# blotlt2: Optimal Alignment

of Biological Replicate Data by Latent Variable Models

Daniel Kaschek, Physikalisches Institut Freiburg

Abteilungsseminar, 9.5.2017

Albert-Ludwigs-Universität Freiburg

Introduction

# What is dynamics?

# Definition (Dynamics)

Let  $x:t\mapsto x(t)$  and  $y:t\mapsto y(t)$  be two curves.

Then x and y share the same dynamics if there exists  $s \in \mathbb{R}$  such that

$$y(t) = sx(t)$$

#### Estimation of the dynamics:

- ightharpoonup time points  $t_i$
- replicates j
- ightharpoonup data  $S_{ij}$

$$RSS = \sum_{ij} \left( S_{ij} - \frac{y_i}{s_j} \right)^2$$

- $\rightarrow$  dynamics  $y_i$  (pars of interest)
- $\rightarrow$  scales  $s_i$  (latent pars)



Latent Variable Modeling

## The objective function

$$RSS = \sum_{ij} \left( S_{ij} - \frac{y_i}{s_j} \right)^2$$

#### Scale invariance:

- $(\hat{y}, \hat{s})$  minimizes RSS
- transformation  $(\hat{y}', \hat{s}') = (\alpha \hat{y}, \alpha \hat{s})$
- $\Rightarrow RSS = RSS'$

### Fold change scale:

- choose  $\alpha = 1/\hat{y}_1$
- $ightarrow \left(rac{\hat{y}_1}{\hat{y}_1},\ldots,rac{\hat{y}_n}{\hat{y}_1}
  ight)$  is the dynamics estimate

#### Example: simulated data





oduction Latent Variable Modeling Applications Conclusion

### Experimental view





### Matrix representation:

- Rows correspond to conditions
- ► Columns correspond to measurements
- ► Block-diagonal form obtained by pertumation algorithm
- → Define common scale for list of conditions

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

roduction Latent Variable Modeling Applications Conclusion

### Key assumptions for blotlt2



- 1. Biological conditions are different  $\rightarrow$  fixed effects parameters
  - ► Target & Timepoint
  - ► Treatment
  - Stimulation
- 2. Measurement conditions are different  $\rightarrow$  latent effects parameters
  - Gel-to-gel differences
  - Loading or signal amplification
- 3. Biological and measurement noise  $\rightarrow$  error model parameters

# Model equations

### Alignment model

$$S_{ij} = f(y_i, s_j) + \varepsilon_{ij} = \frac{y_i}{s_j} + \varepsilon_{ij}$$

- $\blacktriangleright$  Model response  $S_{ij}\sim$  fixed effects  $y_i$  and latent effects  $s_j$
- lacktriangle Noise  $arepsilon_{ij} \sim N(0,\sigma_{ij}^2)$  and  $\sigma_{ij}$  governed by error model

#### Error model

$$\sigma_{ij} = h(y_i, s_j, \theta_k) = \frac{\sigma_{\text{rel}} \cdot y_i + \sigma_{\text{abs}}}{s_j}$$

- lacktriangle Error model  $\sim$  fixed/latent effects and error model parameters
- $ightharpoonup i \sim$  (target, time-point, treatment, stimulus, etc.)
- $ightharpoonup j \sim$  (gel, slide, sample, measurement)
- $k \sim$  (global or gel, slide, sample)

### Parameter estimation

### Log-likelihood function

$$\begin{split} -2\log L\big(\{y_i\},\{s_j\},\{\theta_k\}\big) &= \sum_{ij} \left(\frac{f(y_i,s_j)-S_{ij}}{h(y_i,s_j,\theta_k)}\right)^2 + \quad \text{(least squares)} \\ &+ \sum_{ij} \log h(y_i,s_j,\{\theta_k\})^2 + \quad \text{(variance parameters)} \\ &+ \left(\frac{1-\sum_i y_i}{10^{-3}}\right)^2 \quad \quad \text{(normalization constraint)} \end{split}$$

- lacktriangle Trust region optimization for parameters  $y_i,\, s_j,\, heta_k o$  value, gradient and  $J^{
  m T}J$
- ightharpoonup Symbolic derivatives computed expressions for f and h
- **Independent estimation** for each unconnected target  $\rightarrow$  can be parallelized

### Uncertainty estimation and error propagation

### Computation of uncertainties:

- ► **Generalized** inverse of the hessian (FIM)

  ↓ remove impact of non-identifiable parameters
- $\blacktriangleright$  Bessel factor  $\gamma = \sqrt{\frac{\#\mathrm{data}}{\#\mathrm{data} \#\mathrm{pars}}}$

 $\downarrow$  adjust parameter uncertainty:  $\sigma_{y_i}^{(\gamma)} = \gamma \sigma_{y_i}$ ,  $\sigma_{s_j}^{(\gamma)} = \gamma \sigma_{s_j}$ 

 $\label{eq:definition} \ \, \text{b adjust error model prediction:} \ \, \sigma_{ij}^{(\gamma)} = \gamma h(y_i,s_j,\theta_k) \neq h(y_i^{(\gamma)},s_j^{(\gamma)},\theta_k^{(\gamma)})$ 

### Outputs generated:

|                | data               | $\sigma(data)$                                                            | prediction    | $\sigma(prediction)$            |
|----------------|--------------------|---------------------------------------------------------------------------|---------------|---------------------------------|
| original scale | $S_{ij}$           | $\sigma_{ij}^{(\gamma)}$ (*)                                              | $f(y_i, s_j)$ | $\sigma_{ij}^{(\gamma)}$        |
| common scale   | $f_j^{-1}(S_{ij})$ | $\left  \left  (f_j^{-1})'(S_{ij}) \right  \sigma_{ij}^{(\gamma)} \ (**)$ | $y_i$         | $\sigma_{y_i}^{(\gamma)}$ (***) |

- (\*) Estimated measurement uncertainty  $\hat{=}$  standard deviation
- (\*\*) Propagated measurement uncertainty \(\hat{\pi}\) propagated standard deviation
- (\*\*\*) Uncertainty of the fixed effects parameters  $\hat{=}$  standard error of the mean

Applications

### Activation of the $I \kappa B$ kinase (IKK)

```
out0 <- alignME(
  data = data,
  model = "yi/sj",
  errmodel = "sigmaR*yi/sj",
  fixed = yi*stimulus+compound+dose,
  latent = sj*experiment,
  error = sigmaR*1,
  log = TRUE
)
plot1(out0)</pre>
```

- Show prediction of the alignment model on original scale
- Error model prediction shown as ribbon around prediction
   → estimate for data uncertainty



### Activation of the $I\kappa B$ kinase (IKK)

```
out0 <- alignME(
  data = data,
  model = "yi/sj",
  errmodel = "sigmaR*yi/sj",
  fixed = yi*stimulus+compound+dose,
  latent = sj*experiment,
  error = sigmaR*1,
  log = TRUE
)
plot2(out0)</pre>
```

- Scaled datapoints plotted on the same scale
- Estimated data uncertainty translated to common scale (error bars)
- $y_i \pm \sigma_{y_i}$ , result from parameter estimation, in gray with ribbon



### Activation of the $I\kappa B$ kinase (IKK)

```
out0 <- alignME(
  data = data,
  model = "yi/sj",
  errmodel = "sigmaR*yi/sj",
  fixed = yi~stimulus+compound+dose,
  latent = sj~experiment,
  error = sigmaR~1,
  log = TRUE
)</pre>
```

#### plot3(out0)

- $y_i \pm \sigma_{y_i}$ , result from parameter estimation
- Comparison of different fixed effects in one plot



### Activation of the $I\kappa B$ kinase (IKK)

```
out0 <- alignME(
  data = data,
  model = "yi/sj",
  errmodel = "sigmaR*yi/sj",
  fixed = yi~stimulus+compound+dose,
  latent = sj~experiment,
  error = sigmaR~1,
  log = TRUE
)</pre>
```

### plot3(out0)

- $y_i \pm \sigma_{y_i}$ , result from parameter estimation
- Comparison of different fixed effects in one plot (log-scale)



# Explicitly deal with log-data

```
logdata <- data
logdata$value <- log(logdata$value)

out0.log <- alignME(
   data = logdata,
   model = "yi - sj",
   errmodel = "sqrt(sigmaR^2)",
   fixed = yi~stimulus+compound+dose,
   latent = sj~experiment,
   error = sigmaR^1,
   log = FALSE
)</pre>
```

- ▶ Use log-data
- Scaling model turns into offset model
- Negative parameter values allowed



# Saturating alignment model

### Background:

- Western: enzyme-linked AB
- ▶ bound  $E \propto$  prot. conc.
- $\qquad \qquad \text{(invisible)} \ S \stackrel{E}{\longrightarrow} P \ \text{(visible)}$

#### Alignment model:

$$x_{ij} = \bar{x}_j \left( 1 - e^{-\frac{\alpha_j y_i}{\bar{x}_j} T_j} \right)$$

- $ar{x}_{i} \propto ext{substrate amount}$
- $\alpha_i$  aplification
- $T_i$  development time

#### Simulation:

|      | $\bar{x}$ | $\alpha$ | T  |
|------|-----------|----------|----|
| rep1 | 10        | 1        | 1  |
| rep2 | 5         | 1        | 10 |
| rep3 | 5         | 1        | 40 |







### Hypothesis testing

#### Likelihood-ratio testing:

- Formulate overarching model (H1)
- Formulate specialized model (H0)
- Test log-likelihood difference against χ<sup>2</sup> distribution

#### Example:

IL-1β stimulation

```
$11r
[1] 5.865884
$statistic
[1] "chisquare with 6 degrees of freedom."
$p.value
[1] 0.4383805
```

```
data <- subset(data, name == "pIKK" &
                     stimulus == "IL-1b")
out_H1 <- alignME(
  data = data,
  model = "yi/sj",
  errmodel = "sigmaR*yi/sj",
  fixed = vi~stimulus+compound+dose,
  latent = sj~experiment,
  error = sigmaR~1,
  log = TRUE
out_HO <- alignME(
  data = data.
  model = "vi/sj",
  errmodel = "sigmaR*yi/sj",
  fixed = vi~stimulus.
  latent = sj~experiment,
  error = sigmaR~1,
  log = TRUE
llrtest(out_H0, out_H1)
```

roduction Latent Variable Modeling Applications Conclusion

### Outlier testing

### $H_0$ Usual alignment model

 $H_1$  Treat tested data point as additional parameters o zero resiual



| Deviance $\left(-2\log L(H_0) + 2\log L(H_1)\right)$ | 72.60                | 7.64                | 4.53                |
|------------------------------------------------------|----------------------|---------------------|---------------------|
| $p	ext{-}value$                                      | $1.6 \cdot 10^{-17}$ | $5.7 \cdot 10^{-3}$ | $3.3 \cdot 10^{-2}$ |

ightarrow Multiple-testing problem: significance threshold needs to be increased

Conclusion

roduction Latent Variable Modeling Applications **Conclusion** 

### Conclusion

blotIt2 provides ...

- ▶ flexible alignment models linking dynamics and observed signal
- flexible error models to cover different error sources
- ▶ diagnostic plots to inspect qualitiy of the alignment result
- ▶ likelihood-ratio testing for hypothesis and outlier tests