ACH0021 – Tratamento e Análise de Dados/Informações

Lista de Exercícios 0

Observação: Os exercícios desta lista devem ser resolvidos SEM o uso de ferramentas computacionais

a)
$$\sum_{i=1}^{3} i^{-2}$$

b)
$$\sum_{r=0}^{3}$$

$$c) \sum_{w=3}^{3} \frac{\sqrt{\pi}}{\sqrt{2} - 1}$$

d)
$$\sum_{n=1}^{3} n(n+1)$$

a)
$$\sum_{i=1}^{3} i^{-2}$$
 b) $\sum_{r=0}^{3} \pi$ c) $\sum_{w=3}^{3} \frac{\sqrt{\pi}}{\sqrt{2}-1}$ d) $\sum_{n=1}^{3} n(n+1)$ e) $\sum_{k=1}^{3} (k^k - 1)$ f) $\sum_{k=1}^{3} k^k - 1$

f)
$$\sum_{k=1}^{3} k^k - 1$$

g)
$$\sum_{i \in \{3,5,7\}} i^-$$

h)
$$\sum_{j: \text{ impares positivos}}$$

$$\text{g)} \sum_{i \in \{3,5,7\}} i^{-i} \qquad \text{h)} \sum_{\substack{j: \text{ impares positivos} \\ \text{menores que 8}}} 2 \qquad \text{i)} \sum_{\substack{p: \text{ primos} \\ \text{menores que 20}}} 2^{1/p} \qquad \text{j)} \sum_{0 \leq m \leq 3} \pi^{\pi} \qquad \text{k)} \sum_{n \in \{0\}} n \qquad \text{l)} \sum_{n \in \{0\}} 1$$

$$j) \sum_{0 \le m \le 3} \pi^{\pi}$$

$$\mathbf{k}) \sum_{n \in \{0\}} n$$

$$1) \sum_{n \in \{0\}} 1$$

2) Expressar com o símbolo de somatória (notar que existem infinitas possibilidades)

a)
$$3^{2/3} + 4^{2/3} + 5^{2/3}$$

b)
$$5+5+5+5+5$$

c)
$$-1 - \frac{1}{3} - \frac{1}{5} - \frac{1}{7}$$

d)
$$3 \cdot 4^2 + 3 \cdot 5^3 + 3 \cdot 6^4 + 3 \cdot 7^5$$
 e) $x_4 + x_5 + \dots + x_{99}$ f) $x_2 + x_4 + x_6 + x_8$

e)
$$x_4 + x_5 + \cdots + x_{99}$$

f)
$$x_2 + x_4 + x_6 + x_8$$

g)
$$x_1 + 2x_2 + \dots + nx_n$$

h)
$$3x_6 + 6x_{12} + 9x_{18} + 12x_{24}$$
 i) $x_{100} + x_{96} + \dots + x_4 + x_0$

i)
$$x_{100} + x_{96} + \cdots + x_4 + x_0$$

3) Sabendo-se que $x_1 = 1$, $x_2 = 6$, $x_3 = 3$ e $x_j = 2^j$ para $j \ge 4$, calcule a) $\sum_{k=2}^{6} x_k$ b) $\sum_{j=1}^{5} x_j \cdot x_{j+1}$ c) $\sum_{m=3}^{7} m \cdot x_{2m}$ d) $\sum_{t=1}^{5} \frac{x_{2t}}{x_{2t+1}}$ e) $\sum_{y=1}^{4} (2x_y + 3)$ f) $\sum_{z=1}^{3} z \cdot x_4$

a)
$$\sum_{k=2}^{6} x_k$$

b)
$$\sum_{j=1}^{5} x_j \cdot x_{j+1}$$

c)
$$\sum_{m=3}^{7} m \cdot x_{2m}$$

$$d) \sum_{t=1}^{5} \frac{x_{2t}}{x_{2t+1}}$$

e)
$$\sum_{y=1}^{4} (2x_y + 3)$$

$$f) \sum_{z=1}^{3} z \cdot x_z$$

4) Considere dois conjuntos de n dados cada, $\{y_1, y_2, \cdots, y_n\}$ e $\{z_1, z_2, \cdots, z_n\}$. Assumindo 1 < m < n e ae b constantes, mostre que

a)
$$\sum_{i=1}^{n} (ay_i + bz_i) = a \sum_{i=1}^{n} y_i + b \sum_{i=1}^{n} z_i$$
 b) $\sum_{i=1}^{m} y_i + \sum_{j=m+1}^{n} y_j = \sum_{r=1}^{n} y_r$

b)
$$\sum_{i=1}^{m} y_i + \sum_{j=m+1}^{n} y_j = \sum_{r=1}^{n} y_r$$

c)
$$\sum_{i=1}^{n} z_i - \sum_{j=m}^{n} z_j = \sum_{r=1}^{m-1} z_r$$

d)
$$\sum_{i=1}^{n} (y_i - z_i)^2 = \sum_{i=1}^{n} y_i^2 - 2 \sum_{i=1}^{n} y_i z_i + \sum_{i=1}^{n} z_i^2$$

5) Representar através do símbolo de somatória.

a)
$$\underbrace{x_1 + \dots + x_1}_{n_1 \text{ yezes}} + \underbrace{x_2 + \dots + x_2}_{n_2 \text{ yezes}} + \underbrace{x_3 + \dots + x_3}_{n_2 \text{ yezes}}$$

b)
$$\underbrace{x_1 + \dots + x_1}_{n_1 \text{ vezes}} + \underbrace{x_2 + \dots + x_2}_{n_2 \text{ vezes}} + \underbrace{x_3 + \dots + x_3}_{n_3 \text{ vezes}} + \dots + \underbrace{x_m + \dots + x_m}_{n_m \text{ vezes}}$$

c)
$$\underbrace{(x_1 - M)^2 + \dots + (x_1 - M)^2}_{n_1 \text{ vezes}} + \underbrace{(x_2 - M)^2 + \dots + (x_2 - M)^2}_{n_2 \text{ vezes}} + \underbrace{(x_3 - M)^2 + \dots + (x_3 - M)^2}_{n_3 \text{ vezes}}$$

d)
$$\underbrace{(x_1 - M)^2 + \dots + (x_1 - M)^2}_{n_1 \text{ vezes}} + \underbrace{(x_2 - M)^2 + \dots + (x_2 - M)^2}_{n_2 \text{ vezes}} + \dots + \underbrace{(x_m - M)^2 + \dots + (x_m - M)^2}_{n_m \text{ vezes}}$$