MỘT SỐ CÂU HỎI TRẮC NGHIỆM A2 – C2

I. ĐỊNH THỨC

1) Tính định thức
$$\Delta = \begin{vmatrix} 0 & 1 & -2 \\ -2 & 4 & 6 \\ -1 & 6 & 3 \end{vmatrix}$$
. **a)** $\Delta = 16$ **b)** $\Delta = 8$ **c)** $\Delta = 2$

$$\mathbf{c}) \ \Delta = 2 \qquad \qquad \mathbf{d})$$

 $\Delta = -16$

2) Tính định thức
$$\Delta = \begin{vmatrix} 1 & 4 & 6 \\ -2 & 2 & 3 \\ 1 & 2 & 3 \end{vmatrix}$$
. **a)** $\Delta = -1$ **b)** $\Delta = 0$ **c)** $\Delta = 1$ **d)** $\Delta = 2$

3) Tính định thức
$$\Delta = \begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 2 & 0 \\ 0 & 2 & 4 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{vmatrix}$$
. **a)** $\Delta = 4$ **b)** $\Delta = -4$ **c)** $\Delta = -24$ **d)** $\Delta = 24$

4) Tính định thức
$$\Delta = \begin{bmatrix} 0 & 2 & 0 & 2 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 4 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 & 0 \end{bmatrix}$$
. **a**) $\Delta = 6$ **b**) $\Delta = -6$ **c**) $\Delta = -120$ **d**) $\Delta = 120$

5) Tính định thức
$$\Delta = \begin{bmatrix} 2 & m & 4 \\ 3 & 0 & 0 \\ 1 & 1 & 2 \end{bmatrix}$$
. Tìm m để $\Delta \le 0$. **a**) $m \le 2$ **b**) $m \ge 2$ c) $m \le 1$ d) $m \ge 1$

6) Tính định thức
$$\Delta = \begin{bmatrix} 1 & 2 & m \\ 1 & 2 & m \\ 1 & 1 & m \end{bmatrix}$$
. Tìm m để $\Delta \ge 0$. **a)** $m \le 3$ **b)** $m \ge 3$ **c)** $m \le 2$ d) $m \ge 2$

7) Tính định thức
$$\Delta = \begin{vmatrix} 1 & 1 & 3 \\ 1 & 2 & m \\ 1 & 1 & m \end{vmatrix}$$
. Tìm m để $\Delta > 0$.
8) Tính định thức $\Delta = \begin{vmatrix} 2 & m+2 & 4 \\ m & m & 0 \\ \vdots & \ddots & \ddots & \vdots \\ m & m & 0 \end{vmatrix}$. Tìm m để $\Delta = 0$.

a) m=2, m=0, m=-2 b) m=2, m=0 c) m=-2, m=0 d) m=2, m=-2
9) Cho hai định thức:
$$\Delta_1 = \begin{vmatrix} 1 & 2 & -3 & 4 \\ a & b & -c & d \\ 3 & 6 & -8 & 4 \\ 4 & 8 & -12 & 17 \end{vmatrix}$$
; $\Delta_2 = \begin{vmatrix} 2 & 4 & -6 & 8 \\ 2a & 2b & -2c & 2d \\ 6 & 12 & -16 & 8 \\ 4 & 8 & -12 & 17 \end{vmatrix}$. Khẳng định nào sau đây đúng?

a)
$$2\Delta_1 = \Delta_2$$
 b) $\Delta_2 = 8\Delta_1$ c) $\Delta_2 = 4\Delta_1$ d) $\Delta_2 = 16\Delta_1$

10) Cho hai định thức: $\Delta_1 = \begin{vmatrix} 1 & 2 & -3 & 4 \\ 3 & 6 & -8 & 4 \\ 4 & 8 & -12 & 17 \end{vmatrix}$; $\Delta_2 = \begin{vmatrix} 2 & 4 & -6 & 8 \\ 2a & 2b & -2c & 2d \\ 6 & 12 & -16 & 8 \\ 8 & 16 & -24 & 34 \end{vmatrix}$. Khẳng định nào sau đây đúng?

a)
$$16\Delta_1 = \Delta_2$$
 b) $\Delta_2 = 8\Delta_1$ c) $\Delta_2 = 4\Delta_1$ d) $\Delta_2 = 2\Delta_1$

11) Tìm số nghiệm phân biệt r của phương trình:
$$\begin{vmatrix} 1 & 2x & -1 & -1 \\ 1 & x^2 & -1 & -1 \\ 0 & 0 & x & 1 \\ 0 & 0 & 0 & 2 \end{vmatrix} = 0$$
. a) $\mathbf{r} = \mathbf{1}$; b) $\mathbf{r} = \mathbf{2}$; c) $\mathbf{r} = \mathbf{3}$; d) $\mathbf{r} = \mathbf{4}$;

12) Tìm số nghiệm phân biệt r của phương trình:
$$\begin{vmatrix} 1 & x & -1 & -1 \\ 1 & x & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 2 & 0 & 2 \end{vmatrix} = 0$$

- a) r=1;
- - d)Phương trình vô nghiệm;
- 13) Giải phương trình: $\begin{vmatrix} x & x & -1 & -1 \\ 1 & x^2 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{vmatrix} = 0$
- a) x=0;
- b) x=1; x=-1;
- c) x=0;x=1;x=-1 d) Phương trình có nghiệm x tùy ý.
- 14) Giải phương trình: $\begin{vmatrix} x & x & 1 & x \\ x & 1 & 1 & 1 \\ x & x & 2 & 1 \\ & & & 3 \end{vmatrix} = 0 . a) x=0;$ b) x=1; 0;
- c) x=0;1;3; d) x=0;1;2;3
- 15) Giải phương trình: $\begin{vmatrix} x & x & 1 & 0 \\ 1 & 2 & 1 & 1 \\ 2 & 2 & 1 & 2 \\ x & x & 2 & r \end{vmatrix} = 0 . a) x=0; 4 b) x=1; 0;4 c) x=0;1;4;$
- d) x=0;

II. MA TRẬN

16) Tính hạng r(A) của ma trận
$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 6 & 8 & 11 \\ 3 & 6 & 9 & 12 & 14 \\ 4 & 8 & 12 & 16 & 20 \end{pmatrix}$$
. a) r (A)=1; b) r (A)=2; c) r (A)=3; d) r (A)=4;

17) Tính hạng r(A) của ma trận
$$A = \begin{pmatrix} 1 & 3 & 5 & 7 & 9 \\ 2 & 4 & 6 & 9 & 10 \\ 3 & 5 & 7 & 9 & 11 \\ 4 & 6 & 8 & 10 & 12 \end{pmatrix}$$
. a) r (A)=1; b) r (A)=2; c) r (A)=3; d) r (A)=4;

- 18) Tìm m để ma trận sau đây có hạng bằng 3: $A = \begin{pmatrix} 1 & m & 1 & 2 \\ 2 & 3m-1 & 2 & m+4 \\ 4 & 5m-1 & m+4 & 2m+7 \end{pmatrix}$
- a) m=0
- b) m=1 c) m=0; m=1
- 19) Tìm m để ma trận sau đây có hạng bằng 2: $A = \begin{pmatrix} 3 & m & 0 & 1 \\ 6 & 2m & m & 2 \\ 9 & 3m & 0 & m+2 \\ 15 & 5m+1 & 0 & 7 \end{pmatrix}$
- b) m=1
- c) m=0: m=1
- 20) Cho ma trận $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Tính ma trận tích $B = A^3$
- a) B=A

- b) $B = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$ c) $B = \begin{pmatrix} 3 & 3 \\ 0 & 3 \end{pmatrix}$ d) Các kết qủa trên đều sai.
- 21) Cho hai ma trận $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ và $B = \begin{pmatrix} 0 & 1 \\ 0 & 2 \\ 0 & 3 \end{pmatrix}$. Khẳng định nào sau đây là đúng?

 - a) AB=BA. b) AB xác định nhưng BA không xác định. c) $BA = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$ d) $AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

- 22) Cho hai ma trận $A = \begin{pmatrix} 2 & 4 & 6 \\ -4 & 0 & 2 \end{pmatrix}$ và $B = \begin{pmatrix} 3 & 3 & 0 \\ 6 & 0 & 0 \\ 9 & 6 & 0 \end{pmatrix}$. Khẳng định nào sau đây là đúng?
 - a) $AB = 6 \begin{pmatrix} 14 & 7 \\ 1 & 0 \end{pmatrix}$

b) $AB = 6 \begin{pmatrix} 14 & 7 & 0 \\ 1 & 0 & 1 \end{pmatrix}$

c) $AB = 6 \begin{pmatrix} 14 & 7 & 0 \\ 1 & 0 & 0 \end{pmatrix}$

- d) BA xác định nhưng AB không xác định.
- 23) Cho ma trận $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Tính A^6 .

 - a) $\begin{pmatrix} 1 & 5 \\ 0 & 1 \end{pmatrix}$ b) $\begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$
- d) $\begin{pmatrix} 1 & 5 \\ 5 & 1 \end{pmatrix}$
- 24) Cho ma trận $A = \begin{pmatrix} 1 & -2 & 3 \\ 1 & -1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$; $B = \begin{pmatrix} 1 & -1 & 1 \\ 1 & -1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$. Tích BA là:
- a) $BA = \begin{pmatrix} 2 & -2 & 6 \\ 1 & -1 & 3 \\ 0 & 0 & 3 \end{pmatrix}$ b) $BA = \begin{pmatrix} 2 & -2 & 6 \\ 1 & -1 & 3 \\ 0 & 0 & 4 \end{pmatrix}$ c) $BA = \begin{pmatrix} 1 & -2 & 3 \\ -1 & 0 & 1 \\ 1 & -2 & 3 \end{pmatrix}$ d) $BA = \begin{pmatrix} 1 & -2 & 3 \\ -1 & 0 & 1 \\ 1 & -2 & 4 \end{pmatrix}$
- 25) Ma trận nào sau đây khả nghịch?
- a) $A = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 2 & 4 \\ 1 & 2 & 0 \end{pmatrix}$ b) $B = \begin{pmatrix} 1 & 2 & 0 \\ -3 & 0 & 0 \\ 1 & 0 & 2 \end{pmatrix}$ c) $C = \begin{pmatrix} 1 & 1 & -2 \\ -2 & 0 & 2 \\ 3 & 0 & -3 \end{pmatrix}$ d) $D = \begin{pmatrix} -2 & 1 & 2 \\ 4 & 3 & -1 \\ 2 & 4 & 1 \end{pmatrix}$
- 26) Cho ma trận $A = \begin{pmatrix} m+1 & 1 & 3 \\ 2 & m+2 & 0 \\ 2m & 1 & 3 \end{pmatrix}$. Tìm m để A khả nghịch .

 a) $m \neq 1$ b) $m \neq -2$ c) $m \neq 1$; $m \neq -2$ d) $m \neq -1$ 27) Cho ma trận $A = \begin{pmatrix} m+1 & 1 & 3 \\ m+3 & m+3 & 3 \\ 2m+2 & m+3 & 3 \end{pmatrix}$. Tìm m để A khả nghịch .

- a) $m \neq 1$ b) $m \neq -2$

- 28) Tính ma trận nghịch đảo của ma trận $A = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 4 & 2 \\ 1 & 4 \end{pmatrix}$
- a) $A^{-1} = \begin{pmatrix} 2/7 & 2/7 \\ -1/14 & 3/7 \end{pmatrix}$ b) $A^{-1} = \begin{pmatrix} 2/7 & 3/7 \\ -1/14 & 9/14 \end{pmatrix}$ c) $A^{-1} = \begin{pmatrix} 2/7 & 1/7 \\ -1/14 & 3/14 \end{pmatrix}$ d) $A^{-1} = \begin{pmatrix} 2/7 & -1/7 \\ -1/14 & -3/14 \end{pmatrix}$
- 29) Tính ma trận nghịch đảo của ma trận $A = \begin{pmatrix} 10 & -6 \\ 14 & 7 \end{pmatrix} 3 \begin{pmatrix} 1 & -1 \\ 4 & 2 \end{pmatrix}$
- a) $A^{-1} = \begin{pmatrix} 2/13 & 3/13 \\ -4/13 & 7/13 \end{pmatrix}$ b) $A^{-1} = \begin{pmatrix} 1/13 & 6/13 \\ -2/13 & 14/13 \end{pmatrix}$ c) $A^{-1} = \begin{pmatrix} 1/13 & 3/13 \\ -2/13 & 7/13 \end{pmatrix}$ d) $A^{-1} = \begin{pmatrix} 1/13 & -3/13 \\ -2/13 & -7/13 \end{pmatrix}$

- 30) Tính ma trận nghịch đảo của ma trận $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}$
- a) $A^{-1} = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$ b) $A^{-1} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}$ c) $A^{-1} = \begin{pmatrix} 1 & -1 \\ -2 & 1 \end{pmatrix}$
- d) Không có ma trận đảo
- 31) Cho ma trận $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix}$. Khẳng định nào sau đây đúng ?
 - a) A có hạng bằng 2

b) A có định thức bằng 0.

c) A khả nghịch.

d) Các khẳng định trên đều đúng.

32) Cho hai ma trận
$$A = \begin{pmatrix} 1 & -2 \\ 3 & 1 \end{pmatrix}$$
; $B = \begin{pmatrix} 4 & -8 \\ 5 & -10 \end{pmatrix}$. Tìm ma trận X thỏa AX=B.

a)
$$X = \begin{pmatrix} 2 & -4 \\ -1 & -2 \end{pmatrix}$$
 b) $X = \begin{pmatrix} 2 & -4 \\ -1 & 2 \end{pmatrix}$ c) $X = \begin{pmatrix} 2 & 4 \\ -1 & -2 \end{pmatrix}$ d) $X = \begin{pmatrix} -2 & -4 \\ 1 & 2 \end{pmatrix}$.

33) Cho hai ma trận
$$A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \end{pmatrix}$$
; $B = \begin{pmatrix} 2 & -2 \\ 2 & -2 \end{pmatrix}$. Tìm ma trận X thỏa AX=B.

a)
$$X = \begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \end{pmatrix}$$
 b) $X = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}^T$ c) $X = \begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \end{pmatrix}^T$ d) Không có ma trận X .

III. HỆ PHƯƠNG TRÌNH TUYẾN TÍNH

34) Hệ phương trình tuyến tính
$$\begin{cases} (m-1)x + (m-1)y = 1 \\ x + my = 0 \end{cases}$$
 vô nghiệm khi và chỉ khi:

a)
$$m = 1$$
 b) $m = 0, m = 1$ c) $m = \pm 1$ d) $m = -1$

35) Hệ phương trình tuyến tính
$$\begin{cases} (m+1)x + (m+1)y = 0 \\ x + my = 0 \end{cases}$$
 có vô số nghiệm khi và chỉ khi:

a)
$$m = 0$$
 b) $m = 1$ c) $m = -1$ d) $m = \pm 1$

36) Hệ phương trình tuyến tính
$$\begin{cases} 2(m+1)x + (m+10)y = m; \\ mx + (m+2)y = 2m. \end{cases}$$
 có duy nhất một nghiệm khi và chỉ khi:

a)
$$m = 2$$
 b) $m \ne 2$ c) $m = -2$ d) $m \ne -2$

37) Hệ phương trình tuyến tính
$$\begin{cases} x \sin \alpha + y \cos \alpha = m; \\ x \cos \alpha - y \sin \alpha = 2m. \end{cases}$$
 có duy nhất một nghiệm khi và chỉ khi:
$$a) \ m = 0; \quad \alpha \text{ tùy } \circ; \quad b) \ m \neq 0; \quad \alpha \text{ tùy } \circ; \quad c) \ m = -2; \quad \alpha \text{ tùy } \circ; \quad d) \ m \& \alpha \quad \text{tùy } \circ.$$

a)
$$m = 0$$
; α tùy ý; b) $m \neq 0$; α tùy ý; c) $m = -2$; α tùy ý; d) $m \& \alpha$ tùy ý

38) Hệ phương trình tuyến tính
$$\begin{cases} (m+1)x + (6m-4)y = 2m+4; \\ x + (m+1)y = m^2+4. \end{cases}$$
 có nghiệm duy nhất khi và chỉ khi:

a)
$$m \neq 1$$
 b) $m \neq \pm 5$ c) $m \neq 1$ & $m \neq 5$ d) $m \in \mathbb{R}$ tùy ý.

39) Tìm nghiệm của hệ phương trình tuyến tính
$$\begin{cases} 3x - y + 2z = 3; \\ 2x + y - 2z = 7. \end{cases}$$

$$a)x = 1 - \alpha/3 - 2\beta/3, \ y = \alpha, \ z = \beta; \ \alpha, \beta \in \mathbb{R}.$$

$$c)x = 1 - \alpha, \ y = -\alpha, \ z = \alpha; \ \alpha \in \mathbb{R}.$$

$$a)x = 1 - \alpha/3 - 2\beta/3, y = \alpha, z = \beta; \alpha, \beta \in \mathbb{R}.$$

$$c)x=1-\alpha,\;y=-\alpha,\;z=\alpha;\;\alpha\in\mathbb{R}.$$

$$b)x = 1 + \alpha, y = 0, z = \alpha; \alpha \in \mathbb{R}.$$

$$d$$
) $x = 2$, $y = 3 + 2\alpha$, $z = \alpha$; $\alpha \in \mathbb{R}$

40) Tìm nghiệm của hệ phương trình tuyến tính
$$\begin{cases} x+4y+5z=1\\ 2x+7y-11z=2\\ 3x+11y-6z=0 \end{cases}$$

$$a)x = 1$$
, $y = 0$, $z = 0$.
 $b)x = -3$, $y = 1$, $z = 0$ $c)x = 1 + 79\alpha$, $y = -21\alpha$, $z = \alpha$ $d)$ Hệ vô nghiệm

41) Tìm nghiệm của hệ phương trình tuyến tính
$$\begin{cases} x+3y+2z=0; \\ 2x-y+3z=0. \end{cases}$$

$$a)x = \frac{11}{7}t, \ y = \frac{t}{7}, \ z = t.b)x = -\frac{11}{7}t, \ y = -\frac{t}{7}, \ z = t.$$

$$c)x = \frac{11}{7}t, \ y = -\frac{t}{7}, \ z = t.d)x = -\frac{11}{7}t, \ y = -\frac{11}{7}t, \ z = t.$$

42) Định
$$m$$
 để hệ phương trình có nghiệm duy nhất:
$$\begin{cases} x+y+z=0\\ x+2y-mz=1 & . \ a) \ m\neq 1 & b) \ m\neq -1 & c) \ m\neq 2 & d) \ m=-1.\\ 2x+3y+2z=1. \end{cases}$$

43) Định
$$m$$
 để hệ phương trình có nghiệm
$$\begin{cases} x + 2y - 2z = 2 \\ 2x + 4y - 5z = 5 \\ 3x + 6y - mz = 7 \end{cases}$$
 $a) m = 7$ $b) m = -7$ $c) m = 6$ $d) m = -6$.

```
44) Hệ phương trình tuyến tính \begin{cases} 4x+3y+z=7\\ 2x+4y-2z=m+7 \text{ vô nghiệm khi và chỉ khi:}\\ x+2y-z=4. \end{cases}
a) \ m=1 \ b) \ m>1 \ c) \ m\neq 1 \ d) \ m\neq -1.
```

45) Định
$$m$$
 để hệ vô nghiệm
$$\begin{cases} x+my+z=2\\ x+2y+2z=1\\ 2x+(m+2)y+4z=m. \end{cases}$$
. $a)\ m=2$ $b)\ m\neq 2$ $c)\ m$ tùy ý $d)$ Không có giá trị m nào.

46) Định
$$m$$
 để hệ phương trình cóvô số nghiệm
$$\begin{cases} x + 2y + (7 - m)z = 2\\ 2x + 4y - 5z = 1\\ 5x + 10y + (m - 5)z = 4. \end{cases}$$
 $a) m = -1$ $b) m = -1$ $c) m = 2$ $d) m = 0$.

47) Định
$$m$$
 để hệ phương trình có nghiệm duy nhất
$$\begin{cases} x+2y-(5-m)z=2\\ 2x+4y=1\\ 3x+4y=7. \end{cases}$$
. $a) \ m \neq 5$ $b) \ m \neq -5$ $c) \ m \neq 6$ $d) \ m \neq 0$.

48) Định
$$m$$
 để hệ có nghiệm duy nhất
$$\begin{cases} x + 2y + (m-5)z = 2\\ 2x - y = 1 & (a) \ m \neq 2 \ b) \ m \neq 4 \ c) \ m \neq 5 \ d) \ m \neq 2 \land m \neq 5. \\ (5-m)x + y + (m-5)z = 6. \end{cases}$$

IV. KHÔNG GIAN VECTO

```
49) Xác định m để vector (1, m, 1) là một tổ hợp tuyến tính của u = (1, 1, 0), v = (2, 1, 1), w = (3, 2, 1) a)m \neq 0, 1 b)m = 1, c)m = 0, d)m = -1.
```

50) Xác định
$$m$$
 để vector $(2, m+4, m+6)$ là một tổ hợp ttính của $u = (1, 2, 3), v = (3, 8, 11), w = (1, 3, 4)$

$$a)m = 0$$
 $b)m = 1$, $c)m$ tùy ý. $d)$ Không có giá trị m nào

51) Xác định
$$m$$
 để vecto $(m, 2m+2, m+3)$ là một tổ hợp tt của $u = (3,6,3), v = (2,5,3), w = (1,4,3)$

$$a)m = 2$$
 $b)m = 4$, $c)m$ tùy ý. d) Không có giá trị m nào

52) Xác định
$$m$$
 để vector (x_1, x_2, x_3) là một tổ hợp tuyến tính của $u = (1, 2, 3), v = (2, 4, 5), w = (3, 6, 7)$

$$a(x_1) = x_1 + x_2$$
 $b(x_1) = 2x_2$ $c(x_1) = x_2$ $d(x_2) = x_2$ $d(x_3) = x_1 + x_2$ tùy ý

53) Tìm điều kiện để vector
$$(x_1, x_2, x_3)$$
 là một tổ hợp ttính của $u = (1, 2, 3), v = (2, 4, 6), w = (3, 5, 7)$

$$a)x_3 = 2x_2 - x_1$$
 $b)x_1 = 2x_2$ $c)2x_1 = x_2$ $d)6x_1 = 3x_2 = 2x_3$

54) Tìm điều kiện để vecto
$$(x_1, x_2, x_3)$$
 là một tổ hợp tt của $u = (1,0,2), v = (1,2,8), w = (2,3,13)$

$$a(x_1) = -2x_1 - 3x_2$$
 $b(x_2) = 2x_1 + 3x_2$ $c(x_3) = 2x_1 - 3x_2$ $d(x_2) = x_1 - 3x_2$ tùy ý.

55) Cho các vector u_1, u_2, u_3 độc lập tuyến tính trong \mathbb{R}^4 và θ là vector không của \mathbb{R}^4 . Trong 4 mệnh đề sau, mệnh đề nào là đúng?

$$a)u_1,u_2,\theta$$
 độc lập tuyến tính. $b)u_1,u_3,\theta$ độc lập tuyến tính.

$$c)u_2,u_3,\theta$$
 độc lập tuyến tính. $d)u_1,u_2,u_3,\theta$ phụ thuộc tuyến tính.

56) Xác định m để 3 vector sau đây phụ thuộc tuyến tính: u = (1, 2, m), v = (0, 2, m), w = (0, 0, 3)

$$a)m = 1$$
 $b)m = 0$ $c)m = 2 \lor m = 3$ $d)m = 1 \lor m = 2$

57) Xác định m để 3 vector sau đây phụ thuộc ttính: u = (m+1, m, m-1), v = (2, m, 1), w = (1, m, m-1)

$$a)m = 2$$
 $b)m = 0$ $c)m = 2 \lor m = 0$ $d)m = 1 \lor m = 2$

57) Xác định m để 3 vector sau đây pttt: u = (m,1,3,4), v = (m,m,m+2,6), w = (2m,2,6,m+10)

$$a)m = 1$$
 $b)m = -2$ $c)m = 1 \lor m = -2$ $d)m = 0 \lor m = 1 \lor m = -2$

58) Xác định m để 3 vector sau đây pttt:
$$u = (m,1,3,4), v = (m,m,m+4,6), w = (2m,2,6,m+10)$$

$$a)m = 1$$
 $b)m = -2$ $c)m = 1 \lor m = -2$ $d)m = 0 \lor m = 1 \lor m = -2$

59) Tìm m để các vecto sau tạo thành một cơ sở của \mathbb{R}^3 : u = (1,2,3), v = (m,2m+3,3m+3), w = (1,4,6)

$$a)m \neq 1$$
 $b)m \neq 0$ $c)$ Không có giá trị m nào $d)$ m tùy ý

60) Tìm m để các vectơ sau tạo thành một cơ sở của \mathbb{R}^3 :

$$u = (1, 2, m), v = (m, 2m + 3, 3m + 3), w = (4, 3m + 7, 5m + 3)$$

a)
$$m \neq 1$$
 b) $m \neq 2$ c) Không có giá trị m nào d) m tùy ý

```
61) Tìm m để các vecto sau tạo thành một cơ sở của \mathbb{R}^4
u_1 = (3,1,2,m-1), u_2 = (0,0,m,0), u_3 = (2,1,4,0), u_4(3,2,7,0)
a)m \neq 0;1
                             b)m \neq 2
                                                c) m tùy ý
62) Các vectơ nào sau đây tạo thành một cơ sở của không gian con W của \mathbb{R}^3 sinh bởi các vectơ sau
u_1 = (2,3,4), u_2 = (2,6,0), u_3 = (4,6,8)
```

b) u_2, u_3 $a) u_1, u_2$ $c) u_1$ $d) u_1, u_2, u_3$

63) Các vectơ nào sau đây tạo thành một cơ sở của không gian con W của \mathbb{R}^3 sinh bởi các vectơ sau $u_1 = (2,3,4), u_2 = (5,-4,0), u_3 = (7,-1,5)$

d) Không có giá trị m nào

a)
$$u_1, u_2$$
 b) u_2, u_3 c) u_1, u_3 d) u_1, u_2, u_3

64) Tìm số chiều $n = \dim W$ của không gian con W của \mathbb{R}^4 sinh bởi các vecto sau

$$u_1 = (2, 2, 3, 4), u_2 = (4, 4, 6, 8), u_3 = (6, 6, 9, 12), u_4 = (8, 8, 12, 16)$$

a)
$$n = 1$$
 b) $n = 2$ c) $n = 3$ d) $n = 4$.

65) Tìm số chiều $n = \dim W$ của không gian con W của \mathbb{R}^4 sinh bởi các vecto sau

$$u_1 = (1, 2, 3, 4), u_2 = (2, 0, 6, 0), u_3 = (6, 6, 7, 0), u_4 = (8, 0, 0, 0)$$

a)
$$n = 1$$
 b) $n = 2$ c) $n = 3$ d) $n = 4$.

66) Tìm hạng của hệ vecto sau : $u_1 = (3,1,5,7)$, $u_2 = (4,-1,-2,2)$, $u_3 = (10,1,8,17)$, $u_4 = (13,2,13,24)$

a)
$$r = 1$$
 b) $r = 2$ c) $r = 3$ d) $r = 4$.

67) Đinh m để hệ sau có hang bằng 2: u = (1,3,1), v = (1,m+3,3), w = (1,m+6,m+3)

$$a)m = 0$$
 $b)m = 1$ $c)m = 0 \lor m = 1$ $d) m$ tùy ý

68) Định m để hệ sau có hạng bằng 2: u = (m, 1, 0, 2), v = (m, m+1, -1, 2), w = (2m, m+2, -1, 5)

$$a)m = 0$$
 $b)m = 1$ $c) m$ tùy ý $d)$ Không có giá trị m nào

69) Tîm tọa độ
$$x_1, x_2, x_3$$
 của vector $u = (1, 2, 4)$ theo cơ sở $u_1 = (1, 0, 0), u_2 = (0, 1, 0), u_3 = (0, 0, 1)$

70) Tìm tọa độ
$$x_1, x_2, x_3$$
 của vector $u = (m, 0, 1)$ theo cơ sở $u_1 = (0, 0, 1), u_2 = (0, 1, 0), u_3 = (1, 0, 0)$

$$a(x_1) = m, x_2 = 0, x_3 = 1; b(x_1) = 1, x_2 = 0, x_3 = m; c(x_1) = 2, x_2 = 0, x_3 = m; d(x_1) = 3, x_2 = 0, x_3 = m; d(x_$$

 $a(x_1) = 1, x_2 = 2, x_3 = 2; b(x_1) = 1, x_2 = 2, x_3 = 4; c(x_1) = 1, x_2 = 2, x_3 = 3; d(x_1) = 2, x_2 = 1, x_3 = 3$

71) Trong không gian
$$\mathbb{R}^3$$
 cho các vector $u_1 = (1,2,3), u_2 = (0,1,0), u_3 = (1,3,3)$

Khẳng định nào sau đây là đúng?

 $a)u_1,u_2,u_3$ độc lập tuyến tính. $b)u_1,u_2,u_3$ phụ thuộc tuyến tính.

$$c)u_1,u_2,u_3$$
 tạo thành một cơ sở của \mathbb{R}^3 $d)$ Hệ các vector u_1,u_2,u_3 có hạng bằng 3 .

72) Trong không gian \mathbb{R}^3 cho các vectơ phụ thuộc vào tham số m:

$$u_1 = (1,1,1), u_2 = (1,m,1), u_3 = (1,1,m)$$
. Khẳng định nào sau đây là đúng?

 $a)u_1, u_2, u_3$ độc lập tuyến tính khi và chỉ khi m=1. $b)u_1, u_2, u_3$ phụ thuộc ttính khi và chỉ khi m=0.

$$c)u_1, u_2, u_3$$
 tạo thành một cơ sở của \mathbb{R}^3 khi $m \neq 1$ d) Hệ các vecto u_1, u_2, u_3 luôn có hạng bằng 3.

73) Trong không gian
$$\mathbb{R}^2$$
 cho các vecto $u_1 = (2,1), u_2 = (-1,-1), v_1 = (-1,0), v_2 = (0,1)$

Tìm ma trận trận chuyển cơ sở chính tắc $B_1 = \{u_1, u_2\}$ sang cơ sở $B_2 = \{v_1, v_2\}$ của \mathbb{R}^2

a)
$$P = \begin{pmatrix} -2 & 1 \\ 1 & -1 \end{pmatrix}$$
, b) $P = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$ c) $P = \begin{pmatrix} -1 & -1 \\ -1 & -2 \end{pmatrix}$, d) $P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$

74) Trong không gian \mathbb{R}^2 cho các vecto $u_1 = (2,1), u_2 = (-1,-1), v_1 = (-1,0), v_2 = (0,1)$

Tìm ma trận trận chuyển cơ sở chính tắc $B_2 = \{v_1, v_2\}$ sang cơ sở $B_1 = \{u_1, u_2\}$ của \mathbb{R}^2

a)
$$P = \begin{pmatrix} -2 & 1 \\ 1 & -1 \end{pmatrix}$$
, b) $P = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$ c) $P = \begin{pmatrix} -1 & -1 \\ -1 & -2 \end{pmatrix}$, d) $P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$

75) Trong không gian \mathbb{R}^3 cho các vecto $u_1 = (1,0,1), u_2 = (0,1,1), u_3 = (0,0,1)$

Tìm ma trận trận chuyển cơ sở chính tắc B_0 sang cơ sở $B = \{u_1, u_2, u_3\}$ của \mathbb{R}^3

$$a) \ \ P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}, \ b) \ \ P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \ \ c) \ \ P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & -1 & 1 \end{pmatrix}, \ \ d) \ \ P = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

76) Trong không gian \mathbb{R}^3 cho các vecto $u_1 = (1,0,0), u_2 = (0,-1,0), u_3 = (0,0,-1); v_1 = (1,0,1), v_2 = (0,1,1), v_3 = (0,0,1)$

Tìm ma trận trận chuyển cơ sở chính tắc $B_1 = \{u_1, u_2, u_3\}$ sang cơ sở $B_2 = \{v_1, v_2, v_3\}$ của \mathbb{R}^3

a)
$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ -1 & 1 & -1 \end{pmatrix}$$
, b) $P = \begin{pmatrix} 1 & 0 & -1 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$, c) $P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$, d) $P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ -1 & -1 & -1 \end{pmatrix}$

77) Trong không gian \mathbb{R}^3 cho các vecto $u_1 = (1,0,0), u_2 = (0,-1,0), u_3 = (0,0,-1); v_1 = (1,0,1), v_2 = (0,1,1), v_3 = (0,0,1)$

Tìm ma trận trận chuyển cơ sở chính tắc $B_2 = \{v_1, v_2, v_3\}$ sang cơ sở $B_1 = \{u_1, u_2, u_3\}$ của \mathbb{R}^3

a)
$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ -1 & 1 & -1 \end{pmatrix}$$
, b) $P = \begin{pmatrix} 1 & 0 & -1 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$, c) $P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$, d) $P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ -1 & -1 & -1 \end{pmatrix}$

78) Cho biết ma trận chuyển cơ sở từ cơ sở
$$B_1$$
 sang cơ sở B_2 của \mathbb{R}^3 là $P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & -1 & 1 \end{pmatrix}$

và tọa độ của vecto u theo cơ sở B_1 là $x_1 = 1, x_2 = 1, x_3 = 0$. Tìm u. Khẳng định nào sau đây là đúng?

- a) u = (1,1,-2) b) u = (1,1,2) c) Chưa thể xác định được u vì u phụ thuộc vào các vecto trong cơ sở B,
- d) Các khẳng định trên đều sai
- 79) Trong không gian \mathbb{R}^3 cho các vecto $u_1 = (1,0,0), u_2 = (0,-1,0), u_3 = (0,0,-1)$

Cho biết ma trận chuyển cơ sở từ cơ sở B_1 sang cơ sở $B_2 = \{u_1, u_2, u_3\}$ của \mathbb{R}^3 là $P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & -1 & 1 \end{pmatrix}$

và tọa độ vecto u theo cơ sở B_1 là $x_1 = 1, x_2 = -1, x_3 = 0$. Tìm vecto u. Khẳng định nào sau đây là đúng?

a) u = (1, -1, 0) b) u = (1, 1, 0) c) Chưa thể xác định được u vì u phụ thuộc vào các vectơ trong cơ sở B_1

d) Các khẳng định trên đều sai

V. ÁNH XA TUYÉN TÍNH

80) Ánh xa nào sau đây là ánh xa tuyến tính từ \mathbb{R}^3 vào \mathbb{R}^2 ?

a)
$$f(x,y,z) = (2x-3xy+4z,x-3y+z),b)$$
 $f(x,y,z) = (2x-3y+4z,x-3xy+z),$

c)
$$f(x,y,z) = (2x-y+z+1,x-3y+z),d)$$
 $f(x,y,z) = (2x-3y+4z,x-3y+z)$

81) Ánh xạ nào sau đây là ánh xạ tuyến tính từ \mathbb{R}^3 vào \mathbb{R}^3 ?

a)
$$f(x, y, z) = (x - y + 4z, x - 3y + z, xy), b)$$
 $f(x, y, z) = (2x^2 - 3y + 4z, x - 3y^2 + z, 0)$

c)
$$f(x, y, z) = (2x - y + z, x - 3y + z, 0), d$$
 $f(x, y, z) = (2x - 3y + 4z, x - 3y + z, 1)$

82) Ánh xạ
$$f \mathbb{R}^3$$
 vào \mathbb{R}^3 định bởi $f(x, y, z) = (2x - 3y + \alpha z, x - 3\beta xy + z, x + z)$

 (α, β) là các hằng số thực) là ánh xạ tuyến tính khi và chỉ khi :

a)
$$\alpha = 0$$
, $\beta = 0$; b) α tùy ý, $\beta = 0$;

c)
$$\alpha = 0$$
, β tùy ý;

d)
$$\alpha, \beta$$
 tùy ý.

83) Cho ánh xạ tuyến tính $f \mathbb{R}^3$ vào \mathbb{R}^4 . Khẳng định nào sau đây luôn luôn đúng?

a) f không là đơn ánh b) f không là toàn ánh. c) Các khẳng định trên đều đúng d) Các khẳng định trên đều sai .

84) Ánh xạ tuyến tính f từ \mathbb{R}^2 vào \mathbb{R}^2 định bởi f(x, y, z) = (x + 2y, x + 3y)

Ma trận biểu diễn của f theo cặp cơ sở $B = \{(0,1); (-1,0)\}$ c và B_o chính tắc là

a)
$$\begin{pmatrix} -1 & -3 \\ 1 & 2 \end{pmatrix}$$
 b) $\begin{pmatrix} -3 & 1 \\ 2 & -1 \end{pmatrix}$ c) $\begin{pmatrix} 3 & -1 \\ -2 & 1 \end{pmatrix}$ d) $\begin{pmatrix} 2 & -1 \\ 3 & -1 \end{pmatrix}$

$$\begin{pmatrix} 3 & -1 \\ -2 & 1 \end{pmatrix} \qquad d) \begin{pmatrix} 2 & 1 \\ 3 & 1 \end{pmatrix}$$

85) Ánh xạ tuyến tính f từ \mathbb{R}^2 vào \mathbb{R}^2 định bởi f(x,y) = (x+2y,x+3y)

Ma trận biểu diễn của f theo cặp cơ sở $B = \{(0,1); (-1,0)\}$ là

$$a) \begin{pmatrix} -1 & -3 \\ 1 & 2 \end{pmatrix} \qquad b) \begin{pmatrix} -3 & 1 \\ 2 & -1 \end{pmatrix} \qquad c) \begin{pmatrix} 3 & -1 \\ -2 & 1 \end{pmatrix} \qquad d) \begin{pmatrix} 2 & -1 \\ 3 & -1 \end{pmatrix}$$

86) Ánh xạ tuyến tính f từ \mathbb{R}^2 vào \mathbb{R}^2 có ma trận biểu diễn của f theo cơ sở B_a chính tắc là $\begin{pmatrix} 1 & 2 \\ -1 & -3 \end{pmatrix}$

Ta có

a)
$$f(x, y) = (x + 2y, -x - 3y)$$
 b) $f(x, y) = (x - y, 2x - 3y)$ c) $f(x, y) = (x - 3z, x - 2y)$ d) Các đẳng thức trên đều sai.

87) Tìm đa thức đặc trưng của ma trận
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

$$a)\varphi(\lambda) = -(\lambda - 2)^{2}(\lambda + 1);b)\varphi(\lambda) = (2 - \lambda)(\lambda + 1)^{2},c)\varphi(\lambda) = (2 - \lambda)(\lambda^{2} - 1);d)\varphi(\lambda) = -(\lambda + 1)^{2}(\lambda + 2).$$

88) Tìm đa thức đặc trưng của ma trận
$$A = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 2 & 0 \\ 2 & 1 & 0 \end{pmatrix}$$

$$a)\varphi(\lambda) = (2-\lambda)(\lambda^2 - \lambda - 2), b)\varphi(\lambda) = (2-\lambda)(\lambda^2 - \lambda + 2), c)\varphi(\lambda) = (2-\lambda)(\lambda^2 + \lambda - 2), d)\varphi(\lambda) = -\lambda(\lambda^2 - \lambda - 2), d)\varphi(\lambda)$$

$$a)\varphi(\lambda) = (2-\lambda)(\lambda^2 - \lambda - 2), b)\varphi(\lambda) = (2-\lambda)(\lambda^2 - \lambda + 2), c)\varphi(\lambda) = (2-\lambda)(\lambda^2 + \lambda - 2), d)\varphi(\lambda) = -\lambda(\lambda^2 - \lambda - 2).$$
89) Tìm giá trị riêng λ của ma trận $A = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$. $a)\lambda = 0$ $b)\lambda = 4$ $c)\lambda = \pm 2$ d) Các kết qủa trên đều sai

90) Tìm giá trị riêng
$$\lambda$$
 của ma trận $A = \begin{pmatrix} 1 & -1 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$.

$$a(\lambda) = \pm 1 \lor \lambda = 3$$
 $b(\lambda) = 1 \lor \lambda = 3$ $c(\lambda) = -1 \lor \lambda = -3$ $d(\lambda) = -1 \lor \lambda = 3$

91) Cho ma trận
$$A = \begin{pmatrix} 0 & 1 & a \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 với $a \in \mathbb{R}$. Khẳng định nào sau đây đúng ?

- a) A chéo hoá được khi và chỉ khi a = 0
- b) A chéo hoá được khi và chỉ khi a = 1
- c) A chéo hóa được với mọi a
- d) A không chéo hóa được với mọi a
- 92) Giả sử A là một ma trận vuông cấp 3 có 3 vector riêng là (2,2,1);(1,1,1);(2,0,0) lần lượt ứng với các trị riêng là

3,2 và 4. Ma trận P nào sau đây thỏa đẳng thức
$$P^{-1}AP = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$

a)
$$P = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 1 & 1 \\ 2 & 0 & 0 \end{pmatrix}$$
 b) $P = \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$ c) $P = \begin{pmatrix} 1 & 2 & 2 \\ 1 & 2 & 0 \\ 1 & 1 & 0 \end{pmatrix}$ d) $P = \begin{pmatrix} 2 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix}$

93) Giả sử A là một ma trận vuông cấp 3 có đa thức đặc trưng là $\varphi(\lambda) = (\lambda - 2)^2 (\lambda - 2)^2$

Khẳng định nào sau đây đúng?

- a) A không chéo hóa được vì A không có hai trị riêng phân biệt
- b) A chéo hóa được
- c) A chéo hóa được khi và chỉ khi ứng với trị riêng 2, A có hai vector độc lập tuyến tính.
- d) Các khẳng định trên đều sai
- 94) Giả sử f là một toán tử tuyến tính trên \mathbb{R}^3 có ma trận biểu diễn là A. trong đó A có đa thức đặc trưng là $\varphi(\lambda) = (\lambda - 2)^2 (\lambda - 4)$ hon nữa:
 - i) Các vector của A ứng với trị riêng 2 là $u = (0, \alpha, 0)$ với $\alpha \in \mathbb{R} \setminus \{0\}$
 - ii) Các vector của A ứng với trị riêng 4 là $u = (0, \alpha, \alpha)$ với $\alpha \in \mathbb{R} \setminus \{0\}$

Khẳng định nào sau đây đúng?

- a) A không chéo hóa được vì f chỉ có hai trị riêng phân biệt
- b) f không chéo hóa được vì ứng với trị riêng 2, f chỉ có một vector độc lập tuyến tính
- c) f không chéo hóa được vì ứng với trị riêng 4, f chỉ có một vector độc lập tuyến tính
- d) f chéo hóa được
- 95) Cho toán tử tuyến tính f trên \mathbb{R}^2 định bởi f(x, y, z) = (0, x + y). Khẳng định nào sau đây đúng?
- a) f không chéo hóa được
- b) f chéo hóa được và cơ sở làm chéo hóa là (1,-1);(0,1)
- c) f chéo hóa được và cơ sở làm chéo hóa là (1,0);(0,1)
- d) f chéo hóa được và cơ sở làm chéo hóa là (1,0);(1,1)