

Asger Bech Abrahamsen, Senior Researcher Structural Integrity and Load assessment (SIL) section Wind Energy Material and Component (WMC) Division DTU Wind and Energy Systems Technical University of Denmark August 2024

Decarbonizing the electricity systems case - DTU Quantitative Sustainability

Date

Investigating decarbonizing the electricity system

1	World Green	Туре	Electricity mix start f _{s,i}	Electricity mix end f _{e,i}
)			[%]	[%]
3	Hard coal	PC, without CCS	39	1
4	Hard coal	IGCC, without CCS	0	
5	Hard coal	SC, without CCS	0	
6	Natural gas	NGCC, without CCS	23	2
7	Hard coal	PC, with CCS	0	
8	Hard coal	IGCC, with CCS	0	
9	Hard coal	SC, with CCS	0	
0	Natural gas	NGCC, with CCS	0	
1	Hydro	660 MW	0	
12	Hydro	360 MW	15	1
3	Nuclear	average	9	
4	Concentrated Solar Power (CSP)	tower	1	
15	Concentrated Solar Power (CSP)	trough	0	
16	Photo Voltaic (PV)	poly-Si, ground-mounted	5	
7	Photo Voltaic (PV)	poly-Si, roof-mounted	0	
18	Photo Voltaic (PV)	CdTe, ground-mounted	0	
9	Photo Voltaic (PV)	CdTe, roof-mounted	0	
20	Photo Voltaic (PV)	CIGS, ground-mounted	0	
21	Photo Voltaic (PV)	CIGS, roof-mounted	0	
22	Wind	onshore	7	3
23	Wind	offshore, concrete foundation	0	
24	Wind	offshore, steel foundation	1	
25	Total		100	10
26				
27	Start & End year		2023	205
	Start & End production [kWh/year]	World	2,25E+13	4,50E+1
	Start & End population [Citicenz]	World	8,00E+09	8,E+0

UN scenarios of GHG emission with 1.5 and 2.0 degree temperature increase at 2100

- Select 2 countries, Denmark & the World, and find the mix of electricity-producing technologies of the last two years.
- Describe the change in the mix in the last two years.
- Calculate the CO₂ emission of the countries when scaled to planet scale as well as the world.
- Suggest proposals for the mix of electricity technologies in 2050 for the 3 countries & the world and calculate the CO₂ emissions
- Evaluate if the proposed mix of electricity-producing technologies will violate the planetary boundary of the Paris Agreement
- Discuss if your proposals seem realistic

Date DTU Title 2

Development of the mix of electricity-producing technologies of the planet

Data source: Ember's Yearly Electricity Data; Ember's European Electricity Review; Energy Institute Statistical Review of World Energy OurWorldInData.org/energy | CC BY

Figure 1 Lifecycle greenhouse gas emission ranges for the assessed technologies

Lifecycle GHG emissions, in g CO₂ eq. per kWh, regional variation, 2020

The planetary boundary of CO₂ emissions

Estimated global warming over the twenty-first century

Current policies scenario: 2.8°C (66% chance)

Unconditional NDC scenario: 2.6°C (66% chance)

Conditional NDC scenario: 2.4°C (66% chance)

2°C pathway

Unconditional NDC scenario with net-zero targets: 1.8°C (66% chance)

Conditional NDC scenario with net-zero targets: 1.8°C (66% chance)

1.5°C pathway

Date DTU Title 4

Contact: Asger Bech Abrahamsen asab@dtu.dk