Задача А. Кратчайший путь в невзвешенном графе

Имя входного файла: pathbge1.in Имя выходного файла: pathbge1.out

Дан неориентированный невзвешенный граф. Найдите кратчайшее расстояние от первой вершины до всех вершин.

Формат входного файла

В первой строке входного файла два числа: n и m ($2 \le n \le 30000, 1 \le m \le 400000$), где n — количество вершин графа, а m — количество ребер.

Следующие m строк содержат описание ребер. Каждое ребро задается стартовой вершиной и конечной вершиной. Вершины нумеруются с единицы.

Формат выходного файла

Выведите n чисел — для каждой вершины кратчайшее расстояние до нее.

pathbge1.in	pathbge1.out
2 1	0 1
2 1	

Задача В. Кратчайший путь

Имя входного файла: pathmgep.in Имя выходного файла: pathmgep.out

Дан ориентированный взвешенный граф. Найдите кратчайшее расстояние от одной заданной вершины до другой.

Формат входного файла

В первой строке входного файла три числа: N, S и F ($1 \le N \le 2000, 1 \le S, F \le N$), где N — количество вершин графа, S — начальная вершина, а F — конечная. В следующих N строках по N чисел — матрица смежности графа, где -1 означает отсутствие ребра между вершинами, а любое неотрицательное число — присутствие ребра данного веса. Вес каждого ребра не превышает 10^9 . На главной диагонали матрицы всегда нули.

Формат выходного файла

Вывести искомое расстояние или -1, если пути между указанными вершинами не существует.

pathmgep.in	pathmgep.out
3 1 2	6
0 -1 2	
3 0 -1	
-1 4 0	

Задача С. Кратчайший путь от каждой вершины до каждой

Имя входного файла: pathsg.in Имя выходного файла: pathsg.out

Задан ориентированный взвешенный связный граф. Найдите матрицу расстояний между его вершинами.

Формат входного файла

Первая строка входного файла содержит числа n и m — количество вершин и ребер в графе соответственно ($1 \le n \le 200,\ 0 \le m \le 10\,000$). Следующие m строк содержат по три числа — вершины, которые соединяет соответствующее ребро графа и его вес. Веса ребер неотрицательны и не превышают 10^4 .

Формат выходного файла

Выведите в выходной файл n строк по n чисел — для каждой пары вершин выведите расстояние между ними.

pathsg.in	pathsg.out
3 3	0 5 7
1 2 5	10 0 2
2 3 2	8 13 0
3 1 8	

Задача D. Кратчайший путь

Имя входного файла: pathbgep.in Имя выходного файла: pathbgep.out

Дан неориентированный взвешенный граф. Найдите кратчайшее расстояние от первой вершины до всех вершин.

Формат входного файла

В первой строке входного файла два числа: n и m ($2 \le n \le 30000, 1 \le m \le 400000$), где n — количество вершин графа, а m — количество ребер.

Следующие m строк содержат описание ребер. Каждое ребро задается стартовой вершиной, конечной вершиной и весом ребра. Вес каждого ребра — неотрицательное целое число, не превосходящее 10^4 .

Формат выходного файла

Выведите n чисел — для каждой вершины кратчашее расстояние до нее.

pathbgep.in	pathbgep.out
4 5	0 1 4 5
1 2 1	
1 3 5	
2 4 8	
3 4 1	
2 3 3	

Задача Е. Кратчайшие пути и прочее

Имя входного файла: path.in Имя выходного файла: path.out

Дан взвешенный ориентированный граф и вершина s в нем. Требуется для каждой вершины u найти длину кратчайшего пути из s в u.

Формат входного файла

Первая строка входного файла содержит n, m и s — количество вершин, ребер и номер выделенной вершины соответственно ($2 \le n \le 2\,000, \, 1 \le m \le 5\,000$).

Следующие m строк содержат описание ребер. Каждое ребро задается стартовой вершиной, конечной вершиной и весом ребра. Вес каждого ребра — целое число, не превосходящее 10^{15} по модулю. В графе могут быть кратные ребра и петли.

Формат выходного файла

Выведите n строк — для каждой вершины u выведите длину кратчайшего пути из s в u, '*' если не существует путь из s в u и '-' если не существует кратчайший путь из s в u.

path.in	path.out
6 7 1	0
1 2 10	10
2 3 5	-
1 3 100	-
3 5 7	-
5 4 10	*
4 3 -18	
6 1 -1	

Задача F. Цикл отрицательного веса

Имя входного файла: negcycle.in Имя выходного файла: negcycle.out

Дан ориентированный взвешенный граф. Определить, есть ли в нем цикл отрицательного веса, и если да, то вывести его.

Формат входного файла

Во входном файле в первой строке число n ($1 \le n \le 250$) — количество вершин графа. В следующих n строках находится по n чисел — матрица смежности графа. Все веса ребер не превышают по модулю 10000. Если ребра нет, то соответствующее число равно 10^9 .

Формат выходного файла

В первой строке выходного файла выведите YES, если цикл существует или NO в противном случае. При его наличии выведите во второй строке количество вершин в искомом цикле (считая одинаковые первую и последнюю) и в третьей строке — вершины, входящие в этот цикл в порядке обхода.

negcycle.in	negcycle.out
2	YES
0 -1	3
-1 0	1 2 1