PATENT

OCT 0 2 2006 W

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of:

KAI KROHN, ET AL.

Serial No.:

09/508,658

Group No.: 1634

Filed:

NOVEMBER 3, 2000

Examiner:

J.S. SITTON

For:

NOVEL GENE DEFECTIVE IN APECED AND ITS USE

Attorney Docket No.:

U 012653-9

Commissioner for Patents

P. O. Box 1450

Alexandria, VA 22313-1450

REQUEST FOR DECLARATION OF INTERFERENCE PURSUANT

TO 37 CFR 41.202

In accordance with the provisions of 37 CFR 41.202 applicants suggest that an interference be declared:

CERTIFICATE OF MAILING/TRANSMISSION (37 CFR 1.8a)

I hereby certify that this correspondence is, on the date shown below, being:

MAILING

deposited with the United States Postal Service with sufficient postage as first class mail in an envelope addressed to the Commissioner for Patents, P. O. Box 1450, Alexandria, VA 22313-

1450

Date: September 29, 2006

Signature

Janet I. Cord

(type or print name of person certifying)

FACSIMILE

transmitted by facsimile to the Patent and

Trademark Office to (571)-273-8300

(1) between the subject application 09/508,658 and U.S. Patent 6,951,928 (Peltonen - Issue date of Patent- October 4, 2005). This provides sufficient information to identify the patent with which the applicant seeks an interference. (37 CFR 41.202(a)(1)).

A request for declaration of interference pursuant to 37 CFR 1.41.202 between the divisional of this application, US patent application 11/501,979 and U.S. patent 6,951,928 is being filed in US patent application 11/501,979. Both of these requests are being filed within one year of the issue date of US patent 6,951,928.

(2) The applicants believe claims 27 and 36 presently on file in the subject application interfere with claims 2, 3, 4 and 8 of U.S. Patent 6,951,928.

Applicants propose the following counts:

Count 1:

An isolated nucleic acid molecule comprising nucleotides 1-2020 of nucleotide sequence SEQ ID NO: 1 of U.S. Patent 6,951,928 or nucleotides 17-2036 of SEQ ID NO: 1 of U.S. Patent Application 09/508,658.

Count 2:

An isolated nucleic acid molecule differing from the nucleic acid sequence of SEQ ID NO: 1 of U.S. Patent 6,951,928 by a substitution, wherein the substitution is a change of cytosine to thymidine at nucleotide position 889 or an isolated nucleic acid molecule differing from the nucleic acid sequence of SEQ ID NO:1 of U.S. Patent Application 09/508,658 by a substitution, wherein the substitution is a change of cytosine to thymidine at nucleotide position 905.

The claims of the parties that correspond to Count 1 are:

U.S. Patent Application 09/508,658

27

U.S. Patent 6,951,928

2, 3 and 4

The claims of the parties that correspond to Count 2 are:

U.S. Patent Application 09/508,658

36

U.S. Patent 6,951,928

8

In this paragraph, applicants have identified all claims the applicants believe interfere, have proposed one or more counts, and have shown how the claims correspond to one or more counts (37 CFR 41.202(a)(2)). Additional information describing how claims correspond to one or more counts is found in the next section of this request for declaration of interference.

3) Claim Chart

For each count, a claim chart is provided comparing at least one claim of a party corresponding to the count.

A showing why the claims interfere within the meaning of §41.203(a) is provided. (37 CFR 41.202(a)(3)).

Count 1	US patent	US patent 6,951,928	Why the claims
	application		interfere
	09/508,658		
	Claim 27	Claim 2	

An isolated The isolated nucleic SEQ ID NO:1 of An isolated nucleic acid acid molecule of Claim 27 of US nucleic acid molecule molecule claim 1 wherein the patent application 09/508,658 includes comprising the molecule is DNA or comprising nucleotides 1-2020 of nucleotide SEQ ID NO:1. RNA. nucleotides 1-2020 sequence SEQ ID NO: 1 of SEQ ID NO:1 Claim 3. An isolated claimed in claims 2, of U.S. Patent 6,951,928 or nucleotides 17-2036 of nucleic acid 3 and 4 of U.S. molecule according Patent 6,951,928. SEQ ID NO: 1 of U.S. Patent Application to claim 1 wherein SEQ ID NO:1 of 09/508,658. the nucleic acid Claim 3 of US molecule comprises patent 6,951,928 the nucleotide includes nucleotides sequence of SEQ ID 17-2036 of SEQ ID NO:1. NO:1 of claim 27 of US patent Claim 4. The application isolated nucleic acid 09/508,658. molecule of claim, wherein the nucleic acid molecule consists of the contiguous nucleotide sequence of SEQ ID NO:1, or the coding region thereof that encodes the polypeptide of SEQ ID NO:2.

According to 37 CFR 10. 41.203(a) an interference exists if the subject matter of a claim of one party would, if prior art have anticipated or rendered obvious the subject matter of a claim of the opposing party and vice versa.

Claim 27 of the subject application interferes with claims 2, 3 and 4 of U.S. Patent 6,951,928 and vice versa, because each claims a nucleotide sequence of SEQ ID NO: 1. The nucleotide sequence of these SEQ ID Nos: 1 that encode the polypeptide of SEQ ID NO: 2 of the respective SEQ ID NOs: 1 is the same. The nucleotides 17-2036 of SEQ ID NO: 1 included in claim 27 of this application which is the sequence encoding the amino acid sequence of SEQ ID NO:2 is the same as nucleotides 1-2020 of SEQ ID NO: 1 of claim 3 of U.S. Patent 6,951,928 which is the sequence encoding the amino acid sequence of SEQ ID NO:2. SEQ ID NO:2 of US patent application 09/508,658 is the same as SEQ ID NO:2 of U.S. patent 6,951,928. For anticipation, there must be no difference between the claimed invention and the reference disclosure, as viewed by a person of ordinary skill in the field of the invention. Scripps Clinic & Res. Found. v. Genentech, Inc., 927 F.2d 1565, 18 USPQ2d 1001 (Fed. Cir. 1991). Therefore, since the coding sequences of SEQ ID NOs:1 of the respective patent application and patent are the same, the subject matter of the claim 27 of US patent application 09/508,658 and claims 2, 3 and 4 of US patent 6,951,928, anticipate the coding sequence of each other and if not considered to anticipate, each other would certainly be obvious in view of the other claim(s)

Count 2	US patent	US patent 6,951,928	
	application		
	09/508,658		
	Claim 36	Claim 8	

An isolated Both claim 36 of US An isolated nucleic acid An isolated nucleic molecule differing from nucleic acid acid molecule patent application the nucleic acid sequence molecule differing from the 09/508,658 and of claim 8 of US patent comprising nucleic acid SEQ ID NO: 1 of U.S. SEQ ID NO:1 sequence of SEQ ID 6,951,928 define the Patent 6,951,928 by a wherein the NO:1 by a same mutation in the nucleotide at substitution, wherein the substitution, wherein same location of the substitution is a change of position 905 the substitution is: nucleotide sequence is a T instead cytosine to thymidine at changes of cytosine encoding the nucleotide position 889 or of a C. to thymidine at polypeptide of SEQ an isolated nucleic acid nucleotide position ID NO:2. This is molecule differing from 889, guanosine to shown in the the nucleic acid sequence thymidine at attachment 1. nucleotide position of SEQ ID NO:1 of U.S. 358, adenosine to Patent Application 09/508,658 by a guanosine at nucleotide position substitution, wherein the substitution is a change of 374, guanosine to cytosine to thymidine at adenosine at nucleotide position 905. nucleotide position 1052, or cytosine to adenosine at nucleotide position 1094.

Claim 36 of US patent application 09/508,658 interferes with claim 8 of U.S. Patent 6,951,928 and vice versa because they define the same mutation. This is the mutation at nucleotide 768 of the coding sequence. As stated above, for anticipation, there must be no difference between the claimed invention and the reference disclosure, as viewed by a person

of ordinary skill in the field of the invention. Scripps Clinic & Res. Found. v. Genentech, Inc., 927 F.2d 1565, 18 USPQ2d 1001 (Fed. Cir. 1991). Therefore, the subject matter of these claims anticipate each other and if not considered to anticipate each other would certainly be obvious in view of the other claim.

4) The applicants will prevail on priority because U.S. application 09/508,658 is a 35 USC 371 application of PCT application FI98/00749 filed on September 23, 1998 which claims priority from Finnish patent application 973762 filed on September 23, 1997.

Finnish patent application 973762, the priority application, describes SEQ ID NO: 1 the subject matter claimed in claim 27 on pages 19-22 of the application.

Support for claim 36 is found, inter alia, on page 5, lines 28-32; page 8, lines 35-36 and Fig. 3(b) of the Finnish priority application.

A copy of Finnish application 973762 is attached for the Examiner's convenience.

U.S. Patent 6,951,928 is a 35 USC 371 application of PCT EP98/06294 filed on October 2, 1998. Priority is claimed from German patent applications DE 97 11 7154; DE 97 11 7398; and DE 97 11 9810 filed on October 2, October 8 and November 12, 1997 respectively, all of which were filed after September 23, 1997, the date of applicants' Finnish patent application 973762.

Applicants earliest constructive reduction to practice of September 23, 1997 is earlier than the earliest priority date of U.S. Patent 6,951,928.

Therefore, as the applicants have the earliest filed application that includes a description of the interfering subject matter and their Finnish patent application 973762, has the earliest filing date which is evidence of the earliest constructive reduction to practice,

applicants will prevail on priority.

(5) No claims have been added or amended to provoke an interference. Claim 36 was included in the last amendment filed in US patent application 09/508,658.

(6) The following is a chart showing where the disclosure provides a constructive reduction to practice within the scope of the interfering subject matter (37 CFR 41.202(a)(6)).

		US patent	Finnish
		application	patent
	·	09/508,658	application
			973762
An isolated nucleic acid molecule	Claim 27 of US	See	See sequence
comprising nucleotides 1-2020 of	patent application	sequence	listing on
nucleotide sequence SEQ ID NO: 1	09/508,658	listing of	pages 19-22
of U.S. Patent 6,951,928 or		SEQ ID	of the
nucleotides 17-2036 of SEQ ID NO:		NO:1 on	application
1 of U.S. Patent Application		pages 21-24	
09/508,658.		of the	
		application.	

An isolated nucleic acid molecule	Claim 36 of US	Support for	Support for
differing from the nucleic acid	patent application	claim 36 is	claim 36 is
sequence of	09/508,658.	found, inter	found, inter
SEQ ID NO: 1 of U.S. Patent		alia, on	alia, on page
6,951,928 by a substitution, wherein		page 5,	5, lines 28-
the substitution is a change of		lines 16-20,	32; page 8,
cytosine to thymidine at nucleotide		page 8,	lines 35-36
position 889 or an isolated nucleic		lines 22-23	and Fig. 3(b)
acid molecule differing from the		and Figure	of the
nucleic acid sequence of SEQ ID		3(b) of the	Finnish
NO:1 of U.S. Patent Application		US patent	priority
09/508,658 by a substitution,	1	application.	application.
wherein the substitution is a change			
of cytosine to thymidine at			
nucleotide position 905.			

It is respectfully requested that the interference be declared.

Respectfully submitted,

JANET I. CORD

LADAS & PARRY

26 WEST 61ST STREET

NEW YORK, NEW YORK 10023

REG. NO.33778 (212)708-1935

[^]Helsinki 20.10.98

ETUOIKEUSTODISTUS PRIORITY DOCUMENT

Hakija Applicant FINNISH IMMUNOTECHNOLOGY LTD

Tampere

Patenttihakemus nro Patent application no

973762

Tekemispäivä

23.09.97

Filing date

Kansainvälinen luokka International class

C 12N

Keksinnön nimitys Title of invention

"Novel gene" (Uusi geeni)

Täten todistetaan, että oheiset asiakirjat ovat tarkkoja jäljennöksiä patentti- ja rekisterihallitukselle alkuaan annetuista selityksestä, patenttivaatimuksista, tiivistelmästä ja piirustuksista.

This is to certify that the annexed documents are true copies of the description, claims, abstract and drawings originally filed with the Finnish Patent Office.

> Satu Vasenius laostopäällikko

Maksu Fee

385,mk

385,-

FIM

Field of the invention

The present invention relates to a novel gene, a solution of the protein encoded by said gene, a mutated form of the gene and to diagnostic and therapeutic uses of the gene or a mutated form thereof. More specifically, the present invention relates to a novel gene defective in autoimmune polyendocrinopathy syndrome type I (APS I), also called autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) (MIM No. 240,300).

Background

Autoimmune polyglandular syndrome type I (APS I), also known as autoimmune polyendocrinopathy-candidiasis15 ectodermal dystrophy (APECED), is a rare recessively inherited disease (MIM No. 240,300) that is more prevalent among certain isolated populations, such as Finnish, Sardinian and Iranian Jewish populations. The incidence of the disease among the Finns and the Iranian Jews is estimated to be 1:25000 and 1:9000, respectively, whereas only few cases in other parts of the world are found each year.

APECED is one of the two major autoimmune polyendocrinopathy syndromes. The causing factor of APECED has not yet been identified. In APECED, the patient develops 25 chronic mucocutaneous candidiasis soon after birth, later several organ-specific autoimmune diseases, mainly hypoparathyreoidism, Addison's disease, chronic atrophic gastritis with or without pernicious anemia, and in puberty gonadal dysfunction occur [Ahonen P, Clin. Genet. 27 (1985) 30 535-542]. An accepted criterion for diagnosis of APECED is the presence of at least two of the three main symptoms, Addison's disease, hypoparathyroidism and candidiasis, in patients [Neufeld, M. et al., Medicine 60 (1981) 355-362]. Immunologically, the major findings are the presence 35 of high-titer serum autoantibodies against the effected organs, antibodies against Candida albicans, and

low or lacking T-cell responses toward candidal antigens [Blizzard, R. M. and Kyle M., J. Clin. Invest. 42 (1963) 1653-1660; Arulanantham, K. et al., New Eng. J. Med. 300 (1979) 164-168; Krohn, K. et al., Lancet 339 (1992) 770-5 773; Uibo R. et al., J. Clin. Endocrinol. Metab. 78 (1994) 323-328]. The disease usually occurs in childhood, but new life may appear throughout symptoms specific tissue (1990)Engl. J. Med. 322 al., New Ρ. et [Ahonen, 1829-1836]. APECED is not associated with a particular HLA 10 haplotype, and both males and females are equally affected consistant with the autosomal recessive mode of inheritance.

The locus for the APECED gene has been mapped to chromosome 21q22.3 between gene markers D21S49 and D21S171

15 based on linkage analysis of Finnish families [Aaltonen, J. et al., Nature Genet. 8 (1994) 83-87]. Recently, Börses et al. reported a maximum LOD score of 10.23 with marker D21S1912 just proximal to the gene PFKL, and thus by linkage disequilibrium studies the critical region for APECED can be considered to be less than 500 kb between markers D21S1912 and D21S171. Locus heterogeneity was not revealed by linkage analysis of non-Finnish families [Björses, P. et al., Am. J. Hum. Genet. 59 (1996) 879-886].

Physical maps of human chromosome 21q22.3 have been developed using YACs, and bacterial based large insert cloning vectors [Chumakov et al., Nature 359 (1992) 380; Stone et al., Genome Res. 6 (1996) 218], and many laboratories have contributed to the construction of a transcription map of the whole chromosome and 21q22.3 in particular [Chen et al., Genome Res. 6 (1996) 747-760; Yaspo et al., Hum. Mol. Genet. 4 (1995) 1291-1304]. Numerous trapped exons from chromosome 21 specific cosmids and also physical contigs from the APECED critical region have been identified and partially characterized. In addition, a number of ESTs from the international human

genome project have been mapped to the APECED critical region.

Recently, as part of the international efforts of generating the entire sequence of human chromosome 21 and international agreements on the immediate availability of this type of sequence data, the partial sequence of the APECED gene critical region was made available in GenBank by the Stanford Human Genome Center which is currently carrying out the sequencing of 1.0 Mb around the critical region of the APECED gene.

However, the precise location and the sequence of the APECED gene and the nature of the gene product have not so far been clarified. Thus at present the diagnosis of APECED is based mainly on developed clinical symptoms and typical clinical findings, e.g. the presence of autoantibodies against adrenal cortex or steroidogenic enzymes P450c17 and/or P450scc. The linkage analysis is seldom used. Further, means for natal or presymptomatic diagnosis of the disease are not easily available, since the linkage analysis provides only an indirect data through known gene markers and requires samples from several family members in several generations. Additionally, the linkage analysis is tedious and can be performed only in specialized laboratories by highly-skilled personnel.

25 Also the mapping of the carriers of the disease gene is presently based on the linkage analysis and thus not readily available.

Summary of the invention

We have now identified a novel gene encoding a novel zinc finger protein, designated as autoimmune regulator 1 or AIR-1, which is mutated in APECED. The novel gene and protein allow further development of the diagnosis and therapy of APECED.

The object of the invention is to provide means which are useful in a diagnostic method and a gene therapeutic method in the diagnosis and treatment of APECED.

Another object of the invention is to provide a novel method for the diagnosis APECED, including the preand postnatal diagnosis of and the mapping of the carriers, the method being easy and reliable to perform.

The present invention relates to an isolated DNA sequence comprising the sequence id. no. 1 or a fragment or variant thereof, or an isolated DNA sequence hybridizable thereto, the DNA sequence being associated with APECED. Preferably said isolated DNA sequence includes a gene defect responsible for APECED.

The present invention also relates to a protein comprising the amino acid sequence id. no. 2 or a fragment or variant thereof, the protein being associated with APECED. Said protein has distinct structural motifs, including the PHD finger motif (PHD), the LXXLL motif (L), proline-rich region (PRR), and cystein-rich region (CRR).

The present invention further relates to a method for the diagnosis of APECED comprising detecting in a biological specimen the presence of a DNA sequence comprising the sequence id. no. 1 or a functional fragment or variant thereof, or a DNA-sequence hybridizable thereto, the DNA sequence being associated with APECED.

The present invention further relates to the use of the above-identified DNA-sequences in the diagnosis of APECED.

The present invention further relates to a method for the diagnosis of APECED comprising detecting in a biological specimen the presence or the absence of a protein comprising the sequence id. no. 2 or a fragment thereof, the protein being associated with APECED.

The present invention further relates to the use of the above-identified protein or a fragment thereof in the diagnosis of APECED.

The present invention further relates to the use of the above-identified DNA sequences in gene therapy or for

the preparation of a pharmaceutical preparation useful in a gene therapy method of APECED.

Brief description of the drawings

Figure 1 shows a physical map of the APECED gene 1 locus in the chromosome 21q22.3. Cosmids D1G8, D40G11, D9G11, D28B11, and D4G11, overlapping clones used for the genomic sequencing [Kudoh, J. et al., DNA Res. 4 (1997) 45 -52] are indicated by horizontal lines. The APECED gene located just proximal to the 5' end of the neighboring gene 10 PFKL is indicated by a solid arrow. N indicates NotI sites. DNA marker D21S1912 is shown as open box.

Figure 2 shows the structures of the APECED gene and AIR proteins. (A) Cloning strategy of AIR cDNAs and the order of the exons in the APECED gene. DNA fragments amplified by PCR and 3'- and 5'-RACE are indicated by the lines. Exon 1' is the 5'-noncoding exon of the AIR-2 and AIR-3. An additional alternative splicing of AIR-3 in exon 10, resulting in an amino acid change in its downstream, is indicated by vertical lines. Each exon, except exon 1', is bordered by the common splice site consensus sequence, ag:gt. Mutations in the exon 2 and exon 6 are indicated by the arrows. (B) Schematic presentation of the three AIR proteins showing distinct structural motifs, including the PHD finger motif (PHD), the LXXLL motif (L), proline-rich region (PRR), and cystein-rich region (CRR).

Figure 3 shows electropherograms showing the sequence surrounding the mutations in the APECED gene. (A) Mutation analysis of a Swiss APECED family. The parents are heterozygous for the allele (normal "C" and abnormal "T").

30 The affected boy and girl show the "C" to "T" transition resulting in the "Arg" to "Stop" nonsense mutation at amino acid position 257. (B) Mutation analysis of two Finnish APECED patients. The patient MP is homozygous for the mutant allele (left), NP is heterozygous for the allele 35 (right). (C) The patient NP shows the "A" to "G" trans-

version resulting in the "Lys" to "Glu" missense mutation at amino acid position 42. FLEB is a normal control.

Figure 4 shows the result of restriction enzyme TagIdigestion assay demonstrating the R257stop mutation. Four 5 APECED patients [HP1 (lane 1), HP2 (lane 2), NP (lane 6), and MP (lane 8)], the mothers of two families [HM (lane 5) and NM (lane 7)], two healthy siblings [HN1 (lane 3) and HN2 (lane 4)] of family H and normal controls [C1, C2 and C3 (lanes 9-11)] are shown. The APECED patients HP1, 10 and MP are homozygotes for R257stop mutation. The APECED patient NP is heterozygous for R257stop mutation but is carrying a mutation at a different position in another allele of APECED gene (shown above in Fig. 3C). mothers (HM and NM) and two healthy siblings (HN1 and HN2) R257stop mutation and therefore 15 are heterozygous for carriers of APECED but are not having the disease. are both homozygous for normal controls (C1 and C2) alleles. Normal alleles produce a lower 225 bp fragment, the mutated fragment is upper band at 285 bp.

Figure 5 shows an amino acid sequence alignment for the PHD finger motif of AIR-1, Mi-2, and TIF1. The consensus amino acid residues conserved in the PHD finger motif is indicated by the bold letters underneath. The residues that are identical with AIR-1 (aa 299-340) are shown by the dots. GenBank accession nos. of Mi-2 and TIF1 are X86691 and AF009353, respectively.

Figure 6. A Western blot showing the expression of AIR-1 in fetal liver. A sample of fetal liver was run on PAGE, transferred to nitrocellulose filter and probed with sera as follows: Lane 1 control mouse serum, lane 2, control mouse serum absorbed with peptide AIR-1/2 (sequence id. no. 25), lanes 3 and 4, serum from a mouse immunized with peptide AIR-1/2 for four and six weeks, respectively and absorbed with peptide AIR-1/2, lanes 5 and 6 unabsorbed serum from a mouse immunized with peptide AIR-1/2 for four

and six weeks, respectively. The strong band seen in lanes 5 and 6 represent the AIR-1 protein with a molecular weight of approx. 58 kD, the lower band is an approx. 20 kD breakdown product of the AIR protein. The bands seen in all lanes are non-specific.

Detailed description of the invention

The present invention is based on studies aiming for the identification and characterization of the gene defect in APECED. In the sequence studies, a cosmid/BAC (bacterial artificial chromosome) contig of 520 kb covering four gene markers D21S1460-D21S1912-PFKL-D21S154 [Kudoh, J. et al., DNA Res. 4 (1997) 45-52] was constructed, and genomic sequencing in this region was performed [Kawasaki, K. et al., Genome Res. 7 (1997) 250-261]. From this genomic sequence information the distance between D21S1912 and PFKL was determined to be approximately 140 kb (Fig. 1).

Using a computer program, such as GRAIL and GENSCAN [Uberbacher, E. C. and Mural, R. J., Proc. Natl Acad. Sci. 88 (1991) 11261-11265; Burge, C. and Karlin, S., J. 20 Mol. Biol. 268 (1997) 78-94], gene screening in the partial sequencing data within this region was performed. GENSCAN predicted several genes between D21S1912 and PFKL. One of located just proximal to the PFKL gene these genes contained the previously trapped exon HC21EXc33 [Kudoh, J. 25 et al., DNA Res. 4 (1997) 45-52] or MDC04M06 [Chen, H. et al., Genome Res. $\underline{6}$ (1996) 747-760]. A set of primers for polymerase chain reaction (PCR) was then designed from the predicted exons. The PCR screening of various cDNA libraries using these primers allowed the isolation of a cDNA 30 clone containing the exon HC21EXc33 (exon 13) from the thymus cDNA library (Fig. 2A).

A 3'-rapid amplification of cDNA ends (3'-RACE) and 5'-RACE using Marathon[™] cDNA Amplification Kit (Clontech Laboratories Inc, California, USA) according to manufacturer's protocol from the thymus cDNA library was

performed using a primer c33F (sequence id. no. 7) and a primer 1R (sequence id. no. 8), respectively.

Sequencing analysis revealed a unique sequence of 2027 bp in overlapping PCR products that contains a 1635-bp 5 open reading frame (ORF) from methionine at nt 128 to a TAG stop codon at nt 1763 encoding a predicted novel protein designated AIR-1, for autoimmune regulator 1. AIR-1 encodes a protein of 545 amino acids with a predicted isoelectric point of 7.32 and a calculated molecular mass of 57,723 (Fig. 2B).

10

A 5'-RACE from the thymus cDNA using a primer 4R(sequence id. no. 9) resulted in an alternatively spliced product. Furthermore, two types of the cDNA clones were amplified with a primer pair 3F/c33R (sequence id. 15 10/sequence id. no. 11) and these clones encode for AIR-2 and AIR-3 proteins sequence id. no. 4 and sequence id. no. 6, respectively (Fig. 2A) (sequence id. no. 3 and sequence id. no. 5). The AIR-2 and AIR-3 proteins consist of 348 and 254 amino acids, respectively (Fig. 2B). These results 20 suggest that the APECED gene is transcribed as at least three types of mRNA by alternative splicing and/or use of an alternative 5' exon within the gene. RT-PCR analysis [Griffin, H. G. and Griffin, A. M., PCR Technology. Current Innovations, CRC Press, 1994] revealed that the AIR-1 25 transcript is also expressed in fetal liver (data not shown).

The APECED gene is approximately 13-kb in length and contains 15 exons, including the exon 1' specific to AIR-2 and AIR-3. It is transcribed in the direction of 30 centromere to telomere (Figs 1, 2A). Based on this information, PCR primers were designed to amplify each exon from the genomic DNA and a mutation analysis of Swiss and Finnish APECED families was performed. Sequence comparison identified two mutations in the APECED gene of the patients 35 (Fig. 3). The first mutation changes an Arg codon (CGA) to a stop codon (TGA) at amino acid position 257 in exon 6.

This mutation was designated as R257stop mutation. The second mutation is a missense mutation that derived from the maternal chromosome in one Finnish patient (NP): a Lys codon (AAG) changes to a Glu codon (GAG) at amino acid position 42 in exon 2. This mutation is designated as L42E mutation (Figs 2A, 3C).

The R257stop mutation destroys a TaqI restriction enzyme site and the K42E mutation introduces a novel TaqI site. Thus these two mutations can be easily demonstrated in one or both alleles by TaqI digestion or by digestion using another enzyme cleaving at the recognition site 5'-TCGA-3'(Fig. 4).

The AIR-1 protein has strong homology in certain domains to the major autoantigens (Mi-2) associated with the 15 autoimmune disease dermatomyositis [Seeig, H. P. et al., Arthritis Rheum. 38 (1995) 1389-1399; Ge, Q. et al., J. Clin. Invest. 96 (1995) 1730-1737], Sp140, a protein from the nuclear body, an organelle involved in the pathogenesis of certain types of leukemia, and which is also the target 20 of antibodies in the serum of patients with the autoimmune disease primary bilary cirrhosis [Bloch, D. B. et al., J. Biol. Chem. 271 (1996) 29198-29204]. In addition, the homologies extend to other nuclear proteins such as TIF1 [Le Douarin, B. et al., EMBO J. 14 (1995) 2020-2033], 25 LYSP100 [Dent, A. L. et al., Blood 88 (1996) 1423-1426], and putative yeast and C. elegans proteins. The AIR-1 protein homologies are principally in two PHD finger motifs (amino acid 299 to 340 and 434 to 475) (Fig. 5). AIR-1 also contains a proline-rich regions (amino acid 350 to 430) 30 (Fig. 2B). The PHD finger is a cysteine-rich structure that is distinguished from the RING finger (C3HC4) and LIM domain (C2HC5) because it contains a consensus of C4HC3. al., Trends Biochem. Sci. 20 [Aasland, R. et. 56-59]. The PHD finger motif is found in a number of 35 chromatin-associated proteins such as HRX that is involved in the t(11:17) translocation in acute leukemia [Chaplin,

T. et al., Blood 86 (1995) 2073-2076]. The proline-rich region is assumed to be involved in protein-protein interaction or DNA binding. The presence of the PHD finger and proline-rich regions indicates a function for AIRs as transcription regulatory proteins. However, the AIR proteins have no apparent nuclear translocation signal, and thus other proteins containing such signal may interact with AIR to translocate it to the nucleus. In fact, the AIR proteins also have the LXXLL motif that is a signature sequence to bind to nuclear receptors [Heery, D. M. et al., Nature 387 (1997) 733-736] (Fig. 2B).

The clinical picture of APECED and the observed immunological abnormality with strong autoimmune response towards several target organs and antigens suggest that the 15 product of the APECED gene has a central role in immune (ontogeny) maturation and in regulation of immune response towards self and nonself.

According to the diagnostic method of the invention, the presence of the defective APECED gene can be detected 20 from a biological sample by any known detection method suitable for detecting mutations. Such methods include the method described by Saiki et al. [Proc. Natl. Acad. Sci USA 86 (1989) 6230-6234) utilizing hybridization to an allele specific oligonucleotide probe, or modifications thereof; 25 the method described by Newton, C. R. et al. [Nucl. Acids Res. 17 (1989) 2503-2516] using the DNA sequences or DNAfragments of the invention as probes; the solid phase minisequencing method described by Syvanen et al. [Genomics 8 (1990) 684-692] in which use is made of a biotinylated 30 probe; or the oligonucleotide ligation method described by et al. [Science 241 Landegren, U. (1988)1077-1080]. Methods include the denaturing gradient gel electrophoresis (DGGE) [Fischer, S.G. and Lerman, L.S., PNAS 80 (1983) 1579-1583] or a modification of this method, constant 35 denaturant gel electrophoresis (CDGE) [Hoving et al., Genes Chromosomes Cancer 5 (1992) 97-103]. The

separation principle of DGGE and CDGE is based on the melting behavior of the DNA double helix of a given fragment.

Since the mutations of the APECED gene involve 5 a site sensitive to TaqI digestion, the mutation are preferably detected in one or both alleles by TaqI digestion or by digestion using another enzyme cleaving at recognition site 5'-TCGA-3' The chemical mismatch cleavage for mutation analysis can be used [Grompe, M. et al., Proc. Natl. Acad. Sci. USA 86(15)(1989) 5888-5892].

In the diagnostic method of the invention the biological sample can be any tissue or body fluid containing cells, such as blood, e.g. umbilical cord blood, separated blood cells, such as lymphocytes, B-cells, T-cells etc., biopsy material, such as fetal liver or thymus biopsy, sperm, saliva, etc. The biological sample can be, where necessary, pretreated in a suitable manner known to those skilled in the art.

When the DNA sequence of the present invention is 20 used therapeutically any techniques presently available for gene therapy can be employed. Accordingly, in the technique known as ex vivo therapy patient cells (e.g. umbilical cord blood from the fetus) with the defective gene are taken DNA sequences encoding the the patient, 25 (healthy) gene product incorporated in a carrier vector are transducted or transfected to the cells and the cells are returned to the patient. If the techniques known as in situ therapy is used, the DNA sequences encoding the normal gene product are first inserted to a suitable carrier vector, 30 and the carrier is then introduced to the affected tissue, peripheral blood, liver or bone marrow. carrier vector used can be a retrovirus vector, an adeno virus vector, an adeno associated virus (AAV) vector or an eucaryotic vector. The therapy can be performed intra utero 35 or during adult life. Depending on the cells to be treated these techniques lead either to a transient cure, where

cells from affected organ are treated, or to a permanent cure, in case of the treatment of stem cells.

The present invention provides means for an easy and more rapid diagnosis of the APECED and, specifically, 5 enables prenatal diagnosis and carrier diagnosis. Furthermore, it provides a background for therapy.

The invention is now elucidated by the following non-limiting examples.

Example 1

10 Localization of the APECED gene

Genomic sequencing of cosmid DNAs was performed by the shotgun method described by Kawasaki, K. et al., Genome Res. $\frac{7}{2}$ (1997) 250-261. Cosmids D1G8, D40G11, D9G11, D28B11, and D4G11 and gene marker D21S1912 are described by Kudoh, 15 J. et al., DNA Res. $\frac{4}{2}$ (1997) 45-52].

cDNA cloning

The phage DNAs prepared from human thymus cDNA library (Clontech, HL1127a) were used as a PCR template. 20 ng of phage DNA which represents approximately 4x10⁸ phages 20 was added to a 10 ml of reaction mixture containing 1x buffer [16mM (NH₄)₂SO₄, 50mM Tris-HCl, pH 9.2, 1.75 mM MgCl₂, 0.001% (w/v) gelatin), 0.2 mM each of dNTPs, 1M Betaine (Sigma), 0.35 U of Tap and Pwo DNA polymerase (EXpand Long Template PCR System, Boehringer Mannheim), and 0.5 mM of each of the primers, 2F and c33R, 2F and 4R, and 2F' and 2R', respectively.

The cDNA fragment was amplified by PCR using the following conditions: 94°C for 3 min., 35 cycles of 94°C for 30 sec, 60°C for 30 sec in 2F/c33R and 2F/4R or 65°C for 30 sec in 2F'/2R', and 68°C for 90 sec. 3'- and 5'-RACE were carried out by Marathon cDNA Amplification Kit (Human Thymus; Clontech). PCR reaction was performed in 10 µl volume containing 1x buffer (50 mM KCl, 10 mM Tris-HCl, pH 8.3, 1.5 mM MgCl₂, 0.001% (w/v) gelatin), 0.2 mM each of dNTPs, 0.25 U of AmpliTaq Gold polymerase (Perkin-Elmer), and 0.5 mM of each of the exon-specific primers. 3'-RACE

product was amplified by PCR with the following conditions: 95°C for 9 min., 35 cycles of 94°C for 30 sec, 60°C for 30 sec, and 72°C for 30 sec.

The cDNA fragments were sequenced by the dye deoxy terminator cycle sequencing method (according to ABI PRISM Dye Terminator Cycle Sequencing Ready Reaction Kit protocol P/N 402078, Perkin Elmer Corporation, California) using specific primers, 2F and c33R, and AmpliTaq/FS DNA polymerase (Perkin-Elmer), and then analyzed by using an automatic DNA sequencer (Applied Biosystems 377). Primer sequences used were

1R: 5'-GTTCCCGAGTGGAAGGCGCTGC-3' (sequence id. no. 8)

2F: 5'-GGATTCAGACCATGTCAGCTTCA-3' (sequence id. no. 12)

3F: 5'-GAGTTCAGGTACCCAGAGATGCTG-3' (sequence id. no. 10)

15 c33R: 5'-CTCGCTCAGAAGGGACTCCA-3' (sequence id. no. 11)

4R: 5'-AGGGGACAGGCCAGGT-3' (sequence id. no. 9)

2F': 5'-GTGCTGTTCAAGGACTACAAC-3' (sequence id. no. 13)

2R': 5'-TGGATGAGGATCCCCTCCACG-3' (sequence id. no. 14)

AP1: 5'-CCATCCTAATACGACTCACTATAGGGC-3' (sequence id. no.

20 15) and

c33F: 5'-GATGACACTGCCAGTCACGA-3' (sequence id. no. 7).

Example 2

Mutation analysis of the APECED gene

For the mutation analysis the DNA samples were purified from periferal blood mononuclear cells from patients with APECED and from suspected carriers of APECED and from normal healthy controls (according to Sambrook et al. 1989, Molecular Cloning. A Laboratory Manual. CSH Press) and subjected to PCR using primers specific for all identified exons.

For sequencing the mutated exons, PCR fragments, 6F/6R in exon 6 and 49300F/49622R in exon 2, were amplified by PCR with the following conditions: $95^{\circ}C$ for 9 min., 35 cycles of $94^{\circ}C$ for 30 sec, $60^{\circ}C$ for 30 sec and $72^{\circ}C$ for 30

sec, and 94°C for 3 min., 35 cycles of 94°C for 30 sec, 60°C for 30 sec, and 68°C for 30 sec, respectively. The PCR products were sequenced using specific primers

6F: 5'-TGCAGGCTGTGGGAACTCCA-3' (sequence id. no. 16)

5 6R: 5'-AGAAAAAGAGCTGTACCCTGTG-3' (sequence id. no. 17)
3R: 5'-TGCAAGGAAGAGGGGGCGTCAGC-3' (sequence id. no. 18)
49300F: 5'-TCCACCACAAGCCGAGGAGAT-3' (sequence id. no. 19)
and 49622R: 5'-ACGGGCTCCTCAAACACCCACT-3' (sequence id. no.

In the mutation analysis by sequencing, two Swiss and three Finnish (HP1, HP2 and MP) patients with APECED were homozygous for R257stop allele, whereas one Finnish patient (NP) was heterozygous for this mutation (Fig. 3A, B). The R257stop mutation of NP was derived from the paternal chromosome. The second mutation, L42E mutation, was found in one Finnish patient (NP): a Lys codon (AAG) changes to a Glu codon (GAG) at amino acid position 42 in exon 2.(Figs 2A, 3C). This mutation derived from the maternal chromosome.

20 Example 3

20).

Restriction enzyme TaqI analysis of two mutations in exons 2 and 6 of APECED gene

Analysis of the mutation sites in exons 2 and 6 in large series of individuals was performed using the restriction enzyme TaqI. The TaqI digestion for exons 2 and 6 was done as follows. Ten microlitres of amplification product was incubated at 65 °C for 1 hour in 20 μ l of reaction mixture containing 1x TaqI digestion buffer (New England Biolabs, NY, 100 μ l/ml of BSA and 10u of TaqI enzyme (New England Biolabs, NY). After the digestion fragments were separated in 1,5% agarose gel and visualized by EtBr staining.

For exon 2, the fragment containing the mutation site L42E was amplified with primers GR1/2F and GR1/2R with the following conditions: 95°C for 3 min., 35 cycles of 94°C

for 30 sec, 62°C for 30 sec and 72°C for 1 min. The 1xreaction mix used contained 50 mM KCl, 10 mM Tris-HCl. pH 8.3, 1.5 mM MgCl₂, 0.001% (w/v) gelatin), 0.2 mM each of dNTPs, 0.25 U of Dynazyme (Finnzymes, Finland), and 0.5 mM5 of each of the exon-specific primers. The normal allele produces a 312 bp fragment whereas the mutated allele gives a 133 bp and a 179 bp fragment. Primer sequences for GR1/2F and GR1/2R are 5'-TGGAGATGGGCAGGCCGCAGGGTG (sequence id. no. 21) and 5'-CAGTCCAGCTGGGCTGAGCAGGTG (sequence id.

10 no. 22), respectively.

25

For exon 6, the fragment containing the R257stop mutation site was amplified with primers GR1/5IF GR1/5IR with the same conditions described for exon 2 (see The normal allele produces a 225 bp fragment 15 whereas the mutated allele gives a 285 bp fragment. Primer sequences for GR1/5IF and GR1/5IR are 5'GCGGCTCCAAGAAGTG-CATCCAGG (sequence id. no. 23) and 5'-CTCCACCCTGCAAGGAA-GAGGGGC (sequence id. no. 24), respectively.

The screening of 50 Finnish and 50 Swiss healthy 20 individuals did not reveal R257stop or K42E mutations by TaqI digestion. Similarly, PCR analysis of 20 unaffected Japanese was performed and no mutations were found in any of these positions. These results demonstrate that the APECED gene is responsible for the pathogenesis of APECED.

Mutations were found in the AIR-1 transcript but not in the AIR-2 and AIR-3 transcripts from all the APECED patients tested. Two Swiss and three Finnish (HP1, HP2 and MP) patients who are homozygous for the R257stop mutation completely lack functional AIR-1 protein but still have 30 intact AIR-2 and AIR-3 proteins.

responsible One common mutation seems genetic defect in approximately 90% of the Finnish APECED cases and a haplotype analysis with the markers D21S141, D21S1912 and PFKL shows that the R257stop mutation is

likely to be this common mutation [Björses, P. et al., Am. J. Hum. Genet. 59 (1996) 879-886].

Example 4

Analysis of the AIR protein expression

In this example, synthetic peptides representing amino-acid sequences of the AIR-1 protein, were used to generate a polyvalent mouse antiserum against the AIR-1 protein.

For the peptide synthesis, two peptides were chosen according to the antigenicity prediction by Pepsort program (GCC package, Wisconsin, USA). The peptides AIR-1/2 and AIR-1/6 (TLHLKEKEGCPQAFH, sequence id. no. 25 and GKNKARSSSGPKPLV, sequence id. no. 26, respectively) representing exons 2 and 6, respectively, of the APECED gene were synthesized onto a branched lysine core (Fmoc8-Lys4-Lys2-Lys-betaAla-Wang resin, Calbiochem-Novabiochem, La Jolla, Ca, USA) resulting in an octameric multible antigen peptide (MAP) [Tam, J. P. et al., Proc. Natl. Acad. Sci. USA 85 (1988) 5409-5413; Adermann, K. et al., in Solid

- Phase Synthesis, Biological and Biomedical Applications, pp. 429-432, Ed. R. Epton, Mayflower Worldwide Ltd., Birmingham, 1994], Syntheses were performed by Fmoc (N-(9-fluorenyl)methoxycarbonyl) chemistry on a simultaneous multiple peptide synthesizer (SMPS 350, Zinsser Analytic,
- 25 Frankfurt, Germany). Purity of MAPs was analyzed by reverse-phase HPLC (System Gold, Beckman Instruments Inc, Fullerton, CA, USA).

To obtain murine polyclonal antibodies, eight-week old Balb/c mice were immunized with an intraperitoneal injection of 25 micrograms of each peptide in 0,4 ml of a 1:1 mixture of Freund's Complete Adjuvant (Difco Laboratories, Detroit, MI, USA) and physiological saline (NaCl, 0,15 M). One month later the animals were boosted with an intramuscular injection of 35 micrograms of antigens in Freund's incomplete adjuvant and saline (1:1) (0,2 ml were distributed into four sites). Three weeks

later the peptides in a dose of 50 micrograms/mouse were administered intravenously and sera were obtained 7 days later.

For the production of EBV transformed B-cells, 5 peripheral blood leukocytes were obtained from healthy control persons. The B-cells were transformed with EBV (Epstein-Barr virus) using standard protocol, and the cell lines were maintained in RPMI 1640, supplemented with 10% FCS (fetal calf serum). An aliquot of cells were stimulated 10 for 12 hours with 10 μg/ml of phytohemagglutinin (PHA) to obtain mitogen-activated T-cells.

Tissue samples were obtained from stillborn fetuses at six months gestational age. Fetal liver, spleen, thymus and lymphnodes were homogenized, the homogenates were 15 cleared with centrifugations (20 000 rpm for 20 minutes) and the samples were used for western blot analysis.

For analysis of polyclonal sera, Elisa and western blot analysis were performed. Microtitre ELISA (Maxisorp, Nunc, Roskilde, Denmark) were coated with the 20 peptides (1 micrograms /well in PBS, pH 7.5)overnight and blocked with 2 % of BSA in PBS. The plates were then incubated with titrated mouse immune sera and normal (control) sera at room temperature for 4 h. Finally the bound peptide-specific antibodies were detected by use 25 of anti-mouse HRP-labelled immunoglobulins (Dako A/S, Denmark) essentially as previously described [Ovod, V. A. et al., AIDS 6 (1992) 25.34].

For western blotting, tissue homogenates, EBV transformed B-cells or PHA-activated T-cells were boiled 30 for 10 minutes in 2x sample buffer (for tissue homogenates: 100 microliters of homogenate mixed with 100 microliters of sample buffer. For cells: one million cells/100 µl of buffer) and analyzed in western blotting as described in Ovod, V. A. et al., supra.

The antisera so produced reacted with the AIR-1- protein low amount in normal fetal spleen, thymus and

lymphonode as well as, in EBV-transformed B-cells and in PHA-activated T-cells. In the ELISA assay towards the immunogenic peptides, all four mice gave a strong reactivity towards the peptide used for the immunization. In the western blotting analysis using either the tissue homogenates or stimulated T-cells or established B-cells, a strong band of approx. 60 kD molecular weight was seen in fetal liver (Fig. 6), while weaker bands of the same size were seen in the other samples.

SEQUENCE LISTING

169

(1) GENERAL INFORMATION:

- (i) APPLICANT:
 - (A) NAME: Kai Krohn et al.
 - (B) STREET: Iltarusko, Salmentaantie 751
 - (C) CITY: 36450 Salmentaka
 - (E) COUNTRY: Finland
 - (F) POSTAL CODE (ZIP): none
- (ii) TITLE OF INVENTION: Novel Gene
- (iii) NUMBER OF SEQUENCES: 26
- (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)
- (2) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2036 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION:137..1774
 - (D) OTHER INFORMATION:/product= "AIR-1"
 - (ix) FEATURE:
 - (A) NAME/KEY: mat_peptide
 - (B) LOCATION: 137..1771
 - (D) OTHER INFORMATION:/product= "AIR-1"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:
- AGACCGGGGA GACGGGCGGG CGCACAGCCG GCGCGGAGGC CCCACAGCCC CGCCGGGACC 60
- CGAGGCCAAG CGAGGGGCTG CCAGTGTCCC GGGACCCACC GCGTCCGCCC CAGCCCCGGG 120
- TCCCCGCGCC CACCCC ATG GCG ACG GAC GCG GCG CTA CGC CGG CTT CTG

 Met Ala Thr Asp Ala Ala Leu Arg Arg Leu Leu

 1 5 10
- AGG CTG CAC CGC ACG GAG ATC GCG GTG GCC GTG GAC AGC GCC TTC CCA

 Arg Leu His Arg Thr Glu Ile Ala Val Ala Val Asp Ser Ala Phe Pro

 15 20 25
- CTG CTG CAC GCG CTG GCT GAC CAC GAC GTG GTC CCC GAG GAC AAG TTT

 Leu Leu His Ala Leu Ala Asp His Asp Val Val Pro Glu Asp Lys Phe

 30 35 40

CAG Gln	GAG Glu 45	ACG Thr	CTT Leu	CAT His	CTG Leu	AAG Lys 50	GAA Glu	AAG Lys	GAG Glu	GGC Gly	TGC Cys 55	CCC Pro	CAG Gln	GCC Ala	TTC Phe	313
CAC His 60	GCC Ala	CTC Leu	CTG Leu	TCC Ser	TGG Trp 65	CTG Leu	CTG Leu	ACC Thr	CAG Gln	GAC Asp 70	TCC Ser	ACA Thr	GCC Ala	ATC Ile	CTG Leu 75	361
GAC Asp	TTC Phe	TGG Trp	AGG Arg	GTG Val 80	CTG Leu	TTC Phe	AAG Lys	GAC Asp	TAC Tyr 85	AAC Asn	CTG Leu	GAG Glu	CGC Arg	TAT Tyr 90	GGC	409
CGG Arg	CTG Leu	CAG Gln	CCC Pro 95	ATC Ile	CTG Leu	GAC Asp	AGC Ser	TTC Phe 100	CCC Pro	AAA Lys	GAT Asp	GTG Val	GAC Asp 105	CTC Leu	AGC Ser	457
CAG Gln	CCC Pro	CGG Arg 110	AAG Lys	GGG Gly	AGG Arg	AAG Lys	CCC Pro 115	CCG Pro	GCC Ala	GTC Val	CCC Pro	AAG Lys 120	GCT Ala	TTG Leu	GTA Val	505
CCG Pro	CCA Pro 125	CCC Pro	AGA Arg	CTC Leu	CCC Pro	ACC Thr 130	AAG Lys	AGG Arg	AAG Lys	GCC Ala	TCA Ser 135	GAA Glu	GAG Glu	GCT Ala	CGA Arg	553
GCT Ala 140	GCC Ala	GCG Ala	CCA Pro	GCA Ala	GCC Ala 145	CTG Leu	ACT Thr	CCA Pro	AGG Arg	GGC Gly 150	ACC Thr	GCC Ala	AGC Ser	CCA Pro	GGC Gly 155	601
TCT Ser	CAA Gln	CTG Leu	AAG Lys	GCC Ala 160	AAG Lys	CCC Pro	CCC Pro	AAG Lys	AAG Lys 165	CCG Pro	GAG Glu	AGC Ser	AGC Ser	GCA Ala 170	GAG Glu	649
CAG Gln	CAG Gln	CGC Arg	CTT Leu 175	CCA Pro	CTC Leu	GGG Gly	AAC Asn	GGG Gly 180	ATT Ile	CAG Gln	ACC Thr	ATG Met	TCA Ser 185	GCT Ala	TCA Ser	697
GTC Val	CAG Gln	AGA Arg 190	GCT Ala	GTG Val	GCC Ala	ATG Met	TCC Ser 195	TCC Ser	GGG Gly	GAC Asp	GTC Val	CCG Pro 200	GGA Gly	GCC Ala	CGA Arg	745
GGG Gly	GCC Ala 205	GTG Val	GAG Glu	GGG Gly	ATC Ile	CTC Leu 210	ATC Ile	CAG Gln	CAG Gln	GTG Val	TTT Phe 215	GAG Glu	TCA Ser	GGC Gly	GGC Gly	793
TCC Ser 220	AAG Lys	AAG Lys	TGC Cys	ATC Ile	CAG Gln 225	GTT Val	GGC Gly	GGG Gly	GAG Glu	TTC Phe 230	TAC Tyr	ACT Thr	CCC Pro	AGC Ser	AAG Lys 235	841
TTC Phe	GAA Glu	GAC Asp	TCC Ser	GGC Gly 240	AGT Ser	GGG Gly	AAG Lys	AAC Asn	AAG Lys 245	GCC Ala	CGC Arg	AGC Ser	AGC Ser	AGT Ser 250	GGC Gly	889
CCG Pro	AAG Lys	CCT Pro	CTG Leu 255	GTT Val	CGA Arg	GCC Ala	AAG Lys	GGA Gly 260	GCC Ala	CAG Gln	GGC Gly	GCT Ala	GCC Ala 265	CCC Pro	GGT Gly	937
GGA Gly	GGT Gly	GAG Glu 270	GCT Ala	AGG Arg	CTG Leu	GGC Gly	CAG Gln 275	CAG Gln	GGC Gly	AGC Ser	GTT Val	CCC Pro 280	GCC Ala	CCT Pro	CTG Leu	985
GCC Ala	CTC Leu 285	CCC Pro	AGT Ser	GAC Asp	CCC Pro	CAG Gln 290	CTC Leu	CAC His	CAG Gln	AAG Lys	AAT Asn 295	GAG Glu	GAC Asp	GAG Glu	TGT Cys	1033

GCC Ala 300	GTG Val	TGT Cys	CGG Arg	GAC Asp	GGC Gly 305	GGG Gly	GAG Glu	CTC Leu	ATC Ile	TGC Cys 310	TGT Cys	GAC Asp	GGC Gly	TGC Cys	CCT Pro 315	1081
CGG Arg	GCC Ala	TTC Phe	CAC His	CTG Leu 320	GCC Ala	TGC Cys	CTG Leu	TCC Ser	CCT Pro 325	CCG Pro	CTC Leu	CGG Arg	GAG Glu	ATC Ile 330	CCC Pro	1129
AGT Ser	GGG Gly	ACC Thr	TGG Trp 335	AGG Arg	TGC Cys	TCC Ser	AGC Ser	TGC Cys 340	CTG Leu	CAG Gln	GCA Ala	ACA Thr	GTC Val 345	CAG Gln	GAG Glu	1177
GTG Val	CAG Gln	CCC Pro 350	CGG Arg	GCA Ala	GAG Glu	GAG Glu	CCC Pro 355	CGG Arg	CCC Pro	CAG Gln	GAG Glu	CCA Pro 360	CCC Pro	GTG Val	GAG Glu	1225
ACC Thr	CCG Pro 365	CTC Leu	CCC Pro	CCG Pro	GGG Gly	CTT Leu 370	AGG Arg	TCG Ser	GCG Ala	GGA Gly	GAG Glu 375	GAG Glu	GTA Val	AGA Arg	GGT Gly	1273
CCA Pro 380	CCT Pro	GGG Gly	GAA Glu	CCC Pro	CTA Leu 385	GCC Ala	GGC Gly	ATG Met	GAC Asp	ACG Thr 390	ACT Thr	CTT Leu	GTC Val	TAC Tyr	AAG Lys 395	1321
CAC His	CTG Leu	CCG Pro	GCT Ala	CCG Pro 400	CCT Pro	TCT Ser	GCA Ala	GCC Ala	CCG Pro 405	CTG Leu	CCA Pro	GGG Gly	CTG Leu	GAC Asp 410	TCC Ser	1369
TCG Ser	GCC Ala	CTG Leu	CAC His 415	CCC Pro	CTA Leu	CTG Leu	TGT Cys	GTG Val 420	GGT Gly	CCT Pro	GAG Glu	GGT Gly	CAG Gln 425	CAG Gln	AAC Asn	1417
CTG Leu	GCT Ala	CCT Pro 430	GGT Gly	GCG Ala	CGT Arg	TGC Cys	GGG Gly 435	GTG Val	TGC Cys	GGA Gly	GAT Asp	GGT Gly 440	ACG Thr	GAC Asp	GTG Val	1465
CTG Leu	CGG Arg 445	TGT Cys	ACT Thr	CAC His	TGC Cys	GCC Ala 450	GCT Ala	GCC Ala	TTC Phe	CAC His	TGG Trp 455	CGC Arg	TGC Cys	CAC His	TTC Phe	1513
CCA Pro 460	GCC Ala	GGC Gly	ACC Thr	TCC Ser	CGG Arg 465	CCC Pro	GGG Gly	ACG Thr	GGC Gly	CTG Leu 470	CGC Arg	TGC Cys	AGA Arg	TCC Ser	TGC Cys 475	1561
TCA Ser	GGA Gly	GAC Asp	GTG Val	ACC Thr 480	CCA Pro	GCC Ala	CCT Pro	GTG Val	GAG Glu 485	GGG Gly	GTG Val	CTG Leu	GCC Ala	CCC Pro 490	AGC Ser	1609
CCC Pro	GCC Ala	CGC Arg	CTG Leu 495	GCC Ala	CCT Pro	GGG Gly	CCT Pro	GCC Ala 500	AAG Lys	GAT Asp	GAC Asp	ACT Thr	GCC Ala 505	AGT Ser	CAC His	1657
GAG Glu	CCC Pro	GCT Ala 510	CTG Leu	CAC His	AGG Arg	GAT Asp	GAC Asp 515	CTG Leu	GAG Glu	TCC Ser	CTT Leu	CTG Leu 520	AGC Ser	GAG Glu	CAC His	1705
ACC Thr	TTC Phe 525	GAT Asp	GGC Gly	ATC Ile	CTG Leu	CAG Gln 530	TGG Trp	GCC Ala	ATC Ile	CAG Gln	AGC Ser 535	ATG Met	GCC Ala	CGT Arg	CCG Pro	1753
		CCC Pro			TCC Ser 545	TGA *	CCC	CAGA'	TGG (CCGG	GACA'	TG C.	AGCT	CTGA	T	1804

GAGAGAGTGC TGAGAAGGAC ACCTCCTTCC TCAGTCCTGG AAGCCGGCCG GCTGGGATCA 1864

AGAAGGGGAC AGCGCCACCT CTTGTCAGTG CTCGGCTGTA AACAGCTCTG TGTTTCTGGG 1924

GACACCAGCC ATCATGTGCC TGGAAATTAA ACCCTGCCCC ACTTCTCTAC TCTGGAAGTC 1984

CCCGGGAGCC TCTCCTTGCC TGGTGACCTA CTAAAAATAT AAAAATTAGC TG 2036

(2) INFORMATION FOR SEQ ID NO: 2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 545 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Met Ala Thr Asp Ala Ala Leu Arg Arg Leu Leu Arg Leu His Arg Thr
1 5 10 15

Glu Ile Ala Val Ala Val Asp Ser Ala Phe Pro Leu Leu His Ala Leu 20 25 30

Ala Asp His Asp Val Val Pro Glu Asp Lys Phe Gln Glu Thr Leu His
35 40 45

Leu Lys Glu Lys Glu Gly Cys Pro Gln Ala Phe His Ala Leu Leu Ser 50 60

Trp Leu Leu Thr Gln Asp Ser Thr Ala Ile Leu Asp Phe Trp Arg Val
65 70 75 80

Leu Phe Lys Asp Tyr Asn Leu Glu Arg Tyr Gly Arg Leu Gln Pro Ile 85 90 95

Leu Asp Ser Phe Pro Lys Asp Val Asp Leu Ser Gln Pro Arg Lys Gly
100 105 110

Arg Lys Pro Pro Ala Val Pro Lys Ala Leu Val Pro Pro Pro Arg Leu 115 120 125

Pro Thr Lys Arg Lys Ala Ser Glu Glu Ala Arg Ala Ala Pro Ala 130 135 140

Ala Leu Thr Pro Arg Gly Thr Ala Ser Pro Gly Ser Gln Leu Lys Ala 145 150 155 160

Lys Pro Pro Lys Lys Pro Glu Ser Ser Ala Glu Gln Gln Arg Leu Pro 165 170 175

Leu Gly Asn Gly Ile Gln Thr Met Ser Ala Ser Val Gln Arg Ala Val 180 185 190

Ala Met Ser Ser Gly Asp Val Pro Gly Ala Arg Gly Ala Val Glu Gly
195 200 205

Ile Leu Ile Gln Gln Val Phe Glu Ser Gly Gly Ser Lys Lys Cys Ile 210 215 220

Gln Val Gly Glu Phe Tyr Thr Pro Ser Lys Phe Glu Asp Ser Gly 225 230 235 240

Ser Gly Lys Asn Lys Ala Arg Ser Ser Ser Gly Pro Lys Pro Leu Val Arg Ala Lys Gly Ala Gln Gly Ala Ala Pro Gly Gly Glu Ala Arg Leu Gly Gln Gln Ser Val Pro Ala Pro Leu Ala Leu Pro Ser Asp Pro Gln Leu His Gln Lys Asn Glu Asp Glu Cys Ala Val Cys Arg Asp 295 Gly Glu Leu Ile Cys Cys Asp Gly Cys Pro Arg Ala Phe His Leu Ala Cys Leu Ser Pro Pro Leu Arg Glu Ile Pro Ser Gly Thr Trp Arg 330 Cys Ser Ser Cys Leu Gln Ala Thr Val Gln Glu Val Gln Pro Arg Ala 340 Glu Glu Pro Arg Pro Gln Glu Pro Pro Val Glu Thr Pro Leu Pro Pro 360 Gly Leu Arg Ser Ala Gly Glu Glu Val Arg Gly Pro Pro Gly Glu Pro Leu Ala Gly Met Asp Thr Thr Leu Val Tyr Lys His Leu Pro Ala Pro 390 Pro Ser Ala Ala Pro Leu Pro Gly Leu Asp Ser Ser Ala Leu His Pro Leu Leu Cys Val Gly Pro Glu Gly Gln Gln Asn Leu Ala Pro Gly Ala Arg Cys Gly Val Cys Gly Asp Gly Thr Asp Val Leu Arg Cys Thr His Cys Ala Ala Ala Phe His Trp Arg Cys His Phe Pro Ala Gly Thr Ser Arg Pro Gly Thr Gly Leu Arg Cys Arg Ser Cys Ser Gly Asp Val Thr Pro Ala Pro Val Glu Gly Val Leu Ala Pro Ser Pro Ala Arg Leu Ala 490 Pro Gly Pro Ala Lys Asp Asp Thr Ala Ser His Glu Pro Ala Leu His Arg Asp Asp Leu Glu Ser Leu Leu Ser Glu His Thr Phe Asp Gly Ile Leu Gln Trp Ala Ile Gln Ser Met Ala Arg Pro Ala Ala Pro Phe Pro

535

Ser 545

(2) INFORMATION FOR SEQ ID NO: 3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1545 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 237..1283
- (D) OTHER INFORMATION:/product= "AIR-2"

(ix) FEATURE:

- (A) NAME/KEY: mat_peptide
- (B) LOCATION: 237..1280
- (D) OTHER INFORMATION:/product= "AIR-2"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

	(XI)	ياشت	OBN													
AGAG	AAAG	TG A	GGTC	TTCI	C AG	GCTC	ATT	GAG	CATG	GCG	TTTG	GTCC	AG G	CTGT	ACCCG	60
CTGC	TCTC	AG C	TGGG	CCC	T GO	GTGG	GCCG	GGC	GCCC	CTG	CTAT	'AGCC	CAG G	AGGI	CAAGG	120
ATCC	ACTO	GG A	ATGC	CATO	C TO	ATCI	TTC	TCC	CCAG	CAT	GGTT	TCTI	r aa:	GGGG	TAGAA	180
GCAG	GTCG	GG A	GAGA	CCTC	C CI	rgggc	CTG	CCC	CACI	GCC	CTGT	GAGG	AA C	GGTI	rC .	236
ATG Met	TGG Trp	TTG Leu	GTG Val	TAC Tyr 5	AGT Ser	TCC Ser	GGG Gly	GCC Ala	CCT Pro 10	GGA Gly	ACG Thr	CAG Gln	CAG Gln	CCT Pro 15	GCA Ala	284
AGA Arg	AAC Asn	CGG Arg	GTT Val 20	TTC Phe	TTC Phe	CCA Pro	ATA Ile	GGG Gly 25	ATG Met	GCC Ala	CCG Pro	GGG Gly	GGT Gly 30	GTC Val	TGT Cys	332
TGG Trp	AGA Arg	CCA Pro 35	GAT Asp	GGA Gly	TGG Trp	GGA Gly	ACA Thr 40	GGT Gly	GGT Gly	CAG Gln	GGC Gly	AGA Arg 45	ATT Ile	TCA Ser	GGC Gly	380
CCT Pro	GGC Gly 50	AGC Ser	ATG Met	GGA Gly	GCA Ala	GGG Gly 55	CAG Gln	AGA Arg	CTG Leu	GGG Gly	AGT Ser 60	TCA Ser	GGT Gly	ACC Thr	CAG Gln	428
AGA Arg 65	TGC Cys	TGC Cys	TGG Trp	GGG Gly	AGC Ser 70	TGT Cys	TTT Phe	GGG Gly	AAG Lys	GAG Glu 75	GTG Val	GCT Ala	CTC Leu	AGG Arg	AGG Arg 80	476
GTG Val	CTG Leu	CAC His	CCC Pro	AGC Ser 85	CCA Pro	GTC Val	TGC Cys	ATG Met	GGC Gly 90	GTC Val	TCT Ser	TGC Cys	CTG Leu	TGC Cys 95	CAG Gln	524
AAG Lys	AAT Asn	GAG Glu	GAC Asp 100	GAG Glu	TGT Cys	GCC Ala	GTG Val	TGT Cys 105	CGG Arg	GAC Asp	GGC Gly	GGG Gly	GAG Glu 110	CTC Leu	ATC Ile	572
TGC Cys	TGT Cys	GAC Asp 115	GGC Gly	TGC Cys	CCT Pro	CGG Arg	GCC Ala 120	TTC Phe	CAC His	CTG Leu	GCC Ala	TGC Cys 125	CTG Leu	TCC Ser	CCT Pro	620

	CCG Pro	CTC Leu 130	CGG Arg	GAG Glu	ATC Ile	CCC Pro	AGT Ser 135	GGG Gly	ACC Thr	TGG Trp	AGG Arg	TGC Cys 140	TCC Ser	AGC Ser	TGC Cys	CTG Leu	668
	CAG Gln 145	GCA Ala	ACA Thr	GTC Val	CAG Gln	GAG Glu 150	GTG Val	CAG Gln	CCC Pro	CGG Arg	GCA Ala 155	GAG Glu	GAG Glu	CCC Pro	CGG Arg	CCC Pro 160	716
	CAG Gln	GAG Glu	CCA Pro	CCC Pro	GTG Val 165	GAG Glu	ACC Thr	CCG Pro	CTC Leu	CCC Pro 170	CCG Pro	GGG Gly	CTT Leu	AGG Arg	TCG Ser 175	GCG Ala	764
	GGA Gly	GAG Glu	GAG Glu	GTA Val 180	AGA Arg	GGT Gly	CCÀ Pro	CCT Pro	GGG Gly 185	GAA Glu	CCC Pro	CTA Leu	GCC Ala	GGC Gly 190	ATG Met	GAC Asp	812
	ACG Thr	ACT Thr	CTT Leu 195	GTC Val	TAC Tyr	AAG Lys	CAC His	CTG Leu 200	CCG Pro	GCT Ala	CCG Pro	CCT Pro	TCT Ser 205	GCA Ala	GCC Ala	CCG Pro	860
	CTG Leu	CCA Pro 210	GGG Gly	CTG Leu	GAC Asp	TCC Ser	TCG Ser 215	GCC Ala	CTG Leu	CAC His	CCC Pro	CTA Leu 220	CTG Leu	TGT Cys	GTG Val	GGT Gly	908
	CCT Pro 225	GAG Glu	GGT Gly	CAG Gln	CAG Gln	AAC Asn 230	CTG Leu	GCT Ala	CCT Pro	GGT Gly	GCG Ala 235	CGT Arg	TGC Cys	GGG Gly	GTG Val	TGC Cys 240	956
	GGA Gly	GAT Asp	GGT Gly	ACG Thr	GAC Asp 245	GTG Val	CTG Leu	CGG Arg	TGT Cys	ACT Thr 250	CAC His	TGC Cys	GCC Ala	GCT Ala	GCC Ala 255	TTC Phe	1004
	CAC His	TGG Trp	CGC Arg	TGC Cys 260	CAC His	TTC Phe	CCA Pro	GCC Ala	GGC Gly 265	ACC Thr	TCC Ser	CGG Arg	CCC Pro	GGG Gly 270	ACG Thr	GGC Gly	1052
	CTG Leu	CGC Arg	TGC Cys 275	AGA Arg	TCC Ser	TGC Cys	TCA Ser	GGA Gly 280	GAC Asp	GTG Val	ACC Thr	CCA Pro	GCC Ala 285	CCT Pro	GTG Val	GAG Glu	1100
	GGG Gly	GTG Val 290	CTG Leu	GCC Ala	CCC Pro	AGC Ser	CCC Pro 295	GCC Ala	CGC Arg	CTG Leu	GCC Ala	CCT Pro 300	GGG Gly	CCT Pro	GCC Ala	AAG Lys	1148
	GAT Asp 305	GAC Asp	ACT Thr	GCC Ala	AGT Ser	CAC His 310	GAG Glu	CCC Pro	GCT Ala	CTG Leu	CAC His 315	AGG Arg	GAT Asp	GAC Asp	CTG Leu	GAG Glu 320	1196
	TCC Ser	CTT Leu	CTG Leu	AGC Ser	GAG Glu 325	CAC His	ACC Thr	TTC Phe	Aap	GGC Gly 330	ATC Ile	CTG Leu	CAG Gln	TGG Trp	GCC Ala 335	ATC Ile	1244
	CAG Gln	AGC Ser	ATG Met	GCC Ala 340	CGT Arg	CCG Pro	GCG Ala	GCC Ala	CCC Pro 345	TTC Phe	CCC Pro	TCC Ser	TGA *	CCC	CAGA'	rgg	1293
	CCG	GAC	ATG (CAGC	rctg:	AT G	AGAG!	AGTG	C TG	AGAA	GGAC	ACC'	rcct'	rcc '	TCAG'	TCCTGG	1353
AAGCCGGCCG GCTGGGATCA AGAAGGGGAC AGCGCCACCT CTTGTCAGTG CTCGGCTGTA 14												1413					
	AAC	AGCT	CTG '	rgtt:	rctg	GG G	ACAC	CAGC	C AT	CATG'	rgcc	TGG	TAAA	TAA .	ACCC'	TGCCCC	1473

ACTT	ACTTCTCTAC TCTGGAAGTC CCCGGGAGCC TCTCCTTGCC TGGTGACCTA CTAAAAATAT														
AAAA	AAAAATTAGC TG														
(2)															
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 348 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear														
	(ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4: Met Trp Leu Val Tyr Ser Ser Gly Ala Pro Gly Thr Gln Gln Pro Ala														
Met 1	Trp	Leu	Val	Tyr 5	Ser	Ser	Gly	Ala	Pro 10	Gly	Thr	Gln	Gln	Pro 15	Ala
Arg	Asn	Arg	Val 20	Phe	Phe	Pro	Ile	Gly 25	Met	Ala	Pro	Gly	Gly 30	Val	Cys
Trp	Arg	Pro 35	Asp	Gly	Trp	Gly	Thr 40	Gly	Gly	Gln	Gly	Arg 45	Ile	Ser	Gly
Pro	Gly 50	Ser	Met	Gly	Ala	Gly 55	Gln	Arg	Leu	Gly	Ser 60	Ser	Gly	Thr	Gln
Arg 65	Cys	Cys	Trp	Gly	Ser 70	Cys	Phe	Gly	Lys	Glu 75	Val	Ala	Leu	Arg	Arg 80
Val	Leu	His	Pro	Ser 85	Pro	Val	Cys	Met	Gly 90	Val	Ser	Cys	Leu	Cys 95	Gln
Lys	Asn	Glu	Asp 100	Glu	Cys	Ala	Val	Cys 105	Arg	Asp	Gly	Gly	Glu 110	Leu	Ile
Суѕ	Cys	Asp 115	Gly	Cys	Pro	Arg	Ala 120	Phe	His	Leu	Ala	Cys 125	Leu	Ser	Pro
Pro	Leu 130	Arg	Glu	Ile	Pro	Ser 135	Gly	Thr	Trp	Arg	Cys 140	Ser	Ser	Суѕ	Leu
Gln 145	Ala	Thr	Val	Gln	Glu 150	Val	Gln	Pro	Arg	Ala 155	Glu	Glu	Pro	Arg	Pro 160
Gln	Glu	Pro	Pro	Val 165	Glu	Thr	Pro	Leu	Pro 170	Pro	Gly	Leu	Arg	Ser 175	Ala
Gly	Glu	Glu	Val 180	Arg	Gly	Pro	Pro	Gly 185	Glu	Pro	Leu	Ala	Gly 190	Met	Asp
Thr	Thr	Leu 195	Val	Tyr	Lys	His	Leu 200	Pro	Ala	Pro	Pro	Ser 205	Ala	Ala	Pro
Leu	Pro 210		Leu	Asp	Ser	Ser 215	Ala	Leu	His	Pro	Leu 220	Leu	Cys	Val	Gly
Pro 225		Gly	Gln	Gln	Asn 230	Leu	Ala	Pro	Gly	Ala 235	Arg	Cys	Gly	Val	Cys 240

Gly Asp Gly Thr Asp Val Leu Arg Cys Thr His Cys Ala Ala Ala Phe 245 250 255

His	Trp	Arg	Cys 260	His	Phe	Pro	Ala	Gly 265	Thr	Ser	Arg	Pro	Gly 270	Thr	Gly	
Leu	Arg	Cys 275	Arg	Ser	Cya	Ser	Gly 280		Val	Thr	Pro	Ala 285	Pro	Val	Glu	
Gly	Val 290	Leu	Ala	Pro	Ser	Pro 295	Ala	Arg	Leu	Ala	Pro 300	Gly	Pro	Ala	Lys	
Asp 305	Asp	Thr	Ala	Ser	His 310	Glu	Pro	Ala	Leu	His 315	Arg	Asp	Asp	Leu	Glu 320	
Ser	Leu	Leu	Ser	Glu 325	His	Thr	Phe	Asp	Gly 330	Ile	Leu	Gln	Trp	Ala 335	Ile	
Gln	Ser	Met	Ala 340	Arg	Pro	Ala	Ala	Pro 345	Phe	Pro	Ser	*				
(2)	INFO	ORMA?	CION	FOR	SEQ	ID 1	10: 5	5:								
	(i)	(1	A) LI B) T'(C) S'	engti (PE : [Rani		163 h Leic ESS:	ase acio sino	pai: i	cs							
	(ix)	(I	A) NA B) LO	ME/E	CEY: CON: 2 INFO	237		ı :/pro	oduct	:= " <i>I</i>	AIR-3	3 "				
	(ix)	(E	A) NA B) LO	ME/I	CEY: ION:2 INFO	237.	998	ide :/pro	oduct	:= " <i>1</i>	AIR-S	3"				
	(xi)	SEÇ	QUENC	CE DI	ESCRI	(PTIC	on: s	SEQ 1	D NO	D: 5	:		٠			
AGA)AAAE	STG A	AGGT	CTTC:	rc ac	GCT	TTA	A GAC	CAT	GCG	TTTC	GTC	CAG C	CTG?	TACCCG	60
CTG	CTCT	CAG (TGG	3CCC	GT GO	GTG	GCCC	G GGC	CGCC	CTG	CTAT	ragco	CAG (BAGG	rcaagg	120
ATC	CACTO	GGG 1	ATG	CATO	SC TO	CATC	TTC	G TCC	CCAC	CAT	GGT	TTCT	CAA C	rggg	STAGAA	180
GCA	GTC	GGG A	AGAGA	ACCTO	cc cr	rggg	CTG	G CCC	CAC	rgcc	CTGT	rgago	AA (GGT	rc	236
ATG Met 1	TGG Trp	TTG Leu	GTG Val	TAC Tyr 5	AGT Ser	TCC Ser	GGG Gly	GCC Ala	CCT Pro 10	GGA Gly	ACG Thr	CAG Gln	CAG Gln	CCT Pro 15	GCA Ala	284
AGA Arg	AAC Asn	CGG Arg	GTT Val 20	TTC Phe	TTC Phe	CCA Pro	ATA Ile	GGG Gly 25	ATG Met	GCC Ala	CCG Pro	GGG Gly	GGT Gly 30	GTC Val	TGT Cys	332
TGG Trp	AGA Arg	CCA Pro	GAT Asp	GGA Gly	TGG Trp	GGA Gly	ACA Thr	GGT Gly	GGT Gly	CAG Gln	GGC Gly	AGA Arg	ATT Ile	TCA Ser	GGC Gly	380

CCT GGC AGC ATG GGA GCA GGG CAG AGA CTG GGG AGT TCA GGT ACC CAG Pro Gly Ser Met Gly Ala Gly Gln Arg Leu Gly Ser Ser Gly Thr Gln 50 55 60

			TGG Trp													476
			CCC Pro													524
AAG Lys	AAT Asn	GAG Glu	GAC Asp 100	GAG Glu	TGT Cys	GCC Ala	GTG Val	TGT Cys 105	CGG Arg	GAC Asp	GGC Gly	GGG Gly	GAG Glu 110	CTC Leu	ATC Ile	572
			GGC Gly													620
			GAG Glu													668
			GTC Val													716
			CCC Pro													764
			CCC Pro 180													812
			TGG Trp													860
			TGT Cys													908
			CCT Pro													956
GGC Gly			_					Asp						TGA * 255		1001
cccc	AGCC	CC T	GTGG	AGGG	G GT	GCTG	GCCC	CCA	GCCC	CGC	CCGC	CTGG	cc c	CTGG	GCCTG	1061
CCAA	GGAT	GA C	ACTG	CCAG	T CA	.CGAG	CCCG	CTC	TGCA	CAG	GGAT	GACC	TG G	AGTO	CCTTC	1121
TGAG	CGAG	CA C	ACCT	TCGA	T GG	CATC	CTGC	AGT	GGGC	CAT	CCAG	AGCA	TG G	CCCG	TCCGG	1181
CGGC	CCCC	TT C	CCCT	CCTG	A CC	CCAG	ATGG	CCG	GGAC	ATG	CAGC	TCTG	AT G	AGAG	AGTGC	1241
TGAG	AAGG	AC A	.CCTC	CTTC	C TC	AGTC	CTGG	AAG	CCGG	CCG	GCTG	GGAT	CA A	GAAG	GGGAC	1301
AGCG	CCAC	CT C	TTGT	CAGT	G CT	CGGC	TGTA	AAC	AGCT	CTG	TGTT	TCTG	GG G	ACAC	CAGCC	1361
ATCA	TGTG	CC T	GGAA	ATTA	A AC	CCTG	CCCC	ACT	TCTC	TAC	TCTG	GAAG	TC C	CCGG	GAGCC	1421
TCTC	CTTG	CC T	GGTG	ACCT	A CT	AAAA	TATA	AAA	AATT.	AGC	TG					1463

- (2) INFORMATION FOR SEQ ID NO: 6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 254 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:
- Met Trp Leu Val Tyr Ser Ser Gly Ala Pro Gly Thr Gln Gln Pro Ala
 1 10 15
- Arg Asn Arg Val Phe Pro Ile Gly Met Ala Pro Gly Gly Val Cys
 20 25 30
- Trp Arg Pro Asp Gly Trp Gly Thr Gly Gly Gln Gly Arg Ile Ser Gly
 35 40 45
- Pro Gly Ser Met Gly Ala Gly Gln Arg Leu Gly Ser Ser Gly Thr Gln
 50 55 60
- Arg Cys Cys Trp Gly Ser Cys Phe Gly Lys Glu Val Ala Leu Arg Arg 65 70 75 80
- Val Leu His Pro Ser Pro Val Cys Met Gly Val Ser Cys Leu Cys Gln
 85 90 95
- Lys Asn Glu Asp Glu Cys Ala Val Cys Arg Asp Gly Gly Glu Leu Ile 100 105 110
- Cys Cys Asp Gly Cys Pro Arg Ala Phe His Leu Ala Cys Leu Ser Pro 115 120 125
- Pro Leu Arg Glu Ile Pro Ser Gly Thr Trp Arg Cys Ser Ser Cys Leu 130 140
- Gln Ala Thr Val Gln Glu Val Gln Pro Arg Ala Glu Glu Pro Arg Pro 145 150 155 160
- Gln Glu Pro Pro Val Glu Thr Pro Leu Pro Pro Gly Leu Arg Ser Ala 165 170 175
- Gly Glu Glu Pro Arg Cys Gln Gly Trp Thr Pro Arg Pro Cys Thr Pro 180 185 190
- Tyr Cys Val Trp Val Leu Arg Val Ser Arg Thr Trp Leu Leu Val Arg
 195 200 205
- Val Ala Gly Cys Ala Glu Met Val Arg Thr Cys Cys Gly Val Leu Thr 210 215 220
- Ala Pro Leu Pro Ser Thr Gly Ala Ala Thr Ser Gln Pro Ala Pro Pro 225 230 235 240
- Gly Pro Gly Arg Ala Cys Ala Ala Asp Pro Ala Gln Glu Thr *
 245 250 255

(2)	INFO	RMATION FOR SEQ ID NO: 7:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
GAT	GACAC'	TG CCAGTCACGA	20
(2)	INFO	RMATION FOR SEQ ID NO: 8:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 8:	
GTT	CCGA	GT GGAAGGCGCT GC	22
(2)	INFO	RMATION FOR SEQ ID NO: 9:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
AGGC	GACA	GG CAGGCCAGGT	20
(2)	INFO	RMATION FOR SEQ ID NO: 10:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
GAGT	TCAG	GT ACCCAGAGAT GCTG	24
(2)	INFO	RMATION FOR SEQ ID NO: 11:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 11:	

CTCGCTCAGA AGGGACTCCA

(2)	INFO	UMITON FOR 5	EQ ID NO.	12.			
	(i)	SEQUENCE CHA (A) LENGTH: (B) TYPE: n (C) STRANDE (D) TOPOLOG	23 base pucleic ac DNESS: si	pairs id			
	(xi)	SEQUENCE DES	CRIPTION:	SEQ ID	NO:	12:	
GGAT	TCAG	C CATGTCAGCT	TCA				23
(2)	INFO	MATION FOR SI	EQ ID NO:	13:			
	(i)	SEQUENCE CHAI (A) LENGTH: (B) TYPE: nu (C) STRANDEI (D) TOPOLOGY	21 base pucleic ac: ONESS: sin	pairs id			
	(xi)	SEQUENCE DESC	CRIPTION:	SEQ ID	NO:	13:	
GTGC	TGTT	A AGGACTACAA	C				21
(2)	INFO	MATION FOR SE	EQ ID NO:	14:			
	(i)	SEQUENCE CHAR (A) LENGTH: (B) TYPE: nu (C) STRANDEL (D) TOPOLOGY	21 base p cleic aci NESS: sir	airs .d			
	(xi)	SEQUENCE DESC	RIPTION:	SEQ ID	NO:	14:	
TGGA	TGAGG	A TCCCCTCCAC	G				21
(2)	INFOR	MATION FOR SE	Q ID NO:	15:			
	(i)	SEQUENCE CHAR (A) LENGTH: (B) TYPE: nu (C) STRANDED (D) TOPOLOGY	27 base p cleic aci NESS: sin	airs d gle			
	(xi)	SEQUENCE DESC	RIPTION:	SEQ ID	NO:	15:	
CCAT	CCTAA	r acgactcact	ATAGGGC				27
(2)	INFOR	MATION FOR SE	Q ID NO:	16:			
	(i)	SEQUENCE CHAR (A) LENGTH: (B) TYPE: nu (C) STRANDED (D) TOPOLOGY	20 base p cleic aci NESS: sin	airs d			•
	(xi)	SEQUENCE DESC	RIPTION:	SEQ ID	NO:	16:	
TGCA	GGCTG	r gggaactcca					20
(2)	LVEUD	ADTION FOR SE	O TO NO	17.			

	(1)	(A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 17:	
AGA	AAAAG	AG CTGTACCCTG TG	22
(2)	INFO	RMATION FOR SEQ ID NO: 18:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 18:	
TGC	AGGA	ag agggggtca gc	22
(2)	INFO	RMATION FOR SEQ ID NO: 19:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 19:	
TCC	ACCAC	AA GCCGAGGAGA T	21
(2)	INFO	RMATION FOR SEQ ID NO: 20:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 20:	
ACG	GCTC	CT CAAACACCAC T	2:
(2)	INFO	RMATION FOR SEQ ID NO: 21:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 21:	
maa.	ለረእጥር	GG CAGGCCGCAG GGTG	24

(2) INFORMATION FOR SEQ ID NO: 22:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:	24
CAGTCCAGCT GGGCTGAGCA GGTG	
(2) INFORMATION FOR SEQ ID NO: 23:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:	2.4
GCGGCTCCAA GAAGTGCATC CAGG	24
(2) INFORMATION FOR SEQ ID NO: 24:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:	2
CTCCACCCTG CAAGGAAGAG GGGC	_
(2) INFORMATION FOR SEQ ID NO: 25:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: peptide	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:	
Thr Leu His Leu Lys Glu Lys Glu Gly Cys Pro Gln Ala Phe His 1 10 15	
(2) INFORMATION FOR SEQ ID NO: 26:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear 	

- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

Gly Lys Asn Lys Ala Arg Ser Ser Ser Gly Pro Lys Pro Leu Val

Claims

- 1. An isolated DNA sequence characterized by comprising the sequence id. no. 1 or a fragment or variant thereof, or an isolated DNA sequence hybridizable thereto, the DNA sequence being associated with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED).
- An isolated DNA sequence according to claim 1, characterized in that it includes a gene defect responsible
 for APECED.
 - 3. A DNA sequence according to claim 1, characterized by having the sequence according to sequence id. no 1 or a fragment thereof having the sequence according to sequence id. no 3 or sequence id. no 5.
- 4. A protein characterized by comprising the amino acid sequence id. no. 2 or a fragment or variant thereof, the protein being associated with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED).
- 5. A protein according to claim 4 characterized by having the amino acid sequence id. no. 2, or a fragment thereof having the sequence according to sequence id. no. 4, or a fragment thereof having the sequence according to sequence id. no 6.
- 25 6. A protein according to claim 4 or 5 characterized by having distinct structural motifs, including the PHD finger motif (PHD), the LXXLL motif (L), proline-rich region (PRR), and cystein-rich region (CRR).
- 7. A method for the diagnosis of autoimmune poly30 endocrinopathy-candidiasis-ectodermal dystrophy (APECED)
 characterized by detecting in a biological specimen the
 precense of a DNA sequence comprising the sequence id.
 no. 1 or a functional fragment or variant thereof, or an
 isolated DNA-sequence hybridizable thereto, the DNA
 35 sequence being associated with APECED.

- 8. A method according to claim 7, characterized in that the DNA sequence includes a gene defect responsible for APECED.
- 9. A method according to claim 8, characterized in 5 that the gene defect to be detected includes a "C" to "T" transition resulting in the "Arg" to "Stop" nonsense mutation at amino acid position 257 and/or a "A" to "G" transversion resulting in the "Lys" to "Glu" missense mutation at amino acid position 42.
- 10. A method according to any one of claims 7 to 9, characterized in that DNA techniques are used for the detection.
- 11. A method according to any one of claims 7 to 10, characterized in that the detection takes advantage of 15 TaqI or another enzyme cleaving at recognition site 5'-TCGA-3' digestion.
- 12. A method for diagnosis of autoimmune the polyendocrinopathy-candidiasis-ectodermal dystrophy a biological detecting in characterized by (APECED) of the absence a or 20 specimen the precense comprising the sequence id. no. 1, or a fragment thereof having the sequence according to sequence id. no. 4, or a fragment therof having the sequence according to sequence id. no 6, the protein being associated with APECED.
- 25 13. The use of the DNA sequence according to any one of claims 1 to 3 in the diagnosis of APECED.
 - 14. The use of the protein according to any one of claims 4 to 6 in the diagnosis of APECED.
- 15. The use of the DNA sequence according to any one 30 of claims 1 to 3 for the preparation of a medicament useful in a gene therapy method of APECED.
 - 16. The use of the DNA sequence according to any one of claims 1 to 3 in the treatment of APECED.

(57) Abstract

The present invention relates to a novel gene, a novel protein encoded by said gene, a mutated form of the gene and to diagnostic and therapeutic uses of the gene or a mutated form thereof. More specifically, the present invention relates to a novel gene defective in autoimmune polyendocrinopathy syndrome type I (APS I), also called autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) (MIM No. 240,300).

Fig. l

Fig. 2

Fig. 3

Fig.4

```
AIR-1: 299 CAVCRDGGELICCDGCPRAFHLACLSPPLREIPSGTWRCSSC 340
AIR-1: 434 .G..G..TDVLR.TH.AA...WR.HF.AGTSR.GTGL..R.. 475
Mi-2: 373 .E..QQ...I.L..T...Y.MV..D.DMEKA.E.K.S.PH. 414
Mi-2: 452 .R..K......T..SSY.IH..N...P...N.E.L.PR. 493
TIF1: 791 ...QN.....EK..KV...S.HV.T.TNF...E.I.TF. 832
Consensus C C C H C C C
```

1. 2 3 4 5 6

Fig. 6

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of:

KAI KROHN, ET AL.

Serial No.:

09/508,658

Group No.:

1634

161 0 2 Too.

led: NOVEMBER 3, 2000

Examiner:

SITTON, J.S.

For:

NOVEL GENE DEFECTIVE IN APECED AND ITS USE

Attorney Docket No.:

U 012653-9

Commissioner for Patents

P. O. Box 1450

Alexandria, VA 22313-1450

ATTACHMENT 1

Attached are SEQ ID Nos: 1 of U.S. Patent Application 09/508,658 and U.S. Patent 6,951,928 that show that the nucleic acid that can be a "T" rather than a "C" is found at the same location in the nucleotide sequence encoding SEQ ID NO:2. This is the nucleotide 768 of the coding sequence.

Respectfully submitted,

JANET I. CORD

LADAS & PARRY LLP

26 WEST 61 STREET

NEW YORK, NEW YORK 10023

REG. NO: 33778 (212) 708-1935

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT:
 - (A) NAME: Kai Krohn et al.
 - (B) STREET: Iltarusko, Salmentaantie 751
 - (C) CITY: 36450 Salmentaka
 - (E) COUNTRY: Finland
 - (F) POSTAL CODE (ZIP): none
- (ii) TITLE OF INVENTION: Novel Gene
- (iii) NUMBER OF SEQUENCES: 26
- (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)
- (2) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2036 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 137..1774
 - (D) OTHER INFORMATION:/product= "AIR-1"
 - (ix) FEATURE:
 - (A) NAME/KEY: mat_peptide
 - (B) LOCATION: 137..1771
 - (D) OTHER INFORMATION:/product= "AIR-1"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:
- AGACCGGGGA GACGGCCGG CGCACAGCCG GCGCGGAGGC CCCCACAGCCC CGCCGGGACC 60
- CGAGGCCAAG CGAGGGGCTG CCAGTGTCCC GGGACCCACC GCGTCCGCCC CAGCCCCGGG 120
- TCCCCGCGCC CACCCC ATG GCG ACG GAC GCG GCG CTA CGC CGG CTT CTG 169
 - Met Ala Thr Asp Ala Ala Leu Arg Arg Leu Leu

10

AGG Arg	CTG Leu	CAC His	CGC Arg	ACG Thr	GAG Glu	ATC Ile	GCG Ala	GTG Val 20	GCC Ala	GTG Val	GAC Asp	AGC Ser	GCC Ala 25	TTC Phe	CCA Pro	217
CTG Leu	CTG Leu	His	GCG Ala	CTG Leu	GCT Ala	GAC Asp	CAC His	GAC	GTG Val	GTC Val	CCC Pro	GAG Glu 40	GAC	AAG Lys	TTT Phe	265
CAG Gln	GAG Glu 45	30 ACG Thr	CTT Leu	CAT His	CTG Leu	AAG Lys 50	GAA	AAG Lys	GAG Glu	GGC Gly	TGC Cys 55	CCC Pro	CAG Gln	GCC Ala	TTC Phe	313
CAC His	GCC	CTC Leu	CTG Leu	TCC Ser	TGG Trp 65	CTG Leu	CTG Leu	ACC Thr	CAG Gln	GAC Asp 70	TCC Ser	ACA Thr	GCC Ala	ATC Ile	CTG Leu 75	361
GAC	TTC Phe	TGG Trp	AGG Arg	GTG Val	CTG Leu	TTC Phe	AAG Lys	GAC Asp	TAC Tyr 85	AAC Asn	CTG Leu	GAG Glu	CGC Arg	TAT	GGC Gly	409
CGG Arg	CTG Leu	CAG Gln	CCC Pro	ATC Ile	CTG Leu	GAC Asp	AGC Ser	TTC Phe 100	Pro	AAA Lys	GAT Asp	GTG Val	GAC Asp	Leu	AGC Ser	457
CAG Gln	CCC Pro	CGG Arg	Lys	GGG Gly	AGG Arg	AAG Lys	CCC Pro	Pro	GCC Ala	GTC Val	CCC	AAG Lys	Ala	TTC Lev	GTA Val	505
CCG Pro	CCF Pro	CCC	: AGA	CTC	CCC	ACC Thr	Lys	AGG Arg	AAG Lys	GCC Ala	TCF	Glu	A GÁG 1 Glu	GCI	CGA Arg	553
GCT Ala	GCC Ala	: GCG	CCA	GCI	A GCC A Ala 145	Let	ACT	r CCI	AGG Arg	GGC Gly 150	Thi	C GCC	C AGO	CCI Pro	A GGC Gly 155	601
ጥርባ	CA	A CTO	G AAC	G GCC	a Lys	CCC	C CCC	C AAG	G AAG S Lys 169	Pro	GA(G AGG	C AGG	GC: r Al	A GAG a Glu O	649
CA(G CA	G CG(C CT g Let 17!	u Pr	A CT(C GGG	G AA y As:	C GG n Gl	y Ile	r CA(≥ Gl:	S AC	C AT	G TC t Se 18	r Al	T TCA a Ser	697
GT(C CA 1 G1	G AG n Ar 19	g Al	T GT a Va	G GC	C AT	G TC t Se 19	r Se	C GGG	G GA	C GT p. Va	C CC 1 Pr 20	0 G1	A GC	C CGA a Arg	745
GG G1	G GC y Al	C GT	G GA	G GG u Gl	G AT	C CT e Le 21	u Il	C CA	G CA	G GT n Va	G TT 1 Ph 21	e Gl	.G TC	A GG	c GGC y Gly	793
TC Se 22	C AF	G AA	G TG	C AT	C CA e G1	G GT	T GG	sc GG y Gl	G GA y Gl	G TT u Ph 23	e Ty	AC AC	T CC	C AC	GC AAG er Lys 235	

TTC GAA GAC TCC GGC AGT GGG AAG AAC AAG GCC CGC AGC AGC AGT GGC Phe Glu Asp Ser Gly Ser Gly Lys Asn Lys Ala Arg Ser Ser Ser Gly 240 245 250	889
CCG AAG CCT CTG GTT CGA GCC AAG GGA GCC CAG GGC GCT GCC CCC GGT Pro Lys Pro Leu Val Arg Ala Lys Gly Ala Gln Gly Ala Ala Pro Gly 255 260 265	937
GGA GGT GAG GCT AGG CTG GGC CAG CAG GGC AGC GTT CCC GCC CCT CTG Gly Glu Ala Arg Leu Gly Gln Gln Gly Ser Val Pro Ala Pro Leu 270 _ 275 280	985
GCC CTC CCC AGT GAC CCC CAG CTC CAC CAG AAG AAT GAG GAC GAG TGT Ala Leu Pro Ser Asp Pro Gln Leu His Gln Lys Asn Glu Asp Glu Cys 285 290 295	1033
GCC GTG TGT CGG GAC GGC GGG GAG CTC ATC TGC TGT GAC GGC TGC CCT Ala Val Cys Arg Asp Gly Glu Leu Ile Cys Cys Asp Gly Cys Pro 305 310 315	1081
CGG GCC TTC CAC CTG GCC TGC CTG TCC CCT CCG CTC CGG GAG ATC CCC Arg Ala Phe His Leu Ala Cys Leu Ser Pro Pro Leu Arg Glu Ile Pro 320 325 330	1129
AGT GGG ACC TGG AGG TGC TCC AGC TGC CTG CAG GCA ACA GTC CAG GAG Ser Gly Thr Trp Arg Cys Ser Ser Cys Leu Gln Ala Thr Val Gln Glu 335 340 345	1177
GTG CAG CCC CGG GCA GAG GAG CCC CGG CCC CAG GAG CCA CCC GTG GAG Val Gln Pro Arg Ala Glu Glu Pro Arg Pro Gln Glu Pro Pro Val Glu 350 355 360	1225
ACC CCG CTC CCC CCG GGG CTT AGG TCG GCG GGA GAG GAG GTA AGA GGT Thr Pro Leu Pro Pro Gly Leu Arg Ser Ala Gly Glu Glu Val Arg Gly 365 370 375	1273
CCA CCT GGG GAA CCC CTA GCC GGC ATG GAC ACG ACT CTT GTC TAC AAG Pro Pro Gly Glu Pro Leu Ala Gly Met Asp Thr Thr Leu Val Tyr Lys 380 385 390 395	1321
CAC CTG CCG GCT CCG CCT TCT GCA GCC CCG CTG CCA GGG CTG GAC TCC His Leu Pro Ala Pro Pro Ser Ala Ala Pro Leu Pro Gly Leu Asp Ser 400 405 410	1369
TCG GCC CTG CAC CCC CTA CTG TGT GTG GGT CCT GAG GGT CAG CAG AAC Ser Ala Leu His Pro Leu Leu Cys Val Gly Pro Glu Gly Gln Gln Asn 415 420 425	1417
CTG GCT CCT GGT GCG CGT TGC GGG GTG TGC GGA GAT GGT ACG GAC GTG Leu Ala Pro Gly Ala Arg Cys Gly Val Cys Gly Asp Gly Thr Asp Val 430 440	1465

CTG	CGG	TGT	ACT	CAC	TGC	GCC	GCT	GCC	TTC	CAC	TGG	CGC	TGC	CAC	TTC	1513
Leu	Arg	Cys	Thr	His	Cys	Ala	Ala	Ala	Phe	His		Arg	Cys	His	Phe	
	445					450					455					
-								200	ccc	CTC	ccc	ጥርር	»C»	TCC	TGC	1561
CCA	GCC	GGC	ACC	TCC	CGG Arg	CCC	666	ACG	Cly	Lau	Ara	CVS	Ara	Ser	Cvs	2002
	Ala	Gly	Thr	Ser	465	PIO	GIY	1111	Gry	470	my.		,		475	
460					403											
ጥር አ	GGA	GAC	GTG	ACC	CCA	GCC	CCT	GTG	GAG	GGG	GTG	CTG	GCC	CCC	AGC	1609
Ser	Glv	Asp	Val	Thr	Pro	Ala	Pro	Val	Glu	G1 y	Val	Leu	Ala	Pro	Ser	
	0			480					485					490		
ccc	GCC	CGC	CTG	GCC	CCT	GGG	CCT	GCC	AAG	GAT	GAC	ACT	GCC	AGT	CAC	1657
Pro	Ala	Arg	Leu	Ala	Pro	Gly	Pro		Lys	Asp	Asp	Thr	Ala	Ser	His	
			495	-				500					505			
					AGG	63 m	CT C	CEC	CNC	TCC	. С ТТ	CTG	AGC	GAG	CAC	1705
GAG	ccc	GCT	CTG	CAC	Arg	BAT	DAC	Lau	GAG	Ser	Leu	Leu	Ser	Glu	His	
Glu	Pro			HIS	ALG	ASP	515		Q1 u	502		520				
		510					010									
አርር	ጥጥር	GAT	GGC	ATC	CTG	CAG	TGG	GCC	ATC	CAG	AGC	ATG	GCC	CGT	CCG	1753
Thr	Phe	Asp	Glv	Ile	Leu	Gln	Trp	Ala	Ile	Gln	Ser	Met	Ala	Arg	Pro	
	525		•			530					535					
												•				
GCG	GCC	ccc	TTC	ccc	TCC	TGA	ccc	CAGA	TGG	CCGG	GACA	TG C	AGC	CTGA	ΛT	1804
Ala	Ala	Pro	Phe	Pro	Ser	*						٠.				
540)				545	•										
								- mc	3 CTC	·crcc	. אאר	יררכי	cce	GCTC	GGATCA	1864
GAG	AGAC	TGC	TGAG	AAGO	AC F	CCTC	CTTC	.c rc	MGIC	.CIG	·		,000	-	GGATCA	
		-cic	n.c.c.c	ברראו	יריד כ	ייינים	rcagi	rg CI	· ·cggc	TGT	AA A	CAGC	CTG	TGT	TTCTGGG	1924
AGF	MGGC	SGAC	AGCC	CCA					-,							
CVC	יארכז	AGCC	ATC	TGT	SCC 1	rggai	ATT	AA AA	ссто	SCCC	AC	rtcto	CTAC	TCT	GAAGTC	1984
CCC	GGG	AGCC	TCT	CCTT	SCC 1	rggt	GACC'	TA C	LAAAT	ATA:	C AA	AAAT'	ragc	TG		2036

(2) INFORMATION FOR SEQ ID NO: 2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 545 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Met Ala Thr Asp Ala Ala Leu Arg Arg Leu Leu Arg Leu His Arg Thr

Glu Ile Ala Val Ala Val Asp Ser Ala Phe Pro Leu Leu His Ala Leu 20 25 30

Ala Asp His Asp Val Val Pro Glu Asp Lys Phe Gln Glu Thr Leu His
35 40 45

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS:	: 30		
<pre><210> SEQ ID NO 1 <211> LENGTH: 2245 <212> TYPE: DNA <213> ORGANISM: Homo sapier <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (121)(175 <223> OTHER INFORMATION:</pre>			
<400> SEQUENCE: 1			
cgggcgcaca gccggcgcgg aggcc			60 120
getgecagtg teeegggace caceg			168
atg gcg acg gac gcg gcg cta Met Ala Thr Asp Ala Ala Leu 1 5			100
gag atc gcg gtg gcc gtg gac Glu Ile Ala Val Ala Val Asp 20			216
gct gac cac gac gtg gtc ccc Ala Asp His Asp Val Val Pro 35			264
ctg aag gaa aag gag ggc tgc Leu Lys Glu Lys Glu Gly Cys 50 55			312
tgg ctg ctg acc cag gac tcc Trp Leu Leu Thr Gln Asp Ser 65 70			360
ctg ttc aag gac tac aac ctg Leu Phe Lys Asp Tyr Asn Leu 85			408
ctg gac agc ttc ccc aaa gat Leu Asp Ser Phe Pro Lys Asp 100			456
agg aag ccc ccg gcc gtc ccc Arg Lys Pro Pro Ala Val Pro 115			504
ccc acc aag agg aag gcc tca Pro Thr Lys Arg Lys Ala Ser 130 135	Glu Glu Ala Arg		552
gcc ctg act cca agg ggc acc Ala Leu Thr Pro Arg Gly Thr 145 150			600
aag ccc ccc aag aag ccg gag Lys Pro Pro Lys Lys Pro Glu 165			648
ctc ggg aac ggg att cag acc Leu Gly Asn Gly Ile Gln Thr 180	e atg tca gct tca Met Ser Ala Ser 185	gtc cag aga gct gtg Val Gln Arg Ala Val 190	696
gcc atg tcc tcc ggg gac gtc Ala Met Ser Ser Gly Asp Val 195			744
atc ctc atc cag cag gtg ttt Ile Leu Ile Gln Gln Val Phe 210 215	Glu Ser Gly Gly		792
Cag gtt ggt ggg gag ttc tac Gln Val Gly Gly Glu Phe Tyr 225 230			840

-continued

											ccg Pro					888
											gga Gly					936
											gcc Ala					984
											gcc Ala 300					1032
											cgg Arg					1080
											agt Ser					1128
											gtg Val					1176
											acc Thr					1224
											cca Pro 380					1272
											cac His					1320
											tcg Ser					1368
											ctg Leu					1416
											ctg Leu					1464
tgc Cys	gcc Ala 450	gct Ala	gcc Ala	ttc Phe	cac His	tgg Trp 455	cgc Arg	tgc Cys	cac His	ttc Phe	cca Pro 460	gcc Ala	ggc Gly	acc Thr	tcc Ser	1512
											tca Ser					1560
											ccc Pro					1608
											gag Glu					1656
											acc Thr					1704
											gcg Ala 540					1752
tcc Ser	tga	ccc	agat	gg d	cgg	jacat	g ca	igete	tgat	gag	jagag	tgc	tgag	jaagg	jac	1808

-continued

545																
acc.	tect	tcc	tcag	tcct	gg a	agcc	ggcc	g gc	tggg	atca	aga	aggg	gac	agcg	ccacct	186
ctt	gtca	gtg	ctcg	gctg	ta a	acag	ctct	g tg	tttc	tggg	gac	acca	gcc	atca	tgtgcc	192
tgg	aaat	taa	accc	tgcc	cc a	cttc	tcta	c tc	tgga	agtc	ccc	ggga	gcc	tctc	cttgcc	198
tgg [.]	tgac	cta	ctaa	aaat.	at a	aaaa	ttag	c tg	ggtg	tggt	ggt	gggt	gcc	tgta	atccca	204
gct	acat	999	agcc	tgag	gc a	tgag	aatc	a ct	tgaa	ctcg	gga	ggtg	gag	gttg	cagtga	210
gct	gaga	ttg	cgcc	actg	ca c	tcca	gtct	g gt	egge	aaga	gtg	agac	tcc	gtct	caaaaa	216
caa	aaca	aaa .	aaac	caca	ta a	cata	aatt	t at	cate	tcga	cca	cttt	tca	gttc	agtggc	222
att	caca	tct	catg	taa												224
<21 <21	1> LE 2> TY	ENGTI PE:	O NO H: 54 PRT ISM:	45	o sa	pien	3									
<40	0> SI	EQUE	NCE:	2												
Met 1	Ala	Thr	qaA	Ala 5	Ala	Leu	Arg	Arg	Leu 10	Leu	Arg	Leu	His	Arg 15	Thr	
Glu	Ile	Ala	Val 20	Ala	Val	Asp	Ser	Ala 25	Phe	Pro	Leu	Leu	His 30	Ala	Leu	
Ala	Asp	His 35	Asp	Val	Val	Pro	Glu 40	Авр	Lys	Phe	Gln	Glu 45	Thr	Leu	His	
Leu	Lys 50	Glu	Lys	Glu	Gly	С у в 55	Pro	Gln	Ala	Phe	His 60	Ala	Leu	Leu	Ser	
Trp 65	Leu	Leu	Thr	Gln	Авр 70	Ser	Thr	Ala	Ile	Leu 75	Asp	Phe	Trp	Arg	Val 80	
Leu	Phe	Lys	Asp	Tyr 85	Asn	Leu	Glu	Arg	Tyr 90	Gly	Arg	Leu	Gln	Pro 95	Ile	
Leu	Asp	Ser	Phe 100	Pro	Lys	Авр	Val	Asp 105	Leu	Ser	Gln	Pro	Arg 110	Lys	Gly	
Arg	Lys	Pro 115	Pro	Ala	Val	Pro	Lув 120	Ala	Leu	Val	Pro	Pro 125	Pro	Arg	Leu	
Pro	Thr 130	Lys	Arg	Lys	Ala	Ser 135	Glu	Glu	Ala	Arg	Ala 140	Ala	Ala	Pro	Ala	
Ala 145	Leu	Thr	Pro	Arg	Gly 150	Thr	Ala	Ser	Pro	Gly 155	Ser	Gln	Leu	Lys	Ala 160	
Lys	Pro	Pro	Lys	Lys 165	Pro	Glu	Ser	Ser	Ala 170	Glu	Gln	Gln	Arg	Leu 175	Pro	
Leu	Gly	Asn	Gly 180	Ile	Gln	Thr	Met	Ser 185	Ala	Ser	Val	Gln	Arg 190	Ala	Val	
Ala	Met	Ser 195	Ser	Gly	Asp	Val	Pro 200	Gly	Ala	Arg	Gly	Ala 205	Val	Glu	Gly	
Ile	Leu 210	Ile	Gln	Gln	Val	Phe 215	Glu	Ser	Gly	Gly	Ser 220	Lys	Lys	Сув	Ile	
Gln 225	Val	Gly	Gly	Glu	Phe 230	Tyr	Thr	Pro	Ser	Lys 235	Phe	Glu	Asp	Ser	Gly 240	
Ser	Gly	Lув	Asn	Lув 245	Ala	Arg	Ser	Ser	Ser 250	Gly	Pro	Lув	Pro	Leu 255	Val	
Arg	Ala	Lув	Gly 260	Ala	Gln	Gly	Ala	Ala 265	Pro	Gly	Gly	Gly	Glu 270	Ala	Arg	
Leu	Gly	Gln 275	Gln	Gly	Ser	Val	Pro 280	Ala	Pro	Leu	Ala	Leu 285	Pro	Ser	Asp	