METODY NUMERYCZNE – LABORATORIUM

Zadanie 3 – Metoda Interpolacji Newtona

Opis rozwiązania

Metoda interpolacji Newtona dla węzłów równoodległych:

1. Dla funkcji stabelaryzowanej przy stałym kroku $h=x_{i+1}-x_i$ tworzy się tablicę różnic skończonych na podstawie zbioru wartości funkcji $y_i=f(x_i), x_{i+1}-x_i=h=const$:

$$\Delta^{k} y_{i} = \sum_{j=0}^{k} (-1)^{j} {k \choose j} y_{i+k-1}$$

Dla pierwszej połowy przedziału interpolowanej funkcji:

2a. Wyliczamy
$$q = \frac{x - x_0}{h}$$

 $3a.\ W\ celu\ wyliczenia\ wartości\ wielomianu\ w\ punkcie\ x\ korzystamy\ z\ I\ wzoru\ interpolacyjnego\ Newtona:$

$$W(x) = y_0 + q \Delta y_0 + \frac{q(q-1)}{2!} \Delta^2 y_0 + \dots + \frac{q(q-1) \dots (q-n+1)}{n!} \Delta^n y_0$$

Dla drugiej połowy przedziału interpolowanej funkcji:

2b. Wyliczamy
$$q = \frac{x - x_n}{h}$$

3b. W celu wyliczenia wartości wielomianu w punkcie x korzystamy z II wzoru interpolacyjnego Newtona:

$$W(x) = y_n + q \Delta y_{n-1} + \frac{q(q+1)}{2!} \Delta^2 y_{n-2} + \dots + \frac{q(q+1) \dots (q+n-1)}{n!} \Delta^n y_0$$

Wyniki

A: wielomian: Wzór: $5x^3+2x^2-x+5$

B: funkcja trygonometryczna:

Wzór: $5\cos(x) - 3\sin(x)$

C: funkcja z wartością bezwzględną:

Wzór: |x-5|

D: funkcja liniowa

Wzór: x - 5

Ze względu na niezłożoność wykresy zostały pominięte w celu zaoszczędzenia miejsca.

E: **funkcja złożona** *Wzór:* |**cos(x)** – **0.5**|

Przykład efektu Runge dla większej ilości węzlów:

Wnioski

- 1. Dokładność (w sensie ogólnym) interpolacji wzrasta wraz z liczbą węzłów interpolacyjnych (n)
- 2. Interpolacja wielomianowa funkcji daje wyniki ścisłe, gdy interpolowany jest wielomian co najwyżej stopnia n-1. Dla stopni wyższych oraz dla wyjściowych funkcji niebędących wielomianami wyniki są przybliżone. Wpływ mają na to oscylacje wielomianów wyższych rzędów.
- 3. Dla wysokich stopni interpolacji (przy stałych odległościach węzłów) krzywe wielomianowe zaczynają się coraz bardziej rozbiegać do nieskończoności (zwłaszcza w okolicach węzłów początkowych i końcowych efekt Runge).
- 4. Interpolacja funkcji, której przebieg znacznie różni się od przebiegu wielomianu interpolacyjnego, może nie dawać dobrych wyników przy dużej liczbie węzłów. Wpływ na to mają pojawiające się ekstrema w funkcji interpolującej.
- 5. Jeżeli f(x) jest wielomianem stopnia n, to różnica skończona rzędu n tej funkcji jest stała, a kolejne zerami. Prawdziwe jest też twierdzenie odwrotne.
- 6. W otoczeniu punktu początkowego przedziału x_0 stosujemy interpolację Newtona w przód (I wzór interpolacyjny Newtona). Natomiast w otoczeniu punktu końcowego przedziału x_n wstecz (II wzór interpolacyjny Newtona). Pozwala to na zminimalizowanie niedokładności metody w otoczeniu punktów skrajnych przedziału.