O LEVEL

- (b) Use your graph to estimate
 - (i) the frequency of oscillations when a mass of 0.07 kg is attached to the spring
 - (ii) the mass, to the nearest gram, which produces 15 oscillations per second,
 - (iii) the value of g.

When the spring is replaced by another spring, the relation between f and m is represented by

 $f^2 = \frac{2}{m} + 100$. On the same diagram, draw the line representing the second spring.

- (c) Hence, find the mass which produces the same frequency of oscillations by both springs and the corresponding frequency of oscillations for this mass.
- 29. A particle, moving in a certain medium with speed ν m s⁻¹, experiences a resistance to motion of k_0 F newtons. It is believed that F and v are related by the equation $F = kA^*$, where A and k are constant The table below shows experimental values of the variables F and v,

Speed, v m s-1	1	2	7		1
Force, F newtons	14.0	10.6	2	4	5
Micondinates and a second	+***	19.6	27.4	38.4	53.8

- (a) Express the equation in a form suitable for drawing a straight line graph.
- (b) Plot the graph using the given data and use it to estimate
 - (i) the value of A and of k,
 - (ii) the resistance for which the speed is 3.5 m s⁻¹.
- (e) Determine the equation of the straight line which must be drawn on your graph to obtain it solution to the equation kA' = 4'. Use your graph to estimate the speed, ν , that satisfies the equality

assertable alto and Segon the Conseque Mariana established a 200 bis of Learning Outcomes Checklist

I am now able to

transform given relationships, including $y = ax^a$ and $y = kb^a$, to linear form to determine the unknown constants from the straight line graph

Basic

1.

Co

2.

Su

3.