

COMP90014

Algorithms for Bioinformatics
Week 9B: Dimensionality Reduction II

- 1. Dimensionality Reduction
- 2. Multi-dimensional scaling (MDS)
 - 3. ISOMAP
 - 4. t-SNE
 - 5. UMAP

Linear projections: PCA and SVD

PCA: Finds orthogonal vectors (components) to represent as much variance is as possible. Decomposing the covariance matrix, $C = W\Sigma W^T$. See this animation.

SVD: More efficient
Can interpret PCA as a SVD on the
centered covariance matrix

<u>StatQuest: Principal Component Analysis</u> (20 minute video from Josh Starmer)

- 1. Dimensionality Reduction
- 2. Multi-dimensional scaling (MDS)
 - 3. ISOMAP
 - 4. t-SNE
 - 5. UMAP

Multi-Dimensional Scaling (MDS)

- feature extraction
- produces a lower-dimensional representation that preserves pairwise distances or dissimilarities
- n for visualising data
- sometimes called Principal Coordinates Analysis, but it's not the same as PCA!

MDS

$$D(x_i, x_j) = \begin{cases} a & b & c \\ a & 0 & 1 & 1 \\ b & 1 & 0 & 1 \\ c & 1 & 1 & 0 \end{cases}$$

$$D(x_i, x_j) = \begin{pmatrix} a & b & c & d \\ 0 & 1 & 1 & 1 \\ b & 1 & 0 & 1 & 1 \\ c & d & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \end{pmatrix}$$

- start with a pairwise distance matrix or dissimilarity matrix
- we can represent three points that are equally-spaced in 3D exactly in 2D
- we can represent four points that are equally-spaced in 3D exactly in 3D ...

- a... but not in 2D
- in general, we need N-1 dimensions to exactly represent pairwise distances between N samples

Types of MDS

Metric (distance-based) MDS

- Minimise stress
- Stress is the error in the distances (lack-of-fit measure)
- Try to preserve distance between each vector x_i , x_j

$$\mathsf{Cost} = \sum_{i < j} \left(d_{ij} - \hat{d}_{ij} \right)^2$$

actual cost/stress used may be more complex

Non-metric MDS

Try to maintain original ranking of pairwise distances

Interpreting low-dimensionality visualisation

- clusters may represent real clusters
- outliers may represent real outliers
- the position of points is not useful in MDS
- resulting dimensions are not ordered by importance/variance
- a can't reconstruct original data

- 1. Dimensionality Reduction
- 2. Multi-dimensional scaling (MDS)
 - 3. ISOMAP
 - 4. t-SNE
 - 5. UMAP

ISOMAP (Isometric Feature Mapping)

ISOMAP

- nonlinear dimensionality reduction
- preserves the global, non-linear geometry of the data by preserving the geodesic distances

Manifold: a nonlinear low-dimensional surface

a data often lies on or near manifolds

Geodesic: shortest route between two points on the surface of the manifold

(shortest path on a graph)

ISOMAP

- Goal: use geodesic distance between points (with respect to manifold)
- Estimate manifold using graph. Distance between points given by distance of shortest path
- Embed onto 2D plane so that Euclidean distance approximates graph distance

ISOMAP

Two steps:

- 1. Calculate the geodesic distance between every pair of points
 - e.g. use Euclidean distance for points that are 'close enough'
 - For points that are far apart, calculate geodesic distance by summing up local Euclidean distances
- 2. Find Euclidean mapping of the data that preserves the geodesic distance

ISOMAP

Two steps:

- 1. Calculate the geodesic distance between every pair of points
 - e.g. use Euclidean distance for points that are 'close enough'
 - For points that are far apart, calculate geodesic distance by summing up local Euclidean distances
- 2. Find Euclidean mapping of the data that preserves the geodesic distance

	1. construct a graph	
1	if $d(i,j) < \varepsilon$	// ε-isomap
2	or	
3	i is one of j's k nearest neighbours	// k-isomap
4	then	
5	Connect i and j	
6	Set the edge weight as $d(i,j)$ (Euclidean distance)	
7	Compute the geodesic distance between all pairs of points (shortest paths)	

Using ISOMAP

Using ISOMAP

Using ISOMAP

- 1. Dimensionality Reduction
- 2. Multi-dimensional scaling (MDS)
 - 3. ISOMAP
 - 4. <u>t-SNE</u>
 - 5. UMAP

Fashion MNIST data set

- Based on images of fashion items.
- Each item is categorized
- Dataset: zalandoresearch/fashion-mnist

t-Distributed Stochastic Neighbour Embedding

$$p_{j|i} = \frac{\exp\left(\frac{-\|x_i - x_j\|^2}{2\sigma_i^2}\right)}{\sum_{k \neq i} \exp\left(\frac{-\|x_i - k_k\|^2}{2\sigma_i^2}\right)}$$

PCA: tries to preserve global structure

t-SNE: tries to preserve local structure

- probabilistic version of MDS
- each point in high-dimensionality has a conditional probability of picking each other point as its neighbor
 - probability of picking j given you start at i

t-Distributed Stochastic Neighbour Embedding

$$p_{j|i} = \frac{\exp\left(\frac{-\|x_i - x_j\|^2}{2\sigma_i^2}\right)}{\sum_{k \neq i} \exp\left(\frac{-\|x_i - k_k\|^2}{2\sigma_i^2}\right)}$$

$$q_{ij} = \frac{\left(1 + \|y_i - y_j\|^2\right)^{-1}}{\sum_{k \neq i} \left(1 + \|y_k - y_i\|^2\right)^{-1}}$$

0.10

- t pdf (df=10)

- a calculate the Gaussian probabilities $(p_{j|i})$ in high-dimensional space
- compare to a probability in lower-dimensional space

t-Distributed Stochastic Neighbour Embedding

$$\begin{aligned} p_{j|i} &= \frac{\exp\left(\frac{-\|x_i - x_j\|^2}{2\sigma_i^2}\right)}{\sum_{k \neq i} \exp\left(\frac{-\|x_i - k_k\|^2}{2\sigma_i^2}\right)} \\ q_{ij} &= \frac{\left(1 + \|y_i - y_j\|^2\right)^{-1}}{\sum_{k \neq i} \left(1 + \|y_k - y_i\|^2\right)^{-1}} \end{aligned}$$

- a calculate the Gaussian probabilities $(p_{j|i})$ in high-dimensional space
- compare to a probability in lower-dimensional space

Evaluate a mapping:

- in lower-dimensional space, calculate probabilities using Student's t-distribution (q)
- probability goes to zero more slowly than a Gaussian
- this relaxes distances in lower-dimensional space

t-SNE cost function

Kullback-Liebler divergence:
$$C = \mathsf{KL}(P \mid\mid Q) = \sum_{i} \sum_{j} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$

- measures the difference between the high-dimensional probability distributions and the low-dimensional probability distributions
- t-SNE algorithm performs gradient descent on the cost function

t-SNE vs. ISOMAP

Example on MNIST dataset

- a classic machine learning dataset of images of handwritten digits
- MNIST dataset: yann.lecun.com/exdb/mnist
- t-SNE publication and code: lvdmaaten.github.io/tsne

- 1. Dimensionality Reduction
- 2. Multi-dimensional scaling (MDS)
 - 3. ISOMAP
 - 4. t-SNE
 - 5. <u>UMAP</u>

UMAP

Uniform Manifold Approximation and Projection (UMAP):

- inspired by t-SNE, based on manifolds and topology rather than probability distributions.
- publications and code at Imcinnes/umap
- UMAP talk at SciPy: youtube.com
- UMAP talk at PyData: youtube.com

UMAP

- In the first phase a weighted k-neighbour graph is constructed.
- In the second phase a low dimensional layout of this graph is computed

Force directed graph layout

- Edge weights mean that nearby points attract each other
- Weight normalization acts as a global force pushing points apart
- Algorithm: iteratively apply attractive and repulsive forces at each edge or node

Fashion MNIST data set

- Based on images of fashion items.
- Each item is categorized
- Dataset: zalandoresearch/fashion-mnist

UMAP

Advantages

- an order of magnitude faster than t-SNE
- deterministic (t-SNE and MDS are stochastic)

Disadvantages

- distances in the plot are not real distances
- dimensions have no interpretable meaning
- hyperparameters need to be tuned carefully and have a huge impact on the result

- 1. Dimensionality Reduction
- 2. Multi-dimensional scaling (MDS)
 - 3. ISOMAP
 - 4. t-SNE
 - 5. UMAP

Thank you!

Today: Dimensionality Reduction II

Next time: Unsupervised Learning