Math 362: Mathematical Statistics II

Le Chen

le.chen@emory.edu chenle02@gmail.com

> Emory University Atlanta, GA

Last updated on Spring 2021 Last compiled on January 15, 2023

2021 Spring

Creative Commons License (CC By-NC-SA)

Chapter 10. Goodness-of-fit Tests

- § 10.1 Introduction
- § 10.2 The Multinomial Distribution
- § 10.3 Goodness-of-Fit Tests: All Parameters Known
- § 10.4 Goodness-of-Fit Tests: Parameters Unknown
- § 10.5 Contingency Tables

Plan

§ 10.1 Introduction

- § 10.2 The Multinomial Distribution
- § 10.3 Goodness-of-Fit Tests: All Parameters Known
- § 10.4 Goodness-of-Fit Tests: Parameters Unknown
- § 10.5 Contingency Tables

Chapter 10. Goodness-of-fit Tests

- § 10.1 Introduction
- § 10.2 The Multinomial Distribution
- § 10.3 Goodness-of-Fit Tests: All Parameters Known
- § 10.4 Goodness-of-Fit Tests: Parameters Unknown
- § 10.5 Contingency Tables

izquotes.com

- 1. Karl Pearson, 1857 1936.
- English mathematician and biostatistician
- He has been credited with establishing the discipline of mathematical statistics
- 4. Method of moments; p-Value; Chi-square test; Foundations of statistical hypothesis testing theory; principle component analysis ...

izquotes.com

- 1. Karl Pearson, 1857 1936.
- 2. English mathematician and biostatistician.
- He has been credited with establishing the discipline of mathematical statistics
- 4. Method of moments; p-Value; Chi-square test; Foundations of statistical hypothesis testing theory; principle component analysis ...

izquotes.com

- 1. Karl Pearson, 1857 1936.
- 2. English mathematician and biostatistician.
- He has been credited with establishing the discipline of mathematical statistics
- 4. Method of moments; p-Value; Chi-square test; Foundations of statistical hypothesis testing theory; principle component analysis ...

izquotes.com

- 1. Karl Pearson, 1857 1936.
- 2. English mathematician and biostatistician.
- He has been credited with establishing the discipline of mathematical statistics
- **4.** Method of moments; p-Value; <u>Chi-square test</u>; Foundations of statistical hypothesis testing theory; principle component analysis ...

Pearson's chi-squared test in one shot

$$\chi^2 = \sum \frac{(\text{Observed} - \text{Expected})^2}{\text{Expected}} \sim \text{Chi Square of } \textit{df}$$

df = numer of classes – number of estimated parameters – 1

All expected ≥ 5

Plan

§ 10.1 Introduction

§ 10.2 The Multinomial Distribution

§ 10.3 Goodness-of-Fit Tests: All Parameters Known

§ 10.4 Goodness-of-Fit Tests: Parameters Unknown

§ 10.5 Contingency Tables

Chapter 10. Goodness-of-fit Tests

§ 10.1 Introduction

§ 10.2 The Multinomial Distribution

§ 10.3 Goodness-of-Fit Tests: All Parameters Known

§ 10.4 Goodness-of-Fit Tests: Parameters Unknown

§ 10.5 Contingency Tables

Def. Suppose one does an experiment of extracting n balls of t different colors from a jar, replacing the extracted ball after each draw. Balls from the same color are equivalent. Denote the variable which is the number of extracted balls of color i (i = 1, ..., t) as X_i , and denote as p_i the probability that a given extraction will be in color i. The probability distribution function of the vector (X_1, \cdots, X_t) is called the **multinomial distribution**, which is equal to

$$p_{X_1,\dots,X_t}(k_1,\dots,k_t) = \mathbb{P}\left(X_1 = k_1,\dots,X_t = k_t\right)$$
$$= \binom{n}{k_1,\dots,k_t} p_1^{k_1}\dots p_t^{k_t}$$

where $k_i \in \{0, 1, \dots, n\}, 1 \le i \le t, \sum_{i=1}^t k_i = n$, and $p_1 + \dots + p_t = 1$.

Thm Suppose (X_1, \cdots, X_t) follows the multinomial distribution with parameters n and (p_1, \cdots, p_t) with $p_i \ge 0$ and $\sum_i p_i = 1$. Then

1. $X_i \sim \text{Binomail}(n, p_i)$ and hence

$$\mathbb{E}[X_i] = np_i$$

$$Var(X_i) = np_i(1 - p_i)$$

2.
$$Cov(X_i, X_j) = -np_ip_j, i \neq j$$

(negative correlated)

3.
$$M_{X_1,\dots,X_t}(s_1,\dots,s_t) = (p_1e^{s_1}+\dots+p_te^{s_t})^n$$
.

Thm Suppose (X_1, \cdots, X_t) follows the multinomial distribution with parameters n and (p_1, \cdots, p_t) with $p_i \ge 0$ and $\sum_i p_i = 1$. Then

1. $X_i \sim \text{Binomail}(n, p_i)$ and hence

$$\mathbb{E}[X_i] = np_i$$

$$Var(X_i) = np_i(1 - p_i)$$

2. $Cov(X_i, X_i) = -np_ip_i, i \neq j$

(negative correlated)

3.
$$M_{X_1,\dots,X_t}(s_1,\dots,s_t) = (p_1e^{s_1}+\dots+p_te^{s_t})^n$$
.

- Thm Suppose (X_1, \cdots, X_t) follows the multinomial distribution with parameters n and (p_1, \cdots, p_t) with $p_i \ge 0$ and $\sum_i p_i = 1$. Then
 - 1. $X_i \sim \text{Binomail}(n, p_i)$ and hence

$$\mathbb{E}[X_i] = np_i$$

$$Var(X_i) = np_i(1 - p_i)$$

2. $Cov(X_i, X_j) = -np_ip_j, i \neq j$

(negative correlated)

3. $M_{X_1,\dots,X_t}(s_1,\dots,s_t) = (p_1e^{s_1}+\dots+p_te^{s_t})^n$.

- Thm Suppose (X_1, \dots, X_t) follows the multinomial distribution with parameters n and (p_1, \dots, p_t) with $p_i \ge 0$ and $\sum_i p_i = 1$. Then
 - 1. $X_i \sim \text{Binomail}(n, p_i)$ and hence

$$\mathbb{E}[X_i] = np_i$$

$$Var(X_i) = np_i(1 - p_i)$$

2. $Cov(X_i, X_i) = -np_ip_i, i \neq j$

(negative correlated)

3. $M_{X_1,\dots,X_t}(s_1,\dots,s_t)=(p_1e^{s_1}+\dots+p_te^{s_t})^n$.

Thm Suppose (X_1, \cdots, X_t) follows the multinomial distribution with parameters n and (p_1, \cdots, p_t) with $p_i \ge 0$ and $\sum_i p_i = 1$. Then

1. $X_i \sim \text{Binomail}(n, p_i)$ and hence

$$\mathbb{E}[X_i] = np_i$$

$$Var(X_i) = np_i(1 - p_i)$$

2.
$$Cov(X_i, X_j) = -np_ip_j, i \neq j.$$

(negative correlated)

3. $M_{X_1,\dots,X_t}(s_1,\dots,s_t) = (p_1e^{s_1}+\dots+p_te^{s_t})^n$

- Thm Suppose (X_1, \dots, X_t) follows the multinomial distribution with parameters n and (p_1, \dots, p_t) with $p_i \ge 0$ and $\sum_i p_i = 1$. Then
 - 1. $X_i \sim \text{Binomail}(n, p_i)$ and hence

$$\mathbb{E}[X_i] = np_i$$

$$Var(X_i) = np_i(1 - p_i)$$

2. $Cov(X_i, X_j) = -np_ip_i, i \neq j.$

(negative correlated)

3. $M_{X_1,\dots,X_t}(s_1,\dots,s_t) = (p_1e^{s_1}+\dots+p_te^{s_t})^n$.

Proof

(3)

$$\begin{aligned} M_{X_{1}, \dots, X_{t}}(s_{1}, \dots, s_{t}) &= \mathbb{E}\left[e^{X_{1}s_{1} + \dots + X_{t}s_{t}}\right] \\ &= \sum_{\substack{k_{1}, \dots, k_{t} = 0 \\ k_{1} + \dots + k_{t} = n}}^{n} \binom{n}{k_{1}, \dots, k_{t}} p_{1}^{k_{1}} \dots p_{t}^{k_{t}} e^{k_{1}s_{1} + \dots + k_{t}s_{t}} \\ &= \sum_{\substack{k_{1}, \dots, k_{t} = 0 \\ k_{1} + \dots + k_{t} = n}}^{n} \binom{n}{k_{1}, \dots, k_{t}} (p_{1}e^{s_{1}})^{k_{1}} \dots (p_{t}e^{s_{t}})^{k_{t}} \\ &= (p_{1}e^{s_{1}} + \dots + p_{t}e^{s_{t}})^{n} \end{aligned}$$

(1) To find $M_{X_i}(s_i)$, we simply set $s_i \equiv 0$ for $i \neq i$. Hence

$$M_{X_i}(s_i) = \left(\underbrace{p_1 + \dots + p_{i-1} + p_{i+1} + \dots + p_t}_{=1-p_i} + p_i e^{s_i}\right)^n \Longrightarrow X_i \sim \mathsf{Binomial}(n, p_i)$$

Proof

(3)

$$\begin{aligned} M_{X_{1}, \dots, X_{t}}(s_{1}, \dots, s_{t}) &= \mathbb{E}\left[e^{X_{1}s_{1} + \dots + X_{t}s_{t}}\right] \\ &= \sum_{\substack{k_{1}, \dots, k_{t} = 0 \\ k_{1} + \dots + k_{t} = n}}^{n} \binom{n}{k_{1}, \dots, k_{t}} p_{1}^{k_{1}} \dots p_{t}^{k_{t}} e^{k_{1}s_{1} + \dots + k_{t}s_{t}} \\ &= \sum_{\substack{k_{1}, \dots, k_{t} = 0 \\ k_{1} + \dots + k_{t} = n}}^{n} \binom{n}{k_{1}, \dots, k_{t}} (p_{1}e^{s_{1}})^{k_{1}} \dots (p_{t}e^{s_{t}})^{k_{t}} \\ &= (p_{1}e^{s_{1}} + \dots + p_{t}e^{s_{t}})^{n} \end{aligned}$$

(1) To find $M_{X_i}(s_i)$, we simply set $s_i \equiv 0$ for $i \neq i$. Hence

$$M_{X_i}(s_i) = \left(\underbrace{p_1 + \dots + p_{i-1} + p_{i+1} + \dots + p_t}_{=1-p_i} + p_i e^{s_i}\right)^n \Longrightarrow X_i \sim \text{Binomial}(n, p_i)$$

Proof

(3)

$$\begin{aligned} \textit{M}_{\textit{X}_{1},\cdots,\textit{X}_{t}}(\textit{s}_{1},\cdots,\textit{s}_{t}) &= \mathbb{E}\left[\textit{e}^{\textit{X}_{1}\textit{s}_{1}+\cdots+\textit{X}_{t}\textit{s}_{t}}\right] \\ &= \sum_{\substack{k_{1},\cdots,k_{t}=0\\k_{1}+\cdots+k_{t}=n}}^{n} \binom{n}{k_{1},\cdots,k_{t}} p_{1}^{k_{1}}\cdots p_{t}^{k_{t}} \textit{e}^{k_{1}\textit{s}_{1}+\cdots+k_{t}\textit{s}_{t}} \\ &= \sum_{\substack{k_{1},\cdots,k_{t}=0\\k_{1}+\cdots+k_{t}=n}}^{n} \binom{n}{k_{1},\cdots,k_{t}} (p_{1}\textit{e}^{\textit{s}_{1}})^{k_{1}}\cdots (p_{t}\textit{e}^{\textit{s}_{t}})^{k_{t}} \\ &= (p_{1}\textit{e}^{\textit{s}_{1}}+\cdots+p_{t}\textit{e}^{\textit{s}_{t}})^{n} \end{aligned}$$

(1) To find $M_{X_i}(s_i)$, we simply set $s_j \equiv 0$ for $j \neq i$. Hence

$$M_{X_i}(s_i) = \left(\underbrace{p_1 + \dots + p_{i-1} + p_{i+1} + \dots + p_t}_{=1-p_i} + p_i e^{s_i}\right)^n \Longrightarrow X_i \sim \text{Binomial}(n, p_i)$$

(2) Set $M := M_{X_1, \dots, X_t}(s_1, \dots, s_t)$. Then for $i \neq j$,

$$\frac{\partial M}{\partial s_i} = n \left(p_1 e^{s_1} + \dots + p_t e^{s_t} \right)^{n-1} p_i e^{s_i}$$

$$\frac{\partial^2 M}{\partial s_i \partial s_i} = n(n-1) \left(p_1 e^{s_1} + \dots + p_t e^{s_t} \right)^{n-2} p_i e^{s_i} p_j e^{s_i}$$

$$\downarrow$$

$$\mathbb{E}[X_i X_j] = \frac{\partial^2 M}{\partial s_i \partial s_j} \bigg|_{s_1 = \dots = s_l = 0} = n(n-1)(\rho_1 + \dots + \rho_l)^{n-2} \rho_i \rho_j = n(n-1)\rho_i \rho_i$$

$$egin{aligned} \mathsf{Cov}(X_i, X_j) &= \mathbb{E}[X_i X_j] - \mathbb{E}[X_i] \mathbb{E}[X_j] \ &= n(n-1)p_i p_j - n p_i imes n p_i \ &= -n p_i p_i \end{aligned}$$

(2) Set
$$M := M_{X_1, \dots, X_t}(s_1, \dots, s_t)$$
. Then for $i \neq j$,

$$\frac{\partial M}{\partial s_i} = n \left(p_1 e^{s_1} + \dots + p_t e^{s_t} \right)^{n-1} p_i e^{s_i}$$

$$\frac{\partial^2 M}{\partial s_i \partial s_j} = n(n-1) \left(p_1 e^{s_1} + \dots + p_t e^{s_t} \right)^{n-2} p_i e^{s_i} p_j e^{s_i}$$

$$\downarrow$$

$$\mathbb{E}[X_i X_j] = \frac{\partial^2 M}{\partial s_i \partial s_j} \bigg|_{s_1 = \dots = s_i = 0} = n(n-1)(\rho_1 + \dots + \rho_t)^{n-2} \rho_i \rho_j = n(n-1)\rho_i \rho_i$$

$$Cov(X_i, X_j) = \mathbb{E}[X_i X_j] - \mathbb{E}[X_i] \mathbb{E}[X_j]$$

= $n(n-1)p_i p_j - np_i \times np$
= $-np_i p_i$

(2) Set
$$M := M_{X_1, \dots, X_t}(s_1, \dots, s_t)$$
. Then for $i \neq j$,

$$\frac{\partial M}{\partial s_i} = n \left(p_1 e^{s_1} + \dots + p_t e^{s_t} \right)^{n-1} p_i e^{s_i}$$

$$\frac{\partial^2 \mathbf{M}}{\partial \mathbf{s}_i \partial \mathbf{s}_j} = \mathbf{n}(\mathbf{n} - 1) \left(\mathbf{p}_1 \mathbf{e}^{\mathbf{s}_1} + \dots + \mathbf{p}_t \mathbf{e}^{\mathbf{s}_t} \right)^{n-2} \mathbf{p}_i \mathbf{e}^{\mathbf{s}_j} \mathbf{p}_j \mathbf{e}^{\mathbf{s}_j}$$

$$\Downarrow$$

$$\mathbb{E}[X_i X_j] = \frac{\partial^2 M}{\partial s_i \partial s_j} \bigg|_{s_1 = \dots = s_t = 0} = n(n-1)(p_1 + \dots + p_t)^{n-2} p_i p_j = n(n-1)p_i p_i$$

$$Cov(X_i, X_j) = \mathbb{E}[X_i X_j] - \mathbb{E}[X_i] \mathbb{E}[X_j]$$

$$= n(n-1)p_i p_j - np_i \times np$$

$$= -np_i p_i$$

(2) Set
$$M := M_{X_1, \dots, X_t}(s_1, \dots, s_t)$$
. Then for $i \neq j$,

$$\frac{\partial M}{\partial s_i} = n \left(p_1 e^{s_1} + \dots + p_t e^{s_t} \right)^{n-1} p_i e^{s_i}$$

$$\frac{\partial^2 M}{\partial s_i \partial s_j} = n(n-1) \left(p_1 e^{s_1} + \dots + p_t e^{s_t} \right)^{n-2} p_i e^{s_i} p_j e^{s_j}$$

$$\mathbb{E}[X_i X_j] = \frac{\partial^2 M}{\partial s_i \partial s_j} \bigg|_{s_1 = \dots = s_t = 0} = n(n-1)(p_1 + \dots + p_t)^{n-2} p_i p_j = n(n-1)p_i p_j$$

$$Cov(X_i, X_j) = \mathbb{E}[X_i X_j] - \mathbb{E}[X_i] \mathbb{E}[X_j]$$

= $n(n-1)p_i p_j - np_i \times np$
= $-np_i p_i$

(2) Set
$$M := M_{X_1, \dots, X_t}(s_1, \dots, s_t)$$
. Then for $i \neq j$,

$$\frac{\partial M}{\partial s_i} = n \left(p_1 e^{s_1} + \dots + p_t e^{s_t} \right)^{n-1} p_i e^{s_i}$$

$$\frac{\partial^2 M}{\partial s_i \partial s_j} = n(n-1) \left(p_1 e^{s_1} + \dots + p_t e^{s_t} \right)^{n-2} p_i e^{s_i} p_j e^{s_j}$$

$$\mathbb{E}[X_i X_j] = \frac{\partial^2 M}{\partial s_i \partial s_j} \bigg|_{s_1 = \dots = s_t = 0} = n(n-1)(\rho_1 + \dots + \rho_t)^{n-2} \rho_i \rho_j = n(n-1)\rho_i \rho_j$$

$$Gov(X_i, X_j) = \mathbb{E}[X_i X_j] - \mathbb{E}[X_i] \mathbb{E}[X_j]$$

$$= n(n-1)p_i p_j - np_i \times np_j$$

$$= -np_i p_j$$

From a continuous pdf to a multinomial distribution:

E.g. Let Y_i be a random sample of size n from $f_Y(y) = 6y(1-y), y \in [0,1]$. Define

$$X_i = \begin{cases} 1 & Y_i \in [0, 0.25) \\ 2 & Y_i \in [0.25, 0.5) \\ 3 & Y_i \in [0.5, 0.75) \\ 4 & Y_i \in [0.75, 1) \end{cases}$$

Find the distribution of (X_1, \dots, X_n) .

Sol. (X_1, X_2, X_3, X_4) follows multinomial distribution with parameters (p_1, p_2, p_3, p_4) where

$$p_1 = \int_0^{\frac{1}{4}} 6y(1-y) dy = \dots = \frac{5}{32}$$

From a continuous pdf to a multinomial distribution:

E.g. Let Y_i be a random sample of size n from $f_Y(y) = 6y(1-y), y \in [0,1]$. Define

$$\mathbf{X}_{i} = \begin{cases} 1 & \mathbf{Y}_{i} \in [0, 0.25) \\ 2 & \mathbf{Y}_{i} \in [0.25, 0.5) \\ 3 & \mathbf{Y}_{i} \in [0.5, 0.75) \\ 4 & \mathbf{Y}_{i} \in [0.75, 1) \end{cases}$$

Find the distribution of (X_1, \dots, X_n) .

Sol. (X_1,X_2,X_3,X_4) follows multinomial distribution with parameters (p_1,p_2,p_3,p_4) where

$$p_1 = \int_0^{\frac{1}{4}} 6y(1-y)dy = \cdots = \frac{5}{32},$$

and by symmetry,

$$p_4 = p_1 = \frac{5}{32}$$
 and $p_2 = p_3 = \frac{1}{2} (1 - p_1 - p_4) = \frac{11}{32}$.

Remark In this way, we transform the outcomes, any values between [0,1], into categorical data. This chapter is about

Analysis of Categorical Data

and by symmetry,

$$p_4 = p_1 = \frac{5}{32}$$
 and $p_2 = p_3 = \frac{1}{2}(1 - p_1 - p_4) = \frac{11}{32}$.

Remark In this way, we transform the outcomes, any values between [0,1], into categorical data. This chapter is about

Analysis of Categorical Data

and by symmetry,

$$p_4 = p_1 = \frac{5}{32}$$
 and $p_2 = p_3 = \frac{1}{2} (1 - p_1 - p_4) = \frac{11}{32}$.

Remark In this way, we transform the outcomes, any values between [0, 1], into categorical data. This chapter is about

Analysis of Categorical Data

Γ

Plan

- § 10.1 Introduction
- § 10.2 The Multinomial Distribution
- § 10.3 Goodness-of-Fit Tests: All Parameters Known
- § 10.4 Goodness-of-Fit Tests: Parameters Unknown
- § 10.5 Contingency Tables

Chapter 10. Goodness-of-fit Tests

- § 10.1 Introduction
- § 10.2 The Multinomial Distribution
- § 10.3 Goodness-of-Fit Tests: All Parameters Known
- § 10.4 Goodness-of-Fit Tests: Parameters Unknown
- § 10.5 Contingency Tables

Rationale

! We want to test if the c.d.f. $F_Y(\cdot)$ is given by the true c.d.f. $F_0(\cdot)$, i.e.

$$H_0: F_Y(y) = F_0(y)$$
 v.s. $H_1: F_Y(y) \neq F_0(y)$

- ~ By properly partitioning the domain, the random sample should follow an induced multinomial distribution.
- \implies Then testing $F_Y(\cdot) = F_0(\cdot)$ reduces to testing the induced multinomial distribution of the following form:

$$H_0: p_1 = p'_1, \cdots, p_n = p'_n$$
v.s.

 $H_1: p_i \neq p'_i$ for at least one *i*

Rationale

! We want to test if the c.d.f. $F_Y(\cdot)$ is given by the true c.d.f. $F_0(\cdot)$, i.e.,

$$H_0: F_Y(y) = F_0(y)$$
 v.s. $H_1: F_Y(y) \neq F_0(y)$

- ~ By properly partitioning the domain, the random sample should follow an induced multinomial distribution.
- \implies Then testing $F_Y(\cdot) = F_0(\cdot)$ reduces to testing the induced multinomial distribution of the following form:

$$H_0: \rho_1 = \rho'_1, \cdots, \rho_n = \rho'_n$$
 $v.s.$

 $H_1: p_i \neq p'_i$ for at least one *i*

Rationale

! We want to test if the c.d.f. $F_Y(\cdot)$ is given by the true c.d.f. $F_0(\cdot)$, i.e.,

$$H_0: F_Y(y) = F_0(y)$$
 v.s. $H_1: F_Y(y) \neq F_0(y)$

- ~ By properly partitioning the domain, the random sample should follow an induced multinomial distribution.
- \implies Then testing $F_Y(\cdot) = F_0(\cdot)$ reduces to testing the induced multinomia distribution of the following form:

$$H_0: p_1 = p'_1, \cdots, p_n = p'_n$$

 $H_1: p_i \neq p_i'$ for at least one *i*

Rationale

! We want to test if the c.d.f. $F_Y(\cdot)$ is given by the true c.d.f. $F_0(\cdot)$, i.e.,

$$H_0: F_Y(y) = F_0(y)$$
 v.s. $H_1: F_Y(y) \neq F_0(y)$

- ~ By properly partitioning the domain, the random sample should follow an induced multinomial distribution.
- \implies Then testing $F_Y(\cdot) = F_0(\cdot)$ reduces to testing the induced multinomial distribution of the following form:

$$H_0: p_1 = p_1', \cdots, p_n = p_n'$$
v.s.

 $H_1: p_i \neq p'_i$ for at least one i

- 1. Suppose we are sampling from the c.d.f. F(y)
- 2. Divide the range of the distribution into k mutually exclusive and exhausive intervals, say l_1, \dots, l_k .
- 3. Let $\pi_i = \mathbb{P}(X \in I_i), i = 1, \dots, k$
- **4.** Let O_1, \dots, O_k be the respective observed numbers of the observations X_1, \dots, X_n in the intervals I_1, \dots, I_k .
- 5. Then $O = (O_1, \dots, O_k) \sim$ multinomial distribution with (π_1, \dots, π_k) , i.e.

$$\mathbb{P}\left(O_1=o_1,\cdots,O_k=o_k
ight)=rac{n!}{\prod_{i=1}^k o_i!}\prod_{i=1}^k \pi_i^o$$

with
$$\sum_{i=1}^k \pi_i = 1$$
, $\sum_{i=1}^k o_i = n$, and $\mathbb{E}[O_i] = n\pi_i =: e_i$, $\operatorname{Var}(O_i) = n\pi_i (1-\pi)$

1. Suppose we are sampling from the c.d.f. F(y)

- 2. Divide the range of the distribution into k mutually exclusive and exhausive intervals, say l_1, \dots, l_k .
- 3. Let $\pi_i = \mathbb{P}(X \in I_i), i = 1, \dots, k$
- 4. Let O_1, \dots, O_k be the respective observed numbers of the observations X_1, \dots, X_n in the intervals I_1, \dots, I_k .
- 5. Then $O = (O_1, \dots, O_k) \sim$ multinomial distribution with (π_1, \dots, π_k) , i.e.

$$\mathbb{P}\left(O_1=o_1,\cdots,O_k=o_k
ight)=rac{n!}{\prod_{i=1}^k o_i!}\prod_{i=1}^k \pi_i^o$$

with
$$\sum_{i=1}^{k} \pi_i = 1$$
, $\sum_{i=1}^{k} o_i = n$, and

$$\mathbb{E}[O_i] = n\pi_i =: e_i, \quad \text{Var}(O_i) = n\pi_i(1 - \pi_i)$$

- 1. Suppose we are sampling from the c.d.f. F(y)
- 2. Divide the range of the distribution into k mutually exclusive and exhausive intervals, say l_1, \dots, l_k .
- 3. Let $\pi_i = \mathbb{P}(X \in I_i), i = 1, \dots, k$
- **4.** Let O_1, \dots, O_k be the respective observed numbers of the observations X_1, \dots, X_n in the intervals I_1, \dots, I_k .
- 5. Then $O = (O_1, \dots, O_k) \sim$ multinomial distribution with (π_1, \dots, π_k) , i.e.,

$$\mathbb{P}\left(O_1=o_1,\cdots,O_k=o_k
ight)=rac{n!}{\prod_{i=1}^k o_i!}\prod_{i=1}^k \pi_i^o$$

with
$$\sum_{i=1}^{k} \pi_{i} = 1$$
, $\sum_{i=1}^{k} o_{i} = n$, and

$$\mathbb{E}[O_i] = n\pi_i =: e_i, \quad \text{Var}(O_i) = n\pi_i(1 - \pi_i)$$

- 1. Suppose we are sampling from the c.d.f. F(y)
- 2. Divide the range of the distribution into k mutually exclusive and exhausive intervals, say l_1, \dots, l_k .
- 3. Let $\pi_i = \mathbb{P}(X \in I_i), i = 1, \dots, k$.
- **4.** Let O_1, \dots, O_k be the respective observed numbers of the observations X_1, \dots, X_n in the intervals I_1, \dots, I_k .
- 5. Then $O = (O_1, \dots, O_k) \sim$ multinomial distribution with (π_1, \dots, π_k) , i.e.

$$\mathbb{P}\left(O_1=o_1,\cdots,O_k=o_k
ight)=rac{n!}{\prod_{i=1}^k o_i!}\prod_{i=1}^k \pi_i^o$$

with
$$\sum_{i=1}^{k} \pi_{i} = 1$$
, $\sum_{i=1}^{k} o_{i} = n$, and

$$\mathbb{E}[O_i] = n\pi_i =: e_i, \quad \text{Var}(O_i) = n\pi_i(1 - \pi_i)$$

- 1. Suppose we are sampling from the c.d.f. F(y)
- 2. Divide the range of the distribution into k mutually exclusive and exhausive intervals, say l_1, \dots, l_k .
- 3. Let $\pi_i = \mathbb{P}(X \in I_i), i = 1, \dots, k$.
- **4.** Let O_1, \dots, O_k be the respective observed numbers of the observations X_1, \dots, X_n in the intervals I_1, \dots, I_k .
- 5. Then $O = (O_1, \dots, O_k) \sim$ multinomial distribution with (π_1, \dots, π_k) , i.e.

$$\mathbb{P}\left(O_1=o_1,\cdots,O_k=o_k\right)=\frac{n!}{\prod_{i=1}^k o_i!}\prod_{i=1}^k \pi_i^c$$

with
$$\sum_{i=1}^{k} \pi_i = 1$$
, $\sum_{i=1}^{k} o_i = n$, and

$$\mathbb{E}[O_i] = n\pi_i =: e_i, \quad \text{Var}(O_i) = n\pi_i(1 - \pi_i)$$

- 1. Suppose we are sampling from the c.d.f. F(y)
- 2. Divide the range of the distribution into k mutually exclusive and exhausive intervals, say l_1, \dots, l_k .
- 3. Let $\pi_i = \mathbb{P}(X \in I_i), i = 1, \dots, k$.
- **4.** Let O_1, \dots, O_k be the respective observed numbers of the observations X_1, \dots, X_n in the intervals I_1, \dots, I_k .
- **5.** Then $O = (O_1, \dots, O_k) \sim$ multinomial distribution with (π_1, \dots, π_k) , i.e.,

$$\mathbb{P}(O_1 = o_1, \cdots, O_k = o_k) = \frac{n!}{\prod_{i=1}^k o_i!} \prod_{i=1}^k \pi_i^{o_i}$$

with
$$\sum_{i=1}^k \pi_i = 1$$
, $\sum_{i=1}^k o_i = n$, and $\mathbb{E}[O_i] = n\pi_i =: e_i$, $\mathsf{Var}(O_i) = n\pi_i(1-\pi_i)$

6. When k = 2, by CLT, as $n \to \infty$,

$$\frac{\textit{O}_1 - \textit{n}\pi_1}{\sqrt{\textit{n}\pi_1(1 - \pi_1)}} \overset{\textit{d}}{\rightarrow} \textit{N}(0, 1) \quad \Longrightarrow \quad \frac{(\textit{O}_1 - \textit{n}\pi_1)^2}{\textit{n}\pi_1(1 - \pi_1)} \overset{\textit{d}}{\rightarrow} \chi_1^2$$

$$\frac{||}{(O_1 - n\pi_1)^2} + \frac{(O_2 - n\pi_2)^2}{n\pi_2}$$

$$egin{aligned} & || \ & (\mathcal{O}_1 - m{e}_1)^2 \ & m{e}_1 \ \end{pmatrix} + rac{(\mathcal{O}_2 - m{e}_2)^2}{m{e}_2} \end{aligned}$$

Hence, as $n \to \infty$

$$\sum_{i=1}^k \frac{(O_i - e_i)^2}{e_i} \stackrel{d}{\to} \chi_{k-}^2$$

6. When k = 2, by CLT, as $n \to \infty$,

$$\frac{\textit{O}_1 - \textit{n}\pi_1}{\sqrt{\textit{n}\pi_1(1 - \pi_1)}} \overset{\textit{d}}{\rightarrow} \textit{N}(0, 1) \quad \Longrightarrow \quad \frac{(\textit{O}_1 - \textit{n}\pi_1)^2}{\textit{n}\pi_1(1 - \pi_1)} \overset{\textit{d}}{\rightarrow} \chi_1^2$$

$$\frac{||}{(O_1 - n\pi_1)^2} + \frac{(O_2 - n\pi_2)^2}{n\pi_2}$$

$$\dfrac{||}{(\mathit{O}_1 - e_1)^2} + \dfrac{(\mathit{O}_2 - e_2)^2}{e_2}$$

Hence, as $n \to \infty$

$$\sum_{i=1}^k \frac{(O_i - e_i)^2}{e_i} \stackrel{d}{\to} \chi_{k-}^2$$

6. When k = 2, by CLT, as $n \to \infty$,

$$\frac{O_1 - n\pi_1}{\sqrt{n\pi_1(1 - \pi_1)}} \stackrel{d}{\to} N(0, 1) \quad \Longrightarrow \quad \frac{(O_1 - n\pi_1)^2}{n\pi_1(1 - \pi_1)} \stackrel{d}{\to} \chi_1^2$$

$$\frac{||}{n\pi_1} + \frac{(O_1 - n\pi_1)^2}{n\pi_2} + \frac{(O_2 - n\pi_2)^2}{n\pi_2}$$

$$\dfrac{||}{(\emph{O}_{1}-\emph{e}_{1})^{2}} + \dfrac{(\emph{O}_{2}-\emph{e}_{2})^{2}}{\emph{e}_{2}}$$

Hence, as $n \to \infty$

$$\sum_{i=1}^k \frac{(O_i - e_i)^2}{e_i} \stackrel{d}{\to} \chi_{k-}^2$$

6. When k=2, by CLT, as $n\to\infty$,

$$\frac{O_1 - n\pi_1}{\sqrt{n\pi_1(1 - \pi_1)}} \stackrel{d}{\to} N(0, 1) \implies \frac{(O_1 - n\pi_1)^2}{n\pi_1(1 - \pi_1)} \stackrel{d}{\to} \chi_1^2$$

$$\qquad \qquad ||$$

$$\frac{(O_1 - n\pi_1)^2}{n\pi_1} + \frac{(O_2 - n\pi_2)^2}{n\pi_2}$$

$$\qquad \qquad ||$$

$$\frac{(O_1 - e_1)^2}{e_1} + \frac{(O_2 - e_2)^2}{e_2}$$

Hence, as $n \to \infty$,

$$\sum_{i=1}^k \frac{(O_i - e_i)^2}{e_i} \stackrel{d}{\to} \chi_{k-1}^2$$

$$\sum_{i=1}^{k} \frac{(O_i - n\pi_i)^2}{n\pi_i} = \sum_{i=1}^{k} \frac{(O_i - e_i)^2}{e_i}$$

follows a complicated, but exact, distribution, from which, one can show

$$\sum_{i=1}^k \frac{(O_i - e_i)^2}{e_i} \stackrel{d}{\to} \chi_{k-1}^2$$

ļ

Thm. When *n* is large enough, namely, when $n\pi_i \geq 5$ for all *i*,

$$D = \sum_{i=1}^k rac{(\mathit{O}_i - e_i)^2}{e_i} \overset{\mathit{appr.}}{\sim} \chi_{k-1}^2.$$

$$\sum_{i=1}^{k} \frac{(O_i - n\pi_i)^2}{n\pi_i} = \sum_{i=1}^{k} \frac{(O_i - e_i)^2}{e_i}$$

follows a complicated, but exact, distribution, from which, one can show

$$\sum_{i=1}^k \frac{(O_i - e_i)^2}{e_i} \stackrel{d}{\to} \chi_{k-1}^2$$

L

Thm. When *n* is large enough, namely, when $n\pi_i \geq 5$ for all *i*,

$$D = \sum_{i=1}^k rac{(\mathit{O}_i - e_i)^2}{e_i} \overset{\mathit{appr.}}{\sim} \chi_{k-1}^2.$$

$$\sum_{i=1}^{k} \frac{(O_i - n\pi_i)^2}{n\pi_i} = \sum_{i=1}^{k} \frac{(O_i - e_i)^2}{e_i}$$

follows a complicated, but exact, distribution, from which, one can show

$$\sum_{i=1}^k \frac{(O_i - e_i)^2}{e_i} \stackrel{d}{\to} \chi_{k-1}^2$$

L

Thm. When *n* is large enough, namely, when $n\pi_i \geq 5$ for all *i*,

$$D = \sum_{i=1}^k rac{(\mathit{O}_i - e_i)^2}{e_i} \overset{\mathit{appr.}}{\sim} \chi_{k-1}^2.$$

$$\sum_{i=1}^{k} \frac{(O_i - n\pi_i)^2}{n\pi_i} = \sum_{i=1}^{k} \frac{(O_i - e_i)^2}{e_i}$$

follows a complicated, but exact, distribution, from which, one can show

$$\sum_{i=1}^k \frac{(O_i - e_i)^2}{e_i} \stackrel{d}{\to} \chi_{k-1}^2$$

L

Thm. When *n* is large enough, namely, when $n\pi_i \geq 5$ for all *i*,

$$D = \sum_{i=1}^k rac{(\mathit{O}_i - e_i)^2}{e_i} \overset{\mathit{appr.}}{\sim} \chi_{k-1}^2.$$

Alternative: G-test

- the likelihood ration test for multinomial model

1. Under $H_0: \pi_i = p_i, i = 1, \dots, k$, the MLE of π_i are

$$\widetilde{\pi}_i = p_i = \frac{np_i}{n} = \frac{e_i}{n}, \quad \forall i.$$

2. When there are no constraints, for $i = 1, \dots, k-1$.

$$\frac{\partial}{\partial \pi_i} \ln L(\pi_1, \dots, \pi_{k-1} | o_1, \dots, o_k) = 0, \quad 1 \le i \le k-1$$

$$\frac{o_i}{\widehat{\pi}_i} = \frac{o_k}{1 - \widehat{\pi}_1 - \dots - \widehat{\pi}_{k-1}}, \quad 1 \le i \le k-1$$

$$\widehat{\pi}_i = \frac{o_i}{n}, \quad 1 \le i \le k$$

Alternative: G-test

- the likelihood ration test for multinomial model

1. Under $H_0: \pi_i = p_i, i = 1, \dots, k$, the MLE of π_i are

$$\widetilde{\pi}_i = p_i = \frac{np_i}{n} = \frac{e_i}{n}, \quad \forall i.$$

2. When there are no constraints, for $i = 1, \dots, k - 1$,

$$\frac{\partial}{\partial \pi_i} \ln L(\pi_1, \dots, \pi_{k-1} | o_1, \dots, o_k) = 0, \quad 1 \le i \le k-1$$

$$\frac{o_i}{\widehat{\pi}_i} = \frac{o_k}{1 - \widehat{\pi}_1 - \dots - \widehat{\pi}_{k-1}}, \quad 1 \le i \le k-1$$

$$\widehat{\pi}_i = \frac{o_i}{n}, \quad 1 \le i \le k$$

$$\Rightarrow$$

$$\lambda := \ln \left(\frac{L(\widetilde{\pi}_1, \cdots, \widetilde{\pi}_{k-1} | o_1, \cdots, o_k)}{L(\widehat{\pi}_1, \cdots, \widehat{\pi}_{k-1} | o_1, \cdots, o_k)} \right) = \log \left(\frac{\prod_{i=1}^k \widetilde{\pi}_i^{o_i}}{\prod_{i=1}^k \widehat{\pi}_i^{o_i}} \right)$$
$$= \sum_{i=1}^k o_i \ln \left(\frac{\widetilde{\pi}_i}{n} \right)$$

$$= \sum_{i=1}^{k} o_i \ln \left(\frac{\widetilde{\pi}_i}{\widehat{\pi}_i} \right)$$
$$= \sum_{i=1}^{k} o_i \ln \left(\frac{e_i}{o_i} \right)$$

Def.

$$G := -2\lambda = -2\sum_{i=1}^k o_i \ln \left(\frac{e_i}{o_i}\right) = 2\sum_{i=1}^k o_i \ln \left(\frac{o_i}{e_i}\right)$$

 $G \stackrel{approx.}{\sim} \chi_{k-1}^2$ for large n.

Critical region: $G \ge G_* = \chi^2_{1-\alpha,k-1}$

$$\Rightarrow$$

$$\lambda := \ln \left(\frac{L(\widetilde{\pi}_1, \cdots, \widetilde{\pi}_{k-1} | o_1, \cdots, o_k)}{L(\widehat{\pi}_1, \cdots, \widehat{\pi}_{k-1} | o_1, \cdots, o_k)} \right) = \log \left(\frac{\prod_{i=1}^k \widetilde{\pi}_i^{o_i}}{\prod_{i=1}^k \widehat{\pi}_i^{o_i}} \right)$$

$$= \sum_{i=1}^{k} o_i \ln \left(\frac{\widetilde{\pi}_i}{\widehat{\pi}_i} \right)$$
$$= \sum_{i=1}^{k} o_i \ln \left(\frac{e_i}{o_i} \right)$$

Def.

$$\mathcal{G} := -2\lambda = -2\sum_{i=1}^k o_i \ln \left(rac{oldsymbol{e}_i}{o_i}
ight) = 2\sum_{i=1}^k o_i \ln \left(rac{o_i}{oldsymbol{e}_i}
ight)$$

 $G \stackrel{approx.}{\sim} \chi_{k-1}^2$ for large n

Critical region: $G \ge G_* = \chi^2_{1-\alpha}|_{k-1}$

$$\Rightarrow$$

$$\begin{split} \lambda := \ln \left(\frac{L(\widetilde{\pi}_1, \cdots, \widetilde{\pi}_{k-1} | o_1, \cdots, o_k)}{L(\widehat{\pi}_1, \cdots, \widehat{\pi}_{k-1} | o_1, \cdots, o_k)} \right) = \log \left(\frac{\prod_{i=1}^k \widetilde{\pi}_i^{o_i}}{\prod_{i=1}^k \widehat{\pi}_i^{o_i}} \right) \\ = \sum_{i=1}^k o_i \ln \left(\frac{\widetilde{\pi}_i}{\widehat{\pi}_i} \right) \end{split}$$

$$\sum_{i=1}^{k} o_i \ln \left(\frac{e_i}{o_i} \right)$$

$$= \sum_{i=1}^{k} o_i \ln \left(\frac{e_i}{o_i} \right)$$

Def.

$$G := -2\lambda = -2\sum_{i=1}^k o_i \ln \left(\frac{e_i}{o_i} \right) = 2\sum_{i=1}^k o_i \ln \left(\frac{o_i}{e_i} \right)$$

 $G \stackrel{approx.}{\sim} \chi_{k-1}^2$ for large n

Critical region: $G \ge G_* = \chi^2_{1-\alpha,k-1}$

$$\Rightarrow$$

$$egin{aligned} \lambda := \ln \left(rac{L(\widetilde{\pi}_1, \cdots, \widetilde{\pi}_{k-1} | o_1, \cdots, o_k)}{L(\widehat{\pi}_1, \cdots, \widehat{\pi}_{k-1} | o_1, \cdots, o_k)}
ight) = \log \left(rac{\prod_{i=1}^k \widetilde{\pi}_i^{o_i}}{\prod_{i=1}^k \widehat{\pi}_i^{o_i}}
ight) \ &= \sum_{i=1}^k o_i \ln \left(rac{\widetilde{\pi}_i}{\widehat{\pi}_i}
ight) \ &= \sum_{i=1}^k o_i \ln \left(rac{e_i}{o_i}
ight) \end{aligned}$$

Def.

$$G := -2\lambda = -2\sum_{i=1}^k o_i \ln\left(\frac{e_i}{o_i}\right) = 2\sum_{i=1}^k o_i \ln\left(\frac{o_i}{e_i}\right)$$

 $G \stackrel{approx.}{\sim} \chi_{k-1}^2$ for large n.

Critical region: $G \ge G_* = \chi^2_{1-\alpha,k-1}$

$$\Rightarrow$$

$$\lambda := \ln \left(\frac{L(\widetilde{\pi}_1, \cdots, \widetilde{\pi}_{k-1} | o_1, \cdots, o_k)}{L(\widehat{\pi}_1, \cdots, \widehat{\pi}_{k-1} | o_1, \cdots, o_k)} \right) = \log \left(\frac{\prod_{i=1}^k \widetilde{\pi}_i^{o_i}}{\prod_{i=1}^k \widehat{\pi}_i^{o_i}} \right)$$

$$= \sum_{i=1}^{k} o_{i} \ln \left(\frac{\widetilde{\pi}_{i}}{\widehat{\pi}_{i}} \right)$$

$$= \sum_{i=1}^{k} o_{i} \ln \left(\frac{e_{i}}{o_{i}} \right)$$

Def.

$$G := -2\lambda = -2\sum_{i=1}^{k} o_i \ln \left(\frac{e_i}{o_i}\right) = 2\sum_{i=1}^{k} o_i \ln \left(\frac{o_i}{e_i}\right)$$

 $G \stackrel{approx.}{\sim} \chi_{k-1}^2$ for large n.

Critical region: $G \ge G_* = \chi^2_{1-\alpha,k-1}$.

By second order Taylor expanson around 1

$$G = -2\sum_{i=1}^{k} o_i \ln\left(\frac{e_i}{o_i}\right)$$

$$\approx -2\sum_{i=1}^{k} o_i \left[\left(\frac{e_i}{o_i} - 1\right) - \frac{1}{2}\left(\frac{e_i}{o_i} - 1\right)^2\right]$$

$$= -2\sum_{i=1}^{k} (e_i - o_i) + \sum_{i=1}^{k} o_i \left(\left(1 - \frac{o_i}{e_i}\right) + \frac{o_i}{e_i}\right) \left(\frac{e_i}{o_i} - 1\right)^2$$

$$= 0 + \sum_{i=1}^{n} \frac{o_i^2}{e_i} \left(1 - \frac{o_i}{e_i}\right)^3 + \sum_{i=1}^{k} \frac{(e_i - o_i)^2}{e_i}$$

$$\approx \sum_{i=1}^{k} \frac{(e_i - o_i)^2}{e_i}$$

$$\parallel$$

$$D$$

.. Pearson's Chi-square test is an approximation of G-test

By second order Taylor expanson around 1,

$$G = -2\sum_{i=1}^{k} o_i \ln\left(\frac{e_i}{o_i}\right)$$

$$\approx -2\sum_{i=1}^{k} o_i \left[\left(\frac{e_i}{o_i} - 1\right) - \frac{1}{2}\left(\frac{e_i}{o_i} - 1\right)^2\right]$$

$$= -2\sum_{i=1}^{k} (e_i - o_i) + \sum_{i=1}^{k} o_i \left(\left(1 - \frac{o_i}{e_i}\right) + \frac{o_i}{e_i}\right) \left(\frac{e_i}{o_i} - 1\right)^2$$

$$= 0 + \sum_{i=1}^{n} \frac{o_i^2}{e_i} \left(1 - \frac{o_i}{e_i}\right)^3 + \sum_{i=1}^{k} \frac{(e_i - o_i)^2}{e_i}$$

$$\approx \sum_{i=1}^{k} \frac{(e_i - o_i)^2}{e_i}$$

∴ Pearson's Chi-square test is an approximation of G-test

By second order Taylor expanson around 1,

$$G = -2\sum_{i=1}^{k} o_{i} \ln \left(\frac{e_{i}}{o_{i}}\right)$$

$$\approx -2\sum_{i=1}^{k} o_{i} \left[\left(\frac{e_{i}}{o_{i}} - 1\right) - \frac{1}{2}\left(\frac{e_{i}}{o_{i}} - 1\right)^{2}\right]$$

$$= -2\sum_{i=1}^{k} (e_{i} - o_{i}) + \sum_{i=1}^{k} o_{i} \left(\left(1 - \frac{o_{i}}{e_{i}}\right) + \frac{o_{i}}{e_{i}}\right) \left(\frac{e_{i}}{o_{i}} - 1\right)^{2}$$

$$= 0 + \sum_{i=1}^{n} \frac{o_{i}^{2}}{e_{i}} \left(1 - \frac{o_{i}}{e_{i}}\right)^{3} + \sum_{i=1}^{k} \frac{(e_{i} - o_{i})^{2}}{e_{i}}$$

$$\approx \sum_{i=1}^{k} \frac{(e_{i} - o_{i})^{2}}{e_{i}}$$

$$\parallel$$

$$D$$

∴ Pearson's Chi-square test is an approximation of G-test

By second order Taylor expanson around 1,

$$G = -2\sum_{i=1}^{k} o_{i} \ln \left(\frac{e_{i}}{o_{i}}\right)$$

$$\approx -2\sum_{i=1}^{k} o_{i} \left[\left(\frac{e_{i}}{o_{i}} - 1\right) - \frac{1}{2}\left(\frac{e_{i}}{o_{i}} - 1\right)^{2}\right]$$

$$= -2\sum_{i=1}^{k} (e_{i} - o_{i}) + \sum_{i=1}^{k} o_{i} \left(\left(1 - \frac{o_{i}}{e_{i}}\right) + \frac{o_{i}}{e_{i}}\right)\left(\frac{e_{i}}{o_{i}} - 1\right)^{2}$$

$$= 0 + \sum_{i=1}^{n} \frac{o_{i}^{2}}{e_{i}} \left(1 - \frac{o_{i}}{e_{i}}\right)^{3} + \sum_{i=1}^{k} \frac{(e_{i} - o_{i})^{2}}{e_{i}}$$

$$\approx \sum_{i=1}^{k} \frac{(e_{i} - o_{i})^{2}}{e_{i}}$$

$$\parallel$$

$$D$$

.: Pearson's Chi-square test is an approximation of G-test.

E.g. 1 Benford's law:

Initial digits

Use this law to check whether the bookkeepers have made up entries.

Assume that bookkeepers are not aware of Benford's law.

E.g. 1 Benford's law:

Table 10.3.1			
Digit, i	$\log_{10}(i+1) - \log_{10}(i)$		
1	0.301		
2	0.176		
3	0.125		
4	0.097		
5	0.079		
6	0.067		
7	0.058		
8	0.051		
9	0.046		

Initial digits

Digit	Observed, k_i
1	111
2	60
2	46
4	29
5	26
6	22
7	21
8	20
9	20
	355

Use this law to check whether the bookkeepers have made up entries.

Assume that bookkeepers are not aware of Benford's law.

Sol. The test should be

$$H_0: p_1=p_{10},\cdots,p_9=p_{90}$$
 $v.s.$ $H_1: p_i
eq p_{i0}$ for at least one $i=1,\cdots,9.$

Critical region: $\left(\chi^2_{.95,8},\infty\right)=(15.507,\infty).$

Sol. The test should be

$$extcolor{H}_0: extcolor{p}_1 = extcolor{p}_{10}, \cdots, extcolor{p}_9 = extcolor{p}_{90} \ extcolor{v.s.} \ extcolor{H}_1: extcolor{p}_i
eq extcolor{p}_{i0} \quad ext{for at least one } i = 1, \cdots, 9.$$

Critical region:
$$\left(\chi^2_{.95,8},\infty\right)=(15.507,\infty).$$

Compute the *D* and *G* scores:

Digit	Oi	p_i	ei	$(o_i-e_i)^2/e_i$	$2o_i \ln(e_i/o_i)$
1	111	0.301			
2	60	0.176			
3	46	0.125			
4	29	0.097			
5	26	0.079			
6	22	0.067			
7	21	0.058			
8	20	0.051			
9	20	0.046			
sum	355	1	355	d =	g =

Digit	Oi	pi	ei	$(o_i - e_i)^2/e_i$	$2o_i \ln(e_i/o_i)$
1	111	0.301	106.9	0.16	8.449
2	60	0.176	62.5	0.10	-4.860
3	46	0.125	44.4	0.06	3.309
4	29	0.097	34.4	0.86	-9.963
5	26	0.079	28.0	0.15	-3.937
6	22	0.067	23.8	0.13	-3.433
7	21	0.058	20.6	0.01	0.828
8	20	0.051	18.1	0.20	3.982
9	20	0.046	16.3	0.82	8.109
sum	355	1	355	$d = \underline{2.49}$	g = 2.48

Conclusion: Fail to reject.

```
1 > # FX 10 3 2
 2 > library (data.table)
 3 > mydat <- fread('http://math.emory.edu/~lchen41/teaching/2020 Spring/Case 10-3-2.data')</p>
   trying URL 'http://math.emory.edu/~lchen41/teaching/2020_Spring/Case_10-3-2.data'
   Content type 'unknown' length 153 bytes
   downloaded 153 bytes
9 > head(mvdat)
      Digit Oi
   1: 1 111 0.301
13 3: 3 46 0.125
14 4: 4 29 0.097
| 15 \rangle pi = mydat[.3]
16 > oi = mydat[,2]
| 17 \rangle = sum(oi)
18 > ei = n*pi
| | > di = (ei-oi)^2/ei
20 > qi = 2*qi*loq(qi/ei)
> print (paste("Using Pearson's test, D value is equal to ", round(sum(di),3)))
> print (paste("Using the G-test, G value is equal to ", round(sum(gi),3)))
24 [1] "Using the G-test, G value is equal to 2.484"
```

Codes available

E.g. 2 Test for randomness

Is the following sample of size 40 from $f_Y(y) = 6y(1-y)$, $y \in [0,1]$?

E.g. 2 Test for randomness

Is the following sample of size 40 from $f_Y(y) = 6y(1-y), y \in [0,1]$?

Table	10.3.4			
0.18	0.06	0.27	0.58	0.98
0.55	0.24	0.58	0.97	0.36
0.48	0.11	0.59	0.15	0.53
0.29	0.46	0.21	0.39	0.89
0.34	0.09	0.64	0.52	0.64
0.71	0.56	0.48	0.44	0.40
0.80	0.83	0.02	0.10	0.51
0.43	0.14	0.74	0.75	0.22

Sol. Test continuous pdf \rightarrow reduce to a set of classes:

$$d = \cdots = 1.84$$

Unitical region: $(\chi_{56,2},\infty) = (5.992$ Conclusion: Fail to reject.

Sol. Test continuous pdf \rightarrow reduce to a set of classes:

Table 10.3.5			
Class	Observed Frequency, k_i	P_{i_o}	$40p_{i_o}$
$0 \le y < 0.20$ $0.20 \le y < 0.40$ $0.40 \le y < 0.60$ $0.60 \le y < 0.80$ $0.80 \le y < 1.00$	8 8 14 5 5	0.104 0.248 0.296 0.248 0.104	4.16 9.92 11.84 9.92 4.16

$$d = \cdots = 1.84$$

Sol. Test continuous pdf \rightarrow reduce to a set of classes:

Table 10.3.5			
Class	Observed Frequency, k_i	P_{i_o}	$40 p_{i_o}$
$0 \le y < 0.20$ $0.20 \le y < 0.40$ $0.40 \le y < 0.60$ $0.60 \le y < 0.80$ $0.80 \le y < 1.00$	8 8 14 5 5	0.104 0.248 0.296 0.248 0.104	4.16 9.92 11.84 9.92 4.16

Table 10.3.6			
Class	Observed Frequency, k_i	P_{i_o}	$40p_{i_o}$
$0 \le y < 0.40$	16	0.352	14.08
$0.40 \le y < 0.60$	14	0.296	11.84
$0.60 \le y \le 1.00$	10	0.352	14.08

$$d = \cdots = 1.84$$

Sol. Test continuous pdf \rightarrow reduce to a set of classes:

Table 10.3.5			
Class	Observed Frequency, k_i	P_{i_o}	$40 p_{i_o}$
$0 \le y < 0.20$ $0.20 \le y < 0.40$ $0.40 \le y < 0.60$ $0.60 \le y < 0.80$ $0.80 \le y < 1.00$	8 8 14 5 5	0.104 0.248 0.296 0.248 0.104	4.16 9.92 11.84 9.92 4.16

Table 10.3.6			
Class	Observed Frequency, k_i	P_{i_o}	$40p_{i_o}$
$0 \le y < 0.40$	16	0.352	14.08
$0.40 \le y < 0.60$	14	0.296	11.84
$0.60 \le y \le 1.00$	10	0.352	14.08

$$d = \cdots = 1.84$$
.

Critical region: $(\chi^2_{.95,2}, \infty) = (5.992, \infty)$.

Conclusion: Fail to reject

Sol. Test continuous pdf \rightarrow reduce to a set of classes:

Table 10.3.5			
Class	Observed Frequency, k_i	P_{i_o}	$40 p_{i_o}$
$0 \le y < 0.20$ $0.20 \le y < 0.40$ $0.40 \le y < 0.60$ $0.60 \le y < 0.80$ $0.80 \le y < 1.00$	8 8 14 5 5	0.104 0.248 0.296 0.248 0.104	4.16 9.92 11.84 9.92 4.16

Table 10.3.6			
Class	Observed Frequency, k_i	P_{i_o}	$40p_{i_o}$
$0 \le y < 0.40$	16	0.352	14.08
$0.40 \le y < 0.60$	14	0.296	11.84
$0.60 \le y \le 1.00$	10	0.352	14.08

$$d = \cdots = 1.84$$
.

Critical region: $\left(\chi^2_{.95,2},\infty\right)=(5.992,\infty).$

Conclusion: Fail to reject.

```
1 > # Case Study 10.3.2
 2 > # Read data from the URL link
3 > library (data.table)
 4 > mydat <- fread('http://math.emory.edu/~lchen41/teaching/2020_Spring/EX_10-3-1.data')
   trying URL 'http://math.emory.edu/~lchen41/teaching/2020_Spring/EX_10-3-1.data
   Content type 'unknown' length 234 bytes
   downloaded 234 bytes
   >d(mydat)
      Col1 Col2 Col3 Col4 Col5
      1: 0.18 0.06 0.27 0.58 0.98
      2: 0.55 0.24 0.58 0.97 0.36
      3: 0.48 0.11 0.59 0.15 0.53
    4: 0.29 0.46 0.21 0.39 0.89
      5: 0.34 0.09 0.64 0.52 0.64
      6: 0.71 0.56 0.48 0.44 0.40
18 # Conditions for lower bounds
|19| > |b| = c(0.0.40.0.60)
20 > # Conditions for upper bounds
| > up = c(0.40, 0.60, 1.00) 
22 > # Store the results in d
> oi <- seq(1:length(lb))
> pi < seq(1:length(lb))
| > integrand <- function(y) \{6*y*(1-y)\} 
> for (i in c(1:length(lb))) {
27 + oi[i] <- table(mvdat>=lb[i] & mvdat<up[i])[2]
+ pi[i] <- integrate(integrand, lb[i], up[i])$value[1]
29 + print (paste("the", i, "th bin has", oi[i],
            'entries and pi is equal to", pi[i]))
31 + }
```

```
[1] "the 1 th bin has 16 entries and pi is equal to 0.352"
4 > pi <- unlist (pi)
5 > n <- sum(oi)
6 > ei <- n*pi
7 > di <- (ei-oi)^2/ei
|s| > \alpha i < -2*oi*log(oi/ei)
9 > rbind(oi, pi, ei, di, qi)
            [,1]
                      [,2]
                                [,3]
11 oi 16.0000000 14.0000000 10.000000
12 pi 0.3520000 0.2960000 0.352000
  ei 14.0800000 11.8400000 14.080000
14 di 0.2618182 0.3940541 1.182273
15 gi 4.0906679 4.6920636 -6.843405
| print (paste("Using Pearson's test, D value is equal to ",round(sum(di),3)))
> print (paste("Using the G-test, G value is equal to ", round(sum(gi),3)))
19 [1] "Using the G-test, G value is equal to 1.939"<Paste>
```

http://math.emory.edu/~lchen41/teaching/2020 Spring/EX 10-3-1.R

E.g. 3 Fisher's suspicion on Mendel's experiments on 1866:

$$d = \dots = 0.47$$

P-value =
$$\mathbb{P}(\chi_3^2 \le 0.47) = 0.0746$$
.

E.g. 3 Fisher's suspicion on Mendel's experiments on 1866:

Table 10.3.7			
Phenotype	Obs. Freq.	Mendel's Model	Exp. Freq.
(round, yellow) (round, green)	315 108	9/16 3/16	312.75 104.25
(angular, yellow)	101	3/16	104.25
(angular, green)	32	1/16	34.75

$$d = \dots = 0.47$$

P-value =
$$\mathbb{P}(\chi_3^2 \le 0.47) = 0.0746$$
.

```
| > # Case Study 10.3.3
| > x=seq(0,10,0.1)
| > plot (x,dchisq(x,3),type = "|")
| > abline (v=0.47,col = "gray60")
| > text (0.47,0,"0.47")
| > title ("Chi Square distribution + of freedom 3")
| > pchisq(0.47,3)
| 1] 0.07456892
```


E.g. 2' A second look at the random generator in E.g. 2.

Does it fit the model too well? Find the *P*-value.

```
| > # Example 10.3.1
| > x=seq(0,10,0.1)
| > plot (x, dchisq(x,2),type = "I")
| > abline (v=1.84,col = "gray60")
| > text (1.84,0, "1.84")
| > title ("Chi Square distribution
| + of freedom 2")
| > pchisq(1.84,2)
| 1] 0.601481
```

$$P$$
-value = $0.601 \implies No$.

E.g. 2' A second look at the random generator in E.g. 2.

Does it fit the model too well? Find the P-value.

```
| > # Example 10.3.1
| > x=seq(0,10,0.1)
| > plot(x,dchisq(x,2),type = "1")
| > abline(v=1.84,col = "gray60")
| > text (1.84,0, "1.84")
| > title ("Chi Square distribution
| + of freedom 2")
| > pchisq(1.84,2)
| 1] 0.601481
```


P-value = 0.601 \implies No.

Plan

- § 10.1 Introduction
- § 10.2 The Multinomial Distribution
- § 10.3 Goodness-of-Fit Tests: All Parameters Known
- § 10.4 Goodness-of-Fit Tests: Parameters Unknown
- § 10.5 Contingency Tables

Chapter 10. Goodness-of-fit Tests

- § 10.1 Introduction
- § 10.2 The Multinomial Distribution
- § 10.3 Goodness-of-Fit Tests: All Parameters Known
- § 10.4 Goodness-of-Fit Tests: Parameters Unknown
- § 10.5 Contingency Tables

<i>p_i</i> are known	p_i are unknown
$D = \sum_{i=1}^{t} \frac{(X_i - np_i)^2}{np_i}$	$D_1 = \sum_{i=1}^t rac{(X_i - n\hat{p}_i)^2}{n\hat{p}_i}$
χ^2 with f.d. $\mathit{t}-1$	χ^2 with f.d. $t-1-s$
$d = \sum_{i=1}^{t} rac{(k_i - np_{i0})^2}{np_{i0}}$	$d_1 = \sum_{i=1}^t rac{(k_i - n\hat{p}_{i0})^2}{n\hat{p}_{i0}}$
$np_{i0} \geq 5$	$\hat{np}_{i0} \geq 5$
$d>\chi^2_{1-lpha,t-1}$	$ extstyle d_1 > \chi^2_{1-lpha,t-1- extstyle s}$

† s is the number of unknown parameters.

 $\label{eq:df} \operatorname{\underline{df}} = \underline{\operatorname{number of classes}} - 1 - \operatorname{number of unknown parameters}.$

E.g. 1 Binomial data: 4096 students, each shots basketball 4 times. Let X_i be the number of hits for the ith student.

People believe that X_i should following binomial (4, p), that is, shotting basketball should be something like trying to get red chocolate beans from a jar of beans of two colors.

Find the MLE for p. Use the data to make a conclusion.

- Sol. 1) $H_0: X_i \sim \text{binomal}(4, p)$.
 - 2) Under H_0 , the MLE for p is $p_e = ... = 0.251$

E.g. 1 Binomial data: 4096 students, each shots basketball 4 times. Let X_i be the number of hits for the *i*th student.

Number of Hits, i	Obs. Freq., k_i
(0	1280
1	1717
$r_i's$ {2	915
3	167
4	17

Find the MLE for p. Use the data to make a conclusion.

Sol. 1) $H_0: X_i \sim \text{binomal}(4, p)$

E.g. 1 Binomial data: 4096 students, each shots basketball 4 times. Let X_i be the number of hits for the *i*th student.

Number of Hits, i	Obs. Freq., k_i
(0	1280
1	1717
$r_i's \{2$	915
3	167
4	17

Find the MLE for p. Use the data to make a conclusion.

Sol. 1) $H_0: X_i \sim \text{binomal}(4, p)$

E.g. 1 Binomial data: 4096 students, each shots basketball 4 times. Let X_i be the number of hits for the *i*th student.

Number of Hits, i	Obs. Freq., k_i
(0	1280
1	1717
$r_i's \{2$	915
3	167
4	17

Find the MLE for p. Use the data to make a conclusion.

Sol. 1) $H_0: X_i \sim \text{binomal}(4, p)$.

E.g. 1 Binomial data: 4096 students, each shots basketball 4 times. Let X_i be the number of hits for the *i*th student.

Number of Hits, i	Obs. Freq., k_i
(0	1280
1	1717
$r_i's$ 2	915
3	167
4	17

Find the MLE for p. Use the data to make a conclusion.

Sol. 1) $H_0: X_i \sim \text{binomal}(4, p)$.

$$\implies$$
 $d_1 = \cdots = 6.401.$

- 4) Critical region: $(\chi^2_{95,5-1-1}, +\infty) = (7.815, +\infty)$
- 5) Conclusion: Fail to reject
- 6) Alternatively, *P*-value = $\mathbb{P}(\chi_3^2 \ge 6.401) = 0.094$, ... discuss...

Table 10.4.1				
Number of Hits, i	Obs. Freq., k_i	Estimated Exp. Freq., $n \hat{p}_{i_o}$		
$r_i's$ $\begin{cases} 0\\1\\2\\3\\4 \end{cases}$	1280 1717 915 167	1289.1 1728.0 868.6 194.0 16.3		

$$\implies$$
 $d_1 = \cdots = 6.401.$

- 4) Critical region: $(\chi^2_{.95,5-1-1}, +\infty) = (7.815, +\infty)$
- 5) Conclusion: Fail to reject
- 6) Alternatively, *P*-value = $\mathbb{P}(\chi_3^2 \ge 6.401) = 0.094$, ... discuss...

Table 10.4.1				
Number of Hits, i	Obs. Freq., k_i	Estimated Exp. Freq., $n \hat{p}_{i_o}$		
$r_i's \begin{cases} 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{cases}$	1280 1717 915 167 17	1289.1 1728.0 868.6 194.0 16.3		

$$\implies$$
 $d_1 = \cdots = 6.401.$

- 4) Critical region: $(\chi^2_{.95,5-1-1}, +\infty) = (7.815, +\infty)$
- 5) Conclusion: Fail to reject.
- 6) Alternatively, *P*-value = $\mathbb{P}(\chi_3^2 \ge 6.401) = 0.094$, ... discuss...

Table 10.4.1		
Number of Hits, i	Obs. Freq., k_i	Estimated Exp. Freq., $n \hat{p}_{i_o}$
(0	1280	1289.1
$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	1717	1728.0
$r_i's$ 2	915	868.6
3	167	194.0
4	17	16.3

$$\implies$$
 $d_1 = \cdots = 6.401.$

- 4) Critical region: $(\chi^2_{.95,5-1-1}, +\infty) = (7.815, +\infty)$
- 5) Conclusion: Fail to reject.
- 6) Alternatively, *P*-value = $\mathbb{P}(\chi_3^2 \ge 6.401) = 0.094$, ... discuss...

E.g. 2 Does the number of death per day follow the Poisson distribution?

E.g. 2 Does the number of death per day follow the Poisson distribution?

Obs. Freq., k_i
162
267
271
185
111
61
27
8
3
1
0
1096

- 2) $H_0: X_i$ follow Poisson(λ).
- 3) The MLE for λ is: $\lambda_e = \cdots = 2.157$
- 4) Compute the expected frequencies:

- Sol. 1) Let X_i be the number of death in ith day, $1 \le i \le 1096$.
 - 2) $H_0: X_i$ follow Poisson(λ).
 - 3) The MLE for λ is: $\lambda_e = \cdots = 2.157$.
 - 4) Compute the expected frequencies:

- 2) $H_0: X_i$ follow Poisson(λ).
- 3) The MLE for λ is: $\lambda_e = \cdots = 2.157$.
- 4) Compute the expected frequencies:

- Sol. 1) Let X_i be the number of death in ith day, $1 \le i \le 1096$.
 - 2) $H_0: X_i$ follow Poisson(λ).
 - 3) The MLE for λ is: $\lambda_e = \cdots = 2.157$.
 - 4) Compute the expected frequencies:

$$\implies$$
 $d_1 = \cdots = 25.98.$

2) $H_0: X_i$ follow Poisson(λ).

3) The MLE for λ is: $\lambda_e = \cdots = 2.157$.

Table 10.4.2		
Number of Deaths, i	Obs. Freq., k_i	Est. Exp. Freq., $n \hat{p}_{i_o}$
0	162	126.8
1	267	273.5
2	271	294.9
3	185	212.1
4	111	114.3
5	61	49.3
6	27	17.8
7		5.5
8		1.4
9		0.3
10+		0.1
	1096	1096

$ \begin{matrix} 0 & 162 & 126.8 \\ 1 & 267 & 273.5 \\ 2 & 271 & 294.9 \\ r_1, r_2, \dots, r_8 & 3 & 185 & 212.1 \\ 4 & 111 & 114.3 \\ 5 & 61 & 49.3 \\ \end{matrix} $	Table 10.4.3					
$ \begin{vmatrix} 1 & 267 & 273.5 \\ 2 & 271 & 294.9 \\ 3 & 185 & 212.1 \\ 4 & 111 & 114.3 \\ 5 & 61 & 49.3 \\ \end{vmatrix} $	Number of Deaths, i Obs. Freq., k_i Est. Exp. Freq., $n\hat{p}_{i_0}$					
	114.3 49.3 17.8 7.3	267 271 185 111 61 27	r_1, r_2, \dots, r_8 $\begin{cases} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{cases}$			

$$\implies$$
 $d_1 = \cdots = 25.98.$

2) $H_0: X_i$ follow Poisson(λ).

3) The MLE for λ is: $\lambda_e = \cdots = 2.157$.

Table 10.4.2		
Number of Deaths, i	Obs. Freq., k_i	Est. Exp. Freq., $n \hat{p}_{i_o}$
0	162	126.8
1	267	273.5
2	271	294.9
3	185	212.1
4	111	114.3
5	61	49.3
6	27	17.8
7		5.5
8		1.4
9		0.3
10+		0.1
	1096	1096

Table 10.4.3					
Number of Deaths, i Obs. Freq., k_i Est. Exp. Freq., $n\hat{p}_{i_0}$					
r_1, r_2, \ldots, r_8	0 1 2 3 4 5 6 7+	162 267 271 185 111 61 27 12	126.8 273.5 294.9 212.1 114.3 49.3 17.8 7.3		
		1096	1096		

$$\implies$$
 $d_1 = \cdots = 25.98.$

- Sol. 1) Let X_i be the number of death in ith day, $1 \le i \le 1096$.
 - 2) $H_0: X_i$ follow Poisson(λ).
 - 3) The MLE for λ is: $\lambda_e = \cdots = 2.157$.
 - 4) Compute the expected frequencies:

Table 10.4.2		
Number of Deaths, i	Obs. Freq., k _i	Est. Exp. Freq., $n \hat{p}_{i_o}$
0	162	126.8
1	267	273.5
2	271	294.9
3	185	212.1
4	111	114.3
5	61	49.3
6	27	17.8
7		5.5
8		1.4
9		0.3
10+		0.1
	1096	1096

Number of Deaths, i Obs. Freq., k_i Est. Exp. Freq., $n\hat{p}_{i_o}$					
r_1, r_2, \dots, r_8 $\begin{cases} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 + \end{cases}$	162 267 271 185 111 61 27 12 1096	126.8 273.5 294.9 212.1 114.3 49.3 17.8 7.3 1096			

$$\implies$$
 $d_1 = \cdots = 25.98.$

5) *P*-value =
$$\mathbb{P}(\chi_{1.8-1-1}^2 \ge 25.98) = 0.00022$$
. Reject!

Plan

- § 10.1 Introduction
- § 10.2 The Multinomial Distribution
- § 10.3 Goodness-of-Fit Tests: All Parameters Known
- § 10.4 Goodness-of-Fit Tests: Parameters Unknown
- § 10.5 Contingency Tables

Chapter 10. Goodness-of-fit Tests

- § 10.1 Introduction
- § 10.2 The Multinomial Distribution
- § 10.3 Goodness-of-Fit Tests: All Parameters Known
- § 10.4 Goodness-of-Fit Tests: Parameters Unknown
- § 10.5 Contingency Tables

E.g. 1 Whether are the two ratings independent?

Table 10	.5.5				
			Ebert Ratings		
		Down	Sideways	Up	Total
Siskel Ratings	Down Sideways Up Total	$ \begin{array}{c} 24 \\ 8 \\ \underline{10} \\ 42 \end{array} $	$ \begin{array}{c} 8\\13\\\frac{9}{30} \end{array} $	$\frac{13}{11}$ $\frac{64}{88}$	$ \begin{array}{r} 45 \\ 32 \\ \hline 83 \\ \hline 160 \end{array} $

E.g. 2 Whether is the suicide rate independent of the mobility factor?

Table 10.5.7					
City	Suicides per $100,000, x_i$	Mobility Index, y_i	City	Suicides per $100,000, x_i$	Mobility Index, y_i
New York	19.3	54.3	Washington	22.5	37.1
Chicago	17.0	51.5	Minneapolis	23.8	56.3
Philadelphia	17.5	64.6	New Orleans	17.2	82.9
Detroit	16.5	42.5	Cincinnati	23.9	62.2
Los Angeles	23.8	20.3	Newark	21.4	51.9
Cleveland	20.1	52.2	Kansas City	24.5	49.4
St. Louis	24.8	62.4	Seattle	31.7	30.7
Baltimore	18.0	72.0	Indianapolis	21.0	66.1
Boston	14.8	59.4	Rochester	17.2	68.0
Pittsburgh	14.9	70.0	Jersey City	10.1	56.5
San Francisco	40.0	43.8	Louisville	16.6	78.7
Milwaukee	19.3	66.2	Portland	29.3	33.2
Buffalo	13.8	67.6			

E.g. 2 Whether is the suicide rate independent of the mobility factor?

Table 10.5.7					
City	Suicides per $100,000, x_i$	Mobility Index, y_i	City	Suicides per $100,000, x_i$	Mobility Index, y_i
New York	19.3	54.3	Washington	22.5	37.1
Chicago	17.0	51.5	Minneapolis	23.8	56.3
Philadelphia	17.5	64.6	New Orleans	17.2	82.9
Detroit	16.5	42.5	Cincinnati	23.9	62.2
Los Angeles	23.8	20.3	Newark	21.4	51.9
Cleveland	20.1	52.2	Kansas City	24.5	49.4
St. Louis	24.8	62.4	Seattle	31.7	30.7
Baltimore	18.0	72.0	Indianapolis	21.0	66.1
Boston	14.8	59.4	Rochester	17.2	68.0
Pittsburgh	14.9	70.0	Jersey City	10.1	56.5
San Francisco	40.0	43.8	Louisville	16.6	78.7
Milwaukee	19.3	66.2	Portland	29.3	33.2
Buffalo	13.8	67.6			

$$\bar{\mathbf{x}} = 20.8$$
 and $\bar{\mathbf{y}} = 56.0$

Table 10	0.5.8		
		Mobili	ty Index
		Low (<56.0)	High (≥56.0)
Suicide Rate	High (≥20.8) Low (<20.8)	7 3	4 11

Let
$$p_i = \mathbb{P}(A_i)$$
, $q_j = \mathbb{P}(B_j)$, $p_{ij} = \mathbb{P}(A_i \cap B_j)$

Let X_{ij} be the number of observations belonging to $A_i \cap B_j$.

a) Provided that $np_{ij} \geq 5$ for all i, j, the r.v

$$D_2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(X_{ij} - np_{ij})^2}{np_{ij}} \sim \text{Chi square of f.d. } rc - 1$$

b) To test $H_0: A_i$'s are independent of B_i 's, calculate the test statistic

$$d_2 = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(k_{ij} - n\hat{p}_i\hat{q}_j)^2}{n\hat{p}_i\hat{q}_j}$$

where \hat{p}_i and \hat{q}_i are MLE's for p_i and q_i , respectively

$$(\chi^2_{1-\alpha,(r-1)(c-1)},+\infty$$

Let
$$p_i = \mathbb{P}(A_i)$$
, $q_j = \mathbb{P}(B_j)$, $p_{ij} = \mathbb{P}(A_i \cap B_j)$.

Let X_{ij} be the number of observations belonging to $A_i \cap B_j$.

a) Provided that $np_{ij} \geq 5$ for all i, j, the r.v

$$D_2 = \sum_{i=1}^r \sum_{j=1}^c rac{(X_{ij} - np_{ij})^2}{np_{ij}} \sim ext{Chi square of f.d. } rc - 1$$

b) To test $H_0: A_i$'s are independent of B_i 's, calculate the test statistic

$$d_2 = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(k_{ij} - n\hat{p}_i\hat{q}_j)^2}{n\hat{p}_i\hat{q}_j}$$

where \hat{p}_i and \hat{q}_i are MLE's for p_i and q_i , respectively.

$$(\chi^2_{1-\alpha,(r-1)(c-1)},+\infty$$

Let
$$p_i = \mathbb{P}(A_i), q_j = \mathbb{P}(B_j), p_{ij} = \mathbb{P}(A_i \cap B_j).$$

Let X_{ij} be the number of observations belonging to $A_i \cap B_j$.

a) Provided that $np_{ij} \geq 5$ for all i, j, the r.v

$$D_2 = \sum_{i=1}^r \sum_{j=1}^c rac{(X_{ij} - np_{ij})^2}{np_{ij}} \sim ext{Chi square of f.d. } rc - 1$$

b) To test H_0 : A_i 's are independent of B_i 's, calculate the test statistic

$$d_2 = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(k_{ij} - n\hat{p}_i\hat{q}_j)^2}{n\hat{p}_i\hat{q}_j}$$

where \hat{p}_i and \hat{q}_i are MLE's for p_i and q_i , respectively

$$(\chi^2_{1-\alpha,(r-1)(c-1)},+\infty$$

Let
$$p_i = \mathbb{P}(A_i), q_j = \mathbb{P}(B_j), p_{ij} = \mathbb{P}(A_i \cap B_j).$$

Let X_{ij} be the number of observations belonging to $A_i \cap B_j$.

a) Provided that $np_{ij} \geq 5$ for all i, j, the r.v.

$$D_2 = \sum_{i=1}^r \sum_{j=1}^c rac{\left(X_{ij} - n p_{ij}
ight)^2}{n p_{ij}} \sim ext{Chi square of f.d. } rc-1$$

b) To test $H_0: A_i$'s are independent of B_i 's, calculate the test statistic

$$d_{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(k_{ij} - n\hat{\rho}_{i}\hat{q}_{j})^{2}}{n\hat{\rho}_{i}\hat{q}_{j}}$$

where \hat{p}_i and \hat{q}_i are MLE's for p_i and q_i , respectively.

$$(\chi^2_{1-\alpha,(r-1)(c-1)},+\infty]$$

Let
$$p_i = \mathbb{P}(A_i), q_j = \mathbb{P}(B_j), p_{ij} = \mathbb{P}(A_i \cap B_j).$$

Let X_{ij} be the number of observations belonging to $A_i \cap B_j$.

a) Provided that $np_{ij} \geq 5$ for all i, j, the r.v.

$$D_2 = \sum_{i=1}^r \sum_{j=1}^c rac{\left(X_{ij} - n p_{ij}
ight)^2}{n p_{ij}} \sim ext{Chi square of f.d. } rc-1$$

b) To test $H_0: A_i$'s are independent of B_i 's, calculate the test statistic

$$d_2 = \sum_{i=1}^{r} \sum_{j=1}^{c} rac{(k_{ij} - n\hat{p}_i\hat{q}_j)^2}{n\hat{p}_i\hat{q}_j}$$

where \hat{p}_i and \hat{q}_i are MLE's for p_i and q_i , respectively.

$$(\chi^2_{1-\alpha,(r-1)(c-1)},+\infty)$$

Let
$$p_i = \mathbb{P}(A_i), q_j = \mathbb{P}(B_j), p_{ij} = \mathbb{P}(A_i \cap B_j).$$

Let X_{ij} be the number of observations belonging to $A_i \cap B_j$.

a) Provided that $np_{ij} \geq 5$ for all i, j, the r.v.

$$D_2 = \sum_{i=1}^r \sum_{j=1}^c rac{\left(X_{ij} - n p_{ij}
ight)^2}{n p_{ij}} \sim ext{Chi square of f.d. } rc-1$$

b) To test $H_0: A_i$'s are independent of B_i 's, calculate the test statistic

$$d_2 = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(k_{ij} - n\hat{p}_i\hat{q}_j)^2}{n\hat{p}_i\hat{q}_j}$$

where \hat{p}_i and \hat{q}_i are MLE's for p_i and q_i , respectively.

$$(\chi^2_{1-\alpha,(r-1)(\mathfrak{c}-1)},+\infty)$$

E.g. 1 Sol: Compute the expected frequencies:

Table 10	0.5.6				
			Ebert Ratings		
		Down	Sideways	Up	Total
	Down	24 (11.8)	8 (8.4)	13 (24.8)	45
Siskel Ratings	Sideways	8 (8.4)	13 (6.0)	11 (17.6)	32
	Up	10 (21.8)	9 (15.6)	64 (45.6)	83
	Total	42	30	88	160

E.g. 1 Sol: Compute the expected frequencies:

Table 10	.5.6				
			Ebert Ratings		
		Down	Sideways	Up	Total
	Down	24	8 (8.4)	13 (24.8)	45
Siskel	Sideways	(11.8)	13	11	32
Ratings	Up	(8.4) 10 (21.8)	(6.0) 9 (15.6)	(17.6) 64 (45.6)	83
	Total	42	30	88	160

$$\implies$$
 $d_2 = \cdots = 45.37$

$$\left(\chi_{0.99,(3-1)\times(3-1)}^2,+\infty\right) = (13.277,+\infty)$$

Alternatively *P*-value = $\mathbb{P}(\chi_4^2 > 45.37) = 3.33 \times 10^{-9}$.

E.g. 1 Sol: Compute the expected frequencies:

Table 10	.5.6				
			Ebert Ratings		
		Down	Sideways	Up	Total
	Down	24 (11.8)	8 (8.4)	13 (24.8)	45
Siskel Ratings	Sideways	8 (8.4)	13 (6.0)	11 (17.6)	32
	Up	10 (21.8)	9 (15.6)	64 (45.6)	83
	Total	42	30	88	160

$$\implies$$
 $d_2 = \cdots = 45.37$

$$\left(\chi_{0.99,(3-1)\times(3-1)}^2,+\infty\right) = (13.277,+\infty)$$

Alternatively *P*-value = $\mathbb{P}(\chi_4^2 \ge 45.37) = 3.33 \times 10^{-9}$

E.g. 1 Sol: Compute the expected frequencies:

Table 10	.5.6				
			Ebert Ratings	;	
		Down	Sideways	Up	Total
	Down	24 (11.8)	8 (8.4)	13 (24.8)	45
Siskel Ratings	Sideways	8 (8.4)	13 (6.0)	11 (17.6)	32
	Up	10 (21.8)	9 (15.6)	64 (45.6)	83
	Total	42	30	88	160

$$\implies$$
 $d_2 = \cdots = 45.37$

$$\left(\chi_{0.99,(3-1)\times(3-1)}^2,+\infty\right) = (13.277,+\infty)$$

Alternatively *P*-value = $\mathbb{P}(\chi_4^2 \ge 45.37) = 3.33 \times 10^{-9}$.

E.g. 1 Sol: Compute the expected frequencies:

Table 10	.5.6				
			Ebert Ratings		
		Down	Sideways	Up	Total
	Down	24 (11.8)	8 (8.4)	13 (24.8)	45
Siskel Ratings	Sideways	8 (8.4)	13 (6.0)	11 (17.6)	32
	Up	10 (21.8)	9 (15.6)	64 (45.6)	83
	Total	42	30	88	160

$$\implies$$
 $d_2 = \cdots = 45.37$

$$\left(\chi_{0.99,(3-1)\times(3-1)}^2,+\infty\right) = (13.277,+\infty)$$

Alternatively *P*-value = $\mathbb{P}(\chi_4^2 \ge 45.37) = 3.33 \times 10^{-9}$.

E.g. 2 Sol: Compute the expected frequencies:

Table 10	.5.9		
		Mobili	ty Index
		Low (<56.0)	High (≥56.0)
Suicide	High (≥20.8)	4.4*	6.6
Rate	Low (<20.8)	5.6	8.4
* Ê(V) -	1.4 dose not quite est	iefy the "nê.ê. > 5"	restriction stated in

^{*} $\hat{E}(X_{11}) = 4.4$ does not quite satisfy the " $n\hat{p}_i\hat{q}_j \ge 5$ " restriction stated in Theorem 10.5.1, but 4.4 is close enough to 5 to maintain the integrity of the χ^2 approximation.

E.g. 2 Sol: Compute the expected frequencies:

Mobility Ir	ndev
	Idea
Low (<56.0) H	ligh (≥56.0)
Suicide High (≥20.8) 4.4* Rate Low (<20.8) 5.6	6.6 8.4

* $\hat{E}(X_{11})=4.4$ does not quite satisfy the " $n\hat{p}_i\hat{q}_j \geq 5$ " restriction stated in Theorem 10.5.1, but 4.4 is close enough to 5 to maintain the integrity of the χ^2 approximation.

$$\implies$$
 $d_2 = \cdots = 4.57$

Critical region is

$$\left(\chi_{0.95,(2-1)\times(2-1)}^2,+\infty\right) = (3.41,+\infty)$$

Alternatively *P*-value = $\mathbb{P}(\chi_1^2 \ge 4.57) = 0.033$

E.g. 2 Sol: Compute the expected frequencies:

Table 10	.5.9		
		Mobilit	y Index
		Low (<56.0)	High (≥56.0)
Suicide Rate	High (≥20.8) Low (<20.8)	4.4* 5.6	6.6 8.4

* $\hat{E}(X_{11})$ = 4.4 does not quite satisfy the " $n\hat{p}_i\hat{q}_j \ge 5$ " restriction stated in Theorem 10.5.1, but 4.4 is close enough to 5 to maintain the integrity of the χ^2 approximation.

$$\implies$$
 $d_2 = \cdots = 4.57$

Critical region is

$$\left(\chi_{0.95,(2-1)\times(2-1)}^2,+\infty\right) = (3.41,+\infty)$$

Alternatively *P*-value = $\mathbb{P}(\chi_1^2 \ge 4.57) = 0.033$

E.g. 2 Sol: Compute the expected frequencies:

Table 10	.5.9		
		Mobilit	ty Index
		Low (<56.0)	High (≥56.0)
Suicide Rate	High (≥20.8) Low (<20.8)	4.4* 5.6	6.6 8.4

* $\hat{E}(X_{11}) = 4.4$ does not quite satisfy the " $n\hat{p}_i\hat{q}_j \ge 5$ " restriction stated in Theorem 10.5.1, but 4.4 is close enough to 5 to maintain the integrity of the χ^2 approximation.

$$\implies$$
 $d_2 = \cdots = 4.57$

Critical region is

$$\left(\chi_{0.95,(2-1)\times(2-1)}^2,+\infty\right) = (3.41,+\infty)$$

Alternatively *P*-value = $\mathbb{P}(\chi_1^2 \ge 4.57) = 0.033$

E.g. 2 Sol: Compute the expected frequencies:

Table 10	.5.9		
		Mobilit	y Index
		Low (<56.0)	High (≥56.0)
Suicide Rate	High (≥20.8) Low (<20.8)	4.4* 5.6	6.6 8.4

* $\hat{E}(X_{11})=4.4$ does not quite satisfy the " $n\hat{p}_i\hat{q}_j \geq 5$ " restriction stated in Theorem 10.5.1, but 4.4 is close enough to 5 to maintain the integrity of the χ^2 approximation.

$$\implies$$
 $d_2 = \cdots = 4.57$

Critical region is

$$\left(\chi_{0.95,(2-1)\times(2-1)}^2,+\infty\right) = (3.41,+\infty)$$

Alternatively *P*-value = $\mathbb{P}(\chi_1^2 \ge 4.57) = 0.033$