ឧទាហរណ៍០១៖ ចូររក $I_{\scriptscriptstyle D}$ និង $V_{\scriptscriptstyle D}$ នៅក្នុងសៀគ្វីខាងក្រោម។

រក I_D និង V_D ៖

ដោយនៅក្នុងសៀគ្វី ឌីយ៉ូតស្ថិតនៅក្នុងប៉ូលកកម្មស្រប យើងសន្មត σ ឌីយ៉ូតចម្លងចរន្តអគ្គិសនី ហេតុនេះយើងបាន តង់ស្យុងរវាងគោលរបស់ឌី យ៉ូតគឺ $V_{\rm D}=0.7~{
m V}$ ។

ដោយអនុវត្ត KVL យើងបាន៖

$$\begin{split} -10 + & \left(10 \text{ k}\Omega\right)I_{\text{D}} + 0.7 = 0 \\ \Rightarrow \qquad I_D = & \frac{\left(10 - 0.7\right) \text{ V}}{10 \text{ k}\Omega} = \frac{9.3 \text{ V}}{10 \times 10^3 \Omega} \\ = & 0.93 \times 10^{-3} \text{ A} = 0.93 \text{ mA} \end{split}$$

ឧទាហរណ៍០២៖ ចូររកតម្លៃ $I_{\scriptscriptstyle D}$ $V_{\scriptscriptstyle D1}$, $V_{\scriptscriptstyle D2}$ និង $V_{\scriptscriptstyle R}$ នៅក្នុងសៀគ្វីខាងក្រោម។

រក $I_{\scriptscriptstyle D}$ $V_{\scriptscriptstyle D1},$ $V_{\scriptscriptstyle D2}$ និង $V_{\scriptscriptstyle R}$ ៖

ដោយឌីយ៉ូត D_1 និង D_2 ស្ថិតនៅក្នុងប៉ូលកកម្មស្រប យើងសន្មត ថា ឌីយ៉ូតទាំងពីរចម្លងចរន្តចរន្តអគ្គិសនី ហេតុនេះយើងបាន តង់ស្យុងរវាង គោលរបស់ឌីយ៉ូតគឺ $V_{\rm D1}=0.7~{
m V}$ និង $V_{D2}=0.3~{
m V}$ ។

ដោយអនុវត្ត KVL យើងបាន៖

$$-10 + V_{D1} + V_{D2} + V_{R} = 0$$

$$\Leftrightarrow$$
 $-10+0.7+0.3+V_R=0$

$$\Rightarrow$$
 $V_R = 9 \text{ V}$

អនុវត្តច្បាប់អូមចំបោះ $R = 1.2 \ \mathrm{k}\Omega = 1200 \ \Omega$ យើងបាន៖

$$V_R = I_D R$$

$$\Rightarrow I_D = \frac{V_R}{R} = \frac{9}{1200} = 0.0075 \text{ A} = 7.5 \text{ mA}$$

ដូចនេះ $I_D = 7.5 \text{ mA}, \ V_{D1} = 0.7 \text{ V}, \ V_{D2} = 0.3 \text{ V}$ និង $V_R = 9 \text{ V}$ ។

ឧទាហរណ៍០៣៖ ចូររកតម្លៃ $I_{\scriptscriptstyle D}$ $V_{\scriptscriptstyle R}$ និង $V_{\scriptscriptstyle D}$ នៅក្នុងសៀគ្វីខាងក្រោម។

រក $I_D^{}$ $V_R^{}$ និង $V_D^{}$ ៖

ដោយនៅក្នុងសៀគ្វី ឌីយ៉ូតស្ថិតនៅក្នុងប៉ូលកកម្មច្រាស ហេតុនេះឌី យ៉ូតមិនចម្លងអគ្គិសនីទេ គេថាឌីយ៉ូតគាំង ហើយឌីយ៉ូតសមមូលនឹងសៀគ្វីចំ ហ។ យើងបាន ចរន្តអគ្គិសនីដែលឆ្លងកាត់ឌីយ៉ូតគឺ $I_{
m D}=0$ A ។

អនុវត្តច្បាប់អូមចំពោះរេស៊ីស្តរ R យើងបាន៖

$$V_R = I_D R = 0 \times R = 0 \text{ V}$$

ដោយអនុវត្ត KVL យើងបាន៖

$$-10 - V_D + V_R = 0$$

$$\Leftrightarrow$$
 $-10-V_{\rm D}+0=0$

$$\Rightarrow$$
 $V_D = -10 \text{ V}$

ដូចនេះ $\underline{\underline{I_D} = 0 \text{ A}, \ V_D = -10 \text{ V}}$ និង $\underline{\underline{V_R} = 0 \text{ V}}$ ។

ឧទាហរណ៍០៤៖ ចូររកតម្លៃ $I_{\scriptscriptstyle D}$ $V_{\scriptscriptstyle D1}$, $V_{\scriptscriptstyle D2}$ និង $V_{\scriptscriptstyle R}$ នៅក្នុងសៀគ្វីខាងក្រោម។

<u>ដំណោះស្រាយ</u>

រក $I_{\scriptscriptstyle D}$ $V_{\scriptscriptstyle D1}$, $V_{\scriptscriptstyle D2}$ និង $V_{\scriptscriptstyle R}$ ៖

ដោយនៅក្នុងសៀគ្វីឌីយ៉ូតទាំងពីរតជាស៊េរីនឹងគ្នា ហើយឌីយ៉ូត D_1 ស្ថិតនៅក្នុងប៉ូលកម្មស្រប ប៉ុន្តែឌីយ៉ូត D_2 ស្ថិតនៅក្នុងប៉ូលកកម្មច្រាស ដូច នេះយើងបាន៖ $I_D=0$ A និង $V_{D1}=0$ V ។

អនុវត្តច្បាប់អូមចំពោះ $R\!=\!1.2~\mathrm{k}\Omega\!=\!1200~\Omega$ យើងបាន៖

$$V_R = I_D R = 0 \times R = 0 \text{ V}$$

ដោយអនុវត្ត KVL យើងបាន៖

$$-10 + V_{D1} - V_{D2} + V_{R} = 0$$

$$\Leftrightarrow -10 + 0 - V_{D2} + 0 = 0$$

$$\Rightarrow$$
 $V_{D2} = -10 \text{ V}$

ដូចនេះ
$$I_D = 0$$
 A, $V_{D1} = 0$ V, $V_{D2} = -10$ V និង $V_R = 0$ V