Protein engineering

Enantioselectivity

Substrate Specificity

Solvent

Stability

Substrate/Product Tolerance

Table 1. List of the enzymes engineered by protein engineering.

Enzyme	Organism	Improved property	Method	Application	Reference	
Hydantoinase	Arthrobacter sp.	Enantioselective hydantoinase and 5-fold	Saturation mutagenesis,	Production of L-Met	[7]	
riydantomase	Arthrobacter sp.	more productivity screening		(L-amino acids)	[/]	
Cyclodextrin glucanotransferase	Bacillus stearothermophilus ET1	Modulation of cyclizing activity and thermostability	Site-directed mutagenesis	Bread industry	[8]	
Lipase B	Candida antarctica	20-fold increase in half-life at 70 °C	Resolution and desymmetrization of compound		[9]	
Tagatose-1,6-Bisphosphate aldolase	E. coli	80-fold improvement in k_{cat}/K_m and 100-fold change in stereospecificity	DNA shuffling and screening	Efficient syntheses of complex stereoisomeric products	[10]	
Xylose isomerase	Thermotoga neapolitana	High activity on glucose at low temperature and low pH	Random Mutagenesis and screening	Used in preparation of high fructose syrup	[11]	
Amylosucrase	Neisseria polysaccharea	5-fold increased activity	Random mutagenesis, gene shuffling, and directed evolution	Synthesis or the modification of polysaccharides	[12]	
Galactose oxidase	F. graminearum	3.4–4.4 fold greater V _{max} /K _m and increased specificity	epPCR and screening	Derivatization of guar gum	[13]	
Fructose bisphosphate aldolase	E. coli	Increased thermostablity and stability to treatment with organic solvent	DNA shuffling Use in organic synthesis		[14]	
1,3-1,4-α-D-glucanase	Fibrobacter succinogenes	3-4-fold increase in the turnover rate (k)	PCR-based gene truncation	Beer industry	[15]	
Lipase	P. aeruginosa	2-fold increase in amidase activity	Random mutagenesis and Understanding lipase inability screening to hydrolyze amides		[16]	
Protease BYA	Bacillus sp. Y	Specific activity1.5-fold higher	Site-directed mutagenesis	Detergents products	[17]	
<i>p</i> -Hydroxybenzoate hydroxylase	Pseudomonas fluorescens NBRC 14160	Activity, reaction specificity, and thermal stability	Combinatorial mutagenesis	Degrading various aromatic compounds in the environment	[18]	
Endo-1,4-β-xylanase II	Trichoderma reesei	Increased alkali stability	Site-directed mutagenesis	Sulfate pulp bleaching	[19]	
Xylose isomerase	Thermotoga neapolitana	2.3-fold increases in catalytic efficiency	Random mutagenesis Production of high fructo		[11]	

Table 1. Cont.

Enzyme	Organism	Organism Improved property Metho		Application	Reference
α-Amylase	Bacillus sp. TS-25	10 °C enhancement in thermal stability Directed evolution		Baking industry	[20]
Xylanase		Tm improved by 25 °C	Gene site-saturation mutagenesis	Degradation of hemicellulose	[21]
Fructosyl peptide oxidase	Coniochaeta sp	79.8-fold enhanced thermostability	Directed evolution and site-directed mutagenesis	Clinical diagnosis	[22]
Endo-β-1,4-xylanase	Bacillus subtilis	Acid stability	Rational protein engineering	Degradation of hemicellulose	[23]
Subtilase	Bacillus sp.	6-fold increase in caseinolytic activity at 15–25 °C	Directed evolution and site-directed mutagenesis	Detergent additives and food processing	[24]
CotA laccase	B. subtilis	120-fold more specific for ABTS	Directed evolution	Catalyze oxidation of polyphenols	[25]
Pyranose 2-oxidase	Trametes multicolor	Altered substrate selectivity for D-galactose, D-glucose	Semi-rational enzyme engineering approach	Food industry	[26]
Xylanase XT6	Geobacillus stearothermophilus	52-fold enhancement in thermostability; increased catalytic efficiency	Directed evolution and site-directed mutagenesis	Degradation of hemicellulose	
Lipase	Bacillus pumilus	Thermostability and 4-fold increase in k_{cat}	Site-directed mutagenesis	Chemical, food, leather and detergent industries	[28]
Bgl-licMB	Bacillus amyloliquefaciens (Bgl) and Clostridium thermocellum (licMB)	2.7 and 20 -fold higher $k_{\text{cat}}/K_{\text{m}}$ than that of the parental Bgl and licMB, respectively	Splicing-by-overlap extension		
β-agarase AgaA	Zobellia galactanivorans	Catalytic activity and thermostability	Site-directed mutagenesis Production of functional neo-agarooligosaccharides		[30]
Prolidase	Pyrococcus horikoshii	Thermostability	Random mutagenesis	Detoxification of organophosphorus nerve agents	[31]

Improving thermal Stability

- Protein stability can be increased by creating a molecule which will **not** readily unfold under unfavorable conditions.
- Protein stability can be improved by:
 - * Adding disulphide bonds
 - * Replacing labile amino acids
 - * Reducing the number of **free S-H** (sulphydryl) groups.

Adding Disulphide Bonds

- Disulphide bonds can significantly stabilize the native structure of proteins.
- This effect is presumed to be due to the **decrease in configuration chain entropy** of the unfolded polypeptide.
- Wild type lysozyme has 2 cysteine residues and no disulphide bonds.
- Site-directed mutagenesis was used to introduce new cysteine residues and new internal S-S bonds between amino acids:
 - 3 and 97 9 and 164 21 and 142

Mutagenesis of Lysozyme

- After mutagenesis each mutant gene was expressed in E. coli.
- The modified enzymes were purified and tested for enzyme activity and thermostability.
- The results showed that the **thermal stability increased** with the presence of **disulphide bonds**.
- The most thermostable mutant was the one with 3 S-S bonds.
- Those mutants which had S-S bonds between amino acids 21 and 142 lost 100% of their activity.
- Can you guess why?

Mutagenesis of Lysozyme

Table 8.2 Properties of T4 lysozyme and six engineered variants

Enzyme	Amino acid at position:						No.	%	T_{m}	
	3	9	21	54	97	142	164	of -S-S-	Activity	(°C)
wt	Ile	Ile	Thr	Cys	Cys	Thr	Leu	0	100	41.9
pwt	Ile	Ile	Thr	Thr	Ala	Thr	Leu	0	100	41.9
A	Cys	Ile	Thr	Thr	Cys	Thr	Leu	1	96	46.7
В	Ile	Cys	Thr	Thr	Ala	Thr	Cys	1	106	48.3
C	Ile	Ile	Cys	Thr	Ala	Cys	Leu	1	0	52.9
D	Cys	Cys	Thr	Thr	Cys	Thr	Cys	2	95	57.6
E	Ile	Cys	Cys	Thr	Ala	Cys	Cys	2	0	58.9
F	Cys	Cys	Cys	Thr	Cys	Cys	Cys	3	0	65.5

Adapted from Matsumura et al., Nature 342:291-293, 1989.

wt, wild-type T4 lysozyme; pwt, pseudo-wild-type enzyme; A through F, six engineered cysteine variants; -S-S-, disulfide bonds; T_m , "melting" temperature (a measure of thermostability).

Changing Labile Amino Acids

- When proteins are exposed to high temperatures deamidation occurs.
- Deamidation → release of NH₃
- Asparagine → Asparatic acid
- Glutamine → Glutamic acid
- The loss of the **amide groups** may result in the lost of activity of the affected enzymes.

Triose Phosphate Isomerase

- **Triose phosphate isomerase** catalyses the interconversion of dihydroxyacetone and phosphate to glyceraldehyde –3 phosphate during glycolysis.
- The enzyme (Saccharomyces cerevisiae) consist of 2 identical subunits and each subunit has 2 asparagine residues which contributes to its thermal sensitivity.
- Using oligonucleotide directed mutagenesis:
 - ightharpoonup Asn 14 \rightarrow Ile
 - ightharpoonup Asn 78 \rightarrow Thr
- Resulted in **enhanced thermostability**.
- When both Asn → Asp the resulting protein was unstable even at room temperature.

Increasing the stability of Triose Phosphate Isomerase

Table 8.3 Stability at 100°C of the yeast enzyme triosephosphate isomerase and its engineered derivatives

Enzyme		acid at tion:	Half-life (min)		
	14	78			
Wild type	Asn	Asn	13		
Variant A	Asn	Thr	17		
Variant B	Asn	Ile ·	16		
Variant C	Thr	Ile	25		
Variant D	Asp	Asn	11		

Adapted from Ahern et al., Proc. Natl. Acad. Sci. USA 84:675-679, 1987.

Enzyme stability is expressed as the half-life, or rate of enzyme inactivation, at 100°C. A longer half-life indicates a more stable enzyme.

Reducing the # of Free S-H Groups

- Interferons "interfere" with virus replication.
- They are small protein molecules released from virus infected cells and binds to adjacent cells causing then to produce antiviral proteins which **disrupts viral replication**.
- When β interferon was cloned and expressed in *E. coli* it had about **10% of** the activity of the authentic form.
- The *E. coli* expressed interferon was found to existed as **dimers and higher oligomers**.
- Analysis of the DNA of the cloned gene showed that it has 3 cysteine
 residues which may be involved in intermolecular disulphide bonding
 resulting in dimers and higher oligomers.

β Interferon

- It was not know which or if any of the cysteine residues may be involved in intramolecular bonding.
- A similar molecule α interferon have 4 Cys residues at amino acid positions 1, 29, 98 and 138 with S-S bonds between Cys 29 and 138, which is homologous to Cys 31 and 141 of β INF.

β Interferon

- This suggests that Cys 17 of β INF was not involved intramolecular S-S bond.
- Therefore Cys 17 was targeted for mutation to serine.
- What is the structural relationship between Cys and Ser?
- Ser has an O atom instead of S atom in Cys therefore cannot form S-S bonds.
- Sure enough mutation of Cys 17 \rightarrow Ser the resulting β INF has **specific activity** similar to wild type β INF.

Enzyme activity

- Rate of substrate turnover may be limited by diffusion
- Binding and desorption rates

Modifying Cofactor Requirement

- Subtilisins are a class of microbial serine proteases and are widely used as a biodegradable cleaning agents in laundry detergents.
- Subtilisin binds one or more molecules of Ca²⁺ which is important for their stability.
- Unfortunately subtilisins are used in industrial settings where there are metal-chelating agents which will bind Ca²⁺.
- To circumvent this problem directed mutagenesis was used to **abolish the** Ca²⁺ binding capability of subtilisin and to stabilize the modified enzyme.

Mutagenesis of Subtilisins

- The x-ray crystallography structure of the enzyme and the amino acids involved in the Ca²⁺ binding was known.
- Oligonucleotide mutagenesis was used to construct a mutant protein by deleting amino acids 75-83 that is responsible for Ca²⁺ binding.
- The next thing to do was to stabilize the modified protein.
- aa selected for mutagenesis came from 4 different regions : the **N terminus** (aa 2-5), **omega loop** (aa 36-44), α helical region (aa 63-85) and a β pleated region (aa 202-222)
- The mutants were assayed for enzyme activity and stability.

Mutagenesis of Subtilisins

- Stabilizing mutations were identified at 7 of the 10 sites.
- These stabilizing mutations were introduced into a single gene.
- How could all seven mutations be introduced into a single gene?
- The results:
- The mutant subtilisins did **not require Ca²⁺** as a cofactor.
- The mutant enzyme was **10 times more stable** than the native form in the absence of Ca²⁺ and 50% more stable in presence of Ca²⁺.

Increasing Enzyme Specificity

- **Tissue plasmogen activator** (tPA) is a protease that is used for the **dissolution of blood clot**.
- Treatment with tPA requires an intravenous infusions (1.5-3.0 hrs) because of the clearance of tPA from the circulation is rapid (t½~6 min).
- For tPA to be effective the patient must be given in high initial concentration which can often cause **nonspecific bleeding**.
- Therefore a long life tPA with **increase specificity** for fibrin in blood clot is desirable.
- Directed mutagenesis was used to try achieve these goals.

Mutagenesis of tPA

- Changing Thr 103 → Asn cause tPA to persist in rabbit plasm 10 times longer than the native form (longer life tPA).
- Changing amino acids 296-299 from:
- Lys-His-Arg-Arg → Ala-Ala-Ala-Ala produced an enzyme with more fibrin specificity. (LHAA →A)
- Changing **Asn 117** → **GIn** causes the enzyme to retain the enzymatic activity of the native form.
- Combining these three mutations into a single gene allows all three mutations to be expressed in a single protein simultaneously. It remains to be seen if this modified protein will be effective in humans.

Mutagenesis of tPA

Table 8.6 Stability and activity of various modified versions of tPA

tPA variant	Modification(s)	Stability in plasma	Fibrin binding	Activity in plasma	Activity vs clots
1	Thr(103)→Asn	10	0.34	0.68	0.56
2	LysHisArgArg(296-299)→AlaAlaAlaAla	0.85	0.93	0.13	1.01
3	Thr(103)→Asn, LysHisArgArg(296–299)→AlaAlaAlaAla	5.3	0.33	0.13	0.65
4	Thr(103)→Asn, Asn(117)→Gln	3.4	1.0	1.13	1.17
5	LysHisArgArg(296-299)→AlaAlaAlaAla, Asn(117)→Gln	1.2	1.33	0.16	1.38
6	Thr(103)→Asn, LysHisArgArg(296–299)→AlaAlaAlaAla, Asn(117)→Gln	8.3	0.87	0.06	0.85

Adapted from Peña et al., Proc. Natl. Acad. Sci. USA 91:3670-3674, 1994.

All of the values shown are normalized to the wild type. Plasma stability is the reciprocal of the time it takes for plasma clearance; larger numbers indicate a more stable derivative. Fibrin specificity is reflected by a high activity versus clots and a low activity in plasma.

Increasing Enzyme Activity

- In addition to stabilizing the enzyme, site-directed mutagenesis may be used to modify its **catalytic activity**.
- To do this detailed geometry of the active site and the amino acids in the active site must be known.
- Tyrosyl-tRNA synthetase has been modified for increase substrate binding (Km). (If the substrate binding is increased then this increases the rate of the reaction).

Tyrosyl-tRNA Synthetase

- **Tyrosyl-tRNA synthetase** catalyses the transfer of Tyr to tRNA^{tyr}.
- This is then added to the growing polypeptide chain.
- Tyr + ATP → Tyr-AMP + Ppi
- Tyr-AMP + tRNA^{tyr} → Tyr-tRNA^{tyr} + AMP
- The active site of the enzyme was mapped.
- In the crystal structure of the enzyme, the hydroxyl side chain of **Thr 51** form a weak H-bond with AMP of the substrate intermediate of tyrosyl adenylate (Tyr-A).

Mutagenesis of Tyrosyl-tRNA Synthetase

- Oligonucleotide mutagenesis was used to create 2 mutations at Thr 51:
- Thr 51 → Ala 51 (removes the H-bond).
- With this mutation the binding affinity (Km) of enzyme for ATP increase 2 fold.
- Thr $51 \rightarrow Pro 51$.
- With this mutation ATP is bound 100-fold more tightly.

$$H_3C$$
 OH OH O OH O OH

THE END