ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 01 febbraio 2017

Esercizio A

$R_1 = 100 \ \Omega$ $R_2 = 30 \ k\Omega$ $R_3 = 30 \ k\Omega$ $R_5 = 400 \ \Omega$ $R_6 = 5 \ k\Omega$ $R_7 = 1 \ k\Omega$ $R_8 = 22 \ k\Omega$ $R_9 = 7 \ k\Omega$	$R_{10} = 2 \text{ k}\Omega$ $R_{11} = 3 \text{ k}\Omega$ $R_{12} = 1 \text{ k}\Omega$ $R_{13} = 25 \text{ k}\Omega$ $C_1 = 1 \text{ nF}$ $C_2 = 220 \text{ nF}$ $C_3 = 470 \text{ nF}$ $V_{CC} = 18 \text{ V}$	V_{cc} R_4 C_2 R_{11} R_{12} C_3 R_1 R_2 R_3 R_6 R_9 R_{10} R_{10}	+ + - - - -
--	---	--	----------------------------

 Q_1 è un transistore MOS a canale p resistivo con V_{T1} = -1 V; Q_2 è un transistore MOS a canale n resistivo con V_{T2} = 1 V; per entrambi la corrente di drain in saturazione è data da I_D = $k(V_{GS}$ - $V_T)^2$ con k = 0.5 mA/V². Con riferimento al circuito in figura:

- 1) Calcolare il valore della resistenza R_4 in modo che, in condizioni di riposo, la tensione sul drain di Q_2 sia 12 V. Determinare, inoltre, il punto di riposo dei due transistori e verificarne la saturazione. (R: R_4 = 2600 Ω)
- 2) Determinare l'espressione e il valore di V_U/V_i alle frequenze per le quali C_1 , C_2 , e C_3 possono essere considerati dei corto circuiti. (R: $V_U/V_i = 2.68$)
- 3) (<u>Solo per 12 CFU</u>) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: f_{z1} =0 Hz; f_{p1} =10540 Hz; f_{z2} =278 Hz; f_{p2} =1082 Hz; f_{z3} =0 Hz; f_{p3} =11.7 Hz;)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \overline{\overline{B}E} \left(\overline{A}C + \overline{D} \right) + \overline{A} \left(CE + \overline{B} \right) + \overline{D} \overline{C}$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

Esercizio C

$R_1 = 2 k\Omega$	$R_5 = 2 \text{ k}\Omega$
$R_2 = 150 \Omega$	$R_6 = 3 \text{ k}\Omega$
$R_3 = 200 \Omega$	C = 330 nF
$R_4=250~\Omega$	$V_{CC} = 6 \text{ V}$

Il circuito IC_1 è un NE555 alimentato a $V_{CC} = 6$ V; Q_1 ha una $R_{on} = 0$ e $V_T = -1$ V; Q_2 ha una $R_{on} = 0$ e $V_T = 1$ V; gli inverter sono ideali. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f = 13741 Hz)