Lecture 10.1 - Knowledge Representation

How to represent diverse facts about the real world in a form that can be used to reason and solve problems?

Gleb Sizov Norwegian University of Science and Technology

Ontological engineering

- How to create general and flexible representations?
- Physhical objects
- Actions
- Time
- Beliefs

Upper ontology - general framework fo concepts

General-purpose vs special-purpose ontology

- 1. Should be applicable in more or less any special domain
 - Add domain-sepcific axioms.
 - Address all representational issues
- 2. Different areas of knowledge need to be unified.
 - Reasoning and problems solving could involve several areas simultaneously

Example: Robot circuit-repair system - electrical components, physical layout, time, labor cost

Creating general-purpose ontology

How general-purpose ontologies are created:

- 1. By a team of trained ontologists or logicians, e.g. CYC
- 2. By importing categories, attributes and vales from existing databases, e.g DBpedia from Wikipedia
- 3. By parsing and extracting information from text, e.g. TextRunner from Web
- 4. By crowdsourcing, e.g. OpenMind

None of the top AI applications use general-purpose ontology.

They use special-purpose ontologies and machine learning.

It is hard to agree on an ontology when many parties are involved.

Categories and objects

Importance of categories:

- 1. Much of the reasoning takes place at the level of categories, e.g. buying a basketball, not $BB_{34}\,$
- 2. Categories help to make predictions about objects.
 - e.g. Watermalon(w) good for frit salad

Representation of categories and inheritance

- 1. Predicate e.g. Apple(a)
- 2. **Reify** the category as an object, e.g.

 $egin{aligned} Apples \ a \in Apples \ Applies \subset Fruits \ Fruits \subset Foods \end{aligned}$

Inheritance. e.g. a inherits edibility of Foods.

Taxonomy - taxonomic hierarchy

First order logic and categories

An object is a member of a category:

 $BB_{12} \in Basketballs$

Member(BB12, Basketballs)

A category is a subclass of another category:

 $Basketballs \subset Balls$

Subcategory(Basketballs, Balls)

All members of a category have some properties:

$$(x \in Basketballs) \Rightarrow Spherical(x)$$

All members of a category can be recognized by some properties:

$$Orange(x) \land Round(x) \land Diameter(x) = 9.5$$
" $\land x \in Balls \Rightarrow x \in Basketballs$

Natural kinds

Some categories can be defined exactly:

 $x \in Bachelors \Leftrightarrow Unmarried(x) \land x \in Adults \land x \in Males$

Natural kind categories have no exact defintion.

 $x \in Typical(Tomatoes) \Rightarrow Red(x) \land Spherical(x)$

Relations between categories

Disjoint: No members in common $Disjoint(\{Animals, Vegetables\})$

Exhaustive Decomposition: All members are covered by categories

Exhaustive Decomposition (

 $\{Americans, Canadians, Mexicans\}, North Americans)$

Partition: An exhaustive decomposition of disjoing sets.

 $Partition(\{Animals, Plants, Fungi\}, LivingThings)$

Composition

PartOf(Bucharest, Romania)

PartOf(Romania, Europe)

PartOf(Europe, Earth)

Transitive:

 $PartOf(x,y) \land PartOf(y,z) \Rightarrow PartOf(x,z)$

Reflexive:

PartOf(x,x)

Composite objects are often characterized by structural relations among parts, e.g. biped is an object with exactly two legs attached to a body.

Measurements

- 1. Length(L1) = Inches(1.5) = Centimeters(3.81)
- 2. $Diameter(Basketball_{12}) = Inches(9.5)$
- 3. $ListPrice(Basketball_{12}) = \(19)
- 4. Weight(BunchOf(Apple1, Apple2, Apple3)) = Pounds(2)
- 5. $d \in Days \Rightarrow Duration(d) = Hours(24)$

Event calculus

Fluents:

At(Shankar, Berkeley)

Events:

 $E_1 \in Flyings \wedge Flyer(E_1, Shankar) \wedge Origin(E_1, SF) \wedge Destination(E_1, DC)$

Time points:

 $T(At(Shankar, Berkeley), t_1, t_2)$

Example - effect of flying:

 $E = Flyings(a, here, there) \land Happens(E, t_1, t_2) \Rightarrow Terminates(E, At(a, here), t_1) \land Initiates(E, At(a, there), t_2)$

Time

```
Interval\left(i\right)\Rightarrow Duration\left(i\right) = \left(Time\left(End\left(i\right)\right) - Time\left(Begin\left(i\right)\right)\right), Time\left(Begin\left(AD1900\right)\right) = Seconds\left(0\right). Time\left(Begin\left(AD2001\right)\right) = Seconds\left(3187324800\right). Time\left(End\left(AD2001\right)\right) = Seconds\left(3218860800\right). Duration\left(AD2001\right) = Seconds\left(31536000\right).
```

Time relations

```
Meet(i, j) \Leftrightarrow End(i) = Begin(j)
Before(i, j) \Leftrightarrow End(i) < Begin(j)
After(j,i) \Leftrightarrow Before(i,j)
During(i, j) \Leftrightarrow Begin(j) < Begin(i) < End(i) < End(j)
                   \Leftrightarrow Begin(i) < Begin(j) < End(i) < End(j)
Overlap(i, j)
Starts(i, j) \Leftrightarrow Begin(i) = Begin(j)
Finishes(i, j) \Leftrightarrow End(i) = End(j)
Equals\left( i,j\right) \quad\Leftrightarrow\quad Begin\left( i\right) =Begin\left( j\right) \wedge End\left( i\right) =End\left( j\right)
```

Mental Objects

Knowledge *about* beliefs and deduction.

Useful for controlling inference.

Q: Is the prime minister sitting down right now?

Propositional attitudes:

Knows(Lois, CanFly(Superman))

Referential transparency - terms used don't matter:

$$(Superman = Clark) \land Knows(Lois, CanFly(Superman)) \models Knows(Lois, CanFly(Clark))$$

We need **referential opacity** - terms used do matter.

Modal logic

Modal operators:

 $\boldsymbol{K}_A P$, means A knows P

 $\boldsymbol{B}_A P$, means A has a belief P

Lois knows that Clark knows whether Superman's secret identity is Clark:

$$oldsymbol{K}_{Lois}[oldsymbol{K}_{Clark}Identity(Superman,Clark) \lor$$

$$oldsymbol{K}_{Clark}
eg Identity(Superman, Clark)]$$

Some axioms:

1.
$$(oldsymbol{K}_a P \wedge oldsymbol{K}_a (P \Rightarrow Q)) \Rightarrow oldsymbol{K}_a Q$$

2.
$$\boldsymbol{K}_a P \Rightarrow P$$

3.
$$oldsymbol{K}_a P \Rightarrow oldsymbol{K}_a (oldsymbol{K}_a P)$$

Issue: Logical omniscience - knowing all consequences.

Semantic networks

- 1. Semantic network is a type of logic.
- 2. Focus on connections between pieces of knowledge.
- 3. Efficient inference algorithm through inheritance.
- 4. Ability to represent **default values** for categories and allow **overrides**

Semantic networks - Multiple inheritance

Semantic networks - N-ary assertions

Fly(Shankar, NewYork, NewDelhi, Yesterday)

Frames

Semantic networks where nodes have structure.

- Contains slot with values
- Support inheritance and overrides
- Value can be another frame or procedure

room

isa: section-of-building

has-part: floor

has-part: wall

has-part : floor

*has-part : window

has-part : door

*no-of-doors: 1

no-of-walls: 4

storage-room

isa : room

has-part: no-window

no-of-doors: 2

Description logics (DL)

Main aspects:

- 1. Make it easier to describe definitions and properties of categories
- 2. Add formal (logic-based) semantics to frames and semantic networks.
- 3. Tractability of inference.

Example:

Men with at least three sons who are all unemployed and married to doctors, and at most two daughters who are all professors in physics or math departments.

```
And(Man, AtLeast(3, Son), AtMost(2, Daughter), \\ All(Son, And(Unemployed, Married, All(Spouse, Doctor))), \\ All(Daughter, And(Professor, Fills(Department, Physics, Math)))).
```

Description logics - inference

Inference mechanisms:

- 1. **Subsumption** check if one category subset of another
- 2. Classification check if an object belong to a category
- 3. Consistency check if membership cirteria are satisfieable

Problem solving steps:

- 1. Describe a problem.
- 2. Check if it subsumed by solution categories.

Issues: Lack of negation and disjunction.

Reasoning with default information

FOL is **monotonic**:

If
$$KB \models \alpha$$
 then $KB \land \beta \models \alpha$

Commonsense reasoning is **nonmonotonic**, e.g.

- 1. Inheritance in semantic networks with default values
- 2. Closed-world assumption: if α not in KB then $KB \models \neg \alpha$, but $KB \land \alpha \models \alpha$

Circumscription

More powerful and precise version of the closed-world assumption.

 $Bird(x) \wedge \neg Abnormal_1(x) \Rightarrow Flies(x)$

 $Abnormal_1$ is to be **circumscribed**

Assume $\neg Abnormal_1(x)$ unless $Abnormal_1(x)$

Example:

Tweety flies until we asser $Abnormal_1(Tweety)$.

Default logic

Use default rules for nonmonotonic conclusions.

Example:

Bird(x): Flies(x)/Flies(x)

Meaning: if Bird(x) is true and Flies(x) is consistent with KB then Flies(x).

Default rule components: prerequisite (P), justification (J), conclusion (C)

$$P:J_1....,J_n/C$$

If P and J_1, \ldots, J_n cannot be proven false, then the conclusion can be drawn.

Truth maintainance systems (TMS)

- 1. KB contains P
- 2. $Tell(KB, \neg P)$
- 3. To avoid contradiction we must Retract(KB, P)

What about Q inferred from P, e.g. $P\Rightarrow Q$?

Q might also have other justifications, e.g. $R\Rightarrow Q$

TMS revises beliefs to avoid contradictions.