PROBABILIDAD Y PROCESOS ESTOCÁSTICOS 1^{er} PARCIAL - 2/05/2013

NOMBRE:

MATRICULA:

#1					#2		#3			#4		#5			
a-1	a-2	b-1	b-2	b-3	a	b	21	b	c	a	b	24	ь	c	đ

Ejercicio 1 (1,5 puntos)

- a) Complete c/u de las siguientes afirmaciones para que sean ciertas:
 - a-1) La cantidad de ocurrencias de un evento en un intervalo de tiempo fijo puede describirse en muchos casos, mediante una V. A. discreta del tipo de......
 - a-2) La cantidad de veces que ocurre un determinado evento, definido para un experimento aleatorio, cuando se realizan n pruebas independientes del experimento, se describe mediante una V. A. discreta del tipo de ...
- b) Escriba verdadero o falso en las siguientes afirmaciones. Justifique su respuesta.
 - b-1) Dos eventos son independientes si no tienen ningún resultado en común.
 - b-2) Dos eventos definidos sobre un experimento aleatorio son mutuamente excluyentes si ambos no pueden ocurrir en una misma prueba del experimento.

b-3)
$$f_{y}(y/x_{1} < X \le x_{2}) = \begin{cases} \frac{f_{XY}(x, y)}{f_{X}(x_{2}) - f_{X}(x_{1})} & si \ x_{1} < x \le x_{2} \\ 0 & else \end{cases}$$

Ejercicio 2 (2 puntos)

Una planta industrial construye fuentes reguladoras de tensión. Para cada una utiliza tres circuitos integrados reguladores, todos del mismo tipo. Los chips se encuentran distribuidos en 2 recipientes. El primero contiene 150 chips y el 6% de ellos son defectuosos. El segundo contiene 150 chips y el 4% de ellos son defectuosos. Al ensamblar cada fuente, el ingeniero elige al azar una caja y extrae de ella los 3 chips que necesita.

- a) Si el ingeniero prueba cada fuente antes de construir la siguiente, y considerando que las fuentes fallan únicamente si al menos uno de los circuitos integrados es defectuoso, determine la probabilidad de que la primera fuente que se construye falle.
- b) Para el caso enunciado en a), determine la probabilidad de que para la primera fuente construida, los chips hayan sido seleccionados del primer recipiente.

Ejercicio 3 (2,5 puntos)

Sean X_1 , X_2 y X_3 tres potenciales eléctricos, que son independientes entre sí: X_1 es una constante de valor 2, X_2 puede tomar solamente los valores 5 y -5 con igual probabilidad y X_3 es una VA con distribución uniforme entre [-10 y 10]. Un interruptor selecciona secuencialmente alguna de estas tres VA para dar lugar a una nueva variable aleatoria Y. El interruptor permanece en X_1 el doble del tiempo que en X_2 , y en X_3 el mismo que en X_2 .

- a) Obtenga una expresión de la función densidad de probabilidad para la VAY (la salida del interruptor) en términos de f_{X_1} , f_{X_2} y f_{X_3} .
- b) Obtenga $f_{y}(y)$ y $F_{y}(y)$. Grafique ambos resultados.
- c) Determine $P(-5 \le Y \le 5)$, $P(2 \le Y < 5)$ y P(Y = 2).

Ejercicio 4 (1, 5 puntos)

El diámetro de un eje de almacenamiento óptico fabricado por una empresa tiene una distribución normal con media 0,2508 pulgadas y desviación estándar de 0,0005 pulgadas. Las especificaciones del diámetro del eje son $0,2500 \pm 0,0015$ pulgadas.

a) ¿Qué proporción de ejes fabricados en dicha empresa cumplen con el requisito?

b) Si se corrige la maquinaria y se centra el proceso nuevamente en otro valor, ¿cuál debería ser ese valor para asegurar que al menos un 95% de los ejes fabricados cumplan con las especificaciones si se mantiene la dispersión en el proceso?

Ejercicio 5 (2,5 puntos)

Sean X e Y dos Variables aleatorias independientes. La V. A. Y tiene una distribución de Laplace con parámetro $\alpha = 4$, y la V. A. X está distribuida uniformemente en [-2,0]. Sea Z=X+Y.

a) Encuentre la fdp conjunta $f_{XY}(x,y)$, indicando su dominio de definición.

b) Encuentre la $f_z(z)$.

c) Calcule la P $(Z \le 2/X>0 Y>-1)$

d) Encuentre el coeficiente de correlación de Y con Z, ρ_{YZ} . ¿Son Z e Y variables aleatorias no-correlacionadas? ¿Son Z e Y variables aleatorias independientes? Justifique sus respuestas.