Curs 11: Diferențe finite. Derivarea numerică a funcțiilor

Octavia-Maria BOLOJAN

octavia.nica@math.ubbcluj.ro

13 Decembrie 2017

1. Diferențe finite

- Teoria diferențelor finite joacă un rol important în cadrul Analizei numerice, deoarece permite elaborarea unor metode practice de aproximare care folosesc valorile funcțiilor pe puncte echidistante sau neechidistante.
- Presupunem că se cunosc valorile unei funcții f pe punctele (nodurile) echidistante $a_i = a + ih$, unde $a, h \in \mathbb{R}, h \neq 0, i = \overline{1, n}$.

Definition

Se numește diferență finită de ordinul I a funcției f pe nodul a_i cu pasul h, mărimea

$$\Delta_h^1(f)(a_i) = f(a_i + h) - f(a_i), \quad (\forall) \ 0 \le i < n.$$

Observații:

- 1) $\Delta_h^1(f)(a_i)$ se mai notează cu $\Delta_h(f)(a_i)$
- **2)** Prin convenție, $\Delta_{h}^{0}\left(f\right)\left(a_{i}\right)=f\left(a_{i}\right)$
- **3)** Pentru a_i și h fixate, $\Delta_h^1(f)(a_i)$ este un operator liniar în funcție de f, pentru că se verifică ușor relațiile

$$\begin{array}{rcl} \Delta_{h}^{1}\left(f+g\right)\left(a_{i}\right) & = & \Delta_{h}^{1}\left(f\right)\left(a_{i}\right) + \Delta_{h}^{1}\left(g\right)\left(a_{i}\right) \\ \Delta_{h}^{1}\left(\alpha f\right)\left(a_{i}\right) & = & \alpha \Delta_{h}^{1}\left(f\right)\left(a_{i}\right), \quad (\forall) \ \alpha \in \mathbb{R}. \end{array}$$

Prin definiție,

$$\Delta_{h}^{2}\left(f
ight)\left(\mathsf{a}_{i}
ight)=\Delta_{h}^{1}\left[\Delta_{h}^{1}\left(f
ight)\left(\mathsf{a}_{i}
ight)
ight]$$

se numeste diferență finită de ordinul 2 a funcției f pe punctul/nodul a_i cu pasul h, etc,

$$\Delta_{h}^{k}\left(f\right)\left(a_{i}\right) = \Delta_{h}^{1}\left[\Delta_{h}^{k-1}\left(f\right)\left(a_{i}\right)\right], \quad 0 \leq k \leq n-i, 0 \leq i < n$$

se numeste diferență finită de ordinul k a funcției f pe punctul/nodul a_i cu pasul h.

Exemplu. Să se determine expresia pentru $\Delta_h^2(f)(a_i)$. Soluție.

$$\begin{split} \Delta_{h}^{2}\left(f\right)\left(a_{i}\right) &= \Delta_{h}^{1}\left[\Delta_{h}^{1}\left(f\right)\left(a_{i}\right)\right] \\ &= \Delta_{h}^{1}\left[f\left(a_{i}+h\right)-f\left(a_{i}\right)\right] \\ &= \Delta_{h}^{1}\left(f\right)\left(a_{i}+h\right)-\Delta_{h}^{1}\left(f\right)\left(a_{i}\right) \\ &= f\left(a_{i}+2h\right)-f\left(a_{i}+h\right)-\left(f\left(a_{i}+h\right)-f\left(a_{i}\right)\right) \\ &= f\left(a_{i}+2h\right)-2f\left(a_{i}+h\right)+f\left(a_{i}\right) \end{split}$$

Caz particular: $f(x) = e^x$

Avem:

$$\Delta_{h}^{1}(f)(a_{i}) = e^{a_{i}+h} - e^{a_{i}} = (e^{h} - 1)e^{a_{i}}$$

$$\Delta_{h}^{2}(f)(a_{i}) = e^{a_{i}+2h} - 2e^{a_{i}+h} + e^{a_{i}} = (e^{h} - 1)^{2}e^{a_{i}}$$
...

 $\Delta_h^k(f)(a_i)=\left(e^h-1
ight)^ke^{a_i}$ - relație ce se poate demonstra prin inducție matematică

Theorem

Are loc formula:

$$\Delta_{h}^{n}\left(f\right)\left(\mathbf{a}\right)=\sum_{i=0}^{n}\left(-1\right)^{i}\left(\begin{array}{c}n\\i\end{array}\right)f\left(\mathbf{a}+\left(n-1\right)i\right).$$

Observație:

$$\left(\begin{array}{c}n\\i\end{array}\right)=C_n^i.$$

Theorem

Are loc formula:

$$\Delta_{h}^{k}\left(f\right)\left(a_{i}\right)=\Delta_{h}^{k-1}\left(f\right)\left(a_{i+1}\right)-\Delta_{h}^{k-1}\left(f\right)\left(a_{i}\right),$$

$$(\forall) i = \overline{1, n-1}, k = \overline{1, n-i}.$$

• Putem genera tabelul cu diferențe finite de forma

	f	$\Delta_h(f)$	$\Delta_h^2(f)$	 $\Delta_{h}^{n}\left(f\right)$	
a ₀	f_0	$\Delta_h(f_0)$	$\Delta_b^2(f_0)$	$\Delta_h^n(f_0)$	
a_1	f_1	$\Delta_h(f_1)$	$\Delta_h^2(f_1)$	0	
a 2	f_2	$\Delta_h(f_2)$	$\Delta_h^2(f_2)$	0	
a 3	f_3	$\Delta_h(f_3)$	$\Delta_h^2(f_3)$	 0	,
				0	
a_{n-1}	f_{n-1}	$\Delta_h(f_{n-1})$	0	0	
a _n	f_n	0	0	0	

unde
$$f_i \stackrel{\text{not.}}{=} f(a_i)$$
 si $\Delta_h^k(f_i) = \Delta_h^{k-1}(f_{i+1}) - \Delta_h^{k-1}(f_i)$, $i = \overline{1, n-1}$, $k = \overline{1, n-i}$.

2. Derivare numerică. Formule pentru derivata de ordinul I

• Derivarea numerică constă în aproximarea derivatelor de un anumit ordin a unei funcții printr-o combinație liniară de valori ale funcției în anumite puncte.

Theorem

Fie $f: \mathbb{R} \to \mathbb{R}$ o funcție derivabilă, $x_0 \in \mathbb{R}$ și h > 0 un număr real numit pas. Dacă $f \in C^2([x_0, x_0 + h])$, atunci are loc:

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} + \mathcal{R}(f), \tag{2.1}$$

unde restul $\mathcal{R}(f)$ poate fi evaluat prin

$$|\mathcal{R}(f)| \leq \frac{h}{2} \max_{x \in [x_0, x_0 + h]} |f''(x)|.$$

Consecință. Dacă $f \in C^2([x_0 - h, x_0])$, atunci are loc:

$$f'(x_0) = \frac{f(x_0) - f(x_0 - h)}{h} + \mathcal{R}(f), \tag{2.2}$$

unde restul $\mathcal{R}(f)$ poate fi evaluat prin

$$|\mathcal{R}(f)| \leq \frac{h}{2} \max_{x \in [x_0 - h, x_0]} |f''(x)|.$$

Observație. Formulele de derivare (2.1) si (2.2) sunt exacte pe mulțimea polinoamelor de grad 1.

• Dacă $f \in C^3([x_0 - h, x_0 + h])$, atunci are loc:

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0 - h)}{2h} + \mathcal{R}(f), \tag{2.3}$$

unde restul $\mathcal{R}(f)$ poate fi evaluat prin

$$|\mathcal{R}(f)| \leq \frac{h^2}{6} \max_{x \in [x_0 - h, x_0 + h]} \left| f'''(x) \right|.$$

• De asemenea, dacă $f \in C^3([x_0, x_0 + 2h])$, atunci are loc:

$$f'(x_0) = \frac{-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h)}{2h} + \mathcal{R}(f), \tag{2.4}$$

unde restul $\mathcal{R}(f)$ poate fi evaluat prin

$$|\mathcal{R}(f)| \leq \frac{h^2}{3} \max_{x \in [x_0 - h, x_0 + h]} |f'''(x)|.$$

Observație. Formulele de derivare (2.3) si (2.4) sunt exacte pe mulțimea polinoamelor de grad 2.

Formule pentru derivata de ordinul II

Theorem

Fie $f: \mathbb{R} \to \mathbb{R}$ o funcție de două ori derivabilă, $x_0 \in \mathbb{R}$ și h > 0 un număr real numit pas. Atunci are loc:

$$f''(x_0) = \frac{f(x_0) - 2f(x_0 + h) + f(x_0 + 2h)}{h^2} + \mathcal{R}(f), \tag{2.5}$$

unde, dacă $f \in C^3\left([x_0,x_0+2h]\right)$, restul $\mathcal{R}(f)$ poate fi evaluat prin

$$|\mathcal{R}(f)| \le h \max_{x \in [x_0, x_0 + 2h]} |f'''(x)|.$$

Observație. Formula de derivare (2.5) este exactă pe mulțimea polinoamelor de gradul 2.

Exemplu. Să se aproximeze derivatele de ordinul I si ordinul II ale funcției $f(x) = e^{-x} \sin x$, în punctul $x_0 = 1$ cu pasul h = 0.1.

Soluție:

- \rightarrow se folosesc formulele (2.1) si (2.5)
- → Derivata de ordinul I:

$$f'(1) = \frac{f(1.1) - f(1)}{0.1} + \mathcal{R}(f),$$

unde restul $\mathcal{R}(f)$ poate fi evaluat prin

$$|\mathcal{R}(f)| \le \frac{0.1}{2} \max_{x \in [1,1.1]} |f''(x)|.$$

→ Derivata de ordinul II:

$$f''(1) = \frac{f(1) - 2f(1.1) + f(1.2)}{0.01} + \mathcal{R}(f),$$

unde restul $\mathcal{R}(f)$ poate fi evaluat prin

$$|\mathcal{R}(f)| \leq 0.1 \max_{x \in [1, 1.2]} |f'''(x)|.$$

Observație:

$$\lim_{h \to 0} \frac{\Delta_h^1(f)(a)}{h} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = f'(a)$$

$$\Rightarrow f'(a) \simeq \frac{\Delta_h^1(f)(a)}{h}$$

Similar,

$$f^{(n)}(a) \simeq \frac{\Delta_h^n(f)(a)}{h^n}$$