Complexidade de Algoritmos I – 2022 - ATIVIDADE 3

Nome:	RA:	

1) Sejam $T1(n) = 3n + 3n \log_2 n + 25 \log_3 n$, $T2(n) = 15n + 3n^2 + 9n^2 \log_2 n + 8$ e $T3(n) = 5n^3 + 7n^2 + 2$, apresente as equações que descrevem a ordem de complexidade de tempo dos algoritmos Alg1, Alg2 e Alg3, respectivamente, para entradas de tamanho n.

Alg1: $O(n \log n)$ Alg2: $O(n^2 \log n)$

Alg3: $O(n^3)$

- 2) Um método de ordenação de complexidade $O(\log n)$ gasta exatamente 2 milissegundos para ordenar $10000~(10^4)$ elementos. Supondo que o tempo T(n) para ordenar n desses elementos é diretamente proporcional a $\log n$, ou seja, $T(n) = c.\log n$:
 - a) Estime a constante *c* utilizando uma base conveniente para o logaritmo.

$$2 = c. \log_{10} 10^{4}$$
$$2 = 4c$$
$$c = \frac{2}{4} = \frac{1}{2} = 0.5$$

b) Estime o tempo consumido por esse algoritmo, em segundos, para ordenar $1000000\,(10^6)$ elementos.

$$T(10^6) = 0.5 * \log_{10} 10^6$$

 $T(10^6) = 0.5 * 6$

 $T(10^6) = 3 \text{ milissegundos} = 0,003 \text{ segundos}$

3) Suponha que cada expressão abaixo represente o tempo T(n) consumido por um algoritmo para resolver um problema de tamanho n. Escreva os termos(s) dominante(s) para valores muito grandes de n e especifique o menor limite assintótico superior O(n) possível para cada algoritmo.

Expressão	Termo(s) Dominante(s)	0()
$5 + 0.01n^2 + 0.52n^4$	$0.52n^4$	$O(n^4)$
$100n + 0.01n^3$	$0.01n^3$	$O(n^3)$
$5n^2 + 10n^{1.5} + 5n$	$5n^2$	$O(n^2)$
$13n + 4n^2$	$4n^2$	$O(n^2)$
$0.3n + 5n^{1.5} + 2.5n^{1.75}$	$2.5n^{1.75}$	$O(n^{1.75})$
$n^3 \log_2(n) + 5n(\log_3(n))^2$	$n^3 \log_2(n)$	$O(n^3 \log n)$
$2n + n^{1.5} + 0.5n^2$	$0.5n^2$	$O(n^2)$
$n^2 \log_3(n) + n^2 \log_2(n)$	$n^2\log_3(n)/n^2\log_2(n)$	$O(n^2 \log n)$
$5n^2\log_2(n) + 2n^3 + 10n$	$2n^3$	$O(n^3)$
$5n^2 + n^3 \log n$	$n^3 \log n$	$O(n^3 \log n)$

4) Analise o algoritmo abaixo, escrito em C, que recebe dois vetores, *a* e *b*, de tamanhos iguais *n* e determine o menor limite assintótico superior para o pior caso em função do parâmetro *n*.

Resposta: $O(n^2)$

5) Encontre o menor limite assintótico superior para o algoritmo abaixo, escrito C:

```
int menor(int vetor[], int n){
  int menor = MAX_INT;
  para i=1 ate n faça
     se (vetor[i] < menor)
     menor = vetor[i];
  se menor < 0
     para i=1 ate n faca
     para j=1 ate n faca
     vetor[i] = vetor[i]^(i+j);
  retorna(menor);
}</pre>
```

Resposta: $O(n^2)$

- 6) Suponha que ofereçam a você dois pacotes de software, $\bf A$ e $\bf B$, para processamento dos dados da sua empresa, que contêm 10^6 registros. Sabendo que o tempo de processamento médio do pacote $\bf A$ é $T_A(n)=2n^2$ milissegundos, e o tempo médio de $\bf B$ é $T_B(n)=1000n$ milissegundos, responda:
 - a) Qual desses pacotes é o mais indicado para processar os dados da empresa?

$$T_A(10^6) = 2.(10^6)^2 = 2.10^{12}$$

 $T_B(10^6) = 1000.10^6 = 10^9$

Logo, o software B é mais indicado para o caso da sua empresa.

b) A partir de quantos registros um dos pacotes passa a ser melhor que o outro?

$$2n^{2} = 1000n$$

$$2n^{2} - 1000n = 0$$

$$n = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{1000 \pm \sqrt{1000^{2} - 4.2.0}}{2.2} = \frac{1000 \pm 1000}{4}$$

$$n = 0 \text{ ou } n = 500$$

Logo, a partir de 500 elementos o software B passa a ser mais vantajoso.