Predicting vaccination rate

Joshua Ko

About the data

- Provided by Drivendata
- ✓ Variables
 - Behavioral
 - Economic/Social status
 - Medical history
- Irrelevant variables

^

Accuracy of each model

Model	Avg. Accuracy
Logistic	0.81
KNN	0.77
Decision Tree	0.78

Performance of the model

~~~

- Confusion Matrix
- Positive and negative predictive values
 - Precision
 - Recall
 - Accuracy
 - o F1
- Receiver operator characteristic curve (ROC)

Confusion Matrix

Prediction Scores

	H1N1	Seasonal
Precision	0.68	0.78
Recall	0.43	0.74
Accuracy	0.84	0.78
F1	0.53	0.76

ROC curve

AUC: 0.83

AUC: 0.85

Final predictions & recommendations ^>>>

Vaccine	Average Probability
H1N1	0.21
Seasonal	0.46

- More people are likely to take the seasonal vaccine
 - Pfizer should produce more seasonal vaccine
- Investigate why certain variables yield lower rates
 - Race
 - Education
 - Income
- May use this outcome to push future vaccinations

Improvements & Further developments

- Making a more accurate model
 - Working with less null values
 - Finding the best predictive model for each column
 - Trying different combinations of hyperparameters
- Removing variables
 - The dataset has multiple columns
 - Removing more irrelevant columns

This Presentation is Prepared by

Link:

https://github.com/Jko0425

Email:

joshuawko@gmail.com