BIKE SHARING DEMAND PREDICTION

By:
Syahlan Ramadhan
DTI-DS 0106

BIKE SHARING IN THE WORLD

10 million shared bikes and 3,000 bike sharing systems company exist across the world in 2021.

Chinese bike share firm goes bust after losing 90% of bikes

What we do in US?

Data from: PBSC Urban Solutions & BCC

Problem Understanding	01
Data Understanding & Analysis	02
Modeling	03
Final Model	04
Conclution	05
Recomendation	06
Deployment in Cloud	07

PROBLEM UNDERSTANDING

1. Which variables are significant in predicting the demand for shared bikes?

2. How well those variables describe the bike demands?

3. How the variable can impact to revenue and profit?

GOALS

Know the best variable model can used to predict the demand for shared bake. and that variable choosen describe well when apply it. it is also can give

DATA UNDERSTANDING

Feature	Explanation	Null Count	
dteday	date	non-null	
season	1: winter, 2: spring, 3: summer, 4: fall	non-null	
holiday	holiday or not	non-null	
temp	normalized temperature in Celsius.	non-null	
atemp	Normalized feeling temperature in Celsius	non-null	
hum	normalized humidity	non-null	
casual	count of casual bike users	non-null	
registered	count of registered bike users	non-null	
weathersit	1: Clear, 2:Mist, 3: Light snow, 4: Heavy rain	non-null	

Target --> count (count of total rental bikes including both casual and registered)

DATA ANALYSIS BIKE DEMAND IN HOURS EVERY MONTH

METRIC VALUATION

MAPE

is a metric that measures the accuracy of a predictive model. It calculates the average absolute percentage difference between the predicted and actual values, giving an indication of how far off predictions are in percentage terms.

R-SQUARE

is a statistical metric that indicates the proportion of the variance in the dependent variable that is predictable from the independent variables. It ranges from 0 to 1, where a higher value indicates a better fit of the model to the data.

MODELING

Model	test mape	test r2	train mape	train r2	diff mape	diff r2
XGBRegressor	0.243256	0.948738	0.254014	0.938314	0.010758	0.010424
Random Forest	0.262272	0.946366	0.282810	0.928309	0.020538	0.018057
ADA Boost	0.274973	0.928541	0.291648	0.923261	0.016675	0.005280
Decision Tree	0.389213	0.883687	0.400117	0.866649	0.010904	0.017038
GB regressor	0.391359	0.809871	0.395985	0.802523	0.004626	0.007348
linear Regression	1.394.327	0.258882	1.385.671	0.213631	0.008655	0.045252

SHARE

FINAL MODEL:

XGBOOST REGRESSOR (AS HIGHEST SCORE MODEL)

After tuning:

• mape score : 0.2313

• r2 score : 0.9583

→ GB REGRESSOR (AS STABLE MODEL)

After tuning:

• mape score : 02331

• r2 score : 0.9542

Final Model

→ XGBOOST REGRESSOR (AS HIGHEST SCORE MODEL)

After feature selection :

• mape score : 0.2280

• r2 score : 0.9565

CONCLUSION

3 VARIABLE IMPACT TO BIKE DEMAND

HOUR, SEASON, AND YEAR

ASSUME THAT: \$ 5 REVENUE / HOUR \$2 OPS COST / HOUR

TOTAL REVENUE: \$ 2.317.884 TOTAL OPERATIONAL COST: \$ 927.153

NET PROFIT: \$ 1.390.730 EVERY QUARTAL

READ MORE ON MY GITHUB: HTTPS://GITHUB.COM/SYAHLAN-R/BIKE-SHARING-DEMAND

RECOMMENDATION

In-depth analysis to understand the causes of large underestimates or overestimates. Review whether there are external factors not included in the model, changes in user behavior, or policy changes that could affect demand patterns.

Need to prepared more bike in the morning to risk mitigation from lose of the customer. it's can evaluate partialy every week by customer demand in the reality

Make a allocated cost timeline(ex: for repairing baik. employement, as well as maintenance in every point in company) to give the cost effecient to the company. so the company did not wasting their money for maintaining the bike

AND CONTINUE WITH DEPLOYMENT IN CLOUD