UNIVERSIDAD DE LA REPÚBLICA FACULTAD DE CIENCIAS ECONÓMICAS Y DE ADMINISTRACIÓN

2a. REVISIÓN DE ECONOMETRÍA II 25 de julio de 2014

Ejercicio 1 (25 puntos)

Se cuenta con la siguiente serie de datos sobre las ventas trimestrales entre 1968.1 y 2012.4 (180 observaciones) de una empresa que se quiere modelizar utilizando la metodología Box-Jenkins vista en clase.

Parte I

- 1.1 Defina que entiende por estacionariedad en sentido débil. Comente la gráfica en niveles de las ventas y el correlograma correspondiente. ¿Qué puede mencionar respecto a la estacionariedad de la serie? ¿El gráfico le sugiere alguna estructura posible para el proceso generador de datos?
- 1.2 Se realiza el contraste de Dickey-Fuller aumentado utilizando modelos alternativos, a continuación se presenta la información correspondiente a dichas salidas.
 - a) Plantee la regresión utilizada en el contraste para la especificación correspondiente al Modelo A, especifique hipótesis nula y alternativa y estadístico de prueba.
 - b) Concluya respecto al contraste de Dickey-Fuller al 5% de significación, indicando qué modelo A, B o C considera apropiado para describir el proceso generador de datos (en cada etapa especifique las hipótesis contraste, estadístico de prueba, región crítica, conclusión).

Modelo A

Augmented Dickey-Fuller regression OLS, using observations 1968:3-2012:4 (T = 178)

Dependent variable: d_ventas

	coefficient	std. error	t-ratio	p-value
ventas_1	0.00401408	0.00106054	3.785	1.0000
d_ventas_1	0.590770	0.0606297	9.744	3.26e-018 ***

AIC: 759.862 BIC: 766.225 HQC: 762.442

Modelo B

Augmented Dickey-Fuller regression OLS, using observations 1968:3-2012:4 (T = 178) Dependent variable: d_ventas

	coefficient	std. error	t-ratio	p-value	
const ventas 1	0.740203 0.00103335	0.271779 0.00151094	2.724 0.6839	0.0071 0.9919	***
d_ventas_1	0.544801	0.0618992	8.801	1.27e-015	***

AIC: 754.472 BIC: 764.018 HQC: 758.343

Modelo C

Augmented Dickey-Fuller regression OLS, using observations 1969:3-2012:4 (T = 174) Dependent variable: d_ventas

	coefficient	std. error	t-ratio	p-value	
const ventas 1	-7.77316 -0.0288045	3.41834 0.0123667	-2.274 -2.329	0.0242 0.4174	**
d_ventas_1	0.563960	0.0758618	7.434	5.32e-012	***
d_ventas_2 d ventas 3	0.0172816 -0.0853823	0.0876317 0.0871592	0.1972 -0.9796	0.8439 0.3287	
d_ventas_4	0.0826365	0.0864334	0.9561	0.3404	
d_ventas_5	-0.0619098	0.0749614	-0.8259	0.4101	
time	0.0606703	0.0242267	2.504	0.0132	* *

AIC: 734.671 BIC: 759.943 HQC: 744.923

Parte II

Se realiza la primer diferencia de la serie ventas y se presentan a continuación el gráfico correspondiente, su correlograma y un test ADF.

15

20

```
Augmented Dickey-Fuller test for d_ventas including 5 lags of (1-L)d_ventas (max was 3, criterion modified AIC) sample size 175 unit-root null hypothesis: a = 1

test without constant model: (1-L)y = (a-1)*y(-1) + ... + e 1st-order autocorrelation coeff. for e: -0.009 lagged differences: F(3, 171) = 1.246 [0.2946] estimated value of (a - 1): -0.214586 test statistic: tau_nc(1) = -3.5042 asymptotic p-value 0.000451
```

- 2.1 ¿Qué puede concluir respecto a la primer diferencia de la serie ventas? ¿Y sobre la serie en nivel?
- 2.2 En función de lo observado en el correlograma de la primer diferencia de ventas se proponen tres modelos. A continuación se reporta las respectivas estimaciones e información seleccionada sobre el estadístico Q del contraste de Ljung-Box de sus residuos. De considerar la información sobre los residuos relevante, especifique hipótesis nula y alternativa, estadístico de prueba concluya al respecto. Con toda esta información disponible, ¿qué modelo ARIMA(p,d,q) sugeriría para la serie ventas?

Model 1: ARMA(1,2), using observations 1968:3-2012:4 (T = 178)

Dependent variable: d_ventas

	Coefficient Std. Er		ror	\boldsymbol{z}	p-value	
Const	1.02925	0.2752	281	3.7389	0.00018	***
phi_1	0.46875	0.1195	583	3.9199	0.00009	***
theta_1	0.0988948	0.141	32	0.6998	0.48406	
theta_2	0.0810543	0.0982	401	0.8251	0.40934	
Mean dependent var	1.89	98430	S.D. de	pendent var	2	2.412073
Mean of innovations	0.00	02345	S.D. of	innovations	1	.979705
Log-likelihood	-374	.1358	Akaike	criterion	7	58.2716
Schwarz criterion	774	.1805	Hannar	n-Quinn	7	64.7231

Model 2: ARMA(1,1), using observations 1968:3-2012:4 (T = 178)
Dependent variable: d_ventas

Const phi_1 theta_1	Coefficient 0.899745 0.539041 0.0223417	Std. En 0.2361 0.100 0.1372	105 95	z 3.8108 5.3397 0.1628	<i>p-value</i> 0.00014 <0.00001 0.87070	***
Mean dependent var Mean of innovations Log-likelihood Schwarz criterion	0.000 -374.		S.D. depe S.D. of in Akaike cr Hannan-Q	novations iterion		2.412073 1.983211 756.9015 762.0627

Model 3: ARMA(1,0), using observations 1968:3-2012:4 (T = 178)

Dependent variable: d_ventas

	Coefficient	Std. I	Error	z	p-value	
Const	0.874838	0.18	7094	4.6759	< 0.00001	***
phi_1	0.552667	0.060	7293	9.1005	< 0.00001	***
Mean dependent var	1.8	98430	S.D. de	ependent var	2.	.412073
Mean of innovations	-1.0	5e-16	S.D. o	f innovations	1.	.994706
Log-likelihood	-374	.4738	Akaike	e criterion	7:	52.9476
Schwarz criterion	759	0.3112	Hanna	n-Quinn	7:	55.5282

			Q-stat.	[p-value]		
	Mode	elo 1	Modelo 2		Modelo 3	
1	0.0046	[0.946]	0.0002	[0.989]	0.0240	[0.877]
6	2.3658	[0.883]	3.3844	[0.759]	3.3398	[0.765]
12	6.3359	[0.898]	7.2734	[0.839]	7.1315	[0.849]
18	12.2627	[0.833]	13.0568	[0.788]	13.0059	[0.791]
24	13.2625	[0.926]	14.0355	[0.900]	13.9638	[0.903]

Ejercicio 2 (25 puntos)

(basado en datos de Wooldridge, 2004, archivo WAGEPRC.RAW)

Parte I

En el marco de una investigación sobre la inflación en los Estados Unidos, se busca analizar la relación entre precios y salarios. Para ello se dispone de información mensual sobre variaciones del índice general de precios (variable *gprice*) y variaciones en el índice de salarios medios (variable *gwage*). Ambas variables son obtenidas como primeras diferencias de los logaritmos de las series originales.

Como primera aproximación se estima el siguiente modelo:

Modelo 1: MCO, usando las observaciones 1980:08-2003:10 (T = 279) Variable dependiente: gprice

	Coeficiente	Desv. Típi	lca Estadístico t	Valor p
const	0,008	0 , 0005039	1 , 504 () , 1337
gwage	0,151	0,0392473	3,873) , 0001 ***
gwage 1	0,129	0,0395850	3 , 276) , 0012 ***
gwage 2	0,074	0,0396895	1,879	,0613 *
gwage 3	0,095	0,0380920	2,505	,0128 **
gwage 4	0,109	0,0396786	2 , 752) , 0063 ***
gwage 5	0,141	0,0399441	3,530) , 0005 ***
gwage_6	0,115	0,0395530	2,928),0037 ***
Media de	la vble. dep.	0,004698	D.T. de la vble. dep	0,003388
Suma de c	uad. residuos	0,002496	D.T. de la regresiór	0,003035
R-cuadrad	0	0,217865	R-cuadrado corregido	0,197662
F(7, 271)		10,78391	Valor p (de F)	5,45e-12
Log-veros	imilitud	1225,680	Criterio de Akaike	-2435 , 360
Criterio	de Schwarz	-2406,310	Crit. de Hannan-Quir	nn -2423,706
rho		0,535546	Durbin-Watson	0,922060

Se pide 1:

- 1. Señale con qué nombre se conoce a este tipo de modelos, y explique las opciones básicas que se presentan a la hora de determinar el conjunto de variables explicativas.
- 2. Presente e interprete las funciones de respuesta al impulso y al escalón.
- 3. Calcule el multiplicador de impacto y el multiplicador de largo plazo.
- 4. Calcule el retardo medio y el retardo mediano.
- 5. Indique que consecuencias tiene en este modelo la presencia de autocorrelación de los errores. Realice el contraste correspondiente para evaluar la existencia algún tipo de correlación serial en los errores (indique el modelo de referencia, las hipótesis nula y alternativa, la forma del estadístico y la regla de decisión).

Parte II

Buscando considerar una cantidad infinita de rezagos de la variable independiente en el modelo anterior, se utiliza la propuesta de Koyck para llegar a una especificación alternativa (donde *Gprice_1* es el primer retardo de la variable *Gprice*):

Model 2: OLS, using observations 1980:03-2003:10 (T = 284)

Dependent variable: Gprice

	Coefficient	Std. E	rror	t-ratio	p-	value	
Const	0.00128841	0.00027	5609	4.6748	<0.	.00001	***
Gwage	0.081433	0.0310	076	2.6205	0.	00926	***
Gprice_1	0.639642	0.0446	325	14.3313	<0.	.00001	***
Mean dependent v	7ar 0.00	4638	S.D.	dependent	var	0.00	3390
Sum squared resi	id 0.00	1776	S.E.	of regress	ion	0.00	2514
R-squared	0.45	3947	Adjus	sted R-squa	red	0.45	50061
F(2, 281)	116.	8011	P-val	lue(F)		1.21	Le-37
Log-likelihood	1298	.538	Akail	ke criterio	n	-2591	.076
Schwarz criterio	on –2580	.129	Hanna	an-Quinn		-2586	5.687
Rho	-0.18	3430	Durb	in's h		-4.67	71943

Se pide 2:

- 1. Explique la propuesta de estructura dinámica de Koyck y muestre cómo dicha estructura permite pasar de un modelo de infinitos retardos en la variable independiente, a uno con la especificación que se alcanza en el modelo estimado en la Salida 2.
- 2. Calcule el multiplicador de impacto y el multiplicador de largo plazo y compárelos con los obtenidos en el Modelo 1.
- 3. Indique que consecuencias tiene en este modelo la presencia de autocorrelación de los errores, compare con las indicadas en la parte I. Analice mediante el contraste correspondiente la presencia de correlación serial en los errores en este modelo (indique el modelo de referencia, las hipótesis nula y alternativa, la forma del estadístico y la regla de decisión).