Vorlesung

Simulated Annealing

Prof. Karsten Held

IFP – AG Computational Materials Science

Problem

Finde Minimum einer Funktion $E(\mathbf{x})$ für komplexes Problem d.h. $\mathbf{x} = \{x_1...x_d\}$ mit $d \gg 1$

Lösung

Simulated annealing (Kirkpatrick et al.'83) es gibt viele andere ...

Beispiel: Travelling-Salesman-Problem I

Problem

Handelsreisender muss d Städte besuchen. Wegstrecke soll minimiert werden.

Brute force (alles Ausprobieren): Aufwand $t \sim d!$

Beispiel: Travelling-Salesman-Problem II

US-Präsidentschaftskandidat soll alle ZIP-Codes besuchen d = 3700 Aufwand $t \sim 3700!$

Beispiel: Travelling-Salesman-Problem III

Travelling-Salesman-Problem ist das NP-Problem* (NP: nicht polynominal)

Brute force: Aufwand $t \sim d!$ Graphentheorie/dynamical programming: $t \sim 2^d polynom(d)$

Computerwissenschaft unterscheidet P (polynominal) und NP-Probleme

NP-Probleme werden auch mit schnelleren Rechnern (und Moore's law) nicht lösbar sein!

 nicht bewiesen, Annahme da nach vielen Jahren kein Algorithmus gefunden.

Hill climbing (Bergsteigen)

lokale Optimierung; hier eigentlich "valley descent" (Talabstieg)

Nachteil: Wir können in lokalem Minimum stecken bleiben!

verwandt: Steepest descent (Gradientenverfahren)

$$\mathbf{x}' = \mathbf{x} - \alpha \frac{\partial E(\mathbf{x})}{\partial \mathbf{x}}$$
 (statt fixe Schrittweite)

Hill climbing (Bergsteigen)

lokale Optimierung; hier eigentlich "valley descent" (Talabstieg)

Nachteil: Wir können in lokalem Minimum stecken bleiben!

verwandt: Steepest descent (Gradientenverfahren)

$$\mathbf{x}' = \mathbf{x} - \alpha \frac{\partial E(\mathbf{x})}{\partial \mathbf{x}}$$
 (statt fixe Schrittweite)

Simulated Annealing

Idee

Lokale Optimierung aber erlaube* auch lokal schlechtere Lösungen, um andere lokale/globale Minima zu erreichen

* mit gewisser Wahrscheinlichkeit

- Wähle Anfangs-Konfiguration x
- Tue N_{warm-up} mal: sweep
- Tue N_{mess} mal
 - sweep
 - $|m|_{sum} + = |m|_{\{\sigma_I\}}$
- Berechne Mittelwerte und Fehler ...

Sweep

Tue d (Dimensionen des Vektors x) mal

- Wähle x' "lokaler" Nachbar von x
- Berechne $\Delta E = E(x') E(x)$, $r = e^{-\frac{\Delta E}{T}}$
- Wenn Zufallszahl $rand \in [0, 1) < \min\{1, r\}$, x = x'; sonst behalte x

- **1** Wähle Anfangs-Konfiguration x und Temperatur $T = T_i$
- Tue N_{warm-up} mal: sweep

- Solange $T > T_f$: $T = T/\Lambda$, $\Lambda > 1$, gehe zu (2)
- x ist approx. Minimum

Sweep

Tue d (Dimensionen des Vektors x) mal

- Wähle x' "lokaler" Nachbar von x
- Berechne $\Delta E = E(x') E(x)$, $r = e^{-\frac{\Delta E}{T}}$
- Wenn Zufallszahl rand ∈ [0, 1) < min{1, r},
 x = x'; sonst behalte x

- **1** Wähle Spin-Konfiguration $x = \{\sigma_I\}$
- Tue N_{warm-up} mal: sweep
- Tue N_{mess} mal
 - sweep
 - $|m|_{sum} + = |m|_{\{\sigma_l\}}$
- Berechne Mittelwerte und Fehler ...

Sweep

Tue N (Anzahl der Gitterplätze) mal

- Wähle Gitterplatz i, x' ist gleich x außer $\sigma_i \rightarrow \sigma'_i$
- Berechne $\Delta E = E_{\{\sigma_1..\sigma'_l...\sigma_N\}} E_{\{\sigma_l\}}, r = e^{-\frac{\Delta E}{T}}$
- Wenn Zufallszahl $rand \in [0, 1) < \min\{1, r\}$, ändere $(\sigma_i \rightarrow \sigma'_i)$; sonst behalte σ_i

- **1** Wähle Spin-Konfiguration $x = \{\sigma_I\}$ und Temperatur $T = T_I$
- Tue N_{warm-up} mal: sweep

- Solange $T > T_f$: $T = T/\Lambda$, $\Lambda > 1$, gehe zu (2)
- **4** $x = \{\sigma_I\}$ ist approx. Minimum

Sweep

Tue N (Anzahl der Gitterplätze) mal

- Wähle Gitterplatz i, x' ist gleich x außer $\sigma_i \rightarrow \sigma'_i$
- Berechne $\Delta E = E_{\{\sigma_1..\sigma'_i...\sigma_N\}} E_{\{\sigma_I\}}, r = e^{-\frac{\Delta E}{T}}$
- Wenn Zufallszahl $rand \in [0, 1) < \min\{1, r\}$, ändere $(\sigma_i \rightarrow \sigma'_i)$; sonst behalte σ_i

Warum annealing (Glühen/Ausheilen)?

Simulated annealing simuliert Prozess aus Festkörperpyhsik und Werkstoffkunde:

z.B. Ce₃Pd₂₀Si₆ Kristalle (von A. Prokofiev IFP)

Warum annealing (Glühen/Ausheilen)?

Simulated annealing simuliert Prozess aus Festkörperpyhsik und Werkstoffkunde:

z.B. Ce₃Pd₂₀Si₆ Kristalle (von A. Prokofiev IFP)

Warum annealing (Glühen/Ausheilen)?

Simulated annealing simuliert Prozess aus Festkörperpyhsik und Werkstoffkunde:

z.B. Ce₃Pd₂₀Si₆ Kristalle (von A. Prokofiev IFP)

Vor- und Nachteile von Simulated Annealing

Vorteile

- + bleibt nicht in lokalem Minimum hängen
- flexibel, einfach anwendbar auf jedes Minimierungsproblem E(x)
- anwendbar auf nicht-lineare Modelle, Rauschen, chaotisches Verhalten
- findet globales Minimum, wenn ∞-lange simuliert wird
- + oft $E_{SA}(x) \approx E_{min}$; dies ist oft ausreichend

Nachteile

- globales Minimum nicht in endlicher Zeit
- Parameter T_i, T_f, Λ, Nachbarschaftsdef. müssen an Problem(klasse) angepasst werden (metaheuristisch)

Alternativen I

Brute force

- + findet globales Minimum
- nur in exponentiell langer Zeit $t \sim d!$ (Trav.Salesm.)

Dynamical programming

- + findet globales Minimum
- + immerhin $d \sim 40 50$ möglich
- nur in exponentiell langer Zeit $t \sim 2^d$ (Trav.Salesm.)
- nur $d\sim 40-50$ möglich

Hill climbing/steepest descent

- + sehr einfach
- findet nur lokales Minimum
- f. Gradientenverfahren E'(x) benötigt

Alternativen II

Genetic algorithm

```
parents: \mathbf{x} = \{x_1, x_2, x_3, \dots x_d\}, \ \mathbf{y} = \{y_1, y_2, y_3, \dots y_d\}, \ \longrightarrow \text{children: } \mathbf{x}' = \{y_1, x_2, x_3, \dots x_d\}, \ \mathbf{y}' = \{x_1, y_2, y_3 \dots x_d\}, \ \mathbf{z}' = \{x_1, x_2 \pm \Delta, y_3 \dots x_d\}
```

(survival of the) fittest → neue parents

- sucht in verschiedensten lokalen Minima gleichzeitig
- findet globales Minimum nicht unbedingt

Neuronale Netzwerke

ähnlich Ising-Modell, aber Kopplungen J_{ij} (Neuronen) werden trainiert/gelernt (so dass für Trainings-Set die Lösungen verbessert werden)

- + flexibel, adaptiv, approx. Lösung
- findet globales Minimum nicht unbedingt
- keine Parameteranpassung/Modell-Bildung aber Training

Übung: Segmentierung von NMR-Bildern

Aufgabe: Entscheide was ist $\sigma_i \in \{BG,WM,GM,CSF,BS\}$

T₁-Zeit gewichtet

Übung: Segmentierung von NMR-Bildern

Aufgabe: Entscheide was ist $\sigma_i \in \{BG,WM,GM,CSF,BS\}$ = $\{1...5\}$

Segmentiertes Bild mit Simulated annealing

Übung: Segmentierung von NMR-Bildern

Rauschen (a.u.) (Gerätespezifisch: ±30)

T1: WM:823 \pm 70, GM:1059 \pm 95, CSF:1363 \pm 177, SB:456 \pm 120 T2: WM:426 \pm 59, GM:602 \pm 102, CSF:1223 \pm 307, SB:167 \pm 69

Held et al.'96

Modell-Bildung

Gegeben: NMR Intensität $\mathbf{z} = \{z_i\}$

Gesucht: Gewebeart $\mathbf{x} = \{\sigma_i\}, \sigma_i \in \{BG, WM, GM, CSF, BS\}$

$$H = -J \sum_{\langle ij \rangle} \delta_{\sigma_i,\sigma_j} + sum_i E_{z_i}(\sigma_i)$$
 (1)

$$P(\lbrace \sigma_i \rbrace) \sim e^{-H(\lbrace \sigma_i \rbrace)/(T)} \tag{2}$$

T = 1: samplen gem. Wahrsch.

T = 0: wahrscheinlichste Struktur (Ziel der Übung)

J: gleiche Nachbarn wahrscheinlicher gleiches Gewebe $E_{Z_i}(\sigma_i)$: Information aus dem gemessenen NMR-Bild (\equiv Magnetisches Feld im Ising-Modell)

Bayes-Statistik

Frage

Was ist $E_{Z_i}(\sigma_i)$?

bzw.
$$P(\sigma_i|z_i) = e^{-E_{z_i}(\sigma_i)/T}$$

hier: T = 1 (reale Wahrscheinlichkeit)

Bayes-Statistik

$$P(z_i|\sigma_i) = \frac{1}{\sqrt{2\pi}\Sigma_{\sigma}} e^{-(z_i - \bar{z}_{\sigma_i})^2/(2\Sigma_{\sigma_i}^2)}$$
(3)

 \bar{z}_{σ_i} Mittelwert NMR-Intensität von Gewebe σ_i ; $\Sigma_{\sigma_i}^2$: Varianz **Aber** z_i gegeben σ_i gesucht! bzw. $P(\sigma_i|z_i)$

$$P(\sigma|\mathbf{z})P(\mathbf{z}) = P(\mathbf{z}|\sigma)P(\sigma) \tag{4}$$

$$P(\sigma|\mathbf{z}) \sim \underbrace{P(\sigma)}_{e^{-J\sum_{\langle ij\rangle} \delta_{\sigma_i,\sigma_j}}} \underbrace{P(\mathbf{z}|\sigma_i)}_{e^{-\sum_i E_{z_i}(\sigma_i)}}$$
(5)

 $P(\sigma)$ a priori Wahrsch. (kein NMR-Bild) $P(\sigma|\mathbf{z})$ a posteriori Wahrsch. (mit NMR-Bild \mathbf{z})

$$H = -J \sum_{\langle ij \rangle} \delta_{\sigma_i,\sigma_j} + \sum_i (z_i - \bar{z}_{\sigma_i})^2 / (2\Sigma_{\sigma_i}^2) + \ln(\Sigma_{\sigma_i})$$
 (6)

Übung: Segmentierung von NMR-Bildern

Fehler: Simulated Annealing vs. Hill climber (ICM)

Literatur

Simulated Annealing

- S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, (1983).
 "Optimization by Simulated Annealing". Science 220, 671 (4598);
- www.sciencemag.org/content/220/4598/671.abstract
- W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, *Numerical Recipes in Fortran77* (second edition, Cambridge University Press, 1995). apps.nrbook.com
- F. Busetti, Simulated annealing overview,
 163.18.62.64/wisdom/Simulated annealing overview.pdf

Segmentation of MR images

K. Held *et al.*, IEEE Trans. Med. Imag. **16**, 878 (1997); arxiv.org/abs/0903.3114