Temas 3 y 4: Conjuntos, funciones y relaciones. Segunda parte

David de Frutos Escrig versión original elaborada por María Inés Fernández Camacho

MATEMÁTICA DISCRETA Y LÓGICA MATEMÁTICA (Ingeniería Informática - Ciencias Matemáticas)

UCM Curso 18/19

RELACIONES

RELACIONES N-ÁDICAS, N-ARIAS O DE N ARGUMENTOS

DEF:

Para cualquier $n \ge 2$ y cualesquiera conjuntos A_1, A_2, \cdots, A_n

- $Si \mathcal{R} \subseteq A_1 \times A_2 \times \cdots \times A_n$, decimos que \mathcal{R} es una relación n-ádica entre A_1, A_2, \cdots, A_n .
- Si $\mathcal{R} \subseteq A^n$, decimos que \mathcal{R} es una relación n-aria sobre A.
- $Si(x_1, x_2, \dots, x_n) \in \mathcal{R}$, escribimos $\mathcal{R}(x_1, x_2, \dots, x_n)$, y decimos que x_1, x_2, \dots, x_n están relacionados por \mathcal{R} o que la tupla (x_1, x_2, \dots, x_n) cumple \mathcal{R} .

Cuando n=2 entonces se las llama relaciones binarias (conjuntos de pares ordenados). Cuando n=3 entonces se las llama relaciones ternarias (conjuntos de ternas ordenadas).

Siendo A y B dos conjuntos, y $\mathcal{R} \subseteq A \times B$,

- Si $(x, y) \in \mathcal{R}$, escribimos $\mathcal{R}(x, y)$, o bien $x\mathcal{R}y$, y decimos que x se relaciona con y o que x está relacionado con y según (o vía, o por, o mediante) \mathcal{R} , o que (x, y) cumple \mathcal{R} .
- Escribiremos $(x, y) \notin \mathcal{R}$, o $x \not \mathbb{R}$ y cuando x no se relaciona con y según (o vía, o por, o mediante) \mathcal{R} .
- A × B es en sí misma una relación: la relación universal que contiene todos los pares posibles. El caso opuesto es el de la relación vacía , que no contiene ningún par. Entre estos dos casos extremos se encuentran todas las demás relaciones entre A y B.

Definición de relaciones n-arias a partir de predicados n-arios (condición característica):

$$\mathcal{R}(x_1, x_2, \dots, x_n) \equiv_{def} \dots$$
 condición dependiente de x_1, x_2, \dots, x_n .

Ejs:

 Dado el predicado casados(x, y), que es verdadero si y sólo si x e y están casados el uno con el otro, podemos definir a partir de él la correspondiente relación binaria:

$$M = \{(x, y) / casados(x, y)\}$$

• La relación de orden estricto < entre números naturales es una relación binaria sobre $\mathbb{N}.$

$$\begin{split} x\mathcal{R}y &\equiv_{def} x < y \quad (x, y \in \mathbb{N}) \\ \mathcal{R} &= \{(x, y) \in \mathbb{N}^2 / x < y\} \\ &\qquad \mathcal{R} \equiv_{not} < . \end{split}$$

◆ロ → ◆昼 → ◆ 差 → ・ 差 ・ か へ ○

• Para $A = \{2, 3, 4, 6\}$, si definimos $x \mathcal{R} y \equiv_{def} x \mid y \ (x, y \in A)$, tendríamos

$$\mathcal{R} = \{(2,2), (2,4), (2,6), (3,3), (3,6), (4,4), (6,6)\}$$

• Relación ternaria sobre $\mathbb Z$:

 $mcd(x,y,z) \equiv_{def} z$ es el máximo común divisor de $x,y \quad (x,y,z \in \mathbb{Z})$

$$mcd = \{(x, y, z)/z = m.c.d.(x, y)\}$$

Dominios y rangos de relaciones

Siendo $\mathcal R$ una relación entre A y B, a A se le denomina espacio de dominio de $\mathcal R$ y a B espacio de rango. El dominio y rango de $\mathcal R$ serán subconjuntos más precisos de esos dominios.

Def:

Siendo $\mathcal{R} \subseteq A \times B$ una relación binaria entre A y B,

• El dominio de R. es

$$dom(\mathcal{R}) = \{x \in A / x\mathcal{R}y \text{ para algún } y \in B\}$$

= $\{x \in A / \exists y \in B \ (x, y) \in \mathcal{R}\}$

• El rango de \mathcal{R} es

$$ran(\mathcal{R}) = \{ y \in B / x\mathcal{R}y \text{ para algún } x \in A \}$$

= $\{ y \in B / \exists x \in A \ (x, y) \in \mathcal{R} \}$

Ejs.

• Para $x \mathcal{R} y \equiv_{def} x < y \quad (x, y \in \mathbb{N})$, tenemos

$$dom(<) = \mathbb{N}, \quad ran(<) = \mathbb{N} \setminus \{0\}$$

• Siendo $A = \{2, 3, 4, 6\}, \quad x\mathcal{R}y \equiv_{def} x \mid y \quad (x, y \in A),$

$$dom(\mathcal{R}) = A, \quad ran(\mathcal{R}) = A$$

DEF:

Dadas las relaciones $\mathcal{R}, \mathcal{S} \subseteq A \times B$, se define:

• relación unión $\mathcal{R} \cup \mathcal{S}$

$$x (\mathcal{R} \cup \mathcal{S}) y \equiv_{def} (x\mathcal{R}y) \lor (x\mathcal{S}y)$$
 $((x, y) \in A \times B)$

• relación intersección $\mathcal{R} \cap \mathcal{S}$

$$x (\mathcal{R} \cap \mathcal{S}) y \equiv_{def} (x\mathcal{R}y) \wedge (x\mathcal{S}y)$$
 $((x, y) \in A \times B)$

• relación diferencia $\mathcal{R} \setminus \mathcal{S}$

$$x (\mathcal{R} \setminus \mathcal{S}) y \equiv_{def} (x\mathcal{R}y) \land (x \mathcal{J} y)$$
 $((x, y) \in A \times B)$

• relación complemento $\backslash \mathcal{R} = (A \times B) \backslash \mathcal{R}$

$$x(\R) y = x((A \times B) \R) y \equiv_{def} (x \R) y$$
 ($(x, y) \in A \times B$)

DEF:

Dadas las relaciones $\mathcal{R} \subseteq A \times B$ y $\mathcal{S} \subseteq B \times C$, se define:

• relación inversa de \mathcal{R} , \mathcal{R}^{-1} ,

$$\mathcal{R}^{-1} = \{(y, x) \in (B \times A)/(x, y) \in \mathcal{R}\}, \text{ es decir}$$

$$y \mathcal{R}^{-1} \times \sim x \mathcal{R} y$$

• relación composición o producto $de \mathcal{R} y \mathcal{S}, \mathcal{R} \circ \mathcal{S}$,

$$\mathcal{R} \circ \mathcal{S} = \{ (x, z) \in A \times C \mid \exists y \in B \ (x, y) \in \mathcal{R}, (y, z) \in \mathcal{S} \}$$
es decir
$$x (\mathcal{R} \circ \mathcal{S}) z \sim \exists y \in B \ ((x\mathcal{R}y) \land (y\mathcal{S}z))$$

DEF:

Dado un conjunto A se define la relación id_A identidad sobre A o diagonal de A: $id_A = \{(x, x)/x \in A\}$

Ej:

Espacios de dominio:
$$X = \{a, b, c\}$$
, $Z = \{a, b\}$
Espacios de rango: $Y = \{A, B, C\}$, $V = \{B, C\}$
Relaciones: $\mathcal{R} \subseteq X \times Y$, $\mathcal{S} \subseteq Z \times V \subseteq X \times Y$
 $\mathcal{R} = \{(a, A), (a, B), (b, C)\}$ $\mathcal{S} = \{(a, B), (b, C)\}$
 $\mathcal{S} = (A \times V) \setminus \mathcal{S} = \{(a, C), (b, B)\}$
 $\mathcal{R} \cup \mathcal{S} = \{(a, A), (a, B), (b, C)\}$
 $\mathcal{R} \cap \mathcal{S} = \{(a, A), (b, C)\}$
 $\mathcal{R} \setminus \mathcal{S} = \{(a, A)\}$
 $\mathcal{S}^{-1} = \{(B, a), (C, b)\}$
 $id_{\mathcal{I}} = \{(a, a), (b, b)\}$

Ej:

Espacios de dominio y de rango: N

Relaciones: $\mathcal{R}, \mathcal{S} \subseteq \mathbb{N}^2$

$$\mathcal{R} = \{(1,2), (3,4), (2,2)\}\ \mathcal{S} = \{(4,2), (2,5), (3,1), (1,3)\}$$

$$\mathcal{R} \circ \mathcal{S} = \{(1,5), (3,2), (2,5)\}$$

$$S \circ \mathcal{R} = \{(4,2), (3,2), (1,4)\}$$

Luego la composición de relaciones no es en general conmutativa.

$$(\mathcal{R} \circ \mathcal{S}) \circ \mathcal{R} = \{(3,2)\} = \mathcal{R} \circ (\mathcal{S} \circ \mathcal{R})$$

$$\mathcal{R} \circ \mathcal{R} = \{(1,2), (2,2)\}$$

ALGUNAS PROPIEDADES DE LA COMPOSICIÓN Y LA INVERSA DE RELACIONES

Dadas las relaciones $\mathcal{R} \subseteq A \times B$, $\mathcal{S} \subseteq B \times C$, $\mathcal{T} \subseteq C \times D$, se tiene:

(2)

Dem de 2.:

$$x ((\mathcal{R} \circ \mathcal{S}) \circ \mathcal{T}) z \sim \exists y \in C \quad ((x (\mathcal{R} \circ \mathcal{S}) y) \land (y\mathcal{T}z))$$

$$\sim \exists y \in C \quad ((\exists w \in B \quad (x\mathcal{R}w) \land (w\mathcal{S}y)) \land (y\mathcal{T}z))$$

$$\sim \exists y \in C \quad \exists w \in B \quad ((x\mathcal{R}w) \land (w\mathcal{S}y) \land (y\mathcal{T}z))$$

$$\sim \exists w \in B \quad ((x\mathcal{R}w) \land (\exists y \in C \quad (w\mathcal{S}y) \land (y\mathcal{T}z)))$$

$$\sim \exists w \in B \quad ((x\mathcal{R}w) \land (w (\mathcal{S} \circ \mathcal{T}) z))$$

$$\sim x (\mathcal{R} \circ (\mathcal{S} \circ \mathcal{T})) z$$

Dem de 4.:

$$x ((\mathcal{R} \circ \mathcal{S})^{-1}) y \sim y (\mathcal{R} \circ \mathcal{S}) x$$

$$\sim \exists z \in B \quad ((y\mathcal{R}z) \land (z\mathcal{S}x))$$

$$\sim \exists z \in B \quad ((z\mathcal{S}x) \land (y\mathcal{R}z))$$

$$\sim \exists z \in B \quad ((x\mathcal{S}^{-1}z) \land (z\mathcal{R}^{-1}y))$$

$$\sim x (\mathcal{S}^{-1} \circ \mathcal{R}^{-1}) y$$

Algunas propiedades destacables que pueden cumplir las relaciones binarias sobre un conjunto $\cal A$

(1)

DEF:

Sea $\mathcal{R} \subseteq A \times A$; decimos que \mathcal{R} es

- reflexiva sii $\forall x \in A \ x \mathcal{R} x$
- antirreflexiva sii $\not\exists x \in A \ x \mathcal{R} x$
- simétrica sii $\forall x, y \in A \ x \mathcal{R} y \rightarrow y \mathcal{R} x$
- antisimétrica sii $\forall x, y \in A \ (x \mathcal{R} y \land y \mathcal{R} x \rightarrow x = y)$
- transitiva sii $\forall x, y, z \in A \ (xRy \land yRz \rightarrow xRz)$
- conexa sii $\forall x, y \in A, x \neq y$, se cumple $(xRy) \lor (yRx)$

(2)

Ej:

- Dado \mathbb{N} , $x\mathcal{R}y \equiv_{def} x \leq y \quad (x, y \in \mathbb{N})$ Es reflexiva, antisimétrica, transitiva y conexa. Pero no es simétrica: 2 < 5 pero $5 \checkmark 2$.
- Dado $C = \{A \in \wp(\mathbb{N})\}/A \neq \emptyset\}$, $A\mathcal{R} B \equiv_{def} (A \cap B = \emptyset)$ Es antirreflexiva y simétrica. Pero no es transitiva y no es conexa: Para $A = \{1,2\}, \ B = \{3,4\}, \ C = \{1\}: A \cap B = B \cap C = \emptyset, \ A \cap C = \{1\}$ Luego $A\mathcal{R}B \wedge B\mathcal{R}C$ pero $A\mathcal{R}C$. ¿Es antisimétrica?
- Dado A = {1,2}, R = {(1,1)}
 No es reflexiva ((2,2) ∉ R) y no es antirreflexiva ((1,1) ∈ R).
 Es simétrica, antisimétrica y transitiva.
 No es conexa: (1 R2 y 2 R1).

Ej:

- Dado $A = \{1, 2\}, \quad \mathcal{R} = \{(1, 1), (2, 2)\}, \quad \mathcal{S} = \{(1, 2), (2, 1)\},$
 - R es simétrica, antisimétrica, reflexiva y transitiva.
 - \mathbb{R} no es conexa. $(1 \mathbb{R}^2 2 \text{ y } 2 \mathbb{R}^2 1)$
 - S es simétrica, antirreflexiva y conexa.
 - \mathcal{S} no es transitiva $((1,2),(2,1)\in\mathcal{S},\ \text{pero}\ (1,1)\notin\mathcal{S})$, ni antisimétrica: $((1,2),(2,1)\in\mathcal{S},\ \text{pero}\ 1\neq 2)$.

Relaciones de equivalencia

DEF:

Dado un conjunto A y $\mathcal{R} \subseteq A \times A$, decimos que \mathcal{R} es una relación de equivalencia si y sólo si es reflexiva, simétrica y transitiva.

Notación: Para referirse a una relación de equivalencia suele utilizarse el símbolo \sim en lugar de \mathcal{R} .

Ej: Las siguientes relaciones son de equivalencia:

- Las identidades id_A , para todo conjunto A.
- ② Sobre \mathbb{Z} , la relación $\mathcal{R} = \{(x, y)/|x| = |y|\}$.
- Sobre $A = \{6, 10, 12, 18, 21, 40, 441\}$, la relación $x \sim y \equiv_{def} x$ e y tienen los mismos divisores primos.
- Sobre \mathbb{Z} , dado $p \in \mathbb{N}_1$, la relación $\equiv_p = \{(x,y) \ / \ p \mid (y-x)\}$

Dem de 4.:

- Reflexiva: $x \equiv_p x$ ya que $p \mid (x x)$ (Todo número entero es divisor del 0)
- Simétrica:

$$x \equiv_{p} y \qquad \sim p \mid (y - x)$$

$$\sim \exists k \in \mathbb{Z} \quad y - x = k \cdot p$$

$$\rightarrow \exists k' \in \mathbb{Z} \quad x - y = k' \cdot p$$

$$\sim p \mid (x - y)$$

$$\sim y \equiv_{p} x$$

Transitiva:

$$\begin{array}{cccc}
x \equiv_{p} y & \to \exists k \in \mathbb{Z} & y - x = k \cdot p \\
y \equiv_{p} z & \to \exists k' \in \mathbb{Z} & z - y = k' \cdot p
\end{array} \right\} \to \exists k, k' \in \mathbb{Z} & z - x = (k' + k) \cdot p \\
& \to \exists k'' \in \mathbb{Z} & z - x = k'' \cdot p \\
& \sim x \equiv_{p} z$$

Ej: Las siguientes relaciones no son de equivalencia:

- **Sobre** N, $|=\{(x,y)/x|y\}$ | es reflexiva y transitiva, pero no es simétrica: $((1,5) \in |$, pero $(5,1) \notin |$, ya que 1|5 pero 5 ∤1)
- Sobre \mathbb{N} , $x\mathcal{R}y \equiv_{def} x \leq y$ No es simétrica
- Sobre N, $xRy ≡_{def} x < y$ No es ni reflexiva ni simétrica
- Dado $C = \{A \in \wp(\mathbb{N}) \mid A \neq \emptyset\}, \quad A\mathcal{R}B \equiv_{def} (A \cap B = \emptyset)$ No es transitiva

DEF:

Sean un conjunto A y una relación de equivalencia \sim sobre A. Para cada $x \in A$, la clase de equivalencia de x se define como

$$[x] =_{def} \{ y \in A / x \sim y \}$$

Notación: $[x]_{\sim}$ si fuese necesario por claridad.

Ej:

1) Para toda relación de identidad id_A :

$$[x] = \{x\} \quad \forall x \in A$$

2) Dados \mathbb{Z} y $\mathcal{R} = \{(x,y)/|x| = |y|\}$ $[x] = \{x, -x\} \quad \forall x \in \mathbb{Z} \setminus \{0\}$ $[0] = \{0\}$

3) Para $A = \{6, 10, 12, 18, 21, 40, 441\}$ y la relación $x \sim y \equiv_{def} x$ e y tienen los mismos divisores primos $[6] = [12] = [18] = \{6, 12, 18\}$

$$[6] = [12] = [18] = \{6, 12, 18\}$$

 $[10] = [40] = \{10, 40\}$
 $[21] = [441] = \{21, 441\}$

4) Sobre \mathbb{Z} , dada $\equiv_2 = \{(x,y) / 2 | (y-x) \}$,

$$[0]_{\equiv_2} = \{ y \in \mathbb{Z} \ / \ 2 \, | \, (y-0) \} = \{ y \in \mathbb{Z} \ / \ 2 \, | \, y \} = \{ y \in \mathbb{Z} \ / \ y \text{ es par } \}$$

$$[1]_{\equiv_2} = \{ y \in \mathbb{Z} \ / \ 2 | (y - 1) \} = \{ y \in \mathbb{Z} \ / \ \exists c \in \mathbb{Z} \quad y - 1 = 2 \cdot c \}$$

$$= \{ y \in \mathbb{Z} \mid \exists c \in \mathbb{Z} \mid y = 2 \cdot c + 1 \} = \{ y \in \mathbb{Z} \mid y \text{ es impar } \}$$

Propiedades de las clases de equivalencia

Si \sim es una relación de equivalencia sobre el conjunto A, las clases de equivalencia [x] inducidas por \sim verifican las siguientes propiedades, para cualesquiera $x,y\in A$:

- **1** $x \in [x]$, y por tanto $[x] \neq \phi$
- $2 x \sim y \leftrightarrow [x] = [y]$
- Y por todo ello, las clases de equivalencia definen una partición de A.

Dem de 2:

Dem de 3:

 $\rightarrow x \nsim y$

Relaciones de equivalencia. Conjunto cociente

DEF:

Sean A un conjunto, y una relación de equivalencia \sim sobre A. La familia de subconjuntos de A formada por todas las clases de equivalencia de \sim se llama conjunto cociente de A con respecto a \sim y se denota por

$$A/\sim =_{def} \{[x] / x \in A\}$$

Si $C \in A/\sim y$ C = [x] se dice que x es un representante de la clase C.

Ej:

- 1) Dados un conjunto A y $\mathcal{R} = id_A$ $A/\mathcal{R} = \{[x] / x \in A\} = \{\{x\} / x \in A\}$
- 2) Dados \mathbb{Z} y $\mathcal{R} = \{(x, y) / |x| = |y|\}$ $\mathbb{Z}/\mathcal{R} = \{[x] / x \in \mathbb{Z}\} = \{ \{0\} \} \cup \{ \{x, -x\} / x \in \mathbb{Z} \setminus \{0\} \}$
- 3) Dado $A = \{6, 10, 12, 18, 21, 40, 441\}$ $x \sim y \equiv_{def} x \text{ e } y \text{ tienen los mismos divisores primos}$ $A/\sim = \{C_1, C_2, C_3\} \text{ donde } C_1 = [6] = \{6, 12, 18\}$ $C_2 = [10] = \{10, 40\}$ $C_3 = [21] = \{21, 441\}$
- 4) Sobre \mathbb{Z} , dada $\equiv_2 = \{(x,y) / 2 | (y-x) \}$ $\mathbb{Z}/\equiv_2 = \{[0]_{\equiv_2}, [1]_{\equiv_2} \}$ donde $[0]_{\equiv_2} = \{y \in \mathbb{Z} / y \text{ es par } \}$ $[1]_{\equiv_2} = \{y \in \mathbb{Z} / y \text{ es impar } \}$

Relaciones de equivalencia. Conjunto cociente

Teorema

- Si \sim es una relación de equivalencia sobre el conjunto A, entonces A/\sim es una partición de A.
- ② Si $C = \{B_1, B_2, \dots\}$ es una partición de A, entonces existe una única relación de equivalencia \sim sobre A tal que $A/\sim = C$.

Dem de 1: En virtud de las propiedades de las clases de equivalencia, tenemos

- 1) $\forall x \in A \ x \in [x]$
- 2) $\forall x, y \in A \ [x] \neq [y] \leftrightarrow x \nsim y \leftrightarrow [x] \cap [y] = \phi$

Es decir dos clases de equivalencia distintas son disjuntas y todo elemento de A pertenece a alguna clase de equivalencia y ninguna clase de equivalencia está vacía.

Luego A/\sim es una partición de A.

- (ロ) (団) (注) (注) 注 り(()

Dem de 2:

Como C es partición de A se tiene que $\forall x \in A$ existe un único i tal que $x \in B_i$. Llamémosle B_x . Defino $\sim \subseteq A \times A$ así:

$$x \sim y \equiv_{def} \exists i \ ((x \in B_i) \land (y \in B_i))$$

 $\leftrightarrow B_x = B_y$

- ~ es claramente de equivalencia

Dem:
$$\forall x \in A \ [x]_{\sim} = \{ y \in A \ / \ x \sim y \} = \{ y \in A \ / \ B_x = B_y \}$$

Veamos $[x]_{\sim} = \{ y \in A \ / \ B_x = B_y \} = B_x$

- \subseteq) $y \in [x]_{\sim} \to y \in B_y = B_x$
- \supseteq) $y \in B_x \to B_x \cap B_y \neq \phi \to B_x = B_y$ (C es partición de A) $\to y \in [x]_{\sim}$

Luego $A/\sim = C$

 $\, \circ \, \sim \,$ es la única relación de equivalencia tal que $A/\sim \, = \, C$ Ej: Demuestra esta última afirmación por reducción al absurdo.

RELACIONES

Relaciones de equivalencia. Congruencias.

DEF:

Dados $a, b \in \mathbb{Z}$ $y p \in \mathbb{Z}_1$ decimos que a es congruente con b módulo p, y lo denotamos $a \equiv_p b$ (o $a \equiv b \pmod{p}$), si $p \mid (b - a)$.

Ej:
$$3 \equiv_2 7$$
, $-28 \equiv_3 17$, $32 \equiv_7 25$

Teorema Dados $a, b \in \mathbb{Z}$ y $p \in \mathbb{Z}_1$

- $\bullet \quad a \equiv_p b \leftrightarrow \exists k \in \mathbb{Z} \ b = a + k \cdot p$
- $a \equiv_p b \leftrightarrow a \bmod p = b \bmod p$