Jonatan Olofssor

Introduction

Monocula SLAM

State-Estimation

Non-lineal Control

Conslusions

Towards Autonomous Landing for a Quadrotor, using Monocular SLAM Techniques

Jonatan Olofsson

Department of Computer and Information Science at Linköping University,
Sweden

Master's Thesis Presentation, 2012-06-08

Presentation Outline

Jonatar Olofssor

Introduction

Monocula SLAM

State-Estimatio

Control

Conslusion

1 Introduction

2 Monocular SLAM

3 State-Estimation

4 Non-linear Control

6 Conslusions

Background

Jonatan Olofssor

Introduction

Background The LinkQuad Platform Problem Formulat

Monocula SLAM

State-Estimation

Control

Conslusion

- Increased interest in civilian applications.
- For many applications, a small scale vehicle is desired.
- MAV Micro Air Vehicle; UAV weighing 5 kg or less1.

¹Definitions differ

Jonatan

Introduction
Background
The LinkQuad
Platform
Problem Formulation

Monocula SLAM

State-Estimatio

Non-linea

Constusion

The LinkQuad Platform

Quadrotor research platform developed by AIICS at the Department of Computer and Information Science of Linköping University.

Used sensors: Accelerometers, gyroscopes, pressure sensor, camera

Jonatan

Background
The LinkQuad

Method

SLAM

Estimation

Constusions

The LinkQuad Platform

- Dual gumstix micro-computers (Linux).
- Sensor-board with dual microcontrollers for sensor sampling, data logging and low-level control.

Problem Formulation

Jonatar Olofsso

Background
The LinkQuad
Platform
Problem Formulation
Method

State

Estimatio

C.....

Primary goal: Develop a control system for the LinkQuad that use video-based positioning to provide stable landing.

Breakdown:

- Video-based SLAM.
- Sensor Fusion with available sensors.
- Use state-estimate for control.
- Generate control reference for landing procedure.

Method: Video-based Positioning

Jonatar Olofssoi

Background
The LinkQuad
Platform
Problem Formulati

Method Monocul

State-Estimation

Non-linear

Conslusions

Extract 3D information from 2D video-stream.

- vSLAM Visual SLAM.
- Simultaneous Localisation And Mapping to track features in the video-stream.
- Gives orientation and position relative to the features.
- High computational demands.
- Complex sensor measurements.

Method: Filtering

Method

Current implementation is based on complementary filtering.

angle =
$$(0.98) * (angle + gyro * dt) + (0.02) * (a_{\hat{x}})$$

Performance is adequate, but the c.f is difficult to extend.

Also, camera measurements

- cannot be used directly in the current filter,
- fits nicely into a standard state-space filter framework.

A high-level filtering framework with an advanced motion model was implemented and applied for state-estimation.

Method: Control

Jonatar Olofssoi

Introduction
Background
The LinkQuad
Platform
Problem Formulation

Monocul

State-Estimatior

Non-line

Conslusion

With a motion model available, control signals can be computed optimally. Linear Quadratic control offers

- simple implementation,
- simple tuning,
- optimal control.

Motion model needs to be linear, which is not the case for a quadrotor. This constraint can be circumvented by an extension to LQ control using the **State-dependent Riccati Equation**.

Jonatan

Background
The LinkQuad
Platform

Method

SLAM

Estimation

Constusions

Method: Reference Generation

With properly implemented control, landing is a matter of descending steadily until landing is detected.

Method: Landing Detection

Jonatar Olofssor

Background
The LinkQuad
Platform
Problem Formulation

Method

SLAM State-

Estimation

Conslusion:

Landing is generally associated with a lack of descent. The observer will explain this with upward winds.

Two interesting states to monitor:

- Altitudinal velocity
- Altitudinal wind velocity

Monocular SLAM

Jonatan Olofssor

Introduction

Monocular SLAM

Initialization

Coordinate System

Estimation

Non-linea Control

Conslusions

PTAM

• Measurements are not metric,

Camera Measurements

Jonatan Olofsson

Introduction

Monocular SLAM

Connecting the Coordinate Systems

State-Estimatio

Non-linea Control

Conslusion

Measurement: Pose relative to PTAM coordinate system.

- Rotation and translation are measured in the local PTAM coordinate system.
- PTAM's coordinate system is quite arbitrarily initialised.
- Its relation to the world must be established

Initialization

Connecting the Coordinate Systems

State-

Non-linea

Conslusion

Initialization

PTAM tries to initialize its coordinate system on ground plane.

$$\begin{cases} \varnothing_{\mathsf{PTAM}} &= \xi + R(q^{wb}) r_{\mathsf{camera}/\mathcal{G}} + \lambda R(q^{wP}) \frac{X^{\mathsf{PTAM}}}{|X^{\mathsf{PTAM}}|} \\ \varnothing_{\mathsf{PTAM}} \cdot \hat{z} &= 0 \end{cases}$$

Camera Measurements

Jonatan Olofssor

Introduction

SLAM

Connecting the Coordinate System

State-Estimation

Non-linea Control

Conslusion

To extract positioning measurements usable in the real world, the coordinate systems have to be related.

$$x^{\mathsf{PTAM}} = S(s)R(q^{Pw})T(-\varnothing_{\mathsf{PTAM}})x^{\mathsf{NEDEF}}$$

 $q^{Pw} = q^{PTAM,c}q^{cb}q^{bw}$

 Describes the measurements in terms of the estimated state and known transformations.

Library Modifications

Jonatan Olofssor

Introductio

Monocula SLAM

Connecting the Coordinate Systems

State-Estimation

Non-linea Control

Conslusion

In a deployment environment, the initialization and utilization of the camera sensor must be autonomous.

In the thesis, several changes are implemented to the PTAM library, e.g.

- Autonomous initialization procedure,
- Re-initialization,
- Origin positioning error detection,
- Remote interface for non-GUI use.

Sensor Fusion

Jonatan Olofssor

Introduction

Monocula SLAM

State-Estimation Sensor Fusion Filtering Frameworl Physical Motion-model

Non-linea Control

Conslusion

Uses information from all sensors with models of expected behavior to estimate the movements of the vehicle.

The Kalman filter is the standard choice for high-level state estimation.

Non-linear extensions:

- UKF
- EKF

The UKF has issues with the applied motion model in high uncertainty simulations. The EKF was selected as the more reliable filter.

Filtering Framework

Jonatan Olofssor

Introduction

Monocula SLAM

State-Estimatior

Filtering Framework
Physical
Motion-model

Non-linea Control

Conslusion:

The standard formulation of a high-level (Bayesian) state estimation framework relies on two separate steps.

Time update: Use the motion model to predict the vehicle's motions.

Measurement update: Sample the sensors and weigh their likelihood against the current estimate.

Through discrete instances of time, the steps are independent.

Motion Model

Jonatan Olofssor

Introduction

Monocula SLAM

State-Estimation

Filtering Framework
Physical
Motion-model

Control

Conslusions

For simulation purposes, a non-linear physical model of the quadrotor is studied in the thesis.

- Same model is used for state estimation, control and simulation.
- May easily be replaced by simpler model, e.g. for state estimation.

The model also includes sensor-models for all used sensors.

Linear Quadratic control

Jonatan Olofssor

Introduction

Monocula SLAM

State-Estimatio

Non-line Control LQ control

Conslusion

Linear Quadratic Control utilizes a linear motion model to optimally control the system.

Definition: Find u = -Lx s.t.

$$\mathcal{J} = \int_0^\infty x^T Q x + u^T R u dt.$$

is minimized. A feedback-form closed solution exists, having solved the CARE^2 ;

$$A^{T}S + SA + M^{T}QM - SBR^{-1}B^{T}S = 0$$
$$L = R^{-1}B^{T}S$$

²Continous Algebraic Riccati Equation

Linear Quadratic control

Jonatan Olofssor

Introduction

Monocula SLAM

Estimatio

Non-linea Control LQ control SDRE

Conslusion

- Appealingly simple.
- Requires a linear motion model

The motions of a quadrotor is non-linear, but can locally be described by a linear approximation.

- The motion model needs linearization.
- The linearization needs a linearization point.

State-Dependent Riccati Equation

Jonatan

Introduction

Monocula SLAM

State-Estimation

Non-linea Control LQ control SDRE

Conslusion

Basic idea: Linearize the physical model and use LQ theory.

$$\dot{x} = f(x, u) \approx f(x_0, u_0) + \underbrace{\frac{\partial f}{\partial x}}_{A} \left| \begin{array}{c} x = x_0 \\ u = u_0 \end{array} \right| \underbrace{\begin{pmatrix} x - x_0 \\ \Delta x \end{pmatrix}}_{A} + \underbrace{\frac{\partial f}{\partial u}}_{B} \left| \begin{array}{c} x = x_0 \\ u = u_0 \end{array} \right| \underbrace{\begin{pmatrix} u - u_0 \\ \Delta u \end{pmatrix}}_{B}$$

By adding a homogeneous state, the linear property of the equation is regained. The result is locally valid in every differentiable point in the state space.

$$\dot{X} = \begin{bmatrix} \dot{x} \\ 0 \end{bmatrix} = \underbrace{\begin{bmatrix} A & f(x_0, u_0) - Ax_0 \\ 0 & 0 \end{bmatrix}}_{\bar{A}} \underbrace{\begin{bmatrix} x \\ 1 \end{bmatrix}}_{\bar{X}} + \underbrace{\begin{bmatrix} B \\ 0 \end{bmatrix}}_{\bar{B}} \Delta u.$$

Conclusions

Jonatan Olofsson

Introductior

Monocula SLAM

State-Estimatior

Control

Conslusions

- General algorithms and control structure were fully implemented.
- PTAM modifications enables full autonomousity.
- Simulated advanced control and landing performed in simulation.

- Implementation covers advanced control.
- Tuning of filtering and control remain.
- Results suggest the system is viable to perform landing.