Parallel and Perpendicular Lines

Parallel Lines Two nonvertical lines are parallel if they have the <u>Same slope</u>. All vertical lines are parallel.

Perpendicular Lines Two nonvertical lines are perpendicular if their slopes are <u>Opposite reciprocals</u> of each other. Vertical and horizontal lines are perpendicular. (Sign) (flipped over) each other. Vertical and horizontal lines are perpendicular.

Ex 1: Write an equation in slope-intercept form for the line that passes through (-1, 6) and is parallel to the graph of y = 2x + 12.

Point (-1,6) same slope

$$m = 2$$

 $x_1 y_1$
Point-Slope: $y - 6 = 2(x + 1)$

$$y = 2x + 2$$

$$y = 2x + 8$$

Ex 2: Write an equation in slope-intercept form Point for the line that passes through (-4, 2) and is (-4,2)perpendicular to the graph of 2x - 3y = 9.

① Convert to y=4x+b none of these are slope
$$2x - 3y = 9$$

$$-2x$$

$$-\frac{3}{3}y = -\frac{2x}{-3} + \frac{9}{-3}$$

$$y = \frac{2}{3}x - 3$$

2 Perpendicular
$$y = -\frac{3}{2}x - 4$$

 $M = -\frac{3}{3}$

Unit 3

Lesson 7

$$m = rise = \frac{4}{3}$$

Point -Slope

$$y-3 = \frac{4}{3}(x+3)$$
 $y = \frac{4}{3}x + 4$
 $y = \frac{4}{3}x + 7$

Determine whether the graphs of the following equations are parallel or perpendicular.

A.
$$2x + y = -7$$
,

$$A = 2x + y = -7$$
 $B = -2x$
 $B = -4$
 $C = 4x - y = 5 - 4x$

B.
$$x - 2y = -4$$

$$y = -2x - 7$$

$$\frac{-2y}{-2} = \frac{+x-4}{-2}$$

$$y = -2x - 7$$
 $\frac{-2y}{-2} = \frac{-1x - 4}{-2}$ $\frac{-y}{-1} = \frac{-4x + 5}{-1}$

C.
$$4x - y = 5$$

$$m = -2$$

$$y = \frac{1}{2}x + 2$$

$$m = \frac{1}{2}$$

$$y = 4x - 5$$

$$m = 4$$

None are parallel

A is perpendicular to B

ARCHITECTURE On the architect's plans for a new high school, a wall represented by \overline{MN} has endpoints M(-3, -1) and N(2, 1). A wall represented by \overline{PQ} has endpoints P(4, -4) and Q(-2, 11). Are the walls perpendicular? Explain.

$$m = \frac{y_2 - y_1}{\chi_2 - \chi_1}$$

$$m = \frac{y_2 - y_1}{\chi_2 - \chi_1}$$
 (1) Find MN Slope $m = 1 - (-1) = \frac{2}{5}$

2) Find PQ Slope

$$m = 11 - (-4) = \frac{15 \div 3}{-6 \div 3} = \frac{5}{-2}$$

Yes, they are opposite L y reciprocals.

Practice STAAR Question

What is the equation in slope-intercept form of the line that crosses the x-axis at 36 and is

perpendicular to the line represented by $y = -\frac{4}{9}x + 5$?

$$F y = \frac{4}{9}x + 16$$

$$G y = \frac{4}{9}x - 16$$

H
$$y = \frac{9}{4}x + 81$$

$$y = \frac{9}{4}x - 81$$

Perpendicular $m = \frac{9}{4}$

$$y = 0 = \frac{9}{4}(x - 36)$$

$$y = \frac{9}{4}x - 81$$