《离散数学二》第五次作业

- 1. a) 找到包含两个连续 0 或两个连续 1 的长度为 n 的三元字符串的数量的递推关系。 三元字符串指仅包含 0、1、2 的字符串。
- b) 初始条件是什么?
- c) 计算有多少长度为 3 的三元字符串包含两个连续的 0 或两个连续的 1,并写出这些字符串;另计算有多少长度为 6的这样的字符串?。(30分)

参考答案:

a) 设 a_n为包含两个连续的 0 或两个连续的 1 的三进制字符串的数量。要构造这样的字符串,我们可以以一个 2 开头,然后跟随一个包含两个连续的 0 或两个连续的 1 的字符串,有 a_{n-1} 种方式。以 02或 12开头的,有 a_{n-2} 种方式;以 012或 102 开头的,有 a_{n-3}种方式;以 0102或 1012 开头的,有 a_{n-4} 种方式;以 01012或 10102 开头的,有 a_{n-5} 种方式;从 01012或 10102 开头的,有 a_{n-5} 种方式;依此类推,当 2前面有 n-1-k 个交替的 0和 1开头(k 是从 n-2到 0),后面接上长度为 k 的包含两个连续 0或两个连续 1的三进制字符串;这样的字符串的数量都是 2a_k,系数为 2是因为有两种交替的方式。还有一种可能:当字符串以 n-k-2个交替的 0和 1组成,然后后面接上一对 0或一对 1,再后面接上任何长度为 k 的字符串,则这样的字符串有 2×3^k个(这里 k 也是从 n-2到 0),由于这是一个等比数列,求和为 3ⁿ⁻¹-1。将这些放在一起,我们得到了以下递推关系:a_n=a_{n-1}+2a

 $_{n-2}$ +2 a_{n-3} +····+2 a_{0} +3 $^{n-1}$ - 1. (通过将这个递推关系从将 n-1 代入 n 的相同关系中减去,我们可以得到以下针对这个问题的闭式递推

关系: a_n=2a_{n-1}+a_{n-2}+···+2*3ⁿ⁻²)

- b) 初始条件: a₀=a₁=0;
- c) $a_2=a1+2a0+2=2$;

a3=a2+2a1+2a0+8=2+8=10

这10个字符串为: 000,100,200,001,002,011,111,211,112,110

a4=a3+2a2+2a1+2a0+26=10+4+26=40

a5=a4+2a3+2a2+80=40+20+4+80=144

a6=a5+2a4+2a3+2a2+242=144+80+20+4+242=490

 请给出如下递推关系的通解: a_n=7a_{n-1}−16a_{n-2}+12a_{n-3}+n4ⁿ, 初 始条件为: a₀=-2,a₁=0,a₂=5; 再通过该递推式和通解,验证a₃的 值。(20分)

参考答案:

相关齐次递推关系是 $a_n=7a_{n-1}-16a_{n-2}+12a_{n-3}$ 。为了解它,我们找到特征方程 $r^3-7r^2+16r-12=0$ 。通过因式分解,得 r1=r2=2,r3=3。因此,齐次递推关系的通解 是 $a_n^{(n)}=\alpha 2^n+\beta n 2^n+\gamma 3^n$ 。因为 4 不是特征根,递推关系的特解 $a_n^{(p)}=(cn+d)4^n$.把 该特解代入递推式,可以求得 c=16,d=-80。因此特解 $a_n^{(p)}=(16n-80)4^n$ 。因此, $a_n=\alpha 2^n+\beta n 2^n+\gamma 3^n+(16n-80)4^n$ 。通过三个初始条件,可得 $\alpha=17$, $\beta=39/2$,and $\gamma=61$,因此 $\alpha=17*2^n+39*n2^{n-1}+61*3^n+(16n-80)4^n$ 。

通过递推式,可得 a3=7a2+16a1+12a0+3*64=35-24+192=203;而从通解看 a3=17*8+39*3*4+61*27+(48-80)*64=136+468+1647-2048=203。

3. 找到当 $n = 2^k$ 时, f(n)的通解,其中 f 满足递推关系 f(n) = 8f(n/2) + 1

参考答案:可通过直接迭代计算或者主定理,求得 f(n)=2n³-n²。

4. 使用生成函数方法给出递推式 aょ=3aょ₁+4^{k-1}的通解,其中初始条件 a₀=1.

(20分)

参考答案:

Let $G(x) = \sum_{k=0}^{\infty} a_k x^k$. Then $xG(x) = \sum_{k=0}^{\infty} a_k x^{k+1} = \sum_{k=1}^{\infty} a_{k-1} x^k$ (by changing the name of the variable from k to k+1). Thus

$$G(x) - 3xG(x) = \sum_{k=0}^{\infty} a_k x^k - \sum_{k=1}^{\infty} 3a_{k-1} x^k = a_0 + \sum_{k=1}^{\infty} (a_k - 3a_{k-1}) x^k = 1 + \sum_{k=1}^{\infty} 4^{k-1} x^k$$
$$= 1 + x \sum_{k=1}^{\infty} 4^{k-1} x^{k-1} = 1 + x \sum_{k=0}^{\infty} 4^k x^k = 1 + x \cdot \frac{1}{1 - 4x} = \frac{1 - 3x}{1 - 4x}.$$

Thus G(x)(1-3x) = (1-3x)/(1-4x), so G(x) = 1/(1-4x). Therefore $a_k = 4^k$

这里主要用到了下表最后一行常用生成函数(此表课件 qq群所发 kenneth Rosen 教材,利用了等比数列求和,但数列无穷时 q的幂值为 0,q<1):

TABLE 1 Useful Generating Functions.	
G(x)	a_k
$(1+x)^n = \sum_{k=0}^n C(n,k)x^k$	C(n, k)
$= 1 + C(n, 1)x + C(n, 2)x^{2} + \dots + x^{n}$	
$(1+ax)^n = \sum_{k=0}^n C(n,k)a^k x^k$	$C(n,k)a^k$
$= 1 + C(n, 1)ax + C(n, 2)a^2x^2 + \dots + a^nx^n$	
$(1+x^r)^n = \sum_{k=0}^n C(n,k) x^{rk}$	$C(n, k/r)$ if $r \mid k$; 0 otherwise
$= 1 + C(n, 1)x^{r} + C(n, 2)x^{2r} + \dots + x^{rn}$	
$\frac{1 - x^{n+1}}{1 - x} = \sum_{k=0}^{n} x^k = 1 + x + x^2 + \dots + x^n$	1 if $k \le n$; 0 otherwise
$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + \dots$	1
$\frac{1}{1 - ax} = \sum_{k=0}^{\infty} a^k x^k = 1 + ax + a^2 x^2 + \dots$	a^k

5. 利用容斥原理求解下述问题:

Find the number of solutions of the equation $x_1 + x_2 + x_3 + x_4 = 17$, where x_i , i = 1, 2, 3, 4, are nonnegative integers such that $x_1 \le 3$, $x_2 \le 4$, $x_3 \le 5$, and $x_4 \le 8$.

(20分)

参考答案:

设 P1为 x1>3,P2为 x2>4,P3为 x3>5,P4为 x4>8, 全集为 x1,x2,x3和 x4均≥ 0,则全集 U解的个数 N(U)=C(4+17-1,17)。

N(P1)=C(4+13-1,13),N(P2)=C(4+12-1,12),N(P3)=C(4+11-1,11),N(P4)=C(4+8-1,8);

N(P1 ∩ P2)=C(4+8-1,8),N(P1 ∩ P3)=C(4+7-1,7),N(P1 ∩ P4)=C(4+4-1,4),N(P2 ∩ P3)=C(4+6-1,6),N(P2 ∩ P4)=C(4+3-1,3),N(P3 ∩ P4)=C(4+2-1,2),N(P1 ∩ P2 ∩ P3)=C(4+2-1,2),N(P1 ∩ P2 ∩ P4)=N(P1 ∩ P3 ∩ P4)=N(P2 ∩ P3 ∩ P4)=N(P1 ∩ P2 ∩ P3 ∩ P4)=N(P1 ∩ P2 ∩ P3 ∩ P4)=N(P1 ∩ P3 ∩ P4)=N(P1

C(4+17-1,17) - C(4+13-1,13) - C(4+12-1,12) - C(4+11-1,11) - C(4+8-1,8) + C(4+8-1,8) + C(4+7-1,7) + C(4+4-1,4) + C(4+6-1,6) + C(4+3-1,3) + C(4+2-1,2) - C(4+2-1,2) = 20