1. The completed matrix M is

	I^h	I^u	I_c^e	I_c^i
I^h	$\beta ST_h(1-\phi)\rho$	$\beta ST_h(1-\phi)(1-\rho)$	$\beta ST_h \phi p_e$	$\beta ST_h\phi(1-p_e)$
I^u	$\beta ST_u \rho$	$\beta ST_u(1-\rho)$	0	0
I_c^e	$\beta_m ST_m (1-\phi)\rho$	$\beta_m ST_m(1-\phi)(1-\rho)$	$\beta_m ST_m \phi p_e$	$\beta_m ST_m \phi (1 - p_e)$
I_c^i	$\beta ST_i(1-\phi)\rho$	$\beta ST_i(1-\phi)(1-\rho)$	$\beta ST_i \phi p_e$	$\beta ST_i\phi(1-p_e)$

2. If $p_e = 1$, then M becomes

	I^h	I^u	I_c^e	I_c^i
I^h	$\beta ST_h(1-\phi)\rho$	$\beta ST_h(1-\phi)(1-\rho)$	$\beta ST_h \phi$	0
I^u	$\beta ST_u \rho$	$\beta ST_u(1-\rho)$	0	0
I_c^e	$\beta_m ST_m (1-\phi)\rho$	$\beta_m ST_m(1-\phi)(1-\rho)$	$\beta_m ST_m \phi$	0
I_c^i	$\beta ST_i(1-\phi)\rho$	$\beta ST_i(1-\phi)(1-\rho)$	$\beta ST_i \phi$	0

which satisfies the $M_{j,4}=0$ for j=1,2,3. Inductively, let M^n be of the form $M^n=(N,\mathbf{0})$, where $N \in \mathbb{R}^{4\times 3}$ has arbitrary elements and $0 \in \mathbb{R}^4$. Then

$$(M^{n+1})_{j,4} = (j\text{-th row of }M^n) \cdot (4\text{th column of }M^n)$$

= $(j\text{-th row of }M^n) \cdot \mathbf{0}$
= 0 .

So $(M^n)_{j,4} = 0$ for j = 1, 2, 3 for all $n \in \mathbb{N}$.

3. If $p_e = 1$ and $\beta_m = 0$, then M becomes

	I^h	I^u	I_c^e	I_c^i
I^h	$\beta ST_h(1-\phi)\rho$	$\beta ST_h(1-\phi)(1-\rho)$	$\beta ST_h \phi$	0
I^u	$\beta ST_u \rho$	$\beta ST_u(1-\rho)$	0	0
I_c^e	0	0	0	0
I_c^i	$\beta ST_i(1-\phi)\rho$	$\beta ST_i(1-\phi)(1-\rho)$	$\beta ST_i \phi$	0

To find the eigenvalues of M, we can find the determinant of this $M - \lambda I$ and set it equal to 0, then solve for λ . We have

$$\begin{split} \det(M-\lambda I) &= -\lambda \det \begin{pmatrix} \beta S T_h(1-\phi)\rho - \lambda & \beta S T_h(1-\phi)(1-\rho) & 0 \\ \beta S T_u \rho & \beta S T_u(1-\rho) - \lambda & 0 \\ \beta S T_i(1-\phi)\rho & \beta S T_i(1-\phi)(1-\rho) & -\lambda \end{pmatrix} \\ &= -\lambda^2 \det \begin{pmatrix} \beta S T_h(1-\phi)\rho - \lambda & \beta S T_h(1-\phi)(1-\rho) \\ \beta S T_u \rho & \beta S T_u(1-\rho) - \lambda \end{pmatrix} \\ &= -\lambda^2 \left[(\beta S T_h(1-\phi)\rho - \lambda) (\beta S T_u(1-\rho) - \lambda) - \beta^2 S^2 T_h T_u(1-\phi)(1-\rho)\rho \right]. \end{split}$$

Since we want $det(M - \lambda I) = 0$, this implies that either $\lambda = 0$ or the rest of the expression is 0. Assuming $\lambda \neq 0$, we can solve for the latter case.

$$(\beta S T_h (1 - \phi) \rho - \lambda) (\beta S T_u (1 - \rho) - \lambda) - \beta^2 S^2 T_h T_u (1 - \phi) (1 - \rho) \rho = 0$$
$$\beta^2 S^2 T_h T_u (1 - \phi) (1 - \rho) \rho - \lambda [\beta S T_h (1 - \phi) \rho + \beta S T_u (1 - \rho)] + \lambda^2 - \beta^2 S^2 T_h T_u (1 - \phi) (1 - \rho) \rho = 0.$$

The first and last terms on the LHS cancel out, leaving

$$-\lambda \left[\beta S T_h (1 - \phi) \rho + \beta S T_u (1 - \rho)\right] + \lambda^2 = 0$$
$$\beta S T_h (1 - \phi) \rho + \beta S T_u (1 - \rho) = \lambda$$
$$\beta S T_u \left[\rho \frac{T_h}{T_u} (1 - \phi) + 1 - \rho\right] = \lambda.$$

Since $S = S_0$ and the paper defined \mathcal{R}_0 to be $\beta S_0 T_u$, this becomes

$$\lambda = \mathcal{R}_0 \left[\rho \frac{T_h}{T_u} (1 - \phi) + 1 - \rho \right],$$

which matches the expression for \mathscr{R}_e in the paper.