ECE102, Fall 2020

Homework #4

Signals & Systems

UCLA; Department of ECE

Prof. J.C. Kao

TAs: A. Ghosh, T. Monsoor, G. Zhao

Due Friday, 6 Nov 2020, by 11:59pm to Gradescope.

Covers material up to Lecture 8.

100 points total.

This homework covers questions relate to Fourier series and LTI systems.

1. (28 points) Fourier Series

(a) (18 points) Find the Fourier series coefficients for each of the following periodic signals:

i. (9 points)
$$f(t) = \cos(5\pi t) + \frac{1}{2}\sin(4\pi t)$$

Solution: We first find the period of f(t). The first term $\cos(5\pi t)$ is periodic with period $T_1 = \frac{2\pi}{5\pi} = \frac{2}{5}$. The second term $\sin(4\pi t)$ is periodic with period $T_2 = \frac{2\pi}{4\pi} = \frac{1}{2}$. Since $\frac{T_1}{T_2} = \frac{4}{5}$, f(t) is then periodic with fundamental period $T_0 = 5T_1 = 4T_2 = 2$ sec, and fundamental frequency $\omega_0 = \frac{2\pi}{\omega_0} = \pi$ rad/s.

Using Euler's identity, f(t) can be equivalently written as:

$$f(t) = \cos(5\pi t) + \frac{1}{2}\sin(4\pi t) = \frac{1}{2}\left(e^{j5\pi t} + e^{-j5\pi t}\right) + \frac{1}{4j}\left(e^{j4\pi t} - e^{-j4\pi t}\right)$$
$$= \frac{1}{2}e^{j5\pi t} + \frac{1}{2}e^{-j5\pi t} + \frac{-j}{4}e^{j4\pi t} + \frac{j}{4}e^{-j4\pi t}$$

The fundamental frequency of f(t) is $\omega_0 = \pi$, and since any periodic signal can be written as:

$$f(t) = \sum_{k=-\infty}^{\infty} c_k e^{j\omega_0 kt}$$

we deduce for f(t) the following Fourier series coefficients:

$$c_k = \begin{cases} \frac{-j}{4}, & \text{if } k = 4\\ \frac{j}{4}, & \text{if } k = -4\\ \frac{1}{2}, & \text{if } k = -5, 5\\ 0, & \text{otherwise} \end{cases}$$

ii. (9 points) f(t) is a periodic signal with period T = 1 s, where one period of the signal is defined as e^{-2t} for 0 < t < 1 s, as shown below.

Solution:

Since f(t) is periodic with period $T_0 = 1$ s, we can rewrite it as:

$$f(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$

where $\omega_0 = \frac{2\pi}{T_0} = 2\pi$ rad/s and the coefficients c_k 's are as follows:

$$c_k = \frac{1}{T} \int_0^T f(t)e^{-jk\omega_0 t} dt = \int_0^1 e^{-2t}e^{-j2k\pi t} dt$$
$$= \frac{1 - e^{-(2+j2\pi k)}}{2 + j2\pi k} = \frac{1 - e^{-2}}{2 + j2\pi k}$$

iii. (optional) (0 points) f(t) is the periodic signal shown below:

Solution: Since f(t) is periodic with period $T_0 = 3$ s, we can rewrite it as:

$$f(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$

where $\omega_0 = \frac{2\pi}{3}$ rad/s and the coefficients $c_k{}'s$ are as follows:

$$c_0 = \frac{1}{T} \int_0^T f(t)dt = \frac{1}{3} \left(\int_0^1 2dt + \int_1^2 1dt \right) = 1$$

and for $k \neq 0$, we have:

$$\begin{split} c_k &= \frac{1}{T} \int_0^T f(t) e^{-j\omega_0 kt} dt = \frac{1}{3} \left(\int_0^1 2 e^{-j(2\pi/3)kt} dt + \int_1^2 e^{-j(2\pi/3)kt} dt \right) \\ &= \frac{1}{3} \left(2 \frac{1 - e^{-j(2\pi/3)k}}{j(2\pi/3)k} + \frac{e^{-j(2\pi/3)k} - e^{-j(4\pi/3)k}}{j(2\pi/3)k} \right) = \frac{2 - e^{-j(2\pi/3)k} - e^{-j(4\pi/3)k}}{j2\pi k} \\ &= \frac{2 - e^{-j(2\pi/3)k} - e^{j(2\pi/3)k}}{j2\pi k} = \frac{2 - 2\cos\left(\frac{2\pi k}{3}\right)}{j2\pi k} = \frac{1 - \cos\left(\frac{2\pi k}{3}\right)}{j\pi k} \end{split}$$

(b) (10 points) Suppose you have two periodic signals x(t) and y(t), of periods T_1 and T_2 respectively. Let x_k and y_k be the Fourier series coefficients of x(t) and y(t).

i. (5 points) If $T_1 = T_2$, express the Fourier series coefficients of z(t) = x(t) + y(t) in terms of x_k and y_k .

Solution:

If $T_1 = T_2$, then y(t) is also periodic with period $T_0 = T_1 = T_2$. If $\omega_0 = \frac{2\pi}{T_0}$, then

$$x(t) = \sum_{k=-\infty}^{\infty} x_k e^{jk\omega_0 t}$$

and

$$y(t) = \sum_{k=-\infty}^{\infty} y_k e^{jk\omega_0 t}$$

Therefore,

$$z(t) = \sum_{k=-\infty}^{\infty} x_k e^{jk\omega_0 t} + \sum_{k=-\infty}^{\infty} y_k e^{jk\omega_0 t} = \sum_{k=-\infty}^{\infty} (x_k + y_k) e^{jk\omega_0 t}$$

Therefore, the Fourier series coefficients of z(t) are:

$$z_k = x_k + y_k$$

ii. (5 points) If $T_1 = \frac{1}{2}T_2$, express the Fourier series coefficients of w(t) = x(t) + y(t) in terms of x_k and y_k .

Solution: First of all, w(t) is periodic with period $T_0 = T_1 = \frac{1}{2}T_2$, and frequency $\omega_1 = 2\omega_2 = 2\omega_0$. Let,

$$x(t) = \sum_{m = -\infty}^{\infty} x_m e^{jm\omega_1 t} = \sum_{m = -\infty}^{\infty} x_m e^{2jm\omega_0 t}$$

and

$$y(t) = \sum_{n=-\infty}^{\infty} y_n e^{jn\omega_2 t} = \sum_{n=-\infty}^{\infty} y_n e^{jn\omega_0 t}$$

Therefore, w(t) can be written as:

$$w(t) = x(t) + y(t) = \sum_{m = -\infty}^{\infty} x_m e^{j2m\omega_0 t} + \sum_{n = -\infty}^{\infty} y_n e^{jn\omega_0 t}$$

Let m'=2m, then

$$w(t) = \sum_{m=-\infty}^{\infty} y_n e^{jn\omega_0 t} + \sum_{\text{even } m'} x_{\frac{m'}{2}} e^{jm'\omega_0 t}$$
$$= \sum_{\text{even } n} y_n e^{jn\omega_0 t} + \sum_{\text{odd } n} y_n e^{jn\omega_0 t} + \sum_{\text{even } m'} x_{\frac{m'}{2}} e^{jm'\omega_0 t}$$

Therefore,

$$w_n = \begin{cases} y_n, & \text{for } n \text{ odd} \\ y_n + x_{\frac{n}{2}}, & \text{for } n \text{ even} \end{cases}$$

2. (20 points) Fourier series of transformation of signals

Suppose that f(t) is a periodic signal with period T_0 , with the following Fourier series:

$$f(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$

Determine the period of each of the following signals, then express its Fourier series in terms of c_k :

(a) (5 points)
$$g(t) = 2f(t)$$

Solution:

The function g(t) has the same period of f(t). Scaling the signal will affect the Fourier coefficient c_k :

$$g(t) = 2f(t) = 2\sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t} = \sum_{k=-\infty}^{\infty} 2c_k e^{jk\omega_0 t} = \sum_{k=-\infty}^{\infty} c'_k e^{jk\omega_0 t}$$

Therefore $c'_k = 2c_k$

(b) (5 points)
$$g(t) = f(-2t)$$

Solution:

The period of g(t) is $T_0' = \frac{T_0}{2}$ and its corresponding frequency is $\omega_0' = 2\omega_0$

$$g(t) = f(-2t) = \sum_{k=-\infty}^{\infty} c_k e^{-jk\omega_0 2t} = \sum_{k=-\infty}^{\infty} c_{-k} e^{jk2\omega_0 t} = \sum_{k=-\infty}^{\infty} c'_k e^{jk\omega'_0 t}$$

Therefore $c'_k = c_{-k}$

(c) (5 points)
$$g(t) = f(t - t_0)$$

Solution:

g(t) has the same period of f(t).

$$g(t) = f(t - t_0) = \sum_{k = -\infty}^{\infty} c_k e^{jk\omega_0(t - t_0)} = \sum_{k = -\infty}^{\infty} (c_k e^{-jk\omega_0 t_0}) e^{jk\omega_0 t}$$

Therefore $c_k' = c_k e^{-jk\omega_0 t_0}$

(d) (5 points) g(t) = f(t/a), where a is positive real number

Solution:

The period of g(t) is $T_0' = aT_0$, and its corresponding frequency is: $\omega_0' = \frac{\omega_0}{a}$. Therefore,

$$g(t) = f(t/a) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0(t/a)} = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0't}$$

Therefore, the Fourier series coefficients of f(t) and g(t) are the same.

3. (10 points) Eigenfunctions and LTI systems

(a) (5 points) Show that $f(t) = \cos(\omega_0 t)$ is not an eigenfunction of an LTI system.

Solution:

Assume that h(t) is the impulse response of the system. Then the output y(t) to input $f(t) = \cos(\omega_0 t) = \frac{1}{2} \left(e^{j\omega_0 t} + e^{-j\omega_0 t} \right)$ is as follows:

$$y(t) = \int_{-\infty}^{\infty} f(t-\tau)h(\tau)d\tau$$

$$= \frac{1}{2} \int_{-\infty}^{\infty} e^{j\omega_0(t-\tau)}h(\tau)d\tau + \frac{1}{2} \int_{-\infty}^{\infty} e^{-j\omega_0(t-\tau)}h(\tau)d\tau$$

$$= \frac{1}{2} e^{j\omega_0 t} \underbrace{\int_{-\infty}^{\infty} e^{-j\omega_0 \tau}h(\tau)d\tau}_{=a_1} + \frac{1}{2} e^{-j\omega_0 t} \underbrace{\int_{-\infty}^{\infty} e^{j\omega_0 \tau}h(\tau)d\tau}_{=a_2}$$

For f(t) to be an eigenfunction for the system, its corresponding output should be of the form af(t), where a is constant. The output to $\cos(\omega_0 t)$ is:

$$y(t) = \frac{1}{2}a_1e^{j\omega_0t} + \frac{1}{2}a_2e^{-j\omega_0t}$$

Since, in general $a_1 \neq a_2$, we cannot construct again $cos(\omega_0 t)$ in y(t). For instance, suppose $f(t) = \delta(t-4)$, then $a_1 = e^{-j4\omega_0}$ and $a_2 = e^{j4\omega_0}$. Therefore,

$$y(t) = \frac{1}{2}e^{j\omega_0(t-4)} + \frac{1}{2}e^{-j\omega_0(t-4)} = \cos(\omega_0(t-4))$$

We then see the output is not of the form $a\cos(\omega_0 t)$, therefore $\cos(\omega_0 t)$ is not an eigenfunction for an LTI system. (We will accept a counterexample as correct, since complex exponentials are eigenfunctions of all LTI systems.)

(b) (5 points) Show that f(t) = t is not an eigenfunction of an LTI system.

Solution:

Assume that h(t) is the impulse response of the system. Then the output y(t) to input f(t) = t is as follows:

$$y(t) = \int_{-\infty}^{\infty} f(t-\tau)h(\tau)d\tau = \int_{-\infty}^{\infty} (t-\tau)h(\tau)d\tau = t\underbrace{\int_{-\infty}^{\infty} h(\tau)d\tau}_{=a_1} - \underbrace{\int_{-\infty}^{\infty} \tau h(\tau)d\tau}_{=a_2}$$

y(t) is of the form $a_1t + a_2$, therefore the function f(t) = t is not an eigenfunction of an LTI system.

4. (29 points) LTI systems

(a) Consider the following system:

The system takes as input x(t), it first multiplies the input with e^t , then sends it through an LTI system. The output of the LTI system gets multiplied by e^{-t} to form the output y(t).

i. (5 points) Show that we can write y(t) as follows:

$$y(t) = \left[\left(e^t x(t) \right) * h(t) \right] e^{-t} \tag{1}$$

Solution:

The input x(t) gets first multiplied by e^t and forms the intermediate signal:

$$y_1(t) = e^t x(t)$$

Next, $y_1(t)$ is fed to the LTI system, the output $y_2(t)$ is then the convolution of $y_1(t)$ with h(t):

$$y_2(t) = y_1(t) * h(t) = (e^t x(t)) * h(t)$$

Finally, $y_2(t)$ gets finally multiplied by e^{-t} :

$$y(t) = e^{-t}y_2(t) = [(e^tx(t)) * h(t)]e^{-t}$$

ii. (5 points) Use the definition of convolution to show that (1) can be equivalently written as:

$$y(t) = \int_{-\infty}^{\infty} h'(\tau)x(t-\tau)d\tau$$
 (2)

where h'(t) is a function to define in terms of h(t).

Solution:

By applying the definition of convolution, we obtain:

$$y(t) = [(e^t x(t)) * h(t)]e^{-t}$$

$$= e^{-t} \int_{-\infty}^{\infty} h(\tau)e^{t-\tau}x(t-\tau)d\tau$$

$$= e^{-t}e^t \int_{-\infty}^{\infty} h(\tau)e^{-\tau}x(t-\tau)d\tau$$

$$= \int_{-\infty}^{\infty} h(\tau)e^{-\tau}x(t-\tau)d\tau$$

$$= \int_{-\infty}^{\infty} h'(\tau)x(t-\tau)d\tau$$

where $h'(\tau) = h(\tau)e^{-\tau}$.

iii. (5 points) Equation (2) represents a description of the equivalent system that maps x(t) to y(t). Show using (2) that the equivalent system is LTI and determine its impulse response $h_{eq}(t)$ in terms of h(t).

Solution:

Linearity:

Suppose that for inputs $x_1(t)$ and $x_2(t)$, we have respectively the corresponding outputs $y_1(t)$ and $y_2(t)$ outputs. Now, let $x(t) = ax_1(t) + bx_2(t)$, we then have the following:

Method 1: Using the equation from part b:

$$y(t) = \int_{-\infty}^{\infty} h'(\tau)x(t-\tau)d\tau$$

$$= \int_{-\infty}^{\infty} h'(\tau)(ax_1(t-\tau) + bx_2(t-\tau))d\tau$$

$$= \int_{-\infty}^{\infty} (ah'(\tau)x_1(t-\tau) + bh'(\tau)x_2(t-\tau))d\tau$$

$$= \int_{-\infty}^{\infty} ah'(\tau)x_1(t-\tau)d\tau + bh'(\tau)x_2(t-\tau)d\tau$$

$$= \int_{-\infty}^{\infty} ah'(\tau)x_1(t-\tau)d\tau + \int_{-\infty}^{\infty} bh'(\tau)x_2(t-\tau)d\tau$$

$$= ay_1(t) + by_2(t)$$

Method 2:

$$y(t) = [(e^{t}x(t)) * h(t)]e^{-t}$$

$$= [(e^{t}(ax_{1}(t) + bx_{2}(t))) * h(t)]e^{-t}$$

$$= [(ae^{t}x_{1}(t) + be^{t}x_{2}(t))) * h(t)]e^{-t}$$

$$= [(ae^{t}x_{1}(t)) * h(t) + (be^{t}x_{2}(t)) * h(t)]e^{-t}$$

$$= [(ae^{t}x_{1}(t)) * h(t)]e^{-t} + [(be^{t}x_{2}(t)) * h(t)]e^{-t}$$

$$= ay_{1}(t) + by_{2}(t)$$

Therefore system is linear.

Time invariance:

Using result from part b, if we delay the input for t_0 :

$$y_{t_0}(t) = \int_{-\infty}^{\infty} h'(\tau)x(t - \tau - t_0)d\tau$$
$$= \int_{-\infty}^{\infty} h'(\tau)x(t - t_0 - \tau)d\tau$$
$$= y(t - t_0)$$

Therefore system is TI. From part b, we know that $h'(t) = h(t)e^{-t}$. Therefore, the impulse response of the equivalent system is:

$$h_{eq}(t) = h(t)e^{-t}$$

iv. (Optional) (0 points) Suppose that system S_1 is given by its step response s(t) = r(t-1). Find the impulse response h(t) of S_1 . What can you say about the causality and stability of system S_1 ? What can you say about the causality and stability of the overall equivalent system?

Solution:

The impulse response of system S_1 is:

$$h(t) = \frac{d}{dt}s(t) = u(t-1)$$

Since h(t) = 0 for t < 0, the system S_1 is causal. However, this same system is not stable because

$$\int_{-\infty}^{\infty} |h(t)| dt \to \infty$$

The equivalent system has the following equivalent impulse response:

$$h_{eq}(t) = e^{-t}u(t-1)$$

Since $h_{eq}(t) = 0$ for t < 0, the system is causal. It is also stable, because:

$$\int_{-\infty}^{\infty} |h_{eq}(t)| dt = \int_{t=1}^{\infty} e^{-t} dt = e^{-1} < \infty$$

(b) Suppose x(t) is periodic with period T and is specified in the interval 0 < t < T/4 as shown in figure 1.

Figure 1: x(t) in the interval 0 < t < T/4

Sketch x(t) in the interval 0 < t < T if

i. (7 points) the Fourier series has only odd harmonics and x(t) is an even function

Solution: Since x(t) is even, we can extend figure 1 as indicated in figure 2. Since x(t) has only odd harmonics, it must have the property x(t-T/2) = -x(t). So we have x(t) as in figure 3.

Figure 2: x(t) (even) in the interval -T/4 < t < T/4

Figure 3: x(t) (even) in the interval -T < t < T

Figure 4: x(t) (odd) in the interval -T/4 < t < T/4

ii. (7 points) the Fourier series has only odd harmonics and x(t) is an odd function

Solution: Since x(t) is odd, for -T/4 < t < T/4 it must be as indicated in figure 4. Since x(t) has odd harmonics, so x(t-T/2) = -x(t). Consequently x(t) is as shown in figure 5.

5. (13 points) MATLAB

Figure 5: x(t) (odd) in the interval -T < t < T

(a) (6 points) **Task 1**

Write an m-file that takes a set of Fourier series coefficients, a fundamental frequency, and a vector of output times, and computes the truncated Fourier series evaluated at these times. The declaration and help for the m-file might be:

```
function fn = myfs(Dn,omega0,t)

%
fn = myfs(Dn,omega0,t)

% % Evaluates the truncated Fourier Series at times t

%
Dn -- vector of Fourier series coefficients

%
% omega0 -- fundamental frequency
% t -- vector of times for evaluation

%
% fn -- truncated Fourier series evaluated at t
The output of the m-file should be
```

$$f_N(t) = \sum_{n=-N}^{N} D_n e^{j\omega_0 nt}$$

The length of the vector Dn should be 2N + 1. You will need to calculate N from the length of Dn.

Solution:

```
function fn = myfs(Dn,omega0,t)
% fn = myfs(Dn,omega0,t)
% Evaluates the truncated Fourier Series at times t
% Dn -- vector of Fourier series coefficients
% assumed to run from -N:N, where length(Dn) is 2N+1
% omega0 -- fundamental frequency
% t -- vector of times for evaluation
```

```
% fn -- truncated Fourier series evaluated at t
N = (length(Dn)-1)/2;
fn = zeros(size(t));
for n = -N:N
D_n = Dn(n+N+1);
fn = fn + D_n*exp(j*omega0*n*t);
end
```

(b) (7 points) **Task 2**

Verify the output of your routine by checking the Fourier series coefficients for the sawtooth waveform. The sawtooth signal is given by $f(t) = t \mod 1$ described in the class notes. Try for N = 10, N = 50. Use the MATLAB subplot command to put multiple plots on a page.

Solution:

```
N=10; n1=1:1:N; n2=-N:1:-1;
D1=j./(2*pi*n1);D2=j./(2*pi*n2);D=[D2 0.5 D1];
omega0=2*pi;
t=-2.5:0.001:2.5;
fn = myfs(D,omega0,t);
subplot(3,1,1);
plot(t,fn);
xlabel('t (s)'); ylabel('N=10');
title('Sawtooth Fourier Series Approximation');
N=50; n1=1:1:N; n2=-N:1:-1;
D1=j./(2*pi*n1);D2=j./(2*pi*n2);D=[D2 0.5 D1];
fn = myfs(D,omega0,t);
subplot(3,1,2);
plot(t,fn);
xlabel('t (s)'); ylabel('N=50');
N=100; n1=1:1:N; n2=-N:1:-1;
D1=j./(2*pi*n1);D2=j./(2*pi*n2);D=[D2 0.5 D1];
omega0=2*pi;
t=-2.5:0.001:2.5;
fn = myfs(D,omega0,t);
subplot(3,1,3);
plot(t,fn);
xlabel('t (s)'); ylabel('N=100');
```

(c) (Optional) (0 points) Task 3

Repeat the steps of Task 2 for the case of the signal from Problem 1-a-ii.

Solution:


```
N=10; n=-N:1:N; D=(1-exp(-2))./(2+2*j*pi*n);
omega0=2*pi;t=-3.5:0.001:3.5;
fn = myfsHs(D,omega0,t);
subplot(3,1,1);
plot(t,fn);
xlabel('t(sec)'); ylabel('N=10');
N=50; n=-N:1:N; D=(1-exp(-2))./(2+2*j*pi*n);
omega0=2*pi;t=-3.5:0.001:3.5;
fn = myfsHs(D,omega0,t);
subplot(3,1,2);
plot(t,fn);
xlabel('t(sec)'); ylabel('N=50');
N=100; n=-N:1:N; D=(1-exp(-2))./(2+2*j*pi*n);
omega0=2*pi;t=-3.5:0.001:3.5;fn = myfsHs(D,omega0,t);
subplot(3,1,3);
plot(t,fn);
xlabel('t(sec)'); ylabel('N=100');
```

