МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

Институт информационных технологий, математики и механики
Кафедра дифференциальных уравнений, математического и численного
анализа

Направление подготовки: «Фундаментальная информатика и информационные технологии»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ

на тему:

«Численное решение задачи Коши для ОДУ»

381706-2 Паузин Леонид Павлович
Подпись
Проверил: Старший преподаватель Эгамов Альберт Исмаилович
Подпись

Выполнил: стулент группы

Нижний Новгород 2020

Содержание

1. Введение	3
2. Выбор модели	
3.Выбор метода	
4.Выбор языка	
5.Руководство пользователя	6
6.Вывод	7
7.Литература	8

1. Введение

Решение дифференциальных уравнений является важной частью многих естественнонаучных исследований и инженерных разработок. С помощью ДУ описывается механическое движение, вытекание жидкостей, численность популяций в природе и многое другое.

Для моделирования поведения конкретной системы нужно решить задачу Коши – найти частное решение дифференциального уравнения, удовлетворяющее некоторым начальным условиям.

Численное решение задачи Коши можно получить, используя метод Рунге-Кутты.

Наиболее часто используется так называемый классический метод Рунге-Кутты, имеющий четвертый порядок точности.

2. Выбор модели

Для данной лабораторной работы была выбрана математическая модель Лотки-Вольтерры, являющаяся системой «хищник-жертва».

При встречах хищников и жертв (частота которых прямо пропорциональна величине) происходит убийство жертв с коэффициентом, сытые хищники способны к воспроизводству с коэффициентом. С учётом этого, система уравнений модели такова:

$$\left\{ egin{aligned} rac{dx}{dt} &= lpha x - eta xy = (lpha - eta y)x \ rac{dy}{dt} &= -\gamma y + \delta xy = (\delta x - \gamma)y \end{aligned}
ight. .$$

 α - коэффициент рождаемости жертв, x- величина популяции жертв, $\frac{dx}{dt}$ - скорость прироста популяции жертв.

 γ - коэффициент убыли хищников, y - величина популяции хищников, $\frac{dy}{dt}$ - скорость прироста популяции хищников.

3.Выбор метода

Для численного решения Задачи Коши для ОДУ модели Лотки-Вольтерры будет использоваться метод Рунге-Кутта 4-ого порядка точности.

4.Выбор языка

В качестве языка программирования был выбран Python. Для него уже есть готовые библиотеки, необходимые для выполнения данной задачи.

5.Руководство пользователя

Рисунок 1

Для построения фазовой кривой надо ввести нужные вам значения и нажать кнопку «Добавить».

Рисунок 2

Для очистки надо нажать кнопку «Очистить».

6.Вывод

В ходе выполнения лабораторной работы был изучен и реализован метод Рунге-Кутта. Была изучена модель Лотки — Вольтерры. И были получены навыки разработки графического интерфейса используя библиотеки в Python

7.Литература

- 1. Самарский А.А., Гулин А.В. Численные методы. М.: Наука, 1989. 432 c
- 2. Статья Википедии https://ru.wikipedia.org/wiki/Moдель Лотки Вольтерры