Relatório Trabalho 2:

Nome: Davi Lima Mendes dos Santos Matrícula: 202012282

Parte 1:

Dados do trabalho 1:

Espessura h (mm): 4 Largura *b* (mm): 103 Comprimento total L_{tot} (cm): 61,2

Massa total (g): 160,6 Momento de inércia / calculado (mm4): 2,67E-09

Densidade ρ (kg/m³): 636,938

Comprimento da viga livre do experimento L (cm): 50

E (GPa): 0,2751 (calculado no trabalho 1)

Frequências obtidas do experimento com o Tracker:

 f_{n1} (Hz): 3,74 ω_{n1} (rad/s): 23,52

Cálculo das 4 primeiras frequências para essa placa engastada do trabalho 1 utilizando a teoria do contínuo: (ver anexo 1 os valores de βL):

$$\omega_n = (\beta L)^2 \sqrt{\frac{EI}{\rho A L^4}}$$
 $\omega_1 = 23,52959488 \qquad f_1 = 3,744851334 \text{ Hz}$

 $\omega_2 = 147,4574565$ $f_2 = 23,4685831 \, \mathrm{Hz}$

 $\omega_3 = 412,8851253$ $f_3 = 65,71270862 \text{ Hz}$

 $\omega_4 = 809,0901869 \qquad f_4 = 128,7707026 \ \mathrm{Hz}$

Gráfico desses 4 modos de vibrações verticais, W(x), correspondendo às frequências acima, com valor de C_n = 1:

Print da tela de resultados dos primeiros 10 modos da placa deformada nesses modos:

O resultado dos modos de vibração gerados em CAE revelam bastante divergência quando comparados ao resultado dos modos de vibração calculados. Isso provavelmente se deve à quantidade limitada de elementos do *Abaqus Student Edition*.

Mesh: 819 elementos criados

Modos para placa livre de 50 cm. Há 5 modos de vibração vertical que estão hachurados.

Modo 1 (1,7202 Hz) correspondente ao modo 1 de vibração vertical

Modo 2 (10,771 Hz) correspondente ao modo 2 de vibração vertical

Modo 3 (16,534 Hz)

Modo 4 (30,240 Hz) correspondente ao modo 3 de vibração vertical

Modo 5 (42,343 Hz)

Modo 6 (50,638 Hz)

Modo 7 (59,522 Hz) correspondente ao modo 4 de vibração vertical

Modo 8 (87,736 Hz)

Modo 9 (98,862 Hz) correspondente ao modo 5 de vibração vertical

Modo 10 (129,52 Hz)

Parte 2:

Realizar o mesmo que a parte 1, mas com outra condição de contorno escolhida da tabela em anexo 1 (não escolher engastada-livre, nem engastada-engastada). Se quiser pode escolher outras dimensões e material ou usar os mesmos da etapa anterior.

Espessura h (mm): 4 Largura b (mm): 103 Comprimento L (cm): 50

Momento de inércia / calculado (mm⁴): 2,67E-09

Densidade ρ (kg/m³): 636,938

E (GPa): 0,2751

Condição de contorno escolhida: pinned-free (rotação ao longo do eixo Y, somente)

Mesh: 819 elementos criados

Cálculo das 4 primeiras frequências utilizando a teoria do contínuo:

$$\omega_n = (\beta L)^2 \sqrt{\frac{EI}{\rho A L^4}}$$

$$\omega_1 = 103,1804687 \qquad f_1 = 16,42168162$$

$$\omega_2 = 334,3708838 \qquad f_2 = 53,21677897$$

$$\omega_3 = 697,6380926$$
 $f_3 = 111,0325509$ $\omega_4 = 1193,002309$ $f_4 = 189,8722146$

Gráfico desses 4 modos de vibrações, W(x), correspondendo às frequências acima:

Com software de FEM mostrar print da tela de resultados dos primeiros 10 modos e da placa deformada nesses modos (aqui, se desejar, pode tentar usar outros elementos (viga, sólido, etc), desde que chegue nos resultados próximos ao teórico):

Simulação usando "shell"

O resultado dos modos de vibração gerados em CAE revelam bastante divergência quando comparados ao resultado dos modos de vibração calculados. Isso provavelmente se deve à quantidade limitada de elementos do *Abaqus Student Edition*.

Mesh: 819 elementos criados

Modo 1 (5,007e-5 Hz)

Modo 2 (7,4676 Hz) correspondente ao modo 1 de vibração vertical

Modo 3 (15,714 Hz)

Modo 4 (24,333 Hz) correspondente ao modo 2 de vibração vertical

Modo 5 (42,343 Hz)

Modo 6 (48,135 Hz)

Modo 7 (51,092 Hz) correspondente ao modo 3 de vibração vertical

Modo 8 (83,438 Hz)

Modo 9 (87,898 Hz) correspondente ao modo 4 de vibração vertical

Modo 10 (123,28 Hz)

Parte 3:

Criar alguma outra geometria e mostrar os resultados dos 5 primeiros modos.

A análise vibracional do sólido maciço foi feita usando "solid/homegeneous" para a descrição da peça, que tem engaste na face lateral destacada em vermelha. Foi considerado alumínio de E = 69GPa, v = 0,33 e ρ = 2700 kg/m³. A malha tem *approximate global size* de 0,01 e isso gerou 360 elementos.

Modo 1 (173,07 Hz)

Modo 2 (254,70 Hz)

Modo 3 (470,35 Hz)

Modo 4 (501,50 Hz)

Modo 5 (617,25 Hz)

Modo 6 (743,19 Hz)

Modo 7 (838,01 Hz)

Modo 8 (913,90 Hz)

Modo 9 (967,37 Hz)

Modo 10 (1050,7 Hz)

Anexo 1:

End Conditions of Beam	Frequency Equation	Mode Shape (Normal Function)	Value of $\beta_n l$
Pinned-pinned	$\sin \beta_n l = 0$	$W_n(x) = C_n[\sin \beta_n x]$	$\beta_1 l = \pi$ $\beta_2 l = 2\pi$ $\beta_3 l = 3\pi$ $\beta_4 l = 4\pi$
Free-free	$\cos \beta_n l \cdot \cosh \beta_n l = 1$	$W_n(x) = C_n[\sin \beta_n x + \sinh \beta_n x + \alpha_n(\cos \beta_n x + \cosh \beta_n x)]$ where $\alpha_n = \left(\frac{\sin \beta_n l - \sinh \beta_n l}{\cosh \beta_n l - \cos \beta_n l}\right)$	$ \beta_1 l = 4.730041 $ $ \beta_2 l = 7.853205 $ $ \beta_3 l = 10.995608 $ $ \beta_4 l = 14.137165 $ ($ \beta l = 0 $ for rigid-body mode)
Fixed-fixed	$\cos \beta_n l \cdot \cosh \beta_n l = 1$	$W_n(x) = C_n[\sinh \beta_n x - \sin \beta_n x + \alpha_n(\cosh \beta_n x - \cos \beta_n x)]$ where $\alpha_n = \left(\frac{\sinh \beta_n l - \sin \beta_n l}{\cos \beta_n l - \cosh \beta_n l}\right)$	$\beta_1 l = 4.730041$ $\beta_2 l = 7.853205$ $\beta_3 l = 10.995608$ $\beta_4 l = 14.137165$
Fixed-free	$\cos \beta_n l \cdot \cosh \beta_n l = -1$	$W_n(x) = C_n[\sin \beta_n x - \sinh \beta_n x$ $-\alpha_n(\cos \beta_n x - \cosh \beta_n x)]$ where $\alpha_n = \left(\frac{\sin \beta_n l + \sinh \beta_n l}{\cos \beta_n l + \cosh \beta_n l}\right)$	$ \beta_1 l = 1.875104 $ $ \beta_2 l = 4.694091 $ $ \beta_3 l = 7.854757 $ $ \beta_4 l = 10.995541 $
Fixed-pinned	$\tan \beta_n l - \tanh \beta_n l = 0$	$W_n(x) = C_n[\sin \beta_n x - \sinh \beta_n x + \alpha_n(\cosh \beta_n x - \cos \beta_n x)]$ where $\alpha_n = \left(\frac{\sin \beta_n l - \sinh \beta_n l}{\cos \beta_n l - \cosh \beta_n l}\right)$	$ \beta_1 l = 3.926602 $ $ \beta_2 l = 7.068583 $ $ \beta_3 l = 10.210176 $ $ \beta_4 l = 13.351768 $
Pinned-free	$\tan \beta_n l - \tanh \beta_n l = 0$	$W_n(x) = C_n[\sin \beta_n x + \alpha_n \sinh \beta_n x]$ where $\alpha_n = \left(\frac{\sin \beta_n l}{\sinh \beta_n l}\right)$	$ \beta_1 l = 3.926602 $ $ \beta_2 l = 7.068583 $ $ \beta_3 l = 10.210176 $ $ \beta_4 l = 13.351768 $ $ (\beta l = 0 \text{ for rigid-body mode)} $