PDAs and CFLs:

Theorem: Herhangi bir bağlamdan bağımsız L dili için,

L = L(M) eşitliğini sağlayan bir M NPDA vardır.

PDAs and CFLs:

Proof:

- L bir Context Free Dil ise, bu dili oluşturan bir G Context Free Gramer vardır.
- Bir CFG'yi her zaman Greibach Normal Form'a (GNF) dönüştürebiliriz.
- Greibach Normal Formdaki gramerin soldan türetimlerini (leftmost derivations) gösteren bir NPDA her zaman oluşturulabilir.

Greibach Normal Form:

Greibach Normal Form (GNF) for Context-Free Grammars requires the Context-Free Grammar to have only productions of the following form:

 $A \rightarrow ax$

where $a \in T$ and $x \in V^*$. That is,

Nonterminal → one Terminal concatenated with a string of 0 or more Nonterminals

Convert the following Context-Free Grammar to GNF:

 $S \rightarrow abSb \mid aa$

Greibach Normal Form:

 $S \rightarrow abSb \mid aa$

- İlk olarak $S \to aa$ kuralının sonundaki terminal sembol yerine $S \to aA$ yazıp, yeni bir kural oluşturalım $A \to a$.
- $S \rightarrow abSb$ kuralında da bSb yerine $S \rightarrow aX$ yazalım ve $X \rightarrow bSb$ yeni kural oluşturalım.
- Unfortunately, this rule itself needs fixing. Replace the rule with $X \rightarrow bSB$ by creating a new rule, $B \rightarrow b$.

Greibach Normal Form:

So, starting with this set of production rules:

$$S \rightarrow abSb \mid aa$$

we now have: (GNF)

$$S \rightarrow aA / aX$$

$$X \rightarrow bSB$$

$$A \rightarrow a$$

$$B \rightarrow b$$

(other solutions are possible)

Bir context-free grammar'i eşdeğer PDA'ya dönüştürmek için:

- 1. Grameri Greibach Normal Form (GNF)'a dönüştürün.
- 2. PDA için, S (the Start symbol in the grammar)'i yığına atan bir geçiş kuralı(transition rule) yazın.
- 3. Gramerdeki her türetim kuralı (production rule) için, eşdeğer geçiş kuralını yazın.
- 4. Girdi dizgisindeki semboller bittiğinde otomatı kabul durumuna götürecek ve yığın da boş olacak şekilde bir geçiş kuralı yazın.
- 5. Boş dizgi gramer tarafından tanımlanan dil tarafından kabul ediliyorsa, otomatı başlangıç durumundan kabul durumuna direk götüren bir geçiş kuralı yazılır.

How do you write the transition rules? It's really simple:

1. Every rule in the GNF grammar has the following form:

One variable \rightarrow one terminal + 0 or more variables

Example: $A \rightarrow bB$

2. Her geçiş kuralının sol tarafı, bir sonraki duruma geçmeden önce sağlanması gereken koşulları gösteren bir üçlüdür.

Bu üçlü, o anki durum, girdi dizgisinden o anda okunan sembol, yığının en üstünden o anda çıkarılan semboldür.

Bu nedenle geçiş kuralında bu üçlü şu şekilde yazılır:

o anki durum, gramer kuralındaki terminal ve gramer kuralında soldaki değişken

Our grammar rule: $A \rightarrow bB$

Geçiş kuralının sol tarafı bu şekilde oluşturulur (precondition): $\delta(q_1, b, A)$

3. Geçiş kuralının sağ tarafı post-condition (sağlanması istenen koşul) olarak adlandırılır. Post-condition da gidilecek durum ve yığına atılacak sembol(ler)den oluşur. Böylece bu geçiş kuralı için post-condition, gidilecek durum ve gramer kuralının sağ tarafındaki değişken(ler) olacaktır.

Example: $\delta(q_1, b, A) = \{(q_1, B)\}$

Eğer gramer kuralının sağ tarafında hiçbir değişken yok ise, yığına hiçbirşey atılmaz. Geçiş kuralında, λ konur.

Example: $\mathbf{A} \rightarrow \mathbf{a}$ [no variable here] would be represented in transition rule form as:

$$\delta(q_1, a, A) = \{(q_1, \lambda)\}$$

How do you know which state to move to? It's simple:

1. We always start off with this special transition rule:

$$\delta(q_0, \lambda, \#) = \{(q_1, S\#)\}$$

This rule says:

- a. q₀ durumundan başlanır.
- b. Yığının en üstündeki eleman alınır. Eğer # (the empty stack symbol) ise, o halde
- c. Girdi dizgisinden bir şey okunmadan q_1 durumuna geçilir ve yığına tekrar # atılır ve daha sonra S (the Start symbol in the grammar) yığına atılır.

2. We always end up with this special transition rule:

$$\delta(q_1, \lambda, \#) = \{(q_2, \#)\}$$

This rule says:

- a. q₁ durumundan başlanır.
- b. Yığının en üstündeki eleman alınır. Eğer bu # (the empty stack symbol) ise bu durumda,
- c. Girdi dizgisinden birşey okunmadan q₂ durumuna geçilir ve yığına # atılır.

 q_1 durumunda olmak için yığına daha önce birşey atmış olmamız gerekmektedir. q_1 durumunda iken yığının en üstündeki elemanı alırsak ve boş yığın sembolünü (#) bulursak, bu bize dizginin işlenmesinin bittiğini gösterir. Böylece q_2 durumuna gidebiliriz.

3. Diğer geçiş kurallarının hepsi bizi q₁ durumunda bırakır.

```
Örnek: GNF gramerini ele alalım: G = (V, T, S, P)
   V = \{S, A, B, C\},\
   T = \{a, b, c, \},\
   S = S,
   ve P:
       S \rightarrow aA
       A \rightarrow aABC \mid bB \mid a
       B \rightarrow b
       C \rightarrow c
```

Bu grameri bir PDA'ya dönüştürelim.

Gramer kuralı:

(always)

$$S \rightarrow aA$$

$$A \rightarrow aABC \mid a$$

$$A \rightarrow bB$$

$$B \rightarrow b$$

$$C \rightarrow c$$

(always)

PDA geçiş kuralı:

1.
$$\delta(q_0, \lambda, Z) = \{(q_1, SZ)\}$$

2.
$$\delta(q_1, \mathbf{a}, S) = \{(q_1, \mathbf{A})\}$$

3.
$$\delta(q_1, \mathbf{a}, A) = \{(q_1, ABC), (q_1, \lambda)\}$$

4.
$$\delta(q_1, b, A) = \{(q_1, B)\}$$

5.
$$\delta(q_1, \mathbf{b}, B) = \{(q_1, \lambda)\}$$

6.
$$\delta(q_1, c, C) = \{(q_1, \lambda)\}$$

7.
$$\delta(q_1, \lambda, Z) = \{(q_f, \lambda)\}$$

Böylece eşdeğer PDA şu şekilde tanımlanabilir:

M = ({q₀, q₁, q₂}, T, V \cup {Z}, δ , q₀, Z, {q₂}), burada δ yukarda verilen geçiş kuralları kümesidir.

Bu gramer gerekirci midir?

- 1. $\delta(q_0, \lambda, Z) = \{(q_1, SZ)\}$
- 2. $\delta(q_1, a, S) = \{(q_1, A)\}$
- 3. $\delta(q_1, a, A) = \{(q_1, ABC), (q_1, \lambda)\}$
- 4. $\delta(q_1, b, A) = \{(q_1, B)\}$
- 5. $\delta(q_1, b, B) = \{(q_1, \lambda)\}$
- 6. $\delta(q_1, c, C) = \{(q_1, \lambda)\}$
- 7. $\delta(q_1, \lambda, Z) = \{(q_2, Z)\}$

Görüyoruz ki 3 numaralı kural aynı önkoşula ve iki farklı post-condition'a sahiptir. Bu nedenle bu PDA nondeterministic'tir.

aaabc dizgisinin, başlangıç önkoşulu ile başlayarak, bu PDA tarafından nasıl işlendiğine bakalım:

$$(q_0, aaabc, Z)$$
 $\stackrel{1}{\vdash} (q_1, aaabc, SZ)$ $\stackrel{2}{\vdash} (q_1, aabc, AZ)$ $\stackrel{3.1}{\vdash} (q_1, abc, ABCZ)$ $\stackrel{3.2}{\vdash} (q_1, bc, BCZ)$ $\stackrel{3.2}{\vdash} (q_1, bc, BCZ)$ $\stackrel{5}{\vdash} (q_1, c, CZ)$ $\stackrel{6}{\vdash} (q_1, \lambda, Z)$ $\stackrel{6}{\vdash} (q_2, \lambda, \lambda)$

CFG'de buna ait türetim:

$$S \Rightarrow aA \Rightarrow aaABC \Rightarrow aaaBC \Rightarrow aaabC \Rightarrow aaabc$$

Simple example: $G = (\{S, A\}, \{a, b\}, S, \{S \rightarrow aSA \mid a, A \rightarrow aA \mid b\})$ production transition $(always) \qquad \delta(q_0, \lambda, Z) = \{(q_1, SZ)\}$ $S \rightarrow aSA \mid a\lambda \qquad \delta(q_1, a, S) = \{(q_1, SA), (q_1, \lambda)\}$ $A \rightarrow aA \qquad \delta(q_1, a, A) = \{(q_1, A)\}$ $A \rightarrow b\lambda \qquad \delta(q_1, b, A) = \{(q_1, \lambda)\}$ (always) $\delta(q_1, \lambda, Z) = \{(q_f, \lambda)\}$

GNF grammar

$$S \to aSA \mid a$$

$$A \to aA$$

$$A \to b$$

Derivation of w = aaabb

$$S \Rightarrow aSA \Rightarrow$$
 $aaSAA \Rightarrow aaaAA \Rightarrow$
 $aaabA \Rightarrow aaabb$

- Equivalent npda
 - recall: (input, popped, pushed)

• Acceptance of w = aaabb

$$(q_0, aaabb, Z) \vdash (q_1, aaabb, SZ) \vdash (q_1, aabb, SAZ) \vdash (q_1, abb, SAAZ) \vdash (q_1, bb, AAZ) \vdash (q_1, b, AZ) \vdash (q_1, \lambda, Z) \vdash (q_f, \lambda, \lambda)$$

CFG'den PDA oluşturmak için alternatif yaklaşım

G = (V, T, S, P) bir CFG (context-free grammar) olsun. Bu durumda L(M) = G eşitliğini sağlayan bir M yığın yapılı otomat (PDA) vardır.

Bir CFG'den, önce GNF'ye dönüştürmeden, bir NPDA oluşturabilir miyiz? Evet

Alternative Approach to Constructing a PDA from a CFG

Bu yaklaşımda da türetim kurallarının başı ve sonu GNF yöntemi ile aynıdır.

Bu nedenle PDA'mızdaki türetim kurallarında her zaman aşağıdaki 2 türetim kuralı olacaktır:

$$\delta(q_0, \lambda, \#) = \{(q_1, S\#)\}$$

ve

$$\delta(q_1, \lambda, \#) = \{(q_2, \#)\}$$

Alternative Approach to Constructing a PDA from a CFG

Diğer türetim kuralları gramer kurallarından elde edilir:

- Yığının en üstündeki eleman çıkarılırsa (POP) ve bu bir değişken(nonterminal) ise girdi dizgisinden hiçbirşey okunmaz. Bu değişkeni içeren gramer kuralının sağ tarafı yığına atılır.
- Yığının en üstündeki eleman çıkarılırsa (POP) ve bu bir terminal ise, girdi dizgisinin bir sonraki karakteri okunur. Yığına hiçbirşey atılmaz.

Constructing a PDA from a CFG

```
Given G = (V, T, S, P),
construct M = (Q, \Sigma, \Gamma, \delta, q_0, #, F, ), with
Q = \{q_0, q_1, q_2\}
\Gamma = V \cup \Sigma \cup \{\#\} \mid \# \notin V \cup \Sigma
F = q_2
\delta(q_0, \lambda, \#) = \{(q_1, S \#)\}
For A \in V, \delta(q_1, \lambda, A) = \{(q_1, \alpha)\}, where A \rightarrow \alpha
For a \in \Sigma, \delta(q_1, a, a) = \{(q_1, \lambda)\}
\delta(q_1, \lambda, \#) = \{(q_2, \#)\}
```

Constructing a PDA from a CFG

Dil:

$$L = \{x \in \{a, b\}^* \mid n_a(x) > n_b(x)\}$$

Context-free grammar:

$$S \rightarrow a \mid aS \mid bSS \mid SSb \mid SbS$$

Constructing a PDA from a CFG

 $S \rightarrow a \mid aS \mid bSS \mid SSb \mid SbS$

 $M = (Q, \Sigma, \Gamma, q_0, z, A, \delta)$, daha önce tanımladığımız PDA olsun. Türetim kuralları şöyle olacaktır:

Rule #	State	Input	Top of Stack	Move(s)
1	q_0	λ	#	(q ₁ , S#)
2	q_1	λ	S	(q ₁ , a), (q ₁ , aS), (q ₁ , bSS), (q ₁ , SSb), (q ₁ , SbS)
3	q_1	a	a	(q_1, λ)
4	q_1	b	b	(q_1, λ)
5	q_1	λ	#	$(q_2, \#)$

```
baaba dizgisinin işlenmesi:
(q_0, baaba, #) \mid - (q_1, baaba, S#) rule 1
          |- (q<sub>1</sub>, baaba, bSS#) rule 2, 3<sup>rd</sup> alternative
          |- (q<sub>1</sub>, aaba, SS#) rule 4
          |- (q<sub>1</sub>, aaba, aS#) rule 2, 1<sup>st</sup> alternative
          |-(q_1, aba, S#)|
                                            rule 3
          |- (q<sub>1</sub>, aba, SbS#) rule 2, 5<sup>th</sup> alternative
          |-(q_1, aba, abS#)|
                                     rule 2, 1<sup>st</sup> alternative
          |-(q_1, ba, bS\#)|
                                      rule 3
          |-(q_1, a, S#)|
                                      rule 4
                                      rule 2, 1<sup>st</sup> alternative
          |-(q_1, a, a#)|
          |-(q_1, \lambda, \#)|
                                       rule 3
```

rule 5

 $|-(q_2, \lambda, \#)|$

