TOXIC COMMENT CLASSIFICATION

CS 482 FINAL PROJECT VAISNAVI NEMALA

INTRODUCTION

Discussion of Challenge

The goal of the Toxic Comment
Classification project is to identify and
classify online comments according to the
following classes of toxicity:

[toxic, severe_toxic, obscene, threat, insult, identity_hate]

CODE WALKTHROUGH

Code & App Documentation

1. PREPARING THE ENVIRONMENT

- Install necessary libraries
- Import libraries
- 1 import numpy as np
- 2 import pandas as pd
- 3 from sklearn import metrics
- 4 import transformers
- 5 import torch
- 6 from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler
- 7 from transformers import BertTokenizer, BertModel, BertConfig

2. DATA LOADING & PREPROCESSING

Load in csv files

Hey man, I'm really not trying to edit war. It... [0, 0, 0, 0, 0, 0]
"\nMore\nI can't make any real suggestions on ... [0, 0, 0, 0, 0, 0]
You, sir, are my hero. Any chance you remember... [0, 0, 0, 0, 0, 0, 0]

2. DATA LOADING & PREPROCESSING

Create custom dataset class

```
class CustomDataset(Dataset):
   def init (self, dataframe, tokenizer, max len):
       self.tokenizer = tokenizer
       self.data = dataframe
       self.comment text = dataframe.comment text
       self.targets = self.data.labels lst
       self.max len = max len
   def len (self):
       return len(self.comment text)
   def getitem (self, index):
       comment text = str(self.comment text[index])
       comment_text = " ".join(comment text.split())
       inputs = self.tokenizer.encode plus(
           comment text,
           None.
           add special tokens=True,
           max length=self.max len,
           pad to max length=True,
           return token type ids=True
```

2. DATA LOADING & PREPROCESSING

Create datasets for dataloaders

```
train_size = 0.8
train_dataset=df.sample(frac=train_size,random_state=200)
test_dataset=df.drop(train_dataset.index).reset_index(drop=True)
train_dataset = train_dataset.reset_index(drop=True)

print("FULL Dataset: {}".format(df.shape))
print("TRAIN Dataset: {}".format(train_dataset.shape))
print("TEST Dataset: {}".format(test_dataset.shape))
training_set = CustomDataset(train_dataset, tokenizer, MAX_LEN)
testing_set = CustomDataset(test_dataset, tokenizer, MAX_LEN)
```

3. CREATE MODEL

 Create custom BERT class from 'bert-base-uncased' pretrained model

```
class BERTClass(torch.nn.Module):
   def init (self):
       super(BERTClass, self). init ()
        self.l1 = transformers.BertModel.from pretrained('bert-base-uncased',return dict=False)
       self.12 = torch.nn.Dropout(0.3)
       self.13 = torch.nn.Linear(768, 6)
   def forward(self, ids, mask, token_type_ids):
       _, output_1= self.l1(ids, attention_mask = mask, token_type_ids = token_type_ids)
       output 2 = self.l2(output 1)
       output = self.13(output 2)
       return output
model = BERTClass()
model.to(device)
```

3. CREATE MODEL

- Model is composed of:
 - (1) pretrained 'bert-base-uncased' model
 - (2) dropout layer (0.3)
 - (3) output (6 neurons class probabilities)

3. CREATE MODEL

Define loss and optimization function

```
def loss_fn(outputs, targets):
    return torch.nn.BCEWithLogitsLoss()(outputs, targets)

optimizer = torch.optim.Adam(params = model.parameters(), lr=LEARNING_RATE)
```

4. TRAINING THE MODEL

Train the model on the training dataset

```
def train(epoch):
    model.train()
    for _,data in enumerate(training_loader, 0):
        ids = data['ids'].to(device, dtype = torch.long)
        mask = data['mask'].to(device, dtype = torch.long)
        token type ids = data['token type ids'].to(device, dtype = torch.long)
       targets = data['targets'].to(device, dtype = torch.float)
        outputs = model(ids, mask, token type ids)
        optimizer.zero grad()
        loss = loss_fn(outputs, targets)
        if %5000==0:
           print(f'Epoch: {epoch}, Loss: {loss.item()}')
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
```

5. EVALUATING THE MODEL

Determine the accuracy of the model with a validation

dataset that the model has never seen before.

```
def val round(epoch):
    model.eval()
    fin targets=[]
    fin outputs=[]
    with torch.no grad():
        for , data in enumerate(testing loader, 0):
            ids = data['ids'].to(device, dtype = torch.long)
            mask = data['mask'].to(device, dtype = torch.long)
            token_type_ids = data['token_type_ids'].to(device, dtype = torch.long)
            targets = data['targets'].to(device, dtype = torch.float)
            outputs = model(ids, mask, token type ids)
            fin targets.extend(targets.cpu().detach().numpy().tolist())
            fin outputs.extend(torch.sigmoid(outputs).cpu().detach().numpy().tolist())
    return fin outputs, fin targets
for epoch in range(EPOCHS):
    outputs, targets = val round(epoch)
    outputs = np.array(outputs) >= 0.5
    accuracy = metrics.accuracy score(targets, outputs)
   f1 score micro = metrics.f1 score(targets, outputs, average='micro')
   f1 score macro = metrics.f1_score(targets, outputs, average='macro')
    print(f"Accuracy Score = {accuracy}")
    print(f"F1 Score (Micro) = {f1 score micro}")
    print(f"F1 Score (Macro) = {f1 score macro}")
```

6. PREDICTING VALUES WITH THE MODEL

 Create a function to use the model to predict toxicity classes based on an input text

```
def inference(X):
    load_model.eval()
    with torch.no_grad():
        ids = X['input_ids'].to(device, dtype = torch.long)
        mask = X['attention_mask'].to(device, dtype = torch.long)
        token_type_ids = X['token_type_ids'].to(device, dtype = torch.long)
        outputs = load_model(ids, mask, token_type_ids)
        print(outputs)
        fin_outputs = torch.sigmoid(outputs).cpu().detach().numpy().tolist()
        return fin_outputs
```


EXAMPLE

text = "Thank you for understanding. I think very highly of you and would not revert without discussion." Output Class Probabilities:

[[0.07172095030546188, 0.0038206269964575768, 0.08545476943254471, 0.00023505152785219252, 0.06668499857187271, 0.0045667183585464954]]

No toxicity detected.