Matlab Generated Section

PII at 6	. 2
Query user for logfile	2
Pull out the raw scans (if saved)	2
Create the waterfall horizontal and vertical axes	3
Plot SNR values versus PII values	. 3
PII at 7	5
Query user for logfile	5
Pull out the raw scans (if saved)	5
Create the waterfall horizontal and vertical axes	.5
Plot SNR values versus PII values	. 5
PII at 8	7
Query user for logfile	7
Separate raw, bandpassed, and motion filtered data from scn structure	7
Pull out the raw scans (if saved)	7
Create the waterfall horizontal and vertical axes	8
Plot SNR values versus PII values	8
PII at 9	٥.
Query user for logfile	٥.
Separate raw, bandpassed, and motion filtered data from scn structure	٥.
Pull out the raw scans (if saved)1	٥.
Create the waterfall horizontal and vertical axes1	٥.
Plot SNR values versus PII values	١1
PII at 10	.2
Query user for logfile	.2
Pull out the raw scans (if saved)1	.2
Create the waterfall horizontal and vertical axes1	١3
Plot SNR values versus PII values	٤3
PII at 111	5۔
Query user for logfile	5۔
Pull out the raw scans (if saved)1	5۔
Create the waterfall horizontal and vertical axes	5

Plot SNR values versus PII values	15
PII at 12	17
Query user for logfile	17
Pull out the raw scans (if saved)	17
Create the waterfall horizontal and vertical axes	18
Plot SNR values versus PII values	18
PII at 13	20
Query user for logfile	20
Pull out the raw scans (if saved)	20
Create the waterfall horizontal and vertical axes	20
Plot SNR values versus PII values	20
PII at 14	22
Query user for logfile	22
Separate raw, bandpassed, and motion filtered data from scn structure	22
Pull out the raw scans (if saved)	22
Create the waterfall horizontal and vertical axes	23
Plot SNR values versus PII values	23
PII at 15	25
Query user for logfile	25
Pull out the raw scans (if saved)	25
Create the waterfall horizontal and vertical axes	25
Plot SNR values versus PII values	25
lat 6	
uery user for logfile	
nmb6,dnmb6] = uigetfile('*.csv');	

PII

Qı

```
fprintf('Reading logfile %s\n',fullfile(dnmb6,fnmb6));
[cfgb6,reqb6,scnb6,det6] = readMrmRetLog(fullfile(dnmb6,fnmb6));
[fnmt6,dnmt6] = uigetfile('*.csv');
fprintf('Reading logfile %s\n',fullfile(dnmt6,fnmt6));
[cfgt6,reqt6,scnt6,dett6] = readMrmRetLog(fullfile(dnmt6,fnmt6));
```

```
rawscansIb6 = find([scnb6.Nfilt] == 1);
rawscansv_background6 = reshape([scnb6(rawscansIb6).scn],[],length(rawscansIb6))';
```

```
rawscansIt6 = find([scnt6.Nfilt] == 1);
rawscansV_target6 = reshape([scnt6(rawscansIt6).scn],[],length(rawscansIt6))';
scan_difference6 = abs(rawscansV_background6 - rawscansV_target6);
```

```
Tbin = 32/(512*1.024); % ns
T0 = 0; \% ns
c = 0.29979; % m/ns
Rbin = c*(Tbin*(0:size(scan_difference6(1,:),2)-1) - T0)/2;% Range Bins in meters
%Background plot
%plot(Rbin,rawscansV_background(10,:)), title('Background Plot')
%Target plot
%figure; plot(Rbin,rawscansV_target(10,:)), title('Target Plot')
% Difference plot
figure(1);plot(Rbin,scan_difference6(10,:)), title('Difference Plot at PII 6')
%[a05,i] = max(scan_difference(10,100:122)); %In a range of distance values
%Rbin=i+99;
                                             %100=0.9m, 122=1.1m
[a6,i]=max(scan_difference6(10,:));
%distance = Rbin(i)
noise_sample6 = scan_difference6(10,125:175); % 125:175 is just an example. it comes from Rbin,
the index of the distance range where you want to remove noise that's close to your 1m peak
noise_var6 = var(noise_sample6); % noise variance
SNR6= 10*log10(a6^2/noise_var6); % SNR in dB
```

Plot SNR values versus PII values

```
PII6 = 2.^(6:15);
figure(2);
plot(PII6, SNR6, 'o-');
title('SNR vs. PII at 6');
xlabel('PII');
ylabel('SNR (linear)');
```

Reading logfile

 $\label{locuments_matlab_384_lab_cw10_scans_background_Retlog_6007.csv_Reading_logfile} C:\label{locuments_matlab_384_lab_cw10_scans_background_Retlog_6007.csv_Reading_logfile}$

 $\verb|C:Users tonka OneDrive Documents MATLAB | 384_Lab \\ \verb|cw10_scans Target Retlog_6003.csv| | 100 \\ \verb|cw10_sca$

Query user for logfile

```
[fnmb7,dnmb7] = uigetfile('*.csv');
fprintf('Reading logfile %s\n',fullfile(dnmb7,fnmb7));
[cfgb7,reqb7,scnb7,det7] = readMrmRetLog(fullfile(dnmb7,fnmb7));

[fnmt7,dnmt7] = uigetfile('*.csv');
fprintf('Reading logfile %s\n',fullfile(dnmt7,fnmt7));
[cfgt7,reqt7,scnt7,dett7] = readMrmRetLog(fullfile(dnmt7,fnmt7));
```

Pull out the raw scans (if saved)

```
rawscansIb7 = find([scnb7.Nfilt] == 1);
rawscansV_background7 = reshape([scnb7(rawscansIb7).scn],[],length(rawscansIb7))';

rawscansIt7 = find([scnt7.Nfilt] == 1);
rawscansV_target7 = reshape([scnt7(rawscansIt7).scn],[],length(rawscansIt7))';

scan_difference7 = abs(rawscansV_background7 - rawscansV_target7);
```

Create the waterfall horizontal and vertical axes

```
Tbin = 32/(512*1.024); % ns
T0 = 0; \% ns
c = 0.29979; % m/ns
Rbin = c*(Tbin*(0:size(scan_difference7(1,:),2)-1) - T0)/2;% Range Bins in meters
%Background plot
%plot(Rbin,rawscansv_background(10,:)), title('Background Plot')
%Target plot
%figure; plot(Rbin,rawscansV_target(10,:)), title('Target Plot')
% Difference plot
figure(3);plot(Rbin,scan_difference7(10,:)), title('Difference Plot at PII 7')
%[a05,i] = max(scan_difference(10,100:122)); %In a range of distance values
%Rbin=i+99;
                                             %100=0.9m, 122=1.1m
[a7,i]=max(scan_difference7(10,:));
%distance = Rbin(i)
noise_sample7 = scan_difference7(10,125:175); % 125:175 is just an example. it comes from Rbin,
the index of the distance range where you want to remove noise that's close to your 1m peak
noise_var7 = var(noise_sample7); % noise variance
SNR7= 10*log10(a7^2/noise\_var7); % SNR in dB
```

Plot SNR values versus PII values

```
PII7 = 2.^(6:15);
figure(4);
plot(PII7, SNR7, 'o-');
```

```
title('SNR vs. PII at 7');
xlabel('PII');
ylabel('SNR (linear)');
```

Reading logfile

 $\label{thm:lab-384_lab-cw10_scans-background-Retlog_7008.csv} \\ Reading logfile$

 $\verb|C:\Users\to \oneDrive\to \oneDrive\bullet \on$

PII at 8

Query user for logfile

```
[fnmb8,dnmb8] = uigetfile('*.csv');
fprintf('Reading logfile %s\n',fullfile(dnmb8,fnmb8));
[cfgb8,reqb8,scnb8,det8] = readMrmRetLog(fullfile(dnmb8,fnmb8));

[fnmt8,dnmt8] = uigetfile('*.csv');
fprintf('Reading logfile %s\n',fullfile(dnmt8,fnmt8));
[cfgt8,reqt8,scnt8,dett8] = readMrmRetLog(fullfile(dnmt8,fnmt8));
```

Separate raw, bandpassed, and motion filtered data from scn structure (only motion filtered is used)

```
rawscansIb8 = find([scnb8.Nfilt] == 1);
rawscansV_background8 = reshape([scnb8(rawscansIb8).scn],[],length(rawscansIb8))';

rawscansIt8 = find([scnt8.Nfilt] == 1);
rawscansV_target8 = reshape([scnt8(rawscansIt8).scn],[],length(rawscansIt8))';

scan_difference8 = abs(rawscansV_background8 - rawscansV_target8);
```

```
Tbin = 32/(512*1.024); % ns
T0 = 0; \% ns
c = 0.29979; % m/ns
Rbin = c*(Tbin*(0:size(scan_difference8(1,:),2)-1) - T0)/2;% Range Bins in meters
%Background plot
%plot(Rbin,rawscansv_background(10,:)), title('Background Plot')
%Target plot
%figure; plot(Rbin,rawscansV_target(10,:)), title('Target Plot')
% Difference plot
figure(5);plot(Rbin,scan_difference8(10,:)), title('Difference Plot at PII 8')
%[a05,i] = max(scan_difference(10,100:122)); %In a range of distance values
                                             %100=0.9m, 122=1.1m
%Rbin=i+99;
[a8,i]=max(scan_difference8(10,:));
%distance = Rbin(i)
noise_sample8 = scan_difference8(10,125:175); % 125:175 is just an example. it comes from Rbin,
the index of the distance range where you want to remove noise that's close to your 1m peak
noise_var8 = var(noise_sample8); % noise variance
SNR8 = 10*log10(a8^2/noise_var8); \% SNR in dB
```

Plot SNR values versus PII values

```
PII8 = 2.^(6:15);
figure(6);
plot(PII8, SNR8, 'o-');
title('SNR vs. PII at 8');
xlabel('PII');
ylabel('SNR (linear)');
```

Reading logfile

 $\verb| C:\Users \to \Documents \ATLAB \384_Lab \subset \Background \RetLog_8013.csv| \\ Reading logfile \\ | Reading \Background \RetLog_8013.csv| \\ | RetLog_8013.csv| \\ | Reading \Background \RetLog_8013.csv| \\ | Reading \Background \RetLog_8013.csv| \\ | RetLog_8013.csv| \\ | RetLog_8013.csv|$

C:\Users\tonka\OneDrive\Documents\MATLAB\384_Lab\cw10_scans\Target\RetLog_8011.csv

Query user for logfile

```
[fnmb9,dnmb9] = uigetfile('*.csv');
fprintf('Reading logfile %s\n',fullfile(dnmb9,fnmb9));
[cfgb9,reqb9,scnb9,det9] = readMrmRetLog(fullfile(dnmb9,fnmb9));

[fnmt9,dnmt9] = uigetfile('*.csv');
fprintf('Reading logfile %s\n',fullfile(dnmt9,fnmt9));
[cfgt9,reqt9,scnt9,dett9] = readMrmRetLog(fullfile(dnmt9,fnmt9));
```

Separate raw, bandpassed, and motion filtered data from scn structure (only motion filtered is used)

Pull out the raw scans (if saved)

```
rawscansIb9 = find([scnb9.Nfilt] == 1);
rawscansV_background9 = reshape([scnb9(rawscansIb9).scn],[],length(rawscansIb9))';

rawscansIt9 = find([scnt9.Nfilt] == 1);
rawscansV_target9 = reshape([scnt9(rawscansIt9).scn],[],length(rawscansIt9))';

scan_difference9 = abs(rawscansV_background9 - rawscansV_target9);
```

Create the waterfall horizontal and vertical axes

```
Tbin = 32/(512*1.024); % ns
T0 = 0; \% ns
c = 0.29979; % m/ns
Rbin = c*(Tbin*(0:size(scan_difference9(1,:),2)-1) - T0)/2;% Range Bins in meters
%Background plot
%plot(Rbin,rawscansv_background(10,:)), title('Background Plot')
%Target plot
%figure; plot(Rbin,rawscansv_target(10,:)), title('Target Plot')
% Difference plot
figure(7);plot(Rbin,scan_difference9(10,:)), title('Difference Plot at PII 9')
%[a05,i] = max(scan_difference(10,100:122)); %In a range of distance values
%Rbin=i+99;
                                             %100=0.9m, 122=1.1m
[a9,i]=max(scan_difference9(10,:));
%distance = Rbin(i)
noise_sample9 = scan_difference9(10,125:175); % 125:175 is just an example. it comes from Rbin,
the index of the distance range where you want to remove noise that's close to your 1m peak
noise_var9 = var(noise_sample9); % noise variance
SNR9= 10*log10(a9^2/noise_var9); % SNR in dB
```

Plot SNR values versus PII values

```
PII9 = 2.^(6:15);
figure(8);
plot(PII9, SNR9, 'o-');
title('SNR vs. PII at 9');
xlabel('PII');
ylabel('SNR (linear)');
```

Reading logfile

 $\label{log_9015.csv} $$ C:\Users\to \mathbb{R}_{0neDrive} \rightarrow \mathbb{R}_{384_Lab\subset \mathbb{N}_{0neDrive}} $$$

 $\verb|C:\Users\to \oneDrive\to \oneDrive\to \oneDrive \to \oneDrive \bullet \oneDrive \bullet$

PII at 10

Query user for logfile

```
[fnmb10,dnmb10] = uigetfile('*.csv');
fprintf('Reading logfile %s\n',fullfile(dnmb10,fnmb10));
[cfgb10,reqb10,scnb10,det10] = readMrmRetLog(fullfile(dnmb10,fnmb10));

[fnmt10,dnmt10] = uigetfile('*.csv');
fprintf('Reading logfile %s\n',fullfile(dnmt10,fnmt10));
[cfgt10,reqt10,scnt10,dett10] = readMrmRetLog(fullfile(dnmt10,fnmt10));
```

```
rawscansIb10 = find([scnb10.Nfilt] == 1);
rawscansv_background10 = reshape([scnb10(rawscansIb10).scn],[],length(rawscansIb10))';

rawscansIt10 = find([scnt10.Nfilt] == 1);
rawscansv_target10 = reshape([scnt10(rawscansIt10).scn],[],length(rawscansIt10))';

scan_difference10 = abs(rawscansv_background10 - rawscansv_target10);
```

```
Tbin = 32/(512*1.024); % ns
T0 = 0; \% ns
c = 0.29979; % m/ns
Rbin = c*(Tbin*(0:size(scan_difference10(1,:),2)-1) - T0)/2;% Range Bins in meters
%Background plot
%plot(Rbin,rawscansv_background(10,:)), title('Background Plot')
%Target plot
%figure; plot(Rbin,rawscansV_target(10,:)), title('Target Plot')
% Difference plot
figure(9);plot(Rbin,scan_difference10(10,:)), title('Difference Plot at PII 10')
%[a05,i] = max(scan_difference(10,100:122)); %In a range of distance values
%Rbin=i+99;
                                             %100=0.9m, 122=1.1m
[a10,i]=max(scan_difference10(10,:));
%distance = Rbin(i)
noise_sample10 = scan_difference10(10,125:175); % 125:175 is just an example. it comes from Rbin,
the index of the distance range where you want to remove noise that's close to your 1m peak
noise_var10 = var(noise_sample10); % noise variance
SNR10 = 10*log10(a10^2/noise\_var10); \% SNR in dB
```

Plot SNR values versus PII values

```
PII10 = 2.^(6:15);
figure(10);
plot(PII10, SNR10, 'o-');
title('SNR vs. PII at 10');
xlabel('PII');
ylabel('SNR (linear)');
```

Reading logfile

C:\Users\tonka\OneDrive\Documents\MATLAB\384_Lab\cw10_scans\Target\RetLog_10018.csv

Query user for logfile

```
[fnmb11,dnmb11] = uigetfile('*.csv');
fprintf('Reading logfile %s\n',fullfile(dnmb11,fnmb11));
[cfgb11,reqb11,scnb11,det11] = readMrmRetLog(fullfile(dnmb11,fnmb11));

[fnmt11,dnmt11] = uigetfile('*.csv');
fprintf('Reading logfile %s\n',fullfile(dnmt11,fnmt11));
[cfgt11,reqt11,scnt11,dett11] = readMrmRetLog(fullfile(dnmt11,fnmt11));
```

Pull out the raw scans (if saved)

```
rawscansIb11 = find([scnb11.Nfi]t] == 1);
rawscansV_background11 = reshape([scnb11(rawscansIb11).scn],[],length(rawscansIb11))';

rawscansIt11 = find([scnt11.Nfi]t] == 1);
rawscansV_target11 = reshape([scnt11(rawscansIt11).scn],[],length(rawscansIt11))';

scan_difference11 = abs(rawscansV_background11 - rawscansV_target11);
```

Create the waterfall horizontal and vertical axes.

```
Tbin = 32/(512*1.024); % ns
T0 = 0; \% ns
c = 0.29979; % m/ns
Rbin = c*(Tbin*(0:size(scan_difference11(1,:),2)-1) - T0)/2;% Range Bins in meters
%Background plot
%plot(Rbin,rawscansv_background(10,:)), title('Background Plot')
%Target plot
%figure; plot(Rbin,rawscansV_target(10,:)), title('Target Plot')
% Difference plot
figure(11);plot(Rbin,scan_difference11(10,:)), title('Difference Plot at PII 11')
%[a05,i] = max(scan_difference(10,100:122)); %In a range of distance values
%Rbin=i+99;
                                             %100=0.9m, 122=1.1m
[a11,i]=max(scan_difference11(10,:));
%distance = Rbin(i)
noise_sample11 = scan_difference11(10,125:175); % 125:175 is just an example. it comes from Rbin,
the index of the distance range where you want to remove noise that's close to your 1m peak
noise_var11 = var(noise_sample11); % noise variance
SNR11 = 10*log10(a6^2/noise\_var11); % SNR in dB
```

Plot SNR values versus PII values

```
PII11 = 2.^(6:15);
figure(12);
plot(PII11, SNR11, 'o-');
```

```
title('SNR vs. PII at 11');
xlabel('PII');
ylabel('SNR (linear)');
```

Reading logfile

 $\label{top:locuments_MATLAB_384_Lab_cw10_scans_Background_RetLog_11021.csv_Reading_logfile} \\ \text{Resulting_logfile}$

 $\verb|C:\Users\to \tonka\\| One Drive\to \tonka\\| MATLAB\\| 384_Lab \to \tonka\\| Target\to \tonka\\| Tar$

PII at 12 Query user for logfile

```
[fnmb12,dnmb12] = uigetfile('*.csv');
fprintf('Reading logfile %s\n',fullfile(dnmb12,fnmb12));
[cfgb12,reqb12,scnb12,det12] = readMrmRetLog(fullfile(dnmb12,fnmb12));

[fnmt12,dnmt12] = uigetfile('*.csv');
fprintf('Reading logfile %s\n',fullfile(dnmt12,fnmt12));
[cfgt12,reqt12,scnt12,dett12] = readMrmRetLog(fullfile(dnmt12,fnmt12));
```

```
rawscansIb12 = find([scnb12.Nfilt] == 1);
rawscansv_background12 = reshape([scnb12(rawscansIb12).scn],[],length(rawscansIb12))';
rawscansIt12 = find([scnt12.Nfilt] == 1);
rawscansv_target12 = reshape([scnt12(rawscansIt12).scn],[],length(rawscansIt12))';
scan_difference12 = abs(rawscansv_background12 - rawscansv_target12);
```

```
Tbin = 32/(512*1.024); % ns
T0 = 0; \% ns
c = 0.29979; % m/ns
Rbin = c*(Tbin*(0:size(scan_difference12(1,:),2)-1) - T0)/2;% Range Bins in meters
%Background plot
%plot(Rbin,rawscansv_background(10,:)), title('Background Plot')
%Target plot
%figure; plot(Rbin,rawscansV_target(10,:)), title('Target Plot')
% Difference plot
figure(13);plot(Rbin,scan_difference12(10,:)), title('Difference Plot at PII 12')
%[a05,i] = max(scan_difference(10,100:122)); %In a range of distance values
                                             %100=0.9m, 122=1.1m
%Rbin=i+99;
[a12,i]=max(scan_difference12(10,:));
%distance = Rbin(i)
noise_sample12 = scan_difference12(10,125:175); % 125:175 is just an example. it comes from Rbin,
the index of the distance range where you want to remove noise that's close to your 1m peak
noise_var12 = var(noise_sample12); % noise variance
SNR12 = 10*log10(a12^2/noise_var12); % SNR in dB
```

Plot SNR values versus PII values

```
PII12 = 2.^(6:15);
figure(14);
plot(PII12, SNR12, 'o-');
title('SNR vs. PII at 12');
xlabel('PII');
ylabel('SNR (linear)');
```

Reading logfile

C:\Users\tonka\OneDrive\Documents\MATLAB\384_Lab\cw10_scans\Background\RetLog_12025.csv
Reading logfile

C:\Users\tonka\OneDrive\Documents\MATLAB\384_Lab\cw10_scans\Target\RetLog_12024.csv

Query user for logfile

```
[fnmb13,dnmb13] = uigetfile('*.csv');
fprintf('Reading logfile %s\n',fullfile(dnmb13,fnmb13));
[cfgb13,reqb13,scnb13,det13] = readMrmRetLog(fullfile(dnmb13,fnmb13));
[fnmt13,dnmt13] = uigetfile('*.csv');
fprintf('Reading logfile %s\n',fullfile(dnmt13,fnmt13));
[cfgt13,reqt13,scnt13,dett13] = readMrmRetLog(fullfile(dnmt13,fnmt13));
```

Pull out the raw scans (if saved)

```
rawscansIb13 = find([scnb13.Nfi]t] == 1);
rawscansV_background13 = reshape([scnb13(rawscansIb13).scn],[],length(rawscansIb13))';

rawscansIt13 = find([scnt13.Nfi]t] == 1);
rawscansV_target13 = reshape([scnt13(rawscansIt13).scn],[],length(rawscansIt13))';

scan_difference13 = abs(rawscansV_background13 - rawscansV_target13);
```

Create the waterfall horizontal and vertical axes.

```
Tbin = 32/(512*1.024); % ns
T0 = 0; \% ns
c = 0.29979; % m/ns
Rbin = c*(Tbin*(0:size(scan_difference13(1,:),2)-1) - T0)/2;% Range Bins in meters
%Background plot
%plot(Rbin,rawscansv_background(10,:)), title('Background Plot')
%Target plot
%figure; plot(Rbin,rawscansV_target(10,:)), title('Target Plot')
% Difference plot
figure(15);plot(Rbin,scan_difference13(10,:)), title('Difference Plot at PII 13')
%[a05,i] = max(scan_difference(10,100:122)); %In a range of distance values
%Rbin=i+99;
                                             %100=0.9m, 122=1.1m
[a13,i]=max(scan_difference13(10,:));
%distance = Rbin(i)
noise_sample13 = scan_difference13(10,125:175); % 125:175 is just an example. it comes from Rbin,
the index of the distance range where you want to remove noise that's close to your 1m peak
noise_var13 = var(noise_sample13); % noise variance
SNR13 = 10*log10(a13^2/noise_var13); % SNR in dB
```

Plot SNR values versus PII values

```
PII13 = 2.^(6:15);
figure(16);
plot(PII13, SNR13, 'o-');
```

```
title('SNR vs. PII at 13');
xlabel('PII');
ylabel('SNR (linear)');
```

Reading logfile

 $\label{top:locuments_MATLAB_384_Lab_cw10_scans_Background_RetLog_13027.csv. Reading logfile$

C:\Users\tonka\OneDrive\Documents\MATLAB\384_Lab\cw10_scans\Target\RetLog_13028.csv

PII at 14 Query user for logfile

```
[fnmb14,dnmb14] = uigetfile('*.csv');
fprintf('Reading logfile %s\n',fullfile(dnmb14,fnmb14));
[cfgb14,reqb14,scnb14,det14] = readMrmRetLog(fullfile(dnmb14,fnmb14));

[fnmt14,dnmt14] = uigetfile('*.csv');
fprintf('Reading logfile %s\n',fullfile(dnmt14,fnmt14));
[cfgt14,reqt14,scnt14,dett14] = readMrmRetLog(fullfile(dnmt14,fnmt14));
```

Separate raw, bandpassed, and motion filtered data from scn structure (only motion filtered is used)

```
rawscansIb14 = find([scnb14.Nfilt] == 1);
rawscansV_background14 = reshape([scnb14(rawscansIb14).scn],[],length(rawscansIb14))';

rawscansIt14 = find([scnt14.Nfilt] == 1);
rawscansV_target14 = reshape([scnt14(rawscansIt14).scn],[],length(rawscansIt14))';

scan_difference14 = abs(rawscansV_background14 - rawscansV_target14);
```

```
Tbin = 32/(512*1.024); % ns
T0 = 0; \% ns
c = 0.29979; % m/ns
Rbin = c*(Tbin*(0:size(scan_difference14(1,:),2)-1) - T0)/2;% Range Bins in meters
%Background plot
%plot(Rbin,rawscansv_background(10,:)), title('Background Plot')
%Target plot
%figure; plot(Rbin,rawscansV_target(10,:)), title('Target Plot')
% Difference plot
figure(17);plot(Rbin,scan_difference14(10,:)), title('Difference Plot at PII 14')
%[a05,i] = max(scan_difference(10,100:122)); %In a range of distance values
                                             %100=0.9m, 122=1.1m
%Rbin=i+99;
[a15,i]=max(scan_difference14(10,:));
%distance = Rbin(i)
noise_sample14 = scan_difference14(10,125:175); % 125:175 is just an example. it comes from Rbin,
the index of the distance range where you want to remove noise that's close to your 1m peak
noise_var14 = var(noise_sample14); % noise variance
SNR14 = 10*log10(a15^2/noise_var14); \% SNR in dB
```

Plot SNR values versus PII values

```
PII14 = 2.^(6:15);
figure(18);
plot(PII14, SNR14, 'o-');
title('SNR vs. PII at 14');
xlabel('PII');
ylabel('SNR (linear)');
```

Reading logfile

 $\label{log_14031.csv} $$ C:\Users\to \mathbb{R}_{0,0}\$ Reading logfile

C:\Users\tonka\OneDrive\Documents\MATLAB\384_Lab\cw10_scans\Target\RetLog_14030.csv

Query user for logfile

```
[fnmb15,dnmb15] = uigetfile('*.csv');
fprintf('Reading logfile %s\n',fullfile(dnmb15,fnmb15));
[cfgb15,reqb15,scnb15,det15] = readMrmRetLog(fullfile(dnmb15,fnmb15));

[fnmt15,dnmt15] = uigetfile('*.csv');
fprintf('Reading logfile %s\n',fullfile(dnmt15,fnmt15));
[cfgt15,reqt15,scnt15,dett15] = readMrmRetLog(fullfile(dnmt15,fnmt15));
```

Pull out the raw scans (if saved)

```
rawscansIb15 = find([scnb15.Nfi]t] == 1);
rawscansV_background15 = reshape([scnb15(rawscansIb15).scn],[],length(rawscansIb15))';

rawscansIt15 = find([scnt15.Nfi]t] == 1);
rawscansV_target15 = reshape([scnt15(rawscansIt15).scn],[],length(rawscansIt15))';

scan_difference15 = abs(rawscansV_background15 - rawscansV_target15);
```

Create the waterfall horizontal and vertical axes.

```
Tbin = 32/(512*1.024); % ns
T0 = 0; \% ns
c = 0.29979; % m/ns
Rbin = c*(Tbin*(0:size(scan_difference15(1,:),2)-1) - T0)/2;% Range Bins in meters
%Background plot
%plot(Rbin,rawscansv_background(10,:)), title('Background Plot')
%Target plot
%figure; plot(Rbin,rawscansV_target(10,:)), title('Target Plot')
% Difference plot
figure(19);plot(Rbin,scan_difference15(10,:)), title('Difference Plot at PII 15')
%[a05,i] = max(scan_difference(10,100:122)); %In a range of distance values
%Rbin=i+99;
                                             %100=0.9m, 122=1.1m
[a15,i]=max(scan_difference15(10,:));
%distance = Rbin(i)
noise_sample15 = scan_difference15(10,125:175); % 125:175 is just an example. it comes from Rbin,
the index of the distance range where you want to remove noise that's close to your 1m peak
noise_var15 = var(noise_sample15); % noise variance
SNR15 = 10*log10(a15^2/noise_var15); % SNR in dB
```

Plot SNR values versus PII values

```
PII15 = 2.^(6:15);
figure(20);
plot(PII15, SNR15, 'o-');
```

```
title('SNR vs. PII at 15');
xlabel('PII');
ylabel('SNR (linear)');
```

Reading logfile

 $\label{top:locuments_MATLAB_384_Lab_cw10_scans_Background_RetLog_15033.csv. Reading logfile$

C:\Users\tonka\OneDrive\Documents\MATLAB\384_Lab\cw10_scans\Target\RetLog_15034.csv

Published with MATLAB® R2022b

Question Section

- 1. Looking at the difference plots as the PII increases you can see more and more noise in them. It seems to generally follow the trend of increasing by 3 dB. One way to improve the results is to do more noise reduction and double check for any errors in the math used to get the noise from the signal.
- 2. As PII increases time should also increase as its acquiring more integration points. However ours seemed to relatively stay at the same time or was faster. Part this could have been due to human error of not exactly starting and stopping the stopwatch at the same instant of when the scan was started and stopped.

Background	Target	Time	Distance
6007	6003	7.11	1.0796
7008	7010	6.25	1.0704
8013	8011	7.15	1.0704

9015	9016	6.65	1.0704
10019	10018	6.76	1.1253
11021	11022	7.13	1.1253
12025	12024	6.61	1.1253
13027	13028	6.78	1.1253
14031	14030	6.75	1.0979
15033	15034	6.91	1.0704