SEMESTER-V DEPARTMENT OF INSTRUMENTATION

Category I

(B.Sc. Honours in Instrumentation)

DISCIPLINE SPECIFIC CORE COURSE – 13: Advance Biomedical Instrumentation (INDSC5A)

CREDIT DISTRIBUTION, ELIGIBILITY, AND PRE-REQUISITES OF THE COURSE

Course title &	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course
Code		Lecture	Tutori al	Practical/ Practice		(if any)
Advance Biomedical Instrumen tation (INDSC5A)	04	02	-	02	Class XII passed with Physics + Mathematics/Ap plied Mathematics + Chemistry/ Computer Science/Informat ics Practices	Biomedical & Electronic Instrumentation

Learning Objectives

The Learning Objectives of this course are as follows:

- To realize the importance of the instruments used in critical care units of the hospital.
- To understand the principle behind the measurement of biochemical signals.
- To understand the concept of instruments used in medical imaging diagnostics and therapeutics.
- To appreciate the efficiency of the surgical and diathermy apparatus in the medical incision.

Learning outcomes

The Learning Outcomes of this course are as follows:

- Understand instruments used in critical care and operating units of hospitals
- Gain knowledge of the instruments used for biochemical analysis in healthcare
- Understand the concepts of various medical imaging techniques and their applications

Understand instruments used for medical assistance and therapy

SYLLABUS OF DSC-13

Unit-1 (8 Hours)

Ventilators: Basic principles and types of ventilators.

Anaesthesia Machine: Need of anaesthesia, anaesthesia delivery system, breathing circuits. **Clinical Laboratory Instruments**: General principle and working of Blood Gases Analyzer, Auto-analyser, Blood Cell Counters, ELISA reader.

Unit-2 (8 Hours)

Medical Imaging System: Ultrasound, properties, its generation & detection, types of transducers, real-time ultrasonic imaging, linear array scanners, X-ray computed tomography (CT Scanner) principle, contrast scale, scanning system, processing Unit, viewing, storage. Magnetic Resonance Imaging: Basic principle, working and construction.

Unit-3 (6 Hours)

Nuclear Medicine System: radioactive emissions, gamma camera, imaging system, ECT (emission coupled tomography) and its different approaches: positron emission tomography (PET), Single-photon emission computed tomography (SPECT).

Unit-4 (8 Hours)

Surgical Scopy and Diathermy Equipments: Fibre Optics- Endoscopes -light sources, video processors, camera, and fibre optic cable, Principles and applications. Diathermy: Working Principle, Construction, and different types (Infrared radiation (IR), ultraviolet (UV), short wave, microwave, ultrasonic, and Surgical Diathermy).

Practical component:

(60 Hours)

- 1. Study of ultrasound transducers based on the medical system.
- 2. Study of vital organs (such as Heart, Kidney, liver, etc) using Ultrasonography.
- 3. Demonstration of X-ray/Computed Tomography/nuclear imaging.
- 4. Experiment based on clinical instruments such as Blood cell counter/ ELISA reader.
- 5. Estimation of serum total protein using a spectrometer.
- 6. Estimation of sodium and potassium in blood serum or urine sample.
- 7. Project based on designing and applications of Biomedical Instrumentation.

Essential/recommended readings

- 1. Carr J. J, Brown J. M. Introduction to Biomedical Equipment Technology, Fourth edition, Pearson Education Inc (2010), 2nd edition
- 2. Khandpur R.S., Handbook of Biomedical Instrumentation, Second edition, Tata McGraw-Hill Publishing (2009), 2nd edition

- 3. Joseph D. Bronzino, The Biomedical Engineering Handbook, IEEE Press (2015), 4th edition, Volume 1.
- 4. Richard Aston, Principles of Biomedical Instrumentation & Measurement, Merrill Publishing Company, (1990), 1st edition
- 5. Mandeep Singh, Introduction to Biomedical Instrumentation, PHI learning private limited (2014), 2nd Edition.
- 6. Cromwell L., Wiebell F. J., Pfeiffer EA, Biomedical Instrumentation and Measurements, Second edition, Prentice Hall (2010), 2nd Edition.

Suggestive readings

- 1. John G Webster, Medical Instrumentation Applications and Design, John Willey, 5th Edition, 2020.
- 2. L A Geddes, L E Baker, Principles of Applied Medical Instrumentation, John Wiley, Edition 3, 1989.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.