Область допустимых решений задачи и вектор-градиент $\overline{\mathbb{C}}$ представлены ниже на рисунке. Запишите математическую модель задачи.

На фабрике эксплуатируются два типа ткацких станков, которые могут выпускать три вида тканей. Известны следующие данные о производственном процессе: P_{ij} - производительности станков по каждому виду ткани, м/ч; C_{ij} - себестоимость производства тканей, руб./м; фонды рабочего времени станков A_i ч; планируемый объем выпуска тканей B_j м.

Требуется распределить выпуск ткани по станкам с целью минимизации

$$\sum_{i=1}^{2} \sum_{j=1}^{3} C_{ij} * x_{ij} \to min \qquad \sum_{i=1}^{2} \sum_{j=1}^{3} C_{i$$

Дана промежуточная симплекс-таблица задачи линейного программирования (решается на min), в которой x_1 , x_2 -основные переменные, Z –целевая функция

Базис	В	X ₁	X ₂	X ₃	X ₄	x ₅	x ₆
X ₃	14/3	0	2/3	1	0	⁻⁵ / ₃	0
X ₄	4/3	0	1/3	0	1	-1/3	0
X ₁	4	1	0	0	0	1	0
x ₆	2/3	0	-1/3	0	0	1/3	1
Z	²⁸ / ₃	0	-1/3	0	0	5/3	0

Что дальше?

Дана начальная симплекс-таблица прямой (исходной) задачи линейного программирования, в которой x_1, x_2 -основные переменные, x_3, x_4 - дополнительные, Z –целевая функция

Итерация	Базис	Значение	x ₁	x ₂	Х3	X4	Строка Zmin
	$-\mathbf{Z}$	0	-2	-1	0	0	
0	Х3	-2	1	2	1	0	1
	X ₄	2	2	1	0	1	2

Укажите постановку двойственной ЗЛП, в которой y_1, y_2 - двойственные оценки ограничений исходной задачи.

$$f(Y) = 1y_1 + 1y_2 o min$$
 $f(Y) = 2y_1 - 2y_2 o max$ $f(Y) = -2y_1 + 2y_2 o min$ Ограничения: Ограничения:

2.

Ограничения: Ограничения: $-1y_1 - 2y_2 \le -2 \qquad (1) \qquad 1y_1 + 2y_2 \ge -2 \qquad (1)$

$$-2y_1-1y_2 \le -1$$
 (2) $2y_1+1y_2 \ge 1$ (2) $y_1, y_2 \ge 0$ $y_1, y_2 \ge 0$

Ограничения:
$$2y_1 + 2y_2 \ge 1 \qquad (1)$$
 $1y_1 + 1y_2 \ge 1 \qquad (2)$ $y_1, y_2 \ge 0$

1.

 $y_1, y_2 \geq 0$

3.

Составить уравнения Беллмана

Эффективность состояния системы на втором этапе определяется(продолжить)...

$$Z(X) = x_1 + 2x_2^2 \Rightarrow max$$

$$\sqrt[2]{x_1} + x_2 \le 4$$

$$x_1, x_2 \ge 0$$

Сетевое планирование

Табличным способом рассчитайте параметры сетевого графика $t_{\mathrm{ph}}(2,3)$

	1	2	3	4	5
1		4	5	7	
2			2	10	3
3					
4					4
5					

Предлагается построить аэропорт недалеко от города в одном из трех возможных мест расположения: x, y и z. Оценка вариантов постройки аэропорта производилась по трем критериям:

 $m{k_1}$ – стоимость постройки; $m{k_2}$ – время в пути до центра города; $m{k_3}$ – количество людей, подвергающихся шумовым воздействиям.

Оценки альтернатив по критериям приведены в таблице. Установите Мажоритарное отношение между z и y (есть, нет)

Площад- ки	k_1 (млн.руб.)	k ₂ (мин.)	k_3 (тыс.чел.)
x	170	40	20
y	170	50	10
Z	190	45	10

Предлагается построить аэропорт недалеко от города в одном из трех возможных мест расположения: x, y и z. Оценка вариантов постройки аэропорта производилась по трем критериям:

 $m{k_1}$ – стоимость постройки; $m{k_2}$ – время в пути до центра города; $m{k_3}$ – количество людей, подвергающихся шумовым воздействиям.

Оценки альтернатив по критериям приведены в таблице. Определите методом идеальной точки лучшую альтернативу по ранговой шкале измерений

Площад- ки	k_1 (млн.руб.)	k ₂ (мин.)	k_3 (тыс.чел.)
x	170	40	20
y	180	50	10
Z	190	45	15

Задана матрица У исходов в терминах затрат .По критерию Вальда определите лучшую альтернативу

Альтернативы	Ситуации Е				
X	e_1	e_2	e_3	e_4	
x_1	6	4	3	2	
x_2	3	3	4	5	
x_3	3	4	4	2	

Пусть X— множество альтернатив, μ_R — заданное на нем нечеткое отношение предпочтения.

Нечеткое подмножество недоминируемых альтернатив множества (X, μ_R) описывается функцией принадлежности

$$\mu_Q^{H,\Pi}(x) = 1 - \sup_{y \in X} [\mu_R(y,x) - \mu_R(x,y)], \qquad x \in X$$

SUP —наибольшее положительное число (на сколько другие по максимуму доминируют x)

Пусть:

$$\mu_R(x_i,x_j) =$$

	x_1	x_2	x_3
x_1	1	0,4	0,7
x_2	0	-	0,5
x_3	0	0	-

Определите функцию принадлежности недоминирования для x_3 : $\mu_Q^{{}^{\mathrm{H}\mathrm{D}}}(x_3)$