MI VPE API

Version 2.09

REVISION HISTORY

Revision No.	Description	Date
2.03	Initial release	04/12/2018
2.04	Updated MI_VPE_SetPortMode	01/02/2019
2.05	Added MI_VPE_SetPortShowPosition	03/20/2019
2.06	 Added MI_VPE_IspInitPara_t 	05/17/2019
2.07	Added MI_VPE_AllocIspDataBufAdded MI_VPE_FreeIspDataBuf	05/31/2019
2.08	Added MI_VPE_LDCBegViewConfigAdded MI_VPE_LDCEndViewConfigAdded MI_VPE_LDCSetViewConfig	09/16/2019
2.09	Added shutter/gain short to MI_VPE_IspInitPara_t	11/08/2019

TABLE OF CONTENTS

RE\	EVISION HISTORYi			
TAE			ENTS	
1.		_		
	1.1.	模块说明	月	1
	1.2.	流程框图		1
		1.2.1	328Q/329D/326D 框图	1
		1.2.2	325/325DE/327DE 框图	1
		1.2.3	336D/336Q/339G 框图	2
		1.2.4	335/337DE 框图	2
	1.3.	关键字记	兑明	
2.				
	2.1.	_	_CreateChannel	
	2.1.		_Createchannel	
	2.3.		GetChannelAttr	
	2.4.		SetChannelAttr	
	2.5.	_	StartChannel	
	2.6.	_	_stopChannel	
	2.7.		 _EnablePort	
	2.8.	MI_VPE	_DisablePort	.15
	2.9.	MI_VPE	_SetChannelParam	.16
	2.10.	MI_VPE	_GetChannelParam	.17
	2.11.	MI_VPE	_SetChannelCrop	.18
			_GetChannelCrop	
		_	_GetChannelRegionLuma	
		_	_SetChannelRotation	
		_	_GetChannelRotation	
			_SetPortMode	
			_GetPortMode	
			_SetPortCrop	
			_GetPortCrop	
			_SetPortShowPosition	
		_		
			_Riloc_IspDataBul	
		_	_LDCBegViewConfig	
			_LDCEndViewConfig	
		_	_LDCSetViewConfig	
			SkipFrame	
3.		_		
	3.1.		_CHANNEL	
	3.2.	MI_VPE	_PORT	.45
	3.3.	MI_VPE	_RunningMode_e	.45

4.	错误	[7] 	. 59
		MI_VPE_IspInitPara_t	
		MI_VPE_PortMode_t	
		MI_VPE_RegionInfo_t	
		MI_VPE_ChannelPara_t	
		MI_VPE_3DNR_Level_e	
		MI_VPE_HDRType_e	
	3.8.	MI_VPE_PqParam_t	50
	3.7.	MI_VPE_ChannelAttr_t	48
		MI_VPE_IspApiHeader_t	
	3.5.	MI_VPE_ChnPortMode_e	47
	3.4.	MI_VPE_SensorChannel_e	46

1. 概述

1.1. 模块说明

VPE(Video Process Engine)图像处理引擎,支持对一幅输入的图像首先进行图像质量调整,包括降噪,锐化,亮度调整等,然后再分别缩放到一定的分辨率通过各个 output port 口输出。 该模块另外包含 HDR,旋转,裁剪等功能。

1.2. 流程框图

1.2.1 328Q/329D/326D 框图

1.2.2 325/325DE/327DE 框图

1.2.3 336D/336Q/339G 框图

1.2.4 335/337DE 框图

※ 注意

框图中8x2/2x2/16x16表示该位置宽/高 alignment限制。

1.3. 关键字说明

• Channel

VPE module 处理通道,各通道分时复用 VPE 硬件。

ISP

Image Signal Processing 图像信号处理单元,负责图像降噪/颜色渲染/亮度调整等功能。

• SCL

Scaler(缩放)缩写。

Port

端口, VPE 包含一个 input port, output port 端口分布参考<u>流程框图</u>。

• 3DNR

- 3D Denoising, 3D 降噪。
- 2D 降噪:对一个像素将其与周围像素平均,平均后噪声降低,但缺点是会造成画面模糊;
- 3D 降噪: 增添了时域处理, 2d 降噪只考虑一帧图像,而3d 降噪进一步考虑帧与帧之间的时域关系,对每个像素进行时域上的平均。

HDR

High-Dynamic Range, 高动态范围图像。

Rotation

将原始图像绕中心点做旋转 0/90/180/270°

● Crop 裁剪, 对输入图像进行裁剪。

● HVSP H/V 方向 Scaling Process。

● LDC lens distortion correction 镜头畸变矫正。

● **ZOOM** 快速放大/缩小, 电子变焦功能。

● View 窗口,内部 LDC 功能中的一个窗口。

2. API 参考

该功能模块提供以下 API:

API 名	功能
MI_VPE_CreateChannel	创建一个 VPE channel
MI_VPE_DestroyChannel	销毁一个 VPE channel
MI_VPE_GetChannelAttr	获取一个 VPE channel 属性
MI_VPE_SetChannelAttr	设定一个 VPE channel 属性
MI VPE StartChannel	启用 VPE channel
MI_VPE_StopChannel	禁用 VPE channel
MI_VPE_EnablePort	启用 VPE 端口
MI_VPE_DisablePort	禁用 VPE 端口
MI VPE SetChannelParam	设定 VPE channel 参数
MI_VPE_GetChannelParam	获取 VPE channel 参数
MI_VPE_SetChannelCrop	设定 VPE channel crop window
MI_VPE_GetChannelCrop	获取 VPE channel crop window
MI_VPE_GetChannelRegionLuma	获取 VPE 通道 Luma 直方图统计
MI_VPE_SetChannelRotation	设定 VPE 通道视频旋转类型
MI_VPE_GetChannelRotation	获取 VPE 通道视频旋转类型
MI VPE SetPortMode	设定 VPE 端口模式
MI_VPE_GetPortMode	获取 VPE 端口模式
MI_VPE_SetPortCrop	设定 VPE out port crop window
MI_VPE_GetPortCrop	获取 VPE out port crop window 设置参数
MI_VPE_SetPortShowPosition	设置 vpe output port 显示位置
MI_VPE_GetPortShowPosition	获取 vpe output port 显示位置
MI VPE Alloc IspDataBuf	申请 MI_ISP API data Buffer

API 名	功能
MI VPE Free IspDataBuf	释放 MI_ISP API data Buffer
MI VPE LDCBegViewConfig	view 开始配置
MI VPE LDCEndViewConfig	View 结束配置
MI VPE LDCSetViewConfig	View 配置 config bin buffer
MI_VPE_SkipFrame	设置跳过 frame num

2.1. MI_VPE_CreateChannel

▶ 描述

创建一个 VPE channel。

▶ 语法

MI_S32 MI_VPE_CreateChannel(<u>MI_VPE_CHANNEL_VpeCh, MI_VPE_ChannelAttr_t</u>*pstVpeChAttr);

参数

参数名称	描述	输入/输出
VpeCh	VPE channel 号。	输入
pstVpeChAttr	VPE channel 属性指针。	输入

▶ 返回值

- ▶ 需求
- 头文件: mi_vpe.h
- 库文件: libmi_vpe. a/libmi_vpe. so
- ※ 注意
- Realtime mode 下,不支持多 channel。

▶ 举例

```
MI VPE Channel Attr t stChannel Vpe Attr;
MI SYS WindowRect t stChnCropWin;
MI VPE CHANNEL VpeChannel=0;
MI VPE PORT VpePort=0;
MI VPE ChannelPara t stChannelVpeParam;
MI SYS Rotate e eRot = E MI SYS ROTATE NONE;
MI SYS WindowRect t stPortCropWin;
MI S32 s32Ret = MI SUCCESS;
MI SNR PAD ID e eSnrPadId = E MI SNR PAD ID 0;
MI SNR PlaneInfo t stSnrPlaneOInfo;
MI U32 u32CapWidth = 0, u32CapHeight = 0;
MI_SYS_PixelFormat_e ePixFormat;
memset(&stChannelVpeAttr, 0x0, sizeof(MI VPE ChannelAttr t));
memset(&stChannelVpeParam, 0x0, sizeof(MI VPE ChannelPara t));
memset(&stSnrPlaneOInfo, 0x0, sizeof(MI SNR PlaneInfo t));
memset(&stPortCrop, 0x0, sizeof(MI SYS WindowRect t));
memset(&stChnCropWin, 0x0, sizeof(MI SYS WindowRect t));
MI_SNR_GetPlaneInfo(eSnrPadId, 0, &stSnrPlaneOInfo);
```

```
u32CapWidth = stSnrPlaneOInfo.stCapRect.u16Width;
u32CapHeight = stSnrPlaneOInfo.stCapRect.u16Height;
ePixFormat = (MI SYS PixelFormat e) RGB BAYER PIXEL(stSnrPlaneOInfo.ePixPrecision,
stSnrPlaneOInfo.eBayerId);
stChannelVpeAttr.u32MaxW = u32CapWidth ;
stChannelVpeAttr.u32MaxH = u32CapHeight ;
stChannelVpeAttr.bNREn= FALSE;
stChannelVpeAttr.bEdgeEn= FALSE;
stChannelVpeAttr.bESEn= FALSE;
stChannelVpeAttr.bContrastEn= FALSE;
stChannelVpeAttr.bUVInvert= FALSE;
stChannelVpeAttr.ePixFmt = ePixFormat;
stChannelVpeAttr.eRunningMode = E_MI_VPE RUN REALTIME MODE;
stChannelVpeAttr.eSensorBindId= E MI VPE SENSORO;
s32Ret = MI VPE CreateChannel(VpeChannel, &stChannelVpeAttr);
if(s32Ret != MI SUCCESS)
   return s32Ret;
s32Ret = MI VPE GetChannelAttr(VpeChannel, & stChannelVpeAttr);
if(s32Ret != MI SUCCESS)
   return s32Ret;
stChannelVpeParam.eHDRType = E MI VPE HDR TYPE OFF;
stChannelVpeParam.e3DNRLevel = E MI VPE 3DNR LEVEL2;
stChannelVpeParam.bMirror = FALSE;
stChannelVpeParam.bFlip = FALSE;
s32Ret =MI VPE SetChannelParam(VpeChannel, &stChannelVpeParam);
if(s32Ret != MI SUCCESS)
{
   return s32Ret;
}
s32Ret =MI VPE SetChannelRotation(VpeChannel, eRot);
if(s32Ret != MI SUCCESS)
   return s32Ret;
s32Ret = MI VPE GetChannelCrop(VpeChannel, &stCropWin);
if(s32Ret != MI SUCCESS)
   return s32Ret;
stChnCropWin .u16X = 0;
stChnCropWin .u16Y = 0;
stChnCropWin .u16Width = 0;
stChnCropWin .u16Height = 0;
s32Ret = MI VPE SetChannelCrop(VpeChannel, & stChnCropWin);
if(s32Ret != MI SUCCESS)
```

```
return s32Ret;
s32Ret = MI VPE StartChannel (VpeChannel);
if(s32Ret != MI SUCCESS)
   return s32Ret;
stPortCrop.u16X = 0;
stPortCrop.u16Y = 0;
stPortCrop.u16Width = 0;
stPortCrop.u16Height = 0;
s32Ret=MI VPE SetPortCrop(VpeChannel, VpePort, &stPortCrop);
if(s32Ret != MI SUCCESS)
   return s32Ret;
stVpeMode.u16Width = u32CapWidth;
stVpeMode.u16Height = u32CapHeight;
stVpeMode.ePixelFormat = E MI SYS PIXEL FRAME YUV SEMIPLANAR 420;
stVpeMode.eCompressMode = E MI SYS COMPRESS MODE NONE;
stVpeMode.bMirror = FALSE;
stVpeMode.bFlip = FALSE;
s32Ret =MI VPE SetPortMode(VpeChannel, VpePort, &stVpeMode);
if(s32Ret != MI SUCCESS)
   return s32Ret;
s32Ret = MI VPE EnablePort(VpeChannel, VpePort);
if(s32Ret != MI SUCCESS)
   return s32Ret;
/**********
/* call sys bind interface */
/**********
/**********
/* Exit call sys unbind interface */
/*********/
s32Ret = MI VPE StopChannel (VpeChannel);
if(s32Ret != MI SUCCESS)
   return s32Ret;
s32Ret = MI VPE DisablePort (VpeChannel, VpePort);
if(s32Ret != MI SUCCESS)
   return s32Ret;
}
```

```
s32Ret = MI VPE DestroyChannel (VpeChannel);
if(s32Ret != MI_SUCCESS)
{
    return s32Ret;
}
```

> 相关主题

MI VPE DestroyChannel

2.2. MI_VPE_DestroyChannel

▶ 描述

销毁一个 VPE channel.

▶ 语法

MI_S32 MI_VPE_DestroyChannel (MI_VPE_CHANNEL VpeCh);

▶ 参数

参数名称	描述	输入/输出
VpeCh	VPE channel 号。	输入

▶ 返回值

- ▶ 需求
- 头文件:mi_vpe.h
- 库文件:libmi_vpe.a/libmi_vpe.so
- ※ 注意

无

▶ 举例

请参见 MI VPE CreateChannel

▶ 相关主题

MI VPE CreateChannel

2.3. MI_VPE_GetChannelAttr

▶ 描述

获取一个 VPE channel 属性.

▶ 语法

MI_S32 MI_VPE_GetChannelAttr($\underline{\text{MI VPE CHANNEL}}$ VpeCh, $\underline{\text{MI VPE ChannelAttr }t}$ * pstVpeChAttr);

▶ 参数

参数名称	描述	输入/输出
VpeCh	VPE channel 号。	输入
pstVpeChAttr	VPE channel 属性指针。	输入

▶ 返回值

▶ 需求

● 头文件:mi_vpe.h

● 库文件:libmi_vpe.a/libmi_vpe.so

※ 注意

无

▶ 举例

请参见 MI VPE CreateChannel

▶ 相关主题

MI_VPE_SetChannelAttr

2.4. MI_VPE_SetChannelAttr

▶ 描述

设定一个 VPE channel 属性.

▶ 语法

MI_S32 MI_VPE_SetChannelAttr (<u>MI_VPE_CHANNEL</u> VpeCh, <u>MI_VPE_ChannelAttr_t</u> *pstVpeChAttr);

▶ 参数

参数名称	描述	输入/输出
VpeCh	VPE channel 号。	输入
pstVpeChAttr	VPE channel 属性指针。	输入

▶ 返回值

非 0 失败,参照错误码。

▶ 需求

● 头文件: mi_vpe.h

● 库文件:libmi_vpe.a/libmi_vpe.so

※ 注意

只有在 DVR mode 下 <u>MI VPE ChannelAttr t</u> 中的 bNrEn, bEdgeEn, bEsEn, bContrastEn, bUvInvert 参数可以被更改。

▶ 举例

请参见 MI VPE CreateChannel

▶ 相关主题

MI_VPE_GetChannelAttr

2.5. MI_VPE_StartChannel

▶ 描述

启用 VPE channel.

▶ 语法

MI_S32 MI_VPE_StartChannel(MI_VPE_CHANNEL_VpeCh);

▶ 参数

参数名称	描述	输入/输出
VpeCh	VPE channel 号。	输入

▶ 返回值

返回值
$$\begin{cases} 0 & 成功。 \\ & & \\ & & \\ \# \, 0 & 失败,参照错误码。$$

▶ 需求

● 头文件: mi_vpe.h

● 库文件:libmi_vpe.a/libmi_vpe.so

※ 注意

无

▶ 举例

请参见 MI VPE CreateChannel

▶ 相关主题

MI_VPE_StopChannel

2.6. MI_VPE_StopChannel

▶ 描述

禁用 VPE channel.

▶ 语法

MI_S32 MI_VPE_StopChannel(MI_VPE_CHANNEL_VpeCh);

▶ 参数

参数名称	描述	输入/输出
VpeCh	VPE channel 号。	输入

▶ 返回值

- ▶ 需求
- 头文件: mi_vpe.h
- 库文件:libmi_vpe.a/libmi_vpe.so
- ※ 注意

当改变 channel 属性时需要先调用此 api,将 channel 禁用, channel 属性设置完后才重新开启。

▶ 举例

请参见 MI VPE CreateChannel

▶ 相关主题

MI VPE StartChannel

2.7. MI_VPE_EnablePort

▶ 描述

启用 VPE 端口.

▶ 语法

MI_S32 MI_VPE_EnablePort(MI_VPE_CHANNEL_VpeCh, MI_VPE_PORT s32VpePort);

▶ 参数

参数名称	描述	输入/输出
VpeCh	VPE channel 号。	输入
s32VpePort	Vpe Port 号。	输入

▶ 返回值

- ▶ 需求
- 头文件: mi_vpe.h
- 库文件:libmi_vpe.a/libmi_vpe.so
- ※ 注意

无

▶ 举例

请参见 MI VPE CreateChannel

▶ 相关主题

MI VPE DisablePort

2.8. MI VPE DisablePort

▶ 描述

禁用 VPE 端口.

▶ 语法

MI_S32 MI_VPE_DisablePort(<u>MI_VPE_CHANNEL</u> VpeCh, <u>MI_VPE_PORT</u> VpePort);

▶ 参数

参数名称	描述	输入/输出
VpeCh	VPE channel 号。	输入
VpePort	Vpe Port 号。。	输入

▶ 返回值

▶ 需求

● 头文件: mi vpe.h

● 库文件:libmi_vpe.a/libmi_vpe.so

※ 注意

当改变 port 属性时,需要先将 port 禁用掉,设置完 port 属性后再重新启用。

▶ 举例

请参见 MI_VPE_CreateChannel

▶ 相关主题

MI_VPE_EnablePort

2.9. MI_VPE_SetChannelParam

▶ 描述

设定 VPE channel 参数.

▶ 语法

MI_S32 MI_VPE_SetChannelParam (<u>MI_VPE_CHANNEL_VpeCh,MI_VPE_ChannelPara_t_*</u> *pstVpeParam);

▶ 参数

参数名称	描述	输入/输出
VpeCh	VPE channel 号。	输入
pstVpeParam	通道参数设置	输入

▶ 返回值

▶ 需求

● 头文件: mi_vpe.h

● 库文件:libmi_vpe.a/libmi_vpe.so

※ 注意

- Channel 已经创建成功。pstVpeParam 详见 MI VPE ChannelPara t 说明。
- 先通过 MI_VPE_GetChannelParam 获取当前参数,再进行设定。
- ▶ 举例

请参见 MI VPE CreateChannel

▶ 相关主题

MI VPE GetChannelParam

2.10. MI_VPE_GetChannelParam

▶ 描述

获取 VPE channel 参数。

▶ 语法

$$\label{eq:mi_sys} \begin{split} &\text{MI_S32 MI_VPE_GetChannelParam } (\underline{\text{MI_VPE_CHANNEL}} \ VpeCh, \underline{\text{MI_VPE_ChannelPara_t_}} \\ &*pstVpeParam); \end{split}$$

▶ 参数

参数名称	描述	输入/输出
VpeCh	VPE channel 号。	输入
pstVpeParam	通道参数设置	输入

▶ 返回值

▶ 需求

● 头文件: mi vpe.h

● 库文件:libmi_vpe.a/libmi_vpe.so

※ 注意

● Channel 已经创建成功。pstVpeParam 详见 MI_VPE_ChannelPara_t 说明。

▶ 举例

无

▶ 相关主题

MI VPE SetChannelParam

2.11. MI_VPE_SetChannelCrop

▶ 描述

设定 VPE channel crop window。

▶ 语法

MI_S32 MI_VPE_SetChannelCrop (<u>MI_VPE_CHANNEL</u> VpeCh, MI_SYS_WindowRect_t *pstCropInfo);

> 参数

参数名称	描述	输入/输出
VpeCh	VPE channel 号。	输入
pstCropInfo	通道 Crop Window 参数设置	输入

▶ 返回值

▶ 需求

● 头文件:mi_vpe.h

● 库文件:libmi_vpe.a/libmi_vpe.so

MI VPE API

Version 2.09

※ 注意

芯片	是否支持
328Q/329D/326D	支持
325/325DE/327DE	不支持
336D/336Q/339G	LDC/ZOOM 场景下支持
335/337DE	不支持

● Channel 已经创建成功。Crop window 的设定都是基于原始画面大小。

▶ 举例

无

► 相关主题

MI_VPE_GetChannelCrop

2.12. MI_VPE_GetChannelCrop

▶ 描述

获取 VPE channel crop window。

▶ 语法

MI_S32 MI_VPE_GetChannelCrop(<u>MI_VPE_CHANNEL</u> VpeCh, MI_SYS_WindowRect_t *pstCropInfo);

▶ 参数

参数名称	描述	输入/输出
VpeCh	VPE channel 号。	输入
pstCropInfo	通道 Crop Window 参数设置	输出

▶ 返回值

▶ 需求

● 头文件: mi_vpe.h

● 库文件:libmi_vpe.a/libmi_vpe.so

※ 注意

● Channel 已经创建成功。

▶ 举例

无

▶ 相关主题

MI_VPE_SetChannelCrop

2.13. MI_VPE_GetChannelRegionLuma

▶ 描述

获取 VPE 通道 Luma 直方图统计。

▶ 语法

MI_S32 MI_VPE_GetChannelRegionLuma (MI_VPE_CHANNEL VpeCh, MI_VPE_RegionInfo_t *pstRegionInfo, MI_U32 *pu32LumaData,MI_S32 s32MilliSec);

▶ 参数

参数名称	参数名称 描述		
VpeCh	VPE channel 号。	输入	
	取值范围:[0, MI VPE MAX CHANNEL NUM)。		
pstRegionInfo	指定统计区域,及数量。	输入	
pu32LumaData	输出统计数据	输出	
s32MilliSec	API 等待的 timeout,单位 ms	输入	

▶ 返回值

返回值
$$\begin{cases} 0 & 成功。 \\ \\ & \\ \# 0 & 失败,参照错误码。 \end{cases}$$

▶ 需求

● 头文件: mi_vpe.h

● 库文件:libmi_vpe.a/libmi_vpe.so

※ 注意

● 仅 SAV538E/S, SAV638E/S, SAV838E/S 芯片支持该 API

● Channel 已经创建成功。

▶ 举例

无

▶ 相关主题

无

2.14. MI_VPE_SetChannelRotation

▶ 描述

设定 VPE 通道视频旋转类型.

▶ 语法

MI_S32 MI_VPE_SetChannelRotation (MI_VPE_CHANNEL_VpeCh, MI_SYS_Rotate_e eType);

> 参数

参数名称	描述	输入/输出
VpeCh	VPE channel 号。	输入
еТуре	旋转角度设定	输入

▶ 返回值

▶ 需求

● 头文件: mi_vpe.h

● 库文件: libmi_vpe. a/libmi_vpe. so

※ 注意

芯片	使用方式
328Q/329D/326D	两个 channel RunningMode 分别用 Top/Bottom 配合, 该 API 用在 Bottom channel 上。
325/325DE/327DE	需要 Sensor Mirror/flip 配合: Rot 90 + Sensor Mirror Rot 180 + Sensor Mirror/flip Rot 270 + Sensor Flip
336D/336Q/339G	单纯使用
335/337DE	单纯使用

▶ 举例

328Q/329D/326D Rotation 使用方法如下:

```
stVpeChannelInfo.eRunningMode = E_MI_VPE_RUN_REALTIME_TOP_MODE;
stVpeChannelInfo.eBindSensorId = E_MI_VPE_SENSOR0;
stVpeChannelInfo.bRotation = TRUE;
STCHECKRESULT(MI_VPE_CreateChannel(vpechn_top, &stVpeChannelInfo));
STCHECKRESULT(MI_VPE_StartChannel(vpechn_top));

VpePort=0;//only can use port0
STCHECKRESULT(MI_VPE_SetPortMode(vpechn_top, VpePort, &stVpeMode));
STCHECKRESULT(MI_VPE_EnablePort(vpechn_top, VpePort));

stVpeChannelInfo.eRunningMode = E_MI_VPE_RUN_REALTIME_BOTTOM_MODE;
stVpeChannelInfo.eBindSensorId = E_MI_VPE_SENSOR_INVALID;
stVpeChannelInfo.bRotation = TRUE;
STCHECKRESULT(MI_VPE_CreateChannel(vpechn_bot, &stVpeChannelInfo));
STCHECKRESULT(MI_VPE_StartChannel(vpechn_bot));
```

▶ 相关主题

MI VPE GetChannelRotation

2.15. MI_VPE_GetChannelRotation

▶ 描述

获取 VPE 通道视频旋转类型.

▶ 语法

MI_S32 MI_VPE_GetChannelRotation (MI_VPE_CHANNEL_VpeCh, MI_SYS_Rotate_e *pType);

▶ 参数

参数名称	描述	输入/输出
VpeCh	VPE channel 号。	输入
реТуре	旋转角度设定	输出

▶ 返回值

▶ 需求

● 头文件: mi_vpe.h

● 库文件:libmi_vpe.a/libmi_vpe.so

- ※ 注意
- Channel 已经创建成功。
- ▶ 举例

无

相关主题

 $\underline{\texttt{MI_VPE_SetChannelRotation}}$

2.16. MI_VPE_SetPortMode

▶ 描述

设定 VPE 端口模式.

▶ 语法

MI_S32 MI_VPE_SetPortMode(<u>MI_VPE_CHANNEL_VpeCh</u>, <u>MI_VPE_PORT_VpePort</u>, <u>MI_VPE_PortMode_t</u> *pstVpeMode);

▶ 参数

参数名称	描述	输入/输出
VpeCh	VPE channel 号。	输入
VpePort	VPE port 号。	输入
pstVpeMode	VPE 端口模式	输出

▶ 返回值

▶ 需求

● 头文件: mi_vpe.h

● 库文件:libmi_vpe.a/libmi_vpe.so

※ 注意

• Max width/height

芯片	Port0	Port1	Port2	Port3	Port4(IR port)
328Q/329D/326D	MaxWidth = 3840	MaxWidth = 2688	MaxWidth = 2688	MaxWidth = 3840	No Scaling: Width= 1/2 SrcWidth Height= 1/2 SrcHeigh
325/325DE/327DE	No Scaling: Width= SrcWidth Height=SrcHeigh	MaxWidth = 2688	MaxWidth = 2688	No support	No support
336D/336Q/339G	MaxWidth = 3840	MaxWidth = 3840	MaxWidth = 3840		No Scaling: Width= 1/2 SrcWidth Height= 1/2 SrcHeigh
335/337DE	MaxWidth = 2688	MaxWidth = 2688	MaxWidth = 1920	MaxWidth = 1920	No support

• Pixel Format

芯片	Port0	Port1	Port2	Port3	Port4 (IR port)
328Q/329D/326D	YUV420/YUV422/ ARGB8888/BGRA8888	同 Port0	同 Port0	同 Port0	YUV420 NV12
325/325DE/327DE	YUV420/YUV422	同 Port0	同 Port0	同 Port0	No support
336D/336Q/339G	YUV420/YUV422/ ARGB8888/BGRA8888/ABGR8888	同 Port0	同 Port0	No Ldc/Zoom: YUV420/YUV422 Ldc/Zoom:	YUV420 NV12
335/337DE	YUV420/YUV422	同 Port0	同 Port0	同 Port0	No support

● 335/337DE中Port3是virtual port, 通过Realtime Bind Divp 输出。

▶ 举例

无

▶ 相关主题

MI VPE GetPortMode

2.17. MI_VPE_GetPortMode

▶ 描述

获取 VPE 端口模式.

▶ 语法

$$\label{eq:mi_sys} \begin{split} &\text{MI_S32 MI_VPE_GetPortMode} \ (\underline{\text{MI_VPE_CHANNEL}} \ V pe\text{Ch}, \ \underline{\text{MI_VPE_PortMode_t_*pstVpeMode}}; \end{split}$$

> 参数

参数名称	描述	输入/输出
VpeCh	VPE channel 号。	输入
VpePort	VPE port 号。	输入
pstVpeMode	VPE 端口模式	输出

▶ 返回值

▶ 需求

● 头文件:mi_vpe.h

● 库文件:libmi_vpe.a/libmi_vpe.so

※ 注意

无

▶ 举例

无

▶ 相关主题

MI VPE SetPortMode

2.18. MI_VPE_SetPortCrop

▶ 描述

设定 VPE output port crop window.

▶ 语法

MI_S32 MI_VPE_SetPortCrop (<u>MI_VPE_CHANNEL</u> VpeCh, <u>MI_VPE_PORT</u> VpePort, MI_SYS_WindowRect_t *pstOutCropInfo);

▶ 参数

参数名称	描述	输入/输出
VpeCh	VPE channel 号。	输入
VpePort	VPE port 号。	输入
*pstOutCropInfo	Output port crop window 设置	输入

▶ 返回值

▶ 需求

● 头文件: mi_vpe.h

● 库文件:libmi_vpe.a/libmi_vpe.so

※ 注意

● 328Q/329D/326D 各个 port crop 如下:

由于 port1,2的 Source 是 port0的 output:

- 1. port0 enable, port1,2 的 crop win < port0 size,
- 2. port0 disable, port1,2 的 crop win < Vpe input
- 325/325DE/327DE 336D/336Q/339G 335/337DE port crop 如下:

由于 port2 的 Source 是 port1 的 output:

- 1. port1 enable, port2 的 crop win < port1 size;
- 2. port1 disable, port2 的 crop win < Vpe input.
- ▶ 举例

无

▶ 相关主题

MI VPE GetPortCrop

2.19. MI_VPE_GetPortCrop

▶ 描述

获取 VPE out port crop window 设置参数。

▶ 语法

$$\label{eq:mi_sys} \begin{split} & MI_S32\ MI_VPE_GetPortCrop\ (\underline{MI_VPE_CHANNEL}_VpeCh,\ \underline{MI_VPE_PORT}_VpePort,\\ & MI_SYS_WindowRect_t \quad *pstOutCropInfo); \end{split}$$

▶ 参数

参数名称	描述	输入/输出
VpeCh	VPE channel 号。	输入
VpePort	VPE port 号。	输入
*pstOutCropInfo	Output port crop window 参数	输出

▶ 返回值

- ▶ 需求
- 头文件: mi_vpe.h
- 库文件:libmi_vpe.a/libmi_vpe.so
- ※ 注意

无

▶ 举例

无

▶ 相关主题

MI_VPE_SetPortCrop

2.20. MI_VPE_SetPortShowPosition

▶ 描述

设置 vpe output port 显示位置

▶ 语法

MI_S32 MI_VPE_SetPortShowPosition(MI_VPE_CHANNEL VpeCh, MI_VPE_PORT VpePort,

MI_SYS_WindowRect_t *pstPortPositionInfo);

▶ 参数

参数名称	描述	输入/输出
VpeCh	VPE channel 号。	输入
VpePort	VPE port 号。	输入
* pstPortPositionInfo	显示位置参数	输入

▶ 返回值

▶ 需求

● 头文件:mi_vpe.h

● 库文件:libmi_vpe.a/libmi_vpe.so

※ 注意

- 1. 在没有调用此 API 的情况下, 默认是 Show width/height = PortMode width/height 显示。
- 2. 需要在 <u>MI VPE SetPortMode</u> 后设置,没有 show 画面的区域将填黑。 PortMode width/height 和 Show width/height 关系如下图

▶ 举例

无

▶ 相关主题

MI VPE GetPortShowPosition

2.21. MI_VPE_GetPortShowPosition

▶ 描述

获取 vpe output port 显示位置

▶ 语法

 $MI_S32\ MI_VPE_GetPortShowPosition(\underline{MI_VPE_CHANNEL}\ VpeCh,\ \underline{MI_VPE_PORT}\ VpePort,\\ MI_SYS_WindowRect_t\ *pstPortPositionInfo);$

> 参数

参数名称	描述	输入/输出
VpeCh	VPE channel 号。	输入
VpePort	VPE port 号。	输入
* pstPortPositionInfo	显示位置参数	输出

▶ 返回值

▶ 需求

● 头文件: mi vpe.h

● 库文件:libmi_vpe.a/libmi_vpe.so

※ 注意

无

▶ 举例

无

▶ 相关主题

MI VPE SetPortShowPosition

2.22. MI_VPE_Alloc_IspDataBuf

▶ 描述

申请 MI_ISP API Data Buffer

▶ 语法

MI_S32 MI_VPE_Alloc_IspDataBuf(MI_U32 u32Size,void **pUserVirAddr);

▶ 参数

参数名称	描述	输入/输出
u32Size	Alloc Buffer Size	输入
**pUserVirAddr	User Buffer 指针地址	输出

▶ 返回值

▶ 需求

● 头文件: mi_vpe.h

● 库文件: libmi_vpe. a/libmi_vpe. so

※ 注意

一个线程申请一块 isp data buffer,避免线程之间 buffer 互踩

▶ 举例

```
#define MI_ISP_MAX_DATA_SIZE (80*1024)
MI_VPE_Alloc_IspDataBuf(MI_ISP_MAX_DATA_SIZE, &pIspBuffer);
MI_ISP_IQ_COLORTOGRAY_TYPE_t *pstColorToGray = (MI_ISP_IQ_COLORTOGRAY_TYPE_t
*)pIspBuffer;
MI_ISP_IQ_GetColorToGray( Channel, pstColorToGray);
if(pstColorToGray->bEnable == SS_TRUE)
    pstColorToGray->bEnable = SS_FALSE;
else
    pstColorToGray->bEnable = SS_TRUE;
MI_ISP_IQ_SetColorToGray( Channel, pstColorToGray);

MI_ISP_IQ_CONTRAST_TYPE_t *pstContrast = (MI_ISP_IQ_CONTRAST_TYPE_t *)pIspBuffer;
MI_ISP_IQ_GetContrast( Channel, pstContrast);
MI_ISP_IQ_SetContrast( Channel, pstContrast);
MI_ISP_IQ_SetContrast( Channel, pstContrast);
```

▶ 相关主题

MI VPE Free IspDataBuf

2.23. MI_VPE_Free_IspDataBuf

▶ 描述

释放 MI ISP API Data 申请的 Buffer

▶ 语法

MI_S32 MI_VPE_Free_IspDataBuf(void *pUserBuf);

▶ 参数

参数名称	描述	输入/输出
*pUserBuf	申请的 Isp Api Data Buffer 指针	输入

▶ 返回值

返回值
$$\left\{ egin{array}{lll} 0 & ext{ 成功。} \\ & & & & \\ \hline # 0 & ext{ 失败,参照错误码。 \end{array} \right.$$

▶ 需求

● 头文件: mi vpe.h

● 库文件: libmi vpe. a/libmi vpe. so

※ 注意

和 MI_VPE_Alloc_IspDataBuf 成对出现

▶ 举例

见 MI VPE Alloc IspDataBuf 举例

▶ 相关主题

MI VPE Alloc IspDataBuf

2.24. MI_VPE_LDCBegViewConfig

▶ 描述

开始配置所有 Ldc 窗口的 bin 档

▶ 语法

MI_S32 MI_VPE_LDCBegViewConfig(MI_VPE_CHANNEL VpeCh);

参数

参数名称	描述	输入/输出
VpeCh	VPE channel 号。	输入

▶ 返回值

▶ 需求

- 头文件: mi vpe.h
- 库文件:libmi_vpe.a/libmi_vpe.so

※ 注意

- 1. 仅 336D/336Q/339G 芯片支持LDC 功能, MI VPE ChannelAttr t 中 bEnLdc= TRUE, 启用 LDC
- 2. 和 MI_VPE_LDCEndViewConfig 成对出现。
- 3. 在窗口数量发生变化时才需要使用此 API, 如果只是单独更换其中某一个窗口属性不需要调用此 api。

▶ 举例

```
MI_VPE_LDCBegViewConfig(vpechn);
for(i=0; i<viewnum;i++)
{
    MI_VPE_LDCSetViewConfig(vpechn, ldcBinBuffer[i], u32LdcBinSize[i]);
    free(ldcBinBuffer[i]);
}
MI_VPE_LDCEndViewConfig(vpechn);</pre>
```

▶ 相关主题

MI VPE LDCEndViewConfig

2.25. MI_VPE_LDCEndViewConfig

▶ 描述

结束配置所有 Ldc 窗口的 bin 档

▶ 语法

MI_S32 MI_VPE_LDCEndViewConfig(MI_VPE_CHANNEL VpeCh)

> 参数

参数名称	描述	输入/输出
VpeCh	VPE channel 号。	输入

▶ 返回值

- ▶ 需求
- 头文件: mi_vpe.h
- 库文件: libmi_vpe. a/libmi_vpe. so
- ※ 注意
- 1. 仅 336D/336Q/339G 芯片支持 LDC 功能,MI_VPE_ChannelAttr_t 中 bEnLdc= TRUE, 启用 LDC
- 2. 和 MI VPE LDCBeqViewConfig 成对出现。
- 3. 在窗口数量发生变化时才需要使用此 API, 如果只是单独更换其中某一个窗口不需要调用 此 api。
- ▶ 举例

见 MI VPE LDCBegViewConfig 举例。

▶ 相关主题

MI_VPE_LDCBegViewConfig

2.26. MI_VPE_LDCSetViewConfig

▶ 描述

配置Ldc view 窗口Config bin 档。

▶ 语法

MI_S32 MI_VPE_LDCSetViewConfig(MI_VPE_CHANNEL VpeCh, void *pConfigAddr, MI_U32 u32ConfigSize);

▶ 参数

参数名称	描述	输入/输出
VpeCh	VPE channel 号。	输入
pConfigAddr	Bin buffer 指针地址	输入
u32ConfigSize	Bin buffer size	输入

▶ 返回值

▶ 需求

● 头文件: mi vpe.h

● 库文件:libmi_vpe.a/libmi_vpe.so

※ 注意

1. 仅 336D/336Q/339G 芯片支持 LDC 功能, MI VPE ChannelAttr t 中 bEnLdc= TRUE, 启用 LDC

2. 如果没有发生窗口数量变化, 只是改变某几个窗口 bin buffer 时, 该 api 可以单独使用; 在 窗口数量发生变化时,需要配合 MI VPE LDCBegViewConfig 和 MI VPE LDCEndViewConfig 使用。

每一个 config bin buffer 对应一个 view 窗口的设置。

▶ 举例

见 MI VPE LDCBeqViewConfiq 举例。

▶ 相关主题

MI_VPE_LDCEndViewConfig

2.27. MI_VPE_SkipFrame

▶ 描述

设置跳过 frame num。

▶ 语法

 $MI_S32\ MI_VPE_SkipFrame(MI_VPE_CHANNEL\ VpeCh,\ MI_U32\ u32FrameNum);$

> 参数

参数名称	描述	输入/输出
VpeCh	VPE channel 号。	输入

Version 2.09

u32FrameNum	Frame 数量	输入
-------------	----------	----

▶ 返回值

▶ 需求

● 头文件:mi_vpe.h

● 库文件:libmi_vpe.a/libmi_vpe.so

※ 注意

无。

▶ 举例

无。

▶ 相关主题

无。

3. VPE 数据类型

VPE 模块相关数据类型定义如下:

MI VPE CHANNEL	定义 VPE channel 的类型
MI VPE PORT	定义 VPE port 的 类型
MI VPE RunningMode e	定义 VPE 运行模式
MI VPE SensorChannel e	定义 VPE 绑定 sensor 的 ID
MI VPE IspApiHeader t	定义 VPE 传给 ISP 数据头的信息
MI VPE ChannelAttr t	定义 VPE channel 静态属性参数
MI VPE PqParam t	定义 VPE PQ 种 NR,EdgeGain,Contrast 的设置
MI VPE HDRType e	定义 VPE HDR 开关模式
MI VPE 3DNR Level e	定义 3DNR 设置等级
MI VPE ChannelPara t	定义 VPE channel 动态属性参数
MI_VPE_RegionInfo_t	定义 VPE 通道区域统计信息
MI VPE PortMode t	定义 VPE 端口模式
MI VPE ChnPortMode e	定义 Port 的输出模式

3.1. MI_VPE_CHANNEL

▶ 说明

定义 MI_VPE_CHANNEL 类型。

▶ 定义

typedef MI_S32 MI_VPE_CHANNEL

※ 注意事项

无。

▶ 相关数据类型及接口

无。

3.2. MI_VPE_PORT

▶ 说明

定义 MI_VPE_PORT 类型。

▶ 定义

typedef MI_S32 MI_VPE_PORT

※ 注意事项

无。

▶ 相关数据类型及接口

无。

3.3. MI_VPE_RunningMode_e

▶ 说明

定义 VPE 工作在某种模式下。

E_MI_VPE_RUN_DVR_MODE: 当输入是 YUV 格式时, ISP bypass, 不经过 ISP 处理。

E_MI_VPE_RUN_CAM_MODE: 当输入是 Bayer 格式时,且数据来自 DRAM, ISP 支持分时复用,例如多 sensor 场景。

E_MI_VPE_RUN_REALTIME_MODE: 当输入是 Bayer 格式, VIF 和 ISP 之间硬件直连, ISP 不支持分时复用, 只支持一个通道, 例如单 sensor 场景。

仅在 328Q/329D/326D 芯片上支持 Top/Bottom mode, 用在 rotation 场景,Top/Bottom 是指 ISP 与 Scaler 之间的连接关系。

Top 通道没有 scaling 能力, Bottom 通道实现 Rotation, 使用方法参考 MI VPE SetChannelRotation 举例。

▶ 相关数据类型及接口

无。

3.4. MI VPE SensorChannel e

▶ 说明

定义 VPE 与哪个 sensor 有绑定关系。

```
typedef enum
{
    E_MI_VPE_SENSOR_INVALID = 0,
```

```
E_MI_VPE_SENSORO,
E_MI_VPE_SENSOR1,
E_MI_VPE_SENSOR2,
E_MI_VPE_SENSOR3,
E_MI_VPE_SENSOR_MAX
}MI_VPE_SensorChannel_e;
与硬件上 sensor PadO/1/2/3 对应。
```

当 vpe 前端不接 sensor 的时候使用 E_MI_VPE_SENSOR_INVALID。

▶ 相关数据类型及接口

 $MI_VPE_ChannelAttr_t_{o}$

3.5. MI_VPE_ChnPortMode_e

▶ 说明

定义 VPE channel 中每一个 port 的输出效果模式。

▶ 定义

※ 注意事项

参考 MI VPE ChannelAttr t 中注意说明

▶ 相关数据类型及接口

MI VPE ChannelAttr to

3.6. MI_VPE_IspApiHeader_t

▶ 说明

定义 VPE 传给 ISP 的数据信息。

无。

▶ 相关数据类型及接口

MI VPE IspApiData to

3.7. MI VPE ChannelAttr t

▶ 说明

定义 VPE channel 静态属性。

▶ 定义

```
typedef struct MI_VPE_ChannelAttr_s
    MI U16 u16MaxW;
    MI_U16 u16MaxH;
    MI_SYS_PixelFormat_e ePixFmt;
    MI VPE SensorChannel e eSensorBindId;
    MI BOOL bNrEn;
    MI_BOOL bEdgeEn;
    MI_BOOL bEsEn;
    MI BOOL bContrastEn;
    MI BOOL bUvInvert;
    MI BOOL bRotation;
    MI_VPE_RunningMode_e eRunningMode;
    MI VPE IspInitPara t tIspInitPara;
    MI BOOL bEnLdc;
    MI U32
             u32ChnPortMode;
}MI_VPE_ChannelAttr_t;
```

▶ 成员

成员名称	描述
u32MaxW	最大图像宽度。
u32MaxH	最大图像高度。
ePixFmt	输入像素格式。

成员名称	描述
eSensorBindId	前端接 sensor 时设置绑定 sensorid。
bNrEn	去噪使能。
bEdgeEn	锐化使能。
bEsEn	边缘平滑使能。
bContrastEn	对比度使能。
bUvInvert	UV 反转使能。
eRunningMode	VPE 运行模式。
bRotation	旋转功能使能。
tIspInitPara	初始 isp 参数。
bEnLdc	使能 ldc。
u32ChnPortMode	当前 channel 下 port 输出模式,由 MI_VPE_ChnPortMode_e
	成员赋值。

- 静态属性创建 channel 时设定,不可更改。
- ePixFmt: 当 eRunningMode 为 E_MI_VPE_RUN_DVR_MODE 时只支持
 E_MI_SYS_PIXEL_FRAME_YUV422_YUVV,其它的 Running mode pixel 有 sensor 转换得到,如:

 ePixFormat =
 (MI_SYS_PixelFormat_e) RGB_BAYER_PIXEL(stSnrPlaneOInfo.ePixPrecision, stSnrPlaneOInfo.eBayerId);
- eSensorBindId: vpe channel 前端 sensor 插的 sensor Pad 位置。当 eRunningMode 为 E_MI_VPE_RUN_DVR_MODE 时, eSensorBindId = E_MI_VPE_SENSOR_INVALID。
- bNrEn/bEdgeEn/bEsEn/bContrastEn/bUvInvert 只有在 MSR930 芯片上设置有效。
- 336D/336Q/339G 中u32ChnPortMode/ bEnLdc 控制如下图所示

1). 普通场景,u32ChnPortMode=0, ISP 与所有 SCL 之间 realtime 连接,硬件直连,不消耗 buffer. 2). scl1, 2 是同一个 source, scl0 和 scl1/2 可以通过 u32ChnPortMode 独立选择 source 是来自 Realtime 还是 RDMA, 一共是有 4 中组合, 例如:

```
E_MI_VPE_ZOOM_LDC_PORT1 | E_MI_VPE_ZOOM_LDC_PORT2;//all scl from RDMA 3). bEnLdc==TRUE, RDMA buffer 来自 LDC out, port3 from LDC, bEnLdc==FALSE, RDMA buffer 来自 ZOOM out, port3 from ZOOM.
```

▶ 相关数据类型及接口

MI VPE RunningMode e
MI VPE SensorChannel e
MI VPE IspInitPara t
MI VPE ChnPortMode e

3.8. MI_VPE_PqParam_t

▶ 说明

定义 VPE channel 属性参数。

▶ 定义

```
typedef struct MI_VPE_ChannelPara_s

{

    MI_U8 u8NrcSfStr; //0 ~ 255;

    MI_U8 u8NrcTfStr; //0 ~ 255

    MI_U8 u8NrySfStr; //0 ~ 255

    MI_U8 u8NryTfStr; //0 ~ 255

    MI_U8 u8NryBlendMotionTh; //0 ~ 15

    MI_U8 u8NryBlendStillTh; //0 ~ 15

    MI_U8 u8NryBlendMotionWei; //0 ~ 31

    MI_U8 u8NryBlendOtherWei; //0 ~ 31

    MI_U8 u8NryBlendStillWei; //0 ~ 31

    MI_U8 u8NryBlendStillWei; //0 ~ 31

    MI_U8 u8Contrast; //0~255

    MI_U8 u8Contrast; //0~255

} MI_VPE_ChannelPara_t;
```

▶ 成员

成员名称	描述
u8NrcSfStr	0 [~] 255, 空间域降彩噪强度
u8NrcTfStr	0 [~] 255, 时间域降彩噪强度
u8NrySfStr	0~255, 空间域降明度噪点强度
u8NryTfStr	0 [~] 255, 时间域降明度噪点强度
u8NryBlendMotionTh	0~15, 空间域明度降噪画面变动区侦测阀值
u8NryBlendStillTh	0~15, 空间域明度降噪画面静止区侦测阀值
u8NryBlendMotionWei	0~31, 画面变动区空间域降噪相对时域降噪的比重
u8NryBlendOtherWei	0~31, 静止与变动区间空间域降噪相对时域的比重

成员名称	描述	
u8NryBlendStillWei	0~31, 画面静止区空间域降噪相对时域降噪的比重	
u8EdgeGain[6]	根據不同邊緣程度,做不同的銳化效果, index 0 代表	
	代表发丝、草地等细小纹理,越往大邊緣程度越大。	
u8Contrast	影响暗区和亮区调整幅度,值越大,暗区调整越明显,	
	而亮度不會過曝	

BLEND_WEI 数值愈大空间域去噪点强度愈强,建议针对画面动态区设较强的值可达到较好的去噪点效果;针对静止区设定较弱的值,可保留较多细节。

▶ 相关数据类型及接口

MI_VPE_ChannelPara_t.

3.9. MI_VPE_HDRType_e

▶ 说明

定义 VPE 是否开 HDR, 开 HDR 是使用哪种方式。

▶ 定义

※ 注意事项

具体使用哪一种 HDR Type 可以通过 MI_SNR_GetPadInfo 接口获取。

▶ 相关数据类型及接口

MI VPE ChannelPara to

3.10. MI_VPE_3DNR_Level_e

▶ 说明

定义 VPE 开启 3DNR 等级。

▶ 定义

```
typedef enu
{
    E_MI_VPE_3DNR_LEVEL_OFF,
    E_MI_VPE_3DNR_LEVEL1,
    E_MI_VPE_3DNR_LEVEL2,
    E_MI_VPE_3DNR_LEVEL3,
    E_MI_VPE_3DNR_LEVEL4,
    E_MI_VPE_3DNR_LEVEL5,
    E_MI_VPE_3DNR_LEVEL6,
    E_MI_VPE_3DNR_LEVEL7,
    E_MI_VPE_3DNR_LEVEL7,
    E_MI_VPE_3DNR_LEVEL7,
    E_MI_VPE_3DNR_LEVEL7,
    E_MI_VPE_3DNR_LEVEL7,
    E_MI_VPE_3DNR_LEVEL9;
}
```

※ 注意事项

Create channel 后设置,为静态属性只能设置一次。 有关 3DNR 等级,会导致部分 3DNR API 参数 (NR3D PARAM t)无法使用,请参考下表。

【名称】

变量名称	LEVEL_OFF	Level 1 ~ 3	Level 4 ~ 7
u16MdThd	X	0	0
u16MdDiv	X	О	О
u8TfStr	X	О	О
u8TfStrEx	X	О	О
u16MdThdPre	X	X	О
u16MdGainPre	X	X	0
u8TfStrPre	X	X	0
u8TfStrExPre	X	X	О
u8MdThdByY[16]	X	О	О
u8MdDivByY[16]	X	О	О
u8M2SLut[16]	X	О	О
u8TfLut[16]	X	О	О
u8YSfStr	О	О	О
u8YSfBlendLut[16]	X	О	О
u8CSfStr	О	О	О
u8CSfExStr	О	О	О
u8CSfExBlendGain	X	О	О
u16CSfExBlendClip	X	О	О
u16ShpBlendLut[16]	X	О	О

▶ 相关数据类型及接口

```
MI VPE ChannelPara to
MI_ISP_IQ_SetNR3D, MI_ISP_IQ_GetNR3D.
MI_ISP_IQ_NR3D_TYPE_t.
NR3D_PARAM_t.
```

3.11. MI_VPE_ChannelPara_t

▶ 说明

定义 VPE 开启 3DNR 等级。

```
MI_VPE_3DNR_Level_e
MI_BOOL
MI_BOOL
MI_BOOL
MI_BOOL
MI_BOOL
MI_BOOL
MI_BOOL
MI_BOOL
MI_VPE_ChannelPara_t;
e3DNRLevel;
bMirror;
bFlip;
bWdrEn; //Wdr on/off
```

▶ 成员

成员名称	描述	
stPqParam	Pq 参数设置	
eHDRType	HDR 开关参数	
e3DNRLeve1	3dnr 量级参数	
bMirror	使能 Input Mirror	
bFlip	使能 Input Flip	
bWdrEn	使能 WDR	
bEnLdc	使能 Ldc	

※ 注意事项

芯片	MAX e3DNRLevel	是否支持 bMirror/ bFlip
328Q/329D/326D	E_MI_VPE_3DNR_LEVEL7	不支持
325/325DE/327DE	E_MI_VPE_3DNR_LEVEL2	不支持
336D/336Q/339G	E_MI_VPE_3DNR_LEVEL2	支持
335/337DE	E_MI_VPE_3DNR_LEVEL2	支持

- 不同 chip 支持的最大 3dnr level 如上表, 设置超过 MAX, 内部自动采用 MAX Level, Level 越高 3DNR 强度越强,消耗的 buffer 也会多一点。
- 支持的 eHDRType 可以通过 MI_SNR_GetPadInfo 查询。
- stPqParam 仅 DVR mode 可用。
- bMirror/bFlip 支持芯片系列如上表, 预防某些 Sensor 不支持翻转。

▶ 相关数据类型及接口

MI VPE PqParam t

MI VPE HDRType e

MI VPE 3DNR Level e

3.12. MI_VPE_RegionInfo_t

▶ 说明

定义 VPE 通道区域统计信息。

```
typedef struct MI_VPE_RegionInfo_s
{
```

```
MI_VPE_Region_t *pstRegion; // region attribute
MI_U32 u32RegionNum; // count of the region
} MI_VPE_RegionInfo_t;
```

▶ 成员

成员名称	描述
pstRegion	统计区域信息
u32RegionNum	统计区域数量

※ 注意事项

无。

▶ 相关数据类型及接口

无。

3.13. MI_VPE_PortMode_t

▶ 说明

定义 VPE 端口模式。

▶ 定义

▶ 成员

成员名称	描述
u32Width	端口输出画面水平大小
u32Height	端口输出画面竖直大小
ePixelFormat	端口输出 pixel format
eCompressMode	端口输出压缩模式

※ 注意事项

相关限制说明参考 MI_VPE_SetPortMode 注意说明。

▶ 相关数据类型及接口

MI_SYS_PixelFormat_e

MI_SYS_CompressMode_e <u>MI_VPE_SetPortMode</u>

3.14. MI_VPE_IspInitPara_t

▶ 说明

定义 VPE ISP 初始参数。

▶ 定义

```
typedef struct MI_VPE_IspInitPara_s
{
    MI_U16 u16Fps;
    MI_U16 u16Flicker;
    MI_U32 u32Shutter;
    MI_U32 u32SensorGainX1024;
    MI_U32 u32DigitalGain;
    MI_U32 u32ShutterShort;
    MI_U32 u32GainX1024Short;
    MI_U32 u32DGainShort;
}MI_U32 u32DGainShort;
```

▶ 成员

成员名称	描述	
u16Fps	sensor 帧率。	
u16Flicker	灯光频率抗闪烁设定。	
	[0] off, [1]50hz, [2]60hz, [3]auto	
u32Shutter	快门时间(usec)。	
	取值范围: 1~1000000	
u32SensorGainX1024	sensor增 益。	
	取 值 范 围 : 1024 ~ 1024*4096	
u32DigitalGain	Isp 增益。	
	取值范围: 1024~1024*1024	
u32ShutterShort	短曝快门时间(usec)。	
	取值范围: 1~1000000	
u32GainX1024Short	短曝 sensor 增益。	
	取值范围: 1024~1024*4096	
u32DGainShort	短曝 Isp 增益。	
	取值范围: 1024~1024*1024	

※ 注意事项

- 通过设置该参数避免收敛问题导致刚开始几张画面颜色不正常,如果不在意刚开始几张画面可以 忽略该参数设置。
- u16Fps 必须大于 0, 其它的参数才会生效。

▶ 相关数据类型及接口

MI_VPE_ChannelAttr_t

MI VPE API Version 2.09

11/8/2019

4. 错误码

VPE API 错误码如表 3-1 所示:

表 3-1 VPE API 错误码

错误代码	宏定义	描述
0xA0078001	MI_ERR_VPE_INVALID_DEVID	Chanel port 号无效
0xA0078002	MI_ERR_VPE_INVALID_CHNID	Chanel 通道号无效
0xA0078003	MI_ERR_VPE_ILLEGAL_PARAM	Chanel 参数设置无效
0xA0078004	MI_ERR_VPE_EXIST	Chanel port 已创建
0xA0078005	MI_ERR_VPE_UNEXIST	Chanel port 未创建
0xA0078006	MI_ERR_VPE_NULL_PTR	输入参数空指针错误
0xA0078008	MI_ERR_VPE_NOT_SUPPORT	操作不支持
0xA0078009	MI_ERR_VPE_NOT_PERM	操作不允许
0xA007800C	MI_ERR_VPE_NOMEM	分配内存失败
0xA007800D	MI_ERR_VPE_NOBUF	分配 BUF 池失败
0xA007800E	MI_ERR_VPE_BUF_EMPTY	图像队列为空
0xA0078010	MI_ERR_VPE_NOTREADY	Chanel 系统未初始化
0xA0078012	MI_ERR_VPE_BUSY	Chanel 系统忙