Thème 6 – Dipôle électrostatique

1. Généralités

Un dipôle électrostatique, centré en un point O, est constitué de deux charges ponctuelles opposées +q et -q (avec q>0), situées sur l'axe (O,\vec{u}_z) aux points respectifs P et N distants de a=NP. On repère tout point M de l'espace par ses coordonnées sphériques (r,θ,φ) de centre O dans la base $(\vec{u}_r,\vec{u}_\theta,\vec{u}_\phi)$.

- 1- Donner l'expression générale du potentiel électrostatique V(M) créé en M par le dipôle.
- 2- On se place dans le cadre de l'approximation dipolaire : $r \gg a$. Établir dans ce cadre une expression approchée de V(M) en fonction de q, a, ε_0 et des coordonnées sphériques du point M.
- 3- Vérifier que $V(M) = \frac{1}{4\pi\varepsilon_0} \frac{\vec{p} \cdot \vec{r}}{r^3}$. Exprimer le moment dipolaire électrique \vec{p} du dipôle.
- 4- Expliquer, en prenant l'exemple de la molécule de chlorure d'hydrogène (HCl), l'origine du moment dipolaire permanent de certaines molécules.
- 5- Montrer que le champ $\vec{E}(M)$ créé en M par le dipôle s'écrit en coordonnées sphériques sous la forme :

$$\vec{E}(M) = \frac{p}{4\pi\varepsilon_0 r^3} \left(2\cos\theta \,\vec{u}_r + \sin\theta \,\vec{u}_\theta\right).$$

- 6- Le dipôle est plongé dans un champ électrostatique extérieur uniforme \vec{E}_{ext} . Que dire de la résultante des forces \vec{F} subies par le dipôle ? Montrer que le dipôle subit toutefois un couple de forces de moment : $\vec{\Gamma} = \vec{p} \wedge \vec{E}_{ext}(M)$. Quel est l'effet de ce couple ?
- 7- Exprimer en fonction de \vec{p} et \vec{E}_{ext} l'énergie potentielle d'interaction U du dipôle avec le champ extérieur. En déduire la position d'équilibre stable du dipôle. On supposera que \vec{p} est constant, donc indépendant du champ \vec{E}_{ext} (modèle du dipôle rigide).

2. Application : molécule d'ammoniac

La molécule d'ammoniac NH_3 , de géométrie pyramidale, possède un moment dipolaire permanent p = 1,49 D où $1 \text{ D} = 0,33 \times 10^{-30} \text{ C.m}$.

- 8- Représenter qualitativement sur la figure ci-contre le moment dipolaire électrique \vec{p} de la molécule d'ammoniac. On rappelle que l'atome d'azote est plus électronégatif que l'atome d'hydrogène.
- 9- Soit P le point à la verticale de l'atome d'azote dans le plan formé par les trois atomes d'hydrogène. Exprimer le moment dipolaire $p_{\rm NH}$ de la liaison N-H en fonction du moment dipolaire p de la molécule et de l'angle α entre la liaison N-H et la droite (NP). Calculer $p_{\rm NH}$ sachant que $\alpha = 69,1^{\circ}$.

- 10- Pour une liaison N-H donnée, tout se passe comme si l'azote possède une charge (dite partielle) $-\delta e$ et l'atome d'hydrogène une charge $+\delta e$ où δ est un nombre sans dimension, appelé pourcentage d'ionicité de la liaison N-H, tel que $0<\delta<1$. Exprimer δ en fonction de $p_{\rm NH}$, e et de la longueur a de la liaison N-H. Calculer δ sachant que a=0,10 nm.
- 11- Calculer l'énergie potentielle propre U_p de la molécule d'ammoniac. On exprimera le résultat en J, puis en eV.
- 12- On place une molécule d'ammoniac dans un champ électrique extérieur uniforme de valeur $E_{\rm ext}=1\times10^5~{\rm V.m^{-1}}$. Calculer l'énergie potentielle d'interaction minimale U_i de la molécule avec ce champ. On exprimera le résultat en J, puis en eV.
- 13- Comparer U_p et U_i . Conclure quant à la cohésion de la molécule.