

ω-Automata, Büchi and Generalized Büchi Automata

AmirReza Azari
Spring 2024 — Sharif University of Technology

Omega Languages

ω -Automata

Definition:

- Automata that accept (or reject) words of infinite length.
- Languages of infinite words appear:
 - In verification, as encodings of non-terminating executions of a program.
 - In arithmetic, as encodings of sets of real numbers.

ω -Regular Languages

Definition:

- Infinite words over the alphabet Σ are infinite sequences $A_0, A_1, A_2, ...$ of symbols $A_i \in \Sigma$.
- Σ^{ω} denotes the set of all infinite words over Σ .
- Any subset of Σ^{ω} is called a language of infinite words, called an ω -language.
- For instance, the infinite repetition of the finite word AB yields the infinite word ABABABABAB... (ad infinitum) and is denoted by $(AB)^{\omega}$.
- For the special case of the empty word, we have $\varepsilon^{\omega} = \varepsilon$.
- For an infinite word, infinite repetition has no effect, that is $\sigma^{\omega} = \sigma$ if $\sigma \in \Sigma^{\omega}$.

Definition:

• An ω -regular expression G over the alphabet Σ has the form:

$$G = E_1.F_1^{\omega} + ... + E_n.F_n^{\omega}$$

where $n \ge 1$ and $E_1, ..., E_n, F_1, ..., F_n$ are regular expressions over Σ such that $\varepsilon \notin L(F_i)$, for all $1 \le i \le n$.

• If $L(E) \subseteq \Sigma^*$ denotes the language (of finite words) induced by the regular expression E:

$$L_{\omega}(G) = L(E_1).L(F_1)^{\omega}...L(E_n).L(F_n)^{\omega}$$

Definition (cont.)

• Example for ω -regular expressions over the alphabet $\Sigma = \{A, B, C\}$:

$$(A + B)^*A(AAB + C)^{\omega}$$
or
$$A(B + C)^*A^{\omega} + B(A + C)^{\omega}$$

Example:

- 1. A word in $aa\Sigma^*aa$ followed by only $b \to aa\Sigma^*aa.b^{\omega}$ {aaaabbbb...}, {aabbbbaaabbbb...}
- 2. Infinite words where b occurs only finitely often $\rightarrow (a + b)^*.b^{\omega}$ {aaaa ...}, {babbaaaa ...}

More Examples:

- 1. $(a + b)^{\omega}$ set of all infinite words.
- 2. $a(a + b)^{\omega}$ infinite words starting with an a
- 3. $(a + bc + c)^{\omega}$ words where every b is immediately followed by c
- 4. $((a + b)^*c)^{\omega}$ words where c occurs infinitely often
- 5. $(a + b)^*c(a + b)^{\omega}$ words with a single occurrence of c

Regular Languages

ω -Regular Languages

Büchi Automata

Run and acceptance

ababaabbbbb ...

$$q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{b} q_1 \xrightarrow{b} q_1 \xrightarrow{b} q_1 \dots$$

Run and acceptance

Run is accepting if some accepting state occurs infinitely often

Below word is not accepted by this automaton.

$$q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \dots$$

Non - deterministic Büchi Automata

Definition. Non-deterministic Büchi Automata (NBA)

A Non-deterministic Büchi automaton A is a tuple $A = (Q, \Sigma, \delta, Q_0, F)$ where:

- Q is a finite states,
- Σ is an alphabet,
- δ : $Q \times \Sigma \rightarrow 2^Q$ is a transition function,
- $Q_0 \subseteq Q$ is a set of initial states
- $F \subseteq Q$ is a set of accept states, called acceptance set.

A language $L \subseteq \Sigma^{\omega}$ is ω -regular if it can be accepted by some B \ddot{u} chi automaton.

Non – deterministic Büchi Automata

Definition (cont.)

A run for $\sigma = A_0 A_1 A_2 \ldots \in \Sigma^{\omega}$ denotes an infinite sequence $q_0 q_1 q_2 \ldots$ of states in \mathcal{A} such that $q_0 \in Q_0$ and $q_i \xrightarrow{A_i} q_{i+1}$ for $i \geq 0$. Run $q_0 q_1 q_2 \ldots$ is accepting if $q_i \in F$ for infinitely many indices $i \in \mathbb{N}$. The accepted language of \mathcal{A} is

 $\mathcal{L}_{\omega}(\mathcal{A}) = \{ \sigma \in \Sigma^{\omega} \mid \text{there exists an accepting run for } \sigma \text{ in } \mathcal{A} \}.$

NFA vs. NBA

- Syntax differences between NFA and NBA: None
- Semantics differences between NFA and NBA: the accepted language of an NFA
 A is a language of finite words, whereas the accepted language of NBA A is an
 ω-language.

The intuitive meaning of the acceptance criterion named after Buchi is that the accept set of A has to be visited infinitely often. Thus, the accepted language $L\omega(A)$ consists of all infinite words that have a run in which some accept state is visited infinitely often.

NBA

Example

$$a^{\omega} + b^{\omega}$$
:

NBA

Example

 $aa(a + b)^*ab^{\omega}$:

NBA - ω -operator

NBA - Concatenation

A language L_1 can be concatenated with an ω -language L_2 to yield the ω -language L_1L_2 , but two ω -languages cannot be concatenated.

NBA - Union

NBA to ω -regular expression

Lemma.

Let A be a NFA, and let q, q' be states of A.

The language $L_q^{q'}$ of words with runs leading from q to q' and visiting q' exactly once after leaving q is regular.

- Let $r_q^{q'}$ denote a regular expression for $L_q^{q'}$.
- Given a NBA A, we look at it as a NFA, and compute regular expressions $r_q^{q'}$.
- We show:

$$L_{\omega}(A) = L\left(\sum_{q \in F} r_{q_0}^q (r_q^q)^{\omega}\right)$$

NBA to ω -regular expression

Example:

Constructing a NBA from a NFA

Add a new initial (nonaccept) state q_{new} to Q with the transitions $q_{new} \xrightarrow{A} q$ if and only if $q_0 \xrightarrow{A} q$ for some initial state $q_0 \in Q_0$. All other transitions, as well as the accept states, remain unchanged.

Constructing a NBA from a NFA

In the sequel, we assume that $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ is an NFA such that the states in Q_0 do not have any incoming transitions and $Q_0 \cap F = \emptyset$. We now construct an NBA $\mathcal{A}' = (Q, \Sigma, \delta', Q'_0, F')$ with $\mathcal{L}_{\omega}(\mathcal{A}') = \mathcal{L}(\mathcal{A})^{\omega}$. The basic idea of the construction of \mathcal{A}' is to add for any transition in \mathcal{A} that leads to an accept state new transitions leading to the initial states of \mathcal{A} . Formally, the transition relation δ' in the NBA \mathcal{A}' is given by

$$\delta'(q, A) = \begin{cases} \delta(q, A) & \text{if } \delta(q, A) \cap F = \emptyset \\ \delta(q, A) \cup Q_0 & \text{otherwise.} \end{cases}$$

The initial states in the NBA \mathcal{A}' agree with the initial states in \mathcal{A} , i.e., $Q'_0 = Q_0$. These are also the accept states in \mathcal{A}' , i.e., $F' = Q_0$.

Constructing a NBA from a NFA

Deterministic Büchi Automata

Definition:

- Single initial state
- From every state on an alphabet, there is a unique transition

Words where b occurs infinitely often

DBA

Question: Can every NBA be converted to an equivalent DBA?

DBA

DBA less powerful than NBA

- Automaton has to guess the point from where only b occurs
- A deterministic Büchi automaton cannot make this guess
- The above language cannot be accepted by a DBA.

Proof.

By contradiction. Assume some DBA recognizes $(a + b)^*b^{\omega}$.

DBA

Proof (cont.)

```
- DBA accepts b^{\omega} \Rightarrow DFA accepts b^{n_0}

DBA accepts b^{n_0}a\ b^{\omega} \Rightarrow DFA accepts b^{n_0}a\ b^{n_1}

DBA accepts b^{n_0}a\ b^{n_1}\ ab^{\omega} \Rightarrow DFA accepts b^{n_0}a\ b^{n_1}a\ b^{n_2} etc.
```

By determinism and finite number of states, the DBA accepts

$$b^{n_0}a b^{n_1}a b^{n_2} ... a b^{n_i}(ab^{n_{i+1}} ... ab^{n_j})^{\omega}$$

for some i < j. This word does not belong to $(a + b)^*b^{\omega}$.

AmirReza Azari SUT 30/54

ω -Regular languages

AmirReza Azari SUT 31/54

Generalized Büchi Automata

GBA

Definition.

- Generalized Büchi automaton (GBA) is a variant of Büchi automaton
- The difference with the $B\ddot{u}$ chi automaton is its accepting condition, i.e., a set of sets of states.
- A run is accepted by the automaton if it visits at least one state of every set of the accepting condition infinitely often.
- Generalized B \ddot{u} chi automata (GBA) is equivalent in expressive power with B \ddot{u} chi automata

GBA

Definition (cont.)

• A generalized Buchi automaton (GBA) over Σ is:

$$A = (Q, \Sigma, \delta, I, F)$$

- Q is a finite set of states
- $\Sigma = \{a, b, ...\}$ is a finite alphabet set of A
- $\delta \subseteq Q \times \Sigma \times Q$ is a transition relation
- $I \subseteq Q$ is a set of initial states
- $F = \{F_1, ..., F_k\} \subseteq 2^Q$ is a set of sets of final states.

GBA

Definition (cont.)

- A accepts exactly those runs in which the set of infinitely often occurring states contains at least a state from each F_1, \dots, F_n .
- A run σ of a GBA is said to e accepting iff,

for all $1 \le i \le k$, we have $\inf(\sigma) \cap F_i \ne \emptyset$.

$inf(\sigma)$

The set of states visited infinitely often by a run σ is denoted inf(σ).

Generalized Büchi Automata

GBA

$(\inf(\sigma) (cont.))$

```
• \rho_1 = q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_1 \xrightarrow{a} q_1 \xrightarrow{a} q_1 \cdots \inf(\rho_1) = \{q_1\}

• \rho_2 = q_0 \xrightarrow{b} q_0 \xrightarrow{b} q_0 \xrightarrow{b} q_0 \xrightarrow{b} q_0 \cdots \inf(\rho_2) = \{q_0\}

• \rho_3 = q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \cdots \inf(\rho_3) = \{q_0, q_1\}
```

AmirReza Azari SUT 36/54

NBA & GNBA

Nondeterministic Büchi Automaton

 $A = (Q, \Sigma, \delta, I, F)$, where $F \subseteq Q$ is the set of accepting states.

- A run ρ of A on omega word α is an infinite sequence $\rho = q_0, q_1, q_2, \ldots$ s.t. $q_0 \in I$ and $q_i \xrightarrow{a_i} q_{i+1}$ for $0 \le i$.
- The run ρ is accepting if $Inf(\rho) \cap F \neq \emptyset$.
- The language accepted by A $\mathcal{L}(A) = \{ \alpha \in \Sigma^{\omega} \mid A \text{ has an accepting run on } \alpha \}$

A Generalized Büchi Automaton is $A := (Q, \Sigma, \delta, I, FT)$ where $FT = \langle F_1, F_2, \dots, F_k \rangle$ with $F_i \subseteq Q$.

A run ρ of A is accepting if $Inf(\rho) \cap F_i \neq \emptyset$ for each $1 \leq i \leq k$.

NBA & GNBA

A GNBA for the property "both processes are infinitely often in their critical section":

• GNBA are like NBA, but have a distinct acceptance criterio. A GNBA requires to visit several sets $F_1, ..., F_k (k \ge 0)$ infinitely often.

Sketch of transformation GNBA (with $|\mathcal{F}| = k$) into equivalent NBA:

- make k copies of the GNBA
- initial states of NBA := the initial states in the first copy
- final states of NBA := accept set F₁ in the first copy
- on visiting in i-th copy a state in F_i , then move to the (i+1)-st copy

Algorithm:

- Turn a generalized $B\ddot{u}$ chi automaton into a $B\ddot{u}$ chi automaton.
- The idea:
 - Each cycle must go through every copy.
 - Each cycle must contain accepting states from each accepting set.
- Algorithm:
 - Duplicate the GBA to as many copies as the number of accepting sets
 - Redirect outgoing edges from accepting states to the next copy.

Example:

1,2 correspond to F_1 and F_2 , the accepting sets

Two copies, because we have two accepting sets

Example (cont.):

Choose one cope as initial and redirect edges from accepting edges

remove unreachable states

Another Example:

One copy for each accepting set

Another Example (cont.):

Redirecting edges

and so forth...

Another Example (cont.):

Review

ω -automata

An ω -automaton is a quintuple $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ with:

- Q a finite set of states.
- Σ the alphabet.
- $\delta: Q \times \Sigma \to 2^Q$ the transition function.
- $q_0 \in Q$ the initial state.
- F the acceptance condition, which is a formula on states. The differ on finite words lies in these acceptance conditions.

Büchi Automata

Büchi acceptance condition

Büchi (1962) was the first to introduce ω -automata with his acceptance condition. The Büchi acceptance condition is the most adapted to model checking since it supports all the operations presented in Section 1.2: Operations on ω -automata.

With his definition, the acceptance condition F is a set of states, and a run must visit infinitely often some states from F to be accepting.

More formally, a run π of a Büchi automaton with $F \subseteq Q$ as acceptance condition is accepting, iff $inf(\pi) \cap F \neq \emptyset$.

Büchi Automata

Example. Figure 1.3 presents a Büchi automaton with its states in the acceptance condition F marked with \bullet . A run of this automaton is accepting if it visits infinitely often states $2 \, \text{OR} \, 3$.

A Büchi automaton.

Generalized Büchi Automata

Generalized Büchi acceptance condition

Generalized Büchi automata are a variant of Büchi automata that is more succint, since it allows to have automata that recognize the same language than Büchi automata but with a smaller number of states and transitions.

The Generalized Büchi acceptance condition has more than one set of acceptance conditions. A run is accepting if it passes through at least one state of each set infinitely often. Figure 1.4 illustrates this acceptance condition.

More formally, the definition is $\forall i \mid inf(\pi) \cap F_i \neq \emptyset$ with $F = \{F_1, F_2, \dots, F_n\}$ and $F_i \subseteq Q$.

Generalized Büchi Automata

Example. Figure 1.4 presents a generalized Büchi automaton with an accepting run if a run visits infinitely often both acceptance conditions (states denoted with ● and ○).

Figure 1.4: A generalized Büchi automaton.

References

- https://www.cmi.ac.in/ kumar/words/lecture07.pdf
- https://www.cs.colostate.edu/ france/CS614/Slides/ModelCheckingChapter4.pdf
- https://www.youtube.com/watch?v=KOu6IUssxbs
- https://www.lrde.epita.fr/ sadegh/buchi-complementation-techrep.pdf
- https://www.irif.fr/jep/PDF/InfiniteWords/Chapter1.pdf

