Esercizi del Corso di Logica Matematica 2022/2023

Francesco Minnocci

25 ottobre 2022

1 Calcolo Proposizionale

Remark. Nel seguito, i valori di verità **falso** e **vero** verrano indicati per comodità rispettivamente con i numeri 0 ed 1.

Esercizio 1.7. Mostrare che $\rho(A) = \min \{ n \in \mathbb{N} \mid A \in \mathcal{F}_n \}.$

Visto che A è una formula sul linguaggio \mathcal{L} , esiste un $n \in \mathbb{N}$ tale che $A \in \mathcal{F}_n$, quindi per il principio del minimo è ben definito

$$\min \left\{ n \in \mathbb{N} \mid A \in \mathcal{F}_n \right\}.$$

Procediamo ora per induzione su n:

- Se n = 0, A è una variabile e quindi $\rho(A) = 0$ e questo è anche il minimo.
- Se $A \in \mathcal{F}_{n+1}$, essendo

$$\mathcal{F}_{n+1} = \mathcal{F}_n \cup \{ \neg P, \ P \land Q, \ P \lor Q, \ P \to Q, \ P \leftrightarrow Q \mid P, Q \in \mathcal{F}_n \},$$

si distinguono due casi: se $A \in \mathcal{F}_n$ si conclude per ipotesi induttiva, mentre se $A \in \mathcal{F}_{n+1} \setminus \mathcal{F}_n$ si ha che n+1 è il minimo livello in cui compare A, e quindi se mostriamo che $\rho(A) = n+1$ abbiamo concluso. Si pongono perciò altri due casi:

- o $A = \neg B$: $\rho(A) = \rho(B) + 1$ con $B \in \mathcal{F}_n$, e quindi per ipotesi induttiva $\rho(B) \leq n$, ma non può essere $\rho(B) < n$ perché altrimenti $A \in \mathcal{F}_n$, e quindi $\rho(B) = n$ da cui $\rho(A) = n + 1$.
- o $A = B \lozenge C$ con $\lozenge \in \{\land, \lor, \rightarrow, \leftrightarrow\}$: $\rho(A) = \max\{\rho(B), \rho(C)\} + 1$ con $B, C \in \mathcal{F}_n$, ma allora per ipotesi induttiva $\max\{\rho(B), \rho(C)\} \le n$, ma come nel caso precedente la disuguaglianza non può essere stretta, in quanto altrimenti si avrebbe $A \in \mathcal{F}_n$, per cui anche qui $\rho(A) = n + 1$.

Esercizio 1.8. Mostrare che se $\rho(A) = n$ e k_A è il numero di connettivi presenti in A, allora

$$n < k < 2^n - 1$$
.

Procediamo per induzione su n:

• Se $\rho(A) = 0$ allora A è una variabile e quindi $k_A = 0$, quindi la disuguaglianza vale.

- Se $\rho(A) = n + 1$, distinguiamo i soliti casi:
 - o $A=\neg B$: allora $\rho(B)=n$ che per ipotesi induttiva implica $n\leq k_B\leq 2^n-1$, e visto che $k_A=k_B+1$ si ha

$$n+1 \le k_A \le 2^n \le 2^n + (2^n - 1) = 2^{n+1} - 1$$

o $A = B \lozenge C$ con $\lozenge \in \{\land, \lor, \rightarrow, \leftrightarrow\}$: essendo $\max\{\rho(B), \rho(C)\} = n$ e $k_A = k_B + k_C + 1$, utilizzando l'ipotesi induttiva per B e C otteniamo

$$n+1 = \max\{\rho(B), \rho(C)\} + 1 \le \max\{k_B, k_C\} + 1 \le k_A$$

ed anche

$$k_A \le 2 \cdot \max\{k_B, k_C\} + 1 \le 2 \cdot \max\{2^{\rho(B)} - 1, 2^{\rho(C)} - 1\} + 1 = 2^{n+1} - 1,$$

da cui segue la tesi.

Esercizio. Mostrare che qualsiasi due interpretazioni di un linguaggio \mathcal{L} che estendono un stesso \mathcal{L} -assegnamento coincidono.

Per mostrarlo, conviene ripercorrere la dimostrazione effettuata in classe per l'esistenza di un interpretazione delle formule che estende una specifica funzione α : Form $(\mathcal{L}) \to \{0,1\}$, accorgendosi che nei vari casi c'è una sola scelta possibile; infatti, mostrando che nel passo induttivo la definizione di $I_{\alpha}(A)$ è obbligata, restringendoci a formule costruite con \neg, \land, \lor (visto che \to, \leftrightarrow si possono costruire a partire da essi):

• $A = \neg B$: per induzione è ben definito $I_{\alpha}(B)$. Supponiamo che $I_{\alpha}(B) = 0$, allora se per assurdo ponessimo $I_{\alpha}(A) = 0$ non varrebbe che

$$I_{\alpha}(B) = 0 \iff I_{\alpha}(\neg B) = 1,$$

contraddicendo la definizione di interpretazione booleana; il caso $I_{\alpha}(B) = 1$ è del tutto analogo.

• $A = B \wedge C$: per ipotesi induttiva sono ben definiti $I_{\alpha}(B), I_{\alpha}(C)$. Per definizione di interpretazione booleana, deve valere che

$$I(A) = 1 \iff I_{\alpha}(B) = I_{\alpha}(C) = 1,$$

ma allora anche qui non possiamo effettuare alcuna scelta nella definizione di $I_{\alpha}(A)$.

• $A = B \vee C$: si procede in maniera simile al caso precedente, essendo I_{α} univocamente determinato dai valori di I_{α} su $B \in C$.

Esercizio 1.14 (Modus Ponens). Se $\models A \rightarrow B$ e $\models A$, allora $\models B$.

Sia I una qualsiasi interpretazione delle \mathcal{L} -formule. Allora I(A) = 1 e $I(A \to B) = 1$, quindi per definizione di interpretazione booleana deve valere I(B) = 1.

Esercizio 1.15. Mostrare che le seguenti formule sono tautologie per ogni scelta della formula A:

$$A \vee \neg A$$
$$A \to A$$
$$A \leftrightarrow \neg \neg A.$$

Il risultato si evince dalle tabella di verità di tali formule(omettendo $\neg\neg A$ che è banalmente A):

Esercizio 1.16 (Assiomi di Lukasiewicz-Frege-Hilbert-Mendelson). Le seguenti formule sono tautologie:

$$A \to (B \to A) \tag{1}$$

$$(A \to (B \to C)) \to ((A \to B) \to (A \to C)) \tag{2}$$

$$(\neg A \to \neg B) \to ((\neg A \to B) \to A). \tag{3}$$

Riduciamo tali formule utilizzando le adeguate proprietà (commutative, associative, distributive e leggi di De Morgan) dei connettivi, e l'equivalenza logica fra $A \to B$ e $\neg A \lor B$: le formule (1), (2) e (3) diventano rispettivamente

$$\neg A \lor (\neg B \lor A)
\equiv (A \lor \neg A) \lor \neg B,$$
(1)

$$\neg A \lor (\neg B \lor C) \to \neg (\neg A \lor B) \lor (\neg A \lor C)
\equiv \neg (\neg A \lor \neg B \lor C) \lor (A \land \neg B) \lor (\neg A \lor C)
\equiv (A \land B \land \neg C) \lor (A \lor \neg A) \land (\neg B \lor \neg A) \lor C
\equiv (A \lor \neg A) \lor (A \land B \land \neg C) \land (\neg A \lor \neg B \lor C)
\equiv (A \lor \neg A) \lor (D \land \neg D),$$
(2)

$$\neg (A \lor \neg B) \lor (\neg (A \lor B) \lor A)
\equiv (\neg A \land B) \lor ((\neg A \land \neg B) \lor A)
\equiv (\neg A \land B) \lor ((\neg A \lor A) \land (\neg B \lor A))
\equiv ((\neg A \land B) \lor (\neg A \lor A)) \land ((\neg A \land B) \lor (\neg B \lor A))
\equiv (A \lor \neg A) \lor E \lor (E \land \neg E),$$
(3)

dove ci siamo fermati con le manipolazioni appena abbiamo ottenuto una tautologia, considerando alla luce dell'esercizio 1.15 le formule del tipo $A \vee \neg A$ tautologie, ed abbiamo posto $D := (A \wedge B \wedge \neg C)$ ed $E := (\neg A \wedge B)$.

Esercizio 1.17. Dimostrare che non esistono tautologie A dove compaiono soltanto i connettivi \vee e \wedge .

Sia per assurdo A una tautologia nelle sole variabili X_1, \dots, X_n in cui compaiono solo \land e \lor . Allora, fissata un'interpretazione I tale che $I(X_1) = \dots = I(X_n) = 0$, da una facile induzione su $\rho(A)$ e dall'ispezione diretta delle tabelle di verità dei connettivi \land e \lor (per entrambi è impossibile ottenere 1 da formule entrambe con valore 0), concludiamo che I(A) = 0, contro l'ipotesi che A fosse una tautologia.

Esercizio 1.19. Sia A una formula in \mathcal{L} nelle sole n variabili proposizionali X_1, \dots, X_n . Allora, A è una tautologia se e solo se $A(B_1/X_1, \dots, B_n/X_n)$ è una tautologia per ogni scelta delle formule B_1, \dots, B_n .

Per induzione su n: se n=1, data un'interpretazione I_1 definiamo l'interpretazione I_2 che coincide con I_1 su X_2, \dots, X_n , e tale che $I_2(X_1) = I_1(B_1)$, che è unica per un esercizio precedente. Allora, si ha $I_2(A) = I_1(A(B_1/X_1)) = 1$, visto che A è una tautologia. Il passo induttivo segue poi facilmente, visto che possiamo effettuare le sostituzioni una per volta.

Mostriamo il viceversa per contrapositivo: se $A(B_1/X_1, \dots, B_n/X_n)$ non è contraddittoria per ogni scelta delle formule B_1, \dots, B_n , allora è una tautologia, e quindi scegliendo $B_i = X_i$ per ogni i otteniamo che A è una tautologia.

Esercizio 1.29. Mostrare che ogni formula è equivalente ad una in cui compaiono solo i seguenti connettivi:

- 1. $\{\neg, \land\}$
- $2. \{\neg, \lor\}$

Mostrare inoltre che non vale tale proprietà per i connettivi $\{\wedge, \vee\}$.

Riduciamo ogni formula con un solo connettivo ad una equivalente in cui compaiono solamente i connettivi citati, dopodiché la tesi seguirà per induzione strutturale sulla costruzione delle formule (facciamo uso delle leggi di De Morgan e delle altre proprietà note dei connettivi):

- 1. $A \rightarrow B \equiv \neg (A \land \neg B)$
 - $A \leftrightarrow B \equiv (A \land B) \land (\neg A \land \neg B)$
 - $A \lor B \equiv \neg (\neg A \land \neg B)$
- 2. $\bullet A \rightarrow B \equiv \neg A \lor B$
 - $A \leftrightarrow B \equiv (\neg A \lor \neg B) \lor (A \lor B)$
 - $A \wedge B \equiv \neg (\neg A \vee \neg B)$

Inoltre, per l'esercizio 1.17 $\{\land,\lor\}$ non possono avere la proprietà menzionata, visto che in particolare una tautologia non può contenere solo tali connettivi.

Esercizio 1.31. Per ogni formula A esiste una formula $B \equiv A$ nella quale compare soltanto il connettivo "entrambe false" \star .

Utilizzando l'esercizio 1.29, ci basta mostrare ad esempio che una formula scritta solo con i connettivi $\{\neg, \lor\}$ è equivalente ad una formula che usa solamente il connettivo \star : infatti, osserviamo che per definizione di tale connettivo si ha, per ogni scelta delle formule A, B:

- $\neg A \equiv A \star A$,
- $A \lor B \equiv \neg (A \star B) \equiv (A \star B) \star (A \star B)$.

2 Teorie Proposizionali