Multiple Linear Regression

Comparing Regression Lines for Two Groups

We want to relate course evaluation scores (Y) to the beauty score assigned to the instructor (X_1) and the gender of (female v. male).

Questions we could ask:

- 1. Is there a difference in the **mean** *course evaluation score* between *female and male instructors*?
- 2. Is there a linear relationship between course evaluation scores and beauty scores?
- 3. Is there a difference in the mean course evaluation score between female and male instructors, after accounting for the beauty score?
- 4. Is the relationship between beauty score and course evaluation score the same for male and female instructors?

Comparing Regression Lines for Two Groups

We want to relate course evaluation scores (Y) to the beauty score assigned to the instructor (X_1) and the gender of (female v. male).

Is there a difference in the **mean** course evaluation score between female and

male instructors?

L++test

Comparing Regression Lines for Two Groups

We want to relate course evaluation scores (Y) to the beauty score assigned to the instructor (X_1) and the gender of (female v. male).

2. Is there a linear relationship between course evaluation scores and beauty scores?

inference on B, Y = Bot B, X

Comparing Regression Lines for Two Groups

We want to relate course evaluation scores (Y) to the beauty score assigned to the instructor (X_1) and the gender of (female v. male).

3. Is there a difference in the mean course evaluation score between female and male instructors, after accounting for the beauty score?

The Regression Model: Common (Parallel) Slope

Let Gender =
$$\begin{cases} 1, & \text{Male} \\ 0, & \text{Female} \end{cases}$$

ENN(0, 02)

Then,

We have two lines:

Interpretation:

Comparing Regression Lines for Two Groups

We want to relate course evaluation scores (Y) to the beauty score assigned to the instructor (X_1) and the gender of (female v. male).

4. Is the relationship between beauty score and course evaluation score the same for male and female instructors?

Slope + intercept can both vary by gender

The Regression Model: Different Slopes

Let Gender =
$$\begin{cases} 1, & \text{Male} \\ 0, & \text{Female} \end{cases}$$

We have two lines:

Interpretation:

•
$$H_0: \beta_3 = 0 \Rightarrow \text{lines are} // \text{the relationship blue beauty+}$$

score is the same blue genders

•
$$H_0:\beta = 0 \Rightarrow$$
 no diff in any score after accounting for beauty

y = 3.9501+ 0.0306 * beauty g = (3.9501 + -0.1835) + (0.0306+0.0796) * beauty Interpretation OLS Regression Results Dep. Variable: R-squared: Model: Adj. R-squared: Method: Least Squares F-statistic: Prob (F-statistic): 11.74 Tue, 25 Jul 2023 Date: Time: 18:00:28 Log-Likelihood: -357.35 Ho: B3=0 No. Observations: 463 Df Residuals: 459 Df Model: Covariance Type: nonrobust Ha: B3 +0

	coef	std err	t	P> t	[0.025	0.975]
Intercept gender[T.male] bty_avg bty_avg:gender[T.male]	3.9501 -0.1835 0.0306 0.0796	0.118 0.153 0.024 0.032	33.475 -1.196 1.277 2.452	0.000 0.232 0.202 0.015	3.718 -0.485 -0.017 0.016	4.182 0.118 0.078 0.143
Omnibus: Prob(Omnibus): Skew: Kurtosis:	26.63 0.00 -0.62 2.89	0 Jarque 4 Prob(J	,		1.282 30.276 2.67e-07 42.3	

1100													
[1]	Standard	Errors	assume	that	the	covariance	matrix	of	the	errors	is	correctly	specified.
			df	sum_s	pa	mean_sq	1	F	PR	(>F)			

	df	sum_sq	mean_sq	F	PR(>F)
gender	1.0	2.260213	2.260213	8.174440	0.004442
bty_avg	1.0	5.819173	5.819173	21.046010	0.000006
bty_avg:gender	1.0	1.662530	1.662530	6.012817	0.014574
Residual	459.0	126.912425	0.276498	NaN	NaN

evidence to support diff slopes blw

Effects of Multicollinearity

• If predictors are highly correlated amongst themselves, then the estimated regression coefficients and tests can be:

unreliably

• The regression tests can be difficult to interpret individually

how do I understand the effect of X, on Y holding Xz constant when X, + Xz are highly correlated?

- One variable alone might work just as well as many
- Explore the potential for multicollinearity by examining scatterplots of the response and the predictors (matrix plot)

Variance Inflation Factor (VIF)

- The variance of the coefficients of correlated predictors is inflated
- The Variance Inflation Factor (VIF) reflects the association

 b/w a predictor + all other predictors
- For each Predictor X_i , regress X_i onto the other predictors. Record R_i^2 .

Then, for the i^{th} predictor,

$$VIF_i = \frac{1}{1 - R_i^2}$$

• Be suspicious of multicollinearity when VJF > 5 $R^3 > 80\%$