Machine Learning II Project

Elgun Ismayilov

Introduction

1. Loan Default Prediction

Overview of the Problem:

- Banks face significant losses due to customers defaulting on loans.
- Impacts economic growth and financial stability.
 Objective:
- Build a model to predict loan defaults using client data.
- Base Model: Logistic Regression, with MLP and LightGBM for comparison.
- Relevance/Importance: Helps banks minimize financial losses.
- Beneficiaries: Banks, financial institutions, and the economy.

2. House Price Prediction

Overview of the Problem:

- Property prices are influenced by factors like location, size, and amenities.
 - Objective:
- Predict property prices using real estate data.
- Base Model: Linear Regression, with XGBoost and CatBoots for comparison.
 - **Relevance/Importance**: Helps buyers, sellers, and agents make informed decisions.
- Beneficiaries: Homebuyers, real estate agents, and market analysts.

Dataset and Data Preprocessing

1. Loan Default Prediction

Dataset:

- Size: 87,501 rows and 30 columns
- **Features**: Includes attributes such as funded amount, location, loan balance, income, credit score, etc.
- Source: <u>Kaggle.</u>

Data Preprocessing:

- Label Encoding: Applied to categorical features (e.g., loan status, education level) to convert them into numeric form.
- Min-Max Scaling: Used to scale numerical features (e.g., loan amount, income) to a [0,1] range for model compatibility.

2. House Price Prediction

Dataset:

- Features: Includes property size, number of rooms, location, neighborhood, amenities, etc.
- Source: <u>Kaggle.</u>

Data Preprocessing:

- Label Encoding: Categorical features (e.g., neighborhood type, house style) were encoded numerically.
- Min-Max Scaling: Scaled continuous variables (e.g., area, price) to standardize the input range for the models.

Exploratory Data Analysis

Key Observations to Mention:

- Correlation insights:
 - "Features like Num_rooms and Floor_Area are strongly correlated, which may influence models sensitive to multicollinearity."
 - "Crime rate in area has a negative correlation with important features like Floor_Area, indicating areas with larger properties tend to have lower crime rates."
- Impacts on model performance:
 - "Linear models might suffer from multicollinearity, whereas tree-based models like XGBoost can handle it well."

Exploratory Data Analysis

Correlation Matrix

This heatmap visualizes the correlation between various features in the dataset. Strong positive correlations are shown in red, while strong negative correlations are in blue. Key observations:

- Features like GGGrade and Sub_GGGrade are highly correlated (0.93), indicating redundancy.
- Default is negatively correlated with features like ID (-0.41).
- Most other features show weak or no correlation, suggesting low multicollinearity among them.
 This analysis helps identify significant relationships and redundant variables for predictive modeling.

Methodology

Loan Default Prediction

Algorithms Used:

- Base Model: Logistic Regression
- Additional Models: XGBoost and CatBoost model

Model Training:

- Data Split: The dataset was split into training (80%) and testing (20%) sets using train_test_split.
- **Training**: Models were trained using the training set with default hyperparameters initially.
- Hyperparameter Tuning: For XGBoost and Catboost model, parameters like n_estimators and max_depth were tuned using GridSearchCV for optimal performance.

Evaluation:

- Metrics:
 - Accuracy
 - F1-Score
 - ROC-AUC (for classification performance)

Methodology

2. House Price Prediction

Algorithms Used:

- Base Model: Linear Regression
- Additional Models: LightGBM model MLP

Model Training:

- **Data Split**: Split the dataset into training (80%) and testing (20%) sets.
- **Training**: Models were trained using default parameters.
- Hyperparameter Tuning:
 - For LightGBM model and MLP, tuned parameters such as max_depth and min_samples_split.

Evaluation:

- Metrics:
 - Mean Absolute Error (MAE)
 - Mean Squared Error (MSE)
 - R-squared (R²)

Results

1. Loan Default Prediction

Performance Metrics

• Logistic Regression

Accuracy: 83.28%

o **F1 Score**: 0.6184

Precision-Recall AUC: 0.6274

XGBoost

Accuracy: 83.95%

o **F1 Score**: 0.6838

o Precision-Recall AUC: 0.6242

CatBoost

• **Accuracy**: 84.03%

• **F1 Score**: 0.6918

• Precision-Recall AUC: 0.6243

2. House Price Prediction

Performance Metrics

Linear Regression

o **MSE**: 0.001569

R²: 0.920011

LightGBM

• **MSE**: 0.000657

R²: 0.966484

• MLP (Multi-Layer Perceptron)

○ **MSE**: 0.000923

R²: 0.952954

Conclusion

Conclusion

After evaluating multiple models for regression, the following insights were derived:

- 1. Best Performing Model:
 - LightGBM demonstrated the highest performance with an R² score of 0.966484 and the lowest Mean Squared Error (MSE) of 0.000657, making it the most accurate model for this task.
 - Its efficiency and ability to capture complex patterns in the data make it an ideal choice.
- 2. Competitor Models:
 - The MLP (Multi-Layer Perceptron) model achieved a strong R² score of 0.952954, but its long runtime (~10 minutes) limits its practical usability for larger datasets or time-sensitive applications.
 - Linear Regression, while computationally efficient and simple to implement, achieved a significantly lower R² score of 0.920011, indicating it struggled to model the complexity of the dataset.

Conclusion

Based on the results of the evaluation:

- XGBoost is the most effective model, achieving the highest F1-Score and demonstrating a strong balance between
 precision and recall.
- CatBoost offers comparable performance, making it a suitable alternative when categorical data optimization is critical.
- **Logistic Regression**, while less effective in this case, provides a simpler and computationally efficient option for basic use cases.

Final Recommendation

For this task, **XGBoost** is recommended as the best model due to its superior performance across key metrics, making it highly reliable for loan default prediction.

Thank You!