Notebook #1 Image Classification with Vision Transformer

<u>Input</u>: Images of healthy and unhealthy bean leaves from Hugging Face <u>Output</u>: Predicted class labels for input images

Hardware requirement: NVIDIA GPUs

Data Statistics

- Dataset: Images of healthy and unhealthy bean leaves

- Size: 1,300 images

- Classes: angular leaf spot, bean rust and healthy

- Splits: Training 80%, Validation 10% and Testing 10%

Process

- 1. Preprocess
 - 1.1. Install necessary libraries
 - 1.2. Load Beans dataset from Hugging Face
 - 1.3. Split datasets into 1034 train images, 133 validation images and 128 test images
 - 1.4. Load pretrained Vision Transformers feature extractor

2. Training

- 2.1. Define data collator
- 2.2. Define evaluation metric
- 2.3. Define training configurations
- 2.4. Load model
- 2.5. Train model
- 3. Evaluation
- 4. Prediction
 - Predict images and print report
 - Display tensor board

Learning curve & Metrics

- Training uses loss function monitoring.
- Evaluation metrics: Accuracy and Loss reduction over epochs

Fine-tuning techniques

- Feature extraction: Pre-trained ViT model is adapted to the new dataset
- Training approach: Freezes some model layers, optimizes classification head and uses standard training loop with Trainer API

Important commands

```
# install packages

2 ds = load_dataset("beans")  # load the dataset

3 ViTImageProcessor.from_pretrained(...)  # load feature extractor

4 def collate_fn(batch):  # define data collator

5 def compute_metrics(...)  # define evaluation metrics

6 model = ViTForImageClassification.from_pretrained(...)  # load model

7 training_args = TrainingArguments(...)  # set training config

8 trainer.train()  # train model

9 trainer.evaluate()  # evaluate model

10 trainer.predict(...)  # make predictions

11 print(classification_report(...))  # print classification report

12 %load_ext tensorboard  # load tensorboard
```

Results

	[650/650 08:31, Epoch 10/10]				
Epoch	Training Loss	Validation Loss	Model Preparation Time	Accuracy	
1	0.589400	0.220962	0.005200	0.939850	
2	0.133900	0.077834	0.005200	0.977444	
3	0.035000	0.056739	0.005200	0.977444	
4	0.010600	0.035540	0.005200	0.992481	
5	0.004600	0.038429	0.005200	0.984962	
6	0.003100	0.031750	0.005200	0.992481	
7	0.002400	0.031819	0.005200	0.992481	
8	0.002000	0.031823	0.005200	0.992481	
9	0.001800	0.031759	0.005200	0.992481	
10	0.001700	0.031705	0.005200	0.992481	
epoch total train train train	rain metrics *: l_flos l_loss n_loss n_runtime n_samples_per_se	= 10. = 7462448940 = 0.078 = 0:08:32.8 econd = 20.16	5F 85 85 85 82		

		[9/9 00:02]
**** eval metrics ****		
epoch	=	10.0
eval_accuracy	=	0.9925
eval_loss	=	0.0317
<pre>eval_model_preparation_time</pre>	=	0.0052
eval_runtime	=	0:00:03.29
eval_samples_per_second	=	40.41
eval_steps_per_second	=	2.734

Before fine-tuning

After fine-tuning

	precision	recall	f1-score	support
angular_leaf_spot	0.3617	0.3953	0.3778	43
bean_rust	0.5000	0.0465	0.0851	43
healthy	0.4026	0.7381	0.5210	42
accuracy			0.3906	128
macro avg	0.4214	0.3933	0.3280	128
weighted avg	0.4216	0.3906	0.3265	128

		precision	recall	f1–score	support
а	ngular_leaf_spot bean_rust healthy	0.9762 0.9333 1.0000	0.9535 0.9767 0.9762	0.9647 0.9545 0.9880	43 43 42
	accuracy macro avg weighted avg	0.9698 0.9696	0.9688 0.9688	0.9688 0.9691 0.9689	128 128 128

Notebook #2 Text classification for Sentiment Analysis

<u>Input</u>: Amazon Cell Phone Reviews (binary labeled, 0 represents negative reviews

and 1 represents positive reviews)

Output: Predictions (positive/negative labels)

Hardware requirement: NVIDIA GPUs

Data Statistics

- Dataset: Amazon Cell Phone Reviews

- Size: 1,000 records

- Classes: positive and negative

- Splits: Training 60%, validation 20% and testing 20%

Process

- 1. Setup
 - 1.1. Load necessary libraries
 - 1.2. Download dataset from GitHub
 - 1.3. Split dataset
 - 1.4. Setup GPU for training
- 2. Preprocess
 - 2.1. Create text preprocess function
 - 2.2. Apply TF-IDF to vectorize text data
- 3. Train Naive Bayes Classifier
 - 3.1. Use cross-validation and AUC score to tune hyperparameters
 - 3.2. Use MultinominalNB class to find the alpha value that gives the highest CV AUC score.
- 4. Evaluation
 - 4.1. Define ROC evaluation function
 - 4.2. Evaluate model with defined function

Learning curve & Metrics

Metrics: Accuracy

Important Commands

```
1 %pip install ...  # install libraries
2 amz_review = pd.read_csv(...)  # read CSV file
3 amz_review.info()  # get dataset info
4 train_test_split(...)  # split dataset
5 def text_preprocessing(s):  # define text preprocessing function
6 tf_idf = TfidfVectorizer(...)  # initialize vectorizer
7 tf_idf.fit_transform(...)  # apply tf_idf transformation
8 def get_auc_CV(model):  # define cross-validation function
9 get_auc_cV(MultinomialNB(...))  # find the alpha value giving highest CV AUC score
10 def evaluate_roc(probs, y_true):  # define ROC evaluation function
11 nb_model = MultinomialNB(alpha=1.4)  # initialize NB model
12 nb_model.fit(...)  # make predictions
```

Results

Notebook #3 NLP Transfer Learning for Text Classification

<u>Input</u>: Amazon Cell Phone Reviews (binary labeled, 0 represents negative reviews and 1 represents positive reviews)

Output: Predictions (positive/negative labels) and saved fine-tuned model

Data Statistics

- Dataset: Amazon Cell Phone Reviews

- Size: 1,000 records

- Classes: positive and negative

- Splits: Training 60%, validation 20% and testing 20%

Hardware requirement: NVIDIA GPUs

Process

- 1. Install and import libraries
- 2. Download dataset from GitHub
- 3. Split dataset
- 4. Convert Pandas data frame to Hugging Face dataset
- 5. Load BERT, text tokenizer
- 6. Load pretrained BERT model
- 7. Set training arguments
- 8. Set evaluation metrics
- 9. Train model
- 10. Make predictions
- 11. Evaluate model performance
- 12. Save and load model

Learning curve & Metrics

- Learning Curve is visualized by plotting performance metrics.
- Metrics: Accuracy, precision, recall, and F1-score

Fine-tuning techniques

- TF-IDF Parameters: Adjusting options like n-gram range, stop word removal, and maximum features.
- Model Hyperparameters: Tuning classifier settings using cross-validation or grid search.

Important commands

```
%pip install ...
  amz_review = pd.read_csv(...)
  amz_review.info()
  train_test_split(...)
  Dataset.from_pandas(...)
  AutoTokenizer.from_pretrained("bert-base-cased")
  def tokenize_dataset(data):
  AutoModelForSequenceClassification.from_pretrained(...)
  training_args = TrainingArguments(...)
10 evaluate.list_evaluation_modules()
11 evaluate.load("accuracy")
12 trainer = Trainer(...)
  trainer.train()
14 trainer.predict(dataset_test)
  y_test_predict.predictions
16 tf.nn.softmax(y_test_logits)
  trainer.evaluate(dataset_test)
  f1_score(actual, pred)
19 recall_score(actual, ped)
20 tokenizer.save_pretrained(path)
  trainer.save_model(path)
  AutoTokenizer.from_pretrained(path)
  AutoModelForSequenceClassification.from_pretrained(path)
```

Results


```
[50/50 00:00]
{'eval_loss': 0.32168495655059814,
   'eval_accuracy': 0.905,
   'eval_runtime': 1.0251,
   'eval_samples_per_second': 195.099,
   'eval_steps_per_second': 48.775,
   'epoch': 2.0}
```

f1 score is 0.9015544041450777 recall score is 0.87

Notebook #4 Text Classification with PhayaThaiBERT

Input: Review ratings from Wongnai

Output: Star rating predictions and saved fine-tuned model

Data Statistics

- Dataset: Review ratings from Wongnai

- Size: 40,000 records - Classes: Star rating 5 classes

- Splits: Training 90% and testing 10%

Hardware requirement: NVIDIA GPUs

Process

- 1. Install and import libraries
- 2. Load dataset
- 3. Load PhayaThaiBERT model
- 4. Split dataset
- 5. Create Hugging Face dataset
- 6. Create class for Pytorch Lightning module
- 7. Fine-tune model
- 8. Visualize loss graph
- 9. Evaluate model
- 10. Save and load fine-tuned model

Learning curve & Metrics

Metrics: Accuracy, precision, recall, and F1-score

Fine-tuning techniques

Model Hyperparameters: Tuning classifier settings using cross-validation or grid search.

Important commands

```
%pip install ...
 load_dataset(...)
df = pd.DataFrame(...)
{\bf AutoTokenizer.from\_pretrained(...)}
def tokenize_dataset(dataset):
train_test_split(...)
{\tt Dataset.from\_pandas}(\ldots)
train_dataset.map(..., batched=True)
{\tt HuggingFaceDataset}(\dots)
model = BertClassifier(...)
trainer = pl.Trainer(...)
trainer.fit()
model.eval()
f1_score(actual, pred)
recall_score(actual, ped)
tokenizer.save_pretrained(path)
trainer.save_model(path)
AutoTokenizer.from_pretrained(path)
AutoModelForSequenceClassification.from_pretrained(path)
```

Results

F1-score: 0.5225581400897893 Accuracy: 0.574 Classification Report: precision recall f1-score support 5 1 0.29 0.50 0.20 0.23 2 0.43 0.16 19 3 0.65 0.33 0.44 141 0.56 0.70 4 0.91 243 5 0.55 0.17 0.26 92 0.57 500 accuracy 0.54 0.35 0.38 500 macro avg weighted avg 0.58 0.57 0.52 500

Text: เจ้าถิ่นอุดรพามา บอกต้องกินนะ จัดไปอย่างเต็ม
หมูยอหนัง ตำไทย ปอเปี๊ยะทอด ลาบ แกงเห็ด
คือว่าหิวมากหรืออร่อยมาก หรือทั้งสองอย่าง
ปรากฏอาหารทั้งหมดหายวับในพริบตา จนเจ้าบ้านตกใจมาก
ก็เลยบอกเจ้าถิ่นคราวหน้ามา อย่าลืมพามาร้านนี้อีกนะ
Predicted Rating: 3

Text: เป็นร้านกาแฟอยู่ในร้านอาหารเสน่ห์ดอยหลวง ร้านสวย ตกแต่งด้วยไม้ดอกไม้ประดับ และเฟอร์นิเจอร์ไม้เก่า มีที่นั่งริมห้วยฟังเสียงน้ำเพลินๆ สั่งคาปูชิโน่ร้อน และเค้กซ๊อคโกแลต กาแฟไม่อร่อย คั่วเข้มจนขม ส่วนเค้กพอใช้ได้ Predicted Rating: 2

Text: ครัววงเดือน

ทิวดึกๆ ตระเวนทาร้านทาน มาเจอร้านริมถนนพุทธมณฑลสาย 1 หน้าปากซอยพุทธมณฑลสาย 1 ซอย 10ครับ ร้าง

- 1. ยำมะเขือเปราะ 100 บาท จัดจ้านมากๆ
- 2. กบทอดกระเทียม 100 บาท กบตัวเล็กไปหน่อยครับ ทอดมากรอบนอกนุ่มในดีครับ อร่อยๆๆ
- 3. ลาบปลาช่อน 100 บาท ทำมาเป็นขึ้นๆทอดมาแล้ว ทานง่าย รสชาติลาบ ทอมข้าวคั่ว ลาบมาอร่อยเลยครับ
- 4. เนื้อย่าง 100 บาท เมนูนี้ตกม้าตาย เนื้อไม่ได้หมักอะไรเลย มาจืดๆ เพราะปกติผมทานแบบไม่จิ้มน้ำจิ้มเลย
- 5. เฉาก๊วยชากังราว 25 บาท

*** ร้านนี้ไม่มีข้าวเทนียวขายนะครับ เพราะเค้าเพิ่งเอาไลน์ส้มตำ จิ้มจุ่มมาขายเมื่อ 2-3 เดือนมานี้เอง ***

เวลาเปิดร้าน : 10:00 - 23:00

โทร : 092 345 4318

Predicted Rating: 3