Ec2147, Spring 2021

Professor Bryan Graham

Problem Set 1: part (a)

Due: March 16th, 2021

Problem sets are due by 5PM EST. You may work in groups (indeed I encourage you to all work together), but each student should turn in their own write-up.

Helpful reading: Newey (1990), Brown and Newey (1998) and Graham (2011). For an alternative, and highly elegant approach, see Chamberlain (1987).

Let $Z = (X^0; Y)^{\theta}$ be a vector of modeling variables and $fZ_ig_{i=1}^1$ an independent and identically distribution random sequence drawn from unknown distribution F_0 . The sole prior restriction on F_0 is that, for some known function (Z_i) and unknown parameter $0 \ge 0$ R^K

$$E[(Z; 0)] = 0$$
:

Assume that dim $((Z_{i,0})) = J > \dim(0) = K$:

Let $a(Z; \cdot)$ be some known function of Z and \cdot . The goal is to exciently estimate the mean

$$_{0} = E[a(Z; _{0})]:$$

1. Let $X = X^{\theta}$; W' with W a binary treatment indicator (also partition = $^{\sim}$; $^{\theta}$) and assume that

$$\Pr(Y = 1/X) = X^{\theta^{-}} + W :$$

Let $I = E[YjX 2X_I]$ for I = 1; ...; L. Assume that these conditional means are known to the econometrician (e.g., from register data). The target estimand is

$$_{0}=\mathsf{E}^{h}\qquad x^{\theta^{\sim}}+\qquad x^{\theta^{\sim}}:$$

Outline a plausible empirical setting to which you could adapt the above components. Show how your setting is accommodated by the general setup outlined above.

- 2. Calculate the semiparametric variance bound, say / (₀) ¹, for ₀. You may use either the approach outlined in Newey (1990) (and also lecture) or that of Chamberlain (1987).
- 3. Show that the semiparametric variance bound, say / ($_0$) 1 , for $_0$ is

where $_{\mbox{M}^2a} = \mbox{E} \left(a(Z; \ _0) \right) \ _0 \right) \left(a(Z; \ _0) \ _0 \right)^{\theta}$; $_a = \mbox{E} \left(a(Z; \ _0) \ _0 \right) \ (Z; \ _0)^{\theta}$, $_0 = \mbox{E} \ (Z; \ _0) \ (Z; \ _0)^{\theta}$, $_0 = \mbox{E} \ (Z; \$

4. Assume that [^] is an e cient estimate of ₀.

(a) Is
$$^{\wedge} = \frac{1}{N} \bigcap_{i=1}^{P} a Z_i$$
; $^{\wedge}$ e cient? Explain.