

Section 11.4

B.H.

Section 11.4 Cross Product

MATH211 Calculus III

Instructor: Ben Huang

DEPARTMENT OF COMPUTING, MATHEMATICS AND PHYSICS

Section 11.4 B.H.

Suppose $\mathbf{u} = u_1\mathbf{i} + u_2\mathbf{j} + u_3\mathbf{k}$, $\mathbf{v} = v_1\mathbf{i} + v_2\mathbf{j} + v_3\mathbf{k}$. What is the cross product $\mathbf{u} \times \mathbf{v}$?

Section 11.4

B.H.

Suppose $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$, $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$. What is the cross product $\mathbf{u} \times \mathbf{v}$?

$$\mathbf{u} \times \mathbf{v} = (u_2v_3 - u_3v_2)\mathbf{i} + (u_3v_1 - u_1v_3)\mathbf{j} + (u_1v_2 - u_2v_1)\mathbf{k}.$$

Section 11.4 B.H.

Suppose $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$, $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$. What is the cross product $\mathbf{u} \times \mathbf{v}$?

$$\mathbf{u} \times \mathbf{v} = (u_2 v_3 - u_3 v_2)\mathbf{i} + (u_3 v_1 - u_1 v_3)\mathbf{j} + (u_1 v_2 - u_2 v_1)\mathbf{k}.$$

What is the special relation between the directions of $\mathbf{u} \times \mathbf{v}$ and \mathbf{u} or \mathbf{v} ?

Section 11.4 B.H.

Suppose $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$, $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$. What is the cross product $\mathbf{u} \times \mathbf{v}$?

$$\mathbf{u} \times \mathbf{v} = (u_2 v_3 - u_3 v_2)\mathbf{i} + (u_3 v_1 - u_1 v_3)\mathbf{j} + (u_1 v_2 - u_2 v_1)\mathbf{k}.$$

What is the special relation between the directions of $\mathbf{u} \times \mathbf{v}$ and \mathbf{u} or \mathbf{v} ? $\mathbf{u} \times \mathbf{v}$ is orthogonal to both \mathbf{u} and \mathbf{v} .

Section 11.4 B.H. How is $\|\mathbf{u} \times \mathbf{v}\|$ related to $\|\mathbf{u}\|$, $\|\mathbf{v}\|$, and θ ?

Section 11.4 B.H. How is $\|\mathbf{u} \times \mathbf{v}\|$ related to $\|\mathbf{u}\|$, $\|\mathbf{v}\|$, and θ ?

 $\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta =$ the area of the parallelogram.

Section 11.4

B.H.

What is the torque?

Section 11.4

B.H.

What is the torque?

M (or
$$\tau$$
) = $\overrightarrow{PQ} \times \mathbf{F}$.

Section 11.4 B.H.

What is the torque?

$$\mathbf{M} \ (\mathsf{or} \ \tau) = \overrightarrow{PQ} \times \mathbf{F}.$$

Remark: The torque is a vector, NOT a number.

The Right Hand Rule

Section 11.4 B.H.

The Cross Product of the Standard Unit Vectors

Section 11.4 B.H.

Exercise. According to the right hand rule and the magnitude formula, find

- i × j.
- $\mathbf{j} \times \mathbf{i}$.
- $\mathbf{i} \times \mathbf{k}$.
- $\mathbf{k} \times \mathbf{j}$.
- $\mathbf{k} \times \mathbf{i}$.
- \bullet i \times k.

The General Formula

Section 11.4 B.H.

Suppose $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$, $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$. If distributivity is to be respected, we must have the following.

The General Formula

Section 11.4 B.H.

Suppose $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$, $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$. If distributivity is to be respected, we must have the following.

$$\mathbf{u} \times \mathbf{v} = (u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}) \times (v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k})$$

$$= u_1 v_1 \mathbf{i} \times \mathbf{i} + u_1 v_2 \mathbf{i} \times \mathbf{j} + u_1 v_3 \mathbf{i} \times \mathbf{k}$$

$$+ u_2 v_1 \mathbf{j} \times \mathbf{i} + u_2 v_2 \mathbf{j} \times \mathbf{j} + u_2 v_3 \mathbf{j} \times \mathbf{k}$$

$$+ u_3 v_1 \mathbf{k} \times \mathbf{i} + u_3 v_2 \mathbf{k} \times \mathbf{j} + u_3 v_3 \mathbf{k} \times \mathbf{k}$$

$$= (u_2 v_3 - u_3 v_2) \mathbf{i} + (u_3 v_1 - u_1 v_3) \mathbf{j} + (u_1 v_2 - u_2 v_1) \mathbf{k}.$$

Pin Support

Section 11.4 B.H.

Suppose a force $\mathbf{F} = 2\mathbf{i} - 3\mathbf{j} + \mathbf{k}$ is acting on the lever at (1, 1, 1).

- Find the torque of **F** about the origin.
- If the lever is stuck, find the force $\langle F_x, F_y, F_z \rangle$ at the pin support.
- If the lever can rotate freely about pin, find the couple moment $\langle M_x, M_y, M_z \rangle$ at the pin support.