RF Circuits Design

<u></u>	
	/

Oscillators

ex. VCO or CCO electrically - tuned socillators

xo crystal oscillators

Mathmatical models: 1) Feedback system
2) Negative restrance

Feelback system:

$$LG(j\omega_0) = -1$$

$$= 1$$

$$180^{\circ}$$

$$180^{\circ}$$

$$W$$

$$= 100^{\circ}$$

· RC oscillator (e.g. ringoscillator)

$$4 \frac{G^3}{(1+j\omega_0^2)^3} = \pi$$

$$\frac{4}{3} - 3 \cdot \arctan(\omega \cdot \tau) = \pi \quad ; \quad \arctan(\omega \cdot \tau) = -\frac{\pi}{3}$$

$$0 \quad \omega \cdot \tau = \sqrt{3} \quad ; \quad \omega \cdot \tau = -\frac{\pi}{3}$$

$$2. \quad | LG(j\omega \cdot)| = 1 \quad ; \quad G^{3} = 1$$

$$2. \quad | LG(j\omega \cdot)| = 1 \quad ; \quad G^{3} = 2^{3} \quad ; \quad G = 2$$

$$3 \quad | G^{3} = 2^{3} \quad ; \quad G = 2$$

 $LG(s) = \frac{G^3}{(1+s\tau)^3}$

Root bocus

J. Gm Elyr 7 16(s) 2 16(s) to highlight, it is positive feedback Gm. Z(s) = GmR. 3 w/Q + w/2 L6(5) = Root locus Incs 3

jwn - State of the state 2 complex polis \Rightarrow $a = \pm j\omega_n = \pm j\omega_0$ frequency of oscillation is identical to the resonance frequency

4.
$$4 LG (j\omega_0) = 0$$
;

$$\frac{j\omega_0 \omega_0/Q}{-\omega_0^2 + j\omega_0 \omega_0/Q} = \frac{\pi}{2} - \arctan \frac{\omega_0 \omega_0 \omega_0/Q}{\omega_0^2 - \omega_0^2} = 0$$
4. $G = \frac{\pi}{2}$

4. $G = \frac{\omega_0}{2}$

5. $G = \frac{\omega_0}{2}$

6. $G = \frac{\omega_0}{2}$

6. $G = \frac{\omega_0}{2}$

7. $G = \frac{\omega_0}{2}$

8. $G = \frac{\omega_0}{2}$

9. $G = \frac{\omega_0}{2}$

10. $G = \frac{\omega_0}{2}$

11. $G = \frac{\omega_0}{2}$

12. $G = \frac{\omega_0}{2}$

13. $G = \frac{\omega_0}{2}$

14. $G = \frac{\omega_0}{2}$

15. $G = \frac{\omega_0}{2}$

16. $G = \frac{\omega_0}{2}$

17. $G = \frac{\omega_0}{2}$

18. $G = \frac{\omega_0}{2}$

19. $G = \frac{\omega_0}{2}$

20. $G = \frac{\omega_0}{2}$

20. $G = \frac{\omega_0}{2}$

21. $G = \frac{\omega_0}{2}$

22. $G = \frac{\omega_0}{2}$

23. $G = \frac{\omega_0}{2}$

24. $G = \frac{\omega_0}{2}$

25. $G = \frac{\omega_0}{2}$

26. $G = \frac{\omega_0}{2}$

27. $G = \frac{\omega_0}{2}$

28. $G = \frac{\omega_0}{2}$

29. $G = \frac{\omega_0}{2}$

20. $G = \frac{\omega_0}{2}$

21. $G = \frac{\omega_0}{2}$

22. $G = \frac{\omega_0}{2}$

23. $G = \frac{\omega_0}{2}$

24. $G = \frac{\omega_0}{2}$

25. $G = \frac{\omega_0}{2}$

26. $G = \frac{\omega_0}{2}$

27. $G = \frac{\omega_0}{2}$

28. $G = \frac{\omega_0}{2}$

29. $G = \frac{\omega_0}{2}$

20. $G = \frac{\omega_0}{2}$

21. $G = \frac{\omega_0}{2}$

22. $G = \frac{\omega_0}{2}$

23. $G = \frac{\omega_0}{2}$

24. $G = \frac{\omega_0}{2}$

25. $G = \frac{\omega_0}{2}$

26. $G = \frac{\omega_0}{2}$

27. $G = \frac{\omega_0}{2}$

28. $G = \frac{\omega_0}{2}$

29. $G = \frac{\omega_0}{2}$

20. $G = \frac{\omega_0}{2}$

20. $G = \frac{\omega_0}$

Negative Risistance Hodel oscillation condition: balance between dissipake $Z_{a(5)} \square G \square Z_{(5)}$ power and the active power $Z_{\alpha}(j\omega_{\circ}) + Z(j\omega_{\circ}) = 0$ example: THAO Power dissipated

I A.Z

Gm F Z(s)

Gm = 1; Gn Active power $\frac{1}{2} \cdot \frac{A_0^2}{R} =$ $G_m = \frac{1}{R}; G_m R = 1$ 2 Gm. Ao

$$Z_{a}(j\omega_{0}) = -Z(j\omega_{0}),$$

$$Re \{ Z_{a}(j\omega_{0}) \} = -Re \{ Z(j\omega_{0}) \}$$

$$Im \{ Z_{a}(j\omega_{0}) \} = -Im \{ Z(j\omega_{0}) \}$$

$$e.g. Re \{ Z_{a}(j\omega_{0}) \} = -R$$

$$Z_{a} = -R$$

$$Z_{a} = -R$$

$$Wol + L = 0; \quad \omega_{0} = L$$

$$Y_{a} = -R$$

$$Wol + L = 0; \quad \omega_{0} = L$$