	TCP/IP Networking 2016 Test 4			
$\square 0 \ \square 0$				
$\square 2 \ \square 2$	Grading:			
\square_3 \square_3 \square_3 \square_3 \square_3	For each question, exactly one of the four proposed			
	answers is correct. If the good answer and only the good answer box is crossed $\Rightarrow +1$ point. If one bad			
	answer box is crossed and no other box is crossed \Rightarrow			
	$-\frac{1}{3} = -0.333$ point. If 0 or more than 1 answer box			
	is crossed ⇒ 0 point. ← Please encode your SCIPER number here and			
	write your full name in the box below. \$\display\$			
	Name, First Name:			
Question 1 Which statements	are true?			
1. In slow start, the increase is	additive.			
,				
2. Slow start is used to accelera Decrease	te the convergence of Additive Increase, Multiplicative			
Decrease				
1 and not 2. 2 and not 1. Neither 1 nor 2 1 and 2.				
Question 2 We have a network	k with n sources and n destinations. Each link has a			
finite capacity. Each source sends at the same rate λ . We plot the total throughput as a				
function $f(\lambda)$ when λ increases to	∞ .			
$\prod f()$ is always monotonically increasing and $\lim_{\lambda \to \infty} f(\lambda)$ may be finite or in-				
and $\lim_{\lambda \to \infty} f(\lambda) = \infty$. finite, depending on the network.				
f() may be non-monotonic in some $f()$ is always monotonically increasing				
networks. but $\lim_{\lambda \to \infty} f(\lambda)$ is finite, equal to the				
Question 3 The capacities of the 2 links (shown as lines between boxes) is 12 Mb/s				
each. There are no other constraints than the 2 link capacities.				
The rates x_i of the flows (shown as arrows) are allocated $\frac{1}{2}$				
according to proportional fairness. What is the propor-				
tionally fair allocation in Mb/s?				
$x_1 = 4, x_2 = x_3 = 8.$ $x_1 = x_2 = x_3 = 6.$				

Corrected

All link costs	A router R1 uses distance vare equal to 1. The routing		ajacent route	rs R2 and R	3 .
at $R1$ contains $R1$ receives from	s the record shown in the tape $R2$ the routing update: After $R1$ has processed this updates	able on the right. dest=9.9.9/24,	destination 9.9.9/24	next-hop R2	distance 6
8.	7 .	<u> </u>	6		
pacities. The are allocated a	The capacities of the 3 line other constraints than the 3 rates of the flows (shown as according to max-min fairnes cated to flow 1?	s link ca- s arrows) 1	between boxes	s) is 12 Mb	/s
☐ 6 Mb/s.☐ 3 Mb/s.	8 Mb/s. 4 Mb/s.				
Question 6	Which statements are true	?			
1. Additive cation	Increase, Multiplicative Dec	crease tends to prov	ride a fair and	efficient all	.O-
2. Multiplic cation	eative Increase, Additive Dec	crease tends to prov	ride a fair and	efficient all	.О-
\square 1 and 2.	$\boxed{}$ 2 and not 1.	1 and not	2. N	either 1 nor	: 2
Question 7 network?	In which case does every r	outer keep a detail	ed description	of the enti	re
with link vector.	state and not with distance	e neither with link state.	th distance ve	ctor nor wi	th
both wit	th distance vector and with e.	h with distanstate.	nce vector and	not with lin	nk
Question 8 can be modelle	Which statements are true, ed by linear inequalities?	for networks where	e rate allocation	on constrain	ıts
1. There ex	ists one and only one max-n	nin fair allocation			
2. There ex	ists one and only one propor	rtionally fair allocat	tion		
1 and no	t 2. 1 and 2.	2 and not	1. N	either 1 nor	: 2

Corrected

Question 9 With route poisoning, when a route becomes unreachable	outer detects that the route to a destination			
It immediately sends to all neighbours the message "distance to $n = \infty$ ". It keeps n in its routing table with distance to n equal to the value that was valid before detecting unreachability and immediately sends to all neighbours its vector of distances to all destinations (including n).	 It removes n from its routing table and immediately sends to all neighbours its vector of distances to all destinations other than n. It removes n from its routing table and remains silent for a duration equal to the holddown timer. 			
Question 10 In a connected graph with n nodes, we use centralized Bellman Ford to compute the distances from all nodes to node 1.				
 The algorithm converges to the correct values regardless of initial conditions. If the initial conditions are ≥ the true distances to node 1, the algorithm converges to the correct values; otherwise it may happen that it does not converge and counts to infinity. If the initial conditions are less than 	the true distances to node 1, the algorithm converges to the correct values; otherwise it still converges but in some cases not to the correct values. ☐ If the initial conditions are ≥ the true distances to node 1, the algorithm converges to the correct values; otherwise it still converges but in some cases not to the correct values.			

Corrected