

Ondes électromagnétiques et métaux : diffusion et réflexion

Plan du chapitre

Ι	Pén	étration des OEM dans les conducteurs - diffusion du champ	3
	I.1	Rappel sur la conductivité en modèle de Drüde - comportement des métaux	3
	I.2	L'ARQS dans un conducteur - conséquences avec les OEM $\ \ldots \ \ldots \ \ldots$	3
		a - Courants : qui retenir???? - charge	3
		b - Effet Kelvin ou effet de peau (skin effect)	4
II	Réf	lexion des OEM sur les conducteurs parfaits	7
	II.1	Le modèle du conducteur parfait - conséquences	7
	II.2	Conséquences sur les principales équations locales	8
	II.3	Structure du champ à l'interface : conditions aux limites	8
III	Réf	lexion d'une OPPH incident sur un conducteur parfait	9
	III.1	Existence d'une onde réfléchie	9
	III.2	Structure du champ réfléchi - inversion de phase à la réfléxion métallique	10
		a - Vecteur d'onde réfléchie : lois de Descartes	10
		b - Ecriture complète de l'onde réfléchie	11
		c - Cas particulier de l'incidence normale (cadre du programme)	12
	III.3	Champ total - ondes stationnaires (OS)	13
	III.4	Charge et courant surfaciques	14
		a - Expressions	14
		b - Application : polariseur d'ondes hyperfréquences (utile pour le $\mathbf{TP})$	14
IV	Asp	pects énergétiques et dynamiques des ondes stationnaires	15
	IV.1	Densité volumique d'énergie électromagnétique	16
	IV.2	Vecteur de Poynting	16

	IV.3	Pression de radiation	16
\mathbf{V}	"Co	onfinement" d'une OEM : cavités unidimensionnelles - modes propres	19
	V.1	Choix d'une forme de champ - conditions aux limites	19
	V.2	EDA dans la cavité	20
		a - Proposition de solution élémentaire à variables séparées (méthode à maîtri- ser!!!)	20
		b - Exploitation des conditions aux limites - sélection des modes propres de la	
		cavité	21
		c - Solution complète : superposition des modes propres électriques $\ \ldots \ \ldots$	22

