

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Metody obliczeniowe w nauce i technice

Laboratorium 7

1. Wprowadzenie

Laboratorium miało na celu zapoznanie się z kwadraturą Gaussa-Legendre'a, oraz porównanie jej wyników z kwadraturami z poprzedniego laboratorium.

Zadanie wykonano w <u>Jupyter Notebook</u>, pisząc w <u>Pythonie</u> i używając biblioteki do obliczeń naukowych o nazwie <u>NumPy</u>.

Wykorzystany kod oraz wyniki pomiarów są dostępne w repozytorium.

2. Metoda Gaussa-Legendre

Kwadratura Gaussa-Legendre pozwala na obliczenie całki ograniczonej na przedziale [-1,+1]:

$$\int_{-1}^{1} f(x)dx \approx \sum_{i=1}^{n} w_i f(x_i)$$

Gdzie:

n	x_i	w_i
2	$\frac{x_i}{\pm \frac{1}{\sqrt{3}}}$	1
	0	8 9
3	$\pm\sqrt{\frac{3}{5}}$	$\frac{5}{9}$
4	$\pm \sqrt{\frac{3}{7} - \frac{2}{7} \sqrt{\frac{6}{5}}}$	$\frac{18 + \sqrt{30}}{36}$
4	$\pm \sqrt{\frac{3}{7} + \frac{2}{7}\sqrt{\frac{6}{5}}}$	$\frac{18 - \sqrt{30}}{36}$
	0	$\frac{128}{225}$
5	$\pm \frac{1}{3} \sqrt{5 - 2\sqrt{\frac{10}{7}}}$	$\frac{322 + 13\sqrt{70}}{900}$
	$\pm \frac{1}{3} \sqrt{5 + 2 \sqrt{\frac{10}{7}}}$	$\frac{322 - 13\sqrt{70}}{900}$

2.1. Implementacja

```
gauss_nodes = {...} # dane z tabeli powyżej (x_i)
gauss_weights = {...} # dane z tabeli powyżej (w_i)
```

```
def integral_gauss_legendre_base(f, n):
    if not n in range(2, 6):
        raise ValueError("This implementation ... n in range [2, 5]")

return sum(
        gauss_weights[n][i] * f(gauss_nodes[n][i])
        for i in range(n)
)
```

3. Uogólniona metoda Gaussa-Legendre

Ograniczenie granic całkowania do [-1,+1] zdecydowanie nie jest wygodne, możemy jednak uogólnić to rozwiązanie do skończonego przedziału [a,b] poprzez przeskalowanie funkcji całkowanej:

$$x \in [-1,1]$$

$$\frac{x+1}{2} \in [0,1]$$

$$\frac{x+1}{2}(b-a) + a \in [a,b]$$

A następnie poprzez przemnożenie wyniku przez:

$$\frac{b-a}{2}$$

Zatem:

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2} \int_{-1}^{1} f\left(\frac{x+1}{2}(b-a) + a\right) dx$$

3.1. Implementacja

```
def integral_gauss_legendre(f, a, b, n):
    return integral_gauss_legendre_base(
        lambda x: f( (x+1.) / 2. * (b-a) + a ), n) * ((b-a)/2.
)
```

4. Testy

4.1. Metody z poprzedniego laboratorium

```
def integral_rectangles(f, a, b, n):
    h = (b - a) / float(n)
    return sum(
        f(a + h * i) * h
        for i in range(n)
    )
```

```
def integral_trapezoidal(f, a, b, n):
    h = (b - a) / float(n)
    return sum(
        (f(a + h * i) + f(a + h * (i+1))) / 2.0 * h
        for i in range(n)
    )
```

4.2. Parametry testów

Testy przeprowadzono dla trzech podanych funkcji.

Całka z każdej funkcji została obliczona przy wykorzystaniu trzech powyższych metod i metody Gaussa-Legerenge.

Parametry podczas testów:

- Liczba kroków: {2,3,4,5}
- Przedziały: (-5, -1), (-2, 0), (-1, 1), (0, 2), (1, 5)

```
f1 = lambda x: 3 * x**3 -1
f2 = lambda x: 2 * x**2
f3 = lambda x: 4 * sin(x)

ranges = [(-5,-1),(-2,0),(-1,1),(0,2),(1,5)]
steps = range(2,6)
```

4.3. Implementacja testów

```
def test(name, f, ranges, steps):
    with open(f'results-{name}.csv', 'w') as out:
        out.write("a,b,n,Rectangles,Trapezoidal,Simpson,Gauss-...\n")
    for r in ranges:
        out.write('\n')
        for n in steps:
            int_rec = integral_rectangles(f,r[0],r[1],n)
            int_tra = integral_trapezoidal(f,r[0],r[1],n)
            int_sim = integral_simpson(f,r[0],r[1],n)
            int_gau = integral_gauss_legendre(f,r[0],r[1], n)
            out.write(f'{r[0]},{r[1]},{n},{int_rec},{int_t...n'})
```

4.4. Funkcja 1

$$f_1(x) = 3x^3 - 1$$

4.4.1. Wartości dokładne

$$\int_{-5}^{-1} f_1(x) dx = -472$$

$$\int_{-5}^{0} f_1(x) dx = -14$$

$$\int_{-1}^{1} f_1(x) dx = -2$$

$$\int_{0}^{2} f_1(x) dx = 10$$

$$\int_{1}^{5} f_1(x) dx = 464$$

4.4.2. Pomiary

[-5, -1]					
n	2	3	4	5	
Rectangles	-916,0	-752,0	-676,0	-632,3	
Rectaligles	94,1%	59,3%	43,2%	34,0%	
Trapezoidal	-544,0	-504,0	-490,0	-483,5	
Trapezoidai	15,3%	6,8%	3,8%	2,4%	
Simpson	-472,0		-472,0		
3111p3011	0,0%		0,0%		
Gauss	-472,0	-472,0	-472,0	-472,0	
	0,0%	0,0%	0,0%	0,0%	

[-2, 0]					
n	2	3	4	5	
Postangles	-29,00	-23,33	-20,75	-19,28	
Rectangles	107,1%	66,7%	48,2%	37,7%	
Transcidal	-17,00	-15,33	-14,75	-14,48	
Trapezoidal	21,4%	9,5%	5,4%	3,4%	
Simpson	-14,0		-14,0		
Simpson	0,0%		0,0%		
Gauss	-14,0	-14,0	-14,0	-14,0	
Gauss	0,0%	0,0%	0,0%	0,0%	

[-1, 1]					
n	2	3	4	5	
Rectangles	-5,0	-4,0	-3,5	-3,2	
Rectangles	150,0%	100,0%	75,0%	60,0%	
Trapezoidal	-2,0	-2,0	-2,0	-2,0	
Trapezoidai	0,0%	0,0%	0,0%	0,0%	
Simpson	-2,0		-2,0		
Simpson	0,0%		0,0%		
Gauss	-2,0	-2,0	-2,0	-2,0	
Jauss	0,0%	0,0%	0,0%	0,0%	

[0, 2]					
n	2	3	4	5	
Postangles	1,0000	3,3333	4,7500	5,6800	
Rectangles	90,0%	66,7%	52,5%	43,2%	
Tuonosoidal	13,000	11,333	10,750	10,480	
Trapezoidal	30,0%	13,3%	7,5%	4,8%	
Simmon	10,0		10,0		
Simpson	0,0%		0,0%		
Gauss	10,0	10,0	10,0	10,0	
Jauss	0,0%	0,0%	0,0%	0,0%	

[1, 5]					
n	2	3	4	5	
Rectangles	164,00	248,00	296,00	326,72	
Rectangles	64,7%	46,6%	36,2%	29,6%	
Tuenesidel	536,00	496,00	482,00	475,52	
Trapezoidal	15,5%	6,9%	3,9%	2,5%	
Simpson	464,0		464,0		
	0,0%		0,0%		
Gauss	464,0	464,0	464,0	464,0	
Gauss	0,0%	0,0%	0,0%	0,0%	

4.5. Funkcja 2

$$f_2(x) = 2x^2$$

4.5.1. Wartości dokładne

$$\int_{-5}^{-1} f_2(x) dx = \frac{248}{3} \approx 82.667$$

$$\int_{-2}^{0} f_2(x) dx = \frac{16}{3} \approx 5.333$$

$$\int_{-1}^{1} f_2(x) dx = \frac{4}{3} \approx 1.333$$

$$\int_{0}^{2} f_2(x) dx = \frac{16}{3} \approx 5.333$$

$$\int_{1}^{5} f_2(x) dx = \frac{248}{3} \approx 82.666$$

4.5.2. Pomiary

[-5, -1]					
n	2	3	4	5	
Rectangles	136,00	117,04	108,00	102,72	
Rectangles	64,5%	41,6%	30,6%	24,3%	
Trapezoidal	88,00	85,04	84,00	83,52	
Trapezoidai	6,5%	2,9%	1,6%	1,0%	
Simpson	82,667		82,667		
Simpson	0,0%		0,0%		
Gauss	82,667	82,667	82,667	82,667	
Gauss	0,0%	0,0%	0,0%	0,0%	

[-2, 0]					
n	2	3	4	5	
Postangles	10,000	8,296	7,500	7,040	
Rectangles	87,5%	55,6%	40,6%	32,0%	
Trapezoidal	6,0000	5,6296	5,5000	5,4400	
Trapezoidai	12,5%	5,6%	3,1%	2,0%	
Simpson	5,3333		5,3333		
Simpson	0,0%		0,0%		
Gauss	5,3333	5,3333	5,3333	5,3333	
Gauss	0,0%	0,0%	0,0%	0,0%	

[-1, 1]					
n	2	3	4	5	
Postangles	2,000	1,630	1,500	1,440	
Rectangles	50,0%	22,3%	12,5%	8,0%	
Tuanasaidal	2,000	1,630	1,500	1,440	
Trapezoidal	50,0%	22,3%	12,5%	8,0%	
Simpson	1,3333		1,3333		
Simpson	0,0%		0,0%		
Gauss	1,3333	1,3333	1,3333	1,3333	
Gauss	0,0%	0,0%	0,0%	0,0%	

[0, 2]					
n	2	3	4	5	
Postangles	2,000	2,963	3,500	3,840	
Rectangles	62,5%	44,4%	34,4%	28,0%	
Transcidal	6,000	5,630	5,500	5,440	
Trapezoidal	12,5%	5,6%	3,1%	2,0%	
Simpson	5,3333		5,3333		
Simpson	0,0%		0,0%		
Gauss	5,3333	5,3333	5,3333	5,3333	
	0,0%	0,0%	0,0%	0,0%	

[1, 5]					
n	2	3	4	5	
Postangles	40,00	53,04	60,00	64,32	
Rectangles	51,6%	35,8%	27,4%	22,2%	
Trapezoidal	88,00	85,04	84,00	83,52	
Trapezoidai	6,5%	2,9%	1,6%	1,0%	
Simpson	82,667		82,667		
	0,0%		0,0%		
Gauss	82,667	82,667	82,667	82,667	
Gauss	0,0%	0,0%	0,0%	0,0%	

4.6. Funkcja 3

$$f_3(x) = 4\sin(x)$$

4.6.1. Wartości dokładne

$$\int_{-5}^{-1} f_3(x) dx \approx -1.0266$$

$$\int_{-2}^{0} f_3(x) dx \approx -5.6646$$

$$\int_{-1}^{1} f_3(x) dx \approx 0$$

$$\int_{0}^{2} f_3(x) dx \approx 5.6646$$

$$\int_{1}^{5} f_3(x) dx \approx 1.0266$$

4.6.2. Pomiary

[-5, -1]					
n	2	3	4	5	
Rectangles	6,5424	3,9313	2,6612	1,9094	
Rectangles	737,3%	482,9%	359,2%	286,0%	
Trapezoidal	-0,659	-0,870	-0,940	-0,971	
Trapezoidai	35,8%	15,3%	8,5%	5,4%	
Simpson	-1,19		-1,03		
Simpson	16,1%		0,6%		
Gauss	-0,913	-1,031	-1,026	-1,027	
Gauss	11,1%	0,4%	0,0%	0,0%	

[-2, 0]				
n	2	3	4	5
Rectangles	-7,003	-6,666	-6,455	-6,316
	23,6%	17,7%	14,0%	11,5%
Trapezoidal	-5,184	-5,453	-5,546	-5,589
	8,5%	3,7%	2,1%	1,3%
Simpson	-5,700		-5,667	
	0,6%		0,0%	
Gauss	-5,641	-5,665	-5,665	-5,665
	0,4%	0,0%	0,0%	0,0%

[-1, 1]				
n	2	3	4	5
Rectangles	-3,366	-2,244	-1,683	-1,346
	0,0%	0,0%	0,0%	0,0%
Trapezoidal	0	-7E-16	0	4E-16
	0,0%	0,0%	0,0%	0,0%
Simpson	0		0	
	0,0%		0,0%	
Gauss	-4E-16	0	0	0
	0,0%	0,0%	0,0%	0,0%

[0, 2]					
n	2	3	4	5	
Rectangles	3,3659	4,2408	4,6368	4,8614	
	40,6%	25,1%	18,1%	14,2%	
Trapezoidal	5,1845	5,4532	5,5461	5,5889	
	8,5%	3,7%	2,1%	1,3%	
Simpson	5,7002		5,6666		
	0,6%		0,0%		
Gauss	5,6406	5,6648	5,6646	5,6646	
	0,4%	0,0%	0,0%	0,0%	

[1, 5]					
n	2	3	4	5	
Rectangles	7,8607	5,6708	4,5403	3,8518	
	665,7%	452,4%	342,3%	275,2%	
Trapezoidal	0,6591	0,8698	0,9396	0,9712	
	35,8%	15,3%	8,5%	5,4%	
Simpson	1,1921		1,0330		
	16,1%		0,6%		
Gauss	0,9126	1,0306	1,0265	1,0266	
	11,1%	0,4%	0,0%	0,0%	

5. Wnioski

Jak można zauważyć na wynikach z testów metoda Gaussa-Legerande ma wyniki nawet dokładniejsze niż metoda Simpsona. Dodatkowo osiąga ona dużą dokładność już przy niewielkiej ilości punktów podziału.