Math 310 - HW 4 (Due Wednesday 02/26)

(All problems are Extra Credit)

1. Consider the following continued fraction:

$$1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \dots}}}$$

- (i) Write the above continued fraction as the limit of a sequence. Then write a (first-order) recurrence relation between the terms of the sequence.
- (ii) Show that the sequence is bounded.
- (iii) Show that the subsequence of odd-indexed terms and even-indexed terms are monotonic.
- (iv) Show that the above continued fraction converges and find the limit.
- **2**. Given $x_1 = 2\sqrt{3}$, $y_1 = 3$, two sequences $\{x_n\}, \{y_n\}$ are defined by:

$$x_{n+1} = \frac{2x_n y_n}{x_n + y_n}$$
, $y_{n+1} = \sqrt{x_{n+1} y_n}$

- (i) Prove that
 - $\{x_n\}$ is monotonic decreasing and bounded below
 - $\{y_n\}$ is monotonic increasing and bounded above

$$y_n < x_n$$
 for all n

(*Hint*: First try Not-for-credit #1. Here you may use (loaded) induction.)

- (ii) Show that they both converge to the same limit (say ℓ), by showing that $0 < x_{n+1} y_{n+1} < \frac{x_1 y_1}{2^n}$
- (iii) Find any good bounds for ℓ and guess what its exact value could be.
- **3**. Consider the two sequences:

$$u_n = \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right) - \ln n$$
, $v_n = \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1}\right) - \ln n$

- (i) Show that $\frac{1}{n+1} < \ln(1+\frac{1}{n}) < \frac{1}{n}$ for all n (Hint: Use your knowledge of Taylor expansions of e^x and $\ln(1\pm x)$ from Calculus)
- (ii) Use (i) to show that $\{u_n\}$ is bounded from below and $\{v_n\}$ is bounded from above.
- (iii) Use (i) to show that $\{u_n\}$ is monotonic decreasing and $\{v_n\}$ is monotonic increasing.
- (iv) Show that $\{u_n\}$ and $\{v_n\}$ both converge to the same limit. Find any good numerical bounds for this limit. Explain this graphically. What is this limit called in Math literature?
- **4.** (i) Given $x_n > 0, \forall n$ and $\left\{\frac{x_{n+1}}{x_n}\right\} \to \ell$ ($\ell \neq 0$), show that $\left\{\sqrt[n]{x_n}\right\} \to \ell$ (*Hint*: Use one of Cauchy's theorems from class.)
- (ii) Use (i) to find the limit of $\{\frac{\sqrt[n]{n}}{n}\}$ (Remark: Note that gives us some idea about the growth of the factorial function. To know even more, one has to look into Stirling's Approximation)

1

Not for Credit:

1. Given $0 < y_1 < x_1$, two sequences $\{x_n\}, \{y_n\}$ are defined by:

$$x_{n+1} = \frac{x_n + y_n}{2}$$
 , $y_{n+1} = \sqrt{x_n y_n}$

Prove that both sequences are monotonic and then show that they both converge to the same limit.