MINOR -II-EXAMINATION (November, 2016)

Subject Code:BCS-301	Subject: Theory of Computation	
Time: 1 ½ Hours	Maximum Marks : 30	
Note: Q. 1 is compulsory. Attempt any two questions from the rest. Please write only to-the-point answers according to the weightage of the question. Donot mention any extra thing, which is not asked in question.		
21	(2.5,2.5,5)	
	ambiguous grammars? Give an example.	
	tomata and Non-Deterministic Pushdown Automata	
2	(5,5)	
Given a CFG $G=(\{S,A,B\},\{0\},P,S\})$ with $S \rightarrow AAA/B$, $A \rightarrow 0A/B$, $B \rightarrow \lambda$		
Remove null productions from this gram Construct a CFG for L= {a^b^: n≠ n	nmar and create a grammar F , such that $L(F) = L(G)-\lambda$.	
	(5,5	
State and Prove Pumping Lemma f	or Context Free Languages.	
$\delta(q_0,a,z) = \{(q_1,a),(q_2,\lambda)\}$ $\delta(q_1,b,a) = \{(q_1,b)\}$ $\delta(q_1,b,b) = \{(q_1,b)\}$	NPDA $M = (\{q_0, q_1, q_2\}, \{a, b\}, \{a, b, z\}, \delta, q_0, z, \{q_2\})$	
$\delta(q_1,a,b) = \{(q_2,\lambda)\}$		
Explain your answer.	•	
4	(5,5)	
(a) Consider the CFG G= $\langle V,T,Q,P \rangle$, where $Q \rightarrow bQC/b$ $C \rightarrow cD$	here the set of Production Rules is given as	
D→c		
Construct a NPDA / DPDA for it.	Demonstrate the correctness of your Automata.	
(b) Consider the grammar whose set oA→AA/aAb/bAa/ λ	f productions is given as follows	
Find whether the grammar is ambig	guous or not. Explain your answer	
	The state of the s	

MINOR – II EXAMINATION (November-2016)

Subject Code: BIT 303		Subject: Computer Graphics & Multimedia	
Time : 1 1/2		Maximum Marks: 30	
Note:Q. 1	is compulsory. Attempt any two question	ons from the rest.	
01		(2×5=10)	
10)	Define Hue and Saturation.		
(6)	Give the differences between Obl various categories.	ique and Orthographic Projection and list their	
(0)	Explain the Polygon Mesh Shading te Give the differences between Object Briefly explain the 'Closure of Operat	echnique giving its advantages and disadvantages. precision and Image precision techniques. tions' property of solid modeling.	
22 027	Describe the Octrons mathed 4	(5,3,2	
707	Describe the Octrees method of solid		
5/107	Explain the CMY and CMY-K color mo	idels giving their use and difference.	
- let	Explain Topological Distortion and Va	nishing points.	
13		(6,4	
(a)	Define Convex Hull and Global Control for a 6-point Bezier Curve.	ol property in a Bezier Curve. Derive the equation	
(p)	Describe how A-Buffer Algorithm is di	ifferent from z-Buffer Algorithm.	
24		(5,3,2)	
(a)	Derive the matrix for perspective pr having normal N=n ₂ i+n ₂ i+n ₃ k, such that	ojection onto a plane passing through $R(x_0, y_0, z_0)$ at the center of projection is at $C(a,b,c)$.	
US)	Explain the different methods for Poly In the Phong Illumination Model, expl	gon Mesh Representation with example.	

MINOR -IIEXAMINATION (November-2016)

Subject Code: BC	S 305	Subject: Microprocessor & Microcontroller
Time: 1 1/2 Hours		Maximum Marks : 30
Note:Q. 1 is com	oulsory. Attempt any two	questions from the rest.
at i		(2.5x4=10)
	are the functions of segments to LOCK and LOCK.	ent registers in 8086,
(e) What a	re the functions of PSW3	and PSW4 in 8051 microcontroller?
(e) Write of ACC, SP, PSW	own the contents of follo	owing registers after Reset in 8051 microcontroller:
(at What	aro the good is a select	(5,5
	are the conditional and co	
(b) Discuss 8051.	s the main features of 80	51 microcontroller. Discuss the area of applications of
		(5,5
(a) Explair	conditional and uncond	itional Jump instructions of 8086.
(b) Draw a	ind explain the RAM alloc	cation in 8051 microcontroller
		(5,5)
(a) What i	s Pipelining, how it is ach	nieved in 8086. What are its advantages?

MINOR – II EXAMINATION (November-2016)

Subject Code: BIT 309

Subject: Data Warehousing and Data Mining

Time: 1 ½ Hours

Maximum Marks: 30

Note: Q. 1 is compulsory. Attempt any two questions from the rest.

QI

(2.5x4=10)

- (a) How do you classify Association Rules?
 - (b) Explain two measures of association rule mining.
 - Explain mutually exclusive and mutually exhaustive rules with the help of example.
 - (d) Explain the solution in detail if a record triggers more than one rule.

Q2

(6,4)

(a) Apply Apriori algorithm for discovering frequent item sets in the table given below. Also generate association rules from the frequent item sets using minimum confidence as 50% and minimum support value as 0.3.

Trans ID	Items Purchased
101	Milk, bread, eggs
102	Milk, Juice
103	Juice, Butter
104	Milk, bread, eggs
105	Coffee, Eggs
106	Coffee
107	Juice, Coffee
108	Milk, bread, cookies, eggs
109	Cookies, butter
110	Milk

(b) Explain the aspects of sequential covering algorithm with the help of small example.

03

(7,3)

- (a) What is bayes theorem? Explain Naïve bayes classification in detail.
- (b) Explain density based clustering method.

04

(6,4)

- (a) Consider the five points {x1,x2,x3,x4,x5} for the following coordinates as a two dimensional sample for clustering: x1=(0,2.5); x2= (0,0); x3=(1.5,0); x4= (5,0); x5= (5,2). Illustrate the K- Means partitioning clustering algorithm using the above data set.
- (b) Explain decision tree learning algorithm.

MINOR - II EXAMINATION (November, 2016)

Subject Code: BIT 307	Subject: Data Communication & Computer
	Networks
Time: 1 ½ Hours	Maximum Marks : 30
Note: Q. 1 is compulsory. Attempt any	two questions from the rest.
01	1.5
	(2.5x4=10)

(2.5x4=10)

A bit stream of 101110101 is to be transmitted using the standard CRC method having x³+1 as the generator polynomial. Show the actual bits transmitted. If suppose the 6th

bit from the left gets inverted due to an error, check whether the error can be caught.

Consider a CSMA/CD network running at 1 Gbps over 1 km cable with no repeaters. The signal speed of the channel is 200,000 km/sec. What is the minimum frame size?

(c) Briefly explain the MACAW protocol used in wireless LANs.

(d) Convert the IP address whose hexadecimal representation is A22F0F31 to dotted decimal representation. Find the class to which the address belongs to.

Q2 (5,5)

- (a) Explain briefly the following fields of the IP header: Internet Header Length (IHL), Identification, DF & MF, and TTL.
- (b) i) What does the following address mean and when are they used?
 - 0.0.0.0
 - 255.255.255.255
 - ii) What is the baud rate of the standard 10-Mbps Ethernet? Sketch the Manchester encoding for the bit stream 0001110101.

Q3 (5,5) (5,5)

(a) i) Briefly discuss 1-persistence, p-persistence and non-persistence CSMA.

ii) Why is the minimum frame size of 10Base5 Ethernet frame fixed at 64 bytes?

- (b) i) ARP and RARP both maps addresses from one space to another. In that respect, they are similar. However, their implementations are fundamentally different. In what major ways do they differ?
 - ii) Briefly explain the working of DHCP.

ii) Briefly explain any four ICMP message types.

(b) Consider the following scenario. Distance vector routing is used, and the following information have just arrived at the router C: from B: (8,0,5,7,6,4); from D: (5,8,10,0,8,5); and from E: (10,6,13,5,0,14). The measured delays to B, D, and E, are 7, 6, and 3 respectively. Give the new routing table for C specifying both the delay and the outgoing line to use.