[MVC-QUIZ-01]

SOLUTION KEY February 26, 2024

MUC-RUIZ-01

National University

Of Computer & Emerging Sciences, Karachi-Campus

Multivariable Calculus QUIZ-1	[Max Marks:10]
-------------------------------	----------------

Instructor: Dr. Nazish Kanwal

Sections: BCS-2B, BCS-2F, BCY-2A, BCY-2B

NAME:

Roll No:____

Q#01 [3 marks] Find and sketch the domain of $f(x, y) = \frac{1}{\sqrt{y^2 - x^2}}$.

9-270=> (4+x)(4-x170=> 4+x1 >064-x1>0 OR.

Q#02 [3 marks] Determine whether the limit $\lim_{(x,y)\to(0,0)} \frac{x^3-y^3}{x^2+y^2}$ exists if it does find the limit.

palu along y=mx. lem $x^3(1-m^3) = lem x(1-m^3) = 0$. $x-x^3(1+m^2) = x-x^3(1+m^2) = 0$. Palu along $y=Kx^2$

 $\lim_{N\to0} \frac{x^{\frac{3}{4}}(1-K^{3}x^{\frac{3}{4}})}{x^{\frac{3}{4}}(1+K^{2}x^{\frac{3}{4}})} = \lim_{N\to0} \frac{x(1-K^{3}x^{\frac{3}{4}})}{1+K^{2}x^{\frac{3}{4}}} = 0$

Hence limit exist and

lem (100) 73-43 = 0.

Q#03 [4 marks] Find
$$\frac{\partial z}{\partial y}$$
, for the implicit function $y^2 + z \cos(xyz) = 2$.

Alternatively $\frac{\delta Z}{\delta Y} = -\frac{\delta f}{\delta Y}, f(x,y,Z) = \frac{y^2}{4} + \frac{2}{3} \cosh(xy,Z) - 2$ $\frac{\delta f}{\delta Y} = \frac{2y - 2}{2} + \frac{2}{3} \sinh(xy,Z)$ $\frac{\delta f}{\delta Z} = \frac{2y - 2}{3} + \frac{2}{3} \sinh(xy,Z)$ $\frac{\delta Z}{\delta Y} = -\frac{2y - 2}{3} + \frac{2}{3} \ln(xy,Z)$ $\frac{\delta Z}{\delta Y} = -\frac{2y - 2}{3} + \frac{2}{3} \ln(xy,Z)$ $\frac{\delta Z}{\delta Y} = -\frac{2}{3} + \frac{2}{3} + \frac$

Scanned with CamScanner