431 Class 14

github.com/THOMASELOVE/2019-431

2019-10-10

Today's Agenda (Notes Chapters 19-20)

Statistical Inference and the dm431 data

- Paired vs. Independent Samples
- Moving from Wide to Long and back again
- Omparing Population Means using Independent Samples
 - Pooled t / Indicator Variable Regression
 - Welch's t
 - Wilcoxon-Mann-Whitney rank sum
 - Bootstrap with bootdif

Today's Setup and Data

```
library(magrittr); library(janitor)
library(patchwork); library(here);
library(boot); library(broom)
library(tidyverse)

source(here("R", "Love-boost.R"))

dm431 <- readRDS(here("data", "dm431.Rds"))</pre>
```

Section 1

Comparing Population Means

So far, we've been thinking about one population, and one sample

Our population: ALL adults ages 31-70 seen for care this year and two years ago who live in Northeast Ohio with a diabetes diagnosis.

Our sample: 431 of those people, drawn in a way we hope is representative (but certainly isn't random).

Are these Samples Paired (Matched) or Not?

Now, suppose we want to compare two subpopulations of our bigger population, using the relevant subsamples of our dm431 data.

• Deciding whether or not the samples are paired (matched) is something we do before we analyze the data.

The best way to establish whether a study uses paired or independent samples is to look for the **link** between the two measurements that creates paired differences.

dm431 Example 1.

Suppose we want to compare the mean 1dl cholesterol level for subjects who are currently taking a statin medication to the mean 1dl for subjects who are not currently taking a statin.

```
dm431 %>% select(subject, ldl, statin) %>% tail()
```

```
# A tibble: 6 x 3
subject ldl statin
<chr> <dbl> <dbl> 1 S-426 100 1
2 S-427 86 1
3 S-428 88 1
4 S-429 166 1
5 S-430 34 0
6 S-431 77 0
```

dm431 Example 1.

Suppose we want to compare the mean 1d1 cholesterol level for subjects who are currently taking a statin medication to the mean 1d1 for subjects who are not currently taking a statin.

- What is the outcome of interest here?
- What are the two exposure groups we are comparing?
- Does this design create paired samples or independent samples?

dm431 Example 2.

Suppose we want to compare the mean 1d1 cholesterol level for a set of subjects this year to the mean 1d1 for the same subjects two years ago.

```
dm431 %>% select(subject, ldl, ldl_old) %>% head()
```

```
# A tibble: 6 \times 3
  subject ldl ldl old
  <chr>
          <dbl>
                  <dbl>
1 S-001
            126
                     71
2 S-002
            172
                    182
3 S-003
            105
                    127
4 S-004
            127
                     NA
                     86
5 S-005
            100
6 S-006
             65
                     90
```

dm431 Example 2.

Suppose we want to compare the mean 1d1 cholesterol level for a set of subjects this year to the mean 1d1 for the same subjects two years ago.

```
mosaic::favstats(~ ldl, data = dm431)

min Q1 median Q3 max mean sd n missing
31 72 90 113 227 96.59137 34.26558 394 37

mosaic::favstats(~ ldl_old, data = dm431)
```

```
min Q1 median Q3 max mean sd n missing 31 72 90 115 244 96.98744 34.73313 398 33
```

- What is the outcome of interest here?
- What are the two exposure groups we are comparing?
- Does this design create paired samples or independent samples?

dm431 Example 3.

Suppose we want to compare the mean systolic blood pressure for male subjects to the mean systolic blood pressure among female subjects?

```
dm431 %>% select(subject, sbp, sex) %>% head()
```

```
# A tibble: 6 x 3
subject sbp sex
<chr> <dbl> <fct>
1 S-001 98 F
2 S-002 162 F
3 S-003 154 F
4 S-004 138 M
5 S-005 118 F
6 S-006 124 F
```

dm431 Example 3.

Suppose we want to compare the mean systolic blood pressure for male subjects to the mean systolic blood pressure among female subjects?

```
sex min Q1 median Q3 max mean sd n
1 F 90 118 128 142 208 131.1673 20.14962 257
2 M 98 120 130 140 182 131.4080 15.86577 174
missing
1 0
2 0
```

mosaic::favstats(sbp ~ sex, data = dm431)

- What is the outcome of interest here?
- What are the two exposure groups we are comparing?
- Does this design create paired samples or independent samples?

Formatting the Data (Wide vs. Long)

Wide format (most appropriate for paired/matched samples)

subject treatment1		troatmont?	
Subject	treatmenti	treatmentz	
Α	140	150	
В	135	145	
C	128	119	

Long format (most appropriate for independent samples)

subject	sbp	group
Α :	140	treatment1
Α :	150	treatment2
В :	135	treatment1
В :	145	treatment2
C :	128	treatment1
C :	119	treatment2

Suppose you have a wide data set...

```
tempdat_wide <- tibble(
  subject = c("A", "B", "C"),
  treatment_1 = c(140, 135, 128),
  treatment_2 = c(150, 145, 119)
)
tempdat_wide</pre>
```

Pivot Data to make it longer

We want more rows, fewer columns. Each subject*treatment combination will become a row.

```
tempdat_long <- tempdat_wide %>%
  pivot_longer( -subject,
    names_to = "group", values_to = "sbp")
tempdat_long
```

Spread the Data from Long to Wide

```
tempdat_wide2 <- tempdat_long %>%
  pivot_wider(names_from = group, values_from = sbp)
tempdat_wide2
```

```
      subject
      treatment_1
      treatment_2

      <chr>
      <dbl>
      <dbl>

      1
      A
      140
      150

      2
      B
      135
      145

      3
      C
      128
      119
```

A tibble: 3×3

So, an independent samples design?

- Independent samples designs do not impose a matching, but instead sample two unrelated sets of subjects, where each group receives one of the two exposures.
- The two groups of subjects are drawn independently from their separate populations of interest.
- One obvious way to tell if we have an independent samples design is that this design does not require the sizes of the two exposure groups to be equal.

Three Small Analyses using Independent Samples

Our population: ALL adults ages 31-70 seen for care this year and two years ago who live in Northeast Ohio with a diabetes diagnosis.

Our sample: 431 of those people, drawn in a way we hope is representative (but certainly isn't random).

- Can we estimate the difference in the population mean systolic blood pressure among females in our population as compared to males in our population?
- ② Can we estimate the difference in the population mean LDL level for those on a statin as compared to those not on a statin?
- 3 Can we estimate the difference in the population mean hemoglobin A1c for those with Medicaid vs. Medicare insurance?

SBP for females vs. males, in a boxplot

Another Picture for Two Independent Samples

Numerical Summary for Two Independent Samples

```
mosaic::favstats(sbp ~ sex, data = dm431)

sex min Q1 median Q3 max mean sd n

1 F 90 118 128 142 208 131.1673 20.14962 257

2 M 98 120 130 140 182 131.4080 15.86577 174

missing

1 0

2 0
```

Independent Samples: Confidence Intervals for

 $\mu_1 - \mu_2$

- Pooled t CI or Indicator Variable Regression Model (t approach assuming equal population variances)
- Welch t CI (t approach without assuming equal population variances)
- Wilcoxon-Mann-Whitney Rank Sum Test (non-parametric test not assuming Normality but needing symmetry to be related to means)
- Bootstrap confidence interval for the difference in population means (fewest assumptions of these options)

Results for the SBP and Sex Study

Procedure	p for $H_0: \mu_F = \mu_M$	95% CI for $\mu_{\it F}-\mu_{\it M}$
Pooled t	0.90	(-3.3, 3.8)
Welch t	0.89	(-3.2, 3.7)
Bootstrap	p > 0.05	(-3.1, 3.6)

Procedure	p for H_0 : $psmed_F = psmed_M$	95% CI for M - F shift
Rank Sum	0.42	(-2.0, 5.0)

What conclusions should we draw, at $\alpha = 0.05$?