# Design of Experiment and Analysis of Variance

Repetition

Raju Rimal

29 Aug, 2017



Norges miljø- og biovitenskapelige universitet

# Statistical Inference

Hypothesis Testing

# Inference Steps



### Steps

- 1. Make a hypothesis
- 2. Collect data
- 3. Calculate test-statistic
- 4. Compare test-statistic with theoretical distribution (T-statistic, F-statistic,  $\chi^2$  statistic)
- 5. Conclusion and decision

#### Remember

For an estimate we always use hat. For instance, Sample mean  $\bar{x} = \hat{\mu}$  is an estimate of population mean  $\mu$ .

Similarly,  $\hat{\sigma}$  is an estimate of population standard deviation  $\sigma$ .

# Hypothesis

#### Use cases

## **Null Hypothesis**

One sample t-test :  $H_0: \mu=5$ 

**Exam questions** 

Two sample t-test :  $H_0: \mu_1 = \mu_2$ 

2011: 2(a) 2012: 2(b) ANOVA model :  $H_0 : \tau_1 = \tau_2 = \tau_3 = 0$ 

Random effect Model :  $H_0:\sigma_{ au}^2=0$ 

Always write hypothesis in terms of **population parameter** 

# Hypothesis

## Alternative Hypothesis

### **Exam questions**

2011: 2(a)

2012: 2(b)

#### One sided vs Two sided

- $\blacktriangleright$  Test if expected variance of x is greater than 11.
- ► Are the three soya groups significantly different?
- ▶ Can we conclude that the average of soya diet gives higher protein than non soya diet?
- ► Does fat percent vary accross these randomly chosen farms?

## T Statistic

### T-test



The *darker region* under the curve is *rejection region*. If the calculated t-value lies in this region, we reject Null hypothesis.

### One sample mean

$$ext{t-statistic} = rac{ar{y}}{ ext{SE}(ar{y})} = rac{ar{y}}{\hat{\sigma}/\sqrt{n}} \sim t_{lpha/2,n-1}$$

### Difference between two groups

$$ext{t-statistic} = rac{ar{y}_i - ar{y}_j}{ ext{SE}(ar{y}_i - ar{y}_j)} = rac{ar{y}_i - ar{y}_j}{S_{ ext{pooled}} \sqrt{rac{1}{n_1} + rac{1}{n_2}}} \sim t_{lpha/2, N-a}$$

### C.I. true difference between two groups

$$\left[ {ar{y}}_i - {ar{y}}_j \pm t_{lpha/2,N-a} imes S_{ ext{pooled}} \sqrt{rac{1}{n_1} + rac{1}{n_2}} 
ight]$$

**Remember:** Here  $N=n_1+n_2$  is total number of observation in all groups.

## T Statistic

## Example



```
Modified Unmodified
1 16.9 16.6
2 16.4 16.8
```

### Two sample t-test

```
Two Sample t-test

data: Modified and Unmodified

t = -2, df = 20, p-value = 0.04

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.54239 -0.00961

sample estimates:

mean of x mean of y pooled std.dev.

16.766 17.042 0.284
```

#### **ANOVA** test

```
Analysis of Variance Table

Df Sum Sq Mean Sq F value Pr(>F)

key 1 0.381 0.381 4.74 0.043 *

Residuals 18 1.447 0.080

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

#### **Pooled Variance**

# $\chi^2$ Statistic

## Chisq Test

#### Chisq-dist with 18 degree of freedom 0.05 level of significance



The shaded region covers 5% area of the curve.

#### Variance Test

$$\chi^2 ext{ statistic } = rac{(n-1)S^2}{\sigma^2} \sim \chi^2_{lpha,n-1}$$

## ANOVA: Confidence Interval of MSE $(\hat{\sigma}^2)$

$$\left[rac{(N-a) ext{MSE}}{\chi^2_{lpha/2,N-a}},rac{(N-a) ext{MSE}}{\chi^2_{1-lpha/2,N-a}}
ight] = \left[rac{ ext{SSE}}{\chi^2_{lpha/2,N-a}},rac{ ext{SSE}}{\chi^2_{1-lpha/2,N-a}}
ight]$$

### Things to remember

- (N-a) is the degree of freedom for residual
- (N-a)MSE = SSE
- $\chi^2_{N-a}$  is unsymmetric unlike t-distribution

## **F Statistic**

### F test

#### F-distribution with 3 and 15 df 0.05 level of significance



The ratio of two chisq distribution is Fdistribution

### Testing difference in variablility of two groups

$$H_0:\sigma_1^2=\sigma_2^2 ext{ vs }H_1:\sigma_1^2
eq\sigma_2^2$$

#### **F** statistic

If  $S_1^2 \sim \chi_{n_1-1}^2$  and  $S_2^2 \sim \chi_{n_2-1}^2$  are sample mean of two groups respectively,

$$F = rac{S_1^2}{S_2^2} \sim F_{n_1-1,n_2-1}$$

#### Secret Trick

$$F_{(1-lpha),n_1,n_2} = rac{1}{F_{lpha,n_2,n_1}}$$

## **F Statistic**

## Example



group mean var n not.soya 77.75 11.36 8 soya 82.89 21.86 9

### Soya diet experiment

$$ext{F-value} = rac{S_1^2}{S_2^2} = rac{21.861}{11.357} = 1.925 \sim F_{7,8}$$

F-value from Table is 3.726

F-distribution with 7 and 8 df 0.05 level of significance



Reject  $H_0$ : Variation between two groups significantly differs.

## **Assumptions**



- 1. Errors are random and independent
- 2. Errors are normally distributed with mean 0 and constant variance  $\sigma^2$

#### Mean Model

$$y_{ij} = \mu_i + arepsilon_{ij}$$

Here,  $\mu_i$  is mean of group i;  $i=1,2,\ldots a$  and  $j=1,\ldots n$ 

#### **Effect Model**

$$y_{ij} = \mu + au_i + arepsilon_{ij}$$

Here, We split  $\mu_i$  (group mean) into overall mean  $(\mu)$  and effect  $(\tau_i)$  of group i as,  $\mu_i = \mu + \tau_i$ . In this case we will have  $\sum_{i=1}^a \tau_i = 0$ , i.e,  $\tau_1 + \tau_2 + \tau_3 = 0$ 

### **Assumptions**

In ANVOA model, we assume  $arepsilon_{ij} \sim ext{NID}(0, \sigma^2)$ 

### ANOVA table



Df Sum Sq Mean Sq F value Weight1 2 1012033 506017 12.5 Residuals 21 851962 40570

■ TABLE 3.3

The Analysis of Variance Table for the Single-Factor, Fixed Effects Model

| Source of Variation       | Sum of<br>Squares                                                 | Degrees of<br>Freedom | Mean<br>Square           | $\boldsymbol{F_0}$                          |
|---------------------------|-------------------------------------------------------------------|-----------------------|--------------------------|---------------------------------------------|
|                           | $SS_{	ext{Treatments}}$                                           |                       |                          |                                             |
| Between treatments        | $= n \sum_{i=1}^{a} (\bar{y}_{i.} - \bar{y}_{})^{2}$              | a-1                   | MS <sub>Treatments</sub> | $F_0 = \frac{MS_{\text{Treatments}}}{MS_E}$ |
| Error (within treatments) | $SS_E = SS_T - SS_{\text{Treatments}}$                            | N-a                   | $MS_E$                   | _                                           |
| Total                     | $SS_{\rm T} = \sum_{i=1}^{a} \sum_{j=1}^{n} (y_{ij} - \bar{y})^2$ | <i>N</i> -1           |                          |                                             |

#### **Hypothesis**

 $H_0: au_i = 0 ext{ for i} = 1, 2, 3 \ H_1: au_i 
eq 0 ext{ for at least one } i$ 

#### **Decision**

From F-table,  $F_0 > F_c$ . So we reject  $H_0$  at 95% confidence level.

#### F-distribution with 2 and 21 df 0.05 level of significance



# **Exam Questions**

## **Exam Questions**

2012: 2(b), 2(c)

2012: Appendix 4-5

### Question 2(b)

#### **Hypothesis:**

$$H_0: au_1 = au_2 = au_3 = 0$$

 $H_1: ext{At least one } au_i 
eq 0, i=1,2,3$ 

We have p-value in ANOVA table given in Appendix 4. If p-value is *less than* the level of significance  $\alpha$ , we reject  $H_0$ 

### Question 2(c)

Since,  $\mu_i = \mu + \tau_i$ . All group means  $\mu_1, \mu_2, \mu_3$  and overall mean  $\mu$  are given, you can find  $\tau_1, \tau_2$  and  $\tau_3$ .