Homework 5

Due March 15, 2017

Let (Ω, F, P) be a probability space and \mathcal{A}_1 and \mathcal{A}_2 sub- σ -fields of \mathcal{F} . Recall that \mathcal{A}_1 and \mathcal{A}_2 are **independent**, written $\mathcal{A}_1 \perp \mathcal{A}_2$, if and only if

$$P(A_1 \cap A_2) = P(A_1)P(A_2)$$

for all $A_1 \in A_1$ and $A_2 \in A_2$. Notice that this definition is also equivalent to the condition

$$E(X_1X_2) = E(X_1)E(X_2)$$

for all $X_1 \in \mathcal{N}(\Omega, \mathcal{A}_1)$ and $X_2 \in \mathcal{N}(\Omega, \mathcal{A}_2)$ (where $\mathcal{N}(\Omega, \mathcal{A}_i)$ denotes the set of non-negative extended random variables).

Conditional independence of σ -fields is an important concept for studying Markov properties of random fields. Two σ -fields \mathcal{A}_1 and \mathcal{A}_2 are said to be **conditionally independent** given a sub- σ -field \mathcal{B} of \mathcal{F} , written $\mathcal{A}_1 \perp_{\mathcal{B}} \mathcal{A}_2$, if and only if

$$E(X_1X_2|\mathcal{B}) = E(X_1|\mathcal{B})E(X_2|\mathcal{B})$$

for all $X_1 \in \mathcal{N}(\Omega, \mathcal{A}_1)$ and $X_2 \in \mathcal{N}(\Omega, \mathcal{A}_2)$. Also let $\mathcal{C} \vee \mathcal{D}$ denote $\sigma \langle \mathcal{C}, \mathcal{D} \rangle$ when \mathcal{C} and \mathcal{D} are two collections of events on Ω

Exercise 1. Show the following

- 1. $A_1 \perp_{\mathcal{B}} A_2 \iff E(I_{A_1}I_{A_2}|\mathcal{B}) \stackrel{a.e.}{=} E(I_{A_1}|\mathcal{B})E(I_{A_2}|\mathcal{B}) \text{ for all } A_1 \in \mathcal{A}_1 \text{ and } A_2 \in \mathcal{A}_2.$
- 2. $A_1 \perp_{\mathcal{B}} A_2 \iff E(X_2|\mathcal{A}_1 \vee \mathcal{B}) \stackrel{a.e.}{=} E(X_2|\mathcal{B}) \text{ for all } X_2 \in \mathscr{N}(\Omega, \mathcal{A}_2).$
- 3. $\mathcal{A}_1 \perp \mathcal{A}_2 \iff E(X_2|\mathcal{A}_1) \stackrel{a.e.}{=} E(X_2) \text{ for all } X_2 \in \mathcal{N}(\Omega, \mathcal{A}_2).$
- 4. $A_1 \perp_{\mathcal{B}} A_2 \iff (A_1 \vee \mathcal{B}) \perp_{\mathcal{B}} (A_2 \vee \mathcal{B}).$
- 5. $(A_1 \vee B) \perp A_2 \iff B \perp A_2 \text{ and } A_1 \perp_{\mathcal{B}} A_2$.

Hint for 2. (\Longrightarrow) , it suffices (why?) to consider the case where X_2 is integrable; apply π -system results for conditional expected value with $\mathcal{P} = \{A_1 \cap B \colon A_1 \in \mathcal{A}_1 \text{ and } B \in \mathcal{B}\}.$