Seminari avaluable d'Àlgebra commutativa 2 d'abril de 2024

En tot el seminari, R serà un anell commutatiu. Donats R-moduls N, M, L, diem que una aplicació $f \colon M \times N \to L$ és R-bilineal si, fixat $m \in M$, l'aplicació $f(m, -) \colon N \to L$ és R-lineal (respectivament, fixat $n \in N$, l'aplicació $f(-, n) \colon M \to L$) és R-lineal). Una R-àlgebra és un anell commutatiu A que és R-mòdul i tal que r(ab) = (ra)b = a(rb) per $r \in R$, $a, b \in A$.

- 1. Proveu que:
 - (i) Si A és una R-álgebra, el producte $A \times A \to A$ donat per $(a,a') \mapsto aa'$ és bilineal.
 - (ii) Si M i N són R-mòduls, llavors el conjunt

$$\operatorname{Hom}_R(M,N) := \{ f \colon M \to N \mid f \text{ \'es morfisme de m\'oduls} \}$$

és també un R-mòdul amb estructura natural. Deduïu que l'aplicació

ev:
$$M \times \operatorname{Hom}_R(M, N) \to N$$

donada per $(m, \varphi) \mapsto \varphi(m)$ és bilineal.

- 2. Denotem per $\operatorname{Bil}_R(M \times N, L)$ el conjunt d'aplicacions bilineals de $M \times N$ a L. Proveu que
 - (i) Donats R-mòduls M,N, aleshores existeix un R-mòdul $M\otimes_R N$ amb una aplicació bilineal

$$t: M \times N \to M \otimes_R N$$

tal que compleix la propietat (universal) següent: "Per a tot R-mòdul L i tota aplicació $f: M \times N \to L$ bilineal, existeix una única $\tilde{f}: M \otimes_R N \to L$ tal que $f = \tilde{f} \circ t$." És a dir, el diagrama

és commutatiu. Escrivim $t(m,n)=m\otimes n$ i diem que és un tensor elemental. Diem que $M\otimes_R N$ és el producte tensorial de M i N. (Indicació: Considereu l'R-mòdul lliure F sobre el conjunt $M\times N$ i denoteu la base canònica per $(e_{(m,n)})_{m\in M,n\in N}$. Ara feu quocient pel submòdul K de F generat per $e_{(m+m',n)}-e_{(m,n)}e_{(m',n)}$; $e_{(m,n+n')}-e_{(m,n)}-e_{(m,n')}$; $e_{(m,n)}-re_{(m,n)}$.

- (ii) Deduïu que el parell $(M \otimes_R N, t)$ és únic tret d'isomorfisme i que a més $Bil(M \times N, L) \cong Hom_R(M \otimes_R, L)$.
- 3. Calculeu els productes següents de grups abelians:
 - (i) $\mathbb{Z}/(n) \otimes \mathbb{Z}/(m)$.

- (ii) $\mathbb{Z}/(n) \otimes \mathbb{Q}$.
- (iii) $\mathbb{Q} \otimes \mathbb{Q}$.
- 4. Proveu les propietats següents:
 - (i) $R \otimes_R M \cong M$.
 - (ii) $(M \oplus M') \otimes_R N \cong M \otimes_R N \oplus M' \otimes_R N$.
 - (iii) $M \otimes_R N \cong N \otimes_R M$,
 - (iv) $M \otimes_R (N \otimes_R L) \cong (M \otimes_R N) \otimes_R L$.
 - (v) Què val $R^n \otimes_R R^m$?
 - (vi) Si P i P' són projectius finitament generats, ho és $P \otimes_R P'$?
- 5. (i) Donades R-àlgebres A i B, deduïu que $A \otimes_R B$ també és una R-àlgebra amb $(a \otimes b)(a' \otimes b') = aa' \otimes bb'$. (Indicació: Apliqueu la mateixa idea que a la construcció de l'exercici 2).
 - (ii) Proveu que si I, J són ideals d'un anell R, aleshores $R/I \otimes_R R/J \cong R/(I+J)$ (com R-àlgebres).
 - (iii) Proveu que $R[x, y] \cong R[x] \otimes_R R[y]$.
- 6. Proveu que $\operatorname{Hom}_R(M, \operatorname{Hom}_R(N, L)) \cong \operatorname{Hom}_R(M \otimes_R N, L)$.
- 7. (i) Proveu que $N \to M \to L \to 0$ és exacta si i només si per a tot K tenim $0 \to \operatorname{Hom}(L,K) \to \operatorname{Hom}(M,K) \to \operatorname{Hom}(N,K)$ és exacta.
 - (ii) Utilitzant (i) (amb $\operatorname{Hom}_R(N,P)$ per P arbitrari) i l'exercici 6, proveu que si $N \to M \to L \to 0$ és exacta, aleshores per a tot K tenim que $N \otimes_R K \to M \otimes_R K \to L \otimes_R K \to 0$ és exacta. Doneu un exemple on $N \otimes_R K \to M \otimes_R K$ no sigui injectiva.
 - (iii) Donat un ideal I de R i un R-mòdul M, proveu que $M \otimes_R R/I \cong M/IM$. (Indicació: considereu la successió $0 \to I \to R \to R/I \to 0$ i tensoritzeu per M).