4.7 L'Hôpital's Rule

Theorem (★)

Assume that the limit $\lim_{x\to a} \frac{f(x)}{g(x)}$ is of $\frac{0}{0}$ or $\frac{\infty}{\infty}$ type. Then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

if the limit on the right side exists.

Examples

- Indeterminate Forms of Type $0 \cdot \infty$ or $\infty \infty$
 - Convert the product or difference into a quotient
- Indeterminate Powers $\lim_{x\to a} [f(x)]^{g(x)}$
 - Set $y = [f(x)]^{g(x)}$ and take the logarithm of both sides
- Examples

4.8 Antiderivatives

Definition

A function F is called an antiderivative of f if F'(x) = f(x).

 If F is an antiderivative of f, then all the antiderivatives of f have the form

$$F(x) + C$$

where C is an arbitrary constant.

Examples

Definition

If F is an antiderivative of f, i.e F'(x) = f(x), we write

$$\int f(x)dx = F(x) + C,$$

and $\int f(x)dx$ is called the indefinite integral of f. In other words,

Indefinite integral = Antiderivative

Proposition

- - Examples

