

Übung 5: Strukturale Beschreibung

Aufgabe: Hexadezimal-Zähler

Beschreiben Sie einen strukturalen VHDL-Block, der den Binär2Hex-Konverter aus Übung 1 mit einem Kontrollblock verbindet. Dieser Hexadezimal-Zähler soll auf einem Altera Development Board implementiert werden.

Funktion:

Solange die Taste "btn_n" gedrückt wird, sollen die Zahlen 0 bis 15 in hexadezimaler Form auf der Siebensegmentanzeige "hex_n" dargestellt werden.

Damit die einzelnen Zahlen von Auge unterschieden werden können und nicht nur als gleichzeitiges Leuchten aller Segmente wahrgenommen werden, braucht es im Kontrollblock "ctrl" zwei Zähler (Zähl-Prozesse). Der erste Zähler dient als Frequenzteiler, damit der eigentliche Zähler (zweiter Zähler) nicht mit dem Systemclock von 0 bis 15 zählt, sondern höchstens mit 10Hz, d.h. nur ca. jedes 5'000'000-te Mal.

Achten Sie darauf, dass der gesamte Block vollsynchron ist, d.h. alle Register mit demselben Systemclock "clk" getaktet sind.

Name	Richtung	Тур	Bedeutung	
clk	IN	std_ulogic	Systemclock: 50MHz	
rst_n	IN	std_ulogic	Reset (aktiv low)	
btn_n	IN	std_ulogic	Taste btn_n (aktiv low), d.h.	
			= '0': Taste gedrückt	
			= '1': Taste losgelassen	
			Siehe unten!	
hex_n	OUT	std_ulogic_vector(6 DOWNTO 0)	Steuersignale für die einzelnen Segmente	
			der 7-Segment-Anzeige (aktiv_low).	
			Reihenfolge wie auf Altera-Boards:	
			5 6 1 4 2	

Aufgaben:

- 1. Implementieren Sie den Hexadezimal-Zähler in VHDL.
- 2. Simulieren Sie den Zähler mit einem Force-File.
- 3. Synthetisieren Sie den Zähler mit Quartus für ein DE0-Board

DE 1-SoC

Die Tasten auf dem DE1-SoC-Board sind entprellt

• rst_n: KEY 0 (Pin AA14)

• btn_n: KEY 3 (Pin Y16)

Signal Name	FPGA Pin No.	Description	I/O Standard
CLOCK_50	PIN_AF14	50 MHz clock input	3.3V
CLOCK2_50	PIN_AA16	50 MHz clock input	3.3V
CLOCK3_50	PIN_Y26	50 MHz clock input	3.3V
CLOCK4_50	PIN_K14	50 MHz clock input	3.3V
HPS_CLOCK1_25	PIN_D25	25 MHz clock input	3.3V
HPS_CLOCK2_25	PIN_F25	25 MHz clock input	3.3V

