AMMI - Introduction to Deep Learning

1.5. High dimension tensors

François Fleuret

 ${\tt https://fleuret.org/ammi-2018/}$

Wed Aug 29 16:56:57 CEST 2018

A tensor can be of several types:

- torch.float16, torch.float32, torch.float64,
- torch.uint8.
- torch.int8, torch.int16, torch.int32, torch.int64

and can be located either in the CPU's or in a GPU's memory. Operations on tensors located in device's memory are done by that device. We will come back to that later.

```
>>> x = torch.zeros(1, 3)
>>> x.dtype, x.device
(torch.float32, device(type='cpu'))
>>> x = x.long()
>>> x.dtype, x.device
(torch.int64, device(type='cpu'))
>>> x = x.cuda()
>>> x.dtype, x.device
(torch.int64, device(type='cuda', index=0))
```

2d tensor (e.g. grayscale image)

3d tensor (e.g. rgb image)

4d tensor (e.g. sequence of rgb images)

Here are some examples from the vast library of tensor operations:

Creation

- torch.empty(*size, ...)
- torch.zeros(*size, ...)
- torch.full(size, value, ...)
- torch.tensor(sequence, ...)
- torch.eye(n, ...)
- torch.from_numpy(ndarray)

Indexing, Slicing, Joining, Mutating

- torch.Tensor.view(*size)
- torch.cat(inputs, dimension=0)
- torch.chunk(tensor, chunks, dim=0)[source]
- torch.split(tensor, split_size, dim=0)[source]
- torch.index_select(input, dim, index, out=None)
- torch.t(input, out=None)
- torch.transpose(input, dim0, dim1, out=None)

Filling

- Tensor.fill_(value)
- torch.bernoulli_(proba)
- torch.normal_([mu, [std]])

Pointwise math

- torch.abs(input, out=None)
- torch.add()
- torch.cos(input, out=None)
- torch.sigmoid(input, out=None)
- (+ many operators)

Math reduction

- torch.dist(input, other, p=2, out=None)
- torch.mean()
- torch.norm()
- torch.std()
- torch.sum()

BLAS and LAPACK Operations

- torch.eig(a, eigenvectors=False, out=None)
- torch.gels(B, A, out=None)
- torch.inverse(input, out=None)
- torch.mm(mat1, mat2, out=None)
- torch.mv(mat, vec, out=None)

x.view(-1)

x.view(3, -1)

x.narrow(1, 1, 2)

x.view(1, 2, 3).expand(3, 2, 3)

x.narrow(0, 0, 1)

x.narrow(2, 0, 2)

x.transpose(0, 1)

[2, 1, 2]],

[[3, 0, 3], [0, 3, 0]]])

x.transpose(1, 2)

PyTorch offers simple interfaces to standard image data-bases.

```
import torch, torchvision
cifar = torchvision.datasets.CIFAR10('./cifar10/', train = True, download = True)
x = torch.from_numpy(cifar.train_data).transpose(1, 3).transpose(2, 3).float()
x = x / 255
print(x.type(), x.size(), x.min().item(), x.max().item())
```

PyTorch offers simple interfaces to standard image data-bases.

```
import torch, torchvision
cifar = torchvision.datasets.CIFAR10('./cifar10/', train = True, download = True)
x = torch.from_numpy(cifar.train_data).transpose(1, 3).transpose(2, 3).float()
x = x / 255
print(x.type(), x.size(), x.min().item(), x.max().item())
```

prints

```
Files already downloaded and verified torch.FloatTensor torch.Size([50000, 3, 32, 32]) 0.0 1.0
```

PyTorch offers simple interfaces to standard image data-bases.

```
import torch, torchvision
cifar = torchvision.datasets.CIFAR10('./cifar10/', train = True, download = True)
x = torch.from_numpy(cifar.train_data).transpose(1, 3).transpose(2, 3).float()
x = x / 255
print(x.type(), x.size(), x.min().item(), x.max().item())
```

prints

Files already downloaded and verified torch.FloatTensor torch.Size([50000, 3, 32, 32]) 0.0 1.0

- # Narrows to the first images, converts to float
- x = x.narrow(0, 0, 48).float()
- # Saves these samples as a single image
 torchvision.utils.save_image(x, 'cifar-4x12.png', nrow = 12)

Switches the row and column indexes
x.transpose_(2, 3)
torchvision.utils.save_image(x, 'cifar-4x12-rotated.png', nrow = 12)


```
# Kills the green and blue channels
x.narrow(1, 1, 2).fill_(0)
torchvision.utils.save_image(x, 'cifar-4x12-rotated-and-red.png', nrow = 12)
```


Broadcasting

Broadcasting automagically expands dimensions by replicating coefficients, when it is necessary to perform operations.

Broadcasting automagically expands dimensions by replicating coefficients, when it is necessary to perform operations.

For instance

```
>>> x = torch.empty(100, 4).normal_(2)
>>> x.mean(0)
tensor([2.0476, 2.0133, 1.9109, 1.8588])
>>> x -= x.mean(0)
>>> x.mean(0)
tensor([-4.0531e-08, -4.4703e-07, -1.3471e-07, 3.5763e-09])
```

Broadcasting automagically expands dimensions by replicating coefficients, when it is necessary to perform operations.

For instance:

```
>>> x = torch.empty(100, 4).normal_(2)
>>> x.mean(0)
tensor([2.0476, 2.0133, 1.9109, 1.8588])
>>> x = x.mean(0)
>>> x.mean(0)
tensor([-4.0531e-08, -4.4703e-07, -1.3471e-07, 3.5763e-09])
```

- 1. If one of the tensors has fewer dimensions than the other, it is reshaped by adding as many dimensions of size 1 as necessary in the front; then
- for every mismatch, if one of the two tensor is of size one, it is expanded along this axis by replicating coefficients.

If there is a tensor size mismatch for one of the dimension and neither of them is one, the operation fails.

```
A = torch.tensor([[1.], [2.], [3.], [4.]])
B = torch.tensor([[5., -5., 5., -5., 5.]])
C = A + B
```


Broadcasted

```
A = torch.tensor([[1.], [2.], [3.], [4.]])
B = torch.tensor([[5., -5., 5., -5., 5.]])
C = A + B
```


Broadcasted

