ADS 245 Project - Titanic Data

Name: WeiTing Huang

SJSU ID: 014550315

Import library

```
In [1]:  # first, import calculation, visualization library
    import pandas as pd
    import numpy as np
    import math
    import matplotlib.pyplot as plt
    import seaborn as sns
    from collections import Counter
```

1. Exploratory Data Analysis

0

687

```
In [2]:
         h train = pd.read csv('titanic train.csv')
            test = pd.read_csv('titanic_test.csv')
            # survived is the target feature
In [3]:

    train.isnull().sum()

            # Check if there is any null column in the dataset
            # three columns have missing value: Age, Cabin, Embarked
   Out[3]: PassengerId
            Survived
                              0
            Pclass
                             0
            Name
                             0
            Sex
                              0
                           177
            Age
            SibSp
                             0
            Parch
                              0
            Ticket
                             0
```

Fare

Cabin

Embarked dtype: int64

In [4]: ► test.isnull().sum()
three columns have missing value: Age, Cabin, Fare

Out[4]: PassengerId 0 Pclass 0 Name 0 0 Sex Age 86 SibSp 0 Parch 0 Ticket 0 Fare 1 Cabin 327 Embarked 0 dtype: int64

In [5]: ▶ train.head()

Out[5]:

,	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500
◀										•

Out[6]:

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Emb
0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	
2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	
3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	

In [7]: ► train.describe()

Out[7]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

Out[8]:

	Passengerld	Pclass	Age	SibSp	Parch	Fare
count	418.000000	418.000000	332.000000	418.000000	418.000000	417.000000
mean	1100.500000	2.265550	30.272590	0.447368	0.392344	35.627188
std	120.810458	0.841838	14.181209	0.896760	0.981429	55.907576
min	892.000000	1.000000	0.170000	0.000000	0.000000	0.000000
25%	996.250000	1.000000	21.000000	0.000000	0.000000	7.895800
50%	1100.500000	3.000000	27.000000	0.000000	0.000000	14.454200
75%	1204.750000	3.000000	39.000000	1.000000	0.000000	31.500000
max	1309.000000	3.000000	76.000000	8.000000	9.000000	512.329200

1.1 Target feature

From total 891 passengers in training set, around 350 survived. As the pie chart showed, Only 38.4% of the total training set survived after the crash.

1.2 Feature Engineering

```
In [10]: # analysis & data cleaning on this field first
# combine train and test to a dataset which will be easier to motify
ds = pd.concat([train, test] , sort=False)
```

1.2.1 PClass

We can see that Passenegers Of Pclass 1 have higher chance to secure. Although the the number of passengers in Pclass 3 were higher, the number of survival from Pclass 3 is low.

1.2.2 Sex

Sex is a categorical Feature with two type(male/female). We can found that female survived is higher than male. Lets dive in to check survival rate with Pclass and sex together.

1.2.3 PClass and Sex

```
In [13]: M ds.loc[:,'Pclass1and2Female'] = 0
    ds.loc[:,'Pcalss3Male'] = 0

ds.loc[(ds['Pclass']<=2) & (ds['Sex']=='female'), 'Pclass1and2Female'] = 1
    ds.loc[(ds['Pclass']==3) & (ds['Sex']=='male'), 'Pcalss3Male'] = 1</pre>
```

Create two new column to mark female who in Pclass 1 & 2, who are indicate rich women. Also, mark make who in Pcalss 3, who refer to poor men.

1.2.4 Name

```
In [14]:  ds['LastName'] = ds['Name'].str.split(',', expand=True)[0]
```

```
In [15]:
          N sur = []
             died = []
             for index, row in ds.iterrows():
                 s = ds[(ds['LastName']==row['LastName']) & (ds['Survived']==1)]
                 d = ds[(ds['LastName']==row['LastName']) & (ds['Survived']==0)]
                 s=len(s)
                 if row['Survived'] == 1:
                     s-=1
                 d=len(d)
                 if row['Survived'] == 0:
                     d=1
                 sur.append(s)
                 died.append(d)
             ds['FamilySurvived'] = sur
             ds['FamilyDied'] = died
```

```
In [16]:  # mapping family died to 4 bins
ds.loc[ ds['FamilyDied'] == 0, 'FamilyDied'] = 0
ds.loc[(ds['FamilyDied'] > 0) & (ds['FamilyDied'] <= 2), 'FamilyDied'] = 1
ds.loc[(ds['FamilyDied'] > 2) & (ds['FamilyDied'] <= 5), 'FamilyDied'] = 2
ds.loc[(ds['FamilyDied'] > 5), 'FamilyDied'] = 3
```

Use last name of name to check whether passanger in their family have survived.

1.2.5 Embarked


```
In [19]: ► ds['Embarked'] = ds['Embarked'].fillna('S')
```

We can see that the most common embarded type is S. Becasue there are 2 missing data in Embarded feature, we will just fill the most common one which is S type.

1.2.6 Fare

```
In [20]: | #There is only one missing data in Fare, so fill it as a median vlaue
ds['Fare'] = ds['Fare'].fillna(train['Fare'].median())
```

```
In [22]:  ds['Fare'].astype(int).hist(bins=50).set_title('Fare values original data')
```

Out[22]: Text(0.5, 1.0, 'Fare values original data')

By hist graph, Fare featrue is a left skew distribution. Fare is also a continuous feature that need to convert it into ordinal value. We use pandas gcut to splits to 4 bins.

Out[23]:

Survived

Fare_bin							
(-0.001, 7.896]	0.197309						
(7.896, 14.454]	0.303571						
(14.454, 31.275]	0.441048						
(31,275, 512,3291	0.600000						

1.2.7 Age

Age of oldest Passenger: 80.0 Age of youngest Pasenger 0.17

Out[27]: Text(0.5, 1.0, 'Age values original data')

As we had seen earlier, Age feature has 177(train)+ 86(test) null values. To replace these NaN values, we need to observe age of max/min/mean to understand the range of age. From the histrogrm graph, we can assume age feature is normal distribution. Then, we can assign the random value in within +1/-1 segma range. Becasue age is a continuous feature, we need to use binning to catergrize.

```
In [28]:  # fill random vlaue between +1/-1 segma range.
    age_avg = ds['Age'].mean()
    age_std = ds['Age'].std()
    age_null = ds['Age'].isnull().sum()
    age_null_random_list = np.random.randint(age_avg - age_std, age_avg + age_std)
```

```
In [29]: M ds.loc[np.isnan(ds['Age']), 'Age'] = age_null_random_list
ds.loc[:, 'Age'] = ds['Age'].astype(int)

# Threshold of each bins : (80-0)/5 = 16

# Mapping Age
ds.loc[ ds['Age'] <= 16, 'Age'] = 0
ds.loc[(ds['Age'] > 16) & (ds['Age'] <= 32), 'Age'] = 1
ds.loc[(ds['Age'] > 32) & (ds['Age'] <= 48), 'Age'] = 2
ds.loc[(ds['Age'] > 48) & (ds['Age'] <= 64), 'Age'] = 3
ds.loc[ ds['Age'] > 64, 'Age'] = 4
```


1.2.8 Cabin

Since there are more than 60% of Cabin featrue is missing, we can't fill values by reference other. I will only mark people who have cabin in this trip.

1.2.9 SibSp and Parch

Create new columns called "Family_size" and "Alone". By calculate Parch and SibSp columns, we can know family size of the passengers.

```
In [33]:  print('Max of family size',ds['FamilySize'].max())
print('Min of family size',ds['FamilySize'].min())

Max of family size 11
```

Max of family size 11 Min of family size 1

```
In [34]:  # binning of family size, use 5 bins
# (11-1) / 5 = 2.
ds.loc[ ds['FamilySize'] <= 3, 'FamilySize'] = 0
ds.loc[(ds['FamilySize'] > 3) & (ds['FamilySize'] <= 5), 'FamilySize'] = 1
ds.loc[(ds['FamilySize'] > 5) & (ds['FamilySize'] <= 7), 'FamilySize'] = 2
ds.loc[(ds['FamilySize'] > 7) & (ds['FamilySize'] <= 9), 'FamilySize'] = 3
ds.loc[ ds['FamilySize'] > 9, 'FamilySize'] = 4
```

Out[35]: Text(0.5, 1.0, 'Type of age')

In [36]: ► ds.head()

Out[36]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Ca
(1	0.0	3	Braund, Mr. Owen Harris	male	1	1	0	A/5 21171	0.0	
1	2	1.0	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	2	1	0	PC 17599	3.0	
2	3	1.0	3	Heikkinen, Miss. Laina	female	1	0	0	STON/O2. 3101282	1.0	
3	3 4	1.0	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	2	1	0	113803	3.0	
4	5	0.0	3	Allen, Mr. William Henry	male	2	0	0	373450	1.0	

1.3 One hot Encoding - Categorical data

```
In [37]: Note that the categorical is a categorical is categorical in categorical is categorical in categorical in categorical in categorical in catego
```

```
In [40]:

    train.head()

    Out[40]:
                  Survived Cabin
                                  Pclass1and2Female Pcalss3Male IsAlone Pclass_1 Pclass_2 Pclass_3
                                                 0
                                                                                        0
               0
                       0.0
                               0
                                                              1
                                                                      0
                                                                               0
                                                                                                  1
               1
                       1.0
                               1
                                                 1
                                                              0
                                                                      0
                                                                               1
                                                                                        0
                                                                                                  0
               2
                       1.0
                               0
                                                 0
                                                              0
                                                                      1
                                                                               0
                                                                                        0
                                                                                                  1
               3
                       1.0
                               1
                                                 1
                                                              0
                                                                      0
                                                                               1
                                                                                        0
                                                                                                  0
                       0.0
                               0
                                                 0
                                                              1
                                                                      1
                                                                                                  1
              5 rows × 35 columns
In [41]:
           H test.head()
    Out[41]:
                  Cabin Pclass1and2Female Pcalss3Male IsAlone
                                                               Pclass_1 Pclass_2 Pclass_3 Sex_femal
               0
                      0
                                        0
                                                     1
                                                             1
                                                                      0
                                                                               0
                                                                                         1
               1
                                                    0
                                                             0
                                                                               0
                      1
                                        0
                                                                      0
                                                                                         1
               2
                      0
                                        0
                                                    0
                                                             1
                                                                      0
                                                                               1
                                                                                         0
               3
                      1
                                        0
                                                             1
                                                                      0
                                                                               0
                                                                                         1
                                                    0
                                                                               0
               4
                      0
                                        0
                                                             0
                                                                      0
                                                                                         1
              5 rows × 34 columns
              train.to_csv('train.csv')
In [42]:
              test.to_csv('test.csv')
              #load to csv file to double check the data.
          1.4 Create a sub-test group to test accuracy rate
In [43]:

X_train = np.array(train.iloc[:800,1:])

              y_train = np.array(train.iloc[:800,0])
In [44]:
              X_test = np.array(train.iloc[800:,1:])
              y_test = np.array(train.iloc[800:,0])
In [45]:
              submit_test = np.array(test)
```

2. KNN model

2.1 Create KNN class

```
In [46]:
         def init (self):
                    pass
                def train(self, X, y):
                    self.X_train = X
                    self.y_train = y
                #predict compute distances and predict labels
                def predict(self, X, k=1):
                    dists = self.compute distances(X)
                    return self.predict_labels(dists, k=k)
                def compute distances(self, X):
                    num test = X.shape[0]
                    num_train = self.X_train.shape[0]
                    dists = np.zeros((num test, num train))
                    dists = np.sqrt(np.sum(X**2, axis=1).reshape(num_test, 1) + np.sum(set)
                    return dists
                def predict labels(self, dists, k=1):
                    num_test = dists.shape[0]
                    y pred = np.zeros(num test)
                    for i in range(num_test):
                        closest_y = []
                        top k indx = np.argsort(dists[i])[:k]
                        closest y = self.y train[top k indx]
                        vote = Counter(closest_y)
                        count = vote.most_common()
                        y_pred[i] = count[0][0]
                    return y_pred
```

2.2 Test KNN model

2.3 Predict test dataset

```
In [76]:
             classifier submit = KNearestNeighbor()
             classifier_submit.train(np.array(train.iloc[:,1:]), np.array(train.iloc[:,0])
In [77]:
In [78]:
          dists = classifier_submit.compute_distances(submit_test)
In [79]:
          y_submit_pred = classifier_submit.predict_labels(dists, k=5)
In [80]:
          passengerid = pd.read csv('gender submission.csv')

y_submit = pd.DataFrame(data=y_submit_pred, columns=['Survived'])

In [81]:
In [82]:
             df = [passengerid['PassengerId'], y_submit]
             result = pd.concat(df,axis=1)
             result.to_csv('submisson.csv', index=False)
```

3. Logistic Regression

3.1 Create LR class

```
In [59]:

▶ class LogisticRegression(object):
                 def init (self):
                     pass
                 def train(self,X,y):
                     self.X_train = X
                     self.y_train = y
                 def sigmoid(self,z):
                     s = 1/(1+np.exp(-z))
                     return s
                 def initilialize_with_zeros(self,dim):
                     w = np.zeros((dim,1))
                     b = 0
                     return w,b
                 def propagate(self,w,b):
                     # Forward Propagation
                     m = self.X train.shape[1]
                     A = self.sigmoid(np.dot(w.T,self.X train.T) + b)
                     cost = (-1/m)*(np.sum(self.y_train*np.log(A) + (1-self.y_train)*np.log
                     # Backward Propagation
                     dw = 1/m*(np.dot(self.X_train.T, (A-self.y_train).T))
                     db = 1/m*np.sum(A-self.y train)
                     grads = {'dw':dw, 'db':db}
                     return grads, cost
                 def optimize(self,w,b,num_iter, learning_rate, print_cost=False):
                     costs = []
                     for i in range(num iter):
                         grads, cost = self.propagate(w,b)
                         dw = grads['dw']
                         db = grads['db']
                         w = w - dw * learning_rate
                         b = b - db * learning rate
                         if i % 100 == 0:
                             costs.append(cost)
                         if print cost and i % 100 == 0:
                             print('Cost after iteration %i: %f' %(i,cost))
                     params = {'w':w,'b':b}
                     grads = {'dw':dw,'db':db}
                     return params, grads, costs
                 def predict(self,w,b,X):
                     m = X.shape[0]
                     Y_prediction = np.zeros((1,m))
                     w = w.reshape(X.shape[1],1)
                     A = self.sigmoid(np.dot(w.T,X.T)+b)
```

```
for i in range(A.shape[1]):
        if A[0,i] > 0.5:
            Y_prediction[0,i] = 1
        else:
            Y prediction[0,i] = 0
    return Y prediction
def model(self, X_test = None, y_test = None, num_iterations = 100000, le
    w, b = self.initilialize with zeros(self.X train.shape[1])
    parameters, grads, costs = self.optimize(w, b, num iterations, learni
    w = parameters["w"]
    b = parameters["b"]
    Y_prediction_test = self.predict(w, b, X_test)
    Y_prediction_train = self.predict(w, b, self.X_train)
    print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction))
    if y test is not None:
        print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_predict
    d = {"costs": costs,
    "Y_prediction_test": Y_prediction_test,
    "Y_prediction_train" : Y_prediction_train,
    "w" : w,
    "b" : b,
    "learning_rate" : learning_rate,
    "num_iterations": num_iterations}
    return d
```

3.2 Test LR model

```
In [62]:

    ■ | d = classifier.model(np.array(train.iloc[800:,1:]), np.array(train.iloc[800:,
             Cost after iteration 84100: 9.350703
             Cost after iteration 84200: 9.350699
             Cost after iteration 84300: 9.350695
             Cost after iteration 84400: 9.350691
             Cost after iteration 84500: 9.350687
             Cost after iteration 84600: 9.350683
             Cost after iteration 84700: 9.350679
             Cost after iteration 84800: 9.350675
             Cost after iteration 84900: 9.350671
             Cost after iteration 85000: 9.350667
             Cost after iteration 85100: 9.350664
             Cost after iteration 85200: 9.350660
             Cost after iteration 85300: 9.350656
             Cost after iteration 85400: 9.350652
             Cost after iteration 85500: 9.350648
             Cost after iteration 85600: 9.350644
             Cost after iteration 85700: 9.350640
             Cost after iteration 85800: 9.350636
             Cost after iteration 85900: 9.350632
             Cost after iteration 86000: 9.350629
```


3.3 Predict test dataset

```
In [85]:

  | d = classifier_submission.model(submit_test, print_cost = True)

             Cost after iteration 82500: 10.257049
             Cost after iteration 82600: 10.257041
             Cost after iteration 82700: 10.257033
             Cost after iteration 82800: 10.257025
             Cost after iteration 82900: 10.257016
             Cost after iteration 83000: 10.257008
             Cost after iteration 83100: 10.257000
             Cost after iteration 83200: 10.256992
             Cost after iteration 83300: 10.256984
             Cost after iteration 83400: 10.256976
             Cost after iteration 83500: 10.256968
             Cost after iteration 83600: 10.256960
             Cost after iteration 83700: 10.256952
             Cost after iteration 83800: 10.256944
             Cost after iteration 83900: 10.256936
             Cost after iteration 84000: 10.256928
             Cost after iteration 84100: 10.256920
             Cost after iteration 84200: 10.256912
             Cost after iteration 84300: 10.256904
             Cost after iteration 84400: 10.256896
In [86]:
          M | df = [passengerid['PassengerId'], pd.DataFrame(data=d["Y prediction test"].T,
             result = pd.concat(df,axis=1)
             result.to csv('submisson LR.csv', index=False)
```

4. Submit Kaggle score - 0.787

