

CLAIMS:

1. A process for co-producing hydrocarbons and dimethyl ether (DME), the process including

5 feeding a gaseous feedstock comprising hydrogen and carbon monoxide, into a three-phase low temperature catalytic Fischer-Tropsch reaction stage;

allowing the hydrogen and carbon monoxide partially to react catalytically in the Fischer-Tropsch reaction stage to form hydrocarbons;

10 obtaining a tail gas from the Fischer-Tropsch reaction stage which includes unreacted hydrogen and carbon monoxide and also carbon dioxide;

adjusting the composition of at least a portion of the tail gas to provide a DME synthesis feedstock with a syngas number (SN) between 1.8 and 2.2, where

$$SN = \frac{[H_2] - [CO_2]}{[CO] + [CO_2]}$$

15

$$\frac{[H_2] - [CO_2]}{[CO] + [CO_2]}$$

and where $[H_2]$, $[CO]$ and $[CO_2]$ respectively are the molar proportions of hydrogen, carbon monoxide and carbon dioxide in the DME synthesis feedstock;

20 feeding the DME synthesis feedstock into a DME synthesis stage; and

converting at least a portion of the DME synthesis feedstock fed to the DME synthesis stage to DME.

2. The process as claimed in claim 1, in which the syngas number is between 25 1.85 and 2.15.

3. The process as claimed in claim 1 or claim 2, in which adjusting the composition of at least a portion of the tail gas from the Fischer-Tropsch reaction stage includes removing some CO_2 from said portion of the tail gas, thereby adjusting the 30 syngas number upwardly.

4. The process as claimed in claim 3, in which removing some CO_2 from said portion of the tail gas from the Fischer-Tropsch reaction stage includes absorbing the

CO₂ in a solvent, and recovering the removed CO₂, by stripping the CO₂ from the solvent.

5. The process as claimed in claim 4, in which the CO₂ is stripped from the
solvent with a methane-containing gas and in which the gaseous feedstock to the
Fischer-Tropsch reaction stage is derived from the methane-containing gas.

6. The process as claimed in any one of the preceding claims, in which
adjusting the composition of at least a portion of the tail gas from the Fischer-Tropsch
10 reaction stage includes adding an H₂ rich gas to said portion of the tail gas.

7. The process as claimed in claim 6, in which adding an H₂ rich gas to said
portion of the tail gas from the Fischer-Tropsch reaction stage includes reforming a
portion of the gaseous feedstock to the Fischer-Tropsch reaction stage in a steam
15 reforming stage to produce an H₂ rich reformed gas, and combining at least some of the
H₂ rich reformed gas with said portion of the tail gas to provide the DME synthesis
feedstock.

8. The process as claimed in claim 6, which includes removing an H₂ containing
20 tail gas from the DME synthesis stage, recovering an H₂ rich gas from the DME
synthesis stage tail gas, and adding said H₂ rich gas to the portion of the tail gas from
the Fischer-Tropsch reaction stage to provide the DME synthesis feedstock.

9. The process as claimed in claim 6, in which adding an H₂ rich gas to said
25 portion of the tail gas from the Fischer-Tropsch reaction stage includes subjecting a
synthesis gas to the water gas shift reaction CO + H₂O \rightleftharpoons CO₂ + H₂, and removing at
least some of the CO₂ to provide the H₂ rich gas, and combining at least some of the H₂
rich gas with said portion of the tail gas to provide the DME synthesis feedstock.

30 10. The process as claimed in any one of the preceding claims, in which some of
the tail gas from the Fischer-Tropsch reaction stage is recycled to the Fischer-Tropsch
reaction stage thereby to increase overall Fischer-Tropsch reaction stage CO and H₂
conversion to a value of between 30 % and 60 %.

11. The process as claimed in any one of the preceding claims, which includes treating the hydrocarbons to provide a naphtha fraction and/or a kerosene fraction.

12. The process as claimed in any one of the preceding claims, in which the
5 Fischer-Tropsch reaction stage is operated at a temperature of less than 280 °C so that the liquid hydrocarbon product from the Fischer-Tropsch reaction stage comprises predominantly wax.

13. The process as claimed in any one of the preceding claims, which includes
10 withdrawing liquid hydrocarbon products and gases and vapours from the Fischer-
Tropsch reaction stage and cooling the gases and vapours to condense liquid
hydrocarbons and reaction water present therein and in which a kerosene fraction of the
condensed liquid hydrocarbons from the Fischer-Tropsch reaction stage is treated to
remove oxygenated hydrocarbons and then alkylated and subjected to a separation
15 stage to produce linear alkyl benzene, and optionally paraffins and oxygenates.

14. The process as claimed in any one of the preceding claims, in which
converting at least a portion of the DME synthesis feedstock fed to the DME synthesis
stage to DME includes contacting the DME synthesis feedstock with catalyst or
20 catalysts that enhance methanol synthesis and methanol dehydration reactions, thereby
to produce DME.

15. A process for co-producing a liquid fuel and light olefins, the process
including
25 co-producing liquid hydrocarbons and dimethyl ether (DME) from a gaseous
feedstock comprising hydrogen and carbon monoxide;
treating the liquid hydrocarbons to provide a liquid fuel; and
converting at least some of the DME into light olefins.

30 16. The process as claimed in claim 15, in which the liquid hydrocarbons and the
DME are co-produced in accordance with the process as claimed in any one of claims 1
to 14 inclusive.

17. The process as claimed in claim 15 or claim 16, in which treating the liquid hydrocarbons to provide a liquid fuel includes subjecting at least a portion of the liquid hydrocarbons to hydroprocessing, thereby to produce lubricants and a diesel fraction, the liquid fuel produced thus being Fischer-Tropsch derived liquid fuel and including a
5 diesel fraction.

18. The process as claimed in any one of claims 15 to 17 inclusive, in which the liquid hydrocarbons are also treated to produce a naphtha fraction and optionally a kerosene fraction, and in which at least some of the naphtha fraction and optionally
10 some of the kerosene fraction are converted with at least some of the DME into light olefins.