Коллоквиум по Дискретной математике, 2 курс

Залялов Александр, @bcategorytheory, Солодовников Никита, @applied_memes, Шморгунов Александр, @Owlus

27 Игры Эренфойхта

Цель: сформулировать общий критерий элементарной эквивалентности двух интерпретаций некоторой сигнатуры (считаем, что сигнатура содержит только предикатные символы).

Критерий будет сформулирован в терминах некоторой игры, называемой игрой Эренфойхта. В ней участвуют два игрока, называемые Новатором (Н) и Консерватором (К). Игра определяется выбранной парой интерпретаций.

В начале игры Новатор объявляет натуральное число k. Далее они ходят по очереди, начиная с H; каждый из игроков делает k ходов, после чего определяется победитель.

На i-м ходу H выбирает элемент в одной из интерпретаций (в любой из двух) и помечает его числом i. В ответ K выбирает некоторый элемент из другой интерпретации и также помечает его числом i.

После k ходов игра заканчивается. При этом в каждой интерпретации k элементов оказываются помеченными числами от 1 до k (мы не учитываем, кто именно из игроков их пометил). Обозначим эти элементы a_1, a_2, \cdots, a_k (для первой интерпретации) и b_1, b_2, \cdots, b_k (для второй). Элементы a_i и b_i (с одним и тем же i) будем называть соответствующими друг другу.

Посмотрим, найдётся ли предикат сигнатуры, который различает помеченные элементы первой и второй интерпретации (то есть истинен на некотором наборе помеченных элементов в одной интерпретации, но ложен на соответствующих элементах другой). Если такой предикат найдётся, то выигрывает Новатор, в противном случае — Консерватор.

Теорема. Интерпретации элементарно эквивалентны $\iff K$ имеет выигрышную стратегию в этой игре.

Доказательство. Число ходов, которое понадобится Новатору, соответствует кванторной глубине различающей интерпретации формулы. Кванторная глубина формулы определяется так:

• Глубина атомарных формул равна нулю.

- Глубина формул $\phi \lor \psi$ и равна максимуму глубин формул ϕ и ψ .
- Глубина формулы $\neg \phi$ равна глубине формулы ϕ .
- Глубина формул $\exists \xi \ \phi$ и $\forall \xi \ \phi$ на единицу больше глубины формулы ϕ .

Рассмотрим позицию, которая складывается в игре после k ходов H и K (перед очередным ходом H) и за l ходов до конца игры.

Пемма. Если есть формула глубины l с параметрами x_1, \dots, x_k , отличающая a_1, \dots, a_k от b_1, \dots, b_k , то в указанной позиции H имеет выигрышную стратегию; в противном случае её имеет K.

Доказательство. Пусть такая формула ϕ существует. Она представляет собой бескванторную комбинацию некоторых формул вида $\forall \xi \ \psi$ и $\exists \xi \ \psi$, где ψ — формула глубины меньше l. Хотя бы одна из этих формул должна также отличать a_1, \cdots, a_k от b_1, \cdots, b_k (ереходя к отрицанию, можно считать, что эта формула начинается с квантора существования).

Пусть формула ϕ , имеющая вид $\exists x_{k+1}\psi(x_1,...,x_k,x_{k+1})$, истинна для a_1 , \cdots , a_k и ложна для b_1 , \cdots , b_k . Тогда найдётся такое a_{k+1} , для которого в А истинно $\psi(a_1,\cdots,a_k)$. Это a_{k+1} и будет выигрывающим ходом H; при любом ответном ходе b_{k+1} К формула $\psi(b_1,\cdots,b_k,b_{k+1})$ будет ложной. Таким образом, некоторая формула глубины 1 - 1 отличает наборы A и B.

Рассуждая по индукции, мы можем считать, что в оставшейся (1-1)-ходовой игре H имеет выигрышную стратегию. (В конце концов мы придём к ситуации, когда некоторая бескванторная формула отличает k+l элементов в A от соответствующих элементов в B, то есть H выиграет.)

Пусть такой формулы нет.

Будем называть две формулы эквивалентными, если они одновременно истинны или ложны в любой интерпретации на любом наборе аргументов. Поскольку сигнатура конечна, существует лишь конечное число атомарных формул, все параметры которых содержатся среди u_1, \cdots, u_s . Существует лишь конечное число булевых функций с данным набором аргументов, поэтому существует лишь конечное число неэквивалентных бескванторных формул, все параметры которых содержатся среди u_1, \cdots, u_s . Отсюда следует, что существует лишь конечное число неэквивалентных формул вида $\exists u_s \psi(u_1, \cdots, u_s)$, и потому лишь конечное число неэквивалентных формул глубины 1, параметры которых содержатся среди u_1, \cdots, u_{s-1} . Продолжая эти рассуждения, мы заключаем, что для любого l и для любого набора переменных u_1, \cdots, u_n существует лишь конечное число неэквивалентных формул глубины l, все параметры которых содержатся среди u_1, \cdots, u_n .

Вернёмся к игре Эренфойхта. Пусть элементы a_1, \dots, a_k нельзя отличить от элементов b_1, \dots, b_k с помощью формул глубины l. Пусть Н выбрал произвольный элемент в одной из интерпретаций, скажем, a_{k+1} . Рассмотрим все формулы глубины l - 1 с k+1 параметрами (с точностью до эквивалентности их конечное число); некоторые из них будут истинны на a_1, \dots, a_{k+1} , а некоторые ложны. Тогда формула, утверждающая существование a_{k+1} с ровно такими свойствами (после квантора существования идёт

конъюнкция всех истинных формул и отрицаний всех ложных) будет формулой глубины 1, истинной на a_1, \cdots, a_k . По предположению эта формула должна быть истинной и на b_1, \cdots, b_k , и потому существует b_{k+1} с теми же свойствами, что и a_{k+1} . Этот элемент b_{k+1} и должен пометить K. Теперь предположение индукции позволяет заключить, что в возникшей позиции у K есть выигрышная стратегия.

Лемма доказана. Её частным случаем является обещанный критерий элементарной эквивалентности

П

28 Семантически полные теории. Критерий семантической полноты теории в терминах элементарной эквивалентности моделей. Аксиоматизация элементарной теории упорядоченного множества целых чисел.

Aксиоматическая теория T - множество замкнутых формул.

Т *семантически полна*, если для любой замкнутой формулы A выполнено одно из двух:

- 1. из Т семантически следует А (А истинно во всех моделях теории)
- 2. из T семантически следует $\neg A$

Лемма. Теория семантически полна \iff любые 2 ее модели элементарно эквивалентны.

Доказательство. ⇒ Элементарная эквивалентность значит, что в обоих моделях любая формула или истинна, или ложна. Тогда если ϕ следует из A, то она истинна для всех моделей, следовательно, для каждой пары. Аналогично для $\neg \phi$

 \Leftarrow От противного: какая-то формула сама не следует и ее отрицание не следует. Значит, есть модели, в одной из которых А истинно, в другой - ложно. Противоречие с элементарной эквивалентностью.

Аксиоматизация множества рациональных чисел

$$M = (Q, =, <)$$

- аксиомы равенства
 - 1. $\forall x \, x = x$
 - 2. $\forall x \forall y \ x = y \rightarrow y = x$
 - 3. $\forall x \forall y \forall z \ x = y \land y = z \rightarrow x = z$

- 4. $\forall x_1 \forall x_2 \forall y_1 \forall y_2 \ x_1 = x_2 \land y_1 = y_2 \rightarrow (x_1 = x_2 \rightarrow y_1 = y_2)$
- аксиомы линейного порядка
 - 1. $x < y \land y < z \rightarrow x < z$
 - $2. \neg (x < x)$
 - 3. $\forall x \forall y \ x < y \lor x > y \lor x = y$
- отсутствие наибольшего и наименьшего элемента
- плотность множества $\forall x, y \ (x < y \rightarrow \exists z \ x < z \land z < y)$

Теорема. Т - совместная и семантически полная.

Доказательство. Доказательство аналогично игре Эренфойхта с R и Q. Все выбранные в одной модели элементы идут в том же порядке, что и элементы второй модели. Консерватору достаточно возможности выбрать элемент между любыми двумя и отсутствие наибольшего и наименьшего элемента.

29 Аксиоматизация множества целых чисел.

$$M = (Z, =, <)$$

- аксиомы равенства
- аксиомы линейного порядка
- отсутствие наибольшего и наименьшего элемента
- $\forall x \exists y (x < y \land \neg (\exists z \ x < z \land z < y))$
- $\forall x \exists y (x > y \land \neg (\exists z \ x > z \land z > y))$

Теорема. T - coвместная u cемантически nonная.

Доказательство. Как устроены модели T? Это Z, Z+Z или любое множество вида AZ (A - линейно упорядоченное множество, в каждом элементе которого лежит множество целых чисел). Скажем, что элементы эквивалентны, если мы можем получить один из другого за конечное число шагов. Факторизуем по этому отношению эквивалентности.

Лемма. Для любого линейно упорядоченного A $AZ \cong Z$

Доказательство. Доказывается аналогично случаю с Z+Z