

UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM GEOFÍSICA

RELATÓRIO DE PROCESSAMENTO DE SINAIS DIGITAIS

Multi Convolução: Função Retangular

LUCAS DE CASTRO COSTA

Sumário

1	INT	ΓRODUÇAO	1
2	PARTE TEÓRICA		2
		FUNÇÃO RETANGULAR	
	2.2	CONVOLUÇÃO	2
	2.3	TRANSFORMADA RÁPIDA DE FOURIER	2
3	METODOLOGIA		4
	3.1	CONSTRUÇÃO DA FUNÇÃO RETANGULAR	4
	3.2	APLICAÇÃO DA CONVOLUÇÃO	4
	3.3	AMPLITUDE ESPECTRAL	5
4	RESULTADOS E DISCUSSÕES		7
	4.1	APRESENTAÇÃO DAS CONVOLUÇÕES	7
	4.2	APRESENTAÇÃO DAS AMPLITUDES ESPECTRAIS	8
5	СО	NCLUSÃO	14
RE	REFERÊNCIAS		
ΑP	APÊNDICES		
$\mathbf{A}-$	ΑT	ITO CONVOLUÇÕES E ESPECTRO DE AMPLITUDE.	17

1 INTRODUÇÃO

Este trabalho está sendo feito para o curso de "Processamento de sinais digitais". O assunto proposto foi a multi convolução da função retangular. O objetivo principal do trabalho é avaliar como a auto convolução (Leite, 2015) vai afetar o formato das funções utilizadas. Assuntos importantes para o desenvolvimento deste trabalho foram: convolução (Snieder, 1998), transformada de Fourier (Smirnov, 1964) e amplitude espectral (Leite, 2007).

A ideia geral consiste em utilizar a função retangular e aplicar a convolução com ela mesma, sendo esta a auto convolução (Snieder, 1998). Este processo será repetido 5 vezes, considerando os resultados de cada um desses processos. O intuito é saber como ficará o formato das funções após cada convolução e se tem um padrão com o aumento destes cálculos. Em seguida, será feito uma análise espectral para comparar as modificações, a partir da amplitude (Leite, 2015).

Após apresentação da teoria e da metodologia, serão discutidos os resultados obtidos e os significados de cada um dos testes feitos.

2 PARTE TEÓRICA

2.1 FUNÇÃO RETANGULAR

A função retangular possui a seguinte definição:

$$rect(t) = \begin{cases} 0 & \text{se} & |t| > a/2, \\ \frac{1}{2} & \text{se} & |t| = a/2, \\ 1 & \text{se} & |t| < a/2, \end{cases}$$
 (2.1)

sendo a o parâmetro para definição do formato da função. Este fator define se esta será mais estreita ou mais larga.

2.2 CONVOLUÇÃO

A convolução é um operador linear que, a partir de duas funções dadas, resulta numa terceira que mede a soma do produto dessas funções ao longo da região subentendida pela superposição delas em função do deslocamento existente entre elas (Bracewell e Bracewell, 1986). Este operador possui as formas contínuas e discretas (Weisstein, 2003). Essas são as seguintes, respectivamente

$$h(x) = f(x) * g(x) = \int_{-\infty}^{\infty} f(\tau)g(x - \tau)d\tau, \qquad (2.2)$$

$$h(t) = f(t) * g(t) = \sum_{j=0}^{t} f(j)g(t-j),$$
(2.3)

sendo h(x) e h(t), representação da convolução e f(x), g(x), f(t) e g(t) as funções que sofreram a convolução.

2.3 TRANSFORMADA RÁPIDA DE FOURIER

A transformada de Fourier é uma transformada integral que expressa uma função em termos de funções de base sinusoidal (Snieder, 1998). A definição é a seguinte:

$$f(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}.$$
 (2.4)

Enquanto a transformada rápida de Fourier é um algoritmo eficiente para se calcular a transformada discreta de Fourier e a sua inversa (Van Loan, 1992). Esta operação é

definida da seguinte forma:

$$F(x) = \sum_{n=0}^{N-1} f(n)e^{-i2\pi(x\frac{n}{N})}$$
(2.5)

3 METODOLOGIA

Neste capítulo, serão elencados os passos utilizados para a construção do projeto que foi sugerido. Todas os cálculos e gráficos foram feitos com o auxílio do MATLAB.

3.1 CONSTRUÇÃO DA FUNÇÃO RETANGULAR

Para o início do trabalho, foi necessário definir a função a ser utilizada. A partir da Eq. 2.1, construiu-se o gráfico apresentado na Figura 3.1. Para a construção desta imagem, foi utilizado um intervalo de amostragem no tempo, Δt , de 0.001 segundos e um número de amostras, n, de 10.000.

Figura 3.1: Gráfico da função retangular utilizando a = 2.

3.2 APLICAÇÃO DA CONVOLUÇÃO

Como segundo passo do trabalho, foi aplicada a convolução, Eq. 2.2, em duas funções retangulares iguais (representada na Fig. 3.1). Matematicamente, é definido da seguinte forma:

$$h(t) = rect(t) * rect(t) = \int_{-\infty}^{\infty} rect(\tau) rect(t - \tau) d\tau.$$
 (3.1)

O resultado desta operação,h(t), será nomeado como a primeira convolução. Para encontrar o segundo resultado, será feita a auto convolução entre a função h(t). Os

resultados posteriores seguiram o mesmo padrão. No próximo capítulo, serão apresentados os gráficos com cada uma das convoluções.

Outra preocupação que se teve em relação a aplicação da convolução foi referente ao número de amostras. Isso ocorre devido o operador convolução aumentar o número de amostragens, sendo a soma de número de pontos das duas funções menos uma amostragem. Portanto, o número de amostragens aumenta proporcionalmente a quantidade de convoluções.

Para ser feita a comparação entre as 5 convoluções e a função retangular, foi feita a normalização dos resultados. Ou seja, foi pego o valor máximo de cada uma destas funções e dividiu por todos os valores das mesmas. Desta forma, o valor máximo apresentado em cada gráfico foi 1. Desta forma, tornou-se mais fácil de comparar o formato de cada uma destas em um mesmo gráfico.

3.3 AMPLITUDE ESPECTRAL

Por fim, foi feita a comparação da amplitude espectral de cada uma das funções. Para isso, aplicou-se a Eq. 2.5 em cada umas destas. No próximo capítulo, serão apresentados os resultados gráficos dessas operações.

Um dos problemas para a plotagem gráfica foi em relação a variação do valor do intervalo de amostragem na frequência, Δf .

$$\Delta f = \frac{1}{n\Delta t}.\tag{3.2}$$

Como dito acima, o número de amostras será variável. Então, a partir da Eq. 3.2, conclui-se que o Δf irá aumentar com o aumento da quantidade de convoluções.

Para solucionar este problema, a plotagem feita foi considerando o número de pontos no eixo x. Desta forma, não será necessário plotar em função da frequência.

Aplicando a Eq. 2.5 em 2.1, tem-se a resposta gráfica apresentada na Figura 3.2. O valor de intervalo de amostragem na frequência é 0.1~Hz. Nota-se que o formato deste gráfico corresponde ao seno cardinal. Posteriormente, será analisado este resultado e apresentada a resposta para cada uma das convoluções.

Assim como na seção anterior, foi aplicada a mesma normalização para facilitar a comparação nos gráficos.

Figura 3.2: Gráfico da função retangular utilizando a=2.

4 RESULTADOS E DISCUSSÕES

Neste capítulo, serão apresentados e discutidos os resultados do projeto proposto. Será dividido em duas seções: apresentação das convoluções e apresentação das amplitudes espectrais. Em cada uma destas, os resultados serão apresentados para cada um dos casos separados e, por fim, colocados em um gráfico comparativo.

4.1 APRESENTAÇÃO DAS CONVOLUÇÕES

Nas Figuras 4.1, 4.2, 4.3, 4.4 e 4.5 tem-se a resposta gráfica normalizada da primeira, segunda, terceira, quarta e quinta convolução, respectivamente.

Figura 4.1: Gráfico normalizado da primeira convolução.

Na Figura 4.1, resultado da auto convolução de 3.1, apresenta um formato de um triângulo. Na Figura 4.2, em comparação a anterior, nota-se que o gráfico ficou mais "amplo". Ou seja, esta obteve mais valores diferentes de zero em relação a Figura 3.1 e 4.1. O padrão descrito acima é mantido para as Figuras 4.3, 4.4 e 4.5.

A partir da Figura 4.6, é possível analisar uma comparação gráfica da função e das convoluções. Como descrito acima, um dos resultados deste trabalho é o padrão de que quanto maior a quantidade de auto convoluções aplicadas, mais larga a função. Analisando a última convolução (Fig. 4.5), o formato dela se assemelha a de uma Gaussiana.

Figura 4.2: Gráfico normalizado da segunda convolução.

Figura 4.3: Gráfico normalizado da terceira convolução.

4.2 APRESENTAÇÃO DAS AMPLITUDES ESPECTRAIS

Nas Figuras 4.7, 4.8, 4.9, 4.10 e 4.11 tem-se a resposta gráfica normalizada da amplitude espectral da primeira, segunda, terceira, quarta e quinta convolução, respectivamente. Os valores de intervalo de amostragem são 0.05, 0.025, 0.0125, 0.00625 e 0.003125 Hz.

Comparando a Figura 3.2 com a 4.7, é possível analisar que a principal diferença está por conta da amplitude. Neste intervalo analisado, pode-se notar que o gráfico da convolução atinge o pico com um menor número de pontos e tende a zero também antes

Figura 4.4: Gráfico normalizado da quarta convolução.

Figura 4.5: Gráfico normalizado da quinta convolução.

do espectro da função retangular. Além disso, é possível ver amplitudes menores das oscilações da Figura 4.7 em comparação a 3.2.

O padrão descrito acima permanece para análises envolvendo as Figuras 4.8, 4.9, 4.10 e 4.11. Para estes casos, não é possível visualizar oscilações no intervalo analisado.

A fim de facilitar o trabalho da comparação gráfica, foi gerada a Figura 4.12. A partir desta, é possível confirmar que a chegada ao pico acontece primeiro para a o caso com maior quantidade de convoluções (Fig. 4.11) e tende a zero primeiro também.

Figura 4.6: Gráfico normalizado comparativo entre a função e as convoluções.

Figura 4.7: Gráfico normalizado da amplitude espectral da primeira convolução.

Figura 4.8: Gráfico normalizado da amplitude espectral da segunda convolução.

Figura 4.9: Gráfico normalizado da amplitude espectral da terceira convolução.

Figura 4.10: Gráfico normalizado da amplitude espectral da quarta convolução.

Figura 4.11: Gráfico normalizado da amplitude espectral da quinta convolução.

Figura 4.12: Gráfico normalizado comparativo da amplitude espectral entre a função e as convoluções.

5 CONCLUSÃO

Após a finalização deste trabalho, concluiu-se que o projeto teve os resultados satisfatórios. Um dos objetivos do trabalho foi envolver assuntos do curso de "Processamento de sinais digitais" com a parte de programação do MATLAB. A partir deste projeto, foi possível avaliar o comportamento da função retangular e suas auto convoluções.

Além disso, no teste de comparação das convoluções foi possível concluir que quanto maior a quantidade de convoluções, maior será a semelhança ao formato de uma Gaussiana. Enquanto no teste de amplitude espectral, notou-se que para quanto maior a quantidade de convoluções, precisará de menos números de pontos para atingir seu pico e tenderá mais rapidamente a zero.

REFERÊNCIAS

Bracewell, R. N. and R. N. Bracewell, 1986, The fourier transform and its applications: McGraw-Hill New York, **31999**.

Leite, L. W. B., 2007, Conceitos da análise espectral em geofísica, 1.

——, 2015, Conceitos da análise espectral de sinais em geofísica.: Instituto Nacional de Ciência e Tecnologia de Geofísica do Petróleo, INCT-GP.

Smirnov, V. I., 1964, Course of higher mathematics: Pergamon Press, 2.

Snieder, R. K., 1998, A guided tour of mathematical physics: Samizdat Press.

Van Loan, C., 1992, Computational frameworks for the fast fourier transform: SIAM.

Weisstein, E. W., 2003, Convolution: https://mathworld.wolfram.com/.

A- AUTO CONVOLUÇÕES E ESPECTRO DE AMPLITUDE.

Este código de matlab foi escrito para fazer todo o trabalho para o curso de "Processamento de Sinais Digitais.

```
%%%%%%%Projeto para o curso de "Processamento de sinais ...
  %%%%%%%%%%%%Multi convolucoes: funcao ...
  ##############################
%%%%%%%%Parametros utilizados
Fs = 1000;
                   %parametro relacionado ao intervalo de ...
  amostragem do tempo
dt = 1/Fs;
                   %equacao para ointervalo de amostragem do tempo
delf = 1/(n*dt)
                  %equacao para o intervalo de amostragem da ...
  frequencia
%%%%%%%%%%%%%%%%%%%%%%%%%%%Funcao caixa ...
  rect=0(x,a) ones(1,numel(x)).*(abs(x)<a/2); % a define a largura do pulso
x=-5:dt:5;
                %Vetor para o numero de pontos
y=rect(x,2);
                %Formato da funcao retangular, escolhendo a=2
ynorm=y/(max(y));
               %Normalizacao da funcao retangular
################Plotagem funcao ...
   figure (99)
plot(x,ynorm,'LineWidth',2)
set (gca, 'FontSize', 15, 'FontWeight', 'bold')
set (gca, 'Xlim', [-6 6])
xlabel('numero de pontos')
ylabel('Amplitude')
title('Funcao retangular')
Y = fft(ynorm);
                %Aplicacao da transformada rapida de Fourier na ...
  funcao retangular
L = 10000;
                %Tamanho do eixo x, numero de pontos
                %Formula para a amplitude
P2 = abs(Y/L);
%%%%%%%%%%%Calculo feito para considerar apenas uma banda da amplitude
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);
P1norm = P1/max(P1);
                        %Normalizacao do resultado
```

```
f = Fs*(0:(L/2))/L;
%%%%%%%%%%%%Plotagem do espectro de amplitude da funcao retangular
figure (999)
plot(f,Plnorm,'LineWidth',2)
title('Espectro de amplitude ')
set(gca,'Xlim',[0 5])
xlabel('Numero de pontos')
ylabel('Amplitude')
%Primeira convolucao
c1=conv(y,y)*dt;
                  %Aplicacao da auto convolucao
clnorm=c1/(max(c1)); %Normalizacao do convolucao
                 %Vetor com o numero de pontos
x1=-10:dt:10;
%%%%%%%%Plotagem da convolucao 1
figure (1)
plot(x1,c1norm,'LineWidth',2)
set(gca, 'FontSize', 15, 'FontWeight', 'bold')
set (gca, 'Xlim', [-6 6])
xlabel('numero de pontos')
ylabel('Amplitude' )
title('Primeira convolucao')
%%%%%%%%%%%%%%Espectro de amplitude
clft = fft(clnorm); %Aplicacao da transformada rapida de Fourier
L1 = 20000;
                  %Tamanho do eixo x, numero de pontos
P2c1 = abs(c1ft/L1); %calculo para a amplitude
%df1=0.005
                  % Valor do intervalo de amostragem na frequencia
%%%%%%%%%%%Calculo feito para considerar apenas uma banda da amplitude
P1c1 = P2c1(1:L1/2+1);
P1c1(2:end-1) = 2*P1c1(2:end-1);
P1c1norm = P1c1/max(P1c1); %Normalização do resultado
f1 = Fs*(0:(L1/2))/L1;
%%%%%%%%%%%%%%Plotagem do espectro de amplitude
figure (100)
plot(f1,P1c1norm,'LineWidth',2)
title('Espectro de amplitude ')
set (gca, 'Xlim', [0 2])
xlabel('Numero de pontos')
ylabel('Amplitude')
%Segunda convolucao
c2=conv(c1,c1)*dt;
                  %Aplicacao da auto convolucao do resultado anterior
```

```
c2norm=c2/(max(c2)); %Normalizacao do resultado
x2=-20:dt:20;
                    %Vetor do eixo x, numero de pontos
%%%%%%%%%%Plotagem da convolucao 2
figure (2)
plot(x2,c2norm,'LineWidth',2)
set(gca, 'FontSize', 15, 'FontWeight', 'bold')
set (gca, 'Xlim', [-6 6])
xlabel('numero de pontos')
ylabel('Amplitude')
title('Segunda convolucao')
%%%%Espectro de amplitude
c2ft = fft(c2norm); %Aplicacao da transformada rapida de Fourier
                   %Tamanho do eixo x, numero de pontos
L2 = 40000;
P2c2 = abs(c2ft/L2); %calculo para a amplitude
                    % Valor do intervalo de amostragem na frequencia
%df2=0.025
%%%%%%%%%%%Calculo feito para considerar apenas uma banda da amplitude
P1c2 = P2c2(1:L2/2+1);
P1c2(2:end-1) = 2*P1c2(2:end-1);
P1c2norm = P1c2/max(P1c2); %Normalizacao do resultado
f2 = Fs*(0:(L2/2))/L2;
%%%%%%%%%%%%%%Plotagem do espectro de amplitude
figure (200)
plot(f2,P1c2norm,'LineWidth',2)
title('Espectro de amplitude ')
set (gca, 'Xlim', [0 2])
xlabel('Numero de pontos')
ylabel('Amplitude')
%Terceira convolucao
%%%numero de pontos
c3=conv(c2,c2)*dt;
                      %Aplicacao da auto convolucao do resultado anterior
c3norm=c3/(max(c3));
                       %Normalizacao do resultado
x3=-40:dt:40;
                        %Vetor do eixo x, numero de pontos
%%%%%%%%%%%Plotagem da convolucao 3
figure (3)
plot(x3,c3norm,'LineWidth',2)
set (gca, 'FontSize', 15, 'FontWeight', 'bold')
set (gca, 'Xlim', [-6 6])
xlabel('numero de pontos')
ylabel('Amplitude')
title('Terceira convolucao')
%Espectro de amplitude
```

```
c3ft = fft(c3norm); %Aplicacao da transformada rapida de Fourier
L3 = 80000;
                      %Tamanho do eixo x, numero de pontos
P2c3 = abs(c3ft/L3); %calculo para a amplitude
%df3=0.0125
                     %Valor do intervalo de amostragem na frequencia
%%%%%%%%%%%Calculo feito para considerar apenas uma banda da amplitude
P1c3 = P2c3(1:L3/2+1);
P1c3(2:end-1) = 2*P1c3(2:end-1);
P1c3norm = P1c3/max(P1c3);%Normalizacao do resultado
f3 = Fs*(0:(L3/2))/L3;
%%%%%%%%%%%%%%Plotagem do espectro de amplitude
figure (300)
plot(f3,P1c3norm,'LineWidth',2)
title('Espectro de amplitude ')
set(gca,'Xlim',[0 2])
xlabel('Numero de pontos')
ylabel('Amplitude')
%Ouarta convolucao
c4=conv(c3,c3)*dt;
                     %Aplicacao da auto convolucao do resultado anterior
c4norm=c4/(max(c4)); %Normalizacao do resultado
x4=-80:dt:80.;
                     %Vetor do eixo x, numero de pontos
%%%%%%%%%%Plotagem da convolucao 2
figure (4)
plot(x4,c4norm,'LineWidth',2)
set(gca, 'FontSize', 15, 'FontWeight', 'bold')
set (gca, 'Xlim', [-6 6])
xlabel('numero de pontos')
ylabel('Amplitude')
title('Quarta convolucao')
%%%%%%%Amplitude espectral
c4ft = fft(c4norm); %Aplicacao da transformada rapida de Fourier
L4 = 160000;
                     %Tamanho do eixo x, numero de pontos
P2c4 = abs(c4ft/L4); %calculo para a amplitude
%df4=0.00625
                      %Valor do intervalo de amostragem na frequencia
%%%%%%%%%%%%Calculo feito para considerar apenas uma banda da amplitude
P1c4 = P2c4(1:L4/2+1);
P1c4(2:end-1) = 2*P1c4(2:end-1);
P1c4norm = P1c4/max(P1c4); %Normalizacao do resultado
f4 = Fs*(0:(L4/2))/L4;
%%%%%%%%%%%%%%Plotagem do espectro de amplitude
figure (400)
```

```
plot(f4,P1c4norm,'LineWidth',2)
title('Espectro de amplitude ')
set (gca, 'Xlim', [0 2])
xlabel('Numero de pontos')
ylabel('Amplitude')
%quinta convolucao
c5=conv(c4,c4)*dt;
                 %Aplicacao da auto convolucao do resultado anterior
c5max = max(c5);
c5norm= c5/c5max;
                %Normalizacao do resultado
x5=-160:0.001:160.; %Vetor do eixo x, numero de pontos
%%%%%%%%%%%Plotagem da convolucao 2
figure (5)
plot(x5,c5norm,'LineWidth',2)
set(gca, 'FontSize', 15, 'FontWeight', 'bold')
set(gca,'Xlim',[-6 6])
xlabel('numero de pontos')
ylabel('Amplitude')
title('Quinta convolucao')
%Amplitude espectral
c5ft = fft(c5norm); %Aplicacao da transformada rapida de Fourier
L5 = 320000;
                 %Tamanho do eixo x, numero de pontos
P2c5 = abs(c5ft/L5); %calculo para a amplitude
%df5=0.003125
                  %Valor do intervalo de amostragem na freguencia
%%%%%%%%%%%Calculo feito para considerar apenas uma banda da amplitude
P1c5 = P2c5(1:L5/2+1);
P1c5(2:end-1) = 2*P1c5(2:end-1);
P1c5norm = P1c5/max(P1c5);
                       %Normalizacao do resultado
f5 = Fs*(0:(L5/2))/L5;
%%%%%%%%%%%%%Plotagem do espectro de amplitude
figure (500)
plot(f5,P1c5norm,'LineWidth',2)
title('Espectro de amplitude ')
set (gca, 'Xlim', [0 2])
xlabel('numero de pontos')
ylabel('Amplitude')
normalizados%%%%%%
```

```
figure (101)
hold on
plot(x,ynorm,'-k','LineWidth',2)
plot(x1,c1norm,'-y','LineWidth',2)
plot(x2,c2norm,':c', 'LineWidth',2)
plot(x3,c3norm,'-.m', 'LineWidth',2)
plot(x4,c4norm,'-r','LineWidth',2)
plot(x5,c5norm,'--b','LineWidth',2)
set (gca, 'Xlim', [-6 6])
legend('Funcao','Primeira','Segunda','Terceira','Quarta','Quinta')
set (gca, 'FontSize', 15, 'FontWeight', 'bold')
xlabel('Numero de pontos')
ylabel('Amplitude')
title('Convolucoes')
%%%%%%%%%%%%%Comparacao Amplitude Espectral das convolucoes e da funcao ...
   normalizada%%
figure(102)
hold on
plot(f,Plnorm,'-k','LineWidth',2)
plot(f1,P1c1norm,'-y','LineWidth',2)
plot(f2,P1c2norm,':c', 'LineWidth',2)
plot(f3,P1c3norm,'-.m', 'LineWidth',2)
plot(f4,P1c4norm,'-r','LineWidth',2)
plot(f5,P1c5norm,'--b','LineWidth',2)
set(gca,'Xlim',[0 2])
legend('Funcao','Primeira','Segunda','Terceira','Quarta','Quinta')
xlabel('Numero de pontos')
ylabel('Amplitude')
title('Amplitude espectral')
```