Introduction to machine learning

Victor Kitov

v.v.kitov@yandex.ru

Course information

- Instructor Victor Vladimirovich Kitov
- Tasks of the course
- Structure:
 - lectures, seminars
 - assignements: theoretical, labs, competitions
 - exam
- Tools
 - python
 - ipython notebook
 - numpy, scipy, pandas
 - matplotlib, seaborn
 - scikit-learn.

Recommended materials

- Лекции К.В.Воронцова (видео-лекции и материалы на machinelearning.ru)
- The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Trevor Hastie, Robert Tibshirani, Jerome Friedman, 2nd Edition, Springer, 2009. http: //statweb.stanford.edu/~tibs/ElemStatLearn/.
- Statistical Pattern Recognition. 3rd Edition, Andrew R. Webb, Keith D. Copsey, John Wiley & Sons Ltd., 2011.
- Any additional public sources:
 - wikipedia, articles, tutorials, video-lectures.
- Practical questions:
 - stackoverflow.com, sklearn documentation, kaggle forums.

Table of Contents

- 1 Tasks solved by machine learning
- Problem statement
- Training / testing set.
- 4 Function class
- 5 Function estimation
- 6 Discriminant functions

Formal definitions of machine learning

- Machine learning is a field of study that gives computers the ability to learn without being explicitly programmed.
- A computer program is said to learn from experience E with respect to some class of tasks T and performance measure
 P, if its performance P at tasks in T improves with experience E.
- Examples from text analysis: spell checker, spam filtering, POS tagger.

Major niches of ML

- dealing with huge datasets with many attributes (text categorization)
- hard to formulate explicit rules (image recognition)
- further adaptation to usage conditions is required (voice detection)
- fast adaptation to changing conditions (stock prices prediction)

Examples of ML applications

- WEB
 - Web-page ranking
 - Spam filtering
 - e-mails
 - search results
- Networks monitoring
 - Intrusion detection
 - Anomaly detection
- Business
 - Fraud detection
 - Churn prediction
 - Credit scoring
 - Stock prices / risks forecsting

Examples of ML applications

- Texts
 - Document classification
 - POS tagging, semantic parsing,
 - named entities detection
 - sentimental analysis
 - automatic summarization
- Images
 - Handwriting recognition
 - Face detection, pose detection
 - Person identification
 - Image classification
 - Image segmentation
 - Adding artistic style
- Other
 - Target detection / classification
 - Particle classification

Table of Contents

- 1 Tasks solved by machine learning
- Problem statement
- Training / testing set.
- 4 Function class
- 5 Function estimation
- Oiscriminant functions

General problem statement

- Set of objects O
- Each object is described by a vector of known characteristics $\mathbf{x} \in \mathcal{X}$ and predicted characteristics $y \in \mathcal{Y}$.

$$o \in O \longrightarrow (\mathbf{x}, y)$$

• Usually $\mathcal{X} = \mathbb{R}^D$, \mathcal{Y} - a scalar, but they may be any structural descriptors of objects in general.

General problem statement

- Task: find a mapping f, which could accurately approximate $\mathcal{X} \to \mathcal{Y}$.
 - using a finite «training» set of objects with known (x, y).
 - to apply on a set of objects of interest
- Questions solved in ML:
 - how to select object descriptors features
 - in what sense a mapping f should approximate true relationship
 - how to construct f

Variants of problem statement

- For each new object x need to associate y.
- What is known:
 - $(x_1, y_1), (x_2, y_2), ...(x_N, y_N)$ supervised learning:
 - $x_1, x_2, ... x_N$ unsupervised learning
 - dimensionality reduction
 - clustering
 - $(x_1, y_1), (x_2, y_2), ...(x_N, y_N), x_{N+1}x_{N+2}, ...x_{N+M}$ semi-supervised learning.
- If predicted objects $x'_1, x'_2, ... x'_K$ for which y is forecasted, are known in advance, then this is «transductive» learning.

Example of supervised classification

Supervised learning: $x = (x_1, x_2)$, y is shown with color

Example of semi-supervised classification

Example of clustering (unsupervised)

Unsupervised learning: clustering

Dimensionality reduction (unsupervised)

Unsupervised learning: dimensionality reduction

Generative and discriminative models¹

Generative model

Full distribution p(x, y) is modeled.

• Can generate new observations (x, y)

$$\widehat{y}(x) = \arg \max_{y} p(y|x) = \arg \max_{y} \frac{p(x,y)}{p(x)} = \arg \max_{y} p(y)p(x|y)$$

$$= \arg \max_{y} \{\log p(y) + \log p(x|y)\}$$

Discriminative model

- Discriminative with probability: only p(y|x) is modeled
- Reduced discriminative: only y = f(x) is modeled.

¹Which is more general problem statement and which - more specific?

Generative and discriminative - discussion

- Disadvantages of generative models:
 - Discriminative models are more general
 - p(x|y) may be inaccurate in high dimensional spaces

Generative and discriminative - discussion

- Disadvantages of generative models:
 - Discriminative models are more general
 - p(x|y) may be inaccurate in high dimensional spaces
- Advantages of generative models:
 - Generative models can be adjusted to varying p(y)
 - Naturally adjust to missing features (by marginalization)
 - Easily detect outliers (small p(x))

Types of features

- Full object description $\mathbf{x} \in \mathcal{X}$ consists of individual features $x_i \in \mathcal{X}_i$
- Types of feature:
 - ullet $\mathcal{X}_i = \{0,1\}$ binary feature
 - ullet $|\mathcal{X}_i| < \infty$ discrete (nominal) feature
 - ullet $|\mathcal{X}_i| < \infty$ and \mathcal{X}_i is ordered ordinal feature
 - \bullet $\mathcal{X}_i = \mathbb{R}$ real feature

Types of target variable

- Types of target variable:
 - $oldsymbol{ ilde{\mathcal{Y}}} = \mathbb{R}$ regression (in supervised learning)
 - $\mathcal{Y} = \mathbb{R}^M$ vector regression (in supervised learning) or feature extraction (in unsupervised learning)
 - $\mathcal{Y} = \{\omega_1, \omega_2, ...\omega_C\}$ classification (in supervised learning) or clustering (in unsupervised learning).
 - C=2: binary classification, encoding $\mathcal{Y} = \{+1, -1\}$ or $\mathcal{Y} = \{0, 1\}$.
 - C>2: multiclass classification
 - \mathcal{Y} -set of all sets of $\{\omega_1, \omega_2, ... \omega_C\}$ labeling
 - $\mathcal{Y} = \{ y \in \mathbb{R}^{C} : y_i \in \{0,1\} \}, \ y_i = 1 \Leftrightarrow \text{object is associated}$ with ω_i .

Table of Contents

- Tasks solved by machine learning
- Problem statement
- 3 Training / testing set.
- 4 Function class
- 5 Function estimation
- Discriminant functions

Training set

- Training set: $X \in \mathbb{R}^{N \times D}$ design matrix, $Y \in \mathbb{R}^{N}$ predicted outputs (target values)
- Using X,Y the task is to estimate unknown parameters $\widehat{\theta}$ of mapping $\widehat{y}=f_{\theta}(x)$ so that it will approximate true relationship y=y(x)
- It is assumed that $z_n = (x_n, y_n)$ for n = 1, 2, ...N are independent and identically distributed random variables (i.i.d).
- Two steps of ML:
 - training
 - application

Train set, test set

Train set, test set

 ${\it N}$ - number of objects for which targets (Y) are known.

Train set, test set

D - number of features (advanced case: variable feature count).

Table of Contents

- Tasks solved by machine learning
- Training / testing set.
- 4 Function class

Function class. Linear example.

• Function class - parametrized set of functions $F = \{f_{\theta}, \ \theta \in \Theta\}$, from which the true relationship $\mathcal{X} \to \mathcal{Y}$ is approximated.

- Function class parametrized set of functions $F = \{f_{\theta}, \ \theta \in \Theta\}$, from which the true relationship $\mathcal{X} \to \mathcal{Y}$ is approximated.
- Examples of linear class functions:
 - regression:

$$f(x) = \theta_0 + \theta_1 x^1 + \theta_2 x^2 + ... + \theta_D x^D$$

- Function class parametrized set of functions $F = \{f_{\theta}, \ \theta \in \Theta\}$, from which the true relationship $\mathcal{X} \to \mathcal{Y}$ is approximated.
- Examples of linear class functions:
 - regression:

$$f(x) = \theta_0 + \theta_1 x^1 + \theta_2 x^2 + ... + \theta_D x^D$$

• binary classification $y \in \{+1, -1\}$:

$$f(x) = sign\{\theta_0 + \theta_1 x^1 + \theta_2 x^2 + ... + \theta_D x^D\},\$$

Function class. K-NN example.

Classification:

Function class. K-NN example.

Function class. K-NN example.

- denote for each x:
 - i(x, k) index of the k-th most close object to x
 - I(x, K) set of indexes of K nearest neighbours.
- regression:

$$f(x) = \frac{1}{K} (y_{i(x,1)} + ... + y_{i(x,K)})$$

classification:

$$f(x) = argmax \left\{ \sum_{i \in I(x,K)} \mathbb{I}[y_i = 1], ... \sum_{i \in I(x,K)} \mathbb{I}[y_i = C], \right\}$$

Model complexity vs. data complexity

Underfitted model

Model that oversimplifies true relationship $\mathcal{X} \to \mathcal{Y}$.

Overfitted model

Model that is too tuned on particular peculiarities (noise) of the training set instead of the true relationship $\mathcal{X} \to \mathcal{Y}$.

Examples of overfitted/underfitted models

- true relationship
 - estimated relationship with polynimes of order M
 - objects of the training sample

Table of Contents

- Tasks solved by machine learning
- Problem statement
- Training / testing set.
- 4 Function class
- 5 Function estimation
- 6 Discriminant functions

Score versus loss

- In machine learning predictions, functions, objects can be assigned:
 - score, rating this should be maximized
 - loss, cost this should be minimized²

²how can one convert score↔ oss?

Loss function $\mathcal{L}(\widehat{y}, y)^3$

- Examples:
 - classification:
 - misclassification rate

$$\mathcal{L}(\widehat{y},y) = \mathbb{I}[\widehat{y} \neq y]$$

- regression:
 - MAE (mean absolute error):

$$\mathcal{L}(\widehat{y}, y) = |\widehat{y} - y|$$

MSE (mean squared error):

$$\mathcal{L}(\widehat{y}, y) = (\widehat{y} - y)^2$$

³Selecting loss is not trivial. Consider demand forecasting.

Empirical risk

• Want to minimize:

$$\int \int \mathcal{L}(f_{\theta}(x), y) p(x, y) dx dy \to \min_{\theta}$$

Empirical risk

Want to minimize:

$$\int \int \mathcal{L}(f_{\theta}(x), y) p(x, y) dx dy \to \min_{\theta}$$

Empirical risk:

$$L(\theta|X,Y) = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(f_{\theta}(x_n), y_n)$$

• Method of empirical risk minimization:

$$\widehat{\theta} = \arg\min_{\theta} L(\theta|X, Y)$$

Estimation of empirical risk

• Generally it holds that:

$$L(\widehat{\theta}|X,Y) < L(\widehat{\theta}|X',Y')$$

where X, Y is the training sample and X', Y' is the new data.

Estimation of empirical risk

• Generally it holds that:

$$L(\widehat{\theta}|X,Y) < L(\widehat{\theta}|X',Y')$$

where X, Y is the training sample and X', Y' is the new data.

- $L(\widehat{\theta}|X',Y')$ can be estimated using :
 - separate validation set
 - cross-validation
 - leave-one-out method

Divide training set into K parts, referred as «folds» (here K=4). Variants:

- randomly
- randomly with stratification (w.r.t target value or feature value).

Use folds 1,2,3 for model estimation and fold 4 for model evaluation.

Use folds 1,2,4 for model estimation and fold 3 for model evaluation.

Use folds 1,3,4 for model estimation and fold 2 for model evaluation.

Use folds 2,3,4 for model estimation and fold 1 for model evaluation.

- Denote
 - k(n) fold to which observation (x_n, y_n) belongs to: $n \in I_k$.
 - $\widehat{\theta}^{-k}$ parameter estimation using observations from all folds except fold k.

⁴will samples be correlated?

- Denote
 - k(n) fold to which observation (x_n, y_n) belongs to: $n \in I_k$.
 - $\widehat{\theta}^{-k}$ parameter estimation using observations from all folds except fold k.

Cross-validation empirical risk estimation

$$\widehat{L}_{total} = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(f_{\widehat{\theta}^{-k(n)}}(x_n), y_n)$$

⁴will samples be correlated?

- Denote
 - k(n) fold to which observation (x_n, y_n) belongs to: $n \in I_k$.
 - $\widehat{\theta}^{-k}$ parameter estimation using observations from all folds except fold k.

Cross-validation empirical risk estimation

$$\widehat{L}_{total} = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(f_{\widehat{\theta}^{-k(n)}}(x_n), y_n)$$

- For K-fold CV we have:
 - K parameters $\widehat{\theta}^{-1}, ... \widehat{\theta}^{-K}$
 - K models $f_{\widehat{\theta}^{-1}}(x), ... f_{\widehat{\theta}^{-K}}(x)$.
 - can use ensembles
 - K estimations of empirical risk:

$$\widehat{L}_k = \frac{1}{|I_k|} \sum_{n \in I_k} \mathcal{L}(f_{\widehat{\theta}^{-k}}(x_n), y_n), \ k = 1, 2, ... K.$$

<u>can estimate variance</u> & use statistics!⁴

⁴will samples be correlated?

Introduction to machine learning - Victor Kitov
Function estimation

Comments on cross-validation

- When number of folds K is equal to number of objects N, this is called **leave-one-out method**.
- Cross-validation uses the i.i.d.⁵ property of observations
- Stratification by target helps for imbalanced/rare classes.

⁵i.i.d.=independent and identically distributed

Cross-validation vs. A/B testing

- A/B testing:
 - 1 divide objects randomly into two groups A and B.
 - apply model 1 to A
 - apply model 2 to B
 - compare final results

⁶may final business quality be high when forecasting quality is low?

Cross-validation vs. A/B testing

- A/B testing:
 - 1 divide objects randomly into two groups A and B.
 - apply model 1 to A
 - apply model 2 to B
 - compare final results

Comparison of cross-validation and A/B test:

cross-validation	A/B test	
evaluates forecasting	evaluates final business	
quality	quality ⁶ (may evaluate	
	forecasting quality as well)	
uses available data, only	requires time and resources for	
computational costs	collecting & evaluating	
	feedback from objects of	
	groups A and B	

⁶may final business quality be high when forecasting quality is low?

Hyperparameters selection

- Using CV we can select hyperparameters of the model⁷:
 - regression: # of features d, e.g. $x, x^2, ... x^d$
 - K-NN: number of neighbors K

⁷can we use CV loss in this case as estimation for future losses?

Loss vs. model complexity

Comments:

- expected loss on test set is always higher than on train set.
- left to A: model too simple, underfitting, high bias
- right to A: model too complex, overfitting, high variance

Loss vs. train set size

Comments:

- expected loss on test set is always higher than on train set.
- right to B there is no need to further increase training set size
 - useful to limit training set size when model fitting is time consuming

Cost matrix⁸

For classification in case we output final class predictions \hat{y} (not probabilities) $\mathcal{L}(y, \hat{y})$ becomes a matrix:

predicted classes

true classes

	p		
	$\widehat{y} = 1$		$\widehat{y} = C$
y=1	λ_{11}		λ_{1C}
• • • •	• • •	• • •	
y = C	λ_{C1}	• • •	λ_{CC}

⁸ propose some sample cost matrix for binary classification predicting illness

Table of Contents

- Tasks solved by machine learning
- Training / testing set.
- Function class
- 6 Discriminant functions

Discriminant functions⁹

- Discriminant functions is the most general way to describe each classifier.
- Each classifier implies a particular set of discriminant functions.

Discriminant functions

- a set of C functions $g_y(x)$, y = 1, 2...C.
- $g_y(x)$ measures the score of class y, given object x.

Usage

Assign x to class having maximum discriminant function value:

$$\widehat{c} = \arg\max_{c} g_{c}(x)$$

⁹For fixed classifier are they uniquely defined?

Examples¹⁰

K-NN:

$$g_f(x) = \sum_{k=1}^K \mathbb{I}[y_{i(k)} = f]$$

Linear classifier:

$$g_f(x) = \langle w_f, x \rangle$$

Nearest centroid:

$$g_f(x) = \rho(x, \mu_f)$$

• Maximum posterior probability classifier:

$$g_f(x) = p(y = f|x)$$

¹⁰Provide discriminant functions for classifier minimizing expected cost according to given cost matrix.

Binary classification

• For two class case $y \in \{-1, +1\}$ we may define a single discriminant function $g(x) = g_1(x) - g_2(x)$ such that

$$\widehat{y}(x) = \begin{cases} +1, & g(x) \ge 0, \\ -1 & g(x) < 0. \end{cases}$$

- Compact notation: $\widehat{y}(x) = sign[g(x)]$
- Boundary between classes:

Binary classification

• For two class case $y \in \{-1, +1\}$ we may define a single discriminant function $g(x) = g_1(x) - g_2(x)$ such that

$$\widehat{y}(x) = \begin{cases} +1, & g(x) \ge 0, \\ -1 & g(x) < 0. \end{cases}$$

- Compact notation: $\hat{y}(x) = sign[g(x)]$
- Boundary between classes: $\{x: g(x) = 0\}$.
- Linear classifier:

•
$$g(x) = \langle w_{+1}, y \rangle - \langle w_{-1}, y \rangle = \langle w, y \rangle$$

Binary classification: probability calibration

• g(x) - score of positive class, $p(y = +1|x)^{11}$ -?

¹¹does this apply to K-NN? How to smooth probabilities of K-NN for small K?

Binary classification: probability calibration

- g(x) score of positive class, $p(y = +1|x)^{11}$ -?
- Platt scaling: $p(y = +1|x) = \sigma(\theta_0 + \theta_1 g(x))$,

¹¹does this apply to K-NN? How to smooth probabilities of K-NN for small K?

Binary classification: probability calibration¹²

• Using the property $1 - \sigma(z) = \sigma(-z)$:

$$p(y = 1|x) = \sigma(\theta_0 + \theta_1 g(x))$$

$$p(y = -1|x) = 1 - \sigma(\theta_0 + \theta_1 g(x)) = \sigma(-\theta_0 - \theta_1 g(x))$$

- Thus $p(y|x) = \sigma (y(\theta_0 + \theta_1 g(x)))$
- Estimate θ_0, θ_1 using maximum likelihood:

$$\prod_{n=1}^{N} \sigma\left(y_n(\theta_0 + \theta_1 g(x_n))\right) \to \max_{\theta_0, \theta_1}$$

¹² extend this reasoning to multiclass case

General modelling pipeline

If evaluation gives poor results we may return to each of preceding stages.

Connection of ML with other fields

- Pattern recognition
 - recognize patterns and regularities in the data
- Computer science
- Artificial intelligence
 - create devices capable of intelligent behavior
- Time-series analysis
- Theory of probability, statistics
 - when relies upon probabilistic models
- Optimization methods
- Theory of algorithms

Notation used in the course

- If this corresponds the context and there are no redefinitions, then:
 - x vector of known input characteristics of an object
 - ullet y predicted target characteristics of an object specified by x
 - x_i i-th object of a set, y_i corresponding target characteristic
 - x^k k-th feature of object specified by x
 - x_i^k k-th feature of object specified by x_i
 - D dimensionality of the feature space: $x \in \mathbb{R}^D$
 - N the number of objects in the training set
 - ullet X design matrix, $X \in \mathbb{R}^{\mathit{NxD}}$
 - ullet $Y \in \mathbb{R}^{N}$ target characteristics of a training set
 - $\mathcal{L}(\widehat{y},y)$ loss function, where y is the true value and \widehat{y} is the predicted value.
 - $\{\omega_1, \omega_2, ...\omega_C\}$ possible classes, C total number of classes.
 - \widehat{z} defines an estimate of z, based on the training set: for example, $\widehat{\theta}$ is the estimate of θ , \widehat{y} is the estimate of y, etc.