FUNDAMENTOS MATEMÁTICOS PARA CIÊNCIA DA COMPUTAÇÃO

Conteúdo

1 Conjuntos 11 1.1 Conceitos	
1.1.1 Conjuntos	nência
12 1.2.3 Exemp	los
Diferença de conjuntos	
3	4 Conteúdo
25 3.2 Conjunto dos Números Conjunto dos Números Racionais Irracionais R-Q	nto dos Números Naturais N

3.8 Exercícios Propostos	
	Exercícios Propostos
4 Intervalos 31 4.1 Exemplos	
Sistema Cartesiano	
	35 4.3.1 Solução dos Exercícios
	Propostos
	Exemplos
	olvidos
•	
	tos do Produto Cartesiano
Relação Binária	41 5.2.1 Exemplos
	41
6 Domínio e Imagem 43 6.0.1 E	xemplos
•	vidos
6.1 Relação Inversa	
	ınções
	. 47
7 Polinâmico 40 7 1 Nomenalatu	ra
	· · · · · · · · · · · · · · · · · · ·
Conteúdo 5	51
Conteudo 5	
7 4 4 0 4:- 2 -	54.7.4.9.C.:b.str
	51 7.4.2 Substração 52 7.4.3 Multiplicação
52	
8 Polinômios - Continuação 55 8.1 Pro	priedades
8.2.1 Método da Chave	
Exercícios Resolvidos	
Propostos	58
8.3 Produtos Notáveis	58 8.3.1 Quadrado
	58 8.3.2 Quadrado da
-	59 8.3.3 Cubo da soma de dois
termos	59 8.3.4 Cubo da diferença de dois termos .

8.4 Triângulo de Pascal
9 Funções e Não Funções 61 9.1 Exercícios Resolvidos
9.2.1 Exemplos 65 9.2.2 Exercícios Resolvidos 66 9.2.3 Exercícios Propostos 67
9.3 Domínio e Imagem de Funções 67 9.3.1 Exemplos 68 9.3.2 Exercícios Propostos 69
10 Função do Primeiro Grau 71 10.1 Função Constante
10.4.1 Exemplos
11 Função do Primeiro Grau 79 11.1 Coeficientes da Função Afim
Zero da Função Afim
12 Função do Primeiro Grau 85 12.1 Teorema 85 12.2 Sinal da Função Afim 85 12.3 Exercícios Resolvidos 88 12.4 Exercícios Propostos
13 Função Quadrática 91 13.0.1 Gráfico 91 13.0.2 Exercícios Propostos 93 13.1 Concavidade 93 13.2 Zero da

Função Quadrática
aos zeros da função quadrática 94 13.2.2 Exercícios Resolvidos
96
14 Função quadrática 97 14.1 Vértice da Parábola
97 14.1.1 As coordenadas do vértice 97 14.1.2
Demonstração
99 14.2 Conjunto Imagem da Função Quadrática
15 Funções quadráticas crescentes e decrescentes 105 15.0.1 Exemplos
Conteúdo 7
Conteudo 1
16 Função Modular 109 16.1 Módulo de um número real
109 16.1.1 Exercícios Resolvidos
Equações que envolvem módulo
113 16.3 Função Modular
Exemplos
17 Função Modular 117 17.0.1 Exercícios Resolvidos
. 117 17.0.2 Exercícios Propostos
17.0.3 Exemplo
Exercícios Resolvidos
Propostos
18 Função Exponencial 123 18.1 Potência de Expoente Natural
123 18.1.1 Exercícios Resolvidos
18.1.2 Propriedades
Exponencial
18.4 Método de Resolução de Equações Exponenciais
Método de Redução a Uma Base Comum
Resolvidos

19 Logaritmos 129 19.1 Símbolos	
129 19.1.1 Exemplos	
	0
19.3 sistemas de Logaritmos	.1
Exercícios Propostos	
132 19.5.1 Propriedades	
132 19.6 Observações	
Função Logarítmica	
	J
20 Inequações Simultâneas 135 20.0.1 Exercícios Resolvidos	
136 20.0.2 Exercícios Propostos	
137	
20.1 Inequação Produto	
Exemplos	
13	8
21 Funções Trigonométricas 141 21.1 Unidades	
Exercícios) .
22 Funções Circulares 147 22.1 Noções Gerais	
147 22.1.1 Exemplo Preliminar	
Função Seno	
22.2.4 Exercícios Resolvidos	
Propostos	
22.3.2 Propriedades	
15	

162 22 /	. 162 22.4.2 Propriedades
	Resolvidos
•	
	166 22.5.1 Definição
	Propriedades
Gráfico	
	167 22.6.1 Definição
	. 167 22.6.2 Propriedades
	fico
16	9 22.7.3 Gráfico
Relações Fundam	cios Propostos
Relações Fundam	Solução dos Exercícios Propostos
Relações Fundam 173 23. 174	Solução dos Exercícios Propostos
Relações Fundam 173 23. 174 23.2.1 Teoren	Solução dos Exercícios Propostos
Relações Fundam	Solução dos Exercícios Propostos
Relações Fundam	Solução dos Exercícios Propostos 171 nentais 173 23.1 Introdução
Relações Fundam	Solução dos Exercícios Propostos 171 nentais 173 23.1 Introdução
Relações Fundam	Solução dos Exercícios Propostos 171 nentais 173 23.1 Introdução
8 Relações Fundam 	Solução dos Exercícios Propostos 171 nentais 173 23.1 Introdução
8 Relações Fundam 	Solução dos Exercícios Propostos 171 nentais 173 23.1 Introdução 2 Relações Fundamentais na 174 23.2.2 174 23.2.3 Teoremas 175 23.2.4 Relações 176 23.2.5 Corolários sícios Resolvidos 177 23.4 sostos 178 23.4.1 Solução dos Exercícios Propostos 179
8 Relações Fundam 	Solução dos Exercícios Propostos 171 nentais 173 23.1 Introdução
Relações Fundam	Solução dos Exercícios Propostos 171 nentais 173 23.1 Introdução 2 Relações Fundamentais na 174 23.2.2 174 23.2.3 Teoremas 175 23.2.4 Relações 176 23.2.5 Corolários sícios Resolvidos 177 23.4 sostos 178 23.4.1 Solução dos Exercícios Propostos 179

	186 24.4.1 Solução dos Exercícios Propostos
	186
25 Triângulos Quaisquer 189 25.1 L	ei dos Cossenos
189 25.1.1 Demonstração	
Exercícios Resolvidos	190 25.2 Resolução de
Triângulos Quaisquer	191 25.3 Exercícios Propostos
	25.3.1 Solução dos Exercícios Propostos

Bibliografia 195

NOTAS DE AULA 1

Conjuntos

1.1 Conceitos

1.1.1 Conjuntos

Sinônimo de agrupamento, coleção, classe, etc. representado com letras maiúsculas. **Exemplo 1**:

A,B,F

1.1.2 Elementos

Objetos que constituem determinado conjunto, são chamados de elementos do conjunto e representados por letras minúsculas.

Exemplo 2:

a,b, f

1.1.3 Pertinência

Um elemento pode pertencer ou não a um conjunto. Para indicar pertinência, utiliza mos o símbolo ∈, e quando não pertence utilizamos o €.

- X ∈ A (Lê-se: X pertence a A)
- X 6∈ B (Lê-se: X não pertence a B)

^{*}Tais símbolos são usados para representar a relação de elemento com conjunto.

1.2 Representação de um conjunto

Um conjunto pode ser representado por 2 formas:

11

12 Notas de Aula 1. Conjuntos

1.2.1 Por enumeração

Podemos representar um conjunto enumerando seus elementos.

Exemplo 1: Conjunto dos números positivos pares, menores que 10:

$$A = \{2, 4, 6, 8\}$$

1.2.2 Por propriedade

Podemos representar por meio de uma prioridade que caracteriza seus elementos.

Exemplo 2:

• A =
$$\{x \mid x \in N \text{ e } x < 8\}$$

• B =
$$\{x \mid x \text{ \'e vogal}\}$$

A propriedade permite estabelecer se um dado elemento, pertence ou não a um conjunto.

1.2.3 Exemplos

Exemplo 1: Sendo N = {0, 1, 2, 3,...}, dar por enumeração, os seguintes conjuntos:

a)
$$A = \{x \in N \mid x = 3k, k \in N\}$$

• Solução: É determinado pela expressão x = 3k, com $k \in \mathbb{N}$, logo:

$$k = 0 \Longrightarrow x = 3 \cdot 0 = 0$$

$$k = 1 \Longrightarrow x = 3 \cdot 1 = 3$$

$$k = 2 \implies x = 3 \cdot 2 = 6$$

...

Logo:
$$A = \{0, 3, 6, ...\}$$

b) B =
$$\{x \in N \mid x = 2^k, k \in N\}$$

• **Solução**: Os elementos são determinados pela expressão $x = 2^k$, com $k \in \mathbb{N}$, logo:

$$k = 0 \implies x = 2^0 = 1$$

$$k = 1 \implies x = 2^1 = 2$$

$$k = 2 \Longrightarrow x = 2^2 = 4$$

. . .

1.3. Diagrama de Venn 13

Exemplo 2: Representar o conjunto A = {0, 4, 8, 12,...} por meio de uma propriedade.

• Solução: Os elementos de A variam de 4 em 4, logo:

$$A = \{x \in \mathbb{N} \mid x = 4k, k \in \mathbb{N}\}\$$

Exercício: Escrever por enumeração o conjunto:

$$A = \{x \in R \mid x^2 - 5x + 6 = 0\}$$

• Solução: Os elementos de A são raízes da equação:

$$x^2 - 5x + 6 = 0$$

$$\Delta = b^2 - 4ac = 25 - 24 = 1$$

$$x = 5 \pm 1$$

2

$$x = 2 \text{ ou } x = 3$$

Logo, $A = \{2, 3\}.$

1.3 Diagrama de Venn

Toda figura utilizada para representar um conjunto é chamada diagrama de Venn.

Exemplo 1: O conjunto A = {1, 2, 3, 4} pode ser representado por:

Figura 1.1: Demonstração de membros de um conjunto.

Observe que:

2 ∈ A (ponto interno a A)5 ∉ A (ponto externo a A)

14 Notas de Aula 1. Conjuntos

1.4 Igualdade entre conjuntos

Sejam:

$$A = \{1, 2, 3, 4\} e$$

 $B = \{4, 3, 2, 1\}$

Nota-se que A e B possuem os mesmo elementos. Para:

A =
$$\{x | x \text{ é par e menor que 10}\}$$
 e
B = $\{2, 4, 6, 8\}$

Novamente A e B possuem os mesmo elementos.

Logo, A = B, pois possuem os mesmos elementos. A negação da igualdade é indi cada por A *6*= B.

1.5 Conjunto unitário

Definição: chama-se conjunto unitário aquele que possui um único elemento.

Exemplo 1:

- 1. Conjunto das soluções da equação: 3x + 1 = 10
 - Solução: {3}
- 2. Conjunto dos estados brasileiros que fazem fronteira com o Uruguai: •

Solução: {Rio Grande do Sul}

1.6 Conjunto vazio

Definição: Conjunto que não possui elemento algum. O símbolo usual para o conjunto vazio é ;. Um conjunto vazio é obtido quando descrevemos um conjunto através de uma propriedade P logicamente falsa.

Exemplo 1:

- 1.7. Principais símbolos lógicos 15
 - 1. $\{x | x 6 = x\} =$;
 - 2. $\{x | x \in \{x | x \in \{x | x \in A\}\} = x\}$
 - 3. $\{x|x < 0 \text{ e } x > 0\} = ;$

1.7 Principais símbolos lógicos

- |: tal que
- ∃ : existe ao menos um
- ∃!: existe um único
- ∀: qualquer que seja ou para todo
- =⇒ : implicação ou então
- ⇐⇒ : equivalente ou se e somente se

1.8 Subconjuntos

Definição: Dados 2 conjuntos A e B, dizemos que A é subconjunto de B, se e somente se, cada elemento do conjunto A, é também um elemento do conjunto B. Indicamos por:

A ⊂ B (Lê-se A está contido em B)

Figura 1.2: Demonstração de um conjunto A contido em um conjunto B.

Em símbolos:

$$A \subset B \iff (\forall x)(x \in A \implies x \in B)$$

Exemplo 1:

16 Notas de Aula 1. Conjuntos

•
$$\{a,b\} \subset \{a,b\}$$

•
$$\{a,b\} \subset \{a,b,c,d\}$$
 • $\{a\} \subset \{a,b\}$

• $\{x | x \text{ \'e inteiro e par}\} \subset \{x | x \text{ \'e inteiro}\}$

Também podemos escrever $B \supset A$ (Lê-se B contém A).

Com a notação A 6⊂ B, indicamos que A não está contido em B, logo, existe ao menos 1 elemento de A que não pertence a B.

Figura 1.3: A 6⊂ B Figura 1.4: A 6⊂ B

Com a igualdade de conjuntos podemos representar como:

$$A = B \Leftrightarrow (\forall x)(x \in A \Leftrightarrow x \in B)$$

Todo elemento de A é elemento de B e vice-versa, ou seja, $A \subset B \ eB \subset A$,

1.9 Exercícios Propostos

- 1. Dados A = $\{1, 2, 3, 4\}$ e B = $\{2, 4\}$, pede-se:
 - a) Reescrever com os símbolos da teoria dos conjuntos as seguintes sentenças:
 - 1°) 3 é elemento de A
 - Solução: 3 ∈ A
 - 2°) 1 não está em B
 - Solução: 1 ∉ B
 - 3°) B é parte de A
 - Solução: B ⊂ A ou A ⊃ B
 - 4°) B é igual a A
 - Solução: ;
 - 5°) 4 pertence a B
 - Solução: 4 ∈ B
 - b) Classificar as sentenças anteriores em V ou F
- 1.9. Exercícios Propostos 17

1°) (V)

4°) (F)

2°) (V)

- 5°) (V)
- 2. Sendo A = $\{1,2\}$, B = $\{2,3\}$, C = $\{1,3,4\}$ e D = $\{1,2,3,4\}$, classificar em V ou F cada sentença abaixo e justificar
 - a) $A \subset D$:
 - b) $A \subset B$:
 - c) B \subset C:
 - d) D \supset B:
 - e) C = D:
 - f) A 6⊂ C:

1.9.1 Solução dos Exercícios Propostos

1. (V), pois $1 \in A$, $1 \in D$, $2 \in A$ e $2 \in D$.

- 2. (F), pois $1 \in A e 1 \notin B$.
- 3. (F), pois $2 \in Be 2 \notin C$.
- 4. (V), pois $2 \in B e 2 \in D$, $3 \in B e 3 \in D$.
- 5. (F), pois $2 \in D$ e $2 \notin C$.
- 6. (V), pois $2 \in A e 2 \notin C$.

18 Notas de Aula 1. Conjuntos

NOTAS DE AULA 2

Conjuntos

2.1 Conjunto Universo

Definição: O conjunto que contém todos os outros conjuntos chama-se conjunto universo (U).

2.2 Conjunto das partes

Definição: O conjunto formado por todos os subconjuntos de um conjunto A é deno minado conjunto das partes de A, sendo indicado por P(A), onde:

$$P(A) = \{x \mid x \in A\}$$

Exemplo 1: Se A = $\{a\}$ os elementos de P(A) são ; e $\{a\}$, isto é:

$$P(A) = \{;, \{a\}\}\$$

Se A = $\{a,b\}$ os elementos de P(A) são ;, $\{a\}$, $\{b\}$ e $\{a,b\}$ isto é:

$$P(A) = \{;, \{a\}, \{b\}, \{a,b\}\}\$$

Se A = $\{1, 2, 3\}$, os elementos de P(A) são:

$$\{;, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\} = P(A)$$

Logo, $|P(A)| = 2^n$ onde n é o número de elementos do conjunto.

19

20 Notas de Aula 2. Conjuntos 2.3 Reunião de conjuntos

Definição: Dados dois conjuntos A e B, chama-se reunião de A e B o conjunto formado pelos elementos que pertencem a A ou a B.

$$A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$$

O conjunto A ∪ B (lê-se A união B) é formado pelos elementos que pertencem a pelos menos um dos conjuntos A ou B.

Exemplos 1:

- $\{a,b\} \cup \{c,d\} = \{a,b,c,d\}$
- $\{a,b\} \cup \{a,b,c,d\} = \{a,b,c,d\}$

Em diagrama:

Figura 2.1: Diagrama de Venn para A∪B = {0, 1, 2, 3, 4, 5, 7}

b)
$$A = \{0, 1, 2\}$$

 $B = \{0, 1, 2, 3, 4\}$
 $A \cup B = \{0, 1, 2, 3, 4\} = B$

2.3. Reunião de conjuntos 21

Figura 2.2: Diagrama de Venn para $A \cup B = \{0, 1, 2, 3, 4\} = B$

2.3.1 Intersecção de conjuntos

Definição: Dados dois conjuntos A e B, chama-se intersecção de A e B o conjunto formado pelos elementos que pertençam a A e B.

$$A \cap B = \{x \mid x \in A \in x \in B\}$$

Exemplos:

$$A \cap B = \{1, 3\}$$

Exemplo 2: $A = \{0, 1, 2\} B$
 $= \{0, 1, 2, 3, 4\}$
 $A \cap B = \{0, 1, 2\} = A$

Exemplo 3: A =
$$\{0, 2\}$$

B = $\{1, 3, 5\}$
A \cap B = $\{1, 3, 5\}$

22 Notas de Aula 2. Conjuntos

2.3.2 Diferença de conjuntos

Definição: Dados dois conjuntos A e B, chama-se diferença entre A e B o conjunto formado pelos elementos de A que não pertencem a B.

$$A-B = \{x \mid x \in A \in x \notin B\}$$

Exemplo 1:

a)
$$\{a,b,c\}-\{b,c,d,e\} = \{a\}$$

b)
$$\{a,b,c\}-\{b,c\} = \{a\}$$

c)
$$\{a,b\}-\{c,d,e,f\}=\{a,b\}$$

d)
$$\{a,b\}-\{a,b,c,d,e\} = ;$$

2.3.3 Complementar de B em A

Definição: Dados dois conjuntos A e B, tais que B ⊂ A, chama-se complementar de B em relação a A, o conjunto A − B, isto é, o conjunto dos elementos de A que não pertencem a B.

Símbolo:

Esta simbologia indica **"o complemento de B em relação a A"**. Notemos que C^BA só é definido para $B \subset A$ e aí temos:

$$C_A^B = A - B$$

Exemplo 1::

a) Se A = $\{a,b,c,d,e\}$ e B = $\{c,d,e\}$, então:

$$C_{A}^{B} = A - B = \{a,b\}$$

b) Se A = $\{a,b,c,d\}$ = B então:

$$C_A^B =$$
;

Observação: O complementar de B em relação a A é o que falta para B ficar igual a A

2.4. Propriedades 23 2.4 Propriedades

2.4.1 Inclusão (⊂)

Sendo A, B e C conjuntos quaisquer, valem as seguintes propriedades:

- 1. *;* ⊂ A
- 2. $A \subset A$ (reflexiva)
- 3. $A \subset B \in B \subset A \Longrightarrow A = B$ (anti-simétrica)
- $A \subseteq B \in B \subseteq C \Longrightarrow A \subseteq C$ (transitiva)

2.4.2 União (∪)

Sendo A, B e C conjuntos quaisquer, valem as seguintes propriedades:

- 1. $A \cup A = A$ (idempotente)
- 2. $A \cup ; = A$ (elemento neutro)
- 3. $A \cup B = B \cup A$ (comutativa)
- 4. $(A \cup B) \cup C = A \cup (B \cup C)$ (associativa)

2.4.3 Intersecção (∩)

Sendo A, B e C conjuntos quaisquer, valem as seguintes propriedades:

- 1. $A \cap A = A$ (idempotente)
- 2. $A \cap U = A$ (elemento neutro)

- 3. $A \cap B = B \cap A$ (comutativa)
- 4. $A \cap (B \cap C) = (A \cap B) \cap C$ (associativa)

24 Notas de Aula 2. Conjuntos

2.5 Exercícios Propostos

- 1. Construir o conjunto das partes do conjunto $A = \{a,b,c,d\}$
- 2. Dados os conjuntos A = {1,2,3}, B = {3,4} e C = {1,2,4} determinar o conjunto X tal que:
 - a) $X \cup B = A \cup C$:
 - b) X ∩B = *;*:

2.5.1 Solução dos Exercícios Propostos

1. $nP(A) = 2^4 = 16$, logo:

$$P(A) = \{; \{a\}, \{b\}, \{c\}, \{d\}, \{a,b\}, \{a,c\}, \{a,d\}, \{b,c\}, \{b,d\}, \{c,d\}, \{a,b,c\}, \{a,b,d\}, \{b,c,d\}, \{c,d,a\}, \{A\}\}$$

2. a) X ∪B = {1, 2, 3, 4}, então, os possíveis elementos de X são:

b)
$$X \cap B = ; \Longrightarrow 3 \notin X e 4 \notin X$$

Conclusão:

$$X = \{1, 2\}$$

NOTAS DE AULA 3

Conjuntos Numéricos

3.1 Conjunto dos Números Naturais N

$$N = \{0, 1, 2, 3, 4, 5,...\}$$

Um subconjunto importante de N é o conjunto N*:

$$N = \{1, 2, 3, 4, 5, 6,...\} \Rightarrow zero foi excluído$$

Ordenando sobre uma reta, temos:

Figura 3.1: Demonstração de N sobre a reta real

3.2 Conjunto dos Números Inteiros Z

$$Z = {..., -3.-2, -1, 0, 1, 2, 3,...}$$

Além do N convém destacar os seguintes subconjuntos de Z:

- $Z^* = Z \{0\}$
- Z_+ = Conjunto dos inteiros positivos
- Z_ = Conjunto dos inteiros negativos

Observe que $Z_+ = N$.

Ordenando Z sobre uma reta, temos:

25

26 Notas de Aula 3. Conjuntos Numéricos

Figura 3.2: Demonstração de Z sobre a reta real

3.3 Conjunto dos Números Racionais Q

Acrescentando as frações positivas e negativas aos números inteiros, teremos os núme ros racionais Q.

Então: $-2, -\frac{5}{4}, -1, -\frac{1}{3}, 0, \frac{3}{5}, 1, \frac{3}{2}$ por exemplo são números racionais. Todo número racional pode ser colocado na forma $\frac{a}{b}$, com $a \in Z$ e $b \in$

$$-2 = -\frac{2}{1} = -\frac{4}{2} = -\frac{6}{3}$$

•
$$0 = {0 \atop 1} = {0 \atop 2} = {0 \atop 3}$$

• 1 =
$$\frac{1}{1}$$
 = $\frac{2}{2}$ = $\frac{3}{3}$

Assim podemos escrever:

n
Q =
$$Z, b \in Z e b 6 = 0^{\circ}$$

 a
 $x \mid x = b, \text{ com } a \in$

Consideremos a representação decimal de um número racional $\frac{a}{b}$, que se obtém dividindo-se a por b

1.
$$\frac{1}{2}$$
= 0, 5 $\frac{-5}{4}$ = -1, 25 $\frac{75}{20}$ = 3, 75
Estes exemplos referem-se aos decimais exatos ou finitos.

2.
1_3
= 0, 333... 7_6 = 1, 1666... 6_7 = 0, 857142857142...
Estes exemplos referem-se aos decimais periódicos ou infinitos.

Então todo decimal exato ou periódico pode ser representado na forma de um número racional $\frac{a}{b}$. Os números racionais podem ser expressos sobre a reta, como segue:

Observando o gráfico notamos que:

- 1. Entre dois inteiros nem sempre existe outro inteiro
- 2. Entre dois racionais sempre existe outro racional
- 3.4. Números Irracionais R-Q 27

Figura 3.3: Reta real com números racionais Q.

3.4 Números Irracionais R-Q

Consideremos, por exemplo, os número ${p \choose 2}$ e ${p \choose 3}$, e vamos determinar sua representa ção decimal:

Observamos que existem decimais infinitos, não periódicos, as quais damos o nome de <u>números irracionais</u> que não podem ser escritos na forma $\frac{a}{b}$.

Um número irracional bastante conhecido é o número π = 3, 1415926535....

3.5 Exercícios Resolvidos

1. Assinale V ou F a cada uma das seguintes afirmações: {irracionais}: • a) -7 ∈ N: Solução: (V) · Solução: (F) h) $\frac{1}{2} \in Z$: _{b)} ^p2 ∈ Q: · Solução: (F) · Solução: (F) $_{i)}^{p}$ -5 \in R-Q: • Solução: (F) c) $4 \in Z$: Solução:(V) p = Q• Solução: (V) d) $-6 \in Q$: $_{k)} p^{3} 8 \in N$: · Solução: (V) • Solução: (V) $_{\rm e)}^{p}$ 10 \in {irracionais}: • Solução: (V) I) 0, 16666... ∈ Q: · Solução: f) $3\pi \in \mathbb{Q}$: (V) • Solução: (F) g) −π ∈ 28 Notas de Aula 3. Conjuntos Numéricos p) $-2 \in Z$: m) 0, 202002000... ∈ Q: • · Solução: (V) Solução: (V) {irracionais}: • 4∈ Q: n) Solução: (V) • Solução: (V) 9 $q) \pi \in$

o) 0, 010010001...
$$\in$$
 R-Q: • r) $\pi^3 \in$ Q: • Solução: (F)

3.6 Números Reais R

Dados Q e {irracionais}, define-se o conjunto dos números reais como: R =

Q \cup {irracionais} = { $x \mid x \text{ \'e racional our reais:}}$

- Os N
- Os Z
- Os Q
- Os {irracionais} *indicados pela letra I no diagrama

Figura 3.4: Representação dos conjuntos numéricos

Como subconjuntos importantes de R temos: •

$$R^* = R - \{0\}$$

• R₊ = = Conjunto dos reais positivos • R₋ = =

Conjunto dos reais negativos Logo

chegamos a representação da reta real:

3.7. Relação de ordem no conjunto R 29

Figura 3.5: Representação da reta nos números reais

3.7 Relação de ordem no conjunto R

Sejam dois números reais quaisquer a e b:

• Entre a e b, poderá ocorrer uma e somente uma das relações:

$$a = b$$
 ou $a > b$ ou $a < b$

- $a \le b$ (lê-se a menor ou igual a b)
- $a \ge b$ (lê-se a maior ou igual a b)
- Um número real *c* está entre *a* e *b* se e somente se *a* < *c* e *c* < *b*. Podemos representar como: *a* < *c* < *b*.

3.8 Exercícios Propostos

- 1. Usando a notação de desigualdade, escreva as seguintes relações:
 - a) x está situado à direita de 10 na reta real:
 - b) y está situado entre -1 e 6 na reta real:
 - c) x está situado à esquerda de -2 na reta real:
 - d) z é um número positivo, ou seja, está situado à direita de 0 na reta real:
 - e) x está situado entre 2 e 7 na reta real:
 - f) x é um número negativo, ou seja, está situado à esquerda de 0 na reta real:

3.8.1 Solução dos Exercícios Propostos

1. a)
$$x > 10$$
 b) $-1 < y < 6$ d) $z > 0$
c) $x < -2$ e) $2 < x < 7$ f) $x < 0$

30 Notas de Aula 3. Conjuntos Numéricos

NOTAS DE AULA 4

Intervalos

Dados dois números reais $a \in b$, com a < b, definimos:

a) Intervalo aberto de extremos a,b é o conjunto:

$$]a,b[=\{x \in R \mid a < x < b\}]$$

Figura 4.1: Representação gráfica para]a,b[

b) Intervalo fechado de extremos a,b é o conjunto:

$$[a,b] = \{x \in \mathsf{R} \mid a \le x \le b\}$$

Figura 4.2: Representação gráfica para [a,b]

c) Intervalo fechado à esquerda (ou aberto à direita) de extremos *a,b* é o conjunto:

$$[a,b[=\{x\in\mathsf{R}\mid a\leq x< b\}$$

d) Intervalo fechado à direita (ou aberto à esquerda) de extremos a,b é o conjunto:

$$|a,b| = \{x \in \mathbb{R} \mid a < x \le b\}$$

31

32 Notas de Aula 4. Intervalos

Figura 4.3: Representação gráfica para [a,b[

4.1 Exemplos

Exemplo 1:]2, 5[= $\{x \in R \mid 2 < x < 5\}$, intervalo aberto

Exemplo 2: $[-1, 4] = \{x \in \mathbb{R} \mid -1 \le x \le 4\}$, intervalo fechado

Exemplo 3: $[^2_5, 7[=\{x \in \mathbb{R} \mid ^2_5 \le x < 7\}, \text{ intervalo fechado à esquerda}]$

Exemplo 4: $]^{-1}_{3}$, $[^{p}_{2}] = \{x \in \mathbb{R} \mid -1_{3 < x} \le ^{p}_{2}, \text{ intervalo fechado à direita}\}$

Definimos como <u>intervalos infinitos</u> os seguintes subconjuntos de R, com sua re presentação na reta real:

$$1^{\circ}$$
. $\{x \in \mathbb{R} \mid x > a\} =]a, +\infty[$

Figura 4.5: Representação gráfica para x > a

$$2^{\circ}$$
. $\{x \in \mathbb{R} \mid x \ge a\} = [a, +\infty[$

Figura 4.6: Representação gráfica para *x* ≥ *a*

$$3^{\circ}$$
. $\{x \in \mathbb{R} \mid x < a\} =]-\infty, a[$
4.2. Sistema Cartesiano 33

Figura 4.7: Representação gráfica para x < a

$$4^{\circ}$$
. $\{x \in \mathbb{R} \mid x \le a\} =]-\infty, a]$

Figura 4.8: Representação gráfica para $x \le a$

$$5^{\circ}$$
. Logo, o intervalo $]-\infty, +\infty = R$.

4.2 Sistema Cartesiano

Definição: É um sistema constituído por dois eixos, x e y, perpendiculares entre si. O eixo x é denominado eixo das abscissas.

O eixo y é denominado eixo das ordenadas.

Estes eixos dividem o plano em quadrantes.

Exemplo 1: Localização no plano do ponto P com coordenadas (x, y) = (a,b):

Figura 4.9: Demonstração do plano cartesiano com ponto P de coordenadas (x, y) = (a,b)

34 Notas de Aula 4. Intervalos

4.2.1 Par Ordenado

Definição: Para cada elemento a e cada elemento b, admitiremos a existência de um terceiro elemento (a,b) que denominamos par ordenado de modo que se tenha:

$$(a,b) = (c,d) \Leftarrow \Rightarrow a = c \in b = d$$

Exemplos:

Exemplo 1: Localize os pontos no plano cartesiano:

$$A(0, 2), B(0, -3), C(2, 5), D(-3, 4)$$

Figura 4.10: Localização dos pontos A, B, C e D no plano cartesiano

Exemplo 2: Calcular x e y de modo que os pares ordenados (x + y, x - y) e (3, 5) sejam iguais:

Então:

$$x + y = 3$$
 (I)
(4.1)
 $x - y = 5$ (II) $2x = 8$ (I + II)

$$x = 4 (4.2)$$

Pela equação (I)
$$(x + y = 3)$$
:

$$y = 3-4$$
 (4.3) $y = -1$

Então
$$(x + y, x - y) = (4-1, 4+1) = (3, 5)$$
.

4.3. Exercícios Propostos 35

4.3 Exercícios Propostos

1. Descrever, conforme a notação da teoria dos conjuntos, os seguintes intervalos:

- a) [-1, 3]
- b) [0, 2[
- c)]-3,4[
- d)]-∞, 5[
- e) [1,+∞[
- 2. Utilizando a representação gráfica dos intervalos sobre a reta real, determinar A∩B e A∪B, sendo A = [0, 3] e B = [1, 4]
- 3. Descrever os seguintes conjuntos:
 - a) [0, 2] ∩ [1, 3]
 - b) [0, 2] ∩]1, 3[
 - c)]-1, $\frac{2}{3}$ [\cap]0, $\frac{4}{3}$ [
 - d)]-∞, 2] ∩ [0,+∞[
- 4. Determinar os seguintes conjuntos:
 - a) [−1, 3] ∪ [0, 4]
 - b)]−2, 1] ∪]0, 5[
 - c) [−1, 3] ∪ [3, 5]
 - d) $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$, 0 $\begin{bmatrix} 0 \end{bmatrix}$ $\begin{bmatrix} -3 \\ 2 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 4 \end{bmatrix}$
- 5. Sendo A = $[0, 5[eB =]1, 3[, determinar C^{B}A]$

4.3.1 Solução dos Exercícios Propostos

- 1. a) $[-1, 3] = \{x \in \mathbb{R} \mid -1 \le x \le 3\}$
 - b) $[0, 2[= \{x \in \mathbb{R} \mid 0 \le x < 2\}x]$
 - c)]-3, $4[=\{x \in \mathbb{R} \mid -3 < x < 4\}$
 - d)]- ∞ , 5[= { $x \in R \mid x < 5$ }
 - e) $[1,+\infty[=\{x\in R\mid x\geq 1\}]$

36 Notas de Aula 4. Intervalos 2.

NOTAS DE AULA 5

Produto Cartesiano

Definição: Sejam dois conjuntos <u>não vazios</u> A e B, denomina-se produto cartesiano de A por B o conjunto formado pelos pares ordenados nos quais o primeiro elemento pertence a A e o segundo elemento pertence a B.

$$A \times B = \{(x, y) \mid x \in A \in y \in B\}$$

Observações:

- 1. Se A = ; ou B = ; por definição: $A \times B = ;$, isto é, $A \times ; = ;$ ou ; $\times B = ;$
- 2. Se A = B, podemos escrever o produto cartesiano $A \times A$ como A^2 , isto é, $A \times A = A^2$
- 3. Sendo A e B não vazios, temos A×B 6= B× A. Ou seja, não há comutatividade
- 4. Se A e B são conjuntos finitos com *m* e *n* elementos respectivamente, então A×B é um conjunto finito com *m* ×*n* elementos
- 5. Se A ou B for infinito e nenhum deles for vazio, então A×B é um conjunto infinito

5.0.1 Exemplos

Exemplo 1: Se A =
$$\{1, 2, 3\}$$
 e B = $\{1, 2\}$ temos:
A×B = $\{1, 1, (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)\}$
B× A = $\{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)\}$

As representações no plano cartesiano são as seguintes:

38 Notas de Aula 5. Produto Cartesiano

Figura 5.1: Representação de A×B Figura 5.2:

Representação de B× A **Exemplo 2**: Se A = $\{x \in R \mid 1 \le x < 3 \text{ e B} = \{2\}, \log A \times B = \{(x, 2) \mid x \in A \text{ e } 2 \in B.$

A representação gráfica de A×B dá como resultado o conjunto de pontos paralelo ao eixo *x* da figura abaixo:

Figura 5.3: Representação no plano cartesiano de $A \times B = \{(x, 2) \mid x \in A \in 2 \in B\}$

Exemplo 3: Se A = $\{x \in R \mid 1 \le x \le 3\}$ e B = $\{x \in R \mid 1 \le x \le 5\}$ temos A×B = $\{(x, y) \in R^2 \mid 1 \le x \le 3\}$ e B = $\{x \in R \mid 1 \le x \le 5\}$ temos A×B = $\{(x, y) \in R^2 \mid 1 \le x \le 3\}$ e B = $\{x \in R \mid 1 \le x \le 5\}$ temos A×B = $\{(x, y) \in R^2 \mid 1 \le x \le 5\}$.

Graficamente é representado por um retângulo, distinto do anterior:

39

Figura 5.4: Representação no plano cartesiano de A×B

5.0.2 Exercícios Resolvidos

Observação: Como A e B são <u>intervalos</u> e produto cartesiano, neste caso será o conjunto dos pontos do plano hachurado na figura.

- 1. Dados A = $\{1,3,4\}$, B = $\{-2,1\}$ e C = $\{1,2\}$, determine e represente-os pelo gráfico cartesiano
 - a) A×B

• Solução:
$$A \times B = \{(1,-2), (1, 1), (3,-2), (3, 1), (4,-2), (4, 1)\}$$

b) B×C

• Solução:
$$B \times C = \{(-2, 1), (-2, 2), (1, 1), (1, 2)\}$$

- c) B²
 - Solução: $B^2 = \{(-2, -2), (-2, 1), (1, -2), (1, 1)\}$

5.0.3 Exercícios Propostos

- 1. Dados os conjuntos A = {1, 2, 3}, B = {2, 4, 6} e C = {1, 2} determine:
 - a) A×(B-C)
 - b) B×C^CA
 - c) $(A-B)\times(A-C)$
 - 40 Notas de Aula 5. Produto Cartesiano 2. Dados os conjuntos:

A =
$$\{x \in R \mid 1 \le x \le 3\}$$

B = $\{x \in R \mid -2 \le x \le 2\}$
C = $\{x \in R \mid -4 \le x \le 1\}$

Representar graficamente os produtos:

- a) A×B
- b) A×C
- c) B×C

Solução dos Exercícios Propostos

5.1 Número de Elementos do Produto Cartesiano

Observe:

• A =
$$\{0, 1, 2\} \Rightarrow n(A) = 3$$

• B =
$$\{2, 4\} \implies n(B) = 2$$

•
$$A \times B = \{(0, 2), (0, 4), (1, 2), (1, 4), (2, 2), (2, 4)\}$$

$$\ddot{a} A \times B \implies n(A \times B) = 3.2 = 6$$

Logo:

$$n(A \times B) = n(A).n(B)$$

Exemplo 1: Sabendo que $\{(1,2),(4,2)\} \subset A^2$ e $n(A^2) = 9$, represente pelos elementos o conjunto A^2 .

- 5.2. Relação Binária 41
 - Solução: A²representa o quadrado do número de elementos de A, logo:

$$n(A^2) = [n(A)]^2 \implies [n(A)]^2 = 9 \implies n(A) = 3$$

Se A é um conjunto de 3 elementos, $(1,2) \in A^2$ e $(4,2) \in A^2$, logo concluímos que A = $\{1, 2, 4\}$, sendo assim:

$$A^2 = A \times A = \{(1, 1), (1, 2), (1, 4),$$

(2, 1), (2, 2), (2, 4),
(4, 1), (4, 2), (4, 4)}

Exercício: Se $\{(1,-2), (3,0)\} \subset A^2$ e $n(A^2) = 16$, represente A^2 pelos seus elementos.

5.2 Relação Binária

Definição: Dados dois conjuntos A e B, chama-se relação binária de A em B todo sub conjunto R de A×B:

R é uma relação binária de A em B \Leftrightarrow R \subset A \times B

Se eventualmente os conjuntos A e B forem iguais, todo subconjunto de A × A é chamado de relação binária em A.

R é relação binária em A \Leftrightarrow R \in A× A

Nomenclatura:

- A, conjunto de partida da relação R
- B, conjunto de chegada ou contradomínio da relação R
- Quando o par $(x, y) \in \mathbb{R}$, escrevemos $x \mathbb{R} y$
- Quando o par $(x, y) \notin R$ escrevemos $x \checkmark Ry$.

5.2.1 Exemplos

Exemplo 1: Se A = $\{1,2,3,4,5\}$ e B = $\{1,2,3,4\}$ quais são os elementos da relação R = $\{(x, y) \mid x < y\}$ de A em B?

• Solução: Temos:

$$R = \{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)\}$$

42 Notas de Aula 5. Produto Cartesiano

Exemplo 2: Se A = $\{1,2,3,4,5\}$ e B = $\{1,2,3,4,5,6\}$ quais os elementos da relação binária R de A em B, assim definida: $xRy \Leftarrow y = x + 2$

o: Fazem parte da relação todos os pares ordenados (x, y), tais que x
 ∈ B tal que y = x + 2. Utilizando as representações gráficas, temos:

Figura 5.6: Domínio e imagem de R

NOTAS DE AULA 6

Domínio e Imagem

Definição: Se R é uma relação de A em B

• Chama-se <u>domínio</u> de R o conjunto D de todos os primeiros elementos dos pares ordenados pertencentes a R.

$$x \in D \iff \exists y, y \in B \mid (x, y) \in R$$

 Chama-se imagem de R o conjunto Im de todos os segundo elementos dos pares ordenados pertencentes a R.

$$y \in Im \iff \exists x, x \in A \mid (x, y) \in R$$

Da definição, temos:

$$D \subset A \in Im \subset B$$

6.0.1 Exemplos

- **Exemplo 1**: Se A = $\{0,2,3,4\}$ e B = $\{1,2,3,4,5,6\}$ qual é o domínio e imagem da relação R = $\{(x, y) \in A \times B \mid y \text{ é múltiplo de } x\}$
 - **Solução**: Pelo esquema das flechas, notamos que D é o conjunto dos elementos de A, dos quais partem flechas e quem I*m* é o conjunto dos elementos de B aos quais chegam as flechas, logo:

R =
$$\{(2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4)\}$$

D = $\{2, 3, 4\}$ e Im = $\{2, 3, 4, 6\}$

- **Exemplo 2**: Se A = $\{x \in R \mid 1 \le x \le 3\}$ e B = $\{y \in R \mid 1 \le y \le 4\}$ qual o domínio e a imagem da relação R = $\{(x, y) \in A \times B \mid y = 2x\}$?
 - Solução: Pela representação cartesiana temos:

D =
$$\{x \in R \mid 1 \le x \le 2\}$$
 e
 $1m = \{y \in R \mid 2 \le x \le 4\}$

44 Notas de Aula 6. Domínio e Imagem

Figura 6.1: Representação de conjuntos para A×B

Figura 6.2: Representação cartesiana da relação R

6.0.2 Exercícios Resolvidos

1. Estabelecer o domínio(D) e a imagem(Im) das seguintes relações:

$$D = \{1, 2\}$$

 $Im = \{1, 3, 4\}$

D =
$$\{1, 2, 5\}$$

n p
 $1m = 1, 2^{\circ}$
 $-3,$

45

c)
$$(1+2, 2), (1-3, 1)^a$$

$$D = Im \begin{bmatrix} n & n & p \\ p & 1-30 \\ p & p \\ 1+2, 1, 20 \end{bmatrix}$$

2. Sejam os conjuntos A = $\{-2,-1,0,1,2,3,4,5\}$ e B = $\{-2,-1,0,1,2\}$ e R a relação binária de A e B, definida por:

$$xRy \Leftrightarrow x = y^2$$

Pede-se:

a) Enumerar os pares ordenados de R

 $(1)^2 1 (1, 1)$

$$R = \{(0, 0), (1,-1), (1, 1), (4,-2), (4, 2)\}$$

b) Enumerar os elementos do domínio e imagem de R

(2)^{2 4 (4, 2)} Figura 6.3: Representação gráfica da relação R entre os conjuntos A e B.

46 Notas de Aula 6. Domínio e Imagem

6.1 Relação Inversa

Definição: Seja uma relação binária R de A em B, consideramos o conjunto $R^{-1} = \{(y,x) \in B \times A \mid (x,y) \in R\}$

Como R^{-1} é um subconjunto de $B \times A$, então R^{-1} é uma relação binária de B em A a qual chamamos de relação inversa de R.

$$(y,x) \in \mathbb{R}^{-1} \iff (x,y) \in \mathbb{R}$$

Ou seja, da definição que R⁻¹é o conjunto dos pares ordenados obtidos à partir dos pares ordenados de R, invertendo-se a ordem dos termos em cada par.

6.1.1 Exemplos

Exemplo 1: Se A = {2,3,4,5} e B = {1,3,5,7}, quais são os elementos de R, sendo R = {(x, y) \in A×B | x < y} e de R⁻¹?

· Solução:

Figura 6.4: Esquema de flechas para (x < y)

Figura 6.5: Esquema de flechas para (y > x)

$$R = \{(2, 3), (2, 5), (2, 7), (3, 5), (3, 7), (4, 5), (5, 7)\}$$

$$R^{-1} = \{(3, 2), (5, 2), (7, 2), (5, 3), (7, 3), (5, 4), (7, 5)\}$$

6.1.2 Propriedades

1.
$$D(R^{-1} = Im(R)$$

6.2. Funções 47

2.
$$Im(R^{-1}) = D(R)$$

3.
$$(R^{-1})^{-1} = R$$

6.2 Funções

Definição: Dados dois conjuntos A e B não vazios, uma relação f de A em B recebe o nome de aplicação de A em B ou função definida em A com imagens em B, se e so mente se, para todo $x \in A$ existe um só $y \in B$, tal que $(x, y) \in f$.

$$f$$
 é aplicação de A em B \Leftrightarrow ($\forall x \in A, \exists y \in B \mid (x, y) \in f$)

Com o auxílio do esquema de flechas, que condições deve satisfazer uma relação *f* de A em B para ser aplicação:

- 1. Todo $x \in A$ participe de pelo menos um par $(x, y) \in f$, isto é, todo elemento de A deve servir como ponto de partida de flecha
- 2. É necessário que cada elemento $x \in A$ participe de apenas um único par $(x, y) \in f$, isto é, cada elemento de A deve servir como ponto de partida de uma única flecha
- 1. Se existir um elemento de A do qual não parta flecha alguma

2. Se existir um elemento de A do qual partam 2 ou mais flechas

Observação: Uma relação f não é aplicação (ou função) se não satisfazer uma das condições acima.

NOTAS DE AULA 7

Polinômios

Definição: Um polinômio em x é qualquer expressão na forma

$$f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$$

$$f_1(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1^x + a_0$$

Onde n é um número inteiro não negativo e a_n 6= 0. Os número $a_{n-1},...,a_1,a_0$ são números reais chamados <u>coeficientes</u>. O grau do polinômio é n. O coeficiente principal é a_n e a_0 é o termo independente.

7.1 Nomenclatura

Os polinômios com um, dois ou três termos são chamados monômios, binômios ou trinômios, respectivamente.

A forma padrão de um polinômio é com potências de *x* na <u>ordem crescente</u>. **Exemplo 1**:

$$P(x) = x^4 - 3x^3 + 5x^2 - 3x + 2$$

Onde: $a_0 = 2$ (termo independente) $a_1 = 1, a_2 = 5,$ $a_3 = 3$ e $a_4 = 1$ tendo-se o grau do polinômio igual a 4.

Exemplo 2: Identifique os polinômios pelos termos que os compõe:

- a) 3x = monômio
- b) 5abc = monômio
- c) 3x + y = binômio
- d) $5ab + 3cd^2 = binômio$
- e) $x^2 + 3x + 7 = trinômio$
- f) 3ab +4x y -10y = trinômio

Observações: Os trinômios são compostos por três monômios (3 termos), separa dos por operação de soma ou subtração.

Chama-se valor numérico de f em x a imagem de x pela função f, assim como por exemplo, dado o polinômio:

$$f(x) = 2 + x + x^2 + 3x^3$$

Onde o valor de x = 2, então:

$$f(2) = 2+(2)+(2)^{2}+3(2)^{3}$$
$$f(2) = 2+2+4+24$$
$$f(2) = 32$$

Logo, a imagem de f no ponto x = 2 é 32.

Em particular, se x é um número real e f é um polinômio, tal que f(x) = 0 dizemos que x é "uma raiz"ou "um zero"de f. Por exemplo, os número -2 e -1 são raízes de:

$$f(x) = 2x + 3x^2 + x^3$$

pois:

$$f(-2) = 2(-2)+3(-2)^2 + (-2)^3 = 0$$

$$f(-1) = 2(-1)+3(-1)^2 + (-1)^3 = 0$$

7.2 Igualdade

Definição: Dizemos que dois polinômios $f \in g$ são igual (ou idênticos) quando assu mem valores numéricos iguais para todo $x \in R$, ou seja:

$$f = g \Longrightarrow f(x) = g(x), \forall x \in \mathbb{R}$$

7.3 Exercícios Resolvidos

1. Quais das expressões abaixo representam um polinômio na variável x?

a)
$$x^5 + x^3 + 2$$
, Sim

b)
$$0x^4 + 0x^2$$
, Sim

7.4. Operações 51

d)
$$x^{52} + 3x^2$$
, Não

e)
$$(^{p}x)^{4} + x + 2$$
, Sim

f)
$$x^p + x^2$$
, Não

g)
$$x^{15}$$
, Sim

h)
$$x + 2$$
, Sim

i)
$$x^2 + 2x + 3$$
, Sim

2. Dada a função polinomial

$$f(x) = x^3 + x^2 + x + 1$$

pede-se para calcular: f(-3), f(2x) e f(f(-1))

· Solução:

Temos que:

$$f(-3) = (-3)^3 + (-3)^2 + (-3) + 1 = -20$$

$$f(2x) = (2x)^3 + (2x)^2 + (2x) + 1 = 8x^3 + 4x^2 + 2x + 1$$

$$f(f(-1)) = \Rightarrow$$

$$f(-1) = (-1)^3 + (-1)^2 + (-1) + 1 = 0 \Rightarrow$$

$$f(f(-1)) = f(0) = 1$$

7.4 Operações

7.4.1 Adição

Dados dois polinômios $f \in g$, onde:

$$f = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n = X^n$$

$$i=0$$

 $g = b_0 + b_1 x + b_2 x^2 + ... + b_n x^n = X^n$

Chama-se soma de f com g o polinômio:

 $a_i x^i b_i x^i$

$$(f+g)(x) = (a_0 + b_0) + (a_1 + b_1)x + ... + (a_n + b_n)x^n$$
 52 Notas de Aula 7. Polinômios
$$(a_i + b_i)x^i$$
 isto é:
$$(f+g)(x) = X^n_{i=0}$$

Exemplo 1: Somar $f(x) = 4+3x + x^2e \ g(x) = 5+3x^2 + x^4$:

$$f(x) = 0x^4 + 0x^3 + 1x^2 + 3x + 4$$
$$g(x) = 1x^4 + 0x^3 + 3x^2 + 0x + 5$$

$$(f + g)(x) = 1x^4 + 0x^3 + 4x^2 + 3x + 9$$

7.4.2 Substração

Dados dois polinômios $f \in g$, segue pela definição anterior de adição, que: (f

$$-g(x) = (a_0 - b_0) + (a_1 - b_1)x + ... + (a_n - b_n)x^n$$

isto é:

Multiplicação

7.4.3
$$(f - g)(x) = X^{n} i=0$$

$$(a_i - b_i)x^i$$

Dados dois polinômios $f \in g$, onde: $g = b_0 + b_1 x + b_2 x^2 + ... + b_n x^n = X^n$

$$f = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n = X^n$$

polinômio:

$$a_i x^i b_i x^i$$

i=0

Chama-se produto f.g o

$$(f.g)(x) = a_0b_0 + (a_0b_1 + a_1b_1)x + (a_2b_0 + a_1b_0 + a_0b_2)x^2 + ... + a_mb_nx^{m+n}$$

Exemplo 1:

7.4. Operações 53

1. Multiplicar $f(x) = 3x^3 + 2x + x e g(x) = 6x^2 + 5x + 4$, temos:

$$(f \cdot g)(x) = (3x^3 + 2x + x)(6x^2 + 5x + 4)$$

$$(f \cdot g)(x) = 3x^3(6x\$ + 5x + 4) + 2x(6x^2 + 5x + 4) + x(6x^2 + 5x + 4)$$

$$= 18x^5 + 15x^4 + 12x^3 + 12x^3 + 10x^2 + 8x + 6x^3 + 5x^2 + 4x$$

$$= 18x^5 + 15x^4 + 30x^3 + 15x^2 + 12x$$

54 Notas de Aula 7. Polinômios

NOTAS DE AULA 8

Polinômios - Continuação

Aviso: Estudar os dispositivos práticos 1 e 2 página 55F do livro Fundamentos de matemática elementar: Polinômios.

8.1 Propriedades

as operações seguem as propriedades:

1. Associativa: $f(g h) = (f g)h, \forall f, g, h \in P$

2. Comutativa: $fg = gf, \forall f, g \in P$

3. Elemento Neutro: $\exists en \in P \mid f.en = f, \forall f \in P$

4. Distributiva: $f(g + h) = fg + fh, \forall f, g, h \in P$

8.2 Divisão

Definição: Dados dois polinômios f (dividendo) e g 6= 0 (divisor), dividir f por g é determinar dois outros polinômios q (quociente) e r (resto), de modo que se atenda as seguintes condições:

i) q.g + r = f

ii) $\delta r < \delta g$ (ou r = 0 para divisão exata)

55

56 Notas de Aula 8. Polinômios - Continuação

Dividendo Divisor

Resto Quociente

Tabela 8.1: Método da chave para divisão de números reais e para polinômios

8.2.1 Método da Chave

O método da chave descreve o procedimento usado para divisões de números reais, ou seja:

Logo, para divisão de polinômios usando tal método, temos:

$$f(x) = 2x^3 - 7x^2 + 4x - 1$$
 dividendo
 $g(x) = x - 4$ divisor

Logo:

$$*2x^{*3} - 7x^{2} + 4x - 1 x - 4$$
 $*x^{*} - 2x^{3} + 8x^{2} 2x^{2} + x + 8$
 $x^{2} + 4x - 1$
 $*-x^{*2} + 4x$
 $+8^{*}x - 1$
 $*-8^{*}x + 32$
31

Tabela 8.2: Divisão de polinômios f por g utilizando método da chave

Logo, a divisão de f por g nos dá $2x^2 + x + 8$ como coeficiente e resto r = 31. Neste tipo de divisão, r é um polinômio constante, pois:

$$\delta g = 1 \implies \delta r = 0$$
 ou $r = 0$

8.2. Divisão 57

Notemos, finalmente que:

$$f(4) = 2(4)^{3} - 7(4)^{2} + 4(4) - 1$$
$$= 128 - 112 + 16 - 1$$
$$= 31 = r$$

8.2.2 Exercícios Resolvidos

1. Dividir $f(x) = 3x^5 - 6x^4 + 13x^3 - 9x^2 + 11x - 1$ por $g(x) = x^2 - 2x + 3$. • **Solução**:

Temos a operação dada por:

†
$$3x^{\frac{1}{5}} - 6x^4 + 13x^3 - 9x^2 + 11x - 1 x^2 - 2x + 3$$

$$x x^{\frac{1}{5}} - 3x^5 + 6x^4 - 9x^3 3x^3 + 4x - 1$$
† $4x^{\frac{1}{5}} - 9x^2 + 11x - 1$

$$x x^{\frac{1}{5}} - 4x^3 + 8x^2 - 12x$$
† $-x^{\frac{1}{5}} - x - 1$

$$x^2 - 2x + 3$$

$$-3x + 2$$

Com resultado:

$$f(x)$$

$$g(x)^{=3x^{3}} + 4x - 1 + -3x + 2$$

$$x^{2} - 2x + 3$$

- 2. Determinar a de modo que a divisão de $f(x) = x^4 2ax^3 + (a + 2)x^2 + 3a + 1$ por g(x) = x 2 apresente resto igual a 7.
 - · Solução:

Quando temos a divisão de um polinômio f com $\delta f \ge 1$, por um outro polinômio g com $\delta g = 1$, notamos que f aplicada à raiz de g, nos dá o resto da divisão de f po g. Assim:

58 Notas de Aula 8. Polinômios - Continuação

$$g(x) = x - 2$$
$$0 = x - 2$$
$$x = 2 \Longrightarrow f(2) = 7$$

E assim:

$$(2)^4 - 2a(2)^3 + (a+2)(2)^2 + 3a + 1 = 7$$

 $16 - 16a + 4a + 8 + 3a + 1 = 7$

$$-9a + 25 = 7$$
 $-9a = -18$
 $a = 9$
 $a = 2$

8.2.3 Exercícios Propostos

1. Dividir
$$f(x) = 2x^5 - 3x^4 + 4x^3 - 6x + 7$$
 por $g(x) = x^3 - x^2 + x - 1$

Solução dos Exercícios Propostos

1.

8.3 Produtos Notáveis

Os produtos notáveis obedecem a leis especiais de formação, e por isso sua utilização permite agilizar determinados tipos de cálculos que, pelas regras normais da multipli cação de expressões, ficariam mais longos. Os produtos notáveis apresentam-se em grande número e dão origem a um conjunto de identidades de grande aplicação.

8.3.1 Quadrado da soma de dois termos

Seja $a,b \in R$, tais que:

$$(a +b)^2 = (a +b)(a +b) = a^2 +2ab +b^2$$

8.3. Produtos Notáveis 59

8.3.2 Quadrado da diferença de dois termos

Seja $a,b \in \mathbb{R}$, tais que:

$$(a-b)^2 = (a-b)(a-b) = a^2 - 2ab + b^2$$

8.3.3 Cubo da soma de dois termos

Seja $a,b,c \in \mathbb{R}$, tais que:

$$(a +b)^3 = a^3 +3a^2b +3ab^2 +b^3$$

notemos que o número de termos é 4, pois obedecemos n + 1, com n = 3 neste caso. O

sinal de positivo se mantém e decrescemos a potência a partir do primeiro elemento *a* e a partir do primeiro elemento*b*.

8.3.4 Cubo da diferença de dois termos

Seja $a,b \in \mathbb{R}$, tais que:

$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

8.3.5 Produto da soma pela diferença de dois termos

O produto da soma pela diferença dos mesmos dois termos é igual ao quadrado do primeiro termo menos o quadrado do segundo termo, ou seja:

$$(a +b)(a -b) = a^2 -b^2$$

8.3.6 Exemplos

Exemplo 1: $(x + 7)^2 = x^2 + 2x7 + 7^2 = x^2 + 14x + 49$

Exemplo 2: $(x-4)^2 = x^2 + 2x4 + 4^2 = x^2 + 8x + 16$

Exemplo 3: $(x + 7)^3 = x^3 + 3x^2 + 3x^2 + 7^3 = x^3 + 21x^2 + 147x + 343$

Exemplo 4: $(x-4)^3 = x^3 - 3x^2 + 4x^2 + 4^2 = x^3 - 12x^2 + 48x + 16$

Exemplo 5: $(x +7)(x -7) = x^2 -7^2 = x^2 -49$

60 Notas de Aula 8. Polinômios - Continuação

8.4 Triângulo de Pascal

Para se obter a soma ou diferença de dois termos elevados à potências superiores, utilizamos um método prático chamado de triângulo de Pascal. Logo, segue:

Figura 8.1: Triângulo de Pascal

8.4.1 Exemplos de uso

Exemplo 1: $(a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$

Exemplo 2: $(a - b)^5 = a^5 - 5a^4b + 10a^3b^2 - 10a^2b^3 + 5ab^4 + b^5$

Os produtos notáveis têm aplicação direta na fatoração para cálculo usando funções polinomiais.

NOTAS DE AULA 9

Funções e Não Funções

1. A relação de f de A em R, com A = $\{x \in R \mid -1 \le x \le 3\}$ é função pois toda reta vertical conduzida pelos pontos $x \in A$ encontra o gráfica de f num só ponto.

Figura 9.1: Demonstração de função f

2. A relação f de A em R, onde A = $\{x \in \mathbb{R} \mid -2 \le x \le 2\}$ não é função, pois há retas verticais que encontra o gráfico de f em 2 pontos.

61

62 Notas de Aula 9. Funções e Não Funções

Figura 9.2: $A = \{x \in R \mid -2 \le x \le 2\}$

3. A função f de A em R, com A = $\{x \in R \mid 0 \le x \le 4\}$ não é função de A em R, pois a reta vertical conduzida pelo ponto (1,0) não encontra o gráfico de f. Se f fosse função de B em R, onde B = $\{x \in R \mid 2 \le x \le 4\}$ poderíamos observar uma função f.

Figura 9.3: Função f de A em R

9.1 Exercícios Resolvidos

1. Quais dos esquemas abaixo definem uma função de A = $\{0,1,2\}$ em B = $\{-1,0,1,2\}$?

9.1. Exercícios Resolvidos 63 a)

• Solução: Esta é a alternativa cor

reta, pois o conjunto de partida é A = $\{0,1,2\}$ e o conjunto de che gada é B = $\{-1, 0, 1, 2\}$.

2. Quais das relações de R em R, cujos gráficos aparecem abaixo, são funções? Justifique.

· Solução: Não é função. 9.2 Notação de Funções

Existe uma sentença aberta y = f(x) que expressa a lei mediante a qual dado $x \in A$ determina-se $y \in B$ tal que $(x, y) \in f$, então $f = \{(x, y) \mid x \in A, y \in B \in f(x) = y \in S$ significa que dados ons conjuntos $A \in B$ a função f tem a lei de correspondência f tem a lei de correspondência

ou
$$f: A^f 7 \rightarrow B \times 7 \rightarrow f(x)$$

$$f: A 7 \rightarrow B$$

 $x 7 \rightarrow f(x)$

9.2.1 Exemplos

Exemplo 1: Associa $x \in A$ e $y \in B$ tal que y = 2x: • Solução:

$$f: A 7 \rightarrow B$$

$$x 7 \rightarrow 2x$$

Exemplo 2: A cada $x \in R$ e $y \in R$, associa $y = x^2$:

66 Notas de Aula 9. Funções e Não Funções

Solução:

$$f: R 7 \rightarrow R$$

$$x 7 \rightarrow x^2$$

Exemplo 3: A cada $x \in R_{+e}$ $y \in R$ associa y = x:
• Solução:

$$f: R_+ 7 \rightarrow R$$

$$x \xrightarrow{7 \to X}$$

9.2.2 Exercícios Resolvidos

1. Seja a função:

$$f: R 7 \rightarrow R$$

 $x 7 \rightarrow 2x +1$

então calcule a imagem de 0 pela aplicação f.

$$f(0) = 2(0)+1$$

 $f(0) = 1$

- 2. Qual a notação das seguintes funções de R em R:
 - a) f associa a cada número real ao seu oposto:
 - Solução:

$$f: R 7 \rightarrow R$$

 $x 7 \rightarrow -x$

- b) g associa cada úmero real ao seu cubo:
 - Solução:

$$g: R 7 \rightarrow R$$

 $x 7 \rightarrow x^3$

9.3. Domínio e Imagem de Funções 67

9.2.3 Exercícios Propostos

1. Seja a função:

$$f: R 7 \rightarrow R$$

 $x 7 \rightarrow 2x +1$

então calcule a imagem de -2 pela aplicação de f .

- 2. Qual a notação das seguintes funções de R em R:
 - a) h associa a cada número real ao seu quadrado menos -1:

b) k associa a cada número real ao número 2:

Solução dos Exercícios Propostos

1.

$$f(-2) = 2(-2)+1$$
= -4+1
$$f(-2) = -3$$

2. a)

$$h: R 7 \rightarrow R$$

 $x 7 \rightarrow x^2 -1$

b)

$$k : R 7 \rightarrow R$$

 $x 7 \rightarrow 2$

9.3 Domínio e Imagem de Funções

Definição: Domínio é o conjunto D dos elementos $x \in A$, para os quais $\exists y \in B \mid (x, y) \in f$. Domínio é o conjunto de partida, D = A.

Imagem é o conjunto Im dos elementos $y \in B$, para os quais $\exists x \in A \mid (x, y) \in f$. Imagem é o subconjunto do contradomínio, logo notado por I $m \subset B$.

68 Notas de Aula 9. Funções e Não Funções

Pela representação cartesiana, temos:

- \underline{D} é o conjunto dos pontos da abscissa, tais que as retas verticais conduzidas por estes pontos interceptam o gráfico de f.
- \underline{Im} é o conjunto dos pontos da ordenada, tais que as retas horizontais conduzidas por esses pontos interceptam o gráfico de f.

9.3.1 Exemplos

Exemplo 1: D = $\{x \in R \mid -2 \le x \le 1\} \mid m = \{y \in R \mid 0 \le y \le 4\}$

9.3. Domínio e Imagem de Funções 69

$$\exists \mathsf{R} \mid -1 \le y \le 4\}$$

Exemplo 3: D = $\{x \in R \mid x 6 = 0\}$

$$Im = \{y \in \mathbb{R} \mid -2 < y < 0 \text{ ou } 1 < y < 2\}$$

Exemplo 4: D = $\{x \in R \mid -2 < x < 2\} \mid m = \{1, 2\}$

9.3.2 Exercícios Propostos

1. Dar o domínio da seguintes funções reais:

70 Notas de Aula 9. Funções e Não Funções

d)
$$f(x) = p^3 2x - 1$$
:

a)
$$f(x) = 3x + 2$$
:

b)
$$f(x) = \frac{x-1}{x}$$

$$x^{2}_{-4}$$
: e) $f(x) =$

c)
$$f(x) = \frac{1}{x}$$

f)
$$f(x) = \frac{1}{x+2}$$

Solução dos Exercícios Propostos

d)
$$D(f) = R$$

1. a)
$$D(f) = R$$

e)
$$D(f) = R-{3} f) D(f) = R-{-2}$$

b)
$$D(f) = \{x \in R \mid x \in A = 2\}$$

c)
$$D(f) = \{x \in R \mid x \ge 1\}$$

NOTAS DE AULA 10

Função do Primeiro Grau

10.1 Função Constante

Definição: Uma aplicação de f de R em R recebe o nome de função constante, quando a cada elemento $x \in \mathbb{R}$ associa sempre o elemento $k \in \mathbb{R}$:

$$f: R 7 \rightarrow R$$

 $x 7 \rightarrow k$

O gráfico da função constante é uma reta passando pelo ponto (0,k)

Figura 10.1: $Im = \{k\}$

10.1.1 Exemplos

Construir os gráficos das aplicações de R em R definida por:

Exemplo 1: y = 3

Solução:

71

72 Notas de Aula 10. Função do Primeiro Grau

Exemplo 2: y = -1

· Solução:

10.2 Função Identidade

Definição: $f: R \to R$ recebe o nome de função identidade quando cada elemento $x \in R$, associa o próprio x, isto é:

$$f: R 7 \rightarrow R$$

 $x 7 \rightarrow x$

O gráfico é uma reta que contém as bissetrizes de 1ºe 3º quadrantes:

10.3 Função Linear

Definição: $f: B 7 \rightarrow R$ recebe o nome de função linear quando a cada elemento $x \in R$ associa o elemento de $ax \in R$ dado:

Figura 10.2: I*m* = R

10.3.1 Exemplos

Exemplo 1: Construir o gráfico da função y = 2x considerando que dois pontos destintos determinam uma reta e. no caso da função linear. um dos pontos é a origem, logo basta atribuir a x u pondente y = 2x.

Pelos pontos P(0, 0 e Q(1, 2), traçamos a reta PQ que é o gráfico da

função. **Exemplo 2**: Construir o gráfico da função y = -2x. Logo, temos:

10. Função do Primeiro Grau

1 -2

10.3.2 Exercícios Resolvidos

1. Construir o gráfico das funções de R em R

a)
$$y = 2$$

b)
$$y = {}^{p}2$$

• Solução:

• Solução:

10.3.3 Exercícios Propostos

1. Construir, num mesmo sistema cartesiano, so gráficos das funções 10.4. Função Afim 75

(a)
$$y = x$$

Solução dos Exercícios Propostos 1.

(b) b = 3x

10.4 Função Afim

(c)
$$y = -x$$
 (d) $y = -3x$

Definição: $f: R \to R$ recebe o nbome de função afim quando cada $x \in R$ estiver a ssociado a um elemento $(ax + b) \in R$, com $a \in R$, ou seja:

$$f: R 7 \rightarrow R$$

$$x 7 \rightarrow ax +b,a 6=0$$

10.4.1 Exemplos

Exemplo 1: y = 3x + 2

• **Solução**: a = 3 e b = 2

Exemplo 2: -2x +1

• Solução: *a* = −2 e *b* = 1

Exemplo 3: y = x - 3

• Solução: a = 1 e b = −3 76 Notas de Aula 10. Função do

Primeiro Grau

Exemplo 4: y = 4x

• **Solução**: a = 4 e b = 0

10.4.2 Exercícios Propostos

1. Construir o gráfico cartesiano das funções de R em R:

c)
$$y = 3x + 2$$

a)
$$y = 2x - 1$$

d)
$$y = \frac{2x-3}{2}$$
 2

b)
$$y = x + 2$$

2. Resolver analiticamente e graficamente o sistema de equações:

$$(x - y = -3 (1))$$

$$2x + 3y = 4$$
 (II)

Solução dos Exercícios Propostos

$$5y = 10$$
$$v = 2$$

Logo, substituindo y = 2 em (I), temos:

$$x - 2 = -3$$
$$x = -1$$

Assim
$$(x, y) = (-1, 2)$$

b) Multiplicando-se (I) por 3 e somando-se as duas expressões termo a termo, obtemos:(3x - +3 + y = -9 (I)

$$2x + 3 + y = 4 \text{ (II)} \Rightarrow 5x = -5$$
 Então, substituindo-se $x = -1$ em (I) e/ou (II) temos:

(I)
$$-1-y = -3 \implies -y = -2 \implies y = 2$$

(II) $2(-1)+3y = 4 \implies -2+3y = 4 \implies 3y = 6 \implies y = 2$

Assim (x, y) = (-1, 2)

78 Notas de Aula 10. Função do Primeiro Grau

NOTAS DE AUI A 11

Função do Primeiro Grau

11.1 Coeficientes da Função Afim

O coeficiente <u>a</u> da função f(x) = ax + b, é denominado coeficiente angular ou <u>declividade</u> da reta representada no plano cartesiano.

O coeficiente <u>b</u> da função f(x) = ax + b é denominado <u>coeficiente linear</u>.

11.1.1 Exercícios Resolvidos

1. Obter a equação da reta que passa pelo ponto (1,3) e tem coeficiente angular iqual a 2.

Solução

A equação de interesse é f(x) = ax + b ou y = ax + b. Se o coeficiente angular é 2, temos a = 2.

Substituindo-se x = 1, y = 3 e a = 2 em y = ax +b, temos:

$$3 = (2)(1)+b$$

$$b = 1$$

Logo, a equação procurada é:

$$y = 2x + 1$$

2. Obter a equação da reta que passa pelo ponto (−2,4) e tem coeficiente angular ingual a −3.

Solução

Se x = -2, y = 4 e a = -3, logo f(x) = ax + b ou y = ax + b é gual a: 4

$$=(-3)(-2)+b$$

$$b = -2$$

79

80 Notas de Aula 11. Função do Primeiro Grau

Logo, a equação procurada é:

$$y = -3x - 2$$

3. Obter a equação da reta que passa pelo ponto (−2,1) e tem coeficiente linear igual a 4.

Solução

Tendo-se y = ax + b, logo x = -2, y = 1 e b = 4 nos dando:

$$1 = a(-2)-4$$

E assim:

Função Afim

$$y = {3 \choose 2}x + 4$$

11.2 Zero da

O zero de uma função é todo ponto x, onde a função é nula, ou seja, a imagem no ponto x é igual a zero.

$$x \in \text{zero de } y = f(x) \iff f(x) = 0$$

Logo, para determinarmos o zero da função afim, basta resolver a equação do primeiro grau:

$$ax +b = 0$$

Que apresenta uma única solução dada por:

$$x = -ba$$

De fato, resolvendo a equação, temos:

$$ax +b = 0^{a6=0} \leftarrow - \rightarrow ax = -b$$

 $x = -\frac{b}{a}$

Exemplo 1