Some Ring Theory Class Notes

Class March 12

Conventions regarding 1 (multiplicative unity):

- 1. Every ring R has a multiplicature unity denoted by 1 or 1_R such that $1*a = a*1 \,\forall a \in R$. Note: 1 = 0 in $R \Leftrightarrow R = \{0\}$ because $\forall a \in R$: a = a*1 = a*0 = 0.
- 2. Any subring S of R must contain 1_R . For subring, check
 - (a) $1_R \in S$
 - (b) $a \in S \implies -a \in S$
 - (c) $a, b \in S \implies a + b \in S$
 - (d) $a, b \in S \implies ab \in S$

Note: An ideal I of R is a subring if and only if I = R $(1 \in I \implies a = a * 1 \in I \forall a \in R)$.

Example 0.1. $R \times \{0\} = \{(a,0) \mid a \in R\}$ is not a subring of $R \times R$ if $R \neq \{0\}$ since $(1,1) \notin R \times \{0\}$. But $\{(a,a) \mid a \in R\}$ is a subring of $R \times R$.

- 3. For any ring homomorphism $\varphi: R \to S$ we require $\varphi(1_R) = 1_S$. Note that this is not a consequence of the other ring homomorphism properties:
 - (a) $\varphi(a+b) = \varphi(a) + \varphi(b) \ \forall a, b \in R$
 - (b) $\varphi(ab) = \varphi(a)\varphi(b) \ \forall \ a, b \in R$

 $\varphi(0) = 0$ is a consequence of (a): $\varphi(0) = \varphi(0+0) = \varphi(0) + \varphi(0) \implies 0 = \varphi(0)$. For multiplication, $\varphi(1) = \varphi(1*1) = \varphi(1)*\varphi(1)$ does not necessarily imply $1 = \varphi(1)$ since $\varphi(1)$ need not have a multiplicative inverse in S.

Example 0.2. $\varphi: R \to R \times R$ which maps $a \to (a,0)$ is NOT a ring homomorphism since $\varphi(1_R) = (1_R,0) \neq 1_{R \times R}$ if $R \neq \{0\}$

Example 0.3. $\psi: R \to R \times R$ which maps $a \to (a, a)$ is a ring homomorphism.

- 4. For an integral domain R (commutative without zero divisors) we also require $1 \neq 0 \Leftrightarrow R \neq \{0\}$ (neither integral domain nor a field)
 - **Example 0.4.** (a) of fields: \mathbb{R}, \mathbb{Z}_p (p prime), \mathbb{Q}, \mathbb{C} . $\mathbb{Q}(\sqrt{2}) := \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$ subfield of \mathbb{R} . Check: $0 \neq x \in \mathbb{Q}(\sqrt{2}) \implies x^{-1} \in \mathbb{Q}(\sqrt{2})$ (need $\sqrt{2} \notin \mathbb{Q}$).
 - (b) of integral domains which are no fields: \mathbb{Z} , when n is a prime $\implies \mathbb{Z}_n$ is an integral domain, but also a field. When n is not a prime $\implies \mathbb{Z}_n$ has zero divisors and isn't an integral domain. Specifically $\exists l, m \in \mathbb{N}, 1 < l, m < n$ such that $n = lm \rightsquigarrow (\text{modulo } n)$. [0] = [n] = [lm] = [l][m] in \mathbb{Z}_n (such that $[l] \neq [0]$ and $[m] \neq [0]$.
 - (c) $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$ subring of \mathbb{C} ; $\mathbb{Z}[\sqrt{2}]$ is a subring of \mathbb{R} .
 - (d) commutative rings which are not integral domains. \mathbb{Z}_n , n is not prime. $\mathbb{Z} \times \mathbb{Z}$ has zero divisors e.g. (1,0)*(0,1)=(0,0).
 - (e) of non-commutative rings:

- i. M(n,R), $n \ge 2$ and R any ring $\ne \{0\}$. $\exists A, B \in M(n,R)$ such that $AB \ne BA$
- ii. Hamilton's quaternions $\mathbb{H} = \{a + bi + cj + dk \mid a, b, c, d \in \mathbb{R}\}$ ($\cong \mathbb{R}^4$ as abelian group). Multiplication is induced by that \mathbb{Q} and distributive laws \rightsquigarrow example of skew field or division ring.

Class March 14

Remark 0.5. Units. $(R^* =) U(R) := \{ a \in R \mid \exists b \in R \text{ s.t. } ab = ba = 1 \}$

- 1. There can only be one $b \in R$ with ab = ba = 1. In fact, if ba = 1 = ab = ab' for some $b' \in R$ $\implies (ba)b = (ba)b' \implies 1b = 1b' \implies b = b'$. Notation: $a \in U(R)$ $ab = ba = 1 \rightsquigarrow b = a^{-1}$ multiplicative inverse.
- 2. For non-commutative R, ab = 1 usually does not imply ba = 1. However, if $\exists c \in R$ with ca = 1, then c = b and hence also ba = 1. This is seen by c = c * 1 = c(a * b) = (ca)b = 1 * b = b.
- 3. U(R) is closed under multiplication and $(ab)^{-1} = b^{-1}a^{-1}$ for $ab \in U(R)$. Immediately checks that (U(R), *) is a group.
- 4. $a, b \in R$ are called zero divisors if $a, b \neq 0$ but ab = 0. $U(R) \cap \{\text{zero divisors}\} = \emptyset$.

Example 0.6. 1. F field (or skew field) $\implies U(F) = F \setminus \{0\} =: F*$

- 2. $U(\mathbb{Z}) = \{1, -1\}$. $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\} \implies U(\mathbb{Z}[i]) = \{1, -1, i, -i\} = \{x \in \mathbb{Z}[i] \mid |x| = 1\}$
- 3. $U(\mathbb{Z}_n) = \{ [a] \in \mathbb{Z}_n \mid \gcd(a, n) = 1 \}$. Notation $U(\mathbb{Z}_n) = U(n)$.
- 4. $U(R \times S) = U(R) \times U(S)$ (direct product groups). $(a,b) \implies (a,b)^{-1} = (a^{-1},b^{-1})$.
- 5. $U(M(n,F)) = GL(n,F) = \{A \in M(n,F) \mid det(A) \neq 0\}$

Remark 0.7. The Center (of a Ring). $Z(R) := \{z \in R \mid za = az \ \forall \ a \in R.$ This is a subring of R:

- 1. $1 \in Z(R)$ since $a * 1 = 1 * a = a \forall a \in R$
- 2. $z \in Z(R) \implies -z \in Z(R): -z * a = -(za) = -(az) = a * (-z) \forall a \in R$
- 3. $y, z \in Z(R) \implies y + z \in Z(R)$: $(y + z)a = ya + za = ay + az = a(y + z) \ \forall a \in R$.
- 4. $y, z \in Z(R) \implies yz \in Z(R)$. $(yz)a = y(za) = y(az) = (ya)z = (ay)z = a(yz) \ \forall \ a \in R$.

Remark 0.8. Integral Multiples (of element of R). For $a \in R$, $n \in \mathbb{Z}$, we define n * a := if n > 0, a + ... + a, if n = 0, 0 n-times and if n < 0, (-a) + ... + (-a) n-times. Note: n > 0: $a + ... + a = 1_R a + ... + 1_R a$. $a(1_R + ... + 1_R) = (n * 1_R)a$. If $n < 0, n * a = (-a) + ... + (-a) = ((-1_R) + ... + (-1_R))a = (n * 1_R)a$. Always, $n * a = (n * 1_R)a \ \forall \ a \in R \ \forall \ n \in \mathbb{Z}$.

Remark 0.9. More rules:

- 1. $a \in Z(R)$ (e.g. $a = 1_R$), then $n * a \in Z(R) \ \forall \ n \in \mathbb{Z}$ since Z(R) is a subring of R.
- 2. $(-n) * a = -(n * a) \forall n \in \mathbb{Z}, a \in R$

- 3. $1*a = a \ \forall \ a \in R$ by definition
- 4. $n*(a+b) = n*a + n*b \ \forall \ n \in \mathbb{Z} \ \forall \ a,b \in R$ (follows from (R,+) is an abelian group).
- 5. (n+m)*a = n*a + m*a
- 6. $(nm)*(ab) = (n*a)(m*b) \ \forall \ n,m \in \mathbb{Z} \ \forall \ a,b \in R.$
- 7. $(nm) * a = n * (m * a) \forall n, m \in \mathbb{Z}, \forall a \in R$.

Definition 0.10. For any ring R, there is a unique ring homomorphism $\varphi = \varphi_R : \mathbb{Z} \to R$ which maps $1 \to 1_R$. Must have $\varphi(1) = 1_R$.

If $n \in \mathbb{Z}$, n > 0 then $\varphi(n) = \varphi(1 + \ldots + 1) = \varphi(1) + \ldots + \varphi(1) = 1_R + \ldots + 1_R = n * I_R$. $n \in \mathbb{Z}$, n < 0, then $\varphi(n) = -\varphi(-n) = -\varphi(1 + \ldots + 1) = -(-n * 1_R) = n * I_R$. Therefore, the only possible ring homomorphism is $\varphi_R : \mathbb{Z} \to R$ (which maps $n \to n * 1_R$) $\ni \varphi(n) = n * 1_R \; \forall \; n \in \mathbb{Z}$.

Now, we check $\varphi: \mathbb{Z} \to R$ which maps $n \to n * I_R$ is in fact a ring homomorphism:

- 1. $\varphi(1) = 1_R$ by definition
- 2. $\varphi(n+m) = (n+m)1_R = n * 1_R + m * 1_R = \varphi(n) + \varphi(m) \; \forall \; n, m \in \mathbb{Z}.$
- 3. $\varphi(n*m) = (nm)1_R = (nm)(1_R*1_R) = n1_R*m1_R = \varphi(n)\varphi(m) \ \forall \ n, m \in \mathbb{Z}.$

Note: φ ring hom $\implies \varphi(\mathbb{Z}) = \{n * 1_R \mid n \in \mathbb{Z}\}$ is a subring of R. Moreover, $\varphi(\mathbb{Z}) \subseteq Z(R)$ since $n * 1_R \in Z(R) \ \forall \ n \in \mathbb{Z}$. The kernel of φ_R is an ideal of \mathbb{Z} . Hence, $Kern(\varphi_R) = n\mathbb{Z}$ for a unique $n \in \mathbb{N}_0$.

Definition 0.11. The characteristic of R is defined as $char(R) = n \in \mathbb{N}_0$ with $Kern(\varphi_R) = n\mathbb{Z}$. Alternatively, $char(R) = 0 \Leftrightarrow m*1_R \neq 0 \; \forall \; m > 0$. $char(R) = n > 0 \Leftrightarrow n*1_R = 0$ and $m*1_R \neq 0 \; \forall \; 1 \leq m < n$.

Class March 16

Remark 0.12. Some review! For any given ring R with 1, \exists unique ring homomorphism $\varphi_R : \mathbb{Z} \to R$ which maps $m \to m * 1_R$. It is important to note that $\varphi_R(\mathbb{Z})$ is a subring of R, $\varphi_R(\mathbb{Z}) \subseteq Z(R)$, and $Kern(\varphi_R)$ is an ideal of $\mathbb{Z} \implies \exists$ unique $n \in N_0$ with $Kern(\varphi_R) = n\mathbb{Z}$. (For notation purposes, $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$)

Definition 0.13. If $Kern(\varphi_R) = n\mathbb{Z}$, $n \in \mathbb{N}_0$, then n is called the characteristic of R, char(R) = n. An alternative characterization:

- 1. $m * 1_R \neq 0 \ \forall \ m \in \mathbb{N} \Leftrightarrow char(R) = 0$
- 2. n is the smallest natural number with $n * 1_R = 0 \Leftrightarrow char(R) = n$.

Example 0.14. 1. $char(\mathbb{Z}) = 0$ ($\varphi_{\mathbb{Z}} = id_{\mathbb{Z}}$) \mathbb{Q} , \mathbb{R} , \mathbb{C} are all fiels of characteristic 0 and $char(\mathbb{Z}[i]) = 0$

- 2. $char(\mathbb{Z}_n) = n \ \forall \ n \in \mathbb{N} \ \text{and} \ \varphi_{\mathbb{Z}_n} : \mathbb{Z} \to \mathbb{Z}_n \ \text{which maps} \ m \to [m]$
- 3. if p is prime, then \mathbb{Z}_p is a field of characteristic p.

Remark 0.15. If S is a subring of R, then char(S) = char(R)

Proof.
$$1_S = 1_R \implies \varphi_S(m) = \varphi_R(m) = m * 1_R \ \forall \ m \in \mathbb{Z} \implies char(S) = char(R)$$

Definition 0.16. Any ring R has a unique smallest subring called the prime subring R_0 of R, namely $R_0 = \varphi_R(\mathbb{Z}) = \{m*1_R \mid m \in \mathbb{Z}\}$ and any subring of R must contain 1_R and hence $\{m*1_R \mid m \in \mathbb{Z}\} = R_0$

Theorem 0.17. 1st Isomorphism Theorem for Rings: If $\varphi : R \to S$ is a ring homomorphism, then $Kern(\varphi)$ is an ideal of R and $R/Kern(\varphi) \cong \varphi(R)(\subseteq S)$.

Proof. On the level of abelian groups, the map $\hat{\varphi}: R/Kern(\varphi) \to \varphi(R)$ which maps $a+Kern(\varphi) \to \varphi(a)$. This map is a well-defined isomorphism (see 1.2.2). We want a ring homomorphism. Therefore, we have to check that $\hat{\varphi}$ is also multiplicative. $\hat{\varphi}((a+K)(b+K)) = \hat{\varphi}(ab+K) = \varphi(ab) = \varphi(a)\varphi(b) = \hat{\varphi}(a+K)\hat{\varphi}(b+K)$

Proposition 0.18. R ring with prime subring R_0 . If char(R) = 0, then $R_0 \cong \mathbb{Z}$. If char(R) = n > 0, then $R_0 \cong \mathbb{Z}_n$

Proof.
$$\varphi_R : \mathbb{Z} \to R$$
 with $Kern(\varphi_R) = n\mathbb{Z}$ for $n \in \mathbb{N}_0$, $n = char(R)$. $R_0 := \varphi_R(\mathbb{Z}) = \mathbb{Z}/Kern(\varphi_R) = \mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}$ if $n < 0$ and \mathbb{Z}_n if $n \ge 0$

Remark 0.19. R is an integral domain \rightarrow By definition, R is commutative (w/ 1 \neq 0).

Corollary 0.20. If R is an integral domain, then either char(R) = 0 or char(R) is a prime number.

Proof. R_0 , as a subring of an integral domain must be an integral domain itself. But by the previous proposition, $R_0 \cong \mathbb{Z} \implies char(R) = 0$ (integral domain) or $R_0 \cong \mathbb{Z}_n$ with char(R) = n, but \mathbb{Z}_n is an integral domain $\Leftrightarrow n$ is prime (implies zero divisors). $a, b \in R$ are zero divisors $\Leftrightarrow a \neq 0$ and $b \neq 0$ and ab = 0 n = ml, 1 < m, $l < n \implies [m], [l]$ are zero divisors in $\mathbb{Z}_n \implies [m][l] = [n] = [0]$.

Ideals. R ring with 1.

Definition 0.21. Repetition. A subset $I \subseteq R$ is called an ideal of R of (1) $0 \in I$ (2) $a, b \in I \implies a + b \in I$ (3) $r \in R$, $a \in I \implies ra, ar \in I$.

Remark 0.22. $a \in I \implies \text{by } (3) \ (-1)a = -a \in I$. Hence, (I,+) is a subgroup of the abelian group (R,+). Notation: $I \lhd R$ means that I is an ideal of $R \leadsto \text{quotient ring } R/I$ such that $+: (a+I)+(b+I):=(a+b)+I \ (a,b\in R)$ and *: (a+I)*(b+I):=ab+I. These operations are well-defined and yield a (quotient) ring (R/I,+,*). $0_{R/I}=I=(0+I)$ and $1_{R/I}=1+I$. Why is * well-defined? Assume a+I=a'+I, $b+I=b'+I\implies a'=a+x$ for some $x\in I$ and b'=b+y for some $y\in I$. $a'b'=(a+x)(b+y)=ab+(ay+xb+xy)\implies$, by $(ay+xb+xy)\in I$, a'b'+I=ab+I.

Lemma 0.23. $\varphi: R \to S$ is a ring homomorphism.

- 1. if $J \triangleleft S$, then $\varphi^{-1}(J) \triangleleft R$
- 2. if $I \triangleleft R$ and φ is surjective, then $\varphi(I) \triangleleft S$

Remark 0.24. (2) is not true without surjectivity e.g. $\varphi : \mathbb{Z} \to \mathbb{Q}$ which maps $m \to m$ and $n\mathbb{Z} \triangleleft \mathbb{Z}$ but $n\mathbb{Z} \not = \mathbb{Q}$ (unless n = 0.

Proof. Proof of (1).

- 1. $0_S \in J \triangleleft S$ and $\varphi(0_R) = 0_S \implies 0_R \in \varphi^{-1}(J)$
- $2. \ a,b \in \varphi^{-1}(J) \implies \varphi(A), \varphi(B) \in J \implies \varphi(a+b) = varphi(a) + \varphi(b) \in J \implies a+b \in \varphi^{-1}(J)$

3.
$$a \in \varphi^{-1}(J), r \in R \implies \varphi(a) \in J \implies varphi(ar) = \varphi(a)\varphi(r) \in J, \ \varphi(ra) = \varphi(r)\varphi(a) \in J \implies ar \in \varphi^{-1}(J) \text{ and } ra \in \varphi^{-1}(J)$$

Remark 0.25. In particular, $Kern(\varphi) = \varphi^{-1}(\{0\})$ is an ideal of R.