

La función ζ de Riemann

Julio César Pardo Dañino

Facultad de Ciencias

30 de abril de 2020

La función ζ y los números primos

El producto de Euler

La función ζ y los números primos

Veamos ahora la conexión que guarda la función ζ con los números primos. Esta relación fue encontrada por Euler en 1749, muchísimo antes de que Riemann diera su definición de función ζ .

Teorema (Euler)

 $Si \ s \in \mathbb{R} \ y \ s > 1$, entonces

$$\zeta(s) = \prod_{p \in \mathbb{P}} \frac{1}{1 - p^{-s}} \tag{1}$$

Demostración.

La función ζ y los números primos

El producto de Euler

Teorema (Euler)

 $Si \ s \in \mathbb{R} \ y \ s > 1$, entonces

$$\zeta(s) = \prod_{p \in \mathbb{P}} \frac{1}{1 - p^{-s}} \tag{1}$$

Demostración.

Consideremos $q \ge 2$ un número primo y s > 1 ambos fijos.

La función ζ y los números primos

El producto de Euler

Teorema (Euler)

 $Si \ s \in \mathbb{R} \ y \ s > 1$, entonces

$$\zeta(s) = \prod_{p \in \mathbb{P}} \frac{1}{1 - p^{-s}} \tag{1}$$

Demostración.

Consideremos $q \ge 2$ un número primo y s > 1 ambos fijos. Es claro que $q^{-s} \in (0, 1)$, por lo que considerando la serie geométrica con razón $r = q^{-s}$ tenemos:

Teorema (Euler)

 $Si \ s \in \mathbb{R} \ y \ s > 1$, entonces

$$\zeta(s) = \prod_{p \in \mathbb{P}} \frac{1}{1 - p^{-s}} \tag{1}$$

Demostración.

Consideremos $q \ge 2$ un número primo y s > 1 ambos fijos. Es claro que $q^{-s} \in (0, 1)$, por lo que considerando la serie geométrica con razón $r = q^{-s}$ tenemos:

$$\sum_{n=0}^{\infty} q^{-sn} = \frac{1}{1 - q^{-s}}$$

La función ζ y los números primos

El producto de Euler

Demostración (Continuación).

Observemos que esta serie geométrica representa cada producto a la derecha de (1).

Demostración (Continuación).

Observemos que esta serie geométrica representa cada producto a la derecha de (1). Ahora, puesto que q es fijo, consideremos todos los números primos p tales que $2 \le p \le q$.

Demostración (Continuación).

Observemos que esta serie geométrica representa cada producto a la derecha de (1). Ahora, puesto que q es fijo, consideremos todos los números primos p tales que $2 \le p \le q$. Así, considerando su desarrollo en serie geométrica tenemos que:

Demostración (Continuación).

Observemos que esta serie geométrica representa cada producto a la derecha de (1). Ahora, puesto que q es fijo, consideremos todos los números primos p tales que $2 \le p \le q$. Así, considerando su desarrollo en serie geométrica tenemos que:

$$\prod_{2 \le p \le q} \frac{1}{1 - p^{-s}} = \sum_{n=0}^{\infty} a_n \tag{2}$$

Demostración (Continuación).

Observemos que esta serie geométrica representa cada producto a la derecha de (1). Ahora, puesto que q es fijo, consideremos todos los números primos p tales que $2 \le p \le q$. Así, considerando su desarrollo en serie geométrica tenemos que:

$$\prod_{2 \le p \le q} \frac{1}{1 - p^{-s}} = \sum_{n=0}^{\infty} a_n \tag{2}$$

Donde cada a_n es de la forma $a_n = 2^{-s\alpha_2} 3^{-s\alpha_3} \cdots q^{-s\alpha_q}$

Demostración (Continuación).

Observemos que esta serie geométrica representa cada producto a la derecha de (1). Ahora, puesto que q es fijo, consideremos todos los números primos p tales que $2 \le p \le q$. Así, considerando su desarrollo en serie geométrica tenemos que:

$$\prod_{2 \le p \le q} \frac{1}{1 - p^{-s}} = \sum_{n=0}^{\infty} a_n \tag{2}$$

Donde cada a_n es de la forma $a_n = 2^{-s\alpha_2} 3^{-s\alpha_3} \cdots q^{-s\alpha_q} \operatorname{con} \alpha_p \ge 0$ para todo $2 \le p \le q$.

Demostración (Continuación).

Cada sumando a_n , lo podemos ver como

$$n^{-s} := a_n = 2^{-s\alpha_2} 3^{-s\alpha_3} \cdots q^{-s\alpha_q}$$
 donde $n = 2^{\alpha_2} 3^{\alpha_3} \cdots q^{\alpha_q}$.

Demostración (Continuación).

Cada sumando a_n , lo podemos ver como

$$n^{-s} := a_n = 2^{-s\alpha_2} 3^{-s\alpha_3} \cdots q^{-s\alpha_q}$$
 donde $n = 2^{\alpha_2} 3^{\alpha_3} \cdots q^{\alpha_q}$.

Observamos que un número n aparece en los sumandos de (2) si y sólo si sus divisores primos son iguales o menos que q.

Demostración (Continuación).

Cada sumando a_n , lo podemos ver como

$$n^{-s} := a_n = 2^{-s\alpha_2} 3^{-s\alpha_3} \cdots q^{-s\alpha_q}$$
 donde $n = 2^{\alpha_2} 3^{\alpha_3} \cdots q^{\alpha_q}$.

Observamos que un número n aparece en los sumandos de (2) si y sólo si sus divisores primos son iguales o menos que q. Más aún, por el teorema fundamental de la aritmética, tenemos que si este n aparece, sólo aparece una única vez, por lo cual podemos reescribir la igualdad (2) como

Demostración (Continuación).

Cada sumando a_n , lo podemos ver como

$$n^{-s} := a_n = 2^{-s\alpha_2} 3^{-s\alpha_3} \cdots q^{-s\alpha_q}$$
 donde $n = 2^{\alpha_2} 3^{\alpha_3} \cdots q^{\alpha_q}$.

Observamos que un número n aparece en los sumandos de (2) si y sólo si sus divisores primos son iguales o menos que q. Más aún, por el teorema fundamental de la aritmética, tenemos que si este n aparece, sólo aparece una única vez, por lo cual podemos reescribir la igualdad (2) como

$$\prod_{2 \le p \le q} \frac{1}{1 - p^{-s}} = \sum_{p|n, \ 2 \le p \le q} n^{-s} \tag{3}$$

Demostración (Continuación).

Cada sumando a_n , lo podemos ver como

$$n^{-s} := a_n = 2^{-s\alpha_2} 3^{-s\alpha_3} \cdots q^{-s\alpha_q}$$
 donde $n = 2^{\alpha_2} 3^{\alpha_3} \cdots q^{\alpha_q}$.

Observamos que un número n aparece en los sumandos de (2) si y sólo si sus divisores primos son iguales o menos que q. Más aún, por el teorema fundamental de la aritmética, tenemos que si este n aparece, sólo aparece una única vez, por lo cual podemos reescribir la igualdad (2) como

$$\prod_{2 \le p \le q} \frac{1}{1 - p^{-s}} = \sum_{p|n, \, 2 \le p \le q} n^{-s} \tag{3}$$

la suma en (3) es sobre los enteros positivos n tales que sus factores primos son menores o iguales a q.

Demostración (Continuación).

Notemos que en la suma de (3) aparecen en particular todos los números enteros $1, 2, \dots, q$, por lo cual tenemos

Demostración (Continuación).

Notemos que en la suma de (3) aparecen en particular todos los números enteros $1, 2, \dots, q$, por lo cual tenemos

$$0 < \sum_{n=1}^{\infty} n^{-s} - \sum_{p|n, 2 \le p \le q} n^{-s} < \sum_{n=q+1}^{\infty} n^{-s}$$

Demostración (Continuación).

Notemos que en la suma de (3) aparecen en particular todos los números enteros $1, 2, \dots, q$, por lo cual tenemos

$$0 < \sum_{n=1}^{\infty} n^{-s} - \sum_{p|n, 2 \le p \le q} n^{-s} < \sum_{n=q+1}^{\infty} n^{-s}$$

Haciendo $q \to \infty$, tenemos que $\sum_{n=q+1}^{\infty} n^{-s} \to 0$, por lo que obtenemos

Demostración (Continuación).

Notemos que en la suma de (3) aparecen en particular todos los números enteros $1, 2, \dots, q$, por lo cual tenemos

$$0 < \sum_{n=1}^{\infty} n^{-s} - \sum_{p|n, 2 \le p \le q} n^{-s} < \sum_{n=q+1}^{\infty} n^{-s}$$

Haciendo $q \to \infty$, tenemos que $\sum_{n=q+1}^{\infty} n^{-s} \to 0$, por lo que obtenemos

$$\sum_{n=1}^{\infty} n^{-s} = \lim_{q \to \infty} \sum_{p|n, \ 2 \le p \le q} n^{-s}$$

Demostración (Continuación).

Pero de la igualdad (3), tenemos que

Demostración (Continuación).

Pero de la igualdad (3), tenemos que

$$\lim_{q \to \infty} \sum_{p \mid n, \, 2 \le p \le q} n^{-s} = \prod_{p \in \mathbb{P}} \frac{1}{1 - p^{-s}}$$

Demostración (Continuación).

Pero de la igualdad (3), tenemos que

$$\lim_{q \to \infty} \sum_{p \mid n, \, 2 \le p \le q} n^{-s} = \prod_{p \in \mathbb{P}} \frac{1}{1 - p^{-s}}$$

por lo que finalmente podemos concluir que

Demostración (Continuación).

Pero de la igualdad (3), tenemos que

$$\lim_{q \to \infty} \sum_{p|n, 2 \le p \le q} n^{-s} = \prod_{p \in \mathbb{P}} \frac{1}{1 - p^{-s}}$$

por lo que finalmente podemos concluir que

$$\zeta(s) = \sum_{n=1}^{\infty} n^{-s} = \prod_{p \in \mathbb{P}} \frac{1}{1 - p^{-s}} \quad \text{cuando} \quad s > 1$$

Demostración (Continuación).

Pero de la igualdad (3), tenemos que

$$\lim_{q \to \infty} \sum_{p|n, \, 2 \le p \le q} n^{-s} = \prod_{p \in \mathbb{P}} \frac{1}{1 - p^{-s}}$$

por lo que finalmente podemos concluir que

$$\zeta(s) = \sum_{n=1}^{\infty} n^{-s} = \prod_{p \in \mathbb{P}} \frac{1}{1 - p^{-s}} \quad \text{cuando} \quad s > 1$$

lo que finaliza la prueba

Relaciones con la aritmética y la geometría

La función ζ y los números primos

El producto de Euler

Generalización

El resultado anterior, se puede generalizar fácilmente a todo el dominio de la función ζ , lo que nos lleva al siguiente teorema.

Generalización

El resultado anterior, se puede generalizar fácilmente a todo el dominio de la función ζ , lo que nos lleva al siguiente teorema.

Teorema

 $Sis \in \mathbb{C} con \Re(s) > 1$, entonces

$$\zeta(s) = \prod_{p \in \mathbb{P}} \frac{1}{1 - p^{-s}}$$

La función ζ y los números primos

El producto de Euler

Observación

La expansión en productos de la función ζ guarda el teorema fundamental de la aritmética en una sola ecuación. Esto muestra, de inicio, la importancia aritmética de la función ζ .

Valores específicos de la función ζ

La función ζ y el número π

La función ζ no solo guarda un estrecho vínculo con la aritmética, si no también tiene una relación asombrosa con la geometría, en particular con su representante por excelencia, el número π .

Valores específicos de la función ζ

La función ζ y el número π

En 1735, Euler resuelve el problema de Basilea, el cual consiste en encontrar la suma exacta de los inversos de los cuadrados de los enteros positivos

La función ζ y el número π

Valores específicos de la función ζ

La función ζ y el número π

En 1735, Euler resuelve el problema de Basilea, el cual consiste en encontrar la suma exacta de los inversos de los cuadrados de los enteros positivos

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

Valores específicos de la función ζ

La función ζ y el número π

En 1735, Euler resuelve el problema de Basilea, el cual consiste en encontrar la suma exacta de los inversos de los cuadrados de los enteros positivos

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

Esto ya nos da una primera relación entre la función ζ y el número π

Valores específicos de la función ζ

La función ζ y el número π

En 1735, Euler resuelve el problema de Basilea, el cual consiste en encontrar la suma exacta de los inversos de los cuadrados de los enteros positivos

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

Esto ya nos da una primera relación entre la función ζ y el número π dada por $\zeta(2) = \frac{\pi^2}{6}$.

Valores específicos de la función ζ

La función ζ y el número π

Pocos años después, Euler generaliza su resultado, encontrando la increible relación

Valores específicos de la función ζ

La función ζ y el número π

Pocos años después, Euler generaliza su resultado, encontrando la increible relación

$$\sum_{n=1}^{\infty} \frac{1}{n^{2k}} = \frac{(-1)^{k-1} (2\pi)^{2k} B_{2k}}{2 (2k)!} \qquad \forall k \in \mathbb{Z}^+$$

La runcion ç y el número x

Valores específicos de la función ζ

La función ζ y el número π

Pocos años después, Euler generaliza su resultado, encontrando la increible relación

$$\sum_{n=1}^{\infty} \frac{1}{n^{2k}} = \frac{(-1)^{k-1} (2\pi)^{2k} B_{2k}}{2 (2k)!} \qquad \forall k \in \mathbb{Z}^+$$

donde B_k es el k-ésimo número de Bernoulli.

La función ζ y el número π

Valores específicos de la función ζ

Los números de Bernoulli

Veamos más acerca de este resultado, iniciemos definiendo los números de Bernoulli

Los números de Bernoulli

Veamos más acerca de este resultado, iniciemos definiendo los números de Bernoulli

Definición (Números de Bernoulli)

Definimos el k-ésimo número de Bernoulli B_k como el k-ésimo coeficiente de la serie de Taylor alrededor de cero de la función $\frac{z}{\exp(z)-1}$, esto es

$$\frac{z}{\exp(z) - 1} = \sum_{k=1}^{\infty} \frac{B_k}{k!} z^k$$

Los números de Bernoulli

Veamos más acerca de este resultado, iniciemos definiendo los números de Bernoulli

Definición (Números de Bernoulli)

Definimos el k-ésimo número de Bernoulli B_k como el k-ésimo coeficiente de la serie de Taylor alrededor de cero de la función $\frac{z}{\exp(z)-1}$, esto es

$$\frac{z}{\exp(z) - 1} = \sum_{k=1}^{\infty} \frac{B_k}{k!} z^k$$

Observación

Los números de Bernoulli están bien definidos, pues la función $\frac{z}{\exp(z)-1}$ es analítica en una vecindad alrededor de cero.

Los números de Bernoulli

Los números de Bernoulli no siguen un patrón general, la única forma de calcularlos es a través de su desarrollo de Taylor, es decir $B_k = f^{(k)}(0)$; los primeros doce valores son

Los números de Bernoulli

Los números de Bernoulli no siguen un patrón general, la única forma de calcularlos es a través de su desarrollo de Taylor, es decir $B_k = f^{(k)}(0)$; los primeros doce valores son

Los números de Bernoulli

n	0	1	2	3	4	5	6	7	8	9	10	11
B_n	1	$-\frac{1}{2}$	$\frac{1}{6}$	0	$-\frac{1}{30}$	0	$\frac{1}{42}$	0	$-\frac{1}{30}$	0	$\frac{5}{66}$	0

Cuadro 1: Primeros doce números de Bernoulli.

La función ζ y el número π

Valores específicos de la función ζ

La función ζ y el número π

Lo anterior nos permite enunciar el siguiente teorema

La función ζ y el número π

Lo anterior nos permite enunciar el siguiente teorema

Teorema (Euler)

Para todo k $\in \mathbb{Z}^+$ *se cumple que*

$$\zeta(2k) = \frac{(-1)^{k-1} (2\pi)^{2k} B_{2k}}{2 (2k)!}$$

La función ζ y el número π

Lo anterior nos permite enunciar el siguiente teorema

Teorema (Euler)

Para todo k $\in \mathbb{Z}^+$ *se cumple que*

$$\zeta(2k) = \frac{(-1)^{k-1} (2\pi)^{2k} B_{2k}}{2 (2k)!}$$

Demostración.

La demostración es algo técnica, se basa en el desarrollo en serie de Taylor de funciones específicas. Para los que estén interesados en ella, la adjunto en **funcionzetapi.pdf**.

La función ζ y el número π

Del teorema 1.3, obtenemos algunos desarrollos en serie de π , entre ellos el famoso problema de Basilea.

La función ζ y el número π

Del teorema 1.3, obtenemos algunos desarrollos en serie de π , entre ellos el famoso problema de Basilea.

La función ζ y el número π

$$\zeta(2) = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
$$\zeta(4) = \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$$

$$\zeta(6) = \sum_{n=1}^{\infty} \frac{1}{n^6} = \frac{\pi^6}{945}$$

La función ζ y el número π

$$\zeta(8) = \sum_{n=1}^{\infty} \frac{1}{n^8} = \frac{\pi^8}{9450}$$

$$\zeta(10) = \sum_{n=1}^{\infty} \frac{1}{n^{10}} = \frac{\pi^{10}}{93555}$$

$$\zeta(12) = \sum_{n=1}^{\infty} \frac{1}{n^{12}} = \frac{691\pi^{12}}{638512875}$$

$$\zeta(14) = \sum_{n=1}^{\infty} \frac{1}{n^{14}} = \frac{2\pi^{14}}{18243225}$$

$$\vdots$$