

USARTL-TR-77-54C

(B)

LEVEL

AD A 077345

ROTORCRAFT FLIGHT SIMULATION, COMPUTER PROGRAM C81
Volume III - Programmer's Manual

P. Y. Hsieh
BELL HELICOPTER TEXTRON
P.O. Box 482
Fort Worth, Tex. 76101

October 1979

Final Report for Period November 1976 - August 1977

DDC FILE COPY

Approved for public release;
distribution unlimited.

Prepared for

APPLIED TECHNOLOGY LABORATORY
U. S. ARMY RESEARCH AND TECHNOLOGY LABORATORIES (AVRADCOM)
Fort Eustis, Va. 23604

79 11 26 120

**BLANK PAGES
IN THIS
DOCUMENT
WERE NOT
FILMED**

APPLIED TECHNOLOGY LABORATORY POSITION STATEMENT

This report documents an engineering analysis and resulting computer programs for the evaluation of rotary-wing aircraft performance, handling qualities, rotor blade loads, maneuvering characteristics, and rotor system aeroelastic stability through application of the modal technique to the rotor blade equations of motion and stepwise integration of the time domain equations for the rotor, hub, aircraft and control system. The primary computer programs associated with the current effort are the Mykestad Program, for computing rotor blade natural frequencies and mode shapes; and the Rotorcraft Flight Simulation, Computer Program C81, for computing the wide variety of flight characteristics listed above.

The version of C81 developed under this contract is designated version AGAJ77. The immediately preceding version in the public domain is designated version AGAJ76. AGAJ77 differs from AGAJ76 in the following respects: an improved autopilot; more comprehensive elastic rotor analysis; an improved engine/governor model; an improved wake analysis; and enhanced output capabilities. While most of these improvements were successfully installed in the computer software, extensive difficulties were experienced in the implementation of the elastic rotor refinements. While the other improvements may make the AGAJ77 version preferable for many types of studies, AGAJ76 is recommended for the examination of rotor dynamics and loads. In using either program, some evaluation of the program's applicability to the problem under investigation through correlation with existing data is a judicious first step.

The Project Engineer for this contract was Mr. Edward E. Austin, Aeromechanics Technical Area, Aeronautical Technology Division.

DISCLAIMERS

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission, to manufacture, use, or sell any patented invention that may in any way be related thereto.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such commercial hardware or software.

DISPOSITION INSTRUCTIONS

Destroy this report when no longer needed. Do not return it to the originator.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 18) USARL TR-77-54C	2. GOVT ACCESSION NO. 14) BHT	3. RECIPIENT'S CATALOG NUMBER -699-099-062-VOL-3
4. TITLE (and Subtitle) 6) ROTORCRAFT FLIGHT SIMULATION, COMPUTER PROGRAM C81, Volume III Programmer's Manual	5. TYPE OF REPORT & PERIOD COVERED Final Report Nov 1976 - Aug 1977	9
7. AUTHOR(s) 10) P. Y. Hsieh	8. CONTRACT OR GRANT NUMBER(s) 15) DAAJ02-77-C-0003	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Bell Helicopter Textron P. O. Box 482 Fort Worth, Texas 76101	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 054 200 16) 622000 1L262209AH76 00 179 EK	17) 000
11. CONTROLLING OFFICE NAME AND ADDRESS Applied Technology Laboratory, U.S. Army Research and Technology Laboratories (AVRADCOM) Fort Eustis, VA 23604	12. REPORT DATE 11) October 1979	13. NUMBER OF PAGES 89
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) 12) 912	15. SECURITY CLASS. (of this report) Unclassified	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)	
18. SUPPLEMENTARY NOTES Volume III of a three-volume report		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Aerodynamics Flight Simulation Dynamics Aeroelasticity Helicopters Structural Properties Rotors Control Stability Computer Programs Numerical Analysis Wake Analysis Digital Computers Rotary Wing Aircraft		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This report consists of three volumes and documents the current version in the C81 family of rotorcraft flight simulation programs developed by Bell Helicopter Textron. This current version of the digital computer program is referred to as AGAJ77. The accompanying program for calculating fully coupled rotor blade mode shapes is called DNAM05, and the rotor wake program is called AR9102.		

DD FORM 1 JAN 73 1473 EDITION OF 1 NOV 68 IS OBSOLETE

green UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

054 200

xlt

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. Continued

The new or revised mathematical models or documentation incorporated into this report are listed below:

- (1) The maneuver autopilot was modified to accept four more time history commands (pitch, roll, yaw, and climb rates) in addition to the normal load factor. A digital filter is used to process the airframe response signal in order to reduce the b-per-rev component and to smooth the autopilot-generated control commands.
- (2) The effects of an offset pitch change axis have been incorporated in DNAM05 and C81.
- (3) A first-order lag has been introduced into the engine power available calculations.
- (4) The rotor-induced velocity distribution tables have been modified to be functions of advance ratio and wake-plane angle of attack. An average induced velocity table has been added to the analysis. In addition, the digital filter is used in the calculations to reduce the oscillation of the induced velocity experienced in previous versions of C81.
- (5) A rotor contour plot option has been added.
- (6) Time-history plots may now be made after time-variant trim.
- (7) The rotorcraft flightpath stability analysis (STAB) has been modified to output the numerators of more transfer functions.

The first volume, the Engineer's Manual, presents an overview of the computer program capabilities plus discussions for the background and development of the principal mathematical models in the program. The models discussed include all those currently in the program.

Volume II, the User's Manual, contains the detailed information necessary for setting up an input data deck and interpreting the computed data. Volume III, the Programmer's Manual, includes a catalog of subroutines and a discussion of programming considerations. The source tapes and related software for the computer programs documented in this report are unpublished data on file at the Applied Technology Laboratory, U. S. Army Research and Technology Laboratories (AVRADCOM), Fort Eustis, Virginia.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

PREFACE

This report and its accompanying computer program were developed under Contract DAAJ02-77-C-0003 awarded in 1976 by the Eustis Directorate of the U. S. Army Air Mobility Research and Development Laboratory (USAAMRDL)*. This report supersedes all previous versions of the program and documentation, including USAAMRDL-TR-76-41A, B, C.

Technical program direction was provided by Mr. E. E. Austin of ATL. The principal Bell Helicopter personnel associated with the current contract were Messrs. J. R. Van Gaasbeek, T. T. McLarty, P. Y. Hsieh, and Dr. S. G. Sadler.

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DDC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification _____	
By _____	
Distribution/ _____	
Availability Codes	
Dist	Avail and/or special
A	

*Redesignated Applied Technology Laboratory, U. S. Army Research and Technology Laboratories (AVRADCOM), effective 1 September, 1977.

TABLE OF CONTENTS

	<u>Page</u>
PREFACE	3
LIST OF ILLUSTRATIONS	6
LIST OF TABLES.	6
1.0 INTRODUCTION	7
2.0 OPERATING ENVIRONMENT AND PROCEDURES	8
2.1 Program Installation.	8
2.2 Data Library.	17
3.0 GENERAL PROGRAMMING AIDS	20
3.1 Macro Flow Charts	20
3.2 FORTRAN Subroutines in AGAJ77	20
3.3 Assembly Language Subprogram in AGAJ77.	37
3.4 FORTRAN Subroutines in GDAJ77	38
3.5 Labeled Commons in AGAJ77	39
3.6 Labeled Commons in GDAJ77	42
4.0 DETAILED PROGRAMMING AIDS.	43
4.1 Control Section Cross-Reference	43
4.2 Layout of Maneuver Variables.	70
4.3 Program Delivery.	70
4.4 AGAJ77 Dictionary	73
4.5 Switch for Diagnostic Data From STAB.	73

LIST OF ILLUSTRATIONS

<u>Figure</u>		<u>Page</u>
1	Execution of AGAJ77 and GDAJ77	16
2	AGAJ77 Input Data Decks.	19
3	Flow Chart of System Structure	21
4	Flow Chart of Trim Process	22
5	Flow Chart of Flightpath Stability Analysis. . .	23
6	Flow Chart of Maneuver	24
7	Flow Chart of GDAJ77	25

LIST OF TABLES

<u>Table</u>		<u>Page</u>
1	Linkage Editor Control Cards for OVERLAY of AGAJ77 (the 400K version)	9
2	Linkage Editor Control Cards for OVERLAY of AGAJ77 (the 520K version)	10
3	Linkage Editor Control Cards for OVERLAY of GDAJ77.	12
4	Job Control Language to Run AGAJ77 and GDAJ77. .	13
5	Input/Output Units Used in AGAJ77.	14
6	Input/Output Units Used in GDAJ77.	15
7	Control Section Cross-Reference for AGAJ77 . . .	44
8	Control Section Cross-Reference for GDAJ77 . . .	65
9	Layout of Maneuver Variables	71
10	Sample Output from Global Cross-Reference. . . .	72
11	AGAJ77 Dictionary.	74
12	STAB Diagnostic Switch in AGAJ77	90

1.0 INTRODUCTION

This manual documents the Rotorcraft Flight Simulation Program, designated AGAJ77, and its postprocessor for data reduction, designated GDAJ77. To the user, this system appears as a single program; to the programmer, the two programs are very different. This documentation is for the programs as they were written for, and are being used on, an IBM System/370 Model 168 computer at Bell Helicopter Textron.

The information in this volume is of two types. Section 2 contains the information necessary to get the programs operational on a computer compatible with the installation at Bell Helicopter Textron. If the programs are to be modified in any way, the programmer will need the information in Sections 3 and 4 of this volume.

2.0 OPERATING ENVIRONMENT AND PROCEDURES

2.1 PROGRAM INSTALLATION

The System/370 environment under which this program is maintained is IBM 370/168 OS/VS2, Release 1.7. It has 16 megabytes of virtual storage and five megabytes of real storage. Input on the system reader is controlled by the Houston Automatic Spooling Program (HASP) II, as is system output destined for an on-line printer or card punch. Scratch data sets are directed to IBM 3330 direct access storage devices. Tape data sets are recorded by Storage Technology Corporation 3430 tape drives, which are 9-track, 1600 bpi. The CalComp 900 plotting controller reads the IBM standard label, 9-track, 1600-bpi tape. It controls a 36-inch CalComp 763 incremental plotter.

The program has been maintained with the IBM System/370 FORTRAN IV H Extended Compiler, which is compatible with the Control Data Corporation (CDC) FTN-4 Compiler. Some of the options of the H-Extended Compiler used by this program are SOURCE, EBCDIC, NOLIST, NODECK, OBJECT, MAP, NOFORMAT, GOSTMT, XREF, and OPTIMIZE(2). Among these, OBJECT, NOFORMAT, GOSTMT, and OPTIMIZE(2) are equivalent to the options of LOAD, NOEDIT, ID, and OPT=2, respectively, on the IBM FORTRAN IV H Compiler. Some special features that are available on the H Extended Compiler but not on the H Compiler have been avoided so that the H Extended Compiler will not constitute a restriction in getting this program operational. Since the compiler performs essential optimization functions, compilation of this program by using an optimization level less than "2" will result in decreased speed. This program requires a region of 320K* for the compilation step.

AGAJ77 can be link-edited in several different ways. The entire program can be loaded to main memory either with or without OVERLAY structure. It can also be loaded to main and/or extended memories with the HIARCHY support structures. The OVERLAY structures developed under this contract for AGAJ77 are shown in Table 1 and Table 2. The 400K version of AGAJ77 uses the OVERLAY structure given in Table 1. The 520K version of AGAJ77 utilizes the OVERLAY structure of Table 2. Section 4.3 describes the differences between the two versions. Without overlay the two versions would require 750K and 850K, respectively. The best way to link-edit this program depends upon the facilities available at the local installation. At

*"1K" is the abbreviation for kilobyte. On an IBM machine, 1K is 1024 bytes.

TABLE 1. LINKAGE EDITOR CONTROL CARDS FOR OVERLAY OF AGAJ77
(THE 400K VERSION).

OVERLAY ONE0 INITIALIZATION SEGMENT ...THE FIRST REGION...	
INSERT PDSRED,REDID,REDRWK,REDSWK,START,WKTABN	00000100
INSERT ITHONAMEL	00000200
INSERT ERRCHK,JSTRED,LGCINT,LIZE,MANTYP,MNEM,INPUTOT	00000300
INSERT READIN,REDATB,REDBMS,RFDCL,TABFIX,TABOUT,TURN	00000400
INSERT YRINIT,YSINIT,XSTINT,ZERO	00000500
INSERT BMSINT,ENGINT,FSMINT,FUSINT,INBLD,INRMSS,INRO,INRTR	00000600
INSERT INSCAS,JFBGIN,MAXHP,MODAL,PYLINK,RTINIT,SHKTNT	00000700
INSERT ST8ZIN,WRMODE,XCONIN	00000800
INSERT INDONLY	00000900
OVERLAY ONE0 HARMONIC ANALYSIS	00001000
INSERT HARM,LOADT	00001100
OVERLAY ONE0 STABILITY ANALYSIS SEGMENT	00001200
INSERT ALLMAT,ALSTAB,IMFRMP,INVERS,IMAT	00001300
INSERT MDRDRS,MODES,PUNCH,SWAP,WRMS,WRTFUN	00001400
INSERT STBCOM,STAFRO	00001500
OVERLAY ONE0 GENERAL PURPOSE SEGMENT	00001600
INSERT ANAL,AZMINT,AZMOUT,AZMUTH,DPDFDD,BLAC,C,GRUNDER,BUTFLT	00001700
INSERT CDCL,CLCD,CMCALC,DIFFER,DOITX,FILTER,FOCUS,FORCMC	00001800
INSERT FPYLAC,FRCGOF,FUSFNM,HRESP,INTERO,ITROT,MBAL,DPDFDD	00001900
INSERT PYLACC,RADBDN,RADIAL,RADOUT,RGUST,ROTAN	00002000
INSERT RTWAKE,VRVGST,SHKCTL,SHRPYL,SOLVE,STBAK	00002100
INSERT STBFNM,SWSRAT,TABINT,TFRTWK,TIME00,TRMANU	00002200
INSERT UNSDER,UNSTEED,WING,WRFM,WRTMNV,WSHDUF,XSTORE	00002300
OVERLAY ONE1 MANEUVER AND STABILITY ANALYSIS SEGMENTS	00002400
INSERT AJACOB,NCDAMP,JACOBI,WRVP	00002500
OVERLAY ONE2 STABILITY ANALYSIS SEGMENT	00002600
INSERT INSTAB,STAB,WRINST,WRPERT,WRSTAB	00002700
OVERLAY ONE2 TRIM SEGMENT	00002800
INSERT TRIM,TVTRIM	00002900
OVERLAY ONE3	00003000
INSERT ITTRIM,PDZERO,PRETVT	00003100
OVERLAY ONE3	00003200
INSERT WRTRIM	00003300
OVERLAY ONE3	00003400
INSERT RPTPG	00003500
OVERLAY ONE1 MANEUVER SEGMENT	00003600
INSERT DERIV,FUSACC,MANU,QSBDPF,QUAN,SCASIT,VART	00003700
OVERLAY ONE2	00003800
INSERT CNTM,MOMB	00003900
OVERLAY ONE2	00004000
INSERT EXTORS,SUPERP	00004100
OVERLAY ONE2	00004200
INSERT GUST,VORGST	00004300
OVERLAY ONE2	00004400
INSERT MTLT,WAG,VGUNS,VSCAS	00004500
OVERLAY TWO0 (REGION) MANEUVER SEGMENT ...THE SECOND REGION...	00004600
INSERT TIMLP	00004700
OVERLAY TWO1	00004800
INSERT WRMANU	00004900
OVERLAY TWO1	00005000
INSERT RESTRT	00005100
OVERLAY TWO2	00005200
INSERT SIVAR	00005300
OVERLAY TWO2	00005400
INSERT TIVAR	00005500
ENTRY MAIN	00005600
	00005700

TABLE 2. LINKAGE EDITOR CONTROL CARDS FOR OVERLAY OF AGAJ77
(THE 520K VERSION).

OVERLAY ONE0 INITIALIZATION SEGMENT ...THE FIRST REGION...	00000 100
INSERT PDSRED,REDID,REDRWK,REDSWK,START,WKTABN	00000 200
INSERT IHONAMEL	00000 300
INSERT ERRCHK,JS TRED,LGCINT,LIZE,MANTYP,MNEM,NPUTOT	00000 400
INSERT READIN,READATB,REDBMS,REDCL,TABFIX,TAB CUT,TURN	00000 500
INSERT YRINIT,YINIT,XSTINT,ZERO	00000 600
INSERT BMSINT,ENGINT,FSMINT,FUSINT,INALD,INAMSS,INRO,INRTR	00000 700
INSERT INSCAS,JFBGIN,MAXHP,MODAL,PYLINK,RTINIT,SHKINT	00000 800
INSERT STBZIN,WR MODE,XCONIN	00000 900
INSERT INONLY	00001 000
OVERLAY ONE0 HARMONIC ANALYSIS	00001 100
INSERT HARM,LOAD	00001 200
OVERLAY ONE0 STABILITY ANALYSIS SEGMENT	00001 300
INSERT ALLMAT,ALSTAB,IMFRMP,INVERS,IMAT	00001 400
INSERT MDRDRS,MODES,PUNCH,SWAP,WRMS,WRTFUN	00001 500
INSERT STBCOM,STFRC	00001 600
OVERLAY ONE0 GENERAL PURPOSE SEGMENT	00001 700
INSERT ANAL,AZMINIT,AZMOUT,AZMUTH,BDPFDD,BLAC C,BUNDER,BUTFLT	00001 800
INSERT CDCL,CLCD,CMCALC,DIFFER,DOIX,FILTER,FOCUS,FORCMC	00001 900
INSERT FPYLAC,FR CGOF,FUSFNH,HRESP,INTFRC,I TRUT,MBAL,PDPFDD	00002 000
INSERT PYLACC,RADGN,RADIAL,RADOUT,RGUST,ROTAN	00002 100
INSERT RTWAKE,RVRGST,SHKCTL,SHRPYL,SOLVE,STBWAK	00002 200
INSERT STBFNM,SW SRAT,TAB INT,TFRTWK,TIMEQ0,TR MANU	00002 300
INSERT UNSDER,UNSTD,WING,WRFM,WRTMNV,WSHDUF,XSTORE	00002 400
OVERLAY ONE1 MANEUVER AND STABILITY ANALYSIS SEGMENTS	00002 500
INSERT AJACOB,NCAMP,JA COBI,WRVP	00002 600
OVERLAY ONE2 STABILITY ANALYSIS SEGMENT	00002 700
INSERT INSTAB,STAB,WRINST,WRPERT,WRSTAB	00002 800
OVERLAY ONE2 TRIM SEGMENT	00002 900
INSERT TRIM,TVTRIM	00003 000
OVERLAY ONE3	00003 100
INSERT ITRIM,PDZERO,PRE TVT	00003 200
INSERT WRTRIM	00003 300
OVERLAY ONE3	00003 400
INSERT RPTPG	00003 500
OVERLAY ONE1 MANEUVER SEGMENT	00003 600
INSERT DERIV,FUSACC,MANU,QSBDPF,QUAN,SCAS IT,VARI	00003 700
OVERLAY ONE2	00003 800
INSERT CNTM,MOMR	00003 900
INSERT EXTORS,SUPERP	00004 000
OVERLAY ONE2	00004 100
INSERT GUST,VORGST	00004 200
INSERT MLT,WAG,VGUNS,VSCAS	00004 300
OVERLAY TWO0(REGION) MANEUVER SEGMENT ...THE SECOND REGION...	00004 400
INSERT TIMLP	00004 500
OVERLAY TWO1	00004 600
INSERT WRMANU	00004 700
OVERLAY TWO1	00004 800
INSERT RESTRT	00004 900
OVERLAY TWO2	00005 000
INSERT SIVAR	00005 100
OVERLAY TWO2	00005 200
INSERT TIVAR	00005 300
ENTRY MAIN	00005 400

Bell Helicopter, this program uses an OVERLAY structure which differs from those shown in this volume. The major purpose of the overlay at Bell is to reduce the paging rate of a virtual storage system. The OVERLAY structures documented in this volume are indented and commented to improve readability. The indentation is based on the levels of the overlay tree.

The input data to the linkage editor for GDAJ77 are listed in Table 3. The OVERLAY structure results in a program whose longest segment is less than 340K.

As shown on Table 1, the OVERLAY structure of the 400K version uses many levels as well as multiple regions. Since a CDC computer allows only three levels on an overlay structure, the required region (core) size would differ considerably if the 400K version is loaded on a CDC computer. In addition, the accuracy, buffer size, number of buffers, FORTRAN library routines, I/O handling routines, and error handling routine are all different. Since the definition of 1K is also different, it is extremely difficult to determine the required region size for the 400K version on a CDC computer. However, based on past experience, it is estimated that the 400K version can run on a CDC computer under 300K with $1K = (1000)_8$ words.

The Job Control Language (JCL) used to run a typical set of data is shown in Table 4. The major portion of Table 4 depicts an instream PROCEDURE named C8177. The first step, C81STEP1, of C8177 executes AGAJ77, and the second step, C81STEP2, executes GDAJ77. As shown in Table 4, the second step has EVEN as one of the subparameters of COND. This will ensure that post processing is performed in the second step even if the first step abends.

Table 5 and Table 6 list the input/output units used by AGAJ77 and GDAJ77, respectively. Figure 1 shows the input/ output allocations of Tables 5 and 6. Under the INPUT column in Figure 1, CARD represents the instream input to AGAJ77, TAPE represents the restart tape input to AGAJ77, and DISK represents either the data library, disk storage of all arrays that can be changed by the namelist option, or disk storage of the instream input. DISK provides the capability of backing up (BACKSPACE). Under the OUTPUT/INPUT column, PRINT is for the printout from AGAJ77, TAPE for the output of a new restart tape from AGAJ77, DISK for disk storage of maneuver time-histories, disk storage of trim conditions for a maneuver perturbation case, disk storage of maneuver J-cards, disk storage of contour plot data from trim and maneuver, and disk storage of time histories from time-variant trims of AGAJ77.

TABLE 3. LINKAGE EDITOR CARDS FOR OVERLAY OF GDAJ77.

```
OVERLAY ONE
  INSERT PLOT, SCL FIX
OVERLAY TWO
  INSERT CNTPLT, CONTRUR, CURVET, CSEL, HEADS, LHEAD, MOVBULK, RANGE
OVERLAY TWO
  INSERT BUFF LINE, NUMBER, SYMEOU
OVERLAY THREE
  INSERT AXIS, FST, HARM, PLOTER, SCALE #
OVERLAY THREE
  INSERT CALC1, INPLOT, PPLOT, SCALIT
OVERLAY ONE
  INSERT ALLMAT, DLLSQ, EXPON, PRONY, VSRTPM, YNORD
ENTRY MAIN
  00000100
  00000200
  00000300
  00000400
  00000500
  00000600
  00000700
  00000800
  00000900
  00001000
  00001100
  00001200
  00001300
```

TABLE 4. JOB CONTROL LANGUAGE TO RUN AGAJ77 AND GDAJ77.

//ESAP7 JOB (AGAJ77,G38,676515,DP91,T5),*PY	2841*	00000010
// NOTIFY=ESAP,MSGLEVEL=1,CLASS=X,MSGCLASS=A		00000020
//C8177 PROC PRUG=AGAJ77,LIB="ESAP.C81.LOAD",		00000030
GRAPH=GDAJ77,LIB1="ESAP.C81.LOAD",		00000040
LRL=9504,BLK=9508,SIZE1=520K,SIZE2=340K,		00000050
RESTI=NULLFILE,RESTO=NULLFILE,THIN=NULLFILE,		00000060
THOUT=NULLFILE,THSER=0,SYSPLUT=NULLFILE,		00000070
DAYMAN=98010,DAYPLT=98003,DAYRST=99000		00000080
/*		00000090
/* * PARAMETERS ON THE EXEC STATEMENT:		00000100
/* * NAME DEFAULT USAGE		00000110
/* * -----		00000120
/* * PRUG AGAJ77 PROGRAM NAME		00000130
/* * GRAPH GDAJ77 POSTPROCESSOR NAME		00000140
/* * LIB ESAP.C81.LOAD LIBRARY WHERE PROGRAM RESIDES		00000150
/* * LIB1 ESAP.C81.LOAD LIBRARY WHERE POSTPROCESSOR RESIDES		00000160
/* * BLK 6048 BLOCKSIZE OF C81STEP1.FT03F001		00000170
/* *	C81STEP2.FT03F001	00000180
/* *	C81STEP2.FT04F001	00000190
/* *	C81STEP2.FT09F001	00000200
/* * RESTI NULLFILE DSNAME FOR RESTART TAPE INPUT		00000210
/* * RESTO NULLFILE DSNAME FOR RESTART TAPE OUTPUT		00000220
/* * THIN NULLFILE DSNAME FOR TIME HISTORY INPUT		00000230
/* * THOUT NULLFILE DSNAME FOR TIME HISTORY OUTPUT		00000240
/* * THSER 0 VOLSER FOR TIME HISTORY INPUT TAPE		00000250
/* * TPS ANY TAPE DRIVE		00000260
/* * SYSPLUT NULLFILE DSNAME FOR PLOT TAPE		00000270
/* * DAYMAN 98010 RETAIN MANU TAPE FOR 10 DAYS		00000280
/* * DAYPLT 98003 RETAIN PLOT TAPE FOR 3 DAYS		00000290
/* * DAYRST 99000 RETAIN RESTART TAPE TILL UNCATLG		00000300
/* *		00000310
/* * C81STEP1 EXEC PGM=&PRUG,REGION=&SIZE1		00000320
/* * STEPLIB DD DISP=SHR,DSN=&LIB		00000330
/* * FT01F001 DD DSN=C81LIB72,LABEL=(,,IN),DISP=SHR		00000340
/* * DCB=(RECFM=F8,LRECL=80,BLKSIZE=3120)		00000350
/* * FT02F001 DD UNIT=(TPS,,DEFER),DISP=(CATLG,DELETE),DSN=&RESTO,		00000360
/* * LABEL=EXPDT=&DAYRST,DCB=(ENGR,MDUL,E,RECFM=VS,BLKSIZE=32760),		00000370
/* * VOL=(,,,10)		00000380
/* * FT03F001 DD UNIT=(SYSDA,2),SPACE=(CYL,(8,10)),DSN=&MANU,		00000390
/* * DCB=(RECFM=VBS,LRECL=&LRL,BLKSIZE=&BLK),		00000400
/* * DISP=(NEW,PASS)		00000410
/* * FT04F001 DD UNIT=(TPS,,DEFER),DISP=OLD,DSN=&RESTI,VOL=(,,,10)		00000420
/* * FT05F001 DD DDNAME=IN		00000430
/* * FT06F001 DD SYSOUT=A		00000440
/* * FT07F001 DD SYSOUT=B,DCB=FUNC=1		00000450
/* * FT08F001 DD UNIT=(SYSDA,SPACE=(CYL,(2,10)),DSN=&MANPTB,		00000460
/* * DCB=(RECFM=VBS,LRECL=3996,BLKSIZE=4000),		00000470
/* * DISP=(NEW,DELETE)		00000480
/* * FT10F001 DD UNIT=(SYSDA,SPACE=(CYL,(1,1)),DSN=&SYSIN1,		00000490
/* * DCB=(RECFM=F8,LRECL=80,BLKSIZE=3120),		00000500
/* * DISP=(NEW,PASS)		00000510
/* * FT11F001 DD DSN=&SYSIN2,UNIT=SYSDA,SPACE=(CYL,(1,1)),		00000520
/* * DCB=(RECFM=F8,BLKSIZE=80),DISP=(NEW,PASS)		00000530
/* * FT12F001 DD DSN=&ROTUR,UNIT=SYSDA,SPACE=(CYL,(2,2)),		00000540
/* * DCB=(RECFM=VBS,LRECL=212,BLKSIZE=4032),		00000550
/* * DISP=(NEW,PASS)		00000560
/* * FT14F001 DD UNIT=(SYSDA,2),SPACE=(CYL,(20,5)),DSN=&HARM,		00000570
/* * DCB=(RECFM=VBS,LRECL=4628,BLKSIZE=&BLK),		00000580
/* * DISP=NEW		00000590
/* * SYSUDUMP DD SYSOUT=A		00000600
/* * C81STEP2 EXEC PGM=&GRAPH,CUND=((4,LE,C81STEP1),EVEN),REGION=&SIZE2		00000610
/* * STEPLIB DD DISP=SHR,DSN=&LIB		00000620
/* * FT03F001 DD DISP=(NEW,DELETE),DSN=&MANEUVR,UNIT=(SYSDA,2),		00000630
/* * SPACE=(CYL,(8,4)),		00000640
/* * DCB=(RECFM=VBS,LRECL=&LRL,BLKSIZE=&BLK)		00000650
/* * FT04F001 DD DISP=(OLD,DELETE),DSN=&MANU		00000660
/* * FT06F001 DD SYSOUT=A		00000670
/* * FT08F001 DD UNIT=(TPS,,DEFER),DISP=OLD,DSN=&THIN,VOL=SER=&THSER		00000680
/* * FT09F001 DD UNIT=(TPS,,DEFER),DISP=(KEEP,DELETE),DSN=&THOUT,		00000690
/* * DCB=(RECFM=VBS,LRECL=&LRL,BLKSIZE=&BLK).		00000700
/* * LABEL=EXPDT=&DAYMAN		00000710
/* * FT10F001 DD DISP=(OLD,DELETE),DSN=&SYSIN2		00000720
/* * FT12F001 DD DSN=&ROTUR,DISP=(OLD,DELETE)		00000730
/* * FT12F002 DD DUMMY		00000740
/* * FT15F001 DD DSN=&CONTPLUT,UNIT=SYSDA,SPACE=(CYL,(2,2)),		00000750
/* * DCB=(RECFM=VBS,LRECL=212,BLKSIZE=4032),		00000760
/* * DISP=(NEW,DELETE)		00000770
/* * PLOTTAPE DD UNIT=(TPS,,DEFER),DSN=&SYSPLOT,VOL=PRIVATE,		00000780
/* * LABEL=EXPDT=&DAYPLT		00000790
/* * SYSUDUMP DD SYSOUT=A		00000800
/* * PEND THIS IS THE END OF THE IN-STREAM PROCEDURE		00000810
/* * C77 EXEC C8177,TIME=10		00000820
/* * IN DD *		00000830
/* *		00000840
/* *		00000850

TABLE 5. INPUT/OUTPUT UNITS USED IN AGAJ77

UNIT NO.	TYPE	USED FOR	USED BY SUBROUTINE
1	Direct access	Permanent data storage of the data library	JSTRED, REDATB, REDBMS, REDCL, REDID, REDRWK, REDSWK
2	Tape	New restart tape	RESTRRT
3	Direct access	Utility storage of maneuver time history to pass to GDAJ77	INIT, MAIN, MANU, RESTRRT
4	Tape	Old restart tape	RESTRRT
5	Card reader	Input data	MAIN
6	Printer	Printed output	**
7	Card punch	Punched output	PUNCH
8	Direct access	Utility storage of trim condition	TIMEQ0
		Utility storage of maneuver J-cards	MANU, READIN
		Utility storage of namelist arrays	READIN
10	Direct access	Utility storage of AGAJ77 input data	JSTRED, MAIN, READIN, REDATB, REDBMS, REDCL, REDID, REDRWK, REDSWK
11	Direct access	Passing input data to GDAJ77	MAIN, READIN
12	Direct access	Utility storage of trim and maneuver data for contour plots	DERIV, MAIN, RADOUT
14	Direct access	Utility storage of trim history	LOADT, TVTRIM

** ALSTAB, AZMOUT, AZMUTH, CDCL, CLCD, ERRCHK, EXTORS, FUSACC, FUSINT, HRESP, INBLD, INBMSS, INRO, INSTAB, INVERS, IOMAT, ITRIM, ITROT, JFBGIN, LGCINT, LOADT, MAIN, MANTYP, MANU, MAXHP, MBAL, MNEM, MODAL, NCDAMP, NPUTOT, RADOUT, READIN, REDID, REDRWK, REDSWK, RPTPG, SHKINT, SIVAR, SOLVE, STAB, START, TABOUT, TIVAR, TRIM, TURN, TVTRIM, VIND, WAG, WRFM, WRINST, WRMANU, WRMODE, WRMS, WROT, WRTFUN, WRTMNV, WRTRIM, WRVP, XCONIN, YRINIT, YSINIT

TABLE 6. INPUT/OUTPUT UNITS USED IN GDAJ77

UNIT NO.	TYPE	USED FOR	USED BY SUBROUTINE
3	Direct access	Utility storage of maneuver time history	CURVET, C81L, FSFT, MAIN, MOVBLK, PRONY, SCALIT
4	Direct access	Maneuver time history from AGAJ77 or Tape 8	C81L, MAIN
6	Printer	Printed output	CALC81, CNTPLT, CONPLT, CONTUR, CURVET, C81L, EXPON, FSFT, HEADS, MAIN, MOVBLK, PPLOT, PRONY, WROT
8	Tape	Old time-history tape	C81L, MAIN
9	Tape	New time-history tape	C81L, MAIN
10	Direct access	Input data from AGAJ77	CONTUR, CURVET, C81L, FSFT, MAIN, MOVBLK, PRONY, SCALIT
12	Direct access	Utility storage of trim and maneuver data for contour plots	CONTUR, MAIN
15	Direct access	Utility storage for contour plot data	CONTUR
PLOT- TAPE	Tape	Plot maneuver time history in GDAJ77	CALC81, PLOTER

Figure 1. Execution of AGAJ77 and GDAJ77.

Under this column, TAPE also represents the input of a time-history tape that was created by an earlier run, and DISK represents maneuver time histories, input data, and contour plot data that are passed to GDAJ77 from AGAJ77. Under the OUTPUT column, PRINT is for printout from GDAJ77, TAPE for the output of a new time-history tape from GDAJ77, and PLOT for plotting of maneuver time histories from GDAJ77.

2.2 DATA LIBRARY

The Data Library can be a sequential or a partitioned data set. This documentation discusses sequential organization.

The Data Library can be created by an IBM utility routine such as IEBGENER. The input to this routine is the data to be stored on the Data Library as discussed in Section 3.1.2 of Volume II. The Data Library can reside either on a disk pack as a catalogued/kept data set or on a magnetic tape as a kept data set. A catalogued data set which resides on a disk pack can be maintained easily through the IBM Time Sharing Option (TSO).

Figure 2 shows the applications of the Data Library. Figure 2(a) indicates that all the input data are on cards with no data from the Data Library. Figure 2(b) shows a deck using a combination of cards and the Data Library. In this case, a Group Data Set is read from the Data Library. Figure 2(c) shows an input deck using the Data Library only, except message cards which are not shown. In this case, a Model Data Set is read. Since each element of the MODEL array is a Group Data Set Identification Card, the program in turn reads each group sequentially.

The Data Library consists of Group Data Sets and Model Data Sets. A Group Data Set contains all the data for one C81 input group, e.g., the Main Rotor Group. The unique alphabetic name of the particular Group Data Set must be left-justified in the first eight columns of the first card of the data set. Columns 9 through 72 of the first card are reserved for descriptive information, such as the name of the person responsible for the data set, the date the data set was last updated, and a reference to a document or documents describing the sources of the data. The second card in the Group Data Set is the Group ID card (CARD 30, page 54, Volume II, for example). The remaining cards contain the numerical data required for the group, such as CARDS 31 through 38 (pages 54 and 55 of Volume II) for a simple main rotor group.

A Model Data Set is used to provide a one-card reference for all the inputs for a rotorcraft. The first card of this type of data set contains the alphabetic name of the data set, left-justified in Columns 1 through 8. The name must start with the characters MODL, with the remaining four characters designating the specific Model Data Set. Columns 9 through 72 of this first card are reserved for descriptive information. Column 1 through 8 of the second card in the data set must be blank, while Columns 9 through 72 are reserved for additional descriptive information. The 43 remaining cards in the Model Data Set contain the names of Group Data Sets already on the Data Library, according to the order given in Table I of Volume II, (pages 39 and 40). The Group Data Set names must be left-justified in Columns 1 through 8, with Columns 9 through 72 available for commentary. If a particular group is not used in a model of the rotorcraft, a blank card must still be placed in the appropriate place in the Model Data Set. For example, the mathematical model of a UH-1H would not need a wing group, so the 28th data card (30th card overall) of the Model Data Set for the UH-1H would be a blank card.

If the Data Library is stored sequentially (instead of random access), all Model Data Sets must come after all Group Data Sets.

- a) Cards b) Cards and Data Library c) Data Library

Figure 2. AGAJ77 Input Data Decks.

3.0 GENERAL PROGRAMMING AIDS

3.1 MACRO FLOW CHARTS

The flow charts in Figures 3 through 7 describe the functional structure of the program without regard to flow by subroutine. Figure 3 shows the total program structure. Figure 4 provides some detail of the trim process. Figure 5 amplifies the flight-path stability analysis. Figure 6 gives some flow logic of the Runge-Kutta Method employed in maneuver functions. Figure 7 details the data reduction program.

3.2 FORTRAN SUBROUTINES IN AGAJ77

The FORTRAN routines contained in AGAJ77 are listed in alphabetical order. The primary routine is called MAIN. Those which start with RED are "read-in" routines. Those which begin with WR are "write-out" routines. Those which end with INT or INIT are "initialization" routines. For those with multiple entry points, the last letter of the routine name is replaced by a number, in ascending order, to indicate the sequence of the additional entry points. The remarks for each routine indicate its general purpose or use in the program.

- (1) AJACOB, AJACOL. This subroutine handles computation of quantities that depend upon variables that are changed in either trim iterations or the flightpath stability analysis in order to compute partial derivatives later. These quantities are then calculated and used in the computation of forces and moments.
- (2) ALLMAT, ALLMAL. The flightpath stability analysis uses this subroutine to compute eigenvalues and eigenvectors.
- (3) ALSTAB. This subroutine calls ALLMAT and processes and prints out the results of the flightpath stability analysis.
- (4) ANAL. Output of this subroutine consists of the total summation of forces and moments.
- (5) AZMINT. It initializes some variables that are used by subroutine AZMUTH.
- (6) AZMOUT. This routine writes out part of the diagnostic variables that are generated in subroutine AZMUTH.

Figure 3. Flow Chart of System Structure.

Figure 4. Flow Chart of Trim Process.

Figure 5. Flow Chart of Flight Path Stability Analysis.

Figure 6. Flow Chart of Maneuver.

Figure 7. Flow Chart of GDAJ77.

- (7) AZMUTH. This subroutine in the rotor analysis does the calculation of the blade virtual work and integration of the hub shears and moments at each blade azimuth position.
- (8) BDPFDD. The acceleration of the blade dependent participation factors are calculated in this routine.
- (9) BLACC. This routine calculates blade beamwise, chordwise, and torsional accelerations at each radial station. These can be plotted later by the post-processor.
- (10) BMSINT. It initializes the blade mode shapes and associated variables.
- (11) BUNDER. The numerical derivatives used by the BUNS unsteady aerodynamic model are computed here.
- (12) BUTFLT. This subroutine computes coefficients for the band-pass Butterworth filter.
- (13) CDCL. This subroutine uses the local angle of attack and Mach number plus the airfoil aerodynamic inputs to compute the steady-state lift, drag, and pitching moment coefficients for a rotor blade element.
- (14) CGARMS, CGARM1, CGARM2. This subroutine calculates moment arms about the cg for the aerodynamic surfaces whenever the cg is shifted.
- (15) CLCD. This subroutine is similar to subroutine CDCL except that CLCD computes the three aerodynamic coefficients for the wing and stabilizing surfaces.
- (16) CMCALC. This subroutine interpolates on the Carta tables to produce the contribution of unsteady aerodynamics to the pitching moment. It is the major section of the BUNS unsteady aerodynamic model.
- (17) CNTM, CNTM1, CNTM2. Some of the forcing functions in a maneuver may be timed to start after the rotors have been stopped. This subroutine converts those relative times to absolute times. It also varies jet thrust and RPM-dependent flapping stops during a maneuver.
- (18) CONSTB. This is the control program for the flight-path stability analysis.

- (19) CONTRM. This is the control program of the trim segment.
- (20) DAT1. This block data subroutine contains C_L , C_D , and C_M tables for the NACA 0012 airfoil.
- (21) DAT2. This block data subroutine sets all variables in COMMON to zero.
- (22) DAT3. This block data subroutine contains the Carta tables used in subroutine CMCALC.
- (23) DERIV. This subroutine evaluates the highest derivatives of all maneuver variables.
- (24) DIFFER. This function subprogram performs numerical differentiation.
- (25) DOTX. This routine computes a vector inner product.
- (26) ENGINT. This subroutine initializes the engine/governor group.
- (27) ERRCHK. This subroutine checks possible input errors in the program logic group.
- (28) EXTORS. It recalculates cg location, inertias, and gross weight when any external store is dropped. It also updates aerodynamic brake locations if a brake is deployed during a maneuver.
- (29) FILTER. This routine filters a variable by using the trapezoidal rule to approximate the convolution integral.
- (30) FOCUS. This subroutine calculates rotor longitudinal and lateral cyclic pitch angles and also stores rotor forces.
- (31) FPYLAC. This subroutine calculates the vibrations at a point that is not at a rotor hub.
- (32) FRCGOF. This routine computes forces and moments due to blade cg and/or pitch-change-axis offsets.
- (33) FSMINT. This subroutine initializes the pylon mode shape components for a point that is not at a rotor hub.
- (34) FUSACC. It calculates the linear and angular accelerations, in body axis, of the entire rotorcraft.

- (35) FUSFNM. This subroutine computes fuselage aero-dynamic forces and moments and rotor nacelle drag.
- (36) FUSINT. This subroutine converts the fuselage inputs to the units used internally and stores the data in internal, non-NAMELIST, arrays. It also calculates cg location and inertias if external stores are included.
- (37) GETFLP. This routine calculates a coefficient matrix for the computation of blade flapping angles during maneuvers.
- (38) GUST. This subroutine is entered only during a maneuver in which a gust is being generated. It calculates the distance of each part of the rotor-craft from the start of the gust and then calculates the magnitude of the gust velocity at each point on the ship.
- (39) HARM, HARML1. The harmonic analysis for blade loads, hub shears and pylon dependent participation factors at the trim point is performed by this subroutine.
- (40) HRESP. The elastic modes are processed by this subroutine during the quasi-static trim procedure.
- (41) IMFRMP. Parts of the mass matrix that are contributed from pylons are computed here for use in the flightpath stability analysis.
- (42) INBLD, INBLD1, INBLD2, INBLD3, INBLD4, INBLD5. This subroutine converts input blade-related data to the units used internally, and stores the data in internal, non-NAMELIST, arrays.
- (43) INBMSS. This routine computes a blade mass distribution if that data is not input.
- (44) INIT. This subroutine fills the arrays for the printout during a maneuver and also writes those arrays on disk for later plotting.
- (45) INRO. The function of this subroutine is the initialization and calculation of problem constants from the rotor inputs.
- (46) INRTR. This subroutine initializes some of the rotor-related data that are not initialized in subroutine INRO.

- (47) INSCAS. Initialization of the SCAS inputs is done here.
- (48) INSTAB. This subroutine initializes the data for a flightpath stability analysis. It calculates the partial derivatives needed for later computation of the frequency response.
- (49) INTFRQ. It interpolates blade natural frequency as a function of rotor rotational speed and blade collective pitch.
- (50) INVERS. This subroutine calculates the inverse of the mass matrix before the call to ALLMAT.
- (51) IOMAT. This subroutine prints the mass, damping, and stiffness matrices used in the flightpath stability analysis.
- (52) ITRIM. Included in this subroutine is the iteration loop of the trim section of the program. The function here is to iterate to a trimmed flight condition.
- (53) ITROT. This subroutine initializes variables for subroutine AZMUTH and, when specified by the input parameters, controls the iteration loops to balance the rotor flapping moments.
- (54) JACOBI. This subroutine calculates the Jacobian for use in the Newton-Raphson iteration method in TRIM or calculates the displacement derivatives for use in the flightpath stability analysis.
- (55) JFBGIN, JFBGIL. This subroutine converts input data for the jets, flight constants, bobweight, and weapons groups to the units used internally, and stores the data in internal, non-NAMELIST, arrays.
- (56) JSTRED. This subroutine reads most of the input data groups.
- (57) LGCINT. The program logic group input array is processed in this subroutine, and the value of internal logic variables set.
- (58) LIZE. Initialization of some numerical constants is done in this subroutine.
- (59) LOADT. This subroutine computes and prints out the loads on an elastic blade.

- (60) MAIN. This routine reads the control cards that direct the flow of the whole problem. The path is selected, and calls are initiated to begin working the problem. Upon return, possible errors are checked for. If an error is detected, an error message may be printed out. Then the program either terminates execution or starts the next problem, depending on the severity of the error.
- (61) MANTYP. This routine checks any inconsistency of maneuver types.
- (62) MANU. This subroutine controls the time-variant maneuver segment. It handles the integration of the differential equations and the calling of the other subroutines necessary to a maneuver.
- (63) MATRIX. The function of this subroutine is to calculate the transformation matrix for a set of input Euler angles.
- (64) MAXHP. This routine computes the maximum available horsepower from the engine.
- (65) MBAL. This subroutine calculates rotor flapping or cyclic increments during each iteration.
- (66) MDRDRS. Damping and stiffness matrices for a flight-path stability analysis are calculated here.
- (67) MNEM. The function of this subroutine is to initialize all variables.
- (68) MODAL. The variables which are functions only of mode shape, frequency, and mass and inertia distributions are computed in this subroutine.
- (69) MODES. This subroutine calculates most of the mass matrix for a flightpath stability analysis.
- (70) MOMB, MOMB1, MOMB2. This subroutine simulates a servo-mechanism controlling the swashplate while the main rotor is being folded horizontally.
- (71) MTLT. This subroutine handles mast tilt during a maneuver.

- (72) NCDAMP, NCDAM1. This is the variable damper for TRIM. The purpose of this is to gradually damp out oscillations of the trim iterations. This is accomplished by checking the errors generated in TRIM against an upper limit and, whenever all errors are less than this limit, reducing both the partial derivative increment and the maximum amount that one of the TRIM variables can change in one iteration. The second entry to this subroutine, NCDAM1, limits and applies the corrections to the TRIM variables.
- (73) NOPS, NOPSL. The inputs to this subroutine are the number of azimuth locations used in the rotor analysis. The outputs are quantities that are functions of the number of azimuth locations.
- (74) NPUTOT. This subroutine prints most of the input data.
- (75) PDPFDD. The acceleration of the pylon dependent participation factor is calculated in this subroutine.
- (76) PDSRED. This routine is used to find a member of the data library and to make it accessible to a FORTRAN routine through normal sequential READ statements.
- (77) PDZERO, PDZER1. The inputs to this subroutine are a trim partial derivative matrix (i.e., the Jacobian) and an indicator for the type of helicopter or rotorcraft being flown. This subroutine then changes the partial derivative matrix to conditions which are known to hold. Essentially, this subroutine attempts to filter numerical "noise" in the matrix.
- (78) PRETVT. The primary function of this routine is to initialize variables used in the time-variant trim.
- (79) PUNCH. It punches nonzero elements of mass, damping, and stiffness matrices used in the flightpath stability analysis. The form of the punched output cards is explained in Volume II.
- (80) PYLACC. Pylon acceleration, velocity, and displacement are computed here.
- (81) PYLINT. It converts input arrays to the units used internally for the dynamic pylon group and stores the data in internal, non-NAMELIST, arrays.

- (82) QSBDPF. It calculates the acceleration of the blade dependent participation factor for a quasi-static maneuver case.
- (83) QUAN. This subroutine sets the values of internal variables from the integration array at the beginning of each Runge-Kutta cycle.
- (84) RADBGN. It calculates several variables used by subroutine RADIAL.
- (85) RADIAL. This subroutine in the rotor analysis does the calculations and integrations along the blade radius.
- (86) RADOUT, RADOUL, RADOU2. It prints output from subroutine RADIAL.
- (87) READIN. This subroutine contains the logic for reading and printing the input data.
- (88) REDAUTB. It handles the read-in of airfoil data tables.
- (89) REDBMS. It handles the read-in of blade mode shape data.
- (90) REDCL. It reads the coefficients of lift, drag, and pitching moment of each airfoil data table.
- (91) REDID. It handles the read-in of group ID cards.
- (92) REDRWK, REDRW1. It performs the read-in and print-out of rotor-induced velocity distribution (RIVD) tables.
- (93) REDSWK, REDSW1. It performs the read-in and print-out of rotor-wake-at-aerodynamic-surface (RWAS) tables.
- (94) RESTRT, RESTRL1, RESTR2, RESTR3. Restart tapes are written or copied by this subroutine.
- (95) RGUST. This subroutine computes the gust velocities at the blade elements based on the values at the hub.
- (96) ROTAN. This subroutine may be considered to be the outer section of the rotor analysis.
- (97) RPTPG. It controls the optional trim page output.

- (98) RTINIT. This is the control routine that handles the initialization of the rotor.
- (99) RTWAKE. This routine calculates the blade local induced velocity when the rotor wake table option is used.
- (100) RVRGST. This routine computes the velocity components at the rotor that are contributed by the trailing vortex system of a fixed-wing aircraft.
- (101) SCASIT. The highest derivatives in the differential equations for the SCAS are calculated here.
- (102) SHKCTL. This subroutine provides a harmonic control input to the rotor blades.
- (103) SHKINT. This routine initializes variables for the blade shaker.
- (104) SHRPYL. It calculates hub shears contributed by the pylon.
- (105) SIVAR. This subroutine handles the initialization of the maneuver inputs for subroutine VARI which are not a function of the trim point.
- (106) SOLVE. This subroutine solves systems of linear equations by Gaussian elimination.
- (107) STAB. This subroutine computes the rate derivatives used in the flightpath stability analysis.
- (108) START. The function of this subroutine is to change units of the input arrays, to store the values in internal arrays and to control the initialization segment.
- (109) STBWAK. This subroutine calculates the effect of rotor wakes on each stabilizing surface when a surface uses RWAS tables.
- (110) STBFNM. It calculates aerodynamic forces and moments at all stabilizing surfaces.
- (111) STBZIN. The function of this routine is the initialization and calculation of problem constants for wing and stabilizing surfaces.
- (112) SUPERP. This subroutine simulates an autopilot.

- (113) SWAP. In computing eigenvalues in a flightpath stability analysis, if a singularity exists in ALLMAT or the solution does not converge within a reasonable number of iterations, this subroutine conditions the mass, damping and stiffness matrices by interchanging zero rows and columns with nonzero rows and columns.
- (114) SWAS. This subroutine performs the function of linking the controls to the swashplates with the appropriate linkage factors and phase factors.
- (115) WSRAT. It calculates some intermediate velocities and accelerations used in the rotor analysis.
- (116) TABFIX. This subroutine calculates arrays to be used in the method of calculated entry in subroutine TABINT.
- (117) TABINT. This subroutine does a table interpolation for C_L , C_D , and C_M tables.
- (118) TABOUT. This subroutine prints the airfoil C_L , C_D , and C_M tables.
- (119) TFRTWK. When a rotor-induced velocity distribution table is used, this routine computes thrust factor, wake plane flapping angles, and phase angle.
- (120) TILT, TILTL1, TILTL2. This subroutine controls cg shift calculations for several different manners of shifting cg. The primary function is in a mast tilt maneuver. It provides not only for cg shift but also for changes in control phasing as a function of the mast tilt angle. Secondary entries handle cg shift with folding of a rotor either when it is being folded aft after being tilted forward and stopped or when being folded horizontally after a stop.
- (121) TIMEQ0. This routine resets every variable back to the trim condition after each perturbation of a maneuver perturbation run.
- (122) TIMLP. This subroutine performs the initialization necessary at the start of each time step.
- (123) TIVAR. This subroutine handles the initialization of the maneuver inputs for subroutine VARI that are a function of the trim point.

- (124) TRIM, TRIM1. This subroutine is the primary section of the program for finding the trimmed flight condition.
- (125) TRMANU. This routine sets up arrays for the output of trim as well as maneuver pages.
- (126) TURN. This subroutine handles a banked turn. Secondarily, it handles pushovers or pull ups. It does so by checking input data, picking up proper inputs, and doing the appropriate initialization to find a trimmed flight condition.
- (127) TVTRIM. This subroutine controls the time-variant trim procedure.
- (128) UNSDER. The numerical derivatives used by the UNSAN unsteady aerodynamic model are computed here.
- (129) UNSTED. This is the major section of the UNSAN unsteady aerodynamic model discussed in Volumes I and II.
- (130) VARI. This subroutine produces the effects of input disturbances during a time-variant maneuver. The inputs to this subroutine are the user-supplied forcing functions. The values of these functions are the output from this subroutine.
- (131) VGUNS. During a time-variant maneuver, this routine calculates the applied loads due to weapon fire.
- (132) VIND. This subroutine calculates the average induced velocity of a rotor.
- (133) VORGST. During a time-variant maneuver, this routine computes the aerodynamic disturbance due to an aircraft trailing vortex system.
- (134) VSCAS. During a time-variant maneuver, this routine calculates the control motions due to SCAS.
- (135) WAG. The time-dependent lift change by the Wagner and Kussner Method is computed in this subroutine.
- (136) WING. This routine computes aerodynamic forces and moments on wings.

- (137) WKTABN. If the blade radial stations input to the rotor wake table are not the same as those in the rotor group, this subroutine interpolates those missing stations. This is done outside the iteration loops so that a three-way interpolation can be reduced to two-way.
- (138) WRFM. This is an output subroutine that writes the rotor force and moment summary in the shaft reference coordinate system and the aircraft force and moment summary in the body axis coordinate system.
- (139) WRINST, WRINS1. This subroutine prints output during the computation of partial derivatives for a flightpath stability analysis.
- (140) WRMANU. This subroutine produces part of the maneuver printout.
- (141) WRMODE. This routine prints out the blade mode shapes and blade bending moment coefficients.
- (142) WRMS. It prints out mode shapes associated with the rotorcraft characteristic roots determined in the flightpath stability analysis.
- (143) WROT, WROTL1. This is another output subroutine that produces the heading for the printout of the input data and the trim page.
- (144) WRPERT. This routine prints out the values of the perturbed and nonperturbed independent variables used in the computation of partial derivatives for a flightpath stability analysis.
- (145) WRSTAB. This subroutine prints the rate derivatives used in the flightpath stability analysis.
- (146) WRTFUN. The transfer functions calculated in a flightpath stability analysis are written out by this routine.
- (147) WRTMNV. This subroutine defines the output arrays for trim as well as maneuver pages.
- (148) WRTRIM. This routine writes the trim page.
- (149) WRVP. This is another output subroutine which produces the printouts of the partial derivative matrices calculated and the independent variables used in the calculation of those derivatives.

- (150) WSHDUF. It calculates fuselage effects on downwash and sidewash angles at wings and other stabilizing surfaces.
- (151) XCONIN. Initialization of all control linkages is performed by this subroutine.
- (152) XSTINT. This subroutine converts input arrays to internal arrays for the external stores/aerodynamic brakes model.
- (153) XSTORE. It calculates aerodynamic forces and moments at each external store/aerodynamic brake.
- (154) YRINIT. This subroutine conditions the aerodynamic inputs for the rotors.
- (155) YSINIT. This subroutine conditions the aerodynamic inputs for the wing and stabilizing surfaces.
- (156) ZERO. This is part of the initialization segment. Every variable in this routine is set to zero.
- (157) ZLLCAL. This subroutine computes zero lift line increments at wings and other stabilizing surfaces.

3.3 ASSEMBLY LANGUAGE SUBPROGRAM IN AGAJ77

DATE. This routine returns the current system date, as argument NDATE, in Gregorian form: mm/dd/yy. NDATE must be at least eight bytes long. The routine is coded in Assembler Language. It was prepared at Bell Helicopter and is in the public domain. It contains the following entry points:

ENTRY SETIME(TINT). This entry establishes an operating time interval against which to check program operation. This interval (TINT) is in minutes in floating point form. The routine does not cause execution to terminate at the end of the designated interval. This entry initializes TIMEX.

ENTRY TIMEX (TU, DT, TL). This entry checks the central processor time since the last call to SETIME or TIMEX. It returns three argument values in floating point minutes:

TU - Time since initial call to SETIME.

DT - Time since last call to TIMEX or SETIME.

TL - Time remaining in the SETIME interval.

Subroutine DATE and its entry points may be replaced by a dummy routine with no adverse effect on the engineering calculations.

3.4 FORTRAN SUBROUTINES IN GDAJ77

The FORTRAN subroutines contained in GDAJ77 are listed in alphabetical order including the main program, which is called MAIN. The remarks for each subroutine indicate its general use or purpose in the program.

- (1) ALLMAT. Prony's method uses this routine to solve for eigenvalues.
- (2) CALC81. This subroutine is the interface between subroutine SCALIT and the CALCOMP plot routines.
- (3) CNTPLT. This routine interpolates an input array and presents it in contour plot format.
- (4) CONPLT. This routine controls the logic of the program at one level below that of the main program.
- (5) CONTUR. This subroutine reads in data to be contour plotted and prints it out in tabular form.
- (6) CURVET. This subroutine analyzes the time history of selected variables during a maneuver. This analysis is accomplished by a least-square curve fit followed by comparison of both the amplitude and phase angle of different variables. Then one variable is expressed as a linear function of two others.
- (7) C81L. The function of this subroutine is the transfer to a disk of maneuver time-history data that have been stored on a tape or disk.
- (8) DAT1. This first block data subroutine contains part of the headings for plotted time histories.
- (9) DAT2. This second block data subroutine contains part of the headings for plotted time histories.
- (10) DAT3. This third block data subroutine contains the headings for contour plots.
- (11) DLLSQ. This routine does the least-squares curve fit required by Prony's method.
- (12) EXPON. This is the primary computational routine for Prony's method. It also prints out the result of these calculations.

- (13) FSFT. This subroutine controls the harmonic analysis of a time history.
- (14) HARM. This is the harmonic analysis subroutine used by subroutine FSFT.
- (15) HEADS. This routine prints out part of the plot headings.
- (16) HEDING. This subroutine generates the labels for the time-history plots using the data stored in DAT1 or DAT2.
- (17) MAIN. This is the control program for GDAJ77.
- (18) MOVBLK. This routine uses a moving block analysis method to estimate the damping associated with a given frequency.
- (19) PLOTER. This subroutine does the CALCOMP plotting of the results of the harmonic analysis.
- (20) PPLOT. This is the printer plot routine that produces plots of time histories.
- (21) PRONY. This is the control routine used when Prony's curve-fit method is chosen to analyze aeroelastic stability.
- (22) RANGE. This routine searches through the data in an array and returns a relative maximum and minimum value after excluding points that deviate too far from the bulk of the data.
- (23) SCALIT. This subroutine sets up the arrays for the time-history plots.
- (24) SCLFIX. This subroutine calculates scale factors for the time-history plots.
- (25) VSRTPM. This routine sorts arrays by absolute value.
- (26) WROT, WROTL. This subroutine prints the headings on the printer plots.

3.5 LABELED COMMONS IN AGAJ77

There are 26 labeled COMMONS, but no blank COMMON, in AGAJ77. Each of the COMMONS is listed below. Any special order of variables and the reasons for this order are given, along with some general comments.

- (1) ANDOIT. The first 9 variables in this COMMON, HFRC through YSHRN, are double precision.
- (2) FLEX. It contains most of the variables used in the elastic blade modal analysis.
- (3) FLTRCM. Those arrays that are specifically used by the digital filter are contained in this COMMON.
- (4) FORCMC. This COMMON contains the Carta tables used by subroutine CMCALC.
- (5) FORWK. This COMMON contains most of the variables used in computing the rotor-induced velocity distribution from the table stored in FORWK1.
- (6) FORWK1. This is the set of rotor-induced velocity distribution (RIVD) tables used by subroutine RTWAKE.
- (7) FORY. There is no special order to variables in this COMMON. It consists of the array "Y" operated upon by the Runge-Kutta integration technique and is used in the initialization, trim, and maneuver segments.
- (8) FORYD. This contains the first and second derivatives of the integrated variables in maneuver.
- (9) FOSWK. This COMMON contains most of the variables used in computing the effects of the rotor wake at the aerodynamic surfaces from the tables stored in FOSWK1.
- (10) FOSWK1. The arrays of rotor-wake-at-the-aerodynamic-surface (RWAS) tables used in subroutine STBWAK are in this COMMON.
- (11) INONLY. This block contains most of the input. It is used in the initialization segment.
- (12) INSTAR. This COMMON contains the array for the program logic group.
- (13) MANAL. The first 59 variables in this COMMON, XF through NQTR, are ordered to allow I/O and other manipulations to be done on an equivalent array. The next 11 variables, COLSTK through BlT, are ordered for equivalencing to an array. Not more than 10 of these variables are used, and the array KVAR is used as a pointer vector to choose which ones are used and the

order of their use. The next 14 variables, ALM through AYD, are ordered for equivalencing to the array VAR in subroutine STAB for the calculation of derivatives. The variables TAXL and TAXR are equivalenced to an array in subroutine CNTM.

- (14) NORSET. This COMMON contains variables that are not to be reset to the trim condition when the maneuver perturbation option is activated.
- (15) PYLON. Most of the variables that are associated with the pylons are in this COMMON.
- (16) STAMAN. Variables in this block are mostly used in the initialization and maneuver segments. The first six arrays, SCASPF through SCASYC, are ordered for equivalencing in subroutine INSCAS. Arrays SHPGRP through SFTGRP are ordered to allow I/O and other manipulations to be done on an equivalenced array.
- (17) STARAD. Most of the variables here are used in the initialization and general-purpose segments.
- (18) STARAN. The variables in this COMMON are used in the initialization and general-purpose segments.
- (19) STBCOM. This is one of the two COMMON blocks that are specifically used in the flightpath stability analysis segment.
- (20) STBD. This COMMON block is used primarily by the flightpath stability analysis.
- (21) STBFRO. The output from the frequency response in the flightpath stability analysis is contained in this COMMON.
- (22) STRIAB. This COMMON is used in the initialization, trim, and flightpath stability analysis segments.
- (23) STRIMA. The first 16 variables, TZM through TCLOCK, are ordered for equivalencing in subroutine MOMB.
- (24) TAB. This COMMON contains the C_D table for the NACA 0012 airfoil.

- (25) TABL. This COMMON contains C_L and C_M tables for the NACA 0012 airfoil.
- (26) TOPLOT: This COMMON is used in all segments.

3.6 LABELED COMMONS IN GDAJ77

There are nine labeled COMMONS, but no blank COMMONS, in GDAJ77. Each of the COMMONS is listed below, together with pertinent comments.

- (1) INPLOT. This COMMON is used by subroutine SCALIT and the other subroutines in the segment for plotting time histories.
- (2) LHEAD. This COMMON contains the data in the third block data subroutine, DAT3, that are used for contour plot headings.
- (3) MAXMIN. It contains the maximum and minimum values of the specified variable. It is primarily used to determine the scale of the plot.
- (4) PLOTD. This COMMON contains the data in the block data subroutine DAT1 which are used by subroutine HEDING to furnish alphanumeric headings for time history plots.
- (5) PLOTD1. It contains the data in the second block data subroutine, DAT2, which are used by subroutine HEDING to supply headings for time history plots.
- (6) TIMPTS. This COMMON primarily contains maneuver time history data.
- (7) TOPLOT. This COMMON contains control variables and is not the same as COMMON TOPLOT in AGAJ77.
- (8) WRKCOM. This COMMON is a work area. It contains several big arrays and is shared by four subroutines.
- (9) YNORP. This is the primary working area for Prony's method.

4.0 DETAILED PROGRAMMING AIDS

4.1 CONTROL SECTION CROSS-REFERENCE

The Control Section Cross-Reference List for AGAJ77, Table 7, shows most of the control sections, including COMMONS, which are referenced by another control section, with the exception of system routines, whose inclusion would not contribute to the usefulness of the list. Table 7 contains the control sections in alphabetical order in a column on the left side of the page. To the right of each control section name is the cross-reference information. LENGTH is the size of the subroutine or COMMON in hexadecimal bytes. CALLED BY gives the name of each control section referencing the control section whose name is in the column on the left. IS USED BY gives the name of control sections that reference the control sections in the CALLED BY list or by another control section in the IS USED BY list. CALLS gives the name of each control section referenced by the control section whose name is in the column on the left. USES gives the name of each control section referenced by a control section in the CALLS list or by another control section in the USES list.

The information in the Control Section Cross-Reference List is sufficient to construct the sequence of subroutine calls from which an overlay structure can be made.

As noted in Section 3.2, several subroutines have multiple entry points. However, the Control Section Cross-Reference List (Table 7) includes only the primary names of subroutines; it does not include the names of any of these additional entry points. In the case where a call to a subroutine is actually a call to an additional entry point, the primary name of the subroutine that contains the specified entry point is used in the Cross-Reference List. For example, Table 7 indicates that subroutine START calls REDRWK when START actually calls REDRWl (a second entry point to REDRWK). For a multiple-entry subroutine, the subsequent entry points are named by a convention in which a numerical digit either follows or replaces the last letter of that subroutine name, in ascending order; for example, INBLD1 and INBLD2 are the first and second additional entry points to subroutine INBLD.

Table 8 contains the Control Section Cross-Reference List for GDAJ77. It is read and used in exactly the same manner as Table 7.

TABLE 7. CONTROL SECTION CROSS-REFERENCE FOR AGAJ77.

		CONTROL SECTION CROSS-REFERENCE LIST									
		LENGTH	810	INSTAB	JACOB _I	TRIM	MAIN	TRIM	STABAN	STRIM	SWAS
AJACOB _B	CALLED BY	-	INSTAB	INSTAB	JTRIM	INSTAB	MAIN	MAIN	STABAN	STRIM	SWAS
	IS USED BY	-	CONSTB	FORYD	INSTAR	INSTAB	MAIN	MATRIX	STABAN	STRIM	SWAS
	CALLS	-	ANAL	ZLLCAL	AZMUTH	BOPFDD	BLACC	BUNDER	BUTFLI	CDCL	TOPLOT
			WRFM	AZMOUT	FLTRCH	FOURC	FORMC	FORW1	FORYD	CLCD	DIFER
	USES	-	ANDOIT	FLEX	GETFLP	HRESP	INIT	INTFRQ	FOTR	FOSWK	FOSWK
			DOTX	FRECF	GTEFLP	RADSP	RADOUT	ITROT	MANAL	MBAL	MBAL
			FPLAC	FRECF	GYLON	RADBN	RADIAL	RGUST	RVRGST	SHRPL	SHRPL
			POPFD	FYPLAC	STABAN	STABAN	STABAN	RTWAKE	TABINT	TABINT	TABINT
			SOLVE	FYPLAC	STARAO	STARAO	STARAO	STRIMA	STRIMA	XSTORE	XSTORE
			TFRTWK	TFRTWK	TRMANU	TRMANU	TRMANU	VIND	WAG	WHDUF	WHDUF
ALLMAT	LENGTH	57F0	CALLED BY	-	ALSTAB	-	MAIN	-	-	-	-
			IS USED BY	-	CONSTB	-	MAIN	-	-	-	-
			CALLS	-	STBCUM	-	MAIN	-	-	-	-
ALSTAB	LENGTH	31A0	CALLED BY	-	CONSTB	-	MAIN	-	-	-	-
			IS USED BY	-	MAIN	-	INVERS	-	-	-	-
			USES	-	ALLMAT	-	MAIN	-	-	-	-
ANAL	LENGTH	BCB	CALLED BY	-	AJACOB _B	DERIV	STAB	INSTAB	JACOB _I	TRIM	STRIM
			IS USED BY	-	CONSTB	CONFIR	INSTAB	INSTAB	MAIN	STABAN	STRIM
			CALLS	-	ANDOIT	FILTER	FUSFM	INSTAB	PYLDN	ROTAN	STBFNM
	USES	-	ANDOIT	FILTER	AZMINT	BOPFDD	BLACC	BUNDER	STBFNM	STBFNM	STBFNM
			DOTX	FLEX	FLEX	FLTRCH	FORMC	FORW1	CDCL	CLCD	WING
			FPLAC	FRECF	FRECF	GETFLP	HRESP	INTFRQ	FORYD	DIFER	DIFER
			POPFD	FYPLAC	FYPLAC	GTEFLP	INIT	ITROT	FOTR	FOSWK	FOSWK
			SOLVE	FYPLAC	FYPLAC	GYLON	RADSP	RGUST	MANAL	MBAL	MBAL
			TFRTWK	TFRTWK	TFRTWK	GYLON	RADBN	RTWAKE	RVRGST	SHRPL	SHRPL
			UNSDER	TFRTWK	TFRTWK	STBANK	STBANK	STRIMA	TABINT	TABINT	TABINT
ANDOIT	LENGTH	730	CALLED BY	-	ANAL	AZMINT	BOPFDD	BLACC	EMSIMT	BUNDER	DERIV
					FUSFM	AZMOUT	GEFLP	INBLD	INRTR	INRTR	CMCALC
					QSBDNF	FLEX	HRESP	RADOUT	ROGST	ROGST	LOAD
					SHRPL	FRECF	RADBN	TIME 00	TRIM	TRMANU	RVRSST
						POPFD	STBANK				WING

TABLE 7. Continued.

			CONTROL	SECTION	CROSS-REFERENCE LIST							
ANDOUT CONTINUED	IS USED BY -	AJACOB INSTAB STAB	ANAL ITRIM START	AZMUTH JACOBI TIMEP	CDCL MAIN TRIM	QLCD MANU TVTRIM	CONSTB UNSTED	CONTRM RADBN WING	DERIV RADIAL WTRIM	FOCUS RGUST	INIT ROTAN	INFO RTINIT
AZMINT	LENGTH 1258 CALLED BY -	AZMUTH AJACOB ROTAN CALLS - ANDOUT USES - ANDOUT	ANAL STAB FLEX MANAL	CONSTB TRIM FORWK STARAN	DERIV MANAL	FOCUS MATRIX	INSTAB SHKCTL	ITRIM STARAN	ITROT STARAD	JACOBI STARAN	MAIN STRIMA	MANU
AZMOUT	LENGTH 3E8 CALLED BY -	AZMUTH AJACOB ROTAN CALLS - ANDOUT	ANAL STAB MANAL	CONSTB TRIM STARAD	DERIV CONTRM TVTRIM STARAN	FOCUS INSTAB	ITRIM ITRIM	ITROT ITROT	JACOBI STARAN	MAIN	MAIN	MANU
AZMUTH	LENGTH 1436 CALLED BY -	ITROT IS USED BY -	AJACOB STAB CALLS - ANDOUT USES - ANDOUT	ANAL TRIM AZMINT BLACC INSTAR STRIMA	CONSTB TVTRIM AZMOUT BUNDER MATRIX TABINT	DERIV FLEX CDCL RADGN TAB1	FOCUS INSTAB CMCALC RADOUT ROUST TOPLOT	ITRIM MANAL DIFFRQ RADOUT ROUST UNSTED	ITRIM RADIAL FLEX RGUST	JACOBI STARAD	MAIN	RUTAN
BOPFDD	LENGTH 488 CALLED BY -	DERIV IS USED BY -	AJACOB TRIM CALLS - ANDOUT	FOCUS ANAL TVTRIM DOTX	CONSTB FLEX	DERIV FORVD	INSTAB MANAL	ITRIM PYLON	JACOBI STARAD	STARAN FORMC SHKCTL	STARAD	TOPLOT FORWK STARAD
BLACC	LENGTH 968 CALLED BY -	AJACOB MANU CALLS - ANDOUT	ANAL ROTAN MANAL	AZMUTH STAB STARAN	CONSTB TRIM STRIMA	DERIV FOCUS	INSTAB DERIV	ITRIM STARAD	JACOBI STARAN	MAIN	ROTAN	STAB
BMSINT	LENGTH 680 CALLED BY -	INRO IS USED BY -	MAIN ANDOUT	START INONLY	MANAL	STARAD	STARAN	STARAN	ITROT	JACOBI	MAIN	MAIN
BUNDER	LENGTH 390 CALLED BY -	RADIAL IS USED BY -	AJACOB MANU CALLS - ANDOUT	ANAL ROTAN DIFFER	AZMUTH STAB STARAN	DERIV FOCUS	INSTAB CONTRM TVTRIM	ITRIM STARAN	ITROT STARAN	JACOBI STARAN	MAIN	MAIN
BUTFLT	LENGTH ACB CALLED BY -	MANU AJACOB TRIM CALLS -	TVTRIM ANAL	CONSTB	DERIV	INSTAB	ITRIM	JACOBI	MAIN	MANU	ROTAN	STAB
CDCL	LENGTH BFO CALLED BY -	RADIAL IS USED BY -	AJACOB	UNSTED ANAL	CONSTB	DERIV FOCUS	INSTAB ITRIM	ITROT JACOBI	ITROT JACOBI	MAIN	MAIN	MAIN

TABLE 7. Continued.

TABLE 7. Continued.

		CONTROL SECTION CROSS-REFERENCE LIST									
DERIV CONTINUED	CALLS USES	SHARPL - ANDUIT CNTR DIFER FORD IROT RADOUT RADUST STRAB TVTRIM ZLLCAL	STARAN AZMUTH DOTX FOSK MANAL MATRIX MBAL ROTA STRAB TVTRIM	STRAB AZMUTH EXTORS FPYLAC MATRIX MBAL ROTA STRAB UNSDER	STRIMA BLACC FILTER FRGOF MBAL MONA RVAKE SUPERP UNSTD	SWSRAT BLACC FLTRCM FUSFM MBAL MILT RVSAT SWSRAT VIND	TOPLOT BLUNDER FLTRCM GEFLP MILT NDRS SHKCT TABNT VORGST	VARIET BUTLER FOCUS GEFLP MILT NDRS SHKCT TABNT VSCS	CGARMS FORWK HRESS PYLACC STRAO TAB1 WAG	CLCD FORWK INSTAB PYLON STRAO TAB1 WING	CMCALC FORY INTERU RADIGN SILKAN STBDM TILT XSTORE
DOTX	LENGTH 58 CALLED BY IS USED BY	BUPFDD - BUPFDD - ANAL RADBN	GEFLP - ANAL RADBN	HRESP AZMUTH RADIAL	RVAKE CONSTB ROTAN	STBWK UNTRM STAB	TRIM DERIV STBFNM	FOCUS TRIM	INSTAB TRIM	ITROT ITROT WING	JACOBI JACOBI MAIN
ENGINT	LENGTH 308 CALLED BY IS USED BY	START - MAIN CALLS - INONLY USES - INONLY	MAXHP INSTAR	STAMAN STARAN	STARAN STRIMA	STARAN STRIMA	TRIM DERIV STBFNM	FOCUS TRIM	INSTAB TRIM	ITROT ITROT WING	JACOBI JACOBI MAIN
ERCHK	LENGTH 668 CALLED BY IS USED BY	- READIN - MAIN CALLS - INSTAR	MAIN INSTAR MAIN	MANU STARAN	MANU STARAN	STARAN STRIMA	TOPLOT				
EXTORS	LENGTH 860 CALLED BY IS USED BY	- VARI - DERIV COARMS INSTAR	FUSACC ANAL TRIM	ITROT CONSTB TVTRIM	MANU CONTRM	TVTRIM DERIV	FOCUS	INSTAB	ITROT JACOBI MAIN		
FILTER	LENGTH 1408 CALLED BY IS USED BY	- ANAL - AJACOB STAB FLTRCM - CALLS	BDFDD QUAN	BMSINT RADBN	FRGOF RADIAL	INBLD RESTR	INBLD RPTPG	INBLD SHKNT	INBLD RTNLT	INBLD RTNLT	LUDAT TRMANU
FLLEX	LENGTH 2488 CALLED BY IS USED BY	- AZMINT MNEM ZERO ANAL AJACOB IROT TVTRIM - AJACOB MANU	AZMUTH MODUL ZERO ANAL AJACOB IROT TVTRIM	BMINT RADBN CONSTB LIZE WRTRIM	FRGOF RADIAL CINTRM MANU	GEFLP RESTR	INBLD RPTPG	INBLD SHKNT	INBLD RTNLT	INBLD RTNLT	INBLD RTNLT
FLTRCM	LENGTH 3860 CALLED BY IS USED BY	- BUTFLT - AJACOB MANU	FILTER ANAL MNEM	RESTRT CONSTB ROTAN	TIMEQO CONTRM STAB	FOCUS DERIV START	FUSACC TRIM	INSTAB TVTRIM	ITROT JACOBI MAIN		
FOCUS	LENGTH 300 CALLED BY	- RUTAN			TVTRIM						

TABLE 7. Continued.

		CONTROL SECTION CROSS-REFERENCE LIST									
		CONSTB	CONSTB	DERIV	INSTAB	JACOB	MAIN	MANU	ROTAN	STAB	
FOCUS CONTINUED		AJACOB TRIM	ANAL	SHRPYL BLACC FURY RADBLN STRIMA	STARAN BUNDR FORYD RADBLN STRIMA	TOPLOT CDCL FRGDF RADOUT TABINT	DIFFER INSTAB RTWAKE TAB1	DUTX INFREQ RTWAKE TFTWK	FLEX MATRIX SOLVE UNSOVR		
CALLS -		ADPFDD	I TRUT	AMAL AZMUTH FORW PYLACC STABAD	STRIMA CDCL FRGDF RADOUT TABINT	TOPLOT CDCL FRGDF RADOUT TABINT	DIFFER INSTAB RTWAKE TAB1	DUTX INFREQ RTWAKE TFTWK	FLEX MATRIX SOLVE UNSOVR		
USES -		ADPFDD	AMINT	AMAL AZMUTH FORW PYLACC STABAD	STRIMA CDCL FRGDF RADOUT TABINT	TOPLOT CDCL FRGDF RADOUT TABINT	DIFFER INSTAB RTWAKE TAB1	DUTX INFREQ RTWAKE TFTWK	FLEX MATRIX SOLVE UNSOVR		
FLTRCM		FORWMC	STABAD	VIND	STRIMA	TOPLOT CDCL FRGDF RADOUT TABINT	DIFFER INSTAB RTWAKE TAB1	DUTX INFREQ RTWAKE TFTWK	FLEX MATRIX SOLVE UNSOVR		
LENGTH 150AB		CMCALC	CONSTB	CONSTB	CONSTB	TOPLOT CDCL FRGDF RADOUT TABINT	DIFFER INSTAB RTWAKE TAB1	DUTX INFREQ RTWAKE TFTWK	FLEX MATRIX SOLVE UNSOVR		
CALLED BY -		AJACOB MANU	AZMUTH RADIAL	RADIGN	REDRCK	RESTRT	RTWAKE	SBWAK	SWSRAT	TFRTRK	
FDHFK		LENGTH 3FO	I TRUT	LIZE	RADIGN	REDRCK	RESTRT	START	SBWAK	TFRTRK	
IS USED BY -		AMINT	ZERO	CONSTB	CONSTB	RESTRT	RTWAKE	INSTAB	ITRIM	JACUBI STBFNM	
AJACOB		ANAL	AMINT	CONSTB	CONSTB	RESTRT	RTWAKE	ROTAN	STAB	ITRUT START	
JSTRED		LIZE	MAIN	CONSTB	CONSTB	RESTRT	RTWAKE	ROTAN	STAB	ITRUT START	
TIMEP		TRIM	TRIMANU	CONSTB	CONSTB	RESTRT	RTWAKE	ROTAN	STAB	ITRUT START	
FORW1		LENGTH 128E0	I TRUT	LIZE	RADIGN	REDRCK	RESTRT	START	SBWAK	SWSRAT	TFRTRK
CALLED BY -		AMINT	CONSTB	CONSTB	CONSTB	RESTRT	RTWAKE	INIT	INSTAB	ITRIM	JACUBI STBFNM
IS USED BY -		AJACOB	AMINT	CONSTB	CONSTB	RESTRT	RTWAKE	READIN	ROTAN	STAB	ITRUT START
JSTRED		LIZE	MAIN	CONSTB	CONSTB	RESTRT	RTWAKE	INIT	INSTAB	ITRIM	JACUBI STBFNM
TIMEP		TRIM	TRIMANU	CONSTB	CONSTB	RESTRT	RTWAKE	INIT	INSTAB	ITRIM	JACUBI STBFNM
FORY		LENGTH 823	I TRUT	ADPFDD	DERIV	FPLAC	FUSACC	GETFLP	LIZE	MOMB TVTRIM	PREVTR
IS USED BY -		UJAN	UJAN	CONSTB	CONSTB	ROTAN	SCSIT	STBFNM	TIMEQ	TRIMANU	VARI
AJACOB		VSCAS	UJAN	CONSTB	CONSTB	ROTAN	DERIV	INIT	INSTAB	ITRIM	MAIN
MNEM		ANAL	UJAN	CONSTB	CONSTB	ROTAN	TIMEP	TRIMANU	TVTRIM	WTRIM	MANU
FURYO		LENGTH 1040	I TRUT	ADPFDD	DERIV	FPLAC	FUSACC	GETFLP	INIT	MOMB TVTRIM	PREVTR
CALLED BY -		AJACOB	UJAN	CONSTB	CONSTB	ROTAN	SCSIT	STBFNM	TIMEQ	TRIMANU	VARI
IS USED BY -		USBUP	UJAN	CONSTB	CONSTB	ROTAN	DERIV	INIT	INSTAB	ITRIM	MAIN
AJACOB		VSCAS	UJAN	CONSTB	CONSTB	ROTAN	TIMEP	TRIMANU	TVTRIM	WTRIM	MANU
MNEM		ANAL	UJAN	CONSTB	CONSTB	ROTAN	DERIV	INIT	INSTAB	ITRIM	MAIN
FUSAK		LENGTH 790	I TRUT	REDSK	RESRT	STBFNM	STBZIN	TIMEQ	WING	JACOB1	JSTRED
IS USED BY -		AJACOB	ANAL	CONSTB	CONSTB	RESRT	DERIV	INSTAB	TRIM	MAIN	MANU
READIN		STAB	STAB	STBFNM	STBFNM	RESRT	STBFNM	STBZIN	WING	JACOB1	JSTRED
FPLAC		LENGTH 160	I TRUT	HEDSK	RESRT	STBFNM	DERIV	INSTAB	TRIM	MAIN	MANU
IS USED BY -		AJACOB	ANAL	CONSTB	CONSTB	RESRT	STBFNM	STBZIN	WING	JACOB1	JSTRED
READIN		STAB	STAB	STBFNM	STBFNM	RESRT	STBFNM	DERIV	TRIM	MAIN	MANU
FPLAC		LENGTH 276	I TRUT	ANAL	CONSTB	CONSTB	DERIV	INIT	INSTAB	JACOB1	MANU
CALLED BY -		TRIMANU	TRIMANU	CONSTB	CONSTB	CONSTB	STBFNM	STBZIN	WING	RUTAN	MANU
AJACOB		STAB	STAB	CONSTB	CONSTB	CONSTB	DERIV	INSTAB	TRIM	JACOB1	MANU
FPLAC		FORY	FORY	INSTAB	INSTAB	INSTAB	STBFNM	STBZIN	WING	RUTAN	MANU

TABLE 7. Continued.

			CONTROL	SECTION	CROSS-REFERENCE LIST						
FRCGOF	LENGTH 5C0 IS USED BY -	RADIAL AJACOS MANU CALLS - ANDUIT	ANAL ROTAN FLEX	AZMUTH STAB MANU	CONSTB TRIM STAB STABAN	CONTRM TVTRIM STARAD	DERIV STARAN	FOCUS STRIMA	INSTAB	ITRIM	JACOBI MAIN
FSMINT	LENGTH 2A8 IS USED BY -	START MAIN CALLS - INUNLY	INSTAR	MANAL	PYLON						
FUSACC	LENGTH 5F0 IS USED BY -	DERIV MAIN CALLS - FILTER USES - FLTRCM	MANU FURY	MANAL	STABAB	STABAN	STABAN	TOPLOT			
FUSFNM	LENGTH DDO IS USED BY -	ANAL AJACOS CALLS - ANDUIT USES - STARAN	CONSTB NANAL STRIMA	CONTRM STARAN	INSTAB WSDUF	DERIV STARAN	ITRIM	JACOBI	MAIN	MANU	STAB
FUSINT	LENGTH DAO IS USED BY -	START MAIN CALLS - INUNLY	INSTAR	MANAL	STABAN	STABAN	STABAN	STRIMA			TRIM
GETFLP	LENGTH 398 IS USED BY -	TIMLP AJACOS TRIM CALLS - ANDUIT	TVTRIM ANAL DOTX	CONSTB FLEX	CONTRM FORY	DERIV FORY	INSTAB MANAL	SOLVE	STABMA	TOPLOT	ROTAN STAB
GUT	LENGTH 940 IS USED BY -	VARI DERIV CALLS - MANAL USES - MANAL	MAIN STABAN STABAN	MANU STABAN STABAN	STABAB STABAN	STABAN	STABAN	VORGST			
HARM	LENGTH 350 IS USED BY -	LOADT CONTRM	MAIN								
HRESP	LENGTH 960 IS USED BY -	LOADT AJACOS STAB CALLS - ANDUIT	ANAL TRIM DOTX	CONSTB TVTRIM MANAL	CONTRM STARAD	DERIV STARAN					
IMFRMP	LENGTH 6D8 IS USED BY -	MODES CONS1a CALLS - MAIN									
INBLU	LENGTH 1568 IS USED BY -	INHO MAIN	RTINIT	START							

TABLE 7. Continued.

TABLE 7. Continued.

			CONTROL SECTION	CROSS-REFERENCE LIST							
INSTR CONTINUED	CALLED BY IS USED BY	XSTINT	AZMUTH ITROT RADIAL TRIM	CONSTB ANAL INSTAB READIN TRIMU	CONTRM JACOBI REDK VTRIM	DERIV MAIN REDSK WRINST	EXTORS MAIN ROLAN	FOCUS MINEM RTNRM	INBLD MODAL	INIT MONS	INRD MILT
INFRQ	LENGTH 2.38 IS USED BY	AZMUTH AJACOB CALLS	ANAL INSTAB MANAL MAIN	CONSTB TRIM STARAN	CONTRM VTRIM	DERIV	FOCUS	INSTAB	ITRIM	ITROT	JACOB1
INVERS	LENGTH 720 IS USED BY	AZMUTH AJACOB CALLS	ANAL INSTAB MANAL MAIN	SWAP CONSTB							MAIN
JUMAT	LENGTH 1020 IS USED BY	MODES CALLS	MAIN CONSTB STBCOM STBDO								MAIN
ITRIM	LENGTH 980 IS USED BY	TRIM CALLS	MAIN DATE WRVP	INSTAR JACOBI	NCAMP	PZERO	SOLVE	STARAN	STARAN	STARAN	STARAB
			AZMUTH TOPLOT	AZMINT ANAL DOTX DIFFER FPLAC FOSWK1 MBAL PDPDD SHKCTL TAB1 WRVP	AZMUTH FLTRCH GETFLD FUSNM PYLAC STARAN STARAD TOPLOT ZLLCAL	BDFD0 FOCUS HRESP RADIAL STBFNM TTRIM	BLACC FORMK INSTR RADOUT STBWA UNSTD	BUNDER FORMK INSTR RADOUT STBWA UNSTD	BUTFLI FORMK INFRQ ROTIN STRIM VIND	CDCL FORY ITROT RTWAKE SWAS WAG	STRIMA STRIB STRIM STRIM STRIM STRIB VIND
			USES	AJACOB CMCALC FOSWK1 MBAL PDPDD SHKCTL TAB1 WRVP							
ITROT	LENGTH 1580 IS USED BY	FOCUS AJACOB CALLS	ANAL AZMUTH INSTAB AZMINT AZMUTH FPLAC FOSWK1 ITROT RTWAKE TOPLOT	CONSTB FILTER STARAN AZMINT AZMUTH FPLAC FOSWK1 ITROT RTWAKE TOPLOT UNSTD	CONTRM FORK STARAN AZMINT AZMUTH FPLAC FOSWK1 ITROT RTWAKE TOPLOT VIND	DERIV	INSTAB	ITRIM	JACOB1	MAIN	ROTAN STAB STANAN
JACOB1	LENGTH 4.00 IS USED BY	INSTAB CONSTB CALLS	MAIN STARAN AZMINT ANAL DOTX DIFFER FPLAC FOSWK1 MBAL PDPDD SHKCTL TAB1 WRVP	TRIM STARAN AZMINT ANAL DOTX DIFFER FPLAC FOSWK1 MBAL PDPDD SHKCTL TAB1 WRVP	TOPLOT BDFD0 FORMK HRESP RADIAL STBFNM TTRIM	BLACC FORMK INSTR RADOUT STBWA UNSTD	BLACC FORMK INSTR RADOUT STBWA UNSTD	TOPLOT BDFD0 FORMK HRESP RADOUT STBWA UNSTD	BUFLI FORMK INFRQ ROTIN STRIM VIND	CDCL FORY ITROT RTWAKE SWAS WAG	CMCALC FOSWK MAIN SHKCTL TAB WRVP
JFBG1N	LENGTH	A40									

TABLE 7. Continued.

			CONTROL	SECTION	CROSS-REFERENCE LIST							
JFBGIN	CALLED BY	-	START									
JCONTINUED	IS USED BY	-	MAIN									
CALLS	-	MAIN	INCLAS	INSTAR	MANAL	MATRIX	STAMAN	STARAD	STRIBAB	STRIMA	TOPLOT	
USES	-	STAMAN	STRIMA									
JS TRED	LENGTH	548	READIN									
	CALLED BY	-	MAIN									
	IS USED BY	-	MAIN	START	MANAL	REDAMS	REDRWK	REDSK	STRIMAN	STRIMAN	TAB	
	CALLS	-	MAIN	INSTAR	FOSWK	INONLY	INSTAR	PDSRD	STARAD	STARAD		
	USES	-	MAIN	FORK1	WTAB1							
LGCINT	LENGTH	588	READIN									
	CALLED BY	-	MAIN									
	IS USED BY	-	MAIN	START	MANAL	STARAD	STARAN	STRIBAB	STRIMAN	STAMAN		
	CALLS	-	MAIN	INSTAR								
LIE	LENGTH	740	START									
	CALLED BY	-	MAIN									
	IS USED BY	-	MAIN	FORWK1	STRIBAB	FURY	FOSWK1	INONLY	INSTAR	MANAL	PYLON	
	CALLS	-	MAIN	STBD1	FORWK1	TOPLOT	ZERO	STARAN	STRIBAB	STARAN		
LOADT	LENGTH	12668	CONTRM									
	CALLED BY	-	MAIN									
	IS USED BY	-	MAIN	ANDOUT	FLEX	HARM	MANAL	PYLON	STARAD	STARAD	STRIBAB	
	CALLS	-	MAIN	ANAL								
MAIN	LENGTH	698	CONTMB									
	CALLED BY	-	MAIN									
	IS USED BY	-	MAIN	ALSTAB	ANAL	READIN	RESTRIT	WROTT	BLACC	BMSINT		
	CALLS	-	MAIN	CDCL	CGARMS	ANDOUT	AZMINT	BOPDD	BLACC	BLACC		
	USES	-	MAIN	EXTURS	CFLEX	CNTM	AZMINT	DOTX	BLACC	BLACC		
			MAIN	FILTER	FLTRCM	CMAIC	AZMINT	DIFER	BLACC	BLACC		
			MAIN	FRCCOF	FUSACC	CFUCUS	FORCM	FORWK1	BLACC	BLACC		
			MAIN	INIT	FSMIN1	FORCM	FORWK	FORWK1	BLACC	BLACC		
			MAIN	JFBGIN	INONLY	INSTR	GETFLP	FORWK1	BLACC	BLACC		
			MAIN	INBMS	INSTR	INSTR	INSTAB	INSTAR	BLACC	BLACC		
			MAIN	ITHOT	JSTRED	INSTR	INSTAR	INSTAR	BLACC	BLACC		
			MAIN	JACOBI	MODES	LGCENT	LOADT	INSTAR	BLACC	BLACC		
			MAIN	MNEM	MODAL	MON3	LOADT	INSTAR	BLACC	BLACC		
			MAIN	MORDRS	PUNCH	MON3	LYON	INSTAR	BLACC	BLACC		
			MAIN	PZERDU	PREVT	PYLINE	INSTAR	INSTAR	BLACC	BLACC		
			MAIN	PREDTB	REDAMS	REDRWK	INSTAR	INSTAR	BLACC	BLACC		
			MAIN	REDBUT	REDCLS	REDRWK	INSTAR	INSTAR	BLACC	BLACC		
			MAIN	SCASIT	SHKCTL	SHKINT	SIVAR	SIVAR	BLACC	BLACC		
			MAIN	STBD1	STBFTR2	STBZIN	SIVAR	SIVAR	BLACC	BLACC		
			MAIN	TABDIX	TABOUT	STBZIN	STRIAB	STRIAB	BLACC	BLACC		
			MAIN	TURN	TFTRW	TABL1	TILT	TILT	BLACC	BLACC		
			MAIN	UNSDEN	UNSTED	VAG1	TIMEQ	TIMEQ	BLACC	BLACC		
			MAIN	WRMANU	WRMODE	VAG1	VAG1	VAG1	BLACC	BLACC		
			MAIN	WRINST	XSTORE	YRNG	YRNG	YRNG	BLACC	BLACC		
			MAIN	XCONIN	ZSTINT	YRNG	YRNG	YRNG	BLACC	BLACC		
			MAIN	#SHDUF	ZLLCAL	YRNG	YRNG	YRNG	BLACC	BLACC		
	LENGTH	1080	AJACUB	-								
	CALLED BY	-	ALSTAB	ANAL	AZMINT	AZMINT	AZMINT	BOPFD	BLACC	BMSINT		
			CONSTB	DERIV	EXTORS	EXTORS	EXTORS	FRCGOF	BLACC	BLACC		
			CONSTB	INFMDH	ENBLO	FYLUUS	FYLUUS	INTRFO	BLACC	BLACC		
			CONSTB	GUST	INBLD	INBLD	INBLD	INTRFO	BLACC	BLACC		
			CONSTB	JACOBI	INBLD	INBLD	INBLD	INTRFO	BLACC	BLACC		
			CONSTB	MNEM	JSTRED	JSTRED	JSTRED	INTRFO	BLACC	BLACC		
			CONSTB	MORDRS	MNEM	MNEM	MNEM	INTRFO	BLACC	BLACC		
			CONSTB	PZERDU	PREDTB	PREDTB	PREDTB	INTRFO	BLACC	BLACC		
			CONSTB	PREDTB	REDBUT	REDBUT	REDBUT	INTRFO	BLACC	BLACC		
			CONSTB	SCASIT	SHKCTL	SHKINT	SHKINT	INTRFO	BLACC	BLACC		
			CONSTB	STBD1	STBFTR2	STBZIN	STBZIN	INTRFO	BLACC	BLACC		
			CONSTB	TABDIX	TFTRW	TABL1	TABL1	INTRFO	BLACC	BLACC		
			CONSTB	TURN	WRINST	TIMEQ	TIMEQ	INTRFO	BLACC	BLACC		
			CONSTB	WRINST	ZLLCAL	YRNG	YRNG	INTRFO	BLACC	BLACC		
			MAIN									

TABLE 7. Continued.

MANUAL CONTINUED	IS USED BY	AJACOB	ANAL	AZIMUTH	CONSTB	DERIV	EXTORS	FOCUS	GUST	MANU	RESTR	TVTRIM	INIT	INBLD	MNEM	ROAN	VARI	MODAL	RTAN	WING	
MANTYP	LENGTH 308 CALLED BY IS USED BY	MAIN MODES STAB WMANU	INSTAB NOMB START WMANU	ITRIM PDPDD TFRWK WRTRIM	JACOB PHTV TILT WRTRIM	JSTRED RADIGN TIMLP	LIZE RADIGN TRIM	MAIN READIN TRMANU	REGST TVTRIM	MANU	RESTR	TVTRIM	INIT	INBLD	MNEM	ROAN	VARI	MODAL	RTAN	WING	
MANU	LENGTH 880 CALLED BY IS USED BY	MAIN CALLS - ANAL USES -	MAIN CALLS - ANAL USES -	BUTFLI STRIMA	FILTER TIMLP AZIMUTH DIFFER DOTXK FOCUS FWD	TOPLOT AZIMUTH DOTXK FOSK1 ITROT INSEAO QSDPF JUAN PYLON SHKCL SIVAR SWRSL TABIN VARI ZL-CAL	TOPLOT AZIMUTH DOTXK FOSK1 ITROT INSEAO QSDPF JUAN PYLON SHKCL SIVAR SWRSL TABIN VARI ZL-CAL	INSTAR MANAL EXTDERS FILTER FVLCAC MANAL RADIGN SOLVE SWRSL UNSTORE XSTORE	PYLON BUTFLI BUNDER FLEX FUSACC MBLAD RADOUT STARAD TAB1 VIND VORG1	NORSET	PYLON BUTFLI CDSL FLSRCM GEFLP HMBD RQST STBWN TILT VSCAS	PYLON BUTFLI CDSL FLSRCM GEFLP HMBD RQST STBWN TILT VSCAS	RESTR	STAMAN	CGAMS FORCM GUST HRESP KTWAK RQST STBWN TILT VSCAS	RESTR	STAMAN	CGAMS FORCM GUST HRESP KTWAK RQST STBWN TILT VSCAS	RESTR	STAMAN	CGAMS FORCM GUST HRESP KTWAK RQST STBWN TILT VSCAS
MATRIX	LENGTH 2D8 CALLED BY IS USED BY	AJACOB AJACOB MAIN	ANAL MANU	INRTR AZIMUTH ROTAN	JFBGIN MNEM CNTRM STAB	MILT DERIV START	QUAN FOCUS TRIM	SWSRAT INSTAB VARI	ITRIM	ITRUT	JACUB I										
MAXMAP	LENGTH 3A0 CALLED BY IS USED BY	MAIN ENGIN	MAIN	START INSTAR	STRANA	TOPLOT															
MEM	LENGTH 688 CALLED BY IS USED BY	- ITROT - AJACOB STAB	- AJACOB STAB	ANAL TVTRIM PYLON	CONSTB PYLON	DERIV	FOCUS	INSTAB	ITRIM	JACOB I	MAIN										
MORDRS	LENGTH 960 CALLED BY IS USED BY	MODES MAIN CALLS -	CONSTB MAIN PYLON	STBCOM STBD	STRIAB	STRIAB															
MNEA	LENGTH B30 CALLED BY IS USED BY	START MAIN CALLS -	MAIN FLEX	FURY SWAS FLEX	INSTAB TILT FLTRCM SIVAR ZLPLUT	MANAL TURN FORWK STARM	MATRIX VIND FORYD STBD	NOPS FOSWK STRIAZ	RESTR	STAMAN	INBLD	INSTAR	INBLD	ROAN	VARI	MODAL	RTAN	WING	INIT		
MUDA	LENGTH 1208 CALLED BY	- INRU																			

TABLE 7. Continued.

		SECTION CROSS-REFERENCE LIST							
		CONTROL	START	INSTAR	MANAL	STARAN	STARAD	STARAN	WRMODE
MOUAL CONTINUED	IS USED BY	MAIN	RTINIT	INSTAR	INONLY MANAL	STARAN	STARAD	STARAN	WRMODE
	CALLS -	ANDOT	FLEX						
MUES	LENGTH	840	INSTAR						
	CALLED BY	CONSTB							
	IS USED BY	MAIN							
	CALLS -	INSTAR							
	USES -	INFIMP							
	DATE								
MUMB	LENGTH	790	IOMAT	MANAL	PYTHON	PUNCH STD	STARAN	STBCOM STRINA	STRIM
	CALLED BY	VARI	MAIN	MANAL	PYTHON				
	IS USED BY	DERIV	FURYO						
	CALLS -	INSTAR							
	USES -	CGARMS							
MTLT	LENGTH	480	MAIN	MANAL	MANAL	SOLVE STRIMA	STARAN	TOPLOT	TOPLOT
	CALLED BY	VARI	MAIN	MANAL	MANAL				
	IS USED BY	DERIV	MAIN	MANAL	MANAL				
	CALLS -	INSTAR							
	USES -	CGARMS							
NCDAAMP	LENGTH	3C8	INSTAB	CONTRM	MAIN	PRETVT MAIN	STARAN	TILT	TILT
	CALLED BY	CONSTB	INSTAB	CONTRM	MAIN				
	IS USED BY	MAIN	INSTAR	CONTRM	STRIM				
	CALLS -	STARAN							
NOPS	LENGTH	4F8	MNEM	MONB	DERIV	PRETVT MAIN	STARAN	TRIM	TRIM
	CALLED BY	-	MNEM	MONB	DERIV				
	IS USED BY	-	CONTRM	MONB	DERIV				
	CALLS -	MAIN							
NORSET	LENGTH	18	MANTYP	MANU	RESTRTR	TIMEQO MNEM	STARAN	TRIMLP	TRIM
	CALLED BY	-	MANTYP	MANU	RESTRTR				
	IS USED BY	-	CONTRM	MANU	RESTRTR				
INPUTOT	LENGTH	DAB	READIN	MAIN	STARAN	STARAD	STARAN	ROTAN	ROTAN
	CALLED BY	-	READIN	MAIN	STARAN				
	IS USED BY	-	MAIN	STARAN					
	CALLS -	INONLY							
PUPHFDJ	LENGTH	FC8	DERIV	JACOB	ITROT	CONTRM	DERIV	FOCUS	MAIN
	CALLED BY	-	STOB	STOB	ITROT	CONTRM	FOCUS	STARAN	MAIN
	IS USED BY	-	ANDOT	ANDOT	ITROT	CONTRM	FOCUS	STARAN	MAIN
	CALLS -	INSTAR							
	USES -								
PUSRED	LENGTH	268	REDIO	MAIN	READIN	READIN	REDHWK	REDHWK	REDHWK
	CALLED BY	-	REDIO	MAIN	READIN				
	IS USED BY	-	JSTRED	MAIN	READIN				
PZERO	LENGTH	3H0	ITRIM						
	CALLED BY	-	ITRIM						
	IS USED BY	-	CONTRM						
	CALLS -	MAIN							
PRETVT	LENGTH	7BB	TRIM						
	CALLED BY	-	TRIM						

TABLE 7. Continued.

PREV T	IS USED BY	CONTINUED	SECTION CROSS-REFERENCE LIST									
			MAIN	FORYD	MANAL	NOPS	PYLON	STARAN	STRIM	STRIM	TOPLOT	
PUNCH	LENGTH 648	CALLED BY MODES	MAIN	STBCOM	STRIM	TOPLOT						
	CALLED BY CUNSTS	-	MAIN	STBCOM								
	IS USED BY DATE	-										
PyLACC	LENGTH 368	CALLED BY PDPFD	STAB	CONSTB	CONTRM	DERIV	FOCUS	INSTAB	ITRIM	JACOSI	MAIN	
	IS USED BY AJACOB	-	ANAL	TRIM	TVTRIM							
	ROTAN	-	MANAL	PYLON	STARAN							
	CALLS - INSTAR	-										
PyLINT	LENGTH 328	CALLED BY INRO	STAB	CONSTB	CONTRM	DERIV	FOCUS	INSTAB	ITRIM	JACOSI	MAIN	
	IS USED BY MAIN	-	ANAL	TRIM	TVTRIM							
	CALLS - IMONYL	-	MANAL	PYLON	STARAN							
PyLON	LENGTH 620	CALLED BY ANAL	SDPFDD	FSMINI	IMFIMP	INIT	INHO	INSTAB	ITROT	LIZE	MAIN	
	IS USED BY MANU	-	MORRS	PYFLAC	PYFLAC	PYLINE	INSTAB	RESTART	ITROT	HPTG		
	STAB	-	SERAT	PDPFD	PDPFD	PRETIV	ROTAN	ZERO	ITROT	SHRPL		
	ANAL	-	ANAL	TIMEQ	TIMEQ	TYTRIM	WSTAB	INSTAB	ITROT	JACUBI		
	LIZE	-	MAIN	CONSTB	CONSTB	DERIV	INHO	RTINIT	ITROT	TRIM		
	TRIMANU	-	WRTRIM	MNEM	MNEM	PDPFD	ROTAN	STAB	ITROT			
QSADPF	LENGTH 348	CALLED BY DERIV	SDPFDD	FSMINI	IMFIMP	INIT	INHO	INSTAB	ITROT	LIZE	MAIN	
	IS USED BY MAIN	-	MORRS	PYFLAC	PYFLAC	PYLINE	INSTAB	RESTART	ITROT	HPTG		
	CALLS - ANDOUT	-	MANU	PDPFD	PDPFD	PRETIV	ROTAN	ZERO	ITROT	SHRPL		
QUAN	LENGTH 770	CALLED BY DERIV	MANU	FSMINI	IMFIMP	INIT	INHO	INSTAB	ITROT	LIZE	MAIN	
	IS USED BY MAIN	-	MANU	PYFLAC	PYFLAC	PYLINE	INSTAB	RESTART	ITROT	HPTG		
	CALLS - FLEX	-	FURYD	PDPFD	PDPFD	PRETIV	ROTAN	ZERO	ITROT	SHRPL		
RAUBGN	LENGTH 758	CALLED BY RADIAL	ANAL	CONSTB	CONTRM	DERIV	FOCUS	INSTAB	ITROT	JACOSI	MAIN	
	IS USED BY AJACOB	-	ROTAN	TRIM	TRIM	ROGST	RTAKE	STARAN	ITROT	JACOSI	MAIN	
	MANU	-	FORWK	MANAL	MANAL	RVGST	STARAN	STARAN	ITROT	JACOSI	MAIN	
	CALLS - ANDOUT	-	ANAL	FORWK	FORWK	STARAN	STARAN	STARAN	ITROT	JACOSI	MAIN	
RADIAL	LENGTH 1110	CALLED BY AZMUTH	AZMUTH	CONSTB	CONTRM	DERIV	FOCUS	INSTAB	ITROT	JACOSI	MAIN	
	IS USED BY AJACOB	-	ROTAN	TRIM	TRIM	ROGST	RTAKE	STARAN	ITROT	JACOSI	MAIN	
	CALLS - ANDOUT	-	ANAL	COCL	COCL	FLEX	FRCGUF	STARAN	ITROT	JACOSI	MAIN	
	USES - ANDOUT	-	ROTAN	TUPD	UNSTEAD	FORCMC	FORK1	STARAN	ITROT	JACOSI	MAIN	
	RVGST	-	STARAN	DIFFR	DIFFR	STARAN	TAS1	STARAN	ITROT	JACOSI	MAIN	
		-	STARAN	COCL	COCL	STARAN	STARAN	STARAN	ITROT	JACOSI	MAIN	
RADOUT	LENGTH 680	CALLED BY RADIAL	AZMUTH	CONSTB	CONTRM	DERIV	FOCUS	INSTAB	ITROT	JACOSI	MAIN	
	IS USED BY AJACOB	-	ROTAN	TRIM	TRIM	ROGST	RTAKE	STARAN	ITROT	JACOSI	MAIN	
	MANU	-	MANAL	STARAN	STARAN	STARAN	STARAN	STARAN	ITROT	JACOSI	MAIN	
	CALLS - ANDOUT	-										

TABLE 7. Continued.

CONTROL SECTION CROSS-REFERENCE LIST															
	LENGTH	MAIN CALLED BY	MAIN IS USED BY	MAIN CALLS -	ERRCHK WRT	INONLY USES -	INSTAR	JSTRED	LGCONT	MANAL	NPUDOT	INSTAR	STARAD	STRIM	TOPLOT
READIN	1010	-	-	-	-	-	FORK1 REDWK	FORK1 REDWK	FORK1 STARAD	INDONLY STARAD	INSTAR	MANAL	PDSED TAB	REDBMS TOPLOT	REDCL #KTABN
REDATEB	248	-	-	-	-	-	READIN INSTAR INONLY	START REDCL PDSED	REDID	TAB	TAB1	STARAD	STRIM	TOPLOT	
REDEMS	220	-	-	-	-	-	READIN INSTAR INONLY	START	REDID	TAB	TAB1	STARAD	STRIM	TOPLOT	
REDCL	240	-	-	-	-	-	READIN INSTAR INONLY	START	REDID	TAB	TAB1	STARAD	STRIM	TOPLOT	
REDID	668	-	-	-	-	-	READAT MAIN INSTAR	REDAT MAIN INSTAR	REDWK READIN PDSED	REDWK STARAD	REDID	STARAD	STRIM	TOPLOT	
REDWK	1508	-	-	-	-	-	START HEODIN FORK1 INSTAR	START HEODIN FORK1 INSTAR	START INDONLY PDSED	INSTAR	REDID	STARAD	STRIM	TOPLOT	#KTABN
REFG	AF8	-	-	-	-	-	START HEODIN FORK1 INSTAR	START HEODIN FORK1 INSTAR	START INDONLY PDSED	INSTAR	REDID	STARAD	STRIM	TOPLOT	
REFWK	1118	-	-	-	-	-	MANU MANU FLEX PYLON	MANU MANU FLEX PYLON	TMPLP FORK1 STARAD STARAN	FORWD STARAD STARAN	FORWD STARAD STARAN	FOSWK1 STARAD	FOSWK1 STARAD	INONLY TAB	MANAL TIVAR
RESTART	420	-	-	-	-	-	MANU MANU ROTAN RVRGST STARAD	ANAL RADIAL MANU MANU	CONSTB STARAD STARAD STARAN	DERIV STARAD STARAN	INSTAB	ITRIM	ITROT	JACOB1	MAIN
RIGUST	490	-	-	-	-	-	ANAL RADIAL MANU MANU	ANAL RADIAL MANU MANU	CONSTB STARAD STARAD STARAN	DERIV FORYD	INSTAB FORYD	JACOBI STARAN	MAIN TOPLOT	TRIM	
ROTRAN		-	-	-	-	-	ANAL RADIAL MANU MANU	ANAL RADIAL MANU MANU	CONSTB STARAD STARAD STARAN	DERIV FORYD	ITRIM PYLON	MANU TOPLOT	MAIN TOPLOT	TRIM	

TABLE 7. Continued.

		CONTROL SECTION CROSS-REFERENCE LIST					
ROTAN CONTINUED	USES - ANDOUT	AZMINT FLEX INIT INSTAN RGUST SdSRAT	AZMUTH FLTRCN INSTAN RGUST SdSRAT	BOPFD ACC FORUM ITRUT RVRS T TAB1	BUNDER ACC FORUM ITRUT RVRS T TAB1	BUFLT FORY MBAL PYLON SOLVE TRMANU	DIFFR GEFFLP RADIGN STARAN VIND
RPTDG	LENGTH IS USED BY	1410 MAIN FLEX TOPLOT	INSTAR MAIN FLEX TOPLOT	MANAL PYLON	STARAD STARAN	COCL FORDO POFDO STARAD UNSDER	CMCALC PYLAC PYLAC STARAD UNSDER
RTINIT	LENGTH IS USED BY	3CB MAIN INDOLY ANDOUT USES - DATE	START MAIN INDOLY ANDOUT PYLON	INSTAR MANAL INBLD STARAN	SIMKINT MANAL INBLD STARAN	STARAD INTR WRMODE	DIFFER GEFFLP RADIGN STARAN VIND
RTAKE	LENGTH IS USED BY	590 AJACOB MANU ANDOUT CALLS -	AZMUTH ROTAN FORUM RADIAL DOTX	CONSTB STAB FORUM MANAL	CONTRM TRIM MANAL	FOCUS DERIV TVTRIM	INSTAB INSTAB MAIN
RVRGST	LENGTH IS USED BY	3D0 AJACOB MANU ANDOUT CALLS -	AZMUTH ROTAN RADIAL MANAL	CONSTB ROTAN RADIAL STARAD	CONTRM STAB STARAD	FOCUS DERIV TVTRIM	INSTAB INSTAB MAIN
SCASIT	LENGTH IS USED BY	2D8 MAIN FORV CALLS -	MANAL FORV	MANAL STARAN	STARAN	ITROT	JACOB1 MAIN
SHKCTL	LENGTH IS USED BY	488 AJACOB MANU ANDOUT CALLS -	AZMINT ANAL ROTAN MANAL	CONSTB TRIM STARAN	CONTRM TVTRIM	FOCUS DERIV	INSTAB INSTAB MAIN
SHKINT	LENGTH IS USED BY	878 RTINIT MAIN FLEX CALLS -	STAR INDOLY	MANAL	STARAN	ITROT	JACOB1 MAIN
SHPYL	LENGTH IS USED BY	280 AJACOB TRIM ANDOUT CALLS -	FOCUS ANAL TVTRIM MANAL	CONSTB PYLON STARAN	CONTRM STARAN	ITROT	JACOB1 MAIN
SIVAR	LENGTH IS USED BY	F0 MAIN INSTAR CALLS -	RESRT MANU MANAL	MNEM STARAN	START STARAN	ITIMP STRIMA TOPLOT	MANU ROTAN STARAN

TABLE 7. Continued.

SOLVE	LENGTH	4CB	CALLLED BY	GETFLP	ITRIM	MOMB	PPDFDD	SUPERP	INSTAB	STRIMA	ITRIM	ITROT	JACOBI	MAIN	MANU
			-	AJACUB	ANAL	CONSTA	CONTRM	DERIV							
			-	ROTAN	STAB	TIMEP	TRIM	TVTRIM	VARI						
STAR	LENGTH	860	CALLED BY	CONSTB	MAIN	MNAL	PPYACC	STARAN	STBD	STRIBA	SWAS	TOPLUT	WRPERT		
			-	MAIN	ANAL	STAB	PPDFDD	BLACC	BUNDER	BUFLT	CDCL	CLCD	CMCALC	DIFER	
			-	WSTAB	WSTAB	TIMEP	CONTRM	FORC	FORK1	FORYL	FUSWK	FUSWK	FUSWK	SHRPL	
			USES	-	ANBINT	AZMOUT	PPDFDD	HRESP	INSTAR	INFRU	I TROT	MANAL	MATRIX	TABNT	
				DOX	FLEX	FYLAC	GETFLP	RADOUT	RGUST	RTWAKE	RVGST	SBCTL	SBCTL	TAINT	
				FYFLAC	FRCOF	FYLAC	RADGN	STBFLN	STRIBA	STBMAK	SWSRAT	TABNT	TABNT	WSHOUF	
				FUPFDD	FUPFDD	FYLAC	STARAN	STBFLN	UNSTD	VIND	WING	WING	WRFM		
				SOLVE	STARAN	STARAN	TOPLOT	TIMEP							
				STB1	STARAN	STARAN									
				XSTORE	STARAN	STARAN									
STARAN	LENGTH	1818	CALLED BY	AJACUB	AZMINT	AZMUTH	BMSINT	CNAMS	DERIV	EXTORS	FRC GOF	FUSACC	FUSENM		
			-	FUSINT	GUST	INIT	BNRSINT	INSLAS	ITRIM	JSTRED	LGC INT	LUADT	LUADT		
				MANU	MUDAL	STAB	BNRSINT	MTLAS	INPUT	JFBGIN	RESTRT	RPTPG	RTINT		
				SCASIT	SCASIT	START	BNRSINT	MTLAS	TIILT	QUAN	TRM ANU	TURN	TVTRIM		
				VARI	VARI	VARI	BNRSINT	WMANA	WTRMV	TIMEQ	XCONIN	INRU	INSTAB		
			IS USED BY	-	AJACUB	AZMUTH	BNRSINT	WTRMV	CONTRM	ZLLCAL	FOCUS	INIT	READIN		
				ITROT	ITROT	ITROT	JFBGIN	MAIN	DERIV	EX TORS	MTL T	HADIAL	HADIAL		
				RESTRT	RESTRT	RESTRT	STARNT	MANTYP	MANU	MINEM	WRMANU	WRTRIM	WRTRIM		
							TIMEP	TIMEP	ITRIM	WTBFLN	VAR1				
STARAD	LENGTH	848	CALLED BY	AZMINT	AZMUTH	AZMUTH	BOPFDD	BMSINT	CDCL	FRC GOF	HRESPT	INBMS	INRTR	INRTR	
			-	ITROT	JFBGIN	JSTRED	BNRSINT	LGCLNT	LOADT	INPUT	INBDSN	INSTAB	INSTAB	INSTAB	
				ITROT	ITROT	ITROT	BNRSINT	LGCLNT	START	ITRMANU	INBLD	INBLD	INBLD	INBLD	
				HPTPG	HPTPG	HPTPG	BNRSINT	LGCLNT	CONTRM	ITRMANU	INBLD	INBLD	INBLD	INBLD	
			IS USED BY	-	AJACUB	AZMUTH	BNRSINT	LGCLNT	MAIN	ITRMANU	INBLD	INBLD	INBLD	INBLD	
				ITROT	ITROT	ITROT	BNRSINT	LGCLNT	TRIM	ITRMANU	INBLD	INBLD	INBLD	INBLD	
				START	JACOBI	JACOBI	BNRSINT	LGCLNT	TIMEP	ITRMANU	INBLD	INBLD	INBLD	INBLD	
				XTRWK	XTRWK	XTRWK	BNRSINT	LGCLNT	TIMEP	ITRMANU	INBLD	INBLD	INBLD	INBLD	
STARAN	LENGTH	8680	CALLED BY	AJACUB	ANAL	AZMINT	AZMUTH	AZMUTH	BLACC	BNMSINT	BUNDER	CDCL	CLCD	CMCALC	DERIV
			-	ENGINT	FOCUS	ITRIM	ITRIM	FUSINT	DERIV	BUFLT	INBLD	INBLD	INBLD	INBLD	
				INFRU	INFRU	ITROT	ITROT	JACOBI	FOCUS	INBLD	INBLD	INBLD	INBLD	INBLD	
				MODES	MODES	PREVTY	PREVTY	JACOBI	FOCUS	LOADT	MAXHP	MAXHP	MAXHP	MAXHP	
				RESTRT	RESTRT	ROTTAN	ROTTAN	PREVTY	FOCUS	LOADT	MBAL	MBAL	MBAL	MBAL	
				RESTRT	RESTRT	RESTRT	RESTRT	ROTTAN	ROTTAN	LOADT	ROTTAN	ROTTAN	ROTTAN	ROTTAN	
				SWRAT	SWRAT	SWRAT	RETRWK	RETRWK	RETRWK	ROTTAN	ROTTAN	ROTTAN	ROTTAN	ROTTAN	
				SWRAT	SWRAT	SWRAT	RETRWK	RETRWK	RETRWK	ROTTAN	ROTTAN	ROTTAN	ROTTAN	ROTTAN	
			IS USED BY	-	AJACUB	AZMUTH	RETRWK	RETRWK	RETRWK	ROTTAN	ROTTAN	ROTTAN	ROTTAN	ROTTAN	
				INRO	ANAL	ITROT	ITROT	RETRWK	RETRWK	ROTTAN	ROTTAN	ROTTAN	ROTTAN	ROTTAN	
				POPFDD	INSTAB	INSTAB	RETRWK	RETRWK	RETRWK	ROTTAN	ROTTAN	ROTTAN	ROTTAN	ROTTAN	
				TRIM	TRIM	TRIM	RETRWK	RETRWK	RETRWK	ROTTAN	ROTTAN	ROTTAN	ROTTAN	ROTTAN	
STAR	LENGTH	800	CALLED BY	-	MAIN	EMINT	FORMK1	FUSINT	INSTAB	INONY	JFBGIN	LIZE	MANAL	MNEM	READIN
			-	EMINT	EMINT	FORMK1	FORMK1	STABAN	STABAN	STABAN	STABAN	STABAN	STABAN	STABAN	XCONIN
				REDWK	REDWK	FORMK1	FORMK1	DATE	DATE	DATE	STABAN	STABAN	STABAN	STABAN	TOPLOT
				YRINT	YRINT	FORMK1	FORMK1	COARMS	COARMS	COARMS	STABAN	STABAN	STABAN	STABAN	TOPLOT
				RESDINT	RESDINT	FORMK1	FORMK1	INBMS	INBMS	INBMS	STABAN	STABAN	STABAN	STABAN	TOPLOT
				RESDINT	RESDINT	FORMK1	FORMK1	MODAL	MODAL	MODAL	STABAN	STABAN	STABAN	STABAN	TOPLOT
				RESDWK	RESDWK	FORMK1	FORMK1	REDSWK	REDSWK	REDSWK	STABAN	STABAN	STABAN	STABAN	TOPLOT

TABLE 7. Continued.

TABLE 7. Continued.

CONTROL SECTION CROSS-REFERENCE LIST											
SWAP	LENGTH	220B	ALSTAB	MAIN	MAIN	MAIN	MAIN	START	TRIM	TRIM	ROTAN
S#AS	LENGTH	510	CALLED BY - AJACOB IS USED BY - CALLS	MAIN STECUM	STBD	VARI INSTAB	TRIM	JACOBI	MAIN	MANU	
S#SRA T	LENGTH	808	CALLED BY - AJACOB IS USED BY - CALLS	CONST STAMAN		STAB DERIV STIMA					
TAB	LENGTH	6338	CALLED BY - AJACOB IS USED BY - CALLS	DERIV ANAL FLX	CONST TRIM FLX	DERIV INSTAB	FOCUS MATRIX	INSTAB PYLON	I TRIM JACOBI	MAIN	MANU
TABFI X	LENGTH	308	CALLED BY - MAIN IS USED BY - TABOUT	START	CONST TABINT	DERIV CDCL MANU UNSTD	CONTRM RADIAL	DERIV ROTAN	INSTAB STAB	TRIM STBFNM	ITROT TIMEQ
TABINT	LENGTH	800	CALLED BY - AJACOB IS USED BY - CALLS	CDCL ANAL RADIAL TAB	AZMUTH ROTAN TAB	CONS TB STAB	FOCUS TRIM	INSTAB TRIM	TRUT	JACOBI	MAIN
TABOUT	LENGTH	600	CALLED BY - MAIN IS USED BY - CALLS	START INFLNLY	INSTAB	CONS TB STAB	DERIV TRIM	INSTAB WING	TRIM WING		
TABT	LENGTH	5400	CALLED BY - REDATH IS USED BY - CALLS	RESTR ANAL JSTRED TVTHM	TABINT AZMUTH MANU UNSTD	TABOUT CDCL MANU WING	CONTRM RADIAL	DERIV ROTAN	INSTAB STBFNM	ITROT TIMEQ	
TFRTWK	LENGTH	800	CALLED BY - I TRUT IS USED BY - AJACOB CALLS - FORW	TRMANU ANAL STAB FORK1 STARAD	CONS TB TRIM MANU STARAN	CONTRM TRIM STAB FORK1 STARAD	DERIV WTRHM STIMA	INIT VIND	TRIM	JACOBI	MAIN
TFRT	LENGTH	510	CALLED BY - MNEM IS USED BY - DERIV CALLS - CGARMS USES - INSTAB	MNL MAIN MANU MANAL INSTAB	MNL MAIN MANU MANAL INSTAB	MNL MAIN MANU MANAL INSTAB	VARI START STIMA STAMA INSTAB	VARI ZLLCAL TIMEQ			

TABLE 7. Continued.

TABLE 7. Continued.

			CONTROL SECTION	CROSS-REFERENCE LIST							
TVTRIM CONTINUED	CALLS - USES -	ANDOIT PYLON AZMINT FLTRCM MANAL SHKCTL TAB1	BUTFLT STAMAN AZMINT FLTRCM MANAL SHKCTL TAB1	FILTER STRIAB AZMUTH FLTRCM MANAL SHKCTL TOPLOT	FORYD TOPLOT BLACC FORK1 PDLDD STAMAN UNSTER	FORYD TOPLOT BLACC FORK1 PDLDD STAMAN VIND	CDCL FORYD PYLACC STAMAN VIND	CFCALC FYLAC RADBN STRIAB	INIT DIFFER HRSPT RADOUT SWSRAT	INSTAR INSTAR RGUST TAB	MANAL
UNSDER	LENGTH 508 CALLED BY - IS USED BY -	RADIAL AJACOB MANU DOFFER CALLS - ANDOIT	AZMUTH STAB FORW	CONSTB TRIM FORW1	CONTRM TRIM MANAL	DERIV STAMAN	FOCUS INSTAB	ITRIM ITROT	JACOBI JACOBI	MAIN	MAIN
UNSDER	LENGTH C30 CALLED BY - IS USED BY -	RADIAL AJACOB MANU DOFFER CALLS - ANDOIT	AZMUTH STAB INSTAR STARD	CONSTB TRIM MANAL STAMAN	CONTRM TRIM STARD TAB	DERIV STAMAN TABINT	FOCUS INSTAB	ITRIM ITROT	JACOBI JACOBI	MAIN	MAIN
VARI	LENGTH CAB CALLED BY - IS USED BY -	MAIN EXTORS SWMS CGARMS TILT	MANU EXTORS TILT FORY TOPLOT	FORYD VGUNS INSTAR ZLLCAL	GUST VSACS MANAL	INSTAR ZLLCAL MATRIX	MANAL NOPS SOLVE	MILT STAMAN STARAN	STRIMA STRIMA STRIB	SUPERP STRIMA	STRIMA
VGUNS	LENGTH 248 CALLED BY - IS USED BY -	VARI MAIN STAMAN	MAIN STAMAN	MANU STAMAN							
VING	LENGTH 588 CALLED BY - IS USED BY -	ITRUT AJACOB MANU STAMAN	ITRUT AJACOB MANU STAMAN	TFRTRK CONSTS STAB STARD	DERIV START	FOCUS TRIM	INIT TRIM	ITRIM ITRIM	JACOBI JACOBI	MAIN	MAIN
VORGST	LENGTH A88 CALLED BY - IS USED BY -	GUST AJACOB MANU STAMAN	MAIN STAMAN	MANU STAMAN	VARI STAMAN	STAMAN					
VSACS	LENGTH 220 CALLED BY - IS USED BY -	VARI MAIN FORYD CALLS -	MAIN FORYD	MANU STAMAN							
WAG	LENGTH 6F8 CALLED BY -	WING AJACOB CALLS -	ANAL	CONSTB	CONTRM	DERIV	INSTAB	ITRIM	JACOBI	MAIN	STAB
WING	LENGTH C78 CALLED BY - IS USED BY -	ANAL AJACOB	CONSTB	CONTRM	DERIV	INSTAB	ITRIM	JACOBI	MAIN	STAB	TRIM

TABLE 7. Continued.

			CONTROL	SECTION	CROSS-REFERENCE LIST						
WING CONTINUED			CALLS - ANDOUT USES - TOPLOT	CLCD DATA	FOSWK FURWK	STAMAN FOSWK	STARAD MANAL	STARAN STARAN	STBWA STRIAB	TOPLOT TASINT	WAG TAG1
WTABN	LENGTH	578	CALLED BY IS USED BY	REDRCK - JSTRED	MAIN	READIN	START				
WRFM	LENGTH	900	CALLED BY IS USED BY	AJACOB - CONSTB CALLS - INSTAR	WAINST CONTIN MANAL	WRMANU INSTAB STRIMA	WRPERT TRIM	WTRIM JACUB1 MAIN			
WRINST	LENGTH	840	CALLED BY IS USED BY	INSTAB - CONSTB CALLS - MANAL USES - INSTAR	STAB MAIN CONSTB MANAL INSTAR	STBDO STRIMA	STRIMA	WRFM			TRIM
WRMANU	LENGTH	660	CALLED BY IS USED BY	TIME - MAIN CALLS - DATE USES - INSTAR	MANU FURY MANAL	FURDO MANAL STAMAN	PYLON	STAMAN	STRIMA	TOPLOT	WRTMV
WRMODE	LENGTH	600	CALLED BY IS USED BY	MODAL - INDR CALLS - ONLY	MAIN INSTAR	RTINIT MANAL	START	STARAN			
WRMS	LENGTH	750	CALLED BY IS USED BY	- ALSTAB CONSTB STBCOM CALLS -	MAIN STBDO	MAIN STBDO	RPTPG START	WRTRIM TRIM			
WRROT	LENGTH	140	CALLED BY IS USED BY	- MAIN CONSTB CALLS - DATE	READIN MAIN TOPLOT						
WRPERT	LENGTH	588	CALLED BY IS USED BY	- STAB CONSTB MANAL USES - INSTAR	MAIN PYLON MANAL	STBDO STRIMA	WRTRIM				
WRSTAB	LENGTH	810	CALLED BY IS USED BY	- STAB CONSTB PYLON CALLS -	MAIN STBDO						
WRTRFUN	LENGTH	640	CALLED BY IS USED BY	- ALSTAB CONSTB STBCOM CALLS -	MAIN STBFRQ						
WRTRMV	LENGTH	1570	CALLED BY	- WRMANU			WTRIM				

TABLE 7. Concluded.

			CONTROL	SECTION	CROSS-REFERENCE LIST	
WRTMNV CONTINUED	IS USED BY CALLS -	MAIN STARAN	MAIN STARAN	MANU STRIMA	TIMLP TRIM	
WRTTRIM	LENGTH 528 CALLED BY - TRIM IS USED BY - CONFIRM CALLS - DATE USES - ADJUST STARAD	MAIN MAIN DATE ADJUST STARAD	STARAD FORK STRIB STRIB	STRIB FORK STRIB TOPLOT TOPLOT	TRIMANU FORYD VIND	WRTMNV PYLON
WRVP	LENGTH 656 CALLED BY - AJACUB IS USED BY - CUNSTB CALLS - MAIN	ITRIM CUNTRM STRIB	WRTIM INSTAB STRIBA	ITRIM	JACOBI MAIN	WRVP STARAN
WSHDUF	LENGTH 298 CALLED BY - FUSENM IS USED BY - AJACUB CALLS - STARAN	ANAL STRIBA	CUNSTB	CONTRM	DERIV	INSTAB
XCONIN	LENGTH 828 CALLED BY - START IS USED BY - MAIN CALLS - INUNLY	MAIN STRIBA	STARAN	STRIBA	ITRIM	JACOBI MAIN
XSTINT	LENGTH 2FO CALLED BY - START IS USED BY - MAIN CALLS - INUNLY	INSTAR	STRIBA	CONTRM	DERIV	TOPLOT
XSTURE	LENGTH 598 CALLED BY - ANAL IS USED BY - AJACUB CALLS - MAIN	CONSTB STRIBA	STARAN	CONTRM	DERIV	ITRIM
YR INIT	LENGTH 696 CALLED BY - START IS USED BY - MAIN	INSTAB	STRIBA	JACOBI MAIN	MAIN	STAB
YS INIT	LENGTH 820 CALLED BY - START IS USED BY - MAIN	INSTAB	STRIBA	ITRIM	JACOBI MAIN	TRIM
ZERO	LENGTH 600 CALLED BY - LIZE IS USED BY - MAIN CALLS - FLEX	START FORK	VAR1 MANAL	PYLON	STARAN	STRIBA
~LOCAL	LENGTH 380 CALLED BY - AJACUB IS USED BY - CUNSTB CALLS - MAIN	FORK DERIV STRIBA	VARI CUNTRM VARI STARAN	INSTAB	ITRIM	JACOBI MAIN
END OF CONTROL SECTION CROSS-REFERENCE LIST						MNEM
						MTL T
						START

TABLE 8. CONTROL SECTION CROSS-REFERENCE FOR GDAJ77.

CONTROL SECTION CROSS-REFERENCE LIST									
	LENGTH	20	THIS IS A *COMMON* CONTROL SECTION						
\$PLOT	CALLED BY	PLUT	PLOTS	PLTIME	SYMBOL	LINE	MAIN	NUMBER	PLUTER
	IS USED BY	-	CALCB1	CNPLT	FACTOR	FSFT			SYMBOL WHERE
	CALLS -	NEXTTIME							
\$WRITE	LENGTH 288	AXIS	BUFF	PLTIME	SYMBOL	FSFT	LINE	MAIN	SCALIT SYMBOL WHERE
	CALLED BY	-	CALCB1	CNPLT	FACTOR				
	IS USED BY	-	WHERE						
	CALLS -	NEXTTIME							
ALMAT	LENGTH 1680	EXPUN	MAIN	PRONY					SCALIT
	CALLED BY	-	CNPLT						
	IS USED BY	-	YNORM						
	CALLS -								
AXIS	LENGTH 818	PLOTER	MAIN	PLUT	SYMBOL				
	CALLED BY	-	CNPLT	NUMBER					
	IS USED BY	-	WRITR	\$WRITE					
	CALLS -	\$PLOT							
	USES -								
BUFF	LENGTH 728	PLOT	MAIN	PLUT	SYMBOL	FSFT	LINE	MAIN	SCALIT SYMBOL WHERE
	CALLED BY	-	CNPLT	CALCB1	CNPLT				
	IS USED BY	-	AXIS						
	CALLS -	\$WRITE							
	USES -	NEXTTIME							
CALCB1	LENGTH C78	SCALIT	MAIN	WRKCOM					
	CALLED BY	-	CNPLT	INPUT	SYMBOL				
	IS USED BY	-	HIDING	\$WRITE	PLOTD				
	CALLS -	\$PLOT							
	USES -								
CNPLT	LENGTH AEO	CONTUR	MAIN	WRKCOM					
	CALLED BY	-	CNPLT	MAIN	SYMBOL				
	IS USED BY	-	RANGE	MAXMIN	TOPLOT				
	CALLS -								
	USES -	INPLOT							
CNPLT	LENGTH 256	MAIN	CURVET	FSFT	PLOTS				
	CALLED BY	-	CNPLT	ALMAT	MOVEBK				
	IS USED BY	-	WRITR	INHLDG	CALCB1				
	CALLS -			PHOTOS	LINE				
	USES -			YNORM	HEAD				
					SCALE #				
CNTUR	LENGTH A4A8	CONTUR	MAIN	FSFT	SYNONY				
	CALLED BY	-	CNPLT	ALMAT	CNTPLT				
	IS USED BY	-	WRITR	INHLDG	MAXMIN				
	CALLS -			PHOTOS	NUMBER				
	USES -	INPLOT		YNORM	TIMPTS				
CURVE	LENGTH 1000	HEADS	TOPLOT	RANGE	SYMBOL	SCLFIX	TOPLOT		
		LINEHEAD							

TABLE 8. Continued.

CONTROL SECTION CROSS-REFERENCE LIST									
CURVET	CALLED BY - CONTINUED IS USED BY - CALLS - HEDING USES - DATE	COMPLT	MAIN	IMOLATN2	TIMPTS	TOPLOT	WROT		
COLL	LENGTH 300 CALLED BY - IS USED BY - CALLS - MAXIN	COMPLT	MAIN	PHUTO	PLOTO1	TOPLOT	WROT		
DATE	LENGTH 150 CALLED BY - IS USED BY - CURVET	COMPLT	MAIN	TIMPTS	TOPLOT				
DLS4	LENGTH A38 CALLED BY - IS USED BY - CURVET	EXPN	MAIN	MAIN	MAIN	MOVBLK	PPLOT	PRONY	SCALIT
EXPUN	LENGTH B42B CALLED BY - IS USED BY - CALLS - USES -	PRONY	MAIN	COMPLT	MAIN	MOVBLK	PPLOT	PRONY	SCALIT
FACTOR	LENGTH FO CALLS - USES -	PLUT	WHITE	BUFF	NEXTIME				
F5FT	LENGTH F538 CALLED BY - IS USED BY - CALLS - USES -	CUNPLT	MAIN	HEDING	PLOTER	TIMPTS	TOPLOT	WRKCOM	SYMBOL
HARM	LENGTH 350 CALLED BY - IS USED BY - CALLS - USES -	FSFT	MAIN	\$WRITE	AXIS	BUFF	LINE	NEXTIME	NUMBER
HEADS	LENGTH 278 CALLED BY - IS USED BY - CALLS - LHEAD	CUNPLT	MAIN	HEDING	PLOTER	TIMPTS	TOPLOT	PLOTO1	PLOTO1
HEDING	LENGTH 1280 CALLED BY - IS USED BY - CALLS - LHEAD	CALC1	MAIN	CURVET	F5FT	MOVBLK	PPLOT	PRONY	
IMOLATN2	LENGTH 278 CALLED BY - IS USED BY - CURVET	COMPLT	MAIN	SCALIT	MAIN	MOVBLK	PPLOT	PRONY	
IMULLUG	LENGTH 228 CALLED BY - IS USED BY - EXPN	EXPN	MAIN	MAIN	MAIN	MOVBLK	PPLOT	PRONY	
INPLOT	LENGTH 1.3AEE8 THIS IS A *COMMON* CONTROL SECTION	COMPLT	MAIN	MAIN	MAIN	MOVBLK	PPLOT	PRONY	

TABLE 8. Continued.

CROSS-REFERENCE LIST									
		CNTL	SECTION	CNTUR	RANGE	SCALIT	SCLFIX	RANGE	SCALIT
INPLOT	CALLED BY	- CALCB1	PPILOT	MAIN	CONTUR	MAIN	MAIN	MAIN	DLSQ
CONTINUED	IS USED BY	- CNPPLT	CNPPLT	SCALIT	SCALIT	SCALIT	SCALIT	SCALIT	MOVLK
LHEAD	LENGTH	908	HEADS	-	CDNPLT	MAIN	MAIN	MAIN	SCALIT
	CALLED BY	-	CALLS	-	CALLS	MAIN	MAIN	MAIN	SCALIT
LINE	LENGTH	468	CALLS	- CALCB1	CALLS	MAIN	MAIN	MAIN	SCALIT
	CALLED BY	-	IS USED BY	-	IS USED BY	WHERE	WHERE	WHERE	SCALIT
	CALLS	-	USES	-	USES	BUFF	BUFF	BUFF	SCALIT
MAIN	LENGTH	578	CALLS	- CUNPLT	MAXMIN	PLOT	TIMPTS	TUPLOT	CB1L
	IS USED BY	-	USES	- SPLOT	\$WRITE	MAXMIN	WROT	CNTPLT	LINE
				- EXPON	FSFT	ALLMAT	CALCB1	CALCB1	HEAD
				- NEXTIME	FSFT	HARM	IMOLATN	IMOLATN	PHONY
				- SCALIT	FSFT	NUMBER	INPLOT	INPLOT	YNRDP
MAXMIN	LENGTH	4448	THIS	*COMMAND	SYMBOL	PLOT	HEADING	PLOT	WRKCOM
	CALLED BY	- CB1L	MAIN	MAIN	SIMBLX	PLTOD1	PLTOD1	PLTOD1	WHERE
	IS USED BY	- CNPPLT	RANGE	RANGE	MAIN	PLTOD1	PLTOD1	PLTOD1	SCALIT
MOVLK	LENGTH	330	CUNPLT	CUNPLT	MAIN	PLTOD1	PLTOD1	PLTOD1	SCALIT
	CALLED BY	- CALLS	MAIN	MAIN	MAIN	PLTOD1	PLTOD1	PLTOD1	SCALIT
	IS USED BY	-	CALLS	- HEDING	DATE	PLTOD1	PLTOD1	PLTOD1	SCALIT
NUMBER	NEXTIME	8	\$WRITE	\$WRITE	DATE	TUPLOT	WRKCOM	TOPLOT	TOPLOT
	CALLED BY	-	IS USED BY	-	IS USED BY	PLTOD1	TOPLOT	TOPLOT	TOPLOT
	CALLS	-	USES	-	USES	TOPLOT	WRKCOM	WRKCOM	WRKCOM
PLOT	LENGTH	170	BUFF	BUFF	CALCB1	CUNDLT	FACTOR	FSFT	LINE
	CALLED BY	-	SCALIT	SCALIT	SYMBOL	WHERE	FACTOR	FSFT	MAIN
	IS USED BY	-	CALLS	-	CALLS	PLTOD1	PLTOD1	PLTOD1	SCALIT
	CALLS	-	USES	-	USES	MAIN	MAIN	MAIN	SCALIT
PLUTO	LENGTH	558	CALCB1	CALCB1	FACTOR	LINE	MAIN	MAIN	SCALIT
	CALLED BY	-	AXIS	- CALCB1	CONPLT	FSFT	MAIN	MAIN	SCALIT
	IS USED BY	-	AXIS	- CONPLT	CONPLT	MAIN	MAIN	MAIN	SCALIT
	CALLS	-	USES	- \$PLOT	\$WRITE	BUFF	MAIN	MAIN	SCALIT
PLUTO1	LENGTH	1450	CALCB1	CALCB1	FACTOR	LINE	MAIN	MAIN	SCALIT
	CALLED BY	-	HEDING	- CALCB1	CONPLT	FSFT	MAIN	MAIN	SCALIT
	IS USED BY	-	IS USED BY	-	IS USED BY	CURVET	CURVET	FSFT	SCALIT
PLUTER	LENGTH	498	MAIN	MAIN	MAIN	MAIN	MAIN	MAIN	SCALIT
	CALLED BY	-	F2B	- F2B	MAIN	MAIN	MAIN	MAIN	SCALIT
	IS USED BY	-	FSFT	- FSFT	MAIN	MAIN	MAIN	MAIN	SCALIT

TABLE 8. Continued.

			CONTROL	SECTION	CROSS-REFERENCE LIST			
			LINE NUMBER	PLOT NEXT TIME	SCALE# NUMBER	SYMBOL PLOT	SYMBOL	WHERE
PLUTER CONTINUED	CALLS - USES -	\$PLOT	\$WRITE					
PLOTS	LENGTH CALLED BY	220	CONPLT					
	IS USED BY	-	CONPLT					
	CALLS -	SCALIT	MAIN					
	USES -	\$PLOT	BUFF					
	LENTH	160	SCALIT	MAIN				
PLTIME	CALLED BY	-	MAIN					
	CALLS -	\$PLOT	\$WRITE					
	USES -	NEXTTIME						
PPLOT	LENGTH CALLED BY	840	SCALIT	MAIN				
	IS USED BY	-	CONPLT					
	CALLS -	HEDING	INPLUT					
	USES -	DATE	PLUTD					
	LENTH	520	CALLED BY	-				
PRONY	IS USED BY	-	CONPLT					
	CALLS -	MAIN	HEDING	TIMPTS	WRUT			
	USES -	EXPON	DATE	DLLSQ	IHOLATN2	THOLLOG	PLUTD	VSRTPH
RANGE	LENGTH CALLED BY	5C60	CNTPLT					
	IS USED BY	-	CONPLT					
	CALLS -	INPLUT						
	USES -	INPLUT						
SCALE#	LENGTH CALLED BY	510	CONPLT	CONTUR				
	IS USED BY	-	CONPLT	MAXMIN				
	CALLS -	PLOTER	MAXMIN					
	USES -	CONPLT	MAXMIN					
SCALIT	LENGTH CALLED BY	600	CONPLT	MAIN				
	IS USED BY	-	CONPLT					
	CALLS -	MAIN	INPLUT	PLUTS	SCLFIX	HEDING	TOPLOT	WRKCOM
	USES -	CALCSI	\$WRITE	BUFF	WRKCOM			
		\$PLOT	SYMBOL	TOPLOT				
SCLFIX	LENGTH CALLED BY	428	RANGE	SCALIT				
	IS USED BY	-	CONPLT	CONTUR				
	CALLS -	MAIN	MAXMIN	TOPLOT				
SYMBOL	LENGTH CALLED BY	540	AXIS	CALC81				
	IS USED BY	-	AXIS	CALC81				
	CALLS -	\$PLOT	SCALIT	LINE				
	USES -	\$PLOT	\$WRITE	CONPLT				
	LENTH	3BA0	CURVE	BUFF	NUMBER			
TIMPTS	CALLED BY	-	MAIN	MAIN	FSFT	PLOT	PLUTER	SCALIT
	IS USED BY	-	CONPLT	FSFT	FSFT			
	68							

TABLE 8. Concluded.

CONTROL SECTION CROSS-REFERENCE LIST									
TOPLOT	LENGTH 4F40 CALLED BY -	THIS IS A *COMMON* CONTROL SECTION CALCB1 CONPLT CURVET C01L	FSFT MOVBLK MAIN	MAIN MOVBLK PPILOT	PPILOT PRONY	PRONY SCALIT	PRONY SCALIT	PRONY SCALIT	SCALIT
VSHTPM	IS USED BY -	WR0T CNPLT	CONTR CURVET	MAIN	MAIN				
	LENGTH 500 CALLED BY -	EXPON							
	IS USED BY -	CONPLT							
WHERE	LENGTH 140 IS USED BY -	LINE CALLS USES	CONPLT	FSFT BUFF	MAIN NEXTIME	MAIN PLOTER	MAIN SCALIT	MAIN SCALIT	SCALIT
WRKCOM	LENGTH 30040 IS USED BY -	CALCB1 PLOT \$PLOT	\$WRITE						
WRT	LENGTH 200 IS USED BY -	CALCB1 CONPLT	FSFT MAIN	MAIN MOVBLK	MAIN MOVBLK	MAIN SCALIT	MAIN SCALIT	MAIN SCALIT	SCALIT
YNDRP	LENGTH 1F680 IS USED BY -	CURVET CONPLT CALLS - DATE	MAIN TOPLOT	MOVBLK SCALIT	MOVBLK SCALIT	PPILOT TOPLOT	PRONY PRONY	PRONY PRONY	PRONY
END OF CONTROL SECTION CROSS-REFERENCE LIST									

4.2 LAYOUT OF MANEUVER VARIABLES

COMMON blocks FORY and FORYD of AGAJ77 contain arrays Y, YD, and YDD. They are dimensioned as (4,130) with the first subscript indicating the Runge-Kutta cycle in which the value was computed, and the second subscript identifies the state variable that the array value represents.

The left column of Table 9 gives the order of each of the 121 state variables. A brief description appears along with them. Since the first mode of Rotor 2, Blade 1, is placed immediately after the last mode of Rotor 1, the dividing line between the two rotors is not given. In fact, the first mode of Rotor 2 is indicated as 1 plus the number of modes for Rotor 1. Each rotor mode has seven values. They are in the same order as the blades; i.e., first value for blade 1, second value for blade 2, and so on. If the number of blades is less than seven, the array locations for the higher numbered blades are not used.

4.3 PROGRAM DELIVERY

Three programs were delivered under this contract. They are AGAJ77 (400K version and 520K version), GADJ77, and DNAM05. The 400K and the 520K versions both use the same postprocessor, GDAJ77, and both read the same mode shapes generated by DNAM05. In order to make AGAJ77 run under 400K, an extremely tight overlay structure is employed and two program features have been modified. The RIVD table option has been removed, and the maximum number of airfoil tables has been reduced from 5 to 2. The built-in NACA 0012 table is stored as the second airfoil in the 400K version, while it is stored as the fifth table in the 520K version.

Two global cross reference outputs were also delivered. The first is a cross reference of all the variables that are used by the 520K version of AGAJ77. The second is a similar list for GDAJ77. The first column of the cross reference is labeled VAR for variable referenced. The second column is labelled SUB and gives the subroutine in which the variable is referenced. For references in main programs or block data sections this column is left blank. The third column is labelled COMMON and gives the name of the labelled COMMON in which the variable is stored. The remaining columns are labelled STATEMENT NUMBERS and contain the IBM FORTRAN Internal Statement Numbers (ISN) of the statements in which the variable is referenced. The statement numbers are tagged with TY if the statement is a type statement; an EQ for EQUIVALENCE statements; IO for input or output statements; or an asterisk (*) for statements in which a value is assigned to the variable. Table 10 is a sample page of the global cross reference.

TABLE 9. LAYOUT OF MANEUVER VARIABLES

NUMBER	DESCRIPTION
1	Integral of forward velocity, body axis, ft
2	Integral of lateral velocity, body axis, ft
3	Integral of vertical velocity, body axis, ft
4	Integral of yaw rate, body axis, rad
5	Integral of pitch rate, body axis, rad
6	Integral of roll rate, body axis, rad
7	Euler angle yaw, rad
8	Euler angle pitch, rad
9	Euler angle roll, rad
10	X-displacement, ground ref., ft
11	Y-displacement, ground ref., ft
12	Z-displacement, ground ref., ft
13	Rotor 1 azimuth location, rad
14	Rotor 2 azimuth location, rad
15	Incr. to coll. pitch due to bobweight displacement
16-22	Blade dependent participation factors, mode 1
23-29	Blade dependent participation factors, mode 2
30-36	Blade dependent participation factors, mode 3
37-43	Blade dependent participation factors, mode 4
44-50	Blade dependent participation factors, mode 5
51-57	Blade dependent participation factors, mode 6
58-64	Blade dependent participation factors, mode 7
65-71	Blade dependent participation factors, mode 8
72-78	Blade dependent participation factors, mode 9
79-85	Blade dependent participation factors, mode 10
86-92	Blade dependent participation factors, mode 11
93-99	Blade dependent participation factors, mode 12
100-103	Pylon 1 mode 1-4 participation factors
104-107	Pylon 2 mode 1-4 participation factors
108	SCAS feedback, pitch channel
109	Time derivative of (108)
110	SCAS feedforward, pitch channel
111	Time derivative of (110)
112-115	Same as (108-111), except for roll channel
116-119	Same as (108-111), except for yaw channel
120	Integral of engine angular speed, rad
121	Engine torque, ft-lb

TABLE 10. SAMPLE OUTPUT FROM GLOBAL CROSS-REFERENCE.

VAR	SUB	COMMON	STATEMENT NUMBERS						
UTGUST	RADBN	STARAD	2 TY	19 CO	73				
UTGUST	RGUST	STARAD	13 CO	68 *					
UTOT	RADIAL		59 *	64	109				
UO	HARM		17 *	19					
U1	HARM		14 *	17	18	19 *	22	23	
U2	HARM		13 *	17	18 *	22			
V	AJACOB	MANAL	6 CO	67					
V	ALSTAB	MANAL	3 CO	114	115	116	117		
V	MDLINV	MANAL	3 CO	31					
V	MDRDRS	MANAL	3 CO	41	42				
V	MNEM	MANAL	6 CO	49 *	68	76			
V	QUAN	MANAL	7 CO	98 *	104				
V	TIMLP	MANAL	5 CO	64					
V	WRINST	MANAL	3 CO	50	51				
VAR	AJACOB		32 TY	33 EQ	109 SA				
VAR	ITRIM		30 TY	31 EQ	104 SA	111 SA	113		
VAR	JACOBI		24 TY	25 EQ	39 *	39	42 *	42	54 *
VAR	JACOBI		54						
VAR	NCDAMP		16 TY	25	36 *	36			
VAR	STAB		26 TY	27 EQ	52 *	52	56 *	56	
VAR	TRIM		40 TY	42 EQ	103	103	104 10		
VAR	WRPERT		13 TY	14 EQ	21				
VAR	WRTRIM		26 TY	27 EQ	30 SA				
VAR	WRVP		1	16 TY	24				
VARD	WRPERT		13 TY	14 EQ	14 EQ	14 EQ	21 *		
VARD	WRVP		17 TY	24 *	26 10				
VARDEZ	AZMINT		132 *	133	136				
VARDEZ	AZMUTH		2 TY						
VARFRQ	BMSINT	STARAN	27 CO	83 *	84 *	85 *	86 *		
VARFRQ	LIZE	STARAN	27 CO	108 *					
VARFRQ	MODAL	STARAN	28 CO	84 10	84 10	84 10	84 10		
VARFUS	WRPERT		13 TY	14 EQ	27 10				
VARI	DERIV		42 SN						
VARI	VARI		1						
VARL	STAB		17						
VARL	STAB		26 TY	27 EQ	60 *	60	63 *	63	171 *
VARL	WRPERT		13 TY	14 EQ	24	25			
VARPDS	WRPERT		13 TY	25 *	29 10				
VARPRT	WRPERT		13 TY	24 *	29 10				
VARSV	CONSTB	STBD	16 CO	45					
VARSV	INSTAB	STBD	19 CO	47 *					
VARTOS	WRPERT		13 TY	14 EQ	28 10				
VARTRT	WRPERT		13 TY	14 EQ	28 10				
VARI	CONSTB		23 TY	24 EQ	45 *				
VARI	INSTAB		30 TY	31 EQ	47				
VBS	STBFNM		101 *	122	125				
VBS	WING		56 *	78	81				
VCTMAX	ALSTAB		119 *	123	123 *	136			
VDISP	AZMINT	ANDOIT	3 CO	129 *					
VDISP	AZMUTH	ANDOIT	2 TY	5 CO	91 *	91	91	91	91
VDISP	AZMUTH	ANDOIT	106						
VDISP	RADBN	ANDOIT	2 TY	5 CO	63 *				
VECT	ALLMAT		220	223 *	223	224	226	228 *	228
VECT	ALLMAT		210 *	210	210	213 *	213	220 *	220
VECT	ALLMAT		5 TY	165	201 *	207	208 *	208	209 *
VECT	ALLMAT		234 *	234	234	237	238 *	238	239 *
VECT	ALSTAB		117	121	128	128	132	132	136
VECT	ALSTAB		17 TY	87 SA	115 *	115	116 *	116	117 *
VECTMX	ALSTAB		122 *	123	123				
VEL	STBFNM		128 *	145 *	147	148	153		
VEL	WING		84 *	86 *	68	89	101	169	169
VEL	XSTORE		40 *	42	43	70			
VELIND	RADBN	FORWK	2 TY	10 CO	31				
VELIND	RTWAKE	FORWK	2 CO	36 *					
VELKTS	JFBGIN	STRIMA	32 CO	86 *					
VELKTS	PUNCH	STRIMA	8 CO	15 10	37 10	47 10	68 10	75 10	
VELSQ	FUSFN		30 *	32	33	10C			
VELSQ	STBFNM		127 *	133	145	160			
VELSQ	WING		83 *	85	86	108	152	167	
VELSQ	XSTORE		38 *	39	40	59			
VELXZ	FUSFN		29 *	30	34				
VELXZ	STBFNM		126 *	127	146				
VELXZ	WING		82 *	83	87				
VELXZ	XSTORE		37 *	38	41				
VGSTW	GUST	STRIMA	25 CO	96 *					
VGSTW	VORGST	STRIMA	25 CO	107 *	108 *				
VGSTW	WING	STRIMA	31 CO	55					
VGUNS	VARI		138 SN						
VGUNS	VGUNS		1						
VGUST	FUSFN	STAMAN	13 CO	28					

4.4 AGAJ77 DICTIONARY

There are more than 1,000 variables in the common blocks of AGAJ77. Additionally, several hundred local variables are scattered among the routines. It is extremely difficult to remember the meanings of each of the variables. Table 11 gives a brief, one-line, description for most of the key analysis variables in C81. In this table, each line starts with three blank columns, with the variable or array name beginning in column 4. Columns 12 through 72 give the meaning of the associated name. If the name is an array, the description is led by the array dimensions. Column 74 displays an asterisk (*), blank () or pound sign (#). An asterisk indicates that the name appearing is contained in a labeled common. That label immediately follows the asterisk. A blank means the related name is a local variable of a routine. That routine name follows the blank. A pound sign is the symbol for a local name which is used in more than one routine. Consequently, MISC is printed starting in column 75.

4.5 SWITCH FOR DIAGNOSTIC DATA FROM STAB

In Section 3.3 of Volume II, IPL(90) is defined as a switch for obtaining diagnostic data during the flightpath stability analysis (STAB). Since the data generated by this switch are not of general interest to the user, but can be useful to the programmer, the function of IPL(90) is discussed in this Programmer's Manual rather than in Volume II. The function of the switch is described below.

There are up to 30 independent variables in STAB that may be incremented in the process of computing the stability (partial) derivatives. The number of variables actually incremented depends on the number of degrees of freedom which the user has activated. (See IPL(86) and (88) in Section 3.3 of Volume II.) In each STAB case, IPL(90) can be used to print out the following data resulting from one of the variables being incremented:

- (1) Blade element aerodynamic data (α , C_L , C_D , C_M , etc.) at each blade station and each azimuth location for each rotor (i.e., IPRINT in subroutine RADIAL does not equal zero, which calls RADOUT)
- (2) Rotor and pylon moment data (i.e., CONDL in subroutine MBAL is greater than 1.5, which causes printout).

TABLE 11. AGAJ77 DICTIONARY.

AGAJ77 DICTIONARY

A	(59) FUSELAGE F+M; EQUIV TO FIRST 59 VARIABLE IN COMMON MANAL	#MISC
ARYMCK	(38,38) ARRAY OF M-C-K MATRICES INPUT TO ALLMAT	*STBCOM
ABSVCT	(38, 18, 3) MAGN OF EIGENVECTORS (MODE SHAPES) (RTS,DOF,NORM)	*STBCOM
ACM	(7,9,22) CARTA DATA TABLES FOR BUNS CM	*FORCMC
ACOFF	(20, 2) AERODYNAMIC CENTER OFFSET FOR ROTORS 1 AND2	*STARAD
ADDT	ANGULAR ACCELERATION IN TENNIS RACKET MOMENT EXPRESSION	*ANDOIT
ADT	THETA DOT FROM CYCLIC	*ANDOIT
AERCON	DRAG RISE COEFFICIENT (DEFAULT = 1.9/RAD)	CLCD
AGUST	(13) GUST VELOCITY AT CG, STAB. SURF., STORES, AND WING (FXD)	GUST
AGUSTR	GUST VELOCITY AT ROTOR HUB (FIXED REFERENCE SYSTEM)	RGUST
AGW	NOT REFERENCED	*STRIMA
AIB	(2) INERTIA PER ROTOR BLADE	*MANAL
AIBP	(2) BASELINE F/A ROTOR MOMENT WHEN STAB CALLED DURING MANU	*STARAN
AIBR	(2) BASELINE LAT ROTOR MOMENT WHEN STAB CALLED DURING MANU	*STARAN
AIR1	0.5*BAIB(1): 0.5*(# OF BLADES)*(INERTIA PER BLADE); M/R	*STBD
AIR2	0.5*BAIB(2): 0.5*(# OF BLADES)*(INERTIA PER BLADE); T/R	*STBD
AL	LIFT CURVE SLOPE (1/RAD)	*STARAN
ALAMDA	ANGLE OF YAWED FLOW ON BLADE SEGMENT; LIMITED TO < 60 DEG	*STARAN
ALB	ANGLE OF ATTACK FOR BREAKPOINT IN CL CURVE; =ALPHI4 + 5 DEG	#MISC
ALD	ANGLE OF ATTACK (AMG) IN DEGREES	*ANDOIT
ALF	ANGLE OF ATTACK OF BLADE SECTION OR AERO SURF; -PI<ALF<PI	*ANDOIT
ALFDOT	RATE OF CHANGE OF BLADE SECTION ANGLE OF ATTACK (ALPHA-DOT)	*STARAN
ALFSTB	(4) ANGLE OF ATTACK OF STABILIZING SURFACE	*STRIMA
ALFWKP	(2) WAKE PLAN COMPLEX ANGLE-OF-ATTACK	*MANAL
ALI	INDUCED ANGLE OF ATTACK	CLCD
ALIN1	(5) ANGLE BETWEEN CHORD LINE AND ZERO LIFT LINE FOR BLD SEG	*STARAN
ALIN2	(5) COEF OF MACH NUMBER IN EQUN FOR ZLL ANGLE WRT CHORD LINE	*STARAN
ALIN3	(5) COEF OF (MACH NUMBER)**2 IN EQN FOR ZLL ANGLE WRT CHORD	*STARAN
ALIN4	(5) COEF OF (MACH NUMBER)**3 IN EQN FOR ZLL ANGLE WRT CHORD	*STARAN
ALLWG	ANGLE OF ATTACK OF LEFT WING PANEL	*MANAL
ALOADD	BLADE SEGMENTAL DRAG FORCE (LB)	RADIAL
ALOADL	BLADE SEGMENTAL LIFT FORCE (LB)	RADIAL
ALOADP	BLADE SEGMENTAL PITCHING MOMENT (FT-LB)	RADIAL
ALPHI4	STALL ANGLE	*ANDOIT
ALRWG	ANGLE OF ATTACK OF RIGHT WING PANEL	*MANAL
ALSTBZ	(5) LIFT CURVE SLOPE OF AERODYNAMIC SURFACES (5=WING)	*STRIMAB
ALSZLL	(5) INPUT ZERO LIFT LINE ANGLE (CONTROLS AT 50%; NO BRKPTS)	*STARAN
ALT	ALTITUDE OF CG ABOVE GROUND LEVEL	*STARAN
ALTD	DENSITY ALTITUDE	*STARAN
ALTP	PRESSURE ALTITUDE	*STARAN
ALWG	WING ANGLE OF ATTACK (AVERAGE OF LEFT AND RIGHT PANELS)	*STARAN
AMAST	(6,2) ACCELERATIONS AT TOP OF MAST (LINEAR,ANGULAR,ROTOR)	*MANAL
AMBTMP	AMBIENT TEMPERATURE; XFC(28)	*STRIMA
AMG	ANGLE OF ATTACK IN "CLCD" AND "CDCL"; 0 < AMG < PI/2 FOR EQNS	#MISC
AMGD	ANGLE OF ATTACK USED IN DATA TABLE INTERPOLATION	*ANDOIT
ANGD	ANGLE OF ATTACK USED IN DATA TABLE INTERPOLATION	*ANDOIT
ANGFLP	(6) FLAP ANGLE (CSDEFL) PLUS INCR. FROM CONTROL POS.& J-CARDS	*STRIMA
ANGLS	ANGLE BTWN WING WAKE C.L. AND LINE FROM WING T.E. TO STAB CP	STBFNM
ANGS	DOWNWASH ANGLE AT STABILIZER DUE TO WING	STBFNM
ANGZLL	(6) ZLL ANGLE (ALSZLL) PLUS INCR. FROM CONTROL POS.& J-CARDS	*STRIMA
ARD	(2) =((HUB EXTENT)/RADIUS)**2	*STARAN
AP	NOT REFERENCED	*MANAL
APCH	HIGH ANGLE IN PHASING FUSELAGE AERO EQNS TOGETHER	*STARAN
APCL	LOW ANGLE IN PHASING FUSELAGE AERO EQNS TOGETHER	*STARAN
APD	PITCH RATE (APE-DOT): BODY AXIS	*MANAL
APDD	PITCH ACCELERATION (APE-DOUBLE-DOT): BODY AXIS	*MANAL
APDDD	RATE OF CHANGE OF PITCH ACCEL (APE-TRIPLE-DOT): BODY AXIS	DERIV
APDM	MAST PITCH RATE	*ANDOIT
APDS	PITCH RATE IN SHAFT AXIS (INCL PYLON/MAST TILT) TIMES RADIUS	*ANDOIT
APE	EULER PITCH ANGLE	*MANAL
APFP	CLIMB ANGLE	*STRIMA
APWG	ANGLE BTWN BODY X-AXIS AND WING ZERO LIFT LINE (AVERAGE)	*STARAN
ARD	FUSELAGE ROLL RATE	*MANAL
ARDD	FUSELAGE ROLL ACCELERATION	*MANAL
ARDM	MAST ROLL RATE	*ANDOIT
ARDS	ROLL RATE IN SHAFT AXIS (INCLUDING PYLON) TIMES RADIUS	*ANDOIT
ARE	EULER ROLL ANGLE	*MANAL
ARFAC	ASPECT RATIO FACTOR IN CL-ALPHA CALC FOR AERO SURFACES	CLCD
AVECT	MAGNITUDE OF THETA EIGENVECTOR FOR A ROOT IN STAB	ALSTAB
AVP	HCU*ALDOT; FACTOR USED IN UNSTEADY AERO CALCULATIONS	*ANDOIT
AY	SIDESL IP ANGLE = ATAN2(-VYB,VXB)	*STRIMA

TABLE 11. Continued.

AYD	FUSELAGE YAW RATE	*MANAL
AYDD	FUSELAGE YAW ACCELERATION	*MANAL
AYE	EULER YAW ANGLE	*MANAL
AYEFP	SIDESL IP INDICATOR	*STRIAB
AYFP	HEADING ANGLE	*STAMAN
AYI	SIDESL IP ANGLE FROM PREVIOUS TIME POINT DURING MANEUVER	*STAMAN
AZ	AZIMUTH ANGLE FOR ROTOR BLADE	INIT
AZETAR	(2) AZ	*MANAL
AI	F/A FLAPPING	*ANDOIT
AI BAL	(2) AI SAVED DURING STABILITY ANALYSIS	*STARAN
AID	F/A FLAPPING RATE	*ANDOIT
AIM	MAIN ROTOR F/A FLAPPING ANGLE	*MANAL
AIMD	MAIN ROTOR F/A FLAPPING RATE	*MANAL
AIT	TAIL ROTOR F/A FLAPPING ANGLE	*MANAL
AITD	TAIL ROTOR F/A FLAPPING RATE	*MANAL
AIWKP	(2) WAKE PLAN F/A FLAPPING ANGLE	*STRIMA
B	(2) NUMBER OF BLADES (FOR FLOATING POINT CALCULATIONS)	*MANAL
BAIB	(2) NUMBER OF BLADES TIMES INERTIA PER BLADE (B*AI B)	*STARAN
BAP	HCU**2*ALDDOT; FACTOR USED IN UNSTEADY AERO CALCULATIONS	*ANDOIT
BASECG	(3) CG LOCATION WITH EXTERNAL STORES EXCLUDED (STT,BUTT,WTR)	*STRIMA
BASEGW	GROSS WEIGHT WITH EXTERNAL STORES EXCLUDED	*STRIMA
BB	TIP LOSS FACTOR (1.0 = NO LOSS)	VIND
BBCGOF	(20, 2) BLADE BEAMWISE CG OFFSET DISTRIBUTION, FEET (TIP=1)	*STARAN
BCCGOF	(20, 2) BLADE CHORDWISE CG OFFSET DISTRIBUTION, FEET (TIP=1)	*STARAN
BDOTRS	TIP SPEED FROM FLAPPING VELOCITY AT HUB	*ANDOIT
BETAB	ANGLE BTWN BLADE SEGMENT AND HUB PLANE = "FLAPPING ANGLE"	RADOUT
BETAH	HUB FLAPPING ANGLE = BETA1 + PRECONE	
BETAK	(2) FLAPPING SPRING RATE	*MANAL
BETAX	(2) FLAPPING STOP LOCATION	*STARAN
BETAXX	(2) FLAPPING STOP SPRING RATE	*MANAL
BETAZ	(2) PRECONE ANGLE	*MANAL
BETAZD	(2) RATE OF CHANGE OF PRECONE,	*MANAL
BETAI	"FLAPPING ANGLE" OF BLADE SEGMENT #1 (0 TO 5% R); SEE "BETAB"	#MISC
BLCG	BUTTLINE OF CG (FEET); ALSO SEE "CGBL"	*INSTAR
BLCGX	(4) BUTTLINE OF CG OF EXTERNAL STORE (INCHES)	*STRIMA
BLDACC	(7, 20, 6) BLADE (BEAM,CHORD, TORS) ACC AT EACH RADIAL STATION	*MANAL
BLDMS	(2, 2) BLADE MASS (BLDMSS) TIMES (PYLON FOCAL LENGTH)**2	*STARAN
BLDMSS	(2) TOTAL MASS OF EACH BLADE (SLUGS)	*STARAN
BLOAD	(4, 3, 40) BLADE LOAD OUTPUT DATA	*STRIAB
BMASS	(20, 2) MASS OF EACH BLADE SEGMENT (SLUGS)	*STARAD
BNPSI	(2): BNPS IR(N)*HNPSSR(N)=.025*RHO*RR*NBS/NPSI	*MANAL
BNPSIR	(2): (NUMBER OF BLADES)/(NUMBER OF AZMUTH LOCATIONS)	*MANAL
BOTTOM	MIN VALUE OF COLLECTIVE PITCH AS A FUNCTION OF F/A MAST TILT	*STRIMA
BOUNCE	(2) *** DEFINED IN "ZERO" BUT NEVER USED ***	*STARAN
BTASTB	(4) SIDESL IP ANGLE AT THE I-TH STABILIZING SURFACE	*STRIMA
BTBL	BTASTB(I) CORRECTED FOR THE SIGN OF THE BUTTLINE OF THE STAB	*ANDOIT
BUTSTB	(4) BUTTLINE OF STABILIZERS	*STRIMA
BVECT	MAGNITUDE OF PHI EIGENVECTOR FOR A ROOT IN STAB	ALSTAB
BWMS	RECIPROCAL OF BOBWEIGHT MASS TIMES 12 (1/SLUGS)	JFBGIN
BWTC	BOBWEIGHT DAMPER MULTIPLIED BY "BWMS"	*STAMAN
BWTK	BOBWEIGHT SPRING MULTIPLIED BY "BWMS"	*STAMAN
BWTM	BOBWEIGHT EFFECTIVITY COEFFICIENT	*STAMAN
B1	LATERAL FLAPPING	*ANDOIT
B1BAL	(2) B1 SAVED DURING STABILITY ANALYSIS	*STARAN
B1D	LAT FLAPPING RATE	*ANDOIT
B1M	MAIN ROTOR LAT FLAPPING ANGLE	*MANAL
B1MD	MAIN ROTOR LAT FLAPPING RATE	*MANAL
B1WKP	(2) WAKE PLAN LATERAL FLAPPING ANGLE	*STRIMA
CAPCH	COS(APCH)=COSINE OF HIGH PHASING ANGLE IN FUS AERO EQNS	*STARAN
CAPCL	COS(APCL)=COSINE OF LOW PHASING ANGLE IN FUS AERO EQNS	*STARAN
CBBM	(20, 11, 2) COEFFICIENT OF BEAM BENDING MOMENT	*FLEX
CBETA	COSINE OF BETAB ("FLAPPING ANGLE") PLUS PRECONE	*ANDOIT
CBETAZ	(2) COS (BETAZ).	*MANAL
CBZ	COSINE OF PRECONE ANGLE: =CBETAZ(N)=COS(BETAZ(N))	*ANDOIT
CCBM	(20, 11, 2) COEFFICIENT OF CHORD BENDING MOMENT	*FLEX
CD	DRAG COEFFICIENT	*ANDOIT
CDHB	(2) DRAG COEFFICIENT FOR HUB	*STARAD
CDLWG	DRAG COEFFICIENT FOR LEFT WING PANEL	*MANAL
CDMX	MAXIMUM NON-DIVERGENT DRAG IN "CLCD" AND "CDCL"	*ANDOIT
CDR	RADIAL DRAG COEF FOR BLADE SEGMENT FOR UNSAN OPTION	*STARAN
CDREF	REFERENCE VALUE OF CD IN UNSAN OPTION	*STARAN
CDRWG	DRAG COEFFICIENT FOR RIGHT WING PANEL	*MANAL
CDSTB	(4) DRAG COEFFICIENT FOR STABILIZING SURFACE	*STARAN
CDWG	WING DRAG COEFFICIENT (AVERAGE OF LEFT AND RIGHT PANELS)	*STARAN
CDZ	DRAG COEFFICIENT AT ZERO ANGLE OF ATTACK	*ANDOIT
CD1	DRAG COEFFICIENT VARIATION WITH ANGLE OF ATTACK	*ANDOIT
CD2	DRAG COEFFICIENT VARIATION WITH ANGLE OF ATTACK SQUARED	*ANDOIT
CGBL	BUTTLINE OF CG (INCHES); ALSO SEE "BLCG"	*STAMAN
CGSTA	STATIONLINE OF CG (INCHES); ALSO SEE "STACG"	*STRIMA

TABLE 11. Continued.

CGWL	WATERLINE OF CG (INCHES); ALSO SEE "WLCG"	*STRIMA
CHDSTB	(5) MEAN AERODYNAMIC CHORD OF AERODYNAMIC SURFACES (5=WING)	*STARAN
CHORD	(20,2) BLADE CHORD DISTRIBUTION, TIP TO ROOT (FEET)	*STARAD
CL	LIFT COEFFICIENT	*ANDOIT
CLAMDA	COS(CLAMDA) = COSINE OF YAW FLOW ANGLE ON BLADE SEGMENT	*ANDOIT
CLBCL	WING MOMENT DERIVATIVE: SEE XWG(34) IN USER'S GUIDE	*STARAN
CLBO	WING MOMENT DERIVATIVE: SEE XWG(33) IN USER'S GUIDE	*STARAN
CLLWG	LIFT COEFFICIENT FOR LEFT WING PANEL	*MANAL
CLOCK	CONTROL LOCK FOR M/R COLLECTIVE PITCH (0=UNLOCKED)	*STRIMA
CLP	WING MOMENT DERIVATIVE: SEE XWG(36) IN USER'S GUIDE	*STARAN
CLR	WING MOMENT DERIVATIVE: SEE XWG(35) IN USER'S GUIDE	*STARAN
CLRADK	(2) SWITCH FOR UNSTEADY AERO (>0 FOR UNSAN; <0 FOR BUNS)	*STARAD
CLREF	REFERENCE VALUE OF CL IN UNSAN OPTION	*STARAN
CLRWR	LIFT COEFFICIENT FOR RIGHT WING PANEL	*MANAL
CLSTB	(4) LIFT COEFFICIENT FOR STABILIZING SURFACE	*STARAN
CLZ	MAXIMUM LIFT COEFFICIENT AT ZERO MACH NUMBER	*ANDOIT
CM	PITCHING MOMENT COEFFICIENT	*ANDOIT
CMLWG	PITCHING MOMENT COEFFICIENT FOR LEFT WING PANEL	*STARAN
CMRWG	PITCHING MOMENT COEFFICIENT FOR RIGHT WING PANEL	*STARAN
CMSTB	(4) PITCHING MOMENT COEFFICIENT FOR STABILIZING SURFACE	*STARAN
CNBCL	WING MOMENT DERIVATIVE: SEE XWG(38) IN USER'S GUIDE	*STARAN
CNB0	WING MOMENT DERIVATIVE: SEE XWG(37) IN USER'S GUIDE	*STARAN
CNPCD1	WING MOMENT DERIVATIVE: SEE XWG(42) IN USER'S GUIDE	*STARAN
CNPCL	WING MOMENT DERIVATIVE: SEE XWG(41) IN USER'S GUIDE	*STARAN
CNPSI	(16,2) COS(N*(PSI+PSIY)) OF BLADE L FOR WAKE TABLE	*FORWK
CNRCD	WING MOMENT DERIVATIVE: SEE XWG(40) IN USER'S GUIDE	*STARAN
CNRCL	WING MOMENT DERIVATIVE: SEE XWG(39) IN USER'S GUIDE	*STARAN
CNTGRP	(56) CONTROLS GROUP OF OUTPUT DATA FOR TRIM & MANU PAGES	*STARAN
CNTLPH	(2) ROTOR'S CONTROL PHASING, DEG	*STARAN
COEFDG	(2,5) COEFTS FOR CHANGE IN CD OF AERO SURF WITH FLAP DEFLECT	*STARAN
COEFDW	(3,5) COEFTS FOR DOWNWASH AT AERO SURFACE DUE TO FUSELAGE	*STARAN
COEFLT	(2,5) COEFTS FOR CHANGE IN CL OF AERO SURF WITH FLAP DEFLECT	*STARAN
COEFPT	(2,5) COEFTS FOR CHANGE IN CM OF AERO SURF WITH FLAP DEFLECT	*STARAN
COEFSW	(2,5) COEFTS FOR SIDEWASH AT AERO SURFACE DUE TO FUSELAGE	*STARAN
COEFXL	(2,5) COEFTS FOR CHANGE IN CL-MAX OF AERO SURF WITH FLAP DEF	*STARAN
COLSTK	COLLECTIVE STICK POSITION	*MANAL
COND1	SWITCH FOR PRINTOUT OF TRIM ITERATION DATA	*STARAN
COND2	SWITCH FOR PRINTOUT OF BLADE ELEMENT DATA	*STARAN
COND3	SWITCH FOR PRINTOUT OF OPTIONAL TRIM PAGE	*STRIAB
CORIOL	(11) INTERMEDIATE VARIABLE (RELATED TO CORIOLIS ACCEL.).	*ANDOIT
COSDIH	(5) COSINE OF AERODYNAMIC SURFACE DIHEDRAL ANGLE	*STARAN
COSDWS	(5) COSINE OF DOWNWASH ANGLE AT AERO SURFACE DUE TO FUSELAGE	*STARAN
COSGAM	(2) COSINE OF TIP SWEEP ANGLE	*STARAD
COSIY	COS(PSI+PSIY): TOTAL BLADE AZIMUTH ANGLE W.R.T. WIND VECTOR	AZMINT
COSSSWS	(5) COSINE OF SIDEWASH ANGLE AT AERO SURFACE DUE TO FUSELAGE	*STARAN
CPCYBG	COS (WEAPON ELEVATION ANGLE) * COS (WEAPON AZMUTH ANGLE).	*STARAN
CPITCH	(4) PITCH ANGLE FOR CONTROL AT 0%	*STRIMA
CPLL	(11,2) COEFFICIENTS OF PITCH LINK LOAD	*STARAN
CPSI	COS(PSI): INNER LOOP STORAGE FOR CPSI(L,N)	*ANDOIT
CPSIB	(2) COS(TWOP1 / B)	*STARAN
CPSIL	(12,2) COS(PSI) FOR EACH BLADE L	*MANAL
CPSIY	COS(PSIY)	*STARAN
CPSQ	COSIY**2	AZMINT
CPSYBG	COS (WEAPON ELEVATION ANGLE) * SIN (WEAPON AZMUTH ANGLE).	*STARAN
CRANGE	(4) LINKAGE BTWN PILOT CONTROL AND INTERMD CTRNL ANG (RAD/%)	*STRIMA
CRLN19	COEF FOR LINKING LAT CYC TO COLL PITCH AS A FCN OF MAST TILT	*STARAN
CRM	NOT REFERENCED	*ANDOIT
CSDEFL	(5) CONTROL SURFACE (FLAP) DEFLECTION	*STARAN
CSH	(11,2) COEFFICIENT OF HORIZONTAL SHEAR	*STARAN
CSHG	(11,2) COEFFICIENT OF INPLANE SHEAR	*STARAN
CSHO	(11,2) COEFFICIENT OF INPLANE SHEAR	*STARAN
CSTD	(20,11,2) COEFFICIENT OF TORSIONAL MOMENT WITH RADIUS	*STRIMA
CSV	(11,2) COEFFICIENT OF VERTICAL SHEAR	*STARAN
CSVO	(11,2) COEFFICIENT OF VERTICAL SHEAR	*STARAN
CT	"THRUST" COEF. = T/(2*PI*RHO*R**2); NOTE: 2 & NO TIP SPEED\$\$\$\$	*STARAN
CTPLOT	(42) CONTOUR PLOT I/O ARRAY	*ANDOIT
CURVED	(1100,5) TABLES FOR DRAG COEFFICIENTS	*TAB
CURVEL	(500,5) TABLES FOR LIFT COEFFICIENTS	*TAB1
CURVEM	(575,5) TABLES FOR PITCHING MOMENT COEFFICIENTS	*TAB1
CVFAC	(11) INTERMEDIATE VARIABLE (RELATED TO VIRTUAL WORK)	*ANDOIT
CWGZLL	COSINE OF WING ZERO LIFT LINE INCIDENCE ANGLE	*STARAN
CYCOLL	(11,2) MODE SWITCHES.	*STARAD
CYSKID	RATE OF CHANGE OF FORE AND AFT CYCLIC STICK.	*STARAN
CYSK2D	RATE OF CHANGE OF LATERAL CYCLIC STICK.	*STARAN
CYSTK1	F/A CYCLIC STICK POSITION	*MANAL
CYSTK2	LATERAL CYCLIC STICK POSITION	*MANAL
CZET	COSINE OF ROTOR 1 F/A MAST TILT ANGLE	*MANAL
DALFST	CHANGE IN THE STALL ANGLE FROM HYSTERESIS.	*ANDOIT
DAMP	MAX VALUE FOR USE OF VARIABLE DAMPER FOR FUSELAGE F+M BALANCE	*STRIAB
DAMPLL	(2) LEAD-LAG DAMPER	*STARAN

TABLE 11. Continued.

DAMPM	(11.2) DAMPING FACTORS	*STARAN
DAMPMW	(2) 2. * INPUT STRUCTURAL DAMPING IN MAST WIND UP.	*STARAN
DAPC	DIFFERENCE BETWEEN HIGH AND LOW PHASING ANGLES = APCH-APCL	*STARAN
DBEF	(2) PITCH CHANGE AXIS LOCATION ($\theta = 25^\circ$; UNITS = $^\circ\text{C}$)	*STARAD
DBEF1	(2) PITCH CHANGE AXIS LOCATION ($\theta = 75^\circ$; UNITS = $^\circ\text{C}$)	*STARAN
DBLCG	LATERAL DISTANCE C.G. HAS MOVED	*STAMAN
DCAFR	(2) COEFFICIENT IN TIP VORTEX MODEL	*STARAN
DCAFXK	DCAFR * XK	*ANDOIT
DCDFP	INCREMENT TO AERO SURFACE DRAG COEF DUE TO FLAP DEFLECTION	*ANDOIT
DCL	INCREMENT TO LIFT COEFFICIENT DUE TO UNSTEADY AERODYNAMICS	*ANDOIT
DCLFP	INCREMENT TO AERO SURFACE LIFT COEF DUE TO FLAP DEFLECTION	*ANDOIT
DCLXFP	INCREMENT TO MAX LIFT COEF OF AERO SURFACE DUE TO FLAP DEFLECT	*ANDOIT
DCM	INCREMENT TO PITCHING MOMENT COEF DUE TO UNSTEADY AERO	*ANDOIT
DCMPF	INCREMENT TO AERO SURFACE PITCHING MOMENT COEF DUE TO FLAP	*ANDOIT
DELAC	(2) SHIFT IN AERODYNAMIC CENTER AT TIP CAUSED BY SWEEP	*STARAD
DELJT	(4) JET CONTROL LINKAGE (LB1X)	*STRIMA
DELA3	(2) TANGENT OF PITCH-FLAP COUPLING ANGLE	*STARAN
DELT2	DETA TIME FOR RUNGE-KUTTA	*MANAL
DELT2R	1. / DELT2.	*MANAL
DEL3DG	(2) PITCH-FLAP COUPLING ANGLE, DEG	*STRIMA
DEPD	(10) DELTA TO TRIM VARIABLE FOR PDM COMP; = EPD*EPDX(I)	*STRIBA
DEPLOY	(4) DEPLOYMENT OF DRAG BRAKE	*STRIMA
DESNLF	DESIRED NJRMAL LOAD FACTOR FOR AUTOPILOT, G	*MANAL
DESP	DESIRED ROLL RATE FOR AUTOPILOT, RAD/SEC	*MANAL
DESPDG	DESIRED ROLL RATE FOR AUTOPILOT, DEG/SEC	*MANAL
DESQ	DESIRED PITCH RATE FOR AUTOPILOT, RAD/SEC	*MANAL
DESQDG	DESIRED PITCH RATE FOR AUTOPILOT, DEG/SEC	*MANAL
DESR	DESIRED YAW RATE FOR AUTOPILOT, RAD/SEC	*MANAL
DESRDG	DESIRED YAW RATE FOR AUTOPILOT, DEG/SEC	*MANAL
DESRC	DESIRED RATE-JF-CLIMB FOR AUTOPILOT, FT/SEC	*MANAL
DIS	DIST FROM WING WAKE TO STAB CP (PERP. TO WING WAKE)	STBFNM
DIST	DISTANCE FROM ORIGIN TO CG IN GROUND X-Y PLANE	*STRIMA
DIXIZ	IX - IZ: DIFFERENCE BTWN TOTAL ROLL AND YAW INERTIAS	*STRIMA
DIYIX	IY - IX: DIFFERENCE BTWN TOTAL PITCH AND ROLL INERTIAS	*STRIMA
DIZYI	IZ - IY: DIFFERENCE BTWN TOTAL YAW AND PITCH INERTIAS	*STRIMA
DL	INERTIAL CONTRIBUTION TO ROLLING MOMENT	*STRIAB
DM	INERTIAL CONTRIBUTION TO PITCHING MOMENT	*STRIAB
DMS20	(11.2) OUT-OF-PLANE MODE SHAPE AT 5% MINUS THAT AT 0% (HUB)	*STARAN
ON	INERTIAL CONTRIBUTION TO YAWING MOMENT	*STRIAB
ONSRTD	DENSITY RATIO	*STARAN
DPF	(12-11.2) DEPENDENT PARTICIPATION FACTOR (BLADE, MODE, ROTOR)	*FLEX
DPFD	(12-11.2) FIRST TIME DERIVATIVE OF DPF (DPF-DOT)	*FLEX
DPFDD	(12-11.2) SECOND TIME DERIVATIVE OF DPF (DPF-DOUBLE-DOT)	*FLEX
DPFP	(4,2) MODAL PYLON DEPNT PARTICIPATION FACTOR (MODE, ROTOR)	*PYLON
DPFPD	(4,2) FIRST TIME DERIVATIVE OF DPFP (DPFP-DOT)	*PYLON
DPFPDD	(4,2) SECOND TIME DERIVATIVE OF DPFP (DPFP-DOUBLE-DOT)	*PYLON
DPIX	IX / (IX*IZ - IXZ**2)	*STAMAN
DPIXZ	IXZ / (IX*IZ - IXZ**2)	*STAMAN
DPIZ	IZ / (IX*IZ - IXZ**2)	*STAMAN
DPLD	(11) PRECONE EFFECTS IN VERTICAL SHEAR	*ANDOIT
DPSI	(12,2) CHANGE IN PSI BETWEEN AZIMUTH POSITIONS	*MANAL
DQDCOL	D TORQUE / D COLLECTIVE FROM TRIM SECTION.	*STRIAB
DOL	.5 TIMES ROLLING MOMENT DUE ANGULAR RATES + SIDESLIP AT WING	*STARAN
DQN	.5 TIMES YAWING MOMENT DUE ANGULAR RATES + SIDESLIP AT WING	*STARAN
DRB	(20,2) BLADE SEGMENTAL LENGTHS, FEET (TIP=1)	*MANAL
DROT	(105,2) XMW AND XTW COMBINED INTO ONE ARRAY	*INONLY
DSTACG	FORE AND AFT DISTANCE C.G. HAS MOVE BECAUSE OF MAST TILT.	*STAMAN
DSTCGT	FORE AND AFT DISTANCE C.G. HAS MOVED BECAUSE OF HORIZ. FOLD	*STAMAN
DSTCGT	FORE AND AFT DISTANCE C.G. HAS MOVE BECAUSE OF FOLD AFT.	*STAMAN
DTBWT	CHANGE IN COLLECTIVE PITCH DUE TO BOBWIGHT	*STAMAN
DTHETO	(3) OLD VALUES OF DTHT.	*STAMAN
DTR	DEGREES TO RADIAN CONVERSION = 0.0174532925	*MANAL
DTRR	RADIAN TO DEGREES CONVERSION = 57.2957795	*MANAL
DTRRP	(5) FACTOR FOR CONVERTING FUSELAGE AERO INPUT TO "PER RADIAN"	FUS INT
DTRRSQ	DTRR * DTRR = 3282.80635	*INSTAR
DTRRI	DTRR/R(1)	*STAMAN
DTRR2	DTRR/R(2)	*STAMAN
DTZMT	NOT REFERENCED	*STRIMA
DWGSTB	DIST FROM WING T.E. TO STAB CP NORMALIZED BY WING M.A.C.	STBFNM
DWLCG	VERTICAL DISTANCE C.G. HAS MOVED	*STAMAN
DX	INERTIAL CONTRIBUTION TO X-FORCE	*STRIAB
DXWGST	X-DISTANCE FROM WING T.E. TO STABILIZER CP	STBZFM
DY	INERTIAL CONTRIBUTION TO Y-FORCE	*STRIMA
DZ	INERTIAL CONTRIBUTION TO Z-FORCE	*STRIMA
DZWGST	Z-DISTANCE FROM WING T.E. TO STABILIZER CP	STBFNM
E	(135) BASELINE VALUES FOR FORCES AND MOMENTS	*STBD
EACC	(3) ELASTIC ACCELERATION OF BLADE SEGMENT (1=OP,2=IP,3=TORS)	RADBGN
EDISP	(3) ELASTIC DISPLACEMENT OF BLADE SEGMENT (1=OP,2=IP,3=TORS)	*ANDOIT
EFFRT	(2) TRANSMISSION EFFICIENCY FOR EACH ROTOR	*STRIMA
EFFALL	DRIVE SYSTEM OVERALL TRANSMISSION EFFICIENCY	*STRIMA

TABLE 11. Continued.

EIG	(38) LOCAL STORAGE FOR CURRENT EIGNENVALUES (COMPLEX)	*STBCOM
EIGN	(38,4) COMMON STORAGE FOR ALL EIGENVALUES (COMPLEX)	*STBCOM
ENGOMG	ENGINE ANGULAR SPEED, RAD/SEC	*STRIMA
ENGRPM	ENGINE RPM, NOT REFERENCED	*STRIB
EPCOS	(2,11,2) FOURIER COEFFICIENTS OF DPF IN TRIM	*STARAN
EPD	BASIC INCREMENT FOR TRIM AND CONTROL PARTIAL DERIV. MATRICES	*STRIB
EPDD	INCREMENT FOR COMPUTING ROTOR PARTIAL DERIVATIVES IN MBAL	*ANDOIT
EPDS	(22) INCREMENTS TO DEGREES OF FREEDOM IN STAB	STAB
EPDX	INPUT FOR STABILITY ANALYSIS INCREMENT (=XIT(4)/10.)	*STRIB
EPSIN	(10) ARRAY FOR PUTTING APPROPRIATE UNITS ON EPD	*STRIMA
ER	(2,11,2) FOURIER COEFFICIENTS OF DPF IN TRIM	*STARAN
ERR	(2) ROTOR ALLOWABLE FLAPPING MOMENT ERROR FOR TRIM	*STRIB
ERX	(10) INPUT ALLOWABLE ERRORS OR TRIM FORCES AND MOMENTS	*STRIB
ETAQ	(2) MAX VALUE FOR USE OF VARIABLE DAMPER FOR RTR MOM BALANCE	*STARAN
ETAQST	DYNAMIC PRESSURE LOSS AT STAB DUE TO WING (0 = NO LOSS)	*STARAN
ETAQXT	(5) DYNAMIC PRESSURE LOSS AT AERODYNAMIC SURF DUE TO FUSELAGE	*STARAN
EVEL	(4) DYNAMIC PRESSURE LOSS AT EXTERNAL STORE/AERO BRAKE	*STRIB
EXH	(3) ELASTIC VELOCITY OF BLADE SEGMENT (1=OP,2=IP,3=TORS)	RADBGN
EXIT	(2) HUB EXTENT (FEET)	*STARAD
	ERROR INDICATOR: NOT ZERO INDICATES ERROR AND TERMINATES JCB	*TOPLOT
F		
FLOCK	(18) FORCE AND MOMENT IMBALANCES	*STRIB
FLPDUJ	CONTROL LOCK FOR M/R AND T/R F/A CYCLIC PITCH (0=UNLOCKED)	*STRIB
FLTGRP	(5) INCREMENT TO FLAP ANGLE OF AERO SURF DUE TO J-CARD INPUTS	*STAMAN
FMFILT	(53) FLIGHT CONDITIONS GROUP OF OUTPUT DATA FOR TRIM&MANU PGS	*STAMAN
FORTHA	(6) FILTERED FORCES AND MOMENTS AT CG IN BODY-AXIS	*MANAL
FQGI	(858) PART OF THE 2376 VARIABLES SAVED DURING MANEUVERS	#MISC
FREQ	(11,2) 1./ (FREQ*GI)**2	*STARAN
FREQMW	(11,2) NATURAL FREQUENCY	*ANDOIT
FRG	(11,2) NOT REFERENCED	*STARAN
FRP	(49,2,3) FREQ.RESP. WITH GAIN IN DB AND PHASE ANGLE IN DEGREES	*STBFHQ
FRQHZ	(49,3) FREQUENCY RESPONSE OF TRANSFER FUNCTIONS (COMPLEX)	ALSTAB
FTKTS	(49) FREQUENCY RANGE, IN HERTZ, FOR FREQ RESPONSE IN STAB	*STBFHQ
FUSGRP	FT/SEC TO KNOTS CONVERSION FACTOR = .5925	*STRIB
FVIND	(17) BODY AXIS GROUP OF OUTPUT DATA FOR TRIM & MANU PAGES	*STAMAN
FXCGOF	INDUCED VELOCITY CHANGER LIMITER (FT/SEC)	*STARAN
FYCGOF	BLADE ADDITIONAL INPLANE INERTIA FORCE DUE TO CG/PCA OFFSETS	*STARAN
FZCGOF	(12) BLADE ADDITIONAL RADIAL INERTIA FRC FROM CG/PCA OFFSETS	*STARAN
	BLADE ADDITIONAL OUT-OF-PLANE INERTIA FRC FROM CG/PCA OFFSETS	*STARAN
GAIN	(3) GAIN IN TRANSFER FUNCTIONS IN STABILITY ANALYSIS	*STBFHQ
GAMMA	(2) TIP SWEEP ANGLE	*STARAD
GCCBM	(11,2) COEFFICIENTS OF BEAM BENDING MOMENTIM	*STARAN
GCCBM	(11,2) COEFFICIENTS OF CHORD BENDING MOMENTIM	*STARAN
GEARAT	(2) RATIO OF ROTOR RPM TO ENGINE RPM	*STRIB
GFILT	FILTERED VERTICAL ACCELERATION AT CG, G	*MANAL
GFWD	FORWARD LOAD FACTOR (G-LEVEL)	*MANAL
GI	(6,2) GENERALIZED BLADE INERTIA	*STARAN
GLAT	LATERAL LOAD FACTOR (G-LEVEL)	*MANAL
GMAXV	TOTAL GUST VELOCITY = GMAXV1 + GMAXV2	*MANAL
GMAXV1	FIRST MAXIMUM GUST VELOCITY.	*MANAL
GMAXV2	SECOND MAXIMUM CHANGE IN GUST VELOCITY.	*STAMAN
GMAXV3	INTERMEDIATE VARIABLE = GMAXV1 - START2*RATE2.	*MANAL
GMS	(18,12) BLADE GENERAL MODE SHAPE DATA	*INONLY
GOV	FLAG ON ENGINE TORSIONAL SYSTEM -NORMALLY = 0	*STAMAN
GPRELD	PRELOAD FOR BOBWEGHT (IN G'S)	*STAMAN
GPULL	COMMANDED LOAD FACTOR (G-LEVEL) FOR PULL-UP/PUSH-OVER IN TRIM	*STAMAN
GRDGRP	(14) GROUND REFERENCE GROUP OF OUTPUT DATA FOR TRIM&MANU PAGE	*STAMAN
GSTF	VORTEX CIRCULATION DIVIDED BY TWOPI	*STRIB
GTARGT	TARGET G-LEVEL FOR G-TRACTOR OPTION: CONVERTED TO QTARGT	*STAMAN
GTI	(20,2) GENERALIZED BLADE TORSIONAL INERTIA	*STARAD
GTURN	COMMAND LOAD FACTOR (G-LEVEL) FOR COORD. TURN IN TRIM	*STAMAN
GUSTYP	INDICATOR FOR TYPE OF GUST = "J" VALUE OF GUST-TYPE	*MANAL
GVERT	VERTICAL LOAD FACTOR (G-LEVEL)	*MANAL
HALFG	0.5*ONEG = 16.08625 FT/SEC**2	*INSTAR
HALFP	P1/2. = 1.570796327	*MANAL
HCU	0.5* CHORD/U	RADIAL
HDELT	.5 * TDELT	*MANAL
HFILT	(2) FILTERED H-FORCE, LB	*MANAL
HEADP	(5,12) PART OF STAB PRINTOUT HEADINGS	*STBD
HFORCE	(2) ROTOR FORCE // TO SHAFT X-AXIS (+AFT)	*MANAL
HFRIC	SUMMATION VARIABLE USED TO COMPUTE H-FORCE	*ANDOIT
HGSTW	X-COMPONENT OF GUST AT WING (BODY AXIS)	*STRIB
HGUST	X-COMPONENT OF GUST VELOCITY AT CG (BODY AXIS)	*STAMAN
HGUSTR	X-COMPONENT OF GUST VELOCITY AT HUB IN SHAFT REFERENCE	*STARAD
HGUSTS	(4) X-COMPONENT OF GUST AT STAB. SURFACES (BODY AXIS)	*MANAL
HGUSTX	(4) X-COMPONENT OF GUST AT EXTERNAL STORES (BODY AXIS)	*MANAL
HL	(2) MAST LENGTH (FROM SHAFT PIVOT POINT TO HUB - FEET)	*STAMAN
HPYLD	(2) DIST. FROM SHAFT PIVOT TO NACELLE AC (ALONG MAST)	*STAMAN
HNPSIR	(2) NOT REFERENCED	*MANAL

TABLE 11. Continued.

HPACCS	DRIVE SYSTEM ACCESSORY HORSEPOWER	*STRIMA
HPGAIN	ENGINE GOVERNOR POWER GAIN	*STAMAN
HPMAX	MAX. TRANSMISSION HORSEPOWER	*STRIMA
HSHR	(2) FORE AND AFT SHEAR FORCE AT HUB	*MANAL
HSHRN	DOUBLE PRECISION ACCUMULATOR FOR HSHR	*ANDOIT
HTPSG	(2) 1.-.5*(BLADE TIP SEGMENT), IN FRACTION	*STARAN
HUBM	(2) NOT REFERENCED	*MANAL
HWAKE	HALF WIDTH OF WING WAKE	STBFNM
IBMSAV	(3) PART OF HEADING INDICATORS FOR TRANSFER FUNCTIONS IN STAB	*STBFQ
IBRAKE	ROTOR BRAKE SWITCH	*STAMAN
ICAN	FLAG FOR ROTOR BRAKE	*STAMAN
ICOM	(49) COMMENTS	*TOPLOT
IDSTB	INDICATOR FOR AERODYNAMIC SURFACE WAKE TABLE	*FOSWK
IDTAB	(20,2) IDTABS(20,2) CONVERTED TO TIP TO ROOT	*STARAD
IDTABM	(20,2) DISTRIBUTION OF RAA SUBGROUPS ALONG SPAN OF M/R BLADE	READIN
IDTABS	(20,2) IDTABM AND IDTABT COMBINED INTO ONE ARRAY	*STARAD
IDTABT	(20) DISTRIBUTION OF RAA SUBGROUPS ALONG SPAN OF T/R BLADE	READIN
IND	SWITCH TYPE VARIABLE, USED IN RUNGE-KUTTA INTEGRATION	*MANAL
IPL	(98) PROGRAM LOGIC GROUP INPUTS	*INSTAR
IPLERR	(98) SWITCHES TO INDICATE ERRORS IN PROG LOGIC GROUP INPUTS	ERRCHK
IPL16	IPL(16); SWITCH FOR READING STABILIZING SURFACE GROUP #1	*INONLY
IPL17	IPL(17); SWITCH FOR READING STABILIZING SURFACE GROUP #2	*INONLY
IPL18	IPL(18); SWITCH FOR READING STABILIZING SURFACE GROUP #3	*INONLY
IPL19	IPL(19); SWITCH FOR READING STABILIZING SURFACE GROUP #4	*INONLY
IPRINT	BLADE ELEMENT AERO DATA PRINT INDICATOR	*ANDOIT
IPSN	IDENTIFICATION (SERIAL) NUMBER USED FOR LABELING TAPES, ETC.	*TOPLOT
IRUNG	CYCLE NUMBER FOR RUNGE-KUTTA INTEGRATION (=1+2+3, OR 4)	*MANAL
ISCASP	SWITCH FOR PITCH SCAS (1 = ON; 0 = OFF)	*STAMAN
ISCASR	SWITCH FOR ROLL SCAS (1 = ON; 0 = OFF)	*STAMAN
ISCASY	SWITCH FOR YAW SCAS (1 = ON; 0 = OFF)	*STAMAN
ISTOP	ROTOR STOP INDICATOR IN MANU	*STAMAN
ISWAKE	(6,2) SEQUENCE NUMBER OF WAKE TABLE TO BE USED (SURF, ROTOR)	*FOSWK
ITC	(2) MAX ITER TO TRIM ROTOR AT FIXED FLAPPING ANGLES	*STARAN
ITM	(2) MAX ITER TO TRIM ROTOR AT FIXED CYCLIC ANGLES	*STARAN
ITORS	EFFECTIVE TORSIONAL INERTIA OF M/R AND T/R COMBINED (REAL)	*STARAN
IVUSER	SWITCH FOR SPECIFYING STATION FOR BLADE LOADS	*STARAN
IWG	WING PANEL INDICATOR: 5 = RIGHT PANEL; 6 = LEFT PANEL	*ANDOIT
IX	R/C MOMENT OF INERTIA ABOUT BODY X-AXIS (ROLL)	*STRIMA
IXEXT	(4) MOMENT OF INERTIA OF EXTERNAL STORE ABOUT X-AXIS (ROLL)	*STRIMA
IXZ	R/C CROSS-PRODUCT OF INERTIA (IN BODY X-Z PLANE)	*STRIMA
IXZEXT	(4) CROSS-PRODUCT OF INERTIA OF EXTERNAL STORE (X-Z PLANE)	*STRIMA
IY	R/C MOMENT OF INERTIA ABOUT BODY Y-AXIS (PITCH)	*STRIMA
IYEXT	(4) MOMENT OF INERTIA OF EXTERNAL STORE ABOUT Y-AXIS (PITCH)	*STRIMA
IZ	R/C MOMENT OF INERTIA ABOUT BODY Z-AXIS (YAW)	*STRIMA
IZEXT	(4) MOMENT OF INERTIA OF EXTERNAL STORE ABOUT Z-AXIS (YAW)	*STRIMA
JGO	INDICATOR FOR ROTOR AERO CALC; SEE DEF. IN SUB RADIAL	*STARAN
JPASS	INDICATOR FOR TRIM COMP (1=BASELINE;2=PARTIAL DERIVATIVES)	*STARAN
KCIT	(20) VALUE OF J ON J-CARDS 1 THRU 20	*STRIMA
KDOF	(30) INDICATOR FOR DEGREES OF FREEDOM IN STAB (1=ON;0=OFF)	*STBD
KEOF10	FLAG TO INDICATE END OF FILE 10 (INPUT DATA) HAS BEEN REACHED	*TOPLOT
KFLAG	(2) INDICATOR USED IN WAGNER FUNCTION CALCULATIONS	*STARAN
KM	SEQUENCE NUMBER OF INPUT GROUP IN THE "MODEL" OPTION ARRAY	*INONLY
KM1	NUMBER OF ROWS IN PD EXCLUDING ERROR ROW	*STRIMA
KM2	NUMBER OF COLUMNS IN PD	*STRIMB
KO	INDICATOR FOR INPUT GROUP TO BE READ IN	*INONLY
KONFIG	CONFIGURATION INDICATOR: 1=SINGLE MR; 2=TANDEM; 3=SIDE-BY-SIDE	*STRIMA
KOUNT	NUMBER OF ROWS IN PD INCLUDING ERROR ROW	ITRIM
KOUNTS	COUNTER FOR PROP ROTOR COLL. GOV ITERATIONS IN STAB	STAB
KPASS	INDICATOR FOR PDM COMP. (0=COMPUTE PDM; 1=DO NOT COMPUTE PDM)	ITRIM
KPD	COUNTER IN SUBROUTINE "SUBA"; *** IN COMMON, BUT NEED NOT BE*	*STAMAN
KPERTS	SWITCH FOR F+M PRINTOUT DURING PERTURBATION IN STAB (0=PRINT)	*STRIAB
KPYL	PYLON DEGREE OF FREEDOM SWITCH IN STABILITY ANALYSIS	*STBD
KREAD	NUMBER OF J-CARDS READ IN (MAXIMUM OF 20)	*STRIMA
KREVXX	NO. ROTOR REV'S FOR TV ANAL (=3 FOR FTV BASE;=2 FOR FTV PDM)	*STARAN
KROT	ROTOR DEGREE OF FREEDOM SWITCH IN STABILITY ANALYSIS	*STBD
KTCTR	FLAG FOR TIME INCR IN MANU (0=FIRST;1=SECOND;2=FIRST;3=END)	*STAMAN
KTRIM	INDICATOR (0=START OF TRIM;1=QS TRIM;2=TVT OR FTV)	*STRIAB
KVAR	(22) POINTER VECTOR TO VARIABLE IN COMMON FOR PART.DERIV.COMP	*STRIAB
KVIND	(2) NUMBER OF BLADE STATIONS WHERE TIP-VORTEX AFFECTS (TIP=1)	*STARAN
KXD	(11,5) ARRAY TO SPEED UP MACH NO. IN CD INTERPOLATION	*TAB
KXL	(11,5) ARRAY TO SPEED UP MACH NO. IN CL INTERPOLATION	*TAB
KXM	(11,5) ARRAY TO SPEED UP MACH NO. IN CM INTERPOLATION	*TAB
KZD	(41,5) ARRAY TO SPEED UP BRACKETING ALFA IN CD INTERPOLATION	*TAB
KZL	(41,5) ARRAY TO SPEED UP BRACKETING ALFA IN CL INTERPOLATION	*TAB
KZM	(41,5) ARRAY TO SPEED UP BRACKETING ALFA IN CM INTERPOLATION	*TAB
L	FREQUENTLY INDICATES BLADE NUMBER	#MISC
LAMBDA	(2) INFLOW: VZS-VIR (NOT DIVIDED BY TIP SPEED)	*STARAD

TABLE 11. Continued.

LAPC	LOGIC SWITCH IN FUSELAGE AERO CALCULATIONS; NORMALLY = 0	*STARAN
LEXT	TOTAL ROLLING MOMENT ABOUT CG DUE TO EXTERNAL STORES	*MANAL
LEXTJ	TOTAL ROLLING MOMENT DUE TO JETTISON OF EXTERNAL STORES	*MANAL
LFUS	ROLLING MOMENT ABOUT CG DUE TO FUSELAGE AERODYN. (BODY AXIS)	*MANAL
LGUN	ROLLING MOMENT ABOUT CG DUE TO WEAPON (GUN) FORCE (BODY AXIS)	*MANAL
LINK	PORTION OF PROGRAM (2=TRIM; 3=STAB; 4=MANU)	*MANAL
LJTG	ROLLING MOMENT DUE TO JETS AND GUN (BODY AXIS)	*MANAL
LJTSN	(4) ROLLING MOMENT DUE TO JETTISON OF EACH EXTERNAL STORE	*MANAL
LLJET	ROLLING MOMENT ABOUT CG DUE TO LEFT JET (BODY AXIS)	*MANAL
LLWG	ROLLING MOMENT ABOUT CG DUE TO LEFT WING PANEL (BODY AXIS)	*MANAL
LMR	X-COMPONENT OF MOMENT DUE TO MAIN ROTOR FORCES	*MANAL
LNGTH1	LENGTH OF FIRST RAMP OR BASE OF HUMP FOR SIN**2 GUST.	*MANAL
LOGF	LOGIC SWITCH FOR FUSELAGE AERODYNAMICS; NORMALLY = 0	*STARAN
LOSTIP	(2) TIP LOSS FACTOR SWITCH (0=USE EQ; 1=USE INPUT)	*STARAN
LPASS	FREQ OF PDM COMPUTATION IN TRIM (EVERY LPASS-TH ITERATION)	*STRIAB
LPHORN	(2) PCPHORN(N) IN TERMS OF BLADE ITH STATION (TIP=1)	*STARAN
QM_R	ROLLING MOMENT FROM M/R DUE TO PMOM,RMOM,&TORQUE (BODY AXIS)	*MANAL
QTR	ROLLING MOMENT FROM T/R DUE TO PMOM,RMOM,&TORQUE (BODY AXIS)	*MANAL
RJET	ROLLING MOMENT ABOUT CG DUE TO RIGHT JET (BODY AXIS)	*MANAL
RWG	ROLLING MOMENT ABOUT CG DUE TO RIGHT WING PANEL (BODY AXIS)	*MANAL
LSTBZ	TOTAL ROLLING MOMENT ABOUT CG DUE TO STAB SURFACES (BDY AXIS)	*MANAL
LSTZ	(4) ROLLING MOMENTS ABOUT CG FROM STABILIZING SURFACES	*MANAL
LTR	X-COMPONENT OF MOMENT DUE TO TAIL ROTOR FORCES	*MANAL
LWING	COUNTER FOR # OF TIME WAGNER FUNCTIONS CALLED FOR EACH PANEL	*STARAN
LXTR	(4) ROLLING MOMENT ABOUT CG DUE TO EACH EXTERNAL STORE	*MANAL
M	FREQUENTLY INDICATES MODE SHAPE NUMBER	#INONLY
MASPYL	(2) INDICATOR FOR PYLON MODE SHAPES W/WO ROTOR MASS INCL'D	*PYLON
MASS	MASS OF ROTORCRAFT = W/32.1745	*STRIM
MAXMOD	SUMMATION OF NUMBERS OF M/R AND T/R BLADE MODE SHAPES	ERRCHK
MDFYMS	SWITCH TO ACTIVATE MODAL INVERSE ANALYSIS IN STAB	*STRIAB
MEXT	TOTAL PITCHING MOMENT ABOUT CG DUE TO EXTERNAL STORES	*MANAL
MEXTJ	TOTAL PITCHING MOMENT DUE TO JETTISON OF EXTERNAL STORES	*MANAL
MFUS	PITCHING MOMENT ABOUT CG DUE TO FUSELAGE AERODYN. (BODY AXIS)	*MANAL
MGUN	PITCHING MOMENT ABOUT CG DUE TO WEAPON (GUN) FORCE (BODY AXIS)	*MANAL
MJTG	PITCHING MOMENT DUE TO JETS AND GUN (BODY AXIS)	*MANAL
MJTSN	(4) PITCHING MOMENT DUE TO JETTISON OF EACH EXTERNAL STORE	*MANAL
MLJET	PITCHING MOMENT ABOUT CG DUE TO LEFT JET (BODY AXIS)	*MANAL
MLWG	PITCHING MOMENT ABOUT CG DUE TO LEFT WING PANEL (BODY AXIS)	*MANAL
MMR	Y-COMPONENT OF MOMENT DUE TO MAIN ROTOR FORCES	*MANAL
MQMR	PITCHING MOMENT FROM M/R DUE TO PMOM,RMOM,&TORQUE (BODY AXIS)	*MANAL
MQTR	PITCHING MOMENT FROM T/R DUE TO PMOM,RMOM,&TORQUE (BODY AXIS)	*MANAL
MRCP	COMPONENT OF VXSN & VYSN // TO BLADE REF. LINE (+INBOARD)	*ANDOIT
MRJET	PITCHING MOMENT ABOUT CG DUE TO RIGHT JET (BODY AXIS)	*MANAL
MRSP	COMPONENT OF VXSN & VYSN PERP. TO BLADE REF LINE (+FWD)	*ANDOIT
MRWG	PITCHING MOMENT ABOUT CG DUE TO RIGHT WING PANEL (BODY AXIS)	*MANAL
MS	(21, 3, 12) BLADE MODE SHAPES (STA,COMPONENT,ROTOR & MODE #)	*FLEX
MSAV	(3) PART OF HEADING INDICATOR FOR TRANSFER FUNCTION IN STAB	*STBFHQ
MSORD	BLADE MODE SHAPES COUNTER; =(N-1)*NMODE(1)+J	#MISC
MSTBZ	TOTAL PITCHING MOMENT ABOUT CG DUE TO STAB SURF (BODY AXIS)	*MANAL
MSTZ	(4) PITCHING MOMENTS ABOUT CG FROM STABILIZING SURFACES	*MANAL
MTR	Y-COMPONENT OF MOMENT DUE TO TAIL ROTOR FORCES	*MANAL
MXPASS	MAX VALUE FOR NPASS; NORMALLY = XIT(1)	*STRIAB
MXPMOD	MAX. NO. OF PYLON MODES	*PYLON
MXSTBD	MAX. NO. OF EQUIS OF MOTION ALLOWED IN STAB; = 18	*STBD
MXSTBP	MAX. NO. OF PERTURBATIONS IN STAB; = 30	*STBD
MXSTB2	(MXSTBD+1)*2; = 38; SIZE OF M-C-K MATRIX IN STAB	*STBD
MXTR	(4) PITCHING MOMENT ABOUT CG DUE TO EACH EXTERNAL STORE	*MANAL
N	FREQUENTLY INDICATES ROTOR NUMBER (I.E., = 1 OR 2)	#MISC
NB	(2) NUMBER OF BLADES (FOR FIXED POINT CALCULATIONS)	*MANAL
NBS	(2) NUMBER OF BLADE SEGMENTS	*MANAL
NBSG	NUMBER OF BLADE SEGMENTS; = NBS(N)	*MANAL
NCNTUR	SWITCH TO STORE CONTOUR PLOT DATA	*STRIAB
NDA	=NDF FOR DENOM OF TRANS. FUNCT (M=1); =NDF+1 FOR NUMERATOR	ALSTAB
NOECK	NOT REFERENCED	*TOPLOT
NDF	NUMBER OF DEGREES OF FREEDOM IN STABILITY ANALYSIS	*STBCOM
NDFT	ARRAY SIZE FOR MATRIX A INPUT TO ALLMAT FROM ALSTAB (=2*NDA)	ALSTAB
NDIAG	OUTPUT CONTROL FOR STAB DIAGNOSTICS	*STRIAB
NDIM	NO. OF VARIABLES INTEGRATED IN MANEUVER	*FCRY
NEXT	TOTAL YAWING MOMENT ABOUT CG DUE TO EXTERNAL STORES	*MANAL
NEXTJ	TOTAL YAWING MOMENT DUE TO JETTISON OF EXTERNAL STORES	*MANAL
NFUS	YAWING MOMENT ABOUT CG DUE TO FUSELAGE AERODYN. (BODY AXIS)	*MANAL
NGUN	YAWING MOMENT ABOUT CG DUE TO WEAPON (GUN) FORCE (BODY AXIS)	*MANAL
NJET	NUMBER OF CONTROLLABLE JETS	*STARAN
NJTG	YAWING MOMENT DUE TO JETS AND GUN (BODY AXIS)	*MANAL
NJTSN	(4) YAWING MOMENT DUE TO JETTISON OF EACH EXTERNAL STORE	*MANAL
NLJET	YAWING MOMENT ABOUT CG DUE TO LEFT JET	*MANAL
NLWG	YAWING MOMENT ABOUT CG DUE TO LEFT WING PANEL (BODY AXIS)	*MANAL
NMLST	(20) CARD IMAGE (20A4) USED TO CHECK FOR "CHANGE" CARDS	*INONLY
NMOD	STORAGE FOR NMODE(N) WITHIN ROTOR ANALYSIS LOOP (ALSO LOCAL)	*ANDOIT

TABLE 11. Continued.

NMODE	(2) NUMBER OF BLADE MODE SHAPES	*MANAL
NMR	Z-COMPONENT OF MOMENT DUE TO MAIN ROTOR FORCES	*MANAL
NOPSI	UNSUBSCRIPTED STORAGE FOR NPSI(N), = # OF ROTOR AZIMUTH ANGLES	*ANDOIT
NOTRIM	TV TRIM AFTER QS TRIM INDICATOR (0=DO TVT; 1= NO TVT)	*STRIAB
NPART	PRIMARY PROGRAM FLOW CONTROL (1=TRIM,2=MANU,7=T+S,10=SWP,ETC)	*TOPLOT
NPASS	ITERATION COUNTER	*STRIAB
NPMOD	NO. OF MODAL PYLON MODES	*PYLON
NPMODE	(2) NO. OF MODAL PYLON MODES	*PYLON
NPRINT	INDICATOR FOR PRINTING MANEUVER PAGE (EACH NPRINT-TH TIME PT)	*TOPLOT
NPSI	(2) NUMBER OF AZIMUTH LOCATIONS	*MANAL
NQMR	YAWING MOMENT FROM M/R DUE TO PMOM,RMOM,& TORQUE (BODY AXIS)	*MANAL
NQTR	YAWING MOMENT FROM T/R DUE TO PMOM,RMOM,& TORQUE (BODY AXIS)	*MANAL
NQUAS	(2) SWITCH FOR TYPE OF ROTOR ANALYSIS (0 = QS; 1 = TV)	*MANAL
NQUASS	(2) TEMPORARY STORAGE FOR NQUAS	*STRIAB
NRJET	YAWING MOMENT ABOUT CG DUE TO RIGHT JET	*MANAL
NRSTAB	SWITCH FOR PREVENTING ROTOR REBALANCE WHEN NSTABR=0	*STRIAB
NRT	NUMBER OF ROOTS TO STABILITY ANALYSIS	*STBCOM
NRTT	(4) ROOT INDICATOR IN STAB FOR PRINTOUT PURPOSE ONLY	*STBFRO
NRWG	YAWING MOMENT ABOUT CG DUE TO RIGHT WING PANEL (BODY AXIS)	*MANAL
NSCALE	SCALE FACTOR FOR PLOTS.	*TOPLOT
NSTABF	SWITCH TO COUPLE STAB MATRICES	*STRIAB
NSTABO	OUTPUT CONTROL FOR STAB MATRICES	*STRIAB
NSTABP	SWITCH FOR PYLON DEGREES OF FREEDOM IN STAB (0=OFF)	*STRIAB
NSTABR	SWITCH FOR ROTOR DEGREES OF FREEDOM IN STAB (0=OFF)	*STRIAB
NSTBZ	TOTAL YAWING MOMENT ABOUT CG DUE TO STAB SURFACES (BODY AXIS)	*MANAL
NSTZ	(4) YAWING MOMENTS ABOUT CG FROM STABILIZING SURFACES	*MANAL
NTIME	COUNTER SWITCH FOR PRINTING MANEUVER PAGE (0 = PRINT PAGE)	*TOPLOT
NTR	Z-COMPONENT OF MOMENT DUE TO TAIL ROTOR FORCES	*MANAL
NTREVA	NO. OF REV IN TVT TO BE ANALYZED	*STRIMA
NTREVP	NO. OF REV IN TVT TO BE PLOTTED	*STRIMA
NTTRIM	NUMBER OF TRIM POINTS FOR CONTOUR PLOTS	*TOPLOT
NUMTF	(4,8) SELECTOR FOR TRANSFER FUNCTIONS IN STAR	*STBD
NUMSTB	TRANSFER FUNCTION SELECTOR IN STAB, FROM -1 TO +4	*STRIAB
NVARA	SECONDARY PROGRAM FLOW CONTROL (FUNCTION OF VALUE OF "NPART")	*TOPLOT
NVARB	SECONDARY PROGRAM FLOW CONTROL (FUNCTION OF VALUE OF "NPART")	*TOPLOT
NVARC	SECONDARY PROGRAM FLOW CONTROL (FUNCTION OF VALUE OF "NPART")	*TOPLOT
NVARD	SECONDARY PROGRAM FLOW CONTROL (FUNCTION OF VALUE OF "NPART")	*TOPLOT
NVARS	INDICATOR FOR STABILITY ANALYSIS (0=DON'T DO STAB;1=DO STAB)	*TOPLOT
NWAG	INDICATOR- 1=USE WAGNER-BUETTIKER FUNCTION 0=DON'T	*MANAL
NXD	NUMBER OF MACH NUMBER ENTRIES IN THE ROTOR CD TABLE	*TAB
NXL	NUMBER OF MACH NUMBER ENTRIES IN THE ROTOR CL TABLE	*TAB
NXM	NUMBER OF MACH NUMBER ENTRIES IN THE ROTOR CM TABLE	*TAB
NXTR	(4) YAWING MOMENT ABOUT CG DUE TO EACH EXTERNAL STORE	*MANAL
NZD	NUMBER OF ANGLE OF ATTACK ENTRIES IN THE ROTOR CD TABLE	*TAB
NZL	NUMBER OF ANGLE OF ATTACK ENTRIES IN THE ROTOR CL TABLE	*TAB
NZM	NUMBER OF ANGLE OF ATTACK ENTRIES IN THE ROTOR CM TABLE	*TAB
OMEGA	(2) REDUCED ROTOR FREQUENCY FOR UNSAN OPTION	*STARAN
OMEGM	MAIN ROTOR ROTATIONAL SPEED (RAD/SEC)	*STAMAN
OMEGMD	RATE OF CHANGE OF MAIN ROTOR SPEED (TARGET) RAD/SEC**2.	*STAMAN
ONEG	32.1745 FT/SEC**2	*INSTAR
OR	(2) TIP SPEED (FT/SEC)	*MANAL
ORN	TIP SPEED - YAWRATE* RADIUS	*ANDOIT
PAN	(2) PITCH CHANGE AXIS LOCATION (0 = L.E.; UNITS = CHORDS)	*STARAN
PARM	(1120) PART OF THE 2376 VARIABLES SAVED DURING MANEUVERS	*STAMAN
PCHCN1	(2) INTERMEDIATE VARIABLE FOR PITCH-CONE COUPLING	*STARAN
PCHCN2	(2) INTERMEDIATE VARIABLE FOR PITCH-CONE COUPLING	*STARAN
PCHCON	(2) INTERMEDIATE VARIABLE FOR PITCH-CONE COUPLING	*STARAN
PCHLAG	(2) PITCH-LAG COUPLING RATIO (RAD/DEG)	*STARAN
PCHORN	(2) DISTANCE FROM HUB TO PITCH-HORN ATTACH POINT, FEET	*STARAN
PD	(18, 19) PARTIAL DERIVATIVE MATRIX FOR TRIM AND CONTROL POWER	*STRIMA
PDPHI	(10, 11) PARTIAL DERIVATIVE MATRIX USED IN "SOLVE"	*STRIMA
PDS	(19, 5) CONTROL DERIVATIVES FOR STABILITY ANALYSIS	*STBD
PED	NOT REFERENCED	*STRIMA
PEDAL	PEDAL POSITION	*MANAL
PEDALD	RATE OF PEDAL.	*STAMAN
PHASE	(38, 18, 3) PHASE ANGLE OF EIGENVECTORS (RTS,DOF,NORMILZ)	*STBCOM
PHIUND	(2) UNDERLING OF FEATHERING AXIS BELOW FLAPPING AXIS	*STAMAN
PHIWKP	(2) WAKE PLAN PHASE ANGLE	*MANAL
PI	3.1415926536	*MANAL
PILGH1	INTERMEDIATE GUST VARIABLE = PI / LNGTH1.	*MANAL
PILGH2	INTERMEDIATE GUST VARIABLE = PI / LNGTH2.	*MANAL
PIU30	30/PI = 9.54929658	*STAMAN
PMOM	(2) F/A MOMENT TRANSMITTED FROM ROTOR TO SHAFT	*ANDOIT
PMOMN	SUMMATION VARIABLE FOR F/A ROTOR MOMENT; SEE PMOM(N)	*ANDOIT
PMREXT	(4,2) DOWNWASH FACTOR FOR EACH STORE FROM EACH ROTOR	*STRIMA
PRP	(64) OUTPUT ARRAY FOR OPTIONAL TRIM PAGE	RPTG
PRSTBZ	(2,5) COEFTS FOR ROTOR DOWNWASH ON AERODYNAMIC SURF (RTR,SURF)	*STARAN
PRWING	(2,2) COEFTS FOR ROTOR DOWNWASH ON WING (ROTOR,PANEL)	*STARAN
PRWSTB	DYN PRESSURE REDUCTION AT STABILIZERS DUE TO WING	*STRIMA

TABLE 11. Continued.

PSDD	(2) RATE OF CHANGE OF PSID	*MANAL
PSDDMW	(2) NOT REFERENCED	*STARAN
PSDSQZ	ROTOR ANGULAR SPEED SQUARE * SINE OF PRECONE.	*ANDOIT
PSD30P	M/R RPM (=M/R GEAR RATIO TIMES ENGINE RPM)	*STRIAB
PSD550	PSID(1)*R550 = OMEGM/550.	*STRIMA
PSI	BLADE AZIMUTH ANGLE FOR PRINTOUT IN "AZMOUT": **USED BFR DEF*	*ANDOIT
PSID	(2) ROTOR ANGULAR SPEED -PSI DOT=OMEGA	*MANAL
PSIDMW	(2) NOT REFERENCED	*MANAL
PSIDSQ	PSIDS ** 2.	*MANAL
PSIMW	(2) NOT REFERENCED	*MANAL
PSIREF	(2) AZIMUTH ANGLE OF BLADE 1 IN ROTOR CALCULATIONS	*MANAL
PSISTP	PSIREF(1) MUST EQUAL PSISTP WHEN ROTORS HAVE BEEN STOPPED.	*STAMAN
PSIY	SIDESL IP ANGLE IN SHAFT X-Y PLANE BTW X-AXIS AND WIND VECTOR	AZMUTH
PWGSTB	(4) COEF. FOR DOWNWASH AT STABILIZER AS A FUNCT. OF CL-WING	*STARAN
PWGWK1	COEF. FOR WING WAKE DEFLECTION AS A FUNCT. OF CL-WING	*STAMAN
PYACC	(6.2) PYLON ACC. IN SHAFT-AXIS (3-LINEAR,3-ANGULAR,ROTOR)	*PYLON
PYDISP	(6.2) PYLON DISP. IN SHAFT-AXIS (3-LINEAR,3-ANGULAR,ROTOR)	*PYLON
PYHUBG	(3.2) HUB LINEAR ACC. (X-,Y-,Z-,ROTOR) IN BODY-AXIS	*PYLON
PYLCR0	(4.2) PYLON COUPLING RATIO: COLLECTIVE TO PYLON MOTION	*PYLON
PYLCR1	(4.2) PYLON COUPLING RATIO: F/A CYCLIC TO PYLON MOTION	*PYLON
PYLCR2	(4.2) PYLON COUPLING RATIO: LAT CYCLIC TO PYLON MOTION	*PYLON
PYLDMP	(4.2) MODAL PYLON DAMPING RATIO	*PYLON
PYLDRG	(2) ROTOR NACELLE ("PYLON") FLAT PLATE DRAG AREA	*STARAN
PYLRGI	(4.2) RECIPROCAL OF PYLON GENERALIZED INERTIA	*PYLON
PYLFNQ	(4.2) MODAL PYLON NATURAL FREQUENCY	*PYLON
PYLGRP	(20) PYLON OUTPUT ARRAY DURING MANEUVERS	*PYLON
PYLMOM	(4.2) MOMENTS ABOUT PYLON FOCAL POINT	*STARAN
PYLMMS	(6.4.2) PYLON MODE SHAPES IN BODY-AXIS	*PYLON
PYVEL	(6.2) PYLON VELOCITY IN SHAFT-AXIS (3-LINEAR,3-ANGULAR,ROTOR)	*PYLON
PY2DMP	(4.2) 2*PYLDMP*PYLFR0	*PYLON
P01DTR	0.000174532925 (CONVERTS DEG/100% TO RAD/X)	*STAMAN
Q	0.5*RHO	
QBRAKE	ROTOR BRAKE TORQUE APPLIED.	*MANAL
QBSGA	(20,2) Q TIMES BLADE SEGMENTAL AREAS (TIP=1)	*STAMAN
QL	TOTAL ROLL MOMENT (X-COMPONENT - BODY REFERENCE)	*MANAL
QLS	QL FROM PREVIOUS TIME POINT	*MANAL
QM	TOTAL PITCHING MOMENT (Y-COMPONENT - BODY REFERENCE)	*STAMAN
QMAX	MAX. AVAILABLE M/R TORQUE = 500/550 OF INPUT MAXIMUM	*STAMAN
QMR	TORQUE REQUIRED TO MAINTAIN CONSTANT PRM ON MAIN ROTOR	*STAMAN
QMRS	ENGINE TORQUE SUPPLIED - TOTAL	*STAMAN
QMRS A	MAXIMUM ENGINE TORQUE SUPPLIED BY THROTTLE	*STAMAN
QMS	QM FROM PREVIOUS TIME POINT	*STAMAN
QN	TOTAL YAW MOMENT (Z-COMPONENT - BODY REFERENCE)	*MANAL
CNS	QN FROM PREVIOUS TIME POINT	*STAMAN
QQQ	COEFFICIENT FOR CALCULATING ENGINE TORQUE AVAILABLE	*STAMAN
QREACT	M/R TORQUE PLUS INERTIAL TORQUE (MOMENT) DUE TO PSI-DOT	ANAL
QREATT	T/R TORQUE PLUS INERTIAL TORQUE (MOMENT) DUE TO PSI-DOT	ANAL
QSTBZ	(5) 0.5*RHO*(SURFACE AREA) (5=WING)	*STRIAB
QSV1	TURQUE AT TRIM POINT	*STRIAB
QTARGT	TARGET PITCH RATE FOR G-TRACKER OPTION	VARI
QTRIM	LOGICAL VARIABLE (.TRUE.=QS TRIM;.FALSE.=TIME VARIANT TRIM)	*STRIAB
QUADI	TIME VARIABLE IN MANEUVER	*STAMAN
QXBPAK	MAXIMUM ROTOR BRAKE TORQUE (FT-LB)	*STAMAN
R	(2) ROTOR RADIUS (FEET)	*MANAL
RAERO	(35.5) ROTOR AERO INPUTS (YRR) AFTER INITIALIZATION BY YRINIT	*STARAD
RANGF	RANGE OF M/R COLLECTIVE PITCH AS A FUNCTION OF F/A MAST TILT	*STRIMA
RANGES	(4) RANGE OF PILOT CONTROL MOTION (INCHES)	*STRIMA
RATE1	RAMP GUST = GMAXV1/LNGTH1	*MANAL
RATE2	RAMP GUST = GMAXV2/LNGTH2	*MANAL
RC	RATIO OF WEIGHT OF MAIN ROTOR TO AIRCRAFT GROSS WEIGHT	*STAMAN
RCRF	RECIPROCAL OF CORE-SIZE FACTOR FOR VORTEX GUSTS (J=37)	*STRIAMA
RCWING	RECIPROCAL OF WING M.A.C. =1./CHDSTB(5)	*STARAN
RD	(19,19) DAMPING MATRIX IN STAB	*STBCOM
RDELT1	1. / TDELT.	*MANAL
RDELT2	1. / HDELT.	*MANAL
RENTR	RADIUS FROM CENTER OF VORTEX SYSTEM TO ENTRANCE TO SYSTEM	*STRIMA
RENTSO	RENTR**2	*STRIMA
RETARD	(2) TANGENT OF (DELTA3 ANGLE MINUS PHASING ANGLE)	*STARAN
RGI	(11,2) RECIPROCAL OF GENERALIZED BLADE INERTIA	*STARAN
RHO	AIR DENSITY AT ALTITUDE = 0.002378*DNSRTO	*INSTAR
RFILT	(2) RESULTANT FILTERED FORCE FOR EACH ROTOR, LB	*MANAL
RIGID	(2) HUB TYPE INDICATOR (0=TEET. OR GIMB.; 1=RIGID OR ARTIC.)	*MANAL
RIN	RADIUS FROM CENTER OF VORTEX SYSTEM TO POINT IN SYSTEM	*STRIMA
RINSQ	RIN**2	*STRIMA
RITORS	1. / ITORS.	*STAMAN
RIY	1. / IY	*STAMAN
RLNK	(29) SUPPLEMENTAL ROTOR CONTROL LINKAGES	*STAMAN
RM	(19,19) MASS MATRIX IN STAB	*STBCOM
RMASS	1. / MASS	*STRIMA

TABLE 11. Continued.

RMMOM	(2) LAT MOMENT TRANSMITTED FROM ROTOR TO SHAFT	*ANDOIT
RMMOMN	SUMMATION VARIABLE FOR LAT ROTOR MOMENT; SEE RMMOM(N)	*ANDOIT
ROTJ	DOUBLE PRECISION ACCUMULATOR FOR ROLL MOM. FROM ROTOR TO MAST	*ANDOIT
RPD	SIGN CHANGER: = +1. FOR MAIN ROTOR; = -1. FOR TAIL ROTOR	*ANDOIT
RPIST	(14, 6, 2) ROTOR PARTIAL DERIVATIVE MATRIX IN STAB	*STBD
RR	FACTOR FOR WING STALL IN WING WAKE MODEL	*STARAN
RPK	RRK FOR STATION K AND ROTOR N	*ANDOIT
RS	(20, 2) LOCATION OF BLADE STATIONS WRT HUB, TIP TO ROOT (FEET)	*FLEX
RT RCON	(19, 19) STIFFNESS MATRIX IN STAB	*STBCOM
RT RGRP	SWITCH FOR READING SUPP. ROTOR CONT. GROUP (0=DON'T READ)	*STARAN
RT RP	(24) ROTOR GROUP OF OUTPUT DATA FOR TRIM & MANU PAGES	*STARAN
RUSER	(2): $1/(2*\pi*\rho*\alpha^2)$	*STARAN
RW	(2) IVUSER CONVERTED TO INCHES FROM ROTOR HUB	*STARAN
R12	1. / w	*MANAL
R144	1./12.	*INSTAR
R550	1./144.	*INSTAR
	1/550 = .00181 81 81 81 8	*STARAN
SAMP	(38, 3) DAMPING TERM IN TRANSFER FUNCTIONS IN STAB	*STBFRO
SAPBG	SIN (WEAPON ELEVATION ANGLE)	*STARAN
SAPFM	SIN (EULAR ANGLE PITCH, GROUND TO MAST)	*STARAN
SBETA	SINE OF BETAB ("FLAPPING ANGLE") PLUS PRECUNE	*ANDOIT
SBETAZ	(2) SIN (BETAZ).	*MANAL
SBRKPT	(4,5) BREAKPOINTS FOR AERO SURFACE CONTROL LINKAGES	*STARAN
SBZ	SINE OF PRECONE ANGLE: = SBETAZ(N)=SIN(BETAZ(N))	*ANDOIT
SCASPI	---	*STARAN
SCASRC	COEFFICIENTS FOR FEED-FORWARD LOOP OF PITCH SCAS	*STARAN
SCASRF	(4) COEFFICIENTS FOR FEED-FORWARD LOOP OF ROLL SCAS	*STARAN
SCASYC	(6) COEFFICIENTS FOR FEED-FORWARD LOOP OF ROLL SCAS	*STARAN
SCASYF	(4) COEFFICIENTS FOR FEED-FORWARD LOOP OF YAW SCAS	*STARAN
SCFCNDA	(6) COEFFICIENTS FOR FEED-FORWARD LOOP OF YAW SCAS	*STARAN
SFT GRP	(68) PART OF THE 2376 VARIABLES SAVED DURING MANEUVERS	#MISC
SHD GRP	(26) ROTOR SHAFT GROUP OF OUTPUT DATA FOR MANU PAGE	*STARAN
SHRD	(28) MISC GROUP OF OUTPUT DATA FOR TRIM & MANU PAGES	*STARAN
SHRTP	INTERMEDIATE VARIABLE (RELATED TO BLADE DRAG)	*ANDOIT
SHRL	(7,2) INPLANE SHEAR FORCE OF EACH BLADE	*MANAL
SHRR	INTERMEDIATE VARIABLE (RELATED TO BLADE LIFT)	*ANDOIT
SHRV	INTERMEDIATE VARIABLE (RELATED TO BLADE RADIAL FORCE)	*ANDOIT
SINDIH	(7,2) VERTICAL SHEAR FORCE OF EACH BLADE	*MANAL
SINDWS	(5) SINE OF AERODYNAMIC SURFACE DIHEDRAL ANGLE	*STARAN
SINGAM	(2) SINE OF TIP SWEEP ANGLE	*STARAN
SINSWS	SIN(PSI+PSIY): TOTAL BLADE AZIMUTH ANGLE W.R.T. WIND VECTOR	A2MINT
SLNK	(5) SINE OF SIDEWASH ANGLE AT AERO SURFACE DUE TO FUSELAGE	*STARAN
SLNKMT	(8,5) AERO SURFACE CONTROL LINKAGES (5=WING)	*STARAN
SNPSI	(5) COEF FOR RIGGING ZLL INCIDENCE OF AERO SURF TO MAST TILT	*STARAN
SPD	(16,2) SIN(N*(PSI+PSIY)) OF BLADE L FOR WAKE TABLE	*FORWK
SPNSTB	(30,18) STABILITY PARTIAL DERIVATIVE MATRIX	*STBD
SPSI	(5) SPAN OF AERODYNAMIC SURFACES	*STARAN
SPSILB	SIN(PSI): INNER LOOP STORAGE FOR SPSIL(L,N)	*ANDOIT
SPSIL	(2) SIN(TWOP1 / B)	*STARAN
SPSIY	(12,2) SIN(PSI) FOR EACH BLADE L	*MANAL
SPSQ	SIN(PSIY)	*STARAN
SINYY**2	SINYY**2	AZMINT
SRLN20	COEF FOR -INKING PEDAL TO COLL PITCH AS A FCN OF F/A MAST TLT	*STARAN
SRTETO	SQUARE ROOT OF EFFECTIVE DYNAMIC PRESSURE AT STAB DUE TO WING	STBFNM
SGMM	SUPERSONIC MACH NUMBER	*ANDOIT
STACG	STATION LINE OF CG (FEET); ALSO SEE "CGSTA"	*INSTAR
STACGX	(4) STATION LINE OF CG OF EXTERNAL STORE (INCHES)	*STRIMA
STALLW	AVERAGE WING STALL ANGLE	*STARAN
START2	DISTANCE FOR 2ND RAMP OR HUMP FROM END OF 1ST GUST.	*MANAL
STGAIN	(3) STATIC GAIN IN TRANSFER FUNCTIONS OF STABILITY ANALYSIS	*STBFRO
STICKS	(4) COLSTK, CYSTK1, CYSTK2, AND PEDAL, RESPECTIVELY	JFBGIN
STKS	(4) VALUES OF STICKS FROM PREVIOUS ITERATION OR TIME POINT	*STARAN
STOP2	FND DISTANCE FOR 2ND RAMP OR HUMP = START2 + LNGTH2	*MANAL
SUMMS	(20,6,2) INTERMEDIATE VALUE IN VIRTUAL WORK EQUATION	*STARAD
SUMMSH	(20,6,2) INTERMEDIATE VALUE IN CORIOLIS CALCULATION.	*STARAD
SVFAC	(11) COEFFICIENT OF ONE GRAVITY TERM IN VWRK EQUATION	*ANDOIT
SWC	(2) SIDEWASH COEF (ALWAYS ZERO FOR ROTOR 1; USED ONLY FOR TR)	*STARAN
SWGZLL	SINE OF WING ZERO LIFT LINE INCIDENCE ANGLE	*STARAN
SWINGH	WING SEMI-SPAN	*STARAN
SWSCOL	(4,2) CONTRIBUTIONS TO COLLECTIVE PITCH (CONTROL, ROTOR)	*STRIMA
SWSFA	(4,2) CONTRIBUTIONS TO F/A CYCLIC PITCH (CONTROL, ROTOR)	*STRIMA
SWSLAT	(4,2) CONTRIBUTIONS TO LAT CYCLIC PITCH (CONTROL, ROTOR)	*STRIMA
SZET	SINE OF ROTOR 1 F/A MAST TILT ANGLE	*MANAL
T	MANEUVER TIME	*MANAL
TAIR	(14) TIMES OR AZIMUTH ANGLES FOR BLADE ELEMENT AERO DATA	*MANAL
TAMB	AMBIENT TEMPERATURE	*STARAN
TANT1	TAN(FGA + RETARD*LAT) = "FGA" CONTRIBUTION TO BLADE PITCH	*ANDOIT
TANT2	TAN(LAT + RETARD*FGA) = "LAT" CONTRIBUTION TO BLADE PITCH	*ANDOIT

TABLE 11. Continued.

TARSPD	TRUE AIRSPEED (FT/SEC)	*STAMAN
TAXL	THRUST OF LEFT JET	*MANAL
TAXR	THRUST OF RIGHT JET	*MANAL
TCDECR	TIME CONSTANT FOR ENGINE POWER DECREASE	*STAMAN
TCD3	BLADE PITCH DUE TO SWASHPLATE ANGLES AND PITCH-FLAP COUPLING	*ANDOIT
TCINCR	TIME CONSTANT FOR ENGINE POWER INCREASE	*STAMAN
TCLK	CONTROL LOCK FOR T/R COLLECTIVE PITCH (0=UNLOCKED)	*STRIMA
TDELT	TIME INCREMENT FOR MANEUVER SECTION	*MANAL
TENRAC	"TENNIS RACKET" MOMENT EFFECT	MODAL
TEST	IF .FALSE., INPT GRP FRM DATA LIB; IF .TRUE., FROM CARDS	*INONLY
TESTM	IF .TRUE., MODEL OPTION FOR DATA READIN IS IN EFFECT	*INONLY
TFACTR	THRUST FACTOR USED BY RIVD TABLES	*FORWK
TFILT	(2) FILTERED THRUST OF EACH ROTOR, LB	*MANAL
THIRDA	(218) PART OF THE 2376 VARIABLES SAVED DURING MANEUVERS	#MISC
THRST	SUMMATION VARIABLE USED TO COMPUTE THRUST	*ANDOIT
THRSTS	(2) ROTOR THRUST.	*STARAN
THRUST	(2) ROTOR FORCE // TO SHAFT Z-AXIS (+UP)	*MANAL
TIME	T - 0.05*TDELT USED IN COMPARISONS INSTEAD OF T	*STRIMA
TIPLFT	(2) INTERMEDIATE VALUE FOR BLADE TIP SEGMENT LIFT	*STARAN
TIPLOS	(2) TIP LOSS FACTOR; INPUT OR INTERNALLY CALCULATED FROM EQ	*STARAN
TITLE	(8) TITLE OF CL, CD, CM DATA TABLES	*TAB
TLBOOM	(4) TAILBOOM BENDING COEFFICIENT (RAD/LB)	*STARAN
TMATBM	(3, 3, 2) TRANSFORMATION MATRIX: BODY TO MAST (SHAFT) AXIS	*MANAL
TMATFB	(3, 3) TRANSFORMATION MATRIX: FIXED TO BODY	*ANDOIT
TMATFM	(3, 3) TRANSFORMATION MATRIX: JET TO BODY AXIS	*STARAN
TMATJB	STOP TIME FOR USING CORRESPONDING TIME INCREMENT IN MANEUVER	*MANAL
TMAX	PREVIOUS VALUE OF MAIN ROTOR THRUST	*STRIB
THRS	SAVED VALUE OF THRUST(1).	*STBD
TMRSAV	SUMMATION VARIABLE USED TO COMPUTE TORQUE	*ANDOIT
TORQ	(2) ROTOR TORQUE (FT-LB)	*MANAL
TPSIDD	MOMENT FORCING MAST WIND-UP.	*ANDOIT
TRACKR	(5) SWITCH FOR AUTOPILOT TRACKERS (P,Q,R,G,R/C)	*MANAL
TRALT	TAIL ROTOR ALTITUDE	*STAMAN
TRIND	T/R INDICATOR: =0 FOR LAT MAST TILT <45 DEG; =1 IF > 45 DEG	*MANAL
TRIND1	IF T/R LAT TILT <45 AND ROTOR HUBS <5 FT APART = 1; ELSE =0	*INSTAR
TRIND2	TRIND	*STAMAN
TRMTYP	TYPE OF TRIM (0=QS OR QS-TV; 1=FTV)	*STRIB
TSTAB	(14) TIMES OR AZMUTH ANGLES FOR STAB IN MANEUVER	*STRIMA
TSVJN	(11) INTERMEDIATE TERM IN ROTOR GYROSCOPICS	*ANDOIT
TTRS	PREVIOUS VALUE OF TAIL ROTOR THRUST	*STRIB
TTRSAV	SAVED VALUE OF THRUST(2).	*STBD
TWIST	(20,2) DISTRIBUTION OF BUILT-IN BLADE TWIST, TIP TO ROOT; RAD	*MANAL
TWOP1	2*PI = 6.283185307	*MANAL
TZERO	START TIME FOR MANEUVER	*STRIB
TZM	M/R COLLECTIVE DUE TO CONTROLS (=TZMS OR SWSCOL(I,1),I=1,4)	*STRIMA
TZMS	LOCKED VALUE FOR M/R COLLECTIVE PITCH	*STRIMA
TZPDT	TOTAL BLADE PITCH AT ROOT (TZR-TCD3+THFUS+RLAT*PCHLAG)	*ANDOIT
TZR	(2) COLLECTIVE PITCH (=TZM AND TZT, RESPECTIVELY)	*MANAL
TZT	T/R COLLECTIVE DUE TO CONTROLS (=TZTS OR SWSCOL(I,2),I=1,4)	*STRIMA
TZYS	LOCKED VALUE FOR T/R COLLECTIVE PITCH	*STRIMA
TZTW	TZPDT PLUS BUILT-IN AND ELASTIC TWIST AT BLADE SEGMENT	*STARAN
T1	(2) F/A CYCLIC PITCH (=T1M AND T1T, RESPECTIVELY)	*MANAL
T1M	M/R F/A CYCLIC DUE TO CONTROLS (=T1MS OR SWSFA(I,1),I=1,4)	*STRIMA
T1MS	LOCKED VALUE FOR M/R F/A CYCLIC PITCH	*STRIMA
T1T	T/R F/A CYCLIC DUE TO CONTROLS (=T1TS OR SWSFA(I,2),I=1,4)	*STRIMA
T1TS	LOCKED VALUE FOR T/R F/A CYCLIC PITCH (=T1MS*TKIND)	*STRIMA
T2	(2) LAT CYCLIC PITCH (=T2M AND T2T, RESPECTIVELY)	*MANAL
T2M	M/R LAT CYCLIC DUE TO CONTROLS (=T2MS OR SWSLAT(I,1),I=1,4)	*STRIMA
T2MS	LOCKED VALUE FOR M/R LAT CYCLIC PITCH	*STRIMA
T2T	T/R LAT CYCLIC DUE TO CONTROLS (=T2TS OR SWSLAT(I,2),I=1,4)	*STRIMA
T2TS	LOCKED VALUE FOR T/R LAT CYCLIC PITCH (= -T2MS*TRIND)	*STRIMA
U	VELOCITY IN BLADE X-Z PLANE	*STARAN
UHS	SQUARE OF VELOCITY AT CG IN THE SHAFT REFERENCE X-Y PLANE	*STARAN
UP	PERPENDICULAR (Z) COMPONENT OF VELOCITY AT BLADE SEGMENT	*STARAN
UPGUST	COMPONENT OF GUST VELOCITY IN UP (BLADE REFERENCE)	*STARAD
UQBSGA	UQBSGA	RADIAL
URGUST	COMPONENT OF GUST VELOCITY IN UR (BLADE REFERENCE)	*STARAD
UT	TANGENTIAL (X) COMPONENT OF VELOCITY AT BLADE SEGMENT	*STARAN
UTGUST	COMPONENT OF GUST VELOCITY IN UT (BLADE REFERENCE)	*STARAD
V	AIRSPEED	*MANAL
VAR	ARRAY OF INDEPENDENT VARIABLES USED IN TRIM+STAB PD MATRICES	#MISC
VARSV	(4) STORAGE FOR BASELINE CONTROL POSITION FOR STAB	*STBD
VCTMAX	MAGNITUDE OF LARGEST EIGENVECTOR FOR A ROOT IN STAB	ALSTAB
VECT	(38) LOCAL STORAGE FOR MAGNITUDE OF EIGENVECTORS	ALSTAB
VECTMX	TEMPORARY STORAGE FOR LARGEST EIGENVECTOR	ALSTAB
VELIND	LOCAL INDUCED VELOCITY ON ROTOR (FT/SEC)	*FORWK
VELIKTS	FORWARD VELOCITY (GROUND REF), IN KT	*STRIMA
VGSTW	Z-COMPONENT OF GUST VELOCITY AT WING (BODY AXIS)	*STRIMA

TABLE 11. Continued.

VGUST	Z-COMPONENT OF GUST VELOCITY AT CG (BODY AXIS)	*STAMAN
VGUSTR	Z-COMPONENT OF GUST VELOCITY AT HUB IN SHAFT REFERENCE	*STARAD
VGUSTS	(4) X-COMPONENT OF GUST AT STAB. SURFACES (BODY AXIS)	*MANAL
VGUSTX	(4) X-COMPONENT OF GUST AT EXTERNAL STORES (BODY AXIS)	*MANAL
VH	GROUND SPEED (FT/SEC)	*STRIMA
VHS	(2) SQRT(UHS); VELOCITY AT CG IN SHAFT X-Y PLANE	*ANDOIT
VIER	NOT REFERENCED	*STARAN
VIMRS	SAVED VALUE OF VIR(1)	*STBD
VIR	(2) ROTOR INDUCED VELOCITY	*MANAL
VIRSTB	(2) DOWNWASH VELOCITY AT AERO SURFACE DUE TO ROTOR	*FOSWK
VIR1	INDUCED VELOCITY AT AERO SURFACE DUE TO MAIN (#1) ROTOR	STBFNM
VIR2	INDUCED VELOCITY AT AERO SURFACE DUE TO TAIL (#2) ROTOR	STBFNM
VITRS	SAVED VALUE OF VIR(2)	*STBD
VIW	NOT REFERENCED	*STARAN
VIZ	.5*VROT**2	*ANDOIT
VI4	VI2**2	*ANDOIT
VMAST	(6,2) SHAFT VELOCITY IN NON-ROTATING SHAFT-AXIS	*MANAL
VMAXST	(2,4) VELOCITY AT WHICH STAB SURFACE IS TOTAL WITHIN DOWNWASH	*STARAN
VINTER	(2,4) VELOCITY AT WHICH STAB SURFACE ENTERS DOWNWASH (FT/SEC)	*STARAN
VROOT	(6,7,2) BLADE ROOT VELOCITY IN ROTATING BLADE-AXIS	*STRIMA
VROT	(2) VELOCITY OF ROTOR HUB	*STARAN
VSHR	(2) VERTICAL SHEAR FORCE AT HUB	*MANAL
VSN	DOUBLE PRECISION ACCUMULATOR FOR VERTICAL SHEAR	*ANDOIT
VSND	RECIPROCAL OF SPEED OF SOUND	*STARAD
VWORK	(11) VIRTUAL WORK, INDEPENDENT OF AZIMUTH	*ANDOIT
VWRK	(12,11) VIRTUAL WORK ON EACH BLADE FOR EACH MODE SHAPE	*ANDOIT
VXB	X-VELOCITY AT CG IN BODY AXIS	*MANAL
VXBD	X-ACCELERATION OF CG (BODY AXIS) = VXB-DOT	*MANAL
VXFUS	X-VELOCITY AT FUS DATA REF POINT (INCLUDING GUSTS)	*STAMAN
VXMVNR	(2,4) SLOPE OF ROTOR DOWNWASH CURVE FOR STAB SURF. 1/(FT/SEC)	*STARAN
VXOR	FACTOR IN LOCAL INDUCED VELOCITY CALCULATION	*ANDOIT
VXR	FORWARD VELOCITY OF HUB (BODY AXIS)	*ANDOIT
VXRD	X-ACCELERATION AT ROTOR HUB (BODY AXIS) = VXR-DOT	*ANDOIT
VXS	(2) X-VELOCITY AT HUB IN SHAFT REFERENCE	*MANAL
VXSD	X-ACCELERATION AT ROTOR HUB (SHAFT AXIS) = VXS-DOT	*ANDOIT
VXSN	VXS PLUS PYLON VELOCITY	AZMUTH
VYB	Y-VELOCITY AT CG IN BODY AXIS	*MANAL
VYBD	Y-ACCELERATION OF CG (BODY AXIS) = VYB-DOT	*MANAL
VYFUS	Y-VELOCITY AT FUS DATA REF POINT (INCLUDING GUSTS)	*STAMAN
VYR	LATERAL VELOCITY OF HUB (BODY AXIS)	*ANDOIT
VYRD	Y-ACCELERATION AT ROTOR HUB (BODY AXIS) = VYR-DOT	*ANDOIT
VYS	(2) Y-VELOCITY AT HUB IN SHAFT REFERENCE	*MANAL
VYSD	Y-ACCELERATION AT ROTOR HUB (SHAFT AXIS) = VYS-DOT	*ANDOIT
VYSN	VYS PLUS PYLON VELOCITY	AZMUTH
VZB	Z-VELOCITY AT CG IN BODY AXIS	*MANAL
VZBD	Z-ACCELERATION OF CG (BODY AXIS) = VZB-DOT	*MANAL
VZETAR	(2) RATE OF M/R F/A MAST TILT (LAT & T/R RATES = 0)	*MANAL
VZFUS	Z-VELOCITY AT FUS DATA REF POINT (INCLUDING GUSTS)	*STAMAN
VZR	VERTICAL VELOCITY OF HUB (BODY AXIS)	*ANDOIT
VZRD	Z-ACCELERATION AT ROTOR HUB (BODY AXIS) = VZR-DOT	*ANDOIT
VZS	(2) Z-VELOCITY AT HUB IN SHAFT REFERENCE	*MANAL
VZSD	Z-ACCELERATION AT ROTOR HUB (SHAFT AXIS) = VZS-DOT	SWSRAT
W	GROSS WEIGHT	*MANAL
WEXT	(4) WEIGHT OF EXTERNAL STORE	*STRIMA
WKTRTR	(19,20,50) COEFS OF ROTOR RIVD TABLES	*FORWK1
WKSTB	(3,6,6) COEFS OF ROTOR WAKE AT STABILIZERS TABLES	*FOSWK1
WLCG	WATERLINE OF CG (FEET); ALSO SEE "CGWL"	*INSTAR
WLCGX	(4) WATERLINE OF CG OF EXTERNAL STORE (INCHES)	*STRIMA
WRK	(11) VIRTUAL WORK FROM AIRLOADS	*ANDOIT
WRKPCA	(11,2) VIRTUAL WORK FROM PITCH-CHANGE-AXIS OFFSET	*STARAN
WROTOR	WEIGHT OF MAIN ROTOR	*STARAN
X	(10) COMPUTED CORRECTIONS IN TRIM	*STRIMA
XA	SUMMATION VARIABLE FOR F/A AERO MOM ON ROTOR; SEE XMA(N)	ITROT
XAELE	NOT REFERENCED	*MANAL
XAELEX	(4) X-ARMS FROM CG TO EXTERNAL STORES (BODY AXIS)	*STRIMA
XAFIN	NOT REFERENCED	*MANAL
XAFUS	X-ARM FROM CG TO AERO DATA REF POINT (BODY AXIS)	*MANAL
XAGUN	X-ARM FROM CG TO WEAPON (GUN) (BODY AXIS)	*STAMAN
XAJET	X-ARM FROM CG TO JET (AUX. PROPULSION) (BODY AXIS)	*MANAL
XAPYL	(2) X-ARM FROM SHAFT PIVOT TO ROTOR NACELLE CG (+FWD)	*STAMAN
XAPYLD	(2) X-ARM FROM CG TO AC OF ROTOR NACELLE (BODY AXIS)	*MANAL
XAR	X-ARM FROM CG TO ROTOR HUB (BODY AXIS)	*MANAL
XARSP	(2) X-ARM FROM CG TO SHAFT PIVOT POINT (+FWD)	*STAMAN
XASTBZ	(4) X-ARMS FROM CG TO STABILIZING SURFACES	*MANAL
XASTWG	(4) X-DISTANCE FROM WING CP TO STABILIZING SURFACE CP	*STRIAB
XAWG	X-ARM FROM CG TO WING AERODYNAMIC CENTER (BODY AXIS)	*MANAL
XB	SUMMATION VARIABLE FOR LAT AERO MOM ON ROTOR; SEE XMB(N)	ITROT
XBW	(7) BOBWEIGHT GROUP INPUTS	*INONLY
XCIT	(20,6) EXCITATIONS FOR MANEUVERS (J-CARD INPUTS)	*STRIMA

TABLE 11. Continued.

XCON	(28) ROTOR CONTROLS GROUP INPUTS (BASIC)	*INONLY
XCOR1	X-DISTANCE FROM ORIGIN TO FIRST VORTEX CORE (J=37)	*STRIMA
XCOR2	X-DISTANCE FROM ORIGIN TO SECOND VORTEX CORE (J=37)	*STRIMA
XCREF	X-DISTANCE FROM ORIGIN TO MID POINT BTWN VORTICES (J=37)	*INONLY
XCRT	(49) SUPPLEMENTAL ROTOR CONTROLS SUBGROUP INPUTS	*INONLY
XCST	(14.5) AERO SURFACE CONTROL INPUTS (5=WING)	*INONLY
XCSW	(14) WING GROUP INPUTS (CONTROLS)	READIN
XCS1	(14) STABILIZING SURFACE #1 INPUTS (CONTROLS)	READIN
XCS2	(14) STABILIZING SURFACE #2 INPUTS (CONTROLS)	READIN
XCS3	(14) STABILIZING SURFACE #3 INPUTS (CONTROLS)	READIN
XCS4	(14) STABILIZING SURFACE #4 INPUTS (CONTROLS)	READIN
XD	DXWGST MODIFIED FOR WING STALL AT POSITIVE ALPHA-WING	STBZFM
XF	TOTAL X-FORCE (BODY REFERENCE)	*MANAL
XFC	(28) FLIGHT CONSTANT GROUP INPUTS	*INONLY
XFEXT	TOTAL X-FORCE DUE TO EXTERNAL STORES (BODY AXIS)	*MANAL
XFEXTJ	TOTAL X-FORCE DUE TO JETTISON OF EXTERNAL STORES	*MANAL
XFFUS	X-FORCE AT CG DUE TO FUSELAGE + RTR NACELLE AERO (BODY AXIS)	*MANAL
XFGUN	X-FORCE AT CG DUE TO WEAPON, OR GUN (BODY AXIS)	*MANAL
XFGW	X-FORCE AT CG DUE TO GROSS WEIGHT	*MANAL
XFJTG	X-FORCE DUE TO JETS AND GUN (BODY AXIS)	*MANAL
XFJTSN	(4) X-FORCE DUE TO JETTISON OF EACH EXTERNAL STORE	*MANAL
XFLJET	X-FORCE DUE TO LEFT JET (BODY AXIS)	*STARAN
XFLWG	X-FORCE AT CG DUE TO LEFT WING PANEL AERODYNAMICS (BODY AXIS)	*MANAL
XFMR	X-FORCE AT CG DUE TO FORCES FROM MAIN ROTOR (BODY AXIS)	*MANAL
XFN	NOT REFERENCED	*INSTAR
XFRJET	X-FORCE DUE TO RIGHT JET (BODY AXIS)	*STARAN
XFRWG	X-FORCE AT CG DUE TO RIGHT WING PANEL AERO (BODY AXIS)	*MANAL
XFS	(98) FUSELAGE GROUP INPUTS	*INONLY
XFSTBZ	TOTAL X-FORCE DUE TO STABILIZING SURFACES (BODY AXIS)	*MANAL
XFSTZ	(4) X-FORCES ON STABILIZING SURFACES (BODY AXIS)	*MANAL
XFTHR	(2) INPLANE DEFLECTION AT FEATHERING BEARING	*STARAN
XPCA	(20.2) INPLANE DEFLECTION OF PITCH-CHANGE-AXIS	*STARAN
YAWFMX	(2) MAX. YAW FLCW AT BLADE TIP	*STRIMA
XFTR	X-FORCE AT CG DUE TO FORCES FROM TAIL ROTOR (BODY AXIS)	*MANAL
XFXTR	(4) X-FORCE DUE TO EACH EXTERNAL STORE (BODY AXIS)	*MANAL
XGN	(7) WEAPONS GROUP INPUTS	*INONLY
XGUST	DISTANCE FROM ORIGIN TO START OF GUST (X-Y GROUND REF PLANE)	*MANAL
XI	DIST FROM WING T.E. TO STAB CP (PARALLEL TO WING WAKE)	STBFNM
XIT	(21) ITERATION LIMITS GROUP INPUTS	*INONLY
XJET	(14) JET (OR AUXILIARY PROPULSION) GROUP INPUTS	*INONLY
XX	FACTOR PROPORTIONAL TO ADVANCE RATIO IN INDUCED VELOCITY DIST	SWSRAT
XXLAM	FACTOR IN EQN FOR LOCAL INDUCED VELOCITY = 1.3333*XK43*COSIY	*ANDOIT
XX43	1.33333*XK	*ANDOIT
XLAM	(2) INFLOW RATIO (SHAFT REFERENCE)	*FORWK
XLAMR	INFLOW RATIO FOR INPUT TO TABLE; LAM(1)<XLAMR<LAM(NLAM)	*ANDOIT
XLIM	MIN/MAX CHANGE OF FLAPPING ANGLES IN ROTOR BALANCE ROUTINE	*STARAN
XLIMAX	(2) MAX (STARTING) VALUE FOR FLAP ANGLE CORR LIMIT; =8*XLIMIT	*STARAN
XLIMIN	(2) MINIMUM VALUE FOR FLAPPING ANGLE CORRECTION LIMIT	*STARAB
XLIMIT	CORRECTION LIMIT FOR TRIM ITERATION	*STARAB
XLIMS	TEMPORARY STORAGE FOR "XLIMIT"	*STARAB
XLG	(14.5) LANDING GEAR GROUP INPUTS	*INONLY
XLG1	(14) LANDING GEAR SUBGROUP #1 INPUTS	READIN
XLG2	(14) LANDING GEAR SUBGROUP #2 INPUTS	READIN
XLG3	(14) LANDING GEAR SUBGROUP #3 INPUTS	READIN
XLG4	(14) LANDING GEAR SUBGROUP #4 INPUTS	READIN
XLG5	(14) LANDING GEAR SUBGROUP #5 INPUTS	READIN
XLOCK	CONTROL LOCK FOR M/R AND T/R LAT CYCLIC PITCH (0=UNLOCKED)	*STRIMA
XMA	(2) F/A AERO FLAP MOM = VIRTUAL WORK ON RIGID BODY MODE SHAPE	*MANAL
XMAC	MACH NUMBER	*ANDOIT
XMACF	(21) MAIN ROTOR AERODYNAMIC OFFSET INPUTS	READIN
XMB	(2) LAT AERO FLAP MOM = VIRTUAL WORK ON RIGID BODY MODE SHAPE	*MANAL
XMC	(21) MAIN ROTOR CHORD DISTRIBUTION (ROOT TO TIP)	READIN
XMD	SUMMATION VARIABLE FOR SEGMENT DRAG TIMES ITS RADIUS = TORQUE	*ANDOIT
XMIN	MINIMUM VALUE FOR TRIM CORRECTION LIMIT (RADIAN)	*STARAB
XMP	(14) MAIN ROTOR DYNAMIC PYLON INPUTS	READIN
XMR	(48) MAIN ROTOR GROUP INPUTS	READIN
XMS20	(2) OUT-OF-PLANE MS @ 5% MINUS THAT AT 0% TIMES 20.0 (MODE 1)	*STARAD
XMT	(21) MAIN ROTOR TWIST DISTRIBUTION (ROOT TO TIP)	READIN
XMU	(2) ADVANCE RATIO (SHAFT REFERENCE)	*FORWK
XMUR	ADVANCE RATIO FOR INPUT TO TABLE; MU(1)<XMUR<MU(NMU)	*FORWK
XMW	(63) MAIN ROTOR BLADE WEIGHT AND INERTIA INPUTS. ROOT TO TIP	READIN
XNG	(28) ENGINE GROUP INPUTS	*INONLY
XRK	(20.2) RRK/R(N)	*STARAN
XRMS	(132.12) BLADE MODE SHAPE DATA	*INONLY
XGMS	GMS UNDER NAMELIST CHANGES	READIN
XRR	(238.2) BASIC, PYLON, CHORD, AC, & TWIST INPUTS FOR ROTORS	*INONLY
XRMS	(132.12) BLADE MODE SHAPE DATA	*INSTAR
XRTR	X-DISTANCE FROM ROTOR HUB TO BLADE SEGMENT (SHAFT AXIS)	*STARAD
XSCAS	(28) STABILITY AND CONTROL AUGMENTATION SYSTEM GROUP INPUTS	*STAMAN
XST	(21.4) EXTERNAL STORES GROUP INPUTS	*INONLY
XSTAH	(2) X-LOCATION OF ROTOR HUB (GROUND REFERENCE) (FEET)	*MANAL

TABLE 11. Continued.

XSTBZ	(42,5) BASIC AERO SURFACE INPLTS (5=WING)	*INONLY
XSTB1	(35) STABILIZING SURFACE #1 INPLTS (BASIC)	#MISC
XSTB2	(35) STABILIZING SURFACE #2 INPLTS (BASIC)	#MISC
XSTB3	(35) STABILIZING SURFACE #3 INPLTS (BASIC)	#MISC
XSTB4	(35) STABILIZING SURFACE #4 INPLTS (BASIC)	#MISC
XST1	(21) INPUTS FOR STORE/BRAKE #1	READIN
XST2	(21) INPUTS FOR STORE/BRAKE #2	READIN
XST3	(21) INPUTS FOR STORE/BRAKE #3	READIN
XST4	(21) INPUTS FOR STORE/BRAKE #4	READIN
XTACF	(21) TAIL ROTOR AERODYNAMIC OFFSET INPUTS	READIN
XTC	(21) TAIL ROTOR CHORD DISTRIBUTION (ROOT TO TIP)	READIN
XTP	(14) TAIL ROTOR DYNAMIC PYLON INPUTS	READIN
XTR	(48) TAIL ROTOR GROUP INPUTS	READIN
XTT	(21) TAIL ROTOR TWIST DISTRIBUTION (ROOT TO TIP)	READIN
XTW	(63) TAIL ROTOR BLADE WEIGHT AND INERTIA INPUTS, ROOT TO TIP	READIN
XWG	(42) WING GROUP INPUTS (BASIC)	READIN
XX	GROUND REFERENCE X-COMPONENT OF DISTANCE FLOWN	*STAMAN
XXD	X-VELOCITIY IN GROUND REFERENCE	*STRIMA
XY	FACTOR IN INDUCED VELOCITY DISTRIBUTION EQN; FUNCTION OF VIR	*ANDOID
Y	(4,130) VARIABLES INTEGRATED DURING MANEUVERS	*FORY
YAELE	NOT REFERENCED	*MANAL
YAERO	(35,5) LOCAL NAME FOR YAERO ARRAY	YSINIT
YAEXT	(4) Y-ARMS FROM CG TO EXTERNAL STORES (BODY AXIS)	*STRIMA
YAFIN	NOT REFERENCED	*MANAL
YAFUS	Y-ARM FROM CG TO AERO DATA REF POINT (BODY AXIS)	*MANAL
YAGUN	Y-ARM FROM CG TO WEAPON (GUN) (BODY AXIS)	*STAMAN
YALJET	Y-ARM FROM CG TO LEFT JET (BODY AXIS)	*MANAL
YALWG	Y-ARM FROM CG TO AC OF LEFT WING PANEL (BODY AXIS)	*MANAL
YAPYL	(2) Y-ARM FROM SHAFT PIVOT TO ROTOR NACELLE CG (+RIGHT)	*STAMAN
YAPYLD	(2) Y-ARM FROM CG TO AC OF ROTOR NACELLE (BODY AXIS)	*MANAL
YAR	Y-ARM FROM CG TO ROTOR HUB (BODY AXIS)	*MANAL
YARJET	Y-ARM FROM CG TO RIGHT JET (BODY AXIS)	*MANAL
YARSP	(2) Y-ARM FROM CG TO SHAFT PIVOT POINT (+RIGHT)	*STAMAN
YARWG	Y-ARM FROM CG TO AC OF RIGHT WING PANEL (BODY AXIS)	*MANAL
YASTBZ	(4) Y-ARMS FROM CG TO STABILIZING SURFACES	*MANAL
YAWFLO	(5) SWITCH FOR UNSAN YAWED FLOW (0=OFF;1=LIFT;2=DRAG;3=BOTH)	*STARAN
YD	(4,130) FIRST DERIVATIVES OF VARIABLES INTEGRATED (Y-DOT)	*FORYD
YDD	(4,130) SECOND DERIVATIVES OF VARIABLES INTEGRATED	*FORYD
YEXT	(7,2) STORE/BRAKE AERODYNAMIC COEFFICIENTS	*STRIMA
YF	TOTAL Y-FORCE (BODY REFERENCE)	*MANAL
YFEXT	TOTAL Y-FORCE DUE TO EXTERNAL STORES (BODY AXIS)	*MANAL
YFEXTJ	TOTAL Y-FORCE DUE TO JETTISON OF EXTERNAL STORES	*MANAL
YFFUS	Y-FORCE AT CG DUE TO FUSELAGE + RTR NACELLE AERO (BODY AXIS)	*MANAL
YFGUN	Y-FORCE AT CG DUE TO WEAPON, OR GUN (BODY AXIS)	*MANAL
YFGW	Y-FORCE AT CG DUE TO GROSS WEIGHT	*MANAL
YFILT	(2) FILTERED Y-FORCE, LB	*MANAL
YFJTGN	Y-FORCE DUE TO JETS AND GUN (BODY AXIS)	*MANAL
YFJTSN	(4) Y-FORCE DUE TO JETTISON OF EACH EXTERNAL STORE	*MANAL
YFLJET	Y-FORCE DUE TO LEFT JET (BODY AXIS)	*STARAN
YFLWG	Y-FORCE AT CG DUE TO LEFT WING PANEL AERODYNAMICS (BODY AXIS)	*MANAL
YFMR	Y-FORCE AT CG DUE TO FORCES FROM MAIN ROTOR (BODY AXIS)	*MANAL
YFDRC	(2) ROTOR FORCE // TO SHAFT Y-AXIS (+RT FOR M/R; +LT FOR T/R)	*MANAL
YFRC	SUMMATION VARIABLE USED TO COMPUTE Y-FORCE	*ANDOID
YFRJET	Y-FORCE DUE TO RIGHT JET (BODY AXIS)	*STARAN
YFRWG	Y-FORCE AT CG DUE TO RIGHT WING PANEL AERO (BODY AXIS)	*MANAL
YFS	(25) NOT REFERENCED	*MANAL
YFSO	(15) COEFFICIENTS FOR FUSELAGE NOMINAL ANGLE DRAG EQUATION	*STARAN
YFSL	(15) COEFFICIENTS FOR FUSELAGE NOMINAL ANGLE LIFT EQUATION	*STARAN
YFSL1	COEFFICIENT IN FUSELAGE HIGH ANGLE LIFT EQUATION	*STARAN
YFSL2	COEFFICIENT IN FUSELAGE HIGH ANGLE LIFT EQUATION	*STARAN
YFSL3	COEFFICIENT IN FUSELAGE HIGH ANGLE LIFT EQUATION	*STARAN
YFSR	(15) COEFFICIENTS FOR FUSELAGE NOMINAL ANGLE PITCHING MOM EQN	*STARAN
YFSR1	COEFFICIENT IN FUSELAGE HIGH ANGLE PITCHING MOM EQUATION	*STARAN
YFSR2	COEFFICIENT IN FUSELAGE HIGH ANGLE PITCHING MOM EQUATION	*STARAN
YFSR3	COEFFICIENT IN FUSELAGE HIGH ANGLE PITCHING MOM EQUATION	*STARAN
YFSR4	COEFFICIENT IN FUSELAGE HIGH ANGLE PITCHING MOM EQUATION	*STARAN
YFSR5	(14) COEFFICIENTS FOR FUSELAGE NOMINAL ANGLE ROLLING MOM EQN	*STARAN
YFSR6	COEFFICIENT IN FUSELAGE HIGH ANGLE ROLLING MOM EQUATION	*STARAN
YFSR7	(14) COEFFICIENTS FOR FUSELAGE NOMINAL ANGLE SIDE FORCE EQN	*STARAN
YFSR8	COEFFICIENT IN FUSELAGE HIGH ANGLE SIDE FORCE EQUATION	*STARAN
YFSR9	TOTAL Y-FORCE DUE TO STABILIZING SURFACES (BODY AXIS)	*MANAL
YFSR10	(4) Y-FORCES ON STABILIZING SURFACES (BODY AXIS)	*MANAL
YFSY	(14) COEFFICIENTS FOR FUSELAGE NOMINAL ANGLE YAWING MOM EQN	*STARAN
YFSY1	COEFFICIENT IN FUSELAGE HIGH ANGLE YAWING MOMENT EQUATION	*STARAN
YFSY2	COEFFICIENT IN FUSELAGE HIGH ANGLE YAWING MOMENT EQUATION	*STARAN
YFTR	Y-FORCE AT CG DUE TO FORCES FROM TAIL ROTOR (BODY AXIS)	*MANAL
YFXTR	(4) Y-FORCE DUE TO EACH EXTERNAL STORE (BODY AXIS)	*MANAL
YGSTW	Y-COMPONENT OF GUST AT WING (BODY AXIS)	*STRIMA
YGUST	Y-COMPONENT OF GUST VELOCITY AT CG (BODY AXIS)	*STAMAN
YGUSTR	Y-COMPONENT OF GUST VELOCITY AT HUB IN SHAFT REFERENCE	*STARAD
YGUSTS	(4) Y-COMPONENT OF GUST AT STAB. SURFACES (BODY AXIS)	*MANAL
YGUSTX	(4) Y-COMPONENT OF GUST AT EXTERNAL STORES (BODY AXIS)	*MANAL

TABLE 11. Concluded.

YRR	(35.5) ROTOR AIRFOIL AERODYNAMIC SUBGROUP INPUTS	*INONLY
YRRMS	(36.2) BLADE LEAD-LAG MODE SHAPE DATA	*INSTAR
YRTR	Y-DISTANCE FROM ROTOR HUB TO BLADE SEGMENT (SHAFT AXIS)	*STARAD
YSAERO	(36.5) AERO SURFACE AERO INPUTS AFTER INIT. BY YSINIT	*STARAN
YSHR	(2) LATERAL SHEAR FORCE AT HUB	*MANAL
YSHRN	DOUBLE PRECISION ACCUMULATOR FOR LATERAL SHEAR	*ANDOIT
YSTAH	(2) Y-LOCATION OF ROTOR HUB (GROUND REFERENCE) (FEET)	*MANAL
YSTBZ	(28.5) AERO SURFACE AERODYNAMIC INPUTS (S=WING)	*INONLY
YSTB1	(28) STABILIZING SURFACE #1 INPUTS (AERODYNAMICS)	#MISC
YSTB2	(28) STABILIZING SURFACE #2 INPUTS (AERODYNAMICS)	#MISC
YSTB3	(28) STABILIZING SURFACE #3 INPUTS (AERODYNAMICS)	#MISC
YSTB4	(28) STABILIZING SURFACE #4 INPUTS (AERODYNAMICS)	#MISC
YWG	(28) WING GROUP INPUTS (AERODYNAMICS)	READIN
YY	GROUND REFERENCE Y-COMPONENT OF DISTANCE FLOWN	*STAMAN
YYD	Y-VELOCYI IN GROUND REFERENCE	*STRIMA
ZAELE	NOT REFERENCED	*MANAL
ZAEXT	(4) Z-ARMS FROM CG TO EXTERNAL STORES (BODY AXIS)	*STRIMA
ZAFIN	NOT REFERENCED	*MANAL
ZAFUS	Z-ARM FROM CG TO AERO DATA REF POINT (BODY AXIS)	*MANAL
ZAGUN	Z-ARM FROM CG TO WEAPON (GUN) (BODY AXIS)	*STAMAN
ZAJET	Z-ARM FROM CG TO JET (AUX. PROPULSION) (BODY AXIS)	*MANAL
ZAPYL	(2) Z-ARM FROM SHAFT PIVOT TO ROTOR NACELLE CG (+DOWN)	*STAMAN
ZAPYLD	(2) Z-ARM FROM CG TO AC OF ROTOR NACELLE (BODY AXIS)	*MANAL
ZAR	Z-ARM FROM CG TO ROTOR HUB (BODY AXIS)	*MANAL
ZARSP	(2) Z-ARM FROM CG TO SHAFT PIVOT POINT (+DOWN)	*STAMAN
ZASTBZ	(4) Z-ARMS FROM CG TO STABILIZING SURFACES	*MANAL
ZAWG	Z-ARM FROM CG TO WING AERODYNAMIC CENTER (BODY AXIS)	*MANAL
ZDELT1	FIRST TIME OR AZIMUTH INCREMENT FOR MANEUVER	*STRIMA
ZDELT2	SECOND TIME OR AZIMUTH INCREMENT FOR MANEUVER	*STAMAN
ZETAR	(2.2) MAST TILT ANGLES: (DIRECTION,ROTOR)	*MANAL
ZF	TOTAL Z-FORCE (BODY REFERENCE)	*MANAL
ZFEXT	TOTAL Z-FORCE DUE TO EXTERNAL STORES (BODY AXIS)	*MANAL
ZFEXTJ	TOTAL Z-FORCE DUE TO JETTISON OF EXTERNAL STORES	*MANAL
ZFFUS	Z-FORCE AT CG DUE TO FUSELAGE + RTR NACELLE AERO (BODY AXIS)	*MANAL
ZFGUN	Z-FORCE AT CG DUE TO WEAPON, OR GUN (BODY AXIS)	*MANAL
ZFGW	Z-FORCE AT CG DUE TO GROSS WEIGHT	*MANAL
ZFJTG	Z-FORCE DUE TO JETS AND GUN (BODY AXIS)	*MANAL
ZFJTSN	(4) Z-FORCE DUE TO JETTISON OF EACH EXTERNAL STORE	*MANAL
ZFLJET	Z-FORCE DUE TO LEFT JET (BODY AXIS)	*STARAN
ZFLWG	Z-FORCE AT CG DUE TO LEFT WING PANEL AERODYNAMICS (BODY AXIS)	*MANAL
ZFLWG1	Z-FORCE ACTING ON LEFT WING PANEL AT PREVIOUS TIME POINT	*MANAL
ZFMR	Z-FORCE AT CG DUE TO FORCES FROM MAIN ROTOR (BODY AXIS)	*MANAL
ZFRJET	Z-FORCE DUE TO RIGHT JET (BODY AXIS)	*STARAN
ZFRWG	Z-FORCE AT CG DUE TO RIGHT WING PANEL AERO (BODY AXIS)	*MANAL
ZFRWG1	Z-FORCE ACTING ON RIGHT WING PANEL AT PREVIOUS TIME POINT	*MANAL
ZFSTBZ	TOTAL Z-FORCE DUE TO STABILIZING SURFACES (BODY AXIS)	*MANAL
ZFSTZ	(4) Z-FORCES ON STABILIZING SURFACES (BODY AXIS)	*MANAL
ZFTHR	(2) OUT-OF-PLANE DEFLECTION AT FEATHERING BEARING	*STARAN
ZFTR	Z-FORCE AT CG DUE TO FORCES FROM TAIL ROTOR (BODY AXIS)	*MANAL
ZFXTR	(4) Z-FORCE DUE TO EACH EXTERNAL STORE (BODY AXIS)	*MANAL
ZLLDUJ	(5) INCREMENT TO ZLL OF AERO SURFACE DUE TO J-CARD INPUTS	*STAMAN
ZLLINC	(6) INCREMENT TO ZERO LIFT LINE ANGLE (5=LT WING;6=RT WING)	*STAMAN
ZLLOCK	(5) LOCK FOR ZLL INCIDENCE OF AERO SURFACES (0=UNLOCKED)	*STRIMA
ZMAX1	TIME TO END FIRST (START SECOND) TIME INCREMENT IN MANEUVER	READIN
ZMAX2	TIME TO END SECOND (RESTART FIRST) TIME INCREMENT IN MANEUVER	*STAMAN
ZMAX3	TIME TO END MANEUVER AFTER FIRST TIME INCREMENT RESTARTED	*STAMAN
ZPCA	(20.2) OUT-OF-PLANE DEFLECTION OF PITCH-CHANGE-AXIS	*STARAD
ZRTR	Z-DISTANCE FROM ROTOR HUB TO BLADE SEGMENT (SHAFT AXIS)	*STRIMA
ZSTAH	(2) Z-LOCATION OF ROTOR HUB (GROUND REFERENCE) (FEET)	*MANAL
ZZ	GROUND REFERENCE Z-COMPONENT OF DISTANCE FLOWN	*STRIMA
ZZD	Z-VELOCYI IN GROUND REFERENCE	*MANAL
ZZTR	TAIL ROTOR ALTITUDE	*MANAL

To generate this output for a particular increment, IPL(90) is set to a value shown in Table 12. Further information about the variable in this table can be found in Section 4.11.2.1 of Volume II. Note that locking out a degree of freedom does not change the correspondence shown in Table 12 between IPL(90) and the variables. Also, it is only possible to obtain this extra printout for one variable in each STAB case. To obtain the printout for more than one variable, the case must be rerun for each variable of interest with IPL(90) set to the appropriate value in each repeat run.

40

TABLE 12. STAB DIAGNOSTIC SWITCH IN AGAJ77

IPL(90)	VARIABLE
1	FUS. U
2	FUS. W
3	FUS. Q
4	FUS. V
5	FUS. P
6	FUS. R
7	M.R. F/A FLAP RATE
8	M.R. LAT FLAP RATE
9	T.R. F/A FLAP RATE
10	T.R. LAT FLAP RATE
11	M.R. F/A FLAP DISP
12	M.R. LAT FLAP DISP
13	T.R. F/A FLAP DISP
14	T.R. LAT FLAP DISP
15	PYLON 1, MODE 1 RATE
16	PYLON 1, MODE 2 RATE
17	PYLON 1, MODE 3 RATE
18	PYLON 1, MODE 4 RATE
19	PYLON 2, MODE 1 RATE
20	PYLON 2, MODE 2 RATE
21	PYLON 2, MODE 3 RATE
22	PYLON 2, MODE 4 RATE
23	PYLON 1, MODE 1 DISP
24	PYLON 1, MODE 2 DISP
25	PYLON 1, MODE 3 DISP
26	PYLON 1, MODE 4 DISP
27	PYLON 2, MODE 1 DISP
28	PYLON 2, MODE 2 DISP
29	PYLON 2, MODE 3 DISP
30	PYLON 2, MODE 4 DISP