

Reinforcement Learning Deep Learning Basics

Prof. Joongheon Kim

Korea University, School of Electrical Engineering Artificial Intelligence and Mobility Laboratory https://joongheon.github.io joongheon@korea.ac.kr

Machine Learning Overview

Introduction to RL

- Brief History and Successes
 - Minsky's PhD thesis (1954): Stochastic Neural-Analog Reinforcement Computer
 - Analogies with animal learning and psychology
 - Job-shop scheduling for NASA space missions (Zhang and Dietterich, 1997)
 - Robotic soccer (Stone and Veloso, 1998) part of the world-champion approach
- When RL can be used?
 - Find the (approximated) optimal action sequence for expected reward maximization (not for single optimal solution)
 - Define <u>actions</u> and <u>rewards</u>. These are all we need to do.

Introduction to RL

Action Sequence (also called **Policy**, later in this presentation)!

Introduction to RL

RL Setting

- The general RL problem is formalized as a discrete time stochastic control process where an agent interacts with its environment as follows:
 - 1. The agent starts in a given state within its environment $s_0 \in S$ by gathering an initial observation $\omega_0 \in \Omega$.
 - 2. At each time step t, The agent has to take an action $a_t \in A$. It follows three consequences:
 - 1) Obtains a reward $r_t \in R$
 - 2) State transitions to $s_{t+1} \in S$
 - 3) Obtains an observation $\omega_{t+1} \in \Omega$

Course Outline

Reinforcement Learning

Q-Learning

MDP

Deep Reinforcement Learning

DQN

Imitation Learning

Q-Function (State-action value)

Q (state, action)

Optimal Policy π and Max Q

- Max Q = $\max_{a'} Q(s, a')$
 - $\pi^*(s) = \arg\max_a Q(s, a)$

- My condition
 - I am now in state s
 - When I do action a, I will go to s'.
 - When I do action a, I will get reward r
 - Q in s', it means Q(s', a') exists.
- How can we express Q(s, a) using Q(s', a')?

$$Q(s,a) = r + \max_{a'} Q(s',a')$$


```
Recurrence (e.g., factorial)
F(x){
    if (x != 1){ x * F(x-1) }
    if (x == 1){ F(x) = 1 }
    }
}
```

```
3! = F(3) = 3 * F(2)
= 3 * 2 * F(1)
= 3 * 2 * 1 = 6
```

16 states and 4 actions (U, D, L, R)

- Initial Status
 - All 64 Q values are 0,
 - Reward are all zero except $r_{s_{15},L} = 1$
- For (1), from s_0 to s_1
 - $Q(s_0, a_R) = r + \max_a Q(s_1, a) = 0 + \max\{0,0,0,0\} = 0$
- For (2), from s_{14} to s_{15} (goal)
 - $Q(s_{14}, a_R) = r + \max_{a} Q(s_{15}, a) = 1 + \max\{0,0,0,0\} = 1$
- For (3), from s_{13} to s_{14}
 - $Q(s_{13}, a_R) = r + \max_{a} Q(s_{14}, a) = 0 + \max\{0, 0, 1, 0\} = 1$

• 16 states and 4 actions (U, D, L, R)

16 states and 4 actions (U, D, L, R)

Learning Q(s, a) with Discounted Reward

$$Q(s,a) = r + \boxed{\gamma} \cdot arg \max_{a} Q(s',a')$$
$$0 < \gamma \le 1$$

Course Outline

Reinforcement Learning

Q-Learning MDP

Deep Reinforcement Learning

DQN

Imitation Learning

Markov Decision Process (MDP), Generalization of Q-Learning

- Markov Decision Process (MDP) Components: $\langle S, A, R, T, \gamma \rangle$
 - S: Set of states
 - A: Set of actions
 - R: Reward function
 - T: Transition function
 - *γ*: Discount factor

How can we use MDP to model agent in a maze?

- Markov Decision Process (MDP) Components: $\langle S, A, R, T, \gamma \rangle$
 - S: Set of states
 - A: Set of actions
 - *R*: Reward function
 - *T*: Transition function
 - *γ*: Discount factor

S: location (x, y) if the maze is a 2D grid

- *s*₀: starting state
- s: current state
- s': next state
- s_t: state at time t

- Markov Decision Process (MDP) Components: $\langle S, A, R, T, \gamma \rangle$
 - S: Set of states
 - A: Set of actions
 - *R*: Reward function
 - *T*: Transition function
 - *γ*: Discount factor

S: location (x, y) if the maze is a 2D grid

A: move up, down, left, or right

• $s \rightarrow s'$

- Markov Decision Process (MDP) Components: $\langle S, A, R, T, \gamma \rangle$
 - S: Set of states
 - A: Set of actions
 - R: Reward function
 - *T*: Transition function
 - *γ*: Discount factor

S: location (x, y) if the maze is a 2D grid A: move up, down, left, or right

R: how good was the chosen action?

- r = R(s, a, s')
- -1 for moving (battery used)
- +1 for jewel? +100 for exit?

- Markov Decision Process (MDP) Components: $\langle S, A, R, T, \gamma \rangle$
 - S: Set of states
 - A: Set of actions
 - R: Reward function
 - T: Transition function

γ: Discount factor

Stochastic Transition

S: location (x, y) if the maze is a 2D grid A: move up, down, left, or right

R: how good was the chosen action?

T: where is the robot's new location?

• T = P(s'|s,a)

- Markov Decision Process (MDP) Components: $\langle S, A, R, T, \gamma \rangle$
 - S: Set of states
 - A: Set of actions
 - R: Reward function
 - T: Transition function
 - γ: Discount factor

Worth In Two

Steps

S: location (x, y) if the maze is a 2D grid

A: move up, down, left, or right

R: how good was the chosen action?

T: where is the robot's new location?

 γ : how much does future reward worth?

 $0 \le \gamma \le 1$, $\gamma \approx 0$: future reward is near 0 (immediate action is preferred)]

- Policy
 - $\pi: S \to A$
 - Maps states to actions
 - Gives an action for every state
- Return

$$R_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k}$$

Our goal:

Find π that maximizes expected return!

• State Value Function (V)

$$V^{\pi}(s) = E_{\pi}(R_t|s_t = s) = E_{\pi}\left(\sum_{k=0}^{\infty} \gamma^k r_{t+k} \mid s_t = s\right)$$

- Expected return of starting at state s and following policy π
- How much return do I expect starting from state s?
- Action Value Function (Q)

$$Q^{\pi}(s,a) = E_{\pi}(R_t|s_t = s, a_t = a) = E_{\pi}(\sum_{k=0}^{\infty} \gamma^k r_{t+k} | s_t = s, a_t = a)$$

- Expected return of starting at state s, taking action a, and then following policy π
- How much return do I expect starting from state s and taking action a?

Our goal is to find the optimal policy

$$\pi^*(s) = \max_{\pi} R^{\pi}(s)$$

- If T(s'|s,a) and R(s,a,s') are known, this is a planning problem.
- We can use dynamic programming to find the optimal policy.
- Notes
 - Bellman Equation (Value Iteration)

$$\forall s \in S: \ V^*(s) = \max_{a} \sum_{s'} \{ R(s, a, s') \cdot T(s, a, s') + \gamma V^*(s') \}$$

Markov Property

- [Definition (Markovian)] A discrete time stochastic control process is Markovian (i.e., it has the Markov property) if
 - $P(\omega_{t+1}|\omega_t, a_t) = P(\omega_{t+1}|\omega_t, a_t, \dots, \omega_0, a_0)$, and
 - $P(r_t|\omega_t, a_t) = P(r_t|\omega_t, a_t, \dots, \omega_0, a_0)$
- The Markov property means that the future of the process only depends on the current observation, and the agent has no interest in looking at the full history.

Markov Property

- [Definition (MDP)] A Markov Decision Process (MDP) is a discrete time stochastic control process defined as follows. An MDP is a 5-tuple (S, A, T, R, γ) where:
 - *S* is the state space,
 - *A* is the action space,
 - $T: S \times A \times S \rightarrow [0,1]$ is the transition function (set of conditional transition probabilities between states),
 - $R: S \times A \times S \to R$ is the reward function, where R is a continuous set of possible rewards in a range $R_{\text{max}} \in R^+$ (e.g., $[0, R_{\text{max}}]$),
 - $\gamma \in [0,1)$ is the discount factor.

Markov Property

- The system in [Definition (MDP)] is fully observable in an MDP, which means that the observation is the same as the state of the environment: $\omega_t = s_t$.
- At each time step t,
 - The probability of moving to s_{t+1} is given by the state transition function $T(s_t, a_t, s_{t+1})$ and the reward is given by a bounded reward function $R(s_t, a_t, s_{t+1}) \in R$.

Expected Return

• Q-value function $Q^{\pi}(s,a)$: $S \times A \to R$ is defined as follows:

$$Q^{\pi}(s,a) = E\left[\sum_{k=0}^{\infty} \gamma^k r_{t+k} \mid s_t = s, a_t = a, \pi\right]$$

• This can be rewritten recursively in the case of an MDP using Bellman's equation:

$$Q^{\pi}(s,a) = \sum_{s' \in S} T(s,a,s') \{ R(s,a,s') + \gamma Q^{\pi}(s',a=\pi(s')) \}$$

• Similar to the V-value function, the optimal Q-value function $Q^*(s, a)$ is as:

$$Q^*(s,a) = \max_{\pi \in \Pi} Q^{\pi}(s,a)$$

Expected Return

• The **optimal policy** can be obtained directly from $Q^*(s,a) = \max_{\pi \in \Pi} Q^{\pi}(s,a)$:

$$\pi^*(s) = \arg\max_{a \in A} Q^*(s, a)$$

Course Outline

Reinforcement Learning

Q-Learning MDP

Deep Reinforcement Learning

<u>DQN</u>

Imitation Learning

Introduction

- How Deep Learning Works?
 - Deep Learning Computation Procedure

Deep Learning Model Setup

- MLP, CNN, RNN, GAN, or Customized
- # Hidden Layers, # Units, Input/Output, ...
- Cost Function / Optimizer Selection

Training (with Large-Scale Dataset)

- Input: Data, Output: Labels
- Learning → Weights Updates for Cost Function Minimization

Inference / Testing (Real-Word Execution)

- Input: Real-World Input Data
- Output: Interference Results based on Updated Weights in Deep Neural Networks

Introduction

- How Deep Learning Works?
 - Deep Learning Computation Procedure

Deep Learning Model Setup

- MLP, CNN, RNN, GAN, or Customized
- # Hidden Layers, # Units, Input/Output, ...
- Cost Function / Optimizer Selection

Training (with Large-Scale Dataset)

- Input: Data, Output: Labels
- Learning → Weights Updates for Cost Function Minimization

Inference / Testing (Real-Word Execution)

- Input: Real-World Input Data
- Output: Interference Results based on Updated Weights in Deep Neural Networks

All weights in units are trained/set (under cost minimization) Input **MLP Output INPUT: Data OUTPUT: Labels** One-Dimension Vector One-Hot Encoding

We need a lot of training data for generality (otherwise, we will suffer from overfitting problem).

Introduction

- How Deep Learning Works?
 - Deep Learning Computation Procedure

Deep Learning Model Setup

- MLP, CNN, RNN, GAN, or Customized
- # Hidden Layers, # Units, Input/Output, ...
- Cost Function / Optimizer Selection

Training (with Large-Scale Dataset)

- Input: Data, Output: Labels
- Learning → Weights Updates for Cost Function Minimization

Inference / Testing (Real-Word Execution)

- Input: Real-World Input Data
- Output: Interference Results based on Updated Weights in Deep Neural Networks

Trained Model

Intelligent Surveillance Platforms

INPUT: Real-Time Arrivals

OUTPUT: Inference

 Computation Results based on (i) INPUT and (ii) trained weights in units (trained model).

Interpolation vs. Linear Regression

Interpolation vs. Linear Regression

Interpolation with Polynomials

$$y = a_2 x^2 + a_1 x^1 + a_0$$

where three points are given.

 \rightarrow Unique coefficients (a_0, a_1, a_2) can be calculated.

Is this related to **Neural Network Training?**

Interpolation and Neural Network Training

$$Y = a(a(a(X \cdot W_1 + b_1) \cdot W_2 + b_2) \cdot W_0 + b_0)$$

where training data/labels (X: data, Y: labels) are given.

- \rightarrow Find $W_1, b_1, W_2, b_2, W_o, b_o$
- → This is the mathematical meaning of neural network training.
- **→ Function Approximation**
- → The most well-known function approximation with neural network:
 Deep Reinforcement Learning

Example (Deep Reinforcement Learning)

- It is inefficient to make the Q-table for each state-action pair.
 - → ANN is used to approximate the Q-function.

Q-Network Training (Linear Regression)

$$H(x)=Wx$$

$$Cost(W)=\frac{1}{m}\sum_{i=1}^{m}(Wx^{i}-y^{i})^{2}$$

Q-Network

Q-Network Training (Linear Regression)

Algorithm 1 Deep Q-learning

Initialize action-value function Q with random weights

for episode =
$$1, M$$
 do

Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$ If preprocessing is not needed, $\phi(s) = s$

for t = 1, T do

With probability ϵ select a random action a_t otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$ ϵ -greedy

Execute action a_t in emulator and observe reward r_t and image x_{t+1}

Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$

Learning

Set
$$y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}$$

Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3

end for

end for

Play Atari with Deep Reinforcement Learning

Q-Network

$$\min_{\theta} \sum_{t=0}^{T} \left[\widehat{Q}(s_t, a_t | \theta) - \left(r_t + \gamma \max_{a'} \widehat{Q}(s_{t+1}, a' | \theta) \right) \right]^2$$

- Converges to Q^* using table lookup representation
- However, diverges using neural networks due to
 - Correlations between samples → [Issue #1]
 - Non-stationary targets → [Issue #2]

Tutorial by Google DeepMind: Deep Reinforcement Learning

• [Issue #1] Correlations between Samples

- Solution) Capture and Replay
 - Store learning states in buffers → random sampling and learning

- [Issue #1] Correlations between Samples
 - Capture and Replay → Experience Replay
 - Store learning states in buffers → random sampling and learning

Random Sampling Results are **Uniformed Distributed**.

• [Issue #2] Non-Stationary Targets

Target

$$\min_{\theta} \sum_{t=0}^{T} \left[\hat{Q}(s_t, a_t | \theta) - \left(r_t + \gamma \max_{a'} \hat{Q}(s_{t+1}, a' | \theta) \right) \right]^2$$

- Both sides uses same network θ.
 Thus, if our Q_predict is trained, our target is consequently updated.
 Non-stationary targets.
- Solution) Separate Networks → create a target network

• [Issue #2] Non-Stationary Targets

$$\min_{\theta} \sum_{t=0}^{T} \left[\hat{Q}(s_t, a_t | \theta) - \left(r_t + \gamma \max_{a'} \hat{Q}(s_{t+1}, a' | \theta) \right) \right]^2$$

$$\min_{\theta} \sum_{t=0}^{T} \left[\hat{Q}(s_t, a_t | \theta) - \left(r_t + \gamma \max_{a'} \hat{Q}(s_{t+1}, a' | \overline{\theta}) \right) \right]^2$$

And periodic update!

Course Outline

Reinforcement Learning

Q-Learning MDP

Deep Reinforcement Learning

DQN

Imitation Learning

Introduction

- ICML 2018 Tutorial
 - https://sites.google.com/view/icml2018-imitation-learning/

Imitation Learning Tutorial ICML 2018

Introduction

- ICML 2019 Tutorial
 - https://slideslive.com/38917941/imitation-prediction-and-modelbasedreinforcement-learning-for-autonomous-driving

Imitation, Prediction, and Model-Based Reinforcement Learning for Autonomous Driving

Sergey Levine

15th June 2019 - 10:50am

Introduction to Imitation Learning

Gameplay

Pro-Gamer

Trained Agent

The goal of Imitation Learning is to train a policy to mimic the expert's demonstrations

Imitation Learning

Behavior Cloning

- Define $P^* = P(s|\pi^*)$ (distribution of states visited by expert)
- Learning objective

$$argmin_{\theta} E_{(s,a_E)\sim P^*} L(a_E, \pi_{\theta}(s))$$
$$L(a_E, \pi_{\theta}(s)) = (a_E - \pi_{\theta}(s))^2$$

Discussion

- Works well when P^* close to the distribution of states visited by π_{θ}
- Minimize 1-step deviation error along the expert trajectories

Imitation Learning Applications: Starcraft2

• Starcraft2

States: s = minimap, screen

Action: a = **select**, **drag**

Training set: $D = \{\tau := (s, a)\}$ from expert

Goal: learn $\pi_{\theta}(s) \rightarrow a$

States: S Action: a Policy: π_{θ}

- Policy maps states to actions : $\pi_{\theta}(s) \rightarrow a$
- Distributions over actions : $\pi_{\theta}(s) \rightarrow P(a)$

State Dynamics: P(s'|s,a)

- Typically not known to policy
- Essentially the simulator/environment

Rollout: sequentially execute $\pi_{\theta}(s_0)$ on initial state

• Produce trajectories τ

 $P(\tau|\pi)$: distribution of trajectories induced by a policy

 $P(s|\pi)$: distribution of states induced by a policy

Imitation Learning Applications: Autonomous Driving

Autonomous Driving Control

States: s = **sensors**

Action: a = **steering wheel**, **brake**, ...

Training set: $D = \{\tau := (s, a)\}$ from expert

Goal: learn $\pi_{\theta}(s) \rightarrow a$

Imitation Learning Applications: PPF/RFTN Injection Control in Medicine

• PPF/RFTN Injection Control in Medicine

States: s = **BIS**, **BP**, ...

Action: a = PPF, RFTN, ...

Training set: $D = \{\tau := (s, a)\}$ from expert

Goal: learn $\pi_{\theta}(s) \rightarrow a$

Thank you for your attention!

- More questions?
 - joongheon@korea.ac.kr
- More details?
 - https://joongheon.github.io/