Statistical analysis for: Viral diversity is an obligate consideration in CRISPR/Cas9 designs for HIV cure.

Methods

The goal of this analysis is to test whether targeting percentages vary by the consensus strain used to create the guides. To test whether there are overall differences in mean of target percentages, a mixed model was fit with target percentage as the outcome and the consensus strain as the predictors. A random intercept for each subject by consensus strain was estimated to account for within subject and group variation across the repeated measures. Overall tests was performed from ANOVA for mixed models using the lmerTest package in R. Post-hoc tests were used for pairwise comparisons using the general linear hypothesis testing procedure for mixed models in the multcomp package in R. Adjustment for multiple testing used the single step method.

Data Setup

```
suppressPackageStartupMessages({
 library(broom)
 library(lmerTest) # mixed models
 library(multcomp) # statistical tests
 library(tidyverse) # data manipulation and plots
 library(knitr)
 library(kableExtra)
 theme set(theme bw())
})
opts_chunk$set(tidy = TRUE, cache = TRUE, messages = FALSE, warning = FALSE, echo = FALSE,
              tidy.opts=list(width.cutoff=80))
dat_all = read_csv(file = "All_pts_matches_highcov.csv") %>%
 group_by(patient, gseq) %>%
 mutate(
   total_consensus = n_distinct(from_consensus),
   groupings = paste(unique(from consensus), collapse = ","),
   range_pct = diff(range(tgt_match_perc_exact)),
   conserved = total consensus >= 2
## Parsed with column specification:
## cols(
##
    patient = col_character(),
##
    from consensus = col character(),
##
    gseq = col_character(),
##
    dir = col_character(),
##
    guide = col_character(),
##
    pam = col_character(),
##
    match_conseq_start = col_integer(),
##
    match_conseq_end = col_integer(),
```

```
##
     tgt_depth = col_integer(),
##
    tgt_match_perc_exact = col_double(),
    has_degenerate_bases = col_logical()
##
## )
## mixed model - pooled con group ##
dat_all$new_var = with(dat_all, ifelse(from_consensus == "patient", "patient", "pooled"))
lmm_pool = lmer(tgt_match_perc_exact ~ new_var + (from_consensus | patient), data = dat_all)
pooled_results = data.frame(Model = "Pooled", lhs = "Pooled groups - patient")
pooled_results$estimate = coef(summary(lmm_pool))["new_varpooled", "Estimate"]
pooled_results$pvalue_unadjusted = coef(summary(lmm_pool))["new_varpooled", "Pr(>|t|)"]
## mixed model - separate con groups ##
lmm = lmer(tgt_match_perc_exact ~ from_consensus + (from_consensus | patient), data = dat_all)
ph_tests = summary(glht(lmm, lsmeans::lsm(pairwise ~ from_consensus)), test = adjusted("none")) %>%
    tidy() %>% select(lhs, estimate, p.value) %>% rename(pvalue_unadjusted = p.value)
## combine results and adjust p-values ##
all_results = bind_rows(pooled_results, ph_tests %>% mutate(Model = " "))
all_results$pvalue_adjusted = multtest::mt.rawp2adjp(all_results$pvalue_unadjusted,
    proc = "SidakSS")$adjp[, 2]
## Overall F-test ##
grp_test = anova(lmm)$`Pr(>F)`
```

Table 1: Summary of data.

from_consensus	patients	total_targets	mean_pct
A	4	173	86.5%
В	4	488	85.3%
С	4	99	84.7%
M	4	365	85.3%
patient	4	1173	81.6%

Table 2: Mixed model results: post-hoc comparisons (p-values corrected using single-step method). Overall group test (at least one group is different) (p = 0.148)

Model	Comparison	Mean diff. (%)	Adj. p-value (unadj.)
	A - B = 0	1.2%	$0.458 \; (0.523)$
	A - C = 0	1.71%	$0.631 \ (0.408)$
	A - M = 0	1.17%	$0.804 \ (0.502)$
	B - C = 0	0.51%	$0.997 \ (0.836)$
	B - M = 0	-0.03%	1(0.978)
	C - M = 0	-0.54%	1 (0.812)
	A - patient = 0	4.88%	$0.996 \ (0.138)$
	B - patient = 0	3.68%	1(0.054)
	C - patient = 0	3.17%	1(0.388)
	M - patient = 0	3.71%	1(0.087)
Pooled	Pooled groups - patient = 0	3.43%	0.251 (0.026)

 ${\bf Table~3:~Supplemental~Table:~Reproducibility~Software~Session~Information}$

name	value.V1
version	R version 3.5.0 (2018-04-23)
system	x86_64, darwin15.6.0
ui	X11
language	(EN)
collate	en_US.UTF-8
tz	America/Los_Angeles
date	2018-05-17
repo	https://github.com/proychou/CRISPR
location	https://github.com/proychou/CRISPR
file name	$CRISPR_stats.Rmd$

 ${\bf Table~4:~Supplemental~Table:~Reproducibility~Software~Package~Version~Information}$

package	version	date	source
base	3.5.0	2018-04-24	local
bindrcpp	0.2.2	2018-03-29	CRAN (R $3.5.0$)
Biobase	2.40.0	2018-05-01	Bioconductor
BiocGenerics	0.26.0	2018-05-01	Bioconductor
broom	0.4.4	2018-03-29	CRAN (R 3.5.0)
data.table	1.11.2	2018-05-08	CRAN (R 3.5.0)
datasets	3.5.0	2018-04-24	local
dplyr	0.7.4	2017-09-28	CRAN (R 3.5.0)
forcats	0.3.0	2018-02-19	CRAN (R 3.5.0)
ggplot2	2.2.1	2016-12-30	CRAN (R 3.5.0)
graphics	3.5.0	2018-04-24	local
grDevices	3.5.0	2018-04-24	local
ICC	2.3.0	2015 - 06 - 17	CRAN (R $3.5.0$)
kableExtra	0.8.0	2018-04-05	CRAN (R 3.5.0)
knitr	1.20	2018-02-20	CRAN (R 3.5.0)
lme4	1.1 - 17	2018-04-03	CRAN (R 3.5.0)
lmerTest	3.0 - 1	2018-04-23	CRAN (R $3.5.0$)
lsmeans	2.27 - 62	2018-05-11	CRAN (R $3.5.0$)
MASS	7.3 - 50	2018-04-30	CRAN (R 3.5.0)
Matrix	1.2 - 14	2018-04-13	CRAN (R 3.5.0)
methods	3.5.0	2018-04-24	local
multcomp	1.4-8	2017-11-08	CRAN (R 3.5.0)
multtest	2.36.0	2018-05-01	Bioconductor
mvtnorm	1.0-7	2018-01-26	CRAN (R 3.5.0)
parallel	3.5.0	2018-04-24	local
purrr	0.2.4	2017-10-18	CRAN (R 3.5.0)
readr	1.1.1	2017-05-16	CRAN (R 3.5.0)
stats	3.5.0	2018-04-24	local
stringr	1.3.1	2018-05-10	CRAN (R 3.5.0)
survival	2.42 - 3	2018-04-16	CRAN (R 3.5.0)
TH.data	1.0-8	2017 - 01 - 23	CRAN (R 3.5.0)
tibble	1.4.2	2018-01-22	CRAN (R 3.5.0)
tidyr	0.8.0	2018-01-29	CRAN (R $3.5.0$)
tidyverse	1.2.1	2017-11-14	CRAN (R $3.5.0$)
utils	3.5.0	2018-04-24	local
xtable	1.8-2	2016-02-05	CRAN (R 3.5.0)