Survival Analysis of Mortality of Adjuvant Chemotherapy for Colon Cancer

Yijia Jiang, Ziyan Xu

2022-12-04

1. Data Tidy

Recall that there are two records for each patient indicated by the event type (etype) variable, where etype == 1 refers to the event of a recurrence and etype == 2 indicates death. In order to answer our first research question, which is to study the time until death, we must create a marginal model by subsetting the colon data to only include the event of mortality.

2. Kaplan-Meier Survival Estimate

```
death.fit <- survfit(Surv(time, status) ~ rx, data = colon.death)</pre>
options(max.print = 10000)
print(summary(death.fit))
## Call: survfit(formula = Surv(time, status) ~ rx, data = colon.death)
##
##
                    rx=0bs
##
    time n.risk n.event survival std.err lower 95% CI upper 95% CI
##
     113
            305
                       1
                             0.997 0.00327
                                                   0.990
                                                                 1.000
            304
##
     125
                       1
                             0.993 0.00462
                                                   0.984
                                                                 1.000
##
     145
            303
                             0.990 0.00565
                                                   0.979
                                                                 1.000
                       1
##
     164
            302
                       1
                             0.987 0.00651
                                                   0.974
                                                                 1.000
##
     166
            301
                             0.984 0.00727
                                                   0.969
                                                                 0.998
##
     187
            300
                       1
                             0.980 0.00795
                                                   0.965
                                                                 0.996
##
     208
            299
                             0.977 0.00857
                                                   0.960
                                                                 0.994
            298
                             0.974 0.00915
                                                   0.956
                                                                 0.992
##
     215
                       1
```

##	218	297	1	0.970 0.00969	0.952	0.990
##	238	296	1	0.967 0.01020	0.947	0.987
##	241	295	1	0.964 0.01068	0.943	0.985
##	242	294	1	0.961 0.01113	0.939	0.983
##	253	293	1	0.957 0.01157	0.935	0.980
##	259	292	2	0.951 0.01238	0.927	0.975
##	264	290	1	0.948 0.01277	0.923	0.973
##	275	289	1	0.944 0.01314	0.919	0.970
##	289	288	1	0.941 0.01349	0.915	0.968
##	311	287	1	0.938 0.01384	0.911	0.965
##	313	286	1	0.934 0.01417	0.907	0.963
##	322	285	1	0.931 0.01450	0.903	0.960
##	331	284	1	0.928 0.01481	0.899	0.957
##	365	283	1	0.925 0.01512	0.895	0.955
##	372	282	1	0.921 0.01542	0.892	0.952
##	381	281	1	0.918 0.01571	0.888	0.949
##	384	280	2	0.911 0.01627	0.880	0.944
##	390	278	1	0.908 0.01653	0.876	0.941
##	409	277	1	0.905 0.01680	0.873	0.938
##	411	276	1	0.902 0.01705	0.869	0.936
##	413	275	2	0.895 0.01755	0.861	0.930
##	417	273	1	0.892 0.01779	0.858	0.927
##	421	272	1	0.889 0.01802	0.854	0.925
##	433	271	1	0.885 0.01825	0.850	0.922
##	437	270	1	0.882 0.01847	0.846	0.919
##	438	269	1	0.879 0.01869	0.843	0.916
##	459	267	1	0.875 0.01891	0.839	0.913
##	462	266	1	0.872 0.01913	0.835	0.910
##	464	265	1	0.869 0.01933	0.832	0.908
##	465	264	2	0.862 0.01974	0.824	0.902
##	474	262	1	0.859 0.01994	0.821	0.899
##	485	261	1	0.856 0.02013	0.817	0.896
##	499	260	1	0.852 0.02032	0.813	0.893
##	506	259	1	0.849 0.02051	0.810	0.890
##	510	258	1	0.846 0.02069	0.806	0.887
##	537	257	1	0.842 0.02087	0.803	0.884
##	563	256	2	0.836 0.02122	0.795	0.879
##	570	254	1	0.833 0.02139	0.792	0.876
##	576	253	1	0.829 0.02156	0.788	0.873
##	587	252	1	0.826 0.02172	0.785	0.870
##	591	251	1	0.823 0.02188	0.781	0.867
##	594	250	1	0.819 0.02204	0.777	0.864
##	595	249	1	0.816 0.02220	0.774	0.861
##	599	248	1	0.813 0.02235	0.770	0.858
##	612	247	1	0.810 0.02250	0.767	0.855
##	622	246	1	0.806 0.02265	0.763	0.852
##	659	245	1	0.803 0.02279	0.760	0.849
##	663	244	1	0.800 0.02294	0.756	0.846
##	665	243	1	0.796 0.02308	0.752	0.843
##	670	242	1	0.793 0.02321	0.749	0.840
##	673	241	1	0.790 0.02335	0.745	0.837
##	685	240	1	0.787 0.02348	0.742	0.834
##	687	239	1	0.783 0.02361	0.738	0.831
##	692	238	1	0.780 0.02374	0.735	0.828

##	709	237	1	0.777	0.02387	0.731	0.825
##	716	236	1	0.773	0.02400	0.728	0.822
##	717	235	1	0.770	0.02412	0.724	0.819
##	718	234	1	0.767	0.02424	0.721	0.816
##	721	233	1	0.764	0.02436	0.717	0.813
##	743	232	1	0.760	0.02447	0.714	0.810
##	753	231	1	0.757	0.02459	0.710	0.807
##	758	230	1	0.754	0.02470	0.707	0.804
##	760	229	1	0.750	0.02481	0.703	0.801
##	761	228	1	0.747	0.02492	0.700	0.798
##	770	227	1	0.744	0.02503	0.696	0.794
##	774	226	1	0.740	0.02513	0.693	0.791
##	775	225	1	0.737	0.02523	0.689	0.788
##	832	224	1	0.734	0.02533	0.686	0.785
##	833	223	1	0.731	0.02543	0.682	0.782
##	840	222	1	0.727	0.02553	0.679	0.779
##	845	221	1	0.724	0.02563	0.675	0.776
##	854	220	1	0.721	0.02572	0.672	0.773
##	863	219	1	0.717	0.02581	0.669	0.770
##	874	218	1	0.714	0.02590	0.665	0.767
##	883	217	1	0.711	0.02599	0.662	0.764
##	887	216	1	0.708	0.02608	0.658	0.761
##	901	215	1	0.704	0.02616	0.655	0.757
##	924	214	1	0.701	0.02625	0.651	0.754
##	928	213	1	0.698	0.02633	0.648	0.751
##	929	212	1	0.694	0.02641	0.645	0.748
##	936	211	1	0.691	0.02649	0.641	0.745
##	949	210	1	0.688	0.02657	0.638	0.742
##	957	209	1	0.685	0.02664	0.634	0.739
##	961	208	1	0.681	0.02672	0.631	0.736
##	963	207	1	0.678	0.02679	0.627	0.733
##	966	206	1	0.675	0.02686	0.624	0.729
##	976	205	1	0.671	0.02693	0.621	0.726
##	1021	204	1	0.668	0.02700	0.617	0.723
##	1031	203	1	0.665	0.02707	0.614	0.720
##	1048	202	1	0.661	0.02713	0.610	0.717
##	1070	201	1		0.02720	0.607	0.714
##	1079	200	1	0.655	0.02726	0.604	0.711
##	1083	199	1		0.02732	0.600	0.707
##	1101	198	1		0.02738	0.597	0.704
##	1133	197	1		0.02744	0.593	0.701
##	1134	196	1	0.642	0.02749	0.590	0.698
##	1136	195	1		0.02755	0.587	0.695
##	1139	194	1		0.02760	0.583	0.692
##	1159	193	1		0.02766	0.580	0.688
##	1166	192	1		0.02771	0.577	0.685
##	1178	191	1		0.02776	0.573	0.682
##	1195	190	1		0.02780	0.570	0.679
##	1198	189	1		0.02785	0.566	0.676
##	1209	188	1		0.02790	0.563	0.673
##	1216	187	1		0.02794	0.560	0.669
##	1230	186	1		0.02798	0.556	0.666
##	1237	185	1		0.02803	0.553	0.663
##	1246	184	1	0.602	0.02807	0.550	0.660

##	1262	183	1	0.599	0.02811		0.546		0.657
##	1272	182	1	0.596	0.02814		0.543		0.653
##	1290	181	1	0.592	0.02818		0.540		0.650
##	1295	180	1	0.589	0.02821		0.536		0.647
##	1304	179	1	0.586	0.02825		0.533		0.644
##	1313	178	1	0.583	0.02828		0.530		0.641
##	1314	177	1	0.579	0.02831		0.526		0.637
##	1327	176	1	0.576	0.02834		0.523		0.634
##	1363	175	1	0.573	0.02837		0.520		0.631
##	1375	174	1	0.569	0.02840		0.516		0.628
##	1434	173	1	0.566	0.02842		0.513		0.625
##	1437	172	1	0.563	0.02845		0.510		0.621
##	1447	171	1	0.559	0.02847		0.506		0.618
##	1482	170	1	0.556	0.02849		0.503		0.615
##	1530	169	1	0.553	0.02851		0.500		0.612
##	1548	168	1		0.02853		0.496		0.608
##	1656	167	1		0.02855		0.493		0.605
##	1679	166	1	0.543	0.02857		0.490		0.602
##	1692	165	1	0.540	0.02858		0.487		0.599
##	1723	164	1	0.536	0.02860		0.483		0.596
##	1745	163	1		0.02861		0.480		0.592
##	1772	162	1		0.02862		0.477		0.589
##	1788	161	1	0.527	0.02863		0.473		0.586
##	1790	160	1		0.02864		0.470		0.583
##	1818	157	1		0.02866		0.467		0.579
##	1875	150	1	0.516	0.02867		0.463		0.576
##	1896	148	1		0.02869		0.460		0.572
##	1907	145	1		0.02871		0.456		0.569
##	1915	144	1		0.02873		0.453		0.565
##	1950	141	1		0.02875		0.449		0.562
##	2077	131	1		0.02878		0.445		0.558
##	2083	130	1		0.02882		0.441		0.554
##	2085	129	1		0.02885		0.437		0.551
##	2133	117	1		0.02890		0.433		0.547
##	2171	105	1		0.02900		0.428		0.542
##	2213	92	1		0.02915		0.423		0.537
##	2257	81	1		0.02938		0.417		0.532
##	2284	76	1		0.02964		0.410		0.527
##	2287	75	1		0.02988		0.403		0.521
##	2351	66	1		0.03023		0.396		0.515
##	2527	47	1		0.03107		0.385		0.507
##	2552	42	1		0.03207		0.373		0.499
##	2789	16	1	0.404	0.03981		0.333		0.490
##			T						
##		1	rx=L			1	0E% CT		0E% GT
##				survival		Tower		upper	
##	24 56	294	1		0.00340		0.990		1.000
##	56	293	1 1		0.00479		0.984		1.000
##	93	292	1		0.00586		0.978		1.000
## ##	122 129	291 290	1		0.00676 0.00754		0.973 0.968		1.000
##	133	289	1		0.00754		0.968		0.998
##	150	288	1		0.00825		0.959		0.996
##	165	287	1		0.00009		0.959		0.994
π#	100	201	1	0.813	0.00343		0.304		0.332

##	171	286	2	0.966 0.01057	0.945	0.987
##	191	284	1	0.963 0.01107	0.941	0.985
##	206	283	1	0.959 0.01154	0.937	0.982
##	219	282	2	0.952 0.01242	0.928	0.977
##	222	280	1	0.949 0.01283	0.924	0.974
##	226	279	1	0.946 0.01323	0.920	0.972
##	232	278	1	0.942 0.01361	0.916	0.969
##	257	277	1	0.939 0.01398	0.912	0.967
##	283	276	1	0.935 0.01434	0.908	0.964
##	314	275	2	0.929 0.01502	0.900	0.958
##	316	273	1	0.925 0.01535	0.896	0.956
##	323	272	1	0.922 0.01566	0.892	0.953
##	342	271	1	0.918 0.01597	0.888	0.950
##	343	270	1	0.915 0.01627	0.884	0.947
##	349	269	1	0.912 0.01656	0.880	0.945
##	355	268	1	0.908 0.01684	0.876	0.942
##	356	267	1	0.905 0.01712	0.872	0.939
##	362	266	1	0.901 0.01739	0.868	0.936
##	366	265	1	0.898 0.01765	0.864	0.933
##	376	264	1	0.895 0.01791	0.860	0.930
##	382	263	1	0.891 0.01816	0.856	0.927
##	402	262	1	0.888 0.01841	0.852	0.925
##	406	261	1	0.884 0.01865	0.849	0.922
##	420	260	1	0.881 0.01889	0.845	0.919
##	422	259	1	0.878 0.01912	0.841	0.916
##	430	258	1	0.874 0.01934	0.837	0.913
##	438	257	1	0.871 0.01957	0.833	0.910
##	439	256	1	0.867 0.01978	0.829	0.907
##	443	255	1	0.864 0.02000	0.826	0.904
##	472	254	1	0.861 0.02020	0.822	0.901
##	475	253	1	0.857 0.02041	0.818	0.898
##	486	252	1	0.854 0.02061	0.814	0.895
##	499	251	1	0.850 0.02081	0.811	0.892
##	512	250	1	0.847 0.02100	0.807	0.889
##	522	249	1	0.844 0.02119	0.803	0.886
##	546	248	1	0.840 0.02137	0.799	0.883
##	553	247	1	0.837 0.02156	0.796	0.880
##	559	246	1	0.833 0.02174	0.792	0.877
##	573	245	1	0.830 0.02191	0.788	0.874
##	580	244	1	0.827 0.02208	0.784	0.871
##	582	243	1	0.823 0.02225	0.781	0.868
##	589	242	1	0.820 0.02242	0.777	0.865
##	602	241	1	0.816 0.02258	0.773	0.862
##	608	240	1	0.813 0.02274	0.770	0.859
##	628	239	1	0.810 0.02290	0.766	0.856
##	629	238	1	0.806 0.02306	0.762	0.853
##	642	237	1	0.803 0.02321	0.758	0.850
##	643	236	1	0.799 0.02336	0.755	0.846
##	647	235	1	0.796 0.02351	0.751	0.843
##	664	234	1	0.793 0.02365	0.747	0.840
##	669	233	1	0.789 0.02379	0.744	0.837
##	675	232	1	0.786 0.02393	0.740	0.834
##	678	231	1	0.782 0.02407	0.737	0.831
##	684	230	1	0.779 0.02420	0.733	0.828

##	706	229	1	0.776	0.02433	0.729	0.825
##	708	228	1		0.02446	0.726	0.822
##	709	227	1	0.769	0.02459	0.722	0.818
##	720	226	1	0.765	0.02472	0.718	0.815
##	723	225	1		0.02484	0.715	0.812
##	729	224	1		0.02496	0.711	0.809
##	730	223	1		0.02508	0.708	0.806
##	739	222	1		0.02520	0.704	0.803
##	743	221	1		0.02531	0.700	0.800
##	755	220	1		0.02542	0.697	0.796
##	759	219	2		0.02564	0.690	0.790
##	764	217	1		0.02575	0.686	0.787
##	766	216	1	0.731	0.02585	0.682	0.784
##	797	215	1		0.02596	0.679	0.781
##	806	214	1	0.724	0.02606	0.675	0.777
##	833	213	1		0.02615	0.672	0.774
##	846	212	1		0.02625	0.668	0.771
##	858	211	1	0.714	0.02635	0.664	0.768
##	875	210	1		0.02644	0.661	0.765
##	890	209	1	0.707	0.02653	0.657	0.761
##	902	208	1	0.704	0.02662	0.654	0.758
##	905	207	1	0.701	0.02671	0.650	0.755
##	909	206	1	0.697	0.02679	0.647	0.752
##	938	205	1	0.694	0.02688	0.643	0.749
##	939	204	1	0.690	0.02696	0.640	0.745
##	940	203	1	0.687	0.02704	0.636	0.742
##	942	202	1	0.684	0.02712	0.633	0.739
##	944	201	1	0.680	0.02720	0.629	0.736
##	952	200	1	0.677	0.02728	0.625	0.732
##	961	199	2	0.670	0.02742	0.618	0.726
##	968	197	1	0.667	0.02749	0.615	0.723
##	969	196	1	0.663	0.02756	0.611	0.720
##	986	195	1	0.660	0.02763	0.608	0.716
##	997	194	1	0.656	0.02770	0.604	0.713
##	1018	193	1	0.653	0.02776	0.601	0.710
##	1034	192	1	0.650	0.02782	0.597	0.707
##	1037	191	1	0.646	0.02789	0.594	0.703
##	1041	190	1	0.643	0.02795	0.590	0.700
##	1046	189	1	0.639	0.02800	0.587	0.697
##	1055	188	1	0.636	0.02806	0.583	0.693
##	1092	187	1	0.633	0.02812	0.580	0.690
##	1103	186	1	0.629	0.02817	0.576	0.687
##	1105	185	1	0.626	0.02822	0.573	0.684
##	1112	184	1	0.622	0.02827	0.569	0.680
##	1117	183	1	0.619	0.02832	0.566	0.677
##	1122	182	1	0.616	0.02837	0.562	0.674
##	1145	181	1		0.02842	0.559	0.671
##	1154	180	1		0.02846	0.556	0.667
##	1161	179	1	0.605	0.02850	0.552	0.664
##	1178	178	1	0.602	0.02855	0.549	0.661
##	1186	177	1		0.02859	0.545	0.657
##	1191	176	1		0.02863	0.542	0.654
##	1207	175	1		0.02866	0.538	0.651
##	1215	174	1	0.588	0.02870	0.535	0.647

##	1219	173	1	0.585	0.02874	0.531	0.644
##	1262	172	1	0.582	0.02877	0.528	0.641
##	1295	171	1	0.578	0.02880	0.524	0.638
##	1325	170	1	0.575	0.02883	0.521	0.634
##	1399	169	1	0.571	0.02886	0.518	0.631
##	1405	168	1	0.568	0.02889	0.514	0.628
##	1434	167	1	0.565	0.02892	0.511	0.624
##	1509	166	1	0.561	0.02894	0.507	0.621
##	1568	164	1	0.558	0.02897	0.504	0.618
##	1652	163	1	0.554	0.02899	0.500	0.614
##	1709	162	1	0.551	0.02901	0.497	0.611
##	1768	161	1	0.548	0.02903	0.493	0.608
##	1829	158	1	0.544	0.02906	0.490	0.604
##	1839	156	1	0.541	0.02908	0.486	0.601
##	1850	155	1	0.537	0.02910	0.483	0.597
##	1851	154	1	0.534	0.02912	0.479	0.594
##	1885	151	1	0.530	0.02914	0.476	0.590
##	1932	148	1		0.02916	0.472	0.587
##	2023	140	1		0.02919	0.469	0.583
##	2079	134	1		0.02924		0.579
##	2128	127	1		0.02929	0.460	0.575
##	2152	118	1		0.02936	0.456	0.571
##	2171	114	1		0.02945	0.451	0.567
##	2458	63	1		0.03005	0.442	
##	2593	40	1		0.03178		
##	2683	32	1		0.03421		
##	2718	25	1		0.03766		
##	2910	9	1		0.05794		
##	2010	Ū	-	0.101	0.00.01	0.002	0.000
77.17							
			rx=Le	ev+5FU			
##	time	n.risk		ev+5FU survival	std.err	lower 95% CI	upper 95% CI
## ##			n.event	survival		lower 95% CI	
## ## ##	23	289	n.event 1	survival 0.997	0.00345	0.990	1.000
## ## ## ##	23 34	289 288	n.event 1 1	survival 0.997 0.993	0.00345 0.00488	0.990 0.984	1.000
## ## ## ##	23 34 45	289 288 287	n.event 1 1 1	survival 0.997 0.993 0.990	0.00345 0.00488 0.00596	0.990 0.984 0.978	1.000 1.000 1.000
## ## ## ## ##	23 34 45 52	289 288 287 286	n.event 1 1 1	survival 0.997 0.993 0.990 0.986	0.00345 0.00488 0.00596 0.00687	0.990 0.984 0.978 0.973	1.000 1.000 1.000 1.000
## ## ## ## ## ##	23 34 45 52 79	289 288 287 286 285	n.event 1 1 1 1	survival 0.997 0.993 0.990 0.986 0.983	0.00345 0.00488 0.00596 0.00687 0.00767	0.990 0.984 0.978 0.973 0.968	1.000 1.000 1.000 1.000 0.998
## ## ## ## ## ##	23 34 45 52 79 127	289 288 287 286 285 284	n.event 1 1 1 1 1	survival 0.997 0.993 0.990 0.986 0.983 0.979	0.00345 0.00488 0.00596 0.00687 0.00767 0.00839	0.990 0.984 0.978 0.973 0.968 0.963	1.000 1.000 1.000 1.000 0.998 0.996
## ## ## ## ## ##	23 34 45 52 79 127 138	289 288 287 286 285 284 283	n.event 1 1 1 1 1 1	survival 0.997 0.993 0.990 0.986 0.983 0.979 0.976	0.00345 0.00488 0.00596 0.00687 0.00767 0.00839 0.00904	0.990 0.984 0.978 0.973 0.968 0.963 0.958	1.000 1.000 1.000 1.000 0.998 0.996 0.994
## ## ## ## ## ## ##	23 34 45 52 79 127 138 141	289 288 287 286 285 284 283 282	n.event 1 1 1 1 1 1 1 1	survival 0.997 0.993 0.990 0.986 0.983 0.979 0.976	0.00345 0.00488 0.00596 0.00687 0.00767 0.00839 0.00904 0.00965	0.990 0.984 0.978 0.973 0.968 0.963 0.958	1.000 1.000 1.000 1.000 0.998 0.996 0.994 0.991
## ## ## ## ## ## ##	23 34 45 52 79 127 138 141 144	289 288 287 286 285 284 283 282 281	n.event 1 1 1 1 1 1 1 1 1	survival 0.997 0.993 0.990 0.986 0.983 0.979 0.976 0.972	0.00345 0.00488 0.00596 0.00687 0.00767 0.00839 0.00904 0.00965 0.01022	0.990 0.984 0.978 0.973 0.968 0.963 0.958 0.954	1.000 1.000 1.000 1.000 0.998 0.996 0.994 0.991 0.989
## ## ## ## ## ## ##	23 34 45 52 79 127 138 141 144 251	289 288 287 286 285 284 283 282 281 280	n.event 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	survival 0.997 0.993 0.990 0.986 0.983 0.979 0.976 0.972 0.969 0.965	0.00345 0.00488 0.00596 0.00687 0.00767 0.00839 0.00904 0.00965 0.01022 0.01075	0.990 0.984 0.978 0.973 0.968 0.963 0.958 0.954 0.949	1.000 1.000 1.000 1.000 0.998 0.996 0.994 0.991 0.989 0.987
## ## ## ## ## ## ##	23 34 45 52 79 127 138 141 144 251 269	289 288 287 286 285 284 283 282 281 280 279	n.event 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	survival 0.997 0.993 0.990 0.986 0.983 0.979 0.976 0.972 0.969 0.965	0.00345 0.00488 0.00596 0.00687 0.00767 0.00839 0.00904 0.00965 0.01022 0.01075 0.01126	0.990 0.984 0.978 0.973 0.968 0.963 0.954 0.949 0.945	1.000 1.000 1.000 1.000 0.998 0.996 0.994 0.991 0.989 0.987
## ## ## ## ## ## ## ##	23 34 45 52 79 127 138 141 144 251 269 271	289 288 287 286 285 284 283 282 281 280 279 278	n.event 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	survival 0.997 0.993 0.990 0.986 0.983 0.979 0.976 0.972 0.969 0.965 0.962	0.00345 0.00488 0.00596 0.00687 0.00767 0.00839 0.00904 0.00965 0.01022 0.01075 0.01126 0.01174	0.990 0.984 0.978 0.973 0.968 0.963 0.954 0.949 0.945 0.940 0.936	1.000 1.000 1.000 1.000 0.998 0.996 0.994 0.991 0.989 0.987 0.984
## ## ## ## ## ## ## ##	23 34 45 52 79 127 138 141 144 251 269 271 274	289 288 287 286 285 284 283 282 281 280 279 278 277	n.event 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	survival 0.997 0.993 0.990 0.986 0.983 0.979 0.976 0.972 0.969 0.965 0.962 0.958	0.00345 0.00488 0.00596 0.00687 0.00767 0.00839 0.00904 0.00965 0.01022 0.01075 0.01126 0.01174 0.01219	0.990 0.984 0.978 0.973 0.968 0.963 0.958 0.954 0.949 0.945 0.940 0.936	1.000 1.000 1.000 0.998 0.996 0.994 0.991 0.989 0.987 0.984 0.982 0.979
## ## ## ## ## ## ## ##	23 34 45 52 79 127 138 141 144 251 269 271 274 276	289 288 287 286 285 284 283 282 281 280 279 278 277 276	n.event 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	survival 0.997 0.993 0.990 0.986 0.979 0.976 0.972 0.969 0.965 0.958 0.955 0.952	0.00345 0.00488 0.00596 0.00687 0.00767 0.00839 0.00904 0.00965 0.01022 0.01075 0.01126 0.01174 0.01219 0.01263	0.990 0.984 0.978 0.973 0.968 0.958 0.954 0.949 0.945 0.940 0.936 0.931	1.000 1.000 1.000 1.000 0.998 0.996 0.994 0.991 0.989 0.987 0.984 0.982 0.979
## ## ## ## ## ## ## ## ##	23 34 45 52 79 127 138 141 144 251 269 271 274 276 279	289 288 287 286 285 284 283 282 281 280 279 278 277 276 275	n.event 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	survival 0.997 0.993 0.990 0.986 0.979 0.976 0.972 0.969 0.965 0.958 0.955 0.952	0.00345 0.00488 0.00596 0.00687 0.00767 0.00839 0.00904 0.00965 0.01022 0.01075 0.01126 0.01174 0.01219 0.01263 0.01305	0.990 0.984 0.978 0.973 0.968 0.958 0.954 0.949 0.945 0.940 0.931 0.927	1.000 1.000 1.000 1.000 0.998 0.996 0.994 0.991 0.989 0.987 0.984 0.982 0.979
## ## ## ## ## ## ## ## ## ## ## ## ##	23 34 45 52 79 127 138 141 144 251 269 271 274 276 279 283	289 288 287 286 285 284 283 282 281 280 279 278 277 276 275 274	n.event 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	survival 0.997 0.993 0.990 0.986 0.979 0.976 0.972 0.969 0.965 0.962 0.955 0.952 0.948	0.00345 0.00488 0.00596 0.00687 0.00767 0.00839 0.00904 0.01022 0.01075 0.01126 0.01174 0.01219 0.01263 0.01305 0.01345	0.990 0.984 0.978 0.973 0.968 0.963 0.954 0.949 0.945 0.940 0.936 0.931 0.927 0.923 0.919	1.000 1.000 1.000 1.000 0.998 0.996 0.994 0.991 0.989 0.987 0.984 0.982 0.979 0.977
## ## ## ## ## ## ## ## ## ##	23 34 45 52 79 127 138 141 144 251 269 271 274 276 279 283 293	289 288 287 286 285 284 283 282 281 280 279 278 277 276 275 274 273	n.event 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	survival 0.997 0.993 0.990 0.986 0.983 0.979 0.976 0.969 0.965 0.962 0.958 0.955 0.952 0.948 0.945 0.941	0.00345 0.00488 0.00596 0.00687 0.00767 0.00839 0.00904 0.01022 0.01075 0.01126 0.01174 0.01219 0.01263 0.01305 0.01345 0.01384	0.990 0.984 0.978 0.973 0.968 0.963 0.954 0.949 0.945 0.940 0.936 0.931 0.927 0.923 0.919	1.000 1.000 1.000 1.000 0.998 0.996 0.994 0.991 0.989 0.987 0.984 0.982 0.979 0.977
## ## ## ## ## ## ## ## ## ## ## ## ##	23 34 45 52 79 127 138 141 144 251 269 271 274 276 279 283 293 302	289 288 287 286 285 284 283 282 281 280 279 278 277 276 275 274 273 272	n.event 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	survival 0.997 0.993 0.990 0.986 0.983 0.979 0.976 0.965 0.965 0.962 0.958 0.955 0.952 0.948 0.945 0.941	0.00345 0.00488 0.00596 0.00687 0.00767 0.00839 0.00904 0.00965 0.01022 0.01075 0.01126 0.01174 0.01219 0.01263 0.01305 0.01345 0.01384 0.01422	0.990 0.984 0.978 0.973 0.968 0.963 0.954 0.949 0.945 0.940 0.936 0.931 0.927 0.923 0.919 0.914	1.000 1.000 1.000 1.000 0.998 0.996 0.994 0.991 0.989 0.987 0.984 0.982 0.979 0.977 0.974 0.971
######################################	23 34 45 52 79 127 138 141 144 251 269 271 274 276 279 283 293 302 304	289 288 287 286 285 284 283 282 281 280 279 278 277 276 275 274 273 272 271	n.event 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	survival 0.997 0.993 0.990 0.986 0.983 0.979 0.976 0.972 0.969 0.965 0.958 0.955 0.952 0.941 0.941 0.938 0.934	0.00345 0.00488 0.00596 0.00687 0.00767 0.00839 0.00904 0.00965 0.01022 0.01075 0.01126 0.01174 0.01219 0.01263 0.01305 0.01345 0.01384 0.01422 0.01458	0.990 0.984 0.978 0.973 0.968 0.963 0.954 0.949 0.945 0.940 0.936 0.931 0.927 0.923 0.919 0.914 0.910	1.000 1.000 1.000 1.000 0.998 0.996 0.994 0.991 0.989 0.987 0.984 0.982 0.979 0.977 0.974 0.971
######################################	23 34 45 52 79 127 138 141 144 251 269 271 274 276 279 283 293 302 304 324	289 288 287 286 285 284 283 282 281 280 279 278 277 276 275 274 273 272 271 270	n.event 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	survival 0.997 0.993 0.990 0.986 0.983 0.979 0.976 0.972 0.969 0.965 0.955 0.955 0.952 0.948 0.945 0.941 0.938 0.934 0.931	0.00345 0.00488 0.00596 0.00687 0.00767 0.00839 0.00904 0.00965 0.01022 0.01174 0.011219 0.01263 0.01305 0.01345 0.01384 0.01422 0.01458 0.01493	0.990 0.984 0.978 0.973 0.968 0.958 0.954 0.949 0.945 0.940 0.931 0.927 0.923 0.919 0.914 0.910 0.906	1.000 1.000 1.000 1.000 0.998 0.996 0.994 0.991 0.989 0.987 0.984 0.982 0.979 0.977 0.974 0.971 0.969 0.966
######################################	23 34 45 52 79 127 138 141 144 251 269 271 274 276 279 283 293 302 304 324 326	289 288 287 286 285 284 283 282 281 280 279 278 277 276 275 274 273 272 271 270 269	n.event 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	survival 0.997 0.993 0.990 0.986 0.983 0.979 0.976 0.972 0.969 0.965 0.962 0.958 0.955 0.952 0.948 0.945 0.941 0.938 0.934 0.931 0.927	0.00345 0.00488 0.00596 0.00687 0.00767 0.00839 0.00904 0.01022 0.01075 0.01126 0.01174 0.01219 0.01263 0.01305 0.01345 0.01384 0.01422 0.01458 0.01493 0.01527	0.990 0.984 0.978 0.973 0.968 0.963 0.954 0.949 0.945 0.940 0.936 0.931 0.927 0.923 0.919 0.914 0.910 0.906 0.902	1.000 1.000 1.000 1.000 0.998 0.996 0.994 0.991 0.989 0.987 0.984 0.982 0.979 0.977 0.974 0.971 0.969 0.963 0.963
#######################################	23 34 45 52 79 127 138 141 144 251 269 271 274 276 279 283 293 302 304 324 326 340	289 288 287 286 285 284 283 282 281 280 279 278 277 276 275 274 273 272 271 270 269 268	n.event 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	survival 0.997 0.993 0.990 0.986 0.983 0.979 0.976 0.972 0.969 0.965 0.962 0.958 0.955 0.952 0.948 0.945 0.941 0.938 0.934 0.931 0.927 0.924	0.00345 0.00488 0.00596 0.00687 0.00767 0.00839 0.00904 0.01022 0.01075 0.01126 0.01174 0.01219 0.01263 0.01305 0.01345 0.01384 0.01422 0.01458 0.01493 0.01527 0.01560	0.990 0.984 0.978 0.973 0.968 0.963 0.954 0.949 0.945 0.940 0.936 0.931 0.927 0.923 0.919 0.914 0.910 0.906 0.902 0.898 0.894	1.000 1.000 1.000 1.000 0.998 0.996 0.994 0.991 0.989 0.987 0.984 0.982 0.979 0.977 0.974 0.971 0.969 0.966 0.963 0.961
######################################	23 34 45 52 79 127 138 141 144 251 269 271 274 276 279 283 293 302 304 324 326	289 288 287 286 285 284 283 282 281 280 279 278 277 276 275 274 273 272 271 270 269	n.event 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	survival 0.997 0.993 0.990 0.986 0.983 0.979 0.976 0.972 0.969 0.965 0.962 0.958 0.955 0.952 0.948 0.945 0.941 0.938 0.934 0.931 0.927 0.924	0.00345 0.00488 0.00596 0.00687 0.00767 0.00839 0.00904 0.01022 0.01075 0.01126 0.01174 0.01219 0.01263 0.01305 0.01345 0.01384 0.01422 0.01458 0.01493 0.01527	0.990 0.984 0.978 0.973 0.968 0.963 0.954 0.949 0.945 0.940 0.936 0.931 0.927 0.923 0.919 0.914 0.910 0.906 0.902	1.000 1.000 1.000 1.000 0.998 0.996 0.994 0.991 0.989 0.987 0.984 0.982 0.979 0.977 0.974 0.971 0.969 0.963 0.963

##	363	266	1	0.917	0.01623	0.886	0.949
##	389	265	1	0.913	0.01654	0.882	0.946
##	400	264	1	0.910	0.01683	0.878	0.944
##	428	263	1	0.907	0.01712	0.874	0.941
##	430	262	1	0.903	0.01740	0.870	0.938
##	441	261	1	0.900	0.01767	0.866	0.935
##	448	260	1	0.896	0.01794	0.862	0.932
##	454	259	1	0.893	0.01820	0.858	0.929
##	460	258	1	0.889	0.01846	0.854	0.926
##	484	257	1	0.886	0.01871	0.850	0.923
##	498	256	1	0.882	0.01895	0.846	0.920
##	503	255	1	0.879	0.01919	0.842	0.917
##	529	254	1	0.875	0.01943	0.838	0.914
##	550	253	1	0.872	0.01965	0.834	0.911
##	576	252	1		0.01988	0.830	0.908
##	578	251	1		0.02010	0.827	0.905
##	580	250	1		0.02031	0.823	0.902
##	592	249	1		0.02052	0.819	0.899
##	601	248	1		0.02073	0.815	0.896
##	603	247	1		0.02093	0.811	0.893
##	609	246	1		0.02113	0.807	0.890
##	614	245	1		0.02133	0.804	0.887
##	616	244	1		0.02152	0.800	0.884
##	641	243	1		0.02171	0.796	0.881
##	642	242	1		0.02189	0.792	0.878
##	666	241	1		0.02207	0.788	0.875
##	674	240	1		0.02225	0.785	0.872
##	692	239	2		0.02260	0.777	0.866
##	693	237	1		0.02276	0.773	0.862
##	696	236	1		0.02293	0.769	0.859
##	712	235	1		0.02309	0.766	0.856
##	736	234	1		0.02325	0.762	0.853
##	765	233	1		0.02341	0.758	0.850
##	802	232	2		0.02371	0.751	0.844
##	806	230	1		0.02386	0.747	0.841
##	811	229	1		0.02400	0.743	0.837
##	844	228	1		0.02415	0.740	0.834
##	862	227	1		0.02429	0.736	0.831
##	884	226	1		0.02442	0.732	0.828
##	887	225	2		0.02469	0.725	0.822
##	905	223	1		0.02482	0.721	0.818
##	911	222	1		0.02495	0.717	0.815
##	916	221	1		0.02508	0.714	0.812
##	961	220	1		0.02520	0.710	0.809
##	977	219	1		0.02532	0.706	0.806
##	993	218	1		0.02544	0.703	0.802
##	1022	217	1		0.02556	0.699	0.799
##	1138	216	1		0.02567	0.695	0.796
##	1145	215	1		0.02579	0.692	0.793
##	1151	214	1		0.02590	0.688	0.790
##	1193	213	1		0.02601	0.684	0.786
##	1201	212	1		0.02611	0.681	0.783
##	1212	211	1		0.02622	0.677	0.780
##	1246	210	1		0.02632	0.673	0.777
		•	-				2

```
1276
##
            209
                            0.716 0.02652
                                                   0.666
                                                                 0.770
##
    1279
            207
                            0.713 0.02661
                                                   0.663
                                                                 0.767
                       1
    1302
##
            205
                            0.709 0.02671
                                                   0.659
                                                                 0.764
   1306
            204
##
                            0.706 0.02681
                                                   0.655
                                                                 0.760
                       1
##
    1365
            203
                       1
                            0.702 0.02690
                                                   0.652
                                                                 0.757
##
   1387
            202
                            0.699 0.02699
                                                   0.648
                       1
                                                                 0.754
                            0.695 0.02708
##
   1388
            201
                       1
                                                   0.644
                                                                 0.751
    1424
                            0.692 0.02717
##
            199
                       1
                                                   0.641
                                                                 0.747
                            0.688 0.02725
##
    1439
            198
                       1
                                                   0.637
                                                                 0.744
##
   1446
            197
                       1
                            0.685 0.02734
                                                   0.633
                                                                 0.741
##
   1495
            195
                       1
                            0.681 0.02742
                                                   0.630
                                                                 0.737
##
   1511
            194
                            0.678 0.02750
                                                                 0.734
                       1
                                                   0.626
##
   1521
            193
                       1
                            0.674 0.02759
                                                   0.622
                                                                 0.731
##
   1550
                            0.671 0.02766
            192
                       1
                                                   0.619
                                                                 0.727
##
   1607
            191
                            0.667 0.02774
                                                   0.615
                                                                 0.724
                       1
##
    1620
            190
                       1
                            0.664 0.02782
                                                   0.612
                                                                 0.721
##
   1637
            189
                            0.660 0.02789
                                                   0.608
                       1
                                                                 0.717
##
   1668
            188
                            0.657 0.02796
                                                   0.604
                                                                 0.714
                       1
##
   1671
            187
                            0.653 0.02803
                                                                 0.711
                       1
                                                   0.601
##
   1752
            186
                       1
                            0.650 0.02810
                                                   0.597
                                                                 0.707
##
   1767
            185
                       1
                            0.646 0.02817
                                                   0.593
                                                                 0.704
##
   1783
            184
                            0.643 0.02823
                                                   0.590
                                                                 0.701
                       1
##
   1798
            183
                            0.639 0.02830
                                                                 0.697
                       1
                                                   0.586
##
    1812
            181
                            0.636 0.02836
                                                   0.583
                                                                 0.694
                       1
##
                            0.632 0.02843
                                                                 0.690
   1831
            176
                       1
                                                   0.579
##
   1856
            174
                       1
                            0.628 0.02850
                                                   0.575
                                                                 0.687
##
   1995
            163
                            0.625 0.02858
                                                   0.571
                                                                 0.683
                       1
##
    2021
            158
                            0.621 0.02867
                       1
                                                   0.567
                                                                 0.680
## 2052
            152
                            0.617 0.02877
                                                   0.563
                                                                 0.676
                       1
    2127
##
            139
                       1
                            0.612 0.02891
                                                   0.558
                                                                 0.672
##
    2174
            129
                       1
                            0.607 0.02907
                                                   0.553
                                                                 0.667
##
   2197
            120
                       1
                            0.602 0.02926
                                                   0.548
                                                                 0.663
  2318
##
             97
                       1
                            0.596 0.02961
                                                   0.541
                                                                 0.657
##
    2482
             70
                            0.588 0.03039
                       1
                                                   0.531
                                                                 0.650
##
    2542
             51
                       1
                            0.576 0.03190
                                                   0.517
                                                                 0.642
##
    2725
             33
                       1
                            0.559 0.03539
                                                   0.493
                                                                 0.633
```

Kaplan–Meier Curve for Colon Cancer Mortality by Treatment

From the plot above, there is some indication that patients who received the adjuvant treatment with levamisole plus fluorouracil (Lev + 5FU) have a higher survival probability than patients with no further treatment and patients who received the treatment with levamisole alone. The median survival time for observation group and levamisole group are approximately 2100 days and 2200 days, respectively. However, until the end of the trial, the survival probability of Levamisole + 5-FU treatment group is greater than 50% as we fail to observe the curve crossing the 50% line.

3. Log-Rank Test

Noticing the difference of survival probability between the three treatment groups, we conduct a Log-rank hypothesis test to test the null hypothesis of no difference among the three treatments in the mortality model.

```
survdiff(Surv(time, status) ~ rx, data = colon.death)
## Call:
## survdiff(formula = Surv(time, status) ~ rx, data = colon.death)
##
##
                 N Observed Expected (O-E)^2/E (O-E)^2/V
## rx=0bs
              305
                        164
                                 143
                                          3.170
                                                      4.75
## rx=Lev
              294
                        149
                                 138
                                          0.868
                                                      1.28
## rx=Lev+5FU 289
                        117
                                 149
                                          6.957
                                                    10.67
##
    Chisq= 11 on 2 degrees of freedom, p= 0.004
```

From this log-rank test, we get a p-value that is closed to 0.004, which is significant at a 0.05 level. We want to conclude that there is a significant difference among the three treatments in the mortality model.

4. Cox PH Model

4.1 Model Selection

fit all the variables in the model

We now use automatic stepwise selection with Akaike information criterion (AIC) to determine the covariates that best represent an appropriate cox proportional hazards model for the event of death.

```
d.model.full <- coxph(Surv(time, status) ~ ., data = colon.death)</pre>
# stepwise selection with AIC criterion
d.model.aic <- step(d.model.full, direction = "both", k = 2)</pre>
## Start: AIC=5440.31
## Surv(time, status) ~ rx + sex + age + obstruct + perfor + adhere +
##
       nodes + differ + extent + surg
##
##
                    AIC
              Df
## - perfor
               1 5438.3
## - sex
               1 5438.5
## - adhere
               1 5440.0
## - differ
               1 5440.2
## <none>
                 5440.3
               1 5440.6
## - age
## - obstruct 1 5442.1
## - surg
               1 5443.6
## - rx
               2 5446.4
               1 5455.3
## - extent
## - nodes
               1 5502.9
##
## Step: AIC=5438.33
## Surv(time, status) ~ rx + sex + age + obstruct + adhere + nodes +
##
       differ + extent + surg
##
##
              Df
                    AIC
## - sex
               1 5436.5
## - adhere
               1 5438.0
## - differ
               1 5438.2
## <none>
                 5438.3
## - age
               1 5438.6
## - obstruct 1 5440.1
## + perfor
               1 5440.3
## - surg
               1 5441.6
## - rx
               2 5444.4
## - extent
               1 5453.3
## - nodes
               1 5501.0
##
```

```
## Step: AIC=5436.47
## Surv(time, status) ~ rx + age + obstruct + adhere + nodes + differ +
##
       extent + surg
##
##
              Df
                    AIC
## - adhere
               1 5436.2
## - differ
               1 5436.3
## <none>
                 5436.5
## - age
               1 5436.8
## - obstruct 1 5438.3
## + sex
               1 5438.3
## + perfor
               1 5438.5
## - surg
               1 5439.7
## - rx
               2 5442.4
## - extent
               1 5451.5
## - nodes
               1 5499.1
##
## Step: AIC=5436.18
## Surv(time, status) ~ rx + age + obstruct + nodes + differ + extent +
##
##
##
              Df
                    AIC
## <none>
                 5436.2
## + adhere
               1 5436.5
## - differ
               1 5436.5
## - age
               1 5436.9
## + sex
               1 5438.0
## - obstruct 1 5438.1
## + perfor
               1 5438.2
## - surg
               1 5439.4
## - rx
               2 5442.3
## - extent
               1 5452.6
## - nodes
               1 5498.3
```

The resulting model with the lowest AIC is: Surv(time, status) \sim obstruct + differ + extent + surg + nodes + age + rx

Next, we used the Analysis of Deviance procedure to get the proper Likelihood Ratio Test to confirm if each of the covariates selected by the stepwise selection method is significant to include in the Cox Proportional Model.

anova(d.model.aic)

```
## Analysis of Deviance Table
  Cox model: response is Surv(time, status)
## Terms added sequentially (first to last)
##
##
            loglik
                     Chisq Df Pr(>|Chi|)
## NULL
           -2767.9
           -2762.2 11.4100
## rx
                            2
                                0.003329 **
           -2761.9 0.6730
                            1
                                0.411993
## age
## obstruct -2759.8 4.1666 1
                                0.041229 *
## nodes
           -2723.9 71.8138 1 < 2.2e-16 ***
## differ -2721.9 3.9678 1
                                0.046378 *
```

```
## extent -2712.7 18.3458 1 1.842e-05 ***
## surg -2710.1 5.2615 1 0.021802 *
## ---
## Signif. codes: 0 '*** 0.001 '** 0.05 '.' 0.1 ' ' 1
```

We can see that p-values for covariates "obstruct", "differ", "extent", "surg", "nodes" and "rx" are much smaller than 0.05, except for "age", indicating that they have a significant effect on time until death. Therefore, we will include these 6 covariates in our Cox PH model.

Therefore, we obtain the resulting model, which is $Surv(time, status) \sim obstruct + differ + extent + surg + nodes + rx$.

4.2 Model Diagnostics

4.2.1 Check proportionality of hazard ratios

Log of Negative Log of Estimated Survival Function

To check the proportional hazards assumption for this model, we make diagnostic plots using log of negative log of estimated survival function. First comes to covariate obstruct.

Log of Negative Log of Estimated Survival Function for Colon Cancer Mortality by obstruct

According to the plot, the distance between two obstruct curves begin to narrow after 2000 days which causes some concern that the assumption might be violated. However, it is also reasonable to assume that the curves are wider apparent earlier in the study since there are less occurrences of death before 2000 days. Hence we believe it is best to ignore the noisiness of the plot since the curves are roughly parallel after 2000 days. Thus, the cox proportional hazards assumption is valid to use for "obstruct".

We continue to plot the C-log-log plot for the covariate differ.

Log of Negative Log of Estimated Survival Function for Colon Cancer Mortality by differ

According to the plot, the curves in the C-log-log plot are crossing over after 300 days. The assumption of proportional hazard ratio among the three differ groups is violated as we fail to see three parallel lines against log time.

We continue to plot the C-log-log plot for the covariate extent.

Log of Negative Log of Estimated Survival Function for Colon Cancer Mortality by extent

Extent of local spread + 1-Submucosa + 2-Muscle + 3-Serosa + 4-Contiguous structures

According to the plot, the curves in the C-log-log plot are crossing over after 100 days. The assumption of proportional hazard ratio of extent is violated as we fail to see four parallel lines against log time.

We continue to plot the C-log-log plot for the covariate surg.

Log of Negative Log of Estimated Survival Function for Colon Cancer Mortality by surg

According to the plot, the distance between two surg curves begin to narrow after 100 days and becomes parallel to each other. We can assume that the cox proportional hazards assumption is valid to use for surg.

We continue to plot the C-log-log plot for the covariate rx.

Log of Negative Log of Estimated Survival Function for Colon Cancer Mortality by rx

According to the plot, the distance between three treatment curves begin to narrow after 2000 days which causes some concern that the assumption might be violated. However, it is also reasonable to assume that the curves are wider apparent earlier in the study since there are less occurrences of death before 2000 days. Hence we believe it is best to ignore the noisiness of the plot since the curves are roughly parallel after 2000 days. Thus, the cox proportional hazards assumption is valid to use for this covariate.

```
# combine all the cloglog plots and save them to a pdf file
splots <- list()
splots[[1]] <- cloglog_obstruct
splots[[2]] <- cloglog_differ
splots[[3]] <- cloglog_extent
splots[[4]] <- cloglog_surg
splots[[5]] <- cloglog_rx
cloglog_plot = arrange_ggsurvplots(splots, print = FALSE, ncol = 2, nrow = 3)

ggsave(cloglog_plot,file = "./plot/d.C-log-log-plots.pdf",width = 12,height = 15)
ggsave(cloglog_plot,file = "./plot/d.C-log-log-plots.png",width = 12,height = 15)</pre>
```

Schoenfeld residuals

obstruct 6.7958 1 0.00914

```
czph <- cox.zph(coxph(Surv(time, status) ~ obstruct + differ + extent + surg + nodes + rx, data = colon
czph

## chisq df p</pre>
```

```
## differ
            12.2795
                     1 0.00046
## extent
                     1 0.05126
             3.7997
## surg
                     1 0.86951
## nodes
             0.0231
                     1 0.87925
##
             2.6285
                     2 0.26868
## GLOBAL
            26.1823
                     7 0.00047
schoenfeld_plot <- ggcoxzph(czph, font.main = 10, font.x = 10, font.y = 10, font.tickslab = 8,
                             point.alpha = 0.5, point.col = "grey25")
schoenfeld_plot
```

Global Schoenfeld Test p: 0.0004672

From the output above, the tests for covariates "obstruct", "differ" are statistically significant, and the global test is also statistically significant. Therefore, we can assume the violation of proportional hazards on these covariates, which requires corrections of non-proportional hazard ratio.

4.2.2 Test influential observations

It's also possible to check outliers by visualizing the influence of each point, in terms of DFBETA - the impact on the coefficient of covariates in the model were that specific point to be removed from the data set. In general, we can identify the observations with positive and negative DFBETAs. Comparing the magnitudes of the largest dfbeta values to the regression coefficients suggests that none of the observations is terribly influential individually, even though some of the dfbeta values for extent are large compared with the others.

4.3 Corrections for violation of the PH Assumption

coef exp(coef)

3.005889 20.204167

3.324329 27.780355

0.934292

0.700346

n= 888, number of events= 430

-0.067966

-0.356181

##

##

rxLev

rxLev+5FU

obstruct

differ

```
d.model.inter = coxph(Surv(time, status) ~ rx + obstruct + differ + extent + surg + nodes + tt(obstruct
summary(d.model.inter)

## Call:
## coxph(formula = Surv(time, status) ~ rx + obstruct + differ +
## extent + surg + nodes + tt(obstruct) + tt(differ), data = colon.death,
## tt = function(x, t, ...) x * log(t))
##
```

0.114157 -0.595 0.551597

0.121620 -2.929 0.003405 **

0.913252 3.291 0.000997 ***

0.794159 4.186 2.84e-05 ***

z Pr(>|z|)

se(coef)

```
0.500140
                           1.648951
                                      0.116581
                                                4.290 1.79e-05 ***
## extent
## surg
                 0.249440
                           1.283307
                                      0.106085
                                                2.351 0.018707 *
                 0.086542
                           1.090397
## nodes
                                      0.009386 9.221
                                                       < 2e-16 ***
## tt(obstruct) -0.428125
                                      0.140517 -3.047 0.002313 **
                           0.651730
## tt(differ)
                -0.485106
                           0.615632
                                     0.120666 -4.020 5.81e-05 ***
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
                exp(coef) exp(-coef) lower .95 upper .95
## rxLev
                   0.9343
                             1.07033
                                         0.7470
                                                   1.1686
## rxLev+5FU
                   0.7003
                             1.42787
                                         0.5518
                                                   0.8889
                  20.2042
                             0.04949
                                         3.3735
## obstruct
                                                 121.0047
## differ
                  27.7804
                             0.03600
                                         5.8580
                                                 131.7429
## extent
                                                   2.0722
                   1.6490
                             0.60645
                                         1.3121
## surg
                   1.2833
                             0.77924
                                         1.0424
                                                   1.5799
## nodes
                   1.0904
                             0.91710
                                         1.0705
                                                   1.1106
## tt(obstruct)
                   0.6517
                                         0.4948
                                                   0.8584
                              1.53438
## tt(differ)
                   0.6156
                              1.62435
                                         0.4860
                                                   0.7799
##
## Concordance= 0.671 (se = 0.013)
## Likelihood ratio test= 137.1 on 9 df,
                                             p=<2e-16
## Wald test
                        = 160.4 on 9 df,
                                             p=<2e-16
## Score (logrank) test = 166.1 on 9 df,
                                             p=<2e-16
```

anova(d.model.inter)

```
## Analysis of Deviance Table
   Cox model: response is Surv(time, status)
## Terms added sequentially (first to last)
##
##
                             Chisq Df Pr(>|Chi|)
                 loglik
## NULL
                -2767.9
## rx
                -4789.5 -4043.2284
                                    2
                                       1.0000000
## obstruct
                -4787.4
                            4.1985
                                    1
                                       0.0404592 *
## differ
                -4781.2
                           12.3563
                                       0.0004395 ***
                                    1
                                       9.804e-08 ***
## extent
                -4767.0
                           28.4124
                                    1
                -4765.2
                            3.7231
                                    1
                                       0.0536662
## surg
## nodes
                -4716.8
                           96.7371
                                    1
                                        < 2.2e-16 ***
## tt(obstruct) -4632.3
                          169.0432
                                    1
                                        < 2.2e-16 ***
## tt(differ)
                -2699.4
                         3865.8481
                                    1
                                       < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

We observe significance from Schoenfeld residuals, so we modify the model by adding the interaction of covariates with function of time.

4.4 Final model

With the inclusion of treatment, our final model is given by: $Surv(time, status) \sim rx + obstruct + differ + extent + surg + nodes + tt(obstruct) + tt(differ), data = colon.death, tt = function(x,t,...) x*log(t)).$

```
d.model.final = coxph(Surv(time, status) ~ rx + obstruct + differ + extent + surg + nodes + tt(obstruct
summary(d.model.final)
```

```
## Call:
## coxph(formula = Surv(time, status) ~ rx + obstruct + differ +
      extent + surg + nodes + tt(obstruct) + tt(differ), data = colon.death,
##
      tt = function(x, t, ...) x * log(t))
##
    n= 888, number of events= 430
##
##
##
                    coef exp(coef)
                                   se(coef)
                                                 z Pr(>|z|)
## rxLev
               -0.067966 0.934292 0.114157 -0.595 0.551597
                                   0.121620 -2.929 0.003405 **
## rxLev+5FU
               -0.356181 0.700346
                3.005889 20.204167 0.913252 3.291 0.000997 ***
## obstruct
## differ
                3.324329 27.780355 0.794159
                                            4.186 2.84e-05 ***
                0.500140 1.648951 0.116581 4.290 1.79e-05 ***
## extent
## surg
                0.249440 1.283307
                                   0.106085
                                             2.351 0.018707 *
## nodes
                0.086542 1.090397
                                   0.009386 9.221 < 2e-16 ***
## tt(obstruct) -0.428125   0.651730   0.140517 -3.047   0.002313 **
               ## tt(differ)
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
               exp(coef) exp(-coef) lower .95 upper .95
## rxLev
                  0.9343
                            1.07033
                                       0.7470
                                                1.1686
                  0.7003
## rxLev+5FU
                            1.42787
                                      0.5518
                                                0.8889
                 20.2042
## obstruct
                            0.04949
                                      3.3735
                                             121.0047
## differ
                 27.7804
                            0.03600
                                      5.8580 131.7429
## extent
                  1.6490
                            0.60645
                                      1.3121
                                                2.0722
## surg
                  1.2833
                            0.77924
                                      1.0424
                                                1.5799
                  1.0904
                            0.91710
                                      1.0705
## nodes
                                                1.1106
## tt(obstruct)
                  0.6517
                            1.53438
                                       0.4948
                                                0.8584
## tt(differ)
                  0.6156
                            1.62435
                                      0.4860
                                                0.7799
##
## Concordance= 0.671 (se = 0.013)
## Likelihood ratio test= 137.1 on 9 df,
                                           p=<2e-16
## Wald test
                       = 160.4 on 9 df,
                                          p=<2e-16
## Score (logrank) test = 166.1 on 9 df,
                                          p = < 2e - 16
```

5. Discussion

Our final model is given by: Surv(time, status) $\sim rx + obstruct + differ + extent + surg + nodes + tt(obstruct) + tt(differ).$

We can now observe whether treatments helps improve the survival rate in colon cancer patients from negative coefficients of different treatment groups.

Our result indicates that the hazard ratio for the group treated with rxLev is 0.934, corresponding to a 6.6% decrease in risk of death compared to the observation group. Since the p-value for the coefficient is 0.552

which is larger than 0.05, there is not significant evidence to indicate a survival difference between the group treated with rxLev and the observation group. Additionally, we are 95% confident that the true risk of death is between [0.747, 1.169]. Therefore, we conclude that the treatment rxLev is not effective on improving the survival probability in colon cancer patients.

On the other hand, our result indicates that the hazard ratio for the group treated with rxLev+5FU is 0.700, corresponding to a 30% decrease in risk of death compared to the observation group. Since the p-value for the coefficient is 0.003 which is samller than 0.05, there is significant evidence to indicate a survival difference between the group treated with rxLev+5FU and the observation group. Additionally, we are 95% confident that the true risk of death is between [0.552, 0.889]. Therefore, we conclude that the treatment rxLev+5FU is effective on improving the survival probability in colon cancer patients.

Therefore, we conclude that the treatment Levamisole+5-FU is effective as an adjuvant Chemotherapy on improving the survival rate in colon cancer patients.