International Rectifier

IRF6612/IRF6612TR1

HEXFET® Power MOSFET

Application Specific MOSFETs
 Ideal for CPU Core DC-DC Converters

- Low Conduction Losses
- Low Switching Losses
- Low Profile (<0.7 mm)
- Dual Sided Cooling Compatible
- Compatible with existing Surface Mount Techniques

V _{DSS}	R _{DS(on)} max	Qg(typ.)
30V	3.3 m Ω @ $V_{GS} = 10V$	30nC
	$4.4 \text{m}\Omega @V_{GS} = 4.5 \text{V}$	1

Applicable DirectFET Package/Layout Pad (see p.8,9 for details)

SQ SX ST MQ MX MT

Description

The IRF6612 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET™ packaging to achieve the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, IMPROVING previous best thermal resistance by 80%.

The IRF6612 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF6612 has been optimized for parameters that are critical in synchronous buck converters including Rds(on), gate charge and Cdv/dt-induced turn on immunity to minimize losses in the synchronous FET socket.

Absolute Maximum Ratings

	Parameter	Max.	Units
V_{DS}	Drain-to-Source Voltage	30	V
V_{GS}	Gate-to-Source Voltage	±20	
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	136	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	24	А
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	19	
I _{DM}	Pulsed Drain Current ①	190	
P _D @T _A = 25°C	Power Dissipation ^⑤	2.8	
P _D @T _A = 70°C	Power Dissipation ^⑤	1.8	W
P _D @T _C = 25°C	Power Dissipation	89	
•	Linear Derating Factor	0.022	W/°C
TJ	Operating Junction and	-40 to + 150	°C
T _{STG}	Storage Temperature Range		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient ®		45	
$R_{\theta JA}$	Junction-to-Ambient 58	12.5		
$R_{\theta JA}$	Junction-to-Ambient ®®	20		°C/W
$R_{\theta JC}$	Junction-to-Case ⑦®		1.4	
R _{0J-PCB}	Junction-to-PCB Mounted	1.0		1

Notes ① through ® are on page 10

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	30	_		V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		24		mV/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance	_	2.5	3.3	mΩ	V _{GS} = 10V, I _D = 24A ③
			3.4	4.4	İ	V _{GS} = 4.5V, I _D = 19A ③
$V_{GS(th)}$	Gate Threshold Voltage	1.35		2.25	V	$V_{DS} = V_{GS}, I_{D} = 250\mu A$
$\Delta V_{GS(th)}/\Delta T_J$	Gate Threshold Voltage Coefficient		-5.6		mV/°C	
I _{DSS}	Drain-to-Source Leakage Current			1.0	μΑ	$V_{DS} = 24V, V_{GS} = 0V$
				100	Ĭ	$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125$ °C
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V
gfs	Forward Transconductance	96			S	$V_{DS} = 15V, I_{D} = 19A$
Q _g	Total Gate Charge	_	30	45		
Q _{gs1}	Pre-Vth Gate-to-Source Charge		8.5			$V_{DS} = 15V$
Q _{gs2}	Post-Vth Gate-to-Source Charge		2.9		nC	$V_{GS} = 4.5V$
Q_{gd}	Gate-to-Drain Charge	_	10	_		I _D = 19A
Q_{godr}	Gate Charge Overdrive		8.6			
Q _{sw}	Switch Charge (Q _{gs2} + Q _{gd})		13		Ī	
Q _{oss}	Output Charge		18		nC	$V_{DS} = 16V, V_{GS} = 0V$
t _{d(on)}	Turn-On Delay Time		15			$V_{DD} = 16V, V_{GS} = 4.5V$ ③
t _r	Rise Time		52			I _D = 19A
t _{d(off)}	Turn-Off Delay Time		21		ns	Clamped Inductive Load
t _f	Fall Time		4.8			
C _{iss}	Input Capacitance		3970			$V_{GS} = 0V$
Coss	Output Capacitance		780		pF	$V_{DS} = 15V$
C _{rss}	Reverse Transfer Capacitance		360			f = 1.0MHz

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy®		37	mJ
I _{AR}	Avalanche Current ①		19	Α

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			24		MOSFET symbol
	(Body Diode)				Α	showing the
I _{SM}	Pulsed Source Current			190		integral reverse
	(Body Diode) ①					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.0	V	$T_J = 25$ °C, $I_S = 19A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		19	29	ns	$T_J = 25$ °C, $I_F = 19A$
Q_{rr}	Reverse Recovery Charge		8.1	12	nC	di/dt = 100A/µs ③

International IOR Rectifier

IRF6612/IRF6612TR1

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 10. Threshold Voltage vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

150 E_{AS} , Single Pulse Avalanche Energy (mJ) I_D TOP 5.3A 125 6.2A **BOTTOM 19A** 100 75 50 25 0 25 50 75 100 125 150 Starting T_J, Junction Temperature (°C)

Fig 12. On-Resistance vs. Gate Voltage

Fig 13. Maximum Avalanche Energy vs. Drain Current

Fig 14. Unclamped Inductive Test Circuit and Waveform

Fig 15. Gate Charge Test Circuit

Fig 16. Switching Time Test Circuit

Fig 17. Switching Time Waveforms www.irf.com

Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 16. Gate Charge Waveform

DirectFET™ Outline Dimension, MX Outline (Medium Size Can, X-Designation).

Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs.

	METRIC		METRIC IMPERIAL		RIAL
CODE	MIN	MAX	MIN	MAX	
Α	6.25	6.35	0.246	0.250	
В	4.80	5.05	0.189	0.201	
С	3.85	3.95	0.152	0.156	
D	0.35	0.45	0.014	0.018	
Е	0.68	0.72	0.027	0.028	
F	0.68	0.72	0.027	0.028	
G	1.38	1.42	0.054	0.056	
Н	0.80	0.84	0.032	0.033	
J	0.38	0.42	0.015	0.017	
K	0.88	1.01	0.035	0.039	
L	2.28	2.41	0.090	0.095	
М	0.59	0.70	0.023	0.028	
N	0.03	0.08	0.001	0.003	

DirectFET™ Board Footprint, MX Outline (Medium Size Can, X-Designation).

Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs.

DirectFET™ Tape & Reel Dimension (Showing component orientation).

NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6618). For 1000 parts on 7° reel, order IRF6618TR1

	REEL DIMENSIONS								
S	STANDARD OPTION (QTY 4800)					1 OPTION	(QTY 10	00)	
	METRIC		IMP	ERIAL	ME	TRIC	IMP	ERIAL	
CODE	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Α	330.0	N.C	12.992	N.C	177.77	N.C	6.9	N.C	
В	20.2	N.C	0.795	N.C	19.06	N.C	0.75	N.C	
С	12.8	13.2	0.504	0.520	13.5	12.8	0.53	0.50	
D	1.5	N.C	0.059	N.C	1.5	N.C	0.059	N.C	
E	100.0	N.C	3.937	N.C	58.72	N.C	2.31	N.C	
F	N.C	18.4	N.C	0.724	N.C	13.50	N.C	0.53	
G	12.4	14.4	0.488	0.567	11.9	12.01	0.47	N.C	
Н	11.9	15.4	0.469	0.606	11.9	12.01	0.47	N.C	

NOTE: CONTROLLING
DIMENSIONS IN MM

DIMENSIONS								
	ME	TRIC	IMP	ERIAL				
CODE	MIN	MAX	MIN	MAX				
Α	7.90	8.10	0,311	0.319				
В	3.90	4,10	0.154	0,161				
С	11.90	12,30	0,469	0.484				
D	5.45	5,55	0.215	0.219				
E	5.10	5,30	0.201	0.209				
F	6.50	6,70	0.256	0.264				
G	1.50	N.C	0.059	N.C				
Н	1.50	1,60	0.059	0.063				

DirectFET™ Part Marking

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- $\begin{tabular}{ll} \hline @ & Starting $T_J=25^\circ$C, $L=0.20m$H,} \\ R_G=25\Omega, I_{AS}=19A. \\ \hline \end{tabular}$
- ③ Pulse width ≤ $400\mu s$; duty cycle ≤ 2%.
- Surface mounted on 1 in. square Cu board.
- ⑤ Used double sided cooling, mounting pad.
- ⑥ Mounted on minimum footprint full size board with metalized back and with small clip heatsink.
- T_C measured with thermal couple mounted to top (Drain) of part.
- ® R_θ is measured at T_J of approximately 90°C.

Data and specifications subject to change without notice.

This product has been designed and qualified for the Consumer market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.02/04