УНИВЕРСИТЕТ ИТМО

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа М3215	_К работе допущен
Студент Васильков Д.А, Лавренов Д.А.	Работа выполнена
Преподаватель Тимофеева Э.О.	

Рабочий протокол и отчет по лабораторной работе №3.13 "Магнитное поле Земли"

1) Цель работы

- 1. Выполнить измерительные работы для определения направления общего магнитного поля, которое генерируется Землей и системой Гельмгольцевых катушек.
- 2. Выявить горизонтальный элемент магнитного поля Земли.

2) Задачи, решаемые при выполнении работы

- 1. Произведение измерительных работ
- 2. Определение среднего уровня тока в катушках
- 3. Вычисление магнитного поля в катушках
- 4. Создание графика зависимости
- 5. Вычисление углового коэффициента графика и анализ ошибок
- 6. Сопоставление результата, полученного в ходе данного эксперимента, с табличным значением

3) Объект исследования

1. Измерение магнитного поля Земли с использованием компаса и кольца Гельмгольца.

4) Метод экспериментального исследования

1. Прямые и косвенные многократные измерения

5) Рабочие формулы и исходные данные

$$\gamma = \frac{\sin(\alpha)}{\sin(\varphi - \alpha)}$$

$$B = \mu_0 \left(\frac{4}{5}\right)^{\frac{3}{2}} \frac{I * n}{R};$$

$$n = 100 \text{ витков,}$$

$$R = 0,15 \text{м}$$

6) Измерительные приборы

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Амперметр	Цифровой	0-300mA	0,1mA
2	Компас	Аналоговый	0-360°	5°

7) Схема установки.

Рис. 7. Параметры установки: $R=0.15~\mathrm{M}$ — радиус катушек; n=100 — число витков в каждой из катушек

8) Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

					<u>-</u>	
					$\sin(\alpha_i)$	
α_{i}	I_1, A	I_2 , A	I_{3} , A	<i>, A</i>	$\sin(\varphi - \alpha_i)$	B_{c} , мк T л
10 ⁰	14,3	13,2	13,2	13,567	0,347	8,154
20^{0}	19,5	18,1	17,9	18,500	0,532	11,120
30 ⁰	23,5	24,6	24,4	24,167	0,653	14,525
40 ⁰	26,1	26,7	28,1	26,967	0,742	16,208
50 ⁰	29,2	29,1	30,7	29,667	0,815	17,831
60 ⁰	33,3	31,1	31,4	31,933	0,879	19,194
70 ⁰	34,0	33,1	35,5	34,200	0,940	20,556
80 ⁰	36,3	33,6	36,1	35,333	1,000	21,237
90^{0}	39,5	40,0	38,0	39,167	1,064	23,541
100^{0}	40,0	39,6	39,4	39,667	1,137	23,842
110 ⁰	41,0	41,1	43,7	41,933	1,227	25,204
120 ⁰	47,2	46,0	47,3	46,833	1,347	28,149
130 ⁰	53,1	54,3	53,9	53,767	1,532	32,317
140 ⁰	66,3	65,1	65,7	65,700	1,879	39,489

9) Расчет результатов косвенных измерений (таблицы, примеры расчетов).

$$\gamma = \frac{sin(10)}{sin(160-10)} = 0,347$$
 рад $B = 0.00000126 * 0.715 * \frac{0.014*100}{0.715} * 10^6 = 8.154$ мкТл Воспользуемся МНК:
$$b = \frac{\sum_{i=1}^{14} \left((\gamma i - \gamma)(Bci - Bc) \right)}{\sum_{i=1}^{14} (\gamma i - \gamma)^2} = 20.39$$
 $a = Bc - b\gamma = 0.994$ $\gamma = 20.39x - 0.994$

10) Расчет погрешностей измерений (для прямых и косвенных измерений).

Для МНК:
$$S_b = \frac{1}{D} * \frac{\sum di^2}{n-2} = 0.011$$

$$D = \sum (\gamma i - \gamma)^2 = 2.135$$

$$di = Bi - (a + b\gamma_i)$$

$$d_1 = 0.078$$

$$S_a = \left(\frac{1}{n} + \frac{\gamma^2}{D}\right) * \frac{\sum di^2}{n-2} = 0.012$$

$$\Delta b = 2S_b = 0.0239$$

11)Графики (перечень графиков, которые составляют Приложение 2).

В_с = В_с(у_i), где у_i - отношение синусов[рад], В_с - значения мп катушек Гельмгольца [мкТл]

12)Окончательные результаты.

$$B_{\rm 3емли} = (20.39 \pm 0.0239) \, {\rm MкТл}$$
; $\varepsilon = 0.117 \, \%$

13)Выводы и анализ результатов работы.

В ходе лабораторного эксперимента мы определили значение магнитного поля Земли, которое составило Вс = 20.39 мкТл. Была построена диаграмма, отображающая зависимость $Bc(\gamma)$, и было обнаружено, что эта зависимость является линейной. Отметим, что квадратное отклонение оказалось незначительным.