

MQTT-Benchmark

Speicher- und Datennetze im IoT

Von Patrick Olinger und David Tarnow

Agenda

- (1) Zielsetzung
- (2) Implementierung
- (3) Auswirkung der Nachrichtengröße
- (4) Auswirkung des Zeitintervalls
- (5) Langzeitmessungen
- (6) Fazit

Zielsetzung

Implementierung von

- Paho MQTT-Client in C
- Paho MQTT-Client in C#
- Qt MQTT-Client in C++

Messung

- RAM-Verbrauch
- CPU-Nutzung

Auswirkung der Nachrichtengröße

- Zeitintervall: 100 ms
- Nachrichtengröße: 0, 1.000, 100.000, 1.000.000 bytes

Auswirkung des Zeitintervalls

- Zeitintervall: 10 ms, 100 ms, 1.000 ms
- Nachrichtengröße: 100.000 bytes

h_da HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCIENCES fbi FACHBEREICH INFORMATIK

Implementierung

- Jeweils 2 Publisher und Subscriber (Windows)
- MQTT-Broker Mosquitto (Linux)
- Publisher veröffentlichen in vorgegebenem Zeitintervall
- Subscriber beobachten die Topics
- Messung von jeweils einem Subscriber / Publisher

Auswirkung der Nachrichtengröße (1)

Auswirkung der Nachrichtengröße (2)

Auswirkung des Zeitintervalls (1)

Auswirkung des Zeitintervalls (2)

Langzeitmessung – C: Subscriber

Langzeitmessung – C: Publisher

Langzeitmessung – C#: Subscriber

Langzeitmessung – C#: Publisher

Fazit

- RAM-Auslastung
 - Größtenteils Abhängig von Nachrichtengröße
 - C: gering, C++: mittel, C#: hoch
- CPU-Auslastung
 - Größtenteils Abhängig von Zeitintervall

h_da HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCIENCES fb i FACHBEREICH INFORMATIK