ПОРТФОЛИО К ЛАБОРАТОРНОЙ РАБОТЕ №5

Елкиной Галины, студентки 1 курса 2 группы ИВТ

РЕЗЮМЕ

Данную лабораторную работу представляет студентка 1 курса направления «Информатика и вычислительная техника» Елкина Галина

СПРАВОЧНИК

• Информация об источнике тока

https://vashtehnik.ru/enciklopediya/istochnik-toka.html

- Электрические цепи постоянного тока и методы их расчета http://model.exponenta.ru/electro/0022.htm
- Интересные статьи о новых источниках тока http://www.accumulator.ru/stati/novye tipy istochnikov toka/
- Основные понятия и формулы, связанные с источником тока https://studopedia.ru/16_88476_istochniki-toka.html

ГЛОССАРИЙ

- Источники тока устройства, преобразующие различные виды энергии в электрическую.
- Внутреннее сопротивление источника тока количественная характеристика источника тока, которая определяет величину энергетических потерь при прохождении через источник электрического тока.
- Мощность и КПД источника равен отношению напряжения во внешней цепи к величине ЭДС.
- Электрическая мощность физическая величина, характеризующая скорость передачи или преобразования электрической энергии.
- Электрическое напряжение между точками А и В электрической цепи или электрического поля физическая величина, значение которой равно работе эффективного электрического поля (включающего сторонние поля), совершаемой при переносе единичного пробного электрического заряда из точки А в точку В
- Электрическое сопротивление физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему

ОТЧЕТ

Во время выполнения лабораторной работы мною были использованы материалы лекции, информационные технологии в виде электронных таблиц **Excel**, а также полезная информация из сети **Internet**.

В результате я получила искомые зависимости и визуализацию результатов

ОТЧЕТ

- Для исследования зависимостей я нашла и вычислила необходимые исходные данные
- А также использовались вспомогательные формулы из материалов лекции для дальнейших вычислений

3	4
r	2
l _o	8

U=ε(1-I/I _o)
Pn=UI
η=1-I/I _o

ОТЧЕТ

В лабораторной было несколько задач. Найти:

- зависимость напряжения на нагрузке U от создаваемого источником тока I.
- полной мощности Р от создаваемого источником тока I.
- полезной мощности Рп от создаваемого источником тока I.
- коэффициента полезного действия η от создаваемого источником тока I.

Каждая задача решалась одинаковым способом:

- Построение таблицы значений для вычисления зависимости
- Визуализация результатов в виде графика

ОТЧЕТ по зависимости напряжения от тока

Таблица

1	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1	1,1	1,2
U	4	3,95	3,9	3,85	3,8	3,75	3,7	3,65	3,6	3,55	3,5	3,45	3,4

ОТЧЕТ по зависимости полной мощности от тока

Таблица

1	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1	1,1	1,2
P	0	0,4	0,8	1,2	1,6	2	2,4	2,8	3,2	3,6	4	4,4	4,8

ОТЧЕТ по зависимости полезной мощности от тока

Таблица

- 1	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1	1,1	1,2
Рп	0	0,395	0,78	1,155	1,52	1,875	2,22	2,555	2,88	3,195	3,5	3,795	4,08

ОТЧЕТ по зависимости кпд от тока

Таблица

1	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1	1,1	1,2
η	1	0,9875	0,975	0,9625	0,95	0,9375	0,925	0,9125	0,9	0,8875	0,875	0,8625	0,8

ИТОГ ПО ЛАБОРАТОРНОЙ РАБОТЕ №5

В ходе лабораторной работы я выяснила, какие зависимости от тока в цепи имеются и как их считать. Также визуализировала все результаты, из чего можно сделать такой вывод:

Из графиков видно, что требования получения наибольшей полезной мощности и наибольшего КПД противоречат друг другу: при наибольшей полезной мощности КПД составляет всего 50 %. Чтобы КПД был близок к 1, ток в цепи должен быть мал, но при этом стремится к нулю полезная мощность.

Любую полезную мощность P1, меньшую максимальной, можно получить при двух значениях тока в цепи I1 и I2. На графиках видно, что предпочтительнее получать эту мощность при меньшем значении тока в цепи I1, так как КПД источника при этом выше.

