SemMat1 cv5 DU4 Binomická veta.

1. Využitím binomickej vety napíšte všetky členy umocneného výrazu $\left(\frac{1}{x^2} - \frac{2}{5}x^3\right)^{10}$.

Pri každom člene zistite aký má koeficient (koeficient netreba vyčísľovať).

- 2. Zjednodušte výraz $\frac{1}{(n+2)!} \frac{1}{(n-1)!}$
- 3. Zjednodušte výraz $\sqrt{2} + 2\sqrt{2}^2 + 3\sqrt{2}^3 + 4\sqrt{2}^4 + 5\sqrt{2}^5$ tak, aby obsahoval iba jednu odmocninu.
- 4. $\begin{pmatrix} x-1 \\ x-3 \end{pmatrix} + \begin{pmatrix} x-2 \\ x-4 \end{pmatrix} = 9$
- 5. Vypočítajte štvrtý člen rozvoja výrazu $\left(x + \frac{2}{x}\right)^8$.
- 6. Vypočítajte: $(\sqrt{2} + \sqrt{3})^5$.
- 7. Vypočítajte dva prostredné členy rozvoja výrazu $(\sqrt[3]{x} 2x\sqrt{x})^{19}$.
- 8. Koľký člen rozvoja výrazu $\left(2x^2 \frac{1}{x}\right)^{12}$ obsahuje x^3 ?
- 9. Koľký člen rozvoja výrazu $\left(2x^2 \frac{1}{x}\right)^8$ obsahuje x^7 ?

- 10. Koľký člen rozvoja výrazu $\left(\frac{1}{x} + 2x^3\right)^{10}$ obsahuje x^6 ?
- 11. Určte v rozvoji výrazu $\left(2x + \frac{1}{x^2}\right)^{3n}$ prosté členy.
- 12. Zistite, či v rozvoji výrazu $(\sqrt[3]{c^2} + \sqrt[5]{c^3})^{20}$ existuje prostý člen.
- 13. Pre aké x v rozvoji výrazu $\left(\frac{1}{2\sqrt{x}} \frac{1}{2}\right)^{10}$ sa rovná piaty člen 105?
- 14. Pre aké x v rozvoji výrazu $(\sqrt[3]{(4-2x)} + \sqrt[6]{(3-2x)})^9$ sa rovná siedmy člen 168?
- 15. V rozvoji výrazu $(1-x^3)^9(1+x^2)^{10}$ určte člen, ktorý obsahuje x^{14} .

Vzorce:

$$n! = n.(n-1).(n-2)...2.1 = n(n-1)!$$

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$

k-tý člen binomického rozvoja výrazu $(A+B)^n$ je $M_k = \binom{n}{k-1}A^{n-k+1}B^{k-1}$ prostý člen binomického rozvoja je ten, ktorý neobsahuje premennú (zvyčajne x)