Lehrstuhl für STEUERUNGS-UND REGELUNGSTECHNIK

Technische Universität München Prof. Dongheui Lee

MACHINE LEARNING IN ROBOTICS

Exercises 1: Linear Regression

Exercise 1

Given the dataset shown in table 1 and illustrated in figure 1, we want to predict the output value for x = 1.

Figure 1: Training dataset

	input x	-3	-1	0	2	4
ĺ	output y	-4	1	1	2	6

Table 1: Data

- a) Let's assume $f(x) = w_1 x + w_2 x^2$ is a regression model with unknown parameter vector $\mathbf{w} = [w_1 \ w_2]^T$. Find \mathbf{w} which fits the data best in the sense of the Euclidean norm.
- b) Predict the output value of the system for x = 1.

Exercise 2

Consider the following sum-of-squares error function:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{n} (f(x^{(i)}, \mathbf{w}) - y^{(i)})^{2}$$

in which the function $f(x^{(i)}, \boldsymbol{w})$ is the polynomial:

$$f(x^{(i)}, \mathbf{w}) = w_0 + w_1(x^{(i)}) + w_2(x^{(i)})^2 + \ldots + w_m(x^{(i)})^m = \sum_{i=0}^m w_i(x^{(i)})^i.$$

Show that the coefficients $w = \{w_k\}$ that minimize this error function are given by the solution to the following set of linear equations

$$\sum_{j=0}^{m} A_{kj} w_j = Y_k$$

where

$$A_{kj} = \sum_{i=1}^{n} (x^{(i)})^{k+j}, \qquad Y_k = \sum_{i=1}^{n} (x^{(i)})^k y^{(i)}.$$

Here a suffix i or j denotes the index of a component, whereas $(x)^i$ denotes x to the power of i.

Exercise 3

The kinematic of a differential-drive mobile robot like that in figure 2 is described in the discrete-time by the set of equations

Figure 2: Top-view sketch of a differential-drive mobile robot with relevant variables.

$$\begin{cases} x^{(t+1)} = x^{(t)} + v^{(t)}cos(\theta^{(t)} + \omega^{(t)}\frac{\Delta T}{2})\Delta T \\ y^{(t+1)} = y^{(t)} + v^{(t)}sin(\theta^{(t)} + \omega^{(t)}\frac{\Delta T}{2})\Delta T \\ \theta^{(t+1)} = \theta^{(t)} + \omega^{(t)}\Delta T \end{cases}$$

where ΔT is the sample time. The relation between the linear v and angular ω velocities of the robot and the velocity of the wheels (ω_R and ω_L) is

$$\begin{bmatrix} v \\ \omega \end{bmatrix} = \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix} \begin{bmatrix} \omega_R \\ \omega_L \end{bmatrix} = \boldsymbol{W} \begin{bmatrix} \omega_R \\ \omega_L \end{bmatrix}$$

Given m motion trajectories $T_r = \left[\left\{x_1^{(t)}, y_1^{(t)}, \theta_1^{(t)}, \omega_{R,1}^{(t)}, \omega_{L,1}^{(t)}\right\}_{t=0}^n, \dots, \left\{x_m^{(t)}, y_m^{(t)}, \theta_m^{(t)}, \omega_{R,1}^{(t)}, \omega_{L,1}^{(t)}\right\}_{t=0}^n\right]$, estimate the unknown parameters \boldsymbol{W} using least square regression. (<u>Hint</u>: $[w_{11}, w_{12}]$ and $[w_{21}, w_{22}]$ can be separately estimated.)

Exercise 4

Given the dataset shown in table 2, we want to predict the output values for $x_1 = 7, x_2 = 4$. We assume a linear regression model.

input x_1	3	2	1	3
input x_2	5	2	2	3
output y_1	7	4	2	6
output y_2	10	5	9	6

Table 2: Data

a) Let's assume as a regression model:

$$f_1(\mathbf{x}) = w_0 x_1 + w_1 x_2$$

 $f_2(\mathbf{x}) = w_0' x_1 + w_1' x_2$

with unknown parameters

$$\boldsymbol{w} = \left[\begin{array}{cc} w_0 & w_0' \\ w_1 & w_1' \end{array} \right].$$

Find the best $oldsymbol{w}$ using the normal equation.

b) Predict the output value of the system for $x_1 = 7, x_2 = 4$.