Name:

Roll No.: _____

TRIBHUVAN UNIVERSITY KHWOPA COLLEGE OF ENGINEERING

Dept. of Computer Engineering 2075 Asar

Exam	CT – (CT – Chapter 4 & 5					
Level	BE	Full Marks	25				
Program	BEL, BEX, BCT, B. Agri.	Pass Marks	15				
Year/Part	II / II	Time	1 Hrs.				

Subject: - Numerical Method (SH553)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate **Full Marks**.
- ✓ Assume suitable data if necessary.
- 1. By the method of least squares, find the curve $y = ax + bx^2$ that best fit the following: [8]

X	1	2	3	4	5
у	1.8	5.1	8.9	14.1	19.8

$$[y = 1.52x + 0.49x^2]$$

[8]

[8]

2. Fit a parabola $y = ax^2 + bx + c$, by the method of least square to the following data: [8]

X	1	2	3	4	5
y	5	12	26	60	97

$$y = 5.7143x^2 - 11.0258x + 10.4001$$

3. Fit a parabola to the following data:

X	1	2	3	4	5	6	7	8	9
у	2	6	7	8	10	11	11	10	9

[Hint: - Change the origin: $u = (x-x_0)/h$; $v = (y-y_0)/h$; x0 = 5; y0 = 7; h = 1 & the equation of a parabola is $v = a + bu + cu^2$]

$$[v = 3 + 0.85u - 0.27u^2$$
; Changing the origin: $y = -1 + 3.55x - 0.27x^2$]

4. Fit a second degree parabola to the following data:

X	1	2	3	4	5
У	1090	1220	1390	1625	1915

[Hint: - Change the origin: u = (x-3); v = (y-1450)/5; & the parabolic curve is $v = a + bu + cu^2$]

$$[v = -11 + 41.1u + 5.5u^2;$$
 Changing the origin: $y = 1024 + 40.5x + 27.5x^2]$

5. Determine the constants a & b by the method of least square method such that $y = ae^{bx}$ fits the following data: [8]

X	2	4	6	8	10
y	4.077	11.084	30.128	81.897	222.62

 $[v = 1.4999e^{0.5x}]$

6. Determine curve of the form $y = ax^b$ which is the best fit to the following data according to least squares principle: [8]

X	1.0	1.5	2.0	2.5	3.0	3.5
у	0.01	0.405	0.693	0.916	1.098	1.252

 $[y = 0.0306e^{3.5004}]$

7. Fit a curve $y = ab^x$ to the following data:

[8]

X	2	3	4	5	6
y	144	172.8	207.4	248.8	298.5

 $[y = 100.0322(1.1998)^{x}]$

8. The pressure and volumn of a gas are related by the equation $PV^r = K$, r and K being constants. Fit this equation to the following set of observations: [8]

P (kg/cm ²)	0.5	1.0	1.5	2.0	2.5	3.0
V (liters)	1.62	1.00	0.75	0.62	0.52	0.46

$$[PV^{1.276} = 1.039]$$

9. The pressure of the gas corresponding to various volumes V is measured, given by the following data: [8]

V (cm ³)	50	60	70	90	100
P (kg/cm ²)	64.7	51.3	40.5	25.9	78

Fit the data to the equation $PV^r = C$

 $[PV^{7.84068} = 1.71199 \times 10^{16}]$

10. Fit a curve y = ax + b/x to the data given below:

[8]

X	1	2	3	4	5	6	7	8
У	5.43	6.28	8.23	10.32	12.63	14.84	17.27	19.51

[y = 2.396x + 3.0289/x]

11. A person runs the same race track for 5 consecutive days and is times as follows: [8]

Days (x)	1	2	3	4	5
Time (y)	15.3	15.1	15	14.5	14

Make a least square fit to the above data using the function $y = a + \frac{b}{x} + \frac{c}{x^2}$

$$[y = 12.6751 + 8.2676/x - 5.7071/x^2]$$

12. Use the method of least squares to fit the curve $y = \frac{c0}{x} + c1\sqrt{x}$ to the following table of values:

X	0.1	0.2	0.4	0.5	1	2
У	21	11	7	6	5	6

 $[y = 1.9733/x + 3.2818\sqrt{x}]$

13. Find the value of sin 30° 15' 30" from the following table:

 Angle x°
 30°
 31°
 32°
 33°
 34°

 sin x° = y
 0.5000
 0.5150
 0.5299
 0.5446
 0.5592

[Hint: $x_0 = 30^\circ$; 15' 30" = 0.2583°]

 $[f(30^{\circ} 15' 30") = 0.5039]$

[8]

14. The following table gives the population of a town during the last six censuses. Estimate the increase in the population during the period from 1946 to 1948: [8]

Year	1911	1921	1931	1941	1951	1961
Population (in thousands)	12	15	20	27	39	52

[2.53 thousands (Approx)]

15. Using Newton's interpolation formula, find the area of a circle of diameter 82 & 98 from the given table of diameter and area of circle: [8]

Diameter	80	85	90	95	100
Area	5026	5674	6362	7088	7854

[5279.856,]

[8]

16. The hourly declination of the moon on a day is given below. Find the declination at 3^h35^m15^s: [8]

Hour	0	1	2	3	4
Decl,	8°29'53.7"	8°18'19.4"	8°6'43.5"	7°55'6.1"	7°43'27.2"

[Hint: $x_n = 4^h$; $p = (x - x_n)/h = (3^h 35^m 15^s - 4^h)/1^h = -(0^h 24^m 45^s)/1^h = -1485^s/3600^s = -0.4125$]

 $[y(3^h35^m15^s) = 7^o48'16"]$

17. Following are the populations of a district:

 Year
 1881
 1891
 1901
 1911
 1921
 1931

 Population (in thousands)
 363
 391
 421
 ?
 467
 501

Find the population of the year 1991 & 1930.

[445.2 thousands,]

18. Compute $\frac{2}{\sqrt{\pi}} \int_0^x e^{-x^2} dx$ when x = 0.6538 using Stirling's formula and Bessel's formula, and compare the answers given that: [8]

X	0.62	0.63	0.64	0.65	0.66	0.67	0.68
у	0.6194	0.6270	0.6348	0.6420	0.6493	0.6566	0.6637

[y = 0.6448,]

[8]

19. From the following table, find the value of $log_{10}337.5$ by Stirling's formula and Bessel's formula, and compare the answers: [8]

X	310	320	330	340	350	360
$log_{10}x$	2.4913617	2.505100	2.5185139	2.5314789	2.5440680	2.5563025

 $[\log_{10}337.5 = 2.52827374, 2.52827374]$

20. Using Stirling's formula and Bessel's formula, estimate (46.24)^{1/3} given:

X	41	45	49	53
$y=x^{1/3}$	3.4482	3.5569	3.6593	3.7563

 $[(46.24)^{1/3} = 3.589276,]$

21. Determine f(x) as a polynomial in x and find by divided difference formula f(7), f(1), f(-5), f(-2):[8]

X	-4	-1	0	2	5
f(x)	1245	33	5	9	1335
				F.C() 2	1 = 3 - 1

22. Given $log_{10}654 = 2.8156$, $log_{10}658 = 2.8182$, $log_{10}659 = 2.8189$, $log_{10}661 = 2.8202$, find the polynomial equation; $log_{10}665$; $log_{10}650$ and $log_{10}656$. [8]

[,,,2.8168]

23. Given $\log_{10}654 = 2.8156$, $\log_{10}658 = 2.8182$, $\log_{10}659 = 2.8189$, $\log_{10}661 = 2.8202$, find log₁₀656 using Newton's Divided Difference & Lagrange's formula. [8]

[2.8168, 2.8170]

24. Given $\log_{10}654 = 2.8156$, $\log_{10}658 = 2.8182$, $\log_{10}659 = 2.8189$, $\log_{10}661 = 2.8202$, find the polynomial equation by both methods.

[]

25. Find the age corresponding to the annuity value 13.6 from the given table:

[8]

Annuity Value 15.9 14.9 14.1 13.3 12.5	Age	30	35	40	45	50
	Annuity Value	15.9	14.9	14.1	13.3	12.5

 $[43.141851 \approx 43]$

26. Obtain cubic spline for every sub-interval, given in the tabular form:

[8]

X	0	1	2	3
f(x)	1	2	33	244

With the end conditions $M_0 = 0 = M_3$.

$$f(x) = \begin{cases} -4x^3 + 5x + 1 & \text{for } 0 \le x \le 1\\ 50x^3 - 162x^2 + 167x - 53 & \text{for } 1 \le x \le 2\\ -46x^3 + 414x^2 - 985x + 715 & \text{for } 2 \le x \le 3 \end{cases}$$

27. Use Stirling's formula to find f'(0.6) and f''(0.6) from the following table: [8]

X	0.4	0.5	0.6	0.7	0.8
f(x)	1.5836	1.7974	2.0442	2.3275	2.6510

[2.6445, 3.6484]

28. Use Bessel's formula to find f'(0.04) from the following table:

0.06	

X	0.01	0.02	0.03	0.04	0.05	0.06
f(x)	0.1023	0.1047	0.1071	0.1096	0.1122	0.1148

[0.25625]

29. Use Bessel's formula to find f'(0.04) from the following table:

[8]

[8]

X	0.01	0.02	0.03	0.04	0.05	0.06
f(x)	0.1023	0.1047	0.1071	0.1096	0.1122	0.1148

[0.25625]

30. From the following table, find the value of x for which f(x) is maximum. Also find the value of f(x) from the table of values given below: [8]

X	60	75	90	105	120
f(x)	28.2	38.2	43.2	40.9	37.7

[f(x) is maximum at x = 92.1135 and the maximum value is 43.27]

31. Find the value of x for which f(x) is minimum and find the minimum value from the table below: [8]

X	0.60	0.65	0.70	0.75
f(x)	0.6221	0.6155	0.6138	0.6170

[f(x) is minimum at x = 0.6923 and the minimum value is 0.6137426]

32. Evaluate $I = \int_0^6 \frac{1}{1+x} dx$ using (i) Trapezoidal rule, (ii) Simpson's $1/3^{rd}$ rule, (iii) Simpson's $3/8^{th}$ rule where intervals of integrations is sub-divided into six equal parts. Also, check by direct integration. [8]

[2.021429, 1.958730, 1.966071, 1.945910]

33. Find $\int_0^1 \frac{1}{1+x^2} dx$ using (i) Trapezoidal rule, (ii) Simpson's $1/3^{\text{rd}}$ rule, (iii) Simpson's $3/8^{\text{th}}$ rule. Also, check by direct integration. [8]

[0.78424, , ,]

33. Evaluate the value of the integral $\int_4^{5.2} log_e x dx$ using (i) Trapezoidal rule, (ii) Simpson's $1/3^{\rm rd}$ rule, (iii) Simpson's $3/8^{\rm th}$ rule. Also, check by direct integration. [8]

[1.827648, , ,]

33. Find the value of $\int_0^{0.6} e^x dx$, taking n=6, correct to five significant figures using (i) Trapezoidal rule, (ii) Simpson's $1/3^{rd}$ rule, (iii) Simpson's $3/8^{th}$ rule. Also, check by direct integration. [8]

[, 0.82212, ,]

33. Calculate an approximate value of the integral $\int_0^{\pi/2} \sin x \, dx$, using (i) Trapezoidal rule, (ii) Simpson's $1/3^{\text{rd}}$ rule, (iii) Simpson's $3/8^{\text{th}}$ rule. Also, check by direct integration. [8]

34. Evaluate the value of the integral $\int_{0.2}^{1.4} (sinx - lnx + e^x) dx$, using (i) Trapezoidal rule, (ii) Simpson's $1/3^{rd}$ rule, (iii) Simpson's $3/8^{th}$ rule. Also, check by direct integration. [8] [4.05617, 4.05106, 4.051879, 4.05095]

35. A river is 80 meter wide. The depth 'y' of the river at a distance 'x' from one bank is given in the following table: [8]

	X	0	10	20	30	40	50	60	70	80
ſ	y	0	4	7	9	12	15	14	8	3

Name:	Roll No.:	

Find approximately the area of cross-section of the river using (i) Trapezoidal rule, (ii) Simpson's 1/3rd rule, (iii) Simpson's 3/8th rule.

[, 710 sq. meter,]

33. Evaluate $\int_0^{\pi/2} e^{\sin x} dx$ correct to four decimal places, using (i) Trapezoidal rule, (ii) Simpson's $1/3^{\text{rd}}$ rule, (iii) Simpson's $3/8^{\text{th}}$ rule. Also, check by direct integration. [8]

[,, 3.10166,]

34. Evaluate $\int_0^2 \frac{1}{x^2+4} dx$, using Romberg's method. Hence, obtain an approx. value of π . [8]

$$[I = 0.3927 = \pi/8; \pi = 3.1416]$$

35. Evaluate $\int_0^1 \frac{1}{x^2+1} dx$, using Romberg's method correct to 4 decimal places. Hence, deduce an approximate value of π . [8]

$$[I = 0.7854 = \pi/4; \pi = 3.1416]$$

36. Find $\int_0^{\pi/2} \sin x \, dx$, by two & three point Gauss quadrature formula. [8]

[0.9985, 1.000008116]