班级:	姓夕.	受号 .
クエラス・ 	江11・	ユ 1・

北京航空航天大学 2023²024第二学期 操作系统期中测试

- 一、判断题(正确的打√,错误的打×,每题2分,共20分)
 - 1. 【 】同一进程中的不同线程间可以通过传递指向其栈上对象的指针来相互共享数据。
 - 2. 【 】用户级线程不能修改自己的页表项。
 - 3. 【 】当进程被fork创建后,父进程和子进程中的同一变量将具有相同的虚拟 内存地址,但物理内存地址是不相同的。
 - 4. 【 】消除虚拟内存抖动的最佳方法是增加 I/O 和CPU计算之间的并行程度, 也就是让CPU与I/O都"忙"起来,所以增加可运行线程数量可以达到这一目的。
 - 5. 【 】大多数PC机上的操作系统支持多任务,但不支持多用户。
 - 6. 【 】磁盘驱动器上只有一个 MBR (主引导记录),但可能有多个引导扇区。
 - 7. 【 】多个进程可以同时对应到同一个程序/可执行文件。
 - 8. 【 】从一个进程到另一个进程的上下文切换无需在内核模式下执行操作系统 代码即可完成。
 - 9. 【 】动态重定位是指硬件在每次内存访问时动态实现地址的转换。
 - 10. 【 】进程中的线程必须有自己独立的栈。

二、单项选择题(每题2分,共20分)

1. 【 】批处理系统的主要缺点是:

A.CPU的利用率不高

B.失去了交互性

C.不具备并行性

D.以上都不是

- 2. 【 】以下说法正确的是:
- A. 两个不同进程对应的页表中可能包含内容相同的页表项
- B. 虚拟地址空间总是大干物理地址空间
- C. 在页式内存管理下,页面尺寸越小越有利于消除外碎片,提高内存使用效率
- D. 段式内存管理的不同分段大小可不同, 从而可消除外碎片, 提高内存使用率

班级:	姓夕.	受号 .
クエラス・ 	江11・	ユ 1・

- 3. 【 】关于多级页表,下列说法**不正确**的是:
- A. 能够减少页表占用内存的大小
- B. 级数越多, 平均访问内存的时间越长
- C. 有效的页表项中都会存储页框号
- D. 使用二级页表的平均访存性能优于一级页表
- 4. 【 】以下说法正确的是:
 - A. 进程上下文切换过程一定会陷入内核
 - B. 陷入内核一定会导致进程切换
 - C. 正在执行的程序不可以主动放弃 CPU
 - D. 系统调用一定会导致进程上下文切换
- 5. 【 】在一个多进程操作系统中,以下说法正确的是:
 - A. 如果一个用户进程进入死循环,则其他进程永远不可能获得执行
- B. 如果一个用户进程进入死循环,操作系统可以终止该用户进程执行
- C. 如果一个用户进程执行了"跳转到0地址"的指令,操作系统内核会立即崩溃
- D. 如果一个用户进程执行了"除以0"的指令后,操作系统内核会立即崩溃
- 6. **【** 】关于PV操作**错误的**是:
 - A. 信号量如果使用不当,可能导致死锁
 - B. 进程执行P操作阻塞时,不会占用CPU资源
 - C. 进程A, B调用P(S)各一次后,信号量S的值与调用顺序有关
 - D. 信号量操作是原子操作
- 7. 【 】下列哪项属于反置页表的优点:
- A. 查找页表项的速度快
- B. 缺页处理速度快
- C. 便于进程之间共享数据
- D. 页表与逻辑地址空间大小无关
- 8. 【 】关于页面置换算法,以下说法**不正确**是:
 - A. 二次机会算法是对FIFO的改进
 - B. Aging算法是对LRU算法的高效近似实现
 - C. WSClock算法仅需要在页表中扫描
 - D. 工作集算法的思路是驱逐不在工作集中的页面

班级:	姓名:	学号 :

- 9. 【 】可变分区又称为动态分区,它是在系统运行过程中 时动态建立的:
 - A. 作业未装入
- B. 在作业装入
- C. 在作业创建 D. 在作业完成
- 10. **【** 】下列说法**错误的**是:
 - A. 覆盖可减少一个程序运行所需的空间
 - B. 覆盖对应用程序员不透明
 - C. 交换是由操作系统实现的
 - D. 覆盖在不同作业或程序之间进行

三、填空题(每空2分,共20分)

- 1. 某进程运行时依次访问的内存页面为: ABDDEFAACFGDACGDCE。 采用FIFO算法进行页面置换,共为该进程分配了4个页框,初始时这4个页框均 为空,则完成上述内存页面访问会产生 次缺页中断;如果采用LRU算法 进行页面置换,其他条件不变,则会产生 次缺页中断。
- 2. 在FIFO等页面置换算法中Belady现象是指:

3. 在一个操作系统中编译好的程序在另一个 兼容的操作系统中无需 重新编译就能运行。

- 4. 内存中无法被利用的存储空间称为____。
- 5. 分析以下C语言程序段:

```
#include <stdio.h>
int a = 100;
int b;
int main() {
   static int x;
   int y = 10;
   int *p = &y, *q = &b;
   printf("a=%d, b=%d, p=0x%x\n", a, b, p);
```

将上述程序编译成可执行文件,装载到OS时,在DATA段中分配存储空间的变量 有: _____。

6. 请将以下Peterson算法中第13行和第18行补全,实现申请进入和退出临界区的功能:

```
1
   #define FALSE 0
   #define TRUE 1
3
   #define N 2
   int turn;
5
   int interested[N];
6
7
   void enter region( int process )
8
9
      int other;
10
      other = 1 - process;
11
      interested[process] = TRUE;
      turn = process;
12
13
14
15
16 | void leave region (int process)
17 | {
18
19
```

- 7. 如果在一个单处理器系统中总共有n个进程,那么在阻塞队列中的进程个数取值范围是____。

四、存储管理(共15分)

- 1. 在一个 32 位虚拟内存系统中,页面大小为 4KB。(共 2 题,共 8 分)
- (1)如果页表被全部占用,采用 1 级页表,需要多少页表项?采用 20 级页表呢?(4 分)
- (2) 如果一个进程只分配 1 页内存,对于 1 级页表,需要分配多少页表项?对于 20 级页表呢?(4分)
- 2. 假设一个20位多级内存管理机制采用如下地址格式: (7分)

虚拟段号(4位) 虚拟页号(8位) 页内偏移(8位)

物理地址为16位,形式为:

物理页号(8位) 页内偏移(8位)

一个段表项指向一个物理内存中页表的基地址,一个页表包含一系列 16 位的页表项。段表、页表项格式、当前物理内存中内容见后面。利用后面所给信息,请在下表中写出以下指令的执行结果。

对于 Load 指令,如果成功执行,写出读入的数据(读取一个字节),否则写 Error;对于 Store 指令,如果成功执行,写 OK,否则写 Error。

指令	结果
Load [0x30114]	
Store [0x30115]	
Load [0x41015]	
Load [0x00115]	
Store [0x00210]	
Load [0x21202]	
Load [0x11145]	

段表 (最大段号=3,除下面列出的外,无其他段表项)

段号	页表基地址	段内最大页面数量	有效状态
0	0x2000	0x20	Valid
1	0x1200	0x10	Valid
2	0x3100	0x40	Invalid
3	0x4000	0x20	Valid

页表项 (PTE) 格式

第1字节	第2字节		
物理页框号	标志位,可能取值为:		
	0x00=Invalid		
	0x06=Valid, Read Only		
	0x07=Valid, Read/Write		

班级:	姓名:	学号:
<u> </u>	灶 台 :	子勺:

物理内存 (大尾端)

1/4 - 1 4 1	• •/	¥/ U ,														
Address	+0	+1	+2	+3	+4	+5	+6	+7	+8	+9	+A	+B	+C	+D	+E	+F
0x0000	0E	0F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D
0x0010	1E	1F	20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D
···.																
0x1010	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F
0x1020	40	07	41	06	30	06	31	07	00	07	00	00	00	00	00	00
0x1030	51	07	4F	07	3F	07	31	07	01	07	00	00	00	00	00	00
0x1040	40	07	41	07	31	07	31	07	02	07	00	00	00	00	00	00
···.																
0x2000	02	20	10	00	12	07	05	50	06	60	07	70	08	80	09	90
0x2010	0A	A0	0B	В0	0C	C0	0D	D0	0E	E0	0F	F0	10	01	11	11
0x2020	12	21	13	31	14	41	15	51	16	61	17	71	18	81	19	91
0x2030	10	06	11	00	12	07	40	07	41	07	00	00	00	00	00	00
···.																
0x30F0	00	11	22	33	44	55	66	77	88	99	AA	BB	CC	DD	EE	FF
0x3100	01	12	23	34	45	56	67	78	89	9A	AB	ВС	CD	DE	EF	00
0x3110	02	13	24	35	20	07	68	79	8A	9B	AC	BD	CE	DF	F0	01
0x3120	03	06	25	36	47	58	69	7A	8B	9C	AD	BE	CF	E0	F1	02
0x3130	04	15	26	37	48	59	70	7B	8C	9D	AE	BF	D0	E1	F2	03
•••.																
0x4000	30	00	31	06	32	07	33	07	34	06	35	00	43	38	32	79
0x4010	50	28	84	19	71	69	39	93	75	10	58	20	97	49	44	59
0x4020	23	07	20	07	00	06	62	08	99	86	28	03	48	25	34	21

班级:	姓名:	学号:
班級:	灶石:	子 勺 :

五、页表自映射(5分)

- 一个32位的虚拟存储系统有两级页表,其逻辑地址中,第22到31位是第一级页表索引,12位到21位是第二级页表索引,页内偏移占0到11位。一个进程的地址空间为4GB,如果从0x8C000000开始映射4MB的页表,请:
 - (1) 给出一级页表的起始虚拟地址; (2分)
 - (2) 给出一级页表中映射自己的表项的虚拟地址。(注意B代表字节,一个32位地址占4字节)(3分)

六、进程与线程(共10分)

假设进程只有三种基本状态,画出进程的状态转换图,并举例说明这些转换发生的 条件是什么。

班级:	姓名:	学号:
/// \	/ -	4 4 •

七、进程管理:信号量基础(10分)

著名的计算机科学家Edsger Dijkstra提出了信号量机制,为实现进程同步和互斥提供了一种有效的方法。信号量的提出主要是为了解决传统同步/互斥方法因为"忙等待"而导致的CPU时间浪费问题以及进程优先级反转问题。对于信号量s,s.count表示信号量的值,s.queue表示信号量内部的队列。

(1) 请分别解释调用一次P(s)和V(s)操作后, s.count和s.queue会产生什么样的变化。 (本小题 4分)

(2) 实际上,当有多个进程并发调用P(s)或者V(s)时,也需要进行互斥控制。test-and-set 指令经常用于实现自旋锁,请用test-and-set指令实现P(s)和V(s)操作,给出伪代码。 **提示**: test-and-set(boolean* lock)的语义是: 如果*lock为1,则test-and-set(lock)返回值为1; 否则,将*lock置1,返回0;*lock的初始值为0。(本小题6分)