

LEADER COURSE

(SESSION: 2021-22)

RACE # 36 to 44 (BOOKLET) (INORGANIC)

Corporate Office

ALLEN CAREER INSTITUTE

"SANKALP", CP-6, Indra Vihar, Kota (Rajasthan) INDIA-324005

+91-744-2757575 info@allen.ac.in

www.allen.ac.in

© All rights including trademark and copyrights and rights of translation etc. reserved and vested exclusively with Allen Career Institute®. No part of this publication may be copied, reproduced, adapted, abridged or translated, stored in any retrieval system, computer system, photographic or other system or transmitted in any form or by any means whether electronic, mechanical, digital, optical, photocopying, recording or otherwise, or stood in any retrieval system of any nature. Any breach will entail legal action and prosecution without further notice.

This study material is sold/distributed by Allen Career Institute® subject to the condition and undertaking given by the student that all proprietary rights (as defined under the Trademark Act, 1999 and Copyright Act, 1957) of the Study Materials and/or Test Series and/or the contents shall belong to Allen Career Institute's Tests and neither the Study Materials and/or Test Series and/or the contents nor any part thereof shall be reproduced, modify, re-publish, sub-license, upload on website, broadcast, post, transmit, disseminate, distribute, sell in market, stored in a retrieval system or transmitted in any form or by any means for reproducing or making multiple copies of it. Any violation or infringement of the propriety rights of Allen shall be specifically punishable under Section- 29 & 52 of the Trademark Act, 1999 and under Section- 51, 58 & 63 of the Copyright Act, 1957 and any other Act applicable in India. All disputes are subjected to the exclusive jurisdiction of courts, tribunals and forums at Kota, Rajasthan only.

Note:- Due care and diligence has been taken while editing and printing this book/study materials. Allen Career Institute shall not hold any responsibility for any mistake that may have inadvertently crept in. Allen Career Institute shall not be liable for any direct, consequential or incidental damages arising out of the use of this book.

RACE # 36

INORGANIC CHEMISTRY

Solubility chart of ionic compounds in aqueous solution.

Cation	Anion	Solublility	Exception
Any	OCΓ, ClO ₂ ⁻ , ClO ₃ ⁻ , ClO ₄ ⁻ , NO ₂ ⁻ , NO ₃ ⁻ CH ₃ COO ⁻ , HSO ₃ ⁻ , HCO ₃ ⁻ , HS ⁻	All are soluble	(i) ClO ₄ ⁻ of K ⁺ , Rb ⁺ , Cs ⁺ are insoluble. (ii) AgNO ₂ is insoluble (iii) CH ₃ COOAg is partially soluble.
K ⁺ , Rb ⁺ , Cs ⁺ & NH ₄ ⁺	Any	All are soluble	[Pt Cl6]-2 & [Co(NO2)6]3- are insoluble
Na ⁺	Any	All are soluble	
Any	СГ, Вг¯, Г	All are soluble	(i) Ag ⁺ , Pb ²⁺ , Hg ₂ ⁺² , Cu ₂ ⁺² are insoluble (ii) PbCl ₂ , CuBr ₂ , Cu ₂ I ₂ are soluble on warming (iii) HgBr ₂ & HgI ₂ remain insoluble on warming.
Any	SO_4^{-2}	All are soluble	(i)Ba ⁺² ,Sr ²⁺ , Pb ²⁺ are insoluble (ii) CaSO ₄ , Ag ₂ SO ₄ , SnSO ₄ & HgSO ₄ are partially soluble
Any	SO ₃ ⁻² , CO ₃ ⁻² , C ₂ O ₄ ⁻² , PO ₄ ⁻³ , O ⁻² , OH ⁻ , F ⁻	All are insoluble	(i) BeF ₂ & AgF are soluble (ii) Na ⁺ to Cs ⁺ & NH ₄ ⁺ are soluble (iii) O ⁻² & OH ⁻ of Ca ²⁺ Sr ²⁺ & Ba ⁺² are soluble
Any	CN ⁻ , OCN ⁻ ,SCN ⁻ , S ⁻²	All are insoluble	I group cation & II group cation are soluble
Any	MnO ₄ ⁻¹ is similar to ClO ₄ ⁻	Same as ClO ₄	NaMnO ₄ , KMnO ₄ are soluble

- 1. Sulphides are usually insoluble, leaving those of alkali metals and ammonium sulphide, which are soluble. Sulphides of alkaline earth metals and of ammonium are decomposed in aqueous solution.
- 2. Compounds of alkali metals and ammonium salts are generally soluble.
- 3. CO_3^{2-} , OH⁻, CrO_4^{2-} , PO_4^{3-} & SO_3^{2-} are found generally insoluble, leaving those of alkali metals and ammonium cation, which are soluble.

SOME SOLUBLE SALT:

1.	All nitrates	(NO_3^-)	are water soluble.
----	--------------	------------	--------------------

- 2. All acetates (CH₃COO⁻) salt are water soluble.**Except** CH₃COOAg(s.s.), (CH₃COO)₂Cu (CH₃COO)₂Hg₂ (s.s.) some basic acetates e.g. those of Fe, Al and Cr are insoluble in water.
- 3. All chloride (Cl⁻) are water soluble. **Except** AgCl, PbCl₂ (soluble in hot water), Hg₂Cl₂, Cu₂Cl₂. BiOCl and SbOCl (white turbidity)
- 4. All bromides (Br⁻) are water soluble. **Except** AgBr, PbBr₂ (soluble in boiled water), Hg₂Br₂, Cu₂Br₂
- All Iodides (I⁻) are water soluble. **Except** AgI, PbI₂ (soluble in boiled water), Hg₂I₂, HgI₂, Cu₂I₂, BiI₃, BiOI (orange turbidity).
- 6. All sulphates are water soluble. (some basic sulphates such as those of Hg, Bi, Cr are insoluble) **Except**-Ag₂SO₄(s.s.), PbSO₄, (s.s), BaSO₄, SrSO₄, CaSO₄(s.s.), Li₂SO₄
- 7. All nitrites (NO_2) salts are water soluble. Except AgNO₂
- 8. All existing salts of HCO_3^- are water soluble.
- except.NaHCO₃ (s.s.)
- S₂O₃²⁻ \Rightarrow Most of the thiosulphates those have been prepared are soluble in water Ag⁺, Pb²⁺ and Ba²⁺ (s.s.)

 Hg²⁺, Bi³⁺, Cu⁺ = insoluble

Note - (s.s.) = sparingly soluble

SOME INSOLUBLE SALT

1.	All carbonates (CO_3^{2-}) are water insoluble. Except – IA carbonate, Li_2CO_3 (s.s.), $(NH_4)_2CO_3$
----	---

- All sulphites (SO_3^{2-}) are water insoluble. **Except** IA $(NH_4)_2SO_3$
- 3. All sulphides (S^{2-}) are water insoluble.
 - Except IA sulphide, IIA sulphides, (NH₄)₂S, (Al, Cr, Mg sulphides are completely hydrolysed)
- All phosphates (PO_4^{3-}) are water insoluble. **Except** $-(NH_4)_3PO_4$, IA phosphates (except Li₃PO₄) IA = 1° 2° 3° soluble IIA = 1° soluble but 2° 3° insoluble.
- 5. All hydroxides (OH⁻) are water insoluble. **Except** IA hydroxide, Ba(OH)₂, Sr(OH)₂, Ca(OH)₂
- 6. All chromates are water insoluble. **Except** Alkali metal (NH₄)₂CrO₄, CaCrO₄, MgCrO₄, SrCrO₄(s.s.).
- 7. All oxalate $(C_2O_4^{2-})$ are water insoluble. **Except** IA, Ferrous oxalate, Ammonium oxalate, BeC₂O₄
- 8. All fluorides (F⁻) are insoluble in water except IA, AgF, HgF₂, AlF₃, BeF₂ and NiF₂ Pb²⁺, Cu²⁺, Fe(III), Ba²⁺, Li⁺ = s.s
- Their is only hydrated thiosulphate salt is $Na_2S_2O_3 \cdot 5H_2O$.
- \bullet All permagnates (MnO_4^-) are water soluble.
- ◆ KClO₄ is not soluble in water.
- \bullet BO₃³⁻ \Longrightarrow The borates of the alkali metals are readily soluble in water, the borates of the other metals are in genral sparingly soluble in water but fairly soluble in acid and in NH₄Cl solution.

RACE # 37 INORGANIC CHEMISTRY

COLOURS OF DIFFERENT COMPOUNDS

Black Colour Compounds

- 1. PbS
- 2. Ag₂S
- 3. CuS
- 4. Cu₂S
- 5. NiS
- 6. CoS
- 7. HgS
- 8. FeS
- 9. NiO
- 10. MnO
- 11. FeO
- 12. CuO
- 13. PbO₂
- 14. MnO₂
- 15. Mn₃O₄
- 16. Fe₃O₄
- 17. Co₃O₄
- 18. Ni(OH)₃
- 19. Cu₃P₂
- 20. BiI₃
- 21. Hg + Hg(NH₂)Cl

Blue Colour Compounds

(a) Light Blue Compunds

- 1. Cu(OH),
- $2. Cu(NO_3)_2$
- 3. CuCl,
- 4. CuSO₄·5H₂O (Blue Vitriol)
- 5. Co(OH),

(b) Deep Blue Compounds

- 1. [Cu(NH₃)₄]SO₄(Switzer's reagent)
- 2. $[Cu(NH_3)_4](NO_3)_2$
- 3. Fe₄[Fe(CN)₆]₃ (Prussian's blue)
- 4. Fe₃[Fe(CN)₆]₂ (Turnbull's blue)
- 5. Na₄[Fe(CN)₅(NOS)](Violet)

Green Colour Compounds

- 1. Ni(OH)₂ (green ppt.)
- 2. Hg₂I₂ (green ppt.)
- 3. Cr₂O₃ (green solid)
- 4. Cr(OH)₃ (green ppt.)
- 5. $Cr_{2}(SO_{4})_{3}$
- 6. CrCl₂
- 7. $FeSO_4 \cdot 7H_2O$
- 8. FeCl,
- 9. $FeSO_4$ · $(NH_4)_2SO_4$ · $6H_2O(Mohr's salt)$
- 10. Na₂MnO₄
- 11. K_2MnO_4
- 12. $B(OC_2H_5)_2$ (Burns with green edge flame)
- 13. CoO · ZnO (Riemann's green)

White Colour Compounds

- 1. AgCl
- 2. Ag₂CO₃ (white)
- 3. AgNO₂
- 4. Ag₂SO₄
- 5. PbCl₂
- 6. PbBr₂ (White crystalline ppt.)
- 7. Cu₂I₂ (White ppt.)
- 8. PbSO₄
- 9. SrSO₄
- 10. BaSO₄
- 11. Hg₂SO₄
- 11.116250
- 12. BaCO₃ 13. SrCO₃
- 13. bico₃
- 14. CaCO₃
- 15. MgCO₃
- 16. Be(OH),
- 17. Mg(OH)₂
- 18. Ca(OH)₂
- 19. Al(OH)₃ (White gelatinous ppt.)
- 20. Cd(OH)₂ (Dirty White)
- 21. Bi(OH)₃ (White ppt.)
- 22. Zn(OH)₂
- 23. ZnCO₃
- 24. ZnS
- 25. ZnO
- 26.200
- 26. CaC₂O₄
- $27. Ag_2C_2O_4$
- 28. Ag₂S₂O₂
- 29. PbS₂O₃
- 30. $Zn_{2}[Fe(CN)_{6}]$ (white ppt.)

Yellow Coloured Compounds

- 1. As₂S₃
- $2. As_2S_5$
- 3. CdS
- 4. SnS₂(Artificial gold)
- 5. FeS₂(Fool's gold)
- 6. $(NH_4)_2S_x$ (where x = 2 to 5)(YAS)
- 7. PbCrO₄
- 8. BaCrO₄
- 9. SrCrO₄
- 10. AgBr (light yellow)
- 11. AgI (Dark yellow)
- 12. PbI₂
- 13. PbO (in Cold)
- 14. ZnO (in Hot)
- 15. HgO (Yellow ppt.)
- 16. Na₂O₂ (Pale yellow)
- 17. Ag₃PO₄
- 18. Ag₃AsO₃
- 19. Cu(CN),
- 20. K₃[Co(NO₂)₆] (Fischer's salt)
- 21. (NH₄)₃PO₄· 12MoO₃
- 22. $(NH_4)_3 AsO_4 \cdot 12 MoO_3$
- 23. Na₂CrO₄
- 24. CrO₄²⁻(Yellow in solution)

Red Colour Compounds

- 1. Ag₂CrO₄ (Brick red)
- 2. Hg₂CrO₄ (Brick red)
- 3. HgI₂ (Scarlet red)
- 4. $Pb_3O_4(2PbO + PbO_2)$
- 5. CrO₂Cl₂ (Reddish brown)
- 6. Fe(CH₃COO)₃ (Blood red)
- 7. Fe(SCN)₃ (Blood red)
- 8. AsI₃
- 9. SbI₃
- 10. SnI₂
- 11. CuBr,
- 12. $[Ni(DMG)_2]$ (Rosy red)

Brown Coloured Compounds

- 1. SnS
- 2. Bi₂S₂
- 3. CdO
- 4. PbO₂
- 5. Fe(OH)₃ (Reddish Brown)
- 6. Fe₂O₃ (Reddish Brown solid)
- 7. Cu₂O (Reddish Brown)
- 8. Ag₃AsO₄ (Reddish Brown)

- 10. $Cu_2I_2 + I_3^-$ (Brown ppt.)
- 11. Cu₂[Fe(CN)₆] (Chocolate brown)
- 12. NO₂ (Brown gas)
- 13. $[Fe(H_2O)_5(NO)]SO_4(Brown ring)$

Orange Coloured Compounds

- 1. Sb₂S₃
- 2. Sb₂S₅
- 3. KO,
- 4. CsO₂
- 5. $Cr_2O_7^{2-}$ (Orange in aq. solution)

Pink Coloured Compounds

- 1. Mn(OH),
- 2. MnS
- 3. MnO₄ (Pink or purple in aq. solution)
- 4. Co(CN),
- 5. (NH_4) , $SnCl_6$
- 6.CoCl₂·6H₂O (Pink on melting black also known as sympathetic ink)

<u>Gas</u>

- 1. Colourless odourless gas CO_2 , N_2 , O_2
- 2. Colourless gas having pungent smell

3. Coloured gas — Cl₂ (Yellowish green)

Br₂ (Brown)

NO₂ (Brown)

I₂ (Violet fumes)

RACE # 38 INORGANIC CHEMISTRY

MM: 30 TIME: 15 Min.

Choose the correct option. (Only one option is correct):

- 1. Which of the following pair of compounds cannot co-exist in aqueous solution. [3]
 - (A) Na₂CO₃, K₂CO₃ (B) NaHCO₃, NaOH (C) Rb₂CO₃, KHCO₃ (D) NaOH and KCl

2. Ag₂CO₃

$$(A) \rightarrow \text{Black Residue. (C)} \xrightarrow{\text{NH}_3 \\ \text{Sol}^n} \text{Does not dissolve}$$

$$(B) \rightarrow \text{Black ppt. (D)} \xrightarrow{\text{NH}_3 \text{Sol}^n} \text{Clear solution}$$
[3]

A & B are

- (A) dil. HNO₃ and boiling in water respectively.
- (B) Direct heating and boiling in water respectively.
- (C) dil. HNO₃ and NH₃ respectively.
- (D) hot water and NH₃ respectively.
- 3. Which of the following produces colourless gas with dil. H_2SO_4 [3]
 - (A) $Na_2S_2O_3$
- (B) NaHCO₃
- (C) CH₃CO₂NH₄
- (D) A
- 4. Which of the following pair of salt produces odourless gas with dil. H_2SO_4 [3]
 - (A) HCO₃ and HSO₃

(B) HCO_3^- and CO_3^{2-}

(C) $S_2O_3^{2-}$ and $CH_3CO_2^{-}$

(D) CO₃²⁻ and CH₃CO₂⁻

Assertion/reason Type: (5 to 8)

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.
- **5. Statement-1**: When HCO_3^- and CO_3^{2-} ions are present together, $CaCl_2$ is to be used in excess to distinguished both [3]

Statement-2: Excess amount of $CaCl_2$ forms soluble complex with HCO_3^- of the formula of $[Ca(HCO_3)_6]^{4-}$

- **6. Statement-1**: NaHCO₃ is the least soluble alkali bicarbonate.
 - **Statement-2**: massive H-bonding present in solid NaHCO₃.
- 7. Statement-1: LiHCO₃ cannot exist in solid form. [3]
 - **Statement-2**: Li₂O has the highest thermal stability among the alkali metals oxide.
- 8. Statement-1: $CO_2 + K_2Cr_2O_7 \longrightarrow$ no reaction [3]

Statement-2: C is already in maximum oxidation state

[3]

Single Correct

- A sodium salt on treatment with MgCl₂ gives white precipitate only on heating. The anion of the 9. sodium salt is: [3]
 - (A) HCO_3^-
- (B) CO_3^{2-} (C) NO_3^{-}
- (D) SO_4^{2-}

 CO_3^{2-} and HCO_3^- can be distinguished by 10.

[3]

- (A) Phenolphthalein (B) $BaCl_2$ solution (C) $HgCl_2$ solution
- (D) All of these

FILL THE ANSWER HERE

1. ABCD 2. 3. 4. ABCD ABCD ABCD 7. 5. ABCD 6. 8. ABCD ABCD ABCD ABCD 10. ABCD

RACE # 39 INORGANIC CHEMISTRY MM: 30 TIME: 15 Min. Single correct: CO_3^{2-} and SO_3^{2-} cannot be distinguished by [3] 1. (A) H₂O₂ solution (C) Cl₂ water (B) lime water (D) all of these 2. Which of the following options is correct [3] $HgCl_2$ can be used for the distinction of HCO_3^- and CO_3^{2-} I. II. Hg₂Cl₂ is insoluble in water Ш. Aq. suspension of Ag₂CO₃ and Ag₂SO₃ both produces Ag₂O on heating IV. SO₂ acts as reducing agent when passed through FeCl₃ solution (A) FFTT (B) TFTT (C) TTFT (D) FTFF Soda extract is useful when given mixture has any insoluble salt, it is prepared by 3. [3] (A) Fusing soda and mixture and then extracting with water (B) Dissolving NaHCO₃ and mixture in dil HCl (C) Boiling Na₂CO₃ and mixture in dil HCl (D) Boiling Na₂CO₃ and mixture in distilled water. Which of the following salts will not produce any observable changes when H₂S is passed through its 4. aqueous solution [3] (A) (CH₃CO₂)₂Pb(B) Na₂[Fe(CN)₅NO] (D) none of these $(C) AgNO_3$ The colour of KMnO₄/H[⊕] will be decolourised by 5. [3] (B) SO₃²⁻ solution (A) S²-solution (C) both (A) and (B) (D) None Multiple correct: Which of the following reagent(s) can show colour change when SO₂ gas is passed through it. [3] 6. (B) Acidic potassium dichromate solution (A) Bromine water (C) Acidic ferric chloride solution (D) Chlorine water Assertion /Reason: Questions given below consist of two statements each printed as Assertion (A) and Reason (R); while answering these questions you are required to choose any one of the following four responses: (A) If both (A) and (R) are true and (R) is the correct explanation of (A) (B) If both (A) and (R) are true but (R) is not correct explanation of (A) (C) If (A) is true but (R) is false (D) If (A) is false and (R) is true

Assertion: Initially there is no ppt. when AgNO₃ is added to Na₂SO₃ solution

Reason: Localised formation of Ag₂SO₃ is destroyed by soluble complex formation like [AgSO₃]⁻

7.

[3]

Paragraph type:

Question No. 8 to 10(3 questions)

[9]

Acetic acid is added to the solution of sodium carbonate the gas evolved does not turn purple colour of KMnO₄ but turns lime water milky forming a compound (M) which becomes soluble by passing the same gas in excess forming another compound (N). But same observation is not obtained with boric acid

- 8. Purple colour of KMnO₄ has not changed because
 - (A) the gas has no oxidising property since central atom is with minimum oxidation state
 - (B) the gas has no reducing property since the central atom is with maximum oxidation state
 - (C) the gas has no precipitation characteristics
 - (D) the gas precipitates CaCO₃ from lime water
- **9.** The compound formed in the above sequence (M) and (N) are respectively
 - (A) water soluble CaCO₃ and water soluble Ca(HCO₃)₂
 - (B) water insoluble CaCO₃ and water insoluble Ca(HCO₃)₂
 - (C) water insoluble CaCO₃ and water soluble Ca(HCO₃)₂
 - (D) water soluble CaCO₃ and water insoluble Ca(HCO₃)₂
- **10.** The correct order of increasing acidity is
 - (A) Boric acid < Acetic acid < Carbonic acid
- (B) Acetic acid < Boric acid < Carbonic acid
- (C) Carbonic acid < Acetic acid < Boric acid
- (D) Boric acid < Carbonic acid < Acetic acid

1. ABCD	2. ABCD	3. (A) (B) (C) (D)	4. (A B C D
5. ABCD	6. ABCD	7. (A) (B) (C) (D)	8. ABCD
9. (A B C D	10. (A B C D		

RACE # 40 INORGANIC CHEMISTRY

MM: 30 TIME: 15 Min.

14/14	1:30				11/4(E:	15 Min.
Sing	le correct :					
1.	Na ₂ SO ₃ and Na ₂ S ₂	O ₃ cannot be distingu	iished by			[3]
	(A) addition of Pb(OAc) ₂ followed by he	eating	(B) addition	CaCl ₂ solution	
	(C) addition of Agl	NO ₃ followed by heat	ing	(D) All of th	ese	
2.	The co-ordination r sulphide ion is	number of central ion	of the comp	olex obtained	in the sodium nitroprus	side test of [3]
	(A) 5	(B) 6	(C) 7		(D) 4	
3.	Which of the follow	ring acid radical does	not produce	e white ppt w	ith Pb(OAc) ₂ solution.	[3]
	(A) Br ⁻	(B) $S_2O_3^{2-}$	(C) C0	O_3^{2-}	(D) None of these	
4.	H ₂ S is passed into 1	BaCl ₂ solution. The pp	pt formed is			[3]
	(A) BaS	(B) $Ba(SH)_2$	(C) Ba	$(OH)_2$	(D) no ppt.	
5.	Colour obtained in	test of $S_2O_3^{2-}$ + [Ni(e	$[\mathrm{en}]_3$ $[\mathrm{NO}_3]_2$	is		[3]
	(A) Red	(B) Violet	(C) Inc	ligo	(D) Yellow	
6.	Which of following	is / are reduced by the	niosulphate	solution.		[3]
	(I) Fe ⁺³ solution	(II) I ₂ solution	(III) C	u ⁺² solution	(IV) Hg ²⁺	
	(A) I, II, III only	(B) I, III only	(C) IV	only	(D) I, III, IV only	
7.	$Na_2S_2O_3$. $5H_2O$ is h	neated strongly to pro-	duce M and	N and water.	Both are consisting of S	S. Mention

- 7. Na₂S₂O₃. 5H₂O is heated strongly to produce M and N and water. Both are consisting of S. Mention the average oxidation state of 'S' in M and N respectively. [3]
 - (A) -2, +5 (B) -2, +4 (C) $-\frac{2}{5}, +6$ (D) -2, +6
- A compound (X) on decomposition gives a colourless gas. The residue is dissolved in water to obtain (Y). Excess CO₂ is bubbled through aqueous solution of (Y) and (Z) is formed. (Z) on gentle heating gives back (X). The (X) is [3]
 - (A) $CaCO_3$ (B) $Ca(HCO_3)_2$ (C) $NaHCO_3$ (D) Na_2CO_3

Question No. 9 & 10 (2 questions)

Solid 'A'
$$\xrightarrow{\text{on}}$$
 anh. 'A' [6]

- 9. 'A' is
 - (A) $K_2S_2O_3$ (B) CaS_2O_3 (C) PbS_2O_3
- (D) $Na_2S_2O_3$
- **10.** 'A' on strong heating produces compound(s) has/have
 - (A) chain structure

(B) Tetrahedral structure

(C) both

(D) none

RACE # 41

INORGANIC CHEMISTRY

MM: 30 TIME: 15 Min.

Single correct:

Comment **True** (**T**) or **False** (**F**) for the following statements. 1.

[3]

- Same gas comes out when Na₂S is treated with dil. HCl and Na₂SO₃ is treated with (I) (Zn + dil. H₂SO₄)
- Same observation when acidified nitrite solution is treated with urea or thiourea followed by (II)addition of FeCl₃ solution.
- (III)Same observation when nitrite solution or **acetate** solution is treated with dil. H_2SO_4 solution
- With CaCl₂ and BaCl₂ both acetate and formate do not react. (IV)
- (A) FTTF
- (B) TFTT
- (C) TFFT
- (D) FTTT
- (X) KOH (Y) (gas turns red litmus blue) +(Z) Zn+KOH (Y) (gas) 2.

[3]

 $(X) \xrightarrow{\Delta}$ gas (supports in combustion)

Identify (X) to (Z).

- (A) $X = NH_4NO_2$
- $Y = NH_2$
- $Z = KNO_2$
- (B) $X = (NH_4)_2Cr_2O_7$ $Y = NH_3$ (C) $X = (NH_4)_2SO_4$ $Y = NH_3$

- $Y = NH_3$
- $Z = Cr_2O_3$ $Z = K_2SO_4$

- (D) $X = NH_4NO_3$
- $Y = NH_3$
- $Z = KNO_3$
- BeC₂O₄ and BaC₂O₄ are heated separately with bunsen burner. The solid residue obtained are respectively **3.** [3]
 - (A) BeO and BaO

(B) BeO and BaCO₃

(C) BeCO₃ and BaO

- (D) BeCO₃ and BaCO₃
- Unknown salt 'A' + **solid** $K_2Cr_2O_7$ + conc. $H_2SO_4 \longrightarrow Reddish$ brown fumes. 4.

[3]

Which is the correct statement regarding the above observation

- (A) It confirms the presence of Clion
- (B) It confirms the presence of Br ion
- (C) It confirms the presence of both
- (D) It neither confirms Cl⁻nor Br⁻ unless it is passed through NaOH solution

Question No. 5 to 6 (2 questions)

[6]

Questions given below consist of two statements each printed as Assertion (A) and Reason (R); while answering these questions you are required to choose any one of the following four responses:

- (A) if both (A) and (R) are true and (R) is the correct explanation of (A)
- (B) if both (A) and (R) are true but (R) is not correct explanation of (A)
- (C) if (A) is true but (R) is false
- (D) if (A) is false and (R) is true

- **5.** (A) NO_3^- and NO_2^- both do not give brown fumes with dil. H_2SO_4
 - (**R**) Protonation of NO_2^- is more easier compared to NO_3^- since NO_3^- is more stable by resonance
- **6.** (A) Oxalate evolves gas with dilute H_2SO_4 in presence of MnO_2
 - $(\mathbf{R}) \, \mathrm{MnO}_2$ acts as catalyst over here

Single Correct

7. Which is not easily precipitated from aqueous solution

[3]

- (A) Cl⁻
- (B) SO_4^{2-}
- $(C) NO_3^-$
- (D) CO_3^{2-}
- 8. Give the correct order of initials **T** or **F** for following statements. Use **T** if statement is true and **F** if it is false.
 - (i) Cu⁺ undergoes disproportionation to Cu and Cu²⁺ in aq. solution
 - (ii) Hg₂Cl₂ does not impart chromyl chloride test
 - (iii) $[Fe(H_2O)_5NO]^{2+}$ complex is highly unstable due to the presence of weak field ligand
 - (iv) Bond length of CO⁺ is greater than CO
 - (A) TFFT
- (B) TTFT
- (C) FTTF
- (D) TTFF

9. BaCO₃(s) + AcOH
$$\xrightarrow{\text{Na}_2\text{C}_2\text{O}_4 \text{ Solution}}$$
?

[3]

Comment on the product of this reaction.

- (A) BaCO₃ remains unaffected.
- (B) $\mathrm{BaC_2O_4}$ will be precipitated as white precipitate
- (C) Ba(OAc)₂ will be precipitated as white precipitate
- (D) Clear solution

Integer:

10. Chromyl chloride test can be given by how many of the following compounds easily. [3]

$$CH_{\overline{3}} \longleftarrow \bigvee_{NH_3}^+ Cl^-, \ C_2H_5Cl \ , \ AgCl, \ Hg_2Cl_2 \ , \ NH_4Cl \ , \ CaCl_2$$

FILL THE ANSWER HERE

ABCD 2. ABCD 3. ABCD 4. ABCD 1. 7. 5. ABCD 6. ABCD (A) (B) (C) (D) 8. ABCD ABCD 10. 0 1 2 3 4 5 6 7 8 9

RACE # 42 INORGANIC CHEMISTRY MM: 33 TIME: 15 Min.

Sing	le correct :								
1.	In the $K_2Cr_2O_7$ so	olution when alkali	solution of BaC	U ₂ is added, the	yellow ppt. obtaine	d is of			
	(A) BaCr ₂ O ₇	(B) BaCrO ₄	(C) I	BaCrO ₄ ·2H ₂ O	(D) none	[3]			
2.	Aq.suspension o	f a yellow substance	$ce(A) \xrightarrow[conc. solution]{KI}$	colourless solu	$tion(B) \xrightarrow{NH_4Cl} Bl$	rown ppt.			
	Compound (A) is					[3]			
	$(A) PbI_2$	(B)AgI	$(C) \operatorname{HgI}_2$	(D) H	$\mathrm{Hg}_{2}\mathrm{I}_{2}$				
3.	When $K_2Cr_2O_7$ is	s treated with H ₂ O ₂	in acidic medi	ım, in presence	and in absence of o	org. solvent. The			
	oxidation state of	chromium finally:				[3]			
	(A) increases and	(A) increases and decreases respectively							
	(B) decreases and	(B) decreases and increases respectively							
	(C) retained same	(C) retained same and decreases respectively							
	(D) retained same	e in both cases.							
4.	'A' (white substan	nce) $\xrightarrow{\Delta}$ swells u		→ contracted int	o amorphous powo	ler. A is [3]			
	(A) $Na_2B_4O_7.101$	H_2O	heating (B) I	$Na_2B_4O_7$					
	$(C) K_2SO_4.Al_2(S)$	$(O_4)_3.24H_2O$	(D) I	Na(NH ₄)HPO ₄ .	4H ₂ O				
5.	Aqueous solution	ofA+AcOH+K ₂ C	$CrO_4 \longrightarrow yellow$	w ppt. The above	e information is not	correct for which			
	of the following ca	-	,			[3]			
	$(I) Pb^{+2}$	(II) Ba ²⁺	(III)	Ca^{2+}	$(IV) Sr^{2+}$				
	(A) I & III	(B) I, II & IV	(C) I	, II	(D) III, IV				
6.	When the soda ext	ract containing thios	ulphate ion treat	ed with excess of	fAgNO ₃ solution for	llowed by boiling,			
	then.	-			3	[3]			
	(A) White precipitate is formed (D) Plack precipitate is formed								

- (A) White precipitate is formed
- (B) Black precipitate is formed
- (C) brown precipitate is formed
- (D) No ppt precipitate is formed
- 7. Identify the correct statement

[3]

[3]

- (A) The ppt of BaCO₃ is insoluble in dil HCl
- (B) $Hg(NO_3)$, + $Na_2S \rightarrow$ white ppt of HgS
- (C) $\text{Na}_2\text{SO}_4 + \text{Hg(NO}_3)_2 \rightarrow \text{yellow ppt of HgSO}_4.2\text{HgO}$
- (D) H₂S turns lime water milky
- 8. **Statement-1:** Brown ring test can be done for NO_3^- in presence of NO_2^-

Statement-2: Oxidation state of iron is changing from +2 to +1 in the brown ring complex.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

Question No. 9 & 10 (2 questions)

[6]

- **9.** Water of crystallisation in compound P
 - (A) 4 moles
- (B) 7 moles
- (C) 10 moles
- (D) 5 moles

- **10.** Blue compound Q is
 - $(A) Co(BO_2)_2$
- (B) NaCoPO₄
- (C) $CoO \cdot Al_2O_3$
- (D) CoO·MgO

1.	(A) (B) (C) (D)	2.	ABCD	3.	ABCD	4.	ABCD
5.	ABCD	6.	ABCD	7.	ABCD	8.	ABCD
9.	ABCD	10.	ABCD				

RACE # 43 INORGANIC CHEMISTRY

MM: 30 TIME: 15 Min.

Single correct:

1. Which reaction is possible

[3]

- (A) $KMnO_4 + Na_2SO_4 \longrightarrow$
- (B) BaSO₄ + KCl \longrightarrow
- (C) $SrSO_4 + Ni(NO_3)_2 \longrightarrow$
- (D) $ZnSO_4 + BaS \longrightarrow$
- 2. Match the following list and choose the correct option.

[3]

List 'A'

List 'B'

- (I) HgI_2
- (a) Yellow ppt obtained when H₂S is passed in its dil. HCl solution

(II) Na⁺

- (b) Yellow solution
- (III) FeCl₃
- (c) Yellow flame
- (IV) As³⁺
- (d) Yellow sublimate
- (A) I-(a), II-(c), III-(d), IV-(b)
- (B) I-(d), II-(c), III-(b), IV-(a)
- (C) II-(d), III-(c), I-(b), IV-(a)
- (D) II-(d), I-(c), III-(b), IV-(a)
- 3. Which of the following reaction form yellow ppt./residue.

[3]

- $(A) Pb(OAc)_2 + NaBr \longrightarrow$
- (B) $ZnCO_3 + Co(NO_3)_2 \xrightarrow{\Delta \atop Charcoal Cavity}$
- (C) $HgCl_2 + Na_2SO_4 \longrightarrow$
- (D) $AgNO_3 + K_2CrO_4 \longrightarrow$
- 4. A reddish pink substance on heating gives off a vapour which condenses on the sides of the test tube and the substance turns blue. It on cooling water is added to the residue it turns to its original colour. The substance is
 - (A) Iodine crystals

(B) Copper sulphate crystals

(C) Cobalt chloride crystals

- (D) Zinc oxide
- 5. The solid laboratory reagent 'A' gives the following reactions -

[3]

- (i) it imparts green colour to the flame
- (ii) its solution does not give a precipitate on passing H₂S
- (iii) when it is heated with solid $K_2Cr_2O_7$ and concentration H_2SO_4 , a red gas is evolved. When this gas passed into aqueous solution of NaOH, turns it yellow -

Identify 'A'

- (A) PbCl,
- (B) BaCl₂
- (C) NaCl
- (D) None of these
- **6.** When NH_4OH is added in $Hg_2(NO_3)_2$ solution, the ppt formed is

[3]

- (A) Hg₂O
- (B) Hg + HgO
- (C) $2Hg + HgO \cdot Hg(NH_2)NO_3$
- (D) $HgO \cdot Hg(NH_2)NO_3$

Question No. 7 to 9 (3 questions)

[9]

- 7. Yellow ppt. of compound (I) is insoluble in
 - (A) NaOH
- (B) CH₃COOH
- (C) dil. HNO₃
- (D) None

- **8.** Type of hybridization of complex (E)
 - (A) sp^3d^2
- (B) d^2sp^3
- (C) sp^3
- (D) dsp^2

9. Type of hybridization of central atom of gas (B)

Column-I

- (A) sp
- (B) sp²
- (C) sp³

Column-II

BaSO,

(D) No hybridization

Match the column:

10. Match the column -

[3]

	(Radical which can decolorize)		
	acidic solution of MnO ₄		(Given salt)
(A)	Only acidic radical	(P)	$Sn(NO_3)_2$
(B)	Only basic radical	(Q)	KNO_2
(C)	both radical	(R)	$\mathrm{FeC_2O_4}$
(D)	neither acidic nor basic radical	(S)	Na ₂ CO ₂

FILL THE ANSWER HERE

(T)

RACE # 44 INORGANIC CHEMISTRY

MM: 30 TIME: 15 Min.

Single correct:

1. In the reaction sequence: [3]

 $\operatorname{CrCl}_3 \xrightarrow{\operatorname{NH}_4\operatorname{Cl}} (A) \xrightarrow{\operatorname{Na}_2\operatorname{O}_2\operatorname{sol}^n} (B) \xrightarrow{\operatorname{lead}} (C)$. In this reaction sequence compound C is

- (A) Na₂CrO₄
- (B) $Na_2Cr_2O_7$ (C) $Cr(OH)_3$
- (D) $PbCrO_{A}$

Fe²⁺ and Fe³⁺ can be distinguished by 2.

[3]

- (A) $K_3[Fe(CN)_6]$ (B) $K_4[Fe(CN)_6]$
- (C) KSCN
- (D) All

 $Mg_3N_2 \xrightarrow{H_2O} A(gas) \xrightarrow{CuO} B + C(g) + H_2O$ **3.**

[3]

C(g) can be obtained by heating

- $(A) (NH_{4})_{2}SO_{4}$
- (B) (NH₄)₂Cr₂O₇ (C) NH₄NO₃

Calcium imide on hydrolysis will give gas (B) which on oxidation by bleaching powder gives gas (C), gas 4. (C) on reaction with magnesium give compound (D). (D) on hydrolysis gives again gas (B). (B), (C) and (D) are respectively [3]

(A) NH_3 , N_2 , Mg_3N_2

- (B) N₂, NH₃, MgNH
- $(C) N_2, N_2O_5, Mg(NO_3)_2$

- (D) NH_3 , NO_2 , $Mg(NO_2)_2$
- 5. The compound present in brorax bead is

[3]

- (A) B₂O₃
- (B) NaBO₂
- (C) NaBO₃
- (D) NaBO₂ + B_2O_3

Brown ppt. (A) of II group sulphide dissolve in HNO₃ gives (B) which gives white ppt (C) with NH₄OH. 6. (C) on reaction with HCl gives solution (D) which gives white turbidity on addition of water. What is (D).

[3]

[3]

- (A) BiCl₂
- $(B) Bi(OH)_2$
- (C) BiOCl
- (D) $Bi(NO_3)_3$

7. In this sequence X, Y, Z are respectively

- (A) Acidified H₂O₂; Alkaline H₂O₂; Acidified H₂O₂
- (B) Alkaline H₂O₂; Acidified H₂O₂: Zn⁺²/HCl
- (C) Acidified H₂O₂; Heat; Alkaline H₂O₂
- (D) Alkaline H₂O₂; Acidified H₂O₂; On standing

8. **Statement-1:** NH₄ and K⁺ cations can be distinguished by using Nesseler's reagent or HClO₄.

Statement-2: NH_4^+ gives brown ppt. with Nesseler's reagent where as K^+ forms white ppt. of $KClO_4$ with perchloric acid. [3]

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is false, statement-2 is true.
- (D) Statement-1 is true, statement-2 is false.

Assertion/reason:

9. Statement-1: In the brown ring compound, Fe is in the +1 oxidation state [3]

Statement-2: Experimental spin only magnetic moment found for this compound is 3.87 BM

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is false, statement-2 is true.
- (D) Statement-1 is true, statement-2 is false.

Match the Column:-

10. Match the column-I with column-II.

Note that column-I may have more than one matching options in column-II. [3]

	Column - I		Column -II
(A)	Sodium nitroprusside	(P)	$\mu = 0 \text{ B.M.}$
(B)	Brown ring complex	(Q)	octahedral
(C)	Complex of Ag formed during its extraction	(R)	$\mu = \sqrt{15} \text{ B.M.}$
(D)	Potassium ferrocyanide	(S)	NO ⁺ ligand

1. (A B C D	2.	(A) (B) (C) (D)	3.	ABCD	4.	ABCD
5. ABCD	6.	ABCD	7.	ABCD	8.	ABCD
9. ABCD	10.	A P Q R S T B P Q R S T C P Q R S T D P Q R S T				