Try 1:

$$2+5=7$$
 [7, 3, 2, 6]
 $7+3=10$ [10, 2, 6]
 $10+2=12$ [12, 6]
 $12+6=18$ [18]

Try2:

$$2+3=5$$
 [5,5,2,6]
 $5+2=7$ [7,5,6]
 $5+6=11$ [7,11]

* If I pick smaller element first then cost will be minimum.

Case 1 Case 2 Case 3

Step 1
$$x + y$$
 $x + z$ $y + z$

Step 1 $x + y$ $x + z$ $y + z$

Step 2: $(x + y) + z$ $(x + z) + y$ $(y + z) + x$
 $(x + z) + z$ $(x + z) + z$ $(x + z) + x$

Approach 1: Sort and add,
212356

(3) add first two element
(3) insertion sort.

TC:
$$n \log n + N^2$$
 $n \times (n \log n)$

TC: $n \log n + N^2$ $n \times (n \log n)$

SC: $n \log n + N^2$ $n \times (n \log n)$

SC: $n \log n + N^2$ $n \times (n \log n)$

SC: $n \log n + N^2$ $n \times (n \log n)$

Therefore $n \times (n \times n)$ $n \times (n \times n)$

Therefore $n \times (n \times n)$ $n \times (n \times n)$

Therefore $n \times (n \times n)$ $n \times (n \times n)$

Therefore $n \times (n \times n)$ $n \times (n \times n)$

Therefore $n \times (n \times n)$

Implementation of heap * we can implement heap using array. simply because it is a complete Dinorry

parent i

child => left = 2i+1 right = 2i+2 child: i

parent: (2-1)/2

Insert as number in Minheap. insert (10) 1. Complete Binary Tree: add the element at

```
2. if (arrEpi) > arr [i]) &wap.
Pseudo code
     heap []
     insert (heap, K)
          heap add (K)
          i = heap.Size -1.
          while (1>0)}
               Pi = (1-1)//2
              if (heap [pi] > heap [i]) }
                  swap (heap, pi, i);
```



```
Implementation
         heap []
         swop (heap, 0, hap-lingth-1)
         heapify (heap [], i)
             While (2i+1 < N)

& 11 add achick for 2i+2
                 x = min (heapti), heapt2i+1),
                                         heap [21+2])
                 ib (x == heap(i))
break
                 else if (x = = heap[2i+1])

swap (heap, i, 2i+1)
```

@15e swep (heap, i, 21+2)

Build a heap (Min hup) AEJ2 5, 13, -2, 11, 27, 31, 0, 19 Ideal 1 => 1) Sort the array -2, 0, 5, 11, 13, 19, 27, 31Tic: nlogn 27 31

Ideal: insert (heap, R)

log(n)

All element

Tic: nlogn

Idea 3

Total elements = N

Anthomatic grometric progres

$$3 = \frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{4}{10} + \frac{7}{10} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{10} + \frac{7}{10} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{10} + \frac{7}{10} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{10} + \frac{1}{10} = \frac{9}{10} = \frac{1}{10} = \frac{1}{1$$

$$= \frac{1}{1-\frac{1}{2}}$$

$$\frac{S-S}{2}=1$$

(m/2)-1'

tor Cint i = (n/2-1), i >= 0; i --
s heapity (heap = 3, i);

=> 410 No

Merge N Sorted away:

 $a = \begin{bmatrix} 2, 3, 11, 15, 20 \end{bmatrix}$ $b = \begin{bmatrix} 1, 5, 7, 9 \end{bmatrix}$ $c = \begin{bmatrix} 0, 2, 4 \end{bmatrix}$ $d = \begin{bmatrix} 3, 4, 5, 6, 7, 8 \end{bmatrix}$ $e = \begin{bmatrix} -2, 5, 10, 30 \end{bmatrix}$

K array

take two array and merge them and do for all. Idea 1: Ideal minheap. in dex

add first element of all the Extract an element -> add in the array

pick next clement of

same array and

insert Tic: K (logn + logn) = 2 Klog (n) = Klog(n)