# Data Mining algoritmo apriori

#### Jomi F. Hübner

Universidade Federal de Santa Catarina Departamento de Automação e Sistemas http://jomi.das.ufsc.br



#### **Apriori**

- algoritmo simples de data mining em banco de dados com transações
- valor histórico
- entrada: transações (conjunto de itens comprados)
- saída regras de associação

   ~ "quem compra pepino e hamburger também compra cerveja"

## Exemplo de Banco de Dados

| Transação | Pepino | Batata | Hamburger | Leite | Cerveja |
|-----------|--------|--------|-----------|-------|---------|
| $t_1$     | 1      | 1      | 1         | 0     | 0       |
| $t_2$     | 0      | 1      | 1         | 1     | 0       |
| $t_3$     | 0      | 0      | 0         | 1     | 1       |
| $t_4$     | 1      | 1      | 0         | 1     | 0       |
| $t_5$     | 1      | 1      | 1         | 0     | 1       |
| $t_6$     | 1      | 1      | 1         | 1     | 1       |

[fonte]

#### Notação

- *l*: conjunto de itens
- D: conjunto de transações,
   cada transação t ∈ D é um conjunto de itens (t ⊆ I)
- suporte a um conjunto  $x \subset I$  de itens

$$supp(x) = \frac{|\{t \mid x \subseteq t \land t \in D\}|}{|D|}$$

#### Algoritmo

1 **function** apriori $(D, \epsilon)$ 

**Input**: conjunto de transações D; frequência mínima  $\epsilon$ .

Output: cjto de itemsets frequentes

**Data**:  $C_k$ : itemsets candidatos;  $L_k$ : itemsets frequentes de tamanho k.

$$2 L_1 \leftarrow \{\{i\} \mid i \in I \land supp(\{i\}) \geq \epsilon\}$$

- $3 k \leftarrow 2$
- 4 while  $L_{k-1} \neq \emptyset$  do

$$\begin{array}{c|cccc}
C_k \leftarrow \{a \cup b \mid a \in L_{k-1} \land b \in L_{k-1}\}^a \\
L_k \leftarrow \{c \mid c \in C_k \land |c| = k \land supp(c) \ge \epsilon\}
\end{array}$$

7 
$$k \leftarrow k+1$$

8 return  $\bigcup_k L_k$ 

 $<sup>^</sup>a$  assume-se que se um cito é frequente, seus sub-citos também são. Por isso  $\mathcal{C}_k$  pode ser construídos a partir de  $\mathcal{L}_{k-1}$ .

#### Regras

- Uma regra  $X \to Y$  é um par onde  $X \subset I$ ,  $Y \subset I$ ,  $X \cap Y = \emptyset$
- A confiança em uma regra é dada por

$$conf(X \to Y) = \frac{supp(X \cup Y)}{supp(X)}$$

Exemplo:

$$conf({p, b} \to {h}) = \frac{supp({p, b, h})}{supp({p, b})} = \frac{3/6}{4/6} = 0,75$$

Em 75% das compras de pepino e batata, se comprou hamburger

### Geração de Regras

$$\{\langle X, Y \rangle \mid X \subset L \land X \neq \emptyset \land \tag{1}$$

$$Y \subset L \wedge Y \neq \emptyset \wedge \tag{2}$$

$$X \cap Y = \emptyset \land \tag{3}$$

$$conf(X \to Y) \ge \delta \} \tag{4}$$

$$L \in apriori(D, \epsilon)$$
 (5)

para  $L = \{p, b, h\}$  temos:

$$pb \rightarrow h, ph \rightarrow b, hb \rightarrow p, p \rightarrow bh, b \rightarrow ph, h \rightarrow pb$$

regras potenciais:

$$\sum_{L \in apriori(D,\epsilon)} 2^{|L|} - 2$$

#### Resumo

- processo bottom-up
- lento
- gera muitas regras
- funciona com valores discretos
- tem várias extensões que mitigam essas limitações