Advanced Calculus, Homework 8

Adam Frank

August 2020

Problem 1. Rudin page 99, Problem 6. Let $f : \mathbb{R} \to \mathbb{R}$ be defined on $E \subset \mathbb{R}$, and assume E is compact. Now prove that f is continuous if and only if the graph of f is compact.

Suppose f is continuous then since E is compact, by theorem 4.14 f(E) is compact. Define the graph of f to be $\Gamma(f) \subseteq E \times f(E)$. Since E is compact in \mathbb{R} then it's bounded, and since f(E) is compact then f(E) is bounded. Then $\Gamma(f)$ is bounded. It only remains to show that $\Gamma(f)$ is closed and then, since $\Gamma(f) \subseteq \mathbb{R}^2$ it will follow that $\Gamma(f)$ is compact.

Let $\{(x_n,y_n)\}$ be any sequence $(x_n,y_n)\in\Gamma(f)$ and let $(x_n,y_n)\to(x,y)$. We seek to show that $(x,y)\in\Gamma(f)$. First note that from chapter 2 we know that $x_n\to x$ and $y_n\to y$. Since E is compact it's therefore closed and therefore $x\in E$. Hence to show that $(x,y)\in\Gamma(f)$ we now only need to show that y=f(x). That is to say we want $\lim_{n\to\infty}y_n=f(x)$. And since $(x_n,y_n)\in\Gamma(f)$ then $y_n=f(x_n)$ for each $n\in\mathbb{N}$. Now since f is continuous we know that

$$\lim_{n \to \infty} f(x_n) = f(x)$$

and hence $(x, y) \in \Gamma(f)$.

Now for the converse we suppose that $\Gamma(f)$ is compact and prove that f is continuous. We approach this by showing that f^{-1} maps closed sets to closed sets. So let $C \subseteq f(E)$ be a closed set, and we show $f^{-1}(C)$ is closed. To accomplish this we show that if $\{x_n\}$ is a sequence $x_n \in f^{-1}(C)$ and $x_n \to x$ then we must have $x \in f^{-1}(C)$.

To show this we will see that some subsequence $x_{n_k} \to t \in f^{-1}(C)$. From this it will follow that $x_{n_k} \to t = x$ since any subsequential limit is equal to the limit of the original sequence. This follows from the fact that $\Gamma(f)$ was assumed

to be compact and therefore there exists some subsequence $\{(x_{n_k},y_{n_k})\}$ which converges to a point $(x,y)\in\Gamma(f)$. Hence $x_{n_k}\to x$ and f(x)=y, which entails $x\in f^{-1}(y)$. Since C was assumed to be closed, and $y_{n_k}=f(x_{n_k})\in C$ then $\lim_{n\to\infty}y_{n_k}=y\in C$. Therefore $x\in f^{-1}(y)\subseteq f^{-1}(C)$. From all that was laid out above, it now follows that f is continuous.

Problem 2. Prove if f is continuous on [a,b] with f(x) > 0 for all $a \le x \le b$ then $\frac{1}{f}$ is bounded on [a,b].

Since f is continuous on the compact set [a,b] then it attains its minimum at some point $c \in [a,b]$. That is to say, for all $x \in [a,b]$ we have $0 < f(c) \le f(x)$. Therefore $\frac{1}{f(x)} \le \frac{1}{f(c)}$ which makes $\frac{1}{f(c)}$ an upper bound on $\frac{1}{f}$. Of course also $0 < \frac{1}{f(x)}$ so that 0 is a lower bound.

Problem 3. Let $f(x) = x^3$

- a. Prove f is continuous on \mathbb{R}
- b. Prove f is not uniformly continuous on \mathbb{R}
- c. Prove f is uniformly continuous on [1, 100]
- d. Prove f is uniformly continuous on (1,3)
- e. Prove f is uniformly continuous on any bounded subset of $\mathbb R$
- (a) Let $p \in \mathbb{R} \setminus \{0\}$ and we will show continuity at p. For any $\varepsilon \in \mathbb{R}^+$ let $\delta = \min\{\frac{\varepsilon}{9p^2}, |p|\}$. First note that if $|x-p| < \delta$ then $|x-p| \le |p|$. I will demonstrate that $|x+p| \le |3p|$.

First suppose p > 0 so that $|x - p| \le p$ and therefore $p - p \le x \le p + p$. Since $0 \le x$ then $0 \le x + p = |x + p|$. And since $x \le 2p$ then $x + p \le 3p$. Therefore $|x + p| \le 3p = |3p|$.

On the other hand if p < 0 then $|x-p| \le -p$ and so $p-(-p) \le x \le p+(-p)$. Since $x \le 0$ then $x+p \le 0$ and so |x+p| = -(x+p). Moreover, $2p \le x$ implies $3p \le x+p$. Hence $|x+p| = -(x+p) \le -3p = |3p|$.

Using the fact that $|x+p| \leq 3p$ we can now argue that

$$|f(x) - f(p)| = |x^3 - p^3|$$

$$= |x - p||x^2 + 2xp + p^2|$$

$$= |x - p||x + p|^2$$

$$< \frac{\varepsilon}{9p^2} \cdot 9p^2 = \varepsilon$$

For the case where p=0 we let $\delta=\varepsilon^{1/3}$. Then if $|x-p|=|x|<\delta$ we have

$$|f(x) - f(p)| = |x^3|$$

 $< (\varepsilon^{1/3})^3 = \varepsilon$

(b) We claim that with $\varepsilon = 1$ then for all $\delta \in \mathbb{R}^+$ there is always some pair

 $x,y \in \mathbb{R}$ such that both $|x-y| < \delta$ and $|f(x)-f(y)| \ge \varepsilon$. To that end suppose δ is given. Then let $x = \frac{1}{\delta} + 1$ and $y = x + \delta/2$. From this we have

$$|f(x) - f(y)| = |y^3 - x^3|$$

$$= |y - x||y^2 + 2xy + x^2|$$

$$> |\delta/2||y^2|$$

$$= \frac{\delta}{2} \cdot \left(\frac{1}{\delta^2} + \frac{1}{\delta} + \frac{1}{2} + \frac{1}{\delta} + 1 + \frac{\delta}{2} + \frac{1}{2} + \frac{\delta}{2} + \frac{\delta^2}{4}\right)$$

$$> \frac{\delta}{2} \cdot \frac{2}{\delta} = 1$$

- (c) Since f is continuous everywhere and [1, 100] is a compact set, by theorem 4.19 then f is uniformly continuous on this set.
- (d) Since f is continuous and [1,3] is compact, then f is uniformly continuous on [1,3]. But if f is uniformly continuous on any set then it is uniformly continuous on any subset, hence f is uniformly continuous on (1,3).

Proof of my claim that if f is uniformly continuous on any set then f is uniformly continuous on a subset: Let f be uniformly continuous on E and let $A \subseteq E$. Let $\varepsilon \in \mathbb{R}^+$ and set δ such that $\forall x,y \in E$ we have $|x-y| < \delta$ entails $|f(x) - f(y)| < \varepsilon$. With this same δ , for any $x', y' \in A$ since $x', y' \in E$ then we must have $|x' - y'| < \delta$ implies $|f(x') - f(y')| < \varepsilon$.

(e) Let $X \subseteq \mathbb{R}$ be any bounded set. Then \overline{X} is compact and therefore f is uniformly continuous on \overline{X} . Since $X \subseteq \overline{X}$ then f is uniformly continuous on X.

Problem 4. Prove that a uniformly continuous function preserves Cauchy sequences.

Let $\varepsilon \in \mathbb{R}^+$ be given, we will try to find an N such that $|f(a_p) - f(a_q)| < \varepsilon$ if $p, q \ge N$.

Since f is uniformly continuous then let δ be that value such that $|x-y| < \delta$ guarantees $|f(x)-f(y)| < \varepsilon$. Now choose N such that $|a_p-a_q| < \delta$ if $p,q \geq N$. Then it follows for any $p,q \geq N$ that $|a_p-a_q| < \delta$ and therefore $|f(a_p)-f(a_q)| < \varepsilon$, as we desired.

Problem 5. Let $f, g: X \to X$ where $X \subseteq \mathbb{R}$ be uniformly continuous.

- a. Prove f + g is uniformly continuous
- b. Give an example to show fg is not always uniformly continuous
- c. Give an example to show that f/g is not always uniformly continuous
- (a) Let δ_1 be such that $|x-y| < \delta_1$ guarantees $|f(x)-f(y)| < \varepsilon/2$ and let δ_2 be such that $|x-y| < \delta_2$ guarantees $|g(x)-g(y)| < \varepsilon/2$, and let $\delta = \min\{\delta_1, \delta_2\}$. Then if $|x-y| < \delta$ we have

$$|f(x)+g(x)-[f(y)+g(y)]|=|f(x)-f(y)+g(x)-g(y)|$$

$$\leq |f(x)-f(y)|+|g(x)-g(y)|$$

$$<2\varepsilon/2=\varepsilon$$

- (b) The function f(x) = x is uniformly continuous on $X = \mathbb{R}$. With g = f we see that $f(x)g(x) = x^2$ is not uniformly continuous on \mathbb{R} .
- (c) f(x) = 1 and g(x) = x are each uniformly continuous on $X = (0, \infty)$. However, f(x)/g(x) = 1/x is not.

Problem 6. Rudin page 99, Problem 12. A uniformly continuous function of a uniformly continuous function is uniformly continuous. (State this more precisely and prove it.)

The more precise statement is: Suppose $f:X\to Y$ and $g:Y\to Z$ are uniformly continuous functions and X,Y,Z are metric spaces. Prove that the composition function $h=g\circ f$ is uniformly continuous.

To prove this, let $\varepsilon \in \mathbb{R}^+$ be given and δ_1 such that $\forall x,y \in Y$ if $d_Y(x,y) < \delta_1$ then we have $d_Z(g(x),g(y)) < \varepsilon$. Now let $\delta \in \mathbb{R}^+$ be such that for all $a,b \in X$ if $d_X(a,b) < \delta$ then $d_Y(f(a),f(b)) < \delta_1$. From this it follows that if $a,b \in X$ are such that $d_X(a,b) < \delta$ then we have $d_Y(f(a),f(b)) < \delta_1$ and from that it follows, since $f(a),f(b) \in Y$, that

$$d_Z(g(f(a)), g(f(b))) = d_Z(h(a), h(b)) < \varepsilon$$

So h is uniformly continuous.

Problem 7. Rudin page 102, Problem 26. Suppose X, Y, Z are metric spaces, and Y compact. Let f map X into Y, let g be a continuous one-to-one mapping Y into Z, and put h(x) = g(f(x)) for $x \in X$. Prove that f is uniformly continuous if h is. Hint: g^{-1} has a compact domain g(Y) and $f(x) = g^{-1}(h(x))$.

Prove also that f is continuous if h is continuous.

Show (by modifying Example 4.21, or another example) that the compactness of Y cannot be omitted from the hypothesis, even when X and Z are compact.

We assume h is uniformly continuous and try to show that f is. We first set, as an intermediate goal, to show that g^{-1} is uniformly continuous.

Now because Y is compact then g(Y) is, since g was assumed to be continuous, and continuous functions map compact sets to compact sets. Moreover, g^{-1} is a function since g is one-to-one, and we have already seen (theorem 4.17) that the inverse of continuous functions is continuous. Hence g^{-1} is continuous. But then g^{-1} is a continuous function with domain g(Y) which is compact. Hence g^{-1} is uniformly continuous.

Moreover, since $h=g\circ f$ then $f=g^{-1}\circ h$. As we've already proved in this exercise, the composition of uniformly continuous functions is uniformly continuous. So f is uniformly continuous.

Now rather than assume h is uniformly continuous we only assume that h is continuous, and try to show that f is continuous.

Still we know that g^{-1} exists, g(Y) is compact, and g(Y) is the domain of g^{-1} . Hence, still, g^{-1} is continuous by theorem 4.6. Also, still, $f = g^{-1} \circ h$. And the composition of continuous functions is continuous. Hence f is continuous.

We exhibit metric spaces X,Y,Z where X and Z are compact. And we exhibit functions $f:X\to Y,\ g:Y\to Z,$ and $h=g\circ f$ where g is one-to-one and continuous, and h is uniformly continuous, but f is not continuous. Take

$$X = [0, 2]$$

 $Y = [0, 1) \cup [2, 3]$
 $Z = [0, 2]$

with

$$f(x) = \begin{cases} x & \text{if } x < 1\\ x + 1 & \text{if } x \ge 1 \end{cases}$$

and

$$g(x) = \begin{cases} x & \text{if } x < 1\\ x - 1 & \text{if } x \ge 2 \end{cases}$$

Notice that because the domain of g is $[0,1)\cup[1,2]$ then g is in fact continuous and one-to-one. And since h(x)=x then h is uniformly continuous on [0,2].

Problem 8. Rudin page 100, Problem 14. Let I = [0, 1] be the closed unit interval. Suppose f is a continuous mapping of I into I. Prove that f(x) = x for at least one $x \in I$.

If either f(0) = 0 or f(1) = 1 then there is nothing to prove. So assume both of these are not true and so f(0) > 0 and f(1) < 1. Now define the function g(x) = f(x) - x which is a difference of continuous functions, and so therefore is continuous. Moreover g(0) = f(0) > 0 and g(1) = f(1) - 1 < 0.

Since $0 \in [g(1), g(0)]$ and g is continuous, then by the Intermediate Value Theorem, there must be a $c \in [0, 1]$ such that g(c) = 0. But this means f(c) - c = 0 so f(c) = c which is what we hoped to prove.

Problem 9. Prove any decreasing function that has the intermediate value property is continuous.

Suppose $f: X \to \mathbb{R}$ where $X \subseteq \mathbb{R}$. Also suppose f is decreasing and has the intermediate value property. First we observe that -f must be an increasing function, since if a < b for any $a, b \in X$, we must have f(a) > f(b) and therefore -f(a) < -f(b).

We can also see that -f must have the IVP. For if -f(a) < -f(b) for any $a,b \in X$ and a < b then we can let -f(a) < y < -f(b). Then f(a) > -y > f(b) and since f has the IVP then there exists some a < c < b and $c \in X$ such that f(c) = -y. Then

$$f(a) > f(c) > f(b)$$

and therefore

$$-f(a) < -f(c) < -f(b)$$

$$-f(a) < y < -f(b)$$

which shows that -f has the IVP.

Now since -f is increasing and has the IVP, by the proof in lecture we know that -f is continuous. Therefore -(-f) = f is continuous by theorem 4.9.

Problem 10. Give an example of each of the following or explain why such a request is impossible.

- a. A continuous function defined on an open interval with range equal to a closed interval.
- b. A continuous function defined on a closed interval with range equal to an open interval.
- c. A continuous function defined on all of \mathbb{R} with range equal to \mathbb{Q} .
- (a) Technically $\mathbb{R} = (-\infty, \infty)$ is an open interval and we could use the example of, say, $f(x) = \sin x$ or f(x) = x. But to take a bounded open interval, which might be the intention, then we can take $f(x) = \sin x$ on $(0, 2\pi)$. Then $f((0, 2\pi)) = [-1, 1]$.
- (b) Technically we could take \mathbb{R} for the domain again, and \mathbb{R} for the range. Hence f(x) = x would qualify. An even more interesting example might be $\tan x$ where the domain is \mathbb{R} and the range is $(-\pi/2, \pi/2)$. These are closed and open intervals, respectively. If we require a bounded closed domain then we know the image of f will be compact and therefore not open.
- (c) This is impossible because \mathbb{R} is a connected set and \mathbb{Q} is disconnected. Since continuous functions map connected sets to connected sets, no continuous f can have $f(\mathbb{R}) = \mathbb{Q}$.