

### 微服务架构电商系统下故障识别 和分类

中南-天云战队/杨平 中南大学、天云软件技术有限公司

2022 CCF国际AIOps挑战赛决赛暨AIOps研讨会

### 目录 CONTENTS

01 团队介绍

02 数据分析

03 方案介绍

04 改进思路



### 1 团队介绍



## 中南-天云 战队





### 参赛人员:

- 杨平(博士研究生、CTO)
- 刘鑫霖(算法经理)
- 邓涵宇(硕士研究生)
- 李君健(硕士研究生)
- 陈梓豪(硕士研究生)
- 赵琳 (算法总监)
- 黄载群(算法工程师)
- 蒋颖(数据经理)

### 参赛单位:

- 中南大学
- 天云软件技术有限公司

### 指导老师:

- 王建新(教授、博导)
- 黄家玮(教授、博导)

### 比赛成绩:

• 复赛第四名



### 2 数据分析-数据概览



本次竞赛一共有3大类数据:指标、日志和调用链,其主要来自于微服务系统所收集的多模态监控数据。 其中,指标数据又包括业务指标和性能指标,业务指标共有4个,性能指标近400个。



为保证算法模型的通用性和可操作性,本比赛最终方案 主要采用了**性能指标数据** 







### 2 数据分析-故障相关指标影响



### node级故障数据呈现



### 

#### 内存消耗故障影响的持续时间

### pod级故障数据呈现



k8s容器cpu负载故障影响的持续时间

#### k8s容器读io负载故障注入时间

K8S容器读IO负载



k8s容器读io负载故障影响的持续时间



### 3 方案介绍-方案框架



本方案主要分为数据预处理,数据标记,故障模型训练,提交策略四个模块:





### 3 方案介绍-数据预处理



### 对于node性能指标数据,将原始数据对node-1至node-6按照1分钟级别进行合并

| -▼ va | lue - |
|-------|-------|
|       | 0.16  |
|       | 0.01  |
|       | C     |
|       | C     |
|       | C     |
|       | C     |
|       | C     |
|       | 0.01  |
|       | C     |
|       | 0.01  |

| timestamp | ۳   | cmdb_id | ٠ | kpi_name         | r | value | ¥ |
|-----------|-----|---------|---|------------------|---|-------|---|
| 1647705   | 600 | node-6  |   | ping.can_connect |   |       | 1 |
| 1647705   | 600 | node-2  |   | ping.can_connect |   |       | 1 |
| 1647705   | 600 | node-4  |   | ping.can_connect |   |       | 1 |
| 1647705   | 660 | node-4  |   | ping.can_connect |   |       | 1 |
| 1647705   | 660 | node-2  |   | ping.can_connect |   |       | 1 |
| 1647705   | 660 | node-6  |   | ping.can_connect |   |       | 1 |
| 1647705   | 720 | node-4  |   | ping.can_connect |   |       | 1 |
| 1647705   | 720 | node-6  |   | ping.can_connect |   |       | 1 |
| 1647705   | 720 | node-2  |   | ning can connect |   |       | 1 |

| timestamp  | cmdb_i(* | kpi_name                   | -1 | value | -   |
|------------|----------|----------------------------|----|-------|-----|
| 1647619200 | node-2   | system.mem.real.pct_useage | 9  | 50    | .05 |
| 1647619200 | node-1   | system.mem.real.pct_useage | 9  | 80    | .78 |
| 1647619200 | node-5   | system.mem.real.pct_useage | è  | 45    | .89 |
| 1647619200 | node-4   | system.mem.real.pct_useage | 9  | 46    | .51 |
| 1647619200 | node-6   | system.mem.real.pct_useage | 9  | 1     | 9.7 |
| 1647619200 | node-3   | system.mem.real.pct_useage | 9  | 5     | 0.6 |
| 1647619260 | node-1   | system.mem.real.pct_useage | 9  | 80    | .69 |
| 1647619260 | node-6   | system.mem.real.pct_useage | 9  | 2     | 0.5 |
| 1647619260 | node-5   | system.mem.real.pct_useage | 9  | 45    | .41 |
| 1647619260 | node-3   | system.mem.real.pct_useage | 9  | 50    | .59 |

| timestamp  | *   | cmdb_i * | kpi_name                   | J  | value   | *   |
|------------|-----|----------|----------------------------|----|---------|-----|
| 1647619200 |     | node-4   | system.net.udp.in_datagran | 15 | 50      | 7.2 |
| 16476192   | 200 | node-5   | system.net.udp.in_datagran | ns | 60      | 8.1 |
| 16476192   | 200 | node-6   | system.net.udp.in_datagran | าร | 1604.83 |     |
| 16476192   | 200 | node-1   | system.net.udp.in_datagran | 15 | 400     | .85 |
| 16476192   | 200 | node-2   | system.net.udp.in_datagran | ns | 947.17  |     |
| 16476192   | 200 | node-3   | system.net.udp.in_datagran | 15 | 2236    | .55 |
| 16476192   | 260 | node-6   | system.net.udp.in_datagran | 15 | 1457    | .48 |
| 16476192   | 260 | node-5   | system.net.udp.in_datagran | าร | 695     | .82 |
| 16476192   | 260 | node-1   | system.net.udp.in_datagran | 15 | 547     | .97 |
| 16476192   | 260 | node-2   | system.net.udp.in_datagran | ıs | 1183    | .18 |

| timestamp | *   | cmdb_id | ¥ | kpi_name         | .,4 | value  | ~     |
|-----------|-----|---------|---|------------------|-----|--------|-------|
| 1647705   | 600 | node-5  |   | system.disk.free |     | 408818 | 35173 |
| 1647705   | 300 | node-1  |   | system.disk.free |     | 324328 | 39856 |
| 1647705   | 600 | node-6  |   | system.disk.free |     | 259108 | 39920 |
| 1647705   | 600 | node-3  |   | system.disk.free |     | 327160 | 3712  |
| 1647705   | 600 | node-2  |   | system.disk.free |     | 327432 | 20384 |
| 1647705   | 600 | node-4  |   | system.disk.free |     | 326419 | 2256  |
| 1647705   | 660 | node-2  |   | system.disk.free |     | 327383 | 86288 |
| 1647705   | 660 | node-5  |   | system.disk.free |     | 408787 | 1829  |
| 1647705   | 660 | node-6  |   | system.disk.free |     | 259073 | 32544 |
| 1647705   | 660 | node-1  |   | system.disk.free |     | 324277 | 5808  |

#### node级别

| timestamp  | cmdb_id | ping.can_connect | system.cpu.iowait | system.cpu.pct_usage | system.cpu.system | system.cpu.user | system.disk.free | system.disk.pct_usage | system.disk.readonly | <br>system.proces |
|------------|---------|------------------|-------------------|----------------------|-------------------|-----------------|------------------|-----------------------|----------------------|-------------------|
| 1652025600 | node-1  | 1.0              | 0.71              | 28.87                | 2.20              | 25.97           | 3.098895e+09     | 46.33                 | 0.0                  | <br>0.0           |
| 1652025600 | node-2  | 1.0              | 1.69              | 3.60                 | 0.96              | 0.96            | 3.130082e+09     | 11.07                 | 0.0                  | <br>0.0           |
| 1652025600 | node-3  | NaN              | 1.11              | 6.80                 | 1.78              | 3.91            | 3.127453e+09     | 能指标字段                 | 0.0                  | <br>0.0           |
| 1652025600 | node-4  | 1.0              | 1.71              | 3.62                 | 1.12              | 0.79            | NaN              | NaN T-4X              | NaN                  | <br>0.0           |
| 1652025600 | node-5  | NaN              | 0.00              | 7.27                 | 2.02              | 5.25            | 3.895508e+09     | 68.26                 | 0.0                  | <br>11.0          |
|            |         |                  |                   |                      |                   |                 |                  |                       |                      | <br>              |
| 1652111940 | node-2  | 1.0              | 4.53              | 9.09                 | 1.24              | 3.32            | 3.057707e+09     | 41.36                 | 0.0                  | <br>0.0           |
| 1652111940 | node-3  | NaN              | 0.50              | 3.82                 | 1.38              | 1.94            | 3.055192e+09     | 41.78                 | 0.0                  | <br>0.0           |
| 1652111940 | node-4  | 1.0              | #Enode            | 对放的cmdb              | 1.25<br>2.08      | 1.16            | NaN              | NaN                   | NaN                  | <br>0.0           |
| 1652111940 | node-5  | NaN              | 0.00              | 4.82                 | 2.08              | 2.75            | 3.797746e+09     | 68.83                 | 0.0                  | <br>17.0          |
| 1652111940 | node-6  | 1.0              | 0.02              | 17.46                | 10.07             | 7.37            | 1.983716e+09     | 26.67                 | 0.0                  | <br>197.0         |

容器性能数据

pod级别

istio性能数据

| ti. | mestamp   | chidb_id                    | container_cpu_crs_periods | contamer_cpu_system_seconds | contamer_cpu_usage_seconds | contamer_cpu_user_seconds | container_me_descriptors | container_is_iiiiit |
|-----|-----------|-----------------------------|---------------------------|-----------------------------|----------------------------|---------------------------|--------------------------|---------------------|
| 16  | 647705600 | adservice-2                 | 117.000000                | 0.020000                    | 0.068313                   | 0.035000                  | 93.0                     | 604630.738281       |
| 16  | 647705600 | cartservice2-0              | 101.666667                | 0.023333                    | 0.069902                   | 0.033333                  | 162.0                    | 604630.738281       |
| 16  | 647705600 | checkoutservice-2           | 1.500000                  | 0.005000                    | 0.015124                   | 0.010000                  | 10.0                     | 604630.738281       |
| 16  | 647705600 | frontend-1                  | 90.333333                 | 0.076667                    | 0.257937                   | 0.110000 性能指标             | 字段                       | 604630.738281       |
| 16  | 647705600 | frontend-2                  | 93.000000                 | 0.070000                    | 0.231060                   | 0.120000                  | 19.0                     | 604630.738281       |
|     |           |                             |                           |                             |                            |                           |                          |                     |
| 16  | 647791940 | recommendationservice-      | 167.000000                | 0.025000                    | 0.149284                   | 0.095000                  | 11.0                     | 604630.738281       |
| 16  | 647791940 | recommendationservice2<br>0 | 108:003200                | 0.020000<br>Epodyt 版 依cmc   | 0.102714                   | 0.080000                  | 10.0                     | 604630.738281       |
| 16  | 647791940 | shippingservice-0           | 13.500000                 |                             |                            | 0.005000                  | 9.0                      | 604630.738281       |
| 16  | 647791940 | shippingservice-1           | 12.000000                 | 0.000000                    | 0.012291                   | 0.010000                  | 10.0                     | 604630.738281       |
| 16  | 647791940 | shippingservice2-0          | 27.000000                 | 0.010000                    | 0.019877                   | 0.010000                  | 9.0                      | 604630.738281       |
|     |           |                             |                           |                             |                            |                           |                          |                     |



### 3 方案介绍-node和pod故障标记



### node故障标记

总体原则:结合给定的12天故障标记数据,将相同cmdb\_id故障注入后8分钟内的数据标记为相同故障。

待标记数据

故障类别映射

| 故障类别         | 标签 |
|--------------|----|
| normal       | 0  |
| node 内存消耗    | 1  |
| node 磁盘读IO消耗 | 2  |
| node 磁盘写IO消耗 | 3  |
| node节点CPU故障  | 4  |
| node节点CPU爬升  | 5  |
| node磁盘空间消耗   | 6  |

举例说明

| 故障数据       | timestamp  | level | cmdb   | failure_type |              |
|------------|------------|-------|--------|--------------|--------------|
| HV1+XV1/II | 1647743133 | node  | node-  | -1           | node 内存消耗    |
|            |            |       |        |              |              |
|            | timestamn  | cm    | ndh id |              | failure type |

 timestamp
 cmdb\_id
 ......
 failure\_type

 1647743160
 node-3
 ......
 0

 1647743160
 node-1
 ......
 1

 .....
 ......
 ......
 ......

 1647743700
 node-1
 ......
 0

### pod|service故障标记

故障类别映射

| 故障类别           | 标签 |
|----------------|----|
| normal         | 0  |
| k8s容器网络资源包损坏   | 1  |
| k8s容器cpu负载     | 2  |
| k8s容器网络丢包      | 3  |
| k8s容器内存负载      | 4  |
| k8s容器网络延迟      | 5  |
| k8s容器进程中止      | 6  |
| k8s容器读io负载     | 7  |
| k8s容器网络资源包重复发送 | 8  |
| k8s容器写io负载     | 9  |

总体原则: service级别是将其映射到4个pod上,再依据pod标记方案对其进行标记。

举例说

| 故障数据 | timestamp  | level   | level cmdb_  |           | failure_type |
|------|------------|---------|--------------|-----------|--------------|
|      | 1647749457 | service | recommendati | onservice | k8s容器cpu负载   |
|      |            |         |              |           |              |
|      |            |         |              |           | C 11         |

|       | timestamp  | cmdb_id                 | <br>failure_type |
|-------|------------|-------------------------|------------------|
|       | 1647749460 | recommendationservice-0 | <br>2            |
| 待标记数据 | 1647749460 | shippingservice-1       | <br>0            |
|       |            |                         | <br>             |
|       | 1647750020 | recommendationservice-0 | <br>0            |



### 3 方案介绍-故障识别模型构建算法



故障识别模型构建算法:使用LightGBM算法构建故障识别模型(即多分类模型)





### 3 方案介绍-node故障识别模型





#### 特征衍生

- ✓ 一阶差分
- ✓ 5分钟滑动窗口求和的差分
- ✓ 8分钟滑动窗口求和的差分
- ✓ 8分钟滑动窗口的标准差
- ✓ 8分钟滑动窗口均值的增长率
- ✓ 8分钟滑动窗口求和的增长率
- ✓ 一阶差分8分钟滑动窗口的标准差

df[[col + '\_1s' for col in pod\_data\_col\_list]] = df[pod\_data\_col\_list].diff()
df[[col + '\_5s' for col in pod\_data\_col\_list]] = df[pod\_data\_col\_list].rolling(5, min\_periods=1).sum().diff()
df[[col + '\_8s' for col in pod\_data\_col\_list]] = df[pod\_data\_col\_list].rolling(8, min\_periods=1).sum().diff()
df[[col + '\_std' for col in pod\_data\_col\_list]] = df[pod\_data\_col\_list].rolling(8, min\_periods=1).std()
bx = df[pod\_data\_col\_list].rolling(8, min\_periods=1).mean().diff()
bx\_sum = df[pod\_data\_col\_list].rolling(8, min\_periods=1).sum().diff()
df[[col + '\_8\_mean\_s' for col in pod\_data\_col\_list]] = bx / bx.shift(-1)
df[[col + '\_8\_sum\_s' for col in pod\_data\_col\_list]] = bx\_sum / bx\_sum.shift(-1)
df[[col + '\_1s\_std' for col in node\_col]] = df[[col + '\_1s' for col in node\_col]].rolling(8, min\_periods=1).std()



### 特征筛选

✓ 衍生原始特征数: 44, 衍生特征加原始特征数:

365

✓ 训练集数据量: 60480 ,其中故障标签数据:

680

✓ 测试集数据量: 43200, 其中故障标签数据:

536

lambda 11: 0.25





### 模型评估

模型在数据划分第二阶段中测试集上的评价表现如下: 七分类模型在测试集中的平均F1分数为0.76



模型效果评估

衍生去除无用特征



### 模型训练

#### 使用LightGBM算法,经调优后参数设定如下:

| bagging_freq: 1 | objective: multiclass | min_sum_hessian_in_leaf: 6 |  |
|-----------------|-----------------------|----------------------------|--|
| num_class: 7    | boosting: gbdt        | bagging_fraction: 0.7      |  |
| num_leaves: 6   | min_data_in_leaf: 30  | bagging_seed: 111          |  |
| max_depth: 6    | learning_rate: 0.1    | random_state: 13           |  |
|                 |                       |                            |  |

lambda\_l2: 0.5

feature\_fraction: 0.8

模型训练

宏平均F1分数值



### 3 方案介绍-pod故障识别模型





#### 特征衍生

- ▶ 一阶差分
- ▶ 5分钟滑动窗口求和的差分
- ▶ 8分钟滑动窗口求和的差分
- ▶ 8分钟滑动窗口的标准差

```
df[[col + '_1s' for col in pod_data_col_list]] = df[pod_data_col_list].diff()
df[[col + '_5s' for col in pod_data_col_list]] = df[pod_data_col_list].rolling(5, min_periods=1).sum().diff()
df[[col + '_8s' for col in pod_data_col_list]] = df[pod_data_col_list].rolling(8, min_periods=1).sum().diff()
df[[col + '_std' for col in pod_data_col_list]] = df[pod_data_col_list].rolling(8, min_periods=1).std()
```

#### 特征筛选

衍生去除部分噪音特征

- ▶ 衍生原始特征数: 162, 衍生后特征加原始特征数: 810
- 训练集数据量: 403192, 其中故障标签数据: 4161
- 测试集数据量: 302317, 其中故障标签数据: 3485

```
'container_last_seen',
'istio_request_duration_milliseconds.grpc.200.0.0'
'istio_request_messages',
'istio_requests.grpc.200.0.0',
'istio_response_bytes.grpc.200.0.0'
'istio_response_messages'
container_cpu_load_average_10s
container fs inodes free./dev/vda1'
container_fs_io_current./dev/vda1'
container_fs_io_time_seconds./dev/vda1'
container_fs_io_time_weighted_seconds./dev/vda1',
container_fs_limit_MB./dev/vda1'
'container_fs_read_seconds./dev/vda1',
container_fs_reads./dev/vda1',
container_fs_reads_merged./dev/vda1',
container_fs_sector_reads./dev/vda1'
container_fs_sector_writes./dev/vda1'
container_fs_write_seconds./dev/vda1',
container_fs_writes./dev/vda1'
container_fs_writes_merged./dev/vda1',
'container_memory_swap'
'container_network_receive_errors.eth0'
'container_network_transmit_errors.eth0'
'container_network_transmit_packets_dropped.eth0',
container_spec_cpu_period'
container_spec_memory_reservation_limit_MB'
container tasks state.iowaiting'.
container tasks state.running'
'container_tasks_state.sleeping'
'container_tasks_state.stopped'
container_tasks_state.uninterruptible',
container_threads_max'
```

标记处为噪音指标,其余为0值或单一值指标



### 3 方案介绍-pod故障识别模型





### 模型训练

使用LightGBM算法,经调优后参数设定如下:

bagging\_freq: 1 objective: multiclass

num\_class: 10 boosting: gbdt

num\_leaves: 6 min\_data\_in\_leaf: 30

max\_depth: 6 learning\_rate: 0.1

lambda\_l1: 0.25 lambda\_l2: 0.5

min\_sum\_hessian\_in\_leaf: 6

bagging\_fraction: 0.5

bagging\_seed: 11

random\_state: 2022

feature\_fraction: 0.8

训练 结果

### **%**

### 模型评估

#### 模型 1:

采用全量container加部分istio性 能数据进行模型训练,其特征数共 计251个。在数据划分第二阶段中, 该十分类模型在测试集上的评价表 现如右图所示,其F1分数为0.63

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.99      | 1.00   | 1.00     | 297864  |
| 1            | 0.57      | 0.27   | 0.36     | 960     |
| 2            | 0.98      | 0.67   | 0.80     | 540     |
| 3            | 0.45      | 0.50   | 0.48     | 450     |
| 4            | 0.89      | 0.62   | 0.73     | 525     |
| 5            | 0.70      | 0.58   | 0.64     | 467     |
| 6            | 0.69      | 0.46   | 0.55     | 323     |
| 7            | 0.98      | 0.68   | 0.80     | 576     |
| 8            | 0.15      | 0.35   | 0.21     | 235     |
| 9            | 0.91      | 0.61   | 0.73     | 377     |
|              |           |        |          |         |
| accuracy     |           |        | 0.99     | 302317  |
| macro avg    | 0.73      | 0.57   | 0.63     | 302317  |
| weighted avg | 0.99      | 0.99   | 0.99     | 302317  |
|              |           |        |          |         |

#### 模型 2:

采用全量container性能数据进行模型训练,其特征数共计198个。在数据划分第二阶段中,该十分类模型在测试集上的评价表现如右图所示,其F1分数为0.59

|            |    | precision | recall | f1-score | support |
|------------|----|-----------|--------|----------|---------|
|            |    |           |        |          |         |
|            | 0  | 0.99      | 1.00   | 1.00     | 298832  |
|            | 1  | 0.81      | 0.29   | 0.43     | 448     |
|            | 2  | 0.76      | 0.91   | 0.83     | 372     |
|            | 3  | 0.68      | 0.20   | 0.31     | 496     |
|            | 4  | 0.75      | 0.67   | 0.71     | 368     |
|            | 5  | 0.62      | 0.04   | 0.07     | 392     |
| •          | 6  | 0.62      | 0.48   | 0.54     | 216     |
|            | 7  | 0.85      | 0.93   | 0.89     | 399     |
|            | 8  | 0.69      | 0.14   | 0.23     | 540     |
|            | 9  | 0.94      | 0.80   | 0.86     | 254     |
|            |    |           |        |          |         |
| accura     | cy |           |        | 0.99     | 302317  |
| macro a    | vg | 0.77      | 0.55   | 0.59     | 302317  |
| weighted a | vg | 0.99      | 0.99   | 0.99     | 302317  |



### 3 方案介绍-提交策略



### 模型分类结果

| timestamp  | cmdb_id    | pre_y |
|------------|------------|-------|
| 1647743160 | node-3     | 0     |
| 1647743160 | node-1     | 1     |
|            |            |       |
| 1647749460 | frontend-2 | 0     |

对node、pod、service分别进行分析



### 分析机制

- ✓ 10秒钟进行一次检测
- ✓ 提取当前时间前10分钟的检测结果进行分析

#### node 级别故障

历史记录中,相同cmdb\_id 出现次数大于 等于1次的, 将该检测结果 提交至node级 别备选列表

#### pod 级别故障

历史记录中,相同cmdb\_id 出现次数大于等于1次的, 将该检测结果 提交至pod级 别备选列表

#### service 级别故障

如果该service 下的4个pod中 大于等于2个 出现相同故障, 结果提交至 service级别备 选列表

### 限

### 限制策略

- ▶ 10分钟内检出的pod级别故障不允许覆盖node和service故障;
- ▶ 10分钟内检出的node故障不允许覆盖service故障;
- ▶ 对于同一cmdb, 20分钟内不可重复提交;
- 对pod级别的k8s容器网络资源包损坏、k8s容器网络丢包、k8s容器网络资源包重 复发送这三个故障在10分钟内检出2次才会加入提交备选列表:

node检出 准确率高 service检出 门槛高

按顺序提交 service>pod>node

|   | cmdb_id     | failure_type |
|---|-------------|--------------|
|   | adservice   | k8s容器cpu负载   |
| - | adservice-2 | k8s容器cpu负载   |
|   | node-1      | node节点CPU爬升  |
|   | adservice-1 | k8s容器cpu负载   |
|   |             |              |

备选列表



| cmdb_id   | failure_type |
|-----------|--------------|
| adservice | k8s容器cpu负载   |

提交结果



### 4 改进思路





02 待提升的方向:

#### 数据利用

◆ metric,trace,log 对故障的影响

### 关联分析

◆ 建立pod和node 之间的相关性

#### 特征工程

◆ 面向故障针对性 衍生特征

### 提交策略优化

◆ 适应检测精度调整提交顺序





2022 CCF国际AIOps挑战赛决赛暨AIOps研讨会

# THANKS