例:证明任何阶大于1的简单无向图必有两个结点的度相等。证明:设G是一个n阶简单无向图(n>1),则G没有自圈也没有平行边。

- (1)假设 G 的孤立点数目大于1,则G至少有两个孤立点,度 为0,结论成立。
- (2)假设G只有一个孤立点,则剩下的n-1个点的度只能为 1,2,…,或 n-2。因此由抽屉原理知,必有两个结点的 度相同。
- (3)假设G没有孤立点,则n个点的度只能为1,2,···,或 n-1。同样由抽屉原理知,必有两个结点的度相同。

例:在任意的六个人中,若没有三个人彼此都认识,则必有三个人彼此都不认识。

证明:假设无向图G中有六个结点 A, B, C, D, E, F, 表示任意六个人,且G中一条边表示该条边的两个端点互相认识。

假设六个人没有三个人彼此认识,则没有三个点两两之间都邻接。

(1) 若A至少与3个其他节点邻接,不妨假设A与C, D, E邻接,则C, D, E 三个点两两之间都没有边。

否则,不失一般性,假设C与D邻接,则A,C,D三个人彼此都认识,矛盾。

(2) 若A最多只与2个其他节点邻接,则至少有3个点与A不邻接。

假设A与C, D, E不邻接。

由于C, D, E不会两两之间都邻接,假设C, D不邻接,则有A, C, D两两之间不邻接。

7.2 子图和图的运算

目的:了解子图和图的基本概念;

重点:子图、可运算、图的运算;

难点:图的运算、子图。

1、子图、真子图、生成子图

设 $G = \langle V, E, \Psi \rangle, G' = \langle V', E', \Psi' \rangle$ 为图。

- ◆ 如果 V'⊆ V, E'⊆ E, Ψ'⊆ Ψ, 则称G'是G的子图, 记 为 G'⊆ G, 并称 G 是 G'的母图。
- 如果 V′⊆ V, E′⊂ E, Ψ′⊂ Ψ, 则称G′是G的真子图,
 记为 G′⊂ G。
- ◆ 如果 V'=V, E'⊆ E, Ψ'⊆Ψ, 则称G'是G的生成子图 (Spanning Subgraph)。

G的生成子图?

不是G的子图

 $\bigcirc v_1$

 v_2

 $\bigcirc v_3$

是G的真子图 是G的生成子图

*y*₄

导出子图---由结点集导出的子图

设图 $G = \langle V, E, \Psi \rangle$, $V' \subseteq V \perp V' \neq \emptyset$ 。

- ◆ 以 V' 为结点集合,以所有起点和终点均在 V' 中的边为边集合的 G 的子图,称为由 V' 导出的 G 的子图,记为 G[V']。(Induced Subgraph)
- ◆ ii) 若 V'⊂ V, 导出子图 G[V-V'] 记为 G-V'。

直观理解:

- ◆ G[V']: 以 V' 为节点集合的最大子图。
- ◆ G-V': 从 G 中去掉 V' 中的结点以及与这些结点关 联的所有边而得到的G的子图。

G的导出子图

$$V = \{ v_1, v_2, v_3, v_4, v_5 \}$$

导出子图----由边集导出的子图

设图 $G = \langle V, E, \Psi \rangle$, $E' \subseteq E \perp E' \neq \emptyset$, $V' = \{v \mid v \in V \perp E \neq e \in E' \notin v \neq e \neq E' \}$ 。 以 V' 为结点集合,以 E' 为边集合的 G 的子图 称为由 E' 导出的子图,记为 G[E'] 。

 $G[\{v_1, v_2, v_3\}]$

 $G [\{a, b, c\}]$

图的可运算、不相交边

设图 $G=\langle V, E, \Psi \rangle$ 和 $G'=\langle V', E', \Psi' \rangle$ 同为无向图或同为有向图。

- ◆ 如果对于任意 e∈ E ∩ E',均有 Ψ(e) = Ψ'(e),则称 G 和 G'是可运算的。
- ◆ 如果 $V \cap V' = E \cap E' = \emptyset$,则称 G 和 G'是不相交的。
 - ✓ 无公共顶点
- ◆ 如果 $E \cap E' = \emptyset$,则称 G 和 G'是边不相交的。
 - ✓ 无公共边,可能有公共点

图的运算:交、并、环和

- 定义7.2.5 设图 $G_1 = \langle V_1, E_1, \Psi_1 \rangle$ 和 $G_2 = \langle V_2, E_2, \Psi_2 \rangle$ 可运算。
- i) 称以 $V_1 \cap V_2$ 为结点集合,以 $E_1 \cap E_2$ 为边集合的 G_1 和 G_2 的公共子图为 G_1 和 G_2 的交,记为 $G_1 \cap G_2$ 。 $(G_1 \cap G_2 = \langle V_1 \cap V_2, E_1 \cap E_2, \Psi_1 \cap \Psi_2)$
- ii) 称以V₁UV₂为结点集合,以E₁UE₂为边集合的G₁和G₂的公共母图为 G₁和G₂的并,记为 G₁UG₂。

 $(G_1 \cup G_2 = \langle V_1 \cup V_2, E_1 \cup E_2, \Psi_1 \cup \Psi_2 \rangle)$

iii) 称以 $V_1 \cup V_2$ 为结点集合,以 $E_1 \oplus E_2$ 为边集合的 $G_1 \cup G_2$ 的子图为 $G_1 \cap G_2$ 的环和,记为 $G_1 \oplus G_2 = \langle V_1 \cup V_2, E_1 \oplus E_2, \Psi_1 \cup \Psi_2 \in I \oplus E_2 \rangle$

定理7.2.1 (图运算的唯一性) 设图 $G_1 = \langle V_1, E_1, \Psi_1 \rangle$ 和 $G_2 = \langle V_2, E_2, \Psi_2 \rangle$ 可运算。

- i) 如果 $V_1 \cap V_2 \neq \emptyset$,则存在唯一的 $G_1 \cap G_2$ 。 (: $V_1 \cap V_2 = \emptyset$ 时, $G_1 \cap G_2$ 不存在)
- ii) 存在唯一的 G₁UG₂和 G₁田 G₂。

证明:不妨设 G₁和G₂同为有向图,若同为无向图也可同样证明。

i) (存在性) 定义 Ψ : $E_1 \cap E_2 \to (V_1 \cap V_2) \times (V_1 \cap V_2) \to :$ 对于任意的 $e \in E_1 \cap E_2$, $\Psi(e) = \Psi_1(e) = \Psi_2(e)$ 。 显然, $< V_1 \cap V_2$, $E_1 \cap E_2$, $\Psi > = G_1 \cap G_2$ 。

定理7.2.1 (图运算的唯一性) 设图 $G_1 = \langle V_1, E_1, \Psi_1 \rangle$ 和 $G_2 = \langle V_2, E_2, \Psi_2 \rangle$ 可运算。

- i) 如果 $V_1 \cap V_2 \neq \emptyset$,则存在唯一的 $G_1 \cap G_2$ 。 (:: $V_1 \cap V_2 = \emptyset$ 时, $G_1 \cap G_2$ 不存在)
- ii) 存在唯一的 G₁UG₂和 G₁⊕ G₂。

证明: i)(唯一性) 设图 $G = \langle V_1 \cap V_2, E_1 \cap E_2, \Psi \rangle$ 和 $G' = \langle V_1 \cap V_2, E_1 \cap E_2, \Psi' \rangle$ 均为 G_1 和 G_2 的交。 因为 $G \subseteq G_1$,所以对任意 $e \in E_1 \cap E_2$ 皆有 $\Psi(e) = \Psi_1(e)$ 。 因为 $G' \subseteq G_1$,所以对任意 $e \in E_1 \cap E_2$ 皆有 $\Psi'(e) = \Psi_1(e)$ 。 这表明 $\Psi = \Psi'$ 。 因此, G = G' 。

定理7.2.1 (图运算的唯一性) 设图 $G_1 = \langle V_1, E_1, \Psi_1 \rangle$ 和 $G_2 = \langle V_2, E_2, \Psi_2 \rangle$ 可运算。

- i) 如果 $V_1 \cap V_2 \neq \emptyset$,则存在唯一的 $G_1 \cap G_2$ 。 (:: $V_1 \cap V_2 = \emptyset$ 时, $G_1 \cap G_2$ 不存在)
- ii) 存在唯一的 G₁UG₂和 G₁田 G₂。

证明: ii) (存在性)如下定义 Ψ : $E_1 \cup E_2 \rightarrow (V_1 \cup V_2) \times (V_1 \cup V_2)$: 对于任意的 $e \in E_1 \cup E_2$,

$$\Psi(e) = \begin{cases} \Psi_1(e), & e \in E_1 \\ \Psi_2(e), & e \in E_2 - E_1 \end{cases} .$$

显然, $\langle V_1 \cup V_2 \rangle$, $E_1 \cup E_2 \rangle$, $\Psi > = G_1 \cup G_2 \circ$

定理7.2.1 (图运算的唯一性) 设图 $G_1 = \langle V_1, E_1, \Psi_1 \rangle$ 和 $G_2 = \langle V_2, E_2, \Psi_2 \rangle$ 可运算。

- i) 如果 $V_1 \cap V_2 \neq \emptyset$,则存在唯一的 $G_1 \cap G_2$ 。 (:: $V_1 \cap V_2 = \emptyset$ 时, $G_1 \cap G_2$ 不存在)
- ii) 存在唯一的 G₁UG₂和 G₁田 G₂。

因为 $G_2 \subseteq G \perp G_2 \subseteq G'$,所以对任意 $e \in E_2 - E_1$,皆有 $\Psi(e) = \Psi_2(e) = \Psi'(e)$ 。因此 $\Psi = \Psi'$,从而 G = G'。

图的运算: G-E'

定义7.2.6 设图 $G = \langle V, E, \Psi \rangle$ 。 若 $E' \subseteq E$,记 $\langle V, E - E', \Psi |_{(E-E')} \rangle$ 为 G - E';若 $e \in E$,则记 $G - \{e\}$ 为 G - e 。

◆ G - E′ 是从 G 中去掉 E′ 中的边所得到的G的子 图。

注意: 与 E' 中的边相关联的结点并不去掉。

图的运算 $G + E'_{\Psi'}$

定义7.2.7 设图 $G = \langle V, E, \Psi \rangle$ 和 $G' = \langle V', E', \Psi' \rangle$ 同为无向图或同为有向图, 若G 和 G' 边不相交,且 G' 无孤立点,

则记 GUG' 为 $G+E'_{\Psi'}$ 。

 G + E'_{Ψ'} 是由 G 增加 E' 中的边所得到的图,其中Ψ' 指出 E' 中的边与结点的关联关系。 例:已知G1,G2,试画出G1∪G2,G1∩G2,G1⊕G2,(G1∪G2)-{v5,v6},(G1∪G2)-{g,h},G2+E' $_{\Psi'}$,其中E'={g}, Ψ' ={<g,{v1,v3}>}

 $V_1 = \{v1, v2, v3, v5, v6\}$ $E_1 = \{a, c, g, h, k, l\}$

$$V_2 = \{v1, v2, v3, v4, v5\}$$

 $E_1 = \{a, b, c, d, e, f\}$

例:图的运算

$$V_1 = \{v1, v2, v3, v5, v6\}$$

 $E_1 = \{a, c, g, h, k, l\}$

$$V_2 = \{v1, v2, v3, v4, v5\}$$

 $E_1 = \{a, b, c, d, e, f\}$

图的运算—补图

定义7.2.8 设 n 阶无向图 $G = \langle V, E, \Psi \rangle$ 是 n 阶完全无向图 K_n 的生成子图,则称 $K_n - E$ 为 G 的 补图,记为 \overline{G} 。

- ◆ 简单无向图都有补图,并且一个简单无向图的所有补 图都同构。
- ◆ 对于任意两个简单无向图G1和G2,如果G2是G1的

问题:

- ◆ 完全图的补图是什么?
- ◆ 零图的补图是什么?

自补图:与其补图同构的简单无向图

互为补图且自补图

定理7.2.2 图同构

- 设 f 和 g 为图 $G = \langle V, E, \Psi \rangle$ 和 $G' = \langle V', E', \Psi' \rangle$ 之间的同构映射。
- i) 若 $v \in V \perp v' = f(v)$, 则 $d_G(v) = d_{G'}(v')$;
- ii) 若 $S \subseteq V \perp L S' = f(S)$,则 $G[S] \cong G'[S'] \perp L G S \cong G' S'$;
- iii) 若 K \subseteq E 且 K' = g(K) ,则 G [K] \cong G'[K'] 且 G K \cong G' K';
- iv) $\overline{G} \cong \overline{G}'$, 即 G 的补图与 G' 的补图仍同构。

小结

图自己家的关系:

