

Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs

Yi-Lun Liao, Tess Smidt Massachusetts Institute of Technology

github.com/atomicarchitects/equiformer

Motivation and Contribution

- (1) Equivariant and invariant networks have demonstrated the importance of incorporating 3D-related inductive biases in learning representations of 3D atomistic systems.
- (2) A parallel line of research lies in generalizing Transformers to many domains such as vision and graphs and achieves widespread success.
- (3) This naturally leads to the question of how we can apply Transformer-like networks to 3D atomistic systems. (4) We propose Equiformer, an equivariant graph neural
- network that combines the inductive bias of equivariance with the strength of Transformers.

Proposed Method

Equivariant Features and Operations

Equivariant features (e.g., type-1 vectors) are rotated accordingly when input graphs are rotated.

Equivariant operations include the equivariant version of original operations in Transformers and tensor products

Equivariant Graph Attention

- (1) Equivariant graph attention improves upon typical attention in Transformers. (2) The feature sent from node s to node t is:
- $m_{ts} = a_{ts} imes v_{ts}$, where a_{ts} : attention weights (scalars), $v_{ts}^{\circ\circ}$: value (irreps features). (3) Both are obtained with tensor
- products and non-linear functions. (4) Steps are shown on the right.

Overall Architecture

Result

QM9 and MD17

Equiformer achieves better results than previous equivariant Transformers and other equivariant message passing networks and invariant message passing networks.

OC20

- (1) When trained with IS2RE data, Equiformer improves upon previous state-of-the-art models.
- (2) When trained with IS2RE + IS2RS data, Equiformer improves upon GNS and Graphormer and has 2.3× to 15.5× less training time

	Training time					
ID	OOD Ads	OOD Cat	OOD Both	Average	(GPU-days)	
0.4219	0.5678	0.4366	0.4651	0.4728	56 (TPU)	
0.3976	0.5719	0.4166	0.5029	0.4722	372 (A100)	
0.4171	0.5479	0.4248	0.4741	0.4660	24 (A6000)	
	0.4219 0.3976	ID OOD Ads 0.4219 0.5678 0.3976 0.5719	ID OOD Ads OOD Cat 0.4219 0.5678 0.4366 0.3976 0.5719 0.4166	0.4219 0.5678 0.4366 0.4651 0.3976 0.5719 0.4166 0.5029	ID OOD Ads OOD Cat OOD Both Average 0.4219 0.5678 0.4366 0.4651 0.4728 0.3976 0.5719 0.4166 0.5029 0.4722	

Results on OC20 IS2RE testing set when IS2RS is adopted during training. † denotes using ensemble of models trained on both IS2RE training and validation sets.

Ablation Study

- (1) Non-linear attention (MLP attention) improves upon linear attention (dot product attention).
- (2) Non-linear messages improves upon linear messages.

	1	Energy MAE (eV) ↓											
Index	Non-linear message passing	MLP attention	Dot product attention	ID	OOD Ads	OOD Cat	OOD Both	Average	Training time (minutes/epoch)	Number of parameters			
1	1	_/		0.5088	0.6271	0.5051	0.5545	0.5489	130.8	9.12M			
2		/		0.5168	0.6308	0.5088	0.5657	0.5555	91.2	7.84M			
3			/	0.5386	0.6382	0.5297	0.5692	0.5689	99.3	8.72M			
	Ablatica study could be OC20 IC2DE collidation and												