Máme systém x' = y, y' = u, kde $|u| \le 1$.

Příklad (I)

Pro bod (x_0, y_0) ukažte, jak jej můžeme přivést do počátku.

Řešení

Jednoduchý způsob jak přivést systém do počátku je podívat se, co se stane, když zvolíme konstantní u(t)=1 respektive u(t)=-1. V takovém případě se pohybujeme po parabolách $c+\frac{y^2}{2}=x$ ve směru rostoucího y respektive po $c-\frac{y^2}{2}=x$ ve směru klesajícího y. Tedy pokud se dostaneme na správnou "polovinu" $\frac{y^2}{2}=x$ nebo $-\frac{y^2}{2}=x$, tak už se dostaneme do počátku.

Pokud je tedy $y_0 < (-\sin x_0)\sqrt{2|x_0|}$, tudíž jsme pod křivkou (sjednocení příslušných "polovin" parabol), ze které se už umíme dostat do počátku, tak se můžeme po příslušné (té procházející (x_0,y_0)) $c+\frac{y^2}{2}=x$ dostat na tuto křivku. V opačném případě můžeme naopak využít trajektorií $c-\frac{y^2}{2}=x$, kde y klesá, kterými se právě zase dostaneme do bodů, ze kterých už můžeme jít do počátku.

(V(0,0) následně můžeme zůstat nastavením u(t)=0.)

Ze všech příslušných trajektorií ukažte, že minimální čas nastává pro funkci u(t) nabývající pouze hodnot 1, -1.

$D\mathring{u}kaz$

Nemá smysl mít y=0 po delší časový interval než samotný bod. Tím pádem nás u zajímá pouze v bodech, kde $y \neq 0$, neboť při změnění u v množině míry nula (jednotlivých bodech, jelikož je y spojitá, tak takových osamělých bodů nemůže mít více než spočetno) se nám řešení nezmění (pokud nepřestane existovat).

Mějme tedy bod, kde BÚNO $y_0 = y(t_0) > 0$ (případ $y_0 < 0$ je analogický). Jelikož je y spojitá, máme nějaké okolí $[t_1, t_2]$ času t_0 , že $\forall t \in [t_1, t_2] : y(t) > 0$. Zajímá nás, jak se můžeme dostat nejrychleji z $(x_1, y_1) = (x(t_1), y(t_1))$ do $(x_2, y_2) = (x(t_2), y(t_2))$.

Speciálně se podíváme na vývoj x – jelikož y>0, tak x roste. Abychom se dostali nejrychleji z x_1 do x_2 , tak x'=y musí být co největší. To bude, když na začátku bude y'(t)=u(t)=1, neboť $y=\int_{t_1}^t u(s)ds+y_0\leqslant (t-t_1)\cdot \sup u(s)+y_0\leqslant (t-t_1)+y_0$, kde rovnost nastává právě, když u=1 skoro všude (tj. můžeme předpokládat všude). Když se na situaci podíváme s časem "jdoucím pozpátku", stejným argumentem dokážeme, že na konci musí být u=-1, tedy budeme mít pořád u=1 a pak u=-1.

Takže každé řešení můžeme v okolí každého bodu $y \neq 0$ nezhoršit tím, že použijeme $u = \pm 1$. Konkrétně pokud je na nějakém intervalu $u \neq \pm 1$, tak dostáváme výše ostrou nerovnost, takže můžeme řešení dokonce zlepšit.

Je nejrychlejší trajektorie zároveň nejkratší trajektorie?

Řešení

Není, neboť například z bodu (-1,0) se do bodu (0,0) můžeme dostat tak, že chvíli budeme mít $u(t) \ge 0$, než se dostaneme do $y = \varepsilon$. Pak budeme mít u(t) = 0 po nějakou dobu, čímž zvětšíme x až skoro k nule, načež zvolíme $u(t) \le 0$, abychom se dostali do (0,0).

Takto jsme se pohybovali téměř po úsečce, takže zřejmě "nejkratší trajektorií" (přímo po úsečce se pohybovat nemůžeme), ale očividně bude o dost pomalejší (má velmi malou derivaci vx) než po parabolách.

Definujme přímku procházející body (x_1, y_1) a (x_2, y_2) jako trajektorii, která nás přivede z bodu (x_1, y_1) do bodu (x_2, y_2) za nejkratší čas.

Příklad (II)

Jak vypadají přímky procházející počátkem?

Řešení

Do počátku musí přijít po už zmiňované křivce, tj. po některé z daných dvou parabol (protože musí být $u=\pm 1$). Zároveň pokud z počátku ještě někam pokračuje, tak po druhé "polovině" dané paraboly, neboť z "poloviny" jedné paraboly se umíme dostat do "poloviny" druhé paraboly rychleji (v počátku máme zbytečně x'=0), takže by to nesplňovalo definici přímky. Tedy jedněmi přímkami jsou celé paraboly $\pm \frac{y^2}{2} = x$.

Nebo může do přímky patřit parabola až do té doby než protíná inkriminovanou křivku, načež se pokračuje po této křivce do počátku (pak ale pokračovat nemůže, protože z bodů mimo inkriminovanou přímku se dá dostat na druhou "polovinu" dané paraboly rychleji než po inkriminované křivce).

Nebo může v počátku přímka začínat, pokračovat po "polovině" jedné z parabol procházejících počátkem a v nějakém bodě pokračovat po parabole procházející tímto bodem. Ale zase nemůže obsahovat nic jiného, nebo se "lámat" v dalším bodě.

Příklad (III)

Jak vypadají obecné přímky (nemusí tedy nutně procházet počátkem)?

Řešení

Vypadají úplně stejně, jen dvě hlavní paraboly budou mít vrchol v jiném bodě na ose x, jelikož musí být zase (alespoň v malém okolí nějakého bodu) paraboly a "lámat" se mohou nanejvýš jednou.