EECS101 Discussion 2

Yifei Zheng Shiyuan Zhao Jan 20 2017

Class review

Lens equation

$$\circ \ \frac{1}{z'} + \frac{1}{-z} = \frac{1}{f}$$

- z: object position, has negative value
- z': image distance, has positive value
- f: focal length, has positive value

Image blur (Similar triangles)

$$\circ \ \frac{b}{d} = \frac{|\overline{z'} - z'|}{\overline{z'}}$$

- b: blur diameter
- d: lens diameter
- z': image plane
- $\mathbf{z}^{-\prime}$: image distance to have a perfect image

Class review

Noise for CCD

$$N_{total} = N_A + N_P + N_{DC}$$

- Facts to use
 - the noise components are independent
 - $Var(N_P) = Mean(S + N_P)$
 - $Var(X) = mean(X^2) (mean(X))^2$
 - $Var(aX + bY) = a^2Var(X) + b^2Var(Y)$ X,Y are independent; a, b are constants

Programing for HW2

- Compute the mean and variance
- Sample mean

$$\widehat{\mu} = \frac{1}{N^2} \sum_{1 \le x \le N} \sum_{1 \le y \le N} I(x, y)$$

Sample variance

$$\widehat{\sigma}_D^2 = \frac{1}{N^2 - 1} \sum_{1 \le x \le N} \sum_{1 \le y \le N} (I(x, y) - \widehat{\mu})^2$$

Programing for HW2

- Given four images, we get four pairs of (μ, σ_D^2) .
- Fit a line by Least Square to these points and get an estimation of A and σ_c^2

We will provide hw2.c for you to use.

Submission Guideline

- Demonstrate you program during regular meetups.
- The demo will due at 3pm, Jan 27, in lab.
- Compress your program and written answers into one single file and submit the compressed file to EEE by January 27 midnight

Grading Criteria

- Total 100 points
 - 15 points for each of the first three problems
 - Partial credit will be allowed for the questions per problem
 - 55 points for the last problem
 - 15 for demonstrating your program
 - 10 for computing the mean and variance
 - 20 for estimating the two quantities from the four images, 5 for each image
 - 10 for the linear fit