INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

Computer Science and Engineering

Switching Circuits and Logic Design (CS21002)

Assignment – 1 (Spring)

Group: _____ *Marks:* 30

Answer ALL the questions using xournal or similar software to edit the PDF

Q1: Given that $(16)_{10} = (100)_b$, determine the value of b.

4

Q2:	The n -bit fixed-point representation of an unsigned real number X uses f bits for the fraction part. What is the range of decimal values for X in this representation?

Q3: Encode each	of the ten decim	al digits 0, 1,	., 9 by means	of the weighte	ed binary code	e 7 3 2 -1.	

Q4:	Design a circuit which converts a four bit input binary number to a five bit output representing the radix-12
	representation of the input number and a carry-out bit. You may use a 4-bit binary adder block and basic
	logic gates.

8

Q5:	Prove that the Hamming distance satisfies the triangle inequality. That is, show that $HD(x,y)+HD(y,z)\geq 0$
	H(x,z).

8