Definition: Matrix

Definition: Matrix

A **matrix** over a field F is a rectangular array of elements from F arranged in rows and columns.

Notation

An $m \times n$ matrix A has m rows and n columns, and is written as:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

where $a_{ij} \in F$ is the entry in the *i*-th row and *j*-th column.

Alternative Notations

- Compact form: $A=(a_{ij})_{m\times n}$ or $A=[a_{ij}]$ The set of all $m\times n$ matrices over F is denoted $M_{m\times n}(F)$ or $F^{m\times n}$

Special Types of Matrices

- Square matrix: When m = n
- Row vector: A $1 \times n$ matrix
- Column vector: An $m \times 1$ matrix
- Zero matrix: All entries are 0, denoted O or $0_{m\times n}$
- Identity matrix: Square matrix with 1's on the diagonal and 0's elsewhere, denoted I_n

Matrix Operations

- 1. **Addition**: $(A + B)_{ij} = a_{ij} + b_{ij}$ (for matrices of the same size)
- 2. Scalar multiplication: $(cA)_{ij} = c \cdot a_{ij}$ for $c \in F$
- 3. Matrix multiplication: For $A \in M_{m \times n}(F)$ and $B \in M_{n \times p}(F)$:

$$(AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Transpose

The **transpose** of an $m \times n$ matrix A is the $n \times m$ matrix A^T where:

$$(A^T)_{ij} = a_{ji}$$

Matrices are fundamental objects in linear algebra, representing linear transformations, systems of equations, and bilinear forms.

Dependency Graph

Local dependency graph