

计算机化工应用2022B

该二维码7天内(9月11日前)有效, 重新进入将更新

计算机化工应用

化工学院软件应用教科组

2022年9月5日

课程说明

- □ 隋志军,杨榛,魏永明编著,《化工数值计算 与MATLAB》,华东理工大学出版社
- □ 课堂教学+上机实践
- □ 70%考试成绩+30%平时成绩(考勤和作业)
 - 作业计入平时成绩,请认真完成
 - 请不要抄袭,一经发现作业成绩记为B以下的等级。
- □ 我的联系方式
 - zhjsui@ecust.edu.cn
 - -13585577687

教学日历

日期	周次	教学内容 (要点)	
2022年9月5日	1	第0章 绪论 数值计算基础、MATLAB软件界面	
2022年9月12日	2	中秋停课	
2022年9月19日	3	第1章-1 变量,数据类型,MATLAB基本数学运算,数据输入与输出	
2022年9月26日	4	第1章-2 MATLAB图形,Script文件和函数文件,MATLAB函数	
2022年10月3日	5	国庆停课	
2022年10月10日	6	第1章-3 逻辑和关系运算,程序流程控制语句	
2022年10月17日	7	上机-1 MATLAB语言与编程基础	
2022年10月24日	8	第2章-1 矩阵定义、矩阵操作	
2022年10月31日	9	第2章-2 线性方程组求解算法与MATLAB函数,第3章-1 非线性方程求解算法	
2022年11月7日	10	上机-2 线性方程组求解	
2022年11月14日	11	第3章-2 非线性方程组MATLAB求解方法, fzero,fsolve函数	
2022年11月21日	12	第4章-1 插值原理、MATLAB一维插值函数、数值拟合原理	
2022年11月28日	13	第4章-2 MATLAB数值拟合方法, regress,polyfit, nlinfit函数的使用	
2022年12月5日	14	第5章-1 数值微分原理,数值微分方法,数值积分原理	
2022年12月12日	15	第5章-2 MATLAB数值积分方法,微分方程数值解原理	
2022年12月19日	16	第6章 微分方程的MATLAB求解方法	
2022年12月26日	17	复习与习题	
2023年1月2日	18	上机-3 非线性方程组求解,插值与拟合	
2023年1月9日	19	考试	

化学工程师的任务

化学工程学科的发展要求

数学是工程师的语言!

提高建立模型与求解模型的能力是化学工程者的重要技能。

化工模型示例

热力学问题

$$p = \frac{RT}{v - b} - \frac{a}{v(v + b)}$$

非线性方程

反应工程问题

$$(-r) = \frac{0.12}{15.73 + x} \times 15 \exp\left(-\frac{10000}{805 - 182x^2}\right)$$
$$\frac{dx}{dw} = \frac{(-r)}{9.65}$$

常微分方程

分离工程问题

$$\frac{dL}{dx_2} = \frac{L}{x_2(k_2 - 1)}$$

$$k_i = P_i / P$$

$$k_1 x_1 + k_2 x_2 = 1$$

$$P_i = 10^{\left(A - \frac{B}{T + C}\right)}$$

微分代数方 程

传递过程问题

$$\frac{\partial u}{\partial t} = \pi^{-2} \frac{\partial^2 u}{\partial x^2}, x \in [0, 1], t \ge 0$$

偏微分方程

数值计算-化工模型的求解方法

- 大多数化工模型难以获得解析解,必须采用数值 解法;
- 数值计算是利用计算机进行科学计算,求取模型 在指定点的解;
- □ 数值计算是应用数学的一个分支,通常称为<u>计算</u> 数学(数值分析,数值方法);

数值计算与数学分析的区别

计算sin(x)在x=π/4时的导数值

数学分析:

$$\frac{d\sin x}{dx}\Big|_{x=\pi/4} = \cos x\Big|_{x=\pi/4} = \cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2} = 0.707106781186548$$

数值计算: 将计算任务转化计算机可以执行的基本数学运算——加、减、乘、除和求余

$$\frac{d\sin x}{dx}\Big|_{x=\pi/4} = \frac{\sin x\Big|_{x=(\pi/4+0.01)} - \sin x\Big|_{x=\pi/4}}{0.01}$$

$$= \left(x - \frac{x^3}{3!} + \frac{x^5}{5!}\right|_{x=\pi/4+0.01} - x - \frac{x^3}{3!} + \frac{x^5}{5!}\Big|_{x=\pi/4}\right)/0.01$$

$$= 0.703894450014264$$

数值计算与误差

	数学分析	数值计算
基本方法	逻辑严密的演绎	有效的近似
结果形式	函数 (表达式)	指定点的数值
准确性	精确	误差难以避免
运算量	学霸和学渣是不 一样的	一般的问题用联想 和苹果没有区别

> 数值计算研究的问题:有效近似和控制误差的方法。

误差的基本概念

x表示实际计算、观测值: x*表示真实值

绝对误差
$$|x-x^*| \leq \varepsilon$$

相对误差
$$\frac{\left|x-x^*\right|}{\left|x^*\right|} \le \varepsilon$$

有效数字

$$x = \pm 0 \cdot a_1 a_2 \dots a_n \times 10^m$$

$$\left| x - x^* \right| \le \frac{1}{2} \times 10^{m-p}$$

p为该数字的有效数字位数

以3.14代替圆周率的有效数字:

 $|3.14-3.1415926\cdots|\approx 0.0015926 < 0.5 \times 10^{-2}$

几个误差的概念

测量200米的距离,结果为199.35米,问其绝对误差、相对误差是多少?结果有几位有效数字。

绝对误差: |199.35-200|=0.65

相对误差: |199.35-200|/200=0.33%

有效数字: $|199.35-200| = 0.65 < 0.5 \times 10^{1}$

m=3, m-p=1, p=2 因此有效数字为2位

误差来源

模型误差:问题简化过程产生

截断误差:有限次运算限制产生

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \dots$$

$$S_{n}(x) = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!}$$

$$e^{x} - S_{n}(x) = \frac{x^{n+1}}{(n+1)!}e^{\theta x}, 0 < \theta < 1$$
Format, long

$$S_n(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$$

舍入误差: 机器字长限制产生

右侧一段程序计算1-3*(4/3-1)的 值, 你知道结果是多少吗?

format long

a=4/3

b=a-1

c=3*b

e=1-c

浮点数

浮点数:由于计算机资源的有限,在计算机上只能表示有限的实数,这些数被称为浮点数

IEEE标准双精度浮点运算体系

浮点数的基本性质

假设计算机的尾数为4位,指数e=0,1,2,3,4;

尾数4位,可以表示的二进制数为: 0.0000, 0.0001, 0.0010, 0.1011,, 0.1100, 0.1101, 0.1110, 0.1111; 共16种选择

- ▶ 指数5种选择,该计算机可以表示5*16=80个数字;
- ▶ 这些数字最大为: 0.1111₂*2⁴=15
- \triangleright 0.1111₂*2⁰=0.9375; 0.1000₂*2¹=1; 0.1001₂*2¹=1.125;

浮点数是有限个, 有界, 非连续的实数

特殊浮点数

IEEE标准双精度浮点运算体系

计算机表示的最大实数

realmax =
$$2^{1023} \times (2 - 2^{-52}) = 1.798e + 308$$

计算机表示的最小正实数

realmin =
$$2^{-1022}$$
 = **2.225e-308**

计算机的舍入误差:从1到下一个较大浮点数的距离

$$eps = 2^{-52} = 2.220e-016$$

- > 数字大于realmax称为上溢,记为无穷大,用Inf/inf表示
- > 数字小于realmin(大于0) 称为下溢,正规浮点数中记为0

思考与练习

1.在双精度浮点数体系中,数越大则数与数之间的间距越大?

2. 判断:数值较大的浮点数之间通常间距较大,因此在进行相同运算时造成的相对误差也较大。 ()

$$3.1 + eps/2 - 1 =$$

4.计算机中是否存在大于0小于realmin的数呢?

常规浮点数运算

两数加减, 先对阶后尾数相加减; 两数乘除, 直接尾数乘除指数加减

假定使用一台十进制计算机,它表示的浮点数具有4位尾数和1位指数,超过计算机存储位数的数字均被舍去,试分别计算以下表达式的值。

- 1. 0.1557•10¹+0.4381•10⁻¹
- 2. 250.209-250.100
- $3.136.3 \times 0.06423$

常规浮点数运算

1. $0.1557 \cdot 10^{1} + 0.4381 \cdot 10^{-1}$ 0. $1557 \cdot 10^{1} + 0.00438 \cdot 10^{1}$

 $0.16008 \cdot 10^{1}$ $0.1600 \cdot 10^{1}$

2. 250.209-250.100

0.25020•10³-0.25010•10³

0.00010•10³ 0.0001•10³

有效数位的丢失是数值计算误差的最大来源之一

 $0.08754 \cdot 10^2$ $0.8754 \cdot 10^1$

特殊浮点数运算

浮点数运算,加法和乘法运算交换律仍然适用,但是其结合律和分配律已不再适用。

当上溢(数值超过浮点数可以表示最大和最小实数时)的情况发生时,计算结果等于无穷,结合律不再成立

a=1.0e+308, b=1.1e+308, c=-1.001e+308a+(b+c)=1.0990e+308, (a+b)+c=Inf

- 2. 无穷与有限大非零实数之间的算术运算结果均为 无穷。
- 3. 有限大实数除以0的运算结果也为无穷。

特殊浮点数运算

4. 对于数学含义不明确的表达形式,如0/0、∞/∞、(+Inf)+(-Inf)、0*Inf,遇到这类表达形式,将会给出提示信息NaN (not a number,非数),对于NaN通常的数值计算规则并不适用,任何与NaN进行的运算结果均为NaN。

特殊浮点数运算

例题3 以下浮点数运算采用IEEE双精度格式,试计算其结果。

1) $(1 + 1 \times 10^{-16}) - 1$

2) $1/((1+1\times10^{-16})-1)$

3) $1.7 \times 10^{308} - 1.8 \times 10^{308}$

- 4) $0 \times (1.8 \times 10^{308} + 0.5 \times 10^{308})$
- 1. 因为1×10-16小于eps/2, 在计算过程中被舍掉, 因此, 计算结果应为0。 计算机的舍入规则有四舍五入和全舍两种
- 2. 分母的运算结果同1), 1/0的结果为Inf。
- 3. 因为1.8×10³⁰⁸超过计算机可以表示的最大实数,被视为+Inf,一个有限实数减正无穷的结果为-Inf。
- 4. 同3), 1.8×10³⁰⁸被视为Inf, 1.8×10³⁰⁸+0.5×10³⁰⁸的结果为Inf, 而0×Inf的结果为非数, NaN。

误差的传递

假定计算结果Y与独立的初始数据X*存在以下函数 关系:

$$Y = f(x_1^*, x_2^*, \dots, x_n^*)$$

绝对误差:
$$e^*(Y) = Y^* - Y \approx \sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}\right)_x e^*(x_i)$$

相对误差:
$$e_r^*(Y) \approx \sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}\right)_x \frac{x_i \cdot e_r^*(x_i)}{Y}$$

两数和、差、积、商的误差估计

$$\left|e^{*}(x \pm y)\right| \approx \left|e^{*}(x) \pm e^{*}(y)\right| \leq \left|e^{*}(x)\right| + \left|e^{*}(y)\right|$$

绝对误差限

$$\left|e^{*}(xy)\right| \approx \left|y \cdot e^{*}(x) + x \cdot e^{*}(y)\right| \leq y \cdot \left|e^{*}(x)\right| + x \cdot \left|e^{*}(y)\right|$$

$$\left| e^* \left(\frac{x}{y} \right) \right| \approx \left| \frac{1}{y} e^* \left(x \right) - \frac{x}{y^2} e^* \left(y \right) \right| \leq \frac{1}{y} \left| e^* \left(x \right) \right| + \frac{x}{y^2} \left| e^* \left(y \right) \right|$$

$$\left| e_{r} \left(x \pm y \right) \right| \approx \left| \frac{x}{x \pm y} e_{r} \left(x \right) + \frac{y}{x \pm y} e_{r} \left(y \right) \right| \leq \left| \frac{x}{x \pm y} e_{r} \left(x \right) \right| + \left| \frac{y}{x \pm y} e_{r} \left(y \right) \right|$$

相对误差限

$$\left| \mathbf{e}_{r} \left(\mathbf{x} \cdot \mathbf{y} \right) \right| \approx \left| \mathbf{e}_{r} \left(\mathbf{x} \right) + \mathbf{e}_{r} \left(\mathbf{y} \right) \right| \leq \left| \mathbf{e}_{r} \left(\mathbf{x} \right) \right| + \left| \mathbf{e}_{r} \left(\mathbf{y} \right) \right|$$

$$\left| e_r \left(\frac{x}{y} \right) \right| \approx \left| e_r (x) - e_r (y) \right| \leq \left| e_r (x) \right| + \left| e_r (y) \right|$$

算法

算法:即把一个复杂的求解问题近似为一系列简单数学运算(加、减、乘、除和求余)的序列。

$$\sin(x) = x - x^3/3! + x^5/5! - x^7/7! + \cdots$$

同一个问题可以设计不同的算法完成, 例如计算机

求圆周率的值。

$$arctan x = x - rac{x^3}{3} + rac{x^5}{5} - rac{x^7}{7} + \ldots$$

$$\frac{\pi}{2} = \frac{2\cdot 2}{1\cdot 3} \cdot \frac{4\cdot 4}{3\cdot 5} \cdot \frac{6\cdot 6}{5\cdot 7} \cdot \frac{8\cdot 8}{7\cdot 9} \dots$$

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} \dots$$

$$rac{\pi^2}{6} = rac{1}{1^2} + rac{1}{2^2} + rac{1}{3^2} + rac{1}{4^2} \ldots$$

算法的效率和稳定性是评价算法优劣最重要的指标!

算法的效率

求解线性方程组: Ax=b

• Cramer法:
$$x = \frac{\Delta_k}{\det A}$$
 计算量为n!(n-1)(n+1) 次乘除

对于20阶的方程, 计算机每秒计算1010次, 需10142年

- 采用Jordan消去法 → 计算量约为n³/2
- 采用Gauss消去法 → 计算量约为n³/3
- 一般来说, 计算机处理下列运算的速度为 (+,-)>(x,÷)>(exp)

算法的稳定性

例: 计算
$$I_n = \frac{1}{e} \int_0^1 x^n e^x dx$$
, $n = 0, 1, 2, \dots$

$$\mathbf{Z}$$
 公式: $I_n = 1 - n I_{n-1}$

注意此公式精确成立

$$I_0 = \frac{1}{e} \int_0^1 e^x dx = 1 - \frac{1}{e} \approx 0.63212056$$
 记为 I_0^* 则初始误差 $|E_0| = |I_0 - I_0^*| < 0.5 \times 10^{-8}$

$$I_1^* = 1 - 1 \cdot I_0^* = 0.36787944$$

$$I_{10}^* = 1 - 10 \cdot I_9^* = 0.08812800$$

$$I_{11}^* = 1 - 11 \cdot I_{10}^* = 0.03059200$$

$$I_{12}^* = 1 - 12 \cdot I_{11}^* = 0.63289600$$

$$I_{13}^* = 1 - 13 \cdot I_{12}^* = -7.2276480$$

$$I_{14}^* = 1 - 14 \cdot I_{13}^* = 94.959424$$

$$I_{15}^* = 1 - 15 \cdot I_{14}^* = -1423.3914$$

算法的稳定性

考察第n步的误差 $|E_n|$

$$|E_n| = |I_n - I_n^*| = |(1 - nI_{n-1}) - (1 - nI_{n-1}^*)| = n/E_{n-1}/= \cdots = n!|E_0|$$

可见初始的小扰动

$$|E_0| < 0.5 \times 10^{-8}$$

在计算过程中迅速积累, 误差呈递增走势。

因此这是一种不稳定的算法

稳定算法设计的原则

- 算法中应尽量减少运算次数
 - 递推运算中, 防止误差的积累
 - 避免两个相近的数相减
 - 〇 避免两个数量级相差很大的数运算
 - 避免用绝对值对过小的数作除数

避免两个相近的数相减

 $y = \sqrt{x+1} - \sqrt{x}$ 取四位有效数字, 计算x=1000时的值

$$y = \sqrt{1001} - \sqrt{1000} = 31.64 - 31.62 = 0.02$$

$$y = \frac{1}{\sqrt{x+1} + \sqrt{x}} = \frac{1}{63.26} = 0.01581$$

$$\therefore e_r(x_1 - x_2) \approx \left| \frac{\partial (x_1 - x_2)}{\partial x_1} \cdot \frac{x_1}{x_1 - x_2} \cdot e_r(x_1) + \frac{\partial (x_1 - x_2)}{\partial x_2} \cdot \frac{x_2}{x_1 - x_2} \cdot e_r(x_2) \right|$$

$$= \left| \frac{x_1}{x_1 - x_2} \cdot e_r(x_1) - \frac{x_2}{x_1 - x_2} \cdot e_r(x_2) \right| \le \left| \frac{x_1}{x_1 - x_2} \cdot e_r(x_1) \right| + \left| \frac{x_2}{x_1 - x_2} \cdot e_r(x_2) \right|$$

$$|e_r(x_1-x_2)|$$
可能比 $|e_r(x_1)|+|e_r(x_2)|$ 大得多。

数值计算问题的求解步骤

专业软件 – 工欲善其事必先利其器

数据处理

Origin, Excel

科学计算

MATLAB, Python(NumPy, SciPy)

桌面化学软件

ChemOffice, ChemSketch

化工流程模拟 ——

Pro/II, Aspen Plus, gPROMS

计算流体力学 ——

Fluent, CFX

反应动力学

ChemKin

量子化学计算 —— Material Studio, Gaussian, VASP

软件的选用与求解问题的性质相关

采用RK方程计算计算正丁烷在500℃, 18atm下的比容。

$$p = \frac{RT}{v - b} - \frac{a}{v(v + b)}$$

$$a = 0.42748 \left(\frac{R^2 T_c^2}{p_c}\right) \alpha, b = 0.08664 \left(\frac{RT_c}{p_c}\right), T_r = \frac{T}{Tc}, \alpha = \frac{1}{T_r^{0.5}}$$

$$Tc = 425.2, Pc = 37.5$$

- 手算: 查找数据, 迭代求解三次方程
- 科学计算软件: 查找数据, 运用软件求解
- 化工模拟软件

科学计算软件与化工模拟软件的比较

□ 软件的深度和广度是一对矛盾

- 科学计算软件
 - ✓ 特殊过程
 - ✓反应工程
 - ✓传递过程

- 模拟软件
 - > 通用过程与单元操作
 - > 全流程模拟
 - > 数学问题要求不高

MATLAB简介

- □ MATLAB是优秀的科学计算软件
 - > MATLAB的核心是一组可执行特定计算功能 的函数
 - 》每个函数中,集成了多种有效算法,软件可 自行选择
- □ MATLAB是新一代程序设计语言

MATLAB的历史

MATLAB是Matrix Labotary的 缩写, 最初是美国新墨西哥大 学Moler教授编写的LINPACK 和EISPACK接口程序

1984年, MathWorks公司创 建, MATLAB正式推向市场

20世纪90年代以来, MATLAB已成为数值计算软 件的佼佼者

Cleve Moler

Jack Little

MATLAB 3.5

MATIAB 4.2

MATLAB的特点 - 强大的数值运算功能

很多复杂数值计算问题的解决在MATLAB 中可以归结为一条命令的使用

利用MATLAB求解三元一次方程组:

$$5.234x^3 + 3.494x^2 - 7.006x + 4.791 = 0$$

在MATLAB命令窗口输入以下命令

>> p=[5.234 3.494 -7.006 4.781];

>> roots(p)

ans =

-1.7395

0.5360 + 0.4888i

0.5360 - 0.4888i

MATLAB的特点 - 强大的图形处理能力

MATLAB的特点 - 丰富的工具箱与模块集

MATLAB Product Family

MATLAB® Distributed Computing Toolbox

Math and Optimization

Optimization Toolbox Symbolic Math Toolbox

Partial Differential Equation Toolbox

Genetic Algorithm and Direct Search Toolbox

Statistics Toolbox

Statistics and Data Analysis

Neural Network Toolbox Curve Fitting Toolbox

Spline Toolbox

Signal Processing and Communications Image Processing

Control System Design and Analysis Test & Measurement

Simulink Product Family

PolySpace Code Verification Products

MATLAB的版本

- MATLAB的最新版本是: MATLAB R2022a
- 推荐使用学校的正版MATLAB软件,可至学校信息办网站下载: http://xxb.ecust.edu.cn/MATLAB/list.htm
- 安装MATLAB时,以下工具箱必须安装(教材第1-6章)
 - ✓ MATLAB
 - ✓ Curve Fitting Toolbox
 - ✓Optimazation Toolbox (教材第3,9章)
- 以下工具箱可以选择安装(第8、9章内容将在四上选修课中学习)
 - ➤ Partial Differential Equation Toolbox (教材第7章)
 - ➤ Statistics and Machine Learning Toolbox (教材第8章)
 - ➤Global Optimization Toolbox (教材第9章)
 - ➤ Deep Learning Toolbox (教材第10章)

MATLAB求解化工模型的步骤

● 分析问题

选择合适的求解命令

○ 编写程序

程序应简明高效

● 验证计算

程序运行通#结果正确

○ 答案的含义

对实际问题理解有何作用

本课程的学习目的

学会MATLAB的使用,可以利用MATLAB求解较为复杂的化工数学模型

MATLAB桌面

File菜单(路径设置)

MATLAB的工作目录必需在软件的搜索路径下,否则将会出现 函数、变量未定义等错误!

命令窗口

• 在桌面右侧的命令窗口中,有">>"字符,这是 MATLAB默认的命令提示符(Command Window Prompt),在其后可以输入需要执行的命令

输入后按回车键,命令窗口中显示如下运行结果

$$a = 1$$

输入后按回车键,命令窗口显示:

$$ans = 5$$

	k 1 - 1 - 1		* * - * -
命令	命令说明	命令	命令说明
cd	显示或改变工作目录	dir	显示目录文件
type	显示文件内容	clear	清除内存变量
clf	清除图形窗口	pack	收集内存碎片, 扩大
			内存空间
clc	清除命令窗口内容	echo	命令窗口信息显示开
			关
hold	图形保持开关	disp	显示变量或文字内容
path	显示搜索目录	save	保存内存变量到指定
			文件
load	加载指定文件变量	diary	日志文件命令
quit	退出MATLAB	!	调用DOS命令

clc

▶ clc 清除命令窗口的显示内容。

>> clc

命令运行后,所有显示内容消失,但变量空间中的变量仍然存在。

clear

▶ clear 清空当前变量空间

> clear name 从变量空间中清除name指定的变量

>> clear a

运行后在变量空间窗口中可以看到a变量已经被清除

save

save filename	将当前变量空间的所有变量保存到名为"filename"的文件中。
save filename content	将"content"指定的变量保存到名为"filename"的文件中。
save filename content options	以 options 规 定 的 形 式 将 "content"指定的变量保存 到名为"filename"的文件中。

>> save temp1

将当前变量空间中的所有 变量保存到temp1.mat文 件中。

>> save temp2 a

仅将变量空间中的a变量 保存到temp2.mat文件中。

>> save temp3.txt a -ascii

将a变量以ASCII码的形式保存到temp3.txt文件中。

MATLAB的帮助系统

- MATLAB的重要特色之一是软件的帮助系统是相当 完善的,它是应用者最重要的参考资料;
- · 获得MATLAB的帮助可以通过以下方法:
 - 在菜单栏点击Help或按F1功能键
 - 利用窗口命令如help, doc等
- Help命令是获得MATLAB软件帮助最重要的命令。

Help命令的使用方法

help	显示MATLAB所有主题的目录。
help十主题名称	显示MATLAB自身的库函数。
help+函数名	显示函数的具体使用方法,
doc+函数名	显示更详细的函数使用方法, 算法以及应用示例等

本章小结

掌握化工专业需要数值计算技能

数值计算即利用计算机进 行科学计算

数值计算的误差不可避免

浮点数与浮点运算

误差

误差的基本概念数据对误差的影响

机器只能表示有限个非连续实数

算法

算法设计的原则

MATLAB

本章小结

必须掌握:

误差概念,浮点数的性质,特殊浮点数,特殊 浮点数的运算

理解:

为什么要设计算法?

什么是稳定的算法?

稳定算法的常用设计原则是什么?

作业

- 下载、打印并完成work1
- 打印不方便时可将答案写在纸上上交
- 本次作业9.20日上交

