Nonparametric Density Estimation

Sections 17.1-17.8 of Hansen (2022)

Yasuyuki Matsumura (Kyoto University)

Last Updated: April 23, 2025

https://yasu0704xx.github.io

This slide is available on

https://github.com/yasu0704xx/Econometrics2025.

Introduction

- As a general rule, density functions can take any shape. They
 are inherently nonparametric and cannot be described by a
 finite set of parameters.
- That is, functional and/or distributional specifications relied on when estimating density functions may be incorrect.
- If we assume that such specifications are "true," we might obtain incorrect empirical conclusions.
- Thus, it would be desirable if we develop estimation procedures without requiring functional and/or distributional specifications.
- Nonparametric kernel methods achieve such a goal.

Setup

- Here we review Sections 17.1-17.8 of Hansen (2022) [4].
- We proceed with a discussion of how to estimate the probability density function f(x) of a real-valued random variable X for which we have n IID observations $X_1, \dots X_n$.
- We assume that f(x) is continuous.
- The goal is to estimate f(x) either at a single point x or a set of points in the interior of the support of X.

Literature

- Excellent textbooks on nonparametric density estimation include Silverman (1986) [12] and Scott (1992) [11].
- The following textbooks are often referred to:
 - van der Vaart (2000, Chapter 24) [13],
 - Pagan and Ullah (1999, Chapter 2) [8], and
 - Li and Racine (2007, Chapter 1) [7].
- 日本語の文献:
 - 西山・人見 (2023, 第1章) [18]
 - 末石 (2015, 第9章) [16]
 - 清水 (2023, 第5章) [15]

Contents

Idea behind Kernel Density Estimation

Kernel Density Estimator

Bias, Variance, MSE

IMSE, AIMSE

References

Idea behind Kernel Density Estimation

Histogram

- A simple and familiar estimator of f(x) is a histogram.
- Divide the range of f(x) into B bins of width w.
- Counting the number of observations n_j in each bin j, we obtain the histogram estimator of f(x) for x in the j-th bin:

$$\hat{f}(x) = \frac{n_j}{nw}. (1)$$

 The histogram is the plot of these heights, displayed as rectangles.

Figure 17.1: Histogram Estimate of Wage Density for Asian Women

Empirical Distribution Function

- Let us generalize the concept of histogram estimator.
- The empirical distribution function is defined as

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n 1(X_i \le x).$$

- Let $F(x) = \int_{-\infty}^{x} f(x) dx$ denote the (cumulative) distribution function.
- By L.L.N. and C.L.T., we obtain

$$F_n(x) \xrightarrow{p} F(x),$$

$$\sqrt{n}(F_n(x) - F(x)) \xrightarrow{d} \mathsf{Normal}(0, F(x)(1 - F(x))).$$

¹We discuss these convergences in Chapter 18 of Hansen (2022) [4].

Naive Estimator

- Since $F_n(x)$ includes an indicator function, the empirical distribution function is not differentiable.
- Instead, let us consider approximate the "derivative" of $F_n(x)$.
- Note that, for $h \to 0$, it holds that

$$f(x) \approx \frac{F(x+h) - F(x-h)}{2h}.$$

• Replacing F with F_n , we obtain the naive estimator² of f(x):

$$f_n(x) = \frac{F_n(x+h) - F_n(x-h)}{2h}.$$

• Under certain conditions, it can be shown that $f_n(x) \stackrel{p}{\to} f(x)$.

²The Rosenblatt estimator (Rosenblatt, 1956) [10]

• The naive estimator of $\phi(x)$ using IID observations $X_1, \dots X_{100} \sim \text{Normal}(0, 1)$: ³

図 1: ナイーブ推定量 (h = 0.3)

³Cited from the lecture note 01 by N. Sueishi.

Idea behind Kernel Density Estimation

The naive estimator can be rewritten as

$$f_n(x) = \frac{1}{2nh} \sum_{i=1}^n 1(x - h \le X_i \le x + h)$$
$$= \frac{1}{nh} \sum_{i=1}^n k_0 \left(\frac{X_i - x}{h}\right),$$

where $k_0(\cdot)$ is given by

$$k_0(u) = \frac{1}{2} \cdot 1(-1 \le u \le 1).$$

• Replacing $k_0(\cdot)$ with some smooth function, we can obtain a differentiable, smooth estimator of f(x) ...?

Kernel Density Estimator

Kernel Density Estimator

• The kernel density estimator⁴ of f(x) is given by

$$\hat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{X_i - x}{h}\right). \tag{2}$$

- K(u) is a weighting function known as a kernel function. The kernel K(u) weights observations based on the distance between X_i and x.
- h > 0 is a scalar known as a bandwidth. The bandwidth h
 determines what is meant by "close."
- The kernel density estimator (2) critically depends on the bandwidth rather than the kernel function.

⁴The Parzen-Rosenblatt estimator (Parzen, 1962) [9]

Kernel Function

Definition 17.1

• A kernel function K(u) satisfies

$$1. \quad 0 \le K(u) \le \bar{K} < \infty, \tag{3}$$

2.
$$K(u) = K(-u),$$
 (4)

3.
$$\int_{-\infty}^{\infty} K(u)du = 1, \text{ and}$$
 (5)

4.
$$\int_{-\infty}^{\infty} |u|^r K(u) du < \infty \text{ for all positive integers } r.$$

(6)

- Essentially, a kernel function is a bounded PDF which is symmetric about zero.
- Assumption (6) is not essential for most results but is a convenient simplification and does not exclude any kernel functions used in standard empirical practice.

Definition 17.2

ullet A normalized kernel function K(u) satisfies

$$\int_{-\infty}^{\infty} u^2 K(u) du = 1.$$

• The *j*-th moment of a kernel is defined as

$$\kappa_j(K) = \int_{-\infty}^{\infty} u^j K(u) du.$$

• The order of a kernel ν is defined as the order of the first non-zero moment.

Examples of Second-Order Kernel

- Rectangular kernel: $K(u) = \frac{1}{2\sqrt{3}}1(|u| \le \sqrt{3})$
- Gaussian kernel: $K(u) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right)$
- Epanechnikov kernel: $K(u) = \frac{3}{4\sqrt{5}} \left(1 \frac{u^2}{5}\right) 1(|u| \le \sqrt{5})$
- Triangular kernel: $K(u) = \frac{1}{\sqrt{6}} \left(1 \frac{|u|}{\sqrt{6}} \right) 1(|u| \le \sqrt{6})$
- Quartic (Biweight) kernel: $K(u) = \frac{15}{16}(1-u^2)^2 1(|u| \le 1)$
- Triweight kernel: $K(u) = \frac{35}{32}(1 u^2)^3 1(|u| \le 1)$

⁵Epanechnikov (1969) [1]

Higher-Order Kernel

 Higher-order kernels can be used. See Hansen (2005) [3], and Section 1.11 of Li and Racine (2007) [7] for details.

Figure 1.2: Epanechnikov kernels of varying order.

Bandwidth

Definition 17.3

- ullet A bandwidth or tuning parameter h>0 is a real number used to control the degree of smoothing of a nonparametric estimator.
- Larger values of h result in smoother estimators.
- Smaller values h result in less smooth estimators.

Properties of Kernel Density Estimator

- Invariance to rescaling the kernel function and bandwidth: The estimator (2) using K(u) and h is equal for any b>0 to the one using $K\left(\frac{u}{h}\right)$ and $\frac{h}{h}$.
- Invariance to data scaling: Suppose that Y=cX for some c>0, which means the (true) density of Y is

$$f_Y(y) = \frac{f_X(\frac{y}{c})}{c}.$$

Letting $\hat{f}_X(x)$ and $\hat{f}_Y(x)$ be the estimator (2) using $\{X_i\}_{i=1}^n$ and h and the one using $\{Y_i\}_{i=1}^n=\{cX_i\}_{i=1}^n$ and ch, respectively, Then, it holds that

$$\hat{f}_Y(y) = \frac{\hat{f}_X(\frac{y}{c})}{c}.$$

• The kernel density estimator (2) is non-negative, and integrates to 1: Letting $u=\frac{(X_i-x)}{h}$, we obtain

$$\begin{split} \int_{-\infty}^{\infty} \hat{f}(x) dx &= \frac{1}{nh} \sum_{i=1}^{n} \int_{-\infty}^{\infty} K\left(\frac{X_i - h}{h}\right) \frac{dx}{dx} \\ &= \frac{1}{n} \sum_{i=1}^{n} \int_{-\infty}^{\infty} K(u) \frac{du}{du} = 1. \end{split}$$

Bias, Variance, MSE

Bias, Variance, MSE

• The mean squared error (MSE) of a generic estimator $\hat{f}(x)$ can be decomposed as follows:

$$\begin{split} \mathsf{MSE}\left(\hat{f}(x)\right) &\equiv \mathbb{E}\left[\{\hat{f}(x) - f(x)\}^2\right] \\ &= \mathbb{E}\left[\{\hat{f}(x) - \mathbb{E}[\hat{f}(x)] + \mathbb{E}[\hat{f}(x)] - f(x)\}^2\right] \\ &= \mathbb{E}\left[\{\hat{f}(x) - \mathbb{E}[\hat{f}(x)]\}^2\right] + \left[\mathbb{E}[\hat{f}(x)] - f(x)\right]^2 \\ &\equiv \mathsf{var}\left(\hat{f}(x)\right) + \left[\mathsf{bias}\left(\hat{f}(x)\right)\right]^2. \end{split}$$

Bias Evaluation

• Since $\{X_i\}_{i=1}^n$ is an IID sample, it holds that

$$\mathbb{E}[\hat{f}(x)] = \mathbb{E}\left[\frac{1}{nh}\sum_{i=1}^{n}K\left(\frac{X_{i}-x}{h}\right)\right]$$
$$= \mathbb{E}\left[\frac{1}{h}K\left(\frac{X-x}{h}\right)\right].$$

By definition,

$$\mathbb{E}\left[\frac{1}{h}K\left(\frac{X-x}{h}\right)\right] = \int_{-\infty}^{\infty} \frac{1}{h}K\left(\frac{v-x}{h}\right)f(v)dv.$$

• Let $u = \frac{v - x}{h}$. Under certain conditions, we obtain

$$\int_{-\infty}^{\infty} \frac{1}{h} K\left(\frac{v-x}{h}\right) f(v) dv = \int_{-\infty}^{\infty} K(u) f(x+hu) du$$

$$= \int_{-\infty}^{\infty} K(u) \left\{ f(x) + f'(x) hu + \frac{1}{2} f''(x) h^2 u^2 + o(h^2) \right\} du$$

$$= f(x) \int_{-\infty}^{\infty} K(u) du + f'(x) h \int_{-\infty}^{\infty} u K(u) du$$

$$+ \frac{h^2}{2} f''(x) \int_{-\infty}^{\infty} u^2 K(u) du + o(h^2)$$

$$= f(x) + 0 + \frac{h^2}{2} f''(x) \kappa_2 + o(h^2)$$

 Thus, the bias of the kernel density estimator (2) is described as

bias
$$(\hat{f}(x)) \equiv \mathbb{E}[\hat{f}(x)] - f(x) = \frac{h^2}{2}f''(x)\kappa_2 + o(h^2).$$

Theorem 17.1

• Letting $\mathcal N$ denote the neighborhood of x, assume that f(x) is continuous in $\mathcal N.$ Then, as $h \to 0$,

$$\mathbb{E}[\hat{f}(x)] \to f(x).$$

• Assume additionally that f''(x) is continuous in \mathcal{N} . Then, as $h \to 0$,

bias
$$(\hat{f}(x)) \equiv \mathbb{E}[\hat{f}(x)] - f(x) = \frac{h^2}{2}f''(x)\kappa_2 + o(h^2).$$

Variance Evaluation

Theorem 17.2

• Assume that f(x) is continuous in \mathcal{N} . Then, as $h \to 0$ and $nh \to \infty$,

$$\operatorname{var}\left(\hat{f}(x)\right) = \frac{R_K f(x)}{nh} + o\left(\frac{1}{nh}\right)$$

where $R_K = \int K^2(u)du$ denotes the roughness of K(u).

• The variance of kernel density estimator can be estimated by the sample analogue of $\mathbb{E}\left[\{\hat{f}(x) - \mathbb{E}[\hat{f}(x)]\}^2\right]$, or by $\frac{\kappa\hat{f}(x)}{nh}$.

MSE Evaluation

• Combining Theorems 17.1 and 17.2, we obtain the following result:

Theorem 1.1 of Li and Racine (2007) [7

- ullet Supppose that f(x) is three-times differentiable.
- Assume that $K(\cdot)$ satisfies (3) and (4).
- As $n \to \infty$, $h \to 0$ and $nh \to \infty$,

$$MSE\left(\hat{f}(x)\right) = \frac{h^4}{4} \left[\kappa_2 f''(x)\right]^2 + \frac{\kappa f(x)}{nh} + o\left(h^4 + \frac{1}{nh}\right),$$

where $\kappa_2 = \int u^2 K(u) du$ and $\kappa = \int K^2(u) du$.

• This result implies that MSE $(\hat{f}(x)) \to 0$ and that $\hat{f}(x)$ is a consistent estimator of f(x).

Take Away

- バイアス,分散,MSE それぞれの漸近的な評価のために必要な仮定については,Li and Racine (2007, Chapter 1) [7] や西山・人見 (2023,第1章) [18] が詳しい.
- 漸近的な評価を導出するために必要な定理や補題については、Li and Racine (2007, Appendix A) [7], 清水 (2021, 第4章) [14], 西山・人見 (2023, 第1章) [18] や瀬戸・細川(2024, 第5章) [17] が詳しい。

IMSE, AIMSE

IMSE, AIMSE

 The integrated mean squared error (IMSE) is a useful measure of precision of a kernel density estimator:

$$\mathsf{IMSE} = \int_{-\infty}^{\infty} \mathsf{MSE} \left(\hat{f}(x) \right) dx = \int_{-\infty}^{\infty} \mathbb{E} \left[\{ \hat{f}(x) - f(x) \}^2 \right] dx$$

• Suppose that f''(x) is uniformly continuous. By similar arguments as we discuss MSE, it can be shown that as $n\to\infty$, $h\to0$, and $nh\to\infty$,

$$IMSE = \frac{1}{4}R(f'')h^4 + \frac{\kappa}{nh} + o\left(h^4 + \frac{1}{nh}\right),\tag{7}$$

where $R(f'') = \int \{f''(x)\}^2 dx$ denotes the roughness of f''(x).

• The leading term in (7) is called the asymptotic integrated mean squared error (AIMSE).

Optimal Bandwidth

- Bias-Variance Trade-Off: The first term of AIMSE is increasing in h, while the second term is decreasing in h.
- For a fixed second-order $K(\cdot)$, we can obtain AIMSE optimal bandwidth h_0 by solving the FOC: ⁶

$$h_0 = \left(\frac{R_K}{R(f'')}\right)^{\frac{1}{5}} n^{-\frac{1}{5}}.$$
 (8)

• In reality, AIMSE optimal h_0 depends on the second derivative of unknown f(x). Thus, researchers need to select a bandwidth h by certain procedures. ⁷

⁷See Sections 17.9-17.11 and 17.15 of Hansen (2022) [4] for further discussions on bandwidth selection.

 $^{^6{\}rm Explanations}$ on the estimation of R(f'') can be found in Hall and Marron (1987) [2] and Jones and Sheather (1991) [5] among others.

Optimal Kernel

Theorem 17.4

Letting h be the AIMSE optimal bandwidth h₀ given in
 (8), AIMSE is minimized by the Epanechnikov kernel:^a

$$K(u) = \frac{3}{4\sqrt{5}} \left(1 - \frac{u^2}{5}\right) 1(|u| \le \sqrt{5})$$

- ^aEpanechnikov (1969) [1]
- See Section 17.8 of Hansen (2022) [4] for the proof.
- Kanaya and Okamoto (2025) [6] suggest to use another kernel function for certain optimality.

References

References i

- Epanechnikov, V. A. (1969). "Non-parametric Estimation of a Multivariate Probability Density," *Theory of Probability and its Applications, 14,* 153-158.
- Hall, P. and J. S. Marron (1987). "Estimation of Integrated Squared Density Derivatives," *Statistics & Probability Letters*, 6, 109-115.
- Hansen, B. E. (2005). "Exact Mean Integrated Squared Error of Higher Order Kernel Estimators," *Econometric Theory, 21,* 1031-1057.
- Hansen, B. E. (2022). *Probability and Statistics for Economists*. Princeton.

References ii

- Jones, M. C. and S. J. Sheather (1991). "Using Non-Stochastic Terms to Advantage in Kernel-Based Estimation of Integrated Squared Density Derivatives," Statistics & Probability Letters, 11, 511-514.
- Kanaya, S. and Y. Okamoto (2025). "Optimal Kernels for Density and Derivative Estimation Revisited," Presented at Kansai Econometric Study Group, January 12, 2025, Kobe, Japan.
- Li, Q. and J. S. Racine (2007). *Nonparametric Econometrics:* Theory and Practice. Princeton.
- Pagan, A. and A. Ullah (1999). *Nonparametric Econometrics*. Cambridge.

References iii

- Parzen, E. (1962). "On the Estimation of a Probability Density Function and Mode," *Annals of Mathematical Statistics, 33,* 1065-1076.
- Rosenblatt, M. (1956). "Remarks on Some Nonparametric Estimates of a Density Function," *Annals of Mathematical Statistics*, *27*, 832-837.
- Scott, D. W. (1992). Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley.
- Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. Chapman and Hall.
- avan der Vaart, A. W. (2000). Asymptotic Statistics. Cambridge.

References iv

- 清水泰隆 (2021)『統計学への確率論,その先へ』内田老鶴圃.
- 清水泰隆 (2023)『統計学への漸近論, その先は』内田老鶴圃.
- 末石直也 (2015) 『計量経済学:ミクロデータ分析へのいざない』日本評論社.
- 瀬戸道生、細川卓也 (2024) 『関数解析入門のためのフーリエ変換・ラプラス変換・積分方程式・ルベーグ積分』内田老鶴圃.
- 画 西山慶彦, 人見光太郎 (2023) 『ノン・セミパラメトリック統計解析』共立出版.