Problemas Sortidos

Guilherme Zeus Moura zeusdanmou@gmail.com

1 Problemas que sobraram da última aula

Problema 5 (RMM 2015, 1)

Determine se existe uma sequência infinita de inteiros positivos $a_1, a_2, a_3, ...$ tais que a_m e a_n são coprimos se, e somente se, |m-n|=1?

Esboço. Sejam p_1, p_2, \ldots primos distintos.

Vamos dividir a condição em duas partes:

- Se |m-n|=1, então a_m e a_n são coprimos.
- Se $|m-n| \neq 1$, então a_m e a_n não são coprimos.

Uma sequência "maneira" que satisfaz a segunda condição:

$$a_k = p_k \prod_{i=0}^{k-2} p_i.$$

Solução. A resposta do problema é sim!

Sejam p_1, p_2, \ldots e q_1, q_2, \ldots primos distintos.

A sequência proposta é:

$$a_k = \begin{cases} p_k \cdot q_k \cdot \prod_{i=1}^{k-2} p_i, \text{ se } k \text{ \'e impar} \\ p_k \cdot q_k \cdot \prod_{i=1}^{k-2} q_i, \text{ se } k \text{ \'e par} \end{cases}$$

• a_m e a_{m+1} são coprimos? Sim.

Se m for impar, $a_m = p_m \cdot q_m \cdot \prod_{i=1}^{m-2} p_i$ e $a_{m+1} = p_{m+1} \cdot q_{m+1} \cdot \prod_{i=1}^{m-1} q_i$, que não tem nenhum fator primo em comum.

Se m for par, $a_m = p_m \cdot q_m \cdot \prod_{i=1}^{m-2} q_i$ e $a_{m+1} = p_{m+1} \cdot q_{m+1} \cdot \prod_{i=1}^{m-1} p_i$, que não tem nenhum fator primo em comum.

• a_m e a_n são coprimos, se $m \le n - 2$? Não.

 a_n possui um dos dois fatores p_m ou q_m , que são fatores de a_m também.

Problema 6 (APMO 2006, 2)

Prove que todo inteiro positivo pode ser escrito como soma de um número finito de potências inteiras distintas da razão áurea $\phi = \frac{1+\sqrt{5}}{2}$. Aqui, uma potência inteira de ϕ é um número da forma ϕ^i , onde i é um inteiro (não necessariamente positivo).

Esboço. Casos pequenos:

$$1 = \phi^{0}$$

$$2 = \phi^{-2} + \phi^{-1} + \phi^{0} = \phi^{-2} + \phi^{1}$$

$$3 = \phi^{-2} + \phi^{0} + \phi^{1} = \phi^{-2} + \phi^{2}$$

$$4 = \phi^{-2} + \phi^{0} + \phi^{2}$$

Quem é ϕ ? Ora, $\phi=\frac{1+\sqrt{5}}{2}$. Porém, um jeito por vezes mais útil é ver ϕ como raiz de x^2-x-1 . Ou seja:

$$\phi^2 = \phi + 1.$$

Solução. Defina $n \equiv S$, sendo n um inteiro e S um suconjunto finito dos inteiros se, e somente se,

$$n = \sum_{i \in S} \phi^i.$$

Os casos pequenos ficam, então:

$$1 \equiv \{0\}$$

$$2 \equiv \{-2, -1, 0\} \equiv \{-2, 1\}$$

$$3 \equiv \{-2, 0, 1\} \equiv \{-2, 2\}$$

$$4 \equiv \{-2, 0, 2\}$$

$$5 \equiv \{-4, -3, -2, -1, 0, 2\}$$

A equação $\phi^2 = \phi + 1$ é traduzida como uma operação: Se $n, n+1 \in S$ e $n+2 \not\in S$, então

$$S \equiv (S - \{n, n+1\}) \cup \{n+2\},\$$

em outras palavras, podemos trocar $n \in n+1$ por n+2, ou, em outras palavras,

$${n, n+1} \equiv {n+2}.$$

Lema 1

Se $n \equiv S$, então existe R tal que $n \equiv R$ e R não possui consecutivos.

Demonstração. Se S não possui consecutivos, acabou! Suponha que S possui consecutivos, pegue o maior par de consecutivos (n, n+1). n+2 não está em S, pois, se estivesse, (n+1, n+2) seria um par de consecutivos maior.

Sabemos que $\phi^{n+2} = \phi^{n+1} + \phi^n$. Logo,

$$n \equiv S' = (S - \{n, n+1\}) \cup \{n+2\}.$$

Repetimos esse algoritmo enquanto houverem consecutivos. Esse algoritmo acaba pois, em cada etapa, o número de elementos do conjunto diminui; e esse número é sempre inteiro nãonegativo. (E ele começa como um inteiro finito). \Box

Vamos provar por indução que todo n possui a propriedade desejada. (Base: OK.)

Suponha que n-1 possui a propriedade. Pelo Lema, existe $S\equiv n-1,\,S$ sem consecutivos. Seja -2k o maior par não-positivo tal que $-2k\not\in S$ (como S é finito, esse número existe). Logo, $-2k+2,-2k+4,\ldots,-2,0$ estão em S. Como S no possui consecutivos, isso implica que $-2k+1,-2k+3,\ldots,-3,-1$ não estão em S. Note que:

$$\begin{split} 1 &= \phi^{-1} + \phi^{-2} \\ &= \phi^{-1} + \phi^{-3} + \phi^{-4} \\ &= \phi^{-1} + \phi^{-3} + \phi^{-5} + \phi^{-6} \\ &\vdots \\ &= \phi^{-1} + \phi^{-3} + \dots + \phi^{-2k+3} + \phi^{-2k+1} + \phi^{-2k}. \end{split}$$

Logo,

$$n \equiv S \cup \{-2k, -2k+1, -2k+3, \dots, -3, -1\}.$$

Problema 7 (RMM 2011, 1)

Prove que existem funções $f,g:\mathbb{R}\to\mathbb{R}$, tais que $f\circ g$ é estritamente decrescente e $g\circ f$ é estritamente crescente.

2 Novos problemas

Problema 1 (Lemmas in Euclidean Geometry)

Seja ABC um triângulo e seja D o pé da bissetriz interna relativa a A. Sejam γ_1, γ_2 os circuncírculos dos triângulos ABD, ACD. Sejam P, Q as intersecções de AD com as tangentes externas comuns a γ_1 e γ_2 . Prove que $PQ^2 = AB \cdot AC$. Ache também uma "volta"!

Dever de casa: Escrever a solução completa (em equipe, em LATEX) e mandar para mim! Provando tudo!

Dever de casa 2: Tentar resolver usando inversão \sqrt{bc} .

Problema 2 (Ibero 2020, 3)

Seja $n \geq 2$ um inteiro. Uma sequência $\alpha = (a_1, a_2, \dots, a_n)$ de n números é chamada limenha se

$$\operatorname{mdc} \{a_i - a_j \text{ tal que } a_i > a_j \text{ e } 1 \leq i, j \leq n\} = 1,$$

isto é, se o máximo divisor comum de todas as diferenças $a_i - a_j$, com $a_i > a_j$, é 1.

Uma operação consiste em escolher dois elementos a_k e a_ℓ da sequência, com $k \neq \ell$, e substituir a_ℓ por $a'_\ell = 2a_k - a_\ell$.

Demonstre que, dada uma coleção de 2^n-1 sequências limenhas, cada uma formada por n números inteiros, existem duas destas sequências, digamos β e γ , tais que é possível transformar β em γ efetuando um número finito de operações.

Solução. Vamos definir uma relação entre as sequências:

Definição 2

Digamos que $\alpha \sim \beta$ se, e somente se, é possível transformar α em β efetuando um número finito de operações.

Note que $\alpha \sim \beta$ implica $\beta \sim \alpha$ pois toda operação é possui operação ração inversa (que é si mesma), isto é,

$$(a_k, a_\ell) \xrightarrow[\text{operação } (k, \ell)]{} (a_k, 2a_k - a_\ell) \xrightarrow[\text{operação } (k, \ell)]{} (a_k, a_\ell).$$

Lema 3

Se α é limenha e $\alpha \sim \beta$, então β é limenha.

Demonstração. Suponha que β não é limenha. Logo, existe p>1 tal que $p|b_i-b_j$, para todo i,j. Isto é, $b_i\equiv c\pmod p$ para algum c. Note que as operações mantém essa propriedade, pois $a'\ell=2a_k-a_\ell\equiv 2c-c\equiv c\pmod p$. Logo, como $\beta\sim\alpha$, existem operações que levam β em α , e em cada uma das operações, a propriedade de que todos os elementos da sequência são congruentes a $c\pmod p$ é preservada.

Deste modo, todos os elementos da sequência α são congruentes a $c \pmod{p}$, ou seja, todas as diferenças de elementos de α são múltiplas de p. Isto implica que α não é limenha.

Defina o coração de uma sequência $\alpha = (a_1, a_2, \dots, a_n)$ como

$$\heartsuit(\alpha) = 2\sum_{i=1}^{n} |a_i - 1/2| \in \mathbb{Z}_{\geq 0}.$$

Se exitem $1/2 < a_i < a_j$, fazemos a operação $a_j \to 2a_i - a_j$, que diminui o \heartsuit da sequência. Se exitem $1/2 > a_i > a_j$, fazemos a operação $a_j \to 2a_i - a_j$, que diminui o \heartsuit da sequência.

Como o coração da sequência diminui ao fazer essas operações, não é possível fazer elas para sempre! Após um número finito de operações, não existirão $1/2 < a_i < a_j$ nem $1/2 > a_i > a_j$.

Logo, todos os inteiros > 1/2 na nova sequência serão iguais, digamos que iguais a x, e todos os inteiros < 1/2 na nova sequência serão iguais, digamos que iguais a y.

A sequência nova sequência, que nomearemos de β , será uma sequência tal que será uma sequência que possui somente x ou y.

Pelo lema, β é limenha. Logo, mdc(diferenças) = x-y=1. Portanto, x=1 e y=0. Logo, β é uma sequência que somente possui zeros ou uns.

Como existem somente $2^n - 2$ sequências com zeros ou uns (não pode ser todo mundo igual), dada a coleção de $2^n - 1$ sequências limenhas, duas delas vão ter "o mesmo β ", o que significa que será possível transformar uma em outra usando finitas operações.