11) Simultaneous Equations and Three-Stage Least Squares (3SLS)

Vitor Kamada

August 2018

August 2018

Stata Manual 15 (2017):

reg3 - Three-stage estimation for systems of simultaneous equations

gmm - Generalized method of moments estimation

Wooldridge (2010): Ch 9

Housing Expenditures and Saving

$$housing = \\ lpha_1 saving + eta_{11} inc + eta_{12} educ + eta_{13} age + u_1 \\ saving = \\ lpha_2 housing + eta_{21} inc + eta_{22} educ + eta_{23} age + u_2 \\$$

3/15

Vitor Kamada ECO 7110 Econometrics II August 2018

Reduced Form for y_2

$$y_1 = \gamma_1 y_2 + z_{(1)} \delta_{(1)} + u_1$$
 $y_1 = \gamma_2 y_2 + z_{(2)} \delta_{(2)} + u_2$
 $y_2 = z_{(1)} \pi_{(21)} + z_{(2)} \pi_{(22)} + v_2$
 $\pi_{(21)} = \frac{\delta_{(1)}}{\gamma_2 - \gamma_1}, \ \pi_{(22)} = \frac{-\delta_{(2)}}{\gamma_2 - \gamma_1}, \ v_2 = \frac{u_1 - u_2}{\gamma_2 - \gamma_1}$

Vitor Kamada ECO 7110 Econometrics II August 2018 4 / 15

Mroz (1987)

$$hours = \gamma_{12}log(wage) + \delta_{10} + \delta_{11}educ + \delta_{12}age + \delta_{13}kidslt6 + \delta_{14}kidsge6 + \delta_{14}nwifeinc + u_1$$

IVs: exper and exper²

$$log(wage) = \gamma_{21}hours + \delta_{20} + \delta_{21}educ + \delta_{22}exper + \delta_{23}exper^2 + u_2$$

IVs: age, kidslt6, kidsge6, and nwifeinc

Vitor Kamada ECO 7110 Econometrics II August 2018 5 / 15

Estimation of Labor Supply Function

OLS

$$\begin{array}{l} \hat{hours} = 2,114.7 - 17.41 log(wage) - 14.44 educ - \\ \text{(340.1)} & \text{(54.22)} \end{array} \\ 7.73 age - 342.50 kidslt6 - 115.02 kidsge6 - 4.35 nwifeinc \\ \text{(5.53)} & \text{(30.83)} \end{array}$$

2SLS

$$\hat{hours} = 2,432.2 + 1,544.82 log(wage) - 177.45 educ - {}_{(594.2)} {}_{(480.74)} {}_{(480.74)} - {}_{(58.14)} 10.78 age - 210.83 kidslt6 - 47.56 kidsge6 - 9.25 nwifeinc {}_{(9.58)} {}_{(176.93)} - {}_{(56.92)} {}_{(6.48)}$$

Average Annual Hours = 1,303

Labor Supply Elasticity = $1,544.82/\text{hours} \cong 1.2$

Using Cross Equation Restrictions to Achieve Identification

1)
$$y_1 = \gamma_{12}y_2 + \delta_{11}z_1 + \delta_{12}z_2 + \delta_{13}z_3 + u_1$$

2) $y_2 = \gamma_{21}y_1 + \delta_{21}z_1 + \delta_{22}z_2 + u_2$
 $\delta_{12} = \delta_{22}$

1)
$$y_1 - \hat{\delta}_{22}z_2 = \gamma_{12}y_2 + \delta_{11}z_1 + \delta_{13}z_3 + u_1$$

IVs: (z_1, z_2, z_3)

Vitor Kamada ECO 7110 Econometrics II August 2018 7/15

Using Covariance Restrictions to Achieve Identification

1)
$$y_1 = \gamma_{12}y_2 + \delta_{11}z_1 + \delta_{13}z_3 + u_1$$

2)
$$y_2 = \gamma_{21}y_1 + \delta_{21}z_1 + \delta_{22}z_2 + \delta_{23}z_3 + u_2$$

$$Cov(u_1, u_2) = E(u_1u_2) = 0$$

IVs for Eq1: (z_1, z_2, z_3)

IVs for Eq2: $(z_1, z_2, z_3, \hat{u}_1)$

 ✓ □ ► ✓ □ ► ✓ □ ► ✓ □ ► ✓ □ ► ✓ □ ► ✓ □ ►

 Vitor Kamada
 ECO 7110 Econometrics II
 August 2018 8 / 15

Klein's (1950): Model of the U.S. Economy

$$y = c + i + g$$

 $p = y - t - wp$
 $k = L.k + i$
 $w = wg + wp$

С	Consumption		
р	Private industry profits		
wp	Private wage bill		
wg	Government wage bill		
W	Total wage bill		
i	Investment		

k	Capital stock
У	Total income/demand
g	Government spending
t	taxes + net exports
yr	year - 1931

System of Simultaneous Equations

$$c = \beta_0 + \beta_1 p + \beta_2 L.p + \beta_3 w + \epsilon_1$$
$$i = \beta_4 + \beta_5 p + \beta_6 L.p + \beta_7 L.k + \epsilon_2$$
$$wp = \beta_8 + \beta_9 y + \beta_{10} L.y + \beta_{11} yr + \epsilon_3$$

10 / 15

Vitor Kamada ECO 7110 Econometrics II August 2018

3SLS - Homoskedasticity

reg3 (c p L.p w) (i p L.p L.k) (wp y L.y yr),
endog(w p y) exog(t wg g)

Eq 1: consump profits L.profits wagetot

	Coef.	Std. Err.	Z	P> z
p	.1248904	.1081291	1.16	0.248
L1.	.1631439	.1001291	1.62	0.104
w _cons	.790081 16.44079	.0379379 1.304549	20.83 12.60	0.000

Eq 2: invest profits L.profits L.capital

p				
	0130791	.1618962	-0.08	0.936
L1.	.7557238	.1529331	4.94	0.000
k				
L1.	1948482	.0325307	-5.99	0.000
cons	28.17785	6.793768	4.15	0.000

Eq 3: wagepriv totinc L.totinc year

У					
	.4004919	.0318134	12.59	0.000	
L1.	.181291	.0341588	5.31	0.000	
yr	.149674	.0279352	5.36	0.000	
cons	1.797216	1.115854	1.61	0.107 → ≘	

GMM-3SLS Robust

```
gmm (eq1: c - {c: p L.p w _cons}) ///
(eq2: i - {i: p L.p L.k _cons}) ///
(eq3: wp - {wp: y L.y yr _cons}), ///
instruments(eq1: L.p L.k L.y yr t wg g) ///
instruments(eq2: L.p L.k L.y yr t wg g) ///
instruments(eq3: L.p L.k L.y yr t wg g) ///
winitial(unadjusted, independent) twostep
```

Vitor Kamada ECO 7110 Econometrics II August 2018 13 / 15

Eq 1: consump profits L.profits wagetot

p L1.	.1107 44 7 .1591073	.0676899 .07 4 5102	1.64 2.14	0.102 0.033
w	.826938 15.07861	.0312719 .8425758	26. 44 17.90	0.000

Eq 2: invest profits L.profits L.capital

p				
	.2175156	.0914721	2.38	0.017
L1.	.5527221	.1015973	5.44	0.000
k				
L1.	1699195	.0194554	-8.73	0.000
cons	22.5153	3.781761	5.95	0.000

Vitor Kamada ECO 7110 Econometrics II August 2018 1

Eq 3: wagepriv totinc L.totinc year

У				
	.4373167	.0164508	26.58	0.000
L1.	.1314822	.0210174	6.26	0.000
yr	.1318394	.0183602	7.18	0.000
cons	2.580174	.5096321	5.06	0.000

15 / 15