

വാതകനിയമങ്ങളും മോൾ സങ്കൽഷനവും

ഖരം, ദ്രാവകം എന്നിവയെ അപേക്ഷിച്ച് വാതകങ്ങൾക്ക് വളരെയധികം സവിശേഷതകൾ ഉണ്ട്. ധാരാളം മൂലകങ്ങളും സംയുക്തങ്ങളും വാതകാവസ്ഥയിൽ കാണപ്പെടുന്നു. നിതൃജീവിതത്തിലും വ്യവസായങ്ങളിലും പരീക്ഷണശാലകളിലും വിവിധ വാതകങ്ങളെ നാം കൈകാര്യം ചെയ്യുന്നു ണ്ടല്ലോ.

വാതക്ങ്ങളെപ്പറ്റി ഏതാനും ചില പ്രസ്താവനകൾ തന്നിരിക്കുന്നത് ശ്രദ്ധിക്കൂ...

- ഓരോ വാതകത്തിലും അതിസൂക്ഷ്മങ്ങളായ അനേകം തന്മാത്രകൾ അടങ്ങിയിരിക്കുന്നു.
- ഒരു വാതകത്തിന്റെ ആകെ വ്യാപ്തവുമായി താരതമ്യം ചെയ്യുമ്പോൾ അതിലെ തന്മാത്രക ളുടെ യഥാർഥ വ്യാപ്തം വളരെ നിസാരമാണ്.
- വാതകത്തിലെ തന്മാത്രകൾ എല്ലാ ദിശകളിലേയ്ക്കും നിരന്തരം ചലിച്ചുകൊണ്ടിരിക്കുന്നു.

- ക്രമരഹിതമായ ഈ ചലനത്തിന്റെ ഫലമായി തന്മാത്രകൾ പരസ്പരം കൂട്ടിയിടിക്കുന്നു, വാതകം സ്ഥിതിചെയ്യുന്ന പാത്രത്തിന്റെ ഭിത്തികളിലും ചെന്നിടിക്കുന്നു. ഇതിന്റെ ഫലമായാണ് വാതകമർദം അനുഭവപ്പെടു ന്നത്.
- വാതക തന്മാത്രകളുടെ കൂട്ടിമുട്ടലുകൾ പൂർണമായും ഇലാസ്തിക സ്വഭാവമുള്ളതായതിനാൽ ഊർജനഷ്ടം സംഭവിക്കുന്നില്ല.
- വാതക തന്മാത്രകൾ തമ്മിലും, വാതക തന്മാത്രകളും പാത്രത്തിന്റെ ഭിത്തിയും തമ്മിലും ആകർഷണം തീരെയില്ല.

മുകളിൽ നൽകിയ പ്രസ്താവനകളുടെ അടിസ്ഥാനത്തിൽ താഴെയുള്ള പട്ടിക (2.1) പൂർത്തിയാക്കുക.

വാതക തന്മാത്രകളുടെ ഊർജം	വളരെ കൂടുതൽ
തന്മാത്രകൾ തമ്മിലുളള അകലം	
തന്മാത്രകളുടെ ചലന സ്വാതന്ത്വം	
തന്മാത്രകൾ തമ്മിലുളള ആകർഷണബലം	

പട്ടിക 2.1

ഈ പ്രസ്താവനകൾ പരിശോധിക്കുമ്പോൾ വാതകങ്ങളുടെ വ്യാപ്തം, മർദം, വാതക തന്മാത്രകളുടെ ഊർജം ഇവയെപ്പറ്റിയുള്ള സൂചനകൾ നിങ്ങൾക്ക് ലഭിക്കുന്നുണ്ടല്ലോ?

വാതകത്തിന്റെ വ്യാപ്തം

ഒരു പദാർഥത്തിന് സ്ഥിതിചെയ്യാനാവശ്യമായ സ്ഥലത്തിന്റെ അളവിനെയാണ് അതിന്റെ വ്യാപ്തം എന്നു പറയുന്നത്.

ഒരു ലിറ്റർ ദ്രാവകം ഏതു വലുപ്പത്തിലുള്ള പാത്രത്തിലേക്ക് മാറ്റിയാലും അതിന്റെ വ്യാപ്തത്തിൽ വൃത്യാസമുണ്ടാകുന്നില്ല. എന്നാൽ ഒരു ലിറ്റർ വ്യാപ്തമുള്ള സിലിണ്ടറിൽ വച്ചിരിക്കുന്ന ഒരു വാതകം 5 ലിറ്റർ വ്യാപ്തമുള്ള ഒരു സിലിണ്ടറിലേക്ക് പൂർണമായും മാറ്റിയാൽ, വാതകത്തിന്റെ വ്യാപ്തം എത്രയായിത്തീരും?

ഒരു വാതകത്തിന്റെ വ്യാപ്തം അത് ഉൾക്കൊള്ളുന്ന പാത്രത്തിന്റെ വ്യാപ്തം ആയിരിക്കും.

ഒരു സിറിഞ്ചെടുത്ത് അതിന്റെ പിസ്റ്റൺ പിന്നിലേക്ക് വലിച്ചു വയ്ക്കുക. സിറിഞ്ചിന്റെ നോസിൽ അടച്ചുപിടിച്ചുകൊണ്ട് പിസ്റ്റൺ അമർത്തിയാൽ സിറിഞ്ചിനുള്ളിലെ വായുവിന്റെ വ്യാപ്തത്തിന് എന്തു മാറ്റം ഉണ്ടാകുന്നു?

വാതകത്തിലെ തന്മാത്രകളുടെ അകലം, ചലനസ്വാതന്ത്ര്യം ഇവയുടെ അടി സ്ഥാനത്തിൽ ഇത് വിശദീകരിക്കുക.

ചിത്രം 2.1

വാതകത്തിന്റെ മർദം

ഒരു പാത്രത്തിൽ അടച്ചുവച്ചിരിക്കുന്ന വാതക തന്മാത്രകളാണ് ചിത്രത്തിൽ കാണിച്ചിരിക്കുന്നത്.

> തന്മാത്രകളുടെ ചലനത്തിന്റെ പ്രത്യേകത എന്താണ്? തന്മാത്രകൾ കൂട്ടിയിടിക്കാനുള്ള സാധ്യതയെപ്പറ്റി എന്ത് അനുമാനിക്കാം?

പാത്രത്തിനുളളിലെ ഏതെങ്കിലും പ്രതലം പരിഗണിക്കുക. തന്മാത്രകൾ നിരന്തരം ചലിക്കുമ്പോൾ ഈ പ്രതലത്തിൽ വന്നിടിക്കുന്നതുമൂലം ഒരു ബലം അനുഭവപ്പെടുമല്ലോ? പ്രതലത്തിൽ അനുഭവപ്പെടുന്ന ബലവും, പ്രത ലത്തിന്റെ പരപ്പളവും അറിഞ്ഞാൽ ഒരു യൂണിറ്റ് പരപ്പളവിൽ അനുഭവപ്പെ ടുന്ന ബലം കണക്കാക്കാമോ?

പ്രതലത്തിൽ അനുഭവപ്പെടുന്ന ആകെ ബലം യൂണിറ്റ് പരപ്പളവിലെ ബലം = -പ്രതലത്തിന്റെ പരപ്പളവ്

ഒരു യൂണിറ്റ് പരഷളവിൽ അനുഭവഷെടുന്ന ബലമാണ് മർദം.

താപനില

വാതകത്തിലെ തന്മാത്രകൾ നിരന്തരം ചലിച്ചുകൊണ്ടിരിക്കുകയാണല്ലോ?

- ചലനം മൂലം ലഭിക്കുന്ന ഊർജമേത്? സ്ഥിതികോർജം/ഗതികോർജം
- വാതകത്തെ ചൂടാക്കിയാൽ താപനില കൂടുന്നു. വാതകത്തിന്റെ താപ നില കൂടിയാൽ തന്മാത്രകളുടെ ചലനത്തിൽ എന്ത് മാറ്റം ഉണ്ടാകും?
- ഇതു മൂലം തന്മാത്രകളുടെ ഊർജത്തിന് എന്ത് മാറ്റമാണ് ഉണ്ടാകു ന്നത്?

ഒരു പദാർഥത്തിലെ തന്മാത്രകളുടെ ശരാശരി ഗതികോർജത്തിന്റെ അളവാണ് അതിന്റെ താപനില

വാതകത്തിന്റെ താഴെപ്പറയുന്ന സവിശേഷതകളെപ്പറ്റി ഇതുവരെ ലഭിച്ച വിവ രങ്ങളുടെ അടിസ്ഥാനത്തിൽ ലഘുകുറിപ്പ് തയാറാക്കുക.

- വ്യാപ്തം
- മർദം
- താപനില

വ്യാപ്തവും മർദവും

ചിത്രം A, B ഇവ ശ്രദ്ധിക്കുക.

ചിത്രം 2.2 (A)

ചിത്രം 2.2 (B)

ചിത്രം A യിൽ ഒരു നിശ്ചിത മാസ് വാതകം ഒരു സിലിണ്ടറിൽ അടച്ചു വച്ചി രിക്കുന്നു. താപനിലയിൽ മാറ്റം വരുത്താതെ ഇതേ വാതകത്തെ ചിത്രം B യിലെ സിലിണ്ടറിലേക്ക് മാറ്റുന്നു എന്ന് കരുതുക. തന്മാത്രകളുടെ എണ്ണ ത്തിൽ മാറ്റമുണ്ടാകുമോ? വ്യാപ്തം കുറഞ്ഞപ്പോൾ മർദത്തിന് എന്ത് മാറ്റ മാണ് ഉണ്ടായത്?

മറ്റൊരു പരീക്ഷണം ചെയ്തു നോക്കാം.

ഒരു 10 mL സിറിഞ്ചിന്റെ പിസ്റ്റൺ പിന്നിലേക്ക് വലിച്ചു വയ്ക്കുക. സിറിഞ്ചിന്റെ നോസിൽ അടച്ചു പിടിച്ചുകൊണ്ട് പിസ്റ്റണിൽ ക്രമമായി മർദം പ്രയോഗിച്ചു നോക്കുക.

സിറിഞ്ചിനുളളിലെ വായുവിന്റെ വ്യാപ്തത്തിന് എന്ത് മാറ്റം നിരീക്ഷിക്കാം?

_____ മർദം കുറച്ചാലോ? _______

മർദവും വ്യാപ്തവും തമ്മിൽ എന്ത് ബന്ധമാണ് നിങ്ങൾക്ക് അനുമാനിക്കാൻ കഴിയുന്നത്?

വാതകങ്ങളുടെ വ്യാപ്തം, മർദം ഇവതമ്മിലുള്ള ബന്ധം പരീക്ഷണങ്ങളി ലൂടെ സ്ഥാപിച്ചത് ബ്രിട്ടീഷ് ഭൗതിക - രസതന്ത്രശാസ്ത്രജ്ഞനായ റോബർട്ട് ബോയിൽ (1627-1691) ആണ്. ഈ ബന്ധം **ബോയിൽ നിയമം** എന്ന് അറിയപ്പെടുന്നു.

താപനില സ്ഥിരമായിരിക്കുമ്പോൾ ഒരു നിശ്ചിത മാസ് വാതകത്തിന്റെ വ്യാപ്തവും മർദവും വിപരീത അനുപാതത്തിലായിരിക്കും. മർദം P എന്നും, വ്യാപ്തം V എന്നും സൂചിപ്പിച്ചാൽ $P \ge V$ ഒരു സ്ഥിരസംഖ്യയായിരിക്കും.

ഒരു അക്വേറിയത്തിന്റെ ചുവട്ടിൽ നിന്ന് ഉയരുന്ന വായു കുമിളയുടെ വലുപ്പം മുകളിലേക്ക് എത്തുംതോറും കൂടി വരുന്നു. ഇതിന്റെ കാരണം എന്തെന്ന് വിശദീകരി ക്കാമോ?

ചിത്രം 2.3

വ്യാപ്തവും താപനിലയും

ഒരു പരീക്ഷണം ചെയ്യാം.

റബർ അടപ്പുള്ള ഈർപ്പരഹിതമായ ഒരു കുപ്പി (ഇൻജക്ഷൻ മരുന്നിന്റെ കുപ്പി) എടുക്കുക. റബർ അടപ്പിൽ കാലിയായ ഒരു റീഫിൽ ട്യൂബ് ഉറപ്പിച്ചുനിർത്തുക.

ട്യൂബിന്റെ താഴെ അഗ്രത്തിൽ ഒരു തുള്ളി മഷി കയറ്റി, കുപ്പി അടയ്ക്കുക. ഈ സജ്ജീകരണത്തെ ചെറുചൂടുവെള്ളത്തിൽ മുക്കിനോക്കുക.
എന്താണ് നിരീക്ഷിക്കുന്നത്?
ട്യൂബിലൂടെ മഷി മുകളിലേക്ക് ഉയരാൻ കാരണമെന്ത്?
ണമെന്തായിരിക്കും?
വ്യാപ്തവും താപനിലയും തമ്മിലുളള ബന്ധത്തെപ്പറ്റി എന്താണ് അനുമാനി
ക്കാൻ കഴിയുന്നത്?
ഒരു നിശ്ചിത മാസ് വാതകത്തിന്റെ വ്യാപ്തവും താപനിലയും തമ്മിലുളള
ബന്ധം തെളിയിക്കുന്ന പരീക്ഷണത്തിലെ ചില നിരീക്ഷണങ്ങൾ ചുവടെ
തരുന്നു. (മർദം വ്യത്യാസമില്ലാതെ നിലനിർത്തിയിരിക്കുന്നു)

വ്യാപ്തം V	താപനില T (കെൽവിൻ സ്കെയിൽ)	$\frac{V}{T}$
546mL	273 K	$\frac{546}{273} = 2$
600mL	300 K	$\frac{600}{300} = 2$
640mL	320 K	$\frac{640}{320} = 2$
660mL	330 K	

താപനില ഏത് യൂണിറ്റിലാണ് തന്നിരിക്കുന്നത്?
താപനില കൂടുമ്പോൾ വ്യാപ്തത്തിന് എന്ത് സംഭവിക്കുന്നു?
വ്യാപ്തവും താപനിലയും തമ്മിലുള്ള ബന്ധം സ്ഥിരീകരിച്ചത് ഫ്രഞ്ച് ശാസ്ത്രജ്ഞനായ ജാക്വസ് ചാൾസ് (1746-1823) ആണ്. ഈ നിയമം ചാൾസ് നിയമം എന്ന് അറിയപ്പെടുന്നു.
മർദം സ്ഥിരമായിരിക്കുമ്പോൾ ഒരു നിശ്ചിത മാസ് വാതകത്തിന്റെ വ്യാപ്തം കെൽവിൻ സ്കെയിലിലെ താപനിലയ്ക്ക് നേർ അനുപാതത്തിലായിരിക്കും.
വായുനിറച്ച ഒരു ബലൂൺ വെയിലത്തു വച്ചാൽ അത് പൊട്ടുന്നു. കാരണമെ ന്തായിരിക്കും?
വ്യാപ്തവും തന്മാത്രകളുടെ എണ്ണവും
ഘർഷണരഹിതമായ പിസ്റ്റൺ ഘടിപ്പിച്ച ഒരു സിലിണ്ടറിൽ 1atm മർദത്തിലുമ 300K താപനിലയിലും വാതകം നിറച്ചിരിക്കുന്നു. മർദം കുറയ്ക്കുകയോ താപനില വർദ്ധിപ്പിക്കുകയോ ചെയ്താൽ സിലിണ്ട റിനുളളിലെ വാതകത്തിന്റെ വ്യാപ്തത്തിന് എന്തു മാറ്റം സംഭവിക്കും? വ്യാപ്തം കൂടുന്നു/കുറയുന്നു.
താപനിലയും മർദവും സ്ഥിരമാണെങ്കിൽ വ്യാപ്തം വർദ്ധിപ്പിക്കാൻ എന്താണ് മാർഗം? സിലിണ്ടറിൽ കുറച്ച് വാതകം കൂടി നിറക്കുക. ഇപ്പോൾ തന്മാത്രക ളുടെ എണ്ണം കൂടുമോ കുറയുമോ?
 വ്യാപ്തവും, തന്മാത്രകളുടെ എണ്ണവും തമ്മിലുളള ബന്ധമെന്ത്?
വ്യാപ്തവും തന്മാത്രകളുടെ എണ്ണവും തമ്മിലുളള ഈ ബന്ധം കണ്ടെത്ത് യത് ഇറ്റാലിയൻ ശാസ്ത്രജ്ഞനായ അമേഡിയോ അവോഗാഡ്രോ (1776-1856) ആണ്. ഈ ബന്ധം അവോഗാഡ്രോ നിയമം എന്നറിയപ്പെ ടുന്നു.
താപനില, മർദം ഇവ സ്ഥിരമായിരിക്കുമ്പോൾ വാതകങ്ങളുടെ വ്യാപ്തം തന്മാത്രക ളുടെ എണ്ണത്തിന് നേർ അനുപാതത്തിലായിരിക്കും

സൂക്ഷ്മകണികകളുടെ എണ്ണം കണക്കാക്കുന്നതെങ്ങനെ?

അവോഗാഡ്രോ നിയമമനുസരിച്ച് താപനില, മർദം ഇവ സ്ഥിരമായിരിക്കു ബോൾ വാതകങ്ങളുടെ വ്യാപ്തം എന്തിനെ ആശ്രയിച്ചിരിക്കുന്നു? തന്മാത്രകളുടെ വലുപ്പം തീരെ ചെറുതാണെന്നറിയാമല്ലോ? അങ്ങനെയെ ങ്കിൽ ഒരു പദാർത്ഥത്തിൽ അടങ്ങിയിരിക്കുന്ന തന്മാത്രകളുടെ എണ്ണം കൃത്യമായി കണക്കാക്കാൻ എന്താണ് മാർഗ്ഗം?

വലിയ ബാങ്കുകളിലും മറ്റും ഒരേയിനം നാണയത്തുട്ടുകൾ എണ്ണിത്തിട്ട പ്പെടുത്തുമ്പോൾ, അവ കൃത്യമായി എണ്ണിയെടുക്കാൻ എത്ര ആളുകൾ വേണ്ടിവരും? എത്ര സമയം വേണ്ടിവരും? ഉദാഹരണത്തിന് 10 ലക്ഷം രൂപയുടെ നാണയത്തുട്ടുകൾ (ഒരേ വലുപ്പവും മാസും ഉള്ളവയാണ് നാണയങ്ങൾ എന്ന് കരുതുക) എണ്ണിയെടുക്കണമെങ്കിൽ എത്രസമയം ആവശ്യ മായിവരുമെന്ന് ചിന്തിച്ചു നോക്കൂ...

ഒരു നാണയത്തിന്റെ മാസ് 5g ആണെന്നിരിക്കട്ടെ. 1000 നാണയങ്ങളുടെ മാസ് എത്രയായിരിക്കും? ഒരു സഞ്ചിയിലെ നാണയങ്ങളുടെ മാസ് 50,000g ആണെങ്കിൽ അതിൽ എത്ര നാണയങ്ങൾ ഉണ്ടാകും?

ഇങ്ങനെ മാസ് അടിസ്ഥാനത്തിൽ നാണയങ്ങളുടെ എണ്ണം കണക്കാക്കാൻ ശ്രമിച്ചാൽ എളുപ്പമാവില്ലേ?

ഒരേ മാസുള്ള കണങ്ങളാണെങ്കിൽ അവയുടെ മാസും എണ്ണവും തമ്മിൽ എന്തെങ്കിലും ബന്ധമുണ്ടോ?

തികച്ചും ഒരേപോലുള്ള കണങ്ങളാണെങ്കിൽ, അവ കോടിക്കണക്കിന് ഉണ്ടെങ്കിൽ പോലും മാസ് അടിസ്ഥാനമാക്കി എണ്ണം ക്വത്വമായി കണ്ടെത്താം.

ആപേക്ഷിക അറ്റോമിക മാസ്

ചില മൂലക്ങങളുടെ അറ്റോമിക മാസ് തന്നിരിക്കുന്നത് ശ്രദ്ധിക്കൂ...

മൂലകം	ഹൈഡ്രജൻ	ഹീലിയം	സോഡിയം
അറ്റോമിക മാസ്	1	4	23

പട്ടിക 2.3

മുകളിൽ തന്നിരിക്കുന്ന സംഖ്യകൾ ആറ്റങ്ങളുടെ യഥാർഥ മാസ് അല്ല. ആറ്റങ്ങളുടെ മാസ് പ്രസ്താവിക്കുന്നതിനുള്ള രീതി എന്തായിരിക്കും? ഹീലി യത്തിന്റെ അറ്റോമിക മാസ് 4 എന്നത്കൊണ്ട് എന്താണ് അർഥമാക്കുന്നത്?

സൂക്ഷ്മകണികകളുടെ മാസ് കൃത്വമായി കണ്ടെത്തുന്നതിന് ആധുനിക സംവിധാന ത്ങളിലൂടെ കഴിഞ്ഞിട്ടുണ്ട്. ഉദാഹരണത്തിന് ഒരു ഹൈധ്രജൻ ആറ്റത്തിന്റെ മാസ് 1.67×10^{-24} ഗ്രാം ആണ്. എന്നാൽ ഇത് പ്രസ്താവിക്കുന്നതിന് ആപേക്ഷിക മാസ് രീതി യാണ് ഉപയോഗിച്ച് വരുന്നത്.

ഒരു ആറ്റത്തിന്റെ മാസ് മറ്റൊരു ആറ്റത്തിന്റെ മാസുമായി താരതമ്വം ചെയ്ത്, അതിന്റെ എത്ര മടങ്ങാണെന്ന് പ്രസ്താവിക്കുന്ന രീതിയാണിത്. കാർബൺ - 12 ആറ്റത്തിന്റെ മാസിന്റെ 12 - ൽ ഒരു ഭാഗത്തെ ഒരു യൂണിറ്റായി പരിഗണിച്ചാണ് മൂലകങ്ങളുടെ അറ്റോമിക മാസ് പ്രസ്താവിക്കുന്നത്.

ഒരു മൂലകത്തിന്റെ വിവിധ ഐസോടോഷുകളെക്കൂടി പരിഗണിച്ച് ശരാശരി അറ്റോ മികമാസ് കണക്കാക്കുമ്പോൾ പലപ്പോഴും ദിന്നസംഖ്യകളായി വരാറുണ്ട്. എങ്കിലും പ്രായോഗിക ആവശ്യങ്ങൾക്കും കണക്കുകൂട്ടലുകൾക്കും വേണ്ടി ഇവയിൽ മിക്കതും പൂർണസംഖ്യകളായി പരിഗണിക്കുന്നു.

ആറ്റങ്ങളുടെ എണ്ണം

കാർബൺ ഓക്സിജനിൽ ജ്വലിച്ച് കാർബൺ ഡൈഓക്സൈഡ് ഉണ്ടാകുന്ന പ്രവർത്തനത്തിന്റെ രാസസമവാക്യം തന്നിരിക്കുന്നത് ശ്രദ്ധിക്കൂ.

$$C + O_2 \rightarrow CO_2$$

ഒരു കാർബൺ ആറ്റം എത്ര ഓക്സിജൻ ആറ്റങ്ങളുമായാണ് സംയോജിക്കു ന്നത്?

1000 കാർബൺ ആറ്റങ്ങൾ എത്ര ഓക്സിജൻ ആറ്റങ്ങളുമായി സംയോജി ക്കുന്നു?

ഇത്തരത്തിൽ കോടികണക്കിന് ആറ്റങ്ങൾ സംയോജിച്ചാണ് പുതിയ പദാർത്ഥ ങ്ങൾ ഉണ്ടാകുന്നത്. എങ്കിൽ എങ്ങനെയാണ് ആറ്റങ്ങളുടെ എണ്ണം കൃത്യ മായി കണക്കാക്കാൻ കഴിയുക?

തികച്ചും ഒരേപോലുളള കണങ്ങളാണെങ്കിൽ പദാർഥത്തിന്റെ മാസ് അടി സ്ഥാനമാക്കി കണങ്ങളുടെ എണ്ണം കണ്ടുപിടിക്കാമെന്ന് മനസിലാക്കിയിട്ടു ണ്ടല്ലോ. കാർബൺ, ഓക്സിജൻ ഇവയുടെ മാസിന്റെ അടിസ്ഥാനത്തിൽ അവയിലെ ആറ്റങ്ങളുടെ എണ്ണം ശാസ്ത്രീയമായി കണ്ടെത്തിയത് പട്ടിക യിൽ നൽകിയിരിക്കുന്നു.

മൂലകം	എടുത്തിരിക്കുന്ന മാസ്	ആറ്റങ്ങളുടെ എണ്ണം
С	12g	$6.022\mathrm{x}10^{23}$ കാർബൺ ആറ്റങ്ങൾ
О	16g	$6.022\mathrm{x}10^{23}$ ഓക്സിജൻ ആറ്റങ്ങൾ

പട്ടിക 2.4

12 ഗ്രാം കാർബണിൽ എത്ര ആറ്റങ്ങളുണ്ട്?

ഒരു കാർബൺ ആറ്റം രണ്ട് ഓക്സിജൻ ആറ്റങ്ങളുമായിട്ടാണ് സംയോജിക്കു ന്നത്. $6.022 \times 10^{23} \, \mathrm{C}$ ആറ്റങ്ങൾക്ക് സംയോജിക്കാൻ എത്ര ഓക്സിജൻ ആറ്റ ങ്ങൾ വേണം?

ഇത്രയും ആറ്റങ്ങളുടെ മാസ് എത്രയായിരിക്കാം?

രാസപ്രവർത്തനങ്ങളിൽ പങ്കെടുക്കുന്ന കണങ്ങളുടെ എണ്ണം ഇതുപോലെ മാസിന്റെ അടിസ്ഥാനത്തിൽ കൃത്യമായി കണക്കാക്കാം.

ഗ്രാം അറ്റോമികമാസ്

കാർബണിന്റെ അറ്റോമിക മാസ് - 12 ഉം, ഓക്സിജന്റേത് 16 ഉം ആണ്. ഓരോ മൂലകവും അതിന്റെ അറ്റോമിക മാസ് എത്രയാണോ അത്രയും ഗ്രാം വീതമാണ് എടുത്തിരിക്കുന്നത്. അവയിൽ അടങ്ങിയിരിക്കുന്ന ആറ്റങ്ങളുടെ എണ്ണവും തുല്യമായി (6.022x10²³) കാണപ്പെടുന്നു.

12 ഗ്രാം കാർബണിനെ ഒരു ഗ്രാം അറ്റോമിക മാസ് കാർബൺ (1 GAM) എന്നു വിളിക്കുന്നു. അതുപോലെ 16 ഗ്രാം ഓക്സിജനെ ഒരു ഗ്രാം അറ്റോ മിക മാസ് (1 GAM) ഓക്സിജൻ എന്ന് വിളിക്കുന്നു.

ഒരു മൂലകത്തിന്റെ അറ്റോമികമാസ് എത്രയാണോ, അത്രയും ഗ്രാം ആ മൂലകത്തിനെ അതിന്റെ ഒരു ഗ്രാം അറ്റോമിക മാസ് (1 GAM) എന്നു വിളിക്കുന്നു. ഇതിനെ ഒരു ഗ്രാം ആറ്റം എന്നും ചുരുക്കി വിളിക്കാം.

മൂലകം	അറ്റോമിക മാസ്	മാസ് ഗ്രാമിൽ	GAM	ആറ്റങ്ങളുടെ എണ്ണം
കാർബൺ	12	12g	1GAM	6.022×10^{23}
ഓക്സിജൻ	16	16g	1GAM	6.022x10 ²³
നൈട്രജൻ	14		1GAM	
ക്ലോറിൻ	35.5			6.022x10 ²³

പട്ടിക 2.5

 $1~{\rm GAM}~$ കാർബൺ എന്നാൽ 12ഗ്രാം കാർബണാണല്ലോ? ഇതിൽ അടങ്ങി യിരിക്കുന്ന ആറ്റങ്ങളുടെ എണ്ണം $6.022 \times 10^{23}~$ ആണെന്നും കാണാം. മറ്റ് മൂല കങ്ങളുടെയും $1~{\rm GAM}~$ എടുത്താൽ ആറ്റങ്ങളുടെ എണ്ണം ഇത്ര തന്നെ ആയി രിക്കും.

ഒരു ഗ്രാം അറ്റോമിക മാസ് ഏത് മൂലകമെടുത്താലും അതിൽ അടങ്ങിയിരിക്കുന്ന ആറ്റങ്ങളുടെ എണ്ണം $6.022 \mathrm{x} 10^{23}$ ആയിരിക്കും. ഈ സംഖ്യ അവോഗാഡ്രോ സംഖ്യ എന്ന റിയപ്പെടുന്നു. ഇതിനെ $\mathrm{N_a}$ എന്ന് സൂചിപ്പിക്കാം.

1 GAM സോഡിയം എന്നാൽ 23 ഗ്രാം സോഡിയം ആണ്. അതിൽ 6.022x10²³ ആറ്റങ്ങൾ അടങ്ങിയിരിക്കുന്നു. എങ്കിൽ 46 ഗ്രാം സോഡിയം എത്ര GAM ആയിരിക്കും? അതിലുള്ള ആറ്റങ്ങളുടെ എണ്ണമോ?

46 ഗ്രാം സോഡിയം =
$$\frac{46}{23}$$
 = 2 GAM

ഗ്രാം അറ്റോമിക മാസുകളുടെ എണ്ണം = $\frac{\text{mmlol} \text{ dagm asm asm} \cdot (\text{ഗ്രാമിൽ})}{\text{agea} \text{mmlol} \text{ord} \cdot \text{GAM}}$

ഇതിൽ $2 \times 6.022 \times 10^{23}$ ആറ്റങ്ങൾ അടങ്ങിയിരിക്കുന്നു. എങ്കിൽ 69 ഗ്രാം സോഡിയം എത്ര GAM ആണ്? അതിൽ എത്ര ആറ്റങ്ങൾ അടങ്ങിയിരി ക്കുന്നു?

ചുവടെ തന്നിരിക്കുന്ന ഓരോ മൂലക സാമ്പിളും എത്ര GAM ആണ്? ഓരോ

ന്നിലും എത്ര ആറ്റങ്ങൾ അടങ്ങിയിരിക്കുന്നു എന്ന് കണക്കാക്കുക. (അറ്റോ മികമാസ് N=14, O=16)

- 1. 42g നൈട്രജൻ
- 2. 80g ഓക്സിജൻ

ഒരു മോൾ ആറ്റങ്ങൾ

1 ഗ്രാം ഹൈഡ്രജൻ എന്നത് $1~{\rm GAM}$ ഹൈഡ്രജൻ ആണെന്നും, അതിൽ $6.022 {\rm x} 10^{23}$ എണ്ണം ആറ്റങ്ങൾ ഉണ്ടെന്നും നമുക്കറിയാം. ഇതിനെ ഒരു മോൾ ഹൈഡ്രജൻ ആറ്റങ്ങൾ എന്നു പറയാം.

 $12 \mathrm{g} \ \mathrm{C} = 1 \ \mathrm{GAM}$ കാർബൺ = $6.022 \mathrm{x} 10^{23}$ കാർബൺ ആറ്റങ്ങൾ = 1 മോൾ $\ \mathrm{C}$ ആറ്റങ്ങൾ

 $14g\ N = 1\ GAM$ നൈട്രജൻ $= 6.022x10^{23}\$ ന്റൈട്രജൻ ആറ്റങ്ങൾ $= 1\$ മോൾ $N\$ ആറ്റങ്ങൾ

 $6.022 \mathrm{x} 10^{23}$ ആറ്റങ്ങൾ ആണ് ഒരു മോൾ ആറ്റങ്ങൾ.

മോളിക്യൂലാർ മാസും ഗ്രാം മോളിക്യൂലാർ മാസും

സ്വതന്ത്രാവസ്ഥയിൽ മൂലകങ്ങളും സംയുക്തങ്ങളും തന്മാത്രകളായിട്ടാണ് കാണപ്പെടുന്നത്. താഴെ തന്നിരിക്കുന്ന പട്ടികയിലെ തന്മാത്രകളുടെ രാസ സൂത്രവും മോളിക്യൂലാർ മാസും തിരിച്ചറിഞ്ഞ് വിട്ടുപോയവ പൂർത്തിയാ ക്കുക.

(അറ്റോമികമാസ് - H=1, O = 16, N = 14)

മൂലകം/സംയുക്തം	രാസസൂത്രം	മോളികുലാർ മാസ്
ഹെധ്രജൻ	H_2	1+1=2
ഓക്സിജൻ	O_2	
നൈട്രജൻ	$N_{2}^{}$	
翠ല₀	$\rm H_2O$	1+1+16=18
അമോണിയ	NH_3	

പട്ടിക 2.6

ഗ്ലൂക്കോസ് $(C_6H_{12}O_6)$, സൾഫ്യൂരിക് ആസിഡ് (H_2SO_4) എന്നിവയുടെ മോളിക്യുലാർ മാസ് എത്രയെന്ന് കണക്കാക്കുക. (അറ്റോമിക മാസ് C=12, $H=1,\,O=16,\,S=32)$

ഒരു മൂലകത്തിന്റെ അറ്റോമികമാസ് എത്രയാണോ അത്രയും ഗ്രാം ആ മൂല കത്തിനെ അതിന്റെ ഗ്രാം അറ്റോമിക മാസ് എന്ന് വിളിക്കുമല്ലോ. ഇതുപോലെ ഒരു പദാർത്ഥത്തിന്റെ മോളിക്യുലാർ മാസിന് തുല്യമായത്രയും ഗ്രാം ആ പദാർത്ഥത്തെ ഗ്രാം മോളിക്യുലാർ മാസ് (GMM) എന്ന് പറയാം.

തന്മാത്രകളുടെ എണ്ണം

മൂലകങ്ങളുടേയും സംയുക്തങ്ങളുടേയും മാസും അതിലടങ്ങിയ തന്മാത്ര കളുടെ എണ്ണവും തമ്മിലുള്ള ബന്ധം എന്താണ്? ചുവടെ തന്നിരിക്കുന്ന പട്ടിക വിശകലനം ചെയ്ത് പൂർത്തിയാക്കുക.

മൂലകം/ സംയുക്തം	മോളിക്യുലാർ മാസ്	ഗ്രാമിലുളള മാസ്	GMM	തന്മാത്രകളുടെ എണ്ണം
ഹൈഡ്രജൻ ${ m H_2}$	2	2g	1GMM	$6.022 \ \mathrm{x} \ 10^{23} \ \mathrm{H_2}$ തന്മാത്രകൾ
ഓക്സിജൻ $\mathbf{O}_{_{2}}$	32	32g	1GMM	$6.022 \; \mathrm{x} \; 10^{23} \; \mathrm{O_2}$ തന്മാത്രകൾ
നൈട്രജൻ $\mathbf{N}_{_{2}}$	28	28g	•••••	
ജലം H ₂ O	18	18g	1GMM	$6.022 \; \mathrm{x} \; 10^{23} \; \mathrm{H_{2}O}$ തന്മാത്രകൾ
അമോണിയ NH_3	17	17g		

പട്ടിക 2.7

ഓക്സിജന്റെ മോളിക്യുലാർ മാസ് എത്ര?	
32 ഗ്രാം ഓക്സിജൻ എത്ര GMM ആണ്?	
ഇതിൽ എത്ര തന്മാത്രകളുണ്ട ⁸	
28 ഗ്രാം നൈട്രജൻ എത്ര GMM ആണ്?	
ഇതിൽ എത്ര N_2 തന്മാത്രകളുണ്ട്?	
18 ഗ്രാം ജലം എത്ര GMM ആണ്?	
ഇതിൽ എത്ര $\mathrm{H_2O}$ തന്മാത്രകളുണ്ട്?	
ഒരു GMM എന്നതുകൊണ്ട് അർത്ഥമാക്കുന്നത്	ചെന്ത്?
ഒരു ഗ്രാം മോളിക്യുലാർ മാസും അവയിലുളള	തന്മാത്രകളുടെ എണ്ണവു
തമ്മിലുളള ബന്ധമെന്താണ്?	

- ഒരു പദാർഥത്തിന്റെ മോളിക്യുലാർ മാസിന് തുല്യമായത്രയും ഗ്രാം ആ പദാർഥത്തെ ഒരു ഗ്രാം മോളിക്യുലാർ മാസ് (1 GMM) എന്ന് വിളിക്കുന്നു.
- ഒരു GMM ഏത് പദാർഥമെടുത്താലും അതിൽ അവോഗാഡ്രോ സംഖ്യയ്ക്ക് തുല്യമായ എണ്ണം തന്മാത്രകൾ ഉണ്ടാകും.

 $1~{
m GMM}$ ഓക്സിജൻ എന്നാൽ $32~{
m (}$ ഗാം ആണല്ലോ? അതിൽ $6.022~{
m x}~10^{23}$ എണ്ണം ${
m O}_2$ തന്മാത്രകൾ അടങ്ങിയിരിക്കുന്നു. $64~{
m (}$ ഗാം ഓക്സിജൻ എത്ര GMM ആയിരിക്കും? അതിലുള്ള തന്മാത്രകളുടെ എണ്ണമെത്ര?

$$64 \text{ g O}_2 = \frac{64}{32} = 2 \text{ GMM}$$

ഇതിൽ 2 x 6.022 x 10^{23} തന്മാത്രകൾ അടങ്ങിയിരിക്കുന്നു. എങ്കിൽ 96 ഗ്രാം ഓക്സിജൻ എത്ര GMM എന്ന് കണക്കാക്കാമോ? ഗ്രാം മോളിക്യുലാർ മാസുകളുടെ എണ്ണം = $\frac{\text{തന്നിരിക്കുന്ന മാസ് (ഗ്രാമിൽ)}}{\text{ഗ്രാം മോളിക്യുലാർ മാസ്}}$

ചുവടെ തന്നിരിക്കുന്ന ഓരോ സാമ്പിളും എത്ര GMM ആണ്? ഓരോന്നിലും അടങ്ങിയിരിക്കുന്ന തന്മാത്രകളുടെ എണ്ണം കണക്കാക്കുക.

- 1. 360 ഗ്രാം ഗ്ലൂക്കോസ് (മോളിക്യുലാർ മാസ് = 180)
- 2. 90 ഗ്രാം ജലം (മോളിക്യുലാർ മാസ് = 18)

ഒരു മോൾ തന്മാത്രകൾ

മോൾ എന്ന പദം പരിചയപ്പെട്ടല്ലോ. 6.022×10^{23} കണികകൾ ഉൾക്കൊള്ളുന്ന പദാർഥത്തിന്റെ അളവിനെ സൂചിപ്പിക്കുന്നതിനാണ് മോൾ എന്ന യൂണിറ്റ് പ്രയോജനപ്പെടുത്തുന്നത്.

ഒരു മോൾ ജലത്തിൽ എത്ര $\mathrm{H_2O}$ തന്മാത്രകളുണ്ടാവും?

 $6.022 \mathrm{x} 10^{23}$ തന്മാത്രകളെ 1 മോൾ തന്മാത്രകൾ എന്ന് വിളിക്കുന്നു. $1~\mathrm{GMM} = 1~\mathrm{2200} = 6.022 \mathrm{x} 10^{23}~\mathrm{0000}$ തന്മാത്രകൾ

 $N_{_2}$ ഒരു ദ്വയറ്റോമിക തന്മാത്രയാണ്. ന്നെട്രജന്റെ മോളിക്യുലാർ മാസ് 28 ആണ്. താഴെയുള്ള പദസൂര്യൻ ശ്രദ്ധിക്കുക.

വാതകങ്ങളുടെ വ്യാപ്തവും മോളും തമ്മിലുള്ള ബന്ധം

ഖര-ദ്രാവക അവസ്ഥകളിൽ നിന്ന് വിഭിന്നമായി വാതകങ്ങളുടെ പ്രത്യേക തകൾ നാം മനസ്സിലാക്കിയിട്ടുണ്ട്. വാതകത്തിൽ തന്മാത്രകൾ വളരെ അക ലത്തിലാണുള്ളത്. തന്മാത്രയുടെ വലുപ്പവുമായി താരതമ്യം ചെയ്യുമ്പോൾ ഈ അകലം ഒട്ടേറെ മടങ്ങ് കൂടുതലാണ്.

സ്ഥിരമർദത്തിലും താപനിലയിലും സ്ഥിതി ചെയ്യുന്ന ഒരു വാതകത്തിന്റെ വ്യാപ്തം അതിലെ തന്മാത്രകളുടെ എണ്ണത്തെയാണ് ആശ്രയിച്ചിരിക്കുന്നത്, തന്മാത്രകളുടെ ഇനത്തെയോ വലുപ്പത്തെയോ അല്ല. അതിനാൽ തന്നെ വാതകം ഏതുതന്നെയായാലും ഒരേ മർദത്തിലും താപനിലയിലും തന്മാ ത്രകളുടെ എണ്ണം തുല്യമാണെങ്കിൽ വ്യാപ്തവും തുല്യമായിരിക്കുമല്ലോ?

മർദവും താപനിലയും മാറിയില്ലെങ്കിൽ, ഒരു മോൾ ഏതൊരു വാതക മെടുത്താലും അതിലെ തന്മാത്രകളുടെ എണ്ണം തുല്യമായതിനാൽ അവ യുടെ വ്യാപ്തവും തുല്യമായിരിക്കും. ഇതിനെ വാതകങ്ങളുടെ മോളാർ വ്യാപ്തം (Molar volume) എന്നു പറയുന്നു.

പക്ഷേ താപനിലയും മർദവും വ്യത്യസ്തമായാലോ? വാതകനിയമങ്ങൾ വിശകലനം ചെയ്തതിൽ നിന്ന് മർദമോ താപനിലയോ മാറിയാൽ വാതക ത്തിന്റെ വ്യാപ്തം മാറുമെന്ന് ബോധ്യമായല്ലോ.

താപനില 273 കെൽവിനും മർദം 1 അന്തരീക്ഷമർദവും (1 atm) ആയി നിജ പ്പെടുത്തിയാൽ ഏതൊരു വാതകത്തിന്റെയും 6.022×10^{23} തന്മാത്രകൾ (1 മോൾ തന്മാത്രകൾ)ക്ക് 22.4 L വ്യാപ്തമുണ്ടാവുമെന്ന് ശാസ്ത്രജ്ഞർ പരീ ക്ഷണങ്ങളിലൂടെ തെളിയിച്ചിട്ടുണ്ട്.

273 K താപനില, 1 atm മർദം എന്നിവയെ സ്റ്റാൻഡേർഡ് ടെംപറേച്ചർ & പ്രഷർ (Standard Temperature & Pressure - STP) എന്നാണ് വിളിക്കുന്നത്. അതായത്, STP യിൽ സ്ഥിതി ചെയ്യുന്ന ഏതൊരു വാതകത്തിന്റെയും ഒരു മോളിന് 22.4 L വ്യാപ്തമുണ്ടാകും. ഇത് STP യിലെ മോളാർ വ്യാപ്തം എന്നറിയപ്പെടുന്നു.

വാതകം	വ്യാപ്തം
$ullet$ STP യിൽ ഒരു മോൾ ഹൈഡ്രജൻ $({ m H_2})$	22.4 L
$ullet$ STP യിൽ ഒരു മോൾ നൈട്രജൻ $({ m N_2})$	22.4 L
$ullet$ STP യിൽ ഒരു മോൾ $\mathrm{CO_2}$	22.4 L
•	
•	

STP യിൽ 22.4 L വാതകം = 1 മോൾ

STP യിൽ
$$44.8 \text{ L}$$
 വാതകം $= \frac{44.8}{\dots} = 2$ മോൾ

STP യിൽ 224 L വാതകം =

STP യിൽ സ്ഥിതി ചെയ്യുന്ന വാതകങ്ങളുടെ മോൾ എണ്ണം

$$=rac{ ext{STP}}{22.4} ext{ L}$$

ഒരു മോൾ പദാർഥവുമായി ബന്ധപ്പെട്ട് ചുവടെ നൽകിയിരിക്കുന്ന ഫ്ളോ ഡയഗ്രം പൂർത്തിയാക്കുക.

🎉 വിലയിരുത്താം

 താഴെയുളള പട്ടികയിൽ തന്നിരിക്കുന്ന വിവരങ്ങൾ പരിശോധിക്കുക. (വാതക ത്തിന്റെ താപനിലയും തന്മാത്രകളുടെ എണ്ണവും സ്ഥിരമാണ്)

2dво P	വ്യാപ്തം V
1 atm	8 L
2 atm	4 L
4 atm	2 L

- a) $P \times V$ എത്രയെന്ന് കണക്കാക്കുക.
- b) ഇത് ഏത് വാതകനിയമവുമായി ബന്ധപ്പെട്ടിരിക്കുന്നു?
- താഴെ തന്നിരിക്കുന്ന സാഹചര്യങ്ങൾ വിശകലനം ചെയ്ത് ഏത് വാതക നിയമവു മായി ബന്ധപ്പെട്ടിരിക്കുന്നു എന്ന് വിശദീകരിക്കുക.
- a) വായു നിറച്ച ബലൂൺ ജലത്തിനടിയിലേക്ക് താഴ്ത്തുമ്പോൾ അതിന്റെ വലുപ്പം കുറയുന്നു.
- b) ബലൂൺ ഊതിവീർപ്പിക്കുന്നു.
- ഒരേ താപനിലയിലും മർദത്തിലും സ്ഥിതിചെയ്യുന്ന വൃതൃസ്ത വാതകങ്ങളെ സംബന്ധിച്ച വിവരങ്ങൾ ചുവടെ തരുന്നു.

വാതകം	വ്വാപ്തം (L)	തന്മാത്രകളുടെ എണ്ണം
നൈട്രജൻ	10 L	x
ഓക്സിജൻ	5 L	
അമോണിയ	10 L	
കാർബൺ ഡൈ ഓക്സൈഡ്		2 <i>x</i>

- a) പട്ടിക പൂർത്തിയാക്കുക.
- b) ഇവിടെ ഏതു വാതകനിയമമാണ് പ്രയോജനപ്പെടുത്തിയിരിക്കുന്നത്?

- a) STP യിൽ സ്ഥിതി ചെയ്യുന്ന $112L\ {
 m CO}_2$ വാതകത്തിന്റെ മാസ് കണക്കാക്കുക. 4. (മോളിക്യുലാർ മാസ് - 44)
 - b) ഇത്രയും CO, വിലെ തന്മാത്രകളുടെ എണ്ണമെത്ര?
- STP യിൽ സ്ഥിതി ചെയ്യുന്ന 170g അമോണിയ വാതകത്തിന്റെ വ്യാപ്തം കണക്കാ 5. ക്കുക. (മോളിക്യുലാർ മാസ് - 17)
- താഴെ തന്നിരിക്കുന്നവയിൽ എത്ര മോൾ തന്മാത്രകളുണ്ടെന്ന് കണ്ടെത്തുക. (GMM 6. $-N_{2} = 28g H_{2}O = 18g$
 - a)
- 56g N₂ b) 90g H₂O
- അമോണിയയുടെ മോളിക്യുലാർ മാസ് 17 ആണ്. 7.
 - a) അമോണിയയുടെ GMM എത്ര?
 - b) 170 ഗ്രാം അമോണിയയിൽ എത്ര മോൾ തന്മാത്രകൾ അടങ്ങിയിരിക്കുന്നു?
 - c) ഇത്രയും അമോണിയയിൽ അടങ്ങിയിരിക്കുന്ന തന്മാത്രകളുടെ എണ്ണം കണ ക്കാക്കുക.
- ഓക്സിജന്റെ മോളിക്യൂലാർ മാസ് 32 ആണ്. 8.
 - a) O, ന്റെ GMM എത്ര?
 - 64 ഗ്രാം O, വിൽ എത്ര മോൾ തന്മാത്രകളുണ്ട്? ഇതിൽ എത്ര തന്മാത്രകളുണ്ട്?
 - 64 ഗ്രാം ഓക്സിജനിലുള്ള ആറ്റങ്ങളുടെ എണ്ണം കണക്കാക്കുക.

തുടർപ്രവർത്തനങ്ങൾ

- ഒരു ഗ്രാം ഹീലിയത്തിലടങ്ങിയിരിക്കുന്ന അതേ എണ്ണം ആറ്റങ്ങൾ ലഭിക്കാൻ കാർബൺ, ഓക്സിജൻ എന്നിവ എത്ര ഗ്രാം വീതം എടുക്കണം?
- നൽകിയിരിക്കുന്ന സാമ്പിളുകൾ ശ്രദ്ധിക്കുക.
 - 20 g He a.

- STP യിൽ 44.8 L NH,
- STP യിൽ 67.2 L N, c.
- d. 1 മോൾ H_2SO_4

- 180 g ജലം e.
- തന്നിരിക്കുന്ന സാമ്പിളുകളെ തന്മാത്രകളുടെ എണ്ണം കൂടി വരുന്ന രീതിയിൽ (i) ക്രമീകരിക്കുക.
- (ii) ഓരോ സാമ്പിളിലെയും ആകെ ആറ്റങ്ങളുടെ എണ്ണത്തിന്റെ ആരോഹണ ക്രമം എന്തായിരിക്കും?
- (iii) b, c, d എന്നിവയുടെ മാസ് എത്ര വീതമായിരിക്കും?
- 90 ഗ്രാം ജലത്തിൽ
 - എത്ര തന്മാത്രകൾ ഉണ്ടാകും? a.
 - b. ആകെ എത്ര ആറ്റങ്ങൾ ഉണ്ടാകും?
 - c. ഇത്രയും കണികകളിലെ ആകെ ഇലക്ട്രോണുകളുടെ എണ്ണം എത്രയായിരിക്കും?