Project 2

March 29, 2022

Gabe Morris

```
[1]: from scipy.interpolate import interp1d
  from scipy.optimize import fsolve
  from msu_esd import cross_flow_unmixed
  import numpy as np
  import matplotlib.pyplot as plt

plt.style.use('../maroon.mplstyle')
```

Contents

1	Given				9					
2	Find									
3	Solution									
	3.1	Prope	perties							
		3.1.1	. Air							
		3.1.2	2 Water							
	3.2	Heat I	Exchanger Conductance							
	3.3	Surfac	ace 9.29-0.737-SR							
		3.3.1	Airside							
		3.3.2	Waterside							
		3.3.3	Airside Pressure Drop							
		3.3.4	Power Consumption						1	

1 Given

The preliminary design of a recovery heat exchanger for a Solar Turbines Centaur 50 is to be accomplished. The heat exchanger is to be used to heat water from the turbine exhaust for process use. Surface 8.0-3/8T or surface 9.29-0.737-SR is to be used. More information on the Centaur 50 may be found here.

The requirements are:

Property	Gas Side	Water Side
$\dot{m} \left(\frac{lbm}{hr} \right)$	151,410	36,000
$T_{in}({}^{\circ}F)$	910	70
$T_{out}\left(^{\circ}F\right)$	400	?
P_{in}	atmospheric	atmospheric

The heat exchanger can have necessary width, but the gas inlet side must be such that the Reynolds number inside the finned-tube is about 1000. Water flows through the tubes, which are manifolded together in such a fashion that the water velocity is 3 ft/sec in order to ensure turbulent flow. The properties of the exhaust gas from the heat recovery are close to the properties of air at the same temperature.

2 Find

Select the better surface based on economy of the operation by calculating (a) the heat exchanger width and volume for both surfaces, (b) the gas side pressure drop for both surfaces, and (c) the operating costs for both surfaces for 8760 hr/yr operation. Electricity costs $\frac{\$0.05}{kW hr}$ for usage and $\frac{\$9}{kW}$ for demand (per month). The fan is 75% efficient.

The surface selected must be clearly indicated in the report. A sketch of the selected configuration, with dimensions indicated should be included.

3 Solution

3.1 Properties

The first step is to acquire the properties of the air and water. The properties may be taken at the average temperature between the inlet and exiting temperatures.

3.1.1 Air

The average temperature of the air is 655 °F. The following properties may be obtained from Table B-2 in the text: $\rho = 0.03554 \frac{lbm}{ft^3}$, $c_p = 0.25165 \frac{Btu}{lbm °F}$, $\mu = 2.077 \cdot 10^{-5} \frac{lbm}{ft sec}$, Pr = 0.68775.

3.1.2 Water

For water, the exit temperature is not known, but it may be solved for using an iterative process. First, the rating must be solved for using the known values for the air properties.

```
[2]: # Input parameters of air
mdot_a = 151_410  # lbm/hr
Tin_a = 910  # F
Tout_a = 400  # F
cp_a = 0.25165  # btu/(lbm F)

# Getting the rating
q = mdot_a*cp_a*(Tin_a - Tout_a)
q  # Btu per hour
```

[2]: 19432186.514999997

Now the exiting temperature may be solved using some python magic.

```
[3]: # Input parameters of water

mdot_w = 36_000  # lbm/hr

Tin_w = 70  # F

# We can get cp as a function of temperature using an interpolation function

from scipy
# From the book,

T_values = [80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600]

cp_values = [0.998, 0.997, 0.998, 1, 1, 1.01, 1.03, 1.05, 1.08, 1.12, 1.19, 1.

31, 1.51]

cp_w_lamb = interp1d(T_values, cp_values, fill_value='extrapolate')
```

Now cp_w_lamb may take in arguments at any temperature. This feature will be used later when accessing the database. For instance, the heat capacity should be between 1.08 and 1.12 for $410 \,^{\circ}F$

```
[4]: float(cp_w_lamb(410)) # adding float() because it returns an array
```

[4]: 1.088

Now fsolve may be used to iteratively find the outlet temperature.

```
[5]: # Getting the outlet temperature
def get_T(Tout_water):
    T_avg = (Tout_water + Tin_w)/2
    cp_water = float(cp_w_lamb(T_avg))
    return q - mdot_w*cp_water*(Tout_water - Tin_w) # expression equal to zero

Tout_w = fsolve(get_T, np.array([500, ]))[0]
Tout_w # F
```

[5]: 588.2044624423871

With the average temperature of the water being 329.10223 °F, the properties from Table B-2 are: $\rho = 56.31 \, \tfrac{lbm}{ft^3}, \, c_p = 1.0416 \, \tfrac{Btu}{lbm \, ^\circ F}, \, \mu = 0.114 \cdot 10^{-3} \, \tfrac{lbm}{ft \, sec}, \, Pr = 1.087, \, k_w = 0.393 \, \tfrac{Btu}{hr \, ft \, ^\circ F}.$

3.2 Heat Exchanger Conductance

The heat exchanger conductance may be calculated using the NTU method.

```
[6]: # Calculating the conductance
cp_w = 1.0416  # Btu/(lbm F)

Cc = mdot_w*cp_w  # Btu/(hr F)
Ch = mdot_a*cp_a  # Btu/(hr F)
C_min, C_max = min([Cc, Ch]), max([Cc, Ch])
C = C_min/C_max
print(f'C: {C:.3f} Btu/(hr F)')
q_max = C_min*(Tin_a - Tin_w)  # Btu/hr
eff = q/q_max
print(f'Effectiveness: {eff:.3f}')
ntu = cross_flow_unmixed(eff, C)
UA = ntu*C_min  # Btu/(hr F)
print(f'UA: {UA:.3f} Btu/(hr F)')
```

C: 0.984 Btu/(hr F)
Effectiveness: 0.617
UA: 74166.055 Btu/(hr F)

The conductance of the iteration for the heat exchangers need to match the one calculated above as well as possible.

Figure 1: Fin-Tube Heat Exchanger

The conductance for an iteration depending on the geometry of the heat exchanger may be obtained by calculating the resistances for the air side and water side portions of the heat exchanger. The following relationship is,

$$UA_{iter} = \frac{1}{R_a + R_w}$$

3.3 Surface 9.29-0.737-SR

A graphical representation of the relationship between Re and $StPr^{2/3}$ may be acquired from the database. This relationship will be used to obtain the heat convection coefficient for the airside.

```
[7]: # Getting graph
     Re = np.array([600, 800, 1000, 1500, 2000, 3000, 4000, 6000, 8000, 10 000])
     hts = np.array([0.014, 0.012, 0.01, 0.0088, 0.008, 0.0071, 0.0067, 0.006, 0.
     ⇔0054, 0.0051])
     fF = np.array([0.052, 0.046, 0.041, 0.035, 0.031, 0.028, 0.025, 0.023, 0.021, 0.
      →0205])
     hts_lamb = interp1d(Re, hts, kind='quadratic')
     fF_lamb = interp1d(Re, fF, kind='quadratic')
     Re_values = np.linspace(Re[0], Re[-1], 1000)
     plt.scatter(Re, hts, label='$StPr^{2/3}$', zorder=3, marker='x', color='black')
     plt.scatter(Re, fF, label='$f F$', zorder=3, marker='x', color='maroon')
     plt.plot(Re_values, hts_lamb(Re_values), label='Interpolation Function', __
     plt.plot(Re_values, fF_lamb(Re_values), label='Interpolation Function', u
      ⇒zorder=2)
     plt.xscale('log')
     plt.xlabel('$Re$')
     plt.grid(which='minor', ls=':')
     plt.legend()
     plt.show()
```


3.3.1 Airside

For the airside (fins), the resistance may be found using,

$$R_a = \frac{1}{\eta_t A h_a}$$

The first step is to calculate Re and making sure that it is around 1000.

```
[8]: # Air properties
     rho a = 0.03554 \# lbm/ft^3
     mu_a = 2.077e-5 \# lbm/(ft sec)
     cp_a = 0.25165 \# Btu/(lbm F)
     Pr_a = 0.68775
     mdot_a = 151_410/3600 # lbm/sec
     # Find the velocity of the air then use that to find Re
     L2 = L3 = 5.875 \# ft
     L1 = 0.6 \# ft
     vol = L1*L2*L3 # ft^3
     print(f'Volume: {vol:.3f} ft^3')
     Da = 0.01352 \# ft (from database)
     sigma = 0.788 # from database
     Va = mdot_a/(L2*L3*sigma*rho_a) # ft/sec
     print(f'Velocity: {Va:.3f} ft/s')
     G = Va*rho a
     Re_a = G*Da/mu_a
     print(f'Re: {Re_a:.3f}')
```

Volume: 20.709 ft^3 Velocity: 43.510 ft/s

Re: 1006.585

With Re known, the convection may now be solved using,

$$StPr^{2/3} = \frac{h}{G \cdot c_{p,a}} Pr^{2/3} \rightarrow h = \frac{StPr^{2/3} \cdot G \cdot c_{p,a}}{Pr^{2/3}}$$

[9]:
$$h_a = hts_lamb(Re_a)*G*cp_a/(Pr_a**(2/3))$$

 $h_a # Btu/(s ft^2 F)$

[9]: 0.004968950135964466

The total fin efficiency may be determined using,

$$\eta_t = 1 - \frac{A_{fin}}{A_{tot}}(1 - \eta_{fin})$$

```
[10]: alpha = 228 # ft^2/ft^3
A_ratio = 0.814
A = alpha*vol # ft^2
L_fin = 0.01875 # ft
k_fin = 221/3600 # Btu/(sec ft F)
t_fin = 0.004/12 # ft
m = np.sqrt(h_a*2/(k_fin*t_fin))
eta_fin = np.tanh(m*L_fin)/(m*L_fin)
print(f'Fin Efficiency: {eta_fin:.3f}')
eta_t = 1 - A_ratio*(1 - eta_fin)
print(f'Total Efficiency: {eta_t:.3f}')
R_fin = 1/(eta_t*A*h_a)
print(f'Resistance: {R_fin:.3f} sec F/Btu')
```

Fin Efficiency: 0.947 Total Efficiency: 0.957 Resistance: 0.045 sec F/Btu

3.3.2 Waterside

The resistance from the waterside may be acquired by using,

$$R_w = \frac{1}{h_w A_c}$$

Re may be found first after acquiring the hydraulic diameter, then that could be used to calculate Nu. The convection coefficient can then be found using,

$$h_w = \frac{Nu \cdot k_w}{D_h}$$

Figure 2: Known Tube Geometry

```
cp_w = 1.0416  # btu/(lbm F)
mu_w = 0.114e-3  # lbm/(ft sec)
Pr_w = 1.087
k_w = 0.393/3600  # btu/(sec ft F)

Dc = 4*0.00306  # ft (from example 3-3)
alpha_c = 42.1  # ft^2/ft^3 (from example 3-3)
sigma_c = 0.129
Vw = 3  # ft/sec
Gw = Vw*rho_w  # lbm/(s ft^2)
Re_w = Gw*Dc/mu_w
print(f"Re: {Re_w:.3f}")
```

Re: 18137.747

```
[12]: # Since the flow is turbulent,
Nu = 0.023*Re_w**0.8*Pr_w**0.333
print(f'Nu: {Nu:.3f}')
h_w = Nu*k_w/Dc
print(f'h: {h_w:.3f} Btu/(s ft^2 F)')
Ac = alpha_c*vol
print(f'Ac: {Ac:.3f} ft^2')
Rw = 1/(Ac*h_w)
print(f'Resistance: {Rw} F*sec/Btu')
```

Nu: 60.347 h: 0.538 Btu/(s ft^2 F) Ac: 871.865 ft^2

Resistance: 0.002130999398204611 F*sec/Btu

```
[13]: # Solving for UA_iter
UA_iter = 1/(Rw + R_fin)*3600
print(f'UA_iter: {UA_iter:.3f} Btu/(hr F)')
print(f'UA_iter/UA: {UA_iter/UA:.3f}')
```

UA_iter: 77112.288 Btu/(hr F) UA iter/UA: 1.040

Thus, the final dimensions of the heat exchanger are $L_1 = 0.6 ft$ (width) and $L_2 = L_3 = 5.875 ft$.

3.3.3 Airside Pressure Drop

The relationship for the pressure drop is,

$$\Delta P = \frac{G^2}{2\rho_{a,in}} \left[(K_c + 1 - \sigma^2) + 2 \left(\frac{\rho_{a,in}}{\rho_{a,out}} - 1 \right) + f_F \frac{A}{A_c} \frac{\rho_{a,in}}{\rho_{a,mean}} - (1 - \sigma^2 - K_e) \frac{\rho_{a,in}}{\rho_{a,out}} \right]$$

```
rho_a_out = 0.046  # lbm/ft^3 at 400 F
rat = rho_a_in/rho_a_out

# From page 159
Kc, Ke = 0.32, -0.03

x1 = Kc + 1 - sigma**2
x2 = 2*(rat - 1)
x3 = float(fF_lamb(Re_a))*A/(L2*L3*sigma)*rho_a_in/rho_a
x4 = (1 - sigma**2 - Ke)*rat

del_P = G**2/(2*rho_a_in)*(x1 + x2 + x3 - x4)/32.174
del_P  # lbf/ft^2
```

[14]: 7.029982630999119

Thus, the pressure drop across the airside is around $7.03 \frac{lbf}{ft^2}$.

3.3.4 Power Consumption

The power consumption for the fan may be calculating using,

$$power = \frac{Q\Delta P}{\eta}$$

where η is the efficiency and $Q = \frac{\dot{m}}{\rho}$.

```
[15]: # Calculating the power
eta = 0.75
Q_a = mdot_a/rho_a # ft^3/s
power = Q_a*del_P/eta
power_kW = power*0.00135581795
print(f'Power: {power:.3f} ft*lbf/s = {power/550:.3f} hp = {power_kW:.3f} kW')
```

Power: 11092.454 ft*lbf/s = 20.168 hp = 15.039 kW

The relationship for power and cost is,

$$cost\ per\ year = \frac{\$0.05}{kW\ hr} \frac{8760\ hr}{yr} \cdot power + \frac{\$9}{kW\ mo} \frac{12\ mo}{yr} \cdot power$$

where the power is in kilowatts.

```
[16]: # Calculating the cost per year
cost_per_year = 0.05*8760*power_kW + 9*12*power_kW
print(f'Cost Per Year: ${cost_per_year:.2f}/year')
```

Cost Per Year: \$8211.48/year