A. Informacje o zespole realizującym ćwiczenie

Nazwa przedmiotu:	Automatyka pojazdowa	
Nazwa ćwiczenia:	Implementacja klasyfikatora na potrzeby systemu rozpoznawania znaków drogowych	
Data ćwiczenia:	2022-06-15	
Czas ćwiczenia:	11:15 – 12:45	
Zespół realizujący ćwiczenie:	Jakub SzczypekBłażej SzczurJulita Wójcik	

B. Sformułowanie problemu

Temat zajęć jest zapoznanie się ze sposobem budowy i działania klasyfikatora znaków drogowych wykorzystujących konwolucyjne sieci neuronowe. Klasyfikator umożliwia rozpoznanie 43 różnych znaków drogowych. Ćwiczenie należy zrealizować w środowisku Google Colaboratory, który umożliwia realizację złożonych obliczeń z wykorzystaniem jednostek obliczeniowych GPU. W trakcie realizacji ćwiczenia należy zrealizować i przeanalizować wszystkie kroki zawarte w wirtualnym notebooku. W trakcie laboratorium należy przetestować działanie klasyfikatora znaków drogowych, który wykorzystuje 2 rodzaje sieci (funkcje model_v1 i model_v2). Po poprawnym wytrenowaniu sieci należy sprawdzić ich działania na przykładowych zdjęciach zawierających znaki drogowe i ocenić jakość działania sieci neuronowej.

C. Sposób rozwiązania problemu

Do realizacji zadania zostały wykorzystane biblioteki TensorFlow, umożliwiające szybkie i łatwe tworzenie, uczenie i testowanie sieci neuronowych. Do nauki sieci wykorzystano przykładowy zbiór zdjęć znaków drogowych. Przechodząc przez kolejne kroki zawarte w notebooku oraz analizowanie zawartych w nim fragmentów kodu jak: wczytanie i deserializację danych, przegląd wczytanych danych (wyświetlenie znaku i typu), stworzono własną funkcję wyświetlającą wybrany znak wraz z jego typem. Zaobserwowano działanie filtrów. Przeanalizowano działanie dwóch wcześniej zdefiniowanych sieci o różnej budowie: prostszą i bardziej rozbudowaną – odczytano ich parametry, metodę fit wykorzystano do nauki sieci. Oceniono działanie sieci wykorzystując zbiór danych testowych (X_test i y_test) oraz metody evalutate. Przetestowano nauczone sieci neuronowe wykorzystując przykładowy kod.

D. Wyniki

Wyniki działania każdej z sieci oraz ocenę ich poprawności zebrano w tabeli 1

Tabela 1. Podsumowanie działania każdej z sieci

Wynik sieci 1	Wynik sieci 2	Ocena poprawności
Speed limit (30km/h)	Speed limit (30km/h)	sieć 1 – błąd, sieć 2 - błąd
General caution	General caution	sieć 1 – dobrze , sieć 2 - dobrze
Right-of way the next intersection	Slippery road	sieć 1 – błąd, sieć 2 - dobrze
Right-of way the next intersection	Slippery road	sieć 1 – błąd, sieć 2 - błąd
Right-of way the next intersection	Beware of ice/snow	sieć 1 – błąd, sieć 2 - dobrze
Speed limit (30km/h)	Speed limit (30km/h)	sieć 1 – dobrze , sieć 2 - dobrze
Speed limit (30km/h)	Speed limit (50km/h)	sieć 1 – błąd, sieć 2 - błąd
Dangerous curve to the right	Slieppery road	sieć 1 – błąd, sieć 2 - dobrze
Speed limit (80km/h)	Speed limit (50km/h)	sieć 1 – błąd, sieć 2 - błąd
Traffic signals	Beware of ice/snow	sieć 1 – błąd, sieć 2 - błąd

E. Wnioski

- Funkcja model_v2 jako bardziej złożona i zaawansowana dała o wiele lepsze rezultaty niż prostsza model_v1 – poprawnie rozpoznała 5 z 10 znaków, gdzie model_v1 poradziła sobie tylko z 2 znakami.
- Ćwiczenie pozwoliło na zapoznanie się z sposobem tworzenia, nauki i oceny jakości konwolucyjnych sieci neuronowych w środowisku Google Colaboratory.
- Laboratorium, dzięki poprawnie przygotowanemu notebook'owi, było bardzo wartościową i edukacyjną pierwszą lekcją w świecie sieci neuronowych.