BASES DE DATOS PARA DATA SCIENCE *.

Lopez, Yoel Pelli, Nahuel

LENGUAJE SQL

Tipos de SQL

En SQL podemos encontrar 4 categorías importantes:

- *DDL:* Corresponde a los comandos que nos permiten *definir* la estructura de nuestro MR.
- *DML:* Estos comandos nos permiten manipular nuestro MR

BASES DE DATOS

3

Tipos de SQL

0

En SQL podemos encontrar 4 categorías importantes:

- DCL: Estos comandos rigen la parte de control y gobierno de nuestros datos
- *TCL:* Estos comandos rigen el control sobre las operaciones de DML.

No... no es dulce de leche

Creación de Elementos

- En PostgreSQL, tenemos que la sentencia CREATE nos permite crear distintos elementos en nuestra base de datos. Estos pueden ser:
 - DATABASE
 - TABLE
 - INDEX
 - ROLE
 - USER
 - ...

```
    CREATE DATABASE testDB;

    CREATE TABLE Persons (

        PersonID int, LastName varchar(255),
        FirstName
  varchar(255),
   Address varchar(255),
   City varchar(255)

    CREATE TABLE TestTable AS

  SELECT customername,
  contactname
  FROM customers;
• CREATE USER name [ ] option [ ... ] ];
```

Name	Aliases	Description
bigint	int8	signed eight-byte integer
bigserial	serial8	autoincrementing eight-byte integer
bit [(n)]		fixed-length bit string
bit varying [(<i>n</i>)]	varbit [(<i>n</i>)]	variable-length bit string
boolean	bool	logical Boolean (true/false)
box		rectangular box on a plane
bytea		binary data ("byte array")
character [(n)]	char [(<i>n</i>)]	fixed-length character string
character varying [(n)]	varchar [(n)]	variable-length character string
cidr		IPv4 or IPv6 network address
circle		circle on a plane
date		calendar date (year, month, day)
double precision	float8	double precision floating-point number (8 bytes)
inet		IPv4 or IPv6 host address
integer	int, int4	signed four-byte integer
interval [<i>fields</i>] [(<i>p</i>)]		time span
json		textual JSON data
jsonb		binary JSON data, decomposed
line		infinite line on a plane
Iseg		line segment on a plane
macaddr		MAC (Media Access Control) address
macaddr8		MAC (Media Access Control) address (EUI-64 format)
money		currency amount
numeric [(p , s)]	decimal [(p , s)]	exact numeric of selectable precision
path		geometric path on a plane
pg_lsn		PostgreSQL Log Sequence Number
pg_snapshot		user-level transaction ID snapshot
point		geometric point on a plane
polygon		closed geometric path on a plane
real	float4	single precision floating-point number (4 bytes)
smallint	int2	signed two-byte integer
smallserial	serial2	autoincrementing two-byte integer
serial	serial4	autoincrementing four-byte integer
text		variable-length character string
time [(p)] [without time zone]		time of day (no time zone)
time [(p)] with time zone	timetz	time of day, including time zone
timestamp [($m{p}$)] [without time zone]		date and time (no time zone)
timestamp [(p)] with time zone	timestamptz	date and time, including time zone
tsquery		text search query
tsvector		text search document
txid_snapshot		user-level transaction ID snapshot (deprecated; see pg_snapshot)
uuid		universally unique identifier
xml		XML data

Creación de Elementos

- Usualmente, en nuestro rol de DS, MLE, etc. Vamos a estar utilizando creación sobre todo de tablas.
- Una parte importante de las tablas es el tipo de datos que contienen en sus columnas. Esto varia ligeramente entre motor y motor, en el caso de postgresSQL, los mas importantes son:
 - Numéricos (Int, Float, etc.)
 - Caracteres (char, varchar, text, ...)
 - Fecha y tiempo (timestamp, date,)
 - Objetos (XML, json, ...)
 - Sequencias autogeneradas (Serial, ...)

+

Modificación de tablas

- En PostgreSQL, tenemos que la sentencia ALTER esta nos permite cambiar atributos de nuestro objeto, en particular ALTER TABLE nos permite operar sobre nuestras tablas:
 - Agregar columnas
 - Cambiar la definición de las mismas
 - Agregar o borrar constraints (relaciones)

```
    ALTER TABLE tesTable ADD (column

 datatype [DEFAULT expr]);

    ALTER TABLE tesTable

   ALTER COLUMN columnName datatype;

    ALTER TABLE tesTable

   ALTER COLUMN columnName SET NOT NULL;

    ALTER TABLE tesTable

   ALTER CHECK ( col::expression )

    ALTER TABLE tesTable

   ALTER CONSTRAINT [ constraintName ];
   CHECK ( col::expression )
```

```
ALTER TABLE tesTable

ALTER CONSTRAINT [ relation_name ];

[FOREIGN|PRIMARY] KEY (col.0 )

[[REFERENCES] otherTestTable (col.R)]
```

Ejemplo

```
CREATE SEQUENCE "theme id seq"
INCREMENT 1
MINVALUE 1
MAXVALUE 2147483647
 START 1
CACHE 1;
SELECT setval('"public"."theme_id_seq"', 1, TRUE);
CREATE TABLE theme(
   theme_id int DEFAULT nextval('theme_id_seq'::regclass) NOT
NULL,
    name varchar(256),
    parent_id int
    CONSTRAINT pk_themes PRIMARY KEY (theme_id)
);
ALTER TABLE themes ADD CONSTRAINT (fk_themes_id)
FOREIGN KEY (parent_id) REFERENCES themes (theme_id)
```

Ejemplo (ooootra opción)

```
CREATE TABLE theme(
    theme_id serial NOT NULL,
    name varchar(256),
    parent_id serial
    CONSTRAINT pk_themes PRIMARY KEY (theme_id)
);

ALTER TABLE themes ADD CONSTRAINT (fk_themes_id)
    FOREIGN KEY (parent_id) REFERENCES themes (theme_id)
```


Consultando datos!

Insertando valores

 INSERT nos permite agregar filas en una tabla, es la única manera que nos provee SQL directamente para ingresar datos.

```
•INSERT INTO tableName[(col1[,
col2,...])]
   VALUES (val1[, val2, ...]);

•INSERT INTO tableName
   VALUES (val1, val2, ..., val3);
```

```
•INSERT INTO
themes(name,parent_id)
    VALUES ('star wars
death star', 128);
•INSERT INTO sets
VALUES
(1,'dome',1989,128,129);
```

BASES DE DATOS

2022

BASES DE DATOS

0

ENCUESTA

+ 0