Introduzione alla Progettazione Concettuale Parte 1

Prof. Francesco Gobbi

I.I.S.S. Galileo Galilei - Ostiglia (MN) Materia: Informatica

2 ottobre 2024

Perché fare progettazione concettuale?

Lo sviluppo della base di dati di un'applicazione passa attraverso diverse fasi di progettazione:

- ► Progettazione concettuale
- Organizzazione logica
- Implementazione fisica

La progettazione concettuale è la sintesi tra la visione degli utenti e la visione dei progettisti dell'applicazione.

Essa deve essere:

- Assolutamente precisa per non lasciare dubbi sulle caratteristiche della base di dati.
- Espressa con formalismi semplici per permettere la comprensione anche da parte di utenti non tecnici.

Il modello Entità/Associazione o Entità/Relazione

Il modello **entità/associazioni o entità/relazione** si concretizza in un documento con schemi grafici che rappresentano:

- Le entità rilevanti e le loro caratteristiche.
- Le associazioni/relazioni tra queste entità, quindi il collegamento che unisce una o più entità.

Questo modello permette ai progettisti di comprendere appieno le esigenze degli utenti.

Esempio di modello E/R

Figura: Esempio di schema E/R

- Ogni fornitore può fornire uno o più prodotti.
- Ogni prodotto deve essere fornito da un solo fornitore.
- **N.B. PK** sta per **primary key**, ovvero per chiave primaria, ovvero l'insieme di uno o più attrobuti che consentono di distingere un'istanza/tupla/record all'interno di una tabella.

Notazione utilizzata per l'E/R

Il modello E/R non ha una notazione standadizzata. Utilizzeremo uno standard, che riprende delle informazioni e dei formalismo dell'UML.

L'UML (Unified Modeling Language, linguaggio unificato di modellazione) è un linguaggio grafico per visualizzare, definire, specificare e documentare tutte le costruzioni di sistemi software.

Modellare i dati

Modellare i dati significa costruire una rappresentazione semplificata della realtà osservata o di un problema aziendale, individuandone gli elementi caratterizzanti e i legami che intercorrono tra essi.

La progettazione di un modello di dati avviene a diversi livelli di astrazione dal problema considerato.

I tre livelli di progettazione

La progettazione di un modello di dati si divide in:

- ► Livello concettuale (o livello di oggetti): rappresenta la realtà dei dati e le relazioni tra essi attraverso uno schema.
- Livello logico (o livello di record): rappresenta il modo in cui i dati sono organizzati negli archivi, descrivendo la loro struttura logica.
- Livello fisico: rappresenta l'effettiva installazione degli archivi su disco, indicando il modo in cui dati sono presenti e salvati nelle memorie di massa.

Schema visivo dei livelli di astrazione

Dalla realtà agli archivi

Il Modello Concettuale

Il modello concettuale viene definito attraverso lo schema dei dati, che rappresenta sinteticamente gli elementi fondamentali che caratterizzano la realtà osservata.

Questa rappresentazione è indipendente dai valori che verranno assegnati ai dati e dalle applicazioni che li utilizzeranno. Il modello concettuale è essenziale poiché fornisce una rappresentazione astratta della realtà in modo indipendente dalla

struttura dei dati.

Modello Logico e Modello Fisico

Con il passaggio al **modello logico**, l'insieme dei dati viene dotato di una **struttura per l'identificazione semlificata delle tabelle** che deve facilitare:

- ► La manipolazione o il trattamento dei dati, cioè la possibilità di inserire, modificare e cancellare i dati;
- ► L'interrogazione, cioè la possibilità di ritrovare i dati, richiesti da un'applicazione, in modo semplice e veloce.

Queste strutture di dati vengono poi **implementate sulle memorie di massa**, realizzando in pratica il **modello fisico**, rappresentato dai file registrati sul supporto di memoria.

Modello Entità/Associazioni

Definizione: Il modello entità/associazioni, introdotto nel 1976 dal matematico Peter P. Chen, è uno strumento per analizzare le caratteristiche di una realtà in modo indipendente dagli eventi che in essa accadono. Si concretizza in una rappresentazione grafica, detta schema E/R (*Entity/Relationship*).

Componenti del modello E/R:

- ► Le entità
- ▶ Le associazioni
- ► Gli attributi

Le Entità

Definizione: L'entità è un oggetto (concreto o astratto) che ha un significato anche quando viene considerato in modo isolato ed è di interesse per la realtà che si vuole modellare. Le entità saranno sappresentata con le nostre tabelle.

Esempio:

- Una persona
- Un modello di automobile
- Un movimento contabile
- ▶ Una prova sostenuta da uno studente

Esempio Concreto di Entità

In un contesto scolastico:

Gli **Studenti** iscritti alla scuola sono **entità** di tipo **Studente**. Ogni **Corso** offerto dalla scuola è un'altra **entità** di tipo **Corso**.

Nel contesto di un'azienda:

I **Dipendenti** dell'azienda sono **entità** di tipo **Dipendente**. Ogni **Progetto** assegnato è un'altra **entità** di tipo **Progetto**.

Concetto di Istanza

Definizione: Un'istanza è un singolo esemplare di un'entità. Quindi, vedendo un'entità come tabella, l'istanza è una singola riga della tabella.

Esempio:

Se consideriamo l'entità **Studente**, *Mario Rossi* è un'istanza di questa entità.

Se consideriamo l'entità **Automobile**, una specifica *Fiat Panda, targa AB123CD* è un'istanza di questa entità.

Rappresentazione Grafica delle Entità

Nella rappresentazione grafica, le entità sono identificate con un rettangolo contenente al suo interno il nome dell'entità, mentre sotto andranno elecanti i vari attributi dell'intità stessa, che vedremo in seguito.

Le Relazioni/Associazioni

Le relazioni/associazione sono un legame che stabilisce un'interazione tra due o più entità (P.S. Non utilizzeremo la notazione presente sul libro di testo).

Esempio: l'entità Persona (con le istanze P1, P2, P3) e l'entità Automobile (con le istanze A1, A2, A3). Ci sono poi un insieme di archi che rappresentano la relazione/associazione di possesso che si viene a stabilire tra le persone e le automobili.

La relazione ha nome **Possedere** e ha un verso che è specificato dalle frecce che collegano l'entità **Persona** con l'entità **Automobile**.

Deduzioni dall'esempio precedente

Dall'esame della figura si può dire che:

- ► P1 possiede le automobili A1 e A2;
- P2 non possiede alcuna automobile;
- P3 possiede l'automobile A3;
- tra Persona e Automobile sussiste la relazione Possedere.

Si possono inoltre generalizzare queste **considerazioni** esprimendole in linguaggio naturale con le seguenti frasi:

- una persona può possedere una o più automobili;
- un'automobile è posseduta da una sola persona.

Notazione a Zampa di Gallina nei Diagrammi E/R

- ► La notazione a **zampa di gallina** è utilizzata nei diagrammi E/R per rappresentare anche le cardinalità nelle relazioni tra entità in modo facile ed abbastanza intuitivo.
- Questa notazione si basa su un segmento che unisce due relazioni, con agli estremi degli elementi come: cerchio, linee, doppie linee, ecc, che identificano la cardità per ogni entità.
- Le diverse combinazioni di simboli indicano le possibili cardinalità: uno, molti, uno o molti, zero o molti, ecc.
- Per cardinalità si intende il numero delle volte in cui una possibile istanza(riga o tupla di una tabella) di una relazione è associata ad un'altra relazione.
- Per ogni entità c'è quindi un numero minimo ed un numero massimo in cui una sua istanza può essere associata ad un'altra.

Cardinalità semplice nelle relazioni : Zero

La prima notazione semplice è quella "zero", ovvero la cardinalità di una relazione che definisce : un'istanza di un'entità può essere collegata o meno con un'istanza di un'altra entità.

Cardinalità semplice nelle relazioni : Uno

La seconda notazione semplice è quella "uno", ovvero la cardinalità di una relazione che definisce : un'istanza di un'entità è associata ad un'istanza di un'altra entità.

Cardinalità semplice nelle relazioni : Molti

La terza notazione semplice è quella "molti", ovvero la cardinalità di una relazione che definisce : un'istanza di un'entità è associata a molte istanze di un'altra entità.

Cardinalità combinate nelle relazioni

- Dalle cardinalità semplici derivano quelle combiante/articolate.
- Le cardinalità combinate/articolate sono date dalla combinazione di due elmenti delle cardinalità semplici.
- Solitamente vengono utilizzate solamente le cardinalità articolare in un diagramma E/R.
- La cardinalità combinata/articolata va proprio a definire il numero minimo e massimo di istanze di un'entità che possono essere prese in considerazioni nella relazione.
- ➤ Si fa riferimento sempre al numero minimo ed massimo e mai al numero estremamente preciso.
- ► Ci possono essere quindi casi di (0,1), oppure (1,1), oppure (1,N), oppure (N,N).

Cardinalità combinate nelle relazioni: Zero o Molti

La prima notazione combinata è quella "zero a molti", ovvero la cardinalità di una relazione che definisce : ci possono essere da zero istanze di un'entità fino a molte, quindi potenzialmente tutte, che sono all'interno della relazione.

Cardinalità combinate nelle relazioni: Uno o Molti

La seconda notazione combinata è quella "uno a molti", ovvero la cardinalità di una relazione che definisce : ci possono essere da una istanza di un'entità fino a molte, quindi potenzialmente tutte, che sono all'interno della relazione.

Cardinalità combinate nelle relazioni: Uno e solo Uno

- La terza notazione combinata è quella "uno e solo uno", ovvero la cardinalità di una relazione che definisce : ci può essere una e solo un'istanza di un'entità presente nella relazione.
- Questo vincolo implica che nella relazione c'è sempre un'istanza di entrambe le entità interessate.

Cardinalità combinate nelle relazioni: Zero o Uno

► La quarta notazione combinata è quella "zero o uno", ovvero la cardinalità di una relazione che definisce : ci può essere, oppure no, un'unica istanza di un'entità nella relazione.

Esempi cardinalità combinate nelle relazioni

Lettura delle relazioni combinate

La **lettura della cardinata di una relazione** tra due entità si fa nel seguente modo:

si indica il numero massimo(MAX) del range di cadinalità di un'entità e successivamente si affianca il vallore massimo(MAX) del range di cardinalità dell'altra entità per la relazione in esame.

ESEMPIO: Relazione "Uno ad uno"

Lettura della relazione: Un student è associato a uno e uno solo seat, e ogni seat è occupato da un solo student.

Esempi sulla lettura delle relazioni combinate

ESEMPIO: Relazione "Uno a molti"

Lettura della relazione: Un lecturer può tenere più corsi (course), ma ogni corso è tenuto da un solo, e uno solo, lecturer.

Esempi sulla lettura delle relazioni combinate

ESEMPIO: Relazione "Molti a molti"

Lettura della relazione: Uno student può essere iscritto a più corsi (course), e un course può avere più studenti (student) iscritti.

Altri modi per indicare la relazione

Ci sono altri modi, in quanto non vi è uno standard definito, per rappresentare le entità e le relazioni, come per esempio:

N.B. Ricordo che utilizzeremo la notazione a "zampa di gallina", come visto nelle slide precedenti.