Contents

List	of figur	res	ix
List	of algo	rithms	xi
Nota	ition		xiii
Prefa	ace		xv
I	Basic	methods and algorithms for data assimilation	1
1	Introd	luction to data assimilation and inverse problems	3
	1.1	Introduction	3
	1.2	Uncertainty quantification and related concepts	4
	1.3	Basic concepts for inverse problems: Well- and ill-posedness	6
	1.4	Examples of direct and inverse problems	7
	1.5	DA methods	11
	1.6	Some practical aspects of DA and inverse problems	22
	1.7	To go further: Additional comments and references	23
2	Optin	nal control and variational data assimilation	25
	2.1	Introduction	25
	2.2	The calculus of variations	26
	2.3	Adjoint methods	33
	2.4	Variational DA	50
	2.5	Numerical examples	67
3	Statist	tical estimation and sequential data assimilation	71
	3.1	Introduction	71
	3.2	Statistical estimation theory	75
	3.3	Examples of Bayesian estimation	83
	3.4	Sequential DA and Kalman filters	90
	3.5	Implementation of the KF	96
	3.6	Nonlinearities and extensions of the KF	99
	3.7	Particle filters for geophysical applications	100
	3.8	Examples	103

vi Contents

II	Adva	anced methods and algorithms for data assimilation	119		
4	Nudg	ging methods	121		
	4.1	Nudging	122		
	4.2	Back-and-forth nudging			
5	Reduced methods				
	5.1	Overview of reduction methods	133		
	5.2	Model reduction			
	5.3	Filtering algorithm reduction			
	5.4	Reduced methods for variational assimilation			
6	The e	ensemble Kalman filter	153		
	6.1	The reduced-rank square root filter	154		
	6.2	The EnKF: Principle and classification			
	6.3	The stochastic EnKF			
	6.4	The deterministic EnKF			
	6.5	Localization and inflation			
	6.6	Numerical illustrations with the Lorenz-95 model			
	6.7	Other important flavors of the EnKF			
	6.8	The ensemble Kalman smoother			
	6.9	A widespread and popular DA method			
7	Encor	mble variational methods	195		
,	7.1	The hybrid methods			
	7.1	EDA			
	7.2	4DEnVar			
	7.3 7.4	The IEnKS			
III	App	plications and case studies	217		
8	Appli	ications in environmental sciences	219		
	8.1	Physical oceanography	219		
	8.2	Glaciology	221		
	8.3	Fluid-biology coupling; marine biology			
	8.4	Land surface modeling and agroecology			
	8.5	Natural hazards			
9	Appli	ications in atmospheric sciences	237		
	9.1	Numerical weather prediction	237		
	9.2	Atmospheric constituents			
10	Applications in geosciences				
	10.1	Seismology and exploration geophysics	245		
	10.2	Geomagnetism			
	10.3	Geodynamics			
11	Appli	ications in medicine, biology, chemistry, and physical sciences	251		
	11.1	Medicine			
	11.2	Systems biology			
		, 0,			

	11.3 11.4 11.5 11.6	Fluid dynamics	257 259	
12		Ecations in human and social sciences Economics and finance	263 263 264	
Bibl	iograph	у	267	
Inde	Index			

List of figures

1	The big picture for DA methods and algorithms	XV11
1.1	Ingredients of an inverse problem	4
1.2	The deductive spiral of system science	5
1.3	UQ for a random quantity	5
1.4	Duffing's equation with small initial perturbations	10
1.5	DA methods	12
1.6	Sequential assimilation	16
1.7	Sequential assimilation scheme for the KF	17
2.1	A variety of local extrema	26
2.2	Counterexamples for local extrema in \mathbb{R}^2	27
2.3	Curve $\eta(x)$ and admissible functions $y + \epsilon \eta(x)$	29
2.4	3D- and 4D-Var	60
2.5	Simulation of the chaotic Lorenz-63 system of three equations	67
2.6	Assimilation of the Lorenz-63 equations by standard 4D-Var	69
2.7	Assimilation of the Lorenz-63 equations by incremental 4D-Var	69
3.1	Scalar Gaussian distribution example of Bayes' law	85
3.2	Scalar Gaussian distribution example of Bayes' law	86
3.3	A Gaussian product example for forecasting temperature	87
3.4	Bayesian estimation of noisy pendulum parameter	88
3.5	Sequential assimilation trajectory	91
3.6	Sequential assimilation scheme for the KF	92
3.7	KF loop	96
3.8	Analysis of the particle filter	101
3.9	Particle filter applied to Lorenz model	102
3.10	Estimating a constant by a KF: $R = 0.01$	109
3.11	Estimating a constant by a KF: $R = 1$	110
3.12	Estimating a constant by a KF: $R = 0.0001$	111
3.13	Estimating a constant by a KF: convergence	112
3.14	Position estimation for constant-velocity dynamics	115
3.15	Position estimation errors for constant-velocity dynamics	116
3.16	Velocity estimation results for constant-velocity dynamics	116
3.17	Extrapolation of position for constant-velocity dynamics	117
3.18	Convergence of the KF	117
4.1	Schematic representation of the nudging method	121
4.2	Illustration of various nudging methods	127

x List of figures

4.3	Schematic representation of the BFN method	128
5.1 5.2 5.3	Example of dimension reduction	134 149
	algorithms	151
6.1	Synthetic DA experiments with the anharmonic oscillator	162
6.2	Schematic representation of the local update for EnKF	168
6.3	Plot of the Gaspari-Cohn fifth-order piecewise rational function	169
6.4	Covariance localization	170
6.5	Trajectory of a state of the Lorenz-95 model	173
6.6	Average analysis RMSE for a deterministic EnKF (ETKF)—localization and inflation	1 175
6.7	Average analysis RMSE of a deterministic EnKF (ETKF)—nonlinear observation	181
6.8	Average analysis RMSE for a deterministic EnKF (ETKF)—optimal inflation	188
6.9	Average analysis RMSE for a deterministic EnKF (ETKF)—ensemble	
	size	188
6.10	Schematic of the EnKS	191
6.11	Analysis RMSE of the EnKS	193
7.1	Synthetic DA experiments with the Lorenz-95 model	196
7.2		210
7.3	Synthetic DA experiments with the Lorenz-95 model with IEnKS .	212
7.4	Chaining of the MDA IEnKS cycles	214
7.5	Synthetic DA experiments with the Lorenz-95 model—comparison	217
	of localization strategies	216
8.1		222
8.2		225
8.3	Illustration of DA in fish population ecology	228
8.4		232
8.5	Illustration of DA for wildfire modeling and forecasting	235
9.1	Anomaly correlation coefficient of the 500 hPa height forecasts for	
,,,		239
9.2	Typical error growth following the empirical model (9.1)	
9.3	Cesium-137 radioactive plume at ground level (activity concentra-	
	tions in becquerel per cubic meter) emitted from the FDNPP in	
		242
9.4	,	243
9.5	Deposited cesium-137 (in kilobecquerel per square meter) measured	
	(a) and hindcast (b) near the FDNPP	243
11.1	Assimilation of medical data for the cardiovascular system	252
11.2	· · · · · · · · · · · · · · · · · · ·	256
11.3		258
11.4	, 1 0	260
11.5		261

List of algorithms

1.1 1.2	Iterative 3D-Var (in its simplest form)	
1.2		
2.1	Iterative 3D-Var algorithm	
2.2	4D-Var	5 1
4.1	BFN algorithm	29
5.1	SEEK filter equations	14
5.2	Incremental 4D-Var	18
6.1	Algorithm of the EKF	
6.2	Algorithm for RRSQRT	56
6.3	Algorithm for the (stochastic) EnKF 16	50
6.4	Pseudocode for a complete cycle of the ETKF 16	56
6.5	Pseudocode for a complete cycle of the MLEF, as a variant	
	in ensemble subspace	30
6.6	Pseudocode for a complete cycle of the EnKS in ensemble	
	subspace)2
7.1	A cycle of the lag-L/shift-S/SDA/bundle/Gauss-Newton	
	IEnKS	11
7.2	A cycle of the lag-L/shift-S/MDA/bundle/Gauss-Newton	
	IEnKS 21	14

Notation

```
\mathbb{R}^n state space
\mathbb{R}^p observation space
\mathbb{R}^m ensemble space, i = 1, ..., m
t_k time, k = 1, \dots, K
I identity matrix: I_n, I_m, I_p
x vector
xt true state vector
x<sup>a</sup> analysis vector
x<sup>b</sup> background vector
x<sup>t</sup> forecast vector
yo observation vector
\epsilon^{\rm a} analysis error
\epsilon^{\rm b} background error
\epsilon^{\rm f} forecast error
\epsilon^{\rm o} observation error
\epsilon^{\rm q} model error
\mathbf{M}_k linear model operator: \mathbf{x}_{k+1} = \mathbf{M}_{k+1} \mathbf{x}_k, with \mathbf{M}_{k+1} = \mathbf{M}_{k+1:k} model from time
    step k to time step k+1; \mathcal{M} nonlinear model operator
X<sub>a</sub> analysis perturbation matrix
X_f forecast perturbation matrix
P<sup>t</sup> forecast error covariance matrix
Pa analysis error covariance matrix
K Kalman gain matrix
B background error covariance matrix
H linearized observation operator; \mathcal{H} nonlinear observation operator
Q model error covariance matrix
R observation error covariance matrix
d innovation vector
(j) iteration index of a variational assimilation (in parentheses).
w coefficients in ensemble space (ensemble transform)
```

Preface

This book places data assimilation (DA) into the broader context of inverse problems and the theory, methods, and algorithms that are used for their solution. It strives to provide a framework and new insight into the inverse problem nature of DA—the book emphasizes "why" and not just "how." We cover both statistical and variational approaches to DA (see Figure 1) and give an important place to the latest hybrid methods that combine the two. Since the methods and diagnostics are emphasized, readers will readily be able to apply them to their own, precise field of study. This will be greatly facilitated by numerous examples and diverse applications. The applications are taken from the following fields: geophysics and geophysical flows, environmental acoustics, medical imaging, mechanical and biomedical engineering, urban planning, economics, and finance.

In fact, this book is about *building bridges*—bridges between inverse problems and DA, bridges between variational and statistical approaches, bridges between statistics and inverse problems. These bridges will enable you to cross valleys and moats, thus avoiding the dangers that are most likely/possibly lurking down there. These bridges will allow you to fetch/go and get/retrieve different approaches and better understanding of the vast, and sometimes insular, domains of DA and inverse problems, stochastic and deterministic approaches, and direct and inverse problems. We claim that by assembling these, by reconciling these, we will be better armed to confront and tackle the grand societal challenges of today, broadly defined as "global change" issues—such as climate change, disaster prediction and mitigation, and nondestructive and noninvasive testing and imaging.

The aim of the book is thus to provide a comprehensive guide for advanced undergraduate and early graduate students and for practicing researchers and engineers engaged in (partial) differential equation—based DA, inverse problems, optimization, and optimal control—we will emphasize the close relationships among all of these. The reader will be presented with a statistical approach and a variational approach and will find pointers to all the numerical methods needed for either. Of course, the applications will furnish many case studies.

The book favours a continuous (infinite-dimensional) approach to the underlying inverse problems, and we do not make the distinction between continuous and discrete problems—every continuous problem, after discretization, yields a discrete (finite-dimensional) problem. Moreover, continuous problems admit a far richer and more extensive mathematical theory, and though DA (via the Kalman filter (KF)) is *in fine* a discrete approach, the variational analysis will be performed on the continuous model. Discrete inverse problems (finite dimensional) are very well presented in a number of excellent books, such as those of Lewis et al. [2006], Vogel [2002], and Hansen [2010], the latter of which has a strong emphasis on regularization methods.

xvi Preface

Some advanced calculus and tools from linear algebra, real analysis, and numerical analysis are required in the presentation. We introduce and use Hadamard's well-posedness theory to explain and understand both *why things work* and *why they go wrong*. Throughout the book, we observe a maximum of mathematical rigor but with a minimum of formalism. This rigor is extremely important in practice, since it enables us to eliminate possible sources of error in the algorithmic and numerical implementations.

In summary, this is really a PDE-based book on inverse and DA modeling—readers interested in the specific application to meteorology or oceanography should additionally consult other sources, such as Lewis et al. [2006] and Evensen [2009]. Those who require a more mathematical approach to inverse problems are referred to Kirsch [1996] and Kaipio and Somersalo [2005], and for DA to the recent monographs of Law et al. [2015] and Reich and Cotter [2015].

Proposed pathways through the book are as follows (this depends on the level of the reader):

- The "debutant" reader is encouraged to study the first chapter in depth, since it will provide a basic understanding and the means to choose the most appropriate approach (variational or statistical).
- The experienced reader can jump directly to Chapter 2 or Chapter 3 according to the chosen or best-adapted approach.
- All readers are encouraged to initially skim through the examples and applications sections of Part III to be sure of the best match to their type of problem (by seeing what kind of problem is the closest to their own)—these can then be returned to later, after having mastered the basic methods and algorithms of Part I or eventually the advanced ones of Part II.
- For the most recent approaches, the reader or practitioner is referred to Part II and in particular to Chapters 4 and 7.

The authors would like to acknowledge their colleagues and students who accompanied, motivated, and inspired this book. MB thanks Alberto Carrassi, Jean-Matthieu Haussaire, Anthony Fillion, Victor Winiarek, Alban Farchi, and Sammy Metref. MN thanks Elise Arnaud, Arthur Vidard, Eric Blayo, and Claire Lauvernet. MA thanks in particular the CIMPA¹ and the Universidad Simon Bolivar in Caracas, Venezuela (where the idea for this book was born), for their hospitality. We thank the CIRM² for allowing us to spend two intensive weeks finalizing (in optimal conditions) the manuscript.

¹Centre International de Mathématiques Pures et Appliquées, Nice, France.

²Centre International de Rencontres Mathématiques, Marseille, France.

Preface xvii

Figure 1. The big picture for DA methods and algorithms.