Conventional Ship Testing

Experimental Methods in Marine Hydrodynamics Lecture in week 34

Chapter 6 in the lecture notes

Conventional Ship Testing - Topics:

- Resistance tests
- Propeller open water tests
- Propulsion tests
- Cavitation tunnel tests
 - Cavitation observation
 - Pressure pulses
 - Noise measurements
 - Cavitation erosion
- Maneuvering tests
 - Free running maneuvering tests
 - Planar Motion Mechanism (PMM) tests

Resistance tests

- Test procedure:
 - The model is accelerated to wanted speed
 - speed is kept constant for at least 10 seconds (or at least 10 load cycles)
 - Average values of the measurements for the period of constant speed is calculated

Required length of measurement

- The tow force might fluctuate considerably, especially for models with low Drag/Displacement ratio and large displacement
- In such cases, one needs at least ten oscillations in the time series
 - This is just a simple "rule of thumb". We will return to this question in the lecture on uncertainty and design of experiments.
- One must make sure to leave out the transient part of the time series, which is due to the acceleration

Example time series – entire run

Seiching – standing waves in the tank

Wave elevation:
$$\zeta = \zeta_a \cdot \cos(\omega t) \cdot \sin(kx)$$

Horizontal velocity:
$$V_x = -\frac{\zeta_a \cdot k \cdot g}{\omega} \cdot \sin(\omega t) \cdot \sin(kx)$$

Wave period:
$$T \approx \frac{2 \cdot L_{Tank}}{\sqrt{g \cdot h}}$$

Error from seishing on total resistance

- Example from the large towing tank

Wave amplitude $\zeta_a = 1$ cm

Horizontal max velocity $V_x = 0.03$ m/s

Carriage speed $V_m = 1.5 \text{ m/s}$

Total resistance: $\propto \frac{1}{2}\rho V^2$

Induced max. error: 4%

Waiting time between runs

- Surface waves must calm down
 - Waiting time can be reduced by conventional wave dampers
 - Takes longer time in larger tanks
- Seishing must calm down
 - Might be difficult to see
 - Might be damped by special arrangements
 - Takes much longer time in larger tanks
- Waiting time will be a trade-off between:
 - Accuracy
 - Efficiency
- Typical waiting time between runs in large tanks: 15 minutes

Propeller Open Water Tests

- Measurement equipment

Water speed V

Propeller Open Water Tests

- Measurement procedure

- Propeller revs are kept constant
- Carriage speed is varied in steps from zero speed to zero propeller thrust
- Tests are performed at same revs as expected for design speed in propulsion tests
- Tests might be repeated at higher propeller revs (attempted full scale condition)
- Results are presented in nondimensional form

Propulsion tests

- Test procedure (Continental Method):
 - The model is accelerated to wanted speed
 - Propeller revs are adjusted so that the model is getting the same speed as the carriage, and then the model is released
 - Measurement is made with found revs for at least 10 seconds
 - Average values of the measurements for the period of constant speed is calculated

Cavitation testing of propellers

- <u>Purpose:</u> investigation of:
 - Cavitation induced erosion of propeller blades
 - Effect of cavitation on propulsion efficiency
 - Vibrations and noise
- Test types:
 - Cavitation observation
 - Pressure pulses
 - Noise measurements
 - Cavitation erosion

Cavitation test procedure

- 1. Choose flow velocity in test section based on actual advance ratio, J.
- 2. Install aft-body model and adjust wake field by mesh screens
- 3. Install propeller model
- 4. With atmospheric pressure in the tunnel, adjust propeller rate of revolution (and/or flow velocity) until the propeller torque is correct according to the propulsion test in the towing tank (equal K_Q). This is called the "torque identity" principle.
- 5. Keeping flow velocity and rate of revolutions constant, reduce the tunnel pressure until the specified cavitation number is achieved.
- 6. Do necessary cavitation observation and measurements.

Afterbody model

Mesh screen

Cavitation tests - Measurements

- Propeller rate of revolution
 - tachometer
- Thrust
- Torque
- Static tunnel pressure
 - Pressure tapping in tunnel wall
- Tunnel water speed
 - Prandtl tube 5 cm from tunnel wall in test section
- For measurement of pressure pulses:
 - Pressure on the aft body hull surface at a number of locations (typically 6-18 positions)
- For measurement of propeller noise:
 - One or two hydrophones

Maneuvering tests

- Two alternative purposes:
 - 1. Direct verification of maneuverability fulfillment of IMO criteria
 - 2. Establishment of hydrodynamic coefficients for the maneuvering equations
 - Usually followed by calculation of maneuverability in a maneuvering prediction program
- Two alternative test schemes:
 - 1. Testing of free-running model
 - Gives direct assessment of maneuverability
 - Hydrodynamic coefficients for maneuvering equations can be derived
 - 2. Testing of captive model
 - Measurement of forces for establishment of hydrodynamic coefficients for the maneuvering equations

Types of Ship Maneuvers

- IMO standard maneuvers:
 - Zig-zag tests
 - 10°/10° to both sides
 - $20^{\circ}/20^{\circ}$ to both sides
 - Turning circle test
 - 35° rudder angle
 - Full astern stopping test
- Additional maneuvers:
 - Spiral test
 - Reverse spiral test
 - Pull-out maneuver
 - Very small zig-zag maneuver

Zig-zag maneuver

Turning Circle Maneuver

Stopping test

Spiral test

- 1. The ship is brought to a steady course and speed according to the specific initial condition
- 2. The recording of data starts
- 3. The rudder is turned about 15 degrees and held until the yaw rate remains constant for approximately one minute
- 4. The rudder angle is then decreased in approximately 5 degree increments. At each increment the rudder is held fixed until a steady yaw rate is obtained, measured and then decreased again
- 5. This is repeated for different rudder angles starting from large angles to both port and starboard; and
- 6. When a sufficient number of points is defined, data recording stops.

Reverse spiral test

- 1. The ship is steered to obtain a constant yaw rate
- 2. The mean rudder angle to produce this yaw rate is measured
- 3. This is repeated for several yaw rates, and the curve of yaw rate vs. Rudder angle is created
- More rapid method than direct spiral
- Requires very accurate yaw rate measurement instrument

Free-running manoeuvring tests

- Full geometrical similarity
- Speeds are Froude scaled
- Hull friction scale effect (tow rope) can be corrected by use of air fan
- Electric motor shall ideally be controlled to emulate ship engine characteristics
 - Constant motor power is a simpler alternative
 - Constant propeller speed (what you get with an electric motor without some kind of automatic control) give much too high thrust during the manoeuver

Free-running maneuvering tests

- measurements
- Propeller revs
- Rudder angle
- Speed
- Heading
- Position
 - Alternatively: 6 DoF position measurement
- Rate of turn (for instance by use of gyro)
 - Important for fast models and when using auto-pilot

Maneuvering tests with fixed model

The model is subject to forced motions, and the applied forces are measured

- Planar Motion Mechanism (PMM)
- Rotating arm
- Yawed model tests
- Measurement of:
 - Speed
 - Position
 - Forces

Planar Motion Mechanism (PMM)

Pure yaw test

Yaw and drift angle test

Yaw and rudder angle test

Rotating arm tests

- Set parameters:
 - Arm rotation speed
 - Model position (radius)
 - Model yaw angle
- Gives complete control of:
 - Surge speed
 - Yaw rate
 - Sway speed
- Measurement of:
 - Forces (in 6 DoF)
 - Speed
 - Radius, yaw angle
 - Rudder

ITTC: International Towing Tank Conference

- The ultimate source of accumulated knowledge on model testing
- Work is performed in groups of 6-10 technical experts
- Work is presented every third year in a common conference
- Proceedings from the ITTC conferences are valuable references
- ITTC maintains standards of model testing and analysis techniques
- ITTC Permanent web-site contains standards for model testing: http://ittc.info/

Ship model testing - Summary

- Resistance, propulsion and propeller open water tests are performed to determine accurately the speed-power performance of the ship in full scale
- Cavitation tests are done in order to ensure that the ship propeller will not get cavitation problems
 - Typical cavitation problems are:
 - erosion damage to propeller and rudder
 - Noise and pressure pulses induced on the hull from the propeller cavitation
- Manoeuvring tests are performed to verify the manoeuvrability of the ship
 - Compliance with IMO criteria for manoeuvrability
 - Detect and repair directional instability