Kraft-McMillan Inequality (KMI)

Presentation by: Joe Louis Paul I

Kraft-McMillan Inequality (1/2)

 If a prefix code C has been constructed for a discrete memoryless source (DMS) with source alphabet $S = \{s_0, s_1, \dots, s_{\kappa-1}\}$ and source statistics $P = \{p_0, p_1, \dots, p_{K-1}\}$ and the codeword for symbol s_k has length I_k , for k=0,1,...,K-1, then the codeword lengths of the code C always satisfy a certain inequality known as the Kraft-McMillan Inequality (KMI).

Kraft-McMillan Inequality (2/2)

The KMI Theorem is shown by,

$$\sum_{k=0}^{K-1} 2^{-l_k} \le 1$$

Where, 2 is the radix (i.e. number of symbols) involved in a binary alphabet {0,1}.

Example: KMI Theorem (1/2)

• Find out the $\sum_{k=0}^{K-1} 2^{-l_k}$ for C_1 , C_2 and C_3 .

Source Sy mb ol	Probabili ty	C ₁	C ₂	C ₃
S0	0.5	0	0	0
S1	0.25	01	10	1
S2	0.125	011	110	00
S3	0.125	0111	111	11

Example: KMI Theorem (2/2)

• Take
$$C_{1}$$
, $\sum_{k=0}^{K-1} 2^{-l_k} = 0.9375 < 1$

• Take
$$C_{2}$$
, $\sum_{k=0}^{K-1} 2^{-l_k} = 1$

- Take C_3 , $\sum_{k=1}^{K-1} 2^{-l_k} = 1.5 > 1$
- The coding k Schemes C_1 and C_2 satisfy the Kraft-McMillan Inequality.
- Though, C_1 satisfies KMI, but its not a preix code (But fully reversible).

Important Note on KMI (1/2)

- The Kraft-McMillan Inequality forces the condition on the length of the codewords of a coding scheme (code) rather than controls the code itself.
- Or in other words,
 <u>Kraft-McMillan Inequality does not</u>
 <u>make a code as a prefix code</u>

Important Note on KMI (2/2)

- From the example,
 - Code III violates the Kraft-McMillan Inequality; it can not therefore be a prefix code.
 - Kraft-McMillan Inequality is satisfied by both codes I and II; but only code II is a prefix code.

Prefix Codes as Instantaneous Codes

- Prefix codes are distinguished from other uniquely decodable codes by the fact that the <u>end of a codeword is always</u> <u>recognizable</u>.
- Hence, the decoding of a prefix can be accomplished as soon as the binary sequence representing a source symbol is fully received.
- For this reason, prefix codes are also referred as <u>instantaneous codes</u>.

Average Codeword Length by using Kraft-McMillan Inequality (1/6)

• The average codeword length (L) can be bounded as follows:

$$H(S) \leq \overline{L} < H(S) + 1$$

• For a prefix code, $p_k = 2^{-l_k}$

Average Codeword Length by using Kraft-McMillan Inequality (2/6)

 The average codeword length is given by,

$$\overline{L} = \sum_{k=0}^{K} p_k l_k$$

 \bullet Let us substitute the value of $\mathbf{p_k}$ in the formula $\mathbf{for}^{\left(L\right)}$

Average Codeword Length by using Kraft-McMillan Inequality (3/6)

Now, the average codeword length is

$$\overline{L} = \sum_{k=0}^{K-1} 2^{-l_k} l_k = \sum_{k=0}^{K-1} \frac{l_k}{2^{l_k}} \quad Eqn.(1)$$

 The entropy of the source is given by,

$$H(S) = \sum_{k=0}^{K-1} p_k \log_2 \frac{1}{p_k}$$

Average Codeword Length by using Kraft-McMillan Inequality (4/6)

 Let us substitute the value of p_k in the formula for H(S)

$$H(S) = \sum_{k=0}^{K-1} 2^{-l_k} \log_2 \frac{1}{2^{-l_k}}$$

$$H(S) = \sum_{k=0}^{K-1} 2^{-l_k} \log_2 2^{l_k}$$

Average Codeword Length by using Kraft-McMillan Inequality (5/6)

• Now, the entropy, H(S)

$$H(S) = \sum_{k=0}^{K-1} l_k 2^{-l_k} \log_2 2$$

$$H(S) = \sum_{k=0}^{K-1} l_k 2^{-l_k}$$

$$H(S) = \sum_{k=0}^{K-1} \frac{l_k}{2^{l_k}} \quad Eqn.(2)$$

Average Codeword Length by using Kraft-McMillan Inequality (6/6)

 By comparing Eqn. (1) and Eqn. (2), For a prefix code that satisfies an efficient Kraft-McMillan Inequality,

$$\overline{L} = H(S)$$

 Kraft-McMillan inequality provides a necessary condition for uniquely decodable codes. That is, if a code is uniquely decodable, the codeword lengths have to satisfy the inequality.

