La catena respiratoria

Nell'ultima fase della respirazione, gli <u>elettroni</u> del NADH e del FADH2 sono trasferiti attraverso la **catena di trasporto degli elettroni**, o **catena respiratoria**.

I trasportatori di elettroni sono:

- complessi respiratori

 (associati alla membrana interna del mitocondrio);
- trasportatori mobili
 (coenzima Q e citocromo c).

L'ossigeno è l'accettore finale degli elettroni.

L'accoppiamento chemiosmotico /1

I complessi I, II e IV della catena respiratoria pompano protoni dalla matrice allo spazio intermembrana, creando un gradiente elettrochimico. -> differenta di polarito dell' H

Il gradiente elettrochimico costituisce una fonte di energia potenziale detta **forza motrice protonica**. I protoni **ritornano** alla matrice attraverso un canale associato all'**ATP sintas**i, che usa l'energia per sintetizzare ATP.

protoni devono torname demtro

Questo meccanismo è chiamato accoppiamento chemiosmotico.

L'accoppiamento chemiosmotico /2

L'ATP sintasi

L'ATP sintasi è un enzima formato da due unità:

- •unità F_o, forma il canale per i protoni;
- •unità F₁, contiene i siti attivi per la sintesi dell'ATP.

La parte F0 costituisce il canale attraverso cui passano i protoni; passando fanno girare F1, che genera energia utilizzata per legare il fosforo all'ADP presente nella matrice cellulare, formando ATP

Inibizione della fosforilazione ossidativa

Lo catera respiratoria

Esistono varie sostanze tossiche che possono inibire la fosforilazione ossidativa a livelli diversi:

- •inibizione della catena respiratoria sui complessi mitocondriali (rotenone, amital, antimicina A, cianuro, monossido di carbonio);
- •inibizione dell'ATP sintasi (oligomicina);
- •annullamento del gradiente elettrochimico ai due lati della membrana (disaccoppianti, come 2,4-dinitrofenolo).

Lezione 4

La fermentazione

I procarioti, non avendo i mitocondri, dopo la glicolisi svolgono degli altri processi, per lo più anaerobici, chiamati fermentazioni:

- alcolica
- lattica

È un processo conosciuto da tantissimo tempo, e addirittura 3000 anni prima di Cristo pare venissero prodotti alcolici fermentati

La fermentazione alcolica

In assenza di ossigeno, può avvenire la **fermentazione alcolica**. I prodotti finali sono CO₂ ed etanolo, che possono attraversare la membrana plasmatica e diffondere fuori dalla cellula, senza inibire la glicolisi.

Questa via metabolica è tipica dei lieviti e di altri microrganismi unicellulari. — proceriati, batteri

Bilancio complessivo:

La rottura di questo legame libera l'energia necessaria a legare il fosforo ad una molecola di ADP, producendo ATP

La fermentazione lattica

La **fermentazione lattica** consuma il NADH per convertire il piruvato in acido lattico, che nelle cellule si trova sotto forma di anione (**lattato**).

Questa fermentazione avviene negli eritrociti (senza mitocondri), in alcuni batteri e nelle cellule muscolari durante un'attività fisica intensa.

Noi facciamo la fermentazione lattica quando, sotto sforzo, non facciamo il ciclo di Crebs

Il ciclo di Cori

Il ciclo di Cori è un processo formato da più vie metaboliche: la glicolisi e la fermentazione nel muscolo, che producono lattato a partire dal glucosio, e la gluconeogenesi nel fegato, che produce glucosio da lattato.

Confronto tra via aerobica e anaerobica

La via aerobica produce 32 ATP da 1 molecola di glucosio, quella anaerobica soltanto 2 ATP.

Fermentazion ACETICA

In questo processo l'alcol etilico viene trasformato in acido acetico; questo avviene nel vino quando si trasforma in aceto.