Chapter 1

Categories

Lectured by noone Typed by Yu Coughlin Season Year

Introduction

The following are complementary reading for the course.

- G. Grimmett and D. J. A. Welsh, Probability: An Introduction, 1986
- J. K. Blitzstein and J. Hwang, Introduction to Probability, 2019
- D. F. Anderson et al, Introduction to Probability, 2018
- S. M. Ross, Introduction to Pro ability Models, 2014
- G. Grimmett and D. Stirzaker, Probability and Random Processes, 2001
- G. Grimmett and D. Stirzaker, One Thousand Exercises in Probability, 2009

Contents

1	Categories			
	1	Basic o	definitions	3
		1.1	Categories	3
		1.2	Functors	3
		1.3	Natural transformations	4
		1.4	Equivalence of categories	4
		1.5	Representable functors	4
		1.6	Yoneda lemma	4

Categories Contents

1 Basic definitions

1.1 Categories

Definition 1.1.1 (Category). A category \mathcal{C} contains the following data:

- 1. a collection of objects, $Ob(\mathcal{C})$,
- 2. for every $x, y \in Ob(\mathcal{C})$ a collection of morphisms $Hom_{\mathcal{C}}(x, y)$ from x to y,
- 3. an identity morphism $id_x \in Hom_{\mathcal{C}}(x,x)$ for all $x \in Ob(\mathcal{C})$,
- 4. a composition map of morphisms, $\circ : \operatorname{Hom}_{\mathcal{C}}(y,z) \times \operatorname{Hom}_{\mathcal{C}}(x,y) \to \operatorname{Hom}_{\mathcal{C}}(x,z)$ for all $x,y,z \in \operatorname{Ob}(\mathcal{C})$.

Which satisfy the two axioms:

- 1. for all $f \in \operatorname{Hom}_{\mathcal{C}}(x,y)$ with $x,y \in \operatorname{Ob}(\mathcal{C})$ we have $f \circ \operatorname{id}_x = f = \operatorname{id}_y \circ f$,
- 2. for compatible morphisms f, g, h we have $f \circ (g \circ h) = (f \circ g) \circ h$.

We will use the shorthand $x \in \mathcal{C}$ for $x \in \text{Ob } \mathcal{C}$, Hom(x,y) for $\text{Hom}_{\mathcal{C}}(x,y)$ when \mathcal{C} is obvious and End(x) for Hom(x,x).

Note 1.1.2. Note that in our definition the term *collection* is used instead of set, this is commonplace and necessary to prevent paradoxes when constructing the category of sets.

Examples 1.1.3. The following are all categories:

- 1. Set with sets as objects and functions as their morphisms,
- 2. Grp with groups as objects and their homomorphisms as morphisms,
- 3. Ab, Grp restricted to abelian groups,
- 4. for a field k, $Vect_k$ with k-vector spaces as objects and linear transformations as morphisms,
- 5. Cat with categories as objects and soon to be defined functors as morphisms,
- 6. Top, Rng, Meas, Poset, Man with their objects and morphisms all defined similarly
- 7. Given a category \mathcal{C} , \mathcal{C}^{op} wich has the same opjects as \mathcal{C} but $\operatorname{Hom}_{\mathcal{C}^{op}}(x,y) = \operatorname{Hom}_{\mathcal{C}}(y,x)$ for all $x,y \in \mathcal{C}$,
- 8. Any set X with objects as elements in X and no morphisms except the identities
- 9. (\mathbb{R}, \leq) with objects as \mathbb{R} and a morphisms from x to y iff $x \leq y$ for all $x, y \in \mathbb{R}$.

Definition 1.1.4 (Isomorphism). A morphism $f \in \text{Hom}(x, y)$ is an **isomorphism** iff there is a morphism $f^{-1} \in \text{Hom}(y, x)$ with $f \circ f^{-1} = \text{id}_y$ and $f^{-1} \circ f = \text{id}_x$.

1.2 Functors

Definition 1.2.1 ((Covariant) Functor). Given categories \mathcal{C}, \mathcal{D} a (covariant) functor $F : \mathcal{C} \to \mathcal{D}$ is the following data:

- 1. a map $Ob(\mathcal{C}) \to Ob(\mathcal{D})$ (also denoted F),
- 2. for any two objects $x, y \in \mathcal{C}$ a map $\operatorname{Hom}_{\mathcal{C}}(x, y) \to \operatorname{Hom}_{\mathcal{D}}(F(x), F(y))$ (also also denoted F)

satisfying the properties:

- 1. for all $x \in \mathcal{C}$, $F(\mathrm{id}_x) = \mathrm{id}_{F(x)}$,
- 2. for all x, y, z with f, g in $\operatorname{Hom}_{\mathcal{C}}(y, z), \operatorname{Hom}_{\mathcal{C}}(x, y), F(f \circ g) = F(f) \circ F(g)$.

Definition 1.2.2 (Contravariant functor). A **contravariant functor** from \mathcal{C} to \mathcal{D} is a covariant functor from \mathcal{C}^{op} to \mathcal{D} .

Definition 1.2.3 (Hom-functor). The **hom-functor** for a given category \mathcal{C} is $\operatorname{Hom}_{\mathcal{C}}: \mathcal{C}^{op} \times \mathcal{C} \to \operatorname{Set}$ sending a pair of elements $c, d \in \mathcal{C}$ to $\operatorname{Hom}_{\mathcal{C}}(c, d)$.

Categories Contents

1.3 Natural transformations

Definition 1.3.1 (Natural transformation). Given categories \mathcal{C}, \mathcal{D} with functors $F, G : \mathcal{C} \to \mathcal{D}$, a **natural transformation** $\eta : F \to G$ consists of morphisms η_x for all $x \in \mathcal{C}$ such that the diagram,

$$F(x) \xrightarrow{F(f)} F(y)$$

$$\downarrow^{\eta_x} \qquad \qquad \downarrow^{\eta_y}$$

$$G(x) \xrightarrow{G(f)} G(y)$$

commutes for all $x, y \in \mathcal{C}$ and $f \in \text{Hom}_{\mathcal{C}}(x, y)$.

Remark 1.3.2. By constructing the category of functors from \mathcal{C} to \mathcal{D} , denoted $\text{Fun}(\mathcal{C}, \mathcal{D})$, morphisms are natural transformations. **Natural isomorphisms** are defined as isomorphisms in this category.

1.4 Equivalence of categories

Definition 1.4.1 (Equivalence). Given categories \mathcal{C}, \mathcal{D} an **equivalence of categories** is a pair of functors $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ with natural isomorphisms $FG \xrightarrow{\sim} \mathrm{id}_{\mathcal{D}}$ and $\mathrm{id}_{\mathcal{C}} \xrightarrow{\sim} GF$.

Definition 1.4.2 (Adjunction). An **adjuction** between categories \mathcal{C}, \mathcal{D} is a pair of functors $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ such that for all $x \in \mathcal{C}$ and $y \in \mathcal{D}$, there exists an $\eta_{x,y} : \operatorname{Hom}_{\mathcal{C}}(x, G(y)) \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{D}}(F(x), y)$ such that the diagram

$$\operatorname{Hom}_{\mathcal{D}}(F(x'), y) \xrightarrow{\circ F(f)} \operatorname{Hom}_{\mathcal{D}}(F(x), y) \xrightarrow{g \circ} \operatorname{Hom}_{\mathcal{D}}(F(x), y')$$

$$\downarrow^{\eta_{x', y}} \qquad \downarrow^{\eta_{x, y}} \qquad \downarrow^{\eta_{x, y'}}$$

$$\operatorname{Hom}_{\mathcal{C}}(x', G(y)) \xrightarrow{\circ f} \operatorname{Hom}_{\mathcal{C}}(x, G(y)) \xrightarrow{G(g) \circ} \operatorname{Hom}_{\mathcal{C}}(x, G(y'))$$

commutes for all $x, x' \in \mathcal{C}$; $y, y' \in \mathcal{D}$; $f: x \to x'$ and $g: y \to y'$.

Theorem 1.4.3. If F, G form an equivalence of the categories C, D then F, G are an adjunction.

Examples 1.4.4 (Adjunctions in group theory). Consider the forgetful functor $F: Ab \to Grp$ which simply forgets the Abelian property of a group. We also have the **abeliantisation functor** $(-)^{ab}: Grp \to Ab$ which maps $G \mapsto G^{ab} := G/[G, G]$. F and $(-)^{ab}$ for an adjuction between Grp and Ab.

1.5 Representable functors

Definition 1.5.1 (Yoneda functor). Given some x in a category C, there is a functor $\operatorname{Hom}_{C}(-,x): C^{op} \to \operatorname{Set}$ which satisfies the required properties to have the **Yoneda functor**:

$$Y: \mathcal{C} \to \operatorname{Fun}(\mathcal{C}^{op}, \operatorname{Set}).$$

Which sends an element $y \in \mathcal{C}$ to the functor from objects in \mathcal{C}^{op} to the set of morphisms from these objects to y.

Lemma 1.5.2. The Yoneda functor and the hom-functor form an adjunction in Cat.

Definition 1.5.3 (Representable). A functor $F \in \text{Fun}(\mathcal{C}^{op}, \text{Set})$ is **representable** if $F \cong Y(c)$ for some $c \in \mathcal{C}$.

Example 1.5.4. Consider the functor $F : Set^{(op)} \to Set$ sending a set to its powerset. F is clearly isomorphic the functor $Hom(-, \{0, 1\})$ from subsets to indicator functions on X. This is the image of the Yoneda functor so F is representable.

1.6 Yoneda lemma

Theorem 1.6.1 (Yoneda lemma). Given some $x \in \mathcal{C}$ and $F \in \text{Fun}(\mathcal{C}^{op}, \text{Set})$ we have

$$\operatorname{Hom}_{\operatorname{Fun}(\mathcal{C}^{op},\operatorname{Set})}(Y(x),F)\cong F(x).$$

Remark 1.6.2. This is a generalisation of Cayley's theorem which shows that we can study a group by instead studying the permutations of its underlying set.