

Introducción a la organizacion de computadores

Prof. Ing. Fabián Zamora Ramírez

CE-1102 Taller de Programación Área de Ingeniería en Computadores Instituto Tecnológico de Costa Rica

Agenda

- 1 Concepto de Computador
- 2 Historia
- Clases de Computadores
- 4 Categorías de Flynn
- Organización vs Arquitectura

Concepto de Computador

¿Qué es un computador?

 Una máquina multinivel que puede resolver problemas ejecutando instrucciones que recibe de las personas.

Andrew S. Tanenbaum

 Un conjunto de subsistemas interrelacionados. Cada nivel con su estructura y funcionalidad.

William Stallings

Concepto de Computador

¿Qué es un computador?

Generación cero: computadoras mecánicas [1642-1945]

- Blaise Pascal: primera máquina calculadora funcional
- Charles Babbage: máquina analítica

Primera generación: tubos de vacío [1945-1955]

- UK Alan Turing: COLOSSUS para descifrar ENIGMA
- USA John Mauchley y J. Presper Eckert: ENIAC
- USA John Von Neuman : IAS

Segunda generación: transistores [1955-1965]

- Laboratorios Bell (1947): Invención del Transistor
- ALU y Unidad de Control más complejas
- Software de alto nivel

Tercera generación: circuitos integrados [1965-1980]

- Robert Noyce & Jack. St. Clair (1958): Invención del circuito integrado
- Nace el concepto de familias de computadoras y multiprogramación
- **SSI** (small-scale integration)

Ley de Moore

Aproximadamente cada dos años se duplica la cantidad de transistores de un chip de un procesador.

Gordon E. Moore

Cuarta generación: integración a gran escala [1980-?]

- 1971 Nace el microprocesador con el Intel 4004 (4 bits)
- **1979** Laboratorios Bell introdujo el primer procesador de señales digitales (DSP).
- 1983 Richard Stallman anuncia el sistema operativo GNU.
- 1985 Acorn Computers lanza el ARM1.
- 1991 Linux es diseñado por un estudiante avanzado de universidad llamado Linus Torvarlds
- 2005 IBM, Intel y AMD liberan sus primeros procesadores de múltiple núcleo.

Evolución de los procesadores

The amazing decades of the evolution of microprocessors

1970-1980	1980-1990	1990-2000	2000-2010
2K-100K	100K-1M	1 M - 1 0 0 M	100M-2B
0.1-3 MHz	3-30 MHz	30MHz-IGHz	1-15 GHz
0.1	0.1-0.9	0.9-1.9	1.9-2.9
	2K-100K 0.1-3 MHz	2K-100K 100K-1M 0.1-3 MHz 3-30 MHz	2K-100K 100K-1M 1M-100M 0.1-3 MHz 3-30 MHz 30MHz-IGHz

Generación	Fechas aproximadas	Tecnología	Velocidad típica (operaciones por segundo)
1	1946-1957	Válvulas	40 000
2	1958-1964	Transistores	200 000
3	1965-1971	Pequeña y media integración	1 000 000
4	1972-1977	Gran integración (LSI)	10 000 000
5	1978-1991	Alta integración (VLSI)	100 000 000
6	1991-	Ultra alta integración (ULSI)	1 000 000 000

Según su aplicación, los computadores pueden pertenecer a las siguientes categorías:

- Dispositivos móviles personales
- Escritorio (Desktop)
- Servidores
- Clústers
- Sistemas embebidos

Dispositivos móviles personales

Contenido Concepto de Computador Historia Clases de Computadores Categorías de Flynn Organización vs Arquitectura Refe

Clases de Computadores

Desktop Computing

Sistemas embebidos

Mercado	Aplicaciones
Automóviles	Inyección electrónica
	Frenos
	Control de vidrios, etc
Consumo	Televisión
	Celulares
	Cámaras
	GPS
Control Industrial	Sistemas de robótica
	Control
Medicina	Bombas de transfusión
	Marcapasos
Redes	Routers
	Gateways
	Hubs
Oficina	Fax
	Fotocopiadora

Sistemas embebidos (SoC)

Resumen de Características

Feature	Personal mobile device (PMD)	Desktop	Server	Clusters/warehouse- scale computer	Embedded
Price of system	\$100-\$1000	\$300-\$2500	\$5000-\$10,000,000	\$100,000-\$200,000,000	\$10-\$100,000
Price of micro- processor	\$10-\$100	\$50-\$500	\$200-\$2000	\$50-\$250	\$0.01-\$100
Critical system design issues	Cost, energy, media performance, responsiveness	Price- performance, energy, graphics performance	Throughput, availability, scalability, energy	Price-performance, throughput, energy proportionality	Price, energy, application-specific performance

Clasificación por paralelismo

- Paralelismo a nivel de Instrucción (ILP): Pipeline, VLIW, Superescalar
- Paralelismo a nivel de Hilo (TLP)
- Paralelismo a nivel de datos: Arquitecturas vectoriales y GPUs
- Paralelismo a nivel de petición ("requests")

Taxonomía de procesadores

Taxonomía de procesadores

Los CPU's se pueden clasificar en diferentes dimensiones que interactúan entre sí. Estas dimensiones nos ayuda a seleccionar un CPU basado en las características de la **aplicación** / sistema.

Taxonomía de Flynn

- **Single-instruction, single-data (SISD)**: Un solo conjunto de instrucciones opera sobre un solo conjunto de datos.
- Single-instrucion, multiple data (SIMD): Un único conjunto de instrucciones (programa) se ejecuta sobre múltiples conjuntos de datos.
- Multiple-instruction, multiple data (MIMD): Varios elementos de procesamiento con su propio conjunto de datos
- Multiple-instruction, single data (MISD): No muy usual comercialmente.

Arquitectura de un computador

Enfoque clásico: La arquitectura de un procesador corresponde al Set de Instrucciones (ISA) que puede ejecutar dicho procesador.

Arquitectura ⇒ **Software**

Arquitectura - ISA

Componentes de un set de instrucciones:

- Clase de ISA: Acceso a memoria.
 - Registro-Memoria: X86
 - Load / Store: ARM / MIPS
- Direccionamiento de memoria: endianness, alineamiento, etc
- Métodos de direccionamiento.
- Tipos y tamaño de operandos.
- Operaciones.
- Control de flujo
- Encodificación

Arquitectura - ISA

Instruction type/opcode	Instruction meaning				
Data transfers	Move data between registers and memory, or between the integer and FP or specia registers; only memory address mode is 16-bit displacement + contents of a GPR				
LB, LBU, SB	Load byte, load byte unsigned, store byte (to/from integer registers)				
LH, LHU, SH	Load half word, load half word unsigned, store half word (to/from integer registers)				
LW, LWU, SW	Load word, load word unsigned, store word (to/from integer registers)				
LD, SD	Load double word, store double word (to/from integer registers)				
L.S, L.D, S.S, S.D	Load SP float, load DP float, store SP float, store DP float				
MFCO, MTCO	Copy from/to GPR to/from a special register				
MOV.S, MOV.D	Copy one SP or DP FP register to another FP register				
MFC1, MTC1	Copy 32 bits to/from FP registers from/to integer registers				

Figure: fragmento de ISA $X86_64$

Arquitectura - ISA

Basic instruction formats

R		opcode	rs	r	t		rd	sha	ımt	funct	
	31	26	25	21 20	16	15	11	10	6	5	0
I		opcode	rs	r	t			imme	diate		
	31	26	25	21 20	16	15					
J		opcode		address							
	31	26	25								_

Figure: Formato de instrucción MIPS32

Organización

Se refiere a los aspectos de alto nivel de la **implementación** de un computador. También se le conoce como **microarquitectura**.

- Sistemas de memoria
- Interconexiones
- Etapas de Pipeline de CPU
- Dispositivos E/S
- Buses, etc.

Organización

Hardware

El término Hardware se usa para designar los detalles de más bajo nivel de la implementación de un computador.

 Incluye aspectos de tecnología de fabricación, implementación a nivel de compuerta, clock rates, etc.

Referencias

J Hennesy and David Patterson (2012)

Computer Architecture: A Quantitative Approach. 5th Edition. Elsevier – Morgan Kaufmann. [Cap 1]

Andrew S. Tanenbaum (2000)

Organización de computadoras - Un enfoque estructurado. [Cap 1]

William Stallings (2006)

Organización y arquitectura de computadores. [Cap 1, Cap 2]

Jeferson González G. (2017)

Material de clase: Arquitectura de computadores I.