TARTU ÜLIKOOL MATEMAATIKA-INFORMAATIKATEADUSKOND

Matemaatika instituut Matemaatika eriala

Priit Lätt

Minkowski aegruumi geomeetriast

Bakalaureusetöö (6 EAP)

Juhendaja: Viktor Abramov

 Autor:
 "...."juuni 2013

 Juhendaja:
 "...."juuni 2013

TARTU 2013

Sisukord

1	Sissejuhatus	2
2	Vajalikud eelteadmised 2.1 ptk	3
3	Minkowski ruumi geomeetriline struktuur 3.1 Skalaarkorrutise definitsioon ja omadused	
4	Lisa 1 4.1 Skalaarkorrutisega seotud lisatulemused	8

1 Sissejuhatus

ja nii edasi.

Märgime, et töös kasutame summade tähistamisel Einstein'i summeerimiskokkulepet. See tähendab, kui meil on indeksid i ja j, mis omavad väärtusi $1, \ldots, n$ $(n \in \mathbb{N})$, siis kirjutame

$$x^{i}e_{a} = \sum_{a=1}^{n} x^{i}e_{i} = x^{1}e_{1} + x^{2}e_{2} + \dots + x^{n}e_{n},$$

$$\lambda^{i}{}_{j}x^{j} = \sum_{j=1}^{n} = \lambda^{i}{}_{1}x^{1} + \lambda^{i}{}_{2}x^{2} + \dots + \lambda^{i}{}_{n}x^{n},$$

$$\eta_{ij}u^{i}v^{j} = \eta_{11}u^{1}v^{1} + \eta_{12}u^{1}v^{2} + \dots + \eta_{1n}u^{1}v^{n} + \eta_{21}u^{2}v^{1} + \dots + \eta_{nn}u^{n}v^{n},$$
edasi

Vektori u pikkust tähistame edaspidi |u|.

2 Vajalikud eelteadmised

Selles peatükis toome välja definitsioonid ja tähtsamad tulemused, mida läheb tarvis töö järgmistes osades. Lihtsamad tulemused, millele on pööratud tähelepanu kursustes Algebra I või Geomeetria II, esitame seejuures tõestusteta.

2.1 ptk

3 Minkowski ruumi geomeetriline struktuur

3.1 Skalaarkorrutise definitsioon ja omadused

Olgu \mathbb{V} n-mõõtmeline vektorruum üle reaalarvude korpuse. Me ütleme, et kujutus $g: \mathbb{V} \times \mathbb{V} \to \mathbb{R}$ on bilineaarvorm, kui g on mõlema muutuja järgi lineaarne, see tähendab $g(\alpha_1 u_1 + \alpha_2 u_2, v) = \alpha_1 g(u_1, v) + \alpha_2 g(u_2, v)$ ja $g(u, \alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 g(u, v_1) + \alpha_2 g(u, v_2)$ kus α_1 ja α_2 on suvalised reaalarvud ning u, u_1, u_2, v, v_1 ja v_2 on vektorruumi \mathbb{V} elemendid.

Olgu $u, v \in \mathbb{V}$. Bilineaarvormi g nimetatakse sümmeetriliseks, kui g(u, v) = g(v, u) ja mittekidunuks, kui u = 0 järeldub tingumusest iga $v \in \mathbb{V}$ korral g(u, v) = 0.

Definitsioon 3.1. Mittekidunud sümmeetrilist bilineaarvormi $g: \mathbb{V} \times \mathbb{V} \to \mathbb{R}$ nimetatakse skalaarkorrutiseks. Vektorite u ja v skalaarkorrutist tähistame sageli ka kujul $u \cdot v$.

Tänu skalaarkorrutise bilineaarsusele on kergesti tuletatavad järgmised omadused:

- $u \cdot 0 = 0 \cdot v = 0$ kõikide $u, v \in \mathbb{V}$ korral, sest bilineaarsuse ingumusest saame $0 \cdot v = (0 * 0) \cdot v = 0 * (0 \cdot v) = 0$,
- kui $u_1, u_2, \dots, u_n, u, v_1, v_2, \dots, v_n \in \mathbb{V}$, siis $(\sum_{i=1}^n u_i) \cdot v = \sum_{i=1}^n (u_i \cdot v)$ ja $u \cdot (\sum_{i=1}^n v_i) = \sum_{i=1}^n (u \cdot v_i)$,
- kui $\{e_1, e_2, \ldots, e_n\}$ on vektorruumi \mathbb{V} baas ning kui tähistame $\eta_{ij} = e_i \cdot e_j$, $i, j = 1, 2, \ldots, n$, siis $u \cdot v = \sum_{i=1}^n \sum_{j=1}^n \eta_{ij} u^i v^j = \eta_{ij} u^i v^j$, kus $u = u^i e_i$ ja $v = v^i e_i$.

Näide 3.1. Vaatleme ruumi \mathbb{R}^n . Olgu $u = (u^1, u^2, \dots, u^n)$, $v = (v^1, v^2, \dots, v^n) \in \mathbb{R}^n$. Lihtne on veenduda, et kujutus $g(u, v) = u^1v^1 + u^2v^2 + \dots + u^nv^n$ on skalaarkorrutis.

Näites 1 defineeritud skalaarkorrutis on positiivselt määratud, see tähendab iga $v \neq 0$ korral g(v,v) > 0. Kui g(v,v) < 0 kõikide $v \neq 0$ korral, siis ütleme, et g on negatiivselt määratud ja kui g pole ei positiivselt ega negatiivselt määratud, siis öeldakse, et g on määramata.

Definitsioon 3.2. Kui g on skalaarkorrutis vektorruumil \mathbb{V} , siis nimetame vektoreid u ja v g-ortogonaalseteks ($v\tilde{o}i$ lihtsalt ortogonaalseteks, kui g roll on kontekstist selge), kui g (u, v) = 0 . Kui $\mathbb{W} \subset \mathbb{V}$ on alamruum, siis ruumi \mathbb{W} ortogonaalne täiend \mathbb{W}^{\perp} on hulk $\mathbb{W}^{\perp} = \{u \in \mathbb{V} : \forall v \in \mathbb{W}g$ (u, v) = 0.

Definitsioon 3.3. Skalaarkorrutise g poolt määratud ruutvormiks nimetame kujutust $Q: \mathbb{V} \to \mathbb{R}$, kus $Q(v) = g(v, v) = v \cdot v$, $v \in \mathbb{V}$.

Lause 3.1. Olgu g_1 ja g_2 kaks skalaarkorrutist vektorruumil \mathbb{V} , mis rahuldavad tingimust $g_1(u,u) = g_2(u,u)$ iga $v \in \mathbb{V}$ korral. Siis kehtib $g_1(u,v) = g_2(u,v)$ kõikide $u,v \in \mathbb{V}$ korral, ehk teisi sõnu, $g_1 \equiv g_2$.

Tõestus. Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Teoreem 3.1. Olgu \mathbb{V} reaalne n-mõõtmeline vektorruum ning olgu $g: \mathbb{V} \times \mathbb{V} \to \mathbb{R}$ skalaarkorrutis. Vektorruumil \mathbb{V} leidub baas $\{e_1, e_2, \ldots, e_n\}$ nii, et $g(e_i, e_j) = 0$ kui $i \neq j$ ja $Q(e_i) = \pm 1$ iga $i = 1, 2, \ldots, n$ korral. Enamgi veel, baasivektorite arv, mille korral $Q(e_i) = -1$ on sama kõikide neid tingimusi rahuldavate baaside korral sama.

 $T\~oestus$. Arvestades $Gram^1$ -Schmidti ² algoritmi muutub teoreemi t $\~o$ estus ilmseks³.

Definitsioon 3.4. Vektorruumi V baasi teoreemist 4.2 nimetame ortonormeeritud baasiks.

Skalaarkorrutise g suhtses ortonormaalse baasi $\{e_1, e_2, \ldots, e_n\}$ vektorite arvu r, mille korral $Q(e_i) = -1, i \in \{1, 2, \ldots, n\}$, nimetame skalaarkorrutise g indeksiks. Edasises eeldame, et ortonormeeritud baasid on indekseeritud nii, et baasivektorid e_i , mille korral $Q(e_i) = -1$, paiknevad loetelu lõpus, ehk ortonormeeritud baasi

$$\{e_1, e_2, \dots, e_{n-r}, e_{n-r+1}, \dots, e_n\}$$

korral $Q(e_i) = 1$, kui i = 1, 2, ..., n - r, ja $Q(e_i) = -1$, kui i = n - r + 1, ..., n. Tähistades $u = u^i e_i$ ja $v = v^i e_i$ saame sellise baasi suhtes skalaarkorrutise g arvutada järgmiselt:

$$g(u,v) = u^{1}v^{1} + u^{2}v^{2} + \dots + u^{n-r}v^{n-r} - u^{n-r+1}v^{n-r+1} - \dots - u^{n}v^{n}.$$

Märkus 3.1. Vektorruumi \mathbb{V} skalaarkorrutisega g, mille indeks r > 0 nimetatakse pseudoeukleidiliseks ruumiks.

 $^{^1\}mathrm{J} \sigma \mathrm{gen}$ Pedersen Gram (1850 – 1916) - taani matemaatik

²Erhard Schmidt (1876 – 1959) - Tartus sündinud saksma matemaatik

³Vaata Lisa 1, Märkus 4.1

3.2 Minkowski aegruumi mõiste

Definitsioon 3.5. Minkowski aegruumiks nimetatakse 4-mõõtmelist reaalset vektorruumi \mathcal{M} , millel on defineeritud mittekidunud sümmeetriline bilineaarvorm g indeksiga 1.

Ruumi \mathcal{M} elemente nimetatakse sündmusteks ja kujutust g nimetatakse Lorentzi skalaarkorrutiseks ruumil \mathcal{M} .

Vahetult Minkowski ruumi definitsioonist selgub, et ruumil \mathcal{M} leidub baas $\{e_1, e_2, e_3, e_4\}$ järgmise omadusega. Tähistades $u = u^i e_i$ ja $v = v^i e_i$, siis

$$g(u, v) = u^{1}v^{1} + u^{2}v^{2} + u^{3}v^{3} - u^{4}v^{4}.$$

Olgugi $\{e_1, e_2, e_3, e_4\}$ või lühidalt $\{e_a\}$ ruumi \mathcal{M} ortonormeeritud baas. Kui $x = x^1e_1 + x^2e_2 + x^3e_3 + x^4e_4$, siis tähistame sündmuse x koordinaadid baasi $\{b_a\}$ suhtes (x^1, x^2, x^3, x^4) ja seejuures ütleme, et (x^1, x^2, x^3) on ruumikoordinaadid ning (x^4) on ajakoordinaat.

Kuna Lorentzi skalaarkorrutis g ei ole ruumil \mathcal{M} positiivselt määratud, siis leiduvad vektorid $u \in \mathcal{M}, u \neq 0$ nii, et g(u, u) = 0. Selliseid vektoreid nimetatakse nullvektoriteks. Osutub, et ruumis \mathcal{M} leidub koguni baase, mis koosnevad vaid nullvektoritest.

Näide 3.2. Üheks ruumi \mathcal{M} baasiks, mis koosneb vaid nullvektoritest on näiteks $\{e_1^0, e_2^0, e_3^0, e_4^0\}$, kus $e_1^0 = (1, 0, 0, 1)$, $e_2^0 = (0, 1, 0, 1)$, $e_3^0 = (0, 0, 1, 1)$ ja $e_4^0 = (-1, 0, 0, 1)$. Tõepoolest, süsteemi $\{e_1^0, e_2^0, e_3^0, e_4^0\}$ lineaarne sõltumatus on vahetult kontrollitav ja e_1^0, \ldots, e_4^0 on nullvektorid, sest

$$\begin{split} Q\left(e_1^0\right) &= 1^2 + 0 + 0 - 1^2 = 0, \\ Q\left(e_2^0\right) &= 0 + 1^2 + 0 - 1^2 = 0, \\ Q\left(e_3^0\right) &= 0 + 0 + 1^2 - 1^2 = 0, \\ Q\left(e_4^0\right) &= (-1)^2 + 0 + 0 - 1^2 = 0. \end{split}$$

Samas paneme tähele, et selline baas ei saa koosneda paarikaupa ortogonaalsetest vektoritest.

Teoreem 3.2. Olgu $u, v \in \mathcal{M} \setminus \{0\}$ nullvektorid. Vektorid u ja v on ortogonaalsed siis ja ainult siis, kui nad on paralleelsed, st leidub $t \in \mathbb{R}$ nii, et u = tv.

 $T\tilde{o}estus.$ Piisavus. Olgu $u, v \in \mathcal{M} \setminus \{0\}$ paralleelsed nullvektorid. Siis leidub $t \in \mathbb{R}$ nii, et u = tv. Seega

$$g(u, v) = g(tv, v) = tg(v, v) = 0$$

ehk vektorid u ja v on ortogonaalsed, nagu tarvis.

Tarvilikkus. Olgu $u, v \in \mathcal{M} \setminus \{0\}$ ortogonaalsed nullvoktorid, st g(u, v) = 0. Cauchy-Schwartz-Bunjakowski võrratuse⁴ $g^2(u, v) \leq g(u, u) g(v, v)$ põhjal $0 \leq g(u, u) g(v, v)$, sest u ja v on ortogonaalsed. Teisalt, et u ja v on nullvektorid, siis g(u, u) g(v, v) = 0 ja järelikult kehtib Cauchy-Schwartz-Bunjakowski võrratuses võrdud 0 = 0, mis tähendab, et u ja v on lineaarselt sõltuvad.

Võtame nüüd vaatluse alla kaks sellist sündmust $x, x_0 \in \mathcal{M}, x \neq x_0$, mida ühendav vektor on nullvektor, see tähendab $Q(x - x_0) = 0$. Seda asjaolu arvesse võttes saame, et kui $\{e_a\}$ ruumi \mathcal{M} ortonormaalne baas ja me tähistame $x = x^a e_a$, $x_0 = x_0^a e_a$, siis kehtib võrdus

$$Q(x - x_0) = (x^1 - x_0^1)^2 + (x^2 - x_0^2)^2 + (x^3 - x_0^3)^2 - (x^4 - x_0^4)^2 = 0.$$
 (3.1)

Kõigi selliste $x \in \mathcal{M}$ hulka, mille korral on tingimus (3.1) täidetud nimetatakse nullkoonuseks (või ka $valguse\ koonuseks$) punktis x_0 ja tähistatakse $\mathcal{C}_N(x_0)$. Seega $\mathcal{C}_N(x_0) = \{x \in \mathcal{M} : Q(x - x_0) = 0\}$. Kirjeldavalt võime öelda, et kõik hulga $\mathcal{C}_N(x_0)$ elemendid on ühendatavad sündmusega x_0 $valguskiire\ R_{x_0,x}$ abil, mille me defineerime kui $R_{x_0,x} = \{x_0 + t(x - x_0) : t \in \mathbb{R}\}$.

⁴Vaata Lisa 1, Teoreem 4.2

4 Lisa 1

4.1 Skalaarkorrutisega seotud lisatulemused

Teoreem 4.1. Lõplikumõõtmelises skalaarkorrutisega g varustatud vektorruumis \mathbb{V} leidub ortonormeeritud baas.

 $T\~oestus$. Esiteks märgime, et igas ühem $\~o$ otmelises vektorruumis eksisteerib ortonormeeritud baas, sest kui $\{b\}$ on mingi baas, siis $\left\{\frac{1}{|b|}b\right\}$ on ortonormeeritud baas. Eeldame nüüd, et igas (n-1)-m $\~o$ otmelises vektorruumis on olemas ortonormeeritud baas ning olgu $\mathbb V$ n-m $\~o$ otmeline vektorruum baasiga $\{b_1, b_2, \ldots, b_n\}$. Eelduse järgi on ruumis $\mathbb V$ ortonormeeritud süsteem $\{e_1, e_2, \ldots, e_{n-1}\}$, kusjuures

$$span\{e_1, e_2, \dots, e_{n-1}\} = span\{b_1, b_2, \dots, b_{n-1}\}.$$

Seega tarvitseb meil leida veel $a_n \in \mathbb{V} \setminus \{0\}$ omadusega

$$a_n \perp \text{span}\{e_1, e_2, \dots, e_{n-1}\},\$$

sest siis $\{e_1,e_2,\ldots,e_{n-1},\frac{1}{|a_n|}a_n\}$ on ruumi $\mathbb V$ ortonormeeritud baas. Otsime vektorit a_n kujul

$$a_n = b_n + \sum_{j=1}^{n-1} \alpha^j e_j, \text{ kus } \alpha^1, \dots, \alpha^{n-1} \in \mathbb{R}.$$

$$(4.1)$$

Paneme tähele, et kui a_n on sellisel kujul, siis $a_n \neq 0$, sest vastasel korral $b_n \in \text{span}\{b_1, b_2, \dots, b_{n-1}\}$, mis on vastuolus süsteemi $\text{span}\{b_1, b_2, \dots, b_{n-1}\}$ lineaarse sõltumatusega. Kui a_n on kujul (4.1), siis kõikide $k \in \{1, 2, \dots, n-1\}$ korral

$$a_n \perp e_k \iff a_n \cdot e_k = 0 \iff \left(b_n + \sum_{j=1}^{n-1} \alpha^j e_j\right) \cdot e_k = 0$$

Samas, kuna

$$\left(b_n + \sum_{j=1}^{n-1} \alpha^j e_j\right) \cdot e_k = b_n \cdot e_k + \sum_{j=1}^{n-1} \alpha^j \left(e_j \cdot e_k\right) = b_n \cdot e_k + \alpha_k,$$

siis $a_n \perp e_k \iff \alpha_k = -(b_n \cdot e_k)$. Järelikult võime võtta $a_n := b_n - \sum_{j=1}^{n-1} (b_n \cdot e_j) e_j$.

Märkus 4.1. Teoreemi 4.1 tõestuses antud algortimi ortonormeetirud baasi leidmiseks nimetatakse Gram-Schmidti algoritmiks või ortogonaliseerimisprotsessiks.

Teoreem 4.2 (Cauchy-Schwartz-Bunjakowski võrratus). Olgu \mathbb{V} vektroruum skalaarkorrutisega $g: \mathbb{V} \times \mathbb{V} \to \mathbb{R}$. Sellisel juhul kehtib võrratus

$$g^{2}(u, v) \le g(u, u) g(v, v)$$
 (4.2)

kõikide $u, v \in \mathbb{V}$ korral. Seejuures võrdus kehtib parajasti siis, kui elemendid u ja v on lineaarselt sõltuvad.

 $T\~oestus$. Olgu $\mathbb V$ reaalne vektorruum skalaarkorrutisega g ning olgu $u,v\in\mathbb V$. Siis iga $\lambda\in\mathbb R$ korral

$$0 \leq g(u + \lambda v, u + \lambda v) = g(u, u) + 2g(u, \lambda v) + g(\lambda v, \lambda v) = g(u, u) + 2\lambda g(u, v) + \lambda^{2} g(v, v) \leq g(u, u) + 2\lambda |g(u, v)| + \lambda^{2} g(v, v).$$

Saime λ suhtes võrratuse

$$g(v, v) \lambda^2 + 2|g(u, v)|\lambda + g(u, u) \ge 0,$$

mille reaalarvuliste lahendite hulk on \mathbb{R} . Kui g(v,v)>0, siis on tegu ruutvõrratusega. Seega vastava ruutvõrrandi diskriminant $4|g(u,v)|^2-4g(u,u)\,g(v,v)\leq 0$, millest järeldub vahetult võrratus (4.1). Juhul g(v,v)=0 peab kõikide $\lambda\in\mathbb{R}$ korral kehtima $2|g(u,v)|\lambda+g(u,u)\geq 0$, mis on võimalik vaid siis, kui g(u,v)=0. Sellisel juhul on tingimuse (4.1) kehtivus aga ilmne.

Veendume veel, et tingimuses (4.1) kehtib võrdus parajasti siis, kui u ja v on lineaarselt sõltuvad.

Oletame esiteks, et vektorid u ja v on lineaarselt sõltuvad. Siis leidub $\alpha \in \mathbb{R}$ selliselt, et $u = \alpha v$. Seega

$$g^{2}(u, v) = g^{2}(\alpha v, v) = \alpha^{2}g^{2}(v, v) = \alpha^{2}g(v, v) g(v, v)$$

= $g(\alpha v, \alpha v) g(v, v) = g(u, u) g(v, v)$,

nagu tarvis.

Kehtigu nüüd tingimuses (4.1) võrdus. Veendume, et siis u ja v on lineaarselt sõltuvad. Üldistust kitsendamata võime eeldada, et $u \neq 0$ ja $v \neq 0$. Siis ka $g(u, u) \neq 0$ ja $g(v, v) \neq 0$. Paneme tähele, et

$$g^{2}(u,v) = g(u,u) g(v,v)$$

on eelnevat arvestades samaväärne tingimusega

$$\frac{g^{2}(u,v)g(v,v)}{g^{2}(v,v)} = g(u,u).$$

Tähistades $a := \frac{g(u,v)}{g(v,v)}$, saame, et $a^2g(v,v) = g(u,u)$ ehk g(av,av) = g(u,u), millest u = av.