

Sky2 接收机命令操作手册

文件标题	Sky2 接收机	L命令操作手册
		文件修订记录
版本	日期	更改内容(条款)
A/0	2020-9-1	首发

目录

目求	1
1. 中海达语句数据结构	1
2. 中海达语句格式	1
3. GPS 枚举数据含义	
4. 主机功能说明	4
4.1 获取设备版本信息	4
4.2 设置设备使用网络 RTK 作业	4
4.3 设置设备使用网络连接千寻知寸服务(SDK)	5
4.4 设置设备使用内置电台作业	5
4.5 设置主机串口波特率	5
4.6 输出中海达自定义语句 gpsdata	5
4.7 获取主机 4G 模块 IMEI 码	5
4.8 配置 CAN 口,默认输出 5Hz gpsdata 语句	5
4.9 主机固件升级	5
5. 常用配置命令例程	6
5.1 输出自定义语句 gpsdata	6
5.2 输出常用的 NEMA0183 语句	6
6. 附录:中海达自定义语句校验 demo	6
7. 附录: 常用 NMEA 语句格式说明	9
7.1 定位语句	9
7.2 定向语句	10

设备串口支持 NMEA-0183 语句输出和中海达自定义语句输出,CAN 口仅支持中海达自定义语句输出

注意: 发送指令时需加上回车换行。

1. 中海达语句数据结构

中海达自定义语句以十六进制格式输出,语句包括数据头,格式版本,数据长度,数据域,校验值五个部分,结构如表格 1-1 所示。

表 1-1 中海达自定义语句数据格式

数据头	格式版本	数据长度	数据域	校验值
0xAA 33	0x00 02	0xXX XX	0x0A	0xXX

其中,校验值为整帧数据的异或和。中海达自定义语句校验 demo 见**附录**。

2. 中海达语句格式

通过串口向设备的 com1 发送指令: "zhd log com1 gpsdata ontime 0.2\r\n",接收机 com1 输出 5HZ 的 GPS 数据;

通过串口向机载 GNSS 接收机的 com1 发送指令: "zhd unlog com1 gpsdata\r\n",接收机 com1 停止 GPS 数据输出。

中海达语句格式如表格 2-1 所示。

表格 2-1 中海达语句格式

序号	数据分类	数据描述	格式	字节长度	偏移字节	实例
0	Head	数据头标志	Hex	2	0	0xAA 33
1	Version	格式版本	unsigned short int	2	2	0x02 00 版本从 1 开始(当前版 本为 2)
2	Length	数据包总长 度(0~65535)	unsigned short int	2	4	0x88 00
3	Freq	数据输出频率	unsigned short int	2	6	0x00 05
4	Time_utc	UTC 时间	float	4	8	0x66 0D A5 47
5	Year_utc	UTC 年份	unsigned short int	2	12	0xE1 07
6	Month_utc	UTC 月份	unsigned short int	2	14	0x0A 00
7	Day_utc	итс ∃	unsigned short int	2	16	0x18 00
8	Hour_utc	UTC 时	unsigned short int	2	18	0x08 00

9	Min_utc	UTC 分	unsigned short int	2	20	0x2D 00
10	Sec_utc	UTC 秒 (十毫秒)	unsigned short int	2	22	0xA8 02 例: 1220 代表 12200ms
11	Lat	纬度(度)	double	8	24	0x3E 34 B3 5B D2 FB 36 40
12	Lon	经度(度)	double	8	32	0x9E 1C EB AF 87 57 5C 40
13	Alt	海拔高(m)	double	8	40	0xCA C3 42 AD 69 06 4C 40
14	Eph	水 平 误 差 (m)	float	4	48	0x10 98 0D 40
15	Ерv	垂 直 误 差 (m)	float	4	52	0x15 1D D1 3F
16	Vel_earth	GPS 地 速 m/s	float	4	56	0x20 64 28 3C
17	Angle_TrackTrue	地速方向	float	4	60	0x35 FE 3B 43
18	Angle_heading	偏航角度值 (0°~359.999°)	float	4	64	0x00 00 00 00
19	Angle_pitch	俯仰角度值 (±90°)	float	4	68	0x00 00 00 00
20	Vel_n	GPS 北向速 度 m/s	double	8	72	0x84 FF 0E 8B 1C D6 84 BF
21	Vel_e	GPS 东向速 度 m/s	double	8	80	0x98 D5 F3 4E CC B8 57 BF
22	Vel_u	GPS 天向速度,向上为正m/s	double	8	88	0x85 AD 19 37 19 B2 90 3F
23	Satellites_used	使用卫星数	unsigned short int	2	96	0x12 00
24	Satellites_track	可见卫星数	unsigned short int	2	98	0x14 00
25	Vel_neu_valid	北东天速度 是否有效(枚 举变量,详情 见下表)	float (enum)	4	100	0x00 00 00 41
26	Fix_type	GPS 状态(枚 举变量,详情 见下表)	unsigned short int	2	104	0x01 00
27	Head_state	偏航角状态 (枚举变量, 详情见下表)	float (enum)	4	106	0x00 00 00 41
28	Head_deviation	偏航角标准 差	float	4	110	0x00 00 00 00
29	INS_state	是否启用惯 导	unsigned short int	2	114	0x00: 未使用惯导 0x01: 使用惯导
30	GNSS_Alt_delta	大地水准面 和所选椭球 面坐标系之 间的高度差 值(m)	double	8	116	0x00 00 00 00 22 3D 14 CO(此项仅第二版以上 协议支持)
31	Ellipsoidal _H	椭球高,测量 点与椭球面	double	8	124	0x CA C3 42 6D C5 7E 49 40(此项第二版以上协

		的正交距离 (m)				议支持)
32	Diff_age	差分龄期	unsigned short int	2	132	0x02 00
33	Base_power	基站电量	unsigned short int	2	134	OxFF OxFF
34	Checksum	异或校验码	Hex	2	136	0x2F 00

3. GPS 枚举数据含义

中海达自定义语句格式中 Vel_neu_valid 和 Head_state 值,分别代表北东天速度是否有效和偏航角位置类型(postype)。Head_state=50 为定向固定解有效工作状态。具体的枚举变量如表 3-1 所示: 表 3-1 vel_ned_valid 和 head_state 值所对应枚举变量含义

Type (binary)	Type (ASCII)	Description
0	NONE	No solution
1	FIXEDPOS	Position has been fixed by the FIX POSITION command
2	FIXEDHEIGHT	Position has been fixed by the FIX HEIGHT/AUTO command
8	DOPPLER_VELOCITY	Velocity computed using instantaneous Doppler
16	SINGLE	Single point position
17	PSRDIFF	Pseudorange differential solution
18	WAAS	Solution calculated using corrections from an WAAS
19	PROPAGATED	Propagated by a Kalman filter without new observations
20	OMNISTAR	OmniSTAR VBS position
32	L1_FLOAT	Floating L1 ambiguity solution
33	IONOFREE_FLOAT	Floating ionospheric-free ambiguity solution
34	NARROW_FLOAT	Floating narrow-lane ambiguity solution
48	L1_INT	Integer L1 ambiguity solution
50	NARROW_INT	Integer narrow-lane ambiguity solution(固定解有效工作状态)
64	OMNISTAR_HP	OmniSTAR HP position
65	OMNISTAR_XP	OmniSTAR XP or G2 position
68	PPP_CONVERGING	Converging PPP solution
69	PPP	Converged PPP solution
99	INS_Angle_state	INS_Angle_state(惯导航向解状态)

Fix_type 值,代表 RTK 定位解状态,Fix_type=4 为定位固定解有效工作状态。具体枚举变量如表格 3-2 所示。

表 3-2 Fix_type 值所对应枚举变量含义

Indicator	Field description
0	Fix not available or invalid
1	Single point
	Pseudorange differential
2	Unconverged OmniSTAR
	HP/XP/G2/VBS converging PPP
4	RTK fixed ambiguity solution (RT2)(固定解有效工作状态)
	RTK floating ambiguity solution (RT20)
5	Converged OmniSTAR HP/XP/G2
	Converged PPP
6	Dead reckoning mode
7	Manual input mode (fixed position)
8	Simulator mode
9	WAAS (SBAS)
99	INS fixed ambiguity solution(惯导定位解状态)

4. 主机功能说明

4.1 获取设备版本信息

请求命令:

zhd get version

返回版本信息:

- < 仪器型号 "机身号" "固件版本" "固件日期(年月日)" "固件日期(时分秒)" "过期时间"
- < U62RPP "13350162" "U62RPP-134-F.113.htb" FORMAL "2020-12-17" "20:12:17" Expired Date: "2099-01-01"

4.2 设置设备使用网络 RTK 作业

下划线部分需根据实际 CORS 账号设置

zhd set mode CORS ip 60.205.8.49 port 8002 rtcm RTCM32 GGB user 10000001 password zhdgps

4.3 设置设备使用网络连接千寻知寸服务(SDK)

依次发送以下命令,下划线部分需根据实际千寻 SDK 账号设置 zhd set qx account <u>A48s15kj1m5 89ba1a34074ebf18daa7c8e145a7b</u> //设置千寻 AK、AS 参数 zhd get qx account //获取主机保存的千寻 AK、AS 参数 zhd set mode qianxun //设置千寻模式

4.4 设置设备使用内置电台作业

发送以下命令,下划线部分需根据实际基站 ID 进行设置 zhd radio radio_id $\underline{10016101}$ air_baudrate 172800 //设置设备获取电台 id 为 10016101 的基站差分数据

注:获取当前电台 ID 可发送以下命令: zhd get radio

4.5 设置主机串口波特率

发送以下命令,下划线部分需根据实际情况进行设置,可支持的波特率有: 2400、4800、9600、19200、38400、57600、115200、230400、460800。

zhd com com1 115200 //设置主机串口的波特率为 115200

4.6 输出中海达自定义语句 gpsdata

发送以下命令

zhd log com1 gpsdata ontime 0.2 //请求输出 5hz 的自定义语句

4.7 获取主机 4G 模块 IMEI 码

请求命令:

zhd get imei

4.8 配置 CAN 口,默认输出 5Hz gpsdata 语句

请求命令:

zhd can id=6 freq=5 bitrate=1000000

4.9 主机固件升级

- (1) 设备上电,使用主机配的 usb 线缆连接电脑;
- (2) 电脑弹出 update 盘符,将 xxx. htb 格式的固件拷贝到该盘符下;
- (3) 断电重启设备,即可完成升级。

5. 常用配置命令例程

5.1 输出自定义语句 gpsdata

依次发送以下命令
unlogall com1 //清空 com1 所有数据
zhd log com1 gpsdata ontime 0.2 //请求输出 5hz 的自定义语句
saveconfig //保存配置

5.2 输出常用的 NEMA0183 语句

依次发送以下命令
unlogall com1 //清空 com1 所有数据
log com1 gpggalong ontime 0.2
log com1 gpvtg ontime 0.2
log com1 heading3a ontime 0.2
log com1 gpzda ontime 1
log com1 gpgst ontime 1
saveconfig //保存配置

6. 附录:中海达自定义语句校验 demo

```
/*标准输入输出头文件*/
#include <stdio.h>
                        /*字符串处理相关头文件*/
#include <string.h>
typedef struct {
   unsigned char
                   head[2];
                                       //2 bytes
                                                   deviation 0
   unsigned short int
                       Version;
                                       //2 bytes
                                                   deviation 2
   unsigned short int
                       Length;
                                       //2 bytes
                                                   deviation 4
   unsigned short int
                                       //2 bytes
                                                   deviation 6
                       freq;
   float Time utc;
                                       //4 bytes
                                                   deviation 8
   unsigned short int Year_utc;
                                       //2 bytes
                                                   deviation 12
   unsigned short int Month_utc;
                                           //2 bytes
                                                       deviation 14
```


{

```
unsigned short int Day_utc;
                                          //2 bytes
                                                       deviation 16
   unsigned short int Hour_utc;
                                          //2 bytes
                                                       deviation 18
   unsigned short int Min utc;
                                          //2 bytes
                                                       deviation 20
   unsigned short int Sec utc;
                                          //2 bytes
                                                       deviation 22
   double Latitude;
                                          //8 bytes
                                                       deviation 24
   double Longitude;
                                          //8 bytes
                                                       deviation 32
   double Altitude;
                                          //8 bytes
                                                       deviation 40
   float Eph;
                                          //4 bytes
                                                       deviation 48
   float Epv;
                                          //4 bytes
                                                       deviation 52
   float Vel_earth;
                                          //4 bytes
                                                       deviation 56
   float Angle TrackTrue;
                                          //4 bytes
                                                       deviation 60
   float Angle Heading;
                                          //4 bytes
                                                       deviation 64
   float Angle Pitch;
                                          //4 bytes
                                                       deviation 68
   double Vel n;
                                          //8 bytes
                                                       deviation 72
   double Vel_e;
                                          //8 bytes
                                                       deviation 80
   double Vel_u;
                                          //8 bytes
                                                       deviation 88
   unsigned short int Satellites used;
                                          //2 bytes
                                                       deviation 96
   unsigned short int Satellites track;
                                              //2 bytes
                                                           deviation 98
   float vel ned valid;
                                          //4 bytes
                                                       deviation 100
   unsigned short int Fix type;
                                          //2 bytes
                                                       deviation 104
   float Angle_PosType;
                                          //4 bytes
                                                       deviation 106
   float Head deviation;
                                              //4 bytes
                                                           deviation 110
   unsigned short int INS state;
                                          //2 bytes
                                                       deviation 114
   double GNSS_Alt_delta;
                                          //8 bytes
                                                       deviation 116
   double Ellipsoidal H;
                                     //8 bytes
                                                  deviation 124
   unsigned char reserve[2];
                                          //4 bytes
                                                       deviation 132
   unsigned short int Checksum;
                                          //2 bytes
                                                       deviation 136
}GPSINSData dev;
                                          //total 138 bytes
int main(int argc, char *argv[])
```



```
int xor cheack = 0;
                                                                  /*定义异或校验返回值*/
                int i = 0;
                /*以一包数据为例*/
                unsigned char bin buf[] = \{0xAA, 0x33, 0x01, 0x00, 0x74, 0x00, 0x0A, 0x00, 0x00, 0xAC, 0xAE, 0
0x46, 0xE1, 0x07, 0x07, 0x00, 0x0A, 0x00, 0x02, 0x00, 0x17, 0x00, 0xA8, 0x16, 0x02, 0x67, 0x65, 0x1E,
0xC8, 0xFB, 0x36, 0x40, 0x23, 0x5F, 0xD4, 0x74, 0x87, 0x57, 0x5C, 0x40, 0x40, 0xE4, 0xB0, 0xCD, 0xE7,
0x51, 0x46, 0x40, 0x33, 0x33, 0x33, 0x3F, 0xCD, 0xCC, 0x8C, 0x3F, 0x35, 0xF1, 0x2C, 0x3C, 0x29, 0x7C,
0x1A, 0x43, 0x00, 0x00, 0x00, 0x00, 0xAB, 0x83, 0x31, 0x40, 0xBE, 0x84, 0x5D, 0x03, 0x01, 0x0E, 0x6B,
0x3F, 0x15, 0x9F, 0x4A, 0x99, 0xBA, 0xBC, 0x82, 0xBF, 0xCA, 0x65, 0x2E, 0x99, 0xFC, 0x5F, 0x86,
0xBF,0x13, 0x00, 0x13, 0x00, 0x00, 0x00, 0x00, 0x41, 0x01, 0x00, 0x00, 0x00, 0x00, 0x41, 0x00, 0x00,
0x00, 0x00, 0x01, 0x00, ...., 0x20, 0x00 };
                                                                                                                    GPSINSData dev GPSINSData s;
                memset(&GPSINSData s, 0, sizeof(GPSINSData s));
                GPSINSData s.head[0] = 0xAA;
                                                                                                   //数据包头校验
                GPSINSData s.head[1] = 0x33;
                /*数据包头校验*/
                if((GPSINSData s.head[0] == bin buf[0]) && (GPSINSData s.head[1] == bin buf[1])) {
        memcpy(&(GPSINSData s.Version), bin buf+2, 2);
                                                                                                                   //当前协议版本
                                                                                                                                    //当前数据包长度,除去校验位
                         memcpy(&(GPSINSData s.Length), bin buf+4, 2);
的所有数据
                         memcpy(&(GPSINSData s.freg), bin buf+6, 2); //当前数据包传输频率
                         memcpy(&(GPSINSData s.Checksum), bin buf+ GPSINSData s.Length, 2);
                                                                                                                                                                             // 当前数据
               包校验位
                                                                                                                 /*进行异或校验*/
                         for(i = 0; i < GPSINSData s.Length; i++) {
                                 xor_cheack = xor_cheack ^ bin_buf[i];
                         }
                         printf("xor cheack = %x\n", xor cheack);
                         if(xor_cheack == GPSINSData s.Checksum) { //数据包异或校验通过
                                 printf("current version: %d, data length: %d, transmission frequency: %d\n",
GPSINSData s.Version, GPSINSData s.Length, GPSINSData s.freq);
                                 //then do with the data
                         } else {
```



```
printf("current data is error\n");
}
} else {
    printf("data head is error\n");
}
```

7. 附录: 常用 NMEA 语句格式说明

7.1 定位语句

请求命令:

log com1 gpggalong ontime 1以 1HZ 更新率从 com1 口输出 GPGGA 数据 log com1 gpggalong ontime 0.2 以 5HZ 更新率从 com1 口输出 GPGGA 数据

命令请求成功(返回实例):

\$GPGGA,134658.00,5106.9792,N,11402.3003,W,2,09,1.0,1048.47,M,-16.27,M,08,AAAA*60

表 7-1 GGA 数据输出格式说明

序号	数据分类	数据分类描述	输出格式	实例
1	\$GPGGA	数据头		\$GPGGA
2	utc	UTC(世界协调时)时间	hhmmss.ss	134658.00
3	lat	纬度	ddmm.mm	5107.0017737
4	lat dir	纬度方向(N=North,S=South)	а	N
5	lon	经度	Dddmm.mmmm	11402.3291611
6	lon dir	经度方向(E=East,W=West)	а	W
7	quality	定位质量指示(0~9 具体参考表 7-2)	x	2
8	# sats	解算使用的卫星数量	xx	09
9	hdop	水平精确度(0.5~99.9)	x.x	1.0
10	alt	天线离海平面的高度(-9999.9~9999.9)	x.x	1048.47
11	a-units	天线高度单位	М	М
12	undulation	大地水准面与 WGS84 椭球面高程差	x.x	-16.27
13	u-units	高程差单位	М	М
14	age	差分龄期	х	08
15	stn ID	差分基站参考标号	xxxx	AAAA
16	*xx	校验码,异或求和	*hh	*60
17	[CR][LF]	语句结束符		[CR][LF]

表 7-2 定位数据质量指示参考表

定位数据指示	数据描述
0	修正无效或不可用
1	单点
2	伪距差分
4	RTK 固定解
5	RTK 浮动解
6	航位推算模式
7	手动模式
8	模拟模式
9	WAAS (SBAS)模式

7.2 定向语句

请求命令:

log com1 heading3a ontime 1 以 1Hz 更新速率从 com1 口输出 heading 数据 log com1 heading3a ontime 0.2 以 5Hz 更新速率从 com1 口输出 heading 数据

命令请求成功:

#HEADING3A,COM1,0,21.0,FINESTEERING,1901,28895.200,00000000,d3de,13306; SOL_COMPUTED,NARROW_INT,-1.000000000,187.253097534,-0.267150879,0.200,0.208558246,0.668702662, "F06N",15,14,14,12,04,01,30,33*00984f4b

表 7-3 HEADING3 输出数据说明

序号	数据分类	数据分类描述	ASCII 码格式	ASCII 码实例	二进制格式	二进制字节数	字节偏移量
1	#HEADING3A	HEADING 数据头	刊作八	# HEADING3A	竹八	H (28)	0 0
2	sol stat	解状态	х	SOL_COMPUTED	Enum	4	Н
3	pos type	位置类型(见下表 7-4)	X	NARROW_INT	Enum	4	H+4
4	length	基线长度(米),对 Z 对齐的移动站而言	x.x	-1.000000000	Float	4	H+8
5	heading	偏航角度值(0°~359.999°)	x.x	187.253097534	Float	4	H+12
6	pitch	俯仰角度值(±90°)	x.x	-0.267150879	Float	4	H+16
7	Reserved	预留			Float	4	H+20
8	hdg std dev	偏航角度值标准差	x.x	0.208558246	Float	4	H+24
9	ptch std dev	俯仰角度值标准差	x.x	0.668702662	Float	4	H+28
10	rover stn ID	移动站接收机 ID 号 (须事先设置)	"x"	" F06N "	Char	4	H+32
11	#SVs	跟踪到的卫星数	х	15	Uchar	1	H+36
12	#solnSVs	用于解算的卫星数量	х	14	Uchar	1	H+37
13	#obs	截至高度角以上的卫星数	х	14	Uchar	1	H+38

14	#multi	包含 L2 的截至高度角以上的	x	12	Uchar	1	H+39
		卫星数					
15	sol source	解算来源	x	04	Hex	1	H+40
16	ext sol stat	扩展解状态	xx	01	Uchar	1	H+41
17	Galileo and	伽利略和北斗卫星信号是否	x	30	Hex	1	H+42
		使用					
	BeiDou sig	J 5, 14					
	mask						
18	GPS and	GPS 和格洛纳斯卫星信号是	X	33	Hex	1	H+43
		否使用					
	GLONASS	- L					
	sig mask						
19	xxxx	32 位 CRC 校验码	*hh	*7be836f6	Hex	4	H+44
20	[CR][LF]	语句结束符(仅 ASCII 码)		[CR][LF]			

表 7-4 位置和速度类型

解状态	解状态	描述
(ASCII)	(二进制)	
NONE	0	无解
FIXEDPOS	1	FIX POSITION 命令后位置固定
FIXEDHEIGHT	2	FIX HEIGHT/AUTO 命令后位置
		固定
DOPPLER_VELOCITY	8	瞬时多普勒解算速度
SIINGLE	16	单点解
PSRDIFF	17	伪距差分解
WAAS	18	经 WAAS 修正数据的解算值
PROPAGATED	19	无新观测值下卡尔曼滤波预测
OMNISTAR	20	OMNISTAR VBS 位置
L1_FLOAT	32	浮动 L1 模糊解
IONOFREE_FLOAT	33	浮动无电离层模糊解
NARROW_FLOAT	34	浮动窄带模糊解
L1_INT	48	整周 L1 模糊解
NARROW_INT	50	整周窄带模糊解
OMNISTAR_HP	64	OmniSTAR HP 位置
OMNISTAR_XP	65	OmniSTAR XP 或 G2 位置
PPP_CONVERGING	68	TerraStar-C 解算正在收敛中
PPP	69	TerraStar-C 解算收敛
OPERATIONAL	70	解算精度在 UAL 操作极限内
WARNING	71	解算精度超出 UAL 操作极限, 但
	_	仍在警告线内
OUT_OF_BOUNDS	72	解算精度超出 UAL 极限

PPP_BASIC_CONVERGING	77	TerraStar-L 解正在收敛中
PPP_BASIC	78	TerraStar-L 解收敛