Rozwiązania zadań C12

Zad. 1. Czas rozwiązywania pewnego testu jest zmienną losową o rozkładzie normalnym z odchyleniem standardowym 5 minut. Wykładowca uważa, że rozwiązanie zadania zajmuje 10 minut. Wśród studentów panuje jednak przekonanie, że taki czas jest zbyt krótki. Zmierzono czas rozwiązywania testu przez wybranych losowo 6 studentów i otrzymano następujące wyniki (w minutach):

Czy na tej podstawie można twierdzić, że przekonanie studentów jest słuszne? Zweryfikować odpowiednią hipotezę przyjmując poziom istotności $\alpha = 0$, 05.

UWAGA: wszystkie zadania rozwiązujemy wg schematu podanego poniżej:

Wybór modelu z uzasadnieniem.

- 1. Hipotezy:
- 2. Statystyka testowa: ... = ma rozkład ma
- 3. Wartość statystyki testowej:
- 4. Zbiór krytyczny:
- 5. Decyzja i jej uzasadnienie:

Rozw. Niech zmienna losowa X oznacza czas rozwiązania testu. $X \sim N(\mu, \sigma)$, przy czym $\sigma = 5$ (minut). Zatem do weryfikacji hipotez o wartości oczekiwanej μ wykorzystujemy Model 1.

Dane zadania: n=6, próbka: 17,0; 8,5; 20,0; 10,5; 11,0, 15,5, $\sigma=5$, poziom istotności $\alpha=0,05$. Stąd średnia próbkowa: $\bar{x}=\frac{82,5}{6}=13,75$.

- 1. Hipotezy: H_0 : $\mu = 10$, H_1 : $\mu > 10$
- 2. Statystyka testowa: $Z=rac{ar{x}-10}{5}\sqrt{6}\,$ ma rozkład standardowy normalny o ile H_0 prawdziwa
- 3. Wartość statystyki testowej: $z = \frac{13,75-10}{5}\sqrt{6} = 1,8371$
- 4. Zbiór krytyczny $C = [z_{0,95}, \infty) = [1,645, \infty)$
- 5. **Decyzja i jej uzasadnienie**: $z \in C$, więc odrzucamy hipotezę zerową i przyjmujemy hipotezę alternatywną na poziomie istotności 0,05: na poziomie istotności 0,05 można twierdzić, że studenci mają rację.

Zad.2 Dział kontroli jakości w zakładach chemicznych chce oszacować średnią wagę proszku do prania sprzedawanego w pudełkach o nominalnej wadze 3 kg. Pobrano w tym celu próbkę losową 7 pudełek proszku do prania. Każde pudełko zważono i otrzymano następujące wyniki (w kg):

Wiadomo, że rozkład wagi pudełka proszku do prania jest normalny. Na poziomie istotności 0,05 zweryfikować przypuszczenie, że średnia waga pudełka proszku do prania jest mniejsza niż 3 kg.

Rozw. Niech zmienna losowa X oznacza wagę proszku do prania w pudełku o nominalnej wadze 3 kg. $X \sim N(\mu, \sigma)$, przy czym parametry rozkładu nie są znane. Zatem do weryfikacji hipotez o wartości oczekiwanej μ wykorzystujemy Model 2.

Dane zadania:

- n = 7, $pr\acute{o}bka$: 2,93 2,97 3,05 2,91 3,02 2,87 2,92
- poziom istotności $\alpha = 0.05$
- 1. Hipotezy: H_0 : $\mu = 3$, H_1 : $\mu < 3$
- 2. Statystyka testowa: $T=\frac{\bar{X}-3}{S}\sqrt{7}$ ma rozkład t-Studenta o 6 stopniach swobody, oznaczany jako t_6 , o ile H_0 prawdziwa
- 3. Wartość statystyki testowej: $t = \frac{\bar{x}-3}{s}\sqrt{7} = \frac{2,95-3}{0.06396}\sqrt{7} = -2,0683$
- 4. Zbiór krytyczny $C = (-\infty, -t_{0.95;6}] = (-\infty; -1.9432]$
- 5. **Decyzja i jej uzasadnienie:** $t \in C$, więc odrzucamy hipotezę zerową i przyjmujemy hipotezę alternatywną na poziomie istotności 0,05: można twierdzić, na poziomie istotności 0,05, ze średnia waga pudełka proszku do prania jest mniejsza niż 3 kg.
- **Zad. 3** W celu oszacowania dokładności pomiarów wykonywanych pewnym przyrządem dokonano 8 pomiarów pewnego elementu i otrzymano wartość wariancji z próby 0,0675. Na poziomie istotności 0,05 stwierdzić, czy wariancja wskazań badanego przyrządu istotnie różni się od 0,06. Przyjąć założenie, ze rozkład badanej cechy jest normalny.

(Uwaga: W rozwiązaniu zadania przyjęto liczebność próbki 7. Proszę rozwiązać oryginalne zadanie dla n = 8)

Rozw. Niech zmienna losowa X oznacza wielkość losowego pomiaru pewnego elementu. $X \sim N(\mu, \sigma)$, przy czym parametry rozkładu nie są znane. Zatem do weryfikacji hipotez o wariancji σ^2 wykorzystujemy Model 4.

Dane zadania: n=7, $s^2=0.0675$, poziom istotności $\alpha=0.05$

- 1. Hipotezy: H_0 : $\sigma^2 = 0.06$, H_1 : $\sigma^2 \neq 0.06$
- 2. Statystyka testowa: $\chi^2 = \frac{6S^2}{0.06}$ ma rozkład χ^2_6 , o ile H_0 prawdziwa
- 3. Wartość statystyki testowej: $\chi_{obs}^2 = \frac{6 \cdot 0,0675}{0.06} = 6,75$
- 4. Zbiór krytyczny C = ?

$$C = \left(0; \chi^2_{\frac{\alpha}{2}, n-1}\right] \cup [\chi^2_{1-\frac{\alpha}{2}, n-1}; \infty),$$
 gdzie $n-1=6$, $\alpha=0.05$, $\frac{\alpha}{2}=0.025$, $1-\frac{\alpha}{2}=0.975$
$$\chi^2_{\frac{\alpha}{2}, n-1} = \chi^2_{0.025; 6} = 1.2373, \quad \chi^2_{1-\frac{\alpha}{2}, n-1} = \chi^2_{0.975; 6} = 14.4494$$

$$C = \left(0; 1.2373\right] \cup [14.4494; \infty),$$

5. **Decyzja i jej uzasadnienie**: $\chi^2_{obs} \notin C$, więc nie można twierdzić, że $\sigma^2 \neq 0.06$, na poziomie istotności 0,05.

<u>Zad. 4</u> W celu zbadania zawartości procentowej skrobi w ziemniakach zbadano 41 losowo wybranych ziemniaków i otrzymano następujące wyniki:

zawartość skrobi	liczba ziemniaków
9 - 13	2
13 - 17	14
17 - 21	22
21 - 25	3

Zakładamy, że zawartość skrobi w ziemniakach ma rozkład normalny. Na poziomie istotności 0,1 zweryfikować hipotezę, że wariancja zawartości skrobi w ziemniakach jest większa niż 5,5.

Rozw. Niech zmienna losowa X oznacza zawartość skrobi w ziemniaku. $X \sim N(\mu, \sigma)$, przy czym parametry rozkładu nie są znane. Zatem do weryfikacji hipotez o wariancji σ^2 wykorzystujemy Model 4.

Dane zadania:

n=41, dane zgrupowane w szeregu rozdzielczym, poziom istotności lpha=0.1

1. Hipotezy: H_0 : $\sigma^2 = 5.5$, H_1 : $\sigma^2 > 5.5$

2. Statystyka testowa: $\chi^2 = \frac{40S^2}{5.5}$ ma rozkład χ^2_{40} , o ile H_0 prawdziwa

3. Wartość statystyki testowej $\chi_{obs}^2 = \frac{40 \cdot s^2}{5.5} = ?$

Zawartość skrobi	Liczba ziemniaków	Środek	$n_i \cdot (\bar{x}_i - \bar{x})^2$
	n_i	\bar{x}_i	
9-13	2	11	$2(11 - 719/41)^2$
13-17	14	15	$14(15 - 719/41)^2$
17-21	22	19	$22(19 - 719/41)^2$
21-25	3	23	$3(23 - 719/41)^2$
Suma		31	.2,1951

$$\bar{x} = \frac{1}{41} \sum_{i=1}^{4} n_i \bar{x}_i = \frac{1}{41} (2 \cdot 11 + 14 \cdot 15 + 22 \cdot 19 + 3 \cdot 23) = \frac{719}{41} = 17,54$$

$$\chi_{obs}^2 = \frac{40 \cdot s^2}{5.5} = \frac{312,1952}{5.5} = 56,7628$$

4. Zbiór krytyczny *C* =?

$$C=[\chi^2_{1-\alpha,n-1};\infty),$$

gdzie
$$n-1=41-4=40$$
, $\alpha=0.1$, $1-\alpha=0.9$

$$\chi^2_{0,9;40} = 51,8051$$

$$C = [51,8051; \infty),$$

6. **Decyzja i jej uzasadnienie**: $\chi^2_{obs} \in \mathcal{C}$, więc można twierdzić, że $\sigma^2 > 5,5$, na poziomie istotności 0,05.

<u>Zad. 5</u> Przeprowadzono badania dotyczące czasu poświęcanego tygodniowo przez studentów pewnej uczelni na studiowanie w bibliotece. W tym celu wylosowano próbę 125 studentów i otrzymano dla niej następujące wyniki (czas studiowania w bibliotece w godzinach):

czas	liczba studentów
0 - 2	10
2 - 4	28
4 - 6	42
6 - 8	30
8 - 10	15

Czy na podstawie tych danych można twierdzić, że studenci tej uczelni spędzają w bibliotece średnio mniej niż 6 godzin tygodniowo? Przyjąć poziom istotności 0,06.

Rozw. Niech zmienna losowa X oznacza czas poświęcany tygodniowo przez studenta badanej uczelni na studiowanie w bibliotece. Nie ma w zadaniu informacji o rozkładzie zmiennej losowej X. Oznaczmy $E(X) = \mu$, $Var(X) = \sigma^2$. Są to też nieznane parametry rozkładu. Liczebność próbki jest duża $n=125 \geq 100$. Zatem do weryfikacji hipotezy o wartości oczekiwanej μ wykorzystujemy Model 3.

Dane zadania:

n=125, dane zgrupowane w szeregu rozdzielczym, poziom istotności $\alpha=0.06$.

- 1. Hipotezy: H_0 : $\mu = 6$, H_1 : $\mu < 6$
- 2. Statystyka testowa: $Z=rac{ar{x}-6}{S}\sqrt{125}\,$ ma rozkład bliski rozkładowi standardowemu normalnemu, o ile H_0 prawdziwa
- 3. Wartość statystyki testowej: $z = \frac{\bar{x}-6}{s} \sqrt{125} = ?$

czas	liczba studentów	środek $ar{x}_i$	$n_i \cdot (\bar{x}_i - \bar{x})^2$
0 - 2	10	1	$10(1-5,192)^2$
2 - 4	28	3	$28(3-5,192)^2$
4 – 6	42	5	$42(5-5,192)^2$
6 – 8	30	7	$30(7-5,192)^2$
8 – 10	15	9	$15(9-5,192)^2$
Sum	a	•	627,392

$$\bar{x} = \frac{1}{125} \sum_{i=1}^{5} n_i \bar{x}_i = \frac{1}{125} (10 \cdot 1 + 28 \cdot 3 + 42 \cdot 5 + 30 \cdot 7 + 15 \cdot 9) = \frac{649}{125} = 5,192$$

$$s^2 = \frac{627,392}{124} = 5,0596, \quad s = \sqrt{5,0596} = 2,2494$$

$$z = \frac{\bar{x} - 6}{s} \sqrt{125} = \frac{5,192 - 6}{2,2494} \cdot 11,1803 = -4,0160$$

- 4. Zbiór krytyczny $C = (-\infty, -z_{0.94}] = (-\infty; -1,55477]$
- 5. **Decyzja i jej uzasadnienie**: $z \in C$, więc odrzucamy hipotezę zerową i przyjmujemy hipotezę alternatywną na poziomie istotności 0,06: można twierdzić, na poziomie istotności 0,06, że średni czas spędzany tygodniowo w bibliotece przez studenta jest mniejszy niż 6 godzin.
- **Zad.** 6 W losowej próbie 500 mieszkańców pewnego rejonu będących w wieku produkcyjnym znalazło się 126 bezrobotnych. Czy na poziomie istotności 0,05 można stwierdzić, że stopa bezrobocia w tym rejonie jest większa od 20%?

Rozw.

Niech zmienna losowa X ma wartość 1, jeśli osoba jest bezrobotna, a 0 w przeciwnym przypadku, zatem $X \sim Bin(1,p)$, $p \in (0,1)$, p- proporcja osób bezrobotnych w badanym rejonie. Zatem do weryfikacji hipotezy o wartości p wykorzystujemy Model 10? o ile spełnione są warunki (*)

Dane zadania: n=500, k=126, poziom istotności $\alpha=0.05$, $p_0=0.2$.

$$n\hat{p} = 126 \ge 5$$
, $n(1 - \hat{p}) = 500 \left(1 - \frac{126}{500}\right) = 374 \ge 5$ (*)

Spełnione są warunki (*), więc można stosować Model 10.

- 1. Hipotezy: H_0 : p = 0.2, H_1 : p > 0.2
- 2. Statystyka testowa:

$$Z = \frac{\hat{p} - 0.2}{\sqrt{\frac{0.2(1 - 0.2)}{500}}}$$

ma rozkład bliski rozkładowi N(0,1), o ile H_0 prawdziwa

3. Wartość statystyki testowej:

$$z = \frac{\frac{126}{500} - 0.2}{\sqrt{\frac{0.2 \cdot 0.8}{500}}} = 2.91$$

- 4. Zbiór krytyczny $C = [z_{0.95}; \infty) = [1,64485; \infty)$
- 5. **Decyzja i jej uzasadnienie**: $z=2,91 \in C$, więc odrzucamy hipotezę zerową i przyjmujemy hipotezę alternatywną na poziomie istotności 0,05: na poziomie istotności α =0,05 można twierdzić, że stopa bezrobocia w danym rejonie jest większa niż 20%.
- **Zad. 7** Przeprowadzono ankietę wśród pracowników naukowych pewnej uczelni dotyczącą stażu pracy. Stwierdzono, że wśród 140 respondentów znalazło się: 47 osób o stażu krótszym niż 10 lat, 53 osoby pracujące co najmniej 10, ale nie dłużej niż 15 lat oraz 40 osób o stażu pracy dłuższym niż 15 lat. Zweryfikować hipotezę, że 70% pracowników tej uczelni legitymuje się stażem pracy nie dłuższym niż 15 lat. Przyjąć poziom istotności 0,05.

Rozw.

Niech Y oznacza staż pracy pracownika naukowego uczelni, a

$$X = \begin{cases} 1, & \text{je\'sli } Y \leq 15 \\ 0, & \text{je\'sli } Y > 15 \end{cases}$$

 $X \sim Bin(1,p), \ p \in (0,1), p$ — proporcja pracowników naukowych uczelni mających staż pracy nie dłuższy niż 15 lat

Dane zadania: n=140 – liczebność próbki

Staż pracy	< 10	[10,15]	>15
Liczba osób	47	53	40

 $k = 100 - liczba pracowników w próbce o stażu pracy \le 15,$

poziom istotności $\alpha = 0.05$, $p_0 = 0.7$.

$$n\hat{p} = 140 \cdot \frac{100}{140} = 100 \ge 5, \ n(1-\hat{p}) = 140 \left(1 - \frac{100}{140}\right) = 40 \ge 5 \ (*)$$

Zachodzą nierówności (*), więc można stosować Model 10.

Należy zweryfikować

1. Hipotezy: H_0 : p = 0.7, H_1 : $p \neq 0.7$

2. Statystyka testowa:

$$Z = \frac{\hat{p} - 0.7}{\sqrt{\frac{0.7(1 - 0.7)}{140}}}$$

ma rozkład bliski rozkładowi N(0,1), o ile H_0 prawdziwa

3. Wartość statystyki testowej:

$$z = \frac{\frac{100}{140} - 0.7}{\sqrt{\frac{0.7 \cdot 0.3}{140}}} = 0.36886$$

4. Zbiór krytyczny C = ?

$$C = \left(-\infty; -z_{1-\frac{\alpha}{2}}\right] \cup \left[z_{1-\frac{\alpha}{2}}; \infty\right),$$

gdzie
$$\alpha = 0.05$$
, $\frac{\alpha}{2} = 0.025$, $1 - \frac{\alpha}{2} = 0.975$, $z_{0.975} = 1.96$,

$$C = (-\infty; -1.96] \cup [1.96; \infty)$$

5. **Decyzja i jej uzasadnienie**: $z=0.36886 \notin C$, więc na poziomie istotności 0,05 nie można odrzucić hipotezy, że 70% pracowników ma staż pracy nie dłuższy niż 15 lat.