Геометрия в компьютерных приложениях

Лекция 2: Геометрия пространственных кривых и поверхностей

Богачев Николай Владимирович

Московский физико-технический институт, Кафедра дискретной математики, Лаборатория продвинутой комбинаторики и сетевых приложений

11 сентября 2017 г.

3. Геометрия пространственных кривых

3.1. Касательная, нормальная плоскость, кривизна

Теперь мы рассматриваем кривые $\gamma(t)=(x(t),y(t),z(t))\subset\mathbb{R}^3.$

Определение

Гладкая регулярная пространственная кривая — гладкое отображение $\gamma\colon [a,b] \to \mathbb{R}^3$, у которого вектор скорости $\gamma'(t) \neq 0$.

Определение

Длина кривой —

$$L(\gamma) = \int_a^b \|\gamma'(t)\| dt = \int_a^b \sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2} dt.$$

Натуральный параметр s определяется аналогично плоскости:

$$s(t) = \int_a^t \|\gamma'(\tau)\| d\tau.$$

Определение

Нормальная плоскость к кривой — плоскость, перпендикулярная касательной.

Определение

Кривизна пространственной кривой — $k(s) = |\ddot{\gamma}(s)|$.

Теорема-задача

Доказать аналогичную теорему про соприкасающуюся с данной кривой в точке s_0 окружность: ее центр лежит в направлении вектора $\ddot{\gamma}(s_0)$, а радиус равен $1/|k(s_0)|$.

3.2. Кручение и формулы Френе.

Изучим кривую в точках, где $\ddot{\gamma}(s) \neq 0$. Единичный вектор скорости: $v(s) = \dot{\gamma}(s)$

Определение

Вектор **главной нормали** — $n(s) = \frac{\ddot{\gamma}(s)}{k(s)}$.

Определение

Вектор b(s) = [v(s), n(s)] — вектор **бинормали** к кривой.

Определение

Ортонормированная тройка векторов $\{v(s), n(s), b(s)\} \in \mathbb{R}^3$ — репер Френе.

Теорема (формулы Френе)

Имеют место формулы Френе:

$$\begin{pmatrix} \dot{v}(s) \\ \dot{n}(s) \\ \dot{b}(s) \end{pmatrix} = \begin{pmatrix} 0 & k(s) & 0 \\ -k(s) & 0 & -\tau(s) \\ 0 & \tau(s) & 0 \end{pmatrix} \begin{pmatrix} v(s) \\ n(s) \\ b(s) \end{pmatrix},$$

где au(s) – гладкая функция во всех точках ненулевой кривизны, называемая **кручением**.

Доказательство.

- ullet Пусть $Q(s)=(v(s),n(s),b(s))^T\in \mathit{Mat}_{3 imes 3}(\mathbb{R}).$ Ясно, что $Q(s)Q(s)^T=E$
- ullet Отсюда $\dot{Q}(s)Q(s)^T=-Q(s)^T\dot{Q}(s)$, то есть $A(s)=\dot{Q}(s)Q(s)^T-$ кососимметрическая матрица.
- Поскольку $\dot{v}(s) = k(s)n(s)$, то первая строка матрицы A(s) имеет вид (0,k(s),0).

Теорема (вычисление кривизны и кручения)

Пусть кривая $\gamma(t)$ задана произвольным параметром. Тогда

$$k(t) = \frac{|[\gamma'(t), \gamma''(t)]|}{|\gamma'(t)|^3}, \quad \tau(t) = -\frac{\langle \gamma'(t), \gamma''(t), \gamma'''(t) \rangle}{|[\gamma'(t), \gamma''(t)]|^2}.$$

Теорема (о восстановлении кривой по кривизне и кручению)

Пусть k(s)>0 и au(s) — гладкие функции. Тогда $\exists !$ с точностью до изометрии кривая $\gamma(s)\subset \mathbb{R}^3$, для которой эти функции являются кривизной и кручением соответственно.

4. Геометрия поверхностей в \mathbb{R}^N

4.1. Задание поверхности. Координаты.

Определение

Гладкая регулярная n-мерная поверхность в \mathbb{R}^N — гладкое отображение $r\colon U \to \mathbb{R}^N$, где U — некоторая открытая область в \mathbb{R}^n с координатами (u_1,\ldots,u_n) , причем во всех точках **канонические** (или базисные) векторы $e_1=\frac{\partial r}{\partial u_1},\ldots,e_n=\frac{\partial r}{\partial u_n}$ линейно независимы.

Обозначения:

$$M = r(U) = r(u_1, \dots, u_n) = (r_1(u_1, \dots, u_n), \dots, r_N(u_1, \dots, u_n)) \subset \mathbb{R}^N$$
. Система $\{e_1, \dots, e_n\}$ линейно независима \Leftrightarrow ранг матрицы Якоби

$$J(r(u)) = \begin{pmatrix} \frac{\partial r_1}{\partial u_1} & \cdots & \frac{\partial r_N}{\partial u_1} \\ \cdots & \cdots & \cdots \\ \frac{\partial r_1}{\partial u_n} & \cdots & \frac{\partial r_N}{\partial u_n} \end{pmatrix}$$

максимален (то есть равен n).

4.2. Кривые на поверхности. Касательное пространство.

Определение

Гладкая кривая на поверхности M — композиция гладкой кривой в U и отображения r (то есть кривая на поверхности задается параметризацией r(u(t)).

Пусть P – фиксированная точки поверхности с координатам.

Определение

Касательное пространство T_PM к поверхности M в точке P — множество, состоящее из касательных векторов к кривым на M, проходящим через точку P, где касательные векторы откладываются от точки P.

Теорема

 $T_PM = \langle e_1(P), \dots, e_n(P) \rangle$, то есть dim $T_PM = n$.

ДОКАЗАТЕЛЬСТВО. Пусть r(u(t)) — кривая, проходящая при t=0 через точку P. Ее вектор скорости имеет вид:

$$v(0) = \sum_{j=1}^n \frac{\partial r}{\partial u_j} \bigg|_P u_j'(0) = \sum_{j=1}^n u_j'(0) \cdot e_j(P) \in \langle e_1(P), \dots, e_n(P) \rangle.$$

Обратно, всякая линейная комбинация векторов $e_1(P), \ldots, e_n(P)$ соответствует вектору скорости какой-то кривой.

Действительно, пусть u и v — два набора координат на поверхности, такие, что $u_j(v_1,\ldots,v_n)$ — гладкие функции и det $J(u(v))\neq 0$.

Пусть $e_j = \frac{\partial r}{\partial u_i}$, $f_j = \frac{\partial r}{\partial v_i}$ — соответствующие канонические базисы.

Тогда
$$f_k = \sum_{j=1}^n \frac{\partial u_j}{\partial v_k} e_j$$

Пусть задана поверхность $M=r(U)\subset\mathbb{R}^N$ и пусть $P\in M$. На $T_PM\subset\mathbb{R}^N$ имеется евклидово скалярное умножение (\cdot,\cdot) .

Определение

Пусть G — матрица Грама канонического базиса $\{e_1,\ldots,e_n\}$, то есть $g_{ij}=(e_i,e_j)$.

Квадратичная форма, матрица которой в этом базисе равна G, называется первой квадратичной (фундаментальной) формой поверхности M в точке P.

При замене координат u = u(v) имеем

$$\tilde{g}_{ij} = (f_i, f_j) = \sum_{k,m=1}^{n} \frac{\partial u_k}{\partial v_i} \frac{\partial u_m}{\partial v_j} g_{km}.$$

Предложение

Пусть $a,b\in T_PM$, $a=\sum_{j=1}^n a_je_j$, $b=\sum_{j=1}^n b_je_j$. Тогда

$$(a,b) = \sum_{i,j=1}^{n} g_{ij} a_{i} b_{j}, \quad |a| = \sqrt{\sum_{i,j=1}^{n} g_{ij} a_{i} a_{j}}$$

Предложение

Пусть $\varphi(t) = r(u(t))$ – кривая на M. Тогда длина дуги кривой от t_1 до t_2 вычисляется по формуле:

$$L(\varphi) = \int_{t_1}^{t_2} \sqrt{\sum_{i,j=1}^{n} g_{ij}(r(u(t)))u'_i(t)u'_j(t)} dt$$

4.4. Вторая квадратичная форма поверхности.

Определение

Поверхность размерности n в \mathbb{R}^N называется гиперповерхностью, если N = n + 1.

Далее рассматриваем только гиперповерхности. В этом случае однозначно определяется вектор нормали m(P).

Определение

Пусть $b_{ij}(P) = \left(\frac{\partial^2 r}{\partial u_i \partial u_i}(P), m(P)\right)$ и $B(P) = (b_{ij}(P))$. Тогда квадратичная форма, матрица которой в базисе $\{e_1, \dots, e_n\}$ равна B(P), называется второй квадратичной формой поверхности в точке P.

Пусть μ — произвольная кривая на поверхности M, проходящая через точку P, a — касательный вектор к μ в этой точке, и γ — нормальное сечение M плоскостью, проходящей через вектор a (таким образом, γ лежит в плоскости векторов a и m(P) — вектора нормали к поверхности). Пусть v(P) — вектор главной нормали к кривой μ , φ — угол между векторами v(P) и m(P), g(x,x) и b(x,x) — первая и вторая квадратичные формы поверхности M в точке P, и пусть k и \overline{k} — кривизны в точке P кривых μ и γ . Тогда

$$\overline{k} = k \cos \varphi = \frac{b(a, a)}{g(a, a)}.$$

- [1] А.О. Иванов, А.А. Тужилин Лекции по классической дифференциальной геометрии, 2009, Москва, Логос. Лекции 2,3,4.
- [2] А. И. Шафаревич Курс лекций по классической дифференциальной геометрии, 2007, Москва, МГУ, Механико-математический факультет. Лекции 2,3,4.