CS 511, Fall 2020, Lecture Slides 06 Propositional Logic:

Soundness, Completeness, Compactness

Assaf Kfoury

September 10, 2020

Soundness

Let Γ a (possibly infinite) set of propositional wff's.

If, for every model (or assignment of truth values) it holds that:

- whenever all the wff's in Γ evaluate to **T**,
- lacktriangle it is also the case that ψ evaluates to ${f T}$,

then we write:

$$\Gamma \models \psi$$
 in words, " Γ semantically entails ψ "

▶ Theorem (Soundness): If $\Gamma \vdash \psi$ then $\Gamma \models \psi$.

(Slightly stronger than the statement of Soundness in [LCS, Theorem 1.35, p 46]: If $\varphi_1, \varphi_2, \dots, \varphi_n \vdash \psi$ then $\varphi_1, \varphi_2, \dots, \varphi_n \models \psi$.)

Soundness once more

- **Theorem (Soundness)** as in [LCS, Theorem 1.35, p 46]: If $\varphi_1, \varphi_2, \dots, \varphi_n \vdash \psi$ then $\varphi_1, \varphi_2, \dots, \varphi_n \models \psi$.
- Proof: Course-of-values induction (sometimes called strong induction) on $k \ge 1$, where k is number of lines in a formal proof.
- Base step: Consider k=1 (quite trivial!). In this case n=k=1. From a given sequent $\varphi_1 \vdash \psi$, we want to show $\varphi_1 \models \psi$. Such a sequent implies $\varphi_1 = \psi$, i.e., $\psi \vdash \psi$. Hence, $\psi \models \psi$, which is the same as $\varphi_1 \models \psi$. (QED for base case)
- Inductive step: Consider arbitrary $k \geqslant 2$.

 (Actually for $1 \leqslant k \leqslant n$, it is trivial again. Interesting case: k > n.)

 Induction hypothesis (IH): Soundness holds for every k' < k.

Structure of a formal proof with n premises:

- ▶ Last line in the proof, line k, is the result of 1 or 2 or . . . preceding it.
- Consider each possible "justification" separately: finitely many.
- Suppose "justification" is " \land i". This means line k uses lines k_1 and k_2 , with $k_1, k_2 < k$.
- ▶ Use IH on $\varphi_1, \varphi_2, \dots, \varphi_n \vdash \psi_{k_1}$ and $\varphi_1, \varphi_2, \dots, \varphi_n \vdash \psi_{k_2}$.

Completeness

▶ Theorem (Completeness): If $\Gamma \models \psi$ then $\Gamma \vdash \psi$.

(Stronger than the statement of Completeness in [LCS, Corollary 1.39, p 53]: If $\varphi_1, \varphi_2, \ldots, \varphi_n \models \psi$ then $\varphi_1, \varphi_2, \ldots, \varphi_n \vdash \psi$.)

▶ **Proof idea in [LCS]** (which works if Γ is a finite set $\{\varphi_1, \ldots, \varphi_n\}$):

Establish 3 preliminary results. From $\varphi_1, \ldots, \varphi_n \models \psi$, show that:

- 1. $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\varphi_3 \rightarrow (\cdots (\varphi_n \rightarrow \psi) \cdots)))$ holds.
- 2. $\vdash \varphi_1 \to (\varphi_2 \to (\varphi_3 \to (\cdots (\varphi_n \to \psi) \cdots)))$ is a valid sequent.
- 3. $\varphi_1, \varphi_2, \dots, \varphi_n \vdash \psi$ is a valid sequent.
- If Γ is infinite, we need another preliminary result: Compactness .

Compactness

- \blacktriangleright Γ is said to be **satisfiable** if there is a model which satisfies/makes true every φ in $\Gamma.$
- ▶ Theorem (Compactness) (not in [LCS]): Γ is satisfiable iff every finite subset of Γ is satisfiable.
- ▶ Corollary (not in [LCS]): If $\Gamma \models \psi$ then there is a finite subset $\Gamma_0 \subseteq \Gamma$ such that $\Gamma_0 \models \psi$.
- For proof of Compactness above and its corollary, is in my lecture notes [fCtC], posted on Piazza.

(THIS PAGE INTENTIONALLY LEFT BLANK)