VERMES MIKLÓS Fizikaverseny

2023. március 13.

Megyei szakasz

XI. osztály

JAVÍTÓKULCS

1. Feladat

		Pont
a)	V(m/s) 0,13 0 2,4 f(s)	0,3
b)	0,219 0,219 0 2,4 t(s)	0,3
c)	T = 2.4 s	0,1
d)	$\omega = 2\pi/T = \pi/1,2 \text{ rad/s} = 2,62 \text{ rad/s}$	0,3
e)	$v_{\text{max}} = \omega \cdot A = 0.05 \cdot \pi / 1.2 = 0.13 \text{ m/s}$	0,3
f)	$a_{\text{max}} = \omega^2 \cdot A = (\pi/1, 2)^2 \cdot 0.05 = 0.219 \text{ m/s}^2$	0,3
g)	$y = 0.05 \sin 2.62 \cdot t$	0,3
h)	$v = 0.13 \cos 2.62 \cdot t$	0,3
i)	$a = -0.219 \sin 2.62 \cdot t$	0,3

Összesen 2,5 pont

2. Feladat

		Pont
a)	$\Delta t = 2h/c_{\text{lev}} + 2H/c_{\text{víz}}$. Innen	0,2
	$H = c_{\text{víz}} \left(\Delta t/2 - h/c_{\text{lev}} \right)$	0,1
	$H = 1435 \cdot (0,005 - 1/330) = 1435 \cdot 0,002 = 2,87 \text{ m}$	0,2
b)	$\lambda_{\text{lev}} = c_{\text{lev}}/v = 330/1000 = 0,33 \text{ m} = 33 \text{ cm \'es } \lambda_{\text{v\'iz}} = c_{\text{v\'iz}}/v = 1435/1000 = 1,435 \text{ m}$	0,2

Összesen: 0,7 pont

3. Feladat (*FIRKA* 1. 2020/2021. F. 620)

		Pont
a)	Az erők rajza: Az erők rajza: A	0,4
	Ha az <i>m</i> tömegű golyót a fonalra merőleges irányban kimozdítjuk egyensúlyi helyzetéből y távolságra, az <i>F</i> erő fogja visszahozni.	0,1
	F a fonalban fellépő f feszültségek eredője.	0,1
	Hogyan függ az F erő az y kitéréstől? Vajon nem rugalmas természetű?	0,1
	A golyóra ható F erő a fonal nyújtott állapotában: $F = 2f \sin \alpha$.	0,2
	Az ACD háromszögben felírható: $tg\alpha = \frac{CD}{AD} = \frac{y}{\frac{L}{2}}$.	0,2

	Két háromszög hasonló (párhuzamos szárú szögek és derékszögek).	0,1
	Mivel az α szög kicsi, $tg\alpha \approx \sin \alpha = \frac{\frac{F}{2}}{f}$.	0,3
	$\frac{2y}{L} = \frac{F}{2f}$, ahonnan: $F = 4fy/L = \frac{4f}{L}y$.	0,3
	A golyóra ható erőt $F = ky$ rugalmas erő formájában írhatjuk, ahol $k = 4f/L$.	0,2
	Így a rezgések harmonikus rezgések.	0,1
	A harmonikus rezgések periódusa: $T = 2\pi \sqrt{m/k}$.	0,1
	Behelyettesítve k kifejezését, kapjuk: $T = 2\pi \sqrt{\frac{m \cdot L}{4f}}$.	0,1
	Számértékekkel: $T = 2\pi \sqrt{\frac{0.01 \cdot 1}{4.987}} = 10^{-2} \text{ s}$	0,2
b)	A frekvenciája: $v = 1/T = 10^2 \text{ Hz}$	0,1
c)	$\lambda = c/v = 330/100 = 3.3 \text{ m}$	0,2

Összesen: 2,8 pont

4. Feladat (*FIRKA* 5-6. 1993/1994 F.L. 90. – Kiegészítette Kovács Zoltán)

		Pont
	(1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
a)	a rezgések frekvenciája: $\omega = 2\pi v$, így $v = \omega/2\pi = 60\pi/2\pi = 30$ Hz	0,2
b)	a rúdban terjedő hullámok fázissebessége: $v_l = \sqrt{\frac{E}{\rho}} = \sqrt{\frac{6.8 \cdot 10^9}{2700}} = 1586 \text{ m/s}$	0,2
c)	A hullámhossz: $\lambda = \frac{v}{v} = \frac{1586}{30} = 52,7 \text{ m}$	0,2
	Az útkülönbség képlete: $\frac{\Delta \varphi}{2\pi} = \frac{\Delta x}{\lambda}$ és $\Delta x = \frac{\lambda \Delta \varphi}{2\pi}$	0,2
	A fáziskülönbségek: $\Delta \varphi_1 = \pi/3$ és $\Delta \varphi_2 = \pi/6$	0,2
	$\Delta x_1 = \lambda \Delta \varphi_1 / 2\pi = 52,7/6 = 8,76 \text{ m}$	0,2
	$\Delta x_2 = \lambda \Delta \varphi_2 / 2\pi = 52,7/12 = 4,39 \text{ m}$	0,2
	A rúd hossza: $l = \Delta x_1 + \Delta x_2 = \frac{\lambda \Delta \varphi_1}{2\pi} + \frac{\lambda \Delta \varphi_2}{2\pi} = \frac{\lambda}{2\pi} \left(\frac{\pi}{3} + \frac{\pi}{6} \right) = \frac{52.7}{2\pi} \cdot \frac{3\pi}{6} = 13,175 \text{ m}$	0,1
d)	$A^2 = A_1^2 + A_2^2 + 2A_1A_2\cos\Delta\varphi$	0,2
	$A^{2} = 0.1^{2} + 0.2^{2} + 2 \cdot 0.1 \cdot 0.2 \cos\left(\frac{\pi}{3} - \frac{\pi}{6}\right)$	0,2
	$A^2 = 0.01 + 0.04 + 0.04 \cdot 0.86 = 0.0844$	0,2
	A = 0.00712 m = 7.12 mm	0,1
	$ tg \varphi = \frac{A_1 \sin \varphi_1 + A_2 \sin \varphi_2}{A_1 \cos \varphi_1 + A_2 \cos \varphi_2} = \frac{0.1 \cdot 0.86 + 0.2 \cdot 0.5}{0.2 \cdot 0.86 + 0.1 \cdot 0.5} = \frac{0.186}{0.222} = 0.837 $	0,2
	$\varphi = \text{arctg } 0.837 = 39.95^{\circ} \approx 40^{\circ}$	0,2
	$\varphi = 40\pi/180 = 4\pi/9 \text{ (rad)}$	0,2
	$y = 0.00712 \sin (60 \pi t + 4\pi/9)$	0,2

Összesen: 3 pont

Hivatalból: (1 pont)