Activation Of Carboxylic Acids

from chapter(s) _____ in the recommended text

A. Introduction

B. Reactivity

poor acylating agents because:

- hydroxide is a
- exists as a carboxylate.

are reactive to nucleophiles.

C. Common Carboxylic Acids Derivatives

D. Activation Of Carboxylic Acids By Conversion To Acid Chlorides

Thionyl Halides: Excellent Dehydrating Agents

formula: SOBr₂

Thionyl Halide Plus Carboxylic Acid Gives Acid Halide, SO₂, And HX acid halides.

carboxylate

sulfonyl anhydride intermediate

tetrahedral intermediate

carboxylic acid bromide

E. Activation By Forming Anhydrides

Symmetrical Anhydrides

1 molecule(s)

$$2 \, PhCO_2 H \xrightarrow{P_2O_5} \\ -H_2O$$

$$O O \bigcirc$$

Symmetrical anhydrides , but *unsymmetrical* ones

is symmetrical) and the unsymmetrical anhydride

Unsymmetrical And Mixed Anhydrides

2 unsymmetrical. another type of acid.

are not

that can be used

eg

draw arrows to most reactive carbonyl carbon(s), circle unsymmetrical anhydrides, and box those that are mixed

different,

Formation Of Unsymmetrical Anhydride Derivatives Using Carbodiimides urea.

$$\begin{array}{c} Cy \\ N \\ Cy \\ N \\ O \end{array}$$

$$\begin{array}{c} H^+, +H^+ \\ Cy \\ N \\ O \end{array}$$

tetrahedral intermediate

$$\mathsf{Bn} \underbrace{\mathsf{O}}_{\mathsf{N}} \underbrace{\mathsf{N}}_{\mathsf{H}} \mathsf{O} \mathsf{O} \mathsf{H}$$

$$\begin{array}{c|c} CBZ & OH & (i) DCC \\ \hline N & O & (ii) \\ H_2N & O'Bu \\ \hline \end{array}$$

F. Activation Of Phosphate Acids In Cells Via Phosphate Anhydrides

Formation Of Mixed Anhydrides Of Phosphorus Acids *mixed* anhydrides

$$\begin{array}{c} O & O & OH \\ \hline \\ O & P & OH \\ \hline \end{array}$$

acyl phosphate

the *carbonyl* of is a better leaving

$$O$$
 O OH H_2O O OH O OH

carboxylic and phosphoric acids

protonated

adenosine

acyl adenylate

, ADP / ATP,

AMP

ADP

AMP and acyl pyrophosphate

 β phosphorus. on the γ phosphorus.

repel anionic *faster* if encapsulated