

系统化产品设计与开发

第八讲 概念选择

成 晔 清华大学工业工程系

可重用注射器

产品特征

- 精确剂量控制
- 病人自用

核心问题

■成本

• 现有产品为不绣钢制造

■ 药剂量的计量精度

选

择

标

准

■ 操作难易度

■使用步骤难易度

■剂量设定的可读性

■ 剂量计量的精度

■ 耐用度

■ 制造难易度

■ 便携性

概念A: "液压缸"

注: 芯轴与推杆截面积之比: 1/10

位移之比: 10/1

概念B:"橡胶闸"

注:将柱塞旋转90度,松开离合器,向后拉动,设定剂量转回90度,合上离合器,向前推动,注射药液

概念C: "棘爪"

注:将柱塞旋转90度,离合器松开,向后拉动,设定剂量转回90度,离合器结合,向前推动,注射药液

概念D: 柱塞限位

注:将有内螺纹的套筒,向前旋转一定的圈数,设定剂量向前推动柱塞,注射药液,直至被套筒末端阻挡限位

概念E: "倾斜圆环"

注:将剂量设定旋钮,旋转到一定的圆周刻度位置 拉回柱塞,然后向前推动,注射药液

概念F: "手柄设定"

注:将手柄向前推,设定剂量 将手柄向后拉,凸轮推动柱塞向前,注射药液

概念G: "刻度盘螺杆"

注: 扭动刻度盘,设定剂量 按动扳机,注射药液

概念选择过程中的问题

- 当设计方案尚为抽象、粗略的时候, 如何选择最佳的产品概念?
 - 那些较差的产品概念中,也有一些优良特征, 如何能够识别出来,并且派上用场?
 - 如何能让开发团队全体成员, 都接受所做出的决定?
 - 如何能把决策过程记录并存档?

概念选择:产品开发过程的必要环节

- 概念选择:根据顾客需求和 相关标准,评估产品概念
- 比较现有概念的相对优势和劣势
- 选出一个或数个产品概念,投入 后续研究、测试和开发

产品概念选择的过程

概念选择的可用方法

- ■外部决策
 - 由顾客或其他外部 力量选择
- 内部资深人士决策
 - 基于个人的经验与 偏好
- ■直觉决策
 - 根据主观感受选择

- 投票表决
 - 每人选出数个概念
 - 得票数最多者胜出

- 罗列优缺点
 - 列出各个概念的优势与劣势
 - 集体讨论决策

- 开发原型并测试
 - 对重点概念开发原型, 并进行测试
 - 基于测试数据,做出 选择

- 利用决策矩阵
 - 用预定的选择标准, 对各个概念评分

结构化概念选择方法的潜在益处

- 以顾客为中心的 产品
 - 以面向顾客的标 准评估产品

- ■产品与工艺相协调
 - 改进产品的可制造性
 - 产品与企业的工艺能力 匹配

- ■有效的集体决策
 - 基于客观性标准进行 决策
 - 减少随意或个人因素 影响的可能性

- 有竞争力的产品
 - 在关键维度上, 赶超竞争性产品 性能

- 缩短产品导入时间
 - 减少歧义
 - 加快沟通
 - 更少犯错

- 决策过程记录建档
 - 形成容易理解的档案 文件

概念选择方法概览

- 评价诸多产品概念,是高度复杂问题,采用两阶段法
- 对产品概念进行评级、排序和选择
- 采用结构化方法,仍强调集体观点

概念筛选

■ 相对于共同的参考概念,进参考概念,进行快速、粗略评估

• 使用筛选矩阵

概念评分

■ 详细分析

■ 细致量化评估

• 使用评分矩阵

六步法

- 1. 准备选择矩阵
- 2. 产品概念评估
- 3. 产品概念排序
- 4. 对产品概念组合与改进
- 5. 选择一个或数个概念
- 6. 反思结果与过程

概念筛选第一步:准备选择矩阵

图例: "+" 优势

"0"相同

"-" 劣荬

							7373
	产品概念						
\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Α	В	С	D	E	F	G
选择标准	液压缸	橡胶闸	棘爪	柱塞限位	倾斜圆环	手柄设定	刻度盘
				(参考基准)			螺杆
操作难易度	0	0	-	0	0	-	-
使用步骤难易度	0	-	_	0	0	+	0
剂量设定的可读性	0	0	+	0	+	0	+
剂量计量的精度	0	0	0	0	-	0	0
耐用度	0	0	0	0	0	+	0
制造难易度	+	_	_	0	0	-	0
便携性	+	+	0	0	+	0	0
"+"的个数	2	1	1	0	2	2	1
"0"的个数	5	4	3	7	4	3	5
"-"的个数	0	2	3	0	1	2	1
净得分	2	-1	-2	0	1	0	0
排序	1	6	7	3	2	3	3
是否继续开发?	是	否	否	组合	是	组合	修正

关于选择矩阵的注意事项

- 概念数超过12,多票表决法
 - 开发团队成员,每人3~5票
 - 得票数多的概念,再行筛选
- 选择标准: 基于顾客与企业需求
 - 抽象程度高
 - 5~10个维度
 - 区分度高
 - 权重相等

- 选取一个概念, 作为参考基准
 - 工业标准
 - 团队熟悉,且简单易懂的概念
- 现有的商业化产品
- 同类最佳标杆产品
- 上一代产品
- 候选产品中的某一个
- 各种产品优秀特征的模拟组合

概念筛选第二步:产品概念评估

- ■相对评分
 - 优势(+)
 - 相同(0)
 - 劣势(-)
- 与参考概念 相比
- 逐一考虑各 项选择标准

- 一般情况
 - 针对一条标准,评估所有概念
 - 然后转向下一条标准
- 概念数目众多的情况
 - 以所有标准,对一个概念评估
 - 然后转向下一个概念
- 相对评估的粗略性本质
 - 概念只是最终产品的概括设想
 - 详细评估意义不大

- 如果可行,使用客观 性测度指标进行评估
 - 装配成本
 - ▶ 与产品零部件数量基本 成正比
 - 使用难易度
 - ▶ 与操作步骤数量基本成正比
- 如果缺乏客观性指标,以团队共识进行评估

概念筛选第三、四步:产品概念排序、组合与改进

产品概念排序

- 汇总各个概念得到的"+、0、-" 总个数
- 净得分 = N₊ N₋

产品概念组合与改进

- 有的产品概念,总体很好
 - 个别特征较差, 拉了后腿
- 能否局部小改,整体提升?

概念A
$$(+) \times 2 + (0) \times 5 + (-) \times 0 = 2$$

 \blacksquare G \rightarrow G+

 \blacksquare D + F \rightarrow DF

- 按净得分排序
 - 少数选择标准的区分度较强

■ 将两个概念进行组合,能否继续保 持优势,并减少劣势?

概念D+概念F → 新概念DF

概念G → 新概念G+

概念筛选第五、六步

选出一个或数个产品概念

- 哪个概念最有希望?
 - 值得后续研究与分析
 - 资源、时间有限

A, E

DF, G+

- 是否再进行一轮筛选?
- 是否进行概念评分?
 - 带权重的选择条件
 - 更细致的评估体系

反思结果与过程

- 全体开发团队成员,都对结果满意
- 如果某位成员不同意集体决定
 - 可能一项或几项重要标准缺失
 - 可能某项评估错误,至少不明确
- 考虑结果是否对每人都有意义
 - 减少出错的可能性
 - 增加团队坚定承诺的可能性

概念评分

	权重	产品概念							
选择标准		A 液压缸 (参考基准)		DF 手柄限位		E 倾斜圆环		G+ 刻度盘螺杆	
		评分	加权分	评分	加权分	评分	加权分	评分	加权分
操作难易度	5%	3	0.15	3	0.15	4	0.2	4	0.2
使用步骤难易度	15%	3	0.45	4	0.6	4	0.6	3	0.45
剂量设定的可读性	10%	2	0.2	3	0.3	5	0.5	5	0.5
剂量计量的精度	25%	3	0.75	3	0.75	2	0.5	3	0.75
耐用度	15%	2	0.3	5	0.75	4	0.6	3	0.45
制造难易度	20%	3	0.6	3	0.6	2	0.4	2	0.4
便携性	10%	3	0.3	3	0.3	3	0.3	3	0.3
总分:		2.75		3.45		3.10		3.05	
排序:		4		1		2		3	
是否继续开发?		否		开发		否		否	

概念评分第一步:准备选择矩阵

- 层级式选择标准
 - 增加选择细节

- ■选择标准的重要度权重
 - 重要度权重值: 1~5
 - 百分比分配

- 从顾客数据中,确定客观性权重
 - 运用市场调研手段
- 开发团队一致认可,确定主观性权重

概念评分第二步:评估产品概念

- 每次关注一项标准,对所有 概念评分
 - 细化量表尺度,可增加区分度
- ■相对评估需要参考基准概念
 - 对各项标准采用同一参考基准, 会导致"尺度压缩"
- 针对各项选择标准,采用不同的参考基准

相对性能	评估
比参考基准概念差的多	1
比参考基准概念稍差	2
与参考基准概念相同	3
比参考基准概念稍好	4
比参考基准概念好的多	5

■ 参考基准概念是最容易制造的

■ 对于"制造难易度"这项标准,其它 产品概念,评分只能是1、2、3

■ 把5级评分制, "压缩"成为3级

示例

概念评分第三、四步

产品概念排序

- 计算得分与权重的乘积
- 计算加权得分总和

$$S_j = \sum_{i=1}^n r_{ij} w_i$$

 r_{ii} = 概念 j 对第i 标准的评分

 w_i =第 i 标准的权重

n = 标准的项数

 S_i = 产品概念j的总分

对产品概念组合与改进

- 开发团队试图通过改变或组合,改进现有概念
- 最富有创造性的完善与改进,有 可能发生在选择阶段
 - 到了此时,开发团队才真正认识到各个产品概念的固有优势和劣势

概念评分第五步: 选出一个或数个产品概念

- 并非简单地选取排序靠前 的产品概念
- 通过灵敏度分析,评估不 确定性因素的影响程度
 - 变化权重和评分,观察对 排序的影响
- 可能选择一个得分较低, 但是不确定性较小的概念

- 开发团队可能选择排序前两位,或更多的 产品概念
- 不同的细分市场, 顾客偏好有差异
 - 可创建两组或更多的评分矩阵, 权重亦不同
 - 某一概念可能在多个细分市场上占据优势

可重用 注射器 开发团队

- 一致认为产品概念DF前景更好
- 最有希望生产出成功的产品

概念评分第六步: 反思结果与过程

- 此处为概念开发过程的 "不归路"里程碑
 - 开发团队成员应该感到 满意,所有相关的问题、事项都已经讨论过
 - 所选出的概念最具潜力 和优势
 - > 满足顾客需求
 - > 商业上成功

- 审视每个被淘汰的产品 概念
 - 如果发现某个被抛弃的概念,比被选中的概念 还好,则必须寻找导致 这种不一致现象的源头
 - > 某项重要选择标准缺失?
 - ▶ 权重设置不妥?
 - ▶ 方法使用不当?

- 概念选择方法 是以何种方式 支持团队决策 的?
- 如何改进方法, 才能促进开发 团队效能提升?

注意事项

- 选择标准的分解
 - 经常难以分解为一系列独立的标准
- ■主观标准
 - 团队集体判断,并非最佳方式
 - 将选择的范围缩小到3~4种概念, 征求顾客代表的意见
- 促进产品概念的改进
 - 记录突出的属性(正面或负面)
 - 找出可用于其他概念的设计特征

- 何处考虑成本?
 - 顾客并不关心成本,只关心售价
 - 成本影响产品的经济可行性

- 选择复杂概念中的简单子概念
 - 复杂概念是多个简单子概念的集成
 - 可以首先评估简单子概念
- 概念选择,贯穿于整个开发过程
 - 选择方法在不同层次, 反复使用

本讲小结

■ 采用结构化产品概念选择方法,实现成功的产品设计

概念筛选

- 按照选择标准,与参考基准概念 对比,评估候选产品概念
 - 一种粗略比较的机制,以缩小候选概念的考虑范围

概念评

分

- 每项选择标准使用不同参考基准
- ■各项选择标准赋以不同权重
- 细化评估量表

概念选择六步法

- 1. 准备选择矩阵
- 2. 产品概念评估
- 3. 产品概念排序
- 4. 对产品概念组合与改进
- 5. 选择一个或数个概念
- 6. 反思结果与过程