Calcolo differenziale

- 1. Tra i seguenti enunciati si indichino quelli sicuramente veri.
 - ☐ Ogni funzione continua in un punto è derivabile in quel punto
 - √ Ogni funzione derivabile in un punto è continua in quel punto
 - ☐ Una funzione è derivabile in un punto se e solo se è continua in quel punto
 - $\sqrt{}$ Una funzione continua in un punto non è detto che sia derivabile in quel punto
- 2. Si scriva il più grande insieme $I \subseteq \mathbb{R}$ in cui la funzione f indicata risulta derivabile.
 - (a) $f(x) = \sqrt{x}$ $\underline{I = (0, +\infty)}$
 - (b) $f(x) = x^3$ ______ / = \mathbb{R}
 - (c) $f(x) = x\sqrt{x}$ $\underline{I = [0, +\infty)}$
 - (d) $f(x) = \sqrt[3]{x}$ $\underline{I} = \mathbb{R} \setminus \{0\}$
- 3. Per ciascuna delle seguenti funzioni si dica se è derivabile nel punto x_0 indicato.
 - (a) $f(x) = |x|, x_0 = 0$ Non derivabile
 - (b) $f(x) = |x|, x_0 = 1$ Derivabile
 - (c) $f(x) = \sqrt[3]{x}$, $x_0 = 0$ Non derivabile
 - (d) $f(x) = x^2$, $x_0 = 0$ Derivabile
- 4. Si dica quali tra le seguenti funzioni verificano le ipotesi del teorema di Fermat nell'intervallo indicato.
 - $\Box f(x) = x, x \in [0, 1]$
 - $\Box f(x) = x^3, x \in [-1, 1]$
 - $\sqrt{f(x)} = x^2, x \in [-1, 1]$
 - $\sqrt{f(x)} = \operatorname{sen} x, x \in [0, \pi]$
- 5. Se $f(x) = \sqrt{9-x}$ con $x \in [0, 9]$, si dica quali tra le seguenti affermazioni sono garantite dal teorema di Lagrange.
 - \square Esiste c compreso tra 0 e 9 tale che $f'(c) = \frac{1}{3}$
 - $\sqrt{}$ Esiste c compreso tra 0 e 9 tale che $f'(c) = -\frac{1}{3}$
 - \Box Esiste c compreso tra 0 e 9 tale che f'(c) = 0
 - \Box $f'(c) = -\frac{1}{3}$ per ogni c compreso tra 0 e 9

- 6. Se $f:[a,b] \to \mathbb{R}$ è una funzione continua in [a,b] e derivabile in (a,b), tra i seguenti enunciati si indichino quelli veri.
 - \Box f è strettamente crescente in (a, b) se e solo se f'(x) > 0 per ogni $x \in (a, b)$
 - \sqrt{f} è crescente in (a, b) se e solo se $f'(x) \ge 0$ per ogni $x \in (a, b)$
 - \sqrt{f} è decrescente in (a, b) se e solo se $f'(x) \leq 0$ per ogni $x \in (a, b)$
 - $\sqrt{\text{Se } f'(x)} < 0$ per ogni $x \in (a, b)$ allora f è strettamente decrescente in (a, b)
- 7. Se $f:[a,b]\to\mathbb{R}$ è una funzione convessa in [a,b] e derivabile due volte in (a,b), tra i sequenti enunciati si indichino quelli veri.
 - \Box f' è strettamente decrescente in (a, b)
 - $\sqrt{\text{Per ogni } x, x_0 \in (a, b), f(x) \ge f(x_0) + f'(x_0)(x x_0)}$
 - $\sqrt{f'}$ è crescente in (a, b)
 - $\Box f''(x) < 0$ per ogni $x \in (a, b)$
- 8. Tra i seguenti enunciati si indichino quelli sicuramente veri.
 - $\sqrt{\text{Per }x \rightarrow 0}, e^x = 1 + x + o(x)$
 - \square Per $x \to 0$, $e^x = 1 + o(x^2)$
 - $\sqrt{\text{Per }x} \rightarrow 0, \ e^x = 1 + x + O(x)$
 - \square Per $x \to 0$, $e^x = 1 + o(x)$
- 9. Tra i seguenti enunciati si indichino quelli sicuramente veri.
 - $\sqrt{\text{ Per } x \to 0}$, sen $x = x \frac{x^3}{6} + o(x^3)$
 - $\sqrt{\operatorname{Per} x} \to 0$, $\operatorname{sen} x = x + o(x)$
 - $\sqrt{\operatorname{Per} x} \to 0$, $\operatorname{sen} x = x + O(x)$
 - $\sqrt{\text{Per }x \to 0}$, $\sin x x \sim -\frac{x^3}{6}$
- 10. Se per $x \to 0$, $f(x) = O(x^4)$, tra i sequenti enunciati si indichino quelli sicuramente veri.
 - $\sqrt{\operatorname{Per} x} \to 0, \ f(x) = o(x^2)$
 - $\sqrt{\text{Per } x \rightarrow 0, f(x) = o(x^3)}$
 - \square Per $x \to 0$, $f(x) \sim x^4$
 - \square Per $x \to 0$, $f(x) = o(x^7)$