BACCALAURÉAT GÉNÉRAL

Épreuve pratique de l'enseignement de spécialité physique-chimie Évaluation des Compétences Expérimentales

Cette situation d'évaluation fait partie de la banque nationale.

ÉNONCÉ DESTINÉ AU CANDIDAT			
NOM:	Prénom :		
Centre d'examen :	n° d'inscription :		

Cette situation d'évaluation comporte **cinq** pages sur lesquelles le candidat doit consigner ses réponses. Le candidat doit restituer ce document avant de sortir de la salle d'examen.

Le candidat doit agir en autonomie et faire preuve d'initiative tout au long de l'épreuve.

En cas de difficulté, le candidat peut solliciter l'examinateur afin de lui permettre de continuer la tâche.

L'examinateur peut intervenir à tout moment, s'il le juge utile.

L'usage de calculatrice avec mode examen actif est autorisé. L'usage de calculatrice sans mémoire « type collège » est autorisé.

CONTEXTE DE LA SITUATION D'ÉVALUATION

La 3,4-dihydropyrimidin-2(1H)-one (ouDHPM) a été préparée pour la première fois en 1893 par le chimiste italien Pietro Biginelli.

Elle fait partie de la famille des dihydropyrimidinones, qui suscitent l'intérêt en raison de leur activité biologique et sont actuellement utilisées comme antibactériens, anti-inflammatoires, anticancéreux, etc.

Avec les préoccupations environnementales croissantes et le réchauffement climatique, il est devenu impératif de minimiser l'utilisation de solvants toxiques et/ou dangereux pour l'environnement. En quelques décennies, la « mécanochimie » s'est imposée comme une technique sans solvant et alternative aux transformations chimiques.

Le but de cette épreuve est de synthétiser la 3,4-dihydropyrimidin-2(1H)-one (ou DHPM) par mécanochimie et de comparer ce procédé avec un protocole « classique » .

INFORMATIONS MISES À DISPOSITION DU CANDIDAT

Synthèse de la dihydropyrimidinone (DHPM)

La 3,4-dihydropyrimidin-2(1*H*)-one ou dihydropyrimidinone (DHPM, espèce **4**) est obtenue en faisant réagir le 3-oxobutanoate d'éthyle ou acétoacétate d'éthyle (espèce **1**) avec du benzaldéhyde (espèce **2**) et de l'urée (espèce **3**).

La transformation chimique est modélisée par l'équation de réaction suivante >

La réaction, lente dans les conditions standards de température et de pression, peut être catalysée par des acides.

Facteur environnemental Em

Le facteur environnemental *Em* relatif à la synthèse est défini comme le rapport de la masse totale de déchets sur la masse de produit d'intérêt, soit :

Em =
$$\frac{\text{masse totale (réactifs + solvant + catalyseur)} - \text{masse de produit d'intérêt}}{\text{masse de produit d'intérêt}}$$

Le facteur environnemental *Em* met en évidence l'importance de la masse de déchets générés lors d'une synthèse. Sa valeur idéale est la plus faible possible, en tendant vers zéro.

<u>Exemple</u>: *Em* = 3 signifie que le procédé de synthèse génère 3 fois plus de déchets en masse que de produit d'intérêt, soit pour 1 kg de produit d'intérêt, le procédé génère 3 kg de déchets.

Chromatographie sur Couche Mince

La chromatographie sur couche mince est une technique de séparation et d'identification des constituants d'un mélange. Ainsi, lorsque deux substances chimiques migrent à la même hauteur dans les mêmes conditions expérimentales, on considère qu'il s'agit de la même espèce.

Dans l'exemple ci-contre, on peut conclure que B est un mélange constitué de l'espèce A et d'une autre espèce chimique.

Données utiles

Densité de l'éthanol : déthanol = 0,789

	Caractéristiques	Risques
Acétoacétate d'éthyle Ou 3-oxobutanoate d'éthyle (Espèce 1)	M_1 = 130,1 g·mol ⁻¹ d_1 =1,02 Solubilité dans l'eau : 111 g. L ⁻¹ à 20 °C Soluble dans l'éthanol	<u>(i)</u>
Benzaldéhyde (Espèce 2)	M_2 = 106,1 g·mol ⁻¹ d_2 = 1,05 Solubilité dans l'eau : 3,3 g·L ⁻¹ à 20°C Soluble dans l'éther et l'éthanol	Nocif pour les organismes aquatiques
Urée (Espèce 3)	M₃ = 60,1 g·mol ⁻¹ Soluble dans l'eau, Soluble dans l'éthanol	Pas de risque particulier
DHPM (Espèce 4)	 M₄ = 260,2 g·mol⁻¹ Insoluble dans l'eau. Peu soluble à froid dans l'éthanol, soluble à chaud. Soluble dans l'éthanoate d'éthyle 	Pas de risque particulier

TRAVAIL À EFFECTUER

1. Synthèse de la DHPM (30 minutes conseillées)

En respectant les règles de sécurité qui s'imposent, mettre en œuvre le protocole suivant :

 Dans un mortier, introduire 1,0 mL de benzaldéhyde, 1,3 mL d'acétoacétate d'éthyle, 1,5 g d'urée ainsi que 10 gouttes d'acide chlorhydrique concentré (catalyseur).

- Faire un apport d'énergie mécanique en mélangeant vigoureusement pendant 3 à 5 minutes à l'aide d'un pilon jusqu'à apparition d'un solide jaunâtre / ivoire, et continuer une minute après l'apparition du solide.
- Ajouter de l'eau distillée afin de décoller la DHPM des parois du mortier.
- Filtrer sur Büchner.
- Laver le solide avec de l'éthanol glacé.
- Sécher le solide entre deux feuilles de papier filtre.
- Peser le produit « sec ».

La masse de solide obtenu expérimentalement est : m_{exp} =

2.	Exploitation	de la sy	vnthèse ((20 minutes	conseillées)
----	---------------------	----------	-----------	-------------	--------------

$\overline{}$	4	^ '''			1. 1	
٠,	1	Caractéris	nation	an	CALIMA	ONTONI
∠.	. н.	Caracteris	auvii	uu	SUIIUE	ODICHU

Dans un tube à hémolyse, dissoudre un peu de produit synthétisé dans de l'éthanoate d'éthyle.

Faire deux dépôts sur la plaque de silice avec :

- la DHPM de référence,
- la DHPM synthétisée.

Mettre en œuvre une CCM avec l'éluant proposé.

Profiter du temps d'élution pour répondre aux questions du 2.2..

Après élution, révéler à l'aide d'une lampe à ultraviolets. La lumière émise par la lampe est une radiation de longueur d'onde 254 nm.

Conclure.	

APPEL n°2

Appeler le professeur pour lui présenter la CCM ou en cas de difficulté

2.2. Exploitation du protocole	
--------------------------------	--

Indiquer pour quelles raisons la DHPM a été rincée avec de l'éthanol très froid.				
Le benzaldhédyde étant le réactif limitant dans les conditions expérimentales, calculer la masse maximale de DHPM, notée <i>m</i> _{4max} , que l'on peut obtenir lors de l'expérience.				

Le rendement de la mécanosynthèse a été préalablement déterminé : η = 94 %. Évaluer la masse de DHPM, noté m_4 , qui aurait dû être obtenue lors de la synthèse qui vient d'être mise en œuvre. Commenter.						
				••••		
		APPEL n°3	·····			
	M	Appeler le professeur pour lui commenter le résultat du rendement ou en cas de difficulté	M			

3. Comparaison avec le protocole « classique » (10 minutes conseillées)

Compléter le tableau ci-dessous :

	Mécanochimie	Protocole classique
Réactifs utilisés	1,5 g d'urée, 1,0 mL de benzaldéhyde 1,3 mL d'acétoacétate d'éthyle	2,9 g d'urée 3,3 mL de benzaldéhyde 6 mL d'acétoacétate d'éthyle 25 mL d'éthanol (solvant)
Conditions expérimentales de la synthèse	10 gouttes d'acide chlorhydrique concentré, soit 0,6 g. Trituration au mortier pendant 5 min ou agitation magnétique à température ambiante pendant 5 min.	10 gouttes d'acide chlorhydrique concentré soit 0,6 g. Chauffage à reflux pendant 10 min sous agitation magnétique
Rendement expérimental	η = 94 %	η = 70 à 85 %
Em	$Em = \frac{4.5 - m_4 \text{ (en g)}}{m_4 \text{ (en g)}}$	<i>Em</i> = 3,9
Formes d'énergie(s) consommée(s)		Énergie électrique pour le chauffage à reflux du mélange réactionnel et agitation magnétique

Conclure sur l'intérêt de la synthèse par mécanochimie par rapport au procédé « classique ».				
	•			

Défaire le montage et ranger la paillasse avant de quitter la salle