Parsimonious Neural Network Abduction

Preprint · June 2025

DOI: 10.13140/RG.2.2.15695.80804

CITATIONS

0

1 author:

Gary Nan Tie

Mu Risk LLC

92 PUBLICATIONS 27 CITATIONS

SEE PROFILE

Parsimonious Neural Network Abduction Gary Nan Tie, Jun 22, 2025

Abstract

For hypotheses whose effect is manifested by observations, abduction seeks to explain a given observation by finding a hypothesis whose effect is that observation.

Abductive reasoning has a fibration semantics [1] that can be implemented by neural networks [2]; a step towards artificial general intelligence.

In this note we introduce a parsimonious choice of explanation depending on one's utility function.

An arrow p: K -> V in a category is said to be a Fibration with respect to a class of arrows M when For any m & M and 2-cell m (FB) p, that is solid commutative square

there exists dotted lifting σ making both triangles commute. Now let the category arrows be newed networks on finite data sets. Learn $T: V \to K$ from I/O $\{(g(q), \sigma(q))\}_{q \in Q}$ subject to $T\circ g = \sigma$, then $(p\circ T)\circ g \approx g$, that is $p\circ T|_{g(Q)} \approx 1_{g(Q)}$, which is to say, on $g(Q) \subseteq V$, affect p is explained by abduction T, when p is a fibration, (and assume lifting σ is learnable).

Let analogies Ap, be a finite subset of

{ m => p | meM, span (m,f), pa Fibration wit m}

with corresponding abductions

T = { T: V -> K | Tog = o, oa lifting from A}

Lot L: V×V -> IR be your loss function.

For TET, let average discrepancy

 $M_{T} \stackrel{\triangle}{=} \frac{1}{|g(Q)|} \sum_{V \in g(Q)} L(p(T(V)), V)$

Define T & T' iff MT & MT,

With respect to analogies A

T = win {TE T}

is our parsiomonius explanation of effect p.

Summary:

For neural networks Q -> V

when p is a Fibration with respect to M, learned liftings to For analogies (2-cells), induce abductions T. The abduction with the least average discrepancy is chosen to our persimonius explanation of effect p, according to our utility.

References

[1] 'Fibrations explain all you need!'Fibrations, Abduction and Attention Gary Nan Tie, Mar 4, 2025DOI: 10.13140/RG.2.2.35984.52488

[2] 'Neural Network Abduction' Gary Nan Tie, Jun 13, 2025 DOI: 10.13140/RG.2.2.18506.07360/1