Private Private Information arXiv:2112.14356

Kevin He **Fedor Sandomirskiy** Omer Tamuz USC Theory Seminar, January 24 2022

Model

• A finite set of agents $\{1, ..., n\}$

- A finite set of agents $\{1, ..., n\}$
- A binary state $\omega \in \{\ell, h\}$

- A finite set of agents $\{1, ..., n\}$
- A binary state $\omega \in \{\ell, h\}$
- A common prior probability $p \in (0,1)$ for event $\{\omega = h\}$

- A finite set of agents $\{1, ..., n\}$
- A binary state $\omega \in \{\ell, h\}$
- A common prior probability $p \in (0,1)$ for event $\{\omega = h\}$
- Agent *i* gets signal $s_i \in S_i$ about ω , her **private information**

- A finite set of agents $\{1, ..., n\}$
- A binary state $\omega \in \{\ell, h\}$
- A common prior probability $p \in (0,1)$ for event $\{\omega = h\}$
- Agent *i* gets signal $s_i \in S_i$ about ω , her **private information**
- A joint distribution \mathbb{P} over $(\omega, s_1, ..., s_n)$ defines the **private** information structure

• Some examples:

- Some examples:
 - **Public** signals $\mathbb{P}[s_1 = s_2 = ... = s_n] = 1$

- Some examples:
 - **Public** signals $\mathbb{P}[s_1 = s_2 = ... = s_n] = 1$
 - Conditionally independent signals given ω , $(s_1, ..., s_n)$ are drawn independently across agents

- Some examples:
 - **Public** signals $\mathbb{P}[s_1 = s_2 = ... = s_n] = 1$
 - Conditionally independent signals given ω , $(s_1, ..., s_n)$ are drawn independently across agents
- Are agents' information in these examples really private?

- Some examples:
 - **Public** signals $\mathbb{P}[s_1 = s_2 = ... = s_n] = 1$
 - Conditionally independent signals given ω , $(s_1, ..., s_n)$ are drawn independently across agents
- Are agents' information in these examples really private?
- Public signals are not private at all

- Some examples:
 - **Public** signals $\mathbb{P}[s_1 = s_2 = ... = s_n] = 1$
 - Conditionally independent signals given ω , $(s_1, ..., s_n)$ are drawn independently across agents
- Are agents' information in these examples really private?
- Public signals are not private at all
- Even conditionally independent signals are not very private

- Some examples:
 - **Public** signals $\mathbb{P}[s_1 = s_2 = ... = s_n] = 1$
 - Conditionally independent signals given ω , $(s_1, ..., s_n)$ are drawn independently across agents
- Are agents' information in these examples really private?
- Public signals are not private at all
- Even conditionally independent signals are not very private
 - Suppose prior $\mathbb{P}[\omega=h]=1/2$

- Some examples:
 - **Public** signals $\mathbb{P}[s_1 = s_2 = ... = s_n] = 1$
 - Conditionally independent signals given ω , $(s_1, ..., s_n)$ are drawn independently across agents
- Are agents' information in these examples really private?
- Public signals are not private at all
- Even conditionally independent signals are not very private
 - Suppose prior $\mathbb{P}[\omega=h]=1/2$
 - Binary signals with $\mathbb{P}[s_i = \omega \mid \omega] = 3/4$

- Some examples:
 - **Public** signals $\mathbb{P}[s_1 = s_2 = ... = s_n] = 1$
 - Conditionally independent signals given ω , $(s_1, ..., s_n)$ are drawn independently across agents
- Are agents' information in these examples really private?
- Public signals are not private at all
- Even conditionally independent signals are not very private
 - Suppose prior $\mathbb{P}[\omega=h]=1/2$
 - Binary signals with $\mathbb{P}[s_i = \omega \mid \omega] = 3/4$
 - Before observing s_1 , P1 assigns belief 1/2 to $\{s_2 = h\}$

- Some examples:
 - **Public** signals $\mathbb{P}[s_1 = s_2 = ... = s_n] = 1$
 - Conditionally independent signals given ω , $(s_1, ..., s_n)$ are drawn independently across agents
- Are agents' information in these examples really private?
- Public signals are not private at all
- Even conditionally independent signals are not very private
 - Suppose prior $\mathbb{P}[\omega=h]=1/2$
 - Binary signals with $\mathbb{P}[s_i = \omega \mid \omega] = 3/4$
 - Before observing s_1 , P1 assigns belief 1/2 to $\{s_2 = h\}$
 - After learning $s_1 = h$, P1 assigns belief 5/8 to $\{s_2 = h\}$

- Some examples:
 - **Public** signals $\mathbb{P}[s_1 = s_2 = ... = s_n] = 1$
 - Conditionally independent signals given ω , $(s_1, ..., s_n)$ are drawn independently across agents
- Are agents' information in these examples really private?
- Public signals are not private at all
- Even conditionally independent signals are not very private
 - Suppose prior $\mathbb{P}[\omega=h]=1/2$
 - Binary signals with $\mathbb{P}[s_i = \omega \mid \omega] = 3/4$
 - Before observing s_1 , P1 assigns belief 1/2 to $\{s_2 = h\}$
 - After learning $s_1 = h$, P1 assigns belief 5/8 to $\{s_2 = h\}$
 - s_1 contains info about s_2 , so P2's info not fully private

Definition

Definition

A *private* private information structure is one where the signals $(s_1, ..., s_n)$ are independent.

• Signals must be independent, not conditionally independent

Definition

- Signals must be independent, not conditionally independent
- Private private signals contain info about the state, but not about each other

Definition

- Signals must be independent, not conditionally independent
- Private private signals contain info about the state, but not about each other
- Is it possible for everyone to have informative private private signals?

Definition

- Signals must be independent, not conditionally independent
- Private private signals contain info about the state, but not about each other
- Is it possible for everyone to have informative private private signals?
 - Paradoxical at first: s_1 informative about ω , ω correlated with s_2 , yet P1 learns nothing about s_2 ?

Definition

- Signals must be independent, not conditionally independent
- Private private signals contain info about the state, but not about each other
- Is it possible for everyone to have informative private private signals?
 - Paradoxical at first: s_1 informative about ω , ω correlated with s_2 , yet P1 learns nothing about s_2 ?
 - It is possible!

Definition

- Signals must be independent, not conditionally independent
- Private private signals contain info about the state, but not about each other
- Is it possible for everyone to have informative private private signals?
 - Paradoxical at first: s_1 informative about ω , ω correlated with s_2 , yet P1 learns nothing about s_2 ?
 - It is possible!
 - Tension between informativeness and privacy: impossible for everyone to have perfectly informative private private signals

Definition

- Signals must be independent, not conditionally independent
- Private private signals contain info about the state, but not about each other
- Is it possible for everyone to have informative private private signals?
 - Paradoxical at first: s_1 informative about ω , ω correlated with s_2 , yet P1 learns nothing about s_2 ?
 - It is possible!
 - Tension between informativeness and privacy: impossible for everyone to have perfectly informative private private signals
 - We focus on this tension and study how informative private private signals can be

• You are writing a recommendation letter. You know:

- You are writing a recommendation letter. You know:
 - $\bullet \ \ \text{applicant's fit} \ \omega \in \{\ell,h\}$

- You are writing a recommendation letter. You know:
 - applicant's fit $\omega \in \{\ell, h\}$
 - ullet if a medical condition correlated with the fit is present s_1

- You are writing a recommendation letter. You know:
 - applicant's fit $\omega \in \{\ell, h\}$
 - ullet if a medical condition correlated with the fit is present s_1
- ullet You want the letter s_2 to be informative of ω

- You are writing a recommendation letter. You know:
 - applicant's fit $\omega \in \{\ell, h\}$
 - ullet if a medical condition correlated with the fit is present s_1
- You want the letter s_2 to be informative of ω
- Privacy concerns / laws: s₂ must be uninformative of the medical condition s₁

- You are writing a recommendation letter. You know:
 - applicant's fit $\omega \in \{\ell, h\}$
 - ullet if a medical condition correlated with the fit is present s_1
- You want the letter s_2 to be informative of ω
- Privacy concerns / laws: s₂ must be uninformative of the medical condition s₁
- (ω, s_1, s_2) must be **private private**

- You are writing a recommendation letter. You know:
 - applicant's fit $\omega \in \{\ell, h\}$
 - ullet if a medical condition correlated with the fit is present s_1
- You want the letter s_2 to be informative of ω
- Privacy concerns / laws: s₂ must be uninformative of the medical condition s₁
- (ω, s_1, s_2) must be **private private**
- The question: Given (ω, s_1) , find maximally informative s_2 under privacy constraint.

- You are writing a recommendation letter. You know:
 - applicant's fit $\omega \in \{\ell, h\}$
 - ullet if a medical condition correlated with the fit is present s_1
- You want the letter s_2 to be informative of ω
- Privacy concerns / laws: s₂ must be uninformative of the medical condition s₁
- (ω, s_1, s_2) must be **private private**
- The question: Given (ω, s_1) , find maximally informative s_2 under privacy constraint.
- Privacy \simeq demographic parity w.r.t. a protected trait s_1 in fair machine learning
 - Barocas, Hardt, Narayanan. Fairness in machine learning. NeurIPS tutorial 2017

Other occurrences of private private signals

• Consulting company's problem:

- Consulting company's problem:
 - $\bullet\,$ A consulting company sells information about ω to competitors

- Consulting company's problem:
 - ullet A consulting company sells information about ω to competitors
 - Competitors may demand a privacy guarantee: no competitor can use their signal realization to infer anything about mine

- Consulting company's problem:
 - ullet A consulting company sells information about ω to competitors
 - Competitors may demand a privacy guarantee: no competitor can use their signal realization to infer anything about mine
 - The company should rely on private private signals

- Consulting company's problem:
 - ullet A consulting company sells information about ω to competitors
 - Competitors may demand a privacy guarantee: no competitor can use their signal realization to infer anything about mine
 - The company should rely on private private signals
 - How informative can signals be while preserving privacy?

- Consulting company's problem:
 - ullet A consulting company sells information about ω to competitors
 - Competitors may demand a privacy guarantee: no competitor can use their signal realization to infer anything about mine
 - The company should rely on private private signals
 - How informative can signals be while preserving privacy?
- Causal inference:

- Consulting company's problem:
 - ullet A consulting company sells information about ω to competitors
 - Competitors may demand a privacy guarantee: no competitor can use their signal realization to infer anything about mine
 - The company should rely on private private signals
 - How informative can signals be while preserving privacy?
- Causal inference:
 - Collider is a common model in causal Bayesian networks:

$$s_1 \rightarrow \omega \leftarrow s_2$$

- Consulting company's problem:
 - ullet A consulting company sells information about ω to competitors
 - Competitors may demand a privacy guarantee: no competitor can use their signal realization to infer anything about mine
 - The company should rely on private private signals
 - How informative can signals be while preserving privacy?
- Causal inference:
 - Collider is a common model in causal Bayesian networks: $s_1 \rightarrow \omega \leftarrow s_2$
 - Causal strength quantifies how much s_i influences ω

- Consulting company's problem:
 - ullet A consulting company sells information about ω to competitors
 - Competitors may demand a privacy guarantee: no competitor can use their signal realization to infer anything about mine
 - The company should rely on private private signals
 - How informative can signals be while preserving privacy?
- Causal inference:
 - Collider is a common model in causal Bayesian networks: $s_1 \rightarrow \omega \leftarrow s_2$
 - Causal strength quantifies how much s_i influences ω
 - Relates to informativeness of s_i as a signal of ω

- Consulting company's problem:
 - ullet A consulting company sells information about ω to competitors
 - Competitors may demand a privacy guarantee: no competitor can use their signal realization to infer anything about mine
 - The company should rely on private private signals
 - How informative can signals be while preserving privacy?
- Causal inference:
 - Collider is a common model in causal Bayesian networks: $s_1 \rightarrow \omega \leftarrow s_2$
 - Causal strength quantifies how much s_i influences ω
 - Relates to informativeness of s_i as a signal of ω
 - How strong can independent causes be?

- Worst-case information structures in robust mechanism design:
 - Bergemann, Brooks, Morris First-price auctions with general information structures:Implications for bidding and revenue Econometrica 2017
 - Brooks and Du Optimal auction design with common values: An informationally robust approach Econometrica 2021

- Worst-case information structures in robust mechanism design:
 - Bergemann, Brooks, Morris First-price auctions with general information structures:Implications for bidding and revenue Econometrica 2017
 - Brooks and Du Optimal auction design with common values: An informationally robust approach Econometrica 2021
- Counterexamples to information aggregation in exchange economies
 - Ostrovsky Information aggregation in dynamic markets with strategic traders Econometrica 2012

- Worst-case information structures in robust mechanism design:
 - Bergemann, Brooks, Morris First-price auctions with general information structures:Implications for bidding and revenue Econometrica 2017
 - Brooks and Du Optimal auction design with common values: An informationally robust approach Econometrica 2021
- Counterexamples to information aggregation in exchange economies
 - Ostrovsky Information aggregation in dynamic markets with strategic traders Econometrica 2012
- Feasible joint distributions of posterior beliefs
 - Arieli, Babichenko, Sandomirskiy, Tamuz Feasible joint posterior beliefs Journal of Political Economy 2021

• What does it mean that a signal s is more informative about ω than s'?

- What does it mean that a signal s is more informative about ω than s'?
- ullet Denote $p(s) = \mathbb{P}[\omega = h \mid s]$ the posterior belief induced by s

- What does it mean that a signal s is more informative about ω than s'?
- Denote $p(s) = \mathbb{P}[\omega = h \mid s]$ the posterior belief induced by s

Definition

A signal s Blackwell dominates s' if for any convex φ on [0,1]

$$\mathbb{E}[\varphi(p(s))] \geq \mathbb{E}[\varphi(p'(s'))].$$

- What does it mean that a signal s is more informative about ω than s'?
- Denote $p(s) = \mathbb{P}[\omega = h \mid s]$ the posterior belief induced by s

Definition

A signal s **Blackwell dominates** s' if for any convex φ on [0,1]

$$\mathbb{E}[\varphi(p(s))] \geq \mathbb{E}[\varphi(p'(s'))].$$

• Equivalent definition:

- What does it mean that a signal s is more informative about ω than s'?
- Denote $p(s) = \mathbb{P}[\omega = h \mid s]$ the posterior belief induced by s

Definition

A signal s **Blackwell dominates** s' if for any convex φ on [0,1]

$$\mathbb{E}[\varphi(p(s))] \geq \mathbb{E}[\varphi(p'(s'))].$$

- Equivalent definition:
 - ullet in any decision problem s gives higher expected utility than s'

- What does it mean that a signal s is more informative about ω than s'?
- Denote $p(s) = \mathbb{P}[\omega = h \mid s]$ the posterior belief induced by s

Definition

A signal s **Blackwell dominates** s' if for any convex φ on [0,1]

$$\mathbb{E}[\varphi(p(s))] \geq \mathbb{E}[\varphi(p'(s'))].$$

- Equivalent definition:
 - ullet in any decision problem s gives higher expected utility than s'

Definition

An information structure $(\omega, s_1, \ldots, s_n)$ Blackwell dominates $(\omega, s'_1, \ldots, s'_n)$ if each agent's signal s_i dominates s'_i .

- What does it mean that a signal s is more informative about ω than s'?
- Denote $p(s) = \mathbb{P}[\omega = h \mid s]$ the posterior belief induced by s

Definition

A signal s **Blackwell dominates** s' if for any convex φ on [0,1]

$$\mathbb{E}[\varphi(p(s))] \geq \mathbb{E}[\varphi(p'(s'))].$$

Equivalent definition:

ullet in any decision problem s gives higher expected utility than s'

Definition

An information structure $(\omega, s_1, \ldots, s_n)$ Blackwell dominates $(\omega, s'_1, \ldots, s'_n)$ if each agent's signal s_i dominates s'_i .

A private private structure is **Pareto optimal** if it is not dominated by another private private structure.

• Let F be a cdf of a distribution on [0,1] with mean p

- Let F be a cdf of a distribution on [0,1] with mean p
- Denote $\hat{F}(x) = 1 F^{-1}(1 x)$

- Let F be a cdf of a distribution on [0, 1] with mean p
- Denote $\hat{F}(x) = 1 F^{-1}(1 x)$
- Then \hat{F} is also a cdf of a distribution on [0,1] with mean p, obtained by reflecting F around the anti-diagonal

- Let F be a cdf of a distribution on [0,1] with mean p
- Denote $\hat{F}(x) = 1 F^{-1}(1 x)$
- Then \hat{F} is also a cdf of a distribution on [0,1] with mean p, obtained by reflecting F around the anti-diagonal

• Call F and \hat{F} conjugates

- Let F be a cdf of a distribution on [0,1] with mean p
- Denote $\hat{F}(x) = 1 F^{-1}(1 x)$
- Then \hat{F} is also a cdf of a distribution on [0,1] with mean p, obtained by reflecting F around the anti-diagonal

• Call F and \hat{F} conjugates

Theorem 1

For n = 2, a private private info structure is Pareto optimal if and only if the belief distributions induced by s_1 and s_2 are conjugates.

 \bullet ω — a state of interest

- $\bullet \ \omega$ a state of interest
- ullet s_1 a protected trait

- \bullet ω a state of interest
- s_1 a protected trait
- \bullet The joint distribution of (ω, s_1) is given

- \bullet ω a state of interest
- s_1 a protected trait
- ullet The joint distribution of (ω,s_1) is given
- Want to find s_2 :

- ω a state of interest
- s_1 a protected trait
- The joint distribution of (ω, s_1) is given
- Want to find s_2 :
 - ullet as informative as possible about ω

- \bullet ω a state of interest
- s_1 a protected trait
- The joint distribution of (ω, s_1) is given
- Want to find s₂:
 - ullet as informative as possible about ω
 - ullet but **independent** of s_1

- \bullet ω a state of interest
- s_1 a protected trait
- The joint distribution of (ω, s_1) is given
- Want to find s_2 :
 - ullet as informative as possible about ω
 - but **independent** of s_1
- Equivalently: find a Pareto optimal (ω, s_1, s_2) with the given (ω, s_1) marginal

- ω a state of interest
- s_1 a protected trait
- The joint distribution of (ω, s_1) is given
- Want to find s₂:
 - ullet as informative as possible about ω
 - but **independent** of s_1
- Equivalently: find a Pareto optimal (ω, s_1, s_2) with the given (ω, s_1) marginal

Corollary

For any given (ω, s_1) , the optimal s_2 is unique, i.e., s_2 dominates any other s_2' independent of s_1 . Belief distributions induced by s_1 and s_2 are conjugates.

- ω a state of interest
- s_1 a protected trait
- The joint distribution of (ω, s_1) is given
- Want to find s₂:
 - ullet as informative as possible about ω
 - but **independent** of s_1
- Equivalently: find a Pareto optimal (ω, s_1, s_2) with the given (ω, s_1) marginal

Corollary

For any given (ω, s_1) , the optimal s_2 is unique, i.e., s_2 dominates any other s_2' independent of s_1 . Belief distributions induced by s_1 and s_2 are conjugates.

Optimal recommendation is the same for all decision problems

- ω a state of interest
- \bullet s_1 a protected trait
- The joint distribution of (ω, s_1) is given
- Want to find s₂:
 - ullet as informative as possible about ω
 - but **independent** of s_1
- Equivalently: find a Pareto optimal (ω, s_1, s_2) with the given (ω, s_1) marginal

Corollary

For any given (ω, s_1) , the optimal s_2 is unique, i.e., s_2 dominates any other s_2' independent of s_1 . Belief distributions induced by s_1 and s_2 are conjugates.

- Optimal recommendation is the same for all decision problems
- For ≥ 3 states ω , there may be a continuum of optimal s_2

Example

- $\omega \in \{\ell, h\}$ is a job fit
- $s_1 \in \{y, n\}$ presence of a medical condition (yes/no)
- $\mathbb{P}(\omega = h) = \mathbb{P}(s_1 = y) = 1/2$
- $\mathbb{P}(\omega = h \mid s_1 = y) = \frac{3}{4}, \quad \mathbb{P}(\omega = h \mid s_1 = n) = \frac{1}{4}$
- ullet Goal: find s_2 that is informative of ω but independent of s_1

Application: optimal recommendation

Example

- $\omega \in \{\ell, h\}$ is a job fit
- $s_1 \in \{y, n\}$ presence of a medical condition (yes/no)
- $\mathbb{P}(\omega = h) = \mathbb{P}(s_1 = y) = 1/2$
- $\mathbb{P}(\omega = h \mid s_1 = y) = \frac{3}{4}$, $\mathbb{P}(\omega = h \mid s_1 = n) = \frac{1}{4}$
- **Goal:** find s_2 that is informative of ω but independent of s_1

•

Application: optimal recommendation

Example

- $\omega \in \{\ell, h\}$ is a job fit
- $s_1 \in \{y, n\}$ presence of a medical condition (yes/no)
- $\mathbb{P}(\omega = h) = \mathbb{P}(s_1 = y) = 1/2$
- $\mathbb{P}(\omega = h \mid s_1 = y) = \frac{3}{4}$, $\mathbb{P}(\omega = h \mid s_1 = n) = \frac{1}{4}$
- Goal: find s_2 that is informative of ω but independent of s_1

Application: optimal recommendation

Example

- $\omega \in \{\ell, h\}$ is a job fit
- $s_1 \in \{y, n\}$ presence of a medical condition (yes/no)
- $\mathbb{P}(\omega = h) = \mathbb{P}(s_1 = y) = 1/2$
- $\mathbb{P}(\omega = h \mid s_1 = y) = \frac{3}{4}$, $\mathbb{P}(\omega = h \mid s_1 = n) = \frac{1}{4}$
- ullet Goal: find s_2 that is informative of ω but independent of s_1

• Optimal s_2 is trinary and induces posteriors (0, 1/2, 1) with probabilities (1/4, 1/2, 1/4)

 \bullet Theorem 1 is a corollary of a general theorem applicable for $n \geq 2$

- ullet Theorem 1 is a corollary of a general theorem applicable for $n\geq 2$
- To formulate it, we need two ingredients

- Theorem 1 is a corollary of a general theorem applicable for $n \geq 2$
- To formulate it, we need two ingredients
 - \bullet A structural result: private private structures \leftrightarrow subsets of $[0,1]^n$

- Theorem 1 is a corollary of a general theorem applicable for $n \ge 2$
- To formulate it, we need two ingredients
 - A structural result: private private structures ↔ subsets of [0, 1]ⁿ
 - Results from mathematical tomography

ullet Fix $A\subset [0,1]^n$ with measure p

- Fix $A \subset [0,1]^n$ with measure p
- Define a private private structure associated with *A*:

- Fix $A \subset [0,1]^n$ with measure p
- Define a private private structure associated with A:
 - When $\omega = h$, choose $(s_1,...,s_n)$ uniformly from A

- Fix $A \subset [0,1]^n$ with measure p
- Define a private private structure associated with *A*:
 - When $\omega = h$, choose $(s_1, ..., s_n)$ uniformly from A
 - When $\omega=\ell,$ choose $(s_1,...,s_n)$ uniformly from $[0,1]^n \backslash A$

- Fix $A \subset [0,1]^n$ with measure p
- Define a private private structure associated with *A*:
 - When $\omega = h$, choose $(s_1, ..., s_n)$ uniformly from A
 - When $\omega = \ell$, choose $(s_1, ..., s_n)$ uniformly from $[0, 1]^n \setminus A$
 - Signals are uniform on $[0,1]^n$, hence, private private

- Fix $A \subset [0,1]^n$ with measure p
- Define a private private structure associated with A:
 - When $\omega = h$, choose $(s_1, ..., s_n)$ uniformly from A
 - When $\omega = \ell$, choose $(s_1, ..., s_n)$ uniformly from $[0, 1]^n \setminus A$
 - Signals are uniform on $[0,1]^n$, hence, private private

beliefs uniform on [0, 1]

- Fix $A \subset [0,1]^n$ with measure p
- Define a private private structure associated with A:
 - When $\omega = h$, choose $(s_1, ..., s_n)$ uniformly from A
 - When $\omega = \ell$, choose $(s_1, ..., s_n)$ uniformly from $[0, 1]^n \setminus A$
 - Signals are uniform on $[0,1]^n$, hence, private private

- Fix $A \subset [0,1]^n$ with measure p
- Define a private private structure associated with A:
 - When $\omega = h$, choose $(s_1, ..., s_n)$ uniformly from A
 - When $\omega = \ell$, choose $(s_1, ..., s_n)$ uniformly from $[0, 1]^n \setminus A$
 - Signals are uniform on $[0,1]^n$, hence, private private

- Fix $A \subset [0,1]^n$ with measure p
- Define a private private structure associated with A:
 - When $\omega = h$, choose $(s_1, ..., s_n)$ uniformly from A
 - When $\omega = \ell$, choose $(s_1, ..., s_n)$ uniformly from $[0, 1]^n \setminus A$
 - Signals are uniform on $[0,1]^n$, hence, private private

Proposition

Any private private info structure is equivalent to a structure associated with some $A \subseteq [0,1]^n$

Tomography

• **Tomography** is an imaging technique that investigates the shape of an object by running x-ray through it

Tomography

• **Tomography** is an imaging technique that investigates the shape of an object by running x-ray through it

Tomography

 Tomography is an imaging technique that investigates the shape of an object by running x-ray through it

 Produces a lower-dimensional projection of the object by looking at how much x-ray is absorbed at different points

Tomography and Sets of Uniqueness

• Typically, must run x-ray from many different angles to get a good understanding of the object's geometry

Tomography and Sets of Uniqueness

 Typically, must run x-ray from many different angles to get a good understanding of the object's geometry

Definition

 $A \subseteq [0,1]^n$ is a **set of uniqueness** if it is determined by its n coordinate projections, i.e., for any A' such that the uniform density on A and A' has the same one-dimensional marginals, A' = A a.e. in $[0,1]^n$.

Theorem 2

For any $n \ge 2$, a private private info structure is Pareto optimal \Leftrightarrow it is equivalent to a structure associated with a set of uniqueness $A \subseteq [0,1]^n$.

Theorem 2

For any $n \ge 2$, a private private info structure is Pareto optimal \Leftrightarrow it is equivalent to a structure associated with a set of uniqueness $A \subseteq [0,1]^n$.

An unexpected connection between Pareto optimality and tomography

Theorem 2

For any $n \geq 2$, a private private info structure is Pareto optimal \Leftrightarrow it is equivalent to a structure associated with a set of uniqueness $A \subseteq [0,1]^n$.

- An unexpected connection between Pareto optimality and tomography
- We know that

is not Pareto optimal (s_2 can be replaced by a more informative trinary signal)

Theorem 2

For any $n \ge 2$, a private private info structure is Pareto optimal \Leftrightarrow it is equivalent to a structure associated with a set of uniqueness $A \subseteq [0,1]^n$.

- An unexpected connection between Pareto optimality and tomography
- We know that

is not Pareto optimal (s_2 can be replaced by a more informative trinary signal)

• Hence, the blue area not a set of uniqueness. Let's check!

Problem for a newspaper puzzle column: is there another coloring of the 4x4 grid that preserves all column-wise and row-wise counts of colored squares?

Problem for a newspaper puzzle column: is there another coloring of the 4x4 grid that preserves all column-wise and row-wise counts of colored squares?

Problem for a newspaper puzzle column: is there another coloring of the 4x4 grid that preserves all column-wise and row-wise counts of colored squares?

Problem for a newspaper puzzle column: find another coloring of the 4x4 grid that preserves all column-wise and row-wise counts of colored squares?

 By our theorem, this shows the binary info structure that induces beliefs 1/4 or 3/4 is not itself Pareto optimal

- By our theorem, this shows the binary info structure that induces beliefs 1/4 or 3/4 is not itself Pareto optimal
- Can disprove Pareto optimality by finding another set with same marginal projections

- By our theorem, this shows the binary info structure that induces beliefs 1/4 or 3/4 is not itself Pareto optimal
- Can disprove Pareto optimality by finding another set with same marginal projections
- How do we prove Pareto optimality?

- By our theorem, this shows the binary info structure that induces beliefs 1/4 or 3/4 is not itself Pareto optimal
- Can disprove Pareto optimality by finding another set with same marginal projections
- How do we prove Pareto optimality?
- That is, how do we prove a set is a set of uniqueness?

- By our theorem, this shows the binary info structure that induces beliefs 1/4 or 3/4 is not itself Pareto optimal
- Can disprove Pareto optimality by finding another set with same marginal projections
- How do we prove Pareto optimality?
- That is, how do we prove a set is a set of uniqueness?
- Use results about sets of uniqueness from tomography

• $A \subseteq [0,1]^n$ is **upward closed** if $\vec{x} \in A \Rightarrow \vec{x}' \in A$ for all $\vec{x}' \ge \vec{x}$

• $A \subseteq [0,1]^n$ is **upward closed** if $\vec{x} \in A \Rightarrow \vec{x}' \in A$ for all $\vec{x}' \ge \vec{x}$

• $A \subseteq [0,1]^n$ is **additive** if there are bounded, non-decreasing $h_i : [0,1] \to \mathbb{R}$ s.t.

$$A = \left\{ \vec{x} \in [0,1]^n : \sum_{i=1}^n h_i(x_i) \ge 0 \right\}$$

• $A \subseteq [0,1]^n$ is **upward closed** if $\vec{x} \in A \Rightarrow \vec{x}' \in A$ for all $\vec{x}' \ge \vec{x}$

• $A \subseteq [0,1]^n$ is **additive** if there are bounded, non-decreasing $h_i : [0,1] \to \mathbb{R}$ s.t.

$$A = \left\{ \vec{x} \in [0,1]^n : \sum_{i=1}^n h_i(x_i) \ge 0 \right\}$$

• Additive implies upward closed, equivalent if n = 2

Theorem (Fishburn, Lagarias, Reeds, and Shepp 1990)

 For n = 2, upward closed set is a set of uniqueness, and every set of uniqueness is upward closed up to measure-preserving transformations of axes.

Theorem (Fishburn, Lagarias, Reeds, and Shepp 1990)

- For n = 2, upward closed set is a set of uniqueness, and every set of uniqueness is upward closed up to measure-preserving transformations of axes.
- For n ≥ 2, additive ⇒ sets of uniqueness ⇒ upward closed.

Theorem (Fishburn, Lagarias, Reeds, and Shepp 1990)

- For n = 2, upward closed set is a set of uniqueness, and every set of uniqueness is upward closed up to measure-preserving transformations of axes.
- For $n \ge 2$, additive \Rightarrow sets of uniqueness \Rightarrow upward closed.

 Blue set is upward closed ⇒ Pareto optimal

Theorem (Fishburn, Lagarias, Reeds, and Shepp 1990)

- For n = 2, upward closed set is a set of uniqueness, and every set of uniqueness is upward closed up to measure-preserving transformations of axes.
- For $n \ge 2$, additive \Rightarrow sets of uniqueness \Rightarrow upward closed.

 Blue set is upward closed ⇒ Pareto optimal

Fishburn et al.'s theorem & our Theorem $2 \Rightarrow$

Theorem (Fishburn, Lagarias, Reeds, and Shepp 1990)

- For n = 2, upward closed set is a set of uniqueness, and every set of uniqueness is upward closed up to measure-preserving transformations of axes.
- For n ≥ 2, additive ⇒ sets of uniqueness ⇒ upward closed.

 Blue set is upward closed ⇒ Pareto optimal

Fishburn et al.'s theorem & our Theorem $2 \Rightarrow$

• For n = 2, characterization of Pareto optimality via conjugate distributions (Theorem 1)

Theorem (Fishburn, Lagarias, Reeds, and Shepp 1990)

- For n = 2, upward closed set is a set of uniqueness, and every set of uniqueness is upward closed up to measure-preserving transformations of axes.
- For n ≥ 2, additive ⇒ sets of uniqueness ⇒ upward closed.

 Blue set is upward closed ⇒ Pareto optimal

Fishburn et al.'s theorem & our Theorem $2 \Rightarrow$

- For n = 2, characterization of Pareto optimality via conjugate distributions (Theorem 1)
- For $n \ge 2$, a necessary and a sufficient condition of Pareto optimality

Connecting Pareto Optimality with Tomography

Theorem 2

For any $n \ge 2$, a private private info structure is Pareto optimal \Leftrightarrow it is equivalent to a structure associated with a set of uniqueness $A \subseteq [0,1]^n$.

Key idea: A is not a set of uniqueness \Rightarrow the associated structure is dominated and the dominating structure can be constructed explicitly

Connecting Pareto Optimality with Tomography

Theorem 2

For any $n \ge 2$, a private private info structure is Pareto optimal \Leftrightarrow it is equivalent to a structure associated with a set of uniqueness $A \subseteq [0,1]^n$.

Key idea: A is not a set of uniqueness \Rightarrow the associated structure is dominated and the dominating structure can be constructed explicitly

• Each square can now be colored, blank, or shaded

- Each square can now be colored, blank, or shaded
- Shaded square = "half of a colored square"

- Each square can now be colored, blank, or shaded
- Shaded square = "half of a colored square"
- Draw $s_1, s_2 \overset{\text{i.i.d.}}{\sim}$ Unif[0,1]. If (s_1, s_2) in shaded region, toss an independent fair coin s_3 to determine state ω

- Each square can now be colored, blank, or shaded
- Shaded square = "half of a colored square"
- Draw $s_1, s_2 \overset{\text{i.i.d.}}{\sim} \text{Unif}[0, 1]$. If (s_1, s_2) in shaded region, toss an independent fair coin s_3 to determine state ω
- This structure generates the same distribution of posteriors

- Each square can now be colored, blank, or shaded
- Shaded square = "half of a colored square"
- Draw $s_1, s_2 \overset{\text{i.i.d.}}{\sim}$ Unif[0,1]. If (s_1, s_2) in shaded region, toss an independent fair coin s_3 to determine state ω
- This structure generates the same distribution of posteriors
- Reveal the coin toss to the first player

• Private private information structures:

```
signals of different agents (s_1, s_2, ..., s_n) are unconditionally independent
```

- Private private information structures: signals of different agents $(s_1, s_2, ..., s_n)$ are unconditionally independent
- Can represent all such info structures as subsets of [0, 1]ⁿ

- Private private information structures:
 signals of different agents (s₁, s₂, ..., s_n)
 are unconditionally independent
- Can represent all such info structures as subsets of [0, 1]ⁿ
- Pareto optimal private private info structures are associated with sets of uniqueness

- Private private information structures:
 signals of different agents (s₁, s₂, ..., s_n)
 are unconditionally independent
- Can represent all such info structures as subsets of [0, 1]ⁿ
- Pareto optimal private private info structures are associated with sets of uniqueness
 - For n = 2, a simple criterion of Pareto optimality: distributions of posteriors must be conjugate

(not Pareto optimal)

- Private private information structures:
 signals of different agents (s₁, s₂, ..., s_n)
 are unconditionally independent
- Can represent all such info structures as subsets of [0, 1]ⁿ
- Pareto optimal private private info structures are associated with sets of uniqueness
 - For n = 2, a simple criterion of Pareto optimality: distributions of posteriors must be conjugate
 - For $n \ge 2$, a necessary and a sufficient condition

(not Pareto optimal)

- Private private information structures:
 signals of different agents (s₁, s₂, ..., s_n)
 are unconditionally independent
- Can represent all such info structures as subsets of [0, 1]ⁿ
- Pareto optimal private private info structures are associated with sets of uniqueness
 - For n = 2, a simple criterion of Pareto optimality: distributions of posteriors must be conjugate
 - For $n \ge 2$, a necessary and a sufficient condition

(not Pareto optimal)

