Department of Mathematical Sciences, Stevens Institute of Technology Dr. Kathrin Smetana

Homework for

MA 346 Numerical Methods

Spring 2022 — Homework 4

Submit via Canvas before February 27, 2022, 11:59 p.m..

Exercise 1 (Contraction mapping theorem)

(a) In order to approximate \sqrt{a} , 0 < a < 2, we set a = 1 - b, |b| < 1, $\sqrt{1 - b} = 1 - x$, which yields the fixed-point problem

$$x = g(x) := \frac{1}{2}(x^2 + b).$$

We consider D := [-|b|, |b|]. Show that the function $g : D \to \mathbb{R}$ satisfies the assumptions in the contraction mapping theorem. State the contraction factor L.

(b) To approximate the solution of $x + \ln(x) = 0$ consider the following functions:

(i)
$$g_1(x) := e^{-x}$$
, and (ii) $g_2(x) := -\ln(x)$.

Investigate whether those functions are suitable to solve the above fixed-point problem by checking the assumptions in the contraction mapping theorem. Either derive a non-trivial interval $D \in \mathbb{R}$ in which the respective function has an unique fixed-point, give the corresponding contraction factor, and show that the respective function can be used, or argue why the function cannot be used. Hint: It can be helpful to first approximately locate where x and $-\ln(x)$ intersect.

Exercise 2

We search for solutions in [1, 2] to the equation

$$x^3 - 3x^2 + 3 = 0.$$

- (a) Compute the first iterates x_0, \ldots, x_5 of the secant method in [1, 2].
- (b) Compute the first iterates x_0, \ldots, x_5 using Newton's method with starting value $x_0 = 1.5$.
- (c) Compute the first iterates using Newton's method with starting value $x_0 = 2.1$. Sketch the equation graph and try to explain the behavior.

Exercise 3

Consider the following ordinary differential equation (ODE):

$$\frac{du}{dt} = f(u).$$

To solve this numerically, you can use the backward Euler method, for some time step $\Delta t > 0$ (we will talk about this later in the semester):

$$\frac{u^{n+1} - u^n}{\Delta t} = f(u^{n+1}).$$

The numerical result from this process is the sequence u^0, u^1, u^2, \ldots , which can be interpreted as an approximation to the exact solution sampled at times $0, \Delta t, 2 \Delta t, \ldots$

- (a) If f(u) = au for some a < 0, derive a formula for u^{n+1} as a function of u^n .
- (b) If f(u) is a general nonlinear function, write down a formula for which u^{n+1} is a fixed point, i.e., determine g so that $u^{n+1} = g(u^{n+1})$.
- (c) Derive conditions on Δt so that the fixed point iteration:

$$u^{n+1,k+1} = g(u^{n+1,k}), \quad k = 0, 1, 2, \dots$$

converges. Notice there are two iterations here, one for n and one for k. This problem is asking about the iteration over k, for fixed n!

(d) If f(u) is a general nonlinear function and is differentiable, write down an iteration which determines u^{n+1} from Newton's method.