[Max Marks:80] **Duration: 3hrs**

- N.B.: (1) Question No 1 is Compulsory.
 - (2) Attempt any three questions out of the remaining five
 - (3) All questions carry equal marks.
 - (4) Assume suitable data, if required and state it clearly.
- Q1. Solve any **four** from following.

- a. What are the issues in Machine learning?
- b. Explain Regression line, Scatter plot, Error in prediction and Best fitting line.
- Explain the concept of margin and support vector.
- d. Explain the distance metrics used in clustering.
- **Explain Logistic Regression**
- Q2. a. Explain the steps of developing Machine Learning applications.

[10]

b. Explain Linear regression along with an example.

[10]

Q3. a. Create a decision tree using Gini Index to classify following dataset.

Sr. No.	Income	Age	Own Car
100	Very High	Young	Yes
2	High	Medium	Yes
3	Low	Young	No No
A 4	High	Medium	Yes
5 6	Very High	Medium	Yes
65	Medium	Young	Yes
7	High	Old	Yes
8	Medium	Medium	No No
9	Low	Medium	No C
10	Low	Old	No
110	High	Young	Yes
12	Medium	Old	No e

b. Describe Multiclass classification.

[10]

Q4. a. Explain the Random Forest algorithm in detail.

[10]

b. Explain the different ways to combine the classifiers.

[10]

Q5. a. Compute the Linear Discriminant projection for the following two-dimensional dataset. $X1 = (x1, x2) = \{(4,1), (2,4), (2,3), (3,6), (4,4)\}$ and

[10]

 $X2 = (x1, x2) = \{(9,10), (6,8), (9,5), (8,7), (10,8)\}$

[10]

b. Explain EM algorithm.

Q6. Write detailed note on following. (Any two)

[20]

a. Performance Metrics for Classification

- b. Principal Component Analysis for Dimension Reduction
- c. DBSCAN