

# EPD Module User Manual DEPG0154BNS75AF0

# **Specification for 1.54 inch EPD**

Model NO.: DEPG0154BNS75AF0

### **DKE's Confirmation:**

| Prepared by | Checked by | Approved by |
|-------------|------------|-------------|
|             |            |             |
|             |            |             |

# **Customer approval:**

| Customer | Approved by | Date |
|----------|-------------|------|
|          |             |      |
|          |             |      |

# **Revision History**

| Version | Content                                                 | Date       | Producer |
|---------|---------------------------------------------------------|------------|----------|
| 1.0     | New release                                             | 2017/03/08 |          |
| 2.0     | Part number change from DEPG0154B06 to DEPG0154BNS75AF0 | 2017/06/07 |          |
|         |                                                         |            |          |
|         |                                                         |            |          |
|         |                                                         |            |          |
|         |                                                         |            |          |

# CONTENTS

| 1 Over View6                                                  |
|---------------------------------------------------------------|
| 2 Features6                                                   |
| 3 Mechanical Specification6                                   |
| 4 Mechanical Drawing of EPD Module                            |
| 5Input/output Pin Assignment8                                 |
| 6 Electrical Characteristics                                  |
| 6.1 Absolute Maximum Rating9                                  |
| 6.2 Panel DC Characteristics 10                               |
| 6.3 Panel DC Characteristics(Driver IC Internal Regulators)11 |
| 6.4 Panel AC Characteristics11                                |
| 6.4.1 MCU Interface Selection                                 |
| 6.4.2 MCU Serial Interface (4-wire SPI)11                     |
| 6.4.3 MCU Serial Interface (3-wire SPI)13                     |
| 6.4.4 Interface Timing14                                      |
| 7Command Table16                                              |
| 8 Optical Specification20                                     |
| 9 Handling, Safety, and Environment Requirements20            |
| 10 Reliability Test21                                         |

| 11 Block Diagram                                  | 22 |
|---------------------------------------------------|----|
| 12 Typical Application Circuit with SPI Interface | 23 |
| 13 Typical Operating Sequence                     | 24 |
| 13.1 Normal Operation Flow.                       | 24 |
| 13.2 Partial update Operation Flow                | 25 |
| 13.3Reference Program Code                        | 26 |
| 13.4Reference Program Code                        | 27 |
| 14Part Number Definition                          | 28 |
| 15 Inspection condition                           | 29 |
| 15.1 Environment                                  | 29 |
| 15.2 Illuminance                                  | 29 |
| 15.3 Inspect method                               | 29 |
| 15.4 Display area                                 | 29 |
| 15.5 Inspection standard                          | 30 |
| 15.5.1 Electric inspection standard               | 30 |
| 15.5.2 Appearance inspection standard             | 31 |
| 16 Packaging                                      | 33 |

### 1. Over View

DEPG0154BNS75AF0 is an Active Matrix Electrophoretic Display (AM EPD), with interface and a reference system design. The 1.54inch active area contains 152×152 pixels. The module is a TFT-array driving electrophoresis display, with integrated circuits including gate driver, source driver, MCU interface, timing controller, oscillator, DC-DC, SRAM, LUT, VCOM. Module can be used in portable electronic devices, such as Electronic Shelf Label (ESL) System.

#### 2. Features

- ♦152×152 pixels display
- ◆ High contrast High reflectance
- ◆ Ultra wide viewing angle Ultra low power consumption
- ◆Pure reflective mode
- ♦Bi-stable display
- ◆Commercial temperature range
- **♦** Landscape portrait modes
- ◆ Hard-coat antiglare display surface
- ◆Ultra Low current deep sleep mode
- ◆On chip display RAM
- ◆ Waveform can stored in On-chip OTP or written by MCU
- ◆ Serial peripheral interface available
- ♦ On-chip oscillator
- ◆On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- ◆I<sup>2</sup>C signal master interface to read external temperature sensor
- ◆Support partial update mode
- ◆Built-in temperature sensor

### 3. Mechanical Specification

| Parameter           | Specifications                           | Unit  | Remark  |
|---------------------|------------------------------------------|-------|---------|
| Screen Size         | 1.54                                     | Inch  |         |
| Display Resolution  | 152(H)×152(V)                            | Pixel | DPI:140 |
| Active Area         | 27.512×27.512                            | mm    |         |
| Pixel Pitch         | $0.181 \times 0.181$                     | mm    |         |
| Pixel Configuration | Square                                   |       |         |
| Outline Dimension   | $31.8(H) \times 37.3 (V) \times 1.05(D)$ | mm    |         |
| Weight              | 2.18±0.5                                 | g     |         |

### **4.**Mechanical Drawing of EPD Module



# 5. Input/output Pin Assignment

| No. | Name  | I/O | Description                                                                                                        | Remark    |
|-----|-------|-----|--------------------------------------------------------------------------------------------------------------------|-----------|
| 1   | NC    |     | Do not connect with other NC pins                                                                                  | Keep Open |
| 2   | GDR   | О   | N-Channel MOSFET Gate Drive Control                                                                                |           |
| 3   | RESE  | I   | Current Sense Input for the Control Loop                                                                           |           |
| 4   | NC    | NC  | Do not connect with other NC pins                                                                                  | Keep Open |
| 5   | VSH2  | NC  | Positive Source driving voltage                                                                                    |           |
| 6   | TSCL  | О   | I2C Interface to digital temperature sensor Clock pin                                                              |           |
| 7   | TSDA  | I/O | I2C Interface to digital temperature sensor Data pin                                                               |           |
| 8   | BS1   | I   | Bus Interface selection pin                                                                                        | Note 5-5  |
| 9   | BUSY  | О   | Busy state output pin                                                                                              | Note 5-4  |
| 10  | RES#  | I   | Reset signal input. Active Low.                                                                                    | Note 5-3  |
| 11  | D/C#  | I   | Data /Command control pin                                                                                          | Note 5-2  |
| 12  | CS#   | I   | Chip select input pin                                                                                              | Note 5-1  |
| 13  | SCL   | I   | Serial Clock pin (SPI)                                                                                             |           |
| 14  | SDA   | I   | Serial Data pin (SPI)                                                                                              |           |
| 15  | VDDIO | P   | Power Supply for interface logic pins It should be connected with VCI                                              |           |
| 16  | VCI   | P   | Power Supply for the chip                                                                                          |           |
| 17  | VSS   | P   | Ground                                                                                                             |           |
| 18  | VDD   | С   | Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS |           |
| 19  | VPP   | P   | FOR TEST                                                                                                           | Keep Open |
| 20  | VSH1  | С   | Positive Source driving voltage                                                                                    |           |
| 21  | VGH   | С   | Power Supply pin for Positive Gate driving voltage and VSH1                                                        |           |
| 22  | VSL   | C   | Negative Source driving voltage                                                                                    |           |
| 23  | VGL   | С   | Power Supply pin for Negative Gate driving voltage VCOM and VSL                                                    |           |
| 24  | VCOM  | C   | VCOM driving voltage                                                                                               |           |

- I = Input Pin, O = Output Pin, /O = Bi-directional Pin (Input/output), P = Power Pin, C = Capacitor Pin
- Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW.
- Note 5-2: This pin is (D/C#) Data/Command control pin connecting to the MCU in 4-wire SPI mode. When the pin is pulled HIGH, the data at SDA will be interpreted as data. When the pin is pulled LOW, the data at SDA will be interpreted as command.
- Note 5-3: This pin (RES#) is reset signal input. The Reset is active low.
- Note 5-4: This pin is Busy state output pin. When Busy is High, the operation of chip should not be interrupted, command should not be sent. The chip would put Busy pin High when -Outputting display waveform -Communicating with digital temperature sensor

Note 5-5: Bus interface selection pin

| BS1 State | MCU Interface                                          |  |  |  |  |  |
|-----------|--------------------------------------------------------|--|--|--|--|--|
| L         | 4-lines serial peripheral interface(SPI) - 8 bits SPI  |  |  |  |  |  |
| Н         | 3- lines serial peripheral interface(SPI) - 9 bits SPI |  |  |  |  |  |

### 6. Electrical Characteristics

### 6.1 Absolute Maximum Rating

| Parameter            | Symbol | Rating           | Unit |
|----------------------|--------|------------------|------|
| Logic supply voltage | VCI    | -0.5 to +4.0     | V    |
| Logic Input voltage  | VIN    | -0.5 to VCI +0.5 | V    |
| Logic Output voltage | VOUT   | -0.5 to VCI +0.5 | V    |
| Operating Temp range | TOPR   | 0 to +50         | ℃.   |
| Storage Temp range   | TSTG   | -25 to+70        | ℃.   |

Note: Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Panel DC Characteristics tables.

### **6.2 Panel DC Characteristics**

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =25℃.

| Parameter                 | Symbol            | Condition                                                 | Applicab<br>le pin | Min.    | Тур.  | Max.    | Unit |
|---------------------------|-------------------|-----------------------------------------------------------|--------------------|---------|-------|---------|------|
| Single ground             | Vss               | -                                                         |                    | -       | 0     | -       | V    |
| Logic supply voltage      | Vci               | -                                                         | VCI                | 2.2     | 3.0   | 3.7     | V    |
| Core logic voltage        | $V_{\mathrm{DD}}$ |                                                           | VDD                | 1.7     | 1.8   | 1.9     | V    |
| High level input voltage  | Vih               | -                                                         | -                  | 0.8 Vci | -     | -       | V    |
| Low level input voltage   | VIL               | -                                                         | -                  | -       | -     | 0.2 Vci | V    |
| High level output voltage | Vон               | IOH = -100uA                                              | -                  | 0.9 Vci | -     | -       | V    |
| Low level output voltage  | Vol               | IOL = 100uA                                               | -                  | -       | -     | 0.1 Vci | V    |
| Typical power             | Ртүр              | Vci =3.0V                                                 | -                  | _       | 5.1   | 6       | mW   |
| Deep sleep mode           | PSTPY             | Vci =3.0V                                                 | -                  | -       | 0.003 | -       | mW   |
| Typical operating current | Iopr_Vci          | Vci =3.0V                                                 | -                  | -       | 1.7   | 2       | mA   |
| Image update time         | -                 | 25 ℃                                                      | -                  | -       | 3     | 5       | sec  |
| Sleep mode current        | Idslp_Vci         | DC/DC off<br>No clock<br>No input load<br>Ram data retain | -                  | -       | 20    |         | uA   |
| Deep sleep mode current   | Idslp_Vci         | DC/DC off No clock No input load Ram data not retain      | -                  | -       | 1     | 5       | uA   |

Notes: 1. The typical power is measured with following transition from horizontal 2 scale pattern to vertical 2 scale pattern.



- 2. The deep sleep power is the consumed power when the panel controller is in deep sleep mode.
- 3. The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by DKE.

### **6.3 Panel** DC Characteristics(Driver IC Internal Regulators)

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =25 $^{\circ}$ C.

| Parameter                      | Symbol | Condition | Applicable pin | Min.  | Тур. | Max.  | Unit |
|--------------------------------|--------|-----------|----------------|-------|------|-------|------|
| VCOM output voltage            | VCOM   | -         | VCOM           | -2.5  | -2   | -1.5  | V    |
| Positive Source output voltage | Vsh    | -         | S0~S151        | +14.5 | +15  | +15.5 | V    |
| Negative Source output voltage | Vsl    | -         | S0~S151        | -15.5 | -15  | -14.5 | V    |
| Positive gate output voltage   | Vgh    | -         | G0~G151        | +21   | +22  | +23   | V    |
| Negative gate output voltage   | Vgl    | -         | G0~G151        | -21   | -20  | -19   | V    |

#### **6.4 Panel AC Characteristics**

#### **6.4.1 MCU Interface Selection**

The pin assignment at different interface mode is summarized in Table 6-4-1. Different MCU mode can be set by hardware selection on BS1 pins. The display panel only supports 4-wire SPI or 3-wire SPI interface mode.

| Pin Name         | Data/Comm | and Interface Control Signal |     |      |      |
|------------------|-----------|------------------------------|-----|------|------|
| Bus interface    | SDA       | SCL                          | CS# | D/C# | RES# |
| BS1=L 4-wire SPI | SDA       | SCL                          | CS# | D/C# | RES# |
| BS1=H 3-wire SPI | SDA       | SCL                          | CS# | L    | RES# |

#### **6.4.2 MCU Serial Interface (4-wire SPI)**

The serial interface consists of serial clock SCL, serial data SDA, D/C#, CS#. This interface supports Write mode and Read mode.

| Function      | CS# | <b>D</b> / <b>C</b> # | SCL |
|---------------|-----|-----------------------|-----|
| Write command | L   | L                     | 1   |
| Write data    | L   | Н                     | 1   |

Note: ↑ stands for rising edge of signal

In the write mode SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM /Data Byte register or command Byte register according to D/C# pin.

CS#

D/C#

SCL

SDA (Write Mode)

Register

Register

Parameter

Figure 6-1: Write procedure in 4-wire SPI mode

#### In the Read mode:

- 1. After driving CS# to low, MCU need to define the register to be read.
- 2. SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0 with D/C# keep low.
- 3. After SCL change to low for the last bit of register, D/C# need to drive to high.
- 4. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7, D6, ... D0.
- 5. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.



Figure 6-2: Read procedure in 4-wire SPI mode

#### **6.4.3 MCU Serial Interface (3-wire SPI)**

The 3-wire serial interface consists of serial clock SCL, serial data SDA and CS#. This interface also supports Write mode and Read mode.

The operation is similar to 4-wire serial interface while D/C# pin is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/C# bit, D7 to D0 bit. The D/C# bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (D/C# bit = 1) or the command register (D/C# bit = 0).

| Function      | CS# | D/C# | SCL      |
|---------------|-----|------|----------|
| Write command | L   | Tie  | <b>↑</b> |
| Write data    | L   | Tie  | 1        |

Note: ↑ stands for rising edge of signal

SDA (Write Mode)

Register

Register

Register

Register

Register

Figure 6-3: Write procedure in 3-wire SPI mode

### In the Read mode:

- 1. After driving CS# to low, MCU need to define the register to be read.
- 2. D/C=0 is shifted thru SDA with one rising edge of SCL
- 3. SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0.
- 4. D/C=1 is shifted thru SDA with one rising edge of SCL
- 5. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7, D6, ... D0.
- 6. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

Figure 6-4: Read procedure in 3-wire SPI mode

### **6.4.4 Interface Timing**

The following specifications apply for: VSS=0V, VCI=3.0V, Topr =25 ℃.



Page 14of33

### **Serial Interface Timing Characteristics**

 $(VCI - VSS = 2.2V \text{ to } 3.7V, TOPR = 25^{\circ}C, CL=20pF)$ 

### Write mode

| Symbol   | Parameter                                                                    | Min | Тур. | Max | Unit |
|----------|------------------------------------------------------------------------------|-----|------|-----|------|
| fSCL     | SCL frequency (Write Mode)                                                   |     |      | 20  | MHz  |
| tCSSU    | Time CS# has to be low before the first rising edge of SCLK                  | 20  |      |     | ns   |
| tCSHLD   | Time CS# has to remain low after the last falling edge of SCLK               | 20  |      |     | ns   |
| tCSHIGH  | Time CS# has to remain high between two transfers                            | 100 |      |     | ns   |
| tSCLHIGH | Part of the clock period where SCL has to remain high                        | 25  |      |     | ns   |
| tSCLLOW  | Part of the clock period where SCL has to remain low                         | 25  |      |     | ns   |
| tSISU    | Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL | 10  |      |     | ns   |
| tSIHLD   | Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL   | 40  |      |     | ns   |

### Read mode

| Symbol       | Parameter                                                                | Min | Тур. | Max | Unit |
|--------------|--------------------------------------------------------------------------|-----|------|-----|------|
| fSCL         | SCL frequency (Read Mode)                                                |     |      | 2.5 | MHz  |
| tCSSU        | Time CS# has to be low before the first rising edge of SCLK              | 100 |      |     | ns   |
| tCSHLD       | Time CS# has to remain low after the last falling edge of SCLK           | 50  |      |     | ns   |
| tCSHIGH      | Time CS# has to remain high between two transfers                        | 250 |      |     | ns   |
| tSCLHIG<br>H | Part of the clock period where SCL has to remain high                    | 180 |      |     | ns   |
| tSCLLOW      | Part of the clock period where SCL has to remain low                     | 180 |      |     | ns   |
| tSOSU        | Time SO(SDA Read Mode) will be stable before the next rising edge of SCL |     | 50   |     | ns   |
| tSOHLD       | Time SO (SDA Read Mode) will remain stable after the rising edge of SCL  |     | 70   |     | ns   |

# 7. Command Table

| R/W# | D/C# | Hex | D7 | D6 | D5 | D4 | D3 | D2    | D1    | D0    | Command                       | Description                                                                    |  |  |  |
|------|------|-----|----|----|----|----|----|-------|-------|-------|-------------------------------|--------------------------------------------------------------------------------|--|--|--|
| 0    | 0    | 01  | 0  | 0  | 0  | 0  | 0  | 0     | 0     | 1     | Driver Output                 | Gate setting                                                                   |  |  |  |
| 0    | 1    |     | A7 | A6 | A5 | A4 | A3 | A2    | A1    | A0    | control                       | Set A[8:0]=0097h                                                               |  |  |  |
| 0    | 1    |     | 0  | 0  | 0  | 0  | 0  | 0     | 0     | A8    |                               | Set B[8:0]=00h                                                                 |  |  |  |
| 0    | 1    |     | 0  | 0  | 0  | 0  | 0  | B2    | B1    | B0    |                               |                                                                                |  |  |  |
| 0    | 0    | 03  | 0  | 0  | 0  | 0  | 0  | 0     | 1     | 1     | Gate Driving                  | SetGate Driving voltage                                                        |  |  |  |
| 0    | 1    |     | 0  | 0  | 0  | A4 | A3 | A2    | A1    | A0    | voltage control               | A[4:0]=17h[POR],VGH at 20V[POR]<br>VGH setting from 10V to 21V                 |  |  |  |
| 0    | 0    | 04  | 0  | 0  | 0  | 0  | 0  | 1     | 0     | 0     | Source Driving                | SetSource Driving voltage                                                      |  |  |  |
| 0    | 1    |     | A7 | A6 | A5 | A4 | A3 | A2    | A1    | A0    | voltage control               | A[7:0] = 41h[POR], VSH1 at 15V                                                 |  |  |  |
| 0    | 1    |     | B7 | B6 | B5 | B4 | В3 | B2    | B1    | B0    |                               | B[7:0]=00h[POR],VSH2 at 0V<br>C[7:0]= 32h[POR], VSL at -15V                    |  |  |  |
| 0    | 1    |     | C7 | C6 | C5 | C4 | C3 | C2    | C1    | C0    |                               | 5[/.6] 52h[r 614], 752 ut 15 7                                                 |  |  |  |
| 0    | 0    | 10  | 0  | 0  | 0  | 1  | 0  | 0     | 0     | 0     | Deep Sleep                    | Deep Sleep mode Control                                                        |  |  |  |
| 0    | 1    |     | 0  | 0  | 0  | 0  | 0  | 0     | 0     | $A_0$ | mode                          | A[0]: Description                                                              |  |  |  |
|      |      |     |    |    |    |    |    |       |       |       |                               | 0 Normal Mode [POR] 1 Enter Deep Sleep Mode                                    |  |  |  |
|      |      |     |    |    |    |    |    |       |       |       |                               |                                                                                |  |  |  |
| 0    | 0    | 11  | 0  | 0  | 0  | 1  | 0  | 0     | 0     | 1     | Data Entry                    | Define data entry sequence                                                     |  |  |  |
| 0    | 1    |     | 0  | 0  | 0  | 0  | 0  | $A_2$ | $A_1$ | $A_0$ | mode setting                  | A [1:0] = ID[1:0]Address automatic increment / decrement setting               |  |  |  |
|      |      |     |    |    |    |    |    |       |       |       |                               | The setting of incrementing or                                                 |  |  |  |
|      |      |     |    |    |    |    |    |       |       |       |                               | decrementing of the address counter can                                        |  |  |  |
|      |      |     |    |    |    |    |    |       |       |       |                               | be made independently in each upper and                                        |  |  |  |
|      |      |     |    |    |    |    |    |       |       |       | lower bit of the address.     |                                                                                |  |  |  |
|      |      |     |    |    |    |    |    |       |       |       |                               | 00 – Y decrement, X decrement,<br>01 – Y decrement, X increment,               |  |  |  |
|      |      |     |    |    |    |    |    |       |       |       |                               | 10 –Y increment, X decrement,                                                  |  |  |  |
|      |      |     |    |    |    |    |    |       |       |       |                               | 11 –Y increment, X increment [POR]                                             |  |  |  |
|      |      |     |    |    |    |    |    |       |       |       |                               | A[2] = AM                                                                      |  |  |  |
|      |      |     |    |    |    |    |    |       |       |       |                               | Set the direction in which the address                                         |  |  |  |
|      |      |     |    |    |    |    |    |       |       |       |                               | counter is updated automatically after data are written to the RAM.            |  |  |  |
|      |      |     |    |    |    |    |    |       |       |       |                               | AM= 0, the address counter is updated in                                       |  |  |  |
|      |      |     |    |    |    |    |    |       |       |       |                               | the X direction. [POR]                                                         |  |  |  |
|      |      |     |    |    |    |    |    |       |       |       |                               | AM = 1, the address counter is updated in                                      |  |  |  |
|      | 0    | 10  | 0  | 0  | 0  | 1  | 0  | 0     | 1     |       | CWDECET                       | the Y direction.                                                               |  |  |  |
| 0    | 0    | 12  | 0  | 0  | 0  | 1  | 0  | 0     | 1     | 0     | SWRESET                       | It resets the commands and parameters to their S/W Reset default values except |  |  |  |
|      |      |     |    |    |    |    |    |       |       |       |                               | R10h-Deep Sleep Mode                                                           |  |  |  |
|      |      |     |    |    |    |    |    |       |       |       |                               | Note: RAM are unaffected by this                                               |  |  |  |
|      |      |     |    |    |    |    |    |       |       |       |                               | command.                                                                       |  |  |  |
|      |      |     |    |    |    |    |    |       |       |       |                               |                                                                                |  |  |  |
| 0    | 0    | 18  | 0  | 0  | 0  | 1  | 1  | 0     | 0     | 0     | Temperature<br>Sensor Control | Temperature Sensor Selection<br>A[7:0] = 48h [POR], external temperature       |  |  |  |
| 0    | 1    |     | A7 | A6 | A5 | A4 | A3 | A2    | A1    | A0    |                               | sensor                                                                         |  |  |  |
|      |      |     |    |    |    |    |    |       |       |       |                               | A[7:0] = 80h Internal temperature sensor                                       |  |  |  |
|      |      |     |    |    |    |    |    |       |       |       |                               |                                                                                |  |  |  |

| 0 | 0 | 1 1 | 0  | 0  | Δ. | 1       | 1       |         | 1  |         | Tomamomotivas                 | White to town austral as sister                                               |
|---|---|-----|----|----|----|---------|---------|---------|----|---------|-------------------------------|-------------------------------------------------------------------------------|
|   |   | 1A  | A7 |    | 0  | 1<br>A4 | 1<br>A3 | 0<br>A2 | 1  | 0<br>A0 | Temperature<br>Sensor Control | Write to temperature register.<br>A[7:0] – MS Byte 01111111[POR]              |
| 0 | 1 |     | Α/ | A6 | A5 | A4      | АЗ      | A2      | A1 | AU      | (Write to                     | B[7:0] – LS Byte 11110000[POR]                                                |
| 0 | 1 |     | В7 | B6 | B5 | B4      | 0       | 0       | 0  | 0       | temperature                   |                                                                               |
|   | 0 | 20  |    |    |    | _       |         |         |    | _       | register)                     | A character of the state of                                                   |
| 0 | 0 | 20  | 0  | 0  | 1  | 0       | 0       | 0       | 0  | 0       | Master<br>Activation          | Activate Display Update Sequence The Display Update Sequence Option is        |
|   |   |     |    |    |    |         |         |         |    |         | 7 icti vation                 | located at R22h                                                               |
|   |   |     |    |    |    |         |         |         |    |         |                               | User should not interrupt this operation to                                   |
|   |   |     |    |    |    |         |         |         |    |         |                               | avoid corruption of panel images.                                             |
| 0 | 0 | 21  | 0  | 0  | 1  | 0       | 0       | 0       | 0  | 1       | Display Update                | RAM content option for Display Update                                         |
| 0 | 1 |     | 0  | 0  | 0  | 0       | A3      | A2      | A1 | A0      | Control 1                     | BW RAM option                                                                 |
|   |   |     |    |    |    |         |         |         |    |         |                               | A[7:4]=0100 (For BW)                                                          |
|   |   |     |    |    |    |         |         |         |    |         |                               | A[3:0]=0000[POR] Normal                                                       |
|   |   |     |    |    |    |         |         |         |    |         |                               | A[3:0]=0100                                                                   |
|   |   |     |    |    |    |         |         |         |    |         |                               | Bypass RAM content as 0                                                       |
|   |   |     |    |    |    |         |         |         |    |         |                               | A[2,0], 0100                                                                  |
|   |   |     |    |    |    |         |         |         |    |         |                               | A[3:0]=0100<br>Inverse RAM content                                            |
|   |   |     |    |    |    |         |         |         |    |         |                               |                                                                               |
| 0 | 0 | 22  | 0  | 0  | 1  | 0       | 0       | 0       | 1  | 0       |                               | Display Update Sequence Option:                                               |
|   | 1 |     | A7 | A6 | A5 | A4      | A3      | A2      | A1 | A0      | Control 2                     | Enable the stage for Master Activation                                        |
|   |   |     |    |    |    |         |         |         |    |         |                               | Setting for LUT from MCU Enable Clock Signal,                                 |
|   |   |     |    |    |    |         |         |         |    |         |                               | Then Enable Analog                                                            |
|   |   |     |    |    |    |         |         |         |    |         |                               | Then PATTERN DISPLAY C7                                                       |
|   |   |     |    |    |    |         |         |         |    |         |                               | Then Disable Analog Then Disable OSC                                          |
|   |   |     |    |    |    |         |         |         |    |         |                               | Setting for LUT from OTP according to                                         |
|   |   |     |    |    |    |         |         |         |    |         |                               | external Temperature Sensor operation                                         |
|   |   |     |    |    |    |         |         |         |    |         |                               | Then Enable Analog                                                            |
|   |   |     |    |    |    |         |         |         |    |         |                               | Then Load LUT 90                                                              |
|   |   |     |    |    |    |         |         |         |    |         |                               | Enable Analog                                                                 |
|   |   |     |    |    |    |         |         |         |    |         |                               | Then PATTERN DISPLAY                                                          |
|   |   |     |    |    |    |         |         |         |    |         |                               | Then Disable Analog Then Disable OSC                                          |
|   |   |     |    |    |    |         |         |         |    |         |                               |                                                                               |
| 0 | 0 | 24  | 0  | 0  | 1  | 0       | 0       | 1       | 0  | 0       | WriteRAM1                     | After this command, data entries will be                                      |
|   |   |     |    |    |    |         |         |         |    |         |                               | written into the 1RAM until another command is written. Address pointers will |
|   |   |     |    |    |    |         |         |         |    |         |                               | advance accordingly.                                                          |
|   |   |     |    |    |    |         |         |         |    |         |                               | For Write pixel:                                                              |
|   |   |     |    |    |    |         |         |         |    |         |                               | Content of write RAM(BW)=1                                                    |
|   |   |     |    |    |    |         |         |         |    |         |                               | For Black pixel: Content of write RAM(BW)=0                                   |
|   |   |     |    |    |    |         |         |         |    |         |                               | Content of write Renal BW )-0                                                 |
|   |   | 1   |    |    |    | 1       |         | 1       |    | 1       | L                             | ·                                                                             |

| 0 | 0 | 26 | 0  | 0  | 1  | 0  | 0  | 1  | 1  | 0   | WriteRAM2       | After this command, data entries will be written into the 2 RAM until another command is written. Address pointers will advance accordingly. For Write pixel: Content of write RAM(BW)=1 For Black pixel: Content of write RAM(BW)=0                                                                                   |
|---|---|----|----|----|----|----|----|----|----|-----|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 0 | 2C | 0  | 0  | 1  | 0  | 1  | 1  | 0  | 0   | Write VCOM      | Set A[7:0]=52h                                                                                                                                                                                                                                                                                                         |
| 0 | 1 |    | A7 | A6 | A5 | A4 | A3 | A2 | A1 | A0  | register        |                                                                                                                                                                                                                                                                                                                        |
| 0 | 0 | 2D | 0  | 0  | 1  | 0  | 1  | 1  | 0  | 1   | OTP Register    | Read Register stored in OTP:                                                                                                                                                                                                                                                                                           |
| 1 | 1 |    | A7 | A6 | A5 | A4 | A3 | A2 | A1 | A0  | Read            | 1. A[7:0]~ B[7:0]: VCOM Information                                                                                                                                                                                                                                                                                    |
| 1 | 1 |    | B7 | B6 | B5 | B4 | В3 | B2 | B1 | В0  |                 | 3. C[7:0]~F[7:0]: Reserved<br>4. G[7:0]~H[7:0]: Module ID/ Waveform                                                                                                                                                                                                                                                    |
| 1 | 1 |    | C7 | C6 | C5 | C4 | C3 | C2 | C1 | C0  |                 | Version [2bytes]                                                                                                                                                                                                                                                                                                       |
| 1 | 1 |    | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0  |                 |                                                                                                                                                                                                                                                                                                                        |
| 1 | 1 |    | E7 | E6 | E5 | E4 | E3 | E2 | E1 | E0  |                 |                                                                                                                                                                                                                                                                                                                        |
| 1 | 1 |    | F7 | F6 | F5 | F4 | F3 | F2 | F1 | F0  |                 |                                                                                                                                                                                                                                                                                                                        |
| 1 | 1 |    | G7 | G6 | G5 | G4 | G3 | G2 | G1 | G0  |                 |                                                                                                                                                                                                                                                                                                                        |
| 1 | 1 |    | H7 | Н6 | H5 | H4 | Н3 | H2 | H1 | H0  |                 |                                                                                                                                                                                                                                                                                                                        |
| 0 | 0 | 2F | 0  | 0  | 1  | 0  | 1  | 1  | 1  | 1   | Status Bit Read | Read IC status Bit [POR 0x21]                                                                                                                                                                                                                                                                                          |
| 1 | 1 |    | 0  | 0  | A5 | A4 | 0  | 0  | A1 | A0  |                 | A[5]: HV Ready Detection flag [POR=1]                                                                                                                                                                                                                                                                                  |
|   |   |    |    |    |    |    |    |    |    |     |                 | 0: Ready 1: Not Ready A[4]: VCI Detection flag [POR=0]  0: Normal 1: VCI lower than the Detect level A[3]: [POR=0] A[2]: Busy flag [POR=0] 0: Normal 1: BUSY A[1:0]: Chip ID [POR=01] Remark: A[5] and A[4] status are not valid after RESET, they need to be initiated by command 0x14 and command 0x15 respectively. |
| 0 | 0 | 32 | 0  | 0  | 1  | 1  | 0  | 0  | 1  | 0   | Write LUT       | Write LUT register from MCU interface                                                                                                                                                                                                                                                                                  |
| 0 | 1 |    | A7 | A6 | A5 | A4 | A3 | A2 | A1 | 110 | register        | [70 bytes].                                                                                                                                                                                                                                                                                                            |
| 0 | 1 |    | B7 | B6 | B5 | B4 | В3 | B2 | B1 | B0  |                 |                                                                                                                                                                                                                                                                                                                        |
| 0 | 1 |    | :  | :  | :  | :  | :  | :  | :  | :   |                 |                                                                                                                                                                                                                                                                                                                        |
| 0 | 1 |    | :  | :  | :  | :  | :  | :  | :  | :   |                 |                                                                                                                                                                                                                                                                                                                        |
| 0 | 1 |    | :  | :  | :  | :  | :  | :  | :  | :   |                 |                                                                                                                                                                                                                                                                                                                        |
| 0 | 1 |    | :  | :  | :  | :  | :  | :  | :  | :   |                 |                                                                                                                                                                                                                                                                                                                        |
|   |   |    |    |    |    |    |    |    |    |     |                 |                                                                                                                                                                                                                                                                                                                        |

| 0 | 0 | 3A | 0                        | 0              | 1              | 1              | 1              | 0              | 1              | 0              | Set dummy line      | Sat A[6:0]_11b                                                       |
|---|---|----|--------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|---------------------|----------------------------------------------------------------------|
|   |   | эА |                          |                |                | _              |                |                |                | <b>!</b>       | period              | Default value will give 50Hz                                         |
| 0 | 1 |    | 0                        | $A_6$          | $A_5$          | $A_4$          | $A_3$          | $A_2$          | $A_1$          | $A_0$          | period              | Frame frequency                                                      |
| 0 | 0 | 3B | 0                        | 0              | 1              | 1              | 1              | 0              | 1              | 1              | Set Gate line       | Set A[3:0]=0Dh                                                       |
| 0 | 1 |    | 0                        | 0              | 0              | 0              | $A_3$          | $A_2$          | $A_1$          | $A_0$          | width               | Default value will give 50Hz                                         |
|   |   |    |                          |                |                |                |                |                |                | U              |                     | Frame frequency                                                      |
| 0 | 0 | 3C | 0                        | 0              | 1              | 1              | 1              | 1              | 0              | 0              | Border              |                                                                      |
| 0 | 1 |    | $A_7$                    | $A_6$          | $A_5$          | $A_4$          | 0              | 0              | $A_1$          | $A_0$          | Waveform<br>Control | Select border waveform for VBD                                       |
|   |   |    |                          |                |                |                |                |                |                |                | Collifor            | A [7:6] Select VBD A[7:6] Select VBD as                              |
|   |   |    |                          |                |                |                |                |                |                |                |                     | 00[POR] GS Transition                                                |
|   |   |    |                          |                |                |                |                |                |                |                |                     | Define A[1:0]                                                        |
|   |   |    |                          |                |                |                |                |                |                |                |                     | 01 Fix Level                                                         |
|   |   |    |                          |                |                |                |                |                |                |                |                     | Define A [5:4]                                                       |
|   |   |    |                          |                |                |                |                |                |                |                |                     | 10 VCOM<br>11 HIZ                                                    |
|   |   |    |                          |                |                |                |                |                |                |                |                     | A [5:4] Fix Level Setting for VBD                                    |
|   |   |    |                          |                |                |                |                |                |                |                |                     | A[5:4] VBD level                                                     |
|   |   |    |                          |                |                |                |                |                |                |                |                     | 00[POR] VSS                                                          |
|   |   |    |                          |                |                |                |                |                |                |                |                     | 01 VSH1                                                              |
|   |   |    |                          |                |                |                |                |                |                |                |                     | 10 VSL                                                               |
|   |   |    |                          |                |                |                |                |                |                |                |                     | 11 VSH2                                                              |
|   |   |    |                          |                |                |                |                |                |                |                |                     | A[1:0]) BW Transition setting for VBD A[1:0] VBD Transition          |
|   |   |    |                          |                |                |                |                |                |                |                |                     | 00 [POR] LUT0                                                        |
|   |   |    |                          |                |                |                |                |                |                |                |                     | 01 LUT1                                                              |
|   |   |    |                          |                |                |                |                |                |                |                |                     | 10 LUT2                                                              |
|   |   |    |                          |                |                |                |                |                |                |                |                     | 11 LUT3                                                              |
| 0 | 0 | 44 | 0                        | 1              | 0              | 0              | 0              | 1              | 0              | 0              | Set RAM X -         | Specify the start/end positions of the                               |
| 0 | 1 |    | 0                        | 0              | 0              | $A_4$          | $A_3$          | $A_2$          | $\mathbf{A}_1$ | $A_0$          | address Start /     | window address in the X direction by an                              |
| 0 | 1 |    | 0                        | 0              | 0              | $\mathbf{B}_4$ | $\mathbf{B}_3$ | $\mathbf{B}_2$ | $\mathbf{B}_1$ | $\mathbf{B}_0$ | End position        | address unit<br>A[4:0]: XSA[4:0], X Start, POR = 00h                 |
|   |   |    |                          |                |                |                |                |                |                |                |                     | B[4:0]: XEA[4:0], X End, POR = 12h                                   |
| 0 | 0 | 45 | 0                        | 1              | 0              | 0              | 0              | 1              | 0              | 1              | Set Ram Y-          | Specify the start/end positions of the                               |
| 0 | 1 |    | A <sub>7</sub>           | $A_6$          | $A_5$          | $A_4$          | $A_3$          | $A_2$          | $A_1$          | $A_0$          |                     | window address in the Y direction by an                              |
| 0 | 1 |    | 0                        | 0              | 0              | 0              | 0              | 0              | 0              | $A_8$          | Start / End         | address unit                                                         |
| 0 | 1 |    | B <sub>7</sub>           | B <sub>6</sub> | B <sub>5</sub> | $B_4$          | $\mathbf{B}_3$ | $B_2$          | B <sub>1</sub> | $B_0$          | position            | A[8:0]: YSA[8:0], Y Start, POR = 0097h                               |
| 0 | 1 |    | $\frac{\mathbf{b}_7}{0}$ | 0              | 0              | 0              | 0              | 0              | 0              | $B_8$          | 1                   | B[8:0]: YEA[8:0], Y End, POR = 0000h                                 |
| 0 | 0 | 4E | 0                        | 1              | 0              | 0              | 1              | 1              | 1              | 0              | Set RAM X           | Make initial settings for the RAM X                                  |
| 0 | 1 |    | 0                        | 0              | 0              | $A_4$          | $A_3$          | $A_2$          | $A_1$          | $A_0$          |                     | address in the address counter (AC)                                  |
|   |   |    | Ť                        |                |                |                | -5             |                |                |                |                     | A[4:0]: XAD[4:0], POR is 00h                                         |
| 0 | 0 | 4F | 0                        | 1              | 0              | 0              | 1              | 1              | 1              | 1              | Set RAM Y           | Make initial settings for the RAM Y                                  |
| 0 | 1 |    | A <sub>7</sub>           | A <sub>6</sub> | $A_5$          | $A_4$          | $A_3$          | $A_2$          | A <sub>1</sub> | A <sub>0</sub> | address counter     | address in the address counter (AC)<br>A[8:0]: YAD8:0], POR is 0097h |
| 0 | 1 |    | 0                        | 0              | 0              | 0              | 0              | 0              | 0              | $A_8$          |                     |                                                                      |
| 0 | 0 | 74 | 0                        | 1              | 1              | 1              | 0              | 1              | 0              | 0              | Set Analog          | A[7:0] = 54h                                                         |
| 0 | 1 |    | A <sub>7</sub>           | $A_6$          | $A_5$          | $A_4$          | $A_3$          | $A_2$          | A <sub>1</sub> | $A_0$          | Block control       |                                                                      |
| 0 | 0 | 7E | 0                        | 1              | 1              | 1              | 1              | 1              | 1              | 0              | Set Digital         | A[7:0] = 3Bh                                                         |
| 0 | 1 |    | $A_7$                    | $A_6$          | $A_5$          | $A_4$          | $A_3$          | $A_2$          | $A_1$          | $A_0$          | Block control       |                                                                      |

### 8. Optical Specification

Measurements are made with that the illumination is under an angle of 45 degree, the detection is perpendicular unless otherwise specified

| Symbol   | Parameter          | Conditions | Min | Typ.                   | Max | Units | Notes |
|----------|--------------------|------------|-----|------------------------|-----|-------|-------|
| R        | White Reflectivity | White      | 30  | 35                     | ı   | %     | 8-1   |
| CR       | Contrast Ratio     | indoor     | 8:1 |                        | -   |       | 8-2   |
| Gn       | 2Grey Level        | ı          | -   | DS+(WS-DS)*n(m-1)      |     |       | 8-3   |
| T update | Image update time  | at 25 °C   | ı   | 3                      | ı   | sec   |       |
| Life     |                    | 0°C~50°C   |     | 1000000times or 5years |     |       |       |

Notes: 8-1. Luminance meter: Eye-One Pro Spectrophotometer.

8-2. CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.

8-3 WS: White state, DS: Dark state

### 9. Handling, Safety, and Environment Requirements

### Warning

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

#### **Caution**

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components. Disassembling the display module.

Disassembling the display module can cause permanent damage and invalidates the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

|                                                                 | Data sheet status                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Product specification                                           | This data sheet contains final product specifications.                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
|                                                                 | Limiting values                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| or more of the limiting values operation of the device at these | coordance with the Absolute Maximum Rating System (IEC 134). Stress above one may cause permanent damage to the device. These are stress ratings only and e or at any other conditions above those given in the Characteristics sections of the Exposure to limiting values for extended periods may affect device reliability. |  |  |  |  |  |  |  |
| Application information                                         |                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| Where application information                                   | is given, it is advisory and does not form part of the specification.                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |

# 10. Reliability Test

| NO | Test items                                   | Test condition                                                                         |
|----|----------------------------------------------|----------------------------------------------------------------------------------------|
| 1  | Low-Temperature<br>Storage                   | T = -25 °C, 240 h<br>Test in white pattern                                             |
| 2  | High-Temperature<br>Storage                  | T = +70°C, RH=40%, 240h<br>T=+60°C, RH=26%, 240h<br>Test in white pattern              |
| 3  | High-Temperature Operation                   | T = +50°C, RH = 30%, 240h                                                              |
| 4  | Low-Temperature Operation                    | 0℃, 240h                                                                               |
| 5  | High-Temperature,<br>High-Humidity Operation | T=+40℃, RH=90%,168h                                                                    |
| 6  | High Temperature, High<br>Humidity Storage   | T=+60℃, RH=80%,240h<br>Test in white pattern                                           |
| 7  | Temperature Cycle                            | 1 cycle:[-25°C 30min]→[+70 °C 30 min] : 100 cycles<br>Test in white pattern            |
| 8  | UV exposure Resistance                       | 765W/m² for 168hrs,40 °C<br>Test in white pattern                                      |
| 9  | ESD Gun                                      | Air+/-8KV;Contact+/-6KV (Shoot ESD gun on display area,n ot including IC and FPC area) |

Note: Put in normal temperature for 1hour after test finished, display performance is ok.

# 11. Block Diagram



# 12. Typical Application Circuit with SPI Interface



Page 23of33

- 13 Typical Operating Sequence
  - **13.1Normal Operation Flow**



### 13.2 Partial update Operation Flow



# 13.3 Normal Operation Reference Program Code

| ACTION        | VALUE/DATA              | COMMENT                                    |  |  |  |
|---------------|-------------------------|--------------------------------------------|--|--|--|
|               | POWER C                 | ON                                         |  |  |  |
| delay         | 10ms                    |                                            |  |  |  |
|               | PIN CONFIG              |                                            |  |  |  |
| RESE#         | high                    | Hardware reset                             |  |  |  |
| delay         | 200us                   |                                            |  |  |  |
| RESE#         | low                     |                                            |  |  |  |
| delay         | 200us                   |                                            |  |  |  |
| Read busy pin |                         | Wait for busy low                          |  |  |  |
| Command 0x12  |                         | Software reset                             |  |  |  |
| Read busy pin |                         | Wait for busy low                          |  |  |  |
| Command 0x74  | Data 0x54               | Set Analog Block Control                   |  |  |  |
| Command 0x7E  | Data 0x3B               | Set Digital Block Control                  |  |  |  |
| Command 0x01  | Data 0x97 0x00 0x00     | Set display size and driver output control |  |  |  |
| Command 0x11  | Data 0x01               | Ram data entry mode                        |  |  |  |
| Command 0x44  | Data 0x00 0x12          | Set Ram X address                          |  |  |  |
| Command 0x45  | Data 0x97 0x00 0x000x00 | Set Ram Y address                          |  |  |  |
| Command 0x3C  | Data 0x01               | Set border                                 |  |  |  |
|               | SET VOLTAGE AND         | LOAD LUT                                   |  |  |  |
| Command 0x2C  | Data 0x52               | Set VCOM value                             |  |  |  |
| Command 0x03  | Data 0x17               | Gate voltage setting                       |  |  |  |
| Command 0x04  | Data 0x41 0x00 0x32     | Source voltage setting                     |  |  |  |
| Command 0x3A  | Data 0x11               | Frame setting 50hz                         |  |  |  |
| Command 0x3B  | Data 0x0D               |                                            |  |  |  |
| Command 0x32  | Write 70bytes LUT       | Load LUT                                   |  |  |  |
|               | LOAD IMAGE ANI          | O UPDATE                                   |  |  |  |
| Command 0x4E  | Data 0x00               | Set Ram X address counter                  |  |  |  |
| Command 0x4F  | Data 0x97 0x00          | Set Ram Y address counter                  |  |  |  |
| Command 0x24  | 2888bytes               | Load image (152/8*152)                     |  |  |  |
| Command 0x22  | Data 0XC7               | Image update                               |  |  |  |
| Command 0x20  |                         |                                            |  |  |  |
| Read busy pin |                         | Wait for busy low                          |  |  |  |
| Command 0x10  | Data 0X01               | Enter deep sleep mode                      |  |  |  |
|               | POWER OFF               |                                            |  |  |  |

13.4 Partial update Operation Reference Program Code

| ACTION        | VALUE/DATA                | COMMENT                                    |
|---------------|---------------------------|--------------------------------------------|
| ACTION        | POWER ON                  | COMMENT                                    |
| delay         | 10ms                      |                                            |
|               | PIN CONFIG                |                                            |
| RESE#         | high                      | Hardware reset                             |
| delay         | 200us                     |                                            |
| RESE#         | low                       |                                            |
| delay         | 200us                     |                                            |
| Read busy pin | Wait for busy low         |                                            |
| Command 0x12  | •                         | Software reset                             |
| Read busy pin | Wait for busy low         |                                            |
| Command 0x74  | Data 0x54                 | Set Analog Block Control                   |
| Command 0x7E  | Data 0x3B                 | Set Digital Block Control                  |
| Command 0x01  | Data 0x97 0x00 0x00       | Set display size and driver output control |
| Command 0x11  | Data 0x01                 | Ram data entry mode                        |
| Command 0x44  | Data 0x00 0x12            | Set Ram X address                          |
| Command 0x45  | Data 0x97 0x00 0x000x00   | Set Ram Y address                          |
| Command 0x3C  | Data 0x01                 | Set border                                 |
|               | SET VOLTAGE AND LO        | OAD LUT                                    |
| Command 0x2C  | Data 0x52                 | Set VCOM value                             |
| Command 0x03  | Data 0x17                 | Gate voltage setting                       |
| Command 0x04  | Data 0x41 0x00 0x32       | Source voltage setting                     |
| Command 0x3A  | Data 0x11                 | Frame setting 50hz                         |
| Command 0x3B  | Data 0x0D                 |                                            |
| Command 0x32  | Write 70bytes LUT         | Load LUT                                   |
|               | LOAD IMAGE AND FULL U     |                                            |
| Command 0x4E  | Data 0x00                 | Set Ram X address counter                  |
| Command 0x4F  | Data 0x97 0x00            | Set Ram Y address counter                  |
| Command 0x24  | 2888bytes                 | Load image (152/8*152)                     |
| Command 0x4E  | Data 0x00                 | Set Ram X address counter                  |
| Command 0x4F  | Data 0x97 0x00            | Set Ram Y address counter                  |
| Command 0x26  | 2888bytes                 | Load image (152/8*152)                     |
| Command 0x22  | Data 0XC7                 | Image update                               |
| Command 0x20  |                           |                                            |
| Read busy pin | Wait for busy low         |                                            |
|               | LOAD PARITAL UPDATELUT    |                                            |
| Command 0x32  | Write 70bytes partial LUT | Load partial LUT                           |
| Command 0x37  | Data 0x00 0x000x00        | BW New/Old RAM mode for partial update     |
|               | 0x00 0x40 0x00 0x00       | • •                                        |
| Command 0x22  | Data 0XC0                 | Analog on                                  |
| Command 0x20  |                           |                                            |
| Read busy pin | Wait for busy low         |                                            |
|               | PARTIAL UPDATE SEQUEN     |                                            |
| Command 0x44  | Data 0xXX 0xXX            | Set partial update Ram of picture1         |
| Command 0x45  | Data 0xXX 0xXX 0xXX0xXX   |                                            |
| Command 0x4E  | Data 0xXX                 |                                            |
| Command 0x4F  | Data 0xXX 0xXX            |                                            |
| Command 0x24  | N bytes                   | Load partialpicture1datas                  |
| Command 0x22  | Data 0X0C                 | partial update                             |

| Command 0x20  |                         |                                     |  |  |
|---------------|-------------------------|-------------------------------------|--|--|
| Read busy pin | Wait for busy low       |                                     |  |  |
| Command 0x44  | Data 0xXX 0xXX          | Set partial update Ram of picture2  |  |  |
| Command 0x45  | Data 0xXX 0xXX 0xXX0xXX |                                     |  |  |
| Command 0x4E  | Data 0xXX               |                                     |  |  |
| Command 0x4F  | Data 0xXX 0xXX          |                                     |  |  |
| Command 0x24  | N bytes                 | Load partial picture2 data          |  |  |
| Command 0x22  | Data 0X0C               | partial update                      |  |  |
| Command 0x20  |                         |                                     |  |  |
| Read busy pin | Wait for busy low       |                                     |  |  |
| :             | :                       | :                                   |  |  |
| :             | :                       | :                                   |  |  |
| Command 0x44  | Data 0xXX 0xXX          | Set partial update Ram of picture N |  |  |
| Command 0x45  | Data 0xXX 0xXX 0xXX0xXX |                                     |  |  |
| Command 0x4E  | Data 0xXX               |                                     |  |  |
| Command 0x4F  | Data 0xXX 0xXX          |                                     |  |  |
| Command 0x24  | N bytes                 | Load partial picture N data         |  |  |
| Command 0x22  | Data 0X0C               | partial update                      |  |  |
| Command 0x20  |                         |                                     |  |  |
| Read busy pin | Wait for busy low       |                                     |  |  |
|               | ANALOG OFF              |                                     |  |  |
| Command 0x22  | Data 0X03               | Analog off                          |  |  |
| Command 0x20  |                         |                                     |  |  |
| Read busy pin | Wait for busy low       |                                     |  |  |
| Command 0x10  | Data 0X01               | Enter deep sleep mode               |  |  |
| POWER OFF     |                         |                                     |  |  |
|               |                         |                                     |  |  |

Note: During partial update the IC should not enter deep sleep mode.

### 14. Part Number Definition

### DEPG0154BNS75AF0

1 2 3 456 7

1: DEP:DKE product

2: G:Dot matrix type

3: The E-paper size:1.54inch:0154

4: The color of E-paper:

B: Black/White R: Black/White/Red Y: Black/White/Yellow

5: OT range: N: Normal L: Low temperature H: High temperature

6: Driver type

7: FPC type

# 15. Inspection condition

### 15.1 Environment

Temperature:  $25\pm3^{\circ}$ C Humidity:  $55\pm10\%$ RH

### 15.2 Illuminance

Brightness:1200~1500LUX;distance:20-30CM;Angle:Relate 30°surround.

### 15.3 Inspect method



### 15.4 Display area



# 15.5 Inspection standard

### 15.5.1 Electric inspection standard

| NO. | Item                                                 | Standard                                                                                                                                                                                          | Defect<br>level | Method                                     | Scope            |
|-----|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------|------------------|
| 1   | Display                                              | Display complete<br>Display uniform                                                                                                                                                               | MA              |                                            |                  |
| 2   | Black/White<br>spots                                 | D≤0.25mm, Allowed<br>0.25mm < D≤0.4mm on N≤3, and<br>Distance≥5mm<br>0.4mm < D Not Allow                                                                                                          | MI              | Visual inspection  Visual/ Inspection card |                  |
| 3   | Black/White<br>spots<br>(No switch)                  | L\(\leq 0.6\text{mm}, \text{ W}\leq 0.2\text{mm}, \text{ N}\leq 1<br>L\(\leq 2.0\text{mm}, \text{W} \rightarrow 0.2\text{mm}, \text{ Not Allow}<br>L\(\rightarrow 0.6\text{mm}, \text{ Not Allow} |                 |                                            | Zone A           |
| 4   | Ghost image                                          | Allowed in switching process                                                                                                                                                                      | MI              | Visual inspection                          |                  |
| 5   | Flash spots/<br>Larger FPL size                      | Flash spots in switching, Allowed FPL size larger than viewing area, Allowed.                                                                                                                     | MI              | Visual/<br>Inspection card                 | Zone A<br>Zone B |
| 6   | Display<br>wrong/Missing                             | All appointed displays are showed correct                                                                                                                                                         | MA              | Visual inspection                          | Zone A           |
| 6   | Short circuit/<br>Circuit break/<br>Display abnormal | Not Allow                                                                                                                                                                                         |                 |                                            |                  |

### 15.5.2 Appearance inspection standard

| NO. | Item                                              | Standard                                                                                                                                                                                             | Defect<br>level | Method                 | Scope            |
|-----|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------|------------------|
| 1   | B/W spots<br>/Bubble/<br>Foreign bodies/<br>Dents | D= $(L+W)/2$ D $\leq 0.25$ mm, Allowed 0.25mm $<$ D $\leq 0.4$ mm, N $\leq 3$ D $> 0.4$ mm, Not Allow                                                                                                | MI              | Visual<br>inspection   | Zone A           |
| 2   | Glass crack                                       | Not Allow                                                                                                                                                                                            | MA              | Visual<br>/ Microscope | Zone A<br>Zone B |
| 3   | Dirty                                             | Allowed if can be removed                                                                                                                                                                            | MI              |                        | Zone A<br>Zone B |
| 4   | Chips/Scratch/<br>Edge crown                      | $X \le 3$ mm, $Y \le 0.5$ mm $X \le 3$ mm, $Y \le 3$ mm $X \le 3$ mm, $Y \le 3$ mm $X \le 3$ mm, $Y \le 3$ mm | MI              | Visual<br>/ Microscope | Zone A<br>Zone B |
| 5   | Substrate color difference                        | Allowed                                                                                                                                                                                              |                 |                        |                  |
| 6   | FPC broken/<br>Goldfingers<br>xidation/ scratch   | Not Allow                                                                                                                                                                                            | MA              | Visual<br>/ Microscope | Zone B           |

| 7 | PCB damaged/<br>Poor welding/<br>Curl                     | PCB (Circuit area) damaged Not Allow<br>PCB Poor welding Not Allow<br>PCB Curl≤1%                                                                                              |    |                      |        |
|---|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------|--------|
| 8 | Edge Adhesives<br>height/FPL/<br>Edge adhesives<br>bubble | Edge Adhesives height ≤ Display surface Edge adhesives seep in≤1/2 Margin width FPL tolerance ±0.3mm Edge adhesives bubble: bubble Width ≤1/2 Margin width; Length ≤0.5mm₀ n≤3 | MI | Visual<br>/ Ruler    | Zone B |
| 9 | Protect film                                              | Surface scratch but not effect protect function, Allow                                                                                                                         |    | Visual<br>Inspection |        |

### 16.Packaging

