

International Technology Alliance in Network & Information Sciences

Anytime Cognition

An information agent for emergency response

Felipe Meneguzzi, Katia Sycara

Jean Oh and Nilanjan Chakraborty – CMU

Siddharth Mehrothra – Agent Dynamics

Michael Lewis – University of Pittsburgh

ACITA September 2011

Outline

- Motivation
- Scenario Description
- ANTICO Architecture
 - ➤ Domain Description Language
 - ➤ User Observer
 - ➤ Intent Predictor
 - Cognitive Workload Estimator
 - ➤ Information Gatherer
 - ➤ Information Adapter
 - ➤ Information Presenter
- Application Description
- Current Work

Motivation

- Planning is challenging:
 - ➤ Under time-pressure
 - Relying on uncertain information
- Humans under significant cognitive workload
 - Result in missed deadlines

- Anytime Cognition concept:
 - ➤ Generic information assistant architecture
 - Maintains a manageable cognitive workload

Scenario Description

- Based on the National Planning Scenarios developed by the DHS
- •ANTICO focuses on six areas:
 - Emergency Assessment/ Diagnosis
 - Emergency Management/ Response
 - ➤ Incident/Hazard Mitigation
 - ➤ Public Protection
 - ➤ Evacuation/Shelter
 - Victim Care

- Attack Scenario
 - ➤ Based on the nerve agent scenario
 - ➤ Deployment of multiple Sarin Gas Canisters into a public building in DC
- Initial phases of the response are critical
 - Conflicting diagnosis info
 - Potential for additional casualties from first responders

ANTICO Architecture

Generic assistance architecture

- ➤ Integrates multiple Al components
- Modularized to allow different techniques to be used
- Main objectives
 - User activity recognition
 - ➤ Unobtrusive assistance

ANTICO Domain Description Language (ADDL)

- Designed to be generic and applicable to various problem domains
- XML-based
 - >Human-readable
 - ➤ Network friendly
- Domain description includes:
 - **►**User Workflows
 - ➤ Information Sources

```
<?xml version="1.0" encoding="UTF-8"?>
<anticoDomain>
 <stateVariables>
   <variable name="zip-code"><domain type=numeric min=15201</pre>
max=15295/></variable>
   <variable name="hazmat-dispatch"><domain type=boolean/>/
variable>
 </stateVariables>
  <activities>
    <activity name="callHazMat">
      <observations>
        <observation name="dialedXYZ" prob=".5" />
       <observation name="lookedContacts" prob=".5" />
      </observations>
      <info0bject>
       <query value="select phone from Contacts where
name=`HAZMAT' and zip=$(zip-code)$" />
       <constraints>
         <deadline value="17:00 02-06-2011 GMT" />
       </constraints>
       <retrieval status="queried" source=Contacts" timestamp=""</pre>
data="" />
       </info0bject>
     <effects>
       <variable name="hazmat-dispatch" value="true" prob="0.9" />
     </effects>
   </activity>
  </activities>
</anticoDomain>
```


User Observer

- Obtains and interprets
 - ➤ User activities
 - ➤ Messages from the field
- Multiple observer objects specialized in specific observation types, e.g.
 - ➤UI activities
 - ➤Input devices
 - >External messages

Intent Predictor

- Uses a domain description in ADDL
- Analyzes observations from User Observer
 - ➤ Generates a set of information requirements
 - ➤ Employs HMM-based intention recognition

Information Gatherer

- Using the information requirements from intent predictor, determines:
 - Which information to be gathered
 - ➤ When to gather information
 - How to cope with resource restrictions

Cognitive Workload Estimator

- Calculates cognitive workload
 - ➤ Based on the number of tasks executed by user
 - Queuing model for user workload
- Estimates the maximum amount of information to be presented

Information Adapter

- Adapts information before presentation to appropriate level of detail
- Level of detail of presented information depends on:
 - Cognitive workload
 - Time available for user

Information Presenter

- Presents information to the user
- Uses current belief state to determine optimal time for presentation
- Monitors when and whether information has been used to improve future presentation

Application Description

Contributions

- Mitigation of user cognitive workload
- Adaptive presentation of time and context-sensitive information
- Proactive management of information requirements
- Generic XML-based domain description language
- Integration of several AI techniques:
 - Probabilistic plan recognition
 - Constraint optimization
 - Domain independent

Current Work

Current Work by CMU

- Integration of ANTICO with CPOF Sandbox
- Aimed at:
 - Testing of agent assistance for CPOF users
 - Refinements to information assistance in a realistic environment
 - Great potential for technology transition

CPOF Sandbox

- Developed by CERDEC
- Replicates UI functionality of CPOF in a "Sandbox" environment
 - Uses simulated data plus human interaction
 - No access to sensitive data
 - Aimed at usability studies in a controlled environment

Integration with CPOF Sandbox

