Math 501 Homework (§3.2)

Problem 15. To prove: If $0 < a < b, z_n := (a^n + b^n)^{1/n} \to b$

Solution. We first claim that $(2^{1/n})$ converges to 1. We can prove this by observing that

$$2^{1/n}=1+d_n,\ d_n>0$$

$$2=(1+d_n)^n\geq 1+nd_n (\text{by Bernoulli's Inequality})$$

$$\implies 2-1\geq nd_n$$

$$d_n\leq 1/n$$

$$\implies |2^{1/n}-1|=d_n\leq 1/n$$

Since $1/n \to 0$, by theorem 3.1.10, $2^{1/n} \to 1$. Now since

$$\begin{array}{c} 0 < a < b \\ 0 < a^n < b^n \\ b^n < a^n + b^n < 2b^n \\ (b^n)^{1/n} < (a^n + b^n)^{1/n} < (2b^n)^{1/n} \\ b < z_n < 2^{1/n}b \\ b \leq z_n \leq 2^{1/n}b \text{ (by laxing the inequality)} \end{array}$$

Since we know that $(2^{1/n}) \to 1$ and $(b) \to b$, using Squeeze Theorem, we have that $z_n \to b$.