Matrix Theory (EE5609) Assignment 23

Arkadipta De MTech Artificial Intelligence AI20MTECH14002

Abstract—This document solves problem on ideals.

All the codes for the figure in this document can be found at

 $https://github.com/Arko98/EE5609/blob/master/\\ Assignment_23$

1 Problem

Let \mathbb{Q} be the field of rational numbers. Determine if the following subset of $\mathbb{Q}[x]$ is ideal or not. The subset is defined by all f with degree ≥ 5

2 Solution

	The defined subset of $\mathbb{Q}[x]$ be \mathbb{U} ,
Example	$f(x) = c_1 x^5 + c_2 x^4 \in \mathbb{U}$
	$g(x) = -c_1 x^5 + c_3 x^4 \in \mathbb{U}$
	If U is an ideal then,
	U must be a subset.
	U must be closed under addition.
	$f \in \mathbb{U}$
	$g\in\mathbb{U}$
Proof	$\implies f + g \in \mathbb{U}$
	But here,
	$f + g = c_1 x^5 + c_2 x^4 - c_1 x^5 + c_3 x^4$
	$\implies f + g = (c_2 + c_3)x^4 \notin \mathbb{U}$
	$f \in \mathbb{U}$
Observation	$g\in\mathbb{U}$
	But, $f + g \notin \mathbb{U}$
	U is not closed under addition
Conclusion	$\implies \mathbb{U}$ is not a subset of $\mathbb{Q}[x]$
	$\implies \mathbb{U}$ is not an ideal of $\mathbb{Q}[x]$

1