Let $B = \{a^i b^j c^k | i, j, k \ge 0 \text{ and } i = j \text{ or } i = k\}$. Prove that B is not a DCFL.
- *2.58 Let $C = \{ww^{\mathcal{R}} | w \in \{0,1\}^*\}$. Prove that C is not a DCFL. (Hint: Suppose that when some DPDA P is started in state q with symbol x on the top of its stack, P never pops its stack below x, no matter what input string P reads from that point on. In that case, the contents of P's stack at that point cannot affect its subsequent behavior, so P's subsequent behavior can depend only on q and x.)
- *2.59 If we disallow ε -rules in CFGs, we can simplify the DK-test. In the simplified test, we only need to check that each of DK's accept states has a single rule. Prove that a CFG without ε -rules passes the simplified DK-test iff it is a DCFG.

SELECTED SOLUTIONS

- 2.3 (a) R, X, S, T; (b) a, b; (c) R; (d) Three strings in L(G) are ab, ba, and aab;
 (e) Three strings not in L(G) are a, b, and ε; (f) False; (g) True; (h) False;
 (i) True; (j) True; (k) False; (l) True; (m) True; (n) False; (o) L(G) consists of all strings over a and b that are not palindromes.
- 2.4 (a) $S \rightarrow R1R1R1R$ $R \rightarrow 0R \mid 1R \mid \varepsilon$

- (d) $S
 ightarrow 0 \mid$ 0S0 \mid 0S1 \mid 1S0 \mid 1S1
- 2.6 (a) $S \to TaT$ $T \to TT \mid aTb \mid bTa \mid a \mid \varepsilon$ T generates all strings with at least as many a's as b's, and S forces an extra a.
- (c) $S \to TX$ $T \to 0T0 \mid 1T1 \mid \#X$ $X \to 0X \mid 1X \mid \varepsilon$
- 2.7 (a) The PDA uses its stack to count the number of a's minus the number of b's. It enters an accepting state whenever this count is positive. In more detail, it operates as follows. The PDA scans across the input. If it sees a b and its top stack symbol is an a, it pops the stack. Similarly, if it scans an a and its top stack symbol is a b, it pops the stack. In all other cases, it pushes the input symbol onto the stack. After the PDA finishes the input, if a is on top of the stack, it accepts. Otherwise it rejects.
 - **(c)** The PDA scans across the input string and pushes every symbol it reads until it reads a #. If a # is never encountered, it rejects. Then, the PDA skips over part of the input, nondeterministically deciding when to stop skipping. At that point, it compares the next input symbols with the symbols it pops off the stack. At any disagreement, or if the input finishes while the stack is nonempty, this branch of the computation rejects. If the stack becomes empty, the machine reads the rest of the input and accepts.

2.8 Here is one derivation:

```
\langle SENTENCE \rangle \rightarrow \langle NOUN-PHRASE \rangle \langle VERB-PHRASE \rangle \rightarrow
\langle \text{CMPLX-NOUN} \rangle \langle \text{VERB-PHRASE} \rangle \rightarrow
\langle ARTICLE \rangle \langle NOUN \rangle \langle VERB-PHRASE \rangle \rightarrow
The \langle NOUN \rangle \langle VERB-PHRASE \rangle \rightarrow
The girl \langle VERB-PHRASE \rangle \rightarrow
The girl \langle CMPLX-VERB \rangle \langle PREP-PHRASE \rangle \rightarrow
The girl \langle VERB \rangle \langle NOUN-PHRASE \rangle \langle PREP-PHRASE \rangle \rightarrow
The girl touches \langle NOUN-PHRASE \rangle \langle PREP-PHRASE \rangle \rightarrow
The girl touches \langle \text{CMPLX-NOUN} \rangle \langle \text{PREP-PHRASE} \rangle \rightarrow
The girl touches \langle ARTICLE \rangle \langle NOUN \rangle \langle PREP-PHRASE \rangle \rightarrow
The girl touches the \langle NOUN \rangle \langle PREP-PHRASE \rangle \rightarrow
The girl touches the boy \langle PREP-PHRASE \rangle \rightarrow
The girl touches the boy \langle PREP \rangle \langle CMPLX-NOUN \rangle \rightarrow
The girl touches the boy with \langle \text{CMPLX-NOUN} \rangle \rightarrow
The girl touches the boy with \langle ARTICLE \rangle \langle NOUN \rangle \rightarrow
The girl touches the boy with the \langle \text{NOUN} \rangle \rightarrow
The girl touches the boy with the flower
Here is another leftmost derivation:
\langle SENTENCE \rangle \rightarrow \langle NOUN-PHRASE \rangle \langle VERB-PHRASE \rangle \rightarrow
\langle \text{CMPLX-NOUN} \rangle \langle \text{VERB-PHRASE} \rangle \rightarrow
\langle ARTICLE \rangle \langle NOUN \rangle \langle VERB-PHRASE \rangle \rightarrow
The \langle NOUN \rangle \langle VERB-PHRASE \rangle \rightarrow
The girl \langle VERB-PHRASE \rangle \rightarrow
The girl \langle \text{CMPLX-VERB} \rangle \rightarrow
The girl \langle VERB \rangle \langle NOUN-PHRASE \rangle \rightarrow
The girl touches \langle NOUN-PHRASE \rangle \rightarrow
The girl touches \langle \text{CMPLX-NOUN} \rangle \langle \text{PREP-PHRASE} \rangle \rightarrow
The girl touches \langle ARTICLE \rangle \langle NOUN \rangle \langle PREP-PHRASE \rangle \rightarrow
The girl touches the \langle NOUN \rangle \langle PREP-PHRASE \rangle \rightarrow
The girl touches the boy \langle PREP-PHRASE \rangle \rightarrow
The girl touches the boy \langle PREP \rangle \langle CMPLX-NOUN \rangle \rightarrow
The girl touches the boy with \langle \text{CMPLX-NOUN} \rangle \rightarrow
The girl touches the boy with \langle ARTICLE \rangle \langle NOUN \rangle \rightarrow
The girl touches the boy with the \langle \text{NOUN} \rangle \rightarrow
The girl touches the boy with the flower
```

Each of these derivations corresponds to a different English meaning. In the first derivation, the sentence means that the girl used the flower to touch the boy. In the second derivation, the boy is holding the flower when the girl touches her.

- 2.18 (a) Let C be a context-free language and R be a regular language. Let P be the PDA that recognizes C, and D be the DFA that recognizes R. If Q is the set of states of P and Q' is the set of states of D, we construct a PDA P' that recognizes $C \cap R$ with the set of states $Q \times Q'$. P' will do what P does and also keep track of the states of D. It accepts a string W if and only if it stops at a state $Q \in F_P \times F_D$, where F_P is the set of accept states of P and P is the set of accept states of P. Since P is recognized by P', it is context free.
 - **(b)** Let R be the regular language $a^*b^*c^*$. If A were a CFL then $A \cap R$ would be a CFL by part (a). However, $A \cap R = \{a^nb^nc^n \mid n \geq 0\}$, and Example 2.36 proves that $A \cap R$ is not context free. Thus A is not a CFL.

2.30 (b) Let $B = \{0^n \# 0^{2n} \# 0^{3n} | n \ge 0\}$. Let p be the pumping length given by the pumping lemma. Let $s = 0^p \# 0^{2p} \# 0^{3p}$. We show that s = uvxyz cannot be pumped.

Neither v nor y can contain #, otherwise uv^2xy^2z contains more than two #s. Therefore, if we divide s into three segments by #'s: $0^p, 0^{2p}$, and 0^{3p} , at least one of the segments is not contained within either v or y. Hence uv^2xy^2z is not in B because the 1:2:3 length ratio of the segments is not maintained.

(c) Let $C = \{w\#t | w \text{ is a substring of } t, \text{ where } w, t \in \{a, b\}^*\}$. Let p be the pumping length given by the pumping lemma. Let $s = a^p b^p \#a^p b^p$. We show that the string s = uvxyz cannot be pumped.

Neither v nor y can contain #, otherwise uv^0xy^0z does not contain # and therefore is not in C. If both v and y occur on the left-hand side of the #, the string uv^2xy^2z cannot be in C because it is longer on the left-hand side of the #. Similarly, if both strings occur on the right-hand side of the #, the string uv^0xy^0z cannot be in C because it is again longer on the left-hand side of the #. If one of v and v is empty (both cannot be empty), treat them as if both occurred on the same side of the # as above

The only remaining case is where both v and y are nonempty and straddle the #. But then v consists of b's and y consists of a's because of the third pumping lemma condition $|vxy| \le p$. Hence, uv^2xy^2z contains more b's on the left-hand side of the #, so it cannot be a member of C.

- 2.38 Let A be the language $\{0^k1^k | k \ge 0\}$ and let B be the language $\{a^kb^{3k} | k \ge 0\}$. The perfect shuffle of A and B is the language $C = \{(0a)^k(0b)^k(1b)^{2k} | k \ge 0\}$. Languages A and B are easily seen to be CFLs, but C is not a CFL, as follows. If C were a CFL, let p be the pumping length given by the pumping lemma, and let s be the string $(0a)^p(0b)^p(1b)^{2p}$. Because s is longer than p and $s \in C$, we can divide s = uvxyz satisfying the pumping lemma's three conditions. Strings in C are exactly one-fourth 1s and one-eighth a's. In order for uv^2xy^2z to have that property, the string vxy must contain both 1s and a's. But that is impossible, because the 1s and a's are separated by 2p symbols in s yet the third condition says that $|vxy| \le p$. Hence C is not context free.
- 2.52 We use a proof by contradiction. Assume that w and wz are two unequal strings in L(G), where G is a DCFG. Both are valid strings so both have handles, and these handles must agree because we can write w=xhy and $wz=xhyz=xh\hat{y}$ where h is the handle of w. Hence, the first reduce steps of w and wz produce valid strings w and wz, respectively. We can continue this process until we obtain S_1 and S_1z where S_1 is the start variable. However, S_1 does not appear on the right-hand side of any rule so we cannot reduce S_1z . That gives a contradiction.