```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

```
df = pd.read_csv("alloy_ml_dataset_elemental_features.csv")
    df
          Solvent Solute Potential_ID Alpha Mu Sigma solvent_density solvent_bulk solvent_shear solute_density solute_bu
      0
                                              0.0
                                                   -3
                                                           3
                                                                        10.212
                                                                                        99.94
                                                                                                        27.99
                                                                                                                         2.663
               Ag
                                             8.0
                                                                        10.212
                                                                                        99.94
                                                                                                                         18.221
      1
               Ag
                       Au
                                        2
                                                  -2
                                                           2
                                                                                                        27.99
                                                                                                                                      145
      2
               Ag
                       Au
                                        3
                                             0.0
                                                   0
                                                                        10.212
                                                                                        99.94
                                                                                                        27.99
                                                                                                                         18.221
                                                                                                                                       145
      3
               Ag
                       Au
                                             2.6
                                                  -2
                                                           5
                                                                        10.212
                                                                                        99.94
                                                                                                        27.99
                                                                                                                         18.221
                                                                                                                                       145
                                             -0.2
                                                          12
                                                                                                                                      185
      4
                       Co
                                        1
                                                   3
                                                                        10 212
                                                                                        99 94
                                                                                                        27 99
                                                                                                                         8 900
               Ag
     ...
                                                                                                                         11.576
     422
                7r
                       Pd
                                        1
                                             -1.2
                                                   4
                                                          16
                                                                         6.510
                                                                                        95.00
                                                                                                        33.00
                                                                                                                                      175
                Zr
     423
                        Pt
                                             -1.3
                                                   3
                                                          17
                                                                         6.510
                                                                                        95.00
                                                                                                        33.00
                                                                                                                        20.603
                                                                                                                                      251
                                                                                                                         16.690
     424
                7r
                        Ta
                                              1.9
                                                  -7
                                                          13
                                                                         6.510
                                                                                        95.00
                                                                                                        33.00
                                                                                                                                       190
    425
                Zr
                        Ti
                                             0.0
                                                  -3
                                                          12
                                                                         6.510
                                                                                        95.00
                                                                                                                                       110
                                                                                                        33.00
                                                                                                                         4.510
     426
                7r
                        W
                                             2.8
                                                  1
                                                          24
                                                                         6.510
                                                                                        95.00
                                                                                                        33.00
                                                                                                                         19.250
                                                                                                                                      310
    427 rows × 12 columns
Next steps: ( Generate code with df )
                                    ( New interactive sheet
```

```
from sklearn.preprocessing import LabelEncoder

# For Solvent
le_solvent = LabelEncoder()
df['Solvent_encoded'] = le_solvent.fit_transform(df['Solvent'])
# Show mapping
mapping_solvent = dict(zip(le_solvent.classes_, le_solvent.transform(le_solvent.classes_)))
print("Solvent mapping:", mapping_solvent)

# For Solute
le_solute = LabelEncoder()
df['Solute_encoded'] = le_solute.fit_transform(df['Solute'])
# Show mapping
mapping_solute = dict(zip(le_solute.classes_, le_solute.transform(le_solute.classes_)))
print("Solute mapping:", mapping_solute)

nt64(15), 'V': np.int64(16), 'W': np.int64(17), 'Zr': np.int64(18)}
64(15), 'Re': np.int64(16), 'Si': np.int64(17), 'Sm': np.int64(18), 'Ta': np.int64(19), 'Ti': np.int64(20), 'V': np.int64(21), 'Sm': np.int64(18), 'Ta': np.int64(19), 'Ti': np.int64(20), 'V': np.int64(21)
```

	Potential_ID	Alpha	Mu	Sigma	solvent_density	solvent_bulk	solvent_shear	solute_density	solute_bulk	solute_
0	1	0.0	-3	3	10.212	99.94	27.99	2.663	69.93	
1	2	0.8	-2	2	10.212	99.94	27.99	18.221	145.31	
2	3	0.0	0	2	10.212	99.94	27.99	18.221	145.31	
3	1	2.6	-2	5	10.212	99.94	27.99	18.221	145.31	
4	1	-0.2	3	12	10.212	99.94	27.99	8.900	185.00	
422	1	-1.2	4	16	6.510	95.00	33.00	11.576	175.97	
423	1	-1.3	3	17	6.510	95.00	33.00	20.603	251.60	
424	1	1.9	-7	13	6.510	95.00	33.00	16.690	190.00	
425	1	0.0	-3	12	6.510	95.00	33.00	4.510	110.00	
426	1	2.8	1	24	6.510	95.00	33.00	19.250	310.00	1

Next steps: Generate code with df New interactive sheet

	Solute_encoded	Solvent_encoded	Potential_ID	Alpha	Mu	Sigma	solvent_density	solvent_bulk	solvent_shear	solute
0	1	0	1	0.0	-3	3	10.212	99.94	27.99	
1	2	0	2	0.8	-2	2	10.212	99.94	27.99	
2	2	0	3	0.0	0	2	10.212	99.94	27.99	
3	2	0	1	2.6	-2	5	10.212	99.94	27.99	
4	3	0	1	-0.2	3	12	10.212	99.94	27.99	
422	14	18	1	-1.2	4	16	6.510	95.00	33.00	
423	15	18	1	-1.3	3	17	6.510	95.00	33.00	
424	19	18	1	1.9	-7	13	6.510	95.00	33.00	
425	20	18	1	0.0	-3	12	6.510	95.00	33.00	
426	22	18	1	2.8	1	24	6.510	95.00	33.00	
427 rc	ows × 12 columns									

Next steps: Generate code with df New interactive sheet

	Solute_encoded	Solvent_encoded	Potential_ID	Alpha	Mu	Sigma	${\sf solvent_density}$	solvent_bulk	s
count	427.000000	427.000000	427.000000	427.000000	427.000000	427.000000	427.000000	427.000000	
mean	9.770492	7.812646	10.604215	-0.406557	-6.159251	20.615925	9.872267	155.284731	
std	7.172507	5.355225	15.760540	1.652059	20.898546	17.871412	5.398244	66.296154	
min	0.000000	0.000000	1.000000	-3.300000	-129.000000	1.000000	1.740000	35.000000	
25%	4.000000	3.000000	1.000000	-1.700000	-7.000000	9.000000	6.510000	99.940000	
50%	9.000000	7.000000	1.000000	-1.000000	-2.000000	16.000000	8.900000	160.000000	
75%	15.000000	12.000000	15.500000	1.000000	2.000000	27.000000	11.576000	180.000000	
max	24.000000	18.000000	57.000000	3.600000	88.000000	151.000000	21.040000	350.000000	

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# Step 1: Ensure your encoded columns exist (e.g., solute_encoded, solvent_encoded)
# Step 2: Select only numeric columns
numeric_df = df.select_dtypes(include='number')
# Step 3: Compute correlation matrix
corr_matrix = numeric_df.corr()
# Step 4: Plot the heatmap
plt.figure(figsize=(12, 10))
                                                 # adiust size as needed
sns.heatmap(
    corr_matrix,
   vmin=-1.
    vmax=1,
   center=0,
    cmap='coolwarm'
                                                   # diverging palette
    annot=True,
    fmt=".2f",
   linewidths=0.5
plt.title("Correlation Matrix - All Numeric Columns")
plt.tight_layout()
plt.show()
```



```
from sklearn.preprocessing import StandardScaler
# columns to exclude from standardization
exclude_cols = ['Solute_encoded', 'Solvent_encoded', 'Potential_ID', 'Alpha', 'Mu']
# columns to scale
cols_to_scale = [col for col in df.columns if col not in exclude_cols]
# initialize scaler
scaler = StandardScaler()
\ensuremath{\text{\#}} fit and transform only selected columns
df[cols_to_scale] = scaler.fit_transform(df[cols_to_scale])
# verify
df
```

	Solute_encoded	Solvent_encoded	Potential_ID	Alpha	Mu	Sigma	${\tt solvent_density}$	solvent_shear	$solute_density$	so
0	1	0	1	0.0	-3	-0.986860	0.063008	-0.872721	-1.355699	
1	2	0	2	0.8	-2	-1.042881	0.063008	-0.872721	1.580576	
2	2	0	3	0.0	0	-1.042881	0.063008	-0.872721	1.580576	
3	2	0	1	2.6	-2	-0.874819	0.063008	-0.872721	1.580576	
4	3	0	1	-0.2	3	-0.482672	0.063008	-0.872721	-0.178585	
422	14	18	1	-1.2	4	-0.258588	-0.623575	-0.739291	0.326459	
423	15	18	1	-1.3	3	-0.202567	-0.623575	-0.739291	2.030133	
424	19	18	1	1.9	-7	-0.426651	-0.623575	-0.739291	1.291629	
425	20	18	1	0.0	-3	-0.482672	-0.623575	-0.739291	-1.007113	
426	22	18	1	2.8	1	0.189579	-0.623575	-0.739291	1.774781	
427 r	ows x 10 columns									

427 rows × 10 columns

Next steps: (Generate code with df) (New interactive sheet)

Explained variance ratio (sum): 1.00

```
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
# 1. Exclude non-numeric or categorical columns
exclude_cols = ['Solute_encoded', 'Solvent_encoded', 'Potential_ID', 'Alpha', 'Mu']
cols_to_scale = [col for col in df.columns if col not in exclude_cols]
# 2. Standardize the selected columns
scaler = StandardScaler()
scaled_features = scaler.fit_transform(df[cols_to_scale])
# 3. Apply PCA (say, retain 95% of variance)
pca = PCA(n_components=0.95)
pca_features = pca.fit_transform(scaled_features)
# 4. Create a new dataframe with principal components
pca df = pd.DataFrame(pca features, columns=[f'PC{i+1}' for i in range(pca features.shape[1])])
# 5. Add back excluded columns
final_df = pd.concat([df[exclude_cols].reset_index(drop=True), pca_df], axis=1)
# 6. Check results
print(final_df.head())
print(f"Explained variance ratio (sum): {pca.explained_variance_ratio_.sum():.2f}")
  Solute_encoded Solvent_encoded Potential_ID Alpha Mu
                                                                PC1 \
а
                                a
                                              1
                                                   0.0 -3 -1.536528
               2
                                             2
                                                   0.8 -2 -0.832481
                                                   0.0 0 -0.832481
2
               2
                                0
3
                                                 2.6 -2 -0.760849
                                                 -0.2 3 -0.704254
               3
                 PC3
                           PC4
       PC2
0 -0.903554 1.181172 -0.486379 -0.105954
1 1.013623 1.063183 1.569850 0.359261
  1.013623 1.063183 1.569850 0.359261
3 0.937648 0.973164 1.624331 0.280078
4 0.515778 0.170779 -0.337539 -0.533925
```

	Solute_encoded	Solvent_encoded	Potential_ID	Alpha	Mu	Sigma	solvent_density	solvent_shear	solute_density	S
0	1	0	1	0.0	-3	-0.986860	0.063008	-0.872721	-1.355699	
1	2	0	2	0.8	-2	-1.042881	0.063008	-0.872721	1.580576	
2	2	0	3	0.0	0	-1.042881	0.063008	-0.872721	1.580576	
3	2	0	1	2.6	-2	-0.874819	0.063008	-0.872721	1.580576	
4	3	0	1	-0.2	3	-0.482672	0.063008	-0.872721	-0.178585	
422	14	18	1	-1.2	4	-0.258588	-0.623575	-0.739291	0.326459	
423	15	18	1	-1.3	3	-0.202567	-0.623575	-0.739291	2.030133	
424	19	18	1	1.9	-7	-0.426651	-0.623575	-0.739291	1.291629	
425	20	18	1	0.0	-3	-0.482672	-0.623575	-0.739291	-1.007113	
426	22	18	1	2.8	1	0.189579	-0.623575	-0.739291	1.774781	
427 rc	ws × 15 columns									

```
df.drop(columns=['PC1'], inplace=True)
   KeyError
                                              Traceback (most recent call last)
   /tmp/ipython-input-2750509230.py in <cell line: 0>()
    ----> 1 df.drop(columns=['PC1'], inplace=True)
         2 df
                                     - 💲 3 frames -
    /usr/local/lib/python3.12/dist-packages/pandas/core/indexes/base.py in drop(self, labels, errors)
                   if mask.any():
       7068
                        if errors != "ignore":
    raise KeyError(f"{labels[mask].tolist()} not found in axis")
      7069
    -> 7070
                        indexer = indexer[~mask]
      7071
      7072
                    return self.delete(indexer)
   KeyError: "['PC1'] not found in axis"
Next steps: (Explain error)
```

	2010 ce Teucoded	Solvent_encoded	POTEIITIAI_ID	Атрпа	mu	3 I gilla	solvent_density	201AGILT ZUGGI.	SOTUTE_deliSIT
0	1	0	1	0.0	-3	-0.986860	0.063008	-0.872721	-1.355699
1	2	0	2	0.8	-2	-1.042881	0.063008	-0.872721	1.580576
2	2	0	3	0.0	0	-1.042881	0.063008	-0.872721	1.580576
3	2	0	1	2.6	-2	-0.874819	0.063008	-0.872721	1.580576
4	3	0	1	-0.2	3	-0.482672	0.063008	-0.872721	-0.178585
422	14	18	1	-1.2	4	-0.258588	-0.623575	-0.739291	0.326459
423	15	18	1	-1.3	3	-0.202567	-0.623575	-0.739291	2.030133
424	19	18	1	1.9	-7	-0.426651	-0.623575	-0.739291	1.291629
425	20	18	1	0.0	-3	-0.482672	-0.623575	-0.739291	-1.007113
426	22	18	1	2.8	1	0.189579	-0.623575	-0.739291	1.774781
427 rov	ws × 14 columns								

 Feature
 Formula
 Interpretation

 Density ratio
 ρ_solute / ρ_solvent
 How dense the solute is compared to solvent (captures size)

df

2:36 AM	Grain_boundary_features.ipynb -	Colab
Feature	Formula	Interpretation
Density difference	(ρ_solute - ρ_solvent)	Absolute mismatch in atomic packing density.
Density mismatch %	abs(ρ_solute - ρ_solvent) / ρ_solvent	Relative density mismatch — useful for segregation energy
Shear modulus ratio	G_solute / G_solvent	Indicates stiffness contrast — soft solutes in stiff matrices
Shear modulus difference	G_solute - G_solvent	Absolute elastic mismatch.
Shear modulus mismatch %	<pre>abs(G_solute - G_solvent) / G_solvent</pre>	Fractional stiffness mismatch — often correlates with inter
Elastic energy mismatch	(G_solute - G_solvent)**2	Quadratic mismatch — penalizes large differences.
Combined mismatch factor	$\begin{picture}((\rho_solute - \rho_solvent)/\rho_solvent) * ((G_solute - G_solvent)/G_solvent)\end{picture}$	Captures combined structural and mechanical incompatib
df['density ratio']	= df['solute density'] / df['solvent density']	
. /	= df['solute_density'] - df['solvent_density']	
df['density_mismato	ch_pct'] = abs(df['solute_density'] - df['solvent_density']) / c	df['solvent_density']
df['shear_ratio'] =	df['solute_shear'] / df['solvent_shear']	
df['shear_diff'] =	<pre>df['solute_shear'] - df['solvent_shear']</pre>	
df['shear_mismatch_	_pct'] = abs(df['solute_shear'] - df['solvent_shear']) / df['sol	Lvent_shear']
df['combined_mismat	cch'] = ((df['solute_density'] - df['solvent_density']) / df['so ((df['solute shear'] - df['solvent shear']) / df['solvent	= 2 27
	(// First series 1 / 1/ series 1/ / arf series	

	Solute_encoded	Solvent_encoded	Potential_ID	Alpha	Mu	Sigma	solvent_density	solvent_shear	solute_density	so
0	1	0	1	0.0	-3	-0.986860	0.063008	-0.872721	-1.355699	
1	2	0	2	0.8	-2	-1.042881	0.063008	-0.872721	1.580576	
2	2	0	3	0.0	0	-1.042881	0.063008	-0.872721	1.580576	
3	2	0	1	2.6	-2	-0.874819	0.063008	-0.872721	1.580576	
4	3	0	1	-0.2	3	-0.482672	0.063008	-0.872721	-0.178585	
422	14	18	1	-1.2	4	-0.258588	-0.623575	-0.739291	0.326459	
423	15	18	1	-1.3	3	-0.202567	-0.623575	-0.739291	2.030133	
424	19	18	1	1.9	-7	-0.426651	-0.623575	-0.739291	1.291629	
425	20	18	1	0.0	-3	-0.482672	-0.623575	-0.739291	-1.007113	
426	22	18	1	2.8	1	0.189579	-0.623575	-0.739291	1.774781	
197 r	owe v 21 columne									