

Table of Contents

EDAData Visualization

Modelling

Using a linear model to predict the duration of bikes used

Recommendations

We considered short-term bike renting services that last at most 44 minutes [90% of the overall dataset].

Then, we gathered 5 important variables 'Month', 'Year', 'Season', 'Count', and 'Duration'.

This boxplot shows these features could be helpful in modeling the bike renting problem.

Specifically, we see a linear relationship between 'Count' and 'Duration', so we will leverage on this.

Modelling

		Dura	Duration		uared:		0.921
			OLS	Adj. R-squared:		0.92	0.920
		Least Squ	Least Squares		F-statistic:		1086.
		ri, 01 Jul 2022		Prob (F-statistic):		0.00	
		20:0	20:09:55 759		Log-Likelihood:		1264.1
No. Observat					-2510		
Df Residuals	:		750	BIC:			-2469.
Df Model:			8				
Covariance 7	ype:	nonro	bust				
	coef	std err	======	t	P> t	[0.025	0.975]
const	-0.0627	0.005	-11	.766	0.000	-0.073	-0.052
Count	0.8156	0.010	85	.593	0.000	0.797	0.834
Season_2	0.0158	0.005	3	.272	0.001	0.006	0.025
Season_3	0.0139	0.005	2	.768	0.006	0.004	0.024
Year_2020	0.0558	0.004	13	.757	0.000	0.048	0.064
Year_2021	0.0278	0.004	6	.758	0.000	0.020	0.036
Month_5	0.0126	0.007	1	.752	0.080	-0.002	0.027
Month_6	0.0152	0.007	2	. 135	0.033	0.001	0.029
Month_10	-0.0136	0.006	-2	. 249	0.025	-0.025	-0.002
Omnibus: 87.375		7.375	Durb	in-Watson:		1.955	
Prob(Omnibus):		(0.000		ue-Bera (JB):		136.018
Skew:		(0.785		(JB):		2.91e-30
Kurtosis:		4	4.355		. No.		8.13

'Count' and 'Duration' seem to be linearly dependent [Left].

Our linear model predicting 'Duration' performs well on training data [Middle].

We can see 1 increase in 'Count' (1 more bike) will lead to a 0.8 minute increase in 'Duration' (bike being used).

R-squared and Adj. R-squared are 0.9 in the test data [code], and also predictions match the true values [Right].

Recommendations

The data suggests that an increase in the number of bikes 'Count' [e.g. 100 new bikes] leads to an increase in the bikes being used 'Duration' [80 minutes].

Main suggestion

We see it as an opportunity to be explored, to identify the boundary of when adding more bikes is or isn't beneficial. Perform a networks-based analysis to identify which stations could present the biggest upside for deploying new bikes.

Secondary suggestion

Investigate the relationship between money acquired through small-term bike renting and long term [10 to 1 M customers]. Is there is a market for longer term bike sharing, and if so what the data suggests [greater than 45 minutes].

