SP'07 T1 Solutions ME 360

Note: Students had Mat 65

	- X: .		· 9:	
1)	Time	teap	last	ST= Aebt
	0	207	4.92	In AT=lnA+bt
	1	182	4.71	of ratercept stope
	10	167	4.58	2 intercept
	15	155	4,44	
	20	143	4.29	
	25	135	4.17	
	30	128	4.06	
	35	123	3.57	
	40	118	3.87	
	45	114	3, 78	
	40	1 109	3.66	

$$2 \times 10^{-1} = 275$$
 $2 \times 10^{-1} = 46.47$ $2 \times 10^{-1} = 1095$

9625
$$b + 275 l_0 A = 1095$$

$$275 b + 11 l_0 A = 46.47$$

$$b = -2.43 \times 10^{-2}, l_0 A = 4.83 A = 125$$

$$-0.034 t$$

AT= 125 e

2)
$$U = \frac{1}{2} K(2x)^2 = \frac{1}{2} (4K)x^2$$
 $T = \frac{1}{2} m \dot{x}^2 + \frac{1}{2} J \dot{o}^2$

For uniform lisk, $J = \frac{1}{2} m R^2$
 $\dot{o} = \frac{\dot{x}}{R}$
 $T = \frac{1}{2} m \dot{x}^2 + \frac{1}{2} \frac{1}{2} m R^2 (\frac{\dot{x}}{R})^2$
 $= \frac{1}{2} m \dot{x}^2 + \frac{1}{2} (\frac{1}{2} m)(\dot{x})^2$

$$= \frac{1}{2} \left(\frac{3}{3} m \right) \dot{\chi}^2$$

$$W_n = \int \frac{\kappa_{eff}}{m_{eff}} = \int \frac{4\kappa}{3m} = \int \frac{8\kappa}{3m}$$

3) For the 1st mertia

$$Z_{M=2M} T_1 - T_{SG} = T_1 O_1 O$$
 Define $N = \frac{W_1}{W_2}$
 $T_{SG} = \frac{1}{N} T_{LG} O$ Through gears

 $T_{LG} = (O_3 - O_3) K_T O$

$$SM = IA$$
 $T_{LG} - C_{T} O_{3} = I_{2} O_{3}$
 $(O_{2} - O_{3}) E_{T} - C_{T} O_{3} = I_{2} O_{3}$
 $(O_{3} - O_{3}) E_{T} - C_{T} O_{3} = I_{2} O_{3}$

$$T_1 - \frac{1}{N} \left(\Theta_3 - \Theta_3 \right) K_T = I_1 \Theta_1$$
Since $\Theta_3 = \frac{\Theta_1}{N}$

$$T_1 - \frac{1}{N} \left(\frac{\Theta_1}{N} - \Theta_3 \right) K_T = I, \tilde{\Theta}.$$

first

$$\left(\frac{\Theta_{1}}{N}-\Theta_{3}\right)K_{T}-C_{T}\dot{\Theta}_{3}=I_{2}\dot{\Theta}_{3}$$

4) a) 2,3