Artinの補題」群分から体Kの乗法群Kx人の互Uに異なる群の準同型は K上一次独立である。

証明次の例nをn=1,2,…に関する数学的帰納法で示せばより、

 $(*)_n$ $\Gamma_1, ..., \Gamma_n$ は G から K^X への互いに異なる群の準同型で。 $\hat{a}_1, ..., a_n \in K$ かつ $\hat{a}_1 \Gamma_1(x) + ... + \hat{a}_n \Gamma_n(x) = 0$ $(x \in G)$ ならは" $\hat{a}_1 = ... = a_n = 0$ 、

 $(*)_1$ $\xi = \lambda_1$, $\alpha_1 \sigma_1(x) = 0$ $(x \in G) \geq \sigma_1(x) \in K^X$ $(x \in G) \neq 0$, $\alpha_1 = 0$.

 $N \ge 2 \ 7'$ あるとし、 $(H)_{n-1}$ が成立していると仮定する。 $(H)_n$ 走示せ $(L')_{L'}$ い、 $(L)_{n-1}$ い は $(L)_{n-1}$ か $(L)_{n-1}$ なの $(L)_{n-1$

任意にXEGをとる.

$$0 = \alpha_1 \sigma_1(yx) + \cdots + \alpha_n \sigma_n(yx) = \alpha_1 \sigma_1(y) \sigma_1(x) + \cdots + \alpha_n \sigma_n(y) \sigma_n(x),$$

ゆ之に (*)n-1 より、 $a_1 = a_{n-1} = 0$ が得られ、(*)より $a_n = 0$ も得られる、 [

注意 Gを体Lの自己同型群の部分群であるとき,

各 C E G は L^xからL^xへの群の準同型写像を与え、 C から定まるL^xからL^xへの群の準同型写像からもとの C は O を D にうつすという拡張で一意に決まるので、 Artinの補題を (G, K) か (L^x, L) の場合に適用することによって、 G は L上 - 次独立 な集合になっていることかわかる.

Artinの定理 Gは体Lの自己同型群の有限部分群であるとし、その部分体 K を $K=L^G=\{\beta\in L\mid \sigma(\beta)=\beta\ (\sigma\in G)\}$ と定める、このとき、L/K は有限次 Galois 拡大であり、[L:K]=|G|、

証明 $\beta \in L$ に対して、 $T(\beta) \in L$ を $T(\beta) = \sum_{\sigma \in G} \sigma(\beta)$ と定める、(Tはトレース写像と呼ばれる、)

このとき、任意の $\sigma \in G$ に対に、 $\sigma(T(\beta)) = \sum_{t \in G} \sigma \tau(\beta) = \sum_{p \in G} \rho(\beta) = T(\beta)$ なので、 $T(\beta) \in L^G = K$ となる、

 $\Gamma \in G$, $\alpha \in K$, $\beta \in L$ について、 $\Gamma(\alpha\beta) = \Gamma(\alpha)\sigma(\beta) = \alpha \sigma(\beta)$ なので、Gの元は K上での Lの体の自己同型になっている、

これで、K上の領形写像 $T = \sum_{\sigma \in G} \sigma : L \rightarrow K$ か得られたことになる、 $\sigma \in G$

Artinの補題より、GはL上一次独立な集合になる(前ページの注意を参照)

特に、 $T=\sum_{\sigma\in G} \tau + 0$ なので、ある $d\in L$ が存在して T(d) + 0.

[L:K]≦|G| を示える

任意に $\beta_1,...,\beta_{|G|+1} \in L$ をとる、 $\beta_1,...,\beta_{|G|+1}$ か"一次征属であることを示せはない、

|G|連立の $\chi_1,...,\chi_{|G|+1}$ に関する一次方程式 $\sum_{\lambda=1}^{|G|+1} \sigma^{-1}(\beta_{\lambda})\chi_{\lambda} = 0$ ($\sigma \in G$) の 非自明な解 $(\chi_1,...,\chi_{|G|+1}) = (\chi_1,...,\chi_{|G|+1})$, $\chi_1 \in L$ か存在する.

 $Y_1 \neq 0$ と仮定してよい、 $K = \frac{d}{Y_1} \neq 0$ とかくと、 $(KY_1, ..., KY_{|G|+1})$ も非自明な解になり、 $KY_1 = d$ なので、 $Y_1 = d$ と仮定できる、

このとき、 $\frac{|G|+1}{\lambda=1}$ $\sigma^{-1}(\beta_{\lambda})Y_{\lambda} = 0$ の両辺に σ を作用させると、 $\sum_{\lambda=1}^{|G|+1} \beta_{\lambda} \sigma(Y_{\lambda}) = 0$ (σ \in G)、 σ \in G について 足し上け"ると、 σ \in G について 足し上け"ると、 σ \in G \subset G \in G \subset G \subset G \subset G \subset G \subset G \subset G \subset

过意 特にこれで L/Kは有限次拡大であることかわかった、

2 [L:K] ≥ [G] を示えう。

[L:K] < |G| と仮定して矛盾を導こう、

[L:K]=r<|G]であると仮定し、LのK上での基底β1,...,βrをとる、

下連立の1日個の $\chi_{\sigma}(\sigma \in G)$ たちに関する一次方程式 $\sum_{\sigma \in G} \sigma(\beta_{\kappa}) \chi_{\sigma} = 0$ $(\lambda = 1, ..., r)$ の非自明な解 $(\chi_{\sigma})_{\sigma \in G} = (\chi_{\sigma})_{\sigma \in G}$ 、 $\chi_{\sigma} \in L$ か存在する。

任意に $\beta \in L$ をしる。 $\beta = \sum_{i=1}^{r} a_i \beta_i$, $a_i \in K$ と書ける、

 $\begin{array}{ll} \text{Con} \chi^{\frac{1}{2}}, & \sigma(\alpha_{k}, \beta_{k}) = \sigma(\alpha_{k}) \sigma(\beta_{k}) = \alpha_{k} \sigma(\beta_{k}) \; \chi_{\sigma} = 0 \; (\lambda = 1, ..., r) \; \text{χ-1}, \\ & \sum_{\sigma \in G} \chi_{\sigma} \sigma(\beta) = \sum_{\kappa=1}^{r} \alpha_{k} \; \sum_{\sigma \in G} \sigma(\beta_{\kappa}) \; \chi_{\sigma} = 0 \\ & \sigma \in G \end{array}$

となり、あるのもらが存在してとかもりとなっているので、らかし上一次従属になって矛盾する、

3 L/K か分離的であることを示るう、

BELを任意にとる、BがK上分離的であることを示せばよい、

(L/Kが分離的であることの定義(の1つ)は、Lの任意の元のK上での最小多項式)が重根を持たないことである。

L/Kは有限次拡大なので、BはK上代数的である、

しに含まれる日のK上での共役元で互いに異なるもの全体を日か…,日下と書く、

任意の $\sigma \in G$ について、 $\sigma(\theta_{\lambda})$ も θ のK上での共役元になるので、

のは集含 (θ1), ..., θrらにイ作用している: {σ(θ1), ..., σ(θr)}= {θ1, ..., θr>

 $f(x) = \hat{T}(x - \theta_{\lambda}) = \sum_{\lambda=0}^{L} C_{\lambda} x^{\lambda} (C_{\lambda} \in L) と おく、 f(x)は 重視を持たない、$

このとき、任意の $\sigma \in G$ について、 $\sum_{\lambda=0}^{r} \sigma(c_{\lambda}) \chi^{\lambda} = \prod_{\lambda=1}^{r} (\chi - \sigma(\theta_{\lambda})) = \prod_{\lambda=1}^{r} (\beta(-\theta_{\lambda})) = f(\lambda)$

なので (Ci)=Ci となり、CieK, f(x) e K[x]となることかわかる、

AのK上での最小多項式はf(x)を割り切るので重根を持たない,

これでのかド上分離的であることかってされた。

4 L/Kが正規拡大であることを示ろう。

上に続けて、日のド上でのすべての共役元かしに含まれることを示せなない。

(L/Kが正規であることの定義(の1つ)は、Lの任意の元のK上での最小多項式)のすべての根(K上でのすべての共役元)かしに含まれることである

5 以上によって, L/K か有限次Galois 拡大であり、[L:K]=|G|となることが示された、(有限次拡大L/K か Galiu拡大であることの定義は L/K か 分割的かつ正規であることである。)

注意 Artinの定理の状況のもとで、G C Gd(L/K), [L:K]=|Gd(L/K)|なので、Gd(L/K)=Gとなることもわかる、