Auxiliary Sections > Integral Transforms > Tables of Inverse Laplace Transforms > Inverse Laplace Transforms: Expressions with Logarithmic Functions

Inverse Laplace Transforms: Expressions with Logarithmic Functions

No	Laplace transform, $\widetilde{f}(p)$	Inverse transform, $f(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{px} \widetilde{f}(p) dp$
1	$\frac{1}{p} \ln p$	$-\ln x - C,$ $C = 0.5772 \text{ is the Euler constant}$
2	$p^{-n-1} \ln p$	$ (1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln x - C) \frac{x^n}{n!}, $ $ C = 0.5772 \dots $ is the Euler constant
3	$p^{-n-1/2} \ln p$	$k_n \left[2 + \frac{2}{3} + \frac{2}{5} + \dots + \frac{2}{2n-1} - \ln(4x) - \mathcal{C} \right] x^{n-1/2},$ $k_n = \frac{2^n}{1 \cdot 3 \cdot 5 \dots (2n-1)\sqrt{\pi}}, \mathcal{C} = 0.5772 \dots$
4	$p^{-\nu}\ln p, \nu > 0$	$\frac{1}{\Gamma(\nu)} x^{\nu-1} \big[\psi(\nu) - \ln x \big], \psi(\nu) \text{ is the logarithmic} $ derivative of the gamma function
5	$\frac{1}{p}(\ln p)^2$ $\frac{1}{p^2}(\ln p)^2$	$(\ln x + C)^2 - \frac{1}{6}\pi^2, C = 0.5772$
1	*	$x[(\ln x + C - 1)^2 + 1 - \frac{1}{6}\pi^2]$
7	$ \ln \frac{p+b}{p+a} $	$\frac{1}{x}\left(e^{-ax} - e^{-bx}\right)$
8	$ \ln \frac{p^2 + b^2}{p^2 + a^2} $	$\frac{2}{x} \left[\cos(ax) - \cos(bx) \right]$
9	$p\ln\frac{p^2+b^2}{p^2+a^2}$	$\frac{2}{x} \left[\cos(bx) + bx \sin(bx) - \cos(ax) - ax \sin(ax) \right]$
10	$\ln\frac{(p+a)^2 + k^2}{(p+b)^2 + k^2}$	$\frac{2}{x}\cos(kx)(e^{-bx} - e^{-ax})$
11	$p\ln\Bigl(\frac{1}{p}\sqrt{p^2+a^2}\Bigr)$	$\frac{1}{x^2} \left[\cos(ax) - 1 \right] + \frac{a}{x} \sin(ax)$
12	$p\ln\left(\frac{1}{p}\sqrt{p^2-a^2}\right)$	$\frac{1}{x^2} \left[\cosh(ax) - 1 \right] - \frac{a}{x} \sinh(ax)$

References

Bateman, H. and Erdélyi, A., *Tables of Integral Transforms. Vols. 1 and 2*, McGraw-Hill Book Co., New York, 1954.

Doetsch, G., *Einführung in Theorie und Anwendung der Laplace-Transformation*, Birkhäuser Verlag, Basel–Stuttgart, 1958.

Ditkin, V. A. and Prudnikov, A. P., *Integral Transforms and Operational Calculus*, Pergamon Press, New York, 1965.

Polyanin, A. D. and Manzhirov, A. V., *Handbook of Integral Equations*, CRC Press, Boca Raton, 1998.

Inverse Laplace Transforms: Expressions with Logarithmic Functions