CHEMISTRY IS NOT A MYSTERY ZOOM A LEVEL SEMINAR FOUR

(Guide to discussed Qns)

	SUGGESTED ANSWER	Points to note
	QUESTION ONE;	
1(a)	Raoult's law states that the partial vapour pressure of a volatile component in a solution at a given temperature is equal to the vapour pressure of that pure component at the same temperature, multiplied by its mole fraction in the solution.√ Conditions under which Raoult's law holds No heat change occurs on mixing the components of the solution.√ The total volume of the solution is equal to the sum of the volumes of the pure components mixed to make the solution.√	All key words must be shown.
(b) (i)	Molar mass of $C_6H_6 = (6 \times 12) + (6 \times 1) = 78g. \checkmark$ Molar mass of $C_7H_8 = (7 \times 12) + (8 \times 1) = 92g. \checkmark$ $n_{C_6H_6} = \frac{23.4}{78} = \mathbf{0.3 \ moles} \checkmark$ $n_{C_7H_8} = \frac{46}{92} = \mathbf{0.5 \ moles} \checkmark$ $n_{total} = 0.3 + 0.5 = 0.8 \ moles$ $P_{C_6H_6} = x_{C_6H_6}P_{C_6H_6}^0 \checkmark$ $P_{total} = 76.125 + 47.5$ $P_{total} = 76.125 + 47.5$	Recall ESCA
(ii)	Composition of C_6H_6 in the vapour = $\frac{P_{C_6H_6}}{P_{total}}\sqrt{\frac{76.125}{123.625}} = 0.616\sqrt{\frac{76.125}{123.625}} = 0.616\sqrt{\frac{47.5}{123.625}} = 0.384\sqrt{\frac{123.625}{123.625}} = 0.384\sqrt{\frac{123.625}{123.625}}$	Accept vapour composition expressed as a percentage other than mole fraction

JOSEPH JOBS KAYIIRA josjobsacademia@gmail.com +256 753 247 098 +256 782 609 038 Youtube; Joseph Jobs Kayiira

QUESTION TWO;		
2(a) (i)	+2 and + 4√	Reject subscripted or superscripted charges or just 2 and 4
(ii)	Carbon does not react with chlorine. $$ Heated silicon reacts with dry chlorine to form silicon tetrachloride. $$ $Si(s) + 2Cl_2(g) \longrightarrow SiCl_4(l)$ Heated germanium reacts with dry chlorine to form germanium(IV) chloride. $$ $Ge(s) + 2Cl_2(g) \longrightarrow GeCl_4(l)$ Heated tin reacts with dry chlorine to form tin(IV) chloride. $$ $Sn(s) + 2Cl_2(g) \longrightarrow SnCl_4(l)$ Heated lead reacts with dry chlorine to form lead(II) chloride. $$ $Pb(s) + Cl_2(g) \longrightarrow PbCl_2(s)$	Emphasize conditions, products and physical states for equations
(iii)	Lead(II) oxide reacts with hot dilute hydrochloric acid to form lead(II) chloride and water. The lead(II) chloride precipitates out on cooling \sqrt{the} mixture. $PbO(s) + 2HCl(aq) \longrightarrow PbCl_2(aq) + H_2O(l)\sqrt{the}$ However, with excess concentrated hydrochloric acid, lead(II) oxide reacts to form a complex of tetrachloroplumbate(II) ions , \sqrt{the} which is a soluble compound \sqrt{the} hence forming a colourless solution. $PbO(s) + 2H^+(aq) + 4Cl^-(aq) \longrightarrow PbCl_4^{2-}(aq) + H_2O(l)\sqrt{the}$	Emphasize solubility, name of complex and equations.
(b) (i)	Melting point of a solid is the constant temperature at which the solid and liquid phases are in equilibrium at a given external pressure.	Accept correct alternative

Variation in melting points are explained in terms of bonding and structure, forces of attraction holding the atoms/ molecules and factors affecting them

JOSEPH JOBS KAYIIRA josjobsacademia@gmail.com +256 753 247 098 +256 782 609 038

From carbon to germanium, atomic radius increases, √ bond length increases,

bond strength decreases, $\sqrt{}$ and a decreasing amount of energy is required to

The further decrease in melting point from germanium to tin is because of

longer and weaker metallic bonds in tin√ since tin has a larger atomic radius

Melting point increases slightly from tin to lead $\sqrt{\text{due to increase in metallic}}$

break the covalent bonds. $\sqrt{}$

bond strength as a result of inert pair effect. $\sqrt{}$

than germanium. √

Youtube; Joseph Jobs Kayiira

QUESTION THREE; This is the elevation of boiling point caused when one mole of a non-volatile 3(a) **Emphasize** key words. solute is dissolved in 1000g of a solvent.√ (b) Well labeled and working Beckmann thermometer diagram (2 mks) **Units of** temperature To condense shd be Inner tube specified Side arm **Experiment shd** Wide tube have a logical flow Cottrell pump Solution of phosphorus in carbon disulphide Platinum wire A known mass of pure carbon disulphide, $g \cdot \sqrt{i}$ is placed in a wide boiling tube fitted with a side arm leading to a reflux condenser. The boiling tube is closed by a stopper through which is passed a second inner tube, open at the lower end and fitted with a Beckmann thermometer. $\sqrt{}$ In the carbon disulphide is immersed a Cottrell pump, C to prevent super heating The carbon disulphide is then heated until the Beckmann thermometer shows a constant temperature. $\sqrt{\ }$ and the boiling point, $T_h^0 \circ C \cdot \sqrt{\ }$ is recorded. A known mass of phosphorus, y g is then added. $\sqrt{}$ through the side arm to the carbon disulphide. The resulting solution is also heated until the Beckmann thermometer shows a constant temperature. $\sqrt{\ }$ and the boiling point of the solution $T_b \,{}^{\circ}C.\sqrt{\ }$ is also K_b shd have recorded. units and they **Treatment of results** must be correct Let the boiling point elevation constant of carbon disulphide be K_b °Cmol⁻¹kg⁻¹. $\sqrt{}$ Elevation of boiling point, $\Delta T = (T_b - T_b^0)^{\circ} C. \sqrt{\phantom{\frac{1}{2}}}$ Reject if RFM has units x g of carbon disulphide dissolve y g of phosphorus 1000 g of carbon disulphide will dissolve (g of phosphorus. $\sqrt{}$

JOSEPH JOBS KAYIIRA josjobsacademia@gmail.com +256 753 247 098 +256 782 609 038 Youtube; Joseph Jobs Kayiira

	1000	
	ΔT is elevation of boiling point caused by $\left(\frac{1000 \times y}{x}\right)$ g of phosphorus. $$	
	K_b will be elevation in boiling point caused by $\left(\frac{1000 \times y \times K_b}{x \times \Delta T}\right)g$	
	The relative molecular mass of phosphorus in carbon disulphide is	
	$\left(\frac{1000 \times y \times K_b}{x \times \Delta T}\right) . \sqrt{}$	
(c)	Phosphorus(V) chloride reacts with water to form phosphoric acid and white	Reject
(i)	fumes of hydrogen chloride gas . √	dimerization or ionisation
(**)	$PCl_5(s) + 4H_2O(l) \longrightarrow H_3PO_4(aq) + 5HCl(g)$	tontsutton
(ii)	Polystyrene is a polymer hence has a high relative molecular mass and in dilute	Aleady
	solutions, the gives very few dissolved particles . The few dissolved particles	discussed in
	cause a very small elevation in boiling point√ that cannot be measured by	previous online
	ordinary thermometers. √ The ebullioscopic method is not suitable because polystyrene tends to fragment	seminars
	and decompose at high temperatures. √	
(d)	$100g \ of \ CS_2 \ dissolve \ 4.65 \ g \ of \ sulphur$	Reject
(i)	1000g of CS_2 dissolve $\left(\frac{1000 \times 4.65}{100}\right)$ g of sulphur $$	substitution
()	1 100 /	into a given formula
	= 46.5 g of sulphur	Only accept
	Elevation in boiling point, $\Delta T = 0.42^{\circ}C$ Molar mass of sulphur = 256.g	first principles
	46.5g of sulphur elevate boiling point by $0.42^{\circ}C\sqrt{}$	The final answer must
	256 g of sulphur elevate boiling point by $\left(\frac{256 \times 0.42}{46.5}\right)\sqrt{=2.312 ^{\circ}\text{Cmol}^{-1}\text{kg}^{-1}}$	have correct
	(10.5 /	units
	The boiling point constant of carbon disulphide is 2.312° Cmol ⁻¹ kg ⁻¹ $$,, ,,
(ii)	$37.4g$ of CS_2 dissolve $2.00g$ of Phosphorus	<i>""</i>
	1000g of CS_2 dissolve $\left(\frac{1000 \times 2}{37.4}\right)$ g \sqrt{of} Phosphorus	
	37.4) g voj 1 nospnovas	
	$= 53.4759g of Phosphorus \sqrt{1.0038G is almost in heiling point agreed by 53.4750 g/s}$	
	1.003°C is elevation in boiling point caused by $53.4759g\sqrt{2.312 \times 53.4759}$	Molar mass
	2.312°C is elevation in boiling point caused by $\left(\frac{2.312 \times 53.4759}{1.003}\right)\sqrt{=123.2665g}$	should have
	Molar mass of Phosphorus in Carbon disulphide $\approx 123.27g$	units
(e)	$P_n = 123.27$ Molecular formula of Phosphorus in	
	$31n = 123.27$ carbon disulphide is P_4	
	n = 3.976	
	n pprox 4 JOSEPH JOBS KAYIIRA NICHOLUS HYPER.N	

JOSEPH JOBS KAYIIRA josjobsacademia@gmail.com +256 753 247 098 +256 782 609 038

Youtube; Joseph Jobs Kayiira

JOSEPH JOBS KAYIIRA josjobsacademia@gmail.com +256 753 247 098 +256 782 609 038

Youtube; Joseph Jobs Kayiira

NICHOLUS HYPER.N niquolushyper@gmail.com

+256 759 193 260

+256 778 395 883

Youtube; Hyper and Kiwafu Academic Channel

$[CH_3COONa] = 0.025 M\sqrt{}$

 $100 \ cm^3 \ of \ solution \ contain \ 0.01875 \ moles \ of \ CH_3COOH$ $1000 cm^3 \ of \ solution \ contain \ \left(\frac{1000 \times 0.01875}{100}\right) \ moles \ of \ CH_3COOH\sqrt{100}$ $[CH_3COOH] = \ 0.1875 \ M\sqrt{100}$

$$pH = pK_a + log \frac{[CH_3COONa]}{[CH_3COOH]} \checkmark$$
$$pH = 4.67 + log \left(\frac{0.025}{0.1875}\right) \checkmark$$

$$pH = 4.76 - 0.875$$

 $pH = 3.885\sqrt{}$

JOSEPH JOBS KAYIIRA josjobsacademia@gmail.com +256 753 247 098 +256 782 609 038 Youtube; Joseph Jobs Kayiira

Moles of NaOH that reacted = 0.0025		
15cm³ of solution contain 0.0025 moles of NaOH		
$1000cm^3$ will contain $\left(\frac{1000 \times 0.0025}{15}\right)$ moles of NaOH $$		
Molar concentration of sodium hydroxide = 0.1667 $moldm^{-3}\sqrt{}$		

(iv) pH when $5cm^3$ of sodium hydroxide solution had just been added to the $25cm^3$ of the 0.1M ethanoic acid is 4.1. This pH is due to the excess uneutralised ethanoic acid still present and some sodium ethanoate formed which consitute an acidic buffer.

 $pH = pK_a + \log \frac{[CH_3COONa]}{[CH_3COONa]}$ $4.1 = -\log(1.8 \times 10^{-5}) + \log\left(\frac{[CH_3COONa]}{[CH_3COONa]}\right)$ $4.1 = 4.745 + \log\left(\frac{[CH_3COONa]}{[CH_3COOH]}\right)$ $\log\left(\frac{[CH_3COONa]}{[CH_3COOH]}\right) = -0.645$ $\frac{[CH_3COONa]}{[CH_3COOH]} = 10^{-0.645} = 0.226$ $[CH_3COO^{-}]: [CH_3COOH] = 0.226$

 $pH = -\log_{10}[H^{+}] = 4.1$ $[H^{+}] = 10^{-4.1} = 0.0000794$ $[H^{+}] = K_{a} \frac{[CH_{3}COOH]}{[CH_{3}COONa]}$ $\frac{[H^{+}]}{K_{a}} = \frac{[CH_{3}COOH]}{[CH_{3}COONa]}$ $\frac{[CH_{3}COOH]}{[CH_{3}COONa]} = \frac{0.0000794}{1.8 \times 10^{-5}}$ $\frac{[CH_{3}COONa]}{[CH_{3}COOH]} = \frac{1.8 \times 10^{-5}}{0.00007941}$ = 0.226

Treatment of an acidic buffer solution by calculation

QUESTION SIX

OR;

(a) Hint \boldsymbol{Q} was an ester of the structural formula; $CH_3CH_2COOCHCH_2CH_3$ CH_3

Acid catalysed hydrolysis of esters under reflux or on heating yields a carboxylic acid and an alcohol. In this particular case, the equation for the reaction is; $CH_3CH_2COOCHCH_2CH_3 + H_2O \longrightarrow CH_3CH_2COOH + CH_3CH_2CHCH_3$ $CH_2 \longrightarrow CH_3CH_2COOH + CH_3CH_2CHCH_3$

Try to do practice by using all the possible isomeric esters of Q and all the possible carboxylic acids and alcohols formed on hydrolysis of each

JOSEPH JOBS KAYIIRA josjobsacademia@gmail.com +256 753 247 098 +256 782 609 038 Youtube; Joseph Jobs Kayiira

(i)	Name	Structural formula	
	Butan-1-ol √	$CH_3CH_2CH_2CH_2OH$	Only accept
	Butan-2-ol√	$CH_3CH_2CHCH_3$	IUPAC names
		bн	Reject isomeric
	2-Methylpropan-1-ol√	CH ₃ CHCH ₂ OH√	ethers
		ĊH ₃	
	2-Methylpropan-2-ol√	<i>CH</i> ₃ <i>CH</i> ₃ <i>C</i> — <i>OH</i> √	
	z-Methytpropan-z-otv	CH_3	
(**)			A
(ii)	Reagent; Anhydrous zinc chloride and con Observations;	centrated hydrochloric acid√	Accept Lucas reagent
	'		Reject
	With $CH_3CH_2CH_2CH_2OH$: No observable characteristics are all the second of the sec		an hydrous
	With $CH_3CH_2CHCH_3$; Cloudy solution form	ned after 5-10 minutes √	Deny all marks if there is a
			word solution
	With CH_3CHCH_2OH ; No observable change CH_3	at room temperature√	in nam of the
	With $(CH_3)_3COH$: Cloudy solution for	rmed immediately	reagent
(b)		ined diffiedtatety v	
(i)	W is CH ₃ CH ₂ CHCH ₃ √ OH		Accept correct
(1)	R is $CH_3CH_2COCH_3\sqrt{}$		IUPAC names of
			the compounds
	The yellow solid is CHI ₃ √		
(ii)			Accept Brady's
	Reagent; 2,4-Dinitrophenylhydrazine solu	tion in methanol and concentrated	reagent
	sulphuric aci <mark>d√</mark>		Reject wrong spelling of
	Observation ; Yellow precpitate is formed√		reagent.
			Reject ppt

	QUESTION SEVEN	
(a)	Ammonia is a weak base that partially ionises in water to form ammonium ions and hydroxyl ions. $$ $NH_3(aq) + H_2O(l) \longrightarrow NH_4^+(aq) + \overline{O}H(aq)$ The concentration of the hydroxyl ions formed from the ammonia solution is enough to react with magnesium ions for the ionic product of magnesium hydroxide to exceed its solubility product. $$ Therefore, insoluble magnesium hydroxide is precipitated. $$ $Mg^{2+}(aq) + 2\overline{O}H(aq) \longrightarrow Mg(OH)_2(s)$ Ammonium chloride is a strong electrolyte that completely ionises to form ammonium ions. $$ $NH_4Cl(aq) \longrightarrow NH_4^+(aq) + Cl^-(aq)$ The ammonium ions from the salt suppress the ionisation of ammonia solution $$ due to common ion effect. This reduces the concentration of	Compare with question 8(b) seminar 3
	hydroxide ions√ in solution hence the ionic product of magnesium hydroxide	
(1.)	does not exceed its solubility product. √	
(b)	Carbon dioxide is non-polar. It has discrete molecules with a simple molecular structure√ held by weak van der Waals forces of attraction√ which are easily overcome√ at room temperature keeping the molecules far apart from each other. √ However, in silicon(IV) oxide, each silicon atom is covalently bonded to four oxygen atoms to form a tetrahedral structure which is continuous to form a giant molecular structure√ with very many strong covalent bonds√ that require a high amount of energy to be broken√ at room temperature, keeping its molecules very close to each other √	
(c)	For anhydrous copper(II) sulphate the hydration energy outweighs lattice dissociation energy √ making the enthalpy of solution negative. √ For hydrated copper(II) sulphate, the copper(II) ion and sulphate ion are already partly hydrated. √ When the hydrated salt is dissolved in water, its lattice dissociation energy outweighs the enthalpy of hydration associated with any further hydration √ making the enthalpy of solution positive. √	Student should relate hydration enthalpy, lattice enthalpy and enthalpy solution for both salts
(d)	The strength of an acid depends on how easily it releases protons in	
	solution. $\sqrt{\ }$ In phenol, the lone pair of electrons on the oxygen atom interacts	
	with, and forms part of the delocalised pi-electrons of the benzene ring, $$ increasing the effective electron density about it. This results into formation of a	

_		
	partial double bond which shortens and strengthens the carbon-oxygen	
	bond√ but weakens the oxygen-hydrogen bond√ which is easily broken when	
	phenol is dissolved in water to release hydrogen ions. √ In cyclohexanol, the	
	cyclohexyl group has a positive inductive effect√ hence pushes electrons	
	towards the oxygen atom, making the oxygen-hydrogen bond stronger√ hence	
	does not easily break to release to release hydrogen ions when dissolved in	
	water. √	
(e)	The aluminium ion in aluminium chloride has a high charge and a small ionic	Accept
	radius. √ It has a high charge density and high polarising power√ and exists as	alternative correct ionic or
	hexaaquaaluminium(III) ion in solution. The ion therefore undergoes cationic	molecular
	hydrolysis√ forming insoluble hydrated aluminium hydroxide√ and hydrogen	equations
	ions√ making the resultant solution acidic.	equations or
	$Al(H_2O)_6^{3+}(aq) + 3H_2O(l) \longrightarrow Al(H_2O)_3(OH)_3(s) + 3H_3O^+(aq)$	general equations
	The hydrogen ions react with carbonate ions forming carbon dioxide gas . √	
	$2H_3O^+(aq) + CO_3^{2-}(aq) \longrightarrow CO_2(g) + 3H_2O(l)$	
	QUESTION EIGHT	
(a)	Chlorine is manufactured by electrolysis√ of concentrated sodium chloride	
	solution (brine) √. The electrolysis is carried out in a diaphragm cell√ with a	
	titanium anode√ and steel cathode. √	
	Sodium ions are discharged at the cathode to form sodium which reacts with water	
	to form sodium hydroxide and hydrogen gas.	
	Chloride ions are discharged at the anode, √ in preference to hydroxyl ions, to form chlorine gas. √	
		Therese
	$(1.1, 100) \longrightarrow (1.1, 10) + 20$	The same
	$2Cl^{-}(aq) \longrightarrow Cl_{2}(g) + 2e$	process leads to
	Alternatively;	process leads to manufacture of
	Alternatively; In the manufacture of chlorine, concentrated sodium chloride solution√ is	process leads to manufacture of sodium
	Alternatively; In the manufacture of chlorine, concentrated sodium chloride solution√ is electrolyzed√ in a mercury cell√using a graphite (carbon) anode √ and a	process leads to manufacture of
	Alternatively; In the manufacture of chlorine, concentrated sodium chloride solution√ is	process leads to manufacture of sodium
	Alternatively; In the manufacture of chlorine, concentrated sodium chloride solution √ is electrolyzed √ in a mercury cell √using a graphite (carbon) anode √ and a mercury cathode . √ The mercury enables sodium ions to be discharged in preference to hydrogen ions. Sodium ions are discharged by electron gain, then sodium deposited at the	process leads to manufacture of sodium
	Alternatively; In the manufacture of chlorine, concentrated sodium chloride solution √ is electrolyzed √ in a mercury cell √using a graphite (carbon) anode √ and a mercury cathode . √ The mercury enables sodium ions to be discharged in preference to hydrogen ions.	process leads to manufacture of sodium

 $Cl_2(g) + 2e\sqrt{}$

anode. √

 $2Cl^{-}(aq)$

(b) (i)	Fluorine reacts vigorously with water to form oxygen and hydrofluoric acid. $$ $2F_2(g) + 2H_2O(l) \longrightarrow O_2(g) + 4HF(aq) $ Chlorine disproportionates in water to form chloric(I) acid and hydrochloric acid. $$ $Cl_2(g) + H_2O(l) \longrightarrow HOCl(aq) + HCl(aq) $	Reject hydrogen fluoride
(ii)	With cold dilute sodium hydroxide Fluorine reacts with cold dilute sodium hydroxide solution to form oxygen difluoride, fluoride ions and water. \checkmark $2F_2(g) + 2OH^-(aq) \longrightarrow OF_2(g) + 2F^-(aq) + H_2O(l)\checkmark$ OR $2F_2(g) + 2NaOH(aq) \longrightarrow OF_2(g) + 2NaF(aq) + H_2O(l)$ Chlorine disproportionates in cold dilute sodium hydroxide to form chloride ions, chlorate(I) ions and water. \checkmark $Cl_2(g) + 2OH^-(aq) \longrightarrow Cl^-(aq) + ClO^-(aq) + H_2O(l) \checkmark$ OR $Cl_2(g) + 2NaOH(aq) \longrightarrow NaCl(aq) + NaClO(aq) + H_2O(l)$ With hot concentrated sodium hydroxide Fluorine reacts with hot concentrated sodium hydroxide to form oxygen, fluoride ions and water. \checkmark $2F_2(g) + 4OH^-(aq) \longrightarrow O_2(g) + 4F^-(aq) + 2H_2O(l) \checkmark$ OR $2F_2(g) + 4NaOH(aq) \longrightarrow O_2(g) + 4NaF(aq) + 2H_2O(l)$ Chlorine disproportionates in hot concentrated sodium hydroxide to form chloride ions, chlorate(V) ions and water. \checkmark $Cl_2(g) + 6OH^-(aq) \longrightarrow O_2(g) + 4NaF(aq) + 3H_2O(l) \checkmark$ OR $Cl_2(g) + 6NaOH(aq) \longrightarrow SNaCl(aq) + NaClO_3(aq) + 3H_2O(l) \checkmark$ $SNaCl(aq) + NaClO_3(aq) + 3H_2O(l) \checkmark$	All conditions under which the elements react with sodium hydroxide should be considered
(c) (i)	The fluorine atom is more electronegative than the chlorine atom and the fluoride ion has a smaller ionic radius √ than the chloride ion. Therefore the fluoride ion has a lower polarizability √than the chloride ion. The small aluminium ion thus more strongly polarizes the electron cloud of the chloride ion than that of the fluoride ion. ✓ This makes aluminium fluoride more ionic than covalent√ whereas aluminium chloride becomes more covalent than ionic. ✓ Ionic bonds require a higher amount of energy to break than covalent bonds. ✓	
(ii)	The strength of an acid depends on how easily it releases hydrogen ions in solution. √The fluorine atom is more electronegative √than the chlorine atom and fluorine has a smaller atomic radius √than chlorine. This makes the hydrogen-fluorine bond shorter, more polar and stronger √than the hydrogen-chlorine bond and thus the hydrogen-fluorine bond does not easily break, √ releasing fewer hydrogen ions in solution √than hydrogen-chlorine bond which easily breaks.	Reject hydrogen- fluoride/ hydrogen- choride bond

THE END

JOSEPH JOBS KAYIIRA josjobsacademia@gmail.com +256 753 247 098 +256 782 609 038 Youtube; Joseph Jobs Kayiira