任務類型	選擇模型	優勢
分類任務	隨機森林	天然處理類別不平衡,高維稀疏數據表現穩定
回歸任務	梯度提升	通過殘差修正逐步逼近真實值,適合連續值預測

一、隨機森林分類器 (RandomForestClassifier)

核心原理:Bagging + 決策樹集成

RandomForestClassifier(class_weight='balanced')

1. Bootstrap Aggregating (Bagging)

- 。 從原始數據集中 **有放回抽樣** 生成多個子數據集
- 。 每個子集訓練一棵決策樹,公式表達:

$$\hat{f}_k(x) = ext{DecisionTree}(D_k), \quad D_k \sim ext{Bootstrap}(D)$$

- D:原始數據集
- 。 D_k : 第k個bootstrap抽樣子集

2. 特徵隨機性

。 每棵樹分裂時 **僅考慮隨機子集的特徵** (程式碼中未顯式設定,預設為√p)

$$m_{ ext{try}} = \lfloor \sqrt{p} \rfloor$$
 $(p = 總特徵數)$

3. 投票機制

。 最終預測為多數決:

$$\hat{y} = \mathrm{mode}\Big(\{\hat{f}_k(x)\}_{k=1}^K\Big)$$

二、梯度提升回歸器 (GradientBoostingRegressor)

核心原理:Boosting + 加法模型

GradientBoostingRegressor()

1. 前向分步算法

。 模型為多個弱學習器(決策樹)的加權和:

$$F_m(x) = F_{m-1}(x) + \nu \cdot h_m(x)$$

- ο ν: 學習率 (程式碼中 learning_rate 參數)
- 。 h_m :第m棵樹

2. 梯度下降優化

。 計算當前模型的 **負梯度(偽殘差)**:

$$r_{im} = -iggl[rac{\partial L(y_i, F(x_i))}{\partial F(x_i)}iggr]_{F=F_{m-1}}$$

。 對於平方誤差損失: $r_{im}=y_i-F_{m-1}(x_i)$

3. 樹擬合殘差

。 訓練新樹 h_m 來擬合殘差:

$$h_m = rg \min_h \sum_{i=1}^n \left(r_{im} - h(x_i)
ight)^2$$

真實數據可視化

預測結果與真實數據對照

