Bastian Schlag

Übungsblatt 3

15.20.2020

Aufgabe 1: Geometrische Addition und Subtraktion

Zeichnen Sie jeweils $\overrightarrow{a} + 2\overrightarrow{b} + \overrightarrow{c}$ und $\overrightarrow{a} - \overrightarrow{b} + \overrightarrow{c}$

(a)

(b)

Aufgabe 2: Operationen in Komponentendarstellung

Gegeben seien die Vektoren $\overrightarrow{a}=(3,2,1), \overrightarrow{b}=(1,1,1)$ und $\overrightarrow{c}=(0,0,3)$. Berechnen Sie (a) $\overrightarrow{a}+\overrightarrow{b}-\overrightarrow{c}$

(b)
$$2\overrightarrow{a} - \overrightarrow{b} + 3\overrightarrow{c}$$

Aufgabe 3: Skalarprodukt

Berechnen Sie das Skalarprodukt $\overrightarrow{a} \cdot \overrightarrow{b}$

(a)
$$\overrightarrow{a} = (3, -1, 4), \overrightarrow{b} = (-1, 2, 5)$$

Bastian Schlag

Übungsblatt 3

15.20.2020

(b)
$$\overrightarrow{a} = (-1,2,-5), \overrightarrow{b} = (-8,1,2)$$

Aufgabe 4: Winkel zwischen Vektoren

Berechnen Sie den von den Vektoren \overrightarrow{a} und \overrightarrow{b} eingeschlossenen Winkel.

(a)
$$\overrightarrow{a} = (1, -1, 1), \overrightarrow{b} = (-1, 1, -1)$$

(b)
$$\overrightarrow{a} = (-2,2,-1), \overrightarrow{b} = (0,3,0)$$

Aufgabe 5: Bonus: Dreiecksungleichung

Zeigen Sie, dass die Dreiecksungleichung $\left(\overrightarrow{a}\cdot\overrightarrow{b}\right)^2 \leq \left(\overrightarrow{a}\cdot\overrightarrow{a}\right)\left(\overrightarrow{b}\cdot\overrightarrow{b}\right)$ für Vektoren gilt.

Aufgabe 6: Vektorprodukt

Berechnen Sie jeweils das Vektorprodukt $\overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{b}$

(a)
$$\overrightarrow{a} = (2,3,1), \overrightarrow{b} = (-1,2,4)$$

(b)
$$\overrightarrow{a} = (-2,1,0), \overrightarrow{b} = (1,4,3)$$

15.20.2020

(c)
$$\overrightarrow{a} = 2\overrightarrow{e_x}, \overrightarrow{b} = -3\overrightarrow{e_z}$$

(d)
$$\overrightarrow{a} = 4\overrightarrow{e_y}, \overrightarrow{b} = \overrightarrow{e_y}$$

Aufgabe 7: Vektoren in einer Ebene Wie kann man feststellen, ob drei gegebene Vektoren in einer Ebene liegen?