Coursework 4

Pierre Eugene Valassakis , pev115, 00644379 526- Databases

March 8, 2016

1 Question 1

(a) We design the following ER Schema given the specifications:

Figure 1: ER Schema to represent the given UoD

- (b) We can the translate this ER Schema to an RA Schema. We get:
 - animal_species(<u>name</u>, ave_weight,lifespan,do_extinction?)
 - country(country_name, country_land_area,wlife_organisation)
 - continent(continent_name,continent_land_area)
 - fish(<u>name</u>,no_gills,no_fins)
 - bird(<u>name</u>,wing_span,flight?)
 - mammal(<u>name</u>,no_legs,no_cortical_areas,tail_length)
 - placental_mammal(<u>name</u>,gestation_period,placenta_size)
 - $fish(name) \stackrel{fk}{\Rightarrow} animal_species(name)$
 - bird(name) $\stackrel{fk}{\Rightarrow}$ animal_species(name)
 - mammal(name) $\stackrel{fk}{\Rightarrow}$ animal_species(name)
 - placental_mammal(name) $\stackrel{fk}{\Rightarrow}$ mammal(name)
 - fish_seas(sea_name,name)
 - fish_seas(name) $\stackrel{fk}{\Rightarrow}$ fish(name)
 - \bullet ancestor_species(name, ancestor_species)
 - ancestor_species(name) $\stackrel{fk}{\Rightarrow}$ animal_species(name)
 - part_of(country_name,continent_name)
 - part_of(country_name) $\stackrel{fk}{\Rightarrow}$ country(country_name)
 - part_of(contient_name) $\stackrel{fk}{\Rightarrow}$ continent(continent_name)
 - $\bullet \ lives_in(\underline{country_name,continent_name,name,population})$
 - lives_in(country_name,continent_name) $\stackrel{fk}{\Rightarrow}$ belongs_to(country_name, continent_name)
 - lives_in(name) $\stackrel{fk}{\Rightarrow}$ animal_species(name)

2 Question 2

(a) We have:

 $S = \{AB \rightarrow HB, E \rightarrow GI, G \rightarrow CDEFHI, EHB \rightarrow CG, H \rightarrow B, F \rightarrow I\}$

Split the RHS of the FD's, we get:

$$S' = \{AB \rightarrow H, AB \rightarrow B, E \rightarrow G, E \rightarrow I, G \rightarrow C, G \rightarrow D, G \rightarrow E, G \rightarrow F, G \rightarrow H, G \rightarrow I, EHB \rightarrow C, EHB \rightarrow G, H \rightarrow B, F \rightarrow I\}$$

 $AB \rightarrow B$ is self evident so remove.

Since EHB \rightarrow C, H \rightarrow B \Rightarrow EH \rightarrow C.

Since $E \rightarrow G$, $G \rightarrow H$ we get $E \rightarrow H$ and also $EH \rightarrow C \Rightarrow E \rightarrow C$.

Similarly, EHB \rightarrow G \Rightarrow E \rightarrow G , and since it is duplicated, remove.

So we get:

$$S" = \{AB \rightarrow H, E \rightarrow G, E \rightarrow I, G \rightarrow C, G \rightarrow D, G \rightarrow E, G \rightarrow F, G \rightarrow H, G \rightarrow I, E \rightarrow C, H \rightarrow B, F \rightarrow I\}$$

Now:

 $E \rightarrow G, G \rightarrow I$, so remove $E \rightarrow I$

 $E \rightarrow G$, $G \rightarrow C$, so remove $E \rightarrow C$

 $G \rightarrow F$, $F \rightarrow I$, so remove $G \rightarrow I$.

We can remove no other FD and still have the same closure as S.

So the minimal cover of S is:

$$Sc = \{AB \to H, E \to G, G \to C, G \to D, G \to E, G \to F, G \to H, H \to B, F \to I\}$$
$$= \{AB \to H, E \to G, G \to CDEFH, H \to B, F \to I\}$$

(b) Start from the minimal cover and the Relation:

 $R(A,B,C,D,E,F,G,H,I) \text{ and } Sc = \{AB \rightarrow H,E \rightarrow G,G \rightarrow CDEFH,H \rightarrow B,F \rightarrow I\}$

Moreover,

 $G \rightarrow CDEFH$, $H \rightarrow B$ and $F \rightarrow so G \rightarrow BCDEFGHI$. Also $A \rightarrow A$.

So GA is a candidate minimal key of R.

Alternatively,

 $E \rightarrow G$, $G \rightarrow CDEFH$ and $H \rightarrow B$ so $E \rightarrow BCDEFGHI$.

So EA is also a candidate minimal key of R.

From the set S we can also see that there are no other candidate minimal keys for R.

So **EA** and **GA** are the candidate minimal keys of R.

(c) Starting from the minimal cover:

$$Sc = \{AB \rightarrow H, E \rightarrow G, G \rightarrow CDEFH, H \rightarrow B, F \rightarrow I\}$$

We have: BCDFHI are non prime using question 2)b).

Since AB \rightarrow H, H \rightarrow B violate 3NF, generate $R_1(A,B,H)$.

Since $G \rightarrow CDFH$, violates 3NF generate $R_2(\underline{G}, CDFH)$.

Since $F \rightarrow I$ violates 3NF, generate $R_3(F,I)$.

We then have the 3NF of R is:

$$R_1(A, B, H)R_2(\underline{G}, C, D, F, H)R_3(\underline{F}, I)R_4(A, B, E, G) \tag{1}$$

Where:

 R_1 contains AB \rightarrow H and H \rightarrow B,

 R_2 contains $G \rightarrow CDFH$,

 R_3 contains $F \rightarrow I$,

 R_4 contains $E \rightarrow G$ and $G \rightarrow E$.

(d) Let's decompose the relation 1 into BCNF:

Since $H \rightarrow B$ violates BCNF, generate $R_5(H,B)$,

Since $G \rightarrow E$ and $E \rightarrow G$ violates BCNF, generate $R_6(\underline{G},\underline{E})$.

We then get the BCNF form of R is:

$$R_1(A, H)R_2(\underline{G}, C, D, F, H)R_3(\underline{F}, I)R_4(A, B, E)R_5(\underline{H}, B)R_6(\underline{G}, \underline{E})$$
 (2)

Where:

 R_2 contains G \rightarrow CDFH, and hence maintains functional dependencies

 R_3 contains $F \rightarrow I$, and hence maintains functional dependencies

 R_6 contains $E \rightarrow G$ and $G \rightarrow E$, and hence maintains functional dependencies.

 R_5 contains $H\rightarrow B$, and hence maintains functional dependencies.

As we can also see decomposition into R_1 and R_4 do not maintain functional dependencies. In particular, R_1 and R_4 do not contain any functional dependencies and AB \rightarrow H cannot be maintained while decomposing R into BCNF.