GNG 1105E – Engineering Mechanics

CHAPTER S3 - EQUILIBRIUM

Assigned readings

- 3/1 Introduction
- 3/2 System isolation and the free-body diagram
- 3/3 Equilibrium conditions (2-D)

3/1 Introduction

Equilibrium conditions:

These conditions are said to be necessary and sufficient to maintain equilibrium

	Type of Contact and Force Origin			ion on Body to Be Isolated
1.	Flexible cable, belt, chain, or r Weight of cable negligible Weight of cable not negligible	1	T T	Force exerted by a flexible cable is always a tension away from the body in the direction of the cable.
2.	Smooth surfaces		N	Contact force is compressive and is normal to the surface.
3.	Rough surfaces		R N	Rough surfaces are capable of supporting a tangential component <i>F</i> (frictional force) as well as a normal component <i>N</i> of the resultant contact force <i>R</i> .

Type of Contact and Force Origin	Action on Body to Be Isolated	
4. Roller support	Roller, rocker, or ball support transmits a compressive force normal to the supporting surface.	
5. Freely sliding guide	Collar or slider free to move along smooth guides; can support force normal to guide only.	
6. Pin connection	A freely hinged pin connection is capable of supporting a force in any direction in the plane normal to the pin axis. We may either show two components R_x and R_y or a magnitude R and direction θ . A pin not free to turn also supports a couple M .	

Type of Contact and Force Origin	Action on Body to Be Isolated	
7. Built-in or fixed support or Weld	A built-in or fixed support is capable of supporting an axial force F , a transverse force V (shear force), and a couple M (bending moment) to prevent rotation.	
8. Gravitational attraction	The resultant of gravitational attraction on all elements of a body of mass m is the weight $W = mg$ and acts toward the center of the earth through the center of gravity G .	

Type of Contact and Force Origin	Action on Body to Be Isolated	
9. Spring action Neutral position $F = kx$ Hardening $F = kx$ Softening	Spring force is tensile if the spring is stretched and compressive if compressed. For a linearly elastic spring the stiffness k is the force required to deform the spring a unit distance.	
10. Torsional spring action Neutral position	For a linear torsional spring, the applied moment M is proportional to the angular deflection θ from the neutral position. The stiffness k_T is the moment required to deform the spring one radian.	

Most important step in solving mechanics problems!

Isolate the system including external boundaries

Identify **ALL** forces which act on the isolated system and represent them in the diagram

Mechanical System	Free-Body Diagram of Isolated Body
4. Beam Smooth surface contact at A. Mass m	$P \longrightarrow B_x \qquad W = mg \qquadx$
4. Rigid system of interconnected bodies analyzed as a single unit Weight of mechanism neglected	$P = \bigcup_{x \in A_y} W = mg$

Scalar format:

$$\sum F_{x}=0$$

$$\sum F_y = 0$$

$$\sum M_O = 0$$

Alternative equilibrium equations:

$$\sum \boldsymbol{F}_x = 0$$

$$\sum M_A = 0$$

$$\sum M_B = 0$$

$$\sum M_A = 0$$

$$\sum M_B = 0$$

$$\sum \boldsymbol{M}_{C} = 0$$

Two-force members occur when a body is in equilibrium under the action of only two forces

These forces must be equal, opposite, collinear, and independent of the object shape

Three-force members occur when a body is in equilibrium under the action of only three forces

These forces must be **concurrent**, except in cases where all three forces are parallel

Statically determinant system

Rigid system of interconnected bodies analyzed as a single unit

Adequacy of constraints

Adequacy of constraints

Sample problem 3/1

Determine the magnitudes of the forces **C** and **T**, which, along with the other three forces shown, act on the bridge-truss joint.

Sample problem 3/4

Determine the magnitude T of the tension in the supporting cable and the magnitude of the force on the pin at A for the jib crane shown. The beam AB is a standard 0.5-m I-beam with a mass of 95 kg per meter of length.

Sample problem 3/4

Recommended problems

Chapter S3 Practice Problems

Questions 1-20