Dispersión

Biogeografía

Intro

- Todos los organismos que vemos han llegado ahí de alguna manera
- Han cambiado de posición, por pequeñas que sean las distancias
- ¿Cómo llegaron ahí?
 - Formas de movimiento

Tipos de movimientos

Gasto de energía

- Fenómeno biológico que lo motiva
 - Dispersión vs Migración

Por le energía utilizada

Activo

- Involucra energía del organismo
- Implica cierta "voluntad"

Pasivo

 Depende de corrientes de aire, agua u otros organismos

Por el fenómeno biológico

- Dispersión
 - Alejarse de otros individuos de la misma especie
 - De otras crías
 - De padre y madre
 - Tiende a carece de dirección específica
- Migración
 - Involucra varios o muchos individuos
 - Generalmente direccional hacia algún recurso

Dispersión

Cuando ardillas y leones (machos) alcanzan cierta madurez abandonan madriguera ó harén en busca de uno nuevo

La colonización de islas por aves marinas ocurre por dispersión

Plantas aprovechan circulación atmosférica u otros organismos para dispersarse pasivamente.

¿Es la introducción de especies a nuevas regiones geográficas un evento de dispersión pasiva?

Migración

Anualmente, miles de aves rapaces migran de norte a sur y de regreso antes de invierno y verano, resguardándose de condiciones climatológicas extremas

Birds track their Grinnellian niche through a century of climate change

Morgan W. Tingley^{a,b,1}, William B. Monahan^c, Steven R. Beissinger^{a,b}, and Craig Moritz^{b,d}

Departments of ^aEnvironmental Science, Policy, and Management and ^dIntegrative Biology, and ^bMuseum of Vertebrate Zoology, University of California, Berkeley, CA 94720; and ^cAudubon California, 4225 Hollis Street, Emeryville, CA 94608

Edited by David B. Wake, University of California, Berkeley, CA, and approved August 11, 2009 (received for review March 16, 2009)

In the face of environmental change, species can evolve new physiological tolerances to cope with altered climatic conditions or move spatially to maintain existing physiological associations with over the time scale of comparison, then species ranges should also move across the landscape as averages and extremes of temperature, precipitation, and relative humidity change over

Cambios en las distribuciones geográficas pueden ocurrir como consecuencia del cambio en condiciones ambientales

Migración de monarcas (*Danaus plexipus*), en respuesta a múltiples factores:

• Floración de Asclepias sp. y condiciones climáticas.

Midiendo la migración

- Observar movimiento de organismos
 - Registro de posición en el tiempo
 - Análisis posterior con sistemas de información geográfica

Telemetría, registro a distancia de posición de organismos. Se hacía con transmisores de radio, actualmente se utilizan GPS y envían datos por satélite, ó hacia estaciones receptoras.

El anillaje de aves se utiliza para monitorear millares de individuos de manera colectiva, entre países y organizaciones

Telemetría acústica pasiva

Implante emisor de ondas registradas en estaciones estáticas y permanentes.

Estaciones receptoras almacenan todos los implantes que pueda detectar.

Pit tags. Son chips que se implantan bajo la piel, ó en cavidad abdominal ó celómica de organisos. Chips tienen un número que no se repite y tienen que ser leídos al capturar al individuo con un aparato dedicado.

Análisis de patrones de migración con sistemas de información geográfica.

QGIS. Sistema de información geográfica de código abierto para manejo y análisis de datos geográficos.

Efectos demográficos de la dispersión

Inmigración (entrada de individuos, depende de **Nacimientos** estado de (dependen de estado población de de la población) origen) Población Emigración Muertes (salida de individuos) (salida, depende de estado de la población)

Efectos de la migración en demografía

N = Nacimientos - Muertes + Inmigración - Emigración

$$N_{t+1} = (n-m-e)N_t + I$$

Nacimientos, muertes y emigración ó dispersión (n, m, e) dependen de la población local

Inmigración sólo depende de población de origen

Proporción de individuos de una población se originan localmente

$$N_2 = (n - m - e)N_1 + I$$

$$N_3 = (n - m - e)N_2 + I$$

Los individuos que inmigran se incorporan a la población, eventualmente contribuyendo a la reproducción

Proporción de individuos de una población se originan localmente

En Oxford, RU, 57% de *Parus major* reproductivos eran inmigrantes (Greenwood et al. 1978)

Efectos de migración sobre poblaciones en el tiempo

$$n+I>m+e \rightarrow N$$
 crece

N, m y e son en buena medida influenciados por condiciones ambientales, sin embargo:

 $I > n - m - e \rightarrow N$ crece o permanece estable

Efectos de migración sobre poblaciones en el tiempo

Cuando se presenta:

$$I>n-m-e$$

Las poblaciones no se mantienen por equilibrio entre nacimientos y muertes:

Poblaciones sumidero

Ejemplo

Cakile edentula Fuente

Distribución geográfica

Ejemplo

Efecto de la migración de semillas en la abundancia de *C. edentula*. En ausencia de migración, sería mucho menos abundante en zonas donde hay mayor mortalidad que germinación

Ejemplo

Dispersión es la fuente de expansión de las distribuciones

Diabrotia virgifera

Escarabajo que consume raices del maíz

Causa daño extensivo a los cultivos

Ha sido introducido en otros países donde se convierte en plaga

Expansión de rangos geográficos

Estimaciones de la distribución de *D. virgifera* en el tiempo a partir de su intriducción en EU.

Origen de la dispersión

Las metapoblaciones

P1-5 son poblaciones discretas

Al estar conectadas por intercambio de individuos, forman una metapoblación

P6, es una población aislada, no forma parte de la metapoblación

Conexión entre poblaciones

Topología: conexión entre las diferentes poblaciones. El tamaño de las burbujas indica el número de conexiones

La topología afecta las dinámicas poblacionales por medio de inmigración y emigración

Efecto demográfico de la topología

Proporción de poblaciones (nodos) ocupados, como función de la relación Extinción/Colonización en cada tipo de topología (diapo anterior, Gillaranz y Bascompte 2012).

Más parches ocupados con menor extinción en topologías homogeneas.

¿Meta o no?

- ¿Cuándo se considera que son o no metapoblaciones?
- Parches deberían poder "rescatar" a otros
 - No debe haber sincronía
 - Si hay sincronía, todas podrían extinguirse simultáneamente

Colonización-Extinción

potencial reproductivo

Parches con gran disponibilidad de hábitat y potencial reproductivo

Mecanismos de dispersión

Dispersión activa

- Movimiento con inversión de energía por organismos
- Aves, murciélagos, peces, insectos
- Puede combinarse con dispersión pasiva

Dispersión pasiva

- Corrientes de aire, agua u otros organismos
- Menor inversión de recursos
- Ayuda a organismos vágiles
 - Fuente de dispersión para otros menos adaptados para ese fin

Actividad: Elabora una tabla de los modos de

dispersión de organismos ejemplo en la lectura

Tipos de barreras

Físicas y ambientales

- Organismos deben librarlas para colonizar
- Sobrevivir en ambientes sub-óptimos
- Efecto de barreras depende de grupo taxonómico

Ejemplos de barreras físicas

Grupo taxonómico

Barrera física: Montaña

Naturaleza de la barrera impedirá en diferente medida a diferentes grupos

Variabilidad dentro de grupos

Barrera física: Montaña

Variabilidad dentro de grupos

Barrera física: Montaña

Barrera física: Cuerpo de agua

Barreras fisiológicas

Las condiciones ambientales pueden exceder límites de tolerancia de organismos

Aves que migran a través de cordilleras deben soportar temperaturas más bajas, menor concentración de oxígeno, etc.

Distribuciones amplias implican gran variedad de condiciones.

Altas y bajas temperaturas

Poca agua

Flexibilidad alimenticia

Menor efecto de barreras ambientales

Patrones geográficos derivados de tolerancia

- Plankton de agua dulce
- Estadíos de desarrollo muy resistentes
- Comunidades son muy similares alrededor del mundo

Peces de agua dulce son malos colonizadores, por lo general por baja tolerancia a condiciones ambientales. Composición de comunidades cambia mucho entre cuerpos de agua.

Zonas templadas y polares: Alta variabilidad entre estaciones

Trópicos: Poca variabilidad entre estaciones y años

Distribuciones geográficas de organismos tienden a ser más grandes fuera de los trópicos, como resultado de resistencia fisiológica

Comunidades en zonas templadas son más homogéneas, menos cambio de especies entre regiones geográficas

Los trópicos restringen fisiológicamente a especies de zonas templadas y polares

Barreras ecológicas

Reconocimiento innato de hábitats puede restringir dispersión.

Spp. Podrían soportar diferentes condiciones, eligen no hacerlo

- Ejemplos abundan en aves:
 - Tucanes están pobremente representados en islas
 - Aves de bosques tropicales evitan zonas con poca vegetación, pero cubren grandes distancias si la hay
 - Extinciones locales en Barro colorado, Panamá, no han recuperado por presencia del lago de < 1 km