lab14.0

Ilyas Darif

2025-02-20

Table of contents

Background	1
Data Import	2
Inspect and tidy data	2
Setup for DESeq	3
Run DESeq	4
Volcano plot of results	
Gene annotation	7
Pathway analysis	9
Gene Ontology analysis	11

Background

The data for for hands-on session comes from GEO entry: GSE37704, which is associated with the following publication:

Trapnell C, Hendrickson DG, Sauvageau M, Goff L et al. "Differential analysis of gene regulation at transcript resolution with RNA-seq". Nat Biotechnol 2013 Jan;31(1):46-53. PMID: 23222703

The authors report on differential analysis of lung fibroblasts in response to loss of the developmental transcription factor HOXA1. Their results and others indicate that HOXA1 is required for lung fibroblast and HeLa cell cycle progression. In particular their analysis show that "loss of HOXA1 results in significant expression level changes in thousands of individual transcripts, along with isoform switching events in key regulators of the cell cycle". For our session we have used their Sailfish gene-level estimated counts and hence are restricted to protein-coding genes only.

Data Import

```
counts <- read.csv("GSE37704_featurecounts.csv", row.names=1)
colData <- read.csv("GSE37704_metadata.csv")</pre>
```

Inspect and tidy data

Does the counts columns mathe the colData rows?

head(counts)

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
ENSG00000186092		0				
ENSG00000279928		0				
ENSG00000279457		46				
ENSG00000278566		0				
ENSG00000273547		0				
ENSG00000187634	2	258				

colData\$id

```
[1] "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" "SRR493371"
```

colnames(counts)

```
[1] "length" "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" [7] "SRR493371"
```

```
countData <- counts[,-1]
head(countData)</pre>
```

SRR493366 SRR493367 SRR493368 SRR493369 SRR493370 SRR493371 ENSG00000186092 0 0 0 0 0 0 ENSG00000279928 0 0 0 0 0 0 ENSG00000279457 23 28 29 29 28 46 ENSG00000278566 0 0 0 0 0 0 ENSG00000273547 0 0 0 0 0 0 ENSG00000187634 124 123 205 207 212 258

check for matching count data and colData

colnames(countData) == colData

id condition

- [1,] TRUE FALSE
- [2,] TRUE FALSE
- [3,] TRUE FALSE
- [4,] TRUE FALSE
- [5,] TRUE FALSE
- [6,] TRUE FALSE

Q1. How many genes in total

nrow(countData)

[1] 19808

Q2 Filter to remove zero count genes (rows where there are zero counts in all columns). How many genes are left?

```
to.keep.inds <- rowSums(countData) > 0
```

```
new.counts <- countData[to.keep.inds,]</pre>
```

nrow(new.counts)

[1] 15975

Setup for DESeq

library(DESeq2)

Setup input object for DESeq

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

Run DESeq

```
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
res <- results(dds)
head(res)</pre>
```

```
log2 fold change (MLE): condition hoxa1 kd vs control sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 6 rows and 6 columns
                baseMean log2FoldChange
                                           lfcSE
                                                       stat
                                                                 pvalue
               <numeric>
                              <numeric> <numeric> <numeric>
                                                              <numeric>
ENSG00000279457
                 29.9136
                              0.1792571 0.3248216
                                                   0.551863 5.81042e-01
ENSG00000187634 183.2296
                              0.4264571 0.1402658 3.040350 2.36304e-03
ENSG00000188976 1651.1881
                           -0.6927205 0.0548465 -12.630158 1.43990e-36
ENSG00000187961 209.6379
                             0.7297556 0.1318599 5.534326 3.12428e-08
                              0.0405765 0.2718928 0.149237 8.81366e-01
ENSG00000187583 47.2551
                              0.5428105 0.5215598 1.040744 2.97994e-01
ENSG00000187642
                 11.9798
                      padj
                 <numeric>
ENSG00000279457 6.86555e-01
ENSG00000187634 5.15718e-03
ENSG00000188976 1.76549e-35
ENSG00000187961 1.13413e-07
ENSG00000187583 9.19031e-01
```

Volcano plot of results

ENSG00000187642 4.03379e-01

```
library(ggplot2)
```

```
# Setup our custom point color vector
mycols <- rep("green", nrow(res))
mycols[ abs(res$log2FoldChange) > 2 ] <- "red"

inds <- (res$padj < 0.05) & (abs(res$log2FoldChange) > 2 )
mycols[ inds ] <- "blue"

# Volcano plot with custom colors
plot( res$log2FoldChange,   -log(res$padj),
    col=mycols, ylab="-Log(P-value)", xlab="Log2(FoldChange)" )

# Cut-off lines
abline(v=c(-2,2), col="black", lty=2)
abline(h=-log(0.1), col="gray", lty=2)</pre>
```



```
ggplot(res) +
aes(log2FoldChange, -log2(padj)) +
geom_point() +
geom_vline(xintercept = c(-2,2), col="red") +
geom_hline(yintercept = -log(0.005), col="red")
```

Warning: Removed 1237 rows containing missing values or values outside the scale range (`geom_point()`) .

Gene annotation

```
library(AnnotationDbi)
library(org.Hs.eg.db)
```

columns(org.Hs.eg.db)

[1]	"ACCNUM"	"ALIAS"	"ENSEMBL"	"ENSEMBLPROT"	"ENSEMBLTRANS"
[6]	"ENTREZID"	"ENZYME"	"EVIDENCE"	"EVIDENCEALL"	"GENENAME"
[11]	"GENETYPE"	"GO"	"GOALL"	"IPI"	"MAP"
[16]	"OMIM"	"ONTOLOGY"	"ONTOLOGYALL"	"PATH"	"PFAM"
[21]	"PMID"	"PROSITE"	"REFSEQ"	"SYMBOL"	"UCSCKG"
[26]	"UNIPROT"				

Add gene SYMBOL and ENTREZID

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

```
head(res, 10)
```

 $\log 2$ fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 10 rows and 8 columns

	baseMean	log2FoldChange	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG00000279457	29.913579	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.229650	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.188076	-0.6927205	0.0548465	-12.630158	1.43990e-36
ENSG00000187961	209.637938	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.255123	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.979750	0.5428105	0.5215598	1.040744	2.97994e-01
ENSG00000188290	108.922128	2.0570638	0.1969053	10.446970	1.51282e-25
ENSG00000187608	350.716868	0.2573837	0.1027266	2.505522	1.22271e-02
ENSG00000188157	9128.439422	0.3899088	0.0467163	8.346304	7.04321e-17
ENSG00000237330	0.158192	0.7859552	4.0804729	0.192614	8.47261e-01
	padj	symbol	entrez		
	<numeric></numeric>	<character> <cl< td=""><td>haracter></td><td></td><td></td></cl<></character>	haracter>		
ENSG00000279457	6.86555e-01	NA	NA		
ENSG00000187634	5.15718e-03	SAMD11	148398		
ENSG00000188976	1.76549e-35	NOC2L	26155		
ENSG00000187961	1.13413e-07	KLHL17	339451		
ENSG00000187583	9.19031e-01	PLEKHN1	84069		
ENSG00000187642	4.03379e-01	PERM1	84808		
ENSG00000188290	1.30538e-24	HES4	57801		

ENSG00000187608	2.37452e-02	ISG15	9636
ENSG00000188157	4.21963e-16	AGRN	375790
ENSG00000237330	NA	RNF223	401934

Pathway analysis

```
library(gage)
```

```
library(gageData)
library(pathview)
```

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

The pathview downloads and uses KEGG data. Non-academic uses may require a KEGG license agreement (details at http://www.kegg.jp/kegg/legal.html).

Input vector for gage()

```
foldchanges = res$log2FoldChange
names(foldchanges) = res$entrez
```

Load up the KEGG genesets

```
data(kegg.sets.hs)
```

Run pathway analysis

```
keggres = gage(foldchanges, gsets=kegg.sets.hs)
```

head(keggres\$less)

```
p.geomean stat.mean
hsa04110 Cell cycle
                                               8.995727e-06 -4.378644
hsa03030 DNA replication
                                               9.424076e-05 -3.951803
hsa05130 Pathogenic Escherichia coli infection 1.405864e-04 -3.765330
hsa03013 RNA transport
                                               1.246882e-03 -3.059466
hsa03440 Homologous recombination
                                               3.066756e-03 -2.852899
hsa04114 Oocyte meiosis
                                               3.784520e-03 -2.698128
                                                      p.val
                                                                  q.val
hsa04110 Cell cycle
                                               8.995727e-06 0.001889103
hsa03030 DNA replication
                                               9.424076e-05 0.009841047
hsa05130 Pathogenic Escherichia coli infection 1.405864e-04 0.009841047
hsa03013 RNA transport
                                               1.246882e-03 0.065461279
hsa03440 Homologous recombination
                                               3.066756e-03 0.128803765
hsa04114 Oocyte meiosis
                                               3.784520e-03 0.132458191
                                               set.size
                                                                exp1
hsa04110 Cell cycle
                                                    121 8.995727e-06
hsa03030 DNA replication
                                                     36 9.424076e-05
hsa05130 Pathogenic Escherichia coli infection
                                                    53 1.405864e-04
hsa03013 RNA transport
                                                    144 1.246882e-03
hsa03440 Homologous recombination
                                                    28 3.066756e-03
hsa04114 Oocyte meiosis
                                                    102 3.784520e-03
```

Cell cylce figure

```
pathview(foldchanges, pathway.id = "hsa04110")
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/ilyas/OneDrive/Desktop/bimm143WIstuff/class14.0

Info: Writing image file hsa04110.pathview.png

DNA Replication Figure

```
pathview(foldchanges, pathway.id = "hsa03030")
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/ilyas/OneDrive/Desktop/bimm143WIstuff/class14.0

Info: Writing image file hsa03030.pathview.png

Gene Ontology analysis

Run pathway analysis with GO

```
data(go.sets.hs)
data(go.subs.hs)

# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchanges, gsets = gobpsets, same.dir=TRUE)

lapply(gobpres, head)
```

\$greater

GO:0048285 organelle fission

GO:0007059 chromosome segregation

GO:0000236 mitotic prometaphase

GO:0000087 M phase of mitotic cell cycle 1.195965e-11

GO:0000280 nuclear division

GO:0007067 mitosis

		p.geomear	n stat.mear	n p.val
GO:0007156	homophilic cell adhesion	8.519724e-05	3.824205	8.519724e-05
GO:0002009	morphogenesis of an epithelium	1.396681e-04	4 3.653886	3 1.396681e-04
GO:0048729	tissue morphogenesis	1.432451e-04	3.643242	2 1.432451e-04
GO:0007610	behavior	1.925222e-04	3.565432	2 1.925222e-04
GO:0060562	epithelial tube morphogenesis	5.932837e-04	1 3.261376	5.932837e-04
GO:0035295	tube development	5.953254e-04	4 3.253665	5.953254e-04
		q.val se	et.size	exp1
GO:0007156	homophilic cell adhesion	0.1952430	113 8.5	519724e-05
GD:0002009	morphogenesis of an epithelium	0.1952430	339 1.3	396681e-04
GO:0048729	tissue morphogenesis	0.1952430	424 1.4	132451e-04
GO:0007610	behavior	0.1968058	426 1.9	925222e-04
GD:0060562	epithelial tube morphogenesis	0.3566193	257 5.9	932837e-04
GO:0035295	tube development	0.3566193	391 5.9	953254e-04
\$less				
		p.geomean	stat.mean	p.val
GO:0048285	organelle fission	1.536227e-15	-8.063910	1.536227e-15
GD:0000280	nuclear division	4.286961e-15	-7.939217	4.286961e-15
GD:0007067	mitosis	4.286961e-15	-7.939217	4.286961e-15
GD:0000087	M phase of mitotic cell cycle	1.169934e-14	-7.797496	1.169934e-14
GO:0007059	chromosome segregation	2.028624e-11	-6.878340	2.028624e-11
GD:0000236	mitotic prometaphase	1.729553e-10	-6.695966	1.729553e-10
		q.val	set.size	exp1

5.843127e-12

5.843127e-12

5.843127e-12

1.659009e-08

1.178690e-07

376 1.536227e-15

352 4.286961e-15

352 4.286961e-15

362 1.169934e-14

142 2.028624e-11

84 1.729553e-10

\$stats

		stat.mean	exp1
GO:0007156	homophilic cell adhesion	3.824205	3.824205
GO:0002009	${\tt morphogenesis} \ {\tt of} \ {\tt an} \ {\tt epithelium}$	3.653886	3.653886
GO:0048729	tissue morphogenesis	3.643242	3.643242
GO:0007610	behavior	3.565432	3.565432
GO:0060562	epithelial tube morphogenesis	3.261376	3.261376
GO:0035295	tube development	3.253665	3.253665

head(keggres\$greater)

```
p.geomean stat.mean
hsa04060 Cytokine-cytokine receptor interaction 9.131044e-06 4.358967
hsa05323 Rheumatoid arthritis
                                                1.809824e-04 3.666793
hsa05146 Amoebiasis
                                                1.313400e-03 3.052596
hsa05332 Graft-versus-host disease
                                                2.605234e-03 2.948229
hsa04640 Hematopoietic cell lineage
                                                2.822776e-03 2.833362
hsa04630 Jak-STAT signaling pathway
                                                5.202070e-03 2.585673
                                                       p.val
                                                                   q.val
hsa04060 Cytokine-cytokine receptor interaction 9.131044e-06 0.001917519
hsa05323 Rheumatoid arthritis
                                                1.809824e-04 0.019003147
hsa05146 Amoebiasis
                                                1.313400e-03 0.091937999
hsa05332 Graft-versus-host disease
                                                2.605234e-03 0.118556573
hsa04640 Hematopoietic cell lineage
                                                2.822776e-03 0.118556573
hsa04630 Jak-STAT signaling pathway
                                                5.202070e-03 0.182072434
                                                set.size
                                                                 exp1
hsa04060 Cytokine-cytokine receptor interaction
                                                     177 9.131044e-06
hsa05323 Rheumatoid arthritis
                                                      72 1.809824e-04
hsa05146 Amoebiasis
                                                      94 1.313400e-03
hsa05332 Graft-versus-host disease
                                                      22 2.605234e-03
hsa04640 Hematopoietic cell lineage
                                                      55 2.822776e-03
                                                     109 5.202070e-03
hsa04630 Jak-STAT signaling pathway
```

DNA Replication Figure

```
pathview(foldchanges, pathway.id = "hsa03030")
```

Info: Working in directory C:/Users/ilyas/OneDrive/Desktop/bimm143WIstuff/class14.0

^{&#}x27;select()' returned 1:1 mapping between keys and columns

Info: Writing image file hsa03030.pathview.png

RNA transport figure

```
pathview(foldchanges, pathway.id = "hsa03013")
```

^{&#}x27;select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/ilyas/OneDrive/Desktop/bimm143WIstuff/class14.0

Info: Writing image file hsa03013.pathview.png

Amoebiasis figure

```
pathview(foldchanges, pathway.id = "hsa05146")
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/ilyas/OneDrive/Desktop/bimm143WIstuff/class14.0

Info: Writing image file hsa05146.pathview.png

Rheumatoid arthritis figure

```
pathview(foldchanges, pathway.id = "hsa05323")
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/ilyas/OneDrive/Desktop/bimm143WIstuff/class14.0

Info: Writing image file hsa05323.pathview.png


```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8147"

```
write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quote
```

What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods? - Cell Cycle it does match the kegg results top value matches the previous go looks at gen function at a standard basic is just a basic way of looking at the pathways kegg looks at gene interaction through a biological pathway in a more complex way