RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

(1) N° de publication : (à n'utiliser que pour les commandes de reproduction)

2 718 024

(21) N° d'enregistrement national :

94 03805

61) Int CI : A 61 K 31/715

@ DEMANDE DE BREVET D'INVENTION

A1

22 Date de dépôt : 30.03.94.

@ Priorité :

Domandour(s): UNIVERSITE PARIS VAL DE MARNE — FR.

(2) Inventeur(s): Barritault Danis, Caruelle Jean-Pierre, Homebeck William et Meddahl Anne.

(3) Date de la mise à disposition du public de la demande : 06.10,95 Bulletin 95/40.

(5f) Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la lin du présent fascicule.

60 Références à d'autres documents nationaux apparentés :

(73) Titulaire(s) :

(4) Mandataire : Cabinot Harle & Phelip.

(54) Médicament et composition pharmaceutique pour le traitement de l'inflammation.

57) Utilisation d'au moins un polymère ou un biopolymère, appelés HBGFPP, protégeant spécifiquement les facteurs de croissance des familles des FGF et TGFbêta de la dégradation typolique et n'inhibant pas de manière significative la coagulation, pour la fabrication d'un médicament pour la traitement des inflammations.

FR 2 718 024 - A1

La présente invention a pour objet l'utilisation de polymères ou de biopolymères pour la préparation d'un médicament pour le traitement de l'inflammation.

Elle est en outre relative a une composition contenant ces polymères et destinée à un tel traitement.

L'inflammation est une manifestation particulièrement complexe qui s'installe à la suite d'une lésion tissulaire spontanée ou traumatique. Caractérisée par une modification de perméabilité capillaire. elle s'accompagne infiltration de composants sanguins, moléculaires cellulaires, qui se manifeste généralement par des érythèmes et des pedèmes. De nombreux médiateurs chimiques sont libérés ou activés pendant ce processus au cours duquel des éléments du sang, en particulier des globules blancs s'accumulent et relarquent différentes activités lytiques. De nombreuses substances sont employées comme agents anti-inflammatoires. Elles peuvent grossièrement être classées en stéroïdiens et non stéroïdiens.

10

15

20

25

30

Les facteurs de croissance appartenant à la famille des Heparin Binding Growth Factors (HBGF) sont naturellement relargués dans le cas d'une lésion ou d'un traumatisme tissulaire soit directement par ces tissus au niveau de leurs cellules constitutives , à partir des éléments de la matrice extracellulaire qui représente un site de stockage naturel de ces molécules, soit par les cellules circulantes et en particulier les cellules de l'inflammation. La réaction inflammatoire s'accompagne d'une augmentation locale des concentrations en facteurs de croissance dont certains appartiennent à la famille des HBGF.

Le sucrose sulfate ester et son sel d'aluminium le sucralfate sont des produits décrits et utilisés comme agents anti-inflammatoires (Brevet US N'3,432,489) et dans différentes associations et compositions pharmaceutiques décrites dans une série de brevets (US 4.975.281, 4.885.281,

US 5.013.557, US 5.164.379, US 5.196.405, US 5.240.710 et DK 102.488 et DK 505.588).

D'autres composés ont été décrits comme des agents anti-inflammatoires: la suramine, composant organique sulphonaté par LAROCCA R et coll. (US 7479817), des compositions contenant des mélanges de bas poids moléculaires de l'héparine par COHEN IR et coll. (WO9219249), des fragments d'héparine présentant des effets inhibiteurs du système du complément par EKRE H P et coll. (WO9202232), des produits dérivant par modifications chimiques de protéines glycosylées par MIYAZAKI K et coll. (EP464E98), des protéoglycanes heparane sulfate comme le syndecan par BERNFIELD M et coll. (WO9305167), des oligosaccharides dérivés de dermatanes sulfates par BIANCHINI P et coll. (WO9305075).

10

15

20

25

30

La synthèse d'une autre famille de polymères, appelés CMDES (Carboxy Méthyl Dextrane Benzylamine Sulfonate) a été décrite dans le brevet FR 2 461 724 ainsi que dans le brevet US 4 740 594. Certains de ces polymères miment l'héparine et peuvent être utilisés en tant que produits de remplacement de l'héparine du plasma, grâce à leurs propriétés anticoagulante et anticomplément.

Parmi l'ensemble des polymères CMDBS, certains miment une autre propriété de l'héparine qui consiste en une stabilisation, protection et potentialisation in vitro de l'activité biologique des facteurs de croissance de la famille FGF . (Tardieu et coll , Journal of Cellular Physiology, 1992, 150 pages 194 à 203).

Le brevet FR 2 644.066 décrit l'utilisation de certains CMDBS associés aux FGF pour la cicatrisation de la peau et de la cornée. Des expériences ont été réalisées en provoquant une blessure cutanée à l'aide d'un emporte pièce de 6 mm de diamètre chez le rat. Dans cet exemple, le CMDBS associé au FGF 2 permet d'obtenir un effet net sur la vitesse et la qualité de la réparation de la peau.

Il ressort donc de l'analyse de l'état de la technique que des polymères de type CMDBS ont déjà été utilisés en association avec des facteurs de croissance sur certaines lésions d'un type bien précis de tissu, le tissu cutané.

Du fait de l'imprévisibilité des effets thérapeutiques d'une molécule donnée, il n'était pas évident que ces polymères, seuls , et non associés à des facteurs de croissance, puissent avoir un effet sur d'autres tissus que ceux de la peau.

5

10

15

20

25

30

En effet, il est bien connu que les différents tissus du corps humain ou animal présentent des spécificités tant structurelles que fonctionnelles qui rendent impossible toute prédiction quant à l'effet de la molécule, connue pour son effet sur la cicatrisation du tissu cutané, sur des tissus de diverses origines soumis à une inflammation.

De même , il est bien connu qu'il est impossible de prédire l'activité in vivo d'une molécule sur un tissu particulier à partir de résultats obtenus in vitro sur un modèle expérimental spécifique.

De manière surprenante, il a été trouvé, selon l'invention, que certains polymères définis comme appartenant à la classe des HBGFPP et en particulier des CMDBS avaient un effet sur l'intensité de la réaction inflammatoire qu'ils diminuent de façon très marquée tout en accélérant les processus de réparation, de régénération et de restauration de tissus lésés. A une augmentation de la vitesse et de la qualité de la cicatrisation des lésions des tissus du tractus digestif, des tissus cutanés, des tissus osseux, les HBGFPP associent des effets anti-inflammatoires.

Il a en outre été montré que des doses très faibles de ces polymères permettent d'obtenir des effets thérapeutiques.

La présente invention a pour objet une utilisation d'au moins un polymère ou d'un biopolymère, appelés HBGFPP, protégeant spécifiquement les facteurs de croissance des familles des FGF et TGF bêta de la dégradation trypsique et n'inhibant pas de manière significative la coagulation, pour la fabrication d'un médicament pour le traitement des inflammations de divers tissus.

5

10

15

20

25

30

35

Un tel polymère présente particulièrement une activité anti-coagulante inférieure à 50 unités internationales par mg de polymère mesurée selon Maillet et al (Mol. Immunol, 1988, 25, 915-923). Avantageusement, il potentialise les FGF in vitro. Préférentiellement, il n'active substantiellement pas le système du complément, c'est-à-dire qu'il possède une activité anti-complément supérieure à 0,5 µg pour le CH50 (selon Mauzac et al., Biomaterials, 6, 61-63, 1985).

Avantageusement, ledit polymère ou biopolymère est un polysaccharide qui peut être composé principalement de résidus glucose.

Il peut aussi comprendre des résidus glucosamine et/ou d'acide uronique, particulièrement sous la forme de dimère glucosamine-acide uronique.

Des polysaccharides particulièrement préférés sont des dextranes substitués, des qlycosaminoglycanes éventuellement associés à un lipide, un peptide ou un protide ou des sulfates de ces polymères.

Un tel polymère présente avantageusement un poids moléculaire d'au moins 10 kDa et préférentiellement d'environ 40 kDa.

La présente invention est en outre relative à une

composition pharmaceutique contenant ces polymères.

Les polymères et/ou biopolymères peuvent être sélectionnés à partir de substances naturelles qui peuvent ensuite être éventuellement modifiées par additions de groupements chimiques appropriés, ou encore être obtenus entièrement par synthèse . Ces polymères naturels, semi synthétiques ou entièrement synthétiques sont ensuite sélectionnés sur la base de leurs capacités à interagir spécifiquement avec plusieurs facteurs de croissance notamment

ceux de la famille des FGF et des TGF bēta. Ils peuvent être également sélectionnés pour leurs capacité à protéger ce ou ces facteurs contre des dégradations protéolytiques, et à agir comme des inhibiteurs d'activités protéinasiques impliquées dans le processus inflammatoire comme l'élastase leucocytaire, et la plasmine par exemple, et pour leur activité anticoagulante. Ces polymères sont désignés sous le sigle générique de HBGFPP (heparin binding growth factor protectors and promotors). Deux prototypes de ces polymères ou bio polymères sont donnés comme exemples ainsi que les procédés et critères de sélection de ces polymères.

10

15

20

25

30

Le premier exemple de HBGFPP appartient à la famille des CMDBS qui sont des produits connus, à savoir des dextranes biospécifiques fonctionnalisés, substitués par des résidus carboxyméthyle, benzylamide et benzylamine sulfonate. Ces polymères illustrent l'obtention de HBGFPP à partir de produits naturels (dextrans) subséquemment chimiquement substitués. Le deuxième exemple décrit la sélection de produits complètement naturels comme les glycosaminoglycanes sulfates purifiés à partir d'extraits tissulaires.

Ces deux exemples illustrent les capacités de ces HBGFPP à d'interagir, à stabiliser, à protéger et à potentialiser les facteurs de croissances des familles FGF et TGF bêta et leur utilisation dans une composition pharmaceutique permettant le traitement d'inflammations de toutes origines.

Les différents exemples décrits dans cette invention montrent qu'en plus des effets cicatrisants propres des CMDBS sur différents types de régénération ou de cicatrisation tissulaire, l'intensité de la réaction inflammatoire locale est très fortement diminuée.

On entend, dans la présente demande, par traitement toute opération curative ou préventive effectuée pour la prophylaxie ou la résorption d'inflammations faisant intervenir en particulier des activités protéinasiques comme l'élastase leucocytaire, la plasmine, les métalloprotéinases en supplément d'effets stimulateurs de la régénération et de la cicatrisation tissulaire.

5

10

15

Les exemples ci-après illustrent une diminution de l'intensité de la réaction inflammatoire observée dans des tissus lésés traités par une fraction efficace de HBGFPP par exemple de CMDBS associé à un ou plusieurs véhicules compatibles et pharmaceutiquement acceptables avec le type de lésion. La composition pharmaceutique peut être également associée à des agents comme par exemple des antibactériens, antifongiques. des vitamines ou analoques, antiseptiques, des analgésiques, des agents protecteurs des ravonnements solaires et d'autres agents anti-inflammatoires ou tous autres types de composés associés pour leur effets spécifiques et administrée sous toute formes galléniques pharmaceutiques acceptables et compatibles avec le type de traitement envisagé.

Avantageusement, une telle composition est conçue pour 20 être directement absorbée par voie orale, déposée sur la lésion ou injectée si celle ci est directement accessible notamment dans les lésions sous cutanées, buccales ou rectales ou encore lors des interventions chirurgicales en déposant ou injectant les tissus. La dose unitaire est de 10 à 2500 µg CMDBS ou de HBGFPP par ml ou cm2 de tissu à traiter sous un 25 volume adapté à la spécificité de la pathologie. La dose de produit CMDBS ou HBGFP utilisée correspond selon la surface de la plaie à une fraction d'une solution de départ de 10 à 2500 μφ par millilitre (ce qui pour une application locale sur des 30 plaies courantes implique une dépose rarement supérieure à quelques centaines de microlitres de la solution) cette dose étant appliquée une ou deux fois par 24 heures. Les compositions utilisées de sucralfate sont de 0.01 à 5% (selon le brevet US N° 5 196 405) soient des concentrations au moins 10 fois supérieures à celles décrites dans la présente invention et les effets décrits dans tous les exemples de ce brevet US N'5 196405 sont obtenus à partir de compositions 50 milligrammes par millilitre.

5

10

15

20

25

Le véhicule peut être du sérum physiologique ou des tampons tels que le PBS contenant NaCl 0.15 molaire ou toute autre sorte de solution compatible et non irritante pour le tissu lésé. Des formulations permettant d'obtenir des solutions pâteuses ou en gel ou en aérosol selon les techniques courantes connues de l'homme de l'art peuvent être proposées selon le type et l'accessibilité de la lésion.

Les domaines d'applications de ces composés correspondent sur un plan thérapeutique ou prophylactique aux pathologies associées aux activités de l'élastase et/ou de la plasmine.

Les principales pathologies associées à une activité de type élastase recouvrent les principaux domaines suivants :

- les lésions cutanées incluant les lèvres, la cavité buccale, la gencive (les maladies parodontales), les muqueuses par exemple vaginale et les surfaces anales pour des éruptions superficielles inflammatoires, pruritiques, érythémateuse, l'acné ou les rosacées comme l'inflammation de type séborrhée ou pustulaire, les furoncles, les abcès;
- les infections bactériennes, fungiques, virales du revêtement cutané comme candida ou herpès,
 - les dermatites à l'état aigü ou chronique en réponse à différents agents comme les coups de soleil ou brûlures superficielles.
- les réactions inflammatoires en réaction à des corps
 étrangers comme des pansements, des cathéters et les hémorroides;
 - les vulvites ou prurits périanaux;
 - les pathologies et désordres habituels de la sphère oto-rhino-laryngologique et pulmonaires comme les sinusites ou

les rhinites allergiques, aiguês ou chroniques, les otites, les réactions inflammatoires pulmonaires, les oedèmes, les emphysèmes, les fibroses, des réactions secondaires à des bronchites, l'asthme;

 les pathologies oculaires en rapport avec des désordres de l'inflammation des produits de beauté allergisants, les conjonctivites, kératites ponctuées, les ulcères;

5

10

15

20

25

30

- les maladies liées à des désordres immunologiques ou viraux comme les arthrites et la polyarthrite rhumatoïde, les synovites, la goutte et différentes formes d'inflammation arthritiques, le lupus érythémateux, l'anaphylaxie, les septicémies bactériennes, le SIDA;
 - les maladies parasítaires comme la toxoplasmose, le cytomegalovirus, la malaria, la polyomélyte, etc.;
 - le traitement des réactions inflammatoires des organes comme les glomérulonéphrities par exemple pour le rein, ou celles associées à des procédures chirurgicales supposant ou non l'implantation de matériaux étrangers à l'organisme;
- les pathologies vasculaires avec notamment les anévrismes athéromateux ou celles liées au vieillissement comme celle de type artériocléromateux.

Les principales pathologies associées aux activités de type plasmine recouvrent en outre les domaines de la progression tumorale et des complications induites.

L'invention sera illustrée, sans être aucunement limitée par les exemples qui suivent, dans lesquels:

La figure l représente la formule du CMDBS.

La figure 2 illustre la potentialisation de l'activité biologique des FGF1 (2a) et FGF2 (2b) par l'héparine, le mésoglycane et le sulodexide. La mesure de l'activité biologique est effectuée sur des cellules CCL33 par la mesure de l'augmentation de l'incorporation de thymidine tritiée en fonction de la dose de FGF1 et de FGF2 ajoutée seule ou en présence de 20 µg d'héparine, de 10 µg de mésoglycane, ou de 10µg de sulodexide.

Les figures 3 et 4 illustrent l'effet protecteur de l'héparine, du mésoglycane et du sulodexide contre une dégradation thermique du FGF1(3) et FGF2 (4). Les échantillons de FGF sont incubés seuls ou en présence de 20 μ g d'héparine, de 10 μ g de mésoglycane ou de 10 μ g de sulodexide à 20°C (a) et 37°C (b) pendant 1, 7, 15, 30 jours. La mesure de l'activité biologique présentée en abscisse correspond aux valeurs des unités de stimulation (ED50) de l'incorporation de thymidine tritiée dans des cellules CCL39.

10

15

20

25

30

La figure 5a illustre l'effet protecteur de l'héparine, du mésoglycane et du sulodexide contre une dégradation protéolytique du ¹²⁵I-FGF1. La digestion protéolytique a êté effectuée à 37°C et les échantillons ont été séparés par électrophorèse sur gel de polyacrylamide à 18%. Les gels sont séchés et autoradiographiés. La première piste contient le ¹²⁵I-FGF1 seul, dans la deuxième (piste 2) le ¹²⁵I-FGF1 est incubé en présence de trypsine et d'héparine (piste 3), de mesoclycan (piste 4) ou de sulodexide (piste 5).

La figure 5b illustre l'effet protecteur de l'héparine, du mésoglycane et du sulodexide contre une dégradation protéolytique du ¹²⁵1-FGF2. La disposition des pistes est identique à celle présentée pour le ¹²⁵1-FGF1 en 5a.

Les figures 6A et 6B représentent respectivement des tissus osseux présentant une inflammation traitée par un pansement de collagène imbibé de sérum physiologique (6A), et le même pansement imbibé de CMDBS (6B).

Les figures 7A à 7C d'une part et 7D à 7F d'autre part représentent respectivement des coupes de plaies cutanées traitées avec du collagène imbibé de CMDBS et du collagène imbibé d'une solution physiologique.

La figure 8 illustre l'expression de métallo-

protéinases à J = 5 (pistes 1 à 11) et J = 6 (pistes 12 à 17) dans des tissus sains (pistes 1 et 12), des tissus cicatriciels traités par le CMDBS (pistes 2 à 4 et 13 à 15), et des tissus cicatriciels traités par de la solution physiologique (pistes 5 à 11, 16 et 17).

EXEMPLE 1: Préparation et sélection des CMDBS

al Préparation des CMDBS

10

15

20

25

Les CMDBS sont des dextranes substitués par des groupements carboxymethyl, benzylamide et benzylamide sulfonate. La méthode de synthèse des CMDBS peut être celle décrite par M.MAUZAC et J.JOSEFONVICZ dans Biomaterials 1984.5.301-304.

Selon ce procédé, le carboxyl méthyle dextrane (CMD) est préparé à partir de dextrane par substitution de quelques unités glycosylées avec des groupes carboxyliques sur le carbone en position 5 ou 6.

Dans une deuxième étape, la benzylamide est couplée aux groupes carboxyliques pour former le carboxyméthyl-benzylamide dextrane (ou CMBD). Enfin quelques noyaux aromatiques du benzylamide sont sulfonés pour aboutir au carboxyméthyle dextrane benzylamide sulfonate ou CMDBS.

Les sels de sodium de ces dérivés sont ultrafiltrés, lyophilisés et dissous dans le tampon approprié avant utilisation.

La formule générale des CMDBS est représentée sur la figure 1.

Les CMDBS possèdent une distribution statistique des différents substituants. Les pourcentages pour chaque type de CMDBS sont déterminés par les méthodes classiques.

30 b) Sélection des CMDBS

i:Tests de protection et de stabilisation des FGFs

Lors de la synthèse des CMDBS il est possible de contrôler le taux de substitution de chacun des groupements par modification des conditions de la réaction de substitution. Le contrôle des paramètres comme la température, le temps de réaction. les concentrations relatives des constituants et le nombre de réaction de substitution etc... permettent d'obtenir un très grand nombre de polymères substitués. La substitution des hydroxyles par le carboxymethyl sur les carbones en position 5 et 6 permet d'obtenir des taux de carboxyméthylation allant de 0 à 200% (100% pour chacun des carbones en position 5 et 6). Le groupement carboxyméthyl peut être à son tour partiellement ou totalement utilisé pour la fixation de la benzylamide. Les groupes benzylamides peuvent être partiellement ou totalement utilisés pour la sulfonation. Les dextranes substitués fonctionnalisés utilisés selon l'invention sont parmi ceux spécialement décrits dans le brevet français n°2.461.724. Outre la capacité à stabiliser et protéger les facteurs de croissance de la famille FGF comme décrit dans la publication de Tardieu et coll J.Cell.Physio.1992 150 p 194 à 203 ; et dans le bravet Français N°2,461,724; le CMDES sélectionné doit pouvoir interagir avec au moins un membre de la famille des facteurs de croissance de la famille TGF bêta selon une méthode d'évaluation décrite ci-dessous et protéger les TGF bêta contre une protéolyse.

5

10

15

20

25

30

ii: Evaluation des capacités d'interactions entre CMDBS et les facteurs de croissance de la famille TGF bêta.

Afin de mesurer la capacité de certains CMDBS à interagir avec les membres de la famille TGF bêta et de par cette interaction protéger les TGF bêta, un test de criblage a été établi. Ce test consiste à mesurer la capacité du CMDBS sélectionné à permettre au TGF bêta de garder son activité biologique malgré un traitement protéasique.

Dans l'exemple ci dessous le CMDBS utilisé est le lot 26.2 défini par un taux de substitution de 110% de motifs carboxyméthyles, 3,6% de motifs benzylamides et 36,5% de motifs sulfonates et possède une activité anti coagulante de 4 UI/mg (Unités Internationales). L'activité anti-complèment de ce lot est de 1,1 µg de CH50, mesurée selon Mauzac et al (précédemment cités).

L'héparine utilisée comme témoin provient des établissements Sanofi.(Institut Choay) et présente une activité anticoaqulante de 175 UI/mg

5

10

15

20

25

30

Le TFG bêta 1 est préparé à partir de plaquettes sanguines humaines selon le protocole décrit dans de nombreuses publications et couramment utilisés par l'homme de l'art, par exemple dans la publication Growth Factors and their Receptors 1992 , vol. 1 PP 419-472 par A. Roberts et M.Sporn édité par A. Roberts et M.Sporn et publiée par Springer Verlag Berlin. Le test d'activité biologique du TGF bêta utilisé dans cet exemple est celui de l'inhibition de croissance des cellules CCL64 (provenant de l'American Tissue Culture Collection). Cette inhibition est mesurée par la capacité du TGF b à inhiber l'incorporation de Thymidine tritiée d'une manière dose dépendante dans ces cellules CCL64 stimulées par le facteur de croissance FGF ou par du sérum de veau foetal selon le protocole décrit par Van Zolen dans Procress in Growth Factor Resarch, 1990 .2 p. 131 à 152. Le TGF bêta est utilisé à deux doses, l'une correspondant à la capacité d'inhibition de 50% de l'incorporation de Thymidine tritiée (définie comme l'unité d'activité inhibitrice) l'autre, correspondant à la capacité d'inhibition de 100%. Dans cet exemple les valeurs obtenues sont de 250 pg de TGF bêta pour obtenir l'unité d'activité d'inhibition sur les cellules CCL64 cultivées dans 1 ml de milieu de culture. Le 100% d'inhibition est obtenu avec îng de TGF bêta dans 1 ml de milien de culture.

Un échantillon de 50ng de TGF bêta dans du tampon phosphate salin contenant 0.1% de serum albumine bovine (provenant de la société SIGMA à Saint Louis USA) est incubé seul, ou associé soit à 5000 uq de CMDBS, soit à 5000 µq d'héparine, avec ou sans 500 µg de trypsine. Le volume final de la solution incubée est ajusté à 1 ml et l'incubation est sifectuée à 37°C durant un temps variable (10 minutes dans l'exemple décrit tableau 1).

5

10

15

20

25

30

Des échantillons d'un volume de 20 ul de chacune des réactions d'incubation sont prélevés et ajoutés aux cellules CCL64 cultivées dans des plateaux de 24 puits contenant chacuns un millilitre de milieu de culture selon le protocole décrit par E.Zohlen mentionné ci dessus. Dans ces conditions la concentration finale de TGF bêta par puits est de lng/ml. La tableau 1 résume les résultats obtenus dans diverses conditions et montre l'effet protecteur du CMDBS. Ainsi après 10 mn d'incubation à 37°C, 75% de l'activité biologique du TGF bêta est encore présente, alors que l'héparine qui pourtant peut se fixer au TGF bêta (Mac Caffrey et al., J. of Cell Physiology, 1992, vol.52, 430-440) ne protège pas le TGF bêta contre cette dégradation protéclytique (il reste moins de 20% d'activité biologique). Il est à rappeler que dans le cas des FGFs l'héparine assure une protection contre la protéclyse induite par la trypsine. (Tardieu et al., Journal of Cellular Physiology, 1992, 150: 194-203).

Il a été vérifié que le CMDBS n'avait pas de pouvoir inhibiteur sur l'activité de la trypsine (tableAU 2). Ains1,10 µg de trypsine ont été incubés soit avec un substrat (S.87 fourni par la société Serbio, Paris et utilisé selon les recommandations de ce fournisseur) ou soit avec ce substrat et un inhibiteur de la trypsine tel celui provenant du soja (comme le Soyabean trypsin inhibitor ou STI de chez Sigma) ces incubations étant faites en l'absence ou en présence de quantités variables de CMDBS (lot AM26). L'activité enzymatique de la trypsine a été mesurée par absorption spectrophotométrique du produit de transformation du S 87 en fonction du temps d'incubation.

Exemple 2: sélection d'autres HBGFPP :

Deux préparations commerciales de protéoglycosaminoglycane et glycosaminoglycanes ont été sélectionnées selon leurs capacités à interagir avec les facteurs de croissance de la famille des FGF ainsi qu'avec ceux de la famille des TGF bêta.

Le mésoglycane et le sulodexide ont été fournis par la Société Sigma Chemical Co , Saint Louis MO USA. Leurs propriétés sont résumées dans le tableau 3.

Ę

10

15

20

25

30

Les cellules utilisées dans cet exemple sont les cellules CCL39 qui proviennent de l'American Tissue Culture Collection. Les conditions de culture et de tests de mesure d'activité biologique des FGFs sont les mêmes que celles décrites dans la publication Tardieu et coll J.Cell.Physiol. 1992. Les facteurs de croissance FGF utilisés sont les formes recombinantes FGF1 et FGF 2.

a) Effet du mésoglycane et sulodexide sur l'activité biologique des FGFs in vitro.

Dans ces expériences le FGF1 ou 2 est utilisé à une dose correspondant à la dose efficace (notée ED50) pour induire une stimulation de l'activité biologique de 50% de la dose induisant la stimulation maximale .L'activité biologique est mesurée par la capacité d'induire une augmentation de l'incorporation de thymidine tritiée dans les cellules selon les protocoles largement décrits dans de nombreuses publications dont celle de Tardieu et coll mentionnée précédemment et également dans le brevet français N°2 644 066.

Dans cet exemple l'ED50 est de 5 ng/ml pour le FGF1 et de 3 ng/ml pour le FGF 2, valeurs mesurées expérimentalement (Figs.2a et 2b). La même expérience de stimulation en fonction de la dose de FGF est effectuée en présence de 10 µg/ml de Mésoglycanee ou de Sulodexide ou 20 ug/ml d' Héparine. La figure 2 montre que dans ces conditions l'ED50 devient 0.4 ng/ml et 0.2 ng/ml respectivement pour les FGF1 et FGF2 en présence de ces doses de mésoglycanee ou d'Héparine. Outre cette capacité à potentialiser l'activité biologique des FGFs les HBGFPP protègent les FGFs contre les dégradations thermiques ainsi que contre l'inactivation induite par l'action protéolytique de la trypsine. (Figs. 4 et 5). De la même manière ces HBGFPP protègent FGFl et 2 contre une inactivation induite par l'activité protéolytique de la trypsine (Figs.5a et 5b).

 Effets protecteurs du mésoglycane, du sulodexine, du dexhrane, du dextrane sulfate et de la sucrase vis-à-vis des TGFbêta.

Plusieurs autres composés ont été évalués : le dextrane sulfate (Sigma Chemical, de poids moléculaire 40.000, le dextrane ayant servi à la synthèse du CMDBS (également de chez Sigma) de la sucrase ou sucrose octasulfate (fournie par D. Bar Shalom, Société BURH MEDIC, au Danemark). Certains de ces composés ont été choisis car ils protègent et stabilisent les FGF tels que la sucrase se confère au brevet US N° 5202311 ou le dextrane sulfate se confère au brevet japonais n° 138 907/88). Le dextran est celui qui a servi a la synthèse du CMDBS AM26.

L'expérience de protection de l'activité biologique des TGFbêta a été réalisée de la même manière qu'avec les CMDBS ainsi que décrit dans l'exemple 1 ii. Le mélange d'incubation contient 50 ng de TGF bêta (dans 0.1 % d'albumine sérique de bovin) et de la trypsine (500 µg). Le Mésoglycanee ou le Sulodexide ou le dextran sulfate ou le dextran ou la sucrase sont utilisés à la dose de 5000 µg.

L'activité biologique du TGFbêta est mesurée comme décrit ci-dessus après une dilution de 50 fois et en utilisant des cellules CCI64

Les résultats sont présentés dans le tableau 4.

Ces résultats illustrent qu'à l'exception de certains CMDBS capables de répondre aux deux critères de sélection visà-vis des FGF et TGFbēta seul parmi les autres composés testés le mésoglycane présente une activité protectrice significative

30

25

10

15

20

pour les TGFbêta.

5

10

15

20

25

3.0

osseux.

EXEMPLE 3: Effets inhibiteurs in vitro des CMDBS sur l'activité de l'élastase leucocytaire et sur la plasmine.

Les pouvoirs d'inhibition de différents CMDBS et de leurs composés intermédiaires de leur synthèse, ont été établis pour l'élastase leucocytaire et la plasmine.

L'élastase leucocytaire purifiée a été obtenue par Elastin Products Co (Owenville, MO, USA) et la plasmine chez SIGMA.

L'inhibition des activités enzymatiques par ces différents composés est effectuée à 37°C dans un bain thermostaté. Les enzymes considérées sont mises en solution dans un tampon Tris-HCL 100 mM, pH8 pour l'élastase et pH 7,4 pour la plasmine, en présence de 0,02% d'azide de sodium et de 0,01% Triton X100 pour la plasmine. Les concentrations des substrats et celles des enzymes.sont : 0,10 mM Med-Suc-Ala-Ala-Pro-Val-pNA (paranitroanilide) pour 1'élastase à 8,3 nM et 0,20 mM dVal-Leu-dLys-pNA pour la plasmine à 77 nM. Pour chacune des conditions est établi l'ICC5.

Le tableau 5 donne les résultats obtenus dans lesquels, le lot AM6 correspond à un dextrane T40 de 40 000 kD. Le lot EM5 correspond à un dextrane T10 de 10 000 kD. Les produits intermédiaires de synthèse sont répertoriés d'après les sigles désignés ci-dessus indexés d'un numéro qui précise le nombre de chacune des réactions de substitution.

Les valeurs des IC50 démontrent que les CMDBS ont des effets inhibiteurs de type hyperbolique non compétitif sur l'activité de l'élastase leucocytaire comparables à ceux de l'héparine, l'un des meilleurs inhibiteurs de cette activité (Ki de l'ordre de 1 nM). Les CMDBS exercent de plus et à l'inverse de l'héparine des effets inhibiteurs sur la plasmine.

EXEMPLE 4: Effet anti-inflammatoire des CMDBS dans le tissu

Afin d'étudier l'effet anti-inflammatoire des CMDBS dans le tissu osseux on a utilisé un modèle de régénération de l'os calvaria chez le lapin. Après avoir effectué une découpe de cet os dans sa demi épaisseur on a comparé la réaction inflammatoire dans le tissu de granulation en présence ou en absence de CMDBS.

5

10

15

20

25

30

Des lapins adultes blancs de la race New Zealand ayant fini leur croissance osseuse et pesant 3 à 4 kg sont répartis en 2 groupes de 8 lapins des deux sexes . Ces lapins ont été anesthésiés par injection intrapéritonéale d'hydrochloride kétamine (100 mg/kg) et d'acépromazine (100 mg/kg). incision paramédiane fronto-pariétale a été réalisée pour accéder à la calvaria. Quatre défauts osseux de 5 mm de diamètres et 3 mm de profondeur ont été réalisés à l'aide d'une fraise . Durant l'intervention, le côté opéré a été constament irriqué pour éviter des accidents thermiques. Les deux régions céphaliques n'ont pas été comblées et de ce fait, servent de contrôle alors que les côtés postérieurs çauche et droit sont comblés avec du collagene (collagene hémostatique microfilaire (Pangen) provenant des laboratoires Fournier Dijon, France) ou du collagene imprégné la nuit dans une solution de CMDBS à 100 µg/ml. Une hémostase appropriée a été réalisée avant de procéder à la suture de la plaie. Les plaies sont refermées avec du fil en nylon de suture et le côté opéré est recouvert d'un pansement stérile. Les animaux ont été laissés en convalescence et aucune complication postopératoire n'a été constatée. Les animaux ont été euthanasiés aux jours 3, 4, 8 et durant les 12 semaines qui ont suivi l'intervention. Tous les animaux ont recu un traitement identique et ont servi pour leur propre contrôle. Après examen macroscopique du site de l'opération, les crânes sont décalcifiés et inclus dans de la paraffine. Le côté opéré a été étudié au microscope pour être mis en culture. Après que les modèles soient décalcifiés et posés dans de la paraffine, des sections sagittales (5 mm d'épaisseur) des zones correspondants aux défauts ainsi créés ont été découpées à l'aide d'un microtome et colorées à l'hématoxylin et à l'éosine. Ces coupes sont étudiées au microscope et les défauts ont été 100 fois grossis, en utilisant une grille de 2,5 x 2.5 mm normalisée par 10 divisions de 0,25 mm de chaque côté. Ces mesures ont été ensuite rapportées sur un graphique pour comparer les résultats suivant les différents groupes traités.

Dans ce travail, on a utilisé le CMDBS ,lot AM26, dont le contenu en acide méthylcarboxylique est de 110 %, celui en benzylamide de 2,5 % et en benzylamide sulfoné de 36,5% . L'activité anti-coagulante spécifique de ce CMDBS est 4 IU/mg comparé à l'héparine standard (échantillon n°108, Sanofí-Choay Recherches, Gentilly, France) qui a une activité anticoagulante de 173 IU/mg.

Les figures 6A et 6B montrent la différence de la réaction inflammatoire observée après 3 semaines dans le tissu de granulation correspondant au comblement du défaut osseux réalisé expérimentalement.

Dans la figure 6A qui correspond au pansement de collagène imbibé uniquement de sérum physiologique, la réaction inflammatoire est très forte; le tissu de granulation contient un grand nombre de cellules inflammatoire et peu de cellules ostéoblastiques .

Par contre, le même traitement avec un collagène imbibé de la solution de CMDBS a fait régresser très nettement cette réaction inflammatoire , favorisant la réparation du défaut csseux et démontrant ainsi l'effet antiinflammatoire du CMDBS. EXEMPLE 5 : Effet anti-inflammatoire du CMDBS sur la muqueuse

gastrique. Principe

10

1.5

20

25

30

L'administration par voie orale d'1 ml d'éthanol absolu chez le rat provoque dans l'heure qui suit l'apparition de lésions hémorragiques de la muqueuse gastrique.

Méthodes

10

20

25

30

Des groupes de 6 rats mâles Sprague Dawley, d'environ 200g, sont mis en jeûne hydrique 24H avant l'essai. Le jour du test, 1 ml est administré par voie orale et les animaux sont sacrifiés 1 h 30 après. L'estomac est prélevé, ouvert selon la grande courbure et rincé.

L'atteinte de la muqueuse est côtée selon le barème suivant.

- 0: muqueuse normale
 - 1: petites stries roses hémorragiques superficielles
 - 2: stries hémorragiques superficielles rouges, courtes et larges
- 4: stries hémorragiques superficielles rouges-noires, longues 15 et larges
 - 5: perforation

Traitement:

Le CMDBS a été dissous dans l'eau distillée, la PGE2 dans l'éthanol à 10% puis dílué dans le soluté physiologique. Les traitements sont effectués par voie orale, 1 heure avant l'éthanol et 45 mn après sous un volume de 5ml/kg.

Expression des résultats

Pour chaque lot d'animaux, les valeurs moyennes +/-e.s.m. des scores d'altération ont été calculées. Elles sont présentées dans le tableau ci-dessous. La comparaison statistique est effectuée à l'aide du test non paramètrique de White, par rapport au groupe témoin avec une différence significative notée p \leq 0,01.

Résultats

Comme l'illustrent ces résultats, l'administration d'éthanol absolu induit chez la majorité des animaux l'apparition de larges stries hémorragiques confluentes. Chez les animaux témoins le score d'altération est de 3,75 +/_0,17.

Le CMDBS administré per os à la dose de $100~\mu g/kg$ (2 fois par jour) réduit en 24 heures de 56% (p>0,01) la gravité des lésions. Aux doses supérieures l'activité cytoprotectrice n'est pas retrouvée. Le CMDBS exerce des effets comparables à la prostaglandine E2 considérée comme un agent protecteur de la muqueuse gastrique contre des agents topiques irritants qui induisent une réaction inflammatoire intense locale (réduction de 63% des lésions).

EXEMPLE 6 : Effet anti-inflammatoire sur des colites induites par le TNB chez le rat.

Principe:

L'administration intrarectale d'acide trinitrobenzène sulfonique (TNB) entraîne chez le rat l'apparition d'un colite chronique, associée à de graves lésions de la muqueuse produites par une réaction inflammatoire aigüe avec libération de médiateurs (PAF, interleukines, éicosanoïdes), et accompagnée d'un oedème important quantifiable au Bleu d'Evans.

Méthodes.

10

15

25

30

Des groupes de 6 rats mâles Sprague Dawley, d'environ 200g, sont mis en jeune hydrique 24 heures avant l'essai. Le jour du test, les animaux sont anesthésiés au pentobarbital (30 mg/kg) par voie intraperitonéale. 20 mg de TNB dissous dans 0,25 ml d'éthanol à 50% sont instillés dans le colon à 6 cm de l'anus. Les animaux sont remis dans leur cage après le réveil avec nourriture et boisson à volonté.

4 jours plus tard, les animaux sont sacrifiés et le colon est prêlevé. 30 mn avant le sacrifice, 1 ml de Bleu Evans est administré par voie veineuse pour évaluer l'oedème accompagant la colite selon le protocole suivant: Le colon est mis dans un tube contenant 9 ml de formamide. Après centrifugation, le surnageant est prélevé et un dosage spectrométrique est effectué à 620nm de longueur d'ondes. Traitement:

Le CMDBS a été dissous dans la carboxyméthylcellulose à 0,5%. Les traitements ont été effectués par voie intrarectale sous un volume de 1 ml/kg, 4 heures avant le TNB 1 fois par jour jusqu'au sacrifice de l'animal.

Résultats

10

15

Pour chaque lot d'animaux, les valeurs moyennes +/-e.s.m. des scores d'altération ont été calculées. Elles sont présentées dans le tableau 7. La comparaison statistique est effectuée à l'aide du test "t" de variance par rapport au groupe témoin avec une différence significative notée p \leq 0.05.

Dans cet exemple, le CMDBS a un effet antiinflammatoire comme le montre le dénombrement des cellules inflammatoires révélées par coloration au bleu d'Evans. 300 μ g de CMDBS par kg réduisent de moitié cette coloration ($p \le$ 0.05).

EXEMPLE 7 : Effet sur l'inflammation cutanée chez le rat. A. Animaux

Les expérimentations ont été effectuées sur des rats nâles Hairless OFA-hr/hr lco, EOPS, exempts d'organismes pathogènes spécifiques, âgés.ia.EOPS (Exempts d'organismes pathogènes spécifiques); de 9 à 10 semaines (250-300 gr) (IFFA CREDO, France). Ces rats se caractérisent par un système pileux très peu développé dü à un gène récessif hr, défini par 25 le terme "Hairless". Dès réception, les rats sont stabulés et hébergés selon les directives de la Communauté Economique Européenne, décrêt d'Avril 1986, n° 86/609/CEE.

B. Mode opératoire

Les rats sont anesthésiés par injection intrapéritonéale de pentobarbital sodique (0.1 ml/100 g pour les rats sains et 0.05 ml/100 g pour les rats diabétiques). Trois défauts cutanés dermo-épidermiques sont pratiqués de part et d'autre de la colonne vertébrale à l'aide d'un emporte pièce de 6 mm de diamètre. Des compresses de collagène boyin inactivé (FANGEN, Fournier) sont découpés à l'emporte pièce, imbibés de la solution à tester ou d'une solution de PBS.ia.PBS; pendant 2 heures à température ambiante avant d'être déposées dans chaque plaie. L'ensemble est alors recouvert d'un pansement occlusif (OPSITE) gardant le collagène hydraté, puis d'un élastoplaste empéchant le rat de se débarrasser de son pansement. Les rats sont placés dans des cages individuelles avec eau et nourriture à volonté. Chaque condition expérimentale regroupe des lots de 6 à 10 animaux. Le processus cicatriciel est considéré à des temps variables exprimés en jours (Jx) après la date de l'opération (J0).

C. Traitement des plaies

1.0

15

20

25

30

Les plaies des rats sains sont traitées avec des pansements de collagène imbibés d'une solution physiologiques contenant ou non du CMDBS-AM6 à 50 µg/ml.

D. Prélèvements des plaies

Les lots d'animaux témoins (sans CMDBS) ou traités (avec CMDBS) sont sacrifiés par injection d'un excès de pentobarbital sodique. Les contours de la plaie sont reportés sur un calque, puis la plaie est prélevée à l'aide du même emporte-pièce de la même dimension que celui utilisé à JO et conservée à -80°C. Pour l'étude histologique, les pièces sont prélevées en prévoyant un excès de 5 mm de peau non lésée autour des contours d'origine puis placées dans un fixateur dont la composition varie en fonction de l'étude envisagée.

E. Etude histologique

Les prélèvements de tissus sont placés pendant 24 à 48 heures dans un excès de fixateur (paraformaldéhyde 4%, glutaraldéhyde 0.1%, saccharose 5%, PBS 100mM, pH7) puis déshydratés progressivement avant d'être inclus dans du Paraplast Plus (Prolabo). Des coupes de 5 mm sont réalisées avec un microtome à paraffine (Reichert-Yung) et colorées au trichrome de Masson (GABE, 1988).

Les résultats des observations histologiques sont

présentés sur les figures 7A à 7F qui rapportent cette étude histologique de la cicatrisation cutanée à J6 post-opératoire. (coloration des coupes au Trichrome de Masson).

Les figures 7A à 7C présentent les plaies traitées avec 5 du CMDBS (50 µg/ml) et les figures 7D à 7F représentant les plaies traitées avec le véhicule seul. Ces figures montrent une inégalité dans la qualité du tissu de granulation. Il existe un aspect plus mature de la cicatrice (Fig.A, x4) par rapport au témoin (Fig.D. x4). Un agrandissemnt (x25) de la région épidermique montre une reconstitution de celle-ci dans les deux cas (Fig.7B et 7E x25).

La différence réside dans la maturation du tissu de granulation : la plaie traitée (Fig.7C x25) avec du CMDBS montre la présence de fibroblastes (fléche) qui commence à s'orienter et qui produisent une matrice en quantité plus importante que dans la plaie témoin. Les cellules inflammatoires dans les plaies traitées avec du CMDBS sont en nombre restreint par rapport au témoin (Fig.7F x25) qui montre la persistance de phénomènes imflammatoires importants.

20 EXEMPLE 8 : Mise en évidence des activités métalloprotéinases matricielles extraits des tissus cutanés en cours de cicatrisation.

Des prélèvements de tissu cutané sont effectués selon le même protocole et les mêmes conditions expérimentales que ceux présentés dans l'exemple précédent.

Traitement des plaies

10

15

25

30

Les plaies des rats sains sont traitées avec des pansements de collagène imbibés d'une solution physiologique contenant ou non du CMDBS-AM6 à 50 µg/ml.

Les métalloprotéinases matricielles (MMPs) et, plus particulièrement les collagénases 92 kD (collagènase de type V) et 72 kD (collagénase de type IV), sont mises en évidence grâce à la technique du zymogramme.

La peau prélevée à JO est nommée contrôle (C). Le

prélèvement effectué au jour x (Jx) au même emplacement selon les contours d'origine est nommé plaie (P). C et P sont toujours traités en même temps et selon le même protocole.

Chaque prélèvement est pulvérisé une minute dans un broyeur à azote liquide (Bioblock). La poudre est pesée et mélangée dans un tampon 100 mM phosphate pH7.4, 1M NaCl (1ml pour 100 mg de poudre). L'ensemble est homogénéisé à l'Ultraturax pendant 30 secondes, laissé 1 heure à 4°C puis centrifugé à 43700g (Beckman JZ-21) à 4°C pendant 30 minutes. Le volume du surnageant est mesuré puis aliquoté avant d'être conservé à -80°C. Le culot, pesé, est conservé à -80°C.

5

10

15

20

25

30

Les extraits obtenus à partir de broyats de peau cicatricielle ou non (25 mg de protéines en tampon non réducteur, non chauffés), sont déposés sur des gels de polyacrylamide 10% contenant 1 mg/ml de gélatine (Sigma, ref G2500). Après migration en tampon de Laemmli. les protéines déposées sur gels sont renaturées avec une solution de Tris-HCl 100 mM, pH 7.4 contenant 2.5% de triton x100 (2 fois 30 minutes). Le Triton est éliminé par deux lavages en tampon Tris-HCl 100 mM. Les qels d'électrophorèse sont incubés à 37°C durant 48 heures dans un tampon Tris-HCl 100 mM contenant 10 mM de CaCl2, 0.001% NaN3, 0.0015% Brit 35, 1 mM ZnCl2. Après avoir éliminé soigneusement le tampon d'incubation, les gels sont colorés durant 20 minutes sous agitation avec une solution de Bleue de Coomasie R250 (5mg/ml) contenant de l'acide acétique (10%), du propanol-2 (30%), puis décolorés (acide acétique 10%, méthanol 40%), jusqu'à visualisation des bandes. Les gels sont photographiés. Afin de s'assurer que les différentes bandes de digestion obtenues sont bien dues à des MMPs, les échantillons sont incubés en présence d'inhibiteurs spécifiques; Phényl méthyl sulfonyl fluoride ou PMSF (2 mM final) inhibiteur des sérines endopeptidases, l'acide éthylène diamine tétracétique ou EDTA (20 mM final) inhibiteur des métallo-endopeptidases, le N-éthyl maléimide ou NEW (2 mM

final).

10

15

20

25

30

La figure 8 montre l'expression des Métallo-Protéinases Matricielles détectées dans les extraits de plaies en fonction du traitement ou non par le CMDBS et en fonction du temps de la cicatrisation.

25 mg de protéines obtenus à partir des extraits de broyats de peau saine ou de peau cicatriclelle à J5 et J6 post-opératoires sont déposés sur un gel de polyacrylamide 10% contenant comme substrat 1 mg/ml de gélatine. Les pistes 1,12 représentent la peau saine qui sert de témion interne de migration. Les pistes 2, 3, 4 et 13, 14, 15 représentent les extraits obtenus à partir de cicatrices traitées avec du CMDBS à raison de 50 mg/ml (6 rats différents). Les pistes 5 à 11 et 16, 17 représentent les témoins correspondants. Chaque piste représente un rat différent.

Deux types de collagênases sont retrouvés dans la peau saine: La forme de 72 kDa et sa forme activée la 68 kDa. Par contre, à J5 et J6, dans les plaies traitées ou non avec le CMDBS, la 92 kDa est présente de manière identique. La différence réside dans les niveaux d'expression de la 72 kDa et de sa forme activée, la 68 kDa. A J5, dans les plaies témoins la 72 kDa et la 68 kDa en temprisées de manière très importante par rapport aux plaies traitées avec du CMDBS. De plus, il y a apparition d'espèces de bas poids moléculaires qui n'existent pas dans les plaies traitées avec le CMDBS. À J6, cette différence se confirme puisque pour le même dépôt protéique qu'à J5, l'activité des collagènases est telle que les pistes 16 et 17 apparaissent sous forme de deux traces blanches. Cette activité qui n'existe pas chez les rats traités au CMDBS.

Les CMDBS modulent donc les niveaux d'expression des MMPs soit directement soit indirectement à travers leur rôle inhibiteur sur la plasmine qui est un de leurs activateurs.

TABLENU L Effets protecteurs du CMDBS et de l'héparine à l'encontre de la dégradation du TGFDéta par la

trypsine	***************************************
melange d'incubation à37°C pendant	% d'activité inhibitrice de
fomin et contenant par milliliter selon	l'incorporation de thymidine
l'indication: CMDBS ou Heparine (5000 µg): tritiée dans des CCL64 (après	tritiée dans des CCL64 (après
рТСF (50 ng);Trypsine(500 нg)	dilution du mélange d'incubation
	de 50 fois.
Tampon d'incubation seul	0
CMDBS (5000 µg)	0
Heparine (5000 11g)	0
Trypsine (1000 ng)	O
TGF beta (50 ng)	100
BTGF + CMDBS (batch AM26)	100
ATGF + Hepatine	100
MTGF + Trypsine	S
nTGF + CMDBS+Trypsinc	7.5
ITGF + Heparine + Trypsine	01

TABLEAU 2 Effet non inhibiteur du CMDBS vis-à-vis de la trypsine

Trypsing (10ug/ml)+ SS7	- EGO
Trypsine+S87+5ug/ml	;00
Trypsine+S87+50ug/ml	100 .
Trypsine+S87+500ng/ml	100
Trypsinc+887+STBI	0

TABLEAU 3 :
Origine , activité anticoaquiante et composition
partielle du Mésoglycane et du Sulodexide
[informations du fournisseur

10

15

	Sulodexide	Mésoglycane		
Origine	duodenum de porc	aorte		
Activité anticoagulante	50-70 IU/mg	< 50 IU /mg		
Composition chimique				
Dermatane sulfate	20 - 35 %	25 - 60 %		
Chondroitine Sulfate	2-7%	3-15%		
Héparane sulfate	+	+		

TABLEAU 4 Protection du TGFbêta par divers polymères

5	TGF beta	100
	TCFhar	100
	TGF beta + trypsine	0
	TGF beta + mesoglycane	100
10	TGF heta + mesoglycane+ trypsine	50
	TGFbeta+ sulodexine	100
	TFG beta + sulodexine +trypsine	20
	TGF beta + Dextrane	100
	TGF beta + Dextrane+ trypsine	0
	TGF beta+ Dextrane Sulfate	100
	TGF heta + Dextrane Sulfate+trypsine	0
	TGF beta +Sucrase	100
	TGF beta + Sucrase+ trypsine	0

TABLEAU 5

Inhibition des activités de l'élastase et de la plasmine

5

Composés testés	Elastase Leucocytaire	Plasmine
	IC ₅₀ en μg/ml	IC 50 en µg/ml
CMDBS lot AM6	2,2	1,5
T40	> 100	> 100
CMDBS Lot EM5	10	7
T10 CMD2B	50	53
T10 5CMD1B	> 100	· > 100
T103CMD	> 100	> 100
T10	> 100	> 100
Héparine	1,8	
Lipo-héparine		0.5

TABLEAU 6

Traitement	Doses en µg/kg PO	Scores	Variations
Témoins		3,75 0,17	
PGEZ	200	1.4 0,35	-63%
	100	1,6 0,25	-56%
CMDBS	300	3,2 -/_ 0,33	-16%
	1000	3,1 0,35	-17%

TABLEAU 7

Traitements	Doses	Nombres de rats	Concentration de Bleu Evans en µg/g de côlon
Témoins		5	0,17 -/. 0,03
TNB		5	0,87 -/_ 0,14
	100 µg/kg	6	0,54 0,16
CMDBS	300 μg/kg	6	0,45 -/_ 0,12 **
	1000 µg/kg	6	0,78 0,11

REVENDICATIONS

- 1. Utilisation d'au moins un polymère ou un biopolymère, appelés HBGFPF, protégeant spécifiquement les facteurs de croissance des familles des FGF et TGFbêta de la dégradation trypsique et n'inhibant pas de manière significative la coagulation, pour la fabrication d'un médicament pour le traitement des inflammations.
- Utilisation selon la revendication 1, caractérisée en ce que le polymère ou biopolymère présente une activité anti-coagulante inférieure à 50 unités internationales par mg de polymère.

10

15

20

25

30

- Utilisation selon l'une des revendications 1 et 2, caractérisée en ce que ledit polymère présente une activité anti-complément.
- Utilisation selon l'une des revendications 1 à 3, caractérisée en ce que ledit polymère n'active substantiellement pas le système du complément.
 - Utilisation selon l'une des revendications 1 à 4, caractérisée en ce que ledit polymère ou biopolymère est un polysaccharide.
 - Utilisation selon la revendication 5, caractérisée en ce que ledit polysaccharide est principalement composé de résidus qlucose.
- Utilisation selon la revendication 5, caractérisée en ce que le polysaccharide comprend des résidus glucosamine et/ou d'acide uronique.
- Utilisation selon la revendication 7, caractérisée en ce que le polysaccharide comprend des dimères glucosamineacide uronique.
- Utilisation selon l'une des revendications 1 à 5, caractérisée en ce que ledít polysaccharide est un dextrane substitué.
 - 10. Utilisation selon la revendication 9, caractérisée en ce que ledit polysaccharide est un CMDBS.

- 11. Utilisation selon l'une des revendications 1 à 5, caractérisée en ce que ledit polysaccharide est un glycosaminoglycane éventuellement associé à un lipide, un peptide ou un protide, ou un sulfate d'un de ces composés.
- 12. Composition pharmaceutique pour le traitement des inflammations contenant au moins un polymère tel que défini dans l'une des revendications 1 à 11 en association avec au moins un excipient pharmacologiquement acceptable.

5

10

13. Composition selon la revendication 12, caractérisée en ce qu'elle contient entre environ 10 et 2500 μg de polymère ou de biopolymère/ml de composition. FIG. 1

FIG. 2 A

FIG. 2 B

- FGF
- O FGF plus héparine
- FGF plus mésoglycane
- △ FGF plus sulodexide

FIG. 3 A

FIG. 3 B

° FGF1

FGF₁ plus héparine

FGF₁ plus mésoglycane

 \triangle FGF₁ plus sulodexide

- FGF₂ plus héparine
- FGF₂ plus mésoglycane
 - FGF₂ plus sulodexide

1 2 3 4 5 66 000 -

FIG. 5 A

21 000 -14 000 -DALTONS

1 2 3 4 5 66 000 42 000 FIG. 5 B 21 000 14 000 DALTIONS

INSTITUT NATIONAL

RAPPORT DE RECHERCHE PRELIMINAIRE

FA 498802 de in établi sur la base des dernières revendications déposées avant le commencement de la recherche FR 9403805 PROPRIETE INDUSTRIELLE DOCUMENTS CONSIDERES COMME PERTINENTS

- ;	des parties pertinentes	le besoin,	aminės	
X	MINERVA MED., vol.80, no.4, 1989 pages 397 - 403 L. DRAGNHI ET AL. 'A heparin-glucuronilglucoasmino; topical use.' * abrégé en anglais *		,7,12	
X	MINERVA DIETOL. GASTROENTEROL vol.31, no.2, 1985 pages 311 - 315 A. SAGGIORO ET AL. 'Treatment hemmorhoidal syndrome with me sulfate.'	of	,7,12	
A	BOLL. CHIM. FARM., vol.119, no.8, 1980 pages 487 - 498 G. CORBELLI ET AL. 'Evaluatio stability of vessel, a glycos sulfate of extractive origin, in human digestive juices.'	aminogiycan		DOMAINES TECHNIQUE BECHERCHES (IM. CL.S) A6.1K
D, A	FR-A-2 644 066 (THERAPEUTIQUE SUBSTITUTIVES) 14 Septembre 1	S 990		
D,A	FR-A-2 461 724 (FDUGNOT ET AL 1981	.) 6 Février		
	Data € ethe	egount de la recherche		- Control of the cont
X:po Y:po A:po	21	Décembre 1994	K1	aver, T
CATEGURE DES DOCLMENTS CITES X: paricollèressent perthent à lai seal Y: paricollèressent perthent en combination avec un soutre écourant de la même combination avec un soutre écourant de la même configurée A: pertionnt à l'encourte fau moins une revendication ou arrière pales strabelogique gabriel		T: théorie ou princip E: document de herv à la date de dépôt de dépôt ou qu' à : D: cité dans la dema L: cité pour d'autres	et qui s'a été se qui s'a été se éate postés sés	l'invention l'use date datérieure publié ga' à cette date leure.