Lecture 4 – Regular expressions, Kleene's theorem, string substitution

NTIN071 Automata and Grammars

Jakub Bulín (KTIML MFF UK) Spring 2024

^{*} Adapted from the Czech-lecture slides by Marta Vomlelová with gratitude. The translation, some modifications, and all errors are mine.

Recap of Lecture 3

- Nondeterministic finite automata (NFA): can 'guess' the right path to accepting, computation described by a state tree.
- ullet ϵ -transitions: allow to change states without reading any input
- Subset construction: every NFA and ε-NFA is equivalent to a DFA (but can be easier to design, much smaller).
- Regular languages are closed under set operations (union, intersection, complement, difference)
- And under string operations (concatenation, iteration and positive iteration, reverse, left and right quotient)

1.8 Regular expressions

Regular expressions (RE)

- an algebraic description of languages
- declarative: express the form of the words we want to accept
- can describe all, and only, regular languages
- can be viewed as a programming language, a user/friendly description of a finite automaton

Example

- grep command in UNIX.
- Python module re
- lexical analysis, e.g. Flex (description via 'tokens' ← RE)

Note: syntax analysis needs a stronger tool, context-free grammars

The definition

A regular expression α over (finite, nonempty) Σ , $\alpha \in \text{RegE}(\Sigma)$ and the matching language $L(\alpha)$, are defined inductively:

expression	language	note
Ø	$L(\emptyset) = \emptyset$	empty expression
ϵ	$L(\epsilon) = \{\epsilon\}$	empty string
a	$L(\mathbf{a}) = \{a\}$	for all $a \in \Sigma$
$(\alpha + \beta)$	$L((\alpha + \beta)) = L(\alpha) \cup L(\beta)$	union (grep, re use ' ')
$(\alpha\beta)$	$L((\alpha\beta)) = L(\alpha)L(\beta)$	concatenation
α^*	$L(\alpha^*) = L(\alpha)^*$	iteration (Kleene star)

Examples, notation

Example

- The language of alternating 0s and 1s can be expressed as:
 - $(01)^* + (10)^* + 1(01)^* + 0(10)^*$
 - $(\epsilon + 1)(01)^*(\epsilon + 0)$
- $L((\mathbf{0}^*\mathbf{10}^*\mathbf{10}^*\mathbf{1})^*\mathbf{0}^*) = \{w \in \{0,1\}^* \mid |w|_1 \equiv 0 \pmod{3}\}$

We often omit parentheses:

- ullet priority of operators: iteration *> concatenation > union +
- associativity of concatenation, union +
- outer parentheses

We could define, and will sometimes use, positive iteration α^+

Kleene's theorem

Theorem (Kleene's theorem)

A language is regular, iff it is matched by some regular expression.

We will prove it by giving two constructions:

- 1. from RE to ϵ -NFA (which can be converted to a DFA)
- 2. from a DFA to a RE (but we could start from a ϵ -NFA)
- For 2. we also mention a better algorithm: state eliminiation

$\overline{\mathsf{RE}}$ to $\epsilon\text{-}\mathsf{NFA}$

By induction on the structure of α , construct a ϵ -NFA E s.t.

 $L(\alpha) = L(E)$ with three additional properties:

- 1. Exactly one accepting state.
- 2. No incoming edges into the initial state.
- 3. No outgoing edges from the accepting state.

Induction base: α is the empty string ϵ , empty set \emptyset , or a letter **a**

Induction step: $\alpha + \beta$, $\alpha\beta$, α^* (next slide)

RE to ϵ -NFA: Induction step

Let A, B be $\epsilon\text{-NFA}$ constructed for α, β .

Addition $\alpha + \beta$

Concatenation $\alpha\beta$

Iteration α^*

DFA to RE

Assume the states are $Q = \{1, ..., n\}$ and the start state is $q_0 = 1$.

Construct a RE $R_{ij}^{(k)}$ matching words that transition from state i into state j and all intermediate states (if any) have index $\leq k$.

Then we set $\alpha = \sum_{j \in F_A} R_{1j}^{(n)}$ (from start to some accepting state)

Iteratively construct $R_{ij}^{(k)}$ for k = 0, ..., n (finite induction).

Induction base: k = 0

- If $i \neq j$, set $R_{ij}^{(0)} = \mathbf{a_1} + \ldots + \mathbf{a_m}$ where a_1, \ldots, a_m are symbols on edges from i into j ($R_{ij}^{(0)} = \emptyset$ or $R_{ij}^{(0)} = \mathbf{a}$ for m = 0, 1).
- If i = j, $R_{ii}^{(0)} = \epsilon + a_1 + \ldots + a_m$ where a_i 's are on loops on i.

DFA to RE: Induction step

Once we have $R_{ij}^{(k)}$ for all $i, j \in Q$, we can construct $R_{ij}^{(k+1)}$:

$$R_{ij}^{(k+1)} = R_{ij}^{(k)} + R_{i(k+1)}^{(k)} (R_{(k+1)(k+1)}^{(k)})^* R_{(k+1)j}^{(k)}$$

- paths $i \leadsto j$ not going through k+1: already in $R_{ii}^{(k)}$
- paths $i \leadsto j$ going through k+1 one or more times: $i \leadsto k+1$ (first visit), loop on k+1, finally (last visit) $k+1 \leadsto j$

Example

Apply the construction, simplify:

$$\alpha = R_{12}^{(2)} = \mathbf{1}^* \mathbf{0} (\mathbf{0} + \mathbf{1})^*$$

State elimination algorithm

State elimination: the idea

Idea: Allow edges labelled by RE, iteratively remove nodes. (More efficient, avoids duplicity.)

State s selected for elimination

After s is eliminated.

State elimination: the algorithm

For every accepting $q \in F$ eliminate all states $p \in Q \setminus \{q, q_0\}$.

• for
$$q \neq q_0$$
: RegE $(q) = (R + SU^*T)^*SU^*$

• for $q = q_0$: RegE $(q) = R^*$

Finally, union over all accepting states: $RegE(A) = \sum_{q \in F} RegE(q)$

(Elimination order: first nonaccepting and noninitial states.)

State elimination: an example

Algebraic description of regular languages

Let $RL(\Sigma)$ denote the smallest set of languages over Σ that:

- contains \emptyset and $\{x\}$ for any letter $x \in \Sigma$, and
- is closed under union, concatenation, and iteration.

That is, for $A, B \in \mathsf{RL}(\Sigma)$ also $A \cup B, A.B, A^* \in \mathsf{RL}(\Sigma)$. Note that:

- $\{\epsilon\} \in \mathsf{RL}(\Sigma) \text{ since } \{\epsilon\} = \emptyset^*$
- $\Sigma \in \mathsf{RL}(\Sigma)$ since $\Sigma = \bigcup_{x \in \Sigma} \{x\}$ (a finite union)
- $\Sigma^* \in \mathsf{RL}(\Sigma)$
- any finite language over Σ is in $RL(\Sigma)$.

Theorem (A restatement of Kleene's Theorem)

A language over Σ is regular, iff it is in $RL(\Sigma)$.

Some properties to simplify RE (will not be tested)

$$L.\emptyset = \emptyset.L = \emptyset$$

$$\{\epsilon\}.L = L.\{\epsilon\} = L$$

$$(L^*)^* = L^*$$

$$(L_1 \cup L_2)^* = L_1^*(L_2.L_1^*)^* = L_2^*(L_1.L_2^*)^*$$

$$(L_1.L_2)^R = L_2^R.L_1^R$$

$$\partial_w(L_1 \cup L_2) = \partial_w(L_1) \cup \partial_w(L_2)$$

$$\partial_w(\Sigma^* - L) = \Sigma^* - \partial_w L.$$

Converting between representations

- NFA or ϵ -NFA to DFA: $O(n^3 2^n)$
 - ϵ -closure in $O(n^3)$ (search n states \times n^2 arcs)
 - subset construction, DFA with up to 2^n states; for each state need $O(n^3)$ time to compute transitions.
- DFA to NFA or ϵ -NFA: O(n)
 - a simple modification of the transition table
- DFA to RE: *O*(4ⁿ)
- RE to ϵ -NFA: O(n)

String substitution

String substitution and homomorphism

A (string) substitution is a mapping $\sigma \colon \Sigma^* \to \mathcal{P}(Y^*)$ where

- Σ and Y are finite alphabets, $Y = \bigcup_{x \in \Sigma} Y_x$
- for each $x \in \Sigma$, $\sigma(x)$ is a language over Y_x
- $\sigma(\epsilon) = \{\epsilon\}$ and $\sigma(u.v) = \sigma(u).\sigma(v)$

For a language $L \subseteq \Sigma^*$, $\sigma(L) = \bigcup_{w \in L} \sigma(w) \subseteq Y^*$. A substitution is ϵ -free if no $\sigma(x)$ contains ϵ .

A (string) homomorphism is defined similarly but each letter is mapped to a single word, $h \colon \Sigma^* \to Y^*$ where $h(x) \in Y_x^*$ for $x \in \Sigma$, $h(\epsilon) = \epsilon$ and h(u.v) = h(u).h(v). Then $h(L) = \{h(w) \mid w \in L\}$. It is ϵ -free if $h(x) \neq \epsilon$ for all $x \in \Sigma$.

The inverse homomorphism applied to a language $L' \subseteq Y^*$:

$$h^{-1}(L') = \{ w \in \Sigma^* \mid h(w) \in L' \}$$

Examples

Example (Substitution)

- If $\sigma(0) = \{a^i b^j, i, j \ge 0\}$ and $\sigma(1) = \{cd\}$, then $\sigma(010) = \{a^i b^j c da^k b^l \mid i, j, k, l \ge 0\}$.
- $\Sigma = \{f, I, s, c, d\}, L = L((fsI)(cfsI)^*d)$ where
 - $\sigma(f)$ is a dictionary of first names
 - $\sigma(I)$ are last names
 - $\sigma(s) = \{ '\ '\} \text{ (space)}, \ \sigma(c) = \{ ', '\}, \ \sigma(d) = \{ '.'\}$
- A document template with symbols to be replaced by fields of database entries.

Example (Homomorphism)

- Define h(0) = ab and $h(1) = \epsilon$. Then h(0011) = abab and for $L = \mathbf{10}^*\mathbf{1}$ we have $h(L) = L((ab)^*)$.
- Replace special symbols with TEX code (e.g. $h(\mu) = mu$).

Preserving regularity

Theorem

Let $L \subseteq \Sigma^*$ be regular, $h \colon \Sigma^* \to Y^*$ a homomorphism, and $\sigma \colon \Sigma^* \to \mathcal{P}(Y^*)$ a substitution.

- The language h(L) is regular.
- If $\sigma(x)$ is regular for all $x \in \Sigma$, then $\sigma(L)$ is also regular.

Moreover, if $L' \subseteq Y^*$ is regular, then $h^{-1}(L')$ is also regular.

Proof for homomorphism and substitution

Homomorphism \iff substitution with $\sigma(x)$ one-element (regular).

Structural induction on a RE α such that $L = L(\alpha)$.

- Induction base: \emptyset , ϵ , a . . . easy
- Induction step:

$$\sigma(L(\alpha + \beta)) = \sigma(L(\alpha)) \cup \sigma(L(\beta))
\sigma(L(\alpha\beta)) = \sigma(L(\alpha)).\sigma(L(\beta))$$

For iteration, decompose into an infinite union of powers:

$$\sigma(L(\alpha)^*) = \sigma(L(\alpha)^0) \cup \sigma(L(\alpha)^1) \cup \dots$$
$$= \sigma(L(\alpha))^0 \cup \sigma(L(\alpha))^1 \cup \dots = \sigma(L(\alpha))^*$$

(Alternative view: take the tree of the RE α and replace every leaf x with a tree for a RE for $\sigma(x)$.)

Proof for inverse homomorphism & an example

Given a DFA $A=(Q,Y,\delta,q_0,F)$ recognizing L', construct a DFA recognizing $h^{-1}(L')$: $B(Q,\Sigma,\delta_B,q_0,F)$ with $\delta_B(q,a)=\delta^*(q,h(a))$ That is, for a letter $a\in\Sigma$ do what A does for the word h(a). Easy to show (by induction on |w|) that $\delta_B^*(q_0,w)=\delta^*(q_0,h(w))$.

Example (Inverse homomorphism)

 $L' = L((\mathbf{00} + \mathbf{1})^*), \ h(a) = 01, \ \text{and} \ h(b) = 10: \ h^{-1}(L') = (\mathbf{ba})^*.$ $[h(L((\mathbf{ba})^*)) \in \mathbf{L}' \text{ is obvious, other words generate an isolated 0.}]$

Decision properties of regular

languages

Testing emptiness

Given a representation of a regular language L, is $L = \emptyset$?

FA: is any final state reachable from the initial state? $O(n^2)$

RE: convert to ϵ -NFA (in O(n) time) and check reachability or directly:

basis: \emptyset is empty, ϵ and **a** are not

induction:

- $\alpha = (\alpha_1 + \alpha_2)$: empty iff both $L(\alpha_1)$ and $L(\alpha_2)$ are empty
- $\alpha = (\alpha_1 \alpha_2)$ empty iff either $L(\alpha_1)$ or $L(\alpha_2)$ is empty
- $\alpha = (\alpha_1^*)$ never empty, includes ϵ

Testing membership

Given a regular language L and a word w, is $w \in L$?

- DFA: run the automaton; if |w| = n, with a suitable representation (constant time transitions) it is in O(n)
- NFA with s states: running time $O(ns^2)$, each letter processed by taking the previous set of states
- ϵ -NFA: first compute the ϵ -closure, then for each letter, process it and compute the ϵ -closure of the result
- RE of size s: convert to an ϵ -NFA with at most 2s states and then simulate, $O(ns^2)$

Summary of finite automata

- Finite Automata: DFA, reduced DFA, NFA, ϵ -NFA
- Regular Expressions
- Regular languages: closed under set operations, string operations, substitution, homomorphism, inverse hom.
- all FA and RE describe the same class of languages
- Key theorems
 - Mihyll–Nerode (implicit DFA via congruences on words)
 - Kleene (regular languages iff matched by RE)
 - Pumping lemma
- (optional) 2-way automata
- (optional) Automata with output
 - Moore machine
 - Mealy machine.

Summary of Lecture 4

- regular expressions
- Kleene's theorem (two variants)
- constructions: RE to ϵ -NFA, DFA to RE
- state elimination algorithm
- string substitution, homomorphism, inverse homomorphism
- decision properties

Appendix: Visit every state

Visit every state

Example (visit every state)

Given a DFA A, let L consist of all $w \in \Sigma^*$ that are accepted and, moreover, during the computation every state is visited, i.e.:

- $\delta^*(q_0, w) \in F$
- ullet for every $q\in Q$ there is a prefix x_q of w s.t. $\delta^*(q_0,x_q)=q$

We will show that this language is regular.

Construct *L* from M = L(A) using operations preserving regularity:

- ullet define an alphabet of 'transitions': $T=\{[\mathit{paq}]\mid \delta(\mathit{p},\mathit{a})=\mathit{q}\}$
- define a homomorphism h([paq]) = a for all p, q, a
- $L_1 = h^{-1}(M)$ is regular (inverse homomorphism), consists of accepting sequences of transitions

Visit every state: proof continues

- start at q_0 : $L_2 = L_1 \cap L(E_1, T^*)$, $E_1 = \{ [q_0 aq] \mid a \in \Sigma, q \in Q \}$
- adjacent states must be equal: define non-matching pairs

$$E_2 = \{ [paq][rbs] \mid q \neq r, p, q, r, s \in Q, a, b \in \Sigma \}$$

and set $L_3 = L_2 - L(T^*.E_2.T^*)$ (remove if at least one non-matching pair of adjacent states)

- L_3 already ends in accepting state: we started from M = L(A)
- all states: for $q \in Q$ let E_q be the RE that is the sum of all the symbols in T not containing q, set $L_4 = L_3 \bigcup_{q \in Q} \{L(E_q^*)\}$
- from a sequence of transitions back to the word: $L = h(L_4)$