PHOTOLUMINESCENT INTENSITY

Author: Ryan Zamora

Advisor: Dr. Craig Schwartz

Texas State University, San Marcos

Project Outline:

Photoluminescent Intensity (PLI)

Defect Density Descriptions

Fit Data for Modeling

Solvers - Method of Relaxation / 2-d Diffusion

Model Adequacy Check

Photoluminescent Intensity (PLI):

Chalkboard demonstration

Semi-conductor Material

- Absorbs
- Transmits
- Reflects

Measure emitted photons intensity

Photoluminescent Intensity (PLI):

Recombination - photons emitted (luminescence)

Photons

- trapped (reabsorbed)
- internal reflect
- escape (intensity)

Electron - Holes Pairs

Defect Density Descriptions:

10-6 meter scale

Surface defects

What is happening?

Defect Density Descriptions:

Solvers - Method of Relaxation:

Large sparse linear systems

Linear least squares

Finite-difference discretization of differential equations

Solvers - Method of Relaxation:

Models Elliptic partial differential equation

- Laplace's equation
- Poisson's equation
- Boundary-value problems

<u>Solvers – Method of Relaxation / 2-d</u> Diffusion:

-1st iteration @ boundary = 0
- 2nd iteration

Model Adequacy Check:

Are the boundary conditions zero?

Parameter adjustments

