LA2 Přehled

May 6, 2024

1 Obecný vektorový prostor

Grupa

Nechť M je neprázdná množina a $\circ: M \times M \to M$ binární operace. Platí-li

- 1. asociativní zákon: $(\forall a, b, c \in M)(a \circ (b \circ c) = (a \circ b) \circ c),$
- 2. existence **neutrálního prvku**: existuje $e \in M$ tak, že $(\forall a \in M)(a \circ e = e \circ a = a)$,
- 3. existence inverzních prvků: $(\forall a \in M)(\exists a^{-1} \in M)(a \circ a^{-1} = a^{-1} \circ a = e)$,

říkáme, že uspořádaná dvojice $G=(M,\circ)$ je **grupa**. Platí-li navíc pro \circ

• komutativní zákon: $(\forall a, b \in M)(a \circ b = b \circ a)$,

mluvíme o abelovské grupě.

Těleso

Nechť M je neprázdná množina a $+: M \times M \to M, \cdot: M \times M \to M$ dvě binární operace. Platí-li, že

- 1. (M, +) je **abelovská grupa** (neutrální prvek značíme 0 a nazýváme nulovým prvkem),
- 2. $(M \setminus \{0\}, \cdot)$ je grupa (neutrální prvek značíme 1 a nazýváme jednotkový prvek),
- 3. platí levý a pravý distributivní zákon, tj.

$$(\forall a,b,c\in M) \Big(a(b+c)=ab+ac\wedge (b+c)a=ba+ca\Big)\,,$$

nazýváme uspořádanou trojici $T = (M, +, \cdot)$ tělesem.

Je-li navíc $(M \setminus \{0\}, \cdot)$ abelovská grupa, je T komutativní těleso.

Vektorový prostor

Nechť T je libovolné komutativní těleso, jeho neutrální prvky vůči operacím sčítání, resp. násobení označme 0, resp. 1. Mějme dánu neprázdnou množinu V a dvě zobrazení

$$\oplus: V \times V \to V, \quad \odot: T \times V \to V.$$

Řekneme, že (V, T, \oplus, \odot) je **vektorový prostor nad tělesem** T s vektorovými operacemi \oplus a \odot , právě když platí následující **axiomy vektorového prostoru**:

1. Sčítání vektorů je komutativní:

$$(\forall \mathbf{x}, \mathbf{y} \in V)(\mathbf{x} \oplus \mathbf{y} = \mathbf{y} \oplus \mathbf{x}).$$

2. Sčítání vektorů je asociativní:

$$(\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in V)((\mathbf{x} \oplus \mathbf{y}) \oplus \mathbf{z} = \mathbf{x} \oplus (\mathbf{y} \oplus \mathbf{z}))$$
.

3. Násobení skalárem je asociativní:

$$(\forall \alpha, \beta \in T)(\forall \mathbf{x} \in V)(\alpha \odot (\beta \odot \mathbf{x}) = (\alpha \cdot \beta) \odot \mathbf{x}).$$

4. Násobení skalárem je distributivní zleva:

$$(\forall \alpha \in T)(\forall \mathbf{x}, \mathbf{y} \in V)(\alpha \odot (\mathbf{x} \oplus \mathbf{y}) = (\alpha \odot \mathbf{x}) \oplus (\alpha \odot \mathbf{y})).$$

5. Násobení skalárem je distributivní zprava:

$$(\forall \alpha, \beta \in T)(\forall \mathbf{x} \in V)((\alpha + \beta) \odot \mathbf{x} = (\alpha \odot \mathbf{x}) \oplus (\beta \odot \mathbf{x})).$$

6. Neutrální prvek $1 \in T$ je neutrální i vůči násobení vektoru skalárem:

$$(\forall \mathbf{x} \in V)(1 \odot \mathbf{x} = \mathbf{x}).$$

7. Existuje **nulový vektor** veVa nulový násobek libovolného vektoru je nulový vektor

$$(\exists \theta \in V)(\forall \mathbf{x} \in V)(0 \odot \mathbf{x} = \theta)$$
.

Základní vlastnosti VP

Buď V vektorový prostor nad tělesem T. Potom platí:

- 1. Ve V existuje právě jeden nulový vektor.
- 2. Libovolný násobek nulového vektoru je opět nulový vektor. Tj.

$$(\forall \alpha \in T)(\alpha \odot \theta = \theta)$$
.

3. Přičtení nulového vektoru k libovolnému vektoru jej nezmění. Tj.

$$(\forall \mathbf{x} \in V)(\mathbf{x} \oplus \theta = \mathbf{x}).$$

4. Ke každému vektoru z V existuje právě jeden **vektor opačný**. Tzn.,

$$(\forall \mathbf{x} \in V)(\exists_1 \mathbf{y} \in V)(\mathbf{x} \oplus \mathbf{y} = \theta).$$

Tento vektor splňuje $\mathbf{y} = (-1) \odot \mathbf{x}$, kde -1 je opačný prvek k 1 vůči operaci + v T.

5. Je-li součin skaláru a vektoru roven nulovému vektoru, potom je skalár roven 0 nebo vektor roven θ .

$$(\forall \alpha \in T)(\forall \mathbf{x} \in V) \Big(\alpha \odot \mathbf{x} = \theta \Rightarrow (\alpha = 0 \lor \mathbf{x} = \theta)\Big) \,.$$

Podprostor

Nechť P je podmnožina vektorového prostoru V nad T. Řekneme, že P je **podprostor** vektorového prostoru V, právě když platí:

- 1. množina P je neprázdná, tzn. $P \neq \emptyset$.
- 2. množina P je uzavřená vůči sčítání vektorů v ní, tzn.

$$(\forall \mathbf{x}, \mathbf{y} \in P)(\mathbf{x} + \mathbf{y} \in P)$$
,

3. Množina P je uzavřená vůči násobení vektorů v ní libovolným skalárem, tzn.

$$(\forall \alpha \in T)(\forall \mathbf{x} \in P)(\alpha \mathbf{x} \in P)$$
.

Vztah být podprostorem pak značíme

$$P \subset\subset V$$
.

(Triviální) lineární kombinace

Mějme vektorový prostor V nad T. Nechť $\mathbf{x} \in V$ a $(\mathbf{x}_1, \dots, \mathbf{x}_m)$ je soubor vektorů z V. Říkáme, že vektor \mathbf{x} je **lineární kombinací** souboru $(\mathbf{x}_1, \dots, \mathbf{x}_m)$, právě když existují čísla $\alpha_1, \dots, \alpha_m \in T$ taková, že

$$\mathbf{x} = \sum_{i=1}^{m} \alpha_i \mathbf{x}_i \,.$$

Čísla α_i , $i \in \hat{m}$, nazýváme koeficienty lineární kombinace. Jestliže $(\forall i \in \hat{m})(\alpha_i = 0)$, nazýváme takovou lineární kombinaci triviální. V opačném případě jde o lineární kombinaci netriviální.

Lineárně (ne)závislý soubor

• $(\mathbf{x}_1, \dots, \mathbf{x}_m)$ je LN \Leftrightarrow

$$(\forall \alpha_1, \dots, \alpha_m \in T) \left(\sum_{i=1}^m \alpha_i \mathbf{x}_i = \theta \Rightarrow ((\forall i \in \hat{m})(\alpha_i = 0)) \right).$$

• $(\mathbf{x}_1, \dots, \mathbf{x}_m)$ je LZ \Leftrightarrow

$$(\exists \alpha_1, \dots, \alpha_m \in T)(\exists k \in \hat{m}) \left(\alpha_k \neq 0 \land \sum_{i=1}^m \alpha_i \mathbf{x}_i = \theta\right).$$

Lineárně (ne)závislá množina

Buď V vektorový prostor a $\emptyset \neq M \subseteq V$. Množinu M nazveme **lineárně nezávislou (LN)** právě tehdy, když každý soubor různých vektorů z ní je lineárně nezávislý.

Pokud množina M není LN, nazýváme ji **lineárně závislou (LZ)**.

Lineární obal souboru

Buď $(\mathbf{x}_1, \dots, \mathbf{x}_m)$ soubor vektorů z VP V nad tělesem T. Množinu všech lineárních kombinací tohoto souboru nazveme **lineárním obalem souboru** $(\mathbf{x}_1, \dots, \mathbf{x}_m)$ a značíme ji

$$\langle \mathbf{x}_1, \dots, \mathbf{x}_m \rangle$$
.

Neboli

$$\langle \mathbf{x}_1, \dots, \mathbf{x}_m \rangle = \left\{ \sum_{i=1}^m \alpha_i \mathbf{x}_i \mid \alpha_i \in T \text{ pro každé } i \in \hat{m} \right\}.$$

Vlastnosti lineární obalu souboru

Nechť $(\mathbf{x}_1,\ldots,\mathbf{x}_m)$ je soubor vektorů z vektorového prostoru V nad T. Pak platí:

1. lineární obal obsahuje nulový vektor:

$$\theta \in \langle \mathbf{x}_1, \dots, \mathbf{x}_m \rangle$$
,

2. vektory leží ve svém lineárním obalu, přesněji:

$$\mathbf{x}_1,\ldots,\mathbf{x}_m\in\langle\mathbf{x}_1,\ldots,\mathbf{x}_m\rangle$$
,

3. je-li vektor již obsažen v lineárním obalu, tak jeho přidáním do souboru se lineární obal nezmění:

$$(\forall \mathbf{z} \in V) \Big(\mathbf{z} \in \langle \mathbf{x}_1, \dots, \mathbf{x}_m \rangle \quad \Leftrightarrow \quad \langle \mathbf{x}_1, \dots, \mathbf{x}_m \rangle = \langle \mathbf{x}_1, \dots, \mathbf{x}_m, \mathbf{z} \rangle \Big),$$

4. lineární obal je uzavřený na sčítání vektorů i na násobení vektorů skalárem:

$$(\forall \mathbf{x}, \mathbf{y} \in \langle \mathbf{x}_1, \dots, \mathbf{x}_m \rangle) (\mathbf{x} + \mathbf{y} \in \langle \mathbf{x}_1, \dots, \mathbf{x}_m \rangle)$$
a
$$(\forall \alpha \in T) (\forall \mathbf{x} \in \langle \mathbf{x}_1, \dots, \mathbf{x}_m \rangle) (\alpha \mathbf{x} \in \langle \mathbf{x}_1, \dots, \mathbf{x}_m \rangle).$$

5. lineární obal z lineárního obalu neobsahuje nic navíc:

Je-li
$$k \in \mathbb{N}$$
 a $\mathbf{z}_1, \dots, \mathbf{z}_k \in \langle \mathbf{x}_1, \dots, \mathbf{x}_m \rangle$, potom $\langle \mathbf{z}_1, \dots, \mathbf{z}_k \rangle$ je podmnožinou $\langle \mathbf{x}_1, \dots, \mathbf{x}_m \rangle$.

Lineární obal množiny

Buď M neprázdná podmnožina VP V nad tělesem T. Množinu všech lineárních kombinací všech souborů vektorů z množiny M nazveme **lineárním obalem množiny** M a značíme ji $\langle M \rangle$. Tedy

$$\langle M \rangle = \left\{ \sum_{i=1}^{m} \alpha_i \mathbf{x}_i \mid m \in \mathbb{N}, \ \mathbf{x}_1, \dots, \mathbf{x}_m \in M, \ \alpha_1, \dots, \alpha_m \in T \right\}.$$

Vlastnosti lineárního obalu množiny

Nechť M je neprázdná množina vektorů z vektorového prostoru V nad T. Pak platí:

1. lineární obal obsahuje nulový vektor:

$$\theta \in \langle M \rangle$$
,

2. vektory z M leží v jeho lineárním obalu, přesněji:

$$M \subseteq \langle M \rangle$$
,

3. je-li vektor již obsažen v lineárním obalu, tak jeho přidáním do množiny se lineární obal nezmění:

$$(\forall \mathbf{z} \in V) \Big(\mathbf{z} \in \langle M \rangle \Leftrightarrow \langle M \rangle = \langle M \cup \{ \mathbf{z} \} \rangle \Big),$$

4. lineární obal je uzavřený na sčítání vektorů i na násobení vektorů skalárem:

$$(\forall \mathbf{x}, \mathbf{y} \in \langle M \rangle) (\mathbf{x} + \mathbf{y} \in \langle M \rangle)$$
a
$$(\forall \alpha \in T) (\forall \mathbf{x} \in \langle M \rangle) (\alpha \mathbf{x} \in \langle M \rangle).$$

5. lineární obal souboru vektorů z lineárního obalu souboru vektorů neobsahuje nic navíc:

Je-li
$$\emptyset \neq N \subseteq \langle M \rangle$$
, potom $\langle N \rangle \subseteq \langle M \rangle$.

Speciálně:

Je-li
$$\emptyset \neq N \subseteq M$$
, potom $\langle N \rangle \subseteq \langle M \rangle$.

Věta o vztahu LZ souboru a lineárního obalu

Buď $(\mathbf{x}_1, \dots, \mathbf{x}_m)$ soubor vektorů z VP V a $m \geq 2$. Potom $(\mathbf{x}_1, \dots, \mathbf{x}_m)$ je lineárně závislý právě tehdy, když

$$(\exists k \in \hat{m}) (\mathbf{x}_k \in \langle \mathbf{x}_1, \dots, \mathbf{x}_{k-1}, \mathbf{x}_{k+1}, \dots, \mathbf{x}_m \rangle).$$

Přidání vektoru do LN souboru

Buď $(\mathbf{x}_1, \dots, \mathbf{x}_m)$ LN soubor vektorů z VP V a $\mathbf{y} \notin \langle \mathbf{x}_1, \dots, \mathbf{x}_m \rangle$. Potom soubor $(\mathbf{x}_1, \dots, \mathbf{x}_m, \mathbf{y})$ je také LN.

Soubor (množina) generuje podprostor

O souboru vektorů $(\mathbf{x}_1, \dots, \mathbf{x}_m)$ z vektorového prostoru V řekneme, že **generuje** podprostor $P \subset\subset V$, právě když platí:

$$\langle \mathbf{x}_1, \dots, \mathbf{x}_m \rangle = P.$$

V případě, že P = V můžeme zjednodušeně říkat $(\mathbf{x}_1, \dots, \mathbf{x}_m)$ generuje (vektorový) prostor V.

Dimenze VP

Buď V vektorový prostor. Řekneme, že dimenze vektorového prostoru V je rovna

- \bullet 0, pokud neexistuje LN soubor vektorů z V délky 1.
- $\mathbf{d} \in \mathbb{N}$, pokud existuje LN soubor vektorů z V délky d, ale každý soubor vektorů z V délky d+1 už je LZ.
- ∞ , pokud ve V existuje LN soubor libovolné délky.

Dimenzi vektorového prostoru V označujeme symbolem dim V.

Je-li $\dim V = \infty$, říkáme, že V má **nekonečnou dimenzi**, naopak pokud $\dim V < \infty$ říkáme, že V **má konečnou dimenzi**.

Věta o postačitelnosti jedné vlastnosti báze

Nechť $(\mathbf{x}_1, \dots, \mathbf{x}_d)$ je soubor vektorů z VP V a dim $V = d \in \mathbb{N}$. Potom následující tvrzení jsou ekvivalentní:

- 1. Soubor $(\mathbf{x}_1, \dots, \mathbf{x}_d)$ je báze V.
- 2. Soubor $(\mathbf{x}_1, \dots, \mathbf{x}_d)$ je LN.
- 3. Soubor $(\mathbf{x}_1, \dots, \mathbf{x}_d)$ generuje V.

Souřadnice vzhledem k bázi

Nechť $\mathcal{B}=(\mathbf{x}_1,\dots,\mathbf{x}_d)$ je báze VPVnad tělesem Ta vektor $\mathbf{v}\in V$ splňuje

$$\mathbf{v} = \sum_{i=1}^d \alpha_i \mathbf{x}_i \,.$$

Souřadnicemi vektoru v $\in V$ vzhledem k bázi $\mathcal B$ nazveme uspořádanou d-tici

$$(\mathbf{v})_{\mathcal{B}} := (\alpha_1, \dots, \alpha_d) \in T^d$$
.

2 Lineární zobrazení

Lineární zobrazení

Buďte P a Q dva vektorové prostory nad stejným tělesem T. Zobrazení $A:P\to Q$ nazveme lineární, právě když současně platí:

1. (aditivita):

$$(\forall \mathbf{x}, \mathbf{y} \in P)(A(\mathbf{x} + \mathbf{y}) = A\mathbf{x} + A\mathbf{y}),$$

2. (homogenita):

$$(\forall \alpha \in T)(\forall \mathbf{x} \in P)(A(\alpha \mathbf{x}) = \alpha A\mathbf{x}).$$

Lineární operátor (transformace), funkcionál a izomorfismus

Lineární zobrazení z VP P do stejného VP P nazýváme **lineární operátor** (nebo také **transformace**) na P.

Množinu všech lineárních operátorů na P značíme krátce $\mathcal{L}(P)$.

Lineární zobrazení z VP P do tělesa T nazýváme **lineární funkcionál** na P.

Izomorfismem nazveme lineární zobrazení, které je zároveň i bijekce.

Souřadnicový izomorfismus

Nechť soubor $\mathcal{B} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ je báze prostoru V nad T. Přiřazení $(\cdot)_{\mathcal{B}} : V \to T^n$ definované předpisem

$$\mathbf{x} \mapsto (\mathbf{x})_{\mathcal{B}} \quad \text{pro } \mathbf{x} \in V,$$

kde $(\mathbf{x})_{\mathcal{B}}$ značí souřadnice vektoru \mathbf{x} vůči bázi \mathcal{B} dle Definice .reference:dfn-souradnice, nazýváme souřadnicový izomorfismus.

Alternativní vyjádření linearity

Buď te P a Q vektorové prostory nad T a mějme zobrazení $A:P\to Q$. Následující tři tvrzení jsou ekvivalentní:

- 1. $A \in \mathcal{L}(P, Q)$.
- 2. $(\forall \alpha \in T)(\forall \mathbf{x}, \mathbf{y} \in P)$

$$(A(\alpha \mathbf{x} + \mathbf{y}) = \alpha A \mathbf{x} + A \mathbf{y}) .$$

3. $(\forall n \in \mathbb{N})(\forall \alpha_1, \dots, \alpha_n \in T)(\forall \mathbf{x}_1, \dots, \mathbf{x}_n \in P)$

$$\left(A\left(\sum_{i=1}^n \alpha_i \mathbf{x}_i\right) = \sum_{i=1}^n \alpha_i A \mathbf{x}_i\right).$$

Základní vlastnosti lineárního zobrazení

Nechť $A \in \mathcal{L}(P,Q)$, kde P,Q jsou vektorové prostory nad T.

1. Obraz nulového vektoru je nulový vektor: Označíme-li nulové vektory v Pa Qpopořadě θ_P a $\theta_Q,$ platí

$$A\theta_P = \theta_O$$
.

2. Obraz lineárního obalu je lineární obal obrazu: Je-li $M \subseteq P$, potom

$$A(\langle M \rangle) = \langle A(M) \rangle$$
.

Je-li $(\mathbf{x}_1, \dots, \mathbf{x}_n)$ soubor vektorů z P, potom

$$A(\langle \mathbf{x}_1, \dots, \mathbf{x}_n \rangle) = \langle A\mathbf{x}_1, \dots, A\mathbf{x}_n \rangle.$$

3. Obraz podprostoru je podprostor. Neboli

$$(\forall \tilde{P} \subset\subset P)(A(\tilde{P}) \subset\subset Q)$$
.

4. Vzor podprostoru je podprostor. Neboli

$$(\forall \tilde{Q} \subset\subset Q)(A^{-1}(\tilde{Q}) \subset\subset P)$$
.

5. Obraz LZ souboru je opět LZ soubor. Neboli pro libovolný soubor $(\mathbf{x}_1, \dots, \mathbf{x}_n)$ platí

$$(\mathbf{x}_1,\ldots,\mathbf{x}_n)$$
 je $LZ \implies (A\mathbf{x}_1,\ldots,A\mathbf{x}_n)$ je LZ .

6. "Předobraz" LN souboru je opět LN soubor. Přesněji pro libovolný soubor $(\mathbf{x}_1, \dots, \mathbf{x}_n)$ platí

$$(A\mathbf{x}_1,\ldots,A\mathbf{x}_n)$$
 je $LN\implies (\mathbf{x}_1,\ldots,\mathbf{x}_n)$ je LN .

Hodnost, jádro a defekt

Nechť $A \in \mathcal{L}(P,Q)$. Hodností zobrazení A rozumíme číslo

$$h(A) := \dim A(P)$$
.

Jádro zobrazení A definujeme jako množinu

$$\ker A := \{ \mathbf{x} \in P \mid A\mathbf{x} = \theta_Q \},\,$$

a jeho dimenzi nazýváme **defektem zobrazení** A. Defekt značíme d(A). Tedy

$$d(A) := \dim \ker A$$
.

2. věta o dimenzi

Nechť $A \in \mathcal{L}(P,Q)$. Potom

$$h(A) + d(A) = \dim P.$$

Věta o vztahu in/sur-jektivity a defektu/hodnosti

Nechť $A \in \mathcal{L}(P,Q)$ a dimenze dim P a dim Q jsou konečné.

1.

A je injektivní
$$\Leftrightarrow \ker A = \{\theta_P\}$$

 $\Leftrightarrow d(A) = 0 \Leftrightarrow h(A) = \dim P,$

2.

$$A \text{ je surjektivn} \iff A(P) = Q$$

$$\Leftrightarrow \dim A(P) = \dim Q \iff h(A) = \dim Q.$$

Věta o jádru prostého zobrazení

Nechť $A \in \mathcal{L}(P,Q)$. Potom platí:

$$A$$
 je prosté $\Leftrightarrow \ker A = \{\theta_P\}$.

LN/LZ soubor a prosté zobrazení

Nechť $A \in \mathcal{L}(P,Q)$ je **prosté**. Potom

- 1. Obraz LN souboru vektorů je taky LN soubor. Tedy je-li $(\mathbf{x}_1, \dots, \mathbf{x}_n)$ LN soubor vektorů z P, je také $(A\mathbf{x}_1, \dots, A\mathbf{x}_n)$ LN.
- 2. Vzor LZ souboru vektorů je opět LZ. Neboli: je-li $(\mathbf{x}_1, \dots, \mathbf{x}_n)$ soubor vektorů z P takový že $(A\mathbf{x}_1, \dots, A\mathbf{x}_n)$ je LZ soubor, potom také soubor vzorů $(\mathbf{x}_1, \dots, \mathbf{x}_n)$ LZ.

Lineární zobrazení a zachování dimenze

Mějme $A \in \mathcal{L}(P,Q)$ a M podprostor VP P. Potom

- 1. $\dim A(M) \leq \dim M$.
- 2. Je-li A prosté zobrazení, potom $\dim A(M) = \dim M$.
- 3. $h(A) \leq \min\{\dim P, \dim Q\}$.

3 Matice lineárního zobrazení

Matice zobrazení vzhledem k bázím

Nechť $A \in \mathcal{L}(P,Q)$, buď $\mathcal{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ báze P a $\mathcal{Y} = (\mathbf{y}_1, \dots, \mathbf{y}_m)$ báze Q. Matici $^{\mathcal{X}}A^{\mathcal{Y}} \in T^{m,n}$ definovanou po sloupcích předpisem $\forall i \in \hat{n}$:

$$(^{\mathcal{X}}A^{\mathcal{Y}})_{\cdot i} := (A\mathbf{x}_i)_{\mathcal{Y}},$$

nazveme maticí zobrazení A vzhledem k bázím \mathcal{X} , \mathcal{Y} .

Je-li $A \in \mathcal{L}(P)$ lineární operátor, jeho matici zobrazení ${}^{\mathcal{X}}A^{\mathcal{X}}$ můžeme zkráceně značit ${}^{\mathcal{X}}A$.

Věta o matici složeného zobrazení

Nechť $A \in \mathcal{L}(Q, V)$, $B \in \mathcal{L}(P, Q)$ a $\mathcal{X}, \mathcal{Y}, \mathcal{W}$ jsou popořadě báze P, Q, V vektorových prostorů konečné dimenze. Potom pro matici složeného zobrazení $AB \in \mathcal{L}(P, V)$ platí

$$^{\mathcal{X}}(AB)^{\mathcal{W}} = {}^{\mathcal{Y}}A^{\mathcal{W}} \cdot {}^{\mathcal{X}}B^{\mathcal{Y}}$$
.

Věta o matici izomorfismu

Je-li $A \in \mathcal{L}(P,Q)$ izomorfismus, dim $P,\dim Q < \infty, \mathcal{X}$ je báze P a \mathcal{Y} je báze Q, potom je matice ${}^{\mathcal{X}}A^{\mathcal{Y}}$ regulární a platí

$$(^{\mathcal{X}}A^{\mathcal{Y}})^{-1} = ^{\mathcal{Y}}(A^{-1})^{\mathcal{X}}.$$

Věta o souvislosti hodnosti zobrazení a jeho matice

Nechť $A \in \mathcal{L}(P,Q)$, dim $P,Q < \infty$, \mathcal{X} je báze P a \mathcal{Y} je báze Q. Potom platí

$$h(A) = h\left(^{\mathcal{X}} A^{\mathcal{Y}}\right) .$$

Matice přechodu mezi bázemi

Nechť $\mathcal{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ a $\mathcal{Y} = (\mathbf{y}_1, \dots, \mathbf{y}_n)$ jsou báze P. Matici identického operátoru ${}^{\mathcal{X}}E^{\mathcal{Y}} \in T^{n,n}$ nazýváme **maticí přechodu** od báze \mathcal{X} k bázi \mathcal{Y} .

Věta o vlastnostech matice přechodu

Nechť \mathcal{X} , \mathcal{Y} a \mathcal{Z} jsou báze P, dim $P < \infty$. Potom

1. pro libovolné $\mathbf{x} \in P$ platí

$$^{\mathcal{X}}E^{\mathcal{Y}}\cdot(\mathbf{x})_{\mathcal{X}}=(\mathbf{x})_{\mathcal{Y}},$$

2. matice $^{\mathcal{X}}E^{\mathcal{Y}}$ je regulární a platí

$$\left(^{\mathcal{X}}E^{\mathcal{Y}}\right)^{-1} = {}^{\mathcal{Y}}E^{\mathcal{X}},$$

3.

$${}^{\mathcal{Y}}E^{\mathcal{Z}} \cdot {}^{\mathcal{X}}E^{\mathcal{Y}} = {}^{\mathcal{X}}E^{\mathcal{Z}}.$$

4 Skalární součin

Skalární součin

Buď V VP nad $T = \mathbb{R}$ nebo \mathbb{C} . Zobrazení $\langle \cdot | \cdot \rangle : V \times V \to T$ nazýváme (obecný) **skalární součin**, platí-li pro všechny vektory $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ a každý skalár $\alpha \in T$ následující axiomy:

1. Zobrazení je lineární v druhém argumentu, tj.

$$\langle \mathbf{x} \mid \mathbf{y} + \mathbf{z} \rangle = \langle \mathbf{x} \mid \mathbf{y} \rangle + \langle \mathbf{x} \mid \mathbf{z} \rangle \quad \text{a} \quad \langle \mathbf{x} \mid \alpha \mathbf{y} \rangle = \alpha \langle \mathbf{x} \mid \mathbf{y} \rangle.$$

2. Platí tzv. Hermitovská symetrie:

$$\langle \mathbf{x} \mid \mathbf{y} \rangle = \overline{\langle \mathbf{y} \mid \mathbf{x} \rangle}.$$

3. Zobrazení je pozitivně definitní, tzn.

$$\langle \mathbf{x} \mid \mathbf{x} \rangle \ge 0$$
 a zároveň $(\langle \mathbf{x} \mid \mathbf{x} \rangle = 0 \Leftrightarrow \mathbf{x} = \theta)$.

Dvojici $(V, \langle \cdot \mid \cdot \rangle)$ nazýváme (vektorovým) prostorem se skalárním součinem nebo zkráceně jako prehilbertův prostor a značíme \mathcal{H} .

Základní vlastnosti skalárního součinu

Pro libovolné $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{H}$ a $\alpha \in T$ platí

1. Sdružená linearita v prvním argumentu:

$$\langle \mathbf{x} + \mathbf{y} \mid \mathbf{z} \rangle = \langle \mathbf{x} \mid \mathbf{z} \rangle + \langle \mathbf{y} \mid \mathbf{z} \rangle \quad \text{a} \quad \langle \alpha \mathbf{x} \mid \mathbf{z} \rangle = \overline{\alpha} \langle \mathbf{x} \mid \mathbf{z} \rangle.$$

2. Skalární součin s nulovým vektorem je nula:

$$\langle \mathbf{x} \mid \theta \rangle = \langle \theta \mid \mathbf{x} \rangle = 0.$$

Standardní skalární součin

Na T^n definujeme skalární součin předpisem

$$\mathbf{x} \cdot \mathbf{y} := \sum_{j=1}^{n} \overline{x_j} \cdot y_j \,,$$

kde $\mathbf{x} = (x_1, \dots, x_n)$, $\mathbf{y} = (y_1, \dots, y_n)$ jsou vektory z T^n . Tento skalární součin nazýváme **standardním skalárním součinem**.

Norma, vzdálenost

Mějme V VP nad $\mathbb R$ nebo $\mathbb C$. Zobrazení $\|\cdot\|:V\to\mathbb R$ nazýváme **norma**, pokud pro libovolné $\mathbf x,\mathbf y\in V$ a $\alpha\in T$ platí:

1. norma je vždy nezáporná:

$$\|\mathbf{x}\| \geq 0$$
,

2. pouze nulový vektor má nulovou normu:

$$\|\mathbf{x}\| = 0 \Leftrightarrow \mathbf{x} = \theta,$$

3. norma je homogenní v absolutní hodnotě:

$$\|\alpha \mathbf{x}\| = |\alpha| \cdot \|\mathbf{x}\|,$$

4. platí trojúhelníková nerovnost:

$$\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|.$$

Pro $\mathbf{x}, \mathbf{y} \in V$ číslo $\|\mathbf{x}\| \in \mathbb{R}$ nazýváme velikostí vektoru \mathbf{x} a číslo $d(x, y) := \|\mathbf{x} - \mathbf{y}\|$ nazýváme vzdáleností vektorů \mathbf{x} a \mathbf{y} .

Norma indukovaná skalárním součinem

Ve vektorovém prostoru \mathcal{H} se skalárním součinem $\langle \cdot \mid \cdot \rangle$ definujme zobrazení $\| \cdot \| : \mathcal{H} \to \mathbb{R}$ pro $\mathbf{x} \in \mathcal{H}$ předpisem

$$\|\mathbf{x}\| := \sqrt{\langle \mathbf{x} \mid \mathbf{x} \rangle}$$
.

Toto zobrazení nazýváme normou indukovanou skalárním součinem.

Věta o korektnosti indukované normy a Schwarzova nerovnost

Zobrazení definované v Definici .reference:dfn-indukovana-norma je normou a splňuje tzv. **Schwarzovu nerovnost**:

Pro každé \mathbf{x} , \mathbf{y} z \mathcal{H} platí

$$|\langle \mathbf{x} \mid \mathbf{y} \rangle| \le ||\mathbf{x}|| \cdot ||\mathbf{y}||$$
.

Eukleidovská norma

Norma indukovaná standardním součinem se nazývá eukleidovská norma.

Pro $\mathbf{x} = (x_1, \dots, x_n) \in T^n$ je eukleidovská norma rovna

$$\|\mathbf{x}\| = \sqrt{\overline{x_1}\,x_1 + \dots + \overline{x_n}\,x_n} = \sqrt{|x_1|^2 + \dots + |x_n|^2}$$
.

p-norma

Na T^n definujeme pro $p \in \langle 1, \infty \rangle$ tzv. p-normu předpisem: pro $\mathbf{x} = (x_1, \dots, x_n) \in T^n$ položíme

$$\|\mathbf{x}\|_p = \begin{cases} \left(|x_1|^p + \dots + |x_n|^p\right)^{\frac{1}{p}} & \text{pro } p < \infty, \\ \max\{|x_1|, \dots, |x_n|\}, & \text{pro } p = \infty. \end{cases}$$

Ortogonalita (kolmost)

Nechť \mathcal{H} je prostor se skalárním součinem a \mathbf{x} , \mathbf{y} jsou vektory z \mathcal{H} . Vektor \mathbf{x} nazýváme **ortogonální** na (nebo také **kolmý** na) \mathbf{y} , právě když

$$\langle \mathbf{x} \mid \mathbf{y} \rangle = 0$$
.

Soubor vektorů $(\mathbf{x}_1, \dots, \mathbf{x}_n)$ z \mathcal{H} nazveme **ortogonální (OG)**, právě když každý vektor ze souboru je ortogonální na ostatní vektory ze souboru, tj. pro každé $i, j \in \hat{n}, i \neq j$ je

$$\langle \mathbf{x}_i \mid \mathbf{x}_j \rangle = 0$$
.

Soubor vektorů $(\mathbf{x}_1, \dots, \mathbf{x}_n)$ z \mathcal{H} nazveme **ortonormální (ON)**, právě když je ortogonální a každý vektor má velikost 1, tzn. pro každé $i, j \in \hat{n}$ Je

$$\langle \mathbf{x}_i \mid \mathbf{x}_j \rangle = \begin{cases} 0 & \text{pro } i \neq j, \\ 1 & \text{pro } i = j. \end{cases}$$

Pythagorova věta

Nechť ${\bf x}$ a ${\bf y}$ jsou vektory z ${\mathcal H}$ a ${\bf x}$ je kolmý na ${\bf y}$. Potom pro normu indukovanou skalárním součinem platí

$$\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$$
.

Obecněji: Je-li $(\mathbf{x}_1, \dots, \mathbf{x}_n)$ ortogonální soubor z \mathcal{H} , potom

$$\|\mathbf{x}_1 + \dots + \mathbf{x}_n\|^2 = \|\mathbf{x}_1\|^2 + \dots + \|\mathbf{x}_n\|^2.$$

Věta o lineární nezávislosti OG souboru

Ortogonální soubor **nenulových** vektorů je LN. Speciálně, každý ortonormální soubor vektorů je LN.

Fourierovy koeficienty vůči ON bázi

Nechť $\mathcal{X}=(\mathbf{x}_1,\ldots,\mathbf{x}_n)$ je ON báze prehilbertova prostoru \mathcal{H} , potom pro každé $\mathbf{z}\in\mathcal{H}$ platí

$$\mathbf{z} = \sum_{i=1}^{n} \langle \mathbf{x}_i \mid \mathbf{z} \rangle \mathbf{x}_i.$$

Neboli

$$(\mathbf{z})_{\mathcal{X}} = (\langle \mathbf{x}_1 \mid \mathbf{z} \rangle, \langle \mathbf{x}_2 \mid \mathbf{z} \rangle, \dots, \langle \mathbf{x}_n \mid \mathbf{z} \rangle).$$

Ortogonální projekce na přímku

Je-li $\mathbf{v} \neq \boldsymbol{\theta},$ zobrazení proj $_{\mathbf{v}}$ definované

$$\mathrm{proj}_{\mathbf{v}}(\mathbf{z}) := \frac{\langle \mathbf{v} \mid \mathbf{z} \rangle}{\langle \mathbf{v} \mid \mathbf{v} \rangle} \mathbf{v} \quad \text{ pro } \mathbf{z} \in \mathcal{H}$$

se nazývá ortogonální projekce z na přímku $\langle \mathbf{v} \rangle$.

Gramova-Schmidtova ortogonalizace

Nechť $\mathcal{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n) \subseteq \mathcal{H}$ je LN soubor vektorů. Potom existuje ON soubor $\mathcal{Y} = (\mathbf{y}_1, \dots, \mathbf{y}_n)$ vektorů z \mathcal{H} takový, že pro každé $k \in \hat{n}$ je

$$\langle \mathbf{x}_1, \dots, \mathbf{x}_k \rangle = \langle \mathbf{y}_1, \dots, \mathbf{y}_k \rangle.$$

Výpočet GSO

$$\mathbf{z}_{1} = \mathbf{x}_{1},$$

$$\mathbf{z}_{2} = \mathbf{x}_{2} - \operatorname{proj}_{\mathbf{z}_{1}}(\mathbf{x}_{2}),$$

$$\mathbf{z}_{3} = \mathbf{x}_{3} - \operatorname{proj}_{\mathbf{z}_{1}}(\mathbf{x}_{3}) - \operatorname{proj}_{\mathbf{z}_{2}}(\mathbf{x}_{3}),$$

$$\vdots$$

$$\mathbf{z}_{n} = \mathbf{x}_{n} - \operatorname{proj}_{\mathbf{z}_{1}}(\mathbf{x}_{n}) - \operatorname{proj}_{\mathbf{z}_{2}}(\mathbf{x}_{n}) - \dots - \operatorname{proj}_{\mathbf{z}_{n-1}}(\mathbf{x}_{n}).$$

5 Geometrie \mathbb{R}^n

Vzdálenost množin

Pro dvě množiny M a N z \mathbb{R}^n definujeme **vzdálenost** M od N předpisem

$$d(M, N) := \inf \left\{ \|\mathbf{x} - \mathbf{y}\| \mid \mathbf{x} \in M, \ \mathbf{y} \in N \right\}.$$

Ortogonální doplněk

Je-li $M \subseteq \mathbb{R}^n$, potom definujeme tzv. **ortogonální doplněk** (značíme M^{\perp}) jako množinu vektorů kolmých na všechny vektory z M, tj.

$$M^{\perp} := \{ \mathbf{x} \in \mathbb{R}^n \mid (\forall \mathbf{v} \in M) (\mathbf{x} \cdot \mathbf{v} = 0) \}.$$

Věta o vzdálenosti a kolmici

Mějme vektor \mathbf{x} a podprostor P v \mathbb{R}^n . Existují-li vektory $\mathbf{v} \in P$ a $\mathbf{w} \in P^{\perp}$ takové, že $\mathbf{x} = \mathbf{v} + \mathbf{w}$, potom

$$d(\mathbf{x}, P) = \|\mathbf{w}\|.$$

O vlastnostech ortogonálního doplňku

Je-li P podprostor \mathbb{R}^n , potom platí následující.

- 1. P^{\perp} je podprostor v \mathbb{R}^n .
- 2. $P \cap P^{\perp} = \{\theta\}.$
- 3. Každý vektor z \mathbb{R}^n lze zapsat jako součet vektoru z P a vektoru z P^{\perp} , neboli

$$(\forall \mathbf{x} \in \mathbb{R}^n)(\exists \mathbf{v} \in P)(\exists \mathbf{w} \in P^{\perp})(\mathbf{x} = \mathbf{v} + \mathbf{w}).$$

4. Rozklad vektoru na součet vektorů z P a P^{\perp} je jednoznačný, neboli

$$(\forall \mathbf{x} \in \mathbb{R}^n)(\forall \mathbf{v}, \tilde{\mathbf{v}} \in P)(\forall \mathbf{w}, \tilde{\mathbf{w}} \in P^{\perp})$$
$$\left((\mathbf{v} + \mathbf{w} = \mathbf{x} = \tilde{\mathbf{v}} + \tilde{\mathbf{w}}) \Rightarrow (\mathbf{v} = \tilde{\mathbf{v}} \wedge \mathbf{w} = \tilde{\mathbf{w}})\right).$$

Důkaz. Viz cvičení 5.4 a 5.6.

Ortogonální projekce na podprostor

Je-li soubor $(\mathbf{y}_1, \dots, \mathbf{y}_k)$ OG báze podprostoru P z \mathbb{R}^n , potom definujeme **ortogonální projekci** na **podprostor** P předpisem:

$$\operatorname{proj}_{P}(\mathbf{z}) := \operatorname{proj}_{\mathbf{v}_{1}}(\mathbf{z}) + \cdots + \operatorname{proj}_{\mathbf{v}_{k}}(\mathbf{z}) \operatorname{pro} \mathbf{z} \in \mathbb{R}^{n}.$$

Věta o vzdálenosti variet

Mějme variety $M = \mathbf{a} + \langle \mathbf{x}_1, \dots, \mathbf{x}_k \rangle$ a $N = \mathbf{b} + \langle \mathbf{y}_1, \dots, \mathbf{y}_\ell \rangle$, potom

$$d(M, N) = d(\mathbf{a} - \mathbf{b}, \langle \mathbf{x}_1, \dots, \mathbf{x}_k, \mathbf{y}_1, \dots, \mathbf{y}_\ell \rangle).$$

Rovnoběžné, různoběžné, mimoběžné variety

Máme-li dvě variety W a U, potom řekneme, že tyto variety jsou

- 1. rovnoběžné, pokud $Z(W) \subseteq Z(U)$ nebo $Z(U) \subseteq Z(W)$,
- 2. různoběžné, pokud nejsou rovnoběžné a $W \cap U \neq \emptyset$,
- 3. **mimoběžné**, pokud nejsou rovnoběžné a $W \cap U = \emptyset$.

Úhel mezi vektory

Jsou-li \mathbf{x} , \mathbf{y} nenulové vektory, potom **úhlem vektorů** \mathbf{x} , $\mathbf{y} \in \mathbb{R}^n$ nazýváme číslo

$$\arccos \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}.$$

Úhel mezi přímkami a nadrovinami

Máme-li dvě přímky $p = \mathbf{a} + \langle \mathbf{u} \rangle$, $q = \mathbf{b} + \langle \mathbf{v} \rangle$ a dvě nadroviny P s normálovým vektorem \mathbf{n}_P a Q s normálovým vektorem \mathbf{n}_Q , potom definujeme **úhel mezi**

1. **přímkami** p a q jako

$$\arccos \frac{|\mathbf{u} \cdot \mathbf{v}|}{\|\mathbf{u}\| \|\mathbf{v}\|}.$$

2. přímkou p a nadrovinou P jako

$$\frac{\pi}{2} - \arccos \frac{|\mathbf{u} \cdot \mathbf{n}_P|}{\|\mathbf{u}\| \|\mathbf{n}_P\|}.$$

3. nadrovinami P, Q jako

$$\arccos \frac{|\mathbf{n}_P \cdot \mathbf{n}_Q|}{\|\mathbf{n}_P\| \|\mathbf{n}_Q\|}.$$

Translace (posunutí) o vektor

Máme-li vektor $\mathbf{u} \in \mathbb{R}^n$, potom zobrazení: Pro $\mathbf{x} \in \mathbb{R}^n$ položíme

$$T_{\mathbf{u}}(\mathbf{x}) = \mathbf{x} + \mathbf{u}$$

nazýváme **translací** o vektor **u**.

Afinní transformace

Afinní transformace jsou zobrazení ve tvaru

$$T: \mathbf{x} \mapsto A\mathbf{x} + \mathbf{u} \quad \text{pro } \mathbf{x} \in \mathbb{R}^n,$$

kde A je nějaký lineární operátor z $\mathcal{L}(\mathbb{R}^n)$ a **u** vektor z \mathbb{R}^n .

Homogenní souřadnice

Je-li $\mathbf{x} = (x_1, \dots, x_n)$ vektor z \mathbb{R}^n , potom $(x_1, \dots, x_n, 1) \in \mathbb{R}^{n+1}$ nazýváme **homogenní souřadnice** vektoru \mathbf{x} .

Matice translace

Translace o vektor $\mathbf{u}=(u_1,u_2)$, resp. $\mathbf{u}=(u_1,u_2,u_3)$, lze reprezentovat pomocí matic

$$T_{\mathbf{u}} = \begin{pmatrix} 1 & 0 & u_1 \\ 0 & 1 & u_2 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{resp.} \quad T_{\mathbf{u}} = \begin{pmatrix} 1 & 0 & 0 & u_1 \\ 0 & 1 & 0 & u_2 \\ 0 & 0 & 1 & u_3 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

15

Rotace

Pro rotace o úhel φ v \mathbb{R}^2 je matice rotace s homogenní souřadnicí rovna

$$R_{\varphi} = \begin{pmatrix} \cos \varphi & -\sin \varphi & 0\\ \sin \varphi & \cos \varphi & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

Škálování

Škálování znamená prosté násobení jednotlivých souřadnic číslem. Škálovací matice vypadají takto

$$S_{(\alpha,\beta)} = \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{resp.} \quad S_{(\alpha,\beta,\gamma)} = \begin{pmatrix} \alpha & 0 & 0 & 0 \\ 0 & \beta & 0 & 0 \\ 0 & 0 & \gamma & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

6 Základy numerické matematiky

Přidružená (indukovaná) maticová norma

Mějme normu $\|\cdot\|_{(n)}$ na \mathbb{R}^n a normu $\|\cdot\|_{(m)}$ na \mathbb{R}^m , definujeme **přidruženou (indukovanou)** maticovou normu matice $\mathbf{A} \in \mathbb{R}^{m,n}$ následujícím způsobem

$$\|\mathbf{A}\| := \sup_{\substack{\mathbf{x} \in \mathbb{R}^n \\ \mathbf{x} \neq \theta}} \frac{\|\mathbf{A}\mathbf{x}\|_{(m)}}{\|\mathbf{x}\|_{(n)}}.$$

O základních vlastnostech přidružené normy

Zobrazení definované v předchozí definici je normou a platí pro ni

- 1. Je-li m=n a zvolené normy jsou stejné, potom $\|\mathbf{E}\|=1$ (zde \mathbf{E} je jednotková matice),
- 2. $\|\mathbf{A}\mathbf{x}\|_{(m)} \leq \|\mathbf{A}\| \cdot \|\mathbf{x}\|_{(n)}$ (konzistence normy),
- 3. $\|\mathbf{AB}\| \le \|\mathbf{A}\| \cdot \|\mathbf{B}\|$.

(Přidružená) maticová p-norma

Pokud v definici maticové normy uvažujeme na \mathbb{R}^n i \mathbb{R}^m odpovídající p-normy, nazýváme tuto normu přidruženou (indukovanou) **maticovou** p-normou a značíme ji $\|\mathbf{A}\|_p$. Tedy

$$\|\mathbf{A}\|_p = \sup_{\substack{\mathbf{x} \in \mathbb{R}^n \\ \mathbf{x} \neq \theta}} \frac{\|\mathbf{A}\mathbf{x}\|_p}{\|\mathbf{x}\|_p} = \sup_{\substack{\mathbf{z} \in \mathbb{R}^n \\ \|\mathbf{z}\|_p = 1}} \|\mathbf{A}\mathbf{z}\|_p.$$

Věta o speciálních případech přidružené maticové normy

Mějme matici **A** z $\mathbb{R}^{m,n}$, která má složky a_{ij} , potom

1. Norma $\|\mathbf{A}\|_1$ je rovna maximu součtu absolutních hodnot ve sloupci, tj.

$$\|\mathbf{A}\|_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{i,j}|.$$

2. Norma $\|\mathbf{A}\|_{\infty}$ je rovna maximu součtu absolutních hodnot v řádku, tj.

$$\|\mathbf{A}\|_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{i,j}|.$$

3. Norma $\|\mathbf{A}\|_2$ je rovna odmocnině z největšího vlastního čísla matice $\mathbf{A}^T \mathbf{A}$ i matice $\mathbf{A} \mathbf{A}^T$.

Frobeniova norma

Frobeniovou normou nazýváme normu na $\mathbb{R}^{m,n}$ definovanou předpisem

$$\|\mathbf{A}\|_F = \left(\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2\right)^{\frac{1}{2}}.$$

Absolutní číslo podmíněnosti

Absolutní číslo podmíněnosti úlohy je definováno

$$\hat{\kappa} = \lim_{r \to 0+} \sup_{\|\Delta x\| \le r} \frac{\|\Delta y\|}{\|\Delta x\|}.$$

Relativní číslo podmíněnosti

Relativní číslo podmíněnosti úlohy je

$$\kappa = \lim_{r \to 0+} \sup_{\|\Delta x\| \le r} \left(\frac{\|\Delta y\|}{\|y\|} \middle/ \frac{\|\Delta x\|}{\|x\|} \right).$$

Číslo podmíněnosti matice

Mějme regulární matici $\mathbf{A} \in \mathbb{R}^{n,n}$. Číslo

$$\kappa(\mathbf{A}) = \|\mathbf{A}\| \cdot \|\mathbf{A}^{-1}\|$$

se nazývá **číslo podmíněnosti matice A** vhledem k normě $\|\cdot\|$.

Věta o podmíněnosti řešení soustavy lineárních rovnic

Mějme matici $\mathbf{A} \in \mathbb{R}^{n,n}$. Změníme-li vektor pravé strany soustavy lineárních rovnic \mathbf{b} o $\Delta \mathbf{b}$, pro změnu řešení $\Delta \mathbf{x}$ platí

$$\frac{\|\Delta \mathbf{x}\|}{\|\mathbf{x}\|} \leq \kappa(\mathbf{A}) \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{b}\|}.$$

Stabilita algoritmů

Nechť V je nějaký numerický algoritmus, jehož teoretický (přesný) výstup označíme $V^*(x)$, kde x jsou vstupní data. Výsledek výpočtu v konečné (strojové) aritmetice označíme V(x). Označme $\Delta y = V^*(x) - V(x)$.

Tato hodnota je tzv. dopředná/přímá chyba (anglicky forward error). Je to odchylka spočítaného řešení od přesného řešení.

Nejmenší (v normě) číslo Δx takové, že $V^*(x + \Delta x) = V(x)$ se nazývá zpětná chyba (anglicky backward error). Jedná se o promítnutí chyby algoritmu V do jeho vstupu.

7 Maticové rozklady

LU rozklad

Mějme matici $\mathbf{A} \in T^{m,m}$. Pokud existuje dolní trojúhelníková matice \mathbf{L} s jedničkami na diagonále a horní trojúhelníková matice \mathbf{U} , takové že $\mathbf{A} = \mathbf{L}\mathbf{U}$, nazýváme tento součin $\mathbf{L}\mathbf{U}$ rozkladem.

LU rozklad s řádkovou pivotací

Zápis matice $\mathbf{A} \in T^{m,m}$ jako součin

$$PA = LU$$

kde \mathbf{P} je nějaká permutační matice, \mathbf{L} dolní trojúhelníková matice s jedničkami na diagonále a \mathbf{U} horní trojúhelníková matice nazýváme $\mathbf{L}\mathbf{U}$ rozkladem s řádkovou pivotací.

LU rozklad s částečnou pivotací

LU rozklad s řádkovou pivotací matice $\mathbf{A} \in \mathbb{R}^{m,m}$

$$PA = LU$$

nazveme LU rozkladem s částečnou pivotací, pokud pro všechna $i \geq j$ z \hat{m} platí

$$|\mathbf{L}_{ii}| \leq 1$$
.

Matice s ortonormálními sloupci

Matici $\mathbf{Q} \in \mathbb{R}^{m,n}$, $m \geq n$, nazýváme **maticí s ortonormálními sloupci**, pokud platí

$$\mathbf{Q}^T\mathbf{Q} = \mathbf{E}_n$$

kde \mathbf{E}_n je jednotková matice z $\mathbb{R}^{n,n}$, neboli

$$\mathbf{Q}_{:i}^T \mathbf{Q}_{:j} = \begin{cases} 0 & \text{pro } i \neq j, \\ 1 & \text{pro } i = j. \end{cases}$$

Ortogonální matice

Čtvercovou matici $\mathbf{Q} \in \mathbb{R}^{n,n}$ nazýváme **ortogonální**, pokud platí

$$\mathbf{Q}^T = \mathbf{Q}^{-1}.$$

Transpozice ortogonální matice

Je-li \mathbf{Q} ortogonální matice, je její transpozice \mathbf{Q}^T také ortogonální matice.

Důkaz. Z vlastnosti ortogonální matice a transpozice platí

$$\mathbf{E} = \mathbf{Q}\mathbf{Q}^T = (\mathbf{Q}^T)^T \mathbf{Q}^T \text{ a } \mathbf{E} = \mathbf{Q}^T \mathbf{Q} = \mathbf{Q}^T (\mathbf{Q}^T)^T.$$

Tedy $(\mathbf{Q}^T)^{-1} = (\mathbf{Q}^T)^T$, a proto je \mathbf{Q}^T dle definice také ortogonální.

Součin ortogonálních matic

Pro ortogonální matice $\mathbf{Q}_1, \mathbf{Q}_2, \dots, \mathbf{Q}_k \in \mathbb{R}^{n,n}, n, k \in \mathbb{N}$, platí, že jejich součin je opět ortogonální matice, neboli

$$(\mathbf{Q}_1\mathbf{Q}_2\cdots\mathbf{Q}_k)^T\mathbf{Q}_1\mathbf{Q}_2\cdots\mathbf{Q}_k=\mathbf{E}.$$

Důkaz. Tvrzení plyne z vlastnosti ortogonálních matic a z faktu, že transpozice součinu matic je součin transpozic těchto matic, ale v obráceném pořadí:

$$(\mathbf{Q}_1 \mathbf{Q}_2 \cdots \mathbf{Q}_k)^T = \mathbf{Q}_k^T \mathbf{Q}_{k-1}^T \cdots \mathbf{Q}_1^T.$$

Z toho a z vlastností ortogonálních matic získáváme

$$(\mathbf{Q}_1 \mathbf{Q}_2 \cdots \mathbf{Q}_k)^T \mathbf{Q}_1 \mathbf{Q}_2 \cdots \mathbf{Q}_k = \mathbf{Q}_k^T \cdots \mathbf{Q}_2^T \mathbf{Q}_1^T \mathbf{Q}_1 \mathbf{Q}_2 \cdots \mathbf{Q}_k = \mathbf{Q}_k^T \cdots \mathbf{Q}_2^T (\mathbf{Q}_1^T \mathbf{Q}_1) \mathbf{Q}_2 \cdots \mathbf{Q}_k = \mathbf{Q}_k^T \cdots \mathbf{Q}_2^T \mathbf{E} \mathbf{Q}_2 \cdots \mathbf{Q}_k = \cdots = \mathbf{Q}_k^T \mathbf{Q}_k = \mathbf{E} .$$

Ortogonální matice zachovávají standardní skalární součin

Je-li $\mathbf{Q} \in \mathbb{R}^{n,n}$ ortogonální matice, pak pro každé dva vektory $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ platí

$$(\mathbf{Q}\mathbf{x})^T(\mathbf{Q}\mathbf{y}) = \mathbf{x}^T\mathbf{y}.$$

 $D\mathring{u}kaz.$ D $\mathring{u}kaz$ je přímočarým použitím vlastností ON matic a vlastností standardního skalárního součinu

$$(\mathbf{Q}\mathbf{x})^T(\mathbf{Q}\mathbf{y}) = \mathbf{x}^T\mathbf{Q}^T\mathbf{Q}\mathbf{y} = \mathbf{x}^T\mathbf{E}\mathbf{y} = \mathbf{x}^T\mathbf{y}.$$

Ortogonální matice zachovávají eukleidovskou normu

Je-li $\mathbf{Q} \in \mathbb{R}^{n,n}$ ortogonální matice, pak pro každý vektor $\mathbf{x} \in \mathbb{R}^n$ platí

$$\|\mathbf{Q}\mathbf{x}\|_2 = \|\mathbf{x}\|_2.$$

 $D\mathring{u}kaz$. Důkaz je přímočarým použitím vlastností eukleidovské normy a Tvrzení o OG maticích a skalárním součinu.

$$\|\mathbf{Q}\mathbf{x}\|_2^2 = (\mathbf{Q}\mathbf{x})^T\mathbf{Q}\mathbf{x} = \mathbf{x}^T\mathbf{Q}^T\mathbf{Q}\mathbf{x} = \mathbf{x}^T\mathbf{x} = \|\mathbf{x}\|_2^2.$$

Determinant ortogonální matice

Je-li $\mathbf{Q} \in \mathbb{R}^{n,n}$ ortogonální matice, pak pro její determinant platí

$$\det \mathbf{Q}_i = \pm 1.$$

 $D\mathring{u}kaz$. D $\mathring{u}kaz$ plyne z vlastností determinantu součinu matic a transponované matice při aplikaci determinantu na obě strany rovnice ON matic,

$$\det (\mathbf{Q}^T \mathbf{Q}) = \det (\mathbf{E}),$$

$$\det (\mathbf{Q}^T) \det (\mathbf{Q}) = 1,$$

$$\det (\mathbf{Q}) \det (\mathbf{Q}) = 1,$$

$$(\det (\mathbf{Q}))^2 = 1,$$

$$\det (\mathbf{Q}) = \pm 1.$$

П

П

П

Vlastní čísla ortogonální matice

Je-li $\mathbf{Q} \in \mathbb{R}^{n,n}$ ortogonální matice, pak pro každé její vlastní číslo λ platí

$$|\lambda|=1.$$

 $D\mathring{u}kaz$. Důkaz plyne z Tvrzení o normě OG matic a homogenity násobení skalárním číslem použitého na rovnici pro vlastní čísla,

$$\begin{aligned} \mathbf{Q}\mathbf{x} &= \lambda \mathbf{x}, \\ \|\mathbf{Q}\mathbf{x}\|_2 &= \|\lambda \mathbf{x}\|_2, \\ \|\mathbf{x}\|_2 &= |\lambda| \|\mathbf{x}\|_2, \\ 1 &= |\lambda|. \end{aligned}$$

Redukovaný QR rozklad

Mějme $m \geq n$ a matici $\mathbf{A} \in \mathbb{R}^{m,n}$. Zápis této matice jako součin

$$\mathbf{A} = \hat{\mathbf{Q}}\hat{\mathbf{R}},$$

kde $\hat{\mathbf{Q}} \in \mathbb{R}^{m,n}$ je matice s ortonormálními sloupci a $\hat{\mathbf{R}} \in \mathbb{R}^{n,n}$ je horní trojúhelníková matice, nazýváme **redukovaný QR rozklad**.

Úplný QR rozklad

Mějme $m \geq n$ a matici $\mathbf{A} \in \mathbb{R}^{m,n}.$ Její zápis jako součin

$$A = QR$$

kde $\mathbf{Q} \in \mathbb{R}^{m,m}$ je ortogonální matice a $\mathbf{R} \in \mathbb{R}^{m,n}$ je horní trojúhelníková matice, nazýváme **úplný** (kompletní) $\mathbf{Q}\mathbf{R}$ rozklad.

Věta o existenci QR rozkladu

Každá matice $\mathbf{A} \in \mathbb{R}^{m,n} (m \geq n)$ má úplný QR rozklad a tedy i redukovaný QR rozklad.

Věta o jednoznačnosti QR rozkladu

Každá matice $\mathbf{A} \in \mathbb{R}^{m,n} (m \geq n)$ s lineárně nezávislými sloupci má jednoznačný redukovaný QR rozklad $\mathbf{A} = \hat{\mathbf{Q}}\hat{\mathbf{R}}$ splňující $r_{jj} > 0$.

Pozitivně definitní matice

Mějme $\mathbf{A} \in \mathbb{R}^{n,n}$. Řekneme, že matice \mathbf{A} je **pozitivně definitní**, pokud

$$\mathbf{x}^T \mathbf{A} \mathbf{x} > 0 \quad \forall \mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \theta.$$

Pozitivně semidefinitní matice

Mějme $\mathbf{A} \in \mathbb{R}^{n,n}$. Řekneme, že matice \mathbf{A} je **pozitivně semidefinitní**, pokud

$$\mathbf{x}^T \mathbf{A} \mathbf{x} > 0 \quad \forall \mathbf{x} \in \mathbb{R}^n.$$

Symetrické matice

Matice $\mathbf{A} \in \mathbb{R}^{n,n}$ je symetrická, jestliže je rovna svojí transpozici, tedy $\mathbf{A}^T = \mathbf{A}$.

Věta o symetrických maticích

Buď $\mathbf{S} \in \mathbb{R}^{n,n}$ symetrická matice. Potom platí následující:

1. Matice ${f S}$ je diagonalizovatelná a navíc lze vlastní vektory volit tak, že tvoří ortonormální bázi. Jinými slovy: existuje ortogonální matice ${f Q}$ a diagonální matice ${f D}$ tak, že

$$\mathbf{S} = \mathbf{Q} \mathbf{D} \mathbf{Q}^T.$$

- 2. Všechna vlastní čísla matice ${\bf S}$ jsou reálná.
- 3. Je-li matice ${\bf S}$ pozitivně semidefinitní, jsou vlastní čísla nezáporná.
- 4. Je-li matice ${f S}$ pozitivně definitní, jsou vlastní čísla kladná.