

Sequence algorithms

DAG workshop, 2020 Cyril Matthey-Doret

Exercises from session 3

Working with sequences of states

- Different from classification: Input and output have an order
- Markov models: define states and transition probabilities
- Example: nucleotide transition matrix from DNA sequence

Input: AACTTTGAGAC

1	А	С	G	Т
Α	1	1	1	0
С	0	0	0	1
G	2	0	0	0
Т	0	0	1	2

Working with sequences of states

- Different from classification: Input and output have an order
- Markov models: define states and transition probabilities
- Example: nucleotide transition matrix from DNA sequence

Input: AACTTTGAGAC

1	А	С	G	Т
Α	0.33	0.33	0.33	0
С	0	0	0	1
G	1	0	0	0
Т	0	0	0.33	0.66

Predicting states from sequence

- Markov models by themselves have limited use in genomics
- Hidden Markov models (HMM) are more useful in genomics
 - Input: observations → DNA sequence
 - Output: states → gene / not gene

Hidden states

a12

a23

X1

a21

X2

X3

b12

b14

b14

b24

b14

b24

b13

y1

y2

y3

y4

a = transition probabilitiesb = emission probabilities

Observations

HMM: example

- A system switches between two (hidden) states A and B
- A device measures the system state, but it is error prone
- It shows or when it measures A or B, respectively

What we want to know →

What we see →

HMM: example

- What is the probability of the observed measurement sequence?
 - Naive: Sum probabilities of all possible state sequences

- Weighted sum probabilities of every single state sequence

With X different hidden states, the number of possible sequences S of length T is: $R=X^T$ (here: $8=2^3$)

State sequence of length T
$$p(M_T) = \sum_{r=1}^R p(M_T|S_T^r) p(S_T^r)$$

Measurement sequence of length T

- Find the probability of measurements:
- Weighted sum probabilities of every single state sequence

With X different hidden states, the number of possible sequences S of length T is: $R=X^T$ (here: $8=2^3$)

$$p(M_T) = \sum_{r=1}^{R} p(M_T|S_T^r) p(S_T^r)$$
 AAA AAB AAB ABB ABB ... ABB

Measurement sequence of length T

- Weighted sum probabilities of every single sequences

With X different hidden states, the number of possible sequences \mathbf{S} of length T is: $\mathbf{R} = \mathbf{X}^T$

State sequence of length T
$$p(M_T) = \sum_{r=1}^R p(M_T|S_T^r) p(S_T^r)$$
 ?

Measurement sequence of length T

- Find the probability of measurements:
- Weighted sum probabilities of every single sequences

- Weighted sum probabilities of every single sequences

$$p(M_T|S_r^T) = \prod_{t=1}^I \underbrace{p(m(t)|s(t))}_{\text{Emission prob}}$$

$$p(M_T) = \sum_{r=1}^R p(M_T|S_T^r) p(S_T^r)$$

- Find the probability of measurements:
- Weighted sum probabilities of every single sequences

- Find the probability of measurements:
- Weighted sum probabilities of every single sequences

- Find the probability of measurements:
- Sum probabilities of every single sequences

$$p(M_T) = \sum_{r=1}^{T} \prod_{t=1}^{T} p(m(t)|s(t)) p(s(t)|s(t-1))$$
 What if t=0 and t-1 = -1?

- Find the probability of measurements: (
- Sum probabilities of every single sequences

$$p(M_T) = \sum_{r=1}^{n} \prod_{t=1}^{r} p(m(t)|s(t)) p(s(t)|s(t-1))$$
 What if t=0 and t-1 = -1?

- Find the probability of measurements:
- Sum probabilities of every single sequences

Example:
$$P(GRR) = \Sigma \begin{vmatrix} p(GRR|AAA) = p(G1|A1) * z * p(R2|A2) * p(A2|A1) * p(R3|A3) * p(A3|A2) \\ = & \chi & * z * (1-\chi) & * (1-Θ) & * (1-\chi) & * (1-Θ) \\ p(GRR|AAB) = ... \\ p(GRR|ABB) = ... \\ ... \end{vmatrix}$$

$$p(M_T) = \sum_{r=1}^{R} \prod_{t=1}^{T} p(m(t)|s(t))p(s(t)|s(t-1))$$

- Find the probability of measurements:
- Sum probabilities of every single sequences
- What is the time complexity according to T and X (number of states)?

$$p(M_T) = \sum_{r=1}^{R} \prod_{t=1}^{T} p(m(t)|s(t))p(s(t)|s(t-1))$$

- Find the probability of measurements:
- Sum probabilities of every single sequences
- What is the time complexity according to T and X (number of states) ? O(X^T T)

$$p(M_T) = \sum_{r=1}^{R} \prod_{t=1}^{T} p(m(t)|s(t))p(s(t)|s(t-1))$$

- Sequence probability can be solved using dynamic programming
- Avoid recomputing the same products many time

- Sequence probability can be solved using dynamic programming
- Avoid recomputing the same products many time

- Sequence probability can be solved using dynamic programming
- Avoid recomputing the same products many time

- Sequence probability can be solved using dynamic programming
- Avoid recomputing the same products many time

- Sequence probability can be solved using dynamic programming
- Avoid recomputing the same products many time

- Sequence probability can be solved using dynamic programming
- Avoid recomputing the same products many time

- Complexity of the forward algorithm is $O(TX^2)$ which is $<< O(TX^T)$
- Example use: Distinguishing between two models
 - e.g. Is my sequence more probable with a strand-aware model?

- What is the most likely sequence of states, given the observations?
- Just like the forward algorithm, but using max() instead of sum()

Backtrack from T to 0 (similar to Needleman-Wunsch)

Backtrack from T to 0 (similar to Needleman-Wunsch)

Backtrack from T to 0 (similar to Needleman-Wunsch)

HMM: Applications

- Gene annotation: Genome sequence → Intron/exon/splice site
 - AUGUSTUS
- Long read correction: Noisy long reads → most probable sequence
 - HERCULES
- Sequence alignment: Sequences → Insertion/Deletion/(Mis)match
 - HMMER
- Chromatin states: Histone marks → regulatory state
 - ChromHMM

- Many biological systems can be represented with graphs
 - Protein interactions, gene regulation, residues in proteins
- Nodes and edges (Markov models are also graphs)

Nodes / Vertices

- Many biological systems can be represented with graphs
 - Protein interactions, gene regulation, residues in proteins
- Nodes and edges (Markov models are also graphs)

Nodes / Vertices

Edges / Links

A graph is a set of nodes V and edges E: G = (V, E)

Number of nodes: |V| = N

Number of edges: |E|

Various metrics can give information about a graph or its nodes

2 connected components

- Basic concepts: - Neighbours: adjacent nodes
 - Degree (k): Number of neighbours
 - Connected component: Group of connected nodes
 - Path: List of adjacent nodes
 - Shortest path: Shortest list of adjacent nodes which leads from one node to another

- Maximum number of edges in a network of N nodes?
 - Hint: How many max edges / node ?

Example with 4 nodes:

- Maximum number of edges in a network of N nodes? (N-1)!
 - Hint: How many max edges / node ?
- In practice, edges scale in O(N) for most networks ("sparse")
 Example with 4 nodes:

4 Nodes, 6 edges

Graph theory

- Edges can be 0/1 or have weights or even directions
- This allows to model different types of processes

Mathematical representation of graphs

- To work with graph, we need to use a formal representation
- There are 3 common representations:

Adjacency list

A - B A - CB - C

C - D

Adjacency matrix

 $\mathsf{A}\,\mathsf{B}\,\mathsf{C}\,\mathsf{D}$

A0110

B10 10

C 1 1 0 1

D 0 0 1 0

Note: for undirected graphs: A[i, j] = A[j,i]

Neighbour list

A - B,C

B - A, B

C - A, B, D

D-C

Random walks on a graph

- Imagine you move randomly on the graph
- Probability to go from node A to D in 2 steps ?

Random walks on a graph

- Imagine you move randomly on the graph
- Probability to go from node A to D in 2 steps ?

All possible paths:

ABA

ABC

ABD

1 success / 3 paths = 0.33

Random walks on a graph

- As the graph grows larger, it becomes infeasible to list each path
- There are O(K^T) paths of length T where K is the average degree

All possible paths:

ABA

ABC

ABD

1 success / 3 paths = 0.33

- All neighbours of A → X¹
- All the neighbours of X¹ → X²

- 1) Probability of $A \rightarrow X^1$: $P(A, X^1)$
- 2) Probability of $X^1 \rightarrow X^2$: $P(X^1, X^2)$
- 3) Sum $P(A, X^1) \times P(X^1, D)$, all cases reaching D
- 4) Generalization to N steps:

$$\sum P(A, X^1)P(X^1, X^2)...P(X^{N-1}, D)$$

- All neighbours of A → X¹
- All the neighbours of $X^1 \rightarrow X^2$

1) Probability of $A \rightarrow$	X ¹ :	P(A,	X¹)
-----------------------------------	------------------	------	-----

- 2) Probability of $X^1 \rightarrow X^2$: $P(X^1, X^2)$
- 3) Sum $P(A, X^1) \times P(X^1, D)$, all cases reaching D
- 4) Generalization to N steps:

$$\sum P(A, X^1) P(X^1, X^2) ... P(X^{N-1}, D)$$

	А	В	С	D
Α	0	1	0	0
В	1	0	1	1
С	0	1	0	1
D	0	1	1	0

START

- All neighbours of A → X¹
- All the neighbours of X¹ → X²

- 2) Probability of $X^1 \rightarrow X^2$: $P(X^1, X^2)$
- 3) Sum $P(A, X^1) \times P(X^1, D)$, all cases reaching D
- 4) Generalization to N steps:

Adjacency → stochastic matrix (W)

START

	А	В	С	D
Α	0	1	0	0
В	0.33	0	0.33	0.33
С	0	0.5	0	0.5
D	0	0.5	0.5	0

• The T'th power of the stochastic matrix gives the probability of going from node i to j in T steps

P(A, D) in 1 step: W[A, D]

P(A, D) in 2 steps: $W^2[A,D]$ P(A, D) in T steps: $W^T[A, D]$

• Scales with O(T) instead of $O(K^T)$

					ı						1					
	А	В	С	D			Α	В	С	D			А	В	С	D
Α	0	1	0	0		Α	0	1	0	0		Α	0.33	0	0.33	0.33
В	0.33	0	0.33	0.33	X	В	0.33	0	0.33	0.33	=	В	0	0.66	0.17	0.17
С	0.	0.5	0	0.5		С	0.	0.5	0	0.5		С	0.17	0.5	0.42	0.17
D	0	0.5	0.5	0		D	0	0.5	0.5	0		D	0.17	0.5	0.17	0.42

Network clustering

- Easiest scenario: Identify all disconnected components
- How would you do it ?

Identification of disconnected components

- Easiest scenario: Identify all disconnected components
- How would you do it ?
 - Start from any node
 - Explore neighbours, neighbours of neighbours...
 - Skip nodes already visited

Identification of disconnected components

Breadth first search

```
visited = []
queue = [initial]

while queue:
   node = queue.pop(0)

  if node not in visited:
      visited.append(node)
      neighbours = graph[node]
```


for neighbour in neighbours:
 queue.append(neighbour)

Repeat with the remaining nodes, if any

Image: https://www.cse.unsw.edu.au/~billw/Justsearch.html

Cluster k

- We need a metric to quantify the accuracy of clusters
- We use modularity

 Nodes in a cluster should have more edges among them than with other nodes than expected by chance

Number of edges among nodes in k: $l_k=6$

Number of edges between k and outside: $o_k=2$

Sum of nodes degrees in k: $d_k=2l_k+o_k=14$

- We need a metric to quantify the accuracy of clusters
- We use modularity

 Nodes in a cluster should have more edges among them than with other nodes than expected by chance

Number of possible

edges in k

Probability that one edge is in cluster:

Number of possible edges in the whole network

- We need a metric to quantify the accuracy of clusters
- We use modularity
 - Nodes in a cluster should have more edges among them than with other nodes than expected by chance

Expected number of internal nodes in a cluster: $\frac{\alpha}{2|a}$

$$\frac{d}{2|E|} \cdot d \cdot \frac{1}{2} = \frac{d^2}{4|E|}$$

- We need a metric to quantify the accuracy of clusters
- We use modularity
 - Nodes in a cluster should have more edges among them than with other nodes than expected by chance

Network clustering

- There are several algorithms to find clusters in a network
- Modularity can be used to measure the validity of the clusters
- Hierarchical clustering: Merge nodes until modularity stops increasing.
- Markov clustering: Number of clusters automatically detected

Markov clustering

- Consider the network as a markov process
- Nodes as states, edges as transition probabilities
- Random walks on the graph will infrequently go from one natural cluster to another

Markov clustering

- 3 operations repeated until convergence:
 - Expansion: Simulate random walk on the graph
 - Pruning: Remove the least frequented (low probability) paths
 - Inflation: Increase contrast between probabilities

Markov clustering

Convert to transition probabilities

Repeat until convergence: matrix values change very little

Pruning: Remove near-0 values to accelerate convergence

If you want to learn more about HMM

1.0		
6	One path 1. Scoring x, one path	All paths 2. Scoring x, all paths
Scoring	$P(x,\pi)$	$P(x) = \sum_{\pi} P(x,\pi)$
Sco	Prob of a path, emissions	Prob of emissions, over all paths
5	3. Viterbi decoding	Posterior decoding
Decoding	$\pi^* = \operatorname{argmax}_{\pi} P(x,\pi)$	$\pi^{*} = {\pi_{i} \mid \pi_{i}=argmax_{k} \Sigma_{\pi}P(\pi_{i}=k x)}$
Dec	Most likely path	Path containing the most likely state at any time point.
5	5. Supervised learning, given π $\Lambda^* = \operatorname{argmax}_{\Lambda} P(x, \pi \Lambda)$	6. Unsupervised learning
earning.	6. Unsupervised learning. $Λ^* = \operatorname{argmax}_{\Lambda} \operatorname{max}_{\pi} P(x, \pi \Lambda)$	$\Lambda^* = \operatorname{argmax}_{\Lambda} \Sigma_{\pi} P(x, \pi \Lambda)$
Le	Viterbi training, best path	Baum-Welch training, over all paths

6.047/6.878 Computational Biology: Genomes, Networks, Evolution (Fall 2012) Lecture 07 - HMMs II (2012-09-29): `link

PARSING

EARNING

The main questions on HMMs

- 1. Scoring x, one path = Joint probability of a sequence and a path, given the model
 - GIVEN a HMM M. a path π . and a sequence x.
 - Prob[x, π | M]
 - → "Running the model", simply multiply emission and transition probabilities
 - → Application: "all promoter" vs. "all backgorund" comparisons
 - 2. Scoring x, all paths = total probability of a sequence, summed across all paths
 - GIVEN a HMM M. a sequence x FIND the total probability P[x | M] summed across all paths
 - → Forward algorithm, sum score over all paths (same result as backward)
 - 3. Viterbi decoding = parsing a sequence into the optimal series of hidden states
 - GIVEN a HMM M. and a sequence x,
 - the sequence π^* of states that maximizes P[x, π | M] → Viterbi algorithm, dynamic programming, max score over all paths, trace pointers find path
 - 4. Posterior decoding = total prob that emission x, came from state k, across all paths
 - GIVEN a HMM M. a sequence x
 - FIND the total probability $P[\pi_i = k \mid x, M)$ → Posterior decoding: run forward & backward algorithms to & from state $\pi_i = k$
 - 5. Supervised learning = optimize parameters of a model given training data
 - GIVEN a HMM M, with unspecified transition/emission probs., labeled sequence x,
 - FIND parameters $\theta = (e_i, a_{ii})$ that maximize P[x | θ] Simply count frequency of each emission and transition observed in the training data
 - 6. Unsupervised learning = optimize parameters of a model given training data GIVEN a HMM M, with unspecified transition/emission probs., unlabeled sequence x,
 - parameters $\theta = (e_i, a_{ii})$ that maximize P[x | θ] Viterbi training: guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate
 - Baum-Welch training: guess, sum over all emissions/transitions (#4), update (#5), iterate

Additional Resources

Yoon, 2009, Curr. Genomics: Review on the applications of HMM in genomics:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2766791/

- Blog post on Markov clustering: https://medium.com/analytics-vidhya/demystifying-markov-clustering-aeb6cdabbfc7
- Book on graph theory: Graphs, Networks and Algorithms, Dieter Jungnickel, 2013
- Book on probabilitic models in genomics: Biological Sequence Analysis Probabilistic Models of Proteins and Nucleic Acids by Richard Durbin, Sean R. Eddy, Anders Krogh, Graeme Mitchison

