Cryptologie asymétrique 2/2

Damien Vergnaud

Sorbonne Université

CRYPTO 1

Contents

- Digital signatures
 - Security Notions for Digital Signatures
 - Construction from a Trapdoor Permutation
- One-time signatures
 - Lamport signatures
 - Generalizations
- Schnorr signatures

- A very important public key primitive is the **digital signature**.
- The idea is
 - Message + Alice's Private Key = Signature
 - Message + Signature + Alice's Public Key = YES/NO
- Alice can sign a message using her private key.
- Anyone can verify Alice's signature, since everyone can obtain her public key.
- the verifier is convinced that only Alice could have produced the signature
 - only Alice knows her private key!

- A very important public key primitive is the **digital signature**.
- The idea is
 - Message + Alice's Private Key = Signature
 - Message + Signature + Alice's Public Key = YES/NO
- Alice can sign a message using her private key.
- Anyone can verify Alice's signature, since everyone can obtain her public key.
- the verifier is convinced that only Alice could have produced the signature
 - only Alice knows her private key!

- A very important public key primitive is the **digital signature**.
- The idea is
 - Message + Alice's Private Key = Signature
 - Message + Signature + Alice's Public Key = YES/NO
- Alice can sign a message using her private key.
- Anyone can verify Alice's signature, since everyone can obtain her public key.
- the verifier is convinced that only Alice could have produced the signature
 - only Alice knows her private key!

- A very important public key primitive is the **digital signature**.
- The idea is
 - Message + Alice's Private Key = Signature
 - Message + Signature + Alice's Public Key = YES/NO
- Alice can sign a message using her private key.
- Anyone can verify Alice's signature, since everyone can obtain her public key.
- the verifier is convinced that only Alice could have produced the signature
 - only Alice knows her private key!

Digital Signatures: Services

- The verification algorithm is used to determine whether or not the signature is properly constructed.
- the verifier has guarantee of
 - message integrity and
 - message origin.
- also provide non-repudiation not provided by MACs.

Most important cryptographic primitive!

Security Notions

Depending on the context in which a given cryptosystem is used, one may formally define a security notion for this system,

- by telling what goal an adversary would attempt to reach,
- and what means or information are made available to her (the attack model).

A security notion (or level) is entirely defined by pairing an adversarial goal with an adversarial model.

Examples: UB-KMA, UUF-KOA, EUF-SOCMA, EUF-CMA.

Signature Schemes

- Signer Alice generates a public/private key pair (pk, sk) by running a probabilistic **key generation algorithm** G(k), k being the security parameter. Alice publishes pk.
- Whenever Alice wishes to sign a digital document $m \in \{0,1\}^*$, she computes the signature s = S(sk, m) where S is the (possibly probabilistic) **signing algorithm**. She outputs s and maybe also m.
- Knowing m and s (and Alice's public key pk), Bob can verify that s is a signature of m output by Alice by running the **verification** algorithm V(pk, m, s) returning 1 if s = S(sk, m) or 0 otherwise.

The signature scheme is the triple (G, S, V) and their domains.

Security Goals

[Unbreakability] the attacker recovers the secret key sk from the public key pk (or an equivalent key if any). This goal is denoted UB. Implicitly appeared with public-key cryptography.

[Universal Unforgeability] the attacker, without necessarily having recovered sk, can produce a valid signature of any message in the message space. Noted UUF.

[Existential Unforgeability] the attacker creates a message and a valid signature of it (likely not of his choosing). Denoted **EUF**.

Adversarial Models

- Key-Only Attacks (KOA), unavoidable scenario.
- Known Message Attacks (KMA) where an adversary has access to signatures for a set of known messages.
- Chosen-Message Attacks (CMA) the adversary is allowed to use the signer as an oracle (full access), and may request the signature of any message of his choice

Digital signature from a Trapdoor Permutation . . .

... Isn't Fully Secure On Its Own

Remark. Assume Eve picks some random σ and computes $m = E_e(\sigma)$. Then (m, σ) is a valid pair since $\sigma = D_d(m)$ is a valid signature of m.

Eve can generate signatures for messages he doesn't control. This capability is known as existential forgery.

- weak form of forgery
- What if stronger attacks exist ?

RSA - Key Generation

Rivest, Shamir, Adleman (1978)

A method for obtaining digital signatures and public key cryptosystems. Communications of the ACM 21 (2): pp.120-126.

• Key generation:

- Generate two large primes p and q ($p \neq q$).
- Compute $N = p \cdot q$ and $\varphi(N) = (p-1)(q-1)$.
- Select a random integer e, $1 < e < \varphi(N)$, such that gcd(e, (p-1)(q-1)) = 1.
- Compute the unique integer d, $1 < d < \varphi(N)$ with $e \cdot d \equiv 1 \pmod{\varphi(N)}$.

Public key = (N, e) which can be published.

Private key = (d, p, q) which needs to be kept secret

RSA - Signature / Verification

- Signature: if Alice wants to sign a message, she does the following:
 - Represent the message as a number 0 < m < N.
 - Use her private key d to compute $s = m^d \mod N$.
 - Send the signature s to Bob.

- **Verification:** to check the validity of *s* on *m*, Bob does the following:
 - Obtain Alice's authentic public key (N, e).
 - Check whether $m = s^e \mod N$.

RSA - Signature / Verification

- Signature: if Alice wants to sign a message, she does the following:
 - Represent the message as a number 0 < m < N.
 - Use her private key d to compute $s = m^d \mod N$.
 - Send the signature s to Bob.

- **Verification:** to check the validity of *s* on *m*, Bob does the following:
 - Obtain Alice's authentic public key (N, e).
 - Check whether $m = s^e \mod N$.

Universal Forgery of RSA Signatures

RSA is a morphism: for $m_1, m_2 \in \mathbb{Z}_N^*$,

$$(m_1m_2)^d = m_1^d m_2^d \pmod{N}$$
,

meaning that $S(m_1m_2) = S(m_1)S(m_2)$.

Attack: now suppose Eve wants Alice's signature for some specific message m = 10 owe Eve 10,000 euros.

- ① she picks a random $m_1 \in \mathbb{Z}_N^*$ and computes $m_2 = m/m_1 \mod N$,
- ② assume Eve asks Alice to sign m_1 and m_2 and receives $S(m_1)$ and $S(m_2)$,
- 3 Eve computes $S(m) = S(m_1)S(m_2) \mod N$ on her own.

Universal Forgery of RSA Signatures

RSA is a morphism: for $m_1, m_2 \in \mathbb{Z}_N^*$,

$$(m_1m_2)^d = m_1^d m_2^d \pmod{N}$$
,

meaning that $S(m_1m_2) = S(m_1)S(m_2)$.

Attack: now suppose Eve wants Alice's signature for some specific message m = 10 owe Eve 10,000 euros.

- **①** she picks a random $m_1 \in \mathbb{Z}_N^*$ and computes $m_2 = m/m_1 \mod N$,
- ② assume Eve asks Alice to sign m_1 and m_2 and receives $S(m_1)$ and $S(m_2)$,
- 3 Eve computes $S(m) = S(m_1)S(m_2) \mod N$ on her own.

Universal Forgery of RSA Signatures

This is a universal forgery under a chosen-message attack.

- much worse than existential forgery
- but, this attack assumes that Eve has access to Alice's signing operation

The Need for Hashing

Instead of signing the message m directly, let's apply a hash function H to it:

- Alice generates and publishes some trapdoor permutation E_e ,
- she keeps D_d private,
- to sign m, Alice computes $s = D_d(H(m))$ and sends the pair (m, s) to Bob,
- to verify the signature, Bob checks whether $H(m) = E_e(s)$.

 \rightsquigarrow Hash-then-Invert paradigm. H is now a part of the scheme.

It must map messages to elements of E's domain, say X.

What have we done? Well, if H maps $\{0,1\}^*$ to X, then arbitrarily long messages can now be signed. Better.

What about existential forgery? Assume Eve picks some random σ and computes $\mu = E(\sigma)$, she faces the problem of finding an m such that $H(m) = \mu$.

The hope is that with a "good choice" for H, Eve cannot do that (in particular H must be one-way). Hopefully better

What about universal forgery? Getting back to the multiplicative attack for E = RSA, the attacker has to find m_1, m_2 such that

$$H(m_1)H(m_2) = H(m) \pmod{N}$$
.

Again, with a "good choice" for H, these should be difficult to find (H must somehow destroy the algebraic structure of \mathbb{Z}_n^*). Hopefully better

What have we done? Well, if H maps $\{0,1\}^*$ to X, then arbitrarily long messages can now be signed. Better.

What about existential forgery? Assume Eve picks some random σ and computes $\mu = E(\sigma)$, she faces the problem of finding an m such that $H(m) = \mu$.

The hope is that with a "good choice" for H, Eve cannot do that (in particular H must be one-way). Hopefully better.

What about universal forgery? Getting back to the multiplicative attack for E = RSA, the attacker has to find m_1, m_2 such that

$$H(m_1)H(m_2) = H(m) \pmod{N}$$
.

Again, with a "good choice" for H, these should be difficult to find (H) must somehow destroy the algebraic structure of \mathbb{Z}_n^* . Hopefully better

What have we done? Well, if H maps $\{0,1\}^*$ to X, then arbitrarily long messages can now be signed. Better.

What about existential forgery? Assume Eve picks some random σ and computes $\mu = E(\sigma)$, she faces the problem of finding an m such that $H(m) = \mu$.

The hope is that with a "good choice" for H, Eve cannot do that (in particular H must be one-way). Hopefully better.

What about universal forgery? Getting back to the multiplicative attack for E = RSA, the attacker has to find m_1, m_2 such that

$$H(m_1)H(m_2) = H(m) \pmod{N}$$
.

Again, with a "good choice" for H, these should be difficult to find (H must somehow destroy the algebraic structure of \mathbb{Z}_n^*). Hopefully better.

Is there a drawback? Well, yes but moderate.

The use of H introduces a new type of attacks based on finding collisions. If the attacker finds m_1 , m_2 such that $H(m_1) = H(m_2)$ then a signature of m_1 is also a signature of m_2 .

 \rightarrow existential forgery under a chosen-message attack: Eve queries Alice on m_1 to get s and then outputs (m_2, s) as a valid signature.

Here too, we hope that H is chosen in a way that makes collisions hard to find

Is there a drawback? Well, yes but moderate.

The use of H introduces a new type of attacks based on finding collisions. If the attacker finds m_1 , m_2 such that $H(m_1) = H(m_2)$ then a signature of m_1 is also a signature of m_2 .

 \rightarrow existential forgery under a chosen-message attack: Eve queries Alice on m_1 to get s and then outputs (m_2, s) as a valid signature.

Here too, we hope that H is chosen in a way that makes collisions hard to find

Is there a drawback? Well, yes but moderate.

The use of H introduces a new type of attacks based on finding collisions. If the attacker finds m_1 , m_2 such that $H(m_1) = H(m_2)$ then a signature of m_1 is also a signature of m_2 .

 \rightsquigarrow existential forgery under a chosen-message attack: Eve queries Alice on m_1 to get s and then outputs (m_2, s) as a valid signature.

Here too, we hope that H is chosen in a way that makes collisions hard to find

So, How Good is DH's Approach?

- We pinpointed features of H that are necessary for the Hash-then-Invert scheme to thwart certain attacks.
- **But** the true question should be: what features of *H* are **sufficient** to prevent **all** attacks?
- ~ provable security, that is, the set of techniques by which one
 assesses the security level of a cryptosystem given assumptions on its
 ingredients.

Lamport signatures

L. Lamport

Constructing digital signatures from a one-way function Technical Report SRI-CSL-98, SRI International Computer Science Laboratory, Oct. 1979.

- a Lamport signature or Lamport one-time signature scheme is a method for constructing efficient digital signatures.
- Lamport signatures can be built from any cryptographically secure one-way function; usually a cryptographic hash function is used.
- Unfortunately each Lamport key can only be used to sign a single message.
- However, we will see how a single key could be used for many messages, making this a fairly efficient digital signature scheme.

How to sign one bit just once?

$$\mathcal{M} = \{0,1\}$$

• Key generation:

- Generate $f: X \longrightarrow Y$ a **one-way function**.
- Select two random elements $x_0, x_1 \in X$.
- Compute their images $y_i = f(x_i)$ for $i \in \{0, 1\}$.

Public key = (y_0, y_1) which can be published.

Private key = (x_0, x_1) which needs to be kept secret

- **Signature:** if Alice wants to sign a bit b, she does the following:
 - Use her private key (x_0, x_1) to send the signature $s = x_b$ to Bob.
- Verification: to check the validity of s on b, Bob does the following
 - Obtain Alice's authentic public key (y_0, y_1) .
 - Check whether $f(s) = y_b$.

How to sign **one** bit **just once**?

$$\mathcal{M} = \{0,1\}$$

• Key generation:

- Generate $f: X \longrightarrow Y$ a **one-way function**.
- Select two random elements $x_0, x_1 \in X$.
- Compute their images $y_i = f(x_i)$ for $i \in \{0, 1\}$.

Public key = (y_0, y_1) which can be published.

Private key = (x_0, x_1) which needs to be kept secret

- **Signature:** if Alice wants to sign a bit b, she does the following:
 - Use her private key (x_0, x_1) to send the signature $s = x_b$ to Bob.
- **Verification:** to check the validity of *s* on *b*, Bob does the following:
 - Obtain Alice's authentic public key (y_0, y_1) .
 - Check whether $f(s) = y_b$.

$$\mathcal{M} = \{0,1\}$$

• Key generation:

- Generate $f: X \longrightarrow Y$ a **one-way function**.
- Select two random elements $x_0, x_1 \in X$.
- Compute their images $y_i = f(x_i)$ for $i \in \{0, 1\}$.

Public key = (y_0, y_1) which can be published.

Private key = (x_0, x_1) which needs to be kept secret

- **Signature:** if Alice wants to sign a bit b, she does the following:
 - Use her private key (x_0, x_1) to send the signature $s = x_b$ to Bob.
- **Verification:** to check the validity of *s* on *b*, Bob does the following:
 - Obtain Alice's authentic public key (y_0, y_1) .
 - Check whether $f(s) = y_b$.

$$\mathcal{M} = \{0,1\}^k$$

• Key generation:

- Generate $f: X \longrightarrow a$ one-way function.
- Select 2k random elements $x_{0,1}, x_{1,1}, \ldots, x_{0,k}, x_{1,k} \in X$.
- Compute their images $y_{i,j} = f(x_{i,j})$ for $i \in \{0,1\}$ and $j \in [1,k]$.

Public key = $(y_{0,1}, y_{1,1}, \dots, y_{0,k}, y_{1,k})$ which can be published. Private key = $(x_{0,1}, x_{1,1}, \dots, x_{0,k}, x_{1,k})$ which needs to be kept secret

- **Signature:** if Alice wants to sign $m = m_1 \dots m_k$, she does the following:
 - Use her private key $(x_{0,1}, x_{1,1}, \dots, x_{0,k}, x_{1,k})$ to send the signature $s = (x_{m_1,1}, x_{m_1,2}, \dots, x_{m_k,k})$ to Bob.
- **Verification:** to check the validity of $s = (s_1, \ldots, s_k)$ on m, Bob does the following:
 - Obtain Alice's authentic public key $(y_{0,1}, y_{1,1}, \dots, y_{0,k}, y_{1,k})$.
 - Check whether $f(s_i) = y_{m_b,i}$ for all $i \in \llbracket 1,k
 rbracket_{ab}$

$$\mathcal{M} = \{0,1\}^k$$

- Key generation:
 - Generate $f: X \longrightarrow a$ one-way function.
 - Select 2k random elements $x_{0,1}, x_{1,1}, \ldots, x_{0,k}, x_{1,k} \in X$.
 - Compute their images $y_{i,j} = f(x_{i,j})$ for $i \in \{0,1\}$ and $j \in [1,k]$.

Public key = $(y_{0,1}, y_{1,1}, \dots, y_{0,k}, y_{1,k})$ which can be published. Private key = $(x_{0,1}, x_{1,1}, \dots, x_{0,k}, x_{1,k})$ which needs to be kept secret

- **Signature:** if Alice wants to sign $m = m_1 \dots m_k$, she does the following:
 - Use her private key $(x_{0,1}, x_{1,1}, \dots, x_{0,k}, x_{1,k})$ to send the signature $s = (x_{m_1,1}, x_{m_1,2}, \dots, x_{m_k,k})$ to Bob.
- **Verification:** to check the validity of $s = (s_1, ..., s_k)$ on m, Bob does the following:
 - Obtain Alice's authentic public key $(y_{0,1}, y_{1,1}, \dots, y_{0,k}, y_{1,k})$.
 - Check whether $f(s_i) = y_{m_b,i}$ for all $i \in \llbracket 1,k
 rbracket$

$$\mathcal{M} = \{0,1\}^k$$

- Key generation:
 - Generate $f: X \longrightarrow a$ one-way function.
 - Select 2k random elements $x_{0,1}, x_{1,1}, \ldots, x_{0,k}, x_{1,k} \in X$.
 - Compute their images $y_{i,j} = f(x_{i,j})$ for $i \in \{0,1\}$ and $j \in [1,k]$.

Public key = $(y_{0,1}, y_{1,1}, \dots, y_{0,k}, y_{1,k})$ which can be published. Private key = $(x_{0,1}, x_{1,1}, \dots, x_{0,k}, x_{1,k})$ which needs to be kept secret

- **Signature:** if Alice wants to sign $m = m_1 \dots m_k$, she does the following:
 - Use her private key $(x_{0,1}, x_{1,1}, \dots, x_{0,k}, x_{1,k})$ to send the signature $s = (x_{m_1,1}, x_{m_1,2}, \dots, x_{m_k,k})$ to Bob.
- **Verification:** to check the validity of $s = (s_1, ..., s_k)$ on m, Bob does the following:
 - Obtain Alice's authentic public key $(y_{0,1}, y_{1,1}, \dots, y_{0,k}, y_{1,k})$.
 - Check whether $f(s_i) = y_{m_b,i}$ for all $i \in \llbracket 1,k
 rbracket_{\square}$

- Lamport's scheme is EUF-CMA secure assuming only the one-wayness of f.
- The signature generation is very efficient.

- For a 128-bit security level, $Y = \{0,1\}^{128}$ and the public-key is made of $256 \cdot k$ bits and its generation requires 256 evaluations of the function f.
- The signature is made of k elements from X. If $X = \{0,1\}^{128}$ the signature length is $128 \cdot k$ bits.
- Can sign only one message

- **Short private key.** Instead of creating and storing all the random numbers of the private key a single key of sufficient size can be stored.
 - The single key can then be used as the seed for a **cryptographically secure pseudorandom number generator** to create all the random numbers in the private key when needed.
- Short public key A Lamport signature can be combined with a hash list, making it possible to only publish a single hash instead of all the hashes in the public key.
- Hashing the message.
 - Unlike some other signature schemes the Lamport signature scheme does not require that the message *m* is hashed before it is signed.
 - A system for signing long messages can use a collision resistant hash function h and sign h(m) instead of m.

- **Short private key.** Instead of creating and storing all the random numbers of the private key a single key of sufficient size can be stored.
 - The single key can then be used as the seed for a **cryptographically secure pseudorandom number generator** to create all the random numbers in the private key when needed.
- Short public key A Lamport signature can be combined with a hash list, making it possible to only publish a single hash instead of all the hashes in the public key.
- Hashing the message.
 - Unlike some other signature schemes the Lamport signature scheme does not require that the message *m* is hashed before it is signed.
 - A system for signing long messages can use a collision resistant hash function h and sign h(m) instead of m.

- **Short private key.** Instead of creating and storing all the random numbers of the private key a single key of sufficient size can be stored.
 - The single key can then be used as the seed for a **cryptographically secure pseudorandom number generator** to create all the random numbers in the private key when needed.
- Short public key A Lamport signature can be combined with a hash list, making it possible to only publish a single hash instead of all the hashes in the public key.
- Hashing the message.
 - Unlike some other signature schemes the Lamport signature scheme does not require that the message *m* is hashed before it is signed.
 - A system for signing long messages can use a collision resistant hash function h and sign h(m) instead of m.

Public key for multiple messages.

- many keys have to be published if many messages are to be signed.
- a hash tree can be used on those public keys, publishing the top hash of the hash tree instead.

Textbook ElGamal signatures

ElGamal (1985)

A Public-Key Cryptosystem and a Signature Scheme based on Discrete Logarithms.

IEEE Transactions Information Theory, 31 pp. 469-472.

Key generation. $G(1^k)$ randomly selects a k-bit prime p and a generator g of \mathbb{Z}_p^* . The secret key is $x \leftarrow \mathbb{Z}_{p-1}$ and setting $y = g^x \mod p$, the public key is (p, g, y).

Signature. To sign a message $m \in \mathbb{Z}_{p-1}$, one generates (r,s) such that $g^m = y^r r^s \mod p$ as follows. Randomly select $k \leftarrow \mathbb{Z}_{p-1}^*$, set $r = g^k \mod p$ and $s = (m - xr)/k \mod p - 1$. Output (r,s).

Verification. Verify that 1 < r < p and $g^m = y^r r^s \mod p$.

Insecure! cf TD 5. Hash the message first!

Textbook ElGamal signatures

ElGamal (1985)

A Public-Key Cryptosystem and a Signature Scheme based on Discrete Logarithms.

IEEE Transactions Information Theory, 31 pp. 469-472.

Key generation. $G(1^k)$ randomly selects a k-bit prime p and a generator g of \mathbb{Z}_p^* . The secret key is $x \leftarrow \mathbb{Z}_{p-1}$ and setting $y = g^x \mod p$, the public key is (p, g, y).

Signature. To sign a message $m \in \mathbb{Z}_{p-1}$, one generates (r,s) such that $g^m = y^r r^s \mod p$ as follows. Randomly select $k \leftarrow \mathbb{Z}_{p-1}^*$, set $r = g^k \mod p$ and $s = (m - xr)/k \mod p - 1$. Output (r,s).

Verification. Verify that 1 < r < p and $g^m = y^r r^s \mod p$.

Insecure! cf TD 5. Hash the message first!

Let $\mathbb{G} = \langle g \rangle$ be a group of prime order q

Prover P proves to verifier V that he knows the discrete $\log x$ of a public group element $y=g^x$. It is a 3-move protocol.

P

Scenario

P sends $r = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

 $V = \mathbb{Z}_q$ $V \text{ sends } c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

P sends $c \leftarrow \mathbb{Z}_q$ $P \text{ sends } s = k + cx \mod q$

 $P \text{ sends } s = k + cx \mod q$

$$g^s \cdot y^{-c} = r$$

Let $\mathbb{G} = \langle g \rangle$ be a group of prime order q

Prover P proves to verifier V that he knows the discrete $\log x$ of a public group element $y=g^x$. It is a 3-move protocol.

Р

Scenario

P sends $r = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

V sends $c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

 $P \text{ sends } s = k + cx \bmod q$

$$g^s \cdot y^{-c} = r$$

Let $\mathbb{G} = \langle g \rangle$ be a group of prime order q

Prover P proves to verifier V that he knows the discrete $\log x$ of a public group element $y=g^x$. It is a 3-move protocol.

P

Scenario

P sends $r = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

V sends $c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

 $P \text{ sends } s = k + cx \mod q$

$$g^s \cdot y^{-c} = r$$

Let $\mathbb{G} = \langle g \rangle$ be a group of prime order q

Prover P proves to verifier V that he knows the discrete $\log x$ of a public group element $y=g^x$. It is a 3-move protocol.

$$x \stackrel{\$}{\leftarrow} \mathbb{Z}_q$$
 $y = g^x$

Р

Scenario

P sends $r = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

V sends $c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

 $P \text{ sends } s = k + cx \mod q$

$$g^s \cdot y^{-c} = r$$

Let $\mathbb{G} = \langle g \rangle$ be a group of prime order q

Prover P proves to verifier V that he knows the discrete $\log x$ of a public group element $y = g^x$. It is a 3-move protocol.

Scenario

P sends $r = g^k$ where

$$k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$$

V sends $c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

 $P \text{ sends } s = k + cx \bmod q$

$$g^s \cdot y^{-c} = r$$

Let $\mathbb{G} = \langle g \rangle$ be a group of prime order q

Prover P proves to verifier V that he knows the discrete $\log x$ of a public group element $y=g^x$. It is a 3-move protocol.

Scenario

P sends $r = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

V sends $c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

 $P \text{ sends } s = k + cx \mod q$

$$g^s \cdot y^{-c} = r$$

Let $\mathbb{G} = \langle g \rangle$ be a group of prime order q

Prover P proves to verifier V that he knows the discrete $\log x$ of a public group element $y=g^x$. It is a 3-move protocol.

Scenario

P sends $r = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

V sends $c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

 $P \text{ sends } s = k + cx \mod q$

$$g^s \cdot y^{-c} = r$$

Let $\mathbb{G} = \langle g \rangle$ be a group of prime order q

Prover P proves to verifier V that he knows the discrete $\log x$ of a public group element $y=g^x$. It is a 3-move protocol.

Scenario

P sends $r = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

V sends $c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

 $P \text{ sends } s = k + cx \mod q$

$$g^s \cdot y^{-c} = r$$

Let $\mathbb{G} = \langle g \rangle$ be a group of prime order q

Prover P proves to verifier V that he knows the discrete $\log x$ of a public group element $y = g^x$. It is a 3-move protocol.

Scenario

P sends $r = g^k$ where

$$k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$$

V sends $c \stackrel{\$}{\leftarrow} \mathbb{Z}_a$

 $P \text{ sends } s = k + cx \mod q$

 $v \in \mathbb{Z}_q$ $g^s \cdot y^{-c} = r$

$$g^3 \cdot y^{-c} = 1$$

Let $\mathbb{G} = \langle g \rangle$ be a group of prime order q

Prover P proves to verifier V that he knows the discrete $\log x$ of a public group element $y=g^x$. It is a 3-move protocol.

Scenario

P sends $r = g^k$ where

$$k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$$

V sends $c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

 $P \text{ sends } s = k + cx \bmod q$

 $c \stackrel{\$}{\leftarrow} \mathbb{Z}_q \quad g^s \cdot y^{-c} = r$

Let $\mathbb{G} = \langle g \rangle$ be a group of prime order q

Prover P proves to verifier V that he knows the discrete $\log x$ of a public group element $y = g^x$. It is a 3-move protocol.

Scenario

P sends $r = g^k$ where

 $k \stackrel{\$}{\leftarrow} \mathbb{Z}_a$

V sends $c \stackrel{\$}{\leftarrow} \mathbb{Z}_a$

 $P \text{ sends } s = k + cx \mod q$

 $c \stackrel{\$}{\leftarrow} \mathbb{Z}_q \quad g^s \cdot y^{-c} = r$

$$g^s \cdot y^{-c} = g^s \cdot y^{-c} = g^s \cdot y^{-c}$$

Let $\mathbb{G} = \langle g \rangle$ be a group of prime order q

Prover P proves to verifier V that he knows the discrete $\log x$ of a public group element $y=g^x$. It is a 3-move protocol.

Scenario

 $P \text{ sends } r = g^k \text{ where}$

 $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

V sends $c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

 $P \text{ sends } s = k + cx \bmod q$

 $c \stackrel{\$}{\leftarrow} \mathbb{Z}_q \quad g^s \cdot y^{-c} = r$

Let $\mathbb{G} = \langle g \rangle$ be a group of prime order q

Prover P proves to verifier V that he knows the discrete $\log x$ of a public group element $y=g^x$. It is a 3-move protocol.

Introduce a hash function $H: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme Σ_H is a tuple of probabilistic algorithms $\Sigma_H = (GEN, SIGN, VER)$ defined as follows.

Ρ

Signing and Verifying

Sign

P computes $r = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

P computes c = H(m, r)

P computes $s = k + cx \mod q$

 $P \text{ sends } \sigma = (s, c)$

Ver

Introduce a hash function $H: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme Σ_H is a tuple of probabilistic algorithms $\Sigma_H = (\operatorname{GEN}, \operatorname{SIGN}, \operatorname{VER})$ defined as follows.

Р

V

Signing and Verifying

SIGN

P computes $r = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

P computes c = H(m, r)

P computes $s = k + cx \mod q$

 $P \text{ sends } \sigma = (s, c)$

Ver

Introduce a hash function $H: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme Σ_H is a tuple of probabilistic algorithms $\Sigma_H = (\operatorname{GEN}, \operatorname{SIGN}, \operatorname{VER})$ defined as follows.

 $x \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

Р

V

Signing and Verifying

SIGN

$$P$$
 computes $r = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

$$P \text{ computes } c = H(m, r)$$

P computes
$$s = k + cx \mod q$$

$$P \text{ sends } \sigma = (s, c)$$

$$V$$
 checks whether $H(m, g^s \cdot y^{-c}) = c$

Introduce a hash function $H:\{0,1\}^\star\mapsto \mathbb{Z}_q$

Schnorr's signature scheme Σ_H is a tuple of probabilistic algorithms $\Sigma_H = (\operatorname{GEN}, \operatorname{SIGN}, \operatorname{VER})$ defined as follows.

$$x \leftarrow \mathbb{Z}_{c}$$
 $y = g^{x}$

Ρ

Signing and Verifying

SIGN

P computes $r = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

P computes c = H(m, r)

P computes $s = k + cx \mod q$

 $P \text{ sends } \sigma = (s, c)$

Ver

Introduce a hash function $H: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme Σ_H is a tuple of probabilistic algorithms $\Sigma_H = (GEN, SIGN, VER)$ defined as follows.

Signing and Verifying

SIGN

$$P$$
 computes $r = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

$$P \text{ computes } c = H(m, r)$$

P computes
$$s = k + cx \mod q$$

$$P \text{ sends } \sigma = (s, c)$$

V checks whether $H(m, g^s \cdot y^{-c}) = c$

 $x \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

Introduce a hash function $H: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme Σ_H is a tuple of probabilistic algorithms $\Sigma_H = (GEN, SIGN, VER)$ defined as follows.

Signing and Verifying

SIGN

P computes
$$r = g^k$$
 where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

$$P$$
 computes $c = H(m, r)$

P computes
$$s = k + cx \mod q$$

$$P \text{ sends } \sigma = (s, c)$$

V checks whether $H\left(m,g^{s}\cdot y^{-c}\right)=c$

Introduce a hash function $H:\{0,1\}^\star\mapsto\mathbb{Z}_q$

Schnorr's signature scheme Σ_H is a tuple of probabilistic algorithms $\Sigma_H = (\operatorname{GEN}, \operatorname{SIGN}, \operatorname{VER})$ defined as follows.

Signing and Verifying

SIGN

$$P$$
 computes $r = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

$$P$$
 computes $c = H(m, r)$

P computes
$$s = k + cx \mod q$$

$$P \text{ sends } \sigma = (s, c)$$

Introduce a hash function $H: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme Σ_H is a tuple of probabilistic algorithms $\Sigma_H = (GEN, SIGN, VER)$ defined as follows.

Signing and Verifying

Sign

$$P$$
 computes $r = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

$$P \text{ computes } c = H(m, r)$$

P computes
$$s = k + cx \mod q$$

$$P \text{ sends } \sigma = (s, c)$$

Introduce a hash function $H:\{0,1\}^\star\mapsto \mathbb{Z}_q$

Schnorr's signature scheme Σ_H is a tuple of probabilistic algorithms $\Sigma_H = (\operatorname{GEN}, \operatorname{SIGN}, \operatorname{VER})$ defined as follows.

Signing and Verifying

SIGN

$$P$$
 computes $r = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

$$P$$
 computes $c = H(m, r)$

$$P ext{ computes } s = k + cx ext{ mod } q$$

$$P \text{ sends } \sigma = (s, c)$$

Introduce a hash function $H: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme Σ_H is a tuple of probabilistic algorithms $\Sigma_H = (\operatorname{GEN}, \operatorname{SIGN}, \operatorname{VER})$ defined as follows.

Signing and Verifying

SIGN

P computes
$$r = g^k$$
 where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

$$P$$
 computes $c = H(m, r)$

$$P ext{ computes } s = k + cx ext{ mod } q$$

$$P \text{ sends } \sigma = (s, c)$$

Introduce a hash function $H: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme Σ_H is a tuple of probabilistic algorithms $\Sigma_H = (GEN, SIGN, VER)$ defined as follows.

Signing and Verifying

SIGN

P computes
$$r = g^k$$
 where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

$$P$$
 computes $c = H(m, r)$

$$P ext{ computes } s = k + cx ext{ mod } q$$

$$P \text{ sends } \sigma = (s, c)$$

V checks whether $H\left(m,g^{s}\cdot y^{-c}\right)=c$

Introduce a hash function $H:\{0,1\}^\star\mapsto \mathbb{Z}_q$

Schnorr's signature scheme Σ_H is a tuple of probabilistic algorithms $\Sigma_H = (GEN, SIGN, VER)$ defined as follows.

Signing and Verifying

SIGN

$$P$$
 computes $r = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

$$P$$
 computes $c = H(m, r)$

$$P ext{ computes } s = k + cx ext{ mod } q$$

$$P \text{ sends } \sigma = (s, c)$$

Introduce a hash function $H:\{0,1\}^\star\mapsto \mathbb{Z}_q$

Schnorr's signature scheme Σ_H is a tuple of probabilistic algorithms $\Sigma_H = (\operatorname{GEN}, \operatorname{SIGN}, \operatorname{VER})$ defined as follows.

Signing and Verifying

SIGN

P computes $r = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

P computes c = H(m, r)

 $P ext{ computes } s = k + cx ext{ mod } q$

 $P \text{ sends } \sigma = (s, c)$

Ver

$$H(m,g^s\cdot y^{-c})\stackrel{?}{=}c$$

Introduce a hash function $H:\{0,1\}^\star\mapsto \mathbb{Z}_q$

Schnorr's signature scheme Σ_H is a tuple of probabilistic algorithms $\Sigma_H = (\operatorname{GEN}, \operatorname{SIGN}, \operatorname{VER})$ defined as follows.

Signing and Verifying

SIGN

P computes $r = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

P computes c = H(m, r)

 $P ext{ computes } s = k + cx ext{ mod } q$

 $P \text{ sends } \sigma = (s, c)$

Ver

$$H(m,g^s\cdot y^{-c})\stackrel{?}{=}c$$

Introduce a hash function $H: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme Σ_H is a tuple of probabilistic algorithms $\Sigma_H = (\operatorname{GEN}, \operatorname{SIGN}, \operatorname{VER})$ defined as follows.

Signing and Verifying

SIGN

P computes $r = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

P computes c = H(m, r)

 $P ext{ computes } s = k + cx ext{ mod } q$

 $P \text{ sends } \sigma = (s, c)$

Ver

$$H(m,g^s\cdot y^{-c})\stackrel{?}{=}c$$

Introduce a hash function $H:\{0,1\}^\star\mapsto \mathbb{Z}_q$

Schnorr's signature scheme Σ_H is a tuple of probabilistic algorithms $\Sigma_H = (\operatorname{GEN}, \operatorname{SIGN}, \operatorname{VER})$ defined as follows.

- The Digital Signature Algorithm (DSA) is a United States Federal Government standard or FIPS for digital signatures.
- It was proposed by the National Institute of Standards and Technology (NIST) in August 1991 for use in their Digital Signature Standard (DSS), specified in FIPS 186, adopted in 1993.
- ullet DSA makes use of a cryptographic hash function ${\cal H}.$ In the original DSS, ${\cal H}$ was always SHA, but stronger hash functions from the SHA family are also in use.
- The original DSS constrained the key length to be a multiple of 64 between 512 and 1024 (inclusive).

Textbook ElGamal signature scheme

Key generation. $G(1^k)$ randomly selects a k-bit prime p and a generator g of \mathbb{Z}_p^* .

The secret key is $x \leftarrow \mathbb{Z}_{p-1}$ The public key is $(p, g, y = g^x \mod p)$.

Signature. To sign a message $m \in \mathbb{Z}_{p-1}$, one generates (r,s) such that

$$g^m = y^r r^s \mod p$$

as follows. Randomly select $k \leftarrow \mathbb{Z}_{p-1}^*$, set $r = g^k \mod p$ and

$$s = (m - xr)/k \mod p - 1.$$

Output (r, s).

Verification. Verify that 1 < r < p and

$$g^m = y^r r^s \mod p$$

Hashed ElGamal signature scheme

Key generation. $G(1^k)$ randomly selects a k-bit prime p and a generator g of \mathbb{Z}_p^* .

The secret key is $x \leftarrow \mathbb{Z}_{p-1}$ The public key is $(p, g, y = g^x \mod p)$ and a hash function \mathcal{H} .

Signature. To sign a message $m \in \mathbb{Z}_{p-1}$, one generates (r,s) such that

$$g^{\mathcal{H}(m)} = y^r r^s \mod p$$

as follows. Randomly select $k \leftarrow \mathbb{Z}_{p-1}^*$, set $r = g^k \mod p$ and

$$s = (\mathcal{H}(m) - xr)/k \mod p - 1.$$

Output (r, s).

Verification. Verify that 1 < r < p and

$$g^{\mathcal{H}(m)} = y^r r^s \mod p$$

4□▶ 4□▶ 4 □ ▶ 4 □ ▶ 9<0

Hashed ElGamal signature scheme with Schnorr's trick

Key generation. $G(1^k)$ randomly selects a k-bit prime p and

a generator g of $\mathbb{G} \subset \mathbb{Z}_p^*$ of prime order q.

The secret key is $x \leftarrow \mathbb{Z}_q$

The public key is $(p, q, g, y = g^x \mod p)$ and a hash function \mathcal{H} .

Signature. To sign a message $m \in \mathbb{Z}_{p-1}$, one generates (r,s) such that

$$g^{\mathcal{H}(m)} = y^r r^s \mod p$$

as follows. Randomly select $k \leftarrow \mathbb{Z}_q^*$, set $r = g^k \mod p$ and

$$s = (\mathcal{H}(m) - xr)/k \mod q$$
.

Output (r, s).

Verification. Verify that 1 < r < q and

$$g^{\mathcal{H}(m)} = y^r r^s \mod p$$

Key generation. $G(1^k)$ randomly selects a k-bit prime p and a generator g of $\mathbb{G} \subset \mathbb{Z}_p^*$ of prime order q.

The secret key is $x \leftarrow \mathbb{Z}_q$

The public key is $(p, q, g, y = g^x \mod p)$ and a hash function \mathcal{H} .

Signature. To sign a message $m \in \mathbb{Z}_{p-1}$, one generates (r,s) such that

$$g^{\mathcal{H}(m)} = y^r r^s \mod p$$

as follows. Randomly select $k \leftarrow \mathbb{Z}_q^*$, set $r = g^k \mod p$ and

$$s = (\mathcal{H}(m)+xr)/k \mod q.$$

Output (r, s).

Verification. Verify that 1 < r < q, calculate $w = s^{-1} \mod q$, $u_1 = \mathcal{H}(m) \cdot w \mod q$, $u_2 = r \cdot w \mod q$ and check whether

$$g^{u_1}y^{u_2} \mod p \mod q = r.$$