$Nombre\ de\ paraules =$

Bits per paraula =

Pregunta 5) (*Objectiu 3.5 i 3.17*) (*1,5 punts*)

Dibuixeu el mapa de Karnaugh amb les agrupacions adequades per obtenir l'expressió mínima en suma de productes de la funció w d'un circuit al que li correspon la següent taula de veritat:

а	b	С	d	w
0	0	0	0	1
0	0	0	1	0
0 0	0	1	1 0	х
	0	1	1	Х 1
0	1	0	0	0 0 0
0	1	0	1 0	0
0	1	1	0	0
0	1	1	1	0
	0	0	0	1 1 X X
1	0	0	1	1
1	0	1	1	х
1 1 1	0	1	1	
1	1	0	0	Х 1 Х 0
1 1 1 1	1 1	0	0 1 0	1
1	1	1	0	х
1	1	1	1	0

a) Dibuixeu el Mapa de Karnaugh on es vegi clarament els grups que heu escollit

b) Indiqueu l'expressió mínima de w

Pregunta 6) (*Objectius 3.5 i 3.17*) (*1 punt*)

Donat l'esquema del següent circuit (inclosa la taula de veritat del bloc B1) completeu la taula de veritat de la sortida W i escriviu l'expressió lògica en suma de minterms de W.

X	Y	Z	W
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Taula veritat B1				
а	b	С	d	
0	0	1	1	
0	1	0	1	
1	0	0	0	
1	1	1	0	

Expressió en suma de minterms de W:

Pregunta 7) (*Objectiu 3.13*) (*1,25 punts*)

Donat l'esquema del circuit de la pregunta anterior, escriviu el camí crític (tots si n'hi ha més d'un) i el temps de propagació del circuit. Els temps de propagació del bloc B1 (en la taula) i de las portes són: Tp_(Not) = 10, Tp_(And-2) = 20, $Tp_{(Or-2)} = 20 i Tp_{(Xor-2)} = 40 u.t.$ Per exemple, si el camí que va de Y a W y passa pel bloc B, per la porta XOR i per la porta OR fos un camí crític, s'indicaria de la següent forma: $Y \rightarrow B1_{b-d} \rightarrow XOR_2 \rightarrow OR-2 \rightarrow W$.

Temps de propagació de B1

Тр	С	d	
а	50	70	
b	40	30	

Camins Crítics =

Tp del circuit =

Cognoms i Nom: Grup: DNI:

Pregunta 8) (Objectiu 3.12) (*1.5 punts*)

Completeu el següent cronograma dels senyals de l'esquema lògic considerant que els temps de propagació de les portes son: $Tp_{(Not)} = 10$, $Tp_{(And-2)} = 20$, $Tp_{(Xor-2)} = 40$ u.t. Heu d'operar adequadament amb les zones ombrejades (no se sap el valor que tenen) i heu de posar un senyal ombrejat quan no sabeu si val 0 o 1.

Pregunta 9) (Objectius 3.2 i 3.11) (1,5 punts)

Indiqueu el contingut d'una ROM que implementi un CLC que calculi el producte de dos nombres naturals de 2 bits. El bus de entrada A és un vector de 2 bits (a_1a_0) que representa al nombre natural A_u . Igualment, el bus de entrada B és un vector de 2 bits (b_1b_0) que representa un altre nombre natural B_u . El bus de sortida W és un vector de 4 bits ($w_3w_2w_1w_0$) que codifica el valor natural del resultat W_u . $= A_u * B_u$. Nota: l'asterisc és l'operació de multiplicació.

