

- My own line of research
- Papers:
 - Fast Dropout training, ICML, 2013
 - Distributional Semantics Beyond Words: Supervised Learning of Analogy and Paraphrase, TACL, 2013.

- My own line of research
- Papers:
 - Fast Dropout training, ICML, 2013
 - Distributional Semantics Beyond Words: Supervised Learning of Analogy and Paraphrase, TACL, 2013.

- My own line of research
- Papers:
 - Fast Dropout training, ICML, 2013
 - Distributional Semantics Beyond Words: Supervised Learning of Analogy and Paraphrase, TACL, 2013.

- My own line of research
- Papers:
 - Fast Dropout training, ICML, 2013
 - Distributional Semantics Beyond Words: Supervised Learning of Analogy and Paraphrase, TACL, 2013.

Proposed by (Hinton et al, 2012)

Each time decide whether to delete one hidden unit with some probability *p*

- Model averaging effect
 - \triangleright Among 2^H models, with shared parameters
 - Only a few get trained
 - Much stronger than the known regularizer

+

- Model averaging effect
 - \triangleright Among 2^H models, with shared parameters
 - Only a few get trained
 - Much stronger than the known regularizer
- ▶ What about the input space?
 - Do the same thing!

Dropout of 50% of the hidden units and 20% of the input units (Hinton et al, 2012)

† † †

▶ Can we explicitly show that dropout acts as a regularizer?

- ▶ Can we explicitly show that dropout acts as a regularizer?
 - Very easy to show for linear regression

1

1

1

- ▶ Can we explicitly show that dropout acts as a regularizer?
 - Very easy to show for linear regression
 - What about others?

1

-

- ▶ Can we explicitly show that dropout acts as a regularizer?
 - Very easy to show for linear regression
 - **What about others?**
- Dropout needs sampling

- ▶ Can we explicitly show that dropout acts as a regularizer?
 - Very easy to show for linear regression
 - **What about others?**
- Dropout needs sampling
 - Can be slow!

- ▶ Can we explicitly show that dropout acts as a regularizer?
 - Very easy to show for linear regression
 - What about others?
- Dropout needs sampling
 - Can be slow!
- Can we convert the sampling based update into a deterministic form?

- ▶ Can we explicitly show that dropout acts as a regularizer?
 - Very easy to show for linear regression
 - What about others?
- Dropout needs sampling
 - Can be slow!
- Can we convert the sampling based update into a deterministic form?
 - Find expected form of updates

• Reminder:

• Reminder:

$$z_i \sim Bernoulli(p_i)$$

 $z_i \sim Bernoulli(p_i)$

• Reminder:

$$\Rightarrow$$
 E[z_i] = p_i

1

1

Reminder:

$$z_i \sim Bernoulli(p_i)$$

$$\Rightarrow \mathbf{E}[z_i] = p_i$$

$$\Rightarrow \mathbf{Var}[z_i] = p_i(1 - p_i)$$

1

1

Reminder: $\Rightarrow \mathbf{E}[z_i] = p_i$ $z_i \sim Bernoulli(p_i) \Rightarrow \mathbf{Var}[z_i] = p_i(1-p_i)$

• Reminder:

$$z_i \sim Bernoulli(p_i)$$

$$\Rightarrow \mathbf{E}[z_i] = p_i$$

$$\Rightarrow \mathbf{Var}[z_i] = p_i(1 - p_i)$$

$$g = w^T x$$

▶ Reminder:

$$z_i \sim Bernoulli(p_i)$$

$$\Rightarrow \mathbf{E}[z_i] = p_i$$

$$\Rightarrow \mathbf{Var}[z_i] = p_i(1 - p_i)$$

$$g = w^{T} x$$

$$w^{*} = \underset{w}{\operatorname{arg \, min}} \sum_{i} \left(w^{T} x^{(i)} - y^{(i)} \right)^{2}$$

▶ Reminder:

$$z_i \sim Bernoulli(p_i)$$

$$\Rightarrow \mathbf{E}[z_i] = p_i$$

$$\Rightarrow \mathbf{Var}[z_i] = p_i(1 - p_i)$$

Consider the standard linear regression

$$g = w^{T} x$$

$$w^{*} = \underset{w}{\operatorname{arg \, min}} \sum_{i} \left(w^{T} x^{(i)} - y^{(i)} \right)^{2}$$

With regularization:

$$L(w) = \sum_{i} (w^{T} x^{(i)} - y^{(i)})^{2} + \lambda \sum_{i} w_{i}^{2}$$

Reminder:

caer:
$$\Rightarrow \mathbf{E}[z_i] = p_i$$

$$z_i \sim Bernoulli(p_i) \Rightarrow \mathbf{Var}[z_i] = p_i(1 - p_i)$$

Consider the standard linear regression

$$g = w^{T} x$$

$$w^{*} = \underset{w}{\operatorname{arg \, min}} \sum_{i} \left(w^{T} x^{(i)} - y^{(i)} \right)^{2}$$

With regularization:

$$L(w) = \sum_{i} (w^{T} x^{(i)} - y^{(i)})^{2} + \lambda \sum_{i} w_{i}^{2}$$

Closed form solution:

$$w = \left(X^T X + \lambda I\right)^{-1} X^T y$$

$$g = w^T x$$

$$g = w^{T} x$$
$$x_{i} \Leftrightarrow z_{i} \sim Bernoulli(p_{i})$$

$$g = w^{T} x$$

$$x_{i} \Leftrightarrow z_{i} \sim Bernoulli(p_{i})$$

$$D_{z} = diag(z_{1},...,z_{m})$$

Consider the standard linear regression

$$g = w^{T} x$$

$$x_{i} \Leftrightarrow z_{i} \sim Bernoulli(p_{i})$$

$$D_{z} = diag(z_{1},...,z_{m})$$

▶ LR with dropout:

$$w^T D_z x$$

Consider the standard linear regression

$$g = w^{T} x$$

$$x_{i} \Leftrightarrow z_{i} \sim Bernoulli(p_{i})$$

$$D_{z} = diag(z_{1},...,z_{m})$$

▶ LR with dropout:

$$w^T D_z x$$

Consider the standard linear regression

$$g = w^{T} x$$

$$x_{i} \Leftrightarrow z_{i} \sim Bernoulli(p_{i})$$

$$D_{z} = diag(z_{1},...,z_{m})$$

▶ LR with dropout:

$$w^T D_z x$$

▶ How to find the parameter?

$$L(w) = \sum_{i} (w^{T} D_{z} x^{(i)} - y^{(i)})^{2}$$

Consider the standard linear regression

$$g = w^{T} x$$

$$x_{i} \Leftrightarrow z_{i} \sim Bernoulli(p_{i})$$

$$D_{z} = diag(z_{1},...,z_{m})$$

▶ LR with dropout:

$$w^T D_z x$$

▶ How to find the parameter?

$$L(w) = \sum_{i} \left(w^{T} D_{z} x^{(i)} - y^{(i)} \right)^{2}$$

Fast Dropout for Linear Regression

- We had: $L(w) = \sum_{i} (w^{T} D_{z} x^{(i)} y^{(i)})^{2}$
- Instead of sampling, minimize the expected loss
 - Fixed x and y: $\mathbf{E} \left[\left(w^T D_z x y \right)^2 \right]$

Fast Dropout for Linear Regression

- We had: $L(w) = \sum_{i} (w^{T} D_{z} x^{(i)} y^{(i)})^{2}$
- Instead of sampling, minimize the expected loss
 - Fixed x and y: $\mathbf{E} \left[\left(w^T D_z x y \right)^2 \right]$

- We had: $L(w) = \sum_{i} (w^{T} D_{z} x^{(i)} y^{(i)})^{2}$
- Instead of sampling, minimize the expected loss
 - Fixed x and y: $\mathbf{E} \left[\left(w^T D_z x y \right)^2 \right]$

- We had: $L(w) = \sum_{i} (w^{T} D_{z} x^{(i)} y^{(i)})^{2}$
- Instead of sampling, minimize the expected loss
 - Fixed x and y: $\mathbf{E}\left[\left(\mathbf{w}^T \mathbf{D}_{\mathbf{z}} \mathbf{x} \mathbf{y}\right)^2\right]$

• We had:
$$L(w) = \sum_{i} (w^{T} D_{z} x^{(i)} - y^{(i)})^{2}$$

- Instead of sampling, minimize the expected loss
 - Fixed x and y: $\mathbf{E} \left[(w^T D_z x y)^2 \right]$

$$w^{T}D_{z}x = \sum_{i=1}^{m} w_{i}x_{i}z_{i} \simeq S, \qquad S \sim N(\mu_{S}, \sigma_{S}^{2})$$

• We had:
$$L(w) = \sum_{i} (w^{T} D_{z} x^{(i)} - y^{(i)})^{2}$$

- Instead of sampling, minimize the expected loss
 - Fixed x and y: $\mathbf{E} \left[\left(w^T D_z x y \right)^2 \right]$

$$w^{T}D_{z}x = \sum_{i=1}^{m} w_{i}x_{i}z_{i} \simeq S, \qquad S \sim N(\mu_{S}, \sigma_{S}^{2})$$

$$\mu_{S} =$$

• We had:
$$L(w) = \sum_{i} (w^{T} D_{z} x^{(i)} - y^{(i)})^{2}$$

- Instead of sampling, minimize the expected loss
 - Fixed x and y: $\mathbf{E} \left[(\mathbf{w}^T \mathbf{D}_z \mathbf{x} \mathbf{y})^2 \right]$

$$w^{T}D_{z}x = \sum_{i=1}^{m} w_{i}x_{i}z_{i} \simeq S, \qquad S \sim N(\mu_{S}, \sigma_{S}^{2})$$

$$\mu_{S} =$$

• We had:
$$L(w) = \sum_{i} (w^{T} D_{z} x^{(i)} - y^{(i)})^{2}$$

- Instead of sampling, minimize the expected loss
 - Fixed x and y: $\mathbf{E} \left[\left(w^T D_z x y \right)^2 \right]$

$$w^{T}D_{z}x = \sum_{i=1}^{m} w_{i}x_{i}z_{i} \simeq S, \qquad S \sim N(\mu_{S}, \sigma_{S}^{2})$$

$$\mu_{S} = \mathbf{E} \left[w^{T}D_{z}x \right]$$

• We had:
$$L(w) = \sum_{i} (w^{T} D_{z} x^{(i)} - y^{(i)})^{2}$$

- Instead of sampling, minimize the expected loss
 - Fixed x and y: $\mathbf{E} \left[\left(w^T D_z x y \right)^2 \right]$

$$w^{T}D_{z}x = \sum_{i=1}^{m} w_{i}x_{i}z_{i} \simeq S, \qquad S \sim N(\mu_{S}, \sigma_{S}^{2})$$

$$\mu_{S} = \mathbf{E}\left[w^{T}D_{z}x\right] = \sum_{i=1}^{m} w_{i}x_{i}\mathbf{E}\left[z_{i}\right]$$

• We had:
$$L(w) = \sum_{i} (w^{T} D_{z} x^{(i)} - y^{(i)})^{2}$$

- Instead of sampling, minimize the expected loss
 - Fixed x and y: $\mathbf{E} \left[\left(w^T D_z x y \right)^2 \right]$

$$w^{T}D_{z}x = \sum_{i=1}^{m} w_{i}x_{i}z_{i} \simeq S, \qquad S \sim N(\mu_{S}, \sigma_{S}^{2})$$

$$\mu_{S} = \mathbf{E}\left[w^{T}D_{z}x\right] = \sum_{i=1}^{m} w_{i}x_{i}\mathbf{E}\left[z_{i}\right] = \sum_{i=1}^{m} w_{i}x_{i}p_{i}$$

- We had: $L(w) = \sum_{i} (w^{T} D_{z} x^{(i)} y^{(i)})^{2}$
- Instead of sampling, minimize the expected loss
 - Fixed x and y: $\mathbf{E} \left[\left(w^T D_z x y \right)^2 \right]$

$$w^{T}D_{z}x = \sum_{i=1}^{m} w_{i}x_{i}z_{i} \simeq S, \qquad S \sim N(\mu_{S}, \sigma_{S}^{2})$$
$$\mu_{S} = \mathbf{E}\left[w^{T}D_{z}x\right] = \sum_{i=1}^{m} w_{i}x_{i}\mathbf{E}\left[z_{i}\right] = \sum_{i=1}^{m} w_{i}x_{i}p_{i}$$

$$\sigma_s^2 =$$

- We had: $L(w) = \sum_{i} (w^{T} D_{z} x^{(i)} y^{(i)})^{2}$
- Instead of sampling, minimize the expected loss
 - Fixed x and y: $\mathbf{E} \left[\left(w^T D_z x y \right)^2 \right]$

$$w^{T} D_{z} x = \sum_{i=1}^{m} w_{i} x_{i} z_{i} \simeq S, \qquad S \sim N(\mu_{S}, \sigma_{S}^{2})$$

$$\mu_{S} = \mathbf{E} \left[w^{T} D_{z} x \right] = \sum_{i=1}^{m} w_{i} x_{i} \mathbf{E} \left[z_{i} \right] = \sum_{i=1}^{m} w_{i} x_{i} p_{i}$$

$$\sigma_S^2 =$$

• We had:
$$L(w) = \sum_{i} (w^{T} D_{z} x^{(i)} - y^{(i)})^{2}$$

- Instead of sampling, minimize the expected loss
 - Fixed x and y: $\mathbf{E} \left[\left(w^T D_z x y \right)^2 \right]$

$$w^{T}D_{z}x = \sum_{i=1}^{m} w_{i}x_{i}z_{i} \approx S, \qquad S \sim N(\mu_{S}, \sigma_{S}^{2})$$

$$\mu_{S} = \mathbf{E}\left[w^{T}D_{z}x\right] = \sum_{i=1}^{m} w_{i}x_{i}\mathbf{E}\left[z_{i}\right] = \sum_{i=1}^{m} w_{i}x_{i}p_{i}$$

$$|\sigma_S^2| = \mathbf{Var} [w^T D_z x] =$$

• We had:
$$L(w) = \sum_{i} (w^{T} D_{z} x^{(i)} - y^{(i)})^{2}$$

- Instead of sampling, minimize the expected loss
 - Fixed x and y: $\mathbf{E} \left[\left(w^T D_z x y \right)^2 \right]$

$$w^{T}D_{z}x = \sum_{i=1}^{m} w_{i}x_{i}z_{i} \approx S, \qquad S \sim N(\mu_{S}, \sigma_{S}^{2})$$

$$\mu_{S} = \mathbf{E} \left[w^{T}D_{z}x\right] = \sum_{i=1}^{m} w_{i}x_{i}\mathbf{E}\left[z_{i}\right] = \sum_{i=1}^{m} w_{i}x_{i}p_{i}$$

$$\sigma_{S}^{2} = \mathbf{Var}\left[w^{T}D_{z}x\right] = \sum_{i=1}^{m} (w_{i}x_{i})^{2} \mathbf{Var}\left[z_{i}\right] =$$

- We had: $L(w) = \sum_{i} (w^{T} D_{z} x^{(i)} y^{(i)})^{2}$
- Instead of sampling, minimize the expected loss
 - Fixed x and y: $\mathbf{E}\left[\left(\mathbf{w}^T D_{\mathbf{z}} \mathbf{x} \mathbf{y}\right)^2\right]$

$$w^{T}D_{z}x = \sum_{i=1}^{m} w_{i}x_{i}z_{i} \approx S, \qquad S \sim N(\mu_{S}, \sigma_{S}^{2})$$

$$\mu_{S} = \mathbf{E}\left[w^{T}D_{z}x\right] = \sum_{i=1}^{m} w_{i}x_{i}\mathbf{E}\left[z_{i}\right] = \sum_{i=1}^{m} w_{i}x_{i}p_{i}$$

$$\sigma_{S}^{2} = \mathbf{Var}\left[w^{T}D_{z}x\right] = \sum_{i=1}^{m} (w_{i}x_{i})^{2} \mathbf{Var}\left[z_{i}\right] = \sum_{i=1}^{m} (w_{i}x_{i})^{2} p_{i}(1-p_{i})$$

• We had:
$$L(w) = \sum_{i} (w^{T} D_{z} x^{(i)} - y^{(i)})^{2}$$

$$w^T D_z x = \sum_{i=1}^m w_i x_i z_i \simeq S, \qquad S \sim N(\mu_S, \sigma_S^2)$$

• We had:
$$L(w) = \sum_{i} (w^{T} D_{z} x^{(i)} - y^{(i)})^{2}$$

$$w^T D_z x = \sum_{i=1}^m w_i x_i z_i \simeq S, \qquad S \sim N(\mu_S, \sigma_S^2)$$

$$\mathbf{E}\left[\left(w^{T}D_{z}x-y\right)^{2}\right] \simeq \mathbf{E}_{S \sim N(\mu_{S},\sigma_{S}^{2})}\left[\left(S-y\right)^{2}\right]$$

• We had:
$$L(w) = \sum_{i} (w^{T} D_{z} x^{(i)} - y^{(i)})^{2}$$

$$w^T D_z x = \sum_{i=1}^m w_i x_i z_i \simeq S, \qquad S \sim N(\mu_S, \sigma_S^2)$$

$$\mathbf{E}\left[\left(w^{T}D_{z}x-y\right)^{2}\right] \simeq \mathbf{E}_{S \sim N(\mu_{S},\sigma_{S}^{2})}\left[\left(S-y\right)^{2}\right] = \left(\mu_{S}-y\right)^{2} + \sigma_{S}^{2}$$

• We had:
$$L(w) = \sum_{i} (w^{T} D_{z} x^{(i)} - y^{(i)})^{2}$$

$$w^T D_z x = \sum_{i=1}^m w_i x_i z_i \simeq S, \qquad S \sim N(\mu_S, \sigma_S^2)$$

$$\mathbf{E}\left[\left(w^{T}D_{z}x-y\right)^{2}\right] \simeq \mathbf{E}_{S \sim N(\mu_{S},\sigma_{S}^{2})}\left[\left(S-y\right)^{2}\right] = \left(\mu_{S}-y\right)^{2} + \sigma_{S}^{2}$$

• We had:
$$L(w) = \sum_{i} (w^{T} D_{z} x^{(i)} - y^{(i)})^{2}$$

$$w^T D_z x = \sum_{i=1}^m w_i x_i z_i \simeq S, \qquad S \sim N(\mu_S, \sigma_S^2)$$

$$\mathbf{E}\left[\left(w^{T}D_{z}x-y\right)^{2}\right] \simeq \mathbf{E}_{S \sim N(\mu_{S},\sigma_{S}^{2})}\left[\left(S-y\right)^{2}\right] = \left(\mu_{S}-y\right)^{2} + \sigma_{S}^{2}$$

- We had: $L(w) = \sum_{i} (w^{T} D_{z} x^{(i)} y^{(i)})^{2}$
- Instead of sampling minimize the expected loss:

$$w^T D_z x = \sum_{i=1}^m w_i x_i z_i \simeq S, \qquad S \sim N(\mu_S, \sigma_S^2)$$

$$\mathbf{E}\left[\left(w^{T}D_{z}x-y\right)^{2}\right] \simeq \mathbf{E}_{S \sim N(\mu_{S},\sigma_{S}^{2})}\left[\left(S-y\right)^{2}\right] = \left(\mu_{S}-y\right)^{2} + \sigma_{S}^{2}$$

- We had: $L(w) = \sum_{i} (w^{T} D_{z} x^{(i)} y^{(i)})^{2}$
- Instead of sampling minimize the expected loss:

$$w^T D_z x = \sum_{i=1}^m w_i x_i z_i \simeq S, \qquad S \sim N(\mu_S, \sigma_S^2)$$

$$\mathbf{E}\left[\left(w^{T}D_{z}x-y\right)^{2}\right] \simeq \mathbf{E}_{S\sim N(\mu_{S},\sigma_{S}^{2})}\left[\left(S-y\right)^{2}\right] = \left(\mu_{S}-y\right)^{2} + \sigma_{S}^{2}$$

$$\widetilde{L}(w) = \mathbf{E}L(w) \simeq \sum_{i} \left(\mu_{S}^{(i)} - y^{(i)}\right)^{2} + \sigma_{S}^{2^{(i)}}$$

• We had:
$$L(w) = \sum_{i} (w^{T} D_{z} x^{(i)} - y^{(i)})^{2}$$

Instead of sampling minimize the expected loss:

$$w^T D_z x = \sum_{i=1}^m w_i x_i z_i \simeq S, \qquad S \sim N(\mu_S, \sigma_S^2)$$

$$\mathbf{E}\left[\left(w^{T}D_{z}x-y\right)^{2}\right] \simeq \mathbf{E}_{S\sim N(\mu_{S},\sigma_{S}^{2})}\left[\left(S-y\right)^{2}\right] = \left(\mu_{S}-y\right)^{2} + \sigma_{S}^{2}$$

$$\tilde{L}(w) = \mathbf{E}L(w) \simeq \sum_{i} \left(\mu_{S}^{(i)} - y^{(i)}\right)^{2} + \sigma_{S}^{2^{(i)}}$$

$$= \sum_{i} \left(\mu_{S}^{(i)} - y^{(i)}\right)^{2} + \lambda \sum_{i} c_{i} w_{i}^{2}, \quad c_{i} = \sum_{i} \left(x_{i}^{(j)}\right)^{2}$$

• We had:
$$L(w) = \sum_{i} (w^{T} D_{z} x^{(i)} - y^{(i)})^{2}$$

Instead of sampling minimize the expected loss:

$$w^T D_z x = \sum_{i=1}^m w_i x_i z_i \simeq S, \qquad S \sim N(\mu_S, \sigma_S^2)$$

$$\mathbf{E}\left[\left(w^{T}D_{z}x-y\right)^{2}\right] \simeq \mathbf{E}_{S \sim N(\mu_{S},\sigma_{S}^{2})}\left[\left(S-y\right)^{2}\right] = \left(\mu_{S}-y\right)^{2} + \sigma_{S}^{2}$$

$$\tilde{L}(w) = \mathbf{E}L(w) \simeq \sum_{i} (\mu_{S}^{(i)} - y^{(i)})^{2} + \sigma_{S}^{2^{(i)}}$$

$$= \sum_{i} (\mu_{S}^{(i)} - y^{(i)})^{2} + \lambda \sum_{i} c_{i} w_{i}^{2}, \quad c_{i} = \sum_{j} (x_{i}^{(j)})^{2}$$

Expected loss:

$$\tilde{L}(w) = \mathbf{E}L(w) \simeq \sum_{i} \left(\mu_{S}^{(i)} - y^{(i)}\right)^{2} + \sigma_{S}^{2^{(i)}}
= \sum_{i} \left(\mu_{S}^{(i)} - y^{(i)}\right)^{2} + \lambda \sum_{i} c_{i} w_{i}^{2}, \quad c_{i} = \sum_{j} \left(x_{i}^{(j)}\right)^{2}$$

Data-dependent regulizer

$$\tilde{L}(w) = \mathbf{E}L(w) \simeq \sum_{i} \left(\mu_{S}^{(i)} - y^{(i)}\right)^{2} + \sigma_{S}^{2^{(i)}}
= \sum_{i} \left(\mu_{S}^{(i)} - y^{(i)}\right)^{2} + \lambda \sum_{i} c_{i} w_{i}^{2}, \quad c_{i} = \sum_{j} \left(x_{i}^{(j)}\right)^{2}$$

- Data-dependent regulizer
- Closed form could be found:

$$w = (X^T X + \lambda diag(X^T X))^{-1} X^T y$$

$$\tilde{L}(w) = \mathbf{E}L(w) \simeq \sum_{i} \left(\mu_{S}^{(i)} - y^{(i)}\right)^{2} + \sigma_{S}^{2^{(i)}}
= \sum_{i} \left(\mu_{S}^{(i)} - y^{(i)}\right)^{2} + \lambda \sum_{i} c_{i} w_{i}^{2}, \quad c_{i} = \sum_{j} \left(x_{i}^{(j)}\right)^{2}$$

- Data-dependent regulizer
- Closed form could be found:

$$w = \left(X^T X + \lambda \operatorname{diag}(X^T X)\right)^{-1} X^T y$$

Some definitions

Dropout each input dimension randomly:

1

1

Some definitions

- Dropout each input dimension randomly:
- Probit:

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^{2}/2} dt$$

Some definitions

- Dropout each input dimension randomly:
- Probit:

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^{2}/2} dt$$

▶ Logistic function / sigmoid :

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$\int_{-\infty}^{+\infty} \Phi(\lambda x) N(x; \mu, s^2) dx = \Phi(\frac{\mu}{\sqrt{s^2 + \lambda^{-2}}})$$

$$\int_{-\infty}^{+\infty} \Phi(\lambda x) N(x; \mu, s^2) dx = \Phi(\frac{\mu}{\sqrt{s^2 + \lambda^{-2}}})$$

$$\sigma(x) \simeq \Phi(\sqrt{\frac{\pi}{8}}x)$$

$$\int_{-\infty}^{+\infty} \Phi(\lambda x) N(x; \mu, s^2) dx = \Phi(\frac{\mu}{\sqrt{s^2 + \lambda^{-2}}})$$

$$\sigma(x) \simeq \Phi(\sqrt{\frac{\pi}{8}}x)$$

$$\int_{-\infty}^{+\infty} \sigma(x) N(x; \mu, s^2) dx \simeq \sigma(\frac{\mu}{\sqrt{\pi s^2/8 + 1}})$$

Useful equalities

$$\int_{-\infty}^{+\infty} \Phi(\lambda x) N(x; \mu, s^2) dx = \Phi(\frac{\mu}{\sqrt{s^2 + \lambda^{-2}}})$$

$$\sigma(x) \simeq \Phi(\sqrt{\frac{\pi}{8}}x)$$

$$\int_{-\infty}^{+\infty} \sigma(x) N(x; \mu, s^2) dx \simeq \sigma(\frac{\mu}{\sqrt{\pi s^2/8 + 1}})$$

We can find the following expectation in closed form:

$$\mathbf{E}_{S \sim N(\mu, \sigma^2)} \big[\sigma(S) \big]$$

Logistic Regression

Logistic Regression

Consider the standard LR

$$P(Y=1|X=x) = \sigma(w^T x) = \frac{1}{1+e^{-w^T x}}$$

Logistic Regression

Consider the standard LR

$$P(Y=1|X=x) = \sigma(w^T x) = \frac{1}{1+e^{-w^T x}}$$

▶ The standard gradient update rule is

$$\Delta w_j = (y - \sigma(w^T x)) x_j$$

Logistic Regression

Consider the standard LR

$$P(Y=1|X=x) = \sigma(w^T x) = \frac{1}{1+e^{-w^T x}}$$

▶ The standard gradient update rule is

$$\Delta w_j = (y - \sigma(w^T x)) x_j$$

For the parameter vector

$$\Delta w_{\log} = (y - \sigma(w^T x))x$$

Dropout each input dimension randomly:

Dropout each input dimension randomly:

$$x_i \Leftrightarrow z_i \sim Bernoulli(p_i)$$
 $D_z = diag(z_1, ..., z_m)$

Dropout each input dimension randomly:

$$x_i \Leftrightarrow z_i \sim Bernoulli(p_i)$$
 $D_z = diag(z_1, ..., z_m)$

▶ For the parameter vector

$$\Delta w_{\log} = (y - \sigma(w^T x))x \Longrightarrow \Delta w = (y - \sigma(w^T D_z x))D_z x$$

Dropout each input dimension randomly:

$$x_i \Leftrightarrow z_i \sim Bernoulli(p_i)$$
 $D_z = diag(z_1, ..., z_m)$

▶ For the parameter vector

$$\Delta w_{\log} = (y - \sigma(w^T x))x \Rightarrow \Delta w = (y - \sigma(w^T D_z x))D_z x$$

Dropout each input dimension randomly:

$$x_i \Leftrightarrow z_i \sim Bernoulli(p_i)$$
 $D_z = diag(z_1, ..., z_m)$

For the parameter vector

$$\Delta w_{\log} = (y - \sigma(w^T x))x \Rightarrow \Delta w = (y - \sigma(w^T D_z x))D_z x$$

Notation: $x_i = i$ -th dimension of x

Dropout each input dimension randomly:

$$x_i \Leftrightarrow z_i \sim Bernoulli(p_i)$$
 $D_z = diag(z_1, ..., z_m)$

For the parameter vector

$$\Delta w_{\log} = (y - \sigma(w^T x))x \Rightarrow \Delta w = (y - \sigma(w^T D_z x))D_z x$$

Notation: $x_i = i$ -th dimension of x $x^{(j)} = j$ -th training instance

Dropout each input dimension randomly:

$$x_i \Leftrightarrow z_i \sim Bernoulli(p_i)$$
 $D_z = diag(z_1, ..., z_m)$

For the parameter vector

$$\Delta w_{\log} = (y - \sigma(w^T x))x \Rightarrow \Delta w = (y - \sigma(w^T D_z x))D_z x$$

Notation: $x_i = i$ -th dimension of x $x^{(j)} = j$ -th training instance $x_i^{(j)} = i$ -th dimension of j-th instance

Dropout each input dimension randomly:

$$x_i \Leftrightarrow z_i \sim Bernoulli(p_i)$$
 $D_z = diag(z_1, ..., z_m)$

For the parameter vector

$$\Delta w_{\log} = (y - \sigma(w^T x))x \Rightarrow \Delta w = (y - \sigma(w^T D_z x))D_z x$$

Notation: $x_i = i$ -th dimension of x $x^{(j)} = j$ -th training instance $x^{(j)}_i = i$ -th dimension of j-th instance $1 \le i \le m \qquad 1 \le j \le n$

$$\Delta w_{avg} = \mathbf{E}_{z;z_i \sim Bernoulli(p_i)} \Delta w$$

$$\Delta w_{avg} = \mathbf{E}_{z;z_i \sim Bernoulli(p_i)} \Delta w$$
$$= \mathbf{E}_{z;z_i \sim Bernoulli(p_i)} (y - \sigma(w^T D_z x)) D_z x$$

$$\Delta w_{avg} = \mathbf{E}_{z;z_i \sim Bernoulli(p_i)} \Delta w$$
$$= \mathbf{E}_{z;z_i \sim Bernoulli(p_i)} (y - \sigma(\mathbf{w}^T D_z \mathbf{x})) D_z \mathbf{x}$$

$$\Delta w_{avg} = \mathbf{E}_{z;z_i \sim Bernoulli(p_i)} \Delta w$$

$$= \mathbf{E}_{z;z_i \sim Bernoulli(p_i)} (y - \sigma(\mathbf{w}^T \mathbf{D}_z \mathbf{x})) D_z \mathbf{x}$$

$$w^T D_z \mathbf{x} = \sum_{i=1}^m w_i x_i z_i \simeq S, \qquad S \sim N(\mu_S, \sigma_S^2)$$

$$\Delta w_{avg} = \mathbf{E}_{z;z_i \sim Bernoulli(p_i)} \Delta w$$

$$= \mathbf{E}_{z;z_i \sim Bernoulli(p_i)} (y - \sigma(\mathbf{w}^T \mathbf{D}_z \mathbf{x})) D_z \mathbf{x}$$

$$w^T D_z \mathbf{x} = \sum_{i=1}^m w_i x_i z_i \simeq S, \qquad S \sim N(\boldsymbol{\mu}_S, \sigma_S^2)$$

$$\boldsymbol{\mu}_S = \mathbf{E} \left[w^T D_z \mathbf{x} \right] = \sum_{i=1}^m w_i x_i \mathbf{E} \left[z_i \right] = \sum_{i=1}^m w_i x_i p_i$$

$$\Delta w_{avg} = \mathbf{E}_{z;z_i \sim Bernoulli(p_i)} \Delta w$$

$$= \mathbf{E}_{z;z_i \sim Bernoulli(p_i)} (y - \sigma(\mathbf{w}^T \mathbf{D}_z \mathbf{x})) D_z \mathbf{x}$$

$$w^T D_z \mathbf{x} = \sum_{i=1}^m w_i x_i z_i \simeq S, \qquad S \sim N(\boldsymbol{\mu}_S, \boldsymbol{\sigma}_S^2)$$

$$\boldsymbol{\mu}_S = \mathbf{E} \left[w^T D_z \mathbf{x} \right] = \sum_{i=1}^m w_i x_i \mathbf{E} \left[z_i \right] = \sum_{i=1}^m w_i x_i p_i$$

$$\boldsymbol{\sigma}_S^2 = \mathbf{Var} \left[w^T D_z \mathbf{x} \right] = \sum_{i=1}^m (w_i x_i)^2 \mathbf{Var} \left[z_i \right] = \sum_{i=1}^m (w_i x_i)^2 p_i (1 - p_i)$$

Approx: $\Delta w_{avg} = \mathbf{E}_{z;z_i \sim Bernoulli(p_i)} \left[(y - \sigma(w^T D_z x)) D_z x \right]$

- Approx: $\Delta w_{avg} = \mathbf{E}_{z;z_i \sim Bernoulli(p_i)} \left[(y \sigma(w^T D_z x)) D_z x \right]$
- ▶ By knowing: $w^T D_z x \simeq S$, $S \sim N(\mu_S, \sigma_S^2)$

Approx:
$$\Delta w_{avg} = \mathbf{E}_{z;z_i \sim Bernoulli(p_i)} \left[(y - \sigma(w^T D_z x)) D_z x \right]$$

- By knowing: $w^T D_z x \simeq S$, $S \sim N(\mu_S, \sigma_S^2)$
- ▶ How to approximate?

Approx:
$$\Delta w_{avg} = \mathbf{E}_{z;z_i \sim Bernoulli(p_i)} \left[(y - \sigma(w^T D_z x)) D_z x \right]$$

- ▶ By knowing: $w^T D_z x \simeq S$, $S \sim N(\mu_S, \sigma_S^2)$
- ▶ How to approximate?

• Option 1:
$$\mathbf{E}_{S}[(y-\sigma(S))]\mathbf{E}_{z}[D_{z}x]$$

Approx:
$$\Delta w_{avg} = \mathbf{E}_{z;z_i \sim Bernoulli(p_i)} \left[(y - \sigma(w^T D_z x)) D_z x \right]$$

- ▶ By knowing: $w^T D_z x = S$, $S \sim N(\mu_S, \sigma_S^2)$
- ▶ How to approximate?

- Option 1: $\mathbf{E}_{S}[(y-\sigma(S))]\mathbf{E}_{z}[D_{z}x]$
- Option 2: $(y \sigma(\mathbf{E}_S[S]))\mathbf{E}_z[D_z x]$

Approx:
$$\Delta w_{avg} = \mathbf{E}_{z;z_i \sim Bernoulli(p_i)} \left[(y - \sigma(w^T D_z x)) D_z x \right]$$

- ▶ By knowing: $w^T D_z x \simeq S$, $S \sim N(\mu_S, \sigma_S^2)$
- ▶ How to approximate?

- Option 1: $\mathbf{E}_{S}[(y-\sigma(S))]\mathbf{E}_{z}[D_{z}x]$
- Option 2: $(y \sigma(\mathbf{E}_S[S]))\mathbf{E}_z[D_z x]$
- ↓ Have closed forms but poor approximations

Experiment: evaluating the approximation

• The quality of approximation for Δw_{\log}

Experiment: Document Classification

▶ 20-newsgroup subtask *alt.atheism vs. religion.misc*

Experiment: Document Classification(2)

Methods\ Datasets	MR-2k	IMDB	RTs	Subj	AthR	CR	MPQA	Average
Real (MC) dropout	89.8	91.2	79.2	93.3	86.7	82.0	86.0	86.88
$training\ time$	6400	6800	2300	2000	130	580	420	2700
Gaussian dropout	89.7	91.2	79.0	93.4	87.4	82.1	86.1	86.99
$training \ time$	240	1070	360	320	6	90	180	320
Fast (closed-form) dropout	89.5	91.1	79.1	93.6	86.5	81.9	86.3	86.87
$training \ time$	120	420	130	130	3	28	35	120
plain LR	88.2	89.5	77.2	91.3	83.6	80.4	84.6	84.97
$training \ time$	140	310	81	68	3	17	22	92
Previous results								
TreeCRF(Nakagawa et al., 2010)	-	-	77.3	-	-	81.4	86.1	-
Vect. Sent.(Maas et al., 2011)	88.9	88.9	-	88.1	-	-	-	-
RNN(Socher et al., 2011)	-	-	77.7	-	-	-	86.4	_
NBSVM(Wang & Manning, 2012)	89.4	91.2	79.4	93.2	87.9	81.8	86.3	87.03
$ \{i: x_i > 0\} $	788	232	22	25	346	21	4	

Approx: $\Delta w_{avg} = \mathbf{E}_{z;z_i \sim Bernoulli(p_i)} \left[(y - \sigma(w^T D_z x)) D_z x \right]$

- Approx: $\Delta w_{avg} = \mathbf{E}_{z;z_i \sim Bernoulli(p_i)} \left[(y \sigma(w^T D_z x)) D_z x \right]$
- ▶ By knowing:

22

Approx:
$$\Delta w_{avg} = \mathbf{E}_{z;z_i \sim Bernoulli(p_i)} \left[(y - \sigma(\mathbf{w}^T D_z \mathbf{x})) D_z \mathbf{x} \right]$$

▶ By knowing: $w^T D_z x \simeq S$, $S \sim N(\mu_S, \sigma_S^2)$

- Approx: $\Delta w_{avg} = \mathbf{E}_{z;z_i \sim Bernoulli(p_i)} \left[(y \sigma(\mathbf{w}^T D_z \mathbf{x})) D_z \mathbf{x} \right]$
- By knowing: $w^T D_z x \simeq S$, $S \sim N(\mu_S, \sigma_S^2)$
- $\Delta w_{avg,i} = \mathbf{E}_{z;z_i \sim Bernoulli(p_i)} \left[(y \sigma(w^T D_z x)) z_i x_i \right]$

Approx:
$$\Delta w_{avg} = \mathbf{E}_{z;z_i \sim Bernoulli(p_i)} \left[(y - \sigma(\mathbf{w}^T D_z \mathbf{x})) D_z \mathbf{x} \right]$$

▶ By knowing:
$$w^T D_z x \simeq S$$
, $S \sim N(\mu_S, \sigma_S^2)$

$$\Delta w_{avg,i} = \mathbf{E}_{z;z_i \sim Bernoulli(p_i)} \left[(y - \sigma(w^T D_z x)) z_i x_i \right]$$

$$= p(z_i = 1) x_i \quad \mathbf{E}_{z_{-i}|z_i = 1} \left[(y - \sigma(w^T D_z x)) \right]$$

Approx:
$$\Delta w_{avg} = \mathbf{E}_{z;z_i \sim Bernoulli(p_i)} \left[(y - \sigma(\mathbf{w}^T D_z x)) D_z x \right]$$

▶ By knowing:
$$w^T D_T x \simeq S$$
, $S \sim N(\mu_S, \sigma_S^2)$

$$\Delta w_{avg,i} = \mathbf{E}_{z;z_i \sim Bernoulli(p_i)} \left[(y - \sigma(w^T D_z x)) \mathbf{z}_i \mathbf{x}_i \right]$$
$$= \mathbf{p}(\mathbf{z}_i = 1) \mathbf{x}_i \quad \mathbf{E}_{z_{-i}|z_i = 1} \left[(y - \sigma(w^T D_z x)) \right]$$

Approx:
$$\Delta w_{avg} = \mathbf{E}_{z;z_i \sim Bernoulli(p_i)} \left[(y - \sigma(\mathbf{w}^T D_z \mathbf{x})) D_z \mathbf{x} \right]$$

By knowing:
$$w^T D_z x \simeq S$$
, $S \sim N(\mu_S, \sigma_S^2)$

$$\Delta w_{avg,i} = \mathbf{E}_{z;z_i \sim Bernoulli(p_i)} \left[(y - \sigma(w^T D_z x)) z_i x_i \right]$$

$$= p(z_i = 1) x_i \quad \mathbf{E}_{z_{-i}|z_i = 1} \left[(y - \sigma(w^T D_z x)) \right]$$

$$= p_i \quad x_i \mathbf{E}_{z_{-i}|z_i = 1} \left[(y - \sigma(w^T D_z x)) \right]$$

Approx:
$$\Delta w_{avg} = \mathbf{E}_{z;z_i \sim Bernoulli(p_i)} \left[(y - \sigma(\mathbf{w}^T D_z \mathbf{x})) D_z \mathbf{x} \right]$$

▶ By knowing:
$$w^T D_z x \simeq S$$
, $S \sim N(\mu_S, \sigma_S^2)$

$$\Delta w_{avg,i} = \mathbf{E}_{z;z_i \sim Bernoulli(p_i)} \left[(y - \sigma(w^T D_z x)) \mathbf{z}_i \mathbf{x}_i \right]$$

$$= \mathbf{p}(\mathbf{z}_i = 1) \mathbf{x}_i \quad \mathbf{E}_{z_{-i}|z_i = 1} \left[(y - \sigma(w^T D_z x)) \right]$$

$$= p_i \quad x_i \mathbf{E}_{z_{-i}|z_i = 1} \left[(y - \sigma(w^T D_z x)) \right]$$

$$= p_i \quad x_i \left(y - \mathbf{E}_{z_{-i}|z_i = 1} \left[\sigma(w^T D_z x) \right] \right)$$

Approx:
$$\Delta w_{avg} = \mathbf{E}_{z;z_i \sim Bernoulli(p_i)} \left[(y - \sigma(\mathbf{w}^T D_z \mathbf{x})) D_z \mathbf{x} \right]$$

▶ By knowing:
$$w^T D_z x \simeq S$$
, $S \sim N(\mu_S, \sigma_S^2)$

$$\Delta w_{avg,i} = \mathbf{E}_{z;z_i \sim Bernoulli(p_i)} \left[(y - \sigma(w^T D_z x)) z_i x_i \right]$$

$$= p(z_i = 1) x_i \quad \mathbf{E}_{z_{-i}|z_i = 1} \left[(y - \sigma(w^T D_z x)) \right]$$

$$= p_i \quad x_i \mathbf{E}_{z_{-i}|z_i = 1} \left[(y - \sigma(w^T D_z x)) \right]$$

$$= p_i \quad x_i \left(y - \mathbf{E}_{z_{-i}|z_i = 1} \left[\sigma(w^T D_z x) \right] \right)$$

Approx:
$$\Delta w_{avg} = \mathbf{E}_{z;z_i \sim Bernoulli(p_i)} \left[(y - \sigma(\mathbf{w}^T D_z \mathbf{x})) D_z \mathbf{x} \right]$$

▶ By knowing:
$$w^T D_z x \simeq S$$
, $S \sim N(\mu_S, \sigma_S^2)$

$$\Delta w_{avg,i} = \mathbf{E}_{z;z_i \sim Bernoulli(p_i)} \left[(y - \sigma(w^T D_z x)) z_i x_i \right]$$

$$= p(z_i = 1) x_i \quad \mathbf{E}_{z_{-i}|z_i = 1} \left[(y - \sigma(w^T D_z x)) \right]$$

$$= p_i \quad x_i \mathbf{E}_{z_{-i}|z_i = 1} \left[(y - \sigma(w^T D_z x)) \right]$$

$$= p_i \quad x_i \left(y - \mathbf{E}_{z_{-i}|z_i = 1} \left[\sigma(w^T D_z x) \right] \right)$$

$$\mathbf{E}_{z_{-i}|z_i = 1} \left[\sigma(w^T D_z x) \right] = ?$$

• We want to: $\mathbf{E}_{z_{-i}|z_i=1} \left[\sigma(w^T D_z x) \right] = ?$

- We want to: $\mathbf{E}_{z_{-i}|z_i=1} \left[\sigma(w^T D_z x) \right] = ?$
- Previously: $w^T D_z x \simeq S$, $S \sim N(\mu_S, \sigma_S^2)$, $z_i \sim Bern(p_i)$

- We want to: $\mathbf{E}_{z_{-i}|z_i=1} \left[\sigma(w^T D_z x) \right] = ?$
- Previously: $w^T D_z x \simeq S$, $S \sim N(\mu_S, \sigma_S^2)$, $z_i \sim Bern(p_i)$ $z_{-i} \mid z_i = 1 \Longrightarrow$

- We want to: $\mathbf{E}_{z_{-i}|z_i=1} \left[\sigma(w^T D_z x) \right] = ?$
- Previously: $w^T D_z x \approx S$, $S \sim N(\mu_S, \sigma_S^2)$, $z_i \sim Bern(p_i)$ $z_{-i} \mid z_i = 1 \Rightarrow w^T D_z x - w_i x_i z_i + w_i z_i$

- We want to: $\mathbf{E}_{z_{-i}|z_i=1} \left[\sigma(w^T D_z x) \right] = ?$
- Previously: $w^T D_z x \approx S$, $S \sim N(\mu_S, \sigma_S^2)$, $z_i \sim Bern(p_i)$ $z_{-i} \mid z_i = 1 \Rightarrow w^T D_z x - w_i x_i z_i + w_i z_i = S_i \sim N(\mu_S, \sigma_S^2)$

- We want to: $\mathbf{E}_{z_{-i}|z_i=1} \left[\boldsymbol{\sigma}(w^T D_z x) \right] = ?$
- Previously: $w^T D_z x \approx S$, $S \sim N(\mu_S, \sigma_S^2)$, $z_i \sim Bern(p_i)$ $z_{-i} \mid z_i = 1 \Rightarrow w^T D_z x - w_i x_i z_i + w_i z_i = S_i \sim N(\mu_{S_i}, \sigma_{S_i}^2)$

$$\mu_{S_i} =$$

- We want to: $\mathbf{E}_{z_{-i}|z_i=1} \left[\sigma(w^T D_z x) \right] = ?$
- Previously: $w^T D_z x \simeq S$, $S \sim N(\mu_S, \sigma_S^2)$, $z_i \sim Bern(p_i)$ $z_{-i} \mid z_i = 1 \Rightarrow w^T D_z x - w_i x_i z_i + w_i z_i = S_i \sim N(\mu_{S_i}, \sigma_{S_i}^2)$ $\mu_S = \mu_S + \mathbf{E} \left[-w_i x_i z_i + w_i x_i \right]$

- We want to: $\mathbf{E}_{z_{-i}|z_i=1} \left[\sigma(w^T D_z x) \right] = ?$
- Previously: $w^T D_z x \simeq S$, $S \sim N(\mu_S, \sigma_S^2)$, $z_i \sim Bern(p_i)$ $z_{-i} \mid z_i = 1 \Longrightarrow w^T D_z x - w_i x_i z_i + w_i z_i = S_i \sim N(\mu_{S_i}, \sigma_{S_i}^2)$ $\mu_{S_i} = \mu_S + \mathbf{E} \left[-w_i x_i z_i + w_i x_i \right] = \mu_S + w_i x_i (1 - p_i)$

- We want to: $\mathbf{E}_{z_{-i}|z_i=1} \left[\sigma(w^T D_z x) \right] = ?$
- Previously: $w^T D_z x \approx S$, $S \sim N(\mu_S, \sigma_S^2)$, $z_i \sim Bern(p_i)$ $z_{-i} \mid z_i = 1 \Rightarrow w^T D_z x - w_i x_i z_i + w_i z_i = S_i \sim N(\mu_{S_i}, \sigma_{S_i}^2)$ $\mu_{S_i} = \mu_S + \mathbf{E} \left[-w_i x_i z_i + w_i x_i \right] = \mu_S + w_i x_i (1 - p_i)$

$$\sigma_{S_i}^2 =$$

- We want to: $\mathbf{E}_{z_{-i}|z_i=1} \left[\sigma(w^T D_z x) \right] = ?$
- Previously: $w^T D_z x \simeq S$, $S \sim N(\mu_S, \sigma_S^2)$, $z_i \sim Bern(p_i)$ $z_{-i} \mid z_i = 1 \Rightarrow w^T D_z x - w_i x_i z_i + w_i z_i = S_i \sim N(\mu_S, \sigma_S^2)$

$$\mu_{S_i} = \mu_S + \mathbf{E}[-w_i x_i z_i + w_i x_i] = \mu_S + w_i x_i (1 - p_i)$$

$$\sigma_{S_i}^2 = \sigma_S^2 + \mathbf{Var} \left[-w_i x_i z_i + w_i x_i \right]$$

- We want to: $\mathbf{E}_{z_{-i}|z_i=1} \left[\sigma(w^T D_z x) \right] = ?$
- Previously: $w^T D_z x \approx S$, $S \sim N(\mu_S, \sigma_S^2)$, $z_i \sim Bern(p_i)$ $z_{-i} \mid z_i = 1 \Rightarrow w^T D_z x - w_i x_i z_i + w_i z_i = S_i \sim N(\mu_{S_i}, \sigma_{S_i}^2)$

$$\mu_{S_i} = \mu_S + \mathbf{E} \left[-w_i x_i z_i + w_i x_i \right] = \mu_S + w_i x_i (1 - p_i)$$

$$\sigma_{S_i}^2 = \sigma_S^2 + \mathbf{Var} [-w_i x_i z_i + w_i x_i] = \sigma_S^2 + (w_i x_i)^2 (1 - p_i) p_i$$

- We want to: $\mathbf{E}_{z_{-i}|z_i=1} \left[\sigma(w^T D_z x) \right] = ?$
- Previously: $w^T D_z x \simeq S$, $S \sim N(\mu_S, \sigma_S^2)$, $z_i \sim Bern(p_i)$

$$z_{-i} \mid z_i = 1 \Rightarrow w^T D_z x - w_i x_i z_i + w_i z_i = S_i \sim N(\mu_{S_i}, \sigma_{S_i}^2)$$

$$\mu_{S_i} = \mu_S + \mathbf{E}[-w_i x_i z_i + w_i x_i] = \mu_S + w_i x_i (1 - p_i)$$

$$\sigma_{S_i}^2 = \sigma_S^2 + \mathbf{Var} [-w_i x_i z_i + w_i x_i] = \sigma_S^2 + (w_i x_i)^2 (1 - p_i) p_i$$

$$\downarrow \mathbf{E}_{z_{-i}|z_i=1} \left[\boldsymbol{\sigma}(w^T D_z x) \right] = \mathbf{E}_{S_i} \left[\boldsymbol{\sigma}(S_i) \right]$$

- We want to: $\mathbf{E}_{z_{-i}|z_i=1} \left[\sigma(w^T D_z x) \right] = ?$
- Previously: $w^T D_z x \simeq S$, $S \sim N(\mu_S, \sigma_S^2)$, $z_i \sim Bern(p_i)$ $z_{-i} \mid z_i = 1 \Rightarrow w^T D_z x - w_i x_i z_i + w_i z_i = S_i \sim N(\mu_S, \sigma_S^2)$

$$\mu_{S_i} = \mu_S + \mathbf{E} \left[-w_i x_i z_i + w_i x_i \right] = \mu_S + w_i x_i (1 - p_i)$$

$$\sigma_{S_i}^2 = \sigma_S^2 + \mathbf{Var} [-w_i x_i z_i + w_i x_i] = \sigma_S^2 + (w_i x_i)^2 (1 - p_i) p_i$$

 $+ \mathbf{E}_{z_{-i}|z_i=1} \left[\sigma(w^T D_z x) \right] = \mathbf{E}_{S_i} \left[\sigma(S_i) \right] \text{ which could be found in closed form.}$

• We want to: $\mathbf{E}_{z_{-i}|z_i=1} \left[\sigma(w^T D_z x) \right] = ?$

- We want to: $\mathbf{E}_{z_{-i}|z_i=1} \left[\sigma(w^T D_z x) \right] = ?$
- Previously: $w^T D_z x \simeq S$, $S \sim N(\mu_S, \sigma_S^2)$

- We want to: $\mathbf{E}_{z_{-i}|z_i=1} \left[\sigma(w^T D_z x) \right] = ?$
- Previously: $w^T D_z x \simeq S$, $S \sim N(\mu_S, \sigma_S^2)$

$$z_{-i} \mid z_i = 1 \Rightarrow w^T D_z x - w_i x_i z_i + w_i z_i = S_i \sim N(\mu_{S_i}, \sigma_{S_i}^2)$$

- We want to: $\mathbf{E}_{z_{-i}|z_i=1} \left[\sigma(w^T D_z x) \right] = ?$
- Previously: $w^T D_z x \simeq S$, $S \sim N(\mu_S, \sigma_S^2)$

$$z_{-i} \mid z_i = 1 \Rightarrow w^T D_z x - w_i x_i z_i + w_i z_i = S_i \sim N(\mu_{S_i}, \sigma_{S_i}^2)$$

$$\Delta \mu = \mu_{S_i} - \mu_S =$$

- We want to: $\mathbf{E}_{z_{-i}|z_i=1} \left[\sigma(w^T D_z x) \right] = ?$
- Previously: $w^T D_z x \simeq S$, $S \sim N(\mu_S, \sigma_S^2)$

$$z_{-i} \mid z_i = 1 \Longrightarrow w^T D_z x - w_i x_i z_i + w_i z_i = S_i \sim N(\mu_{S_i}, \sigma_{S_i}^2)$$

$$\Delta \mu = \mu_{S_i} - \mu_S =$$

- We want to: $\mathbf{E}_{z_{-i}|z_i=1} \left[\sigma(w^T D_z x) \right] = ?$
- Previously: $w^T D_z x \simeq S$, $S \sim N(\mu_S, \sigma_S^2)$

$$z_{-i} \mid z_i = 1 \Longrightarrow w^T D_z x - w_i x_i z_i + w_i z_i = S_i \sim N(\mu_{S_i}, \sigma_{S_i}^2)$$

$$\Delta \mu = \mu_{S_i} - \mu_S = w_i x_i (1 - p_i),$$

- We want to: $\mathbf{E}_{z_{-i}|z_i=1} \left[\sigma(w^T D_z x) \right] = ?$
- Previously: $w^T D_z x \simeq S$, $S \sim N(\mu_S, \sigma_S^2)$

$$z_{-i} \mid z_i = 1 \Rightarrow w^T D_z x - w_i x_i z_i + w_i z_i = S_i \sim N(\mu_{S_i}, \sigma_{S_i}^2)$$

$$\Delta \mu = \mu_{S_i} - \mu_S = w_i x_i (1 - p_i), \quad \Delta \sigma^2 = \sigma_{S_i}^2 - \sigma_S^2 =$$

- We want to: $\mathbf{E}_{z_{-i}|z_i=1} \left[\sigma(w^T D_z x) \right] = ?$
- Previously: $w^T D_z x \simeq S$, $S \sim N(\mu_S, \sigma_S^2)$

$$z_{-i} \mid z_i = 1 \Longrightarrow w^T D_z x - w_i x_i z_i + w_i z_i = S_i \sim N(\mu_{S_i}, \sigma_{S_i}^2)$$

$$\Delta \mu = \mu_{S_i} - \mu_S = w_i x_i (1 - p_i), \quad \Delta \sigma^2 = \sigma_{S_i}^2 - \sigma_S^2 =$$

- We want to: $\mathbf{E}_{z_{-i}|z_i=1} \left[\sigma(w^T D_z x) \right] = ?$
- Previously: $w^T D_z x \simeq S$, $S \sim N(\mu_S, \sigma_S^2)$

$$z_{-i} \mid z_i = 1 \Longrightarrow w^T D_z x - w_i x_i z_i + w_i z_i = S_i \sim N(\mu_{S_i}, \sigma_{S_i}^2)$$

$$\Delta \mu = \mu_{S_i} - \mu_S = w_i x_i (1 - p_i), \quad \Delta \sigma^2 = \sigma_{S_i}^2 - \sigma_S^2 = (w_i x_i)^2 (1 - p_i) p_i$$

- We want to: $\mathbf{E}_{z_{-i}|z_i=1} \left[\boldsymbol{\sigma}(w^T D_z x) \right] = ?$
- Previously: $w^T D_z x \simeq S$, $S \sim N(\mu_S, \sigma_S^2)$

$$z_{-i} \mid z_i = 1 \Rightarrow w^T D_z x - w_i x_i z_i + w_i z_i = S_i \sim N(\mu_{S_i}, \sigma_{S_i}^2)$$

$$\Delta \mu = \mu_{S_i} - \mu_S = w_i x_i (1 - p_i), \quad \Delta \sigma^2 = \sigma_{S_i}^2 - \sigma_S^2 = (w_i x_i)^2 (1 - p_i) p_i$$

- We want to: $\mathbf{E}_{z_{-i}|z_i=1} \left[\sigma(w^T D_z x) \right] = ?$
- Previously: $w^T D_z x \simeq S$, $S \sim N(\mu_S, \sigma_S^2)$

$$z_{-i} \mid z_i = 1 \Longrightarrow w^T D_z x - w_i x_i z_i + w_i z_i = S_i \sim N(\mu_{S_i}, \sigma_{S_i}^2)$$

$$\Delta \mu = \mu_{S_i} - \mu_S = w_i x_i (1 - p_i), \quad \Delta \sigma^2 = \sigma_{S_i}^2 - \sigma_S^2 = (w_i x_i)^2 (1 - p_i) p_i$$

$$\mathbf{E}_{z_{-i}|z_i=1} \left\lceil \sigma(w^T D_z x) \right\rceil =$$

- We want to: $\mathbf{E}_{z_{-i}|z_i=1} \left[\sigma(w^T D_z x) \right] = ?$
- Previously: $w^T D_z x \simeq S$, $S \sim N(\mu_S, \sigma_S^2)$

$$z_{-i} \mid z_i = 1 \Longrightarrow w^T D_z x - w_i x_i z_i + w_i z_i = S_i \sim N(\mu_{S_i}, \sigma_{S_i}^2)$$

$$\Delta \mu = \mu_{S_i} - \mu_S = w_i x_i (1 - p_i), \quad \Delta \sigma^2 = \sigma_{S_i}^2 - \sigma_S^2 = (w_i x_i)^2 (1 - p_i) p_i$$

$$\mathbf{E}_{z_{-i}|z_i=1} \left[\boldsymbol{\sigma}(w^T D_z x) \right] = \mathbf{E}_{N(\mu_S, \sigma_S^2)} \left[\boldsymbol{\sigma}(S) \right] +$$

- We want to: $\mathbf{E}_{z_{-i}|z_i=1} \left[\boldsymbol{\sigma}(w^T D_z x) \right] = ?$
- Previously: $w^T D_z x \simeq S$, $S \sim N(\mu_S, \sigma_S^2)$

$$z_{-i} \mid z_i = 1 \Rightarrow w^T D_z x - w_i x_i z_i + w_i z_i = S_i \sim N(\mu_{S_i}, \sigma_{S_i}^2)$$

$$\Delta \mu = \mu_{S_i} - \mu_S = w_i x_i (1 - p_i), \quad \Delta \sigma^2 = \sigma_{S_i}^2 - \sigma_S^2 = (w_i x_i)^2 (1 - p_i) p_i$$

$$\mathbf{E}_{z_{-i}|z_i=1} \left[\boldsymbol{\sigma}(w^T \boldsymbol{D}_z \boldsymbol{x}) \right] = \mathbf{E}_{N(\mu_S, \sigma_S^2)} \left[\boldsymbol{\sigma}(S) \right] + \Delta \mu \frac{\partial}{\partial \mu} \mathbf{E}_{N(\mu_S, \sigma_S^2)} \left[\boldsymbol{\sigma}(S) \right]_{\mu = \mu_S}$$

- We want to: $\mathbf{E}_{z_{-i}|z_i=1} \left[\sigma(w^T D_z x) \right] = ?$
- Previously: $w^T D_z x \simeq S$, $S \sim N(\mu_S, \sigma_S^2)$

$$z_{-i} \mid z_i = 1 \Longrightarrow w^T D_z x - w_i x_i z_i + w_i z_i = S_i \sim N(\mu_{S_i}, \sigma_{S_i}^2)$$

$$\Delta \mu = \mu_{S_i} - \mu_S = w_i x_i (1 - p_i), \quad \Delta \sigma^2 = \sigma_{S_i}^2 - \sigma_S^2 = (w_i x_i)^2 (1 - p_i) p_i$$

$$\mathbf{E}_{z_{-i}|z_{i}=1}\left[\sigma(w^{T}D_{z}x)\right] = \mathbf{E}_{N(\mu_{S},\sigma_{S}^{2})}\left[\sigma(S)\right] + \Delta\mu \frac{\partial}{\partial\mu} \mathbf{E}_{N(\mu_{S},\sigma_{S}^{2})}\left[\sigma(S)\right]_{\mu = \mu_{S}}$$

$$+\Delta \sigma^2 \frac{\partial}{\partial \sigma^2} \mathbf{E}_{N(\mu_S, \sigma^2)} [\sigma(S)]_{\sigma^2 = \sigma}$$

- We want to: $\mathbf{E}_{z_{-i}|z_i=1} \left[\boldsymbol{\sigma}(w^T D_z x) \right] = ?$
- Previously: $w^T D_z x \simeq S$, $S \sim N(\mu_S, \sigma_S^2)$

$$z_{-i} \mid z_i = 1 \Longrightarrow w^T D_z x - w_i x_i z_i + w_i z_i = S_i \sim N(\mu_{S_i}, \sigma_{S_i}^2)$$

$$\Delta \mu = \mu_{S_i} - \mu_S = w_i x_i (1 - p_i), \quad \Delta \sigma^2 = \sigma_{S_i}^2 - \sigma_S^2 = (w_i x_i)^2 (1 - p_i) p_i$$

 $\downarrow S_i$ deviates (approximately) from S with $\Delta \mu$ and $\Delta \sigma^2$

$$\mathbf{E}_{z_{-i}|z_{i}=1}\left[\boldsymbol{\sigma}(w^{T}\boldsymbol{D}_{z}\boldsymbol{x})\right] = \mathbf{E}_{N(\mu_{S},\sigma_{S}^{2})}\left[\boldsymbol{\sigma}(S)\right] + \Delta\mu \frac{\partial}{\partial\mu} \mathbf{E}_{N(\mu_{S},\sigma_{S}^{2})}\left[\boldsymbol{\sigma}(S)\right]_{\mu = \mu_{S}}$$

Has closed form!

$$+\Delta \sigma^2 \frac{\partial}{\partial \sigma^2} \mathbf{E}_{N(\mu_S, \sigma^2)} [\sigma(S)] \bigg|_{\sigma^2 = \sigma}$$