Lecture 8 Clustering with DBSCAN

Instructor: Michela Taufer

Lecture Outline

- Use work in paper "Development of a Scalable Method for Creating Food Groups Using the NHANES Dataset and MapReduce" to learn about:
 - Using a dataflow for tackling a data problem
 - Structuring a research project into a set of slides
 - Motivation, goals, background, methodology and results
 - Using a different clustering method than k-mean
 - How to cluster numerical data with the <u>Density-based spatial</u> clustering of applications with noise (DBSCAN)
 - How to set up the setting parameters of the DBSCAN
 - Using code from other scientists
 - Re-use rather than rewriting from scratch
 - Replicability of work as the first step for new research

Data Workflow

USDA Food Classification

- Used in dietary datasets to assign food items to groups
- Subjective and general
- Categorical, not nutrient-driven

What's Wrong with USDA Food Groups?

- Food Groups are subjective
 - Based on human expertise
 - Based on dietary trends
- Using subjective food groups for dietary studies give bad results
- Lack of standard food groups for use in dietary studies

How Do We Fix Food Groups?

- Food Groups should be objective
 - Based on micro- and macronutrient content
- We need a standard set of food groups for dietary studies
- We need scalable methods for identifying food groups

"Define an objective methods to group food items in a dietary datasets based on the item micro- and macronutrient content"

Paper's Contributions

- Identify an relevant, open-source dataset with subjective classification of food item
- Define an objective method to classify food items into nutrient-driven food groups
- Parallelize our methods using a scalable framework such as Apache Spark's based on MapReduce
- Critically compare and contrast the subjective and our nutrient-driven food classification

Data Workflow

Relevant Open-source Dataset

- Use a dataset with well-known and broadly used data format
 NHANES: National Health and Nutrition Examination Survey
 - Medical, demographic, and dietary records
 - Available to the public for free
 - Contains subjective food groups provided by USDA

Data available at: http://www.cdc.gov/nchs/nhanes/nhanes_questionnaires.htm

NHANES Dietary Data

- Dietary intake of 64,653 Americans
- 7,494 unique food items
- 1,587,750 food entries
- 46 nutrient features for each food item
 - Macronutrients (e.g., fats, carbohydrates)
 - Micronutrients (e.g., vitamins, minerals)

NHANES Dietary Data

- Dietary intake of 64,653 Americans
- 7,494 unique food items
- <u>1.587,750 food entries</u>
- 46 nutrient features for each food item
 - Macronutrients (e.g., fats, carbohydrates)
 - Micronutrients (e.g., vitamins, minerals)

Structure of Dietary Data Item

- Participant ID
- Meta Data
- Macronutrients

USDA Food Code

Micronutrients

Data Workflow

NHANES Snapshot

Food	Mod Code	Weight (g)	Protein (g)	Sodium (mg)
Milk	0	244	8	107
Milk	0	122	4	54
Milk	0	100	3	44
Milk	0	300	10	132
Milk	0	10	0	4
Milk	0	93	3	41
Cereal	0	30	2	231
Cereal	10	60	6	462
Cereal	0	0	3	300
Cereal	0	10		77
Steak	0	256	62	146

Missing Values

Food	Mod Code	Weight (g)	Protein (g)	Sodium (mg)
Milk	0	244	8	107
Milk	0	122	4	54
Milk	0	100	3	44
Milk	0	300	10	132
Milk	0	10	0	4
Milk	0	93	3	41
Cereal	0	30	2	231
Cereal	10	60	6	462
Cereal	0	0	3	300
Cereal	0	10		77
Steak	0	256	62	146

Weight-Based Nutrient Values

Food	Mod Code	Weight (g)	Protein (g)	Sodium (mg)
Milk	0	244	8	107
Milk	0	122	4	54
Milk	0	100	3	44
Milk	0	300	10	132
Milk	0	10	0	4
Milk	0	93	3	41
Cereal	0	30	2	231
Cereal	10	60	6	462
Cereal	0	0	3	300
Cereal	0	10		77
Steak	0	256	62	146

Redundant Data

Food	Mod Code	Weight (g)	Protein (g)	Sodium (mg)
Milk	0	244	8	107
Milk	0	122	4	54
Milk	0	100	3	44
Milk	0	300	10	132
Milk	0	10	0	4
Milk	0	93	3	41
Cereal	0	30	2	231
Cereal	10	60	6	462
Cereal	0	0	3	300
Cereal	0	10		77
Steak	0	256	62	146

Features on Different Scales

Food	Mod Code	Weight (g)	Protein (g)	Sodium (mg)
Milk	0	244	8	107
Milk	0	122	4	54
Milk	0	100	3	44
Milk	0	300	10	132
Milk	0	10	0	4
Milk	0	93	3	41
Cereal	0	30	2	231
Cereal	10	60	6	462
Cereal	0	0	3	300
Cereal	0	10		77
Steak	0	256	62	146

Preprocessing: Missing Values

Food	Mod Code	Weight (g)	Protein (g)	Sodium (mg)
Cereal	0	10		77

Standard Approach:

- Fill in missing values e.g., median or zero
- Drawback:
 - Introduces artificial data which creates bias in the data
- Our Solution:
 - Redundant food entries allows us to discard entries with missing values
- Observations:
 - 9,586 of 1,587,750 entries removed
 - 0 unique foods lost

Preprocessing: Missing Values

Food	Mod Code	Weight (g)	Protein (g)	Sodium (mg)
Milk	0	244	8	107
Milk	0	122	4	54
Milk	0	100	3	44
Milk	0	300	10	132
Milk	0	10	0	4
Milk	0	93	3	41
Cereal	0	30	2	231
Cereal	10	60	6	462
Cereal	0	0	3	300
Cereal	0	10		77
Steak	0	256	62	146

Preprocessing: Weight-Based Values

Food	Mod Code	Weight (g)	Protein (g)	Sodium (mg)
Milk	0	244	8	107
Milk	0	122	4	54
Milk	0	100	3	44
Milk	0	300	10	132
Milk	0	10	0	4
Milk	0	93	3	41

- Nutrient values are based on the weight of the food entry.
 - Unfair comparison between foods
 - Food entries of the same type do not match

Preprocessing: Weight-Based Values

Food	Mod Code	Weight (g)	Protein (g)	Sodium (mg)
Cereal	0	0	3	300

Standard Approach:

Normalize with respect to weight – divide entry by weight

• Drawback:

Some entries have a weight of "0"

Our Solution:

Redundant food entries allows us to discard entries with a weight of "0"

Observations:

- 10,983 of 1,587,750 entries removed
- 0 unique foods lost

Preprocessing: Weight-Based Values

Food	Mod Code	Weight (g)	Protein (g)	Sodium (mg)
Milk	0	1 (244)	0.033	0.439
Milk	0	1 (122)	0.033	0.443
Milk	0	1 (100)	0.030	0.440
Milk	0	1 (300)	0.033	0.440
Milk	0	1 (10)	0	0.400
Milk	0	1 (93)	0.032	0.441
Cereal	0	1 (30)	0.067	7.70
Cereal	10	1 (60)	0.100	7.70
Cereal	0	0	3	300
Cereal	0	10		77
Steak	0	1 (256)	0.242	0.570

Food	Mod Code	Weight (g)	Protein (g)	Sodium (mg)
Milk	0	1 (244)	0.033	0.439
Milk	0	1 (10)	0	0.400
Cereal	0	1 (30)	0.067	7.70
Cereal	10	1 (60)	0.100	7.70

- Standard Approach:
 - Select one entry for each unique food item
- Drawback:
 - Nutrient densities don't always match for the same food item How do we pick a representative entry?
 - Modification codes
 - Rounding error

Food	Mod Code	Weight (g)	Protein (g)	Sodium (mg)
Milk	0	1 (244)	0.033	0.439
Milk	0	1 (10)	0	0.400
Cereal	0	1 (30)	0.067	7.70
Cereal	10	1 (60)	0.100	7.70

Our Solution:

- Remove entries with a non-zero modification code
- Average top 5 entries for each food when sorted by weight

Observations:

• 32 unique foods lost

Food	Mod Code	Weight (g)	Protein (g)	Sodium (mg)
Milk	0	1 (244)	0.033	0.439
Milk	0	1 (122)	0.033	0.443
Milk	0	1 (100)	0.030	0.440
Milk	0	1 (300)	0.033	0.440
Milk	0	1 (10)	0	0.400
Milk	0	1 (93)	0.032	0.441
Cereal	0	1 (30)	0.067	7.70
Cereal	10	1 (60)	0.100	7.70
Cereal	0	0	3	300
Cereal	0	10		77
Steak	0	1 (256)	0.242	0.570

Food	Mod Code	Weight (g)	Protein (g)	Sodium (mg)
Milk	0	1 (244)	0.032	0.441
Milk	0	1 (122)	0.033	0.443
Milk	0	1 (100)	0.030	0.440
Milk	0	1 (300)	0.033	0.440
Milk	0	1 (10)	0	0.400
Milk	0	1 (93)	0.032	0.441
Cereal	0	1 (30)	0.067	7.70
Cereal	10	1 (60)	0.100	7.70
Cereal	0	0	3	300
Cereal	0	10		77
Steak	0	1 (256)	0.242	0.570

Preprocessing: Different Scales

Food	Mod Code	Weight (g)	Protein (g)	Sodium (mg)
Milk	0	1	0.032	0.441
Cereal	0	1	0.067	7.70
Steak	0	1	0.242	0.570

Standard Approach:

Standardize – divide by largest value

Drawback:

Removes effects of highly skewed feature distributions

Preprocessing: Different Scales

Food	Mod Code	Weight (g)	Protein (sd)	Sodium (sd)
Milk	0	1	-0.726	-0.593
Cereal	0	1	-0.416	1.16
Steak	0	1	1.13	-0.561

Our Solution:

• **Z-score standardization**: convert original values into values indicating how many standard deviations above or below a value is from the mean of the original distribution

Observations:

- Feature scales are similar, but not the same
- Distributions are not dramatically altered

Preprocessing: Different Scales

Food	Mod Code	Weight (g)	Protein (g)	Sodium (mg)
Milk	0	1	0.032	0.441
Cereal	0	1	0.067	7.70
Steak	0	1	0.242	0.570

Food	Mod Code	Weight (g)	Protein (sd)	Sodium (sd)
Milk	0	1	-0.726	-0.593
Cereal	0	1	-0.416	1.16
Steak	0	1	1.13	-0.561

Example of Standardization

 Macro-nutrient, protein, with its content distribution before and after standardization

NHANSE Snapshot After Preparation

Food	Mod Code	Weight (g)	Protein (g)	Sodium (mg)
Milk	0	1	-0.726	-0.593
Milk	0	1	0.033	0.443
Milk	0	1	0.030	0.440
Milk	0	1	0.033	0.440
Milk	0	1	0	0.400
Milk	0	1	0.032	0.441
Cereal	0	1	-0.416	1.16
Cereal	10	1	0.100	7.70
Cereal	0	0	3	300
Cereal	0	10		77
Steak	0	1	1.13	-0.561

NHANSE Snapshot After Preparation

Food	Mod Code	Weight (g)	Protein (g)	Sodium (mg)
Milk	0	1	-0.726	-0.593
Milk	0	1	0.033	toms
Milk	0	1	bob?	0.440
Milk	0	sidue	0.033	ems
Milk	1041	Mid	ood I	0.400
Milk	7,45	sidue!	0.032	0.441
DEFERM	167 U	Mid	-0.416	1.16
Cereal	7,494	1	0.100	7.70
VE de Levi	0	0	3	300
Milk Milk Milk Milk Milk Milk Cereal Cereal Cereal	0	10		77
Steak	0	1	1.13	-0.561

Data Workflow

Selecting a Good Clustering Algorithm

Feature	K-Means	Hierarchical	DBSCAN
Resource Efficient	Yes	No	Yes
Noise Insensitive	No	No	Yes
Outlier Detection	No	No	Yes
Spheroid Clusters	Yes	Yes	Yes
Non-Spheroid Clusters	No	Yes	Yes
Undefined Cluster Count	No	Yes	Yes

Image: http://scikit-learn.org/stable/modules/clustering.html

DBSCAN Algorithm

Together, these parameters define the minimum density for a cluster

Identify Core, Border, and Noise points

Points are added to the currently growing cluster

When no more points are reachable, the next un-clustered **Core** point is chosen

Noise points remain un-clustered.

BDSCAN Demo

- Visualizing a DBSCAN clustering
 - Interactive interface at:
 - https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/

Bad Clustering

Good Clustering

MapReduce Paradigm

Image: https://aimotion.blogspot.com/2012/08/introduction-to-recommendations-with.html

Identify Core, Border, and Noise points.

Connect Core and Border points.

Each point is assigned a unique ID value and tracks the minimum ID value which it can "see".

At each iteration, each point broadcasts the minimum ID value which they can "see" to all connected neighbors.

The minimum ID value for each cluster spreads across the graph.

Parallel DBSCAN with Spark

Data Workflow

Courtesy of Philip Guo: goo.gl/y42rp1

Experiment Setting and Metrics

- DBSCAN settings:
 - Epsilon = 1.0
 - Min_pts = 4
 - Euclidean distance

Experiment Setting and Metrics

- DBSCAN settings:
 - Epsilon = 1.0
 - Min_pts = 4
 - Euclidean distance
- Metrics of success:
 - Cluster diameter (min)
 - Cluster separation (max)

Experiment Setting and Metrics

- DBSCAN settings:
 - Epsilon = 1.0
 - Min_pts = 4
 - Euclidean distance
- Metrics of success:
 - Cluster diameter (min)
 - Cluster separation (max)
- Comparisons:
 - Our clustering
 - USDA code clustering with 2-digit code
 - USDA code clustering with 3-digit code

Clustering Results

Clustering Results

Clustering Results

Data Workflow

Lessons Learned

- Using the traditional USDA classification of food items is misleading and can poorly advise patients with health issues "Eat less fat!" "but USDA codes aren't based on nutrient content!"
- We propose a comprehensive data analysis workflow for NHANES dietary data
- Our approach clusters food items based EXCLUSIVELY on their nutritional content (i.e., micro- and macro-nutrients)
- Our methods is scalable (based on MapReduce) and produces denser and better separated food groups than USDA
 - Denser cluster diameter: 1.45 vs. 5.99 and 3.07
 - Better separated cluster separation: 1.83 vs. 0.34 and 0.39
- Our approach can provide a better indication of food group quality when advising patients with dietary restrictions

Assignment 7

- Problem 1: Measure metrics to characterize clusters
 - Define the functions that intake food clusters and returns percentage of food items clustered and number of food clusters found
- Problem 2: Plot a heatmap
 - Define the function that intakes a 2D array and plots a heatmap
- Problem 3: Recreate Figure 6 from the paper
 - Cluster food items with the Euclidean distance metric
 and epsilon and min_pts values in ranges [2,4] and [4,7], respectively

Assignment 7 (II)

- Problem 4: Visualize n-dimension spaces
 - Project the data down to 2 dimensions and visualize the clusters
- Problem 5: Euclidian, or not Euclidian, "that is the question"
 - Use the given code to examine the clusters found using DBSCAN and Cosine Similarity and compare with clusters found using the Euclidian distance

DUE DATE: October 29, 2018 8AM ET

Project (I)

- What is your dataset?
- What are the scientific questions want to answer?
- What is the tentative methodology?
- What are the metrics of success?
- What are the milestones you want to meet from now until Dec 3 when you will present your poster at the poster showcase?

DUE DATE: October 29, 2018 8AM ET

