Esercizi e soluzioni relativi al Capitolo 5

Esercizio 5.1 (pag. 73)

1. Sia K_n un grafo completo. Allora K_n ha $\frac{n(n-1)}{2}$ lati.

Soluzione

Per definizione (cfr. testo Def. 5.5, pag 71) il grafo K_n ha n vertici ed inoltre due vertici distinti sono sempre adiacenti.

Quindi, se indichiamo con v_1, v_2, \dots, v_n gli n vertici, possiamo contare quanti sono i lati:

In totale i lati sono quindi $1+2+3+\cdots+(n-2)+(n-1)=\sum_{k=1}^{n-1}k=\frac{(n-1)n}{2}$. (Per questo calcolo, confronta l' Esempio 2.11 a pag. 13 del testo).

2. Sia ora Γ un grafo regolare di grado r con n vertici: allora Γ ha $\frac{1}{2}r \cdot n$ lati.

Soluzione

Poichè il grafo Γ è regolare di grado r, ogni vertice ha esattamente r lati incidenti (r > 0) (Definizione 5.4 pag. 71 del testo).

Detti v_1, v_2, \dots, v_n gli n vertici, contiamo i lati.

Poichè ogni vertice v_j è adiacente ad altri r vertici, in totale avremo $n \cdot r$ spigoli. Inoltre poichè $v_j v_i = v_i v_j \ \forall i,j \in \{1,2,\cdots,n\}$ e quindi ogni lato viene contato due volte, si può concludere che il numero di lati <u>distinti</u> è $\frac{r \cdot n}{2}$.

Esercizio 5.2 (pag. 78)

Dimostrare che un albero pienamente binario con 5 vertici interni, possiede 11 vertici.

Soluzione

Ricordiamo che un grafo si dice albero se non contiene cicli (definizione 5.9 pag. 73 del testo), ed è pienamente binario se ogni vertice ha esattamente due "figli" (pag. 74).

Si può dimostrare che in un albero pienamente binario, detto n il numero dei vertici interni ed f il numero delle foglie, si ha che f = n + 1. (E quindi il numero totale di vertici è 2n + 1: nel nostro caso $2 \cdot 5 + 1 = 11$).

Dimostriamo per induzione l'uguaglianza f = n + 1.

Se n = 1 l'albero ha 1 solo vertice interno, che sarà la radice, e quindi avrà due foglie, cioè f = 2.

Sia vera l'uguaglianza per n-1, cioè un albero pienamente binario avente n-1 vertici interni abbia (n-1)+1=n foglie (Ipotesi di induzione).

Consideriamo ora un albero Γ (pienamente binario) con n vertici interni. Per sfruttare l'ipotesi di induzione togliamo un vertice interno che non sia la radice e di conseguenza togliamo le due foglie uscenti da esso (e quindi questo vertice interno diventa foglia). Otteniamo così un albero Γ' (pienamente binario) che ha (n-1) vertici interni e quindi n foglie, per l'ipotesi di induzione. Contiamo ora le foglie di Γ : poichè nel passaggio da Γ' a Γ una foglia diventa un vertice interno, ad esso dovranno essere aggiunte le due foglie terminali, per cui il numero delle foglie di Γ è uguale al numero delle foglie di Γ' più 2, cioè f=(n-1)+2=n+1, come volevasi dimostrare.

Osservazione

Poichè il numero degli alberi pienamente binari con 5 vertici interni è limitato (sono solo 4) la verifica si poteva fare con un'osservazione diretta.

Sia r il vertice "radice" (che è interno per definizione). Siano v_1 e v_2 i vertici "figli" di primo livello.

Abbiamo 4 casi.

1. Supponiamo che v_1 e v_2 siano entrambi interni. Allora avremo soltanto altri due vertici interni (di secondo livello) che possono essere entrambi discendenti di v_1 (e allora li diremo v_{11} e v_{12}) oppure entrambi discendenti di v_2 (e allora li diremo v_{21} e v_{22}). Da questi vertici interni partiranno le foglie (che non sono interni). In questo caso si avrà che in totale i vertici sono 5 (interni) +6 (foglie)= 11.

2. Siano v_1 e v_2 non entrambi interni. Senza ledere la generalità del discorso, supponiamo che v_1 sia interno e che v_2 sia una foglia.

Allora v_1 avrà due discendenti v_{11} e v_{12} .

Si possono presentare due casi: v_{11} e v_{12} entrambi interni oppure uno interno e l'altro foglia.

2.1 Siano v_{11} e v_{12} entrambi interni: allora c'è un solo altro vertice interno, che, senza ledere la generalità, supponiamo sia figlio di v_{11} e lo diciamo v_{111} . Allora i vertici interni sono $r, v_1, v_{11}, v_{12}, v_{111}$. Le foglie saranno quindi: $v_2, v_{112}, v_{121}, v_{122}, v_{1111}, v_{1112}$

e quindi sono 6.

2.2 Sia v_{11} interno e v_{12} una foglia. Anche in questo caso avremo due possibilità: i "figli" di v_{11} sono entrambi interni oppure uno interno e uno foglia.

Consideriamo i due sottocasi.

2.2.1 Siano v_{111} e v_{112} entrambi interni: abbiamo allora 5 vertici interni. Le foglie saranno $v_2, v_{12}, v_{1111}, v_{1112}, v_{1121}, v_{1122}$.

2.2.2 Sia infine v_{111} vertice interno e v_{112} foglia. Allora uno dei "figli" di v_{111} dovrà essere interno e l'altro foglia. In questo caso le foglie saranno

 $v_2, v_{12}, v_{112}, v_{1112}, v_{11111}, v_{11112}.$

