CODE+5.5 清华大学研究生招生计算机类上机考试复现练习赛 题目讲解

清华大学计算机系 张慧盟

I 面试 (INTERVIEW)

太长不看版:二分答案

- 给定n个小朋友的身高,要求从前x个人中选出m个人,他们的最高身高和最低身高之差不能超过k
- 求x的最小值;如果不存在这样的x,输出impossible
- $1 \le m \le n \le 10^5$, $0 \le k \le 10^5$, $1 \le h_i \le 10^5$

测试点编号	n, m	h_i, k
1,2	$1 \le m \le n \le 100$	$k = 0; 1 \le h_i \le 100$
3,4		$0 \le k \le 50; 1 \le h_i \le 100$
5,6,7,8	$1 \le m \le n \le 2 \times 10^3$	$0 \le k \le 100; 1 \le h_i \le 5 \times 10^3$
9,10,11,12		$0 \le k \le 5 \times 10^3; 1 \le h_i \le 5 \times 10^3$
13,14	$1 \le m \le n \le 2 \times 10^3$	$0 \le k \le 10^5; 1 \le h_i \le 10^5$
15,16	$1 \le m \le n \le 10^5$	$0 \le k \le 100; 1 \le h_i \le 10^5$
17,18,19,20	$1 \le m \le n \le 10^5$	$0 \le k \le 10^5; 1 \le h_i \le 10^5$

10分解法:暴力

测试点编号	n, m	h_i, k
1,2	$1 \le m \le n \le 100$	$k = 0; 1 \le h_i \le 100$
$3,\!4$		$0 \le k \le 50; 1 \le h_i \le 100$
5,6,7,8	$1 \le m \le n \le 2 \times 10^3$	$0 \le k \le 100; 1 \le h_i \le 5 \times 10^3$
$9,\!10,\!11,\!12$		$0 \le k \le 5 \times 10^3; 1 \le h_i \le 5 \times 10^3$
13,14	$1 \le m \le n \le 2 \times 10^3$	$0 \le k \le 10^5; 1 \le h_i \le 10^5$
15,16	$1 \le m \le n \le 10^5$	$0 \le k \le 100; 1 \le h_i \le 10^5$
17,18,19,20	$1 \le m \le n \le 10^5$	$0 \le k \le 10^5; 1 \le h_i \le 10^5$

- 用数组维护每个数已经出现的次数
- 每读入一个数,更新数组
- 并判断是否已经有数出现m次
- 算法复杂度为O(nL) (L是 h_i 的范围)

60分解法: 还是暴力

测试点编号	n, m	h_i, k
1,2	$1 \le m \le n \le 100$	$k = 0; 1 \le h_i \le 100$
3,4		$0 \le k \le 50; 1 \le h_i \le 100$
5,6,7,8	$1 \le m \le n \le 2 \times 10^3$	$0 \le k \le 100; 1 \le h_i \le 5 \times 10^3$
9,10,11,12		$0 \le k \le 5 \times 10^3; 1 \le h_i \le 5 \times 10^3$
13,14	$1 \le m \le n \le 2 \times 10^3$	$0 \le k \le 10^5; 1 \le h_i \le 10^5$
15,16	$1 \le m \le n \le 10^5$	$0 \le k \le 100; 1 \le h_i \le 10^5$
17,18,19,20	$1 \le m \le n \le 10^5$	$0 \le k \le 10^5; 1 \le h_i \le 10^5$

- 用数组维护每个数已经出现的次数
- 每读入一个数,更新数组
- 判断每个长度为k + 1的区间内的数组和是否超过m
- 前缀和优化

60分解法: 还是暴力

• 算法复杂度为O(nL) (L是 h_i 的范围)

测试点编号	n, m	h_i, k
1,2	$1 \le m \le n \le 100$	$k = 0; 1 \le h_i \le 100$
3,4		$0 \le k \le 50; 1 \le h_i \le 100$
5,6,7,8	$1 \le m \le n \le 2 \times 10^3$	$0 \le k \le 100; 1 \le h_i \le 5 \times 10^3$
9,10,11,12		$0 \le k \le 5 \times 10^3; 1 \le h_i \le 5 \times 10^3$
13,14	$1 \le m \le n \le 2 \times 10^3$	$0 \le k \le 10^5; 1 \le h_i \le 10^5$
15,16	$1 \le m \le n \le 10^5$	$0 \le k \le 100; 1 \le h_i \le 10^5$
17,18,19,20	$1 \le m \le n \le 10^5$	$0 \le k \le 10^5; 1 \le h_i \le 10^5$

```
1 \text{ cnt}[5001] = \{0\}
 2 \text{ for i} = 1 \text{ to n}
        input(h[i])
       cnt[h[i]]++
       sum = 0
       for j = 0 to k-1
             sum += cnt[j]
 8
9
       for j = k \text{ to } 5000
             sum += cnt[j]
10
             if (sum >= m)
11
                output(i)
12
                 exit
13
             sum -= cnt[j - k]
14 output("impossible")
```

70(80)分解法:对暴力的优化

测试点编号	n, m	h_i, k
1,2	$1 \le m \le n \le 100$	$k = 0; 1 \le h_i \le 100$
3,4		$0 \le k \le 50; 1 \le h_i \le 100$
5,6,7,8	$1 \le m \le n \le 2 \times 10^3$	$0 \le k \le 100; 1 \le h_i \le 5 \times 10^3$
9,10,11,12		$0 \le k \le 5 \times 10^3; 1 \le h_i \le 5 \times 10^3$
13,14	$1 \le m \le n \le 2 \times 10^3$	$0 \le k \le 10^5; 1 \le h_i \le 10^5$
15,16	$1 \le m \le n \le 10^5$	$0 \le k \le 100; 1 \le h_i \le 10^5$
17,18,19,20	$1 \le m \le n \le 10^5$	$0 \le k \le 10^5; 1 \le h_i \le 10^5$

- 用数组维护每个数已经出现的次数
- 每读入一个数, 更新数组
- 判断<mark>包含这个数的</mark>长度为*k* + 1的区间 内的数组和是否超过*m*

70(80)分解法:对暴力的优化

• 复杂度从O(nL)下降到O(nk)

测试点编号	n, m	h_i, k
1,2	$1 \le m \le n \le 100$	$k = 0; 1 \le h_i \le 100$
3,4		$0 \le k \le 50; 1 \le h_i \le 100$
5,6,7,8	$1 \le m \le n \le 2 \times 10^3$	$0 \le k \le 100; 1 \le h_i \le 5 \times 10^3$
9,10,11,12		$0 \le k \le 5 \times 10^3; 1 \le h_i \le 5 \times 10^3$
13,14	$1 \le m \le n \le 2 \times 10^3$	$0 \le k \le 10^5; 1 \le h_i \le 10^5$
15,16	$1 \le m \le n \le 10^5$	$0 \le k \le 100; 1 \le h_i \le 10^5$
17,18,19,20	$1 \le m \le n \le 10^5$	$0 \le k \le 10^5; 1 \le h_i \le 10^5$

```
1 cnt[100001] = {0}
 2 \text{ for i} = 1 \text{ to n}
       input(h[i])
      cnt[h[i]]++
      sum = 0
       start = max(0, h[i] - k)
       for j = 0 to k-1
           sum += cnt[start + j]
       for j = k to min(2*k, 100000-start)
           sum += cnt[start + j]
10
11
           if (sum >= m)
               output(i)
12
13
               exit
14
           sum -= cnt[start + j - k]
15 output("impossible")
```

100分解法:二分答案

测试点编号	n, m	h_i, k
1,2	$1 \le m \le n \le 100$	$k = 0; 1 \le h_i \le 100$
3,4		$0 \le k \le 50; 1 \le h_i \le 100$
5,6,7,8	$1 \le m \le n \le 2 \times 10^3$	$0 \le k \le 100; 1 \le h_i \le 5 \times 10^3$
9,10,11,12		$0 \le k \le 5 \times 10^3; 1 \le h_i \le 5 \times 10^3$
13,14	$1 \le m \le n \le 2 \times 10^3$	$0 \le k \le 10^5; 1 \le h_i \le 10^5$
15,16	$1 \le m \le n \le 10^5$	$0 \le k \le 100; 1 \le h_i \le 10^5$
17,18,19,20	$1 \le m \le n \le 10^5$	$0 \le k \le 10^5; 1 \le h_i \le 10^5$

- 显然x是否符合要求满足单调性: 多加 几个人后仍然能找到符合要求的人
- 因此可以对答案x进行二分查找

OK

100分解法:二分答案

```
• 复杂度为O((n+L)\log n)
bool is0k(int x)
                         1 = 1
   cnt[100001] = {0}
   for i = 1 to x
                         r = n + 1
       cnt[h[i]]++
                         while (l < r)
   sum = 0
                                mid = (1 + r) / 2
                                if (isOk(mid))
   for i = 0 to k-1
       sum += cnt[i]
                                    r = mid
   for i = k to 100000
                               else l = mid + 1
                           if (1 == n + 1)
       sum += cnt[i]
       if (sum >= m)
                                output("impossible")
           return true else
       sum -= cnt[i-k]
                                output(1)
   return false
```

2 扫雷 (MINE)

太长不看版:大模拟,没别的了

- 写一个扫雷模拟程序
- · 游戏(未失败)过程中方块可能的3种 状态:
 - 未探明
 - 已插旗
 - 已探明

- 实现以下四种操作:
 - Flag: 插上/撤销一面旗帜,可能输出结果为swept/success/cancelled
 - Sweep:对方块进行扫雷,可能输出结果为swept/flagged/扫雷结果
 - DSweep:对已探明方块八连通的未探明方块进行扫雷,可能输出结果为not swept/failed/扫雷结果
 - · Quit: 放弃并退出

(下一页再 讲扫雷和扫 雷结果)

- 对(x,y)进行扫雷的步骤:
 - · 首先判断(x,y)是否为地雷,如果是,则扫雷失败,输出boom,并结束游戏
 - 否则标记(x, y)为已探明,令它显示相邻方块的地雷总数
 - 如果相邻方块中没有地雷,则自动对相邻的未探明和已插旗方块进行扫雷(先清除旗帜信息)
 - 扫雷(全部)结束后输出新探明的方块总数,以及它们的信息

- 游戏结束
 - (除Quit操作外的)所有操作结束时,都应检查游戏是否结束
 - 一旦发现游戏结束,就立刻忽略之后的所有输入,并输出结果信息
- 游戏可能结果
 - · 游戏胜利: 所有没有地雷的方块均被探明, 输出finish
 - 扫雷失败: 扫雷过程中踩到雷,输出game over
 - 退出游戏:因为Quit操作而退出,输出give up
- 最后输出行动次数

样例I

- n = m = 3
- 只有一颗雷

• 输入: Sweep I I

- 输入: Sweep I I
- 输出
 - 6 cell(s) detected
 - 110
 - 121
 - 210
 - 22I
 - 3 1 0
 - 32I

• 输入: DSweep I 2

• 输出: failed

• 输入: Flag I 3

• 输入: Flag I 3

• 输出: success

• 输入: Flag 2 3

• 输出: success

• 输入: DSweep I 2

• 输出: failed

• 输入: Sweep I 3

• 输出: flagged

• 输入: Flag | |

• 输出: swept

• 输入: DSweep I 3

• 输出: not swept

• 输入: Flag I 3

• 输入: Flag I 3

• 输出: cancelled

• 输入: DSweep I 2

- 输入: DSweep I 2
- 输出:
 - I cell(s) detected
 - 131

• 输入: DSweep I 2

• 输出: no cell detected

• 输入: Sweep 3 3

- 输入: Sweep 3 3
- 输出:
 - I cell(s) detected
 - 33I
 - finish
 - total step 12
- 输入: Quit

样例2

- n = m = 5
- 两颗雷

样例2 - 操作1

• 输入: Sweep 5 5

样例2 - 操作1

• 输入: Sweep 5 5 • 3 5 0

• 输出:

• 10 cell(s) detected • 4 5 0

• 54I

• 550

• |4|

• 150

• 24I

• 250

• 342

• 输入: Sweep 5 5

• 输出: swept

• 输入: Flag 3 3

• 输入: Flag 3 3

• 输出: success

• 输入: DSweep 4 4

- 输入: DSweep 4 4
- 输出:
 - boom
 - game over
 - total step 4
- 输入: Quit

样例3

- n = 1, m = 16
- 两颗雷

样例3 - 操作1

• 输入: Sweep I 7

样例3 - 操作1

- 输入: Sweep I 7
- 输出:
 - 5 cell(s) detected
 - 161
 - 170
 - 180
 - 190
 - 1101

样例3 - 操作2

- 输入: Quit
- 输出:
 - give up
 - total step I
- 输入: Sweep I I

数据范围

- $n, m \le 1000, q \le 60000$
- 性质A: 保证只有Sweep操作和Quit操作
- 性质B: 保证没有DSweep操作
- 请不要使用过于缓慢的输出方式

测试点	n	m	q	性质
1 ~ 2	≤ 10	≤ 10	≤ 60	A
$3 \sim 4$	≤ 10	≤ 10	≤ 60	В
$5 \sim 6$	≤ 10	≤ 10	≤ 60	无
7 ~ 8	=1	≤ 1000	≤ 1000	A
$9 \sim 10$	=1	≤ 1000	≤ 1000	В
11 ~ 12	=1	≤ 1000	≤ 1000	无
$13 \sim 14$	≤ 300	≤ 300	≤ 8000	A
$15 \sim 16$	≤ 300	≤ 300	≤ 8000	В
$17 \sim 19$	≤ 300	≤ 300	≤ 8000	无
20	≤ 1000	≤ 1000	≤ 60000	无

100分解法:模拟

- 记录:
 - 每个方格的状态
 - 剩余未探明空白方格数量
- 更新信息
- · 扫雷过程: BFS
- 游戏结束条件:
 - Quit
 - 扫雷过程中踩到雷
 - 探明所有未探明方格

· isMine: 是否为地雷

· swept: 是否已探明

· flagged: 是否已插旗

• surroundMines: 周

围地雷数量

• surroundFlags: 周围

旗帜数量

100分解法:模拟

- · 需要注意的几点:
 - 输入输出的细节
 - 扫雷时如果发现周围没有雷,则除了对相邻未探明方块扫雷外,已插旗(但是插错了)的方块也需要进行扫雷(先把旗子拿掉)
 - 如果扫雷的过程写成递归DFS,会爆栈(过不了最后一个点)
 - 使用速度>=scanf/printf的方法进行输入输出

3 多项式求和 (POLYNOMIAL)

太长不看版:杨辉三角+矩阵快速幂递推

题意

• 求

$$S(n) = \sum_{k=0}^{n} a^{k} \sum_{i=0}^{m} b_{i} k^{i}$$

模 $10^{9} + 7$ 的结果

• $1 \le n, a, b_i \le 10^9, 1 \le m \le 100$

测试点	n	m	a
$1 \sim 2$	≤ 1000	≤ 10	$\leq 10^9$
3	$\leq 10^{9}$	= 1	=1
4	$\leq 10^{9}$	=2	=1
5	$\leq 10^{9}$	=3	$\leq 10^9$
6	$\leq 10^{9}$	=5	=1
$7 \sim 8$	$\leq 10^{9}$	≤ 20	=1
9	$\leq 10^{9}$	≤ 50	$\leq 10^9$
10	$\leq 10^{9}$	≤ 100	$\leq 10^9$

20分解法:暴力

測试点 n m a $1 \sim 2$ ≤ 1000 ≤ 10 $\leq 10^9$ 3 $\leq 10^9$ $= 1$ $= 1$ 4 $\leq 10^9$ $= 2$ $= 1$ 5 $\leq 10^9$ $= 3$ $\leq 10^9$ 6 $\leq 10^9$ $= 5$ $= 1$ $7 \sim 8$ $\leq 10^9$ ≤ 20 $= 1$ 9 $\leq 10^9$ ≤ 50 $\leq 10^9$ 10 $\leq 10^9$ ≤ 100 $\leq 10^9$				
$3 \leq 10^9 = 1 = 1$ $4 \leq 10^9 = 2 = 1$ $5 \leq 10^9 = 3 \leq 10^9$ $6 \leq 10^9 = 5 = 1$ $7 \sim 8 \leq 10^9 \leq 20 = 1$ $9 \leq 10^9 \leq 50 \leq 10^9$	测试点	n	m	а
$4 \leq 10^9 = 2 = 1$ $5 \leq 10^9 = 3 \leq 10^9$ $6 \leq 10^9 = 5 = 1$ $7 \sim 8 \leq 10^9 \leq 20 = 1$ $9 \leq 10^9 \leq 50 \leq 10^9$	1 ~ 2	≤ 1000	≤ 10	$\leq 10^{9}$
$5 \leq 10^9 = 3 \leq 10^9$ $6 \leq 10^9 = 5 = 1$ $7 \sim 8 \leq 10^9 \leq 20 = 1$ $9 \leq 10^9 \leq 50 \leq 10^9$	3	$\leq 10^9$	= 1	= 1
$6 \leq 10^9 = 5 = 1$ $7 \sim 8 \leq 10^9 \leq 20 = 1$ $9 \leq 10^9 \leq 50 \leq 10^9$	4	$\leq 10^{9}$	=2	=1
$7 \sim 8$ $\leq 10^9$ ≤ 20 = 1 9 $\leq 10^9$ ≤ 50 $\leq 10^9$	5	$\leq 10^{9}$	=3	$\leq 10^9$
$9 \leq 10^9 \leq 50 \leq 10^9$	6	$\leq 10^{9}$	=5	=1
	7 ~ 8	$\leq 10^9$	≤ 20	=1
$10 \leq 10^9 \leq 100 \leq 10^9$	9	$\leq 10^9$	≤ 50	$\leq 10^9$
	10	$\leq 10^9$	≤ 100	$\leq 10^9$

• 直接按
$$S(n)$$
的公式进行求和
$$S(n) = \sum_{k=0}^{n} a^k \sum_{i=0}^{m} b_i k^i$$

20分解法:暴力

测试点	n	m	а
1 ~ 2	≤ 1000	≤ 10	$\leq 10^9$
3	$\leq 10^9$	= 1	=1
4	$\leq 10^{9}$	=2	=1
5	$\leq 10^{9}$	=3	$\leq 10^9$
6	$\leq 10^{9}$	=5	=1
7 ~ 8	$\leq 10^9$	≤ 20	=1
9	$\leq 10^9$	≤ 50	$\leq 10^9$
10	$\leq 10^9$	≤ 100	$\leq 10^{9}$

•
$$S(n) = \sum_{k=0}^{n} a^k \sum_{i=0}^{m} b_i k^i$$

• 复杂度为0(nm²)

```
1 S = 0
2 for k = 0 to n
3     S1 = 0
4     for i = 0 to m
5         S1 += b[i] * k^i
6     S += a^k * S1
```

40分解法:暴力+等幂求和公式

测试点	n	m	а
1 ~ 2	≤ 1000	≤ 10	$\leq 10^{9}$
3	$\leq 10^{9}$	= 1	= 1
4	$\leq 10^{9}$	=2	= 1
5	$\leq 10^9$	= 3	$\leq 10^{9}$
6	$\leq 10^{9}$	=5	=1
7 ~ 8	$\leq 10^9$	≤ 20	=1
9	$\leq 10^9$	≤ 50	$\leq 10^9$
10	$\leq 10^9$	≤ 100	$\leq 10^9$

- 测试点3-4满足 $a = 1, m \le 2$
- 此时

$$S(n) = \sum_{k=0}^{n} a^{k} \sum_{i=0}^{m} b_{i} k^{i} = \sum_{k=0}^{n} \sum_{i=0}^{m} b_{i} k^{i}$$

$$= \sum_{i=0}^{m} b_{i} \sum_{k=0}^{n} k^{i}$$

$$= b_{0} \sum_{k=0}^{n} k^{0} + b_{1} \sum_{k=0}^{n} k^{1} + b_{2} \sum_{k=0}^{n} k^{2}$$

40分解法:暴力+等幂求和公式

• 因此可以推导出计算公式:

$$S(n) = b_0(n+1) + b_1 \frac{n(n+1)}{2} + b_2 \frac{n(n+1)(2n+1)}{6}$$

- 注意: 取模和除法的顺序
- 乘法逆元: 费马小定理/扩展欧几里得算法

测试点	n	m	a
$1 \sim 2$	≤ 1000	≤ 10	$\leq 10^{9}$
3	$\leq 10^{9}$	= 1	= 1
4	$\leq 10^{9}$	=2	= 1
5	$\leq 10^{9}$	=3	$\leq 10^{9}$
6	$\leq 10^9$	=5	= 1
7 ~ 8	$\leq 10^{9}$	≤ 20	=1
9	$\leq 10^{9}$	≤ 50	$\leq 10^{9}$
10	$\leq 10^{9}$	≤ 100	$\leq 10^9$

- 测试点3-4, 6-8满足a = 1, $m \le 20$
- 此时仍有

$$S(n) = \sum_{k=0}^{n} a^{k} \sum_{i=0}^{m} b_{i} k^{i}$$

$$= \sum_{k=0}^{n} \sum_{i=0}^{m} b_{i} k^{i}$$

$$= \sum_{i=0}^{n} b_{i} \sum_{k=0}^{n} k^{i}$$

• 平方和公式的一种推导:

$$(n+1)^{3} -n^{3} = 3n^{2} +3n +1$$

$$((n-1)+1)^{3} -(n-1)^{3} = 3(n-1)^{2} +3(n-1) +1$$

$$\vdots & \vdots & \vdots & \vdots & \vdots$$

$$(2+1)^{3} -2^{3} = 3 \cdot 2^{2} +3 \cdot 2 +1$$

$$(1+1)^{3} -1^{3} = 3 \cdot 1^{2} +3 \cdot 1 +1$$

• 求和可得:

$$(n+1)^3 - 1^3 = 3(1^2 + 2^2 + \dots + n^2) + 3(1+2+\dots + n) + n$$

•
$$i \exists T(m) = \sum_{i=0}^{n} i^m$$
, $i \exists T(2) = \frac{(n+1)^3 - 3T(1) - T(0)}{3}$

• 将上述推导过程一般化:

$$(n+1)^{m+1} - n^{m+1} = \binom{m+1}{1} n^m + \binom{m+1}{2} n^{m-1} + \dots + 1$$

$$((n-1)+1)^{m+1} - (n-1)^{m+1} = \binom{m+1}{1} (n-1)^m + \binom{m+1}{2} (n-1)^{m-1} + \dots + 1$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad + \dots \vdots$$

$$(1+1)^{m+1} - 1^{m+1} = \binom{m+1}{1} 1^m + \binom{m+1}{2} 1^{m-1} + \dots + 1$$

• 求和可得:

$$T(m) = \sum_{i=0}^{n} i^{m} \qquad (n+1)^{m} - 1^{m} = {m+1 \choose 1} T(m) + {m+1 \choose 2} T(m-1) + \dots + (T(0)-1)$$

$$T(m) = \sum_{i=0}^{n} i^{m}$$

代入S(n)公式中:

$$S(n) = \sum_{k=0}^{n} a^{k} \sum_{i=0}^{m} b_{i} k^{i} = \sum_{k=0}^{n} \sum_{i=0}^{m} b_{i} k^{i} = \sum_{i=0}^{m} b_{i} \sum_{k=0}^{n} k^{i} = \sum_{i=0}^{m} b_{i} T(i)$$

• 求组合数:利用组合数性质递推

$$\binom{n}{m} = \binom{n-1}{m} + \binom{n-1}{m-1}$$

• 复杂度: $O(m^2)$

```
1 T[0] = n + 1
2 for i = 1 to m
3     T[i] = (n + 1)^i
4     for j = 0 to i-1
5         T[i] -= c[i+1][j] * T[j]
6     T[i] /= i + 1
7 S = 0
8 for i = 0 to m
9     S += b[i] * T[i]
```

80分解法: 矩阵快速幂

测试点	n	m	a
$1 \sim 2$	≤ 1000	≤ 10	$\leq 10^9$
3	$\leq 10^{9}$	= 1	=1
4	$\leq 10^{9}$	=2	=1
5	$\leq 10^{9}$	=3	$\leq 10^9$
6	$\leq 10^{9}$	=5	=1
$7 \sim 8$	$\leq 10^{9}$	≤ 20	=1
9	$\leq 10^{9}$	≤ 50	$\leq 10^{9}$
10	$\leq 10^{9}$	≤ 100	$\leq 10^9$

• 改写
$$S(n)$$

$$S(n) = \sum_{k=0}^{n} a^{k} \sum_{i=0}^{m} b_{i} k^{i}$$

$$= \sum_{k=0}^{n} \sum_{i=0}^{m} a^{k} b_{i} k^{i} = \sum_{i=0}^{m} b_{i} \sum_{k=0}^{n} a^{k} k^{i}$$

•
$$i \exists t(i,k) = a^k k^i$$

•
$$i \exists T(i) = \sum_{k=0}^{n} a^k k^i = \sum_{k=0}^{n} t(i, k)$$

•
$$S(n) = \sum_{i=0}^{m} b_i T(i)$$

•
$$T(i) = \sum_{k=0}^{n} t(i,k)$$

• $S(n) = \sum_{i=0}^{m} b_i T(i)$

80分解法: 矩阵快速幂

•

$$t(i, k + 1) = a^{k+1}(k+1)^{i}$$

$$= a^{k+1} \begin{bmatrix} i \\ i \end{pmatrix} k^{i} + {i \choose i-1} k^{i-1} + \dots + {i \choose 0} 1$$

$$= a \begin{bmatrix} i \\ i \end{pmatrix} a^{k} k^{i} + {i \choose i-1} a^{k} k^{i-1} + \dots + {i \choose 0} a^{k} \cdot 1$$

$$= a \begin{bmatrix} i \\ i \end{pmatrix} t(i, k) + {i \choose i-1} t(i-1, k) + \dots + {i \choose 0} t(0, k)$$

•
$$T(i) = \sum_{k=0}^{n} t(i,k)$$

• $S(n) = \sum_{i=0}^{m} b_i T(i)$

80分解法: 矩阵快速幂

•
$$t(i, k + 1) = a \begin{bmatrix} i \\ i \end{bmatrix} t(i, k) + i \\ i \\ i - 1 \end{bmatrix} t(i - 1, k) + \dots + i \\ i \\ 0 \end{bmatrix} a \quad 0 \quad \dots \quad 0$$

$$\begin{bmatrix} t(0, k + 1) \\ t(1, k + 1) \\ \vdots \\ t(i, k + 1) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} a \quad 0 \quad \dots \quad 0 \\ 1 \\ 0 \end{bmatrix} a \quad 0 \quad \dots \quad 0$$

$$\vdots \quad \vdots \quad \ddots \quad \vdots$$

$$\begin{bmatrix} i \\ 0 \\ 0 \end{bmatrix} a \quad i \\ 1 \end{bmatrix} a \quad \dots \quad i \\ i \\ 0 \end{bmatrix} a \quad 0$$

• 矩阵快速幂求t(i,k)

•
$$T(i) = \sum_{k=0}^{n} t(i,k)$$

• $S(n) = \sum_{i=0}^{m} b_i T(i)$

80分解法: 矩阵快速幂

• 把矩阵改造一下

$$T(i) = \begin{bmatrix} t(0,k+1) \\ t(1,k+1) \\ \vdots \\ t(i,k+1) \\ k \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{pmatrix} a & 0 & \cdots & 0 & 0 \\ 0 \\ 0 \end{pmatrix} a & \begin{pmatrix} 1 \\ 1 \end{pmatrix} a & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & 0 \\ \begin{pmatrix} i \\ 0 \end{pmatrix} a & \begin{pmatrix} i \\ 1 \end{pmatrix} a & \cdots & \begin{pmatrix} i \\ i \end{pmatrix} a & 0 \\ \vdots & \vdots & \ddots & \vdots & 0 \\ \begin{pmatrix} i \\ 0 \end{pmatrix} a & \begin{pmatrix} i \\ 1 \end{pmatrix} a & \cdots & \begin{pmatrix} i \\ i \end{pmatrix} a & 0 \\ \vdots & \vdots & \ddots & \vdots & 0 \\ k-1 \\ 0 & 0 & \cdots & 1 & 1 \end{bmatrix}$$

```
• t(i,k) = a^k k^i
```

•
$$T(i) = \sum_{k=0}^{n} t(i,k)$$

•
$$S(n) = \sum_{i=0}^{m} b_i T(i)$$

80分解法: 矩阵快速幂

• 复杂度: $O(m^4 \log n)$

```
1 S = 0
2 for i = 0 to m
     A = [c[0][0]*a, 0, ...,
                                          0, 0;
          c[1][0]*a, c[1][1]*a, ...,
                                          0, 0;
                                           0, 0;
          c[i][0]*a, c[i][1]*a, ..., c[i][i]*a, 0;
                                           1, 1]
                  0,
                         0, ...,
      t = [1; 0; ...; 0; 0]
     A = quick_pow(A, n+1)
10 t = A * t
   S += b[i] * t[i+1]
11
```

•
$$t(i,k) = a^k k^i$$

•
$$T(i) = \sum_{k=0}^{n} t(i,k)$$

• $S(n) = \sum_{i=0}^{m} b_i T(i)$

100分解法: 改进的矩阵快速幂

测试点	n	m	а
$1 \sim 2$	≤ 1000	≤ 10	$\leq 10^9$
3	$\leq 10^{9}$	= 1	=1
4	$\leq 10^{9}$	=2	=1
5	$\leq 10^{9}$	=3	$\leq 10^9$
6	$\leq 10^{9}$	=5	=1
7 ~ 8	$\leq 10^{9}$	≤ 20	=1
9	$\leq 10^9$	≤ 50	$\leq 10^9$
10	$\leq 10^{9}$	≤ 100	$\leq 10^{9}$

•
$$t(0,0), t(1,0), \dots, t(i,0)$$

•
$$t(0,1), t(1,1), \dots, t(i,1)$$

•
$$t(0,k), t(1,k), \dots, t(i,k)$$

$$S(n) = \sum_{i=0}^{m} b_i T(i) = \sum_{i=0}^{m} b_i \sum_{k=0}^{n} t(i,k)$$

$$= \sum_{i=0}^{m} \sum_{k=0}^{n} b_i t(i,k)$$

• S(n) = $\sum_{i=0}^{m} \sum_{k=0}^{n} b_i t(i,k)$

100分解法: 改进的矩阵快速幂

• 把矩阵再改造一下

$$\begin{bmatrix} t(0,k+1) \\ t(1,k+1) \\ \vdots \\ t(m,k+1) \end{bmatrix} = \begin{bmatrix} \binom{0}{0}a & 0 & \cdots & 0 & 0 \\ \binom{1}{0}a & \binom{1}{1}a & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & 0 \\ \binom{m}{0}a & \binom{m}{1}a & \cdots & \binom{m}{m}a & 0 \\ b_0 & b_1 & \cdots & b_m & 1 \end{bmatrix} \begin{bmatrix} t(0,k) \\ t(1,k) \\ \vdots \\ t(m,k) \\ \frac{m}{i=0} \sum_{k'=0}^{k-1} b_i t(i,k') \end{bmatrix}$$

```
• t(i,k) = a^k k^i
```

• S(n) = $\sum_{i=0}^{m} \sum_{k=0}^{n} b_i t(i,k)$

100分解法: 改进的矩阵快速幂

• 复杂度: $O(m^3 \log n)$

参考文献

• 扫雷截图来自http://minesweeperonline.com/