

Professor: Vinicius Martins

Aula 14

Assunto: Circuitos Sequenciais: Registrador de Deslocamento

1. Objetivos

- Entender o funcionamento de registradores de deslocamento.
- Projetar registradores de deslocamento.

2. Material

- No laboratório
 - Fios
 - Protoboard
 - Chips TTL
 - Barra de pinos e jumpers

No simulador

- TinkerCad
- Conexões
- Placa de ensaio pequena
- Chips TTL
- Resistores
- LEDs
- Fonte de Energia
- Gerador de função
- Interruptor DIP DPST

3. Introdução

Um registrador de deslocamento ou "shift-register", como também é chamado pelo termo em inglês, consiste num conjunto de flip-flops que podem ser interligados de diversas formas como, por exemplo, as mostradas na figura 1. Os registradores de deslocamento podem ser do tipo SISO, SIPO, PISO, PIPO.

Professor: Vinicius Martins

Aula 14

Assunto: Circuitos Sequenciais: Registrador de Deslocamento

Figura 1: Registrador de Descolamento com Flip-flop Tipo D

Estes circuitos deslocam uma informação (bit) que foi aplicada na entrada de uma posição, a cada pulso de clock. Por exemplo, o bit 1 aplicado na entrada aparece na saída do primeiro flip-flop no primeiro pulso de clock, depois desloca-se aparecendo na saída do segundo flip-flop, no segundo pulso de clock, e assim por diante.

Na configuração mostrada na figura 1, cada flip-flop tipo D tem sua saída conectada à entrada do flip-flop seguinte, e todos eles são controlados pelo mesmo sinal de CLOCK.

Para entender como funciona esse circuito vamos partir da situação inicial em que todos eles estejam desativados ou com suas saídas Q no nível baixo. Primeiramente, vamos aplicar à entrada de dados um nível lógico alto (1). Assim que ocorre um pulso do sinal de clock, a saída do primeiro flip-flop é carregada com o com o valor que estava presente em sua entrada, ou seja, "1". E mesmo ocorre para todos os outros flip-flops como pode ser visto na figura 2.

Professor: Vinicius Martins

Aula 14

Assunto: Circuitos Sequenciais: Registrador de Deslocamento

Figura 2: Registrador de deslocamento em função de pulsos de clock

Primeira Atividade Prática

- a) Procure na internet a tabela verdade do Flip-flop Tipo D.
- b) Projete um registrador de deslocamento de 6 bits e preencha a tabela verdade a seguir.

01 1	.							0 (1
Clock	Entrada	FF1	FF2	FF3	FF4	FF5	FF6	Saída
0	0	0	0	0	0	0	0	0
1	1							
2	1							
3	0							
4	1							
5	0							
6	1							
7	0							
8	0							
9	0							
10	0							
11	0							
12	0							
13	0							
14	0							
15	0							

Professor: Vinicius Martins

Aula 14

Assunto: Circuitos Sequenciais: Registrador de Deslocamento

c) Monte no simulador on-line TinkerCad utilizando o CI 74HC74 (Flip-flop D duplo) o registrador de deslocamento de 6 bits. Observe que este CI possui os pinos de entrada Redefinir e Definir (ambos ativos em nível lógico baixo) que modificam a saída independente do valor da entrada.

- d) Compare a tabela verdade obtida no item b com a tabela verdade obtida no simulador.
- e) Anote as informações que julgar importante para compor o seu relatório.

Pesquise e apresente em seu relatório um resumo dos principais conceitos e fundamentos tratados nessa prática. Escreva também em seu relatório as tabelas verdade obtidas, os procedimentos de simplificação booleana, desenhos dos circuitos lógicos e/ou fotos do circuito implementado no simulador. Descreva de forma clara e sucinta suas principais conclusões e/ou observações.