Averaging via stacking in model-based clustering

Advanced Statistics for Physics Discovery

- ♣ Alessandro Casa¹
 Luca Scrucca² and Giovanna Menardi¹
 - Università degli Studi di Padova¹
 - Università degli Studi di Perugia²
- casa@stat.unipd.it

24th September 2018

Framework

 Model-based clustering, data come from a finite mixture of K components (corresponding to the groups):

$$f(x|\Theta) = \sum_{k=1}^{K} \pi_k f_k(x|\theta_k) ;$$

- Model selection is a crucial step in this framework involving the choices of:
 - Number of clusters;
 - · Parametrization of component covariance matrices;
 - Component densities.

Single best model paradigm

The best model among the fitted ones is chosen, according to information criteria (e.g. BIC, ICL) and used for subsequent steps.

Problem

- What if discarded models have IC values close to the one of the selected model?
- Example: Iris data

VEV2, BIC=-561.72

VEV3, BIC=-562.55

 Model selection-related uncertainty is neglected, possibly useful models are thrown away.

Proposal

- Idea: average densities of fitted models to improve robustness and stability of clustering solutions;
- Resulting estimate is a convex linear combination of a subset of fitted models

$$f_{av}(x) = \sum_{m=1}^{M} \alpha_m f_m(x|\hat{\Theta}_m) ;$$

- Issues:
 - Weights
 f_{av}(·) is still a mixture model → α_m estimated via EM,
 maximizing a BIC-penalized log-likelihood;
 - Partitions correspondence components-clusters is lost \rightarrow explore modality of $f_{av}(\cdot)$ via mean-shift algorithm.