Laplace Transforms Cheat Sheet (Theory Only)

1. Laplace Transform & Its Applications

Converts a time-domain function into a complex frequency-domain representation. Helps solve differential equations, control system analysis, and signal processing problems. Commonly used in engineering, physics, and applied mathematics.

Laplace Transform of Elementary Functions

The Laplace transform can be applied to basic functions such as:

- Constants
- Polynomials
- Exponential Functions
- Trigonometric Functions
- Unit Step & Delta Functions

2. Laplace Transform of Periodic Functions

A periodic function repeats after a fixed interval.

The Laplace transform of a periodic function helps analyze signals in **circuit analysis**, **vibrations**, **and control systems**.

3. Basic Properties of Laplace Transforms

1. Linearity Property

The Laplace transform of a linear combination of functions is the same linear combination of their transforms.

2. Shifting Property

Time Shifting: A delay in the time domain corresponds to an exponential factor in the Laplace domain. **Frequency Shifting**: Multiplying a function by an exponential term shifts its transform.

3. Scaling Property

Compressing a function in time expands its Laplace transform in frequency and vice versa.

4. Differentiation Property

The Laplace transform of a function's derivative helps in solving differential equations.

5. Integration Property

The Laplace transform of an integral of a function relates to its transform divided by the frequency variable.

6. Convolution Theorem

The Laplace transform of the **convolution of two functions** is the **product of their individual Laplace transforms**.

Used in signal processing and system responses.

4. Laplace Transform of Derivatives & Integrals

Laplace Transform of Derivatives

Converts **differential equations** into **algebraic equations**, making them easier to solve. Helps in **control systems and circuit analysis**.

Laplace Transform of Integrals

Used in integral equations and physics problems.

5. Initial & Final Value Theorems

1. Initial Value Theorem

Determines the initial behavior of a function using its Laplace transform. Used to analyze **starting conditions in mechanical and electrical systems**.

2. Final Value Theorem

Determines the steady-state behavior of a function as **time approaches infinity**. Helps in **stability analysis of control systems**.

This Laplace Transform Cheat Sheet covers Laplace transforms of elementary & periodic functions, basic properties, derivatives, integrals, and initial & final value theorems without proofs. Let me know if you need further explanations!