Semaine du 11 Novembre - Planche nº 1

Exercice no 1:

(Questions de cours):

- 1. Considérons $x \in \mathbb{R}_+$, donnez la définition du développement décimal de x.
- 2. Montrer que le développement décimal de x est propre est converge vers x
- 3. Que dire du produit d'une suite bornée et d'une suite convergente vers 0? Le montrer.
- 4. Que dire du produit de deux suites convergentes? Le montrer.

Exercice no 2:

(Suites) : Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles telles que $\lim_{n\to+\infty}u_n^2+u_nv_n+v_n^2=0$. Montrer que les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ convergent vers 0.

Exercice no 3:

(Borne supérieure) : Soit f une application croissante de [0,1] dans [0,1]. On souhaite montrer que f admet un point fixe, c'est-à-dire que'il existe $\ell \in [0,1]$ tel que $f(\ell) = \ell$.

- 1. On pose $A = \{x \in [0,1], f(x) \ge x\}$. Montrer que A est non vide et justifier que la borne supérieure de A existe.
- 2. On note alors $c = \sup(A)$. Montrer que $c \in [0, 1]$.
- 3. Montrer que $c \leq f(c)$.
- 4. Montrer que $f(c) \in A$
- 5. Conclure.

Semaine du 11 Novembre - Planche nº 2

Exercice no 1:

(Questions de cours):

- 1. Montrer que \mathbb{D} et \mathbb{Q} sont denses dans \mathbb{R}
- 2. Montrer que toute suite convergente est bornée.

Exercice nº 2:

(Suites): Soient 0 < a < b, et $(u_n)_{n>0}$ et $(v_n)_{n>0}$ les suites définies par $u_0 = a, v_0 = b$ et

$$\forall n \ge 0, u_{n+1} = \sqrt{u_n v_n} \text{ et } v_{n+1} = \frac{u_n + v_n}{2}$$

Prouver que les suites $(u_n)_{n\geq 0}$ et $(v_n)_{n\geq 0}$ sont adjacentes. Leur limite commune s'appelle la moyenne arithmético-géométrique de a et b, on ne cherchera pas à la calculer.

Exercice no 3:

(Sous-groupe additifs de \mathbb{R} (borne inférieure et densité)) : Soit G un sous-groupe de $(\mathbb{R}, +)$. On suppose G non trivial, i.e. $G \neq \{0\}$.

1. Question préliminaire : soient $\alpha \in \mathbb{R}_+^*$ et $\beta \in \mathbb{R}$. Montrer qu'il existe $n \in \mathbb{Z}$ tel que

$$n\alpha \le \beta < (n+1)\alpha$$

- 2. Justifier que $G \cap \mathbb{R}_+^*$ possède une borne inférieure que l'on notera a.
- 3. On suppose que a=0.
 - a) Soient $t \in \mathbb{R}$ et $\varepsilon > 0$. En utilisant la question 1, montrer qu'il existe $g \in G$ tel que $|g t| < \varepsilon$.
 - b) En déduire que G est dense dans \mathbb{R} .
- 4. On suppose que a > 0.
 - a) On suppose que $a \notin G$. Justifier l'existence de deux éléments distincts x et y de G appartenant à l'intervalle [a, 2a[.
 - b) Aboutir à une contradiction et en déduire que $a \in G$.
 - c) En déduire que $a\mathbb{Z} \subseteq G$.
 - d) Soit $z \in G$. En utilisant la question 1, montrer qu'il existe $n \in \mathbb{Z}$ tel que z = na.
 - e) En déduire que $G = a\mathbb{Z}$.

Semaine du 11 Novembre - Planche nº 3

Exercice no 1:

(Questions de cours):

- 1. Montrer que $\mathbb{R} \mathbb{Q}$ est dense dans \mathbb{R}
- 2. Montrer que si $(u_n)_{n\in\mathbb{N}}$ est une suite convergente de limite non nulle ℓ , alors $\left(\frac{1}{u_n}\right)_{n\in\mathbb{N}}$ est une suite convergente de limite $\frac{1}{\ell}$.
- 3. Montrer la conservation des inégalités larges par passage à la limite.

Exercice nº 2:

(Borne supérieure et inférieure) : Prouver l'existence puis calculer les bornes supérieures et inférieures de l'ensemble

$$A = \left\{ \frac{(-1)^n}{n} \mid n \ge 1 \right\}$$

Exercice no 3:

(Suites) : Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par ses deux premiers termes $u_0, u_1 \in]0,1[$ et par la relation de récurrence

$$u_{n+2} = \frac{\sqrt{u_{n+1}} + \sqrt{u_n}}{2}$$

- 1. Montrer que pour tout $n \in \mathbb{N}, u_n \in]0, 1[$.
- 2. On pose $v_n = \min(u_n, u_{n+1})$ pour tout $n \in \mathbb{N}$. Montrer que $(v_n)_{n \in \mathbb{N}}$ est croissante.
- 3. Montrer que $v_{n+2} \ge \sqrt{v_n}$ pour tout $n \in \mathbb{N}$.
- 4. En déduire la convergence et la limite de $(u_n)_{n\in\mathbb{N}}$.