

Ace your preparation with Top Educators

Get 20% off* on IIT JAM subscriptions

Limited period offer

Unlimited access to Live and Recorded Classes

PYQs, Live Test and Quizzes

In class doubt solving by Top Educators

Structured Batches & courses

Subscribe Now

Use code GPSIR

For more details, contact: 8585858585

"TEC apply, as available on the platform.

Ace your preparation with Top Educators

Get 20% off* on CSIR-UGC NET subscriptions

Limited period offer

Unlimited access to Live and Recorded Classes

Learn from Top Educators

Comprehensive Notes and PDFs

Prepare with Unacademy Lite Subscription

Subscribe Now

Use code

For more details, contact: 8585858585

*T&C apply, as available on the platform.

Gajendra Purohit

Legend in CSIR-UGC NET & IIT-JAM

- Unlock Code: GPSIR - PhD, CSIR NET (Maths) | Youtuber(800K+165K Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author

50M Watch mins

3M Watch mins (last 30 days)

44K Followers

2K Dedications

TOP EDUCATOR ON UNACADEMY FOR CSIR NET & IIT JAM

YouTuber with 800K Subscribers

AUTHOR OF BEST SELLER BOOK FOR CSIR NET & IIT JAM

> Get 10% Off

Referral Code: GP SIR

Gajendra Purohit

Enroll Now

USE CODE GPSIR FOR 10% OFF

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

Transpose of a matrix:

If $A = [a_{ij}]_{m \times n}$ then transpose of A is denoted by A^T is defined as $A^T = [b_{ij}]_{n \times m}$.

Example :Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 1 \end{bmatrix}$$
 then $A^T = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}$.

Properties of transpose of matrix:

If A & B are two matrices and k is any number then

$$(1) \qquad (kA)^T = kA^T$$

(2)
$$(A + B)^T = A^T + B^T$$

$$(3) \quad (AB)^{T} = B^{T}A^{T}$$

(4) If A is square matrix then $(A^n)^T = (A^T)^n$.

Conjugate of a matrix:

If $A = [a_{ij}]_{m \times n}$ then conjugate of A denoted by \overline{A} .

Conjugate transpose of a matrix:

If $A = [a_{ij}]_{m \times n}$ then conjugate transpose of A denoted by A^{θ} as $A^{\theta} = (\overline{A})^{T}$.

$$(2) \qquad (A+B)^{\theta} = A^{\theta} + B^{\theta}$$

(3)
$$(AB)^{\theta} = B^{\theta}A^{\theta}$$

Trace of a square matrix: Sum of all diagonal elements of a square matrix A is known as Trace of A.

Q.1 Let
$$A = \begin{bmatrix} a & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$
 be a matrix of order 3 whose Trace is

5, then value of a is

(a) 0

(b) 1

(c) 2

(d) -1

Properties of Trace of matrix (A):

- (1) If A be a square matrix of order n and k is any number then Tr(kA) = kTr(A)
- (2) If A & B are square matrix of same order n, then Tr(A + B) = Tr(A) + Tr(B)
- (3) Tr(AB) = Tr(BA)
- (4) If $A = [a_{ij}]_{m \times n}$ is any matrix then Trace $(AA^T) = Sum$ of squares of every element of A.
- (5) $Tr(AA^{\theta}) = sum \text{ of the squares of modulus of each element of A.}$

Q2. A real n ×n matrix $A = [a_{ij}]$ is defined as

$$\begin{cases} a_{ij} - i & \forall i = j \\ 0 & Otherwise \end{cases}$$
, then Trace(A) is

(a)
$$\frac{n(n+1)}{2}$$

(b)
$$\frac{n(n-1)}{2}$$

(c)
$$\frac{n(n+1)(2n+1)}{2}$$

$$(d) n^2$$

Q.3 If A, B & C are square matrix of same order then which of the following is/are equal to Tr(ABC) is

(a) Tr(ACB)

(b) Tr(BCA)

(c) Tr(BAC)

(d) Tr(CAB)

Q.4. If
$$S = \left\{ A = [a_{ij}]_{3\times 3} \mid AA^T = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} & a_{ij} \in R \right\}$$
. Then is

is

- (a) Empty set
- (c) Countably infinite set

- (b) Singleton se
- (d) Uncountable set

COMPLETE COURSE ON MATHEMATICS FOR IIT-JAM 2022

TOPICS TO BE COVERED

- REAL ANALYSIS
- FUNCTION OF ONE & TWO VARIABLE
- LINAER ALGEBRA
- MODERN ALGEBRA

TOPICS TO BE COVERED

- SEQUENCE & SERIES
- INTEGRAL CALCULUS
- VECTOR CALCULUS
- DIFFERENTIAL EQUATION

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

FOUNDATION COURSE OF MATHEMATICS FOR CSIR-NET

Definition of Determinant: Let $A = [a_{ij}]_{n \times n}$ be a matrix, then |A| is called a determinant of order n.

(1) Determinant of order 2:

Let
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

$$A = a_{11}.a_{22} - a_{21}.a_{12}$$

(2) Determinant of order 3:

Let
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Then
$$|A| = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

Singular matrix: If |A| = 0 then this matrix is called Singular matrix

Non – Singular matrix : If $|A| \neq 0$, then this matrix is called non – singular matrix

Q.5. The number of distinct real values of x for which the

matrix
$$\begin{pmatrix} x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x \end{pmatrix}$$
 is singular is

(a) 1

(b) 2

(c)3

d) infinite

Property of determinant:

- (1) Determinant of diagonal matrix is product of all diagonal element
- (2) Determinant of Identity matrix is always one
- (3) Determinant of upper or lower triangular matrix is always product of diagonal elements
- (4) The value of determinant doesnot change when rows and columns are interchanged
- (5) If any two rows or columns are identically then value of determinant is zero

$$(6) \quad |A^{\mathsf{T}}| = |A|$$

- (7) |A + B| and |A| + |B| may not be equal
- (8) Let $A = [a_{ij}]_{n \times n} \& \text{ then } |kA| = k^n |A|$
- (9) Let A & B are two matrix then $|AB| = |A| \cdot |B|$

Q.6.

Let P be 4×4 matrix whose determinant is 10. The determinant of the matrix -3P is

(a) -810

(b) -30

(c) 30

(d) 810

Let
$$A = \begin{bmatrix} 2 & 3 & 1 \\ 5 & 1 & 2 \\ 1 & 0 & 0 \end{bmatrix}$$
 then

- (a) A is invertible
- (b) |A| is odd
- (c) |A| is divisible by 2
- (d) |A| is prime number

Q.8. It is known that $X = X_0 \in M_2(Z)$ is a solution of AX - XA = A

for some
$$A \in \left\{ \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \right\}$$
. Which of the

following values are not possible for the determinant of X₀? CSIR NET FEB 2022

(a)
$$\det(X_0) = 0$$
 (b) $\det(X_0) = 2$

(b)
$$det(X_0) = 2$$

(c)
$$det(X_0) = 6$$
 (d) $det(X_0) = 10$

d)
$$det(X_0) = 10$$

Q.9. Let M & N be any two 4×4 matrices with integer entries.

Satisfying
$$MN = 2\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
. Then the maximum value of $\det(M) + \det(N)$ is

det(M) + det(N) is

(a) 16

(b) 17

(c) 18

(d) 19

RANK BOOSTER COURSE UNIT 2 CSIR NET 2022

23rd AUGUST

Gajendra Purohit

Enroll Now

GPSIR
FOR 10% OFF

Enroll Now

GPSIR FOR 10% OFF

unacademy

Educator Profile

Dr.Gajendra Purohit PhD, CSIR NET (Maths) | Youtuber(330K+30k Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author of Bestseller

11M Watch mins

1M Watch mins (last 30 days)

22k Followers

1k Dedications

Follow

CSIR-UGC NET

HINDI MATHEMATICAL SCIENCES

Course on Linear Algebra, Partial Diff. Equation & Calculus

Starts on Mar 1, 2021 • 24 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Course on Complex Analysis & Integral Equation

Starts on Jan 14, 2021 • 16 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Foundation Course on Mathematics for CSIR 2021

Starts on Dec 7, 2020 • 20 lessons

Gajendra Purohit

Educator highlights

SEE ALL

Works at Pacific Science College

- Studied at M.Sc., NET,
 PhD(Algebra), MBA(Finance),
 BEd
- PhD, NET | Plus Educator For CSIR NET | Youtuber
 (260K+Subs.) | Director Pacific Science College |
- Lives in Udaipur, Rajasthan,
 India
- Unacademy Educator since

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

THANK YOU VERY MUCH EVERYONE

GET THE UNACADEMY PLUS SUBSCRIPTION SOON.

TO GET 10% DISCOUNT IN TOTAL SUBSCRIPTION AMOUNT

USE REFERRAL CODE: GPSIR