

Bahasan

- Notasi asimtotik
 - *O* (big oh)
 - Ω (big omega)
 - ⊕ (big theta)

- Misalkan pengurutan suatu record panjang n item dengan suatu algoritma waktu f(n).
- Berapa lama waktu yang dibutuhkan untuk mengurutkan n record?
- Untuk n semakin besar?
 - apakah f tetap?
 - Akankah f tumbuh secara linier?
 - Akankah f tumbuh secara eksponensial?
- Untuk itu perlu diketahui seberapa cepat f tumbuh terhadap n.

- Notasi asimtotik merupakan himpunan fungsi yang dibatasi oleh
 - suatu fungsi, dengan n yang cukup besar.
- Misal terdapat n elemen array, dan kita ingin sorting dengan suatu algoritma yang memiliki kompleksitas f(n). Berapa lama waktu yang dibutuhkan untuk sorting dengan input size (n) tersebut?
- Bagaimana jika nilai n semakin besar?
- Kita akan berfokus pada interval nilai n dari fungsi kompleksitas suatu algoritma ketika nilai n semakin besar (atau masuk pada nilai n yang besar).
- Apakah f merupakan bounded function?

Apakah f tumbuh secara linear?

- Misal, f(x)=2x
- Fungsi linier adalah fungsi polynomial dengan derajat 0 atau 1

Apakah f tumbuh secara eksponensial?

 Tujuan Asymptotic Notation adalah untuk mengetahui seberapa cepat pertumbuhan / order of grow (OoG) dari fungsi f, sehubungan dengan semakin naiknya nilai n.

Memperkirakan formula untuk run-time

Indikasi kinerja algoritma (untuk jumlah data yang sangat besar)

• Misalkan:

$$T(n) = 5n^2 + 6n + 25$$

T(n) proporsional untuk ordo n² untuk data yang sangat besar.

- Indikator efisiensi algoritma berdasar pada OoG pada basic operation suatu algoritma.
- Penggunaan notasi sebagai pembanding urutan OoG:
 - O (big O)
 - Ω (big omega)
 - O (big theta)
- t(n): fungsi running time suatu algoritma (diindikasikan dengan basic operation count (C(n))
- g(n): fungsi running time lain sebagai pembanding dengan t(n)

Klasifikasi fungsi berdasarkan ting pertumbuhan asimtotiknya

- Mengklasifikasikan fungsi running time dari tingkat pertumbuhan Asimtotiknya.
- Tingkat pertumbuhan asimtotik / tingkatan (order) asimtotik
- / tingkatan fungsi running time dari suatu algoritma.
 - Membandingkan dan mengklasifikasikan fungsi dengan mengabaikan faktor konstan (c) dan input size (n) yang kecil.
- Beberapa macam kelas Notasi Asimtotik :
 - O(g(n)), Asimtotik batas Atas;
 - Ω(g(n)), Asimtotik batas bawah
 - Θ(g(n)), Asimtotik batas atas dan batas bawah

Contoh

Contoh: $f(n) = n^2 - 5n + 13$.

- Konstanta 13 tidak akan pernah berubah sebagaimana n, sehingga dianggap tidak berpengaruh secara signifikan ketika nilai n semakin meningkat dan bernilai sangat besar. Kemudian orde terendah -5n pun tidak akan banyak berpengaruh terhadap f, jika dibandingkan dengan n².
- Kita akan menunjukkan bahwa $f(n) = \Theta(n^2)$.
- Q: Apakah arti dari $f(n) = \Theta(g(n))$?
- A: Secara intuitif (tanpa analisis secara matematis), itu berarti bahwa fungsi f memiliki tingkatan pertumbuhan yang sama besarnya dengan fungsi g.

Contoh (lanj.)

- Q: Apakah arti dari $f_1(n) = \Theta(1)$?
- A: $f_1(n) = \Theta(1)$ berarti bahwa setelah dijalankan beberapa nilai n, f_1 ini batas atas & bawahnya dibatasi dengan sebuah konstanta yang bernilai 1.
- Q: Apakah arti dari $f_2(n) = \Theta(n \log n)$?
- A: f₂(n) = ⊕(n log n) berarti bahwa setelah dijalankan beberapa nilai n, f₂ ini memiliki tingkatan pertumbuhan yang sama besarnya dengan n log n.
- Secara umum, $f(n) = \Theta(g(n))$ berarti bahwa f(n) adalah member dari $\Theta(g(n))$ dimana $\Theta(g(n))$ merupakan sekumpulan fungsi yang memiliki tingkatan pertumbuhan running time yang sama besarnya(setara).

O(g(n)) Big-Ooh (\leq)

- Simbol O diperkenalkan pada tahun 1927 untuk menunjukkan pertumbuhan relatif dari dua fungsi berdasarkan perilaku asimtotik dari fungsi.
- O(g(n)) adalah himpunan semua fungsi dengan orde pertumbuhan yang lebih kecil atau sama dengan g(n)
- Contoh:
 - $n \in O(n^2)$; $100n + 5 \in O(n^2)$
 - $\frac{1}{2}$ n (n-1) $\in O(n^2)$
 - $n^3 \notin O(n^2)$; 0.0001 $n^3 \notin O(n^2)$; $n^4+n+1 \notin O(n^2)$

Upper Bound Notation (Big-O)

- Fungsi Umum
 - f(n) adalah O(g(n)) jika \exists konstanta positif c dan n_0
 - sedemikian hingga $f(n) \le c \cdot g(n) \ \forall \ n \ge n_0$
- Misal jika f(n)=1000n dan $g(n)=n^2$, c=1, $n_0=1000$, $n \ge 1000$, maka $f(n_0) \le 1.g(n_0) \rightarrow (True)$. Sehingga kita dapat mengatakan bahwa f(n) = O(g(n))
- Cara lainnya :

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{1000n}{n^2} = \lim_{n \to \infty} \frac{1000}{2n} = \lim_{n \to \infty} \frac{500}{n} = \frac{500}{\infty} = 0$$

Maka, $1000n \in O(n^2)$

Big-O, the Asymptotic Upper Bound

- Big-O merupakan notasi yang paling populer untuk ukuran run time, karena kita biasanya pasti mencari worst case time.
- Jika Running Time dari Algorithm X adalah O(n²), maka untuk berapapun input size-nya (n), running time dari algoritma X adalah fungsi kuadrat, untuk n yang cukup besar.
- Misal $2n^2 = O(n^3)$.
- Dari definisi sebelumnya, misal dengan c = 1 dan n₀ = 2. Tetapi jika O(n²) digunakan, maka akan lebih presisi / dekat daripada O(n³).

Klasifikasi Fungsi: BIG-O (1/2)

- Sebuah fungsi f(n) dikatakan sebagian besar tingkat pertumbuhannya paling mendekati dengan fungsi logaritmik, jika f(n) = O(log n)
- Sebuah fungsi f(n) dikatakan sebagian besar tingkat pertumbuhannya paling mendekati dengan fungsi kuadratik, jika f(n) = O(n²)
- Sebuah fungsi f(n) dikatakan sebagian besar tingkat pertumbuhannya paling mendekati dengan fungsi polynomial, jika f(n) = O(nk), untuk bilangan asli k> 1
- Sebuah fungsi f(n) dikatakan Sebagian bersar tingkat pertumbuhannya paling mendekati dengan fungsi exponential, jika terdapat konstanta c, sedemikian hingga f(n) = O(cⁿ), dan c > 1
- Sebuah fungsi f(n) dikatakan tingkat pertumbuhannya mendekati fungsi faktorial, jika f(n) = O(n!).

Klasifikasi Fungsi: BIG-O (2/2)

- Sebuah fungsi f(n) dikatakan memiliki running time konstran, jika ukuran input n tidak berpengaruh pada running time dari algoritma (misalnya, algoritma yang hanya memiliki proses untuk memasukkan nilai ke suatu variabel). Maka persamaan kompleksitas algoritma tersebut adalah f(n) = c
- Bentuk klasifikasi fungsi logaritmik lainnya :
 - $f(n) = O(n \log n)$
 - $f(n) = O(\log \log n)$

O-notation: Formally

- DEF1: suatu fungsi t(n) disebut dalam O(g(n)), t(n) ∈ O(g(n)), jika
 t(n) dibatasi atas oleh beberapa konstanta kali g(n) untu semua n
 besar
- i.e. terdapat beberapa konstanta positif c dan beberapa bilangan bulat positif n₀, sehingga

 $t(n) \le cg(n)$ untuk semua $n \ge n_0$

O(g(n))

(Batas atas \leq)

- 1. Tunjukkan bahwa : $100n + 5 \in O(n^2)$
- carilah c dan n_0 , sehingga $t(n) \le cg(n) \forall n \ge n_0$

100n + 5 ≤ 100n + n (
$$\forall$$
 n ≥ 5)

=
$$101n \le 101n^2 \rightarrow c=101, n_0=5$$

100n + 5 ≤ 100n + 5n (
$$\forall$$
 n ≥ 1)

=
$$105n \le 105n2 \rightarrow c=105, n_0=1$$

- 2. 2n + 10 adalah O(n)
 - 2n + 10 ≤ cn
 - $(c-2)n \ge 10$
 - $n \ge 10/(c-2)$
 - $c = 3 dan n_0 = 10$
- 3. 7n 2 adalah O(n)
 - C > 0 dan $n_0 \ge 1$ sds $7n 2 \le c.n$ untuk $n \ge n_0$
 - $C = 7 dan n_0 = 1$

4. $\forall n > 6$, g(n) > 1 f(n). maka f adalah O(g(n)). yakni f(n) = O(g(n)). 5. $\exists n_0=5$ sehingga. $\forall n>n_0$, f(n) < 1 g(n). Jadi, f(n) = O(g(n)).

Latihan 1

Tunjukkan bahwa

- 1. $3n^2+2n+5 = O(n^2)$
- 2. $3n^3 + 20n^2 + 5 = O(n^3)$
- 3. $3 \log n + \log \log b = (O(\log n))$
- 4. $2n^3 + 3n^2 + n = O(n^4)$

Big Ω , Big-Omega (\geq)

- f(n) adalah $\Omega(g(n))$ if $\exists c > 0$ dan n_0 sehingga $0 \le c \cdot g(n) \le f(n) \ \forall \ n \ge n_0$
- Proof:
 - Misalkan run timenya adalah an + b
 - diasumsikan a dan b positive an ≤ an + b

 $3 \log n + \log \log b (O(\log n))$

Big Ω - Batas bawah

Ω -notation: Formally

- DEF2: suatu fungsi t(n) disebut ada di $\Omega(g(n))$, t(n) $\in \Omega(g(n))$, if t(n) dibatasi bawah oleh beberapa konstanta kali g(n) untuk semua n besar.
- i.e. Terdapat beberapa c > 0 dan beberapa nonnegative integer n₀, sehingga

$$t(n) \ge cg(n) \forall n \ge n_0$$

Contoh: Big Omega

2. $n^{1/2} = \Omega(\log n)$. berdarakan definisi $c = 1 \operatorname{dan} n_0 = 16$. Misalkan $n \ge 16$: $n^{1/2} \ge (1) \log n$ Jikka $n = (\log n)^2$

3.
$$0.5n^2 - 5n + 2 = \Omega(n^2)$$
.
Let $c = 0.25$ and $n_0 = 25$.
 $0.5 n^2 - 5n + 2 = 0.25(n^2)$ for all $n = 25$

If
$$b = a^c <=> c = log_{\partial}b$$

a, **b**, **c** are real numbers and b > 0, a > 0, $a \ne 1$

a is called **"base"** of the logarithm.

Contoh Big tOmega

θ Big Theta

 Dua fungsi f dan g dikatakan memiliki pertumbuhan yang sama, f = Big Theta(g) jikka keduanya

$$f = \theta(g) dan g = \theta(f)$$
.

- Definisi $f(n) = \theta$ (g(n)) artinya $\exists c_1, c_2 > 0$ and n_0 sehingga c_1 g(n) \leq f(n) \leq c₂ g(n) \forall n \geq n₀
- jika f(n) = O(g(n)) dan $f(n) = \Omega(g(n))$ then $f(n) = \theta(g(n))$ (contoh. $f(n) = n^2$ dan $g(n) = 2n^2$)

θ -notation: Formally

- DEF3: Suatu fungsi t(n) dikatakan berada di θ(g(n)), ditandai t(n) ∈ θ(g(n)), jika t(n) dibatasi baik di atas maupun di bawah oleh beberapa kelipatan konstan g(n) untuk semua n besar
- i.e terdapat beberapa konstanta positif c₁ dan c₂ dan beberapa bilangan bulat nonnegatif n₀, sehingga

$$c_2g(n) \le t(n) \le c_1g(n) \forall n \ge n_0$$

Big Theta

Contoh

- 1. Buktikan baha: $\frac{1}{2}$ n(n-1) $\in \theta$ (n²)
- Dari DEF3: cari c₁ dan c₂ dan beberapa nonnegative integer n₀,
 sehingga c₂g(n) ≤ t(n) ≤ c₁g(n) ∀n ≥ n₀
- Batas atas: ½ n(n-1) = ½ n² ½ n ≤ ½ n² (∀n≥0)
- Batas bawah: ½ n(n-1)

=
$$\frac{1}{2}$$
 n² - $\frac{1}{2}$ n ≥ $\frac{1}{2}$ n² - $\frac{1}{2}$ n $\frac{1}{2}$ n (f \forall n ≥ 2) = $\frac{1}{2}$ n²

• $c_1 = \frac{1}{2}$, $c_2 = \frac{1}{4}$, $n_0 = 2$

Examples

2.
$$2n^3 + 3n^2 + n = 2n^3 + 3n^2 + O(n)$$

= $2n^3 + \theta(n^2 + n)$
= $2n^3 + \theta(n^2) = \theta(n^3)$
3. $0.5 n^2 - 5n + 2 = \theta(n^2)$
 $n_0 = 25, c_1 = 0.25, c_2 = 0.5$

Other Asymptotic Notations

- A function f(n) is o(g(n)) if \exists positive constants c and n_o such that $f(n) < c g(n) \forall n \ge n_0$
- A function f(n) is $\omega(g(n))$ if \exists positive constants c and n_o such that $c g(n) < f(n) \forall n \geq n_0$
- Intuitively,

- O() is like < O() is like > O() is like =

Interpretasi

- Contoh: $f(n) = n^2 5n + 13$.
 - Konstanta 13 tidak berubah seiring bertambahnya n, jadi itu tidak penting.
 Suku orde rendah, -5n, tidak terlalu berpengaruh pada f dibandingkan suku kuadrat, n².

Akan ditunjukkan bahwa $f(n) = \theta(n^2)$.

- Q: Apa artinya mengatakan $f(n) = \theta(g(n))$?
- A: Secara intuitif, berarti bahwa fungsi f urutan pertumbuhannya sama dengan g.

Interpretasi

Q: Apa artinya mengatakan $f_1(n) = \theta(1)$?

A: $f_1(n) = \theta(1)$ berarti setelah beberapa n, f1 dibatasi di atas & di bawah oleh konstanta.

Q: Apa artinya mengatakan $f_2(n) = \theta(n \log n)$?

A: $f_2(n) = \theta(n \log n)$ berarti setelah beberapa n, f_2 dibatasi di atas dan di bawah oleh waktu konstan n log n. Dengan kata lain, f_2 adalah orde besarnya yang sama dengan n log n.

• Secara umum, $f(n) = \theta(g(n))$ artinya bahwa f(n) adalah anggota dari $\theta(g(n))$ dimana $\theta(g(n))$ adalah himpunan fungsi dari order sama.

Latihan 2

1. True or false:

- a. $n(n+1)/2 \in O(n^3)$
- b. $n(n+1)/2 \in O(n^2)$
- c. $n(n+1)/2 \in \theta(n^3)$
- d. $n(n+1)/2 \in \Omega(n)$
- e. $0.25n^2 5n + 2 = \Omega(n^2)$
- f. $0.25n^2 5n + 2 = O(n^2)$.
- g. $0.25n^2 5n + 2 = \theta(n^2)$

2. Indicate the class $\theta(g(n))$:

- a. $(n^2+1)^{10}$
- b. $(10n^2+7n+3)^{\frac{1}{2}}$
- c. $2n \log (n+2)^2 + (n+2)^2 \log (n/2)$

Latihan 3

3. Tentukan OoG dari masing-masing soal

- a. $f1(n) = 10 n + 25 n^2$
- b. f2(n) = 20 n log n + 5 n
- c. $f3(n) = 12 n log n + 0.05 n^2$
- d. $f4(n) = n^{1/2} + 3 n \log n$

Terimakasih...