Exercise 3

3-1 The circuit shown in Fig.2.1 illustrates a single-channel MOS resistor with a W/L of $2\mu m/2\mu m$. Using Table.2.1 model parameters calculate the small-signal on resistance of the MOS transistor at various values for V_S and fill in the table below. (Note that the transistor was in linear region, $V_B=0$, $I_{DS}=0$)

$V_{\rm S}({ m V})$	$R(\Omega)$
0.0	
1.0	
2.0	
3.0	
4.0	
5.0	

Fig.3. 1

3-2 An NMOS with W=50 μ m and L=0.5 μ m operates in the saturated region and its layout is folded shown as Fig. 2.2. Calculate the all capacitances by using the parameters in Table2.2 and $C_{\rm ox}$ =3.8×10⁻³ F/m, $V_{\rm R}$ =0.6V. Assume that the minimum size (lateral) of S/D region is 1.5 μ m

Fig.3. 2

- 3-3 There is an N-type current source, I_D is 0.5mA, and the drain-source voltage V_{DS} must more than 0.4V when it works as a current source. If the minimum output resistance is 20 K Ω , determine the length and width of the device by using the parameters in Table.2.2.
- 3-4 A "ring" MOS structure is shown in Fig.2.3. Explain how the device operations and estimate its equivalent aspect ratio. Calculate the drain junction capacitance of the structure. (use Cj and Cjsw)

Fig.3. 3

4 Find the small-signal model (g_m , g_{mb} , g_{ds}) for an n-channel transistor with the drain at 4 V, gate at 4 V, source at 2 V, and the bulk at 0 V. Assume the model parameters from Table.2.1, and W/L = 10 μ m/1 μ m.

Table.2. 1

Typical Parameter Value						
Parameter Symbol	Parameter Description	n- Channel	p- Channel	Units		
V_{T0}	Threshold voltage(V _{BS} =0)	0.7	-0.8	V		
K	Transconductance parameter(in saturation)	134	50	$\mu A/V^2$		
γ	Bulk threshold parameter	0.45	0.4	$V^{1/2}$		
λ	Channel length modulation parameter	0.1	0.2	V ⁻¹		
2 фг	Surface potential at strong inversion	0.9	0.8	V		

$$*K' = \frac{1}{2}\mu C_{ox}$$

Table.2.2

NMOS Model						
LEVEL=1	VTO=0.7	GAMMA=0.45	PHI=0.9			
PSUB=9e+14	LD=0.08e-6	UO=350	LAMBDA=0.1			
TOX=9e-9	PB=0.9	CJ=0.56e-3	CJSW=0.35e-11			
MJ=0.45	MJSW=0.2	CGDO=0.4e-9	JS=1.0e-8			
PMOS Model						
LEVEL=1	VTO=-0.8	GAMMA=0.4	PHI=0.8			
PSUB=5e+14	LD=0.09e-6	UO=100	LAMBDA=0.2			
TOX=9e-9	PB=0.9	CJ=0.94e-3	CJSW=0.32e-11			
MJ=0.5	MJSW=0.3	CGDO=0.3e-9	JS=0.5e-8			

上表给出的是 0.5μm 工艺 level 1 MOS SPICE 模型参数的典型值,其中的参数定义如下:

VSB=0 时的阈值电压 (单位: V) VTO: 体效应系数 (单位: V^{1/2}) GAMMA: (单位: V) PHI: $2\Phi_{\rm F}$ (单位: m) TOX: 栅氧厚度 (单位: cm⁻³) NSUB: 衬底掺杂浓度 (单位: m) LD: 源/漏侧扩散长度

UO: 沟道迁移率 (单位: cm2/(v/s))

(单位: V⁻¹) 沟道长度调制系数 LAMBDA: 单位面积的源/漏结电容 (单位: F/m²) CJ: 单位长度的源/漏侧壁结电容 (单位: F/m) CJSW: 源/漏结内建电势 (单位: V) PB: CJ公式中的幂指数 (无单位) MJ: CJSW 等式中的幂指数 (无单位) MJSW: 单位宽度的栅/漏交叠电容 (单位: F/m) CGDO: (单位: F/m) CGSO: 单位宽度的栅/源交叠电容

(单位: A/m²)

源/漏结单位面积的漏电流

JS: