

Analysis of Variance Approach

The basic idea of ANOVA is to attributing variation in the data to different sources.

- In regression, the variation in the observations Y_i is attributed to:
- ANOVA is performed through:
 - Partitioning sums of squares;
 - Partitioning degrees of freedoms;

Analysis of Variance Approach

The basic idea of ANOVA is to attributing variation in the data to different sources.

- In regression, the variation in the observations Y_i is attributed to:
 - variation of the error terms random fluctuation
 - variation of the values of the predictor variable(s) dispersion of X
- ANOVA is performed through:
 - partitioning sums of squares
 - partitioning degrees of freedoms

Partition of Total Deviations

Total deviations: Difference between Y_i and the sample mean Y:

$$Y_i - \overline{Y}, \quad i = 1, \cdots, n.7$$

 Total deviations can be decomposed into the sum of two terms:

i.e., the deviation of observed value around the fitted regression line – and the deviation of fitted value from the mean.

Partition of Total Deviations

Total deviations: Difference between Y_i and the sample mean Y:

$$Y_i - \overline{Y}, \quad i = 1, \cdots, n.$$

 Total deviations can be decomposed into the sum of two terms:

$$Y_i - \overline{Y} = (Y_i - \widehat{Y}_i) + (\widehat{Y}_i - \overline{Y}), \qquad i = 1, ..., n,$$

i.e., the deviation of observed value around the fitted regression line (residual) and the deviation of fitted value from the mean.

Figure: Partition of total deviation.

FIGURE 2.7 Illustration of Partitioning of Total Deviations $Y_i - \bar{Y}$ —Toluca Company Example (not drawn to scale; only observations Y_1 and Y_2 are shown).

From Applied Linear Statistical Models by Kutner, Nachtsheim, Neter and Li

Decomposition of Total Variation

Decomposition of Total Variation

Taking sum of squares of the total deviations and noting that the sum of the cross product terms vanishes:

$$\sum_{i=1}^{n} (Y_i - \overline{Y})^2 = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2 + \sum_{i=1}^{n} (\widehat{Y}_i - \overline{Y})^2.$$

Decomposition of total variation:

$$SSTO = SSE + SSR$$

and

$$d.f.(SSTO) = d.f.(SSE) + d.f.(SSR).$$

Sum of Squares

Total sum of squares (SSTO):

This is the variation of the observed Yis around their sample mean.

• Error sum of squares (SSE):

This is the variation of the observed Y_i s around the fitted regression line.

Sum of Squares

SSTO :=
$$\sum_{i=1}^{n} (Y_i - \overline{Y})^2$$
, d.f.(SSTO) = n - 1.

This is the variation of the observed Y_is around their sample mean.

Error sum of squares (SSE):

$$SSE = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2, \quad d.f.(SSE) = n - 2.$$

This is the variation of the observed Y_i s around the fitted regression line.

Regression sum of squares (SSR):

This is the variation of the fitted values around the sample mean. The the fitted regression slope and the dispersion in X_is, the larger is SSR.

SSR = SSTO - SSE is the effect of X in the variation in Y through linear regression.
In other words, SSR is the in

 In other words, SSR is the predicting Y by utilizing the predictor X through a linear regression model.

What is $\frac{1}{n} \sum_{i=1}^{n} \widehat{Y}_{i}$?

Regression sum of squares (SSR):

$$SSR = \sum_{i=1}^{n} (\widehat{Y}_{i} - \overline{Y})^{2} = \hat{\beta}_{1}^{2} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}, \quad d.f.(SSR) = 1.$$

This is the variation of the fitted values around the sample mean: the larger the fitted regression slope and the more dispersion in X_i s, the larger is S\$R.

- SSR = SSTO SSE is the effect of X in reducing the variation in Y through linear regression.
- In other words, SSR is the reduction in uncertainty in predicting Y by utilizing the predictor X through a linear regression model.

What is
$$\frac{1}{n} \sum_{i=1}^{n} \widehat{Y}_{i}$$
?

Expected Values of SS

Mean squares (MS): = S\$ / df(\$S)

$$MSE = \frac{SSE}{d.f.(SSE)} = \frac{SSE}{n-2}, \quad MSR = \frac{SSR}{d.f.(SSR)} = \frac{SSR}{1}.$$

Expected values of MS:

$$E(MSE) = \sigma^2, \qquad E(MSR) = \sigma^2 + \beta_1^2 \sum_{i=1}^n (X_i - \overline{X})^2.$$

Expected Values of SS

$$E(SSE) = (n-2)\sigma^2, \quad E(SSR) = \sigma^2 + \beta_1^2 \sum_{i=1}^{n} (X_i - \overline{X})^2.$$

What is E(SSTO)?

$$MSE = \frac{SSE}{d.f.(SSE)} = \frac{SSE}{n-2}, \qquad MSR = \frac{SSR}{d.f.(SSR)} = \frac{SSR}{1}.$$

Expected values of MS:

$$E(MSE) = \sigma^2, \qquad E(MSR) = \sigma^2 + \beta_1^2 \sum_{i=1}^n (X_i - \overline{X})^2.$$

F Test

•
$$H_0: \beta_1 = 0$$
 versus $H_a: \beta_1 \neq 0$.

$$F^* = \frac{MSR}{MSE} = \frac{SSR/1}{SSE/(n-2)}$$

- F^* fluctuates around $1 + \frac{\beta_1^2 \sum_{i=1}^n (X_i + \overline{X})^2}{\sigma^2}$.
- A large value of F* means evidence against H₀.
- Null distribution of F*:

$$F^* \sim F_{1,n-2}$$
.

Notes: Use the fact that if $Z_1 \sim \chi^2_{(df_1)}$, $Z_2 \sim \chi^2_{(df_2)}$ and Z_1, Z_2 independent, then $\frac{Z_1/df_1}{Z_2/df_2} \sim F_{df_1,df_2}$.

Decision rule at level α :

reject
$$H_0$$
 if $F^* > F(1 - \alpha; 1, n - 2)$,

where $F(1-\alpha; 1, n-2)$ is the $(1-\alpha)$ -percentile of the $F_{1,n-2}$ -distribution.

- In simple linear regression, the *F*-test is equivalent to the *t*-test for testing $H_0: \beta_1 = 0$ versus $H_a: \beta_1 \neq 0$.

 Check the following.
- $F^* = (T^*)^2$ where $T^* = \frac{\hat{\beta}_1}{s(\hat{\beta}_1)}$ is the T-statistic.
 - $F(1-\alpha; 1, n-2) = t^2(1-\alpha/2; n-2).$

ANOVA Table

	ΔΝ	\cap V	Δt	able	e fo	r ci	mn	le l	ine	ar r	eai	, P & Q	sior	1										
	\ \ \ \	U		abit	, 10		ΠΡ	10 1		ui i	-cg	000	5101	١.										
		urce Varia	tion			SS					d.f.				MS=	SS/d.1				F*				
	_	gress		S	SR =	$\sum_{i=1}^{n}$	$(\widehat{Y}_i -$	<u>Y</u>) ²		d.f.(8					ISR =				F* =	MSR	MSE	_		
	Er To	ror tal		SS	SE = TO =	$\sum_{i=1}^{n}$ $\sum_{i=1}^{n}$	(Y _i – . (Yi –	$(\frac{Y_i}{Y})^2$	d	l.f.(<i>S</i> S f.(<i>S</i> S				MSE MSTC	= S = S									
						<u> </u>	(- 7	_ ,		(, ,							,						
															4	□ ▶	∢ ₫	▶ ∢	≣ ⊦	∢ ∄	Þ	1	のの	(°

Heights

$$n = 928, \ \overline{X} = 68.31578, \ \overline{Y} = 68.08227, \ \sum_{i} X_{i}^{2} = 4334058, \ \sum_{i} Y_{i}^{2} = 4307355, \ \sum_{i} X_{i} Y_{i} = 4318152, \ \hat{\beta}_{1} = 0.637, \ \hat{\beta}_{0} = 24.54.$$

$$SSTO = \sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2} = \sum_{i=1}^{n} Y_{i}^{2} - n(\overline{Y})^{2}$$

$$= 4307355 - 928 \times 68.08227^{2} = 5893.$$

$$SSR = \sum_{i=1}^{n} (\widehat{Y}_{i} - \overline{Y})^{2} = \hat{\beta}_{1}^{2} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

$$= 0.637^{2} \times \left[4334058 - 928 \times 68.31578^{2} \right] = 1234.$$

$$SSE = SSTO - SSR = 4659.$$

4 D > 4 B > 4 E > 4 E > 9 Q C

Heights (Cont'd)

	Sourc		5	S			d.f.			MS	=SS/d	l.f.			F*			
-	of Var	ation																
	Regre	ssion	SSR :				(SSR				? = 1:		F*	= MS	R/M	SE =	245	Г
-	Error		SSE :	= 465	9	d.f.(SSE)	= 926	3	MSI	= 5	.03						
	Total		SSTO	= 589	93	d.f.(SSTO) = 92	7	MST	O = 0	5.36						

- Test whether there is a linear association between parent's height and child's height. Use significance level $\alpha = 0.01$.
- $F(0.99; 1, 926) = 6.66 < F^* = 245$, so reject $H_0: \beta_1 = 0$ and conclude that there is a significant linear association between parent's height and child's height.
- Recall $T^* = 15.66$, t(0.995; 926) = 2.58 and check:

$$15.66^2 = 245, \quad 2.58^2 = 6.66.$$

Coefficient of Determination R^2

 R² is a descriptive measure for linear association between X and Y:

$$R^2 = \frac{SSR}{SSTO} = 1 - \frac{SSE}{SSTO}$$

- R² is the of the variation in Y by explaining Y using X through a linear regression model.
- Heights.

$$R^2 = \frac{1234}{5893} = 0.209.$$

20% of variation in child's height may be "explained" by

Coefficient of Determination R^2

 R² is a descriptive measure for linear association between X and Y:

$$R^2 = \frac{SSR}{SSTO} = 1 - \frac{SSE}{SSTO}$$

- R² is the proportional reduction of the variation in Y by explaining Y using X through a linear regression model.
- Heights.

$$R^2 = \frac{1234}{5893} = 0.209.$$

20% of variation in child's height may be "explained" by the variation in parent's height.

Properties of R²

• If all observations Y s fall on one straight line, then

The predictor variable X accounts for

- observations Y_is.
- If the fitted regression line is horizontal, i.e., $\hat{\beta}_1 = 0$, then

- The predictor variable X is in explaining the variation in the observations Y_is.
- There is linear association between X and Y in the data.

in the

Properties of R^2

Since
$$0 \le SSE$$
, $SSR \le SSTO$, it follows:

$$0 \le R^2 \le 1.$$

- All observations Y_i s fall on one straight line \iff SSE = 0 \iff $R^2 = 1$.
 - The predictor variable X accounts for all variation in the observations Yis.
- The fitted regression line is horizontal, i.e., $\hat{\beta}_1 = 0$ $\iff SSR = 0 \iff R^2 = 0$.
 - The predictor variable X is of no use in explaining the variation in the observations Y_is.
 - There is no evidence of linear association between X and Y in the data.

