Числа Стирлинга. Числа Белла

Числа Стирлинга первого рода (без знака) — количество перестановок порядка n с k циклами

Числами Стирлинга первого рода (со знаком) s(n, k) называются коэффициенты многочлена:

$$(x)_n = \sum_{k=0}^n s(n,k) x^k$$

$$(x)_n = x(x-1)(x-2)\cdots(x-n+1)$$

 $(x)_n$ – Символ Похгаммера

Как видно из определения, числа имеют чередующийся знак. Их абсолютные значения задают количество перестановок множества, состоящего из n элементов с k циклами.

$$|c(n,k)| = |s(n,k)| = (-1)^{n-k} s(n,k)$$

$$\sum_{i=1}^n c(n,k) x^k = x(x+1)(x+2)\cdots (x+n-1) = x^{ar{n}} = (x+n-1)_n$$

Реккурентное соотношение

$$s(0,0) = c(0,0) = 1$$

 $s(n,0) = c(n,0) = 0$

$$s(0,k)=c(0,k)=0$$
 для k > 0

Для n > 0

Реккурентное соотношение

$$s(n,k) = s(n-1,k-1) - (n-1) \cdot s(n-1,k)$$
 $c(n,k) = c(n-1,k-1) + (n-1) \cdot c(n-1,k)$ $0 < k < n$

В комбинаторике **числом Стирлинга второго рода** из n по k, обозначаемым S(n,k), называется количество неупорядоченных разбиений n-элементного множества на k непустых подмножеств.

$$S(n,k) = rac{1}{k!} \sum_{j=0}^k (-1)^{k+j} inom{k}{j} j^n$$

Числа Стирлинга первого рода (без знака) — количество перестановок порядка n с k циклами

Числами Стирлинга первого рода (со знаком) s(n, k) называются коэффициенты многочлена:

$$(x)_n = \sum_{k=0}^n s(n,k) x^k$$

n\k	0	1	2	3	4	5	6	7	8	9
0	1									
1	0	1								
2	0	1	1							
3	0	1	3	1						
4	0	1	7	6	1					
5	0	1	15	25	10	1				
6	0	1	31	90	65	15	1			
7	0	1	63	301	350	140	21	1		
8	0	1	127	966	1701	1050	266	28	1	
9	0	1	255	3025	7770	6951	2646	462	36	1

Реккурентное соотношение

$$S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k)$$
 для $0 < k \le n$

$$S(n,k) = \sum_{j=0}^{n-1} inom{n-1}{j} S(j,k-1)$$

Свойства

$$x^n = \sum_{k=0}^n S(n,k) \cdot (x)_k$$
, где $(x)_k = x(x-1) \cdots (x-k+1)$

$$S(m,n) = \sum_{i=n-1}^{m-1} inom{m-1}{i} S(i,n-1)$$

$$\sum_{n=0}^{\infty} S(n,m) = B_n$$
 Число Белла

В комбинаторике **числом Белла** называется число всех неупорядоченных разбиений *п*-элементного множества, при этом по определению полагают, что нулевое значение равно 1

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21 147, 115 975, ...

Ряд **чисел Белла** обозначает число способов, с помощью которых можно распределить **n** пронумерованных шаров по **n** идентичным коробкам. Кроме этого, числа Белла дают возможность узнать сколько существует способов разложить на множители составное число, состоящее из **n** простых множителей

Свойства

$$\sum_{n=0}^{\infty}rac{B_n}{n!}x^n=e^{e^x-1}$$

$$B_{n+1} = \sum_{k=0}^n inom{n}{k} B_k$$

$$B_n = \sum_{m=0}^n S(n,m)$$

$$B_n = rac{1}{e} \sum_{k=0}^{\infty} rac{k^n}{k!}$$