MATH 540 Notes

Jiantong Liu

February 26, 2024

These notes were live-texed from a measure theory class (MATH 540) taught by Professor X. Li in Spring 2024 at University of Illinois. Any mistakes and inaccuracies would be my own. This course mainly follows Folland's *Real Analysis: Modern Techniques and Their Applications*.

Contents

1	Abstract Measure Theory			
	1.1	Introduction	2	
	1.2	Measures	(
	1.3	Outer Measure	(
	1.4	Borel Measure	13	
2	Integration			
		Measurable Functions	22	

1 Abstract Measure Theory

1.1 Introduction

Definition 1.1. Let X be an (non-empty) underlying space we are working over. We denote $\mathcal{P}(X)$ to be the power set of X, i.e., the set of all subsets of X.

Example 1.2. Let $X = \{1, 2\}$, then $\mathcal{P}(X) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$.

Remark 1.3. If X is a finite set of size n, then $\mathcal{P}(X)$ is a finite set of size 2^n .

We will consider a subcollection A of subsets of X, i.e., a subset of the power set. We will try to define this as an algebra. Note that an algebra is just a ring with a module structure with respect to some other ring.

Definition 1.4. $A \subseteq \mathcal{P}(X)$ is an algebra on X if it is

- a. closed under finite union, i.e., given $E_1, E_2 \in \mathcal{A}$, then $E_1 \cup E_2 \in \mathcal{A}$, and
- b. closed under complements, i.e., if $E \in \mathcal{A}$, then the complement $E^c \in \mathcal{A}$ as well.

Remark 1.5. An algebra \mathcal{A} would be closed under finite intersection. Indeed, for any $E_1, E_2 \in \mathcal{A}$, we have $E_1 \cap E_2 \in \mathcal{A}$ if and only if $(E_1 \cap E_2)^c \in \mathcal{A}$, if and only if $E_1^c \cup E_2^c \in \mathcal{A}$, which is true by definition.

Lemma 1.6. If \mathcal{A} is an non-empty algebra on X, then $\emptyset \in \mathcal{A}$ and $X \in \mathcal{A}$.

Proof. Since \mathcal{A} is non-empty, take $E \in \mathcal{A}$, then $\emptyset = E \cap E^c \in \mathcal{A}$ as well. Also, $X = E \cup E^c \in \mathcal{A}$.

Example 1.7. Let X be a set, and let $\mathcal{A} = \{\emptyset, X\} \subseteq \mathcal{P}(X)$. It is easy to verify that \mathcal{A} is an algebra.

Definition 1.8. Let $\emptyset \neq A \subseteq \mathcal{P}(X)$ be an algebra, then we say A is a σ -algebra on X if

- a. closed under countable union, i.e., if $E_j \in \mathcal{A}$ for all $j \in \mathbb{N}$, then $\bigcup_{j=1}^{\infty} E_j \in \mathcal{A}$;
- b. if $E \in \mathcal{A}$, then $E^c \in \mathcal{A}$.

Lemma 1.9. If $A \neq \emptyset$ is a σ -algebra on X, then $\{\emptyset, X\} \subseteq A$ is a σ -algebra.

Example 1.10. Let X be an uncountable set, let $\mathcal{A} = \{E \subseteq X : E \text{ is countable or } E^c \text{ is countable}\}$, then \mathcal{A} is a σ -algebra on X.

Theorem 1.11. Suppose a non-empty algebra $A \subseteq \mathcal{P}(X)$ such that,

• if $E_j \in \mathcal{A}$ for all $j \in \mathbb{N}$, and E_j 's are pairwise disjoint, then $\bigcup_{j=1}^{\infty} E_j \in \mathcal{A}$,

then A is a σ -algebra on X.

Proof. Take $E_j \in \mathcal{A}$ for all $j \in \mathbb{N}$, we will show that $\bigcup_{j=1}^{\infty} E_j \in \mathcal{A}$. To do this, we will rearrange the sets. Let $F_1 = E_1$, let

 $F_2 = E_2 \setminus E_1$, let $F_3 = E_3 \setminus (E_1 \cup E_2)$, and so on, such that let $F_k = E_k \setminus \bigcup_{i=1}^{k-1} E_i$. We note

$$F_k = E_k \cap \left(\bigcup_{j=1}^{k-1} E_j\right)^c$$
$$= E_k \cap \left(\bigcap_{j=1}^{k-1} E_j^c\right) \in \mathcal{A}.$$

One can also verify that $\bigcup_{j=1}^{\infty} E_j = \bigcup_{k=1}^{\infty} F_k$, and that F_k 's are disjoint from the definition.

Definition 1.12. Let X be a non-empty space. A topology on X is a family \mathcal{F} of subsets of X satisfying the following conditions:

- i. $\varnothing, X \in \mathcal{F}$;
- ii. \mathcal{F} is closed under arbitrary union;
- iii. \mathcal{F} is closed under finite intersection.

Every member of \mathcal{F} is now called an open subset of X. A complement of an open subset of X is called a closed subset.

Definition 1.13. Let A_1 , A_2 be σ -algebras. We say A_1 is smaller than A_2 if $A_1 \subseteq A_2$, and equivalently A_2 is larger than A_1 .

Definition 1.14. Let \mathcal{F} be a family of subsets of X, the smallest σ -algebra containing \mathcal{F} is called the σ -algebra generated by \mathcal{F} . This is denoted by $\mathcal{M}(\mathcal{F})$.

Lemma 1.15. Let \mathcal{F} be a family of subsets of X. Suppose $\mathcal{F} \subseteq \mathcal{A}$ where \mathcal{A} is a σ -algebra, then $\mathcal{M}(\mathcal{F}) \subseteq \mathcal{A}$.

Proof. Obvious. \Box

Definition 1.16. Let \mathcal{F} be a topology on X, then we say (X, \mathcal{F}) is a topological space. We say $\mathcal{M}(\mathcal{F})$ is the Borel σ -algebra on X, denoted by $\mathcal{B}_X = \mathcal{B}_{X,\mathcal{F}}$. Any member of \mathcal{B}_X is called a Borel set.

Example 1.17. Let $X = \mathbb{R}$, we denote the corresponding Borel σ -algebra to be $\mathcal{B}_{\mathbb{R}}$.

Definition 1.18. A G_{δ} -set is a countable intersection of open subsets of X. A F_{σ} -set is a countable union of closed subsets of X.

Theorem 1.19. Both G_{δ} -sets and F_{σ} -sets are Borel sets, that is, $G_{\delta}, F_{\sigma} \subseteq \mathcal{B}_X$.

Proof. We will prove that any G_{δ} -set E is a Borel set, and similarly any F_{σ} -set is a Borel set. By definition $E = \bigcap_{j=1}^{\infty} O_j$, where each O_j is an open subset. To show $E \in \mathcal{B}_X$, we show that $E^c \in \mathcal{B}_X$. Note that $E^c = \left(\bigcap_{j=1}^{\infty} O_j\right)^c = \bigcup_{j=1}^{\infty} O_j^c$. Since $O_j \in \mathcal{B}_X$ for all j, then $O_j^c \in \mathcal{B}_X$ as well. Therefore, $E^c \in \mathcal{B}_X$ since a σ -algebra \mathcal{B}_X is closed under countable unions. \square

Definition 1.20. Let X_1, \ldots, X_n be non-empty spaces. The product space is $\prod_{j=1}^n X_j$. Define $\pi_j : \prod_{i=1}^n X_i \to X_j$ by $\pi_j(x_1, \ldots, x_n) = x_j$. Let \mathcal{A}_j be a σ -algebra on X_j , the product σ -algebra on $\prod_{i=1}^n X_j$ is the σ -algebra generated by $\{\pi_j^{-1}(E_j) : E_j \in \mathcal{A}_j \ \forall j \in \{1, \ldots, n\}\}$. The product σ -algebra is denoted by $\bigotimes_{j=1}^n \mathcal{A}_j = \prod_{j=1}^n \mathcal{A}_j$.

Example 1.21. $\mathcal{B}_{\mathbb{R}^n} = \bigotimes_{j=1}^n \mathcal{B}_{\mathbb{R}}$.

1.2 Measures

Definition 1.22. Let \mathcal{A} be a σ -algebra on X. A measure μ on X and \mathcal{A} is a function $\mu: \mathcal{A} \to [0, \infty]$ such that

a.
$$\mu(\emptyset) = 0;$$

b. if
$$E_j \in \mathcal{A}$$
 for all $j \in \mathbb{N}$ and E_j 's are disjoint, then $\mu\left(\bigcup_{j=1}^{\infty} E_j\right) = \sum_{j=1}^{\infty} \mu(E_j)$.

We then say (X, A) is a measureable space. A measureable space is a triple (X, A, μ) with measure μ specified.

Definition 1.23. Let μ be a measure on (X, A).

1. If $\mu(X) < \infty$, then we say μ is a finite measure. In particular, if $\mu(X) = 1$, this is a probability measure.

2. If
$$X = \bigcup_{j=1}^{\infty} E_j$$
 such that $\mu(E_j) < \infty$ for all $j \in \mathbb{N}$, then we say μ is σ -finite.

3. If for all $E \in \mathcal{A}$ with $\mu(E) = \infty$, there is $F \in \mathcal{A}$ such that $F \subseteq E$ and $0 < \mu(F) < \infty$, then we say μ is semi-finite.

Remark 1.24. A σ -finite measure is semi-finite. However, the converse is not true.

Example 1.25. Let $f: X \to [0, \infty]$ be a function. For any $E \subseteq \mathcal{P}(E)$, we can define a measure $\mu(E) = \sum_{x \in E} f(x)$. Note that the summation makes sense only when E is finite. In case E is infinite, we should define $\sum_{x \in E} f(x) = \sup\{\sum_{x \in F} f(x) : F \subseteq E \text{ for finite } F\}$. Let μ be a measure on $\mathcal{P}(X)$.

- If $f(x) \equiv 1$ for all $x \in X$, then $\mu(E) = \sum_{x \in E} 1 = \text{Card}(E)$. In this case, μ is called a counting measure.
- Suppose $x_0 \in X$ is fixed. Define

$$f(x) = \begin{cases} 1, & \text{if } x = x_0 \\ 0, & \text{if } x \neq x_0 \end{cases}$$

then for any $E \in \mathcal{P}(X)$,

$$\mu(E) = \begin{cases} 1, & \text{if } x_0 \in E \\ 0, & \text{if } x_0 \notin E \end{cases}$$

This is called the Dirac measure of x_0 .

Definition 1.26. Let (X, \mathcal{A}, μ) be a measure space. A set $E \subseteq \mathcal{A}$ is called a null set if $\mu(E) = 0$. If a statement about points $x \in X$ is true except for null sets, then we say the statement is true almost everywhere.

Example 1.27. Suppose $f(x) \le 1$ for all $x \in X$, then we say f is bounded above by 1 everywhere. If we want to weaken this statement, we can say $f(x) \le 1$ almost everywhere $x \in X$, which is true if and only if $\mu(\{x \in X : f(x) > 1\} = 0$.

Theorem 1.28. Let $E, F \in \mathcal{A}$ be such that $E \subseteq F$, then $\mu(E) \leqslant \mu(F)$.

Proof. We can write $F = E \cup (E \backslash F)$, then

$$\mu(F) = \mu(E) + \mu(F \backslash E)$$

 $\geqslant \mu(E)$

since $\mu(F \setminus E) \geqslant 0$.

Theorem 1.29 (Sub-additivity). Let $E_j \in \mathcal{A}$ for all $j \in \mathbb{N}$, then $\mu\left(\bigcup_{j=1}^{\infty} E_j\right) \leqslant \sum_{j=1}^{\infty} \mu(E_j)$.

Proof. Set $F_1 = E_1$ and let $F_k = E_k \setminus \left(\bigcup_{j=1}^{k-1} E_j\right)$ be defined inductively, then $\bigcup_{k \in \mathbb{N}} F_k = \bigcup_{j \in \mathbb{N}} E_j$. Since F_k 's are disjoint, we have

$$\mu\left(\bigcup_{j\in\mathbb{N}} E_j\right) = \mu\left(\bigcup_{k\in\mathbb{N}} F_k\right)$$
$$= \sum_{k=1}^{\infty} \mu(F_k)$$
$$= \sum_{k=1}^{\infty} \mu(E_k)$$

$$=\sum_{j=1}^{\infty}\mu(E_j)$$

by Theorem 1.28.

Theorem 1.30. Let $E_j \in \mathcal{A}$ for all $j \in \mathbb{N}$.

a. (Continuity from below): If $E_1 \subseteq E_2 \subseteq \cdots E_j \subseteq \cdots$ for all j, then $\mu\left(\bigcup_{j=1}^{\infty} E_j\right) = \lim_{j \to \infty} \mu(E_j)$.

b. (Continuity from above): If $E_1 \supseteq E_2 \supseteq \cdots E_j \supseteq \cdots$ for all $j \in \mathbb{N}$, then $\mu\left(\bigcap_{j=1}^{\infty} E_j\right) = \lim_{j \to \infty} \mu(E_j)$ if $\mu(E_1) < \infty$.

In particular, the limits on the right exist on $\mathbb{R} = \mathbb{R} \cup \{\pm \infty\}$.

Example 1.31. Let μ be the counting measure on $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$. For each $j \in \mathbb{N}$, we define $E_j = \{n \in \mathbb{N} : n > j\}$. Therefore $E_1 \supseteq E_2 \supseteq \cdots$ is a decreasing sequence of sets. Note that $\mu(E_1) = \mu(\{n \in \mathbb{N}\}) = \mathbb{N} = \infty$, and $\lim_{j \to \infty} \mu(E_j) = \mathbb{N}$

$$\lim_{j\to\infty}\infty=\infty, \text{ but }\mu\left(\bigcap_{j=1}^{\infty}E_{j}\right)=\mu(\varnothing)=0.$$

Proof. a. Set $E_0 = \emptyset$. Now

$$\bigcup_{j=1}^{\infty} E_j = \bigcup_{j=1}^{\infty} (E_j \backslash E_{j-1})$$

and therefore

$$\mu\left(\bigcup_{j=1}^{\infty} E_{j}\right) = \mu\left(\bigcup_{j=1}^{\infty} (E_{j} \backslash E_{j-1})\right)$$

$$= \sum_{j=1}^{\infty} \mu(E_{j} \backslash E_{j-1})$$

$$= \lim_{k \to \infty} \sum_{j=1}^{k} \mu(E_{j} \backslash E_{j-1})$$

$$= \lim_{k \to \infty} \mu\left(\bigcup_{j=1}^{k} E_{j} \backslash E_{j-1}\right)$$

$$= \lim_{k \to \infty} \mu(E_{k})$$

$$= \lim_{j \to \infty} \mu(E_{j}).$$

b. For any $j \in \mathbb{N}$, set $F_j = E_1 \setminus E_j$. Note that $F_j \subseteq F_{j+1}$ since $E_j \supseteq E_{j-1}$. This is now an increasing sequence as in part a. By part a., we know $\mu\left(\bigcup_{j=1}^{\infty} F_j\right) = \lim_{j \to \infty} \mu(F_j)$. Now note that

$$\bigcup_{j=1}^{\infty} F_j = \bigcup_{j=1}^{\infty} (E_1 \backslash E_j)$$
$$= \bigcup_{j=1}^{\infty} (E_1 \cap E_j^c)$$
$$= E_1 \cap \bigcup_{j=1}^{\infty} E_j^c$$

$$= E_1 \cap \left(\bigcap_{j=1}^{\infty} E_j\right)^c$$

$$= \left(\left(E_1 \cap \left(\bigcap_{j=1}^{\infty} E_j\right)^c\right) \cup \left(\bigcap_{j=1}^{\infty} E_j\right)\right) \cap \left(\bigcap_{j=1}^{\infty} E_j\right)^c$$

$$= \left(E_1 \cap \left(\bigcap_{j=1}^{\infty} E_j\right)^c\right) \cup \left(\bigcap_{j=1}^{\infty} E_j\right).$$

Note that $E_1 \cap \left(\bigcap_{j=1}^{\infty} E_j\right)^c$ and $\bigcap_{j=1}^{\infty} E_j$ are disjoint, therefore by property of measure we have

$$\mu(E_1) = \mu\left(E_1 \cap \left(\bigcap_{j=1}^{\infty} E_j\right)^c\right) + \mu\left(\bigcap_{j=1}^{\infty} E_j\right)$$
$$= \mu\left(\bigcup_{j=1}^{\infty} F_j\right) + \mu\left(\bigcap_{j=1}^{\infty} E_j\right)$$
$$= \lim_{j \to \infty} \mu(F_j) + \mu\left(\bigcap_{j=1}^{\infty} E_j\right).$$

Recall that $F_j=E_1\backslash E_j$ for all j, therefore $E_1=F_j\cup F_j^c=F_j\cup E_j$, where F_j and E_j are disjoint, therefore $\mu(E_1)=\mu(F_j)+\mu(E_j)$. Since $\mu(E_1)<\infty$, and F_j is a subset of E_1 and hence also a real number, then $\mu(E_1)$ is a sum of two real numbers. Therefore, we have $\mu(E_1)-\mu(E_j)=\mu(F_j)$. With this, we have

$$\mu(E_1) = \lim_{j \to \infty} (\mu(E_1) - \mu(E_j)) + \mu \left(\bigcap_{j=1}^{\infty} E_j\right)$$
$$= \mu(E_1) - \lim_{j \to \infty} (\mu(E_j)) + \mu \left(\bigcap_{j=1}^{\infty} E_j\right).$$

In particular, we get

$$\lim_{j \to \infty} (\mu(E_j)) = \mu \left(\bigcap_{j=1}^{\infty} E_j \right).$$

1.3 Outer Measure

Definition 1.32. An outer measure μ^* on X (or $\mathcal{P}(X)$) is a function $\mu^*: \mathcal{P}(X) \to [0, \infty]$ such that

i.
$$\mu^*(\emptyset) = 0$$
,

ii. $\mu^*(A) \leqslant \mu^*(B)$ for all $A \subseteq B \subseteq X$,

iii. σ -subaddivity: $\mu^* \left(\bigcup_{j=1}^{\infty} A_j \right) \leqslant \sum_{j=1}^{\infty} \mu^* (A_j)$.

Example 1.33. Let $\rho: \mathcal{A} \to [0, \infty]$ be such that $\rho(\emptyset) = 0$, where $\mathcal{A} \subseteq \mathcal{P}(X)$ is a subcollection (but not necessarily an algebra) such that $\emptyset, X \in \mathcal{A}$.

For all $A \in \mathcal{P}(X)$, i.e., $A \subseteq X$, we define

$$\mu^*(A) = \inf \left\{ \sum_{j=1}^{\infty} \rho(E_j) : E_j \in \mathcal{A} \text{ and } A \subseteq \bigcup_{j=1}^{\infty} E_j \right\}.$$

Theorem 1.34. μ^* defined in Example 1.33 is an outer measure.

Proof. i. Let $E_j=\varnothing$ for all $j\in\mathbb{N}$, then $\varnothing\subseteq\bigcup_{j=1}^\infty E_j$, and so

$$\sum_{j=1}^{\infty} \rho(E_j) = \sum_{j=1}^{\infty} \rho(\varnothing) = \sum_{j=1}^{\infty} 0 = 0$$

and therefore $\mu^*(\varnothing) = 0$.

ii. Let $A \subseteq B \subseteq X$. If $B \subseteq \bigcup_{j=1}^{\infty} E_j$, we have $A \subseteq \bigcup_{j=1}^{\infty} E_j$, then

$$\left\{\sum_{j=1}^{\infty} \rho(E_j) : E_j \in \mathcal{A}, B \subseteq \bigcup_{j=1}^{\infty} E_j\right\} \subseteq \left\{\sum_{j=1}^{\infty} \rho(E_j) : E_j \in \mathcal{A}, A \subseteq \bigcup_{j=1}^{\infty} E_j\right\}.$$

In particular, given subsets $S_1 \subseteq S_2$, then $\inf S_2 \leqslant \inf S_1$ and $\sup S_1 \leqslant \sup S_2$. This implies $\mu^*(A) \leqslant \mu^*(B)$.

iii. We want to show $\mu^*\left(\bigcup_{j=1}^\infty A_j\right)\leqslant \sum_{j=1}^\infty \mu^*(A_j)$. Now for any $j\in\mathbb{N}$, we have

$$\mu^*(A_j) = \inf \left\{ \sum_{k=1}^{\infty} \rho(E_k) : E_k \in \mathcal{A} \text{ and } A_j \subseteq \bigcup_{k=1}^{\infty} E_k \right\}.$$

For any $\varepsilon > 0$, we note that $\mu^*(A_j) + \varepsilon \cdot 2^{-j}$ is not a lower bound of $\left\{\sum_{k=1}^{\infty} \rho(E_k) : E_k \in \mathcal{A} \text{ and } A_j \subseteq \bigcup_{k=1}^{\infty} E_k\right\}$.

Then there exists $E_k^{(j)} \in \mathcal{A}$ for $k \in \mathbb{N}$ such that $A_j \subseteq \bigcup_{k=1}^{\infty} E_k^{(j)}$ and $\sum_{k=1}^{\infty} \rho(E_k^{(j)}) \leqslant \mu^*(A_j) + \varepsilon \cdot 2^{-j}$. Summing with respec to j, we get

$$\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \rho(E_k^{(j)}) \leqslant \sum_{j=1}^{\infty} \mu^*(A_j) + \sum_{j=1}^{\infty} \varepsilon \cdot 2^{-j}$$
$$= \sum_{j=1}^{\infty} \mu^*(A_j) + \varepsilon.$$

Note that

$$\bigcup_{j=1}^{\infty} A_j \subseteq \bigcup_{j=1}^{\infty} \bigcup_{k=1}^{\infty} E_k^{(j)}$$

is a countable union of subsets of A. We will calculate the value over μ^* . By definition of μ^* , we have

$$\mu^* \left(\bigcup_{j=1}^{\infty} A_j \right) \leqslant \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \rho(E_k^{(j)})$$
$$\leqslant \sum_{j=1}^{\infty} \mu^*(A_j) + \varepsilon.$$

Since this is true for all $\varepsilon > 0$, then take $\varepsilon \to 0$, we are done.

Definition 1.35. Let μ^* be an outer measure on $(X, \mathcal{P}(X))$. A set $A \subseteq X$ is called μ^* -measurable if $\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c)$ for all $E \subseteq X$.

Remark 1.36. First note that $\mu^*(E) = \mu^*((E \cap A) \cup (E \cap A^c))$, therefore $\mu^*(E) \leq \mu^*(E \cap A) + \mu^*(E \cap A^c)$ for all $E \subseteq X$.

Theorem 1.37 (Fundamental Theorem of Measure Theory). Let μ^* be an outer measure on X. Let \mathcal{A} be the collection of all μ^* -measurable set, then \mathcal{A} is a σ -algebra, and $\mu^*|_{\mathcal{A}}$ is a measure on \mathcal{A} , i.e., (X, \mathcal{A}, μ^*) is a measure space.

Proof. We first prove that \mathcal{A} is an algebra. To see \mathcal{A} is closed under complement, we have $A \in \mathcal{A}$ if and only if $A^c \in \mathcal{A}$. by the definition of measurable set. To show \mathcal{A} is closed under finite union, suppose $A, B \in \mathcal{A}$, and we want to show $A \cup B \in \mathcal{A}$, which is true if and only if $\mu^*(E) = \mu^*(E \cap (A \cup B)) + \mu^*(E \cap (A \cup B)^c)$ for all $E \subseteq X$, hence it suffices to show that $\mu^*(E) \geqslant \mu^*(E \cap (A \cup B)) + \mu^*(E \cap (A \cup B)^c)$. We have

$$\mu^*(E \cap (A \cup B)) = \mu^*(E \cap (A \cup B) \cap A) + \mu^*(E \cap (A \cup B) \cap A^c)$$

= $\mu^*(E \cap A) + \mu^*(E \cap B \cap A^c)$

and

$$\mu^*(E \cap (A \cup B)^c) = \mu^*(E \cap (A \cup B)^c \cap A) + \mu^*(E \cap (A \cup B)^c \cap A^c)$$

= $\mu^*(\varnothing) + \mu^*(E \cap A^c \cap B^c)$
= $\mu^*(E \cap A^c \cap B^c)$.

Therefore

$$\mu^*(E \cap (A \cup B)) + \mu^*(E \cap (A \cup B)^c) = \mu^*(E \cap A) + \mu^*(E \cap A^c \cap B) + \mu^*(E \cap A^c \cap B^c)$$
$$= \mu^*(E \cap A) + \mu^*(E \cap A^c)$$
$$= \mu^*(E)$$

where the last two steps follow from the fact that $A, B \in \mathcal{A}$ are μ^* -measurable. Therefore, \mathcal{A} is an algebra. We now want to show that it is a σ -algebra. It suffices to prove that \mathcal{A} is closed under disjoint σ -unions. Let $A_j \in \mathcal{A}$ for all $j \in \mathbb{N}$ where they are pairwise disjoint, and we want to show that $\bigcup_{j=1}^{\infty} A_j \in \mathcal{A}$. That is,

$$\mu^*(E) = \mu^* \left(E \cap \left(\bigcup_{j=1}^{\infty} A_j \right) \right) + \mu^* \left(E \cap \left(\bigcup_{j=1}^{\infty} A_j \right)^c \right)$$

for all $E \subseteq X$.

Lemma 1.38. For a pairwise disjoint family $A_1, \ldots, A_n \in \mathcal{A}$,

$$\mu^* \left(E \cap \bigcup_{j=1}^n A_j \right) = \sum_{j=1}^n \mu^* (E \cap A_j).$$

Subproof. We proceed by induction. For n=1, this is obviously true. Now suppose n>1. To simplify the notation, let $B_n=\bigcup_{j=1}^n A_j$, and use the convention that $B_0=\varnothing$. Now

$$\mu^*(E \cap B_n) = \mu^*(E \cap B_n \cap A_n) + \mu^*(E \cap B_n \cap A_n^c)$$

$$= \mu^*(E \cap A_n) + \mu^*(E \cap B_{n-1})$$

$$= \sum_{i=1}^n (E \cap A_i) + \mu^*(E \cap B_0)$$

$$= \sum_{i=1}^n (E \cap A_i)$$

$$= \sum_{i=1}^n (E \cap A_i)$$

for all $n \in \mathbb{N}$. This finishes the proof.

Now for any $E \subseteq X$, we have

$$\mu^{*}(E) = \mu^{*}(E \cap B_{n}) + \mu^{*}(E \cap B_{n}^{c})$$

$$= \sum_{j=1}^{n} \mu^{*}(E \cap A_{j}) + \mu^{*}(E \cap B_{n}^{c})$$

$$\geq \sum_{j=1}^{n} \mu^{*}(E \cap A_{j}) + \mu^{*}\left(E \cap \left(\bigcup_{j=1}^{\infty} A_{j}\right)^{c}\right)$$

since $B_n = \bigcup_{j=1}^n A_j \subseteq \bigcup_{j=1}^\infty A_j$. Now take $n \to \infty$, we get

$$\mu^*(E) \geqslant \sum_{j=1}^{\infty} \mu^*(E \cap A_j) + \mu^* \left(\left(\bigcup_{j=1}^{\infty} A_j \right)^c \right)$$
$$\geqslant \mu^* \left(E \cap \left(\bigcup_{j=1}^{\infty} A_j \right) \right) + \mu^* \left(E \cap \left(\bigcup_{j=1}^{\infty} A_j \right)^c \right)$$
$$\geqslant \mu^*(E).$$

This forces all inequalities here to be equality, therefore

$$\mu^*(E) = \mu^* \left(E \cap \left(\bigcup_{j=1}^{\infty} A_j \right) \right) + \mu^* \left(E \cap \left(\bigcup_{j=1}^{\infty} A_j \right)^c \right)$$

as desired. Finally, we need to show that the restriction still gives a measure. We already know

$$\mu^*(E) = \sum_{j=1}^{\infty} \mu^*(E \cap A_j) + \mu^* \left(\left(\bigcup_{j=1}^{\infty} A_j \right)^c \right)$$

for any $E \subseteq X$, then in particular take $E = \bigcup_{j=1}^{\infty} A_j \in \mathcal{A}$ to be the disjoint union, then this forces

$$\mu^* \left(\bigcup_{j=1}^{\infty} A_j \right) = \sum_{j=1}^{\infty} \mu^* (E \cap A_j) + \mu^* (\varnothing) = \sum_{j=1}^{\infty} \mu^* (E \cap A_j).$$

Therefore $\mu^*|_{\Delta}$ is a measure.

Definition 1.39. A measure μ is said to be complete if its domain contains all subsets of null sets.

Example 1.40. Let $X = \{a, b\}$, $\mathcal{A} = \{\varnothing, \{a, b\}\}$. Define $\mu : \mathcal{A} \to [0, \infty]$ by setting $\mu^*(X) = 0$, $\mu^*(\varnothing) = 0$. This is not a complete measure because $\{a\} \notin \mathcal{A}$.

Theorem 1.41. Let \mathcal{A} be the collection of all μ^* -measurable sets, then the measure $\mu^*|_{\mathcal{A}}$ is complete.

Proof. Let N be any null set in \mathcal{A} , i.e., $\mu^*(N)=0$. Take an arbitrary subset $A\subseteq N$, we need to show $A\in\mathcal{A}$. Since $\mu^*(N)=0$, then $\mu^*(A)=0$ as well. For any $E\subseteq X$, we prove $\mu^*(E)=\mu^*(E\cap A)+\mu^*(E\cap A^c)$. It is clear that

$$\mu^{*}(E) \leq \mu^{*}(E \cap A) + \mu^{*}(E \cap A^{c})$$

$$\leq \mu^{*}(A) + \mu^{*}(E \cap A^{c})$$

$$\leq \mu^{*}(N) + \mu^{*}(E \cap A^{c})$$

$$= \mu^{*}(E \cap A^{c})$$

$$= \mu^{*}(E).$$

by the subadditivity of μ^* .

Definition 1.42. Let $\mathcal{A} \subseteq \mathcal{P}(X)$ be an algebra. A function $\mu_0 : \mathcal{A} \to [0, \infty]$ is a pre-measure if

i. $\mu_0(\emptyset) = 0$,

ii. if
$$A_j \in \mathcal{A}$$
 for all $j \in \mathbb{N}$ with $\bigcup_{j=1}^{\infty} A_j \in \mathcal{A}$, and they are pairwise disjoint, then $\mu_0 \left(\bigcup_{j=1}^{\infty} A_j \right) = \sum_{j=1}^{\infty} \mu_0(A_j)$.

Therefore, the difference of a pre-measure from a measure is that a pre-measure is not defined on a σ -algebra.

Theorem 1.43. Let μ_0 be a pre-measure, then $\mu_0(A) \leq \mu_0(B)$ if $A, B \in \mathcal{A}$ are such that $A \subseteq B$.

Proof. We write $B = (B \backslash A) \cup A$, where $B \backslash A = B \cap A^c \in A$, therefore

$$\mu_0(B) = \mu_0(B \backslash A) + \mu_0(A)$$

 $\geqslant \mu_0(A).$

Definition 1.44. Given a pre-measure μ_0 , we extend it to an outer measure as follows: for any $E \subseteq X$, define $\mu^*(E) = \inf\{\sum_{j=1}^{\infty} \mu_0(A_j) : E \subseteq \bigcup_{j=1}^{\infty} A_j, A_j \in \mathcal{A}\}.$

Theorem 1.45 (Carathéodory's Extension Theorem). Let μ^* be the outer measure induced by μ_0 specified in Definition 1.44, then

i. $\mu^*|_{\mathcal{A}} = \mu_0$, or equivalently, for any $A \in \mathcal{A}$, we have $\mu^*(A) = \mu_0(A)$;

ii. if $A \in \mathcal{A}$, then A is μ^* -measurable.

Proof. i. We want to show that for any $E \in \mathcal{A}$, $\mu^*(E) = \mu_0(E)$. To show $\mu^*(E) \leqslant \mu_0(E)$, we choose $A_1 = E \in \mathcal{A}$, and $A_j = \emptyset$ for all $j \geqslant 2$, then $E \subseteq \bigcup_{j=1}^{\infty} A_j$, therefore

$$\mu^*(E) \leqslant \sum_{j=1}^{\infty} \mu_0(A_j)$$
$$= \mu_0(E).$$

It now suffices to show that $\mu_0(E)$ is a lower bound of $\{\sum_{j=1}^{\infty}\mu_0(A_j):E\subseteq\bigcup_{j=1}^{\infty},A_j\in\mathcal{A}\}$. Let $A_j\in\mathcal{A}$ and $\bigcup_{j=1}^{\infty}A_j\supseteq E$. We prove that $\mu_0(E)\leqslant\sum_{j=1}^{\infty}\mu_0(A_j)$. For any $n\in\mathbb{N}$, define $B_n=E\cap\left(A_n\setminus\bigcup_{j=1}^{n-1}A_j\right)$, therefore $\bigcup_{n=1}^{\infty}B_n=E\cap\left(\bigcup_{j=1}^{\infty}A_j\right)=E$ where B_n 's are disjoint. We have

$$\mu_0(E) = \mu_0 \left(\bigcup_{n=1}^{\infty} B_n \right)$$

$$= \sum_{n=1}^{\infty} \mu_0(B_n)$$

$$\leq \sum_{n=1}^{\infty} \mu_0(A_n)$$

$$= \sum_{j=1}^{\infty} \mu_0(A_j).$$

ii. For any $A \in \mathcal{A}$, we want to prove that $\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c)$ for all $E \subseteq X$. It suffices to show that for any $E \subseteq X$, we have $\mu^*(E) \geqslant \mu^*(E \cap A) + \mu^*(E \cap A^c)$.

Pick arbitrary $\varepsilon > 0$, then $\mu^*(E) + \varepsilon$ is not a lower bound of $\{\sum_{j=1}^{\infty} \mu_0(A_j) : E \subseteq \bigcup_{j=1}^{\infty}, A_j \in \mathcal{A}\}$. Therefore, there exists some $A_j \in \mathcal{A}$ such that $E \subseteq \bigcup_{j=1}^{\infty} A_j$ and $\sum_{j=1}^{\infty} \mu_0(A_j) \leqslant \mu^*(E) + \varepsilon$. Since $\mu_0(A_j) = \mu_0(A_j \cap A) + \mu_0(A_j \cap A^c)$, then

$$\sum_{j=1}^{\infty} \mu_0(A_j) = \sum_{j=1}^{\infty} \mu_0(A_j \cap A) + \sum_{j=1}^{\infty} \mu_0(A_j \cap A^c)$$

$$= \sum_{j=1}^{\infty} \mu^*(A_j \cap A) + \sum_{j=1}^{\infty} \mu^*(A_j \cap A^c)$$

$$\geqslant \mu^*\left(\left(\bigcup_{j=1}^{\infty} A_j\right) \cap A\right) + \mu^*\left(\left(\bigcup_{j=1}^{\infty} A_j\right) \cap A^c\right)$$

$$\geqslant \mu^*(E \cap A) + \mu^*(E \cap A^c).$$

Let $\varepsilon \to 0$, then $\mu^*(E) \geqslant \mu^*(E \cap A) + \mu^*(E \cap A^c)$, as desired.

Theorem 1.46. Let $\mathcal{A} \subseteq \mathcal{P}(X)$ be an algebra, and let μ_0 be a pre-measure on \mathcal{A} . Define $\mathcal{M}(\mathcal{A})$ to be the σ -algebra generated by \mathcal{A} .

- a. The outer measure μ^* induced by μ_0 defines a measure function on $\mathcal{M}(\mathcal{A})$, and $\mu^*|_{\mathcal{A}} = \mu_0$.
- b. If $\tilde{\mu}$ is another measure on $\mathcal{M}(\mathcal{A})$ that extends μ_0 , then $\tilde{\mu}(E) \leq \mu^*(E)$ for all $E \subseteq \mathcal{M}(\mathcal{A})$, with equality if and only if $\mu^*(E) < \infty$.
- c. If μ_0 is σ -finite, i.e., $X = \bigcup_{j=1}^{\infty} A_j$ with $A_j \in \mathcal{A}$ and $\mu_0(A_j) < \infty$ for all j, then $\mu^*|_{\mathcal{M}(\mathcal{A})}$ is the unique extension of μ_0 to a measure on $\mathcal{M}(\mathcal{A})$.
- *Proof.* a. Let \mathcal{B} be the set of all μ^* -measurable sets, then $\mu^*|_{\mathcal{B}}$ is a measure on \mathcal{B} that extends μ_0 . By the fundamental theorem of measure theory, we know \mathcal{B} is a σ -algebra. In particular, $\mathcal{B} \supseteq \mathcal{A}$, therefore $\mathcal{B} \supseteq \mathcal{M}(\mathcal{A})$. That means $\mu^*|_{\mathcal{M}(\mathcal{A})}$ is a measure as well.
 - b. Let $\tilde{\mu}$ be any measure on $\mathcal{M}(\mathcal{A})$ that extends μ_0 . We first show that for all $E \in \mathcal{M}(\mathcal{A})$, then $\tilde{\mu}(E) \leqslant \mu^*(E)$. Recall that $\mu^*(E) = \inf\{\sum_{j=1}^{\infty} \mu_0(A_j) : E \subseteq \bigcup_{j=1}^{\infty} A_j, A_j \in \mathcal{A}\}$. Given a cover $E \subseteq \bigcup_{j=1}^{\infty} A_j$ and fix $A_j \in \mathcal{A}$. Therefore,

$$\tilde{\mu}(E) \leqslant \tilde{\mu} \left(\bigcup_{j=1}^{\infty} A_j \right)$$

$$\leqslant \sum_{j=1}^{\infty} \tilde{\mu}(A_j)$$

$$= \sum_{j=1}^{\infty} \mu_0(A_j),$$

therefore $\tilde{\mu}(E) \leq \mu^*(E)$. Assume we have $\mu^*(E) < \infty$, and we want to show that $\tilde{\mu}(E) = \mu^*(E)$. It suffices to show $\mu^*(E) \leq \tilde{\mu}(E)$.

Claim 1.47. Let
$$A_j \in \mathcal{A}$$
 for all $j \in \mathbb{N}$, then $\mu^* \left(\bigcup_{j=1}^{\infty} A_j \right) = \tilde{\mu} \left(\bigcup_{j=1}^{\infty} A_j \right)$.

Subproof. Note that $\bigcup_{j=1}^{\infty} A_j \in \mathcal{M}(\mathcal{A})$, then we can just work on $\mathcal{M}(\mathcal{A})$. Consider $\mu^*|_{\mathcal{M}(\mathcal{A})}$ and $\tilde{\mu}$ are measures on $\mathcal{M}(\mathcal{A})$. Let $E_n = \bigcup_{j=1}^n A_j$ for all $n \in \mathbb{N}$, then we have a nested increasing sequence of E_n 's. In particular, we know $\bigcup_{n=1}^{\infty} E_n = \bigcup_{j=1}^{\infty} A_j$. Therefore

$$\mu^* \left(\bigcup_{n=1}^{\infty} E_n \right) = \mu^* \left(\bigcup_{j=1}^{\infty} A_j \right)$$

$$= \lim_{n \to \infty} \mu^* (E_n)$$

$$= \lim_{n \to \infty} \mu^* \left(\bigcup_{j=1}^n A_j \right)$$

$$= \lim_{n \to \infty} \mu_0 \left(\bigcup_{j=1}^n A_j \right)$$

$$= \lim_{n \to \infty} \tilde{\mu} \left(\bigcup_{j=1}^n A_j \right)$$

$$= \tilde{\mu} \left(\bigcup_{j=1}^{\infty} A_j \right)$$

by continuity from below and closure of finite union.

We know from the claim that

$$\mu^* \left(\bigcup_{j=1}^{\infty} A_j \right) = \lim_{n \to \infty} \mu_0 \left(\bigcup_{j=1}^n A_j \right)$$

$$\leq \lim_{n \to \infty} \sum_{j=1}^n \mu_0(A_j)$$

$$= \sum_{j=1}^{\infty} \mu_0(A_j).$$

Take arbitrary $\varepsilon > 0$, then consider $\mu^*(E) + \varepsilon$, which is not a lower bound of the set anymore. Therefore, there exists $A_j \in \mathcal{A}$ for each $j \in \mathbb{N}$ such that $E \subseteq \bigcup_{j=1}^\infty A_j$ and that $\sum_{j=1}^\infty \mu_0(A_j) \leqslant \mu^*(E) + \varepsilon$. In particular, this means $\mu^*\left(\bigcup_{j=1}^\infty A_j\right) \leqslant \mu^*(E) + \varepsilon$. Since $\mu^*(E) < \infty$, then

$$\mu^* \left(\bigcup_{j=1}^{\infty} A_j \backslash E \right) = \mu^* \left(\bigcup_{j=1}^{\infty} A_j \right) - \mu^*(E)$$

Now that

$$\mu^*(E) \leq \mu^* \left(\bigcup_{j=1}^{\infty} A_j\right)$$

$$= \tilde{\mu} \left(\bigcup_{j=1}^{\infty} A_j\right)$$

$$= \tilde{\mu}(E) + \tilde{\mu} \left(\bigcup_{j=1}^{\infty} A_j \backslash E \right)$$
$$< \tilde{\mu}(E) + \varepsilon$$

by the claim. Therefore, for any $\varepsilon > 0$, we have $\mu^*(E) \leq \tilde{\mu}(E) + \varepsilon$ whenever $\mu^*(E) < \infty$. Take $\varepsilon \to 0$, we get $\mu^*(E) \leq \tilde{\mu}(E)$.

c. Since μ_0 is σ -finite, then there exists a decomposition $X = \bigcup_{j=1}^{\infty} A_j$ for $A_j \in \mathcal{A}$ and that $\mu_0(A_j) < \infty$. For any $E \in \mathcal{M}(\mathcal{A})$, then

$$E = E \cap X$$

$$= E \cap \left(\bigcup_{j=1}^{\infty} A_j\right)$$

$$= \bigcup_{j=1}^{\infty} (E \cap A_j)$$

and

$$\mu^*(E) = \mu^* \left(\bigcup_{j=1}^{\infty} (E \cap A_j) \right)$$

$$= \sum_{j=1}^{\infty} \mu^*(E \cap A_j)$$

$$= \sum_{j=1}^{\infty} \tilde{\mu}(E \cap A_j)$$

$$= \tilde{\mu} \left(\bigcup_{j=1}^{\infty} (E \cap A_j) \right)$$

$$= \tilde{\mu}(E)$$

since $\mu^*(E \cap A_j) \leqslant \mu^*(A_j) = \mu_0(A_j) < \infty$.

1.4 Borel Measure

Recall that the Borel σ -algebra $\mathcal{B}_{\mathbb{R}}$ is the smallest σ -algebra containing all open sets. Let \mathcal{G} be the set of all open sets in \mathbb{R} with respect to the standard topology. Therefore $\mathcal{B}_{\mathbb{R}} = \mathcal{M}(\mathcal{G})$. We can in fact use something smaller than \mathcal{G} .

Theorem 1.48. $\mathcal{B}_{\mathbb{R}}$ is a σ -algebra generated by

a.
$$A_0 = \{(a, b) : a, b \in \mathbb{R}, a < b\}$$
, or by

b.
$$A_1 = \{(a, b] : a, b \in \mathbb{R}, -\infty \leqslant a < b < \infty\} \cup \{(a, \infty) : -\infty \leqslant a < \infty\} \cup \{\emptyset\}.$$

Any member in A_1 is called an h-interval.

Proof. a. We want to show that $\mathcal{B}_{\mathbb{R}} = \mathcal{M}(\mathcal{A})$. Obviously $\mathcal{A}_0 \subseteq \mathcal{G}$, then $\mathcal{M}(\mathcal{G})$ is a σ -algebra containing \mathcal{A}_0 , then $\mathcal{M}(\mathcal{A}_0) \subseteq \mathcal{M}(\mathcal{G}) = \mathcal{B}_{\mathbb{R}}$. Conversely, recall that any open subset in \mathbb{R} is a σ -union of open intervals, therefore $\mathcal{G} \subseteq \mathcal{M}(\mathcal{A})$, so $\mathcal{B}_{\mathbb{R}} = \mathcal{M}(\mathcal{G}) \subseteq \mathcal{M}(\mathcal{A}_0)$, therefore $\mathcal{B}_{\mathbb{R}} = \mathcal{M}(\mathcal{A}_0)$.

b. We first show that $\mathcal{M}(\mathcal{A}_1) \subseteq \mathcal{B}_{\mathbb{R}}$. Since $\mathcal{M}(\mathcal{A}_1)$ is the smallest σ -algebra containing \mathcal{A}_1 , then it suffices to show that $\mathcal{A}_1 \subseteq \mathcal{B}_{\mathbb{R}}$. It is easy to see that $(a,b] = \bigcap_{n=1}^{\infty} (a,b+\frac{1}{n}) \in \mathcal{B}_{\mathbb{R}}$, and $(a,\infty) = \bigcup_{n=1}^{\infty} (a,n) \in \mathcal{B}_{\mathbb{R}}$.

We now verify that $\mathcal{B}_{\mathbb{R}} \subseteq \mathcal{M}(\mathcal{A}_1)$. By a. we know $\mathcal{B}_{\mathbb{R}} = \mathcal{M}(\mathcal{A}_0)$, so it suffices to show that $\mathcal{A}_0 \subseteq \mathcal{M}(\mathcal{A}_1)$. For a < b, we have $(a,b) = \bigcup_{n=1}^{\infty} (a,b-\frac{1}{n}]$, therefore the right-hand side is a σ -union of intervals, hence belongs to $\mathcal{M}(\mathcal{A}_1)$, and we are done.

Definition 1.49. We define A_2 to be the collection of finite disjoint unions of h-intervals, e.g., $\bigcup_{j=1}^{n} (a_j, b_j]$, then A_2 is an algebra.

Definition 1.50. A function on \mathbb{R} is said to be right continuous if $\lim_{x\to x_0^+} F(x) = F(x_0)$.

Theorem 1.51. Let $F: \mathbb{R} \to \mathbb{R}$ be increasing and right continuous. Let $I_j = (a_j, b_j]$ for j = 1, ..., n be disjoint h-intervals. We define the pre-measure μ_0 on \mathcal{A}_2 by $\mu_0(\varnothing) = 0$ and $\mu_0\left(\bigcup_{j=1}^n (a_j, b_j]\right) = \sum_{j=1}^n [F(b_j) - F(a_j)]$.

Proof. First one cancheck that μ_0 is well-defined, that is, given any partition of h-interval, the μ_0 -measurements on the interval are the same.

Second, we need to show that μ_0 satisfies σ -additivity, that is, if $\bigcup_{j=1}^{\infty} I_j \in \mathcal{A}_2$ such that I_j 's are disjoint, then

 $\mu_0\left(\bigcup_{j=1}^{\infty}I_j\right)=\sum_{j=1}^{\infty}\mu_0(I_j)$. It is easy to verify finite additivity, so we now assume

$$\bigcup_{j=1}^{\infty} I_j = I = (a, b] \in \mathcal{A}_2$$

for $-\infty \le a < b < \infty$, then we will show that

$$F(b) - F(a) = \mu_0(I) = \sum_{j=1}^{\infty} \mu_0(I_j)$$

for $I_i = (a_i, b_i]$

To show $\mu_0(I) \geqslant \sum_{j=1}^{\infty} \mu(I_j)$, we know $F(b) - F(a) \geqslant \sum_{j=1}^{n} [F(b_j) - F(a_j)]$, therefore taking the limit of $n \to \infty$ gives $F(b) - F(a) \geqslant \sum_{j=1}^{\infty} \mu_0(I_j)$.

To show $\mu_0(I) \leqslant \sum_{j=1}^{\infty} \mu(I_j)$, since F is right continuous, then for all $\varepsilon > 0$, there exist $\delta > 0$ such that $F(a+\delta) - F(a) < \varepsilon$. Therefore, for every j > 0, there exists $\delta_j > 0$ such that $F(b_j + \delta_j) - F(b_j) < 2^{-j}\varepsilon$, then

$$[a + \delta, b] \subseteq (a, b]$$

$$= \bigcup_{j=1}^{\infty} (a_j, b_j]$$

$$= \bigcup_{j=1}^{\infty} (a_j, b_j + \delta_j).$$

By compactness, there exists some $N \in \mathbb{N}$ such that $[a + \delta, b] \subseteq \bigcup_{j=1}^{N} (a_j, b_j + \delta_j)$. Assume $b_j + \delta_j \in (a_{j+1}, b_{j+1}]$, then

$$\mu_0(I) = \mu_0((a, b])$$
$$= F(b) - F(a)$$

$$\begin{split} &\leqslant F(b) - F(a+\delta) + \varepsilon \\ &\leqslant F(b_N + \delta_N) - F(a+\delta) + \varepsilon \\ &= F(b_N + \delta_N) - F(a_N) + F(a_N) - F(a+\delta) + \varepsilon \\ &= F(b_N + \delta_N) - F(a_N) + \sum_{j=1}^{N-1} [F(a_{j-1}) - F(a_j)] + \varepsilon \\ &\leqslant F(b_N + \delta_N) - F(a_N) + \sum_{j=1}^{N-1} [F(b_j + \delta_j) - F(a_j)] + \varepsilon \\ &\leqslant F(b_N + \delta_N) - F(a_N) + \sum_{j=1}^{N-1} [F(b_j + \delta_j) - F(a_j)] + \varepsilon \\ &= \sum_{j=1}^{N} [F(b_j + \delta_j) - F(a_j)] + \varepsilon \\ &= \sum_{j=1}^{N} [F(b_j + \delta_j) - F(b_j)] + \sum_{j=1}^{N} [F(b_j) - F(a_j)] + \varepsilon \\ &\leqslant \sum_{j=1}^{N} 2^{-j} \varepsilon + \sum_{j=1}^{N} \mu_0(I_j) + \varepsilon \\ &\leqslant 2\varepsilon + \sum_{j=1}^{\infty} \mu_0(I_j) \end{split}$$

since F is increasing. Let $\varepsilon \to 0$ and we are done.

Theorem 1.52. Let F be increasing and right-continuous, then

- a. there is a unique measure μ_F on \mathbb{R} such that $\mu_F((a,b]) = F(b) F(a)$ for all $a,b \in \mathbb{R}$;
- b. if G is another increasing and right-continuous function, then $\mu_F = \mu_F$ if and only if F G is a constant function;

c. if μ is a Borel measure on $\mathbb R$ that is finite on all bounded Borel sets, i.e., a set $S\subseteq\mathbb R$ contained in [-M,M] for some $M\in\mathbb R$, then

$$F(x) = \begin{cases} \mu((0,x]), & x > 0\\ 0, & x = 0\\ -\mu((x,0]), & x < 0 \end{cases}$$

is an increasing function and right-continuous, and $\mu_F = \mu$.

Proof. a. Consider $\mathbb{R} = \bigcup_{j=-\infty}^{\infty} (j,j+1]$, then the pre-measure $\mu_0((j,j+1]) = F(j+1) - F(j) < \infty$ defined on h-intervals is σ -finite. Therefore there exists a unique extension of measure μ of μ_0 on $\mathcal{B}_{\mathbb{R}} = \mathcal{M}(\mathcal{A}_2)$ such that $\mu|_{\mathcal{A}_2} = \mu_0$.

b. We have
$$\mu_F((a,b]) = F(b) - F(a)$$
 and $\mu_G((a,b]) = G(b) - G(a)$, then
$$\mu_F((a,b]) = \mu_G((a,b]) \iff F(b) - F(a) = G(b) - G(a)$$
$$\iff F(b) - G(b) = G(a) - F(a)$$
$$\iff F - G \text{ is constant.}$$

c. First note that F is an increasing function since the measure function is increasing. Take any $x_0 \in \mathbb{R}$, we want to show that $\lim_{x \to x_0^+} F(x) = F(x_0)$. We prove this by cases, either $x_0 = 0$, $x_0 > 0$, or $x_0 < 0$. We will only prove the

first case, but the two other cases are analogous. Suppose $x_0=0$, take a nested sequence of intervals $E_n=(0,\frac{1}{n}]$, with $E_n\supseteq E_{n+1}$ for all $n\in\mathbb{N}$, then

$$\lim_{x \to 0^+} F(x) = \lim_{x \to 0^+} \mu((0, x])$$

$$= \lim_{n \to 0} \mu((0, \frac{1}{n}])$$

$$= \lim_{n \to \infty} \mu(E_n)$$

$$= \mu\left(\bigcap_{n=1}^{\infty} E_n\right)$$

$$= \mu(\varnothing)$$

$$= 0$$

$$= F(0)$$

since $\mu(E_1) < \infty$.

Definition 1.53. Suppose F is increasing and right-continuous, then we can use F to create μ_0 on \mathcal{A}_2 , and get an outer measure μ^* induced by μ_0 . Let \mathcal{A} be the collection of all μ^* -measurable sets, then $\mu^*|_{\mathcal{A}}$ is a measure. Note that $\mathcal{A} \supseteq \mathcal{B}_{\mathbb{R}}$: since μ_F is only defined on $\mathcal{B}_{\mathbb{R}}$, then $\mu^*|_{\mathcal{A}}$ becomes the extension of μ_F on \mathcal{A} . We denote this measure to be $\bar{\mu}_F$, as the extension of μ_F , called the Lebesgue-Stieltjes measure.

Remark 1.54. In particular, if F(x) = x for all $x \in \mathbb{R}$, then $\bar{\mu}_F$ is called a Lebesgue measure, denoted by \mathfrak{m} , with $\mathfrak{m}((a,b]) = F(b) - F(a) = b - a$.

Definition 1.55. Let μ be a Lebesgue-Stieltjes measure associated to an increasing and right-continuous function F. Let \mathcal{M}_{μ} be the domain of the measure μ , which gives the collection of measurable sets. For any measurable set $E \in \mathcal{M}_{\mu}$, we have

$$\mu(E) = \inf \left\{ \sum_{j=1}^{\infty} [F(b_j) - F(a_j)] : E \subseteq \bigcup_{j=1}^{\infty} (a_j, b_j) \right\}$$
$$= \inf \left\{ \sum_{j=1}^{\infty} \mu((a_j, b_j)) : E \subseteq \bigcup_{j=1}^{\infty} (a_j, b_j) \right\}.$$

Theorem 1.56. For all $E \in \mathcal{M}_{\mu}$, we have

$$\mu^*(E) = \inf \left\{ \sum_{j=1}^{\infty} \mu((a_j, b_j)) : E \subseteq \bigcup_{j=1}^{\infty} (a_j, b_j) \right\}.$$

Proof. Let $\tilde{\mu}(E)$ be the right-hand side of this equation, so we will show that $\mu(E) = \tilde{\mu}(E)$. Note that we have a partition

$$(a_j, b_j) = \bigcup_{k=1}^{\infty} I_k^{(j)},$$

where $I_k^{(j)}=(b_j-\frac{1}{2^k}(b_j-a_j),b_j-\frac{1}{2^{k+1}}(b_j-a_j)]$. Now $E\subseteq\bigcup_{j=1}^\infty(a_j,b_j)$, so $E\subseteq\bigcup_{j=1}^\infty\bigcup_{k=1}^\infty I_k^{(j)}$, and thus

$$\sum_{j=1}^{\infty} \mu((a_j, b_j)) = \sum_{j=1}^{\infty} \mu\left(\bigcup_{k=1}^{\infty} I_k^{(j)}\right)$$
$$= \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \mu(I_k^{(j)}).$$

$$\tilde{\mu}(E) \leqslant \sum_{j=1}^{\infty} \mu((a_j, b_j + \delta_j))$$

$$= \sum_{j=1}^{\infty} [F(b_j + \delta_j) - F(a_j)]$$

$$= \sum_{j=1}^{\infty} [F(b_j + \delta_j) - F(b_j) + F(b_j) - F(a_j)]$$

$$\leqslant \sum_{j=1}^{\infty} [F(b_j + \delta_j) - F(b_j)] + \sum_{j=1}^{\infty} [F(b_j) - F(a_j)]$$

$$< \sum_{j=1}^{\infty} \varepsilon \cdot 2^{-j} + \sum_{j=1}^{\infty} \mu((a_j, b_j))$$

$$< \varepsilon + \mu(E) + \varepsilon$$

$$= \mu(E) + 2\varepsilon.$$

Taking small enough ε finishes the proof.

Remark 1.57. The union of h-intervals may not be open, so often times we use the characterization in Theorem 1.56 instead. Theorem 1.58. For any $E \subseteq \mathcal{M}_{\mu}$, we have

$$\mu(E) = \inf\{\mu(U) : \text{ open } U \supseteq E\} = \sup\{\mu(K) : \text{ compact } K \subseteq E\}.$$

Proof. Let $\tilde{\mu}(E) = \inf\{\mu(U) : \text{ open } U \supseteq E\}$. First, $\mu(E) \leqslant \tilde{\mu}(E)$: since $E \subseteq U$, then $\mu(E) \leqslant \mu(U)$, therefore $\mu(E) \leqslant \tilde{\mu}(E)$. To see $\tilde{\mu}(E) \leqslant \mu(E)$, we have $\mu(E) + \varepsilon$ is not a lower bound of $\left\{\sum_{j=1}^{\infty} \mu((a_j,b_j]) : E \subseteq \bigcup_{j=1}^{\infty} (a_j,b_j)\right\}$, then there exists (a_j,b_j) for each $j \in \mathbb{N}$ such that $E \subseteq \bigcup_{j=1}^{\infty} (a_j,b_j)$, and that $\sum_{j=1}^{\infty} \mu((a_j,b_j)) \leqslant \mu(E) + \varepsilon$. Therefore, take U to be the open set $\bigcup_{j=1}^{\infty} (a_j,b_j)$, then

$$\tilde{\mu}(E) \le \mu(U) \le \sum_{j=1}^{\infty} \mu((a_j, b_j)) \le \mu(E) + \varepsilon$$

as desired.

Now let $\nu(E) = \sup\{\mu(K) : \text{ compact } K \subseteq E\}$. We note that if $K \subseteq E$, then $\mu(K) \leqslant \mu(E)$, therefore $\nu(E) \leqslant \mu(E)$. To prove the reverse inequality, we consider the following cases:

- E is bounded.
 - E is closed. Since E is bounded and closed, it is compact over \mathbb{R} , thus $\mu(E) \leq \nu(E)$.

- E is bounded but not closed. We have $\mu(\bar{E}\backslash E)=\inf\{\mu(U): \text{ open } U\supseteq \bar{E}\backslash E\}$. For any $\varepsilon>0$, there exists an open set U such that $U\supseteq \bar{E}\backslash E$ and $\mu(U)\leqslant \mu(\bar{E}\backslash E)+\varepsilon$. Set $K=\bar{E}\backslash U$, then K is compact. Since all measures here are finite, we have

$$\begin{split} \mu(K) &= \mu(E) - \mu(E \cap U) \\ &= \mu(E) - \left[\mu(U) - \mu(U \backslash E)\right] \\ &\geqslant \mu(E) - \mu(U) + \mu(\bar{E} \backslash E) \\ &\geqslant \mu(E) - \varepsilon. \end{split}$$

Therefore $\nu(E) \geqslant \mu(E) - \varepsilon$, and we are done by taking $\varepsilon \to 0$.

• E is not bounded. Suppose $E = \bigcup_{j=-\infty}^{\infty} ((j,j+1] \cap E)$, then denote $E_j = E \cap (j,j+1]$, which is bounded. Therefore, we know the statement is true for each E_j for $j \geqslant 1$, thus $\mu(E_j) = \sup\{\mu(K) : \operatorname{compact} K \subseteq E_j\}$. Take arbitrary $\varepsilon > 0$, then $\mu(E_j) - \frac{1}{3}\varepsilon \cdot 2^{-|j|}$ is not the upper bound of $\{\mu(K) : \operatorname{compact} K \subseteq E_j\}$, then there exists a compact set $K_j \subseteq E_j$ such that $\mu(K_j) \geqslant \mu(E_j) - \frac{1}{3}\varepsilon \cdot 2^{-|j|}$. Since $K_j \subseteq E_j$ and E_j 's are disjoint, then K_j 's are disjoint. Therefore, for $n \in \mathbb{N}$, set $H_n = \bigcup_{j=-n}^n K_j$, which is a finite disjoint union of compact sets, so this is a compact set. But $H_n \subseteq E$, then

$$\mu(H_n) = \mu\left(\bigcup_{j=-n}^n K_j\right)$$

$$= \sum_{j=-n}^n \mu(K_j)$$

$$\geqslant \sum_{j=-n}^n \mu(E_j) - \frac{\varepsilon}{3} \sum_{j=-n}^n 2^{-|j|}$$

$$\geqslant \sum_{j=-n}^n \mu(E_j) - \frac{\varepsilon}{3} \sum_{j=-\infty}^\infty 2^{-|j|}$$

$$\geqslant \sum_{j=-n}^n \mu(E_j) - \varepsilon.$$

Note that H_n still depends on n, so we should not take $n \to \infty$ here. Since $\nu(E)$ is the upper bound of $\mu(K)$'s for compact $K \subseteq E$, then $\nu(E) \geqslant \mu(H_n)$, therefore

$$\nu(E) \geqslant \sum_{j=-n}^{n} \mu(E_j) - \varepsilon$$
$$= \mu\left(\bigcup_{j=-n}^{n} E_j\right) - \varepsilon.$$

Take $n \to \infty$, then

$$\nu(E) \geqslant \lim_{n \to \infty} \mu\left(\bigcup_{j=-n}^{n} E_{j}\right) - \varepsilon$$

$$= \mu\left(\bigcup_{j=-\infty}^{\infty} E_{j}\right) - \varepsilon$$

$$= \mu(E) - \varepsilon.$$

Let $\varepsilon \to 0$, we are done.

MATH 540 Notes

Jiantong Liu

Theorem 1.59. Let $E \subseteq \mathbb{R}$, then the following are equivalent:

a. $E \in \mathcal{M}_{\mu}$;

b. $E = V \setminus N_1$, where V is a G_{δ} -set and $\mu(N_1) = 0$;

c. $E = H \cup N_2$, where H is a F_{σ} -set and $\mu(N_2) = 0$.

Proof. • $b. \Rightarrow a.$: note that $\mathcal{M}_{\mu} \supseteq \mathcal{B}_{\mathbb{R}}$, then both V and N_1 are measurable, therefore E is measurable, i.e., $E \in \mathcal{M}_{\mu}$.

- $c. \Rightarrow a.$: similar to the case above.
- $a. \Rightarrow b.$:
 - If $\mu(E) < \infty$, recall $\mu(E) = \inf\{\mu(U) : \text{ open } U \supseteq E\}$. For any $k \in \mathbb{N}$, consider $2^{-k} > 0$, then there exists open subset $U_k \supseteq E$ such that $\mu(U_k) \leqslant \mu(E) + 2^{-k}$. Let $V = \bigcap_{k=1}^{\infty} U_k$ be a G_{δ} -set, then $V \supseteq E$ as well. It suffices to show that $V \setminus E$ is a null set. We know

$$\mu(V) = \mu\left(\bigcap_{k=1}^{\infty} U_k\right)$$

$$\leq \mu(U_k)$$

$$\leq \mu(E) + 2^{-k}$$

for all $k \in \mathbb{N}$. Since $\mu(V)$ and $\mu(E)$ are independent of k, then take $k \to \infty$, therefore $\mu(V) \leqslant \mu(E)$. But since $E \subseteq V$, then $\mu(E) \leqslant \mu(V)$, therefore this gives equality. Since $\mu(E) < \infty$, then $\mu(V) - \mu(E) = 0$, then $\mu(V \setminus E) = 0$ by additivity.

- If $\mu(E) = \infty$, then the proof can be done using the previous case.
- $a. \Rightarrow c.$: the proof is similar to the case above.

Theorem 1.60. Let $E \in \mathcal{M}_{\mu}$, and suppose $\mu(E) < \infty$. For any $\varepsilon > 0$, there exists some set A that is a finite union of open intervals such that $\mu(E\Delta A) = \mu((E \setminus A) \cup (A \setminus E)) < \varepsilon$.

Proof. Note that $\mu(E) = \sup\{\mu(K) : \text{ compact } K \subseteq E\}$. For any $\varepsilon > 0$, there exists compact $K \subseteq E$ such that $\mu(E) - \frac{\varepsilon}{2} < \mu(K)$, which is equivalent to having $\mu(E \backslash K) < \frac{\varepsilon}{2}$. Similarly, recall that $\mu(E) = \inf\{\mu(U) : \text{ open } U \supseteq E\}$,

but open set U on $\mathbb R$ is characterized as a union of open intervals, therefore this is just $\mu(E) = \inf\{\sum_{j=1}^{\infty} \mu((a_j,b_j)) : \}$

$$\bigcup_{j=1}^{\infty} (a_j, b_j) \supseteq E\}.$$
 Therefore, there exists $\bigcup_{j=1}^{\infty} I_j \supseteq E$, where I_j is open interval for each j , such that $\mu\left(\bigcup_{j=1}^{\infty} I_j\right) < 1$

 $\mu(E) + \frac{\varepsilon}{2}$. Since $\mu(E)$ is finite, then $\mu\left(\bigcup_{j=1}^{\infty} I_j \backslash E\right) < \frac{\varepsilon}{2}$. Now $K \subseteq E \subseteq \bigcup_{j=1}^{\infty} I_j$, but K is compact, so there exists

 I_1, \ldots, I_n such that their union cover K. Set $A = \bigcup_{j=1}^m I_j$, and we are done.

Definition 1.61. Let F(x) = x be a function for all $x \in \mathbb{R}$, then μ_F is called the Lebesgue measure defined by m((a, b]) = b - a. The domain of m is \mathcal{L} .

For $E \subseteq \mathbb{R}$ and $s, r \in \mathbb{R}$, we denote $E + s = \{x + s : x \in E\}$ and $rE = \{rx : x \in E\}$.

Theorem 1.62. If $E \in \mathcal{L}$, then m(E + s) = m(E) and m(rE) = |r|m(E).

Proof. We prove the first claim. For any $E \in \mathcal{L}$ and $s \in \mathbb{R}$, define $m_s = m(E+s)$, then this is a measure.

Claim 1.63. For any $E \in \mathcal{L}$, $m_s(E) = m(E)$.

Subproof. First note that this is true if E is a finite (disjoint) union of h-intervals of m_s , as m extends the pre-measure μ_0 . On $\mathcal{B}_{\mathbb{R}}$, the extension is unique, so $m_s(E) = m(E)$ if $E \in \mathcal{B}_{\mathbb{R}}$. Moreover, recall $E \in \mathcal{L}$ if and only if $E = V \setminus N_1$ for $V \in \mathcal{B}_{\mathbb{R}}$. Therefore this is true for all $E \in \mathcal{L}$.

Definition 1.64. The Cantor set \mathscr{C} is constructed iteratively from the interval [0,1], that for any remaining connected interval [m,n], we delete the subinterval $(m+\frac{1}{3}(n-m),m+\frac{2}{3}(n-m))$ from [m,n].

Remark 1.65. Note that

$$m(\mathscr{C}) = m([0,1]) - \frac{1}{3} - \frac{2}{3^2} - \frac{2^2}{3^3} - \cdots$$

$$= 1 - \sum_{j=0}^{\infty} \frac{2^j}{3^{j+1}}$$

$$= 1 - 1$$

$$= 0.$$

Remark 1.66. If E is countable, then

$$m(E) = \sum_{j=1}^{\infty} m(\{a_j\})$$
$$= 0.$$

Theorem 1.67. The Cantor set $\mathscr C$ is uncountable.

Proof. Alternatively, the Cantor set $\mathscr C$ can be represented as

$$\mathscr{C} = \{ x \in [0, 1] : x = \sum_{j=1}^{\infty} a_j 3^{-j}, a_j \in \{0, 2\} \}.$$

To prove that $\mathscr C$ is uncountable, it suffices to build a surjection $f:\mathscr C\to [0,1]$. For $x\in\mathscr C$, we have $x=\sum_{j=1}^\infty a_j3^{-j},a_j\in\mathscr C$

 $\{0,2\}$. Set $f(x) = \sum_{j=1}^{\infty} \frac{a_j}{2} 2^{-j}$ for $\frac{a_j}{2} \in \{0,1\}$, therefore this gives a decimal representation with base 2, so any real number in [0,1] can be represented in this form, therefore we have a surjection.

Theorem 1.68. Let $F \subseteq \mathbb{R}$ be such that every subset of F is Lebesgue measurable, then m(F) = 0.

Corollary 1.69. If m(F) > 0, then there exists a subset S of F such that $S \notin \mathcal{L}$.

Remark 1.70 (Banach-Tarski Paradox). Given a ball $B = S^2$, then there exists some $m \in \mathbb{N}$ such that $B = V_1 \cup \cdots \cup V_m$ is a union of subsets V_i that are not Lebesgue measurable and $m(B) \neq m(V_1 \cup \cdots \cup V_m)$.

Definition 1.71. For any $x \in \mathbb{R}$, we defined the cosets over \mathbb{Q} to be $\mathbb{Q} + x = \{r + x : r \in \mathbb{Q}\}$ for any x. This is called the coset of an additive group \mathbb{R} .

Let E be the set that contains exactly one point from each coset of \mathbb{Q} as representations, which requires the axiom of choice. Now E allows us make a partition on \mathbb{R} .

Lemma 1.72. 1. $(E + r_1) \cap (E + r_2) = \emptyset$ if $r_1 \neq r_2$ and $r_1, r_2 \in \mathbb{Q}$.

$$2. \ \mathbb{R} = \bigcup_{r \in \mathbb{Q}} (E + r).$$

Proof. 1. Suppose $x \in (E+r_1) \cap (E+r_2)$, then $x=e_1+r_1=e_2+r_2$ for some $e_1,e_2 \in E$. Therefore $e_1-e_2=r_2-r_1$, which is a non-zero rational number, therefore $0 \neq e_1-e_2 \in \mathbb{Q}$. Therefore e_1 and e_2 are in the same coset, so $e_1=e_2$, contradiction.

2. Obviously $\mathbb{R} \supseteq \bigcup_{r \in \mathbb{Q}} (E+r)$. Take any $x \in \mathbb{R}$, then E contains a point y from the coset $\mathbb{Q} + x$, therefore $y - x \in \mathbb{Q}$, so take r = y - x, then $x \in E + r$.

Proof of Theorem 1.68. We have

$$F = F \cap \mathbb{R}$$

$$= F \cap \bigcup_{r \in \mathbb{Q}} (E + r)$$

$$= \bigcup_{r \in \mathbb{Q}} (F \cap (E + r)).$$

Now let $F_r = F \cap (E+r)$ for all $r \in \mathbb{Q}$, then $F = \bigcup_{r \in \mathbb{Q}} F_r$ for $F_r \in \mathcal{L}$ by Lemma 1.72. It remains to verify that $m(F_r) = 0$ for all $r \in \mathbb{Q}$. Recall

$$m(F_r) = \sup\{m(K) : \text{ compact } K \subseteq F_r\},\$$

then it suffices to show that

Claim 1.73. For any compact set $K \subseteq F_r$, m(K) = 0.

Indeed, take the supremum over all compact subsets and we are done.

Subproof. Let $K_r = K + r$ for all $r \in \mathbb{Q}$.

First, we show that $K_{r_1} \cap K_{r_2} = \emptyset$ if $r_1 \neq r_2$ for $r_1, r_2 \in \mathbb{Q}$. Assume there exists $x \in K_{r_1} \cap K_{r_2}$, then $K \subseteq F_r \subseteq E+r$, so we know $K_{r_1} = K+r_1 \subseteq E+r+r_1$ and $K_{r_2} = K+r_2 \subseteq E+r+r_2$. Therefore, $x \in (E+r+r_1) \cap (E+r+r_2)$, but by Lemma 1.72 we know $(E+r+r_1) \cap (E+r+r_2) = \emptyset$, contradiction.

Set $H = \bigcup_{r \in \mathbb{Q}} K_r$ be a disjoint union. Since the right-hand side is a Borel set, then it is Lebesgue measurable, so by σ -additivity, we have

$$m(H) = m \left(\bigcup_{r \in \mathbb{Q}} K_r \right)$$
$$= \sum_{r \in \mathbb{Q}} m(K_r)$$
$$= \sum_{r \in \mathbb{Q}} m(K)$$
$$= m(K) \sum_{r \in \mathbb{Q}} 1.$$

We need to bound the set, so instead of summation over \mathbb{Q} , we will sum over $\mathbb{Q} \cap [0,1]$ instead, so for $H = \bigcup_{r \in \mathbb{Q} \cap [0,1]} K_r$ we get

$$m(H) = m(K) \sum_{r \in \mathbb{Q} \cap [0,1]} 1.$$

That is, m(H) is just m(K) times the number of rational numbers in [0,1], which are countably many, therefore $m(H)=m(K)\cdot\mathbb{N}$.

Assume, towards contradiction, that $m(K) \neq 0$, then we have m(K) > 0, so $m(H) = \infty$. But we know H is bounded by [0,1] already, therefore m(H) is finite, contradiction.

Remark 1.74. Not every set is Lebesgue measurable.

2 Integration

2.1 Measurable Functions

Definition 2.1. Let (X, \mathcal{A}) and (Y, \mathcal{B}) be measurable spaces. A function $f : X \to Y$ is called $(\mathcal{A}, \mathcal{B})$ -measurable if $f^{-1}(E) \in \mathcal{A}$ for any $E \in \mathcal{B}$. That is, the preimage of a measurable set is measurable.

Definition 2.2. Let (X, A) be a measurable space.

- a. If $f: X \to \mathbb{R}$ is $(\mathcal{A}, \mathcal{B}_{\mathbb{R}})$ -measurable, then we say the function f is \mathcal{A} -measurable.
- b. A complex-valued function $f: X \to \mathbb{C}$ is A-measurable if Re(f) and Im(f) are A-measurable.

Definition 2.3. A function $f: \mathbb{R} \to \mathbb{C}$ is called Lebesgue measurable if it is \mathcal{L} -measurable (on both the real part and the imaginary part).

Lemma 2.4. Let \mathcal{B} be a σ -algebra generated by \mathcal{B}_0 , then $f: X \to Y$ is $(\mathcal{A}, \mathcal{B})$ -measurable if and only if $f^{-1}(E) \in \mathcal{A}$ for all $E \in \mathcal{B}_0$.

Proof. (\Rightarrow): this is obvious by Definition 2.1.

(\Leftarrow): let $M = \{E \subseteq Y : f^{-1}(E) \in \mathcal{A}\}$. Note that $\mathcal{M} \supseteq \mathcal{B}_0$ is a σ -algebra, and since \mathcal{B} is the σ -algebra generated by \mathcal{B}_0 , then $\mathcal{M} \supseteq \mathcal{B}$. Therefore, for all $E \in \mathcal{B}$, we have $f^{-1}(E) \in \mathcal{A}$.

Theorem 2.5. Let X and Y be topological spaces, then every continuous function $f: X \to Y$ is $(\mathcal{B}_X, \mathcal{B}_Y)$ -measurable.

Proof. Note that f is continuous if and only if $f^{-1}(U)$ is open in X for any open subset U in Y, and since \mathcal{B}_Y is the σ -algebra generated by all open subsets of Y, therefore by Lemma 2.4 we know f is $(\mathcal{B}_X, \mathcal{B}_Y)$ -measurable.

Theorem 2.6. Let $f: X \to \mathbb{R}$ be a function, then the following are equivalent:

- a. f is A-measurable;
- b. $f^{-1}((a,\infty)) \in \mathcal{A}$ for all $a \in \mathbb{R}$;
- c. $f^{-1}([a,\infty)) \in \mathcal{A}$ for all $a \in \mathbb{R}$;
- d. $f^{-1}((-\infty, a)) \in \mathcal{A}$ for all $a \in \mathbb{R}$;
- e. $f^{-1}((-\infty, a]) \in \mathcal{A}$ for all $a \in \mathbb{R}$;

Proof. Since the proofs will be analogous to one another, it suffices to show the equivalence between a. and b.

- $a. \Rightarrow b.$: since $(a, \infty) \in \mathcal{B}_{\mathbb{R}}$ is a Borel set, then $f^{-1}((a, \infty)) \in \mathcal{A}$ since f is \mathcal{A} -measurable.
- $b. \Rightarrow a.$: let $\mathcal{B}_0 = \{(a, \infty) : a \in \mathbb{R}\}$, then $\mathcal{B}_{\mathbb{R}}$ is a σ -algebra generated by \mathcal{B}_0 . The statement then follows from Lemma 2.4.

Theorem 2.7. If $f, g: X \to \mathbb{C}$ are A-measurable, then so are f + g and $f \cdot g$.

Proof. Assume, without loss of generality, that f and g are \mathbb{R} -valued functions.

First, we show that f+g is \mathcal{A} -measurable. By Theorem 2.6, it suffices to show that $(f+g)^{-1}((-\infty,a)) \in \mathcal{A}$ for all $a \in \mathbb{R}$. Fix $a \in \mathbb{R}$, this is the set of elements $x \in X$ such that (f+g)(x) < a. Note that $x \in X$ satisfies (f+g)(x) = f(x) + g(x) < a if and only if f(x) < a - g(x), where both expressions are real numbers. Since \mathbb{Q} is dense in \mathbb{R} , there exists some $r \in \mathbb{Q}$ such that f(x) < r < a - g(x). Therefore,

$$\{x \in X : f(x) + g(x) < a\} = \bigcup_{r \in \mathbb{Q}} (\{x \in X : f(x) < r\} \cap \{x \in X : r < a - g(x)\})$$
$$= \bigcup_{r \in \mathbb{Q}} (f^{-1}((-\infty, r)) \cap g^{-1}((-\infty, a - r))) \in \mathcal{A}$$

since $f^{-1}((-\infty, r)) \in \mathcal{A}$ and $g^{-1}((-\infty, a - r)) \in \mathcal{A}$.

Remark 2.8. Note that if f is A-measurable, then -f is A-measurable. Therefore, the sum and the difference of two A-measurable functions is still A-measurable.

We now show that $f \cdot g$ is also \mathcal{A} -measurable.

Claim 2.9. If $f: X \to \mathbb{R}$ is A-measurable, then f^2 is A-measurable as well.

Subproof. By Theorem 2.6, it suffices to show $\{x \in X : f^2(x) > \alpha\} \in \mathcal{A}$ for all $\alpha \in \mathbb{R}$.

- If $\alpha < 0$, then $\{x \in X : f^2(x) > \alpha\} = X \in \mathcal{A}$.
- If $\alpha \ge 0$, then $\{x \in X : f^2(x) > \alpha\} = \{x \in X : f(x) > \sqrt{\alpha}\} \cup \{x \in X : f(x) < -\sqrt{\alpha}\}$. Since f is A-measurable, then this is a union of two A-measurable sets, which is still A-measurable.

Now
$$fg = \frac{1}{2}((f+g)^2 - f^2 - g^2)$$
 which is A-measurable.

Definition 2.10. The extended real line is $\bar{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$, and correspondingly $\mathcal{B}_{\bar{\mathbb{R}}} = \{E \subseteq \bar{\mathbb{R}} : E \cap \mathbb{R} \in \mathcal{B}_{\mathbb{R}}\}$. Any member in $\mathcal{B}_{\bar{\mathbb{R}}}$ is called a Borel set in $\bar{\mathbb{R}}$.

A function $f: X \to \overline{\mathbb{R}}$ is called A-measurable if $f^{-1}(E) \in \mathcal{A}$ for all $E \in \mathcal{B}_{\overline{\mathbb{R}}}$.

We deduce results analogous to Theorem 2.6.

Theorem 2.11. Let $f: X \to \mathbb{R}$ be a function, then the following are equivalent:

- a. f is A-measurable;
- b. $f^{-1}((a, \infty]) \in \mathcal{A}$ for all $a \in \mathbb{R}$;
- c. $f^{-1}([a,\infty]) \in \mathcal{A}$ for all $a \in \mathbb{R}$;
- d. $f^{-1}([-\infty, a)) \in \mathcal{A}$ for all $a \in \mathbb{R}$;
- e. $f^{-1}([-\infty, a]) \in \mathcal{A}$ for all $a \in \mathbb{R}$;

Theorem 2.12. Let $\{f_j\}_{j=1}^{\infty}$ be a sequence of \mathbb{R} -valued measurable functions on (X, \mathcal{A}) , then the functions

- $g_1(x) = \sup_{j \in \mathbb{N}} f_j(x) = \sup\{f_j(x) : j \in \mathbb{N}\};$
- $g_2(x) = \inf_{j \in \mathbb{N}} f_j(x) = \inf\{f_j(x) : j \in \mathbb{N}\};$
- $g_3(x) = \limsup_{j \in \mathbb{N}} f_j(x) = \limsup \{ f_j(x) : j \in \mathbb{N} \};$
- $g_4(x) = \liminf_{j \in \mathbb{N}} f_j(x) = \liminf \{ f_j(x) : j \in \mathbb{N} \}$

are measurable.

Proof. We prove $g_1^{-1}((a,\infty]) \in \mathcal{A}$ for all $a \in \mathbb{R}$. Recall that $g_1^{-1}((a,\infty]) = \{x \in X : \infty \geqslant \sup_j f_j(x) > a\} = \bigcup_{j=1}^{\infty} \{x \in X : \infty \geqslant f_j(x) > a\}$. Since each f_j is \mathcal{A} -measurable, then each set is measurable, and so is the countable union of such functions.