Example 4.6.2: The following grammar G generates the language $\{a^nb^nc^n: n \geq 1\}$. $G = (V, \Sigma, R, S)$, where

$$V = \{S, a, b, c, A, B, C, T_a, T_b, T_c\},\$$
 $\Sigma = \{a, b, c\}, \text{ and }$
 $R = \{S \rightarrow ABCS,\$
 $S \rightarrow T_c,\$
 $CA \rightarrow AC,\$
 $BA \rightarrow AB,\$
 $CB \rightarrow BC,\$
 $CT_c \rightarrow T_cc,\$
 $CT_c \rightarrow T_bc,\$
 $BT_b \rightarrow T_bb,\$
 $BT_b \rightarrow T_ab,\$
 $AT_a \rightarrow e\}.$

The first three rules generate a string of the form $(ABC)^nT_c$. Then the next three rules allow the A's, B's, and C's in the string to "sort out" themselves correctly, so that the string becomes $A^nB^nC^nT_c$. Finally, the remaining rules allow the T_c to "migrate" to the left, transforming all C's to c's, and then becoming T_b . In turn, T_b migrates to the left, transforming all B's into b's and becoming T_a , and finally T_a transforms all A's into a's and then is erased.