- **P1.** (2 p) Consider a parallel plate capacitor of surface area A and distance d_0 between the plates. The capacitor is connected to a battery of potential V_0 . Once charged, the capacitor is disconnected from the battery. Subsequently, the negative plate begins to move away from the positive plate with a constant speed V_0 .
- a) If the rate of change of the electrostatic energy stored in the capacitor is $\frac{d \, U_e(t)}{d \, t} = 6.35 \times 10^{-3} \, J/s$, calculate the speed v_0 with which the plate moves.
- b) Calculate the electric field inside the capacitor before the plate motion starts and 3 s after the plate motion starts.

DATA: $A = 0.5 \text{ m}^2$; $d_0 = 2 \text{ mm}$; $V_0 = 1500 \text{ V}$

P2. (3 p) Consider the following charge distributions: Charge is uniformly distributed over the volume of a sphere centred at the origin and of radius R. The volume charge density varies with time according to the equation $\rho(t)=\rho_0 \ (1+\alpha t)$, where ρ_0 and α are constants. In addition, charge is uniformly distributed on the surface of radius R with constant surface charge density σ .

- a) Given the point A (0, 0.6,-0.3), calculate at which time t_1 the electric field at point A, $\vec{E}(A) = 0$.
- b) Calculate the general expression for the electric potential at point A as a function of time.
- c) Calculate the acceleration vector experienced by a nucleus of ${}_{2}^{4}He$ that is placed at point A at time $t_{2} = 50$ s. Express the acceleration vector in Cartesian components.

DATA:
$$\rho_0 = 3.5 \times 10^{-6} \text{ C/m}^3$$
; $\alpha = 0.5 \text{ s}^{-1}$; $\sigma = -1.5 \times 10^{-5} \text{ C/m}^2$; $R = 0.24 \text{ m}$

NOTE: the coordinates of point A are given in meters

P3. (3 p) Consider the following distribution of currents:

- Current I_1 uniformly distributed over a conductive surface of infinite length, radius R, and whose axis coincides with the Z axis of the coordinate system.
- An infinite line, parallel to the Z axis, that carries current I_2 and passes through the point (0,D,0).

- a) Using Ampère's law, deduce the general expression of the magnetic field \overrightarrow{B} at a generic point along the Y axis with y>0. Divide the area along the y axis into as many regions as necessary. Express the vector \overrightarrow{B} in Cartesian components.
- b) Is it possible to find a point on the Y axis (y>0) where the magnetic field is zero? If so, calculate the y-coordinate of that point. If not, demonstrate that it is not possible to find that point. Do not consider as a solution $y=\infty$.

DATA:
$$I_1 = 2.4 \text{ A}$$
; $I_2 = 3.5 \text{ A}$; $R = 60 \text{ cm}$; $D = 40 \text{ cm}$