Special Topics in Logic and Security 1 Domain Interaction

Paul Irofti

Master Year II, Sem. I, 2021-2022

What happens with the Pts domain in the program below?

```
int A[4][8] = {...};
int i, j;
int sum = 0;

for (i = 0; i < 4; i++)
    for (j = 0; j < 8; j++)
        sum += A[i][j];

printf("sum = %d\n", sum);</pre>
```

What happens with the Pts domain in the program below?

```
int A[4][8] = {...};
int i, j;
int sum = 0;

for (i = 0; i < 4; i++)
    for (j = 0; j < 8; j++)
        sum += A + 8*sizeof(*A)*i + sizeof(*A)*j;

printf("sum = %d\n", sum);</pre>
```

What happens with the Pts domain in the program below?

for (i = 0; i < 4; i++)
for (j = 0; j < 8; j++)
sum += A +
$$8*sizeof(*A)*i + sizeof(*A)*j$$
;

On an architecture where int has 64-bits:

for (i = 0; i < 4; i++)
for (j = 0; j < 8; j++)
sum += A +
$$8*8*i + 8*j$$

If A starts at byte 0, it leads to the following memory access sequence:

$$\underbrace{0, 8, 16, 32, \dots, 56}_{\text{A[O]}} \ \underbrace{64, 72, \dots, 120}_{\text{A[I]}} \ \underbrace{128, 136, \dots, 184}_{\text{A[2]}} \ \underbrace{192, 200, \dots, 248}_{\text{A[3]}}$$

$$\underbrace{0,8,16,32,\dots,56}_{\text{A[0]}} \ \underbrace{64,72,\dots,120}_{\text{A[1]}} \ \underbrace{128,136,\dots,184}_{\text{A[2]}} \ \underbrace{192,200,\dots,248}_{\text{A[3]}}$$

We can rewrite

in the Lin domain where a and x are:

$$a = [64 \ 8], \quad x = [i \ j]$$

which leads to two half-spaces in the *Ineq* domain:

$$0 \le i \le 3, \quad 0 \le j \le 7 \quad , [64i \le 192], \quad [8j \le 56]$$

that define a convex surface in the polyhedra domain Poly.

But what can we say about the Pts domain, what can we say about the values taken by pointers accessing array A?

Aligned versus Unaligned Access

The way we declare the array

```
int A[4][8];
A[i][j] == *(A + 8*sizeof(*A)*i + sizeof(*A)*j)
```

offers information regarding the way memory access is intended to happen: 32 integers laid out in 4 contiguous memory blocks.

What happens when we write:

```
u = *(A + 2);

v = *(A + 111);

t = *(A + 254);
```

what are the values of u, v and t?

Some architectures constrain memory access to be aligned in hardware.

Intel, AMD and ARM allow unaligned access. Thus, the entire range [0,255] has to be taken into consideration, not just the set $\{0,8,16,\ldots,248\}$.

Example: Unaligned Access

https://stackoverflow.com/questions/30192694/jump-to-the-middle-of-an-instruction

Granger Domain

The *Granger* domain is used for variables inference and analysis that take the form $c+m\mathbb{Z}$

```
\{\ldots, -2m+c, -m+c, c, c+m, c+2m, \ldots\}
```

the domain is abstract enough to permit constructions of the type

```
int i = 5;
struct {
    int a;
    char v[100];
    short f;
} a[10];
a[i].f = 0;
*(a + 13) = 2;
```

Exercise: Show how we can model the two references.

Multiplicity Domain

Proposition

For the analysis of simple vectors and arrays, that use basic types (e.g. int, char), it suffices to show that a variable is a multiple of 2^n in order to prove that the memory access is aligned.

Exercise: Prove the proposition on the example that was using array A[4][8].

Definition

Let $\textit{Mult} = \mathcal{X} \to \{0,\dots,64\}$ be the functional space that records the number of least significant bits (LSB) that are always zero, null.

Remark

The linear transform $M \in Mult$ assigns a value n = M(x) to all the variables $x \in \mathcal{X}$.

Example: Multiplicity Domain

Remark

The linear transform $M \in Mult$ assigns a value n = M(x) to all the variables $x \in \mathcal{X}$.

Suppose that all the variables are represented on at most 64-bits.

Type	Var.	Max Mult.	
int	Х	M(x) = 63	•
int32_t	У	M(y) = 31	
short	f	M(f) = 15	
char	С	M(c) = 7	

Thus, no matter the type, x=0 can be represented as M(x) = 64.

The Lattice $(Mult, \subseteq_M, \vee_M, \wedge_M)$

Let $M, M', M_1, M_2 \in Mult$.

Update: $M \to M' = M[x \to n'] \implies M'(x) = n' \land M'(y) = M(y), \forall y \neq x.$

<u>Join:</u> $M' = M_1 \vee_M M_2$ s.t. $M'(x) = \min(M_1(x), M_2(x)), \forall x \in \mathcal{X}$.

Inclusion: $M_1 \subseteq_M M_2 \iff M_1(x) \geq M_2(x), \forall x \in \mathcal{X}.$

Exercise: Find the \top element: the largest element from the lattice. Explain.

Let $Equ = Lin \times \mathbb{Z}$ be the set of linear equations of the type e = c, where $e \in Lin, c \in \mathbb{Z}$.

<u>Meet</u>: The intersection operator adds the information provided by a new equation: $M' = M \wedge_M (e = c)$.

Definition

 $\land_M : Mult \times Equ \rightarrow (Mult \cup \{\bot_M\})$, where \bot_M denotes an unsatisfiable (impossible) state.

The \wedge_M Operation

Definition

Let $\delta:\mathbb{Z}\to\{0,\dots,64\}$ s.t. $\delta(c)$ represents the number of unused (zero) <u>LSB</u> from c.

Let $e \equiv a_1x_1 + \cdots + a_nx_n$ s.t. $a_i \neq 0, \forall i = 1, \dots, n$. We recompute the multilpicity of variable x_i by rewriting e = c

$$-a_j x_j = a_1 x_1 + \dots + a_{j-1} x_{j-1} + a_{j+1} x_{j+1} + \dots + a_n x_n - c$$

Remark

The multiplicity of $a_i x_i$ is $\delta(a_i) + M(x_i)$, and the multiplicity of c is simply $\delta(c)$.

Intuition: Mult is similar to the exponent operations: $2^m 2^n = 2^{m+n}$.

Proposition

The operation \land_M adds information, thus the number of null <u>LSB</u> from x_j can not decrease. On the contrary, this number can increase due to the presence of c.

Number of null LSB's from x_j cannot decrease

$$-a_jx_j = a_1x_1 + \cdots + a_{j-1}x_{j-1} + a_{j+1}x_{j+1} + \cdots + a_nx_n - c$$

The equation's right-hand-side multiplicity has to be greater than or equal to the one of every individual term:

$$\min(\delta(c), \min_{i,i\neq j} \delta(a_i) + M(x_i))$$

Example (A[i][j]=*(A + 8*8*i + 8*j))
64*i + 8*j
$$\implies \min(\delta(64) + M(i), \delta(8) + M(j)) = \min(5 + M(i), 2 + M(j)).$$

Let $i = 2, j = 4$, then $\min(5 + 1, 3 + 2) = 5$, and $64i + 8j = 160_2 = 1010\ 0000.$

If $a_j>1$ \forall $a_j<-1$, then the number in the equation above has to be reduced by $\delta(a_j)$ in order to obtain the new $M'=M(x_j\to n')$

$$M' = M \left[x_j \to \max \left(M(x_j), \min(\delta(c), \min_{i,i \neq j} \delta(a_i) + M(x_i)) - \delta(a_j) \right) \right]$$

Example: Updating the Multiplicity

Let M be the initial multipliers state of the three variables x, y, z, where x is a multiple of 8, and y and z are multiples of 2.

We add the equation $x+y+2z=0\in Equ$ that resulted from a <u>pointer</u> arithmetic problem in the domain of M.

$$M' = M \wedge_M \{x + y + 2z = 0\}$$

which we solve by iteratively updating the muliplicity of each variable.

	M(x)	M(y)	$\delta(2) + M(z)$	$\delta(0)$
М	3	1	1 + 1	64
M'(x)	3	1	1 + 1	64
M'(y)	3	2	1 + 1	64
M'(z)	3	2	1 + 1	64

Exercise: What happens if we add the equation x + y + 2z = 1?

Properties

Proposition

The \wedge_M operation leads to an invalid state \perp_M if

$$\min_{i=1,\ldots,n} \delta(a_i) + M(x_i) > \delta(c)$$

Complexity: The update of a single variable has to take into account all the variables: quadratic cost. In practice we have to deal with at most 2–3 variables.

Remark

The special operations from Poly are solved similarly:

- $M' = M \triangleright x := e \implies M(x) = M(t) = 0$ thus updating the terms from e does not bring any new information
- $M \triangleright x := y \gg n \implies M(x)$ is at least (M(y) n), M(y) does not change

Properties

Alignment: We can verify if the access is aligned through the operation $M \wedge_M \{x = 2^n\}$. If the result is \perp_M then we have an illegal access error.

Projection: Let the function $\exists_x : Mult \to Mult$ and let $M' = \exists_x (M)$. Then M'(x) = 0 and $M'(y) = M(y), \forall y \neq x$.

Theorem

 $(Mult, \subseteq_M, \land_M, \lor_M)$ forms a complete lattice.

Exercise: Prove the theorem.

Poly and Mult Interaction

Let $Num = (Poly \times Mult) \cup \{\bot_N\}$, where \bot_N represents an <u>unreachable</u> state, that is impossible to attain, in the program definition. We define:

- $(P, M) \subseteq_N (P', M') \iff (P \subseteq_P P') \land (M \subseteq_M M')$
- $(P', M') = (P_1, M_1) \vee_N (P_2, M_2) \iff (P' = P_1 \vee_P P_2) \wedge (M' = M_1 \vee_M M_2)$
- $\bullet \ (P',M') = (P,M) \rhd x := e \iff (P'=P\rhd x := e) \land (M'=M\rhd x := e)$
- $(P', M') = (P, M) \triangleright x := e \gg n \iff (P' = P \triangleright x := e \gg n) \land (M' = M \triangleright x := e \gg n)$
- $(P', M') = \exists_x (P, M) \iff (P' = \exists_x (P)) \land (M' = \exists_x (M))$
- $(P, M) \land_N \{e = c\} = \begin{cases} \bot_N & \text{if } P' = \emptyset \lor M' = \bot_M \\ (P', M') & \text{otherwise} \end{cases}$, where

$$P' = P \wedge_P \llbracket \{e = c\} \rrbracket$$
 and $M' = M \wedge_M \{e = c\}$.