Trabajo Especializacion

Franco Betteo 01/09/2019

Introducción

No hay una manera única e inequívoca de comparar rendimientos de jugadores en los distintos deportes y eso da lugar a discusiones sin fin. Más díficil aún en los deportes en equipo donde hay roles diferentes y contribuciones de distinta índole. A raíz de esto se han ido desarrollando métricas que intentan resumir el aporte al equipo de manera integral para hacer comparables los jugadores. En básquetbol una de las medidas más conocidas de este tipo es el "plus-minus" (originalmente implementado en el hockey sobre hielo), que calcula la diferencia de puntos de un equipo mientras cada jugador estuvo en cancha. Es decir que valores positivos (negativos) revelan que durante un partido el equipo hizo más (menos) puntos de los que recibió mientras el jugador estuvo en cancha. Es una métrica sencilla de calcular y resume el aspecto más importante de un partido de manera general para cada jugador. Es fácil de interpretar pero no está exenta de problemas. La idea de este trabajo es aplicar un método más robusto, "Plus-Minus ajustado", basado en los aportes de Justin Jacobs¹ y Joseph Sill², donde el principal agregado es controlar por los otros jugadores en cancha. El objetivo es actualizar la métrica para la temporada 2017-2018 y generar un ranking de jugadores. Posteriormente comparar el ranking contra otros generados por algún medio conocido para ver similitudes y diferencias. Por último generar un ranking de equipos, basado en los rankings individuales de jugadores, y comparar contra los resultados de las rondas definitorias del certamen cuyos datos no son utilizados para calcular la métrica.

Datos

Para poder calcular la métrica "plus minus ajustado" necesitamos tener, para cada momento del partido, los jugadores que hay en cancha y el resultado ya que el objetivo es ver la performance del equipo en presencia y ausencia de cada jugador de la liga. A tales fines se decidió utilizar la información provista por la API de MySportsFeed³. En ella podemos encontrar datos a un nivel suficientemente granular. En particular, para cada partido tenemos información jugada a jugada marcada por ciertas situaciones particulares, entre ellas tiros al aro y si se conviertieron puntos o no, rebotes, faltas y sustituciones. Con la primera y la última de estas características podemos recolectar los datos necesarios para generar nuestro dataset. Al estar todas las sustituciones y tener la alineación inicial de cada equipo podemos obtener todos los segmentos del partido donde hubo distintas combinaciones de jugadores en cancha (tanto compañeros como rivales) para cada jugador. A su vez, al tener los puntos anotados podemos obtener el diferencial de puntos para cada uno de estos segmentos.

A los fines de utilizar toda esta información para entrenar el modelo de "plus minus ajustado" necesitamos armar un dataset con el formato siguiente:

- Cada observación es un segmento de un partido donde se mantuvo constante la alineación de ambos equipos.
- Las variables independientes son cada uno de los jugadores de la liga, con valor de 1 si estaban en cancha en ese segmento para el equipo local y -1 si estaban en cancha siendo del equipo visitante.
- La variable dependiente es el diferencial de puntos del equipo local. Valores positivos (negativos) es que anotó más puntos el equipo local (visitante).

Esta tabla esta conformada con todos los equipos de la liga y para cada partido de la temporada, de manera que para apendizar la información de cada encuentro hay que tener las variables independientes de cada equipo, es decir, todos sus jugadores. Dado que cada partido solo involucra a dos equipos, la gran mayoría de

¹ https://squared2020.com/2017/09/18/deep-dive-on-regularized-adjusted-plus-minus-i-introductory-example/

 $^{^2} http://www.sloansportsconference.com/wp-content/uploads/2015/09/joeSillSloanSportsPaperWithLogo.pdf$

³https://www.mysportsfeeds.com/data-feeds/api-docs

las columnas tendrán valor de 0 en cada observación, siendo el dataset una matriz dispersa (sparse matrix). Se toman valores de 1 y -1 según la localía para que el signo quede acorde a la medición del diferencial de puntos y por ende el signo de los coeficientes sea siempre positivo para aportes beneficiosos a un equipo y negativos para aportes perjudiciales.

Tanto para la consulta de la API como para el manejo y procesamiento de los datos se utilizó el lenguaje R 4 INCLUIR HEAD DE LA TABLA O MANDAR A APENDICE

Modelo

La metodología para calcular la métrica "plus minus ajustado" implica correr una regresión Ridge (regularización con l2) donde la variable dependiente es el diferencial de puntos por segmento y las variables independientes son los jugadores en cancha. La idea de fondo es calcular el aporte de cada jugador al diferencial, controlando por sus compañeros y por los advsersarios. Se intenta eliminar el factor que sobreestima el aporte de algún jugador solo por el hecho de compartir tiempo en cancha con compañeros de primer nivel, que son los que generan realmente los diferenciales positivos. De la misma manera se intenta no sobreestimar a los jugadores que anotan muchos puntos contra equipos de baja performance o que solo juegan en los minutos llamados "basura" que corresponden a los minutos finales de un partido cuando ya está todo definido y suelen haber jugadores de menor nivel. Dado que es una regresión lineal los coeficientes pueden interpretarse como un proxy del aporte neto de cada jugador, ya descontados los aportes del resto. Dada la codificación de variables - positiva para el local y negativa para visitantes - todo signo positivo de un coeficiente es aporte real en puntos y negativo es tendencia a recibir más puntos que los que se convierten con el jugador en cancha. Los equipos suelen tener una plantilla de alrededor de 10 jugadores activos y los que más minutos disputan suelen ser menos aún por lo tanto es de esperar que haya una gran correlación entre los jugadores de cada equipo. Este es el principal motivo por el que se decide ir por una regresión regularizada y no una regresión lineal multivariada clásica.

Ridge lo que hace es reducir la varianza de los coeficientes estimados incluyendo una penalización l2 a la función de pérdida que implica reducir mínimos cuadrados sumado a la diferencia al cuadrado de los coeficientes respecto de 0. Esto último ponderado por un parámetro λ a definir. A mayor λ la penalización es mayor y los coeficientes tienden a valores cercanos a 0. El procedimiento reduce la varianza de los coeficientes a costa de introducir un sesgo en su estimación, pero que de tener éxito, el tradeoff es tal que las predicciones son más certeras a pesar de no ser insesgado.

Formalización

Formalmente el modelo especificado es:

$$Y = \sum_{1}^{n} \beta_i X_i + \epsilon$$

Donde Y es el diferencial de puntos visto desde el equipo local, las X son las variables de presencia/ausencia de cada jugador del partido y ϵ es un término de error con distribución normal de media 0. Siendo estrictos, en la matriz estarán todos los jugadores de la liga por lo que las X incluyen a muchísimos jugadores que no son parte del partido pero obviamente tendrán valor 0 y no tendrán injerencia en la suma. Los β son los coeficientes de la regresión.

Dado nuestro modelo, lo siguiente es preguntarse cómo estimar los coeficientes con los datos que tenemos a disposición. Mínimos cuadrados ordinarios (MCO) es posiblemente la primera opción dado que sus coeficientes tienen propiedades interesantes: los estimadores son insesgados y si se cumplen ciertas condiciones sobre los errores del modelo también son los estimadores de mínima varianza dentro de los insesgados.

⁴R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

Los estimadores de MCO se obtienen mediante

$$\hat{\beta} = argmin \ S(\beta)$$

donde

$$S(\beta) = \sum_{i=1}^{n} (y_i - \sum_{j=1}^{p} X_{ij} \beta_j)^2$$

A pesar de mantener la propiedad de insesgadez, estos estimadores son bastante sensibles a la alta correlación entre variables ya que al existir en planos muy próximos existen mayor cantidad de combinaciones lineales entre ambas variables que dan resultados similares en cuanto al ajuste del modelo. Esto se traduce en que los estimadores de MCO puedan variar mucho entre distintas muestras de la misma población, es decir que son estimadores con varianza elevada. Aunque en promedio los estimadores se centren en los verdaderos valores de β , lo van a hacer de manera muy errática y los valores que encontremos en nuestra muestra no van a ser confiables y por lo tanto nuestras predicciones tampoco.

En este momento es donde hay que tener en mente el tradeoff entre sesgo y varianza de un modelo. Este concepto nos dice que el error cuadrático medio (MSE por sus siglas en inglés) de un set de testeo puede descomponerse entre sesgo elevado al cuadrado más varianza - del modelo estimado y aplicada a la nueva observación - más la varianza del error irreducible del proceso generador de datos.

El último elemento está fijo pero los primeros dos varían según el modelo utilizado y estimado. En general modelos más flexibles tienden a tener menor sesgo ya que pueden ajustarse mejor a las no linealidades de los datos pero a su vez suelen tener más varianza ya que cambios en los datos tienen impacto sobre cómo ajustan entre muestras distintas. Dijimos que MCO sufre de alta varianza en sus estimadores ante presencia de variables correlacionadas y como mencionamos, el dataset de este trabajo presenta tal característica ya que los jugadores de un equipo son pocos y suelen compartir minutos en cancha de manera reiterada. La propuesta de utilizar una regresión Ridge apunta a tratar de resolver la problemática de la alta varianza. La regularización por Ridge agrega una penalización a la minimización del desvío cuadrático respecto a cero y eso genera dos consecuencias:

- Los estimadores dejan de ser insesgados ya que se los restringe al penalizar su alejamiento de 0.
- Los estimadores ven su varianza reducida ya que se limita el espacio de búsqueda.

Formalmente la minimización es la siguiente:

$$S(\beta) = \sum_{i=1}^{n} (y_i - \sum_{j=1}^{p} X_{ij}\beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

Donde λ es un hiperparámetro que regula el peso de la penalización en la función de costo. Mayores (menores) valores de λ hacen más (menos) costosos los desvíos de los estimadores respecto de cero. En los extremos, si $\lambda=0$, los estimadores son los mismos que MCO y si $\lambda=+\infty$ todos los estimadores son 0 y queda solo el intercepto. El objetivo de incluir la penalización es agregar un poco de sesgo a cambio de reducir en mayor medida la componente de varianza del MSE mediante la restricción que se aplica sobre los coeficientes estimados. El éxito de este enfoque depende en gran medida del λ elegido. Para seleccionar el valor de λ la práctica habitual es hiperparametrizar el modelo medianto crossvalidation.

Aplicación

Mencionamos a continuación algunos aspectos metodológicos a tener en cuenta:

 Se eliminó el primer cuartil de jugadores medido en cantidad de posesiones en toda la temporada para reducir la dimensionalidad del problema. Son jugadores con pocos minutos en cancha y perjudican más de lo que aportan.

• Se eliminaron las observaciones con menos de 5 posesiones. Este número corresponde a la mediana de la cantidad de posesiones por observación. Se considera que observaciones con menos de esa cantidad de posesiones no son representativas y aumentan el ruido dentro del modelo.

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 1.000 3.000 5.000 6.831 9.000 46.000

• Se normalizó la variable dependiente, llevando la métrica a diferencial de puntos cada 100 posesiones para hacer comparables los segmentos de tiempo.

Una vez preprocesados todos los datos y habiendo definido el modelo, procedemos a la etapa de correr la regresión. La librería que vamos a utilizar es $glmnet^5$.

Dijimos que uno de los hiperparámetros de la regresión Ridge es λ que define el peso de la penalización. Lo primero que hacemos es definir qué valor va a tomar para nuestro problema. La solución propuesta es el calcular el λ óptimo mediante Cross Validation con 10 folds. La librería provée la función cv.glmnet para tal fin, donde lo que hace es dividir el set de datos en 10 subsets y entrenar un modelo con 9 de los 10 subsets y validarlo con el décimo. Así para cada combinación de subsets. Esto lo realiza reiteradas veces para distintos valores de λ . Finalmente calcula el error cuadrático medio para cada λ en los sets de validación. Entre todos esos resultados buscamos el λ cuyo error promedio en validación sea el menor y será el que utilicemos para nuestro modelo con todos los datos.

Al aplicar este procedimiento obtenemos el óptimo para nuestro set de datos: $\lambda = 1.369778$

Tomando este valor de λ , lo siguiente es correr el modelo Ridge con todo el training set imputando ese valor para el hiperparámetro.

A continuación mostramos los primeros diez jugadores según el coeficiente obtenido (de mayor a menor), donde un coeficiente más elevado está asociado a mayor diferencial de puntos a favor mientras se está en cancha, controlando por el resto de los jugadores presentes (compañeros como oponentes).

 $^{^5 \}mbox{Jerome Friedman},$ Trevor Hastie, Robert Tibshirani (2010). Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1-22. URL http://www.jstatsoft.org/v33/i01/.

playerid	player.firstName	player.lastName	team.abbreviation	coef
9418	Joel	Embiid	PHI	2.173248
9420	Robert	Covington	PHI	2.159759
9402	Victor	Oladipo	IND	2.108312
9265	Chris	Paul	HOU	2.019688
9352	Eric	Gordon	HOU	1.932603
9218	Stephen	Curry	GSW	1.791738
9325	Giannis	Antetokounmpo	MIL	1.784740
9152	Jimmy	Butler	MIN	1.776535
9524	Otto	Porter Jr.	WAS	1.705704
9224	Shaun	Livingston	GSW	1.651169

Puede discutirse el orden y si falta algún jugador importante de la liga pero no es un primer ranking totalmente descabellado. Son jugadores de primer nivel y varios de ellos son "indiscutidos". Es destacable que en 10 jugadores haya 3 duplas que comparten equipo. Es posible que esté relacionado a cierta correlación en la presencia de estos jugadores en cancha y a su vez se de en equipos que han tenido muchas victorias en la temporada. Covington, Gordon y Livingston son de alguna manera una sorpresa en este ranking.

Viendo el ranking surge una nueva pregunta. ¿Qué tan precisos son esos coeficientes? ¿ Qué tan estable es ese ranking?

La manera de cuantificar esto en una regresión lineal es calcular los desvíos estándar de los coeficientes estimados. Hay un punto muy importante a mencionar respecto a esto. La regresión Ridge es lineal en parámetros pero como dijimos, incluye una penalización y eso lleva a que los coeficientes sean sesgados. Dicho esto, los desvíos estándar que calculemos serán sobre parámetros estimados que no sabemos en principio qué tan lejos están en promedio de los verdaderos parámetros si el modelo especificado fuera el correcto. Es posible un escenario donde gran parte del MSE de nuestra regresión se de por el sesgo y la varianza no contribuya casi nada, dando la impresión de gran precisión en la estimación ignorando el sesgo que introdujimos. (Goeman et al. 2018)⁶

Teniendo en cuenta esta limitación a la hora de interpretar los resultados pasamos al cálculo de los desvíos estándar. El paquete glmnet no tiene una función que devuelva los desvíos, posiblemente para evitar que se reporten sin recaudos. La manera de calcularlos es, de manera resumida: (Van Wieringen 2019)⁷

$$Var[\hat{\beta}(\lambda)] = \sigma^2((X^TX + \lambda I_{nxn}))^{-1}X^TX[(X^TX + \lambda I_{nxn})^{-1}]^T$$

Donde σ^2 es el error del modelo, X es la matriz de variables independientes de dimensión nxp, λ es el peso de la penalización e I es la matriz identidad de dimensión nxn.

Dado que nuestro modelo es sobre una muestra de la población utilizaremos una estimación de $\hat{\sigma}^2$. Implementamos en R la función para calcular los desvíos estándar de nuestros coeficientes y actualizamos el ranking de los primeros diez jugadores con esta nueva información.

 $^{^6}$ Jelle Goeman, Rosa Meijer, Nimisha Chaturvedi (2018). L1 and L2 Penalized Regression Models. https://cran.r-project.org/web/packages/penalized/vignettes/penalized.pdf

Wessel N. van Wieringen (2019). Lecture notes on ridge regression. https://arxiv.org/pdf/1509.09169;Lecture

playerid	player.firstName	player.lastName	team.abbreviation	coef	sd
9418	Joel	Embiid	PHI	2.173248	3.843356
9420	Robert	Covington	PHI	2.159759	2.741971
9402	Victor	Oladipo	IND	2.108312	3.295909
9265	Chris	Paul	HOU	2.019688	2.543393
9352	Eric	Gordon	HOU	1.932603	2.473872
9218	Stephen	Curry	GSW	1.791738	3.121359
9325	Giannis	Antetokounmpo	MIL	1.784740	2.602599
9152	Jimmy	Butler	MIN	1.776535	3.205942
9524	Otto	Porter Jr.	WAS	1.705704	3.048218
9224	Shaun	Livingston	GSW	1.651169	3.150640
9385	Andre	Roberson	OKL	1.637995	3.395044
9480	LaMarcus	Aldridge	SAS	1.613438	3.156169
10134	Jamal	Murray	DEN	1.551241	3.102419
9445	Damian	Lillard	POR	1.529906	3.126568
10124	Fred	VanVleet	TOR	1.524522	3.079476
9452	Al-Farouq	Aminu	POR	1.345331	3.229132
10087	Ben	Simmons	PHI	1.329176	3.164346
9490	Kyle	Lowry	TOR	1.323359	3.695157
9347	Tyus	Jones	MIN	1.303166	5.090437
13750	OG	Anunoby	TOR	1.256121	3.030928

A primera vista ya vemos que los desvíos estándar se sitúan alrededor de entre 2.5 y 3.5 puntos por cada 100 posesiones, mientras que el jugador con el mayor coeficiente aporta en promedio 2.17 puntos cada 100 posesiones. Los coeficientes están sesgados pero mantienen la propiedad de ser variables normales por lo que podemos aplicar los mismos tests que en una regresión lineal multivariada clásica.

```
# t-test a una cola
# Jugador rankeado 1
# Estan bien los DF?
tscore_1 = (player_ranking$coef[1] - 0)/player_ranking$sd[1]
pvalue_1 = 1 - pt(q = tscore_1, df = model$nobs - model$df)
# Jugador rankeado 20
# Estan bien los DF?
tscore_20 = (player_ranking$coef[20] - 0)/player_ranking$sd[20]
pvalue_20 = 1 - pt(q = tscore_20, df = model$nobs - model$df)
```

Realizando el test t
 para ver diferencias estadísticamente significativas respecto a 0 de los coeficientes podemos ver que tanto el jugador rankeado número uno "Embiid" como el jugador rankeado número veinte "Anunoby" tienen p-valores de 0.2858858
y 0.3392807
respectivamente, no encontrando evidencia suficiente para decir que tienen impacto positivo en los puntos de su equipo teniendo un umbral de $\alpha=0.05$. Más allá de las limitaciones de nuestros estimadores, no poder asegurar estadísticamente que el jugador mejor rankeado aporta positivamente a su equipo parece un obstáculo importante.

```
paste0("x",player_ranking$playerid[405])])
wald_1_20_t = wald_1_20_init / sd_1_20
pvalue_1_20 = 1 - pt(q = wald_1_20_t, df = model$nobs - model$df)
```

Yendo más allá, proponemos un test de Wald para comparar los coeficientes del rankeado número 1 contra el rankeado en la última posición. La hipótesis nula es que ambos coeficientes son iguales. El test de Wald se basa en que la variable aleatoria generada por la resta de ambos coeficientes sea igual a 0 en la hipótesis nula. Se la divide por su desvío estándar generando un estadístico con distribución T de Student y luego se compara con las regiones críticas. En este caso el p-valor es de 0.209339, lo cual nos dice que de ser cierta la hipótesis nula, encontrar un valor al menos tan extremo como este para el estadístico tiene 0.209339 de probabilidad. Nuevamente no podemos rechazar la hipótesis nula con $\alpha=0.05$ y podemos decir que no hay evidencia estadística para diferenciar al primero del último jugador del ranking por sus coeficientes. Al margen de lo ya aclarado de que los desvíos estándar están sesgados, resultados como estos no parecen darle demasiada entidad al modelo. Pareciera que la reducción de la varianza mediante la regresión Ridge, tal como se hizo el experimento, no alcanza para generar coeficientes estables.

Resultados del modelo

A pesar de los resultados del test que le quitan importancia a los coeficientes podemos darnos cuenta que aunque sea direccionalmente no es totalmente descabellado (aunque no sirva para obtener conclusiones sólidas). Los jugadores de los primeros puestos del ranking son en gran parte de elite y no sorprende verlos allí. De la misma manera, en la parte baja de la tabla vemos jugadores poco participativos de equipos que obtuvieron buenos resultados en la temporada y principalmente jugadores de equipos que han tenido una campaña pobre (Fig ??.)

playerid	player.firstName	player.lastName	team.abbreviation	coef	sd
13731	Josh	Jackson	PHX	-1.196522	2.415776
9206	Jodie	Meeks	WAS	-1.224898	3.756302
13726	Bogdan	Bogdanovic	SAC	-1.226335	2.685511
9263	Jamal	Crawford	MIN	-1.234573	3.423356
9340	Gorgui	Dieng	MIN	-1.312150	3.672307
10158	Paul	Zipser	CHI	-1.326052	3.337279
13815	Kobi	Simmons	MEM	-1.331096	3.588547
9195	Jameer	Nelson	DET	-1.333314	3.208418
10104	DeAndre	Liggins	NOP	-1.342334	3.405218
10112	Patrick	McCaw	GSW	-1.350563	3.111211
9421	Jahlil	Okafor	BRO	-1.362062	4.798204
9127	Courtney	Lee	NYK	-1.417688	3.105015
9104	Evan	Turner	POR	-1.491482	2.834678
9407	Elfrid	Payton	PHX	-1.501153	2.812676
9194	Emmanuel	Mudiay	NYK	-1.508399	2.956592
9156	Cristiano	Felicio	CHI	-1.545031	3.916368
9497	Bismack	Biyombo	ORL	-1.559086	3.781430
13739	Malik	Monk	CHA	-1.729935	3.845401
9458	Ben	McLemore	MEM	-1.962150	2.871301
9423	TJ	McConnell	PHI	-2.143543	2.695342

Dicho esto podemos ir un paso más allá en el análisis y proponer un ranking de equipos basado en la suma de los coeficientes obtenidos para los jugadores que los componen multiplicado por el promedio de posesiones por partido de cada jugador.

$$Valor Equipo_i = \sum_{j=1}^{n} Coef_{ji} * AvgPos_{ji}$$

Donde j es cada jugador del equipo i.

Nuevamente los resultados son bastante creíbles, particularmente en la parte alta de la tabla donde los equipos que más ganaron en la temporada regular figuran en los primeros puestos. En la NBA los mejores 8 equipos de cada conferencia (este y oeste) clasifican a playoffs. De esos 16 equipos, 14 figuran en los primeros 16 puestos del ranking propuesto en este trabajo. Las únicas diferencias es que Denver y Detroit figuran entre los 16 primeros en nuestro ranking y Cleveland y Milwaukee no. Lo curioso es que Denver en realidad tuvo más victorias que Milwaukee pero quedo noveno en su conferencia, es decir que la diferencia entre ambas tablas es muy fina en términos de quienes clasifican a la instancia de eliminiación directa. Por otra parte, Cleveland que en nuestro ranking queda fuera de los primeros ocho del este, en la realidad salió cuarto de su conferencia, dando lugar a una diferencia significativa entre su ranking y su posición en la tabla. Ver tablas ?? y 2. No es menor que el ranking se armó usando los partidos que dieron lugar a los resultados de la temporada regular y por lo tanto es como comparar con el set de entrenamiento, sin embargo lo destacable es que el ranking se arma a partir de la suma de coeficientes de los distintos jugadores y no mirando a los equipos directamente.

Lo siguiente que vamos a analizar es cómo performa este ranking construido en la siguiente ronda de la competencia: los playoffs. Los partidos de esa instancia no se usaron para el entrenamiento del modelo.

El enfoque será el más simple posible y consiste en declarar como favorito para cada partido al equipo cuyo score sea mayor en el cruce, teniendo en cuenta los jugadores en el plantel para cada enfrentamiento, contemplando posibles lesiones, sanciones ,etc. Es decir que para cada partido se recalcula el score como la suma ponderada de coeficientes por posesiones promedio de cada jugador y se compara con el score del advsersario.

$$\begin{cases} Gana_A & \text{si } ValorEquipo_A > ValorEquipo_B \\ Gana_B & \text{si } ValorEquipo_B > ValorEquipo_A \end{cases}$$

En la figura ?? podemos ver que los scores por equipo no varían demasiado salvo algunas excepciones, lo cual tiene sentido ya que los jugadores tienen un coeficiente fijo y quienes forman parte del partido no suele

Table 1: Ranking de Equipos team.abbreviation coef total TOR 780.40794 GSW 765.95924 HOU 730.41546 UTA 600.07384PHI 491.22468 BOS 460.42148 OKL 432.35755 POR 360.03984 IND 335.03032 NOP 329.89205 SAS 324.15970 MIN 300.39813 DEN 230.85456WAS 218.68353 DET 143.91906 MIA 125.47316 MIL $\overline{66.36723}$ CLE 53.82317 LAC 48.89531 ORL -20.12870 CHA -98.09310 LAL -178.28902 NYK -232.22049 BRO -282.95437 MEM -308.55069 -319.49053 DALATL -381.78566 PHX -384.90047 SAC -524.88377 CHI -614.03632

cambiar tan frecuentemente. Generalmente se debe a lesiones o imprevistos. Dicho esto, es de esperar que si comparamos scores de dos equipos para cierta cantidad de partidos mayor a uno, salvo que sean muy parejos, sea siempre el mismo el que tenga un score mayor. En los playoffs, los cruces son al mejor de siete partidos, por lo tanto aquel que logra ganar cuatro partidos pasa a la siguiente ronda y el otro queda eliminado. Dado lo simple del modelo propuesto, donde no se toma en cuenta ningún otro factor más que el score, podemos ver cómo performa a un nivel agregado, es decir, no mirando partido a partido, donde cómo dijimos en la gran mayoría de los casos se va a predecir siempre al mismo ganador, si no a nivel cruce, donde se predice que el equipo que ganará la serie será aquel que tenga mayor score en mayor cantidad de partidos del cruce. Luego se compara esa predicción con el equipo que realmente pasó de ronda.

Var1	Freq
0	4
1	11

Vemos en 3 que utilizando los scores basados en el modelo Ridge se pudieron predecir correctamente 11 de los 15 cruces de los playoffs de la temporada 2017-2018. Vemos que la principal falencia se da con Cleveland, donde al tener un score tan bajo dados los coeficientes lo pronosticaba perdedor en todas las instancias cuando finalmente llegó a la final. Está claramente relacionado a lo mencionado anteriormente, que Cleveland quedaba fuera de los 16 primeros puestos según nuestro ranking cuando en realidad clasificó en cuarto lugar

Table 2: Equipos ordenados según cantidad de victorias

abbreviation	ion Team		L	WL
HOU	Houston Rockets* (1)		17	0.793
TOR	Toronto Raptors* (1)		23	0.720
GSW	Golden State Warriors* (2)		24	0.707
BOS	Boston Celtics* (2)	55	27	0.671
PHI	Philadelphia 76ers* (3)	52	30	0.634
CLE	Cleveland Cavaliers* (4)	50	32	0.610
POR	Portland Trail Blazers* (3)	49	33	0.598
IND	Indiana Pacers* (5)	48	34	0.585
OKC	Oklahoma City Thunder* (4)	48	34	0.585
UTA	Utah Jazz* (5)	48	34	0.585
NOP	New Orleans Pelicans* (6)	48	34	0.585
SAS	San Antonio Spurs* (7)	47	35	0.573
MIN	Minnesota Timberwolves* (8)	47	35	0.573
DEN	Denver Nuggets (9)	46	36	0.561
MIA	Miami Heat* (6)		38	0.537
MIL	Milwaukee Bucks* (7)		38	0.537
WAS	Washington Wizards* (8)		39	0.524
LAC	Los Angeles Clippers (10)		40	0.512
DET	Detroit Pistons (9)		43	0.476
CHA	Charlotte Hornets (10)	36	46	0.439
LAL	Los Angeles Lakers (11)	35	47	0.427
NYK	New York Knicks (11)	29	53	0.354
BRO	Brooklyn Nets (12)	28	54	0.341
CHI	Chicago Bulls (13)	27	55	0.329
SAC	Sacramento Kings (12)	27	55	0.329
ORL	Orlando Magic (14)		57	0.305
ATL	Atlanta Hawks (15)		58	0.293
DAL	Dallas Mavericks (13)		58	0.293
MEM	Memphis Grizzlies (14)		60	0.268
PHX	Phoenix Suns (15)	21	61	0.256

en su conferencia.

Warning: Removed 3 rows containing non-finite values (stat_summary).

Warning: Removed 3 rows containing missing values (geom_point).

Table 3: Predicción del ganador de la serie basado en score

team1	team2	winner	predicted	fit
BOS	CLE	CLE	BOS	0
BOS	MIL	BOS	BOS	1
BOS	PHI	BOS	PHI	0
CLE	GSW	GSW	GSW	1
CLE	IND	CLE	IND	0
CLE	TOR	CLE	TOR	0
GSW	HOU	GSW	GSW	1
GSW	NOP	GSW	GSW	1
GSW	SAS	GSW	GSW	1
HOU	MIN	HOU	HOU	1
HOU	UTA	HOU	HOU	1
MIA	PHI	PHI	PHI	1
NOP	POR	NOP	NOP	1
OKC	UTA	UTA	UTA	1
TOR	WAS	TOR	TOR	1

DUDAS. 1) Estan bien los tests aplicados sobre los coeficientes? que otra cosa se podria hacer?

- 2) Para armar ranking de equipos, está bien sumar coeficientes ponderados? Como incluyo la información del SD?
 - 3) De la misma indole, para comparar quien gana, se puede asignar probabilidades usando algo de

FALTA COMPARAR EN ALGUN MOMENTO CONTRA OTRO RANKING !!! EN LA TABLA STANDING ESTA EL DE BASKETKALL REFERENCE (SRS)

Observaciones temporales

Lo que más tiempo demandó fue conseguir los datos crudos de la API y transformarlos para llegar al dataset final, teniendo en cuenta que los datos tenían errores como más de 5 jugadores en cancha por equipo, fechas de partidos que no coincidían entre tablas por formato en distinto huso horario, etc. Además es bastante volumen de datos y los chequeos intermedios no son tan fáciles.

Por otra parte, ya superado el obstáculo de construir el dataset parece que la regresión está medianamente orientada y da resultados provisorios en sintonía con la realidad. Más allá de lo consguido hasta el momento quedan ciertas tareas pendientes:

- Analizar la variabilidad de los coeficientes para ver qué tanto nos dice un ranking de ellos.
- Utilizar la misma metodología para agregar más datos de temporadas previas y darle más robustez a la regresión.
- Coneguir los datos de la temporada 2018-2019 para utilizarla de Test set.