sine basis 02

Statistics: p-values adjusted for search volume

set-	level	cluster-level				peak-level					mm mm mm		
р	С	p_{FWE-c}	<i>g</i> corrFDR-co	${ m k}_{ m E}$	p _{uncorr}	p _{FWE-c}	g orrFDR-co	<i>T</i> orr	(Z_{\equiv})	p _{uncorr}	1111111	11111	
		1.000	0.791	13	0.274	1.000 1.000	0.994 0.994	2.70 2.43	2.69 2.42	0.004 0.008	-16 -14	12 16	64 56
		1.000	0.791	3 7	0.614	1.000	0.994	2.70	2.69	0.004	6 0	46 -60	-28 10
		1.000 1.000 1.000	0.791	4 3 9	0.554 0.614 0.363	1.000 1.000 1.000	0.994 0.994 0.994	2.69 2.69 2.69	2.68 2.68 2.68	0.004 0.004 0.004	14 -28 -20	4 46 -92	14 34 0
		1.000	0.791	10 7 9	0.337 0.424	1.000	0.994	2.68 2.68		0.004	-48 32	-78 44	4 38
		1.000 1.000 1.000	0.791	-	0.363 0.363 0.392	1.000 1.000 1.000	0.994 0.994 0.994	2.67 2.67 2.67	2.66 2.66 2.66	0.004 0.004 0.004	36 2 12	-16 66 -10	32 4 38
		1.000 1.000 1.000	0.791	1 6 21	0.791 0.461 0.168	1.000 1.000 1.000	0.994 0.994 0.994	2.67 2.67 2.67	2.66 2.66 2.66	0.004 0.004 0.004	-34 -22 -42	-4 -48 -44	-40 42 -40
		1.000	0.791	7 12	0.424 0.293	1.000 1.000	0.994	2.66 2.66		0.004	-46 -34	-60 18	30 36
		1.000 1.000 1.000 1.000	0.791 0.791 0.791	2 10 10 5 2	0.689 0.337 0.337 0.504 0.689	1.000 1.000 1.000 1.000	0.994 0.994 0.994 0.994	2.65 2.65 2.65 2.64 2.64	2.64 2.64 2.63 2.63	0.004 0.004 0.004 0.004 0.004	58 8 26 22 -32	24 -18 34 40 -72	-34 -4 0 40 -36

table shows 3 local maxima more than 8.0mm apart

Height threshold: T = 2.33, p = 0.010 (1.00 Φ) egrees of freedom = [1.0, 498.0]

Extent threshold: k = 0 voxels FWHM = 6.9 6.8 6.9 mm mm mm; 3.4 3.4 3.5 {voxels}

Expected voxels per cluster, <k> = 11.721 Volume: 1655712 = 206964 voxels = 4706.2 resels

Expected number of clusters, <c> = 200.31 Voxel size: 2.0 2.0 2.0 mm mm mm; (resel = 40.73 voxels)

FWEp: 5.084, FDRp: Inf, FWEc: 221, FDRo?45€ 8