Matemática Discreta

Clase 10: Relaciones y funciones

Federico Olmedo y Alejandro Hevia Departamento de Ciencias de la Computación Universidad de Chile

Relaciones

Definición (relación binaria)

Una relación entre los conjuntos A y B es un subconjunto del producto cartesiano $A \times B$.

Definición (relación binaria)

Una relación entre los conjuntos A y B es un subconjunto del producto cartesiano $A \times B$. En otras palabras, es un conjunto de pares (a, b) donde $a \in A$ y $b \in B$.

Definición (relación binaria)

Una relación entre los conjuntos A y B es un subconjunto del producto cartesiano $A \times B$. En otras palabras, es un conjunto de pares (a, b) donde $a \in A$ y $b \in B$.

Notación: Dada la relación $R \subseteq A \times B$, usamos $a_0 R b_0$ o $(a_0, b_0) \in R$ para notar que a_0 y b_0 están relacionados por R.

Definición (relación binaria)

Una relación entre los conjuntos A y B es un subconjunto del producto cartesiano $A \times B$. En otras palabras, es un conjunto de pares (a, b) donde $a \in A$ y $b \in B$.

Notación: Dada la relación $R \subseteq A \times B$, usamos $a_0 R b_0$ o $(a_0, b_0) \in R$ para notar que a_0 y b_0 están relacionados por R. De manera similar, usamos $a_0 R b_0$ o $(a_0, b_0) \notin R$ para notar que a_0 y b_0 no están relacionados por R.

Definición (relación binaria)

Una relación entre los conjuntos A y B es un subconjunto del producto cartesiano $A \times B$. En otras palabras, es un conjunto de pares (a, b) donde $a \in A$ y $b \in B$.

Notación: Dada la relación $R \subseteq A \times B$, usamos $a_0 R b_0$ o $(a_0, b_0) \in R$ para notar que a_0 y b_0 están relacionados por R. De manera similar, usamos $a_0 R b_0$ o $(a_0, b_0) \notin R$ para notar que a_0 y b_0 no están relacionados por R.

Ejemplo: Considere la relación de divisibilidad entre los conjuntos \mathbb{N} y \mathbb{N}_0 :

$$| = \{(a, k \cdot a) \mid a \in \mathbb{N} \text{ y } k \in \mathbb{N}_0\}$$

Definición (relación binaria)

Una relación entre los conjuntos A y B es un subconjunto del producto cartesiano $A \times B$. En otras palabras, es un conjunto de pares (a, b) donde $a \in A$ y $b \in B$.

Notación: Dada la relación $R \subseteq A \times B$, usamos $a_0 R b_0$ o $(a_0, b_0) \in R$ para notar que a_0 y b_0 están relacionados por R. De manera similar, usamos $a_0 R b_0$ o $(a_0, b_0) \notin R$ para notar que a_0 y b_0 no están relacionados por R.

Ejemplo: Considere la relación de divisibilidad entre los conjuntos \mathbb{N} y \mathbb{N}_0 :

$$| = \{(a, k \cdot a) \mid a \in \mathbb{N} \text{ y } k \in \mathbb{N}_0\}$$

Equivalentemente podemos definirla de la siguiente manera:

$$a \mid b$$
 si y sólo si $\exists k \in \mathbb{N}_0. \ b = k \cdot a$

Representación gráfica de relaciones

Cuando A y B son conjuntos finitos, podemos representar una relación entre A y B a través de un grafo, donde una arista (o flecha) de $a \in A$ hacia $b \in B$ representa que a R b.

Representación gráfica de relaciones

Cuando A y B son conjuntos finitos, podemos representar una relación entre A y B a través de un grafo, donde una arista (o flecha) de $a \in A$ hacia $b \in B$ representa que a R b.

Ejercicio: ¿Cuántas relaciones existen entre dos conjuntos finitos A y B?

Relaciones sobre un conjunto

En el caso particular que una relación R relaciona elementos de un conjunto con elementos del mismo conjunto, digamos A, decimos que R es una relación sobre A.

Relaciones sobre un conjunto

En el caso particular que una relación R relaciona elementos de un conjunto con elementos del mismo conjunto, digamos A, decimos que R es una relación sobre A.

Ejemplo: Las siguiente son relaciones sobre $\mathbb N$

$$\{(a,b) \mid a \leq b\}, \quad \{(a,b) \mid a+b \leq 3\}$$

Definición

Una relación $R \subseteq A \times A$ sobre el conjunto A se dice

Definición

Una relación $R \subseteq A \times A$ sobre el conjunto A se dice

• reflexiva sii $(a, a) \in R$ para todo $a \in A$;

Definición

Una relación $R \subseteq A \times A$ sobre el conjunto A se dice

- reflexiva sii $(a, a) \in R$ para todo $a \in A$;
- simétrica sii $(a, b) \in R$ implica $(b, a) \in R$ para todo $a, b \in A$;

Definición

Una relación $R \subseteq A \times A$ sobre el conjunto A se dice

- reflexiva sii $(a, a) \in R$ para todo $a \in A$;
- simétrica sii $(a, b) \in R$ implica $(b, a) \in R$ para todo $a, b \in A$;
- antisimétrica sii $(a, b) \in R$ y $(b, a) \in R$ implica a = b para todo $a, b \in A$;

Definición

Una relación $R \subseteq A \times A$ sobre el conjunto A se dice

- reflexiva sii $(a, a) \in R$ para todo $a \in A$;
- simétrica sii $(a, b) \in R$ implica $(b, a) \in R$ para todo $a, b \in A$;
- antisimétrica sii $(a, b) \in R$ y $(b, a) \in R$ implica a = b para todo $a, b \in A$;
- transitiva sii $(a, b) \in R$ y $(b, c) \in R$ implica $(a, c) \in R$ para todo $a, b, c \in A$.

Definición

Una relación $R \subseteq A \times A$ sobre el conjunto A se dice

- reflexiva sii $(a, a) \in R$ para todo $a \in A$;
- simétrica sii $(a, b) \in R$ implica $(b, a) \in R$ para todo $a, b \in A$;
- antisimétrica sii $(a, b) \in R$ y $(b, a) \in R$ implica a = b para todo $a, b \in A$;
- transitiva sii $(a, b) \in R$ y $(b, c) \in R$ implica $(a, c) \in R$ para todo $a, b, c \in A$.

Ejercicio: Exprese estas propiedades en lógica de predicados.

Definición

Una relación $R \subseteq A \times A$ sobre el conjunto A se dice

- reflexiva sii $(a, a) \in R$ para todo $a \in A$;
- simétrica sii $(a, b) \in R$ implica $(b, a) \in R$ para todo $a, b \in A$;
- antisimétrica sii $(a,b) \in R$ y $(b,a) \in R$ implica a = b para todo $a,b \in A$;
- transitiva sii $(a, b) \in R$ y $(b, c) \in R$ implica $(a, c) \in R$ para todo $a, b, c \in A$.

Ejercicio: Exprese estas propiedades en lógica de predicados.

Ejercicio: ¿La relación vacía satisface alguna de las propiedades anteriores? ¿Cuáles?

Definición

Una relación $R \subseteq A \times A$ sobre el conjunto A se dice

• reflexiva sii $(a, a) \in R$ para todo $a \in A$;

- $R_1 = \{(a, b) \mid a \leq b\}$
- $R_2 = \{(a, b) \mid a > b\}$
- $R_3 = \{(a,b) \mid a = b \text{ o } a = -b\}$
- $R_4 = \{(a,b) \mid a = b\}$
- $R_5 = \{(a,b) \mid a=b+1\}$
- $R_6 = \{(a,b) \mid a+b \leq 3\}$

Definición

Una relación $R \subseteq A \times A$ sobre el conjunto A se dice

• simétrica sii $(a, b) \in R$ implica $(b, a) \in R$ para todo $a, b \in A$;

- $R_1 = \{(a, b) \mid a \leq b\}$
- $R_2 = \{(a, b) \mid a > b\}$
- $R_3 = \{(a,b) \mid a = b \text{ o } a = -b\}$
- $R_4 = \{(a,b) \mid a = b\}$
- $R_5 = \{(a,b) \mid a=b+1\}$
- $R_6 = \{(a,b) \mid a+b \leq 3\}$

Definición

Una relación $R \subseteq A \times A$ sobre el conjunto A se dice

• antisimétrica sii $(a, b) \in R$ y $(b, a) \in R$ implica a = b para todo $a, b \in A$;

- $R_1 = \{(a, b) \mid a \leq b\}$
- $R_2 = \{(a, b) \mid a > b\}$
- $R_3 = \{(a,b) \mid a = b \text{ o } a = -b\}$
- $R_4 = \{(a,b) \mid a = b\}$
- $R_5 = \{(a,b) \mid a=b+1\}$
- $R_6 = \{(a,b) \mid a+b \leq 3\}$

Definición

Una relación $R \subseteq A \times A$ sobre el conjunto A se dice

• antisimétrica sii $(a, b) \in R$ y $(b, a) \in R$ implica a = b para todo $a, b \in A$;

Ejercicio: Dadas las siguientes relaciones sobre \mathbb{Z} , ¿qué propiedades satisface cada una?

- $R_1 = \{(a, b) \mid a \leq b\}$
- $R_2 = \{(a,b) \mid a > b\}$
- $R_3 = \{(a,b) \mid a = b \text{ o } a = -b\}$
- $R_4 = \{(a, b) \mid a = b\}$
- $R_5 = \{(a,b) \mid a=b+1\}$
- $R_6 = \{(a, b) \mid a + b \leq 3\}$

¡Por vacuidad, R_2 y R_5 son también antisimétricas!

Definición

Una relación $R \subseteq A \times A$ sobre el conjunto A se dice

• transitiva sii $(a, b) \in R$ y $(b, c) \in R$ implica $(a, c) \in R$ para todo $a, b, c \in A$.

- $R_1 = \{(a, b) \mid a \leq b\}$
- $R_2 = \{(a, b) \mid a > b\}$
- $R_3 = \{(a,b) \mid a = b \text{ o } a = -b\}$
- $R_4 = \{(a,b) \mid a = b\}$
- $R_5 = \{(a,b) \mid a=b+1\}$
- $R_6 = \{(a,b) \mid a+b \leq 3\}$

Definición (relación de orden)

Definición (relación de orden)

• Una relación $R \subseteq A \times A$ sobre el conjunto A se llama orden parcial cuando es reflexiva, transitiva y antisimétrica.

Definición (relación de orden)

• Una relación $R \subseteq A \times A$ sobre el conjunto A se llama orden parcial cuando es reflexiva, transitiva y antisimétrica.

Ejemplo:

ullet \leq es un orden parcial sobre $\mathbb N$

Definición (relación de orden)

• Una relación $R \subseteq A \times A$ sobre el conjunto A se llama orden parcial cuando es reflexiva, transitiva y antisimétrica.

- \leq es un orden parcial sobre $\mathbb N$
- \subseteq es un orden parcial sobre 2^S , para todo conjunto S

Definición (relación de orden)

- Una relación $R \subseteq A \times A$ sobre el conjunto A se llama orden parcial cuando es reflexiva, transitiva y antisimétrica.
- Una relación de orden parcial $R \subseteq A \times A$ es, además, un orden total sii todo par de elementos son comparables, es decir, sii $(a,b) \in R$ o $(b,a) \in R$ para todo $a,b \in R$.

- \leq es un orden parcial sobre $\mathbb N$
- \subseteq es un orden parcial sobre 2^S , para todo conjunto S

Definición (relación de orden)

- Una relación $R \subseteq A \times A$ sobre el conjunto A se llama orden parcial cuando es reflexiva, transitiva y antisimétrica.
- Una relación de orden parcial $R \subseteq A \times A$ es, además, un orden total sii todo par de elementos son comparables, es decir, sii $(a,b) \in R$ o $(b,a) \in R$ para todo $a,b \in R$.

- \leq es un orden parcial sobre $\mathbb N$
- \subseteq es un orden parcial sobre 2^S , para todo conjunto S
- ullet \leq es, además, un orden total sobre ${\mathbb N}$

Definición (relación de orden)

- Una relación $R \subseteq A \times A$ sobre el conjunto A se llama orden parcial cuando es reflexiva, transitiva y antisimétrica.
- Una relación de orden parcial $R \subseteq A \times A$ es, además, un orden total sii todo par de elementos son comparables, es decir, sii $(a,b) \in R$ o $(b,a) \in R$ para todo $a,b \in R$.

- \leq es un orden parcial sobre $\mathbb N$
- \subseteq es un orden parcial sobre 2^S , para todo conjunto S
- ullet \leq es, además, un orden total sobre ${\mathbb N}$
- \subseteq no es un orden total sobre 2^S (a menos que $S = \emptyset$)

Relaciones de equivalencia

Definición (relación de equivalencia)

Una relación R sobre A se denomina de equivalencia si es reflexiva, transitiva y simétrica.

Relaciones de equivalencia

Definición (relación de equivalencia)

Una relación R sobre A se denomina de equivalencia si es reflexiva, transitiva y simétrica.

Ejemplo: Para todo $p \ge 2$, la relación de congruencia módulo p, definida como¹

$$a \equiv_p b$$
 si y sólo si $p \mid a - b$

es una relación de equivalencia sobre $\ensuremath{\mathbb{Z}}.$

¹Alternativamente, $a \equiv_p b$ sii a y b tienen el mismo resto en la división entera por p.

Relaciones de equivalencia

Definición (relación de equivalencia)

Una relación R sobre A se denomina de equivalencia si es reflexiva, transitiva y simétrica.

Ejemplo: Para todo $p \ge 2$, la relación de congruencia módulo p, definida como¹

$$a \equiv_p b$$
 si y sólo si $p \mid a - b$

es una relación de equivalencia sobre $\ensuremath{\mathbb{Z}}.$

Ejercicio*: Sea R una relación sobre el conjunto A, simétrica y transitiva, tal que para cada $a \in A$ existe $b \in A$ tal que $(a, b) \in R$. Demuestre que R es de equivalencia.

¹Alternativamente, $a \equiv_p b$ sii a y b tienen el mismo resto en la división entera por p.

Definición (clase de equivalencia)

Sea R una relación de equivalencia sobre A. Dado $a \in A$, definimos la clase de equivalencia de a, notada $[a]_R$, como el conjunto de todos los elementos que están relacionados con a (mediante R). Simbólicamente,

$$[a]_R = \{b \mid (a,b) \in R\}$$

Se dice que a es el representante de la clase $[a]_R$.

Definición (clase de equivalencia)

Sea R una relación de equivalencia sobre A. Dado $a \in A$, definimos la clase de equivalencia de a, notada $[a]_R$, como el conjunto de todos los elementos que están relacionados con a (mediante R). Simbólicamente,

$$[a]_R = \{b \mid (a,b) \in R\}$$

Se dice que a es el *representante* de la clase $[a]_R$.

Definición (clase de equivalencia)

Sea R una relación de equivalencia sobre A. Dado $a \in A$, definimos la clase de equivalencia de a, notada $[a]_R$, como el conjunto de todos los elementos que están relacionados con a (mediante R). Simbólicamente,

$$[a]_R = \{b \mid (a,b) \in R\}$$

Se dice que a es el *representante* de la clase $[a]_R$.

•
$$[0]_{\equiv_3} = \{\ldots, -6, -3, 0, 3, 6, \ldots\}$$

Definición (clase de equivalencia)

Sea R una relación de equivalencia sobre A. Dado $a \in A$, definimos la clase de equivalencia de a, notada $[a]_R$, como el conjunto de todos los elementos que están relacionados con a (mediante R). Simbólicamente,

$$[a]_R = \{b \mid (a,b) \in R\}$$

Se dice que a es el representante de la clase $[a]_R$.

- $[0]_{\equiv_3} = \{\ldots, -6, -3, 0, 3, 6, \ldots\}$
- $[1]_{\equiv_3} = \{\ldots, -5, -2, 1, 4, 7, \ldots\}$

Definición (clase de equivalencia)

Sea R una relación de equivalencia sobre A. Dado $a \in A$, definimos la clase de equivalencia de a, notada $[a]_R$, como el conjunto de todos los elementos que están relacionados con a (mediante R). Simbólicamente,

$$[a]_R = \{b \mid (a,b) \in R\}$$

Se dice que a es el representante de la clase $[a]_R$.

- $[0]_{\equiv_3} = \{\ldots, -6, -3, 0, 3, 6, \ldots\}$
- $[1]_{\equiv_3} = \{\ldots, -5, -2, 1, 4, 7, \ldots\}$
- $[2]_{\equiv_3} = \{\ldots, -4, -1, 2, 5, 8, \ldots\}$

Definición (clase de equivalencia)

Sea R una relación de equivalencia sobre A. Dado $a \in A$, definimos la clase de equivalencia de a, notada $[a]_R$, como el conjunto de todos los elementos que están relacionados con a (mediante R). Simbólicamente,

$$[a]_R = \{b \mid (a,b) \in R\}$$

Se dice que a es el representante de la clase $[a]_R$.

Ejemplo: Considere la relación de congruencia módulo 3.

- $[0]_{\equiv_3} = \{\ldots, -6, -3, 0, 3, 6, \ldots\}$
- $[1]_{\equiv_3} = \{\ldots, -5, -2, 1, 4, 7, \ldots\}$
- $\bullet \quad [2]_{\equiv_3} \ = \ \{\dots, -4, -1, 2, 5, 8, \dots\}$

Lema: Los siguientes tres enunciados son equivalentes:

•
$$(a,b) \in R$$

•
$$[a]_R = [b]_R$$

•
$$[a]_R \cap [b]_R \neq \emptyset$$

Una partición de un conjunto es una colección de subconjuntos (no vacíos) que son disjuntos dos a dos y que cubren todo el conjunto.

Una partición de un conjunto es una colección de subconjuntos (no vacíos) que son disjuntos dos a dos y que cubren todo el conjunto.

- $\{\{2\},\{1,3,4,5,\ldots\}\}$ es una partición de \mathbb{N} .
- $\left\{\{2,4,6,\ldots\},\{1,3,,5,\ldots\}\right\}$ es otra partición de $\mathbb{N}.$

Teorema (partición inducida por relación de equivalencia)

Toda relación de equivalencia sobre un conjunto induce una partición del mismo, a partir de las clases de equivalencia de sus elementos.

Teorema (partición inducida por relación de equivalencia)

Toda relación de equivalencia sobre un conjunto induce una partición del mismo, a partir de las clases de equivalencia de sus elementos. Formalmente, si R es una relación de equivalencia sobre A, entonces

$$\{[a]_R \mid a \in A\}$$

es una partición de A.

Teorema (partición inducida por relación de equivalencia)

Toda relación de equivalencia sobre un conjunto induce una partición del mismo, a partir de las clases de equivalencia de sus elementos. Formalmente, si R es una relación de equivalencia sobre A, entonces

$$\{[a]_R \mid a \in A\}$$

es una partición de A. A dicho conjunto se lo llama conjunto cociente de A con respecto a R, y se lo nota A/R.

Teorema (partición inducida por relación de equivalencia)

Toda relación de equivalencia sobre un conjunto induce una partición del mismo, a partir de las clases de equivalencia de sus elementos. Formalmente, si R es una relación de equivalencia sobre A, entonces

$$\{[a]_R \mid a \in A\}$$

es una partición de A. A dicho conjunto se lo llama conjunto cociente de A con respecto a R, y se lo nota A/R.

Ejemplo: La siguiente es una partición de \mathbb{Z} :

$$\mathbb{Z}/_{\equiv_3} = \{[a]_{\equiv_3} \mid a \in \mathbb{Z}\} = \{[0]_{\equiv_3}, [1]_{\equiv_3}, [2]_{\equiv_3}\}$$