FINEL

Generated by Doxygen 1.8.12

Contents

1	Mod	lules Ind	dex			1
	1.1	Modul	es List			1
2	Data	a Type I	ndex			3
	2.1	Data T	ypes List			3
3	File	Index				5
	3.1	File Lis	st			5
4	Mod	lule Doo	cumentati	ion		7
	4.1	meshs	tructure M	Module Reference		7
		4.1.1	Detailed	Description		7
		4.1.2	Function	n/Subroutine Documentation		7
			4.1.2.1	mallocelem()		7
			4.1.2.2	mallocnodes()		8
	4.2	minput	treader Mo	odule Reference		8
		4.2.1	Detailed	Description		9
		4.2.2	Function	n/Subroutine Documentation	. 1	0
			4.2.2.1	analyzefile()	. 1	0
			4.2.2.2	analyzefileinput()	. 1	1
			4.2.2.3	createsimpleinputfile()	. 1	1
			4.2.2.4	findinclude()	. 1	2
			4.2.2.5	findkeyword()	. 1	2
			4.2.2.6	mergeincludecontents()	. 1	3
			4227	nrenarefilelines()	1	3

ii CONTENTS

		4.2.2.8	readboundaryconditions()	. 14
		4.2.2.9	readinputfileds()	15
		4.2.2.10	readintarraykeywordvalue()	16
		4.2.2.11	readintegerkeywordvalue()	. 17
		4.2.2.12	readrealkeywordvalue()	18
		4.2.2.13	readrealmatrixvalues()	. 18
		4.2.2.14	readstringkeywordvalue()	. 19
	4.2.3	Variable	Documentation	20
		4.2.3.1	file_lines	20
		4.2.3.2	number_of_lines	20
4.3	mio Mo	odule Refe	erence	20
	4.3.1	Detailed	Description	21
	4.3.2	Function	/Subroutine Documentation	21
		4.3.2.1	closefiles()	21
		4.3.2.2	openfiles()	22
		4.3.2.3	print_sol()	. 22
		4.3.2.4	print_sol_csv()	23
		4.3.2.5	print_sol_vtk()	23
		4.3.2.6	read_elems()	24
		4.3.2.7	read_nodes()	25
	4.3.3	Variable	Documentation	25
		4.3.3.1	iin	25
		4.3.3.2	infile	25
		4.3.3.3	iout	26
		4.3.3.4	ioute	. 26
		4.3.3.5	ioutn	26
		4.3.3.6	isol	26
		4.3.3.7	isolcsv	26
		4.3.3.8	isolvtk	. 26
		4.3.3.9	outelem	26

CONTENTS

		4.3.3.10	outfile	 26
		4.3.3.11	outnodes	 27
		4.3.3.12	solfile	 27
		4.3.3.13	solfilecsv	 27
		4.3.3.14	solfilevtk	 27
		4.3.3.15	title	 27
4.4	mproce	essor Modu	ule Reference	 27
	4.4.1	Detailed I	Description	 28
	4.4.2	Function/	/Subroutine Documentation	 28
		4.4.2.1	applybc()	 28
		4.4.2.2	assmb()	 29
		4.4.2.3	drchlt()	 29
		4.4.2.4	formkf()	 30
		4.4.2.5	neumann1d()	 31
		4.4.2.6	processor()	 31
		4.4.2.7	solver()	 32
4.5	mscala	ar Module F	Reference	 33
	4.5.1	Detailed I	Description	 33
	4.5.2	Function/	/Subroutine Documentation	 33
		4.5.2.1	localelem()	 33
		4.5.2.2	localelem2d()	 34
4.6	msetur	o Module R	Reference	 35
	4.6.1	Detailed I	Description	 35
	4.6.2	Function/	/Subroutine Documentation	 35
		4.6.2.1	preprocessor()	 35
		4.6.2.2	setupphase()	 36
4.7	mshap	efunctions	Module Reference	 37
	4.7.1	Detailed I	Description	 38
	4.7.2	Function/	/Subroutine Documentation	 38
		4.7.2.1	setint()	 38

iv CONTENTS

		4.7.2.2	setint2()	. 38
		4.7.2.3	shpf1d()	. 39
		4.7.2.4	shpf2d()	. 39
	4.7.3	Variable I	Documentation	. 40
		4.7.3.1	w	. 40
		4.7.3.2	wq	. 40
		4.7.3.3	wt	. 40
		4.7.3.4	xi	. 40
		4.7.3.5	xiq	. 40
		4.7.3.6	xit	. 40
4.8	msolve	r Module F	Reference	. 40
	4.8.1	Detailed	Description	. 41
	4.8.2	Function/	/Subroutine Documentation	. 41
		4.8.2.1	rhsub()	. 41
		4.8.2.2	tri()	. 42
4.9	mutilitie	es Module	Reference	. 42
	4.9.1	Detailed	Description	. 42
	4.9.2	Function/	/Subroutine Documentation	. 43
		4.9.2.1	f1()	. 43
		4.9.2.2	linspace()	. 43
		4.9.2.3	print_matrix()	. 43
		4.9.2.4	quad1()	. 44
		4.9.2.5	test_shpf1d()	. 44
4.10	scalars	tructure M	lodule Reference	. 45
	4.10.1	Detailed	Description	. 45
	4.10.2	Function/	/Subroutine Documentation	. 45
		4.10.2.1	mallocelemkf()	
			mallocglobalkf()	

CONTENTS

5	Data	Type C	Pocumentation	47
	5.1	meshs	tructure::mesh Type Reference	47
		5.1.1	Detailed Description	48
		5.1.2	Member Data Documentation	48
			5.1.2.1 ei	48
			5.1.2.2 ej	48
			5.1.2.3 ek	49
			5.1.2.4 flagnode	49
			5.1.2.5 gnode	49
			5.1.2.6 mat	49
			5.1.2.7 nelem	49
			5.1.2.8 nelems	49
			5.1.2.9 nen	49
			5.1.2.10 nintp	49
			5.1.2.11 nnodes	50
			5.1.2.12 nsd	50
			5.1.2.13 numat	50
			5.1.2.14 si	50
			5.1.2.15 sj	50
			5.1.2.16 sk	50
			5.1.2.17 x	50
			5.1.2.18 xv	50
			5.1.2.19 yv	51
	5.2	scalars	structure::scalarstructuresystem Type Reference	51
		5.2.1	Detailed Description	52
		5.2.2	Member Data Documentation	52
			5.2.2.1 kbc	52
			5.2.2.2 lhelem	52
			5.2.2.3 lhsys	52
			5.2.2.4 mat	52
			5.2.2.5 rhelem	52
			5.2.2.6 rhsys	52
			5.2.2.7 transient	53
			5.2.2.8 u	53
			5.2.2.9 vbc	53

vi

6	File I	Documentation	55
	6.1	src/driver.F90 File Reference	55
		6.1.1 Function/Subroutine Documentation	55
		6.1.1.1 finel()	55
	6.2	src/io.F90 File Reference	56
	6.3	src/meshStructure.F90 File Reference	57
	6.4	src/mInputReader.F90 File Reference	58
	6.5	src/processor.F90 File Reference	59
	6.6	src/scalar.F90 File Reference	59
	6.7	src/scalarStructure.F90 File Reference	59
	6.8	src/setup.F90 File Reference	60
	6.9	src/shapeFunctions.F90 File Reference	60
	6.10	src/solver.F90 File Reference	61
	6.11	src/utilities.F90 File Reference	61
Inc	lex		63

Chapter 1

Modules Index

1.1 Modules List

Here is a list of all modules with brief descriptions:

meshstructure	
Module that contains the data structure of a mesh associate to a problem	7
minputreader	
Modulo responsavel por reunir subrotinas para leitura do arquivo de entrada	8
mio	
Contains input/output variables and routines	20
mprocessor	
Processor module to compute, assemble and solve the system	27
mscalar	
Contains variables and subroutine related to a general scalar problem	33
msetup	
Module for setup phase by IO procedures	35
mshapefunctions	
Module for shape functions computations and relate operations	37
msolver	
Contains subroutine to compute numerical solution of linear systems Ax=b	40
mutilities	
Module for auxiliar routines	42
scalarstructure	
Module that contains the data structure of a general scalar problem	45

2 Modules Index

Chapter 2

Data Type Index

2.1 Data Types List

Here are the data types with brief descriptions:

meshstructure::mesh	
Data type for a mesh	47
scalarstructure::scalarstructuresystem	
Variables and characteristic data for a scalar problem	51

Data Type Index

Chapter 3

File Index

3.1 File List

Here is a list of all files with brief descriptions:

src/driver.F90										 					 	 					55
src/io.F90										 					 						56
src/meshStructure.F90										 					 	 					57
src/mlnputReader.F90										 						 					58
src/processor.F90																					
src/scalar.F90																					59
src/scalar Structure. F90																					
src/setup.F90																					
src/shapeFunctions.F90																					
src/solver.F90																 					61
src/utilities.F90										 					 	 					61

6 File Index

Chapter 4

Module Documentation

4.1 meshstructure Module Reference

Module that contains the data structure of a mesh associate to a problem.

Data Types

• type mesh

Data type for a mesh.

Functions/Subroutines

• subroutine mallocnodes (meshStrct)

Routine that allocate memory to node data.

• subroutine mallocelem (meshStrct)

Routine that allocate memory to element data.

4.1.1 Detailed Description

Module that contains the data structure of a mesh associate to a problem.

Author

Diego T. Volpatto

4.1.2 Function/Subroutine Documentation

4.1.2.1 mallocelem()

Routine that allocate memory to element data.

Parameters

meshStrct	[in/out] mesh structure to allocate
n	[in] number of elements

Author

Diego T. Volpatto

Here is the caller graph for this function:

4.1.2.2 mallocnodes()

Routine that allocate memory to node data.

Parameters

meshStrct	[in/out] mesh structure to allocate
n	[in] number of nodes

Author

Diego T. Volpatto

Here is the caller graph for this function:

4.2 minputreader Module Reference

Modulo responsavel por reunir subrotinas para leitura do arquivo de entrada.

Functions/Subroutines

• subroutine readinputfileds ()

Le arquivo de input e armazena seu conteudo em um array.

• subroutine createsimpleinputfile ()

Cria a estrutura de input usando um arquivo de entrada sem includes.

• subroutine mergeincludecontents (include_file, include_line)

Le o conteudo do arquivo de include e armazena no array principal.

Efetua a alocacao da estrutura definitiva, preparando a linha dos arquivos originais para receber os includes.

• subroutine analyzefileinput (number_of_lines, number_of_includes)

Efetua algumas analises no arquivo recebido.

• subroutine analyzefile (file name, number of lines, number of includes)

Efetua algumas analises no arquivo recebido.

integer *4 function findinclude (position, file_lines, number_of_lines)

Procura a n-esima palavra-chave include.

integer *4 function findkeyword (keyword)

Procura uma palavra-chave.

subroutine readintegerkeywordvalue (keyword, target, default value)

Efetua a leitura de uma palavra-chave to tipo inteiro. Se nao encontrado, associa o valor default fornecido.

• subroutine readintarraykeywordvalue (keyword, target, default_value)

Efetua a leitura de uma palavra-chave do tipo array de inteiro. Se nao encontrado, associa o valor default fornecido. Obs.: Atentar para o fato dessa sub-rotina ter um do "infinito".

subroutine readstringkeywordvalue (keyword, target, default_value)

Efetua a leitura de uma palavra-chave to tipo string. Se nao encontrado, associa o valor default fornecido.

subroutine readrealkeywordvalue (keyword, target, default_value)

Efetua a leitura de uma palavra-chave to tipo real. Se nao encontrado, associa o valor default fornecido.

subroutine readrealmatrixvalues (keyword, target, default_value)

Efetua a leitura de uma palavra-chave do tipo de um array bidimensional real. A leitura eh realizada linha por linha. Se nao encontrado, associa o valor default fornecido.

• subroutine readboundaryconditions (keyword, kbc, vbc, default_value)

Efetua a leitura de uma palavra-chave do tipo de um array bidimensional real. A leitura eh realizada linha por linha. Se nao encontrado, associa o valor default fornecido.

Variables

• character(len=200), dimension(:), allocatable file lines

Armazena as linhas do arquivo de input.

• integer *4 number_of_lines

Armazena o numero de linhas no arquivo.

4.2.1 Detailed Description

Modulo responsavel por reunir subrotinas para leitura do arquivo de entrada.

4.2.2 Function/Subroutine Documentation

4.2.2.1 analyzefile()

Efetua algumas analises no arquivo recebido.

Parameters

file_name	O nome do arquivo.
number_of_lines	Numero de linhas.
number_of_include	Numero de ocorrencias da palavra include.

Here is the caller graph for this function:

4.2.2.2 analyzefileinput()

Efetua algumas analises no arquivo recebido.

Parameters

number_of_lines	Numero de linhas.
number_of_include	Numero de ocorrencias da palavra include.

Here is the caller graph for this function:

4.2.2.3 createsimpleinputfile()

```
\verb|subroutine| minputreader::createsimpleinputfile ()|\\
```

Cria a estrutura de input usando um arquivo de entrada sem includes.

Parameters

file_name	Nome do arquivo a ser lido.

Here is the caller graph for this function:

4.2.2.4 findinclude()

Procura a n-esima palavra-chave include.

Parameters

position	Corresponde a posicao desejada.
file_lines	Linhas do arquivo.
number_of_lines	Numero de linhas atuais.

Returns

O indice da palavra-chave no array que contem as linhas do arquivo de entrada.

Here is the caller graph for this function:

4.2.2.5 findkeyword()

Procura uma palavra-chave.

Parameters

keyword	A palavra-chave.

Returns

O indice da palavra-chave no array que contem as linhas do arquivo de entrada.

Here is the caller graph for this function:

4.2.2.6 mergeincludecontents()

Le o conteudo do arquivo de include e armazena no array principal.

Parameters

include_index	O index do include.
include_files	Array com includes.
include_line	A linha do include.

Here is the caller graph for this function:

4.2.2.7 preparefilelines()

Efetua a alocacao da estrutura definitiva, preparando a linha dos arquivos originais para receber os includes.

Parameters

include_indexes	Array os indices de ocorrencias dos includes.
include_number_of_lines	Array com o numero de linhas de cada include
number_of_includes	Numero de includes.
Original file lines Generated by Doxygen	Linhas do arquivo de entrada original.

Here is the caller graph for this function:

4.2.2.8 readboundaryconditions()

Efetua a leitura de uma palavra-chave do tipo de um array bidimensional real. A leitura eh realizada linha por linha. Se nao encontrado, associa o valor default fornecido.

Parameters

keyword	A palavra-chave a ser encontrada.
kbc	Tipo da CC (1 = Dirichlet, 2 = Neumann).
vbc	Valor prescrito na CC.
default_value	Valor default.

Author

Diego T. Volpatto

Here is the call graph for this function:

Here is the caller graph for this function:

4.2.2.9 readinputfileds()

subroutine minputreader::readinputfileds ()

Le arquivo de input e armazena seu conteudo em um array.

Parameters

Nome do arquivo a ser lido.

Here is the call graph for this function:

Here is the caller graph for this function:

4.2.2.10 readintarraykeywordvalue()

Efetua a leitura de uma palavra-chave do tipo array de inteiro. Se nao encontrado, associa o valor default fornecido. Obs.: Atentar para o fato dessa sub-rotina ter um do "infinito".

Parameters

keyword	A palavra-chave a ser encontrada.
target	Variavel onde o valor inteiro sera atribuido.
default_value	Valor default.

Author

Diego Volpatto

Here is the call graph for this function:

```
minputreader::readintarraykeywordvalue minputreader::findkeyword
```

4.2.2.11 readintegerkeywordvalue()

Efetua a leitura de uma palavra-chave to tipo inteiro. Se nao encontrado, associa o valor default fornecido.

Parameters

keyword	A palavra-chave a ser encontrada.
target	Variavel onde o valor inteiro sera atribuido.
default_value	Valor default.

Here is the call graph for this function:

Here is the caller graph for this function:

4.2.2.12 readrealkeywordvalue()

Efetua a leitura de uma palavra-chave to tipo real. Se nao encontrado, associa o valor default fornecido.

Parameters

keyword	A palavra-chave a ser encontrada.
target	Variavel onde o real sera atribuido.
default_value	Valor default.

Here is the call graph for this function:

4.2.2.13 readrealmatrixvalues()

Efetua a leitura de uma palavra-chave do tipo de um array bidimensional real. A leitura eh realizada linha por linha. Se nao encontrado, associa o valor default fornecido.

Parameters

keyword	A palavra-chave a ser encontrada.
target	Variavel onde os valores serao atribuido.
default_value	Valor default.

Author

Diego T. Volpatto

Here is the call graph for this function:

Here is the caller graph for this function:

4.2.2.14 readstringkeywordvalue()

Efetua a leitura de uma palavra-chave to tipo string. Se nao encontrado, associa o valor default fornecido.

Parameters

keyword	A palavra-chave a ser encontrada.
target	Variavel onde a string sera atribuido.
default_value	Valor default.

Here is the call graph for this function:

Here is the caller graph for this function:

4.2.3 Variable Documentation

4.2.3.1 file_lines

```
character(len=200), dimension(:), allocatable minputreader::file_lines
```

Armazena as linhas do arquivo de input.

4.2.3.2 number_of_lines

```
integer*4 minputreader::number_of_lines
```

Armazena o numero de linhas no arquivo.

4.3 mio Module Reference

Contains input/output variables and routines.

Functions/Subroutines

• subroutine openfiles ()

Open IO files.

• subroutine closefiles ()

Close IO files.

• subroutine read_nodes (mesh_)

Subroutine to read node data file generated by EasyMesh.

subroutine read elems (mesh)

Subroutine to read element data file generated by EasyMesh.

• subroutine print_sol (mesh_, scalar_)

Prints the solution of scalar field.

subroutine print_sol_csv (mesh_, scalar_)

Prints the solution of scalar field in the csv format aiming to compatibility with Paraview post-processing.

subroutine print_sol_vtk (mesh_, scalar_)

Prints the solution of scalar field in the vtk "legacy" format aiming to compatibility with Paraview post-processing.

4.3 mio Module Reference 21

Variables

```
    integer, parameter iin = 1110
    Input file id.
```

• integer, parameter iout = 1120

Output file id.

• integer, parameter isol = 1130

Solution file id.

• integer, parameter ioutn = 1140

Node output file.

• integer, parameter ioute = 1150

Element output file.

• integer, parameter isolcsv = 1160

Solution csv file id.

• integer, parameter isolvtk = 1170

Solution vtk file id.

• character(len=20), parameter infile ='input.dat'

Input file name.

• character(len=20), parameter outfile ='output.dat'

Output file name.

• character(len=20), parameter outnodes ='outnodes.dat'

Output node's file name.

• character(len=20), parameter outelem ='outelem.dat'

Output elements' file name.

character(len=20), parameter solfile ='solution.dat'

Solution file name.

• character(len=20), parameter solfilecsv ='solution.csv'

Solution file name csv file.

• character(len=20), parameter solfilevtk ='solution.vtk'

Solution file name vtk file.

• character(len=50) title

4.3.1 Detailed Description

Contains input/output variables and routines.

Author

Diego T. Volpatto

4.3.2 Function/Subroutine Documentation

4.3.2.1 closefiles()

```
subroutine mio::closefiles ( )
```

Close IO files.

Author

Diego T. Volpatto

Here is the caller graph for this function:

4.3.2.2 openfiles()

```
subroutine mio::openfiles ( )
```

Open IO files.

Author

Diego T. Volpatto

Here is the caller graph for this function:

4.3.2.3 print_sol()

Prints the solution of scalar field.

Parameters

mesh⊷	A mesh structure
_	
scalar⊷	A scalar structure
_	

4.3 mio Module Reference 23

Author

Diego T. Volpatto

4.3.2.4 print_sol_csv()

Prints the solution of scalar field in the csv format aiming to compatibility with Paraview post-processing.

Parameters

mesh⊷	A mesh structure
_ scalar⊷	A scalar structure
_	

Author

Diego T. Volpatto

4.3.2.5 print_sol_vtk()

Prints the solution of scalar field in the vtk "legacy" format aiming to compatibility with Paraview post-processing.

Parameters

mesh⊷ _	A mesh structure
scalar⊷	A scalar structure

Author

Diego T. Volpatto

Here is the caller graph for this function:

4.3.2.6 read_elems()

Subroutine to read element data file generated by EasyMesh.

Parameters

Author

Diego Volpatto

Here is the call graph for this function:

Here is the caller graph for this function:

4.3 mio Module Reference 25

4.3.2.7 read_nodes()

Subroutine to read node data file generated by EasyMesh.

Parameters

Author

Diego Volpatto

Here is the call graph for this function:

Here is the caller graph for this function:

4.3.3 Variable Documentation

4.3.3.1 iin

```
integer, parameter mio::iin = 1110
```

Input file id.

4.3.3.2 infile

```
character(len=20), parameter mio::infile ='input.dat'
```

Input file name.

```
4.3.3.3 iout
integer, parameter mio::iout = 1120
Output file id.
4.3.3.4 ioute
integer, parameter mio::ioute = 1150
Element output file.
4.3.3.5 ioutn
integer, parameter mio::ioutn = 1140
Node output file.
4.3.3.6 isol
integer, parameter mio::isol = 1130
Solution file id.
4.3.3.7 isolcsv
integer, parameter mio::isolcsv = 1160
Solution csv file id.
4.3.3.8 isolvtk
integer, parameter mio::isolvtk = 1170
Solution vtk file id.
4.3.3.9 outelem
character(len=20), parameter mio::outelem ='outelem.dat'
Output elements' file name.
4.3.3.10 outfile
character(len=20), parameter mio::outfile ='output.dat'
```

Output file name.

4.3.3.11 outnodes character(len=20), parameter mio::outnodes ='outnodes.dat' Output node's file name. 4.3.3.12 solfile character(len=20), parameter mio::solfile ='solution.dat' Solution file name. 4.3.3.13 solfilecsv character(len=20), parameter mio::solfilecsv ='solution.csv' Solution file name csv file. 4.3.3.14 solfilevtk character(len=20), parameter mio::solfilevtk ='solution.vtk' Solution file name vtk file. 4.3.3.15 title

4.4 mprocessor Module Reference

character(len=50) mio::title

Processor module to compute, assemble and solve the system.

Functions/Subroutines

```
• subroutine formkf (mesh_, scalar_)
```

Form and assemble Ku = F system.

• subroutine assmb (mesh_, scalar_, nel)

Assemble element stiffness matrix and load vector to global stiffness matrix and load vector, respectively.

subroutine drchlt (mesh_, scalar_, n)

Apply Dirichlet Boundary Condition.

• subroutine neumann1d (mesh_, scalar_, n)

Apply Neumann Boundary Condition – 1D. Prescribe -k(x)u = vbc.

subroutine applybc (mesh_, scalar_)

Modify Ku=F system to incorporate BC data.

- subroutine solver (mesh , scalar)
- subroutine processor (mesh_, scalar_)

Processor routine phase.

4.4.1 Detailed Description

Processor module to compute, assemble and solve the system.

Author

Diego T. Volpatto

4.4.2 Function/Subroutine Documentation

4.4.2.1 applybc()

Modify Ku=F system to incorporate BC data.

Parameters

mesh⊷	A mesh structure
_	
scalar←	A scalar structure
_	

Author

Diego Volpatto

Here is the call graph for this function:

Here is the caller graph for this function:

4.4.2.2 assmb()

Assemble element stiffness matrix and load vector to global stiffness matrix and load vector, respectively.

Parameters

mesh⊷	A mesh structure
_	
scalar⇔	A scalar structure
_	
nel	Index of current element

Author

Diego Volpatto

Here is the caller graph for this function:

4.4.2.3 drchlt()

Apply Dirichlet Boundary Condition.

Parameters

mesh⊷	A mesh structure
_	
scalar⇔	A scalar structure
_	
n	Node index of BC

Author

Diego Volpatto

Here is the caller graph for this function:

4.4.2.4 formkf()

```
subroutine mprocessor::formkf ( \mbox{type\,(mesh)} \ \ \mbox{\it mesh\_,} \mbox{type\,(scalarstructuresystem)} \ \ \mbox{\it scalar\_} \ )
```

Form and assemble Ku = F system.

Parameters

_	[in/out] A mesh structure
scalar←	[in/out] A scalar structure

Author

Diego Volpatto

Here is the call graph for this function:

Here is the caller graph for this function:

4.4.2.5 neumann1d()

```
subroutine mprocessor::neumannld (  \mbox{type (mesh) } \mbox{ } \mbox{mesh\_,}   \mbox{type (scalarstructure system) } \mbox{ } \mbox{scalar\_,}   \mbox{integer } \mbox{ } \mbox{integer } \mbox{ } \mbox{)}
```

Apply Neumann Boundary Condition – 1D. Prescribe -k(x)u = vbc.

Parameters

mesh⊷	A mesh structure
_	
scalar⊷	A scalar structure
_	
n	Node index of BC

Author

Diego Volpatto

Here is the caller graph for this function:

4.4.2.6 processor()

Processor routine phase.

Parameters

mesh⊷ _	A mesh structure
scalar⇔	A scalar structure

Author

Diego T. Volpatto

Here is the call graph for this function:

Here is the caller graph for this function:

```
mprocessor::processor finel
```

4.4.2.7 solver()

Here is the call graph for this function:

Here is the caller graph for this function:

4.5 mscalar Module Reference

Contains variables and subroutine related to a general scalar problem.

Functions/Subroutines

```
    subroutine localelem (mesh_, scalar_, nel)
        Computes a master element contribution – 1D.

    subroutine localelem2d (mesh_, scalar_, nel)
    Computes a master element contribution – 2D.
```

4.5.1 Detailed Description

Contains variables and subroutine related to a general scalar problem.

Author

Diego T. Volpatto

4.5.2 Function/Subroutine Documentation

4.5.2.1 localelem()

Computes a master element contribution – 1D.

Parameters

mesh⇔	[in/out] A mesh structure
scalar⊷	[in/out] A scalar structure
_	
nel	[in] Index of current element

Author

Diego Volpatto

Here is the call graph for this function:

Here is the caller graph for this function:

4.5.2.2 localelem2d()

Computes a master element contribution – 2D.

Parameters

mesh⊷	[in/out] A mesh structure
_	
scalar⊷	[in/out] A scalar structure
_	
nel	[in] Index of current element

Author

Diego Volpatto

Here is the call graph for this function:

Here is the caller graph for this function:

4.6 msetup Module Reference

Module for setup phase by IO procedures.

Functions/Subroutines

- subroutine setupphase (mesh_, scalar_)
 Reads parameters from input file.
- subroutine preprocessor (mesh_, scalar_)

Realizes preprocessor routines.

4.6.1 Detailed Description

Module for setup phase by IO procedures.

Author

Diego T. Volpatto

4.6.2 Function/Subroutine Documentation

4.6.2.1 preprocessor()

Realizes preprocessor routines.

Parameters

mesh⊷	A mesh structure
	A 1 1 1
scalar⊷	A scalar structure
_	

Author

Diego T. Volpatto

Here is the call graph for this function:

Here is the caller graph for this function:

4.6.2.2 setupphase()

Reads parameters from input file.

Parameters

mesh⊷	A mesh structure
_	
scalar⇔	A scalar structure
_	

Here is the call graph for this function:

Here is the caller graph for this function:

4.7 mshapefunctions Module Reference

Module for shape functions computations and relate operations.

Functions/Subroutines

• subroutine setint

Gauss quadrature data set routine - 1D.

• subroutine setint2

Gauss quadrature data set routine - 2D.

• subroutine shpf1d (xl, n, psi, dpsi)

Calculates the values of the shape functions and their derivatives - 1D.

• subroutine shpf2d (XL, N, PSI, DPSI)

Calculates the values of the shape functions and their derivatives - 2D.

Variables

• real *8, dimension(4, 4) xi

Gauss point integration.

real *8, dimension(4, 4) w

Gauss weights.

- real *8, dimension(2, 9) xiq
- real *8, dimension(9) wq
- real *8, dimension(2, 4) xit
- real *8, dimension(4) wt

4.7.1 Detailed Description

Module for shape functions computations and relate operations.

Author

Diego T. Volpatto

4.7.2 Function/Subroutine Documentation

4.7.2.1 setint()

```
subroutine mshapefunctions::setint ( )
```

Gauss quadrature data set routine - 1D.

Here is the caller graph for this function:

4.7.2.2 setint2()

```
subroutine mshapefunctions::setint2 ( )
```

Gauss quadrature data set routine - 2D.

Here is the caller graph for this function:

4.7.2.3 shpf1d()

```
subroutine mshapefunctions::shpfld (
    real*8 x1,
    integer n,
    real*8, dimension(n) psi,
    real*8, dimension(n) dpsi )
```

Calculates the values of the shape functions and their derivatives - 1D.

Parameters

xl	[in] specified value of master element coord
n	[in] number of element nodes
psi	[out] shape function values
dpsi	[out] derivatives shape functions values

Author

Diego Volpatto

Here is the caller graph for this function:

4.7.2.4 shpf2d()

```
subroutine mshapefunctions::shpf2d (
    real*8, dimension(2) XL,
    integer N,
    real*8, dimension(9) PSI,
    real*8, dimension(2,9) DPSI)
```

Calculates the values of the shape functions and their derivatives - 2D.

Parameters

xl	[in] specified value of master element coord
n	[in] number of element nodes
psi	[out] shape function values
dpsi	[out] derivatives shape functions values

Author

Diego Volpatto

Here is the caller graph for this function:

4.7.3 Variable Documentation

```
4.7.3.1 w
```

```
real*8, dimension(4,4) mshapefunctions::w
```

Gauss weights.

```
4.7.3.2 wq
```

```
real*8, dimension(9) mshapefunctions::wq
```

4.7.3.3 wt

```
real*8, dimension(4) mshapefunctions::wt
```

4.7.3.4 xi

```
real*8, dimension(4,4) mshapefunctions::xi
```

Gauss point integration.

4.7.3.5 xiq

```
real*8, dimension(2,9) mshapefunctions::xiq
```

4.7.3.6 xit

```
real*8, dimension(2,4) mshapefunctions::xit
```

4.8 msolver Module Reference

Contains subroutine to compute numerical solution of linear systems Ax=b.

Functions/Subroutines

• subroutine tri (A, n)

Applies Gauss reduction in A(n,n) to obtain a superior triangular equivalent form.

• subroutine rhsub (A, x, b, n)

Does the forward substitution on the right-side-hand.

4.8.1 Detailed Description

Contains subroutine to compute numerical solution of linear systems Ax=b.

The present module has a general purpose such that the routines here intend to be independent of others module.

Author

Diego T. Volpatto

4.8.2 Function/Subroutine Documentation

4.8.2.1 rhsub()

```
subroutine msolver::rhsub (
    real*8, dimension(n,n) A,
    real*8, dimension(n) x,
    real*8, dimension(n) b,
    integer n )
```

Does the forward substitution on the right-side-hand.

Parameters

Α	[in]A matrix A(n,n)
X	[out]Solution vector
b	[in/out]RHS-vector
n	[in]Number of solution points

Author

Diego T. Volpatto

Here is the caller graph for this function:

4.8.2.2 tri()

Applies Gauss reduction in A(n,n) to obtain a superior triangular equivalent form.

Parameters

Α	[in/out]A matrix A(n,n)
n	[in]Number of rows/columns of matrix A

Author

Diego T. Volpatto

Here is the caller graph for this function:

4.9 mutilities Module Reference

Module for auxiliar routines.

Functions/Subroutines

- subroutine linspace (x1, x2, nintv, x)
 - Generate points between x1 and x2 equally spaced in x(i). Same idea of numpy subroutine.
- real *8 function f1 (x)

A function to test purpose.

• subroutine quad1 (n, x1, x2)

Subroutine that computes gaussian quadrature of f1.

• subroutine test_shpf1d (n, nelem, x)

Check if shpf1d works properly.

• subroutine print_matrix (A, n, m)

Prints in the screen a matrix A(n,m)

4.9.1 Detailed Description

Module for auxiliar routines.

Author

Diego T. Volpatto

4.9.2 Function/Subroutine Documentation

4.9.2.1 f1()

```
real*8 function mutilities::f1 ( real*8 x )
```

A function to test purpose.

Parameters

```
x input coordinate
```

Here is the caller graph for this function:

4.9.2.2 linspace()

```
subroutine mutilities::linspace (
          real*8 x1,
          real*8 x2,
          integer nintv,
          real*8, dimension(:), allocatable x )
```

Generate points between x1 and x2 equally spaced in x(i). Same idea of numpy subroutine.

Parameters

x1	interval lower bound	
x2	interval upper bound	
nintv num of intervals		
X	vector to assemble the values	

4.9.2.3 print_matrix()

Prints in the screen a matrix A(n,m)

Parameters

Α	A matrix	
n	Number of lines of A	
m	Number of colunms of A	

Author

Diego Volpatto

4.9.2.4 quad1()

Subroutine that computes gaussian quadrature of f1.

Parameters

n	quadrature order	
x1	integral lower bound	
x2	integral upper bound	

Here is the call graph for this function:

4.9.2.5 test_shpf1d()

```
subroutine mutilities::test_shpfld (
                integer n,
                 integer nelem,
                 real*8, dimension(nelem+1) x )
```

Check if shpf1d works properly.

Parameters

	n	element node numbers	
	nelem	num of discrete intervals	
Ī	Χ	master element's coordinates	

Here is the call graph for this function:

4.10 scalarstructure Module Reference

Module that contains the data structure of a general scalar problem.

Data Types

· type scalarstructuresystem

Variables and characteristic data for a scalar problem.

Functions/Subroutines

- subroutine mallocglobalkf (scalar_, n)
 - Routine to allocate and clear the Ku = F system.
- subroutine mallocelemkf (scalar_, n)

Routine to allocate and clear the element KF.

4.10.1 Detailed Description

Module that contains the data structure of a general scalar problem.

Author

Diego T. Volpatto

4.10.2 Function/Subroutine Documentation

4.10.2.1 mallocelemkf()

Routine to allocate and clear the element KF.

Parameters

scalar⇔	[in/out] A general scalar structure	
_		
n	[in] Number of element nodes	

Here is the caller graph for this function:

4.10.2.2 mallocglobalkf()

Routine to allocate and clear the Ku = F system.

Parameters

scalar⊷	[in/out] A general scalar structure
_	
n	[in] Number of global nodes

Here is the caller graph for this function:

Chapter 5

Data Type Documentation

5.1 meshstructure::mesh Type Reference

Data type for a mesh.

Collaboration diagram for meshstructure::mesh:

meshstructure::mesh

- + numat
- + nsd
- + nintp
- + nnodes
- + nelems
- + nen
- + flagnode
- + nelem
- + XV
- and 9 more...

Public Attributes

integer numat

Number of materials.

integer nsd

Number of spatial.

integer nintp

Number of integration points.

· integer nnodes

Number of nodes.

• integer nelems

Number of elements.

• integer nen

Number of element's nodes.

• real *8, dimension(:,:), allocatable x

nodes coordinates

• integer *4, dimension(:), allocatable flagnode

boundary flag

· integer nelem

Number of elements.

real *8, dimension(:), allocatable xv

Circumcenter Elem xcoor.

• real *8, dimension(:), allocatable yv

Circumcenter Elem ycoor.

• integer *4, dimension(:,:), allocatable gnode

Global node.

• integer *4, dimension(:), allocatable mat

Element material kind.

• integer *4, dimension(:), allocatable ei

i-opposite element

• integer *4, dimension(:), allocatable ej

j-opposite element

integer *4, dimension(:), allocatable ek

k-opposite element

integer *4, dimension(:), allocatable si

Opposite i-side.

• integer *4, dimension(:), allocatable sj

Opposite j-side.

• integer *4, dimension(:), allocatable sk

Opposite k-side.

5.1.1 Detailed Description

Data type for a mesh.

5.1.2 Member Data Documentation

```
5.1.2.1 ei
```

```
integer*4, dimension(:), allocatable meshstructure::mesh::ei
```

i-opposite element

5.1.2.2 ej

```
integer*4, dimension(:), allocatable meshstructure::mesh::ej
```

j-opposite element

```
5.1.2.3 ek
integer*4, dimension(:), allocatable meshstructure::mesh::ek
k-opposite element
5.1.2.4 flagnode
integer*4, dimension(:), allocatable meshstructure::mesh::flagnode
boundary flag
5.1.2.5 gnode
integer*4, dimension(:,:), allocatable meshstructure::mesh::gnode
Global node.
5.1.2.6 mat
integer*4, dimension(:), allocatable meshstructure::mesh::mat
Element material kind.
5.1.2.7 nelem
integer meshstructure::mesh::nelem
Number of elements.
5.1.2.8 nelems
integer meshstructure::mesh::nelems
Number of elements.
5.1.2.9 nen
integer meshstructure::mesh::nen
Number of element's nodes.
5.1.2.10 nintp
integer meshstructure::mesh::nintp
```

Number of integration points.

Circumcenter Elem xcoor.

```
5.1.2.11 nnodes
integer meshstructure::mesh::nnodes
Number of nodes.
5.1.2.12 nsd
integer meshstructure::mesh::nsd
Number of spatial.
5.1.2.13 numat
integer meshstructure::mesh::numat
Number of materials.
5.1.2.14 si
integer*4, dimension(:), allocatable meshstructure::mesh::si
Opposite i-side.
5.1.2.15 sj
integer*4, dimension(:), allocatable meshstructure::mesh::sj
Opposite j-side.
5.1.2.16 sk
integer*4, dimension(:), allocatable meshstructure::mesh::sk
Opposite k-side.
5.1.2.17 x
real*8, dimension(:,:), allocatable meshstructure::mesh::x
nodes coordinates
5.1.2.18 xv
real*8, dimension(:), allocatable meshstructure::mesh::xv
```

5.1.2.19 yv

real*8, dimension(:), allocatable meshstructure::mesh::yv

Circumcenter Elem ycoor.

The documentation for this type was generated from the following file:

• src/meshStructure.F90

5.2 scalarstructure::scalarstructuresystem Type Reference

Variables and characteristic data for a scalar problem.

Collaboration diagram for scalarstructure::scalarstructuresystem:

+ u + lhelem + rhelem + lhsys + rhsys + vbc + mat + kbc + transient

Public Attributes

- real *8, dimension(:), allocatable u
 - Solution vector.
- real *8, dimension(:,:), allocatable lhelem

Element left-hand system.

• real *8, dimension(:), allocatable rhelem

Element right-hand system.

- real *8, dimension(:,:), allocatable lhsys
 Global left-hand system.
- real *8, dimension(:), allocatable rhsys
 Global right-hand system.
- real *8, dimension(:), allocatable vbc

BC values vector.

- real *8, dimension(:,:), allocatable mat Material properties values.
- integer *4, dimension(:), allocatable kbc BC kind.
- · integer transient

Transient's flag.

5.2.1 Detailed Description

Variables and characteristic data for a scalar problem.

5.2.2 Member Data Documentation

5.2.2.1 kbc

BC kind.

5.2.2.2 Ihelem

real*8, dimension(:,:), allocatable scalarstructure::scalarstructuresystem::lhelem

Element left-hand system.

5.2.2.3 Ihsys

real*8, dimension(:,:), allocatable scalarstructure::scalarstructuresystem::lhsys

Global left-hand system.

5.2.2.4 mat

 $\verb|real*8|, | \texttt{dimension(:,:)}, | \texttt{allocatable scalarstructure::scalarstructuresystem::mat|} \\$

Material properties values.

5.2.2.5 rhelem

real*8, dimension(:), allocatable scalarstructure::scalarstructuresystem::rhelem

Element right-hand system.

5.2.2.6 rhsys

real*8, dimension(:), allocatable scalarstructure::scalarstructuresystem::rhsys

Global right-hand system.

5.2.2.7 transient

integer scalarstructure::scalarstructuresystem::transient

Transient's flag.

5.2.2.8 u

real*8, dimension(:), allocatable scalarstructure::scalarstructuresystem::u

Solution vector.

5.2.2.9 vbc

real*8, dimension(:), allocatable scalarstructure::scalarstructuresystem::vbc

BC values vector.

The documentation for this type was generated from the following file:

• src/scalarStructure.F90

Chapter 6

File Documentation

6.1 src/driver.F90 File Reference

Functions/Subroutines

program finel

A FINite ELement program for general purpose problems. The present is based in the book "Finite Elements: An Introduction" wrote by Eric Becker, Graham Carey and Tinsley Oden.

6.1.1 Function/Subroutine Documentation

6.1.1.1 finel()

```
program finel ( )
```

A FINite ELement program for general purpose problems. The present is based in the book "Finite Elements: An Introduction" wrote by Eric Becker, Graham Carey and Tinsley Oden.

Due to the evolution of Fortran programming language, the code developed here incorporate several changes comparing to the original given in the book cited before. Modular paradigm was employed, as well a little of derived data structure.

Implementations by Diego T. Volpatto. email: volpatto@lncc.br or dtvolpatto@gmail.com

56 File Documentation

Author

Diego Tavares Volpatto

Here is the call graph for this function:

6.2 src/io.F90 File Reference

Modules

• module mio

Contains input/output variables and routines.

Functions/Subroutines

• subroutine mio::openfiles ()

Open IO files.

• subroutine mio::closefiles ()

Close IO files.

• subroutine mio::read_nodes (mesh_)

Subroutine to read node data file generated by EasyMesh.

• subroutine mio::read_elems (mesh_)

Subroutine to read element data file generated by EasyMesh.

• subroutine mio::print_sol (mesh_, scalar_)

Prints the solution of scalar field.

• subroutine mio::print_sol_csv (mesh_, scalar_)

Prints the solution of scalar field in the csv format aiming to compatibility with Paraview post-processing.

• subroutine mio::print_sol_vtk (mesh_, scalar_)

Prints the solution of scalar field in the vtk "legacy" format aiming to compatibility with Paraview post-processing.

Variables

• integer, parameter mio::iin = 1110

Input file id.

• integer, parameter mio::iout = 1120

Output file id.

• integer, parameter mio::isol = 1130

Solution file id.

• integer, parameter mio::ioutn = 1140

Node output file.

• integer, parameter mio::ioute = 1150

Element output file.

• integer, parameter mio::isolcsv = 1160

Solution csv file id.

• integer, parameter mio::isolvtk = 1170

Solution vtk file id.

• character(len=20), parameter mio::infile ='input.dat'

Input file name.

• character(len=20), parameter mio::outfile ='output.dat'

Output file name.

• character(len=20), parameter mio::outnodes ='outnodes.dat'

Output node's file name.

• character(len=20), parameter mio::outelem ='outelem.dat'

Output elements' file name.

character(len=20), parameter mio::solfile ='solution.dat'

Solution file name.

• character(len=20), parameter mio::solfilecsv ='solution.csv'

Solution file name csv file.

• character(len=20), parameter mio::solfilevtk ='solution.vtk'

Solution file name vtk file.

• character(len=50) mio::title

6.3 src/meshStructure.F90 File Reference

Data Types

• type meshstructure::mesh

Data type for a mesh.

Modules

· module meshstructure

Module that contains the data structure of a mesh associate to a problem.

Functions/Subroutines

• subroutine meshstructure::mallocnodes (meshStrct)

Routine that allocate memory to node data.

· subroutine meshstructure::mallocelem (meshStrct)

Routine that allocate memory to element data.

58 File Documentation

6.4 src/mlnputReader.F90 File Reference

Modules

module minputreader

Modulo responsavel por reunir subrotinas para leitura do arquivo de entrada.

Functions/Subroutines

subroutine minputreader::readinputfileds ()

Le arquivo de input e armazena seu conteudo em um array.

subroutine minputreader::createsimpleinputfile ()

Cria a estrutura de input usando um arquivo de entrada sem includes.

• subroutine minputreader::mergeincludecontents (include file, include line)

Le o conteudo do arquivo de include e armazena no array principal.

• subroutine minputreader::preparefilelines (include_indexes, include_number_of_lines, number_of_includes, original file lines)

Efetua a alocacao da estrutura definitiva, preparando a linha dos arquivos originais para receber os includes.

subroutine minputreader::analyzefileinput (number_of_lines, number_of_includes)

Efetua algumas analises no arquivo recebido.

• subroutine minputreader::analyzefile (file name, number of lines, number of includes)

Efetua algumas analises no arquivo recebido.

• integer *4 function minputreader::findinclude (position, file_lines, number_of_lines)

Procura a n-esima palavra-chave include.

integer *4 function minputreader::findkeyword (keyword)

Procura uma palavra-chave.

• subroutine minputreader::readintegerkeywordvalue (keyword, target, default_value)

Efetua a leitura de uma palavra-chave to tipo inteiro. Se nao encontrado, associa o valor default fornecido.

subroutine minputreader::readintarraykeywordvalue (keyword, target, default value)

Efetua a leitura de uma palavra-chave do tipo array de inteiro. Se nao encontrado, associa o valor default fornecido. Obs.: Atentar para o fato dessa sub-rotina ter um do "infinito".

• subroutine minputreader::readstringkeywordvalue (keyword, target, default value)

Efetua a leitura de uma palavra-chave to tipo string. Se nao encontrado, associa o valor default fornecido.

• subroutine minputreader::readrealkeywordvalue (keyword, target, default_value)

Efetua a leitura de uma palavra-chave to tipo real. Se nao encontrado, associa o valor default fornecido.

• subroutine minputreader::readrealmatrixvalues (keyword, target, default value)

Efetua a leitura de uma palavra-chave do tipo de um array bidimensional real. A leitura eh realizada linha por linha. Se nao encontrado, associa o valor default fornecido.

• subroutine minputreader::readboundaryconditions (keyword, kbc, vbc, default_value)

Efetua a leitura de uma palavra-chave do tipo de um array bidimensional real. A leitura eh realizada linha por linha. Se nao encontrado, associa o valor default fornecido.

Variables

• character(len=200), dimension(:), allocatable minputreader::file_lines

Armazena as linhas do arquivo de input.

integer *4 minputreader::number_of_lines

Armazena o numero de linhas no arquivo.

6.5 src/processor.F90 File Reference

Modules

· module mprocessor

Processor module to compute, assemble and solve the system.

Functions/Subroutines

subroutine mprocessor::formkf (mesh_, scalar_)

Form and assemble Ku = F system.

• subroutine mprocessor::assmb (mesh_, scalar_, nel)

Assemble element stiffness matrix and load vector to global stiffness matrix and load vector, respectively.

subroutine mprocessor::drchlt (mesh_, scalar_, n)

Apply Dirichlet Boundary Condition.

• subroutine mprocessor::neumann1d (mesh_, scalar_, n)

Apply Neumann Boundary Condition – 1D. Prescribe -k(x)u = vbc.

• subroutine mprocessor::applybc (mesh_, scalar_)

Modify Ku=F system to incorporate BC data.

- subroutine mprocessor::solver (mesh_, scalar_)
- subroutine mprocessor::processor (mesh_, scalar_)

Processor routine phase.

6.6 src/scalar.F90 File Reference

Modules

· module mscalar

Contains variables and subroutine related to a general scalar problem.

Functions/Subroutines

• subroutine mscalar::localelem (mesh_, scalar_, nel)

Computes a master element contribution - 1D.

subroutine mscalar::localelem2d (mesh_, scalar_, nel)

Computes a master element contribution – 2D.

6.7 src/scalarStructure.F90 File Reference

Data Types

• type scalarstructure::scalarstructuresystem

Variables and characteristic data for a scalar problem.

60 File Documentation

Modules

· module scalarstructure

Module that contains the data structure of a general scalar problem.

Functions/Subroutines

• subroutine scalarstructure::mallocglobalkf (scalar_, n)

Routine to allocate and clear the Ku = F system.

• subroutine scalarstructure::mallocelemkf (scalar , n)

Routine to allocate and clear the element KF.

6.8 src/setup.F90 File Reference

Modules

· module msetup

Module for setup phase by IO procedures.

Functions/Subroutines

• subroutine msetup::setupphase (mesh_, scalar_)

Reads parameters from input file.

subroutine msetup::preprocessor (mesh_, scalar_)

Realizes preprocessor routines.

6.9 src/shapeFunctions.F90 File Reference

Modules

• module mshapefunctions

Module for shape functions computations and relate operations.

Functions/Subroutines

· subroutine mshapefunctions::setint

Gauss quadrature data set routine - 1D.

• subroutine mshapefunctions::setint2

Gauss quadrature data set routine - 2D.

• subroutine mshapefunctions::shpf1d (xl, n, psi, dpsi)

Calculates the values of the shape functions and their derivatives - 1D.

• subroutine mshapefunctions::shpf2d (XL, N, PSI, DPSI)

Calculates the values of the shape functions and their derivatives - 2D.

Variables

- real *8, dimension(4, 4) mshapefunctions::xi
 - Gauss point integration.
- real *8, dimension(4, 4) mshapefunctions::w
 - Gauss weights.
- real *8, dimension(2, 9) mshapefunctions::xiq
- real *8, dimension(9) mshapefunctions::wq
- real *8, dimension(2, 4) mshapefunctions::xit
- real *8, dimension(4) mshapefunctions::wt

6.10 src/solver.F90 File Reference

Modules

· module msolver

Contains subroutine to compute numerical solution of linear systems Ax=b.

Functions/Subroutines

• subroutine msolver::tri (A, n)

Applies Gauss reduction in A(n,n) to obtain a superior triangular equivalent form.

• subroutine msolver::rhsub (A, x, b, n)

Does the forward substitution on the right-side-hand.

6.11 src/utilities.F90 File Reference

Modules

module mutilities

Module for auxiliar routines.

Functions/Subroutines

• subroutine mutilities::linspace (x1, x2, nintv, x)

Generate points between x1 and x2 equally spaced in x(i). Same idea of numpy subroutine.

• real *8 function mutilities::f1 (x)

A function to test purpose.

subroutine mutilities::quad1 (n, x1, x2)

Subroutine that computes gaussian quadrature of f1.

subroutine mutilities::test_shpf1d (n, nelem, x)

Check if shpf1d works properly.

• subroutine mutilities::print_matrix (A, n, m)

Prints in the screen a matrix A(n,m)

File Documentation

Index

analyzefile	mio, 26	
minputreader, 10	ioutn	
analyzefileinput	mio, 26	
minputreader, 11	isol	
applybc	mio, 26	
mprocessor, 28	isolcsv	
assmb	mio, 26	
mprocessor, 29	isolvtk	
	mio, 26	
closefiles		
mio, 21	kbc	
createsimpleinputfile	scalarstructure::scalarstructuresystem, 52	
minputreader, 11		
1. 1.0	Ihelem	
drchlt	scalarstructure::scalarstructuresystem, 52	
mprocessor, 29	lhsys	
driver.F90	scalarstructure::scalarstructuresystem, 52	
finel, 55	linspace	
oi.	mutilities, 43	
ei	localelem	
meshstructure::mesh, 48	mscalar, 33	
ej	localelem2d	
meshstructure::mesh, 48	mscalar, 34	
ek		
meshstructure::mesh, 48	mallocelem	
f1	meshstructure, 7	
mutilities, 43	mallocelemkf	
file_lines	scalarstructure, 45	
minputreader, 20	mallocglobalkf	
findinclude	scalarstructure, 46	
minputreader, 12	mallocnodes	
findkeyword	meshstructure, 8	
minputreader, 12	mat	
finel	meshstructure::mesh, 49	
driver.F90, 55	scalarstructure::scalarstructuresystem, 52	
flagnode	mergeincludecontents	
meshstructure::mesh, 49	minputreader, 13	
formkf	meshstructure, 7	
	mallocelem, 7	
mprocessor, 30	mallocnodes, 8	
gnode	meshstructure::mesh, 47	
meshstructure::mesh, 49	ei, 48	
modification modify 10	ej, 48	
iin	ek, 48	
mio, 25	flagnode, 49	
infile	gnode, 49	
mio, 25	mat, 49	
iout	nelem, 49	
mio, 25	nelems, 49	
ioute	nen. 49	

64 INDEX

	nintp, 49	mscalar, 33
	nnodes, 49	localelem, 33
	nsd, 50	localelem2d, 34
	numat, 50	msetup, 35
	si, 50	preprocessor, 35
	sj, 50	setupphase, 36
	sk, 50	mshapefunctions, 37
	x, 50	setint, 38
	xv, 50	setint2, 38
	yv, 50	shpf1d, <mark>38</mark>
ming	outreader, 8	shpf2d, <mark>39</mark>
·	analyzefile, 10	w, 40
	analyzefileinput, 11	wq, 40
	createsimpleinputfile, 11	wt, 40
	file_lines, 20	xi, 40
	findinclude, 12	xiq, 40
	findkeyword, 12	xit, 40
	mergeincludecontents, 13	msolver, 40
	number_of_lines, 20	rhsub, 41
		tri, 41
	preparefilelines, 13	mutilities, 42
	readboundaryconditions, 14	f1, 43
	readinputfileds, 14	linspace, 43
	readintarraykeywordvalue, 16	print matrix, 43
	readintegerkeywordvalue, 17	quad1, 44
	readrealkeywordvalue, 17	test_shpf1d, 44
	readrealmatrixvalues, 18	test_shpira, 44
	readstringkeywordvalue, 19	nelem
mio,		meshstructure::mesh, 49
	closefiles, 21	nelems
	iin, 25	
	infile, 25	meshstructure::mesh, 49
	iout, 25	nen
	ioute, 26	meshstructure::mesh, 49
	ioutn, 26	neumann1d
	isol, 26	mprocessor, 30
	isolcsv, 26	nintp
	isolvtk, 26	meshstructure::mesh, 49
	openfiles, 22	nnodes
	outelem, 26	meshstructure::mesh, 49
	outfile, 26	nsd
	outnodes, 26	meshstructure::mesh, 50
	print sol, 22	numat
	print_sol_csv, 23	meshstructure::mesh, 50
	print_sol_vtk, 23	number_of_lines
		minputreader, 20
	read_elems, 24	
	read_nodes, 25	openfiles
	solfile, 27	mio, <mark>22</mark>
	solfilecsv, 27	outelem
	solfilevtk, 27	mio, 26
	title, 27	outfile
mpro	ocessor, 27	mio, 26
	applybc, 28	outnodes
	assmb, 29	mio, 26
	drchlt, 29	
	formkf, 30	preparefilelines
	neumann1d, 30	minputreader, 13
	processor, 31	preprocessor
	solver, 32	msetup, 35
		-

INDEX 65

print_matrix	mshapefunctions, 38
mutilities, 43	shpf2d
print_sol	mshapefunctions, 39
mio, 22	si
print_sol_csv	meshstructure::mesh, 50
mio, 23	sj
print_sol_vtk	meshstructure::mesh, 50
mio, 23	sk
processor	meshstructure::mesh, 50
mprocessor, 31	solfile
	mio, 27
quad1	solfilecsv
mutilities, 44	mio, 27
	solfilevtk
read_elems	mio, 27
mio, 24	solver
read_nodes	mprocessor, 32
mio, 25	src/driver.F90, 55
readboundaryconditions	src/io.F90, 56
minputreader, 14	src/mInputReader.F90, 58
readinputfileds	src/meshStructure.F90, 57
minputreader, 14	src/processor.F90, 59
readintarraykeywordvalue	src/scalar.F90, 59
minputreader, 16	
readintegerkeywordvalue	src/scalarStructure.F90, 59
minputreader, 17	src/setup.F90, 60
readrealkeywordvalue	src/shapeFunctions.F90, 60
minputreader, 17	src/solver.F90, 61
readrealmatrixvalues	src/utilities.F90, 61
minputreader, 18	
readstringkeywordvalue	test_shpf1d
minputreader, 19	mutilities, 44
rhelem	title
	mio, 27
scalarstructure::scalarstructuresystem, 52	transient
rhsub	scalarstructure::scalarstructuresystem, 52
msolver, 41	tri
rhsys	msolver, 41
scalarstructure::scalarstructuresystem, 52	
scalarstructure, 45	u
mallocelemkf, 45	scalarstructure::scalarstructuresystem, 53
mallocglobalkf, 46	
scalarstructure::scalarstructuresystem, 51	vbc
kbc, 52	scalarstructure::scalarstructuresystem, 53
lhelem, 52	
	W
lhsys, 52	mshapefunctions, 40
mat, 52	wq
rhelem, 52	mshapefunctions, 40
rhsys, 52	wt
transient, 52	mshapefunctions, 40
u, 53	
vbc, 53	X
setint	meshstructure::mesh, 50
mshapefunctions, 38	Xi
setint2	mshapefunctions, 40
mshapefunctions, 38	xiq
setupphase	mshapefunctions, 40
msetup, 36	xit
shpf1d	mshapefunctions, 40

66 INDEX

xv meshstructure::mesh, 50

yv meshstructure::mesh, 50