DLC

The $PyPHS^*$ development $team^1$

 $^1\mathrm{Project\text{-}team}$ S
3 †, STMS, IRCAM-CNRS-UPMC (UMR 9912), 1 Place Igor-Stravinsky, 75004 Paris, France

March 21, 2017

1 System netlist

line	label	dictionary.component	nodes	parameters
ℓ_1	in	electronics.source	('#', 'n1')	{ type voltage
				(v0 ('v0', 0.026)
ℓ_2	D	electronics.diode	('n1', 'n2')	mu ('mu', 1.7)
				Is ('Is', 2e-09)
				R ('Rd', 0.5)
ℓ_3	L	electronics.inductor	('n2', 'n3')	(`L ('L', 0.05)
ℓ_4	C	electronics.capacitor	('n3', '#')	{ L ('L', 0.05) { C ('C', 2e-06)

2 System dimensions

$$\dim(\mathbf{x}) = n_{\mathbf{x}} = 2;$$

$$\dim(\mathbf{w}) = n_{\mathbf{w}} = 3;$$

$$\dim(\mathbf{y}) = n_{\mathbf{y}} = 1;$$

$$\dim(\mathbf{p}) = n_{\mathbf{p}} = 0;$$

^{*}https://github.com/afalaize/pyphs

[†]http://s3.ircam.fr

3 System variables

State variable
$$\mathbf{x} = \begin{pmatrix} x_{\mathrm{L}} \\ x_{\mathrm{C}} \end{pmatrix}$$
;

Dissipation variable $\mathbf{w} = \begin{pmatrix} w_{\mathrm{D}} \\ w_{\mathrm{D_{R}}} \\ w_{\mathrm{D_{gmin}}} \end{pmatrix}$;

Input $\mathbf{u} = \begin{pmatrix} u_{\mathrm{in}} \end{pmatrix}$;

Output $\mathbf{y} = \begin{pmatrix} y_{\mathrm{in}} \end{pmatrix}$;

4 Constitutive relations

$$\begin{split} & \text{Hamiltonian } \mathbf{H}(\mathbf{x}) = \frac{0.5}{L} \cdot x_{\mathrm{L}}^2 + \frac{0.5}{C} \cdot x_{\mathrm{C}}^2; \\ & \text{Hamiltonian gradient } \nabla \mathbf{H}(\mathbf{x}) = \left(\begin{array}{c} \frac{1.0}{L} \cdot x_{\mathrm{L}} \\ \frac{1.0}{C} \cdot x_{\mathrm{C}} \end{array} \right); \\ & \text{Dissipation function } \mathbf{z}(\mathbf{w}) = \left(\begin{array}{c} \mu \cdot v_0 \cdot \log \left(\frac{1}{Is} \cdot (Is + w_{\mathrm{D}}) \right) \\ \frac{Rd \cdot w_{\mathrm{D}_{\mathrm{R}}}}{gmin} \end{array} \right); \\ & \text{Jacobian of dissipation function } \mathcal{J}_{\mathbf{z}}(\mathbf{w}) = \left(\begin{array}{c} \frac{\mu \cdot v_0}{Is + w_{\mathrm{D}}} & 0 & 0 \\ 0 & Rd & 0 \\ 0 & 0 & \frac{1}{gmin} \end{array} \right); \end{split}$$

5 System parameters

5.1 Constant

value (SI)
2e-06
0.026
0.05
1.7
1e-12
2e-09
0.5

6 System structure

$$\mathbf{J_{ww}} = \begin{pmatrix} 0 & 0 & 1.0 \\ 0 & 0 & 0 \\ -1.0 & 0 & 0 \end{pmatrix};$$
$$\mathbf{J_{wy}} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix};$$
$$\mathbf{J_{yy}} = \begin{pmatrix} 0 \\ 0 \end{pmatrix};$$