$\pi = 3.14$. Aceleração da gravidade = 9.8 m/s^2 . Velocidade do som no ar = 340 m/s. 1 atm = $1.0 \times 10^5 \text{ N/m}^2$. 1 cal = 4.2 J.

Questão 1. Sobre um plano liso e horizontal repousa um sistema constituído de duas partículas, \mathbf{I} e \mathbf{II} , de massas \mathbf{M} e \mathbf{m} , respectivamente. A partícula \mathbf{II} é conectada a uma articulação \mathbf{O} sobre o plano por meio de uma haste que inicialmente é disposta na posição indicada na figura. Considere a haste rígida de comprimento \mathbf{L} , inextensível e de massa desprezível. A seguir, a partícula \mathbf{I} desloca-se na direção de \mathbf{II} com velocidade uniforme $\overrightarrow{\mathbf{V}}_{\mathbf{B}}$, que forma um ângulo $\mathbf{\theta}$ com a haste. Desprezando qualquer tipo de resistência ou atrito, pode-se afirmar que, imediatamente após a colisão (elástica) das partículas,

- ${\bf A}$ () a partícula ${\bf II}$ se movimenta na direção definida pelo vetor $\overrightarrow{{\bf V}}_{{\bf B}}$.
- **B**() o componente y do momento linear do sistema é conservado.
- C () o componente x do momento linear do sistema é conservado.
- ${f D}$ () a energia cinética do sistema é diferente do seu valor inicial.
- **E()** n.d.a.

Questão 2. A partir do repouso, uma pedra é deixada cair da borda no alto de um edificio. A figura mostra a disposição das janelas, com as pertinentes alturas **h** e distâncias **L** que se repetem igualmente para as demais janelas, até o térreo. Se a pedra percorre a altura **h** da primeira janela em **t** segundos, quanto tempo levará para percorrer, em segundos, a mesma altura **h** da quarta janela? (Despreze a resistência do ar).

A()
$$\left[\left(\sqrt{L+h} - \sqrt{L} \right) / \left(\sqrt{2L+2h} - \sqrt{2L+h} \right) \right] \mathbf{t} .$$
B()
$$\left[\left(\sqrt{2L+2h} - \sqrt{2L+h} \right) / \left(\sqrt{L+h} - \sqrt{L} \right) \right] \mathbf{t} .$$

C()
$$\left[\left(\sqrt{4 \left(L + h \right)} - \sqrt{3 \left(L + h \right) + L} \right) \middle/ \left(\sqrt{L + h} - \sqrt{L} \right) \right] t \, .$$

$$D \, (\, \,) \quad \left[\left(\sqrt{4 \big(L + h \big)} \, - \, \sqrt{3 \big(L + h \big) + L} \, \right) \middle/ \left(\sqrt{2 \, L \, + 2 \, h} \, - \, \sqrt{2 \, L + h} \, \right) \right] t \, .$$

$$\mathbf{E}\left(\right) \quad \left[\left(\sqrt{3(L+h)} - \sqrt{2(L+h)+L}\right) \middle/ \left(\sqrt{L+h} - \sqrt{L}\right)\right] \mathbf{t}.$$

Questão 3. Variações no campo gravitacional na superfície da Terra podem advir de irregularidades na distribuição de sua massa. Considere a Terra como uma esfera de raio ${\bf R}$ e de densidade ${\bf \rho}$, uniforme, com uma cavidade esférica de raio ${\bf a}$, inteiramentente contida no seu interior. A distância entre os centros ${\bf O}$, da Terra, e ${\bf C}$, da cavidade, é ${\bf d}$, que pode variar de 0 (zero) até ${\bf R}-{\bf a}$, causando, assim, uma variação do campo gravitacional em um ponto ${\bf P}$, sobre a superfície da Terra, alinhado com ${\bf O}$ e ${\bf C}$. (Veja a fígura). Seja ${\bf G}_1$ a intensidade do campo gravitacional em ${\bf P}$ sem a existência da cavidade na Terra, e ${\bf G}_2$, a intensidade do campo no mesmo ponto, considerando a existência da cavidade. Então, o valor máximo da variação relativa: $({\bf G}_1-{\bf G}_2)/{\bf G}_1$, que se obtém ao deslocar a posição da cavidade, é

A()
$$a^3/[(R-a)^2 R]$$
. **B()** $(a/R)^3$. **C()** $(a/R)^2$. **D()** a/R . **E()** nulo

Questão 4. Considerando um buraco negro como um sistema termodinâmico, sua energia interna U varia com a sua massa M de acordo com a famosa relação de Einstein: $\Delta U = \Delta M \ c^2$. Stephen Hawking propôs que a entropia S de um buraco negro depende apenas de sua massa e de algumas constantes fundamentais da natureza. Desta forma, sabe-se que uma variação de massa acarreta uma variação de entropia dada por: $\Delta S / \Delta M = 8\pi \ G M \ k_B / \hbar c$. Supondo que não haja realização de trabalho com a variação de massa, assinale a alternativa que melhor representa a temperatura absoluta T do buraco negro.

A()
$$T = \hbar c^3 / G M k_B$$
.
B() $T = 8\pi M c^2 / k_B$.
C() $T = M c^2 / 8\pi k_B$.
D() $T = \hbar c^3 / 8\pi G M k_B$.

Questão 5. Qual dos gráficos abaixo melhor representa a taxa P de calor emitido por um corpo aquecido, em função de sua temperatura absoluta **T**?

A()

B()

C()

D()

E()

Questão 6. Uma certa massa de gás ideal realiza o ciclo ABCD de transformações, como mostrado no diagrama pressão-volume da figura. As curvas AB e CD são isotermas. Pode-se afirmar que

- o ciclo ABCD corresponde a um ciclo de Carnot. A()
- B() o gás converte trabalho em calor ao realizar o ciclo.
- nas transformações AB e CD o gás recebe calor. **C()**
- D() nas transformações AB e BC a variação da energia interna do gás é negativa.
- na transformação DA o gás recebe calor, cujo valor é igual à variação E() da energia interna.

Questão 7. Sabe-se que a atração gravitacional da lua sobre a camada de água é a principal responsável pelo aparecimento de marés oceânicas na Terra. A figura mostra a Terra, supostamente esférica, homogeneamente recoberta por uma camada de água. Nessas condições, considere as seguintes afirmativas:

- I. As massas de água próximas das regiões A e B experimentam marés altas simultaneamente.
- II. As massas de água próximas das regiões A e B experimentam marés opostas, isto é, quando A tem maré alta, B tem maré baixa e vice-versa.
- III. Durante o intervalo de tempo de um dia ocorrem duas marés altas e duas marés baixas.

Então, está(ão) correta(s), apenas

A () a afirmativa I.

B() a afirmativa II.

C() a afirmativa III. E() as afirmativas I e III. **D**() as afirmativas I e II.

Questão 8. Um balão contendo gás hélio é fixado, por meio de um fio leve, ao piso de um vagão completamente fechado. O fio permanece na vertical enquanto o vagão se movimenta com velocidade constante, como mostra a figura. Se o vagão é acelerado para frente, pode-se afirmar que, em relação a ele, o balão

- A () se movimenta para trás e a tração no fio aumenta.
- **B** () se movimenta para trás e a tração no fio não muda.
- C () se movimenta para frente e a tração no fio aumenta.
- **D** () se movimenta para frente e a tração no fio não muda.
- **E** () permanece na posição vertical.

Questão 9. Durante uma tempestade, Maria fecha as janelas do seu apartamento e ouve o zumbido do vento lá fora. Subitamente o vidro de uma janela se quebra. Considerando que o vento tenha soprado tangencialmente à janela, o acidente pode ser melhor explicado pelo(a)

A () princípio de conservação da massa.

B () equação de Bernoulli.

C () princípio de Arquimedes.

D () princípio de Pascal.

E () princípio de Stevin.

Questão 10. A figura mostra um sistema óptico constituído de uma lente divergente, com distância focal $\mathbf{f_1} = -20~\mathrm{cm}$, distante 14 cm de uma lente convergente com distância focal $\mathbf{f_2} = 20~\mathrm{cm}$. Se um objeto linear é posicionado a 80 cm à esquerda da lente divergente, pode-se afirmar que a imagem definitiva formada pelo sistema

A () é real e o fator de ampliação linear do sistema é - 0.4.

B() é virtual, menor e direita em relação ao objeto.

C () é real, maior e invertida em relação ao objeto.

D() é real e o fator de ampliação linear do sistema é - 0,2.

E () é virtual, maior e invertida em relação ao objeto.

Questão 11. Num oftalmologista, constata-se que um certo paciente tem uma distância máxima e uma distância mínima de visão distinta de 5,0 m e 8,0 cm, respectivamente. Sua visão deve ser corrigida pelo uso de uma lente que lhe permita ver com clareza objetos no "infinito". Qual das afirmações é verdadeira?

A () O paciente é míope e deve usar lentes divergentes cuja vergência é 0,2 dioptrias .

B () O paciente é míope e deve usar lentes convergentes cuja vergência é 0,2 dioptrias.

C () O paciente é hipermétrope e deve usar lentes convergentes cuja vergência é 0,2 dioptrias.

D () O paciente é hipermétrope e deve usar lentes divergentes cuja vergência é – 0,2 dioptrias.

E () A lente corretora de defeito visual desloca a distância mínima de visão distinta para 8,1 cm.

Questão 12. A figura 1 mostra o Experimento típico de Young, de duas fendas, com luz monocromática, em que m indica a posição do máximo central. A seguir, esse experimento é modificado, inserindo uma pequena peça de vidro de faces paralelas em frente à fenda do lado direito, e inserindo um filtro sobre a fenda do lado esquerdo, como mostra a figura 2. Suponha que o único efeito da peça de vidro é alterar a fase da onda emitida pela fenda, e o único efeito do filtro é reduzir a intensidade da luz emitida pela respectiva fenda. Após essas modificações, a nova figura da variação da intensidade luminosa em função da posição das franjas de interferência é melhor representada por

Questão 13. Quando em repouso, uma corneta elétrica emite um som de freqüência 512 Hz. Numa experiência acústica, um estudante deixa cair a corneta do alto de um edifício. Qual a distância percorrida pela corneta, durante a queda, até o instante em que o estudante detecta o som na freqüência de 485 Hz? (Despreze a resistência do ar).

A() 13,2 m

B() 15,2 m

C() 16,1 m

D() 18,3 m

E() 19,3 m

Questão 14. Considere as afirmativas:

- Os fenômenos de interferência, difração e polarização ocorrem com todos os tipos de onda.
- II. Os fenômenos de interferência e difração ocorrem apenas com ondas transversais.
- III. As ondas eletromagnéticas apresentam o fenômeno de polarização, pois são ondas longitudinais.
- IV. Um polarizador transmite os componentes da luz incidente não polarizada, cujo vetor campo elétrico \overline{E} é perpendicular à direção de transmissão do polarizador.

Então, está(ão) correta(s)

A () nenhuma das afirmativas.

B() apenas a afirmativa I.

C () apenas a afirmativa II.

D() apenas as afirmativas I e II.

E () apenas as afirmativas I e IV.

Questão 15. No Laboratório de Plasmas Frios do ITA é possível obter filmes metálicos finos, vaporizando o metal e depositando-o por condensação sobre uma placa de vidro. Com o auxílio do dispositivo mostrado na figura, é possível medir a espessura e de cada filme. Na figura, os dois geradores são idênticos, de f.e.m. $E=1,0\,V$ e resistência $r=1,0\,\Omega$, estando ligados a dois eletrodos retangulares e paralelos, P_1 e P_2 , de largura $b=1,0\,\mathrm{cm}$ e separados por uma distância $a=3,0\,\mathrm{cm}$. Um amperímetro ideal A é inserido no circuito, como indicado. Supondo que após certo tempo de deposição é formada sobre o vidro uma camada uniforme de alumínio entre os eletrodos, e que o amperímetro acusa uma corrente $i=0,10\,A$, qual deve ser a

espessura **e** do filme? (resistividade do alumínio $\rho = 2.6 \times 10^{-8} \Omega$.m).

A() 4,1x10⁻⁹cm

B() 4,1x10⁻⁹m

C() 4,3 x 10⁻⁹ m

D() 9,7 x 10⁻⁹ m

E() n.d.a.

Questão 16. A figura mostra dois capacitores, 1 e 2, inicialmente isolados um do outro, carregados com uma mesma carga **Q**. A diferença de potencial (ddp) do capacitor **2** é a metade da ddp do capacitor **1**. Em seguida, as placas negativas dos capacitores são ligadas à Terra e, as positivas, ligadas uma a outra por um fio metálico, longo e fino. Pode-se afirmar que

A () antes das ligações, a capacitância do capacitor 1 é maior do que a do capacitor 2.

 ${f B}$ () após as ligações, as capacitâncias dos dois capacitores aumentam.

C () após as ligações, o potencial final em N é maior do que o potencial em O.

D () a ddp do arranjo final entre **O** e **P** é igual a 2/3 da ddp inicial do capacitor 1.

E () a capacitância equivalente do arranjo final é igual a duas vezes à capacitância do capacitor 1.

Questão 17. Na figura, uma barra condutora MN (de comprimento ℓ , resistência desprezível e peso $\vec{\mathbf{P}}_{\mathbf{h}}$) puxada por um peso $\vec{\mathbf{P}}_{\mathbf{c}}$, desloca-se com velocidade constante $\vec{\mathbf{v}}$, apoiada em dois trilhos condutores retos, paralelos e de resistência desprezível, que formam um ângulo θ com o plano horizontal. Nas extremidades dos trilhos está ligado um gerador de força eletromotriz E com resistência r. Desprezando possíveis atritos, e considerando que o sistema está imerso em um campo de indução magnética constante, vertical e uniforme \mathbf{B} , pode-se afirmar que

- A () o módulo da força eletromotriz induzida é $\varepsilon = B \ell v sen \theta$.
- **B**() a intensidade i da corrente no circuito é dada por $P_{\rm c}$ sen $\theta/\!\left(\,B\,\ell\,\right)$.
- C () nas condições dadas, o condutor descola dos trilhos quando $\mathbf{i} \ge P_b/(B \ell tg \theta)$.
- **D**() a força eletromotriz do gerador é dada por $E = r P_c sen \theta / (B \ell) B \ell v cos \theta$.
- E () o sentido da corrente na barra é de M para N.

Questão 18. Experimentos de absorção de radiação mostram que a relação entre a energia E e a quantidade de movimento p de um fóton é $\mathbf{E} = \mathbf{p} \, \mathbf{c}$. Considere um sistema isolado formado por dois blocos de massas \mathbf{m}_1 e \mathbf{m}_2 , respectivamente, colocados no vácuo, e separados entre si de uma distância L. No instante t = 0, o bloco de massa m_1 emite um fóton que é posteriormente absorvido inteiramente por \mathbf{m}_2 , não havendo qualquer outro tipo de interação entre os blocos. (Ver figura). Suponha que \mathbf{m}_1 se torne $\mathbf{m_1}'$ em razão da emissão do fóton e, analogamente, $\mathbf{m_2}$ se torne $\mathbf{m_2}'$ devido à absorção desse fóton. Lembrando que esta questão também pode ser resolvida com recursos da Mecânica Clássica, assinale a opção que apresenta a relação correta entre a energia do fóton e as massas dos blocos.

A()
$$E = (m_2 - m_1)c^2$$
.

B()
$$E = (m_1' - m_2')c^2$$
.

$$C()$$
 $E = (m_2' - m_2)c^2/2$.

$$\mathbf{D}$$
 () $\mathbf{E} = (\mathbf{m}_2' - \mathbf{m}_2)\mathbf{c}^2$. \mathbf{E} () $\mathbf{E} = (\mathbf{m}_1 + \mathbf{m}_1')\mathbf{c}^2$.

$$E() E = (m_1 + m_1')c^2$$
.

Questão 19. Considere as seguintes afirmações:

- I. No efeito fotoelétrico, quando um metal é iluminado por um feixe de luz monocromática, a quantidade de elétrons emitidos pelo metal é diretamente proporcional à intensidade do feixe incidente, independentemente da frequência da luz.
- II. As órbitas permitidas ao elétron em um átomo são aquelas em que o momento angular orbital é $nh/2\pi$, sendo n = 1, 3, 5...
- Os aspectos corpuscular e ondulatório são necessários para a descrição completa de um sistema quântico. III.
- IV. A natureza complementar do mundo quântico é expressa, no formalismo da Mecânica Quântica, pelo princípio de incerteza de Heisenberg.

Quais estão corretas?

A() I e II.

B() I e III.

C() IeIV.

D() II e III.

E() III e IV.

Questão 20. Utilizando o modelo de Bohr para o átomo, calcule o número aproximado de revoluções efetuadas por um elétron no primeiro estado excitado do átomo de hidrogênio, se o tempo de vida do elétron, nesse estado excitado, é de 10^{-8} s. São dados: o raio da órbita do estado fundamental é de $5,3 \times 10^{-11}$ m e a velocidade do elétron nesta órbita é de $2,2 \times 10^{6}$ m/s.

 \mathbf{A} () 1×10^6 revoluções.

 \mathbf{B} () 4×10^7 revoluções.

C() 5 x 10^7 revoluções.

 \mathbf{D} () 8×10^6 revoluções.

E() 9 x 10⁶ revoluções.

As questões dissertativas, numeradas de 21 a 30, devem ser respondidas no caderno de soluções.

 $Quest{\tilde{a}o}$ 21. Na figura, o carrinho com rampa movimenta-se com uma aceleração constante \vec{A} . Sobre a rampa repousa um bloco de massa m. Se μ é o coeficiente de atrito estático entre o bloco e a rampa, determine o intervalo para o módulo de \vec{A} , no qual o bloco permanecerá em repouso sobre a rampa.

Questão 22. Quando solto na posição angular de 45° (mostrada na figura), um pêndulo simples de massa **m** e comprimento **L** colide com um bloco de massa **M**. Após a colisão, o bloco desliza sobre uma superfície rugosa, cujo coeficiente de atrito dinâmico é igual a 0,3. Considere que após a colisão, ao retornar, o pêndulo alcança uma posição angular máxima de 30°. Determine a distância percorrida pelo bloco em função de **m**, **M** e **L**.

Questão 23. Calcule a variação de entropia quando, num processo à pressão constante de 1,0 atm, se transforma integralmente em vapor 3,0 kg de água que se encontra inicialmente no estado líquido, à temperatura de 100 °C. Dado: calor de vaporização da água: $L_v = 5,4 \times 10^5 \ cal/kg$.

Questão 24. A figura mostra um recipiente, com êmbolo, contendo um volume inicial V_i de gás ideal, inicialmente sob uma pressão P_i igual à pressão atmosférica, P_{at} . Uma mola não deformada é fixada no êmbolo e num anteparo fixo. Em seguida, de algum modo é fornecida ao gás uma certa quantidade de calor Q. Sabendo que a energia interna do gás é U = (3/2) PV, a constante da mola é k e a área da seção transversal do recipiente é A, determine a variação do comprimento da mola em função dos parâmetros intervenientes. Despreze os atritos e considere o êmbolo sem massa, bem como sendo adiabáticas as paredes que confinam o gás.

M

 $\label{eq:Questão 25.} \begin{tabular}{ll} Questão 25. Num barômetro elementar de Torricelli, a coluna de mercúrio possui uma altura <math>{\bf H}$, que se altera para ${\bf X}$ quando este barômetro é mergulhado num líquido de densidade ${\bf D}$, cujo nível se eleva a uma altura ${\bf h}$, como mostra a figura. Sendo ${\bf d}$ a densidade do mercúrio, determine em função de ${\bf H}$, ${\bf D}$ e ${\bf d}$ a altura do líquido, no caso de esta coincidir com a altura ${\bf X}$ da coluna de mercúrio.

Questão 26. Uma onda acústica plana de 6,0 kHz, propagando-se no ar a uma velocidade de 340 m/s, atinge uma película plana com um ângulo de incidência de 60° . Suponha que a película separa o ar de uma região que contém o gás CO_2 , no qual a velocidade de propagação do som é de 280 m/s. Calcule o valor aproximado do ângulo de refração e indique o valor da freqüência do som no CO_2 .

Questão 27. Uma flauta doce, de 33 cm de comprimento, à temperatura ambiente de 0 °C, emite sua nota mais grave numa freqüência de 251 Hz. Verifica-se experimentalmente que a velocidade do som no ar aumenta de 0,60 m/s para cada 1 °C de elevação da temperatura. Calcule qual deveria ser o comprimento da flauta a 30 °C para que ela emitisse a mesma freqüência de 251 Hz.

Questão 28. Em sua aventura pela Amazônia, João porta um rádio para comunicar-se. Em caso de necessidade, pretende utilizar células solares de silício, capazes de converter a energia solar em energia elétrica, com eficiência de 10 %. Considere que cada célula tenha 10 cm² de área coletora, sendo capaz de gerar uma tensão de 0,70 V, e que o fluxo de energia solar médio incidente é da ordem de 1,0 x 10³ W/m². Projete um circuito que deverá ser montado com as células solares para obter uma tensão de 2,8 V e corrente mínima de 0,35 A, necessárias para operar o rádio.

Questão 29. Um gerador de força eletromotriz \mathcal{E} e resistência interna $r=5\,R$ está ligado a um circuito conforme mostra a figura. O elemento R_s é um reostato, com resistência ajustada para que o gerador transfira máxima potência. Em um dado momento o resistor R_1 é rompido, devendo a resistência do reostato ser novamente ajustada para que o gerador continue transferindo máxima potência. Determine a variação da resistência do reostato, em termos de R.

Questão 30. Situado num plano horizontal, um disco gira com velocidade angular ω constante, em torno de um eixo que passa pelo seu centro σ . O disco encontra-se imerso numa região do espaço onde existe um campo magnético constante \vec{B} , orientado para cima, paralelamente ao eixo vertical de rotação. A figura mostra um capacitor preso ao disco (com placas metálicas planas, paralelas, separadas entre si de uma distância σ 0 onde, na posição indicada, se encontra uma partícula de massa σ 0, em repouso em relação ao disco, a uma distância σ 0 do centro. Determine a diferença de potencial elétrico entre as placas do capacitor, em função dos parâmetros intervenientes.

