安徽大学 2012—2013 学年第二学期

《 高等数学 A(二)、B(二) 》考试试卷(A卷) (闭卷 时间 120 分钟)

考场登记表序号_____

题 号	_	11	=	四	五	总分
得 分						
阅卷人						

一、填空题(每小题2分,共10分)

恕

得分

- 1. 过点 (1,2,-1) 且与直线 $\begin{cases} x = -t+2 \\ y = 3t-4$ 垂直的平面方程为______. z = t-1
- 2. 极限 $\lim_{(x,y)\to(0,2)} \frac{\sin xy}{x} =$ ______.
- 3. 累次积分 $\int_0^1 dy \int_0^y x^2 e^{-y^2} dx$ 交换积分次序后为______.
- 4. 函数 $f(x,y) = x^2 y^2$ 在点 (1,1) 处沿方向 $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ 的方向导数为______.
- 5. 设 f(x) 是以 2π 为周期的周期函数,它在 $(-\pi,\pi]$ 上的表达式为

$$f(x) = \begin{cases} \frac{\pi}{2} + x, & -\pi < x < 0, \\ \frac{\pi}{2} - x, & 0 \le x \le \pi, \end{cases}$$

则 f(x) 的 Fourier 级数在 $x = 3\pi$ 处收敛于 .

二、选择题(每小题2分,共10分)

得分

6. 函数
$$f(x, y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, x^2 + y^2 \neq 0\\ 0, x^2 + y^2 = 0 \end{cases}$$
 在点 $(0,0)$ 处 (

(A)偏导数存在但不连续;

(B) 连续但偏导数不存在;

(C) 连续且偏导数存在;

(D) 不连续且偏导数不存在.

7. 直线 $\frac{x-1}{1} = \frac{y}{-4} = \frac{z+3}{1}$ 和直线 $\begin{cases} x+y+2=0 \\ x+2z=0 \end{cases}$ 的夹角为().

(A) $3\pi/4$;

(B) $\pi/4$;

(C) $\pi/3$;

(D) $\pi/2$.

8. 设向量场 $\vec{\mathbf{F}} = (2z - 3y)\vec{\mathbf{i}} + (3x - z)\vec{\mathbf{j}} + (y - 2x)\vec{\mathbf{k}}$,则 $\vec{\mathbf{F}}$ 的旋度为 ().

(A) 2x+4y+6z;

(B) $2\vec{i} + 4\vec{j} + 6\vec{k}$;

(C) $6\vec{i} + 2\vec{j} + 4\vec{k}$;

(D) $-2\vec{i} - 4\vec{j} - 6\vec{k}$.

9. 下列级数中条件收敛的是().

(A) $\sum_{n=1}^{\infty} (\sqrt{n+1} - \sqrt{n});$

(B) $\sum_{n=1}^{\infty} \left(-\frac{2}{3}\right)^n;$

(C) $\sum_{n=1}^{\infty} \frac{(-1)^n}{(n+1)^2}$;

(D) $\sum_{n=1}^{\infty} (-1)^{n-1} \sin \frac{1}{n}$.

10. 幂级数 $\sum_{n=1}^{\infty} \frac{(x-1)^n}{\sqrt{n}}$ 的收敛域是().

(A) [-1,1);

(B) (-1,1);

(C) [0,2);

(D) (0,2).

三、计算题(每小题9分,共63分)

得分

11. 设空间曲面 Σ 的方程为 $x^2 + xy + yz + x + 1 = 0$, 求 Σ 在点(0,1,-1)处的切平面与法线方程.

12. 设 $z = f(x^2 + y^2)$, 其中 f 具有二阶导数, 求 dz, $\frac{\partial^2 z}{\partial x \partial y}$.

第2页 共6页

13. 计算三重积分 $\iint_{\Omega} z^2 dx dy dz$,其中 Ω 由平面 z=0 和球面 $x^2+y^2+z^2=1$ 所围成的上半球部分.

14. 计算曲线积分 $\oint_L ydx + zdy + xdz$,其中 L 为平面 $x + \frac{y}{2} + \frac{z}{3} = 1$ 被三坐标面所截三角形的整个边界,若从 z 轴正向看去, L 的方向为逆时针方向.

15. 计算第一类曲面积分 $\iint_{\Sigma} (z+2x+\frac{4}{3}y)dS$,其中 Σ 为平面 $\frac{x}{2}+\frac{y}{3}+\frac{z}{4}=1$ 在第一卦限中的部分.

16. 计算第二类曲面积分 $\iint_{\Sigma} (y^2-z)dydz + (z^2-x)dzdx + (x^2-y)dxdy$, 其中 Σ 为锥面 $z=\sqrt{x^2+y^2}$ 被平面 z=1截下的部分,方向取下侧.

17. 将 $f(x) = \ln(2+x)$ 展开成 x 的幂级数,并求 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n \cdot 2^n}$ 的和.

四、应用题 (每小题 6分, 共 12分)

18. 求函数 $z = x^2 + 2y^2$ 在附加条件 x + y = 1 下的极小值.

得 分

19. 已知一条非均匀金属丝 L 的方程为 L: $x = a(\cos t + t \sin t)$, $y = a(\sin t - t \cos t)$, $(0 \le t \le 2\pi)$. 它在点(x, y)处的线密度是 $\rho(x, y) = x^2 + y^2$,求该金属丝的质量.

五、证明题(本题5分)

得分

20. 设级数 $\sum_{n=1}^{\infty} u_n^2$ 收敛,证明级数 $\sum_{n=1}^{\infty} \frac{u_n}{n}$ 收敛.

安徽大学 2012—2013 学年第二学期

《高等数学 A (二) B (二)》 (A 卷)

考试试题参考答案及评分标准

一、填空题(每小题2分,共10分)

1,
$$x-3y-z+4=0$$

1.
$$x-3y-z+4=0$$
; 2. 2; 3. $\int_0^1 dx \int_x^1 x^2 e^{-y^2} dy$; 4. $1-\sqrt{3}$; 5. $\frac{\pi}{2}$.

$$4, 1-\sqrt{3};$$

$$5, \frac{\pi}{2}$$
.

二、选择题(每小题2分,共10分)

6, C; 7, B; 8, B; 9, D; 10, C.

三、计算题(每小题9分,共63分)

11.解:令

$$F(x, y, z) = x^2 + xy + yz + x + 1$$
,

则
$$F_x = 2x + y + 1$$
, $F_y = x + z$, $F_z = y$ 。

故在(0,1,-1)处曲面Σ的法向量为

$$\vec{n} = (F_x(0,1,-1), F_y(0,1,-1), F_z(0,1,-1)) = (2,-1,1)$$

故在(0,1,-1)处, 曲面Σ的切平面方程为

$$2 \cdot (x-0) - 1 \cdot (y-1) + 1 \cdot (z+1) = 0$$
,

 $\mathbb{P} 2x - y + z + 2 = 0$.

法线方程为

$$\frac{x}{2} = \frac{y-1}{-1} = \frac{z+1}{1}.$$

12. 解:

$$\frac{\partial z}{\partial x} = 2xf'(x^2 + y^2);$$
 $\frac{\partial z}{\partial y} = 2yf'(x^2 + y^2);$

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy = 2(xdx + ydy)f'(x^2 + y^2) \circ$$

$$\frac{\partial^2 z}{\partial x \partial y} = 2xf''(x^2 + y^2) \cdot 2y = 4xyf''(x^2 + y^2) \circ$$

13. 解:

解法 1: 做球坐标变换

 $x = r\sin\varphi\cos\theta$, $y = r\sin\varphi\sin\theta$, $z = r\cos\varphi$, $0 \le r \le 1$, $0 \le \theta \le 2\pi$, $0 \le \varphi \le \pi/2$ 得到

原式 =
$$\int_0^{2\pi} d\theta \int_0^{\pi/2} d\varphi \int_0^1 r^2 \cos^2 \varphi \cdot r^2 \sin \varphi dr$$

$$= \frac{2}{15} \pi. \tag{9 分)}$$

解法 2: $V = \{(x, y, z) \mid x^2 + y^2 \le 1 - z^2, 0 \le z \le 1\}$

原式=
$$\int_0^1 z^2 dz \iint_{D_z} dx dy ,$$
 (5 分)

其中 D_z 为z固定情况下的圆 $x^2 + y^2 \le 1 - z^2$,面积为 $\pi(1 - z^2)$,则

原式 =
$$\pi \int_0^1 z^2 (1 - z^2) dz$$

= $\frac{2}{15} \pi$. (9 分)

14. 解: L所围曲面 Σ 定向取为上侧,则由 $x+\frac{y}{2}+\frac{z}{3}=1$ 得到

$$\frac{\partial z}{\partial x} = -3, \quad \frac{\partial z}{\partial y} = -\frac{3}{2},$$

故
$$\{\cos \alpha, \cos \beta, \cos \gamma\} = \frac{1}{\sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2}} \left\{ -\frac{\partial z}{\partial x}, -\frac{\partial z}{\partial y}, 1 \right\}$$

$$=\left\{\frac{6}{7},\frac{3}{7},\frac{2}{7}\right\}.$$

由 Stockes 公式,

$$\oint_{L} y dx + z dy + x dz = \iint_{\Sigma} \begin{vmatrix} \cos \alpha & \cos \beta & \cos \gamma \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y & z & x \end{vmatrix} dS$$

$$= -\iint_{\Sigma} (\cos \alpha + \cos \beta + \cos \gamma) dS$$
$$= -\frac{11}{7} \iint_{\Sigma} dS = -\frac{11}{7} \times \frac{7}{2} = -\frac{11}{2} \circ$$

15. 解: 在 Σ 上, $z = 4 - 2x - \frac{4}{3}y$, Σ 在 xOy 面上的投影区域 D_{xy} 为由 x 轴、 y 轴 和直线 $\frac{x}{2} + \frac{y}{3} = 1$ 所围成的三角形闭区域,故

$$\iint_{\Sigma} (z + 2x + \frac{4}{3}y) dS$$

$$= \iint_{D_{xy}} \left[\left(4 - 2x - \frac{4}{3}y \right) + 2x + \frac{4}{3}y \right] \sqrt{1 + (-2)^2 + \left(-\frac{4}{3} \right)^2} dx dy$$

$$= \iint_{D_{xy}} 4 \cdot \frac{\sqrt{61}}{3} dx dy = \frac{4\sqrt{61}}{3} \iint_{\Sigma} dx dy = \frac{4\sqrt{61}}{3} \times \left(\frac{1}{2} \times 2 \times 3 \right) = 4\sqrt{61} \text{ o}$$

16.

添加辅助曲面 $\Sigma_1 = \{(x,y,z) | z=1, x^2+y^2 \le 1\}$,方向取上侧,则在由 Σ 和 Σ_1 所围成的空间闭区域 Ω 上应用高斯公式,得到

$$\iint_{\Sigma+\Sigma_1} (y^2 - z) dy dz + (z^2 - x) dz dx + (x^2 - y) dx dy$$

$$= \iiint_{\Omega} \left(\frac{\partial (y^2 - z)}{\partial x} + \frac{\partial (z^2 - x)}{\partial y} + \frac{\partial (x^2 - y)}{\partial z} \right) dv$$

$$= \iiint_{\Omega} 0 dv = 0$$

故原式

$$= -\iint_{\Sigma_1} (y^2 - z) dy dz + (z^2 - x) dz dx + (x^2 - y) dx dy$$
$$= -\iint_{\Sigma_1} (x^2 - y) dx dy$$

$$= - \iint\limits_{D_{xy}} (x^2 - y) dx dy$$

这里
$$D_{xy} = \{(x, y) | x^2 + y^2 \le 1\}$$
。

由对称性得到
$$\iint\limits_{D_{xy}} y dx dy = 0$$
, 又 $\iint\limits_{D_{xy}} x^2 dx dy = \iint\limits_{D_{xy}} y^2 dx dy$, 故

原式 =
$$-\iint_{D_{xy}} (x^2 - y) dx dy = -\frac{1}{2} \iint_{D_{xy}} (x^2 + y^2) dx dy$$

= $-\frac{1}{2} \int_0^{2\pi} d\theta \int_0^1 r^2 \cdot r dr = -\frac{\pi}{4}$.

17. 解:

$$\ln(2+x) = \ln 2 + \ln\left(1 + \frac{x}{2}\right)$$

$$= \ln 2 + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \left(\frac{x}{2}\right)^n$$

显然,

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n \cdot 2^n} = f(1) - \ln 2 = \ln 3 - \ln 2 = \ln \frac{3}{2}$$

四.应用题(每小题6分,共12分)

18.

解:构造拉格朗日函数

$$L(x, y, \lambda) = x^2 + 2y^2 + \lambda(x + y - 1)$$

$$\begin{cases} \frac{\partial L}{\partial x} = 2x + \lambda = 0\\ \frac{\partial L}{\partial y} = 4y + \lambda = 0\\ \frac{\partial L}{\partial z} = x + y - 1 = 0 \end{cases}$$

故得到

$$x = \frac{2}{3}, y = \frac{1}{3}$$

又

$$A = \frac{\partial^2 L}{\partial x^2} = 2, C = \frac{\partial^2 L}{\partial y^2} = 4, B = \frac{\partial^2 L}{\partial x \partial y} = 0$$

 $AC-B^2=8>0$,且A>0,故(2/3,1/3)为L的极小值点,即为函数 $z=x^2+2y^2$ 的

极小值点,对应的极小值为
$$z|_{(2/3,1/3)} = \left(\frac{2}{3}\right)^2 + 2 \times \left(\frac{1}{3}\right)^2 = \frac{2}{3}$$
.

19.

解: 弧微分

$$ds = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

$$= \sqrt{(at\cos t)^2 + (at\sin t)^2} dt = atdt$$

故金属丝的质量

$$M = \int_L (x^2 + y^2) ds$$

$$= \int_0^{2\pi} \left[a^2 (\cos t + t \sin t)^2 + a^2 (\sin t - t \cos t)^2 \right] atdt$$
$$= \int_0^{2\pi} a^3 (1 + t^2) t dt = 2\pi^2 a^3 (1 + 2\pi^2).$$

五.证明题(共5分)

20.

证明: 因为

$$\frac{|u_n|}{n} \le \frac{1}{2} \left(u_n^2 + \frac{1}{n^2} \right)$$

而 $\sum_{n=1}^{\infty} u_n^2$ 和 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 均收敛,故 $\sum_{n=1}^{\infty} \frac{|u_n|}{n}$ 收敛,即 $\sum_{n=1}^{\infty} \frac{u_n}{n}$ 绝对收敛,故必收敛。