

Acknowledgements

Most of the slides used in this course are taken or are modifications from Dana Nau's lecture slides for the textbook *Automated Planning*, licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License:

http://creativecommons.org/licenses/by-nc-sa/2.0/

http://creativecommons.org/licenses/by/3.0/es/

I would like to gratefully acknowledge Dana Nau's contributions and thank him for generously permitting me to use aspects of his presentation material.

Plan-space planning. Outline

- Motivation
- POP tree (plan space search)
- Structure of a partial plan
 - Example transportation
- The PSP algorithm
- Example
- POP and the Sussman anomaly
- Summary
- Heuristics in plan-space planning
 - Flaw-selection heuristics
 - Resolver-selection heuristics

Plan-space planning. Motivation.

- Problem with state-space search
 - In some cases we may try many different orderings of the same actions before realizing there is no solution

 Least-commitment strategy: don't commit to orderings, instantiations, etc., until necessary

Plan-space planning. Motivation.

- State-space planning:
 - Actions are planned in the same order as they will be later executed
 - Sequential plans (total order)
 - Multiple relationships among actions. Commiting to an specific ordering may yield a non-efficient planning process
- Plan-space planning:
 - Not commitment to a particular action ordering until necessary
 - Plans with parallel actions (POP: partial-order planning)

Plan-space planning. Motivation.

Partially ordered plans

A plan is complete iff every precondition is achieved

A precondition is <u>achieved</u> iff it is the effect of an earlier step and no possibly intervening step undoes it

POP tree (plan space search)

- Backward search from the goal
- Each node of the search space is a partial plan (graph of actions)
 - A set of partially-instantiated actions
 - A set of constraints
 - Make more and more refinements, until we have a solution

POP tree (plan space search)

Nodes in the POP tree are partial plans (yellow boxes)

POP tree (plan space search)

Structure of a partial plan

- Plan step: totally or partially-instantiated operator (action)
 - Start step: initial state
 - Finish step: problem goals
- Types of constraints between steps:
 - causal link:
 - use action a to establish the precondition p needed by action b <a,p,b>
 - precedence constraint: a must precede b (a < b)
 - binding constraints:
 - inequality constraints, e.g., $v_1 \neq v_2$ or $v \neq c$
 - equality constraints (e.g., $v_1 = v_2$ or v = c) and/or substitutions

Structure of a partial plan (example 1)

Causal link: <foo(x), p(x), bar(z)> Binding/equality constraint: x=z Precedence constraint: foo(x) < bar(y) Inequality constraint: x \neq y

Structure of a partial plan (plan refinement)

- Plan refinement: selecting a flaw in the plan and branching all over ways of solving the flaw
- Flaw:
 - open goal: selecting a pending subgoal to be solved in the plan
 - binding constraint: selecting a non-instantiated variable
 - threat: selecting a step that threatens a causal link
 - causal link: <p1,l,p2>
 - ∃ p3/ I ∈ effects⁻(p3)
 - p3 is unordered with respect to p1 and p2
 - promotion: p3 < p1
 - demotion: p2 < p3
 - - separation: constraint variables to avoid the threat
- How to tell we have a solution: no more flaws in the plan

Flaws: open goals

- Open goal:
 - An action/step a has a precondition p that we haven't decided how to establish
- Resolving the flaw:
 - Find an action/step b
 - (either already in the plan, or insert it)
 - that can be used to establish p
 - can precede a and produce p
 - Instantiate variables and/or constrain variable bindings
 - Create a causal link

foo(x)

Precond: ...

Effects: p(x)

p(z) baz(z)

Precond: p(z)

Effects: ...

Flaws: threats

- Threat: a deleted-condition interaction
 - Action/step a establishes a precondition (e.g., pq(x))
 of action b
 - Another action/step c is capable of deleting p
- Resolving the flaw:
 - impose a constraint to prevent c from deleting p
- Three possibilities:
 - Make b precede c
 - Make c precede a
 - Constrain variable(s)
 to prevent c from deleting p

foo(x)
Precond: ...

Effects: pq(x)

baz(x)
Precond: pq(x)
Effects: ...

Example transportation (partial plans) Plan 1: initial plan (at p1 cB) **Initial step Final step** (at p1 cA) (at t1 cA) Plan 2: refinement plan over plan 1 (at p1 cB) **Initial step Final step** (at p1 cA) (at ?tr cB) (at t1 cA) (in p1 ?tr) (at p1 cB) unload p1 ?tr cB ?tr={t1} (at p1 cB) ~(in p1 ?tr)

Example transportation (POP tree) Plan 1 goal (at p1 cB) flaw: resolvers of the flaw: operator (unload p1 ?tr cB) flaws: - variables: ?tr Plan 2 - open goals: (at ?tr cB), (in p1 ?tr) flaw: variable ?tr resolvers of the flaw: ?tr=t1 Flaws: - open goals: (at t1 cB), (in p1 t1) **Plan 2.1**

Example transportation (POP tree cont.)

Example transportation (partial plans cont.)

Example transportation (POP tree cont.)

Example transportation (partial plans cont.)

Example transportation (POP tree cont.)

The PSP Procedure

```
\begin{split} \mathsf{PSP}(\pi) \\ & flaws \leftarrow \mathsf{OpenGoals}(\pi) \cup \mathsf{Threats}(\pi) \\ & \mathsf{if} \ flaws = \emptyset \ \mathsf{then} \ \mathsf{return}(\pi) \\ & \mathsf{select} \ \mathsf{any} \ \mathsf{flaw} \ \phi \in flaws \\ & resolvers \leftarrow \mathsf{Resolve}(\phi,\pi) \\ & \mathsf{if} \ resolvers = \emptyset \ \mathsf{then} \ \mathsf{return}(\mathsf{failure}) \\ & \mathsf{nondeterministically} \ \mathsf{choose} \ \mathsf{a} \ \mathsf{resolver} \ \rho \in resolvers \\ & \pi' \leftarrow \mathsf{Refine}(\rho,\pi) \\ & \mathsf{return}(\mathsf{PSP}(\pi')) \\ & \mathsf{end} \end{split}
```

- PSP is both sound and complete
- It returns a partially ordered solution plan
 - Any total ordering of this plan will achieve the goals
 - Or could execute actions in parallel if the environment permits it

Example

Similar (but not identical) to an example in Russell and Norvig's *Artificial Intelligence: A Modern Approach* (1st edition)

Operators:

Start

Start and **Finish** are dummy actions that we'll use instead of the initial state and goal

Precond: none

Effects: At(Home), sells(HWS,Drill), Sells(SM,Milk), Sells(SM,Banana)

Finish

Precond: Have(Drill), Have(Milk), Have(Banana), At(Home)

Effects: none

- Go(l,m)

Precond: At(I)

Effects: At(m), $\neg At(l)$

Buy(*p*,*s*)

Precond: At(s), Sells(s,p)

Effects: Have(p)

- Need to give PSP a plan π as its argument
 - Initial plan: Start, Finish, and an ordering constraint

Start

Effects: At(Home), Sells(HWS,Drill),

Sells(SM,Milk), Sells(SM,Bananas)

Precond: Have(Drill) Have(Milk) Have(Bananas) At(Home)

Finish

Example (continued) The first three refinement steps These are the only possible ways to establish the Have preconditions Start $At(s_2)$ | $Sells(s_2,Milk)$ $At(s_3)$ | $Sells(s_3,Bananas)$ $At(s_1)$ 'Sells(s_1 , Drill) Buy(Bananas, s_2) Buy(Drill, s_1) Buy(Milk, s_2) Have(Drill) Have(Milk) | Have(Bananas) At(Home) Finish

Example (continued) Three more refinement steps The only possible ways to establish the Sells preconditions Start Sells(HWS, Drill) Sells(SM,Bananas) Sells(SM,Milk) At(HWS) | Sells(HWS,Drill) At(SM) | Sells(SM,Milk) At(SM) | Sells(SM,Bananas) Buy(Drill, HWS) Buy(Bananas, SM) Buy(Milk, SM) Have(Drill) Have(Milk) Have(Bananas) At(Home)

Finish

Reminder: STRIPS and the Sussman Anomaly

POP and the Sussman Anomaly

Summary

- How to choose which flaw to resolve first and how to resolve it?
 - Heuristics
- PSP doesn't commit to orderings and instantiations until necessary
 - Avoids generating search trees like this one:
- Problem: how to prune infinitely long paths?
 - Loop detection is based on recognizing states we've seen before
 - In a partially ordered plan, we don't know the states
- Can we prune if we see the same action more than once?

$$\dots$$
 go(b,a) — go(a,b) – go(b,a) — at(a)

 No. Sometimes we might need the same action several times in different states of the world.

Heuristics in plan-space planning

```
\begin{split} & FSP(\pi) \\ & flaws \leftarrow \mathsf{OpenGoals}(\pi) \cup \mathsf{Threats}(\pi) \\ & \text{if } flaws = \emptyset \mathsf{ then } \mathsf{return}(\pi) \\ & \mathsf{select } \mathsf{any } \mathsf{flaw} \ \phi \in flaws \\ & resolvers \leftarrow \mathsf{Resolve}(\phi,\pi) \\ & \mathsf{if } resolvers = \emptyset \mathsf{ then } \mathsf{return}(\mathsf{failure}) \\ & \mathsf{nondeterministically } \mathsf{choose } \mathsf{a} \mathsf{ resolver} \ \rho \in resolvers \\ & \pi' \leftarrow \mathsf{Refine}(\rho,\pi) \\ & \mathsf{return}(\mathsf{PSP}(\pi')) \\ & \mathsf{end} \end{split}
```

- Flaw-selection heuristic
- Resolver-selection heuristic

Heuristics in plan-space planning

Serializing and AND/OR Tree

• The search space is an AND/OR tree Goal g_1 Goal g_2 Constrain variable v Constrain tasks

- Deciding what flaw to work on next = serializing this tree (turning it into a plan-space tree)
 - at each AND branch, Partial plan p choose a child to expand next, and delay expanding Goal g₁ the other children Operator o₁ Operator o_n Partial plan p₁ Partial plan p_n Constrain Order Constrain Goal g₂ Order Goal g₂ variable v tasks variable v tasks

One Serialization (order of resolution: g1,threat,g2)

Another Serialization (order of resolution: g2, threat, g1)

Why Does This Matter?

- Different refinement strategies produce different serializations
 - the search spaces have different numbers of nodes
- In the worst case, the planner will search the entire serialized search space
- The smaller the serialization, the more likely that the planner will be efficient

Why Does This Matter?

- A particular goal `g':
 - 'B' resolvers → 'B' partial plans
 - 'a' threats in each plan, 'm' resolvers for each threat
 - Effective branching factor of search by POP: $B_q = B^*m^a$
- Time complexity of a solution plan with 'n' steps/actions and 'p' preconditions/goals per step:
 - O(B_g)^{np}
- Exponential number of nodes, so in order for PSP to be efficient we need:
 - Good flaw-selection heuristics
 - Good resolver-selection heuristics

Flaw-selection heuristics

- Fewest Alternatives First (FAF)
 - Choose the flaw that has the smallest number of alternatives
 - In this case, choose to resolve precondition g_1
- Last-In, First-out (LIFO)
- Delay potential threats
- Zero-LIFO (ZLIFO)

Resolver-selection heuristics

- Select the least cost partial plan (Π_1 , Π_2 , ..., Π_n)
- Use an A* algorithm $f(\Pi)=g(\Pi)+h(\Pi)$ where:
 - $g(\Pi)$ is the cost of the path from the root node (initial empty plan) to plan Π
 - $h(\Pi)$ is an estimate of the least cost of the path from Π to a solution plan (goal state)

Node-Selection Heuristic

- Suppose we're searching a tree in which each edge (s,s') has
 a cost c(s,s')
 - If p is a path, let c(p) = sum of the edge costs
 - For classical planning, this is the length of p
- For every state s, let
 - $-g(s) = \cos t$ of the path from s_0 to s
 - $-h^*(s)$ = least cost of all paths from s to goal nodes
 - $-f^*(s) = g(s) + h^*(s) =$ least cost of all paths from s_0 to goal nodes that go through s
- Suppose h(s) is an estimate of $h^*(s)$
 - Let f(s) = g(s) + h(s)
 - f(s) is an estimate of $f^*(s)$
 - h is admissible if for every state s, $0 \le h(s) \le h^*(s)$
 - If h is admissible then f is a lower bound on f*

The A* Algorithm

A* on trees:

loop

choose the leaf node S such that f(S) is smallest if S is a solution then return it and exit expand it (generate its children)

- On graphs, A* is more complicated
 - additional machinery to deal with multiple paths to the same node
- If a solution exists (and certain other conditions are satisfied), then:
 - If h(s) is admissible, then A* is guaranteed to find an optimal solution
 - The more "informed" the heuristic is (i.e., the closer it is to h^*), the smaller the number of nodes A^* expands
 - If h(s) is within c of being admissible, then A^* is guaranteed to find a solution that's within c of optimal

Resolver-selection heuristics

- Elements of a plan Π that can take part of the function $f(\Pi)=g(\Pi)+h(\Pi)$:
 - $N(\Pi)$: number of steps in plan Π
 - $\mathsf{OP}(\Pi)$: open goals/preconditions in plan Π
 - $T(\Pi)$: threats in plan Π

- Usually f(Π)=N(Π)+OP(Π):
 - Does this 'f' function guarantee to find an optimal solution, i.e., is it an A* algorithm?