model problem:
$$y' = \Theta y$$
 (Θ is a parameter)

$$\frac{datce}{}$$
: $\{(T, \hat{g})\}$ — for simplicity we only have one date point

- A. Write down the error function $E(\Theta) =$
- B. write down the constraints (these are the Euler steps N total steps)
- C. write down the lagrangian:

D. We can find our optimal & (i.e. the & that minimizes own error function) if we satisfy the conditions:

we will focus on these 2

$$\frac{\partial L}{\partial y_{i}} = 0 \qquad j = 1,..., n \qquad \text{this gives cus a formula for } \lambda_{j}.$$
the iteration is solved backword in time.
$$\frac{\partial L}{\partial \lambda_{j}} = 0 \qquad j = 1,..., n \qquad \text{this tells us to solve for } y_{j}.$$
using Euler.

$$\frac{\partial L}{\partial \lambda_j} = 0$$
 $j = 1,...,n$ — this tells us to solve for y_j using Euler.

- i. Show that $\frac{\partial L}{\partial \lambda_j} = 0$ is equivalent to saying that $y_{i+1} = y_i + hf(y_i)$
- LL. Show that $\frac{\partial L}{\partial y_i} = 0$ gives an iterative method for computing λ_j . You will find λ_n explicitly by taking $\frac{\partial L}{\partial y_0} = 0$ All other hij can be expressed in terms of hijt, (this leads to an iteration that we solve in remore order)

E. To use Gradient Descent to find the optimal Θ , we require $\frac{\partial E}{\partial \Theta}$. Notice that $L\left(y_{1}^{q_{1}},...,y_{n}^{q_{n}},\lambda_{1}^{q_{1}},...,\lambda_{n}^{q_{n}},\Theta\right)=E\left(\Theta\right)$, therefore $\frac{\partial L}{\partial \Theta}\left(y_{1}^{q_{1}},...,y_{n}^{q_{n}},\lambda_{1}^{q_{n}},...,\lambda_{n}^{q_{n}},\Theta\right)=\frac{\partial E}{\partial \Theta}\left(\Theta\right)$. Compute the formula for $\frac{\partial L}{\partial \Theta}$.

F. repeat the analysis for the generic ODE $\dot{y} = g(\dot{y}; \theta)$. Since $g(\dot{y}; \theta)$ is not specified, Your formulas will contain the terms $\frac{\partial g}{\partial \theta}$ and $\frac{\partial g}{\partial \dot{y}}$