

Natural Language Processing

Lecture 13: Contextualized Representation (Pre-trained Models)

Amirkabir University of Technology

Dr Momtazi

Outline

- Introduction
- ELMO
- BERT

Pre-training in NLP

Word embeddings are the basis of deep learning for NLP

 Word embeddings (word2vec, GloVe) are often pre-trained on text corpus from co-occurrence statistics

Contextual Representations

Problem: Word embeddings are applied in a context free manner

• **Solution**: Train *contextual* representations on text corpus

Static vs Contextualized Representation

Outline

- Introduction
- ELMO
- BERT

- Bidirectional language model
- Train Separate Left-to-Right and Right-to-Left LMs

Bidirectional training

Forward language model

$$p(t_1, t_2; , ..., t_N) = \prod_{k=1}^{N} p(t_k | t_1, t_2; , ..., t_{k-1})$$

Backward language model

$$p(t_1, t_2;, \dots, t_N) = \prod_{k=1}^{N} p(t_k | t_{k+1}, t_{k+2};, \dots, t_N)$$

- Predicting the next word in forward training
- Predicting the previous word in backward training

Extracting embedding

Extracting embedding

Outline

- Introduction
- ELMO
- BERT

Model Architecture

- Multi-headed self attention
 - Models context
- Feed-forward layers
 - Computes non-linear hierarchical features
- Layer norm and residuals
 - Makes training deep networks healthy
- Positional embeddings
 - Allows model to learn relative positioning

Model Architecture

- Empirical advantages of Transformer vs. LSTM:
 - Self-attention == no locality bias
 - Long-distance context has "equal opportunity"
 - Single multiplication per layer == efficiency on TPU
 - Effective batch size is number of *words*, not *sequences*

Problem with Previous Methods

- **Problem**: Language models only use left context *or* right context, but language understanding is bidirectional.
- Why are LMs unidirectional?
- Reason 1: Directionality is needed to generate a well-formed probability distribution.
 - We don't care about this.
- Reason 2: Words can "see themselves" in a bidirectional encoder.

Bidirectional Transformer

A causal backward looking transformer

A bidirectional transformer

1 - Semi-supervised training on large amounts of text (books, wikipedia..etc).

The model is trained on a certain task that enables it to grasp patterns in language. By the end of the training process, BERT has language-processing abilities capable of empowering many models we later need to build and train in a supervised way.

Semi-supervised Learning Step

2 - Supervised training on a specific task with a labeled dataset.

BERT Base

BERT Large

- Training type
 - Masked language model
 - Next sentence prediction

- Input
 - First token [CLS]
 - Delimiter token [SEP]
 - Masked token [MASK]

- Masked language model
- **Solution**: Mask out *k*% of the input words, and then predict the masked words
 - We always use k = 15%

```
store gallon

the man went to the [MASK] to buy a [MASK] of milk
```

- Too little masking: Too expensive to train
- Too much masking: Not enough context

Masked language model

- Next sentence prediction
- To learn *relationships* between sentences, predict whether Sentence B is actual sentence that proceeds Sentence A, or a random sentence

```
Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk.
Label = IsNextSentence
```

```
Sentence A = The man went to the store.
Sentence B = Penguins are flightless.
Label = NotNextSentence
```

Next sentence prediction

25

Extracting embedding

Extracting embedding

What is the best contextualized embedding for "Help" in that context?

For named-entity recognition task CoNLL-2003 NER

For named-entity recog	giittoii task Conce-200	3 NEN	Dev F1 Score
12	First Layer Embe	edding	91.0
• • •	Last Hidden Layer	12	94.9
5	Sum All 12 Layers	12	95.5
3	Second-to-Last Hidden Layer	11	95.6
1	Sum Last Four Hidden	12	95.9
Help	Concat Last Four Hidden	9 10 11	96.1

- Sentence pair classification
- Single sentence classification
- Question answering
- Single sentence sequence labeling

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(c) Question Answering Tasks: SQuAD v1.1

(b) Single Sentence Classification Tasks: SST-2, CoLA

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

- Sentence pair classification tasks
 - Paraphrase identification
 - Answer retrieval
 - Textual entailment

- Datasets:
 - MNLI
 - QQP
 - QNLI
 - STS-B
 - MRPC
 - RTE
 - SWAG

- Single sentence classification tasks:
 - Spam detection
 - Sentiment analysis
 - News categorization

- Datasets:
 - SST-2
 - CoLA

 Question answering tasks (finding answer span)

- Dataset:
 - SQuAD

- Single sentence sequence labeling tasks:
 - NER
 - POS tagging
 - Slot filing

- Datasets:
 - CoNLL-2003 NER

Motivations for Improving BERT

- Accuracy
- Large
- Slow
- Hard to train

	BERT
Size (millions)	Base: 110 Large: 340
Training Time	Base: 8 x V100 x 12 days* Large: 64 TPU Chips x 4 days (or 280 x V100 x 1 days*)
Performance	Outperforms state-of- the-art in Oct 2018
Data	16 GB BERT data (Books Corpus + Wikipedia). 3.3 Billion words.
Method	BERT (Bidirectional Transformer with MLM and NSP)

Model Improvement Methods

- Larger with more data
- Quantization
 - Quantization-aware training
- Distillation
- Pruning
- Specialization

Further Reading

- Speech and Language Processing (3rd ed. draft)
 - Chapter 11