Topic 6: Matrices

02-680: Essentials of Mathematics and Statistics

September 4, 2024

You can almost think of a *matrix* as a 2-dimension vector. We say that an "n-by-m" matrix $M \in \mathbb{R}^{n \times m}$ has n rows and m columns and we usually write it as:

$$M = \begin{bmatrix} M_{1,1} & M_{1,2} & \dots & M_{1,m} \\ M_{2,1} & M_{2,2} & \dots & M_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ M_{n,1} & M_{n,2} & \dots & M_{n,m} \end{bmatrix}$$

1 Special Matrices

In a square matrix $N \in \mathbb{R}^{n \times n}$, we define the **main diagonal** as the entries where the horizontal and vertical component are equal; i.e. $\{N_{i,i} \mid 1 \le i \le n\}$.

The *identity* matrix $I_n \in \mathbb{R}^{n \times n}$ (sometimes simplified to just I when the size is implied from context) is a special square matrix where the main diagonal values are 1 and all other values are 0.

$$\forall 1 \le i, j \le n : I_{i,j} = \begin{cases} 1 & i = j \\ 0 & i \ne j \end{cases}$$

2 Simple Matrix Operations

2.1 Addition and Scalar Multiplication.

Like with vectors, addition of two matrices as well as scalar multiplication are element-wise operations, so for matrices $M, N \in \mathbb{R}^{n \times m}$ and scalar $a \in \mathbb{R}$:

$$O = M + N \rightarrow O_{i,j} = M_{i,j} + N_{i,j} \quad \forall 1 \le i \le n, 1 \le j \le m$$
$$O = aM \rightarrow O_{i,j} = aM_{i,j} \quad \forall 1 \le i \le n, 1 \le j \le m$$

2.2 Transpose

3 Matrix Multiplication

Just like with vectors, multiplying two matrices is more complicated than scalars. The first question is the size of the result, if we multiply $C \in \mathbb{R}^{n \times p}$ with $D \in \mathbb{R}^{p \times m}$ we get a matrix $E \in \mathbb{R}^{n \times m}$; notice that the *inner* dimensions are the same. And the values in E are defined as follows:

$$E_{i,j} = \sum_{k=1}^{m} C_{i,k} Dk, j$$

We can actually rewrite this using dot product, lets say that $C_{i,*}$ is the *i*-th column of C, and $D_{*,j}$ is the *j*-th column of D. In that case

$$E_{i,j} = C_{i,*} \cdot D_{*,j}^T$$
.

What can we do with it? Lets define the following:

- G is an n-by-m matrix where $G_{i,j} = 1$ if actor i was in an episode of the show j (and 0 otherwise)
- H be an m-by-p matrix where $H_{j,k} = 1$ if the show j is available to stream on service k (and 0 otherwise)

4 Square Matrices

- 4.1 Symmetry
- 4.2 Trace
- 4.3 Determinant

Useful References

Liben-Nowell, "Connecting Discrete Mathematics and Computer Science, 2e". §2.4