Practical Python - Internet of Things

Clinton Roy

The Edge, State Library of Queensland

October 28, 2017

Outline

Introduction

Installation

Circuits

Resources

Introducing MicroPython

- ▶ Python for microcontroller boards
- Started as a Kickstarter
- All Open Source

Introducing the ESP8266

- ▶ 80MHZ processor
- ▶ lots of GPIO pins
- Digital interfaces
- ▶ One Analogue
- Wifi
- Cheap
- reasonably well documented (now)

ESP8266 Development Board

ESP-12E DEVELOPMENT BOARD NOTES: A Typ. pin current 6mA (Max. 12mA) **PINOUT** A For sleep mode, connect GPIO16 and EXT. RSTB. On wakeup, GPI016 will output LOW for system reset. A On boot/reset/wakeup, keep GPIO15 LOW and GPI02 HIGH. 3V3 Vin GND GND SPI_CS1 UOTXD GPIO1 CHIP_EN CH PD U0RXD GPI03 EXT RSTB UORTS MTDO GPIO15 3V3 UOCTS MTCK GND MTDI GPI012 SPI CLK HSPI MTMS GPIO14 ² R R R R R R R ^C SPI CSO GND SPI_MOSI U1RXD 3V3 ◻ U1TXD GPIO2 SPIHD HSPIHD Œ SPI_CS2 GPIO0 SDIO SPIWP HSPIWP GPIO10 - RESERVED - RESERVED XPD DCDC ADC TOUT SP. FUNCTION(S) POWER I/O COMM. INTERFACE ADC PIN NUMBER CONTROL ¬^ PWM N/C

Pin Mapping

```
Micropython
             Board
           0
               D3
               D4 (also Led1 but inverse)*
           4
               D2
           5
               D1
           9
               SD2
          10
               SD3
          12
               D6
          13
               D7
          14
               D<sub>5</sub>
          15
               D8
          16
               D0 (also Led2 but inverse)*
```

Introduction to Electricity

► The water analogy

http://www.electricalonline4u.com/2015/10/ohm-law-explanation-guide.html

Installation

- ▶ Install Python, e.g. http://anaconda.org
- Install esptool
- > pip install esptool
 - Clear flash memory
- > esptool.py --port /dev/ttyUSBO erase_flash
 - Download MicroPython http://github.com/micropython/micropython/releases
 - Flash board
- > esptool.py --port /dev/ttyUSB0 --baud 460800 write_flash
 --flash_size=detect 0 ~/Downloads/esp8266-\$version.bin

Setup

- Connect to the board
- > screen /dev/ttyUSB0 115200
 - Hit enter!
 - Work out WIFI name
- > import network
- > ap = network.WLAN(network.AP_IF)
- > ap.config("essid")
 - Write this down!
 - Turn on the Web Server
- > import webrepl_setup
 - Follow the prompts. Pick a simple password.
 - Turn on Web Server
 - ► Reboot...
 - ► Connect to Board, password is micropythoN

Look Around

- ▶ Micropython implements a filesystem, just like a computer.
- > import os
- > os.listdir()

RGB LED Layout

RGB LED Code

```
> from machine import Pin, PWM
> r = PWM(Pin(4), freq=500, duty=0)
> g = PWM(Pin(12), freq=500, duty=0)
> b = PWM(Pin(14), freq=500, duty=0)
>
```

Servo Layout

- ► Orange PWM
- ► Red +V
- ► Brown Ground

Servo Code

> from machine import Pin, PWM
> s = PWM(Pin(14), freq=50, duty=0)

Force Sensor Layout

Force Sensor Code

- > from machine import ADC
- > adc = ADC(0)
- > adc.read()

Temperature Sensor Layout

fritzing

Temperature Sensor Code

```
> import dht
> import machine
> d = dht.DHT11(machine.Pin(4))
>
> # Only once a second.
> d.measure()
> d.temperature()
> d.humidity()
```

Stand Alone Mode

- Special files:
 - ▶ boot.py, main.py

Resources

- ► These notes: Copyright © 2017 Clinton Roy
 - ▶ https://github.com/clintonroy/slq2017python @④
- https://docs.micropython.org/en/latest/esp8266/ esp8266/tutorial/
- http://fritzing.org/