Exciter and Governors

A.M.Kulkarni
Department of Electrical
Engineering, IIT Bombay
Mumbai

Excitation Systems

System Block Diagram

Additional Subsystems

Static Excitation

Brushless Excitation

AVR

Functional block diagram (Kundur)

AVR Block Diagram - Example

Understanding Transfer Functions

$$\frac{1}{s} \quad \frac{u-y}{T} = y$$

SINUSOIDAL STEADY
STATE RESPONSE
FOR VARIOUS FREQUENCIES

u

Understanding Transfer

- Integration/Summing/Gains done by OP-AMPS in Analog AVR
- Integration/Summing/Gains done by numerical algorithms in Digital AVR (DVR)

Understanding Transfer Functions

T1 > T2 : Phase Lead Compensator T1 < T2 : Phase Lag Compensator У u 1+sT1 T1 1+sT2 T2 integrator T1-T2 u T2 T2

- Integration/Summing/Gains done by OP-AMPS in Analog AVR
- Integration/Summing/Gains done by numerical algorithms in Digital AVR (DVR)

Understanding Transfer Functions

P-I Regulator

Steady State Error?

Limiters

Hard and Soft limiters

Mechanical System

Tandem Compound Single Reheat (Steam Turbine)

$$T_{CH} = 0.1 \text{-} 0.4 \text{ s}$$
 $T_{RH} = 4 \text{-} 11 \text{ s}$ $T_{CO} = 0.3 \text{-} 0.5 \text{ s}$ $F_{HP} = 0.3$ $F_{LP} = 0.4$

Hydraulic Turbine Model

Governor Model (General Purpose) for Steam Turbines

$$T_1 = 0.2 \text{ s}$$
 $T_2 = 0$ $T_3 = 0.1 \text{ s}$
 $P_{max} = 1.1 P_o$ $P_{min} = 0.1 P_o$

Governor (Hydraulic Turbine)

Permanent Droop Comp.

In the above figure, T_R and β are calculated as

$$T_R = 5T_W, \qquad \beta = \frac{1.25T_W}{H}$$

where

 T_W = water time constant.

H = inertia constant of a machine.

$$T_W = 1.0 \text{ s}$$
 $T_G = 0.2 \text{ s}$ $T_2 = 0$ $\sigma = 0.05$

Typical values of parameters for speed-governor of hydro turbines.