\overline{SAS}

IoT 機器向けの認証方式

MIZOGUCHI Koki¹

Kochi University of Technology

November 17, 2022

KOCHI UNIVERSITY OF TECHNOLOGY

K.MIZOGUCHI (KUT)

¹高知工科大学 情報学群 2回生 情報セキュリティシステム研究室

お品書き

- 1 自己紹介
- 2 ワンタイムパスワード認証方式
- ③ SAS パスワード認証方式
 - SAS のバージョン
 - 認証手順
- 4 共通鍵暗号方式
- 5 危険性
- 6 参考文献

1. 自己紹介

氏名 溝口 洸熙 (MIZOGUCHI Koki)

出身 熊本県熊本市

年齢 20歳 (今年成人しました)

所属 高知工科大学 情報学群 2 年, $Cykut^a$,吹奏楽部

趣味 楽器を演奏すること. ピアノ(15年), ドラム(7年)など.

LaTeX が大好き. (最近 LualATeX に移行した.)

所属 アカリク: CloudIAT_FX のオペレーションチーム.

^aサイバーセキュリティに関する学生団体

IoTLT 歴

• 2020年2月: IoTLT @熊本市(登壇発表)

2. ワンタイムパスワード認証方式

ワンタイムパスワード認証方式

認証毎に、認証コードが変わる認証方式. その名の通り (one-time password). 身近な例では、ネット銀行の認証なんかに使われる.

利点

ワンタイムパスワードを盗聴され, 次回認証で再利用されても,認可さ れない.

欠点

- C&R 型パスワード方式
 - サーバからパスワードが盗 取されるリスク
 - クライアントのパスワード が盗視されるリスク
- S / Key 型パスワード認証方式
 - 一方向性ハッシュ関数を多く使うので、処理に時間がかかる。

3. SASパスワード認証方式

SAS (Simple And Secure password authentication protocol)

サーバにパスワードを知られる事なく,かつ,一方向性ハッシュ関数の利用回数の利用が少ない,軽量かつセキュアな認証方式.(清水明宏教授考案)特許取得済み.

利用する演算,略記号

 \oplus 排他的論理和. $A \oplus B \oplus B = A$ の性質がある

 $E_n(x)$ x に n 回一方向性ハッシュ関数を施す

S パスワード (ユーザのみが知る)

 N_i i回目に生成された乱数

3. SASのバージョン

SASのバージョン

- SAS
- SAS-2
- SAS-X(1)
- SAS-X(2)
- SAS-L

3. SASのバージョン

SASのバージョン

- SAS
- SAS-2
- SAS-X(1)
- SAS-X(2)
- SAS-L

認証手順

Client が生成するデータ

認証情報

$$E_1(N_i \oplus S)$$

$$E_2(N_{i+1}\oplus S)$$

$$E_1(N_i \oplus S)$$

$$E_1(N_{i+1} \oplus S)$$

$$E_1(N_i \oplus S)$$

受信データ

受信データ

受信データ

$$E_1(N_i \oplus S)$$

$$E_2(N_{i+1} \oplus S)$$

$$E_1(N_i \oplus S)$$

$$E_1(N_{i+1} \oplus S)$$
 (R \overline{f}

$$E_1(N_i \oplus S)$$

$$E_2(N_{i+1} \oplus S)$$

$$E_1(N_i \oplus S)$$

$$\underline{E_2(N_{i+1}\oplus S)}$$

$$E_1(N_i \oplus S)$$

$$E_2(N_{i+1} \oplus S)$$

$$E_1(N_i \oplus S)$$

$$\underline{E_2(N_{i+1}\oplus S)}$$

$$E_1(N_i \oplus S)$$

$$E_2(N_{i+1} \oplus S)$$

$$E_1(N_i \oplus S)$$

$$\underline{E_2(N_{i+1}\oplus S)}$$

4. 共通鍵暗号通信

バーナム暗号は最強だ

バーナム暗号: 平文 P に対して鍵 K を用いて暗号文 $C = P \oplus K$ を生成する.

Shannon がバーナム暗号は解読不可能であることを示した.

• 仮に解読できたとしても、それが正しい平文であるかの判断が不可能であるため.

バーナム暗号の利用

認証情報 $E_1(N_i \oplus S)$ を鍵としたバーナム暗号で通信すれば、軽量かつセキュアな暗号通信が可能になる!

5. 危険性

サーバ情報漏洩の危険性

データセンターに格納してある情報が**悪意のある管理者**または,**不正侵 入**によって盗まれた場合,認可されてしまう.その対策として,SAS-X がある.

リプレイアタック

複数回認証要求すると、認証情報 $E_1(N_i \oplus S)$ が得られる脆弱性. (排他的論理和でなく、和 + の演算を加えることで、改善)

相互認証

先日、Server・Client 相互認証のプロトコルを開発.

6. 参考文献

• (Simple And Secure authentication protocol ver.2) [清水明宏²] https://www.jstage.jst.go.jp/article/itetr/26.61/0/26.61_7/_pdf/-char/ja

因みにこのプレゼンスライドは、Lual ΔT_{EX} で作成しており、図の作成は TikZ を用いている.