Computational Complexity of real functions

Amaury Pouly

April 8, 2015

Outline

- Computability and computational complexity
 - Computability
 - Computational complexity
 - Turing degrees
 - Conclusion
- Complexity of real functions
 - Introduction
 - Computable Analysis
 - GPAC
 - Analog Church Thesis
- Toward a Complexity Theory for the GPAC
 - What is the problem ?

"computable = can be solved with a computer"

"computable = can be solved with a computer"

Example (Sorting)

SORT: given n integers x_1, \ldots, x_n , find a permutation σ such that $x_{\sigma(1)} \leqslant \infty$

$$X_{\sigma(2)} \leqslant \ldots \leqslant X_{\sigma(n)}$$
.

"computable = can be solved with a computer"

Example (Sorting)

SORT: given n integers x_1, \ldots, x_n , find a permutation σ such that $x_{\sigma(1)} \le x_0$

$$X_{\sigma(2)} \leqslant \ldots \leqslant X_{\sigma(n)}.$$

⇒ "clearly computable"

"computable = can be solved with a computer"

Example (Sorting)

SORT: given n integers x_1, \ldots, x_n , find a permutation σ such that $x_{\sigma(1)} \le x_{\sigma(2)} \le \ldots \le x_{\sigma(n)}$.

⇒ "clearly computable"

Example (Ackermann function)

ACK: given n and m, compute $A_{m,n}$ defined by

$$A_{0,n} = n+1$$
 $A_{m,0} = A_{m-1,1}$ $A_{m,n} = A_{m-1,A_{m,n-1}}$

"computable = can be solved with a computer"

Example (Sorting)

SORT: given n integers x_1, \ldots, x_n , find a permutation σ such that $x_{\sigma(1)} \le x_{\sigma(2)} \le \ldots \le x_{\sigma(n)}$.

⇒ "clearly computable"

Example (Ackermann function)

ACK: given n and m, compute $A_{m,n}$ defined by

$$A_{0,n} = n+1$$
 $A_{m,0} = A_{m-1,1}$ $A_{m,n} = A_{m-1,A_{m,n-1}}$

⇒ "clearly computable"...

"computable = can be solved with a computer"

Example (Sorting)

SORT: given n integers x_1, \ldots, x_n , find a permutation σ such that $x_{\sigma(1)} \le x_{\sigma(2)} \le \ldots \le x_{\sigma(n)}$.

⇒ "clearly computable"

Example (Ackermann function)

ACK: given n and m, compute $A_{m,n}$ defined by

$$A_{0,n} = n+1$$
 $A_{m,0} = A_{m-1,1}$ $A_{m,n} = A_{m-1,A_{m,n-1}}$

 \Rightarrow "clearly computable"...but slow ? ($A_{4,2} \approx 10^{20000}$)

Example (Collatz/Syracuse sequence)

COLLATZ: given *n* decide if this sequence converges to 1:

$$u_0 = n$$
 $u_{k+1} = \begin{cases} \frac{u_k}{2} & \text{if } u_k \text{ is even} \\ 3u_k & \text{otherwise} \end{cases}$

Example (Collatz/Syracuse sequence)

COLLATZ: given *n* decide if this sequence converges to 1:

$$u_0 = n$$
 $u_{k+1} = \begin{cases} \frac{u_k}{2} & \text{if } u_k \text{ is even} \\ 3u_k & \text{otherwise} \end{cases}$

⇒ unclear...

Example (Collatz/Syracuse sequence)

COLLATZ: given *n* decide if this sequence converges to 1:

$$u_0 = n$$
 $u_{k+1} = \begin{cases} \frac{u_k}{2} & \text{if } u_k \text{ is even} \\ 3u_k & \text{otherwise} \end{cases}$

⇒ unclear...

Example (Halting problem)

HALT: given a program P and an input x, decide if P halts on x

Example (Collatz/Syracuse sequence)

COLLATZ: given *n* decide if this sequence converges to 1:

$$u_0 = n$$
 $u_{k+1} = \begin{cases} \frac{u_k}{2} & \text{if } u_k \text{ is even} \\ 3u_k & \text{otherwise} \end{cases}$

⇒ unclear...

Example (Halting problem)

HALT: given a program P and an input x, decide if P halts on x

⇒ what does a "program" mean?

Computability theory is about:

Computability theory is about:

• formalise a notion of program and "being computable"

Computability theory is about:

- formalise a notion of program and "being computable"
- study different "levels" of computability

Computability theory is about:

- formalise a notion of program and "being computable"
- study different "levels" of computability
- identify and separate classes of similar problems

Computability theory is about:

- formalise a notion of program and "being computable"
- study different "levels" of computability
- identify and separate classes of similar problems

Back to the examples:

SORT: primitive recursive

Computability theory is about:

- formalise a notion of program and "being computable"
- study different "levels" of computability
- identify and separate classes of similar problems

Back to the examples:

- SORT: primitive recursive
- ACK: recursive/computable but not primitive recursive

Computability theory is about:

- formalise a notion of program and "being computable"
- study different "levels" of computability
- identify and separate classes of similar problems

Back to the examples:

- SORT: primitive recursive
- ACK: recursive/computable but not primitive recursive
- COLLATZ: open problem

Computability theory is about:

- formalise a notion of program and "being computable"
- study different "levels" of computability
- identify and separate classes of similar problems

Back to the examples:

- SORT: primitive recursive
- ACK: recursive/computable but not primitive recursive
- COLLATZ: open problem
- HALT: undecidable/non-recursive/uncomputable

Computability theory is about:

- formalise a notion of program and "being computable"
- study different "levels" of computability
- identify and separate classes of similar problems

Back to the examples:

- SORT: primitive recursive
- ACK: recursive/computable but not primitive recursive
- COLLATZ: open problem
- HALT: undecidable/non-recursive/uncomputable

Going further:

Computability theory is about:

- formalise a notion of program and "being computable"
- study different "levels" of computability
- identify and separate classes of similar problems

Back to the examples:

- SORT: primitive recursive
- ACK: recursive/computable but not primitive recursive
- COLLATZ: open problem
- HALT: undecidable/non-recursive/uncomputable

Going further:

• Computational complexity: refine the notion of primitive recursive

Computability theory is about:

- formalise a notion of program and "being computable"
- study different "levels" of computability
- identify and separate classes of similar problems

Back to the examples:

- SORT: primitive recursive
- ACK: recursive/computable but not primitive recursive
- COLLATZ: open problem
- HALT: undecidable/non-recursive/uncomputable

Going further:

- Computational complexity: refine the notion of primitive recursive
- Turing degrees: refine the notion of uncomputable problems

Example (Sorting)

SORT: given n integers x_1, \ldots, x_n , find a permutation σ such that $x_{\sigma(1)} \le x_{\sigma(2)} \le \ldots \le x_{\sigma(n)}$.

Example (Sorting)

SORT: given n integers x_1, \ldots, x_n , find a permutation σ such that $x_{\sigma(1)} \le x_{\sigma(2)} \le \ldots \le x_{\sigma(n)}$.

 \Rightarrow "easy problem" $\rightarrow \mathcal{O}(n \log n)$ comparisons suffices

Example (Sorting)

SORT: given n integers x_1, \ldots, x_n , find a permutation σ such that $x_{\sigma(1)} \le x_{\sigma(2)} \le \ldots \le x_{\sigma(n)}$.

 \Rightarrow "easy problem" $\rightarrow \mathcal{O}(n \log n)$ comparisons suffices

Example (Subset sum)

SUBSET-SUM: given n integers A_1, \ldots, A_n and an integer B, find a subset $I \subseteq \{1, \ldots, n\}$ such that $\sum_{i \in I} A_i$.

Example (Sorting)

SORT: given n integers x_1, \ldots, x_n , find a permutation σ such that $x_{\sigma(1)} \le x_{\sigma(2)} \le \ldots \le x_{\sigma(n)}$.

 \Rightarrow "easy problem" $\rightarrow \mathcal{O}(n \log n)$ comparisons suffices

Example (Subset sum)

SUBSET-SUM: given n integers A_1, \ldots, A_n and an integer B, find a subset $I \subseteq \{1, \ldots, n\}$ such that $\sum_{i \in I} A_i$.

⇒ "not so easy problem" → we can check all possibilities

Example (Sorting)

SORT: given n integers x_1, \ldots, x_n , find a permutation σ such that $x_{\sigma(1)} \le x_{\sigma(2)} \le \ldots \le x_{\sigma(n)}$.

 \Rightarrow "easy problem" $\rightarrow \mathcal{O}(n \log n)$ comparisons suffices

Example (Subset sum)

SUBSET-SUM: given n integers A_1, \ldots, A_n and an integer B, find a subset $I \subseteq \{1, \ldots, n\}$ such that $\sum_{i \in I} A_i$.

⇒ "not so easy problem" → we can check all possibilities

Example (Sorting)

SORT: given n integers x_1, \ldots, x_n , find a permutation σ such that $x_{\sigma(1)} \le x_{\sigma(2)} \le \ldots \le x_{\sigma(n)}$.

 \Rightarrow "easy problem" $\rightarrow \mathcal{O}(n \log n)$ comparisons suffices

Example (Subset sum)

SUBSET-SUM: given n integers A_1, \ldots, A_n and an integer B, find a subset $I \subseteq \{1, \ldots, n\}$ such that $\sum_{i \in I} A_i$.

 \Rightarrow "not so easy problem" \rightarrow we can check all possibilities

Example (Set game)

SET-GAME: given n finite sets S_1, \ldots, S_n , each player takes turn a nonempty set S_i and remove the elements of S_i from all the sets S_j . Decide if the first player has a winning (empty all sets) strategy.

Example (Sorting)

SORT: given n integers x_1, \ldots, x_n , find a permutation σ such that $x_{\sigma(1)} \le x_{\sigma(2)} \le \ldots \le x_{\sigma(n)}$.

 \Rightarrow "easy problem" $\rightarrow \mathcal{O}(n \log n)$ comparisons suffices

Example (Subset sum)

SUBSET-SUM: given n integers A_1, \ldots, A_n and an integer B, find a subset $I \subseteq \{1, \ldots, n\}$ such that $\sum_{i \in I} A_i$.

⇒ "not so easy problem" → we can check all possibilities

Example (Set game)

SET-GAME: given n finite sets S_1, \ldots, S_n , each player takes turn a nonempty set S_i and remove the elements of S_i from all the sets S_j . Decide if the first player has a winning (empty all sets) strategy.

⇒ "looks quite hard" → we can check all strategies!

Computational complexity theory is about:

• formalise a notion of "time"/"steps", "space"/"memory", ...

- formalise a notion of "time"/"steps", "space"/"memory", ...
- study different "levels" of complexity depending on space, time, ...

- formalise a notion of "time"/"steps", "space"/"memory", ...
- study different "levels" of complexity depending on space, time, ...
- identify and separate classes of similar problems

- formalise a notion of "time"/"steps", "space"/"memory", ...
- study different "levels" of complexity depending on space, time, ...
- identify and separate classes of similar problems
- give alternative characterisation of these classes

Computational complexity theory is about:

- formalise a notion of "time"/"steps", "space"/"memory", ...
- study different "levels" of complexity depending on space, time, ...
- identify and separate classes of similar problems
- give alternative characterisation of these classes

Back to the examples:

SORT: polynomial time (P)

Computability theory

Computational complexity theory is about:

- formalise a notion of "time"/"steps", "space"/"memory", ...
- study different "levels" of complexity depending on space, time, ...
- identify and separate classes of similar problems
- give alternative characterisation of these classes

Back to the examples:

- SORT: polynomial time (P)
- SUBSET-SUM: nondeterministic polynomial time (NP)

Computability theory

Computational complexity theory is about:

- formalise a notion of "time"/"steps", "space"/"memory", ...
- study different "levels" of complexity depending on space, time, ...
- identify and separate classes of similar problems
- give alternative characterisation of these classes

Back to the examples:

- SORT: polynomial time (P)
- SUBSET-SUM: nondeterministic polynomial time (NP)
- SET-GAME: polynomial space (PSPACE)

Example (Halting problem)

HALT: given a program P and an input x, decide if P halts on x

Example (Halting problem)

HALT: given a program P and an input x, decide if P halts on x

⇒ undecidable

Example (Finite index)

FIN: given a program P, define $C_P = \{x \mid P \text{ halts on } x\}$, decide if C_P is finite.

Example (Halting problem)

HALT: given a program P and an input x, decide if P halts on x

⇒ undecidable

Example (Finite index)

FIN: given a program P, define $C_P = \{x \mid P \text{ halts on } x\}$, decide if C_P is finite.

⇒ "more undecidable than HALT"

Example (Halting problem)

HALT: given a program P and an input x, decide if P halts on x

⇒ undecidable

Example (Finite index)

FIN: given a program P, define $C_P = \{x \mid P \text{ halts on } x\}$, decide if C_P is finite.

- ⇒ "more undecidable than HALT"
- ⇒ undecidable even if we assume we can "solve" HALT

Turing degrees complexity are about:

Turing degrees complexity are about:

formalising the "degree of unsolvability"

Turing degrees complexity are about:

- formalising the "degree of unsolvability"
- study sets of integers for those degrees, links with ordinal theory

Turing degrees complexity are about:

- formalising the "degree of unsolvability"
- study sets of integers for those degrees, links with ordinal theory

Back to the examples:

● SORT: degree Ø

Turing degrees complexity are about:

- formalising the "degree of unsolvability"
- study sets of integers for those degrees, links with ordinal theory

Back to the examples:

- SORT: degree Ø
- HALT: degree Ø'

Turing degrees complexity are about:

- formalising the "degree of unsolvability"
- study sets of integers for those degrees, links with ordinal theory

Back to the examples:

- SORT: degree Ø
- HALT: degree Ø'
- FIN: degree Ø"

 the study of models of computation (not necessarily realistic/practical)

- the study of models of computation (not necessarily realistic/practical)
- the study of complexity measures and classes

- the study of models of computation (not necessarily realistic/practical)
- the study of complexity measures and classes
- the study of alternative characterisations

Example (Sine function)

Given $x \in \mathbb{R}$, compute $\sin(x)$.

Example (Sine function)

Given $x \in \mathbb{R}$, compute $\sin(x)$.

⇒ "clearly sin is computable:"

Example (Sine function)

Given $x \in \mathbb{R}$, compute $\sin(x)$.

⇒ "clearly sin is computable:"

But...

how do you represent a real number ? (infinite object)

Example (Sine function)

Given $x \in \mathbb{R}$, compute sin(x).

⇒ "clearly sin is computable:"

But...

- how do you represent a real number ? (infinite object)
- what is a program working on them ?

Blum-Shub-Smale machine

• register machine (like your computer)...

- register machine (like your computer)...
- ...but registers can store real numbers...

- register machine (like your computer)...
- ...but registers can store real numbers...
- ...and can perform operations on them (+, -, =, ...)

- register machine (like your computer)...
- ...but registers can store real numbers...
- ...and can perform operations on them (+, -, =, ...)
- ⇒ Very algebraic, usually much more powerful than a Turing machine

Blum-Shub-Smale machine

- register machine (like your computer)...
- ...but registers can store real numbers...
- ...and can perform operations on them (+, -, =, ...)
- ⇒ Very algebraic, usually much more powerful than a Turing machine

Blum-Shub-Smale machine

- register machine (like your computer)...
- ...but registers can store real numbers...
- ...and can perform operations on them (+, -, =, ...)
- ⇒ Very algebraic, usually much more powerful than a Turing machine

Computable analysis

a real number is a program:

Blum-Shub-Smale machine

- register machine (like your computer)...
- ...but registers can store real numbers...
- ...and can perform operations on them (+, -, =, ...)
- ⇒ Very algebraic, usually much more powerful than a Turing machine

Computable analysis

a real number is a program: it computes arbitrary approximations

Blum-Shub-Smale machine

- register machine (like your computer)...
- ...but registers can store real numbers...
- ...and can perform operations on them (+, -, =, ...)
- ⇒ Very algebraic, usually much more powerful than a Turing machine

- a real number is a program: it computes arbitrary approximations
- a function is a program transformation:

Blum-Shub-Smale machine

- register machine (like your computer)...
- ...but registers can store real numbers...
- ...and can perform operations on them (+, -, =, ...)
- ⇒ Very algebraic, usually much more powerful than a Turing machine

- a real number is a program: it computes arbitrary approximations
- a function is a program transformation: it transformes one approximation into another

Blum-Shub-Smale machine

- register machine (like your computer)...
- ...but registers can store real numbers...
- ...and can perform operations on them (+, -, =, ...)
- ⇒ Very algebraic, usually much more powerful than a Turing machine

- a real number is a program: it computes arbitrary approximations
- a function is a program transformation: it transformes one approximation into another
- ⇒ Very analytic, approximation theory

Computable real

Computable real

Definition (Computable Real)

A real $r \in \mathbb{R}$ is computable is one can compute an arbitrary close approximation for a given precision:

Computable real

Definition (Computable Real)

A real $r \in \mathbb{R}$ is computable is one can compute an arbitrary close approximation for a given precision:

Given
$$p \in \mathbb{N}$$
, compute r_p s.t. $|r - r_p| \leq 2^{-p}$

Computable real

Definition (Computable Real)

A real $r \in \mathbb{R}$ is computable is one can compute an arbitrary close approximation for a given precision:

Given
$$p \in \mathbb{N}$$
, compute r_p s.t. $|r - r_p| \leq 2^{-p}$

Example

Rational numbers, π , e, ...

Computable real

Definition (Computable Real)

A real $r \in \mathbb{R}$ is computable is one can compute an arbitrary close approximation for a given precision:

Given $p \in \mathbb{N}$, compute r_p s.t. $|r - r_p| \leq 2^{-p}$

Example

Rational numbers, π , e, ...

Example (Non-computable real)

$$r = \sum_{n=0}^{\infty} d_n 2^{-n}$$

where

 $d_n = 1 \Leftrightarrow \text{the } n^{th} \text{ Turing Machine halts on input } n$

Definition (Computable function)

 $f:[a,b]\to\mathbb{R}$ is computable iff $\exists m,\psi$ computable functions s.t $\forall n\in\mathbb{N}$:

- $\forall x, y, |x y| \leq 2^{-m(n)} \Rightarrow |f(x) f(y)| \leq 2^{-n} \blacktriangleright$ effective continuity
- $\forall r \in \mathbb{Q}, |\psi(r,n)-f(r)| \leqslant 2^{-n}$

▶ approximability

Definition (Computable function)

 $f:[a,b]\to\mathbb{R}$ is computable iff $\exists m,\psi$ computable functions s.t $\forall n\in\mathbb{N}$:

- $\forall x, y, |x y| \leq 2^{-m(n)} \Rightarrow |f(x) f(y)| \leq 2^{-n} \blacktriangleright$ effective continuity
- $\forall r \in \mathbb{Q}, |\psi(r, n) f(r)| \leq 2^{-n}$ approximability

Definition (Equivalent)

 $f:[a,b]\to\mathbb{R}$ is computable iff $\exists M$ a Turing Machine s.t. $\forall x\in[a,b]$ and oracle \mathcal{O} computing x, $M^{\mathcal{O}}$ computes f(x).

Definition (Computable function)

 $f:[a,b]\to\mathbb{R}$ is computable iff $\exists m,\psi$ computable functions s.t $\forall n\in\mathbb{N}$:

- $\forall x, y, |x y| \leq 2^{-m(n)} \Rightarrow |f(x) f(y)| \leq 2^{-n} \triangleright$ effective continuity
- $\forall r \in \mathbb{Q}, |\psi(r,n) f(r)| \leqslant 2^{-n}$ approximability

Definition (Equivalent)

 $f:[a,b]\to\mathbb{R}$ is computable iff $\exists M$ a Turing Machine s.t. $\forall x\in[a,b]$ and oracle \mathcal{O} computing x, $M^{\mathcal{O}}$ computes f(x).

Example

Polynomials, trigonometric functions, e^{\cdot} , $\sqrt{\cdot}$, ...

Definition (Computable function)

 $f:[a,b]\to\mathbb{R}$ is computable iff $\exists m,\psi$ computable functions s.t $\forall n\in\mathbb{N}$:

- $\forall x, y, |x y| \leq 2^{-m(n)} \Rightarrow |f(x) f(y)| \leq 2^{-n} \triangleright$ effective continuity
- $\forall r \in \mathbb{Q}, |\psi(r,n) f(r)| \leqslant 2^{-n}$

▶ approximability

Definition (Equivalent)

 $f:[a,b]\to\mathbb{R}$ is computable iff $\exists M$ a Turing Machine s.t. $\forall x\in[a,b]$ and oracle \mathcal{O} computing x, $M^{\mathcal{O}}$ computes f(x).

Example

Polynomials, trigonometric functions, e^{\cdot} , $\sqrt{\cdot}$, ...

Example (Counter-Example)

$$f(x) = \lceil x \rceil$$

▶ not continuous

reuses existing theory on Turing machines

- reuses existing theory on Turing machines
- gives "natural" complexity classes related to the classical ones

- reuses existing theory on Turing machines
- gives "natural" complexity classes related to the classical ones
- but feels very discrete machine oriented

- reuses existing theory on Turing machines
- gives "natural" complexity classes related to the classical ones
- but feels very discrete machine oriented

Question

Can we give a purely analog model of computation?

GPAC

General Purpose Analog Computer

by Claude Shanon (1941)

GPAC

General Purpose Analog Computer

- by Claude Shanon (1941)
- idealization of an analog computer: Differential Analyzer

GPAC

General Purpose Analog Computer

- by Claude Shanon (1941)
- idealization of an analog computer: Differential Analyzer
- circuit built from:

A constant unit

$$u = x - uv$$

An multiplier unit

 $u = x - uv$

An integrator unit

GPAC: beyond the circuit approach

Theorem

y is generated by a GPAC iff it is a component of the solution $y=(y_1,\ldots,y_d)$ of the ordinary differential equation (ODE):

$$\begin{cases} y' = p(y) \\ y(t_0) = y_0 \end{cases}$$

where p is a vector of polynomials.

Example (One variable, linear system)

$$t - \int e^t \quad \begin{cases} y' = y \\ y(0) = 1 \end{cases}$$

Example (One variable, linear system)

Example (One variable, nonlinear system)

Example (One variable, linear system)

Example (Two variable, nonlinear system)

Example (Two variables, linear system)

$$\begin{cases} y' = z \\ z' = -y \\ y(0) = 0 \\ z(0) = 1 \end{cases}$$

Example (Two variables, linear system)

Exercice (Tear your mind apart)

Example (Two variables, linear system)

Exercice (Tear your mind apart)

Example (Two variables, linear system)

Exercice (Tear your mind apart)

Slight issue is...

the GPAC generated functions are analytical

Slight issue is...

- the GPAC generated functions are analytical
- the computable functions from Computable Analysis are continuous

Question

Can we bridge the gap? Why should we?

The case of discrete computations

Many models:

- Recursive functions
- Turing machines
- λ-calculus
- circuits
-

The case of discrete computations

Many models:

- Recursive functions
- Turing machines
- λ-calculus
- circuits
- . . .

And

Church Thesis

All reasonable discrete models of computation are equivalent.

GPAC: back to the basics

Definition

f is **generated** by a GPAC iff it is a component of the solution y of:

$$\begin{cases} y' = p(y) \\ y(t_0) = y_0 \end{cases}$$

GPAC: back to the basics

Definition

f is **generated** by a GPAC iff it is a component of the solution y of:

$$\begin{cases} y' = p(y) \\ y(t_0) = y_0 \end{cases}$$

Definition

f is **computable** by a GPAC iff $\exists p, q$ polynomials s.t. $\forall x \in \mathbb{R}$, the solution $y = (y_1, \dots, y_d)$ of:

$$\begin{cases} y' = p(y) \\ y(t_0) = q(x) \end{cases}$$

satisfies $f(x) = \lim_{t \to \infty} y_1(t)$.

GPAC: back to the basics

Definition

f is **computable** by a GPAC iff $\exists p, q$ polynomials s.t. $\forall x \in \mathbb{R}$, the solution $y = (y_1, \dots, y_d)$ of:

$$\begin{cases} y' = p(y) \\ y(t_0) = q(x) \end{cases}$$

satisfies $f(x) = \lim_{t \to \infty} y_1(t)$.

Example

Computable Analysis = GPAC ? (again)

Theorem (Bournez, Campagnolo, Graça, Hainry)

f is GPAC-computable functions iff it is computable (in the sense of Computable Analysis).

System	#1	#2
PIVP	$\begin{cases} y'(t) = p(y(t)) \\ y(1) = q(x) \end{cases}$	$\begin{cases} z'(t) = u(t)p(z(t)) \\ u'(t) = u(t) \\ z(t_0) = q(x) \\ u(1) = 1 \end{cases}$

System	#1	#2
PIVP	$\begin{cases} y'(t) = p(y(t)) \\ y(1) = q(x) \end{cases}$	$\begin{cases} z'(t) = u(t)p(z(t)) \\ u'(t) = u(t) \\ z(t_0) = q(x) \\ u(1) = 1 \end{cases}$

Remark

Same curve, different speed: $u(t) = e^t$ and $z(t) = y(e^t)$

Example

System	#1	#2
PIVP	$\begin{cases} y'(t) = p(y(t)) \\ y(1) = q(x) \end{cases}$	$\begin{cases} z'(t) = u(t)p(z(t)) \\ u'(t) = u(t) \\ z(t_0) = q(x) \\ u(1) = 1 \end{cases}$
Computed Function	S	ame

Remark

Same curve, different speed: $u(t) = e^t$ and $z(t) = y(e^t)$

Example

PIVP	y'=p(y)	$z(t) = y(e^t) ightarrow egin{cases} z' = up(z) \ u' = u \end{cases}$
Computed Function		Same
Convergence		Exponentially faster

PIVP	y'=p(y)	$z(t) = y(e^t) ightarrow egin{cases} z' = up(z) \ u' = u \end{cases}$
Computed Function	Same	
Time for precision μ	$tm(\mu)$	$tm'(\mu) = log(tm(\mu))$

Example

Remark

tm is not a good measure of complexity.

PIVP at time t

PIVPy' = p(y) $z(t) = y(e^t) \rightarrow \begin{cases} z' = up(z) \\ u' = u \end{cases}$ Computed FunctionSameTime for precision μ $tm(\mu)$ $tm'(\mu) = log(tm(\mu))$ Bounding box for $tm(\mu)$

sp(t)

 $sp'(t) = max(sp(e^t), e^t)$

PIVP	y'=p(y)	$z(t) = y(e^t) ightarrow egin{cases} z' = up(z) \ u' = u \end{cases}$
Computed Function	Same	
Time for precision μ	$tm(\mu)$	$tm'(\mu) = log(tm(\mu))$
Bounding box for PIVP at time <i>t</i>	sp(t)	$sp'(t) = max(sp(e^t), e^t)$

Remark

• $tm(\mu)$ and sp(t) depend on the convergence rate

PIVP	y'=p(y)	$egin{aligned} z(t) = y(e^t) ightarrow egin{cases} z' = up(z) \ u' = u \end{cases} \end{aligned}$	
Computed Function	Same		
Time for precision μ	$tm(\mu)$	$tm'(\mu) = log(tm(\mu))$	
Bounding box for PIVP at time <i>t</i>	sp(t)	$sp'(t) = max(sp(e^t), e^t)$	
Bounding box for PIVP at precision μ	$sp(tm(\mu))$	$\max(\operatorname{sp}(\operatorname{tm}(\mu)),\operatorname{tm}(\mu))$	

Remark

- $tm(\mu)$ and sp(t) depend on the convergence rate
- $sp(tm(\mu))$ seems not

Proper Measures

Proper measures of "complexity":

- time scaling invariant
- property of the curve

Proper Measures

Proper measures of "complexity":

- time scaling invariant
- property of the curve

Possible choices:

• Bounding Box at precision $\mu \Rightarrow \mathsf{Ok}$ but geometric interpretation ?

Proper Measures

Proper measures of "complexity":

- time scaling invariant
- property of the curve

Possible choices:

- Bounding Box at precision $\mu \Rightarrow \mathsf{Ok}$ but geometric interpretation ?
- Length of the curve until precision $\mu \Rightarrow$ Much more intuitive

Questions?

Do you have any questions ?