

Université Sultan Moulay Slimane Ecole Nationale de Sciences Appliquées de Khouribga Département Mathématiques et Informatique

Projet de Fin d'Études

Pour l'obtention du diplôme d'Ingénieur d'État

Option: Génie Logiciel

Système de Reconnaissance Automatique des Plaques Minéralogiques Marocaines : Implémentation sur Android et un Parking Intelligent

Réalisé par :

KAMGA DJEMGOU Hisdaele Kavel

Effectué à :

Sous l'encadrement :

Académique de :

Professionnel de:

Pr. ABDELMOUTALIB

M. GHOULAMI Marouane

Metrane Soutenu le 20 Septembre 2021, Devant le jury composé de :

Mme. ?????????? : ENSA - Présidente Mme. ?????????? : ENSA - Examinateur M. ?????????? : ENSA - Rapporteur

Année Académique : 2020/2021

____TABLE DES MATIÈRES

Ta	able	des figures	iii							
Li	Liste des tableaux									
A	crony	ymes	v							
In	trod	uction Générale	1							
1	Cor	ntexte général du projet	3							
	1.1	Introduction	3							
	1.2	Présentation de l'entreprise	3							
	1.3	Présentation du projet	4							
		1.3.1 Caractéristiques des plaques marocaines	4							
		1.3.2 Problèmatique et Objectifs du projet	5							
	1.4	Conduite de projet	6							
		1.4.1 Méthodologie de travail	6							
		1.4.2 Outils d'organisation et de communication	8							
	1.5	Conclusion	9							
2	Etu	de des systèmes ANPR	10							
	2.1	Introduction	10							
	2.2	Architecture et Composants	10							
	2.3	Systèmes existants	12							
	2.4	Domaines d'application	14							
	2.5	Difficultés	14							
	2.6	Conclusion	15							
3	Tra	itement d'images	16							
-	3.1	Introduction	16							
	3.2	Généralités sur les images numériques								
		3.2.1 Qu'est-ce qu'une image numérique?								
		3.2.2 Représentation de l'image								
		3.2.3 Caractéristiques d'une image numérique								

		3.2.4 Formats des images numériques	18							
	3.3	Opérateurs de traitement d'images	19							
		3.3.1 Opérations morpho-mathématiques								
		3.3.2 Détection des contours	20							
	3.4	Conclusion	21							
4	Rec	Reconnaissance Optique de Caractères 22								
	4.1	Introduction	22							
	4.2	Conclusion								
5	Apprentissage Automatique 2									
	5.1	Introduction	23							
	5.2	Conclusion	23							
6	Conception du système MoPlaZer									
	6.1	Introduction	24							
	6.2	Conclusion	24							
7	Applications 2									
	7.1	Introduction	25							
	7 2	Conclusion	25							

TABLE DES FIGURES

1.1	$\operatorname{Mod\`{e}les}$ de plaques d'immatriculation marocaines $[6]$
1.2	Le cadre de travail SCRUM
1.3	Logos des outils d'organisation et de planification
2.1	Architecture de fonctionnement d'un système ANPR
2.2	Fonctionnement d'un réseau AutoVu typique
2.3	Schéma fonctionnel du LAPI Engine [7]
3.1	Différence entre image matricielle et image vectorielle
3.2	Exemples de types d'images matricielles
3.3	Dilatation
3.4	Erosion
3.5	Ouverture
3.6	Fermeture
	Détection des contours avec différents filtres

			L	ISTE	E DES	S TA	ABI	LE <i>A</i>	AUX
1.1	Scrum Team du projet	 	 						. 8

ACRONYMES

```
ALPR Automatic License Plate Recognition. 10
ANPR Automatic Number Plate Recognition. 1, 2, 5, 9
AUP Agile Unified Process. 6
DSDM Crystal Dynamic Systems Development Method. 6
FDD Feature Driven Development. 6
GIF Graphics Interchange Format. 18
IA Intelligence Artificielle. 1
JPG/JPEG Joint Photographic Experts Group. 18
LAPI Lecture Automatisée de Plaques d'Immatriculation. 1, 10
MoPlaZer Moroccan Plate RecogniZer. 6
OCR Optical Character Recognition. 1, 11, 13
PNG Portable Network Graphics. 18
RAPI Reconnaissance Automatique de Plaques d'Immatriculation. 12
RFID Radio-frequency identification. 5
SVG Scalable Vector Graphics. 18
TIFF Tagged Image File Format. 18
XP eXtreme Programming. 6
```

INTRODUCTION GÉNÉRALE

Selon une publication parue le 28 février 2020 au quotidien d'informations Aujourd'hui Le Maroc, le parc automobile marocain comptait en 2018 environ 4,3 millions de véhicules en circulation. Ceci correspond à une augmentation de plus de 50% par rapport à 2002 où on dénombrait environ 1,81 million de véhicules. Cette croissance rapide et continue n'est pas sans conséquence sur la société. On peut citer notamment la montée des fléaux tels que les vols de voitures, la violation du trafic routier, les collisions, les congestions et sans compter leurs impacts sur l'économie nationale. Face à cette situation, la mise en place des systèmes automatiques et performants de gestion du trafic routier devient cruciale. Un des éléments de haute importance qui entre dans ces systèmes est l'identification des véhicules. Et quoi de plus simple et efficace pour identifier les véhicules que les plaques d'immatriculation. Encore appelée plaque minéralogique, une plaque d'immatriculation est un objet généralement en forme rectangulaire placé sur un véhicule. Sur elle, est inscrite une combinaison unique de chiffres et de lettres qui contient des informations sur un véhicule et par ricochet sur son propriétaire.

Ces dernières années, les avancées technologiques dans le domaine de l'Intelligence Artificielle (IA) et l'émergence des citées dites intelligentes ont donné un regain d'intérêt aux chercheurs et entreprises internationaux en général et marocains en particulier sur la question de l'identification des véhicules via leur plaque. Dans le métier, on parle le plus souvent d'un dispositif de Lecture Automatisée de Plaques d'Immatriculation (LAPI) et de manière plus Automatic Number Plate Recognition (ANPR). C'est une technologie d'identification qui utilise la plupart du temps des techniques de traitements d'images, de vision par ordinateur (Computer Vision en anglais) et de reconnaissance optique de caractères ou Optical Character Recognition (OCR) pour lire les plaques d'immatriculation de véhicules. Toutefois, avec l'essor de l'IA qui fait déjà largement ses preuves dans plusieurs domaines (la médecine, l'industrie, l'aviation), des techniques modernes et plus performantes utilisant les algorithmes puissants d'apprentissage automatique (Machine Learning) se sont ajoutées au processus d'ANPR.

Dans ce sens, il existe déjà sur le marché plusieurs solutions d'ANPR qui sont soit intégrées dans des caméras adaptées soit "consommables" via les services web. Si d'une part, la plupart de ces solutions sont payantes, d'autre part elles ne traitent généralement pas le cas des modèles de plaques marocaines qui contiennent des caractères en arabe. C'est dans ce cadre que s'inscrit notre projet de fin d'études : mettre en place une solution de reconnaissance automatique de plaques minéralogiques marocaines en intégrant les algorithmes de Machine Learning.

Le présent rapport qui fait étalage des travaux que nous avons réalisés est composé de quatre(4) chapitres. Le premier chapitre sera consacré à la présentation de l'organisme d'accueil, du projet

Acronymes 2

de manière générale ainsi que de la méthodologie de travail suivie. Un panorama synthétique et organisé des travaux déjà réalisés sur les systèmes d'ANPR sous forme d'état de l'art sera fait dans le deuxième chapitre. Le troisième chapitre nous permettra de faire étalage en profondeur de l'approche que nous avons adoptée. La mise en œuvre ou encore l'implémentation de notre solution sera exposée au dernier chapitre. Enfin en guise de conclusion générale, nous donnerons une synthèse des travaux suivie des perspectives.

1.1 Introduction

Comme en littérature pour comprendre un mot, il faut recourir à son contexte, de même aussi comprendre un projet nécessite la compréhension de son contexte. Une bonne connaissance de ce dernier permet d'avoir une vision globale de la problématique traitée. C'est donc l'objectif de ce chapitre. Pour l'atteindre, nous allons d'abord présenter l'entreprise où nous avons effectué notre stage. Ensuite, nous ferons une présentation générale du sujet. Enfin, nous verrons la méthodologie de travail adoptée.

1.2 Présentation de l'entreprise

Notre projet de fin d'études a été réalisé au sein d'une jeune et dynamique entreprise marocaine dont le siège se trouve dans la ville de Casablanca. Il s'agit de l'organisme **KF2Y Consulting**. Fondée en 2010, KF2Y met à la disposition de ses clients un ensemble de compétences et d'experts, pour le déploiement, la maîtrise et l'optimisation des systèmes d'information. L'entreprise propose aux autres entreprises de l'ensemble des secteurs économiques une approche nouvelle qui conjugue l'utilisation de méthodes novatrices et de bonnes pratiques, le recours à la technologie et l'expertise de son capital humain. Pour poursuivre son développement, KF2Y a misé sur 2 pôles :

- L'activité Consulting: Ce pôle est né du rapprochement de professionnels du conseil en management et systèmes d'information avec une expertise technologique qui consiste à aider ses clients, qu'ils soient entreprises privées, administrations publiques ou organisations non gouvernementales, à créer de la valeur via la construction et l'implémentation de solutions technologiques en avec une ambition de construire des relations pérennes avec ses clients-partenaires afin de mieux les connaître, mieux anticiper leurs besoins et mieux les servir. Cela se manifeste par la création de valeur ajoutée chez ses clients au niveau des ressources internes ou par une activité de sourcing qui conscrite à intervenir dès la phase de recrutement de la ressource pour répondre à un besoin de mission chez nos clients.
- L'activité Recherche et Développement : Elle vise à mobiliser des ressources internes dans une optique de création des solutions innovantes cherchant à répondre à un paramètre clé de cette mutation économique et digitale vu par le monde.

KF2Y Consulting couvre un champ d'applications très large et varié tel que :

- Développement IT: L'entreprise développe pour ses partenaires des applications mobiles et web en utilisant les technologies comme Java EE, Angular, Angular JS, .Net, C#, PL/SQL, SQL, ABAP/4,PHP,Python;
- ERP / Intégration de progiciels
- Qualité logiciel et Testing
- Big Data et Machine Learning
- Conseil et formation

Dans chacun de ces domaines d'action, on retrouve des groupes de personnes qui travaillent sur des projets innovants. En ce qui concerne notre projet, nous avons collaboré avec les membres de l'équipe Big Data et Machine Learning.

1.3 Présentation du projet

Ces dernières années au Maroc, le nombre des véhicules en circulation ne cesse de croître rapidement. Ceci provoque généralement des violations et de l'anarchie dans le trafic routier. La reconnaissance automatique des plaques d'immatriculation devient donc une urgence. Certes il existe déjà sur le marché des outils qui permettent de lire automatiquement les plaques d'immatriculation. Toutefois, ceux-ci (appelés souvent ANPR) ne prennent pas toujours en compte la particularité des plaques marocaines. Quelles sont donc les caractéristiques de ces plaques ?

1.3.1 Caractéristiques des plaques marocaines

Généralement sous forme de rectangle ou carrée, la plaque d'immatriculation marocaine est un outil permettant d'identifier les véhicules enregistrés au Maroc. Depuis l'an 2000, les immatriculations doivent respecter une nouvelle norme. Cette nouvelle configuration est composée d'une série de cinq chiffres allant de 1 à 99 999 qui correspond au numéro d'enregistrement de la voiture. Une lettre de l'alphabet arabe est incrémentée au milieu de la plaque de contrôle, ce dernier prend en compte le numéro d'enregistrement de l'automobile. Pour conclure la combinaison alphanumérique de la plaque minéralogique marocaine, le nouveau système d'immatriculation en vigueur actuellement dans le royaume chérifien termine la combinaison par l'identifiant de la préfecture d'émission de la plaque. Ces numéros vont de 1 à 89. Donc les plaques sont maintenant du style ###### | A | ##. Elles ont un fond blanc et les lettres sont en noir. Selon le ministère de l'Equipement, du transport, de la logistique et de l'eau, voici les différents modèles de plaques d'immatriculation valides au Maroc :

(a) Modèle sur 1 ligne pour les véhicules automobiles

(d) Modèle pour les véhicules de collection

Modèles de plaque d'un Véhicule immatriculé dans la série corps diplomatique (CD):

(g) Modèle pour les véhicules de corps diplomatique

(b) Modèle sur 2 lignes pour les véhicules automobiles

(e) Modèle dans la série spéciale WW

Modèles de plaque d'un Véhicules appartenant aux coopérants exercice

(h) Modèle pour les véhicules des coopérants

(c) Modèle pour les remorques d'un PTAC > 750 Kg

(f) Modèle dans la série spéciale W18

(i) Modèle pour les véhicules en circulation internationale

FIGURE 1.1 – Modèles de plaques d'immatriculation marocaines [6]

En considérant ces caractéristiques, notre système doit prendre en entrée des images ou vidéos de véhicules au Maroc et être capable d'extraire l'ensemble des numéros de plaques s'y trouvant pour un enregistrement dans une base de données.

1.3.2 Problèmatique et Objectifs du projet

Le projet surlequel nous avons travaillé est la résultante de deux constats majeurs faits sur le trafic routier au Maroc :

- 1. Le premier est lié à l'augmentation rapide du nombre de véhicules en circulation dans le Royaume chérifien. Cette croissance accroît l'ampleur des problèmes liés au trafic routier comme le vol des voitures, les congestions, la violation des codes routiers et bien d'autres encore.
- 2. Le second est lié au **système actuel de gestion de parking dit intelligent** et particulièrement la méthode actuelle pour ouvrir la barrière afin d'accéder à la zone de stationnement. Pour le moment, la plupart des systèmes implémentés dans le pays utilisent régulièrement des cartes RFID. Ce qui rend le système pas vraiment automatisé de bout en bout.

Face à ces constats, l'entreprise KF2Y Consulting dans sa démarche de création des villes intelligentes destinées au marché marocain a voulu mettre en place un système automatique de bout en bout pour la reconnaissance des plaques d'immatriculation marocaines. Cette mission nous a donc été confiée dans le cadre de notre projet de fin d'études avec les objectifs suivant :

1. Mettre en place un système ANPR spécifique aux plaques marocaines appelé MoPlaZer performant (rapide et précis) : Ce système doit être en mesure de localiser d'une part les plaques d'immatriculation sur une image ou une vidéo et d'autre part extraire sous format alphanumérique leur numéro d'immatriculation.

- 2. Concevoir et développer une application mobile qui intègre le système : L'application doit proposer deux modes de traitement
 - Un mode statique : Ici le système MoPlaZer traite les images fixes prises par une capture ou récupérées dans l'appareil mobile.
 - Un mode temps réel : Ici le système traite les séquences d'images continues (mode vidéo) à travers la caméra de l'appareil mobile
- 3. Intégrer le système MoPlaZer dans un système embarqué pour un smart parking: En effet le système MoPlaZer devra fournir sous format texte le numéro des plaques d'immatriculation des véhicules qui viennent à l'entrée du parking. Par la suite une vérification de l'existence du matricule détecté dans une base de données est faite. Dans le cas où le matricule se trouve dans la base de données, on déclenche l'ouverture de la barrière qui donne accès aux zones de stationnement.

1.4 Conduite de projet

Pour réussir tout projet, il est indispensable de mettre en place une bonne méthodologie de travail. Une bonne méthodologie de travail est celle qui donne à une équipe de pouvoir livrer un produit tout en respectant les délais, les budgets et les ressources disponibles. Par ailleurs, il faut associer à toute bonne méthodologie des outils d'organisation et de communication qui l'implémentent concrètement.

1.4.1 Méthodologie de travail

Dans le domaine de l'informatique, on retrouve plusieurs méthodologies de gestion des projets qui peuvent être classées principalement dans deux grands groupes :

- Les méthodes traditionnelles : encore désignées comme classiques ou waterfall (cascade), ces méthodologies suivent la logique d'une chute d'eau. En appliquant cette méthode, l'équipe de projet suit un cahier de charges à la lettre et travaille sur la totalité du projet jusqu'à sa livraison. Rigide, elle ne prévoit pas des interactions permanentes avec le client qui ne pourra recevoir son produit qu'à la fin du projet. Toutefois, elle possède l'avantage d'être simple à mettre en œuvre.
- Les méthodes agiles: plus efficaces et moins rigides que les méthodes classiques, les méthodes Agile placent les besoins du client au centre des priorités du projet. Elles offrent une plus grande flexibilité et une meilleure visibilité dans la gestion du projet, ce qui permet à l'équipe d'être plus réactive aux attentes du client. Le projet est ainsi découpé en miniprojets, chacun nécessitant la validation du client pour passer au suivant. Le dialogue avec le client est privilégié, les retours et les ajustements sont possibles. On prend davantage en considération l'évolution des besoins du client. Parmi les méthodes Agile largement connues, nous avons pouvons citer l'extreme Programming (XP), Scrum, Feature Driven Development (FDD), Lean Software Development, Agile Unified Process (AUP), Crystal Dynamic Systems Development Method (DSDM).

Toutes les méthodologies sus-cités possèdent chacune des avantages et des inconvénients. Ainsi quand il s'agit de choisir une méthode, nous ne cherchons pas la meilleure mais la plus adaptée à notre projet. Et pour ce qui concerne notre projet, puisque d'une part un cahier de charges fixe

n'est pas déterminé dès le départ et d'autre part les besoins du client sont susceptibles de changer suivant l'avancement du projet, nous avons opté pour la souplesse de la méthodologie Agile et plus particulièrement la méthode Scrum.

Co-fondé dans les années 1990 par Ken Schwaber et Jeff Sutherland, Scrum est un cadre dans lequel les gens peuvent résoudre des problèmes adaptatifs complexes, tout en fournissant de manière productive et créative des produits de la plus haute valeur possible. En bref, Scrum a besoin d'un Scrum Master pour favoriser un environnement où :

- 1. Un Product Owner ordonne le travail à faire pour résoudre un problème complexe dans le Product Backlog.
- 2. La Scrum Team transforme une sélection de ce travail en un Increment de valeur lors d'un Sprint.
- 3. La Scrum Team et ses parties prenantes inspectent les résultats et s'adaptent pour le prochain Sprint.
- 4. Répéter

SCRUM FRAMEWORK

FIGURE 1.2 – Le cadre de travail SCRUM

Scrum.org

Pour une implémentation réelle, le framework Scrum nécessite le regroupement et le respect d'un certain nombre d'éléments qui font sa particularité. Ce sont notamment :

- Les **piliers**: Scrum dispose de 3 grands piliers empiriques à savoir : la **transparence**, l'**inspection**, l'**adaptation**.
- Les valeurs: Pour réussir bien un projet Scrum, les membres de l'équipe doivent être capables de respecter cinq valeurs fondamentales: l'engagement à suivre les objectifs fixés, le focus sur le but commun, l'ouverture face aux difficultés professionnelles, respect mutuel entre les collaborateurs et enfin le courage pour une exécution de manière excellente des tâches et la relève des challenges.
- Les **événements**: 4 (quatres) événements majeurs permettant la création de la régularité font la méthodologie Scrum : les **Sprints** d'une durée fixe allant de 2 semaines à 1 mois

- au plus, le **Sprint Planning** qui lance un sprint, le **Daily Scrum** pour inspecter les progressions, le **Sprint Review** pour analyser les résultats et déterminer les adaptations futures.
- Les **artefacts**: Ceux-ci représentent un travail ou une valeur. Nous avons trois artefacts Scrum: le **Product Backlog** qui exprime l'objectif du produit, le **Sprint Backlog** définit l'objectif du sprint et l' **Increment** qui établit la signification d'un "sprint terminé ou fini".
- L' **équipe**: Scrum s'organise toujours autour d'une petite équipe d'au plus 10 (dix) personnes. Cette équipe est composée des **Developers** qui implémentent concrétement chaque incrément d'un sprint, le **Product Owner** qui détaille les objectifs du produit à livrer, le **Scrum Master** qui met en place le Scrum et assure l'efficacité de l'équipe.

Pour ce qui concerne notre projet, notre scrum team était constituée comme suit :

Fonction	Noms et Prénoms				
Product Owner	M. Youssef				
Scrum Master	M. Marouane GHOULAMI				
Developers	M. Hisdaele KAMGA				

Table 1.1 – Scrum Team du projet

Nous avons suivi des sprints d'une semaine. La définition des objectifs sont définies en début de semaine. A la fin de la semaine, un rapport sur le sprint achevé est effectué et contient l'état d'avancement du projet ainsi que les perspectives pour le prochain sprint.

1.4.2 Outils d'organisation et de communication

Toute équipe de projet mise en place doit savoir d'une part s'organiser et d'autre part communiquer. Avec l'essor de l'informatique, ces tâches essentielles deviennent plus faciles. En effet, il existe plusieurs plateformes gratuites qui permettent aussi bien de planifier et suivre les activités d'un projet que de faciliter la communication au sein de groupe de travail. Pour notre projet, nous avons opté pour des outils simples et largement connus :

- 1. Trello: Lancé en septembre 2011, Trello est un outil en ligne de gestion de projet inspiré de la méthode Kanban de Toyota. Il repose sur une organisation des projets en planches listant des cartes, chacune représentant des tâches. Les cartes sont assignables à des utilisateurs et sont mobiles d'une planche à l'autre, traduisant leur avancement. Ainsi Trello va nous servir à représenter les différentes informations sur les sprints en cours, effectués.
- 2. TeamGantt: Pour pouvoir planifier les différentes tâches et les visualiser, nous avons utilisé le diagramme de Gantt. C'est un outil pour l'ordonnancement et la gestion de projet. Elle permet d'un coup d'oeil de déterminer les dates de debut et de fin des tâches, d'identifier les marges existantes sur certaines tâches et de connaître l'état d'avancement du projet en général. Pour créer ce diagramme de Gantt pour notre projet, nous avons travailé avec la plateforme en ligne TeamGantt. Elle permet facilement de placer de nouvelle tâches avec leurs dates de debut et de fin dans un diagramme de Gantt.
- 3. **Skype**: C'est un logiciel qui permet de faire des échanges téléphoniques, vidéo et des messages via internet. Nous l'avons utilisé au cours de notre projet échanger des messages et partager certains fichiers ou liens utiles pour l'avancement des travaux.

1.5. CONCLUSION 9

4. Microsoft OutLook: C'est un gestionnaire d'informations personnelles et un client de courrier électronique propriétaire édité par Microsoft. Ce logiciel informatique fait partie de la suite bureautique Microsoft Office. Bien qu'il soit principalement utilisé en tant qu'application de courrier électronique, il propose aussi un calendrier et un gestionnaire de tâche et de contact. Nous avons utilisé ce logiciel pour communiquer officiellement avec le Product Owner et le Scrum Master. A travers cet outil, nous envoyons avec une certaine régularité les rapports d'avancement du projet avec les prochaines perspectives.

- 5. Microsoft OneNote: Pour les prises de notes importantes, nous avons opté pour Microsoft OneNote. C'est un programme développé par le géant Microsoft qui nous a permis de tracer les avancées journalières.
- 6. **Google Meet :** C'est un outil de vidéoconférence développé par Google. Nous l'avons utilisé par faire certaines rencontres de mise au point en ligne avec le Manager M. Youssef.

FIGURE 1.3 – Logos des outils d'organisation et de planification

1.5 Conclusion

Nous arrivons au terme de ce tout premier et important chapitre. Il nous a permis de mettre en lumière le contexte général dans lequel se situe notre projet de fin d'études. Il en ressort que ce projet s'inscrit dans une démarche innovante de la jeune et dynamique entreprise marocaine KF2Y Consulting. C'est une démarche pour rendre le trafic routier au Maroc plus facile, plus contrôlé et en quelque sorte intelligent. Et ceci à travers la mise en place d'un système rapide et précis de reconnaissance automatique de plaques minéralogiques marocaines qu'on appelle plus techniquement les systèmes ANPR. Si les systèmes ANPR ne sont pas encore très répandus au Maroc, dans le reste du monde ils sont déjà été et continuent à être l'objet de plusieurs études scientifiques depuis plus d'une vingtaine d'années. Nous allons donc consacrer le prochain chapitre à ces études.

2.1 Introduction

Encore appelé Lecture Automatisée de Plaques d'Immatriculation (LAPI) ou encore Automatic License Plate Recognition (ALPR), l'ANPR est une technologie qui permet d'identifier les plaques d'immatriculation des véhicules en utilisant les techniques de traitement d'images et de vision par ordinateur. Inventés en 1976 au Royaume Uni au sein de la Police Scientific Development Branch [12], les systèmes ANPR ont fait leur chemin dans plusieurs autres pays dans le monde devenant ainsi un outil puissant et indispensable pour la sécurité du trafic routier. Nous allons à cet effet dédié ce chapitre pour répondre à quatre questions importantes autour de ces systèmes à savoir :

- 1. Quelle est l'architecture d'un système ANPR et de quoi se constitue-il principalement?
- 2. Quels sont les systèmes ANPR existants déjà sur le marché?
- 3. Dans quels champs de notre société un tel système serait-il utile?
- 4. Quels sont les problèmes qui peuvent entacher le bon fonctionnement de ces systèmes

2.2 Architecture et Composants

Pour lire automatiquement les numéros des plaques d'immatriculation, un système ANPR s'étend généralement sur 4 grandes phases :

- 1. **Acquisition de l'image** : C'est l'entrée de tout système ANPR. A travers une caméra, le système reçoit une séquence d'images.
- 2. **Pré-traitement** : C'est une phase qui est déterminante pour la précision du système. Elle permet d'améliorer la qualité de l'image acquise pour faciliter les prochains traitements.
- 3. **Détection de la plaque** : C'est l'étape la plus importante et en même la plus difficile d'un système ANPR. Elle consiste à identifier sur l'ensemble de l'image la position exacte de la plaque et par la suite l'isoler du reste de l'image. Dans la littérature, plusieurs méthodes ont été proposées pour réussir cette phase à savoir :
 - La méthode d'extraction des régions d'intérêt : La région d'intérêt dans une image donnée est la plaque d'immatriculation. Cette région se trouve par application d'un concept pour une image donnée, la région contenant une plaque d'immatriculation

devra nombre maximum de bords par rapport à toute autre partie dans une image. L'application de ce concept à tous les segments extraits, les coordonnées de la région requise sont extraites. Ces valeurs de coordonnées sont ensuite utilisées pour extraire la plaque d'immatriculation.

- La méthode basée sur la texture : La texture est une caractéristique qui peut être utilisée pour détecter les plaques d'immatriculation vue que les caractères d'une plaque ont une texture similaires. Dans cet algorithme, on traite les caractères d'une plaque comme une texture distincte du reste des objets contenus dans une image. La méthode est décomposée en quatre étapes qui sont les suivantes :
 - Analyse de la texture de l'image;
 - Décomposition de l'image en multi-segment;
 - Choix du masque;
 - Analyse des composantes connexes.
- La méthode basée sur le contour et le gradient : Les conditions de luminance non uniforme et la distance variable entre la caméra et le véhicule peuvent influencer sur le résultat de la détection des plaques d'immatriculation. Pour cela, il existe une méthode de détection des plaques d'immatriculation basée sur les caractéristiques du contour et des propriétés des caractères. L'algorithme proposé est basé sur les caractéristiques suivantes :
 - Les pixels présentant les caractères de la plaque ont souvent une valeur de contraste plus élevée par rapport aux pixels voisins.
 - Le contour des caractères d'une plaque est toujours un contour fermé.
 - Il y' a une relation de voisinage entre les caractères.

De plus, cette approche qui se base sur le contour et le gradient est composée de cinq processus qui sont :

- Détection de contour ;
- Sélection des régions candidates de caractères de la plaque d'immatriculation :
- Calcul du gradient magnitude des composantes connexes;
- Extraction des caractères;
- Localisation de la plaque d'immatriculation de véhicules.[5]
- La méthode basée sur l'apprentissage profond : Les méthodes précédentes sont dites déterministes car sont implémentées avec des fonctions mathématiques avec des paramètres fixés. A cet effet, dans l'article [10], TAO et al. proposent une méthode basée sur un modèle de Deep Learning pour la détection des plaques. En effet, à partir une masse de données d'images contenant les plaques d'immatriculation, on réalise un modèle à l'aide des algorithmes de détection des objets (Object Detection). Ce modèle servira par la suite pour détecter les plaques sur de nouvelles images. Cette approche est de plus en plus adoptée car plus efficace par rapport aux approches classiques déterministes.
- 4. Reconnaissance des caractères : Encore appelé OCR, le but de cette phase est d'extraire sous format textuel (alphanumérique), le numéro de la plaque de d'immatriculation. Si certaines méthodes [9, 14] utilisent l'approche classique qui passent par 3 phases (prétraitement, segmentation de caractères et reconnaissance de caractères), d'autres [1, 10] par contre optent pour une approche nouvelle en utilisant directement un modèle de réseaux de neurones pour la reconnaissance des caractères sur l'image de la plaque. Toutefois quelque soit la méthode, une étape de post-traitement sur le texte détecté est nécessaire pour faire d'éventuelles corrections sous la base de la norme d'immatriculation des véhicules spécifique au pays. A la fin de la chaîne, le texte obtenu et nettoyé est soit enregistré dans une base de données ou

envoyé à un autre système pour un traitement ultérieur.

FIGURE 2.1 – Architecture de fonctionnement d'un système ANPR

Tout système ANPR est constitué essentiellement de deux parties :

- 1. Une partie matérielle : Elle est composée d'une caméra qui permet d'acquérir les images et d'un ordinateur standard sur lequel s'exécute la partie logicielle du système.
- 2. Une partie logicielle : C'est le programme qui traite les images en vue d'extraire les numéros des plaques d'immatriculation. Elle est la plupart du temps liée à une base de données où sont stockées les matricules.

2.3 Systèmes existants

De nos jours, on retrouve sur le marché international, une variété de systèmes ANPR commerciaux tels que :

• AutoVu: C'est le système de Reconnaissance Automatique de Plaques d'Immatriculation (RAPI) sur IP de Security Center qui automatise la lecture et vérification de plaques d'immatriculation de véhicules. Il utilise des caméras qui capturent des images de plaques et transmettent les données à un Patroller ou Security Center, qui recherche la plaque dans des listes de véhicules recherchés ou de permis. [3]

FIGURE 2.2 – Fonctionnement d'un réseau AutoVu typique

• LAPI ENGINE : C'est un OCR de lecture de plaques d'immatriculation permettant d'identifier et de tracer les véhicules passant sur une zone et se présentant devant une caméra, à partir d'un flux vidéo en direct ou de séquences vidéo d'évènements détectés par les caméras. [11]

FIGURE 2.3 – Schéma fonctionnel du LAPI Engine [7]

• En plus des systèmes sus-cités, nous avons d'autres comme les **caméras de contrôle de vitesse** *TrajectControle* qui sont implémentées au Pays-Bas depuis 2002, les **systèmes de**

reconnaissance Zamir Ltd de Jérusalem en Israël, See Tec, Asia Vision Technology Limited et bien d'autres encore. [2, 4]

2.4 Domaines d'application

Depuis leur invention, les systèmes de reconnaissance automatique de plaques d'immatriculation n'ont cessé d'étendre leurs champs d'action. Ils sont même devenus incontournables dans les systèmes modernes et intelligents de gestion de trafic routier. Parmi les larges gammes d'applications de l'ANPR, on peut citer :

- Vol de voitures : le système est déployé sur le bord des routes, et réalise une comparaison en temps réel entre les voitures qui passent et la liste des voitures volées. Lorsqu'une correspondance est trouvée, une alerte est déclenchée pour informer l'agent de police de la voiture détectée et les raisons pour arrêter la voiture.
- Parking: le numéro de la plaque d'immatriculation est utilisé pour le payement du stationnement au parking pour les gens ayant des cartes près-payée pour les parkings, afin de calculer les frais de stationnement en comparant les temps d'entrée et de sortie au parking.
- **Péage** : le numéro de la voiture est utilisé pour calculer les frais de voyage dans une route à péage, ou utilisé pour revérifier le billet.
- Contrôle d'accès : l'ouverture automatique d'une porte pour les membres agrées dans une zone de sécurité. Ce genre de système est mis en place pour aider les agents de sécurité. Les événements sont enregistrés sur une base de données et peuvent être utilisés pour rechercher l'historique des événements en cas de besoin.
- Contrôle des frontières : le numéro de la voiture est enregistré à l'entrée ou à la sortie du pays, et utilisé pour surveiller les passages frontaliers. Chaque véhicule est enregistré dans une base de données centrale et lié à des informations supplémentaires telle que les données relatives aux passeports. Il est utilisé pour suivre tous les passages frontaliers.
- Code pénal de la route : le numéro de plaque est utilisé pour produire une amende de violation de vitesse ou de feux rouges. Le processus manuel de préparation d'une amende de violation est remplacé par un processus automatisé qui réduit les surcharges et les délais. Les amendes peuvent être consultées et payées en ligne. [2]

2.5 Difficultés

Depuis certaines années, les pays dans le monde normalisent le format de leurs plaques d'immatriculation. Cette normalisation intervient d'une part sur l'uniformisation des couleurs possibles et d'autre part la liste et le nombre de caractères que l'on peut trouver sur une plaque valide. Cette régularisation des plaques minéralogiques a rendu les systèmes ANPR plus spécifiques et donc plus performants. Néanmoins, comme tout système faisant du traitement d'image, les systèmes ANPR font face à des difficultés comme :

- Une mauvaise résolution de l'image qui est la conséquence soit d'une caméra de mauvaise qualité soit de l'éloignement de la plaque par rapport à la caméra;
- Des images floues principalement causées par le mouvement;
- Un mauvais éclairage et un faible contraste à cause d'une surexposition, d'un reflet, ou d'ombres; Les objets qui cachent une partie de la plaque

2.6. CONCLUSION 15

• La différence de polices de caractères de la plaque à cause de la fantaisie faite par certains usagers. [12]

Si certains de ces problèmes peuvent être surmontés en agissant sur la partie logiciel du système, d'autres par contre nécessitent une intervention au niveau matériel.

2.6 Conclusion

Ce chapitre nous a permis de comprendre que les systèmes ANPR ne sont pas une nouveauté. En réalité, plusieurs études ont déjà été menées de long en large dans le domaine. Ces travaux ont ainsi contribué d'une part à standardiser plus au moins l'architecture générale d'un système ANPR et d'autre part à déterminer les composants essentiels de ce système. Ces travaux sont aussi le socle sur lequel plusieurs entreprises ont construit leur propre solution ANPR qui fait face plus ou moins bien aux difficultés que rencontrent la majorité des technologies de traitement d'images. Le prochain chapitre sera donc une occasion d'exposer les différentes techniques de traitements d'images.

3.1 Introduction

Les systèmes ANPR sont essentiellement des technologies axées sur le traitement d'images numériques. Les images sont dans une certaine mesure à un système ANPR ce que la matière première est pour l'industrie. Elles passent par de plusieurs transformations et d'opérations afin d'extraire une information qui est le numéro d'immatriculation sous format textuel. Ce chapitre permet donc de présenter ces différentes transformations et opérations. Mais avant d'y arriver commencer par les exposer les généralités sur les images numériques.

3.2 Généralités sur les images numériques

3.2.1 Qu'est-ce qu'une image numérique?

Une image numérique est toute image (dessin, icône, photographie ...) acquise, créée, traitée ou stockée sous forme binaire (suite de 0 et de 1):

- Acquise par des dispositifs comme les scanners, les appareils photo ou caméscopes numériques, les cartes d'acquisition vidéo (qui numérisent directement une source comme la télévision).
- **Créée** directement par des programmes informatiques, via la souris, les tablettes graphiques ou par la modélisation 3D (ce que l'on appelle par abus de langage les « images de synthèse »).
- Traitée grâce à des outils informatiques. Il est facile de la modifier en taille, en couleur, d'ajouter ou supprimer des éléments, d'appliquer des filtres variés, etc.
- Stockée sur un support informatique (disquette, disque dur, CD-ROM(Compact Disk Read Only Memory), ...) [13]

3.2.2 Représentation de l'image

Selon la manière dont les images sont représentées pour être visualisées sur les écrans des ordinateurs, on distingue deux grandes classes d'images numériques :

FIGURE 3.1 – Différence entre image matricielle et image vectorielle

Source: Site Cours en ligne

- Les images matricielles : Encore appelées images bitmap, elles sont représentées à travers des matrices de points à plusieurs dimensions. Dans le cas de deux dimensions spatiales (largeur, hauteur), on parle d'images 2D et les points sont appelés pixels (Picture Element). C'est le type le plus répandu. Si une image 2D possède en plus un composant temporel (image 2D + t), on parle dans ce cas d'animation. Si par contre l'image possède trois dimensions spatiales (largeur, hauteur, profondeur), on parle d'image 3D ou volume et les points sont appelés voxels (Volume Element).
- Les images vectorielles : Les données d'une image vectorielle sont représentées par des formes géométriques (cercle, rectangle, ...) qui sont décrites mathématiquement. Elles possèdent l'avantage contrairement aux images vectorielles d'occuper moins d'espace mémoire et la flexibilité dans le redimensionnement sans perte d'informations.

Dans la famille des images matricielles, on distingue trois types d'images :

- Les images binaires : Elles sont uniquement en noir et blanc. La matrice de représentation contient uniquement des 0 et 1.
- Les images en niveaux de gris : La matrice de représentation contient des valeurs entières entre 0 et 255 qui correspondent au niveau d'intensité lumineuse.
- Les images de couleur : Elles sont régulièrement obtenues par une synthèse additive des trois couleurs fondamentales :rouge, vert, bleu (RVB ou RGB en anglais). La matrice de représentation est constituée dans ce cas de trois matrices : pour chaque couleur, une matrice dont chaque cellule donne l'intensité lumineuse de la couleur correspondante.

Dans le cadre de notre projet, nous travaillons exclusivement avec les images matricielles 2D. Donc pour la suite, lorsqu'on parle d'image, il s'agit d'une image matricielle 2D sauf s'il est mentionné le contraire.

3.2.3 Caractéristiques d'une image numérique

Une image a trois caractéristiques principales:

- Les dimensions : Elles représentent la largeur et la hauteur de l'image généralement exprimées en pixels.
- La définition : C'est le nombre de pixels constituant une image. Elle est obtenue en

(a) Image de couleur

(b) Image en niveau de gris

(c) Image binaire

FIGURE 3.2 – Exemples de types d'images matricielles

multipliant le nombre de pixels sur la largeur par le nombre de pixels sur la hauteur.

• La résolution : C'est le nombre de pixels que l'on retrouve sur une unité de longueur. Elle s'exprime généralement en ppp (point par pouce) ou encore en anglais dpi (dot per inch). Plus la résolution est importante, plus les points sont petits et nombreux, plus l'image est fine.

3.2.4 Formats des images numériques

Le format d'une image est la représentation informatique de cette image. Il donne les informations nécessaires sur la manière dont l'image a été codée et éventuellement des moyens de la décoder et de la manipuler. Il existe plusieurs formats qui plus ou moins adaptés pour certains cas d'utilisation :

- Format Graphics Interchange Format (GIF): Ce format permet la transparence et les images animées plusieurs images séquentielles à l'intérieur du même fichier. Il est utilisé pour des logos, des icônes, des boutons et autres éléments de pages web.Le format d'image GIF n'atteigne au maximum que 256 couleurs, il n'est donc pas du tout adapté aux photos et à l'impression.
- Format Tagged Image File Format (TIFF): Un des formats le plus couramment utilisé pour stocker des images, des photographies. Il est couramment utilisé dans les environnements professionnels et pour l'impression commerciale. Il est considéré comme étant le format le plus fiable pour des impressions de haute qualité comme pour le textile, les tissus
- Format Joint Photographic Experts Group (JPG/JPEG): C'est le format le plus adéquat pour administrer ses photos et les publier. Un des formats les plus utilisés sur le net (les navigateurs l'affichent correctement), et dans les mails. Les appareils photo numériques compacts prennent également les photos au format JPG.
- Format Portable Network Graphics (PNG): Un des formats le plus couramment utilisé. Créé pour remplacer le GIF il est très peu connu du grand public. Performant, il réunit presque tous les avantages du JPEG et du GIF et permet les fonds transparents. La compression proposée par ce format est perte d'une qualité 5 à 25 % meilleure que la compression GIF. [5]
- Format Scalable Vector Graphics (SVG) : Contrairement aux précédents formats,

SVG est un format d'images vectorielles. Il est conçu pour décrire un ensemble de graphiques vectoriels en utilisant XML. Cette conception permet aux images sous ce type de format d'être agrandies à l'infini sans impact sur la qualité. On utilise généralement ce format pour échanger des graphiques sur internet ou dans des logiciels de dessin assisté par ordinateur(DAO) pour représenter les objets.

3.3 Opérateurs de traitement d'images

A l'instar des opérateurs mathématiques, les opérateurs de traitement d'images prennent en entrée une image et un ensemble d'informations relatives à cette image, effectuent des modifications sur ces entrées et retournent une nouvelle image ou un ensemble d'informations relatives aux données d'entrée. Ces opérateurs sont nombreux. Mais nous allons en citer quelques-unes.

3.3.1 Opérations morpho-mathématiques

La morphologie est un vaste ensemble d'opérations de traitement d'images qui traitent des images en fonction de formes. Les opérations morphologiques appliquent un élément structurant à une image d'entrée, créant une image de sortie de même taille. Dans une opération morphologique, la valeur de chaque pixel de l'image de sortie est basée sur une comparaison du pixel correspondant de l'image d'entrée avec ses voisins. Elles peuvent être utilisées pour supprimer les bruits sur une image. Les principales opérations morphologiques sont :

• La dilatation: La valeur du pixel de sortie est la valeur maximale de tous les pixels du voisinage. Dans une image binaire, un pixel est défini sur 1 si l'un des pixels voisins a la valeur 1. La dilatation morphologique rend les objets plus visibles et comble les petits trous dans les objets.

FIGURE 3.3 – Dilatation

• L'érosion: La valeur du pixel de sortie est la valeur minimale de tous les pixels du voisinage. Dans une image binaire, un pixel est défini sur 0 si l'un des pixels voisins a la valeur 0.L'érosion morphologique supprime les îles et les petits objets de sorte que seuls les objets substantifs restent.

FIGURE 3.4 – Erosion

• L'ouverture : L'opération d'ouverture érode une image puis dilate l'image érodée, en utilisant le même élément structurant pour les deux opérations. L'ouverture morphologique est utile pour supprimer les petits objets d'une image tout en préservant la forme et la taille des objets plus gros dans l'image.

FIGURE 3.5 – Ouverture

• La fermeture : L'opération de fermeture dilate une image puis érode l'image dilatée, en utilisant le même élément structurant pour les deux opérations. La fermeture morphologique est utile pour combler les petits trous d'une image tout en préservant la forme et la taille des objets de l'image. [8]

FIGURE 3.6 – Fermeture

3.3.2 Détection des contours

La détection de contours est une étape essentielle du processus de traitement d'images qui permet une réduction importante de la quantité d'information relative à une image, tout en préservant des informations structurelles comme les contours et les frontières des images. Elle consiste à repérer les points d'une image numérique qui correspondent à un changement brutal de l'intensité lumineuse. En effet, un contour se matérialise par une rupture d'intensité dans l'image suivant une direction donnée. Plusieurs méthodes existent pour détecter cette rupture, les unes plus ou moins complexes, les autres plus ou moins gourmandes en calcul.

- Le filtre de Prewitt: Prewitt est l'un des premiers algorithmes de détection de contours dans le domaine du traitement d'image. Il s'agit d'une approximation du gradient par convolution de l'image avec des masques de convolution.
- Le filtre de Sobel : Le filtre de Sobel détecte séparément les bords horizontaux et verticaux sur une image en niveaux de gris. Et on peut aussi appliquer le détecteur de Sobel sur des images en couleurs en appliquant le même algorithme sur les différentes composantes RGB prises séparément. Ainsi qu'on peut également l'appliquer le uniquement sur la composante de luminance.
- Le filtre de Canny :La méthode de Canny implémente une estimation du gradient de l'image à l'aide du filtre de Sobel, suivi d'un seuillage par hystérésis du module de gradient. Un seuil haut et un seuil bas sont à définir. Tous les pixels où le module du gradient est supérieur au premier seuil sont classifiés comme appartenant aux contours de l'image, des

3.4. CONCLUSION 21

contours de l'image sont ainsi formés. Les pixels ayant un module supérieur au seuil bas et qui sont segmentés précédents sont définis comme points de contour dans l'image binaire résultante. [5]

FIGURE 3.7 – Détection des contours avec différents filtres

3.4 Conclusion

La vision par ordinateur n'est possible qu'à travers une série d'algorithmes de traitement de d'images qui ont été développées depuis de très longues années. Ces algorithmes puissants permettent d'une part de modifier une image numérique et d'autre part d'y extraire des informations. Au cours de ce chapitre, après avoir donné quelques généralités sur les images numériques, nous avons présenté brièvement quelques méthodes qui ont été proposées pour les traiter. Par ailleurs, le traitement d'images numériques possède de nombreuses applications dont l'une qui entre dans le processus des systèmes ANPR est la reconnaissance optique de caractères. C'est l'objet du chapitre suivant.

CHAPITRE 4______RECONNAISSANCE OPTIQUE DE CARACTÈRES

- 4.1 Introduction
- 4.2 Conclusion

CHAPITRE 5______APPRENTISSAGE AUTOMATIQUE

- 5.1 Introduction
- 5.2 Conclusion

CHAPITRE 6_____CONCEPTION DU SYSTÈME MOPLAZER

- 6.1 Introduction
- 6.2 Conclusion

CHAPITRE 7	
I	
	APPLICATIONS

- 7.1 Introduction
- 7.2 Conclusion

BIBLIOGRAPHIE ET WEBOGRAPHIE

- [1] Abdelkrim Alahyane et al. « Open data for Moroccan license plates for OCR applications : data collection, labeling, and model construction ». In : ArXiv abs/2104.08244 (2021).
- [2] Hinde ANOUAL. « Détection et Localisation de texte dans les images de scènes naturelles :Application à la détection des plaques d'immatriculation marocaines ». Thèse de doct. Faculté des Sciences de Rabat, Soutenue le 14 Juillet 2012.
- [3] GENETEC. Manuel Auto Vu 5.2 SR9. URL: https://downloadcenter1.genetec.com/products/SecurityCenter/5.2/SR9/AutoVu/FR.AutoVu%20Handbook%205.2%20SR9.pdf.
- [4] NOR IMANE et SIDHOUM SOUAD. « Développement d'une application de détection et de reconnaissance de plaques d'immatriculation(LAPIA) ». Mém. de mast. Université Abou Bakr Belkaid– Tlemcen d'Algérie, Soutenue le 02 Juillet 2017.
- [5] AKACEM Oum el KHEIR et RAHMANI NASSIRA. « Système de reconnaissance des plaques d'immatriculation Algérienne ». Mém. de mast. Faculté des Sciences et de la Technologie, Université d'Adrar, Soutenue en 2015.
- [6] Ministère de l'Equipement du transport de la logistique et de L'EAU. Transports routiers. Dernière Visite: 12-07-2021. URL: http://www.equipement.gov.ma/Transport-routier/Carte-grise/Pages/Differents-modeles-de-plaques-d-immatriculation-.aspx.
- [7] LAPIENGINE. LAPIEngine Lecture automatique de plaques d'immatriculation. URL: https://www.alphanumeric-vision.com/docshow.php?filename=subcnt822.pdf.
- [8] MATHWORKS. Types of Morphological Operations. Dernière Visite: 19-07-2021. URL: https://www.mathworks.com/help/images/morphological-dilation-and-erosion.html.
- [9] Krim SMAIL. « Reconnaissance Automatique des plaques d'immatriculation (R.A.P.I) (Implémentation sur Raspberry Pi) ». Mém. de mast. Faculté des Sciences et de la Technologie, Université Mohamed Khider de Biskra, Soutenue le 09 juillet 2019.
- [10] Ting TAO et al. « Object Detection-Based License Plate Localization and Recognition in Complex Environments ». In: Transportation Research Record 2674.12 (2020), p. 212-223. DOI: 10.1177/0361198120954202. eprint: https://doi.org/10.1177/0361198120954202. URL: https://doi.org/10.1177/0361198120954202.
- [11] Alphanumeric VISION. Logiciel LAPI. Dernière Visite: 13-07-2021. URL: http://www.alphanumeric-vision.com/fr/logiciel-lapi/.

- [12] WIKIPEDIA. Automatic number-plate recognition. Dernière Visite: 13-07-2021. URL: https://en.wikipedia.org/wiki/Automatic_number-plate_recognition.
- [13] WIKIPEDIA. *Image numérique*. Dernière Visite: 19-07-2021. URL: https://fr.wikipedia.org/wiki/Image_num%C3%A9rique.
- [14] Fei XIE et al. « A Robust License Plate Detection and Character Recognition Algorithm Based on a Combined Feature Extraction Model and BPNN ». In: *Journal of Advanced Transportation* 2018 (sept. 2018), p. 1-14. DOI: 10.1155/2018/6737314.