m	Input: x ; Output: y , where $y = m \cdot x$
669	$v_1 = (1+2) \cdot x \; ; \; v_2 = (1-2^3) \cdot v_1 \; ; \; y = -v_1 - 2^5 \cdot v_2$
2217	$v_1 = (1+2^4) \cdot x \; ; \; v_2 = (1+2) \cdot x \; ; \; v_3 = v_1 + 2^3 \cdot v_2 \; ;$
	$y = 2^7 \cdot v_1 + v_3$
181	$v_1 = (1+2) \cdot x \; ; \; v_2 = 2^3 \cdot x + v_1 \; ; \; y = 2^6 \cdot v_1 - v_2$
3135	$v_1 = (1+2) \cdot x \; ; \; v_2 = (1-2^6) \cdot x \; ; \; y = 2^{10} \cdot v_1 - v_2$
473	$v_1 = (1+2^2) \cdot x \; ; \; v_2 = x-2^3 \cdot v_1 \; ; \; y = 2^9 \cdot x + v_2$
437	$v_1 = (1+2^2) \cdot x \; ; \; v_2 = 2^5 \cdot x - v_1 \; ; \; y = v_1 + 2^4 \cdot v_2$
2399	$v_1 = (1+2^2) \cdot x \; ; \; v_2 = x+2^5 \cdot v_1 \; ; \; y = 2^9 \cdot v_1 - v_2$
8	$y = 2^3 \cdot x$