Operações aritméticas entre vetores

Prof. Dr. Vinícius Wasques

Universidade Estadual Paulista "Júlio de Mesquita Filho" - Campus Rio Claro

8 de junho de 2020

Dados \vec{u} e \vec{v} , com respectivos representantes (A,B) e (B,C). O vetor soma $\vec{u} + \vec{v}$ é obtido pelo representante (A,C), isto é,

$$\vec{u} + \vec{v} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}.$$

Figura 2-1

Regra do paralelogramo

Consiste em escolher representantes de \vec{u} e \vec{v} com a mesma origem A e construir o paralelogramo ABCD.

O segmento orientado (A,C) é um representante de $\vec{u} + \vec{v}$, já que $\overrightarrow{BC} = \vec{v}$ e a diagonal "fecha o triângulo" ABC.

Figura 2-2

Dados os vetores \vec{u} e \vec{v} a diferença entre eles é definido pela soma de \vec{u} com o oposto de \vec{v} , isto é,

$$\vec{u} - \vec{v} = \vec{u} + (-\vec{v}).$$

Figura 2-5

Propriedades

Associativa
$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$

Comutativa
$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$

Elemento neutro
$$\vec{u} + \vec{0} = \vec{0} + \vec{u} = \vec{u}$$

Elemento oposto
$$\vec{u} + (-\vec{u}) = -\vec{u} + \vec{u} = \vec{0}$$

Figura 2-4

Produto de número real por vetor

A multiplicação entre um número real α e um vetor \vec{u} resulta em um outro vetor $\alpha \vec{u}$.

Definimos o seguinte:

• Se
$$\alpha=0$$
 ou $\vec{v}=\vec{0}$, então $\alpha \vec{v}=\vec{0}$

• Se $\alpha \neq 0$ e $\vec{v} \neq \vec{0}$, então o vetor $\alpha \vec{v}$ se caracteriza como:

$$\alpha \vec{\mathbf{v}}//\vec{\mathbf{v}}$$
;

 $\alpha \vec{v}$ e \vec{v} tem mesmo sentido se $\alpha > 0$, e sentido contrário se $\alpha < 0$;

$$||\alpha \vec{\mathbf{v}}|| = |\alpha|.||\vec{\mathbf{v}}||$$

Seja β um número real não nulo, a notação

$$\frac{\bar{u}}{\beta}$$

representa

$$\frac{1}{\beta}\vec{u}$$

Se \vec{v} é um vetor não nulo, então o vetor

$$\frac{\vec{v}}{||\vec{v}||}$$

é chamado de versor de \vec{v} .

Propriedades

$$\bullet \ \alpha(\vec{u} + \vec{v}) = \alpha \vec{u} + \alpha \vec{v}$$

$$\bullet (\alpha + \beta)\vec{u} = \alpha\vec{u} + \beta\vec{u}$$

•
$$1.\vec{u} = \vec{u}$$

•
$$\alpha(\beta \vec{v}) = (\alpha \beta) \vec{v} = \beta(\alpha \vec{v})$$

Figura 3-4

Referências

BOULOS, P., CAMARGO, I. Introdução à Geometria Analítica no Espaço, Editora Makron Books, 1997.

CALLIOLI, C.A.; DOMINGUES, H.H. e COSTA, R.C.F. Álgebra Linear, 5a. edição. São Paulo

BOLDRINI, J.L.; COSTA, S.I.R.; FIGUEIREDO, V.L.; WETZLER, H.G. Álgebra Linear, 2a. edição. São Paulo: Harper & How do Brasil, 1980.

STEINBRUCH, A., WINTERLE, P. Geometria Analítica. Makron Books, 1987.

Contato

Prof. Dr. Vinícius Wasques

email: viniciuswasques@gmail.com

Departamento de Matemática

site: https://viniciuswasques.github.io/home/

