Section 14.

Infinite Sets

Recap Equinumerousness

A and B have the same number of elements

· <u>Pefin</u> Let A and B be sets. To say that A is equinumenous to B (A & B)

means that there exists a bijection from A to B.

· ~ is an equivalence relation:

· The rigidity prop. of finite sets A finite set cannot be equinumerous to any of its proper subsets.

Equinumerousness and Infinite Sets

Infinite Sets Are Not Rigid

$$\omega = \{0, \underbrace{1, 2, 3, \dots}\} = \mathbb{N} \cup \{0\}$$

By the rigidity property, a finite set cannot be equinumerous to any of its proper subsets. But this is not the case with an infinite set.

Example 1 (Natural Numbers and Whole Numbers)

 $\mathbb N$ is a proper subset of ω , but ω is equinumerous to $\mathbb N$ because the function f defined by f(n) = n+1 for all $n \in \omega$ is a bijection from ω to $\mathbb N$.

Question. Is f above the only bijection from ω to \mathbb{N} ? If not, construction

another one of your own.

Infinite Sets Are Not Rigid (cont')

$$A = B \cup \{i\}$$

Example 2 (Intervals)

Let $A = [1, \infty)$ and $B = (1, \infty)$. B is a proper subset of A, but A is equinumerous to B. Find an example of a bijection f from A to B.

$$f:A \rightarrow B$$
 defined by
$$f(t) = \begin{cases} 2t+1 & \text{for } t=1,2,3,... \\ t & \text{otherwise} \end{cases}$$
This is a bijection. (Confirm it.)

Kishore's idea

The function
$$f$$
 defined by
$$f(x) = x+1 \qquad \text{for all } x \in [1, \infty)$$
 is a bijection from $[1, \infty)$ to $[2, \infty)$.

Thus $[1, \infty) \approx [2, \infty)$.

Infinite Sets Are Not Rigid (cont')

Example 3 (Even and Odd Natural Numbers)

Let $A=\{2,4,6,\ldots\}$ be the set of even natural numbers and let $B=\{1,3,5,\ldots\}$ be the set of odd natural numbers. Verify the following by finding suitable bijections.

- 1 A ≈ B. (Note A and B are disjoint.)
- $\mathbf{2} \ \mathbb{N} \approx A$. (Note A is a proper subset of \mathbb{N} .)
- N ≈ B. (Note B is a proper subset of IN.)
- ① $f: A \rightarrow B$ defined by f(n) = n-1 is a bijection.
- ② $g: \mathbb{N} \to A$ defined by g(n) = 2n Will do.
- \bigcirc h: $\mathbb{N} \longrightarrow \mathbb{B}$ defined by h(n) = 2n 1

Infinite Sets Are Not Rigid (cont')

Exercise

Show that $\mathbb{Z} \approx \mathbb{N}$.

Hint
$$f: \mathbb{Z} \to \mathbb{N}$$
 defined by
$$f(n) = \int_{-\infty}^{\infty} even \qquad \text{if} \quad n = 1, 2, 3, -1$$

More Counter-Intuitive Examples

Example 4 (Perfect Squares)

Let $S = \{n^2 : n \in \mathbb{N}\}$ be the set of all perfect squares. Then $S \approx \mathbb{N}$.

$$f: \mathbb{N} \to S$$
 defined by $f(n) = n^2$ is a bijection.

Example 5 (Cartesian Product of \mathbb{N})

 $\mathbb{N}\times\mathbb{N}\approx\mathbb{N}$ because the function g defined by

$$\begin{split} g(1,1)&=1,\\ g(1,2)&=2,\quad g(2,1)=3,\\ g(1,3)&=4,\quad g(2,2)=5,\quad g(3,1)=6,\\ g(1,4)&=7,\quad g(2,3)=8,\quad g(3,2)=9,\quad g(4,1)=10,\\ \text{and so on.} \end{split}$$

is a bijection from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N} .

Example 6 (Positive Rational Numbers)

Let $A=\{x\in\mathbb{Q}:x>0\}$. Each element $x\in A$ can be expressed uniquely as x=a/b where $a,b\in\mathbb{N}$ and the fraction is in lowest terms. We can list all such fractions in lowest terms as follows:

Define f(n) to be the n-th term in this list. Then f is a bijection from \mathbb{N} to A.

Exercise

Show that $\mathbb{Q} \approx \mathbb{N}$.

Example 7

Let A=[0,12] and let B=[0,5]. Then $A\approx B$ because of we let f(x)=5x/12 for all $x\in A$, then f is a bijection from A to B.

Note. In general, for any $a, b, c, d \in \mathbb{R}$ with a < b and c < d,

$$[a,b]\approx [c,d], \quad (a,b)\approx (c,d), \quad (a,b]\approx (c,d], \quad \text{and} \quad [a,b)\approx [c,d).$$

Example 8

Let $\varphi(x)=x/(1-|x|)$ for all $x\in (-1,1)$. In S11E23, we showed that φ is a bijection from (-1,1) to $\mathbb R$. Hence $(-1,1)\approx \mathbb R$.

Note. By this example and the note from the previous example, we deduce that $(0,1) \approx \mathbb{R}$. This fact will be useful later.