PENTAX

DATA COMMUNICATION MANUAL

PTS-III

This manual mentions data communications between the PTS-III and personal computers and describes the communications functions of TS for those who understand how personal computers work and who wish to construct a system which makes use of TS.

---- CONTENTS ----

1.	Overv	i ew	••••	••••	• • • •	• • • •	• • • • •	•••••	• • • • • •	····P1
2.	Inter	face	spec	ific	atio	ns	••••	• • • • •	• • • • • •	Р3
	2-1.	Mecha	nica	l an	d el	ectr	ical	charac	terist	ics ···P3
		1. Co	ппес	tor	type	!				
		2. Si	gnal	ide	ntif	icat	ion			
		3. Pi	in as	sign	ment					
		4. Co	nne	tor	shap	es				
	2-2.	Conne	ecti	g to	COM	pute	rs ·	••••	• • • • • •	P4
		1. II	BM-PC	: (IB	H)					
		2. J-	-3108	(TO	SHIB	A)				
		3. PC	C-166	B (SH	ARP)					
3.	Data	Commi	nica	ation	s · ·	••••	••••			Р5
	3-1.	Comm	nnica	ation	spe	cifi	catio	ons -		Р5
	3-2.	TS co	omma	ad ch	arac	ters		• • • • • •	• • • • • •	••••Р6
										••••P7
										р9
	3-5.	Key	code	form	at·•			• • • • •	• • • • • •	p11
	3-6.	TS m	ode (contr	ol p	roto	col·	• • • • • •	• • • • • •	P11
4.	Appe	ndix	• • • •			• • • •	••••	• • • • •	• • • • • •	P13
	4-1.	Samp	le p	rogra	ms	· • • • •	• • • • •	• • • • • •	• • • • • • •	P13
									rogram	
		2. I	nver	se nao	de s	sampl	le pr	ogram		
	12	Cha-		4						D10

1. OVERVIEW

The PTS-III has a communication function which allows bidirectional communication with personal computers and handheld terminals which has RS-232C interfaces. This allows users to construct their own original measuring systems. Furthermore, it will also be possible to record data from the personal computer after the equipment is set up and the prism is collimated.

1-1. TS and Personal Computer Connections

A special cable is required to connect the PTS-III to external equipment. The PTS-III connector and personal computer connector are commercially available, so that making a special cable should not be difficult. Refer to 2. Interface specifications in regard to the actual connections.

1-2. Setting TS

After the hardware is connected (with a cable), the communication parameters must be set for communications. This means that the conditions on both sides must be set, so that electrical signals which are exchanged between the TS and external equipment will be handled as data. The settings are made on the TS with the DIP switches on the right side of the TS body.

Refer to 3.Data communications for details.

1-3. Communication with TS

When TS receives specific code from external equipment, it returns measurement data to the external data, or switches to a specified mode. Also, if the data from external equipment is defective, then the specified code will be sent to the external equipment. Refer to "3. Data communications "for further details. Example: To receive constant data (Temperature, Atmospheric pressure, Prism constant) from TS.

- 1) External equipment sends "f" to TS.
- 2) Constant data is sent from TS.
- 3) If the code sent to TS is defective, then TS will send "j".

2. Interface Specifications

2-1 Mechanical and Electrical Characteristics

1. Connector Types

Manufacturer: HIROSE ELECTRIC CO., LTD. Model: HR10A-7R-6S

Round-receptacle 6-pins (receptacle)

2. Signal identification

Control signal	Frequency	Logic	Code	Voltage-polarity
ON	FA(High)	8	Space	+9
OFF	FZ(Low)	1	Mark	-9

3. Pin assignment

Det	achable type(I	Shift type(05C/10C)		
Nо	Signal name	Circuit name	Direction	Signal name
1	SD(TXD)	Sending data	out	SD
2	RD(RXD)	Receiving data	in	RD
3	CS(CTS)	Clear to send	in	
4.	RS(RTS)	Request to send	out	
5	SG	Signal grand		SG
6	FG	Frame grand		FG

^{*} CS and RS are connected in the instrument. (Shift type only.)

4. Connector shapes

2-2. Connecting to computers

1. IBM-PC

2. J-3100

3. J-3100

Note: If shift type (05C/10C), then ③ CS and ④ RS are connected internally.

3. Data communications

3-1. Communication specifications

1) Communication method: Start-stop synchronized

method(asynchronous), half-duplex

2) Transfer rate : 1209 band, 2408 band (Switched with DIP switch)

3) Stop bit length : 1 bit, -2bit(Switched with DIP switch)

4) Parity method : Even(E), None(N) (Switched with DIP switch)

5) Data length : 7 bit, 8 bit (Switched with DIP switch)

6) Data structure

Start-bit d8 d1 d2 d3 d4 d5 d6 d7 Parit									l I	
	Start-bit	40	d1	d2	43	d4	d5	46	d7	Parity

7) Data flow control : By the X parameter

8) Code used : JIS 7 bits or 8 bits character code set

9) Time monitoring : None

10) Error control : Vertical parity (Dependent on

external equipment processing.)

11) Control method : Control line(handshake) RTS/CTS monitoring

(RTS on when the power supply is turned on)

12) Transmission control method: PENTAX protocol (PTS-III 05C, 10C have no capability.)

Control by TS command characters

13) Command format : One command character

Example: If TS receives "a", then it sends type 1 data.

3-2. TS command characters

	Item	Char.	HEX	Direction	E. C	Contents
1,	Type 1 data request	a	61h	→ TS	YES	H. A/V. A/S. D
2.	Type 2 data request	b	62h	→ TS	YES	H. A/H. D/V. D
3.	Type 3 data request	c	63h	→ TS	NO	Inst. Coordinates (X0,Y0,Z0)
4.	Type 4 data request	đ	64h	→ TS	YES	T. point Coordinates (X,Y,Z)
5.	Type 5 data request	e	65h	→ TS	ИО	H.A/V.A. Average of repeat angle /Sum/Numbers/V.A
6.	Type 6 data request	f	66h	→ тѕ	МО	Tem./Pres./PPM/PRSM /AIM
7.	Indicating AIM setting	8	67h	→ TS	NO	Unnecessary for PTS-II,III
8.	Data output ending	h	88h	→ TS		Release of retention of measured distance value; Output end
9.	Positive response	i	69ћ	← TS		With CR+LF
	Negative response	j	6 A h	→ TS	ļ	Incorrect request
11.	Mode, data input request	1	6Ch	→ TS	ИО	For mode control data input, send to TS
12.	Mode data input wait	124	6Dh	← TS		Receiving "1", TS sends
13.	Data re-request	ū	6ЕЪ	← TS		TS which have different least angle unit sends
14.	TS mode control request	p	70h	→ TS		For TS mode control
15.	Data input request	q	71h	→ TS		For data transmission to TS
16.	Status information	r	72h	→ TS		Digit-switch status
17.	Type 7 data request	s	73h	→ TS	NO	Inst. Height request
18.	Type 8 data request	t	74h	→ 75	NO	T. Point Height data request
19.	Receiving O.K	Хол	111	→ TS		Flow control
20.	Receiving stop	X off	13h	→ TS		Flow control
21.	Data block ending	ETX	03Ъ	→ TS		

H. A: Horizontal angle

V.D: Vertical Distance

H.D: Horizontal distance

E.C: Ending code

V.A: Vertical angle

Tem: Temperature

AIM: AIM value

S.D : Slope distance

Press. = Pressure

Inst. = Instrument

T. point = Target point

3-3. Data block format

1). Output data (Data sent from TS to external equipment) Each data line has the following structure

Data	identifier or header	Space	Data	CR	LF	
There each	e are nine types of data bloc data block are shown below.	ks. The cont	CR: Ca		letarm co	
Type 1	Horizontal angle Vertica HHD ±####.##.##VVD ±####.	l angle Slop ##.##SLM +(#)#	e distan ###. ##.	ce (#)[CR+L	.F]	•
Type 2	Horizontal angle Horizon HHD ± ####. ##. ##HOM +(#) ###	tal distance #.##(#)VEM ±(Vertica #)####.	l distan ##.(#)[C	ice [R+LF] _	
Type 3	Inst.coordinates X X8M ± (#)####.##(#)Y8M ± (#	Y)####.##(#)28M	2 ± (#)##	##.##(#)	[CR+LF]	XBW,Y8M,Z9M: Middle letter
Type 4	Measurement point coordinat XXM ±(#)####,##(#)YYM ±(#	_	Z ± (#)##	##.##(#)	[CR+LF	is Zero.
Type 5	Horizontal angle Vertice HHD ±####.##.##VVD ±####. or Horizontal angle, Average of V.A. (Average of repeat and HHD ±####.##.##HAD ±####.	##.##[CR+LF] f horizontal ar ngle M.)			+LF]	
Type 6	Temperature, Pressure, PPM v TEC ±###PRM ###PPM ±###PS	value, Prism Co SM ±##AIM ###[onstant, [CR+LF]	AIN val	u e	
Type 7	Instrument Height MZM ##.###[CR+LF]					
Type 8	Prism Height PZM ##.###[CR+LF]					
Type 9	Status Information STA ABC[CR+LF]					

To be continued on the next page

* (#) is not valid for Tracking measurement mode.

(MSB)	67	ь6	b5	b4	b3	b 2	bl	bo (LSB))
V:		-	-	-	-	Disp.	Сошр.	Vang.	Unit
	On 1			1	1	1"	0 п	20*	Deg
	Off O	8	8			5-	off	HO.	Gon
B:		-	-	-	-	Ave.	Unit	Coef.	Refr.
	0n 1			1	1	3	и	0.14	0 п
	Off 0	.8	8.			5	F	0.20	off
c:		-	-	-	· -	_	_	Poff	Atm.
	0n 1			1	1 .			on -	0 n
	Off 0	8	8			В	9	off	off

Notes: A,B and C are represented by 8 bits ASCII code.

The top 4 bits are fixed at 3, so that A,B and C are "30" through "3F".

Disp. =Display
Comp. =Compensator
Vang. =Vertical angle
Coef. =Refraction Coefficient
Refr. =Refraction
Poff =Power off
Atm. =Atmosphere

Example: In case STA ??3 is received

A=?(3F) B=?(3F) C=3(33) So that ?=8911 1111 ?=8811 1111 3=8911 9911

Interpreting these figures with the table above, we get the following.

(b3)	(b2)	(b1)	(b0)	(LSB)
Angle display	Comp. = ON	Zenith=0°	Angle Unit= Degree	
Average number=3	Distance unit= Meter	Comp.Co- efficient	Comp. = ON	
		Auto power off= ON	Atmospheric comp.=ON	

Comp. =Compensator

2) Input data

Input data means the data which can be sent from external equipment to TS. The data format should be arranged, then sent to TS.

(If there is an error in the format or header, then TS will return "j".)

Data Item	Data format						
l) Temp. Press. P. const.	TEC ±###PRM ###PSM ±##[ETX]						
2)Prism constant	PSM ±##[ETX]						
3) Inst. coordinates X.Y.Z	XON ±#####.###YOM ±#####.###ZOM ±## ###.###[ETX]						
(1) Inst. Height	MZM ##.###[ETX]						
5)B.S.coordinates X.Y.Z	X1M ±#####.###Y1M ±#####.###Z1M ±## ###.###[ETX]						
S)T.P.coordinates X,Y,Z	XXW ±#####.###YYW ±#####,###ZZW ±## ###.###[ETX]						
7)Prism Height	PZM ##. ###[ETX]						
B)Horizontal angle	HHD ±0###. ##. ##[ETX]						
9)S.O.distance	_						
Horizontal distance	HSM +####, ###[ETX]						
Slope distance	SSW +#####, ###[ETX]						
10) V.D. Z coordinates	VSM ± #####. ###ZSM ± #####. ###[ETX]						
11)X,Y coordinates	XSM ± #####, ###YSM ± #####, ###[ETX]						

Temp. =Temperature Press. = Pressure

P. const. = Prism constant

Inst. =Instrument V.D. = Vertical Distance S.O. = Stake Out

B.S. =Back sight T.P. = Target Point

3-4. Data header

The attributes of TS data are determined by an identifier. This identifier is called the header.

I tem	Unit	(DEG)	(GRAD)
Horizontal a	ngle	HHD	HHG

,[Unit	Zenith 8 DEG	Horizontal Ø DEG	Zenith 8 GRAD	Horizontal 8 GRED
	Vertical angle	VDD	VHG	VDG	VHG

Item Unit	(m)	m/AV	(f)	f/AV
Slope distance	SLM	SAM	SLF	SAF
Horizontal distance	HOM	HAM	HOF	HAF
Vertical distance	VEM	VAN	VEF	VAF
X coordinate	XXN	MAX	XXF	XAF
Y coordinate	YYN	MAY	YYF	YAF
Z coordinate	ZZM	ZAM	ZZF	ZAF

Item Unit	• c	• F
Tempera-	TEC	TEF
ture		

Item Vnit	mmHG	Inch
Pressure	PRM	PRI

Item Unit	•	f
XO coordinate	X8M	XOF
YO coordinate	ASM	YBF
ZO coordinate	ZBM	Zef
F. S. X. coordinate	XSM	XSF
F. S. Y. coordinate	AZM	YSF
F. S. Z. coordinate	ZSM	ZSF
B. S. X. coordinate	Z1M	XIF
B. S. Y. coordinate	YIM	YIF
B. S. Z. coordinate	Z114	ZIF
,	1	L

Item Unit		f
S.O. value(HOR)	HSM	HSF
S.O. walue(SLP)	SSM	SSF
S.O. value(VER)	VSM	VSF
S.O. value(X)	XSM	XSF
S.O. value(Y)	YSW	YSF
S. O. value(Z)	ZSM	ZSF
IP Inst.height	MZM	MZF
FS Prism height	PZM	PZF

Item	
P Const. (mm only)	PSM
T/P correction	PPM
Light value	AIM

3-5. key Code Format(pXX)

By sending specific series of character code to TS from external equipment, it is possible to control the operation mode of TS as if the TS keyboard were being operated. These control character codes are called "Key-code" and are composed of three characters of which first character starts from "p".

The two remaining characters are defined according to the table below.

XX	Corresponding PTS-III key	ХХ	Corresponding PTS-III key
00	TR(High speed)	78	Angle display
01	TR(Medium speed)	88	Left/right turn
10	[Exit special measurement]	9.8	Double angle
11	ROM	: 8	Hold
12	TRY — Special measure	;8	Measured distance average (Input)
13	INV ment	<8	LAMP
14	REM -	=8	0 set
20	Temp./Press.	>1	HOR/H mode
30	Stake Out	>2	SLP/2 mode — Hor./Slope/ Ver.
40	Coordinate	>3	VER/Z mode
50	Inst. coordinate	?8	Measuring distance
60	Angle setting		(ex)High speed TR=send p00

Example: "p00" activates TS to start high speed Tracking measurement.

3-6. TS mode control protocol

1. Mode Switching

- 1) After TS receives 1", it sends m
- 2) Next, TS receives "pXX", then it sends "i" and enters the mode. (TS sends "j" when there is a character or code error.)

2. Data setting

External equipment

PTS-III

Send "1" → → → → → → → ---- Return "" ---- Return 'i' Send "1" -------- Return "m" Send 'a' -------- Return "" -----Return 'n' or 'j' if data are NG. Return "i" if data are OK. _____ Re-send data if "n" is received. End if "i" is received. Note: Add CR+LF when returning "i", "m", "n"

- 1) After TS receives "1", it sends "m".
- 2) TS receives "pXX", then sends "i" and enters the mode.
- 3) After TS receives "1", it sends "m"
- 4) TS receives q, then sends m and it waits for data.
- 5) TS receives 'data', then it sends 'i'if data are OK and it sends 'n' or 'j' if data are NG.

 (Data NG): If the minimum unit does not match during angle data input then 'n' is sent. Other case; 'j' is sent.

4 Data Block Format Which is Output from the TH-E

Type 1 data (during normal measuring)

HHD +####.##.##CR/LF

Type 2 data (during repeat measuring)

HHD +###.##.##.##CR/LF

Note: However, output data format completely depends on the operative condition of the TH-E. For example, in case the TH-E displays "ERROR" by some reason, data will not be output with the above format. These cases will be shown below. External device has to receive data, assuming these condition.

1) Type 1 (normal measuring mode)

2) Type 2 (Repeat measuring mode)

Note: In this case, as the LCD of the TH-E displays horizontal angle average value in the upper and cummulative angle in the lower, the LCD does not display "ERROR" even though an error occurs in vertical angle. This is, if vertical angle data does not come out after the data request in this mode, some error in vertical angle is judged to occur.

HHD +5355,35,35HAD +5555,55,55RNO \$5CR/LF