MSEG 302 Spring 2018 Materials Science for Engineers

Course Objective...

Introduce fundamental concepts in Materials Science and Engineering

You will learn about:

- material structure
- how structure dictates properties
- how processing can change structure

This course will help you to:

- use materials properly
- realize new design opportunities with materials

MSEG 302 LECTURES

Lecturer: Prof. David C. Martin milty@udel.edu

Time: 12:30-1:45 PM Tues-Thurs

Location: 100 Wolf Hall

Activities:

- Present new material
- Announce reading and homework
- Take quizzes and midterms
- Hear interesting stories and funny jokes

Majors

Biomedical
Chemical
Civil & Environmental
Computer & Information Sciences
Electrical & Computer
Mechanical

Chemistry
Physics
Biological Sciences

MATERIALS SCIENCE & ENGINEERING

DAVID C. MARTIN

KARL & RENATE BÖER PROFESSOR

Department of Materials Science and Engineering

Email: milty@udel.edu Phone: (302) 831-6341 305 DuPont Hall

QUICK LINKS

Awards

Research Interests

Representative Publications

Curriculum Vitae

Research Group

BIOSKETCH

Dr. Martin focuses his research on organic molecular semiconductors, organic conductive polymer films, low impedance biomimetic conductive polymer coatings and bioactive hydrogel coatings for microelectrodes on biomedical devices and biosensors, electrically conductive polymer nanotubes, oriented electrospun nanofibers, multi-phasic functionalized polymer nanoparticles, and molecular simulations of polymer defects and crystal structure. Dr. Martin earned his Ph.D. in polymer science and engineering from the University of Massachusetts at Amherst. The Böer chair honors Karl W. Böer, Distinguished Professor Emeritus of Physics and Solar Energy, a pioneer in the fields of solar cells, solar energy systems, and solid state physics.

AWARDS

- University of Michigan Materials Science and Engineering Distinguished Alumni Award 2013
- President, Polymeric Materials Science and Engineering Division, American Chemical Society 2013
- Fellow, American Physical Society, Division of Polymer Physics 2010
- Karl W. Böer Chair of Materials Science and Engineering The University of Delaware College of Engineering 2009
- UM Materials Science and Engineering Distinguished Achievement Award 2008

TEACHING ASSISTANTS

Name

David Angel
Jimmy Hack
Guancheng Li
Zijian Wang

E-mail

dangel@udel.edu
hack@udel.edu
guanchl@udel.edu
wangzj@udel.edu

Round table outside 305 DuPont

DCM office hours immediately after class

Other times by appointment

COURSE MATERIALS

Recommended text:

W. D. Callister, Jr. and D. G. Rethwisch, 9th edition, Materials Science and Engineering: An Introduction John Wiley and Sons, Inc., (2014)

You can register for an electronic version at www.wileyplus.com... other optional educational resources there as well

Other books and web sites might help you understand things better...like Wikipedia and so on.. but beware that you can't trust everything you see on the internet.

COURSE WEBSITE

MSEG 302 Canvas Website: http://udel.instructure.com

- Syllabus
- Lecture notes
- Questions, Discussion, Chat
- Announcements
- Homework

Text Website: http://www.wileyplus.com

- Complete solutions to selected problems
- Links to other web resources
- Extended learning objectives
- Self-assessment exercises

GRADING

Homework and Quizzes 15%

Typically one assignment / week, perhaps some quizzes in class

Midterm #1 25%

Scheduled for Thursday before spring break (March 22nd)

Material covered: Chapters 1-6, 14 (estimated)

Midterm #2 25%

Scheduled for end of April (April 26th)

Material covered: Chapters 1-18 (estimated)

Final 35%

Tentatively scheduled for: finals period (May 17th-24th)

Material covered: Comprehensive

Detailed Schedule (Part 1)

February 6th

February 8th

February 13th

February 15th

February 20th

February 22nd

February 27th

March 1st

March 6th

March 8th

March 13th

March 15th

March 20th

March 22nd

March 27th

Introduction, Chapter 1

Chapter 2

Chapter 2, HW1 due

Chapter 3

Chapter 3, HW2 due

Chapter 14

Chapter 4, HW3 due

Chapter 4

Chapter 5, HW4 due

Chapter 5

Chapter 6, HW5 due

Chapter 6

Exam Review, HW 6 due

Exam I

UDel Spring Break

Overview

Atoms, Chemistry

Bonding

Crystals

Crystal Structures

Polymers

Defect Structures

Defect Properties

Diffusion

Diffusion Processes

Stress-Strain Behavior

Deformation

Detailed Schedule (Part 2)

March 29th

April 3rd

April 5th

April 10th

April 12th

April 17th

April 19th

April 24th

April 26th

May 1st

May 3rd

May 8th

May 10th

May 15th

May 17th-24th

UDel Spring Break

Chapter 7

Chapter 7

Chapter 8, HW7 due

Chapter 8

Chapter 9, HW8 due

Chapter 9

Deformation Mechs

Deformation Props

Failure

Failure Testing

Phase Diagrams

Processing

Exam II Review, HW9 due Exam II

Chapter 12

Chapter 12

Chapter 18, HW10 due

Chapter 18

Chapter 18, HW11 due

Final Exams

Ceramic Structures

Ceramic Properties

Electrical Properties

Electrical Applications

Electrical Devices

HW#1 Due by 12:30 PM Feb 13th

- a. Atomic weights of elements with different natural isotopes
- b. Quantum numbers n, l, m_l, and m_s
- c. Percent ionic character
- d. Chemical composition of a molecule

HW must be submitted in PDF file format on the course web site, deadline is the start of class period on the due date. NO late homework will be accepted. HW key will be posted to the web page after the due date.

Units!

- Make sure your answers have the right units, or they aren't correct
- Keeping track of units helps insure that you have all the right information needed to get an answer (dimensional analysis)
- If you have to make approximations, simply state your assumptions but keep going; most times rough estimates are better than no idea whatsoever

Chapter 1 - Introduction

- What is Materials Science and Engineering?
- Why should we know about it?
- Materials drive our society
 - Stone Age
 - Bronze Age
 - Iron Age
 - Now:
 - Silicon
 - Polymers
 - Composites
 - Nanomaterials
 - Biological and Bio-inspired Materials

Materials Science at Delaware (MSEG)

- www.mseg.udel.edu
- Program since 1959
- Department since 1998
- M.S. and Ph.D. Students
- Minors in MSEG
- 4+1 BS/MS: Double-count up to 6 credits for combined BS in Engineering or Science, MS in MSEG
- Undergrad BSE degree in development
 - Launch planned for fall 2019

Types of Materials

- Metals: metallic bonding, sharing of electrons in a "sea"
 - strong, ductile
 - high thermal & electrical conductivity
 - opaque, reflective
- Polymers/plastics: covalent bonding → local sharing of e's to create clusters of atoms... individual molecules or networks
 - soft, ductile, low strength, low density
 - thermal & electrical insulators (usually)
 - optically translucent or transparent (usually)
- Ceramics: ionic bonding→ compounds of metallic & nonmetallic elements (oxides, carbides, nitrides, sulfides)
 - brittle, glassy, elastic
 - non-conducting (insulators, semiconductors) (usually)

Example – Hip Implant

With age or certain illnesses joints deteriorate
 Particularly those with large loads (such as hip)

Example – Hip Implant

- Requirements
 - mechanical strength (many cycles)
 - good lubricity
 - biocompatibility

Artificial Hip Implant

Artificial Hip Implant

- Key problems to overcome
 - light weight
 - strong
 - fracture resistant
 - fatigue resistant
 - wear-resistant cup ball
 - secures to bone
 - minimize inflammation

Zimmer Biomet, Smith & Nephew, Stryker, DePuy

310,800 US surgeries in 2010, at \$40k each

Structure, Processing, & Properties

 Properties depend on structure ex: hardness vs structure of steel

 Processing can change structure ex: structure vs cooling rate of steel

MECHANICAL

Stiff Light

Heavy Stiff

Heavy Soft

Soft Light

ELECTRICAL

Electrical Resistivity of Copper:

- Adding "impurity" atoms to Cu increases resistivity
- Deforming Cu increases resistivity

THERMAL

- Space Shuttle Tiles:
 - --Silica fiber insulation offers low heat conduction

 $100 \, \mu m$

- - --It decreases when you add zinc

MAGNETIC

- Magnetic Storage:
 - --Recording medium is magnetized by recording head

Magnetic Permeability
 vs. Composition:
 --Adding 3 atomic % Si makes Fe a better recording medium

OPTICAL

Transmittance:

--Aluminum oxide may be transparent, translucent, or opaque depending on the material structure

DETERIORATIVE

Stress & Saltwater...

 Heat treatment: slows crack speed in salt water!

--material: 7150-T651 Al "alloy" (Zn,Cu,Mg,Zr)

The Materials Selection Process

1. Pick Application — Determine required Properties

Properties: mechanical, electrical, thermal, magnetic, optical, deteriorative.

- Properties

 Identify candidate Material(s)
 Material: structure, composition.
- 3. Material → Identify required Processing

Processing: changes *structure* and overall *shape* ex: casting, sintering, vapor deposition, doping forming, joining, annealing.

SUMMARY

Course Goals:

- Use the right material for the job.
- Understand the relation between properties, structure, and processing.
- Recognize new design opportunities offered by materials selection.