

PLC 与 DCS 综合设计 ——预习报备

 姓
 名:
 廖志豪

 编
 号:
 B8

 班
 级:
 231212

 学
 号:
 20201003069

2023 年 11 月 14 号

1 我所了解的 PLC 与 DCS

什么是 PLC 与 DCS?

PLC 即 Programmable Logic Controller,又称可编程逻辑控制器,是工业自动化领域中一种重要的控制系统。在工业领域中,PLC 主要用于实现工业生产过程的自动化控制。它是一种专门用于对各种输入信号进行逻辑运算、顺序控制和定时控制的设备。PLC 具有可靠性高、抗干扰能力强、易于编程和维护等特点。它通常用于开关量控制,如电机启停、阀门开关等。此外,PLC 可以通过梯形图、指令表等形式的编程语言进行编程,实现对特定工业过程的精确控制。

DCS 即 Distributed Control System,又称分布式控制系统,是一种用于实现大型工业过程集中监控和控制的系统。它由多个分散的控制单元组成,并且通过计算机通信网络连接在一起,实现对整个生产过程的集中监控和控制。DCS 具有高度的集成性、灵活性和可扩展性,可以用于对不同规模和复杂度的工业过程进行控制。DCS 通常用于模拟量和连续量的控制,如温度、压力、流量等参数的监测和调节。

各自的特点和不同之处

从特点上来看, PLC 和 DCS 有以下不同之处:

- 功能定位: PLC 主要用于开关量控制, 而 DCS 主要用于模拟量控制;
- 结构形式: PLC 通常是单个设备,而 DCS 是由多个分散的控制单元组成的系统;
- 通信方式: PLC 通常采用点对点通信, 而 DCS 采用总线或网络通信;
- 可编程性: PLC 具有较高的可编程性,可以根据需要灵活编写程序;而 DCS 的可编程性相对较低,主要通过硬件配置来实现控制功能;
- 应用范围: PLC 适用于小型、简单的工业过程控制,而 DCS 适用于大型、复杂的工业过程监控和控制。

未来的发展趋势

PLC 和 DCS 作为工业自动化领域中两种非常重要的控制系统,目前它们在功能、结构和应用领域上都存在着一定的差异。随着工业自动化技术的不断发展,两者都将面临一些新的挑战和机遇。一方面,PLC 将更加注重智能化和网络化的发展,提高数据处理和分析能力,实现更高效的生产控制。另一方面,DCS 将更加注重系统集成和跨平台的应用,为工业生产问题提供更全面的解决方案。总的来说,PLC 和 DCS 都将朝着智能化、网络化和集成化的方向发展,以适应不断变化的工业需求。

2 编程,完成 $f(x) = ax^2 + bx + c$, f(x) = 0 的解

2.1 变量设置

如下图所示,本程序在默认变量表中设置所需参数。Real 类型变量"变量 1(a)"、"变量 2(b)" 和"变量 3(c)"分别表示一元二次方程 $ax^2+bx+c=0$ 中的系数 a,b,c; Bool 类型变量"指示灯"用于设置 HMI 界面中指示灯的亮灭状态;变量 con1,con2,con3 用于设置指示灯不同的亮灭状态(常亮、以 1s 为周期闪烁、以 0.5s 为周期闪烁);变量"delta"

为中间变量,用于判断一元二次方程解的情况(两个实数解、共轭复数解);此外,设置了变量 "x1","x2","实部"和"虚部"用于表示对应情况下方程解的具体值:

	對认变量表							
		名称	数据类型	地址	保持	可从	从 H	在 H
1	40	变量1(a)	Real	%MD1		✓	$\overline{\mathbf{w}}$	~
2	40	变量2(b)	Real	%MD6		✓	\checkmark	~
3	411	变量3(c)	Real	%MD10		✓	\checkmark	~
4	40	指示灯	Bool	%M5.2		✓	\checkmark	~
5	40	System_Byte	Byte	%MB1		✓	\checkmark	~
6	40	FirstScan	Bool	%M1.0		✓	\checkmark	$\overline{\hspace{1cm}}$
7	40	DiagStatusUpdate	Bool	%M1.1		✓	\checkmark	$\overline{\hspace{1cm}}$
8	40	AlwaysTRUE	Bool	%M1.2		✓	\checkmark	~
9	40	AlwaysFALSE	Bool	%M1.3		✓	\checkmark	~
10	411	Clock_Byte	Byte	%MBO		✓	\checkmark	$\overline{\hspace{1cm}}$
11	411	Clock_10Hz	Bool	%M0.0		✓	\checkmark	~
12	40	Clock_5Hz	Bool	%M0.1		✓	\checkmark	~
13	40	Clock_2.5Hz	Bool	%M0.2		✓	\checkmark	~
14	40	Clock_2Hz	Bool	%M0.3		✓	\checkmark	
15	40	Clock_1.25Hz	Bool	%M0.4		✓	\checkmark	\checkmark
16	40	Clock_1Hz	Bool	%M0.5		✓	\checkmark	~
17	40	Clock_0.625Hz	Bool	%M0.6		✓	\checkmark	~
18	40	Clock_0.5Hz	Bool	%M0.7		✓	$\overline{\mathbf{A}}$	
19	411	con1	Bool	%M2.0		✓	\checkmark	

图 1: 默认变量表

图 2: 默认变量表 (续)

2.2 程序代码

程序段 1

程序段 1 主要用来控制指示灯的不同亮灭状态。变量 con1, con2, con3 对应三个常开触点,用于控制对应通道的开合。此处启用了系统和时钟存储器,使用时钟存储器字节 $Clock_1Hz$, $Clock_2Hz$ 分别提供频率为 1Hz, 2Hz 的时钟信号,使得指示灯可以以指定的频率进行闪烁:

图 3: 程序段 1

程序段 2

程序段 2 为 SCL 程序段,在此处定义了对于判断给定方程 $ax^2 + bx + c = 0$ 解的情况的具体逻辑,以及对相应情况下指示灯闪烁方式的设置。首先根据 a 的值是否为零,将给定方程分类为一元二次方程或一元一次方程,且当 a = 0, b = 0 时,方程无解,此时为错误输入。当方程为一元二次方程时,对应的解有两个(两个实数解或一对共轭复数解),此时指示灯应以 1s 为周期闪烁;当方程为一元一次方程时,有一个解,此时指示灯应常亮;当输入参数错误导致方程无解时,指示灯应以 0.5s 为周期闪烁。此外,在各种情况下求得的方程的解都会在 HMI 界面中显示出来。

图 4: 程序段 2

2.3 HMI 界面设计

下图所示为自行设计的 HMI 界面,可以显示程序运行过程中各参数和变量的值:

图 5: HMI 界面设计

2.4 程序测试

令 $a=1,\ b=2,\ c=1$, 此时方程有两个解, 对应 con2=1:

图 6: 程序测试: 两个解的情况

令 $a=0,\ b=2,\ c=1$,此时方程有 1 个解,对应 con1=1:

图 7: 程序测试: 1 个解的情况

令 a = 0, b = 0, c = 1, 此时方程无解, 对应 con3 = 1:

图 8: 程序测试: 无解的情况