Physician Behaviors and Hospital Influence

Haizhen Lin & Ian McCarthy & Michael Richards

Emory University

October 18, 2018

Background

How are hospitals and physicians related?

- 1. "Traditional" private practice with admitting privileges
- 2. Administrative support with or without admitting restrictions
- 3. Practice owned by hospital or hospital system

How are hospitals and physicians related?

Richards et al., Medical Care, 2016

How are hospitals and physicians related?

Baker, Bundorf, and Kessler, Health Affairs, 2014

Why would a hospital integrate?

Direct Revenue

- Increase bargaining position
- Exploit payment differentials

Why would a hospital integrate?

Indirect Revenue

- Hospital Readmission Reduction Program
- Hospital Value Based Purchasing Program
- Accountable Care Organizations and Bundled Payments
- Product Bundling

Why would a hospital integrate?

Cost reduction

- Remove inefficiencies from fragmented care
- Improve quality via "team-based" care
- Faster time to discharge
- Streamline devices

Why would a physician practice integrate?

Financial security

- Salaried arrangement
- Potential volume incentives

Why would a physician practice integrate?

Reduce administrative burden

- Billing and insurance approvals
- Electronic Health Records
- Data collection/reporting

Takeaway

- 1. Incentives for the hospitals to influence physician behaviors
- 2. Willingness by physicians to allow influence

Theoretical Framework

Measuring Physician Agency

Observed care at time t is

$$y_{ijk} = \arg\max_{y} \theta_{u} \tilde{u}\left(y; \Gamma_{j}, \kappa_{i}\right) + \theta_{\pi} \pi\left(y; \Gamma_{k}, \Gamma_{j}\right),$$

where \tilde{u} is additively separable in i and (j,k) and where maximizing levels of y for \tilde{u} and π are linear in y

Measuring Physician Agency

$$y_{ijk} = \alpha_i + x_i \beta + \Gamma_{jk} + \epsilon_{ijk},$$

- α_i , unobserved patient characteristics
- *x_i*, observed patient characteristics
- Γ_{jk}, a function of observed and unobserved physician and hospital characteristics

Variation in Physician Agency

What characteristics of the hospital, physician, and physician practice tend to drive variation in care, conditional on patient preferences?

$$\Gamma_{jkt} = \gamma_j + \gamma_k + \tau_t + z_{jkt}\delta + \eta_{jkt},$$

- ullet γ_j , unobserved and time-invariant physician characteristics
- ullet γ_k , unobserved and time-invariant hospital characteristics
- \bullet au_t , unobserved year factors affecting all physicians and hospitals
- z_{jkt}, observed and time-varying physician and hospital characteristics

Data

• CMS: 100% inpatient Medicare claims data (2008-2015)

- CMS: 100% inpatient Medicare claims data (2008-2015)
- SK&A: Hospital ownership of physician practices

- CMS: 100% inpatient Medicare claims data (2008-2015)
- SK&A: Hospital ownership of physician practices
- AHA, HCRIS, POS: Hospital characteristics

- CMS: 100% inpatient Medicare claims data (2008-2015)
- SK&A: Hospital ownership of physician practices
- AHA, HCRIS, POS: Hospital characteristics
- ACS: County-level demographics, education, income, and employment

 Planned inpatient operations with observed NPI for the operating physician, defined as elective admissions initiated by a physician, clinic, or HMO referral

- Planned inpatient operations with observed NPI for the operating physician, defined as elective admissions initiated by a physician, clinic, or HMO referral
- Drop physicians operating in hospitals more than 120 miles from primary office or outside of contiguous U.S.

- Planned inpatient operations with observed NPI for the operating physician, defined as elective admissions initiated by a physician, clinic, or HMO referral
- Drop physicians operating in hospitals more than 120 miles from primary office or outside of contiguous U.S.
- Drop physicians with NPIs not matched in the SK&A data

- Planned inpatient operations with observed NPI for the operating physician, defined as elective admissions initiated by a physician, clinic, or HMO referral
- Drop physicians operating in hospitals more than 120 miles from primary office or outside of contiguous U.S.
- Drop physicians with NPIs not matched in the SK&A data
- Drop lowest/highest 1% of inpatient charges and patients <
 65 years old

- Planned inpatient operations with observed NPI for the operating physician, defined as elective admissions initiated by a physician, clinic, or HMO referral
- Drop physicians operating in hospitals more than 120 miles from primary office or outside of contiguous U.S.
- Drop physicians with NPIs not matched in the SK&A data
- Drop lowest/highest 1% of inpatient charges and patients <
 65 years old
- ⇒ 518,398 unique observations at the physician/hospital/year
- \implies 7.5mm inpatient stays (47% of total)

Estimation of Match Values

Specification

$$y_{ijk} = \alpha_i + x_i \beta + \Gamma_{jk} + \epsilon_{ijk},$$

Outcomes

$$\mathbf{y}_{ijk} = \alpha_i + x_i \beta + \Gamma_{jk} + \epsilon_{ijk},$$

- Inpatient charges
- Length of stay
- 30/60/90-day mortality

Independent Variables

$$y_{ijk} = \alpha_i + x_i \beta + \Gamma_{jk} + \epsilon_{ijk},$$

- Quartiles of total Medicare payments and inpatient claims
- Covers 2008 through 2015 period
- Beneficiary-specific measure of "utilization"

Independent Variables

$$y_{ijk} = \alpha_i + \mathbf{x}_i \beta + \Gamma_{jk} + \epsilon_{ijk},$$

- Age
- Gender
- Race
- Dummies for first 5 ICD diagnosis codes (18 diagnosis groups per variable plus missing group)

Within-physician Variation in Charges

Within-physician Variation in LOS

Within-hospital Variation in Charges

Within-hospital Variation in LOS

Estimation of Institutional Influence

Specification

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + z_{jkt}\delta + \eta_{jkt},$$

Outcomes: Hospital Share and Operations

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + z_{jkt}\delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Hospital Share						
	(0.366)	(0.357)	(0.356)	(0.353)	(0.339)	(0.358)

Outcomes: Hospital Share and Operations

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + z_{jkt}\delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Hospital Share		0.713			0.753	
	(0.366)	(0.357)	(0.356)	(0.353)	(0.339)	(0.358)
Operations	18.55	18.21	18.61	18.82	20.23	18.58
	(26.03)	(26.02)	(26.94)	(27.32)	(28.87)	(26.46)

Outcomes: Charges and Length of Stay

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + z_{jkt}\delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Hospital Charge	41,829	56,920	61,780	66,497	69,965	54,549
Hospital Charge	(27,807)	(37,505)	(40,228)	(43,196)	(46,204)	(37,579)

Outcomes: Charges and Length of Stay

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + z_{jkt}\delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Hospital Charge	41,829	56,920	61,780	66,497	69,965	54,549
	(27,807)	(37,505)	(40,228)	(43,196)	(46,204)	(37,579)
Length of Stay	5.984	6.021	6.002	6.062	6.031	5.960
	(2.427)	(2.493)	(2.494)	(2.513)	(2.613)	(2.449)

Outcomes: Mortality

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + z_{jkt}\delta + \eta_{jkt},$$

		2008	2012	2013	2014	2015	Overall
90	0-day Mortality	0.0628	0.0604	0.0586	0.0575	0.0569	0.0600
		(0.147)	(0.144)	(0.143)	(0.140)	(0.145)	(0.145)

Outcomes: Mortality

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + z_{jkt}\delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
90-day Mortality	0.0628	0.0604	0.0586	0.0575	0.0569	0.0600
	(0.147)	(0.144)	(0.143)	(0.140)	(0.145)	(0.145)
60-day Mortality	0.0521	0.0497	0.0485	0.0475	0.0461	0.0495
	(0.133)	(0.130)	(0.130)	(0.127)	(0.131)	(0.131)

Outcomes: Mortality

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + z_{jkt}\delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
90-day Mortality	0.0628	0.0604	0.0586	0.0575	0.0569	0.0600
	(0.147)	(0.144)	(0.143)	(0.140)	(0.145)	(0.145)
60-day Mortality	0.0521	0.0497	0.0485	0.0475	0.0461	0.0495
	(0.133)	(0.130)	(0.130)	(0.127)	(0.131)	(0.131)
30-day Mortality	0.0375	0.0354	0.0349	0.0340	0.0318	0.0353
	(0.113)	(0.109)	(0.110)	(0.107)	(0.108)	(0.110)

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + \mathbf{z}_{jkt}\delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Integrated	0.130	0.206	0.233	0.255	0.332	0.196
	(0.336)	(0.404)	(0.422)	(0.436)	(0.471)	(0.397)

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + \mathbf{z}_{jkt} \delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Integrated	0.130	0.206	0.233	0.255	0.332	0.196
	(0.336)	(0.404)	(0.422)	(0.436)	(0.471)	(0.397)
Physician FTE	24.23	28.59	31.14	31.74	33.13	28.43
	(99.28)	(109.8)	(120.5)	(120.0)	(119.5)	(110.9)

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + \mathbf{z}_{jkt}\delta + \eta_{jkt},$$

2008	2012	2013	2014	2015	Overall
0.130	0.206	0.233	0.255	0.332	0.196
(0.336)	(0.404)	(0.422)	(0.436)	(0.471)	(0.397)
24.23	28.59	31.14	31.74	33.13	28.43
(99.28)	(109.8)	(120.5)	(120.0)	(119.5)	(110.9)
25.77	28.45	29.13	30.69	30.97	28.08
(108.2)	(120.4)	(121.4)	(125.9)	(127.8)	(117.8)
	0.130 (0.336) 24.23 (99.28) 25.77	0.130 0.206 (0.336) (0.404) 24.23 28.59 (99.28) (109.8) 25.77 28.45	0.130 0.206 0.233 (0.336) (0.404) (0.422) 24.23 28.59 31.14 (99.28) (109.8) (120.5) 25.77 28.45 29.13	0.130 0.206 0.233 0.255 (0.336) (0.404) (0.422) (0.436) 24.23 28.59 31.14 31.74 (99.28) (109.8) (120.5) (120.0) 25.77 28.45 29.13 30.69	0.130 0.206 0.233 0.255 0.332 (0.336) (0.404) (0.422) (0.436) (0.471) 24.23 28.59 31.14 31.74 33.13 (99.28) (109.8) (120.5) (120.0) (119.5) 25.77 28.45 29.13 30.69 30.97

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + \mathbf{z}_{jkt} \delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Integrated	0.130	0.206	0.233	0.255	0.332	0.196
	(0.336)	(0.404)	(0.422)	(0.436)	(0.471)	(0.397)
Physician FTE	24.23	28.59	31.14	31.74	33.13	28.43
	(99.28)	(109.8)	(120.5)	(120.0)	(119.5)	(110.9)
Resident FTE	25.77	28.45	29.13	30.69	30.97	28.08
	(108.2)	(120.4)	(121.4)	(125.9)	(127.8)	(117.8)
Nurse FTE	340.8	365.7	369.1	384.9	402.7	364.8
	(446.8)	(487.8)	(494.8)	(519.1)	(550.7)	(487.3)

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + \mathbf{z}_{jkt} \delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Integrated	0.130	0.206	0.233	0.255	0.332	0.196
	(0.336)	(0.404)	(0.422)	(0.436)	(0.471)	(0.397)
Physician FTE	24.23	28.59	31.14	31.74	33.13	28.43
	(99.28)	(109.8)	(120.5)	(120.0)	(119.5)	(110.9)
Resident FTE	25.77	28.45	29.13	30.69	30.97	28.08
	(108.2)	(120.4)	(121.4)	(125.9)	(127.8)	(117.8)
Nurse FTE	340.8	365.7	369.1	384.9	402.7	364.8
	(446.8)	(487.8)	(494.8)	(519.1)	(550.7)	(487.3)
Other FTE	749.9	763.0	761.8	776.4	806.0	762.8
	(975.5)	(1032.4)	(1076.2)	(1101.5)	(1157.2)	(1037.4)

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + \mathbf{z}_{jkt} \delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Integrated	0.130	0.206	0.233	0.255	0.332	0.196
	(0.336)	(0.404)	(0.422)	(0.436)	(0.471)	(0.397)
Physician FTE	24.23	28.59	31.14	31.74	33.13	28.43
	(99.28)	(109.8)	(120.5)	(120.0)	(119.5)	(110.9)
Resident FTE	25.77	28.45	29.13	30.69	30.97	28.08
	(108.2)	(120.4)	(121.4)	(125.9)	(127.8)	(117.8)
Nurse FTE	340.8	365.7	369.1	384.9	402.7	364.8
	(446.8)	(487.8)	(494.8)	(519.1)	(550.7)	(487.3)
Other FTE	749.9	763.0	761.8	776.4	806.0	762.8
	(975.5)	(1032.4)	(1076.2)	(1101.5)	(1157.2)	(1037.4)
Beds (100s)	1.980	1.967	1.958	1.982	2.009	1.976
	(2.160)	(2.142)	(2.137)	(2.172)	(2.235)	(2.154)

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + \mathbf{z}_{jkt}\delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Practice Size					18.41	
	(32.10)	(30.70)	(29.28)	(28.46)	(28.02)	(30.05)

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + \mathbf{z}_{jkt} \delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Practice Size	13.73	17.31	17.31	17.82	18.41	16.10
	(32.10)	(30.70)	(29.28)	(28.46)	(28.02)	(30.05)
Experience	22.55	23.00	23.94	23.65	24.77	23.17
	(6.496)	(6.703)	(6.950)	(6.902)	(6.989)	(6.746)

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + \mathbf{z}_{jkt}\delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Practice Size	13.73	17.31	17.31	17.82	18.41	16.10
	(32.10)	(30.70)	(29.28)	(28.46)	(28.02)	(30.05)
Experience	22.55	23.00	23.94	23.65	24.77	23.17
	(6.496)	(6.703)	(6.950)	(6.902)	(6.989)	(6.746)
% Multi-Specialty	0.249	0.248	0.266	0.284	0.344	0.264
% with Surgery	0.452	0.501	0.507	0.508	0.454	0.480

Initial Results

	Vert. Int.	Practice Size	Beds
Mean Outco	mes		
Share	0.068***	0.000*	0.003***
	(0.003)	(0.000)	(0.001)
Operations	1.166***	0.013***	0.061
	(0.165)	(0.003)	(0.066)
Charge	978.334***	23.713***	154.701
	(215.302)	(4.234)	(95.896)
LOS	-0.001	0.001***	0.020**
	(0.017)	(0.000)	(0.008)

Initial Results

	Vert. Int.	Practice Size	Beds
Γ_{jkt}			
Charge	824.251***	22.890***	163.798*
	(187.598)	(3.669)	(87.130)
LOS	-0.007	0.002***	0.012
	(0.017)	(0.000)	(800.0)

Initial Results

	Vert. Int.	Practice Size	Beds
Γ_{jkt}			
Charge	824.251***	22.890***	163.798*
	(187.598)	(3.669)	(87.130)
LOS	-0.007	0.002***	0.012
	(0.017)	(0.000)	(0.008)
Γ_{jkt} with	quality		
Charge	808.072***	22.649***	160.556*
	(187.311)	(3.660)	(86.871)
LOS	-0.008	0.002***	0.012
	(0.017)	(0.000)	(0.008)

Event Study

Event Study

Differential Trends

	Vert. Int.	Practice Size	Beds
Γ_{jkt}			
Charge	258.516	20.670***	192.032**
	(191.137)	(3.676)	(86.632)
LOS	0.005	0.002***	0.012
	(0.018)	(0.000)	(0.008)

Differential Trends

	Vert. Int.	Practice Size	Beds
Γ_{jkt}			
Charge	258.516	20.670***	192.032**
	(191.137)	(3.676)	(86.632)
LOS	0.005	0.002***	0.012
	(0.018)	(0.000)	(0.008)
Γ_{jkt} with	quality		
Charge	241.378	20.390***	188.895**
	(190.720)	(3.666)	(86.373)
LOS	0.003	0.002***	0.011
	(0.018)	(0.000)	(0.008)

Integration could be driven by:

- Existing physician behaviors
- Unobserved, time-varying practice characteristics

2. Estimate probability of integration (at practice level)

$$I_{pk} = \lambda z_{pk} + \omega_{pk}$$

- Average choice set size
- Average differential distance (relative to nearest hospital)
- Differential distance interacted with hospital characteristics

2. Estimate probability of integration

$$I_{pk} = \lambda z_{pk} + \omega_{pk}$$

- Average choice set size
- Average differential distance (relative to nearest hospital)
- Differential distance interacted with hospital characteristics

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + \underbrace{J_{jkt}}_{\hat{J}_{jkt}} \delta_1 + \tilde{z}_{jkt} \delta_2 + \eta_{jkt},$$

$$\hat{J}_{jkt} = \Pr(J_{jkt} = 1)$$

Summary of Preliminary Results

Effects of Vertical Integration

- Increase in shares of about 7 percentage points (10%)
- No improvement in mortality
- Potential increase in charges but relatively small (no more than 1.5% or \$850 per operation)

Summary of Preliminary Results

Effects of Practice Size

10-person increase in practice, \$200-\$250 increase in charge

Summary of Preliminary Results

Effects of Bed Size

Increase of 100 beds, \$150-\$200 increase in charge

Next Steps

- Exclude never-integrating hospitals
- Identify physician "movers"
- Focus on specific DRG (470)
- Examine institutional care beyond the inpatient stay