Claims:

1. A photoinitiator of formula I or II

wherein

 R_1 , R_2 , R_3 and R_4 are each independently of the others C_1 - C_8 alkyl; C_1 - C_4 alkyl substituted by OH, C_1 - C_4 alkoxy, -CN, -COO(C_1 - C_8 alkyl), (C_1 - C_4 alkyl)-COO-, benzyl, phenyl or by -N(R_{13})(R_{14}); C_3 - C_6 alkenyl, benzyl, -CH₂- C_6 H₄-(C_1 - C_4 alkyl) or phenyl; or

 R_1 and R_2 together and / or R_3 and R_4 together are unbranched or branched C_2 - C_9 alkylene or C_3 - C_6 -oxa- or -aza-alkylene;

 $R_5 \quad \text{ is hydrogen, } C_1\text{--}C_8\text{alkyl, } C_3\text{--}C_6\text{alkenyl, benzyl, --}CH_2\text{--}C_6H_4\text{--}(C_1\text{--}C_4\text{alkyl}) \text{ or phenyl; } C_1\text{--}C_4\text{alkyl, } C_3\text{--}C_6\text{alkenyl, benzyl, --}CH_2\text{--}C_6\text{--}C_4$

A is Cl, Br, -O-R₇, -NR₈R₉ or -S-R₁₆;

A' is -O-, -NH- or -NR₈-;

X and Y are each independently of the other -O- R_{10} or -N(R_{11})(R_{12});

n is an integer from 1 to 10, preferably an integer from 1 to 4, especially 1, 2 or 3;

is an n-valent radical of linear or branched C₂-C₂₀alkyl the carbon chain of which may be interrupted by cyclohexanediyl, phenylene, -CH(OH)-, -C(C₂H₅)(CH₂-CH₂-OH)-, -C(CH₃)(CH₂-CH₂-OH)-, -C(CH₃)(CH₂-CH₂-OH)-, -C(CH₂-CH₂-OH)₂-, -N(CH₃)-, -N(C₂H₅)-, -N(CH₂-CH₂-OH)-, -CO-O-, -O-CO-NH, NH-CO-O-, -P(CH₂-CH₂-OH)-, -P(O)(CH₂-CH₂-OH)-, -O-P(O-CH₂-CH₂-OH)-O-, -O-cyclohexanediyl-C(CH₃)₂-cyclohexanediyl-O-,

-O-phenylene-C(CH₃)₂-phenylene-O-, -O-phenylene-CH₂-phenylene-O-, -Si(CH₃)₂-, -O-Si(CH₃)₂-O-, -O-Si(CH₃)(O-CH₃)-O-, -Si(CH₃)(\mathbf{R}_{17})-O-Si(CH₃)(\mathbf{R}_{18})-, 5-(2-hydroxyethyl)-[1,3,5]triazinane-2,4,6-trione-1,3-diyl and/or by from one to nine oxygen atoms, or

 R_6 is an n-valent radical of linear or branched -CO-NH-(C_2 - C_{16} alkylene)-(NH-CO)_{n-1}- or linear or branched -CO-NH-(C_0 - C_9 alkylene)-(NH-CO)_{n-1}- which may be interrupted by

- one or two phenylene, methylphenylene, phenylene-O-phenylene, cyclohexanediyl, methylcyclohexanediyl, trimethylcyclohexanediyl, norbornanediyl, [1-3]diazetidine-2,4-dione-1,3-diyl, 3-(6-isocyanatohexyl)-biuret-1,5-diyl or 5-(6-isocyanatohexyl)-[1,3,5]triazinane-2,4,6-trione-1,3-diyl radical(s), or
- R₆ is an n-valent radical of linear or branched -CO-(C₀-C₁₂alkylene)-(CO)_{n-1}- and the alkylene may be interrupted by oxygen, phenylene, cyclohexanediyl or by norbornanediyl; , or
- R₆ is an n-valent radical of linear or branched –C₂-C₅₀alkylene the carbon chain of which is interrupted by one to 15 oxygen, and may be substituted by OH or NH₂;
- R₇ is hydrogen, -Si(C₁-C₆alkyl)₃, C₁-C₁₂alkyl, R₂₁, C₂-C₁₈acyl, -CO-NH-C₁-C₁₂alkyl, C₂-C₂₀hydroxyalkyl, C₂-C₂₀methoxyalkyl, 3-(C₁-C₁₈alkoxy)-2-hydroxy-propyl, 3-[1,3,3,3-tetramethyl-1-[(trimethylsilyl)oxy]disiloxanyl]-propyl, 2,3-dihydroxy-propyl or linear or branched C₂-C₂₁hydroxyalkyl or (C₁-C₄alkoxy)-C₂-C₂₁alkyl the carbon chain of which is interrupted by from one to nine oxygen atoms;
- R₈ and R₉ are each independently of the other hydrogen, C₁-C₁₂alkyl,; C₂-C₄alkyl substituted by one or more of the groups OH, C₁-C₄alkoxy, -CN, -COO(C₁-C₄alkyl); C₃-C₅alkenyl, cyclohexyl or C₇-C₉phenylalkyl, or
- when R_9 = H or methyl, R_8 is also C_2 - C_{50} alkyl substituted by one or more of the groups methyl, ethyl, OH, NH₂, and is interrupted by one or more oxygen, -NH-, cyclohexanediyl, norbornanediyl or phenylene, or
- R_8 and R_9 together are unbranched or branched C_3 - C_9 alkylene which may be interrupted by -O- or by -N(R_{15})-;
- R₁₀ is hydrogen, -Si(C₁-C₆alkyl)₃, C₁-C₈alkyl, C₃-C₆alkenyl or benzyl,
- R₁₁ and R₁₂ are each independently of the other C₁-C₁₂alkyl; C₂-C₄alkyl substituted by one or more of the groups OH, C₁-C₄alkoxy, -CN, -COO(C₁-C₄alkyl); C₃-C₅alkenyl, cyclohexyl or C₇-C₉phenylalkyl, or
- R_{11} and R_{12} together are unbranched or branched C_3 - C_9 alkylene which may be interrupted by -O- or by -N(R_{15})-;
- R_{13} and R_{14} are each independently of the other hydrogen, C_1 - C_{12} alkyl; C_2 - C_4 alkyl substituted by one or more of the groups OH, C_1 - C_4 alkoxy, -CN, -COO(C_1 - C_4 alkyl); C_3 - C_5 alkenyl, cyclohexyl or C_7 - C_9 phenylalkyl, or
- R_{13} and R_{14} together are unbranched or branched C_3 - C_9 alkylene which may be interrupted by -O- or by -N(R_{15})-;

R₁₅ is hydrogen, C₁-C₄alkyl, allyl, benzyl, C₁-C₄hydroxyalkyl, -CH₂CH₂-COO(C₁-C₄alkyl) or -CH₂CH₂CN;

 R_{16} is C_1 - C_{18} alkyl, hydroxyethyl, 2,3-dihydroxypropyl, cyclohexyl, benzyl, phenyl, C_1 - C_{12} alkylphenyl, - CH_2 - $COO(C_1$ - C_{18} alkyl), - CH_2 CH₂- $COO(C_1$ - C_{18} alkyl); or - $CH(CH_3)$ - $COO(C_1$ - C_{18} alkyl);

 R_{17} and R_{18} are each independently of the other a monovalent radical methyl, -O-Si(CH₃)₃, -O-Si(CH₃)₂-O-Si(CH₃)₃, -O-Si(CH₃)[-(CH₂)_p-OH]-O-Si(CH₃) or a bivalent radical -O-Si(CH₃)₂-, -O-Si(CH₃)[-(CH₂)_p-OH]-, -O-Si(CH₃)(R₁₉)-, -O-Si(CH₃)(R₂₀)- and form chains;

 $R_{19} \ and \ R_{20} \ are each independently of the other a monovalent radical methyl, \ -O-Si(CH_3)_3, \ -O-Si(CH_3)_2-O-Si(CH_3)_3, \ -O-Si(CH_3)[-(CH_2)_p-OH]-O-Si(CH_3) \ or a bivalent radical \ -O-Si(CH_3)_2-, \ -O-Si(CH_3)[-(CH_2)_p-OH]-, \ -O-Si(CH_3)(\mathbf{R}_{19})-, \ -O-Si(CH_3)(\mathbf{R}_{20})- \ and \ extend chains and, when <math>R_{19}$ and R_{20} are linked into a ring, $-(R_{19})-(R_{20})-$ is the bridge -O-;

R₂₁ is, independently of formula I, a radical

$$R_1$$
 R_2 R_3 R_4 R_4

p is an integer from 2 to 12, preferably 3, 5 or 6, it being possible for the carbon chain of the alkylene to be interrupted by from one to three oxygen atoms.

2. A photoinitiator according to claim 1 of formula III or IV

wherein

 R_1 , R_2 , R_3 and R_4 are each independently of the others C_1 - C_8 alkyl, C_3 - C_6 alkenyl, benzyl, $-CH_2$ - C_6H_4 - $(C_1$ - C_4 alkyl) or phenyl, or

 R_1 and R_2 together and / or R_3 and R_4 together are unbranched or branched $C_2\text{-}C_9$ alkylene;

- R_5 is hydrogen, C_1 - C_8 alkyl, C_3 - C_6 alkenyl, benzyl, - CH_2 - C_6H_4 -(C_1 - C_4 alkyl) or phenyl;
- n is an integer from 1 to 10, preferably an integer from 1 to 4, especially 1, 2 or 3; and
- R₆ is an n-valent radical of linear or branched C₂-C₂₀alkyl the carbon chain of which may be interrupted by cyclohexanediyl, phenylene, -CH(OH)-, -C(C₂H₅)(CH₂-CH₂-OH)-, -C(CH₃)(CH₂-CH₂-OH)-, -C(CH₂-CH₂-OH)₂-, -N(CH₃)-, -N(C₂H₅)-, -N(CH₂-CH₂-OH)-, -CO-O-, -O-CO-, -P(CH₂-CH₂-OH)-, -P(O)(CH₂-CH₂-OH)-, -O-P(O-CH₂-CH₂-OH)-O-, -O-Cyclohexanediyl-C(CH₃)₂-cyclohexanediyl-O-, -O-phenylene-C(CH₃)₂-phenylene-O-, -O-phenylene-CH₂-phenylene-O-, -Si(CH₃)₂-, -O-Si(CH₃)₂-O-, -O-Si(CH₃)(O-CH₃)-O-, -Si(CH₃)(R₁₇)-O-Si(CH₃)(R₁₈)-, 5-(2-hydroxy-ethyl)-[1,3,5]triazinane-2,4,6-trione-1,3-diyl and/or by from one to nine oxygen atoms, or
- R₆ is an n-valent radical of linear or branched -CO-NH-(C₂-C₉alkylene)-(NH-CO)_{n-1}- or linear or branched -CO-NH-(C₀-C₉alkylene)-(NH-CO)_{n-1}- which may be interrupted by one or two phenylene, methylphenylene, phenylene-O-phenylene, cyclohexanediyl, methylcyclohexanediyl, trimethylcyclohexanediyl, norbornanediyl, [1-3]diazetidine-2,4-dione-1,3-diyl, 5-(6-isocyanatohexyl)-[1,3,5]triazinane-2,4,6-trione-1,3-diyl or 3-(6-isocyanatohexyl)-biuret-1,5-diyl radical(s), or
- R₆ is an n-valent radical of linear or branched -CO-(C₀-C₁₂alkylene)-(CO)_{n-1}- and the alkylene may be interrupted by oxygen, phenylene, cyclohexanediyl or by norbornanediyl;
- R₇ is hydrogen, -Si(C₁-C₆alkyl)₃, C₁-C₁₂alkyl, R₂₁, C₂-C₁₈acyl, -CO-NH-C₁-C₁₂alkyl, C_2 -C₂₀hydroxyalkyl, C₂-C₂₀methoxyalkyl, 3-(C₁-C₁₈alkoxy)-2-hydroxy-propyl, 3-[1,3,3,3-tetramethyl-1-[(trimethylsilyl)oxy]disiloxanyl]-propyl, 2,3-dihydroxypropyl or linear or branched C₂-C₂₁hydroxyalkyl or (C₁-C₄alkoxy)-C₂-C₂₁alkyl the carbon chain of which is interrupted by from one to nine oxygen atoms;
- R_{10} is hydrogen, -Si(C_1 - C_6 alkyl)(CH_3)₂, C_1 - C_8 alkyl, C_3 - C_6 alkenyl or benzyl;
- R_{17} and R_{18} are each independently of the other a monovalent radical methyl, -O-Si(CH₃)₃, -O-Si(CH₃)₂-O-Si(CH₃)₃, -O-Si(CH₃)[-(CH₂)_p-OH]-O-Si(CH₃) or a bivalent radical -O-Si(CH₃)₂-, -O-Si(CH₃)[-(CH₂)_p-OH]-, -O-Si(CH₃)(\mathbf{R}_{19})-, -O-Si(CH₃)(\mathbf{R}_{20})- and form chains;
- R_{19} and R_{20} are each independently of the other a monovalent radical methyl, -O-Si(CH₃)₃, -O-Si(CH₃)₂-O-Si(CH₃)₃, or a bivalent radical

-O-Si(CH₃)₂-, -O-Si(CH₃)[-(CH₂)_p-OH]-, -O-Si(CH₃)(R_{19})-, -O-Si(CH₃)(R_{20})- and extend chains and, when R_{19} and R_{20} are linked into a ring, -(R_{19})-(R_{20})- is the bridge -O-;

R₂₁ is, independently of formula III, a radical

$$X$$
 R_1
 R_2
 R_3
 R_4

p is an integer from 2 to 12, preferably 3, 5 or 6, it being possible for the carbon chain of the alkylene to be interrupted by from one to three oxygen atoms.

3. A photoinitiator according to claim 1 of formula V

wherein

R₇ is hydrogen, -Si(CH₃)₃, C₁-C₈alkyl, bis[4-(2-hydroxy-2-methyl-propionyl)-phenyl]-methyl, C₂-C₁₈acyl, -CO-NH-C₁-C₈alkyl, C₂-C₂₀hydroxyalkyl, C₂-C₂₀methoxyalkyl or C₂-C₂₀hydroxyalkyl the carbon chain of which is interrupted by from one to nine oxygen atoms.

4. A photoinitiator according to claim 1 of the formula B

5. A photoinitiator according to claim 1 of formula

6. A photoinitiator according to claim 1 of formula VI, VII or VIII

wherein

n is an integer from 1 to 4, preferably an integer from 1 to 3, especially 2, and

- R₆ is an n-valent radical of linear or branched C_2 - C_{16} alkyl the carbon chain of which may be interrupted by cyclohexanediyl, phenylene, -CH(OH)-, -C(CH₂-CH₂-OH)₂-, -C(CH₃)(CH₂-CH₂-OH)-, -C(C₂H₅)(CH₂-CH₂-OH)-, -N(CH₃)-, -N(CH₂-CH₂-OH)-, -CO-O-, -O-CO-, -Si(CH₃)₂-, -Si(CH₃)(\mathbf{R}_{17})-O-Si(CH₃)(\mathbf{R}_{18})-, -O-Si(CH₃)₂-O-, -O-Si(CH₃)(O-CH₃)-O-, 5-(2-hydroxyethyl)-[1,3,5]triazinane-2,4,6-trione-1,3-diyl and / or by from one to six oxygen atoms, or
- R₆ is an n-valent radical of linear or branched -CO-NH-(C₂-C₁₆alkylene)-(NH-CO)_{n-1}- or linear or branched -CO-NH-(C₀-C₉alkylene)-(NH-CO)_{n-1}- which may be interrupted by one or two phenylene, methylphenylene, phenylene-O-phenylene, cyclohexanediyl, methylcyclohexanediyl, trimethylcyclohexanediyl, norbornanediyl, [1-3]diazetidine-2,4-dione-1,3-diyl, 5-(6-isocyanatohexyl)-[1,3,5]triazinane-2,4,6-trione-1,3-diyl or 3-(6-isocyanatohexyl)-biuret-1,5-diyl radical(s),
- R_{17} and R_{18} are each independently of the other a monovalent radical methyl, -O-Si(CH₃)₃, -O-Si(CH₃)₂-O-Si(CH₃)₃, -O-Si(CH₃)[-(CH₂)_p-OH]-O-Si(CH₃) or a bivalent radical -O-Si(CH₃)₂-, -O-Si(CH₃)[-(CH₂)_p-OH]-, -O-Si(CH₃)(R_{19})-, -O-Si(CH₃)(R_{20})- and form chains,
- R_{19} and R_{20} are each independently of the other a monovalent radical methyl, -O-Si(CH₃)₃, -O-Si(CH₃)₂-O-Si(CH₃)₃, -O-Si(CH₃)[-(CH₂)_p-OH]-O-Si(CH₃) or a bivalent radical -O-Si(CH₃)₂-, -O-Si(CH₃)[-(CH₂)_p-OH]-, -O-Si(CH₃)(R₁₉)-, -O-Si(CH₃)(R₂₀)- and extend chains and, when R_{19} and R_{20} are linked into a ring, -(R_{19})-(R_{20})- is the bridge -O-,
- p is an integer from 2 to 12, preferably 3, 5 or 6, it being possible for the carbon chain of the alkylene to be interrupted by from one to three oxygen atoms.
- 7. A photoinitiator according to claim 1 of formula IX

wherein

R₈ and R₉ are each independently of the other hydrogen, C₁-C₁₂alkyl,; C₂-C₄alkyl substituted by one or more of the groups OH, C₁-C₄alkoxy, -CN, -COO(C₁-C₄alkyl); C₃-C₅alkenyl, cyclohexyl or C₇-C₉phenylalkyl, or

when R_9 = H or methyl, R_8 is also C_2 - C_{50} alkyl substituted by one or more of the groups methyl, ethyl, OH, NH₂, and is interrupted by one or more oxygen, -NH-, cyclohexanediyl, norbornanediyl or phenylene, or

 R_8 and R_9 together are unbranched or branched C_3 - C_9 alkylene which may be interrupted by -O- or by -N(R_{15})-;

8. A photoinitiator according to claim 1 of formula X

$$R_{8}$$
 R_{6}
 R_{6}
 R_{6}

wherein

- n is an integer from 1 to 4, preferably an integer from 1 to 3, especially 2, and
- R₆ is an n-valent radical of linear or branched C_2 - C_{16} alkyl the carbon chain of which may be interrupted by cyclohexanediyl, phenylene, -CH(OH)-, -C(CH₂-CH₂-OH)₂-, -C(CH₃)(CH₂-CH₂-OH)-, -C(C₂H₅)(CH₂-CH₂-OH)-, -N(CH₃)-, -N(CH₂-CH₂-OH)-, -CO-O-, -O-CO-NH, NH-CO-O-, -Si(CH₃)₂-, -Si(CH₃)(\mathbf{R}_{17})-O-Si(CH₃)(\mathbf{R}_{18})-, -O-Si(CH₃)₂-O-, -O-Si(CH₃)(O-CH₃)-O-, 5-(2-hydroxyethyl)-[1,3,5]triazinane-2,4,6-trione-1,3-diyl and / or by from one to six oxygen atoms, or
- R₆ is an n-valent radical of linear or branched –C₂-C₅₀alkylene the carbon chain of which is interrupted by one to 15 oxygen, and may be substituted by OH or NH₂;
- R₈ is hydrogen, C₁-C₄alkyl,; C₂-C₄alkyl substituted by one or more of the groups OH, C₁-C₄alkoxy, -CN, -COO(C₁-C₄alkyl); C₃-C₅alkenyl, cyclohexyl or C₇-C₉phenylalkyl;
- 9. A process for the preparation of compound I or II, comprising the following steps:

a) reaction of diphenylmethane with an acid halide of formula R₁R₂CH-COHal and, optionally, further reaction with an acid halide of formula R₃R₄CH-COHal in the presence of a Friedel-Crafts catalyst, whereupon an isomeric mixture of formula A is obtained,

$$R_1$$
 R_2
 R_3
 R_4

b) halogenation of the isomeric mixture of formula A, followed by bromination and hydrolysis,
 whereupon an isomeric mixture of formula B is obtained,

c) optionally, selective substitution of the benzylic hydroxy group in the resulting isomeric mixture of formula B by reaction

with an alcohol in the presence of an acid as catalyst for the preparation of an ether,

with a carboxylic acid for the preparation of an ester,

with an isocyanate for the preparation of a urethane,

with a diol, dicarboxylic acid or diisocyanate for the preparation of a bridged compound,

with a diisocyanate together with a diol or a diamine.

with a siloxane for the preparation of a silicone derivative,

- d) optionally, reaction of the alpha-hydroxy group in the resulting isomeric mixture of formula B,
- e) optionally, separation of the isomers.
- 10. A process for the preparation of compound I or II, comprising the following steps:
- a) reaction of diphenylmethane with an acid halide of formula R₁R₂CH-COHal and, optionally, further reaction with an acid halide of formula R₃R₄CH-COHal in the presence of a Friedel-Crafts catalyst, whereupon an isomeric mixture of formula A is obtained,

$$R_2$$
 R_3 R_4

b) halogenation of the isomeric mixture of formula A, followed by bromination, aminolysis of the benzylic bromide, and hydrolysis of the tertiary halides, whereupon an isomeric mixture of formula C is obtained,

- c) optionally, when R₈ or R₉ in the isomeric mixture of formula C possess a primary hydroxy group, selective substitution of the primary hydroxy group by reaction with a carboxylic acid for the preparation of an ester, with an isocyanate for the preparation of a urethane, with a dicarboxylic acid or diisocyanate for the preparation of a bridged compound, with a siloxane for the preparation of a silicone derivative
- d) optionally, separation of the isomers.
- 11. A composition consisting of
- (A) at least one ethylenically unsaturated compound,
- (B) a photoinitiator of formula I, II, III, IV, V, VI, VII, VIII, IX or X according to claims 1-8
- (C) optionally, further additives,
- (D) optionally, further photoinitiators and coinitiators.
- 12. A composition according to claim 11, wherein the compound (A) is a resin containing free OH groups, free isocyanate groups or free carboxy groups and the photoinitiator (B) is bonded to the resin.
- 13. A process for the production of a scratch-resistant durable surface, wherein a composition according to either claim 11 or claim 12 is applied to a support; and curing of the formulation is carried out either solely by means of irradiation with electromagnetic radiation having a wavelength of from 200 nm into the IR range, or by irradiation with electromagnetic radiation and prior, simultaneous and/or subsequent application of heat.

- 14. Use of a composition according to claim 11 in the production of pigmented and non-pigmented surface coatings, overprint coatings, powder coatings, printing inks, inkjet inks, gel coats, composite materials or glass fibre coatings.
- 15. Use of a composition according to claim 12 as a surface coating for food packaging materials.