Probability theory Random variables

In an experiment a number is often attached to each outcome.

Definition:

A random variable X is a function defined on S, which takes values on the real axis

Sample space

Real numbers

Probability theory Random variables

Example:

Random variable	Туре	
Number of eyes when rolling a dice	discrete	
The sum of eyes when rolling two dice	discrete	"acustica"
Number of children in a family	discrete	"counting"
Age in years of first-time mother	discrete	.
Time of running 5 km	continuous	
Amount of sugar in a coke	continuous	measure
Height of males	continuous	
)

Discrete: can take a finite number of values or an

infinite but countable number of values.

Continuous: takes values from the set of real numbers.

Discrete random variable Probability function

Definition:

Let $X : S \to R$ be a discrete random variable.

The function f(x) is a **probabilty function** for X, if

- 1. $f(x) \ge 0$ for all x
- $2. \sum_{x} f(x) = 1$
- 3. P(X = x) = f(x), where P(X=x) is the probability for the outcomes $s \in S : X(s) = x$.

Discrete random variable Probability function

Example: Flip three coins $X : \# \text{ heads} \quad X : S \rightarrow \{0,1,2,3\}$

Outcome	Value of X	Probability function
TTT	X=0	f(0) = P(X=0) = 1/8
HTT, TTH, THT	X=1	f(1) = P(X=1) = 3/8
HHT, HTH, THH	X=2	f(2) = P(X=2) = 3/8
HHH	X=3	f(3) = P(X=3) = 1/8

Notice! The definition of a probability function is fulfilled:

1.
$$f(x) \ge 0$$

2.
$$\sum f(x) = 1$$

3.
$$P(X=x) = f(x)$$

Discrete random variable Cumulative distribution function

Definition:

Let $X : S \to R$ be a discrete random variable with probability function f(x).

The cumulative distribution function for X, F(x), is defined by

$$F(x) = P(X \le x) = \sum_{t \le x} f(t) \qquad \text{for } -\infty < x < \infty$$

Discrete random variable Cumulative distribution function

Example: Flip three coins $X : \# \text{ heads } X : S \rightarrow \{0,1,2,3\}$

Outcome	Value of X	Probability function	Cumulative dist. Fund
TTT	X=0	f(0) = P(X=0) = 1/8	$F(0) = P(X \le 0) = 1/8$
HTT, TTH, THT	X=1	f(1) = P(X=1) = 3/8	$F(1) = P(X \le 1) = 4/8$
HHT, HTH, THH	X=2	f(2) = P(X=2) = 3/8	$F(2) = P(X \le 2) = 7/8$
HHH	X=3	f(3) = P(X=3) = 1/8	$F(3) = P(X \le 3) = 1$

Probability function:

Cumulative distribution function:

Continuous random variable

A continuous random variable X has probability 0 for all outcomes!!

Mathematically: P(X = x) = f(x) = 0 for all x

Hence, we cannot represent the probability function f(x) by a table or bar chart as in the case of discrete random variables.

Instead we use a continuous function – a density function.

Continuous random variable Density function

Definition:

Let X: $S \rightarrow R$ be a continuous random variables.

A probability density function f(x) for X is defined by:

1.
$$f(x) \ge 0$$
 for all x

$$2. \int_{0}^{\infty} f(x) dx = 1$$

2.
$$\int_{-\infty}^{\infty} f(x) dx = 1$$

3. P(a < X < b) = $\int_{a}^{b} f(x) dx$

Note!! Continuity:
$$P(a < X < b) = P(a \le X \le b) = P(a \le X \le b) = P(a \le X \le b)$$

Continuous random variable Density function

Example: X: service life of car battery in years (continuous)

Density function:

$$f(x) = \begin{cases} -0.16 + 0.16x & for & 1 \le x \le 3.5 \\ 0.96 - 0.16x & for & 3.5 < x \le 6 \\ 0 & otherwise \end{cases}$$

Probability of a service life longer than 3 years:

$$P(X > 3) = \int_{3}^{\infty} f(x) dx$$

$$= \int_{3}^{3.5} (-0.16 + 0.16x) dx + \int_{3.5}^{6} (0.96 - 0.16x) dx$$

$$= \dots = 0.68$$

Continuous random variable Density function

Alternativ måde:

$$f(x) = \begin{cases} -0.16 + 0.16x & for & 1 \le x \le 3.5 \\ 0.96 - 0.16x & for & 3.5 < x \le 6 \\ 0 & othwerwise \end{cases}$$

Probability of a service life longer than 3 years:

$$P(X > 3) = 1 - P(X \le 3)$$

$$= 1 - \int_{-\infty}^{3} f(x) dx$$

$$= 1 - \int_{1}^{3} (-0.16 + 0.16x) dx$$

$$= \dots = 1 - 0.32 = 0.68$$

Continuous random variable Cumulative distribution function

Definition:

Let $X : S \to R$ be a continuous random variable with density function f(x).

The cumulative distribution function for X, F(x), is defined by

F(x) = P(X \le x) =
$$\int_{-\infty}^{x} f(t) dt$$
 for $-\infty < x < \infty$
Note: F'(x) = f(x)

$$F(3) = P(X \le 3)$$

$$= \int_{-\infty}^{3} f(x) dx$$

$$= \int_{1}^{3} -0.16 + 0.16x dx$$

= ... = 0.32

Continuous random variable Cumulative distribution function

$$F(x) = \begin{cases} 0 & for & x < 1\\ 0.08 - 0.16x + 0.08x^2 & for & 1 \le x \le 3.5\\ -1.88 + 0.96x - 0.08x^2 & for & 3.5 < x \le 6\\ 1 & for & x > 6 \end{cases}$$

Continuous random variable Cumulative distribution function

From the definition of the cumulative distribution funct. we get:

$$P(a < X < b) = P(a \le X \le b) = P(a \le X < b) = P(a < X \le b)$$

= $P(X \le b) - P(X \le a)$
= $F(b) - F(a)$

Discrete random variable

- Sample space is finite or has countable many outcomes
- Probability function f(x) Is often given by table
- Calculation of probabilities $P(a < X < b) = \sum f(t)$

Continuous random variable

- The sample space contains infinitely many outcomes
- Density function f(x) is a continuous function
- Calculation of probabilities

P(a < X < b) =
$$\int_{a}^{b} f(t) dt$$

Joint distribution Joint probability function

Definition:

Let X and Y be two **discrete** random variables. The **joint probability function** f(x,y) for X and Y Is defined by

- 1. $f(x,y) \ge 0$ for all x og y
- $2. \sum_{x} \sum_{y} f(x,y) = 1$
- 3. P(X = x, Y = y) = f(x,y) (the probability that both X = x and Y = y)

For a set A in the xy plane:

$$P((X,Y) \in A) = \sum_{(x,y) \in A} f(x,y)$$

Joint distribution Marginal probability function

Definition:

Let X and Y be two **discrete** random variables with joint probability function f(x,y).

The marginal probability function for X is given by

$$g(x) = \sum_{y} f(x,y)$$
 for all x

The marginal probability function for Y is given by

$$h(y) = \sum_{x} f(x,y)$$
 for all y

Joint distribution Marginal probability function

Example 3.14 (modified):

The joint probability function f(x,y) for X and Y is given by

y\x	0	1	2
0	3/28	9/28	3/28
1	3/14	3/14	0
2	1/28	0	0

•
$$g(2) = P(X=2) = 3/28+0+0 = 3/28$$

•
$$P(X+Y < 2) = 3/28+9/28+3/14 = 18/28 = 9/14$$

Joint distribution Joint density function

Definition:

Let X og Y be two **continuous** random variables. The **joint density function** f(x,y) for X and Y is defined by

- 1. $f(x,y) \ge 0$ for all x
- $2. \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, dx \, dy = 1$
- 3. P(a < X < b, c < Y < d) = $\int_{c}^{d} \int_{a}^{b} f(x,y) dx dy$

For a region A in the xy-plane: $P[(X,Y) \in A] = \iint_A f(x,y) dxdy$

Joint distribution Marginal density function

Definition:

Let X and Y be two **continuous** random variables with joint density function f(x,y).

The marginal density function for X is given by

$$g(x) = \int f(x, y) dy$$
 for all x

The marginal density function for Y is given by

$$h(y) = \int_{-\infty}^{\infty} f(x, y) dx \quad \text{for all } y$$

Joint distribution Marginal density function

Example 3.15 + 3.17 (modified):

Joint density f(x,y) for X and Y:

$$f(x,y) = \begin{cases} \frac{2}{5}(2x+3y) & 0 \le x \le 1, 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$$

Marginal density function for X:

$$g(x) = \int_{-\infty}^{\infty} f(x, y) \, dy$$

$$=\int_{0}^{1}\frac{2}{5}(2x+3y)\,dy$$

$$= \left[\frac{2}{5}2xy + \frac{1}{5}3y^2\right]_0^1 = \frac{4}{5}x + \frac{3}{5}$$

Joint distribution Conditional density and probability functions

Definition:

Let X and Y be random variables (continuous or discrete) with joint density/probability function f(x,y). Then the

Conditional density/probability function for Y given X=x is

$$f(y|x) = f(x,y) / g(x)$$
 $g(x) \neq 0$

where g(x) is the marginal density/probability function for X, and

the conditional density/probability function for X given Y=y is

$$f(x|y) = f(x,y) / h(y) h(y) \neq 0$$

where h(y) is the marginal density/probability function for Y.

Joint distribution Conditional probability function

Examples 3.16 + 3.18 (modified):

Joint probability function f(x,y) for X and Y is given by:

y	0	1	2
0	3/28	9/28	3/28
1	3/14	3/14	0
2	1/28	0	0

• marginal pf.
$$g(x) = \begin{cases} \frac{10}{28} & \text{for } x = 0 \\ \frac{15}{28} & \text{for } x = 1 \\ \frac{3}{28} & \text{for } x = 2 \end{cases}$$

• P(Y=1 | X=1) =
$$f(1|1)$$

= $f(1,1) / g(1)$
= $(3/14) / (15/28)$
= $6/15$

Joint distribution Independence

Definition:

Two random variables X and Y (continuous or discrete) with joint density/probability functions f(x,y) and marginal density/probability functions g(x) and h(y), respectively, are said to be independent if and only if

$$f(x,y) = g(x) h(y)$$
 for all x,y

or if f(x|y) = g(x) (x indep. of y) or f(y|x)=h(y) (y indep. af x)

Mean / Expected valueDefinition

Definition:

Let X be a random variable with probability / Density function f(x). The mean or expected value of X is give by

$$\mu = E(X) = \sum_{x} x f(x)$$

if X is discrete, and

$$\mu = E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

if X is continuous.

Mean / Expected value Interpretation

Interpretation:

The total contribution of a value multiplied by the probability of the value – a weighted average.

Example:

Mean / Expected value Example

Problem:

- A private pilot wishes to insure his plane valued at 1 mill kr.
- The insurance company expects a loss with the following probabilities:
 - Total loss with probability 0.001
 - 50% loss with probability 0.01
 - 25% loss with probability 0.1
- 1. What is the expected loss in kroner?
- 2. What premium should the insurance company ask if they want an expected profit of 3000 kr

Mean / Expected value Function of a random variable

Theorem:

Let X be a random variable with probability / density function f(x). The expected value of g(X) is

$$\mu_{g(X)} = E[g(X)] = \sum_{x} g(x)f(x)$$

if X is discrete, and

$$\mu_{g(X)} = E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx$$

if X is continuous.

Expected value Linear combination

Theorem: Linear combination

Let X be a random variable (discrete or continuous), and let a and b be constants. For the random variable aX + b we have

$$E(aX+b) = aE(X)+b$$

Mean / Expected valueExample

Problem:

- The pilot from before buys a new plane valued at 2 mill kr.
- The insurance company's expected losses are unchanged:
 - Total loss with probability 0.001
 - 50% loss with probability 0.01
 - 25% loss with probability 0.1

1. What is the expected loss for the new plane?

Mean / Expected value Function of a random variables

Definition:

Let X and Y be random variables with joint probability I density function f(x,y). The expected value of g(X,Y) is

$$\mu_{g(X,Y)} = E[g(X,Y)] = \sum_x \sum_y g(x,y) f(x,y)$$

if X and Y are discrete, and

$$\mu_{g(X,Y)} = E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y)f(x,y)dxdy$$

if X and Y are continuous.

Mean / Expected value Function of two random variables

Problem:

Burger King sells both via "drive-in" and "walk-in".

Let X and Y be the fractions of the opening hours that "drive-in" and "walk-in" are busy.

Assume that the joint density for X and Y is given by

$$f(x,y) = \begin{cases} 4xy & 0 \le x \le 1, \ 0 \le y \le 1 \\ 0 & \text{otherwise} \end{cases}$$

$$g(X,Y) = 6000 X + 9000Y$$

What is the expected turn over on a single day?

Mean / Expected value Sums and products

Theorem: Sum/Product

Let X and Y be random variables then

$$E[X+Y] = E[X] + E[Y]$$

If X and Y are independent then

$$E[X-Y] = E[X] - E[Y]$$