אלגברה ב – צורת ג'ורדן 1

נושאים:

- 1. פירוק פרימרי
 - 2. פירוק ציקלי
- 3. אופרטורים נילפוטנטים

<u>פירוק פרימרי</u>

T(W) < W נקרא T-אינווריאנטי אם W < V יהי T אופרטור, V מ"ו מעל V הגדרה: יהי ע"א מ"ו מעל

ממימד סופי, יהי T אופרטור. נניח כי הפולינום עם עם הפירוק הפרימרי: יהי V מ"ו מעל דיהי T ממימד סופי, יהי T אופרטור. נניח כי הפולינום $p=p_1^{r_1}\cdots p_k^{r_k}$ באשר המינימלי של T הוא $p=p_1^{r_1}\cdots p_k^{r_k}$ באשר עבור $p=p_1^{r_1}\cdots p_k^{r_k}$ מתקיים: $p=p_1^{r_1}\cdots p_k^{r_k}$ משותפים. עבור $p=p_1^{r_1}\cdots p_k^{r_k}$ מתקיים:

- $V = W_1 \oplus ... \oplus W_k$.1
- . אינווריאנטי W_i הוא W_i .2
- . $p_i^{r_i}$ הוא הוא T_i של המינימלי הפולינום הפולינום $T_i = T|_{W_i}$ 3.

ביותר הגדול המשותף המשותף הגדול ביותר f_i שונים אזי הפולינומים, $f_i = \frac{p}{p_i^{r_i}}$ נסמן נסמן

 $v \in W_i = ker(p_i^{r_i}(T))$ עבור $V \in W_i = ker(p_i^{r_i}(T))$ מתקיים W_i

.(בכון) . $T(v) \in W_i$ לכן לכן $p_i^{r_i}(T)(Tv) = T p_i^{r_i}(T)(v) = 0$

ברור כי $g\in F[x]$ מאפס את T_i מההגדרה של , $g(T_i)=0$ מקיים $g\in F[x]$ מאפס את T_i מאפס את g-1 ברור כי $g\in F[x]$ מאפס את g על כל g מאפס את g על כל g אז (כי g מאפס את g מחלק את g מרור כי g מרוך g מר

<u>פירוק ציקלי</u>

:וקטור $u \in V$ יהי אופרטור, ויהי $T: V \to V$, הגדרה: יהי V מ"ו מעל

- .u נקרא ביקלי הנפרש ע"י בקרא $Z(u;T) = span\{u, T(u), T^2(u), ...\}$.1
 - .u נקרא הT מאפס של $M(u;T) = \{p(x) \in F[x] | p(T)u = 0\}$.2

הערות:

- . $M(u\,;T){=}(p_u)$ אידיאל של F[x] לכן קיים פולינום מתוקן המקיים $M(u\,;T)$. 1 הפולינום p_u גם נקרא הT- מאפס של.
- 2. Z(u;T) תת מרחב של V ומתקיים $dim(Z(u;T))=deg(p_u)$ (ל 0). (כי D_u תת מרחב של D_u ומתקיים D_u ומתקיים D_u (עי, D_u ומתאפס). יתרה מכך, אם D_u הוא בדיוק הצירוף הליניארי המינימלי של חזקות D_u שמתאפס). יתרה מכך, אם D_u אם D_u או D_u ומתקיים D_u ומתקיים D_u ומתקיים D_u ומתאפס). יתרה מכך, אם D_u אם D_u ומתאפס D_u ומתקיים D_u
- הצמצום של $S:Z(u\,;T)\to Z(u\,;T)$ הוא מרחב T-אינווריאנטי, ועבור האופרטור מרחב $S:Z(u\,;T)\to Z(u\,;T)$ הוא הפולינום המינימלי של T

על V. קיימים T יהי T אופרטור על V יהי V יהי V יהי אופרטור על T

יכך ש: p_1, \dots, p_r שונים מאפס עם T-מאפסים שונים $v_1, \dots, v_r \in V$

 $V = Z(v_1; T) \oplus ... \oplus Z(v_r; T)$.1

 $2 \le k \le r$ - ל p_{k-1} - מתחלק ב p_k .2

 m_T, p_T יהי F מעל על מ"ו סוף ממדי T אופרטור והי T משפט קיילי המילטון (המורחב): יהי אופרטור על מ"ו סוף ממדי T הפולינום המינימלי והאופייני של T, אז:

- . p_T מחלק את m_T .1
- אז (פולינומים זרים), אז p_T פירוק של פירוק פירוק פירוק פירוק פירוק פירוק פירוק מירים), אז $p_T=f_1^{r_1}\cdot...\cdot f_k^{r_k}$ 2.

.
$$d_i = \frac{\dim(\operatorname{Ker}(f_i^{r_i}(T)))}{\deg(f_i)}$$
 כאשר $m_T = f_1^{d_1} \cdot \ldots \cdot f_r^{d_r}$

אופרטורים נילפוטנטיים

המינימלי המקיים k . $T^k = 0$ עבורו k > 0 המינימלי המקיים T הגדרה: אופרטור אופרטות של T המקיים זאת נקרא "דרגת הנילפוטנטיות של

 x^n אופרטור T אופרטור האופייני אז הפולינום האופייני של T אופרטור T אופרטור ענה: יהי V אופרטור k-b דרגת הנילפוטנטיות של

- ל T נילפוטנטי על מרחב וקטורי V כללי, יש בסיס בו T מיוצג ע"י מטריצת בלוקים T T כשכל בלוק מהצורה לעיל. הבסיס הוא בדיוק איחוד הבסיסים של המרחבים ה T ציקליים המתקבלים בפירוק הציקלי של V.

T- ש הראה ש . $A= \begin{pmatrix} 4 & 1 & -3 \\ 4 & 0 & -2 \\ 6 & 1 & -4 \end{pmatrix}$: הראה ש . הראה ש

נילפוטנטי, מצא את המטריצה הנילפוטנטית המתאימה והבסיס בו T מיוצג ע"י מטריצה זו.

פתרון: A נילפוטנטית – הפולינום האופייני של A הוא x^3 לכן A נילפוטנטית, מדרגה n ($d \le k \le 1$) כי $d \ne 0$ ($d \le k \le 1$). כי $d \ne 0$ ($d \ne 0$). כי $d \ne 0$ פירוק ציקלי ביחס ל $d \ne 0$ כי $d \ne 0$ סכום ישר של המרחבים ה $d \ne 0$ דיקליים של $d \ne 0$. בכל מרחב $d \ne 0$ ציקלי כזה, אחד מוקטורי הבסיס הוא $d \ne 0$, וזה וקטור עצמי של $d \ne 0$ עם ערך עצמי $d \ne 0$, לכן נדע כמה רכיבים יש בפירוק הציקלי לפי המימד של $d \ne 0$. חישוב ישיר מראה שמרחב הוקטורים העצמיים נפרש ע"י, $d \ne 0$, ז"א $d \ne 0$ הוא מרחב $d \ne 0$.

PB איך נמצא את $V_{2,}$ הנותנים בסיס בו $B=egin{pmatrix} 0 & 1 & 0 \ 0 & 0 & 1 \ 0 & 0 & 0 \end{pmatrix}$ המתאימה היא

אנחנו יודעים שהבסיס של V נתון ע"י (v), $T^2(v)$, כאשר במקרה שלנו אנחנו יודעים שהבסיס של V נתון ע"י V_2 , נתון ע"י V_3 , כאשר במקרה שלנו במקרכת V_2 , הוקטור V_3 , הוקטור V_3 , חישוב ישיר נותן V_3 , הוקטור V_3 , הוקטור V_3 , חישוב ישיר נותן V_3 , הוקטור V_3 , הוקטור V_3 , ולכן הבסיס שבו V_3 מיוצגת ע"י V_3 הוא V_3 , ולכן הבסיס שבו V_3 מיוצגת ע"י V_3 , הוא