Apellido y Nombre: email:

1 2 3 nota 4 5

Lenguajes y Compiladores

Parcial 2

19/05/2011

- 1. Considere las siguientes expresiones (como es usual, $\Delta = \lambda x.xx$)
 - $(a)(\lambda y.\lambda x.y(x(\lambda y.yx)x))(\lambda y.\lambda x.xy)$
 - (b) $(\lambda y.\lambda x.y(x(\lambda y.yx)x))(\lambda y.\lambda x.xy)\Delta$
 - (i) Reduzca cada una en orden normal hasta encontrar la primer forma canónica.
 - (ii) Determine en cada caso si tienen forma normal. Justifique su respuesta.
- 2. Determine si es Verdadero o Falso. Justifique su respuesta. Decimos que e tiene forma canónica si existe z tal que z es canónica (es decir una abstracción) y $e \rightarrow^* z$.
 - a) Para todo expresión e existe una única expresión n tal que n es normal y $e \to^* n$.
 - b) Para todo expresión e existe una única expresión z tal que z es canónica y $e \to^* z$.
 - c) Si e no tiene forma canónica entonces tampoco tiene forma normal.
 - d) Si e tiene forma normal y $e \rightarrow^* e'$ entonces e' tiene forma normal.
- 3. Considere el lenguaje imperativo con fallas, input y output.
 - a) Describa al menos 4 patrones distintos de elementos de Ω que representan situaciones de no terminación.
 - b) Sea $w_0 = \perp$, y $w_n = \iota_{in}(\lambda k.\iota_{out}(k,\iota_{out}(k+1,w_{n-1})))$, para $n \geq 1$. Dé un programa que tenga como semántica denotacional directa al supremo de la cadena w_n .
 - c) Calcule la semántica denotacional directa del programa dado para garantizar que lo respondido en el item anterior es correcto.
- 4. Considere el lenguaje imperativo con fallas input y output.
 - a) Defina la semántica con dos continuaciones κ_t, κ_f de los siguientes comandos: fail, c_0 ; c_1 .
 - b) La semántica denotacional directa se relaciona con la de continuaciones a través de la igualdad $[\![c]\!]^{cont} \kappa_t \kappa_f = \langle \kappa_t, \kappa_f \rangle_* \cdot [\![c]\!]^{dir}$. Defina $\langle \kappa_t, \kappa_f \rangle_*$. c) Pruebe la ecuación anterior considerando sólo los casos **fail**, $c_0; c_1$.
- 5. Pruebe utilizando las reglas para \rightarrow , por inducción en el tamaño de la reducción \rightarrow^* :

Si $\langle c, [\sigma|v : [\![e]\!]\sigma] \rangle \to^* \sigma'$ entonces $\langle \text{newvar } v := e \text{ in } c, \sigma \rangle \to^* [\![\sigma']\!]v : \sigma v$