CSE 351 Section 3 - Integers and Floating Point

Welcome back to section, we're happy that you're here \odot

Signed Integers with Two's Complement

Two's complement is the standard for representing signed integers:

- The most significant bit (MSB) has a negative value; all others have positive values (same as unsigned)
- Binary addition is performed the same way for signed and unsigned
- The bit representation for the negative value (additive inverse) of a Two's Complement number can be found by:

flipping all the bits and adding 1 (i.e. $-x = \sim x + 1$).

The "number wheel" showing the relationship between 4-bit numerals and their Two's Complement interpretations is shown on the right:

- The largest number is 7 whereas the smallest number is -8
- There is a nice symmetry between numbers and their negative counterparts except for -8

Exercises: (assume 8-bit integers)

1) What is the largest integer? The largest integer + 1?

<u>Unsigned</u> : 2^8 - 1 = 255	largest + 1 = 0 (modular arithmetic)	<u>Two's Complement</u> :	largest = 0111 1111
	1111 1111 + 0000 0001 = 0000 0000	2^{8-1} - 1 = 127	largest + 1 = 1000 0000 = 2^-7 = -128

2) How do you represent (if possible) the following numbers: **39**, **-39**, **127**?

```
      Unsigned:
      Two's Complement:

      39: 32+4+2+1=2^5+2^2+2^1+2^0=0010 0111
      39: 32+4+2+1=0010 0111

      -39: not possible
      -39: -128+64+16+8+1=1101 1001

      127: 64+32+16+8+4+2+1=0111 1111
      127: 0111 1111
```

3) Compute the following sums in binary using your **Two's Complement** answers from above. *Answer in hex*.

a . 3	39 -	>	0b	0	0	1	0	0	1	1	1	o. 127 -> 0b 0 1 1 1 1 1 1	1 1
+ (-3	39) -	>	0b	1	1	0	1	1	0	0	1	$+ (-39) -> 0b \frac{1}{1} \frac{1}{1} \frac{0}{0} \frac{1}{1} \frac{1}{1} \frac{0}{0}$	0 1
0x <u>0</u>	0 <	_	Ob () —	0	0	0	0	0	0	0	$0 \times \frac{58}{-} < -0 b \frac{0}{-} \frac{1}{-} \frac{0}{-} \frac{1}{-} \frac{1}{-} \frac{0}{-}$	0 0
c . 3	39 -	>	Ob () ()	1	0	0	1	1	1	1 . 127 -> 0b 0 1 1 1 1 1	1 1
- 12	27 -	>	0b	1	0	0	0	0	0	0	1	$+$ 39 -> 0b $\frac{0}{0}$ $\frac{0}{1}$ $\frac{1}{0}$ $\frac{0}{0}$ $\frac{1}{1}$	1 1
0x A	8 <	_	0b	1	0	1_	0	1	0	0	0	$0 \times \frac{A_6}{-} < - 0 b \frac{1}{-} \frac{0}{-} \frac{1}{-} \frac{0}{-} \frac{0}{-} \frac{1}{-}$	1 0

use fact that -x = -x + 1

4) Interpret each of your answers above and indicate whether-or-not overflow has occurred.

a. 39+(-39)	b. 127+(-39)
Unsigned:	Unsigned:
Two's Complement:	Two's Complement:
c. 39-127	d. 127+39
Unsigned:	Unsigned:
Two's Complement:	Two's Complement:

Goals of Floating Point

Representation should include: [1] a large range of values (both very small and very large numbers), [2] a high amount of precision, and [3] real arithmetic results ($e.g. \approx$ and NaN).

IEEE 754 Floating Point Standard

The <u>value</u> of a real number can be represented in scientific binary notation as:

Value =
$$(-1)^{sign} \times Mantissa_2 \times 2^{Exponent} = (-1)^S \times 1.M_2 \times 2^{E-bias}$$

The <u>binary representation</u> for floating point values uses three fields:

- **S**: encodes the *sign* of the number (0 for positive, 1 for negative)
- **E**: encodes the *exponent* in **biased notation** with a bias of 2^{w-1}-1
- **M**: encodes the *mantissa* (or *significand*, or *fraction*) stores the fractional portion, but does not include the implicit leading 1.

	S	Е	М
float	1 bit	8 bits	23 bits
double	1 bit	11 bits	52 bits

How a float is interpreted depends on the values in the exponent and mantissa fields:

Е	M	Meaning
0	anything	denormalized number (denorm)
1-254	anything	normalized number
255	zero	infinity (∞)
255	nonzero	not-a-number (NaN)

with denormalized numbers, we drop the leading implicit zero on M so we can represent numbers close to

Exercises:

Bias Notation

5) Suppose that instead of 8 bits, E was only designated 5 bits. What is the bias in this case?

2^{5-1} -1 = 15

6) Compare these two representations of E for the following values:

Exponent E - Bias		E	(5 bi	ts)		E (8 bits) bias = 127								
1	1	0	0	0	0	1	0	0	0	0	0	0	0	
0	0	1	1	1	1	0	1	1	1	1	1	1	1	
-1	0	1	1	1	0	0	1	1	1	1	1	1	1	

Notice any patterns?

Floating Point / Decimal Conversions

7) Convert the decimal number 1.25 into single precision floating point representation:

 $-7.375 = -1*(4+2+1+0.25+0.125) -1*2^2*(1+1/2+1/4+1/16+1/32)$

8) Convert the decimal number -7.375 into single precision floating point representation: E - 127 = 2 - > E = 129M = 1/2 + 1/.4 + 1/16 + 1/32

9) Add the previous two floats from exercise 7 and 8 together. Convert that number into single precision floating point representation:

- 10) Let's say that we want to represent the number $3145728.125 (2^21 + 2^20 + 2^3) = 2^21 * (1 + 1/2 + 2^{-24})$
 - a. Convert this number to into single precision floating point representation: E 127 = 21 --> E = 148

b. How does this number highlight a limitation of floating point representation?

2^{-24} is not representable in M as we only have 23 bits allocated to it.

11) What are the decimal values of the following floats?

0x80000000 0xFF94BEEF 0x41180000

1000 0000 0000 ... = -0 1111 1111 1001 0100 1011 1110 1111 =

0100 0001 0001 1000 0000 ...

1 * 2^{130-127} * (1 + 1/8 + 1/16) the one in the right sum is the implicit one from 1.M

Floating Point Mathematical Properties

• Not <u>associative</u>: $(2 + 2^{50}) - 2^{50} \neq 2 + (2^{50} - 2^{50})$ = 9.5

• Not <u>distributive</u>: $100 \times (0.1 + 0.2) \neq 100 \times 0.1 + 100 \times 0.2$

• Not <u>cumulative</u>: $2^{25} + 1 + 1 + 1 + 1 \neq 2^{25} + 4$

Exercises:

12) Based on floating point representation, explain why each of the three statements above occurs.

Trunctation occurs when adding $2 + 2^50$ (same reason as in problem 10) because the numbers are too far apart. Hence $2+2^50 = 2^50$. This does not occur on the RHS when we add the two 2^50 together first. So we get 0 = /= 2

The representations for 0.1 and 0.2 are not exact in the single precision 32 bits.

Again, 2^25 + 1 = 2^25 as the difference in powers is too large for M to completely represent the sum. But the difference between 2^25 + 4 is just small enough that the sum can be represented.

13) If x and y are variable type float, give two different reasons why (x+2*y)-y==x+y might evaluate to false.

1EEE 754 Float (32 bit) Flowchart

