

Superconducting Qubits with Josephson junctions

Theoretical insights and real world applications

Matteo De Tullio
MSc in Physics of Matter

Outline

Artificial atoms

Why superconductors?

Making a nonlinear resonator: the Josephson junction

The SC qubits family tree

The transmon qubit

Qubits gates: single and coupled

Qubit readout

Problems and applications

Bit vs qubit

Classic bit (binary digit)

- Two levels system (0 or 1 logic state)
- Physically implementations:
 - electrical switches (transistors)
 - distinct levels of voltage/currents in a circuit
 - magnetization directions...
- A measurement does not affect the state

Qubit (quantum bit)

- Coherent superposition of two quantum states
- Wave vector pointing towards a position in the Bloch sphere:

$$\psi = \alpha |0\rangle + \beta |1\rangle$$

A measurement destroys coherence

The challenge

Nature "atomic" atoms

• $T_{decoh} \ge 10 \ seconds$

• $T_{pulse} \sim 5 \,\mu s$

Low error per gate ~ 0.48 %

• Laser tuned at the right transition frequency ω_{01}

"Artificial" atoms – LC harmonic oscillator

Capacitive term

How to make a quantum circuit

Normal conductor Superconductor

Temperature

Superconducting wire

quantum mechanical behavior is preserved!

Normal conductor

Joule heating, leakage of information

The Helium dilution refrigerator

$$\omega_{01} = \frac{1}{\sqrt{LC}} \sim 10 \; GHz$$

Quantum condition:

$$T \ll \frac{\hbar\omega_{01}}{K_B} \sim 0.3 \ K$$

Commercial He dilution refrigerators:

T = 20 mK

The Josephson junction – *anharmonic* oscillator (I)

$$I = I_0 \sin(2\pi\Phi/\Phi_0)$$

$$L_J = \left(\frac{\partial I}{\partial \Phi}\right)^{-1} = \frac{\Phi_0}{2\pi I_0} \frac{1}{\cos(2\pi\Phi/\Phi_0)}$$

Niemczyk,... . (2009). Fabrication Technology of and Symmetry Breaking in Superconducting Quantum Circuits. 22. 10.1088/0953-2048/22/3/034009.

The Josephson junction – *anharmonic* oscillator (II)

Josephson junction symbol

$$H = \frac{Q^2}{2C} - E_J \cos(2\pi\Phi/\Phi_0)$$

A.F. Kockum, Quantum Optics with Artificial Atoms. Ph.D. thesis, Chalmers University of Technology, 2014.

Josephson-junction based qubits

$$[\phi, n] = i$$

 $[\phi, n] = i \quad \Longrightarrow \quad \Delta\phi\Delta n \ge 1$

Heisenberg uncertainty

- large ϕ quantum fluctuations
- well defined charge number *n*

w.r.t. Charge qubit

The transmon qubit

$$H = 4 E_C (n - n_g)^2 + E_I \cos(\Phi)$$

Charge dispersion vs anharmonicity at degeneracy points

Charge dispersion

MHz_{\perp} GHz(b) (a) 30 10³ 80 10⁻² E_C E_{01} 20 10 10⁻⁷ m = 010⁻¹² 40 60 80 100 120 140 E_{J}/E_{C} 40 60 80 100 120 140 E_J/E_C

$$\epsilon_m \propto e^{-\sqrt{8E_J/E_C}}$$
 for $E_I/E_C >> 1$

Anharmonicity

$$\alpha_r \propto -\sqrt{8E_J/E_C}$$
 for $E_J/E_C >> 1$

The DiVincenzo criteria

- Qubits: The state must be described as a normalized superposition of two states and the internal Hamiltonian of the system must be known
- 2. **Initialization**: it must be possible to initialize these qubits to a simple and known state

- 3. Gates: it must be possible to perform both single and two qubit gates on the qubits with high fidelity
- 4. Readout: it must be possible to measure the states of the qubits.
- **5. Coherence**: the coherence times of the qubits must be long enough to allow a large number of gates to be performed in sequence before a significant loss of quantum coherence occurs

D.P. DiVincenzo, The physical implementation of quantum computation. Fortschritte der Phys. **48**, 771 (2000)

Qubit single gates

Pauli matrices

$$\sigma_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Coupling J-J qubits

Josephson junction coupling

Direct connection:

- capacitively
- inductively

Connection by intermediate electrical coupling circuit:

- LC resonator
- Another J-J qubit
- DC-Squid

Intermediate quantum bus

Turn off qubit coupling: tuning transition frequencies far from resonance with each other

Qubit readout

Qubit

Resonator

Interaction

Frequency ω_q

Frequency ω_r

Interaction strength g

$$H = H_{Oub} + H_{Res} + H_{Int}$$

Dispersive interaction condition:

$$\omega_r - \omega_q \gg g$$

$$H = \hbar \frac{g^2}{\omega_r - \omega_q} (|1\rangle\langle 1| + a^{\dagger} a \sigma_z)$$

Time evolution:

$$e^{-iHt/\hbar}|0\rangle|\alpha\rangle = |0\rangle \left|\alpha e^{-ig^2t/(\omega_r - \omega_q)}\right\rangle$$
 $e^{-iHt/\hbar}|1\rangle|\alpha\rangle = |1\rangle \left|\alpha e^{ig^2t/(\omega_r - \omega_q)}\right\rangle$

Jaynes-Cummings Hamiltonian

Supercomputer vs quantum computer

1. Activation: 2^n states

2. Encoding: applying gates

- 5 people 120 combinations
- 10 people 3.628.800 combinations!

3. Solution: using intereference and translating to 010011...

Primes factorization and searching algorithms

Primes factorization

IBM Quantum

Searching from a list

$$M = p \cdot q$$
 $p, q \text{ prime numbers}$

Classical	$t \sim exp(O(d^3))$	$2.8 \cdot 10^{22} \ years$
Quantum	$t \sim O(d^3)$	100 s

Applications

Combinatorial optimization problems:

- Assignment problem
- Closure problem
- Constraint satisfaction problem
- Cutting stock problem
- Integer programming
- Knapsack problem
- Minimum spanning tree
- Scheduling problem
- Traveling salesman problem
- Vehicle routing and rescheduling

Hardest problem (NP-Complete) Hard problems Primes factorization

Chemistry models:

- Material design
- Drug discovery

Financial services:

- Asset pricing
- Risk analysis
- Rare events simulation

Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy.

— Richard P. Feynman —