

Supraventrikuläre Herzrhythmusstörungen

Jan Steffel

Professor für Kardiologie, Universität Zürich

FMH Kardiologie / Innere Medizin

Spez. Rhythmologie / Elektrophysiologie

Hirslanden Klinik / Klinik im Park, Zürich

jan.steffel@hin.ch

Mindmap

UZH Medizinische Fakultät (CC BY-NC)

Supraventrikuläre Tachykardien

Lernziele der Lektion

- 1. Sie können die verschiedenen supraventrikulären Tachykardien aufzählen.
- 2. Sie können die verschiedenen supraventrikulären Tachykardien im EKG erkennen.
- 3. Sie können Therapiekonzepte zur Behandlung supraventrikulärer Tachykardien erklären.

Rhythmusstörungen

Bradykard

<60

"Suprahissär"

Oberhalb His-Bündel

- Sinusbradykardie
- AV Block I°
- AV Block II° (Typ I)

in der Regel nicht lebensbedrohlich

Tachykard

>100

- Vorhofflimmern
- Vorhofflattern
- Atriale Tachykardie
- AVNRT
- AVRT / WPW

<u>"Supra-</u> ventrikulär"

in der Regel nicht lebensbedrohlich

- <u>"Infra-</u>
- AV Block II° (Typ II)
- hissär"
- AV Block III°

Innerhalb und unterhalb vom His-Bündel

potentiel lebensbedrohlich

- Ventrikuläre Tachykardie
- Kammerflimmern

potentiel lebensbedrohlich

Wolf-Parkinson-White (WPW)

WPW-Syndrom, wenn die Menschen auch Symptome haben --> Tachykardien

WPW

Isolation von Vorhöfen zu Kammer unvollständig

Grüne Linie schneller, da Arbeitsmyokard nicht verzögert wie His Bündel --> PQ Zeit verkürzt

Parallel dazu läuft Signal durch HIS Bündel

Grüner Anstieg aber weniger Steil, da Arbeitsmyokard weniger schnell leitet wie His-Purkinje-System

Blau: normales Signal durch Reiz-Leitungssystem

--> Regelmässige, schmalkomplexige Tachykardie

Schmalkomplexig --> eher atriell

WPW

Orthodrome AVRT

EINE Extrasystole reicht, um einen Kurzschluss zu verursachen

Antidrome AVRT

Antidrome AVRT

Breitkomplextachykardie

Lange R-P Dauer (> 90ms)

gesamter Myokard wird durch den Myokard aktiviert
--> langsamer Anstieg

"Herzgesunder" Patient kommt auf die Notfallstation...

WPW

unregelmössig weil VHF unregelmässig ist

Selber Patient im Sinusrhythmus

Tachykardie vs. Sinusrhythmus

Typische AVNRT

AV-Knoten reentry-Tachykardie

Typische AVNRT

Schmalkomplextachykardie

Kurze R-P Dauer (< 90^{dieses Mal kurz}

Typische Klinik...

Atypische AVNRT

- Lange R-P Dauer (> 90ms)
- o "Slow-slow", "fast-slow", ...

AVRT vs. AVNRT

(typische) AVNRT

Fokale atriale Tachykardie

V-Block kann man nur diagnostizieren, enn die Leute im Sinusrhythmus sind

Fokale atriale Tachykardie

"Typisches" Vorhofflattern

Vorhofflattern

"Isthmusabhängiges" Vorhofflattern

10.0 mm/mV

SSF

50 Hz

- Verantwortlich für 1/3 aller Hospitalisationen für Rhythmusstörungen¹
- o Geschätzte Prävalenz:
 - Europa: 4.5 million¹
 - o USA: 5.1 million²
- Etwa 2.5% der US Bevölkerung hat VHF²
- Fast jeder Vierte 55 Jährige wird VHF entwickeln (24% der Männer, 22% der Frauen)³

^{1.} ACC/AHA/ESC guidelines: Fuster V et al. Circulation 2006;114:e257–354 & Eur Heart J 2006;27:1979–2030;

^{2.} Miyasaka Y et al. Circulation 2006;114:119-25;

^{3.} Heeringa J et al. Eur Heart J 2006;27:949-53

2 Behandlungsziele:

- 1. Behandlung der Arrhythmie
- 2. Prävention des Schlaganfalls

2 Behandlungsziele:

- 1. Behandlung der Arrhythmie
- 2. Prävention des Schlaganfalls

Thrombeombolierisiko bei VHF – CHA₂DS₂-VASc Score

Vitamin K antagonists and novel anticoagulants

Mod. nach Steffel & Braunwald, European Heart Journal 2011

Vitamin K antagonists and novel anticoagulants

Mod. nach Steffel & Braunwald, European Heart Journal 2011

2 Behandlungsziele:

- 1. Behandlung der Arrhythmie
- 2. Prävention des Schlaganfalls

Ursprung des Vorhofflimmerns

Haissaguere et al., NEJM 1998

Vorhofflimmern Ablation mittels Cryoballon

Kuck et al., NEJM 2016

Rhythmusstörungen

	Bradykard	<u>Tachykard</u>
<u>"Supra-</u> <u>hissär"</u>	 Sinusbrady aie AV Bloomacher die AV Bloomacher die AV Bloomacher die Typ I) 	 Vorhofflimmern 50-80% Vorhofflattern 80-95% Atriale Tachykardie ~80% AVNRT 95-98% AVRT / WPW 80-98%
<u>"Infra-</u> <u>hissär"</u>	• AV Block acher (Typ II) • AV Berritting III°	Ventrikuläre Tachykardie Kammerflimmern Ventrikulär

Supraventrikuläre Herzrhythmusstörungen

Jan Steffel

Professor für Kardiologie, Universität Zürich

FMH Kardiologie / Innere Medizin

Spez. Rhythmologie / Elektrophysiologie

Hirslanden Klinik / Klinik im Park, Zürich

jan.steffel@hin.ch