Caminhos Evolucionários Possíveis

Por Leandro Zatesko, UFFS 🔯 Brazil

Timelimit: 1

- Já que a senhora é bióloga, poderia nos definir o conceito de 'espécie'?
- Senhora, senhora, volta aqui!

Laura é uma bióloga muito interessada em Computação. Recentemente ela escreveu um programa que, dados os códigos genéticos de dois indivíduos \mathbf{A} e \mathbf{B} , decide se \mathbf{A} é um *possível pai genético* de \mathbf{B} , o que significa que não há nada nos códigos genéticos de ambos os indivíduos que nos permita afirmar com certeza que \mathbf{B} não foi gerado por \mathbf{A} . Note que, se \mathbf{A} é um possível pai genético de \mathbf{B} , isso não significa que \mathbf{B} seja da mesma *espécie* que \mathbf{A} , pois pode ter ocorrido uma mutação durante a geração de \mathbf{B} . Naturalmente, dizemos que um indivíduo \mathbf{A} é um *possível ancestral genético* de um indivíduo \mathbf{B} se existe uma sequência de \mathbf{k} indivíduos $\mathbf{I}_1, \mathbf{I}_1, ..., \mathbf{I}_k$ tais que $\mathbf{I}_1 = \mathbf{A}$, $\mathbf{I}_k = \mathbf{B}$ e, para todo $\mathbf{j} \in \{1, ..., k-1\}$, \mathbf{I}_i é um possível pai genético de \mathbf{I}_{i+1} .

Laura está estudando os fósseis encontrados mês passado em Chapecó para determinar, através dos códigos genéticos extraídos, as espécies que habitavam a região. Mas o conceito de 'espécie' é muito polêmico. Laura, que não quer viver situações como a da senhora da imagem acima, preferiu adotar a seguinte definição: dois indivíduos A e B pertencem à mesma espécie se e somente seA é um possível ancestral genético de A. O diagrama abaixo ilustra uma situação com 7 indivíduos fossilizados, em que um arco de um indivíduo A para um indivíduo B representa que A é um possível pai genético de B. No exemplo, podemos identificar 3 espécies: I, II e III.

Dados as informações fornecidas pelo programa de Laura, ajude-a a calcular o número de *caminhos evolucionários possíveis* da espécie de um individuo \mathbf{S} para a espécie de um individuo \mathbf{T} . Um *caminho evolucionário possível* de uma espécie \mathbf{E}_1 para uma espécie \mathbf{E}_k é uma sequência de \mathbf{k} espécies \mathbf{E}_1 , \mathbf{E}_2 , ..., \mathbf{E}_k tal que, para todo $\mathbf{j} \in \{1, ..., \mathbf{k} - 1\}$, existe algum indivíduo \mathbf{B} da espécie $\mathbf{I}_{\mathbf{j}+1}$ que tem um possível pai genético da espécie $\mathbf{I}_{\mathbf{j}}$.

Entrada

A primeira linha da entrada consiste de 4 inteiros, N, M, S e T ($1 \le N \le 10^5$, $0 \le M \le 10^6$, $1 \le S$, $T \le N$), sendo N o número de indivíduos fossilizados, designados pelos inteiros de 1 aN, cujos códigos genéticos foram obtidos por Laura. Cada uma das próximas M linhas consiste de 2 inteiros, A e B ($1 \le A$, $B \le N$), representando que o programa de Laura considera o indivíduo A um possível pai genético de B.

Saída

2 1

Seu programa deve imprimir uma linha contendo um único número inteiro, o qual representa o número de caminhos evolucionários possíveis da espécie à qual pertence o indivíduo \mathbf{T} . Como esse número pode ser muito grande, seu programa deve apenas imprimir o resto que esse número deixa quando dividido por $10^9 + 7$.

Exemplos de Entrada	Exemplos de Saída
7 10 1 7	2
1 2	
2 1	
2 3	
3 4	
4 5	
5 3	
3 6	
2 6	
6 7	
7 6	
	-
7 10 7 4	0
1 2	

2 3 3 4 4 5 5 3 3 6 2 6 6 7 7 6	
7 10 1 7 1 2 2 1 3 2 3 4 4 5 5 3 3 6 2 6 6 7 7 6	1
5 8 1 5 1 2 1 3 1 4 2 3 2 4 4 4 2 5 3 5 4 5 5	5

^{2&}lt;sup>a</sup> Minimaratona Matutina de Grafos da UFFS - 2015