STAT 4352 - Mathematical Statistics Notes

 ${\rm JaimeGoB}$

March 3, 2021

1 Chapter 11 - Interval Estimation

Point Estimators

 θ is a unknown parameter (feature of a population)

- Ex: population mean μ
- Fixed.

 $\hat{\theta}$ is a point estimator of θ (it is a numerical value)

- Ex: sample mean \bar{x}
- Varies from sample to sample.
- No guarantee of accuracy
- \bullet Must be supplemented by $\mathrm{Var}(\theta)$

Standard Error $SE(\hat{\theta})$ measures how much $\hat{\theta}$ varies from sample to sample. small $SE \implies$ low variance thus a more reliable estimate of θ

Interval Estimators

Def: Interval Estimate

Provides a range of values that best describe the population.

Let L = L(x) be the Lower Limit

U = U(x) be the Upper Limit

Both L,U are Random Variables because they are functions of sample data.

Def: Confidence Level / Confidence Coefficient

Is the probability that the **interval estimate** will include population parameter θ .

- Sample means will follow the <u>normal probability distribution</u> for large sample sizes $(n \ge 30)$
- For small sample forces us to use the t-distribution probability distribution (n < 30)
- A confidence level of 95% implies that 95% of all samples would give an interval that includes θ , and only 5% of all samples would yield an erroneous interval.
- The most frequently used confidence levels are 90%, 95%, and 99% with corresponding Z-scores 1.645, 1.96, 2.576.
- The higher the confidence level, the more strongly we believe that the value of the parameter lies within the interval.

Def: Confidence Interval

Gives plausible values for the parameter θ being estimated where degree of plausibility specified by a confidence level.

To construct an interval estimator of unknown parameter θ . We must find two statistics **L** and **U** such that:

$$P\{\mathbf{L} \le \theta \le \mathbf{U}\} = 1 - \alpha$$

- $P\{L \le \theta \le U\}$ Coverage Probability, in repeated sampling, what percent of samples or Confident Intervals capture true θ .
- 100(1- α) Confidence Interval for unknown fixed parameter θ .
- L,U Lower and Upper Bounds RVs because they are functions of sample data. Vary from sample to sample.
- 1- α Confidence Level (Probability) estimate will include population parameter θ .
- α Level of Significance Percent chance Confidence Interval will not contain population parameter θ .

Def: Coverage Probability

 $P\{\mathbf{L} \leq \theta \leq \mathbf{U}\}$ Gives what % of samples or Confidence Intervals capture true θ .

Ex: Coverage Probability = 95%

Will capture θ , 95% of the time.

Will NOT capture θ , 5% of the time.

Properties of Confidence Intervals

- Confidence Intervals are not unique.
- Desirable to have E[Length of CI] to be small.
- A one-sided $100(1-\alpha)$ lower-confidence interval on θ : L = $-\infty \implies P\{L \le \theta\} = 1-\alpha$
- A one-sided $100(1-\alpha)$ upper-confidence interval on θ : $U=\infty \implies P\{\theta \leq U\} = 1-\alpha$
- If L,U are both finite, then we have a two sided interval.

Correctly Interpreting Confidence Intervals

Not Correct

There is 90% probability that the true population mean is within the interval.

Correct

There is a 90% probability that <u>any given Confidence Interval from a random sample</u> will contain the true population mean.

How to Construct Confidence Interval Using Pivot Approach:

Suppose we have a random sample $X_1, X_2, ..., X_n$ from a population distribution and the parameter of interest is θ .

Given value $\alpha \in (0,1)$. We would like to construct a 1- α Confidence Interval using a Pivot Approach:

- 1. Find a variable Y, that is function of the parameter θ and data x.
- 2. The distribution of newly created variable Y is free of θ .

In many cases:

$$Y = \frac{\hat{\theta} - \theta}{SE(\hat{\theta})}$$
 is a pivot and the distribution of Y is symmetric about 0.

Using Pivot Approach for Two-Sided Intervals:

Find the critical points denoted $c_{\alpha/2}$ such that:

$$P\{-c_{\alpha/2} \le Y \le c_{\alpha/2}\} = 1 - \alpha$$

 $c_{\alpha/2}$ is the upper $(\alpha / 2)100$ th percentile.

Critical points- give you the area to the right of the point.

Visualizing elements from Pivot Approach:

Let μ be parameter of interest. We can construct CI using pivot approach.

$$\frac{\partial}{\partial z} = \overline{X} \quad \partial = M$$

$$SE(\hat{\theta}) = SE(\overline{X}) = 0$$

$$-C_{4/2} = 2 - 025 = 1 - d$$

Symmetric Two-sided CI: Theorem

 $\hat{\theta} \pm c_{\alpha/2}(SE(\hat{\theta}))$ is a $100(1-\alpha)\%$ confidence interval for θ

Proof:

$$\begin{split} 1 - \alpha &= P\{-c_{\alpha/2} \leq Y \leq c_{\alpha/2}\} \\ &= P\{-c_{\alpha/2} \leq \frac{\hat{\theta} - \theta}{SE(\hat{\theta})} \leq c_{\alpha/2}\} \\ &= P\{\hat{\theta} - c_{\alpha/2}(SE(\hat{\theta})) \leq Y \leq \hat{\theta} + c_{\alpha/2}(SE(\hat{\theta}))\} \\ &\implies \hat{\theta} \text{ is within } c_{\alpha/2}(SE(\hat{\theta})) \text{ of } \theta \text{ with probability } 1-\alpha \end{split}$$

 $c_{\alpha/2}(SE(\hat{\theta}))$ is known as Margin of Error (size of error in estimation) Ex: In polls you might hear accurate with 0.02 (this is margin of error)

Asymmetric Two-sided CI(Non-symmetric distributions):

 $[\hat{\theta} - c_{\alpha/2}(SE(\hat{\theta})), \hat{\theta} - c_{1-\alpha/2}(SE(\hat{\theta}))]$ is a $100(1-\alpha)\%$ confidence interval for θ

Proof:

$$1 - \alpha = P\{c_{1-\alpha/2} \le Y \le c_{\alpha/2}\}$$

$$= P\{c_{1-\alpha/2} \le \frac{\hat{\theta} - \theta}{SE(\hat{\theta})} \le c_{\alpha/2}\}$$

$$= P\{\hat{\theta} - c_{\alpha/2}(SE(\hat{\theta})) \le \theta \le \hat{\theta} - c_{1-\alpha/2}(SE(\hat{\theta}))\}$$

Ex: Chi-Square distribution critical points

One-sided Confidence Bound:

A one-sided confidence bound defines the point where a certain percentage of the population is either higher or lower than the defined point.

Upper Bound: $U = \hat{\theta} - c_{1-\alpha}(SE(\hat{\theta}))$ when $L = -\infty$

Lower Bound: $L = \hat{\theta} - c_{\alpha}(SE(\hat{\theta}))$ when $U = \infty$

Proof(Upper Bound):

Coverage probability is 1 - α .

$$1 - \alpha = P\{Y \ge c_{1-\alpha}\}$$

$$= P\{\frac{\hat{\theta} - \theta}{SE(\hat{\theta})} \ge c_{1-\alpha}\}$$

$$= P\{\theta \le \hat{\theta} - c_{1-\alpha}(SE(\hat{\theta}))\}$$

$$\implies U = \hat{\theta} - c_{1-\alpha}(SE(\hat{\theta}))$$

The lower bound can be computed in the same manner.

How to interpret a one-sided CI?

For Lower Bound critical region $\in [c_{\alpha}, \infty]$: We are sure parameter θ is below c_{α}

For **Upper Bound** critical region $\in [-\infty, c_{1-\alpha}]$: We are sure parameter θ is above $c_{1-\alpha}$

Choice of Sample Size for CI for Mean when Variance Known

General form of a CI:

 $100(1-\alpha)\%$ CI for θ : $\hat{\theta} \pm c_{\alpha/2}SE(\hat{\theta})$

Mean μ of a Normal population: $\bar{x} \pm Z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$

Margin Of Error: MOE = $Z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$

Width of CI: $2 \times \text{MOE} = 2 \cdot Z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$

Properties of MOE:

• As $(1-\alpha)$ increases MOE increases:

The larger the CI, the larger critical points are needed.

As <u>critical points increase</u>, Margin Of Error: $\underline{MOE} = Z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right) \underline{\text{increase}}$

⇒ Increase in CI will make width of CI wider

• As σ increases MOE increases:

Margin Of Error: MOE = $Z_{\alpha/2}\left(\frac{\sigma}{\sqrt{n}}\right)$ $\underline{\sigma}$ is part of numerator, if it increases it will make MOE increase too.

• As *n* increases MOE decreases:

Margin Of Error: MOE = $Z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$ n is part of denominator, if it increases it will make MOE decrease.

Getting n from predefined MOE:

Let E_0 be a pre-specified MOE. We can a value for n to make the following equation true.

$$\frac{Z_{\alpha/2} \cdot \sigma}{\sqrt{n}} \le E_0$$
 solving for n we get: $n \ge \left(\frac{Z_{\alpha/2} \cdot \sigma}{\sqrt{n}}\right)^2$ (round up to nearest n.)

We do this when we want to know how many observations (n) will give pre-specified margin of error - ${\rm E}_0$

7

Theorem 11.1: Confidence Interval on the Mean of a Normal Distribution with known Variance

Let X be normal random variable with:

Unknown mean μ

Known variance σ^2

Suppose a random sample n, $(X_1, X_2, ..., X_n)$ is taken.

A $100(1-\alpha)\%$ confidence interval on μ can be obtained by considering sampling distribution of the sample mean \bar{X} .

Central Limit Theorem:

$$E(\bar{X}) = \mu$$
 and $SD(\bar{X}) = \frac{\sigma}{\sqrt{n}}$, so $\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$ as $n \to \infty$

Let $Z = Standardizing \bar{X}$, Z will follow a Standard Normal Distribution

Let
$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$$

We can see from the image to the <u>left</u>: **Distribution of Z** and the image to the <u>right</u>:

We can see that:

$$P\{-Z_{\alpha/2} \le Z \le Z_{\alpha/2}\} = 1 - \alpha$$

substituting Z into equation:

$$P\{-Z_{\alpha/2} \le \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le Z_{\alpha/2}\} = 1 - \alpha$$

isolating μ :

$$P\{\bar{X} - Z_{\alpha/2}(\sigma/\sqrt{n}) \le \mu \le \bar{X} + Z_{\alpha/2}(\sigma/\sqrt{n})\} = 1 - \alpha$$

Conclusion $\bar{X} \pm Z_{\alpha/2}(\sigma/\sqrt{n})$ is a 100(1- α)% CI for μ

Confidence Interval on the Mean of a Normal Distribution Variance Unknown and/or Small Sample:

$$\bar{X} \pm t_{n-1,\alpha/2} \left(\frac{s}{\sqrt{n}}\right)$$
 is a $100(1-\alpha)\%$ CI for μ

Proof:

We know that
$$T = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}$$

$$1 - \alpha = P\{-t_{n-1,\alpha/2} \le T \le t_{n-1,\alpha/2}\}$$

$$= P\{-t_{n-1,\alpha/2} \le \frac{\bar{X} - \mu}{S/\sqrt{n}} \le t_{n-1,\alpha/2}\}$$

$$= P\{\bar{X} - t_{n-1,\alpha/2}(S\sqrt{n}) \le \mu \le \bar{X} + t_{n-1,\alpha/2}(S\sqrt{n})\}$$

Confidence Interval on the Mean no Specific Distribution Variance Known

$$\bar{X} \pm Z_{\alpha/2}(\sigma/\sqrt{n})$$
 is a 100(1- α)% CI for μ

Proof:

Assuming the sample size is large ($n \ge 30$) then by CLT:

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

The mean of any distribution **provided** n is large ($n \ge 30$) can be approximated using a Normal Distribution.

Confidence Interval on the Mean no Specific Distribution Variance Unknown

$$\bar{X} \pm Z_{\alpha/2}(S/\sqrt{n})$$
 is a 100(1- α)% CI for μ

Proof:

Given the fact that S^2 is and unbiased estimator of σ^2 we can use sample variance in lieu of population variance. Also sample size is large (n \geq 30) then by CLT and LLN:

$$Z = \frac{\bar{X} - \mu}{S/\sqrt{n}} = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \left(\frac{\sigma}{S}\right) = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$$

Confidence Interval on the Proportion of a Binomial Distribution

$$\hat{p}\pm Z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$
 is a 100(1- $\alpha)\%$ CI for p

n is random sample of size n has been taken from a large population and $X (\leq n)$ observations in this sample belong to a class of interest.

 $\hat{p} = X/n$ is the point estimator of the proportion of the population that belongs to this class.

n and p are the parameters of a binomial distribution.

Proof:

The sampling distribution of \hat{p} is approximately normal with mean p and variance p(1-p)/n, if p is not too close to 0 or 1 and n is large.

$$Z = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} \sim N(0,1)$$

To construct CI on p, note that:

$$1 - \alpha \approx P\{-Z_{\alpha/2} \le Z \le Z_{\alpha/2}\}$$

$$\approx P\{-Z_{\alpha/2} \le \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} \le Z_{\alpha/2}\}$$

$$\approx P\{\hat{p} - Z_{\alpha/2}\sqrt{\frac{p(1-p)}{n}} \le p \le \hat{p} + Z_{\alpha/2}\sqrt{\frac{p(1-p)}{n}}\}$$

Since the square root is the SE of estimator \hat{p} and also contains p in lower and upper bound.

We can replace p with \hat{p} and use Estimated SE instead of SE.

$$\approx P\{\hat{p} - Z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le p \le \hat{p} + Z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\}$$

Confidence Interval on the Variance or Standard Deviation of a Normal Distribution - Mean is Unknown

$$\left[\frac{(n-1)S^2}{\chi_{n-1,\alpha/2}^2}, \frac{(n-1)S^2}{\chi_{n-1,1-\alpha/2}^2}\right] \text{ is a } 100(1-\alpha)\% \text{ CI for } \sigma^2$$

Proof:

According to theorem 8.11:

$$Y = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{\sigma^2} = \frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$

The critical points are: $\chi^2_{n-1,1-\alpha/2}$ and $\chi^2_{n-1,\alpha/2}$

$$1 - \alpha = P\{\chi_{n-1, 1-\alpha/2}^2 \le \frac{(n-1)S^2}{\sigma^2} \le \chi_{n-1, \alpha/2}^2\}$$
$$= P\left[\frac{(n-1)S^2}{\chi_{n-1, \alpha/2}^2} \le \sigma^2 \le \frac{(n-1)S^2}{\chi_{n-1, 1-\alpha/2}^2}\right]$$

Confidence Interval on the Variance or Standard Deviation of a Normal Distribution - Mean is Known

$$\left[\frac{(n)S^2}{\chi^2_{n,\alpha/2}}, \frac{(n)S^2}{\chi^2_{n,1-\alpha/2}}\right] \text{ is a } 100(1-\alpha)\% \text{ CI for } \sigma^2$$

Proof:

Since μ is known then:

Sum of n, squared standard normal distributions

 \implies Sum of n Chi-Square distributions with one df

$$\implies \chi_n^2$$

$$Y = \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{\sigma^2} = \left(\frac{x_1 - \mu}{\sigma}\right)^2 + \dots + \left(\frac{x_n - \mu}{\sigma}\right)^2 \sim \chi_n^2$$

The critical points are: $\chi^2_{n,1-\alpha/2}$ and $\chi^2_{n,\alpha/2}$

$$1 - \alpha = P\{\chi_{n,1-\alpha/2}^2 \le \frac{(n)S^2}{\sigma^2} \le \chi_{n,\alpha/2}^2\}$$
$$= P\left[\frac{(n)S^2}{\chi_{n,\alpha/2}^2} \le \sigma^2 \le \frac{(n)S^2}{\chi_{n,1-\alpha/2}^2}\right]$$

Two-Sample Confidence Interval Estimation Confidence Interval on the Difference between Means of Two Normal Distributions, Variances Known

In this case both means are unknown but variances are known.

$$\left[\bar{X}_1 - \bar{X}_2 \pm (Z_{\alpha/2}) \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right] \text{ is a } 100(1-\alpha)\% \text{ CI for } \mu_1 - \mu_2$$

Proof:

Let X_1 and X_2 be two normally distributed independent random variables.

$$X_1 \sim N(\mu_1, \sigma_1^2) \text{ and } X_2 \sim N(\mu_2, \sigma_2^2)$$

So,
$$\mu_1 - \mu_2 = \bar{X}_1 - \bar{X}_2 \implies SE(\bar{X}_1 - \bar{X}_2) = SD(\bar{X}_1 - \bar{X}_2) = \sqrt{Var(\bar{X}_1 - \bar{X}_2)}$$

Because Var(A - B) = Var(A) - Var(B) when A,B are independent

$$SE(\bar{X}_1 - \bar{X}_2) = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \implies \left[\bar{X}_1 - \bar{X}_2 \sim N(\bar{X}_1 - \bar{X}_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}) \right]$$

Independent random samples from normal populations:

$$Z = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$$

Now, to construct a CI:

$$1 - \alpha = P\{-Z_{\alpha/2} \le Z \le Z_{\alpha/2}\}$$

$$= P\{-Z_{\alpha/2} \le \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \le Z_{\alpha/2}\}$$

$$= P\left[(-Z_{\alpha/2})\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \le (\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2) \le (Z_{\alpha/2})\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \right]$$

$$= P\left[\bar{X}_1 - \bar{X}_2 - \left(Z_{\alpha/2}\right)\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \le \mu_1 - \mu_2 \le \bar{X}_1 - \bar{X}_2 + \left(Z_{\alpha/2}\right)\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right]$$

Confidence Interval on the Difference between Means of Two Normal Distributions, Variances Unknown or Small Samples

Both means and variances are unknown. However, we can assume $\sigma_1^2 = \sigma_2^2 = \sigma^2$

$$\left[\bar{X}_1 - \bar{X}_2 \pm \left(t_{n_1 + n_2 - 2, \alpha/2}\right) S_p \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right] \text{ is a } 100(1-\alpha)\% \text{ CI for } \mu_1 - \mu_2$$

Proof:

Let S_1^2 and S_2^2 be sample variances of random variables X_1 and X_2 . Since both sample variances are estimates of common variance σ^2 we can obtain a pooled estimator of σ^2 .

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_2 + n_1 - 2} \sim \chi_{n_1 - 1}^2 + \chi_{n_2 - 1}^2$$

Now pivot T

$$T = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{S_p \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2}$$

Now, to construct a CI:

$$1 - \alpha = P\{-t_{n_1 + n_2 - 2, \alpha/2} \le T \le t_{n_1 + n_2 - 2, \alpha/2}\}$$

$$= P\{-t_{n_1+n_2-2,\alpha/2} \le \frac{(\bar{X}_1 - \bar{X}_1) - (\mu_1 - \mu_2)}{S_p \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \le t_{n_1+n_2-2,\alpha/2}\}$$

$$P\left[-t_{n_1+n_2-2,\alpha/2}\left(S_p\cdot\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}\right)\leq (\bar{X}_1-\bar{X}_2)-(\mu_1-\mu_2)\leq t_{n_1+n_2-2,\alpha/2}\left(S_p\cdot\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}\right)\right]$$

After solving for both population means:

$$P\left[\bar{X}_1 - \bar{X}_2 - (t_{n_1 + n_2 - 2, \alpha/2})S_p\sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \le \mu_1 - \mu_2 \le \bar{X}_1 - \bar{X}_2 + (t_{n_1 + n_2 - 2, \alpha/2})S_p\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right]$$

Confidence Interval on the Difference between Means of Two Normal Distributions, Variances Unknown and Variances Differ

Both means and variances are unknown and the variances are not equal $\sigma_1^2 \neq \sigma_2^2$. In this case we make the assumption that variances are different.

$$\left[\bar{X}_1 - \bar{X}_2 \pm (t_{v,\alpha/2}) \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}\right] \text{ is a } 100(1-\alpha)\% \text{ CI for } \mu_1 - \mu_2$$

Proof:

From previous cases we know that:

$$\bar{X}_1 - \bar{X}_2 \sim N(\bar{X}_1 - \bar{X}_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2})$$

Now let Y be the approximate pivot:

$$T = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \approx t_v \text{ where df } v = \frac{(S_1^2/n_1 + S_2^2/n_2)^2}{\frac{(S_1^2/n_1)^2}{n_1 + 1} + \frac{(S_2^2/n_2)^2}{n_2 + 1}}$$

$$1 - \alpha = P\{-t_{v,\alpha/2} \le T \le t_{v,\alpha/2}\}$$

$$= P\{-t_{v,\alpha/2} \le \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \le t_{v,\alpha/2}\}$$

$$P\left[-t_{v,\alpha/2}\left(\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}\right) \le (\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2) \le t_{v,\alpha/2}\left(\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}\right)\right]$$

After solving for both population means:

$$P\left[\bar{X}_1 - \bar{X}_2 - (t_{v,\alpha/2})\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}} \le \mu_1 - \mu_2 \le \bar{X}_1 - \bar{X}_2 + (t_{v,\alpha/2})\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}\right]$$

Confidence Interval on the Ratio of Variances of Two Normal Distributions

$$\begin{array}{l} & \text{CI for } \sigma_1^2/\sigma_2^2. \\ & \underline{\text{Recall:}} \ \frac{\chi_{n_1-1}^2/(n_1-1)}{\chi_{n_2-1}^2/(n_2-1)} \sim F_{n_1-1,n_2-1}; \ \frac{1}{F_{n_1-1,n_2-1}} = \frac{\chi_{n_2-1}^2/(n_2-1)}{\chi_{n_1-1}^2/(n_1-1)} \sim \\ & F_{n_2-1,n_1-1} \\ & \text{Pivot:} \ Y = \frac{\frac{(n_1-1)S_1^2}{\sigma_1^2} \frac{1}{(n_1-1)}}{\frac{(n_2-1)S_2^2}{\sigma_2^2} \frac{1}{(n_2-1)}} = \frac{S_1^2}{S_2^2} \cdot \frac{\sigma_2^2}{\sigma_1^2} \sim F_{n_1-1,n_2-1} \\ & 1 - \alpha = P \left[F_{1-\alpha/2,n_1-1,n_2-1} \leq \frac{S_1^2}{S_2^2} \cdot \frac{\sigma_2^2}{\sigma_1^2} \leq F_{\alpha/2,n_1-1,n_2-1} \right] \\ & = P \left[F_{1-\alpha/2,n_1-1,n_2-1} \cdot \frac{S_2^2}{S_1^2} \leq \frac{\sigma_2^2}{\sigma_1^2} \leq F_{\alpha/2,n_1-1,n_2-1} \cdot \frac{S_2^2}{S_1^2} \right] \\ & = P \left[\frac{1}{F_{\alpha/2,n_1-1,n_2-1}} \cdot \frac{S_1^2}{S_2^2} \leq \frac{\sigma_1^2}{\sigma_2^2} \leq \frac{1}{F_{1-\alpha/2,n_1-1,n_2-1}} \cdot \frac{S_1^2}{S_2^2} \right] \\ & 100(1-\alpha)\% \ \text{CI for } \frac{\sigma_1^2}{\sigma_1^2} : \left[\frac{1}{F_{\alpha/2,n_1-1,n_2-1}} \cdot \frac{S_1^2}{S_2^2}, \frac{1}{F_{1-\alpha/2,n_1-1,n_2-1}} \cdot \frac{S_2^2}{S_1^2} \right] \\ & 100(1-\alpha)\% \ \text{CI for } \frac{\sigma_2^2}{\sigma_1^2} : \left[F_{1-\alpha/2,n_1-1,n_2-1} \cdot \frac{S_2^2}{S_2^2}, F_{\alpha/2,n_1-1,n_2-1} \cdot \frac{S_2^2}{S_1^2} \right] \end{array}$$