$m{B}$ ARM Instruction Summary

c: Condition Codes								
Generic		Unsigned		Signed				
CS	Carry Set	HI	Higer Than	GT	Greater Than			
CC	Carry Clear	HS	Higer or Same	GE	Greater Than or Equal			
EQ	Equal (Zero Set)	LO	Lower Than	LT	Less Than			
NE	Not Equal (Zero Clear)	LS	Lower Than or Same	LE	Less Than or Equal			
VS	Overflow Set			MI	Minus (Negative)			
VC	Overflow Clear			PL	Plus (Positive)			

ARM Instructions				
Add with Carry	$ADC\langle cc \rangle \langle S \rangle$	R d , R n , $\langle op1 \rangle$	$\langle cc \rangle$: R d	$\leftarrow Rn + \langle op1 \rangle + CPSR(C)$
Add	$ADD\langle cc \rangle \langle S \rangle$	R d , R n , $\langle op1 \rangle$	$\langle cc \rangle$: Rd	$\leftarrow R n + \langle op 1 \rangle$
Bitwise AND	$AND\langle cc \rangle \langle S \rangle$	R d , R n , $\langle op1 \rangle$	$\langle cc \rangle$: Rd	$\leftarrow R n \And \langle op I \rangle$
Branch	$B\langle cc \rangle$	$\langle offset \rangle$	$\langle cc \rangle$: PC	\leftarrow PC + $\langle offset \rangle$
Branch and Link	$\mathtt{BL}\langle cc angle$	$\langle offset \rangle$	$\langle cc \rangle$: LR	← PC + 8
			$\langle cc \rangle$: PC	\leftarrow PC + $\langle offset \rangle$
Compare	$\mathtt{CMP}\langle cc angle$	R n , $\langle op1 \rangle$	$\langle cc \rangle$: CSPR	$\leftarrow (Rn - \langle opl \rangle)$
Exclusive OR	$EOR\langle cc \rangle \langle S \rangle$	R d , R n , $\langle op1 \rangle$	$\langle cc \rangle$: Rd	$\leftarrow R n \oplus \langle op1 \rangle$
Load Register	$ exttt{LDR}\langle cc angle$	R d , $\langle op2 \rangle$	$\langle cc \rangle$: Rd	$\leftarrow M(\langle op2 \rangle)$
Load Register Byte	$ exttt{LDR}\langle cc angle$ B	R d , $\langle op2 \rangle$	$\langle cc \rangle$: R d (7:0)	$\leftarrow M(\langle op2 \rangle)$
			$\langle cc \rangle$: Rd(31:8)	$\leftarrow 0$
Move	$ ext{MOV}\langle cc angle\langle S angle$	R d , $\langle op1 \rangle$	$\langle cc \rangle$: R d	$\leftarrow \langle op1 \rangle$
Move Negative	$MVN\langle cc \rangle \langle S \rangle$	R d , $\langle op1 \rangle$	$\langle cc \rangle$: Rd	$\leftarrow \overline{\langle op I \rangle}$
Bitwise OR	ORR $\langle cc \rangle \langle S \rangle$	R d , R n , $\langle op1 \rangle$	$\langle cc \rangle$: R d	$\leftarrow R n I \langle op I \rangle$
Subtract with Carry	$\operatorname{SBC}\langle cc \rangle \langle S \rangle$	R d , R n , $\langle op1 \rangle$	$\langle cc \rangle$: R d	$\leftarrow Rn - \langle op1 \rangle - \overline{CPSR(C)}$
Store Register	$ exttt{STR}\langle cc angle$	Rd, $\langle op2 \rangle$	$\langle cc \rangle$: M($\langle op2 \rangle$)	← R <i>d</i>
Store Register Byte	$STR\langle cc \rangle \langle S \rangle$	R d , $\langle op2 \rangle$	$\langle cc \rangle$: M($\langle op2 \rangle$)	$\leftarrow Rd(7:0)$
Subtract	$SUB\langle cc \rangle \langle S \rangle$	R d , R n , $\langle op1 \rangle$	$\langle cc \rangle$: R d	$\leftarrow R n - \langle op I \rangle$
Software Interrupt	$\mathtt{SWI}\langle cc angle$	$\langle value \rangle$		
Swap	SWP $\langle cc angle$	Rd, Rm , $[Rn]$	$\langle cc \rangle$: R d	\leftarrow M(R n)
			$\langle cc \rangle$: M(R <i>n</i>)	← R <i>m</i>
Swap Byte	SWP $\langle cc angle$ B	Rd, Rm , $[Rn]$	$\langle cc \rangle$: Rd(7:0)	\leftarrow M(Rn)(7:0)
			$\langle cc \rangle$: M(Rn)(7:0	$0) \leftarrow R \mathit{m}(7:0)$

op1: Data Access						
Immediate	$\#\langle value \rangle$	$\langle op1 \rangle \leftarrow \text{IR(value)}$				
Register	R <i>m</i>	$\langle op1 \rangle \leftarrow R m$				
Logical Shift Left Immediate Logical Shift Left Register	c \leftarrow Register \leftarrow 0 Rm, LSL $\#\langle value \rangle$ Rm, LSL Rs	$\langle op1 \rangle \leftarrow Rm \ll IR(value)$ $\langle op1 \rangle \leftarrow Rm \ll Rs(7:0)$				
Logical Shift Right Immediate Logical Shift Right Register	$0 \rightarrow \boxed{} \text{Register} \rightarrow \boxed{\texttt{C}}$ Rm, LSR $\#\langle value \rangle$ Rm, LSR Rs	$\langle op1 \rangle \leftarrow Rm \gg \mathrm{IR}(\mathrm{value})$ $\langle op1 \rangle \leftarrow Rm \gg Rs(7:0)$				
Arithmetic Shift Right Immediate Arithmetic Shift Right Register	\rightarrow MSB \rightarrow Register \rightarrow C Rm, ASR $\#\langle value \rangle$ Rm, ASR Rs	$\langle op1 \rangle \leftarrow Rm + \gg IR(value)$ $\langle op1 \rangle \leftarrow Rm + \gg Rs(7:0)$				
Rotate Right Immediate Rotate Right Register	Rm, ROR $\#\langle value \rangle$ Rm, ROR RS	$\langle opI \rangle \leftarrow Rm \ggg \langle value \rangle$ $\langle opI \rangle \leftarrow Rm \ggg Rs(4:0)$				
Rotate Right with Extend	Rm, RRX	$\langle opI \rangle \leftarrow C \ggg R m \ggg C$				

op2: Memory Access

Where $\langle shift \rangle$ is one of: LSL, LSR, ASR, ROR or RRX and has the same effect as for $\langle op1 \rangle$