Université de Monastir Institut Supérieur D'Informatique et de Mathématiques de Monastir Dépt. de Mathématiques

A.U: 2024-2025 L1 INFO. Algébre 2 Série No.1

Matrices - Calculs matriciels

Exercice 1:

- 1. Ecrire la matrice $A = (a_{ij}) \in \mathcal{M}_{n,p}(K)$ dans les cas suivants:

 - (a) A de type (4,2) et $a_{ij} = j 2i$. (f) A est triangulaire inférieure d'ordre 4 et $a_{ij} = j^2 1$.

 - (b) $A \in \mathcal{M}_{2,3}(\mathbb{C})$ et $a_{ij} = \sqrt{ij}$. (g) A est carrée d'ordre n et $a_{ij} = \begin{cases} -3i & si \ j \neq i \\ i+1 & sinon \end{cases}$

 - (c) $A \in \mathcal{M}_{1,5}(\mathbb{R})$ et $a_{ij} = \frac{1}{2}j + i$. (h) A est antisymétrique d'ordre 3 et $a_{ij} = 5j i$, $si \ i > j$.

 - (d) A de type (n,1) et $a_{ij} = 2-ij$. (k) A est carrée d'ordre 4 et $a_{ij} = \begin{cases} 0 & si & i+j & est & pair \\ i & sinon \end{cases}$
 - (e) A est symétrique d'ordre n et $a_{ij} = \begin{cases} 1 & si \ j \neq i \\ i 2j & sinon \end{cases}$
- 2. On considère les matrices suivantes :

$$A = \begin{pmatrix} 1 & 0 & -1 \end{pmatrix}; B = \begin{pmatrix} 2 \\ 5 \\ 7 \end{pmatrix}; C = \begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix}; D = \begin{pmatrix} 1 & 2 \\ -2 & -4 \end{pmatrix}; E = -\frac{2}{3} \begin{pmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}$$

$$F = \begin{pmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}; G = \begin{pmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \end{pmatrix}; H = \begin{pmatrix} 4 & -3 & -1 \\ -2 & 1 & 1 \\ 1 & 0 & 2 \\ -1 & 1 & -1 \end{pmatrix}$$

Effectuer, lorsque cela est possible, les opérations suivantes:

$$(1)A + B, \quad (2)B.A, \quad (3)A.B, \quad (4) \ ^tC - 2D, \quad (5)D.C, \quad (6)A.E, \quad (7)F. \ ^tE, \quad (8)A.C, \quad (9) \ ^t(CD), \quad (1)A.E, \quad (2)B.E, \quad (3)A.E, \quad (3)A.E, \quad (4) \ ^tC - 2D, \quad (5)D.C, \quad (6)A.E, \quad (7)A.E, \quad (8)A.C, \quad (9) \ ^tCD, \quad ($$

$$(10)\ ^tC.\ ^tD,\ (11)tr((3E+F)^2),\ (12)\ HE\ ,\ (13)\ CG\ ,\ (14)\ tr(GF)\ ,\ (15)\ E-3I_3\ ,\ (16)\ F.\ ^tH$$

Exercice 2: On considère les ensembles suivants:

$$E = \left\{ A = \begin{pmatrix} a+b & b \\ c & -2a \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}), \ a,b,c \in \mathbb{R} \right\}, \quad F = \left\{ A = \begin{pmatrix} 0 & y \\ x-y & 0 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}), \ x,y \in \mathbb{R} \right\}.$$

- 1. Montrer que E et F sont des sous espaces vectoriels de $\mathcal{M}_2(\mathbb{R})$.
- 2. Déterminer les dimensions de E et F et donner une base B de E et une base B' de F.
- 3. E et F sont-ils supplémentaires dans $\mathcal{M}_2(\mathbb{R})$? Justifier la réponse.
- 4. Déterminer le sous espace $E \cap F$.
- 5. A-t-on $E + F = \mathcal{M}_2(\mathbb{R})$? Justifier la réponse.
- 6. Compléter la base B de E en une base B_1 de $\mathcal{M}_2(\mathbb{R})$.
- 7. Ecrire les coordonnées des matrices élémentaires $E_{i,j}$ $(1 \le i, j \le 2)$ dans la base B_1 .
- 8. Résoudre dans F les équations suivantes : (a) $X^2 = 0$, (b) $X^2 = X$.

Exercice 3: On considère la matrice $M = \begin{pmatrix} 0 & 2 & 4 \\ -1 & 3 & 2 \\ -1 & 1 & 4 \end{pmatrix}$

- 1. Calculer $M^2 5M + 6I$ puis déduire que M est inversible et donner M^{-1} .
- 2. On note A = M 2I et B = M 3I.
 - (a) Calculer A^2 et B^2 .
 - (b) Déduire A^n et B^n pour tout $n \in \mathbb{N}$.
- 3. Calculer AB et BA.
- 4. Déterminer les réels α et λ tel que: $M = \alpha A + \lambda B$ et déduire M^n pour tout $n \in \mathbb{N}$.

Exercice 4: Vérifier que les applications suivantes sont linéaires et écrire leurs matrices relativement aux bases canoniques:

1.
$$f: \mathbb{R}^2 \to \mathbb{R}^3$$
, $f(x, y) = (-x - 6y, 2x + 5y, x - 2y)$.

2.
$$f: \mathbb{R}^4 \to \mathbb{R}^2$$
, $f(x, y, z, t) = (3z + y - 2x, 4x - \frac{2t}{3})$.

3.
$$f: \mathbb{R}_3[X] \longrightarrow \mathbb{R}^3$$
, $f(P) = (P(-3), P(0), P(1))$.

4.
$$f: \mathbb{R}^n \to \mathbb{R}^n$$
, $f(x_1, x_2 \dots x_n) = (x_1, x_2 - x_1, x_3 - x_1, \dots, x_n - x_1)$.

5.
$$f: \mathbb{R}_2[X] \longrightarrow \mathbb{R}_3[X], f(P) = e^{-X^2} (e^{X^2} P)'.$$

6.
$$f: \mathbb{R}_4[X] \longrightarrow \mathbb{R}, \quad f(P) = \int_{-1}^1 x P(x) dx.$$

7. Soit
$$N = \begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix}$$
 et f l'application définie par: $f(A) = AN, \ \forall A \in \mathcal{M}_2(\mathbb{R}).$

Exercice 5:

On considère $B_1 = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 et $B_2 = (u_1, u_2)$ la base canonique de \mathbb{R}^2 . Soit f l'application linéaire définie de \mathbb{R}^3 dans \mathbb{R}^2 par:

$$\forall (x,y,z) \in \mathbb{R}^3, \ f(x,y,z) = (x - y + 2z, \ -2y + z).$$

- 1. Ecrire $A = mat(f, B_1, B_2)$.
- 2. Effectuer, lorsque cela est possible, les opérations suivantes: $(A + 5I_2)$, ${}^tA \cdot A$, $A \cdot ({}^tA 2I_3)$, $A \cdot {}^tA$, $tr({}^tA \cdot A)$, $tr(A \cdot {}^tA 2I_3)$.
- 3. Soit S = A. ${}^{t}A 6I_{2}$.
 - (a) Calculer $S^2 + S 10I_2$.
 - (b) En déduire que S est inversible et donner son inverse S^{-1} .
- 4. Soit $N = {}^{t}A . A 5I_3$.

On considère g l'endomorphisme de \mathbb{R}^3 dont la matrice relativement à la base canonique B_1 est N. (c-à-d: $N=mat(g,B_1)$).

(a) Donner l'expression de g(x,y,z), pour tout $(x,y,z) \in \mathbb{R}^3$.

On considère les vecteurs: $e'_1 = e_2 + e_3$, $e'_2 = e_3$, $e'_3 = e_1$.

- (b) Vérifier que $B'_1 = (e'_1, e'_2, e'_3)$ est une base de \mathbb{R}^3 .
- (c) Ecrire la matrice de passage $P = pass(B_1, B_1')$.
- (d) Déterminer $M=mat(g,\,B_1')$ la matrice de g relativement à la base B_1' .
- (e) Ecrire la relation entre M et N à l'aide de la matrice de passage P .

Exercice 6: On considère u l'application définie par: $\forall P \in \mathbb{R}_n[X], \ u(P) = -2P + (X+1)P'.$

- 1. Montrer que u est un endomorphisme de $\mathbb{R}_n[X]$.
- 2. Ecrire A la matrice de u relativement à la base canonique de $\mathbb{R}_n[X]$.

- 3. Pour $k, 0 \le k \le n$, on pose $P_k = X^{n-k}$.
 - (a) Vérifier que $B = (P_k, 0 \le k \le n)$ forme une base de $\mathbb{R}_n[X]$.
 - (b) Ecrire S la matrice de passage de la base canonique à la base B.
 - (c) Ecrire M la matrice de u relativement à la base B.
 - (d) Ecrire la relation entre M et A à l'aide de la matrice S.
- 4. Pour $k, 0 \le k \le n$, on pose $Q_k = (X+1)^k$.
 - (a) Vérifier que $B' = (Q_k, 0 \le k \le n)$ forme une base de $\mathbb{R}_n[X]$.
 - (b) Ecrire R la matrice de passage de la base canonique à la base B'.
 - (c) Ecrire N la matrice de u relativement à la base B'.
 - (d) Ecrire la relation entre N et A à l'aide de la matrice R.
 - (e) Ecrire T la matrice de passage de la base B à la base B'.
 - (f) Ecrire une relation reliant les matrices M et N.
- 5. Parmi les matrices citées précédemment, existe -t-il des matrices diagonales, triangulaires, symétriques ou antisymétriques.

Exercice 7: Devoir De Maison

On considère $E = \mathbb{R}_2[X]$ muni de sa base canonique B, $F = \mathbb{R}_1[X]$ muni de sa base canonique B_1 . Soit f et g des applications définies par:

$$\forall P \in E = \mathbb{R}_2[X], \quad f(P) = P + (1 - X)P'$$

$$\forall P \in F = \mathbb{R}_1[X], \ g(P) = (1+2X)P(X+1)$$

- 1. Montrer que f est un endomorphisme de E et écrire M = mat(f, B).
- 2. Déterminer le noyau et l'image de f et montrer qu'ils sont supplémentaires dans E.
- 3. Montrer que g est une application linéaire de F sur E et écrire $A = mat(g, B_1, B)$.
- 4. Déterminer le noyau et l'image de g et préciser son rang.
- 5. Effectuer, lorsque cela est possible, les opérations suivantes : (A+2M), ${}^tA.A$, A.M, ${}^tA.M$, M.A, tr(A), tr(M).
- 6. Parmi les matrices citées précédemment, existe -t-il des matrices diagonales, triangulaires, symétriques ou antisymétriques.
- 7. Soit $S = {}^{t}A \cdot A 4I_{2}$. Calculer $S^{2} 11S$, déduire que S est inversible et donner son inverse S^{-1} .
- 8. Soient $P_1 = X^2 + 1$, $P_2 = X + 1$, et $P_3 = 2X^2 X$.
 - (a) Montrer que $B' = (P_1, P_2, P_3)$ forme une base de $\mathbb{R}_2[X]$.
 - (b) Ecrire la matrice de passage de $B \ a \ B'$, puis celle de $B' \ a \ B$.
 - (c) Déterminer la matrice M' de f relativement à la base B' et écrire la relation entre M et M' à l'aide de la matrice de passage.
- 9. Calculer $N = \frac{1}{2} {}^{t}A(M+3I_3)$.
- 10. Soit g l'application linéaire de \mathbb{R}^3 dans \mathbb{R}^2 dont la matrice relativement aux bases canoniques est N.
 - (a) Donner l'expression de g.
 - (b) Soit $V_1 = (1,1,-1)$, $V_2 = (1,1,0)$, $V_3 = (0,1,-1)$ et soit $u_1 = (0,1)$, $u_2 = (1,1)$
 - i. Vérifier que la famille $\varepsilon_1 = (V_1, V_2, V_3)$ forme une base de \mathbb{R}^3 et que la famille $\varepsilon_2 = (u_1, u_2)$ forme une base de \mathbb{R}^2 .
 - ii. Ecrire R la matrice de passage de la base canonique de \mathbb{R}^3 à la base ε_1 .
 - iii. Ecrire S la matrice de passage de la base canonique de \mathbb{R}^2 à la base ε_2 .
 - iv. Déterminer la matrice N_1 de g relativement aux bases $(\varepsilon_1, \varepsilon_2)$.
 - v. Ecrire la relation reliant N_1 et N à l'aide des matrices de passage.