

MATH521 Numerical Analysis of Partial Differential Equations

Winter 2017/18, Term 2 Timm Treskatis

Homework Assignment 9

Please submit the following files as indicated below:

source code
PDF file image file video file

Question 1 | 1 mark | \(\mathbb{D} \) We consider the initial boundary value problem for the heat equation

$$\begin{split} \partial_t u(t) - a \Delta u(t) &= f(t) &\quad \text{in } Q =]0, T[\times \Omega \\ u(0) &= u_0 &\quad \text{in } \Omega \\ \frac{\partial u}{\partial n} &= 0 &\quad \text{on } \Sigma =]0, T[\times \partial \Omega \end{split} \tag{H}$$

where u is a temperature field, u_0 an initial temperature distribution, the diffusion-like parameter a>0 the heat conductivity of the material, f a source term e.g. due to thermal radiation and T>0 a final time. The homogeneous Neumann boundary conditions mean that the domain Ω is perfectly insulated so that no thermal energy is radiated into the environment.

The θ -method is a class of RUNGE-KUTTA schemes for integrating ODEs of the form

$$\dot{U} = F(t, U)$$

by using the iteration

$$U_{+} = U_{\circ} + \Delta t \left(\theta F(t_{+}, U_{+}) + (1 - \theta) F(t_{\circ}, U_{\circ}) \right).$$

The parameter $\theta \in [0,1]$ can be interpreted as the 'degree of implicitness', since $\theta = 0$ gives the forward Euler method, $\theta = \frac{1}{2}$ the Crank-Nicolson method (aka implicit trapezium rule in the ODE context) and $\theta = 1$ the backward Euler method.

For the discretisation in space, we apply linear finite elements. Both the time step size Δt and the spatial triangulation \mathcal{T}^h are fixed.

Show that in this setting both the method of lines and ROTHE's method lead to the same discrete problems

$$\left(M^h + \theta \Delta t a K^h\right) \vec{u}_+^h = \left(M^h - (1 - \theta) \Delta t a K^h\right) \vec{u}_\circ^h + \Delta t \left(\theta \vec{f}_+^h + (1 - \theta) \vec{f}_\circ^h\right).$$

You don't have to include any details about the components of the discrete vectors and matrices. We all know what they are!

Question 2 | 4 marks

(a) The FEniCS script hw9.py implements the backward EULER method for Problem (H). Starting from room temperature ($u_0 \equiv 20$), the bottom left corner of a metal piece Ω with conductivity parameter a = 0.1 is held over a flame for one second, then the flame is extinguished. This is modelled by

$$f(t,x) = \begin{cases} 200e^{-5x_1^2 - 2x_2^2} & t \le 1\\ 0 & t > 1 \end{cases}$$

Complete the missing commands to compute the evolution of the temperature field over the first five seconds using a time step size of $\Delta t = 10^{-2}$.

Save your results as a video, using a frame rate such that the video time is equal to the physical time. You don't have to submit any other files for this part of Question 2.

Hint: Open the PVD-file in ParaView, click the 'Apply'-button, select a reasonable colour map

and then re-scale the colour values

to the range [20, 160]. Use the same range for the following questions, too.

Your Learning Progress D What is the one most important thing that you have learnt from this assignment?
Any new discoveries or achievements towards the objectives of your course project?
What is the most substantial new insight that you have gained from this source this week? Any she memont?
What is the most substantial new insight that you have gained from this course this week? Any aha moment?