AF6305 Individual Project

Yunlin FENG

December 10, 2023

1 Data

- Database access
- Stock price
- \bullet Delisting adjustment for monthly return
- Why no adjustment for daily return
- $\bullet\,$ Dealing with NA values in return

Tigate I. Namber of Stocks in Crest Stample by Exchange

— Total

.... NYSE

--- AMEX

-- NASDAQ

.... Other

Figure 1: Number of Stocks in CRSP Sample by Exchange

Table 1: Summary Statistics of Returns

var	mean	sd	skew	kurtosis	min	5%	25%	median	75%	95%	max	n
r_m	0.0098	0.17	4.1	96	-0.8	-0.21	-0.068	-0.00034	0.069	0.25	3.4	4776
$r_{-}d$	0.00071	0.043	4.6	170	-0.42	-0.051	-0.014	-0.00047	0.013	0.054	0.94	4860

Year

Table 2: Summary Statistics of Beta

Months	μ	σ	skew	kurtosis	min	5%	25%	median	75%	95%	max	n
1	0.82	1.72	-0.31	85.01	-23.5	-1.49	0.1	0.8	1.53	3.18	23.49	4838
3	0.83	0.93	-0.37	32.69	-9.81	-0.51	0.35	0.83	1.31	2.24	9.95	4780
6	0.84	0.7	-0.19	18.46	-5.67	-0.21	0.44	0.84	1.24	1.95	6.38	4701
12	0.86	0.57	-0.01	9.06	-3.24	-0.03	0.49	0.86	1.2	1.78	4.47	4537
24	0.87	0.5	0.06	4.64	-1.67	0.07	0.54	0.87	1.18	1.68	3.49	4220

Figure 2: Value of Stocks in CRSP Sample by Exchange

Table 3: Beta Correlation Matrix

	1m	3m	6m	12m	24m
1m		0.590	0.490	0.430	0.390
$3\mathrm{m}$	0.530		0.780	0.670	0.600
$6 \mathrm{m}$	0.400	0.750		0.840	0.740
12m	0.320	0.610	0.810		0.880
$24 \mathrm{m}$	0.270	0.520	0.700	0.870	

Table 4: Beta Persistence

Lag	β^{1M}	β^{3M}	β^{6M}	β^{12M}	β^{24M}
1	0.14				
3	0.12	0.31			
6	0.12	0.29	0.45		
12	0.1	0.26	0.4	0.56	
24	0.09	0.24	0.36	0.5	0.64
36	0.1	0.24	0.36	0.48	0.59
48	0.1	0.23	0.33	0.45	0.55
60	0.09	0.21	0.31	0.41	0.51
120	0.07	0.17	0.26	0.34	0.41

Table 5: Single Portfolio Sort (EW)

Sort Variable	1	2	3	4	5	5-1
Size	0.99	0.89	0.93	0.93	0.78	-0.21
	(2.53)	(2.28)	(2.52)	(2.74)	(2.66)	(-0.86)
BM	0.58	0.76	0.84	0.93	1.55	0.97
	(1.39)	(2.15)	(2.52)	(2.85)	(3.7)	(3.68)
Momentum	0.56	0.86	0.81	0.85	0.99	0.43
	(1.22)	(2.57)	(2.71)	(2.94)	(2.8)	(1.43)

Table 6: Single Portfolio Sort (VW)

Sort Variable	1	2	3	4	5	5-1
Size	3.19	2.3	2.05	1.81	1.23	-1.96
	(7.26)	(6.18)	(5.91)	(5.65)	(4.69)	(-6.27)
BM	1.49	1.38	1.25	1.29	1.74	0.25
	(5.25)	(5.13)	(4.48)	(4.33)	(4.77)	(0.93)
Momentum	0.54	0.62	$0.7^{'}$	0.64	0.86	0.31
	(1.33)	(2.09)	(2.71)	(2.51)	(2.73)	(0.92)

Table 7: Double Portfolio Sort (EW)

Size	1	2	3	4	5	5-1
1	0.47	0.89	0.99	1.42	2.02	1.56
	(1.07)	(2.58)	(2.9)	(3.68)	(3.8)	(5.04)
2	0.82	0.82	0.91	1.03	1.25	0.43
	(1.89)	(2.3)	(2.5)	(2.68)	(2.4)	(1.26)
3	0.91	0.87	0.93	0.89	1.23	0.32
	(2.16)	(2.5)	(2.65)	(2.56)	(2.72)	(0.97)
4	0.98	0.85	1	0.86	0.98	0
	(2.55)	(2.61)	(2.96)	(2.45)	(2.5)	(0.01)
5	0.81	0.77	0.89	0.7	0.75	-0.06
	(2.49)	(2.61)	(3.03)	(2.27)	(2.3)	(-0.24)

Table 8: Double Portfolio Sort (VW)

Size	1	2	3	4	5	5-1
1	3.51	2.56	2.58	3.28	4.51	1
	(6.9)	(7.08)	(6.94)	(7.8)	(7.42)	(2.22)
2	2.71	1.99	1.81	2.02	2.54	-0.16
	(6.31)	(5.8)	(5.34)	(5.66)	(5.52)	(-0.48)
3	2.47	1.74	1.65	1.64	2.05	-0.43
	(5.89)	(5.28)	(5.16)	(5.07)	(5.16)	(-1.26)
4	2.16	1.51	1.65	1.46	1.65	-0.51
	(5.62)	(4.91)	(5.18)	(4.47)	(4.72)	(-1.51)
5	1.36	1.22	1.2	1.05	1.05	-0.31
	(4.68)	(4.59)	(4.53)	(3.78)	(3.32)	(-1.25)

Table 9: Fama-MacBeth Regression

factor	1	2	3	4	5	6
(Intercept)	0.88	1.14	0.9	1.08	1.06	0.75
	(2.56)	(2.75)	(2.27)	(3.75)	(2.51)	(2.45)
$_{ m bm}$	0.25°	, ,	, ,	, ,	, ,	0.27
	(2.01)					(2.13)
size		0				0
		(-1.17)				(-0.81)
mom		, ,	0.1			0.13
			(0.25)			(0.36)
ivol			, ,	-2.79		-7.73
				(-0.37)		(-1.1)
ret				` /	-2.58	-2.96
					(-4.74)	(-5.58)

Table 10: Fama-MacBeth Regression on Arbitrage Measures

	0			
factor	1	2	3	4
(Intercept)	0.84	0.45	0.82	0.62
, ,	(2.42)	(1.18)	(2.4)	(1.6)
size	0	0	0	0
	(-0.38)	(3.26)	(-0.13)	(-0.51)
$_{ m bm}$	0.04	0.31	0.06	0.07
	(0.27)	(1.46)	(0.39)	(0.45)
mom	0.05	0.24	0.1	0.07
	(0.14)	(0.49)	(0.26)	(0.19)
$\operatorname{amihud_illiq}$	-71849.82			10316.49
	(-2)			(1.18)
$bm:amihud_illiq$	80846			
	(1.93)			
$size:amihud_illiq$	44.61			
	(0.37)			
$\operatorname{mom:amihud_illiq}$	235630.9			
	(2.3)			
$\operatorname{inst_own}$		0.65		0.35
		(2.3)		(1.44)
$bm:inst_own$		-0.36		
		(-1.41)		
$size:inst_own$		0		
		(-2.65)		
$mom:inst_own$		-0.25		
		(-0.5)		
disp			-0.05	-0.04
			(-0.54)	(-1.32)
bm:disp			-0.01	
. 1.			(-0.11)	
size:disp			0	
1.			(-1.13)	
mom:disp			-0.14	
			(-0.93)	