Duality (1)

Lijun Zhang

zlj@nju. edu. cn

http://cs. nju. edu. cn/zlj

Outline

- □ The Lagrange Dual Function
 - The Lagrange Dual Function
 - Lower Bound on Optimal Value
 - The Lagrange Dual Function and Conjugate Functions
- ☐ The Lagrange Dual Problem
 - Making Dual Constraints Explicit
 - Weak Duality
 - Strong Duality and Slater's Constraint Qualification

Optimization Problems

☐ Standard Form

min
$$f_0(x)$$

s.t. $f_i(x) \le 0$, $i = 1,...,m$ (1)
 $h_i(x) = 0$ $i = 1,...,p$

Domain is nonempty

$$\mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_i \cap \bigcap_{i=1}^{p} \operatorname{dom} h_i$$

- lacksquare Denote the optimal value by p^*
- We do not assume the problem is convex

The Lagrangian

 \square The Lagrangian $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \mapsto \mathbb{R}$

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

- lacksquare dom $L = \mathcal{D} \times \mathbf{R}^m \times \mathbf{R}^p$
- λ_i : the Lagrange multiplier associated with the *i*-th inequality constraint $f_i(x) \leq 0$
- v_i : the Lagrange multiplier associated with the *i*-th equality constraint $h_i(x) = 0$
- Vectors λ and v: dual variables or Lagrange multiplier vectors

The Lagrange Dual Function

 $\square g: \mathbb{R}^m \times \mathbb{R}^p \mapsto \mathbb{R}$

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu)$$

$$= \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

- When L is unbounded below in x, $g = -\infty$
- \blacksquare g is concave
 - \checkmark g is the pointwise infimum of a family of affine functions of (λ, v)
- It is unconstrained

Outline

- □ The Lagrange Dual Function
 - The Lagrange Dual Function
 - Lower Bound on Optimal Value
 - The Lagrange Dual Function and Conjugate Functions
- □ The Lagrange Dual Problem
 - Making Dual Constraints Explicit
 - Weak Duality
 - Strong Duality and Slater's Constraint Qualification

Lower Bounds on p^*

\square For any $\lambda \geq 0$ and any ν

$$g(\lambda, \nu) \le p^*$$

☐ Proof

 \tilde{x} is a feasible point for original problem

$$f_i(\tilde{x}) \leq 0, h_i(\tilde{x}) = 0$$

Since $\lambda \geq 0$ $\sum_{i=1}^{m} \lambda_i f_i(\tilde{x}) + \sum_{i=1}^{p} \nu_i h_i(\tilde{x}) \leq 0$

Therefore

$$L(\tilde{x}, \lambda, \nu) = f_0(\tilde{x}) + \sum_{i=1}^{m} \lambda_i f_i(\tilde{x}) + \sum_{i=1}^{p} \nu_i h_i(\tilde{x}) \le f_0(\tilde{x})$$

NANALITATE UNITED

Lower Bounds on p^*

 \square For any $\lambda \geq 0$ and any ν

$$g(\lambda, \nu) \le p^*$$

- ☐ Proof
 - Hence

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) \le L(\tilde{x}, \lambda, \nu) \le f_0(\tilde{x})$$

- Note that $g(\lambda, \nu) \leq f_0(\tilde{x})$ for any feasible \tilde{x}
- Discussions
 - The lower bound is vacuous, when $g(\lambda, \nu) = -\infty$
 - It is nontrivial only when $\lambda \geq 0$, $(\lambda, \nu) \in \text{dom } g$
 - Dual feasible: (λ, ν) with $\lambda \ge 0$, $(\lambda, \nu) \in \text{dom } g$

- \square A Simple Problem with $x \in \mathbb{R}, m = 1, p = 0$
 - Lower bound from a dual feasible point

- ✓ Solid curve: objective function f_0
- ✓ Dashed curve: constraint function f₁
- ✓ Feasible set: [-0.46, 0.46] (indicated by the two dotted vertical lines)

- \square A Simple Problem with $x \in \mathbb{R}, m = 1, p = 0$
 - Lower bound from a dual feasible point

$$g(\lambda) = \inf_{x \in \mathcal{D}} L(x, \lambda)$$

$$\leq L(x, \lambda) \leq f_0(x)$$

- ✓ Optimal point and value: $x^* = -0.46$, $p^* = 1.54$
- ✓ Dotted curves: $L(x, \lambda)$ for $\lambda = 0.1, 0.2, ..., 1.0$.
 - Each has a minimum value smaller than p^* as on the feasible set (and for $\lambda > 0$), $L(x, \lambda) \le f_0(x)$

\square The dual function g

- Neither f_0 nor f_1 is convex, but the dual function g is concave
- Horizontal dashed line: p^* (the optimal value of the problem)

□ Rewrite (1) as unconstrained problem

min
$$f_0(x) + \sum_{i=1}^m I_-(f_i(x)) + \sum_{i=1}^p I_0(h_i(x))$$
 (2)

■ $I_-: \mathbb{R} \to \mathbb{R}$ is the indicator function for the nonpositive reals

$$I_{-}(u) = \begin{cases} 0 & u \leq 0, \\ \infty & u > 0. \end{cases}$$

 \blacksquare I_0 is the indicator function of $\{0\}$

- ☐ In the formulation (2)
 - $I_{-}(u)$ expresses our displeasure associated with a constraint function value $u = f_i(x)$: zero if $f_i(x) \le 0$, infinite if $f_i(x) > 0$
 - I₀(u) gives our displeasure for an equality constraint value $u = h_i(x)$
 - Our displeasure rises from zero to infinite as $f_i(x)$ transitions from nonpositive to positive

- ☐ In the formulation (2)
 - Suppose we replace $I_{-}(u)$ with linear function $\lambda_{i}u$, where $\lambda_{i} \geq 0$, and $I_{0}(u)$ with $\nu_{i}u$
 - Objective becomes the Lagrangian $L(x,\lambda,\nu)$

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

■ Dual function value $g(\lambda, \nu)$ is optimal value of

min
$$f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$
 (3)

- ☐ In the formulation (3)
 - We replace I_{-} and I_{0} with linear or "soft" displeasure functions
 - For an inequality constraint, our displeasure is zero when $f_i(x) = 0$, and is positive when $f_i(x) > 0$ (assuming $\lambda_i > 0$)
 - In (2), any nonpositive value of $f_i(x)$ is acceptable
 - In (3), we actually derive pleasure from constraints that have margin, i.e., from $f_i(x) < 0$

Interpretation of Lower Bound

The linear function is an underestimator of the indicator function

$$\lambda_i u \le I_-(u)$$

$$\nu_i u \le I_0(u)$$

Lower Bound Property

$$f_{0}(x) + \sum_{i=1}^{m} I_{-}(f_{i}(x)) + \sum_{i=1}^{p} I_{0}(h_{i}(x)) \ge$$

$$L(x, \lambda, \nu) = f_{0}(x) + \sum_{i=1}^{m} \lambda_{i} f_{i}(x) + \sum_{i=1}^{p} \nu_{i} h_{i}(x)$$

■ Least-squares Solution of Linear Equations

$$\begin{array}{ll}
\min & x^{\mathsf{T}} x \\
\text{s. t.} & Ax = b
\end{array}$$

- $A \in \mathbb{R}^{p \times n}$
- No inequality constraints
- \blacksquare p (linear) equality constraints
- Lagrangian

$$L(x,\nu) = x^{\mathsf{T}}x + \nu^{\mathsf{T}}(Ax - b)$$

 \blacksquare Domain: $\mathbf{R}^n \times \mathbf{R}^p$

■ Least-squares Solution of Linear Equations

$$\begin{array}{ll}
\min & x^{\mathsf{T}} x \\
\text{s. t.} & Ax = b
\end{array}$$

Dual Function

$$g(\nu) = \inf_{x} L(x, \nu) = \inf_{x} x^{\mathsf{T}} x + \nu^{\mathsf{T}} (Ax - b)$$

Optimality condition

$$\nabla_{x} L(x, \nu) = 2x + A^{\mathsf{T}} \nu = 0 \Rightarrow x = -(1/2)A^{\mathsf{T}} \nu$$

■ Least-squares Solution of Linear Equations

$$\begin{array}{ll}
\min & x^{\mathsf{T}} x \\
\text{s. t.} & Ax = b
\end{array}$$

Dual Function

$$\Rightarrow g(\nu) = L(-(1/2)A^{\mathsf{T}}\nu, \nu) = -(1/4)\nu^{\mathsf{T}}AA^{\mathsf{T}}\nu - b^{\mathsf{T}}\nu$$

- Concave Function
- Lower Bound Property

$$-(1/4)\nu^{\mathsf{T}}AA^{\mathsf{T}}\nu - b^{\mathsf{T}}\nu \le \inf\{x^{\mathsf{T}}x \mid Ax = b\}$$

■ Standard Form LP

min
$$c^{\mathsf{T}}x$$

s.t. $Ax = b$
 $x \ge 0$

- Inequality constraints: $f_i(x) = -x_i$, i = 1, ..., n
- Lagrangian

$$L(x,\lambda,\nu) = c^{\mathsf{T}}x - \sum_{i=1}^{n} \lambda_i x_i + \nu^{\mathsf{T}} (Ax - b)$$
$$= -b^{\mathsf{T}}\nu + (c + A^{\mathsf{T}}\nu - \lambda)^{\mathsf{T}}x$$

Dual Function

$$g(\lambda, \nu) = \inf_{x} L(x, \lambda, \nu)$$

= $-b^{\mathsf{T}} \nu + \inf_{x} (c + A^{\mathsf{T}} \nu - \lambda)^{\mathsf{T}} x$

■ Standard Form LP

min
$$c^{\mathsf{T}}x$$

s.t. $Ax = b$
 $x \ge 0$

- Inequality constraints: $f_i(x) = -x_i, i = 1, ..., n$
- Dual Function

$$g(\lambda, \nu) = \begin{cases} -b^{\mathsf{T}} \nu & A^{\mathsf{T}} \nu - \lambda + c = 0, \\ -\infty & \text{otherwise.} \end{cases}$$

The lower bound is nontrivial only when λ and ν satisfy $\lambda \geq 0$ and $A^{\mathsf{T}}\nu - \lambda + c = 0$

Outline

- □ The Lagrange Dual Function
 - The Lagrange Dual Function
 - Lower Bound on Optimal Value
 - The Lagrange Dual Function and Conjugate Functions
- ☐ The Lagrange Dual Problem
 - Making Dual Constraints Explicit
 - Weak Duality
 - Strong Duality and Slater's Constraint Qualification

Conjugate Function

 \square $f: \mathbb{R}^n \to \mathbb{R}$. Its conjugate function is

$$f^*(y) = \sup_{x \in \text{dom } f} (y^\mathsf{T} x - f(x))$$

- f^* is always convex $f^{(x)}$

The Lagrange Dual Function and Conjugate Functions

□ A Simple Example

$$min f(x) \\
s. t. x = 0$$

□ Lagrangian

$$L(x, \nu) = f(x) + \nu^{\mathsf{T}} x$$

Dual Function

$$g(\nu) = \inf_{x} (f(x) + \nu^{T} x)$$

= $-\sup_{x} ((-\nu)^{T} x - f(x)) = -f^{*}(-\nu)$

The Lagrange Dual Function and Conjugate Functions

□ A More General Example

min
$$f_0(x)$$

s. t. $Ax \le b$
 $Cx = d$

Lagrangian

$$L(x,\lambda,\nu) = f_0(x) + \lambda^{\mathsf{T}}(Ax - b) + \nu^{\mathsf{T}}(Cx - d)$$

Dual Function

$$g(\lambda, \nu) = \inf_{\mathcal{X}} \left(f_0(x) + \lambda^{\mathsf{T}} (Ax - b) + \nu^{\mathsf{T}} (Cx - d) \right)$$
$$= -b^{\mathsf{T}} \lambda - d^{\mathsf{T}} \nu + \inf_{\mathcal{X}} \left(f_0(x) + (A^{\mathsf{T}} \lambda + C^{\mathsf{T}} \nu)^{\mathsf{T}} x \right)$$
$$= -b^{\mathsf{T}} \lambda - d^{\mathsf{T}} \nu - f_0^* (-A^{\mathsf{T}} \lambda - C^{\mathsf{T}} \nu)$$

The Lagrange Dual Function and Conjugate Functions

□ A More General Example

min
$$f_0(x)$$

s. t. $Ax \le b$
 $Cx = d$

Lagrangian

$$L(x,\lambda,\nu) = f_0(x) + \lambda^{\mathsf{T}}(Ax - b) + \nu^{\mathsf{T}}(Cx - d)$$

Dual Function

$$g(\lambda, \nu) = -b^{\mathsf{T}}\lambda - d^{\mathsf{T}}\nu - f_0^*(-A^{\mathsf{T}}\lambda - C^{\mathsf{T}}\nu)$$

 $dom g = \{(\lambda, \nu) \mid -A^{\mathsf{T}}\lambda - C^{\mathsf{T}}\nu \in \text{dom } f_0^* \}$

Equality Constrained Norm Minimization

min
$$||x||$$

s. t. $Ax = b$

 \square Conjugate of $f_0 = \|\cdot\|$

$$f_0^*(y) = \begin{cases} 0 & ||y||_* \le 1, \\ \infty & \text{otherwise.} \end{cases}$$

The Dual Function

$$g(\nu) = -b^{\mathsf{T}}\nu - f_0^*(-A^{\mathsf{T}}\nu) = \begin{cases} -b^{\mathsf{T}}\nu & \|A^{\mathsf{T}}\nu\|_* \le 1, \\ -\infty & \text{otherwise.} \end{cases}$$

Entropy Maximization

min
$$f_0(x) = \sum_{i=1}^n x_i \log x_i$$

s.t. $Ax \le b$
 $\mathbf{1}^T x = 1$

 \square Conjugate of f_0

$$f_0^*(y) = \sum_{i=1}^n e^{y_i - 1}$$

■ The Dual Function

$$g(\lambda, \nu) = -b^{\mathsf{T}}\lambda - \nu - f_0^*(-A^{\mathsf{T}}\lambda - \nu\mathbf{1})$$

$$= -b^{\mathsf{T}}\lambda - \nu - \sum_{i=1}^n e^{-a_i^{\mathsf{T}}\lambda - \nu - 1}$$

$$= -b^{\mathsf{T}}\lambda - \nu - e^{-\nu - 1}\sum_{i=1}^n e^{-a_i^{\mathsf{T}}\lambda}$$

Outline

- The Lagrange Dual Function
 - The Lagrange Dual Function
 - Lower Bound on Optimal Value
 - The Lagrange Dual Function and Conjugate Functions
- ☐ The Lagrange Dual Problem
 - Making Dual Constraints Explicit
 - Weak Duality
 - Strong Duality and Slater's Constraint Qualification

The Lagrange Dual Problem

 \square For any $\lambda \geq 0$ and any ν

$$g(\lambda, \nu) \le p^*$$

- What is the best lower bound?
- □ Lagrange Dual Problem

max
$$g(\lambda, \nu)$$
 s. t. $\lambda \ge 0$

□ Primal Problem

min
$$f_0(x)$$

s.t. $f_i(x) \le 0$, $i = 1,..., m$ (1)
 $h_i(x) = 0$ $i = 1,..., p$

The Lagrange Dual Problem

 \square For any $\lambda \geq 0$ and any ν

$$g(\lambda, \nu) \le p^*$$

- What is the best lower bound?
- □ Lagrange Dual Problem

max
$$g(\lambda, \nu)$$

s. t. $\lambda \ge 0$

- Dual feasible: (λ, ν) with $\lambda \ge 0, g(\lambda, \nu) > -\infty$
- Dual optimal or optimal Lagrange multipliers: (λ^*, ν^*)
- A convex optimization problem

Outline

- □ The Lagrange Dual Function
 - The Lagrange Dual Function
 - Lower Bound on Optimal Value
 - The Lagrange Dual Function and Conjugate Functions
- ☐ The Lagrange Dual Problem
 - Making Dual Constraints Explicit
 - Weak Duality
 - Strong Duality and Slater's Constraint Qualification

Making Dual Constraints Explicit

Motivation

- The dom $g = \{(\lambda, \nu) \mid g(\lambda, \nu) > -\infty\}$ may have dimension $\leq m + p$
- Identify the equality constraints that are 'hidden' or 'implicit' in g

□ Standard Form LP

min
$$c^{\mathsf{T}}x$$

s. t. $Ax = b$
 $x \ge 0$

$$g(\lambda, \nu) = \begin{cases} -b^{\mathsf{T}} \nu & A^{\mathsf{T}} \nu - \lambda + c = 0, \\ -\infty & \text{otherwise.} \end{cases}$$

ALISH DATE

Example

□ Lagrange Dual of Standard Form LP

Lagrange Dual Problem

$$\max \quad g(\lambda, \nu) = \begin{cases} -b^{\mathsf{T}} \nu \ A^{\mathsf{T}} \nu - \lambda + c = 0, \\ -\infty \qquad \text{otherwise.} \end{cases}$$

s.t. $\lambda \geqslant 0$

An Equivalent Problem

$$\max -b^{\mathsf{T}} \nu$$
s. t.
$$A^{\mathsf{T}} \nu - \lambda + c = 0$$

$$\lambda \geqslant 0$$

✓ Make equality constraints explicit

ALISH DATE

Example

□ Lagrange Dual of Standard Form LP

Lagrange Dual Problem

$$\max \quad g(\lambda, \nu) = \begin{cases} -b^{\mathsf{T}} \nu \ A^{\mathsf{T}} \nu - \lambda + c = 0, \\ -\infty \qquad \text{otherwise.} \end{cases}$$

s. t. $\lambda \geqslant 0$

Another Equivalent Problem

max
$$-b^{\mathsf{T}}\nu$$

s.t. $A^{\mathsf{T}}\nu + c \ge 0$

✓ An LP in inequality form

Standard Form LP

Inequality Form LP

■ Lagrange Dual of Inequality Form LP

■ Inequality form LP (Primal Problem)

min
$$c^{\mathsf{T}}x$$

s.t. $Ax \leq b$

Lagrangian

$$L(x,\lambda) = c^{\mathsf{T}}x + \lambda^{\mathsf{T}}(Ax - b) = -b^{\mathsf{T}}\lambda + (A^{\mathsf{T}}\lambda + c)^{\mathsf{T}}x$$

Lagrange dual function

$$g(\lambda) = \inf_{x} L(x, \lambda) = -b^{\mathsf{T}} \lambda + \inf_{x} (A^{\mathsf{T}} \lambda + c)^{\mathsf{T}} x$$
$$= \begin{cases} -b^{\mathsf{T}} \lambda & A^{\mathsf{T}} \lambda + c = 0, \\ -\infty & \text{otherwise.} \end{cases}$$

■ Lagrange Dual of Inequality Form LP

■ Inequality form LP (Primal Problem)

min
$$c^{\mathsf{T}}x$$

s. t. $Ax \leq b$

Lagrange Dual Problem

$$\max \quad g(\lambda) = \begin{cases} -b^{\mathsf{T}}\lambda & A^{\mathsf{T}}\lambda + c = 0, \\ -\infty & \text{otherwise.} \end{cases}$$
s. t. $\lambda \geq 0$

An Equivalent Problem

$$\max -b^{\mathsf{T}}\lambda$$

s. t. $A^{\mathsf{T}}\lambda + c = 0$
 $\lambda \ge 0$

ALISH DAILY

Example

□ Lagrange Dual of Inequality Form LP

■ Inequality form LP (Primal Problem)

min
$$c^{\mathsf{T}}x$$

s. t. $Ax \leq b$

An Equivalent Problem

$$\max -b^{\mathsf{T}} \lambda$$

s. t. $A^{\mathsf{T}} \lambda + c = 0$
 $\lambda \ge 0$

An LP in standard form

Inequality Form LP

Standard Form LP

Outline

- □ The Lagrange Dual Function
 - The Lagrange Dual Function
 - Lower Bound on Optimal Value
 - The Lagrange Dual Function and Conjugate Functions
- ☐ The Lagrange Dual Problem
 - Making Dual Constraints Explicit
 - Weak Duality
 - Strong Duality and Slater's Constraint Qualification

ALISH DATE

Weak Duality

 \square For any $\lambda \geq 0$ and any ν

$$g(\lambda, \nu) \le p^*$$

- What is the best lower bound?
- □ Lagrange Dual Problem

max
$$g(\lambda, \nu)$$
 s. t. $\lambda \ge 0$

- \blacksquare Optimal value d^*
- Weak Duality

$$d^* \leq p^*$$

Does not rely on convexity!

Weak Duality

Weak Duality

$$d^* \leq p^*$$

- If the primal problem is unbounded below, i.e., $p^* = -\infty$, we must have $d^* = -\infty$, i.e., the Lagrange dual problem is infeasible
- If $d^* = \infty$, we must have $p^* = \infty$
- Optimal duality gap

$$p^* - d^*$$

Nonegative

Outline

- □ The Lagrange Dual Function
 - The Lagrange Dual Function
 - Lower Bound on Optimal Value
 - The Lagrange Dual Function and Conjugate Functions
- ☐ The Lagrange Dual Problem
 - Making Dual Constraints Explicit
 - Weak Duality
 - Strong Duality and Slater's Constraint Qualification

Strong Duality

□ Strong Duality

$$d^* = p^*$$

- The optimal duality gap is zero
- The best bound that can be obtained from the Lagrange dual function is tight
- In general, does not hold

□ Usually hold for convex optimization

min
$$f_0(x)$$

s.t. $f_i(x) \le 0$, $i = 1,..., m$
 $Ax = b$

 \blacksquare f_0, \dots, f_m are convex

Slater's Constraint Qualification

- Constraint Qualifications
 - Sufficient conditions for strong duality
- Slater's condition
 - $\exists x \in \text{relint } \mathcal{D} \text{ such that }$

$$f_i(x) < 0, \qquad i = 1, ..., m, \qquad Ax = b$$

- Such a point x is called strictly feasible
- ☐ If Slater's condition holds and the problem is convex
 - Strong duality holds
 - Dual optimal value is attained when $d^* > -\infty$

Slater's Constraint Qualification

- Constraint Qualifications
 - Sufficient conditions for strong duality
- □ Slater's condition (weaker form)
 - If the first k constraint functions are affine
 - $\exists x \in \text{relint } \mathcal{D} \text{ such that }$

$$f_i(x) \le 0, \quad i = 1, ..., k$$

 $f_i(x) < 0, \quad i = k + 1, ..., m$
 $Ax = b$

- When constraints are all linear equalities and inequalities, and dom f_0 is open
 - Reduce to feasibility

ALISH DALLY

Example

■ Least-squares Solution of Linear Equations

$$\begin{array}{ll}
\min & x^{\mathsf{T}} x \\
\text{s. t.} & Ax = b
\end{array}$$

■ Dual Problem

$$\max -(1/4)v^{\mathsf{T}}AA^{\mathsf{T}}v - b^{\mathsf{T}}v$$

- Slater's condition
 - The primal problem is feasible, i.e., $b \in \mathcal{R}(A)$
- ☐ Strong duality always holds
 - Even when $b \notin \mathcal{R}(A)$, $d^* = p^* = \infty$

□ Lagrange dual of LP

- ☐ Strong duality holds for any LP
 - If the primal problem is feasible or the dual problem is feasible
- Strong duality may fail
 - If both the primal and dual problems are infeasible

□ QCQP (Primal Problem)

min
$$(1/2)x^{\mathsf{T}}P_0x + q_0^{\mathsf{T}}x + r_0$$

s.t. $(1/2)x^{\mathsf{T}}P_ix + q_i^{\mathsf{T}}x + r_i \le 0$, $i = 1, ..., m$

 $P_0 \in \mathbb{S}_{++}^n \text{ and } P_i \in \mathbb{S}_{+}^n, i = 1, ..., m$

■ Dual Problem

max
$$-(1/2)q(\lambda)^{\mathsf{T}}P(\lambda)^{-1}q(\lambda) + r(\lambda)$$

s.t. $\lambda \ge 0$

- $P(\lambda) = P_0 + \sum_{i=1}^m \lambda_i P_i, q(\lambda) = q_0 + \sum_{i=1}^m \lambda_i q_i$

■ Slater's condition

$$\exists x , (1/2)x^{\mathsf{T}}P_ix + q_i^{\mathsf{T}}x + r_i < 0, i = 1, ..., m$$

□ A Nonconvex Quadratic Problem (Primal Problem)

$$\min \quad x^{\mathsf{T}} A x + 2b^{\mathsf{T}} x$$

s. t.
$$x^{\mathsf{T}} x \le 1$$

- $A \in \mathbf{S}^n$, $A \not \geq 0$ and $b \in \mathbf{R}^n$
- Lagrangian

$$L(x,\lambda) = x^{\mathsf{T}}Ax + 2b^{\mathsf{T}}x + \lambda(x^{\mathsf{T}}x - 1)$$
$$= x^{\mathsf{T}}(A + \lambda I)x + 2b^{\mathsf{T}}x - \lambda$$

Dual Function

$$g(\lambda) = \begin{cases} -b^{\mathsf{T}} (A + \lambda I)^{\dagger} b - \lambda & A + \lambda I \ge 0, b \in \mathcal{R}(A + \lambda I) \\ -\infty & \text{otherwise} \end{cases}$$

□ A Nonconvex Quadratic Problem (Primal Problem)

$$\min \quad x^{\mathsf{T}} A x + 2b^{\mathsf{T}} x$$

s.t. $x^{\mathsf{T}} x \le 1$

- $A \in \mathbf{S}^n$, $A \not\ge 0$ and $b \in \mathbf{R}^n$
- Dual Problem

max
$$-b^{\top}(A + \lambda I)^{\dagger}b - \lambda$$

s.t. $A + \lambda I \ge 0, b \in \mathcal{R}(A + \lambda I)$

A convex optimization problem

□ A Nonconvex Quadratic Problem (Primal Problem)

$$\min \quad x^{\mathsf{T}} A x + 2b^{\mathsf{T}} x$$

s. t.
$$x^{\mathsf{T}} x \le 1$$

 $A \in \mathbf{S}^n$, $A \not \geq 0$ and $b \in \mathbf{R}^n$

Strong duality holds

■ Dual Problem

$$\max -\sum_{i=1}^{n} (q_i^{\mathsf{T}} b)^2 / (\lambda_i + \lambda) - \lambda$$

s.t. $\lambda \ge -\lambda_{\min}(A)$

- A convex optimization problem
- λ_i and q_i : eigenvalues and corresponding (orthonormal) eigenvectors of A

A Nonconvex Quadratic Problem

(Primal Problem)

$$\min \quad x^{\mathsf{T}} A x + 2b^{\mathsf{T}} x$$

s. t. $x^{\mathsf{T}} x \le 1$

 $A \in \mathbf{S}^n$, $A \not \geq 0$ and $b \in \mathbf{R}^n$

Strong duality holds for any optimization problem with quadratic objective and one quadratic inequality constraint, provided Slater's condition holds

■ Dual Problem

$$\max -\sum_{i=1}^{n} (q_i^{\mathsf{T}} b)^2 / (\lambda_i + \lambda) - \lambda$$

s.t. $\lambda \ge -\lambda_{\min}(A)$

- A convex optimization problem
- lacksquare λ_i and q_i : eigenvalues and corresponding (orthonormal) eigenvectors of A

Summary

- □ The Lagrange Dual Function
 - The Lagrange Dual Function
 - Lower Bound on Optimal Value
 - The Lagrange Dual Function and Conjugate Functions
- □ The Lagrange Dual Problem
 - Making Dual Constraints Explicit
 - Weak Duality
 - Strong Duality and Slater's Constraint Qualification