#### Gravitational Collapse in Anti-de Sitter Space

Brad Cownden
PhD Thesis Defence

July 28th, 2020





#### Outline

- Gravitational Collapse
- Massive Scalars in AdS<sub>5</sub>
  - Scalar Field Collapse in AdS
  - Classifying Phases
  - Phase Diagram
- High-Temperature QP Solutions in AdS<sub>4</sub>
  - The Two-Time Formalism (TTF)
  - Quasi-Periodic Solutions
  - High-Temperature Families
- Driven Scalars in AdS
  - Extending TTF to Driven Scalars
  - Resonant Contributions
  - Special Values of Non-normalizable Frequencies
- Conclusions

#### Gravitational Collapse

- $\blacktriangleright$  AdS/CFT  $^1\to$  thermal quench in gauge theory  $\Leftrightarrow$  formation of black hole in gravitational theory
- ▶ Massless scalar fields in AdS: unstable against generic initial data, no minimum amplitude $^2 \rightarrow c.f.$  Minkowski $^3$
- Stability for specific initial data below critical amplitude
- ▶ **Nonlinear theory:** continue<sup>4</sup> with exploration of phase space
- Perturbative theory: effects of truncation, space of solutions, time-dependent boundary conditions

<sup>&</sup>lt;sup>1</sup>Maldacena [hep-th/9711200]

<sup>&</sup>lt;sup>2</sup>Bizoń & Rostworowski [1104.3702]

<sup>&</sup>lt;sup>3</sup>Choptuik PRL70 9 (1993)

<sup>&</sup>lt;sup>4</sup>Deppe & Frey [1508.02709]

B Cownden, N Deppe, and AR Frey, *Phase Diagram of Stability for Massive Scalars in Anti-de Sitter Spacetime*, Phys.Rev.D 102 (2020) 026015, [1711.00454].

## Scalar Field Collapse in AdS

- Minimally-coupled scalar field in AdS<sub>5</sub> (dual to 4D CFT)
- lacktriangle Spherical symmetry, Schwarzschild-like coordinates o A(t,x),  $\delta(t,x)$
- ▶ Horizon formation when  $A(t_H, x_H) \ll 1$

$$ds^{2} = \frac{\ell^{2}}{\cos^{2}(x/\ell)} \left( -Ae^{-2\delta}dt^{2} + A^{-1}dx^{2} + \sin^{2}(x/\ell)d\Omega^{d-1} \right)$$

# Scalar Field Collapse in AdS

- Minimally-coupled scalar field in AdS<sub>5</sub> (dual to 4D CFT)
- ▶ Spherical symmetry, Schwarzschild-like coordinates  $\rightarrow A(t,x)$ ,  $\delta(t,x)$
- ▶ Horizon formation when  $A(t_H, x_H) \ll 1$
- ► Einstein equations ⇒ constraints
- ▶ Klein-Gordon equations ⇒ dynamics
- Examine behaviour near critical amplitude for different masses, widths

$$\begin{split} \partial_x M_{\text{ADM}} &= \frac{\tan^{d-1}(x)}{2} \left( A(\Pi^2 + \Phi^2) + \frac{\mu^2 \phi^2}{\cos^2(x)} \right) \\ \Pi(t=0,x) &= \epsilon \exp\left( -\frac{\tan^2(x)}{\sigma^2} \right) \quad \text{ Phase space: } (\mu,\,\sigma) \end{split}$$

#### Stable vs Unstable Profiles

Blue dot = collapse detected, red triangle = no collapse detected for  $t \leq t_{max}$ 

Stable: abrupt jump in t<sub>H</sub> when  $\epsilon < \epsilon_{crit}$ 



$$\mu = 0, \ \sigma = 1.$$

#### Stable vs Unstable Profiles

Blue dot = collapse detected, red triangle = no collapse detected for  $t \leq t_{max}$ 

- ▶ Stable: abrupt jump in  $t_H$  when  $\epsilon < \epsilon_{crit}$
- ▶ Unstable: fit  $t_H \approx a\epsilon^{-p} + b$  for  $t_H \ge 60 \rightarrow$  perturbatively unstable when  $p \approx 2$  (TTF)



#### Metastable & Irregular Profiles

Blue dot = collapse detected, red triangle = no collapse detected for  $t \leq t_{max}$ 

► Metastable: fit  $t_H \approx a\epsilon^{-p} + b$  for  $t_H \ge 60$   $\rightarrow p > 2$ 



#### Metastable & Irregular Profiles

Blue dot = collapse detected, red triangle = no collapse detected for  $t \leq t_{max}$ 

- ► Metastable: fit  $t_H \approx a\epsilon^{-p} + b$  for  $t_H \ge 60$   $\rightarrow p > 2$
- ► Irregular: no scaling



$$\mu = 20$$
,  $\sigma = 0.16$ 

#### Observations of Chaotic Behaviour

- Possible chaotic evolution
   → scalar self-interaction
- Previous chaotic evolution only seen in thin-shell interactions<sup>5</sup> in AdS, scalar collapse in Gauss-Bonnet gravity<sup>6</sup>



$$0, \sigma = 1.1, \ \epsilon = 1.0$$
  
 $t = 60, 62, 64$ 

<sup>&</sup>lt;sup>5</sup>Brito *et al.* [1602.03535] <sup>6</sup>Deppe, Kolly, *et al.* [1608.05402]



#### ► Unstable,



► Unstable, metastable,



► Unstable, metastable, irregular,



▶ Unstable, metastable, irregular, and stable initial data



#### Results

- lacktriangle First full phase diagram of stability in AdS $_5$  ightarrow islands of stability and "shorelines"
- lacktriangle Evidence of metastable and irregular phases at finite  $\epsilon$
- **ightharpoonup** Fate of metastable phase as  $\epsilon o 0$  yet to be determined
- Irregular phase contains quasi-stable initial data<sup>7,8</sup> $\rightarrow$  first evidence for weakly chaotic evolution in massless, spherically-symmetry scalars in AdS
- Metastable and irregular data to be studied in multiscale perturbation theory

<sup>&</sup>lt;sup>7</sup>Deppe & Frey [1508.02709]

<sup>&</sup>lt;sup>8</sup>Buchel *et al.* [1304.4166]

B Cownden, N Deppe, and AR Frey, *On the Stability of High-Temperature, Quasi-Periodic Solutions for Massless Scalars in AdS*<sub>4</sub>, In progress.

## The Two-Time Formalism (TTF)

- ightharpoonup Small perturbations in AdS<sub>4</sub>: expand scalar field, metric functions in  $\epsilon$
- $\triangleright$   $\mathcal{O}(\epsilon)$ :  $\phi_1$  in terms of eigenfunctions of AdS,  $e_j(x)$
- ▶ Integer eigenvalues  $\omega_j = (2j + d) \rightarrow$  fully resonant spectrum

$$\phi_1(t,x) = \sum_{j=0}^{\infty} \left( A_j(t)e^{i\omega_j t} + \bar{A}_j(t)e^{-i\omega_j t} \right) e_j(x)$$

## The Two-Time Formalism (TTF)

- ightharpoonup Small perturbations in AdS<sub>4</sub>: expand scalar field, metric functions in  $\epsilon$
- $ightharpoonup \mathcal{O}(\epsilon)$ :  $\phi_1$  in terms of eigenfunctions of AdS,  $e_j(x)$
- ▶ Integer eigenvalues  $\omega_j = (2j + d) \rightarrow$  fully resonant spectrum
- Secular growth of resonant contributions → scalar field collapse
- $\triangleright$   $\mathcal{O}(\epsilon^3)$ : source term for resonant contributions
- Complex amplitudes vary with "slow time"  $au o ext{flow}$  equation to absorb resonances  $^9$

$$-2i\omega_{\ell}\frac{dA_{\ell}(\tau)}{d\tau} = \sum_{i,j,k} f_{ijk}^{(\ell)} \bar{A}_i A_j A_k$$

<sup>&</sup>lt;sup>9</sup>Balasubramanian *et al.* [1403.6471]

# Quasi-Periodic Solutions I

- Renormalization flow techniques to cancel an infinite number of resonances  $\rightarrow$  express non-vanishing ones analytically 10
- Need to truncate number of modes to find solutions:  $j_{max} < \infty$  (must be robust as  $j_{max} \to \infty$ )

<sup>&</sup>lt;sup>10</sup>Craps et al. [1407.6273]

# Quasi-Periodic Solutions I

- ightharpoonup Renormalization flow techniques to cancel an infinite number of resonances ightharpoonup express non-vanishing ones analytically  $^{10}$
- Need to truncate number of modes to find solutions:  $j_{max} < \infty$  (must be robust as  $j_{max} \to \infty$ )
- ▶ Quasi-periodic<sup>11</sup> solutions  $A_j = \alpha_j e^{i\beta_j \tau}$  with  $\alpha_j, \beta_j \in \mathbb{R} \to \mathsf{TTF}$  equations become time-independent when  $\beta_j = \beta_0 + j(\beta_1 \beta_0)$
- ▶ TTF: conserved quantities  $^{12}$  (E,N)  $\rightarrow$  classify solutions by  $T \equiv E/N$
- Solve QP equation using Newton-Raphson method

$$2\omega_{\ell}\alpha_{\ell}\beta_{\ell} = T_{\ell}\alpha_{\ell}^{3} + \sum_{i \neq \ell} R_{i\ell}\alpha_{i}^{2}\alpha_{\ell} + \sum_{i \neq \ell} \sum_{j \neq \ell} S_{ij(i+j-\ell)\ell}\alpha_{i}\alpha_{j}\alpha_{i+j-\ell}$$

Brad Cownden

<sup>&</sup>lt;sup>10</sup>Craps et al. [1407.6273]

<sup>&</sup>lt;sup>11</sup>Balasubramanian et al. [1403.6471]

<sup>&</sup>lt;sup>12</sup>Craps et al. [1412.3249]

## Quasi-Periodic Solutions II

Solutions found for  $3 \le T \lesssim 5.5$ 



## Quasi-Periodic Solutions II

- Solutions found for  $3 \le T \le 5.5$
- $\begin{tabular}{ll} $\blacktriangle$ Able to extend \\ existing solutions \\ from $j_{max} \sim 100$ to \\ $j_{max} = 500$ \end{tabular}$
- Robust in  $i_{max} \to \infty$  limit



#### High-Temperature Families I

- ▶ Perturb by  $\delta E \rightarrow$  new solutions have energy  $E + \delta E$ , N, and  $T + \delta T$
- ▶ Solve for updated values of  $\alpha_j + \delta \alpha_j, \beta_j + \delta \beta_j$
- Use updated values as seeds to resolve QP equation
- Repeat process up to  $T_{max}^{13}$

#### High-Temperature Families I

- ▶ Perturb by  $\delta E \rightarrow$  new solutions have energy  $E + \delta E$ , N, and  $T + \delta T$
- ▶ Solve for updated values of  $\alpha_j + \delta \alpha_j$ ,  $\beta_j + \delta \beta_j$
- Use updated values as seeds to resolve QP equation
- Repeat process up to  $T_{max}^{13}$
- ▶ **Issue**:  $\delta \alpha_j, \delta \beta_j$  become larger than  $\alpha_j, \beta_j$  at high temperatures
- ▶ No solutions that remain robust as  $j_{max}$  increases

#### High-Temperature Families II



#### High-Temperature Families III

- Alternative methods for finding high-T solutions explored
- $\triangleright$  E.g. fit low  $j_{max}$ , high-T data to generate seeds for Newton-Raphson solver



Brad Cownden

#### High-Temperature Families III

- Alternative methods for finding high-T solutions explored
- $\triangleright$  E.g. fit low  $j_{max}$ , high-T data to generate seeds for Newton-Raphson solver



Brad Cownden

#### Results

- ▶ Low-T QP solutions robust as  $j_{max}$  increases
- ightharpoonup Not able to find evidence that high-T solutions continued to exist at large  $j_{max} o$  possible reduction of space of QP
- ▶ Caveat: focused on configurations where  $\alpha_0 = 1 \rightarrow$  free to set dominant energy in any  $\alpha_j \rightarrow$  other configurations required for high temperatures?
- ▶ **To do**: Motivation for temperature limit of  $T \sim 5.5$ ?
- lacktriangle Perturbative system: massless scalar, static boundary conditions at  $x=\pi/2$
- ► Extend to massive scalars, time-dependent boundary conditions → activation of non-normalizable modes

B Cownden, Examining Instabilities Due to Driven Scalars in AdS, JHEP\_252P\_0420 , [1912.07143].

▶ Driven scalars  $\rightarrow$  equation for  $\phi_1$  has inhomogeneous term at  $x = \pi/2$ 

$$\partial_t^2 \phi_1 + \hat{L}\phi_1 = \delta(x - \pi/2)\mathcal{F}(t)$$

- Driven scalars  $\rightarrow$  equation for  $\phi_1$  has inhomogeneous term at  $x = \pi/2$
- **Examine scaling behaviour as**  $x \to \pi/2$ :  $\Phi^+(x) \sim (\cos x)^{\Delta^+}$  and  $\Phi^-(x) \sim (\cos x)^{\Delta^-}$

$$\Phi^+(x) \equiv$$
 "normalizable"  $\Phi^-(x) \equiv$  "non-normalizable"

- ▶ Driven scalars  $\rightarrow$  equation for  $\phi_1$  has inhomogeneous term at  $x = \pi/2$
- Examine scaling behaviour as  $x \to \pi/2$ :  $\Phi^+(x) \sim (\cos x)^{\Delta^+}$  and  $\Phi^-(x) \sim (\cos x)^{\Delta^-}$
- Scalar field is linear combination of both kinds of modes
- $lacktriangledown e_j(x)$  are same eigenfunctions of AdS & have eigenvalues  $\omega_j=(2j+\Delta^+)$

$$\begin{split} \phi_1(t,x) &= \sum_{j=0}^\infty a_j(t) \cos \left(\omega_j t + b_j(t)\right) e_j(x) + \sum_{\alpha=0}^\infty \mathcal{A}_\alpha(t) \cos \left(\omega_\alpha t + \mathcal{B}_\alpha\right) E_\alpha(x) \\ \Delta^\pm &= \frac{d}{2} \pm \frac{1}{2} \sqrt{d^2 + 4m^2} \end{split}$$

- ▶ Driven scalars  $\rightarrow$  equation for  $\phi_1$  has inhomogeneous term at  $x = \pi/2$
- Examine scaling behaviour as  $x \to \pi/2$ :  $\Phi^+(x) \sim (\cos x)^{\Delta^+}$  and  $\Phi^-(x) \sim (\cos x)^{\Delta^-}$
- ▶ Scalar field is linear combination of both kinds of modes
- $lacktriangledown e_j(x)$  are same eigenfunctions of AdS & have eigenvalues  $\omega_j=(2j+\Delta^+)$
- $ightharpoonup E_{\alpha}(x)$  are hypergeometric functions with frequencies  $\omega_{\alpha}$  from  $\mathcal{F}(t)$

$$\phi_1(t,x) = \sum_{j=0}^{\infty} a_j(t) \cos(\omega_j t + b_j(t)) e_j(x) + \sum_{\alpha=0}^{\infty} \mathcal{A}_{\alpha}(t) \cos(\omega_{\alpha} t + \mathcal{B}_{\alpha}) \frac{E_{\alpha}(x)}{2}$$
$$\Delta^{\pm} = \frac{d}{2} \pm \frac{1}{2} \sqrt{d^2 + 4m^2}$$

#### Resonant Contributions I

 $ightharpoonup \mathcal{O}(\epsilon^3)$ : source terms for resonant contributions ightarrow examine resonance conditions

$$\omega_i + \omega_j + \omega_k = \omega_\ell$$
  

$$\omega_i - \omega_j - \omega_k = \omega_\ell$$
  

$$\omega_i + \omega_j - \omega_k = \omega_\ell$$

## Resonant Contributions I

- $ightharpoonup \mathcal{O}(\epsilon^3)$ : source terms for resonant contributions ightharpoonup examine resonance conditions
- Unforced: restrictions on indices and mass value

$$\omega_{i} + \omega_{j} + \omega_{k} = \omega_{\ell} \quad \Rightarrow \quad i + j + k = \ell - \Delta^{+} \in \mathbb{Z}^{+}$$

$$\omega_{i} - \omega_{j} - \omega_{k} = \omega_{\ell} \quad \Rightarrow \quad i - j - k = \ell + \Delta^{+} \in \mathbb{Z}^{+}$$

$$\omega_{i} + \omega_{j} - \omega_{k} = \omega_{\ell} \quad \Rightarrow \quad i + j = k + \ell \in \mathbb{Z}^{+}$$

### Resonant Contributions I

- $ightharpoonup \mathcal{O}(\epsilon^3)$ : source terms for resonant contributions ightharpoonup examine resonance conditions
- ► Unforced: restrictions on indices and mass value → two channels vanish numerically

$$\omega_{i} + \omega_{j} + \omega_{k} = \omega_{\ell} \quad \Rightarrow \quad i + j + k = \ell - \Delta^{+} \in \mathbb{Z}^{+}$$

$$\omega_{i} - \omega_{j} - \omega_{k} = \omega_{\ell} \quad \Rightarrow \quad i - j - k = \ell + \Delta^{+} \in \mathbb{Z}^{+}$$

$$\omega_{i} + \omega_{j} - \omega_{k} = \omega_{\ell} \quad \Rightarrow \quad i + j = k + \ell \in \mathbb{Z}^{+}$$

## Resonant Contributions I

- $ightharpoonup \mathcal{O}(\epsilon^3)$ : source terms for resonant contributions ightharpoonup examine resonance conditions
- lackbox Unforced: restrictions on indices and mass value o two channels vanish numerically
- ► One non-vanishing channel

$$\omega_{i} + \omega_{j} + \omega_{k} = \omega_{\ell} \quad \Rightarrow \quad i + j + k = \ell - \Delta^{+} \in \mathbb{Z}^{+}$$

$$\omega_{i} - \omega_{j} - \omega_{k} = \omega_{\ell} \quad \Rightarrow \quad i - j - k = \ell + \Delta^{+} \in \mathbb{Z}^{+}$$

$$\omega_{i} + \omega_{j} - \omega_{k} = \omega_{\ell} \quad \Rightarrow \quad i + j = k + \ell \in \mathbb{Z}^{+}$$

# Resonant Contributions II

▶ Sum over i, j with  $i+j \leq \ell$  (dots:  $a_{\ell}^3$ , triangles:  $a_i^2 a_{\ell}$ , X:  $a_i a_j a_{i+j-\ell}$ )



# Special Values of Non-normalizable Frequencies

- ▶ **Forced**:  $\omega_{\alpha}$  set by driving term
- ► Single frequency:  $\omega_{\alpha} = \bar{\omega}$   $\rightarrow$  one channel

$$\omega_i + \bar{\omega} - \bar{\omega} = \omega_\ell$$



# Special Values of Non-normalizable Frequencies

- ▶ **Forced**:  $\omega_{\alpha}$  set by driving term
- ► Single frequency:  $\omega_{\alpha} = \bar{\omega}$   $\rightarrow$  one channel
- ▶ Add to integer:  $\bar{\omega}_1 + \bar{\omega}_2 = 2n \rightarrow \text{three}$  channels

$$\begin{array}{l} (++): \omega_i + 2n = \omega_\ell \quad \forall \, \ell \geq n \\ (+-): \omega_i - 2n = \omega_\ell \quad \forall \, n \\ (-+): -\omega_i + 2n = \omega_\ell \quad \forall \, n \geq \ell + d \end{array}$$



# Flow Equations

- ► Source terms give flow equations for amplitude/phase of normalizable modes
- ▶ No naturally vanishing resonances, c.f. static boundary conditions
- $\blacktriangleright$  E.g. single frequency  $\rightarrow$  single channel  $\rightarrow$  equations decouple

$$\frac{2\omega_\ell}{\epsilon^2}\frac{da_\ell}{dt} = 0 \qquad \text{and} \qquad \frac{2\omega_\ell}{\epsilon^2}\frac{db_\ell}{dt} = f^{(\ell)}\mathcal{A}_{\bar{\omega}}^2$$

# Flow Equations

- Source terms give flow equations for amplitude/phase of normalizable modes
- ▶ No naturally vanishing resonances, c.f. static boundary conditions
- ightharpoonup E.g. single frequency ightarrow single channel ightarrow equations decouple
- ▶ E.g. add to integer  $\rightarrow$  sum all three channels  $\rightarrow$  equations are coupled with single power of normalizable amplitude

$$\frac{2\omega_{\ell}}{\mathcal{A}_{1}\mathcal{A}_{2}\epsilon^{2}} \frac{da_{\ell}}{dt} = \sum_{(++)} f_{(++)}^{(\ell)} a_{n-\ell-d} \sin(b_{n-\ell-d} - \mathcal{B}_{1} - \mathcal{B}_{2}) 
+ \sum_{(+-)} f_{(+-)}^{(\ell)} a_{\ell-n} \sin(b_{\ell-n} - \mathcal{B}_{1} - \mathcal{B}_{2}) + \sum_{(-+)} f_{(-+)}^{(\ell)} a_{\ell+n} \sin(b_{\ell+n} - \mathcal{B}_{1} - \mathcal{B}_{2}) 
- \frac{2\omega_{\ell}a_{\ell}}{\mathcal{A}_{1}\mathcal{A}_{2}\epsilon^{2}} \frac{db_{\ell}}{dt} = f^{(\ell)}a_{\ell} + \sum_{(++)} f_{(++)}^{(\ell)} a_{n-\ell-d} \cos(b_{n-\ell-d} - \mathcal{B}_{1} - \mathcal{B}_{2}) 
+ \sum_{(+-)} f_{(+-)}^{(\ell)} a_{\ell-n} \cos(b_{\ell-n} - \mathcal{B}_{1} - \mathcal{B}_{2}) + \sum_{(-+)} f_{(-+)}^{(\ell)} a_{\ell+n} \cos(b_{\ell+n} - \mathcal{B}_{1} - \mathcal{B}_{2})$$

### Results

- Confirm two of three resonant channels vanish for massive scalar (all normalizable)<sup>14</sup>
- ▶ First TTF formulation with time-dependent boundary conditions
- lacktriangle No naturally-vanishing source terms ightarrow sum resonant channels
- ▶ Some flow equations decouple amplitude/phase variables  $a_{\ell}(t)$ ,  $b_{\ell}(t)$
- N.B. normalizable modes are still present → sum resonances from both types of modes
- ► **Further work**: quasi-periodic solutions<sup>15</sup>? Conserved quantities? Energy cascades?

<sup>&</sup>lt;sup>14</sup>Biasi *et al.* [1810.04753]

<sup>&</sup>lt;sup>15</sup>Carracedo *et al.* [1612.07701]

- ► Examine the stability of AdS to scalar field collapse in various dimensions in perturbative & non-perturbative regimes
- ▶ Addition of time-dependent boundary conditions to TTF description

- ► Examine the stability of AdS to scalar field collapse in various dimensions in perturbative & non-perturbative regimes
- ▶ Addition of time-dependent boundary conditions to TTF description
- ▶ Constructed phase diagram of scalar field collapse in  $AdS_5 \rightarrow two$  new phases on "shorelines"  $\rightarrow$  non-perturbative regime only
- ► First evidence of weakly chaotic evolution of scalars in AdS<sub>5</sub>

- ▶ Examine the stability of AdS to scalar field collapse in various dimensions in perturbative & non-perturbative regimes
- Addition of time-dependent boundary conditions to TTF description
- Constructed phase diagram of scalar field collapse in  $AdS_5 \rightarrow two$  new phases on "shorelines"  $\rightarrow$  non-perturbative regime only
- First evidence of weakly chaotic evolution of scalars in AdS<sub>5</sub>
- ▶ Verified low-T QP solutions are robust in the  $j_{max} \to \infty$  limit
- ▶ No evidence of high-T QP solutions for  $\alpha_0 = 1$  family

- ► Examine the stability of AdS to scalar field collapse in various dimensions in perturbative & non-perturbative regimes
- ► Addition of time-dependent boundary conditions to TTF description
- ▶ Constructed phase diagram of scalar field collapse in  $AdS_5 \rightarrow two$  new phases on "shorelines"  $\rightarrow$  non-perturbative regime only
- First evidence of weakly chaotic evolution of scalars in AdS<sub>5</sub>
- ▶ Verified low-T QP solutions are robust in the  $j_{max} \rightarrow \infty$  limit
- ▶ No evidence of high-T QP solutions for  $\alpha_0 = 1$  family
- Developed perturbative theory for massive scalars with time-dependent boundary conditions
- ▶ Derived flow equations for amplitude/phase variables for some choices of driving term → evaluated source terms numerically

#### **Thanks**

- Supervisor: Andrew Frey
- PhD Committee: Derek Krepski, Gabor Kunstatter, Robert Mann, Khodr Shamseddine
- ► Co-authors: Nils Deppe
- University of Winnipeg and University of Manitoba
- Westgrid & Compute Canada

### References

- ▶ J. Maldacena, *The Large N limit of superconformal field theories and supergravity*, Int. J. Theor. Phys. 38 (1999) 1113-1133, [hep-th/9711200].
- ▶ P. Bizoń and A. Rostworowski, *On weakly turbulent instability of anti-de Sitter space*, Phys. Rev. Lett. 107 (2011) 031102, [1104.3702].
- ▶ M. Choptuik, *Universality and scaling in gravitational collapse of a massless scalar field*, Phys. Rev. Lett. 70 (1993) 9-12.
- ▶ N. Deppe and A. R. Frey, Classes of Stable Initial Data for Massless and Massive Scalars in Anti-de Sitter Spacetime, JHEP 12 (2015) 004, [1508.02709].
- ▶ R. Brito, V. Cardoso, and J. V. Rocha, *Interacting shells in AdS spacetime and chaos*, Phys. Rev. D94 (2016), no. 2 024003, [1602.03535].
- ▶ N. Deppe, A. Kolly, A. R. Frey, and G. Kunstatter, *Black Hole Formation in AdS Einstein-Gauss-Bonnet Gravity*, J. High Energ. Phys. (2016) 2016: 87, [1608.05402].
- ▶ A. Buchel, S. L. Liebling, and L. Lehner, *Boson Stars in AdS Spacetime*, Phys. Rev. D87 (2013) 123006, [1304.4166].

#### References

- ▶ V. Balasubramanian, A. Buchel, S. R. Green, L. Lehner, and S. L. Liebling, Holographic Thermalization, Stability of Anti-de Sitter Space, and the Fermi-Pasta-Ulam Paradox, Phys. Rev. Lett. 113 (2014) 071601, [1403.6471].
- ▶ B. Craps, O. Evnin, and J. Vanhoof, *Renormalization group, secular term resummation and AdS (in)stability*, JHEP 10 (2014) 048, [1407.6273].
- ▶ B. Craps, O. Evnin, and J. Vanhhof, *Renormalization, averaging, conservation laws and AdS (in)stability*, J. High Energ. Phys. 1501 (2015) 108, [1412.3249].
- ▶ S. R. Green, A. Maillard, L. Lehner, and S. L. Liebling, *Islands of stability and recurrence times in AdS*, Phys. Rev. D92 (2015) 084001, [1507.08261].
- ▶ A. Biasi, B. Craps, and O. Evnin, *Energy Returns in Global AdS*<sub>4</sub>, [1810.04753].
- ▶ P. Carracedo, J. Mas, D. Musso and A. Serantes, *Adiabatic pumping solutions in global AdS*, JHEP 05 (2017) 141, [1612.07701].