Advanced Machine Learning: **Deep Generative Models**

Normalizing Flows

lecturer: Prof. Dr. Stephan Günnemann

www.daml.in.tum.de

Roadmap

- Deep Generative Models
 - 1. Introduction
 - 2. Normalizing Flows
 - Change of Variables Formula
 - Forward and Reverse Parametrization
 - Jacobian Determinant Computation
 - 3. Variational Inference
 - 4. Variational Autoencoder
 - 5. Generative Adversarial Networks
 - 6. Denoising Diffusion

Motivation

• We assume that the data x follows a probability distribution p(x) i.e.

$$p(x)$$
 where $x = \begin{bmatrix} x_1 \\ \vdots \\ x_D \end{bmatrix}$

We can do two interesting things with a distribution:

Data sampling: generate data sample x_i following the distribution p(x)

Density evaluation: given any x_i , compute the probability density at this point $p(x_i)$

Motivation

- Normalizing Flows (NF) can model flexible distributions for data sampling and density evaluation.
- Normalizing Flows intuition:

Model a complex distribution
by applying a transformation on a simple distribution

Idea

- Normalizing Flows are based on the change of variables formula
- It transforms a variable z into another variable x by via a transformation f i.e. f(z) = x
- It is particularly useful to simplify computations when working with distributions (or integrals)

Change of Variables: Example

Introductory example: D = 1, $p_1(z) = Unif([0,1])$, f(z) = 2z + 1 = x

The probability in the input space should be the same as in the output space i.e. $p_1(z)\partial z = p_2(x)\partial x$

- Abusing the notations leads to $p_2(x) = p_1(z) \left| \frac{\partial z}{\partial x} \right|$
 - The term $\left|\frac{\partial z}{\partial x}\right|$ renormalize the probability distribution in the output space
 - The normalization term is the same if the transformation is increasing or decreasing

Change of Variables: Example

Introductory example:
$$D=2$$
, $p_1(\mathbf{z})=Unif([0,1]^2)$, $f(\mathbf{z})=\mathbf{z}+shift=\mathbf{x}$

• Applying a constant shift does not change the area after the transformation i.e. $p_2(\mathbf{x}) = p_1(\mathbf{z})$

Introductory example:
$$D=2$$
, $p_1(\mathbf{z})=Unif([0,1]^2)$, $f(\mathbf{z})=M\mathbf{z}=\mathbf{x}$, $M=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$

- The linear transformation M changes the area from 1 to $ad bc = \det(M)$.
- lacktriangle The probability distribution $p_2(x)$ has to be normalized

i.e.
$$p_2(\mathbf{x}) = p_1(\mathbf{z}) \frac{1}{det(M)}$$

Change of Variables Formula

Change of variables formula (General case): if $D \in \mathbb{N}$, $p_1(\mathbf{z})$ a D -dimensional distribution, $f(\mathbf{z}) = \mathbf{x}$ an *invertible* and *differentiable* transformation, then distribution $p_2(\mathbf{x})$ is

$$p_2(\mathbf{x}) = p_1(f^{-1}(\mathbf{x})) \cdot \left| \det \left(\frac{\partial f^{-1}(\mathbf{x})}{\partial \mathbf{x}} \right) \right|$$

- The determinant term accounts for the distortion rate of the transformation (see introductory examples). If it is equal to 1, $p_2(x)$ and $p_1(z)$ have the same « volume » at this point i.e. $p_2(x) = p_1(f^{-1}(x))$.
 - It considers that the transformation is locally linear (see last example)
- The term $\frac{\partial g(x)}{\partial x}$ is called **Jacobian** of g; here: a $D \times D$ matrix
 - We have $\frac{\partial f^{-1}(x)}{\partial x} = \left(\frac{\partial f(z)}{\partial z}\right)^{-1}$.
- The transformation f should be valid (invertible and differentiable).

Conditions

(Sufficient) Conditions for a valid transformation f:

- Invertibility:
 - The input and output space of the mapping should have the same dimension D.
 - If D = 1, it is sufficient that f is **strictly monotonic** (increasing or decreasing).
 - If the transformation f is **linear**, its determinant should be nonzero i.e. $det(f) \neq 0$
- Differentiability:
 - Both the transformation f and its inverse f^{-1} are continuously differentiable, i.e. the Jacobian $\frac{\partial f^{-1}(x)}{\partial x}$ exists at any point x.
 - Note: Differentiability is a sufficient condition; in theory, the mapping f does not have to be differentiable everywhere, we can even have discontinuous; in practice we usually use only differentiable transformation

Stacking

Stacking transformations f_i :

- We can apply the change of variables formula multiple times:
 - The first variable z_0 is transformed by $z_1 = f_1(z_0)$
 - The variable z_{i-1} is transformed by $z_i = f_i(z_{i-1})$
 - The last variable \mathbf{z}_{K-1} is transformed by $\mathbf{x} = \mathbf{z}_K = f_K(\mathbf{z}_{K-1})$

The change of variables formula becomes:

[Lilian Weng blog]

$$p_K(\mathbf{x}) = p_0(\mathbf{z_0}) \prod_{i=1}^K \left| \det \left(\frac{\partial f_i^{-1}(\mathbf{z_i})}{\partial \mathbf{z_i}} \right) \right|$$

Change of Variables Formula: Log Version

Change of variables formula (log version): if $D \in \mathbb{N}$, $p_1(\mathbf{z})$ a D-dim. distribution, $f(\mathbf{z}) = \mathbf{x}$ an *invertible* and *differentiable* transformation, then $p_2(\mathbf{x})$ is

$$\log(p_2(\mathbf{x})) = \log(p_1(f^{-1}(\mathbf{x}))) + \log\left|\det\left(\frac{\partial f^{-1}(\mathbf{x})}{\partial \mathbf{x}}\right)\right|$$

- Optimization is easier when working with sums. Consequently, we generally consider log probabilities (e.g. maximize log likelihood)
- The log version when stacking transformations is:

$$\log(p_K(\mathbf{x})) = \log(p_0(\mathbf{z_0})) + \sum_{i=1}^K \log \left| \det\left(\frac{\partial f_i^{-1}(\mathbf{z}_i)}{\partial \mathbf{z}_i}\right) \right|$$

The name: "Normalizing flow"

- A NF transforms a simple distribution (e.g. uniform, Gaussian) in a complex distribution. For some Normalizing Flows the universality theorem has been proven.
- NFs stack valid transformations to model a complex mapping between the input and output space. The input variable flows through the transformations.
- The change of variable formula allows to compute the distribution of the output space based on the distribution in the input space. The determinant terms **normalize** the distribution in the output space.

Questions – NF1

- 1. Is f(z) = 1 z a valid normalizing flow transformation?
- 2. Is f(z) = 2 3z a valid NF transformation?
- 3. Is $f(z) = \begin{cases} -z, z \in [0,1] \\ 1-z, z \in [1,2] \end{cases}$ a valid NF transformation?

Roadmap

- Deep Generative Models
 - 1. Introduction
 - 2. Normalizing Flows
 - Change of Variables Formula
 - Forward and Reverse Parametrization
 - Jacobian Determinant Computation
 - 3. Variational Inference
 - 4. Variational Autoencoder
 - Generative Adversarial Networks
 - 6. Denoising Diffusion

Forward and Reverse Parametrization

The change of variables formula does a mapping between two distributions

$$p_2(\mathbf{x}) = p_1(f^{-1}(\mathbf{x})) \cdot \left| \det \left(\frac{\partial f^{-1}(\mathbf{x})}{\partial \mathbf{x}} \right) \right|$$

- How to use the change of variables formula to evaluate $p_2(x)$ at any point x?
 - > Reverse parametrization

- How to use the change of variables formula to sample points from $p_2(x)$?
 - > Forward parametrization

Forward and Reverse Parametrization

- There exist many different flows (see [3] for further details):
 - Planar/Radial flows
 - RealNVP
 - IAF– Autoregressive Flows
 - Spline
 - **–** ...
- These flows generally differ in the parametrization of the transformation f.
 - Some parametrizations are efficient for sampling.
 - Some parametrizations are efficient for density evaluation.
- Efficient sampling and density evaluation (at the same time) might not be required in all applications

Reverse Parametrization

- We parametrize the inverse transformation $g = f^{-1}$ that we know analytically.
 - $-g_{\varphi}(x)=z$ is computable and parameter φ can be learned
- We know that the inverse $f = g^{-1}$ exists, but we might not know it analytically.
 - $-g_{\varphi}^{-1}(z)=x$ might not be (easily) computable
- The change of variable formula with reverse parametrization is

$$p_2(\mathbf{x}) = p_1(g_{\varphi}(\mathbf{x})) \cdot \left| \det \left(\frac{\partial g_{\varphi}(\mathbf{x})}{\partial \mathbf{x}} \right) \right|$$

- The formula only uses the known parametrized function g_{φ} .
- Given any point $x^{(j)}$, we can compute $p_2(x^{(j)})$.

Reverse Parametrization

Stacking:

We can also stack transformations with reverse parametrization i.e.

$$g_{\varphi} = g_{\varphi_1} \circ \cdots \circ g_{\varphi_K}$$

- To compute the density
 - 1. For any $x^{(j)}$, we can set $x^{(j)} = z_K$
 - 2. Compute the transformations $\mathbf{z}_{i-1}^{(j)} = g_{\varphi_i}(\mathbf{z}_i^{(j)})$ and $\left| \det \left(\frac{\partial g_{\varphi_i}(\mathbf{z}_i^{(j)})}{\partial \mathbf{z}_i^{(j)}} \right) \right|$
 - 3. Given $\mathbf{z}_0^{(j)}$, we can compute $p_0(\mathbf{z}_0^{(j)})$ (e.g. Gaussian or Uniform) and thus $p_K(\mathbf{x}^{(j)})$

- Important reminder: While $p_0(\mathbf{z})$ has a simple shape, $p_K(\mathbf{x})$ can capture very complex structure
 - This is all realized by $g_{m{\phi}}$

Normalizing Flows in Machine Learning

- Why do we care about computing the density $p_K(x^{(j)})$?
- We can use it for learning!
 - We aim to learn $g_{oldsymbol{arphi}}$, i.e. the transformation is not given but learned
 - \blacktriangleright We can call the distribution $p_{\varphi}(x)$ to make the dependency on φ clear
- Learning: Given a dataset $\mathcal{D}=\left\{x^{(j)}\right\}_{j=1}^N$ (usually consisting of i.i.d. samples), find the parameters φ that best explain the data
 - Typically done by maximizing the marginal log-likelihood

$$\max_{\varphi} \log p_{\varphi}(\mathcal{D}) = \max_{\varphi} \frac{1}{N} \sum_{\mathbf{x}^{(j)} \in \mathcal{D}} \log p_{\varphi}(\mathbf{x}^{(j)})$$

Learning with Normalizing Flows

Reverse parametrization (density estimation):

^{*}TUM Lab Course:

⁻ Lukas Rinder

⁻ Markus Kittel

⁻ Murat Can

Forward Parametrization

- We parametrize the transformation f that we know analytically.
 - $-f_{\theta}(\mathbf{z}) = \mathbf{x}$ is computable and parameter θ can be learned
- We know that the inverse f^{-1} exists, but we might not know it analytically.
 - $-f_{\theta}^{-1}(x) = z$ might not be (easily) computable
- The change of variables formula with forward parametrization is

$$p_2(\mathbf{x}) = p_1(\mathbf{z}) \cdot \left| \det \left(\frac{\partial f_{\theta}(\mathbf{z})}{\partial \mathbf{z}} \right) \right|^{-1}$$

- The formula only uses the known parametrized function f_{θ} .
- Given a sample $\mathbf{z}^{(j)}$, we can compute a sample $\mathbf{x}^{(j)} \sim p_2(\mathbf{x})$ and $p_2(\mathbf{x}^{(j)})$.

Forward Parametrization

We can also stack transformations with forward parametrization i.e.

$$f_{\theta} = f_{\theta_K} \circ \cdots \circ f_{\theta_1}$$

- The forward parametrization enables sampling from the distribution $p_K(x)$.
 - 1. Sample $\mathbf{z_0^{(j)}} \sim p_0(\mathbf{z_0})$ (e.g. Gaussian or Uniform)
 - 2. Compute the transformations $\mathbf{z}_i^{(j)} = f_{\theta_i}(\mathbf{z}_{i-1}^{(j)})$ and $\left| \det \left(\frac{\partial f_{\theta_i}(\mathbf{z}_{i-1}^{(j)})}{\partial \mathbf{z}_{i-1}^{(j)}} \right) \right|^{-1}$
 - 3. For the particular sample $x^{(j)} = \mathbf{z}_K^{(j)}$, we can compute $p_K(\mathbf{x}^{(j)})$

- Forward pointer: This is exactly what we need in Variational Inference
 - Sample x from a distribution q and compute the probability q(x) for this sample

Forward Parametrization

Forward parametrization (Sampling):

- Lukas Rinder
- Markus Kittel
- Murat Can

^{*}TUM Lab Course:

Transformation via Stacking

Example: Generating Images

[Kingma, Dhariwal; Glow: Generative Flow with Invertible 1×1 Convolutions]

Questions – NF2

- 1. For which x is it possible to compute p(x) with the forward parametrization?
- 2. Suppose the forward transformation is defined as $f(z) = \exp(-z^n)$. What is the corresponding inverse transformation g(x)? Does g(x) exist for any n?
- 3. Suppose the forward transformation is defined as the sigmoid function. What is the corresponding inverse transformation?

Roadmap

- Deep Generative Models
 - 1. Introduction
 - 2. Normalizing Flows
 - Change of Variables Formula
 - Forward and Reverse Parametrization
 - Jacobian Determinant Computation
 - 3. Variational Inference
 - 4. Variational Autoencoder
 - 5. Generative Adversarial Networks
 - 6. Denoising Diffusion

Jacobian Determinant Computation

The change of variables formula involves the Jacobian determinant

$$p_2(\mathbf{x}) = p_1(f^{-1}(\mathbf{x})) \cdot \left| \det \left(\frac{\partial f^{-1}(\mathbf{x})}{\partial \mathbf{x}} \right) \right|$$

Jacobian computation can be hard/slow:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_D \end{bmatrix}; \qquad g(\mathbf{x}) = \begin{bmatrix} g_1(\mathbf{x}) \\ \vdots \\ g_D(\mathbf{x}) \end{bmatrix}; \qquad J_g = \begin{bmatrix} \frac{\partial g_1(\mathbf{x})}{\partial x_1} & \dots & \frac{\partial g_1(\mathbf{x})}{\partial x_D} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_D(\mathbf{x})}{\partial x_1} & \dots & \frac{\partial g_D(\mathbf{x})}{\partial x_D} \end{bmatrix}$$

- How to compute effectively the Jacobian determinant ?
 - > Diagonal Jacobian
 - > Triangular Jacobian
 - > Full Jacobian

Determinant properties

Determinant of inverse:

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

Determinant and eigenvalues:

$$\det(A) = \prod_{i=1}^{3} \lambda_i$$

$$eigenvalues(A) = {\lambda_i; i = 1..D}$$

Determinant and block matrices:

$$det(A) = det(B) det(C)$$

$$A = \begin{bmatrix} B & 0 \\ 0 & C \end{bmatrix}$$

Diagonal Jacobian

The function is applied element wise i.e.

$$g(\mathbf{x}) = \begin{bmatrix} g_1(x_1) \\ \vdots \\ g_D(x_D) \end{bmatrix}$$

The Jacobian is a diagonal matrix i.e.

$$J_g = \begin{bmatrix} \frac{\partial g_1(x_1)}{\partial x_1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \frac{\partial g_D(x_D)}{\partial x_D} \end{bmatrix}$$

• The determinant is the product of the diagonal elements (O(D)) complexity i.e.

$$\det(J_g) = \prod_{i=1}^{D} \frac{\partial g_i(x_i)}{\partial x_i}$$

Triangular Jacobian

The function is applied as

$$g(\mathbf{x}) = \begin{bmatrix} g_1(x_1) \\ \vdots \\ g_D(x_1, \dots, x_D) \end{bmatrix}$$

■ The Jacobian is a triangular matrix i.e.

$$J_g = \begin{bmatrix} \frac{\partial g_1(x_1)}{\partial x_1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ \frac{\partial g_D(x_1, \dots, x_D)}{\partial x_1} & \cdots & \frac{\partial g_D(x_1, \dots, x_D)}{\partial x_D} \end{bmatrix}$$

- The determinant is the product of the diagonal elements (O(D)) complexity i.e.
- Examples:
 - Autoregressive flows

$$\det(J_g) = \prod_{i=1}^{D} \frac{\partial g_i(\mathbf{x})}{\partial x_i}$$

Full Jacobian

The function is applied in the most general form

$$g(\mathbf{x}) = \begin{bmatrix} g_1(\mathbf{x}) \\ \vdots \\ g_D(\mathbf{x}) \end{bmatrix}$$

The Jacobian is

$$J_g = \begin{bmatrix} \frac{\partial g_1(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial g_1(\mathbf{x})}{\partial x_D} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_D(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial g_D(\mathbf{x})}{\partial x_D} \end{bmatrix}$$

- The determinant can be computed with LU decomposition in $\mathcal{O}(D^3)$ complexity
 - $-\ J_g=LU$ where L lower triangular matrix and U upper triangular matrix.
 - $-\det(J_g)=\det(L)\det(U)$ where $\det(L)$ and $\det(U)$ are diagonal products.
- Alternative for full Jacobian:
 - Continuous-time flows

Questions – NF3

1. Let's assume you get the following Jacobian:

How expensive is it to compute the determinant? Can you comment on this in the context of NFs?

$$\begin{bmatrix} \frac{\partial g_1(x_1)}{\partial x_1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ \frac{\partial g_D(x_1, \dots, x_D)}{\partial x_1} & \cdots & 0 \end{bmatrix}$$

- 2. What is the complexity to compute the Jacobian determinant of an arbitrary valid transformation?
- Considering high-dimensional data (i.e. D is high), what type of Jacobian would you use?

References

- [1] Eric Jang blog : https://blog.evjang.com/2018/01/nf1.html
- [2] Lilian Weng blog : https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html
- [3] Normalizing Flows for Probabilistic Modeling and Inference: https://arxiv.org/abs/1912.02762

External Sources

Web tutorial:

- Adam Kosiorek: http://akosiorek.github.io/ml/2018/04/03/norm_flows.html
- Eric Jang blog: https://blog.evjang.com/2018/01/nf1.html
- CS236 Fall 2019 (Stanford) : https://deepgenerativemodels.github.io/notes/flow/

Survey papers:

- Normalizing Flows: An Introduction and Review of Current Methods: https://arxiv.org/pdf/1908.09257.pdf
- Normalizing Flows for Probabilistic Modeling and Inference:
 https://arxiv.org/abs/1912.02762

Video:

What are normalizing flows ?: https://www.youtube.com/watch?v=i7LjDvsLWCg

Advances Machine Learning: **Deep Generative Models**

Normalizing Flows

lecturer: Prof. Dr. Stephan Günnemann

www.daml.in.tum.de

