Transport Infrastructure and Spatial Sorting: Evidence from Buenos Aires

Pablo Warnes

Department of Economics Aalto University/Helsinki GSE

SED Winter Meeting December 2024

Motivation

- Cities spend a lot of money on new public transport infrastructure.
- Existing quantitative spatial models used to measure welfare gains are static → "immediate" response + spatial eq. (in expectation)
- ightharpoonup However: residential and work mobility is costly ightarrow takes time.
- Accounting for these dynamics matters when evaluating effects of new transport infrastructure.
- Research Questions:
 - How do improvements in the urban transport infrastructure affect the dynamics of spatial sorting?
 - Welfare consequences for high- and low- skilled residents when considering these dynamics?

In This Paper

- ► Study effects of new BRT lines on (residential) spatial sorting in Buenos Aires, Argentina.
- lacktriangle Use novel individual-level panel data ightarrow track residents as they move.
 - 1. Reduced form analysis: causal impact of new transport infrastructure on sorting by skill-type.
 - 2. **Dynamic** QSM of a city. Explicitly model within-city migration (sorting).
 - ▶ Measure welfare gains for high- and low-skilled by initial place of residence.
 - Study spatial heterogeneity of welfare gains within city.
 - Evaluate importance of dynamic adjustment costs: difference in welfare between static model and dynamic model.

Preview of Main Findings (today)

- ightharpoonup Similar average gains for high-skilled (college educated) and low-skilled (\sim 1%).
- But conditioning on initial location (before BRT) matters for welfare gains.
- Pro-poor (spatially): residents starting in initially poorer neighborhoods see highest welfare gains.
- Accounting for *dynamic transition* reduces welfare gains by 35% for HS and 31% for LS residents on avg. (compared to "static-model-style" estimation).
- Large spatial heterogeneity in dynamic adjustment costs.

Setting

Buenos Aires 2011-2017 - New BRT System: Metrobus

Bus Rapid Transit System (BRT):

- Bus-based public transport system
- Dedicated bus lanes.
- Platform level boarding.
- ► Ideally similar speed gains to subways but cheaper to build.

Buenos Aires 2011-2017 - New BRT System: Metrobus

- ▶ 2011: Juan B Justo
- ► 2013: 9 de Julio and Sur
- ▶ 2015: Norte
- ► 2016: San Martin
- ▶ ↑ speed of buses \approx 30% on average.
- For average commute time ⇒ 110 hours saved in a year.

High-Skill Share in 2010 and Metrobus Lines

Data

- ▶ Election registers for 2011, 2013, 2015, and 2017. Contains all citizens of voting age (>2.5m). Includes: *National ID number, address*, and *occupation*. → Track intra-city migration, update population every 2 years. Description
- ▶ Annual Household Survey (2010-2018) for the City of Buenos Aires \rightarrow employment population by skill level.
- Commuting Survey for the city in 2010.
- Housing prices from online listings.
- Census data from 2010.

A Dynamic Quantitative Spatial Model of a City

Setup

- Combines:
 - migration/dynamics from Caliendo, et al. (2019) and Artuç et al. (2010) with
 - commuting from Ahlfeldt, et al. (2015)
- Closed city: I residence locations and J work locations.
- Two types of infinitely lived residents/workers: high-skilled and low-skilled.
- Two types of goods: housing and consumption good. Cobb-Douglas preferences.
- Assume rational expectations.

Model in a Nutshell

- Consumers/Workers are forward looking and choose where to work and live each period taking into account:
 - Commute costs
 - Wages
 - Moving/migration costs
 - Housing prices (rents)
 - ▶ Idiosyncratic shocks for residential location and workplace location.
- ► Goods market: Armington-style production using mix of high- and low-skilled labor.
- ► Labor market: labor demand depends on commuting costs and pop. distribution. Wages adjust to clear market.
- ▶ Housing market: Housing supply is fixed. Housing prices adjust every period to clear market.

Production

Housing Mkt

Resident's Problem - Static Problem

- ► Cobb-Douglas on consumption (c_i^g) and floor space $(H_{R,ij}^g)$.
- ▶ Income is effective wages $(w_i^g \varepsilon_i^g)$ discounted by commute costs $d_{ij} = \exp(\kappa \tau_{ij})$.

$$\begin{split} \max_{\{c_i^{\mathcal{g}}, H_{R, ij}^{\mathcal{g}}\}} C_{ij}^{\mathcal{g}} &= \left(\frac{c_{ij}^{\mathcal{g}}}{\alpha}\right)^{\alpha} \left(\frac{H_{R, ij}^{\mathcal{g}}}{1 - \alpha}\right)^{1 - \alpha} \\ \text{subject to} \quad c_{ij}^{\mathcal{g}} + r_{Ri} H_{R, ij}^{\mathcal{g}} &= \frac{w_j^{\mathcal{g}} \varepsilon_j^{\mathcal{g}}}{d_{ij}}. \\ &\Rightarrow C_{ij}^{\mathcal{g}*} &= \frac{w_j^{\mathcal{g}} \varepsilon_j^{\mathcal{g}} r_{Ri}^{\alpha - 1}}{d_{ij}}. \end{split}$$

Resident's Problem - Dynamic Problem

$$v_{n,t}^{g} = \max_{\{i,j\}} \left\{ \overbrace{C_{nj,t}^{g*}}^{\text{flow utility}} + \underbrace{\beta E_{t}[v_{i,t+1}^{g}]}_{\text{cont. value}} - \overbrace{\mu_{ni}^{g}}^{\text{mig. cost}} + \underbrace{\eta_{i,t}^{g}}_{\text{id. res. shock}} \right\}$$

Taking expectations w. r. t. the joint distribution of ε_j and η_i ,

$$V_{n,t}^{g} = \tilde{T}_{g} \Phi_{Rgn,t}^{\frac{1}{\theta_{g}}} r_{Rn}^{\alpha-1} + \nu_{g} \ln \sum_{i=1}^{I} \exp \left(\beta V_{i,t+1}^{g} - \mu_{i,n}^{g}\right)^{\frac{1}{\nu_{g}}}. \tag{1}$$

Where

$$\overbrace{\Phi_{Rgn,t}}^{\mathsf{CMA}} = \sum_{j} \left(\frac{w_{j,t}^{\mathsf{g}}}{d_{nj,t}} \right)^{\theta_{\mathsf{g}}},$$

Migration and Res. Population

Labor Supply

Transition Dynamics After New Transport Infrastructure

- ▶ Change in transport network \rightarrow commute times $(d_{ij,t})$.
- ▶ Impacts spatial dist. of expected utility $(V_{i,t}^g)$.
- But adjustment in residential pop. is gradual:
- ▶ Residents wait for a large enough idiosyncratic shock $(\eta_{i,t}^g)$ to pay moving cost μ_{ni}^g to move to i.
- ightharpoonup Gradual changes in location characteristics and transition to SS.

Model Solution

- From Caliendo et al. $(2019) \rightarrow$ equilibrium in **first differences**. Extend dynamic exact-hat algebra to incorporate commuting.
- ► Crucially: use electoral register data to calculate residential migration matrices every two years (as well as migration elasticities).
- ► Calculate transport cost at time 0, $(d_{ij,0})$ (pre-BRT), add lines at times 1, 2 and 3, and calculate $d_{ij,t}$ for each period (2 years), then assume $d_{ij,t} = d_{ij,3}$ for all $t \ge 4$.

Estimation of model parameters

Welfare Gains for Residents at t = 0

- $lackbox{V}_{i,t}^{m{g}}
 ightarrow {\sf expected}$ utility at time t in location i for resident of skill type $m{g}$.
- $\hat{V}_{i,t}^{g} \rightarrow$ expected utility without BRT.
- ▶ Define $\delta_{n,t}^g$ as consumption equivalent compensating variation paid each period so that utility under counterfactual $\hat{V}_{i,t}^g$ (plus $\delta_{n,t}^g$) is equal to utility with new transport infrastructure $(V_{i,t}^g)$.
- $\delta_{n,0}^g$ captures welfare gains for resident of skill level g living in n at time t=0.

Welfare Gains: History Matters

Initial location (before BRT) matters for gains from new infrastructure.

Welfare Gains for Incumbents By Quartile of HS share

- Avg. Welfare gains at t = 0 for locations < 1 km from line.
- On avg. welfare increased more in locations with lower initial HS share.
- BRT spatially "pro-poor" neighborhoods.

Short-run vs Long-Run: Dynamic Transitions Vary by Location

Evolution of housing prices (rents) and population relative to counterfactual (no BRT).

Location characteristics (rents, residential pop., etc.) adjust a different speeds and in different ways across locations.

Dynamics Transition Costs

Construct measure of adjustment cost that follows Davidson et al. (2010).

$$AC_{n,t}^{g} = \log \left(\frac{\delta_{n,SS}^{g}}{\delta_{n,t}^{g}} \right). \tag{2}$$

- ▶ Where $\delta_{n,t}^g$ is CD at time t, and $\delta_{n,SS}^g$ is the consumption equivalent compensating differential calculated starting from the steady state.
- ▶ Intuition: How much higher (or lower) would welfare be in location *n* if you could "jump" to new SS (as in static QSM models).

Dynamic Adjustment Costs at t=0

Larger AC further away from new BRT, where indirect gains require population changes.

Avg. $AC_h = 35\%$, Avg. $AC_I = 31\%$.

Conclusions

- Existing static models (Heblich et al. 2020; Tsivanidis, 2023; Severen 2023; etc.) assume: spatial eq. + "jump to SS".
- ► Accounting for dynamics matters because:
 - Initial exposure matters: large spatial heterogeneity in welfare gains conditional on initial location.
 - ▶ Dynamic transition matter: not accounting for transition overestimates gains by 35% for HS and 31% for LS residents.
 - Large spatial heterogeneity in dynamic adjustment costs.

Thank You Slide

Thank you!

Appendix

Neighborhood Migration Flows and Residential Population

 $m_{in,t}$: fraction of agents that are residing in location n at the beginning of period t, and move to location i by the end of period t. From distribution of idiosyncratic preferences $\eta_{n,t}$ we obtain:

$$m_{in,t}^{g} = \frac{\left[\exp(\beta V_{i,t+1}^{g} - \mu_{in}^{g})\right]^{\frac{1}{\nu_{g}}}}{\sum_{m=1}^{N} \left[\exp(\beta V_{m,t+1}^{g} - \mu_{mn}^{g})\right]^{\frac{1}{\nu_{g}}}}$$
(3)

It follows that:

$$L_{Ri,t}^{g} = \sum_{n=1}^{I} \underbrace{m_{in,t}^{g} L_{Rn,t-1}^{g}}_{\text{Num. movers n to i}}$$
(4)

Back

Labor Supply

Given idiosyncratic productivity shocks ε_j^g , the probability that a worker that lives in i at time t decides to work in location j is:

$$\Pi_{j|tig} = \frac{(w_{j,t}^{g}/d_{ij,t})^{\theta_{g}}}{\sum_{s} \left(\frac{w_{s,t}^{g}}{d_{is,t}}\right)^{\theta_{g}}} = \frac{(w_{j,t}^{g}/d_{ij,t})^{\theta_{g}}}{\Phi_{Rgi,t}}.$$
 (5)

Therefore, labor supply at time t for workplace location j will be

$$L_{Fj,t}^{g} = \sum_{i=1}^{I} \prod_{j|tig} L_{Ri,t}^{g}, \tag{6}$$

Back

Equilibrium Definitions

- ▶ Given $\{L_{Ri,t}^g\}$ and $\{d_{ij,t}\}$ at time t, and $\{A_j\}$, a **temporary equilibrium**: as a vector of wages $\{w_j^g\}$ and floorspace prices $\{r_{Ri}\}$ that solve labor market clearing and floorspace market clearing at time t.
- ▶ Given L_{R0}^g , L_{F0}^g , $\{m_{in,0}^g\}$ and $\{d_{ij,t}\}$, sequential competitive equilibrium sequence of $\{L_{Rt}^g, L_{Ft}^g, m_t^g, w_t^g, r_{Rt}, V_t^g\}_{t=0}^{\infty}$ that solves residents' dynamic optimization problem, and temporary equilibrium at each time t.
- ▶ Stationary equilibrium: sequential competitive equilibrium such that all the elements of the vector $\{L_{Rt}^g, L_{Ft}^g, m_t^g, w_t^g, r_{Rt}, V_t^g\}_{t=0}^{\infty}$ are constant for all t.

Labor Market clearing

Housing Market clearing

Equilibrium Definitions

- ▶ Given $\{L_{Ri,t}^g\}$ and $\{d_{ij,t}\}$ at time t, and $\{A_j\}$, a **temporary equilibrium**: as a vector of wages $\{w_j^g\}$ and floorspace prices $\{r_{Ri}\}$ that solve labor market clearing and floorspace market clearing at time t.
- ▶ Given L_{R0}^g , L_{F0}^g , $\{m_{in,0}^g\}$ and $\{d_{ij,t}\}$, sequential competitive equilibrium: sequence of $\{L_{Rt}^g, L_{Ft}^g, m_t^g, w_t^g, r_{Rt}, V_t^g\}_{t=0}^{\infty}$ that solves residents' dynamic optimization problem, and temporary equilibrium at each time t.
- ▶ Stationary equilibrium: sequential competitive equilibrium such that all the elements of the vector $\{L_{Rt}^g, L_{Ft}^g, m_t^g, w_t^g, r_{Rt}, V_t^g\}_{t=0}^{\infty}$ are constant for all t.

Labor Market clearing

Housing Market clearing

Equilibrium Definitions

- ▶ Given $\{L_{Ri,t}^g\}$ and $\{d_{ij,t}\}$ at time t, and $\{A_j\}$, a **temporary equilibrium**: as a vector of wages $\{w_j^g\}$ and floorspace prices $\{r_{Ri}\}$ that solve labor market clearing and floorspace market clearing at time t.
- ▶ Given L_{R0}^g , L_{F0}^g , $\{m_{in,0}^g\}$ and $\{d_{ij,t}\}$, sequential competitive equilibrium: sequence of $\{L_{Rt}^g, L_{Ft}^g, m_t^g, w_t^g, r_{Rt}, V_t^g\}_{t=0}^{\infty}$ that solves residents' dynamic optimization problem, and temporary equilibrium at each time t.
- **Stationary equilibrium**: sequential competitive equilibrium such that all the elements of the vector $\{L_{Rt}^g, L_{Ft}^g, m_t^g, w_t^g, r_{Rt}, V_t^g\}_{t=0}^{\infty}$ are constant for all t.

Labor Market clearing

Housing Market clearing

Parameter Estimation

Parameters	Values	Source
Commute cost parameter	$\kappa=0.01$	From Ahlfeldt et al. (2015)
Discount factor	eta= 0.92	Based on Caliendo et al. (2019)
Non-housing consump. share	lpha = 0.7	From hh. consumption survey 2010
Semi-elast. of commuting	$\theta_h = 3.7, \ \theta_l = 4.7$	Estimated as in Ahlfeldt et al. (2015) using commuting
		survey data
Inverse migration elast.	$ u_h = 1.4, \ u_l = 1.8$	Estimated with intra-city migration data (following Ar-
		tuç et al. 2010)

- Consumers/workers consume consumption good and housing (floorspace). They:
- ► Start period in residence location *i*.
- ightharpoonup Observe idiosyncratic match productivities for each workplace location j (ε_j^g) Frechet).
- Choose a workplace location j to maximize wage income discounted by commuting costs. → Labor supply.
- ► Consume housing and consumption good. → Housing demand and consumption demand.
- Observe idiosyncratic preference shocks for each residence location next period $(\eta_n^g, \text{Gumbel})$.
- ▶ Choose residential location for next period. → Migration probabilities

- Consumers/workers consume consumption good and housing (floorspace).
 They:
- ► Start period in residence location *i*.
- Observe idiosyncratic match productivities for each workplace location j (ε_j^g , Frechet).
- Choose a workplace location j to maximize wage income discounted by commuting costs. → Labor supply.
- Consume housing and consumption good. → Housing demand and consumption demand.
- Deserve idiosyncratic preference shocks for each residence location next period $(\eta_n^g, \text{Gumbel})$.
- ▶ Choose residential location for next period. → Migration probabilities

- Consumers/workers consume consumption good and housing (floorspace).
 They:
- ► Start period in residence location *i*.
- Observe idiosyncratic match productivities for each workplace location j (ε_j^g , Frechet).
- ▶ Choose a workplace location j to maximize wage income discounted by commuting costs. → Labor supply.
- Consume housing and consumption good. → Housing demand and consumption demand.
- Observe idiosyncratic preference shocks for each residence location next period $(\eta_n^g, \text{Gumbel})$.
- ▶ Choose residential location for next period. → Migration probabilities

- Consumers/workers consume consumption good and housing (floorspace).
 They:
- ► Start period in residence location i.
- Observe idiosyncratic match productivities for each workplace location j (ε_j^g , Frechet).
- ► Choose a workplace location j to maximize wage income discounted by commuting costs. \rightarrow Labor supply.
- Consume housing and consumption good. → Housing demand and consumption demand.
- Observe idiosyncratic preference shocks for each residence location next period $(\eta_n^g, \text{Gumbel})$.
- ▶ Choose residential location for next period. → Migration probabilities

- Consumers/workers consume consumption good and housing (floorspace).
 They:
- ► Start period in residence location *i*.
- Observe idiosyncratic match productivities for each workplace location j (ε_j^g , Frechet).
- ► Choose a workplace location j to maximize wage income discounted by commuting costs. \rightarrow Labor supply.
- ► Consume housing and consumption good. → Housing demand and consumption demand.
- Observe idiosyncratic preference shocks for each residence location next period $(\eta_n^g, \text{Gumbel})$.
- ▶ Choose residential location for next period. → Migration probabilities

Consumers/Workers

- Consumers/workers consume consumption good and housing (floorspace).
 They:
- ► Start period in residence location *i*.
- Observe idiosyncratic match productivities for each workplace location j (ε_j^g , Frechet).
- ► Choose a workplace location j to maximize wage income discounted by commuting costs. \rightarrow Labor supply.
- Consume housing and consumption good. → Housing demand and consumption demand.
- Observe idiosyncratic preference shocks for each residence location next period $(\eta_n^g, \text{Gumbel})$.
- ightharpoonup Choose residential location for next period. ightharpoonup Migration probabilities.

Production

- ▶ *J* varieties of the consumption good, differentiated by location of production, and supplied in a competitive market.
- Consumers have CES preferences over each variety, with elasticity of substitution $\sigma > 1$.
- Firms solve static problem.
- lacktriangle Production function o Cobb-Douglas combines high- and low-skilled labor.
- ▶ Using all these assumptions, determine effective **labor demand** by skill as function of wage vector $\mathbf{w}_t = \{\{w_{jt}^h\}_{j=1}^J, \{w_{jt}^I\}_{j=1}^J\}.$

Housing Market

- Fixed supply of housing (floorspace).
- ▶ Demand for floorspace by skill group comes from FOC of consumer problem.
- ► As population moves around, demand for housing changes ⇒ change in housing prices.

Floorspace Prices in 2010 and Metrobus Lines

metrobus_lines_and_floorspace_prices_0_with_arrow.pdf

Electoral Register Data

- Voting is compulsory for all Argentine citizens between 18 and 70.
- ▶ Your polling place is decided based on your residence.
- So the government keeps an "up to date" record of every person's address, which it updates for each election.
- ▶ I have electoral registry for the entire country for 2011, 2013, 2015, and 2017.
- ▶ Includes: National ID number, name, sex at birth, birth year, address as free text, and occupation as free text.
- ► Cleaned and geotagged (assigned GPS coordinates) for almost all addresses in the city of Buenos Aires (aprox. 2.5 million people).
- ▶ Residence changes are self-reported. This might imply under-reporting of changes in residence.

Electoral Register Data - Population Comparison to 2010 Census

Electoral Registry Data - Distance Decay

ISCO 1 Digit Classification

1	Managers	
2	Professionals	
3	Technicians and associate professionals	High-Skilled
4	Clerical support workers	
6	Skilled agricultural, forestry and fishery workers	
5	Service and sales workers	
7	Craft and related trades workers	
8	Plant and machine operators, and assemblers	Low-Skilled
9	Elementary occupations	
0	Armed forces occupations	

Occupations and Skill Level

hs_by_occupation.pdf

High-skill Share by Census Tract: Census vs Constructed Measure

 ${\tt census_tract_hs_plot.pdf}$

CMA for Low-Skilled in 2011 CMA_1_0.pdf

47 / 25

Δ CMA for Low-Skilled 2011-2017

change_CMA_1_8_census_tracts.pdf

Creating Skill Level Indicator

- ► Classify occupation descriptions using International Standard Classification of Occupations. Classification
- Divide Occupations by share of college educated workers into high-skilled and low-skilled: Graph
- Assign each person in electoral registry to high-skill/low-skill according to coded occupation.

```
Comparison with Census Data Back
```

Definition of Commuter Market Access (CMA)

$$extit{CMA}_{gn,t} = \sum_{j} \left(rac{w_{j,t}^g}{d_{nj,t}}
ight)^{ heta_g}$$

- g: High-Skilled (h) or Low-Skilled (l).
- n: residential location.
- j: workplace location.
- ▶ Commute costs: $d_{nj,t} = \exp(\kappa \tau_{ij})$, with τ_{ij} being commute time from i to j.
- $w_{j,t}^g$: model-consistent wages for type g at time t, calculated with residential and employment population.
- $m{ heta}_{m{g}}$: semi-elasticity of commute shares with respect to commute times for skill type $m{g}$.

CMA for High-Skilled in 2011

Pre BRT: market access higher near subway lines and near Central Business District (CBD).

CMA_h_0.pdf

Δ CMA for High-Skilled 2011-2017

 Δ CMA larger near new BRT lines and further from Central Business District (CBD).

change_CMA_h_0_census_tracts.pdf

Identification: Historical IV

- Large tramway system dismantled in 1963.
- Buses competed directly with trams, and kept same routes.
- ▶ Metrobus lines follow existing bus routes along large two-way avenues.
- ▶ Use subset of tramway system built by 1938 that ran through two-way avenues to instrument for placement of Metrobus lines.
- ► IV: predicted Δ CMA if BRT placement followed tramway lines. Details
- ▶ Identifying assumption: placement decided before 1938 of tramway not correlated with contemporary changes in unobservables.

Tramway in 1938 and Metrobus System tramway_lines_and_metrobus.pdf

Tramway and Buses Competing in 1936

Horacio_Coppola_-_Buenos_Aires_1936_-_Sarmiento_y_Diag

Historical IV - Details

$$CMA_{gn,t} = \sum_{j} \left(\frac{w_{j,t}^g}{d_{nj,t}} \right)^{\theta_g}$$

- Where τ_{nj} are calculated using a model of the city's transportation network.
- ightharpoonup ightharpoonup ightharpoonup ightharpoonup ightharpoonup ightharpoonup before and after the BRT.
- lacktriangle For IV, replace au_{nj} after BRT with $\hat{ au}_{nj}$, assuming BRT runs through tramway lines.

Production - Details on Labor Demand

Output of the final good in location *j* at time *t*:

$$q_{jt} = A_j (\tilde{\mathcal{L}}_{jt}^I)^{\rho_j} (\tilde{\mathcal{L}}_{jt}^h)^{(1-\rho_j)}.$$

Solving producer's problem we obtain

$$w_{j,t}^h \tilde{\mathcal{L}}_{Fj,t}^h = (1 - \rho_j) X_{jt}, \tag{7}$$

$$w'_{j,t}\tilde{\mathcal{L}}'_{Fj,t} = \rho_j X_{jt}. \tag{8}$$

Production - Details on Labor Demand

- From CES demand we know that $X_{it} = p_{it}^{1-\sigma}X$, where
 - X = ∑_{i=1}^I α ∑_{g∈{h,I}} ȳ_{igt} is total city exp. on consumption.
 ȳ_{igt} is mean income for worker of type g in location i at time t.
- Perfect competition implies price equals marginal cost:

$$p_{jt} = A_j^{-1}(w_{jt}^I)^{\rho_j}(w_{jt}^h)^{(1-\rho_j)}.$$

Combining previous results we obtain labor demand at each location j at time t for each skill type g as a function of the wage vector $\mathbf{w}_t = \{\{w_{it}^h\}_{i=1}^J, \{w_{it}^I\}_{i=1}^J\}$:

$$\tilde{L}_{Fj,t}^{g} = f_{jgt}(\mathbf{w}_{t}) \tag{9}$$

Labor Market Clearing

$$\underline{L_{Fjt}^{g} = \frac{f_{jgt}(\mathbf{w}_{t})}{\bar{\varepsilon}_{jt}^{g}}} = \underbrace{\sum_{i=1}^{I} \frac{(w_{j,t}^{g}/d_{ij,t})^{\theta}}{\sum_{j} \left(\frac{w_{j,t}^{g}}{d_{ij,t}}\right)^{\theta}} L_{Ri,t}^{g}}^{g}.$$
(10)

Floorspace Market Clearing

- ▶ Assume fixed supply of floorspace \bar{H}_{Ri} .
- ▶ Demand for floorspace by skill group comes from FOC of consumer problem.
- ▶ Implies floorspace market clearing condition:

$$r_{Ri,t} = \frac{\sum_{g \in \{h,l\}} \overbrace{L_{Ri,t}^g \tilde{T}_g \Phi_{Rgi,t}^{\frac{1}{\theta_g}}}^{\text{total income by g}}}{\bar{H}_{Ri}}.$$
 (11)

Reduced Form vs. Model (Districts)

Reduced Form (IV	')	$egin{aligned} Model \ & \Delta \log(\mathit{hs\ share}_{\mathit{BRT}}) - \Delta \log(\mathit{hs\ share}_{\mathit{CF}}) \end{aligned}$		
$\Delta \log(hs \;\; share)$				
$\Delta \log(CMA)$	-2.31 (0.52)***	$\Delta \log(\textit{CMA}_{\textit{BRT}}) - \Delta \log(\textit{CMA}_{\textit{CF}})$	-2.20 (0.62)***	
hs share ₀	0.11 (0.05)**	hs share ₀	-0.03 (0.04)	
$\Delta \log(\mathit{CMA}) imes hs sh. avg._{oldsymbol{0}}$	4.14 (0.85)***	$\Delta \log(\textit{CMA}_\textit{BRT}) - \Delta \log(\textit{CMA}_\textit{CF}) imes \textit{hs share}_{m{0}}$	6.17 (1.65)***	
cons	-0.42 (0.04)***	cons	-0.01 (0.02)	
N	2,282	N	`167 <i>´</i>	

Welfare Gains With Only Medium HS Share Lines Built

Welfare Gains With Only High HS Share Line Built

g 64 / 25

Reduced Form Results: Increase in Segregation by Skill Type

- Using IV specification:
 - $\blacktriangleright \frac{\Delta log(\text{HS share})}{\Delta \log(\text{CMA})}$ for census tract at 20^{th} percent. of HS share: 0.1
 - $ightharpoonup rac{\Delta log(HS share)}{\Delta log(CMA)}$ for census tract at 80^{th} percent. of HS share: 0.6

		$\Delta \log(hs \; share)$			
	OLS	IV	OLS	IV	IV
$\Delta \log(CMA)$	-0.122 (0.087)	0.202 (0.096)**	-2.797 (0.564)***	-2.308 (0.522)***	-2.609 (1.197)**
hs share ₀	0.192 (0.038)***	0.296 (0.044)***	0.153 (0.078)**	0.113 (0.052)**	0.191 (0.097)**
$\Delta \log(\textit{CMA}) imes hs sh. avg._{f 0}$			4.629 (0.895)***	4.143 (0.847)***	3.489 (1.925)*
cons	-0.457 (0.026)***	-0.538 (0.031)***	-0.445 (0.053)***	-0.419 (0.036)***	-0.404 (0.063)***
Neigh. FE	NO	NO	NO	NO	YES
F first	-	410	-	403	135
N	2,282	2,282	2,282	2,282	2,282

^{*} $\rho <$ 0.1; ** $\rho <$ 0.05; *** $\rho <$ 0.01

Reduced Form Results: Housing Prices Increase more in Richer Neighborhoods

- Using IV specification:
 - $\blacktriangleright \frac{\Delta log(\text{floorspace price})}{\Delta \log(\text{CMA})}$ at 20^{th} percent. of HS share: 0.3
 - $ightharpoonup \frac{\Delta log(floorspace\ price)}{\Delta log(CMA)}$ at 80^{th} percent. of HS share: 1

Why a Dynamic Model?

- ▶ Previous literature (Tsivanidis 2019, Ahlfeldt, et al. 2015, etc.) rely on comparative statics after the policy for welfare analysis.
- ► This tells us welfare gains in location for residents living there after changes (new equilibrium).
- But people can move around.
- Policy maker interested in welfare gains for residents living there before changes (incumbents).
- ightharpoonup Must model explicitly migration \Rightarrow forward-looking agents.

Transport Use by Mode of Transport

81% of low-skilled and 73% of high-skilled commute by public transport or walking within the city.

Mode of Transport	Low-Skilled	High-Skilled	Total
Car / motorcycle	16.5%	22.9%	19.3%
Taxi	2.1%	3.7%	2.8%
Bus	37.1%	39.3%	38.1%
Subway	4.4%	14.5%	8.8%
Train	1.6%	3.2%	2.3%
Walking / bicycle	38.1%	16.3%	28.5%
Other	0.2%	0.0%	0.1%

Table: Percentage of trips made by mode of transport by skill type. Source: 2010 mobility survey.

Resident's Problem - Static Problem

- \triangleright Cobb-Douglas on CES bundle of consumption varieties (c) and floor space (H^R).
- ▶ Income is effective wages $(w_j^g \varepsilon_j^g)$ discounted by commute costs $d_{ij} = \exp(\kappa \tau_{ij})$.
- Implies indirect utility:

$$\Rightarrow C_{ij}^{g*} = \frac{w_j^g \varepsilon_j^g r_{Ri}^{\alpha-1}}{d_{ij}}.$$

Resident's Problem - Dynamic Problem

$$v_{n,t}^{g} = \max_{\{i,j\}} \left\{ \overbrace{C_{nj,t}^{g*}}^{\text{flow utility}} + \underbrace{\beta E_{t}[v_{i,t+1}^{g}]}_{\text{cont. value}} - \underbrace{\mu_{ni}^{g}}_{\text{id. res. shock}} + \underbrace{\eta_{i,t}^{g}}_{\text{id. res. shock}} \right\}$$

Taking expectations w. r. t. the joint distribution of ε_j and η_i ,

$$V_{n,t}^{g} = \tilde{T}_{g} \Phi_{Rgn,t}^{\frac{1}{\theta_{g}}} r_{Rn}^{\alpha-1} + \nu_{g} \ln \sum_{i=1}^{I} \exp \left(\beta V_{i,t+1}^{g} - \mu_{i,n}^{g} \right)^{\frac{1}{\nu_{g}}}. \tag{12}$$

Where

$$\widetilde{\Phi_{Rgn,t}} = \sum_{j} \left(\frac{w_{j,t}^g}{d_{nj,t}} \right)^{\theta_g},$$

and $\tilde{T}_g = T_g \times \Gamma(1-1/\theta_g)$, with T_g the scale parameter of the e.v. type II distribution for type g.

"Neighborhood" Migration Flows and Residential Population

 $m_{in,t}$: fraction of agents that are residing in location n at the beginning of period t, and move to location i by the end of period t. From distribution of idiosyncratic preferences $\eta_{n,t}$ we obtain:

$$m_{in,t}^{g} = \frac{\left[\exp(\beta V_{i,t+1}^{g} - \mu_{in}^{g})\right]^{\frac{1}{\nu_{g}}}}{\sum_{m=1}^{N} \left[\exp(\beta V_{m,t+1}^{g} - \mu_{mn}^{g})\right]^{\frac{1}{\nu_{g}}}}$$
(13)

It follows that:

$$L_{Ri,t}^{g} = \sum_{n=1}^{I} \underbrace{m_{in,t}^{g} L_{Rn,t-1}^{g}}_{\text{Num. movers n to i}}$$
(14)

Labor Supply

The probability that a worker that lives in i at time t decides to work in location j is:

$$\Pi_{j|tig} = \frac{(w_{j,t}^{g}/d_{ij,t})^{\theta_{g}}}{\sum_{s} \left(\frac{w_{s,t}^{g}}{d_{is,t}}\right)^{\theta_{g}}} = \frac{(w_{j,t}^{g}/d_{ij,t})^{\theta_{g}}}{\Phi_{Rgi,t}}.$$
(15)

Therefore, labor supply at time t for workplace location j will be

$$L_{Fj,t}^{g} = \sum_{i=1}^{I} \Pi_{j|tig} L_{Ri,t}^{g}, \tag{16}$$

Subway Lines in 2010 subway_2010_map.pdf 73 / 25