Algebra Cheat Sheet

7. Juli 2012

Permutationen

Seite 41

Def: Permutation

Ist eine bijektive Abbildung $\alpha: X$.

 $S_X := \text{Menge aller Permutationen von X}$

 $S_n := S_X \text{ mit } X = \{1, 2, \dots, n\}$

Def: r-Zykel

Seien $i_1, \ldots, i_r \in \{1, 2, \ldots, n\}$ paarweise verschieden.

Ein Zykel der Länge r ist dann $\alpha := (i_1 i_{2r}) \in S_n$

mit $\alpha(i_1) = i_2, \ \alpha(i_2) = i_3, \ \dots \alpha(i_r) = i_1. \ (a_0 a_1 a_2 a_3 a_4) \rightarrow$

 $(a_4a_1a_2a_3a_0)$

Def: Transposition

 ${\rm Ein}~2\text{-}{\rm Zykel}$

Morphismen

Seite 50

Def: Homomorphismus/Morphismus

Gegeben sind zwei Halbrguppen: (G, \times) , (H, #). Die Abbildung $f: G \to H$ ist ein Homomorphismus, wenn f(a) =

 $f(a) \# f(b) \quad \forall a, b \in G.$

Def: Monomorphismus

Ein injektiver Homomorphismus

Def: Epimorphismus

Ein surjektiver Homomorphismus

Def: *Isomorphismus*

Ein bijektiver Homomorphismus

Def: Automorphismus

 $f: G \to G$, f injektiv: beide Halbgruppen sind gleich.

Misc

Def: *injektiv*

 $f(a) = f(a') \Rightarrow a = a'$ "für jedes x max. ein y" $f: A \to B$ ist *injektiv* genau dann wenn $\forall b \in B: |f^{-1}(\{b\})| \leq 1$

Def: surjektiv

 $\forall b \in B, \exists a \in A : b = f(a)$ "die gesamte Bildmenge ist erreichbar"

Def: bijektiv

Injektiv und Surjektiv zusammen.

Def: Bild

 $f^-1(C): a \in A: f(a) \in C$

Gruppen

Def: Halbgruppe (s. 37)

- Trägermenge G
- Abbildung: $G \times G \to G$, assoziativ

Def: Monoid (s. 37)

- Trägermenge G
- Abbildung: $G \times G \to G$, assoziativ, kann kommutativ (abelsch) sein
- Neutrales Element $a^0 = e$

Def: *Gruppe* (s. 47)

- Trägermenge G
- Abbildung: $G \times G \to G$, assoziativ, kann kommutativ (abelsch) sein
- Neutrales Element $a^0 = e$
- Inverses Element a^-1

Def: Ring (s. 85)

- Trägermenge G
- Abbildungen
 - 1. " + " : $G \to G$, assoziativ, distributiv, kommutativ, neutrales Element "0", inverses Element "-a"
 - 2. "·": $G \to G$, assoziativ, distributiv, optional kommutativ, optinal neutrales Element $\neq 0$ ("Einselement"), optional inverses Element ("Einheit")

Def: Körper (Wikipedia)

- Trägermenge G
- Abbildungen
 - 1. " + " : $G \to G$, assoziativ, distributiv, kommutativ, neutrales Element "0", inverses Element "-a"
 - 2. "·": $G \to G$, assoziativ, distributiv, kommutativ, neutrales Element $\neq 0$ ("Einselement"), inverses Element ("Einheit")

Verbände und Boolsche Algebren

Def: Teilweise geordnete Menge (s. 10)

Eine Menge ist teilweise Geordnet, wenn auf ihr eine Relation \leq existiert, die

- reflexiv $(a \le a)$
- antisymmetrisch $(a \le b \text{ und} b \le a \Rightarrow b = a)$
- transitiv $(a \le b \text{ und} b \le c \Rightarrow a \le c)$

ist. Die Relation < bedeutet dann \leq und $a \neq b$.

Def: Total geordnete Menge/Kette (s. 10)

Eine Menge ist total geordnet, wenn sie Teilweise geordnet ist und für alle Elemente x, y der Menge gillt entweder $x \le y$ oder $y \le x$.

Def: Speziele Elemente in teilweise geordneten Mengen (s. 10) Sei (P, \leq) teilweise geordnet, $X \subset P$, $X \neq \emptyset$

- 1. $y \in X$ ist minimal, wenn $\forall x \in X : x > y$
- 2. $y \in X$ ist kleinstes Element, wenn $\forall x \in X : y \leq x$
- 3. $y \in P$ ist untere Schranke von X, wenn $\forall x \in X : y \leq x$
- 4. $y \in P$ ist größte Untere Schranke von X, wenn y größtes Element in der Menge der unteren schranken ist.

Bei total geordneten mengen gillt:

 $minimales\ Element = kleinstes\ Element$

Def: Verband (s. 16)

Ein Verband ist eine teilweise geodnete Menge. je zwei Elemente x, y der Menge haben:

- Durchschnitt := $x \wedge y$:= $Min\{x, y\}$:= größte untere Schranke von $\{x, y\}$, falls sie existiert.
- Vereinigung := $x \lor y := Max\{x,y\}$:= kleinste obere Schranke von $\{x,y\}$, falls sie existiert.

Rechenregeln:

- $x \wedge x = x, x \vee x = x$
- $(x \wedge y) \wedge z = x \wedge (y \wedge z), (x \vee y) \vee z = x \vee (y \vee z)$
- $x \wedge y = y \wedge x, x \vee y = y \vee x$
- $x \wedge (x \vee y) = x, x \vee (x \wedge y) = x$
- $x \le y \Leftrightarrow x \land y = x \Leftrightarrow x \lor y = y$

Def: Boolsche Algebra (s. 17)

Notation $\mathfrak{A} = (A, \wedge, \vee, ', 0, 1)$

- \bullet Trägermenge A
- Abbildungen: $\land, \lor: A \times A \to A$, assoziativ, kommutativ, distributiv
- Abbildung: $': A \to A$
- Neutrale/Inverse Elemente: $0, 1 \in A$
- Rechenregeln:
 - $\begin{array}{l} -x\vee x=x,\,x\wedge x=x\\ -x\vee (x\wedge y)=x,\,x\wedge (x\vee y)=x \end{array}$
 - $-\ x\vee 0=x,\,x\wedge 0=0$
 - $x \lor 1 = 1, x \land 1 = x$
 - $-x \vee x' = 1, x \wedge x' = 0$
- Es folgt:
 - $-x \lor y = 1 \text{ und } x \land y = 0 \Longrightarrow y = x'$
 - $-(x \lor y)' = x' \land y' \text{ (de Morgan)}$
 - $-(x \wedge y)' = x' \vee y'$ (de Morgan)

Def: Boolscher Term

- jedes X_1, X_2, \dots, X_n ist ein Boolscher Term
- Wenn P, Q Boolsche Terme sind, so auch $P', (P \land Q), (P \lor Q)$

Äquivalenzrelationen

Def: Äquivalenzrelation (s. 7)

Eine Äquivalenzrelation ist eine Relation, die

- reflexiv (aRa)
- symmetrisch $(aRb \Rightarrow bRa)$
- transitiv $(aRb \wedge bRc \Rightarrow aRc)$

ist.

Def: Äquivalenzklasse (s. 7)

(a) bezeichnet die Äquivalenzklasse zu a bezgl. der Äquivalenzrelation R und ist definiert als $(a) = \{b \in A : aRb\}$