Corner Detection

Feature extraction: Corners and blobs

Features

- Motivation: panorama stitching
 - We have two images how do we combine them?

Feature Extraction

Motivation: panorama stitching

Step 1: extract features

Step 2: match features

Feature Matching

Motivation: panorama stitching

Step 1: extract features

Step 2: match features

Step 3: align images

Characteristics of good features

Repeatability

 The same feature can be found in several images despite geometric and photometric transformations

Saliency

Each feature has a distinctive description

Compactness and efficiency

Many fewer features than image pixels

Locality

 A feature occupies a relatively small area of the image; robust to clutter and occlusion

Finding Corners

- Key property: in the region around a corner, image gradient has two or more dominant directions
- Corners are repeatable and distinctive

C.Harris and M.Stephens. "A Combined Corner and Edge Detector."

Proceedings of the 4th Alvey Vision Conference: pages 147—151,1988

Concept

- We should easily recognize the point by looking through a small window
- Shifting a window in any direction should give a large change in intensity

"flat" region: no change in all directions

"edge":
no change
along the edge
direction

"corner":
significant
change in all
directions

Harris Detector: Mathematics

Change in appearance for the shift [u,v]:

Sum of squared difference (SSD function)

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$
Window function Shifted intensity Intensity

Window function w(x,y) = 01 in window, 0 outside Gaussian

Harris Detector: Mathematics

Change in appearance for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

By Taylor expansion of I(x+u,y+v):

$$I(x+u, y+v) \approx I(x, y) + I_u(x, y)u + I_v(x, y)v$$

 $E(u, v) \approx \sum_{x,y} w(x, y)(I_u(x, y)u + I_v(x, y)v)^2$

Harris Detector: Mathematics

The bilinear approximation simplifies to

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

where M is a 2×2 matrix computed from image derivatives:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

$$M = \begin{bmatrix} \sum_{I_x I_x}^{I_x I_x} & \sum_{I_x I_y}^{I_x I_y} \\ \sum_{I_x I_y}^{I_x I_y} & \sum_{I_y I_y} \end{bmatrix} = \sum_{I_y I_y} \begin{bmatrix} I_x \\ I_y \end{bmatrix} [I_x I_y] = \sum_{I_y I_y}^{I_y I_y} \nabla_{I_y I_y}^{I_y}$$

Interpreting the second moment matrix

The surface E(u,v) is locally approximated by a quadratic form. Let's try to understand its shape.

$$E(u,v) \approx [u \ v] \ M \begin{bmatrix} u \\ v \end{bmatrix}$$

$$M = \sum w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Interpreting the second moment matrix

First, consider the axis-aligned case (gradients are either horizontal or vertical)

$$M = \sum w(x, y) \begin{bmatrix} I_{x}^{2} & I_{x}I_{y} \\ I_{x}I_{y} & I_{y}^{2} \end{bmatrix} = \begin{bmatrix} \sum w(x, y)I_{x}^{2} & \sum w(x, y)I_{x}I_{y} \\ \sum w(x, y)I_{x}I_{y} & \sum w(x, y)I_{y}^{2} \end{bmatrix}$$

In a small region we can omit w.

$$M = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

Filter

First-order derivative filters

$$\begin{bmatrix} 1 & -1 \end{bmatrix} \longrightarrow \frac{\partial f}{\partial x} \approx f(x+1,y) - f(x,y) \qquad \begin{bmatrix} 1 \\ -1 \end{bmatrix} \longrightarrow \frac{\partial f}{\partial y} \approx f(x,y+1) - f(x,y)$$

Second-order derivative filters

$$\begin{bmatrix} 1 & -2 & 1 \end{bmatrix} \longrightarrow \frac{\partial^2 f}{\partial x^2} \approx f(x+1,y) - 2f(x,y) + f(x-1,y)$$

$$\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \longrightarrow \frac{\partial^2 f}{\partial y^2} \approx f(x,y+1) - 2f(x,y) + f(x,y-1)$$

Laplacian:
$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \Rightarrow \begin{bmatrix} 1 & -2 & 1 \end{bmatrix} + \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Gaussian filter

$$5 \times 5$$
, $\sigma = 1$

General Case

Since M is symmetric, we have
$$M=R^{-1}egin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}R$$

We can visualize M as an ellipse with axis lengths determined by the eigenvalues and orientation determined by R

Interpreting The Eigenvalues

Classification of image points using eigenvalues of *M*:

Corner Response Function

$$R = \det(M) - \alpha \operatorname{trace}(M)^{2} = \lambda_{1}\lambda_{2} - \alpha(\lambda_{1} + \lambda_{2})^{2}$$

 α : constant (0.04 to 0.06)

Harris Detector Algorithm

- Filter image with Gaussian to reduce noise
- Compute magnitude of the x and y gradients at each pixel
- Construct M in a window around each pixel (Harris uses a Gaussian window)
- Compute λs of M
- Compute $R = \det M k (\operatorname{trace} M)^2$
- If R> T a corner is detected; retain point of local maxima

Harris Detector: Steps

Compute corner response R

Find points with large corner response: R>threshold

Take only the points of local maxima of R

Invariance

 We want features to be detected despite geometric or photometric changes in the image: if we have two transformed versions of the same image, features should be detected in corresponding locations.

Models of Image Change

- Geometric
 - Rotation

Scale

- Affine
 valid for: orthographic camera, locally planar object
- Photometric

- Affine intensity change $(l \rightarrow a \ l + b)$

Harris Detector: Invariance Properties

Rotation

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response R is invariant to image rotation

Harris Detector: Invariance Properties

Affine intensity change

- ✓ Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$
- ✓ Intensity scale: $I \rightarrow a I$

Partially invariant to affine intensity change

Harris Detector: Invariance Properties

Scaling

All points will be classified as edges

Not invariant to scaling

Blob Detection

Blob = superposition of nearby edges

Scale selection

 We want to find the characteristic scale of the blob by convolving it with Laplacians at several scales and looking for the maximum response

However, Laplacian response decays as scale increases:

Scale normalization

• The response of a derivative of Gaussian filter to a perfect step edge decreases as σ increases

Scale normalization

- To keep response the same (scale-invariant), must multiply Gaussian derivative by σ
- Laplacian is the second Gaussian derivative, so it must be multiplied by σ^2

Effect of scale normalization

Blob detection in 2D

 Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

$$\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$$

Blob detection in 2D

 Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

Scale-normalized:

$$\nabla_{\text{norm}}^2 g = \sigma^2 \left(\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \right)$$

Scale selection

 For a binary circle of radius r, the Laplacian achieves a maximum at

Characteristic scale

 We define the characteristic scale as the scale that produces peak of Laplacian response

T. Lindeberg (1998). <u>"Feature detection with automatic scale selection."</u> *International Journal of Computer Vision* **30** (2): pp 77--116.

Scale-space blob detector

- 1. Convolve image with scale-normalized Laplacian at several scales
- 2. Find maxima of squared Laplacian response in scale-space
- 3. This indicate if a blob has been detected
- 4. And what's its intrinsic scale

Scale-space blob detector: Example

Scale-space blob detector: Example

sigma = 11.9912

Scale-space blob detector: Example

DOG

David G. Lowe. "Distinctive image features from scale-invariant keypoints." IJCV 60 (2), 04

Approximating the Laplacian with a difference of

Gaussians:

$$L = \sigma^2 \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$$
 (Laplacian)

$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$

(Difference of Gaussians)

or

Difference of gaussian blurred images at scales $k \sigma$ and σ

$$G(x, y, k\sigma) - G(x, y, \sigma) \approx (k-1)\sigma^2 \mathbf{L}$$

DOG

Output: location, scale, orientation (more later)

Invariance

Detector	Illuminatio n	Rotation	Scale	View point
Harris corner	Yes	Yes	No	No
Lowe '99 (DoG)	Yes	Yes	Yes	No

References

- [1] C.Harris and M.Stephens, "A Combined Corner and Edge Detector.", Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.
- [2]T. Lindeberg, "Feature detection with automatic scale selection.", *International Journal of Computer Vision* (IJCV) 30(2): pp 77—116, 1998.
- [3] David G. Lowe, "Distinctive image features from scale-invariant keypoints.", *IJCV* 60(2): pp. 91-110, 2004.
- [4] Silvio Savarese, Course slide, Image Enhancement (III) http://www.eecs.umich.edu/~silvio/teaching/EECS556 _2009/class_schedule.html