TABLA DE DERIVADAS

FUNCIONES ALGEBRAICAS

Functiones y = a y' = 0 y = x y' = 1 $y = u \pm v \pm ...$ $y' = u' \pm v' \pm ...$ $y = a \cdot u$ $y' = a \cdot u'$ $y = u \cdot v$ $y' = u' \cdot v + v' \cdot u$ $y = u \cdot v \cdot ...$ $y' = u' \cdot v + v' \cdot u$ $y = u' \cdot v \cdot ... + v' \cdot u \cdot ... + ...$ $y = \frac{u}{v}$ $y' = \frac{u' \cdot v - u \cdot v'}{v^2}$ $y = \frac{a}{u}$ $y' = \frac{-a \cdot u'}{u^2}$ $y' = \frac{u'}{v}$ $y' = \frac{u'}{v}$

FUNCIONES POTENCIALES EXPONENCIALES y de V.A.

Functiones Derivadas
$$y = u^{a} \qquad y' = a \cdot u^{a-1} \cdot u'$$

$$y = u^{-a} \qquad y' = \frac{-a \cdot u'}{u^{a+1}}$$

$$y = u^{\frac{1}{a}} = \sqrt[a]{u} \qquad y' = \frac{1}{a} \cdot u^{\frac{1}{a}-1} \cdot u' = \frac{u'}{a\sqrt[a]{u^{a-1}}}$$

$$y = a^{u} \qquad y' = a^{u} \cdot u' \cdot \ln a$$

$$y = u^{v} \qquad y' = v \cdot u^{v-1} \cdot u' + u^{v} \cdot v' \cdot \ln u$$

$$y = e^{u} \qquad y' = e^{u} \cdot u'$$

$$y = |u| \qquad y' = \frac{u}{|u|} u'$$

FUNCIONES CICLOMETRICAS FUNCIONES CIRCULARES

Funciones	Derivadas	Funciones	Derivadas
$y = \operatorname{arc} \operatorname{sen} u$	$y' = \frac{u'}{\sqrt{1 - u^2}}$	$y = \sin u$	$y' = u' \cdot \cos u$
$y = \operatorname{arc} \cos u$	$y' = -\frac{u'}{\sqrt{1 - u^2}}$	$y = \cos u$	$y' = -u' \cdot \sin u$
$y = \operatorname{arc} \operatorname{tg} u$	$y' = \frac{u'}{1 + u^2}$	y = tgu	$y' = \frac{u'}{\cos^2 u} = u' \cdot \left(1 + tg^2 u\right)$
$y = \operatorname{arc\ cotg} u$	$y' = -\frac{u'}{1 + u^2}$	$y = c \operatorname{tg} u$	$y' = \frac{-u'}{\sin^2 u} = -u' \cdot \left(1 + c \operatorname{tg}^2 u\right)$
$y = \operatorname{arc} \sec u$	$y' = \frac{u'}{u\sqrt{u^2 - 1}}$	$y = \sec u$	$y' = u' \cdot \sec u \cdot \tan u = \frac{u' \cdot \sin u}{\cos^2 u}$
y = arc cosec a	$y' = -\frac{u'}{u\sqrt{u^2 - 1}}$	$y = c \sec u$	$y' = -u' \cdot c \sec u \cdot c \operatorname{tg} u = \frac{-u' \cdot \cos u}{\sin^2 u}$

FUNCION LOGARITMICA

Functiones
$$y = \log_a u$$
 $y' = \frac{u'}{u \cdot \ln a} = \frac{u'}{u} \log_a e$
 $y = \ln u$ $y' = \frac{u'}{u}$

2 of 2 09/28/2004 11:00 AM