

AMERICAN INTERNATIONAL UNIVERSITY-BANGLADESH (AIUB)

Faculty of Engineering
Department of Electrical and Electronic
Engineering
Undergraduate Program

PART A

Course No/Course Code	BAE 2101
Course Title	Computer Aided Design and Drafting
Course Type	Core Course
Year/Level/Semester/Term	Second year (4th Semester)
Academic Session	Spring 2024-25
Course Teachers/Instructors	Dr. Monon Mahboob, Dr.Md.Mahadi Hasan, Raja Rashidul Hasan, Tahseen Asma Meem, Susmita Tropa Barai, Farzana Momtaz Mithila, Dr. Mohammad Tauhiduzzaman, Ahnaf Tahmid.
• Pre-requisite (If any)	EEE 1201: Electrical Circuits 1 (DC)
Credit Value	1 credit hour
Contact Hours	3 hours of laboratory per week
Total Marks	100
Mission of EEE Department	 Educate young leaders for academia, industry, entrepreneurship, and public and private organization through theory and practical knowledge to solve engineering problems individually and in teams. Create knowledge through innovative research and collaboration with multiple disciplines and societies. Serve the communities at national, regional, and global levels with ethical and professional responsibilities.
Vision of EEE Department	To become a front runner in preparing Electrical and Electronics Engineering graduates to be nationally and globally competitive and thereby contribute value for the knowledge-based economy and welfare for the people of the world.
Rationale of the Course (Course Description)	This course provides practical understanding of the fundamentals of CAD software, command for draw, erase, move, rotate, mirror, hatch, trim, planes, parallelism and perpendicularity, surfaces, inter-sections and development, basic operations such as drawing of lines, circles, rectangles, arc, blocks etc.
Course Objectives	The course is designed to provide students with: • Introduction to Computer Aided Design & Drafting and its prospects and applications in

- engineering drawing using different application packages.
- Familiarization with isometric and orthographic projection in engineering drawing.
- Familiarization with AutoCAD software and its different features, tools and commands.
- Draw isometric and orthographic projection using AutoCAD software.
- Draw electrical circuits using AutoCAD software.
- Understanding and drawing Civil Plan using AutoCAD software.
- Understanding and drawing the proper electric fittings and fixture distribution based on Civil planning.
- Familiarization with electric conduit layout diagram.
- Application of BNBC-1993

15. Course Outcomes (CO)/Course Learning Outcomes (CLOs):

By the end of this course, students should be able to –

COs/CLOs	Details	K	P	A	Assessed Program Outcome Indicator	BNQF Indicator	Assessment Techniques
1	Identify the different views based on projection criteria in engineering drawing using Auto CAD tools.	3	1 2 6		P.a.3.C3	FS.1	Mid-term exam, Lab Task Performance
2	Design and develop the drawing of different electrical circuits using Auto CAD tools.	6	1 4 5		P.e.1.C6	FS.6	Mid Assignment
3	Design and draw a civil plan and electrical fittings layout by using AUTOCAD software and appropriate BNBC.	6	1 4 5		P.e.1.C6	FS.6	OEL Report and OEL viva
4	Solution of electrical conduit layout on civil plan with proper electric fittings using AUTOCAD and calculate the electrical loads applying BNBC.	6	1 4 5		P.e.1.C6	FS.6	Lab Performance

16. Mapping with Course Learning Outcomes (CLOs) with Program Learning Outcomes (PLOs)

CI	LOs	PLO											
		1	2	3	4	5	6	7	8	9	10	11	12

1	FS.1						
2			FS.6				
3			FS.6				
4			FS.6				

PART B

17. Course plan:

By the end of this course, students should be able to –

Time Frame (Week)	Topics	Teaching Learning Strategy	Assessment Strategy	Corresponding COs /CLOs	Evidence
Week 1	Mission & Vision of AIUB, Dept. of EEE; OBE Assessment, Objective of Computer Aided Design & Drafting. Introduction to Engineering Drawing and Computer Aided Design & Drafting and Familiarization with AutoCAD software and its different features. Familiarization with different toolbars and command of AutoCAD software.	Lecture Tutorial	Class Performance	1	Lab Task
Week 2	Basic operations such as drawing of lines, circles, rectangles, arc etc.	Lecture Tutorial		1	Lab Task
Week 3	Familiarization with different orthographic projections and drawing using AutoCAD software.	Lecture Tutorial		1	Lab Task
Week 4	Familiarization with different isometric	Lecture Tutorial		1	

Week 5	projections and drawing using AutoCAD software Introducing with Electrical Symbols used for Electrical Circuit Design and drawing some Electrical Circuits using AutoCAD. MIDTERM EX	Lecture Tutorial	UIZ WRITTEN	1 (NO MCQ QUESTI	ONS)I
Week 7				THEORY COURSE	
Week 8	Understanding and drawing a Civil Plan using AutoCAD software. PART ONE. Understanding and drawing a Civil Plan using AutoCAD software. PART TWO	Lecture Tutorial		3	
Week 9	Drawing the proper electric Fittings and Fixture Layout based on a Civil plan using AutoCAD software and understanding BNBC Understanding and drawing the proper Electric Conduit Layout based on Civil planning using AutoCAD software.	Lecture Tutorial	Class Performance	3	Lab Task
Week 10	Understanding and drawing the connection diagram of Switchboard (SB), Sub Distribution Board (SDB), and Main Distribution Board (MDB) based on Civil planning using AutoCAD software.	Lecture Tutorial		3	Lab Task

Week 11	Lab performance			3	Related docs					
Week 12		OEL EXPERIMENT VIVA VOCE								
Week 13	FINAL-	FINAL-TERM EXAM WEEK FOR THEORY COURSES								

^{*} The faculty reserves the right to change, amend, add or delete any of the contents.

PART C

18. Assessment and Evaluation

• Assessment Strategy:

Assessment Strategy		T	T		
	CO/CLO 1	CO/CLO 2	CO/CLO 3	CO/CLO 4	Marks for
	(marks)	(marks)	(marks)	(marks)	Grading
Attendance					10
Lab Performance (Mid)	30				
Assignment (Mid)		40			
Written Exam (Midterm)					20
Attendance					10
Lab Performance (Final)				40	
OEL (Final)			30		
Viva Exam (Final)			20		

Marking system for Midterm	1	Marking system for Final term	l			
Attendance & Lecture Response	10%	Attendance & Lecture Response	10%			
Lab Performance (Individual)	30%	Lab Performance (Individual)	40%			
Assignment (Non-OBE assignment)	40%	OEL Performance (OBE Assessment)	30%			
Midterm Exam (Written Lab Quiz)	20%	Viva Voce of the OEL Performance	20%			
Total	100%	Total	100%			
Final Grade/ Grand Total						
Midterm:		40%				
Final Term:		60%				

• Table of Specification (TOS)

Mid-Term Exam

Level of Bloom's Taxonomy													
	Topic	С	N	N	N	Remember	Understand	Apply	Analyze	Evaluate	Create	P	

S	0 N o	o o f D a y s	o. o f It e m s	o . o f C O s	I t e m N o .	T e s t T y p e	M ar ks	I t e m N o .	T e s t T y p e	M ar ks	I t e m N o .	T e s t T y p e	M ar ks	I t e m N o .	T e s t T y p e	M ar ks	I t e m N o .	T e s t T y p e	M ar ks	I t e m N o .	T e s t T y p e	M ar ks	OI
Introd uction to engin eering drawi ng	C O 1	1	1								1	s Q	20										P.a .3. C3
Ortho graph ic & Isome tric views	C O 1	3	2																				P.a .3. C3
Circui ts drawi ng	C O 2	1	1																				P.a .3. C3
Total		1 2	4										20										

• Marks Distribution:

The evaluation system will be strictly followed as par the AIUB grading policy. The following grading system will be strictly followed in this class.

Assessment Type	Marking system For Theory Classes (Midterm a	nd Final
	term)	
Continuous	Attendance	10%
Continuous	Performance	30%
Continuous	Assignment/OEL	40%
Summative	Midterm Written Exam/ Final Viva Exam	20%
	Total	100%
	Final Grade/ Grand Total	
Grand Total	Midterm:	40%
	Final Term:	60%

Grading Policy

Grad	ing roney	
Letter	Grade Point	Numerical %
A+	4.00	90-100
A	3.75	85-<90

B+	3.50	80-<85
В	3.25	75-<80
C+	3.00	70-<75
С	2.75	65-<70
D+	2.50	60-<65
D	2.25	50-<60
F	0.00	<50(Failed)

• Makeup Procedure:

Students who fail to maintain the requirements and deadlines needed to contact faculty with reasoning. Continuous assessments will be taken with agreement with the student and faculty. For the make up of Summative assessments students need to apply for SET – B exam according to the AIUB policy.

PART D

19. Learning Materials

Formal lectures will provide the theoretical base for the subject as well as covering its practical application. A set of lecture notes, tutorial examples, with subsequent discussion and explanation, together with suggested reading will support and direct the students in their own personal study.

Maximum topics will be covered from the Lab manuals. White board will be used for most of the time to give brief description about the drawings.

Multimedia projector will be used to show the software work, for the convenience of the students.

Students must study up to the last experiments before coming to the class and it is suggested that they should go through the relevant notes before coming to the class. Just being present in the class is not enough-students must participate in classroom discussions.

Few assignments will be given to the students based on that class to test their class performance.

- Recommended Readings (Textbook);
 - "AutoCAD 2004, 2D Training Manual" by Kristen S. Kurland

- Supplementary Readings (Reference Book);
- "Beginning AutoCAD 2004" by Bob McFarlane
 "AutoCAD 2007 For Dummies" by David Byrnes and Mark Middlebrook.

PART E

Verification: BAE 2101: Compute	r Aided Design and Drafting	
Prepared by:	Checked and certified by:	Approved by:
Tahseen Asma Meem	Nafiz Ahmed Chisty	Prof. Dr. A B M Siddique Hossain
(Course Co-ordinator)	Head (UG), Department of EEE,	Dean, Faculty of Engineering
	Faculty of Engineering	
		Date:
Date:	Date:	
	Moderated by:	Moderated by:
	Date:	Date:

Appendix A

Table 1: Knowledge Profile (according to BAETE Manual 2nd Edition)

Attribute	
K 1	A systematic, theory-based understanding of the natural sciences applicable to the
	discipline
K2	Conceptually based mathematics, numerical analysis, statistics and the formal aspects
	of computer and information science to support analysis and modeling applicable to
	the discipline
K3	A systematic, theory-based formulation of engineering fundamentals required in the
	engineering discipline
K4	Engineering specialist knowledge that provides theoretical frameworks and bodies of
	knowledge for the accepted practice areas in the engineering discipline; much is at the
	forefront of the discipline
K5	Knowledge that supports engineering design in a practice area
K6	Knowledge of engineering practice (technology) in the practice areas in the

	engineering discipline					
K 7	Comprehension of the role of engineering in society and identified issues in					
	engineering practice in the discipline: ethics and the engineer's professional					
	responsibility to public safety; the impacts of engineering activity; economic, social,					
	cultural, environmental and sustainability					
K8	Engagement with selected knowledge in the research literature of the discipline					

Table 2: Range of Complex Engineering Problem Solving (according to BAETE Manual 2nd Edition)

Attribute	Complex Engineering Problems have characteristic P1 and some or all of P2 to P7:						
Depth of knowledge required	P1: Cannot be resolved without in-depth engineering knowledge at the level of one or more of K3, K4, K5, K6 or K8 which allows a fundamentals-based, first principles analytical approach						
Range of conflicting requirements	P2: Involve wide-ranging or conflicting technical, engineering and other issues						
Depth of analysis required	P3: Have no obvious solution and require abstract thinking, originality in analysis to formulate suitable models						
Familiarity of issues	P4: Involve infrequently encountered issues						
Extent of applicable codes	P5: Are outside problems encompassed by standards and codes of practice for professional engineering						
Extent of stakeholder involvement and conflicting requirements	P6: Involve diverse groups of stakeholders with widely varying needs						
Interdependence	P7: Are high level problems including many component parts or sub-problems						

Table 3: Range of Complex Engineering Activities (according to BAETE Manual 2nd Edition)

Attribute	Complex activities means (engineering) activities or projects
	that have some or all of the following characteristics:
Range of resources	A1: Involve the use of diverse resources (and for this purpose
	resources include people, money, equipment, materials,
	information and technologies)
Level of interaction	A2: Require resolution of significant problems arising from
	interactions between wide-ranging or conflicting technical,
	engineering or other issues
Innovation	A3: Involve creative use of engineering principles and research

	based knowledge in novel ways
Consequences for society	A4: Have significant consequences in a range of contexts,
and the environment	characterized by difficulty of prediction and mitigation
Familiarity	A5: Can extend beyond previous experiences by applying
	principles-based approaches

Table 4: Learning Outcome Domains and Level Descriptors (as per BNQF)

Learning Outcome Domains	
---------------------------------	--

Fundamental Skills (FS):

FS.1: demonstrate knowledge and critical understanding of the well-established principles of his/her field of study, and of the way in which those principles have developed;

FS.2: apply underlying concepts and principles outside the context in which they were first studied, including, where appropriate, the application of those principles in an employment context;

FS.3: apply knowledge and skills in addressing issues/solving problems with minimal supervision;

FS.4: evaluate critically the appropriateness of different approaches to solving problems in his/her field of study;

FS.5: support supervision of junior staff via a mentor or a leader/manager; and

FS6: display advanced digital literacy which is adequate to perform complex tasks and bring about solutions.

Social Skills (SS):

SS.1: communicate and interact effectively and clearly, ideas, information, problems and solutions as a team to peers, experts and non-experts in Bangla and English;

SS.2: express her/himself fluently and spontaneously in English and Bangla;

SS.3: use language flexibly and effectively for social, academic and professional purposes;

SS.4: produce clear, well structured, detailed text on complex subjects, showing controlled use of organisational patterns, connectors and cohesive devices in advanced proficiency level of Bangla and English;

SS.5: demonstrate the ability to incorporate entrepreneurial skills in planning daily activities; and SS.6: display advanced civic literacy and knowledge, exercising civic rights and obligations at all levels as well as participating in changes for the improvement of Bangladesh society.

Thinking Skills (TS):

TS.1: exercise very substantial degree of autonomy and often significant responsibility in making judgments/ decisions towards the management of self, others and for the allocation of substantial resources; and

TS.2: demonstrate professional knowledge and practical skills in both technical and management to lead a team in inexperienced environment.

Personal Skills (PS):

PS.1: engage in self-direction and self-enterprise skills;

PS.2: demonstrate social, professional, environmental and ethical practice/values;

PS.3: show-case global knowledge and competencies to fulfil employment, entrepreneurial and lifelong learning skills; and

PS.4: contribute significantly to the society.

Detail Program Outcomes

PO-a/PLO 1: Engineering Knowledge

Apply knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization as specified in K1 to K4 respectively to the solution of complex engineering problems.

Indicators ID	BNQF Indicator	Indicators Definition	Domain	w	Course 1	Course 2	К	P	Α	Assessment Technique(s)
P.a.1.C3	N/A	Apply information and concepts in <u>natural</u> <u>science</u> with the familiarity of issues.	Cognitive Level 3 (Applying)	0.1	EEE1203: Electrical Circuits – 1 (DC)	EEE3213: Electrical Properties of Material	K1			Assignment
<u>P.a.2.C3</u>	N/A	Apply information and concepts of mathematics with the familiarity of issues.	Cognitive Level 3 (Applying)	0.1	EEE2209: Analog Electronics	EEE2213: Signals and Linear Systems	K2			Assignment
P.a.3.C3	FS.1	Apply information and concepts in engineering fundamentals to solve complex engineering problems with a range of conflicting requirements.	Cognitive Level 3 (Applying)	0.4	EEE2105: Electrical Machines 1	EEE3101: Digital Logic and Circuits	КЗ	P1, P2, P6		Assignment
P.a.4.C3	N/A	Apply information and concepts in specialized engineering sciences with the in-depth of analysis of a complex engineering problem.	Cognitive Level 3 (Applying)	0.4	EEE3105: Industrial Electronics and Drives	EEE4101: Modern Control Systems	К4	P1, P3, P7		Assignment

PO-b/PLO 2: Problem Analysis

Identify, formulate, research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences. (K1 to K4).

Indicators ID	BNQF	Indicators	Domain	W	Course 1	Course 2	K	Р	Α	Assessment
	Indicator	Definition								Technique(
										s)
P.b.1.C	N/	Identify	Cognitive	0.	EEE2101:	EEE2103:	K			Assignment
<u>4</u>	Α	first	Level 4	1	Electrical	Electronic Devices	1			
		principles	(Analyze)		Circuits 2					
		of natural			(AC)					
		sciences								
		and								
		engineering								
		sciences in								
		practical								

		applications							
P.b.2.C 4	N/ A	Formulate solutions, procedures, and methods using first principles of mathematic s for engineering sciences.	Cognitive Level 4 (Analyzing)	0. 1	EEE3101: Digital Signal Processin g	EEE3107: Electromagnetics Fields and Waves	K 2		Assignment
P.b.3.C 4	FS. 3	Analyze solutions for complex engineering problem reaching substantiat ed conclusion.	Cognitive Level 4 (Analyze)	0. 4	EEE3211: Power Systems Analysis	EEE2207: Electrical Machines 2	К 3	P1 , P3 , P7	Assignment
P.b.4.C 4	N/ A	Research literature and analyze the validity and accuracy of existing solution for complex engineering problems.	Cognitive Level 4 (Analysis)	0. 4	EEE2208: Electrical Machines 2 Lab	EEE4209: Telecommunicatio ns Engineering	K 4	P1 , P2 , P6	Case Study

PO-c/ PLO 3: Design/ development of solutions

Design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations. (K5).

Indicators ID	BNQF	Indicators Definition	Domain	W	Course 1	Course 2	К	Р	Α	Assessment
	Indicator									Technique(s
)
P.c.1.C 4	N/ A	Design solutions for components of an engineering problem considering public health	Cognitive Level 4 (Analyzing)	0. 2	BAE1201: Basic Mechanical Engineering	EEE2211: Electrical Power Transmissio n & Distribution	K 5			Assignment
P.c.2.C 6	N/ A	and safety. Develop process for complex engineering problems considering cultural and societal factors.	Cognitive Level 6 (Create)	0. 4	EEE4000: Capstone Project	EEE2102: Electrical Circuits 2 (AC) Lab	K 5	P1 , P3 , P7		Report
P.c.3.C 5	N/ A	Evaluate solutions that meet	Cognitive Level 5 (Evaluate)	0. 4	EEE4211: Measurement and	EEE4213: Power Stations	K 5	P1 , P2		Assignment

specified		Instrumentatio	and	,	
needs with		n	Substations	P6	
appropriate					
environment					
al					
consideration					
S.					

PO-d/ PLO 4: Investigation

Conduct investigations of complex problems using research-based knowledge (K8) and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.

Indicators ID	BNQF	Indicators	Domain	W	Course 1	Course 2	K	Р	Α	Assessment
	Indicator	Definition								Technique(s)
P.d.1 .C5	N / A	Investigate the design of experimen ts for complex engineerin g problem through appropriat e research.	Cognitive Level 5 (Evaluatin g)	0.	EEE4103: Microproces sor and Embedded System	EEE3215: Principles of Communicati on Lab	K 8	P1 , P3 , P7		OEL lab/Project/Assign ment
P.d.2 .C4	N / A	Analysis and Interpretat ion of collected data to provide valid conclusion acknowled ging the limitations.	Cognitive Level 4 (Analyzin g)	0. 2	EEE2104: Electronic Devices Lab	EEE3102: Digital Logic and Circuits Lab	K 8			OEL
P.d.3 .C5	F S. 2	Investigate solution of complex engineerin g problem by synthesis of informatio n to provide valid conclusion s.	Cognitive Level 5 (Evaluatin g)	0.	EEE2106: Electrical Machines 1 Lab	EEE4102: Modern Control Systems Lab	K 8	P1 , P4 , P5		Project/OEL

PO-e/PLO 5: Modern Tool Usage

Create, select and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to complex engineering problems, with an understanding of the limitations. (K6).

Indicators ID	BNQF Indicator	Indicators Definition	Domain	W	Course 1	Course 2	К	Р	Α	Assessment Technique(s
)
P.e.1.C	N/A	Select	Cognitive Level	0.	BAE2101:	EEE2210:	K	P1		OEL/project
<u>6</u>		engineerin	6	4	Computer	Analog	6	,		

		g tools and Apply appropriat e techniques to solve complex engineerin g problems considering the limitations.	(Create)		Aided Design and Drafting	Electronic s Lab	P4 , P5	
P.e.2.P 4	N/A	Use tools for prediction and modeling of complex engineerin g problems considering the practice in electrical and electronic engineerin g discipline.	Psychomotor Level 4 (Articulation)	0. 3	EEE4217: VLSI Circuit Design Lab	EEE4208: Electrical Services Design Lab	P1 , P4 , P5	OEL/project
P.e.3.P 5	FS. 6	Create relevant resources for complex engineerin g problems using modern engineerin g tools.	Psychomotor Level 5 (Naturalization)	0.	EEE3101: Digital Signal Processin g	EEE4217: VLSI Circuit Design Lab	P1 , P3 , P7	OEL/project

PO-f/ PLO 6: The Engineer and Society

Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice and solutions to complex engineering problems. (K7)

Indicators ID	BNQF	Indicators	Domain	W	Course 1	Course 2	К	Р	Α	Assessment
	Indicator	Definition								Technique(s)
<u>P.f.1.A</u>	PS.	Accepts	Affective	0.	EEE4208:	BAE1201:				Project/Assignme
<u>3</u>	4	and	Level 3	3	Electrical	Basic				nt
		Recognize	(Valuing)		Services	Mechanica				
		the role of			Design Lab	1				
		engineerin				Engineerin				
		g in				g				
		society,								
		health,								
		safety,								
		legal and								
		culture.								
P.f.2.C	FS.	Design	Cognitiv	0.	EEE2215:	EEE4000:	K	P1		Assignment/Repo
<u>6</u>	4	solution	e Level 6	7	Engineering	Capstone	7	,		rt
		for	(Create)		Ethics and	Project		Р3		
		complex			Environment			,		
		engineerin			al Protection			P7		
		g problem								
		in								

	accordanc				
	e with				
	profession				
	al				
	practices				

PO-g/PLO 7: Environment and Sustainability

Understand and evaluate the sustainability and impact of professional engineering work in the solution of

complex engineering problems in societal and environmental contexts. (K7)

Indicators ID	BNQF	Indicators Definition	Domain	W	Course 1	Course 2	K	Р	Α	Assessment
	Indicator									Technique(s)
P.g.1.C5	N/A	Evaluate sustainability of complex engineering problems considering society and environment.	Cognitive Level 5 (Evaluating)	1.0	EEE4213: Power Stations and Substations	EEE4000: Capstone Project	К7	P1, P2, P6		Report

PO-h/PLO 8: Ethics

Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering

practice. (K7)

practice. (K			r					1 _	-	
Indicators ID	BNQF	Indicators Definition	Domain	w	Course 1	Course	K	Р	Α	Assessment
	Indicator					2				Technique(s)
P.h.1.	PS.	Apply	Cognitive	0.	EEE2215:	EEE400	K			Presentation/Rep
<u>C3</u>	2	professional codes of ethics and standards considering public safety; the impacts of engineering activity; economic, social, cultural, environmen tal and sustainabilit y.	Level 3 (Applying)	3	Engineering Ethics and Environment al Protection	0: Capston e Project	7			ort
P.h.2. A4	SS. 6	Demonstrat es individual responsibiliti es based on norms of engineering practice.	Affective Level 4 (Organizatio n)	0. 7	EEE4001: Internship/ Seminar/ Workshop	EEE400 0: Capston e Project				Report/Book

PO-i/ PLO 9: Individual Work and Teamwork

Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.

Indicators ID	BNQF Indicator	Indicators Definition	Domain	W	Course 1	Course 2	K	P	Α	Assessment Technique(s)
P.i.1.A 3	N/A	Function as effective team	Affective Level 3 (Valuing)	0. 5	EEE4000: Capston e Project	EEE4001: Internship/ Seminar/				Peer Review Survey with rubrics and

		member in multi- disciplinary problems.				Workshop		supervisor rubrics.
<u>P.i.2.A</u> <u>5</u>	FS. 5	Demonstrat e individual skills as a leader in solving multi- disciplinary problems.	Affective Level 5 (Characterization)	0. 5	EEE4102: Modern Control Systems Lab	EEE3110: Engineerin g Shop		OEL/Project

PO-j/ PLO 10: Communication

Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

Indicators ID	BNQF	ntations, and give a	Domain	ear in w	Course 1	Course 2	К	Р	Α	Assessment
indicators ID			Domain	VV	Course 1	Course 2	ĸ	۲	А	
	Indicator	Definition								Technique(s)
<u>P.j.1</u>	S	Optimize	Affective	0.4	EEE4000:	EEE4211:			A1	Viva/Presentatio
<u>.A2</u>	S.	engineerin	Level 2		Capstone	Measurement			,	n
	1	g solution by giving	(Responding		Project	and Instrumentation			A3	
		and	'			Lab			, A5	
		respondin				200			,	
		g to clear								
		instruction								
		S.								
		(Communi								
		cate								
		effectively by giving								
		and								
		respondin								
		g to clear								
		instruction								
		s to								
		produce .								
		engineerin								
		g solutions.)								
<u>P.i.2</u>	S	Produce	Psychomoto	0.2	EEE4000:	EEE4209:			A1	Report
<u>.P3</u>	S.	written	r Level 3	5	Capstone	Telecommunicat			,	•
	4	engineerin	(Precision)		Project	ions Engineering			A4	
		g reports				Lab				
		by								
		applying principle-								
		based								
		approache								
		s and								
		design								
		document								
		ation on								
		complex								
		engineerin								
		g activities for								
		different								
		stakeholde								
		rs.								
P.i.3	S	Make and	Affective	0.2	BAS 1204:	EEE3110:			A1	Presentation
<u>.A4</u>	S.	deliver	Level 4	5	Bangladesh	Engineering		l	,	

	2	effective presentati on based on complex engineerin g activities.	(Organizing)		Studies	Shop		A2	
P.i.4 .P5	S S. 3	use language flexibly and effectively for social, academic and profession al purposes	Psychomoto r Level 5 (Naturalizati on)	0.1	EEE2215: Engineerin g Ethics and Environme ntal Protection	EEE4000: Capstone Project			Presentation/Re port

PO-k/ PLO 11: Project Management and Finance

Demonstrate knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, to manage projects and in

multidisciplinary environments.

Indicators ID	BNQF Indicator	Indicators Definition	Domain	W	Course 1	Course 2	К	P	А	Assessment Technique(s)
P.k.1.P 4	TS.	Apply engineering management principles and economic decision making to solve engineering projects as a team.	Psychomotor Level 4 (Articulation)	0.	EEE3106: Industrial Electronics and Drives Lab	EEE4000 : Capston e Project				Project Report
<u>P.k.2.P</u> <u>4</u>	TS.	Manage multi- disciplinary components of a project as a member/leade r.	Psychomotor Level 4 (Articulation)	0.	EEE3110: Engineerin g Shop	EEE4000 : Capston e Project				Project Report
<u>P.k.3.A</u> <u>5</u>	SS. 5	Demonstrate competency in completing individual engineering project based on relevant management principles and economic models.	Affective Level 5 (Characterization)	0.	EEE4213: Power Stations and Substation s	EEE4000 : Capston e Project				Project Report

PO-I/ PLO 12: Lifelong learning

Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Indicators ID	BNQF	Indicators	Domain	W	Course 1	Course 2	K	Р	Α	Assessment
	Indicator	Definition								Technique(s)

P.I.1.	N/	Investigat	Affective Level	0.	EEE4209:	EEE4000:	1	Assignment/Rep
<u>A1</u>	A	e and	1 (Receiving)	3	Telecommunicati	Capstone		ort
<u></u>		gather informati on on a given engineeri ng issue beyond classroo m learning.	_ (ons Engineering	Project		
P.I.2. P5	PS .1	Seek and use resources in solving engineeri ng problems	Psychomotor Level 5 (Naturalization)	0.	EEE4211: Measurement and Instrumentation Lab	EEE4000: Capstone Project		Report
P.I.3. A5	PS .3	Recognizi ng the need for continuin g educatio n and participat ion in professio nal societies and meetings.	Affective Level 5 (Characterizati on)	0.	EEE4000: Capstone Project	EEE4001: Internshi p/ Seminar/ Worksho p		Report