第3回 2変量データの整理(3.1-3.3.5)

村澤 康友

2025年10月3日

今日のポイント

- 3.3.6 節の時系列データは扱わない(「数理統計 学」と「時系列解析」の方法論は異なる).
- 3.4 節の回帰分析は 13 章で扱うので今回は飛
 - 1.2 変量データの度数分布表を分割表とい う. 量的な2変量データは散布図に表せ
 - 2. 2つの変量の関係の強さは(積率)相関係 数、2つの順位の関係の強さは順位相関係 数で表す.
 - 3. 相関は必ずしも因果関係を意味しない. 因果関係のない相関を見かけ上の相関と

目次

			1. (15. (15. 15.) / (9.15.) / (9.15.)
L	散布図(p. 43)	1	の オッズ という.
2	分割表(p. 45)	1	注 4 . (該当率) $/$ (非該当率) と同じ. 該当率 p ならオッズは $p/(1-p)$.
3	相関係数(p. 47)	2	例 3. 検査の陽性率が p なら陽性/陰性のオッズ)
3.1	共分散(p. 49)	2	p/(1-p).
3.2	標準化(p. 39)	2	p/(1-p).
3.3	(積率)相関係数(p. 48)	3	定義 4. 2 群のオッズの比を オッズ比 という.
3.4	順位相関係数(p. 54)	3	注 5. 第 1 群・第 2 群の該当率が p,q なら各群の
3.5	相関と因果(p. 50)	4	当/非該当のオッズは $p/(1-p)$ と $q/(1-q)$.
1	今日のキーワード	5	たがってオッズ比は $[p/(1-p)]/[q/(1-q)]$.
5	次回までの準備	5	例 4. 処置群・対照群の陽性率が p,q なら各群の

1 散布図 (p. 43)

定義 1. 2 変量データを xy 平面上の座標で表した 図を**散布図**という.

注 1. 量的変量に用いる.

注 2. 散布図から 2 変量の関係(相関関係)が読み 取れる (図1).

例 1. 某大学1年生の英語と数学の入試成績(図2).

2 分割表 (p. 45)

定義 2. 2 変量データの度数分布表を分割 (クロス) 表という.

注 3. 相対度数は縦比・横比でみることもできる.

例 2. 東大 (学部・院) の学生構成 (表 1).

定義 3. (該当数) / (非該当数) を該当/非該当

図 1: 散布図と相関関係

性/陰性のオッズは p/(1-p) と q/(1-q). したがってオッズ比は [p/(1-p)]/[q/(1-q)] (表 2).

注 6. 式で表すと

3 相関係数 (p. 47)

3.1 共分散 (p. 49)

2変量データを $((x_1,y_1),...,(x_n,y_n))$ とする.

定義 5. 各変量の平均からの偏差の積の平均を共分散という.

$$\sigma_{xy} := \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_x)(y_i - \mu_y)$$

注 7. x_i が大きいと y_i も大きいなら共分散は正, x_i が大きいと y_i は小さいなら共分散は負,「無関係」なら 0 となる.

3.2 標準化 (p. 39)

定義 6. 変量の値から平均を引き,標準偏差で割る 変換を**標準化**という.

図 2: 某大学 1 年生の英語と数学の入試成績

注 8. 式で表すと

$$z_i := \frac{x_i - \mu_x}{\sigma_x}$$

注 9. 標準化した変量の平均は 0, 分散は 1 となる.

3.3 (積率) 相関係数 (p. 48)

定義 7. 標準化した 2 変量の共分散を (ピアソンの **積率) 相関係数**という. 注 10. 式で表すと

$$\rho_{xy} = \frac{1}{n} \sum_{i=1}^{n} \frac{x_i - \mu_x}{\sigma_x} \frac{y_i - \mu_y}{\sigma_y}$$

$$= \frac{(1/n) \sum_{i=1}^{n} (x_i - \mu_x)(y_i - \mu_y)}{\sigma_x \sigma_y}$$

$$= \frac{\sigma_{xy}}{\sigma_x \sigma_y}$$

注 11. 「関係」が強いほど 1 か -1 に近くなる.

3.4 順位相関係数 (p. 54)

順位を表す2変量の相関を定義する.

定義 8. 順位の (積率) 相関係数をスピアマンの順

表 1: 東大(学部・院)の学生構成

(a) 度数

	日本人	留学生	計
学部	14,871	96	14,967
学部研究生	252	17	269
修士	2,415	274	2,689
博士	2,002	620	2,622
院研究生	143	454	597
計	19,683	1,461	21,144

(c) 縦比

	日本人	留学生	計
学部	75.6	6.6	70.8
学部研究生	1.3	1.2	1.3
修士	12.3	18.8	12.7
博士	10.2	42.4	12.4
院研究生	0.7	31.1	2.8
計	100.0	100.0	100.0

(b) 相対度数

	日本人	留学生	計
学部	70.3	0.5	70.8
学部研究生	1.2	0.1	1.3
修士	11.4	1.3	12.7
博士	9.5	2.9	12.4
院研究生	0.7	2.1	2.8
計	93.1	6.9	100.0

(d) 横比

	日本人	留学生	計
学部	99.4	0.6	100.0
学部研究生	93.7	6.3	100.0
修士	89.8	10.2	100.0
博士	76.4	23.6	100.0
院研究生	24.0	76.0	100.0
計	93.1	6.9	100.0

表 2: 処置群と対照群の陽性率

	陽性	陰性	計	オッズ
処置群	p	1-p	1	p/(1-p)
対照群	q	1-q	1	q/(1-q)

位相関係数という.

定理 1. 2変量データ $((x_1,y_1),\ldots,(x_n,y_n))$ が順位を表すなら

$$\rho_{xy} = 1 - \frac{6}{(n-1)n(n+1)} \sum_{i=1}^{n} (x_i - y_i)^2$$

証明. 省略. □

注 12. $x_1=y_1,\,\ldots,\,x_n=y_n$ なら $\rho_{xy}=1$.

定義 9. ケンドールの順位相関係数は

$$\tau_{xy} := \frac{\sum_{i=2}^{n} \sum_{j=1}^{i-1} \operatorname{sgn}(x_i - x_j) \operatorname{sgn}(y_i - y_j)}{{}_{n}C_2}$$

注 13. sgn(.) は符号関数. すなわち

$$sgn(x) := \begin{cases} -1 & \text{for } x < 0 \\ 0 & \text{for } x = 0 \\ 1 & \text{for } x > 0 \end{cases}$$

注 14. 2 つの観測値 (x_i,y_i) , (x_j,y_j) を取り出したとき,「 $x_i > x_j$ だと $y_i > y_j$ 」なら順位相関係数は正,「 $x_i > x_j$ だと $y_i < y_j$ 」なら順位相関係数は負となる.

3.5 相関と因果 (p. 50)

2変量が相関をもつ理由は2つ考えられる.

定義 10. 原因と結果の関係を**因果関係**という.

例 5. 身長→体重(?), 年齢→血圧, 所得→消費, 人口→商店数.

定義 11. 因果関係のない相関を**見かけ上の相関**という.

注 15. 2 変量の原因となる第 3 の変量が存在する 場合に生じる.

例 6. 数学と理科の成績 (?), 飲食店数と金融機 関店舗数.

4 今日のキーワード

散布図,分割表,オッズ,オッズ比,共分散,標準化,(積率)相関係数,順位相関係数(スピアマン,ケンドール),因果関係,見かけ上の相関

5 次回までの準備

提出 宿題1

復習 教科書第3章1~3.3.5節,復習テスト3

予習 教科書第4章1~4節