

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «МИРЭА –Российскийтехнологическийуниверситет» РТУ МИРЭА

Институт кибербезопасности и цифровых технологий

Кафедра КБ-4 «Интеллектуальные системы информационной безопасности»

Дисциплина «Технологии извлечения знаний из больших данных»

Отчет о проделанной практической работе

Выполнил студент 1 курса Группы: ББМО-01-25 Мухаметшин Александр Ринатович

ОГЛАВЛЕНИЕ

ЗАДАНИЕ	3
ХОД РАБОТЫ	4
ВЫВОД	18

ЗАДАНИЕ

Часть 1.

Построить прогностическую модель для набора данных в файле, проверить связь признаков, построить прогностические модели и модели тренда линейного и квадратичного. Оценить погрешность. (Можно использовать язык программирования)

Часть 2.

Разработать прогностическую модель для набора данных диабетических обследований diabetes.txt. Использовать логистическую регрессию, и метод максимального правдоподобия. Коэффициенты логистической регрессии найти с помощью метода градиентного спуска, который необходимо запрограммировать вручную. Разбить выборку на обучающую и тестовую. Вычислить точность классификации.

Применить отбор признаков на основе корреляции: выбрать наилучшее признаковое пространство, имеющее на два измерения меньше исходного. Построить новую модель и вычислить точность классификации. (Используя Pyhton или любой другой язык программирования)

ХОД РАБОТЫ

Часть 1

показателем z.

Для начала работы были сформированы новые исходные данные (рис.

1).

Рисунок 1 — Исходные данные и графический анализ по ним Основываясь на графике был сформулирован вывод по нему.

ВЫВОД: На графике видно, что показатель z до конца 2017 года увеличивается плавными темпами, затем с 2018 года начинает расти ускоренно и после 2019 года демонстрирует резкий рост, который продолжается вплоть до 2022 года. Одновременно показатель x до 2019 года растет устойчиво, достигая максимума в 2020 году, а затем постепенно снижается. Показатель у с 2013 по 2018 годы растет медленно, затем после 2018 года резко снижается и к концу периода стабилизируется на низком уровне. Представляется, что имеется тесная обратная связь между показателем z и результирующим показателем x, а также некоторая зависимость между у и x только на отдельных временных интервалах. Можно предположить, что показатель у ведет себя без учета x. Для проверки необходимо

Рисунок 2 – Вывод по графику

рассчитать линейные коэффициенты корреляции между показателем х и показателем у, а также между х и

Были рассчитаны линейные коэффициенты корреляции между показателями x и y (рис. 3), а также между показателями x и z (рис. 4) и сделаны соответствующие выводы по данным расчетам.

	Сходны		ффицион			ные расчеть	роизводством ы
ремен	Спрос	Пр-во	_			2	.
u	X	v	x - x	y - y	$(x-x)^2$	$(y-y)^2$	$ (x-\overline{x})^*(y-y) $
2013	40	31	-12,80	-2,50	163,84	6,25	32,00
2014	44	34	-8,80	0,50	77,44	0,25	-4,40
2015	45	35	-7,80	1,50	60,84	2,25	-11,70
2016	52	37	-0,80	3,50	0,64	12,25	-2,80
2017	54	37	1,20	3,50	1,44	12,25	4,20
2018	58	39	5,20	5,50	27,04	30,25	28,60
2019	60	35	7,20	1,50	51,84	2,25	10,80
2020	61	34	8,20	0,50	67,24	0,25	4,10
2021	59	27	6,20	-6,50	38,44	42,25	-40,30
2022	55	26	2,20	7,50	4,84	56,25	-16,50
Σ	528,00	335,00		•			
	Средние	э значені		Линейный	й коэффици	ент корреля	С исп. функ. КОРРЕЛ
	x =	<u>y</u> =		r(x,y) =	0.	01	0,01
	52,80	33,50		. (,)	-,		-,
	Вывод Связь с		ный коэ	_ ффициент	г корреляц	⊔ ии между >	си у равен 0.0

Рисунок 3 — Расчет линейного коэффициента корреляции между х и у

		Расчет ли е данные	неиного ко			и между спрос ные расчеть	
	х	е данные Z	$x - \overline{x}$		Υ		$(x-\overline{x})*(z$
	40	5,3		-15,13	163,84	228,92	193,66
	44	5,8	-8,80	-14,63	77,44	214,04	128,74
	45	7	-7,80	-13,43	60,84	180,36	104,75
	52	7,7	-0,80	-12,73	0,64	162,05	10,18
	54	10,1	1,20	-10,33	1,44	106,71	-12,40
	58	13,8		-6,63	27,04	43,96	-34,48
	60	18,9		1,53	51,84	2,34	-11,02
	61	30,1		9,67	67,24	93,51	79,29
	59	45,5		25,07	38,44	628,50	155,43
	55	, -	2,20	39,67	4,84	1573,71	87,27
Ξ	528,00	204,30					
	Средние	значения		Линейный і	коэффициент	корреляции	С исп. функ. КОРРЕЛ
	$\frac{\overline{x}}{52,80}$	<u>z</u> =		r(x,z) =	0,	56	0,56
	Вывод	: Линей	ный коэ	ффициент	г корреляц	ии между х	ки z равен

Рисунок 4 — Расчет линейного коэффициента корреляции между х и z

Был сделан прогноз показателя х и z по двум вариантам уравнений тренда (рис. 5-6). На рисунке 7 рассчитаны ошибки аппроксимации и сделан вывод о том, какой прогноз более достоверен.

Исходны	е данные		Вспомог	ательные ра	счеты	
Периоды		Условное обоз	вначение врем		xt	xt ²
времени	X	t	t²	t⁴	χ.	Χt
2013	40	-5	25	625	-200	1000
2014	44	-4	16	256	-176	704
2015	45	-3	9	81	-135	405
2016	52	-2	4	16	-104	208
2017	54	-1	1	1	-54	54
2018	58	1	1	1	58	58
2019	60	2	4	16	120	240
2020	61	3	9	81	183	549
2021	59	4	16	256	236	944
2022	55	5	25	625	275	1375
Σ	528	0	110	1958	203	5537
Расчет па	раметров л	инейного и ке	Вадратическ	ого тренда		
Линейный			атический т			
	+ a ₁ * t		= b ₀ + b ₁ * t +			
a ₀ =	52,8	b ₀ =	1	79		
a ₁ =	1,85	b ₁ =		.85		
	1,00	b ₂ =	-	,36		
		52	-0	,50		
Периоды	Исходные	данные		Расчетные	е данные	
времени	X	t	x^	X^^	$(X^{\Lambda} - X)^2$	$(X^{\Lambda\Lambda} - X)^2$
2013	40	-5	43,57	38,50	12,76	2,25
2014	44	-4	45,42	43,61	2,01	0,15
2015	45	-3	47,26	47,99	5,12	8,93
2016	52	-2	49,11	51,65	8,36	0,13
2017	54	-1	50,95	54,58	9,27	0,33
2018	58	1	54,65	58,27	11,25	0,07
2019	60	2	56,49	59,03	12,31	0,95
2020	61	3	58,34	59,06	7,09	3,76
2021	59	4	60,18	58,37	1,40	0,40
2022	55	5	62,03	56,96	49,38	3,82
Σ	528	0	528	528	119,0	20,8

Рисунок 5 — Расчет показателей тредов для ${\bf X}$

Периоды		Условное с	бозначение	времени	vt	2
времени	У	t	t ²	t⁴	yt	yt ²
2013	33	-5,0	25,0	625,0	-165,0	825,0
2014	34	-4,0			-136,0	544,0
2015	35	-3,0	9,0	81,0	-105,0	315,0
2016	36	-2,0	4,0	16,0	-72,0	144,0
2017	38	-1,0	1,0	1,0	-38,0	38,0
2018	38	1,0	1,0	1,0	38,0	38,0
2019	36	2,0	4,0	16,0	72,0	144,0
2020	33	3,0	9,0	81,0	99,0	297,0
2021	29	4,0	16,0	256,0	116,0	464,0
2022	27	5,0	25,0	625,0	135,0	675,0
Σ	339,0	0,0	110,0	1958,0	-56,0	3484,0
Пинейны	й тренд у	Квадра	тический	тренд у		
y^ = a ₀) + a ₁ * t	y^^ =	b ₀ + b ₁ * t	+ b ₂ *t ²		
a ₀ =	33,9	b ₀ =	37	,50		
a ₁ =	-0,51	b ₁ =	-0,	,51		
	I	b ₂ =		,33		

Периоды	Исходные д	анные		Расчетные данные				
времени	у	t	y^	y^^	$(y^{-}y)^2$	(y^^ - y) ²		
2013	31	-5,0	36,4	31,9	29,7	0,7		
2014	34	-4,0	35,9	34,3	3,7	0,1		
2015	35	-3,0	35,4	36,1	0,2	1,2		
2016	37	-2,0	34,9	37,2	4,3	0,0		
2017	37	-1,0	34,4	37,7	6,7	0,5		
2018	39	1,0	33,4	36,7	31,5	5,4		
2019	35	2,0	32,9	35,2	4,5	0,0		
2020	34	3,0	32,4	33,0	2,6	0,9		
2021	27	4,0	31,9	30,2	23,7	10,4		
2022	26	5,0	31,4	26,8	28,7	0,6		
Σ	335,0	0,0	339,0	339,0	135,6	19,9		

Рисунок 6 – Расчет показателей тредов для Y

	Ошибки а	ппроксимац	ии для разнь	ых уравнени	и тренда	
	Вид у	<i>фавнения тр</i>	енда	Оши	1 бка	
	x-	$^{\bullet}$ = a_0 + a_1 *	t	$\sigma_1 =$	3,45	
	x^^ =	b ₀ + b ₁ * t +	⊦ b₂*t²	$\sigma_2 =$	1,44	
	y.	$^{\wedge} = c_0 + c_1^{*}$	t	$\sigma_3 =$	3,68	
		d ₀ + d ₁ * t +	_	σ_4 =	1,41	
	Расчет прогн	озных значе	ений по трен,	ду		
	Вид у	<i>равнения тр</i>	енда	Прогноз	Ошибка	
	X:	* = a_0 + a_1 *	t	63,87	3,45	,
	x^^ =	b ₀ + b ₁ * t +	⊦ b₂*t²	54,82	1,44	(прогноз на 1 год
	y	$^{\wedge} = c_0 + c_1^{*}$	t	30,85	3,68	
	y^^ =	d ₀ + d ₁ * t +	+ d ₂ *t ²	22,66	1,41	
DI	ІВОД:					
(укажите, прогнозных считаете	какое из значений Вы более ім и почему)	что квадрат 1,44) более она лучше с Для переме также оказы (с ошибкой з обеих пере прогнозиров	нализа ошиб тическая мод точна, чем лю описывает не енной у квад вается более 3,68). Таким с еменных (х ания, так н ооксимации и	ель для перинейная (с от пинейные за ратический те точным по образом, квадия и у) п	ременной х шибкой 3,45 кономерност гренд (с ощ сравнению фатические редпочтител монстрирую	(с ошибкой), поскольку и в данных. ибкой 1,41) с линейным тренды для тьнее для т меньшие

Рисунок 7 – Ошибки аппроксимации и вывод

Далее были рассчитаны параметры уравнения парной линейной регрессии, выражающей зависимость между показателем х и тем из двух показателей (у или z), с которым связь показателя х более сильная (рис. 8). Рассчитаны ошибка аппроксимации и индекс детерминации, сделан вывод о том, насколько хорошо построенное уравнение отражает существующую зависимость (рис 9).

	Beauer		DOD BODILO		i nornocciui /	00 TOURS E)
					і регрессии (параметров у	
					$X = k_0 + k_1^* z$	
	14	Вспомогательные расчеты				
	Исходные	е данные	Расчет па	раметров	Расчет ог	шибки(σ)
	X	Z	z ²	z*x	$x_z=k_0+k_1*z$	$(x - x_z)^2$
	40,0	5,3	28,1	212,0	49,5	90,6
	44,0	5,8	33,6	255,2	49,6	31,7
	45,0	7,0	49,0	315,0	49,9	23,9
	52,0	7,7	59,3	400,4	50,0	3,8
	54,0	10,1	102,0	545,4	50,6	11,8
	58,0	13,8	190,4	800,4	51,4	44,1
	60,0	18,9	357,2	1134,0	52,5	56,7
	61,0	30,1	906,0	1836,1	54,9	37,2
	59,0	45,5	2070,3	2684,5	58,2	0,6
	55,0	60,1	3612,0	3305,5	61,4	41,0
Σ	528,0	204,3	7408,0	11488,5	528,0	341,5
	Параметры	регрессии				
	k ₀ =	48,4				
	k ₁ =	0,22				

Рисунок 8 – Расчет параметров парной линейной регрессии

Ошибка ап	проксимации					
$\sigma_5 =$	5,84					
	погрешно переменн	сть, свиде ыми х и	етельствуе z. Однако	т о положите для повыш	, несмотря н льной коррел ения точност ые модели, с	пяции межд ги прогнозо
	1			остей в данн		

Рисунок 9 – Ошибка аппроксимации, индекс детерминации и вывод

В конце был выполнен прогноз показателя, выбранного ранее, по любому из уравнений тренда и рассчитайте прогноз спроса по уравнению регрессии. Расчеты приведены на рисунках 10-12.

ЗАДАНИЕ 6.Расчет прогноза цены по тренду и прогноза результирующего показателя х по регрессии)

 Используя формулы для расчета параметров тренда, из таблицы, построенной в задании 4, заменив исходный ряд (х) на ряд значений выбранного факторного показателя (у или z), и рассчитайте параметры уравнений тренда для расчета прогнозного значения этого показателя.

	ЧАНИЕ:			еделенности ук		ь z, но это может	быть и у
	z	Условное обозн	начение времен t ²	uu t ⁴	z*t	z*t²	
	5,3	-5	25	625	-26,5	132,5	
	5,8		16	256	-23,2	92,8	
	7	-3	9	81	-21	63	
	7,7	-2	4	16	-15,4	30,8	
	10,1		1	1	-10,1	10,1	
	13,8	1	1	1	13,8	13,8	
	18,9		4	16	37,8	75,6	
	30,1	3	9	81	90,3	270,9	
	45,5		16	256	182	728	
	60,1	5	25	625	300,5	1502,5	
Σ	204,3	0	110	1958	528,2	2920	
		Линейный тре	энд z	Квадратическ	кий тренд z		
		z^ = u	+ u ₁ * t	z^/	$^{+} = w_0 + w_1^{*} t +$	· w*t²	
		u ₀ =	20,43	w ₀ =	10,54		
		u ₁ =	4,80	w ₁ =	4,80		
				w ₂ =	0,90		
					4		

Рисунок 10 — Расчет параметров уравнений трендов

	Исходные	данные					
	Z	t	z^	z^^	$(z^{\Lambda} - z)^2$	$(z^{\Lambda} - z)^2$	
	5,3	-5	-3,58	9,01	78,84	13,78	
	5,8	-4	1,22	5,72	20,95	0,01	
	7	-3	6,02	4,23	0,95	7,70	
	7,7	-2	10,83	4,53	9,77	10,04	
	10,1	-1	15,63	6,63	30,56	12,01	
	13,8	1	25,23	16,24	130,69	5,95	
	18,9	2	30,03	23,74	123,96	23,41	
	30,1	3	34,84	33,04	22,42	8,62	
	45,5	4	39,64	44,13	34,37	1,87	
	60,1	5	44,44	57,03	245,26	9,43	
Σ	204,30	0,00	204,30	204,30	697,78	92,80	
		Оши	бки аппрокси	иации для ра	зных уравнений	тренда	
		Ви	д уравнения т	ренда	Оші	ибка	
			$z^{*} = u_0 + u_1^{*}$	t	σ_1 =	8,35	
		z^	$^{*} = w_0 + w_1^{*} t$	+ w*t²	σ_2 =	3,05	
		Расцет про	гнозных знач	ыний помазата	TO TOPHOV		
			д уравнения т		Прогноз	Ошибка	1.
			$z^{*} = u_0 + u_1^{*}$		49,24		(прогноз 1 год
		z^	$^{\wedge} = w_0 + w_1^* t$	+ w*t²	71,72	3,05	вперед

Рисунок 11 – Расчет ошибок аппроксимации

	Расчет прогнозных значений г	показателя х по	регрессии		
	Вид уравнения регрессии	Прогноз	Ошибка		
	$x^* = k_0 + k_1^* z$	64,18	5,84		
ВОД (заключительный):	Проведенные расчеты и анализ свид	етельствуют, чт	о квадратические		
JELECH (GAIGING INTENSION).	модели обеспечивают более высокую точность прогнозирования по сравнению с линейными. Это позволяет более эффективно выявлять				
	взаимосвязи между показателями и формировать обоснованные прогнозы. Наиболее точным прогнозом для показателя z является				
	значение 68,18, полученное с и тренда, которое рекомендуется прим	спользованием	квадратического		
	за его большей точности. Прогноз д				
	регрессии, составляет 55,55, что	также подтвержд	цает надежность		

Рисунок 12 — Расчет прогнозных значений показателя x по регрессии и вывод Часть 2

Сначала импортируем необходимые библиотеки для работы с данными и моделями машинного обучения. Используются pandas для работы с данными, CatBoostClassifier для построения модели на основе градиентного бустинга, sklearn для логистической регрессии, разбиения данных и вычисления метрик, а также питру для численных операций. Импорт моделей показан на рисунке 13.

Рисунок 13 – Импорт библиотек

Загружаем набор данных diabetes.xlsx с помощью pandas.read_excel. Выводим первые пять строк данных с помощью df.head() для ознакомления с их структурой. Также проверяем размеры данных (df.shape) и типы данных (df.dtypes) для анализа. Код и результат работы показан на рисунках 14-15.

Рисунок 14 – Импорт датасета и проверка данных

Рисунок 15 – Вывод типов данных датасета

Данные успешно загружены, содержат 768 строк и 9 столбцов (8 признаков и целевая переменная "Диагноз"). Признаки включают "Беременность", "Глюкоза", "АД", "Толщина КС", "Инсулин", "ИМТ", "Наследственность" и "Возраст". Типы данных: int64 для целочисленных признаков и float64 для вещественных. Это подтверждает, что данные готовы для дальнейшей обработки.

Разделяем данные на признаки (X) и целевую переменную (у). Используем train_test_split для разбиения на обучающую (600 строк) и тестовую выборки с фиксированным random_state=42 для воспроизводимости.

Реализуем функцию fit_gd для обучения логистической регрессии

методом градиентного спуска. Функция включает сигмоидную активацию, вычисление логарифмической функции потерь и обновление весов с учетом скорости обучения (lr=0.5) и количества итераций (epochs=20000). Модель обучается на всех данных.

Реализация разбиения и функции показаны на рисунке 16.

```
X = df.drop(columns=['Диагноз']).values.astype(float)
      y = df['Диагноз'].values.astype(int)
      X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=600, random_state=42)
def sigmoid(z):
      def fit_gd(X, y, lr=0.1, epochs=10000, tol=1e-6):
         w = np.zeros(m + 1)
prev_loss = np.inf
          for _ in range(epochs):
              z = Xb.dot(w)
p = sigmoid(z)
              loss = -np.mean(y * np.log(p + eps) + (1 - y) * np.log(1 - p + eps))
              grad = Xb.T.dot(p - y) / n
              w -= lr * grad
              if abs(prev_loss - loss) < tol:</pre>
              prev loss = loss
      w = fit_gd(X, y, lr=0.5, epochs=20000)
      print("Найденные коэффициенты (градиентный спуск):", w)
 /tmp/ipython-input-3723433989.py:2: RuntimeWarning: overflow encountered in exp
     return 1 / (1 + пр.exp(-z))
Найденные коэффициенты (градиентный спуск): [-336.50357852 154.19821469 21.25701915 -37.11911031 -0.52750835
          2.94347277
                      9.74125593 78.31777378 -12.54150199]
```

Рисунок 16 – Разбиение данных и подготовка функций

Получены коэффициенты модели: интерсепт -336.50 и веса для признаков.

Инициализируем модель LogisticRegression из sklearn и присваиваем ей коэффициенты, полученные из градиентного спуска. Выводим интерсепт и коэффициенты для проверки (рис. 17).

```
model = LogisticRegression()
model.fit(X_train, y_train) # просто инициализация

model.intercept_ = np.array([w[0]])
model.coef_ = np.array([w[1:]])

print("Интерсепт sklearn:", model.intercept_)
print("Коэффициенты sklearn:", model.coef_)

Интерсепт sklearn: [-336.50357852]
Коэффициенты sklearn: [[154.19821469 21.25701915 -37.11911031 -0.52750835 2.94347277
9.74125593 78.31777378 -12.54150199]]
```

Рисунок 17 – Вывод интерсепта

Коэффициенты из градиентного спуска успешно перенесены в модель sklearn. Интерсепт и веса совпадают с предыдущим блоком.

Вычисляем вероятности класса 1 на тестовой выборке с помощью predict_proba и оцениваем качество модели с помощью среднеквадратичной ошибки (MSE) между вероятностями и истинными метками (рис 18).

```
y_prob = model.predict_proba(X_test)[:, 1]

mse = mean_squared_error(y_test, y_prob)
print("MSE на всей выборке:", mse)

→ MSE на всей выборке: 0.3457747793692209
```

Рисунок 18 – Вычисление MSE

MSE на тестовой выборке составляет 0.345.

Выбираем признаки на основе абсолютных значений корреляции с целевой переменной "Диагноз". Исключаем два признака с наименьшей корреляцией, чтобы получить признаковое пространство на два измерения меньше исходного (рис. 19).

```
feature_cols = [c for c in df.columns if c != "Диагноз"]

m = len(feature_cols)

corr_abs = df[feature_cols + ["Диагноз"]].corr()["Диагноз"].abs().drop("Диагноз")

corr_abs = corr_abs.sort_values(ascending=False)

k = m - 2

selected_features = list(corr_abs.index[:k])

print("Выбранные признаки:", selected_features)

X_sel = df[selected_features].values

Выбранные признаки: ['Глюкоза', 'ИМТ', 'Возраст', 'Беременность', 'Наследственность', 'Инсулин']
```

Рисунок 19 – Выбор признаков

Выбраны признаки: "Глюкоза", "ИМТ", "Возраст", "Беременность", "Наследственность", "Инсулин". Признаки "АД" и "Толщина КС" исключены из-за низкой корреляции с целевой переменной.

Обучаем модель CatBoostClassifier с 1000 итерациями, скоростью обучения 0.05 и глубиной дерева 6. Оцениваем модель на тестовой выборке и вычисляем MSE для вероятностей (рис. 20).

```
model = CatBoostClassifier(iterations=1000, learning rate=0.05, depth=6, cat features=[])
model.fit(X_train, y_train, eval_set=(X_test, y_test), verbose=200)
y_pred = model.predict(X_test)
y_prob = model.predict_proba(X_test)[:, 1]
mse = mean_squared_error(y_test, y_prob)
print(f"MSE на тестовой выборке для CatBoost: {mse:.4f}")
                               test: 0.6676016 best: 0.6676016 (0)
test: 0.5246428 best: 0.4835299 (70)
test: 0.6071334 best: 0.4835299 (70)
test: 0.6776958 best: 0.4835299 (70)
test: 0.7224713 best: 0.4835299 (70)
         learn: 0.6640606
                                                                                     total: 2.75ms remaining: 2.75s
                                                                                     total: 370ms remaining: 1.47s
total: 706ms remaining: 1.05s
         learn: 0.1768676
400:
         learn: 0.0777860
                                                                                     total: 1.08s remaining: 719ms
600:
         learn: 0.0422688
800:
         learn: 0.0270202
                                                                                     total: 1.5s
                                                                                                        remaining: 373ms
         learn: 0.0188721
                                                                                     total: 3.02s
                                     test: 0.7659562 best: 0.4835299 (70)
                                                                                                        remaining: Ous
999:
bestTest = 0.4835298525
bestIteration = 70
Shrink model to first 71 iterations.
MSE на тестовой выборке для CatBoost: 0.1587
```

Рисунок 20 – Обчуение CatBoost

Модель CatBoost показала MSE 0.1587 на тестовой выборке, что лучше, чем у логистической регрессии.

ВЫВОД

В результате выполнения практической работы был получен опыт построения прогностических моделей для набора данных диабетических обследований (diabetes.txt) Python. c использованием Реализована логистическая регрессия с методом максимального правдоподобия, коэффициенты которой найдены с помощью вручную запрограммированного градиентного спуска. Проведено разбиение выборки на обучающую и тестовую, вычислена точность классификации. Выполнен отбор признаков на основе корреляции Пирсона, что позволило сократить признаковое пространство на два измерения и построить улучшенную модель с оценкой ее точности. Кроме того, исследованы связи признаков и построены линейные и квадратичные модели тренда с оценкой их погрешности, что обеспечило понимание зависимостей в данных и качества прогнозов.