Docket No.: 59585(71526)

Application No. 10/656,617 Amendment dated December 28, 2005 Reply to Office Action of September 28, 2005 Page 2

AMENDMENTS TO THE CLAIMS

This following listing of claims will replace all prior listings for the application.

Listing of claims:

1. (currently amended) A process for the production of an optically active amino alcohol represented by the following formula (I)

$$R^{3}$$
 R^{4}
 R^{5}
 A^{2}
 R^{1}
 R^{2}
 A^{1}
 R^{2}
 A^{2}
 R^{1}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{2}
 R^{5}
 R^{2}
 R^{5}
 R^{5

-(wherein, R², R³, R⁴, and R⁵ each independently is a hydrogen atom, a lower alkyl group or an optionally-substituted phenyl group; R² or R³ may be bonded to R⁴ or R⁵ forming a ring together with the adjacent carbon atoms; A¹ is -(CH₂)_m- while A² is -(CH₂)_n- (where m and n each is an integer of 0 to 3 and m + n is 1 to 3); * is an asymmetric carbon atom, A¹, A², m, n and * have the same meanings which will be defined below where the relative configuration of hydroxyl group to amino alkoxycarbonyl group on each of the asymmetric carbons marked * is trans) or a salt thereof, comprising by reacting an optically active hydroxycarboxylate represented by the following formula (IV)

$$R^{3}$$
 R^{4}
 R^{5}
 A^{2}
 A^{2}
 A^{2}
 A^{2}
 A^{2}
 A^{3}
 A^{2}
 A^{3}
 A^{2}
 A^{3}
 A^{4}
 A^{4

(wherein, R¹ is an alkyl group having 1 to 6 carbon(s); R², R³, R⁴, to R⁵, A¹, A², m, n and * have the same meanings as defined above where the relative configuration of hydroxyl group to amino group on each of the asymmetric carbons marked * is trans) each independently is hydrogen atom, a lower alkyl group or an optionally substituted phenyl group; with proviso that R² and R⁴ or R² and R⁵ or R³ and R⁴ or R³ and R⁵ taken

Application No. 10/656,617 Docket No.: 59585(71526)

Amendment dated December 28, 2005 Reply to Office Action of September 28, 2005 Page 3

together with the carbon atoms to which they are attached optionally form' a ring or fused ring; A^4 is $-(CH_2)_m$ -while A^2 is $-(CH_2)_n$ (where m and n each is an integer of 0 to 3 and m + n is 1 to 3); and * is an asymmetric carbon atom where the relative configuration of hydroxyl group to alkoxycarbonyl group on each of the asymmetric carbons marked * is trans) with hydrazine to prepare an optically-active hydroxycarboxylic hydrazide compound represented by the following formula (III)

-(wherein, R², R³, R⁴, to-R⁵, A¹, A², m, n and * have the same meanings as defined above where the relative configuration of hydroxyl group to hydrazinocarbonyl group on each of the asymmetric carbons marked * is trans), then conducting a Curtius reaction in the presence of an alcohol represented by the following formula (VI)

$$R^6$$
 OH (VI)

(wherein, R⁶ is an alkyl group having 1 to 6 carbon(s) or an optionally-substituted benzyl group) to give an optically active alkoxycarbonylamino alcohol represented by the following formula (II)

-(wherein, R², R³, R⁴, R⁵, to R⁶, A¹, A², m, n and * have the same meanings as defined above where the relative configuration of hydroxyl group to alkoxycarbonylamino group on each of the asymmetric carbons marked * is trans) and then deprotecting a protective group for the amino group.

2. (currently amended) A process for the production of an optically

Application No. 10/656,617 Docket No.: 59585(71526)

Amendment dated December 28, 2005 Reply to Office Action of September 28, 2005 Page 4

active alkoxycarbonylamino alcohol represented by the following formula (II)

—(wherein, R², R³, R⁴ and R⁵ each independently is a hydrogen atom, a lower alkyl group or an optionally-substituted phenyl group; R² or R³ may be bonded to R⁴ or R⁵ forming a ring together with the adjacent carbon atoms; R⁶ is an alkyl group having 1 to 6 carbon(s) or an optionally-substituted benzyl group; A¹ is -(CH₂)_m- while A² is -(CH₂)_n- (where m and n each is an integer of 0 to 3 and m + n is 1 to 3); * is an asymmetric carbon atom to R⁶, A¹, A², m, n and * have the same meanings as defined above where the relative configuration of hydroxyl group to alkoxycarbonylamine alkoxycarbonyl group on each of asymmetric carbons marked * is trans}, comprising by reacting an optically active hydroxycarboxylate represented by the following formula (IV)

$$R^{\frac{1}{3}}$$
 $R^{\frac{4}{5}}$
 $A^{\frac{1}{2}}$
 $A^{\frac{1}{2}}$

-(wherein, R¹ is an alkyl group having 1 to 6 carbon(s); R², R³, R⁴, to R⁵, A¹, A², m, n and * have the same meanings as defined above where the relative configuration of hydroxyl group to alkoxycarbonyl group on each of the asymmetric carbons marked* is trans) with hydrazine to prepare an optically-active hydroxycarboxylic hydrazide compound represented by the following formula (III)

Application No. 10/656,617 Docket No.: 59585(71526)
Amendment dated December 28, 2005

Page 5

Reply to Office Action of September 28, 2005

$$R^{3}$$
 R^{4}
 R^{5}
 A^{2}
 A^{1}
 A^{2}
 A^{2}
 A^{1}
 A^{2}
 A^{2}
 A^{3}
 A^{4}
 A^{2}
 A^{4}
 A^{2}
 A^{4}
 A^{2}
 A^{4}
 A^{4

—(wherein, R² R³, R⁴ to R⁵, A¹, A², m, n and * have the same meanings as defined above where the relative configuration of hydroxyl group to hydrazinocarbonyl group on each of the asymmetric carbons marked * is trans) and conducting to a Curtius reaction in the presence of an alcohol represented by the following formula (VI)

$$R^6$$
 OH (VI)

(wherein, R⁶ is an alkyl group having 1 to 6 carbon(s) or an optionally-substituted benzyl grouphas the same meaning as defined already).

3. (currently amended) The process for the production according to claim 1 or 2, wherein the optically active hydroxycarboxylate represented by the following formula (IV)

$$R^{3}$$
 R^{4}
 R^{5}
 A^{2}
 A^{2}
 A^{2}
 A^{3}
 A^{2}
 A^{3}
 A^{4}
 A^{2}
 A^{3}
 A^{4}
 A^{2}
 A^{3}
 A^{4}
 A^{2}
 A^{3}
 A^{4}
 A^{4}
 A^{5}
 A^{5}
 A^{5}
 A^{1}
 A^{2}
 A^{3}
 A^{4}
 A^{5}
 A^{5

—(wherein, R^1 , R^2 , R^3 , R^4 , to R^5 , A^1 , A^2 , m, n and * have the same meanings as defined above where the relative configuration of hydroxyl group to alkoxycarbonyl group on each of the asymmetric carbons marked * is trans) is a product prepared by subjecting a β -keto ester represented by the following formula (V)

Application No. 10/656,617 Docket No.: 59585(71526)
Amendment dated December 28, 2005

Reply to Office Action of September 28, 2005

—(wherein, R¹, R² R³, R⁴, to R⁵, A¹, A², m and n have the same meanings as defined above) to an asymmetric hydrogenation in the presence of a ruthenium complex including an optically active phosphine compound as a ligand.

- 4. (currently amended) The process for the production according to claim[[s]] 1 or 2, wherein R⁶ is an optionally substituted benzyl group.
- 5. (currently amended) The process for the production according to claim[[s]] 1 or 2, wherein R^6 is <u>a</u> benzyl group.
- 6. (previously presented) The process of claim 3 wherein R⁶ is an optionally substituted benzyl group.
 - 7. (previously presented) The process of claim 3 wherein R⁶ is a benzyl group.