

Research Progress Report
Record/Log of Contact Sessions between the Student and the Guide

Register No.: 1747230		Name of Student: Lakshay Grover				
Class: 3-MCA		Paper Code: MCA381				
Name of the	e Research Guide: N	Nandhakuma	andhakumar K G			
Date	Contact Mode (Email / in person)	Duration (Hours)	List of Interaction			
Week_1 Session 1	Email	02 Hrs	Domain Introduction and discussion on work done.			
Week_1 Session 2	In Person	02 Hrs	Process of Research, how to identify a problem, techniques of research progress.			
Week_2 Session 1	Phone	02 Hrs	Study of Onion Routing and ToR Network			
Week_2 Session 2	In Person	02 Hrs	Discussed the techniques, difficulties, and challenges in ToR Network and IoT Network.			
Week_3 Session 1	Phone	o2 Hrs	Study of Different Attacks in IoT Network			
Week_3 Session 2	In Person	02 Hrs	Discussion on Problem Identification and pursuing the challenges/ flaws in current method.			
Week_4 Session 1	Phone	02 Hrs	Study the various option to overcome the challenges faced in current method.			
Week_4 Session 2	In Person	02 Hrs	Discussion on Month Progress and implementation plan.			
Additional Session (If so)						
Activities Done (for a Month – June 2017)						
Activity Plan for the next one month commencing from the close of the current Report Period.		To start with writing paper and implementation work.				
Student Comments: Gained knowledge on security breaches and flaws in networks of IoT. To start with literature review writing.						
Research Guide Comments:						
Signature of Student:			Signature of Guide:			

MCA381 - RESEARCH PROBLEM IDENTIFICATION Progress Report Submission

Submitted by LAKSHAY GROVER

Under the Guidance NANDHAKUMAR K G

July 2018

Department of Computer Science CHRIST (Deemed to be University) Hosur road, Bengaluru 560 029 Research Domain – Problem Statement Title Reg. Number : 1747230

Student Name : LAKSHAY GROVER Guide Name : NANDHAKUMAR K G

Introduction to topic, existing scenario and applications:

Sending the data over a network is prone many attacks and it the primary medium for IoT devices to interact. In order to ensure the security of data and privacy of the devices interacting, it has become necessary to have a secured protocol for data transfer.

The existing scenario uses IEEE 802.15.5 protocol which offers basic

authentication and security . The IoT threat model changed dramatically after WSNs gained the ability to access the public internet as attackers can reach WSNs

ubiquitously where sensor nodes are the most vulnerable due to scarce computational resources. The existing application majory uses HTTP as a transfer protocol. The packets from the gateway are secured using Hypertext Transfer Protocol Secure (HTTPS), which makes use of a Secure Sockets Layer (SSL) certificate to ensure the authenticity of the sender/receiver.

Problem Statement:

The problem with the existing system is that all the packets are sent openly on the internet. An adversary with malicious intent and sufficient computational resources can easily perform an attack to extract and manipulate the packets being sent/received. A Key Reinstallation Attack (KRACK) can compromise all packets in a wireless network without breaking the encrypted authentication key . An

IoT network connected and controlled through the public internet is exposed to a huge number of malicious users.

Necessity of Defining the Problem (Research Gap):

The need to securely transfer data over wireless network is must since, if there's a data breach, all the devices connected to target device can be compromised leading to illegal access and extraction of any information that is confidential, personal, or financial in nature.

Literature Review and Analysis: Phase I (Minimum o3 articles)

Sl.No	Author		Methodology	Result	Tools	Student
	and Title	Objectives	Proposed	Analysis	used	observation
		of the				on this
		paper				paper
						(Remark)
1.	Ajay	To make	The data is	Data	Raspberr	Data
	Mishael	the data	sent through	Transfer	y Pi	transferred
	and Joy	transfer	a onion	red is	model 3,	over ToR
	Paulose	between	network	more	Arduino	has more
		IoT	where 7	secure	Uno,	Response
		devices	layers of	and	Python,	time as
		secure.	encrypted	prone to	Tor	compared
			data is sent	MITM,	Network	to data
			over a	DoS,		transferred
			randomly	Replay		over HTTP
			selected path	attack		protocol.
			of relays that	and Key		
				Reinstall		

	1			a 4	<u> </u>	ı
			provides	ation		
			anonymity	Attack(K		
	G	411	Th ! .	RACK)		т 1 .
2.	Security	Abha	The paper is	The		In order to
	and	Kiran	focused on	ultimate		gain more
	Privacy	Rajpoot,	attacks	differenc		security,
	Challeng	Mukul	during the	e		there is a
	es in the	Varshney,	operational	between		need to
	Internet	Aparajita	phase. These	IoT and		have and
	of Things	Nailwal	attacks can	Internet		IoT device
			vary from	is the		that has
			eavesdroppin	networks		more
			g to active	in which		processing
			routing	they are		power and
			attacks to	deployed		capability
			denial-of-	. IoT ha		to handle
			service	low		the
			attacks.	power		algorithms
			These attacks	lossy		and
			can be	networks		protocols
			separated	which		that can
			into a few	complica		ensure
			categories,	tes		security,
			physical	security		integrity
			capture,	issues.		and
			disrupt,	Protocol		privacy.
			degrade,	s like		
			deny,	ROLL		
			or destroy a	secure		
			part of the	lower		
			network,	layers		
			manipulation	which		
			attacks, and	conservi		
			eavesdroppin	ng		
			g attacks.	resource		
				s.		
3.	Tor: The	Roger	Tor is a	The data		ToR
	Second-	Dingledin	circuit-based	sent over		network is
	Generati	e, Nick	low latency	a TOR		slow but
	on Onion	Mathewso	anonymous	network		reliable. An
	Router	n, Paul	communicat	uses a		increasing
		Syverson	ion service.	random		number of
		by verson	Tor works	chosen		nodes
			on the real	relay		would
			world	where it		ensure an
			Internet and	will have		increase in
			requires no	7 layers		bandwidth
			Kernel	of		of the data.
			modification	encrypti		or the tiata.
			. It is an	· ·		
				on by the first		
1			overlay			
			network;	node and		
			each onion	decryptio		
			router (OR)	n is		

	runs as a	possible	
		_	
	normal	only by	
	user-level	the last	
	process	node.	
	without any	Each	
	special	node	
	privileges. It	only the	
	makes use of	the	
	empheral	former	
	keys to	and	
	communicat	latter	
	e between	node	
	next nodes.	where	
		the data	
		passes	
		through.	

Objectives of Research Domain Based:

- Primary Objective

-> To secure the IoT network so that data transferred over the network either locally, or using the Internet is secured and immuned to various attacks like Man In the middle Attack, Krack, Dos , etc.

- Secondary Objectives

-> The increase the speed over which data travels through ToR Network by distributing the data into smaller chunks or find an alternative way to transfer data over the network more securely.

#References:

- 1. R. Dingledine, M. Nick, and P. Syverson, "Tor: The Second-Generation Onion Router," 13th USENIX Secur. Symp., 2004.
- 2. T. Borgohain, U. Kumar, and S. Sanyal, "Survey of Security and Privacy Issues of Internet of Things," arXiv Prepr.
- 3. Securing IoT Networks Using and Onion Routing Based Approach International Journal of Mechanical Engineering and Technology (IJMET)
- 4. N. P. Hoang, D. Pishva, and R. Asia, "A TOR-Based Anonymous Communication Approach to Secure Smart Home Appliances," vol. 3, no. 5, pp. 517–525, 2014.