Уважаемая комиссия, вашему вниманию представлена работа на тему "Минимизация неявно заданной функции, применение метода имитации отжига"

Слайд0: ТИТИУЛЬНИК (5 сек)

Данная работа посвящена применению метода отжига для решения NP-полной задачи

Слайд1: постановка задачи 1 (30 сек)

- 1. Поставлена целочисленная задача о ранце на максимизацию.
- 2.

<u>Для поставленной задачи будем называть оптимальным решением</u> точку p, принадлежащую множеству из наборов длины п целых положительных чисел, на которой достигается максимум целевой функции и удовлетворяющая следующему ограничению $\sum_{i=1}^{n} a_i x_i \leq b$.

Тогда оптимальное значение функции для этой задачи – это значение целевой функции в этой точке.

- 3. <u>Введем множество</u> из наборов размерности n, у которых k компонент отличны от нуля $< \mathbb{Z}_k^n > 1$
- 4. Тогда:

<u>Аналогично введем понятия k-оптимального решения и k-оптимального значения функции для описанного множества</u>

Слайд2: постановка задачи 2, цель работы (22 сек)

- 1. Для сравнения оптимального значения целочисленной задачи о ранце и k-оптимального введём понятие точности k оптимального решения $< lpha_k = rac{\lambda_k(a,b,c)}{\lambda(a,b,c)} >$
- 2. <u>И тогда введем понятие гарантированной точности k-оптимального решения</u>, как точную нижнюю грань точности k-оптимального решения этой же задачи:

$$<\alpha_{k,n} = \inf_{a,b,c} \left\{ \left| \frac{\lambda_k(a,b,c)}{\lambda(a,b,c)} \right| : a, c \in \mathbb{Z}_+^n, b \in \mathbb{N} \right\} >$$

3. <u>Требуется:</u> для различных k и n - задачах найти инфинум от модуля отношения приближенного решения целочисленной задачи о рюкзаке к точному

Слайд3: сложность задачи, методы решения (30 сек)

- 1. Данная задача относится к классу NP-полных
- 2. Решение NP-задач возможно перебором всех кандитатов, но это занимает много времени, которое экспоненциально увеличивается с количеством входных данных.
- 3. Для NP-полных задач существуют приближенные методы, которые дают достаточно точный результат за разумное время, и поэтому для решения данной задачи был выбран один из эвристических алгоритмов метод имитации отжига

Слайд4: алгоритм метода имитации отжига (29 сек)

- 1. На вход метода имитации отжига подается начальная температура t_{max} и конечная температура минимальная t_{min}
- 2. Задается произвольное состояние s_1 и температура на 1ой итерации $t_1 = t_{max}$
- 3. Далее, пока температура і-ой итерации не стала меньше, чем t_{min} :
 - 3.1. Получаем новое состояние і-ой итерации
 - 3.2. Подсчитываем разницу энергии прошлого состояния и полученного
 - 3.3. Если энергия «кандидата» меньше, то он становится новым состоянием
 - Иначе переход осуществляется с некоторой вероятностью
 - 3.4. И понижаем температуру

Слайд5: исследования, задача поиска α_{1} "

- 1. Первое из исследований задача, когда k = 1 и n от 3 до 5
- 2. Для этой задачи известно, что $\alpha_{1,n}$ удовлетворяет следующей оценке <0,59136>
- 3. Из запуска программной реализации удалось минимизировать отношение приближенного решения к точному до значений, удовлетворяющих этой же нижней оценке

Слайд6: исследования, задача поиска $lpha_{n-1,n}$

- 1. Следующее исследование решение задачи при k = n-1, $n = \overline{3,6}$
- 2. Для этой задачи известны фиксированные значения для $\,a_{n-1,\,n}\,$
- 3. И из программной реализации для n = 3, 4 удалось минимизировать отношение приближенного решения к точному до этих же значений.

Слайд7: исследования, задача поиска $lpha_{2.n}$ и $lpha_{3.5}$

- 1. Теперь рассмотрим задачу поиска $\alpha_{2,\,n}$ для n от 4 до 10. Известно, что $\alpha_{2,\,n}$ принадлежит следующему отрезку: $<\frac{2^n-2^{n-k}}{2^n-1}=\frac{2^n-2^{n-2}}{2^n-1}\leq \alpha_{2,n}\leq \frac{2^{k+1}-2}{2^{k+1}-1}=\frac{2^3-2}{2^3-1}\cong 0.857143>$
- 2. И из программной реализации получились следующие значения.
- 3. Так как метод имитации отжига алгоритм, который дает различные результаты при каждом запуске в зависимости от начальных условий и параметров, необходимо либо модифицировать метод отжига для уменьшения размерности задачи, либо увеличить отрезок поиска состояний системы
- 4. Так же рассмотрев задачу поиска $\alpha_{3,5}$ близкую задачу к $\alpha_{2,4}$ из серии задач с поиском $\alpha_{2,n}$, так же не удалось минимизировать до интервальной известной оценки. Разница полученного значения и верхней оценки представлена на слайде

Слайд8: решение задачи поиска $\alpha_{2.n}$ с доп. ограничениями

- 1. Вернемся к задаче поиска $\alpha_{2, n}$ и введем дополнительные ограничения в программную реализацию, упрощающие поиск состояния системы
- Таким образом, мы ограничили область поиска решения поставленной задачи ⇒ исключили из рассмотрения некоторое количество совпадающих решений, но имеющие разные компоненты вектора цен и весов
- 3. Запустив, программную реализацию с введенными ограничениями, удалось минимизировать при n=4 отношение приближенного решения к точному до значения 0.8526, принадлежащему известной интервальной оценке для $\alpha_{2,4}$
- 4. Для n=5 так же удалось уменьшить значение, но найденное решение все еще не лежит в известных пределах $\alpha_{2,5}$

Слайд9: решение задачи поиска $\alpha_{2.n}$ при n=5 с использованием предыдущих результатов1

- 1. Пусть начальное состояние в программной реализации будет не случайное, а выбрано из результатов предыдущих исследований
- 2. Для задачи поиска минимума отношения решения приближенной задачи к точному при n=5 мы можем использовать результаты близкой к ней задачи поиска $\alpha_{2,4}$, либо результаты запуска программной реализации этой же задачи, либо же изменять для перечисленных задач некоторые из начальных параметров.

Слайд10: решение задачи поиска $\, \, \alpha_{2,\,n} \,$ при $n \, = \, 5 \,$ с использованием предыдущих результатов $2 \,$

- 1. На слайде представлены результаты запуска программной реализации с начальными параметрами, выбранными согласно описанию раннее. И при использовании результатов задачи поиска $\,\alpha_{2,\,5}\,$ было изменено ограничено на сумму компонент вектора цен до 10 в 6, и была запущена программа без ограничения В
 - < Пояснение, почему не получилось с $\alpha_{2,\,4}$:
 < при запуске программы сумма 4-ех компонент вектора цен уже равняется $A=10000\Rightarrow$ < при добавлении 5-ой компоненты из-за невыполнения ограничения, меняются другие
 < компоненты вектора цен так, чтобы удовлетворить ограничению
 < Пояснение, почему с не получилось с $\alpha_{2,\,5}$ 1:
 < В начале оптимизации получаемое решение уже "хорошее" и не сильно отличающееся
 < от действительного \Rightarrow метод не может позволить перейти при начальной высокой
 < М температуре в состояние хуже
 <
- 2. Увеличив значение ограничения на сумму компонента цен А или убрав ограничение на сумму компонент вектора весов, мы увеличили область поиска состояний системы
- 3. Запустив программу с различными начальными условиями, удалось получить меньшее значение, чем найденное ранее. Наиболее подходящий результат получился при использовании результатов задачи поиска $\alpha_{2,5}$ без ограничения В.
- 4. Но также отыскать вектора цен и весов, при которых найденное значение принадлежало бы известному интервалу не удалось

Слайд11: Решение задачи с понижением размерности

- 1. Понизим размерность задачи. Будем применять метод отжиг для поиска оптимального вектора весов, и далее применим еще раз метод отжига для поиска оптимального вектора цен. Таким образом, на выходе будем иметь минимизированное значение $\alpha_k = \frac{\lambda_k(a,b,c)}{\lambda\left(a,b,c\right)}$ для поставленной задачи и оптимальные вектора цен и веса
- 2. Ограничение на сумму компонент вектора цен в реализации метода остается

Слайд12: Решение задачи поиска $\alpha_{2.5}$ с модифицированным методом имитации отжига (19 сек)

- 1. Применим описанный раннее алгоритм для задачи $\alpha_{2.5}$
- 2. Из программной реализации получили значение гарантированной точки k-оптимального решения меньше, чем раннее, но все же она не принадлежит интервальной оценке

Слайд13: *Выводы* 1 (16 сек)

- 1. Подводя итоги, получаем, что удалось решить задачу поиска $\alpha_{1,\,n}$ и для любого n значения гарантированной точности k-оптимального решения удовлетворяют известной нижней оценке
- 2. Для задачи поиска $\alpha_{n-1,\,n}$ удалось получить в точности такие же значения гарантированной точности k-оптимального решения

Слайд14: *Выводы 2*

1. Для задачи $\alpha_{2,n}$ было проведено некоторое количество модификаций для метода имитациии отжига и в следствии чего удалось решить задачу поиска $\alpha_{2,4}$ и в задаче $\alpha_{2,5}$ уменьшить отношение приближенного решения к точному до 0.8608, что близко к верхней оценке для $\alpha_{2,5}$

Слайд22: КОНЕЦ

Важность:

В данном исследовании анализируется эффективность использования эвристических алгоритмов для решения NP-полных задач. Особое внимание уделяется оптимизации целочисленной задачи о рюкзаке, и для исследования качества приближенного решения используется один из эвристических алгоритмов, метод имитации отжига

Круг	Время	Общее время
15	00: 12.3 (05:36.40
14	00: 16.03	05:24.09
13	00:11.91	05:08.06
12	00:2 1.58	04:56. 14
11	00:39.36	04:34.56
10	00:23.22	03:55. 19
9	00:35.41	03:3 1.97
8	00:39.61	02:56.56
7	00: 15.32	02: 16.94
8	00: 18.39	02:0 1.62
5	00:25.66	0 1:43.22
4	P0.55:00	0 1: 17.56
3	00:21.11	00:55.5 (
2	00:30.26	00:34.39
1	00:04. 13	00:04. 13