Семинар по пределам

конспект от TheLostDesu

17 сентября 2021 г.

Вспомним, что предел $\lim_{n\to\inf}=a$, когда $\forall \varepsilon>0$ $\exists N \forall n\geq N) \Rightarrow |x_n-a|<\varepsilon$

Последовательность раходится тогда, когда не существует а, такого, что а - предел этой последовательности. $\forall a \exists \varepsilon > 0 \forall N \exists n \geq N \Rightarrow |x_n - a| \geq \varepsilon$

Например $\lim_{n \to \inf} \frac{2n-1}{2n+1} = 1$. Докажем это по определению:

Пусть есть $\varepsilon > 0$. Тогда, возьмем $N = \left[\frac{1}{\varepsilon}\right] + 1$. Тогда для любого n > N: $x_n - 1 \le \varepsilon$. Следовательно предел действительно равен единице.

Пусть у нас есть $a\in R,\ k\in N$. Доказать, что $\lim_{n\to inf}\frac{a}{\sqrt[k]{n}}=0$. Если $|\frac{a}{\sqrt[5]{n}}|<\varepsilon$, то $\frac{a^k}{n}<\varepsilon^k$. Но тогда $n>\frac{|a|^k}{\varepsilon^k}$. Возьмем следующее целое

за этим число. Оно и будет N. Значит, по определению предел равен 0. Ч.Т.Д.

Вычисление пределов. Свойства

Пусть есть две последовательности x_n и y_n . А также известно, что предел первой последовательности равен a, а второй - b.

$$\lim_{\substack{n\to\inf\\n\to\inf}}\alpha*x_n=a*\alpha$$

$$\lim_{\substack{n\to\inf\\n\to\inf}}(x_n+y_n)=a+b$$

$$\lim_{\substack{n\to\inf\\n\to\inf}}(x_n*y_n)=a*b$$
 не равно 0.

Если есть три последовательности $x_ny_nz_n$, и $x_n\leq y_n\leq z_n$, то последовательность y_n называется «зажатой». Если при этом x_nz_n стремятся к одному числу, то и y_n стремится к этому числу.

При нахождении предела частного обычно стоит выносить самое «быстрорастущее» слагаемое за скобки в числителе и знаменателе. Тогда получится пределы вида $\frac{n^k(const)}{n^j(const)}$.