Assignment #3

Elements of Machine Learning

Saarland University - Winter Semester 2024/25

Rabin Adhikari 7072310

raad00002@stud.uni-saarland.de

Dhimitrios Duka 7059153

dhdu00001@stud.uni-saarland.de

Problem 3 (Beyond linearity: Polynomial and Splines)

3.1 Cubic Regression Spline with One Knot

- Cubic regression spline with one knot at ξ can be obtained using a basis of the form $x, x^2, x^3, (x \xi)_+^3$, where $(x \xi)_+^3 = (x \xi)^3$ if $x > \xi$ and equals 0 otherwise. We can show that a function of the following form is indeed a cubic regression spline, regardless of the values of
- $\beta_0, \beta_1, \beta_2, \beta_3, \beta_4.$

$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 (x - \xi)_{\perp}^3$$

3.1.1 Find a cubic polynomial $f_1(x)$

Answer: Find a cubic polynomial

$$f_1(x) = a_1 + b_1 x + c_1 x^2 + d_1 x^3$$

- such that $f(x) = f_1(x)$ for all $x \leq \xi$. Express a_1, b_1, c_1, d_1 in terms of $\beta_0, \beta_1, \beta_2, \beta_3, \beta_4$.
- **Answer:** When $x \le \xi$, $(x \xi)_+^3 = 0$, so f(x) can be written as follows.

$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$$

Comparing the above coefficients with that of $f_1(x)$, we can write the following.

$$a_1 = \beta_0$$

$$b_1 = \beta_1$$

$$c_1 = \beta_2$$

$$d_1 = \beta_3$$

3.1.2 Find a cubic polynomial $f_2(x)$

Question: Find a cubic polynomial

$$f_2(x) = a_2 + b_2 x + c_2 x^2 + d_2 x^3$$

- such that $f(x) = f_2(x)$ for all $x > \xi$. Express a_2, b_2, c_2, d_2 in terms of $\beta_0, \beta_1, \beta_2, \beta_3, \beta_4$. We have
- now established that f(x) is a piecewise polynomial.

16 **Answer:** When $x > \xi$, $(x - \xi)^3_+ = (x - \xi)^3$, so f(x) can be written as follows.

$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 (x - \xi)^3$$

Also, we know $(x-\xi)^3 = x^3 - 3x^2\xi + 3x\xi^2 - \xi^3$. So, the above equation can be expanded as

18 follows.

$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 (x^3 - 3x^2 \xi + 3x \xi^2 - \xi^3)$$

= $\beta_0 - \beta_4 \xi^3 + (\beta_1 + 3\beta_4 \xi^2) x + (\beta_2 - 3\beta_4 \xi) x^2 + (\beta_3 + \beta_4) x^3$

Comparing the above coefficients with that of $f_2(x)$, we can write the following.

$$a_2 = \beta_0 - \beta_4 \xi^3$$

$$b_2 = \beta_1 + 3\beta_4 \xi^2$$

$$c_2 = \beta_2 - 3\beta_4 \xi$$

$$d_2 = \beta_3 + \beta_4$$

- 20 **3.1.3** Continuity at ξ
- Question: Show that $f_1(\xi) = f_2(\xi)$. That is, f(x) is continuous at ξ .
- 22 **Answer:** First, $f_1(\xi)$ can be written as follows.

$$f_1(x) = \beta_0 + \beta_1 \xi + \beta_2 \xi^2 + \beta_3 \xi^3$$

Now, $f_2(\xi)$ can be written as follows.

$$f_{2}(x) = \beta_{0} - \beta_{4}\xi^{3} + (\beta_{1} + 3\beta_{4}\xi^{2})\xi + (\beta_{2} - 3\beta_{4}\xi)\xi^{2} + (\beta_{3} + \beta_{4})\xi^{3}$$

$$= \beta_{0} - \beta_{4}\xi^{3} + \beta_{1}\xi + 3\beta_{4}\xi^{3} + \beta_{2}\xi^{2} - 3\beta_{4}\xi^{3} + \beta_{3}\xi^{3} + \beta_{4}\xi^{3}$$

$$= \beta_{0} + \beta_{1}\xi + \beta_{2}\xi^{2} + \beta_{3}\xi^{3}$$

$$= f_{1}(x)$$

- 24 3.1.4 First Derivative Continuity at ξ
- 25 **Question:** Show that $f_1'(\xi) = f_2'(\xi)$. That is, f'(x) is continuous at ξ .
- Answer: First, $f'_1(x)$ can be written as follows.

$$f_1'(x) = \beta_1 + 2\beta_2 x + 3\beta_3 x^2$$

Therefore, $f_1'(\xi)$ is,

$$f_1'(x) = \beta_1 + 2\beta_2 \xi + 3\beta_3 \xi^2$$

Also, $f_2'(x)$ can be written as follows.

$$f_2'(x) = \beta_1 + 3\beta_4 \xi^2 + 2(\beta_2 - 3\beta_4 \xi) x + 3(\beta_3 + \beta_4) x^2$$

Therefore, $f_2'(\xi)$ is,

$$f_2'(x) = \beta_1 + 3\beta_4 \xi^2 + 2(\beta_2 - 3\beta_4 \xi) \xi + 3(\beta_3 + \beta_4) \xi^2$$

= $\beta_1 + 3\beta_4 \xi^2 + 2\beta_2 \xi - 6\beta_4 \xi^2 + 3\beta_3 \xi^2 + 3\beta_4 \xi^2$
= $\beta_1 + 2\beta_2 \xi + 3\beta_3 \xi^2$
= $f_1'(x)$

- 30 3.1.5 Second Derivative Continuity at ξ
- Question: Show that $f_1''(\xi) = f_2''(\xi)$. That is, f''(x) is continuous at ξ . Therefore, f(x) is indeed
- 32 a cubic spline.

33 **Answer:** First, $f_1''(x)$ can be written as follows.

$$f_1''(x) = 2\beta_2 + 6\beta_3 x$$

Therefore, $f_1'(\xi)$ is,

$$f_1''(x) = 2\beta_2 + 6\beta_3 \xi$$

35 Also, $f_{2}^{\prime\prime}\left(x\right)$ can be written as follows.

$$f_2''(x) = 2(\beta_2 - 3\beta_4 \xi) + 6(\beta_3 + \beta_4) x$$

Therefore, $f_2''(\xi)$ is,

$$f_2''(x) = 2(\beta_2 - 3\beta_4 \xi) + 6(\beta_3 + \beta_4) \xi$$

= $2\beta_2 - 6\beta_4 \xi + 6\beta_3 \xi + 6\beta_4 \xi$
= $2\beta_2 + 6\beta_3 \xi$
= $f_1''(x)$

37 3.2 Comparing Smoothing Splines

Consider two curves, \hat{g}_1 and \hat{g}_2 , defined by

$$\hat{g}_1 = \arg\min_{g} \left(\sum_{i=1}^{n} (y_i - g(x_i))^2 + \lambda \int \left[g^{(3)}(x) \right]^2 dx \right)$$

$$\hat{g}_2 = \arg\min_{g} \left(\sum_{i=1}^{n} (y_i - g(x_i))^2 + \lambda \int \left[g^{(4)}(x) \right]^2 dx \right)$$

where $g^{(m)}$ represents the m-th derivative of g.

- 40 3.2.1 Training RSS as $\lambda \to \infty$
- 41 **Question:** As $\lambda \to \infty$, will \hat{g}_1 or \hat{g}_2 have the smaller training RSS?
- 42 **Answer:** When $\lambda \to \infty$, the minimization would want to make the second term minimum. The
- minimum value attainable by the term is zero and the value of $g^{(m)}$ would be zero for $(m-1)^{th}$
- 44 polynomial. So, when $\lambda \to \infty$, \hat{g}_1 would be a quadratic polynomial and \hat{g}_2 would be the cubic one.
- Since \hat{g}_2 has more capacity than \hat{g}_1 , there is a high chance that \hat{g}_2 would have a smaller training RSS.
- 46 3.2.2 Test RSS as $\lambda \to \infty$
- 47 **Question:** As $\lambda \to \infty$, will \hat{g}_1 or \hat{g}_2 have the smaller test RSS?
- 48 **Answer:** Since \hat{g}_2 is a quadratic polynomial and \hat{g}_1 is a cubic polynomial, there may be some
- 49 cases where \hat{g}_2 is overfitting the data and \hat{g}_1 is not. However, we can't be sure until we have some
- 50 knowledge about that underlying function. In a nutshell, the RSS in the test set depends on the
- 51 underlying function.
- 52 **3.2.3 RSS for** $\lambda = 0$
- Question: For $\lambda = 0$, will \hat{g}_1 or \hat{g}_2 have the smaller training RSS and test RSS?
- 54 **Answer:** When $\lambda = 0$, both the equations just minimize the RSS on the training set resulting in the
- 55 same model since the nature of the curves is identical. Hence, the test RSS would also be the same.