

Motivation

This talk will explain

- definition of exposure parameters
- setting up an exposure
- details on exposure parameters

Writing strategy

Raith uses

- Round beam with Gaussian-shaped profile
- moved along line = name vector scan

Dose Definition for Area Exposure

Rule: To clear an area, a certain number of electrons have to hit the sample within that area

= clearing area dose

number of electrons

∞ beam current × dwell time

$$= T_{\text{dwell}} \times I_{\text{beam}}$$

area

∝ step size²

 $= S^2$

AreaDose =
$$\frac{I_{beam} \cdot T_{dwell}}{s^2}$$
 Unit is $\mu As/cm^2$

Dose Definition for Single Pixel Lines

Rule: To clear a line, a certain number of electrons have to hit the sample within a certain length = clearing line dose

number of electrons

∞ beam current × dwell time

$$= T_{dwell} \times I_{beam}$$

Line Dose =
$$\frac{I_{beam} \cdot T_{dwell}}{s}$$
 Unit is pAs/cm

Dose Definition for Dots

Rule: To clear a dot, a certain number of electrons have to hit the sample within a certain point = clearing dot dose

number of electrons

$$= T_{\text{dwell}} \times I_{\text{beam}}$$

$$Dot\,Dose = I_{beam} \cdot T_{dwell} \quad \text{ Unit is pAs}$$

Quantities defined by ...

beam current

defined by column, i.e. filament, aperture, voltage, ...

dose

defined by process, i.e. resist, developer, temperature, voltage ...

dwell time and step size

exposure parameters defined by your needs, e.g. accuracy, GDSII, throughput, ...

Quantities are used ...

)
	5
U))
>	<
	4

<u>Paramter</u>	Area	Line	Dot
beam current	yes	yes	yes
dose	yes	yes	yes
dwell time	yes	yes	yes
step size	yes	yes	no
selectable	3	3	2
determined	1	1	1

under the condition to clear or equivalently fulfill the dose equation.

Exposure Window

Main window to set up all exposure parameters calculated step size and dwell time _ | 🗆 | × | Exposure 50,0000 Writefield Size: Working area μm 0.0200 µm <=> |25 Pixel. Area Step Size: <u>C</u>alculator.. 0.001124 ins. Area Dwell Time: 0.0352 **l**m. vetalis... lo.019775. Dwell Time Exposed layer... r<mark>in</mark>si **Calculator** using 140.449438 Dot Dwell Time r<mark>i</mark>nsi clearing dose and beam current

Calculator Window

Exposure Setup

PLS Exposure Properties 1

Exposure Properties Database: C:\Raith150\USER\ANDY\GDSII\DEMO.CSF Structure: Chip Exposed Layer: * -200.000 μm 500.000 μm Working Area: to -200.000 μm $500.000 \, \mu m$ -5.000000 mm 0.000000 mm Right mouse click -50,000 µm Writefield Size: open properties Exposure Parameter >> Cancel OΚ Positionlist NONAME.pls _ | 🗆 | × ■ 🕶 Include: Exclude: none U/mm lV/mmAttribute Comment Template **Options** -5.000000 0.000000 XM **• 1**0 UV. Chip 1: 1 1 Lot ID: WaferID: Slota

PLS Exposure Properties 2

PLS Exposure Properties 3

PLS Exposure Properties 4

AL

PLS Exposure Properties 5

$\mathbf{\Psi}$
S
0
Q
×
Ш
Ш

Writefield Size:	50.000 μm		
Exposure Parameter	<<	Cancel	ОК
<u>A</u> rea Step Size:	0.0200 μm	☑ Default	dwell time at each
Area Dwell Time:	0.001236 ms	☐ Default	
Lines:	Enabled 🔻	☑ Default	position can be re- scaled using dose
Li <u>n</u> e Step Size:	0.0352 μm	☑ Default	factor
Line D <u>w</u> ell Time:	0.021753 ms	Default	lactor
<u>D</u> ots:	Enabled 🔻	☑ Default	
Dot Dwell Time:	154.4 <mark>94382 ms</mark>	☐ Default	Calculator
Dose Factor:	1.000		<u></u>

Additional Parameters 1 - Details

- Loops
- Line mode
- Meander mode
- Settling time
- Flyback time
- Circular mode

opens dialog to set additional parameters

Additional Parameters 2 - Details

- Loops
- Line mode
- Meander mode
- Settling time
- Flyback time
- Circular mode

Loops

Each write field is repeated n times.

(0 means infinite number of loops)

Line mode versus meander mode

Line mode = element is the **same** direction.

Meander mode = element filled with each line from is filled with each line from the **opposite** direction.

See talk "Exposure parameters" for hints which mode to use.

Settling and Flyback Time

Settling time = waiting period at beginning of each element

Flyback time = waiting period between lines.

Please note, in our software Flyback time = settling time × flyback factor

Circular Mode

Circular mode =

- round elements are decomposed into dots
- dots are exposed in concentric rings

22

vertices are not used

Version 3.0

- area step size, dwell time
- line settling time

Version 4.0

only area parameters

