Skript Mathe 2

2. Mai 2018

Inhaltsverzeichnis

1	Folg	en 2
	1.1	Definition
	1.2	Beispiele
	1.3	Definition: Beschränkte und alternierende Folgen 4
	1.4	Beispiele
	1.5	Definition: Konvergente Folgen
	1.6	Bemerkung
	1.7	Beispiele
	1.8	Satz
	1.9	Bemerkung
	1.10	Beispiel: Geometrische Folge
	1.11	Beispiel
		Bemerkung: Dreiecksungleichung
	1.13	Rechenregeln für Folgen
	1.14	Beispiele: Rechenregeln
		Satz: Einschließungsregel
		Beispiele
	1.17	Satz
		Definition: Landau Symbole, \mathcal{O} -Notation
		Beispiele
	1.20	Definition: Monotonie
	1.21	Beispiele
	1.22	Definition
	1.23	Satz: Monotone Konvergenz
	1.24	Bernoulli-Ungleichung
	1.25	Beispiel: Folgen mit Grenzwert e
		Satz: Intervallschachtelung
		Beispiel
	1.28	Definition: Eulersche Zahl
	1.29	Bemerkung
	1.30	Definition: Teilfolge
	1.31	Beispiel
	1.32	Bemerkung
	1.33	Definition: Häufungspunkt (HP) 16
	1.34	Beispiel
	1.35	Satz: Bonzano-Weierstraß 16

	1.36	Definition: Limes inferior/superior
		Bemerkung
	1.38	Beispiel
	1.39	Definition: Cauchy-Folgen
	1.40	Satz: Cauchy-Kriterium
	1.41	Beispiel
	1.42	Definition: Kontraktion
	1.43	Banachscher Fixpunktsatz
2	Reil	nen 20
	2.1	Definition: Reihe
	2.2	Bemerkung
	2.3	Beispiele
	2.4	Satz: Rechenregeln für Summen
	2.5	Satz: Konvergenz und Divergenzkriterien für Reihen $\dots 22$
	2.6	Cauchy-Kriterium
	2.7	Satz: Absolute Konvergenz
	2.8	Korollar: Dreiecksungleichung für Reihen
	2.9	Satz: Divergenzkriterium
	2.10	Majorantenkriterium

1 Folgen

1.1 Definition

Eine Folge $(a_n)_{n\in\mathbb{N}}$ ist eine Abbildung von den natürlichen Zahlen (\mathbb{N}) in eine beliebige Menge M (oft $M\subseteq\mathbb{R}$).

 a_n : n-tes Folgenglied

n: Index

Oft ist das erste Folgenglied nicht a_1 , sondern z.B: a_7 .

Schreibweise: $(a_n)_{n\in\mathbb{N}}$, $(a_n)_{n\geq n_0}$ oder (a_n)

1.2 Beispiele

- a) $a_n = c \ \forall n \in \mathbb{N}$ (konstante Folge)
- b) $a_n = n$ (Ursprungsgerade)

c) $a_n = (-1)^n, n \in \mathbb{N}$ (alternierend)

d) $a_n = \frac{1}{n}$ (Nullfolge)

e) Rekursive Folgen, z.B: Fiboacci-Folge.

$$\overline{f_1} = 1, f_2 = 1, \underbrace{f_{n+1} = f_n + f_{n-1}}_{\text{Rekursions formel}}$$

$$f_3 = 1 + 1 = 2, f_4 = 3, f_5 = 5, \dots$$

f) Exponentielles Wachstum (z.B von Bakterienstämmen)

q: Wachstumsfaktor

 X_0 : Startpopulation

Explizit: $X_n = q^n * X_0$

z.B:
$$X_0 = 5, q = 2$$

$$\rightarrow X_1 = 10, X_2 = 20, X_3 = 40, \dots$$

g) Logistisches Wachstum

$$X_{n+1} = r \cdot X_n \cdot (1 - X_n)$$

 $r \in [0, 4]$: Wachstums-/Sterbefaktor

 $X_n \in [0,1]$: Relative Anzahl der Individuen in Generation n

Anzahl der Individuen in Generation n+1 hängt ab von der aktuellen Populationsgröße X_n und den vorhandenen natürlichen Ressourcen, charakterisiert durch $(1-X_n)$

1.3 Definition: Beschränkte und alternierende Folgen

Sei $(a_n)_{n\in\mathbb{N}}$ mit $a_n\in\mathbb{R} \ \forall n\in\mathbb{N}$.

- a) (a_n) heißt beschränkt : $\Leftrightarrow |a_n| \leq K$ für ein $K \geq 0$.
- b) (a_n) heißt alternierend, falls die Folgenglieder abwechselnd positiv und negativ sind.

1.4 Beispiele

Aus 1.2):

- a, c, d, g) sind beschränkt
- b, e) sind unbeschränkt
- c) ist alternierend

1.5 Definition: Konvergente Folgen

a) Eine Folge $(a_n)_{n\in\mathbb{N}}$ reeller Zahlen konvergiert gegen $a\in\mathbb{R}$, wenn es zu jedem $\epsilon>0$ ein $N\in\mathbb{N}$ gibt (das von ϵ abhängig sein darf), so dass:

$$|a_n - a| < \epsilon \quad \forall n \ge N$$

Kurz:

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \ge N : |a_n - a| < \epsilon$$

- b) $a \in \mathbb{R}$ heißt Grenzwert oder Limes der Folge. Man schreibt: $\lim_{n \to \infty} a_n = a \text{ oder } a_n \to a \text{ für } n \to \infty \text{ oder } a_n \xrightarrow[n \to \infty]{} a \text{ oder } a_n \to a.$
- c) Eine Folge (a_n) mit Limes 0 heißt Nullfolge.
- d) Eine Folge die nicht konvergent ist, heißt divergent.

1.6 Bemerkung

 $a_n \to a$ bedeutet anschaulich: Gibt man eine Fehlerschranke $\epsilon > 0$ vor, so sind ab einem bestimmten $N \in \mathbb{N}$ alle Folgenglieder weniger als ϵ von a entfernt. Je kleiner ϵ gewählt wird, desto größer muss im allgemeinen N gewählt werden.

Solch ein N muss sich für jedes noch so kleine ϵ finden lassen. Ansonsten ist (a_n) divergent.

1.7 Beispiele

- a) Behauptung: $a_n = \frac{1}{n}, (a_n)_{n \in \mathbb{N}}$ ist Nullfolge Beweis:
 - Wähle $\epsilon = \frac{1}{10}$. Dann ist für N > 10

$$|a_n - 0| = \left| \frac{1}{n} \right| = \frac{1}{n} \le \frac{1}{N} \le \frac{1}{N} \le \frac{1}{10} \quad \forall n \ge N$$

• Allgemein (beliebiges ϵ) Sei $\epsilon > 0$. Dann ist für $N > \frac{1}{\epsilon}$

$$|a_n - 0| = \frac{1}{n} \leq \frac{1}{N \geq n} \frac{1}{N} < \frac{1}{\frac{1}{\epsilon}} \quad \forall n \geq N$$

b) Behauptung: $(a_n)_{n\in\mathbb{N}}$ mit $a_n=\frac{n+1}{3n}$ hat Limes $a=\frac{1}{3}$. Beweis: Sei $\epsilon>0$. Dann ist für $N\geq\frac{1}{3\epsilon}$

$$|a_n - n| = \left| \frac{n+1}{3n} \right| = \frac{n+1-n}{3n} = \frac{1}{3n} \le \sqrt{\frac{1}{3N} < \epsilon} \quad \forall N \ge n$$

c) N muss nicht immer optimal gewählt werden.

$$\frac{1}{n^3 + n + 5} \xrightarrow[n \to \infty]{} 0$$

Sei $\epsilon > 0$, für $N > \frac{1}{\epsilon}$

$$|a_n - a| = \frac{1}{n^3 + n + 5} \le \frac{1}{N > n} \frac{1}{N^3 + N + 5} < \frac{1}{N} < \epsilon$$

1.8 Satz

Jede konvergente Folge ist beschränkt.

Beweis: Sei (a_n) eine konvergente Folge mit Limes $a \in \mathbb{R}$.

Zu zeigen: $|a_n| \leq K \ \forall a \in \mathbb{N}$, für ein $K \geq 0$.

Sei $\epsilon = 1$, (a_n) konvergent.

$$\Rightarrow |a_n| = |a_n - a + a| \le \underbrace{|a_n - a| + |a|}_{\text{Dreiecksungleichung}} < 1 + |a| \ \forall n \ge N$$

Setze $K = max\{1 + |a|, |a_1|, |a_2|, ..., |a_{N-1}|\}$

$$\Rightarrow |a_n| \leq K \ \forall n \in \mathbb{N} \quad \Box$$

1.9 Bemerkung

Wegen 1.8: (a_n) unbeschränkt $\Rightarrow (a_n)$ divergent.

Unbeschränkte Folgen sind also immer divergent.

1.10 Beispiel: Geometrische Folge

Für
$$q \in \mathbb{R}$$
: $\lim_{n \to \infty} q^n = \begin{cases} 0, \text{ falls } |q| < 1 \\ 1, \text{ falls } q = 1 \end{cases}$

Für |q| > 1 oder q = -1 ist (q^n) divergent.

Beweis:

1.) |q| < 1. Sei $\epsilon > 0$ beliebig. Dann ist

$$(q^{n} - 0) = |q|^{n} < \epsilon \Leftrightarrow n \cdot \ln |q| < \ln(e) \quad |: \ln(q) < 0$$

$$\Leftrightarrow n > \frac{\ln(\epsilon)}{\ln |q|}$$

Für
$$N > \frac{\ln(\epsilon)}{\ln |q|} : |q|^n < \epsilon \quad \forall n \geq N$$

- 2.) q = 1. $q^n = 1$ $\forall n \in \mathbb{N} \Rightarrow q^n \to 1$
- 3.) $|q|>1 \Rightarrow (q^n)$ unbeschränkt $\underset{1.9}{\Rightarrow} (q^n)$ divergent
- 4.) $q=-1 \Rightarrow q^n=(-1)^n.$ Beweis der Divergenz später (Cauchyfolgen)

1.11 Beispiel

Wegen 1.10 sind $(\frac{1}{2^n})_{n\in\mathbb{N}}$ und $((\frac{-7}{8})^n)_{n\in\mathbb{N}}$ Nullfolgen.

Bemerkung: Dreiecksungleichung

Um Rechenregeln für Folgen in 1.13 beweisen zu können, braucht man folgende Version der Δ -Ungleichung:

$$||a| - |b|| \le |a - b| \quad \forall a, b \in \mathbb{R}, da:$$

$$\bullet |a - b + b| \le |a - b| + |b| \qquad \qquad |-b|$$

$$\Leftrightarrow |a| - |b| \le |a - b|$$

$$\bullet |b - a + a| \le |b - a| + |a| \qquad |-a|$$

$$\Leftrightarrow |b| - |a| \le |b - a|$$

$$\Rightarrow ||a| - |b|| \le |a - b|$$

1.13 Rechenregeln für Folgen

Seien $(a_n), (b_n)$ konvergente Folgen mit $\lim_{n \to \infty} (a_n) = a$ und $\lim_{n \to \infty} (b_n) = b$.

Dann gilt:

1.)
$$\lim_{n \to \infty} (a_n + b_n) = a + b$$

2.)
$$\lim_{n \to \infty} (\lambda \cdot a_n) = \lambda \cdot a \quad \forall \lambda \in \mathbb{R}$$

3.)
$$\lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b$$

4.)
$$b \neq 0 \Rightarrow \bullet \exists k \in \mathbb{N} : b_n \neq 0 \, \forall n \geq k$$

$$\bullet \left(\frac{a_n}{b_n}\right)_{n\geq k}$$
 konvergiert gegen $\frac{a}{b}$

5.)
$$\lim_{n \to \infty} |a_n| = |a|$$

Seien weiter $(d_n), (e_n)$ reelle Folgen, (d_n) ist Nullfolge

6.)
$$(e_n)$$
 beschränkt $\Rightarrow (d_n \cdot e_n)$ ist Nullfolge

7.)
$$|e_n| \le d_n \Rightarrow |e_n|$$
 ist Nullfolge

Beweis:

1.)

Sei
$$\epsilon > 0 \Rightarrow \exists N_a, N_b \in \mathbb{N} :$$

$$\bullet |a_n - a| \le \frac{\epsilon}{2} \quad \forall n \ge N_{\epsilon}$$

$$\bullet |a_n - a| \le \frac{\epsilon}{2} \quad \forall n \ge N_a$$

$$\bullet |b_n - b| \le \frac{\epsilon}{2} \quad \forall n \ge N_b$$

$$\Rightarrow |a_n + b_n - (a+b)| \le \underbrace{|a_n - a|}_{\le \frac{\epsilon}{2}} + \underbrace{|b_n - b|}_{\le \frac{\epsilon}{2}} < \epsilon$$

$$\forall n \ge \max\{N_a, N_b\}$$

2.) • Für
$$\lambda = 0$$
 gilt auch $\lambda \cdot a_n \to 0 = \lambda \cdot a \checkmark$

• Für
$$\lambda \neq 0$$
: Sei $\epsilon > 0$

$$\Rightarrow \exists N \in \mathbb{N} : |a_n - a| \le \frac{\epsilon}{|x|} \quad \forall n \ge N$$

$$\Rightarrow |\lambda a_n - \lambda a| = |\lambda| \cdot |a_n - a| < \epsilon \quad \forall n > N \checkmark$$

3.)

Satz 1.8
$$\Rightarrow$$
 (b_n) beschränkt.

$$\Rightarrow \exists k \geq 0 : |b_n| \leq k \quad \forall n \in \mathbb{N}$$

$$\Rightarrow |a_n b_n - ab| = |(a_n - a)b_n + a(b_n - b)|$$

$$\leq |a_n - a| \cdot k + |a| \cdot |b_n - b| \quad (*)$$

Sei
$$\epsilon > 0 \Rightarrow \exists N_a, N_b \in \mathbb{N} : |a_n - a| < \frac{\epsilon}{2k} \quad \forall n \ge N_a$$

$$|b_n - b| < \frac{\epsilon}{2|a|} \quad \forall n \ge N_b$$

$$\underset{(*)}{\Rightarrow} |a_n b_n - ab| < \frac{\epsilon}{2k} \cdot k + |a| \cdot \frac{\epsilon}{|a|} = \epsilon$$

 $\forall n \geq \max\{N_a, N_b\}$

4.) • Z.z:
$$\exists k \in \mathbb{N} : b_n \neq 0 \quad \forall n \geq k$$

Es ist $b \neq 0$ und |b| > 0.

$$\Rightarrow \exists l \in \mathbb{N} : \underbrace{|b_n - b|}_{\geq |b| - |b_n|} < \frac{|b|}{2} \quad \forall n \geq b$$

$$\Rightarrow \exists |b| - |b_n| < \frac{|b|}{2} \quad \forall n \ge k$$

$$\Rightarrow \frac{|b|}{2} < |b_n| > 0 \quad \forall n \ge k \ (**)$$

$$\Rightarrow b_n \neq 0 \quad \forall n > k$$

• Z.z:
$$\left(\frac{a_n}{b_n}\right)_{n \ge k}$$
 hat $\frac{a}{b}$ als Limes.

a $\frac{a_n}{b_n}=a_n\cdot\frac{1}{b_n},$ genügt es wegen 3.) zu zeigen, dass $\frac{1}{b_n}\to\frac{1}{b}.$

Sei
$$\epsilon > 0 \Rightarrow \exists N \in \mathbb{N} : |b_n - b| < \frac{\epsilon}{2} \cdot |b|^2$$

Sei
$$\epsilon > 0 \Rightarrow \exists N \in \mathbb{N} : \underline{\left|b_n - b\right| < \frac{\epsilon}{2} \cdot \left|b\right|^2}$$

$$\Rightarrow \left|\frac{1}{b_n} - \frac{1}{b}\right| = \left|\frac{b - b_n}{b \cdot b_n}\right| \overset{<}{\underset{(**)}{<}} \frac{2}{\left|b\right|^2} \cdot \left|b - b_n\right| \overset{<}{<} \epsilon \quad \forall n \geq N$$

- 5.) mit 1.12
- 6,7.) Übung

1.14 Beispiele: Rechenregeln

a) $\frac{(-1)^n + 5}{n} = ((-1)^n + 5) \cdot \frac{1}{n} \xrightarrow[n \to \infty]{} 0 \text{ wegen } 1.13/6$ $\bullet \frac{1}{n} \to 0$

•
$$|(-1)^n + 5| \le |(-1)|^n + 5 = 6$$

 $\Rightarrow (-1)^n + 5$ beschränkt

b) $\frac{3n^2 + 1}{-n^2 + n} \to -3, \text{ denn } \lim_{n \to \infty} \frac{3n^2 + 1}{-n^2 + n} = \lim_{n \to \infty} \frac{\mathscr{A}^{\mathbb{Z}}(3 + \frac{1}{n^2})}{\mathscr{A}^{\mathbb{Z}}(-1 + \frac{1}{n})}$ $\stackrel{=}{=} \frac{\lim_{n \to \infty} 3 + \frac{1}{n^2}}{\lim_{n \to \infty} 1 + \frac{1}{n}} \stackrel{=}{=} \frac{3 + \lim_{n \to \infty} \frac{1}{n^2}}{-1 + \lim_{n \to \infty} \frac{1}{n}} = \frac{3}{-1} = -3$

c) Sei $x \in \mathbb{R}$ mit |x| > 1 und $k \in \mathbb{N}_0$.

Dann: kte Potenz $\overbrace{n^k} {n^k} \xrightarrow[n \to \infty]{} 0$ exponentielles Wachstum

Beweis: Es ist |x| = 1 + t für t > 0.

Für n > k:

$$|x|^{n} = (1+t)^{n} = \sum_{j=0}^{n} \underbrace{\binom{n}{j} 1^{n-j} t^{j}}_{\geq 0}$$

$$\geq \sum_{j=k+1} \binom{n}{k+1} t^{k+1} = \frac{n(n-1) \cdot \dots \cdot (n-k)}{(k+1)!}$$

$$= n^{k+1} \cdot \frac{t^{k+1}}{(k+1)!} \pm \dots$$

$$\Rightarrow \left| \frac{n^{k}}{x^{n}} \right| = \frac{n^{k}}{(1+t)^{n}} \leq \underbrace{\cancel{n^{k}(k+1)!}}_{n^{k+1}t^{k+1} \pm \dots} \xrightarrow{n \to \infty} 0$$

d) Sei $x\in\mathbb{R}_+$. $\left(\frac{x^n}{n!}\right)$ ist Nullfolge, d.h. Fakultät wächst schneller als exponentiell: Sei $m\in\mathbb{N}$ und n>m+1>x

$$\Rightarrow \frac{x^n}{n!} = \frac{x^{n-m}}{n(n-1) \cdot \dots \cdot (m+1)} \cdot \left[\frac{x^m}{m!} \right] = c > 0$$

$$\leq c \cdot \frac{x^{n-m}}{(m+1)^{n-m}} = c \cdot \underbrace{\left(\frac{x}{m+1} \right)}_{\text{geom. Folge, } < 1} \xrightarrow{\text{1.13/6, } \atop 1.13/7} 0$$

1.15 Satz: Einschließungsregel

Seien $(a_n), (b_n), (c_n)$ reelle Folgen mit

- 1. $\exists k \in \mathbb{N} : a_n \le b_n \le c_n \quad \forall n \ge k$
- 2. $(a_n), (c_n)$ konvergent und $\lim_{n \to \infty} (a_n) = \lim_{n \to \infty} (c_n)$

Dann ist auch (b_n) konvergent und $\lim_{n\to\infty}(b_n)=\lim_{n\to\infty}(a_n)$

Beweis: Sei $a := \lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n$ und $\epsilon > 0$.

$$\Rightarrow N_a, N_c : \bullet |a_n - a| < \frac{\epsilon}{3} \quad \forall n \ge N_a$$
$$\bullet |c_n - a| < \frac{\epsilon}{3} \quad \forall n \ge N_c$$

us 1.:

$$|b_n - a_n| = b_n - a_n \le c_n - a_n = |c_n - a_n|$$

$$\forall n \ge k$$

$$\Rightarrow |b_n - a| \le |c_n - a_n| + |a_n - a| \le |c_n - a_n| + |a_n - a|$$

$$\le |c_n - a| + |a - a| + |a_n - a| \le \frac{\epsilon}{3}$$

$$\leq \frac{\epsilon}{3} + |a - a| + |a_n - a| \le \frac{\epsilon}{3}$$

1.16 Beispiele

a) $\sqrt[n]{n} \xrightarrow[n \to \infty]{} 1$, denn:

Sei
$$\epsilon > 0$$
. Da $\frac{n}{(1+\epsilon)^n} \to 0$ (1.14/c),

gibt es $N \in \mathbb{N}$ mit $\frac{n}{(1+\epsilon)^n} < 1 \quad \forall n \ge N$.

$$\Rightarrow (1+\epsilon)^n > n \quad \forall n \ge N$$
$$\Rightarrow 1+\epsilon > \sqrt[n]{n}$$

Da einerseits $\sqrt[n]{n} \ge 1 > 1 - \epsilon \ \forall n \in \mathbb{N}$, ist

$$1+\epsilon > \sqrt[n]{n} > 1-\epsilon \Leftrightarrow \left|\sqrt[n]{n}-1\right| < \epsilon \quad \forall n \geq N$$

b) $\sqrt[n]{x} \to 1 \quad \forall x > 0$

Sei
$$x > 0 \Rightarrow \exists N \in \mathbb{N} : \boxed{\frac{1}{n} \le x \le n} \quad \forall n \ge N$$

$$\Rightarrow \frac{1}{\sqrt[n]{n}} \le \sqrt[n]{x} \le \sqrt[n]{n} \quad \forall n \ge N$$

$$\Rightarrow \frac{1}{\sqrt[n]{n}} \to 1 \text{ und } \sqrt[n]{n} \to 1 \Rightarrow \sqrt[n]{x} \to 1$$

1.17 Satz

Sei (a_n) eine Folge nicht negativeer reeller Zahlen mit $a_n \to a$. Dann:

- 1. $\lim_{n \to \infty} \sqrt[m]{a_n} = \sqrt[m]{a_n} \quad \forall m \in \mathbb{N}$
- 2. $\lim_{n\to\infty} a_n^q = a^q \ \forall q \in \mathbb{Q} \text{ mit } q > 0 \text{ (ohne Beweis)}$

1.18 Definition: Landau Symbole, \mathcal{O} -Notation

Sei (a_n) eine reelle Folge mit $a_n > 0 \quad \forall n \in \mathbb{N}$. Dann ist

a)
$$\mathcal{O}(A_n) = \left\{ (b_n) \left| \left(\frac{b_n}{a_n} \right) \text{beschränkt} \right. \right\}$$

b)
$$o(A_n) = \left\{ (b_n) \mid \left(\frac{b_n}{a_n}\right) \text{Nullfolge} \right\}$$

 $[a_n$ wächst schneller als $b_n]$

c)
$$a_n \sim b_n$$
, falls $\frac{a_n}{b_n} \to 1$

 \mathcal{O}, o heißen Landau-Symbole

1.19 Beispiele

- $(2n^2 + 3n + 1) \in O(n^2)$
- $(2n^2 + 3n + 1) \in o(n^3)$
- $(n_3) \in o(2^n)$
- $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$ (Stirlingsche Formel)
- $\bullet~\mathcal{O}(1)$ Menge aller beschränkten Folgen
- o(1) Menge aller Nullfolgen

1.20 Definition: Monotonie

Eine Folge reeller Zahlen (a_n) heißt

a) (streng) monoton steigend/wachsend, falls

$$a_n \ge (>) \ a_n \quad \forall n \in \mathbb{N}$$

Schreibweise: $(a_n) \nearrow (\text{monoton wachsend})$

b) (streng) monoton fallend, falls

$$a_n \le (<) \ a_n \quad \forall n \in \mathbb{N}$$

Schreibweise: $(a_n) \searrow (\text{monoton fallend})$

1.21 Beispiele

- (a_n) mit $a_n = \frac{1}{n}$ streng monoton fallend
- (a_n) mit $a_n = 1$ monoton steigend und fallend
- (a_n) mit $a_n = (-1)^n$ nicht monoton

1.22 Definition

Eine reelle Folge (a_n) heißt nach oben (unten) beschränkt, falls $\{a_n|n\in\mathbb{N}\}$ von oben (unten) beschränkt ist.

1.23 Satz: Monotone Konvergenz

Sei (a_n) reelle Folge:

- Falls $(a_n) \nearrow$ und nach oben beschränkt, so konvergiert (a_n) gegen $\sup\{a_n|n\in\mathbb{N}\}$
- Falls $(a_n) \searrow$ und nach unten beschränkt, so konvergiert (a_n) gegen $\inf\{a_n|n\in\mathbb{N}\}$

Beweis:

1. Sei $(a_n) \nearrow$ und nach oben beschränkt

und seien $a = \sup\{a_n | n \in \mathbb{N}\}$ und $\epsilon > 0$.

$$\Rightarrow a_n \le a \quad \forall n \in \mathbb{N}$$

a kleinste obere Schranke

 $\Rightarrow a - \epsilon$ keine obere Schranke.

$$\Rightarrow \exists N \in \mathbb{N} : a - \epsilon < a_N \le a$$

$$\underset{\substack{a_n \geq a_N \\ \forall n \geq N}}{\Rightarrow} |a_n - a| = a - a_n \leq a - a_N$$

$$\Rightarrow a_n \to a$$

2. analog \square

1.24 Bernoulli-Ungleichung

Im folgenden Beispiel wird die Bernoulli-Ungleichung benötigt:

$$(1+h)^n \ge 1 + nh \quad \forall h \ge -1 \forall n \in \mathbb{N}$$

Beweis mit vollständiger Induktion

1.25 Beispiel: Folgen mit Grenzwert e

• $a_n = (1 + \frac{1}{n})^n = (1 + \frac{n+1}{n})$ ist monoton.

Zeigen dazu: $a_n \ge a_{n-1} \left(\Leftrightarrow \frac{a_n}{a_{n-1}} \ge 1 \right)$

$$\begin{split} \frac{a_n}{a_{n-1}} &= \left(\frac{n+1}{n}\right)^n \cdot \left(\frac{n-1}{n}\right)^{n-1} \\ &= \left(\frac{n+1}{n}\right)^n \cdot \left(\frac{n-1}{n}\right)^n \cdot \frac{n}{n-1} = \left(\frac{n^2-1}{n^2}\right)^n \cdot \frac{n}{n-1} \\ &= \left(1 - \frac{1}{n^2}\right)^n \left(\frac{n}{n-1}\right) \underset{1.24}{\geq} \underbrace{\left(1 - \frac{1}{n}\right) \cdot \frac{n}{n-1}} = 1 \end{split}$$

• $b_n = \left(1 + \frac{1}{n}\right)^{1+n} = \left(\frac{n+1}{n}_{n+1}\right)$ ist monoton fallend.

Zeige dazu:
$$b_n \leq b_{n-1} \left(\Leftrightarrow \frac{b_n}{b_{n-1}} \leq 1 \right)$$
Analog: $\frac{b_n}{b_{n-1}} = \left(1 + \frac{1}{n^2 - 1} \right)^n \left(\frac{n}{n+1} \right)$
Wegen $\left(1 + \frac{1}{n^2 - 1} \right)^n \geq 1 + \frac{n}{n^2 - 1} \geq 1 + \frac{1}{n}$ ist
$$\frac{b_n}{b_{n-1}} \geq \frac{1+1}{n} \cdot \frac{n}{n+1} = 1 \quad (?)$$

In Beispiel 1.27 werden wir sehen, dass

 $h = \frac{1}{n^2}$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$$

Der Limes wird als Eulerische Zahl e bezeichnet. Dazu zunächst:

1.26 Satz: Intervallschachtelung

Seien $(a_n), (b_n)$ reelle Folgen mit

- $(a_n) \nearrow, (b_n) \searrow$
- $a_n \le b_n \quad \forall n \in \mathbb{N}$
- $b_n a_n \to 0$

Dann sind $(a_n), (b_n)$ konvergent und besitzen den selben Limes.

Beweis: Es ist $a_1 \le a_n \le b_n \le b_1 \quad \forall n \in \mathbb{N}$

- \Rightarrow (a_n) hat obere Schranke b_1
 - (b_n) hat untere Schranke a_1
- $\Rightarrow (a_n), (b_n)$ konvergent.

Da $(b_n - a_n)$ Nullfolge, sind auch die Grenzwerte gleich.

1.27 Beispiel

- $(a_n) \nearrow, (b_n) \searrow (\text{siehe } 1.25)$
- $(a_n) = (1 + \frac{1}{n})^n \le (1 + \frac{1}{n}) \cdot a_n = (1 + \frac{1}{n})^{n+1} = \underline{b_n}$
- $\lim_{n \to \infty} b_n = \lim_{n \to \infty} \underbrace{\left(1 + \frac{1}{n}\right)}_{\rightarrow 1} \cdot a_n = \lim_{1.13/3} \lim_{n \to \infty} a_n$

1.28 Definition: Eulersche Zahl

$$e := \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \left(= \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+1} \right)$$

1.29 Bemerkung

 (a_n) konvergent $\Rightarrow (a_n)$ beschränkt. **Die Umkehrung gilt nicht!** z.B besitzt jedoch $a_n = (-1)^n$ zwei konvergente Teilfolgen mit Limes +1 und -1.

1.30 Definition: Teilfolge

Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge und $(n_k)_{k\in\mathbb{N}}$ eine streng monoton steigende Folge von Indizes. Dann heißt die Folge $(a_{n_k})_{k\in\mathbb{N}}$ Teilfolge von $(a_n)_{n\in\mathbb{N}}$.

1.31 Beispiel

$$a_n = (-1)^n$$

- $n_k = 2k \Rightarrow a_{n_k} = a_{2k} = (-1)^{2k} = 1 \quad \forall k \in \mathbb{N}$
- $n_k = 2k + 1 \Rightarrow a_{n_k} = a_{2k+1} = (-1)^{2k+1} = -1 \quad \forall k \in \mathbb{N}$

1.32 Bemerkung

 (a_n) konvergiert gegen $a \Rightarrow$ Jede Teilfolge von (a_n) konvergiert gegen a.

1.33 Definition: Häufungspunkt (HP)

Sei (a_n) reelle Folge. $h \in \mathbb{R}$ heißt Häufungspunkt von (a_n) , wenn es eine Teilfolge von (a_n) gibt, die gegen h konvergiert.

1.34 Beispiel

 (a_n) mit $a_n = (-1)^n + \frac{1}{n}$ hat zwei Häufungspunkte: -1 und 1.

1.35 Satz: Bonzano-Weierstraß

Sei (a_n) reelle Folge. (a_n) beschränkt $\Rightarrow (a_n)$ besitzt konvergente Teilfolge

Beweis: Konstruiere konvergente Teilfolge $(a_{nk})_{k \in \mathbb{N}}$,

 (a_n) beschränkt $\Rightarrow |a_n| \leq K \quad \forall n \in \mathbb{N} \text{ (K geeignet)}$

$$\Rightarrow a_n \in \underbrace{[-K,K]}_{=[A_0,B_0]} \quad \forall n \in \mathbb{N}$$

- $\underline{k} = \underline{1}$: Halbiere $[A_0, B_0]$
 - Falls in der linken Folgenhälfte unendlich viele Folgeglieder liegen, wähle eines davon aus.
 - Falls nicht, liegen in der rechten Hälfte unendlich viele. Wähle eines davon aus.

Das ausgewählte Folgenglied nennen wir a_{n1} , die Intervallhälfte aus der es stammt $[A_1, B_1]$.

- $\underline{k} = \underline{2}$: Halbiere $[A_1, B_1]$. Wende obiges Verfahren an, um $a_{n2} \in [A_2, B_2]$ zu bestimmen.
- usw ...

Erhalte Intervallschachtelung mit

- $(A_k) \nearrow, (B_k) \searrow$
- $A_k \leq B_k$

•
$$A_k = B_k = \frac{K}{2^{k-1}} \to 0$$

$$\Rightarrow \lim_{1.26} A_k = \lim_{k \to \infty} B_k$$
Da $A_k \le a_{nk} \le B_k$, ist $\lim_{n \to \infty} A_k = \lim_{1.15} (a_{nk})$

1.36 Definition: Limes inferior/superior

 (a_n) reelle folge, beschränkt. Dann gibt es einen größten und einen kleinsten Häufungspunkt, den

- Limes superior von (a_n) : $\limsup_{n\to\infty}(a_n)$, $\overline{\lim}_{n\to\infty}(a_n)$
- Limes inferior von (a_n) : $\liminf_{n\to\infty} (a_n)$, $\underset{n\to\infty}{\underline{\lim}} (a_n)$

Ist (a_n) nicht beschränkt, setzt man

$$\bullet \underset{n \to \infty}{\overline{\lim}} \begin{cases} +\infty : (a_n) \text{ nicht nach oben beschränkt} \\ -\infty : (a_n) \ \forall K > 0 \ \exists N \in \mathbb{N} : a_n \le -K \ \forall n \ge N \end{cases}$$

$$\bullet \underset{n \to \infty}{\underline{\lim}} \begin{cases} -\infty : (a_n) \text{ nicht nach oben beschränkt} \\ +\infty : (a_n) \ \forall K > 0 \ \exists N \in \mathbb{N} : a_n \ge K \ \forall n \ge N \end{cases}$$

$$\bullet \underset{n \to \infty}{\underline{\lim}} \begin{cases} -\infty : (a_n) \ \forall K > 0 \ \exists N \in \mathbb{N} : a_n \ge K \ \forall n \ge N \end{cases}$$

1.37 Bemerkung

a) $a_n \to \pm \infty$ in obriger Definition bedeutet, dass (a_n) (bestimmt) gegen $\pm \infty$ divergiert. (d.h. es gibt keine weiteren endlichen Häufungspunkte)

z.B. divergiert
$$(a_n)$$
 mit $a_n = (-1)^n$ nicht bestimmt, aber (a_n) mit $(a_n) = n$ divergiert bestimmt gegen ∞

- b) $-\infty, \infty$ sind keine reellen Zahlen. Man setzt $\overline{\mathbb{R}} = \mathbb{R} \cup \{\infty, -\infty\}$ mit $-\infty < x < \infty \quad \forall x \in \mathbb{R}$
- c) In $\overline{\mathbb{R}}$ besitzt jede Folge sowohl \limsup als auch \liminf .

1.38 Beispiel

$$a_n = n \cdot (1 + (-1)^n) = \begin{cases} 2n, & \text{n gerade} \\ 2n + 1, & \text{n ungerade} \end{cases}$$

 $\lim\inf(a_n)=0\quad \lim\sup(a_n)=\infty$

1.39 Definition: Cauchy-Folgen

Sei
$$(a_n)$$
 eine Folge. (a_n) heißt Cauchy-Folge (C-F)
: $\Leftrightarrow \forall \epsilon > 0 \ \exists M \in \mathbb{N} : |a_n - a_k| < \epsilon \ \forall n, k \geq M$

1.40 Satz: Cauchy-Kriterium

Sei (a_n) eine Folge in \mathbb{R} (a_n) konvergiert $:\Leftrightarrow (a_n)$ ist Cauchy-Folge

Beweis: (\Rightarrow) : klar (\Leftarrow) :

1. Zeige (a_n) beschränkt

Sei
$$(a_n)$$
 C-F: $\Rightarrow \exists R \in \mathbb{N} : |a_n - a_k| < 1$
 $\forall n, k \geq R$

$$\underset{k=R}{\Rightarrow} |a_n - a_R| < 1 \quad \forall n \ge \mathbb{R}$$

$$\Rightarrow a_R - 1 < a_n < a_R + 1 \quad \forall n \ge R$$

$$\Rightarrow \min\{a_r - 1, a_1, ..., a_{R-1}\} \le a_n \le \max\{a_R + 1, a_1, ..., a_{R-1}\} \quad \forall n \in \mathbb{N}$$

$$\Rightarrow (a_n)$$
 ist beschränkt und besitzt konvergente Teilfolge (a_{n_j}) (1.35) mit $a=\lim_{j\to\infty}a_{n_j}$

2. (a_n) ist konvergent mit $\lim_{n\to\infty} a_n = a$

Sei $\epsilon > 0$

$$\Rightarrow \quad \bullet \ \exists M \in \mathbb{N} : |a_n - a_k| < \frac{\epsilon}{2} \forall n, k \ge M$$

•
$$\exists J \in \mathbb{N} : \left| a_{n_j} - a_k \right| < \frac{\epsilon}{2} \forall j \ge J$$

Wähle a_{n_j} so, dass $j \geq J$ und $n_j \geq M$.

$$\Rightarrow |a_n - a| \le \underbrace{\left| a_n - a_{n_j} \right|}_{< \frac{\epsilon}{2}} + \underbrace{\left| a_{n_j} - a \right|}_{< \frac{\epsilon}{2}} < \epsilon \quad \forall n \ge M$$

1.41 Beispiel

$$(a_n)$$
 mit $a_n = (-1)^n$ ist divergent,
denn $|a_{n+1} - a_n| = |(-1)^{n+1} - (-1)^n|$
 $= |(-1)^n| - |-1 - 1| = 2$

z.B ist für $\epsilon = 1 \quad |a_{n+1} - a_n| \ge \epsilon \quad \forall n \in \mathbb{N},$ was im Widerspruch zu 1.39 steht.

1.42 Definition: Kontraktion

Eine Abbildung $f:[a,b] \to [a,b]$ heißt Kontradiktion, falls $\alpha \in (0,1)$ existiert, so dass

$$|f(x) - f(y)| \le \alpha |x - y|$$

z.B: $f(x) = \frac{1}{2}x$ ist Kontraktion mit Kontraktionsfaktor $\frac{1}{2}$.

1.43 Banachscher Fixpunktsatz

Sei $f[a,b] \rightarrow [a,b]$ eine Kontraktion. Dann:

- 1. f hat genau einen Fixpunkt $\hat{x} \in \mathbb{R}$, d.h. es git genau ein $\hat{x} \in \mathbb{R} : f(\hat{x} = \hat{x})$
- 2. Für jeden beliebigen Startwert $X_0 \in [a, b]$ konvergiert die durch $X_n := f(X_n + 1)$ definierte Folge (X_n) gegen \hat{x} .

(Ohne Beweis)

2 Reihen

Grundbegriffe und Beispiele

2.1 Definition: Reihe

1. Sei $(a_n)_{n\in\mathbb{N}}$ eine reelle Folge. Die Folge $(S_k)_{k\in\mathbb{N}}$ mit

$$S_k = \sum_{i=1}^k \delta_i = \delta_1 + \dots + \delta_k$$

heißt (undendliche) Reihe, mit Schreibweise $\sum_{i=1}^{\infty} \delta_i$.

Die Zahl $S_k \in \mathbb{R}$ heißt k-te
 Partialsumme der Reihe.

2. Falls (S_k) gegen $s \in \mathbb{R}$ konvergiert, heißt die Reihe konvergent gegen s. Man schreibt:

$$\lim_{k \to \infty} (S_k) = \lim_{k \to \infty} \left(\sum_{i=1}^k a_i \right) = \sum_{i=1}^\infty a_i = s$$

Andernfalls heißt die Reihe divergent.

- 3. Entsprechend kann man für eine Folge $(a_n)_{n\geq n_o}$ die Reihe $\sum_{i=n_o}^{\infty} a_i$ definieren.
- 4. $\sum_{i=1}^{\infty}$ heißt absolut konvergent, falls $\sum_{i=1}^{\infty} |a_i|$ konvergiert.

2.2 Bemerkung

Falls die Folgen der Parialsummen von $\sum_{i=n_o}^{\infty} a_i$ bestimmt gegen $+\infty(-\infty)$ divergiert, so schreiben wir: $\sum_{i=n_o}^{\infty} a_i = \infty(-\infty)$

2.3 Beispiele

a)
$$\sum_{k=1}^{\infty} k = 1 + 2 + 3 + \dots = \infty$$

b)

$$\underbrace{\sum_{k=1}^{n} (-1)^k}_{S_n} = \begin{cases} -1 & \text{n ungerade} \\ 1 & \text{n gerade} \end{cases}$$

$$\Rightarrow \sum_{k=1}^{\infty} (-1)^k \text{ divergent}$$

c) Harmonische Reihe
$$\sum_{k=1}^{\infty} \frac{1}{k}$$
 ist divergent.

$$S_n = 1 + \frac{1}{2} + \boxed{\left[\frac{1}{3} + \frac{1}{4}\right]} + \boxed{\left[\frac{1}{5} + \ldots + \frac{1}{8}\right]} + \boxed{\left[\frac{1}{9} + \ldots + \frac{1}{16}\right]} + \ldots + \frac{1}{n}$$

$$> 2 \cdot \frac{1}{4} = \frac{1}{2} \qquad > 4 \cdot \frac{1}{8} = \frac{1}{2} \qquad > 8 \cdot \frac{1}{16} = \frac{1}{2}$$

$$\Rightarrow S_n > 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots$$

Per Induktion: $S_{2^m} \geq 1 + \frac{m}{2} \xrightarrow[m \to \infty]{} \infty \Rightarrow (S_{2^m})$ divergent.

d)
$$\sum_{k=0}^{\infty} \frac{1}{2^k} = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$$
 konvergent

$$\text{und } \sum_{k=0}^{\infty} \frac{1}{2^k} = 2$$

e) Geometrische Reihe

Für
$$g \in \mathbb{R}, |q| < 1$$
 gilt $\sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$,

denn $S_n = \sum_{k=0}^{\infty} q^k = \frac{1-q^{n+1}}{1-q}$ (Beweis mit vollständiger Induktion)

Da
$$q^{n+1} \xrightarrow[n \to \infty]{} 0$$
 für $|q| < 1$ (1.10), folgt $S_n \to \frac{1}{1-q}$.

Andererseits ist $\sum_{k=0}^{\infty} q^k$ divergent für $|q| \ge 1$ (2.9)

• In Beispiel d) is
$$q = \frac{1}{2}$$
 und $\sum_{k=0}^{\infty} \frac{1}{2^k} = \frac{1}{1 - \frac{1}{2}} = 2$

$$\bullet \ \sum_{k=0}^{\infty} \left(-\frac{1}{2}\right)^k = \frac{1}{1 - \frac{1}{2}} = \frac{2}{3}$$

Diese Reihe ist sogar absolut konvergent.

$$\bullet \ \sum_{k=3}^{\infty} \left(\frac{2}{3}\right)^k = \sum_{k=0}^{\infty} \left(\frac{2}{3}\right)^{k+3} = \left(\frac{2}{3}\right)^3 \cdot \sum_{k=0}^{\infty} \left(\frac{2}{3}\right)^k = \left(\frac{2}{3}\right)^3 \cdot \underbrace{\frac{1}{1-\frac{2}{3}}}_{3} = \frac{8}{9}$$

Achtung bei Index-Verschiebung!

2.4 Satz: Rechenregeln für Summen

Gegeben seien zwei konvergente Reihen mit $\sum_{k=1}^{\infty} a_k = a, \sum_{k=1}^{\infty} b_k = b$ und $c \in \mathbb{R}$. Dann gilt:

a)
$$\sum_{k=1}^{\infty} (a_k + b_k) = \sum_{k=1}^{\infty} (a_k) + \sum_{k=1}^{\infty} (b_k) = a + b$$

b)
$$\sum_{k=1}^{\infty} c - a_k = c \cdot \sum_{k=1}^{\infty} a_k = c \cdot a$$

Beweis folgt direkt aus 1.13.

2.5 Satz: Konvergenz und Divergenzkriterien für Reihen

Ist (S_n) mit $S_n = \sum_{k=1}^{\infty} a_k$ nach oben beschränkt und $a_k > 0 \ \forall k \in \mathbb{N}$, so ist $\sum_{k=1}^{\infty} a_k$ konvergent. (Folgt direkt aus 1.23)

2.6 Cauchy-Kriterium

 $\sum_{i=1}^{\infty} a_i \text{ konvergient} \Leftrightarrow \forall \epsilon > 0 \ \exists N \in \mathbb{N} :$

$$\underbrace{|a_n + \dots + a_k|} < \epsilon \quad \forall k \ge n \ge N$$

$$\left[= |S_k - S_{n-1}| = \left| \sum_{i=1}^k a_i - \sum_{i=1}^{n-1} a_i \right| \right]$$

(Folgt aus 1.40)

2.7 Satz: Absolute Konvergenz

Ist $\sum_{i=1}^{\infty} a_i$ absolut konvergent, so ist $\sum_{i=1}^{\infty}$ auch konvergent.

Beweis: Sei $\epsilon > 0$. $\Rightarrow \exists N \in \mathbb{N}$: $|a_n| + ... + |a_k| < \epsilon \quad \forall k \geq N$.

$$\begin{array}{l} \text{Da } |a_n|+\ldots+|a_k| \leq |a_n|+\ldots+|a_k| < \epsilon \quad \forall k \geq n \geq N, \\ \text{ist } 2.6 \text{ für } \sum_{i=1}^{\infty} a_i \text{ erfüllt.} \end{array}$$

2.8 Korollar: Dreiecksungleichung für Reihen

Für jede absolut konvergente Reihe $\sum_{i=1}^{\infty} a_i$ gilt:

$$\Big|\sum_{i=1}^{\infty} a_i\Big| \le \sum_{i=1}^{\infty} a_i |a_i|$$

Beweis: Sei $\sum_{i=1}^{\infty} a_i$ absolut konvergent. Dann:

$$\bullet \lim_{k \to \infty} (S_k) = \lim_{k \to \infty} \left(\sum_{i=1}^K a_i \right)$$

Da
$$\lim_{k \to \infty} |S_k| = \left| \lim_{k \to \infty} \right| \quad \left[\begin{array}{c} C_i \to c \\ \Rightarrow |C_i| \to |c| \end{array} \right. (1.13) \right],$$

ist
$$\lim_{k \to \infty} \left| \sum_{i=1}^{k} a_i \right| = \left| \sum_{i=1}^{\infty} a_i \right|$$
 (*)

$$\bullet \lim_{k \to \infty} \left(\sum_{i=1}^{k} |a_i| \right) = \sum_{i=1}^{\infty} |a_i| \ (**)$$

Insgesamt:
$$\left| \sum_{i=1}^{k} a_i \right| \le \sum_{i=1}^{k} |a_i| \quad \left| \lim_{k \to \infty} \right|$$

$$\underset{(*),(**)}{\Leftrightarrow} \left| \sum_{i=1}^{\infty} a_i \right| \le \sum_{i=1}^{\infty} |a_i|$$

2.9 Satz: Divergenzkriterium

Ist $\sum_{i=1}^{\infty} a_i$ konvergent, so ist (a_n) eine Nullfolge. D.h. Ist (a_i) keine Nullfolge, so divergiert $\sum_{i=1}^{\infty} a_i$.

Beweis: $\sum_{i=1}^{\infty} a_i$ konvergiert $\Rightarrow \forall \epsilon > 0 \ \exists N \in \mathbb{N}$:

$$|a_n + \dots + a_k| < \epsilon \ \forall k \ge n \ge N.$$

Wähle $k = 1 \Rightarrow |a_n| < \epsilon \ \forall n \ge N \Rightarrow (a_n)$ Nullfolge. \square

2.10 Majorantenkriterium

Seien $(a_n), (b_n)$ Folgen in \mathbb{R} mit $0 \le a_n \le b_n$ $n \in \mathbb{N}$. Ist dann $\sum_{i=1}^{\infty} b_i$ konvergent, so ist auch $\sum_{i=1}^{\infty} a_i$ konvergent.

Beweis: Sei
$$\epsilon > 0 \Rightarrow \exists N \in \mathbb{N} : |a_n + \dots + a_k|$$

$$\leq |b_n + \dots + b_k| < \epsilon \quad \forall k \geq n \geq N \quad \Box$$

$$0 \leq a_1 \leq b_i \ \forall i$$