# Capstone: Relay Analyzer

Kevin McIntosh & Matthew Hengeveld

Electronic Systems Engineering - Conestoga College

#### In This Presentation

- 1. Project Description
- 2. System Requirements
- 3. System Design
- 4. Test Methodology
- 5. Results and Analysis
- 6. Status and Next Steps

#### **Project Description**

- The "Relay Analyzer"
- Automatically tests relays to determine characteristics
  - Coil voltage
  - Coil current
  - Coil resistance
  - Activation and deactivation times
  - Bounce characteristics
- Tracks characteristics over time and use
- Determine any change in characteristics and performance
- Can determine the number of cycles before failure

### Relay Analyzer

- Many different types of relays
- Each relay has its own characteristics
- Relay manufacturers only put certain, limited characteristics on datasheets
- Relay Analyzer is a tool to automatically test a relay to determine all its characteristics, including how those characteristics change with time and use
- Allows the design engineer to spend less time choosing a relay, and testing them to fit their application

### **Project Requirements**

- Measure the activation and deactivation times of a relay
- Measure and characterize the switch bounce
- Adjust coil voltage for different types of relays
- Measure the current consumption of the relay coil
- Measure the impedance of a coil
- Accurately measure time
  - Recording time stamps
  - Calculating time for tests
  - Repeating tests at equal intervals
- PC must automatically detect that the relay analyzer is connected

#### **Project Requirements**

- Perform tests at specified intervals
- Use an off-the-shelf power AC/DC supply
- Interface with a PC
  - Send collected data to a PC
  - Receive commands from a PC
  - Communicate quickly
- Archive all data to a database
- Work with electromechanical relays
  - Power
  - Signal
  - Automotive



## System Design - Hardware



## System Design - Connection Diagram



### System Design - Microcontroller



- STM32F767ZI-Nucleo Microcontroller
- 216MHz system clock
- Large amount RAM
- Onboard DAC
- Fast ADC
- Real Time Clock (RTC)
- Onboard device USB port with magnetics
- Most peripheral pins on headers

### System Design - Hardware PCBs Overview

- PCBs designed in Altium Designer
- Manufactured by JLCPCB with solder stencils
- Parts from Digikey
- Reflow oven



### System Design - Programmable Power Supply

- Programmable output voltage
  - TPS54240 switching controller
  - ~2V to ~14.5V output up to 500mA supports 3V to 12V relays
  - DAC on microcontroller affects voltage on switching controllers Vsense pin
- 3V3 and 5V output
  - LMR16020 switching controller
  - Up to 1A
- Current & voltage monitor
  - INA226



### System Design - Trigger

- N-Channel MOSFET to switch relay coil
- Input and output Schmitt triggers
- Comparator on relay contacts



#### System Design - Bounce

- Analog front end to the contact bounce signal ADC
- MCP6S21 Programmable Gain Amplifier (PGA)
  - At least 2MHz bandwidth
  - 1x to 32x gain
  - SPI gain programming



### System Design - Resistance and Interface

#### Coil Resistance circuit

- Compares reference resistors to coil resistance
- Voltage read by ADC is used to calculate resistance





#### Relay Interface

- Simplifies connection of all circuits in system
- Switches connection to relay for different tests using SSRs

## System Design - Software



#### System Design - Software

- Graphical User Interface
- Automatically connects to Relay Analyzer
- Allows user to change Relay Analyzer settings
- Start and stop test
- Displays current cycle test results
- Displays graphs of past cycle test results
- Qt framework
- libusb-win32



### System Design - Firmware

- STM32CubeMX for system and peripheral setup
- STM32 Hardware Abstraction Layer (HAL)
- Custom USB full-speed device code
- FreeRTOS real-time operating system
  - Scheduled tasks
  - Required for USB function



### **Test Methodology**

#### **Individual Circuits**

- Tests run prior to manufacturing with simulation software
- Visual inspection after soldering
- Electrical test to compare with simulation results
- Test without microcontroller using test equipment
- Test with microcontroller and developed firmware



### Test Methodology

#### **Firmware**

- Individual peripheral code tested separately and with generic hardware
- Peripheral code combined & adapted for each PCB
- USB code tested separately as part of Adv. Elective course

```
// get Bus Voltage
i2cBuf[0] = 0x02;
HAL_I2C_Master_Transmit(&hi2c1, INA226_ADDRESS_READ, i2cBuf, 3,
INA226 I2C TO);
HAL I2C Master Receive(&hi2c1, INA226 ADDRESS READ, &i2cBuf[1], 2,
INA226 I2C TO);
i2cresults[0] = (uint16_t) i2cBuf[1] << 8 | i2cBuf[2];</pre>
// get shunt Voltage
i2cBuf[0] = 0x01;
HAL I2C Master Transmit(&hi2c1, INA226 ADDRESS READ, i2cBuf, 3,
INA226_I2C_TO);
HAL I2C Master Receive(&hi2c1, INA226 ADDRESS READ, &i2cBuf[1], 2,
INA226_I2C_TO);
i2cresults[1] = (uint16 t) i2cBuf[1] << 8 | i2cBuf[2];
// get Bus Power
i2cBuf[0] = 0x03;
HAL_I2C_Master_Transmit(&hi2c1, INA226_ADDRESS_READ, i2cBuf, 3,
INA226_I2C_TO);
HAL I2C Master Receive(&hi2c1, INA226 ADDRESS READ, &i2cBuf[1], 2,
INA226 I2C TO);
i2cresults[3] = (uint16 t) i2cBuf[1] << 8 | i2cBuf[2];
// get Bus Current
i2cBuf[0] = 0x04;
HAL I2C Master Transmit(&hi2c1, INA226 ADDRESS READ, i2cBuf, 3,
INA226 I2C TO);
HAL_I2C_Master_Receive(&hi2c1, INA226_ADDRESS_READ, &i2cBuf[1], 2,
INA226 I2C TO);
i2cresults[2] = (uint16 t) i2cBuf[1] << 8 | i2cBuf[2];
```

### Test Methodology

#### System

- Microcontroller state machine continually built upon until all individual components were added
- Software was developed in parallel
- Continuous testing



#### Results and Analysis - Key Components

#### **Programmable Power Supply**

- 2.1V to 14.5V output voltage
- Linear relationship between DAC voltage and output voltage



### Results and Analysis - Key Components

#### **Trigger Circuit**

- Fast switching & sharp edges
- Output shows accurate relay contact bounce characteristic and switching times



### Results and Analysis - Key Components

#### **Bounce Circuit & ADC**

- ADC accurately captures bounce waveform
  - Sufficient samples per second to capture all features of bounce waveform
- Relay contact signal scaled to ADC full-scale voltage for better resolution



## **Demonstration**

### Going Forward...

- Implement full database capabilities
- Design single PCB that combines all PCBs & microcontroller
- Design proper casing for device
  - Hold PCBs
  - Proper connections for device under test
- Widen range of compatible relays
- More user-friendly and feature-rich GUI
- Measure more than one relay at a time
  - Compare multiple relays characteristics

## **Thank You**