Written Homework

Written Homework

Problem 1 Consider the function

$$f(x,y,z) = \frac{4}{\sqrt{9 - x^2 - y^2 - z^2}}.$$

- (a) What is the domain of f? Describe this domain as a region in \mathbb{R}^3 .
- (b) What is the range of f?

Problem 2 Consider the function

$$f(x) = x^2 + y^2 - 4.$$

- (a) Draw at least five level curves of f.
- (b) Use these level curves to sketch the graph of f.

Problem 3 Draw the graph of the surface in \mathbb{R}^3 determined by the equation $x = y^2/4 - z^2/9$.

Use level curves and/or sections to justify why your drawing is correct.

Professional Problem

Problem 4 (a) Consider the function $g: \mathbb{R}^3 \to \mathbb{R}$ given by

$$g(x, y, z) = x^2 + y^2.$$

Draw at least three level surfaces of g, which will be surface in \mathbb{R}^3 . What do you notice about these level surfaces?

Learning outcomes: Author(s):

- (b) Suppose you have a function $g: \mathbb{R}^3 \to \mathbb{R}$, such that g depends on x and y, but does not depend on z. What can you say about the level surfaces of g?
- (c) Suppose you have a function $g: \mathbb{R}^3 \to \mathbb{R}$, such that g depends on y and z, but does not depend on x. What can you say about the level surfaces of q?
- (d) Suppose you have a function $g: \mathbb{R}^3 \to \mathbb{R}$, such that g depends on x, but does not depend on g or g. What can you say about the level surfaces of g?