Mid Term Review

Xuyuan Zhang, Uniqname: zxuyuan

February 17, 2024

1 Definition Problem

Definition 1 (outer-measure). *The outer measure* $\mu^*(A)$ *of a set* $A \subseteq \mathbb{R}$ *is definede by:*

$$\mu^*(A) = \inf\{\sum_{k=1}^{\infty} \ell(I_k), I_1, I_2, \dots \text{ are open intervals such that } A \subseteq \bigcup_{k=1}^{\infty} I_k\}.$$

Definition 2 (σ -algebra). Suppose X is a set and S is a set of subsets of X. Then S is called a σ -algebra on X if the following three conditions are satisfied:

- $\emptyset \in S$;
- *if* $E \in S$, then $X \setminus E \in S$;
- *if* $E_1, E_2, ...$ *is a sequence of elements of* S*, then* $\bigcup_{k=1}^{\infty} E_k \in S$.

Definition 3 (Borel σ -algebra). The smallest σ -algebra on $\mathbb R$ containing all open subsets of $\mathbb R$ is called the collection of Borel subsets of $\mathbb R$ (Borel σ -algebra). An element of this σ -algebra is called a Borel set.

Definition 4 (measurable function: Alternative 1). *Suppose* (X, S) *is a measurable space. A function* $f: X \to [-\infty, \infty]$ *is called S-measurable if:*

$$f^{-1}(B) \in S$$

for every Borel set $B \subseteq [-\infty, \infty]$ *.*

Definition 5 (Condition for measurable function: Alternative 2). *Suppose* (X, S) *is a measurable function, and* $f: X \to \mathbb{R}$ *is a function such that:*

$$f^{-1}((a,\infty))\in S)$$

for all $a \in \mathbb{R}$. Then f is an S-measurable function.

Definition 6 (measurable function: Alternative 3). *suppose* (X, S) *is a measurable space. A function* $f: X \to [-\infty, \infty]$ *is called S-measurable if*:

$$f^{-1}(B) \in S$$

for every Borel set of $B \subseteq [-\infty, \infty]$ *.*

Definition 7 (measure). *Suppose X is a set and S is* σ -algebra on X. A measure on (X, S) is a function $\mu : S \to [0, \infty]$ such that $\mu(\emptyset) = 0$ and:

$$\mu(\bigcup_{k=1}^{\infty} E_k) = \sum_{k=1}^{\infty} \mu(E_k)$$

for every disjoint sequence E_1, E_2, \ldots of sets in S.

Definition 8 (Lebesgue measurable set). *A set* $A \subset \mathbb{R}$ *is called Lebesgue measurable if:*

- For each $\varepsilon > 0$, there exists a closed set $F \subseteq A$ such that $|A \setminus F| < \varepsilon$.
- There exists closed set F_1, F_2, \ldots contained in A such that $|A \setminus \bigcup_{k=1}^{\infty} F_k| = 0$.
- There exists a Borel set $B \subseteq A$ such that $|A \setminus B| = 0$.
- For each $\varepsilon > 0$, there exists an open set $G \supseteq A$ such that $|G \setminus A| < \varepsilon$.
- There exists open sets G_1, G_2, \ldots containing A such that $|(\bigcap_{k=1}^{\infty} G_k) \setminus A| = 0$.
- There exists a Borel set $B \supseteq A$ such that $|B \setminus A| = 0$.

Theorem 1 (Egorov's Theorem). Suppose (X, S, μ) is a measure space with $\mu(X) < \infty$. Suppose f_1, f_2, \ldots is a sequence of S-measurable functions from X to $\mathbb R$ that converges pointwise on X to a function $f: X \to \mathbb R$. Then for every $\varepsilon > 0$, there exists a set $E \in S$ such that $\mu(X \setminus E) < \varepsilon$ and f_1, f_2, \ldots converges uniformly to f on E.

Theorem 2 (Luzin's theorem). *Suppose* $g : \mathbb{R} \to \mathbb{R}$ *is a Borel measurable function. Then for every* $\varepsilon > 0$ *, there exists a closed set* $F \subseteq \mathbb{R}$ *such that* $|\mathbb{R} \setminus F| < \varepsilon$ *and* $g|_F$ *is a continuous function on* F.

Theorem 3 (Monotone Convergence Theorem). *Suppose* (X, S, μ) *is a measure space and* $0 \le f_1 \le f_2 \le ...$ *is an increasing sequence of S-measureble functions. Define* $f: X \to [0, \infty]$ *by:*

$$f(x) = \lim_{k \to \infty} f_k(x)$$

Then:

$$\lim_{k\to\infty}\int f_k d\mu = \int f d\mu.$$

2 Problem-solving questions

Give an example of a measurable space (X, S) and a function $f : X \to \mathbb{R}$ such that |f| is S-measurable but f is not S-measurable.

Solutions. A function $f: X \to \mathbb{R}$ is said to be *S*-measurable if, for every Borel set $B \subseteq \mathbb{R}$, the preimage $f^{-1}(B) = x \in X : f(x) \in B$ belongs to the σ -algebra S over X.

Let $X = \mathbb{R}$ and $S = \{\emptyset, \mathbb{R}, A, A^c\}$ with $A \subset \mathbb{R}$ such that A is not a Borel set

Define the function $f: X \to \mathbb{R}$ by:

$$f = \begin{cases} 1 & \text{if } x \in A \\ -1 & \text{if } x \notin A. \end{cases}$$

Therefore, by our definition the pre-image of 1 is exactly A not in S; however, the function |f| is the constant function, and all the sets are contained in S, and then the pre-image of |f| is either \emptyset , $A \cup A^c = X$ all of which are in X.

Suppose X is a Borel subset of \mathbb{R} and $f: X \to \mathbb{R}$ is a function such that $\{x \in X : f \text{ is not continuous at } x\}$ is a countable set. Prove that f is a Borel measurable function.

Solutions. Denote the countable set as \mathcal{B} and we can enumerate the elements as: $(b_1, b_2, ...)$. Consider the function f restricted to $X \setminus \mathcal{B}$ is continuous then from the continuity \implies measurability, we have f is Borel measurable at $X \setminus \mathcal{B}$. Now we prove that despite f is not continuous at set \mathcal{B} , f is still measurable over the entire set X.

Since we already know that the pre-image of U under the restriction of f to $X \setminus \mathcal{B}$, denoted as $f^{-1}(U) \cap (X \setminus \mathcal{B})$ is open (hence Borel) because f restricted to $X \setminus \mathcal{B}$ is continuous.

The preimage of U that intersects with \mathcal{B} denoted as $f^{-1}(U) \cap \mathcal{B}$ is countable since the set is a subset of a countable set \mathcal{B} . We already know that countable set is Borel set then we can take the union so that we have shown that the pre image of U is Borel set and we have concluded the proof.

Suppose $f: \mathbb{R} \to \mathbb{R}$ is differentiable at every element of \mathbb{R} . Prove that f' is a Borel measurable function from $\mathbb{R} \to \mathbb{R}$.

Solutions. Given that $f: \mathbb{R} \to \mathbb{R}$ is differentiable at every element of \mathbb{R} , the derivative f' exists at every $x \in \mathbb{R}$. For each $n \in \mathbb{N}$ define the function $g_n : \mathbb{R} \to \mathbb{R}$ as:

$$g_n(x) = n(f(x + \frac{1}{n}) - f(x))$$

Each g_n is measurable because it is a composition and linear combination of measurable functions (differentiable \implies continuous \implies measurable). The f'(x) at point x can be understood as the limit of difference quotients as $n \to \infty$ then:

$$f'(x) = \lim_{n \to \infty} g_n(x)$$

Therefore, f'(x) is the pointwise limit of the sequence of measurable function $\{g_n(x)\}$. Therefore, since each g_n is measurable, the limit f' is also measurable. [For open intervals B, which form a basis for the Borel σ -algebra, we can use the property of pointwise convergence to show that $f^{-1}(B)$ is the countable union or intersection of $g_n^{-1}(B)$

Prove that if $A \subseteq \mathbb{R}$ is Lebesgue measurable, then there exists an increasing sequence $F_1 \subseteq F_2 \subseteq \dots$ of closed sets contained in A such that:

$$|A\setminus\bigcup_{k=1}^{\infty}F_k|=0.$$

Solutions.

Given A is Lebesgue measurable, for any $\epsilon > 0$, we can find an open set O containing A such that $|O \setminus A| < \epsilon$. Open sets in \mathbb{R} can be expressed as countable unions of disjoint open intervals, i.e., $O = \bigcup_{i=1}^{\infty} (a_i, b_i)$.

Since each open interval (a_i, b_i) contains a closed interval $[a_i + \frac{\epsilon}{2^{i+1}}, b_i - \frac{\epsilon}{2^{i+1}}]$ (assuming $b_i - a_i > \frac{\epsilon}{2^i}$ to make this meaningful), we can construct a sequence of closed sets F_k within A by selecting closed intervals within each (a_i, b_i) such that these closed sets approach the open set O as closely as desired, by adjusting the ϵ parameter.

Define F_k as the union of closed intervals $[a_i + \frac{\varepsilon}{2^{i+1}}, b_i - \frac{\varepsilon}{2^{i+1}}]$ for i up to k. This sequence $F_1 \subseteq F_2 \subseteq ...$ is increasing because each F_k includes all intervals of the previous F_{k-1} and possibly more, getting closer to filling the entire open set *O* as *k* increases.

As $k \to \infty$, the union $\bigcup_{k=1}^{\infty} F_k$ approaches A in measure. Since $|O \setminus A| < \epsilon$ for arbitrarily small ϵ , and our construction of F_k 's approaches O, it follows that the measure of $A \setminus \bigcup_{k=1}^{\infty} F_k$ is less than any $\epsilon > 0$. Thus, by the definition of Lebesgue measure, $|A \setminus \bigcup_{k=1}^{\infty} F_k| = 0$.

Prove that if $A \subseteq \mathbb{R}$ is Lebesgue measurable, then there exists a decreasing sequence $G_1 \supseteq G_2 \supseteq \dots$ of open sets containing *A* such that:

$$|(\bigcap_{k=1}^{\infty}G_k)\backslash A|=0$$

Solutions.

Since A is Lebesgue measurable, for every $\epsilon > 0$, there exists an open set O containing A such that the measure of the set $O \setminus A$ is less than ϵ .

Specifically, for each $n \in \mathbb{N}$, choose $\epsilon = \frac{1}{n}$ and find an open set G_n containing A such that $|G_n \setminus A| < \frac{1}{n}$.

Each G_n is chosen to be an open set containing A with increasingly stringent conditions on the measure of the excess part $(G_n \setminus A)$, ensuring that $G_{n+1} \subseteq G_n$. This is because, as $\frac{1}{n+1} < \frac{1}{n}$, the condition for G_{n+1} to contain Awith a smaller excess part naturally leads to G_{n+1} being "tighter" around A than G_n .

Consider the intersection of all sets in the sequence, $\bigcap_{k=1}^{\infty} G_k$. This intersection contains A, and every point not in *A* but in any G_k is in a set whose measure decreases to zero as $k \to \infty$. Therefore, the measure of $(\bigcap_{k=1}^{\infty} G_k) \setminus A$ is the limit of the measures of the excess parts, which is less than $\frac{1}{n}$ for all n, and thus goes to 0 as $n \to \infty$.

Suppose μ is the measure on $(\mathbb{Z}^+, 2^{\mathbb{Z}^+})$ defined by:

$$\mu(E) = \sum_{n \in E} \frac{1}{2^n}$$

Prove that for every $\varepsilon > 0$ there exists a set $E \subseteq \mathbb{Z}^+$ with $\mu(\mathbb{Z}^+ \setminus E) < \varepsilon$ such that f_1, f_2, \ldots converges uniformly on E for every sequence of functions f_1, f_2, \ldots from \mathbb{Z}^+ to \mathbb{R} that converges pointwise on \mathbb{Z}^+ [This result does not follow from Egorov's Theorem because here we are asking for E to depend only on ε . In Egorov's Theorem, E depends on E and on the sequence E on the sequence E of the s

Solutions. We note that as n increases, the $\frac{1}{2^n}$ decreases geometrically. Given any $\varepsilon > 0$, we can choose N where $N \in \mathbb{Z}^+$ large enough such that $\sum_{i=N+1}^{\infty} \frac{1}{2^n} = \frac{1}{2^N} < \varepsilon$. This is possible because the LHS can be arbitrarily small. Let $E = 1, 2, \ldots, N$ Thus $\mathbb{Z}^+ \setminus = \{N+1, N+2, \ldots\}$ and we have $\mu(\mathbb{Z}^+ \setminus E) = \sum_{n=N+1}^{\infty} \frac{1}{2^n} < \varepsilon$.

Given any sequence of functions $f_1, f_2,...$ that converges pointwise on \mathbb{Z}^+ we need to show that it converges uniformly on E. Since E is a finite set (consisting of the first N positive integers), the pointwise convergence of the sequence on \mathbb{Z}^+ implies that it will also converge uniformly on E. This is because on a finite set, the maximum difference between the functions in the sequence and their pointwise limit can be made as small as desired by choosing a sufficiently large index in the sequence. This follows from the definition of pointwise convergence and the fact that a finite set has a bounded number of elements over which the maximum is taken.

We can prove it mathematically: pointwise convergence \implies uniform convergence on finite set: if $D = \{x_1, x_2, ..., x_n\}$ then for $\varepsilon > 0$, $\exists N_1, N_2, ..., N_k \in \mathbb{N}$ such that:

$$|f_n(x_i) - f(x_i)| < \varepsilon$$

So just by take $N = \max\{N_1, N_2, \dots, N_k\}$ and we have:

$$\sup_{x\in D}|f_n(x)-f(x)|<\varepsilon, \forall n\geq N$$

Therefore, $f_n(x) = f(x), \forall x \in D$.

Suppose (X, S, μ) is a measure space and $f: X \to [0, \infty]$ is an S-measurable function such that $\int f d\mu < \infty$. Explain why:

$$\inf_{E} f = 0$$

for each set $E \in S$ with $\mu(E) = \infty$

Solutions. Given that $f: X \to [0, \infty]$ is an *S*-measurable function with $\int f d\mu < \infty$.

We already know that $\int_E f d\mu = \int \chi_E f d\mu$ Since we already know that $\chi_E f \leq f$ and $\chi_E f \geq 0$ then we have: $\int_E f d\mu \leq \int f d\mu < \infty$. Assuming $\int_E f > 0$: If the infimum of f over E were positive, say $\int_E f = \delta > 0$ then for every $x \in E$, $f(x) \geq \delta$. This would imply that the integral of f over E would be at least $\delta \mu(E)$ which is $\delta \cdot \infty = \infty$, which contradicts the fact that $\int f d\mu < \infty$. Therefore, the infimum of f over E must be E.

Suppose (X, S, μ) is a measure space and $f: X \to [0, \infty]$ is an S-measurable function Prove that:

$$\int f d\mu > 0 \text{ if and only if } \mu(\{x \in X : f(x) > 0\}) > 0.$$

Solutions. We first prove the forward direction: $\int f d\mu > 0 \implies \mu(\{x \in X : f(x) > 0\}) > 0$.

If $\mu(\{x \in X : f(x) > 0\}) = 0$, then this would result f(x) = 0 almost everywhere on X with respect to the measure μ , because the set of points where f(x) > 0 would have measure zero. Consequently, $\int f d\mu = 0$ because f would be zero almost everywhere, contradiction.

Now we prove the reverse direction: $\mu(\lbrace x \in X : f(x) > 0 \rbrace) > 0 \implies \int f d\mu > 0$.

Consider the set $\mathcal{E} = \{x \in X : f(x) > 0\}$. Since f is S-measurable and \mathcal{E} is measurable, and $\mu(\mathcal{E}) > 0$. On this set we have f(x) > 0 meaning that $\int_{\mathcal{E}} f d\mu > 0$. Simiarly, since $f \geq 0$ we have $\int_{\mathcal{E}} f d\mu = \int_{\mathcal{E}} f d\mu + \int_{X \setminus \mathcal{E}} f d\mu \geq \int_{\mathcal{E}} f d\mu > 0$. Therefore, $\int f d\mu > 0$.

Given an example to show that the Monotone Convergence Theorem can fail if the hypothesis of an increasing sequence of functions is replaced by a hypothesis of a decreasing sequence of functions. [This exercise shows that the Monotone Convergence Theorem should be called the increasing Convergence Theorem]

Solutions. We can think about the function:

$$f(x) = \frac{x}{n}$$
, for $x \in [0, \infty]$

It is easy to know that f(x) is a decreasing function. We know that $f(x) = \lim_{n \to \infty} f_n(x) = 0$ for all $x \in [0, \infty]$ (because for fixed x the $\frac{x}{n}$ would tend to 0.). However, we have:

$$\int f_n(x)dx = \int \frac{x}{n}dx = \frac{x^2}{2n}\Big|_0^\infty = \infty$$

Therefore, this counter-example shows that the Monotone Convergence Theorem can fail if the hypothesis of an increasing sequence of functions is replaced by a hypothesis of a decreasing sequence of functions. \Box

Give an example of a sequence x_1, x_2, \ldots of real numbers such that:

$$\lim_{n\to\infty}\sum_{k=1}^n x_k \text{ exists in } \mathbb{R}$$

but $\int x d\mu$ is not defined, where μ is counting measure on \mathbb{Z}^+ and x is the function from \mathbb{Z}^+ to \mathbb{R} defined by $x(k) = x_k$.

Solutions. With the counting measure, the integral of a function x(k) over \mathbb{Z}^+ is equivalent to summing up the values of x(k) over all $k \in \mathbb{Z}^+$, which is $\int x d\mu = \sum_{k=1}^{\infty} |x_k|$.

We can think of $x_k = (-1)^k/k$. Then we have: $\sum_{k=1}^{\infty} x_k = \sum_{k=1}^{\infty} \frac{(-1)^k}{k}$. The sum converges to $\ln(2)$, which is a real number. Therefore, the limit of the sequence exists in \mathbb{R} .

However, we also have that the sum $\sum_{k=1}^{\infty} \frac{1}{k}$ does not converge because the sequence diverges. Therefore, we note that the integral $\int x d\mu$ is not defined.

Xuyuan Zhang, Uniqname: zxuyuan

January 17, 2024

Problem 1. (25 points) The goal of this problem is to prove the following theorem regarding convergence of Fourier series.

Theorem. Let $\{a_n\}$ be a decreasing sequence of real numbers that converges to 0. Then the (Fourier) series $\sum_{n=1}^{\infty} a_n \cos nx$ converges pointwise for all $x \in \mathbb{R}$ such that $\cos x \neq 1$.

a) (10 points) Let $a_1 \ge a_2 \ge ... \ge a_n \ge 0$, let $b_1, ..., b_n \in \mathbb{R}$, and let $S_k = b_1 + ... + b_k$ for each k. Prove

$$|a_1b_1+\cdots+a_nb_n|\leq a_1\max(|S_1|,\ldots,|S_n|)$$

- b) (5 points) Let $\{a_n\}$ be a decreasing sequence of real numbers converging to 0, and let $\{b_n\}$ be a sequence of real numbers for which $\sup_{n\in\mathbb{N}}|b_1+\cdots+b_n|<\infty$. Prove that the series $\sum_{n=1}^{\infty}a_nb_n$ converges.
- c) (5 points) Prove that

$$\sum_{n=1}^{N} \cos nx = \frac{\cos(N+1)x - \cos Nx - \cos x + 1}{2(\cos x - 1)}$$

for all $N \in \mathbb{N}$ and all $x \in \mathbb{R}$ for which $\cos x \neq 1$.

d) (5 points) Prove the Theorem.

Solutions. (a):

We need to prove that: $|a_1b_1 + \cdots + a_nb_n| \le a_1 \max(|S_1|, \dots, |S_n|)$ where $S_k = b_1 + \cdots + b_k$. Note that we have $\sum_{i=1}^{n} a_i b_i = a_1 S_1 + a_2 (S_2 - S_1) + \dots + a_n (S_n - S_{n-1}) = (a_1 - a_2) \cdot S_1 + (a_2 - a_3) \cdot S_2 + \dots + (a_{n-1} - a_n) \cdot S_{n-1} + \dots + a_n (S_n - S_{n-1}) = (a_1 - a_2) \cdot S_n + \dots + a_n (S_n - S_{n-1}) = (a_1 - a_2) \cdot S_n + \dots + a_n (S_n - S_{n-1}) = (a_1 - a_2) \cdot S_n + \dots + a_n (S_n - S_n) + \dots + a_n (S_n - S_n)$ $a_n S_n$. Then we have:

$$\begin{aligned} \left| \sum_{i=1}^{n} a_{i} b_{i} \right| &\leq \left| (a_{1} - a_{2}) S_{1} \right| + \left| (a_{2} - a_{3}) S_{2} \right| + \dots + \left| (a_{n-1} - a_{n}) S_{n-1} \right| + \left| a_{n} S_{n} \right| \\ &= (a_{1} - a_{2}) \left| S_{1} \right| + (a_{2} - a_{3}) \left| S_{2} \right| + \dots + (a_{n-1} - a_{n}) \left| S_{n-1} \right| + \left| a_{n} S_{n} \right| \\ &\leq (a_{1} - a_{2} + a_{2} - a_{3} + \dots + a_{n-1} - a_{n} + a_{n}) \max \{ \left| S_{1} \right|, \dots, \left| S_{n} \right| \} \\ &= a_{1} \max \{ \left| S_{1} \right|, \dots, \left| S_{n} \right| \} \end{aligned}$$

where the first follows from triangle inequality and the second follows from the property $a_1 \ge a_2 \ge ... \ge a_n \ge 0$.

We already know that the sum of the sequence $\{b_n\}$, denoted as $\{S_n\}$, is bounded in the sense that $\sup_{n\in\mathbb{N}}|b_1+b_n|$ $\cdots + b_n| = \sup_{n \in \mathbb{N}} |S_n| < \infty$, and we can denote the upper bound as M, i.e., $\forall n \in \mathbb{N}$, we have: $|S_n| \leq M$. To prove the sequence $\sum_{n=1}^{\infty} a_n b_n$, $\forall \varepsilon > 0$, we need to find an N such that for all $m > n \ge N$, the inequality

 $\left|\sum_{k=n+1}^{m}a_kb_k\right|<\varepsilon.$

Consider the partial sum from n+1 to m as: $|\sum_{k=n+1}^{m} a_k b_k| = \sum_{k=n+1}^{m} a_k |b_k| \le a_{n+1} \sum_{k=n+1}^{m} |b_k|$, for $\{a_n\}$ is a decreasing sequence. Using the bounding property that $\sum_{k=n+1}^{m} |b_k| \le |b_1 + \dots + b_m| + |b_1 + \dots + b_n| \le 2M$ (triangle inequality). Therefore, we have:

$$|\sum_{k=n+1}^m a_k b_k| \le a_{n+1} \cdot 2M$$

since $\{a_n\}$ converges to 0, there exists N such that $a_{n+1} < \frac{\varepsilon}{2M}$ for all $n \ge N$. This implies: $|\sum_{k=n+1}^m a_k b_k| < \varepsilon$ for all $m > n \ge N$. Therefore, it is convergent. (c):

$$\begin{split} \sum_{n=1}^{N} \cos(nx) &= \Re(\sum_{i=1}^{N} e^{inx}) = \Re(e^{ix} \frac{1 - e^{iNx}}{1 - e^{ix}}) \\ &= \Re((\cos(x) + i\sin(x)) \frac{1 - \cos(Nx) - i\sin(Nx)}{1 - \cos(x) - i\sin(x)}) \\ &= \Re((\cos(x) + i\sin(x)) \cdot (1 - \cos(x) + i\sin(x)) \frac{1 - \cos(Nx) - i\sin(Nx)}{2 - 2\cos(x)}) \\ &= [(1 - \cos(Nx))(1 - \cos(x))\cos(x) + \sin(x)\sin(Nx)\cos(x) + \sin(x)(1 - \cos(x))\sin(Nx) - \sin(x)\sin(x)(1 - \cos(Nx))]/(2 - 2\cos(x)) \\ &= [\cos(x)(1 - \cos(Nx) - \cos(x) + \cos((N - 1)x)) + \sin(x)[\sin(Nx) - \sin(x) - \sin((N - 1)x)]]/(2 - 2\cos(x)) \\ &= \frac{\cos(x) - 1 - \cos((N + 1)x) + \cos(Nx)}{2 - 2\cos(x)} \\ &= \frac{\cos((N + 1)x) - \cos(Nx) - \cos(x) + 1}{2(\cos(x) - 1)} \end{split}$$

(d):

Consider the sequence $\{b_n\}$ as $\{\cos(nx)\}$ and denote $\{S_n\}$ as the summation of $\sum_{k=1}^n b_k$. Therefore, from part (c) we have the partial sums $\{S_n\}$ is a bounded sequence. $\sum_{n=1}^N \cos nx = \frac{\cos(N+1)x - \cos Nx - \cos x + 1}{2(\cos x - 1)}$ and we know that these sums are bounded for all x such that $\cos(x) \neq 1$. Besides, we know that the sequence $\{a_n\}$ is given to be decreasing and converging to 0. Thus, it satisfies the condition for Part (b). Therefore, the fourier series $\sum_{n=1}^\infty a_n \cos(nx)$ converges pointwise for all $x \in \mathbb{R}$.

Problem 2. (10 points) Let $f : [0, \pi] \to \mathbb{R}$ be a continuous function satisfying $f(0) = f(\pi) = 0$, define real numbers $a_1, a_2 \dots, a_n$ by the formula

$$a_n = \frac{2}{\pi} \int_0^{\pi} \sin(nx) f(x) dx.$$

(note that since f is continuous, the above integral is well-defined in any kind of integration) Show that the infinite sum $\sum_{n>0} a_n^2$ converges.

(Hint: consider the expression $\int_0^{\pi} \left(f(x) - \sum_{k=1}^n a_k \sin(kx) \right)^2 dx$.)

Solutions.

We first consider the fact of the orthogonality of the sine function on $[0, \pi]$. The integral $\sin(kx)\sin(mx)$ over $[0, \pi]$ is 0 for $k \neq m$ and $\pi/2$ if k = m. This is because:

$$\int_0^{\pi} \sin(kx) \sin(mx) = \frac{1}{2} \int_0^{\pi} [\cos((k-m)x) - \cos((k+m)x)] dx$$

$$= \begin{cases} \frac{1}{2} \left[\frac{\sin((k-m)x)}{k-m} - \frac{\sin((k+m)x)}{k+m} \right]_0^{\pi} = 0 & \text{if } k \neq m \\ \frac{1}{2} \int_0^{\pi} 1 dx - \frac{1}{2} \int_0^{\pi} \cos(2kx) dx = \frac{\pi}{2} & \text{if } k = m. \end{cases}$$

Therefore, we can write the expression of $\int_0^{\pi} (f(x) - \sum_{k=1}^n a_k \sin(kx))^2 dx$ as:

$$\int_0^{\pi} (f(x) - \sum_{k=1}^n a_k \sin(kx))^2 dx = \int_0^{\pi} f(x)^2 dx - 2 \int_0^{\pi} f(x) \sum_{k=1}^n a_k \sin(kx) dx + \int_0^{\pi} (\sum_{k=1}^n a_k \sin(kx))^2 dx.$$

$$= \int_0^{\pi} f(x)^2 dx - \pi \sum_{k=1}^n a_k^2 + \frac{\pi}{2} \sum_{k=1}^n a_k^2$$

$$= \int_0^{\pi} f(x)^2 dx - \frac{\pi}{2} \sum_{k=1}^n a_k^2.$$

We know that the left hand side should be non-negative, so we have: $\frac{\pi}{2}\sum_{k=1}^n a_k^2 \leq \int_0^{\pi} f(x)^2 dx = C$, where C is a fixed value. Thus we have: $\sum_{k=1}^n a_k^2 \leq \frac{2C}{\pi}$. Therefore, it is bouneded above. Furthermore, we have each a_k^2 is non-negative, so the sequence $\{a_n^2\}$ is non-decreasing. Therefore, the series $\sum_{n>0} a_n^2$ is convergent.

Problem 3. (10 points - Axler's 1B, 1) Define $f : [0,1] \to \mathbb{R}$ as follows:

$$f(a) = \begin{cases} 0 & \text{if } a \text{ is irrational} \\ 1/n & \text{if } a \text{ is rational and } n \text{ is the smallest positive} \\ & \text{integer such that } a = m/n \text{ for some integer } m. \end{cases}$$

Show that f is Riemann integrable and compute $\int_0^1 f$.

Solutions. We can first calculate the lower Riemann Sum as: $L(f,P) = \sum_{i=1}^{n} (x_i - x_{i-1}) \cdot \inf\{f(x) : x \in [x_{i-1},x_i]\}$. From the density of Real Number, we can always find at least one irrational number in any subinterval $([x_{i-1},x_i]) \subseteq ([0,1])$ and for any irrational number $a \in [0,1]$ the function is equal to f(a) = 0. Given this, there is at least one irrational number in subinterval $[x_{i-1},x_i]$ and that the function $f(\cdot) = 0$ at every irrational number, then the infimum of $f(\cdot)$ over any subinterval is 0, which implies the Lower Riemann Sum is equal to 0.

Now the upper Riemann Sum for the partition P of [0,1] is defined as: $U(f,P) = \sum_{i=1}^n (x_i - x_{i-1}) \cdot \sup\{f(x) : x \in [x_{i-1},x_i]\}$. For any rational number $\frac{m}{n}$, $f(\frac{m}{n}) = \frac{1}{n}$. Besides, Rational numbers are dense in the real numbers, which means between any two real numbers, no matter how close, there are infinitely many rational numbers. For any $\varepsilon > 0$, we want to find a partition $P = \{x_0, x_1, \dots, x_n\}$ of [0,1] such that in each subinterval $[x_{i-1}, x_i]$, the supremum of f is less than ε :

As n becomes larger, the value $\frac{1}{n}$ is decreasing, and $\forall \varepsilon$ we have a natural number N such that n > N, $\frac{1}{n} < \varepsilon$. In any interval of real numbers, while there are infinitely many rational numbers, only finitely many of them have denominator smaller than or equal than N. Therefore, we have a finite many of them or finite integers m such that $\frac{m}{n}$ lies in the interval.

The partition can then be created via these finitely many rationals with small denominators and refining the rest of the interval such that each $[x_{i-1}, x_i]$ does not contain any rationals with denominator less than or equal to N. In subintervals without these denominator less than or equal to N, we have the supremum of f will be taken over rationals with denominators larger than N, and hence, $\sup\{f(x):x\in[x_{i-1},x_i]\}<\varepsilon$. Therefore, we have: $U(f,P)=\sum_{i=1}^n(x_i-x_{i-1})\cdot\varepsilon=\varepsilon\cdot\sum_{i=1}^n(x_i-x_{i-1})=\varepsilon\cdot(1-0)<\varepsilon$ for any $\varepsilon>0$.

Therefore, we have the upper Riemann Sums is also equal to 0, which implies that the result is integrable. Besides, $\int_0^1 f = 0$

Problem 4. (5 points) State (without proving) the Heine-Borel theorem and Bolzano-Weierstrass theorem. There may be several versions of these theorems, state the ones that make most sense to you!

Solutions.

Theorem 1 (Heine-Borel Theorem). *Every closed bounded subset of* \mathbb{R} *is compact (has a finite subcover).*

Theorem 2 (Bolzano-Weierstrass Theorem). *Every bounded sequence of real numbers has a convergent subsequence.*

Xuyuan Zhang, Uniqname: zxuyuan

February 18, 2024

Problem 1. (30 points)

- i) (5 points) Prove that if A and B are subsets of \mathbb{R} such that $\mu^*(B) = 0$ (B is a null set), then $\mu^*(A \cup B) = \mu^*(A)$.
- ii) (10 points) Prove that if $A \subset \mathbb{R}$ and t > 0, then

$$\mu^*(A) = \mu^*(A \cap (-t,t)) + \mu^*(A \cap (\mathbb{R} \setminus (-t,t)).$$

iii) (15 points) Prove that $\mu^*(A) = \lim_{t \to \infty} \mu^*(A \cap (-t,t))$ for all $A \subset \mathbb{R}$.

Solutions. (i):

From the definition of outer measure, we have $\mu^*(E) \ge 0 \ \forall E \subset \mathbb{R}$ and for any countable collection of sets $\{E_i\}$, $\mu^*(\bigcup_i E_i) \le \sum_i \mu^*(E_i)$.

Using this property, and $\mu^*(B) = 0$, we have $\mu^*(A \cup B \cup \emptyset \cup ... \cup \emptyset) \le \mu^*(A) + \mu^*(B) + 0 + ... + 0 = \mu^*(A)$. To make the expression clear, we would just write $\mu^*(A \cup B) \le \mu^*(A) + \mu^*(B)$ for the below questions

To prove the other side, Since $A \subseteq A \cup B$, by the property of outer measure, we have $\mu^*(A) \le \mu^*(A \cup B)$, which is because if $E \subseteq F$, $\mu^*(E) \le \mu^*(F)$.

Combining the results, we have $\mu^*(A \cup B) = \mu^*(A)$.

(ii):

To prove the results, notice that $A = (A \cap (-t,t)) \cup (A \cap (\mathbb{R} \setminus (-t,t)))$. By the countable subadditivity property of outer measure, we have $\mu^*(A) = \mu^*(A \cap (-t,t)) \cup (A \cap (\mathbb{R} \setminus (-t,t))) \leq \mu^*(A \cap (-t,t)) + \mu^*(A \cap (\mathbb{R} \setminus (-t,t)))$. It is obvious that: $(A \cap (\mathbb{R} \setminus (-t,t))) \setminus (A \cap (\mathbb{R} \setminus [-t,t]))$ can only be \emptyset , $\{t\}$, $\{-t\}$, $\{t,-t\}$ and therefore, $\mu^*(A \cap (\mathbb{R} \setminus (-t,t))) \leq \mu^*(A \cap (\mathbb{R} \setminus (-t,t))) \leq \mu^*(A \cap (\mathbb{R} \setminus (-t,t))) \geq \mu^*(A \cap (\mathbb{R} \setminus (-t,t))) \leq \mu^*(A \cap (\mathbb{R} \setminus (-t,t))) = \mu^*(A \cap (\mathbb{R} \setminus (-t,t))) = \mu^*(A \cap (\mathbb{R} \setminus (-t,t)))$.

We prove the other side by definition: Consider I_1, I_2, \ldots be a sequence of open intervals such that $\sum_{k=1}^{\infty} \ell^*(I_k) < \mu^*(A) + \varepsilon$ where ε is an arbitrary positive real number (this is from the definition of greatest lower bound). The $\ell(\cdot)$ is the length function. Then we have: $A \subset \bigcup_{k=1}^{\infty} I_k$. We can decompose each I_k as: $\ell(I_k) = \ell(I_k \cap (-\infty, -t)) + \ell(I_k \cap (-t, t)) + \ell(I_k \cap (t, \infty))$ (we already have $\ell(I_k \cap [-t, t]) = \ell(I_k \cap (-t, t))$ from above). This results holds because of the previous proof and then using the countable subadditivity property, we have:

$$\mu^*(A \cap (-t,t)) + \mu^*(A \cap (\mathbb{R} \setminus (-t,t))) \le \sum_{k=1}^{\infty} [\ell(I_k \cap (-\infty,-t)) + \ell(I_k \cap (-t,t)) + \ell(I_k \cap (t,\infty))]$$

$$= \sum_{k=1}^{\infty} \ell(I_k) < \mu^*(A) + \varepsilon$$

Since ε is an arbitrary positive number, it follows that:

$$\mu^*(A \cap (-t,t)) + \mu^*(A \cap (\mathbb{R} \setminus (-t,t))) \le \mu^*(A)$$

Therefore, combining together, the proof holds.

(iii):

For any $A \subset \mathbb{R}$, the measure $\mu^*(A \cap (-t,t))$ is non-decreasing as t increases. Therefore, the upper bound of $\mu^*(A \cap (-t,t))$ is $\mu^*(A)$ because $A \cap (-t,t) \subseteq A$.

To prove the other side, suppose for an arbitrary $\varepsilon > 0$, there exists a countable collection of open intervals $\{I_k\}$ such that $A \subset \bigcup_{k=0}^{\infty} I_k$. Then, as n increases, $A \cap (-n,n)$ eventually contains all fixed interval I_k because (-n,n) will expand to cover $\mathbb R$ when $n \to \infty$. In this case, for sufficiently large T_k , with $t > T_k$, $I_k \subset (-t,t)$ and denote $T = \max\{T_k\}$ we have n > T, $\bigcup_{n=0}^{\infty} I_k \subset (-n,n)$ and thus $A \subset (-n,n)$.

In this case we can write $\mu^*(A) = \mu^*(A \cap (-n,n)) = \mu^*(A \cap (\bigcup_{n=0}^{\infty} (-n-1,n+1) \setminus (-n,n))) \le \sum_{n=0}^{\infty} \mu^*(A \cap ((-n-1,n+1) \setminus (-n,n)))$

$$\begin{split} \mu(A) &\leq \sum_{n=0}^{\infty} \mu^*(A \cap ((-n-1,n+1) \setminus (-n,n))) \\ &= \sum_{n=0}^{\infty} \left(\mu^*(A \cap (-n-1,n+1)) - \mu^*(A \cap (-n,n)) \right) \quad \text{(by using part b)} \\ &= \lim_{n \to \infty} \mu^*(A \cap (-n-1,n+1)) \quad \text{(here n is an integer)} \\ &= \lim_{t \to \infty} \mu^*(A \cap (-t,t)) \quad \text{(here t is a real number.)} \end{split}$$

Problem 2. (20 points, Axler's 1B, 5) Show an example of a sequence of continuous real-valued functions f_1, f_2, \ldots on [0, 1] and a continuous real-valued functions f on [0, 1] such that

$$f(x) = \lim_{n \to \infty} f_n(x)$$

for each $x \in [0,1]$ but

$$\int_0^1 f(x)dx \neq \lim_{n \to \infty} \int_0^1 f_n(x)dx.$$

Solutions.

We can define the function $f_n(\cdot)$ as:

$$f_n(x) = \begin{cases} n^2 x & \text{if } 0 \le x \le \frac{1}{n} \\ 2n - n^2 x & \text{if } \frac{1}{n} < x \le \frac{2}{n} \\ 0 & \text{if } \frac{2}{n} < x \le 1 \end{cases}$$

We can check that the function is continuous since $\lim_{x\to\frac{1}{n}-}=n^2\frac{1}{n}=n=\lim_{x\to\frac{1}{n}+}$ and $\lim_{x\to\frac{2}{n}-}=0=\lim_{x\to\frac{2}{n}+}$. Because as $n\to\infty$, \exists a N such that $n\ge N$, $x>\frac{2}{n}$, and thus $f_n(x)=0$, $\forall n\ge N$. Therefore, at any point $x\in[0,1]$, all subsequent functions $f_n(x)$ will be zero, which means that the $\lim_{n\to\infty}f_n(x)=0=f$.

Now we first calculate the integral of $f_n(x)$ over [0,1], which is equal to $\int_0^{\frac{1}{n}} f_n(x) + \int_{\frac{1}{n}}^{\frac{2}{n}} f_n(x) + 0 = \frac{1}{2} + \frac{1}{2} = 1$.

However, $\int_0^1 f(x)dx = 0$ which satisfies the condition of the problem.

Problem 3. (20 *points*) Let $A \subset \mathbb{R}$ with $\mu^*(A) > 0$. Show that for every $\alpha \in (0,1)$ there exists an open interval I such that

$$\mu^*(A \cap I) \ge \alpha \mu^*(I)$$
.

(This problem loosely shows that any positive measure set almost contains an interval. Hint: start with the definition of $\mu^*(A)$).

Solutions. From the definition of the outer measure, we have that for any $\varepsilon > 0$ there exists a countable collection of open intervals $\{I_k\}$ such that $A \subseteq \bigcup_{k=1}^{\infty} I_k$ and $\mu^*(A) > \sum_{k=1}^{\infty} \mu^*(I_k) - \varepsilon$ (from the definition of greatest lower bound). Therefore, by the property of outer measure we have:

$$\mu^*(A) = \mu^*(A \cap (\bigcup_{k=1}^{\infty} I_k)) = \mu^*(\bigcup_{k=1}^{\infty} (A \cap I_k)) \le \sum_{k=1}^{\infty} \mu^*(A \cap I_k)$$

We prove the result by contradiction. Now suppose for every $\alpha \in (0,1)$ we have every open interval I satisfying this condition: $\mu^*(A \cap I) < \alpha \mu^*(I)$. Then:

$$\sum_{k=1}^{\infty} \mu^*(A \cap I_k) < \alpha \sum_{k=1}^{\infty} \mu^*(I_k) < \alpha \mu^*(A) + \alpha \varepsilon$$

In this case, we can choose $\varepsilon < \mu^*(A) \frac{1-\alpha}{\alpha}$, then we have the RHS of the equation: $\alpha(\mu^*(A) + \varepsilon) < \alpha \cdot \frac{1}{\alpha} \mu^*(A) = \mu^*(A)$ and then we have: $\mu^*(A) < \mu^*(A)$ which is clearly a contradiction.

Therefore, our assumption is incorrect and the there must exist some open interval *I* such that

$$\mu^*(A \cap I) \ge \alpha \mu^*(I)$$

Xuyuan Zhang, Uniqname: zxuyuan

February 1, 2024

Problem 1. (20 points, Axler's 2X, 10) Give an example of a measure space (X, S, μ) and a decreasing sequence $E_1 \supset E_2 \supset \cdots$ of sets in S such that

$$\mu\left(\bigcap_{k=1}^{\infty}E_k\right)\neq\lim_{k\to\infty}\mu(E_k).$$

Solutions.

We consider the measure space $(\bar{\mathbb{R}}, \mathcal{S}, \mu)$ where $\bar{\mathbb{R}}$ denotes the extended real number, and we select open interval $E_k = (k, \infty)$. In this case, it satisfies the condition that $E_1 \supset E_2 \supset \dots$

We know that E_k is a Borel set. Each set E_k has an infinite measure, the limit of the measures as k approaches infinity remains infinite. Therefore, we have $\lim_{k\to\infty} \mu(E_k) = \infty$. Similarly, the intersection $\bigcap_{k=1}^{\infty} E_k$ is the set of all points that are greater than every natural number k. However, no such point exists, and $\mu(\bigcap_{k=1}^{\infty} E_k) = 0$ Combining together we find an example that does not satisfy:

$$\mu\left(\bigcap_{k=1}^{\infty}E_k\right)\neq\lim_{k\to\infty}\mu(E_k).$$

Problem 2. (20 *points*) Let (X, S, μ) be a measure space such that there is $B \in S$ such that $0 < \mu(B) < \infty$. Fix such a set B, and define a function $\mu_B : S \to (-\infty, \infty)$ by the formula $\mu_B(A) := \mu(A \cap B)/\mu(B)$.

- a) (10 points) Show that (X, S, μ_B) is a measure space.
- b) (10 points) Define the collection $S_B := \{A \cap B : A \in S\}$. Show that S_B is a σ -algebra on B.

(This is how we define conditional probability in the language of measure theory.)

Solutions.

(a):

To prove that (X, S, μ_B) is a measure space we need to prove that it satisfies the following properties:

- For every $A \in S$, $\mu_B(A) \ge 0$
- $\mu_B(\emptyset) = 0$
- For any countable collection $\{A_i\}$ of pairwise disjoint sets in S, $\mu_B(\bigcup_i A_i) = \sum_i \mu_B(A_i)$

Since μ is a measure on S, $\mu(A \cap B) \ge 0$ for every $A \in S$. Also $\mu(B) > 0$ and hence, $\mu_B(A) = \frac{\mu(A \cap B)}{\mu(B)} \ge 0$ for every $A \in S$.

 $\mu_B(\emptyset) = \frac{\mu(\emptyset \cap B)}{\mu(B)} = \frac{\mu(\emptyset)}{\mu(B)} = 0$ Since $\mu(\emptyset) = 0$ by the properties of μ .

Lastly, we consider any disjoint sequences A_1, A_2, \ldots of sets in S:

$$\mu_B(\bigcup_i A_i) = \frac{\mu((\bigcup_i A_i) \cap B)}{\mu(B)} = \frac{\mu(\bigcup_i (A_i \cap B))}{\mu(B)}$$
$$= \frac{\sum_i \mu(A_i \cap B)}{\mu(B)} = \sum_i \frac{\mu(A_i \cap B)}{\mu(B)} = \sum_i \mu_B(A_i).$$

Therefore, it satisfies the three conditions and we prove that it is a measure space.

To show that $S_B = \{A \cap B : A \in S\}$ is a σ -algebra, we need to show that it satisfies the following properties of σ -algebra:

- $\emptyset \in S_B$;
- If $A \cap B \in S_B$ then $B \setminus (A \cap B) \in S_B$;
- If $\{A_i \cap B\} \subseteq S$ for a countable number of sequence $\{A_i\}$ then $\bigcup_i (A_i \cap B) \in S_B$;

Since *S* is a σ -algebra on *X*, it contains the empty set. Therefore, $\emptyset \in S$, now consider the intersection with *B*: $\emptyset \cap B = \emptyset$, and hence $\emptyset \in S_B$.

Suppose $A \cap B \in S_B$ where $A \in S$ we need to show that the complement also in S_B : We can express it as: $B \setminus (A \cap B)$ as B's intersection with the full set without that of A, i.e., $B \setminus (A \cap B) = B \cap (X \setminus A)$ and therefore, since $X \setminus A \in S$ (S is a σ -algebra, which is closed under complements), then we have: $B \cap (X \setminus A) \in S_B$.

Let $\{A_i\}$ be a countable collection of sets in S, so that $\{A_i \cap B\} \subseteq S_B$. We need to show that $\bigcup_i (A_i \cap B) \in S_B$.

Since *S* is a σ -algebra, it has the property that it is closed under countable unions. Hence, $\bigcup_i A_i \in S$. Then we have $\bigcup_i (A_i \cap B) = (\bigcup_i A_i) \cap B \in S_B$.

Combining the above, we conclude that it is a σ -algebra on B.

Problem 3. (30 points) Let (X, S, μ) be a measure space with $\mu(X) = 1$. Let A_1, A_2, \ldots be a countable collection of sets in S such that $\mu(A_k) = 1$ for all k > 0. Prove that

$$\mu\left(\bigcap_{k=1}^{\infty}A_k\right)=1.$$

(Note that in this problem we **don't** assume A_k 's are either decreasing or increasing.)

Solutions.

Just consider the complement of the sets A_k in X. The complement $A_k \in X$ is A_k^c and since we have $\mu(A_k) = 1$ and $\mu(X) = 1$ then have $\mu(A_k^c) = \mu(X) - \mu(A_k) = 1 - 1 = 0$ Since the countable number sequence $\{A_k^c\}$ have measure of zero, we use the countable subadditivity property and:

$$0 \le \mu(\bigcup_{k=1}^{\infty} A_k^c) \le \sum_{k=1}^{\infty} \mu(A_k^c) = 0 \implies \mu(\bigcup_{k=1}^{\infty} A_k^c) = 0$$

Now using the complement property and De Morgan's law $((\bigcap_{k=1}^{\infty} A_k)^c = (\bigcup_{k=1}^{\infty} A_k^c))$ we find:

$$\mu(\bigcap_{k=1}^{\infty} A_k) = \mu((\bigcup_{k=1}^{\infty} A_k^c)^c) = 1 - \mu(\bigcup_{k=1}^{\infty} A_k^c) = 1 - 0 = 1$$

where $\mu((\bigcup_{k=1}^{\infty}A_k^c)^c)=\mu(X)-\mu(\bigcup_{k=1}^{\infty}A_k^c)$

Xuyuan Zhang, Uniqname: zxuyuan

February 8, 2024

Problem 1. (40 points) For this problem, to prove Lebesgue measurability of a set, you need to show that the set satisfies one of the *equivalent conditions* of Lebesgue measurability.

a) (20 points) Suppose $A \subset \mathbb{R}$ with finite outer measure $\mu^*(A) < \infty$. Prove that A is Lebesgue measurable **if and only if** for every $\varepsilon > 0$ there exists a set G that is the union of *finitely* many bounded open intervals such that

$$\mu^*(A \backslash G) + \mu^*(G \backslash A) \leq \varepsilon$$
.

b) (20 *points*) Suppose $A \subset \mathbb{R}$ and $A \subset (b,c)$ for some b < c. Prove that A is Lebesgue measurable **if and only if**

$$\mu^*(A) + \mu^*((b,c)\backslash A) = c - b.$$

Solutions.

(a):

To prove the result, we first prove that A is Lebesgue measurable \implies Existence of G.

If A is Lebesgue measurable, by definition, for any $\varepsilon > 0$, there exists an open set $\mathcal O$ containing A ($A \subseteq \mathcal O$) that satisfies $\mu(\mathcal O \backslash A) < \frac{\varepsilon}{2}$. Since $\mathcal O$ is an open set in $\mathbb R$, it can be expressed as a countable union of disjoint open intervals such that $\mathcal O \supseteq \bigcup_{i=1}^\infty I_i$, and given that $\mu^*(A) < \infty$ and $\mathcal O$ covers A with only a very small number, we have $\mu^*(\mathcal O) < \infty$ and then we can find finite subcover $\bigcup_{i=1}^\infty I_i$ of $\mathcal O$ such that $\mu^*(\mathcal O \backslash \bigcup_{i=1}^\infty I_i) < \frac{\varepsilon}{2}$.

Now let $G = \bigcup_{i=1}^{\infty} I_i$ and it follows that G is a finite union of bounded open intervals. Therefore, from $A \subseteq \mathcal{O}$ we have $\mu^*(A \backslash G) \leq \mu^*(\mathcal{O} \backslash G) < \frac{\varepsilon}{2}$ and since $G \subseteq \mathcal{O}$ and then we have: $G \backslash A \subseteq \mathcal{O} \backslash A$ and thus $\mu^*(G \backslash A) \leq \mu^*(\mathcal{O} \backslash A) < \frac{\varepsilon}{2}$.

Therefore,

$$\mu^*(A \backslash G) + \mu^*(G \backslash A) < \varepsilon.$$

Now we prove the other direction \Leftarrow .

From the definition: A set $A \subset \mathbb{R}$ is Lebesgue measurable if for every $\varepsilon > 0$, there exists an open set \mathcal{O} such that $A \subseteq \mathcal{O}$ and $\mu^*(\mathcal{O} \setminus A) < \varepsilon$.

Given $\varepsilon > 0$ let G be $\mu^*(A \setminus G) + \mu^*(G \setminus A) \le \varepsilon$. We can choose $\mathcal{O} = G \cup (A \setminus G)$ and in this case we would get $A \subseteq \mathcal{O}$ and we aim to prove that $\mu^*(\mathcal{O} \setminus A) < \varepsilon$.

The set $\mathcal{O}\backslash A = (G \cup (A\backslash G))\backslash A = (G\backslash A) \cup ((A\backslash G)\backslash A) = G\backslash A$ because $((A\backslash G)\backslash A) = \emptyset$.

Since we have $\mu^*(\cdot) \geq 0$ and from the condition we have $\mu^*(\mathcal{O}\backslash A) = \mu^*(G\backslash A) \leq \varepsilon - \mu^*(A\backslash G) < \varepsilon$, which proves the result.

(b):

We first prove \Longrightarrow

If A is Lebesgue measure, then by the definition we have the outer measure μ^* of any set $E \subset \mathbb{R}$ is additive, i.e., for any E_1, E_2 are disjoint measurable sets, then $\mu^*(E_1 \cup E_2) = \mu^*(E_1) + \mu^*(E_2)$. Since we already know that $A \subset (b,c)$, so $((b,c)\backslash A)$ and A are disjoint sets in \mathbb{R} and therefore, we can apply the above claim and get $\mu^*(A) + \mu^*((b,c)\backslash A) = \mu^*(((b,c)\backslash A) \cup A) = \mu^*((b,c))$. For the case where $b = -\infty$, $c = \infty$ we also have the above claim because the left hand side and right hand side are all ∞ and therefore, they are equal.

Now we derive ←

From the definition of Lebesgue measure, a set $A \subset \mathbb{R}$ is Lebesgue measurable if for every $\varepsilon > 0$, there exists an open set \mathcal{O} containing A such that $\mu^*(\mathcal{O}\backslash A) < \varepsilon$ since the outer measure of (b,c) is the length then we have $\mu^*((b,c)) = c - b$, (c > b). Given the condition $\mu^*(A) + \mu^*((b,c)\backslash A) = \mu^*((b,c)) = c - b$.

We can consider $\mathcal{O} \subseteq (b,c)$ and \mathcal{O} is a Borel set, with $A \subseteq \mathcal{O}, \mu^*(A) = \mu^*(\mathcal{O})$. Since $\mathcal{O} \subseteq (b,c)$ then we have $\mu^*((b,c)\backslash\mathcal{O}) = \mu^*((b,c)) - \mu^*(\mathcal{O}) = \mu^*((b,c)) - \mu^*(A) = \mu^*((b,c)\backslash A)$.

Similarly, we also have a Borel set $\mathcal{E} \subseteq (b,c)$ and \mathcal{E} is a Borel set, with $((b,c)\backslash A) \subseteq \mathcal{E}$, $\mu^*((b,c)\backslash A)) = \mu^*(\mathcal{E})$. Since \mathcal{E} is a Borel set with $\mathcal{E} \subseteq (b,c)$ then we have $\mu^*(A) = \mu^*((b,c)) - \mu^*((b,c)\backslash A)) = \mu^((b,c)) - \mu^*(\mathcal{E}) = \mu^*((b,c)\backslash \mathcal{E})$

We note that $((b,c)\backslash A)\subseteq\mathcal{E}\subseteq(b,c)$ then we would get $((b,c)\backslash\mathcal{E})\subseteq A$ (De Morgan's law) and therefore, combining together we have: $((b,c)\backslash\mathcal{E})\subseteq A\subseteq\mathcal{O}$ Then for Borel set \mathcal{O},\mathcal{E} , we have: $\mu^*(\mathcal{O})=\mu^*((b,c)\backslash\mathcal{E})+\mu^*(\mathcal{O}\backslash((b,c)\backslash\mathcal{E}))$ (meausrable additivity, given the union of right hand side is the left hand side). However, from previous analysis we have:

$$\mu^{*}(\mathcal{O}) = \mu^{*}((b,c)) - \mu^{*}((b,c)\backslash\mathcal{O}) = \mu^{*}((b,c)) - \mu^{*}((b,c)\backslash A)$$

= $\mu^{*}(A) = \mu^{*}((b,c)\backslash\mathcal{E})$

Then we can conclude that $\mu^*(\mathcal{O}\setminus((b,c)\setminus\mathcal{E}))=0$ Since $A\subseteq\mathcal{O}$ then we have: $\mu^*(A\setminus((b,c)\setminus\mathcal{E}))=0$. However, since $((b,c)\setminus\mathcal{E})$ is a Borel set and $\mu^*(A\setminus((b,c)\setminus\mathcal{E}))=0$, from the definition of Lebesgue measure, we conclude that A is Lebesgue measurable.

Problem 2. (*10 points*) Show that if a measurable set $A \subset [0,1]$ has positive Lebesgue measure $\mu(A) > 0$, then there are two elements x and y in A such that |x - y| is an irrational number.

Solutions.

We first prove the following lemma:

Lemma 1. The Lebesgue measure of rational numbers at the interval [0,1] is 0. (in the textbook there is a more generalized proposition: Every countable subset of \mathbb{R} has outer measure 0.)

Given the dense property of rational numbers in the real interval [0,1], We can enumerate all the rational numbers in [0,1] as a sequence of $\frac{m}{n}$, $0 \le m \le n$ and gcd(m,n) = 1. For given $\varepsilon > 0$ we can make an interval $\left[\frac{m}{n} - \frac{\varepsilon}{2^{n+1}n}, \frac{m}{n} + \frac{\varepsilon}{2^{n+1}n}\right]$ which covers the single point $\frac{m}{n}$. The Lebesgue measure of the interval is $\frac{\varepsilon}{2^n n}$

The total measure can be formulated as: $\sum_{n=1}^{\infty} \sum_{m=1}^{n} \frac{\varepsilon}{n2^n} = \sum_{n=1}^{\infty} \frac{\varepsilon}{2^n} = \frac{\varepsilon}{2} \frac{1 - \frac{1}{2^{\infty}}}{1 - \frac{1}{2}} = \varepsilon$. Given the arbitrary small ε we can conclude that the Lebesgue measure is 0.

Because $A \subset [0,1]$ and $\mu(A) > 0$ then using this lemma, we can say that A must contain irrational numbers. We first suppose A contains rational and irrational numbers. Then Given that a rational number - an irrational number is irrational, we would directly complete the proof. (Think about $a = \frac{p}{q}$, $r = \frac{s}{v}$ and irrational number t

with r = t + a then we can express $t = \frac{sq - pv}{vq}$ is a rational number, contradiction.) Now suppose A only contains irrational numbers. We can prove the result by contradiction. Consider x and y in A such that |x - y| is always a rational number. Given the dense property of rational numbers in the real interval [0,1], we can enumerate all the rational numbers in [0,1] as a sequence $\{q_n\}_{n=0}^{\infty}$.

Given the dense and uncountable nature of irrational numbers in [0,1] and the countable nature of rational numbers, assuming we can cover A with intervals of rational lengths derived from assumed rational differences between elements of A leads to an inconsistency. This approach implies a mapping between the uncountably infinite set of points in A and a countable set of rational differences, which contradicts the reality that a set of positive measure consisting solely of irrationals cannot be comprehensively described by a countable collection of intervals without omitting uncountably many points.

Suppose, for contradiction, that an uncountable set U can be fully covered or described by a countable set C, assuming this coverage involves a countable collection of elements or intervals from C. Attempting to establish a bijection between U and a subset of \mathbb{N} , by associating each element of U with the index of C covering it, directly contradicts U's uncountability.

Therefore, our assumption must be false and the original claim holds.

Problem 3. (20 *points*) Let A be a Lebesgue measurable subset of \mathbb{R} with Lebesgue measure $\mu(A) > 0$. Define the set $A - A := \{x - y : x, y \in A\}$, the set of all of the differences of elements of A (for example, [0,1] - [0,2] = [-2,1].) Show that A - A contains an open symmetric interval around 0, i.e there exists c > 0 such that $(-c,c) \subset A - A$.

(Hint: Use Problem 3 of HW2)

Solutions.

Given A is a Lebesgue measurable subset of \mathbb{R} with $\mu(A) > 0$, we aim to prove that there exists c > 0 such that $(-c,c) \subset A - A$.

From $A \subset \mathbb{R}$ and $\mu(A) > 0$. We already have for every $\alpha \in (0,1)$, there exists an open interval I such that $\mu(A \cap I) > \alpha \mu(I)$ (Problem 3 of HW2). We can consider the interval $I = (x - \varepsilon, x + \varepsilon)$ and $A \subseteq I$. Therefore, for $\alpha > \frac{1}{2}$, we have more than half of the interval I are occupied by A. Then $\mu(A \cap I) > 2\alpha\varepsilon$.

Consider a transformation $|x| > \delta$ where $\delta = (4\alpha - 2)\varepsilon$ then we would have the claim that there are overlapping between the transformed set x + A and the original set A. Consider prove by contradiction, if the claim does not hold, we would have:

$$2\mu(A) = \mu(\{x+A\} \cup A) \le \mu(\{x+I\} \cup I)$$

= $\mu(I) + \mu(x) = 2\varepsilon + x < (4\alpha - 2)\varepsilon = 4\alpha\varepsilon$
 $\implies \mu(A) < 2\alpha\varepsilon$

Therefore, there is a contradiction, and we would have $(x + A) \cap A \neq \emptyset$ when $|x| < \delta$. Therefore, we would have $\{x : |x| < \delta\} \subset A - A$, and we can let $c = \delta$ and conclude that $(-c, c) \subset A - A$.

Xuyuan Zhang, Uniqname: zxuyuan

February 15, 2024

Problem 1. (20 *points*) Give an example to show that Egorov's Theorem can fail if the measure of the whole space $\mu(X) = \infty$.

Solutions.

We can consider the case where $x \in X$ and $\mu(X) = \infty$

$$f_n(x) = \begin{cases} 1 & \text{if } x > |n| \\ 0 & \text{otherwise} \end{cases}$$

Correspondingly, we can define the f(x) as: f(x) = 0. We first use definition to prove that $f_n(x) \to f(x)$ pointwise:

For any fixed x, choose N such that |N| > x then we would have $f_n(x) = 0 = f(x)$ Therefore, we have $\lim_{n\to\infty} f_n(x) = 0 = f(x)$ for all x. Given this, we show that the Egorov's Theorem can not hold:

Egorov's Theorem requires that we can find an arbitrarily small set \mathcal{E} such that $f_n \to f$ uniformly on $X \setminus \mathcal{E}$. Suppose this holds, we can always find a x such that |x| > n where $f_n(x) = 1$ and f(x) = 0 leading to $|f_n(x) - f(x)| = 1$, which means no matter how we choose \mathcal{E} as long as it has a measure less than ∞ , we would always have a set with $\mu(X \setminus \mathcal{E})$ such that $f_n \not\to f$ uniformly, which violates the Egorov's Theorem when $\mu(X) = \infty$.

Problem 2. (20 points) Suppose $f_1, f_2,...$ is a sequence of S-measurable functions on a measure space (X, S, μ) and that

$$\sum_{n=1}^{\infty} \mu(\{x \in X : |f_n(x)| > 1/n\}) < \infty.$$

Prove that

 $\mu(\{x \in X : f_n(x) \text{ does not converge to } 0\}) = 0.$

Solutions.

We can denote $A = \{x \in X : f_n(x) \text{ does not converge to } 0\}$ and we aim to prove that $\mu(A) = 0$. We can denote $\mathcal{E}_n = \{x \in X : |f_n(x)| > 1/n\}$. From the condition, we have $\sum_{i=1}^n \mu(\mathcal{E}_n) < \infty$. Since each $\mu(\cdot) \geq 0$ and from the condition of the summation is finite, we know that total measure of points where the function $f_n(x)$ exceeds 1/n in absolute value is finite (Suppose f_n does not converge to 0, then for any given $\varepsilon > 0$, there are infinitely many n for which $|f_n(x)| \geq \varepsilon$. By choosing $\varepsilon = \frac{1}{n}$, we can check that the sequence would sum to ∞ .) This also implies that for large n, the event $|f_n(x)| > \frac{1}{n}$ becomes arbitrarily small. (we can directly implement the Cauchy criterion of convergence and get that $\lim_{n\to\infty} \mu(\{x \in X : |f_n(x)| > 1/n\}) = 0$)

For each $k \in \mathbb{N}$ we can let $\mathcal{O}_k = \bigcup_{n=k}^{\infty} \mathcal{E}_n$. Since $\mathcal{E}_n \subseteq \mathcal{O}_k$ for all $n \ge k$, we know from the sub-additive property of Lebesgue measure that:

$$\mu(\mathcal{O}_k) \leq \sum_{n=k}^{\infty} \mu(\mathcal{E}_n)$$

By the condition, we know that the right hand side approaches 0 as $k \to \infty$ implying that $\lim_{k \to \infty} \mu(\mathcal{O}_k) = 0$. Note that for any point $x \in X$ belongs to A if and only if for every N > 0, there exists n > N such that |f(x)| > 1/n, i.e., $x \in \bigcap_{k=1}^{\infty} \mathcal{O}_k$ (from the definition of not convergence to 0 and let $\varepsilon = \frac{1}{n}$.). Since \mathcal{O}_k is a decreasing sequence and $\mu(\mathcal{O}_1) < \infty$, then we know that $\mu(A) = \mu(\bigcap_{k=1}^{\infty} \mathcal{O}_k) = \lim_{k \to \infty} \mu(\mathcal{O}_k) = 0$.

Problem 3. (20 *points*) Let μ be the Lebesgue measure on \mathbb{R} . Let b_1, b_2, \ldots be a sequence of real numbers. Define $f : \mathbb{R} \to [0, \infty]$ by :

$$f(x) = \begin{cases} \sum_{k=1}^{\infty} \frac{1}{4^k |x - b_k|} & \text{if } x \notin \{b_1, b_2, \ldots\} \\ \infty & \text{if } x \in \{b_1, b_2, \ldots\}. \end{cases}$$

Show that $\mu(\{x \in \mathbb{R} : f(x) < 1\}) = \infty$.

(Informally, this means f(x) < 1 (or, in fact, any number) on an infinite measure set.)

Solutions

To prove the claim, we focus on the contribution of each term in the series that defines f(x), and we aim to construct a small enough intervals around each b_k where f(x) can be shown to be greater than 1 and outside these intervals we have f(x) < 1.

For each b_k , let's construct such an interval $B_k = (b_k - \varepsilon_k, b_k + \varepsilon_k) \setminus \{b_k\}$ where ε_k is chosen so that for the boundary condition $b_k - \delta_k$ and $b_k + \delta_k$ we have: $\frac{1}{4^k |b_k \pm \delta_k - b_k|} = \frac{1}{2^k}$. We can choose $\varepsilon_k = \frac{1}{2^k}$. Note that this interval does not fully imply that f(x) > 1 but it is a necessary condition for f(x) > 1.

does not fully imply that f(x) > 1 but it is a necessary condition for f(x) > 1. Outside these intervals $B_k \cup \{b_k\}$, the contribution of the term $\frac{1}{4^k|x-b_k|}$ to f(x) decreases significantly because $|x-b_k|$ increases, making the denominator larger. Thus, as k increases, each term's contribution to the sum becomes progressively smaller, especially for x far from each b_k . As a result, outside this small interval, we have:

$$\sum_{k=1}^{\infty} \frac{1}{4^k |x - b_k|} < \sum_{k=1}^{\infty} \frac{1}{4^k |b_k - \delta_k - b_k|} = \sum_{k=1}^{\infty} \frac{1}{2^k} = 1$$

Since the length of the interval B_k is $2\varepsilon_k = \frac{1}{2^{k-1}}$, we know that total length of all B_k is: $\sum_{i=1}^{\infty} \frac{1}{2^{k-1}} = 1 \cdot \frac{1 - \frac{1}{2^{\infty}}}{1 - \frac{1}{2}} = 2$. Therefore, the real line consists of all the $\mathbb R$ but only countable number of intervals whose total length is no more

than 2 are extracted so that f(x) > 1 then we have $\mu(\{x \in \mathbb{R} : f(x) < 1\}) = \infty$ (removing of a set of finite measure from \mathbb{R} does not affect the infiniteness of \mathbb{R}).