Distributed by:

www.Jameco.com + 1-800-831-4242

The content and copyrights of the attached material are the property of its owner.

Data sheet acquired from Harris Semiconductor SCHS052

CD4067B, CD4097B Types

CMOS Analog Multiplexers/Demultiplexers

High-Voltage Types (20-Volt Rating)

CD4067B - Single 16-Channel

Multiplexer/Demultiplexer

CD4097B - Differential 8-Channel Multiplexer/Demultiplexer

■ CD4067B and CD4097B CMOS

analog multiplexers/demultiplexers* are digitally controlled analog switches having low ON impedance, low OFF leakage current, and internal address decoding. In addition, the ON resistance is relatively constant over the full input-signal range.

The CD4067B is a 16-channel multiplexer with four binary control inputs, A,B,C,D, and an inhibit input, arranged so that any combination of the inputs selects one switch.

The CD4097B is a differential 8-channel multiplexer having three binary control inputs A, B, C, and an inhibit input. The inputs permit selection of one of eight pairs of switches.

A logic "1" present at the inhibit input turns all channels off.

The CD4067 and CD4097 are supplied in 24-lead dual-in-line welded-seal ceramic packages (D suffix), 24-lead dual-in-line frit-seal ceramic packages (F suffix), 24-lead dual-in-line plastic packages (E suffix), and in chip form (H suffix).

*When these devices are used as demultiplexers, the channel in/out terminals are the outputs and the common out/in terminals are the inputs.

Recommended Operating Conditions at T_A = 25°C (Unless Otherwise Specified)

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges. Values shown apply to all types except as

motou.			
Characteristic	Min.	Max.	Units
Supply-Voltage Range (T _A =Full Package- Temp. Range)	3	18	٧
Multiplexer Switch Input Current Capability	1 -	25	mΑ
Output Load Resistance	100		$\cdot \Omega$

NOTE:

In certain applications, the external load-resistor current may include both V_{DD} and signal-line components. To avoid drawing V_{DD} current when switch current flows into the transmission gate inputs, the voltage drop across the bidirectional switch must not exceed 0.8 volt (calculated from RON values shown in ELECTRICAL CHARACTERISTICS CHART). No V_{DD} current will flow through R_{L} if the switch current flows into terminal 1 on the CD4067; terminals 1 and 17 on the CD4097.

Features:

- Low ON resistance: 125 Ω (typ.) over 15
 V_{p-p} signal-input range for V_{DD}-V_{SS}=15 V
- High OFF resistance: channel leakage of ±10 pA (typ.) @ VDD-VSS=10 V
- Matched switch characteristics: R_{ON}=5 Ω (typ.) for V_{DD}-V_{SS}=15 V
- Very low quiescent power dissipation under all digital-control input and supply conditions:
 0.2 μW (typ.) @ Vpp-Vss=10 V
- Binary address decoding on chip
- 5-V, 10-V, and 15-V parametric ratings
- 100% tested for quiescent current at 20 V
- Standardized symmetrical output characteristics
- Maximum input current of 1 μA at 18 V over full package temperature range; 100 nA at 18 V and 25°C
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications:

- Analog and digital multiplexing and demultiplexing
- A/D and D/A conversion
- Signal gating

VDD=24 VSS=12 92CS-24924F

Fig. 1 - CD4067 functional diagram.

CD4067 TRUTH TABLE

$\overline{}$					
A	В	С	D	Inh	Selected Channel
х	Х	х	х	1	None
0	0	0	0	0	0
1	0	0	0	.0.	1 .
0	1 ,	0	0	0	2
1	1	0	0	0	3
0	0	1	0	0	4 -
1	0	1	0	0	5
0	1	1	0	0	6
1	1	1	0	0	7
0	0	0	1	0	8
1 1	0	0	1	0	9
0	1	0	1	0	10
1	1	0	1	0	11
0	0	1	1	0	12
1	0	1	1	0	13
0	1	1	1	0	14
1	1	1	1	0	15

Fig. 2-CD4097 functional diagram.

CD4097 TRUTH TABLE

A	В	С	Inh	Selected Channel
х	Х	Х	1	None
0	0	0	0	0X, 0Y
1 1	0	0	0	1X, 1Y
0	1	0	0	2X, 2Y
1	1	0	0	3X, 3Y
0	0	1	0	4X, 4Y
1	0	1	0	5X, 5Y
0	1	1	0	6X, 6Y
1	1	1	0	7X, 7Y

ELECTRICAL CHARACTERISTICS

CHARAC- TERISTIC	(CONDITIONS	LIMI	LIMITS AT INDICATED TEMPERATURES (°C)						Units	
	Vis	٧ss	V_{DD}	-55	-40	+85	+125		+25		1
	(V)	(V)	(V)				L	Min.	Тур.	Max.]
SIGNAL INF	UTS (Vis) AND OUT	PUTS (Vos)							
Quiescent			5	5	5	150	150		0.04	5	
Device Cur-			10	10	10	300	300	-	0.04	10	_μΔ
rent, I _{DD} Max,			15	20	20	600	600	- '	0.04	20] `
			20	100	100	3000	3000		0.08	100	
ON-state Re		2 315									
sistance Vcc≤		o	5	800	850	1200	1300		470	1050	
V _{SS} ≤ V _{is} ≤V _{DD}		0	10	310	330	520	550	-	180	400	1.3
ron Max.		0	15	200	210	300	320	 -	125	240	, Ω
Change in			15_	200	210	300	320	-	125	240	- *-
on-state						ļ					١.
Resistance]
(Between	i	_									
Any Two Channels)		0	5						15	<u> </u>	l
Δr _{on}		0	10						. 10		Ω
OFF Chan-	,	0	15		<u> </u>		<u> </u>		5		<u> </u>
nel Leak- age Cur- rent: Any Channel OFF Max. or All Chan- nels OFF		0	18	±1	00*	±100	0*	_	±0.1	±100*	nA
(Common OUT/IN) <u>Max.</u> Capacitance: Input, C _{is}				_	_		_	_	5	_	
Output,										 	l
C _{os} CD4067 CD4097		- 5	5		-		-		55 35		рF
Feed-											1
through, C _{ios}				-	-		_	-	0.2		
Propaga- tion Delay	,,	R _L = 200 KΩ	5	_	_	_	_	_	30	60	
Time (Sig-	V _{DD}	C _L =50 pF	10	_			-	_	15	30	ns
nal Input to Output	7	t _r ,t _f =20 ns	15	_	_	-	-	-	10	20	
CONTROL	(ADD	RESS or INHIB	T) V _C	:			1,5		Pi		
Input Low	ļ	R _L =1 KΩ	5	·	1.5	;	• ,	<u> </u>	—	1.5	$\overline{\Box}$
Voltage,	ł	to V _{SS}	10	— —	3		-	_	 	3	1
V _{IL} Max.	=VDD	I _{‡S} <2 μA		 					 		1
	thru	on all OFF	15	—	4			-		4	V
Input High	1 KΩ	Channels	5		3.5			3.5	<u> </u>	-	
Voltage, V _{IH} Min.		W 1 4	10	7'				7	-]
· IH mina	I i	ı	15	1	11			11	<u> </u>	-	1

^{*} Determined by minimum feasible leakage measurement for automatic testing.

Fig. 3—Typical ON resistance vs. input signal voltage (all types).

Fig. 4—Typical ON resistance vs. input signal voltage (all types).

Fig. 5—Typical ON resistance vs. input signal voltage (all types).

Fig. 6—Typical ON resistance vs. input signal voltage (all types).

ELECTRICAL CHARACTERISTICS (Cont'd)

CHARAC- TERISTIC	CONDITIONS			LIMITS AT INDICATED TEMPERATURES (°C)					Units		
	Vis	VSS	V _{DD}	-55	-40	+85	+125		+25		
	(V)	(V)	(V)					Min.	Тур.	Max.	
Input Current, I _{IN} Max.	V _{IN} =	0, 18 V	18	±0.1	±0.1	±1	±1		±10 ⁻⁵	±0.1	μΑ
Propagation Delay Time: Address or		KΩ,C _L = c _r ,t _f =20 ns									
Inhibit-to-		0	5	_ !			_		325	650	
Signal OUT (Channel		0	10		~	_		_	135	270	ns
turning ON)		0	15	_	_	_	-		95	190	1
Address or Inhibit-to-) Ω,C _L = t _r ,t _f =20 ns									
Signal OUT		0	5	1 - 1	_	→ ,	_		220	440	
(Channel		0	10	-	_			_	90	180	ns
turning OFF)		0	15	-		_	_	_	65	130	
Input Capaci- tance, C _{IN}	Any Ao Inhibit	ddress or Input				_	_	-	5	7.5	pF

TEST CIRCUITS

Fig. 7-OFF channel leakage current-any channel OFF.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE RANGE, (VDD)
Voltages referenced to V _{SS} Terminal)0.5V to +20V
INPUT VOLTAGE RANGE, ALL INPUTS0.5V to V _{DD} +0.5V
DC INPUT CURRENT, ANY ONE INPUT
POWER DISSIPATION PER PACKAGE (PD):
For T _A = -55°C to +100°C 500mW
For T _A = +100°C to +125°C
DEVICE DISSIPATION PER OUTPUT TRANSISTOR
FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)
OPERATING-TEMPERATURE RANGE (TA)55°C to +125°C
STORAGE TEMPERATURE RANGE (Tstg)65°C to +150°C
LEAD TEMPERATURE (DURING SOLDERING):
At distance 1/16 ± 1/32 inch (1.59 ± 0.79mm) from case for 10s max+265°C

Fig. 8—Input voltage—measure \leq 2 μ A on all OFF channels (e.g., channel 12).

Fig. 9-OFF channel leakage current-all channels OFF.

9205-27335

ELECTRICAL CHARACTERISTICS (Cont'd)

			TE	ST COND	ITIONS	-	· · · · · ·		
CHARAC- TERISTIC	V _{is} (V)	V _{DD} (V)	R _L (ΚΩ)				TYPICAL VALUES	UNITS	
Cutoff	5 [•]	10	1						
(-3-dB) Frequency		.,		V at Co	mmon OUT/IN	CD4067	14		
Channel ON	20 100	V _{os}	3 dB			CD4097	20	MHz	
(Sine Wave Input)	20 109	$\frac{V_{os}}{V_{is}} = -3$	3 00	V _{os} at An	y Channel	60	IVITIZ		
Total	2.	5					0.3		
Harmonic	3 •	10	10				0.2		
Distortion, THD	5 [•]	15					0.12	%	
	f _{is} = 1 k'Hz sine wave							, i	
-40-dB	5 •	10	1						
Feedthrough	$20 \log \frac{V_{os}}{V_{is}} = -40 \text{ dB}$			V _{os} at Common OUT/IN CD4097 V _{os} at Any Channel			20		
Frequency (All Channels							12	MHz	
OFF							8		
	5 [•]	10	1						
Signal Cross-				Between A	Any 2 Channels		1		
talk (Fre-	l *os		10 4B	Between Measured on Common			10	1	
quency at -40 dB)	20 log	Vis	Ю ССВ	Sections CD4097 Measured on Any Only Channel			18	MHz	
		10	10*						
Address-or-), t _r ,t _f =2							
Inhibit-to- Signal		DD-VS		,			75	mV (Peak)	
Crosstalk	oquar	re Wave)						(reak)	

- Worst case.
- * Both ends of channel.

Fig. 11 — Turn-on and turn-off propagation delay—address select input to signal output (e.g. measured on channel 0).

TEST CIRCUITS (Cont'd)

Fig. 10-Quiescent device current.

Fig. 12—Turn-on and turn-off propagation delay inhibit input to signal output (e.g. measured on channel 1).

Fig. 13- Channel ON resistance measurement circuit.

Fig. 14— Propagation de/ay waveform channel being turned ON (R_L = 10 K Ω , C_L = 50 pF).

Fig. 15— Propagation delay waveform, channel being turned OFF (R_L = 300 Ω , C_L = 50 pF).

Fig. 16-CD4067 logic diagram.

Fig. 17-CD4097 logic diagram.

Fig. 18-24-to-1 MUX Addressing

SPECIAL CONSIDERATIONS

In applications where separate power sources are used to drive V_{DD} and the signal inputs, the V_{DD} current capability should exceed V_{DD}/R_L (R_L=effective external load). This provision avoids permanent current flow or clamp action on the V_{DD} supply when power is applied or removed from the CD4067B or CD4097B.

When switching from one address to another, some of the ON periods of the channels of the multiplexers will overlap momentarily, which may be objectionable in certain applications. Also when a channel is turned on or off by an address input, there is a momentary conductive path from the channel to VSS, which will dump some charge from any capacitor connected to the input or output of the channel. The inhibit input turning on a channel will similarly dump some charge to VSS.

The amount of charge dumped is mostly a function of the signal level above VSS. Typically, at VDD-VSS=10 V, a 100-pF

capacitor connected to the input or output of the channel will lose 3-4% of its voltage at the moment the channel turns on or off. This loss of voltage is essentially independent of the address or inhibit signal transition time, if the transition time is less than 1-2 μ s. When the inhibit signal turns a channel off, there is no charge dumping to VSS. Rather, there is a slight rise in the channel voltage level (65 mV typ.) due to capacitive coupling from inhibit input to channel input or output. Address inputs also couple some voltage steps onto the channel signal levels.

In certain applications, the external load-resistor current may include both VDD and signal-line components. To avoid drawing VDD current when switch current flows into the transmission gate inputs, the voltage drop across the bidirectional switch must not exceed 0.8 volt (calculated from RON values shown in ELECTRICAL CHARACTERISTICS CHART). No VDD current will flow through RL if the switch current flows into terminal 1 on the CD4067B, terminals 1 and 17 on the CD4097B.

Dimensions and pad layout for CD4067BH.

Dimensions and pad layout for CD40978H.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch) .

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated