1. Formulas

Nombre	Equivalencia lógica	
Conmutatividad	$P \wedge Q \equiv Q \wedge P$	$P \lor Q \equiv Q \lor P$
Asociatividad	$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$	$P \vee (Q \vee R) \equiv (P \vee Q) \vee R$
Distributividad	$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$	$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$
Idempotencia	$P \wedge P \equiv P$	$P \lor P \equiv P$
Doble negación	$\neg(\neg P) \equiv P$	
Leyes de Morgan	$\neg (P \land Q) \equiv \neg P \lor \neg Q$	$\neg (P \lor Q) \equiv \neg P \land \neg Q$
Identidad	$P \wedge V \equiv P$	$P \vee F \equiv P$
Dominación	$P \wedge F \equiv F$	$P \lor V \equiv V$
Absorción	$P \wedge (P \vee Q) \equiv P$	$P \lor (P \land Q) \equiv P$
Complemento	$P \wedge \neg P \equiv F$	$P \vee \neg P \equiv V$
Implicación	$P \to Q \equiv \neg P \lor Q$	
Contrarrecíproco	$P \rightarrow Q \equiv \neg Q \rightarrow \neg P$	
Equivalencia	$P \leftrightarrow Q \equiv (P \rightarrow Q) \land (Q \rightarrow P)$	

Nombre	Regla de inferencia	Nombre	Regla de inferencia
Modus Ponens	$\begin{array}{c} p \rightarrow q \\ p \\ \therefore q \end{array}$	Simplificación	<i>p</i> ∧ <i>q</i> ∴ <i>p</i>
Modus Tollens	$\begin{array}{c} p \rightarrow q \\ \neg q \\ \therefore \neg p \end{array}$	Conjunción	<i>p q</i> ∴ <i>p</i> ∧ <i>q</i>
Silogismo hipotético (Transitividad)	$\begin{array}{c} p \rightarrow q \\ q \rightarrow r \\ \therefore p \rightarrow r \end{array}$	Prueba de división por casos	$\begin{array}{c} p \vee q \\ p \rightarrow r \\ q \rightarrow r \end{array}$
Silogismo disyuntivo (Eliminación)	$\begin{array}{c} p \lor q \\ \neg p \\ \therefore q \end{array}$		∴ <i>r</i>
Adición	$p \\ \therefore p \lor q$	Resolución	

Nombre	Equivalencia lógica
Negación de cuantificadores (De Morgan cuántico)	$\neg \forall x \ P(x) \equiv \exists x \ \neg P(x)$ $\neg \exists x \ P(x) \equiv \forall x \ \neg P(x)$
Distributividad del cuantificador universal sobre la conjunción	$\forall x (P(x) \land Q(x)) \equiv \forall x P(x) \land \forall x Q(x)$
Distributividad (en un solo sentido) del cuantificador universal sobre la disyunción	$\forall x (P(x) \lor Q(x)) \rightarrow \forall x P(x) \lor \forall x Q(x)$
Distributividad del cuantificador existencial sobre la disyunción	$\exists x (P(x) \lor Q(x)) \equiv \exists x P(x) \lor \exists x Q(x)$
Distributividad (en un solo sentido) del cuantificador existencial sobre la conjunción	$\exists x (P(x) \land Q(x)) \rightarrow \exists x P(x) \land \exists x Q(x)$
	Si la formula Q no contiene la variable cuantificada x:
Distribución de cuantificadores (restricciones)	$\forall x (P(x) \lor Q) \equiv (\forall x P(x)) \lor Q$ $\exists x (P(x) \land Q) \equiv (\exists x P(x)) \land Q$
Intercambio del orden de cuantificadores iguales	$\forall x \forall y \ P(x, y) \equiv \forall y \forall x \ P(x, y)$ $\exists x \exists y \ P(x, y) \equiv \exists y \exists x \ P(x, y)$
No conmutatividad entre cuantificadores diferentes	$\forall x \exists y P(x, y) \not\equiv \exists y \forall x P(x)$

Regla	Nombre	Forma
$\forall I$	Instanciación universal (UI: Universal Instantiation)	$\forall x P(x) \Rightarrow P(c)$
$\forall G$	Generalización universal (UG: Universal Generalization)	$P(c) \Rightarrow \forall x P(x)$
∃1	Instanciación existencial (El: Existential Instantiation)	$\exists x \ P(x) \Rightarrow P(c)$
$\exists G$	Generalización existencial (EG: Existential Generalization)	$P(c) \Rightarrow \exists x P(x)$

2. Ejemplos

1. Considere el conjunto de premisas dado por:

a. Todo numero real es positivo o es negativo o es cero b. U no es un numero negativo

c. 4 no es cero

Y la signiente conclusion: "4 es un numero positivo"

2. El dominio de referencia es Z y se definen las signientes premisas

a. Para cada x, si x es un numero par, entonces X+4 es un numero

par. b. Para cada x, si x es un numero par, entonces x no es un numero impor

impor c. Dos es un numero par

La conclusion que se signe es: "2+4 no es un numero impar"

Para cada uno de los siguientes argumentos, explique qué reglas de inferencia se utilizan en cada paso.

√3. "Alguien en esta clase disfruta observar ballenas. Toda persona que disfruta observar ballenas se preocupa por la contaminación del océano.

Por lo tanto, hay una persona en esta clase que se preocupa por la contaminación del océano."

4. "Toda persona en Nueva Jersey vive a menos de 50 millas del océano. Alguien en Nueva Jersey nunca ha visto el océano.

Por lo tanto, alguien que vive a menos de 50 millas del océano nunca ha visto el océano."

5. Deduzca los teoremas con base en el sistema de logica cuantificacional.

Premsons

$$\forall x ((x < 4), (4 < 5) \rightarrow x < 5)$$
 $\forall z ((-4 < z) \leftrightarrow (z < 4))$
 $4 < 5$
 $-4 < -3$

Conclusion

6. Deduzca los teoremas con base en el sistema de logica cuantificacional.

Premisors	Conclusion
Yx (R(x) v Z(x)) Yx (¬T(x) → ¬R(x)) ∃x (¬Z(x) v Q(x))	((な)州いな)のいかし) ブモ

3. Solución de ejemplos:

Considere el conjunto de premisos dado por: a. Todo numero real es positivo po es negativo po es cero
b. 4 no es un numero negativo C. 4 no es cevo

Y la signiente conclusion: " 4 es un numero positivo" Solverón:

Dominio: U= {x/x & IR } Numera reales

Predicados: _ P(x): x es un número positivo _ N(x): x es un número hegativo _ Z(x): x es cero

Demostron:

<u>#</u>	Procedimiento	- Kazon
ノ	** (b(x)~ h(x)~ 5(x))	Premisa (a)
2	P(4) v N(4) v Z(x)	Instanciación universal (VI) en Λ . (on $x = 4$
3.	J M CM)	Premisa (b)
Ц.	P(4) V Z(4)	Elimacion en 2 y 3 (PVQ)

El dominio de referencia es Z y se definen las signientes premisas

La. Para cada x, si x es un numero par, entonces x+4 es un numero

b. Pava cada x, si x es un humero par, entonces x no es un numero (mpar

c. Dos es un numero par

La conclusion que se signe es: "2+4 no es un numero impar

Solución

Dominio: U= {x | x E Z }; Numeros enteros

Predicados: P(x): x es un numero par _I(x): x es un numero impar

Demostrar:

$$\frac{\forall x \left(P(x) \longrightarrow P(x+\mu) \right)}{\forall x \left(P(x) \longrightarrow \neg I(x) \right)} \quad (a)$$

$$\frac{P(2)}{\neg I \left(2+\mu \right)} \quad (c)$$

<u>#</u> _	Procedimiento	Lazon
ノ	$\forall x (P(x) \longrightarrow P(x+4))$.	Premisa (a)
2,	Ax (b(x) -> 1 (x)).	Premise (b)
3.	P(z)	Premisa (L)
Ч.	$P(2) \longrightarrow P(2+4)$	Instanciación universal en Λ $(x=2)$
5.	b (5 + A)	Modus ponens en 3 y 4
6.	P(2+4) → ¬ I(2+4)	Instanciación universal en 2 $(x=2+4)$
子.	: -1 I(2+4)	Modus Ponens en 5 y 6

"Alguien en esta clase <mark>disfruta observar ballenas</mark>. Toda persona que d<mark>isfruta observar ballenas</mark> se preocupa por la contaminación del océano.

Por lo tanto, hay una persona en esta clase que se preocupa por la contaminación del océano."

Solución:

(g)

Demostrar:

$$\exists x \left(C(x) \land B(x) \right)$$

$$\forall x \left(B(x) \rightarrow O(x) \right)$$

$$\vdots \exists x \left(C(x) \land O(x) \right)$$

$$(b)$$

#	Procedimiento	Razon
J	3x (C(x) 1 B(x))	Premisa (a)
2	$\forall x (B(x) \rightarrow O(x))$	Premisa (b)
3.	C(P) AB(P)	Instanciación Existencial en
ч.	$B(b) \longrightarrow O(b)$	Instanciacion universal en (2) (X=P)
ち	C(p)	Simplificación en (3)
ζ	B(P)	Simplificación en (3)
子.	OLP)	Modus Ponens en 4 y 0
8	C(P) ~ O(P)	(objuncion en 6) y 7 &
2	==== (C(x) ~ O(x))	Generalización existencial en