Лабораторная работа № 7

Учёт физических параметров сети

Демидова Екатерина Алексеевна

Содержание

4	Выводы	19
3	Выполнение лабораторной работы 3.1 Контрольные вопросы	6 17
2	Задание	5
1	Цель работы	4

Список иллюстраций

3.1	Схема сети без учета физических параметров сети в логическои	
	рабочей области Packet Tracer	6
3.2	Физическая рабочая область Packet Tracer	7
3.3	Изображение здания в физической рабочей области Packet Tracer	
	(сеть территории «Донская»)	8
3.4	Пример размещения в физической рабочей области Packet Tracer	
	серверной с подключением оконечных устройств (сеть территории	9
	«Донская»)	-
3.5	Отображение серверных стоек в Packet Tracer	10
3.6	Перемещение устройств на территорию Pavlovskaya	11
3.7	Проверка работоспособности соединения между msk-donskaya-	
	eademidova-sw-1 и msk-pavlovskaya-eademidova-sw-1	12
3.8	Активация разрешения на учёт физических характеристик среды	
	передачи	12
3.9	Размешение территорий на расстоянии около 1000 м друг от друга	13
3.10	Проверка неработоспособности соединения между msk-donskaya-	
	eademidova-sw-1 и msk-pavlovskaya-eademidova-sw-1	14
3.11	Замена модулей на репиторах для подключения оптоволокна и	
	витой пары по технологии Fast Ethernet	14
3.12	Схема сети с учётом физических параметров сети в логической	
	рабочей области Packet Tracer	15
3.13	Проверка работоспособности соединения между msk-donskaya-	
0.10	eademidova-sw-1 и msk-pavlovskaya-eademidova-sw-1	17
	caucimuova svv i m msk-paviovskaya-caucimuova-svv-1	1/

1 Цель работы

Получить навыки работы с физической рабочей областью Packet Tracer, а также учесть физические параметры сети.

2 Задание

Требуется заменить соединение между коммутаторами двух территорий msk-donskaya-eademidova-sw-1 и msk-pavlovskaya-eademidova-sw-1 на соединение, учитывающее физические параметры сети, а именно — расстояние между двумя территориями.

3 Выполнение лабораторной работы

Откроем проект прошлой лабораторной работы(рис. [3.1]).

Рис. 3.1: Схема сети без учёта физических параметров сети в логической рабочей области Packet Tracer

Перейдем в физическую рабочую область Packet Tracer. Присвоим название городу – Moscow(рис. [3.2]).

Рис. 3.2: Физическая рабочая область Packet Tracer

Щёлкнув на изображении города, увидим изображение здания. Присвоим ему название Donskaya. Добавим здание для территории Pavlovskaya(puc. [3.3]).

Рис. 3.3: Изображение здания в физической рабочей области Packet Tracer (сеть территории «Донская»)

Щёлкнув на изображении здания Donskaya, переместим изображение, обозначающее серверное помещение, в него(рис. [3.4]).

Рис. 3.4: Пример размещения в физической рабочей области Packet Tracer серверной с подключением оконечных устройств (сеть территории «Донская»)

Щёлкнув на изображении серверной, посмотрим отображение серверных стоек(рис. [3.5]).

Рис. 3.5: Отображение серверных стоек в Packet Tracer

Переместим коммутатор msk-pavlovskaya-eademidova-sw-1 и два оконечных устройства dk-pavlovskaya-eademidova-1 и other-pavlovskaya-eademidova-1 на территорию Pavlovskaya, используя меню Move физической рабочей области Packet Tracer(рис. [3.6]).

Рис. 3.6: Перемещение устройств на территорию Pavlovskaya

Вернувшись в логическую рабочую область Packet Tracer, пропингуем с коммутатора msk-donskaya-eademidova-sw-1 коммутатор msk-pavlovskaya-eademidova-sw-1. Убедимся, что соединение работоспособно(рис. [3.7]).

Рис. 3.7: Проверка работоспособности соединения между msk-donskaya-eademidova-sw-1 и msk-pavlovskaya-eademidova-sw-1

В меню Options, Preferences во вкладке Interface активируем разрешение на учёт физических характеристик среды передачи (Enable Cable Length Effects)(рис. [3.8]).

Рис. 3.8: Активация разрешения на учёт физических характеристик среды передачи

В физической рабочей области Packet Tracer разместим две территории на

расстоянии около 1000 м друг от друга(рис. [3.9]).

Рис. 3.9: Размешение территорий на расстоянии около 1000 м друг от друга

Вернувшись в логическую рабочую область Packet Tracer, пропингуем с коммутатора msk-donskaya-eademidova-sw-1 коммутатор msk-pavlovskaya-sw-1. Убедимся, что соединение не работает(рис. [3.10]).

Рис. 3.10: Проверка неработоспособности соединения между msk-donskaya-eademidova-sw-1 и msk-pavlovskaya-eademidova-sw-1

Удалим соединение между msk-donskaya-sw-1 и msk-pavlovskaya-sw-1. Добавим в логическую рабочую область два повторителя (Repeater-PT). Присвоим им соответствующие названия msk-donskaya-eademidova-mc-1 и msk-pavlovskaya-eademidova-mc-1. Заменим имеющиеся модули на PT-REPEATER-NM-1FFE и PT-REPEATER-NM-1CFE для подключения оптоволокна и витой пары по технологии Fast Ethernet(рис. [3.11]).

Рис. 3.11: Замена модулей на репиторах для подключения оптоволокна и витой пары по технологии Fast Ethernet

Переместим msk-pavlovskaya-mc-1 на территорию Pavlovskaya (в физичекой рабочей области Packet Tracer).

Подключим коммутатор msk-donskaya-eademidova-sw-1 к msk-donskaya-eademidova-mc-1 по витой паре, msk-donskaya-eademidova-mc-1 и msk-pavlovskaya-eademidova-mc-1 – по оптоволокну, msk-pavlovskaya-eademidova-sw-1 к msk-pavlovskaya-eademidova-mc-1 – по витой паре(рис. [3.12]).

Рис. 3.12: Схема сети с учётом физических параметров сети в логической рабочей области Packet Tracer

Также ынесйм соответсвующие изменения в таблицу портов из третьей лабораторной работы(табл. [3.1]).

Таблица 3.1: Таблица портов

Устройство	Порт	Примечание
msk-donskaya-gw-1	f0/1	UpLink
	f0/0	msk-donskaya-sw-1

Устройство	Порт	Примечание
msk-donskaya-sw-1	f0/24	msk-donskaya-gw-1
	g0/1	msk-donskaya-sw-2
	g0/2	msk-donskaya-sw-4
	f0/1	msk-donskaya-mc-1
msk-donskaya-sw-2	g0/1	msk-donskaya-sw-1
	g0/2	msk-donskaya-sw-3
	f0/1	Web-server
	f0/2	File-server
msk-donskaya-sw-3	g0/1	msk-donskaya-sw-2
	f0/1	Mail-server
	f0/2	Dns-server
msk-donskaya-sw-4	g0/1	msk-donskaya-sw-1
	f0/1-f0/5	dk
	f0/6-f0/10	departments
	f0/11-f0/15	adm
	f0/16-f0/24	other
msk-donskaya-mc-1	f0/0	msk-donskaya-sw-1
	f0/1	msk-pavlovskaya-mc-1
msk-pavlovskaya-mc-1	f0/0	msk-pavlovskaya-sw-1
	f0/1	msk-donskaya-mc-1
msk-pavlovskaya-sw-1	f0/24	msk-pavlovskaya-mc-1
	f0/1-f0/15	dk
	f0/20	other

Убедимся в работоспособности соединения междуmsk-donskaya-eademidova-sw-1 и msk-pavlovskaya-eademidova-sw-1(рис. [3.13]).

```
msk-donskaya-eademidova-sw-1>enable
Password:
msk-donskaya-eademidova-sw-1#ping 10.128.1.6

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.128.1.6, timeout is 2 seconds:
.!!!
Success rate is 80 percent (4/5), round-trip min/avg/max = 0/0/0 ms
msk-donskaya-eademidova-sw-1#ping 10.128.1.6

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.128.1.6, timeout is 2 seconds:
!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/0/0 ms
msk-donskaya-eademidova-sw-1#
```

Рис. 3.13: Проверка работоспособности соединения между msk-donskaya-eademidova-sw-1 и msk-pavlovskaya-eademidova-sw-1

3.1 Контрольные вопросы

- 1. Перечислите возможные среды передачи данных. На какие характеристики среды передачи данных следует обращать внимание при планировании сети?
- 2. Перечислите категории витой пары. Чем они отличаются? Какая категория в каких условиях может применяться?
- 3. В чем отличие одномодового и многомодового оптоволокна? Какой тип кабеля в каких условиях может применяться?
- 4. Какие разъёмы встречаются на патчах оптоволокна? Чем они отличаются?
- 5. Среды передачи данных: проводная (витая пара, коаксиальный кабель, оптоволокно), беспроводная (Wi-Fi, Bluetooth, сотовая связь). При планировании сети следует обращать внимание на пропускную способность каналов передачи данных, задержку (латентность), надежность соединения, уровень шума и помех, а также возможность интерференции сигналов.

- 6. Категории витой пары: Cat5, Cat6, Cat6a, Cat7. Они отличаются пропускной способностью и дальностью передачи. Cat5 подходит для домашних сетей, Cat6 для офисов, Cat6a и Cat7 для высокоскоростных сетей.
- 7. Одномодовое оптоволокно передает свет в одном направлении, многомодовое в нескольких. Одномодовое используется на большие расстояния, многомодовое на короткие.
- 8. Разъемы на патчах оптоволокна: LC, SC, ST. Они различаются по типу соединения. LC для высокоскоростных сетей, SC и ST для обычных сетей.

4 Выводы

В результате выполнения лабораторной работы получили навыки работы с физической рабочей областью Packet Tracer, а также учесть физические параметры сети.