A Proofs

A.1 Proof of Theorem 3.3

Proof. Problem (reg-LSDWPTSVM" k) is equivalent to the following QP problem:

$$\min_{\boldsymbol{v}_k \in \mathbb{R}_{m_l+l}} \frac{1}{2} \boldsymbol{v}_k^T \left(\mathbf{E}_k \mathbf{E}_k^T + \delta_k \mathbf{M}_n \right) \boldsymbol{v}_k + \frac{C_k}{2} \| \mathbf{1}_{N_{-k}} - \mathbf{E}_{-k}^T \boldsymbol{v}_k \|_2^2.$$
 (29)

Since $\mathbf{P}_k = \mathbf{E}_k \mathbf{E}_k^T + \delta_k \mathbf{M}_n + \mathbf{E}_{-k} \mathbf{E}_{-k}^T \succ 0$, (29) is a strictly convex QP problem and it has a unique solution $\boldsymbol{v}_k^* = C_k \mathbf{P}_k^{-1} \mathbf{E}_{-k} \mathbf{1}_{N_{-k}}$. Let $\boldsymbol{\xi}^{k^*} = \mathbf{1}_{N_{-k}} - \mathbf{E}_{-k}^T \boldsymbol{v}_k^* = \left(\mathbf{I}_{N_{-k}} - C_k \mathbf{E}_{-k}^T \mathbf{P}_k^{-1} \mathbf{E}_{-k}\right) \mathbf{1}_{N_{-k}}$, then $(\boldsymbol{v}_k^*, \boldsymbol{\xi}^{k^*})$ solves the problem (reg-LSDWPTSVM''^k).

A.2 Proof of Theorem 3.4

Recall the Sherman-Morrison-Woodbury formula as the following:

Lemma A.1 (Sherman-Morrison-Woodbury formula). Given an invertible matrix $\mathbf{A} \in \mathbb{R}^{m \times m}$, $\mathbf{U} \in \mathbb{R}^{m \times n}$ and $\mathbf{V} \in \mathbb{R}^{n \times m}$, and let $\mathbf{B} = \mathbf{A} + \mathbf{U}\mathbf{V}$. If matrix $\mathbf{I}_n + \mathbf{V}\mathbf{A}^{-1}\mathbf{U}$ is invertible, then \mathbf{B} is invertible and

$$\mathbf{B} = \mathbf{A}^{-1} - \mathbf{A}^{-1} \mathbf{U} \left(\mathbf{I}_n + \mathbf{V} \mathbf{A}^{-1} \mathbf{U} \right)^{-1} \mathbf{V} \mathbf{A}^{-1}$$

Then we provide the proof of Theorem 3.4 as follows.

Proof. Notice that, $\epsilon \mathbf{I}_{m_l+l} + \mathbf{Q}_k \mathbf{Q}_k^T$ is positive definite. Denote the optimal solution to the problem (reg-LSDWPTSVM_{\(\epsilon\)}) as $(\boldsymbol{v}_k^*, \boldsymbol{\xi}^{k^*})$, by Theorem 3.3

$$\boldsymbol{v}_{k}^{*} = C_{k} \left(\epsilon \mathbf{I}_{m_{l}+l} + \mathbf{Q}_{k} \mathbf{Q}_{k}^{T} \right)^{-1} \mathbf{E}_{-k} \mathbf{1}_{N_{-k}}$$

$$\boldsymbol{\xi}^{k^{*}} = \left(\mathbf{I}_{N_{-k}} - C_{k} \mathbf{E}_{-k}^{T} \left(\epsilon \mathbf{I}_{m_{l}+l} + \mathbf{Q}_{k} \mathbf{Q}_{k}^{T} \right)^{-1} \mathbf{E}_{-k} \right) \mathbf{1}_{N_{-k}}$$
(30)

By Lemma A.1,

$$(\epsilon \mathbf{I}_{m_l+l} + \mathbf{Q}_k \mathbf{Q}_k^T)^{-1} = \frac{1}{\epsilon} \mathbf{I}_{m_l+l} - \frac{1}{\epsilon^2} \mathbf{Q}_k (\mathbf{I}_{N_k} + \frac{1}{\epsilon} \mathbf{Q}_k^T \mathbf{Q}_k)^{-1} \mathbf{Q}_k^T$$

$$= \frac{1}{\epsilon} (\mathbf{I}_{m_l+l} - \mathbf{Q}_k (\epsilon \mathbf{I}_{N_k} + \mathbf{Q}_k^T \mathbf{Q}_k)^{-1} \mathbf{Q}_k^T) .$$

which yields (27).

29