Московский Физико-Технический Институт

Кафедра Общей физики

Лабораторная работа №4.5.1

Гелий-неоновый лазер.

Автор:

Глеб Уваркин 615 группа Преподаватель:

Клёнов Сергей Львович

Цель работы:

Изучение основных принципов работы газового лазера и свойств лазерного излучения.

В работе используются:

Юстировочный лазер, гелий-неоновая трубка, компьютер со звуковой картой, модулятор (обтюратор), фотодиоды, зеркала, поляроид.

1 Теоретические сведения.

1.1 Коэффициент усиления.

Изменение интенсивности электромагнитной волны dI, прошедшей участок поглощающей (или усиливающей) среды толщиной dx, пропорционально интенсивности волны на этом участке $I(x):dI=-\alpha dx$, где α – κ оэффициент поглощения на единицу длины среды. Если $\alpha=const$, то получаем

$$I(x) = I_0 \exp(-\alpha x)$$

Если $\alpha < 0$, то говорят о коэффициенте усиления среды $\gamma = -\alpha$, интенсивность при этом экспоненциально нарастает:

$$I(x) = I_0 \exp(\gamma x)$$

Коэффициент усиления волны с частотой ω в активной среде лазера равен

$$\gamma = B \frac{\hbar \omega}{v} \Delta N,\tag{1}$$

где v=c/n - скорость волны, $\Delta N=N_1-N_0$ - разность концентраций, B - коэффициент пропорциональности. Отсюда видно, что среда является усиливающей, если концентрация атомов на верхнем уровне больше, чем на нижнем: $N_1>N_0$.

1.2 Генерация.

В реальности линия поглощения/излучения $\omega=(E_1-E_0)/\hbar$ имеет конечную ширину $\Delta\omega_\gamma$ и коэффициент усиления (1) должен быть домножен на функцию, пропорциональную форме контура этой спектральной линии. Иными словами, коэффициент усиления $\gamma(\omega)$ есть функция частоты с острым максимумом вблизи резонансной частоты $\omega=(E_1-E_0)/\hbar$, обладающая некоторой конечной шириной $\Delta\omega_\gamma$.

Полуширина линии приблизительно составляет

$$\Delta\omega_{\gamma} \simeq \frac{\omega}{c} \sqrt{\frac{8kT}{\pi m}}.$$

Точный вывод на основе распределения Максвелла приводит к формуле для полуширины линии

$$\delta\omega = 2\omega\sqrt{\frac{2kT\ln 2}{mc^2}}.$$

1.3 Моды.

 $Mo\partial \omega$ – стационарные типы колебаний электромагнитного поля в резонаторе, различающиеся частотой и пространственным распределением амплитуды поля.

Если зеркала проводящие (металлические), то минимальные потери будут испытывать моды, у которых напряжённость поля на поверхности зеркал $(x=0,\ x=L)$ равна нулю, т.е. выполняется условие $k_qL=\pi q$, где q=1,2,3..., и $k_q=\omega_q/c$ – волновое число внутри резонатора.

Отсюда имеем

$$L = q \frac{\lambda}{2}$$

$$\omega_q = q \frac{\pi c}{L}$$

- набор резонансных частот (собственных частот резонатора).

Таким образом, резонатор выделяет из спектра генерации активной среды лазера ряд узких спектральных линий, центры которых соответствуют собственным частотам ω_a резонатора.

Моды колебаний в резонаторе также не являются строго монохроматическими и каждая содержит узкий спектр частот в некотором интервале $\omega_q \pm \Delta \Omega$.

<u>MIPT</u>.

2 Экспериментальная установка.

Рис. 1: Схема экспериментальной установки. Штриховыми линиями показано положение зеркал при получении лазерной генерации на исследуемой трубке.

Схема экспериментальной установки приведена на рис.1. На одном оптическом рельсе расположены: головка промышленного He-Ne-лазера ЛГ- 45 с исследуемой газоразрядной трубкой (11), заключённой в кожух (10), рейтер с полупрозрачным зеркалом (4), фотодиоды (5 и 6), а также 3 съёмных рейтера с выходным зеркалом (9), отрицательной линзой для наблюдения модовой структуры излучения исследуемого лазера или поляроидом для исследования поляризации выходного излучения лазера (8) и с белым экраном (7).

Юстировочный лазер (1) с белым экранчиком (2) и модулятор (3) закреплены на втором оптическом рельсе. Модулятор может быть повёрнут в разные положения: при измерении коэффициента усиления он модулирует пучок, идущий от юстировочного лазера, при измерении поляризации излучения исследуемого лазера он модулирует выходящее из него излучение. В остальных случаях модулятор отводится в сторону, чтобы не перекрывать пучки.

Юстировочный лазер предназначен для настройки положения всех элементов установки и является источником зондирующего излучения для измерения усиления активной среды исследуемого лазера.

Зондирующий пучок сначала попадает на полупрозрачное зеркало (4). Часть излучения проходит сквозь зеркало и попадает на фотодиод №1 (6), с которого снимается сигнал, пропорциональный интенсивности зондирующего пучка. Отражённая часть направляется в исследуемую трубку.

Western State of Stat

3 Проведение измерений.

3.1 Измерение усиления трубки.

Поведём по несколько раз измерения с включённым и выключенным питанием трубки для трёх значений тока через трубку. Данные занесём в таблицу 1.

Таблица 1: Измерение коэффициента усиления трубки.

I, mA 22	30	40	0
$U_{ m 9}\phi_1, \ { m MB} \ \ 102.1 \ \ 101.7 \ \ 101.6$	102.5 102.9 103.4	103.4 103.4 104.	1 90.6 91 91.9
$U_{9\phi\phi_2}, \text{ MB} \mid 79.7 \mid 79.3 \mid 79.2$	80.3 80.5 80.7	80.5 80.6 80.8	69.3 69.3 70.3

3.2 Поляризация излучения лазера.

Измерим зависимость интенсивности излучения исследуемого лазера от угла поворота поляроида. Данные занесём в таблицу 2.

Таблица 2: Поляризация излучения лазера

Угол поворота поляроида,	° 0 20	40	60	80	100	120	140	160 1	80
$U_{ m э}$ ф, мкВ	306 580	1043	1486	1672	1520	1118	591	333 3	313

Угол поворота поляроида,	° 200	220	240 2	60 280	300	320 340 360
$U_{ m э}$ ф, мкВ	617	1132	1412 15	587 1394	1068	577 314 313

4 Обработка результатов.

По значениям эффективного напряжения в осциллограмме первого и второго каналов (с 1 и 2 фотодиодов соответственно) рассчитаем коэффициент усиления трубки. Обозначим за $U^0_{
m sphh}$ и $U^0_{
m sphh}$ показания программы при выключенной трубке, тогда

$$\gamma = \frac{U_{\mathsf{9}\varphi\varphi_2}}{U_{\mathsf{9}\varphi\varphi_1}} / \frac{U_{\mathsf{9}\varphi\varphi_2}^0}{U_{\mathsf{9}\varphi\varphi_1}^0}$$

Полученные результаты занесём в таблицу 3.

Таблица 3: Коэффициент усиления трубки.

I , мA \mid	22	30		40	
γ	1.022 1.021	1.021 1.026 1.024	1.022	1.019 1.021	1.016
$\gamma_{\rm cp}$	1.021 ± 0.0	01 1.024 \pm 0.	.001	1.019 \pm	0.002

Проанализируем зависимость интенсивности излучения исследуемого лазера от угла поворота поляроида. Для этого построим график зависимости отношения интенсивности

MIPT

излучения лазера к максимальной интенсивности от угла поворота поляроида. Данные возьмём из таблицы 3. Необходимые для построения измерения занесём в таблицу 4.

Таблица 4: Поляризация излучения.

Угол поворота поляроида,	° 0 20	40 60	80 100	120 140 160 180
I/I_{max}	0.18 0.35	0.62 0.89	1.00 0.91	0.67 0.35 0.20 0.19

Угол поворота поляроида,	200 220 240 260 280 300 320 340 36	0
I/I_{max}	0.37 0.68 0.84 0.95 0.83 0.64 0.35 0.19 0.1	9

Рис. 2: Зависимость относительной интенсивности от угла поворота поляроида.

По полученной зависимости можно сказать, что излучение получилось линейно поляризованным.

5 Вывод.

- В ходе лабораторной работы были изучены принципы работы гелий-неонового лазера, свойства лазерного излучения и измерено усиление лазерной трубки.
- Измеренной усиления полностью совпадает с теоретическим (характеристикой самой лазерной трубки) и составляет 1-3%.

- <u>MIPT</u>.
 - Было проверено, что сгенерированное излучение линейно поляризовано.
 - Было проведено наблюдение модовой структуры лазерного излучения, а именно, с помощью поворота выходного зеркала были получены одномодовый, трёхмодовый и многомодовый режимы.