

Page 1 of 98

APPLICATION CERTIFICATION FCC Part 15C On Behalf of Braven LC.

Braven 2300 Portable Bluetooth Speaker Model No.: 2300

FCC ID: Z7RB23

Prepared for : Braven LC.

Address : 6001 Oak Canyon, Irvine, CA, USA 92618

Prepared by : ACCURATE TECHNOLOGY CO., LTD

Address : F1, Bldg. A, Chan Yuan New Material Port, Keyuan Rd. Science & Industry Park, Nan Shan, Shenzhen,

Guangdong P.R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report No. : ATE20151700

Date of Test : Jan 28, 2016--Feb 06, 2016

Date of Report : Feb 17, 2016

Report No.: ATE20151700 Page 2 of 98

TABLE OF CONTENTS

Descri	iption	Page
Test R	Report Certification	
1. G	ENERAL INFORMATION	5
1.1.	Description of Device (EUT)	
1.2.	Accessory and Auxiliary Equipment	
1.3.	Description of Test Facility	
1.4.	Measurement Uncertainty	
2. M	IEASURING DEVICE AND TEST EQUIPMENT	7
3. O	PERATION OF EUT DURING TESTING	8
3.1.	Operating Mode	8
3.2.	Configuration and peripherals	
4. T	EST PROCEDURES AND RESULTS	9
5. 20	DDB BANDWIDTH TEST	10
5.1.	Block Diagram of Test Setup	10
5.2.	The Requirement For Section 15.247(a)(1)	
5.3.	EUT Configuration on Measurement	10
5.4.	Operating Condition of EUT	
5.5.	Test Procedure	
5.6.	Test Result	11
6. C	ARRIER FREQUENCY SEPARATION TEST	
6.1.	Block Diagram of Test Setup	
6.2.	The Requirement For Section 15.247(a)(1)	
6.3.	EUT Configuration on Measurement	
6.4.	Operating Condition of EUT Test Procedure	
6.5. 6.6.	Test Result	
	UMBER OF HOPPING FREQUENCY TEST	
7.1.	Block Diagram of Test Setup	
7.1.	The Requirement For Section 15.247(a)(1)(iii)	
7.3.	EUT Configuration on Measurement	
7.4.	Operating Condition of EUT	
7.5.	Test Procedure	24
7.6.	Test Result	25
8. D'	WELL TIME TEST	27
8.1.	Block Diagram of Test Setup	
8.2.	The Requirement For Section 15.247(a)(1)(iii)	
8.3.	EUT Configuration on Measurement	
8.4.	Operating Condition of EUT	
8.5.	Test Procedure	
8.6.	Test Result	
	AXIMUM PEAK OUTPUT POWER TEST	
9.1.	Block Diagram of Test Setup	
9.2.	The Requirement For Section 15.247(b)(1)	
9.3.	EUT Configuration on Measurement	43

Operating Condition of EUT43

9.4.

Report No.: ATE20151700 Page 3 of 98

9.5.	Test Procedure	43
9.6.	Test Result	
10. RA	DIATED EMISSION TEST	50
10.1.	Block Diagram of Test Setup	50
10.2.	The Limit For Section 15.247(d)	
10.3.	Restricted bands of operation	
10.4.	Configuration of EUT on Measurement	52
10.5.	Test Procedure	
10.6.	The Field Strength of Radiation Emission Measurement Results	
11. BA	ND EDGE COMPLIANCE TEST	66
11.1.	Block Diagram of Test Setup	66
11.2.	The Requirement For Section 15.247(d)	66
11.3.	EUT Configuration on Measurement	
11.4.	Operating Condition of EUT	
11.5.	Test Procedure	67
11.6.	Test Result	67
12. AC	POWER LINE CONDUCTED EMISSION FOR FCC PART 15 SECTION 15	5.207(A)90
12.1.	Block Diagram of Test Setup	90
12.2.	Power Line Conducted Emission Measurement Limits	
12.3.	Configuration of EUT on Measurement	90
12.4.	Operating Condition of EUT	90
12.5.	Test Procedure	
12.6.	Power Line Conducted Emission Measurement Results	91
13. AN	TENNA REQUIREMENT	98
13.1.	The Requirement	98
12.2	Antonna Construction	08

Page 4 of 98

Test Report Certification

Applicant : Braven LC

Manufacturer : Braven LC

Factory : Zhao Yang Electronic(Shenzhen) Co., Ltd

EUT Description : Braven 2300 Portable Bluetooth Speaker

(A) MODEL NO.: 2300

(B) TRADE NAME.: Braven

(C) Test Voltage: AC 100--240V/60Hz

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test:	Jan 28, 2016Feb 06, 2016
Date of Report:	Feb 17, 2016
Prepared by :	(Tim.zhang, Engineer)
Approved & Authorized Signer :	Lemb
	(Sean Liu, Manager)

Page 5 of 98

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : Braven 2300 Portable Bluetooth Speaker

Model Number : 2300

Bluetooth version : BT V4.0 Dual Mode

This report is for BT classic mode

Frequency Range : 2402MHz-2480MHz

Number of Channels : 40 for BT V4.0 LE

79 for BT classic mode

Antenna Gain : 0dBi

Antenna type : PCB Antenna

Trade Name : Braven

Test Voltage : AC 100--240V/60Hz

Adapter : Model: DYS902-250300W

Input: AC100-240V; 50/60Hz 1.5A MAX

Output: DC 25.0V; 3.0A

Modulation mode : GFSK for BT V4.0 LE

GFSK, $\pi/4$ DQPSK, 8DPSK for BT classic mode

Applicant : Braven LC

Address : 6001 Oak Canyon, Irvine, CA, USA 92618.

Manufacturer : Braven LC

Address : 6001 Oak Canyon, Irvine, CA, USA 92618.

Factory : Zhao Yang Electronic(Shenzhen) Co., Ltd.

Address : Building 2, De Yong Jia Industrial Park, Guang Qiao

Road, Yu Lv Community, Gong Ming Street, Guang Ming New District, Shenzhen, 518132, China

Date of sample received: Jan 27, 2016

Date of Test : Jan 28, 2016--Feb 06, 2016

Page 6 of 98

1.2. Accessory and Auxiliary Equipment

PC Manufacturer: LENOVO

M/N: 4290-RT8

S/N: R9-FW93G 11/08

1.3. Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen

Listed by FCC

The Registration Number is 752051

Listed by Industry Canada

The Registration Number is 5077A-2

Accredited by China National Accreditation Committee

for Laboratories

The Certificate Registration Number is L3193

Name of Firm : ACCURATE TECHNOLOGY CO. LTD

Site Location : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

1.4. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)

Report No.: ATE20151700 Page 7 of 98

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Type	S/N	Calibrated dates	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 10, 2016	Jan. 09, 2017
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 10, 2016	Jan. 09, 2017
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 10, 2016	Jan. 09, 2017
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 10, 2016	Jan. 09, 2017
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 14, 2016	Jan. 13, 2017
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 14, 2016	Jan. 13, 2017
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 14, 2016	Jan. 12, 2017
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 14, 2016	Jan. 13, 2017
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 10, 2016	Jan. 09, 2017
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 10, 2016	Jan. 09, 2017
Highpass Filter	Wainwright Instruments	WHKX3.6/18 G-10SS	N/A	Jan. 10, 2016	Jan. 09, 2017
Band Reject Filter	Wainwright Instruments	WRCG2400/2 485-2375/2510 -60/11SS	N/A	Jan. 10, 2016	Jan. 09, 2017

Page 8 of 98

3. OPERATION OF EUT DURING TESTING

3.1. Operating Mode

The mode is used: Transmitting mode

Low Channel: 2402MHz Middle Channel: 2441MHz High Channel: 2480MHz

Hopping

3.2.Configuration and peripherals

4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.207	Conducted Emission Test	Compliant
Section 15.247(a)(1)	20dB Bandwidth Test	Compliant
Section 15.247(a)(1)	Carrier Frequency Separation Test	Compliant
Section 15.247(a)(1)(iii)	Number Of Hopping Frequency Test	Compliant
Section 15.247(a)(1)(iii)	Dwell Time Test	Compliant
Section 15.247(b)(1)	Maximum Peak Output Power Test	Compliant
Section 15.247(d) Section 15.209	Radiated Emission Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.203	Antenna Requirement	Compliant

Page 10 of 98

5. 20DB BANDWIDTH TEST

5.1.Block Diagram of Test Setup

(EUT: Braven 2300 Portable Bluetooth Speaker)

5.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

5.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

5.5.Test Procedure

- 5.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 5.5.2.Set RBW of spectrum analyzer to 30 kHz and VBW to 100 kHz.
- 5.5.3. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Page 11 of 98

5.6.Test Result

Channel Frequency		GFSK 20dB Bandwidth	∏/4-DQPSK 20dB Bandwidth	8DPSK 20dB Bandwidth	Result
	(MHz)	(MHz)	(MHz)	(MHz)	2.52.0.23
Low	2402	0.803	1.220	1.207	Pass
Middle	2441	0.803	1.220	1.207	Pass
High	2480	0.803	1.224	1.211	Pass

The spectrum analyzer plots are attached as below.

GFSK Mode

Low channel

Date: 1.FEB.2016 14:43:11

Middle channel

Date: 1.FEB.2016 14:44:10

High channel

Date: 1.FEB.2016 14:44:32

∏/4-DQPSK Mode

Date: 1.FEB.2016 14:45:43

Date: 1.FEB.2016 14:46:02

Date: 1.FEB.2016 14:46:51

8DPSK Mode

Date: 1.FEB.2016 14:49:19

Date: 1.FEB.2016 14:49:39

Spectrum

Att

●1Pk Max

10 dBm-

0 dBm-

-10 dBm--20 dBm--30 dBm--40 dBm -50 dBm -60 dBm

High channel
 Ref Level
 20.00 dBm
 Offset
 0.50 dB
 RBW
 30 kHz

 Att
 30 dB
 SWT
 2.5 ms
 VBW
 100 kHz
 Mode Auto FFT 1.98 dBm 2.48000000 GHz M1[1] ndB Bw 20.00 dB 1.211300000 MHz 2047.4 Q factor

CF 2.4	CF 2.48 GHz 691 pts Span 3.0 MHz								
Marker	arker								
Type	Ref	Trc	X-value	Y-value	Funct	ion	Func	tion Result	[
M1		1	2.48 GHz	1.98 dBm	ndB	down		1	.2113 MHz
T1		1	2.4794009 GHz	-17.73 dBm		ndB			20.00 dB
T2		1	2.4806122 GHz	-18.35 dBm	Q f	actor			2047.4
		1			Meas	suring		L)XI	1.02.2016

Date: 1.FEB.2016 14:50:00

FCC ID: Z7RB23

 $ACCURATE\ TECHNOLOGY\ CO.\ LTD$

Page 17 of 98

6. CARRIER FREQUENCY SEPARATION TEST

6.1.Block Diagram of Test Setup

(EUT: Braven 2300 Portable Bluetooth Speaker)

6.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

6.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. Operating Condition of EUT

- 6.4.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

Report No.: ATE20151700 Page 18 of 98

6.5.Test Procedure

- 6.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 6.5.2.Set RBW of spectrum analyzer to 30 kHz and VBW to 100 kHz. Adjust Span to 2MHz.
- 6.5.3.Set the adjacent channel of the EUT Maxhold another trace.
- 6.5.4. Measurement the channel separation

6.6.Test Result

GFSK

Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result
Low	2402 2403	1.0014	25KHz or 20dB bandwidth	PASS
Middle	2440 2441	1.0014	25KHz or20dB bandwidth	PASS
High	2479 2480	1.0014	25KHz or 20dB bandwidth	PASS

$\Pi/4$ -DOPSK

Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result
Low	2402	1.0029	25KHz or 2/3*20dB	PASS
LOW	2403	1.002)	bandwidth	17100
Middle	2440	1.0029	25KHz or 2/3*20dB	PASS
	2441		bandwidth	
High	2479	1.0029	25KHz or 2/3*20dB	PASS
High	2480	1.0029	bandwidth	rass

8DPSK

Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result	
Low	2402	1.0029	25KHz or 2/3*20dB	PASS	
Low	2403	1.002)	bandwidth	11155	
Middle	2440	1.0029	25KHz or 2/3*20dB	PASS	
Middle	2441	1.0029	bandwidth	rass	
Uiah	2479	1.0029	25KHz or 2/3*20dB	PASS	
High	2480	1.0029	bandwidth	PASS	

The spectrum analyzer plots are attached as below.

Report No.: ATE20151700 Page 19 of 98

GFSK Mode

Low channel

Date: 1.FEB.2016 15:31:11

Middle channel

Date: 1.FEB.2016 15:32:22

Report No.: ATE20151700 Page 20 of 98

High channel

Date: 1.FEB.2016 15:33:26

$\Pi/4$ -DQPSK Mode

Date: 1.FEB.2016 15:36:14

Date: 1.FEB.2016 15:37:34

Date: 1.FEB.2016 15:38:33

8DPSK Mode

Date: 1.FEB.2016 15:42:39

Middle channel

Date: 1.FEB.2016 15:41:08

Page 23 of 98

Date: 1.FEB.2016 15:40:08

Report No.: ATE20151700 Page 24 of 98

7. NUMBER OF HOPPING FREQUENCY TEST

7.1.Block Diagram of Test Setup

(EUT: Braven 2300 Portable Bluetooth Speaker)

7.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

7.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

- 7.4.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2. Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX (Hopping on) modes measure it.

7.5.Test Procedure

- 7.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.2.Set the spectrum analyzer as Span=83.5MHz, RBW=100 kHz, VBW=300 kHz.
- 7.5.3.Max hold, view and count how many channel in the band.

Report No.: ATE20151700 Page 25 of 98

7.6.Test Result

Total number of	Measurement result(CH)	Limit(CH)
hopping channel	79	≥15

The spectrum analyzer plots are attached as below.

Number of hopping channels(GFSK)

Date: 1.FEB.2016 15:05:29

Number of hopping channels ($\Pi/4$ -DQPSK)

Date: 1.FEB.2016 15:02:53

Number of hopping channels(8DPSK)

Date: 1.FEB.2016 15:08:02

Page 27 of 98

8. DWELL TIME TEST

8.1.Block Diagram of Test Setup

(EUT: Braven 2300 Portable Bluetooth Speaker)

8.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

8.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

- 8.4.1. Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2. Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

8.5.Test Procedure

- 8.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 8.5.2.Set center frequency of spectrum analyzer = operating frequency.
- 8.5.3.Set the spectrum analyzer as RBW=1MHz, VBW=3MHz, Span=0Hz, Adjust Sweep=5ms, 10ms, 15ms. Get the pulse time.

Report No.: ATE20151700 Page 28 of 98

8.5.4.Repeat above procedures until all frequency measured were complete.

8.6.Test Result

GFSK Mode

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)
	2402	0.428	136.96	400
DH1	2441	0.438	140.16	400
	2480	0.442	141.44	400
A period to	ransmit time = 0.4×79 =	31.6 Dwell time = pu	alse time \times (1600/(2*)	79))×31.6
	2402	1.746	279.36	400
DH3	2441	1.790	286.40	400
	2480	1.761	281.76	400
A period to	ransmit time = 0.4×79 =	31.6 Dwell time = pt	alse time \times (1600/(4*)	79))×31.6
	2402	2.978	317.65	400
DH5	2441	2.978	317.65	400
	2480	3.000	320.00	400
A period transr	$mit time = 0.4 \times 79 = 31.6$	5 Dwell time = pulse t	ime × (1600/(6*79))	×31.6

$\Pi/4$ -DQPSK

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)		
DH1	2402	0.446	142.72	400		
	2441	0.442	141.44	400		
	2480	0.438	140.16	400		
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(2*79)) \times 31.6$						
DH3	2402	1.714	274.24	400		
	2441	1.714	274.24	400		
	2480	1.728	276.48	400		
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(4*79)) \times 31.6$						
DH5	2402	3.000	320.00	400		
	2441	3.022	322.35	400		
	2480	2.978	317.65	400		
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$						

Report No.: ATE20151700 Page 29 of 98

8DPSK Mode

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)		
DH1	2402	0.449	143.68	400		
	2441	0.446	142.72	400		
	2480	0.446	142.72	400		
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(2*79)) \times 31.6$						
DH3	2402	1.736	277.76	400		
	2441	1.721	275.36	400		
	2480	1.736	277.76	400		
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(4*79)) \times 31.6$						
DH5	2402	3.040	324.27	400		
	2441	2.975	317.33	400		
	2480	3.062	326.61	400		
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$						

The spectrum analyzer plots are attached as below.

GFSK Mode

Date: 1.FEB.2016 15:47:20

DH1 Middle channel

Date: 1.FEB.2016 15:49:50

Date: 1.FEB.2016 15:50:48

DH3 Low channel

Date: 1.FEB.2016 15:52:54

DH3 Middle channel

Date: 1.FEB.2016 15:53:38

Date: 1.FEB.2016 15:54:25

DH5 Low channel

Date: 1.FEB.2016 15:57:51

DH5 Middle channel

Date: 1.FEB.2016 15:57:03

DH5 High channel

Date: 1.FEB.2016 15:56:09

$\Pi/4$ -DQPSK

Date: 1.FEB.2016 16:00:11

Date: 1.FEB.2016 16:01:19

Date: 1.FEB.2016 16:01:53

Date: 1.FEB.2016 16:03:40

2DH3 Middle channel

Date: 1.FEB.2016 16:05:30

Date: 1.FEB.2016 16:06:26

Date: 1.FEB.2016 16:07:43

Date: 1.FEB.2016 16:08:26

Date: 1.FEB.2016 16:09:00

8DPSK Mode

Date: 1.FEB.2016 16:11:15

3DH1 Middle channel

Date: 1.FEB.2016 16:12:15

Date: 1.FEB.2016 16:12:52

3DH3 Low channel

Date: 1.FEB.2016 16:13:45

3DH3 Middle channel

Date: 1.FEB.2016 16:14:20

40 dB 🅌 SWT

Linghynd

Spectrum

Ref Level 25.00 dBm

Att SGL ●1Pk Max

20 dBm-

10 dBm

-10 dBm--20 dBm--30 dBm-

| ՄԱՐՈՍԻ -50 dBm----60 dBm----70 dBm---

CF 2.48 GHz

12 May May 1941

691 pts

n policientes

1.0 ms/

Date: 1.FEB.2016 16:15:02

Date: 1.FEB.2016 16:15:54

3DH5 Middle channel

Date: 1.FEB.2016 16:16:28

Date: 1.FEB.2016 16:17:05

Report No.: ATE20151700 Page 43 of 98

9. MAXIMUM PEAK OUTPUT POWER TEST

9.1.Block Diagram of Test Setup

(EUT: Braven 2300 Portable Bluetooth Speaker)

9.2. The Requirement For Section 15.247(b)(1)

Section 15.247(b)(1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

9.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.4. Operating Condition of EUT

- 9.4.1. Setup the EUT and simulator as shown as Section 9.1.
- 9.4.2. Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

9.5.Test Procedure

- 9.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 9.5.2.Set RBW of spectrum analyzer to 1MHz and VBW to 3MHz for GFSK mode
- 9.5.3.Set RBW of spectrum analyzer to 3MHz and VBW to 3MHz for other mode
- 9.5.4. Measurement the maximum peak output power.

Page 44 of 98

9.6.Test Result

GFSK Mode

Channel	Frequency (MHz)	Peak Output Power (dBm/W)	Limits dBm / W
Low	2402	4.18/0.0026	30 / 1.0
Middle	2441	4.10/0.0026	30 / 1.0
High	2480	4.04/0.0025	30 / 1.0

Π /4-DQPSK Mode

Channel	Frequency (MHz)	Peak Output Power (dBm/W)	Limits dBm / W
Low	2402	2.42/0.0017	21 / 0.125
Middle	2441	3.07/0.0020	21 / 0.125
High	2480	3.14/0.0021	21 / 0.125

8DPSK Mode

Channel	Frequency (MHz)	Peak Output Power (dBm/W)	Limits dBm / W
Low	2402	2.62/0.0018	21 / 0.125
Middle	2441	3.18/0.0021	21 / 0.125
High	2480	3.25/0.0021	21 / 0.125

The spectrum analyzer plots are attached as below.

Report No.: ATE20151700 Page 45 of 98

GFSK Mode

Low channel

Date: 1.FEB.2016 13:27:05

Middle channel

Date: 1.FEB.2016 13:28:44

High channel

Date: 1.FEB.2016 14:30:42

∏/4-DQPSK Mode

Low channel

Date: 1.FEB.2016 14:32:42

Middle channel

Date: 1.FEB.2016 14:38:15

High channel

Date: 1.FEB.2016 14:38:34

8DPSK Mode

Low channel

Date: 1.FEB.2016 14:39:28

Middle channel

Date: 1.FEB.2016 14:39:53

High channel

Date: 1.FEB.2016 14:40:14

Page 50 of 98

10. RADIATED EMISSION TEST

10.1.Block Diagram of Test Setup

10.1.1.Block diagram of connection between the EUT and peripherals

10.1.2.Semi-Anechoic Chamber Test Setup Diagram

Below 1GHz

ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS

Report No.: ATE20151700 Page 51 of 98

Above 1GHz

ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS

10.2. The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

Report No.: ATE20151700 Page 52 of 98

10.3.Restricted bands of operation

10.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	$(^2)$
13.36-13.41			

Until February 1, 1999, this restricted band shall be 0.490-0.510

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

10.4. Configuration of EUT on Measurement

The equipment is installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

²Above 38.6

Page 53 of 98

10.5.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground(Below 1GHz). The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

10.6. The Field Strength of Radiation Emission Measurement Results

Note: 1.We tested GFSK mode, $\Pi/4$ -DQPSK Mode & 8QPSK mode and recorded the worst case data (GFSK mode) for all test mode.

2. The test frequency is from 30MHz to 25GHz, The 18-25GHz emissions are not reported, because the levels are too low against the limit.

Report No.: ATE20151700 Page 54 of 98

Below 1GHz

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China Tel:+86-0755-26503290 Fax:+86-0755-26503396

Site: 1# Chamber

Job No.: STAR2015 #1421

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Braven 2300 Portable Bluetooth Speaker

Mode: TX 2402MHz

Model: 2300

Manufacturer: Braven LC

Note: Report No.:ATE20151700 Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2016/01/30 Time: 13:59:46 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	70.9536	53.69	-22.90	30.79	40.00	-9.21	QP			
2	241.8377	57.46	-18.23	39.23	46.00	-6.77	QP			
3	580.0705	47.29	-10.37	36.92	46.00	-9.08	QP			

Page 55 of 98

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR2015 #1422

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Braven 2300 Portable Bluetooth Speaker

Mode: TX 2402MHz

Model: 2300

Manufacturer: Braven LC

Note: Report No.:ATE20151700 Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2016/01/30 Time: 14:00:29 Engineer Signature:

Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	106.6551	55.20	-21.61	33.59	43.50	-9.91	QP			
2	241.8377	55.36	-18.23	37.13	46.00	-8.87	QP			
3	580.0705	45.84	-10.37	35.47	46.00	-10.53	QP			

Page 56 of 98

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR2015 #1424

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Braven 2300 Portable Bluetooth Speaker

Mode: TX 2441MHz

Model: 2300

Manufacturer: Braven LC

Report No.:ATE20151700 Note:

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2016/01/30 Time: 14:02:24 Engineer Signature:

Distance: 3m

										1		limi	t1:	-
60										 				
50										 	 			
40								2		 			3	
30			1	wh		M May	لهام	AND THE	hymphry)					Land Hara
20	.		<i>J</i>	-	₩	Comment in	¥ 			Yodad		(_{ph} llanl	Bridge	
10	h" ladingphy	ANN ANN	" 							; ; ; ; ; ;		<u> </u> 		
0.0											1			

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	71.2032	53.80	-22.92	30.88	40.00	-9.12	QP			
2	241.8377	57.24	-18.23	39.01	46.00	-6.99	QP			
3	731.4627	43.44	-7.20	36.24	46.00	-9.76	QP			

Page 57 of 98

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Distance: 3m

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR2015 #1423 Polarization: Vertical

Standard: FCC Class B 3M Radiated Power Source: AC 120V/60Hz

Test item: Radiation Test Date: 2016/01/30 Temp.(C)/Hum.(%) 25 C / 55 % Time: 14:01:06 EUT: Braven 2300 Portable Bluetooth Speaker Engineer Signature:

Mode: TX 2441MHz

Model: 2300

Manufacturer: Braven LC

Note: Report No.:ATE20151700

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	108.1648	54.44	-21.36	33.08	43.50	-10.42	QP			
2	241.8377	55.24	-18.23	37.01	46.00	-8.99	QP			
3	580.0705	45.84	-10.37	35.47	46.00	-10.53	QP			

Page 58 of 98

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR2015 #1425

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Braven 2300 Portable Bluetooth Speaker

Mode: TX 2480MHz

Model: 2300

Manufacturer: Braven LC

Note: Report No.:ATE20151700 Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2016/01/30 Time: 14:03:55 Engineer Signature:

Distance: 3m

										limit	1:	-
60								; ; ; ; ;				
50									† 			
40						2 0	114		3			
30		Many	nii li ^{mm} n	N	May May	My Mark	MAN MAN					and Markey
20	1 /	/	W	A Walleton House				my	my M	البيلليا	BAIT	
10	word Commission for March											
0.0										1		

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	71.2032	54.09	-22.92	31.17	40.00	-8.83	QP			
2	241.8377	55.81	-18.23	37.58	46.00	-8.42	QP			
3	580.0705	46.70	-10.37	36.33	46.00	-9.67	QP		**	

Site: 1# Chamber Tel:+86-0755-26503290

Fax:+86-0755-26503396

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2016/01/30 Time: 14:04:31 Engineer Signature: Distance: 3m

Job No.: STAR2015 #1426 Standard: ECC Class B 3M

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Braven 2300 Portable Bluetooth Speaker

Mode: TX 2480MHz

Model: 2300

Manufacturer: Braven LC

Note: Report No.:ATE20151700

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	106.2811	55.26	-21.68	33.58	43.50	-9.92	QP			
2	241.8377	55.14	-18.23	36.91	46.00	-9.09	QP			
3	580.0705	46.39	-10.37	36.02	46.00	-9.98	QP		,	

Page 60 of 98

Site: 1# Chamber Tel:+86-0755-26503290

Fax:+86-0755-26503396

Above 1GHz

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

> Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2016/01/30 Time: 14:06:17 Engineer Signature:

Distance: 3m

Test item: Radiation Test

Job No.: STAR2015 #1428

Temp.(C)/Hum.(%) 25 C / 55 %

Standard: FCC Class B 3M Radiated

EUT: Braven 2300 Portable Bluetooth Speaker

Mode: TX 2402MHz

Model: 2300

Manufacturer: Braven LC

Note: Report No.:ATE20151700

Note: Average measurement with peak detection at No.2

Report No.: ATE20151700 Page 61 of 98

Site: 1# Chamber

Tel:+86-0755-26503290

Fax:+86-0755-26503396

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2016/01/30 Time: 14:05:32

Engineer Signature:

Distance: 3m

Job No.: STAR2015 #1427

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Braven 2300 Portable Bluetooth Speaker

Mode: TX 2402MHz

Model: 2300

Manufacturer: Braven LC

Note: Report No.:ATE20151700

Note: Average measurement with peak detection at No.2

Page 62 of 98

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR2015 #1429

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Braven 2300 Portable Bluetooth Speaker

Mode: TX 2441MHz

Model: 2300

Manufacturer: Braven LC

Note: Report No.:ATE20151700 Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2016/01/30 Time: 14:07:03 Engineer Signature:

Distance: 3m

dBuV/m 80.0 limit1: 70 60 50 the free in high file conferent day or property brighten down to find a grant of the conference of the 40 30 20 10 0.0 1000.000 2000 3000 5000 6000 7000 8000 9000 18000.0 MHz

No	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)		Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	15790.179	36.25	12.72	48.97	74.00	-25.03	peak			
2	15790.179	26.44	12.72	39.16	54.00	-14.84	peak	Î		

Note: Average measurement with peak detection at No.2

Page 63 of 98

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

18000.0 MHz

Job No.: STAR2015 #1430

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Braven 2300 Portable Bluetooth Speaker

Mode: TX 2441MHz

Model: 2300

10

0.0

1000.000

Manufacturer: Braven LC

Note: Report No.:ATE20151700 Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2016/01/30 Time: 14:07:44 Engineer Signature:

Distance: 3m

80.0 dBuV/m limit1: 70 60 50 40 30 20

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	15337.191	35.72	12.82	48.54	74.00	-25.46	peak				
2	15337.191	25.97	12.82	38.79	54.00	-15.21	peak				

5000

6000 7000 80009000

Note: Average measurement with peak detection at No.2

2000

3000

Site: 1# Chamber Tel:+86-0755-26503290

Fax:+86-0755-26503396

Page 64 of 98

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2016/01/30 Time: 14:09:15

Engineer Signature:

Distance: 3m

Job No.: STAR2015 #1432

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Braven 2300 Portable Bluetooth Speaker

Mode: TX 2480MHz

Model: 2300

Manufacturer: Braven LC

Note: Report No.:ATE20151700

Note: Average measurement with peak detection at No.2

Site: 1# Chamber

Page 65 of 98

ACCURATE TECHNOLOGY CO., LTD.

F1, Bldg, A, Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: STAR2015 #1431

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Braven 2300 Portable Bluetooth Speaker

Mode: TX 2480MHz

Model: 2300

Manufacturer: Braven LC

Note: Report No.:ATE20151700

Vertical Polarization:

Power Source: AC 120V/60Hz

Date: 2016/01/30 Time: 14:08:31 Engineer Signature: Distance: 3m

Note: Average measurement with peak detection at No.2

Page 66 of 98

11.BAND EDGE COMPLIANCE TEST

11.1.Block Diagram of Test Setup

(EUT: Braven 2300 Portable Bluetooth Speaker)

11.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

11.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

11.4. Operating Condition of EUT

- 11.4.1. Setup the EUT and simulator as shown as Section 11.1.
- 11.4.2. Turn on the power of all equipment.
- 11.4.3.Let the EUT work in TX (Hopping off, Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2480MHz TX frequency to transmit.

Report No.: ATE20151700 Page 67 of 98

11.5.Test Procedure

- 11.5.1. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 11.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz with convenient frequency span including 100 kHz bandwidth from band edge.
- 11.5.3. The band edges was measured and recorded.

11.6.Test Result

Frequency	Result of Band Edge	Limit of Band Edge				
(MHz)	(dBc)	(dBc)				
	GFSK					
2400.00	40.47	> 20dBc				
2483.50	56.38	> 20dBc				
	∏/4-DQPSK Mode					
2400.00	33.86	> 20dBc				
2483.50	53.11	> 20dBc				
	8DPSK					
2400.00	34.13	> 20dBc				
2483.50	51.72	> 20dBc				

GFSK

Date: 1.FEB.2016 15:22:10

Date: 1.FEB.2016 15:20:58

∏/4-DQPSK Mode

Date: 1.FEB.2016 15:23:44

Date: 1.FEB.2016 15:24:34

8DPSK

Date: 1.FEB.2016 15:14:32

Date: 1.FEB.2016 15:17:54