Data Analytics and Machine Learning Group Department of Informatics Technical University of Munich

Eexam

Place student sticker here

Note:

- During the attendance check a sticker containing a unique code will be put on this exam.
- This code contains a unique number that associates this exam with your registration number.
- This number is printed both next to the code and to the signature field in the attendance check list.

Machine Learning

Graded Exercise: IN2064 / Retake Date: Thursday 1st April, 2021

Examiner: Prof. Dr. Stephan Günnemann **Time:** 16:30 – 18:30

Working instructions

- This graded exercise consists of 34 pages with a total of 11 problems.
 Please make sure now that you received a complete copy of the graded exercise.
- The total amount of achievable credits in this graded exercise is 40.
- This document is copyrighted and it is **illegal** for you to distribute it or upload it to any third-party websites.
- Do not submit the problem descriptions (this document) to TUMexam

Left room from	to	 Early submission at

Problem 1: Probabilistic Inference (Version A) (4 credits)

We have observed *N* coin flips of which *T* landed tails and *H* landed heads (T + H = N). We model each coin flip with a Bernoulli(θ) distribution with a shared unknown probability θ of coming up heads, i.e. p(heads $|\theta| = \theta$.

Furthermore, we assume that θ follows a Beta(a, b) distribution with parameters a > 0 and b > 0. In this problem we are not interested in estimating θ , but rather estimating the parameters a and b.

Problem 1: Probabilistic Inference (Version B) (4 credits)

If yes, briefly describe how to compute the MAP estimate of a and b.

Furthermore, we assume that θ follows a Beta(a, b) distribution with parameters a > 0 and b > 0. In this problem we are not interested in estimating θ , but rather estimating the parameters a and b.

a) Is it possible to compute a maximum likelihood estimate (MLE) $\arg\max_{a,b} p(\mathcal{D} \mid a,b)$ of a and b in this model? If yes, briefly describe a way to do it and how the variable θ is handled. If no, explain why it is not possible and the role of the variable θ .

b) Is it possible to compute a maximum a posteriori (MAP) estimate $\max_{a,b} p(a,b \mid \mathcal{D})$ of a and b in this model?

If no, describe how and why the model would need to be changed/extended to allow MAP estimation of a and b.

We have observed *N* coin flips of which *T* landed tails and *H* landed heads (T + H = N). We model each coin flip with a Bernoulli(θ) distribution with a shared unknown probability θ of coming up heads, i.e. p(heads $|\theta| = \theta$.

Problem 2: Decision Trees (Version A) (5 credits)

a) Suppose we randomly sample subsets of features to learn separate trees which are then combined. What is this technique called?

b) We have a dataset $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$ of N instances with $\mathbf{x}_i \in \mathbb{R}^2$ and $y_i \in \{0, 1\}$. We aim to train a decision tree using entropy as the splitting criterion. We stop building the tree when there is zero *improvement* in purity for all splits.

Specify a small dataset \mathcal{D} so that the learned decision tree has no splits – the root node is a leaf. Write down all (\mathbf{x}_i, y_i) tuples in your \mathcal{D} and make sure it contains at least one instance from each class. Justify your answer.

Hint: you do not need more than a few instances.

c) Draw the decision tree corresponding to the decision boundaries shown on Figure 3.1 where $0 \le a, b, c, d \le 1$ are some arbitrary constants and there are four classes marked with four numbers and different colors. Assume $x_1, x_2 \in [0, 1]$.

Figure 3.1: Decision boundaries.

Problem 2: Decision Trees (Version B) (5 credits)

a) Suppose we randomly sample subsets of features to learn separate trees which are then combined. What is this technique called?

b) We have a dataset $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$ of N instances with $\mathbf{x}_i \in \mathbb{R}^2$ and $y_i \in \{0, 1\}$. We aim to train a decision tree using entropy as the splitting criterion. We stop building the tree when there is zero *improvement* in purity for all splits.

Specify a small dataset \mathcal{D} so that the learned decision tree has no splits – the root node is a leaf. Write down all (\mathbf{x}_i, y_i) tuples in your \mathcal{D} and make sure it contains at least one instance from each class. Justify your answer.

Hint: you do not need more than a few instances.

c) Draw the decision tree corresponding to the decision boundaries shown on Figure 4.1 where $0 \le a, b, c, d \le 1$ are some arbitrary constants and there are four classes marked with four numbers and different colors. Assume $x_1, x_2 \in [0, 1]$.

Figure 4.1: Decision boundaries.

Problem 2: Decision Trees (Version C) (5 credits)

Specify a small dataset \mathcal{D} so that the learned decision tree has no splits – the root node is a leaf. Write down all $(\mathbf{x}_i, \mathbf{y}_i)$ tuples in your \mathcal{D} and make sure it contains at least one instance from each class. Justify your answer.

Hint: you do not need more than a few instances.

Figure 5.1: Decision boundaries.

Problem 2: Decision Trees (Version D) (5 credits)

a) Suppose we randomly sample subsets of features to learn separate trees which are then combined. What is this technique called?

b) We have a dataset $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$ of N instances with $\mathbf{x}_i \in \mathbb{R}^2$ and $y_i \in \{0, 1\}$. We aim to train a decision tree using entropy as the splitting criterion. We stop building the tree when there is zero *improvement* in purity for all splits.

Specify a small dataset \mathcal{D} so that the learned decision tree has no splits – the root node is a leaf. Write down all (\mathbf{x}_i, y_i) tuples in your \mathcal{D} and make sure it contains at least one instance from each class. Justify your answer.

Hint: you do not need more than a few instances.

c) Draw the decision tree corresponding to the decision boundaries shown on Figure 6.1 where $0 \le a, b, c, d \le 1$ are some arbitrary constants and there are four classes marked with four numbers and different colors. Assume $x_1, x_2 \in [0, 1]$.

Figure 6.1: Decision boundaries.

Problem 3: Linear Regression (Version A) (2 credits)

We have a dataset $\{(\boldsymbol{x}_i,y_i) \mid \boldsymbol{x}_i \in \mathbb{R}^2, y_i \in \mathbb{R}\}_{i=1}^N$ and want to fit the following model with three parameters $\boldsymbol{w} = \begin{pmatrix} a & b & c \end{pmatrix}^T \in \mathbb{R}^3$ to it.

$$f(\mathbf{x}, \mathbf{w}) = a \sin(\mathbf{x}_2) + \frac{1}{2}b\|\mathbf{x}\|_1 - \mathbf{x}_1^2 \mathbf{x}_2 c$$

Give a closed form expression for the optimal w minimizing the squared error between the predictions and targets

$$\sum_{i=1}^{N} \left(f(\mathbf{x}_i, \mathbf{w}) - y_i \right)^2.$$

Justify your answer.

Note: You can use results from the lecture without deriving them again.

Problem 3: Linear Regression (Version B) (2 credits)

We have a dataset $\{(\boldsymbol{x}_i,y_i) \mid \boldsymbol{x}_i \in \mathbb{R}^2, y_i \in \mathbb{R}\}_{i=1}^N$ and want to fit the following model with three parameters $\boldsymbol{w} = \begin{pmatrix} a & b & c \end{pmatrix}^T \in \mathbb{R}^3$ to it.

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$f(\mathbf{x}, \mathbf{w}) = a \|\mathbf{x}\|_2 - \frac{1}{2} \mathbf{x}_1^2 \mathbf{x}_2 b + c \cos(\mathbf{x}_1)$$

Give a closed form expression for the optimal \mathbf{w} minimizing the squared error between the predictions and targets

$$\sum_{i=1}^{N} \left(f\left(\boldsymbol{x}_{i}, \boldsymbol{w} \right) - y_{i} \right)^{2}.$$

Justify your answer.

Note: You can use results from the lecture without deriving them again.

Problem 3: Linear Regression (Version C) (2 credits)

We have a dataset $\{(\boldsymbol{x}_i,y_i) \mid \boldsymbol{x}_i \in \mathbb{R}^2, y_i \in \mathbb{R}\}_{i=1}^N$ and want to fit the following model with three parameters $\boldsymbol{w} = \begin{pmatrix} a & b & c \end{pmatrix}^T \in \mathbb{R}^3$ to it.

$$f(\boldsymbol{x}, \boldsymbol{w}) = -\boldsymbol{x}_1 \boldsymbol{x}_2^2 a + b \tan(\boldsymbol{x}_2) + \frac{1}{2} c \|\boldsymbol{x}\|_{\infty}$$

Give a closed form expression for the optimal w minimizing the squared error between the predictions and targets

$$\sum_{i=1}^{N} \left(f(\mathbf{x}_i, \mathbf{w}) - y_i \right)^2.$$

Justify your answer.

Note: You can use results from the lecture without deriving them again.

Problem 4: Logistic Regression (Version A) (6 credits)

Let $\mathcal{D} = \{(\mathbf{x}_i, y_i) \mid \mathbf{x}_i \in \mathbb{R}^d, y_i \in \{0, 1\}\}$ be a classification dataset that is *not* linearly separable. Furthermore, let $\mathcal{D}_{\alpha} = \{(\alpha \mathbf{x}_i, y_i) \mid (\mathbf{x}_i, y_i) \in \mathcal{D}\}$ be a scaled copy of \mathcal{D} with $\alpha > 1$. $f(\mathbf{x}, \mathbf{w}) : \mathbb{R}^m \times \mathbb{R}^m \to [0, 1]$ is a logistic regression model on \mathbb{R}^m for some m with parameters \mathbf{w} . $f(\mathbf{x}, \mathbf{w})$ outputs the predicted probabilities for class 1.

You train two logistic regression models on \mathcal{D} and \mathcal{D}_{α} without regularization and obtain the optimal parameters \mathbf{w}^* and $\mathbf{w}^{*,\alpha}$, respectively. Consider a test point $\mathbf{x}_{\text{test}} \in \mathbb{R}^d$ and the predicted probabilities by the two models, $s = f(\mathbf{x}_{\text{test}}, \mathbf{w}^*)$ and $t = f(\mathbf{x}_{\text{test}}, \mathbf{w}^{*,\alpha})$.

a) Is s > t possible? Is s = t possible? Is s < t possible? Justify your answers.

0 1 2

Now consider another dataset \mathcal{D}_3 and a logistic regression model $f(\mathbf{x}, \mathbf{w})$ on \mathcal{D}_3 .

$$\mathcal{D}_3 = \left\{ (\boldsymbol{x}_i, 1) \mid \boldsymbol{x}_i \in \mathbb{R}^2, \boldsymbol{x}_{i, 1} > 0, \boldsymbol{x}_{i, 2} > 0 \right\} \cup \left\{ (\boldsymbol{x}_i, 0) \mid \boldsymbol{x}_i \in \mathbb{R}^2, \boldsymbol{x}_{i, 1} < 0, \boldsymbol{x}_{i, 2} < 0 \right\}$$

In the following, treat ∞ as an actual value, i.e. $\infty \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ would be a vector in the same direction as $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ but with infinite length/norm.

b) Briefly explain why the maximum likelihood estimate of \mathbf{w} on \mathcal{D}_3 obtained by training without regularization is not unique in this setting.

1 2

c) Give two possible maximum likelihood estimates (without regularization) of the parameters \boldsymbol{w} on \mathcal{D}_3 , $\boldsymbol{w}^{*,a}$ and $\boldsymbol{w}^{*,b}$, and a test point $\boldsymbol{x}_{\text{test}}$ such that either $f(\boldsymbol{x}_{\text{test}}, \boldsymbol{w}^{*,a}) < \frac{1}{2} < f(\boldsymbol{x}_{\text{test}}, \boldsymbol{w}^{*,b})$ or $f(\boldsymbol{x}_{\text{test}}, \boldsymbol{w}^{*,a}) > \frac{1}{2} > f(\boldsymbol{x}_{\text{test}}, \boldsymbol{w}^{*,b})$ holds. Justify your answer.

0 1 2

Problem 4: Logistic Regression (Version B) (6 credits)

Let $\mathcal{D} = \{(\mathbf{x}_i, y_i) \mid \mathbf{x}_i \in \mathbb{R}^d, y_i \in \{0, 1\}\}$ be a classification dataset that is *not* linearly separable. Furthermore, let $\mathcal{D}_{\alpha} = \{(\alpha \mathbf{x}_i, y_i) \mid (\mathbf{x}_i, y_i) \in \mathcal{D}\}$ be a scaled copy of \mathcal{D} with $\alpha > 1$. $f(\mathbf{x}, \mathbf{w}) : \mathbb{R}^m \times \mathbb{R}^m \to [0, 1]$ is a logistic regression model on \mathbb{R}^m for some m with parameters \mathbf{w} . $f(\mathbf{x}, \mathbf{w})$ outputs the predicted probabilities for class 1.

You train two logistic regression models on \mathcal{D} and \mathcal{D}_{α} without regularization and obtain the optimal parameters \mathbf{w}^* and $\mathbf{w}^{*,\alpha}$, respectively. Consider a test point $\mathbf{x}_{\text{test}} \in \mathbb{R}^d$ and the predicted probabilities by the two models, $\mathbf{s} = f(\mathbf{x}_{\text{test}}, \mathbf{w}^*)$ and $t = f(\mathbf{x}_{\text{test}}, \mathbf{w}^{*,\alpha})$.

a) Is s > t possible? Is s = t possible? Is s < t possible? Justify your answers.

Now consider another dataset \mathcal{D}_3 and a logistic regression model $f(\mathbf{x}, \mathbf{w})$ on \mathcal{D}_3 .

$$\mathcal{D}_3 = \{(\mathbf{x}_i, 1) \mid \mathbf{x}_i \in \mathbb{R}^2, \mathbf{x}_{i,1} > 0, \mathbf{x}_{i,2} > 0\} \cup \{(\mathbf{x}_i, 0) \mid \mathbf{x}_i \in \mathbb{R}^2, \mathbf{x}_{i,1} < 0, \mathbf{x}_{i,2} < 0\}$$

In the following, treat ∞ as an actual value, i.e. $\infty \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ would be a vector in the same direction as $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ but with infinite length/norm.

b) Briefly explain why the maximum likelihood estimate of \mathbf{w} on \mathcal{D}_3 obtained by training without regularization is not unique in this setting.

c) Give two possible maximum likelihood estimates (without regularization) of the parameters \boldsymbol{w} on \mathcal{D}_3 , $\boldsymbol{w}^{*,a}$ and $\boldsymbol{w}^{*,b}$, and a test point $\boldsymbol{x}_{\text{test}}$ such that either $f(\boldsymbol{x}_{\text{test}}, \boldsymbol{w}^{*,a}) < \frac{1}{2} < f(\boldsymbol{x}_{\text{test}}, \boldsymbol{w}^{*,b})$ or $f(\boldsymbol{x}_{\text{test}}, \boldsymbol{w}^{*,a}) > \frac{1}{2} > f(\boldsymbol{x}_{\text{test}}, \boldsymbol{w}^{*,b})$ holds. Justify your answer.

Problem 5: Optimization (Version A) (3 credits)

Suppose we're minimizing some differentiable convex function $f: \mathbb{R}^d \to \mathbb{R}$ using one of the following variants of gradient descent. Let θ_t be the value of the parameter at iteration t, and θ_{t+1} be the value of the parameter at the iteration t+1 for some integer t.

a) Suppose we are using gradient descent with line search. Is the inequality $f(\theta_{t+1}) \leq f(\theta_t)$ guaranteed to always hold? Justify your answer.	1
b) Suppose we are using gradient descent with fixed step size. Is the inequality $f(\theta_{t+1}) \leq f(\theta_t)$ guaranteed to always hold? Justify your answer.	
c) Suppose we are using gradient descent with adaptive learning rate (Adam - Adaptive moment estimation). Is the inequality $f(\theta_{t+1}) \leq f(\theta_t)$ guaranteed to always hold? Justify your answer.	

Problem 5: Optimization (Version B) (3 credits)

Suppose we're minimizing some differentiable convex function $f: \mathbb{R}^d \to \mathbb{R}$ using one of the following variants of gradient descent. Let θ_t be the value of the parameter at iteration t, and θ_{t+1} be the value of the parameter at the iteration t+1 for some integer t.

a) Suppose we are using gradient descent with fixed step size.

Is the inequality $f(\theta_{t+1}) \le f(\theta_t)$ guaranteed to always hold? Justify your answer.

0	b) Suppose we are using gradient descent with adaptive learning rate (Adam - Adaptive moment estimation)
	Is the inequality $f(\theta_{t+1}) \leq f(\theta_t)$ guaranteed to always hold? Justify your answer.

c) Suppose we are using gradient descent with line search.

Is the inequality $f(\theta_{t+1}) \leq f(\theta_t)$ guaranteed to always hold? Justify your answer.

Problem 5: Optimization (Version C) (3 credits)

Suppose we're minimizing some differentiable convex function $f: \mathbb{R}^d \to \mathbb{R}$ using one of the following variants of gradient descent. Let θ_t be the value of the parameter at iteration t, and θ_{t+1} be the value of the parameter at the iteration t+1 for some integer t.

a) Suppose we are using gradient descent with line search.	0
Is the inequality $f(\theta_{t+1}) \leq f(\theta_t)$ guaranteed to always hold? Justify your answer.	Н¹
b) Suppose we are using gradient descent with adaptive learning rate (Adam - Adaptive moment estimation). Is the inequality $f(\theta_{t+1}) \leq f(\theta_t)$ guaranteed to always hold? Justify your answer.	0 1
c) Suppose we are using gradient descent with fixed step size. Is the inequality $f(\theta_{t+1}) \leq f(\theta_t)$ guaranteed to always hold? Justify your answer.	0

Problem 5: Optimization (Version D) (3 credits)

Suppose we're minimizing some differentiable convex function $f: \mathbb{R}^d \to \mathbb{R}$ using one of the following variants of gradient descent. Let θ_t be the value of the parameter at iteration t, and θ_{t+1} be the value of the parameter at the iteration t+1 for some integer t.

0	a) Suppose we are using gradient descent with adaptive learning rate (Adam - Adaptive moment estimation).
0 1 1	Is the inequality $f(\theta_{t+1}) \leq f(\theta_t)$ guaranteed to always hold? Justify your answer.
0	b) Suppose we are using gradient descent with fixed step size. Is the inequality $f(\theta_{t+1}) \leq f(\theta_t)$ guaranteed to always hold? Justify your answer.
0 1	c) Suppose we are using gradient descent with line search. Is the inequality $f(\theta_{t+1}) \leq f(\theta_t)$ guaranteed to always hold? Justify your answer.

Problem 6: Deep Learning (Version A) (3 credits)

Suppose $\mathbf{x} \in \mathbb{R}^N$ and $\mathbf{y} \in \mathbb{R}^N$ are two vectors. We define the function $f: \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$ as

$$f(\mathbf{x}, \mathbf{y}) = \log (1 + \exp(\mathbf{x}^T \mathbf{y})).$$

The code below implements the computation of f(x, y) as well as its gradients w.r.t. x and y using backpropagation (similarly to how we did in Exercise sheet 7). However, some code fragments are missing. Your task is to complete the missing code fragments.

```
import numpy as np
class F:
  def forward(self, x, y):
     self.cache = (x, y)
     # MISSING CODE FRAGMENT #1
     return out
  def backward(self, d_out):
     # x, y are np.arrays of shape (N,)
     x, y = self.cache
     # MISSING CODE FRAGMENT #2
     return d_x, d_y
# Example usage
f = F()
x = np.array([1., 2., 3])
y = np.array([-2., 3., -1.])
z = f.forward(x, y)
dz = 1.0
d_x, d_y = f.backward(d_z)
```

a) Complete the MISSING CODE FRAGMENT #1

0

b) Complete the MISSING CODE FRAGMENT #2

0 1 2

Problem 6: Deep Learning (Version B) (3 credits)

Suppose $\mathbf{x} \in \mathbb{R}^N$ and $\mathbf{y} \in \mathbb{R}^N$ are two vectors. We define the function $f: \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$ as

$$f(\mathbf{x}, \mathbf{y}) = \log (\exp(\mathbf{x}^T \mathbf{y}) - 1)$$
.

The code below implements the computation of f(x, y) as well as its gradients w.r.t. x and y using backpropagation (similarly to how we did in Exercise sheet 7). However, some code fragments are missing. Your task is to complete the missing code fragments.

```
import numpy as np
class F:
  def forward(self, x, y):
     self.cache = (x, y)
     # MISSING CODE FRAGMENT #1
     return out
  def backward(self, d_out):
     \# x, y are np.arrays of shape (N,)
     x, y = self.cache
     # MISSING CODE FRAGMENT #2
     return d_x, d_y
# Example usage
f = F()
x = np.array([1., 2., 3])
y = np.array([-2., 3., -1.])
z = f.forward(x, y)
dz = 1.0
d_x, d_y = f.backward(d_z)
```

a) Complete the MISSING CODE FRAGMENT #1

b) Complete the MISSING CODE FRAGMENT #2

Problem 6: Deep Learning (Version C) (3 credits)

Suppose $\mathbf{x} \in \mathbb{R}^N$ and $\mathbf{y} \in \mathbb{R}^N$ are two vectors. We define the function $f: \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$ as

$$f(\mathbf{x}, \mathbf{y}) = \log (1 + \exp(\mathbf{x}^T \mathbf{y})).$$

The code below implements the computation of f(x, y) as well as its gradients w.r.t. x and y using backpropagation (similarly to how we did in Exercise sheet 7). However, some code fragments are missing. Your task is to complete the missing code fragments.

```
import numpy as np
class F:
  def forward(self, x, y):
     self.cache = (x, y)
     # MISSING CODE FRAGMENT #1
     return out
  def backward(self, d_out):
     # x, y are np.arrays of shape (N,)
     x, y = self.cache
     # MISSING CODE FRAGMENT #2
     return d_x, d_y
# Example usage
f = F()
x = np.array([1., 2., 3])
y = np.array([-2., 3., -1.])
z = f.forward(x, y)
dz = 1.0
d_x, d_y = f.backward(d_z)
```

a) Complete the MISSING CODE FRAGMENT #1

b) Complete the MISSING CODE FRAGMENT #2

0 1 2

Problem 6: Deep Learning (Version D) (3 credits)

Suppose $\mathbf{x} \in \mathbb{R}^N$ and $\mathbf{y} \in \mathbb{R}^N$ are two vectors. We define the function $f: \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$ as

$$f(\mathbf{x}, \mathbf{y}) = \log (\exp(\mathbf{x}^T \mathbf{y}) - 1)$$
.

The code below implements the computation of f(x, y) as well as its gradients w.r.t. x and y using backpropagation (similarly to how we did in Exercise sheet 7). However, some code fragments are missing. Your task is to complete the missing code fragments.

```
import numpy as np
class F:
  def forward(self, x, y):
     self.cache = (x, y)
     # MISSING CODE FRAGMENT #1
     return out
  def backward(self, d_out):
     \# x, y are np.arrays of shape (N,)
     x, y = self.cache
     # MISSING CODE FRAGMENT #2
     return d_x, d_y
# Example usage
f = F()
x = np.array([1., 2., 3])
y = np.array([-2., 3., -1.])
z = f.forward(x, y)
dz = 1.0
d_x, d_y = f.backward(d_z)
```


a) Complete the MISSING CODE FRAGMENT #1

b) Complete the MISSING CODE FRAGMENT #2

Problem 7: Kernels (Version A) (3 credits)

Let $\Sigma \in \mathbb{R}^{D \times D}$ be a given invertible, positive semi-definite matrix and $c \in \mathbb{R}$ be a given constant. Consider the kernel:

$$k: \mathbb{R}^D \times \mathbb{R}^D o \mathbb{R}, \quad k(\boldsymbol{x}_1, \boldsymbol{x}_2) = c^2 \exp\left(-\frac{1}{2}(\boldsymbol{x}_1 - \boldsymbol{x}_2)\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}_1 - \boldsymbol{x}_2)\right).$$

Prove or disprove that k is a valid kernel.

Hint: If $k_1(\mathbf{x}_1, \mathbf{x}_2)$ then $\exp(k_1(\mathbf{x}_1, \mathbf{x}_2))$ is also a kernel.

Problem 7: Kernels (Version B) (3 credits)

Let $\Sigma \in \mathbb{R}^{D \times D}$ be a given invertible, positive semi-definite matrix and $a \in \mathbb{R}$ be a given constant. Consider the kernel:

$$k: \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}, \quad k(\boldsymbol{x}_1, \boldsymbol{x}_2) = a^2 \exp\left(-\frac{1}{2}(\boldsymbol{x}_1 - \boldsymbol{x}_2)\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}_1 - \boldsymbol{x}_2)\right).$$

Prove or disprove that k is a valid kernel.

Hint: If $k_1(\mathbf{x}_1, \mathbf{x}_2)$ then $\exp(k_1(\mathbf{x}_1, \mathbf{x}_2))$ is also a kernel.

Problem 8: Probabilistic inference & SVD (Version A) (4 credits)

Consider a generative model where $\mathbf{X} \in \mathbb{R}^{N \times D}$ is the observed variable and $\mathbf{a} \in \mathbb{R}^{N}$, $\mathbf{b} \in \mathbb{R}^{D}$ are the model parameters. We assume the following generative process:

$$p(\mathbf{X}|\mathbf{a},\mathbf{b}) = \prod_{i=1}^{N} \prod_{j=1}^{D} p(X_{ij}|\mathbf{a},\mathbf{b}) = \prod_{i=1}^{N} \prod_{j=1}^{D} \mathcal{N}(X_{ij}|a_i \cdot b_j, 1).$$

Here $\mathcal{N}(\mathbf{x}|\mu,\sigma)$ denotes the density of the normal distribution

$$\mathcal{N}(x|\mu,\sigma) \propto \exp\left(-rac{(x-\mu)^2}{2\sigma^2}
ight).$$

a) Suppose you observed X. Derive a maximum likelihood estimate (MLE) a^* , b^* of the parameters a, b. Hint: SVD can be helpful here. No need to take derivatives.

b) Suppose all singular values of the observed matrix \boldsymbol{X} are distinct. Is the MLE of the parameters \boldsymbol{a} , \boldsymbol{b} unique in this case? Justify your answer.

Problem 8: Probabilistic inference & SVD (Version B) (4 credits)

Consider a generative model where $\mathbf{X} \in \mathbb{R}^{N \times D}$ is the observed variable and $\mathbf{a} \in \mathbb{R}^{N}$, $\mathbf{b} \in \mathbb{R}^{D}$ are the model parameters. We assume the following generative process:

$$p(\mathbf{X}|\mathbf{a},\mathbf{b}) = \prod_{i=1}^{N} \prod_{j=1}^{D} p(X_{ij}|\mathbf{a},\mathbf{b}) = \prod_{i=1}^{N} \prod_{j=1}^{D} \mathcal{N}(X_{ij}|a_i \cdot b_j, 1).$$

Here $\mathcal{N}(\mathbf{x}|\mu,\sigma)$ denotes the density of the normal distribution

$$\mathcal{N}(x|\mu,\sigma) \propto \exp\left(-rac{(x-\mu)^2}{2\sigma^2}
ight).$$

a) Suppose you observed X. Derive a maximum likelihood estimate (MLE) a^* , b^* of the parameters a, b. Hint: SVD can be helpful here. No need to take derivatives.

b) Suppose all singular values of the observed matrix **X** are distinct. Is the MLE of the parameters **a**, **b** unique in this case? Justify your answer.

Problem 9: Dimensionality Reduction (Version A) (2 credits)

Figure 24.1 shows a scatter plot of your two-dimensional data (N = 13 instances). You want to apply a non-linear dimensionality reduction technique based on neighbor graphs (e.g. T-SNE or UMAP). As a first step you compute the $N \times N$, weighted adjacency matrix representing the neighbor graph. Assume that the weights are computed with

$$p_{j|i} = \frac{\exp\left(-\|\mathbf{x}_{i} - \mathbf{x}_{j}\|^{2} / 2\sigma^{2}\right)}{\sum_{k \neq i} \exp\left(-\|\mathbf{x}_{i} - \mathbf{x}_{k}\|^{2} / 2\sigma^{2}\right)}$$

where $\mathbf{x}_i \in \mathbb{R}^2$ and you set $p_{i|i} = 0$. Finally, you obtain the similarity between instances i and j with $p_{ij} = \frac{p_{i|j} + p_{j|i}}{2}$.

Figure 24.1: Scatter plot of the data

Problem 9: Dimensionality Reduction (Version B) (2 credits)

Figure 25.1 shows a scatter plot of your two-dimensional data (N = 13 instances). You want to apply a non-linear dimensionality reduction technique based on neighbor graphs (e.g. T-SNE or UMAP). As a first step you compute the $N \times N$, weighted adjacency matrix representing the neighbor graph. Assume that the weights are computed with

$$p_{j|i} = \frac{\exp\left(-\|\mathbf{x}_{i} - \mathbf{x}_{j}\|^{2} / 2\sigma^{2}\right)}{\sum_{k \neq i} \exp\left(-\|\mathbf{x}_{i} - \mathbf{x}_{k}\|^{2} / 2\sigma^{2}\right)}$$

where $\mathbf{x}_i \in \mathbb{R}^2$ and you set $p_{i|i} = 0$. Finally, you obtain the similarity between instances i and j with $p_{ij} = \frac{p_{i|j} + p_{j|i}}{2}$.

Figure 25.1: Scatter plot of the data

Which of the following neighbor graph plots (pixel in position i, j shows the value of p_{ij}) corresponds to the given dataset and the stated formula for σ = 2? What is your answer for σ = 5? *Justify your answers!*

Problem 9: Dimensionality Reduction (Version C) (2 credits)

Figure 26.1 shows a scatter plot of your two-dimensional data (N = 13 instances). You want to apply a non-linear dimensionality reduction technique based on neighbor graphs (e.g. T-SNE or UMAP). As a first step you compute the $N \times N$, weighted adjacency matrix representing the neighbor graph. Assume that the weights are computed with

$$p_{j|i} = \frac{\exp\left(-\|\mathbf{x}_{i} - \mathbf{x}_{j}\|^{2} / 2\sigma^{2}\right)}{\sum_{k \neq i} \exp\left(-\|\mathbf{x}_{i} - \mathbf{x}_{k}\|^{2} / 2\sigma^{2}\right)}$$

where $\mathbf{x}_i \in \mathbb{R}^2$ and you set $p_{i|i} = 0$. Finally, you obtain the similarity between instances i and j with $p_{ij} = \frac{p_{i|j} + p_{j|i}}{2}$.

Figure 26.1: Scatter plot of the data

Problem 9: Dimensionality Reduction (Version D) (2 credits)

Figure 27.1 shows a scatter plot of your two-dimensional data (N = 13 instances). You want to apply a non-linear dimensionality reduction technique based on neighbor graphs (e.g. T-SNE or UMAP). As a first step you compute the $N \times N$, weighted adjacency matrix representing the neighbor graph. Assume that the weights are computed with

$$p_{j|i} = \frac{\exp\left(-\|\mathbf{x}_{i} - \mathbf{x}_{j}\|^{2} / 2\sigma^{2}\right)}{\sum_{k \neq i} \exp\left(-\|\mathbf{x}_{i} - \mathbf{x}_{k}\|^{2} / 2\sigma^{2}\right)}$$

where $\mathbf{x}_i \in \mathbb{R}^2$ and you set $p_{i|i} = 0$. Finally, you obtain the similarity between instances i and j with $p_{ij} = \frac{p_{i|j} + p_{j|i}}{2}$.

Figure 27.1: Scatter plot of the data

Which of the following neighbor graph plots (pixel in position i, j shows the value of p_{ij}) corresponds to the given dataset and the stated formula for σ = 2? What is your answer for σ = 5? *Justify your answers!*

Problem 10: Clustering (Version A) (4 credits)

a) Consider the K -means algorithm with two cluster is a hyperplane.	rs and fixed centroids μ_1 , μ_2 .	Prove that the decision boundary	/ 日 °
Hint: Consider the equation that defines the decision	on boundary.		
	$lpha$ rg max $\gamma(oldsymbol{z}_{ik}).$	case the assigned cluster label fo	r) 日 º
where $\gamma(\mathbf{z}_{ik})$ are the responsibilities. Is the decision μ_k , Σ_k linear in general? If yes, give the associate such that the decision boundary is linear <i>if and only</i>	ed hyperplane. If no, specify	the conditions on the parameters	

Problem 10: Clustering (Version B) (4 credits)

Problem 11: Fairness (Version A) (4 credits)

You are given data as shown on Table 30.1 where $X \in \mathbb{R}$ denotes the non-sensitive feature, $A \in \{a, b\}$ denotes the sensitive feature, and $Y \in \{0, 1\}$ denotes the ground-truth label.

Table 30.1: Fairness Data (each column is one data point)

ID	1	2	3	4	5	6	7
X	0.5	-1.0	-0.5	2.0	0.5	1.5	0.1
Α	а	b	b	а	b	а	b
Y	1	1	0	0	0	0	1

a) Let the prediction $R = r(X)$ be some arbitrary function r that only depends on X . The sensitive att	ribute A is
ignored. Can we conclude that the Sufficiency fairness criterion is satisfied for the data shown on T	able 30.1?
Justify your answer.	

b) Let the prediction $R \in \{0, 1\}$ be

$$R = \begin{cases} 0 & \text{if } 2 \cdot X > 2 \text{ and } A = a \\ 0 & \text{if } 4 \cdot X > 1 \text{ and } A = b \\ 1 & \text{otherwise} \end{cases}$$

Which ones of the following three fairness criteria *Independence, Separation, and Equality of Opportunity* are satisfied for the data shown on Table 30.1? Justify your answer.

c) Modify the *least* number of instances such that none of the above criteria are satisfied. You can only modify the non-sensitive features *X*. Write down the ID(s) of the modified instance(s) and their modified *X* value. Justify your answer!

Problem 11: Fairness (Version B) (4 credits)

You are given data as shown on Table 31.1 where $X \in \mathbb{R}$ denotes the non-sensitive feature, $A \in \{a, b\}$ denotes the sensitive feature, and $Y \in \{0, 1\}$ denotes the ground-truth label.

Table 31.1: Fairness Data (each column is one data point)

ID	1	2	3	4	5	6	7
X	0.5	-1.0	-0.5	2.0	0.5	1.5	0.1
Α	b	а	а	b	а	b	а
Y	1	1	0	0	0	0	1

0	
1	

a) Let the prediction R = r(X) be some arbitrary function r that only depends on X. The sensitive attribute A is ignored. Can we conclude that the *Sufficiency* fairness criterion is satisfied for the data shown on Table 31.1? Justify your answer.

b) Let the prediction $R \in \{0, 1\}$ be

$$R = \begin{cases} 0 & \text{if } 2 \cdot X > 0.5 \text{ and } A = a \\ 0 & \text{if } 3 \cdot X > 3.0 \text{ and } A = b \\ 1 & \text{otherwise} \end{cases}$$

Which ones of the following three fairness criteria *Independence, Separation, and Equality of Opportunity* are satisfied for the data shown on Table 31.1? Justify your answer.

c) Modify the *least* number of instances such that none of the above criteria are satisfied. You can only modify the non-sensitive features *X*. Write down the ID(s) of the modified instance(s) and their modified *X* value. Justify your answer!

Problem 11: Fairness (Version C) (4 credits)

You are given data as shown on Table 32.1 where $X \in \mathbb{R}$ denotes the non-sensitive feature, $A \in \{a, b\}$ denotes the sensitive feature, and $Y \in \{0, 1\}$ denotes the ground-truth label.

Table 32.1: Fairness Data (each column is one data point)

ID	1	2	3	4	5	6	7
X	0.5	-1.0	-0.5	2.0	0.5	1.5	0.1
Α	а	b	b	а	b	а	b
Y	1	1	0	0	0	0	1

a) Let the prediction $R = r(X)$ be some arbitrary function r	that only depends on X .	The sensitive attribute A is
ignored. Can we conclude that the Sufficiency fairness cr	riterion is satisfied for the	data shown on Table 32.1?
Justify your answer.		

0

b) Let the prediction $R \in \{0, 1\}$ be

$$R = \begin{cases} 0 & \text{if } 2 \cdot X > 2 \text{ and } A = a \\ 0 & \text{if } 4 \cdot X > 1 \text{ and } A = b \\ 1 & \text{otherwise} \end{cases}$$

0 1 2

Which ones of the following three fairness criteria *Independence, Separation, and Equality of Opportunity* are satisfied for the data shown on Table 32.1? Justify your answer.

c) Modify the *least* number of instances such that none of the above criteria are satisfied. You can only modify the non-sensitive features X. Write down the ID(s) of the modified instance(s) and their modified X value. Justify your answer!

0

Problem 11: Fairness (Version D) (4 credits)

You are given data as shown on Table 33.1 where $X \in \mathbb{R}$ denotes the non-sensitive feature, $A \in \{a, b\}$ denotes the sensitive feature, and $Y \in \{0, 1\}$ denotes the ground-truth label.

Table 33.1: Fairness Data (each column is one data point)

ID	1	2	3	4	5	6	7
X	0.5	-1.0	-0.5	2.0	0.5	1.5	0.1
Α	b	а	а	b	а	b	а
Y	1	1	0	0	0	0	1

0	
1	

a) Let the prediction R = r(X) be some arbitrary function r that only depends on X. The sensitive attribute A is ignored. Can we conclude that the *Sufficiency* fairness criterion is satisfied for the data shown on Table 33.1? Justify your answer.

b) Let the prediction $R \in \{0, 1\}$ be

$$R = \begin{cases} 0 & \text{if } 2 \cdot X > 0.5 \text{ and } A = a \\ 0 & \text{if } 3 \cdot X > 3.0 \text{ and } A = b \\ 1 & \text{otherwise} \end{cases}$$

Which ones of the following three fairness criteria *Independence, Separation, and Equality of Opportunity* are satisfied for the data shown on Table 33.1? Justify your answer.

c) Modify the *least* number of instances such that none of the above criteria are satisfied. You can only modify the non-sensitive features *X*. Write down the ID(s) of the modified instance(s) and their modified *X* value. Justify your answer!