Syntaxgesteuerte Interpretation

von Marc-Niclas Harm | am 28.11.2018 Formale Sprachen und Übersetzertechniken | TH-Lübeck

Aufgabe 1: Syntaxgesteuerte Definition

Produktion	Semantische Regel
stat → expr n	stat.v = expr.v
expr → int	expr.v = int.v
$expr \rightarrow expr_1 + expr_2$	$expr.v = expr_1.v + expr_2.v$
$expr \rightarrow expr_1 - expr_2$	$expr.v = expr_1.v - expr_2.v$
$expr \rightarrow expr_1 * expr_2$	expr.v = expr ₁ .v * expr ₂ .v
$expr \rightarrow expr_1 / expr_2$	expr.v = expr ₁ .v / expr ₂ .v
expr → (expr ₁)	expr.v = expr ₁ .v

Aufgabe 1: Parse Tree für "9-5+2"

Aufgabe 1: Parse Tree für "9-5*2"

Aufgabe 1: Übersetzungsschema

```
Produktionen mit Aktionen
stat \rightarrow expr n
                  { stat.v = expr.v }
expr \rightarrow int
                    { expr.v = int.v }
expr \rightarrow expr_1 + expr_2 \quad \{ expr.v = expr_1.v + expr_2.v \}
expr \rightarrow expr_1 - expr_2 \quad \{ expr.v = expr_1.v - expr_2.v \}
expr \rightarrow expr_1 * expr_2 { expr.v = expr_1.v * expr_2.v }
expr \rightarrow expr_1 / expr_2  { expr.v = expr_1.v / expr_2.v }
expr \rightarrow (expr_1) { expr.v = expr_1.v }
```