

HUMAN NEUROSECRETORY PROTEINS

FIELD OF THE INVENTION

This application is a CONTINUATION application of U.S. application Serial No.09/062,601, filed on April 17, 1998 , which is hereby expressly incorporated by reference.

5

BACKGROUND OF THE INVENTION

Neurons and neuroendocrine cells synthesize, store, and secrete biologically active peptides such as neuropeptides and peptide hormones. Neuropeptides and peptide hormones are synthesized as inactive precursor proteins that are transported through organelles of the regulated secretory pathway and stored in specialized vesicles called secretory granules. Secretory granules contain proteases, convertases, and other enzymes that process these precursor proteins into their active forms. The contents of secretory granules are delivered to the cell surface and released into the extracellular space only in response to specific external stimuli such as neural or hormonal signals.

In addition to bioactive peptides and processing enzymes, secretory granules contain luminal marker proteins called granins. (Reviewed in Rosa, P. and Gerdes, H. H. (1994) J. Endocrinol. Invest. 17:207-225.) Granins comprise a conserved family of acidic, calcium-binding, heat-stable proteins which include the chromogranins and secretogranins. Granins undergo enzymatic modifications including glycosylation, phosphorylation, sulfation, and proteolysis. The physiological activities of granins are diverse. Some granins are themselves precursors of secreted bioactive peptides. For example, chromogranin A is the precursor of both chromostatin and pancreastatin A which regulate the secretion of other neuropeptides and peptide hormones. Other granins appear to function intracellularly as helper proteins in the regulated secretory pathway. Some of these helper proteins facilitate the aggregation and sorting of proteins into secretory granules, while others influence the transport and processing of peptide precursors.

Secretogranin III (SgIII) is a recent addition to the granin family. In rat, SgIII is expressed in the central nervous system, particularly in the pituitary and in areas of the brain involved in

auditory, olfactory, and extrapyramidal motor functions. (Ottiger, H. P. et al. (1990) J. Neurosci. 10:3135-3147.) Genetic ablation of the SgIII gene in mice has no obvious phenotypic effect, suggesting that SgIII function may be redundant. (Dopazo, A. et al. (1993) J. Mol. Neurosci. 4:225-233; Kingsley, D. M. et al. (1990) EMBO 9:395-399.) In the amphibian Xenopus laevis,
5 SgIII is proteolytically cleaved into two peptide fragments. These fragments are secreted, while intact SgIII is retained by the cell. Intracellular SgIII may play a role in the synthesis or sorting of the hormone precursor proopiomelanocortin in the pituitary. The function of the SgIII cleavage products is unknown. (Holthuis, J. et al. (1996) J. Biol. Chem. 271:17755-17760.)

10 Granin proteins have been implicated in the diagnosis and treatment of cancer. (Hendy, G. N. et al. (1995) Clin. Invest. Med. 18:47-65; Rosa et al. supra.) Because granins are widely expressed in a variety of neuroendocrine-derived tumors, granins are useful immunohistochemical markers for the diagnosis and classification of these tumors. In addition, neuroendocrine tumors may be diagnosed at an early stage by the presence of elevated granin levels in the serum. Furthermore, recent studies have revealed that granin proteins may play a key role in cancer etiology. Inherited forms of breast and ovarian cancer are caused by mutations in the human BRCA1 gene, which encodes a protein with sequence homology and biochemical similarity to granins. (Jensen, R. A. et al. (1996) Nat. Genet. 12:303-308.)

20 Neurons and neuroendocrine cells are highly specialized cells with specific gene expression profiles associated with their differentiated state. A successful approach to studying cell type-specific gene expression utilizes in vitro model systems for neuronal cell differentiation. (Lee, N. H. et al. (1995) Proc. Natl. Acad. Sci. USA 92:8303-8307.) Undifferentiated neuronal cell lines such as PC-12 and Neuro2A can be induced to differentiate by treatment with agents such as nerve growth factor and retinoic acid. Comparison of mRNA expression patterns before and after treatment enables the identification of differentially expressed transcripts, including those specific for
25 the differentiated state. Such transcripts include those encoding known protein components of neuron-specific secretory vesicles, such as synapsin II, and novel proteins such as neuronal protein 15.6 (NP15.6). Novel neurosecretory proteins may be identified by the presence of an N-terminal signal sequence which directs the protein into the regulated secretory pathway.

The discovery of new human neurosecretory proteins and the polynucleotides encoding

them satisfies a need in the art by providing new compositions which are useful in the diagnosis, treatment, and prevention of neurological and endocrine disorders and cancer.

SUMMARY OF THE INVENTION

5 The invention is based on the discovery of new human neurosecretory proteins (HUNSP), the polynucleotides encoding HUNSP, and the use of these compositions for the diagnosis, treatment, or prevention of neurological and endocrine disorders and cancer.

The invention features substantially purified polypeptides, human neurosecretory proteins, referred to collectively as "HUNSP" and individually as "HUNSP-1" and "HUNSP-2." In one aspect, the invention provides a substantially purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, a fragment of SEQ ID NO:1, and a fragment of SEQ ID NO:3.

10 The invention further provides a substantially purified variant having at least 90% amino acid identity to the amino acid sequence of SEQ ID NO:1 or SEQ ID NO:3, or to a fragment of either of these sequences. The invention also provides an isolated and purified polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, a fragment of SEQ ID NO:1, and a fragment of SEQ ID NO:3. The invention also includes an isolated and purified polynucleotide variant having at least 90% 15 polynucleotide sequence identity to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, a fragment of SEQ ID NO:1, and a fragment of SEQ ID NO:3.

20 Additionally, the invention provides an isolated and purified polynucleotide which hybridizes under stringent conditions to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, a fragment of SEQ ID NO:1, and a fragment of SEQ ID NO:3, as well as an isolated and purified polynucleotide 25 having a sequence which is complementary to the polynucleotide encoding the polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, a fragment of SEQ ID NO:1, and a fragment of SEQ ID NO:3.

The invention also provides an isolated and purified polynucleotide comprising a

polynucleotide sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, a fragment of SEQ ID NO:2, and a fragment of SEQ ID NO:4. The invention further provides an isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity to the polynucleotide sequence comprising a polynucleotide sequence selected from the group
5 consisting of SEQ ID NO:2, SEQ ID NO:4, a fragment of SEQ ID NO:2, and a fragment of SEQ ID NO:4, as well as an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, a fragment of SEQ ID NO:2, and a fragment of SEQ ID NO:4.

10 The invention further provides an expression vector containing at least a fragment of the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, a fragment of SEQ ID NO:1, and a fragment of SEQ ID NO:3. In another aspect, the expression vector is contained within a host cell.

15 The invention also provides a method for producing a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, a fragment of SEQ ID NO:1, and a fragment of SEQ ID NO:3, the method comprising the steps of: (a) culturing the host cell containing an expression vector containing at least a fragment of a polynucleotide encoding the polypeptide under conditions suitable for the expression of the polypeptide; and (b) recovering the polypeptide from the host cell culture.

20 The invention also provides a pharmaceutical composition comprising a substantially purified polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, a fragment of SEQ ID NO:1, and a fragment of SEQ ID NO:3 in conjunction with a suitable pharmaceutical carrier.

25 The invention further includes a purified antibody which binds to a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, a fragment of SEQ ID NO:1, and a fragment of SEQ ID NO:3, as well as a purified agonist and a purified antagonist to the polypeptide.

The invention also provides a method for treating or preventing a neurological disorder, the method comprising administering to a subject in need of such treatment an effective amount of a

pharmaceutical composition comprising a substantially purified polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, a fragment of SEQ ID NO:1, and a fragment of SEQ ID NO:3.

The invention also provides a method for treating or preventing an endocrine disorder, the
5 method comprising administering to a subject in need of such treatment an effective amount of a pharmaceutical composition comprising a substantially purified polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, a fragment of SEQ ID NO:1, and a fragment of SEQ ID NO:3.

The invention also provides a method for treating or preventing a cancer, the method
10 comprising administering to a subject in need of such treatment an effective amount of a pharmaceutical composition comprising a substantially purified polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, a fragment of SEQ ID NO:1, and a fragment of SEQ ID NO:3.

The invention also provides a method for detecting a polynucleotide encoding the
15 polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, a fragment of SEQ ID NO:1, and a fragment of SEQ ID NO:3 in a biological sample containing nucleic acids, the method comprising the steps of: (a) hybridizing the complement of the polynucleotide sequence encoding the polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, a fragment of SEQ
20 ID NO:1, and a fragment of SEQ ID NO:3 to at least one of the nucleic acids of the biological sample, thereby forming a hybridization complex; and (b) detecting the hybridization complex, wherein the presence of the hybridization complex correlates with the presence of a polynucleotide encoding the polypeptide in the biological sample. In one aspect, the nucleic acids of the biological sample are amplified by the polymerase chain reaction prior to the hybridizing step.

25

BRIEF DESCRIPTION OF THE FIGURES

Figures 1A, 1B, 1C, 1D, and 1E show the amino acid sequence (SEQ ID NO:1) and nucleic acid sequence (SEQ ID NO:2) of HUNSP-1.

Figures 2A, 2B, 2C, and 2D show the amino acid sequence (SEQ ID NO:3) and nucleic

acid sequence (SEQ ID NO:4) of HUNSP-2.

The alignments were produced using MACDNASIS PRO software (Hitachi Software Engineering Co. Ltd., San Bruno, CA).

Figures 3A, 3B, and 3C show the amino acid sequence alignment between HUNSP-1
5 (2379427; SEQ ID NO:1) and mouse SgIII (GI 413764; SEQ ID NO:5).

Figure 4 shows the amino acid sequence alignment between HUNSP-2 (2744187; SEQ ID NO:3) and mouse NP15.6 (GI 1771306; SEQ ID NO:6).

The alignments were produced using the multisequence alignment program of LASERGENE software (DNASTAR Inc, Madison WI).

DESCRIPTION OF THE INVENTION

Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular methodology, protocols, cell lines, vectors, and reagents described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "an antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods, devices, and materials are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, vectors, and methodologies which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

DEFINITIONS

"HUNSP," as used herein, refers to the amino acid sequences of substantially purified HUNSP obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and preferably the human species, from any source, whether natural, 5 synthetic, semi-synthetic, or recombinant.

The term "agonist," as used herein, refers to a molecule which, when bound to HUNSP, increases or prolongs the duration of the effect of HUNSP. Agonists may include proteins, nucleic acids, carbohydrates, or any other molecules which bind to and modulate the effect of HUNSP.

An "allelic variant," as this term is used herein, is an alternative form of the gene encoding HUNSP. Allelic variants result from at least one mutation in the nucleic acid sequence and result in 10 altered mRNAs. Transcription and translation of an allelic variant produces polypeptides whose structure or function may or may not be altered. Any given natural or recombinant gene may have none, one, or many allelic forms. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these 15 types of changes may occur alone, or in combination with the others, one or more times in a given sequence.

"Altered" nucleic acid sequences encoding HUNSP, as described herein, include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a 20 polynucleotide the same as HUNSP or a polypeptide with at least one functional characteristic of HUNSP. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding HUNSP, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding HUNSP. The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues 25 which produce a silent change and result in a functionally equivalent HUNSP. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of HUNSP is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, positively charged amino acids may include lysine

and arginine, and amino acids with uncharged polar head groups having similar hydrophilicity values may include leucine, isoleucine, and valine; glycine and alanine; asparagine and glutamine; serine and threonine; and phenylalanine and tyrosine.

The terms "amino acid" or "amino acid sequence," as used herein, refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. In this context, "fragments," "immunogenic fragments," or "antigenic fragments" refer to fragments of HUNSP which are preferably about 5 to about 15 amino acids in length, most preferably 14 amino acids, and which retain some biological activity or immunological activity of HUNSP. Where "amino acid sequence" is recited herein to refer to an amino acid sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.

"Amplification," as used herein, relates to the production of additional copies of a nucleic acid sequence. Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art. (See, e.g., Dieffenbach, C.W. and G.S. Dveksler (1995) PCR Primer, a Laboratory Manual, Cold Spring Harbor Press, Plainview, NY, pp.1-5.)

The term "antagonist," as it is used herein, refers to a molecule which, when bound to HUNSP, decreases the amount or the duration of the effect of the biological or immunological activity of HUNSP. Antagonists may include proteins, nucleic acids, carbohydrates, antibodies, or any other molecules which decrease the effect of HUNSP.

As used herein, the term "antibody" refers to intact molecules as well as to fragments thereof, such as Fab, F(ab')₂, and Fv fragments, which are capable of binding the epitopic determinant. Antibodies that bind HUNSP polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide 25 or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.

The term "antigenic determinant," as used herein, refers to that fragment of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (given regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.

The term "antisense," as used herein, refers to any composition containing a nucleic acid sequence which is complementary to the "sense" strand of a specific nucleic acid sequence.

Antisense molecules may be produced by any method including synthesis or transcription. Once introduced into a cell, the complementary nucleotides combine with natural sequences produced by the cell to form duplexes and to block either transcription or translation. The designation "negative" can refer to the antisense strand, and the designation "positive" can refer to the sense strand.

As used herein, the term "biologically active," refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" refers to the capability of the natural, recombinant, or synthetic HUNSP, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

The terms "complementary" or "complementarity," as used herein, refer to the natural binding of polynucleotides under permissive salt and temperature conditions by base pairing. For example, the sequence "A-G-T" binds to the complementary sequence "T-C-A." Complementarity between two single-stranded molecules may be "partial," such that only some of the nucleic acids bind, or it may be "complete," such that total complementarity exists between the single stranded molecules. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands. This is of particular importance in amplification reactions, which depend upon binding between nucleic acids strands, and in the design and use of peptide nucleic acid (PNA) molecules.

A "composition comprising a given polynucleotide sequence" or a "composition comprising a given amino acid sequence," as these terms are used herein, refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry

formulation, an aqueous solution, or a sterile composition. Compositions comprising polynucleotide sequences encoding HUNSP or fragments of HUNSP may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing 5 salts, e.g., NaCl, detergents, e.g., sodium dodecyl sulfate (SDS), and other components, e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.

"Consensus sequence," as used herein, refers to a nucleic acid sequence which has been resequenced to resolve uncalled bases, extended using XL-PCR kit (Perkin Elmer, Norwalk, CT) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from the 10 overlapping sequences of more than one Incyte Clone using a computer program for fragment assembly, such as the GELVIEW fragment assembly system (GCG, Madison, WI). Some sequences have been both extended and assembled to produce the consensus sequence.

As used herein, the term "correlates with expression of a polynucleotide" indicates that the detection of the presence of nucleic acids, the same or related to a nucleic acid sequence encoding HUNSP, by Northern analysis is indicative of the presence of nucleic acids encoding HUNSP in a sample, and thereby correlates with expression of the transcript from the polynucleotide encoding HUNSP.

A "deletion," as the term is used herein, refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.

20 The term "derivative," as used herein, refers to the chemical modification of a polypeptide sequence, or a polynucleotide sequence. Chemical modifications of a polynucleotide sequence can include, for example, replacement of hydrogen by an alkyl, acyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or 25 any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.

The term "similarity," as used herein, refers to a degree of complementarity. There may be partial similarity or complete similarity. The word "identity" may substitute for the word "similarity." A partially complementary sequence that at least partially inhibits an identical sequence from

hybridizing to a target nucleic acid is referred to as "substantially similar." The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (Southern or Northern blot, solution hybridization, and the like) under conditions of reduced stringency. A substantially similar sequence or hybridization probe will 5 compete for and inhibit the binding of a completely similar (identical) sequence to the target sequence under conditions of reduced stringency. This is not to say that conditions of reduced stringency are such that non-specific binding is permitted, as reduced stringency conditions require that the binding of two sequences to one another be a specific (i.e., a selective) interaction. The absence of non-specific binding may be tested by the use of a second target sequence which lacks 10 even a partial degree of complementarity (e.g., less than about 30% similarity or identity). In the absence of non-specific binding, the substantially similar sequence or probe will not hybridize to the second non-complementary target sequence.

The phrases "percent identity" or "% identity" refer to the percentage of sequence similarity found in a comparison of two or more amino acid or nucleic acid sequences. Percent identity can be determined electronically, e.g., by using the MEGALIGN program (DNASTAR, Inc., Madison WI). The MEGALIGN program can create alignments between two or more sequences according to different methods, e.g., the clustal method. (See, e.g., Higgins, D.G. and P.M. Sharp (1988) Gene 73:237-244.) The clustal algorithm groups sequences into clusters by examining the distances between all pairs. The clusters are aligned pairwise and then in groups. The percentage similarity 20 between two amino acid sequences, e.g., sequence A and sequence B, is calculated by dividing the length of sequence A, minus the number of gap residues in sequence A, minus the number of gap residues in sequence B, into the sum of the residue matches between sequence A and sequence B, times one hundred. Gaps of low or of no similarity between the two amino acid sequences are not included in determining percentage similarity. Percent identity between nucleic acid sequences can 25 also be counted or calculated by other methods known in the art, e.g., the Jotun Hein method. (See, e.g., Hein, J. (1990) Methods Enzymol. 183:626-645.) Identity between sequences can also be determined by other methods known in the art, e.g., by varying hybridization conditions.

"Human artificial chromosomes" (HACs), as described herein, are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size, and which

contain all of the elements required for stable mitotic chromosome segregation and maintenance.
(See, e.g., Harrington, J.J. et al. (1997) Nat Genet. 15:345-355.)

The term “humanized antibody,” as used herein, refers to antibody molecules in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.

5 “Hybridization,” as the term is used herein, refers to any process by which a strand of nucleic acid binds with a complementary strand through base pairing.

As used herein, the term “hybridization complex” refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., C_{ot} or R_{ot} analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).

10 The words “insertion” or “addition,” as used herein, refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively, to the sequence found in the naturally occurring molecule.

“Immune response” can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which 15 may affect cellular and systemic defense systems.

The term “microarray,” as used herein, refers to an arrangement of distinct polynucleotides arrayed on a substrate, e.g., paper, nylon or any other type of membrane, filter, chip, glass slide, or any other suitable solid support.

20 The terms “element” or “array element” as used herein in a microarray context, refer to hybridizable polynucleotides arranged on the surface of a substrate.

The term “modulate,” as it appears herein, refers to a change in the activity of HUNSP. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of HUNSP.

25 The phrases “nucleic acid” or “nucleic acid sequence,” as used herein, refer to a nucleotide,

oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material. In this context, "fragments" refers to those nucleic acid sequences which, when translated, 5 would produce polypeptides retaining some functional characteristic, e.g., antigenicity, or structural domain characteristic, e.g., ATP-binding site, of the full-length polypeptide.

The terms "operably associated" or "operably linked," as used herein, refer to functionally related nucleic acid sequences. A promoter is operably associated or operably linked with a coding sequence if the promoter controls the translation of the encoded polypeptide. While operably associated or operably linked nucleic acid sequences can be contiguous and in the same reading frame, certain genetic elements, e.g., repressor genes, are not contiguously linked to the sequence encoding the polypeptide but still bind to operator sequences that control expression of the polypeptide.

10 The term "oligonucleotide," as used herein, refers to a nucleic acid sequence of at least about 6 nucleotides to 60 nucleotides, preferably about 15 to 30 nucleotides, and most preferably about 20 to 25 nucleotides, which can be used in PCR amplification or in a hybridization assay or microarray. As used herein, the term "oligonucleotide" is substantially equivalent to the terms "amplimer," "primer," "oligomer," and "probe," as these terms are commonly defined in the art.

15 "Peptide nucleic acid" (PNA), as used herein, refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell. (See, e.g., Nielsen, P.E. et al. (1993) Anticancer Drug Des. 8:53-63.)

20 25 The term "sample," as used herein, is used in its broadest sense. A biological sample suspected of containing nucleic acids encoding HUNSP, or fragments thereof, or HUNSP itself, may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a solid support; a tissue; a tissue print; etc.

As used herein, the terms "specific binding" or "specifically binding" refer to that interaction between a protein or peptide and an agonist, an antibody, or an antagonist. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope 5 "A," the presence of a polypeptide containing the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.

As used herein, the term "stringent conditions" refers to conditions which permit hybridization between polynucleotides and the claimed polynucleotides. Stringent conditions can be defined by salt concentration, the concentration of organic solvent (e.g., formamide), temperature, 10 and other conditions well known in the art. In particular, stringency can be increased by reducing the concentration of salt, increasing the concentration of formamide, or raising the hybridization temperature.

For example, stringent salt concentration will ordinarily be less than about 750 mM NaCl and 75 mM trisodium citrate, preferably less than about 500 mM NaCl and 50 mM trisodium citrate, and most preferably less than about 250 mM NaCl and 25 mM trisodium citrate. Low stringency hybridization can be obtained in the absence of organic solvent, e.g., formamide, while high stringency hybridization can be obtained in the presence of at least about 35% formamide, and most preferably at least about 50% formamide. Stringent temperature conditions will ordinarily 20 include temperatures of at least about 30°C, more preferably of at least about 37°C, and most preferably of at least about 42°C. Varying additional parameters, such as hybridization time, the concentration of detergent, e.g., sodium dodecyl sulfate (SDS), and the inclusion or exclusion of carrier DNA, are well known to those skilled in the art. Various levels of stringency are accomplished by combining these various conditions as needed. In a preferred embodiment, 25 hybridization will occur at 30°C in 750 mM NaCl, 75 mM trisodium citrate, and 1% SDS. In a more preferred embodiment, hybridization will occur at 37°C in 500 mM NaCl, 50 mM trisodium citrate, 1% SDS, 35% formamide, and 100 µg/ml denatured salmon sperm DNA (ssDNA). In a most preferred embodiment, hybridization will occur at 42°C in 250 mM NaCl, 25 mM trisodium citrate, 1% SDS, 50 % formamide, and 200 µg/ml ssDNA. Useful variations on these conditions

will be readily apparent to those skilled in the art.

The washing steps which follow hybridization can also vary in stringency. Wash stringency conditions can be defined by salt concentration and by temperature. As above, wash stringency can be increased by decreasing salt concentration or by increasing temperature. For example, 5 stringent salt concentration for the wash steps will preferably be less than about 30 mM NaCl and 3 mM trisodium citrate, and most preferably less than about 15 mM NaCl and 1.5 mM trisodium citrate. Stringent temperature conditions for the wash steps will ordinarily include temperature of at least about 25°C, more preferably of at least about 42°C, and most preferably of at least about 68°C. In a preferred embodiment, wash steps will occur at 25°C in 30 mM NaCl, 3 mM trisodium citrate, and 0.1% SDS. In a more preferred embodiment, wash steps will occur at 42°C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. In a most preferred embodiment, wash steps will occur at 68°C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. Additional variations on these conditions will be readily apparent to those skilled in the art.

The term "substantially purified," as used herein, refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least about 60% free, preferably about 75% free, and most preferably about 90% free from other components with which they are naturally associated.

A "substitution," as used herein, refers to the replacement of one or more amino acids or nucleotides by different amino acids or nucleotides, respectively.

20 "Transformation," as defined herein, describes a process by which exogenous DNA enters and changes a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but 25 is not limited to, viral infection, electroporation, heat shock, lipofection, and particle bombardment. The term "transformed" cells includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.

A “variant” of HUNSP, as used herein, refers to an amino acid sequence that is altered by one or more amino acids. The variant may have “conservative” changes, wherein a substituted amino acid has similar structural or chemical properties (e.g., replacement of leucine with isoleucine). More rarely, a variant may have “nonconservative” changes (e.g., replacement of 5 glycine with tryptophan). Analogous minor variations may also include amino acid deletions or insertions, or both. Guidance in determining which amino acid residues may be substituted, inserted, or deleted without abolishing biological or immunological activity may be found using computer programs well known in the art, for example, LASERGENE software.

2011/01/20 10:00:00 AM DRAFT/2007
10
15
20
25

THE INVENTION

The invention is based on the discovery of new human neurosecretory proteins (HUNSP), the polynucleotides encoding HUNSP, and the use of these compositions for the diagnosis, treatment, or prevention of neurological and endocrine disorders and cancer.

Nucleic acids encoding the HUNSP-1 of the present invention were first identified in Incyte Clone 2379427 from the pancreatic islet cell cDNA library (ISLTNOT01) using a computer search, e.g., BLAST, for amino acid sequence alignments. A consensus sequence, SEQ ID NO:2, was derived from the following overlapping and/or extended nucleic acid sequences: Incyte Clones 2379427 (ISLTNOT01), 2774054 (PANCNOT15), and 1287929 (BRAINOT11).

In one embodiment, the invention encompasses a polypeptide comprising the amino acid sequence of SEQ ID NO:1, as shown in Figures 1A, 1B, 1C, 1D, and 1E. HUNSP-1 is 468 amino acids in length and has three potential N-glycosylation sites at N68, N346, and N350; eighteen potential casein kinase II phosphorylation sites at S70, T82, S97, S125, T147, T188, S217, T265, S289, T305, S320, S326, S362, S368, T369, S382, S386, and T387; nine potential protein kinase C phosphorylation sites at T82, S93, S110, S122, S289, S359, S368, S382, and S386; and a potential signal peptide sequence from M1 to A19. The predicted isoelectric point of HUNSP-1 is 4.9, indicating that HUNSP-1 is an acidic protein. As shown in Figures 3A, 3B, and 3C, HUNSP-1 has chemical and structural similarity with mouse SgIII (GI 413764; SEQ ID NO:5). In particular, HUNSP-1 and SgIII share 88% identity. In addition, two of the three potential glycosylation sites and 24 of the 27 potential phosphorylation sites in HUNSP-1 are

conserved in SgIII. A region of unique sequence in HUNSP-1 from about amino acid 57 to about amino acid 66 is encoded by a fragment of SEQ ID NO:2 from about nucleotide 394 to about nucleotide 423. Northern analysis shows the expression of this sequence in various libraries, at least 57% of which are associated with cancer or cell proliferation. In particular, 67% of the 5 libraries expressing HUNSP-1 are derived from neurological tissue.

Nucleic acids encoding the HUNSP-2 of the present invention were first identified in Incyte Clone 2744187 from the breast tumor cDNA library (BRSTTUT14) using a computer search, e.g., BLAST, for amino acid sequence alignments. A consensus sequence, SEQ ID NO:4, was derived from the following overlapping and/or extended nucleic acid sequences: Incyte Clones 2744187 (BRSTTUT14), 1233994 (LUNGFET03), 2987571 (CARGDIT01), 2737595 (OVARNOT09), and 1462816 (PANCNOT04).

In one embodiment, the invention encompasses a polypeptide comprising the amino acid sequence of SEQ ID NO:3, as shown in Figures 2A, 2B, 2C, and 2D. HUNSP-2 is 153 amino acids in length and has one potential casein kinase II phosphorylation site at S118; two potential protein kinase C phosphorylation sites at S9 and S118; one potential tyrosine kinase phosphorylation site at Y76; and a potential signal peptide sequence from M1 to T19. As shown in Figure 4, HUNSP-2 has chemical and structural similarity with mouse NP15.6 (GI 1771306; SEQ ID NO:6). In particular, HUNSP-2 and NP15.6 share 78% identity. In addition, the potential tyrosine kinase phosphorylation site at Y76 in HUNSP-2 is conserved in NP15.6. A region of 20 unique sequence in HUNSP-2 from about amino acid 42 to about amino acid 50 is encoded by a fragment of SEQ ID NO:4 from about nucleotide 1015 to about nucleotide 1041. Northern analysis shows the expression of this sequence in various libraries, at least 70% of which are associated with cancer or cell proliferation. In particular, 23% of the libraries expressing HUNSP-2 are derived from reproductive tissue.

The invention also encompasses HUNSP variants. A preferred HUNSP variant is one which has at least about 80%, more preferably at least about 90%, and most preferably at least about 95% amino acid sequence identity to the HUNSP amino acid sequence, and which contains at least one functional or structural characteristic of HUNSP.

The invention also encompasses polynucleotides which encode HUNSP. In a particular

embodiment, the invention encompasses a polynucleotide sequence comprising the sequence of SEQ ID NO:2, which encodes HUNSP-1, as shown in Figures 1A, 1B, 1C, 1D, and 1E. In a further embodiment, the invention encompasses a polynucleotide sequence comprising the sequence of SEQ ID NO:4, which encodes HUNSP-2, as shown in Figures 2A, 2B, 2C, and 2D.

5 The invention also encompasses a variant of a polynucleotide sequence encoding HUNSP. In particular, such a variant polynucleotide sequence will have at least about 80%, more preferably at least about 90%, and most preferably at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding HUNSP. A particular aspect of the invention encompasses a variant of SEQ ID NO:2 which has at least about 80%, more preferably at least about 90%, and
10 most preferably at least about 95% polynucleotide sequence identity to SEQ ID NO:2. The invention further encompasses a polynucleotide variant of SEQ ID NO:4 having at least about 80%, more preferably at least about 90%, and most preferably at least about 95% polynucleotide sequence identity to SEQ ID NO:4. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of HUNSP.
15

It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding HUNSP, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These
20 combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring HUNSP, and all such variations are to be considered as being specifically disclosed.

Although nucleotide sequences which encode HUNSP and its variants are preferably capable of hybridizing to the nucleotide sequence of the naturally occurring HUNSP under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding HUNSP or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance
25

with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding HUNSP and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.

The invention also encompasses production of DNA sequences which encode HUNSP and HUNSP derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding HUNSP or any fragment thereof.

Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:2, SEQ ID NO:4, a fragment of SEQ ID NO:2, or a fragment of SEQ ID NO:4, under various conditions of stringency. (See, e.g., Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. (1987) Methods Enzymol. 152:507-511.)

Methods for DNA sequencing are well known and generally available in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENAISE DNA polymerase (US Biochemical Corp., Cleveland, OH), Taq polymerase (Perkin Elmer), thermostable T7 polymerase (Amersham, Chicago, IL), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (GIBCO BRL, Gaithersburg, MD). Preferably, the process is automated with machines such as the Hamilton Micro Lab 2200 (Hamilton, Reno, NV), the PTC-200 thermal cycler (M.J. Research, Watertown, MA) and the ABI Catalyst and 373 and 377 DNA Sequencers (Perkin Elmer).

The nucleic acid sequences encoding HUNSP may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Applic.

2:318-322.) Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186.) A third method, capture PCR, involves PCR amplification 5 of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119.) In this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-306). Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries to walk genomic DNA (Clontech, Palo Alto, CA). This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO™ 4.06 Primer Analysis software (National Biosciences Inc., Plymouth, MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.

When screening for full-length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include 20 sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.

Capillary electrophoresis systems which are commercially available may be used to analyze 25 the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Perkin Elmer), and the entire process from loading of samples to computer analysis and electronic data display may be computer

controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.

In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode HUNSP may be cloned in recombinant DNA molecules that direct expression of 5 HUNSP, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express HUNSP.

The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter HUNSP-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.

In another embodiment, sequences encoding HUNSP may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) Nucl. Acids Res. Symp. Ser. 215-223, and Horn, T. et al. (1980) Nucl. Acids Res. Symp. Ser. 20 225-232.) Alternatively, HUNSP itself or a fragment thereof may be synthesized using chemical methods. For example, peptide synthesis can be performed using various solid-phase techniques. (See, e.g., Roberge, J.Y. et al. (1995) Science 269:202-204.) Automated synthesis may be achieved using the ABI 431A Peptide Synthesizer (Perkin Elmer). Additionally, the amino acid sequence of HUNSP, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide.

The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g., Chiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421.) The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, T. (1984) Proteins, Structures and Molecular Properties, WH

Freeman and Co., New York, N.Y.)

In order to express a biologically active HUNSP, the nucleotide sequences encoding HUNSP or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding HUNSP. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding HUNSP. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding HUNSP and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162.)

Methods which are well known to those skilled in the art may be used to construct
20 expression vectors containing sequences encoding HUNSP and appropriate transcriptional and
translational control elements. These methods include in vitro recombinant DNA techniques,
synthetic techniques, and in vivo genetic recombination. (See, e.g., Sambrook, J. et al. (1989)
Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview, NY, ch. 4, 8, and
16-17; and Ausubel, F.M. et al. (1995, and periodic supplements) Current Protocols in Molecular
25 Biology, John Wiley & Sons, New York, NY, ch. 9, 13, and 16.)

A variety of expression vector/host systems may be utilized to contain and express sequences encoding HUNSP. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral

expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus (CaMV) or tobacco mosaic virus (TMV)) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. The invention is not limited by the host cell employed.

5 In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding HUNSP. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding HUNSP can be achieved using a multifunctional E. coli vector such as Bluescript® (Stratagene) or pSport1™ plasmid (GIBCO BRL). Ligation of sequences encoding HUNSP into the vector's multiple cloning site disrupts the lacZ gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509.) When large quantities of HUNSP are needed, e.g. for the production of antibodies, vectors which direct high level expression of HUNSP may be used. For example, vectors containing the strong, inducible T5 or T7 bacteriophage promoter may be used.

10 Yeast expression systems may be used for production of HUNSP. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH, may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris. In addition, such vectors direct 15 either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, supra; and Grant et al. (1987) Methods Enzymol. 153:516-54; Scorer, C. A. et al. (1994) Bio/Technology 12:181-184.)

20 Plant systems may also be used for expression of HUNSP. Transcription of sequences encoding HUNSP may be driven viral promoters, e.g., the 35S and 19S promoters of CaMV used 25 alone or in combination with the omega leader sequence from TMV. (Takamatsu, N. (1987) EMBO J. 6:307-311.) Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105.) These constructs can be introduced into plant cells by direct DNA

transformation or pathogen-mediated transfection. (See, e.g., Hobbs, S. or Murry, L.E. in McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York, NY; pp. 191-196.)

In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding HUNSP may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain infective virus which expresses HUNSP in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV-based vectors may also be used for high-level protein expression.

Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes.

For long term production of recombinant proteins in mammalian systems, stable expression of HUNSP in cell lines is preferred. For example, sequences encoding HUNSP can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.

Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in *tk* or *apr* cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; and Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, *dhfr* confers

resistance to methotrexate; *neo* confers resistance to the aminoglycosides neomycin and G-418; and *als* or *pat* confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g., Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. 77:3567-3570; Colbere-Garapin, F. et al (1981) J. Mol. Biol. 150:1-14; and Murry, supra.) Additional selectable genes have been described, e.g., *trpB* and *hisD*, which alter cellular requirements for metabolites. (See, e.g., Hartman, S.C. and R.C. Mulligan (1988) Proc. Natl. Acad. Sci. 85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP) (Clontech, Palo Alto, CA), β glucuronidase and its substrate β -D-glucuronoside, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, C.A. et al. (1995) Methods Mol. Biol. 55:121-131.)

2010-0100-0000-0000
15
20

Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding HUNSP is inserted within a marker gene sequence, transformed cells containing sequences encoding HUNSP can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding HUNSP under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.

In general, host cells that contain the nucleic acid sequence encoding HUNSP and that express HUNSP may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.

Immunological methods for detecting and measuring the expression of HUNSP using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on HUNSP is preferred, but a

competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS Press, St Paul, MN, Section IV; Coligan, J. E. et al. (1997 and periodic supplements) Current Protocols in Immunology, Greene Pub. Associates and Wiley-Interscience, New York, NY; and Maddox, D.E. et al. (1983) *J. Exp. Med.* 158:1211-1216).

A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding HUNSP include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide.

Alternatively, the sequences encoding HUNSP, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes *in vitro* by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Pharmacia & Upjohn (Kalamazoo, MI), Promega (Madison, WI), and U.S. Biochemical Corp. (Cleveland, OH). Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

Host cells transformed with nucleotide sequences encoding HUNSP may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode HUNSP may be designed to contain signal sequences which direct secretion of HUNSP through a prokaryotic or eukaryotic cell membrane.

In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" form of the protein may also be used to specify protein targeting, folding, and/or activity. Different

host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38), are available from the American Type Culture Collection (ATCC, Bethesda, MD) and may be chosen to ensure the correct modification and processing of the foreign protein.

5 In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding HUNSP may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric HUNSP protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of HUNSP activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, *c-myc*, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, *c-myc*, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the HUNSP encoding sequence and the heterologous protein sequence, so that HUNSP may be cleaved away from the

10 heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel, F. M. et al. (1995 and periodic supplements) Current Protocols in Molecular Biology, John Wiley & Sons, New York, NY, ch 10. A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.

20 In a further embodiment of the invention, synthesis of radiolabeled HUNSP may be achieved in vitro using the TNT rabbit reticulocyte lysate or wheat germ extract systems (Promega, Madison, WI). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, preferably ³⁵S-methionine.

25 Fragments of HUNSP may be produced not only by recombinant production, but also by

direct peptide synthesis using solid-phase techniques. (See, e.g., Creighton, *supra* pp. 55-60.) Protein synthesis may be performed by manual techniques or by automation. Automated synthesis may be achieved, for example, using the Applied Biosystems 431A Peptide Synthesizer (Perkin Elmer). Various fragments of HUNSP may be synthesized separately and then combined to 5 produce the full length molecule.

THERAPEUTICS

Chemical and structural similarity exists between HUNSP-1 and SgIII from mouse (GI 413764). In addition, HUNSP-1 is expressed in cancerous and neurological tissue. Therefore,

10 HUNSP-1 appears to play a role in neurological and endocrine disorders and cancer.

Chemical and structural similarity exists between HUNSP-2 and NP15.6 from mouse (GI 1771306). In addition, HUNSP-2 is expressed in cancerous tissue. Therefore, HUNSP-1 appears to play a role in neurological and endocrine disorders and cancer.

Therefore, in one embodiment, HUNSP or a fragment or derivative thereof may be administered to a subject to treat or prevent a neurological disorder. Such disorders can include, but are not limited to, akathesia, Alzheimer's disease, amnesia, amyotrophic lateral sclerosis, bipolar disorder, catatonia, cerebral neoplasms, dementia, depression, diabetic neuropathy, Down's syndrome, tardive dyskinesia, dystonias, epilepsy, Huntington's disease, peripheral neuropathy, multiple sclerosis, neurofibromatosis, Parkinson's disease, paranoid psychoses, postherpetic neuralgia, schizophrenia, and Tourette's disorder.

In another embodiment, a vector capable of expressing HUNSP or a fragment or derivative thereof may be administered to a subject to treat or prevent a neurological disorder including, but not limited to, those described above.

In a further embodiment, a pharmaceutical composition comprising a substantially purified HUNSP in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a neurological disorder including, but not limited to, those provided above.

In still another embodiment, an agonist which modulates the activity of HUNSP may be administered to a subject to treat or prevent a neurological disorder including, but not limited to, those listed above.

20170209/2007
10
15

In another embodiment, HUNSP or a fragment or derivative thereof may be administered to a subject to treat or prevent an endocrine disorder. Such disorders can include, but are not limited to, hypothalamic and pituitary disorders including hypogonadism, Sheehan syndrome, diabetes insipidus, Kallman's disease, Hand-Schuller-Christian disease, Letterer-Siwe disease, 5 sarcoidosis, empty sella syndrome, dwarfism, acromegaly, gigantism, and syndrome of inappropriate antidiuretic hormone (ADH) secretion (SIADH); thyroid disorders such as goiter, myxedema, acute thyroiditis, subacute thyroiditis, autoimmune thyroiditis (Hashimoto's disease), cretinism, thyrotoxicosis, Grave's disease, pretibial myxedema, toxic multinodular goiter, thyroid carcinoma, and Plummer's disease; parathyroid disorders such as Conn disease (chronic hypercalcemia); 10 pancreatic disorders such as Type I and Type II diabetes mellitus; adrenal disorders such as hyperplasia, carcinoma, and adenoma of the adrenal cortex, hypertension associated with alkalosis, hypokalemia, Cushing's disease, Liddle's syndrome, and Arnold-Healy-Gordon syndrome, pheochromocytoma tumors, and Addison's disease; steroid hormone-related disorders such as abnormal prolactin production, infertility, endometriosis, perturbations of the menstrual cycle, polycystic ovarian disease, hyperprolactinemia, isolated gonadotropin deficiency, amenorrhea, galactorrhea, hermaphroditism, hirsutism and virilization, breast cancer, osteoporosis, Leydig cell deficiency, Leydig cell tumors, male climacteric phase, germinal cell aplasia, androgen resistance, syndrome of 5 α -reductase, and gynecomastia.

In another embodiment, a vector capable of expressing HUNSP or a fragment or derivative thereof may be administered to a subject to treat or prevent an endocrine disorder including, but not limited to, those described above.

In a further embodiment, a pharmaceutical composition comprising a substantially purified HUNSP in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent an endocrine disorder including, but not limited to, those provided above.

In still another embodiment, an agonist which modulates the activity of HUNSP may be administered to a subject to treat or prevent an endocrine disorder including, but not limited to, those listed above.

In another embodiment, HUNSP or a fragment or derivative thereof may be administered to a subject to treat or prevent a cancer. Such disorders can include, but are not limited to,

adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus.

5 In another embodiment, a vector capable of expressing HUNSP or a fragment or derivative thereof may be administered to a subject to treat or prevent a cancer including, but not limited to, those described above.

In a further embodiment, a pharmaceutical composition comprising a substantially purified HUNSP in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a cancer including, but not limited to, those provided above.

10 In still another embodiment, an agonist which modulates the activity of HUNSP may be administered to a subject to treat or prevent a cancer including, but not limited to, those listed above.

15 In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic 20 efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

An antagonist of HUNSP may be produced using methods which are generally known in the art. In particular, purified HUNSP may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind HUNSP. Antibodies to HUNSP may also be generated using methods that are well known in the art. Such antibodies may include, 25 but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are especially preferred for therapeutic use.

For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with HUNSP or with any fragment or oligopeptide

10 15
20 25
30 35
40 45
50 55
60 65
70 75
80 85
90 95
100 105
110 115
120 125
130 135
140 145
150 155
160 165
170 175
180 185
190 195
200 205
210 215
220 225
230 235
240 245
250 255
260 265
270 275
280 285
290 295
300 305
310 315
320 325
330 335
340 345
350 355
360 365
370 375
380 385
390 395
400 405
410 415
420 425
430 435
440 445
450 455
460 465
470 475
480 485
490 495
500 505
510 515
520 525
530 535
540 545
550 555
560 565
570 575
580 585
590 595
600 605
610 615
620 625
630 635
640 645
650 655
660 665
670 675
680 685
690 695
700 705
710 715
720 725
730 735
740 745
750 755
760 765
770 775
780 785
790 795
800 805
810 815
820 825
830 835
840 845
850 855
860 865
870 875
880 885
890 895
900 905
910 915
920 925
930 935
940 945
950 955
960 965
970 975
980 985
990 995
1000 1005
1010 1015
1020 1025
1030 1035
1040 1045
1050 1055
1060 1065
1070 1075
1080 1085
1090 1095
1100 1105
1110 1115
1120 1125
1130 1135
1140 1145
1150 1155
1160 1165
1170 1175
1180 1185
1190 1195
1200 1205
1210 1215
1220 1225
1230 1235
1240 1245
1250 1255
1260 1265
1270 1275
1280 1285
1290 1295
1300 1305
1310 1315
1320 1325
1330 1335
1340 1345
1350 1355
1360 1365
1370 1375
1380 1385
1390 1395
1400 1405
1410 1415
1420 1425
1430 1435
1440 1445
1450 1455
1460 1465
1470 1475
1480 1485
1490 1495
1500 1505
1510 1515
1520 1525
1530 1535
1540 1545
1550 1555
1560 1565
1570 1575
1580 1585
1590 1595
1600 1605
1610 1615
1620 1625
1630 1635
1640 1645
1650 1655
1660 1665
1670 1675
1680 1685
1690 1695
1700 1705
1710 1715
1720 1725
1730 1735
1740 1745
1750 1755
1760 1765
1770 1775
1780 1785
1790 1795
1800 1805
1810 1815
1820 1825
1830 1835
1840 1845
1850 1855
1860 1865
1870 1875
1880 1885
1890 1895
1900 1905
1910 1915
1920 1925
1930 1935
1940 1945
1950 1955
1960 1965
1970 1975
1980 1985
1990 1995
2000 2005
2010 2015
2020 2025
2030 2035
2040 2045
2050 2055
2060 2065
2070 2075
2080 2085
2090 2095
2100 2105
2110 2115
2120 2125
2130 2135
2140 2145
2150 2155
2160 2165
2170 2175
2180 2185
2190 2195
2200 2205
2210 2215
2220 2225
2230 2235
2240 2245
2250 2255
2260 2265
2270 2275
2280 2285
2290 2295
2300 2305
2310 2315
2320 2325
2330 2335
2340 2345
2350 2355
2360 2365
2370 2375
2380 2385
2390 2395
2400 2405
2410 2415
2420 2425
2430 2435
2440 2445
2450 2455
2460 2465
2470 2475
2480 2485
2490 2495
2500 2505
2510 2515
2520 2525
2530 2535
2540 2545
2550 2555
2560 2565
2570 2575
2580 2585
2590 2595
2600 2605
2610 2615
2620 2625
2630 2635
2640 2645
2650 2655
2660 2665
2670 2675
2680 2685
2690 2695
2700 2705
2710 2715
2720 2725
2730 2735
2740 2745
2750 2755
2760 2765
2770 2775
2780 2785
2790 2795
2800 2805
2810 2815
2820 2825
2830 2835
2840 2845
2850 2855
2860 2865
2870 2875
2880 2885
2890 2895
2900 2905
2910 2915
2920 2925
2930 2935
2940 2945
2950 2955
2960 2965
2970 2975
2980 2985
2990 2995
3000 3005
3010 3015
3020 3025
3030 3035
3040 3045
3050 3055
3060 3065
3070 3075
3080 3085
3090 3095
3100 3105
3110 3115
3120 3125
3130 3135
3140 3145
3150 3155
3160 3165
3170 3175
3180 3185
3190 3195
3200 3205
3210 3215
3220 3225
3230 3235
3240 3245
3250 3255
3260 3265
3270 3275
3280 3285
3290 3295
3300 3305
3310 3315
3320 3325
3330 3335
3340 3345
3350 3355
3360 3365
3370 3375
3380 3385
3390 3395
3400 3405
3410 3415
3420 3425
3430 3435
3440 3445
3450 3455
3460 3465
3470 3475
3480 3485
3490 3495
3500 3505
3510 3515
3520 3525
3530 3535
3540 3545
3550 3555
3560 3565
3570 3575
3580 3585
3590 3595
3600 3605
3610 3615
3620 3625
3630 3635
3640 3645
3650 3655
3660 3665
3670 3675
3680 3685
3690 3695
3700 3705
3710 3715
3720 3725
3730 3735
3740 3745
3750 3755
3760 3765
3770 3775
3780 3785
3790 3795
3800 3805
3810 3815
3820 3825
3830 3835
3840 3845
3850 3855
3860 3865
3870 3875
3880 3885
3890 3895
3900 3905
3910 3915
3920 3925
3930 3935
3940 3945
3950 3955
3960 3965
3970 3975
3980 3985
3990 3995
4000 4005
4010 4015
4020 4025
4030 4035
4040 4045
4050 4055
4060 4065
4070 4075
4080 4085
4090 4095
4100 4105
4110 4115
4120 4125
4130 4135
4140 4145
4150 4155
4160 4165
4170 4175
4180 4185
4190 4195
4200 4205
4210 4215
4220 4225
4230 4235
4240 4245
4250 4255
4260 4265
4270 4275
4280 4285
4290 4295
4300 4305
4310 4315
4320 4325
4330 4335
4340 4345
4350 4355
4360 4365
4370 4375
4380 4385
4390 4395
4400 4405
4410 4415
4420 4425
4430 4435
4440 4445
4450 4455
4460 4465
4470 4475
4480 4485
4490 4495
4500 4505
4510 4515
4520 4525
4530 4535
4540 4545
4550 4555
4560 4565
4570 4575
4580 4585
4590 4595
4600 4605
4610 4615
4620 4625
4630 4635
4640 4645
4650 4655
4660 4665
4670 4675
4680 4685
4690 4695
4700 4705
4710 4715
4720 4725
4730 4735
4740 4745
4750 4755
4760 4765
4770 4775
4780 4785
4790 4795
4800 4805
4810 4815
4820 4825
4830 4835
4840 4845
4850 4855
4860 4865
4870 4875
4880 4885
4890 4895
4900 4905
4910 4915
4920 4925
4930 4935
4940 4945
4950 4955
4960 4965
4970 4975
4980 4985
4990 4995
5000 5005
5010 5015
5020 5025
5030 5035
5040 5045
5050 5055
5060 5065
5070 5075
5080 5085
5090 5095
5100 5105
5110 5115
5120 5125
5130 5135
5140 5145
5150 5155
5160 5165
5170 5175
5180 5185
5190 5195
5200 5205
5210 5215
5220 5225
5230 5235
5240 5245
5250 5255
5260 5265
5270 5275
5280 5285
5290 5295
5300 5305
5310 5315
5320 5325
5330 5335
5340 5345
5350 5355
5360 5365
5370 5375
5380 5385
5390 5395
5400 5405
5410 5415
5420 5425
5430 5435
5440 5445
5450 5455
5460 5465
5470 5475
5480 5485
5490 5495
5500 5505
5510 5515
5520 5525
5530 5535
5540 5545
5550 5555
5560 5565
5570 5575
5580 5585
5590 5595
5600 5605
5610 5615
5620 5625
5630 5635
5640 5645
5650 5655
5660 5665
5670 5675
5680 5685
5690 5695
5700 5705
5710 5715
5720 5725
5730 5735
5740 5745
5750 5755
5760 5765
5770 5775
5780 5785
5790 5795
5800 5805
5810 5815
5820 5825
5830 5835
5840 5845
5850 5855
5860 5865
5870 5875
5880 5885
5890 5895
5900 5905
5910 5915
5920 5925
5930 5935
5940 5945
5950 5955
5960 5965
5970 5975
5980 5985
5990 5995
6000 6005
6010 6015
6020 6025
6030 6035
6040 6045
6050 6055
6060 6065
6070 6075
6080 6085
6090 6095
6100 6105
6110 6115
6120 6125
6130 6135
6140 6145
6150 6155
6160 6165
6170 6175
6180 6185
6190 6195
6200 6205
6210 6215
6220 6225
6230 6235
6240 6245
6250 6255
6260 6265
6270 6275
6280 6285
6290 6295
6300 6305
6310 6315
6320 6325
6330 6335
6340 6345
6350 6355
6360 6365
6370 6375
6380 6385
6390 6395
6400 6405
6410 6415
6420 6425
6430 6435
6440 6445
6450 6455
6460 6465
6470 6475
6480 6485
6490 6495
6500 6505
6510 6515
6520 6525
6530 6535
6540 6545
6550 6555
6560 6565
6570 6575
6580 6585
6590 6595
6600 6605
6610 6615
6620 6625
6630 6635
6640 6645
6650 6655
6660 6665
6670 6675
6680 6685
6690 6695
6700 6705
6710 6715
6720 6725
6730 6735
6740 6745
6750 6755
6760 6765
6770 6775
6780 6785
6790 6795
6800 6805
6810 6815
6820 6825
6830 6835
6840 6845
6850 6855
6860 6865
6870 6875
6880 6885
6890 6895
6900 6905
6910 6915
6920 6925
6930 6935
6940 6945
6950 6955
6960 6965
6970 6975
6980 6985
6990 6995
7000 7005
7010 7015
7020 7025
7030 7035
7040 7045
7050 7055
7060 7065
7070 7075
7080 7085
7090 7095
7100 7105
7110 7115
7120 7125
7130 7135
7140 7145
7150 7155
7160 7165
7170 7175
7180 7185
7190 7195
7200 7205
7210 7215
7220 7225
7230 7235
7240 7245
7250 7255
7260 7265
7270 7275
7280 7285
7290 7295
7300 7305
7310 7315
7320 7325
7330 7335
7340 7345
7350 7355
7360 7365
7370 7375
7380 7385
7390 7395
7400 7405
7410 7415
7420 7425
7430 7435
7440 7445
7450 7455
7460 7465
7470 7475
7480 7485
7490 7495
7500 7505
7510 7515
7520 7525
7530 7535
7540 7545
7550 7555
7560 7565
7570 7575
7580 7585
7590 7595
7600 7605
7610 7615
7620 7625
7630 7635
7640 7645
7650 7655
7660 7665
7670 7675
7680 7685
7690 7695
7700 7705
7710 7715
7720 7725
7730 7735
7740 7745
7750 7755
7760 7765
7770 7775
7780 7785
7790 7795
7800 7805
7810 7815
7820 7825
7830 7835
7840 7845
7850 7855
7860 7865
7870 7875
7880 7885
7890 7895
7900 7905
7910 7915
7920 7925
7930 7935
7940 7945
7950 7955
7960 7965
7970 7975
7980 7985
7990 7995
8000 8005
8010 8015
8020 8025
8030 8035
8040 8045
8050 8055
8060 8065
8070 8075
8080 8085
8090 8095
8100 8105
8110 8115
8120 8125
8130 8135
8140 8145
8150 8155
8160 8165
8170 8175
8180 8185
8190 8195
8200 8205
8210 8215
8220 8225
8230 8235
8240 8245
8250 8255
8260 8265
8270 8275
8280 8285
8290 8295
8300 8305
8310 8315
8320 8325
8330 8335
8340 8345
8350 8355
8360 8365
8370 8375
8380 8385
8390 8395
8400 8405
8410 8415
8420 8425
8430 8435
8440 8445
8450 8455
8460 8465
8470 8475
8480 8485
8490 8495
8500 8505
8510 8515
8520 8525
8530 8535
8540 8545
8550 8555
8560 8565
8570 8575
8580 8585
8590 8595
8600 8605
8610 8615
8620 8625
8630 8635
8640 8645
8650 8655
8660 8665
8670 8675
8680 8685
8690 8695
8700 8705
8710 8715
8720 8725
8730 8735
8740 8745
8750 8755
8760 8765
8770 8775
8780 8785
8790 8795
8800 8805
8810 8815
8820 8825
8830 8835
8840 8845
8850 8855
8860 8865
8870 8875
8880 8885
8890 8895
8900 8905
8910 8915
8920 8925
8930 8935
8940 8945
8950 8955
8960 8965
8970 8975
8980 8985
8990 8995
9000 9005
9010 9015
9020 9025
9030 9035
9040 9045
9050 9055
9060 9065
9070 9075
9080 9085
9090 9095
9100 9105
9110 9115
9120 9125
9130 9135
9140 9145
9150 9155
9160 9165
9170 9175
9180 9185
9190 9195
9200 9205
9210 9215
9220 9225
9230 9235
9240 9245
9250 9255
9260 9265
9270 9275
9280 9285
9290 9295
9300 9305
9310 9315
9320 9325
9330 9335
9340 9345
9350 9355
9360 9365
9370 9375
9380 9385
9390 9395
9400 9405
9410 9415
9420 9425
9430 9435
9440 9445
9450 9455
9460 9465
9470 9475
9480 9485
9490 9495
9500 9505
9510 9515
9520 9525
9530 9535
9540 9545
9550 9555
9560 9565
9570 9575
9580 9585
9590 9595
9600 9605
9610 9615
9620 9625
9630 9635
9640 9645
9650 9655
9660 9665
9670 9675
9680 9685
9690 9695
9700 9705
9710 9715
9720 9725
9730 9735
9740 9745
9750 9755
9760 9765
9770 9775
9780 9785
9790 9795
9800 9805
9810 9815
9820 9825
9830 9835
9840 9845
9850 9855
9860 9865
9870 9875
9880 9885
9890 9895
9900 9905
9910 9915
9920 9925
9930 9935
9940 9945
9950 9955
9960 9965
9970 9975
9980 9985
9990 9995
10000 10005
10010 10015
10020 10025
10030 10035
10040 10045
10050 10055
10060 10065
10070 10075
10080 10085
10090 10095
10100 10105
10110 10115
10120 10125
10130 10135
10140 10145
10150 10155
10160 10165
10170 10175
10180 10185
10190 10195
10200 10205
10210 10215
10220 10225
10230 10235
10240 10245
10250 10255
10260 10265
10270 10275
10280 10285
10290 10295
10300 10305
10310 10315
10320 10325
10330 10335
10340 10345
10350 10355
10360 10365
10370 10375
10380 10385
10390 10395
10400 10405
10410 10415
10420 10425
10430 10435
10440 10445
10450 10455
10460 10465
10470 10475
10480 10485
10490 10495
10500 10505
10510 10515
10520 10525
10530 10535
10540 10545
10550 10555
10560 10565
10570 10575
10580 10585
10590 10595
10600 10605
10610

thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among 5 adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable.

It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to HUNSP have an amino acid sequence consisting of at least about 5 amino acids, and, more preferably, of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein and contain the entire amino acid sequence of a small, naturally occurring molecule. Short stretches of HUNSP amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.

Monoclonal antibodies to HUNSP may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohler, G. et al. (1975) *Nature* 256:495-497; Kozbor, D. et al. (1985) *J. Immunol. Methods* 81:31-42; Cote, R.J. et al. (1983) *Proc. Natl. Acad. Sci.* 80:2026-2030; and Cole, S.P. et al. (1984) *Mol. Cell Biol.* 62:109-120.)

20 In addition, techniques developed for the production of "chimeric antibodies," such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used. (See, e.g., Morrison, S.L. et al. (1984) *Proc. Natl. Acad. Sci.* 81:6851-6855; Neuberger, M.S. et al. (1984) *Nature* 312:604-608; and Takeda, S. et al. (1985) *Nature* 314:452-454.) Alternatively, techniques described for the 25 production of single chain antibodies may be adapted, using methods known in the art, to produce HUNSP-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton D.R. (1991) *Proc. Natl. Acad. Sci.* 88:10134-10137.)

Antibodies may also be produced by inducing in vivo production in the lymphocyte

population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. 86: 3833-3837; and Winter, G. et al. (1991) Nature 349:293-299.)

Antibody fragments which contain specific binding sites for HUNSP may also be generated.

5 For example, such fragments include, but are not limited to, F(ab')2 fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al. (1989) Science 246:1275-1281.)

Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between HUNSP and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering HUNSP epitopes is preferred, but a competitive binding assay may also be employed. (Maddox, supra.)

In another embodiment of the invention, the polynucleotides encoding HUNSP, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, the complement of the polynucleotide encoding HUNSP may be used in situations in which it would be desirable to block the transcription of the mRNA. In particular, cells may be transformed with sequences complementary to polynucleotides encoding HUNSP. Thus, complementary molecules or fragments may be used to modulate HUNSP activity, or to achieve regulation of gene function. Such technology is now well known in the art, and sense or antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding HUNSP.

Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. Methods which are well known to those skilled in the art can be used to construct vectors to express nucleic acid sequences complementary to the polynucleotides

encoding HUNSP. (See, e.g., Sambrook, *supra*; and Ausubel, *supra*.)

Genes encoding HUNSP can be turned off by transforming a cell or tissue with expression vectors which express high levels of a polynucleotide, or fragment thereof, encoding HUNSP. Such constructs may be used to introduce untranslatable sense or antisense sequences into a cell. Even in the absence of integration into the DNA, such vectors may continue to transcribe RNA molecules until they are disabled by endogenous nucleases. Transient expression may last for a month or more with a non-replicating vector, and may last even longer if appropriate replication elements are part of the vector system.

As mentioned above, modifications of gene expression can be obtained by designing complementary sequences or antisense molecules (DNA, RNA, or PNA) to the control, 5', or regulatory regions of the gene encoding HUNSP. Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, are preferred. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Carr, Molecular and Immunologic Approaches, Futura Publishing Co., Mt. Kisco, NY, pp. 163-177.) A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.

Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding HUNSP.

Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of

candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.

Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding HUNSP. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.

RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases.

Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nature Biotechnology 15:462-466.)

Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as dogs, cats, cows, horses, rabbits, monkeys, and most preferably, humans.

An additional embodiment of the invention relates to the administration of a pharmaceutical or sterile composition, in conjunction with a pharmaceutically acceptable carrier, for any of the

2010/12/01 10:00:00 AM / PCT/US10/04007
10
15

therapeutic effects discussed above. Such pharmaceutical compositions may consist of HUNSP, antibodies to HUNSP, and mimetics, agonists, antagonists, or inhibitors of HUNSP. The compositions may be administered alone or in combination with at least one other agent, such as a stabilizing compound, which may be administered in any sterile, biocompatible pharmaceutical carrier including, but not limited to, saline, buffered saline, dextrose, and water. The compositions may be administered to a patient alone, or in combination with other agents, drugs, or hormones.

5 The pharmaceutical compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.

10 In addition to the active ingredients, these pharmaceutical compositions may contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Further details on techniques for formulation and administration may be found in the latest edition of
» 15 Remington's Pharmaceutical Sciences (Maack Publishing Co., Easton, PA).

Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the
20 patient.

Pharmaceutical preparations for oral use can be obtained through combining active compounds with solid excipient and processing the resultant mixture of granules (optionally, after grinding) to obtain tablets or dragee cores. Suitable auxiliaries can be added, if desired. Suitable excipients include carbohydrate or protein fillers, such as sugars, including lactose, sucrose, 25 mannitol, and sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums, including arabic and tragacanth; and proteins, such as gelatin and collagen. If desired, disintegrating or solubilizing agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, and alginic acid or a salt thereof, such as sodium alginate.

Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions, which may also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for product identification or
5 to characterize the quantity of active compound, i.e., dosage.

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with fillers or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft
10 capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.

Pharmaceutical formulations suitable for parenteral administration may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiologically buffered saline. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils, such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate, triglycerides, or liposomes. Non-lipid polycationic amino polymers may also be used for delivery. Optionally, the suspension may
20 also contain suitable stabilizers or agents to increase the solubility of the compounds and allow for the preparation of highly concentrated solutions.

For topical or nasal administration, penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

The pharmaceutical compositions of the present invention may be manufactured in a manner
25 that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes.

The pharmaceutical composition may be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, and succinic acid. Salts tend to be more soluble in aqueous or other protonic solvents than are the

corresponding free base forms. In other cases, the preferred preparation may be a lyophilized powder which may contain any or all of the following: 1 mM to 50 mM histidine, 0.1% to 2% sucrose, and 2% to 7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.

- 5 After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. For administration of HUNSP, such labeling would include amount, frequency, and method of administration.

Pharmaceutical compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.

10 For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells or in animal models such as mice, rats, rabbits, dogs, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

15 A therapeutically effective dose refers to that amount of active ingredient, for example HUNSP or fragments thereof, antibodies of HUNSP, and agonists, antagonists or inhibitors of HUNSP, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, 20 such as by calculating the ED₅₀ (the dose therapeutically effective in 50% of the population) or LD₅₀ (the dose lethal to 50% of the population) statistics. The dose ratio of therapeutic to toxic effects is the therapeutic index, and it can be expressed as the ED₅₀/LD₅₀ ratio. Pharmaceutical compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in 25 such compositions is preferably within a range of circulating concentrations that includes the ED₅₀ with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.

The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of

2011/2010/PD/27/007

the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.

Normal dosage amounts may vary from about 0.1 μg to 100,000 μg , up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

DIAGNOSTICS

In another embodiment, antibodies which specifically bind HUNSP may be used for the diagnosis of disorders characterized by expression of HUNSP, or in assays to monitor patients being treated with HUNSP or agonists, antagonists, or inhibitors of HUNSP. Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for HUNSP include methods which utilize the antibody and a label to detect HUNSP in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.

A variety of protocols for measuring HUNSP, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of HUNSP expression. Normal or standard values for HUNSP expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, preferably human, with antibody to HUNSP under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, preferably by photometric means. Quantities of

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

HUNSP expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.

In another embodiment of the invention, the polynucleotides encoding HUNSP may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantitate gene expression in biopsied tissues in which expression of HUNSP may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of HUNSP, and to monitor regulation of HUNSP levels during therapeutic intervention.

In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding HUNSP or closely related molecules may be used to identify nucleic acid sequences which encode HUNSP. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification (maximal, high, intermediate, or low), will determine whether the probe identifies only naturally occurring sequences encoding HUNSP, allelic variants, or related sequences.

Probes may also be used for the detection of related sequences, and should preferably have at least 50% sequence identity to any of the HUNSP encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequences of SEQ ID NO:2 or SEQ ID NO:4 or from genomic sequences including promoters, enhancers, and introns of the HUNSP gene.

Means for producing specific hybridization probes for DNAs encoding HUNSP include the cloning of polynucleotide sequences encoding HUNSP or HUNSP derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as ^{32}P or ^{35}S , or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.

Polynucleotide sequences encoding HUNSP may be used for the diagnosis of a disorder associated with expression of HUNSP. Examples of such a disorder include, but are not limited to, a neurological disorder such as akathesia, Alzheimer's disease, amnesia, amyotrophic lateral sclerosis, bipolar disorder, catatonia, cerebral neoplasms, dementia, depression, diabetic neuropathy, Down's syndrome, tardive dyskinesia, dystonias, epilepsy, Huntington's disease, peripheral neuropathy, multiple sclerosis, neurofibromatosis, Parkinson's disease, paranoid psychoses, postherpetic neuralgia, schizophrenia, and Tourette's disorder; an endocrine disorder such as hypothalamic and pituitary disorders including hypogonadism, Sheehan syndrome, diabetes insipidus, Kallman's disease, Hand-Schuller-Christian disease, Letterer-Siwe disease, sarcoidosis, empty sella syndrome, dwarfism, acromegaly, gigantism, and syndrome of inappropriate antidiuretic hormone (ADH) secretion (SIADH); thyroid disorders such as goiter, myxedema, acute thyroiditis, subacute thyroiditis, autoimmune thyroiditis (Hashimoto's disease), cretinism, thyrotoxicosis, Grave's disease, pretibial myxedema, toxic multinodular goiter, thyroid carcinoma, and Plummer's disease; parathyroid disorders such as Conn disease (chronic hypercalcemia); pancreatic disorders such as Type I and Type II diabetes mellitus; adrenal disorders such as hyperplasia, carcinoma, and adenoma of the adrenal cortex, hypertension associated with alkalosis, hypokalemia, Cushing's disease, Liddle's syndrome, and Arnold-Healy-Gordon syndrome, pheochromocytoma tumors, and Addison's disease; steroid hormone-related disorders such as abnormal prolactin production, infertility, endometriosis, perturbations of the menstrual cycle, polycystic ovarian disease, 10 hyperprolactinemia, isolated gonadotropin deficiency, amenorrhea, galactorrhea, hermaphroditism, hirsutism and virilization, breast cancer, osteoporosis, Leydig cell deficiency, Leydig cell tumors, male climacteric phase, germinal cell aplasia, androgen resistance, syndrome of 5 α -reductase, and gynecomastia; and a cancer such as adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone 15 marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus. The polynucleotide sequences encoding HUNSP may be used in Southern or Northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in 20 dipstick, pin, and ELISA assays; and in microarrays utilizing fluids or tissues from patients to detect dipstick, pin, and ELISA assays; and in microarrays utilizing fluids or tissues from patients to detect

altered HUNSP expression. Such qualitative or quantitative methods are well known in the art.

In a particular aspect, the nucleotide sequences encoding HUNSP may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding HUNSP may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantitated and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding HUNSP in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.

In order to provide a basis for the diagnosis of a disorder associated with expression of HUNSP, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding HUNSP, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.

Once the presence of a disorder is established and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.

With respect to cancer, the presence of a relatively high amount of HUNSP in biopsied tissue or serum from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ

preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.

Additional diagnostic uses for oligonucleotides designed from the sequences encoding HUNSP may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced *in vitro*. Oligomers will preferably contain a fragment of a polynucleotide encoding HUNSP, or a fragment of a polynucleotide complementary to the polynucleotide encoding HUNSP, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantitation of closely related DNA or RNA sequences.

Methods which may also be used to quantitate the expression of HUNSP include radiolabeling or biotinylation nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P.C. et al. (1993) J. Immunol. Methods 159:235-244; and Duplaa, C. et al. (1993) Anal. Biochem. 229-236.) The speed of quantitation of multiple samples may be accelerated by running the assay in an ELISA format where the oligomer of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.

In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as targets in a microarray. The microarray can be used to monitor the expression level of large numbers of genes simultaneously and to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, and to develop and monitor the activities of therapeutic agents.

Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. 93:10614-10619; Baldeschweiler et al. (1995) PCT application WO95/251116; Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R.A. et al. (1997) Proc. Natl. Acad. Sci. 94:2150-2155; and Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662.)

In another embodiment of the invention, nucleic acid sequences encoding HUNSP may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence.

The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries. (See, e.g., Price, C.M. (1993) *Blood Rev.* 7:127-134; and Trask, B.J. (1991) *Trends Genet.* 7:149-154.)

Fluorescent *in situ* hybridization (FISH) may be correlated with other physical chromosome mapping techniques and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, R.A. (ed.) *Molecular Biology and Biotechnology*, VCH Publishers New York, NY, pp. 965-968.)

Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) site. Correlation between the location of the gene encoding HUNSP on a physical chromosomal map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder. The nucleotide sequences of the invention may be used to detect differences in gene sequences among normal, carrier, and affected individuals.

In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the number or arm of a particular human chromosome is not known. New sequences can be assigned to chromosomal arms by physical mapping. This provides valuable information to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the disease or syndrome has been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation. (See, e.g., Gatti, R.A. et al. (1988) *Nature* 336:577-580.) The nucleotide sequence of the subject invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.

In another embodiment of the invention, HUNSP, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a

solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between HUNSP and the agent being tested may be measured.

Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT application WO84/03564.) In this method, large numbers of different small test compounds are synthesized on a solid substrate, such as plastic pins or some other surface. The test compounds are reacted with HUNSP, or fragments thereof, and washed. Bound HUNSP is then detected by methods well known in the art. Purified HUNSP can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.

In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding HUNSP specifically compete with a test compound for binding HUNSP. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with HUNSP.

In additional embodiments, the nucleotide sequences which encode HUNSP may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.

The examples below are provided to illustrate the subject invention and are not included for the purpose of limiting the invention.

EXAMPLES

I. cDNA Library Construction (ISLTNOT01 and BRSTTUT14)

The ISLTNOT01 cDNA library was constructed from pancreatic islet cells. The frozen cells were homogenized and lysed in guanidinium isothiocyanate solution using a Brinkmann POLYTRON PT-3000 homoginizer (Brinkmann Instruments, Westbury, NY). The lysate was centrifuged over a CsCl cushion to isolate RNA. The RNA was extracted with acid phenol, precipitated with sodium acetate and ethanol, resuspended in RNase-free water, and treated with DNase. The RNA was re-extracted with acid phenol and reprecipitated.

PF-0510 US

The BRSTTUT14 cDNA library was constructed from cancerous breast tissue obtained from a 62-year-old Caucasian female during a unilateral extended simple mastectomy. Pathology indicated an invasive grade 3 (of 4), nuclear grade 3 (of 3) adenocarcinoma, ductal type, forming a firm mass in the upper outer quadrant. Ductal carcinoma *in situ*, comedo type, comprised 60% of the tumor mass. No angiolympathic invasion was seen. The skin, nipple, and deep margins of resection were free of tumor. Metastatic adenocarcinoma was identified in one of 14 axillary lymph nodes with no perinodal extension. Immunohistochemical stains showed that the tumor cells were strongly positive for estrogen receptors and weakly positive for progesterone receptors. Patient history included a benign colon neoplasm. Family history included malignant colon neoplasm, malignant ovarian neoplasm, and malignant upper lung lobe neoplasm in siblings.

The frozen tissue was homogenized and lysed in TRIZOL reagent (1 gm tissue/10 ml TRIZOL reagent; Catalog #10296-028, Gibco/BRL, Gaithersburg, MD), a monophasic solution of phenol and guanidine isothiocyanate, using a Brinkmann POLYTRON PT-3000 homogenizer (Brinkmann Instruments). After brief incubation on ice, chloroform was added (1:5 v/v), and the mixture was centrifuged to separate the phases. The upper aqueous phase was removed to a fresh tube, and isopropanol was added to precipitate RNA. The RNA was resuspended in RNase-free water and treated with DNase. The RNA was re-extracted with acid phenol-chloroform and reprecipitated with sodium acetate and ethanol.

From each of the RNA preparations described above, poly (A+) RNA was isolated using the QIAGEN OLIGOTEX kit (QIAGEN, Chatsworth, CA). Poly (A+) RNA was used for cDNA synthesis and construction of each cDNA library according to the recommended protocols in the SUPERSCRIPT plasmid system (Catalog #18248-013, Gibco/BRL).

The cDNAs were fractionated on a SEPHAROSE CL4B column (Catalog #275105-01, Pharmacia, Piscataway, NJ), and those cDNAs exceeding 400 bp were ligated into PINCY 1 (Incyte). The recombinant plasmids were transformed into DH5 α competent cells (Catalog #18258-012, Gibco/BRL).

II. Isolation and Sequencing of cDNA Clones (ISLTNOT01 and BRSTTUT14)

Plasmid DNA was released from the cells and purified using the R.E.A.L. PREP 96

PF-0510 US

plasmid purification kit (Catalog #26173, QIAGEN Inc). The recommended protocol was employed except for the following changes: 1) the bacteria were cultured in 1 ml of sterile Terrific Broth (Catalog #22711, Gibco/BRL) with carbenicillin at 25 mg/l and glycerol at 0.4%; 2) after the cultures were incubated for 19 hours, the cells were lysed with 0.3 ml of lysis buffer; and 3)
5 following isopropanol precipitation, the plasmid DNA pellets were each resuspended in 0.1 ml of distilled water. The DNA samples were stored at 4°C.

The cDNAs were sequenced by the method of Sanger et al. (1975, J. Mol. Biol. 94:441f), using a Hamilton MICROLAB 2200 liquid transfer system (Hamilton, Reno, NV) in combination with the PTC-200 thermal cycler (M.J. Research, Watertown, MA) and the 377 DNA sequencing system (Applied Biosystems, Foster City, CA), and the reading frames were determined.
10

III. Similarity Searching of cDNA Clones and Their Deduced Proteins

The nucleotide sequences and/or amino acid sequences of the Sequence Listing were used to query sequences in the GenBank, SwissProt, BLOCKS, and Pima II databases. These databases, which contain previously identified and annotated sequences, were searched for regions of similarity using BLAST (Basic Local Alignment Search Tool). (See, e.g., Altschul, S.F. (1993) J. Mol. Evol 36:290-300; and Altschul et al. (1990) J. Mol. Biol. 215:403-410.)
15

BLAST produced alignments of both nucleotide and amino acid sequences to determine sequence similarity. Because of the local nature of the alignments, BLAST was especially useful in
20 determining exact matches or in identifying homologs which may be of prokaryotic (bacterial) or eukaryotic (animal, fungal, or plant) origin. Other algorithms could have been used when dealing with primary sequence patterns and secondary structure gap penalties. (See, e.g., Smith, T. et al. (1992) Protein Engineering 5:35-51.) The sequences disclosed in this application have lengths of at least 49 nucleotides and have no more than 12% uncalled bases (where N is recorded rather than
25 A, C, G, or T).

The BLAST approach searched for matches between a query sequence and a database sequence. BLAST evaluated the statistical significance of any matches found, and reported only those matches that satisfy the user-selected threshold of significance. In this application, threshold was set at 10^{-25} for nucleotides and 10^{-8} for peptides.

Incyte nucleotide sequences were searched against the GenBank databases for primate (pri), rodent (rod), and other mammalian sequences (mam), and deduced amino acid sequences from the same clones were then searched against GenBank functional protein databases, mammalian (mamp), vertebrate (vrtp), and eukaryote (eukp), for similarity.

5 Additionally, sequences identified from cDNA libraries may be analyzed to identify those gene sequences encoding conserved protein motifs using an appropriate analysis program, e.g., BLOCKS. BLOCKS is a weighted matrix analysis algorithm based on short amino acid segments, or blocks, compiled from the PROSITE database. (Bairoch, A. et al. (1997) Nucleic Acids Res. 25:217-221.) The BLOCKS algorithm is useful for classifying genes with unknown functions.

10 (Henikoff S. And Henikoff G.J., Nucleic Acids Research (1991) 19:6565-6572.) Blocks, which are 3-60 amino acids in length, correspond to the most highly conserved regions of proteins. The BLOCKS algorithm compares a query sequence with a weighted scoring matrix of blocks in the BLOCKS database. Blocks in the BLOCKS database are calibrated against protein sequences with known functions from the SWISS-PROT database to determine the stochastic distribution of matches. Similar databases such as PRINTS, a protein fingerprint database, are also searchable using the BLOCKS algorithm. (Attwood, T. K. et al. (1997) J. Chem. Inf. Comput. Sci. 37:417-424.) PRINTS is based on non-redundant sequences obtained from sources such as SWISS-PROT, GenBank, PIR, and NRL-3D.

15 The BLOCKS algorithm searches for matches between a query sequence and the BLOCKS or PRINTS database and evaluates the statistical significance of any matches found. Matches from a BLOCKS or PRINTS search can be evaluated on two levels, local similarity and global similarity. The degree of local similarity is measured by scores, and the extent of global similarity is measured by score ranking and probability values. A score of 1000 or greater for a BLOCKS match of highest ranking indicates that the match falls within the 0.5 percentile level of false positives when the matched block is calibrated against SWISS-PROT. Likewise, a probability value of less than 1.0×10^{-3} indicates that the match would occur by chance no more than one time in every 1000 searches. Only those matches with a cutoff score of 1000 or greater and a cutoff probability value of 1.0×10^{-3} or less are considered in the functional analyses of the protein sequences in the Sequence Listing.

Nucleic and amino acid sequences of the Sequence Listing may also be analyzed using PFAM. PFAM is a Hidden Markov Model (HMM) based protocol useful in protein family searching. HMM is a probabilistic approach which analyzes consensus primary structures of gene families. (See, e.g., Eddy, S.R. (1996) Cur. Opin. Str. Biol. 6:361-365.)

5 The PFAM database contains protein sequences of 527 protein families gathered from publicly available sources, e.g., SWISS-PROT and PROSITE. PFAM searches for well characterized protein domain families using two high-quality alignment routines, seed alignment and full alignment. (See, e.g., Sonnhammer, E.L.L. et al. (1997) Proteins 28:405-420.) The seed alignment utilizes the hmmls program, a program that searches for local matches, and a non-redundant set of the PFAM database. The full alignment utilizes the hmmfs program, a program that searches for multiple fragments in long sequences, e.g., repeats and motifs, and all sequences in the PFAM database. A result or score of 100 "bits" can signify that it is 2^{100} -fold more likely that the sequence is a true match to the model or comparison sequence. Cutoff scores which range from 10 to 50 bits are generally used for individual protein families using the SWISS-PROT sequences as model or comparison sequences.

10 Two other algorithms, SIGPEPT and TM, both based on the HMM algorithm described above (see, e.g., Eddy, *supra*; and Sonnhammer, *supra*), identify potential signal sequences and transmembrane domains, respectively. SIGPEPT was created using protein sequences having signal sequence annotations derived from SWISS-PROT. It contains about 1413 non-redundant
15 signal sequences ranging in length from 14 to 36 amino acid residues. TM was created similarly using transmembrane domain annotations. It contains about 453 non-redundant transmembrane sequences encompassing 1579 transmembrane domain segments. Suitable HMM models were constructed using the above sequences and were refined with known SWISS-PROT signal peptide sequences or transmembrane domain sequences until a high correlation coefficient, a measurement
20 of the correctness of the analysis, was obtained. Using the protein sequences from the SWISS-PROT database as a test set, a cutoff score of 11 bits, as determined above, correlated with 91-94% true-positives and about 4.1% false-positives, yielding a correlation coefficient of about 0.87-0.90 for SIGPEPT. A score of 11 bits for TM will typically give the following results: 75% true
25 positives; 1.72% false positives; and a correlation coefficient of 0.76. Each search evaluates the

statistical significance of any matches found and reports only those matches that score at least 11 bits.

IV. Northern Analysis

5 Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, *supra*, ch. 7; and Ausubel, *supra*, ch. 4 and 16.)

10 Analogous computer techniques applying BLAST are used to search for identical or related molecules in nucleotide databases such as GenBank or LIFESEQ database (Incyte Pharmaceuticals). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar.

The basis of the search is the product score, which is defined as:

$$\frac{\% \text{ sequence identity} \times \% \text{ maximum BLAST score}}{100}$$

15 The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. For example, with a product score of 40, the match will be exact within a 1% to 2% error, and, with a product score of 70, the match will be exact. Similar
20 molecules are usually identified by selecting those which show product scores between 15 and 40, although lower scores may identify related molecules.

25 The results of Northern analysis are reported as a list of libraries in which the transcript encoding HUNSP occurs. Abundance and percent abundance are also reported. Abundance directly reflects the number of times a particular transcript is represented in a cDNA library, and percent abundance is abundance divided by the total number of sequences examined in the cDNA library.

V. Extension of HUNSP Encoding Polynucleotides

The nucleic acid sequences of Incyte Clones 2379427 and 2744187 were used to design oligonucleotide primers for extending partial nucleotide sequences to full length. For each nucleic acid sequence, one primer was synthesized to initiate extension of an antisense polynucleotide, and the other was synthesized to initiate extension of a sense polynucleotide. Primers were used to facilitate the extension of the known sequence "outward" generating amplicons containing new unknown nucleotide sequence for the region of interest. The initial primers were designed from the cDNA using OLIGO 4.06 primer analysis software, or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68°C to about 72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

Selected human cDNA libraries (GIBCO BRL) were used to extend the sequence. If more than one extension is necessary or desired, additional sets of primers are designed to further extend the known region.

High fidelity amplification was obtained by following the instructions for the XL-PCR kit (Perkin Elmer) and thoroughly mixing the enzyme and reaction mix. PCR was performed using the PTC-200 thermal cycler (M.J. Research, Watertown, MA), beginning with 40 pmol of each primer and the recommended concentrations of all other components of the kit, with the following parameters:

Step 1	94° C for 1 min (initial denaturation)
Step 2	65° C for 1 min
Step 3	68° C for 6 min
Step 4	94° C for 15 sec
Step 5	65° C for 1 min
Step 6	68° C for 7 min
Step 7	Repeat steps 4 through 6 for an additional 15 cycles
Step 8	94° C for 15 sec
Step 9	65° C for 1 min
Step 10	68° C for 7:15 min
Step 11	Repeat steps 8 through 10 for an additional 12 cycles
Step 12	72° C for 8 min
Step 13	4° C (and holding)

A 5 μ l to 10 μ l aliquot of the reaction mixture was analyzed by electrophoresis on a low concentration (about 0.6% to 0.8%) agarose mini-gel to determine which reactions were successful in extending the sequence. Bands thought to contain the largest products were excised from the gel, purified using the QIAQUICK DNA purification kit (QIAGEN Inc.), and trimmed of overhangs

5 using Klenow enzyme to facilitate religation and cloning.

After ethanol precipitation, the products were redissolved in 13 μ l of ligation buffer, 1 μ l T4-DNA ligase (15 units) and 1 μ l T4 polynucleotide kinase were added, and the mixture was incubated at room temperature for 2 to 3 hours, or overnight at 16° C. Competent *E. coli* cells (in 40 μ l of appropriate media) were transformed with 3 μ l of ligation mixture and cultured in 80 μ l of

10 SOC medium. (See, e.g., Sambrook, *supra*, Appendix A, p. 2.) After incubation for one hour at 37° C, the *E. coli* mixture was plated on Luria Bertani (LB) agar (See, e.g., Sambrook, *supra*, Appendix A, p. 1) containing carbenicillin (2x carb). The following day, several colonies were randomly picked from each plate and cultured in 150 μ l of liquid LB/2x carb medium placed in an individual well of an appropriate commercially-available sterile 96-well microtiter plate. The following day, 5 μ l of each overnight culture was transferred into a non-sterile 96-well plate and, after dilution 1:10 with water, 5 μ l from each sample was transferred into a PCR array.

For PCR amplification, 18 μ l of concentrated PCR reaction mix (3.3x) containing 4 units of rTth DNA polymerase, a vector primer, and one or both of the gene specific primers used for the extension reaction were added to each well. Amplification was performed using the following

20 conditions:

Step 1	94° C for 60 sec
Step 2	94° C for 20 sec
Step 3	55° C for 30 sec
Step 4	72° C for 90 sec
Step 5	Repeat steps 2 through 4 for an additional 29 cycles
Step 6	72° C for 180 sec
Step 7	4° C (and holding)

Aliquots of the PCR reactions were run on agarose gels together with molecular weight markers. The sizes of the PCR products were compared to the original partial cDNAs, and appropriate clones were selected, ligated into plasmid, and sequenced.

In like manner, the nucleotide sequences of SEQ ID NO:2 and SEQ ID NO:4 are used to obtain 5' regulatory sequences using the procedure above, oligonucleotides designed for 5' extension, and an appropriate genomic library.

5 **VI. Labeling and Use of Individual Hybridization Probes**

Hybridization probes derived from SEQ ID NO:2 and SEQ ID NO:4 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as

10 OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 μ Ci of [γ -³²P] adenosine triphosphate (Amersham, Chicago, IL), and T4 polynucleotide kinase (DuPont NEN®, Boston, MA). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Pharmacia & Upjohn, Kalamazoo, MI). An aliquot containing 10^7 counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl II, Eco RI, Pst I, Xba1, or Pvu II (DuPont NEN, Boston, MA).

15 The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (NYTRAN PLUS, Schleicher & Schuell, Durham, NH). Hybridization is carried out
20 for 16 hours at 40°C. To remove nonspecific signals, blots are sequentially washed at room temperature under increasingly stringent conditions up to 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. After XOMAT AR film (Kodak, Rochester, NY) is exposed to the blots to film for several hours, hybridization patterns are compared visually.

25 **VII. Microarrays**

A chemical coupling procedure and an ink jet device can be used to synthesize array elements on the surface of a substrate. (See, e.g., Baldeschweiler, *supra*.) An array analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced by

hand or using available methods and machines and contain any appropriate number of elements. After hybridization, nonhybridized probes are removed and a scanner used to determine the levels and patterns of fluorescence. The degree of complementarity and the relative abundance of each probe which hybridizes to an element on the microarray may be assessed through analysis of the
5 scanned images.

Full-length cDNAs, Expressed Sequence Tags (ESTs), or fragments thereof may comprise the elements of the microarray. Fragments suitable for hybridization can be selected using software well known in the art such as LALSERGENE. Full-length cDNAs, ESTs, or fragments thereof corresponding to one of the nucleotide sequences of the present invention, or selected at random
10 from a cDNA library relevant to the present invention, are arranged on an appropriate substrate, e.g., a glass slide. The cDNA is fixed to the slide using, e.g., UV cross-linking followed by thermal and chemical treatments and subsequent drying. (See, e.g., Schena, M. et al. (1995) *Science* 270:467-470; and Shalon, D. et al. (1996) *Genome Res.* 6:639-645.) Fluorescent probes are prepared and used for hybridization to the elements on the substrate. The substrate is analyzed by
15 procedures described above.

VIII. Complementary Polynucleotides

Sequences complementary to the HUNSP-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring HUNSP. Although use of
20 oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO 4.06 software and the coding sequence of HUNSP. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary
25 oligonucleotide is designed to prevent ribosomal binding to the HUNSP-encoding transcript.

IX. Expression of HUNSP

Expression and purification of HUNSP is achieved using bacterial or virus-based expression systems. For expression of HUNSP in bacteria, cDNA is subcloned into an

appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the *trp-lac* (*tac*) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the *lac* operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts,

5 e.g., BL21(DE3). Antibiotic resistant bacteria express HUNSP upon induction with isopropyl beta-D-thiogalactopyranoside (IPTG). Expression of HUNSP in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant *Autographica californica* nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding HUNSP by either homologous recombination
10 or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription.

Recombinant baculovirus is used to infect *Spodoptera frugiperda* (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E. K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945.)

In most expression systems, HUNSP is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from *Schistosoma japonicum*, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Pharmacia, Piscataway, NJ). Following purification, the GST moiety can be proteolytically cleaved from HUNSP at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak, Rochester, NY). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN Inc, Chatsworth, CA). Methods for protein expression and purification are discussed in Ausubel, F. M. et al. (1995 and periodic supplements) Current Protocols in Molecular Biology, John Wiley & Sons, New York, NY, ch 10, 16. Purified HUNSP obtained by these methods can be used directly in the following activity assay.

X. Demonstration of HUNSP Activity

An assay for HUNSP activity is based upon the ability of gramins to bind Ca^{2+} . Ca^{2+} binding is demonstrated using the Ca^{2+} overlay system. (Weis, K. et al. (1994) J. Biol. Chem. 269:19142-19150.) Purified HUNSP is transferred and immobilized onto a nitrocellulose membrane. The membrane is washed three times with buffer (60 mM KCl, 5 mM MgCl_2 , 10 mM imidazole-HCl, pH 6.8) and incubated in this buffer for 10 minutes with 1 μCi [$^{45}\text{Ca}^{2+}$] (NEN-DuPont, Boston, MA). Unbound [$^{45}\text{Ca}^{2+}$] is removed from the membrane by washing with water, and the membrane is dried. Membrane-bound [$^{45}\text{Ca}^{2+}$] is detected by autoradiography and quantified using image analysis systems and software. HUNSP activity is proportional to the amount of [$^{45}\text{Ca}^{2+}$] detected on the membrane.

XI. Functional Assays

HUNSP function is assessed by expressing the sequences encoding HUNSP at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice include PCMV SPORT (Life Technologies, Gaithersburg, MD) and PCR 3.1 (Invitrogen, Carlsbad, CA, both of which contain the cytomegalovirus promoter. 5-10 μg of recombinant vector are transiently transfected into a human cell line, preferably of endothelial or hematopoietic origin, using either liposome formulations or electroporation. 1-2 μg of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP) (Clontech, Palo Alto, CA), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser optics-based technique, is used to identify transfected cells expressing GFP or CD64-GFP, and to evaluate properties, for example, their apoptotic state. FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA

synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M. G. (1994)

5 Flow Cytometry, Oxford, New York, NY.

The influence of HUNSP on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding HUNSP and either CD64 or CD64-GFP. CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success, NY). mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding HUNSP and other genes of interest can be analyzed by Northern analysis or microarray techniques.

10 , 15 XII. Production of HUNSP Specific Antibodies

HUNSP substantially purified using polyacrylamide gel electrophoresis (PAGE)(see, e.g., Harrington, M.G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.

20 Alternatively, the HUNSP amino acid sequence is analyzed using LASERGENE software (DNASTAR Inc.) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel *supra*, ch. 11.)

Typically, oligopeptides 15 residues in length are synthesized using an Applied Biosystems Peptide Synthesizer Model 431A using fmoc-chemistry and coupled to KLH (Sigma, St. Louis, MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel *supra*.) Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide activity by, for example, binding the peptide to plastic, blocking with 1% BSA, reacting with rabbit antisera,

washing, and reacting with radio-iodinated goat anti-rabbit IgG.

XIII. Purification of Naturally Occurring HUNSP Using Specific Antibodies

Naturally occurring or recombinant HUNSP is substantially purified by immunoaffinity chromatography using antibodies specific for HUNSP. An immunoaffinity column is constructed by covalently coupling anti-HUNSP antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Pharmacia & Upjohn). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.

Media containing HUNSP are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of HUNSP (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/HUNSP binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and HUNSP is collected.

XIV. Identification of Molecules Which Interact with HUNSP

HUNSP, or biologically active fragments thereof, are labeled with ^{125}I Bolton-Hunter reagent. (See, e.g., Bolton et al. (1973) Biochem. J. 133:529.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled HUNSP, washed, and any wells with labeled HUNSP complex are assayed. Data obtained using different concentrations of HUNSP are used to calculate values for the number, affinity, and association of HUNSP with the candidate molecules.

Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

PF-0510 US

2014T20: DNUZ/CDOT

PF-0510 US

2007/04/24 04:42:42

PF-0510 US

2007/04/20 "A440"

PF-0510 US

2007/04/20, 0007/04/20

PF-0510 US

20141001-D040744Z

PF-0510 US

2014T20 - 0402/001