18.701: Problem Set 4

Dmitry Kaysin

April 2020

Problem 1

a) Let x(t) and y(t) be quadratic polynomials with real coefficients. Prove that image of the path (x(t), y(t)) is contained in a conic, i.e., that there is a real quadratic polynomial f(x, y) such that f(x(t), y(t)) is identically zero.

Proof. Let

$$x(t) = a_1 t^2 + b_1 t + c_1,$$

and

$$y(t) = a_2 t^2 + b_2 t + c_2.$$

Then

$$a_2x(t) - a_1y(t) = a_2a_1t^2 + a_2b_1t + a_2c_1 - a_1a_2t^2 - a_1b_2t - a_1c_2$$

$$= a_2b_1t + a_2c_1 - a_1b_2t - a_1c_2$$

$$= t(a_2b_1 - a_1b_2) + a_2c_1 - a_1c_2.$$

If $a_2b_1 - a_1b_2 = 0$, then x can be expressed as a multiple of y plus some constant, i.e. there exists a linear function l such that x(t) = l(y(t)). In such case, linear polynomial in two variables f(x,y) = -x + l(y) is identically zero, as requested.

If $a_2b_1 - a_1b_2 \neq 0$, then:

$$t = \frac{a_2 x(t) - a_1 y(t)}{a_2 c_1 - a_1 c_2}.$$

Substituting t to the original expression for either x(t) or y(t) we will arrive at a quadratic polynomial equation in x(t) and y(t):

$$p(x(t), y(t)) = 0$$

This expression is true for all t, thus polynomial p is identically zero, as requested.

b) Let $x(t) = t^2 - 1$ and $y(t) = t^3 - 1$. Find a nonzero real polynomial f(x,y) such that f(x(t),y(t)) is identically zero. Sketch the locus $\{f(x,y)=0\}$ and the path (x(t),y(t)) in \mathbb{R}^2 .

We notice that for $x(t) = t^2 - 1$ and $y(t) = t^3 - 1$, polynomial p(x,y) = $(x+1)^3 - (y+1)^2$ is identically zero. Expanding p we have:

$$p(x,y) = (x+1)^3 - (y+1)^2$$

= $x^3 + 3x^2 - y^2 + 3x - 2y$.

By plotting locus $\{f(x,y)=0\}$ and path (x(t),y(t)), we confirm that they coincide.

(b) Path (x(t), y(t))

c) Prove that every pair x(t), y(t) of real polynomials satisfies some real polynomial relation f(x,y) = 0.

Proof. Fix polynomials x(t) and y(t). Denote n the higher of the degrees of x(t) and y(t). Consider W_k , vector space of polynomials in two variables of degree at most k. Monomials of degrees $0, 1, \ldots, k$ form a basis for the vector space of polynomials of degree at most k. For a polynomial in two variables, there exist p+1 different monomials of degree p (for example, for p=3 possible monomials are: x^3, x^2y, xy^2, y^3). Thus, the total number of possible monomials for a polynomial in two variables of degree k is

$$\frac{(k+1)(k+2)}{2}.$$

This is also the dimension of W_k .

For every polynomial $f(x,y) \in W_k$ we can substitute x(t) and y(t) into f(x,y), simplify and arrive at a polynomial in one variable of degree at most nk, which is an element of vector space V_{nk} of dimension nk + 1. By doing so, for a given x(t) and y(t), we have defined a map $\varphi_{xy}: W_k \to V_{nk}$.

We notice that φ is a linear map. Indeed, consider two polynomials $f, g \in W_k$:

$$\varphi(f+g) = f(x,y) + g(x,y) = \varphi(f) + \varphi(g),$$

$$\varphi(cf) = cf(x,y) = c\varphi(f).$$

We notice that for sufficiently large values of k:

$$\frac{(k+1)(k+2)}{2} > nk,$$

$$\dim W_k > \dim V_{nk}.$$

Therefore, by rank-nullity theorem, dim ker $\varphi_{xy} > 0$ and ker $\varphi_{xy} \neq \{0\}$. Thus, there exists non-zero polynomial $f \in W_k$ such that $\varphi_{xy}(f) = f(x(t), y(t)) = 0$.

Problem 2

Prove that every $m \times n$ matrix A of rank 1 has the form $A = XY^t$, where X, Y, are m- and n-dimensional column vectors. How uniquely determined are these vectors.

Proof. Dimension of the column-space of matrix A of rank 1 is 1, i.e. it is a line. Therefore, any one of column vectors of A is the basis of column-space of A. Choose one column-vector B_i , then all other column vectors of A are multiples of B_i :

$$A = \begin{bmatrix} | & | & | & | & | \\ c_1 B_i & c_2 B_i & \cdots & B_i & \cdots & c_n B_i \\ | & | & | & | & | \end{bmatrix}$$

This is equivalent to:

$$A = B_i C(i)^t, (1)$$

where

$$C(i) = \begin{pmatrix} c_1 \\ \vdots \\ c_{i-1} \\ 1 \\ c_{i+1} \\ \vdots \\ c_n \end{pmatrix}.$$

 B_i is a m-dimensional column vector and C(i) is a n-dimensional column vector, as required.

Since we could choose any one of column vectors of A as a basis B_i , there exist n possible combinations of B_i and C(i) that satisfy (1), specifically:

$$B_i = c_i B_1, \qquad C(i) = \frac{1}{c_i} C(1),$$

where c_i is one of entries of C(1).

Problem 3

a) Let U and W be vector spaces over a field F. Show that the two operations (u,w)+(u',w')=(u+u',w+w') and c(u,w)=(cu,cw) on pairs of vectors make the product set $U\times W$ into a vector space. It is called a product space.

Proof. We will prove that V is a vector space directly from the definition of a vector space.

We first check that + makes $U \times W$ into abelian group V^+ . Indeed, V^+ is the product group $U^+ \times W^+$ of abelian groups, thus it is itself an abelian group. We also note that V^+ includes identity $(0_U, 0_W)$.

We then check that 1v = v, for all $v \in V$. Indeed:

$$1v = 1(u, w) = (1u, 1w) = (u, w) = v.$$

We check the associativity of scalar multiplication. Indeed:

$$(ab)(u, w) = (abu, abw) = a(bu, bw) = a(bv).$$

Finally, we check distributive laws. For scalar multiplication:

$$(a+b)(u,w) = ((a+b)u, (a+b)w) = (au+bu, aw+bw)$$

= $(au, aw) + (bu, bw)$
= $a(u, w) + b(u, w)$.

For scalar addition:

$$a((u, w) + (u' + w')) = a(u + u', w + w') = (au + au', aw + aw')$$
$$= (au, aw) + (au', aw')$$
$$= a(u, w) + a(u', w')$$

Therefore, V is a vector space.

b) Let U and W be subspaces of a vector space V. Show that the map $T:U\times W\to V$ defined by T(u,w)=u+w is a linear transformation.

 ${\it Proof.}$ We check linearity of T directly from the definition of a linear transformation:

$$T((u, w) + (u', w')) = T(u + u', w + w') = u + u' + w + w' = T(u, w) + T(u', w').$$
$$T(c(u, w)) = T(cu, cw) = cu + cw = c(u + w) = cT(u, w).$$

Therefore, T is a linear transformation.

c) Express the dimension formula for T in terms of the dimension of subspaces of V.

By the Rank-nullity theorem:

$$\dim V = \dim \ker T + \dim \operatorname{im} T.$$

Claim. $\dim \ker T = \dim(U \cap W)$

Proof. We notice that for any $u \in U, w \in W$ the value of T(u, w) is zero if and only if u = -w. Indeed:

$$T(u, w) = u + w = 0 \iff u = -w.$$

This can be the case only when u and w are in the same subspace, i.e. $\ker T = U \cap W$. Therefore, $\dim \ker T = \dim(U \cap W)$

Claim. $\dim \operatorname{im} T = \dim U + \dim W - \dim(U \cap W)$

Proof. We notice that im T is the sum of all possible vectors from U and W, i.e. im T = U + W. We know that $\dim(U + W) = \dim U + \dim W - \dim(U \cap W)$, as requested.

We conclude that

$$\dim V = \dim(U \cap W) + \dim U + \dim W - \dim(U \cap W)$$
$$= \dim U + \dim W.$$

We can double-check this result directly. Let $\{u_1, \dots u_n\}$ be a basis of U (dim U=n) and let $\{w_1, \dots w_m\}$ be a basis of W (dim W=m). Set of vectors $B=\{(u_1,0),\dots,(u_n,0),(0,w_1),\dots,(0,w_m)\}$ is linearly independent and spans $V=U\times W$. Therefore, B is a basis of V and dim $V=n+m=\dim U+\dim W$.

Problem 4

Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be a 2×2 matrix with eigenvalue λ .

a) Show that unless it is zero, the vector $v = (b, \lambda - a)^t$ is an eigenvector.

Proof.

$$Av = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} b \\ \lambda - a \end{bmatrix} = \begin{bmatrix} ab + \lambda b - ab \\ bc + \lambda d - ad \end{bmatrix} = \begin{bmatrix} \lambda b \\ \lambda d - (ad - bc). \end{bmatrix}$$
 (2)

We know that the characteristic polynomial for a 2×2 matrix can be expressed as follows:

$$p(t) = t^2 - (\operatorname{tr} A)t + (\det A),$$

and λ is the root of the equation p(t) = 0, thus:

$$\lambda^{2} - (a+d)\lambda + (ad - bc) = 0,$$

$$\lambda d - (ad - bc) = \lambda(\lambda - a).$$

Substituting into the expression (2):

$$Av = \begin{bmatrix} \lambda b \\ \lambda(\lambda - a) \end{bmatrix} = \lambda \begin{bmatrix} b \\ \lambda - a \end{bmatrix} = \lambda v.$$

Therefore, v must be an eigenvector of A with eigenvalue λ .

b) Find a matrix P such that $P^{-1}AP$ is diagonal, assuming that $b \neq 0$ and that A has distinct eigenvalues.

Proof. Since characteristic polynomial p(t) of A is degree 2 (see part b), A has at most two eigenvalues. One of them, λ , is provided to us, and we denote another one λ' (assume $\lambda \neq \lambda'$).

It is known that trace of a matrix is the sum of its eigenvalues. For matrix A we have:

$$\lambda + \lambda' = a + d. \tag{3}$$

By Artin 4.6.10, matrix $\Lambda = P^{-1}AP$ is a diagonal matrix for

$$P = \begin{bmatrix} | & | \\ P_1 & P_2 \\ | & | \end{bmatrix},$$

where P_1 and P_2 are the coordinates (column vectors) of eigenvectors of A in the standard basis.

As we have proved, in the Part a), eigenvectors of A have the form $v=(b,\lambda-a)^t$, thus:

$$v_1 = (b, \lambda - a)^t,$$

$$v_2 = (b, \lambda' - a)^t.$$

Substituting (3):

$$v_2 = (b, a + d - \lambda - a)^t = (b, d - \lambda)^t.$$

Therefore:

$$P = \begin{bmatrix} b & b \\ \lambda - a & d - \lambda \end{bmatrix}.$$

We need to make sure that P is invertible:

$$\det P = b(a + d - 2\lambda) \neq 0.$$

Since $b \neq 0$, we just need to prove that $a + d - 2\lambda \neq 0$. This is indeed the case for $\lambda \neq \lambda'$, since otherwise we would have:

$$a+d=2\lambda$$

using (3):

$$\lambda + \lambda' = 2\lambda,$$
$$\lambda' = \lambda,$$

which produces a contradiction. Thus, P is invertible. Therefore, matrix $\Lambda = P^{-1}AP$ is diagonal.

Problem 5

Let $v = (a_1, \ldots, a_n)$ be a real row vector. We may form the $n! \times n$ matrix M whose rows are obtained by permuting the entries of v in all possible ways. The rows can be listed in an arbitrary order. Thus if n = 3, M might be

$$\begin{bmatrix} a_1 & a_2 & a_3 \\ a_1 & a_3 & a_2 \\ a_2 & a_3 & a_1 \\ a_2 & a_1 & a_3 \\ a_3 & a_1 & a_2 \\ a_3 & a_2 & a_1 \end{bmatrix}.$$

Determine the possible ranks that such matrix could have.

Rank of a matrix is the dimension of its column space and also the dimension of its row space. Thus, rank of A is at most n.

We explore some concrete examples. We notice that for v = (0, ..., 0), all entries of matrix M are zero, thus M has rank 0.

We then notice that for v = (a, 0, ..., 0), $a \in \mathbb{R}$, the set of permutations of the entries of v contains linearly independent set of vectors

$$\{(a,0,\ldots,0), (0,a,0,\ldots,0),\ldots, (0,\ldots,0,a)\}.$$

In this case, rank of A is n.

We notice that for v = a(1, 1, ..., 1), $a \in \mathbb{R}$, all entries of matrix M are equal to a, thus M has rank 1.

Now we consider a general case with at least two entries of v not being equal to one another: let $v_m \neq v_k$.

Let the first row of A (vector v_e) correspond to the original vector v. Consider the row vector $v_{(mk)}$ that corresponds to the permutation (mk) of v (swap m-th and k-th entries of v).

$$v_e = (a_1, a_2, \dots, a_m, \dots, a_k, \dots, a_n),$$

 $v_{(mk)} = (a_1, a_2, \dots, a_k, \dots, a_m, \dots, a_n).$

Consider the following vector p:

$$p = \frac{1}{a_m - a_k} (v_e - v_{(mk)}), \tag{4}$$

which results in

$$p = (0, \dots, 1, 0, \dots, -1, 0, \dots, 0).$$

Denote R the row space of M. Since p is a linear combination of the rows of M, p must be in R.

We notice that we could have chosen different permutations of v instead of v_1 and $v_{(mk)}$. Then, after (4), we would arrive at a vector that is a permutation of the entries of p. In fact, we can achieve any permutation of the entries of p by using the appropriate permutations of the entries of v. Therefore, denoting P the set of all permutations of the entries of p, we conclude that $P \subseteq R$. Furthermore, since P is in R, a vector space spanned by the vectors of P must be a subspace of R.

Consider $P_m \subseteq P$, the set of vectors that correspond to permutations of the entries of p that fix the m-th element of (i.e., 1).

Claim. P_m is a basis of the span of P.

Proof. To prove this, we first notice that set P_m is linearly independent. We also claim that every $p' \in P$ is a linear combination of vectors in P_M . Let the x-th entry of p' be 1 and let its y-th entry be -1, then:

$$p' = p_{(ku)} - p_{(kx)}.$$

Since both $p_{(ky)}$, $p_{(kx)}$ are elements of P_m , then p' is a linear combination of elements of P_m . Since every element of P can be represented as a linear combination of elements of P_m , P_m is a basis of the span of P.

Basis P_m has n-1 vectors, thus dimension of the span of P is n-1. Since span $P \subseteq R$, dimension of R must be at least n-1 and, thus, M has rank of at least n-1.

Therefore, the possible ranks of matrix M are: 0, 1, n-1 and n.

Problem 6

Determine the finite-dimensional spaces W of differentiable functions f(x) with this property: If f is in W, then $\frac{df}{dx}$ is in W.

We assume vector space W is over field of complex numbers \mathbb{C} . Let n be dimension of W.

Proof. We first note that every element of W must be infinitely differentiable. Furthermore, for arbitrary function f in W infinite set of vectors

$$W_f = \left\{ f, \frac{df}{dx}, \frac{d^2f}{dx^2}, \frac{d^3f}{dx^3}, \cdots \right\}.$$

is a subset of W. Since n is the dimension of W, every finite subset of W_f with more than n elements must be linearly dependent. Consider set of vectors

$$\left\{f, \frac{df}{dx}, \frac{d^2f}{dx^2}, \cdots, \frac{d^nf}{dx^n}\right\},\right$$

which must be linearly dependent. Then there must exist some coefficients $a = \{a_0, a_1, \dots a_n\}$ such that

$$a_0 f + a_1 \frac{df}{dx} + a_2 \frac{d^2 f}{dx^2} + \dots + a_n \frac{d^n f}{dx^n} = 0.$$
 (5)

Every $f \in W$ must satisfy this linear homogeneous differential equation for some coefficients a. Solution space of the general equation of the form (5) has basis of

$$B = \{ x^k e^{\alpha x} : k \in \mathbb{N}, \ 0 \le k \le n, \ \alpha \in \mathbb{C} \}.$$

Therefore, any subset B' of B with n elements, such that for every element $g \in B'$, its derivative $\frac{dg}{dx}$ is also in B', is a basis for some space W. For arbitrary $g = x^k e^{\alpha x}$ in B':

$$\frac{dg}{dx} = \frac{d(x^k e^{\alpha x})}{dx} = kx^{k-1}e^{\alpha x} + \alpha x^k e^{\alpha x},$$

therefore functions

$$B_{\alpha,k} = \left\{ x^k e^{\alpha x}, x^{k-1} e^{\alpha x}, \dots, e^{\alpha x} \right\}$$

are in B'.

Every W with dimension n can be represented as a direct sum of subspaces, each with a basis of the form B_{α_i,k_i} .

$$W = \bigoplus B_{\alpha_i, k_i},$$

such that every α_i is different and $\sum k_i = n$.

Additional Problem 1

Let V be a finite-dimensional vector space. A linear operator $T:V\to V$ is called a projection if $T^2=T$ (not necessarily an "orthogonal projection"). Let K and W be the kernel and image of a linear operator T. Prove

a) T is a projection onto W if and only if the restriction of T to W is the identity map.

We first proof the following claim.

Claim. Any surjective operator $P: U \to U$ is invertible.

Proof. By the rank-nullity theorem:

$$\dim U = \dim \ker P + \dim \operatorname{im} P,$$

$$\dim U = \dim \ker P + \dim U,$$

$$\dim \ker P = 0,$$

therefore, any surjective operator is invertible.

We proceed with the proof of the problem.

Proof. (\Longrightarrow): Suppose $T^2=T$ on V, then $T^2\big|_W=T\big|_W$. Map $T\big|_W:W\to W$ is a surjective operator, thus invertible. Left multiplying $T^2\big|_W=T\big|_W$ by $\left(T\big|_W\right)^{-1}$ we have $T\big|_W=I$, as requested.

 (\Leftarrow) : Suppose $T\big|_W = I$. Since image of T is W, we have $T^2 = T\big|_W T = T$, as requested.

b) If T is a projection, then V is the direct sum $W \oplus K$.

Proof. Consider v, an arbitrary element of $W \cap K$. Then v is in the image of T, we have Tv = v. Since v is in the kernel of V, we have Tv = 0. We conclude that v = 0 and $W \cap K = \{0\}$.

Since intersection of W and K is zero and by the rank-nullity theorem, we have

$$\dim(W+K) = \dim W + \dim K = \dim V.$$

Since W + K are subsets of V and dimension of their sum W + K is equal to the dimension of the space V itself, we conclude that W + K spans V. Since $W \cap K = \{0\}$, we have that V is a direct sum of W and K, as requested.

c) The trace of a projection T is equal to its rank.

Proof. Suppose V has dimension n and suppose projection T has rank m. Choose arbitrary basis of W, denote it $\{w_1, \ldots, w_m\}$. We can extend this basis to the basis of V:

$$B = \{w_1, \dots, w_m, k_1, \dots, k_{n-m}\}.$$

By part b) of the problem, $W \oplus K = V$, therefore each k_i must be an element of K. Then, each k_i is in the kernel of T, therefore $Tk_i = 0$. Since each vector w_i is in the image of T, by part a) of the problem, we have that $Tv_i = v_i$.

Matrix representation of T with regards to basis B will have the following form:

with m ones and n-m zeroes on the diagonal. Such matrix has trace m. Therefore T has trace m equal to the rank of T, as required.