California Wildfires

Carly Sharma, Jake Parker, Adam Zucker

Problem Statement

We've set out to predict the potential severity of future fires based on past fire data, weather patterns and atmospheric pressure within California.

STEP 1 Gathering Data

STEP 2 Analysing Data

STEP 3 Creating a Model

Gathering Data

DATA GATHERING: 3 TYPES

Atmospheric Carbon Data

NOAA Weather Data (12 unique CSVs)

GENERAL DATA CLEANING

- Drop high percentage of nulls
- Drop categories that were irrelevant(ex. all fires 100% contained)
- Average weather station data by county
- Rounded fires to counties and month.

MERGE 15 DATAFRAMES: Weather Stations

STATION	NAME	LAT	LONG
USW0002 3190	SANTA BARBARA MUNICIPA L AIRPORT, CA US	34.4258	-119.8425
USW0002 3232	SACRAME NTO EXECUTIV E AIRPORT, CA US	38.5069	-121.495

COUNTY NAME

Santa Barbara

Sacramento

Image from https://geopy.readthedocs.io/en/stable/

Analysing Data

FEATURE ENGINEERING

COLUMNS CREATED:

- Month
- Season
- Duration (of fire)
- Bins (of acres burned)

FEATURE ENGINEERING: Bins

- Bin 1: 50 acres or below
- Bin 2: 100 acres or below, and greater than 50 acres
- Bin 3: 250 acres or below, and greater than 100 acres
- Bin 4: 500 acres or below, and greater than 250 acres
- Bin 5: 1000 acres or below, and greater than 500 acres
- Bin 6: Greater than 1000 acres

FEATURE ENGINEERING: Seasons

FEATURE ENGINEERING: Duration

Duration = Fire Extinguished - Fire StartedDuration ratio = Acres Burned / Duration

CORRELATION FINDINGS: Weather Data

Avoid Multicollinearity:

Drop weather data that is over 80% correlated to one another

Modeling

TARGET & BASELINE ACCURACY

- Multiclass Classification Problem
- Our target is to classify fires into bins representing severity
 - An engineered feature based on acres burned
 - Fires are binned smallest to largest, 1 to 6
- Baseline Accuracy: 39%
 - Bin 1: 50 acres or below

MODELS

Logistic Regression

- A simple model to predict categorical outcomes
- Similar to a linear model in structure

KNN

- Supervised Machine Learning
- Assumes if points are near each other they are related

MODELS

Random Forest

- An industry standard model for classification
- Improves decoupling of our decision trees
- Every tree in the forest gets a "vote"

SVC

- Kernel Support Vector Classifier
- Our model displays moderate accuracy, but lacks potentially crucial interpretability

Results

	Training Accuracy	Testing Accuracy
Logistic Regression	55.58%	42.85%
Support Vector	48.97%	51.65%
K Nearest Neighbor	43.72%	38.46%
Random Forest	99.86%	100%

RESULTS: Seasonality and Severity of Fires

RESULTS: Acres Burned to Average Monthly Prec.

RESULTS: Acres Burned to Average Extreme Temp

RESULTS: Acres Burned to Average Elevation

Recommendations & Conclusions

RECOMMENDATIONS: Hire extra crews for

- Counties in higher elevations
- If there has been low rain amounts for the season
- If there has been an extreme monthly temp. above 90 deg.
- Summer/Fall season (specifically July you can expect a lot of small fires to occur)

RECOMMENDATIONS: Helping at risk areas

- Controlled burns in at risk areas
- Clear fuel for wildfires
- Reallocation of resources and firefighting units based on environmental and weather conditions

FURTHER EXPLORATION:

- Look at wind speeds, look at daily numbers instead of monthly
- Compare rural vs. urban areas
- Look at a longer time period
- Research climate change in more depth

Questions?

SOURCES

- Kaggle California Wildfire Incidents Dataset
- NOAA Meteorological Datasets
- NOAA/Mauna Loa Observatory Atmospheric Carbon Dataset
- California Department of Forestry and Fire Protection