2.76 / 2.760 Lecture 6: Micro-Nano-STM

Micro-scaling

Nano-scaling

STM project

Purpose of today

$$\begin{vmatrix} O_{Macro} \\ O_{Meso} \\ O_{Meso} \end{vmatrix} = \begin{vmatrix} f_{11} \begin{pmatrix} S_{N_{Macro}} \\ f_{12} \end{pmatrix} & f_{12} \begin{pmatrix} S_{N_{Macro}} \\ f_{21} \end{pmatrix} & f_{13} \begin{pmatrix} S_{N_{Macro}} \\ f_{22} \end{pmatrix} & f_{23} \begin{pmatrix} S_{N_{Micro}} \\ f_{23} \end{pmatrix} & f_{24} \begin{pmatrix} S_{N_{Maco}} \\ f_{24} \end{pmatrix} & I_{Macro} \end{vmatrix}$$

$$\begin{vmatrix} I_{Macro} \\ I_{Meso} \\ I_{Meso} \end{vmatrix}$$

$$\begin{vmatrix} I_{Macro} \\ I_{Meso} \\ I_{Micro} \end{vmatrix}$$

$$\begin{vmatrix} I_{Macro} \\ I_{Meso} \\ I_{Micro} \end{vmatrix}$$

$$\begin{vmatrix} I_{Macro} \\ I_{Meso} \\ I_{Micro} \end{vmatrix}$$

$$\begin{vmatrix} I_{Macro} \\ I_{Micro} \\ I_{Micro} \end{vmatrix}$$

$$\begin{vmatrix} I_{Macro} \\ I_{Micro} \\ I_{Micro} \end{vmatrix}$$

$$\begin{vmatrix} I_{Macro} \\ I_{Micro} \\ I_{Macro} \end{vmatrix}$$

$$\begin{vmatrix} I_{Macro} \\ I_{Micro} \\ I_{Macro} \end{vmatrix}$$

$$\begin{vmatrix} I_{Macro} \\ I_{Micro} \\ I_{Macro} \end{vmatrix}$$

$$\begin{vmatrix} I_{Macro} \\ I_{Macro} \\ I_{Macro} \end{vmatrix}$$

Finish micro-scale gain factors

Nano-scale phenomena (to be cont.)

STM project start

Micro-scale systems cont.

Micro-scale physics

For strong dependence on characteristic length, importance of phenomena decreases with characteristic dimension

 \square Body L^3

For weaker dependence on characteristic length, phenomena become dominate at small scale

 \Box Electrostatic L²

☐ Thermal L

 \square Surface tension L²

Micro-scale physics: Electrostatic

$$U_{Electric-z} = \frac{\varepsilon_o \cdot L \cdot L \cdot V^2}{2 \cdot z} \longrightarrow F_{Electric-z} = -\frac{dU}{dz} \longrightarrow F_{Electric-z} = \frac{\varepsilon_o \cdot L^2 \cdot V^2}{2 \cdot z^2}$$

$$F_{body} = \rho \cdot V^3 \longrightarrow \left| \frac{F_{Electric}}{F_{Body}} \right| \sim \frac{1}{L}$$

class		meter gı	ıbic foot	typical uses			
	0.1 μm	0.2 μm	0.3 μm	0.5 μm	5.0 μm		
1	35	7.5	3	1	_	integrated circuits	
10	350	75	30	10	_	integrated circuits	
100	_	7502	300	100	_	miniature ball bearings; photo labs; medical implants	
1000	_	_	_	1000	7		
10000	_	_	_	10000	70	color TV tubes; hospital operating room	
100000	_	_	_	100000	700	ball bearings	

Micro-scale physics: Thermal

How does thermal physics scale (small Bi #)?

$$e^{\left[-\left(\frac{h\cdot A}{\rho\cdot \mathcal{V}\cdot c}\right)\cdot t\right]} = \frac{\theta}{\theta_{\text{inf}}} = \frac{T - T_{\text{inf}}}{T_{\text{initial}} - T_{\text{inf}}}$$

$$Bi = \frac{h \cdot L}{k} \sim \frac{Convection}{Conduction}$$

Micro-scale physics: Dynamics

$$\omega_n = \sqrt{\frac{k}{m}} \sim \sqrt{\frac{E \cdot f(\text{topology})}{\rho \cdot V}} \rightarrow \sqrt{\frac{E \cdot f(L^A, h^B, w^C)}{\rho \cdot f(L^D, h^E, w^F)}}$$

$$\alpha = A + B + C - D - E - F$$

Micro-scale physics: Dynamics

How does natural frequency scale?

$$\delta = F \frac{L^3}{3 \cdot E \cdot I} = F \frac{L^3}{3 \cdot E \cdot \frac{w \cdot h^3}{12}}$$

$$k = \frac{dF}{dS} = \frac{E}{12} \cdot \frac{w \cdot h^3}{I^3} \sim C_1 \cdot [L]$$

$$m = 10 \cdot \rho \cdot L \cdot h \cdot w \sim C_2 \cdot [L^3]$$

$$\omega_n = \sqrt{\frac{k}{m}} \approx C_3 \cdot \sqrt{\frac{L}{L^3}} \rightarrow \left[\frac{1}{L}\right]$$

$$\alpha = -2$$

Micro-scale physics: Fluidics

How do fluid-based physical phenomena scale?

$$Q = \frac{\pi (r^4) \Delta p}{8 \cdot \mu \cdot L}$$

$$Q = U \cdot \pi \cdot r^2$$
 \Box

$$\Delta p = -\frac{8 \cdot \mu \cdot U}{(r^2)} \cdot L$$

High pressure change over narrow flow paths...

Reynolds number

$$Re = \frac{\rho \cdot U \cdot D}{\mu}$$
 Ratio of inertial forces to viscous forces

$$D = 50 \mu m$$

$$U = 500 \ \mu m/s$$
 $L = 1000 \ \mu m$

$$L = 1000 \ \mu m$$

Heavily damped, limits response time (ms vs. µs)

Micro-scale physics: Fluidics

Reynolds number

$$Re = \frac{\rho \cdot U \cdot D}{\mu}$$
 Ratio of inertial forces to viscous forces

$$D=50~\mu m \qquad \qquad U=500~\mu m/s \qquad \qquad L=1000~\mu m$$

$$Re_{Air}$$
 and $Re_{H2O} \ll 1$

Heavily damped

Limits response time (ms vs. µs)

Cross-scale coupling

Macro

Meso

Micro

Nano

-Function

_Form

-Flows

—Physics

—Fabrication

	n	Cti	
	_		

What

Who

Why

Where

Etc...

Form

Geometry

Motion

Interfaces

Constraints

Etc...

Flow

Mass

Momentum

Energy

Information

Etc...

Physics

Application

Modeling

Limiting

Dominant

Etc...

Fabrication

Compatibility

Quality

Rate

Cost

Etc...

2.76 Multi-scale System Design & Manufacturing

1. Functional requirements

System

Subsystem

FR-DP relationships

Function	Form	Flow	Physics	Fabrication
What	Geometry	Mass	Application	Compatibility
Who	Motion	Momentum	Modeling	Quality
Why	Interfaces	Energy	Limiting	Rate
Where	Constraints	Information	Dominant	Cost
Etc	Etc	Etc	Etc	Etc

2. Form & concept layout

DP/module layout

Function	Form	Flow	Physics	Fabrication
What	Geometry	Mass	Application	Compatibility
Who	Motion	Momentum	Modeling	Quality
Why	Interfaces	Energy	Limiting	Rate
Where	Constraints	Information	Dominant	Cost
Etc	Etc	Etc	Etc	Etc
2.76 Multi-scale System De	esign & Manufacturing			

3. ALL Flow/physics lines

Intra and Inter

Function	Form	Flow	Physics	Fabrication
What	Geometry	Mass	Application	Compatibility
Who	Motion	Momentum	Modeling	Quality
Why	Interfaces	Energy	Limiting	Rate
Where	Constraints	Information	Dominant	Cost
Etc	Etc	Etc	Etc	Etc
2.76 Multi-scale System De	esign & Manufacturing			

4. Flow physics

List macro assmpts.

Use ratios & OOM

Select those to model

6 Multi-scale System Design & Manufacturing

Function	Form	Flow	Physics	Fabrication
What	Geometry	Mass	Application	Compatibility
Who	Motion	Momentum	Modeling	Quality
Why	Interfaces	Energy	Limiting	Rate
Where	Constraints	Information	Dominant	Cost
Etc	Etc	Etc	Etc	Etc

5. System model

Sensitivity/gain check

Flow & fab compatibility

Un/de coupling

6 Multi-scale System Design & Manufacturinc

Function	Form	Flow	Physics	Fabrication
What	Geometry	Mass	Application	Compatibility
Who	Motion	Momentum	Modeling	Quality
Why	Interfaces	Energy	Limiting	Rate
Where	Constraints	Information	Dominant	Cost
Etc	Etc	Etc	Etc	Etc

6. Parametric optimization

Excel works great

Function	Form	Flow	Physics	Fabrication
What	Geometry	Mass	Application	Compatibility
Who	Motion	Momentum	Modeling	Quality
Why	Interfaces	Energy	Limiting	Rate
Where	Constraints	Information	Dominant	Cost
Etc	Etc	Etc	Etc	Etc
2.76 Multi-scale System De	esign & Manufacturing			

7. Concept selection

Function	Form	Flow	Physics	Fabrication
What	Geometry	Mass	Application	Compatibility
Who	Motion	Momentum	Modeling	Quality
Why	Interfaces	Energy	Limiting	Rate
Where	Constraints	Information	Dominant	Cost
Etc	Etc	Etc	Etc	Etc

Nano-scale system components

Nano-scale for today

Driving tunneling current relationship

How this drives design

Gain and noise factors

Discussion

Group work

Gain factors to consider

$$\begin{vmatrix} O_{Macro} \\ O_{Meso} \\ O_{Micro} \end{vmatrix} = \begin{vmatrix} f_{11} \begin{pmatrix} SR_{\frac{Nano}{Macro}} \end{pmatrix} & f_{12} \begin{pmatrix} SR_{\frac{Nano}{Macro}} \end{pmatrix} & f_{13} \begin{pmatrix} SR_{\frac{Micro}{Macro}} \end{pmatrix} & f_{14} \begin{pmatrix} SR_{\frac{Nano}{Macro}} \\ SR_{\frac{Nano}{Macro}} \end{pmatrix} & I_{Macro} \\ O_{Micro} \\ O_{Micro} \end{vmatrix} = \begin{vmatrix} f_{21} \begin{pmatrix} SR_{\frac{Macro}{Meso}} \end{pmatrix} & f_{22} \begin{pmatrix} SR_{\frac{Nano}{Meso}} \end{pmatrix} & f_{23} \begin{pmatrix} SR_{\frac{Micro}{Meso}} \end{pmatrix} & f_{24} \begin{pmatrix} SR_{\frac{Nano}{Micro}} \end{pmatrix} & I_{Meso} \\ I_{Meso} \\ I_{Micro} \\ I_{Micro} \\ I_{Micro} \\ I_{Macro} \\ I_{Micro} \\ I_{Macro} \\ I_{Micro} \\ I_{Macro} \\ I_{Macro}$$

Nano-scale

Macro/meso/micro can be looked at with common Newtonian physical descriptions

For Nm-scale Quantum Mechanics dominates

Approach to teaching Nano-scale (example)

- ☐ Tunneling (Qualitative/Quantitative)
- □ Nano-scale structures

Today

- ☐ Governing tunneling equation
- ☐ How to apply to design
- ☐ Major design issues

Reading

Electrons have wave-like characteristics

Enables them to tunnel through space when ordinarily don't have enough kinetic energy to get through

Electrons have wave-like characteristics

Enables them to tunnel through space when ordinarily don't have enough kinetic energy to get through

Particle thought

Electrons have wave-like characteristics

Enables them to tunnel through space when ordinarily don't have enough kinetic energy to get through

Wave thought

Electrons have wave-like characteristics

Enables them to tunnel through space when ordinarily don't have enough kinetic energy to get through

Solution to Schrodinger's equation

$$I \propto e^{[-?\cdot gap]}$$

What should "?" depend upon?

Electrons have wave-like characteristics

Enables them to tunnel through space when ordinarily don't have enough kinetic energy to get through

$$I \propto e^{[-2 \cdot k \cdot gap]}$$

$$m = Electron mass$$

= 9.11 x 10⁻³¹ kg

$$k = \frac{\sqrt{2 \cdot m \cdot \phi}}{h}$$

h = Planks constant / 2
$$\pi$$
 = 1.05 x10⁻³⁴ J-s

Fundamental issue for semester

Sensitivity

Assuming a barrier width of 5 Angstroms

Barrier height of 4 eV

Exponential is on the order of 10⁻⁵

Current is on the order of nAmps

$$I \propto e^{[-2 \cdot k \cdot gap]}$$

$$k = \frac{\sqrt{2 \cdot m \cdot \phi}}{h}$$

Assignment

Form your STM groups

List of CS and FRs for the STM

List of 5 F's you have to model

FR-DP mapping and de/un coupling plans

Schedule meeting with Culpepper next Friday

☐Discuss theor	y
----------------	---

☐ Design approach

□ FR-DP Matching

☐ Gain matrices

Fundamental issue for semester

What is the sensitivity of current to gap over the range of gap you will have to design for?

Gap of few angstroms to 10 angstroms

$$I \propto e^{[-2 \cdot k \cdot gap]}$$

$$k = \frac{\sqrt{2 \cdot m \cdot \phi}}{h}$$