

Full

TEST REPORT

No. ECIT-2013-0076-RF

For

Client: Micron Electronics LLC

Production: 3G GPS tracker

Model Name: VL3000

FCC ID: ZKQ-0508201300001

Hardware Version: VL3000 V1.02

Software Version: VL3000B01V03

Issued date: 2013-08-13

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of ECIT Shanghai.

Test Laboratory:

ECIT Shanghai, East China Institute of Telecommunications

Add: 7F, G Area, No.668, Beijing East Road, Huangpu District, Shanghai, P. R. China

Tel: (+86)-021-63843300, E-Mail: welcome@ecit.org.cn.

CONTENTS

1.	TEST LABORATORY	4
1.1.	TESTING LOCATION	4
1.2.	TESTING ENVIRONMENT	4
1.3.	PROJECT DATA	4
1.4.	SIGNATURE	4
2.	CLIENT INFORMATION	5
2.1.	APPLICANT INFORMATION	5
2.2.	MANUFACTURER INFORMATION	5
3.	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	6
3.1.	ABOUT EUT	6
3.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	6
3.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	6
3.4.	STATEMENTS	6
4.	REFERENCE DOCUMENTS	7
4.1.	REFERENCE DOCUMENTS FOR TESTING	7
5.	SUMMARY OF TEST RESULTS	8
6.	TEST EQUIPMENTS UTILIZED	9
7.	TEST ENVIRONMENT	11
ANN	EX A: MEASUREMENT RESULTS	13
A.1 (OUTPUT POWER (\$22.913(A)/ \$24.232(C))	13
A.2 9	99%OCCUPIED BANDWIDTH (16
A.3 -	26DB EMISSION BANDWIDTH (\$22.917(B)/ \$24.238(B))	30
A.4 I	BAND EDGE AT ANTENNA TERMINALS (\$22.917(B)/ \$24.238(B))	44
A.5 I	FREQUENCY STABILITY (\$2.1055/ \$24.235)	52
A.6.	CONDUCTED SPURIOUS EMISSION	. 56

A.7 RADIATED	. 87
A.8 CONDUCTED EMISSION (§15.107 §15.207)	. 99
ANNEX B DEVIATIONS FROM PRESCRIBED TEST METHODS	105

1. Test Laboratory

1.1. Testing Location

Company Name: ECIT Shanghai, East China Institute of Telecommunications

Address: 7F, G Area, No. 668, Beijing East Road, Huangpu District, Shanghai,

P. R. China

Postal Code: 200001

Telephone: 00862163843300 Fax: 00862163843301

FCC Registration NO.: 489729

1.2. Testing Environment

Normal Temperature: 15-35℃ Extreme Temperature: -30/+50℃ Relative Humidity: 20-75%

1.3. Project data

Project Leader: Liu jianquan 05,16,2013 **Testing Start Date:** Testing End Date: 08,13,2013

1.4. Signature

Wang daming

(Testing Engineer)

Yu Naiping

(Reviewed this test

report)

Zheng Zhongbin Director of the laboratory

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: Micron Electronics LLC

Address /Post: 601 N. Congress Ave, Suite 439 Florida, USA

Country: USA

561-450-5022 Telephone:

2.2. Manufacturer Information

Shanghai SIMCOM LTD., Company Name:

Building A, SIM Technology Building, No. 633 Jinzhong Road,

Address /Post: Changning District, Shanghai, China

Country: China

+86 21 32523134 Telephone:

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

EUT Description 3G GPS tracker

Model name VL3000

FCC ID ZKQ-0508201300001 Frequency GSM850/900/1800/1900:

WCDMA Band II; WCDMA Band V

Extreme Temperature -30/+50℃ Nominal Voltage 3.8 V Extreme High Voltage 4.2 V 3.65 V Extreme Low Voltage

Note: Photographs of EUT are shown in ANNEX A of this test report.

3.2. Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version	Date of receipt
N10	012813000559	VL3000_V1.02	VL3000B01V03	203-04-12
	048			

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test

AE ID*	Description	SN
AE1	RF cable	
AE2	Dummy Battery	

^{*}AE ID: is used to identify the test sample in the lab internally.

3.4. Statements

The product VL3000, supporting WCDMA/HSPA/HSUPA/GPRS/GSM, manufactured by Shanghai SIMCOM LTD., is a new product for testing.

ECIT has verified that the compliance of the tested device specified in section 5 of this test report is successfully evaluated according to the procedure and test methods as defined in type certification requirement listed in section 5 of this test report.

4. Reference Documents

4.1. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part 24	PERSONAL COMMUNICATIONS SERVICES	V 10.1.09
FCC Part 22	PUBLIC MOBILE SERVICES	V 10.1.09
ANSI-TIA-603-C	Land Mobile FM or PM Communications Equipment	2004
	Measurement and Performance Standards	
ANSI C63.4	Methods of Measurement of Radio-Noise Emissions from	2003
	Low-Voltage Electrical and Electronic Equipment in the	
	Range of 9 kHz to 40 GHz	
KDB971168	Procedures for Compliance Measurement of the	2010
	Fundamental Emission Power of Licensed Wideband (> 1	
	MHz) Digital Transmission Systems	

5. SUMMARY OF TEST RESULTS

Item	Test items	FCC rules	result
1	Output Power	22.913(a)/24.232(c)	Pass
2	Emission Limit	2.1051/22.917/24.238	Pass
3	Conducted Emission	15.107/15.207	Pass
4	99%Occupied Bandwidth	2.1049(h)(i)	Pass
5	-26dB Emission Bandwidth	22.917(b)/§24.238(b)	Pass
6	Band Edge at antenna terminals	22.917(b)/24.238(b)	Pass
7	Frequency stability	2.1055/24.235	Pass
8	Conducted Spurious mission	2.1057/22.917/24.238	Pass

6. Test Equipments Utilized

Climate chamber

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Due date
1	Climate chamber	SH-641	92012011	ESPEC	2013-08-13

Radiated emission test system

The test equipments and ancillaries used are as follows.

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Due date
1	Universal Radio Communicati on Tester	CMU200	123102	R&S	2013-09-10
2	Test Receiver	ESU40	100307	R&S	2013-11-07
3	Trilog Antenna	VULB9163	19-162515	Schwarzbeck	2014-11-11
4	Double Ridged Guide Antenna	ETS-3117	00135885	ETS	2014-04-29
5	Double Ridged Guide Antenna	ETS-3117	00135890	ETS	2014-04-28
6	Test receiver	ESCI	101235	R&S	2013-11-07
7	2-Line V-Network	ENV216	101380	R&S	2013-11-07

8	Biconical VHF-UHF broad band antenna	SWB-VUBA9 117	9117-266	SCHWARZBE CK	2013/11/11
9	Horn antenna(18.0 -26.5GHz)	3160_09	LM6321	ETS-LINDGR EN	2013/11/22
10	Signal conditioning unit(0.1-18G Hz)	SCU18	10155	R/S	2013/11/03
11	Signal conditioning unit(0.1-18G Hz)	SCU18	10146	R/S	2013/11/03
12	Horn antenna(18.0 -26.5GHz)	3160_09	00086671	ETS-LINDGR EN	2014/06/15
13	Amplifier	AFS4-001026 50-42-8P-4	1405286	MITEQ	2014/06/09
14	Amplifier	SCV26	10025	R&S	2013/11/09

Conducted test system

No.	Name	Туре	SN	Manufacture	Cal. Due Date
1	Spectrum Analyzer	FSQ26	101096	R&S	2013-10-17
2	Universal Radio Communication Tester	CMU200	123102	R&S	2013-09-10
3	DC Power Supply	ZUP60-14	LOC-220Z006 -0007	TDL-Lambda	2013-11-30

4	Weinschel power spliter	1870A	10264	Weinschel	2013-12-15
---	-------------------------	-------	-------	-----------	------------

7. Test Environment

Shielding Room1 (6.0 meters×3.0 meters×2.7 meters) did not exceed following limits along the conducted RF performance testing:

Temperature	Min. = 15 °C, Max. = 30 °C
Relative humidity	Min. = 30 %, Max. = 60 %
Shielding effectiveness	> 110 dB
Ground system resistance	< 0.5 Ω
Uniformity of field strength	Between 0 and 6 dB, from 80MHz to

Control room did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. =30 %, Max. = 60 %
Shielding effectiveness	> 110 dB
Electrical insulation	> 10 kΩ
Ground system resistance	< 0.5 Ω

Fully-anechoic chamber1 (6.8 metersx3.08 metersx3.53 meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C , Max. = 30 °C
Relative humidity	Min. = 30 %, Max. = 60 %
Shielding effectiveness	> 110 dB
Electrical insulation	> 10 kΩ
Ground system resistance	< 0.5 Ω
Uniformity of field strength	Between 0 and 6 dB, from 80MHz to 3000 MHz

Fully-anechoic chamber2 (Tapered Section: 8.75 meters×3.66 meters×3.66 meters, Rectangular Section: 7.32 metersx3.97 metersx3.66 meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 $^{\circ}$ C, Max. = 30 $^{\circ}$ C
· .	·

Relative humidity	Min. = 35 %, Max. = 60 %
Shielding effectiveness	> 110 dB
Electrical insulation	> 10 kΩ
Ground system resistance	< 0.5 Ω
Uniformity of field strength	Between 0 and 6 dB, from 30MHz to

ANNEX A: MEASUREMENT RESULTS

A.1 OUTPUT POWER (§22.913(a)/§24.232(c))

A.1.1 Summary

During the process of testing, the EUT was controlled Rhode & Schwarz Digital Radio.

Communication tester (CMU-200) to ensure max power transmission and proper modulation.

This result contains peak output power and EIRP measurements for the EUT. In all cases, output power is within the specified limits.

A.1.2 Conducted

A.1.2.1 Method of Measurements

The EUT was set up for the max output power with pseudo random data modulation.

The power was measured with Rhode & Schwarz Spectrum Analyzer FSQ(peak).

These measurements were done at 3 frequencies, 1850.2 MHz, 1880.0MHz and 1909.8MHz for PCS1900 band; 824.4MHz, 836.6MHz and 848.8MHz for GSM850 band. (bottom, middle and top of operational frequency range).

These measurements were done at 3 frequencies, 1852.4 MHz, 1880.0MHz and 1907.6MHz for WCDMA Band II; 826.4MHz, 836.6MHz and 846.6MHz for WCDMA Band V. (bottom, middle and top of operational frequency range).

Limit:

GSM850	Power step	Nominal Peak output power (dBm)
GSM	5	33
GPRS	3	33
EDGE	6	27

GSM1900	Power step	Nominal Peak output power (dBm)
GSM	0	30
GPRS	3	30
EDGE	5	26

WCDMA Limit:

22.913(a) Mobile stations are limited to 7watts.

24.232(c) Mobile and portable stations are limited to 2 watts.

Test Procedure:

The transmitter output power was connected to calibrated attenuator, the other end of which was connected to signal analyzer. Transmitter output power was read off the power in dBm. The power outputs at the transmitter antenna port was determined by adding the value of attenuator to the signal analyzer reading.

GSM Test Condition:

RBW	VBW	Sweep time	Span
1MHz	1MHz	300ms	10MHz
WCDMA Test Condition:			
RBW	VBW	Sweep time	Span
10MHz	10MHz	800ms	50MHz

Measurement results:

GSM 850 (GMSK)		
Channel/fc(MHz)	Peak power (dBm)	AV power (dBm)
Mid 189/836.4	32.6	32.5
Low 128/824.2	32.7	32.6
High 251/848.8	32.7	32.6
	GPRS 850 (GMSK 1 Slot)	
Channel/fc(MHz)	Peak power (dBm)	AV power (dBm)
Mid 189/836.4	32.6	32.4
Low 128/824.2	32.7	32.6
High 251/848.8	32.7	32.6
EDGE 850 (8PSK 1 Slot)		
Channel/fc(MHz)	Peak power (dBm)	AV power (dBm)
Mid 189/836.4	26.8	26.7
Low 128/824.2	25.9	25.8
High 251/848.8	26.2	26.0

GSM 1900(GMSK)			
Channel/fc(MHz)	Peak power (dBm)	AV power (dBm)	
Mid 661/1880	30.0	29.9	
Low 512/1850.2	29.9	29.8	
High 810/1909.8	30.0	29.8	
	GPRS 1900 (GMSK 1 Slot)		
Channel/fc(MHz)	Peak power (dBm)	AV power (dBm)	
Mid 661/1880	30.3	30.2	
Low 512/1850.2	30.2	30.1	
High 810/1909.8	30.2	30.1	
	EDGE 1900 (8PSK1 Slot)		
Channel/fc(MHz)	Peak power (dBm)	AV power (dBm)	
Mid 661/1880	25.9	25.7	
Low 512/1850.2	25.5	25.4	
High 810/1909.8	26.2	26.0	

WCDMA II			
Channel/fc(MHz)	Peak power (dBm)	AV power (dBm)	
Mid 9400 /1880	22.62	22.56	
Low 9262/1852.4	23.03	23.00	
High 9538/1907.6	21.76	21.71	
	WCDMA BAND V		
Channel/fc(MHz)	Peak power (dBm)	AV power (dBm)	
Mid 4183/836.6	22.72	22.66	
Low 4132/826.4	23.17	23.06	
High 4233/846.6	23.26	23.21	

Conclusion: PASS

A.2 99%Occupied Bandwidth (§2.1049(h)(i))

A.2.1 Occupied Bandwidth Results

Similar to conducted emissions; occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of GSM850, PCS1900, WCDMA BANDII and WCDMA BANDV.

Test Procedure:

The EUT output RF connector was connected with a short cable to the signal analyzer, RBW was set to about 1% of emission BW, VBW >= 3 times RBW, 99% bandwidth were measured, the occupied bandwidth is delta frequency between the two points where the display line intersects the signal trace.

Test result:

GSM850		
Test channel	Frequency (MHz)	99% Occupied Bandwidth(KHz)
Mid 189	836.4	245.192
Low 128	824.2	245.192
High 251	848.8	245.192
	GPRS850	
Test channel	Frequency (MHz)	99% Occupied Bandwidth(KHz)
Mid 189	836.4	245.192
Low 128	824.2	243.590
High 251	848.8	243.590
EDGE850		
Test channel	Frequency (MHz)	99% Occupied Bandwidth(KHz)
Mid 189	836.4	246.795
Low 128	824.2	246.795
High 251	848.8	243.590

Conclusion: PASS

GSM 850

Date: 30.MAY.2013 18:55:23

Channel 189-Occupied Bandwidth (99%)

Date: 30.MAY.2013 18:57:25

Channel 128-Occupied Bandwidth (99%)

Date: 30.MAY.2013 18:59:12

Channel 251-Occupied Bandwidth (99%)

GPRS 850

Date: 30.MAY.2013 19:03:52

Channel 189-Occupied Bandwidth (99%)

Date: 30.MAY.2013 19:05:24

Channel 128-Occupied Bandwidth (99%)

Date: 30/MAY.2013 19:07:04

Channel 251-Occupied Bandwidth (99%)

EDGE 850

Date: 30.MAY.2013 19:10:22

Channel 189-Occupied Bandwidth (99%)

Date: 30.MAY.2013 19:12:42

Channel 128-Occupied Bandwidth (99%)

Date: 30.MAY.2013 19:15:37

Channel 251-Occupied Bandwidth (99%)

GSM 1900			
Test channel	Frequency (MHz)	99% Occupied Bandwidth(KHz)	
Mid 661	1880	314.103	
Low 512	1850.2	312.500	
High 810	1909.8	314.103	
	GPRS1900		
Test channel	Frequency (MHz)	99% Occupied Bandwidth(KHz)	
Mid 661	1880	306.090	
Low 512	1850.2	312.500	
High 810	1909.8	314.103	
	EDGE1900		
Test channel	Frequency (MHz)	99% Occupied Bandwidth(KHz)	
Mid 661	1880	317.308	
Low 512	1850.2	318.910	
High 810	1909.8	318.910	

Conclusion: PASS

GSM 1900

Date: 30.MAY.2013 19:45:13

Channel 661-Occupied Bandwidth

Date: 30.MAY.2013 19:46:39

Channel 512-Occupied Bandwidth

Date: 30.MAY.2013 19:47:45

Channel 810-Occupied Bandwidth

GPRS 1900

Date: 30.MAY.2013 20:20:30

Channel 661-Occupied Bandwidth

Date: 30.MAY.2013 19:56:58

Channel 512-Occupied Bandwidth

Date: 30.MAY.2013 19:54:41

Channel 810-Occupied Bandwidth

EDGE 1900

Date: 30.MAY.2013 20:20:30

Channel 661-Occupied Bandwidth

Date: 30.MAY.2013 20:34:07

Channel 512-Occupied Bandwidth

Date: 30.MAY.2013 21:04:46

Channel 810-Occupied Bandwidth

WCDMA BAND II				
Test channel	Frequency (MHz)	99% Occupied Bandwidth(MHz)		
Mid 9400	1880	4.18		
Low 9262	1852.4	4.17		
High 9538	1907.6	4.18		
WCDMA BAND V				
Test channel	Frequency (MHz)	99% Occupied Bandwidth(MHz)		
Mid 4183	836.6	4.17		
Low 4132	826.4	4.18		
High 4233	846.6	4.17		

Conclusion: PASS WCDMA BAND II

Date: 29.MAY.2013 22:17:33

Channel 9400-Occupied Bandwidth

Date: 29.MAY.2013 22:18:22

Channel 9262-Occupied Bandwidth

Date: 29.MAY.2013 22:19:33

Channel 9538-Occupied Bandwidth

WCDMA BAND V

Date: 29.MAY.2013 22:13:03

Channel 4183-Occupied Bandwidth

Date: 29.MAY.2013 22:14:05

Center 825.4 MHz

Channel 4132-Occupied Bandwidth

Date: 29.MAY.2013 22:15:30

Channel 4233-Occupied Bandwidth

A.3 -26dB Emission Bandwidth (§22.917(b)/§24.238(b))

A.3.1 -26dB Emission Bandwidth

Similar to conducted emissions; occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of GSM850, PCS1900, WCDMA BANDII and WCDMA BAND V.

Test Procedure:

The table below lists the measured -26dBc BW. Spectrum analyzer plots are included on the following pages.

Test results:

	GSM850	
Test channel	Frequency (MHz)	–26dBc EmissionBandwidth(KHz)
Mid 189	836.4	314.103
Low 128	824.2	312.500
High 251	848.8	314.103
	GPRS850	
Test channel	Frequency (MHz)	–26dBc EmissionBandwidth(KHz)
Mid 189	836.4	306.090
Low 128	824.2	312.500
High 251	848.8	314.103
	EDGE850	
Test channel	Frequency (MHz)	–26dBc Emission Bandwidth(KHz)
Mid 189	836.4	317.308
Low 128	824.2	318.910
High 251	848.8	318.910

Conclusion: PASS

GSM 850

Date: 30.MAY.2013 21:09:33

Channel 189- Emission Bandwidth (-26dBc BW)

Date: 30.MAY.2013 21:18:17

Channel 128- Emission Bandwidth (-26dBc BW)

Date: 30.MAY.2013 21:19:43

Channel 251- Emission Bandwidth (-26dBc BW)

GPRS 850

Date: 30.MAY.2013 21:23:51

Channel 189- Emission Bandwidth (-26dBc BW)

Date: 30.MAY.2013 19:05:24

Channel 128- Emission Bandwidth (-26dBc BW)

Date: 30/MAY.2013 19:07:04

Channel 251- Emission Bandwidth (-26dBc BW)

EDGE 850

Date: 30.MAY.2013 21:32:51

Channel 189- Emission Bandwidth (-26dBc BW)

Date: 30.MAY.2013 21:36:08

Channel 128- Emission Bandwidth (-26dBc BW)

Date: 30.MAY.2013 21:37:35

Channel 251- Emission Bandwidth (-26dBc BW)

	GSM 1900			
Test channel	Frequency (MHz)	–26dBc EmissionBandwidth(KHz)		
Mid 661	1880	312.500		
Low 512	1850.2	315.705		
High 810	1909.8	315.705		
GPRS1900				
Test channel	Frequency (MHz)	–26dBc Emission Bandwidth(KHz)		
Mid 661	1880	318.910		
Low 512	1850.2	317.308		
High 810	1909.8	315.705		
EDGE1900				
Test channel	Frequency (MHz)	–26dBc Emission Bandwidth(KHz)		
Mid 661	1880	312.500		
Low 512	1850.2	314.103		
High 810	1909.8	317.308		

Conclusion: PASS

GSM 1900

Date: 30.MAY.2013 21:42:53

Channel 661- Emission Bandwidth (-26dBc BW)

Date: 30.MAY.2013 21:49:42

Channel 512- Emission Bandwidth (-26dBc BW)

East China Institute of Telecommunications No.ECIT-2013-0076-RF

Date: 30.MAY.2013 19:59:31

Channel 810- Emission Bandwidth (-26dBc BW)

GPRS 1900

Date: 30.MAY.2013 21:59:59

Channel 661- Emission Bandwidth (-26dBc BW)

Date: 30.MAY.2013 22:02:50

Channel 512- Emission Bandwidth (-26dBc BW)

Date: 30.MAY.2013 22:06:15

Channel 810- Emission Bandwidth (-26dBc BW)

EDGE 1900

Date: 30.MAY.2013 22:09:58

Channel 661- Emission Bandwidth (-26dBc BW)

Date: 30.MAY.2013 22:10:57

Channel 512- Emission Bandwidth (-26dBc BW)

Date: 30.MAY.2013 22:12:01

Channel 810- Emission Bandwidth (-26dBc BW)

WCDMA BAND II		
Test channel	Frequency (MHz)	–26dBc Emission Bandwidth(MHz)
Mid 9400	1880	4.68
Low 9262	1852.4	4.66
High 9538	1907.6	4.71
WCDMA BAND V		
Test channel	Frequency (MHz)	–26dBc Emission Bandwidth(MHz)
Mid 4183	836.6	4.65
Low 4132	826.4	4.66
High 4233	846.6	4.66

Conclusion: PASS WCDMA BAND II

Date: 29.MAY.2013 22:26:22

Channel 9400- Emission Bandwidth (-26dBc BW)

Date: 29.MAY.2013 22:23:38

Channel 9262- Emission Bandwidth (-26dBc BW)

Date: 29.MAY.2013 22:21:44

Channel 9538- Emission Bandwidth (-26dBc BW)

WCDMA BAND V

Date: 30.MAY.2013 18:48:10

Channel 4183- Emission Bandwidth (-26dBc BW)

Date: 30.MAY.2013 18:45:52

Channel 4132- Emission Bandwidth (-26dBc BW)

Date: 30/MAY.2013 18:43:43

Channel 4233- Emission Bandwidth (-26dBc BW)

A.4 Band Edge at antenna terminals (§22.917(b)/§24.238(b))

Limit:

The magnitude of each spurious and harmonic emission that can be detected when the equipment is operated under the conditions specification in the instruction manual and/or alignment procedure, shall not be less than 43+10log (Mean power in watts) dBc below the mean power output outside a license's frequency block(-13dBm).

Test procedure:

The RF output of the transceiver was connected to a signal analyzer through appropriate attenuation. In the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

GSM 850

Date: 31.MAY.2013 | 16:24:38

Channel 128- LOW BAND EDGE BLOCK

Date: 31.MAY.2013 16:25:45

Channel 251- HIGH BAND EDGE BLOCK

GPRS 850

Date: 31.MAY.2013 16:34:12

Channel 128- LOW BAND EDGE BLOCK

Date: 31.MAY.2013 16:33:10

Channel 251- HIGH BAND EDGE BLOCK

EDGE 850

Date: 31.MAY.2013 16:36:40

Channel 128- LOW BAND EDGE BLOCK

Date: 31.MAY.2013 16:37:33

Channel 251- HIGH BAND EDGE BLOCK

GSM 1900

Date: 31.MAY.2013 16:39:48

Channel 512- LOW BAND EDGE BLOCK

Date: 31.MAY.2013 16:43:22

Channel 810- HIGH BAND EDGE BLOCK

GPRS 1900

Date: 31.MAY.2013 16:50:06

Channel 512- LOW BAND EDGE BLOCK

East China Institute of Telecommunications No.ECIT-2013-0076-RF

Date: 31.MAY.2013 16:46:08

Channel 810- HIGH BAND EDGE BLOCK

EDGE 1900

Date: 31.MAY.2013 16:53:04

Channel 512- LOW BAND EDGE BLOCK

Date: 31.MAY.2013 16:54:10

Channel 810- HIGH BAND EDGE BLOCK

WCDMA BAND II

Date: 31.MAY.2013 17:03:14

Channel 9262- LOW BAND EDGE BLOCK

Date: 31.MAY.2013 17:04:20

Channel 9538- HIGH BAND EDGE BLOCK

WCDMA BAND V

Date: 31.MAY.2013 17:60:52

Channel 4132- LOW BAND EDGE BLOCK

Date: 31.MAY.2013 17:01:57

Channel 4233- HIGH BAND EDGE BLOCK

Conclusion: PASS

A.5 FREQUENCY STABILITY (§2.1055/§24.235)

A.5.1 Method of Measurement

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMU200 DIGITAL RADIO COMMUNICATION TESTER.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the EUT to overnight soak at -30°C.
- 3. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on mid channel of GSM850, PCS1900, WCDMA BANDII and WCDMA BANDV, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 4. Repeat the above measurements at 10°C increments from -30°C to +50°C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.
- 5. Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each voltage. Pause at nominal voltage for 1 1/2 hours unpowered, to allow any self-heating to stabilize, before continuing.
- 6. Subject the EUT to overnight soak at +50°C.
- 7. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 8. Repeat the above measurements at 10 C increments from +50°C to -30°C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.
- 9. At all temperature levels hold the temperature to +/- 0.5℃ during the measurement procedure.

A.5.2 Measurement Limit

A.5.2.1 For Hand carried battery powered equipment

According to the JTC standard the GSM frequency stability of the carrier shall be accurate to within 0.1ppm of the received frequency from the base station. And the WCDMA is 2.5ppm. This accuracy is sufficient to meet Sec.24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.5V DC and 4.2VDC, with a nominal voltage of 3.7VDC. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. These voltages represent a tolerance of -10 % and +12.5 %. For the purposes of measuring frequency stability these voltage limits are to be used.

A.5.2.2 For equipment powered by primary supply voltage

According to the JTC standard the GSM frequency stability of the carrier shall be accurate to within 0.1ppm of the received frequency from the base station. And the WCDMA is 2.5ppm. This accuracy is sufficient to meet Sec.24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. For this EUT section 2.1055(d)(1) applies. This requires varying primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

GSM850 Mid Channel/fc(MHz) 189/836.4 Frequency Error VS Temperature

Power Supply (VDc)	Environment Temperature(°C)	Frequency error(Hz)	Limit (Hz)
3.3	-30	-31	83.64
3.3	-20	-24	83.64
3.3	-10	-27	83.64
3.3	0	-25	83.64
3.3	10	-21	83.64
3.3	20	-25	83.64
3.3	30	-18	83.64
3.3	40	-22	83.64
3.3	50	-17	83.64

Frequency Error VS Voltage

Power Supply Environment Free (VDc) Environment

3.2	25	-30	83.64
3.3	25	-28	83.64
3.6	25	-18	83.64

PCS1900 Mid Channel/fc(MHz) 661/1880

Frequency Error VS Temperature

Power Supply (VDc)	Environment Temperature(°C)	Frequency error(Hz)	Limit (Hz)
3.3	-30	-58	188
3.3	-20	-48	188
3.3	-10	-52	188
3.3	0	-41	188
3.3	10	-31	188
3.3	20	-47	188
3.3	30	-36	188
3.3	40	-28	188
3.3	50	-32	188

Frequency Error VS Voltage

Power Supply (VDc)	Environment $Temperature(^{\circ}\!\mathbb{C})$	Frequency error(Hz)	Limit (Hz)
3.2	25	-38	188
3.3	25	-32	188
3.6	25	-42	188

Mid Channel/fc(MHz) 9400 /1880 WCDMA BAND II

Frequency Error VS Temperature

Power Supply (VDc)	Environment Temperature(℃)	Frequency error(Hz)	Limit (Hz)
3.3	-30	-32	4700
3.3	-20	-30	4700
3.3	-10	-27	4700
3.3	0	-33	4700

3.3	10	-25	4700
3.3	20	-26	4700
3.3	30	-28	4700
3.3	40	-31	4700
3.3	50	-28	4700

Frequency Error VS Voltage

Power Supply (VDc)	Environment Temperature(℃)	Frequency error(Hz)	Limit (Hz)
3.2	25	33	4700
3.3	25	30	4700
3.6	25	27	4700

Mid Channel/fc(MHz) 4183/836.6 WCDMA BAND V

Frequency Error VS Temperature

Power Supply (VDc)	Environment Temperature(℃)	Frequency error(Hz)	Limit (Hz)
3.3	-30	-22	2091.5
3.3	-20	-17	2091.5
3.3	-10	-18	2091.5
3.3	0	-17	2091.5
3.3	10	-19	2091.5
3.3	20	-17	2091.5
3.3	30	-12	2091.5
3.3	40	-14	2091.5
3.3	50	-13	2091.5

Frequency Error VS Voltage

riequelley Error ve vertage			
Power Supply	Environment	Frequency error(Hz)	Limit
(VDc)	Temperature(℃)	r requericy error(riz)	(Hz)
3.2	25	-18	2091.5
3.3	25	-13	2091.5
3.6	25	-17	2091.5

Conclusion: PASS

A.6. CONDUCTED SPURIOUS EMISSION

A.6.1 GSM Measurement Method

The following steps outline the procedure used to measure the conducted emissions from the EUT.

- 1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the equipment of PCS1900 band, this equates to a frequency range of 30 MHz to 19.1 GHz, data taken from 30 MHz to 20 GHz. For GSM850, data taken from 30 MHz to 10 GHz.
- 2. The sweep time is set automatically by instrument itself. That should be the optimal sweep time for the span and the RBW. If the sweep time is too short, that is sweep is too fast, the sweep result is not accurate; If the sweep time is too long, that is sweep is too low, some frequency components may be lost. The instrument will give a optimal sweep time according the selected span and RBW.
- 3. The procedure to get the conducted spurious emission is as follows: The trace mode is set to MaxHold to get the highest signal at each frequency; Wait 25 seconds: Get the result.
- 4. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

GSM 850 Transmitter

Channel	Frequency(MHz)
128	824.2
190	836.6
251	848.8

PCS1900 Transmitter

Channel	Frequency(MHz)
512	1850.2
661	1880.0
810	1909.8

A.6.1.1 Measurement Limit

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried

out.

A6.1.2 Measurement result

Spurious emission limit -13dBm.

Note: peak above the limit line is the carrier frequency.

A6.1.2.1 GSM850

Date: 31.MAY.2013 21:53:26

Channel 128: 30MHz~1GHz

Date: 31.MAY.2013 21:53:55

Channel 128: 1GHz~2.5GHz

Date: 31.MAY.2013 21:54:27

Channel 128: 2.5GHz~7.5GHz

Date: 31.MAY.2013 21:54:59

Channel 128: 7.5GHz~10GHz

Date: 31.MAY.2013 21:55:43

Channel 190: 30MHz~1GHz

Date: 31.MAY.2013 21:56:17

Channel 190: 1GHz~2.5GHz

Date: 31.MAY.2013 21:56:44

Channel 190: 2.5GHz~7.5GHz

Date: 31.MAY.2013 21:57:06

Channel 190: 7.5GHz~10GHz

Date: 31.MAY.2013 21:57:33

Channel 251: 30MHz~1GHz

Date: 31.MAY.2013 21:58:02

Channel 251: 1GHz~2.5GHz

Date: 31.MAY.2013 21:58:27

Channel 251: 2.5GHz~7.5GHz

Date: 31.MAY.2013 21:58:56

Channel 251: 7.5GHz~10GHz

A6.1.2.2 GSM1900

Date: 31.MAY.2013 22:03:45

Channel 512: 30MHz~1GHz

Date: 31.MAY.2013 22:04:14

Channel 512: 1GHz~2.5GHz

Date: 31.MAY.2013 22:04:59

Channel 512: 2.5GHz~7.5GHz

Date: 31.MAY.2013 22:05:29

Channel 512: 7.5GHz~10GHz

Date: 31.MAY.2013 22:06:01

Channel 512: 10GHz~15GHz

Date: 31.MAY.2013 22:06:24

Channel 512: 15GHz~20GHz

Date: 31.MAY.2013 22:07:05

Channel 661: 30MHz~1GHz

Date: 31.MAY.2013 22:07:39

Channel 661: 1GHz~2.5GHz

Date: 31.MAY.2013 22:08:48

Channel 661: 2.5GHz~7.5GHz

Date: 31.MAY.2013 22:11:56

Channel 661: 7.5GHz~10GHz

Date: 31.MAY.2013 22:09:37

Channel 661: 10GHz~15GHz

Date: 31.MAY.2013 22:09:56

Channel 661: 15GHz~20GHz

Date: 31.MAY.2013 22:13:21

Channel 810: 30MHz~1GHz

Date: 31.MAY.2013 22:15:05

Channel 810: 1GHz~2.5GHz

Date: 31.MAY.2013 22:14:16

Channel 810: 2.5GHz~7.5GHz

Date: 31.MAY.2013 22:11:56

Channel 810: 7.5GHz~10GHz

Date: 31.MAY.2013 22:12:45

Channel 810: 15GHz~20GHz

Conclusion:PASS

A6.2 WCDMA Measurement Method

The following steps outline the procedure used to measure the conducted emissions from the EUT.

1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the equipment of WCDMA Band II, this equates to

- a frequency range of 30 MHz to 19.1 GHz, data taken from 30 MHz to 20 GHz. For WCDMA Band V, data taken from 30 MHz to 10GHz.
- 2. The sweep time is set automatically by instrument itself. That should be the optimal sweep time for the span and the RBW. If the sweep time is too short, that is sweep is too fast, the sweep result is not accurate; If the sweep time is too long, that is sweep is too low, some frequency components may be lost. The instrument will give a optimal sweep time according the selected span and RBW.
- 3. The procedure to get the conducted spurious emission is as follows:

The trace mode is set to MaxHold to get the highest signal at each frequency; Wait 25 seconds;

Get the result.

4. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

WCDMA Band IITransmitter

Channel	Frequency (MHz)
9262	1852.40
9400	1880.00
9538	1907.60

WCDMA Band V Transmitter

Channel	Frequency (MHz)
4132	826.40
4183	836.60
4233	846.60

A 6.2.1 Measurement Limit

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

A 6.2.2 Measurement result

Spurious emission limit -13dBm.

Note: peak above the limit line is the carrier frequency.

A 6.2.2.1 WCDMA Band II

Date: 31.MAY.2013 17:16:01

Channel 9262: 30MHz~1GHz

Date: 31.MAY.2013 17:16:33

Channel 9262:1GHz~2.5GHz

Date: 31.MAY.2013 17:17:18

Channel 9262: 2.5GHz~7.5GHz

Date: 31.MAY.2013 17:17:57

Channel 9262: 7.5GHz~10GHz

Date: 31.MAY.2013 17:18:48

Channel 9262: 10GHz~15GHz

Date: 31.MAY.2013 17:19:19

Channel 9262: 15GHz~20GHz

Date: 31.MAY.2013 17:20:07

Channel 9400: 30MHz~1GHz

Date: 31.MAY.2013 17:20:38

Channel 9400:1GHz~2.5GHz

Date: 31.MAY.2013 17:21:31

Channel 9400: 2.5GHz~7.5GHz

Date: 31.MAY.2013 17:22:05

Channel 9400: 7.5GHz~10GHz

Date: 31.MAY.2013 17:22:34

Channel 9400: 10GHz~15GHz

Date: 31.MAY.2013 17:23:01

Channel 9400: 15GHz~20GHz

Date: 31.MAY.2013 17:23:45

Channel 9538: 30MHz~1GHz

Date: 31.MAY.2013 17:24:13

Channel 9538:1GHz~2.5GHz

Date: 31.MAY.2013 17:24:56

Channel 9538: 2.5GHz~7.5GHz

Date: 31.MAY.2013 17:25:24

Channel 9538: 7.5GHz~10GHz

Date: 31.MAY.2013 17:25:53

Channel 9538: 10GHz~15GHz

Date: 31.MAY.2013 17:30:43

Channel 9538: 15GHz~20GHz

A 6.2.2.2 WCDMA Band V

Date: 31.MAY.2013 18:27:40

Start 30 MHz

Channel 4132: 30MHz~1GHz

Date: 31.MAY.2013 18:29:06

Channel 4132:1GHz~2.5GHz

Date: 31.MAY.2013 18:29:44

Channel 4132: 2.5GHz~7.5GHz

Date: 31.MAY.2013 18:30:15

Channel 4132: 7.5GHz~10GHz

Date: 31.MAY.2013 18:39:09

Channel 4183: 30MHz~1GHz

Date: 31.MAY.2013 21:26:09

Channel 4183:1GHz~2.5GHz

Date: 31.MAY.2013 21:27:01

Channel 4183: 2.5GHz~7.5GHz

Date: 31.MAY.2013 21:28:06

Channel 4183: 7.5GHz~10GHz

Date: 31.MAY.2013 21:29:53

Channel 4233: 30MHz~1GHz

Date: 31.MAY.2013 21:30:20

Channel 4233:1GHz~2.5GHz

Date: 31.MAY.2013 21:30:48

Date: 31.MAY.2013 21:31:16

Channel 4233: 7.5GHz~10GHz

Conclusion: PASS A.7 RADIATED **A.7.1 ERP**

A.7.1.1 GSM ERP

A.7.1.1.1 Description

This is the test for the maximum radiated power from the EUT.

Rule Part 24.232(c) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power" and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage." Rule Part 22.913(a) specifies "The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts."

A.7.1.1.2 Method of Measurement

The measurements procedures in TIA-603C-2004 are used.

1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.

- 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).
- 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

4. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna.

The cable loss (Pol), the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.

The measurement results are obtained as described below:

Power(EIRP)=PMea+ PAg + Pcl + Ga

- 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi.

GSM 850-ERP 22.913(a)

Limits

	Power Step	Burst Peak ERP (dBm)
GSM	5	≤38.45dBm (7W)
GPRS	3	≤38.45dBm (7W)
EDGE	6	≤38.45dBm (7W)

Measurement result

GSM

Frequency (MHz)	P _{Mea} (dBm)	Pa (dB)	Pag (dB)	G _a Antenna Gain(dBd)	Peak ERP (dBm)	Polarization
824.2	-32.64	3.05	-69.40	3.11	30.6	V
836.6	-36.74	3.05	-69.40	3.11	30.5	V
848.8	-34.94	3.05	-69.40	3.11	29.7	Н

GPRS

Frequency (MHz)	P _{Mea} (dBm)	Pcl (dB)	P _{Ag} (dB)	G _a Antenna Gain(dBd)	Peak ERP (dBm)	Polarization
824.2	-33.64	3.05	-69.40	3.11	29.3	Н
836.6	-33.54	3.05	-69.40	3.11	29.7	V
848.8	-33.74	3.05	-69.40	3.11	29.5	Н

EDGE

Frequency (MHz)	P _{Mea} (dBm)	Pcl (dB)	P _{Ag} (dB)	G _a Antenna Gain(dBd)	Peak ERP (dBm)	Polarization
824.2	-38.84	3.05	-69.40	3.11	24.5	Н
836.6	-39.04	3.05	-69.40	3.11	24.2	Н
848.8	-38.74	3.05	-69.40	3.11	24.5	V

Frequency: 836.6MHz

 $Peak \; ERP(dBm) = P_{Mea}(-33.54dBm) \; - \; P_{cl}(3.05dB) \; - \; P_{Ag}(-69.4dB) \; - \; G_{a} \; (3.11dBd)$

= 29.7 dBm

ANALYZER SETTINGS: RBW = VBW = 3MHz

PCS 1900-EIRP 24.232(c)

Limits

	Power Step	Burst Peak ERP (dBm)
GSM	0	≤33dBm (2W)
EDGE	5	≤33dBm (2W)
GPRS	3	≤33dBm (2W)

Measurement result

GSM

Frequency (MHz)	P _{Mea} (dBm)	Pa (dB)	Pag (dB)	G _a AntennaGai n(dBi)	Peak EIRP (dBm)	Polarization
1850.2	-41.89	3.54	-69.40	-2.9	29.02	Н
1880.0	-41.76	3.54	-69.40	-2.9	29.15	Н
1909.8	-41.96	3.54	-69.40	-2.9	28.95	Н

GPRS

Frequency (MHz)	P _{Mea} (dBm)	Pa (dB)	Pag (dB)	G _a Antenna Gain(dBi)	Peak EIRP (dBm)	Polarization
1850.2	-42.68	3.54	-69.40	-2.9	28.23	Н
1880.0	-42.63	3.54	-69.40	-2.9	28.08	Н
1909.8	-42.56	3.54	-69.40	-2.9	28.35	Н

EDGE

Frequency (MHz)	P _{Mea} (dBm)	Pcl (dB)	Pag (dB)	G _a Antenna Gain(dBi)	Peak EIRP (dBm)	Polarization
1850.2	-45.84	3.54	-69.40	-2.9	24.47	Н
1880.0	-46.14	3.54	-69.40	-2.9	24.77	Н
1909.8	-46.08	3.54	-69.40	-2.9	24.83	Н

Frequency: 1850.2MHz

 $Peak \; EIRP(dBm) = P_{Mea}(-41.89dBm) \; - \; P_{cl}(3.54dB) \; - \; P_{Ag}(-69.4dB) \; - \; G_{a}\left(-2.9dB\right) + 2.15dBi = 29.02dBm \; - \; P_{cl}(3.54dB) \; - \; P_{$

ANALYZER SETTINGS: RBW = VBW = 3MHz

A.7.1.2 WCDMA ERP A.7.1.2.1 Description This is the test for the maximum radiated power from the EUT.

Rule Part 24.232(c) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power" and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage." Rule Part 22.913(a) specifies "The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts."

A.7.1.2.2 Method of Measurement

The measurements procedures in TIA-603C-2004 are used.

1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.

- 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).
- 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

4. A amplifier should be connected to the Signal Source output port. And the cable should be

connect between the Amplifier and the Substitution Antenna.

The cable loss (PcI), the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.

The measurement results are obtained as described below:

Power(EIRP)=PMea+ PAg + Pcl + Ga

- 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi.

WCDMA Band II-EIRP

Limit

	Burst Peak EIRP (dBm)
WCDMA Band II	≤33dBm (2W)

Measurement result

Frequency (MHz)	P _{Mea} (dBm)	Pcl (dB)	P _{Ag} (dB)	G _a Antenna Gain(dBi)	Peak EIRP (dBm)	Polarization
1852.4	-45.88	3.54	-69.4	-2.9	25.03	V
1880.0	-45.08	3.54	-69.4	-2.9	25.23	Н
1907.6	-45.77	3.54	-69.4	-2.9	25.14	Н

Frequency: 1852.40MHz

Peak EIRP(dBm)= PMea(-45.88dBm)- Pcl(3.54dB)- PAg(-69.4dB)-Ga (-2.9dB)+2.15dBi =25.03dBm

ANALYZER SETTINGS: RBW = VBW = 5MHz

WCDMA Band V-ERP

Limits

	Burst Peak EIRP (dBm)
WCDMA Band V	≤38.45dBm (7W)

Measurement result

Frequency (MHz)	Р _{Меа} (dBm)	Pcl (dB)	Pag (dB)	Ga Antenna Gain(dBd)	Peak ERP (dBm)	Polarization
826.4	-46.55	3.05	-69.4	-2.9	22.7	Н
836.6	-46.45	3.05	-69.4	-2.9	22.8	Н
846.6	-44.55	3.05	-69.4	-2.9	23.5	Н

Frequency: 846.60 MHz

Peak ERP(dBm)= PMea(-46.55dBm)- Pcl(3.05dB)- PAg(-69.4dB)-Ga (-2.9dB)=22.7dBm

ANALYZER SETTINGS: RBW = VBW = 5MHz

A.7.2 EMISSION LIMIT (§2.1051/§22.917§24.238)

A.7.2.1 GSM Measurement Method

The measurement procedures in TIA-603C-2004 are used.

The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. The resolution bandwidth is set as outlined in Part 24.238 and Part 22.917. The spectrum is scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of PCS1900 and GSM850.

The procedure of radiated spurious emissions is as follows:

1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10th harmonic were measured with peak detector.

- 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).
- 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

4. The Path loss (Ppl) between the Signal Source with the Substitution Antenna and the Substitution Antenna Gain (Ga) should be recorded after test.

A amplifier should be connected in for the test.

The Path loss (Ppl) is the summation of the cable loss and the gain of the amplifier.

The measurement results are obtained as described below:

Power(EIRP)=PMea+ Ppl + Ga

- 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi

A.7.2.1.1 Measurement Limit

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

A.7.2.1.2 Measurement Results

Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the PCS1900 band (1850.2 MHz, 1880 MHz and 1909.8 MHz) and GSM850 band (824.2MHz, 836.6MHz, 848.8MHz) . It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the PCS1900 ,GSM850 into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

A.7.2.1.3 Measurement Results

Table:

Frequency	Channel	Frequency Range	Result
	Low	30MHz~10GHz	Р
GSM850	Middle	30MHz~10GHz	Р
	High	30MHz~10GHz	Р
	Low	30MHz~20GHz	Р
GSM1900	Middle	30MHz~20GHz	Р
	High	30MHz~20GHz	Р

GSM Mode Channel 128

Final result:

Frequenc y (MHz)	PMea (dBm)	Path Loss	Antenna Gain	Correctio n dBm	Peak ERP (dBm)	Limit (dBm)	Polarizati on
824.236	-27.01	3.05	-3.11	2.15	-29.1	-13	Н
836.652	-23.91	3.05	-3.11	2.15	-26	-13	Н
1648.2	-37.68	3.07	-3.4	2.15	-39.5	-13	Н
2472.6	-38.38	3.57	-3.7	2.15	-40.4	-13	Н
4120.2	-44.59	4.26	-7.4	2.15	-43.6	-13	Н
3296.4	-49.57	4.18	-4.9	2.15	-51	-13	Н

GSM Mode Channel 190

Final result:

Frequenc y (MHz)	PMea (dBm)	Path Loss	Antenna Gain	Correctio n dBm	Peak ERP (dBm)	Limit (dBm)	Polarizati on
3346.2	-29.07	4.18	-4.9	2.15	-30.5	-13	V
4183.8	-26.49	4.26	-7.7	2.15	-25.2	-13	Н
5019.6	-41.82	4.43	-9	2.15	-39.4	-13	Н
6692.8	-46.32	5.83	-12.3	2.15	-42	-13	Н

GSM Mode Channel 251

Final result:

Frequenc y (MHz)	PMea (dBm)	Path Loss	Antenna Gain	Correctio n dBm	Peak ERP (dBm)	Limit (dBm)	Polarizati on
3394.8	-31.41	4.24	-4.9	2.15	-32.9	-13	V
4243.8	-28.85	4.4	-7.7	2.15	-27.7	-13	Н
5092.8	-39.22	4.83	-9	2.15	-37.2	-13	Н
6789.6	-43.6	5.85	-12.3	2.15	-39.3	-13	V

GSM Mode Channel 512

Final result:

Frequenc y (MHz)	PMea (dBm)	Path Loss	Antenna Gain	Correctio n dBm	Peak EIRP (dBm)	Limit (dBm)	Polarizati on
3700.2	-48.33	4.42	-6.2	2.15	-48.7	-13	V
5550.6	-53.51	5.24	-9.5	2.15	-51.4	-13	V
7399.2	-58.92	6.13	-14.6	2.15	-52.6	-13	Н

GSM Mode Channel 661

Final result:

Frequenc y (MHz)	P _{Mea} (dBm)	Path Loss	Antenna Gain	Correctio n dBm	Peak EIRP (dBm)	Limit (dBm)	Polarizati on
3759.6	-48.66	4.59	-6.2	2.15	-49.2	-13	V
5640.6	-48.83	5.62	-9.5	2.15	-47.1	-13	Н

GSM Mode Channel 810

Final result:

Frequenc y (MHz)	P _{Mea} (dBm)	Path Loss	Antenna Gain	Correctio n dBm	Peak EIRP (dBm)	Limit (dBm)	Polarizati on
3819	-51.15	4.3	-7.2	2.15	-50.4	-13	V
5729.4	-52.14	5.71	-10.5	2.15	-49.5	-13	Н

Conclusion: PASS

Note: Testing in several polarization directions, EUT use each surface face the antenna for find the worst case as the test result was shown.

A.7.2.2 WCDMA Measurement Method

The measurements procedures in TIA-603C-2004 are used.

The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment. The resolution bandwidth is set as outlined in Part 24.238 and Part 24.917. The spectrum is scanned with the mobile station transmitting at carrier frequencies that pertain to

low, mid and high channels of WCDMA Band II and WCDMA Band V.

The procedure of radiated spurious emissions is the same like GSM.

A.7.2.2.1 Measurement Limit

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the

specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

A.7.2.2.2 Measurement Results

Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the WCDMA Band II (1852.4 MHz, 1880.0MHz and 1907.6MHz) and WCDMA Band

V (826.4MHz, 836.6MHz and 846.6MHz) . It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the WCDMA Band II and WCDMA Band V into any of the other blocks. The

equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

A.7.2.2.3 Measurement Results Table

Frequency	Channel	Frequency Range	Result
	Low	30MHz~10GHz	Р
WCDMA Band V	Middle	30MHz~10GHz	Р
	High	30MHz~10GHz	Р
	Low	30MHz~20GHz	Р
WCDMA Band II	Middle	30MHz~20GHz	Р
	High	30MHz~20GHz	Р

WCDMA BAND II Mode Channel 9262 Final result:

Frequency (MHz)	Р _{меа} (dBm)	Path Loss	Antenna Gain	Peak ERP (dBm)	Limit (dBm)	Polarizatio n
3703.2	-44.93	4.42	-6.2	-45.3	-13	V
5554.4	-54.71	5.24	-9.5	-52.6	-13	V
7405.2	-69.02	6.13	-14.6	-62.7	-13	Н

WCDMA BAND II Mode Channel 9400 Final result:

Frequency (MHz)	Р _{меа} (dBm)	Path Loss	Antenna Gain	Peak ERP (dBm)	Limit (dBm)	Polarizatio n
3761.2	-59.46	4.59	-6.2	-60	-13	Н
5642.4	-63.93	5.62	-9.5	-62.2	-13	Н
7522.8	-69.26	6.59	-14.6	-63.4	-13	Н

WCDMA BAND II Mode Channel 9538

Final result:

Frequency (MHz)	P _{Mea} (dBm)	Path Loss	Antenna Gain	Peak ERP (dBm)	Limit (dBm)	Polarizatio n
3816.8	-59.75	4.3	-7.2	-59	-13	V
5720	-65.44	5.71	-10.5	-62.8	-13	V
7633.2	-70.03	6.42	-14.9	-63.7	-13	Н

WCDMA BAND V Mode Channel 4132

Final result:

Frequency (MHz)	Р _{меа} (dBm)	Path Loss	Antenna Gain	Peak EIRP (dBm)	Limit (dBm)	Polarizatio n
3179.6	-58.03	3.92	-4.9	-59.2	-13	Н
3571.2	-60.25	4.00	-6	-60.4	-13	Н
4570	-63.25	4.6	-7.3	-62.7	-13	Н
5650	-65.75	5.1	-9.8	-63.2	-13	Н
7965.4	-70.96	6.59	-16.2	-63.5	-13	V
9119.8	-72.57	6.58	-18.5	-62.8	-13	V

WCDMA BAND V Mode Channel 4183

Final result:

Frequency (MHz)	P _{Mea} (dBm)	Path Loss	Antenna Gain	Peak EIRP (dBm)	Limit (dBm)	Polarizatio n
2964.4	-62.43	3.82	-4.7	-63.7	-13	Н

3204.8	-62.25	4	-4.9	-63.5	-13	Н
4582	-65.05	4.6	-7.3	-64.5	-13	Н
5397.6	-66.65	5.1	-8.7	-65.2	-13	V
7934.8	-72.56	6.59	-16.6	-64.7	-13	V
9809.8	-72.33	7.12	-18	-63.6	-13	Н

WCDMA BAND V Mode Channel 4233

Final result:

Frequency (MHz)	Р _{Меа} (dBm)	Path Loss	Antenna Gain	Peak EIRP (dBm)	Limit (dBm)	Polarizatio n
2961.2	-59.93	3.82	-4.7	-61.2	-13	V
3201.6	-61.05	4	-4.9	-62.3	-13	Н
4533.6	-65.25	4.6	-7.3	-64.7	-13	Н
5436.4	-66.55	5.1	-8.7	-65.1	-13	V
7935.4	-71.06	6.59	-16.6	-63.2	-13	Н
9766.6	-71.43	7.12	-18	-62.7	-13	Н

Conclusion: PASS

Note: Testing in several polarization directions, EUT use each surface face the antenna for find the worst case as the test result was shown.

A.8 CONDUCTED EMISSION (§15.107§15.207)

The measurement procedure in ANSI C63.4-1003 is used. Conducted Emission is measured with travel charger.

A.8.1 Limit

Alon Ellin		
Fraguency of Emission (MHz)	Conducted Li	mit (dBuV)
Frequency of Emission (MHz)	Quasi-Peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50
*Decreases with logarithm of the	e frequency	

A.8.2 Measurement result

GSM850:

Final Result1

Freque ncy (MHz)	QuasiP eak (dBuV)	Meas. Time (ms)	Bandw idth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit(d BuV)
0.6761 06	35.4	1000.0	9.000	On	N	10.0	20.6	56.0
1.0641 56	34.2	1000.0	9.000	On	L1	9.9	21.8	56.0
1.3477 31	37.8	1000.0	9.000	On	N	9.9	18.2	56.0
1.4148 94	38.4	1000.0	9.000	On	N	9.9	17.6	56.0
2.0865 19	36.5	1000.0	9.000	On	N	9.9	19.5	56.0
2.3066 62	37.3	1000.0	9.000	On	N	9.9	18.7	56.0

Final Result2

Freque ncy (MHz)	Averag e (dBuV)	Meas. Time (ms)	Bandw idth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit(d BuV)
0.6761 06	24.3	1000.0	9.000	On	N	10.0	21.7	46.0
1.0641 56	21.6	1000.0	9.000	On	L1	9.9	24.4	46.0
1.3477 31	26.1	1000.0	9.000	On	N	9.9	19.9	46.0
1.4148 94	27.2	1000.0	9.000	On	N	9.9	18.8	46.0
2.0865 19	25.2	1000.0	9.000	On	N	9.9	20.8	46.0
2.3066 62	25.7	1000.0	9.000	On	N	9.9	20.3	46.0

PCS1900

Final Result1

Freque ncy (MHz)	QuasiP eak (dBuV)	Meas. Time (ms)	Bandw idth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit(d BuV)
0.3664 12	37.4	1000.0	9.000	On	Ν	10.1	21.2	58.6
0.7358 06	34.3	1000.0	9.000	On	N	10.0	21.7	56.0
1.0343 06	38.3	1000.0	9.000	On	Ν	9.9	17.7	56.0
1.6611 56	36.4	1000.0	9.000	On	Ν	9.9	19.6	56.0
2.1872 62	37.3	1000.0	9.000	On	N	9.9	18.7	56.0
2.2917 38	38.7	1000.0	9.000	On	N	9.9	17.3	56.0

Final Result2

Freque ncy (MHz)	Averag e (dBuV)	Meas. Time (ms)	Bandw idth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit(d BuV)
0.3664 12	26.5	1000.0	9.000	On	Z	10.1	22.1	48.6
0.7358 06	23.2	1000.0	9.000	On	Ν	10.0	22.8	46.0
1.0343 06	27.0	1000.0	9.000	On	Ν	9.9	19.0	46.0
1.6611 56	25.9	1000.0	9.000	On	N	9.9	20.1	46.0
2.1872 62	26.1	1000.0	9.000	On	N	9.9	19.9	46.0
2.2917 38	27.3	1000.0	9.000	On	N	9.9	18.7	46.0

WCDMA Band II

Final Result1

Freque ncy (MHz)	QuasiP eak (dBuV)	Meas. Time (ms)	Bandw idth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit(d BuV)
1.1350	34.3	1000.0	9.000	On	L1	9.9	21.7	56.0
1.4223	39.0	1000.0	9.000	On	N	9.9	17.0	56.0
1.4745	35.8	1000.0	9.000	On	L1	9.9	20.2	56.0
1.7283	36.8	1000.0	9.000	On	N	9.9	19.2	56.0
2.2432	38.5	1000.0	9.000	On	N	9.9	17.5	56.0
2.3290	36.9	1000.0	9.000	On	N	9.9	19.1	56.0

Final Result2

Freque ncy (MHz)	Averag e (dBuV)	Meas. Time (ms)	Bandw idth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit(d BuV)
1.1350	21.4	1000.0	9.000	On	L1	9.9	24.6	46.0
1.4223	28.0	1000.0	9.000	On	N	9.9	18.0	46.0
1.4745	22.7	1000.0	9.000	On	L1	9.9	23.3	46.0
1.7283	26.1	1000.0	9.000	On	N	9.9	19.9	46.0
2.2432	26.8	1000.0	9.000	On	N	9.9	19.2	46.0
2.3290	25.9	1000.0	9.000	On	N	9.9	20.1	46.0

WCDMA Band V

Final Result1

Freque ncy (MHz)	QuasiP eak (dBuV)	Meas. Time (ms)	Bandw idth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit(d BuV)
0.6387	35.8	1000.0	9.000	On	N	10.1	20.2	56.0
0.9559	32.4	1000.0	9.000	On	L1	9.9	23.6	56.0
1.3589	38.5	1000.0	9.000	On	N	9.9	17.5	56.0
1.41116	38.8	1000.0	9.000	On	N	9.9	17.2	56.0
1.6947	36.2	1000.0	9.000	On	N	9.9	19.8	56.0
2.2357	38.0	1000.0	9.000	On	N	9.9	18.0	56.0

Final Result2

Freque ncy (MHz)	Averag e (dBuV)	Meas. Time (ms)	Bandw idth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit(d BuV)
0.6387	25.3	1000.0	9.000	On	N	10.1	20.7	46.0
0.9559	20.4	1000.0	9.000	On	L1	9.9	25.6	46.0
1.3589	27.1	1000.0	9.000	On	N	9.9	18.9	46.0
1.41116	27.8	1000.0	9.000	On	N	9.9	18.2	46.0
1.6947	25.5	1000.0	9.000	On	N	9.9	20.5	46.0
2.2357	26.4	1000.0	9.000	On	N	9.9	19.6	46.0

Conclusion: PASS

ANNEX B Deviations from Prescribed Test Methods

No deviation from Prescribed Test Methods.

*********END OF REPORT********