STAT 135 Lecture 19

Henry Liev

6 August 2025

Method 0.1 (Permutation Test)

Data from cholesterol-lowering study

Control	Treatment
103	100
115	105
123	121
131	

 H_0 : Treatment does nothing

 H_1 : Treatment does something Mann Whitney:

- 1. Under H_0 , all the data is interchangeable
- 2. Throw away data, replace with ranks
- 3. Define test statistic T, sum of the ranks
- 4. Calculate t
- 5. Compare to the rank sum distribution

Permutation Test:

- 1. Under H_0 , all the data is interchangeable
- 2. Define test statistic $\Delta = \bar{Y} \bar{X}$
- 3. Calculate δ
- 4. Use the distribution of Δ across all equally likely assignments of data to treatment

We don't need to use all $\binom{m+n}{n}$

- Pick B random assignments of data to treatment
- Calculate $T_{(b)}$ for each assignment $(\bar{Y} \bar{X})$
- Estimated *p*-value $\hat{P} =$ fraction of B assignments for which t > T
- If P is true p-value: $\mathbb{E}(\hat{p}) = p, SE(\hat{p}) = \sqrt{\frac{p(1-p)}{B}}$ Pick B large enough for desired accuracy
- End result: Totally nonparametric two sample test
- Obviously better than Mann-Whitney

Method 0.2 (Bootstrap (nonparametric))

Due to Brad Efron (1979) $X_1, \ldots, X_n \stackrel{iid}{\sim} F$

Interested in some parameter $\theta(F)$

Have in mind an estimator $\hat{\theta} = T(X_1, \dots, X_n)$

Want to get $SE(\hat{\theta})$

$$\hat{\theta} = \bar{X}, SE(\bar{X}) = \frac{\sigma}{\sqrt{n}}$$

 $\hat{\theta} = f(\bar{X}), SE(f(\bar{X}))$ Delta Method

Big Idea of nonparametric (bootstrap)

Estimate the unknown F by \hat{F}

 \hat{F} is the empirical distribution which probability $\frac{1}{n}$ on each data point, "pretend the sample is the population"

 \hat{F}_n is a good approximation to F

Want $SE_F(\hat{\theta})$, Randomness comes from F

 $SE_{\hat{F}}(\theta^*)$

Example 0.3

 X_1, \ldots, X_n Assume data points are all distinct

Sampling from \hat{F}

There are $N = \binom{2n-1}{n}$ samples of size n drawn with replacement from X_1, \ldots, X_n

1. In principle, we could draw all N possible samples of size n from the data

2. For b = 1, ..., N Get resampled data $X_{(b)}, \theta_{(b)}^* = T(X_{(b)})$

$$SE_{\hat{F}} = \sqrt{\frac{1}{N} \sum_{b=1}^{N} (\hat{\theta}_{(b)}^* - \hat{\theta}_{(.)}^*)^2}, \hat{\theta}_{(.)}^* = \frac{1}{N} \sum_{i=1}^{N} \hat{\theta}_{(b)}^*$$

Gives us an estimate of $SE_F(\theta)$ by replacing F with \hat{F}

$$\hat{\theta} = T(x_1, \dots, x_n)$$

Based on randomness in F

$$\theta^* = T(Y_1, \dots, Y_n), Y_i \sim \hat{F}$$
 puts mass $\frac{1}{n}$ on each X_i

Choose a large number B (200, 1000)

For $b = 1, \ldots, B$

Draw resamples $X_{(b)}$ from X_1, \ldots, X_n

Draw a random sample of size n with replacement from X_1, \ldots, X_n

$$\widehat{SE} = \sqrt{\frac{1}{B-1} \sum_{b=1}^{B} \left[\hat{\theta}_{(b)}^* - \hat{\theta}_{(.)}^* \right]^2} \Rightarrow \hat{\theta}_{(.)}^* = \frac{1}{B} \sum_{b=1}^{B} \hat{\theta}_{(b)}^*$$

Nonparametric method for estimating $SE(\hat{\theta})$ with no assumptions and no theory, $\hat{\theta} = \text{median}$ Are using "large n", $\hat{F}_n \approx F$ asymptotic

Remark 0.4 (Bootstrap confidence intervals)

Many methods for using bootstrap to get CIs

	Seems to make sense	Automatically works well	Confusing
Basic Bootstrap	✓	×	A little
Percentile Interval	×	✓	No
Bootstrap-t	✓	?	Yes

Method 0.5 (Basic bootstrap)

Basic bootstraps works on the same principle as parametric bootstrap: Approximating $\hat{\theta} - \theta \Rightarrow$

$$P(a \le \hat{\theta} - \theta \le b) = 0.95 \rightarrow (\hat{\theta} - b, \hat{\theta} - a)$$

Generate θ^* parametrically via $f(x|\hat{\theta})$ (Parametric bootstrap)

- Basic bootstrap "makes" sense by same logic as parametric
- But doesn't work well becaues $\theta^* \theta$ is not a good estimate of $\hat{\theta} \theta$ in a nonparametric setting

Method 0.6 (Percentile Interval)

As before, generate many instance $\theta_{(b)}^*$ and take the percentiles to generate confidence intervals for θ

Method 0.7 (Bootstrap-t)

Normal data setting

Know that $Z = \frac{\bar{X} - \mu}{\text{SE}(\bar{X})} \sim T$ $P(t_{0.025} \leq \frac{\bar{X} - \mu}{\text{SE}(\bar{X})} \leq t_{0.975}) = 95\% \rightarrow (\bar{X} - t_{0.975} \text{SE}(\bar{X}), \bar{X} + t_{0.975}) \text{SE}(\bar{X})$

Build your own custom t-distribution from the data by bootstrapping $Z(b) = \frac{\hat{\theta}_{(b)}^* - \hat{\theta}}{\operatorname{SE}^*(b)}$

For b = 1, ..., B generate resamples compute Z(b) to generate the confidence intervals above For each bootstrap need to conduct a bootstrap to find $SE^*(b)$