date of 31 July 1997, which claims the priority of a Japanese patent application number H8-219282, filed on August 1, 1996.

IN THE CLAIMS:

and add new claims Please cancel claims 2-

(New) A metal-coating-film laminate system comprising:

a metal substrate;

a coating applied to the metal substrate; wherein

said coating has a thickness that is from 5 to 500 nm;

said coating has a content of carbon atoms that corresponds to from 5 to 500 mg/m² of the coating area;

said coating covers at least 90% of the surface of the metal; and

said coating comprises polymer molecules that comprise units conforming to

general formula (I):

$$\begin{array}{c|c} & OH \\ \hline & & \\$$

in which:

 X^1 independently in each structural unit is a hydrogen atom or a moiety Z^1 conforming to general formula (II):

$$Z^{l} = -CH_{2} - N$$

$$R^{2}$$
(II)

in which each of R^1 and R^2 independently is a hydrogen atom, a C_1 to C_{10} monovalent alkyl moiety, or a C_1 to C_{10} monovalent hydroxyalkyl moiety;

 Y^1 , independently for each unit, is a hydrogen atom, a hydroxyl group, a C_1 to C_5 alkyl moiety, a C_1 to C_5 hydroxyalkyl moiety, a C_6 to C_{12} aryl, benzyl, or benzo moiety, or a moiety conforming to general formula (III):

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

in which, independently for each unit according to general formula (I) in which Y^1 conforms to general formula (III), each of R^3 and R^4 is independently a hydrogen atom, a C_1 to C_{10} alkyl moiety, or a C_1 to C_{10} hydroxyalkyl moiety, and X^2 is a hydrogen atom or a moiety Z^2 conforming to general formula (IV):

$$Z^2 = -CH_2 - N R^5$$

$$R^6$$
(IV)

in which each of R^5 and R^6 is independently a hydrogen atom, a C_1 to C_{10} alkyl moiety, or a C_1 to C_{10} hydroxyalkyl moiety; and

 Y^2 , independently for each unit, is a hydrogen atom or, when Y^1 and Y^2 are bonded to adjacent carbon atoms in the aromatic ring shown in general formula (I), Y^1 and Y^2 , and said adjacent carbon atoms to which Y^1 and Y^2 are bonded together may constitute a condensed benzene ring,

said polymer molecules that comprise structural units conforming to general formula (I) having a total number of Z^1 and Z^2 moieties and a distinct (but not necessarily unequal) total number of (i) units conforming to general formula (I) and (ii) Y^1 moieties that conform to general formula (III), such that the total number of Z^1 and Z^2 moieties has a ratio to the total number of units conforming to general formula (I) and Y^1 moieties that conform to general formula (III) that is from 0.2:1.0 to 1.0:1.0; and

a film applied to the coating.

(New) A metal-coating-film laminate system according to claim 19, in which Y¹ in general formula (I) conforms to general formula (III).

21. (New) A metal-coating-film laminate system according to claim 19, in which the coating comprises a total of at least 0.1 mg/m² of phosphorus atoms present in phosphoric acid-like compounds and silicon atoms present in organosilicon compounds.

22. (New) A metal-coating-film laminate system according to claim 20, in which the coating comprises a total of at least 0.1 mg/m² of phosphorus atoms present in phosphoric acid-like compounds and silicon atoms present in organosilicon compounds.

(New) A metal-coating-film laminate system according to claim 19, wherein:

said coating has a thickness in a range from 50 to 300 nm; and said coating has a content of carbon atoms that corresponds to from 50 to 200 mg/m² of the coating area.

24. (New) A metal-coating-film laminate system according to claim 19 in which the coating system is applied to the metal substrate as a reactive coating.

(New) A metal-coating-film laminate system according to claim 19 in which the coating system is applied to the metal substrate as a dry-in-place coating.

(New) A metal-coating-film laminate system according to claim in which the metal substrate is selected from the group consisting of iron, steel, and aluminum.

(New) A method of use of a coating composition in a film laminating process, comprising the steps of:

(1) providing a surface of a metal substrate with the coating composition so that the metal substrate is suitable for laminating a film thereto, said method comprising the steps of:

- (I) preparing the coating composition by providing a waterborne composition that comprises/water and:
 - (A) at least 0.01 g/L of polymer molecules comprising units conforming to general formula (I):

in which:

 X^1 , independently in each structural unit, is a hydrogen atom or a moiety Z^1 conforming to general formula (II):

$$Z^{1} = -CH_{2} - N$$

$$R^{2}$$
(II)

in which each of R^1 and R^2 independently is a hydrogen atom, a C_1 to C_{10} monovalent alkyl moiety, or a C_1 to C_{10} monovalent hydroxyalkyl moiety; Y^1 , independently for each unit, is a hydrogen atom, a hydroxyl group, a C_1 to C_5 alkyl moiety, a C_1 to C_5 hydroxyalkyl moiety, a C_6 to C_{12} aryl, benzyl, or benzo moiety, or a moiety conforming to general formula (III):

$$- \bigvee_{R^4}^{R^3} OH \qquad (III)$$

in which, independently for each unit according to general formula (I) in which Y^1 conforms to general formula (III), each of R^3 and R^4 is independently a hydrogen atom, a C_1 to C_{10} alkyl moiety, or a C_1 to C_{10} hydroxyalkyl moiety, and X^2 is a hydrogen atom or a moiety Z^2 conforming to general formula (IV):

in which of R^5 and R^6 is independently a hydrogen atom, a C_1 to C_{10} alkyl moiety, or a C_1 to C_{10} hydroxyalkyl moiety; and

 Y^2 , independently for each unit, is a hydrogen atom or, when Y^1 and Y^2 are bonded to adjacent carbon atoms in the aromatic ring shown in general formula (I), Y^1 and Y^2 , and said adjacent carbon atoms to which Y^1 and Y^2 are bonded together may constitute a condensed benzene ring,

said polymer molecules that comprise structural units conforming to general formula (I) having a total number of Z^1 and Z^2 moieties and a distinct (but not necessarily unequal) total number of (i) units conforming to general formula (I) and (ii) Y^1 moieties that conform to general formula (III), such that the total number of Z^1 and Z^2 moieties has a ratio to the total number of units conforming to general formula (I) and Y^1 moieties that conform to general formula (III) that is from 0.2:1.0 to 1.0:1.0;

and, optionally, at least one of the following components:

- (B) phosphoric acid-type compounds; and
- (C) organosilicon compounds,

said waterborne composition having a pH in a range from 2.5 to 6.5;

- (II) contacting said surface of said metal substrate with the waterborne composition provided in step (I) for a sufficient time at a sufficient temperature to form a solid coating containing constituents of said waterborne composition, said solid coating adhering to said surface of said metal substrate and being itself covered, at least initially, by a coating of liquid;
- (III) after step (II), drying the metal surface so as to remove from the metal surface the liquid constituents of the coating initially formed in step (II) or of a successor liquid coating formed by rinsing the surface of said metal substrate as modified after step (II) with water; and

(2) applying a film to the metal substrate coated with the composition provided according to step (1) to form a metal-coating-film laminate system whereby the method reduces industrial waste and minimizes gaseous emissions.

28. (New) A method of use of a coating composition in a film laminating process according to claim 27, in which Y¹ in general formula (I) conforms to general formula (III).

(New) A method of use of a coating composition in a film laminating process according to claim 28, in which the waterborne composition provided in step (I) comprises a total of at least 0.01 g/l of phosphorus atoms present in phosphoric acid-like compounds and silicon atoms present in organosilicon compounds.

(New) A method of use of a coating composition in a film laminating process according to claim 28, wherein the waterborne composition provided in step (I) contains at least 0.1 g/l of polymer molecules comprising units conforming to general formula (I) and the coating of liquid formed in step (II) is rinsed with water so as to form a successor coating before completion of step (III).

21. (New) A method of use of a coating composition in a film laminating process according to claim 20, in which the waterborne composition provided in step (I) comprises a total of at least 0.1 g/l of phosphorus atoms present in phosphoric acid-like compounds and silicon atoms present in organosilicon compounds.

32. (New) A method of use of a coating composition in a film laminating process according to claim 27, in which the coating system is applied to the metal substrate as a reactive coating.

process according to claim 71, in which the coating system is applied to the metal substrate as a dry-in-place coating.

(New) A method of use of a coating composition in a film laminating process according to claim 27, in which the metal substrate is selected from the group consisting of iron, steel, and aluminum.

New) A method of use of a coating composition in a film laminating process according to claim wherein the film is selected from the group consisting of polyethylene, polycarbonate, polyester, and polymers of vinyl terephthalate.