

MARIAN DINCA
BENCZE MIHÁLY
SZILÁRD ANDRÁS
FLORENTIN SMARANDACHE
A Solution of OQ. 128

*In Florentin Smarandache: “Collected Papers”, vol. III.
Oradea (Romania): Abaddaba, 2000.*

A Solution of OQ. 128¹

In "Octogon", vol. 6, Nr. 1, April 1998, Mihály Bencze proposed the following open question:

"Let $A_1 A_2 \dots A_n$ be a convex polygon and $\{B_1\} = A_1 A_3 \cap A_2 A_n$, $\{B_2\} = A_2 A_4 \cap A_1 A_3$, ..., $\{B_n\} = A_1 A_{n-1} \cap A_2 A_n$. Prove that

$$\frac{A_1 B_1}{B_1 A_2} \cdot \frac{A_2 B_2}{B_2 A_3} \cdots \cdot \frac{A_{n-1} B_{n-1}}{B_{n-1} A_1} = 1.$$

Let:

$$x_1 = m(A_2 A_1 B_1), x_2 = (A_1 A_2 B_1), x_3 = m(A_3 A_1 A_2),$$

$$x_4 = m(A_2 A_3 B_2), \dots, x_{k+1} = m(A_{k+1} A_k B_k),$$

$$x_{k+2} = m(A_k A_{k+1} B_k), \dots, x_{2n-1} = m(A_1 A_n B_n),$$

$$x_{2n} = m(A_n A_1 B_n) \text{ and } A_k A_{k+1} = a_k (k = 1, 2, \dots, n).$$

Using the sinus theorem in the triangle $A_k B_k A_{k+1}$, we obtain:

$$(1) \quad \frac{A_k B_k}{B_k A_{k+1}} = \frac{\sin x_{k+1}}{\sin x_k}.$$

Using again the sinus theorem in the triangle $A_k A_{k+1} A_{k+2}$, we obtain:

$$(2) \quad \frac{A_k A_{k+1}}{A_{k+1} A_{k+2}} = \frac{a_k}{a_{k+1}} = \frac{\sin x_{k+3}}{\sin x_k}.$$

From (1) and (2), by multiplication, we obtain the proposed relation.

[“Octogon”, Vol. 7, No.1, 183-4, 1999.]

Together with Marian Dinca, Mihály Bencze, and Szilárd András.