Pr. Morad Lakhssassi

Examen Final d'Analyse 1 - Durée 2h

CPI1

(Documents et calculatrice non autorisés)

Justifiez toutes vos réponses!

Exercice 1:

Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par $f(x) = x + e^x$.

- a) Montrer que f est dérivable sur \mathbb{R} .
- b) Montrer que f est continue sur \mathbb{R} .
- c) Montrer que f est bijective.
- d) Calculer $(f^{-1})'$ en fonction de $\exp(f^{-1})$.
- e) Calculer $(f^{-1})'$ en fonction de f^{-1} (utiliser $f \circ f^{-1} = id$).
- f) Calculer f(0) et $(f^{-1})'(1)$. En déduire l'équation de la tangente au graphe de f^{-1} au point d'abscisse $x_0=1$.

Exercice 2:

Considérons la fonction $f: x \to \sqrt{e^x - 1}$

- a) Donner le domaine de définition de f.
- b) Etudier la continuité et la dérivabilité de f.

Exercice 3: Soient x et y deux réels avec 0 < x < y. Montrer que :

$$x < \frac{y - x}{\ln(y) - \ln(x)} < y$$

Exercice 4:

a) Calculer les limites des suites suivantes (justifiez!):

$$u_n = \frac{e^n}{n^n}$$
; $v_n = \sqrt[n]{2 + (-1)^n}$; $w_n = n!$

b) Calculer $\lim_{x\to 1^-} \frac{\arccos(x)}{\sqrt{1-x^2}}$

Exercice 5 : On considère les deux suites :

$$u_n = 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} ; n \in \mathbb{N}^*,$$

$$v_n = u_n + \frac{1}{n!} ; n \in \mathbb{N}^*.$$

On admet que $\lim_{n\to+\infty} n! = +\infty$.

Montrer que (u_n) et (v_n) convergent vers une même limite.