Abstract

These notes are based on Ron Donagi's lectures for the course "Complex Algebraic Geometry" at UPenn along with Daniel Huybrechts's *Complex Geometry*. Any mistake in what follows is my own.

Contents

1	A cursory overview of algebraic geometry	2
	1.1 Lectures 1-4	2
2	Complex analysis	2
	2.1 Lecture 5	2
3	Line bundles	4
	3.1 Lecture 6	4
	3.2 Lecture 7	6
	3.3 Lecture 8	8
	3.4 Lecture 9	11
	3.5 Lecture 10	14
4	Kähler manifolds	16
	4.1 Lecture 11	16
	1.2 Lecture 12	19
5	Lie algebras	22
	S.1. Leature 12	23

1 A cursory overview of algebraic geometry

1.1 Lectures 1-4

These lectures consisted of informal surveys of certain fundamental concepts of algebraic geometry. They were meant as previews of various topics that we will cover rigorously.

2 Complex analysis

2.1 Lecture 5

First, let's review some basic concepts about functions of a single complex variable.

Definition 2.1.1. Let $z_0 \in \mathbb{C}$. A function $f = u + iv : U \subset \mathbb{C} \to \mathbb{C}$ is holomorphic or analytic if at least one of the following equivalent conditions holds.

• Both u and v are C^1 , and f satisfies the Cauchy-Riemann equations, i.e.,

$$u_x = v_y$$
$$u_y = -v_x.$$

- $\frac{\partial f}{\partial \bar{z}} = 0$, where $\frac{\partial}{\partial \bar{z}} := \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$.
- The Cauchy integral formula holds, i.e.,

$$f(w) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{\eta - w} d\eta$$

for any closed circular path γ centered at w in U.

• f has a power series representation on U.

Definition 2.1.2. A bijective function $f:U\subset\mathbb{C}\to V\subset\mathbb{C}$ is *biholomorphic* if it is holomorphic and its inverse is holomorphic. In this case, we say that U is *biholomorphic to* V, written as $U\approx V$.

Fact 2.1.3.

- (a) (The maximum modulus principle) If $U \subset \mathbb{C}$ is a domain, $f: U \to \mathbb{C}$ is holomorphic, and |f| has a local maximum, then f is constant.
- (b) (Liouville's theorem) Any bounded entire function is constant.
- (c) (The Riemann extension theorem) If $\epsilon > 0$ and $f : B_{\epsilon}(z) \setminus \{z\} \subset \mathbb{C} \to \mathbb{C}$ is bounded and holomorphic, then f can be extended to a holomorphic function on $B_{\epsilon}(z)$.
- (d) (The Riemann mapping theorem) If $U \subsetneq \mathbb{C}$ is simply connected and open, then $U \approx B_1(0)$.
- (e) (The residue theorem) If $f: B_{\epsilon}(0) \setminus \{0\}$ is holomorphic, then f can be expanded in a Laurent series $\sum_{n=-\infty}^{\infty} a_n z^n$ such that $a_{-1} = \frac{1}{2\pi i} \oint f(z) dz$.

COMPLEX ANALYSIS 3

Next, let's look at some basic concepts about functions of several complex variables.

Definition 2.1.4. A function $f = u + iv : U \subset \mathbb{C}^n \to \mathbb{C}$ is *holomorphic* if at least one of the following equivalent conditions holds.

- f is holomorphic in each variable individually.
- Both u and v are C^1 , and f satisfies the Cauchy-Riemann equations,

$$u_{x_i} = v_{y_i}$$
$$u_{y_i} = -v_{x_i}$$

for each $i = 1, \ldots, n$.

- $\sum_{i=1}^{n} \frac{\partial f}{\partial \bar{z}_i} = 0.$
- f has a power series representation on U,

$$\sum_{k_1=0}^{\infty} \cdots \sum_{k_n=0}^{\infty} a_{k_1,\dots,k_n} z_1^{k_1} \cdots z_n^{k_n}.$$

Note 2.1.5. Statements (a), (b), and (c) from Fact 2.1.3 generalize to functions of several variables, as does the Cauchy integral formula:

$$f(z) = \frac{1}{(2\pi i)^n} \int_{|\eta_i - z_i| = \epsilon_i} \frac{f(\eta_1, \dots, \eta_n)}{(\eta_1 - z_1) \cdots (\eta_n - z_n)} d\eta_1 \cdots d\eta_n$$

where $\eta_i > 0$ for each $i = 1, \ldots, n$.

Theorem 2.1.6 (Hartog). If n > 1, then any holomorphic function $f : B_{\epsilon}(0) \setminus \{0\} \subset \mathbb{C}^n \to \mathbb{C}$ extends to a holomorphic function on $B_{\epsilon}(0)$.

Definition 2.1.7. Let X be a (topological) space. A sheaf F on X is a presheaf on X such that for any open $U \subset X$ and any open cover $\{U_i\}_{i\in J}$ of U, there is an exact sequence

$$0 \longrightarrow F(U) \longrightarrow F(U_i) \longrightarrow F(U_{ij})$$

where $U_{ij} := U_i \cap U_j$.

Definition 2.1.8. A ringed space is a pair (X, \mathcal{J}) where X is a space and \mathcal{J} is a sheaf of rings on X.

Remark 2.1.9. Given any standard object (X, \mathcal{J}) , we can define a geometric object as a ringed space locally isomorphic to (X, \mathcal{J}) .

Definition 2.1.10 (Vector bundle). Let X and V be complex manifolds. Let $\pi: V \to X$ be holomorphic. We say that π is a *(holomorphic) vector bundle of rank* n if for any $x \in X$, there exist an open set $U \ni x$ in X and an isomorphism $\pi^{-1}(U) \xrightarrow{\cong} U \times \mathbb{C}^n$ such that the *transition maps* $U_{ij} \times \mathbb{C}^n \to U_{ij} \times \mathbb{C}^n$ are holomorphic and fiber linear.

Any vector bundle $\pi: V \to X$ induces a sheaf on X given by

$$F(U) = \Gamma\left(U, \pi^{-1}(U)\right).$$

Example 2.1.11.

- 1. The sheaf induced by the trivial bundle $\mathbf{1} := X \times \mathbb{C}$ is denoted by \mathcal{O}_X .
- 2. The tangent bundle TX of a smooth manifold X induces the sheaf of vector fields on X.
- 3. The cotangent bundle T^*X induces the sheaf $\Omega^1(X)$ of one-forms on X.
- 4. The alternating bundle $\bigwedge^p X$ of rank p induces the sheaf $\Omega^p(X)$ of p-forms on X.

3 Line bundles

3.1 Lecture 6

Definition 3.1.1. A line bundle is a vector bundle of rank 1.

Definition 3.1.2. Let X be a complex manifold. A sheaf F of \mathcal{O}_X -modules is a sheaf on X such that for any open set U in X,

- F(U) is a module over $\mathcal{O}_X(U)$ and
- if $U \subset V \subset X$, then $(f \cdot a) \upharpoonright_U = f \upharpoonright_U \cdot a \upharpoonright_U$.

Example 3.1.3 (Sheaf of sections). Let X be a complex manifold and J be a vector bundle over X. For any open $U \subset X$, let

$$\mathcal{L}_J(U) = \Gamma(U, L)$$
.

This inherits a vector space structure from the family of fibers of V. Also, any relation of the form $U_1 \subset U_2 \subset U$ induces a linear map $\Gamma(U_2, L) \to \Gamma(U_1, L)$ given by $\sigma \mapsto \sigma \upharpoonright_{U_1}$. Thus, $\mathcal{L}_J(-)$ is a sheaf of vector spaces. Moreover, it is easily seen to be a sheaf of \mathcal{O}_X -modules.

Since any vector bundle is locally trivial, we see that \mathcal{L}_J is locally free, i.e., for any $x \in X$, there exist an (open) neighborhood U of x in X and an isomorphism $\varphi : \mathcal{L}_J(U) \to \bigoplus_{i=1}^{\operatorname{rank}(J)} \mathcal{O}_X(U)$ such that for any open set $V \subset U$, the square

$$\mathcal{L}_{J}(U) \xrightarrow{\cong} \bigoplus_{i=1}^{\operatorname{rank}(J)} \mathcal{O}_{X}(U)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{L}_{J}(V) \xrightarrow{\cong} \bigoplus_{i=1}^{\operatorname{rank}(J)} \mathcal{O}_{X}(V)$$

commutes. In other words, \mathcal{L}_J is locally isomorphic to $(\mathcal{O}_X)^{\oplus \mathrm{rank}(J)}$.

Definition 3.1.4. A sheaf F on a complex manifold X is *invertible* if there exist an open cover $\{U_i\}$ of X and a family of holomorphic isomorphisms $\varphi_i: \mathcal{O}_{U_i} \to \mathcal{L}_J \upharpoonright_{U_i}$.

Example 3.1.5. If J is a line bundle, then \mathcal{L}_J is invertible.

Consider the composite

$$\mathcal{O}_{U_i \cap U_j} \xrightarrow{\varphi_i} \mathcal{L}_J \upharpoonright_{U_i \cap U_j} \xrightarrow{\varphi_j^{-1}} \mathcal{O}_{U_i \cap U_j}, \qquad 1 \longmapsto g_{ij}.$$

From this, we can construct a line bundle L over X by defining the total space as

$$\coprod_{i} (U_{i} \times \mathbb{C})_{/\sim}$$

where $(x, \lambda)_i \sim (y, \mu)$ if x = y and $\mu = g_{ij}\lambda$.

Definition 3.1.6 (Divisor). A divisor on a complex manifold X is a locally finite \mathbb{Z} -combination of irreducible holomorphic hypersurfaces of X. Equivalently, it is a subset of X locally defined by the vanishing of a holomorphic function.

Example 3.1.7. If $X = A^1$, then any divisor D on X is of the form

$$D = \sum m_i p_i, \quad p_i \in \mathcal{A}^1, \ m_i \in \mathbb{Z}.$$

Terminology. Each m_i is known as the multiplicity of p_i .

Any divisor D defines a line bundle $\mathcal{O}_X(D)$ on X and a holomorphic map $X \dashrightarrow \mathbb{P}(V^{\vee})$ where $V \equiv \Gamma(X, \mathcal{O}_X(D))$. It is also true that any line bundle defines a divisor. It follows that

$$(\text{line bundles}) \xleftarrow{\sim} (\text{invertible sheaves}) \xleftarrow{\sim} (\text{divisors module linear equiv.}) \ . \tag{\dagger}$$

Consider the case where $D = \mathsf{pt}$. Let $f \in \Gamma(U, \mathcal{O}_U)$ and let $U_i = X \setminus D$, which is a tubular neighborhood of D. Note that $U_i = f^{-1}(\mathbb{C} \setminus \mathsf{hyperplane})$. Define $\mathcal{O}_X(D)$ as the line bundle with transition functions of the form $f \upharpoonright_{U_i \cap U_j}$.

Alternatively, let

$$\left(\mathcal{O}_{X}\left(D\right)\right)\left(U\right)=\{g:U\to\mathbb{C}\mid g\text{ is meromorphic, }\overbrace{fg}^{\text{product}}\text{ is holomorphic}\}.$$

For example, let $X = \mathbb{P}^1$ and D be a point p. Let (x_0, x_1) denote local coordinates on X near p. Let g be meromorphic in these coordinates and let $f(x_0, x_1) = \frac{x_1}{x_0}$. Then fg is holomorphic, i.e., g has a pole of order at most one at p.

Question.

- 1. What is $\Gamma(\mathbb{P}^1, \mathcal{O}_X)$?
- 2. What is $\Gamma\left(\mathbb{P}^1, \mathcal{O}_X\left(D\right)\right)$?

In fact, it can be shown that

$$\Gamma\left(\mathbb{P}^{1}, \mathcal{O}_{X}\left(m, p\right)\right) = \begin{cases} \mathbb{C}\langle 1, x, \dots, x^{m} \rangle & m \geq 0\\ 0 & \text{otherwise} \end{cases}$$

In general, D is defined locally, and thus so is $\mathcal{O}_U(D)$. Specifically, $\Gamma(U, \mathcal{O}_U(D))$ consists of all holomorphic functions $f: U \setminus \text{supp}(D) \to \mathbb{C}$ such that if $D = \sum m_i Y_i$ and $Y_i \cap U = \{f_i = 0\}$, then $g \prod_i f_i^{m_i}$ is holomorphic in U.

Example 3.1.8 (Veronese embedding). Let $X = \mathbb{P}^1$ and p be as before.

1. Let $D = \mathcal{O}(2p)$. Consider the space $V := \Gamma\left(\mathbb{P}^1, \mathcal{O}\left(2p\right)\right) = \mathbb{C}\langle 1, x, x^2 \rangle$. Define the map $\varphi_{\mathcal{O}(2p)} : \mathbb{P}^1 \to \mathbb{P}^2$ by

$$\varphi_{\mathcal{O}(2p)}(x) = \underbrace{\left(1, x, x^2\right)}_{(x, y, z)}.$$

This is an embedding. Its image is precisely the smooth curve given by $y^2 = xz$.

2. Let $D = \mathcal{O}(3p)$. Then the image of the map $\varphi_{\mathcal{O}(3p)} : \mathbb{P}^1 \hookrightarrow \mathbb{P}^3$ given by $x \mapsto (1, x, x^2, x^3)$ is a so-called twisted cubic.

The line bundle L on X determines the map $X \longrightarrow \mathbb{P}\left(\Gamma(X,L)^{\vee}\right)$ directly, as follows.

$$x \mapsto \ker \left(\Gamma\left(X, L\right) \stackrel{\operatorname{eval}_x}{\longrightarrow} L_p\right)$$

Definition 3.1.9. The base locus of L is $\mathcal{BL}(L) \equiv \{x \in X \mid s(x) = 0 \text{ for each } s \in \Gamma(X, L)\}.$

Note that we get a map $X \setminus \mathcal{BL}(L) \to \mathbb{P}(\Gamma(X,L)^{\vee})$.

Now, let's consider a slight generalization of our preceding discussion. Let $V \subset \Gamma(X, L)$. This induces a map

$$X \xrightarrow{X} \mathbb{P}(V^{\vee})$$

$$\downarrow \qquad \qquad X \setminus \mathcal{BL}(V)$$

Let $X = \mathbb{P}^1$ and $p = \{x = 0\}$. Then $V \subset \Gamma(\mathbb{P}^1, \mathcal{O}(2)) = \mathbb{C}\langle 1, x, x^2 \rangle$, and

$$\mathbb{P}^1 \xrightarrow{\varphi_{\mathcal{O}(2)}} \mathbb{P}^2 \\
\downarrow^{\rho} \\
\downarrow^{\rho} \\
\mathbb{P}^1$$

commutes where ρ denotes the linear projection. Note that φ_V is a morphism so long as the center of ρ is not in the image of $\varphi_{\mathcal{O}(2)}$. In this case, we have that

$$\varphi_{\mathcal{O}(2)}(x) = \frac{a + by + cx^2}{d + ex + fx^2}$$
$$\rho(x) = \frac{a + bx}{c + dx}.$$

3.2 Lecture 7

Let L_1 and L_2 be line bundles over X with transition functions $\{g_1^{kl}: U_{kl} \to \mathbb{C}^*\}$ and $\{g_2^{ij}: U_{ij} \to \mathbb{C}^*\}$, respectively. We can take a refinement $\{U_i \cap U_k\}$ where both L_1 and L_2 are trivial. Define $L^1 \otimes L^2$ as the line bundle with transition functions $\{g_1^{kl}g_2^{ij}: U_{ij} \cap U_{kl} \to \mathbb{C}^*\}$. Further, define $(L^1)^{-1}$ as the line bundle with transition functions $\{(g_1^{kl})^{-1}: U_{kl} \to \mathbb{C}^*\}$. Note that, locally, $L^1 \otimes (L^1)^{-1} \cong \mathcal{O}_X$.

Definition 3.2.1. We say that a divisor $D = \sum_i m_i Y_i$ is effective if $m_i \geq 0$ for each i.

Let $V = \Gamma(X, \mathcal{O}_X(D))$ and let D be effective. Note that $\mathbb{C}\langle D \rangle \subset V$. We have that $\operatorname{supp}(D) = \varphi^{-1}$ (hyperplane) where $(\mathbb{C}\langle 0 \rangle)^{\perp}$ is precisely the hyperplane in $\mathbb{P}(V^{\vee})$.

Example 3.2.2. Let $X = \mathbb{P}^1$.

1. Let $x = \frac{x_1}{x_0}$ and $D = p := \{x = 0\}$. Then $V = \mathbb{C}\langle 1, x \rangle$, and the map $\varphi_V : \mathbb{P}^1 \to \mathbb{P}(V^{\vee})$ is given by $c \mapsto y := \frac{x}{1}$.

2. Let $D = m(\infty)$ with m > 0. Then $V = \mathbb{C}\langle x_1, \dots, x_m^m \rangle$, and the map $\varphi_{m\infty} : \mathbb{P}^1 \to \mathbb{P}^m$ is given by

$$(x_0, x_1) \mapsto (x_0^m, x_0^{m-1} x_1, \dots, x_0 x_1^{m-1}, x_1^m)$$

 $x \mapsto (1, x, \dots, x^m).$

3. Let $D=p_1+\cdots+p_m$ where $p_i=[1:t_i]$. Let $x=\frac{x_1}{x_0}$, so that ∞ is given by $x_0=0$. Then $V=\mathbb{C}\langle \underbrace{1,\frac{1}{x-t_1},\ldots,\frac{1}{x-t_m}}_{a_0,\frac{a_1}{x-t_1},\ldots,\frac{a_m}{x-t_m}}\rangle$. This can be viewed as the space of all regular meromorphic functions

on open subsets of \mathbb{P}^1 having poles of order at most m. The image of $\varphi : \mathbb{P}^1 \to \mathbb{P}^m$ is precisely the hyperplane $\{a_0 = 0\}$.

Example 3.2.3. Let X be an elliptic curve, i.e., a space of the form \mathbb{C}/Λ . Let p be the image of 0 and let D = mp.

1. Let m = 1. Then $V = \Gamma(X, \mathcal{O}_X(D))$, which consists of all maps $f : X \to \mathbb{P}^1$ such that $f^{-1}(\infty) = \{0\}$. These are precisely the constant maps, so that $V \cong \mathbb{C}\langle s \rangle$ where s is a holomorphic section of $\mathcal{O}_X(D)$ vanishing at p and is meromorphic on \mathcal{O}_X .

It follows that $\mathcal{BL}(\mathcal{O}_X(D)) = p$.

2. Let m=2. Then $V=\mathbb{C}\langle 1,p\rangle$, and $\varphi_{2p}:X\to\mathbb{P}^1$ is precisely the D-th Weierstrass function. Moreover, we have an exact sequence

$$0 \longrightarrow \mathcal{O}_X(p) \longrightarrow \mathcal{O}_X(2p) \longrightarrow \mathcal{O}_p \longrightarrow \cdots.$$

3. Let m=3. Then $V=\langle 1,p,p'\rangle$, and the image of $\varphi_{3p}:X\to\mathbb{P}^2$ is given by $y^2=x^3+ax+b$.

Example 3.2.4. Let
$$X = \mathbb{P}^2$$
. Let $D = m\underbrace{(\text{line at } \infty)}_{\{z=0\}}$.

- 1. Let m=0. Then $V=\mathbb{C}\langle 1\rangle$, and $\mathcal{BL}=\emptyset$.
- 2. Let m=1. Then $C=\mathbb{C}\langle \frac{x}{z}, \frac{y}{z}, \frac{z}{z}\rangle \cong \mathbb{C}\langle 1, X, Y\rangle$, and $\mathcal{BL}=\emptyset$. The map $\varphi_D: \mathbb{P}^2 \to \mathbb{P}^2$ is precisely the identity.
- 3. Let m=2. Then $V=\langle \frac{x^2}{z^2},\frac{x^4}{z^2},\frac{y^2}{z^2},\frac{z}{z},\frac{y}{z},\frac{z}{z}\rangle$, and the map $\varphi_D:\mathbb{P}^2\to\mathbb{P}^5$ is an embedding given by $(x,y,z)\mapsto \langle x^2,xy,y^2,xz,yz,z^2\rangle$.

In general, if $H \subset \mathbb{P}^n$ is a hyperplane, then $\varphi_{\mathcal{O}(dH)} : \mathbb{P}^n \to \mathbb{P}^{\binom{d+n}{n}-1}$ is given by

$$(x_0, \ldots, x_n) \mapsto (d$$
-th order homogenous polynomials),

known as the d-th order Veronese embedding on \mathbb{P}^n .

Example 3.2.5. Let $X = \mathbb{P}^2$ with coordinates (x, y, z). Let H denote the hyperplane given by z = 0 and let D = 2H. Then $V = \{s \in \Gamma(\mathcal{O}(2H)) \mid s(0, 0, 1) = 0\}$, and

$$\begin{array}{c} V & \longleftarrow & \Gamma\left(\mathcal{O}\left(2H\right)\right) \\ \cong & & \uparrow & \qquad \uparrow \cong \\ \mathbb{C}\langle x^2, xy, y^2, xz, yz \rangle & \longleftarrow & \mathbb{C}\langle x^2, xy, y^2, xz, yz, z^2 \rangle \end{array}$$

commutes. Further, $\mathcal{BL}(V) = \{0\} = [0,0,1]$, and φ_V is a map $\mathbb{P}^2 \setminus \{0\} \to \mathbb{P}^4$ but does not extend to \mathbb{P}^2 . Indeed, we have that

$$\lim_{\substack{(0,y,1)\\y\to 0}} \varphi_V = \lim_{y\to 0} \left(0,0,y^2,0,y\right) = (0,0,0,0,1)$$

$$\parallel$$

$$\lim_{\substack{(x,0,1)\\x\to 0}} \varphi_V = \lim_{x\to 0} \left(x^2,0,0,x,0\right) = (0,0,0,1,0).$$

Note that for any $p \in X$, there exist \widetilde{X} and $\pi : \widetilde{X} \to X$ such that π restricted to $\pi^{-1}(X \setminus p)$ is an isomorphism and $\pi^{-1}(p)$ is a divisor on \widetilde{X} that is isomorphic to \mathbb{P}^1 .

Proposition 3.2.6. Let $Y \subset X$ be a submanifold of codimension $k \geq 2$. Let $\varphi : X \setminus Y \to Z$. Then there exist \widetilde{X} and $\pi : \widetilde{X} \to X$ such that π restricted to $\pi^{-1}(X \setminus Y)$ is an isomorphism and restricted to $\underbrace{\pi^{-1}(Y)}_{\text{divisor on } X}$ is a bundle with each fiber isomorphic to \mathbb{P}^{k-1} .

Notation. In this case, the space \widetilde{X} is denoted by $\mathrm{Bl}_Y(X)$.

3.3 Lecture 8

Recall our correspondence (†). We can add to it the class of all maps

$$X \setminus \mathcal{BL}(L) \to \mathbb{P}\left(\Gamma\left(X, L\right)^{\vee}\right).$$

Let's turn now to some higher-dimensional examples.

Example 3.3.1. Let $X = \mathbb{P}^2$, $L = \mathcal{O}(2)$, and $V = \{s \in \Gamma(X, \mathcal{O}(2)) \mid \text{ linearity condition}\}$. Then $\varphi_V : \mathbb{P}^2 \hookrightarrow \mathbb{P}^5$. Consider any homogenous polynomial $\sum a_{ijk}x^iy^jz^k$. Then our linearity condition may take any of the following forms.

• $\sum a_{ijk}x^iy^jz^k=0$ where a_{ijk} ranges over

$${a_{000}, a_{120}, a_{020}, a_{101}, a_{011}, a_{002}}.$$

- $a_{002} = 0$
- $\bullet \ a_{002} + a_{001} = 0.$

In the case of either of these last two, we get a map

$$\mathbb{P}^2 \xrightarrow{\varphi_V} \mathbb{P}^5 \xrightarrow{-\psi} \mathbb{P}^4$$

for any $p \in \mathbb{P}^5$. There are two scenarios to consider.

- (a) Suppose that $p \notin \operatorname{im} \varphi_V$. Then $\psi \circ \varphi_V$ is a morphism.
- (b) Suppose that $p = \varphi_V$ (001). Then ψ blows up at p. Consider the map $\varphi_V : \mathbb{P}^2 \setminus p \hookrightarrow \mathbb{P}^4$ given by $(x, y, z) \mapsto \underbrace{(x^2, xy, y^2, xz, y^2)}_{(x, y, z, u, v)}$. The image of this map is precisely im $\varphi_V \coprod \mathbb{P}^1 \subset \mathbb{P}^4$.

Terminology. In this setting, \mathbb{P}^1 is called an exceptional divisor.

Note that the equations

$$xz = y^2$$

$$zu = yv$$

$$xv = yu$$

together generate the relevant ideal.

Remark 3.3.2. If we took L to be $\mathcal{O}(n)$ with $n \neq 2$, then our generators would still be quadratic.

Now, fix a and b and let $x = \epsilon a$, $y = \epsilon b$, and z = 1 where $\epsilon \to 0$. Then

$$\varphi_V(x, y, z) = (\epsilon^2 a^2, \epsilon^2 ab, \epsilon^2 b^2, \epsilon a, \epsilon b)$$

$$\sim (\epsilon a^2, \epsilon ab, \epsilon b^2, a, b)$$

$$\rightarrow (0, 0, 0, a, b).$$

Question. Is im φ_V a manifold at $00010 = \varphi_V(1, b, a)$?

We have that

$$zu - yv \to \frac{z}{u} = \frac{y}{u} \frac{v}{u}$$
$$xv = yu \to \frac{x}{u} \frac{v}{u} = \frac{y}{u}.$$

More generally, let X be a complex n-manifold and let $p \in X$. Then $\mathrm{Bl}_p X = (X \setminus p) \coprod_{\mathbb{P}(T_p X)} \mathbb{P}^{n-1}$. There at least two ways of extending the map

$$X \setminus p \xrightarrow{\varphi_V} \mathbb{P}^n \xrightarrow{--\psi} \mathbb{P}^{n-1}$$

so that its image is a manifold at every point.

- (a) Provided that $\psi \circ \varphi_V$ is an embedding, then we can take $\mathrm{Bl}_p(X)$ to be the closure of $X \setminus p$ in \mathbb{P}^{n-1} .
- (b) Let U is any polydisk containing the origin. We can replace $(X \setminus p) \cup U$ with $(X \setminus p) \cup \widetilde{U}$ where \widetilde{U} denotes the blow-up of U at 0.

More generally still, let $Y^m \subset X^n$ be a closed submanifold. Then $\widetilde{X} := \operatorname{Bl}_Y(X) = (X \setminus Y) \coprod \mathbb{P}(N_Y X)$.

$$\mathbb{P}^{n-m-1} \longrightarrow \mathbb{P}\left(N_Y X\right)$$

$$\downarrow$$

$$V$$

We wish to find a line bundle L over Y and a subspace $V \subset \Gamma(X, L)$ such that $\mathcal{BL}_V = Y$. In this case, the closure of the image of $\varphi_V : X \setminus Y \to \mathbb{P}(V^{\vee})$ determines $(X \setminus Y) \cup \widetilde{U}$ on U where U denotes any tubular neighborhood of Y in X.

Alternatively, if we are given an embedding

$$Y \longleftrightarrow X \downarrow \qquad \qquad \downarrow \\ \mathbb{P}^{n-c} \longleftrightarrow \mathbb{P}^n$$

where c denotes the codimension of Y, then we can take $Bl_Y(X)$ to be the closure of $Bl_{\mathbb{P}^{n-c}}(\mathbb{P}^n \cap (X \setminus Y))$.

Example 3.3.3. Consider \mathbb{P}^3 with coordinates (x, y, z, w). We wish to resolve the cone $\{x^2 = y^2\} \subset \mathbb{P}^3$. Let $p = \{x = z = 0\}$. We have a commutative diagram

Then the exceptional divisor in $\mathrm{Bl}_p\left(\mathbb{P}^2\right)$ is isomorphic to $\mathbb{P}^2\cong\mathbb{P}\left(T_p\mathbb{P}^2\right)$, and the exceptional divisor in $\mathrm{Bl}_p(X)$ is isomorphic to the cone.

Example 3.3.4. Consider the quadratic map $\varphi: \mathbb{P}^2 \to \mathbb{P}^2$ given by $(x, y, z) \mapsto \left(\frac{1}{x}, \frac{1}{y}, \frac{1}{z}\right) = \underbrace{(yz, xz, xy)}_{(u, v, w)}$. Let

$$V = \{s \in \Gamma\left(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(2)\right) \mid s(001) = 0, \ s(010) = 0, \ s(100) = 0\},$$

which is isomorphic to $\Gamma(\underbrace{\mathcal{J}_{3 \text{ points}}}_{\text{ideal sheaf on 3 points}} \otimes \mathcal{O}(2))$. The fact that $\varphi^{-1} = \varphi$ yields the following properties.

- The line z = 0 collapses to the point u = v = 0.
- The line y = 0 collapses to the point u = v = 0.
- The point y = z = 0 blows up to the line u = 0.

$$y = 0$$

$$z = 0$$

$$v = 0$$

$$u = 0$$

$$v = 0$$

This hexagon is called the *del Pazzo surface of degree three*, denoted by dP_3 . Each of its lines is isomorphic to \mathbb{P}^1 .

Note 3.3.5. Suppose that C is a smooth curve and that $\dim X < 2$. Then $\varphi : C \setminus \mathsf{pt} \to X$ automatically extends. But if C were singular or $\dim X \ge 2$, then this would be false.

3.4 Lecture 9

Definition 3.4.1 (Picard group). Let X be a complex manifold. The *Picard group* Pic(X) of X is the group of all isomorphism classes of line bundles over X under \otimes .

Let $n \in \mathbb{N}$ and consider the family of line bundles $\{\mathcal{O}(k) \mid k \in \mathbb{Z}\}$ over \mathbb{P}^n .

Proposition 3.4.2. Pic $(\mathbb{P}^n) \cong \mathbb{Z}$ with generator $\mathcal{O}(1)$.

Let $\mathbb{P}^n = \mathbb{P}(V)$. We have an exact sequence

$$0 \longrightarrow L \longrightarrow \mathcal{O}_{\mathbb{P}^n} \otimes_{\mathbb{C}} V \longrightarrow \cdots$$

We have that

1.
$$\Gamma(\mathbb{P}^n, \mathcal{O}(1)) = \mathbb{C}\langle z_0, \dots, z_n \rangle = V^{\vee},$$

2.
$$\Gamma(\mathbb{P}^n, \mathcal{O}(-1)) = 0$$
, and

3.
$$\Gamma(\mathbb{P}^n, \mathcal{O}(k)) = \begin{cases} \operatorname{Sym}^k(V^{\vee}) & k \ge 0\\ 0 & k < 0 \end{cases}$$

Let $U_i = \{z \in \mathbb{P}^n \mid z_i \neq 0\}$ for each $i \in \{0, 1, ..., n\}$, so that $\mathbb{P}^n = \bigcup_{i=0}^n$. Let $Z_{ij} = \frac{z_j}{z_i}$, thereby endowing each U_i with local coordinates. Let s be a section of \mathcal{O} , so that

$$s = (s_i \in \Gamma(U_i, \mathcal{O}))_{i=0}^n.$$

Note that Z_i defines a section on U_j with $s_j = \frac{z_i}{z_j} = Z_{ji}$ for each $j = 0, \ldots, n$.

$$s_{j} = Z_{jk} \cdot s_{k}$$

$$\parallel \qquad \qquad \parallel$$

$$\frac{z_{i}}{z_{j}} = Z_{jk} \cdot \frac{z_{i}}{z_{k}}$$

We can establish the following properties.

1. If
$$\mathcal{O} = \mathcal{O}(1)$$
, then $s_i = Z_{ij}s_j$.

2. If
$$\mathcal{O} = \mathcal{O}(-1)$$
, then $s_i = Z_{ii}s_i$.

3. If
$$\mathcal{O} = \mathcal{O}(k)$$
, then $s_i = (Z_{ij})^k s_j$.

In summary,

	\mathcal{O} (trivial)	$\mathcal{O}(-1)$	$\mathcal{O}(1)$	$\mathcal{O}(k)$
LB	$\mathbb{P}^n \times \mathbb{C}$	tautological	dual	
Sheaf	1	Z_{ji}	Z_{ij}	$(Z_{ij})^k$
Divisor	0	$-H_{\text{h.p.}}$	+H	kH
Мар	pt	undefined	id	$\begin{cases} \text{Veronese} & k > 0 \\ \\ \text{undefined} & k < 0 \\ \\ \text{pt} & k = 0 \end{cases}$

Let X be a complex n-manifold. Then T_X consists of all local sections on an open set U with coordinates, say, z_1, \ldots, z_n . The set $\{\frac{\partial}{\partial z_i}\}$ is a basis for this, with each section of the form $\sum_{i=1}^n f_i \frac{\partial}{\partial z_i}$ where each f_i belongs to $\Gamma(U, \mathcal{O})$. For any other basis $\{\frac{\partial}{\partial w_i}\}$, we have that

$$\frac{\partial}{\partial w_i} = \sum \frac{\partial z_j}{\partial w_i} \frac{\partial}{\partial z_j}.$$

Note that $T_V \cong \mathcal{O}_V \otimes_{\mathbb{C}} V$. In general, $\Omega^i_V \cong \mathcal{O}_V \otimes \bigwedge^i V^{\vee}$.

Question. What is $T_{\mathbb{P}(V)}$?

Note 3.4.3 (Bundle associated to an *n*-manifold).

- 1. $T_X^{\vee} = \Omega \equiv \Omega^1$, whose transition functions are precisely the inverses of the transposes of those for T_X .
- 2. Let $\Omega^i = \bigwedge^i \Omega^1$. If i = n, then we call this space the canonical sheaf K_X or the dualized sheaf ω_X .
- 3. Recall the map $\bigwedge^i : GL(n) \to GL\binom{n}{i}$. If i = n, then this is precisely the determinant map.

Consider the exact sequence

$$0 \longrightarrow \mathcal{O} \longrightarrow \mathcal{O}(1)^{\oplus n+1} \longrightarrow T_{\mathbb{P}^n} \longrightarrow 0$$

$$1 \longmapsto (z_i) \qquad .$$

$$(a_i) \longmapsto \sum a_i \frac{\partial}{\partial z_i}$$

Terminology. The vector field given by $\sum z_i \frac{\partial}{\partial z_i}$ is known as the Euler vector field.

Moreover, we have a commutative diagram

$$0 \longrightarrow \underbrace{\mathcal{O}_{\mathbb{P}(V)}}_{\mathbb{C}} \longrightarrow \underbrace{\mathcal{O}_{\mathbb{P}(V)}(1)}_{V^{\vee}} \otimes V \longrightarrow T_{\mathbb{P}(V)} \longrightarrow ,$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathcal{O}_{V}(1) \otimes V \stackrel{\cong}{\longrightarrow} T_{V} \longrightarrow 0$$

Terminology. The top row of this diagram is known as the Euler sequence.

Therefore, the weight of V equals -1, whereas the weight of V^{\vee} equals +1.

Informally, any holomorphic function f on V is the same as a direct sum of homogenous functions of degree k, i.e., has the form

$$\bigoplus_{k=0}^{\infty} \Gamma\left(\mathbb{P}(V), \mathcal{O}(k)\right),\,$$

called the Taylor expansion of f.

Note 3.4.4. In general, we have an exact sequence

$$0 \longrightarrow \mathcal{O}(n) \longrightarrow \mathcal{O}^{(n+1)} \longrightarrow T_{\mathbb{P}}(-1) \longrightarrow 0 ,$$

which becomes the Euler sequence

$$0 \longrightarrow \mathcal{O} \longrightarrow \mathcal{O}(1) \oplus \mathcal{O}(1) \longrightarrow T_{\mathbb{P}^1} \longrightarrow 0$$

in the case where n=1. It follows that

$$K_{\mathbb{P}^n} = \mathcal{O}_{\mathbb{P}^n} \left(-n - 1 \right).$$

Lemma 3.4.5. If $0 \to A \to B \to C \to 0$ is an exact sequence of vector spaces, then

$$det(B) = det(A) \otimes det(C)$$
.

Corollary 3.4.6. $\mathcal{O}(2) \cong \det (\mathcal{O}(1) \oplus \mathcal{O}(1)) = \det(\mathcal{O}) \otimes \det(T) = \det(T)$.

Remark 3.4.7. Similarly, we can show that $\det (T_{\mathbb{P}^n}) = \mathcal{O}_{\mathbb{P}^n}(n+1)$.

Suppose that $X \subset Y$ is a submanifold of codimension 1. Then we have a short exact sequence

$$0 \longrightarrow T_X \longrightarrow (T_Y)|_X \longrightarrow N_{X/Y} \longrightarrow 0$$
.

Lemma 3.4.8. $N_{X/Y} \cong \mathcal{O}_Y(X)|_X$.

In other words, if $L \in \text{Pic}(Y)$, $s \in \Gamma(Y, L)$, and $X = \{s = 0\}$, then $N_{X/Y} \cong L|_{X}$.

Theorem 3.4.9 (Adjunction formula). $K_X \cong (K_Y \otimes_{\mathcal{O}_Y} \mathcal{O}_Y(X))|_X$

Proof. Note that $(K_Y^{-1})|_X = K_X^{-1} \otimes N_{X/Y}$. Thus,

$$K_X \cong K_Y \big|_X \otimes N_{X/Y}$$

$$\cong K_Y \big|_X \otimes \mathcal{O}_Y(X) \big|_X$$

$$\cong (K_Y \otimes \mathcal{O}_Y(X)) \big|_X.$$

3.5 Lecture 10

Proof of Lemma 3.4.8. Let $s \in \Gamma(Y, L)$. We can write $s = fs_0$, so that $ds = s_0 df + f ds_0$. Consider the short exact sequence

$$0 \longrightarrow T_X \longrightarrow T_Y \big|_X \stackrel{ds}{\longrightarrow} L \longrightarrow 0 .$$

Thus, ds transforms just as s_0 does.

Example 3.5.1.

1. Let $Y = \mathbb{P}^3$. Suppose that \widetilde{X} is a smooth curve of degree d. Then $K_Y = \mathcal{O}(-3)$, and $K_X = \mathcal{O}(d-3)|_X$. Further, if g denotes the genus of a surface, then Bézout's theorem implies that

$$2g - 2 = \deg(K_X) = d(d - 3)$$

$$\downarrow \downarrow$$

$$g = 1 + \frac{d(d - 3)}{2} = \frac{(d - 1)(d - 2)}{2}.$$

In particular,

$$\begin{array}{c|cccc} d & g \\ \hline 1 & 0 \\ 2 & 0 \\ 3 & 1 \\ 4 & 3 \\ 5 & 6 \\ \end{array}$$

2. Let $Y = \mathbb{P}^n$ and let $X \subset Y$ be of dimension d. Note that $K_X = \mathcal{O}_X$ precisely when d = n + 1. In particular,

$$\begin{array}{c|c} n & X \\ \hline 2 & \text{cubic / elliptic curve} \\ 3 & \text{quartic } (a \ K_3 \ surface) \\ 4 & \text{quintic} \\ \end{array}$$

Let $p_1, \ldots, p_n \in \mathbb{P}^N$, let $m_1, \ldots, m_n \in \mathbb{Z}_{\geq 1}$, and let $d \in \mathbb{Z}$. We wish to describe

$$\Gamma\left(\mathcal{J}_{\Sigma_{m_ip_i}}\left(d\right)\right) \coloneqq \left(\mathcal{J}_{\Sigma_{m_ip_i}} \otimes \mathcal{O}(d)\right).$$

For simplicity, let N=2.

Definition 3.5.2. If n = 1, then imposition is $\mathsf{Imp}_m \equiv \operatorname{codim} (\Gamma(\mathcal{J}_{mp}(d), \Gamma(\mathcal{O}(d))))$.

Proposition 3.5.3. $\mathsf{Imp}_m = \binom{m+1}{2}$.

Definition 3.5.4. Consider the space Γ .

1. The actual dimension of Γ is the dimension of Γ as a vector space.

- 2. The virtual dimension vd (Γ) of Γ is the quantity $\binom{d+2}{2} 1 \sum_{i} \binom{m_i+1}{2}$.
- 3. The expected dimension of Γ is the quantity max (vd (Γ) , 0).

Conjecture 3.5.5. The actual dimension always equals the expected dimension.

Answer. This is false. For example, let N=2, d=1, $m_i=1$, and n=3. Then $\Gamma=0$, so that $\mathbb{P}(\Gamma)=\emptyset$. Hence the expected dimension is zero, but the actual dimension is positive whenever the p_i are co-linear. \square

This leads us to the following modification of Conjecture 3.5.5.

Conjecture 3.5.6. If the p_i are in general position, then the actual dimension equals the expected dimension.

Answer. This is **false**. To see this, let d=2 and $N=n=m_i=2$. Consider a conic C through five points. Here, our conjecture holds. But if instead N=2, d=4, n=5, and $m_i=2$, then the virtual dimension is precisely $\binom{4+2}{2}-5\cdot 3=0$. Since the square of C exists, it follows that our conjecture fails.

We can improve Conjecture 3.5.6 as follows.

Conjecture 3.5.7. If the actual dimension is different from the expected dimension, then $\Gamma\left(\mathcal{J}_{\sum_{m_i p_i}}(d)\right)$ has a base curve.

Answer. This is unknown. See the article "Linear Systems of Plane Curves" by Rick Miranda.

Consider the map $|\mathcal{O}(d)|: \mathbb{P}^2 \hookrightarrow \mathbb{P}^{\binom{d+2}{2}-1}$. We also have a map

$$\mathbb{P}^{2} \xrightarrow{|\mathcal{J}_{\sum_{p_{i}}(d)}|} \mathbb{P}^{\dim -1}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\mathbb{P}^{2} \longrightarrow \mathbb{P}^{2}$$

$$\mathbb{P}^{2} \longrightarrow \mathbb{P}^{2}$$

Proposition 3.5.8. Consider the blow-up $\pi: \underbrace{\widetilde{\mathbb{P}^2}}_{X} \to \mathbb{P}^2$. We have that

$$\operatorname{Pic}(X) \cong \mathbb{Z}\langle \pi^* (\mathcal{O}(1)), E_1, \dots, E_n \rangle$$

where E_i denotes the divisor collapsing to p_i .

Remark 3.5.9.

Good: $\pi^* \mathcal{O}(d) - \sum m_i E_i \longleftrightarrow \mathcal{J}_{\sum m_i p_i}(d)$.

Better: $\Gamma(X, ") = \Gamma(\mathbb{P}^2, ")$

Best: π_* ('') = ''.

Conjecture 3.5.10. Any line bundle $L := (\pi^* \mathcal{O}(d) - \sum m_i E_i)$ has the expected dimension of the space of sections unless $\mathcal{BL}(L)$ contains a (-1)-curve, i.e., a smooth curve C of genus zero such that $C^2 = -1$.

4 KÄHLER MANIFOLDS 16

Example 3.5.11 ((-1)-curve). Let d = 1, n = 2, and $m_1 = m_2 = 1$. If $C \in \mathcal{O}(1)(-p - q)$, then $C^2 = 1^2 - 1 - 1 = -1$. In general,

$$\mathcal{O}(d)\left(\left(-\sum m_I E_i\right)\left(\mathcal{O}(d)-\sum m_i p_i\right)\right) = dd' - \sum m_i m_i'.$$

In \mathbb{P}^2 , this means the number of intersections other than the p_i .

Space	C^2
$\mathcal{O}(1)$	1
$\mathcal{O}(1)(-p)$	0
$\mathcal{O}(1)(-p-q)$	-1
:	
$\mathcal{O}(2)$	4
$\mathcal{O}(2)\left(-p_1\right)$	3
$\mathcal{O}(2)\left(-p_1-p_2\right)$	2
<u>:</u>	
$\mathcal{O}(2)\left(-p_1-\cdots-p_4\right)$	0
$\mathcal{O}(2)\left(-\sum_{i=1}^{5} p_i\right)$	-1

4 Kähler manifolds

4.1 Lecture 11

Consider the following Hasse diagram of subgroups:

where Sp $(2n, \mathbb{R})$ denotes the group of real $2n \times 2n$ symplectic matrices, i.e., matrices M satisfying

$$M^{t} \begin{bmatrix} 0 & I_{n} \\ -I_{n} & 0 \end{bmatrix} M = \begin{bmatrix} 0 & I_{n} \\ -I_{n} & 0 \end{bmatrix}.$$

Similarly, we can view various areas of geometry as refinements of certain others. Specifically,

4 KÄHLER MANIFOLDS 17

Before investigating Kähler geometry, we establish some basic geometric concepts.

Definition 4.1.1. Let X be a real manifold. An almost complex structure on X is a bundle map $I: TX \to TX$ such that $I^2 = -1$.

Note that the eigenvalues of I are precisely i and -i.

Notation.

- 1. Let $T^{1,0}$ denote the eigenspace of i.
- 2. Let $T^{0,1}$ denote the eigenspace of -i.

Any complex manifold X has a natural almost complex structure. Indeed, given local coordinates x_i, y_i on X, define I by $\frac{\partial}{\partial x_i} \mapsto \frac{\partial}{\partial y_i}$ and $\frac{\partial}{\partial y_i} \mapsto -\frac{\partial}{\partial x_i}$. It follows that any manifold with an almost complex structure has even dimension.

Now, consider the complexification of our tangent bundle, $T^{\mathbb{C}}X \equiv TX \otimes_{\mathbb{R}} \mathbb{C}$.

Proposition 4.1.2.

- 1. $T^{\mathbb{C}}X \cong T^{1,0} \oplus T^{0,1}$
- 2. $T^{*\mathbb{C}}X \cong T^{*1,0} \oplus T^{*0,1}$

Define, formally, the complex coordinates $z_j = x_j + iy_j$. Note that $T^{\mathbb{C}}X$ has as basis $\{\frac{\partial}{\partial z_j}, \frac{\partial}{\partial \bar{z}_j}\}$ and that $T^{*\mathbb{C}}X$ has as basis $\{dz_j, d\bar{z}_j\}$ where $dz_j \equiv dx_j + idy_j$.

Notation.

- 1. $\bigwedge^k X := \bigwedge^k T^*X$.
- 2. $\bigwedge^{p,q} X := \bigwedge^p T^{*1,0} X \otimes_{\mathbb{C}} \bigwedge^q T^{*0,1} X$.

Note 4.1.3. Let X be an n-dimensional complex manifold.

- 1. $\left(\bigwedge^k T^*X\right) \otimes \mathbb{C} = \bigwedge_{\mathbb{C}}^k (T^*X \otimes \mathbb{C}).$
- 2. $\left(\bigwedge^k X\right) \otimes \mathbb{C} = \bigoplus_{p+q=k} \bigwedge^{p,q} X$.

Therefore, $\left(\bigwedge^k X\right) \otimes \mathbb{C}$ can be decomposed according to the counting equation $\binom{2n}{k} = \sum \binom{n}{p} \binom{n}{q}$.

Let U and V be open in \mathbb{C}^n . Let $f:U\to V$ be holomorphic. Then the map $df:TU\to TV$ extends to a map $df^{\mathbb{C}}:\mathcal{T}^{\mathbb{C}}U\to T^{\mathbb{C}}V$ that preserves both $T^{1,0}$ and $T^{0,1}$.

Let $\mathcal{A}^{p,q} = \Gamma(\bigwedge^{p,q})$, i.e., $\mathcal{A}^{p,q}(U) = \Gamma(U, \bigwedge^{p,q})$. Consider the exterior derivative $d: \mathcal{A}^k \to \mathcal{A}^{k+1}$. With π denoting the projection map, define the operators

$$\partial = \pi^{p+1,q} \circ d$$

$$\bar{\partial} = \pi^{p,q+1} \circ d$$

on $A^{p,q}$. Locally, we have that

$$df = \frac{\partial f}{\partial x_i} dx_i + \frac{\partial f}{\partial y_i} dy_i = \frac{\partial f}{\partial z_i} dz_i + \frac{\partial f}{\partial \bar{z}_i} d\bar{z}_i$$

for any $f \in \mathcal{A}^{0,0}$. By the Cauchy-Riemann equations, it follows that f is holomorphic if and only if $\bar{\partial} f = 0$.

4 KÄHLER MANIFOLDS 18

Remark 4.1.4. Any (p,q)-form locally looks like $f_{IJ}dz_I \wedge \bar{z}_J$.

Proposition 4.1.5.

- 1. $d = \partial + \bar{\partial}$.
- 2. $\partial^2 = 0 = \bar{\partial}^2$.
- $\partial \bar{\partial} = -\bar{\partial} \partial \bar{\partial}$
- 4. $\partial (\alpha \wedge \beta) = \partial \alpha \wedge \beta + (-1)^{p+q} \alpha \wedge \partial \beta$ for any $\alpha \in \mathcal{A}^{p,q}$ and $\beta \in \mathcal{A}^{r,s}$.

Lemma 4.1.6 (Single-variable Poincaré). Consider the disk $B_{\epsilon} \subset \overline{B_{\epsilon}} \subset U \subset \mathbb{C}$ where U is open. Let $\alpha = f d\overline{z} \in \mathcal{A}^{0,1}(U)$ and

$$g(z) = \frac{1}{2\pi i} \int_{\overline{\mathbb{R}}} \frac{f(w)}{w - z} dw \wedge d\overline{w}.$$

Then $\bar{\partial}g = \alpha$.

Lemma 4.1.7 (Multi-variable Poincaré). Consider the polydisk $B_{\epsilon} \subset \overline{B_{\epsilon}} \subset U \subset \mathbb{C}^n$ where U is open. Let $\alpha \in \mathcal{A}^{p,q}$ with q > 0 and $\bar{\partial}\alpha = 0$. Then there is some $\beta \in \mathcal{A}^{p,q-1}(B_{\epsilon})$ such that $\bar{\partial}\beta = \alpha$.

Remark 4.1.8. If U is contractible, then any differential form on U is closed if and only if it is exact.

Let $U \subset \mathbb{C}^n$ be open and let I denote the natural almost complex structure on U. Let g be a Riemannian metric on U.

Definition 4.1.9 (Hermitian metric).

- 1. We say that g is compatible with I or (almost) Hermitian if g(u, v) = g(Iu, Iv).
- 2. If g is Hermitian, then the real (1,1)-form $\omega \in \mathcal{A}^{1,1}(U) \cap \mathcal{A}^2(U)$ defined by

$$\omega\left(u,v\right) = g\left(Iu,v\right)$$

is called the fundamental form of g.

Notation. $h := g - i\omega$.

Definition 4.1.10. A Hermitian matrix M is positive-definite if $z^*Mz > 0$ for every nonzero complex column vector z.

Note that h is a positive-definite form in the sense that, locally, its component functions define a positive-definite matrix at any given point.

Example 4.1.11. Let
$$g = \underbrace{dx^2}_{dx \otimes dx} + dy^2 = \sum_{i=1}^n dx_i^2 + dy_i^2 \in T^* \otimes T^* \subset (T^* \otimes T^*) \otimes_{\mathbb{R}} \mathbb{C}$$
. Since

$$dz \wedge d\bar{z} = (dx + idy) \wedge (dx - idy) = -2idx \wedge dy,$$

it follows that

$$\omega = dx \otimes dy - dy \otimes dx = \frac{i}{2}dz \wedge d\bar{z}.$$

Moreover, we see that

$$h = z - i\omega$$

$$= dx^2 - idxdy + idydx + dy^2$$

$$= dx (dx - idy) + idy (d_x + -idy)$$

$$= (dx + idy) (dx - idy)$$

$$= dz \otimes d\bar{z}.$$

For each $z \in \mathbb{C}^n$, define the matrix $(h_{ij})(z)$ by

$$h_{ij}(z_1,\ldots,z_n) = h\left(\frac{\partial}{\partial x_i},\frac{\partial}{\partial x_j}\right).$$

Proposition 4.1.12. Let I be an almost complex structure on $U \subset X$ and let g be compatible with I. Then $d\omega = 0$ if and only if for each $x \in X$, there exist a neighborhood U' of x and a holomorphic map $f: U' \to U$ such that f^*g oscillates the standard metric to the second order, i.e., $(h_{ij}) = \operatorname{id} + O(|z|^2)$.

Notation. In this case, we write $h \approx id$.

Definition 4.1.13 (Kähler manifold). Consider the four-tuple (X, I, g, ω) . We say that X is a Kähler manifold if $d\omega = 0$. In this case, we call g a Kähler metric on X and ω a Kähler form.

Definition 4.1.14. Let (X, I, g, ω) be a Kähler structure with dim X = n.

- 1. The Lefschetz operator $L: \bigwedge^k X \to \bigwedge^{k+2} X$ is defined by $\alpha \mapsto \alpha \wedge \omega$.
- 2. The Hodge *-operator *: $\bigwedge^k X \to \bigwedge^{2n-k} X$ is defined by the property

$$\alpha \wedge *\beta = \hat{g}(\alpha, \beta) \omega^n$$

where \hat{g} is induced by g and ω^n denotes the (positively oriented) volume form on X.

3. The dual Lefschetz operator $\Lambda: \bigwedge^k X \to \bigwedge^{k-2} X$ is defined as the composite $*^{-1} \circ L \circ *$.

Note 4.1.15.

- 1. In coordinates in which $h \approx id$, we have that $*dx^I = dx^\partial$ where $\partial := I^{\mathbb{C}}$??.
- 2. Λ is \mathcal{O} -linear.

4.2 Lecture 12

Proposition 4.2.1. Let X be a complex manifold. Let ω be a closed real positive-definite form of type (1,1), i.e., locally, $\omega = \frac{i}{2} \sum h_{ij} d_{z_i} \wedge d\bar{z}_j$ such that the matrix $(h_{ij}(p))$ is positive-definite for each p. Then there exists a Kähler metric g on X such that ω equals the fundamental form of g.

Since every Kähler form is positive-definite, it follows that the set \mathbb{K}_X of all Kähler forms on X is precisely the set of all closed real positive-definite forms of type (1,1).

Definition 4.2.2. Let V be a vector space over \mathbb{R} . A subset $C \subset V$ is a *convex cone* if $av_1 + bv_2 \in C$ for any $v_1, v_2 \in C$ and any $a, b \in \mathbb{R}_{>0}$.

20

Corollary 4.2.3. Suppose that X is compact. Then \mathbb{K}_X is an open convex cone in the infinite-dimensional real vector space $S := \{ \omega \in \mathcal{A}^{(1,1)}(X) \cap \mathcal{A}^2(X) \mid d\omega = 0 \}.$

Idea. The fact that \mathbb{K}_X is a convex cone follows from the fact that the set of all positive-definite matrices is a convex cone. It remains to show that \mathbb{K}_X is open. Since X is compact, it has a finite open cover $\{U_i\}$. The set $P_{U_i} \subset S$ of all forms that are positive-definite on U_i is open. Thus, $\bigcap_i P_{U_i} = \mathbb{K}_X$ is also open. \square

Remark 4.2.4. It turns out that $S \cong H^2(X, \mathbb{R})$.

Example 4.2.5.

- 1. The form $\omega \equiv \frac{i}{2}dz \wedge d\bar{z}$ is Kähler on \mathbb{C} and is exact.
- 2. The same form descends to a Kähler form on the torus \mathbb{C}/Λ , which is not exact.
- 3. Consider the inclusion $i: X \to Y$ of a closed submanifold. If ω is Kähler on Y, then $i^*\omega$ is Kähler on X.

Note 4.2.6. Let $f: X \to Y$ be holomorphic and let ω be a Kähler form on Y. It is *not* necessarily true that $f^*\omega$ is Kähler on X. For example, if $f(x) = \mathsf{pt}$ for all $x \in X$, then $f^*\omega$ is the zero form and thus not positive. In general, f must be injective. For example, if $f: C \to \mathbb{C}$ is a double cover where C is a Riemann surface, then C inherits a Kähler form only outside the *ramification of* f, i.e., the set

 $\{c \in C \mid \text{there is no neighborhood } U \text{ of } c \text{ such that } f \upharpoonright_U \text{ is injective}\}.$

This is precisely the set of points at which df is nonzero.

Example 4.2.7.

1. Consider the open cover $\{U_i\}_{1\leq i\leq n}$ of \mathbb{P}^n where $U_i\equiv\{z\in\mathbb{P}^n\mid z_i\neq 0\}$. Define $\varphi_i:U_i\stackrel{\cong}{\longrightarrow}\mathbb{C}^n$ by

$$(z_0,\ldots,z_n)\mapsto \underbrace{\left(\frac{z_0}{z_i},\ldots,\frac{z_{i-1}}{z_i},\frac{z_{i+1}}{z_i},\ldots,\frac{z_n}{z_i}\right)}_{(w_1,\ldots,w_n)}.$$

Then $\{(U_i, \varphi_i)\}$ is a holomorphic atlas on \mathbb{P}^n . For each i, let

$$\omega_i = \frac{i}{2\pi} \partial \bar{\partial} \log \left(\sum_{l=0}^n \left| \frac{z_l}{z_i} \right|^2 \right).$$

By way of φ_i , this becomes

$$\frac{i}{2\pi}\partial\bar{\partial}\log\left(1+\sum_{k=1}^n|w_k|^2\right).$$

Exercise 4.2.8. Show that $\omega_i \upharpoonright_{U_i \cap U_j} = \omega_j \upharpoonright_{U_i \cap U_j}$.

Therefore, the ω_i patch together to form a metric ω on \mathbb{P}^n , known as the Fubini-Study metric.

Exercise 4.2.9. Show that ω is closed, real, positive, and of type (1,1).

It follows that ω is a Kähler metric.

21

2. Any branched cover of \mathbb{P}^n admits a Kähler metric (which must be different from the pullback of a Kähler metric on \mathbb{P}^n). For example, consider an elliptic curve $E \to \mathbb{P}^1$, which fits into a commutative square

$$E \longrightarrow \mathbb{P}^1$$

$$\downarrow \qquad \qquad \uparrow \qquad \vdots$$

$$E \longleftarrow \mathbb{P}^2$$

Definition 4.2.10. A complex manifold is *projective* if it is isomorphic to a closed submanifold of projective space.

Proposition 4.2.11. Any projective complex manifold is Kähler.

Proof. This follows from Example 4.2.5(3) together with Example 4.2.7(1).

Definition 4.2.12. Let X be a complex manifold. Let D be a first-order operator on $\mathcal{A}^*(X)$.

1. The adjoint of D is

$$D^* \equiv -* \circ D \circ *$$

2. The Laplacian associated to D is

$$\Delta_D \equiv DD^* + D^*D.$$

Definition 4.2.13. The Laplace operator is $\Delta \equiv dd^* + d^*d$.

Example 4.2.14.

1. Let
$$D = \partial$$
. Then $\partial^* (f_{IJ} dz^I \wedge dz^J) = \sum_{i \in I} f_{IJ} dz^{I-i} \wedge d\bar{z}^J$.

2. Let D = d. Let (x_1, \ldots, x_n) be local coordinates on X. Then

$$d(fdx^{I}) = \sum_{i \notin I} \frac{\partial f}{\partial x_{i}} dx^{n} \wedge dx^{I}$$
$$d^{*}(fdx^{I}) = \sum_{i \in I} \frac{\partial f}{\partial x_{i}} dx^{I-i}.$$

Therefore,

$$d \circ d^* \left(f dx^I \right) = \frac{\partial^2}{\partial x_i \partial x_j} dx^{I - i \cup j}$$
$$= \sum_{\substack{i \in I \\ j \notin I}} \dots + \sum_{\substack{i = j \in I}} \dots .$$
$$d^* \circ d \left(f dx^I \right) = 0 + \sum_{\substack{i = j \notin I}} \dots ,$$

so that
$$\Delta_D = \sum \frac{\partial^2 f}{\partial x_i^2}$$
.

Theorem 4.2.15 (Kähler identities). Let (X, I, g, ω) be a Kähler manifold.

1.
$$\left[\bar{\partial}, L\right] = 0 = \left[\partial, L\right].$$

2.
$$[\partial^*, \Lambda] = 0 = [\bar{\partial}^*, \Lambda].$$

3.
$$[\bar{\partial}^*, L] = i\partial$$
 and $[\partial^*, L] = -i\bar{\partial}$.

4.
$$\Delta_{\partial} = \Delta_{\bar{\partial}} = \frac{1}{2}\Delta$$
, and Δ commutes with $*$, ∂ , $\bar{\partial}$, ∂^* , $\bar{\partial}^*$, L , and Λ .

5 LIE ALGEBRAS 22

5 Lie algebras

Let G be any Lie group. For any $g \in G$, $\ell_g : G \to G$ is an isomorphism of \mathbb{C} -manifolds. Thus, if V is a vector field on G, then so is $(\ell_g)_* V$.

Definition 5.0.1. We say that V is *left-invariant* if $(\ell_q)_*V = V$ for every $g \in G$.

Definition 5.0.2 (Lie algebra). The *Lie algebra* \mathfrak{G}_G of G is the space of left-invariant vector fields on G under the Lie bracket.

Consider the commutative diagram

$$\mathfrak{G}_{G} \xrightarrow{\alpha} (\mathscr{X}(G), [-, -])$$

$$\downarrow^{\text{eval}_{1}} .$$

$$T_{1}(G)$$

Proposition 5.0.3. α is an isomorphism of vector spaces.

Example 5.0.4. Let $G = \mathrm{GL}(n,\mathbb{C})$, which is a complex Lie group. We have that $\mathrm{GL}(n,\mathbb{C})$ is an open submanifold of the vector space $M_n(\mathbb{C})$. Hence \mathfrak{G}_G is isomorphic to $M_n(\mathbb{C})$ under the *commutator bracket*, which is given by [A, B] = AB - BA.

Definition 5.0.5 (Matrix exponential). Define the map $e^{(\cdot)}: M_n(\mathbb{C}) \to \mathrm{GL}_n(\mathbb{C})$ by

$$e^A = \sum_{n=0}^{\infty} \frac{A^n}{n!}.$$

This is well-defined. Indeed, letting $\|\cdot\|$ denote the operator norm, we see that $\frac{\|A^n\|}{n!} \leq \frac{\|A\|^n}{n!}$ on any bounded subset $S \subset \mathbb{C}^n$. But $\sum_{n=0}^{\infty} \frac{\|A\|^n}{n!} = e^{\|A\|}$ on S, and thus e^A converges uniformly on S. Moreover, one can show that its limit must be invertible.

Exercise 5.0.6. Let $G = \mathrm{SL}_2(\mathbb{C})$, which is complex Lie group. Show that

$$\mathfrak{G}_{G} = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{2}\left(\mathbb{C}\right) \mid a+d=0 \right\}.$$

Proof. Any element X of \mathfrak{G}_G generates a local flow $\theta:D\subset\mathbb{R}\times G\to G$. Since X is left-invariant, it is complete. In particular, the maximal integral curve θ^1 is defined on \mathbb{R} . Left-invariance also implies that for any $s\in\mathbb{R}$, $L_{\theta^1(s)}\circ\theta^1$ is an integral curve starting at $\theta^1(s)$. But the curve given by $t\mapsto\theta^1(s+t)$ is also an integral curve starting at $\theta^1(s)$. Hence $\theta^1(s+t)=\theta^1(s)\theta^1(s)$. By the uniqueness of maximal integral curves, this proves that $\theta^1(s)$ is a smooth group homomorphism $\mathbb{R}\to G$, known as a one-parameter subgroup of G. Moreover, any one-parameter subgroup γ of G has the form $\gamma(t)=e^{tA}$ where $A=\gamma'(0)\in T_1(G)\subset T_1(GL_2(\mathbb{C}))\cong M_2(\mathbb{C})$. It follows that

$$X \in T_1(G) \iff \forall t \in \mathbb{R}, \ e^{tX} \in G$$

$$\iff \forall t \in \mathbb{R}, \ \det\left(e^{tX}\right) = 1$$

$$\iff \forall t \in \mathbb{R}, \ e^{t\operatorname{tr}(X)} = 1$$

$$\iff \forall t \in \mathbb{R}, \ t\operatorname{tr}(X) = 0$$

$$\iff \operatorname{tr}(X) = 0.$$

5 LIE ALGEBRAS 23

Intuitively, Theorem 4.2.15 means that the space $\mathcal{A}^{p,q}(X)$ has a symmetry encoded in the $\mathrm{SL}_2(\mathbb{C})$ -action.

5.1 Lecture 13

Definition 5.1.1. Let V be a vector space endowed with a non-degenerate symmetric bilinear form $\langle \cdot, \cdot \rangle$. The *orthogonal group* $O(V, \langle \cdot, \cdot \rangle)$ is the group of all linear maps $f: V \to V$ such that $\langle fx, fy \rangle = \langle x, y \rangle$ for any $x, y \in V$.

Example 5.1.2. Consider the Lie group $G := O(\mathbb{R}^n)$. Define the smooth map $\varphi : GL_n(\mathbb{R}) \to GL_n(\mathbb{R})$ by $A \mapsto AA^t$, which as constant rank. Then $G = \varphi^{-1}(I_n)$, so that $T_{I_n}G = \ker d\varphi_{I_n}$. Since $d\varphi_{I_n}(A) = A^t + A$ for any $A \in M_n(\mathbb{R})$, it follows that \mathfrak{G}_G consists of all $n \times n$ skew-symmetric matrices.

: