# Deep Learning - Foundations and Concepts Chapter 6. Deep Neural Networks

nonlineark@github

February 21, 2025

#### Outline

- Limitations of Fixed Basis Functions
- Multipayer Networks
- Oeep Networks
- Error Functions
- Mixture Density Networks

## The curse of dimensionality

In spaces of higher dimensionality, the number of combinations of values must be considered could be huge. This effect is known as combinatorial explosion:

- A polynomial regression of order M for a single input variable needs M+1 parameters. If there are D input variables, the number of parameters needed will be  $\binom{M+D}{M}$ .
- ullet The histogram based classification for 1-dimensional input needs N buckets. If the input is D-dimensional, the number of buckets needed will be  $N^D$ .

For a machine learning model, this usually means that the amount of data needed to generlize accurately grows exponentially.

## High-dimensional spaces

High-dimensional spaces can defeat one's geometrical intuitions:

- In spaces of high dimensionality, most of the volume of a hypersphere is concentrated in a thin shell near the surface.
- In spaces of high dimensionality, the probability mass of the Gaussian is concentrated in a thin shell at a specific radius (a soap bubble).

#### Data manifolds

Although data may be in high-dimensional spaces, real data will generally be confined to a region of the data space having lower effective dimensionality. Effectively, neural networks learn a set of basis functions that are adpated to data manifolds.

#### Data manifolds

Figure: Images of a handwritten digit that lives on a nonlinear three-dimensional manifold



#### Data manifolds

Figure: Natural images vs. randomly generated images



## Data-dependent basis functions

- Simple basis functions that are chosen independently of the problem being solved can run into significant limitations.
- Using expert knowledge to hand-craft the basis functions was superseded by data-driven approaches in which basis functions are learned from the training data.
- Methods such as radial basis functions and support vector machines have been superseded by deep neural networks, which are much better at exploiting very large data sets efficiently.

#### Parameter matrices

Consider a basic neural network model having two layers of learnable parameters:

$$a_m^{(1)} = \sum_{d=1}^{D} w_{md}^{(1)} x_d + w_{m0}^{(1)}$$

$$z_m^{(1)} = h(a_m^{(1)})$$

$$a_k^{(2)} = \sum_{d=1}^{M} w_{km}^{(2)} z_m^{(1)} + w_{k0}^{(2)}$$

where h is a differentiable, nonlinear activation function.

#### Parameter matrices

Figure: Network diagram for a two-layer neural network



#### Parameter matrices

The bias parameters can be absorbed into the set of weight parameters, so the two-layer neural network can be represented as:

$$y_k(x; w) = f(\sum_{m=0}^{M} w_{km}^{(2)} h(\sum_{d=0}^{D} w_{md}^{(1)} x_d))$$
$$y(x; w) = f(W^{(2)} h(W^{(1)} x))$$

where f and h are activation functions evaluated on each vector element separately.

## Universal approximation

- For a wide range of activation functions, two-layer feed-forward networks can approximate any function defined over a continuous subset of  $\mathbb{R}^D$  to arbitrary accuracy.
- However, in a practical application, there can be huge benefits in considering networks having many more than two layers that can learn hierarchical internal representations.

## Universal approximation

Figure: Two-layer neural networks are universal approximators



#### Hidden unit activation functions

- Activation functions for the output units are determined by the kind of distribution being modelled.
- For the hidden units, the only requirement is that they need to be differentiable.
- Obviously, the identity function, sometimes used as the activation function for output units, is not a good option for hidden units.

#### Hidden unit activation functions

Figure: A variety of nonlinear activation functions



# Weight-space symmetries

Consider a two-layer network with M hidden units having  $\tanh$  activation functions and full connectivity in both layers:

- Changing the sign of all the weights and the bias feeding into a particular hidden unit can be compensated by changing the sign of all the weights leading out of that hidden unit:
  - ullet  $2^M$  equivalent weight vectors.
- Interchange a particular hidden unit with a different hidden unit:
  - *M*! equivalent weight vectors.

#### Deep networks

We can easily extend the two-layer network architecture to any finite number  ${\cal L}$  of layers:

$$z^{(l)} = h^{(l)}(W^{(l)}z^{(l-1)})$$
  $l = 1, \dots, L$ 

where  $h^{(l)}$  denotes the activation function associated with layer l, and  $W^{(l)}$  denotes the corresponding matrix of weight and bias parameters.

## Hierarchical representations

The deep neural network architecture encodes a particular form of inductive bias, namely the outputs are related to the input space through a hierarchical representation:

- Low-level features in early layers, e.g., edges.
- Higher-level features in subsequent layers, e.g., eyes.
- Combined in later layers to detect high-level concept, e.g., cats.

## Distributed representations

Consider a hidden layer with M hidden units:

- ullet Conceptually, each hidden unit can be thought of as representing a feature, so this hidden layer can represent M different features.
- ullet However, the network can learn a different representation, in which combinations of hidden units represent features, so this hidden layer can represent  $2^M$  different features.

## Representation learning

Consider a neural network for a two-class classification problem:

- The final layer can be viewed as a simple linear classifier.
- In the representation of the last hidden layer, the two classes must be well separated by a linear surface.
- This neural network transforms the input data into a representation that's easy for classification purposes.

This ability to discover a nonlinear transformation of the data that makes subsequent tasks easier to solve is called representation learning. The learned representation is sometimes called the embedding space.

## Transfer learning

- The process of learning parameters using one task that are then applied to one or more other tasks is called pre-training:
  - Send the new training data once through the fixed pre-trained network to obtain the training inputs in the new representation.
  - Iterative gradient-based optimization can then be applied just to the smaller network consisting of the final layers.
- Instead of using a pre-trained network as a fixed pre-processor, it is also possible to apply fine-tuning in which the whole network is adapted to the data for the new task.
- In multitask learning, a network jointly learns more than one related task at the same time. For example, spam email filter for different users.
- Meta-learning: Learn the learning algorithm itself. For example, few-shot learning, one-shot learning.

## Contrastive learning

Contrastive learning focuses on extracting meaningful representations by contrasting positive and negative pairs of instances. Given:

- x: The anchor.
- $x^+$ : Positive.
- $\{x_1^-, ..., x_N^-\}$ : Negative.
- $f_w$ : The neural network function that maps points from input space to a representation space, governed by learnable parameters w. Futher, we require  $||f_w(x)|| = 1$ .

The loss function (called InfoNCE loss) is defined by:

$$E(w) = -\log \frac{\exp(f_w(x)^T f_w(x^+))}{\exp(f_w(x)^T f_w(x^+)) + \sum_{n=1}^N \exp(f_w(x)^T f_w(x_n^-))}$$

#### General network architectures

The neural network architecture does not have to be organized into a sequence of fully-connected layers. The network diagram only needs to be restricted to a feed-forward architecture. Each unit in such a network computes a function given by:

$$z_k = h(\sum_{j \in \mathcal{A}(k)} w_{kj} z_j + b_k)$$

where A(k) denotes the set of ancestors of node k, and  $b_k$  denotes the associated bias parameter.

#### General network architectures

Figure: A neural network having a general feed-forward topology



## Regression

For single target variable:

$$p(t|x; w) = \mathcal{N}(t; y(x; w), \sigma^2)$$

$$E(w) = \frac{1}{2} \sum_{n=1}^{N} (y(x_n; w) - t_n)^2$$

$$\frac{\partial E}{\partial a_n} = y(x_n; w) - t_n$$

For multiple target variables:

$$p(t|x; w) = \mathcal{N}(t; y(x; w), \sigma^2 I)$$

$$E(w) = \frac{1}{2} \sum_{n=1}^{N} ||y(x^n; w) - t^n||^2$$

$$\frac{\partial E}{\partial a^n} = (y(x^n; w) - t^n)^T$$

# Binary classification

For single target variable:

$$p(t|x;w) = y(x;w)^{t} (1 - y(x;w))^{1-t}$$

$$E(w) = -\sum_{n=1}^{N} (t_n \log y_n + (1 - t_n) \log(1 - y_n))$$

$$\frac{\partial E}{\partial a_n} = y_n - t_n$$

# Binary classification

For multiple target variables:

$$p(t|x; w_1, \dots, w_K) = \prod_{k=1}^K y(x; w_k)^{t_k} (1 - y(x; w_k))^{1 - t_k}$$

$$E(w_1, \dots, w_K) = -\sum_{n=1}^N \sum_{k=1}^K (t_k^n \log y_k^n + (1 - t_k^n) \log(1 - y_k^n))$$

$$\frac{\partial E}{\partial a^n} = (y^n - t^n)^T$$

#### Multiclass classification

$$p(t|x; w_1, \dots, w_K) = \prod_{k=1}^K y_k(x; w_1, \dots, w_K)^{t_k}$$
$$E(w_1, \dots, w_K) = -\sum_{n=1}^N \sum_{k=1}^K t_k^n \log y_k^n$$
$$\frac{\partial E}{\partial a^n} = (y^n - t^n)^T$$

# Robot kinematics example

- ullet For many simple regression problems, the conditional distribution p(t|x) we choose to model is Gaussian.
- Practical machine learning problems can often have significantly non-Gaussian distributions.
- Forward problem (many-to-one) vs. inverse problem (multimodal):
  - Kinematics of a robot arm:
    - Forward problem: Given the joint angles, find the end effector position.
    - Inverse problem: Given the end effector position, find the joint angles.
  - Symptoms in the human body:
    - Forward problem: Given the presence of a particular disease, find the pattern of symptoms.
    - Inverse problem: Given the pattern of symptoms, predict the presence of a disease

# Robot kinematics example

Figure: A robot kinematics example



The inverse problem for tutorial purposes:

- $\{x_1, \ldots, x_N\}$  is uniformly sampled from (0, 1).
- $t_n = x_n + 0.3\sin(2\pi x_n) + \epsilon$ , where  $\epsilon$  is some uniform noise over the interval (-0.1, 0.1).
- ullet The inverse problem is obtained by exchanging the roles of x and t.

Figure: The inverse problem for tutorial purposes



We will model p(t|x) using a mixture model in which both the mixing coefficients as well as the component densities are flexible functions of x:

$$p(t|x) = \sum_{k=1}^{K} \pi_k(x) \mathcal{N}(t; \mu_k(x), \sigma_k^2(x)I)$$

where there are K components in total, and  $t \in \mathbb{R}^L$ .

We now take the various parameters of the mixture model to be governed by the outputs of a neural network that takes x as its input:

- $\pi_k(x)$ :
  - ullet K output units, with pre-activations denoted by  $a_k^\pi.$
  - Activation function:  $\pi_k(x) = \frac{\exp(a_k^\pi)}{\sum_{j=1}^K \exp(a_j^\pi)}$ .
- $\mu_k(x)$ :
  - ullet KL output units, with pre-activations denoted by  $a_{kl}^{\mu}.$
  - Activation function: The identity function,  $\mu_{kl}(x) = a_{kl}^{\mu}$ .
- $\bullet$   $\sigma_k(x)$ :
  - K output units, with pre-activations denoted by  $a_k^{\sigma}$ .
  - Activation function:  $\sigma_k(x) = \exp(a_k^{\sigma})$ .

## Gradient optimization

The error function (the negative log of the maximum likelihood) takes the form:

$$E(w) = -\sum_{n=1}^{N} \log(\sum_{k=1}^{K} \pi_k(x_n) \mathcal{N}(t_n; \mu_k(x_n), \sigma_k^2(x_n) I))$$

## **Gradient optimization**

Let's compute the derivatives of the error of the nth term with respect to the output-unit pre-activations:

$$\frac{\partial E_n}{\partial a_k^{\pi}} = -\frac{1}{\sum_{j=1}^K \pi_j \mathcal{N}_{nj}} \sum_{j=1}^K \mathcal{N}_{nj} \frac{\partial \pi_k}{\partial a_k^{\pi}} = \pi_k - \frac{\pi_k \mathcal{N}_{nk}}{\sum_{j=1}^K \pi_j \mathcal{N}_{nj}} 
\frac{\partial E_n}{\partial a_k^{\mu}} = -\frac{1}{\sum_{j=1}^K \pi_j \mathcal{N}_{nj}} \pi_k \mathcal{N}_{nk} (-\frac{1}{\sigma_k^2}) (\mu_k - t_n)^T 
= \frac{\pi_k \mathcal{N}_{nk}}{\sum_{j=1}^K \pi_j \mathcal{N}_{nj}} \frac{(\mu_k - t_n)^T}{\sigma_k^2} 
\frac{\partial E_n}{\partial a_k^{\sigma}} = -\frac{1}{\sum_{j=1}^K \pi_j \mathcal{N}_{nj}} \pi_k (-\frac{L}{\sigma_k} \mathcal{N}_{nk} + \mathcal{N}_{nk} \frac{||\mu_k - t_n||^2}{\sigma_k^3}) \frac{d\sigma_k}{da_k^{\sigma}} 
= \frac{\pi_k \mathcal{N}_{nk}}{\sum_{j=1}^K \pi_j \mathcal{N}_{nj}} (L - \frac{||\mu_k - t_n||^2}{\sigma_k^2})$$

#### Predictive distribution

Compute the conditional mean and variance, we see that:

$$E(t|x) = \int tp(t|x)dt = \sum_{k=1}^{K} \pi_k \int t\mathcal{N}(t; \mu_k, \sigma_k^2 I)dt = \sum_{k=1}^{K} \pi_k \mu_k$$

$$E(||t - x||^2 |x) = E(||t||^2 |x) - ||E(t|x)||^2$$

$$= \sum_{k=1}^{K} \pi_k (||\mu_k||^2 + \sigma_k^2) - ||\sum_{k=1}^{K} \pi_k \mu_k||^2$$

Compared with least-squares result, the mixture density network is more general:

- It can reproduce the least-squares result as a special case.
- ullet The variance is more general because it is a function of x.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● めぬぐ

#### Predictive distribution

Figure: Plot of the approximate conditional mode

