Esercizi 05 — 8 pt

1 — 2 pt

Si consideri il sistema lineare $A\mathbf{x} = \mathbf{b}$, con $A = \begin{bmatrix} 4 & 2 & 1 \\ 2 & 4 & 1 \\ 1 & 1 & 7 \end{bmatrix}$ e $\mathbf{b} = (2, 2, 2)^T$, e

il metodo del gradiente per l'approssimazione della soluzione $\mathbf{x} \in \mathbb{R}^3$. Si calcolino e si riportino: il valore del parametro dinamico ottimale α_0 associato all'iterata iniziale $\mathbf{x}^{(0)} = \mathbf{b}$ usato per determinare l'iterata $\mathbf{x}^{(1)}$ e l'iterata $\mathbf{x}^{(1)} \in \mathbb{R}^3$.

$$0.1269$$
, $\mathbf{x}^{(1)} = (0.4776, 0.4776, -0.0299)^T$

2 — 2 pt

Dato il sistema lineare $A\mathbf{x} = \mathbf{b}$, dove $A \in \mathbb{R}^{3\times 3}$ è la matrice di Hilbert assegnata col comando Matlab[®] A=hilb(3), si stimi il minimo numero di iterazioni N del metodo del gradiente che garantisce un abbattimento dell'errore iniziale $\|\mathbf{x}^{(0)} - \mathbf{x}\|_A$ di un fattore 200.

1389

3 — 2 pt

Si considerino il sistema lineare $A \mathbf{x} = \mathbf{b}$, dove $A = \begin{bmatrix} 4 & -1 \\ -1 & \gamma \end{bmatrix}$ è una matrice dipendente da un parametro $\gamma > 1$ e $\mathbf{b} = (1,\ 1)^T$, e il metodo del gradiente coniugato per la sua risoluzione. Posto $\mathbf{x}^{(0)} = \mathbf{0}$, si determini l'espressione della direzione $\mathbf{p}^{(1)}$ che è A-coniugata rispetto al residuo iniziale $\mathbf{r}^{(0)}$ e porta alla minimizzazione della funzione energia associata al sistema lineare.

$$\left(2\frac{\gamma^2 - 5\gamma + 4}{(\gamma + 2)^2}, -6\frac{\gamma - 4}{(\gamma + 2)^2}\right)^T$$

4 — 1 pt

Dato il sistema lineare $A \mathbf{x} = \mathbf{b}$, dove $A = \begin{bmatrix} 8 & -2 & -2 \\ -2 & 6 & -1 \\ -2 & -1 & 9 \end{bmatrix}$ e $\mathbf{b} = \begin{pmatrix} 1, & 1, & 1 \end{pmatrix}^T$, si

consideri il metodo del gradiente coniugato per l'approssimazione di \mathbf{x} . Si utilizzi opportunamente la funzione Matlab[®] pcg e si riporti il valore di $\mathbf{x}^{(2)}$ avendo posto l'iterata iniziale $\mathbf{x}^{(0)} = \mathbf{b}$.

 $(0.2097, 0.3277, 0.2047)^T$

5 — 1 pt

Si consideri la matrice $A = \begin{bmatrix} 10 & -2 \\ -2 & \beta \end{bmatrix}$, dipendente dal parametro $\beta > 0$. Assumendo che $\mathbf{x} = \begin{pmatrix} 1 & 1 \end{pmatrix}^T$ sia un'approssimazione di uno dei suoi autovettori, si riporti l'autovalore corrispondente λ in termini di β .

 $3 + \beta/2$