Расчетное задание по математической статистике

Редько Анна, **выборка 18:** $\alpha=2, \sigma^2=0.7, \varepsilon=0.18$ 25 мая 2020 г.

Задание 1. По числовой выборке объема 50 из нормальной совокупности с параметрами α и σ^2 (первая выборка) построить доверительные интервалы уровня доверия $1-\varepsilon$ для параметра:

α , если σ^2 известно:

 $\overline{\mathbb{A}}$ ана выборка $X=(X_1,\dots,X_n)\sim \Phi_{\alpha,\sigma^2}.$ Тогда, из **теоремы о свойствах выборок из нормального распределения**,

$$\frac{\bar{X} - \alpha}{\sigma} \sqrt{n} \sim \Phi_{0,1}$$

Из таблиц стандартного нормального распределения находим число q>0 такое, что $\Phi_{0,1}(-q)=rac{arepsilon}{2}.$ Это значит, что

$$P\left(-q < \frac{\overline{X} - \alpha}{\sigma}\sqrt{n} < q\right) = \Phi_{0,1}(q) - \Phi_{0,1}(-q) = 1 - \varepsilon$$

Это соотношение эквивалентно тому, что

$$P\left(\bar{X} - \frac{q\sigma}{\sqrt{n}} < \alpha < \bar{X} + \frac{q\sigma}{\sqrt{n}}\right) = 1 - \varepsilon$$

После подсчетов(см. t1a.R) получили доверительный интервал: (1.78278, 2.10006)

α , если σ^2 неизвестно:

По следствию из теоремы о свойствах выборок из нормального распределения случайная величина

$$\frac{\bar{X} - \alpha}{S} \sqrt{n - 1} \sim T_{n - 1}$$

распределена по закону Стьюдента с n-1 степенью свободы. Подставим $S^2=\frac{n-1}{n}S_0^2,$ тогда

$$\frac{\bar{X} - \alpha}{S_0} \sqrt{n} \sim T_{n-1}$$

Из таблиц распределения T_{n-1} находим q такое, что $T_{n-1}(-q)=\frac{\varepsilon}{2}$. Тогда

$$P\left(-q < \frac{\bar{X} - \alpha}{S_0}\sqrt{n} < q\right) = T_{n-1}(q) - T_{n-1}(-q) = 1 - \varepsilon,$$

Это соотношение эквивалентно тому, что

$$P\left(\bar{X} - \frac{qS_0}{\sqrt{n}} < \alpha < \bar{X} + \frac{qS_0}{\sqrt{n}}\right) = 1 - \varepsilon$$

Здесь несмещенную дисперсию вычисляем как

$$S_0 = \frac{1}{\sqrt{n-1}} \sum_{i=1}^{n} (X_i - \bar{X}).$$

После подсчетов(см. t1b.R) получили доверительный интервал: (1.794088, 2.088752)

σ^2 , если α известно:

Случайные величины $\frac{X_{i}-\alpha}{\sigma}, i=1,\ldots,n,$ независимы, и имеют стандартное нормальное распределение, поэтому

$$\sum_{i=1}^{n} \left(\frac{X_i - \alpha}{\sigma} \right)^2 \sim \chi_n^2.$$

Из таблиц распределения χ^2_n находим q_1 и q_2 такие, что $\chi^2_n(q_1)=rac{arepsilon}{2}, \chi^2_n(q_2)=$ $1-\frac{\varepsilon}{2}$. Тогда

$$P\left(q_1 < \sum_{i=1}^n \frac{(X_i - \alpha)^2}{\sigma^2} < q_2\right) = \chi_n^2(q_2) - \chi_n^2(q_1) = 1 - \varepsilon$$

Это соотношение эквивалентно тому, что

$$P\left(\frac{\sum_{i=1}^{n} (X_i - \alpha)^2}{q_2} < \sigma^2 < \frac{\sum_{i=1}^{n} (X_i - \alpha)^2}{q_1}\right) = 1 - \varepsilon$$

После подсчетов (см. t1c.R), получили, что доверительный интервал: (0.7773202, 0.4528119)

σ^2 , если α неизвестно:

Из теоремы о свойствах выборок из нормального распределения, $\frac{nS^2}{\sigma^2}\sim\chi^2_{n-1}$. Из таблиц распределения χ^2_{n-1} находим q_1 и q_2 такие, что $\chi^2_{n-1}(q_1) = \frac{\varepsilon}{2}$ и $\chi^2_{n-1}(q_2) = 1 - \frac{\varepsilon}{2}$. Тогда

$$P\left(q_1 < \frac{nS^2}{\sigma^2} < q_2\right) = \chi_{n-1}^2(q_2) - \chi_{n-1}^2(q_1) = 1 - \varepsilon.$$

Это соотношение эквивалентно тому, что

$$P\left(\frac{nS^2}{q_2} < \sigma^2 < \frac{nS^2}{q_1}\right) = 1 - \varepsilon.$$

После подсчетов (см. t1d.R), получили, что доверительный интервал: (0.458274, 0.7910913)

Задание 2. По данным числовым наблюдениям (вторая выборка объема 30) проверить основную гипотезу о равномерности распределения с помощью а) критерия Колмогорова, б) критерия χ^2 (асимптотического размера

 ε). Построить график эмпирической функции распределения. Найти реально достигнутый уровень значимости.

используя критерий Колмогорова:

Функция распределения K(y) называется функцией Колмогорова, она абсолютно непрерывна; для нахождения ее значений имеются таблицы.

Перейдем к построению критерия.

Пусть $X \sim F$ и проверяются гипотезы $H_1: F = U_{0,1}$ против $H_2: F \neq U_{0,1}$, где $U_{0,1}$ непрерывна.

Наша задача: построить асимптотический критерий уровня $1-\varepsilon$.

Для начала вычислим величину D_n в предположении, что верна гипотеза H_1 , т. е. $F=U_{0,1}$:

$$D_n = \sup_{t} |F_n^*(t) - U_{0,1}(t)|$$

$$D_n = 0.176$$

$$\sqrt{n}D_n = 0.963992$$

Тут F_n^* - эмперическая функция распределения, $U_{0,1}$ - теоретическая функция распределения. В силу теоремы Колмогорова, при больших n функция распределения случайной величины $\sqrt{n}D_n$ мало отличается от K(y), поэтому заранее по таблицам функции Колмогорова мы можем найти такое число q>0, что $K(q)=1-\varepsilon$. Нашли, что q=1.1. Следовательно, если верна H_1 , то $P_1\left(\sqrt{n}D_n < q\right) \simeq K(q)=1-\varepsilon$. Поэтому мы будем отвергать гипотезу H_1 , если окажется, что $\sqrt{n}D_n\geqslant q$, т. е. если расхождение между эмпирической и гипотетической функциями распределения достаточно велико. В нашем случае это не так, 0.963992<1.1, гипотезу H_1 мы принимаем . Ясно, что при этом

$$\beta_1 = P_1(\sqrt{n}D_n \ge q) = 1 - P_1(\sqrt{n}D_n < q) \simeq 1 - K(q) = \varepsilon = 0.18$$

Критическое множество для построенного критерия:

$$K = (X_1, \dots, X_n) \in \mathbb{R}^n : \sqrt{n}D_n \geqslant q.$$

Достигаемый уровень значимости критерия Колмогорова равен:

$$\alpha^* = 2\sum_{k=1}^{\infty} (-1)^{k+1} e^{-2k^2 n D_n^2} < 0.1$$

используя критерий χ^2 :

Пусть $X \sim F$ и проверяются гипотезы $H_1: F = U_{0,1}$ против $H_2: F \neq U_{0,1}$. По-прежнему наша задача состоит в построении асимптотического критерия уровня $1-\varepsilon$. В предположении, что $X \sim U_{0,1}$, разобьем область возможных значений $X_1 = [0,1)$ на k непересекающихся промежутков (здесь k ищем по формуле Стеджеса $k = \lfloor log_2 30 \rfloor + 1 = 4 + 1 = 5$):

$$P_1(X_1 \in \Delta_1 \cup \cdots \cup \Delta_k) = 1,$$

где Δ_i имеет вид $\Delta_i = [a_i; b_i), i = 1, ..., k$.

Пусть ν_i - число наблюдений, попавших в $\Delta_i, i=1,\dots,k, \nu_1+\dots+\nu_k=n.$ Обозначим также

$$p_i = P_1(X_1 \in \Delta_i) = U_{0,1}(b_i) - U_{0,1}(a_i), i = 1, \dots, k.$$

Из закона больших чисел следует, что

$$\frac{\nu_i}{n} \xrightarrow{\mathbb{P}} p_i, n \to \infty,$$

при каждом i, если верна H_1 . В качестве меры близости совокупностей $\nu_1/n, \ldots, \nu_k/n$ и p_1, \ldots, p_k предлагается использовать величину

$$\Psi_n = n \sum_{i=1}^{k} \frac{1}{p_i} \left(\frac{\nu_i}{n} - p_i \right)^2 = \sum_{i=1}^{k} \frac{\left(\nu_i - n p_i \right)^2}{n p_i}.$$

Т.к. $p_i = 0.2 \; \forall i$, можем представить Ψ_n как

$$\Psi_n = \frac{1}{np_i} \sum_{i=1}^k (\nu_i - np_i)^2.$$

$$\Psi_n = 4.666667$$

Теорема Пирсона. Если $0 < p_i < 1$ при всех $i = 1, \dots, k$, то для любого y > 0

$$P_1(\Psi_i < y) \to \chi^2_{k-1}(y), n \to \infty.$$

Займемся построением критерия. Найдем число q такое, что $\chi^2_{k-1}(q)=1-arepsilon.$ Получим q=6.268116.

Если верна гипотеза H_1 , то с вероятностью, близкой к $1-\varepsilon$, значение случайной величины Ψ_n должно быть меньше q. Поэтому мы отвергаем гипотезу, если $\Psi_n \geqslant q$, и принимаем ее в противном случае. В нашем случае $\Psi_n < q$, а значит гипотезу H_1 мы принимаем .

Это значит, что мы принимаем H_1 , если нет явного противоречия этой гипотезы с наблюденными значениями. Критическое множество в данном случае:

$$K = (X_1, \dots, X_n) : \Psi_n \geqslant q.$$

Для вероятности ошибки первого рода имеем

$$\beta_1 = P_1 (\Psi_n \geqslant q) = 1 - P_1 (\Psi_n < q) \simeq 1 - \chi_{k-1}^2(q) = \varepsilon = 0.18$$

Достигаемый уровень значимости критерия χ^2 равен:

$$\varepsilon^* = 0.323239.$$

Задание 3. По данным двум выборкам из нормальных совокупностей (первые 20 и следующие 30 элементов первой выборки) проверить, с помощью критериев размера ε , гипотезу:

о совпадении дисперсий при неизвестных средних:

Имеем две независимые выборки

$$X = (X_1, \dots, X_n) \sim \Phi_{\alpha_1, \sigma_1^2}$$
$$Y = (Y_1, \dots, Y_m) \sim \Phi_{\alpha_2, \sigma_2^2}$$

В этом пункте проверяем гипотезу $H_1:\sigma_1^2=\sigma_2^2$ против $H_2:\sigma_1^2\neq\sigma_2^2.$ По условию $\varepsilon=0.18$ и пусть

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i,$$

$$S_X^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2,$$

$$\bar{Y} = \frac{1}{m} \sum_{i=1}^{m} Y_i,$$

$$S_Y^2 = \frac{1}{m} \sum_{i=1}^{m} (Y_i - \bar{Y})^2,$$

По теореме о свойствах выборок из нормального распределения

$$\frac{nS_X^2}{\sigma_1^2} \sim \chi_{n-1}^2,$$

$$\frac{mS_Y^2}{\sigma_2^2} \sim \chi_{m-1}^2,$$

причем эти случайные величины независимы, поскольку построены по независимым выборкам. Из них можно построить случайную величину, имеющую распределение Фишера:

$$\frac{1}{n-1} \frac{nS_X^2}{\sigma_1^2} : \frac{1}{m-1} \frac{mS_{Y^2}}{\sigma_2^2} = \frac{n(m-1)\sigma_2^2 S_x^2}{m(n-1)\sigma_1^2 S_y^2} \sim F_{n-1,m-1}.$$

Если верна гипотеза H_1 , т.е. $\sigma_1^2 = \sigma_2^2$, то

$$\eta = \frac{n(m-1)S_X^2}{m(n-1)S_Y^2} \sim F_{n-1,m-1}$$

$$\eta = 1$$

С помощью таблиц распределения $F_{n-1,m-1}$ можно найти числа q_1 и q_2 такие, что $F_{n-1,m-1}(q_1)=\varepsilon/2, F_{n-1,m-1}(q_2)=1-\varepsilon/2$. Получили, что $q_1=0.5523387, q_2=1.726676$. Тогда

$$P_1(q_1 < \eta < q_2) = F_{n-1,m-1}(q_2) - F_{n-1,m-1}(q_1) = 1 - \varepsilon = 0.82.$$

Поэтому логично отвергать H_1 , если $\eta \notin (q_1, q_2)$; вероятность такого события равна в точности ε , если верна H_1 .

В нашем случае $1 \in (0.5523387, 1.726676)$, так что гипотезу H_1 мы принимаем Здесь

$$K = (X_1, \dots, X_n, Y_1, \dots, Y_m) : \eta \notin (q_1, q_2).$$

о совпадении средних, если известно, что неизвестные дисперсии совпадают: Имеем две независимые выборки

$$X = (X_1, \dots, X_n)$$

$$Y = (Y_1, \ldots, Y_m)$$

По условию, дисперсии совпадают: $\sigma_1^2 = \sigma_2^2 = \sigma^2$, при этом σ^2 неизвестна.

Необходимо проверить гипотезу $H_1: \alpha_1 = \alpha_2$ против $H_2: \alpha_1 \neq \alpha_2$.

Воспользуемся распределением Стьюдента. В силу того, что \bar{X} и \bar{Y} независимы, и

$$\bar{X} \sim \Phi_{\alpha_1, \sigma^2/n}$$

$$\bar{Y} \sim \Phi_{\alpha_2, \sigma^2/m},$$

имеем

$$\bar{X} - \bar{Y} \sim \Phi_{\alpha_1 - \alpha_2, \sigma^2(1/n + 1/m)}$$

После стандартизации:

$$\frac{\bar{X} - \bar{Y} - (\alpha_1 - \alpha_2)}{\sqrt{\sigma^2 \left(\frac{1}{n} + \frac{1}{m}\right)}} \sim \Phi_{0,1}$$

Далее, по свойству распределения хи-квадрат,

$$\frac{nS_X^2}{\sigma^2} + \frac{mS_Y^2}{\sigma^2} \sim \chi_{n+m-2}^2,$$

эта случайная величина не зависит от $\bar{X} - \bar{Y}$. Таким образом:

$$\frac{\bar{X} - \bar{Y} - (\alpha_1 - \alpha_2)}{\sigma \sqrt{\frac{1}{n} + \frac{1}{m}}} : \sqrt{\frac{1}{n + m - 2} \frac{nS_X^2 + mS_Y^2}{\sigma^2}} \sim T_{n + m - 2}.$$

Если верна гипотеза H_1 , то $\alpha_1 - \alpha_2 = 0$

$$\psi = \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{1}{n} + \frac{1}{m}} \sqrt{\frac{nS_X^2 + mS_Y^2}{n + m - 2}}} \sim T_{n+m-2}.$$

$$\psi = 1.754003$$

Из таблиц распределения T_{n+m-2} находим q такое, что $T_{n+m-2}(-q)=\frac{\varepsilon}{2}.$ Нашли, что -q=-1.360585.

Тогда

$$P_1(-q < \psi < q) = T_{n+m-2}(q) - T_{n+m-2}(-q) = 1 - \varepsilon.$$

В нашем случае, получаем, что $1.754003 \notin (-1.360585, 1.360585)$. Гипотеза H_1 не принимается Следовательно, выбрав

$$K = (X_1, \dots, X_n, Y_1, \dots, Y_m) : |\psi| \geqslant q,$$

мы будем иметь

$$\beta_1 = P_1((X_1, \dots, X_n, Y_1, \dots, Y_m) \in K) = \varepsilon = 0.18.$$