

VE 320 – Summer 2012 Introduction to Semiconductor Device

PN Junction DC Response

Instructor: Professor Hua Bao

NANO ENERGY LAB

Bao Ve320 S12

1

Equilibrium

At equilibrium, the total current balances due to the sum of the individual components

Bao Ve320 S12

Qualitative Analysis

 $I = I^+ - I^-$

 $I^+ \propto e^{qV_A/kT}$

 $I^- = I_0 \quad \text{Independent of V}_{\rm A}$

 $I(V_{A}=0)=0$

(very small) Constant saturation current

University of Michigan – Shanghai Jiao Tong University Joint Institute
Center of Optics and Optoelectronics

Bao Ve320 S12

5

I-V Relation: Quantitative

Determine current flow assuming steady state, low-level injection

$$I = AJ$$
 $J = J_n + J_p$

$$J_n = nq\mu_n \delta + qD_n \frac{dn}{dx}$$

$$J_p = pq\mu_p \delta - qD_p \frac{dp}{dx}$$

Need to determine carrier densities and electric field....

Solve continuity equations

Three regions of interest

Bao Ve320 S12

Quantitative Studies

Minority carrier diffusion eqations apply in the "quasi-neutral" regions

In the quasi-neutral p-region

$$\frac{\partial \Delta n_p}{\partial t} = D_n \frac{\partial^2 \Delta n_p}{\partial x^2} - \frac{\Delta n_p}{\tau_n} + G_L \qquad \mathbf{E_V}$$

• Steady State:

Currents are the same everywhere.

$$J = J_N(x) + J_P(x)$$

No Light

Bao Ve320 S12

7

Minority Carrier Densities

Wide base diode $\Delta n_p(x \to -\infty) = 0$

$$n_{p0}$$
 Δn_{p0}
 Δn_{p0}
 Δn_{p0}
 Δn_{p0}

Solution to Minority Carrier Diffusion Equation

$$\Delta n_p(x) = \Delta n_p(x'' = 0)e^{-x''/L_N}$$
 $\Delta p_n(x) = \Delta p_n(x' = 0)e^{-x'/L_p}$

$$L_{\scriptscriptstyle P} = \sqrt{D_{\scriptscriptstyle N} \tau_{\scriptscriptstyle N}} \qquad \qquad L_{\scriptscriptstyle P} = \sqrt{D_{\scriptscriptstyle P} \tau_{\scriptscriptstyle N}} \label{eq:LN}$$

Bao Ve320 S12

Minority Carrier Diffusion Current

In quasi-neutral P region

$$J_n = nq\mu_n \mathcal{E} + qD_n \frac{dn}{dx} \approx qD_n \frac{dn_p}{dx} = -qD_n \frac{d\Delta n_p}{dx"}$$
$$\Delta n_p(x) = \Delta n(x"=0)e^{-x"/L_N}$$

In quasi-neutral N region

$$J_{p} = pq\mu_{p} \mathcal{E} - qD_{p} \frac{dp}{dx} \approx -qD_{p} \frac{dp_{n}}{dx} = -qD_{p} \frac{d\Delta p_{n}}{dx'}$$
$$\Delta p_{n}(x) = \Delta p(x'=0)e^{-x'/L_{p}}$$

University of Michigan – Shanghai Jiao Tong University Joint Institute
Center of Optics and Optoelectronics

Bao Ve320 S12

9

Ideal Diode

 $\Delta n_p(-x_p)$, and $\Delta p_n(x_n)$ are still not known

By definition

$$np = n_i^2 e^{(F_N - F_P)/kT}$$

Assume

$$F_N - F_P = E_{F_n} - E_{F_p} = qV_A$$

Law of the junction

$$np = n_i^2 e^{qV_A/kT} \qquad -x_p \le x \le x_n$$

Bao Ve320 S12

Minority Carrier Densities

Solution of Minority Carrier Diffusion Equation

$$\Delta n_p(x) = \Delta n(x'' = 0)e^{-x''/L_N} \quad \Delta p_n(x) = \Delta p(x' = 0)e^{-x'/L_P}$$

$$\Delta n_{p}(x'') = \frac{n_{i}^{2}}{N_{A}} \left(e^{qV_{A}/kT} - 1 \right) e^{-x''/L_{N}} \qquad \Delta p_{n}(x') = \frac{n_{i}^{2}}{N_{D}} \left(e^{eV_{A}/kT} - 1 \right) e^{-x'/L_{P}}$$

Minority electron diffusion current on P side

$$J_n = -qD_N \, \frac{d\Delta n_p}{dx"} = q \, \frac{D_N}{L_N} \frac{{n_i}^2}{N_A} \Big(e^{qV_A/kT} - 1 \Big) e^{-x"/L_N} \qquad \qquad \text{E}_{\text{C}} \frac{\text{E}_{\text{fp}}}{\text{E}_{\text{V}}} = \frac{\text{E}_{\text{fp}}}{N_A} \Big(e^{qV_A/kT} - 1 \Big) e^{-x"/L_N} \qquad \qquad \text{E}_{\text{C}} \frac{\text{E}_{\text{fp}}}{N_A} = \frac{\text{E}_{\text{fp}}}{N_A} \Big(e^{qV_A/kT} - 1 \Big) e^{-x"/L_N} \qquad \qquad \text{E}_{\text{C}} \frac{\text{E}_{\text{fp}}}{N_A} = \frac{\text{E}_{\text{fp}}}{N_A} \Big(e^{qV_A/kT} - 1 \Big) e^{-x"/L_N} \qquad \qquad \text{E}_{\text{C}} \frac{\text{E}_{\text{fp}}}{N_A} = \frac{\text{E}_{\text{fp}}}{N_A} \Big(e^{qV_A/kT} - 1 \Big) e^{-x"/L_N} \qquad \qquad \text{E}_{\text{C}} \frac{\text{E}_{\text{fp}}}{N_A} = \frac{\text{E}_{\text{fp}}}{N_A} \Big(e^{qV_A/kT} - 1 \Big) e^{-x"/L_N} \qquad \qquad \text{E}_{\text{C}} \frac{\text{E}_{\text{fp}}}{N_A} = \frac{\text{E}_{\text{fp}}}{N_A} \Big(e^{qV_A/kT} - 1 \Big) e^{-x"/L_N} \qquad \qquad \text{E}_{\text{C}} \frac{\text{E}_{\text{fp}}}{N_A} = \frac{\text{E}_{\text{fp}}}{N_A} \Big(e^{qV_A/kT} - 1 \Big) e^{-x"/L_N} \qquad \qquad \text{E}_{\text{C}} \frac{\text{E}_{\text{fp}}}{N_A} = \frac{\text{E}_{\text{fp}}}{N_A} \Big(e^{qV_A/kT} - 1 \Big) e^{-x"/L_N} \qquad \qquad \text{E}_{\text{C}} \frac{\text{E}_{\text{fp}}}{N_A} = \frac{\text{E}_{\text{fp}}}{N_A} \Big(e^{-qV_A/kT} - 1 \Big) e^{-x"/L_N} \qquad \qquad \text{E}_{\text{C}} \frac{\text{E}_{\text{fp}}}{N_A} = \frac{\text{E}_{\text{fp}}}{N_A} \Big(e^{-qV_A/kT} - 1 \Big) e^{-x"/L_N} \qquad \qquad \text{E}_{\text{C}} \frac{\text{E}_{\text{fp}}}{N_A} = \frac{\text{E}_{\text{fp}}}{N_A} \Big(e^{-qV_A/kT} - 1 \Big) e^{-x"/L_N} \qquad \qquad \text{E}_{\text{C}} \frac{\text{E}_{\text{fp}}}{N_A} = \frac{\text{E}_{\text{fp}}}{N_A} \Big(e^{-qV_A/kT} - 1 \Big) e^{-x"/L_N} \qquad \qquad \text{E}_{\text{C}} \frac{\text{E}_{\text{fp}}}{N_A} = \frac{\text{E}_{\text{fp}}}{N_A} \Big(e^{-qV_A/kT} - 1 \Big) e^{-x"/L_N} \qquad \qquad \text{E}_{\text{C}} \frac{\text{E}_{\text{fp}}}{N_A} = \frac{\text{E}_{\text{fp}}}{N_A} \Big(e^{-qV_A/kT} - 1 \Big) e^{-x"/L_N} \qquad \qquad \text{E}_{\text{C}} \frac{\text{E}_{\text{fp}}}{N_A} = \frac{\text{E}_{\text{fp}}}{N_A} \Big(e^{-qV_A/kT} - 1 \Big) e^{-x"/L_N} \qquad \qquad \text{E}_{\text{C}} \frac{\text{E}_{\text{fp}}}{N_A} = \frac{\text{E}_{\text{fp}}}{N_A} \Big(e^{-qV_A/kT} - 1 \Big) e^{-x"/L_N} \qquad \qquad \text{E}_{\text{C}} \frac{\text{E}_{\text{fp}}}{N_A} = \frac{\text{E}_{\text{fp}}}{N_A} \Big(e^{-qV_A/kT} - 1 \Big) e^{-x"/L_N} \qquad \qquad \text{E}_{\text{C}} \frac{\text{E}_{\text{fp}}}{N_A} = \frac{\text{E}_{\text{fp}}}{N_A} \Big(e^{-qV_A/kT} - 1 \Big) e^{-x"/L_N} \qquad \qquad \text{E}_{\text{C}} \frac{\text{E}_{\text{fp}}}{N_A} = \frac{\text{E}_{\text{fp}}}{N_A} \Big(e^{-qV_A/kT} - 1 \Big) e^{-x"/L_N} \qquad \qquad \text{E}_{\text{C}} \frac{\text{E}_{\text{fp}}}{N_A} = \frac{\text{E}_{\text{fp}}}{N_A} \Big(e^{-qV_A/kT} - 1 \Big) e^{-x"/L_N} \qquad \qquad \text{E}_{\text{C}} \frac{\text{E}_{\text{fp}}}{N_A} = \frac{\text{E}_{$$

 $E_{C} \xrightarrow{V_{a} > 0} E_{fr}$ $E_{V} \xrightarrow{-X_{p}} X_{n}$

Minority hole diffusion current on N side

$$\boldsymbol{J}_{p} = -q\boldsymbol{D}_{P}\,\frac{d\Delta p_{n}}{d\mathbf{x}'} = q\,\frac{\boldsymbol{D}_{P}}{L_{P}}\frac{{n_{i}}^{2}}{N_{D}}\Big(e^{q\boldsymbol{V}_{A}/kT}-1\Big)e^{-\mathbf{x}'/L_{P}}$$

Bao Ve320 S12

11

Diffusion Current

$$J_p = \frac{qD_p}{L_n} \Delta p_n(x_n) e^{(x+x_n)/L_p}$$

$$J_n = \frac{qD_n}{L_n} \Delta n_p (x_p) e^{-(x-x_p)/L_n}$$

Bao Ve320 S12

Ideal Diode

 $\mathscr{E} \neq 0 \quad \text{in the depletion region, minority carrier diff. eq. not applicable}$

$$\mathcal{E} \neq 0 \quad \text{in the depletion region, minority carried}$$
 From continuity equation,
$$0 = \frac{1}{q} \frac{dJ_N}{dx} + \frac{\partial n}{\partial t} \Big|_{R-G}$$

$$0 = -\frac{1}{q} \frac{dJ_P}{dx} + \frac{\partial p}{\partial t} \Big|_{R-G}$$

Ideal Diode: assume no R-G in the depletion region Current is a constant inside depletion region

University of Michigan – Shanghai Jiao Tong University Joint Institute Center of Optics and Optoelectronics

Bao Ve320 S12

P-N Diode With Asymmetric Doping

$$I = qA \left(\frac{D_N}{L_N} \frac{{n_i}^2}{N_A} + \frac{D_P}{L_P} \frac{{n_i}^2}{N_D} \right) \left(e^{qV_A/kT} - 1 \right)$$

Typically, one side of the junction is doped much more heavily

N_A=10¹⁵ cm⁻³ N_D=10¹⁸ cm⁻³

p*-n junction

n+-p junction

The ideal diode equation may be simplified with assymetric doping, rewrite expressions for p $^+$ -n and n $^+$ -p

Bao Ve320 S12