tároxx L(x):=																		mo	nol	on i	
£'(x):=											10							1			
32	2 2	1	0	3	1-4		X	1 21		_ (2	(-	1	×3	× 2,	+ ×	+ (+)				
	1	11	1	4	0	5	D=	1	2 (+ a	e	-		15	< / /	0	1	a.	طن		
	· 0;												7					70			
1)	+	300 8				C	7		+												
+	1		352	1	2 7				1	/.		-1									
↓(x):=				1		100	. 9	34	LA T	500	3	64	58			1/2		10	40/		
()(x)	_ &	××	2	e ×=	e	× (X -	1)	X	1	1	1	1							
(-0	»; o		(0	;	1)	1	-	()	1.0	0)	0				36					-
4				4					7				•	6 3			23				
					7															-	-
											0.0									-	+
				C.I.		100									1					1	+-+-+-
										1				1							+++
																		F		-	1

2. Határoxxa mey ax L(X) = X X X X 1 (XEIR) Liggveny a, lokalis szelsőértékeit $f'(x) = \frac{x^2 + x + 1 - x(2x + 1)}{(x^2 + x + 1)^2} = \frac{4 - x^2}{(x^2 + x + 1)^2} = \frac{1}{(x^2 + x + 1)^2}$ Stacionarius portor: 1, -1 $f''(x) := -2 \times (x^2 + x + 1)^2 - (1 - x^2) \cdot 2(x^2 + x + 1) (2x + 1)$ $= \frac{-2(X(X^2+X+1)-(1-X^2)(2X+1))}{(X^2+X+1)^3}$ l"(1)= -2.(3-0) = -3 < 0 => 1 lokalis maximum hely Tokok !! L(1) = 1 lokalis maximum 1"(-1)=-2-(-1-1)=2>0=)-1 lokális minimumhely 1(-1) = - I lokalis minim abszolút szelsővértékeit a [=2,0] halmozan L € C [2,0] => 3 absolut excloirtéles (Weierstras tétel) Stacionárius portos mellett are X = - 2 és X = 0 portosar vizzal. 22 a felatrése alorjan: f(1)=1/3, l(-1)=-1 1(-2)=-2/3 1(0)=0 Exel alayon: X = 1 absolut maximumles x = - 1 aboxolut minimum hely

Lerese meg axt a maximalis területű téglalapot az első akneyed-ben, melynek legik csúsa az onyó az ebből kiinduló két oldala a tengelyesre illeszkedik és az origobal szenközti csús az $\ell(x) := (e^{-3x}) (x \in (0, \infty))$ luggueny grafikanjan helyenhedis el Show the factor of the same of $T(x) = x \cdot \ell(x) = x \cdot e^{-3x}$ Ast as X pontot heresich, ahol T(X) a legnagyold. $T'(x) = 1 \cdot e^{-3x} + x \cdot e^{-3x} \cdot (-3)$ = e -3x - 3x e -3x $e^{-3x} - 3x e^{-3x} = 0$ e-3x = 3x e-3x $T''(x) = e^{-3x} \cdot (-3) - (3e^{-3x} + 3xe^{-3x}(-3))$ $= -3e^{-3x} - 3e^{-3x} + 9xe^{-3x}$ $=9\times e^{-3x}-6e^{-3x}$ $7''(\frac{1}{3}) = 9 \cdot \frac{1}{3} \cdot e^{-1} - 6 \cdot e^{-1} = \frac{-3}{9} < 0$ X= 3 aboxolit maximum hely A maximalis területű téglalap D=(0, 1 A=(0;0) $B=(\frac{1}{3};0)$ $C=(\frac{1}{3};\frac{1}{2})$