CSDS503 / COMP552 – Advanced Machine Learning

Faizad Ullah

Bias and Variance

- Is there a way to find when we have a high bias or a high variance?
 - High Bias can be identified when we have
 - High training error
 - Validation error or test error is close to training error
 - High Variance can be identified when
 - Low training error
 - High validation error or high test-error

Bias and Variance

- How do we fix high bias or high variance in the data set?
- High bias is due to a simple model and we also see a high training error. To fix that we can do following things:
 - Add more input features
 - Add more complexity by introducing polynomial features
 - Decrease Regularization term
- High variance is due to a model that tries to fit most of the training dataset points and hence gets more complex. To resolve high variance issue we need to work on
 - Getting more training data
 - Reduce input features
 - Increase Regularization term

Solutions

- Reduce the number of features
 - Manually select features
 - Model selection
- Regularization
 - Reduce magnitude/values of parameters θ_i .
 - Works well when we have a lot of features, each of which contributes a bit to the prediction.

Manual Feature Selection

Manually select parameters

- Our data frame will consist of 1000 daily measurements of the following independent variables:
- attacks: Number of shark attacks (output variable)
- swimmers: Number of swimmers in water
- watched_jaws: Percentage of swimmers who watched iconic Jaws movies
- temp: Average temperature of the day
- stock_price: The price of your favorite tech stock that day (a totally unrelated variable)

Scatter Diagrams

Scatter Plots

Short-Term Goals

- Perfect models
- Training Accuracy
- Complex algorithms
- Large datasets

• ...

Long-Term Goals

We are interested in better long-term predictions.

• Find a balance between simplicity and complexity in our models.

Prevent overfitting and to improve generalization.

Techniques

Data Augmentation

Early Stopping

Dropout

• L2 regularization

• L1 regularization

Data Augmentation

Data Augmentation

- Creating new training examples by applying various transformations to the existing data
 - Rotation
 - Flipping
 - Scaling
 - Adding noise
- This increases the diversity of the training set and helps the model generalize better.

Data Augmentation - Images

Data Augmentation - Text

EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks

Jason Wei^{1,2} Kai Zou³

¹Protago Labs Research, Tysons Corner, Virginia, USA ²Department of Computer Science, Dartmouth College ³Department of Mathematics and Statistics, Georgetown University

jason.20@dartmouth.edu kz56@georgetown.edu

Data Augmentation - Text

1. SR: synonym replacement

2. RI: random insertion

3. RS: random swap

4. RD: random deletion

Operation	Sentence
None	A sad, superior human comedy played out
	on the back roads of life.
SR	A <i>lamentable</i> , superior human comedy
	played out on the <i>backward</i> road of life.
RI	A sad, superior human comedy played out
	on <i>funniness</i> the back roads of life.
RS	A sad, superior human comedy played out
	on <i>roads</i> back <i>the</i> of life.
RD	A sad, superior human out on the roads of
	life.

Table 1: Sentences generated using EDA. SR: synonym replacement. RI: random insertion. RS: random swap. RD: random deletion.

Early Stopping

Early Stopping

- Early stopping is a regularization technique that monitors the model's performance on a validation set during training.
- When the validation performance stops improving, training is halted to prevent overfitting.

Dropout

Dropout

- Dropout is a regularization technique used exclusively in neural networks.
- During training, dropout randomly deactivates a fraction of neurons (typically 20-50%) in each layer by setting their outputs to zero.

Dropout

(a) Standard Neural Net

(b) After applying dropout.

Regularization

$$h_{\Theta}(X) = \Theta^T X = \theta_0 + \theta_1 x_1$$

$$J(\Theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} \left(\theta_0 + \theta_1 x_1^{(i)} - y^{(i)} \right)^2$$

The goal is to update theta_1 What if theta_1 is negative?

Regularization

$$y = mx + b$$

- Add penalty...
- How severe the penalty is?

Regularization

$$h_{\Theta}(X) = \theta_0 + \theta_1 x_1 + \dots + \theta_n x_n$$

$$\min_{\theta} J(\theta) = \min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$\min_{\theta} J(\theta) = \min_{\theta} \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

$$\min_{\theta} J(\theta) = \min_{\theta} \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \lambda \sum_{j=1}^{n} |\theta_{j}| \right]$$

How to find the optimal value of λ ?

L2 Regularization or Ridge Regression

$$\min_{\theta} J(\theta) = \min_{\theta} \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

- L2 regularization forces the weights to be small but does not make them zero
- L2 is not robust to outliers as square terms blows up the error differences of the outliers and the regularization term tries to fix it by penalizing the weights
- Ridge regression performs better when all the input features influence the output and all with weights are of roughly equal size

L1 Regularization or Lasso Regression

$$\min_{\theta} J(\theta) = \min_{\theta} \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \lambda \sum_{j=1}^{n} |\theta_{j}| \right]$$

- L1 norm shrinks the parameters to zero.
- Not all input features have the same influence on the prediction. L1 norm will assign a zero weight to features with less predictive power.
- L1 regularization does feature selection. It does this by assigning insignificant input features with zero weight and useful features with a non-zero weight.

Elastic net regularization

• Elastic net regularization is a combination of both L1 and L2 regularization

$$\min_{\theta} J(\theta) = \min_{\theta} \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \lambda_{1} \sum_{j=1}^{n} |\theta_{j}| + \lambda_{2} \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

Sources

- Machine Learning, Andrew Ng, on Coursera by Stanford a https://www.coursera.org/learn/machine-learning
- Deep Learning Specialization, Andrew Ng, on Coursera by deeplearning.ai
 - - https://www.coursera.org/specializations/deep-learning
- STATQUEST!!! An epic journey through statistics and machine learning, Josh Starmer, https://statquest.org/, <a href=
- https://towardsdatascience.com/cohens-kappa-9786ceceab58#:~:text=Cohen's%20kappa%20measures%20the%20agreement,raters%20may%20agree%20by%20chance.
- https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
- https://thenewstack.io/cohens-kappa-what-it-is-when-to-use-it-and-how-to-avoid-its-pitfalls/
- https://en.wikipedia.org/wiki/Cohen%27s_kappa