Application: Digital logic circuits

Logic and electric circuits

Р	Q	light		
closed	closed	on		
closed	open	off		
open	closed	off		
open	open	off		

Q	Q	light		
closed	closed	on		
closed	open	on		
open	closed	on		
open	open	off		

Modern computers use logic gates

Basic logic gates

AND gate

P	Q	R
1	1	1
1	0	0
0	1	0
0	0	0

OR gate

P	Q	R
1	1	1
1	0	1
0	1	1
0	0	0

NOT gate

Р	R
1	0
0	1

Rules for a combinatorial circuit

- Never combine two input wires.
- A single input wire can be split partway and used as input for two separate gates.
- An output wire can be used as input.
- No output of a gate can eventually feed back into that gate.

Determining output for a given circuit

Input signals: P = 0 and Q = 1

Boolean expression

Input signals: P=1, Q=1 and R=1

Constructing circuits for Boolean expressions

 $((P \land Q) \land (R \land S)) \land T$

Multi-input AND and OR gates

Designing a circuit for a given input/output table

disjunctive normal form (DNF)

Another example

	Input	Output		
P Q I		R	S	
1	1	1	1	
1	1	0	0	
1	0	1	1	
1	0	0	0	
0	1	1	1)
0	1	0	0	
0	0	1	1)
0	0	0	0	

(Prare) ~ (Pr'2 14) ~ (Prare) ~ (Pr'2 12)

Reopen the first case

Circuit equivalence

■ Two digital circuits are equivalent if they produce the same output given the same inputs.

Logical equivalence

Definition Two formulas P and Q are called equivalent if they have the same truth value under every possible interpretation. In other words, P and Q are equivalent if I(P) = I(Q) for every interpretation I. This is denoted by

$$P \equiv Q$$
.

Example:

$$(P \land Q \land R) \lor (P \land \neg Q \land R) \lor (P \land Q \land \neg R) \equiv P \land (Q \lor R)$$

On logical equivalence

Theorem The relation \equiv is an equivalence relation on \mathcal{P} .

Proof

- \equiv is reflexive, since, trivially, I(P) = I(P) for every interpretation I.
- \blacksquare \equiv is transitive, since $P \equiv Q$ and $Q \equiv R$ implies $P \equiv R$.
- \blacksquare \equiv is symmetric, since $P \equiv Q$ implies $Q \equiv P$.

Simplifying propositional formulae

Exercises:

$$\blacksquare (P \Rightarrow Q) \equiv (\neg P \lor Q)$$

$$\bullet (P \Leftrightarrow Q) = (P \Rightarrow Q) \land (Q \Rightarrow P)$$

$$(P \wedge (P \vee Q)) \equiv P$$

Useful equivalences

The following equivalences can be checked by truth tables:

■ Associative laws:

$$(P \lor (Q \lor R)) \equiv ((P \lor Q) \lor R),$$
$$(P \land (Q \land R)) \equiv ((P \land Q) \land R);$$

■ Commutative laws:

$$(P \lor Q) \equiv (Q \lor P), (P \land Q) \equiv (Q \land P);$$

■ Identity laws:

$$(P \lor \bot) \equiv P, \ (P \lor \top) \equiv \top, \ (P \land \top) \equiv P, \ (P \land \bot) \equiv \bot;$$

■ Distributive laws:

$$(P \land (Q \lor R)) \equiv ((P \land Q) \lor (P \land R))$$
$$(P \lor (Q \land R)) \equiv ((P \lor Q) \land (P \lor R));$$

■ Complement laws:

$$P \lor \neg P \equiv \top, \ \neg \top \equiv \bot, \ \neg \neg P \equiv P, P \land \neg P \equiv \bot, \ \neg \bot$$

■ De Morgan's laws:

$$\neg (P \lor Q) \equiv (\neg P \land \neg Q), \ \neg (P \land Q) \equiv (\neg P \lor \neg Q).$$

Boolean functions of arity 2

			•	1(P4Q))	(Q 와)	•	1(64)2)	
Р	Q	1	^	Prq	P	PAQ	Q	PxorQ	V
1	1	0	1	0	1	0	1	0	1
1	0	0	0	1	1	0	0	1	1
0	1	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0	0	0

	- 1								
Р	Q	7(Psa	ि का	7 Q	Q->P	70	Paq	^ (P~d)	T
1	1	0	1	0	1	0	1	0	1
1	0	0	0	1	1	0	0	1	1
0	1	0	0	0	0	1	1	1	1
0	0	1	1	1	1	1	1	1	1
			J				•		

Logic gates

■ AND, OR, NOT

XOR

■ NAND, NOR, XNOR

Universality of NAND and NOR

- NAND (AKA Sheffer stroke) $P \mid Q = \neg (P \land Q)$
- and NOR (AKA Pierce arrow) $P \downarrow Q = \neg (P \lor Q)$

$$P \mid Q = \neg (P \land Q)$$

are universal:

$$\neg P \equiv P \mid P$$

$$P \lor Q \equiv (P \mid P) \mid (Q \mid Q)$$

$$P \wedge Q \equiv (P \mid Q) \mid (P \mid Q)$$

$$P \longrightarrow Q$$

A bit on sequential circuits

Rules for a sequential circuit

- Never combine two input wires.
- A single input wire can be split partway and used as input for two separate gates.
- An output wire can be used as input.
- An output of a gate **can** eventually feed back into that gate.

What happens here?

Same behaviour

is same as

Set/Reset flip-flop circuit

AKA latch

