Data Exploration

Numerical Data Analysis
Covariance / Correlation
Visualizing

Lesson Objectives 2019-03-12 Licensed for personal use only for Fernando K <fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ 2019-03-12

- Learn to do explorative data analysis
- Learn some Statistics for Data Science

Data Types

Numerical Data Analysis
Covariance / Correlation
Visualizing

Licensed for personal use only for Fernando K < fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ 2019-03-12

Туре	Description	Example
Continuous	Data can take any value within an interval Numeric, float, int	Exam score: 0 - 100
Discrete	Only integer values	Clicks per day
Categorical	Specific values from a set Enums, factors	Colors: Red, White, Blue States: AL, CA
Binary	Just two values, binary 0/1 or true/false	Transaction fraud or not
Ordinal	Categorical data, but with ordering	Grades: A, B, C, D
		A > B > C > D

Structured Data Licensed for personal use only for Fernando K < fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ 2019-03-12

DataFrame	Spreadsheet like data
Feature	Column in the table Attribute / input / predictor / variable
Outcome	Predicted. Dependent variable / response / target / output
Records	A row in the DataFrame

Statistics Primer

Numerical Data Analysis
Covariance / Correlation
Visualizing

Numerical Data Analysis

→ Numerical Data Analysis

Covariance / Correlation

Visualizing

Numerical Data Analysis

- Analyze the following salary data.
 [30k, 35k, 22k, 70k, 50k, 55k, 45k, 40k, 25k, 42k, 60k, 65k]
- Sorting the data
 [22k, 25k, 30k, 35k, 40k, 42k, 45k, 50k, 55k, 60k, 65k, 70k]

◆ Min : 22k

Max: 70k

→ Range of data: 22k to 70k

Mean

Mean	Sum (values) / total number of samples
Weighted Mean	Sum (values * weights) / total number of samples

• [30k, 35k, 22k, 70k, 50k, 55k, 45k, 40k, 25k, 42k, 60k, 65k]

Average / Mean

= Total sum of all salaries / (number of salaries)

$$= (30k + 35k + 22k + 70k + 50k + 55k + 45k + 40k + 25k + 42k + 60k + 65k) / 12$$

= 44.9k

Mean
$$= \overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$ar{x}=rac{x_1+x_2+\cdots+x_n}{n}$$

Weighted mean =
$$\overline{x}_w = \frac{\sum_{i=1}^n w_i x_i}{\sum_i^n w_i}$$

Outliers & Irimmed 2019-01-10-11

Outliers	Extreme values. These influence plain mean. e.g. When Bill Gates walks into a bar, everyone's net worth goes up by few 100s of millions! ©
Trimmed Mean	Take mean, after dropping a number of extreme values from the bottom and top.
Truncated Mean	10% Trimmed Mean drops 10% of largest and 10% of smallest values and calculates mean in remaining 80% of data
	Used in competition scoring, to avoid one judge influencing the outcome.
	Example : $[5, 6, 7, 8, 10]$ Mean = sum(5+6+7+8+10) / 5 = 7.2 Trimmed Mean = sum (6,7,8) / 3 = 7

Outliers / Trimmed of earning at Dell Brazil (QE) @ Court | Co

- Consider this annual income data:
 [5k, 40k, 42k, 45k, 50k, 55k, 60k, 65k, 70k, 400k]
- Mean income, considering all data
 = (5 + 40 + 42 + 45 + 50 + 55 + 60 + 65 + 70 + 400) / 10
 = 83.2
- 10% trimmed mean
 - → drop lowest 10% (5k)
 - → drop highest 10% (400k)
 - = (40 + 42 + 45 + 50 + 55 + 60 + 65 + 70) / 8
 - = 53.4
- As you can see, trimmed mean helps us deal with outliers

Median (# Mean!) Licensed for personal use only for Fernando K < fernando K vise@dell.com> from Machine Learning at Dell Brazil (QE) @ 2019-03-12

- Median is the middle/center point of sorted data
- Example, find median of
 [50k, 55k, 40k, 42k, 45k, 65k, 70k, 75k, 60k]
- First sort the data
 [40k, 42k, 45k, 50k, 55k, 60k, 65k, 70k, 75k]
- Find middle point:
 [40k, 42k, 45k, 50k, 55k, 60k, 65k, 70k, 75k]
- If there are even number of records:
 [40k, 42k, 45k, 50k, 55k, 60k, 65k, 70k, 75k, 80k]
- ◆ Median is average of both middle numbers : (55k + 60k)/2 = 57.5k

Median, Mean and Cuttlers Median, Mean and Cuttlers

- Consider this dataset
 [40k, 42k, 45k, 50k, 55k, 60k, 65k, 70k]
- Mean = 53.4 = (40 + 42 + 45 + 50 + 55 + 60 + 65 + 70) / 8
 Median = 52.5 = (50 + 55) / 2

__ median

• [40k, 42k, 45k, 50k, 55k, 60k, 65k, 70k]

Median, Mean and Countiers Median, Mean and Countiers

- Now introduce an outlier (400k)
 [40k, 42k, 45k, 50k, 55k, 60k, 65k, 70k, 400k]
- Mean = 91.89 = (40 + 42 + 45 + 50 + 55 + 60 + 65 + 70 + 400) / 9
 Median = 55

 median
- ◆ [40k, 42k, 45k, 50k, 55k, 60k, 65k, 70k, 400k] **mean**
- Median is influenced less by outliers.
- Example: "Median house price in San Jose is 1M" (usually median is used, not mean/average)

Mean: Sample Code 19-03-12R) Meaning at Dell Brazil (QE) @

Mean: Sample Code 19-08-12 Python) Mean: Sample Code 19-08-12 Python

```
import numpy as np
import pandas as pd
from scipy import stats
a = np.array([5,40,42,45,50,55,60,65,70,400])
#[ 5 40 42 45 50 55 60 65 70 400]
np.mean(a)
# 83.2
stats.trim_mean(a,0.1)) # 10%
# 53.375
np.median(a)
# 52.5
```

Variability / Dispersonal use only for Fernando K < fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ Dispersonal Use Only for Fernando K < fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ Dispersonal Use Only for Fernando K < fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ Dispersonal Use Only for Fernando K < fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ Dispersonal Use Only for Fernando K < fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ Dispersonal Use Only for Fernando K < fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ Dispersonal Use Only for Fernando K < fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ Dispersonal Use Only for Fernando K < fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ Dispersonal Use Only for Fernando K < fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ Dispersonal Use Only for Fernando K < fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ Dispersonal Use Only for Fernando K < f

Consider sample annual incomes from two cities.

```
City1 = [ 30k, 32k, 35k, 40k, 45k, 48k, 50k ]
City2 = [ 10k, 15k, 20k, 40k, 60k, 65k, 70k ]
```

- Mean for both datasets is 40k
- But it doesn't tell the whole story
- City2 data is more widely 'dispersed' than City1

Licensed for personal use only for Fernando K <fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @

Measuring Variability 3-12 Dispersion Measuring Variability 3-12 Dispersion

Term	Description	Also known as
Range	Largest Value – Smallest Value	spread
Deviations	Difference between estimated value and actual value.	Residuals , errors
Variance	Sum(squared deviations from mean) / N N = number of samples	Mean-squared-error, MSE, S ²
Standard deviation	Square root of variance. (most used measurement of dispersion)	I2-norm, Euclidean norm
Percentile	The value such that P percent of the values take on this value or less and (100–P) percent take on this value or more.	quantile
Interquartile range	The difference between the 75th percentile and the 25th percentile.	IQR

Variance - s², o², when the control of the cont

- Measures how far apart the data is spread out from their mean
- Symbols: S^2 , σ^2 , var(x)
- Method:
 - Find differences from X_i and mean (µ)
 - Square it
 - Add them all up
 - Divide by number of observations (N)

$$\operatorname{Var}(X) = rac{1}{n} \sum_{i=1}^n (x_i - \mu)^2,$$

- Properties
 - Variance is positive or zero (since we are squaring the diff)
 - If Variance of a dataset is zero, they all have the same value

Standard Deviation (1950): \(\sigma \)

- SD is the most used measure of dispersion
- Measures how closely data values are clustered around mean
- Lower SD means values are closely clustered around mean
- Higher SD indicates larger dispersion

Variance =
$$s^2 = \frac{\sum (x - \overline{x})^2}{n - 1}$$

Standard deviation = $s = \sqrt{\text{Variance}}$

Standard Deviation 2019-19 Sample Code (R)

```
city1 = c(30,32,35,40,45,48,50)
city2 = c(10, 15, 20, 40, 60, 65, 70)
mean(city1)
40
mean(city2)
40
var(city1)
63
var(city2)
641.6667
sd(city1)
7.937254
sd(city2)
25.33114
```

Standard Deviation 21-9 Sample Code (Python)

```
import numpy as np
import pandas as pd
from scipy import stats
city1 = np.array([30,32,35,40,45,48,50])
city2 = np.array([10,15,20,40,60,65,70])
### Mean
np.mean(city1) # 40.0
np.mean(city2) # 40.0
### variance
np.var(city1) # 54.0
np.var(city2) # 550.0 <- much larger than var(city1)
### Standard Deviation
np.std(city1) # 7.34846922835
np.std(city2) # 23.4520787991 <-- larger than sd(city1)
```

- Quartiles are summary measures that divide the ranked (sorted) data into four equal parts
- ◆ First quartile @ 25% mark = Q1 = 25th percentile
- Second quartile @ 50% mark = Q2 = 50th percentile
 − Equals to median'
- ◆ Third quartile @ 75% mark = Q3 = 75th percentile
- IQR = distance between Q3 and Q1

Quarties Licensed for personal use only for Fernando K < fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ 2019-03-12

Income data (sorted):
 [22k, 25k, 30k, 35k, 40k, 42k, 45k, 50k, 55k, 60k, 65k, 70k]

Approximately 25% of data is below Q1
 75% is more than Q1

Quartiles: Sample Coale (R)

```
a = c (5,40,42,45,50,55,60,65,70,400)
summary(a)
  Min. 1st Ou. Median Mean 3rd Qu. Max.
   5.00 42.75 52.50 83.20 63.75 400.00
quantile(a)
  0% 25% 50% 75% 100%
  5.00 42.75 52.50 63.75 400.00
quantile(a)["25%"]
2.5%
42.75
IQR(a)
21
```

Quartiles: Sample Code (Python)

```
import numpy as np

a = np.array([5,40,42,45,50,55,60,65,70,400])

# 20 pc
print (np.percentile(a, 20))
# 41.6

# q1, q2, q3
print (np.percentile(a, [25, 50, 75]))
# [ 42.75 52.5 63.75]
```

- Percentiles are summary measures that divide the ranked (sorted) data into 100 equal parts
- ♦ k% of values < P_k < (100-k) % of values</p>
- ◆ 95th percentile: P₉₅
 - 95% of data below this point
 - 5% of data above this point

Calculating Percent Los Example Example

- Income data (sorted):[22k, 25k, 30k, 35k, 40k, 42k, 45k, 50k, 55k, 60k, 65k, 70k]
- Finding k percentile point = k * N / 100
 N = number of data points = 12
- ◆ Find 30th percentile point:
 - = 30 * 12 / 100 = 3.6th item = 4th item (approx)
 - = 35k
 - = 30% of data is below 35k
- Finding percentile rank k
 = number of values less than X_k * 100 / N
 (N number of items)
- What is the percentile rank of income 52k
 - = number of items less than 52k / 12 * 100
 - = 8/12 * 100
 - = 66.67%

Percentiles: Sample 19 of Percentiles: Sample 19 of Percentiles: Sample 19 of Percentiles | Sample 19

```
income = c(22, 25, 30, 35, 40, 42, 45, 50, 55, 60, 65, 70)

# find 30<sup>th</sup> percentile
quantile(income, c(0.3))
36.5
# 36.5k is the 30<sup>th</sup> percentile

# what percentile is income 52k
ecdf(income) (52)
0.6666667
# 52k is at 66.67%
```

Percentiles Sample & de (Python)

```
import numpy as np

a = np.array([5,40,42,45,50,55,60,65,70,400])

# 20 pc
print (np.percentile(a, 20))
# 41.6

# q1, q2, q3
print (np.percentile(a, [25, 50, 75]))
# [ 42.75 52.5 63.75]
```

Relationship Between Two Variables

Covariance

Numerical Data Analysis

→ Covariance / Correlation

Visualizing

- Variance, and Standard Deviation measures the data dispersion in a SINGLE variable
- How can we tell if two variables X & Y are related
- Here we see positive trend between Netflix stock price and Google stock pricing.
 - When one goes up, other one goes up too

Formula to find the mean for X

$$\mu_{x} = \frac{\sum_{i=1}^{n} x_{i}}{n}$$

Formula to find the mean for Y

$$\mu_y = \frac{\sum_{i=1}^n y_i}{n}$$

Formula to find covariance of X & Y

$$cov(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \mu_x) (y_i - \mu_y)}{(n-1)}$$

Covariance Example 2019-03-12

x	у	$(x_i - \overline{x})$	$(y_i - \overline{y})$	$(x_i - \overline{x})(y_i - \overline{y})$
12	20	-9.3	-21.2	197.16
30	60	8.7	18.8	163.56
15	27	-6.3	-14.2	89.46
24	50	2.7	8.8	23.76
14	21	-7.3	-20.2	147.46
18	30	-3.3	-11.2	36.96
28	61	6.7	19.8	132.66
26	54	4.7	12.8	60.16
19	32	-2.3	-9.2	21.16
27	57	5.7	15.8	90.06
$\dot{x} = 21.3$	$\bar{y} = 41.2$			$\Sigma = 962.4$

Covariance Example 2019-03-12

x	у	$(x_i - \overline{x})(y_i - \overline{y})$	
12	20	197.16	
30	60	163.56	
15	27	89.46	Cov(x,y) =
24	50	23.76	
14	21	147.46	
18	30	36.96	
28	61	132.66	
26	54	60.16	
19	32	21.16	Cov(x)
27	57	90.06	
$\dot{x} = 21.3$	$\bar{y} = 41.2$	$\Sigma = 962.4$	

Covariance Summar 12 July 13-12 Covariance Summar 2014 July 13-12

- We only care about the positive / negative / zero of covariance
 - Positive means, both variables move in the same direction
 - Negative → they move in opposite direction
 - Zero → no relation

- We don't care about the actual number (could be 2.3 or 2300) of covariance
 - It does NOT indicate the strength of the relationship
 - It has no upper / lower bound it is not standardized
 - That is done by Correlation (later)

Correlation

Numerical Data Analysis

→ Covariance / Correlation

Visualizing

Correlation / Pearson Correlation Coefficient (r)

- Measures strength and direction of linear relationship between two variables
- Also known as Pearson Correlation Coefficient (in honor of its developer Karl Pearson)
- Values between -1 and +1 (standardized) $(-1 \le r \le +1)$
- If X & Y are positively related, r will be close +1
 - When X goes up Y goes up too
 - E.g. When 'years of experience' goes up 'salary' goes up too
- If X & Y are negatively related, r will be close to -1
 - When X goes up Y goes down
 - E.g. ??? (quiz for class)
- If no correlation between X & Y , then r will be close to 0

Correlation Coefficies 12 Page 12 Correlation Coefficies 29 13 12 Correlation Coefficies 29 13 12 Correlation Coefficies 29 13 12 Coefficies 29 13

- Perfect correlation occurs when
 - r = -1 (negative)
 - r = +1 (positive)
 - This is when the data points all lie in straight line (regression line!)
- A correlation |r| >= 0.8 is considered strong
- ◆ A correlation |r| < 0.5 is considered weak.

Covariance vs. Correlation Machine Learning at Dell Brazil (QE) @

Covariance	Correlation
Measures linear relationship between two variables	(ditto)
Provides the DIRECTION (positive / negative / zero) of the linear relationship between 2 variables	Provides DIRECTION and STRENGH
No upper / lower bound. Not standardized	Between -1 and +1 standardized

Correlation Patterns⁴19-03-12 Correlation Patterns⁴19-03-12

Correlation Formula 2019-03-12

Covariance (x,y)

Standard Deviation (x) * Standard deviation (y)

$$\rho_{X,Y} = corr(X,Y) = \frac{cov(X,Y)}{\sigma_X \sigma_Y}$$

$$r = \frac{1}{(n-1)} \sum_{X} \frac{(X - \mu_X)(Y - \mu_Y)}{\sigma_X \sigma_Y}$$

Correlation Summal 2013-03-12 Correlation Summal 2013-03-12

- Correlation is NOT Causation
- Two independent variables can have mathematical correlation, but have NO sensible connection / correlation in real life
- E.g: Number of cars sold vs number of pets adopted

Correlation Code (214-03-12

```
bill = c(50,30,60,40,65,20,10,15,25,35)
tip = c(12,7,13,8,15,5,2,2,3,4)
```

cor(bill, tip) # [1] 0.9522154

strong correlation!

Correlation Code (2019 of thon) Correlation Code (2019 of thon)

```
import numpy as np
import pandas as pd
bills = np.array([50,30,60,40,65,20,10,15,25,35])
tips= np.array([12,7,13,8,15,5,2,2,3,4])
# correlation
print(np.corrcoef(bills,tips))
# array([[ 1. , 0.95221535],
# [0.95221535, 1. ]])
```

Covariance Matrix

Numerical Data Analysis

→ Covariance / Correlation

Visualizing

Covariance Matrix 2019-03-12

- Covariance measures how two variables behave
- When we have more than two variables we create a covariance matrix
- The diagonal is simply Variance of that variable cov(x1,x1) = variance(x1) ☺
- The matrix is symmetric, cov(x1,x2) = cov(x2,x1)

	x1	x2	х3	x4
x1	Var(x1)	Cov(x1,x2)	Cov(x1,x3)	Cov(x1,x4)
x2	Cov(x2,x1)	Var(x2)	Cov(x2,x3)	Cov(x2,x4)
x3	Cov(x3,x1)	Cov(x3,x2)	Var(x3)	Cov(x3,x4)
x4	Cov(x4,x1)	Cov(x4,x2)	Cov(x4,x3)	Var(x4)

Covariance Matrix @ode (R)

```
a \leftarrow c(1,2,3,4,5,6)
b \leftarrow c(2,3,5,6,1,9)
c <- c(3,5,5,5,10,8)
d < c(10,20,30,40,50,55)
e \leftarrow c(7,8,9,4,6,10)
m <- cbind(a,b,c,d,e)
m
cor_matrix = cor(m)
cor_matrix
```

_	a [‡]	b	c [‡]	d	e [‡]
1	1	2	3	10	7
2	2	3	5	20	8
3	3	5	5	30	9
4	4	6	5	40	4
5	5	1	10	50	6
6	6	9	8	55	10

cor_matrix

 Which of the variables are strongly correlated?

^	a [‡]	b	c \$	d	e [‡]
a	1.00000000	0.54470478	0.84515425	0.99607842	0.09897433
b	0.54470478	1.00000000	0.05370862	0.49341288	0.38786539
c	0.84515425	0.05370862	1.00000000	0.86126699	0.07319251
d	0.99607842	0.49341288	0.86126699	1.00000000	0.03538992
e	0.09897433	0.38786539	0.07319251	0.03538992	1.00000000

Covariance Matrix & de (Python)

```
import numpy as np

a = np.array([1,2,3,4,5,6])
b = np.array([2,3,5,6,1,9])
c = np.array([3,5,5,5,10,8])
d = np.array([10,20,30,40,50,55])
e = np.array([7,8,9,4,6,10])

m = np.vstack([a,b,c,d,e])
print(m)
```

```
# output : m
[[ 1  2  3  4  5  6]
  [ 2  3  5  6  1  9]
  [ 3  5  5  5  10  8]
  [10  20  30  40  50  55]
  [ 7  8  9  4  6  10]]
```

- Which of the variables are strongly correlated?

```
# output : correlation matrix
      a
           0.54470478 0.84515425
                                      0.99607842
                                                  0.098974331
                                      0.49341288
  [ 0.54470478
                           0.05370862
                                                  0.387865391
               0.05370862
  0.84515425
                                      0.86126699
                                                  0.073192511
  [ 0.99607842
               0.49341288
                           0.86126699
                                                  0.035389921
                                      0.03538992
  [ 0.09897433
               0.38786539
                           0.07319251
```

Covariance Matrix Applications Licensed for personal use only for Fernando K < fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ Discations

- Financial economics
 - Figure our relationships with different stocks
- Principal Component Analysis (PCA)
 This will be covered in PCA section

Data Analytics With 2019-03-12 / Python

- Ends here
- Jump off to 'data-analytics-R/slides/Analytics.pptx'

Lab Preparation for 2019-93- achine Learning at Deli Brazil (QE) @ Class

Please follow instructions in **0-Labs-Prep.pptx**

Overview:

Get familiar with Numpy and Pandas

Approximate time:

10 mins

Instructions:

-2.1 : Numpy

-2.2 : Pandas

Optional Lab 3.1: Steel at Istics

Overview:

Learn basic statistics functions

Approximate time:

10 mins

- Instructions:
 - -3.1 Basics/stats
 - Follow appropriate instructions for R / Python / Spark

Visualizing Data

Numerical Data Analysis
Covariance / Correlation

→ Visualizing

Visualizing Data 2019-03-12

Method	Description
Boxplot	A quick way to visualize the data
Frequency table	Count number of data points that fall into intervals (bins)
Histogram	Plot of frequency table
Density plot	Smoothed version of histogram (Kernel Density Estimate)

Boxplot / Box-and-Vot-nisker Plot

- Boxplot displays 5 measures : min, Q1, Q2 (median), Q3, max
- Smallest / Largest values are measured within upper/lower fences
- Fences are 1.5 times IQR
- Income data (sorted):
 [22k, 25k, 30k, 35k, 40k, 42k, 45k, 50k, 55k, 60k, 65k, 70k]

BoxPlot: Sample Coult-06-12 (R) Licensed for personal use only for Fernando K sfernando kruse @dell.com from Machine Learning at Dell Brazil (QE) @

```
income = c(22, 25, 30, 35, 40, 42, 45, 50, 55, 60, 65, 70)
bp = boxplot(income)
bp
$stats
  [,1]
[1,] 22.0
[2,] 32.5
[3,1 43.5
[4,] 57.5
[5,170.0]
$n
```

BoxPlot: Sample Code (Python)

```
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
salaries = np.array([22, 25, 30, 35, 40, 42, 45, 50, 55,
60, 65, 701)
plt.boxplot(salaries)
```


Licensed for personal use only for Fernando K <fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @

Histogram counts data points per bin

income = c(22, 25, 30, 35, 40, 42, 45, 50, 55, 60, 65, 70)hist(income)

Histogram counts data points per bin

```
%matplotlib inline
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
salaries = np.array([22, 25, 30, 35, 40, 42, 45, 50, 55, 60,
65, 701)
plt.hist(salaries, rwidth=0.7)
                                             1.75
                                             1.50
                                             1.25
                                             1.00
                                             0.75
                                             0.50
                                             0.25
                                             0.00
                     Licensed for personal use only for Fernando K <fernando_kruse@dell.com> from Machine Learning at Dell Blazil (QE) @
```

Scatter Plot (Pythor 1903-12) Scatte

Histogram counts data points per bin

```
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
bills = np.array([50,30,60,40,65,20,10,15,25,35])
tips= np.array([12,7,13,8,15,5,2,2,3,4])
plt.xlabel("bill amount")
                             14
plt.ylabel("tip")
plt.scatter(bills, tips)
                             12
                             10
                             6
                             4
                                                  50
                                                       60
                                    20
```


- Overview: Learn basic plot functions
- Builds on previous labs:
- Approximate time:10 mins
- Instructions:
 - 3.2 : basic/visualizing
 - Follow appropriate instructions for R / Python / Spark

Lab 3.3: Data Clean 419-602

Overview:

Cleaning up data, getting it ready for analytics

Approximate Time:

 $10 - 15 \, \text{mins}$

Instructions:

- '3.3 exploration/data-cleanup' lab for Python / R / Spark

◆ To Instructor:

Demo this lab on screen first, and explain the results

- Option 1 : STOP here, if continuing onto 'ML-Concepts'
- Option 2 : continue to next 2 labs, if this is standalone module

[Optional] Lab 3.4: Exploring Dataset

- Instructor, If covering ML-Concepts, do this at the end of Part-1 ML-Concepts
- Overview: Explore a dataset
- ◆ Approximate Time: 10 – 15 mins
- Instructions:
 - 3.4: 'exploration/explore-house-sales' lab for Python / R / Spark
- To Instructor:
 Demo this lab on screen first, and explain the results

BONUS Lab 3.5: Graphing And Visualizing Lab

Overview:

Visualize house-sales dataset

Approximate Time:

 $10 - 15 \, \text{mins}$

Instructions:

- 3.5: 'exploration/visualize-house-sales' lab for Python / R / Spark

To Instructor:

Demo this lab on screen first, and explain the results

Further Reading Licensed for personal use only for Fernando K < fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ 2019-03-12

- "Practical Statistics for Data Scientists" O'Reilly books
- http://www.cabrillo.edu/~evenable/ch03.pdf
- Fantastic YouTube video series on Statistics by Brandon Foltz
 - Covariance : https://www.youtube.com/watch?v=xGbpuFNR1ME
 - Correlation : https://www.youtube.com/watch?v=4EXNedimDMs
 - Covariance Matrix : https://www.youtube.com/watch?v=locZabK4Als