HÊ THỐNG BÁO TRỘM **DÙNG IR LED**

THÀNH VIÊN

1912553

1912563

1910770

1912595

1912565

- Bùi Sỹ Ngọc Anh
- Hà Minh Anh
- Nguyễn Trần Tú Anh
- Nguyễn Quang Anh
- Hồ Việt Anh

HỆ THỐNG BÁO TRỘM DÙNG IR LED

A

TổNG QUAN HỆ THỐNG

B

THIẾT KẾ VÀ PHÂN TÍCH
 HỆ THỐNG

TỔNG QUAN VỀ HỆ THỐNG

01 Đặc tả Hệ thống

02 Đặc điểm kỹ thuật

03 Các vấn đề cơ bản

ĐẶC TẢ HỆ THỐNG HỆ THỐNG 'à hệ t'

Giới thiệu cơ bản về hệ thống

Giới thiệu về hệ thống

Hệ thống báo trộm dùng IR LED

Mục đích: Báo trộm

Chức năng: Cảnh báo có trộm dùng còi và đèn LED

Hiệu năng và chi phí

Tổng chi phí ước tính: 700.000 VNĐ

Nguồn và lắp đặt hệ thống

Nguồn: Adapter 5V-2A, adapter 12-2A

Lắp đặt hệ thống

ĐẶC ĐIỂM KỸ THUẬT

Sensor

- Thu tín hiệu
- · Chuyển tín hiệu về bộ xử lý trung tâm

Bộ xử lý trung tâm

- Nhận tín hiệu từ sensor
- Xử lý và đưa ra tín hiệu báo động

Thiết bị cảnh báo

- · Loa, đèn LED, màn hình LCD, động cơ DC
- Phát tín hiệu cảnh báo

Bộ xử lý trung tâm

Bộ xử lý trung tâm: Arduino Uno

Chức năng: Nhận, xử lý và gửi tín hiệu

Yêu cầu:

- + Nguồn cung cấp ổn định 5V
- + Nhiệt độ hoạt động $-55^{o}C$ $125^{o}C$

Sensor cảm biến hồng ngoại

- Sensor cảm biến hồng ngoại
- Chức năng:
- + Phát tia hồng ngoại
- + Gửi tín hiệu nhận được về Arduino
- Yêu cầu:
- + Chu kỳ lấy mẫu 50-700 ms
- + Có thể xoay
- + Vỏ bọc chống cháy, chống nước
- +Nguồn cung cấp ổn định 12V
- +Nhiệt độ hoạt động < 38°C</p>

Thiết bị cảnh báo

- Còi và đèn LED
- Nguồn: 5V
- Kích thước nhỏ gọn

- LCD cảnh báo
- Nguồn: 5V
- Nhỏ gọn, màn hình chống chói

- Dông cơ DC
- Nguồn: 12V
- Đóng cửa mỗi khi có báo động

Nguyên lý hoạt động

- Sensor hồng ngoại quét được có chuyển động
- Gửi tín hiệu đến bộ xử lý trung tâm
- Bộ xử lý chạy chương trình xử lý tín hiệu
- Bật các thiết bị báo động

Phần cứng

- Arduino UNO: nhận, xử lý, phát tín hiệu
- IC PCF8574: mở rộng chân giao tiếp I/O của vi điều khiển qua giao tiếp I2C.
- LCD: hiển thị các thông tin
- Nguồn: cung cấp điện, nguồn xung
- Sensor: phát tia hồng ngoại, gửi tín hiệu về Arduino
- O Còi, đèn: cảnh báo khi có trộm
- Động cơ: đóng cửa mỗi khi có báo động

CÁC VẤN ĐỀ CƠ BẢN CỦA HỆ THỐNG

Ràng buộc, hiệu năng, tính thời gian thực, tính đồng thời & tính đáp ứng hệ thống

Ràng buộc của hệ thống

Hiệu năng

Nút bấm

- Có tên rõ ràng
- Dễ bấm, không rò điện

Loa

- Âm thanh cảnh báo
- Âm lượng vừa phải

Cảm biến

- Thông tin chính xác
- Không gây nhiễu

Tính thời gian thực

- Hệ thống soft realtime
- Tạo đáp ứng ngô ra trong 10ms

Tính đồng thời

- Arduino nhận tín hiệu từ Sensor, xử lý và phát tín hiệu đến thiết bị cảnh báo:
- + Loa: Phát âm thanh cảnh báo
- + Đèn LED: Sáng đèn
- + LCD: Hiển thị thông tin cảnh báo
- + Động cơ: Đóng cửa

Tính đáp ứng của hệ thống

- Khi cấp nguồn, hệ thống liên tục chờ nhận tín hiệu từ Sensor, nút nhấn
- Hệ thống tương tác trực tiế với người dùng qua cái nút nhấn

Sơ đồ mạch

- ☐ Arduino Uno R3
- □ PCF 8574
- ☐ IR LED
- ☐ LCD 16x2
- ☐ Đèn LED
- ☐ Loa
- ☐ Động cơ
- Nút nhấn

Thuật toán Loa

Thuật toán Relay

Code chương trình

```
#include <TimerOne.h>
#include <Wire.h>
#include <LiquidCrystal I2C.h>
LiquidCrystal I2C lcd(0x27, 16, 2);
#define sensor 6
#define leda 9
#define ledb 8
#define ledc 7
#define speaker 11
#define relay 12
volatile int dem=0;
volatile boolean state=1;
float sinVal;
int toneVal;
int a=0;
volatile int count=LOW;
void beep2()
```

```
for(int x=0;x<180;x++)
  \sin \text{Val} = \sin(x*(3.1412/180));
  toneVal = 2000 + (int(sinVal*1000));
  tone(speaker,toneVal);
  delayMicroseconds(25);
void beep1(int delayms,int tones)
analogWrite(speaker,tones);
delay(delayms);
analogWrite(speaker,0);
```

```
void ngattimer()
 dem++;
 if(dem > = 5)
  state=0;
  digitalWrite(relay,state);
void doimode()
count=!count;
```

Code chương trình

```
void setup()
 pinMode(relay,OUTPUT);
 Timer1.initialize(1000000);
 Timer1.attachInterrupt(ngattimer);
 pinMode(2,INPUT PULLUP);
 attachInterrupt(0,doimode,LOW);
 pinMode(sensor, INPUT);
 pinMode(leda, OUTPUT);
 pinMode(ledb, OUTPUT);
 pinMode(ledc, OUTPUT);
 pinMode(speaker, OUTPUT);
 lcd.init();
 lcd.backlight();
 Serial.begin(9600);
```

```
void loop(){
 if(digitalRead(sensor)==1)
  digitalWrite(relay, state);
  digitalWrite(leda, HIGH);
  digitalWrite(ledb, HIGH);
  digitalWrite(ledc, HIGH);
  Serial.println("Phat hien vat can");
  lcd.setCursor(0,0);
  lcd.print("Co vat can
  if(count==1)
  lcd.setCursor(0,1);
  lcd.print("che do loa:2");
beep2();
```

```
if(count==0)
 noTone(speaker);
 lcd.setCursor(0,1);
 lcd.print("che do loa:1");
 beep1(200,220);
  else
 dem=0;
 state=1;
 digitalWrite(relay,LOW);
 noTone(speaker);
 Serial.println("KHONG phat hien vat can");
 lcd.setCursor(0,0);
lcd.print("Khong co vat can");
```

28

Code chương trình

```
if(count==0)
   lcd.setCursor(0,1);
   lcd.print("che do loa:1");
 if(count==1)
   lcd.setCursor(0,1);
   lcd.print("che do loa:2");
 digitalWrite(leda, LOW);
 digitalWrite(ledb,LOW);
 digitalWrite(ledc,LOW);
```

Cảm ơn!

Mọi người có bất kỳ câu hỏi nào?

Contact group if you have any questions?

