THEORETICAL PART:

Definition (Rational Functions):

A rational function is a function that can be written in the form

$$f(x) = \frac{p(x)}{q(x)},$$

where p(x) and q(x) are polynomial functions and $q(x) \neq 0$. Even though q is not allowed to be identically zero, there will often be values of x for which q(x) is zero, and at these values the function is undefined. Consequently, the **domain of** f consists of all real numbers except those for which q(x) = 0.

Definition (Vertical Asymptotes):

The vertical line x = c is a **vertical asymptote** of a function f if f(x) increases in magnitude without bound as x approaches c. The graph of a rational function cannot intersect a vertical asymptote.

Definition (Horizontal Asymptotes):

The horizontal line y = c is a **horizontal asymptote** of a function f if f(x) approaches the value c as $x \to -\infty$ or as $x \to \infty$. The graph of a rational function may intersect a horizontal asymptote near the origin, but will eventually approach the asymptote from one side only as x increases in magnitude.

Definition (Oblique Asymptotes):

A non-vertical, non-horizontal line may also be an asymptote of a function f. Again, the graph of a rational function may intersect an oblique asymptote near the origin, but will eventually approach the asymptote from one side only as $x \to \infty$ or $x \to -\infty$.

Definition (Asymptote Notation):

The notation $x \to c^-$ is used when describing the behaviour of a graph as x approaches the value c from the left (the negative side). The notation $x \to c^+$ is used when describing behaviour as x approaches c from the right (the positive side). The notation $x \to c$ is used when describing behaviour that is the same on both sides of c.

Theorem (Equations for Vertical Asymptotes):

If the rational function

$$f(x) = \frac{p(x)}{q(x)}$$

has been written in reduced form (so that p and q have no common factors), the vertical line x = c is a **vertical asymptote** of f if and only if c is a zero of the polynomial q. In other words, f has vertical asymptotes at the x-intercepts of q.

Theorem (Equations for Horizontal and Oblique Asymptotes):

Let $f(x) = \frac{p(x)}{q(x)}$ be a rational function, where p is an n-th degree polynomial with leading coefficient a_n , q is an m-th degree polynomial with leading coefficient b_m , and p(x) and q(x) have no

common factors other than constants. Then the asymptotes of f are found as follows:

- 1. If n < m, the horizontal line y = 0 (the x-axis) is the **horizontal asymptote** for f.
- 2. If m = n, the horizontal line $y = \frac{a_n}{b_m}$ is the **horizontal asymptote** for f.
- 3. If n = m + 1, the line y = g(x) is an **oblique asymptote** for f, where g is the quotient polynomial obtained by dividing p by q.
- 4. If n > m + 1, there is **no** straight line **horizontal** or **oblique asymptote** for f.

PROCEDURE (Graphing Rational Functions):

Given a rational function f:

- Step 1. Factor the denominator in order to determine the domain of f. Any points excluded from the domain correspond to holes or vertical asymptotes in the eventual graph.
- Step 2. Factor the numerator as well and cancel any common factors. Zeros of the numerator and denominator arising from common linear factors are the *x*-coordinates of holes in the eventual graph.
- Step 3. Examine the remaining linear factors in the denominator to determine the equations for any vertical asymptotes.
- Step 4. Compare the degrees of the numerator and denominator to determine if there is a horizontal or oblique asymptote. If so, find its equations.
- Step 5. Determine the y-intercept if 0 is in the domain of f.
- Step 6. Determine the *x*-intercepts, if there are any, by setting the numerator of the reduced fraction equal to 0.
- Step 7. Plot enough points to determine the behaviour of f between x-intercepts and between vertical asymptotes.

Definition (Rational Inequalities):

A **rational inequality** is any inequality that can be written in the form:

$$f(x) < 0$$
, $f(x) > 0$, $f(x) \ge 0$, $f(x) \le 0$,

where f(x) is a rational function.

PROCEDURE (Solving Rational Inequalities Using the Sigh-Test Method):

To solve a rational inequality f(x) < 0, f(x) > 0, $f(x) \ge 0$, $f(x) \le 0$, where the rational function $f(x) = \frac{p(x)}{g(x)}$ is in reduced form:

- Step 1. Find the real zeros of the numerator p(x). These values are the **zeros** of f.
- Step 2. Find the real zeros of the denominator q(x). These values are the locations of the **vertical** asymptotes of f.
- Step 3. Place the values from Step 1 and Step 2 on a number line, splitting it into intervals.
- Step 4. Within each interval, select a **test point** and evaluate f at that number. If the result is positive, then f(x) > 0 for all x in the interval. If the result is negative, then f(x) < 0 for all x in the interval.
- Step 5. Write the **solution set**, consisting of all of the intervals that satisfy the given inequality. If the inequality is not strict (uses \geq or \leq), then the zeros of p are included in the solution set as well. The zeros of q are never included in the solution set.

PRACTICAL PART:

1. Find the domains and the equations for the vertical asymptotes of the following functions:

(a)
$$f(x) = \frac{32}{x+2}$$

(b) $g(x) = \frac{x^2+1}{x^2+2x-15}$
(c) $h(x) = \frac{x^2-x}{x-1}$

(a)
$$x + 2 \neq 0$$

 $x \neq -2$
 $x \Rightarrow -2$
 $x \neq -2$

2. Find the equation for the horizontal or oblique asymptote of the following functions:

$$f(x) = \frac{4 \cdot x^2 + 1}{x^2 + 2x - 15}, \quad g(x) = \frac{x^3 + x^2 + 2x + 2}{x^2 + 9}$$

· For f(x):

 $p(x)=x^2+2x-15$, w=2

Hence, we have one H.A.: $y = \frac{1}{4} = 1$

O.A.: None

· For a (k):

deg(p) = 3 deg(q) = 2

H.A.: None

 $0.4. \frac{-\frac{x_3}{x_3} + q_x}{-\frac{x_3}{x_5} + 2x + 2} = \frac{-\frac{x_4}{x_5} + 2x + 2}{\sqrt{x_5} + 2x + 2} = \frac{-\frac{x_4}{x_5} + 2x + 2}{\sqrt{x_5} + 2x + 2} = \frac{-\frac{x_4}{x_5} + 2x + 2}{\sqrt{x_5} + 2x + 2} = \frac{-\frac{x_4}{x_5} + 2x + 2}{\sqrt{x_5} + 2x + 2} = \frac{-\frac{x_4}{x_5} + 2x + 2}{\sqrt{x_5} + 2x + 2} = \frac{-\frac{x_5}{x_5} + \frac{x_5}{x_5} + 2x + 2}{\sqrt{x_5} + 2x + 2} = \frac{-\frac{x_5}{x_5} + \frac{x_5}{x_5} + 2x + 2}{\sqrt{x_5} + 2x + 2} = \frac{-\frac{x_5}{x_5} + \frac{x_5}{x_5} + 2x + 2}{\sqrt{x_5} + 2x + 2} = \frac{-\frac{x_5}{x_5} + \frac{x_5}{x_5} + 2x + 2}{\sqrt{x_5} + 2x + 2} = \frac{-\frac{x_5}{x_5} + \frac{x_5}{x_5} + 2x + 2}{\sqrt{x_5} + 2x + 2} = \frac{-\frac{x_5}{x_5} + \frac{x_5}{x_5} + \frac{x_5}{x_5} + \frac{x_5}{x_5} + \frac{x_5}{x_5} = \frac{-\frac{x_5}{x_5} + \frac{x_5}{x_5} + \frac{x_5}{x_5} + \frac{x_5}{x_5} = \frac{-\frac{x_5}{x_5} + \frac{x_5}{x_5} + \frac{x_5}{x_5} = \frac{x$

0.A.: Y=x+1

3. Sketch the graphs of the following rational functions:

$$f(x) = \frac{x^2 - x}{x - 1}, \quad g(x) = \frac{x^2 + 1}{x^2 + 2x - 15}$$

•
$$f(x) = \frac{x^2 - x}{x - 1}$$

Alcalysis:

① Down(f) = R\fi!
② V.A: $f(x) = \frac{x(x - 1)}{x - 1} = x$

None

We have a hale at $x = 1$.
③ H.A.: Nane
① $x = \text{intercept}$: $x = 0$ (0,0)
② $y = \text{intercept}$: $x = 0$ (0,0)
 $y = \text{intercept}$: $y = 0$

1 © hale at $x = 1$

•
$$g(x) = \frac{x^2 + 1}{x^2 + 2x - 15} = \frac{(x + 5)(x - 3)}{(x + 5)(x - 3)}$$

① Dam($g_1 = 12 \setminus \{-5, 3\}$)
② V.A.: $x = -5$ and $x = 3$
③ H.A.: Since $x = 2$ and $x = 3$
have that $y = 1$ is a H.A.

① O.A.: None
⑤ $x = 1 + 2 = 0$
None
 $x^2 + 1 \neq 0$
Never

⑥ $y = 1 + 2 = 0$
Never

② The formula of the content of the content

4. Solve the rational inequality

$$\frac{x^2+1}{x^2+2x-15} > 0.$$

5. Solve the rational inequalities $\frac{x}{x+2} < 3$ and $\frac{x}{x+2} \le 3$.

