모두의 딥러닝 개정 3판 정오표

쇄	베이지	수정 전	수정 후
1쇄	200	http://www.amstat.org/publications/jse/v19n3/decock/Data	http://jse.amstat.org/v19n3/decock/DataDocumentatio
	200	Documentation.txt	n.txt
2쇄	40	아나콘다에 이미	코랩에 이미
	83	yi=axi+b 를 대입하면	ŷi=axi+b 를 대입하면
	88	ax.scatter3D(x1, x2, y) ;	; 삭제
	107	텐서플로에서 실행하는 다중 선형 회귀	텐서플로에서 실행하는 로지스틱 회귀
	142	주피터 노트북을 통해	코랩을 통해
	150	그림 11-5 'plasma'	'BMI'
	156	그림 12-2 정보 3 첫째줄 '4.0'	'1.4'
	192	학습셋 - '빨간색', 검증셋 - '파란색'	학습셋 - ' <mark>파란색</mark> ', 검증셋 - ' <mark>빨간색</mark> '
	193	주피터 노트북에	코랩에
	194	검증셋의 오차(파란색)	학습셋의 오차(파란색)
	194	테스트셋의 오차(빨간색)	<mark>검증</mark> 셋의 오차(빨간색)
	204	plt.show();	; 삭제
	39	model 클래스	model <mark>s</mark> 클래스
	46	model.compile(loss=binary_crossentropy	model.compile(loss='binary_crossentropy'
	66	조금 전 구한 기울기 x까지	조금 전 구한 기울기 a까지
	-	최소 제곱근 공식	최소 제곱 <mark>법</mark> 공식
	69	x의 각 원소와 x의 평균값들의 차를	x의 각 원소와 x의 평균값의 차를
	72	입력 데이터의 종류가 17개나 됩니다	입력 데이터의 종류가 1 <mark>6</mark> 개나 됩니다
3쇄	75	(표 4-3 하단) 1 -5 3 3	-1 5 -3 -3
	76	1+(-5)+3+3=2	-1+5+(-3)+(-3)=-2
	111	그림 7-2 아달라인	x1 (경사하강법) 오차 (경사하강법)
	112	그림 7-2 로지스틱 회귀	x1 w1 가중합 오차 가중합 참? 거짓? 출력 시그모이드 함수
4쇄	156	속성을 보니 우리가 앞서 다루었던 것과	클래스를 보니 우리가 앞서 다루었던 것과
	189	./data/model/all/ 폴더에 모델을 지정해 줍니다	./data/model/all/ 폴더에 모델을 <mark>저장</mark> 해 줍니다
	196	model 폴더에 Ch14-4-bestmodel.hdf라는	model 폴더에 Ch14-4-bestmodel. <mark>hdf5</mark> 라는
	228	테스트셋의 과적합이 일어나기 전	학습셋의 과적합이 일어나기 전
	353	가중합3=w31yh1+w31yh2+1	가중합3=w31yh1+w3 <mark>2</mark> yh2+1
	96	prediction = model.predict([hour])	input_data = tf.constant([[hour]])
	106	*텐서플로 버전업으로 인한 수정	prediction = model.predict(input_data)[0][0]
	107		·

1			
	97	<pre>prediction = model.predict([[hour, private_class]])</pre>	input_data = tf.constant([[hour, private_class]])
5쇄	98	*텐서플로 버전업으로 인한 수정	prediction = model.predict(input_data)[0][0]
	177, 189, 190, 195, 196, 206, 207, 209, 223, 226 227 237 238 339 341 에 나오는 모든 .hdf5 *케라스 버전업으로 인한 수정		모두 .keras 로 수정
	277	!pip install Attention *해당 라이브러리 업데이트로 인한 수정	!pip install keras-self-attention
		model.add(Attention())	model.add(SeqSelfAttention(attention_activation=' sigmoid'))
	278-	from attention import Attention	from keras_self_attention import SeqSelfAttention
		model.add(Dense(1))	model.add(Flatten())
			model.add(Dense(1))