VLLM

Efficient Memory Management for Large Language Model Serving with PagedAttention

> Chenye Wang Sept 22, 2024

Why do we need vLLM?

The Era of LLMs

LLM-Powered Services are increasingly important

- However...
 - very expensive
 - a large number of GPUs
- Solution
 - high throughput to reduce cost

Challenge

- Batching requests can improve throughput
 - memory-bound
 - need efficient management for requests' memory -- KV cache
 - huge
 - dynamic
 - unknown lifetime and length
- How do the existing LLM serving systems do?
 - store the KV cache in contiguous memory space
 - pre-allocate chunk
- What are the problems?

NVIDIA A100 40GB

Memory Fragmentation

- Internal fragmentation
 - actual length can be much shorter
 - inefficiency
 - other requests cannot utilize
 the part that is currently unused
- External fragmentation
 - different size
 - e.g., buddy allocator

Memory Sharing

- Advanced LLM decoding algorithms generate multiple outputs for one prompt
 - thus sequences can partially share their KV cache
 - e.g., parallel sampling, beam search
- But...
 - KV cache is stored in separate contiguous spaces

How does vLLM do?

PagedAttention

- Inspired by OS
 - virtual memory and paging techniques
- Divide KV cache into blocks
 - contain a fixed number of tokens
 - not necessarily stored in contiguous space
- Analogy
 - page to block
 - byte to token
 - process to request

Figure 4. vLLM system overview.

Problems before?

- Internal fragmentation?
 - use small blocks
 - allocate on demand
- External fragmentation?
 - same block size
- memory sharing?
 - at the granularity of a block
 - block mapping

Memory with PagedAttention

Figure 6. Block table translation in vLLM.

Figure 7. Storing the KV cache of two requests at the same time in vLLM.

Copy-on-Write

Figure 8. Parallel sampling example.

Other applications

- Beam search
 - similar to process tree

Figure 9. Beam search example.

- Shared prefix
 - similar to shared library

Figure 10. Shared prompt example for machine translation. The examples are adopted from [5].

Kernel-level Optimization

- Indirect memory access pattern of PagedAttention is not efficiently supported by existing systems
 - develop custom kernels to optimize it
- fuse operations into kernels
 - KV cache reshape and block write
 - block read and attention operations
 - block copy

Support Various Decoding Algorithms

- vLLM implements various decoding algorithms using three key methods:
 - fork
 - create a new sequence from an existing one
 - append
 - append a new token to the sequence
 - free
 - delete the sequence
- Think of process in OS

What if requests exhaust GPU memory?

Scheduling and Preemption

- Scheduling
 - FCFS
 - ensure fairness
 - prevent starvation
- Preemption
 - the earliest arrived requests are served first
 - the latest requests are preempted first

Which blocks should vLLM evict?

the block will be accessed furthest in the future

- all-or-nothing eviction policy
 - either evict all or none of the blocks of a sequence
 - multiple sequences within one request are preempted or rescheduled together as a sequence group

How to recover evicted blocks?

Swapping

- select a set of sequences to evict, copy their blocks to CPU memory
- stop accepting new requests until all preempted sequences are completed
- free blocks of completed requests
- bring blocks of preempted sequences back

Recomputation

- concatenate tokens generated before with original prompt
- recompute the KV cache

Thinking and Discussion

Tradeoff

- Kernel
 - higher attention kernel latency
 - access the block table
 - execute extra branches

- Block Size
 - too small
 - not fully utilize GPU's parallelism
 - too large
 - internal fragmentation
 - sharing chances decrease

- Recovery mechanisms
 - Swapping
 - depend on the bandwidth between CPU RAM and GPU memory
 - excessive overhead with small block sizes
 - Recomputation
 - depend on computation power of GPU

Discussion for virtual memory and paging

- Applying the same technique to other GPU workloads?
 - stored data shape is static?
 - performance is compute-bound?
- LLM-specific optimizations in applying virtual memory and paging
 - all-or-nothing swap-out policy
 - recomputation for KV cache
 - fusing the GPU kernels for memory access operation

Summary

Strength

- flexible memory management
- near-zero memory waste
- high hardware utilization and low latency
- simultaneous processing with different decoding algorithms

Weakness

- cannot fundamentally improve inference latency
- not support sharding the KV cache
- memory capacity due to large model weights is still the bottleneck

Thanks!

Q&A