High Accuracy Cancer Prediction Using Machine Learning Inspired Mass Spectrum Analysis

Peter Liu

2018.6

Top 3 Cancers in United States

Five Years' Survival Rates at Different Stages

- Survival rate decreases exponentially when cancer is diagnosed at later stage
- Early Detection is important to increase SURVIVAL RATE!

Cancer Statistic Source from: http://www.cancerresearchuk.org

Cancer Diagnosis

Problems:

- Some cancer does not have symptoms
- Not noticeable until late stage
- Routine check up specifically for cancer is not affordable

Early Detection of Cancer

Goal

SHOTGUN METHODS

Analyze routine check up samples, e.g. blood samples, and collect as much information as possible for cancer detection

'RED FLAG' SUSPECTS

Identify samples that have high probability of cancer and recommend for further testing

Who Cares?

Shotgun Method

- Mass Spectroscopy
- Collect mass information of all chemicals
- Low Sample Loading
- Milligram (1/1000 grams) samples
- High Sensitivity
- Detect trace amount of chemicals at part per billion(ppb) level
- High Throughput Screening
- Easily coupled with robotic sample preparation process and results obtained within minutes

Problems with Shotgun Method

 Difficult to compare unless you already know which peak is the determinant

Real-world Problem to ML Problem

Real-world Problem

Machine Learning Problem

- 1. Select Determinant Masses
- 2. Predict Cancer

- 1. Feature Engineering
- 2. Classification

Determinant Masses Selection vs. Important Features Selection

Cancer/No Cancer VS.

1/-1

	M/Z	200.17821	200.44238	200.70672	200.97123	201.23592	201.50078	201.76582	202.03103	202.29642	202.56198	 9982.7063	9984.5
10	0	1.720546	1.720546	1.720546	1.719901	1.717815	1.713023	1.692505	1.672132	1.636220	1.560843	 0.0	0.0
	1	1.524127	1.501587	1.463949	1.407535	1.325125	1.226132	1.120034	1.005362	0.893435	0.777613	 0.0	0.0
	2	1.637911	1.637911	1.631477	1.612273	1.581629	1.525683	1.435933	1.330684	1.193543	0.997459	 0.0	0.0
	3	1.656036	1.656036	1.656036	1.651223	1.634340	1.590969	1.525195	1.444791	1.340823	1.217818	 0.0	0.0
	4	1.793301	1.793301	1.793301	1.793301	1.791395	1.785510	1.767697	1.722631	1.655785	1.542241	 0.0	0.0

Data Source

- Sample mass spectra collected from National Cancer Institute (NCI)
- Two cancers
- Three groups
- Six subgroups

Data Wrangling

'Long' single MS data

Mass Spectra Data Matrix

Mass values

Samples

M/Z	200.17821	200.44238	200.70672	200.97123	201.23592	201.50078	201.76582	202.03103	202.29642	202.56198	 9982.7063	9984.5713	991
0	1.720546	1.720546	1.720546	1.719901	1.717815	1.713023	1.692505	1.672132	1.636220	1.560843	 0.0	0.0	0.0
1	1.524127	1.501587	1.463949	1.407535	1.325125	1.226132	1.120034	1.005362	0.893435	0.777613	 0.0	0.0	0.0
2	1.637911	1.637911	1.631477	1.612273	1.581629	1.525683	1.435933	1.330684	1.193543	0.997459	 0.0	0.0	0.0
3	1.656036	1.656036	1.656036	1.651223	1.634340	1.590969	1.525195	1.444791	1.340823	1.217818	 0.0	0.0	0.0
4	1.793301	1.793301	1.793301	1.793301	1.791395	1.785510	1.767697	1.722631	1.655785	1.542241	 0.0	0.0	0.0

Heatmap is more preferable than plot view

Plot view of data

1D Heatmap

Heatmap of robotic prepared ovarian datasets

• Difficult to tell the difference between cancer and control group

Heatmap of hand prepared ovarian datasets

• Difficult to tell the difference between cancer and control group

Heatmap of hand prepared prostate samples

Difficult to tell the difference between cancer and control group

Data Visualization in 2D

Figure. Comparison of cancer and non-cancer group in three datasets. **Purple plots** represent non-cancer group, while yellow plots represent cancer group. From left to right: robotic prepared ovarian samples, hand prepared ovarian samples, and prostate sample

Feature Selection

Important Features == Fingerprint Mass

Figure. Explained Variance vs. Number of Features rendered by **Random Forest.** Decision Tree is a natural way of feature selection.

Feature Selection

Fingerprint masses for robotic prepared ovarian samples

- The number of fingerprint masses between 200 and 1000 are 25
- One key molecule (molecular weight 472) to determine ovarian cancer is in our important mass list for ovarian prediction

Figure. Selected fingerprint masses for robotic prepared ovarian samples

Models for Cancer Prediction

Table 1. Comparison of different models on cancer prediction

		Models after tuning parameters								
Datasets	Measure	KNN	Random Forest	SVM	Ensemble by Voting					
Ovarian	Accuracy	0.99	1.00	1.00	0.99					
Robotic	AUC	0.99	1.00	1.00	0.99					
	F1-Score	0.99	1.00	1.00	0.99					
Ovarian	Accuracy	0.93	0.92	0.95	0.95					
Hand	AUC	0.93	0.91	0.94	0.96					
	F1-Score	0.94	0.93	0.96	0.96					
Prostate	Accuracy	0.95	0.98	0.98	0.98					
	AUC	0.95	0.97	0.97	0.98					
	F1-Score	0.96	0.98	0.98	0.98					

FP and FN

Which model is better in early determination of cancer?

We want lower rate of false negative (FN/fail to detect cancer)

Model 1

Predicted	-1	1	Total
Actual	(No Cancer)	(Cancer)	
-1 (No Cancer)	23	3 (FP)	26
1 (Cancer)	0 (FN)	34	34
Total	23	37	60

Model 2

Predicted Actual	-1 (No Cancer)	1 (Cancer)	Total		
-1 (No Cancer)	23	0 (FP)	26		
1 (Cancer)	3 (FN)	34	34		
Total	23	37	60		

SVM vs. Ensemble

SVM

Prostate Samples				Robotic prepared Ovarian Samples				Hand prepa	red (Ovari	an Samples
Confusion Predicted Actual	Matr -1	ix: 1	all	Confusion Predicted Actual	Matr -1	ix: 1	all	Confusion Predicted Actual	Matr -1	ix: 1	all
-1	27	0	27	-1	23	3	26	-1	16	1	17
1	0	49	49	1	0	34	34	1	0	23	23
all	27	49	76	all	23	37	60	all	16	24	40

Ensemble

Predicted Actual	-1	1	all	Predicted Actual	-1	1	all	Predicted Actual	-1	1	all
-1	27	0	27	-1	22	1	23	-1	16	0	16
_1	1	48	49	1		33	37	1	1	23	24
all	28	48	76	all	26	34	60	all	17	23	40

- SVM is our best model
- 0% of FN rate (fail to detect cancer) by SVM

Cancer Diagnosis 1.0

- Web App developed based on Dash
- Simply **upload spectrum file** and cancer diagnosis results will be shown

Upload file

Welcome to Cancer Diagnosis 1	
► About	
► Instructions	
Please upload mass spectrum file:	Upload mass spectrum csv/excel from your own compute
UPLOAD FILE	
Please select sample group. If unknow	select 'Unknown'
Unknown Samples	

Mass Spectrum Preview

 Mass spectrum will be shown using heatmap and plot, and you can choose the mass range

Classification of Unknown Sample

• It shows the visualization of new sample within training samples and predict the probability by four models. You can choose different classification criteria: all, sex or preparation

Cancer Prediction Results

Prediction of Cancer/No Cancer in Specific Group

 If you choose specific group (Robotic prepared ovarian group herein), it shows the visualization of new sample within training samples in this group, and predict the probability of cancer/no cancer by four models

Cancer Prediction Results

Fingerprint Masses in Specific Group

 It will also show the fingerprint masses within specific group (robotic prepared ovarian group herein), you can select the mass range to show interested fingerprint masses

Fingerprint Masses for Cancer Diagnosis

Conclusion

- SVM were selected as the best model to predict ovarian and prostate cancers with high accuracy (95-100%), and 0% false negative rate, making it ideal to 'red flag' the suspected cancer samples
- One of the fingerprint molecules determining ovarian cancer was identified, which is confirmed by literature report
- A cancer diagnosis app was developed to offer quick cancer prediction results as well as lists of fingerprint molecules for cancer diagnosis

Recommendations

- Patients should ask for mass spectrum test during routine check up for cancer screening
- Doctors should recommend patients to do mass spectrum test during routine check up
- Insurance company should cover the mass spectrum test fee as preventative test to encourage people do routine cancer screening

Goal of Early Cancer Detection

V SHOTGUN METHODS

Analyze routine check up samples, e.g. blood samples, and collect as much information as possible for cancer detection

√ 'RED FLAG' SUSPECTS

SVM were selected as the best model to predict ovarian and prostate cancers with high accuracy (95-100%), and 0% false negative rate

- ? Increase the number of training/testing samples
- ? Add more cancers
- ? To be added...