Graph Algorithms

Vertex Coloring

The Input Graph

G = (V, E) a simple and undirected graph:

 $\star V$: a set of n vertices.

 \star E: a set of m edges.

	A	B	C	D	E	F
A	0	1	1	1	0	0
B	1	0	1	0	1	0
C	1	1	0	0	0	1
D	1	0	0	0	1	1
E	0	1	0	1	0	1
F	0	0	1	1	1	0

Vertex Coloring

Definition I:

- * A disjoint collection of independent sets that cover all the vertices in the graph.
- * A partition $V = I_1 \cup I_2 \cup \cdots \cup I_{\chi}$ such that I_j is an independent set for all $1 \leq j \leq \chi$.

Definition II:

- * An assignment of colors to the vertices such that two adjacent vertices are assigned different colors.
- * A function $c:V \to \{1,\ldots,\chi\}$ such that if $(u,v) \in E$ then $c(u) \neq c(v)$.

Observation: Both definitions are equivalent.

Example: Coloring

Example: Coloring with Minimum Number of Colors

The Vertex Coloring Problem

The optimization problem: Find a vertex coloring with minimum number of colors.

Notation: The chromatic number of G, denoted by $\chi(G)$, is the minimum number of colors required to color all the vertices of G.

Hardness: A very hard problem (an NP-Complete problem).

Hardness of Vertex Coloring

- \star It is NP-Hard to color a 3-colorable graph with 3 colors.
- * It is NP-Hard to construct an algorithms that colors a graph with at most $n^{\varepsilon}\chi(G)$ colors for any constant $0<\varepsilon<1$.

Known Algorithms for Vertex Coloring

- * There exists an optimal algorithm for coloring whose running time is $O\left(mn\left(1+3^{1/3}\right)^n\right)\approx mn1.442^n$.
- * There exists a polynomial time algorithm that colors any graph with at most $O(n/\log n)\chi(G)$ colors.
- * There exists an algorithm that colors a 3-colorable graph with $O(n^{1/3})$ colors.

Properties of Vertex Coloring

Observation: $K(G) \leq \chi(G)$.

* Because in any vertex coloring, each member of a clique must be colored by a different color.

Observation:
$$\chi(G) \geq \left\lceil \frac{n}{I(G)} \right\rceil$$
.

 \star A pigeon hole argument: the size of each color-set is at most I(G).

Example: $\chi(G) = K(G)$

- \star K(G) = 4 and $\chi(G) = 4$.
- \star Every member of the only clique of size 4 must be colored with a different color.

Example: $\chi(G) > K(G)$

$$K(G)=2 \text{ and } \chi(G)=3$$

Example: $\chi(G) > K(G)$

$$K(G)=2 \text{ and } \chi(G)=4$$

$\chi(G) >> K(G)$

Theorem: For any $k \geq 3$, there exists a triangle-free graph G_k $(K(G_k) = 2)$ for which $\chi(G_k) = k$.

A construction: G_3 and G_4 are the examples above. Construct G_{k+1} from G_k .

- \star Let $V = \{v_1, \dots, v_n\}$ be the vertices of G_k .
- * The vertices of G_{k+1} include V, a new vertex w, and a new set of vertices $U = \{u_1, \ldots, u_n\}$ for a total of 2n+1 vertices.
- * The edges of G_{k+1} include all the edges of G_k , w is connected to all the vertices in U, and $u_i \in U$ is connected to all the neighbors of v_i in G_k .

G_{k+1} is a Triangle-Free graph

- * U is an independent set in G_{k+1} and therefore there is no triangle with at least 2 vertices from U.
- \star w is not adjacent to V and is adjacent to the independent set U. Therefore w cannot be a member in a triangle.
- $\star V$ contains no triangles because G_k is a triangle-free graph.
- * The remaining case is a triangle with 1 vertex $u_i \in U$ and 2 vertices $v, v' \in V$.
- * This is impossible since u_i is connected to the neighbors of v_i and therefore the triangle u_ivv' would imply the triangle v_ivv' in the triangle-free graph G_k .

$$\chi(G_{k+1}) \le k+1$$

- \star Color the vertices in V with k colors as in G_k .
- \star Color u_i with the color of v_i . This is a legal coloring since u_i is connected to the neighbors of v_i .
- \star Color w with a new color.

$\chi(G_{k+1}) > k$

- \star Assume that G_{k+1} is colored with the colors $1, \ldots, k$.
- \star Let the color of w be k.
- * Since w is adjacent to all the vertices in U it follows that the vertices in U are colored with the colors $1, \ldots, k-1$.
- \star Color each v_i that is colored by k with the color of u_i .
- * This produces a legal coloring of the G_k subgraph of the G_{k+1} graph because u_i is adjacent to all the neighbors of v_i and the set of all the k-colored v_i is an independent set.
- \star A contradiction since $\chi(G_k) = k$.

Perfect Graphs

- ullet In a perfect graph $\chi(G)=K(G)$ for any "induced" subgraph of G.
- Coloring is not Hard for perfect graphs.
- The complement of a perfect graph is a perfect graph.
- Interval graphs are perfect graphs.

The Trivial Cases

Observation: A graph with $n \geq 1$ vertices needs at least 1 color and at most n colors.

$$\star 1 \leq \chi(G) \leq n$$
.

Null Graphs: No edges $\Rightarrow 1$ color is enough.

$$\star \chi(N_n) = 1.$$

Complete Graphs: All edges $\Rightarrow n$ colors are required.

$$\star \chi(K_n) = n.$$

The Easy Case

Theorem: The following three statements are equivalent for a simple undirected graph G:

- 1. G is a bipartite graph.
- 2. There are no odd length cycles in G.
- 3. G can be colored with 2 colors.

Proof: $1 \Rightarrow 2$

 \star The vertices of G can be partitioned into 2 sets A and B such that each edge connects a vertex from A with a vertex from B.

 \star The vertices of any cycle alternate between A and B.

* Therefore, any cycle must have an even length.

Proof: $2 \Rightarrow 3$

- \star Run BFS on G starting with an arbitrary vertex.
- * Color odd-levels vertices 1 and even-level vertices 2.
- * Tree edges connect vertices with different colors.
- * In a BFS there are no forward and backward edges and a cross edge connects level ℓ with level ℓ' only if $|\ell \ell'| \leq 1$.
- * If $\ell = \ell' + -1$ then the cross edge connects vertices with different colors.
- \star If $\ell=\ell'$ then the cross edge closes an odd-length cycle contradicting the assumption.
- * Thus, all the edges connect vertices with different colors.

Proof: $3 \Rightarrow 1$

 \star Let A be all the vertices with color 1 and let B be all the vertices with color 2.

 \star By the definition of coloring, any edge connects a vertex from A with a vertex from B.

★ Therefore, the graph is bipartite.

Coloring 2-colorable graphs

- \star Apply the BFS algorithm from the $2 \Rightarrow 3$ proof.
- $\star O(n+m)$ -time complexity using adjacency lists.
- * Can be used to recognize bipartite graphs: If there exists an edge connecting vertices with the same color then the graph is not bipartite.

Trees

 \star A tree is a bipartite graph and therefore can be colored with 2 colors.

Even Length Cycles

 \star A cycle graph with an even number of vertices is a bipartite graph and therefore can be colored with 2 colors.

Odd Length Cycles

- \star A cycle graph with an odd number of vertices is not a bipartite graph \Rightarrow it cannot be colored with 2 colors.
- ★ 3-Coloring: Color one vertex 3. The rest of the vertices induce a bipartite graph and therefore can be colored with colors 1 and 2.

Greedy Vertex Coloring

Theorem: Let Δ be the maximum degree in G. Then G can be colored with $\Delta + 1$ colors.

Proof:

- * Color the vertices in a sequence.
- * A vertex is colored with a free color, one that is not the color of one of its neighbors.
- * Since the maximum degree is Δ , there is always a free color among $1, 2, \ldots, \Delta + 1$ (a pigeon hole argument).

A Proof by Induction

- \star Assume G has n vertices.
- \star The theorem is true for a graph with 1 vertex since $\Delta = 0$.
- \star Let $n \geq 2$ and assume that the theorem is correct for any graph with n-1 vertices.
- ⋆ Omit an arbitrary vertex and all of its edges from the graph.
- \star By the induction hypothesis the remaining graph can be colored with at most $\Delta+1$ colors.
- * Since the degree of the omitted vertex is at most Δ it follows that one of the colors $1, \ldots, \Delta + 1$ will be available to color the omitted vertex (a pigeon hole argument).

- \star The star graph is a bipartite graph and therefore can be colored with 2 colors.
- $\star \Delta = n-1$ in a star graph. The above theorem guarantees a performance that is very far from the optimal performance.

First-Fit Implementation

- * Consider the vertices in any sequence.
- * Color a vertex with the smallest available color.

```
Greedy Coloring (G) for i=1 to n c=1 while (\exists_j \{(i,j) \in E\}) AND (c(j)=c) c=c+1 c(i)=c
```

Complexity: Possible in O(m+n) time.

Sometimes Greedy is optimal

Complete graphs: $\Delta = n-1$ and $n = \Delta + 1$ colors are required.

Odd-length cycles: $\Delta = 2$ and 3 colors are required.

The order of the vertices is crucial

 \star A bipartite graph G.

- 2k vertices v_1, v_2, \ldots, v_k and u_1, u_2, \ldots, u_k .
- All (v_i, u_j) edges for $1 \le i \ne j \le k$.

A Good Order

- \star Suppose the order is $v_1, v_2, \ldots, v_k, u_1, u_2, \ldots, u_k$.
 - The algorithm colors G with 2 colors.

A Bad Order

- \star Suppose the order is $v_1, u_1, v_2, u_2, \ldots, v_k, u_k$.
 - The algorithm colors G with k colors.

Greedy with a Decreasing Order of Degrees

Notation: Let the vertices be v_1, v_2, \ldots, v_n and let their degrees be $\Delta = d_1 \geq d_2 \geq \cdots \geq d_n$.

Theorem: $\chi(G) \leq \max_{1 \leq i \leq n} \min \{d_i + 1, i\}.$

Proof:

- \star The input order for greedy is v_1, v_2, \ldots, v_n .
- * When coloring v_i at most i-1 colors are used by its neighbors since greedy has colored only i-1 vertices.
- * When coloring v_i at most d_i colors are used by its neighbors because the degree of v_i is d_i .

Back Degrees

Notation:

- * Let the vertices be v_1, v_2, \ldots, v_n and let their degrees be $d_1, d_2, \ldots, d_n \leq \Delta$.
- * Let $d_i' \leq d_i$ be the number of neighbors of v_i among v_1, \ldots, v_{i-1} (in particular: $d_i' \leq i-1$).

Theorem: $\chi(G) \leq \max_{1 < i < n} \{d'_i + 1\}.$

Proof:

- * The input order for greedy is v_1, v_2, \ldots, v_n .
- * When coloring v_i at most d_i' colors are used by its neighbors.

A Marginal Improvement to the Greedy Algorithm

Theorem: A connected non-clique G can be colored with Δ colors where $\Delta \geq 3$ is the maximum degree in G.

Cliques: K_n requires $n = \Delta + 1$ colors.

Cycles: C_n , for an odd n, requires $3 = \Delta + 1$ colors.

Proof

- ★ By induction implying an algorithm.
- \star Let v be an arbitrary vertex with degree d(v).
- \star Let $G' = G \setminus \{v\}$:
 - If G' is not a clique or a cycle, then color it recursively with Δ colors.
 - If G' is a clique, then it is a K_{Δ} graph that can be colored with Δ colors. G' cannot be a $K_{\Delta+1}$ graph since then the neighbors of v would have degree $\Delta+1$.
 - If G' is a cycle, then it can be colored with $3 \leq \Delta$ colors.

- * If $d(v) \leq \Delta 1$, then color v with a free color (pigeon hole argument).
- \star If v has 2 neighbors colored with the same color, then color v with a free color (pigeon hole argument).
- \star From now on assume that $d(v) = \Delta$ and that each neighbor of v is colored with a different color.

 \star Let the neighbors of v be $v_1, v_2, \ldots, v_{\Delta}$ and let their colors be $c_1, c_2, \ldots, c_{\Delta}$ respectively.

Definitions and an Observation

- * For colors x and y, let G(x, y) be the subgraph of G containing only the vertices whose colors are x or y.
- * For a vertex w whose color is x, let $G_w(x, y)$ be the connected component of G(x, y) that contains w.
- * Interchanging the colors x and y in the connected component $G_w(x, y)$ of G(x, y) results with another legal coloring in which the color of w is y.

The Observation

- \star Let v_i and v_j be any 2 neighbors of v.
- * If $G_{v_i}(c_i, c_j)$ does not contain v_j , then interchange the colors c_i and c_j in $G_{v_i}(c_i, c_j)$.
- * The color of both v_i and v_j is now c_j and no neighbor of v is colored with c_i .
- \star Color v with c_i .

* If v_i has 2 neighbors colored with c_j , then color v_i with a different color and color v with c_i .

* From now on assume that v_i and v_j belong to the same connected component in $G(c_i, c_j)$ and that v_i has only 1 neighbor colored with c_j .

* If $G_{v_i}(c_i, c_j)$ is not a path, then let $w \in G_{v_i}(c_i, c_j)$ be the closest to v_i whose color is c_i (or c_j) and who has more than 2 neighbors whose colors are c_i (or c_j).

- \star Color w with a different color.
- * v_i and v_j are not anymore in the same connected component of $G(c_i, c_j)$.

- \star Interchange the colors c_i and c_j in $G_{v_i}(c_i, c_j)$.
- * The color of both v_j and v_i is now c_j and no neighbor of v is colored with c_i : Color v with c_i .

* From now on assume that for any 2 neighbors v_i and v_j of v, the subgraph $G_{v_i}(c_i, c_j)$ is a path (could be an edge) starting with v_i and ending with v_j .

- * If for some v_k the path $G_{v_i}(c_i, c_k)$ intersects the path $G_{v_i}(c_i, c_j)$ in a vertex $w \neq v_i$ whose color is c_i , then w has 2 neighbors colored c_k and 2 neighbors colored c_j .
- \star Color w with a different color than c_i, c_j, c_k .

- * v_i and v_j are not anymore in the same connected component of $G(c_i, c_j)$.
- \star Interchange the colors c_i and c_j in $G_{v_i}(c_i, c_j)$.
- * The color of both v_j and v_i is now c_j and no neighbor of v is colored with c_i : Color v with c_i .

* From now on assume that the path $G_{v_i}(c_i, c_k)$ intersects the path $G_{v_i}(c_i, c_j)$ only at v_i .

- * By assumption the graph is not a clique. Therefore, there exist 2 neighbors of v, v_i and v_j , that are not adjacent. Let w be the c_j neighbor of v_i .
- * By assumption $\Delta \geq 3$. Therefore, there exists another neighbor of v, v_k that is different than v_i and v_j .

- \star Interchange the colors c_i and c_k in $G_{v_i}(c_i, c_k)$.
- \star The color of v_i is c_k and the color of v_k is c_i .

- * Repeat the arguments as before and assume that
 - $-G_{v_j}(c_j, c_i)$ is a path from v_j to v_k .
 - $-G_{v_j}(c_j,c_k)$ ia a path from v_j to v_i .
- \star These paths must intersect with w because w is the only c_j neighbor of v_i .

- \star Color w with a different color than c_i, c_j, c_k .
- $\star v_i$ has no c_j neighbor.

Proof End

- \star Color v_i with c_j .
- \star Color v with c_k .

Complexity

- \star Possible in O(nm).
- \star Each correction can be done in O(m).

Cubic Graphs

Definition: A cubic graph is a regular graph in which the degree of every vertex is 3.

Corollary: The chromatic number of a non-bipartite cubic graph that is not K_4 is 3.

Coloring 3-Colorable Graphs with $O(\sqrt{n})$ colors

Observation: In 3-colorable graphs, the subgraph containing only the neighbors of a particular vertex is a 2-colorable graph (a bipartite graph).

Algorithm

- \star Let G be a 3-colorable graph.
- * Allocate 3 colors to a vertex and all of its neighbors if the degree of this vertex is larger than \sqrt{n} .
- * There are at most \sqrt{n} such vertices and therefore so far at most $3\sqrt{n}$ colors were used.

Algorithm

- \star Now, all the degrees in the graph are less than \sqrt{n} .
- * The greedy algorithm needs at most \sqrt{n} colors to color the rest of the graph.
- \star All together, the algorithm uses $O(\sqrt{n})$ colors.
 - If all omitted vertices are colored with the same color, then at most $2\sqrt{n}+1$ colors are used before applying the greedy algorithm.
 - Therefore, the algorithm uses about $3\sqrt{n}$ colors.