A Common Genetic Encoding for Both Direct and Indirect Encodings of Networks

Paul Huygen

December 11, 2016

Artikel

Johannes Kassahun, Mark Edgington, Jan Hendrik Metzen, Gerald Sommer and Frank Kirchner: Common Genetic Encoding for Both Direct and Indirect Encodings of Networks. /in:/ Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2007), London, UK, 10291036, 2007

Probleemstelling

- Genereer KNN met Genetisch algoritme.
- Zowel weegfactoren als topologie genereren.
- Geschikte genetische coderingsmethode vinden.

Eisen aan coderingssysteem

- Compleet: Alle valide netwerken kunnen worden gerepresenteerd.
- Gesloten: leder valide genotype genereert een valide fenotype.
 Bovendien kunnen genetische operatoren alleen maar valide genotypes ontwikkelen.
- Met het systeem kan zowel directe als indirecte codering van een neuraal netwerk worden toegepast.

Eisen aan coderingssysteem

- Compleet: Alle valide netwerken kunnen worden gerepresenteerd.
- Gesloten: leder valide genotype genereert een valide fenotype.
 Bovendien kunnen genetische operatoren alleen maar valide genotypes ontwikkelen.
- Met het systeem kan zowel directe als indirecte codering van een neuraal netwerk worden toegepast.

Genen

Een *genotype* is een sequentie van genen. Er zijn verschillende types genen:

Vertex gen neuron

Input gen Koppelt invoer aan vertex gen.

Forward Jumper gen Koppelt vertex gen aan ondieper vertex gen

Recurrent Jumper gen Koppelt vertex gen aan dieper vertex gen

functies

Een *genotype* is een sequentie van genen. Er zijn verschillende types genen:

Vertex gen neuron

Input gen Koppelt invoer aan vertex gen.

Forward Jumper gen Koppelt vertex gen aan ondieper vertex gen

Recurrent Jumper gen Koppelt vertex gen aan dieper vertex gen

example

gene	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}	x_{11}
allele	V	V	V	Ι	Ι	I	V	JF	Ι	Ι	JR
id	0	1	3	-	-	-	2	-	-	-	-
source	-	-	-	-	-	-	-	3	-	-	0
label	-	-	-	X	У	У	-	-	х	У	-
weight	0.6	0.8	0.9	0.1	0.4	0.5	0.2	0.3	0.7	0.8	0.2
d_{in}	2	2	2	-	-	-	4	-	-	-	-
v	-1	-1	-1	1	1	1	-3	1	1	1	1
S	0	-1	-2	-3	-2	-1	0	-3	-2	-1	0
parent	Ø	0	1	3	3	1	0	2	2	2	2
depth	0	1	2	-	-	-	1	-	-	-	-

Genetic operators

- Paramtric operator
- Structural mutation: insert recurrent gene or subgenome.
- Structural crossover.

Andere functies

- Development function.
- Evaluation function