

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ

(национальный исследовательский университет)» Институт 3 Кафедра 305

Разработка математической модели контура управления движением квадрокоптера

Работу выполнила:

Студентка группы M3O-606C-16 Тюлю Полина Сергеевна

Дипломный руководитель:

к.т.н., доцент кафедры 305 МАИ Нгуен Ныы Ман

Цель и задачи

Цель работы

Разработать математическую модель контура управления квадрокоптера и исследовать влияния характеристик измерительно-вычислительного комплекса на работу контура управления движением квадрокоптера посредством математического моделирования.

Задачи

- 1. Разработать математическую модель движения четырехвинтового квадрокоптера;
- 2. Синтезировать законы управления системы стабилизации БПЛА;
- 3. Провести математическое моделирование работы контура "квадрокоптер-измерительно-вычислительный комплекс (ИВК)-система автоматического управления (САУ)";
- 4. Исследовать влияния погрешностей датчиков ИВК на точность управления движением квадрокоптера.

Математическая модель движения квадрокоптера

Сила тяжести
$$F_g = \begin{bmatrix} mg \sin \theta \\ -mg \cos y \cos \theta \\ -mg \sin y \cos \theta \end{bmatrix}$$

Тяга двигателей:

$$T_i = k_T \cdot u_i^2$$

Аэродинамическая сила
$$R = \begin{bmatrix} k & V_{xb}^2 \\ -k & V_{yb}^2 \\ k & V_{zb}^2 \end{bmatrix}$$

 $M_X = L \cdot (T_4 - T_2),$

Проекции момента двигателей: $M_y = (M_1 + M_3) - (M_2 + M_4)$,

$$M_Z = (M_1 + M_3) - (M_2 + M_4).$$

$$\begin{vmatrix} V_{xg} \\ V_{yg} \\ V_{zg} \end{vmatrix} = \begin{vmatrix} \cos\theta\cos\psi & \sin\theta & -\sin\psi\cos\theta \\ \sin\psi\sin\gamma - \cos\psi\sin\theta\cos\gamma & \cos\theta\cos\gamma & \cos\psi\sin\gamma + \sin\psi\sin\theta\cos\gamma \\ \sin\psi\cos\gamma + \cos\psi\sin\theta\sin\gamma & -\cos\theta\sin\gamma & \cos\psi\cos\gamma - \sin\psi\sin\theta\sin\gamma \end{vmatrix}$$

$$\dot{V}_{xb} = -\frac{k V_{xb}^2}{m} - \omega_y V_{zb} + \omega_z V_{yb} - g \sin\theta$$

$$\dot{V}_{yb} = \frac{T - k V_{yb}^2}{m} - \omega_z V_{xb} + \omega_x V_{zb} - g \cos\theta \cos y$$

$$\dot{V}_{zb} = -\frac{k V_{zb}^2}{m} - \omega_x V_{yb} + \omega_y V_{xb} - g \cos\theta \sin y$$

$$\dot{\omega}_x = \frac{L (T_4 - T_2) - (I_y - I_z) \omega_y \omega_z}{I_x}$$

$$\dot{\omega}_y = \frac{(M_1 + M_3) - (M_2 + M_4) - (I_z - I_x) \omega_x \omega_z}{I_y}$$

$$\dot{\omega}_z = \frac{L (T_1 - T_3) - (I_x - I_y) \omega_y \omega_x}{I_z}$$

$$\dot{\psi} = \frac{\cos y}{\cos \theta} \omega_y + \frac{\sin y}{\cos \theta} \omega_z$$

$$\dot{\theta} = \sin y \omega_y - \cos y \omega_z$$

$$\dot{y} = \omega_x - \cos y tg\theta \omega_y + \sin y tg\theta \omega_z$$

$$\dot{H} = V_{yg}$$

$$\dot{L} = V_{xg}$$

$$\dot{Z} = V_{zg}$$
3

Линейные модели движения

Продольное движение:

$$\begin{vmatrix} \dot{\mathbf{V}}_{xb} \\ \dot{\mathbf{V}}_{yb} \\ \dot{\mathbf{V}}_{zb} \\ \dot{\boldsymbol{\omega}}_{z} \\ \dot{\boldsymbol{\vartheta}} \end{vmatrix} = \mathbf{A}_{np} \begin{vmatrix} \mathbf{V}_{xb} \\ \mathbf{V}_{yb} \\ \mathbf{V}_{zb} \\ \boldsymbol{\omega}_{z} \\ \boldsymbol{\vartheta} \\ L \\ \dot{\boldsymbol{H}} \end{vmatrix} + \mathbf{B}_{np} \begin{pmatrix} u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \end{pmatrix}$$

Боковое движение:

$$\begin{vmatrix} \dot{\mathbf{V}}_{zb} \\ \dot{\omega}_{x} \\ \dot{\omega}_{y} \\ \dot{\mathbf{y}} \\ \dot{\mathbf{y}} \\ \dot{\mathbf{z}} \\ \dot{H} \end{vmatrix} = \mathbf{A}_{\text{бок}} \begin{vmatrix} \mathbf{V}_{zb} \\ \omega_{x} \\ \omega_{y} \\ \mathbf{y} \\ \psi \\ \mathbf{Z} \\ \dot{H} \end{vmatrix} + \mathbf{B}_{\text{бок}} \begin{vmatrix} u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \end{vmatrix}$$

$$\mathbf{A} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \dots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \dots & \frac{\partial f_n}{\partial x_2} \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} \frac{\partial f_1}{\partial u_1} & \frac{\partial f_1}{\partial u_2} & \dots & \frac{\partial f_1}{\partial u_m} \\ \frac{\partial f_2}{\partial u_1} & \frac{\partial f_2}{\partial u_2} & \dots & \frac{\partial f_2}{\partial u_m} \\ \frac{\partial f_2}{\partial u_1} & \frac{\partial f_2}{\partial u_2} & \dots & \frac{\partial f_2}{\partial u_m} \end{bmatrix} \quad \mathbf{a}_m - \mathbf{c}$$
 параметр состояния
$$\mathbf{a}_m - \mathbf{c}$$
 и
$$\mathbf{a}_m - \mathbf{c}$$
 4

$$\mathbf{B} = \begin{bmatrix} \partial f_1 & \partial f_1 & \cdots & \partial f_1 \\ \partial u_1 & \partial u_2 & \cdots & \partial u_m \\ \partial f_2 & \partial f_2 & \cdots & \partial f_2 \\ \partial u_1 & \partial u_2 & \cdots & \partial u_m \\ \vdots & \vdots & \cdots & \vdots \\ \partial f_n & \partial f_n & \cdots & \partial f_n \\ \partial u_1 & \partial u_2 & \cdots & \partial u_m \end{bmatrix}$$

Значения матриц Якоби

Параметры квадрокоптера	Значение
Масса, кг	2.5 кг
Коэффициент тяги двигателя, Н/	6.22
Коэффициент вращения винтов, Н/	8.38
Тензор инерции, кг	

$$\mathbf{B}_{\Pi p} = \begin{bmatrix} 2.11 & 2.11 \\ 810^{-3} & 810^{-3} \\ 0.02 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\mathbf{B}_{\text{бок}} = \begin{vmatrix} 0 & 0 \\ 0 & -910^{-2} \\ 0 & 0 \\ -910^{-2} & 0 \\ 0 & 0 \\ 0 & 0 \end{vmatrix}$$

Метод синтеза линейно-квадратичного регулятора

Закон управления: $\mathbf{u} = \mathbf{u}_{np} + \Delta \mathbf{u}$; $\Delta \mathbf{u} = -\mathbf{K} \Delta \mathbf{x}$

где $\Delta \mathbf{x} = \mathbf{x} - \mathbf{x}_{\mathrm{Tp}}$

Критерий синтеза:

$$J = \int_{0}^{\infty} (\Delta \mathbf{x}^{T} \mathbf{Q} \Delta \mathbf{x} + \Delta \mathbf{u}^{T} \mathbf{R} \Delta \mathbf{u}) dt$$

Матрица коэффициентов обратных связей **К**:

$$\mathbf{K} = \mathbf{R}^{-1} \mathbf{B}^T \mathbf{P}$$

где Р - решение матричного уравнения Риккати:

$$\mathbf{A}^T \mathbf{P} + \mathbf{P} \mathbf{A} - \mathbf{P} \mathbf{B} \mathbf{R}^{-1} \mathbf{B}^T \mathbf{P} + \mathbf{Q} = 0$$

Матрицы весов критерия:

$$\mathbf{Q} = \begin{bmatrix} q_1 & 0 & \dots & 0 \\ 0 & q_2 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & q_n \end{bmatrix}$$

$$\mathbf{R} = \begin{bmatrix} r_1 & 0 & \dots & 0 \\ 0 & r_2 & \dots & 0 \\ 0 & 0 & \dots & 0 \end{bmatrix}$$

MAU

Канал стабилизации высоты и скорости

Закон управления:

$$\Delta \mathbf{u} = \left[\Delta u_{HV}, \Delta u_{HV}, \Delta u_{HV}, \Delta u_{HV} \right]^{T}$$

$$\Delta u_{HV} = K_{V}(V - V_{TP}) + K_{V_{y}}V_{y} + K_{H}(H - H_{TP})$$

Матрицы весов критерия синтеза:

$$Q = \begin{bmatrix} 10 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0.1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 10 \end{bmatrix} \quad R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Результат синтеза:

$$= -1.88, = -16.7, = 3.01$$

Реакция квадрокоптера на заданные команды

Канал стабилизации угла крена

Закон управления:

$$\Delta \mathbf{u} = \left[\Delta u_{y}, -\Delta u_{y}, \Delta u_{y}, \Delta u_{y} \right]^{T}$$

$$\Delta u_{y} = K_{\omega_{x}} \omega_{x} + K_{y} (y - y_{TP})$$

Реакция квадрокоптера на заданные команды

Матрицы весов критерия синтеза:

$$Q = \begin{bmatrix} 0.1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0.1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Результат синтеза:

Канал стабилизации угла курса

Закон управления:

$$\Delta \mathbf{u} = \left[\Delta u_{\psi}, -\Delta u_{\psi}, \Delta u_{\psi}, -\Delta u_{\psi} \right]^{T}$$

$$\Delta u_{\psi} = K_{\omega_{y}} \omega_{y} + K_{\psi} (\psi - \psi_{TP})$$

Матрицы весов критерия синтеза:

$$Q = \begin{bmatrix} 0.1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0.1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Результат синтеза:

Реакция квадрокоптера на заданные команды

Математическая модель ИВК

Общая схема БИНС

Характеристики датчиков БИНС

Параметр	Акселерометр	Гироскоп
Смещение нуля	0.001 м/с²	1 град/ч
Погрешность масштабного коэффциента	1.E - 4	1.E - 4
Неортогональность	15 угл.с	15 угл.с
Частота генерации шума	250 Гц	250 Гц
СКО шума измерения	0.0062 м/с²	0.1 град/ч

Результаты моделирования контура «квадрокоптер-ИВК-САУ»

Канал стабилизации высоты и скорости

Результаты моделирования контура «квадрокоптер-ИВК-САУ»

Канал стабилизации угла крена

Канал стабилизации угла курса

Время, с

Исследование влияния смещения нуля акселерометра точность управления движением квадрокоптера

Канал стабилизации высоты и скорости

Исследование влияния смещения нуля акселерометра точность управления движением квадрокоптера

Канал стабилизации угла крена

Канал стабилизации угла курса

Исследование влияния смещения нуля гироскопа на точность управления движением квадрокоптера

Канал стабилизации высоты и скорости

Исследование влияния смещения нуля гироскопа на точность управления движением квадрокоптера

Канал стабилизации угла крена

Канал стабилизации угла курса

Исследование влияния точности датчиков БИНС на работу контура управления в случае отказа внешних источников информации

Смещение нуля акселерометра, м/с²	Время работы канала стабилизации высоты и скорости до выхода за пределы точности 5%, с	Время работы канала стабилизации угла крена до выхода за пределы точности 5%	Время работы канала стабилизации угла курса до выхода за пределы точности 5%
0.001	154	200	169
0.005	110	178	154
0.01	84	152	148
0.05	41	146	139
0.1	21	86	120
0.5	16	54	117

Исследование влияния точности датчиков БИНС на работу контура управления в случае отказа внешних источников информации

Смещение нуля гироскопа, град/ч	Время работы канала стабилизации высоты и скорости до выхода за пределы точности 5%, с	Время работы канала стабилизации угла крена до выхода за пределы точности 5%, с	Время работы канала стабилизации угла курса до выхода за пределы точности 5%, с
0.01	327	53	205
0.05	276	36	156
1	273	27	148
5	236	19	133
10	194	14	77

Исследование влияния точности датчиков БИНС на работу контура управления в случае отказа внешних источников информации

Заключение

- 1. Разработана математическая модель движения малогабаритного четырехвинтового квадрокоптера;
- 2. Синтезированы законы управления системы стабилизации БПЛА методом линейноквадратичного регулятора. В результате проведения компьютерного синтеза были получены коэффициенты закона управления, которые обеспечивают требования по управлению по рассматриваемым каналам;
- 3. Разработано ПО, реализующее математические модели движения квадрокоптера и БИНС
- 4. Проведено математическое моделирование работы контура "квадрокоптер-измерительновычислительный комплекс(ИВК)-САУ";
- 5. Исследовано влияния погрешностей датчиков ИВК на точность управления движением квадрокоптера и проведено варьированы характеристики смещения нуля у акселерометров и гироскопов.

Спасибо за внимание!