Contents

1	Lib	rary B_Unification.intro 2
	1.1	Introduction
	1.2	Unification
		1.2.1 Syntatic Unification
		1.2.2 Semantic Unification
		1.2.3 Boolean Unification
	1.3	Formal Verification
		1.3.1 Proof Assistance
		1.3.2 Verifying Systems
		1.3.3 Verifying Theories
	1.4	Importance
	1.5	Development
		1.5.1 Data Structures
		1.5.2 Algorithms
2	Libi	rary B_Unification.terms 7
	2.1	Introduction
	2.2	Terms
		2.2.1 Definitions
		2.2.2 Axioms
		2.2.3 Lemmas
	2.3	Variable Sets
		2.3.1 Definitions
		2.3.2 Examples
	2.4	Ground Terms
		2.4.1 Definitions
		2.4.2 Lemmas
		2.4.3 Examples
	2.5	Substitutions
	2.0	2.5.1 Definitions
		2.5.2 Lemmas
		2.5.3 Examples
	2.6	Unification 20

	2.7 Most General Unifier	22 23
3	Library B_Unification.lowenheim_formula	34
4	Library B_Unification.lowenheim_proof	37
5	Library B_Unification.list_util	53
6	Library B_Unification.poly	82
	6.1 Introduction	82
	6.2 Monomials and Polynomials	82
	6.2.1 Data Type Definitions	82
	6.2.2 Comparisons of monomials and polynomials	83
	6.2.3 Stronger Definitions	83
	6.3 Functions over Monomials and Polynomials	86
7	Library B_Unification.poly_unif	125
	7.1 Introduction	125
	7.2 Substitution Definitions	125
	7.3 Distribution Over Arithmetic Operators	128
	7.4 Unifiable Definitions	134
8	Library B_Unification.sve	137
	8.1 Introduction	137
	8.2 Eliminating Variables	137
	8.3 Building Substitutions	144
	8.4 Recursive Algorithm	148
	8.5 Correctness	149

Chapter 1

Library B_Unification.intro

1.1 Introduction

1.2 Unification

Before defining what unification is, there is some terminology to understand. A term is either a variable or a function applied to terms. By this definition, a constant term is just a nullary function. A variable is a symbol capable of taking on the value of any term. An examples of a term is f(a, x), where f is a function of two arguments, a is a constant, and x is a variable. A term is ground if no variables occur in it. The last example is not a ground term but f(a, a) would be.

A substitution is a mapping from variables to terms. The domain of a substitution is the set of variables that do not get mapped to themselves. The range is the set of terms the are mapped to by the domain. It is common for substitutions to be referred to as mappings from terms to terms. A substitution s can be extended to this form by defining s'(u) for two cases of u. If u is a variable, then s'(u) = s(u). If u is a function f(u1, ..., un), then s'(u) = f(s'(u1), ..., s'(un)).

Unification is the process of solving a set of equations between two terms. The set of equations is referred to as a unification problem. The process of solving one of these problems can be classified by the set of terms considered and the equality of any two terms. The latter property is what distinguishes two broad groups of algorithms, namely syntactic and semantic unification. If two terms are only considered equal if they are identical, then the unification is syntactic. If two terms are equal with respect to an equational theory, then the unification is semantic.

The goal of unification is to solve equations, which means to produce a substitution that unifies those equations. A substitution s unifies an equation u = ?v if applying s to both sides makes them equal s(u) = s(v). In this case, we call s a solution or unifier.

The goal of a unification algorithm is not just to produce a unifier but to produce one that is most general. A substitution is a $most\ general\ unifier$ or mgu of a problem if it is more general than every other solution to the problem. A substitution s is more general

than s' if there exists a third substitution t such that s'(u) = t(s(u)) for any term u.

1.2.1 Syntatic Unification

This is the simpler version of unification. For two terms to be considered equal they must be identical. For example, the terms $x \times y$ and $y \times x$ are not syntactically equal, but would be equal modulo commutativity of multiplication. (more about solving these problems / why simpler...)

1.2.2 Semantic Unification

This kind of unification involves an equational theory. Given a set of identities E, we write that two terms u and v are equal with regards to E as u = E v. This means that identities of E can be applied to u as u' and v as v' in some way to make them syntactically equal, u' = v'. As an example, let C be the set $\{f(x, y) = f(y, x)\}$. This theory C axiomatizes the commutativity of the function f. It would then make sense to write f(a, x) = C f(x, a). In general, for an arbitrary E, the problem of E-unification is undecidable.

1.2.3 Boolean Unification

In this paper, we focus on unfication modulo Boolean ring theory, also referred to as B-unification. The allowed terms in this theory are the constants 0 and 1 and binary functions + and \times . The set of identities B is defined as the set $\{x+y=y+x, (x+y)+z=x+(y+z), x+x=0, 0+x=x, x\times(y+z)=(x\times y)+(x\times z), x\times y=y\times x, (x\times y)\times z=x\times(y\times z), x\times x=x, 0\times x=0, 1\times x=x\}$. This set is equivalent to the theory of real numbers with the addition of x+x=0 and $x\times x=x$.

Although a unification problem is a set of equations between two terms, we will now show informally that a B-unification problem can be viewed as a single equation $\mathbf{t}=0$. Given a problem in its normal form $\{s1=t1,...,sn=t2\}$, we can transform it into $\{s1+t1=0,...,sn+tn=0\}$ using a simple fact. The equation $s=\mathbf{t}$ is equivalent to $s+\mathbf{t}=0$ since adding \mathbf{t} to both sides of the equation turns the right hand side into $\mathbf{t}+\mathbf{t}$ which simplifies to 0. Then, given a problem $\{t1=0,...,tn=0\}$, we can transform it into $\{(t1+1)\times...\times(tn+1)=1\}$. Unifying both of these sets is equivalent because if any t1,...,tn is 1 the problem is not unifiable. Otherwise, if every t1,...,tn can be made to equal 0, then both problems will be solved.

1.3 Formal Verification

Formal verification is the term used to describe the act of verifying (or disproving) the correctness of software and hardware systems or theories. Formal verification consists of a set of techinques that perform static analysis on the behavior of a system, or the correctness

of a theory. It differs to dynamic analysis that uses simulation to evaluate the correctness of a system.

Formal verification is used because it does not have to evaluate every possible case or state to determine if a system or theory meets all the preset logical conditions and rerquirements. Moreover, as design and software systems sizes have increased (along with their simulation times), verification teams have been looking for alternative methods of proving or disproving the correctness of a system in order to reduce the required time to perform a correctness check or evaluation.

1.3.1 Proof Assistance

A proof assistant is a software tool that is used to formulate and prove or disprove theorems in computer science or mathematical logic. They are also be called interactive theorem provers and they may also involve some type of proof and text editor that the user can use to form and prove and define theorems, lemmas, functions, etc. They facilitate that process by allowing the user to search definitions, terms and even provide some kind of guidance during the formulation or proof of a theorem.

1.3.2 Verifying Systems

1.3.3 Verifying Theories

1.4 Importance

1.5 Development

There are many different approaches that one could take to go about formalizing a proof of Boolean Unification algorithms, each with their own challenges. For this development, we have opted to base our work largely off chapter 10, Equational Unification, in Term Rewriting and All That by Franz Baader and Tobias Nipkow. Specifically, section 10.4, titled Boolean Unification, details Boolean rings, data structures to represent them, and two algorithms to perform unification in Boolean rings.

We chose to implement two data structures for representing the terms of a Boolean unification problem, and two algorithms for performing unification. The two data structures chosen are an inductive Term type and lists of lists representing polynomial-form terms. The two algorithms are Lowenheim's formula and successive variable elimination.

1.5.1 Data Structures

The data structure used to represent a Boolean unification problem completely changes the shape of both the unification algorithm and the proof of correctness, and is therefore a very important decision. For this development, we have selected two different representations of

Boolean rings – first as a "Term" inductive type, and then as lists of lists representing terms in polynomial form.

The Term inductive type, used in the proof of Lowenheim's algorithm, is very simple and rather intuitive – a term in a Boolean ring is one of 5 things:

- The number 0
- The number 1
- A variable
- Two terms added together
- Two terms multiplied together

In our development, variables are represented as natural numbers.

After defining terms like this, it is necessary to define a new equality relation, referred to as term equivalence, for comparing terms. With the term equivalence relation defined, it is easy to define ten axioms enabling the ten identities that hold true over terms in Boolean rings.

The inductive representation of terms in a Boolean ring is defined in the file terms.v. Unification over these terms is defined in $term_unif.v.$

The second representation, used in the proof of successive variable elimination, uses lists of lists of variables to represent terms in polynomial form. A monomial is a list of distinct variables multiplied together. A polynomial, then, is a list of distinct monomials added together. Variables are represented the same way, as natural numbers. The terms 0 and 1 are represented as the empty polynomial and the polynomial containing only the empty monomial, respectively.

The interesting part of the polynomial representation is how the ten identities are implemented. Rather than writing axioms enabling these transformations, we chose to implement the addition and multiplication operations in such a way to ensure these rules hold true, as described in *Term Rewriting*.

Addition is performed by cancelling out all repeated occurrences of monomials in the result of appending the two lists together (ie, x+x=0). This is equivalent to the symmetric difference in set theory, keeping only the terms that are in either one list or the other (but not both). Multiplication is slightly more complicated. The product of two polynomials is the result of multiplying all combinations of monomials in the two polynomials and removing all repeated monomials. The product of two monomials is the result of keeping only one copy of each repeated variable after appending the two together.

By defining the functions like this, and maintaining that the lists are sorted with no duplicates, we ensure that all 10 rules hold over the standard coq equivalence function. This of course has its own benefits and drawbacks, but lent itself better to the nature of successive variable elimination.

The polynomial representation is defined in the file poly.v. Unification over these polynomials is defined in $poly_unif.v.$

1.5.2 Algorithms

For unification algorithms, we once again followed the work laid out in *Term Rewriting and All That* and implemented both Lowenheim's algorithm and successive variable elimination.

The first solution, Lowenheim's algorithm, is built on top of the term inductive type. Lowenheim's is based on the idea that the Lowenheim formula can take a ground unifier of a Boolean unification problem and turn it into a most general unifier. The algorithm then of course first requires finding a ground solution, accomplished through brute force, which is then passed through the formula to create a most general unifier. Lowenheim's algorithm is implemented in the file lowenheim.v, and the proof of correctness is in lowenheim_proof.v.

The second algorithm, successive variable elimination, is built on top of the list-of-list polynomial approach. Successive variable elimination is built on the idea that by factoring variables out of the equation one-by-one, we can eventually reach a ground unifier. This unifier can then be built up with the variables that were previously eliminated until a most general unifier for the original unification problem is achieved. Successive variable elimination and its proof of correctness are both in *sve.v.*

Chapter 2

Library B_Unification.terms

```
Require Import Bool.
Require Import Omega.
Require Import EqNat.
Require Import List.
Require Import Setoid.
Import ListNotations.
```

2.1 Introduction

In order for any proofs to be constructed in Coq, we need to formally define the logic and data across which said proofs will operate. Since the heart of our analysis is concerned with the unification of Boolean equations, it stands to reason that we should articulate precisely how algebra functions with respect to Boolean rings. To attain this, we shall formalize what an equation looks like, how it can be composed inductively, and also how substitutions behave when applied to equations.

2.2 Terms

2.2.1 Definitions

We shall now begin describing the rules of Boolean arithmetic as well as the nature of Boolean equations. For simplicity's sake, from now on we shall be referring to equations as terms.

```
Definition var := nat.
Definition var_eq_dec := Nat.eq_dec.
```

A term, as has already been previously described, is now inductively declared to hold either a constant value, a single variable, a sum of terms, or a product of terms.

```
Inductive term: Type :=
```

```
\begin{array}{l} | \ \mathsf{T1} : \mathsf{term} \\ | \ \mathsf{VAR} : \mathsf{var} \to \mathsf{term} \\ | \ \mathsf{SUM} : \mathsf{term} \to \mathsf{term} \to \mathsf{term} \\ | \ \mathsf{PRODUCT} : \mathsf{term} \to \mathsf{term} \to \mathsf{term}. \\ | \ \mathsf{For} \ \mathsf{convenience's} \ \mathsf{sake}, \ \mathsf{we} \ \mathsf{define} \ \mathsf{some} \ \mathsf{shorthanded} \ \mathsf{notation} \ \mathsf{for} \ \mathsf{readability}. \\ | \ \mathsf{Implicit} \ \mathsf{Types} \ x \ y \ z : \mathsf{term}. \\ | \ \mathsf{Implicit} \ \mathsf{Types} \ n \ m : \mathsf{var}. \\ | \ \mathsf{Notation} \ "x + y" := (\mathsf{SUM} \ x \ y) \ (\mathsf{at} \ \mathsf{level} \ 50, \ \mathsf{left} \ \mathsf{associativity}). \\ | \ \mathsf{Notation} \ "x \ * y" := (\mathsf{PRODUCT} \ x \ y) \ (\mathsf{at} \ \mathsf{level} \ 40, \ \mathsf{left} \ \mathsf{associativity}). \\ | \ \mathsf{Notation} \ "x \ * y" := (\mathsf{PRODUCT} \ x \ y) \ (\mathsf{at} \ \mathsf{level} \ 40, \ \mathsf{left} \ \mathsf{associativity}). \\ | \ \mathsf{Notation} \ "x \ * y" := (\mathsf{PRODUCT} \ x \ y) \ (\mathsf{at} \ \mathsf{level} \ 40, \ \mathsf{left} \ \mathsf{associativity}). \\ | \ \mathsf{Notation} \ "x \ * y" := (\mathsf{PRODUCT} \ x \ y) \ (\mathsf{at} \ \mathsf{level} \ 40, \ \mathsf{left} \ \mathsf{associativity}). \\ | \ \mathsf{Notation} \ "x \ * y" := (\mathsf{PRODUCT} \ x \ y) \ (\mathsf{at} \ \mathsf{level} \ 40, \ \mathsf{left} \ \mathsf{associativity}). \\ | \ \mathsf{Notation} \ "x \ * y" := (\mathsf{PRODUCT} \ x \ y) \ (\mathsf{at} \ \mathsf{level} \ 40, \ \mathsf{left} \ \mathsf{associativity}). \\ | \ \mathsf{Notation} \ "x \ * y" := (\mathsf{Notation} \ \mathsf{level} \
```

2.2.2 **Axioms**

T0: term

Now that we have informed Coq on the nature of what a term is, it is now time to propose a set of axioms that will articulate exactly how algebra behaves across Boolean rings. This is a requirement since the very act of unifying an equation is intimately related to solving it algebraically. Each of the axioms proposed below describe the rules of Boolean algebra precisely and in an unambiguous manner. None of these should come as a surprise to the reader; however, if one is not familiar with this form of logic, the rules regarding the summation and multiplication of identical terms might pose as a source of confusion.

For reasons of keeping Coq's internal logic consistent, we roll our own custom equivalence relation as opposed to simply using '='. This will provide a surefire way to avoid any odd errors from later cropping up in our proofs. Of course, by doing this we introduce some implications that we will need to address later.

```
Parameter eqv: \mathbf{term} \to \mathbf{term} \to \mathsf{Prop}.

Infix " == " := eqv (at level 70).

Axiom sum\_comm : \forall x \ y, \ x + y == y + x.

Axiom sum\_assoc : \forall x \ y \ z, \ (x + y) + z == x + (y + z).

Axiom sum\_id : \forall x, \ \mathsf{T0} + x == x.

Axiom sum\_x\_x : \forall x, \ x + x == \mathsf{T0}.

Axiom mul\_comm : \forall x \ y, \ x \times y == y \times x.

Axiom mul\_assoc : \forall x \ y \ z, \ (x \times y) \times z == x \times (y \times z).

Axiom mul\_x\_x : \forall x, \ x \times x == x.

Axiom mul\_To\_x : \forall x, \ \mathsf{T0} \times x == \mathsf{T0}.

Axiom mul\_id : \forall x, \ \mathsf{T1} \times x == x.

Axiom mul\_id : \forall x, \ \mathsf{T1} \times x == x.

Axiom distr : \forall x \ y \ z, \ x \times (y + z) == (x \times y) + (x \times z).

Axiom term\_sum\_symmetric : \forall x \ y \ z, \ x == y \leftrightarrow x + z == y + z.
```

```
Axiom term_product_symmetric :
  \forall x \ y \ z, x == y \leftrightarrow x \times z == y \times z.
Axiom refl_comm :
  \forall t1 \ t2, t1 == t2 \rightarrow t2 == t1.
Axiom T1\_not\_equiv\_T0:
  ^{\sim}(T1 == T0).
Hint Resolve sum\_comm\ sum\_assoc\ sum\_x\_x\ sum\_id\ distr
                mul\_comm \ mul\_assoc \ mul\_x\_x \ mul\_T0\_x \ mul\_id.
   Now that the core axioms have been taken care of, we need to handle the implications
posed by our custom equivalence relation. Below we inform Coq of the behavior of our
equivalence relation with respect to rewrites during proofs.
Axiom eqv_ref : Reflexive eqv.
Axiom eqv_sym : Symmetric eqv.
Axiom eqv_trans : Transitive eqv.
Add Parametric Relation: term eqv
  reflexivity proved by @eqv_ref
  symmetry proved by @eqv_sym
  transitivity proved by @eqv_trans
  as eq\_set\_rel.
Axiom SUM_compat :
  \forall x x', x == x' \rightarrow
  \forall y y', y == y' \rightarrow
     (x + y) == (x' + y').
Axiom PRODUCT_compat:
  \forall x x', x == x' \rightarrow
  \forall y y', y == y' \rightarrow
     (x \times y) == (x' \times y').
Add Parametric Morphism: SUM with
  signature \ eqv \Longrightarrow eqv \Longrightarrow eqv \ as \ SUM\_mor.
Proof.
exact SUM_compat.
Qed.
Add Parametric Morphism: PRODUCT with
  signature \ eqv \Longrightarrow eqv \Longrightarrow eqv \ as \ PRODUCT\_mor.
Proof.
```

Hint Resolve eqv_ref eqv_sym eqv_trans SUM_compat PRODUCT_compat.

exact PRODUCT_compat.

Qed.

2.2.3 Lemmas

Since Coq now understands the basics of Boolean algebra, it serves as a good exercise for us to generate some further rules using Coq's proving systems. By doing this, not only do we gain some additional tools that will become handy later down the road, but we also test whether our axioms are behaving as we would like them to.

```
Lemma mul_x_x_plus_T1:
  \forall x, x \times (x + T1) == T0.
Proof.
intros. rewrite distr. rewrite mul_x_x. rewrite mul_comm.
rewrite mul_id. apply sum_x_x.
Qed.
Lemma x_equal_y_x_plus_y:
  \forall x y, x == y \leftrightarrow x + y == \mathsf{T0}.
Proof.
intros. split.
- intros. rewrite H. rewrite sum_x_x. reflexivity.
- intros. rewrite term_sum_symmetric with (y := y) (z := y). rewrite sum_x_x.
  apply H.
Qed.
Hint Resolve mul_x_x_plus_T1.
Hint Resolve x_-equal_-y_-x_-plus_-y.
```

These lemmas just serve to make certain rewrites regarding the core axioms less tedious to write. While one could certainly argue that they should be formulated as axioms and not lemmas due to their triviality, being pedantic is a good exercise.

```
Lemma sum_id_sym : \forall x, x + T0 == x. Proof. intros. rewrite sum\_comm. apply sum\_id. Qed. Lemma mul_id_sym : \forall x, x \times T1 == x. Proof. intros. rewrite mul\_comm. apply mul\_id. Qed. Lemma mul_T0\_x\_sym: \forall x, x \times T0 == T0. Proof. intros. rewrite mul\_comm. apply mul\_T0\_x. Qed. Lemma sum_assoc_opp :
```

```
\forall x\ y\ z,\ x+(y+z)==(x+y)+z. Proof.
  intros. rewrite sum\_assoc. reflexivity. Qed.

Lemma mul_assoc_opp:
  \forall x\ y\ z,\ x\times(y\times z)==(x\times y)\times z. Proof.
  intros. rewrite mul\_assoc. reflexivity. Qed.

Lemma distr_opp:
  \forall x\ y\ z,\ x\times y+x\times z==x\times(y+z). Proof.
  intros. rewrite distr. reflexivity. Qed.
```

2.3 Variable Sets

Now that the underlying behavior concerning Boolean algebra has been properly articulated to Coq, it is now time to begin formalizing the logic surrounding our meta reasoning of Boolean equations and systems. While there are certainly several approaches to begin this process, we thought it best to ease into things through formalizing the notion of a set of variables present in an equation.

2.3.1 Definitions

We now define a variable set to be precisely a list of variables; additionally, we include several functions for including and excluding variables from these variable sets. Furthermore, since uniqueness is not a property guaranteed by Coq lists and it has the potential to be desirable, we define a function that consumes a variable set and removes duplicate entries from it. For convenience, we also provide several examples to demonstrate the functionalities of these new definitions.

```
|n::n'\Rightarrow if (beq\_nat \ v \ n) then (var\_set\_remove\_var \ v \ n') else \ n:: (var\_set\_remove\_var)
v n'
  end.
Fixpoint var_set_create_unique (vars : var_set): var_set :=
  match vars with
     | \text{ nil} \Rightarrow \text{ nil}
     \mid n :: n' \Rightarrow
     if (var\_set\_includes\_var \ n \ n') then var\_set\_create\_unique \ n'
     else n :: var\_set\_create\_unique n'
  end.
Fixpoint var_set_is_unique (vars : var_set): bool :=
  match vars with
     | ni| \Rightarrow true
     \mid n :: n' \Rightarrow
     if (var\_set\_includes\_var n n') then false
     else var_set_is_unique n'
  end.
Fixpoint term_vars (t : \mathbf{term}) : \text{var\_set} :=
  match t with
     | T0 \Rightarrow nil
      T1 \Rightarrow nil
      VAR x \Rightarrow x :: nil
      PRODUCT x \ y \Rightarrow (\text{term\_vars } x) ++ (\text{term\_vars } y)
     | SUM x y \Rightarrow (term_vars x) ++ (term_vars y)
  end.
Definition term_unique_vars (t : \mathbf{term}) : \text{var\_set} :=
  (var\_set\_create\_unique (term\_vars t)).
Lemma vs_includes_true : \forall (x : var) (lvar : list var),
  var\_set\_includes\_var \ x \ lvar = true \rightarrow In \ x \ lvar.
 Proof.
 intros.
  induction lvar.
  - simpl; intros.
  discriminate.
  - simpl in H. remember (beq_nat x a) as H2. destruct H2.
  + simpl. left. symmetry in HeqH2. pose proof beq_nat_true as H7. specialize (H7
x \ a \ HeqH2).
     symmetry in H7. apply H7.
  + specialize (IHlvar\ H). simpl. right. apply IHlvar.
Lemma vs_includes_false : \forall (x : var) (lvar : list var),
```

```
var\_set\_includes\_var \ x \ lvar = false \rightarrow \neg ln \ x \ lvar.
 Proof.
 intros.
  induction lvar.
  - simpl; intros. unfold not. intros. destruct H0.
  - simpl in H. remember (beq_nat x a) as H2. destruct H2. inversion H.
    specialize (IHlvar\ H). firstorder. intuition. apply IHlvar. simpl in H0.
    destruct H0.
    { inversion HeqH2. symmetry in H2. pose proof beq_nat_false as H7. specialize
(H7 \ x \ a \ H2).
      rewrite H0 in H7. destruct H7. intuition.
    \{ apply H0. \}
Qed.
Lemma in_dup_and_non_dup:
\forall (x: var) (lvar : list var),
 \ln x \ lvar \leftrightarrow \ln x \ (var\_set\_create\_unique \ lvar).
Proof.
 intros. split.
 - induction lvar.
  + intros. simpl in H. destruct H.
  + intros. simpl. remember(var\_set\_includes\_var \ a \ lvar) as C. destruct C.
   { symmetry in HeqC. pose proof vs_includes_true as H7. specialize (H7 a lvar HeqC).
      simpl in H. destruct H.
    { rewrite H in H7. specialize (IHlvar H7). apply IHlvar. }
    \{ \text{ specialize } (IHlvar \ H). \text{ apply } IHlvar. \}
   { symmetry in HeqC. pose proof vs_includes_false as H7. specialize (H7 a lvar HeqC).
      simpl in H. destruct H.
    \{ \text{ simpl. left. apply } H. \}
    \{ \text{ specialize } (\mathit{IHlvar}\ H). \text{ simpl. right. apply } \mathit{IHlvar.} \}
 - induction lvar.
   + intros. simpl in H. destruct H.
   + intros. simpl in H. remember(var\_set\_includes\_var\ a\ lvar) as C. destruct C.
      { symmetry in HeqC. pose proof vs_includes_true as H7. specialize (H7 a lvar
HeqC).
       specialize (IHlvar H). simpl. right. apply IHlvar. }
      { symmetry in HeqC. pose proof vs_includes_false as H7. specialize (H7 a lvar
HeqC).
        simpl in H. destruct H.
       \{ \text{ simpl. left. apply } H. \}
       { specialize (IHlvar H). simpl. right. apply IHlvar. } }
```

2.3.2 Examples

```
Example var_set_create_unique_ex1 :
  var\_set\_create\_unique [0;5;2;1;1;2;2;9;5;3] = [0;1;2;9;5;3].
Proof.
simpl. reflexivity.
Qed.
Example var_set_is_unique_ex1 :
  var\_set\_is\_unique [0;2;2;2] = false.
Proof.
simpl. reflexivity.
Qed.
Example term_vars_ex1 :
  term_vars (VAR \ 0 + VAR \ 0 + VAR \ 1) = [0;0;1].
Proof.
simpl. reflexivity.
Qed.
Example term_vars_ex2 :
  In 0 (term_vars (VAR 0 + VAR 0 + VAR 1)).
Proof.
simpl. left. reflexivity.
Qed.
```

2.4 Ground Terms

Seeing as we just outlined the definition of a variable set, it seems fair to now formalize the definition of a ground term, or in other words, a term that has no variables and whose variable set is the empty set.

2.4.1 Definitions

A ground term is a recursively defined proposition that is only True if and only if no variable appears in it; otherwise it will be a False proposition and no longer a ground term.

```
Fixpoint ground_term (t: \mathbf{term}): \mathsf{Prop} := \mathsf{match}\ t \ \mathsf{with}
| \ \mathsf{VAR}\ x \Rightarrow \mathsf{False} \\ | \ \mathsf{SUM}\ x\ y \Rightarrow (\mathsf{ground\_term}\ x) \land (\mathsf{ground\_term}\ y) \\ | \ \mathsf{PRODUCT}\ x\ y \Rightarrow (\mathsf{ground\_term}\ x) \land (\mathsf{ground\_term}\ y)
```

```
\mid \_ \Rightarrow True end.
```

2.4.2 Lemmas

Our first real lemma (shown below), articulates an important property of ground terms: all ground terms are equivalent to either 0 or 1. This curious property is a direct result of the fact that these terms possess no variables and additionally because of the axioms of Boolean algebra.

```
Lemma ground_term_equiv_T0_T1:
  \forall x, (ground_term x) \rightarrow (x == T0 \lor x == T1).
Proof.
intros. induction x.
- left. reflexivity.
- right. reflexivity.
- contradiction.
- inversion H. destruct IHx1; destruct IHx2; auto. rewrite H2. left. rewrite sum_id.
rewrite H2. rewrite H3. rewrite sum_id. right. reflexivity.
rewrite H2. rewrite H3. right. rewrite sum_comm. rewrite sum_id. reflexivity.
rewrite H2. rewrite H3. rewrite sum_xx. left. reflexivity.
- inversion H. destruct IHx1; destruct IHx2; auto. rewrite H2. left. rewrite
mul_T0_x. reflexivity.
rewrite H2. left. rewrite mul_T0_x. reflexivity.
rewrite H3. left. rewrite mul_comm. rewrite mul_T0_x. reflexivity.
rewrite H2. rewrite H3. right. rewrite mul_id. reflexivity.
Qed.
```

This lemma, while intuitively obvious by definition, nonetheless provides a formal bridge between the world of ground terms and the world of variable sets.

```
Lemma ground_term_has_empty_var_set: \forall x, (ground_term x) \rightarrow (term_vars x) = []. Proof. intros. induction x.
- simpl. reflexivity.
- simpl. reflexivity.
- contradiction.
- firstorder_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_unfold_term_vars_
```

- firstorder. unfold term_vars. unfold term_vars in H2. rewrite H2. unfold term_vars in H1. rewrite H1. simpl. reflexivity.
- firstorder. unfold term_vars. unfold term_vars in H2. rewrite H2. unfold term_vars in H1. rewrite H1. simpl. reflexivity. Qed.

2.4.3 Examples

Here are some examples to show that our ground term definition is working appropriately.

```
Example ex_gt1:   (ground_term (T0 + T1)).  
Proof.  
simpl. split.  
- reflexivity.  
- reflexivity.  
Qed.  
Example ex_gt2:   (ground_term (VAR 0 \times T1)) \rightarrow False.  
Proof.  
simpl. intros. destruct H. apply H.  
Qed.
```

2.5 Substitutions

It is at this point in our Coq development that we begin to officially define the principal action around which the entirety of our efforts are centered: the act of substituting variables with other terms. While substitutions alone are not of great interest, their emergent properties as in the case of whether or not a given substitution unifies an equation are of substantial importance to our later research.

2.5.1 Definitions

Here we define a substitution to be a list of ordered pairs where each pair represents a variable being mapped to a term. For sake of clarity these ordered pairs shall be referred to as replacements from now on and as a result, substitutions should really be considered to be lists of replacements.

```
Definition replacement := (prod var term).

Definition subst := list replacement.

Implicit Type s : subst.
```

Our first function, find_replacement, is an auxilliary to apply_subst. This function will search through a substitution for a specific variable, and if found, returns the variable's associated term.

```
Fixpoint find_replacement (x : var) (s : subst) : term := match s with 
 <math>| \ nil \Rightarrow VAR \ x 
 | \ r :: \ r' \Rightarrow
```

```
\begin{array}{c} \text{if } \mathsf{beq\_nat} \ (\mathsf{fst} \ r) \ x \ \mathsf{then} \ (\mathsf{snd} \ r) \\ \mathsf{else} \\ \qquad (\mathsf{find\_replacement} \ x \ r') \\ \mathsf{end}. \end{array}
```

The apply_subst function will take a term and a substitution and will produce a new term reflecting the changes made to the original one.

```
Fixpoint apply_subst (t:\mathbf{term}) (s:\mathsf{subst}):\mathbf{term}:= match t with |\mathsf{T0}\Rightarrow\mathsf{T0} |\mathsf{T1}\Rightarrow\mathsf{T1} |\mathsf{VAR}\ x\Rightarrow(\mathsf{find\_replacement}\ x\ s) |\mathsf{PRODUCT}\ x\ y\Rightarrow\mathsf{PRODUCT}\ (\mathsf{apply\_subst}\ x\ s)\ (\mathsf{apply\_subst}\ y\ s) |\mathsf{SUM}\ x\ y\Rightarrow\mathsf{SUM}\ (\mathsf{apply\_subst}\ x\ s)\ (\mathsf{apply\_subst}\ y\ s) end.
```

For reasons of completeness, it is useful to be able to generate identity substitutions; namely, substitutions that map the variables of a term's variable set to themselves.

```
Fixpoint build_id_subst (lvar : var\_set) : subst := match \ lvar \ with \ | \ nil \Rightarrow nil \ | \ v :: v' \Rightarrow (cons \ (v \ , \ (VAR \ v)) \ (build\_id\_subst \ v')) end.
```

Since we now have the ability to generate identity substitutions, we should now formalize a general proposition for testing whether or not a given substitution is an identity substitution of a given term.

```
Definition subst_equiv (s1 \ s2: \text{subst}): \text{Prop} := \forall t, \text{apply\_subst} \ t \ s1 == \text{apply\_subst} \ t \ s2.
Definition subst_is_id_subst} (t: \textbf{term}) \ (s: \text{subst}): \text{Prop} := (\text{apply\_subst} \ t \ s) == t.
```

2.5.2 Lemmas

Having now outlined the functionality of a substitution, let us now begin to analyze some implications of its form and composition by proving some lemmas.

Given that we have a definition for identity substitutions, we should prove that identity substitutions do not modify a term.

```
intros. induction t.
  simpl. reflexivity.
  simpl. reflexivity.
  simpl. induction l.
    simpl. reflexivity.
     simpl. destruct (beq_nat a \ v) eqn: e.
       apply beq_nat_true in e. rewrite e. reflexivity.
       apply IHl.
  }
  simpl. rewrite IHt1. rewrite IHt2. reflexivity.
  simpl. rewrite IHt1. rewrite IHt2. reflexivity.
Qed.
Lemma apply_subst_compat : \forall (t \ t' : \mathbf{term}),
      t == t' \rightarrow \forall (sigma: subst), (apply_subst t sigma) == (apply_subst t' sigma).
Proof.
intros. induction t.
  - induction t.
    + simpl. reflexivity.
    + simpl. apply H.
    + simpl. rewrite H.
Admitted.
Add Parametric Morphism : apply_subst with
       signature \ eqv \Longrightarrow eqv \Longrightarrow eqv \ as \ apply\_subst\_mor.
Proof.
  exact apply_subst_compat.
```

Qed.

An easy thing to prove right off the bat is that ground terms, i.e. terms with no variables, cannot be modified by applying substitutions to them. This will later prove to be very relevant when we begin to talk about unification.

```
Lemma ground_term_cannot_subst :
  \forall x, (ground_term x) \rightarrow (\forall s, apply_subst x s == x).
Proof.
intros. induction s.
  - apply ground_term_equiv_T0_T1 in H. destruct H.
  + rewrite H. simpl. reflexivity.
  + rewrite H. simpl. reflexivity.
  - apply ground_term_equiv_T0_T1 in H. destruct H. rewrite H.
    + simpl. reflexivity.
    + rewrite H. simpl. reflexivity.
Qed.
   A fundamental property of substitutions is their distributivity and associativity across
the summation and multiplication of terms. Again the importance of these proofs will not
become apparent until we talk about unification.
Lemma subst_distribution:
  \forall s \ x \ y, apply_subst x \ s + apply_subst y \ s == apply_subst (x + y) \ s.
Proof.
intro. induction s. simpl. intros. reflexivity. intros. simpl. reflexivity.
Lemma subst_associative :
  \forall s \ x \ y, apply_subst x \ s \times \text{apply\_subst} \ y \ s == \text{apply\_subst} \ (x \times y) \ s.
intro. induction s. intros. reflexivity. intros. simpl. reflexivity.
Qed.
Lemma subst_sum_distr_opp:
  \forall s \ x \ y, apply_subst (x + y) \ s == apply_subst \ x \ s + apply_subst \ y \ s.
Proof.
  intros.
  apply refl_comm.
  apply subst_distribution.
Qed.
Lemma subst_mul_distr_opp:
  \forall s \ x \ y, apply_subst (x \times y) \ s == apply_subst \ x \ s \times apply_subst \ y \ s.
Proof.
  intros.
  apply refl_comm.
  apply subst_associative.
```

Qed.

```
Lemma var_subst: \forall \ (v : \mathsf{var}) \ (ts : \mathsf{term}) \ , (\mathsf{apply\_subst} \ (\mathsf{VAR} \ v) \ (\mathsf{cons} \ (v \ , \ ts) \ \mathsf{nil}) \ ) == ts. \mathsf{Proof.} \mathsf{intros.} \ \mathsf{simpl.} \ \mathsf{destruct} \ (\mathsf{beq\_nat} \ v \ v) \ \mathit{eqn} \colon \mathit{e}. \ \mathsf{apply} \ \mathsf{beq\_nat\_true} \ \mathsf{in} \ \mathit{e}. \mathsf{reflexivity.} \ \mathsf{apply} \ \mathsf{beq\_nat\_false} \ \mathsf{in} \ \mathit{e}. \ \mathsf{firstorder}. \mathsf{Qed.}
```

2.5.3 Examples

Here are some examples showcasing the nature of applying substitutions to terms.

```
Example subst_ex1 :
    (apply_subst (T0 + T1) []) == T0 + T1.
Proof.
intros. reflexivity.
Qed.

Example subst_ex2 :
    (apply_subst (VAR 0 × VAR 1) [(0, T0)]) == T0.
Proof.
intros. simpl. apply mul_T0_x.
Qed.
```

2.6 Unification

Now that we have established the concept of term substitutions in Coq, it is time for us to formally define the concept of Boolean unification. Unification, in its most literal sense, refers to the act of applying a substitution to terms in order to make them equivalent to each other. In other words, to say that two terms are unifiable is to really say that there exists a substitution such that the two terms are equal. Interestingly enough, we can abstract this concept further to simply saying that a single term is unifiable if there exists a substitution such that the term will be equivalent to 0. By doing this abstraction, we can prove that equation solving and unification are essentially the same fundamental problem.

Below is the initial definition for unification, namely that two terms can be unified to be equivalent to one another. By starting here we will show each step towards abstracting unification to refer to a single term.

```
Definition unifies (a \ b : \mathbf{term}) \ (s : \mathsf{subst}) : \mathsf{Prop} := (\mathsf{apply\_subst} \ a \ s) == (\mathsf{apply\_subst} \ b \ s).
```

Here is a simple example demonstrating the concept of testing whether two terms are unified by a substitution.

```
Example ex_unif1:
  unifies (VAR \ 0) \ (VAR \ 1) \ ((0, \ T1) :: \ (1, \ T1) :: \ nil).
Proof.
unfold unifies. simpl. reflexivity.
Qed.
   Now we are going to show that moving both terms to one side of the equivalence relation
through addition does not change the concept of unification.
Definition unifies_\mathsf{TO} (a\ b: \mathsf{term}) (s: \mathsf{subst}): \mathsf{Prop} :=
  (apply\_subst \ a \ s) + (apply\_subst \ b \ s) == T0.
Lemma unifies_T0_equiv:
  \forall x \ y \ s, unifies x \ y \ s \leftrightarrow \text{unifies\_T0} \ x \ y \ s.
Proof.
intros. split.
  intros. unfold unifies_T0. unfold unifies in H. rewrite H.
  rewrite sum_{-}x_{-}x. reflexivity.
  intros. unfold unifies_T0 in H. unfold unifies.
  rewrite term\_sum\_symmetric with (x := apply\_subst \ x \ s + apply\_subst \ y \ s)
  (z := \mathsf{apply\_subst}\ y\ s) \ \mathsf{in}\ H.\ \mathsf{rewrite}\ \mathit{sum\_id}\ \mathsf{in}\ H.
  rewrite sum_comm in H.
  rewrite sum_{-}comm with (y := apply_{-}subst y s) in H.
  rewrite \leftarrow sum_assoc in H.
  rewrite sum_x x in H.
  rewrite sum_id in H.
  apply H.
}
Qed.
   Now we can define what it means for a substitution to be a unifier for a given term.
Definition unifier (t : \mathbf{term}) (s : \mathsf{subst}) : \mathsf{Prop} :=
  (apply\_subst \ t \ s) == T0.
Example unifier_ex1:
  (unifier (VAR 0) ((0, T0) :: nil)).
Proof.
unfold unifier. simpl. reflexivity.
Qed.
```

To ensure our efforts were not in vain, let us now prove that this last abstraction of the unification problem is still equivalent to the original.

Lemma unifier_distribution:

```
\forall x \ y \ s, (unifies_T0 x \ y \ s) \leftrightarrow (unifier (x + y) \ s).
Proof.
intros. split.
  intros. unfold unifies_T0 in H. unfold unifier.
  rewrite \leftarrow H. symmetry. apply subst_distribution.
}
{
  intros. unfold unifies_T0. unfold unifier in H.
  rewrite \leftarrow H. apply subst_distribution.
Qed.
   Lastly let us define a term to be unifiable if there exists a substitution that unifies it.
Definition unifiable (t : \mathbf{term}) : Prop :=
  \exists s, unifier t s.
Example unifiable_ex1:
  \exists x, unifiable (x + T1).
Proof.
\exists (T1). unfold unifiable. unfold unifier.
\exists nil. simpl. rewrite sum_{-}x_{-}x. reflexivity.
Qed.
```

2.7 Most General Unifier

```
Definition substitution_composition (s\ s'\ delta: subst)\ (t: term): Prop:= \ \forall\ (x: var), apply_subst\ (apply_subst\ (VAR\ x)\ s)\ delta == apply_subst\ (VAR\ x)\ s'\ .
Definition more_general_substitution (s\ s': subst)\ (t: term): Prop:= \ \exists\ delta, substitution_composition\ s\ s'\ delta\ t.
Definition most_general_unifier (t: term)\ (s: subst): Prop:= \ (unifier\ t\ s) \to (\forall\ (s': subst), unifier\ t\ s' \to more_general_substitution\ s\ s'\ t\ ).
Definition reproductive_unifier (t: term)\ (sig: subst): Prop:= \ unifier\ t\ sig \to \ \forall\ (tau: subst)\ (x: var), unifier\ t\ tau \to \ (apply_subst\ (apply_subst\ (VAR\ x)\ sig\ )\ tau) == (apply_subst\ (VAR\ x)\ tau).
Lemma reproductive_is_mgu: \forall\ (t: term)\ (u: subst), reproductive_unifier t\ u \to \ most_general_unifier\ t\ u.
Proof.
```

```
intros. unfold most_general_unifier. unfold reproductive_unifier in H. unfold more_general_substitution . unfold substitution_composition. intros. specialize (H\ H0). \exists\ s' . intros. specialize (H\ s'\ x). specialize (H\ H1). apply H. Qed. Lemma most_general_unifier_compat : \forall\ (t\ t': \mathbf{term}), t == t' \to \forall\ (sigma: \mathrm{subst}), (\mathrm{most\_general\_unifier}\ t\ sigma) \leftrightarrow (\mathrm{most\_general\_unifier}\ t'\ sigma). Proof. Admitted.
```

2.8 Auxilliary Computational Operations and Simplifications

These functions below will come in handy later during the Lowenheim formula proof.

```
Fixpoint identical (a \ b: \mathbf{term}) : \mathbf{bool} :=
  \mathtt{match}\ a\ ,\ b\ \mathtt{with}
       T0, T0 \Rightarrow true
       T0, \_\Rightarrow false
       T1, T1 \Rightarrow true
       T1, \_\Rightarrow false
       VAR x, VAR y \Rightarrow \text{if beq\_nat } x \ y \text{ then true else false}
       VAR x, \_ \Rightarrow \mathsf{false}
       PRODUCT x y, PRODUCT x1 y1 \Rightarrow if (identical x x1) && (identical y y1) then
true
                                                       else false
       PRODUCT x y, \_ \Rightarrow \mathsf{false}
      | SUM x y, SUM x1 y1 \Rightarrow if ((identical x x1) && (identical y y1)) then true
                                                       else false
      | SUM x y, \_ \Rightarrow \mathsf{false}
Definition plus_one_step (a \ b : term) : term :=
   match a, b with
       T0, T0 \Rightarrow T0
       T0, T1 \Rightarrow T1
       T1, T0 \Rightarrow T1
       T1, T1 \Rightarrow T0
       _{-} , _{-} \Rightarrow SUM a b
   end.
Definition mult_one_step (a \ b : term) : term :=
```

```
match a, b with
      T0, T0 \Rightarrow T0
       T0, T1 \Rightarrow T0
       T1, T0 \Rightarrow T0
       T1, T1 \Rightarrow T1
      \_ , \_ \Rightarrow PRODUCT a b
  end.
Fixpoint simplify (t : term) : term :=
  match t with
      T0 \Rightarrow T0
      T1 \Rightarrow T1
       VAR x \Rightarrow VAR x
      PRODUCT x \ y \Rightarrow \text{mult\_one\_step (simplify } x) \text{ (simplify } y)
     SUM x y \Rightarrow \text{plus\_one\_step} (simplify x) (simplify y)
  end.
Lemma pos_left_sum_compat : \forall (t t1 t2 : term),
       t == t1 \rightarrow \text{plus\_one\_step } t1 \ t2 == \text{plus\_one\_step } t \ t2.
Proof.
  intros. induction t1.
  - induction t.
     + reflexivity.
     + apply T1\_not\_equiv\_T0 in H. inversion H.
     + induction t2.
        \{ \text{ simpl. rewrite } H. \text{ rewrite } sum\_x\_x. \text{ reflexivity. } \}
        { simpl. rewrite H. rewrite sum_id. reflexivity. }
        \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
        \{ simpl. rewrite H. reflexivity. \}
        \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
     + induction t2.
        { simpl. rewrite H. rewrite sum_x_x. reflexivity. }
        { simpl. rewrite H. rewrite sum_id. reflexivity. }
        \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
        \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
        \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
     + induction t2.
        { simpl. rewrite H. rewrite sum_x_x. reflexivity. }
        { simpl. rewrite H. rewrite sum_id. reflexivity. }
        \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
        \{ simpl. rewrite H. reflexivity. \}
        \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
  - induction t.
     + induction t2.
```

```
\{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
     { simpl. rewrite H. reflexivity. }
     \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
     \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
     \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
  + induction t2.
     { simpl. reflexivity. }
     { simpl. reflexivity. }
     { simpl. reflexivity. }
     { simpl. reflexivity. }
     { simpl. reflexivity. }
  + induction t2.
     { simpl. rewrite H. rewrite sum_comm. rewrite sum_id. reflexivity. }
     \{ \text{ simpl. rewrite } H. \text{ rewrite } sum\_x\_x. \text{ reflexivity. } \}
     { simpl. rewrite H. reflexivity. }
     \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
     \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
  + induction t2.
     \{ simpl. rewrite H. rewrite sum\_comm. rewrite sum\_id. reflexivity. \}
     { simpl. rewrite H. rewrite sum_x_x. reflexivity. }
     { simpl. rewrite H. reflexivity. }
     \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
     { simpl. rewrite H. reflexivity. }
  + induction t2.
     { simpl. rewrite H. rewrite sum_comm. rewrite sum_id. reflexivity. }
     { simpl. rewrite H. rewrite sum_x_x. reflexivity. }
     \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ simpl. rewrite H. reflexivity. \}
     { simpl. rewrite H. reflexivity. }
- induction t.
  + induction t2.
     \{ \text{ simpl. rewrite } H. \text{ rewrite } sum\_x\_x. \text{ rewrite } H. \text{ reflexivity. } \}
     \{ \text{ simpl. rewrite } \leftarrow H. \text{ rewrite } sum\_id. \text{ reflexivity. } \}
     { simpl. rewrite H. reflexivity. }
     \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
     \{ \text{ simpl. rewrite } \textit{H. reflexivity.} \}
  + induction t2.
     \{ \text{ simpl. rewrite } \leftarrow H. \text{ rewrite } \textit{sum\_comm}. \text{ rewrite } \textit{sum\_id}. \text{ reflexivity. } \}
     { simpl. rewrite H. rewrite sum_{-}x_{-}x. reflexivity. }
     \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
     \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
     \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
```

```
+ induction t2.
      { simpl. rewrite H. reflexivity. }
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
   + induction t2.
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
   + induction t2.
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ simpl. rewrite H. reflexivity. \}
      \{ simpl. rewrite H. reflexivity. \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
- induction t.
   + induction t2.
      \{ \text{ simpl. rewrite } \leftarrow H. \text{ rewrite } sum\_x\_x. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } \leftarrow H. \text{ rewrite } sum\_id. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } \leftarrow H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
   + induction t2.
      \{ \text{ simpl. rewrite } \leftarrow H. \text{ rewrite } \textit{sum\_comm}. \text{ rewrite } \textit{sum\_id}. \text{ reflexivity. } \}
      { simpl. rewrite H. rewrite sum_x_x. reflexivity. }
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
   + induction t2.
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ simpl. rewrite H. reflexivity. \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
   + induction t2.
      { simpl. rewrite H. reflexivity. }
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
```

```
\{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      + induction t2.
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         { simpl. rewrite H. reflexivity. }
 - induction t.
      + induction t2.
         \{ \text{ simpl. rewrite } \leftarrow H. \text{ rewrite } sum\_x\_x. \text{ reflexivity. } \}
         \{ \text{ simpl. rewrite } \leftarrow H. \text{ rewrite } sum\_id. \text{ reflexivity. } \}
         \{ \text{ simpl. rewrite } \leftarrow H. \text{ reflexivity. } \}
         \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
         \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
      + induction t2.
         \{ \text{ simpl. rewrite } \leftarrow H. \text{ rewrite } sum\_comm. \text{ rewrite } sum\_id. \text{ reflexivity. } \}
         { simpl. rewrite H. rewrite sum_x_x. reflexivity. }
         \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
         \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
         \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
      + induction t2.
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      + induction t2.
         { simpl. rewrite H. reflexivity. }
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      + induction t2.
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         \{ simpl. rewrite H. reflexivity. \}
         \{ simpl. rewrite H. reflexivity. \}
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
Qed.
Lemma pos_right_sum_compat : \forall (t t1 t2 : term),
       t == t2 \rightarrow \text{plus\_one\_step} \ t1 \ t2 == \text{plus\_one\_step} \ t1 \ t.
Proof.
```

```
intros. induction t1.
  - induction t.
     + induction t2.
        { simpl. reflexivity. }
        \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
        \{ \text{ simpl. rewrite } H. \text{ rewrite } sum\_x\_x. \text{ apply } H. \}
        \{ \text{ simpl. rewrite } \leftarrow H. \text{ rewrite } sum\_x\_x. \text{ reflexivity. } \}
        \{ \text{ simpl. rewrite } \leftarrow H. \text{ rewrite } sum\_x\_x. \text{ reflexivity. } \}
     + induction t2.
        \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
        { simpl. reflexivity. }
        { simpl. rewrite H. rewrite sum_id. reflexivity. }
        { simpl. rewrite H. rewrite sum_id. reflexivity. }
        \{ \text{ simpl. rewrite } \leftarrow H. \text{ rewrite } sum\_id. \text{ reflexivity. } \}
     + induction t2.
        \{ \text{ simpl. rewrite } H. \text{ rewrite } sum\_x\_x. \text{ reflexivity. } \}
        { simpl. rewrite H. rewrite sum_id. reflexivity. }
        { simpl. rewrite H. rewrite sum_id. reflexivity. }
        { simpl. rewrite H. rewrite sum_id. reflexivity. }
        \{ \text{ simpl. rewrite } \leftarrow H. \text{ rewrite } sum\_id. \text{ reflexivity. } \}
     + induction t2.
        \{ \text{ simpl. rewrite } H. \text{ rewrite } sum\_x\_x. \text{ reflexivity. } \}
        { simpl. rewrite H. rewrite sum_id. reflexivity. }
        { simpl. rewrite H. rewrite sum_id. reflexivity. }
        \{ simpl. rewrite H. rewrite sum\_id. reflexivity. \}
        { simpl. rewrite \leftarrow H. rewrite sum_id. reflexivity. }
     + induction t2.
        \{ \text{ simpl. rewrite } H. \text{ rewrite } sum\_x\_x. \text{ reflexivity. } \}
        { simpl. rewrite H. rewrite sum_id. reflexivity. }
        { simpl. rewrite H. rewrite sum_id. reflexivity. }
        { simpl. rewrite H. rewrite sum_id. reflexivity. }
        \{ \text{ simpl. rewrite } \leftarrow H. \text{ rewrite } sum\_id. \text{ reflexivity. } \}
  - induction t.
     + induction t2.
        { simpl. reflexivity. }
        \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
        \{ \text{ simpl. rewrite } \leftarrow H. \text{ rewrite } sum\_comm. \text{ rewrite } sum\_id. \text{ reflexivity. } \}
        \{ \text{ simpl. rewrite } \leftarrow H. \text{ rewrite } \textit{sum\_comm}. \text{ rewrite } \textit{sum\_id}. \text{ reflexivity. } \}
        \{ \text{ simpl. rewrite } \leftarrow H. \text{ rewrite } sum\_comm. \text{ rewrite } sum\_id. \text{ reflexivity. } \}
     + induction t2.
        \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
        { simpl. reflexivity. }
```

```
{ simpl. rewrite H. rewrite sum_x_x. reflexivity. }
      { simpl. rewrite H. rewrite sum_x_x. reflexivity. }
      \{ \text{ simpl. rewrite } \leftarrow H. \text{ rewrite } sum\_x\_x. \text{ reflexivity. } \}
   + induction t2.
      { simpl. rewrite H. rewrite sum_comm. rewrite sum_id. reflexivity. }
      \{ simpl. rewrite H. rewrite sum_{-}x_{-}x. reflexivity. \}
      { simpl. rewrite H. reflexivity. }
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
   + induction t2.
      \{ simpl. rewrite H. rewrite sum\_comm. rewrite sum\_id. reflexivity. \}
      { simpl. rewrite H. rewrite sum_x_x. reflexivity. }
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
   + induction t2.
      { simpl. rewrite H. rewrite sum_comm. rewrite sum_id. reflexivity. }
      { simpl. rewrite H. rewrite sum_x. reflexivity. }
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
- induction t.
   + induction t2.
      { simpl. reflexivity. }
      \{ simpl. rewrite H. reflexivity. \}
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
   + induction t2.
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      { simpl. reflexivity. }
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
   + induction t2.
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
   + induction t2.
      { simpl. rewrite H. reflexivity. }
```

```
\{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
   + induction t2.
      \{ simpl. rewrite H. reflexivity. \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
- induction t.
   + induction t2.
      { simpl. reflexivity. }
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
        simpl. rewrite \leftarrow H. reflexivity. }
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
   + induction t2.
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      { simpl. reflexivity. }
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
   + induction t2.
      \{ simpl. rewrite H. reflexivity. \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ simpl. rewrite H. reflexivity. \}
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
   + induction t2.
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      { simpl. rewrite H. reflexivity. }
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
   + induction t2.
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ simpl. rewrite H. reflexivity. \}
      \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
      \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
- induction t.
```

```
+ induction t2.
         { simpl. reflexivity. }
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
         \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
         \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
      + induction t2.
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         { simpl. reflexivity. }
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
      + induction t2.
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
      + induction t2.
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
      + induction t2.
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         \{ \text{ simpl. rewrite } H. \text{ reflexivity. } \}
         \{ simpl. rewrite H. reflexivity. \}
         { simpl. rewrite H. reflexivity. }
         \{ \text{ simpl. rewrite} \leftarrow H. \text{ reflexivity.} \}
Qed.
Lemma pos_left_mul_compat : \forall (t t1 t2 : term),
       t == t1 \rightarrow \text{mult\_one\_step } t1 \ t2 == \text{mult\_one\_step } t \ t2.
Proof.
Admitted.
Lemma pos_right_mul_compat : \forall (t t1 t2 : term),
        t == t2 \rightarrow \text{mult\_one\_step } t1 \ t2 == \text{mult\_one\_step } t1 \ t.
Proof.
Admitted.
Lemma simplify_eqv:
 \forall (t : \mathbf{term}),
 simplify t == t.
```

```
Proof.
 intros. induction t.
- simpl. reflexivity.
- simpl. reflexivity.
 - simpl. reflexivity.
 - simpl. pose proof pos_left_sum_compat. specialize (H\ t1\ (simplify\ t1)\ (simplify\ t2)).
   symmetry in IHt1. specialize (H\ IHt1). rewrite H.
  pose proof pos_right_sum_compat. specialize (H0 (simplify t2) t1 t2).
  specialize (H0 \ IHt2). symmetry in H0. rewrite H0.
  induction t1.
  + induction t2.
    { simpl. rewrite sum_{-}x_{-}x. reflexivity. }
    { simpl. rewrite sum_id. reflexivity. }
    { simpl. reflexivity. }
    { simpl. reflexivity. }
    { simpl. reflexivity. }
  + induction t2.
    { simpl. rewrite sum_id_sym. reflexivity. }
    { simpl. rewrite sum_x_x. reflexivity. }
    { simpl. reflexivity. }
    { simpl. reflexivity. }
    { simpl. reflexivity. }
  + simpl. reflexivity.
  + simpl. reflexivity.
  + simpl. reflexivity.
 - simpl. pose proof pos_left_mul_compat. specialize (H t1 (simplify t1) (simplify t2)).
   symmetry in IHt1. specialize (H\ IHt1). rewrite H.
  pose proof\ pos\_right\_mul\_compat. specialize (H0\ (simplify\ t2)\ t1\ t2).
  specialize (H0 \ IHt2). symmetry in H0. rewrite H0.
  induction t1.
  + induction t2.
    { simpl. rewrite mul_x_x. reflexivity. }
    { simpl. rewrite mul_TO_x. reflexivity. }
    { simpl. reflexivity. }
    { simpl. reflexivity. }
    { simpl. reflexivity. }
  + induction t2.
    { simpl. rewrite mul_T0_x_sym. reflexivity. }
    { simpl. rewrite mul_x x. reflexivity. }
    { simpl. reflexivity. }
    { simpl. reflexivity. }
    { simpl. reflexivity. }
```

```
+ simpl. reflexivity.
+ simpl. reflexivity.
+ simpl. reflexivity.
Qed.
```

Chapter 3

Library B_Unification.lowenheim_formula

```
Require Export terms.
Require Import List.
Import ListNotations.
Fixpoint build_on_list_of_vars (list_var: var_set) (s: term) (sig1: subst) (sig2: subst) :
subst :=
  match list_var with
   \mid \mathsf{nil} \Rightarrow \mathsf{nil}
   |v'::v\Rightarrow
       (cons (v', (s + T1) × (apply_subst (VAR v') siq1) + s × (apply_subst (VAR v')
sig2 ) )
               (build_on_list_of_vars v \ s \ sig1 \ sig2)
  end.
Definition build_lowenheim_subst (t : \mathbf{term}) (tau : \mathsf{subst}) : \mathsf{subst} :=
  build_on_list_of_vars (term_unique_vars t) t (build_id_subst (term_unique_vars t)) tau.
   2.2 Lowenheim's algorithm
Definition update_term (t : \mathbf{term}) (s' : \mathsf{subst}) : \mathbf{term} :=
  (simplify (apply_subst t s')).
Definition term_is_T0 (t : \mathbf{term}) : \mathbf{bool} :=
  (identical t T0).
Inductive subst_option: Type :=
      Some_subst : subst \rightarrow subst_option
      None_subst : subst_option.
Fixpoint rec_subst (t : term) (vars : var_set) (s : subst) : subst :=
```

```
match vars with
    |\mathsf{nil}| \Rightarrow s
    |v'::v\Rightarrow
         if (term_is_T0
                 (update_term (update_term t (cons (v', T0) s))
                                  (rec\_subst (update\_term \ t \ (cons \ (v', T0) \ s))
                                             v (cons (v', T0) s))
              then
                      (rec\_subst (update\_term \ t \ (cons \ (v', T0) \ s))
                                                   v (cons (v', T0) s))
           else
              if (term_is_T0
                   (update_term (update_term t (cons (v', T1) s))
                                    (rec\_subst (update\_term \ t \ (cons \ (v', T1) \ s))
                                               v (cons (v', T1) s)))
              then
                      (rec\_subst (update\_term \ t \ (cons \ (v', T1) \ s))
                                                   v (cons (v', T1) s))
              else
                      (rec\_subst (update\_term \ t (cons (v', T0) \ s))
                                                   v \text{ (cons } (v', T0) s))
      end.
Compute (rec_subst ((VAR 0) × (VAR 1)) (cons 0 (cons 1 nil)) nil).
Fixpoint find_unifier (t : term) : subst_option :=
  match (update_term t (rec_subst t (term_unique_vars t) nil) ) with
     T0 \Rightarrow Some\_subst (rec\_subst t (term\_unique\_vars t) nil)
     | \_ \Rightarrow \mathsf{None\_subst}|
  end.
Compute (find_unifier ((VAR 0) × (VAR 1))).
Compute (find_unifier ((VAR 0) + (VAR 1))).
Compute (find_unifier ((VAR 0) + (VAR 1) + (VAR 2) + T1 + (VAR 3) × ( (VAR 2) + (VAR
0)))).
Definition Lowenheim_Main (t : term) : subst_option :=
  match (find_unifier t) with
      Some_subst s \Rightarrow Some_subst (build_lowenheim_subst t s)
     | None_subst \Rightarrow None_subst
  end.
Compute (find_unifier ((VAR 0) × (VAR 1))).
Compute (Lowenheim_Main ((VAR 0) × (VAR 1))).
```

```
Compute (Lowenheim_Main ((VAR 0) + (VAR 1))).
Compute (Lowenheim_Main ((VAR 0) + (VAR 1) + (VAR 2) + T1 + (VAR 3) \times ( (VAR 2) +
(VAR 0))).
Compute (Lowenheim_Main (T1)).
Compute (Lowenheim_Main (( VAR 0) + (VAR 0) + T1)).
   2.3 Lowenheim testing
Definition Test_find_unifier (t : \mathbf{term}) : \mathbf{bool} :=
  match (find_unifier t) with
    | Some_subst s \Rightarrow
      (term_is_T0 (update_term t s))
    | None_subst \Rightarrow true
  end.
Compute (Test_find_unifier (T1)).
Compute (Test_find_unifier ((VAR 0) × (VAR 1))).
Compute (Test_find_unifier ((VAR 0) + (VAR 1) + (VAR 2) + T1 + (VAR 3) \times ( (VAR 2) +
(VAR 0))).
Definition apply_lowenheim_main (t : term) : term :=
  match (Lowenheim_Main t) with
   Some_subst s \Rightarrow (apply\_subst \ t \ s)
  | None\_subst \Rightarrow T1
  end.
Compute (Lowenheim_Main ((VAR 0) × (VAR 1) )).
Compute (apply_lowenheim_main ((VAR 0) × (VAR 1) ).
Compute (Lowenheim_Main ((VAR 0) + (VAR 1) )).
Compute (apply_lowenheim_main ((VAR 0) + (VAR 1) )).
```

Chapter 4

Library B_Unification.lowenheim_proof

```
Require Export lowenheim_formula.
Require Export EqNat.
Require Import List.
Import ListNotations.
Import Coq. Init. Tactics.
Require Export Classical_Prop.
    3.1 Declarations and their lemmas useful for the proof
Definition sub_term (t : \mathbf{term}) (t' : \mathbf{term}) : \mathsf{Prop} :=
  \forall (x : \mathsf{var}),
   (\ln x \text{ (term\_unique\_vars } t)) \rightarrow (\ln x \text{ (term\_unique\_vars } t')).
Lemma sub_term_id:
  \forall (t : \mathbf{term}),
  sub\_term t t.
Proof.
 intros. firstorder.
Qed.
Lemma term_vars_distr :
\forall (t1 \ t2 : \mathbf{term}),
 (\text{term\_vars } (t1 + t2)) = (\text{term\_vars } t1) ++ (\text{term\_vars } t2).
Proof.
 intros.
 induction t2.
 - simpl. reflexivity.
 - simpl. reflexivity.
 - simpl. reflexivity.
 - simpl. reflexivity.
```

```
- simpl. reflexivity.
Qed.
Lemma tv_h1:
\forall (t1 \ t2 : \mathbf{term}),
\forall (x : \mathsf{var}),
 (\ln x \text{ (term\_vars } t1)) \rightarrow (\ln x \text{ (term\_vars } (t1 + t2))).
Proof.
intros. induction t2.
 - simpl. rewrite app_nil_r. apply H.
 - simpl. rewrite app_nil_r. apply H.
 - simpl. pose proof in_or_app as H1. specialize (H1 \text{ var (term\_vars } t1) \text{ } [v] \text{ } x).
firstorder.
 - rewrite term_vars_distr. apply in_or_app. left. apply H.
 - rewrite term_vars_distr. apply in_or_app. left. apply H.
Lemma tv_h2:
\forall (t1 \ t2 : \mathbf{term}),
\forall (x : \mathsf{var}),
 (\ln x \text{ (term\_vars } t2)) \rightarrow (\ln x \text{ (term\_vars } (t1 + t2))).
Proof.
intros. induction t1.
- simpl. apply H.
- simpl. apply H.
 - simpl. pose proof in_or_app as H1. right. apply H.
 - rewrite term_vars_distr. apply in_or_app. right. apply H.
 - rewrite term_vars_distr. apply in_or_app. right. apply H.
Qed.
Lemma helper_2a:
  \forall (t1 \ t2 \ t' : \mathbf{term}),
  sub\_term (t1 + t2) t' \rightarrow sub\_term t1 t'.
Proof.
 intros. unfold sub_term in *. intros. specialize (H x).
 pose proof in_dup_and_non_dup as H10. unfold term_unique_vars. unfold term_unique_vars
in *.
 pose proof tv_h1 as H7. apply H. specialize (H7 t1 t2 x). specialize (H10 x
(term\_vars (t1 + t2))). destruct H10.
 apply H1. apply H7. pose proof in_dup_and_non_dup as H10. specialize (H10 \ x
(term_vars t1)). destruct H10.
 apply H4. apply H0.
Qed.
Lemma helper_2b:
```

```
\forall (t1 \ t2 \ t' : \mathbf{term}),
  sub\_term (t1 + t2) t' \rightarrow sub\_term t2 t'.
Proof.
intros. unfold sub_term in *. intros. specialize (H x).
pose proof in_dup_and_non_dup as H10. unfold term_unique_vars. unfold term_unique_vars
in *.
 pose proof tv_h2 as H7. apply H. specialize (H7\ t1\ t2\ x). specialize (H10\ x)
(\text{term\_vars} (t1 + t2))). destruct H10.
 apply H1. apply H7. pose proof in_dup_and_non_dup as H10. specialize (H10 \ x
(term_vars t2)). destruct H10.
 apply H4. apply H0.
Qed.
Lemma elt_in_list:
 \forall (x: \mathsf{var}) (a: \mathsf{var}) (l: \mathsf{list} \mathsf{var}),
  (\ln x (a::l)) \rightarrow
  x = a \vee (\ln x \ l).
Proof.
intros.
pose proof in_inv as H1.
specialize (H1 \text{ var } a \text{ } x \text{ } l \text{ } H).
destruct H1.
- left. symmetry in H0. apply H0.
 - right. apply H0.
Qed.
Lemma elt_not_in_list:
 \forall (x: \mathsf{var}) (a: \mathsf{var}) (l: \mathsf{list} \mathsf{var}),
  \neg (ln x (a::l)) \rightarrow
  x \neq a \land \neg (\ln x \ l).
Proof.
intros.
pose proof not_in_cons. specialize (H0 var x \ a \ l). destruct H0.
specialize (H0 \ H). apply H0.
Qed.
Lemma in_list_of_var_term_of_var:
\forall (x : \mathsf{var}),
  In x (term_unique_vars (VAR x)).
Proof.
intros. simpl. left. intuition.
Qed.
Lemma var_in_out_list:
  \forall (x : \mathsf{var}) (\mathit{lvar} : \mathsf{list} \, \mathsf{var}),
```

```
(\ln x \ lvar) \lor \neg (\ln x \ lvar).
Proof.
 intros.
pose proof classic as H1. specialize (H1 (\ln x \, lvar)). apply H1.
Qed.
   3.2 Proof that Lownheim's algorithm unifes a given term
Lemma helper1_easy:
 \forall (x: var) (lvar : list var) (sig1 sig2 : subst) (s : term),
 (\ln x \ lvar) \rightarrow
  apply_subst (VAR x) (build_on_list_of_vars lvar \ s \ sig1 \ sig2)
  apply_subst (VAR x) (build_on_list_of_vars (cons x nil) s sig1 sig2).
Proof.
 intros.
 induction lvar.
 - simpl. simpl in H. destruct H.
 - apply elt_in_list in H. destruct H.
  + simpl. destruct (beq_nat a x) as [eqn:?].
   { apply beq_nat_true in Heqb. destruct (beq_nat x x) as [eqn:?].
     { rewrite H. reflexivity. }
     { apply beq_nat_false in Heqb.
       \{ destruct Heqb. \}
       { rewrite Heqb. apply Heqb0. } }}
   \{ \text{ simpl in } IHlvar. \text{ apply } IHlvar. \text{ symmetry in } H. \text{ rewrite } H \text{ in } Heqb. \}
     apply beg_nat_false in Heqb. destruct Heqb. intuition.
  + destruct (beq_nat a x) as [eqn:?].
     \{ apply beg_nat_true in Heqb. symmetry in Heqb. rewrite Heqb in IHlvar. rewrite
Heqb.
          simpl in IHlvar. simpl. destruct (beq_nat a a) as [eqn:?].
      { reflexivity. }
      { apply IHlvar. rewrite Heqb in H. apply H. }}
     { apply beg_nat_false in Heqb. simpl. destruct (beg_nat a x) as [eqn:?].
      { apply beq_nat_true in Heqb0. rewrite Heqb0 in Heqb. destruct Heqb. intuition.
}
      \{ \text{ simpl in } IHlvar. \text{ apply } IHlvar. \text{ apply } H. \} \}
Qed.
Lemma helper_1:
\forall (t' \ s : \mathbf{term}) \ (v : \mathsf{var}) \ (sig1 \ sig2 : \mathsf{subst}),
  sub\_term (VAR v) t' \rightarrow
  apply_subst (VAR v) (build_on_list_of_vars (term_unique_vars t') s siq1 siq2)
  apply_subst (VAR v) (build_on_list_of_vars (term_unique_vars (VAR v)) s \ sig1 \ sig2).
```

```
Proof.
 intros. unfold sub_term in H. specialize (H v). pose proof in_list_of_var_term_of_var
as H3.
 specialize (H3\ v). specialize (H\ H3). pose proof helper1_easy as H2.
 specialize (H2\ v (term_unique_vars t') sig1\ sig2\ s). apply H2. apply H.
Qed.
Lemma subs_distr_vars_ver2 :
  \forall (t \ t' : \mathbf{term}) \ (s : \mathbf{term}) \ (sig1 \ sig2 : \mathsf{subst}),
  (sub_term t \ t') \rightarrow
  apply_subst t (build_on_list_of_vars (term_unique_vars t') s sig1 sig2)
  (s + T1) \times (apply\_subst \ t \ siq1) + s \times (apply\_subst \ t \ siq2).
Proof.
 intros. generalize dependent t'. induction t.
  - intros t'. repeat rewrite ground_term_cannot_subst.
    + rewrite mul\_comm with (x := s + T1). rewrite distr. repeat rewrite mul\_T0\_x.
rewrite mul\_comm with (x := s).
      rewrite mul_T0_x. repeat rewrite sum_x_x. reflexivity.
    + unfold ground_term. reflexivity.
    + unfold ground_term. reflexivity.
    + unfold ground_term. reflexivity.
  - intros t'. repeat rewrite ground_term_cannot_subst.
    + rewrite mul\_comm with (x := s + T1). rewrite mul\_id. rewrite mul\_comm with
(x := s). rewrite mul_id. rewrite sum_comm with (x := s).
      repeat rewrite sum_assoc. rewrite sum_xx. rewrite sum_comm with (x := T1).
rewrite sum_id. reflexivity.
    + unfold ground_term. reflexivity.
    + unfold ground_term. reflexivity.
    + unfold ground_term. reflexivity.
  - intros. rewrite helper_1.
    + unfold term_unique_vars. unfold term_vars. unfold var_set_create_unique. unfold
var_set_includes_var. unfold build_on_list_of_vars.
    rewrite var_subst. reflexivity.
    + apply H.
  - intros. specialize (IHt1\ t'). specialize (IHt2\ t'). repeat rewrite subst_sum_distr_opp.
      rewrite IHt1. rewrite IHt2.
    + rewrite distr. rewrite distr. repeat rewrite sum_assoc. rewrite sum_comm with
(x := (s + T1) \times apply\_subst \ t2 \ sig1)
      (y := (s \times \mathsf{apply\_subst}\ t1\ siq2 + s \times \mathsf{apply\_subst}\ t2\ siq2)). repeat rewrite sum_assoc.
      rewrite sum\_comm with (x := s \times apply\_subst \ t2 \ sig2) \ (y := (s + T1) \times apply\_subst
t2 siq1).
```

repeat rewrite *sum_assoc*. reflexivity.

```
+ pose helper_2b as H2. specialize (H2\ t1\ t2\ t'). apply H2. apply H.
```

- intros. specialize ($IHt1\ t'$). specialize ($IHt2\ t'$). repeat rewrite subst_mul_distr_opp. rewrite IHt1. rewrite IHt2.

+ rewrite distr. rewrite mul_comm with $(y:=((s+T1)\times apply_subst\ t2\ sig1)).$ rewrite distr. rewrite mul_comm with $(y:=(s\times apply_subst\ t2\ sig2)).$ rewrite r

repeat rewrite mul_assoc . repeat rewrite mul_comm with $(x := apply_subst \ t2 \ sig1)$.

repeat rewrite mul_assoc.

rewrite mul_assoc_opp with $(x:=(s+\mathsf{T}1))$ $(y:=(s+\mathsf{T}1))$. rewrite mul_x_x . rewrite mul_assoc_opp with $(x:=(s+\mathsf{T}1))$ (y:=s). rewrite mul_comm with $(x:=(s+\mathsf{T}1))$ (y:=s).

rewrite distr. rewrite $mul_{-}x_{-}x$. rewrite $mul_{-}id_{-}sym$. rewrite $sum_{-}x_{-}x$. rewrite $mul_{-}T0_{-}x$.

repeat rewrite mul_assoc . rewrite mul_acomm with $(x := apply_subst\ t2\ sig2)$. repeat rewrite mul_assoc . rewrite mul_assoc_opp with $(x := s)\ (y := (s + T1))$.

rewrite distr. rewrite $mul_{-}x_{-}x$. rewrite $mul_{-}id_{-}sym$. rewrite $sum_{-}x_{-}x$. rewrite $mul_{-}T0_{-}x$.

repeat rewrite sum_assoc . rewrite sum_assoc_opp with (x := T0) (y := T0). rewrite sum_x_x . rewrite sum_id .

repeat rewrite mul_assoc . rewrite mul_comm with $(x := apply_subst \ t2 \ sig2) \ (y := s \times apply_subst \ t1 \ sig2)$.

repeat rewrite mul_assoc . rewrite mul_assoc_opp with (x:=s). rewrite mul_x_x . reflexivity.

- + pose helper_2b as H2. specialize ($H2\ t1\ t2\ t'$). apply H2. apply H.
- + pose helper_2a as $\it H2$. specialize ($\it H2\ t1\ t2\ t'$). apply $\it H2$. apply $\it H.$ Qed.

Lemma specific_sigmas_unify:

```
\forall (t : \mathbf{term}) (tau : \mathsf{subst}), (unifier t \ tau) \rightarrow
```

(apply_subst t (build_on_list_of_vars (term_unique_vars t) t (build_id_subst (term_unique_vars t)) tau)

) == T0.

Proof.

intros.

rewrite subs_distr_vars_ver2.

- rewrite id_subst. rewrite mul_comm with (x := t + T1). rewrite distr. rewrite mul_x_x . rewrite mul_id_sym . rewrite sum_x_x .

rewrite *sum_id*.

unfold unifier in *H*. rewrite *H*. rewrite mul_T0_x_sym. reflexivity.

apply sub_term_id.

⁺ pose helper_2a as H2. specialize ($H2\ t1\ t2\ t'$). apply H2. apply H.

```
Qed.
Lemma lownheim_unifies:
  \forall (t : \mathbf{term}) (tau : \mathsf{subst}),
  (unifier t tau) \rightarrow
  (apply\_subst\ t\ (build\_lowenheim\_subst\ t\ tau)) == T0.
Proof.
intros. unfold build_lowenheim_subst. apply specific_sigmas_unify. apply H.
Qed.
   3.3 Proof that Lownheim's algorithm produces a most general unifier
   3.3.a Proof that Lownheim's algorithm produces a reproductive unifier
Lemma lowenheim_rephrase1_easy :
  \forall (l : list var) (x : var) (sig1 : subst) (sig2 : subst) (s : term),
  (\ln x \ l) \rightarrow
  (apply\_subst (VAR x) (build\_on\_list\_of\_vars l s sig1 sig2)) ==
  (s + T1) \times (apply\_subst (VAR x) sig1) + s \times (apply\_subst (VAR x) sig2).
Proof.
intros.
induction l.
- simpl. unfold \ln in H. destruct H.
- apply elt_in_list in H. destruct H.
  + simpl. destruct (beq_nat a x) as [eqn:?].
     \{ \text{ rewrite } H. \text{ reflexivity. } \}
     { pose proof beq_nat_false as } H2. specialize (H2 \ a \ x).
       specialize (H2 \ Heqb). intuition. symmetry in H. specialize (H2 \ H). inversion
H2. }
  + simpl. destruct (beq_nat a x) as [eqn:?].
     { symmetry in Heqb. pose proof beq_nat_eq as H2. specialize (H2\ a\ x). specialize
(H2 \ Heqb). rewrite H2.
       reflexivity. }
     \{ \text{ apply } IHl. \text{ apply } H. \}
Qed.
Lemma helper_3a:
\forall (x: var) (l: list var),
\ln x \ l \rightarrow
  apply_subst (VAR x) (build_id_subst l) == VAR x.
Proof.
intros. induction l.
 - unfold build_id_subst. simpl. reflexivity.
 - apply elt_in_list in H. destruct H.
   + simpl. destruct (beq_nat a x) as [eqn:?].
     { rewrite H. reflexivity. }
```

```
{ pose proof beq_nat_false as H2. specialize (H2 \ a \ x).
        specialize (H2 \ Heqb). intuition. symmetry in H. specialize (H2 \ H). inversion
H2. }
   + simpl. destruct (beq_nat a x) as ||eqn:?|.
     { symmetry in Heqb. pose proof beq_nat_eq as H2. specialize (H2\ a\ x). specialize
(H2 \ Heqb). rewrite H2.
       reflexivity. }
     \{ \text{ apply } IHl. \text{ apply } H. \}
Qed.
Lemma lowenheim_rephrase1:
  \forall (t : \mathbf{term}) (tau : \mathsf{subst}) (x : \mathsf{var}),
  (unifier t tau) \rightarrow
  (\ln x \text{ (term\_unique\_vars } t)) \rightarrow
  (apply\_subst (VAR x) (build\_lowenheim\_subst t tau)) ==
  (t + T1) \times (VAR x) + t \times (apply\_subst (VAR x) tau).
  Proof.
 intros.
  unfold build_lowenheim_subst. pose proof lowenheim_rephrase1_easy as H1.
  specialize (H1 (term_unique_vars t) x (build_id_subst (term_unique_vars t)) tau t).
  rewrite helper_3a in H1.
 - apply H1. apply H0.
 - apply H0.
Qed.
Lemma lowenheim_rephrase2_easy:
  \forall (l : list var) (x : var) (siq1 : subst) (siq2 : subst) (s : term),
  \neg (ln x l) \rightarrow
  (apply\_subst (VAR x) (build\_on\_list\_of\_vars l s sig1 sig2)) ==
  (VAR x).
Proof.
intros. unfold not in H.
induction l.
- simpl. reflexivity.
- simpl. pose proof elt_not_in_list as H2. specialize (H2 \ x \ a \ l). unfold not in H2.
  specialize (H2\ H). destruct H2.
  destruct (beq_nat a x) as [eqn:?].
  + symmetry in Heqb. apply beq_nat_eq in Heqb. symmetry in Heqb. specialize (H0
Heqb). destruct H0.
  + simpl in IHl. apply IHl. apply H1.
Qed.
Lemma lowenheim_rephrase2:
  \forall (t : \mathbf{term}) (tau : \mathsf{subst}) (x : \mathsf{var}),
```

```
(unifier t tau) \rightarrow
  \neg (In x (term_unique_vars t)) \rightarrow
  (apply\_subst (VAR x) (build\_lowenheim\_subst t tau)) ==
  (VAR x).
Proof.
intros. unfold build_lowenheim_subst. pose proof lowenheim_rephrase2_easy as H2.
specialize (H2 (term_unique_vars t) x (build_id_subst (term_unique_vars t)) tau\ t).
specialize (H2 \ H0). apply H2.
Qed.
Lemma lowenheim_reproductive:
  \forall (t : \mathbf{term}) (tau : \mathsf{subst}),
  (unifier t tau) \rightarrow
  reproductive_unifier t (build_lowenheim_subst t tau).
Proof.
 intros. unfold reproductive_unifier. intros.
  pose proof var_in_out_list. specialize (H2 \ x (term_unique_vars t)). destruct H2.
  rewrite lowenheim_rephrase1.
  - rewrite subst_sum_distr_opp. rewrite subst_mul_distr_opp. rewrite subst_mul_distr_opp.
    unfold unifier in H1. rewrite H1. rewrite mul_T0_x. rewrite subst_sum_distr_opp.
    rewrite H1. rewrite ground_term_cannot_subst.
    + rewrite sum_id. rewrite mul_id. rewrite sum_comm. rewrite sum_id. reflexivity.
    + unfold ground_term. intuition.
  - apply H.
  - apply H2.
  { rewrite lowenheim_rephrase2.
    - reflexivity.
    - apply H.
    - apply H2.
Qed.
   3.3.b lowenheim builder gives a most general unifier
Lemma lowenheim_most_general_unifier:
  \forall (t : \mathbf{term}) (tau : \mathsf{subst}),
  (unifier t tau) \rightarrow
  most\_general\_unifier \ t \ (build\_lowenheim\_subst \ t \ tau).
intros. apply reproductive_is_mgu. apply lowenheim_reproductive. apply H.
   3.4 extension to include Main function and subst_option
```

3.4.a utilities

```
Definition convert_to_subst (so : subst_option) : subst :=
  match so with
    Some_subst s \Rightarrow s
  | None_subst \Rightarrow nil
Lemma empty_subst_on_term:
 \forall (t : \mathbf{term}),
  apply_subst t = t.
Proof.
 intros. induction t.
 - reflexivity.
 - simpl. reflexivity.
 - simpl. reflexivity.
 - simpl. rewrite IHt1. rewrite IHt2. reflexivity.
 - simpl. rewrite IHt1. rewrite IHt2. reflexivity.
Qed.
Lemma app_subst_T0:
 \forall (t : \mathbf{term}),
 apply_subst t = T0 \rightarrow t = T0.
Proof.
intros. rewrite empty_subst_on_term in H. apply H.
Lemma T0_or_not_T0:
 \forall (t : \mathbf{term}),
 t == \mathsf{T0} \lor \neg (t == \mathsf{T0}).
Proof.
 intros. pose proof classic. specialize (H (t == T0)). apply H.
Qed.
Lemma exists_subst:
 \forall (t : \mathbf{term}) (sig : \mathsf{subst}),
 apply_subst t \ sig == \mathsf{T0} \to \exists \ s, apply_subst t \ s == \mathsf{T0}.
Proof.
 intros. \exists sig. apply H.
Qed.
Lemma t_id_eqv:
 \forall (t : \mathbf{term}),
 t == t.
Proof.
 intros. reflexivity.
Qed.
```

```
Lemma eq_some_eq_subst (s1 \ s2: \text{subst}):
   (Some_subst s1 = Some_subst s2) \rightarrow s1 = s2.
Proof.
  intros. congruence.
Qed.
Lemma None_is_not_Some (t: term):
   (find_unifier t) = None_subst \rightarrow (\forall (sig: subst), \neg (find_unifier t) = Some_subst sig).
Proof.
  intros.
  congruence.
Lemma Some_is_not_None (sig: subst) (t: term):
   (find_unifier t) = Some_subst sig \rightarrow \neg (find_unifier t = None_subst).
Proof.
  intros.
  congruence.
Qed.
Lemma not_None_is_Some (t: term) :
  \neg (find_unifier t = \text{None\_subst}) \rightarrow \exists sig : \text{subst}, (find_unifier t) = Some_subst sig.
Proof.
  intros H.
  destruct (find_unifier t) as [ti \mid].
  - ∃ ti. firstorder.
  - congruence.
Qed.
Lemma contrapositive_opposite:
  \forall p \ q, \ (\neg p \rightarrow \neg q) \rightarrow q \rightarrow p.
Proof.
  intros.
  apply NNPP. firstorder.
Qed.
Lemma contrapositive:
\forall (p \ q : Prop), (p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p).
Proof.
  intros.
  firstorder.
Qed.
    3.4.b actual final proof extension
Lemma some_subst_unifiable:
 \forall (t : \mathbf{term}),
```

```
(\exists sig, (find\_unifier t) = Some\_subst sig) \rightarrow (unifiable t).
Proof.
 intros.
 destruct H as [siq1 \ H1].
 induction t.
 - unfold unifiable . ∃ []. unfold unifier. simpl. reflexivity.
 - simpl in H1. inversion H1.
 - unfold unifiable. \exists sig1. unfold find_unifier in H1.
    remember (update_term (VAR v) (rec_subst (VAR v) (term_unique_vars (VAR v)) []))
in H1.
    destruct t.
    + unfold update_term in Heat. pose proof simplify_eqv.
      specialize (H (apply_subst (VAR v) (rec_subst (VAR v) (term_unique_vars (VAR v))
[]))).
       symmetry in Heqt. apply eq_some_eq_subst in H1.
      rewrite H1 in H. rewrite H1 in Heqt.
     rewrite Heqt in H. symmetry in H. apply H.
    + simpl in H1. inversion H1.
    + inversion H1.
    + inversion H1.
    + inversion H1.
 - unfold unifiable. \exists siq1. unfold find_unifier in H1.
   remember (update_term (t1 + t2) (rec_subst (t1 + t2) (term_unique_vars (t1 + t2)) [] ))
in H1.
  destruct t.
  + unfold update_term in Heqt. pose proof simplify_eqv.
    specialize (H (apply_subst (t1 + t2) (rec_subst (t1 + t2) (term_unique_vars (t1 + t2))
[]))).
       symmetry in Heqt. apply eq_some_eq_subst in H1.
      rewrite H1 in H. rewrite H1 in Heqt.
     rewrite Heqt in H. symmetry in H. apply H.
   + inversion H1.
   + inversion H1.
   + inversion H1.
   + inversion H1.
 - unfold unifiable. \exists sig1. unfold find_unifier in H1.
   remember (update_term (t1 \times t2) (rec_subst (t1 \times t2) (term_unique_vars (t1 \times t2)) [] ))
in H1.
  destruct t.
  + unfold update_term in Heqt. pose proof simplify_eqv.
    specialize (H (apply_subst (t1 	imes t2) (rec_subst (t1 	imes t2) (term_unique_vars (t1 	imes t2)
t2)) []))).
```

```
symmetry in Heqt. apply eq_some_eq_subst in H1.
       rewrite H1 in H. rewrite H1 in Heqt.
      rewrite Heqt in H. symmetry in H. apply H.
   + inversion H1.
   + inversion H1.
   + inversion H1.
   + inversion H1.
Qed.
Lemma not_Some_is_None (t: term) :
 (\neg \exists (siq : subst), (find\_unifier t) = Some\_subst siq) \rightarrow (find\_unifier t) = None\_subst.
  apply contrapositive_opposite.
  intros H.
  apply not_None_is_Some in H.
  tauto.
Qed.
Lemma not_unifiable_find_unifier_none_subst :
\forall (t : \mathbf{term}),
   \neg (unifiable t) \rightarrow (find_unifier t) = None_subst.
Proof.
intros.
 pose proof some_subst_unifiable.
 specialize (H0\ t).
 pose proof contrapositive.
 specialize (H1 (\exists sig : subst, find_unifier t = Some\_subst sig)) ((unifiable t))).
 specialize (H1 \ H0). specialize (H1 \ H).
 pose proof not_Some_is_None.
 specialize (H2 \ t \ H1).
 apply H2.
Qed.
Lemma Some_subst_unifiable:
\forall (t : \mathbf{term}) (sig : \mathsf{subst}),
   (find_unifier t) = Some_subst siq \rightarrow (unifier t siq).
Proof.
intros.
 induction t.
- simpl in H. apply eq_some_eq_subst in H. symmetry in H. rewrite H.
  unfold unifier. simpl. reflexivity.
 - simpl in H. inversion H.
 - unfold find_unifier in H. remember (update_term (VAR v) (rec_subst (VAR v) (term_unique_vars
(VAR \ v)) \ [])) in H.
```

```
destruct t.
  + unfold update_term in Heqt. pose proof simplify_eqv.
       specialize (H0 (apply_subst (VAR v) (rec_subst (VAR v) (term_unique_vars (VAR v))
[]))).
          symmetry in Heqt. apply eq_some_eq_subst in H.
      rewrite H in H0. rewrite H in Heqt.
     rewrite Heqt in H0. symmetry in H0. apply H0.
  + inversion H.
  + inversion H.
  + inversion H.
  + inversion H.
 - unfold find_unifier in H. remember (update_term (t1 + t2) (rec_subst (t1 + t2) (term_unique_vars
(t1 + t2)) [])) in H.
    destruct t.
  + unfold update_term in Heqt. pose proof simplify_eqv.
       specialize (H0 (apply_subst (t1 + t2) (rec_subst (t1 + t2) (term_unique_vars (t1 + t2)
t2)) []))).
       symmetry in Heqt. apply eq_some_eq_subst in H.
      rewrite H in H0. rewrite H in Heqt.
     rewrite Heqt in H0. symmetry in H0. apply H0.
  + inversion H.
  + inversion H.
  + inversion H.
  + inversion H.
 - unfold find_unifier in H. remember (update_term (t1 \times t2) (rec_subst (t1 \times t2) (term_unique_vars
(t1 \times t2)) [])) in H.
    destruct t.
  + unfold update_term in Heqt. pose proof simplify_eqv.
       specialize (H0 (apply_subst (t1 \times t2) (rec_subst (t1 \times t2) (term_unique_vars (t1 \times t2))
t2)) []))).
       symmetry in Heqt. apply eq_some_eq_subst in H.
      rewrite H in H0. rewrite H in Heqt.
     rewrite Heqt in H0. symmetry in H0. apply H0.
  + inversion H.
  + inversion H.
  + inversion {\it H.}
  + inversion H.
Qed.
Lemma unif_some_subst :
 \forall (t: term),
 (\exists siq1, (unifier t siq1)) \rightarrow
 (\exists sig2, (find\_unifier t) = Some\_subst sig2).
```

```
Proof.
 intros.
 destruct H as [sig1 \ H].
Admitted.
Lemma not_Some_not_unifiable (t: term) :
 (\neg \exists (sig : subst), (find\_unifier t) = Some\_subst sig) \rightarrow \neg (unifiable t).
Proof.
 intros.
 pose proof not_Some_is_None.
 specialize (H0\ t\ H).
 unfold unifiable.
 intro.
  unfold not in H.
 pose proof unif_some_subst.
 specialize (H2 \ t \ H1).
 specialize (H\ H2).
 apply H.
Qed.
Lemma unifiable_find_unifier_some_subst :
\forall (t : \mathbf{term}),
   (unifiable t) \rightarrow (\exists (sig: subst), (find_unifier t) = Some_subst sig).
intros.
 pose proof contrapositive.
 specialize (H0 \ (\neg \exists (sig : subst), (find\_unifier t) = Some\_subst sig) (\neg (unifiable t))).
 pose proof not_Some_not_unifiable.
 specialize (H1\ t). specialize (H0\ H1). apply NNPP in H0.
 - apply H0.
 - firstorder.
Qed.
Lemma find_unifier_is_unifier:
 \forall (t : \mathbf{term}),
  (unifiable t) \rightarrow (unifier t (convert_to_subst (find_unifier t))).
Proof.
intros.
 pose proof unifiable_find_unifier_some_subst.
 specialize (H0\ t\ H).
 unfold unifier. unfold unifiable in H. simpl. unfold convert_to_subst.
 destruct H0 as [sig\ H0]. rewrite H0.
 pose proof Some_subst_unifiable.
 specialize (H1 \ t \ sig). specialize (H1 \ H0).
```

```
unfold unifier in H1.
 apply H1.
Qed.
Lemma builder_to_main:
\forall (t : \mathsf{term}),
(unifiable t) \rightarrow most_general_unifier t (build_lowenheim_subst t (convert_to_subst (find_unifier
t))) \rightarrow
 most\_general\_unifier \ t \ (convert\_to\_subst \ (Lowenheim\_Main \ t)) .
Proof.
intros.
pose proof lowenheim_most_general_unifier as H1. pose proof find_unifier_is_unifier as H2.
specialize (H2\ t\ H). specialize (H1\ t\ (convert\_to\_subst\ (find\_unifier\ t))).
specialize (H1 H2). unfold Lowenheim_Main. destruct (find_unifier t).
- simpl. simpl in H1. apply H1.
- simpl in H2. unfold unifier in H2. apply app_subst_T0 in H2. simpl.
   repeat simpl in H1. pose proof most_general_unifier_compat.
   specialize (H3 \ t \ \mathsf{T0} \ H2). specialize (H3 \ []).
   rewrite H3. unfold most_general_unifier. intros.
   unfold more_general_substitution. \exists s'. unfold substitution_composition.
   intros. simpl. reflexivity.
Qed.
Lemma lowenheim_main_most_general_unifier:
 \forall (t: term),
 ((unifiable t) \rightarrow most_general_unifier t (convert_to_subst (Lowenheim_Main t)))
 (\text{``(unifiable }t) \rightarrow (\text{Lowenheim\_Main }t) = \text{None\_subst}).
Proof.
 intros.
 split.
 - intros. apply builder_to_main.
  + apply H.
  + apply lowenheim_most_general_unifier. apply find_unifier_is_unifier. apply H.
 - intros. pose proof not_unifiable_find_unifier_none_subst.
   specialize (H0\ t\ H). unfold Lowenheim_Main. rewrite H0. reflexivity.
Qed.
```

Chapter 5

Library B_Unification.list_util

```
Require Import List.
Import ListNotations.
Require Import Arith.
Import Nat.
Require Import Sorting.
Require Import Permutation.
Require Import Omega.
Fixpoint lex \{T: \mathsf{Type}\}\ (\mathit{cmp}: T \to T \to \mathsf{comparison})\ (\mathit{l1}\ \mathit{l2}: \mathsf{list}\ T)
                     : comparison :=
  match l1, l2 with
   | [], [] \Rightarrow Eq
   | [], \bot \Rightarrow \mathsf{Lt}
   | _{-}, [] \Rightarrow \mathsf{Gt}
   | h1 :: t1, h2 :: t2 \Rightarrow
         match cmp\ h1\ h2 with
         \mid Eq \Rightarrow lex \ cmp \ t1 \ t2
         |c \Rightarrow c
         end
   end.
```

There are some important but relatively straightforward properties of this function that are useful to prove. First, reflexivity:

```
Lemma lex_nat_refl : ∀ (l : list nat), lex compare l l = Eq.
Proof.
  intros.
  induction l.
  - simpl. reflexivity.
  - simpl. rewrite compare_refl. apply IHl.
Qed.
```

Next, antisymmetry. This allows us to take a predicate or hypothesis about the compar-

```
ison of two polynomials and reverse it. For example, a < b implies b > a.
Lemma lex_nat_antisym : \forall (l1 l2 : list nat),
  lex compare l1 l2 = CompOpp (lex compare l2 l1).
Proof.
  intros l1.
  induction l1.
  - intros. simpl. destruct l2; reflexivity.
  - intros. simpl. destruct l2.
    + simpl. reflexivity.
    + simpl. destruct (a ?= n) eqn:H;
      rewrite compare_antisym in H;
      rewrite CompOpp_iff in H; simpl in H;
      rewrite H; simpl.
       \times apply IHl1.
       \times reflexivity.
       \times reflexivity.
Qed.
Lemma lex_eq : \forall n m,
  lex compare n m = Eq \leftrightarrow n = m.
Proof.
  intros n. induction n; induction m; intros.
  - split; reflexivity.
  - split; intros; inversion H.
  - split; intros; inversion H.
  - split; intros; simpl in H.
    + destruct (a ?= a0) eqn:Hcomp; try inversion H. f_equal.
       \times apply compare_eq_iff in Hcomp; auto.
       \times apply IHn. auto.
    + inversion H. simpl. rewrite compare_refl.
      rewrite \leftarrow H2. apply IHn. reflexivity.
Qed.
Lemma lex_neq : \forall n m,
  lex compare n m = Lt \vee lex compare n m = Gt \leftrightarrow n \neq m.
Proof.
  intros n. induction n; induction m.
  - simpl. split; intro. inversion H; inversion H0. contradiction.
  - simpl. split; intro. intro. inversion H\theta. auto.
  - simpl. split; intro. intro. inversion H\theta. auto.
  - clear IHm. split; intros.
    + destruct H; intro; apply lex_eq in H\theta; rewrite H in H\theta; inversion H\theta.
    + destruct (a ?= a\theta) eqn:Hcomp.
       \times simpl. rewrite Hcomp. apply IHn. apply compare_eq_iff in Hcomp.
```

```
rewrite Hcomp in H. intro. apply H. rewrite H0. reflexivity.
       \times left. simpl. rewrite Hcomp. reflexivity.
       	imes right. simpl. rewrite Hcomp. reflexivity.
Qed.
Lemma lex_neq': \forall n m,
  (lex compare n m = Lt \rightarrow n \neq m) \land
  (lex compare n m = Gt \rightarrow n \neq m).
Proof.
  intros n m. split.
  - intros. apply lex_neq. auto.
  - intros. apply lex_neq. auto.
Qed.
Lemma lex_rev_eq : \forall n m,
  lex compare n m = Eq \leftrightarrow lex compare m n = Eq.
Proof.
  intros n m. split; intro; rewrite lex_nat_antisym in H; unfold CompOpp in H.
  - destruct (lex compare m n) eqn:H0; inversion H. reflexivity.
  - destruct (lex compare n m) eqn:H0; inversion H. reflexivity.
Qed.
Lemma lex_rev_lt_gt: \forall n m,
  lex compare n m = Lt \leftrightarrow lex compare m n = Gt.
Proof.
  intros n m. split; intro; rewrite lex_nat_antisym in H; unfold CompOpp in H.
  - destruct (lex compare m n) eqn:H0; inversion H. reflexivity.
  - destruct (lex compare n m) eqn:H0; inversion H. reflexivity.
Qed.
   Lastly is a property over lists. The comparison of two lists stays the same if the same
new element is added onto the front of each list. Similarly, if the item at the front of two
lists is equal, removing it from both does not chance the lists' comparison.
Lemma lex_nat_cons : \forall (l1 \ l2 : list \ nat) \ n,
  lex compare l1 l2 = lex compare (n::l1) (n::l2).
Proof.
  intros. simpl. rewrite compare_refl. reflexivity.
Qed.
Hint Resolve lex_nat_refl\ lex_nat_antisym\ lex_nat_cons.
Lemma NoDup_neq : \forall \{X: Type\} (m: list X) \ a \ b,
  NoDup (a :: b :: m) \rightarrow
  a \neq b.
Proof.
  intros X m a b Hdup. apply NoDup_cons_iff in Hdup as ||.
  apply NoDup_cons_iff in H0 as []. intro. apply H. simpl. auto.
```

```
Qed.
Lemma HdRel_le_lt : \forall a m,
  HdRel (fun n m \Rightarrow \text{is\_true} (\text{leb } n m)) \ a \ m \land \text{NoDup} \ (a::m) \rightarrow \text{HdRel lt} \ a \ m.
Proof.
  intros a \ m \parallel . \ remember \ (fun \ n \ m \Rightarrow is\_true \ (leb \ n \ m)) as le.
  destruct m.
  - apply HdRel_nil.
  - apply HdRel_cons. apply HdRel_inv in H.
     apply (NoDup_neq a n) in H0; intuition. rewrite Heqle in H.
     unfold is_true in H. apply leb_le in H. destruct (a ?= n) eqn:Hcomp.
     + apply compare_eq_iff in Hcomp. contradiction.
     + apply compare_lt_iff in Hcomp. apply Hcomp.
     + apply compare_gt_iff in Hcomp. apply leb_correct_conv in Hcomp.
       apply leb\_correct in H. rewrite H in Hcomp. inversion Hcomp.
Qed.
Fixpoint nodup_cancel \{A\} Aeq\_dec (l : list A) : list A :=
  \mathtt{match}\ l with
   | [] \Rightarrow []
  |x::xs \Rightarrow
     let count := (count\_occ \ Aeq\_dec \ xs \ x) in
     let xs' := (remove Aeq_dec \ x \ (nodup_cancel Aeq_dec \ xs)) in
     if (even count) then x::xs else xs
  end.
Lemma In\_remove : \forall \{A:Type\} Aeq\_dec \ a \ b \ (l:list \ A),
  In a (remove Aeq\_dec\ b\ l) \rightarrow In a l.
Proof.
  intros A Aeq_dec \ a \ b \ l \ H. induction l as ||c| \ l \ HH||.
  - contradiction.
  - destruct (Aeq\_dec\ b\ c)\ eqn:Heq; simpl in H; rewrite Heq in H.
     + right. auto.
     + destruct H; [rewrite H; intuition | right; auto].
Qed.
Lemma Forall_cons_iff : \forall (A:Type) Rel a (l:list A),
  Forall Rel\ (a::l) \leftrightarrow Forall Rel\ l \land Rel\ a.
Proof.
  intros A Rel a l. split.
  - intro H. split.
     + rewrite Forall_forall in H. apply Forall_forall. intros x Hin.
       apply H. intuition.
```

+ apply Forall_inv in *H*. auto.
- intros []. apply Forall_cons; auto.

```
Qed.
Lemma Forall_remove : \forall (A:Type) Aeq\_dec \ Rel \ a \ (l:list A),
  Forall Rel \ l \rightarrow Forall Rel \ (remove \ Aeq\_dec \ a \ l).
Proof.
  intros A Aeq_dec Rel a l H. induction l.
  - simpl. auto.
  - simpl. apply Forall_cons_iff in H. destruct (Aeq\_dec\ a\ a\theta).
     + apply IHl. apply H.
     + apply Forall_cons_iff. split.
        \times apply IHl. apply H.
        \times apply H.
Qed.
Lemma StronglySorted_remove : \forall \{A: Type\} \ Aeq\_dec \ Rel \ a \ (l: list \ A),
  StronglySorted Rel \ l \rightarrow StronglySorted Rel \ (remove \ Aeq\_dec \ a \ l).
Proof.
  intros A A eq_{-} dec Rel \ a \ l \ H. induction l.
  - simpl. auto.
  - simpl. apply StronglySorted_inv in H. destruct (Aeq\_dec\ a\ a\theta).
     + apply IHl. apply H.
     + apply SSorted_cons.
        \times apply IHl. apply H.
        \times apply Forall_remove. apply H.
Qed.
Lemma not_In_remove : \forall (A:Type) Aeq\_dec a (l : list A),
  \neg \ln a \ l \rightarrow (\text{remove } Aeq\_dec \ a \ l) = l.
Proof.
  intros A A eq_{-} dec \ a \ l \ H. induction l.
  - simpl. reflexivity.
  - simpl. destruct (Aeq_{-}dec \ a \ a\theta).
     + simpl. rewrite e in H. exfalso. apply H. intuition.
     + rewrite IHI. reflexivity. intro Hin. apply H. intuition.
Qed.
Lemma remove_distr_app : \forall (A:Type) Aeq_dec \ x \ (l \ l': list \ A),
  remove Aeq\_dec \ x \ (l ++ l') = remove \ Aeq\_dec \ x \ l ++ remove \ Aeq\_dec \ x \ l'.
Proof.
  intros A Aeq_{-}dec \ x \ l \ l'. induction l; intros.
  - simpl. auto.
  - simpl. destruct (Aeq_{-}dec \ x \ a).
     + apply IHl.
     + simpl. f_equal. apply IHl.
Qed.
```

```
Lemma nodup_cancel_in : \forall (A:Type) Aeq_dec \ a \ (l:list \ A),
  In a (nodup_cancel Aeq\_dec\ l) \rightarrow In a l.
Proof.
  intros A Aeq_dec \ a \ l \ H. induction l as [|b| l \ IHl].
  - contradiction.
  - simpl in H. destruct (Aeq\_dec\ a\ b).
     + rewrite e. intuition.
     + right. apply IHl. destruct (even (count_occ Aeq\_dec\ l\ b)).
       \times simpl in H. destruct H. rewrite H in n. contradiction.
          apply In_{remove in } H. auto.
       \times apply In_remove in H. auto.
Qed.
Lemma NoDup_remove : \forall (A:Type) Aeq\_dec a (l:list A),
  NoDup l \rightarrow \text{NoDup} (remove Aeq\_dec \ a \ l).
Proof.
  intros A Aeq_dec \ a \ l \ H. induction l.
  - simpl. auto.
  - simpl. destruct (Aeq_{-}dec \ a \ a\theta).
     + apply IHl. apply NoDup_cons_iff in H. intuition.
     + apply NoDup_cons.
       \times apply NoDup_cons_iff in H as []. intro. apply H.
          apply (ln_remove\ Aeq_dec\ a\theta\ a\ l\ H1).
       \times apply IHl. apply NoDup_cons_iff in H; intuition.
Qed.
Lemma NoDup_forall_neq : \forall (A:Type) \ a \ (l:list \ A),
  Forall (fun b \Rightarrow a \neq b) l \rightarrow
  NoDup l \rightarrow
  NoDup (a :: l).
Proof.
  intros A a l Hf Hn. apply NoDup_cons.
  - intro. induction l.
     + inversion H.
     + apply Forall_cons_iff in Hf as []. apply IHl.
       \times apply H0.
       \times apply NoDup_cons_iff in Hn. apply Hn.
       \times simpl in H. destruct H; auto. rewrite H in H1. contradiction.
  - auto.
Qed.
Lemma NoDup_nodup_cancel : \forall (A:Type) Aeq_dec (l:list A),
NoDup (nodup_cancel Aeq\_dec \ l).
Proof.
  induction l as [|a|l'|Hrec]; simpl.
```

```
- constructor.
  - destruct (even (count_occ Aeq_dec l' a)); simpl.
    + apply NoDup_cons; [apply remove_In | apply NoDup_remove; auto].
    + apply NoDup_remove; auto.
Qed.
Lemma no_nodup_NoDup: \forall (A:Type) Aeq_dec (l:list A),
  NoDup l \rightarrow
  nodup Aeq_dec l = l.
Proof.
  intros A Aeq_{-}dec l H. induction l.
  - simpl. apply NoDup_cons_iff in H as []. destruct (in_dec Aeq_dec \ a \ l).
     contradiction. f_equal. auto.
Qed.
Lemma no_nodup_cancel_NoDup : \forall (A:Type) Aeq\_dec (l:list A),
  NoDup l \rightarrow
  nodup\_cancel Aeq\_dec l = l.
  intros A Aeq_{-}dec l H. induction l.
  - auto.
  - simpl. apply NoDup_cons_iff in H as []. assert (count_occ Aeq\_dec\ l\ a=0).
    + apply count_occ_not_ln. auto.
    + rewrite H1. simpl. f_equal. rewrite not_ln_remove. auto. intro.
       apply nodup_cancel_in in H2. apply H. auto.
Qed.
Lemma Sorted_nodup : \forall (A:Type) Aeq\_dec \ Rel \ (l: list A),
  Relations_1.Transitive Rel \rightarrow
  Sorted Rel \ l \rightarrow
  Sorted Rel (nodup Aeq\_dec l).
Proof.
  intros A Aeq_dec Rel l Ht H. apply Sorted_StronglySorted in H; auto.
  apply StronglySorted_Sorted. induction l.
  - auto.
  - simpl. apply StronglySorted_inv in H as []. destruct (in_dec Aeq_dec \ a \ l).
    + apply IHl. apply H.
    + apply SSorted_cons.
       \times apply IHl. apply H.
       \times rewrite Forall_forall in H0. apply Forall_forall. intros x Hin.
         apply H0. apply nodup_In in Hin. auto.
Qed.
Lemma Sorted_nodup_cancel : \forall (A:Type) Aeq\_dec \ Rel \ (l: list \ A),
```

```
Relations_1. Transitive Rel \rightarrow
  Sorted Rel \ l \rightarrow
  Sorted Rel (nodup_cancel Aeq\_dec l).
Proof.
  intros A Aeq_dec Rel l Ht H. apply Sorted_StronglySorted in H; auto.
  apply StronglySorted_Sorted. induction l.
  - auto.
  - simpl. apply StronglySorted_inv in H as []. destruct (even (count_occ Aeq\_dec\ l\ a)).
     + apply SSorted_cons.
       \times apply StronglySorted_remove. apply IHl. apply H.
       \times apply Forall_remove. apply Forall_forall. rewrite Forall_forall in H0.
          intros x Hin. apply H0. apply nodup_cancel_in in Hin. auto.
     + apply StronglySorted_remove. apply IHl. apply H.
Qed.
Lemma count_occ_Permutation : \forall (A:Type) Aeq\_dec a (l l':list A),
  Permutation l \ l' \rightarrow
  count_occ\ Aeq_dec\ l\ a = count_occ\ Aeq_dec\ l'\ a.
  intros A Aeq_{-}dec a l l' H. induction H.
  - auto.
  - simpl. destruct (Aeq_-dec \ x \ a); auto.
  - simpl. destruct (Aeq\_dec\ y\ a); destruct (Aeq\_dec\ x\ a); auto.
  - rewrite \leftarrow IHPermutation2. rewrite IHPermutation1. auto.
Qed.
Lemma incl_not_in : \forall A \ a \ (l \ m : list \ A),
  incl l(a :: m) \rightarrow
  \neg \ln a \ l \rightarrow
  incl l m.
Proof.
  intros A a l m Hincl Hnin. unfold incl in *. intros a0 Hin.
  simpl in Hincl. destruct (Hincl\ a\theta); auto. rewrite H in Hnin.\ contradiction.
Lemma Permutation_not_In : \forall (A:Type) a (l l':list A),
  Permutation l \ l' \rightarrow
  \neg \ln a l \rightarrow
  \neg \ln a l'.
Proof.
  intros A a l l' H H0. intro. apply H0. apply Permutation_sym in H.
  apply (Permutation_in a) in H; auto.
Qed.
Lemma Forall_In : \forall (A:Type) (l:list A) a Rel,
```

```
In a \ l \rightarrow Forall \ Rel \ l \rightarrow Rel \ a.
Proof.
  intros A l a Rel Hin Hfor. apply (Forall_forall Rel l); auto.
Definition distribute \{A\} (l m : list (list A)) : list (list A) :=
  concat (map (fun a:(list A) \Rightarrow (map (app a) \ l)) \ m).
Lemma distribute_nil : \forall \{A: Type\} (p: list (list A)),
  distribute [] p = [].
Proof.
  intros A p. induction p.
  - auto.
  - unfold distribute in *. simpl in *. auto.
Lemma distribute_nil_r : \forall \{A: Type\} (p: list (list A)),
  distribute p \square = \square.
Proof.
  intros A p. induction p.
  - auto.
  - unfold distribute in *. simpl in *. auto.
Lemma Permutation_incl : \forall \{A\} (l \ m : list \ A),
  Permutation l m \rightarrow \text{incl } l m \land \text{incl } m l.
Proof.
  intros A \ l \ m \ H. apply Permutation_sym in H as H0. split.
  + unfold incl. intros a. apply (Permutation_in _{-} H).
  + unfold incl. intros a. apply (Permutation_in _{-} H\theta).
Lemma incl_cons_inv : \forall (A:Type) (a:A) (l m : list A),
  incl (a :: l) m \rightarrow ln \ a \ m \land incl \ l \ m.
Proof.
  intros A a l m H. split.
  - unfold incl in H. apply H. intuition.
  - unfold incl in *. intros b Hin. apply H. intuition.
Lemma Permutation_concat : \forall \{A\} (l \ m: list (list \ A)),
  Permutation l m \rightarrow
  Permutation (concat l) (concat m).
Proof.
  intros A \ l \ m \ H. induction H.
  - auto.
  - simpl. apply Permutation_app_head. auto.
```

```
- simpl. apply Permutation_trans with (l':=(concat\ l ++ y ++ x)).
     + rewrite app_assoc. apply Permutation_app_comm.
     + apply Permutation_trans with (l':=(concat l ++ x ++ y)).
        × apply Permutation_app_head. apply Permutation_app_comm.
        \times rewrite (app_assoc x y). apply Permutation_app_comm.
  - apply Permutation_trans with (l':=(concat l')); auto.
Qed.
Lemma count_occ_app : \forall (A:Type) a (l m:list A) Aeq_{-}dec,
  count\_occ\ Aeq\_dec\ (l++m)\ a = add\ (count\_occ\ Aeq\_dec\ l\ a)\ (count\_occ\ Aeq\_dec\ m\ a).
Proof.
  intros A a l m Aeq_{-}dec. induction l.
  - simpl. auto.
  - simpl. destruct (Aeq_-dec\ a\theta\ a); simpl; auto.
Qed.
Lemma count_occ_remove : \forall \{A\} \ Aeq\_dec \ (a:A) \ p,
  count\_occ\ Aeq\_dec\ (remove\ Aeq\_dec\ a\ p)\ a = 0.
Proof.
  intros A Aeq_{-} dec \ a \ p. induction p.
  - simpl. auto.
  - simpl. destruct (Aeq\_dec\ a\ a\theta)\ eqn:Haa\theta.
     + apply IHp.
     + simpl. destruct (Aeq\_dec\ a0\ a); try (symmetry in e; contradiction).
       apply IHp.
Qed.
Lemma count_occ_neq_remove : \forall \{A\} \ Aeq\_dec \ (a:A) \ b \ p,
  a \neq b \rightarrow
  count\_occ\ Aeq\_dec\ (remove\ Aeq\_dec\ a\ p)\ b =
  count_occ Aeq_dec p b.
  intros A A eq_{-} dec \ a \ b \ p \ H. induction p; simpl; auto. destruct (A eq_{-} dec \ a \ a\theta).
  - destruct (Aeq\_dec \ a\theta \ b).
     + rewrite \leftarrow e\theta in H. rewrite e in H. contradiction.
     + apply IHp.
  - simpl. destruct (Aeq_-dec\ a\theta\ b); auto.
Qed.
Lemma In\_concat\_exists : \forall (A:Type) ll (a:A),
  (\exists l, \ln l \ ll \wedge \ln a \ l) \leftrightarrow \ln a \ (\text{concat} \ ll).
Proof.
  intros A ll a. split; intros H.
  - destruct H as [l]. apply \operatorname{In_split} in H. destruct H as [l1[l2]H].
     rewrite H. apply Permutation_in with (l := (concat (l :: l1 ++ l2))).
```

```
+ apply Permutation_concat. apply Permutation_middle.
    + simpl. apply in_app_iff. auto.
  - induction ll.
    + inversion H.
    + simpl in H. apply in_app_iff in H. destruct H.
       \times \exists a\theta. split; intuition.
       \times destruct IHll; auto. \exists x. intuition.
Qed.
Lemma concat_map : \forall \{A \ B: Type\} \ (f:A \rightarrow B) \ (l: list \ A),
  concat (map (fun a \Rightarrow [f \ a]) \ l) = map f \ l.
Proof.
  intros A B f l. induction l.
  - auto.
  - simpl. f_equal. apply IHI.
Lemma remove_Permutation : \forall (A:Type) Aeq\_dec a (l l':list A),
  Permutation l \ l' \rightarrow
  Permutation (remove Aeq\_dec \ a \ l) (remove Aeq\_dec \ a \ l').
Proof.
  intros A Aeq_dec a l l' H. induction H.
  - auto.
  - simpl. destruct (Aeq_-dec\ a\ x); auto.
  - simpl. destruct (Aeq\_dec\ a\ y); destruct (Aeq\_dec\ a\ x); auto.
     apply perm_swap.
  - apply Permutation_trans with (l':=(remove\ Aeq\_dec\ a\ l')); auto.
Lemma remove_remove : \forall \{A: Type\} \ Aeq\_dec \ (a \ b:A) \ p,
  remove Aeq\_dec a (remove Aeq\_dec b p) =
  remove Aeq\_dec b (remove Aeq\_dec a p).
Proof.
  intros A \ Aeq_{-} dec \ a \ b \ p. induction p as [c]; simpl; auto.
  destruct (Aeq\_dec\ a\ b); destruct (Aeq\_dec\ b\ c); destruct (Aeq\_dec\ a\ c).
  - auto.
  - rewrite \leftarrow e\theta in n. rewrite e in n. contradiction.
  - rewrite \leftarrow e in n. rewrite e\theta in n. contradiction.
  - simpl. destruct (Aeq_dec a c); try contradiction.
     destruct (Aeq\_dec\ b\ c); try contradiction. rewrite IHp. auto.
  - rewrite e in n. rewrite e\theta in n. contradiction.
  - simpl. destruct (Aeq\_dec\ b\ c); try contradiction. auto.
  - simpl. destruct (Aeq\_dec\ a\ c); try contradiction. auto.
  - simpl. destruct (Aeq_dec a c); try contradiction.
     destruct (Aeq\_dec\ b\ c); try contradiction. rewrite IHp. auto.
```

```
Qed.
Lemma nodup_cancel_Permutation : \forall (A:Type) \ Aeg\_dec \ (l \ l':list \ A),
  Permutation l\ l' \rightarrow
  Permutation (nodup_cancel Aeq\_dec \ l) (nodup_cancel Aeq\_dec \ l').
Proof.
  intros A Aeq_{-}dec l l' H. induction H.
  - auto.
  - simpl. destruct even eqn:Hevn.
    + rewrite (count_occ_Permutation _ _ _ _ H) in Hevn. rewrite Hevn.
      apply perm_skip. apply remove_Permutation. apply IHPermutation.
    + rewrite (count_occ_Permutation _ _ _ _ H) in Hevn. rewrite Hevn.
      apply remove_Permutation. apply IHPermutation.
  - simpl. destruct (even (count_occ Aeq_dec l x)) eqn:Hevx;
    destruct (even (count_occ Aeq\_dec\ l\ y)) eqn:Hevy; destruct (Aeq\_dec\ x\ y).
    + rewrite even_succ. rewrite \leftarrow negb_odd in Hevy. rewrite Bool.negb_true_iff in
Hevy.
      rewrite Hevy. destruct (Aeq\_dec\ y\ x); try (rewrite e in n; contradiction).
      rewrite even_succ. rewrite \leftarrow negb_odd in Hevx. rewrite Bool.negb_true_iff in
Hevx.
      rewrite Hevx. simpl. destruct (Aeq\_dec\ y\ x); try contradiction.
      destruct (Aeq_dec x y); try contradiction. rewrite remove_remove. auto.
    + rewrite Hevy. simpl. destruct (Aeq_-dec\ y\ x); try (symmetry in e; contradiction).
      destruct (Aeg\_dec\ x\ y); try contradiction. rewrite Hevx.
      rewrite remove_remove. apply perm_swap.
    + rewrite \leftarrow e in Hevy. rewrite Hevy in Hevx. inversion Hevx.
    + rewrite Hevy. simpl. destruct (Aeq\_dec\ y\ x); try (symmetry in e; contradiction).
      rewrite Hevx. apply perm_skip. rewrite remove_remove. auto.
    + rewrite e in Hevx. rewrite Hevx in Hevy. inversion Hevy.
    + rewrite Hevy. destruct (Aeq\_dec\ y\ x); try (symmetry in e; contradiction).
      rewrite Hevx. simpl. destruct (Aeq_-dec\ x\ y); try contradiction.
      apply perm_skip. rewrite remove_remove. auto.
    + rewrite even_succ. rewrite \leftarrow negb_odd in Hevy. rewrite Bool.negb_false_iff in
Hevy.
      rewrite Hevy. symmetry in e. destruct (Aeq_{-}dec\ y\ x); try contradiction.
      rewrite even_succ. rewrite \leftarrow negb_odd in Hevx. rewrite Bool.negb_false_iff in
Hevx.
      rewrite Hevx. rewrite e. auto.
    + rewrite Hevy. destruct (Aeq\_dec\ y\ x); try (symmetry in e; contradiction).
      rewrite Hevx. rewrite remove_remove. auto.
  - apply Permutation_trans with (l':=(nodup\_cancel\ Aeq\_dec\ l')); auto.
```

Lemma NoDup_In_split : $\forall \{A: Type\} (x:A) \ l \ l1 \ l2$,

```
l = l1 + x :: l2 \rightarrow
  NoDup l \rightarrow
  \neg \ln x \ l1 \land \neg \ln x \ l2.
Proof.
  intros A \times l \ l1 \ l2 \ H \ H0. rewrite H in H0.
  apply NoDup_remove_2 in H0. split; intro; intuition.
Qed.
Lemma concat_map_nil : \forall \{A\} \ (p: list \ A),
  concat (map (fun x \Rightarrow []) p) = (@nil A).
Proof.
  induction p; auto.
Qed.
Lemma Permutation_nodup : \forall A \ Aeq\_dec \ (l \ m: list \ A),
  Permutation l m \rightarrow \text{Permutation} (nodup Aeq\_dec \ l) (nodup Aeq\_dec \ m).
Proof.
  intros. induction H.
  - auto.
  - simpl. destruct (in_dec Aeq_dec x l).
    + apply Permutation_in with (l':=l') in i; auto. destruct in_dec; try contradiction.
       auto.
    + assert (\neg \ln x \ l'). intro. apply n. apply Permutation_in with (l':=l) in H0; auto.
       apply Permutation_sym; auto. destruct in_dec; try contradiction.
       apply perm_skip. auto.
  - destruct (in_dec Aeq_dec y (x::l)). destruct i.
    + rewrite H. simpl. destruct (Aeq\_dec\ y\ y); try contradiction. destruct in_dec.
       auto. apply perm_skip. auto.
    + simpl. destruct (Aeq\_dec\ x\ y). destruct in_dec; destruct (Aeq\_dec\ y\ x);
       try (symmetry in e; contradiction). rewrite e in i. destruct in_dec; try contradiction.
       auto. assert (\neg \ln y \ l). intro; apply n; rewrite e; auto.
       destruct in_dec; try contradiction. destruct in_dec; try contradiction.
       destruct in_dec; destruct (Aeq_dec\ y\ x); try (symmetry in e; contradiction).
       auto. apply perm_skip. auto.
    + simpl. destruct (Aeq\_dec\ x\ y). destruct in_dec. destruct (Aeq\_dec\ y\ x);
       try (symmetry in e; contradiction). rewrite e\theta. destruct in_dec; try contradiction.
       auto. destruct (Aeq\_dec\ y\ x); try (symmetry in e; contradiction).
       assert (\neg \ln y \ l). intro; apply n\theta; rewrite e; auto. destruct in_dec; try
contradiction.
       rewrite e\theta. apply perm_skip; auto. assert (\neg \ln y \ l). intro; apply n; intuition.
       destruct in_dec; try contradiction. destruct in_dec; destruct (Aeq_dec y x);
       try (symmetry in e; contradiction). auto. apply perm_swap.
  - apply Permutation_trans with (l':=(nodup\ Aeq\_dec\ l')); auto.
Qed.
```

```
Lemma nodup_cancel_remove_assoc : \forall \{A\} \ Aeq\_dec \ (a:A) \ p,
  remove Aeq\_dec a (nodup_cancel Aeq\_dec p) =
  nodup_cancel Aeq\_dec (remove Aeq\_dec a p).
Proof.
  intros A Aeq_dec \ a \ p. induction p.
  - simpl. auto.
  - simpl. destruct even eqn:Hevn.
    + simpl. destruct (Aeq_-dec\ a\ a\theta).
       \times rewrite \leftarrow e. rewrite not_ln_remove; auto. apply remove_ln.
       \times simpl. rewrite count_occ_neq_remove; auto. rewrite Hevn.
         f_{equal.} rewrite \leftarrow IHp. rewrite remove_remove. auto.
    + destruct (Aeq_{-}dec \ a \ a\theta).
       \times rewrite \leftarrow e. rewrite not_In_remove; auto. apply remove_In.
       \times simpl. rewrite count_occ_neq_remove; auto. rewrite Hevn.
         rewrite remove_remove. rewrite \leftarrow IHp. auto.
Qed.
Lemma nodup_cancel_self : \forall \{A\} \ Aeq\_dec \ (l: list \ A),
  nodup\_cancel\ Aeq\_dec\ (l++l) = [].
Proof.
  intros A Aeq_dec p, induction p.
  - auto.
  - simpl. destruct even eqn:Hevn.
    + rewrite count_occ_app in Hevn. destruct (count_occ Aeq_dec p a) eqn:Hx.
       \times simpl in Hevn. destruct (Aeq_dec a a); try contradiction.
         rewrite Hx in Hevn. inversion Hevn.
       \times simpl in Hevn. destruct (Aeq_dec a a); try contradiction.
         rewrite Hx in Hevn. rewrite add_comm in Hevn.
         simpl in Hevn. destruct (plus n n) eqn: Help. inversion Hevn.
         replace (plus n n) with (plus 0 (2 \times n)) in Help.
         pose (even_add_mul_2 0 n). pose (even_succ n\theta). rewrite \leftarrow Help in e1.
         rewrite e\theta in e1. simpl in e1. apply even_spec in Hevn. symmetry in e1.
         apply odd_spec in e1. apply (Even_Odd_False _ Hevn) in e1. inversion e1.
         simpl. auto.
    + clear Hevn. rewrite nodup_cancel_remove_assoc. rewrite remove_distr_app.
       simpl. destruct (Aeq\_dec\ a\ a); try contradiction.
       rewrite ← remove_distr_app. rewrite ← nodup_cancel_remove_assoc.
       rewrite IHp. auto.
Qed.
Lemma nothing_in_empty : \forall \{A\} (l: list A),
  (\forall a, \neg \ln a l) \rightarrow
  l = \lceil \rceil.
Proof.
```

```
intros A \ l \ H. destruct l; auto. pose (H \ a). simpl in n. exfalso.
  apply n. auto.
Qed.
Lemma existsb_false_forall : \forall \{A\} f (l: list A),
  existsb f l = false \rightarrow
  (\forall a, \text{ In } a \ l \rightarrow (f \ a) = \text{false}).
Proof.
  intros A f l H a Hin. destruct (f a) eqn:Hfa.
  - exfalso. rewrite ← Bool.negb_true_iff in H. apply (Bool.eq_true_false_abs _ H).
    rewrite Bool.negb_false_iff. apply existsb_exists. ∃ a. split; auto.
  - auto.
Qed.
Lemma remove_pointless : \forall \{A \ Aeq\_dec\} \ (a:A) \ p \ q,
  remove Aeq\_dec a (remove Aeq\_dec a p +++ q) =
  remove Aeq\_dec a (p ++ q).
Proof.
  intros A A eq_{-} dec \ a \ p \ q. induction p; auto. simpl. destruct (A eq_{-} dec \ a \ a\theta) \ eqn: Heq.
  - apply IHp.
  - simpl. rewrite Heq. f_equal. apply IHp.
Qed.
Lemma count_occ_nodup_cancel : \forall \{A \ Aeq\_dec\} \ p \ (a:A),
  even (count_occ Aeq\_dec (nodup_cancel Aeq\_dec p) a) =
  even (count_occ Aeq_dec p a).
Proof.
  intros A A eq_{-} dec p a induction p as [b]; auto. simpl.
  destruct (even (count_occ Aeq_dec p b)) eqn:Hb.
  - simpl. destruct (Aeq\_dec\ b\ a).
    + rewrite e. rewrite count_occ_remove. rewrite e in Hb. repeat rewrite even_succ.
       rewrite \leftarrow negb_odd in Hb. rewrite Bool.negb_true_iff in Hb. rewrite Hb. auto.
    + rewrite count_occ_neg_remove; auto.
  - simpl. destruct (Aeq\_dec\ b\ a).
    + rewrite e. rewrite count_occ_remove. rewrite e in Hb. repeat rewrite even_succ.
       rewrite \leftarrow negb_odd in Hb. rewrite Bool.negb_false_iff in Hb. rewrite Hb. auto.
    + rewrite count_occ_neq_remove; auto.
Qed.
Lemma nodup_extra_remove : \forall \{A \ Aeq\_dec\} \ (a:A) \ p,
  even (count_occ Aeq_dec p a) = true \rightarrow
  nodup\_cancel Aeq\_dec p =
  nodup_cancel Aeq\_dec (remove Aeq\_dec a p).
Proof.
  intros A Aeq_- dec \ a \ p \ H. induction p as [b]; auto. simpl.
```

```
destruct (Aeq\_dec \ a \ b).
  - rewrite e in H. simpl in H. destruct (Aeq_dec b b); try contradiction.
    rewrite even_succ in H. rewrite \leftarrow negb_even in H. rewrite Bool.negb_true_iff in H.
    rewrite H. rewrite nodup_cancel_remove_assoc. rewrite e. auto.
  - simpl. destruct (even (count_occ Aeq_dec p b)) eqn:Hev.
    + rewrite count_occ_neq_remove; auto. rewrite Hev. f_equal.
      rewrite IHp. auto. simpl in H. destruct (Aeq\_dec);
      try (symmetry in e; contradiction). auto.
    + rewrite count_occ_neq_remove; auto. rewrite Hev. f_equal.
      apply IHp. simpl in H. destruct (Aeq\_dec\ b\ a);
      try (symmetry in e; contradiction). auto.
Qed.
Lemma nodup_cancel_pointless : \forall \{A \ Aeq\_dec\} \ (p \ q: list \ A),
  Permutation (nodup_cancel Aeq\_dec (nodup_cancel Aeq\_dec p \leftrightarrow q))
               (nodup\_cancel\ Aeg\_dec\ (p ++ q)).
Proof.
  intros A A eq_{-} dec \ p \ q. induction p; auto. destruct (even (count_occ A eq_{-} dec \ p \ a))
eqn:Hevp;
  destruct (even (count_occ Aeq_dec q a)) eqn:Hevq.
  - simpl. rewrite Hevp. simpl. rewrite count_occ_app, count_occ_remove. simpl.
    rewrite count_occ_app, even_add, Hevp, Hevq. simpl. apply perm_skip.
    rewrite nodup_cancel_remove_assoc. rewrite remove_pointless.
    rewrite \( -\ \text{nodup_cancel_remove_assoc.} \) apply remove_Permutation. apply IHp.
  - simpl. rewrite Hevp. simpl. rewrite count_occ_app, count_occ_remove. simpl.
    rewrite count_occ_app, even_add, Hevp, Hevq. simpl.
    rewrite nodup_cancel_remove_assoc. rewrite remove_pointless.
    rewrite ← nodup_cancel_remove_assoc. apply remove_Permutation. apply IHp.
  - simpl. rewrite Hevp. rewrite count_occ_app, even_add, Hevp, Hevq. simpl.
    rewrite (nodup_extra_remove a).
    + rewrite remove_pointless. rewrite ← nodup_cancel_remove_assoc.
      apply remove_Permutation. apply IHp.
    + rewrite count_occ_app. rewrite even_add. rewrite count_occ_remove.
      rewrite Hevq. auto.
  - assert (count_occ Aeq_dec \ q \ a > 0). destruct (count_occ _ q _).
    inversion Hevq. apply gt_Sn_O. apply count_occ_In in H.
    apply in_split in H as [l1[l2\ H]]. rewrite H. simpl nodup\_cancel at 2.
    rewrite Hevp. simpl app. rewrite H in IHp. simpl nodup\_cancel at 3.
    rewrite count_occ_app. rewrite even_add. rewrite Hevp. rewrite \leftarrow H at 2.
    rewrite Hevq. simpl. apply Permutation_trans with (l':=(nodup\_cancel
      Aeq\_dec (a :: remove Aeq\_dec a (nodup_cancel Aeq\_dec p) ++ l1 ++ l2))).
    + apply nodup_cancel_Permutation. rewrite app_assoc. apply Permutation_sym.
      rewrite app_assoc. apply Permutation_middle with (l2:=l2) (l1:=(remove
```

```
Aeq\_dec \ a \ (nodup\_cancel \ Aeq\_dec \ p) ++ l1)).
        + assert (even (count_occ Aeq_dec (l1++l2) a) = true).
                 rewrite H in Hevq. rewrite count_occ_app in Hevq. simpl in Hevq.
                 destruct (Aeq_dec a a); try contradiction. rewrite plus_comm in Hevq.
                 rewrite plus_Sn_m in Hevq. rewrite even_succ in Hevq.
                 rewrite \leftarrow negb_even in Hevq. rewrite Bool.negb_false_iff in Hevq.
                 rewrite count_occ_app. symmetry. rewrite plus_comm. auto.
             simpl. rewrite count_occ_app. rewrite count_occ_remove. simpl.
            replace (even _) with true. apply perm_skip.
            rewrite (nodup_cancel_remove_assoc _ _ (p++l1++a::l2)).
            repeat rewrite remove_distr_app. simpl; destruct (Aeq_dec a a); try contradiction.
            rewrite nodup_cancel_remove_assoc. rewrite remove_pointless.
            repeat rewrite ← remove_distr_app. repeat rewrite ← nodup_cancel_remove_assoc.
             apply Permutation_trans with (l'':=(nodup\_cancel\ Aeq\_dec\ (a:: p++ l1 ++ l2))) in
IHp.
             apply Permutation_sym in IHp.
             apply Permutation_trans with (l''):=(nodup\_cancel\ Aeq\_dec\ (a:: nodup\_cancel\ Aeq\_dec\ (a:: nodup\_cancel Aeq\_dec\ (a:: nodup\_cancel Aeq\_dec
                 Aeq\_dec p ++ l1 ++ l2)) in IHp.
             simpl in IHp. rewrite count_occ_app, even_add, Hevp in IHp.
            rewrite H0 in IHp. simpl in IHp.
            rewrite count_occ_app, even_add, count_occ_nodup_cancel, Hevp, H0 in IHp.
             simpl in IHp. apply Permutation_sym. apply IHp.
             × apply nodup_cancel_Permutation. rewrite app_assoc. apply Permutation_sym.
                 rewrite app_assoc. apply Permutation_middle with
                      (l1:=(nodup\_cancel\ Aeq\_dec\ p) ++ l1).
             × apply nodup_cancel_Permutation. rewrite app_assoc. apply Permutation_sym.
                 rewrite app_assoc. apply Permutation_middle with (l1:=(p ++ l1)).
Qed.
Lemma nodup_cancel_pointless_r : \forall \{A \ Aeq\_dec\} \ (p \ q: list \ A),
    Permutation
         (nodup\_cancel\ Aeq\_dec\ (p ++ nodup\_cancel\ Aeq\_dec\ q))
         (nodup_cancel Aeq\_dec (p ++ q)).
Proof.
    intros A Aeg_dec p g, apply Permutation_trans with (l':=(nodup\_cancel Aeg_dec f))
        nodup_cancel Aeq\_dec \ q ++ p)). apply nodup_cancel_Permutation.
        apply Permutation_app_comm.
    apply Permutation_sym. apply Permutation_trans with (l':=(nodup\_cancel
         Aeq\_dec (q ++ p)). apply nodup_cancel_Permutation.
        apply Permutation_app_comm. apply Permutation_sym.
    apply nodup_cancel_pointless.
Lemma not_in_nodup_cancel : \forall \{A \ Aeq\_dec\} \ (m:A) \ p,
```

```
even (count_occ Aeq\_dec p m) = true \rightarrow
  \neg In m (nodup_cancel Aeq_dec p).
Proof.
  intros A Aeq_dec m p H. induction p.
  - simpl. auto.
  - intro. simpl in H. destruct (Aeq\_dec\ a\ m).
    + simpl in H0. rewrite even_succ in H. rewrite \leftarrow negb_even in H.
       rewrite Bool.negb_true_iff in H. rewrite \leftarrow e in H. rewrite H in H0.
       rewrite e in H0. apply remove_In in H0. inversion H0.
    + apply IHp; auto. simpl in H0. destruct (even (count_occ Aeq\_dec\ p\ a)).
       \times destruct H0; try contradiction. apply In_remove in H0. auto.
       \times apply In_remove in H0. auto.
Qed.
Definition parity_match \{A\} Aeq\_dec (l m:list A) : Prop :=
  \forall x, even (count_occ Aeg\_dec\ l\ x) = even (count_occ Aeg\_dec\ m\ x).
Lemma even_nodup_cancel : \forall \{A \ Aeq\_dec\} \ (p: list \ A),
  (\forall x, \text{ even } (\text{count\_occ } Aeq\_dec \ p \ x) = \text{true}) \rightarrow
  (\forall x, \neg \ln x \text{ (nodup\_cancel } Aeq\_dec p)).
Proof.
  intros A Aeq_{-}dec p H m. intro. induction p.
  - inversion H0.
  - simpl in *. pose (H \ m) as H1. symmetry in H1. destruct (Aeq\_dec \ a \ m).
     + symmetry in H1. rewrite \leftarrow e in H1. rewrite even_succ in H1. rewrite \leftarrow
negb_{even} in H1.
       rewrite Bool.negb_true_iff in H1. rewrite H1 in H0. rewrite e in H0.
       apply remove_In in H0. inversion H0.
    + destruct (even (count_occ Aeq_dec p a)).
       \times destruct H0; try contradiction. apply In_{remove} in H0. symmetry in H1.
         apply not_in_nodup_cancel in H1. contradiction.
       \times apply In_remove in H0. symmetry in H1. apply not_in_nodup_cancel in H1.
          contradiction.
Qed.
Lemma parity_match_empty : \forall \{A \ Aeq\_dec\} \ (q: list \ A),
  parity_match Aeq\_dec \ [] \ q \rightarrow
  Permutation [] (nodup_cancel Aeq\_dec \ q).
Proof.
  intros A Aeq_{-}dec q H. unfold parity_match in H. simpl in H.
  symmetry in H. pose (even_nodup_cancel qH). apply nothing_in_empty in n.
  rewrite n. auto.
Qed.
Lemma parity_match_refl : \forall \{A \ Aeq\_dec\} \ (l: list \ A),
```

```
parity_match Aeq_dec l l.
Proof.
  intros A Aeq_dec l. unfold parity_match. auto.
Qed.
Lemma parity_match_sym : \forall \{A \ Aeq\_dec\} \ (l \ m: list \ A),
  parity_match Aeq\_dec\ l\ m \leftrightarrow parity_match\ Aeq\_dec\ m\ l.
Proof.
  intros l m. unfold parity_match. split; intros H x; auto.
Qed.
Lemma parity_match_trans : \forall \{A \ Aeq\_dec\} \ (p \ q \ r: list \ A),
  parity_match Aeq\_dec \ p \ q \rightarrow
  parity_match Aeq\_dec \ q \ r \rightarrow
  parity_match Aeq\_dec p r.
Proof.
  intros A Aeq_dec p q r H H0. unfold parity_match in *. intros x.
  rewrite H. rewrite H\theta. auto.
Qed.
Hint Resolve parity_match_reft parity_match_sym parity_match_trans.
Lemma parity_match_cons : \forall \{A \ Aeq\_dec\} \ (a:A) \ l1 \ l2,
  parity_match Aeq\_dec\ (a::l1)\ (a::l2) \leftrightarrow
  parity_match Aeq_dec l1 l2.
Proof.
  intros A A eq_{-} dec \ a \ l1 \ l2. unfold parity_match. split; intros H \ x.
  - pose (H \ x). symmetry in e. simpl in e. destruct (Aeq\_dec \ a \ x); auto.
     repeat rewrite even_succ in e. repeat rewrite \leftarrow negb_even in e.
     apply Bool.negb_sym in e. rewrite Bool.negb_involutive in e. auto.
  - simpl. destruct (Aeq\_dec\ a\ x); auto.
     repeat rewrite even_succ. repeat rewrite \leftarrow negb_even.
     apply Bool.negb_sym. rewrite Bool.negb_involutive. auto.
Qed.
Lemma parity_match_double : \forall \{A \ Aeq\_dec\} \ (a:A) \ l,
  parity_match Aeq\_dec (a::a::l) l.
Proof.
  intros A Aeq_{-}dec \ a \ l. unfold parity_match. intros x. simpl.
  destruct (Aeq_{-}dec \ a \ x).
  - rewrite even_succ. rewrite odd_succ. auto.
  - auto.
Qed.
Lemma parity_match_cons_swap : \forall \{A \ Aeq\_dec\} \ (a:A) \ l1 \ l2,
  parity_match Aeq\_dec\ (a::l1)\ l2 \rightarrow
  parity_match Aeq\_dec \ l1 \ (a::l2).
```

```
Proof.
  intros A Aeg_dec a l1 l2 H. apply (parity_match_cons a) in H.
  apply parity_match_sym in H. apply parity_match_trans with (r:=l1) in H.
  apply parity_match_sym in H. auto. apply parity_match_double.
Qed.
Lemma parity_match_ln : \forall \{A \ Aeq\_dec\} \ (a:A) \ l1 \ l2,
  even (count_occ Aeq\_dec \ l1 \ a) = true \rightarrow
  parity_match Aeq\_dec\ (a::l1)\ l2 \rightarrow
  In a 12.
Proof.
  intros A A eq_dec \ a \ l1 \ l2 \ H \ H0. apply parity_match_cons_swap in H0.
  rewrite H0 in H. simpl in H. destruct (Aeq\_dec\ a\ a); try contradiction.
  rewrite even_succ in H. rewrite \leftarrow negb_even in H. rewrite Bool.negb_true_iff in H.
  assert (count_occ Aeq\_dec \ l2 \ a > 0). destruct count_occ. inversion H.
  apply gt_Sn_O. apply count_occ_In in H1. auto.
Qed.
Lemma Permutation_parity_match : \forall \{A \ Aeq\_dec\} \ (p \ q: list \ A),
  Permutation p \ q \rightarrow \text{parity\_match } Aeq\_dec \ p \ q.
Proof.
  intros A Aeq_dec p q H. induction H.
  - auto.
  - apply parity_match_cons. auto.
  - repeat apply parity_match_cons_swap. unfold parity_match. intros x\theta.
     simpl. destruct Aeq_-dec; destruct Aeq_-dec;
    repeat (rewrite even_succ; rewrite odd_succ); auto.
  - apply parity_match_trans with (q:=l'); auto.
Qed.
Lemma parity_nodup_cancel_Permutation : \forall \{A \ Aeq\_dec\} \ (p \ q: list \ A),
  parity_match Aeq\_dec p q \rightarrow
  Permutation (nodup_cancel Aeq\_dec p) (nodup_cancel Aeq\_dec q).
Proof.
  intros A A eq_{-} dec p q H. generalize dependent q. induction p; induction q; intros.
  - auto.
  - simpl nodup_cancel at 1. apply parity_match_empty. auto.
  - simpl nodup_cancel at 2. apply Permutation_sym. apply parity_match_empty.
    apply parity_match_sym. auto.
  - clear IHq. destruct (Aeq\_dec\ a\ a\theta).
    + rewrite e. simpl. rewrite e in H. apply parity_match_cons in H.
       destruct even eqn:Hev; rewrite H in Hev; rewrite Hev.
       × apply perm_skip. apply remove_Permutation. auto.
       × apply remove_Permutation. auto.
    + simpl nodup\_cancel at 1. destruct even eqn: Hev.
```

```
\times assert (Hev':=Hev). apply parity_match_In with (l2:=(a0::q)) in Hev; auto.
          destruct Hev. symmetry in H0. contradiction. apply |\mathbf{n}_{split}| in H0 as [l1][l2]
H\theta]].
          rewrite H0. apply Permutation_sym. apply Permutation_trans with (l':=(
            nodup_cancel Aeq\_dec (a::l2++a0::l1)). apply nodup_cancel_Permutation.
            rewrite app_comm_cons. apply (Permutation_app_comm).
          simpl. rewrite H0 in H. apply parity_match_trans with (r:=(a::l2++a0::l1))
in H.
          apply parity_match_cons in H. rewrite H in Hev'. rewrite Hev'.
          apply perm_skip. apply remove_Permutation. apply Permutation_sym.
          apply IHp. auto. rewrite app_comm_cons. apply Permutation_parity_match.
          apply Permutation_app_comm.
       \times apply parity_match_cons_swap in H. rewrite H in Hev. assert (Hev2:=Hev).
          rewrite count_occ_Permutation with (l':=(a::q++[a0])) in Hev. simpl in Hev.
          destruct (Aeq_dec a a); try contradiction. rewrite even_succ in Hev.
          rewrite \leftarrow negb_even in Hev. rewrite Bool.negb_false_iff in Hev.
          rewrite \leftarrow (not_In_remove _ Aeq\_dec a).
          assert (\forall l, remove Aeq\_dec a (nodup_cancel Aeq\_dec (l)) =
            remove Aeq\_dec a (nodup_cancel Aeq\_dec (a::l))).
            intros l. simpl. destruct (even (count_occ  l a )).
            simpl. destruct (Aeq_dec a a); try contradiction.
            rewrite (not_ln_remove _ _ _(remove _ _ _)). auto. apply remove_ln.
            rewrite (not_In_remove _ _ _(remove _ _ _)). auto. apply remove_In.
          rewrite (H0\ (a0::q)). apply remove_Permutation. apply IHp. auto.
          apply not_in_nodup_cancel. rewrite count_occ_Permutation with (l':=(a\theta::q))
in Hev.
          auto. replace (a\theta::q) with ([a\theta]++q); auto. apply Permutation_app_comm.
          apply perm_skip. replace (a\theta::q) with ([a\theta]++q); auto. apply Permutation_app_comm.
Qed.
Lemma count_occ_map_lt : \forall \{A \ Aeq\_dec\} \ p \ (a:A) \ f,
  \operatorname{\mathsf{count\_occ}} Aeq\_dec \ p \ a \leq \operatorname{\mathsf{count\_occ}} Aeq\_dec \ (\operatorname{\mathsf{map}} f \ p) \ (f \ a).
Proof.
  intros A Aeq_{-}dec p a f. induction p. auto. simpl. destruct Aeq_{-}dec.
  - rewrite e. destruct Aeq_dec; try contradiction. simpl. apply |e_n_S. auto.
  - destruct Aeq_dec; auto.
Qed.
Lemma count_occ_map_sub : \forall \{A \ Aeq\_dec\} \ f \ (a:A) \ p,
  count_occ\ Aeq_dec\ (map\ f\ (remove\ Aeq_dec\ a\ p))\ (f\ a) =
  \operatorname{\mathsf{count\_occ}}\ \operatorname{\mathit{Aeq\_dec}}\ (\operatorname{\mathsf{map}}\ f\ p)\ (f\ a)\ - \operatorname{\mathsf{count\_occ}}\ \operatorname{\mathit{Aeq\_dec}}\ p\ a.
Proof.
  intros A A eq_{-} dec f a p. induction p; auto. simpl. destruct A eq_{-} dec.
  - rewrite e. destruct Aeq_dec; try contradiction. destruct Aeq_dec;
```

```
try contradiction. simpl. rewrite \leftarrow e. auto.
  - simpl. destruct Aeq_dec.
     + destruct Aeq\_dec. symmetry in e\theta; contradiction. rewrite IHp.
        rewrite sub_succ_I. auto. apply count_occ_map_lt.
     + destruct Aeq\_dec. symmetry in e; contradiction. auto.
Qed.
Lemma count_occ_map_neq_remove : \forall \{A \ Aeq\_dec\} \ f \ (a:A) \ p \ x,
  x \neq (f \ a) \rightarrow
  count_occ\ Aeq_dec\ (map\ f\ (remove\ Aeq_dec\ a\ p))\ x =
  \operatorname{\mathsf{count\_occ}}\ Aeq\_dec\ (\operatorname{\mathsf{map}}\ f\ p)\ x.
Proof.
  intros. induction p as [b]; auto. simpl. destruct (Aeq\_dec\ a\ b).
  - destruct Aeq\_dec. rewrite \leftarrow e in e\theta. symmetry in e\theta. contradiction.
  - simpl. destruct Aeq_dec; auto.
Qed.
Lemma f_equal_sum_lt : \forall \{A \ Aeq\_dec\} \ f \ (a:A) \ b \ p,
  b \neq a \rightarrow (f \ a) = (f \ b) \rightarrow
  count_occ \ Aeg_dec \ p \ b +
  count_occ Aeg_dec p a <
  \operatorname{\mathsf{count\_occ}}\ Aeq\_dec\ (\operatorname{\mathsf{map}}\ f\ p)\ (f\ a).
Proof.
  intros A A eq_{-} dec f \ a \ b \ p \ Hne \ Hfe. induction p as [c]; auto. simpl. destruct A eq_{-} dec.
  - rewrite e. destruct Aeq_dec; try contradiction. rewrite Hfe.
     destruct Aeq_dec; try contradiction. simpl. apply le_n_S.
     rewrite \leftarrow Hfe. auto.
  - destruct Aeq_dec.
     + rewrite e. destruct Aeq_dec; try contradiction. rewrite plus_comm.
        simpl. rewrite plus_comm. apply le_n_S. auto.
     + destruct Aeq_-dec.
        × apply le_S. auto.
        \times auto.
Qed.
Lemma count_occ_nodup_map_lt : \forall \{A \ Aeq\_dec\} \ p \ f \ (a:A),
  count_occ\ Aeg_dec\ (nodup\_cancel\ Aeg_dec\ p)\ a < count_occ\ Aeg_dec\ p
  \operatorname{count\_occ} Aeq\_dec \pmod{f} \pmod{\operatorname{p-cancel} Aeq\_dec} f (\operatorname{nodup\_cancel} Aeq\_dec f) (f a).
Proof.
  intros A A eq_{-} dec \ p \ f \ a. induction p as [b]; auto. simpl. destruct even eqn: Hev.
  - simpl. destruct Aeq_-dec.
     + rewrite e. destruct Aeq_dec; try contradiction. apply le_n_S. auto.
        rewrite count_occ_remove. apply le_0_l.
     + rewrite count_occ_neq_remove; auto. rewrite not_ln_remove.
```

```
destruct Aeq_dec; firstorder. apply not_in_nodup_cancel; auto.
  - destruct (Aeg_dec b a) eqn:Hba.
    + rewrite e. rewrite count_occ_remove. apply |e_0|.
    + rewrite count_occ_neq_remove; auto. destruct (Aeq\_dec\ (f\ b)\ (f\ a))\ eqn:Hfba.
       \times rewrite \leftarrow e. rewrite count_occ_map_sub. rewrite e. apply |e_add_e|_sub_|.
         apply f_equal_sum_lt; auto.
       x rewrite count_occ_map_neq_remove; auto.
Qed.
Lemma nodup_cancel_map : \forall \{A \ Aeq\_dec\} \ (p: list \ A) \ f
  Permutation
     (nodup\_cancel\ Aeq\_dec\ (map\ f\ (nodup\_cancel\ Aeq\_dec\ p)))
     (nodup_cancel Aeq\_dec (map f(p)).
Proof.
  intros A Aeq_dec p f. apply parity_nodup_cancel_Permutation. unfold parity_match.
  intros x. induction p; auto. simpl. destruct (even (count_occ p a)) eqn: Hev.
  - simpl. destruct Aeq_{-}dec.
     + repeat rewrite even_succ. repeat rewrite ← negb_even. rewrite not_ln_remove.
       rewrite IHp. auto. apply not_in_nodup_cancel. auto.
    + rewrite not_In_remove. apply IHp. apply not_in_nodup_cancel. auto.
  - simpl. destruct Aeq_{-}dec.
    + rewrite \leftarrow e. rewrite count_occ_map_sub. rewrite even_sub. rewrite \leftarrow e in
IHp.
       rewrite IHp. rewrite count_occ_nodup_cancel. rewrite Hev. rewrite even_succ.
       rewrite \leftarrow negb_even. destruct (even (count_occ _ (map f p) _)); auto.
       apply count_occ_nodup_map_lt.
    + rewrite count_occ_map_neq_remove; auto.
Qed.
Lemma n_{le_1} : \forall n,
  n < 1 \rightarrow n = 0 \lor n = 1.
Proof.
  intros n H. induction n; firstorder.
Lemma count_occ_map_sub_not_in : \forall \{A \ Aeq\_dec\} \ f \ (a:A) \ p,
  \forall x, \mathsf{count\_occ} \ Aeq\_dec \ (f \ a) \ x = 0 \rightarrow
  count_occ\ Aeq_dec\ (concat\ (map\ f\ (remove\ Aeq_dec\ a\ p)))\ x =
  \operatorname{count\_occ} Aeg\_dec (\operatorname{concat} (\operatorname{map} f p)) x.
Proof.
  intros A A eq_{-} dec f a p x H. induction p as [b]; auto. simpl.
  rewrite count_occ_app. destruct Aeq_dec.
  - rewrite e in H. rewrite H. firstorder.
  - simpl. rewrite count_occ_app. auto.
Qed.
```

```
Lemma count_occ_concat_map_lt : \forall \{A \ Aeq\_dec\} \ p \ (a:A) \ f \ x,
   \operatorname{count\_occ} Aeq\_dec (f \ a) \ x = 1 \rightarrow
   \operatorname{count\_occ} Aeq\_dec \ p \ a \leq \operatorname{count\_occ} Aeq\_dec \ (\operatorname{concat} \ (\operatorname{map} \ f \ p)) \ x.
Proof.
   intros A \ Aeq_{-} dec \ p \ a \ f \ x \ H. induction p. auto. simpl. destruct Aeq_{-} dec.
  - rewrite e. rewrite count_occ_app. rewrite H. simpl. firstorder.
  - rewrite count_occ_app. induction (count_occ Aeq_dec(f a\theta) x); firstorder.
Lemma count_occ_map_sub_in : \forall \{A \ Aeq\_dec\} \ f \ (a:A) \ p,
  \forall x, \text{ count\_occ } Aeq\_dec (f a) x = 1 \rightarrow
   count_occ\ Aeq_dec\ (concat\ (map\ f\ (remove\ Aeq_dec\ a\ p)))\ x =
   \operatorname{\mathsf{count\_occ}}\ \operatorname{\mathit{Aeq\_dec}}\ (\operatorname{\mathsf{concat}}\ (\operatorname{\mathsf{map}}\ f\ p))\ x\ -\ \operatorname{\mathsf{count\_occ}}\ \operatorname{\mathit{Aeq\_dec}}\ p\ a.
Proof.
   intros A A eq_{-} dec f \ a \ p \ x \ H. induction p as [b]; auto. simpl. destruct A eq_{-} dec.
  - rewrite e. destruct Aeq_dec; try contradiction. rewrite count_occ_app.
      rewrite e in H. rewrite H. simpl. rewrite \leftarrow e. auto.
  - simpl. destruct Aeq_dec. symmetry in e. contradiction.
      repeat rewrite count_occ_app. rewrite IHp. rewrite add_sub_assoc. auto.
      apply count_occ_concat_map_lt; auto.
Qed.
Lemma f_equal_concat_sum_lt : \forall \{A \ Aeq\_dec\} \ f \ (a:A) \ b \ p \ x,
   b \neq a \rightarrow
   (\forall x, \mathsf{NoDup}(f x)) \rightarrow
   \operatorname{count\_occ} Aeq\_dec (f \ a) \ x = 1 \rightarrow
   \operatorname{count\_occ} Aeq\_dec (f \ b) \ x = 1 \rightarrow
   count_occ \ Aeq_dec \ p \ b +
   count_occ\ Aeq_dec\ p\ a \le
   \operatorname{\mathsf{count\_occ}}\ \operatorname{\mathit{Aeq\_dec}}\ (\operatorname{\mathsf{concat}}\ (\operatorname{\mathsf{map}}\ f\ p))\ x.
Proof.
   intros A A eq_{-} dec f \ a \ b \ p \ x \ Hne \ Hnd \ Hfa \ Hfb. induction p as [|c|]; auto. simpl.
   destruct Aeq_-dec.
  - rewrite e. destruct Aeq_dec; try contradiction. rewrite count_occ_app.
      firstorder.
  - destruct Aeq_-dec.
      + rewrite e. rewrite count_occ_app. firstorder.
      + rewrite count_occ_app. pose (Hnd\ c). rewrite (NoDup\_count\_occ\ Aeq\_dec) in n1.
        pose (n1 \ x). apply n_le_1 in l. clear n1. destruct l; firstorder.
Qed.
Lemma count_occ_nodup_concat_map_lt : \forall \{A \ Aeq\_dec\} \ p \ f \ (a:A) \ x,
   (\forall x, \mathsf{NoDup}(f x)) \rightarrow
   \operatorname{count\_occ} Aeg\_dec (f \ a) \ x = 1 \rightarrow
   count_occ\ Aeq_dec\ (nodup_cancel\ Aeq_dec\ p)\ a \leq
```

```
count\_occ\ Aeq\_dec\ (concat\ (map\ f\ (nodup\_cancel\ Aeq\_dec\ p)))\ x.
Proof.
  intros A Aeq\_dec p f a x Hn H. induction p as [b]; auto. simpl. destruct even
egn:Hev.
  - simpl. destruct Aeq_-dec.
    + rewrite e. rewrite count_occ_remove, count_occ_app. rewrite H. firstorder.
    + rewrite count_occ_neq_remove; auto. rewrite not_ln_remove.
      rewrite count_occ_app. firstorder. apply not_in_nodup_cancel. auto.
  - destruct (Aeq\_dec\ b\ a)\ eqn:Hba.
    + rewrite e. rewrite count_occ_remove. firstorder.
    + rewrite count_occ_neq_remove; auto. assert (Hn1:=(Hn\ b)).
      rewrite (NoDup_count_occ Aeg\_dec) in Hn1. assert (Hn2:=(Hn1\ x)).
      clear Hn1. apply n_le_1 in Hn2. destruct Hn2.
       × rewrite count_occ_map_sub_not_in; auto.
       \times apply (count_occ_map_sub_in _ _ (nodup_cancel Aeq\_dec p)) in H0 as H1.
         rewrite H1. apply le_add_le_sub_l. apply f_equal_concat_sum_lt; auto.
Qed.
Lemma nodup_cancel_concat_map : \forall \{A \ Aeq\_dec\} \ (p: list \ A) \ f,
  (\forall x, \mathsf{NoDup}(f x)) \rightarrow
  Permutation
    (nodup\_cancel\ Aeq\_dec\ (concat\ (map\ f\ (nodup\_cancel\ Aeq\_dec\ p))))
    (nodup\_cancel\ Aeq\_dec\ (concat\ (map\ f\ p))).
Proof.
  intros A Aeq_dec p f H. apply parity_nodup_cancel_Permutation. unfold parity_match.
  intros x. induction p; auto. simpl. destruct (even (count_occ p a)) eqn:Hev.
  - simpl. repeat rewrite count_occ_app. repeat rewrite even_add. rewrite not_ln_remove.
    rewrite IHp. auto. apply not_in_nodup_cancel. auto.
  - assert (H0:=(H\ a)). rewrite (NoDup_count_occ Aeg\_dec) in H0.
    assert (H1 := (H0 \ x)). clear H0. apply n_le_1 in H1. rewrite count_occ_app.
    rewrite even_add. destruct H1.
    + apply (count_occ_map_sub_not_in _ _ (nodup_cancel Aeq\_dec p)) in H0 as H1.
      rewrite H0, H1, IHp. simpl.
      destruct (even (count_occ \_ (concat (map f(p)) x)); auto.
    + apply (count_occ_map_sub_in _ _ (nodup_cancel Aeq\_dec p)) in H0 as H1.
      rewrite H0, H1, even_sub, IHp. simpl. rewrite count_occ_nodup_cancel. rewrite
Hev.
      destruct (even (count_occ \_ (concat (map f(p)) x)); auto.
      apply count_occ_nodup_concat_map_lt; auto.
Qed.
Lemma nodup_cancel_app_Permutation : \forall \{A \ Aeq\_dec\} \ (a \ b \ c \ d: list \ A),
  Permutation (nodup_cancel Aeq\_dec a) (nodup_cancel Aeq\_dec b) \rightarrow
  Permutation (nodup_cancel Aeq\_dec c) (nodup_cancel Aeq\_dec d) \rightarrow
```

```
Permutation (nodup_cancel Aeq\_dec (a ++ c)) (nodup_cancel Aeq\_dec (b ++ d)).
Proof.
  intros A \ Aeq_{-} dec \ a \ b \ c \ d \ H \ H0. rewrite \leftarrow (nodup_cancel_pointless a),
  \leftarrow (nodup_cancel_pointless b), \leftarrow (nodup_cancel_pointless_r _ c),
  \leftarrow (nodup_cancel_pointless_r _ d). apply nodup_cancel_Permutation.
  apply Permutation_app; auto.
Qed.
Lemma partition_filter_fst \{X\} p l:
  fst (partition p l) = @filter X p l.
Proof.
  induction l; simpl.
  - trivial.
  - rewrite \leftarrow IHl.
     destruct (partition p l); simpl.
     destruct (p \ a); now \ \text{simpl}.
Qed.
Lemma partition_filter_fst' : \forall \{X\} \ p \ (l \ t \ f : list \ X),
     partition p \mid l = (t, f) \rightarrow
     t =  @filter X p l .
Proof.
  intros X p l t f H.
  rewrite ← partition_filter_fst.
  now rewrite H.
Qed.
Definition neg \{X: Type\} := fun (f: X \rightarrow bool) \Rightarrow fun (a: X) \Rightarrow (negb (f a)).
Lemma neg_true_false : \forall \{X\} (p:X \rightarrow bool) (a:X),
   (p \ a) = \mathsf{true} \leftrightarrow \mathsf{neg} \ p \ a = \mathsf{false}.
Proof.
  intros X\ p\ a. unfold neg. split; intro.
  - rewrite H. auto.
  - destruct (p a); intuition.
Qed.
Lemma neg_false_true : \forall \{X\} (p:X \rightarrow bool) (a:X),
   (p \ a) = \mathsf{false} \leftrightarrow \mathsf{neg} \ p \ a = \mathsf{true}.
Proof.
  intros X p a. unfold neg. split; intro.
  - rewrite H. auto.
  - destruct (p a); intuition.
Qed.
Lemma partition_filter_snd \{X\} p l:
  snd (partition p(l) = @filter X (neg p) l.
```

```
Proof.
  induction l; simpl.
  - reflexivity.
  - rewrite \leftarrow IHl.
     destruct (partition p l); simpl.
     destruct (p \ a) \ eqn:Hp.
     + simpl. apply neg_true_false in Hp. rewrite Hp; auto.
     + simpl. apply neg_false_true in Hp. rewrite Hp; auto.
Qed.
Lemma partition_filter_snd' : \forall \{X\} \ p \ (l \ t \ f : list \ X),
  partition p \ l = (t, f) \rightarrow
  f = \bigcirc \text{filter } X \text{ (neg } p) \ l.
Proof.
  intros X p l t f H.
  rewrite ← partition_filter_snd.
  now rewrite H.
Qed.
Lemma incl_Permutation : \forall \{A: Type\} (l \ l' \ m: list \ A),
  Permutation l \ l' \rightarrow
  incl l m \rightarrow
  incl l' m.
Proof.
  intros A l l' m H H0. apply Permutation_incl in H as [].
  apply incl_tran with (m:=l); auto.
Qed.
Lemma incl_nil : \forall \{X: Type\} (l: list X),
  incl l \ [] \leftrightarrow l = [].
Proof.
  intros X l. unfold incl. split; intro H.
  - destruct l; [auto | destruct (H x); intuition].
  - intros a Hin. destruct l; [auto | rewrite H in Hin; auto].
Qed.
Lemma partition_Permutation : \forall \{A: Type\} f (p \ l \ r: list \ A),
  partition f p = (l, r) \rightarrow
  Permutation p(l++r).
  intros A f p. induction p; intros.
  - simpl in H. inversion H. auto.
  - simpl in H. destruct (partition f(p)). destruct (f(a)); inversion H.
     + simpl. apply perm_skip. apply IHp. f_equal. auto.
     + apply Permutation_trans with (l':=(a::l1 ++ l)). apply perm_skip.
```

```
apply Permutation_trans with (l':=(l++l1)). apply IHp. f_equal.
        auto. apply Permutation_app_comm. apply Permutation_app_comm with (l:=(a::l1)).
Qed.
Lemma part_fst_true : \forall X p (l \ t \ f : list \ X),
   partition p \mid l = (t, f) \rightarrow
   (\forall a, \ln a \ t \rightarrow p \ a = \text{true}).
Proof.
   intros X p l t f Hpart a Hin.
   assert (Hf: t = filter p l).
  - now apply partition_filter_fst' with f.
  - assert (Hass := filter\_ln \ p \ a \ l).
      apply Hass.
      now \; \texttt{rewrite} \leftarrow \textit{Hf}.
Qed.
Lemma part_snd_false : \forall X p (x t f : list X),
   partition p \ x = (t, f) \rightarrow
   (\forall a, \text{ In } a \ f \rightarrow p \ a = \text{ false}).
Proof.
   intros X p l t f Hpart a Hin.
   assert (Hf: f = filter (neg p) l).
  - now apply partition_filter_snd' with t.
  - assert (Hass := filter\_ln (neg p) \ a \ l).
     rewrite \leftarrow neg_false_true in Hass.
      apply Hass.
      now \; \texttt{rewrite} \leftarrow \textit{Hf}.
Qed.
Lemma Forall_HdRel : \forall \{X: Type\} \ c \ a \ (p: list \ X),
   Forall (c \ a) \ p \rightarrow \mathsf{HdRel} \ c \ a \ p.
   intros X c a p H. destruct p.
  - apply HdRel_nil.
  - apply HdRel_cons. apply Forall_inv in H. auto.
Lemma Forall_incl : \forall \{X: \mathsf{Type}\}\ (c: X \to X \to \mathsf{Prop})\ a\ (p\ g: \mathsf{list}\ X),
   Forall (c \ a) \ p \to \mathsf{incl} \ g \ p \to \mathsf{Forall} \ (c \ a) \ g.
   intros X c a p g H H0. induction g.
  - apply Forall_nil.
  - rewrite Forall_forall in H. apply Forall_forall. intros x Hin.
      apply H. unfold incl in H\theta. apply H\theta. intuition.
Qed.
```

```
Lemma part_Sorted : \forall \{X: Type\} (c: X \rightarrow X \rightarrow Prop) f p,
  Relations_1.Transitive c \rightarrow
  Sorted c p \rightarrow
  \forall l r, partition f p = (l, r) \rightarrow
  Sorted c l \wedge Sorted c r.
Proof.
  intros X c f p Htran Hsort. induction p; intros.
  - simpl in H. inversion H. auto.
  - assert (H0:=H); auto. simpl in H. destruct (partition f(p)) as [g(d)].
     destruct (f \ a); inversion H.
    + assert (Forall (c\ a)\ g \land \mathsf{Sorted}\ c\ g \land \mathsf{Sorted}\ c\ r \to \mathsf{Sorted}\ c\ (a::g) \land \mathsf{Sorted}\ c
r).
       \times intros H_4. split. apply Sorted_cons. apply H_4. apply Forall_HdRel. apply H_4.
apply H4.
       \times apply H1. split.

    apply Sorted_StronglySorted in Hsort; auto. apply StronglySorted_inv in Hsort

as ||.
             apply (Forall_incl \_ \_ \_ \_ H5). apply partition_Permutation in H0.
             rewrite \leftarrow H2 in H0. simpl in H0. apply Permutation_cons_inv in H0.
             apply Permutation_incl in H0 as []. unfold incl. unfold incl in H6.
             intros a\theta Hin. apply H6. intuition.
          - apply IHp. apply Sorted_inv in Hsort; apply Hsort. f_equal. auto.
    + assert (Forall (c\ a)\ d \land Sorted c\ l \land Sorted c\ d \rightarrow Sorted c\ l \land Sorted c\ (a::d)).
       \times intros H_4. split. apply H_4. apply Sorted_cons. apply H_4. apply Forall_HdRel.
apply H4.
       \times apply H1. split.

    apply Sorted_StronglySorted in Hsort; auto. apply StronglySorted_inv in Hsort

as ||.
             apply (Forall_incl _{-} _{-} _{-} _{-} _{H5}). apply partition_Permutation in H0.
             rewrite \leftarrow H3 in H0. simpl in H0. apply Permutation_trans with (l'':=(a::d++l))
in H0.
             apply Permutation_cons_inv in H0. apply Permutation_trans with (l'':=(l++d))
in H0.
             apply Permutation_incl in H0 as []. unfold incl. unfold incl in H6.
             intros a0 Hin. apply H6. intuition. apply Permutation_app_comm.
             apply Permutation_app_comm with (l':=(a::d)).
          - apply IHp. apply Sorted_inv in Hsort; apply Hsort. f_equal. auto.
Qed.
```

Chapter 6

Library B_Unification.poly

```
Require Import Arith.
Require Import List.
Import ListNotations.
Require Import FunctionalExtensionality.
Require Import Sorting.
Require Import Permutation.
Import Nat.
Require Export list_util.
Require Export terms.
```

6.1 Introduction

Another way of representing the terms of a unification problem is as polynomials and monomials. A monomial is a set of variables multiplied together, and a polynomial is a set of monomials added together. By following the ten axioms set forth in B-unification, we can transform any term to this form.

Since one of the rules is x * x = x, we can guarantee that there are no repeated variables in any given monomial. Similarly, because x + x = 0, we can guarantee that there are no repeated monomials in a polynomial. Because of these properties, as well as the commutativity of addition and multiplication, we can represent both monomials and polynomials as unordered sets of variables and monomials, respectively. This file serves to implement such a representation.

6.2 Monomials and Polynomials

6.2.1 Data Type Definitions

A monomial is simply a list of variables, with variables as defined in terms.v.

```
Definition mono := list var.
Definition mono_eq_dec := (list_eq_dec Nat.eq_dec).
   A polynomial, then, is a list of monomials.
Definition poly := list mono.
```

6.2.2 Comparisons of monomials and polynomials

For the sake of simplicity when comparing monomials and polynomials, we have opted for a solution that maintains the lists as sorted. This allows us to simultaneously ensure that there are no duplicates, as well as easily comparing the sets with the standard Coq equals operator over lists.

Ensuring that a list of nats is sorted is easy enough. In order to compare lists of sorted lists, we'll need the help of another function: Definition mono_cmp := lex compare.

```
Definition mono_lt m n := mono_cmp m n = Lt.
```

6.2.3 Stronger Definitions

Because as far as Coq is concerned any list of natural numbers is a monomial, it is necessary to define a few more predicates about monomials and polynomials to ensure our desired properties hold. Using these in proofs will prevent any random list from being used as a monomial or polynomial.

Monomials are simply sorted lists of natural numbers.

```
Definition is_mono (m : mono) : Prop := Sorted lt m.
```

Polynomials are sorted lists of lists, where all of the lists in the polynomial are monomials.

```
Definition is_poly (p:\mathsf{poly}): \mathsf{Prop} := \mathbf{Sorted} \bmod p \land \forall m, \ln m \ p \to \mathsf{is\_mono} \ m. Hint Unfold is_mono is_poly. Hint Resolve NoDup\_cons \ NoDup\_nil \ Sorted\_cons. Definition vars (p:\mathsf{poly}): \mathsf{list} \ \mathsf{var} := \mathsf{nodup} \ \mathsf{var\_eq\_dec} \ (\mathsf{concat} \ p). Hint Unfold vars. Lemma NoDup\_vars : \forall \ (p:\mathsf{poly}), \ \mathsf{NoDup} \ (\mathsf{vars} \ p). Proof. \mathsf{intros} \ p. \ \mathsf{unfold} \ \mathsf{vars}. \ \mathsf{apply} \ \mathsf{NoDup\_nodup}. Qed. Lemma \mathsf{in\_mono\_in\_vars}: \ \forall \ x \ p, \ (\forall \ m: \mathsf{mono}, \mathsf{ln} \ m \ p \to \neg \ \mathsf{ln} \ x \ m) \ \leftrightarrow \neg \ \mathsf{ln} \ x \ (\mathsf{vars} \ p). Proof.
```

```
intros x p. split.
  - intros H. induction p.
    + simpl. auto.
    + unfold not in *. intro. apply IHp.
       \times intros m Hin. apply H. intuition.
       \times unfold vars in *. apply nodup_ln in H0. apply nodup_ln. simpl in H0.
         apply in_app_or in H0. destruct H0.
         - exfalso. apply (H \ a). intuition. auto.
         auto.
  - intros H m Hin Hin, apply H, clear H, induction p.
    + inversion Hin.
    + unfold vars in *. rewrite nodup_In. rewrite nodup_In in IHp. simpl.
      apply in_or_app. destruct Hin.
       \times left. rewrite H. auto.
       \times auto.
Qed.
   There are a few userful things we can prove about these definitions too. First, every
element in a monomial is guaranteed to be less than the elements after it.
Lemma mono_order : \forall x y m,
  is_mono (x :: y :: m) →
  x < y.
Proof.
  unfold is_mono.
  intros x y m H.
  apply Sorted_inv in H as [].
  apply HdRel_{inv} in H0.
  apply H0.
Qed.
   Similarly, if x :: m is a monomial, then m is also a monomial.
Lemma mono_cons : \forall x m,
  is_mono (x :: m) \rightarrow
  is_mono m.
Proof.
  unfold is_mono.
  intros x m H. apply Sorted_inv in H as []. apply H.
   The same properties hold for is_poly as well; any list in a polynomial is guaranteed to
be less than the lists after it.
Lemma poly_order : \forall m \ n \ p,
  is_poly (m :: n :: p) \rightarrow
```

mono_lt m n.

```
Proof.
  unfold is_poly.
  intros.
  destruct H.
  apply Sorted_inv in H as [].
  apply HdRel_inv in H1.
  apply H1.
Qed.
   And if m: p is a polynomial, we know both that p is a polynomial and that m is a
monomial.
Lemma poly_cons : \forall m p,
  is_poly (m :: p) \rightarrow
  is_poly p \wedge \text{is_mono } m.
Proof.
  unfold is_poly.
  intros.
  destruct H.
  apply Sorted_inv in H as [].
  split.
  - split.
    + apply H.
    + intros. apply H0, in_cons, H2.
  - apply H0, in_eq.
Qed.
   Lastly, for completeness, nil is both a polynomial and monomial.
Lemma nil_is_mono:
  is_mono [].
Proof.
  unfold is_mono. auto.
Qed.
Lemma nil_is_poly:
  is_poly [].
Proof.
  unfold is_poly. split.
  - auto.
  - intro; contradiction.
Qed.
Lemma one_is_poly:
  is_poly [[]].
Proof.
  unfold is_poly. split.
```

```
- auto.
  - intro. intro. simpl in H. destruct H.
    + rewrite \leftarrow H. apply nil_is_mono.
    + inversion H.
Qed.
Lemma var_is_poly : \forall x,
  is_poly [[x]].
Proof.
  intros x. unfold is_poly. split.
  - apply Sorted_cons; auto.
  - intros m H. simpl in H; destruct H; inversion H.
    unfold is_mono. auto.
Qed.
Lemma no_vars_is_ground : \forall p,
  is_poly p \rightarrow
  vars p = [] \rightarrow
  p = [] \lor p = [[]].
  intros p H H\theta. induction p.
  - auto.
  - induction a.
    + destruct IHp.
       \times apply poly_cons in H. apply H.
       \times unfold vars in H0. simpl in H0. apply H0.
       \times rewrite H1. auto.
       \times rewrite H1 in H. unfold is_poly in H. destruct H. inversion H.
         inversion H6. inversion H8.
    + unfold vars in H0. simpl in H0. destruct in_dec in H0.
       \times rewrite \leftarrow nodup_In in i. rewrite H0 in i. inversion i.
       \times inversion H0.
Qed.
Hint Resolve mono_order mono_cons poly_order poly_cons nil_is_mono nil_is_poly
```

$var_is_poly \ one_is_poly.$

6.3 Functions over Monomials and Polynomials

```
Module Import VARSORT := NATSORT.

Require Import Orders.

Module MONOORDER <: TOTALLEBOOL.

Definition t := mono.

Definition leb m n :=
```

```
match mono_cmp m n with
     | Lt \Rightarrow true
     \mid \mathsf{Eq} \Rightarrow \mathsf{true}
     |\mathsf{Gt} \Rightarrow \mathsf{false}|
     end.
  Infix "\leq=m" := leb (at level 35).
  Lemma leb_total : \forall m \ n, (m \le m \ n = true) \lor (n \le m \ m = true).
  Proof.
     intros n m. unfold "\leq=m". destruct (mono_cmp n m) eqn:Hcomp; auto.
     unfold mono_cmp in *. apply lex_rev_lt_gt in Hcomp. rewrite Hcomp. auto.
End MONOORDER.
Module Import MONOSORT := SORT MONOORDER.
Lemma Permutation_MonoSort_r : \forall p \ q,
  Permutation p \ q \leftrightarrow Permutation p \ (sort q ).
Proof.
  intros p q. split; intro H.
  - apply Permutation_trans with (l':=q). apply H. apply Permuted_sort.
  - apply Permutation_trans with (l':=(\text{sort }q)). apply H. apply Permutation_sym.
     apply Permuted_sort.
Qed.
Lemma Permutation_MonoSort_I : \forall p \ q,
  Permutation p \ q \leftrightarrow Permutation (sort p) \ q.
Proof.
  intros p q. split; intro H.
  - apply Permutation_sym. rewrite ← Permutation_MonoSort_r.
     apply Permutation_sym. auto.
  - apply Permutation_sym. rewrite Permutation_MonoSort_r.
     apply Permutation_sym. auto.
Qed.
Lemma lt_Transitive:
  Relations 1. Transitive It.
Proof.
  unfold Relations_1. Transitive. intros. apply t_{trans} with (m:=y); auto.
Qed.
Lemma VarOrder_Transitive :
  Relations_1.Transitive (fun x y : nat \Rightarrow is_{true} (NatOrder.leb x y)).
Proof.
  unfold Relations_1.Transitive, is_true.
  induction x, y, z; intros; try reflexivity; simpl in *.
  - inversion H.
```

```
- inversion H.
  - inversion H0.
  - apply IHx with (y:=y); auto.
Qed.
Lemma MonoOrder_Transitive:
  Relations_1.Transitive (fun x y : list nat \Rightarrow is_true (MonoOrder.leb x y)).
Proof.
  unfold Relations_1.Transitive, is_true, MonoOrder.leb, mono_cmp.
  induction x, y, z; intros; try reflexivity; simpl in *.
  - inversion H.
  - inversion \mathcal{H}.
  - inversion H0.
  - destruct (a ?= n) eqn:Han.
    + apply compare_eq_iff in Han. rewrite Han. destruct (n ?= n0) eqn:Hn0.
       \times apply (IHx - HH0).
       \times reflexivity.
       \times inversion H0.
    + destruct (n ?= n0) eqn:Hn0.
       \times apply compare_eq_iff in Hn\theta. rewrite \leftarrow Hn\theta. rewrite Han. reflexivity.
       \times apply compare_lt_iff in Han. apply compare_lt_iff in Hn0.
         apply (lt_{trans} \ a \ n \ n\theta \ Han) in Hn\theta. apply compare_lt_{iff} in Hn\theta.
         rewrite Hn\theta. reflexivity.
       \times inversion H0.
    + inversion H.
Qed.
Lemma mono_lt_Transitive : Relations_1.Transitive mono_lt.
Proof.
  unfold Relations_1. Transitive, is_true, mono_lt, mono_cmp.
  induction x, y, z; intros; try reflexivity; simpl in *.
  - inversion \mathcal{H}.
  - inversion H0.
  - inversion H0.
  - inversion H.
  - inversion H0.
  - destruct (a ?= n\theta) eqn:Han\theta.
    + apply compare_eq_iff in Han0. rewrite Han0 in H. destruct (n ?= n0) eqn: Hn0.
       \times rewrite compare_antisym in Hn\theta. unfold CompOpp in Hn\theta.
         destruct (n\theta?=n); try inversion Hn\theta. apply (IHx \_ HH\theta).
       \times rewrite compare_antisym in Hn\theta. unfold CompOpp in Hn\theta.
         destruct (n\theta?=n); try inversion Hn\theta. inversion H.
       \times inversion H0.
    + auto.
```

```
+ destruct (n ?= n0) eqn:Hnn0.
       \times apply compare_eq_iff in Hnn\theta. rewrite Hnn\theta in H. rewrite Han\theta in H.
          inversion H.
       \times apply compare_lt_iff in Hnn0. apply compare_gt_iff in Han0.
          apply |t_{trans}| with (n:=n) in Han\theta; auto. apply compare_|t_{trans}| in Han\theta.
          rewrite compare_antisym in Han\theta. unfold CompOpp in Han\theta.
          destruct (a?=n); try inversion Han\theta. inversion H.
       \times inversion H0.
Qed.
Lemma VarSort_Sorted : \forall (m : mono),
  Sorted (fun n \Rightarrow \text{is\_true} (leb n \neq m)) m \land \text{NoDup} m \rightarrow \text{Sorted} lt m.
Proof.
  intros m []. remember (fun n m \Rightarrow is\_true (leb n m)) as le.
  induction m.
  - apply Sorted_nil.
  - apply Sorted_inv in H. apply Sorted_cons.
     + apply IHm.
       \times apply H.
       \times apply NoDup_cons_iff in H0. apply H0.
     + apply HdRel_le_lt. split.
       \times rewrite \leftarrow Heqle. apply H.
       \times apply H0.
Qed.
Lemma Sorted_VarSorted : \forall (m : mono),
  Sorted It m \rightarrow
  Sorted (fun n \Rightarrow is\_true (leb n m)) m.
Proof.
  intros m H. induction H.
  - apply Sorted_nil.
  - apply Sorted_cons.
     + apply IHSorted.
    + destruct l.
       × apply HdRel_nil.
       \times apply HdRel_cons. apply HdRel_inv in H0. apply lt_le_incl in H0.
          apply leb_le in H0. apply H0.
Qed.
Lemma In\_sorted : \forall a l,
  In a \ l \leftrightarrow In \ a \ (sort \ l).
Proof.
  intros a l. pose (MonoSort.Permuted_sort l). split; intros Hin.
  - apply (Permutation_in _ p Hin).
  - apply (Permutation_in' (Logic.eq_refl a) p). auto.
```

```
Qed.
Lemma HdRel_mono_le_lt : \forall a p,
  HdRel (fun n m \Rightarrow is\_true (MonoOrder.leb n m)) a p \land NoDup (a::p) \rightarrow
  HdRel mono_lt a p.
Proof.
  intros a p \mid \mid. remember (fun n m \Rightarrow is\_true (MonoOrder.leb n m)) as le.
  destruct p.
  - apply HdRel_nil.
  - apply HdRel_cons. apply HdRel_inv in H.
    apply (NoDup_neq a l) in H\theta; intuition. rewrite Hegle in H.
    unfold is_true in H. unfold MonoOrder.leb in H. unfold mono_lt.
    destruct (mono_cmp a l) eqn:Hcomp.
    + apply lex_eq in Hcomp. contradiction.
    + reflexivity.
    + inversion H.
Qed.
Lemma MonoSort_Sorted : \forall (p : poly),
  Sorted (fun n \Rightarrow \text{is\_true} (MonoOrder.leb n m)) p \land \text{NoDup} p \rightarrow
  Sorted mono_lt p.
Proof.
  intros p []. remember (fun n m \Rightarrow is\_true (MonoOrder.leb n m)) as le.
  induction p.
  - apply Sorted_nil.
  - apply Sorted_inv in H. apply Sorted_cons.
    + apply IHp.
       \times apply H.
       \times apply NoDup_cons_iff in H0. apply H0.
    + apply HdRel_mono_le_lt. split.
       \times rewrite \leftarrow Hegle. apply H.
       \times apply H0.
Qed.
Lemma Sorted_MonoSorted : \forall (p : poly),
  Sorted mono_lt p \rightarrow
  Sorted (fun n \Rightarrow is\_true (MonoOrder.leb n m)) p.
Proof.
  intros p H. induction H.

    apply Sorted_nil.

    apply Sorted_cons.

    + apply IHSorted.
    + destruct l.
       × apply HdRel_nil.
       \times apply HdRel_cons. apply HdRel_inv in H0. unfold MonoOrder.leb.
```

```
rewrite H0. auto.
Qed.
Lemma NoDup_MonoSorted : \forall (p : poly),
  Sorted mono_lt p \rightarrow
  NoDup p.
Proof.
  intros p H. apply Sorted_StronglySorted in H.
  - induction p.
    + auto.
    + apply StronglySorted_inv in H as []. apply NoDup_forall_neq.
       \times apply Forall_forall. intros x Hin. rewrite Forall_forall in H0.
         pose (lex_neq' a x). destruct a\theta. apply H1 in H\theta; auto.
       \times apply IHp. apply H.

    apply mono_lt_Transitive.

Lemma NoDup_VarSorted : \forall (m : mono),
  Sorted It m \to \text{NoDup } m.
  intros p H. apply Sorted_StronglySorted in H.
  - induction p.
    + auto.
    + apply StronglySorted_inv in H as []. apply NoDup_forall_neq.
       \times apply Forall_forall. intros x Hin. rewrite Forall_forall in H0.
         apply lt_neq. apply H\theta. apply Hin.
       \times apply IHp. apply H.
  - apply lt_Transitive.
Qed.
Lemma NoDup_VarSort : \forall (m : mono),
  NoDup m \to \text{NoDup} (VarSort.sort m).
Proof.
  intros m H dup. pose (VarSort.Permuted_sort m).
  apply (Permutation_NoDup p Hdup).
Qed.
Lemma NoDup_MonoSort : \forall (p : poly),
  NoDup p \to \text{NoDup} (MonoSort.sort p).
  intros p Hdup. pose (MonoSort.Permuted_sort p).
  apply (Permutation_NoDup p\theta Hdup).
Qed.
Definition make_mono (l : list nat) : mono :=
  VarSort.sort (nodup var_eq_dec l).
```

```
Definition make_poly (l : list mono) : poly :=
  MonoSort.sort (nodup_cancel mono_eq_dec (map make_mono l)).
Lemma make_mono_is_mono : \forall m,
  is_mono (make_mono m).
Proof.
  intros m. unfold is_mono, make_mono. apply VarSort_Sorted. split.
  + apply VarSort.LocallySorted_sort.
  + apply NoDup_VarSort. apply NoDup_nodup.
Qed.
Lemma make_poly_is_poly : \forall p,
  is_poly (make_poly p).
Proof.
  intros p. unfold is_poly, make_poly. split.
  - apply MonoSort_Sorted. split.
    + apply MonoSort.LocallySorted_sort.
    + apply NoDup_MonoSort. apply NoDup_nodup_cancel.
  - intros m Hm. apply In_sorted in Hm. apply nodup_cancel_in in Hm.
    apply in_map_iff in Hm. destruct Hm. destruct H. rewrite \leftarrow H.
    apply make_mono_is_mono.
Qed.
Hint Resolve make\_poly\_is\_poly make\_mono\_is\_mono.
Lemma make_mono_ln : \forall x m,
  \ln x \pmod{m} \leftrightarrow \ln x m.
Proof.
  intros x m. split; intro H.
  - unfold make_mono in H. pose (VarSort.Permuted_sort (nodup var_eq_dec m)).
    apply Permutation_sym in p. apply (Permutation_in p) in H. apply nodup_In in H.
auto.

    unfold make_mono. pose (VarSort.Permuted_sort (nodup var_eq_dec m)).

    apply Permutation_in with (l:=(nodup \ var_eq_dec \ m)); auto. apply nodup_ln. auto.
Qed.
Lemma remove_is_mono : \forall x m,
  is_mono m \rightarrow
  is_mono (remove var_eq_dec x m).
Proof.
  intros x m H. unfold is_mono in *. apply StronglySorted_Sorted.
  apply StronglySorted_remove. apply Sorted_StronglySorted in H. auto.
  apply It_Transitive.
Qed.
Definition addPP (p \ q : poly) : poly :=
  make_poly (p ++ q).
```

```
Lemma ln\_distribute : \forall (l \ m:poly) \ a,
  In a (vars (distribute l m)) \rightarrow
  In a (vars l) \vee In a (vars m).
Proof.
  intros l m a H. unfold distribute, vars in H. apply nodup_In in H.
  apply In\_concat\_exists in H. destruct H as [ll]].
  apply In\_concat\_exists in H. destruct H as [ll1]].
  apply in_map_iff in H. destruct H as [x]. rewrite \leftarrow H in H1.
  apply in_map_iff in H1. destruct H1 as [x\theta]. rewrite \leftarrow H1 in H0.
  apply in_app_iff in H0. destruct H0.
  - right. apply nodup_In. apply In_concat_exists. \exists x. auto.
  - left. apply nodup_In. apply In_concat_exists. \exists x\theta. auto.
Qed.
Definition mulPP (p \ q : poly) : poly :=
  make_poly (distribute p q).
Definition mulMP (p : poly) (m : mono) : poly :=
  map (app m) p.
Definition mulPP' (p \ q : poly) : poly :=
  make\_poly (concat (map (mulMP p) q)).
Definition mulMP' (p : poly) (m : mono) : poly :=
  map make_mono (map (app m) p).
Definition mulPP" (p \ q : poly) : poly :=
  make_poly (concat (map (mulMP' p) q)).
Definition mulMP" (p : poly) (m : mono) : poly :=
  make_poly (map (app m) p).
Definition mulPP''' (p \ q : poly) : poly :=
  make\_poly (concat (map (mulMP'' p) q)).
Lemma mulPP_mulPP': \forall (p \ q : poly),
  muIPP p q = muIPP' p q.
Proof.
  intros p q. unfold mulPP, mulPP'. induction q.
  - simpl. unfold distribute. simpl. unfold mulMP. auto.
Qed.
Lemma mulPP'''_refold : \forall p \ q,
  make_poly (concat (map (mulMP'' p) q)) =
  mulPP''' p q.
Proof.
  auto.
Qed.
```

```
Lemma mulPP''_refold : \forall p \ q,
  make_poly (concat (map (muIMP' p) q)) =
  mulPP'' p q.
Proof.
  auto.
Qed.
Lemma mulPP'_refold : \forall p \ q,
  make_poly (concat (map (mulMP p) q)) =
  mulPP' p q.
Proof.
  auto.
Qed.
Lemma addPP_refold : \forall p \ q,
  make_poly (p ++ q) = addPP p q.
Proof.
  auto.
Qed.
Lemma addPP_is_poly : \forall p \ q,
  is_poly (addPP p q).
Proof.
  intros p q. apply make_poly_is_poly.
Qed.
Lemma leb_both_eq : \forall x y,
  is_true (MonoOrder.leb x y \rightarrow
  is_true (MonoOrder.leb y x \rightarrow
  x = y.
Proof.
  intros x y H H0. unfold is_true, MonoOrder.leb in *.
  destruct (mono_cmp y x) eqn:Hyx; destruct (mono_cmp x y) eqn:Hxy;
  unfold mono_cmp in *;
  try (apply lex_rev_lt_gt in Hxy; rewrite Hxy in Hyx; inversion Hyx);
  try (apply lex_rev_lt_gt in Hyx; rewrite Hxy in Hyx; inversion Hyx);
  try inversion H; try inversion H0.
  apply lex_eq in Hxy; auto.
Qed.
Lemma Permutation_Sorted_mono_eq : \forall (m n : mono),
  Permutation m n \rightarrow
  Sorted (fun n m \Rightarrow is\_true (leb n m)) m \rightarrow
  Sorted (fun n \Rightarrow \text{is\_true} (\text{leb } n \ m)) \ n \rightarrow
  m = n.
Proof.
```

```
intros m n Hp Hsl Hsm. generalize dependent n.
  induction m; induction n; intros.
  - reflexivity.
  - apply Permutation_nil in Hp. auto.
  - apply Permutation_sym, Permutation_nil in Hp. auto.
  - clear IHn. apply Permutation_incl in Hp as Hp.' destruct Hp.'
    destruct (a ?= a\theta) eqn:Hcomp.
    + apply compare_eq_iff in Hcomp. rewrite Hcomp in *.
       apply Permutation_cons_inv in Hp. f_equal; auto.
      apply IHm.
       \times apply Sorted_inv in Hsl. apply Hsl.
       \times apply Hp.
       \times apply Sorted_inv in Hsm. apply Hsm.
    + apply compare_lt_iff in Hcomp as Hneq. apply incl_cons_inv in H. destruct H.
       apply Sorted_StronglySorted in Hsm. apply StronglySorted_inv in Hsm as [].
       \times simpl in H. destruct H; try (rewrite H in Hneq; apply | t_irref| in Hneq;
contradiction).
         pose (Forall_In \_ \_ \_ \_ H H3). simpl in i. unfold is_true in i.
         apply leb_le in i. apply lt_not_le in Hneq. contradiction.
       × apply VarOrder_Transitive.
    + apply compare_gt_iff in Hcomp as Hneq. apply incl_cons_inv in H0. destruct H0.
       apply Sorted_StronglySorted in Hsl. apply StronglySorted_inv in Hsl as [].
       \times simpl in H0. destruct H0; try (rewrite H0 in Hneq; apply \mathsf{gt\_irrefl} in Hneq;
contradiction).
         pose (Forall_In \_ \_ \_ \_ H0 H3). simpl in i. unfold is_true in i.
         apply leb_le in i. apply lt_not_le in Hneq. contradiction.
       × apply VarOrder_Transitive.
Qed.
Lemma Permutation_sort_mono_eq : \forall (l \ m:mono),
  Permutation l m \leftrightarrow VarSort.sort l = VarSort.sort m.
Proof.
  intros l m. split; intros H.
  - assert (H0 : Permutation (VarSort.sort l) (VarSort.sort m)).
    + apply Permutation_trans with (l:=(VarSort.sort\ l))\ (l':=m)\ (l'':=(VarSort.sort\ m)).
       × apply Permutation_sym. apply Permutation_sym in H.
         apply (Permutation\_trans\ H\ (VarSort.Permuted\_sort\ l)).
       × apply VarSort.Permuted_sort.
    + apply (Permutation_Sorted_mono_eq _ _ H0 (VarSort.LocallySorted_sort l) (VarSort.LocallySorted_sort
m)).
  - assert (Permutation (VarSort.sort l) (VarSort.sort m)).
    + rewrite H. apply Permutation_refl.
    + pose (VarSort.Permuted_sort l). pose (VarSort.Permuted_sort m).
```

```
apply (Permutation_trans p) in H0. apply Permutation_sym in p0.
      apply (Permutation_trans H\theta) in p\theta. apply p\theta.
Qed.
Lemma no_sort_VarSorted : \forall m,
  Sorted It m \rightarrow
  VarSort.sort m = m.
Proof.
  intros m H. apply Permutation_Sorted_mono_eq.
  - apply Permutation_sym. apply VarSort.Permuted_sort.
  - apply VarSort.LocallySorted_sort.
  - apply Sorted_VarSorted. auto.
Qed.
Lemma no_make_mono : \forall m,
  is mono m \rightarrow
  make_mono m = m.
Proof.
  unfold make_mono, is_mono. intros m H. rewrite no_sort_VarSorted.
  - apply no_nodup_NoDup. apply NoDup_VarSorted in H. auto.
  - apply Sorted_nodup.
    + apply lt_Transitive.
    + auto.
Qed.
Lemma no_map_make_mono : \forall p,
  (\forall m, \text{ In } m \ p \rightarrow \text{is\_mono } m) \rightarrow
  map make_mono p = p.
Proof.
  intros p H. induction p.
  - auto.
  - simpl. rewrite no_make_mono.
    + f_equal. apply IHp. intros m Hin. apply H. intuition.
    + apply H. intuition.
Qed.
Lemma map_make_mono_pointless : \forall p \ q,
  make_poly (map make_mono p ++ q) =
  make_poly (p ++ q).
Proof.
  intros p q. destruct p.
  - auto.
  - simpl. unfold make_poly. simpl map. rewrite (no_make_mono (make_mono l)); auto.
    rewrite map_app. rewrite map_app. rewrite (no_map_make_mono (map _ _)).
    auto. intros m Hin. apply in_map_iff in Hin. destruct Hin as [x].
```

```
rewrite \leftarrow H. auto.
Qed.
Lemma unsorted_poly : \forall p,
  NoDup p \rightarrow
  (\forall m, \text{ln } m \ p \rightarrow \text{is\_mono } m) \rightarrow
  nodup\_cancel\ mono\_eq\_dec\ (map\ make\_mono\ p) = p.
Proof.
  intros p Hdup Hin. rewrite no_map_make_mono; auto.
  apply no_nodup_cancel_NoDup; auto.
Qed.
Lemma mono_middle : \forall x l1 l2,
  is_mono (l1 ++ x :: l2) \rightarrow
  is_mono (l1 ++ l2).
Proof.
  intros x 11 12 H. unfold is_mono in *. apply Sorted_StronglySorted in H.
  apply StronglySorted_Sorted. induction l1.
  - rewrite app_nil_l in *. apply StronglySorted_inv in H as []; auto.
  - simpl in *. apply StronglySorted_inv in H as []. apply SSorted_cons; auto.
    apply Forall_forall. rewrite Forall_forall in H0. intros x0 Hin.
    apply H0. apply in_app_iff in Hin as []; intuition.
  - apply It_Transitive.
Lemma remove_Sorted_eq : \forall x (l \ l':mono),
  is_mono l \rightarrow is_mono l' \rightarrow
  \ln x \ l \leftrightarrow \ln x \ l' \rightarrow
  remove var_eq_dec x l = remove var_eq_dec x l' \rightarrow
  l = l'
Proof.
  intros x l l' Hl Hl' Hx Hrem.
  generalize dependent l'; induction l; induction l'; intros.
  - auto.
  - destruct (var_eq_dec x a) eqn:Heq.
    + rewrite e in Hx. exfalso. apply Hx. intuition.
    + simpl in Hrem. rewrite Heq in Hrem. inversion Hrem.
  - destruct (var_eq_dec x a) eqn:Heq.
    + rewrite e in Hx. exfalso. apply Hx. intuition.
    + simpl in Hrem. rewrite Heq in Hrem. inversion Hrem.
  - clear IHl'. destruct (var_eq_dec a a\theta).
    + rewrite e. f_equal. rewrite e in Hrem. simpl in Hrem.
       apply mono_cons in Hl as Hl1. apply mono_cons in Hl' as Hl'1.
       destruct (var_eq_dec x \ a\theta).
       \times apply IHl; auto. apply NoDup_VarSorted in Hl. apply NoDup_cons_iff in Hl.
```

```
rewrite e in H. rewrite \leftarrow e0 in H. destruct H. split; intro. contradiction.
         apply NoDup_VarSorted in Hl'. apply NoDup_cons_iff in Hl'.
         rewrite \leftarrow e\theta in Hl'. destruct Hl'. contradiction.
       \times inversion Hrem. apply IHl; auto. destruct Hx. split; intro. simpl in H.
         rewrite e in H. destruct H; auto. rewrite H in n. contradiction.
         simpl in H1. rewrite e in H1. destruct H1; auto. rewrite H1 in n.
contradiction.
    + destruct (in_dec var_eq_dec x (a::l)).
       \times apply Hx in i as i'. apply in_split in i. apply in_split in i'.
         destruct i as [l1[l2\ i]]. destruct i' as [l1'[l2'\ i']].
         pose (NoDup_VarSorted \_Hl). pose (NoDup_VarSorted \_Hl').
         apply (NoDup_In_split \_ \_ \_ i) in n\theta as []. apply (NoDup_In_split \_ \_ \_ \_ i') in
n1 as [].
         rewrite i in Hrem. rewrite i' in Hrem. repeat rewrite remove_distr_app in
Hrem.
         simpl in Hrem. destruct (var_eq_dec x x); try contradiction.
         rewrite not_ln_remove in Hrem; auto. rewrite not_ln_remove in Hrem; auto.
         rewrite not_In_remove in Hrem; auto. rewrite not_In_remove in Hrem; auto.
         destruct l1; destruct l1'; simpl in i; simpl in i'; simpl in Hrem;
         inversion i; inversion i.
         - rewrite H4 in n. rewrite H6 in n. contradiction.
         - rewrite H7 in Hl7. rewrite i in Hl. rewrite Hrem in Hl.
            rewrite H6 in Hl'. assert (x < v). apply Sorted_inv in Hl as [].
            apply HdRel_inv in H8. auto. assert (v < x). apply Sorted_StronglySorted in
Hl'.
            apply StronglySorted_inv in Hl' as []. rewrite Forall_forall in H9.
            apply H9. intuition. apply lt_Transitive. apply lt_asymm in H8. contradiction.
         - rewrite H? in Hl. rewrite i in Hl. rewrite \leftarrow Hrem in Hl.
            rewrite H6 in Hl'. assert (n0 < x). apply Sorted_StronglySorted in Hl.
            apply StronglySorted_inv in Hl as []. rewrite Forall_forall in H8.
            apply H8. intuition. apply \text{lt}-Transitive. assert (x < n\theta).
            apply Sorted_inv in Hl' as []. apply HdRel_inv in H9; auto.
            apply It_asymm in H8. contradiction.
         - inversion Hrem. rewrite \leftarrow H4 in H8. rewrite \leftarrow H6 in H8. contradiction.
       \times assert (\neg \ln x \ (a\theta :: l')). intro. apply n\theta. apply Hx. auto.
         rewrite not_ln_remove in Hrem; auto. rewrite not_ln_remove in Hrem; auto.
Qed.
Lemma NoDup_map_remove : \forall x p,
  is_poly p \rightarrow
  (\forall m, \ln m \ p \rightarrow \ln x \ m) \rightarrow
  NoDup (map (remove var_eq_dec x) p).
Proof.
```

```
intros x p Hp Hx. induction p.
  - simpl. auto.
  - simpl. apply NoDup_cons.
    + intro. apply in_map_iff in H. destruct H as [y] assert (y = a).
       \times apply poly_cons in Hp. destruct Hp. unfold is_poly in H1. destruct H1.
         apply H3 in H0 as H4. apply (remove_Sorted_eq x); auto. split; intro.
         apply Hx. intuition. apply Hx. intuition.
       \times rewrite H1 in H0. unfold is_poly in Hp. destruct Hp.
         apply NoDup_MonoSorted in H2 as H4. apply NoDup_cons_iff in H4 as [].
         contradiction.
    + apply IHp.
       \times apply poly_cons in Hp. apply Hp.
       \times intros m H. apply Hx. intuition.
Qed.
Lemma NoDup_map_app : \forall x l,
  is_poly l \rightarrow
  (\forall m, \ln m \ l \rightarrow \neg \ln x \ m) \rightarrow
  NoDup (map make_mono (map (fun a : list var \Rightarrow a ++ [x]) l)).
Proof.
  intros x \ l \ Hp \ Hin. induction l.
  - simpl. auto.
  - simpl. apply NoDup_cons.
    + intros H. rewrite map_map in H. apply in_map_iff in H as [m] assert (a=m).
       \times apply poly_cons in Hp as []. apply Permutation_Sorted_mono_eq.

    apply Permutation_sort_mono_eq in H. rewrite no_nodup_NoDup in H.

            rewrite no_nodup_NoDup in H.
            ++ pose (Permutation_cons_append m x). pose (Permutation_cons_append a
x).
                apply (Permutation_trans p) in H. apply Permutation_sym in p\theta.
                apply (Permutation_trans H) in p\theta. apply Permutation_cons_inv in p\theta.
                apply Permutation_sym. auto.
            ++ apply Permutation_NoDup with (l:=(x::a)). apply Permutation_cons_append.
                apply NoDup_cons. apply Hin. intuition. unfold is_mono in H2.
                apply NoDup_VarSorted in H2. auto.
            ++ apply Permutation_NoDup with (l:=(x::m)). apply Permutation_cons_append.
               apply NoDup_cons. apply Hin. intuition. unfold is_poly in H1.
               destruct H1. apply H3 in H0. unfold is_mono in H0.
                apply NoDup_VarSorted in H0. auto.

    unfold is_mono in H2. apply Sorted_VarSorted. auto.

         - unfold is_poly in H1. destruct H1. apply H3 in H0. apply Sorted_VarSorted.
auto.
       \times rewrite \leftarrow H1 in H0. unfold is_poly in Hp. destruct Hp.
```

```
apply NoDup_MonoSorted in H2. apply NoDup_cons_iff in H2 as []. contradiction.
    + apply IHl. apply poly_cons in Hp. apply Hp. intros m H. apply Hin. intuition.
Qed.
Lemma mulPP_Permutation : \forall x \ a\theta \ l,
  is_poly (a\theta :: l) \rightarrow
  (\forall m, \ln m \ (a0::l) \rightarrow \neg \ln x \ m) \rightarrow
  Permutation (mulPP [[x]] (a\theta :: l)) ((make_mono (a\theta ++ [x]))::(mulPP [[x]] l)).
Proof.
  intros x a\theta l Hp Hx. unfold mulPP, distribute. simpl. unfold make_poly.
  pose (MonoSort.Permuted_sort (nodup_cancel mono_eq_dec
         (\text{map make\_mono} ((a\theta ++ [x]) :: concat (map (fun a : list var <math>\Rightarrow [a ++ [x]])
l)))))).
  apply Permutation_sym in p. apply (Permutation_trans p). simpl map.
  rewrite no_nodup_cancel_NoDup; clear p.
  - apply perm_skip. apply Permutation_trans with (l':=(nodup_cancel mono_eq_dec (map
make_mono (concat (map (fun a : list var \Rightarrow [a ++ [x]]) l)))).
    + rewrite no_nodup_cancel_NoDup; auto. rewrite concat_map. apply NoDup_map_app.
       apply poly_cons in Hp. apply Hp. intros m H. apply Hx. intuition.
    + apply MonoSort.Permuted_sort.
  - rewrite ← map_cons. rewrite concat_map.
    rewrite \leftarrow map_cons with (f:=(\text{fun } a: \text{list } \text{var} \Rightarrow a ++ [x])).
    apply NoDup_map_app; auto.
Qed.
Lemma mulPP_map_app_permutation : \forall (x:var) (l \ l':poly),
  is_poly l \rightarrow
  (\forall m, \ln m \ l \rightarrow \neg \ln x \ m) \rightarrow
  Permutation l \ l' \rightarrow
  Permutation (mulPP [[x]] l) (map (fun a \Rightarrow (make_mono(a ++ [x]))) l').
Proof.
  intros x l l' Hp H H0. generalize dependent l'. induction l; induction l'.
  - intros. unfold mulPP, distribute, make_poly, MonoSort.sort. simpl. auto.
  - intros. apply Permutation_nil_cons in H0. contradiction.
  - intros. apply Permutation_sym in H0. apply Permutation_nil_cons in H0. contradiction.
  - intros. clear IHl'. destruct (mono_eq_dec a a\theta).
    + rewrite e in *. pose (mulPP_Permutation x a\theta l Hp H). apply (Permutation_trans
p). simpl.
       apply perm_skip. apply IHl.
       \times clear p. apply poly_cons in Hp. apply Hp.
       \times intros m Hin. apply H. intuition.
       \times apply Permutation_cons_inv in H0. auto.
    + apply Permutation_incl in H0 as H1. destruct H1. apply incl_cons_inv in H1 as
[].
```

```
destruct H1; try (rewrite H1 in n; contradiction). apply in_split in H1.
       destruct H1 as [l1 \ [l2]]. rewrite H1 in H0.
       pose (Permutation_middle (a0::l1) l2 a). apply Permutation_sym in p.
       simpl in p. apply (Permutation_trans H0) in p.
       apply Permutation_cons_inv in p. rewrite H1. simpl. rewrite map_app. simpl.
       pose (Permutation_middle ((make_mono (a\theta ++ [x]) :: map
         (\text{fun } a1 : \text{list } \text{var} \Rightarrow \text{make\_mono} (a1 ++ [x])) l1)) (\text{map})
         (fun a1: list var \Rightarrow make_mono (a1 ++ [x])) l2) (make_mono (a++[x])).
       simpl in p\theta. simpl. apply Permutation_trans with (l':=(make\_mono\ (a ++ [x])
       :: make_mono (a\theta ++ [x])
           :: map (fun a1 : list var \Rightarrow make_mono (a1 ++ [x])) l1 ++
              map (fun a1: list var \Rightarrow make_mono (a1 ++ [x])) (2); auto. clear p0.
       rewrite \leftarrow map_app. rewrite \leftarrow (map_cons (fun a1: list var \Rightarrow make_mono (a1
++ [x]) a\theta (@app (list var) l1 \ l2)).
       pose (mulPP_Permutation x \ a \ l \ Hp \ H). apply (Permutation_trans p\theta). apply perm_skip.
       apply IHl.
       \times clear p\theta. apply poly_cons in Hp. apply Hp.
       \times intros m Hin. apply H. intuition.
       \times apply p.
Qed.
Lemma p_map_Permutation : \forall p x,
  is_poly p \rightarrow
  (\forall m, \ln m \ p \rightarrow \ln x \ m) \rightarrow
  Permutation p (map (fun a \Rightarrow (make_mono(a ++ [x]))) (map (remove var_eq_dec x) p)).
Proof.
  intros p \times H H0. rewrite map_map. induction p.
  - auto.
  - simpl. assert (make_mono (@app var (remove var_eq_dec x \ a) [x]) = a).
    + unfold make_mono. rewrite no_nodup_NoDup.
       × apply Permutation_Sorted_mono_eq.
         - apply Permutation_trans with (l':=(remove\ var\_eq\_dec\ x\ a ++ [x])).
             apply Permutation_sym. apply VarSort.Permuted_sort.
             pose (in_split x a). destruct e as [l1 \ [l2 \ e]]. apply H0. intuition.
             rewrite e. apply Permutation_trans with (l':=(x::remove\ var\_eq\_dec\ x\ (l1++x::l2))).
             apply Permutation_sym. apply Permutation_cons_append.
             apply Permutation_trans with (l':=(x::l1++l2)). apply perm_skip.
             rewrite remove_distr_app. replace (x::l2) with ([x]++l2); auto.
             rewrite remove_distr_app. simpl. destruct (var_eq_dec x x); try contradiction.
             rewrite app_nil_l. repeat rewrite not_ln_remove; try apply Permutation_refl;
             try (apply poly_cons in H as []; unfold is_mono in H1;
             apply NoDup_VarSorted in H1; rewrite e in H1; apply NoDup_remove_2 in
H1).
```

```
intros x2. apply H1. intuition. intros x1. apply H1. intuition.
            apply Permutation_middle.

    apply VarSort.LocallySorted_sort.

         - apply poly_cons in H as []. unfold is_mono in H1.
            apply Sorted_VarSorted. auto.
       \times apply Permutation_NoDup with (l:=(x::remove\ var\_eq\_dec\ x\ a)).
         apply Permutation_cons_append. apply NoDup_cons.
         apply remove_In. apply NoDup_remove. apply poly_cons in H as [].
         unfold is_mono in H1. apply NoDup_VarSorted. auto.
    + rewrite H1. apply perm_skip. apply IHp.
       \times apply poly_cons in H. apply H.
       \times intros m Hin. apply H0. intuition.
Qed.
Lemma Permutation_Sorted_eq : \forall (l \ m : list mono),
  Permutation l m \rightarrow
  Sorted (fun x y \Rightarrow is_{true} (MonoOrder.leb x y)) l \rightarrow
  Sorted (fun x y \Rightarrow is\_true (MonoOrder.leb x y)) m \rightarrow
  l = m.
Proof.
  intros l \ m \ Hp \ Hsl \ Hsm. generalize dependent m.
  induction l; induction m; intros.
  - reflexivity.
  - apply Permutation_nil in Hp. auto.
  - apply Permutation_sym, Permutation_nil in Hp. auto.
  - clear IHm. apply Permutation_incl in Hp as Hp. destruct Hp.
    destruct (mono_cmp a a\theta) eqn:Hcomp.
    + apply lex_eq in Hcomp. rewrite Hcomp in *.
       apply Permutation_cons_inv in Hp. f_equal; auto.
       apply IHl.
       \times apply Sorted_inv in Hsl. apply Hsl.
       \times apply Hp.
       \times apply Sorted_inv in Hsm. apply Hsm.
    + apply lex_neq' in Hcomp as Hneq. apply incl_cons_inv in H. destruct H.
       apply Sorted_StronglySorted in Hsm. apply StronglySorted_inv in Hsm as [].
       \times simpl in H. destruct H; try (rewrite H in Hneq; contradiction).
         pose (Forall_In _ _ _ H H3). simpl in i. unfold is_true,
         MonoOrder.leb, mono_cmp in i. apply lex_rev_lt_gt in Hcomp.
         rewrite Hcomp in i. inversion i.
       × apply MonoOrder_Transitive.
    + apply lex_neq' in Hcomp as Hneq. apply incl_cons_inv in H0. destruct H0.
       apply Sorted_StronglySorted in Hsl. apply StronglySorted_inv in Hsl as [].
       \times simpl in H0. destruct H0; try (rewrite H0 in Hneq; contradiction).
```

```
pose (Forall_In \_ \_ \_ \_ H0 H3). simpl in i. unfold is_true in i.
         unfold MonoOrder.leb in i. rewrite Hcomp in i. inversion i.
       × apply MonoOrder_Transitive.
Qed.
Lemma Permutation_sort_eq : \forall l m,
  Permutation l m \leftrightarrow sort l = sort m.
Proof.
  intros l m. split; intros H.
  - assert (H0: Permutation (sort l) (sort m)).
    + apply Permutation_trans with (l:=(\text{sort } l)) (l':=m) (l'':=(\text{sort } m)).
       \times apply Permutation_sym. apply Permutation_sym in H.
         apply (Permutation_trans H (Permuted_sort l)).
       × apply Permuted_sort.
    + apply (Permutation_Sorted_eq _ _ H0 (LocallySorted_sort l) (LocallySorted_sort m)).
  - assert (Permutation (sort l) (sort m)).
    + rewrite H. apply Permutation_refl.
    + pose (Permuted_sort l). pose (Permuted_sort m).
       apply (Permutation_trans p) in H0. apply Permutation_sym in p0.
       apply (Permutation_trans H\theta) in p\theta. apply p\theta.
Qed.
Lemma make_poly_Permutation : \forall p q,
  Permutation p \ q \rightarrow \text{make\_poly } p = \text{make\_poly } q.
Proof.
  intros. unfold make_poly.
  apply Permutation_sort_eq, nodup_cancel_Permutation, Permutation_map.
  auto.
Qed.
Lemma no_sort_MonoSorted : \forall p,
  Sorted mono_lt p \rightarrow
  MonoSort.sort p = p.
Proof.
  intros p H. unfold make_poly. apply Permutation_Sorted_eq.
  - apply Permutation_sym. apply Permuted_sort.
  - apply LocallySorted_sort.
  - apply Sorted_MonoSorted. auto.
Lemma make_poly_app_comm : \forall p \ q,
  make_poly (p ++ q) = make_poly (q ++ p).
Proof.
  intros p q. apply Permutation_sort_eq.
  apply nodup_cancel_Permutation. apply Permutation_map.
```

```
apply Permutation_app_comm.
Qed.
Lemma no_make_poly : \forall p,
  is_poly p \rightarrow
  make_poly p = p.
Proof.
  unfold make_poly, is_poly. intros m []. rewrite no_sort_MonoSorted.
  - rewrite no_nodup_cancel_NoDup.
    + apply no_map_make_mono. intros m\theta Hin. apply H\theta. auto.
    + apply NoDup_MonoSorted in H. rewrite no_map_make_mono; auto.
  - apply Sorted_nodup_cancel.
    + apply mono_lt_Transitive.
    + rewrite no_map_make_mono; auto.
Qed.
Lemma sort_app_comm : \forall l m,
  sort (l ++ m) = sort (m ++ l).
Proof.
  intros l m. pose (Permutation.Permutation_app_comm l m).
  apply Permutation_sort_eq. auto.
Qed.
Lemma sort_nodup_cancel_assoc : \forall l,
  sort (nodup_cancel mono_eq_dec l) = nodup_cancel mono_eq_dec (sort l).
Proof.
  intros l. apply Permutation_Sorted_eq.
  - pose (Permuted_sort (nodup_cancel mono_eq_dec l)). apply Permutation_sym in p.
    apply (Permutation_trans p). clear p. apply NoDup_Permutation.
    + apply NoDup_nodup_cancel.
    + apply NoDup_nodup_cancel.
    + intros x. split.
       \times intros H. apply Permutation_in with (l)=(nodup\_cancel mono\_eq\_dec l).
         apply nodup_cancel_Permutation. apply Permuted_sort. auto.
       \times intros H. apply Permutation_in with (l = (\text{nodup\_cancel mono\_eq\_dec (sort } l))).
         apply nodup_cancel_Permutation. apply Permutation_sym. apply Permuted_sort.
auto.

    apply LocallySorted_sort.

    apply Sorted_nodup_cancel.

    + apply MonoOrder_Transitive.
    + apply LocallySorted_sort.
Qed.
Lemma addPP_comm : \forall p \ q,
  addPP p q = addPP q p.
```

```
Proof.
  intros p q. unfold addPP, make_poly. repeat rewrite map_app.
  repeat rewrite sort_nodup_cancel_assoc. rewrite sort_app_comm.
  reflexivity.
Qed.
Hint Unfold addPP mulPP.
Lemma mulPP_0: \forall p,
  mulPP [] p = [].
Proof.
  intros p. unfold mulPP. rewrite (@distribute_nil var). auto.
Qed.
Lemma mulPP_0r : \forall p,
  muIPP p [] = [].
Proof.
  intros p. unfold mulPP. rewrite (@distribute_nil_r var). auto.
Lemma addPP_0 : \forall p,
  is_poly p \rightarrow
  addPP [] p = p.
Proof.
  intros p Hpoly. unfold addPP. simpl. apply no_make_poly. auto.
Qed.
Lemma addPP_Or : \forall p,
  is_poly p \rightarrow
  addPP p = p.
  intros p Hpoly. unfold addPP. rewrite app_nil_r. apply no_make_poly. auto.
Qed.
Lemma addPP_p_p : \forall p,
  is_poly p \rightarrow
  addPP p p = [].
Proof.
  intros p Hp. unfold addPP. unfold make_poly. rewrite no_map_make_mono.
  - rewrite nodup_cancel_self. auto.
  - intros m Hin. apply Hp. apply in_{app_i} iff in Hin. intuition.
Qed.
Lemma sort_pointless : \forall p \ q,
  sort (sort p ++ q) =
  sort (p ++ q).
Proof.
  intros p q. apply Permutation_sort_eq.
```

```
apply Permutation_app_tail. apply Permutation_sym.
  apply Permuted_sort.
Qed.
Lemma make_poly_pointless_weak : \forall p \ q,
  (\forall m, \text{ In } m \ p \rightarrow \text{ is_mono } m) \rightarrow
  (\forall m, \text{ln } m \ q \rightarrow \text{is\_mono } m) \rightarrow
  make_poly (make_poly p ++ q) =
  make_poly (p ++ q).
Proof.
  intros p \ q \ Hmp \ Hmq. induction p; auto.
  unfold make_poly. repeat rewrite no_map_make_mono; intuition.
  apply Permutation_sort_eq. rewrite sort_nodup_cancel_assoc.
  rewrite nodup_cancel_pointless. apply nodup_cancel_Permutation.
  apply Permutation_sym. apply Permutation_app_tail. apply Permuted_sort.
  - simpl in H. rewrite in_app_iff in H. destruct H as [H|H|H]; intuition.
    rewrite H in Hmp; intuition.
  - rewrite in_app_iff in H. destruct H; intuition.
     apply In\_sorted in H. apply nodup\_cancel\_in in H. intuition.
Qed.
Lemma mono_in_map_make_mono : \forall p m,
  In m (map make_mono p) \rightarrow is_mono m.
Proof.
  intros. apply in_map_iff in H as [x] . rewrite \leftarrow H. auto.
Qed.
Lemma make_poly_pointless : \forall p \ q,
  make_poly (make_poly p ++ q) =
  make_poly (p ++ q).
Proof.
  intros p q. rewrite make_poly_app_comm.
  rewrite ← map_make_mono_pointless. rewrite make_poly_app_comm.
  rewrite \leftarrow (map_make_mono_pointless p). rewrite (make_poly_app_comm _{-} q).
  rewrite \leftarrow (map_make_mono_pointless q). rewrite (make_poly_app_comm _ (map make_mono
p)).
  rewrite \leftarrow (make_poly_pointless_weak (map make_mono p)). unfold make_poly.
  rewrite (no_map_make_mono (map make_mono p)). auto.
  apply mono_in_map_make_mono. apply mono_in_map_make_mono.
  apply mono_in_map_make_mono.
Qed.
Lemma make_poly_pointless_r : \forall p \ q,
  make_poly (p ++ make_poly q) =
  make_poly (p ++ q).
```

```
Proof.
  intros p q. rewrite make_poly_app_comm. rewrite make_poly_pointless.
  apply make_poly_app_comm.
Lemma concat_map_map : \forall A B C l (f:B \rightarrow C) (g:A \rightarrow \textbf{list } B),
  concat (map (fun a \Rightarrow map f (q a)) l) =
  map f (concat (map q l)).
Proof.
  intros. induction l; auto.
  simpl. rewrite map_app. f_equal. auto.
Lemma mulPP'_mulPP'' : \forall p \ q,
  mulPP' p q = mulPP'' p q.
Proof.
  intros p q. unfold mulPP', mulPP'', mulMP, mulMP', make_poly.
  rewrite concat_map_map.
  rewrite (no_map_make_mono (map _ _)); auto.
  intros. apply in\_map\_iff in H as [n].
  rewrite \leftarrow H.
  auto.
Qed.
Lemma mulMP'_mulMP'' : \forall m p q,
  make\_poly (mulMP' p m ++ q) = make\_poly (mulMP'' p m ++ q).
Proof.
  intros m p q. unfold mulMP', mulMP''. rewrite make_poly_app_comm.
  rewrite ← map_make_mono_pointless. rewrite make_poly_app_comm.
  rewrite \( \to \text{make_poly_pointless. unfold make_poly at 2. rewrite (no_map_make_mono
(map make_mono _)).
  unfold make_poly at 3. rewrite (make_poly_app_comm _ q).
  rewrite \leftarrow (map_make_mono_pointless q). rewrite make_poly_app_comm. auto.
  apply mono_in_map_make_mono.
Qed.
Lemma mulPP''_mulPP''' : \forall p \ q,
  mulPP'' p q = mulPP''' p q.
Proof.
  intros p q. induction q. auto. unfold mulPP'', mulPP'''. simpl.
  rewrite mulMP'_mulMP''. repeat rewrite ← (make_poly_pointless_r _ (concat _)).
  f_{equal}. f_{equal}. apply IHq.
Qed.
Lemma mulPP_mulPP'': \forall p \ q,
  muIPP p q = muIPP'' p q.
```

```
Proof.
  intros. rewrite mulPP_mulPP', mulPP'_mulPP''. auto.
Qed.
Lemma mulPP_mulPP''' : \forall p \ q,
  mulPP p q = mulPP''' p q.
Proof.
  intros. rewrite mulPP_mulPP", mulPP"_mulPP"". auto.
Qed.
Lemma addPP_assoc : \forall p \ q \ r,
  addPP (addPP p q) r = addPP p (addPP q r).
Proof.
  intros p q r. rewrite (addPP_comm _ (addPP _ _)). unfold addPP.
  repeat rewrite make_poly_pointless. repeat rewrite ← app_assoc.
  apply Permutation_sort_eq. apply nodup_cancel_Permutation. apply Permutation_map.
  rewrite (app_assoc q). apply Permutation_app_comm with (l':=(q++r)).
Qed.
Lemma mulPP_1r: \forall p,
  is_poly p \rightarrow
  muIPP p [[]] = p.
Proof.
  intros p H. unfold mulPP, distribute. simpl. rewrite app_nil_r.
  rewrite map_id. apply no_make_poly. auto.
Qed.
Lemma make_mono_app_comm : \forall m n,
  \mathsf{make}\_\mathsf{mono}\ (m ++ n) = \mathsf{make}\_\mathsf{mono}\ (n ++ m).
Proof.
  intros m n. apply Permutation_sort_mono_eq. apply Permutation_nodup.
  apply Permutation_app_comm.
Qed.
Lemma mulPP_comm : \forall p \ q,
  muIPP p q = muIPP q p.
Proof.
  intros p q. repeat rewrite mulPP_mulPP".
  generalize dependent q. induction p; induction q as [m].
  - auto.
  - unfold mulPP'', mulMP'. simpl. rewrite (@concat_map_nil mono). auto.
  - unfold mulPP'', mulMP'. simpl. rewrite (@concat_map_nil mono). auto.
  - unfold mulPP''. simpl. rewrite (app_comm_cons \_ (make_mono (a++m))).
    rewrite \leftarrow make_poly_pointless_r. rewrite mulPP''_refold. rewrite \leftarrow IHp.
    unfold mulPP". rewrite make_poly_pointless_r. simpl. unfold mulMP at 2.
    rewrite app_comm_cons. rewrite ← make_poly_pointless_r. rewrite mulPP''_refold.
```

```
rewrite IHq. unfold mulPP". rewrite make_poly_pointless_r. simpl.
    unfold mulMP' at 1. rewrite app_comm_cons. rewrite app_assoc.
    rewrite ← make_poly_pointless_r. rewrite mulPP''_refold. rewrite ← IHp.
    unfold mulPP". rewrite make_poly_pointless_r. simpl. rewrite (app_assoc (map _
(map = q)).
    apply Permutation_sort_eq. apply nodup_cancel_Permutation.
    apply Permutation_map. rewrite make_mono_app_comm. apply perm_skip.
    apply Permutation_app_tail. apply Permutation_app_comm.
Qed.
Lemma make_poly_nil:
  make_poly [] = [].
Proof.
  unfold make_poly, sort. auto.
Qed.
Lemma mulPP"_cons : \forall q \ a \ p,
  make_poly (mulMP' q a ++ mulPP'' q p) =
  mulPP'' q (a::p).
  intros q a p. unfold mulPP". rewrite make_poly_pointless_r. auto.
Qed.
Lemma Permutation_VarSort_I : \forall m n,
  Permutation m \ n \leftrightarrow Permutation (VarSort.sort m) n.
Proof.
  intros m n. split; intro.
  - apply Permutation_trans with (l':=m). apply Permutation_sym.
    apply VarSort.Permuted_sort. apply H.
  - apply Permutation_trans with (l':=(VarSort.sort m)).
    apply VarSort.Permuted_sort. apply H.
Qed.
Lemma Permutation_VarSort_r : \forall m n,
  Permutation m n \leftrightarrow Permutation m (VarSort.sort n).
Proof.
  intros m n. split; intro.

    apply Permutation_sym. rewrite ← Permutation_VarSort_I.

    apply Permutation_sym; auto.
  - apply Permutation_sym. rewrite → Permutation_VarSort_I.
    apply Permutation_sym; auto.
Qed.
Lemma make_mono_pointless : \forall m \ a,
  make\_mono (m ++ make\_mono a) = make\_mono (m ++ a).
Proof.
```

```
intros m a. apply Permutation_sort_mono_eq.
  apply Permutation_trans with (l':=(nodup \ var_eq_dec \ (m ++ nodup \ var_eq_dec \ a))).
    apply Permutation_nodup. apply Permutation_app_head. unfold make_mono.
    rewrite ← Permutation_VarSort_I. auto.
  induction a; auto. simpl. destruct in_dec.
  - apply Permutation_sym. apply Permutation_trans with (l':=(nodup\ var\_eq\_dec\ (a::m))
++ a0 ))).
      apply Permutation_nodup. apply Permutation_sym. apply Permutation_middle.
    simpl. destruct in_dec.
    + apply Permutation_sym. apply IHa.
    + exfalso. apply n. intuition.
  - apply Permutation_trans with (l':=(nodup \ var\_eq\_dec \ (a::m++nodup \ var\_eq\_dec \ a\theta))).
      apply Permutation_nodup. apply Permutation_sym. apply Permutation_middle.
    apply Permutation_sym. apply Permutation_trans with (l':=(nodup\ var\_eq\_dec
      (a::m++a\theta))). apply Permutation_nodup. apply Permutation_sym. apply Permuta-
tion_middle.
    simpl. destruct (in_dec var_eq_dec a m).
    + assert (In a (m++a\theta)). intuition. destruct in_dec; try contradiction.
      assert (\ln a \ (m + + \text{nodup } \text{var\_eq\_dec } a\theta)). intuition. destruct \ln_{\text{dec}};
      try contradiction. apply Permutation_sym. apply IHa.
    + assert (\neg \text{In } a \ (m++a\theta)). intuition. apply in_app_iff in H. destruct H; auto.
      assert (\neg \ln a \ (m + + \text{nodup var_eq_dec } a\theta)). intuition. apply \text{in\_app\_iff} in H0.
      destruct H0; auto. apply nodup_In in H0. auto. repeat destruct in_dec; try
contradiction.
      apply perm_skip. apply Permutation_sym. apply IHa.
Qed.
Lemma make_mono_self : \forall m,
  is_mono m \rightarrow
  make_mono(m ++ m) = m.
Proof.
  intros m H. apply Permutation_Sorted_mono_eq.
  - induction m; auto. unfold make_mono. rewrite ← Permutation_VarSort_l. simpl.
    assert (\ln a (m++a::m)).
       intuition. destruct in_dec; try contradiction.
    apply Permutation_trans with (l':=(nodup \ var\_eq\_dec \ (a::m++m))).
        apply Permutation_nodup. apply Permutation_app_comm.
    simpl. assert (\neg \ln a \ (m++m)).
       apply NoDup_VarSorted in H as H1. apply NoDup_cons_iff in H1.
    intro. apply H1. apply in_app_iff in H2; intuition.
    destruct in_dec; try contradiction. apply perm_skip.
    apply Permutation_VarSort_I in IHm. auto. apply (mono_cons _ _ H).

    apply VarSort.LocallySorted_sort.
```

```
- apply Sorted_VarSorted. apply H.
Qed.
Lemma make_poly_refold : \forall p,
    sort (nodup_cancel mono_eq_dec (map make_mono p)) =
    make_poly p.
Proof. auto. Qed.
Lemma mulPP_p_p: \forall p,
    is_poly p \rightarrow
    mulPP p p = p.
Proof.
    intros p H. rewrite mulPP_mulPP'. rewrite mulPP'_mulPP''. apply Permutation_Sorted_eq.
   - induction p; auto. unfold mulPP'', make_poly. rewrite \leftarrow Permutation_MonoSort_I.
        simpl map at 1. apply poly_cons in H as H1. destruct H1. rewrite make_mono_self;
auto.
        rewrite no_make_mono; auto. rewrite map_app. apply Permutation_trans with
            (l':=(nodup\_cancel\ mono\_eq\_dec\ (map\ make\_mono\ (concat\ (map\ (mulMP'\ (a::
            (p)(p)(p) ++ (a :: map make_mono (map make_mono (map (app <math>(a :: map make_mono (map (app <math>(a :: map make_mono (map make_mo
            apply nodup_cancel_Permutation. rewrite app_comm_cons. apply Permutation_app_comm.
        rewrite \leftarrow nodup_cancel_pointless. apply Permutation_trans with (l':=(nodup\_cancel
mono_eq_dec
            (\text{nodup\_cancel mono\_eq\_dec }(\text{map make\_mono }(\text{concat }(\text{map }(\text{mulMP'}\ p)\ (a::\ p)))))
            ++ (a :: map make_mono (map make_mono (map (app a) p))))).
            apply nodup_cancel_Permutation. apply Permutation_app_tail. apply Permutation_sort_eq.
            repeat rewrite make_poly_refold. repeat rewrite mulPP''_refold.
            repeat rewrite ← mulPP'_mulPP''. repeat rewrite ← mulPP_mulPP'. apply mulPP_comm.
        rewrite nodup_cancel_pointless. apply Permutation_trans with (l':=
            (nodup\_cancel mono\_eq\_dec (a :: map make\_mono (map make\_mono (map (app a))))
p))
            ++ (map make_mono (concat (map (mulMP' p) (a :: p))))))).
            apply nodup_cancel_Permutation. apply Permutation_app_comm.
        simpl map. rewrite map_app. unfold mulMP' at 1. repeat rewrite (no_map_make_mono
        (map make_mono _)); try apply mono_in_map_make_mono. rewrite (app_assoc (map
_ _)).
        apply Permutation_trans with (l':=(nodup\_cancel mono\_eq\_dec) (map make_mono) (map
            (app \ a) \ p) ++ map make_mono <math>(map \ (app \ a) \ p)) ++ a :: map make_mono (concat
            (map (mulMP' p) p)))). apply nodup_cancel_Permutation. apply Permutation_middle.
        rewrite \leftarrow nodup_cancel_pointless. rewrite nodup_cancel_self. simpl app.
        apply Permutation_trans with (l':=(nodup\_cancel mono\_eq\_dec (map make\_mono))
            (concat (map (mulMP' p) p)) ++ [a]))). apply nodup_cancel_Permutation.
            replace (a::map make_mono (concat (map (mulMP' <math>p) p))) with ([a] ++ map make_mono (concat (map (mulMP' <math>p) p)))
```

```
make_mono (concat (map (mulMP' p) p))); auto. apply Permutation_app_comm.
    rewrite \leftarrow nodup_cancel_pointless. apply Permutation_trans with (l':=(nodup\_cancel
      mono\_eq\_dec(p ++ [a])). apply nodup\_cancel\_Permutation.
       apply Permutation_app_tail. unfold mulPP'', make_poly in IHp.
      rewrite ← Permutation_MonoSort_I in IHp. apply IHp; auto.
    replace (a::p) with ([a]++p); auto. rewrite no_nodup_cancel_NoDup.
    apply Permutation_app_comm. apply Permutation_NoDup with (l:=(a::p)).
    replace (a::p) with ([a]++p); auto. apply Permutation_app_comm.
    destruct H. apply NoDup_MonoSorted in H. auto.

    unfold make_poly. apply LocallySorted_sort.

    apply Sorted_MonoSorted. apply H.

Qed.
Lemma mono_in_concat_mulMP' : \forall p \ q \ m,
  In m (concat (map (mulMP' p) q)) \rightarrow is_mono m.
Proof.
  intros. unfold mulMP' in H. rewrite concat_map_map in H.
  apply in_map_iff in H as [x]. rewrite \leftarrow H. auto.
Lemma mono_in_mulMP' : \forall p \ n \ m,
  In m (mulMP' p n) \rightarrow is_mono m.
Proof.
  intros. unfold mulMP' in H. apply (mono_in_map_make_mono _ _ H).
Qed.
Lemma mono_in_make_poly : \forall p m,
  In m (make_poly p) \rightarrow is_mono m.
Proof.
  intros. unfold make_poly in H. apply In_sorted in H.
  apply nodup_cancel_in in H. apply (mono_in_map_make_mono _ _ H).
Lemma mono_in_mulPP'' : \forall p \ q \ m,
  In m (mulPP'' p q) \rightarrow is_mono m.
 intros. unfold mulPP" in H. apply (mono_in_make_poly _ _ H).
Qed.
Lemma mulMP'_refold : \forall p m,
  map make_mono (map (app m) p) = mulMP' p m.
Proof.
  auto.
Qed.
Lemma muIMP\_muIMP': \forall p \ q \ m,
  make_poly (mulMP p \ m ++ q) = make_poly (mulMP' p \ m ++ q).
```

```
Proof.
  intros. unfold make_poly, mulMP. rewrite map_app, mulMP'_refold.
  rewrite map_app. rewrite (no_map_make_mono (mulMP' _ _)); auto.
  apply mono_in_mulMP'.
Qed.
Lemma mulMP_1: \forall p,
  mulMP p = p.
Proof.
  intros. unfold mulMP. simpl.
  rewrite map_id. auto.
Lemma mulMP"_1 : \forall p,
  is_poly p \rightarrow
  muIMP'' p [] = p.
Proof.
  intros. unfold mulMP". simpl.
  rewrite map_id. rewrite no_make_poly; auto.
Qed.
Definition parity_match (l m:poly) : Prop :=
  \forall x, even (count_occ mono_eq_dec l(x)) = even (count_occ mono_eq_dec m(x)).
Lemma even_nodup_cancel : \forall p,
  (\forall x, even (count_occ mono_eq_dec p x) = true) \rightarrow
  (\forall x, \neg \ln x \text{ (nodup\_cancel mono\_eq\_dec } p)).
Proof.
  intros p H m. intro. induction p.
  - inversion H0.
  - simpl in *. pose (H \ m) as H1. symmetry in H1. destruct (\text{mono\_eq\_dec } a \ m).
    + symmetry in H1. rewrite \leftarrow e in H1. rewrite even_succ in H1. rewrite \leftarrow
negb_{even} in H1.
       rewrite Bool.negb_true_iff in H1. rewrite H1 in H0. rewrite e in H0.
       apply remove_In in H0. inversion H0.
    + destruct (even (count_occ mono_eq_dec p(a)).
       \times destruct H0; try contradiction. apply In_{remove} in H0. symmetry in H1.
         apply not_in_nodup_cancel in H1. contradiction.
       \times apply In_remove in H0. symmetry in H1. apply not_in_nodup_cancel in H1.
         contradiction.
Qed.
Lemma parity_match_empty : \forall q,
  parity_match [] q \rightarrow
  Permutation [] (nodup_cancel mono_eq_dec q).
Proof.
```

```
intros q H. unfold parity_match in H. simpl in H.
  symmetry in H. pose (even_nodup_cancel q H). apply nothing_in_empty in n.
  rewrite n. auto.
Qed.
Lemma parity_match_refl : \forall l,
  parity_match l l.
Proof.
  intros l. unfold parity_match. auto.
Lemma parity_match_sym : \forall l m,
  parity_match l m \leftrightarrow \text{parity_match } m l.
Proof.
  intros l m. unfold parity_match. split; intros H x; auto.
Qed.
Lemma parity_match_trans : \forall p \ q \ r,
  parity_match p q \rightarrow
  parity_match q r \rightarrow
  parity_match p r.
Proof.
  intros p q r H H0. unfold parity_match in *. intros x.
  rewrite H. rewrite H\theta. auto.
Qed.
Hint Resolve parity_match_reft parity_match_sym parity_match_trans.
Lemma parity_match_cons : \forall a l1 l2,
  parity_match (a::l1) (a::l2) \leftrightarrow
  parity_match l1 l2.
Proof.
  intros a l1 l2. unfold parity_match. split; intros H x.
  - pose (H x). symmetry in e. simpl in e. destruct (mono_eq_dec a x); auto.
     repeat rewrite even_succ in e. repeat rewrite \leftarrow negb_even in e.
     apply Bool.negb_sym in e. rewrite Bool.negb_involutive in e. auto.
  - simpl. destruct (mono_eq_dec a x); auto.
     repeat rewrite even_succ. repeat rewrite \leftarrow negb_even.
     apply Bool.negb_sym. rewrite Bool.negb_involutive. auto.
Qed.
Lemma parity_match_double : \forall a l,
  parity_match (a::a::l) l.
Proof.
  intros a l. unfold parity_match. intros x. simpl.
  destruct (mono\_eq\_dec a x).
  - rewrite even_succ. rewrite odd_succ. auto.
```

```
- auto.
Qed.
Lemma parity_match_cons_swap : \forall a l1 l2,
  parity_match (a::l1) l2 \rightarrow
  parity_match l1 (a::l2).
Proof.
  intros a\ l1\ l2\ H. apply (parity_match_cons a) in H.
  apply parity_match_sym in H. apply parity_match_trans with (r:=l1) in H.
  apply parity_match_sym in H. auto. apply parity_match_double.
Qed.
Lemma parity_match_ln : \forall a l1 l2,
  even (count_occ mono_eq_dec l1 \ a) = true \rightarrow
  parity_match (a::l1) l2 \rightarrow
  In a 12.
Proof.
  intros a l1 l2 H H0. apply parity_match_cons_swap in H0.
  rewrite H0 in H. simpl in H. destruct (mono_eq_dec a a); try contradiction.
  rewrite even_succ in H. rewrite \leftarrow negb_even in H. rewrite Bool.negb_true_iff in H.
  assert (count_occ mono_eq_dec l2 a > 0). destruct count_occ. inversion H.
  apply gt_Sn_O. apply count_occ_In in H1. auto.
Qed.
Lemma Permutation_parity_match : \forall p \ q,
  Permutation p \ q \rightarrow \text{parity\_match} \ p \ q.
Proof.
  intros p \ q \ H. induction H.
  - auto.
  - apply parity_match_cons. auto.
  - repeat apply parity_match_cons_swap. unfold parity_match. intros x\theta.
    simpl. destruct mono_eq_dec; destruct mono_eq_dec;
    repeat (rewrite even_succ; rewrite odd_succ); auto.
  - apply parity_match_trans with (q:=l'); auto.
Qed.
Lemma parity_nodup_cancel_Permutation : \forall p \ q,
  parity_match p q \rightarrow
  Permutation (nodup_cancel mono_eq_dec p) (nodup_cancel mono_eq_dec q).
  intros p \neq H. generalize dependent q. induction p; induction q; intros.
  - auto.
  - simpl nodup_cancel at 1. apply parity_match_empty. auto.
  - simpl nodup_cancel at 2. apply Permutation_sym. apply parity_match_empty.
    apply parity_match_sym. auto.
```

```
- clear IHq. destruct (mono_eq_dec a a\theta).
    + rewrite e. simpl. rewrite e in H. apply parity_match_cons in H.
      destruct even eqn:Hev; rewrite H in Hev; rewrite Hev.
       × apply perm_skip. apply remove_Permutation. auto.
       × apply remove_Permutation. auto.
    + simpl nodup\_cancel at 1. destruct even eqn:Hev.
       \times assert (Hev':=Hev). apply parity_match_In with (l2:=(a0::q)) in Hev; auto.
         destruct Hev. symmetry in H0. contradiction. apply |\mathbf{n}_{-}\mathbf{split}| in H0 as [l1]l2
H0]].
         rewrite H0. apply Permutation_sym. apply Permutation_trans with (l':=(
           nodup_cancel mono_eq_dec (a::l2++a0::l1)). apply nodup_cancel_Permutation.
           rewrite app_comm_cons. apply (Permutation_app_comm).
         simpl. rewrite H0 in H. apply parity_match_trans with (r:=(a::l2++a0::l1))
in H.
         apply parity_match_cons in H. rewrite H in Hev'. rewrite Hev'.
         apply perm_skip. apply remove_Permutation. apply Permutation_sym.
         apply IHp. auto. rewrite app_comm_cons. apply Permutation_parity_match.
         apply Permutation_app_comm.
       \times apply parity_match_cons_swap in H. rewrite H in Hev. assert (Hev2:=Hev).
         rewrite count_occ_Permutation with (l':=(a::q++[a0])) in Hev. simpl in Hev.
         destruct (mono_eq_dec a a); try contradiction. rewrite even_succ in Hev.
         rewrite \leftarrow negb_even in Hev. rewrite Bool.negb_false_iff in Hev.
         rewrite \leftarrow (not_In_remove _ mono_eq_dec a).
         assert (\forall l, remove mono\_eq\_dec a (nodup\_cancel mono\_eq\_dec (l)) =
           remove mono_eq_dec a (nodup_cancel mono_eq_dec (a::l))).
           intros l. simpl. destruct (even (count_occ _ l a)).
           simpl. destruct (mono_eq_dec a a); try contradiction.
           rewrite (not_In_remove _ _ _(remove _ _ _)). auto. apply remove_In.
           rewrite (not_In_remove _ _ _(remove _ _ _)). auto. apply remove_In.
         rewrite (H0\ (a0::q)). apply remove_Permutation. apply IHp. auto.
         apply not_in_nodup_cancel. rewrite count_occ_Permutation with (l':=(a\theta::q))
in Hev.
         auto. replace (a\theta::q) with ([a\theta]++q); auto. apply Permutation_app_comm.
         apply perm_skip. replace (a\theta::q) with ([a\theta]++q); auto. apply Permutation_app_comm.
Qed.
Lemma count_occ_map_lt : \forall p \ a \ f,
  count\_occ mono\_eq\_dec p \ a \le count\_occ mono\_eq\_dec (map f p) (f a).
Proof.
  intros p a f. induction p. auto. simpl. destruct mono_eq_dec.
  - rewrite e. destruct mono_eq_dec; try contradiction. simpl. apply |e_n_S. auto.
  - destruct mono_eq_dec; auto.
Qed.
```

```
Lemma count_occ_map_sub : \forall f \ a \ p,
  count_occ\ mono_eq_dec\ (map\ f\ (remove\ mono_eq_dec\ a\ p))\ (f\ a) =
  count\_occ\ mono\_eq\_dec\ (map\ f\ p)\ (f\ a)\ -\ count\_occ\ mono\_eq\_dec\ p\ a.
Proof.
  intros f a p. induction p; auto. simpl. destruct mono_eq_dec.
  - rewrite e. destruct mono_eq_dec; try contradiction. destruct mono_eq_dec;
    try contradiction. simpl. rewrite \leftarrow e. auto.
  - simpl. destruct mono_eq_dec.
    + destruct mono_eq_dec. symmetry in e\theta; contradiction. rewrite IHp.
       rewrite sub_succ_l. auto. apply count_occ_map_lt.
    + destruct mono_eq_dec. symmetry in e; contradiction. auto.
Qed.
Lemma count_occ_map_neq_remove : \forall f \ a \ p \ x,
  x \neq (f \ a) \rightarrow
  count_occ mono_eq_dec (map f (remove mono_eq_dec a p)) x =
  count\_occ\ mono\_eq\_dec\ (map\ f\ p)\ x.
Proof.
  intros. induction p as [b]; auto. simpl. destruct (mono_eq_dec a b).
  - destruct mono_eq_dec. rewrite \leftarrow e in e\theta. symmetry in e\theta. contradiction.
    auto.
  - simpl. destruct mono_eq_dec; auto.
Lemma f_equal_sum_lt : \forall f \ a \ b \ p,
  b \neq a \rightarrow (f \ a) = (f \ b) \rightarrow
  count_occ mono_eq_dec p b +
  count_occ mono_eq_dec p a \leq
  count\_occ\ mono\_eq\_dec\ (map\ f\ p)\ (f\ a).
Proof.
  intros f a b p Hne Hfe. induction p as [c]; auto. simpl. destruct mono_eq_dec.
  - rewrite e. destruct mono_eq_dec; try contradiction. rewrite Hfe.
    destruct mono_eq_dec; try contradiction. simpl. apply le_n_S.
    rewrite \leftarrow Hfe. auto.
  - destruct mono_eq_dec.
    + rewrite e. destruct mono_eq_dec; try contradiction. rewrite plus_comm.
       simpl. rewrite plus_comm. apply le_n_S. auto.
    + destruct mono_eq_dec.
       \times apply le_S. auto.
       \times auto.
Qed.
Lemma count_occ_nodup_map_lt : \forall p f a,
  count_occ mono_eq_dec (nodup_cancel mono_eq_dec p) a <
  count\_occ mono_eq_dec (map f (nodup_cancel mono_eq_dec p)) (f a).
```

```
Proof.
  intros p f a. induction p as [|b|]; auto. simpl. destruct even eqn: Hev.
  - simpl. destruct mono_eq_dec.
    + rewrite e. destruct mono_eq_dec; try contradiction. apply e_n_S. auto.
      rewrite count_occ_remove. apply le_0_1.
    + rewrite count_occ_neq_remove; auto. rewrite not_ln_remove.
      destruct mono_eq_dec; firstorder. apply not_in_nodup_cancel; auto.
  - destruct (mono_eq_dec b a) eqn:Hba.
    + rewrite e. rewrite count_occ_remove. apply e_0.
    + rewrite count_occ_neq_remove; auto. destruct (mono_eq_dec (f \ b) \ (f \ a)) \ eqn: Hfba.
       \times rewrite \leftarrow e. rewrite count_occ_map_sub. rewrite e. apply e_add_e_sub_e.
         apply f_equal_sum_lt; auto.
       x rewrite count_occ_map_neg_remove; auto.
Qed.
Lemma nodup_cancel_map : \forall p f,
  Permutation
    (nodup\_cancel mono\_eq\_dec (map f (nodup\_cancel mono\_eq\_dec p)))
    (nodup\_cancel mono\_eq\_dec (map f p)).
Proof.
  intros p f. apply parity_nodup_cancel_Permutation. unfold parity_match.
  intros x. induction p; auto. simpl. destruct (even (count_occ p a)) eqn:Hev.
  - simpl. destruct mono_eq_dec.
    + repeat rewrite even_succ. repeat rewrite ← negb_even. rewrite not_ln_remove.
      rewrite IHp. auto. apply not_in_nodup_cancel. auto.
    + rewrite not_In_remove. apply IHp. apply not_in_nodup_cancel. auto.
  - simpl. destruct mono_eq_dec.
    + rewrite \leftarrow e. rewrite count_occ_map_sub. rewrite even_sub. rewrite \leftarrow e in
IHv.
      rewrite IHp. rewrite count_occ_nodup_cancel. rewrite Hev. rewrite even_succ.
      rewrite \leftarrow negb_even. destruct (even (count_occ _ (map f p) _)); auto.
      apply count_occ_nodup_map_lt.
    + rewrite count_occ_map_neq_remove; auto.
Qed.
Lemma map_app_make_poly : \forall m p,
  (\forall a, \ln a \ p \rightarrow \text{is}\_\text{mono} \ a) \rightarrow
  make\_poly\ (map\ (app\ m)\ (make\_poly\ p)) = make\_poly\ (map\ (app\ m)\ p).
Proof.
  intros m p Hm. apply Permutation_sort_eq.
  apply Permutation_trans with (l':=(nodup_cancel mono_eq_dec (map make_mono
    (map (app m) (nodup\_cancel mono\_eq\_dec (map make\_mono p)))))).
    apply nodup_cancel_Permutation. repeat apply Permutation_map.
    unfold make_poly. rewrite ← Permutation_MonoSort_I. auto.
```

```
rewrite (no_map_make_mono p); auto. repeat rewrite map_map. apply nodup_cancel_map.
Qed.
Lemma mulMP''_make_poly : \forall p m,
  (\forall a, \ln a \ p \rightarrow \text{is}\_\text{mono} \ a) \rightarrow
  muIMP'' (make_poly p) m =
  mulMP'' p m.
Proof.
  intros p m. unfold mulMP''. apply map_app_make_poly.
Lemma mulMP'_app : \forall p \ q \ m,
  muIMP'(p ++ q)m =
  muIMP' p m ++ muIMP' q m.
Proof.
  intros p \neq m. unfold mulMP'. repeat rewrite map_app. auto.
Qed.
Lemma mulMP'_assoc : \forall q \ a \ m,
  muIMP' (muIMP' q a) m =
  muIMP' (muIMP' q m) a.
Proof.
  intros q a m. unfold mulMP'. induction q.
  - auto.
  - simpl. repeat rewrite make_mono_pointless. f_equal.
    + apply Permutation_sort_mono_eq. apply Permutation_nodup.
      repeat rewrite app_assoc. apply Permutation_app_tail.
      apply Permutation_app_comm.
    + apply IHq.
Qed.
Lemma mulPP_assoc : \forall p \ q \ r,
  muIPP (muIPP p q) r = muIPP p (muIPP q r).
Proof.
  intros p \ q \ r. rewrite (mulPP_comm _ (mulPP q _)). rewrite (mulPP_comm p _).
  generalize dependent r. induction p; induction r as [m];
  repeat rewrite mulPP_0; repeat rewrite mulPP_0r; auto.
  repeat rewrite mulPP_mulPP'' in *. unfold mulPP''. simpl.
  repeat rewrite \leftarrow (make_poly_pointless_r _ (concat _)).
  repeat rewrite mulPP"_refold. repeat rewrite (mulPP"_cons q).
  pose (IHp\ (m::r)). repeat rewrite mulPP_mulPP'' in e. rewrite \leftarrow e.
  rewrite IHr. unfold mulPP" at 2, mulPP" at 4. simpl.
  repeat rewrite make_poly_pointless_r. repeat rewrite app_assoc.
  repeat rewrite \leftarrow (make_poly_pointless_r _ (concat _)).
  repeat rewrite mulPP''_refold. pose (IHp\ r). repeat rewrite mulPP_mulPP'' in e\theta.
```

```
rewrite \leftarrow e\theta. repeat rewrite \leftarrow app_assoc. repeat rewrite mulMP'_mulMP''.
  repeat rewrite ← mulPP''_cons. repeat rewrite mulMP''_make_poly.
  repeat rewrite ← mulMP'_mulMP''. repeat rewrite app_assoc.
  apply Permutation_sort_eq. apply nodup_cancel_Permutation. apply Permutation_map.
  apply Permutation_app_tail. repeat rewrite mulMP'_app. rewrite mulMP'_assoc.
  repeat rewrite \( - \text{app_assoc. apply Permutation_app_head. apply Permutation_app_comm.} \)
  intros a0 \ Hin. apply in_app_iff in Hin as []. unfold mulMP' in H.
  apply in_map_iff in H as [x] rewrite \leftarrow H; auto.
  apply (make_poly_is_poly (concat (map (mulMP' q) r))). auto.
  intros a\theta Hin. apply in_app_iff in Hin as []. unfold mulMP' in H.
  apply \operatorname{in_map_iff} in H as [x]]. rewrite \leftarrow H; auto.
  apply (make_poly_is_poly (concat (map (mulMP' q) p))). auto.
Qed.
Lemma mulMP''_distr_addPP : \forall m p q,
  is_poly p \rightarrow \text{is_poly } q \rightarrow
  mulMP'' (addPP p q) m = addPP (mulMP'' p m) (mulMP'' q m).
Proof.
  intros m p q H p H q. unfold mulMP", addPP. rewrite map_app_make_poly.
  rewrite make_poly_pointless. rewrite make_poly_app_comm.
  rewrite make_poly_pointless. rewrite make_poly_app_comm.
  rewrite map_app. auto. intros a Hin. apply in_app_iff in Hin as [].
  apply Hp. auto. apply Hq. auto.
Qed.
Lemma mulPP_distr_addPP : \forall p \ q \ r,
  is_poly p \rightarrow \text{is_poly } q \rightarrow
  \mathsf{mulPP}\ (\mathsf{addPP}\ p\ q)\ r = \mathsf{addPP}\ (\mathsf{mulPP}\ p\ r)\ (\mathsf{mulPP}\ q\ r).
Proof.
  intros p \ q \ r \ Hp \ Hq. induction r; auto. rewrite mulPP_mulPP''. unfold mulPP''.
  simpl. rewrite mulPP_mulPP'', (mulPP_mulPP'' q), make_poly_app_comm.
  rewrite ← make_poly_pointless. rewrite make_poly_app_comm.
  rewrite mulPP"_refold.
  rewrite addPP_refold. repeat unfold mulPP" at 2. simpl. unfold addPP at 4.
  rewrite make_poly_pointless. rewrite addPP_refold.
  rewrite (addPP_comm _ (make_poly _)).
  unfold addPP at 4. rewrite make_poly_pointless. rewrite \leftarrow app_assoc.
  rewrite make_poly_app_comm. rewrite ← app_assoc.
  rewrite \leftarrow make\_poly\_pointless.
  rewrite mulPP"_refold. rewrite ← app_assoc. rewrite app_assoc.
  rewrite make_poly_app_comm.
  rewrite ← app_assoc. rewrite ← make_poly_pointless. rewrite mulPP''_refold.
  replace (make_poly (mulPP'' p \ r ++ mulMP' q \ a ++ mulPP'' q \ r ++ mulMP' p \ a))
    with (make_poly ((mulPP'' p \ r ++  mulPP'' q \ r) ++  mulMP' p \ a ++  mulMP' q \ a)).
```

```
rewrite ← make_poly_pointless. rewrite (addPP_refold (mulPP'' _ _)).
  rewrite make_poly_app_comm. rewrite addPP_refold.
  rewrite mulPP_mulPP'', (\text{mulPP}_{\text{mulPP}''} p), (\text{mulPP}_{\text{mulPP}''} q) in IHr.
  rewrite \leftarrow IHr. unfold addPP at 4.
  rewrite ← make_poly_pointless. unfold addPP. repeat rewrite mulMP'_mulMP''.
  rewrite (make_poly_app_comm (mulMP'' _ _) (mulMP' _ _)).
  rewrite mulMP'_mulMP''. rewrite (make_poly_app_comm (mulMP'' _ _) (mulMP'' _ _)).
  repeat rewrite addPP_refold. f_equal. apply mulMP''_distr_addPP; auto.
  apply make_poly_Permutation. rewrite ← app_assoc.
  apply Permutation_app_head. rewrite app_assoc.
  apply Permutation_trans with
    (l':=\mathsf{mulMP'}\ q\ a ++ \mathsf{mulPP''}\ q\ r ++ \mathsf{mulMP'}\ p\ a).
  apply Permutation_app_comm.
  auto.
Qed.
Lemma mulPP_distr_addPPr : \forall p \ q \ r,
  is_poly p \rightarrow \text{is_poly } q \rightarrow
  \mathsf{mulPP}\ r\ (\mathsf{addPP}\ p\ q) = \mathsf{addPP}\ (\mathsf{mulPP}\ r\ p)\ (\mathsf{mulPP}\ r\ q).
Proof.
  intros p \ q \ r \ Hp \ Hq. rewrite mulPP_comm. rewrite (mulPP_comm r \ p).
  rewrite (mulPP_comm r q). apply mulPP_distr_addPP; auto.
Qed.
Lemma mulPP_is_poly : \forall p \ q,
  is_poly (mulPP p q).
Proof.
  intros p q. apply make_poly_is_poly.
Qed.
Lemma mulPP_mono_cons : \forall x m,
  is_mono (x :: m) \rightarrow
  muIPP[[x]][m] = [x :: m].
Proof.
  intros x m H. unfold mulPP, distribute. simpl. apply Permutation_Sorted_eq.
  - apply Permutation_trans with (l':=(nodup\_cancel mono\_eq\_dec (map make\_mono [m++[x]]))).
     apply Permutation_sym. apply Permuted_sort. rewrite no_nodup_cancel_NoDup.
     simpl. assert (make_mono (m++[x]) = x :: m).
    + rewrite ← no_make_mono; auto. apply Permutation_sort_mono_eq.
       repeat rewrite no_nodup_NoDup. replace (x::m) with ([x]++m); auto; apply
Permutation_app_comm.
       apply NoDup_VarSorted; apply H. apply Permutation_NoDup with (l:=(x::m)).
       replace (x::m) with ([x]++m); auto; apply Permutation_app_comm.
       apply NoDup_VarSorted; apply H.
    + rewrite H0. auto.
```

```
+ apply NoDup_cons; auto.

    apply LocallySorted_sort.

  apply Sorted_cons; auto.
Lemma addPP_poly_cons : \forall m p,
  is_poly (m :: p) \rightarrow
  addPP [m] p = m :: p.
Proof.
  intros m p H. unfold addPP. simpl. rewrite no_make_poly; auto.
Qed.
Hint Resolve addPP_{-}is_{-}poly\ mulPP_{-}is_{-}poly.
Lemma mulPP_addPP_1 : \forall p \ q \ r,
  is_poly p \to \text{is_poly } q \to \text{is_poly } r \to
  mulPP (addPP (mulPP p \ q) \ r) (addPP [[]] q) =
  mulPP (addPP []] q) r.
Proof.
  intros p q r Hp Hq Hr. rewrite mulPP_distr_addPP; auto.
  rewrite mulPP_distr_addPPr; auto. rewrite mulPP_1r; auto.
  rewrite mulPP_assoc. rewrite mulPP_p_p; auto. rewrite addPP_p_p; auto.
  rewrite addPP_0; auto. rewrite mulPP_comm. auto.
Qed.
Lemma make_poly_rem_vars : \forall p x,
  In x (vars (make_poly p)) \rightarrow
  In x (vars p).
Proof.
  intros p \times H. induction p.
  - inversion H.
  - unfold vars. simpl. apply nodup_In. apply in_app_iff.
    unfold vars, make_poly in H. apply nodup_ln in H.
     apply In\_concat\_exists in H as [m].
     apply In_sorted in H. apply nodup_cancel_in in H.
     apply in_map_iff in H as [n]. destruct H1.
    + left. apply make_mono_ln. rewrite H1. rewrite H. auto.
    + right. apply In\_concat\_exists. \exists n. split; auto. apply In\_concat\_exists.
       rewrite H. auto.
Qed.
Lemma incl_vars_addPP : \forall p \ q \ xs,
  incl (vars p) xs \land incl (vars q) xs \rightarrow
  incl (vars (addPP p q)) xs.
Proof.
  unfold incl, addPP.
```

```
intros p \ q \ xs \ [HinP \ HinQ] \ x \ HinPQ.
  apply make_poly_rem_vars in HinPQ.
  unfold vars in HinPQ.
  apply nodup_{ln} in HinPQ.
  rewrite concat_app in HinPQ.
  apply in\_app\_or in HinPQ as [Hin \mid Hin].
  - apply HinP. apply nodup_In. auto.
  - apply HinQ. apply nodup_{-}In. auto.
Qed.
Lemma incl_vars_mulPP : \forall p \ q \ xs,
  incl (vars p) xs \land incl (vars q) xs \rightarrow
  incl (vars (mulPP p q)) xs.
Proof.
  unfold incl, mulPP.
  intros p \ q \ xs \ [HinP \ HinQ] \ x \ HinPQ.
  apply make_poly_rem_vars in HinPQ.
  apply In_distribute in HinPQ. destruct HinPQ.
  - apply HinP. auto.
  - apply HinQ. auto.
Qed.
Lemma part_add_eq : \forall f \ p \ l \ r,
  is_poly p \rightarrow
  partition f p = (l, r) \rightarrow
  p = addPP l r.
Proof.
  intros f p l r H H0. apply Permutation_Sorted_eq.
  - generalize dependent l; generalize dependent r. induction p; intros.
    + simpl in H0. inversion H0. auto.
    + assert (H1:=H0); auto. apply partition_Permutation in H1. simpl in H0.
       destruct (partition f(p) as [g(d)], unfold addPP, make_poly.
       rewrite \leftarrow Permutation_MonoSort_r. rewrite unsorted_poly. destruct (f \ a); inversion
H0.
       \times rewrite \leftarrow H3 in H1. apply H1.
       \times rewrite \leftarrow H4 in H1. apply H1.
       × destruct H. apply NoDup_MonoSorted in H. apply (Permutation_NoDup H1 H).
       \times intros m Hin. apply H. apply Permutation_sym in H1. apply (Permutation_in \_
H1 Hin).
  - apply Sorted_MonoSorted. apply H.
  - apply Sorted_MonoSorted. apply make_poly_is_poly.
Qed.
Lemma part_is_poly : \forall f p l r,
  is_poly p \rightarrow
```

```
partition f p = (l, r) →
is_poly l ∧ is_poly r.

Proof.
intros f p l r Hpoly Hpart. destruct Hpoly. split; split.
- apply (part_Sorted _ _ _ mono_lt_Transitive H _ _ Hpart).
- intros m Hin. apply H0. apply elements_in_partition with (x:=m) in Hpart. apply Hpart; auto.
- apply (part_Sorted _ _ _ mono_lt_Transitive H _ _ Hpart).
- intros m Hin. apply H0. apply elements_in_partition with (x:=m) in Hpart. apply Hpart; auto.

Qed.
```

Chapter 7

Library B_Unification.poly_unif

```
Require Import List.
Import ListNotations.
Require Import Arith.
Import Nat.
Require Import Permutation.
Require Export poly.
```

7.1 Introduction

This section deals with defining substitutions and their properties using a polynomial representation. As with the inductive term representation, substitutions are just list of replacements, where variables are swapped with polynomials instead of terms. Crucial to the proof of correctness in the following chapter, substitution is proven to distribute over polynomial addition and multiplication. Definitions are provided for unifier, unifiable, and properties relating multiple substitutions such as more general and composition.

7.2 Substitution Definitions

A *substitution* is defined as a list of replacements. A *replacement* is just a tuple of a variable and a polynomial.

```
Definition repl := prod var poly.

Definition subst := list repl.
```

Since the *poly* data type doesn't enforce the properties of actual polynomials, the *is_poly* predicate is used to check if a term is in polynomial form. Likewise, the *is_poly_subst* predicate below verifies that every term in the range of the substitution is a polynomial.

```
Definition is_poly_subst (s : \mathsf{subst}) : \mathsf{Prop} := \forall x \ p, \ \mathsf{In} \ (x, p) \ s \to \mathsf{is\_poly} \ p.
```

The next three functions implement how substitutions are applied to terms. At the top level, substP applies a substitution to a polynomial by calling substM on each monomial. From there, substV is called on each variable. Because variables and monomials are converted to polynomials, the process isn't simplying mapping application across the lists. substM and substP must multiply and add each polynomial together respectively.

```
Fixpoint substV (s : subst) (x : var) : poly :=
  match s with
  | [] \Rightarrow [[x]]
   (y, p) :: s' \Rightarrow \text{if } (x =? y) \text{ then } p \text{ else (substV } s' x)
  end.
Fixpoint substM (s : subst) (m : mono) : poly :=
  match m with
  | [] \Rightarrow [[]]
   | x :: m \Rightarrow mulPP (substV s x) (substM s m)
  end.
Definition substP (s : subst) (p : poly) : poly :=
  make\_poly (concat (map (substM s) p)).
    Useful in later proofs is the ability to rewrite the unfolded definition of substP as just
the function call.
Lemma substP_refold : \forall s p,
  make\_poly (concat (map (substM s) p)) = substP s p.
Proof. auto. Qed.
    The following lemmas state that substitution applications always produce polynomials.
This fact is necessary for proving distribution and other properties of substitutions.
Lemma substV_is_poly : \forall x s,
  is_poly_subst s \rightarrow
  is_poly (substV s x).
Proof.
  intros x s H. unfold is_poly_subst in H. induction s; simpl; auto.
  destruct a \ eqn:Ha. destruct (x =? v).
  - apply (H \ v). intuition.
  - apply IHs. intros x\theta p\theta H\theta. apply (H x\theta). intuition.
Qed.
Lemma substM_is_poly : \forall s m,
  is_poly (substM s m).
Proof.
```

intros s m. unfold substM; destruct m; auto.

Qed.

Lemma substP_is_poly : $\forall s p$, is_poly (substP s p).

```
Proof.
intros. unfold substP. auto.
Qed.
Hint Resolve substP\_is\_poly substM\_is\_poly.
```

The lemma below states that a substitution applied to a variable in polynomial form is equivalent to the substitution applied to just the variable. This fact only holds when the substitution's domain consists of polynomials.

```
Lemma subst_var_eq : \forall x \ s, is_poly_subst s \rightarrow substP s [[x]] = substV s x.

Proof. intros. simpl. apply (substV_is_poly x \ s) in H. unfold substP. simpl. rewrite app_nil_r. rewrite mulPP_1r; auto. rewrite no_make_poly; auto.

Qed.
```

The next two lemmas deal with simplifying substitutions where the first replacement tuple is useless for the given term. This is the case when the variable being replaced is not present in the term. It allows the replacement to be dropped from the substitution without changing the result.

```
Lemma substM_cons : \forall x m,
  \neg \ln x \ m \rightarrow
  \forall p \ s, substM ((x, p) :: s) m = \text{substM } s \ m.
Proof.
  intros. induction m; auto. simpl. f_equal.
  - destruct (a =? x) eqn:H0; auto.
     symmetry in H0. apply beq_nat_eq in H0. exfalso.
     simpl in H. apply H. left. auto.
  - apply IHm. intro. apply H. right. auto.
Qed.
Lemma substP_cons : \forall x p,
  (\forall m, \ln m \ p \rightarrow \neg \ln x \ m) \rightarrow
  \forall q \ s, substP ((x, q) :: s) \ p = \text{substP} \ s \ p.
Proof.
  intros. induction p; auto. unfold substP. simpl.
  repeat rewrite ← (make_poly_pointless_r _ (concat _)). f_equal. f_equal.
  - apply substM_cons. apply H. left. auto.
  - apply IHp. intros. apply H. right. auto.
Qed.
    Substitutions applied to constants have no effect.
```

Lemma subst $P_1: \forall s$,

```
substP s [[]] = [[]].
Proof.
  intros. unfold substP. simpl. auto.
Qed.
Lemma substP_0: \forall s,
  substP s [] = [].
Proof.
  intros. unfold substP. simpl. auto.
   The identity substitution—the empty list—has no effect when applied to a term.
Lemma empty_substM : \forall m,
  is_mono m \rightarrow
  substM [] m = [m].
Proof.
  intros. induction m; auto. simpl.
  apply mono_cons in H as H\theta.
  rewrite IHm; auto.
  apply mulPP_mono_cons; auto.
Lemma empty_substP : \forall p,
  is_poly p \rightarrow
  substP [] p = p.
Proof.
  intros. induction p; auto. unfold substP. simpl.
  apply poly_cons in H as H0. destruct H0.
  rewrite ← make_poly_pointless_r. rewrite substP_refold.
  rewrite IHp; auto. rewrite empty_substM; auto.
  apply addPP_poly_cons; auto.
Qed.
```

7.3 Distribution Over Arithmetic Operators

Below is the statement and proof that substitution distributes over polynomial addition. Given a substitution s and two terms in polynomial form p and q, it is shown that s(p+q) = s(p) + s(q). The proof relies heavily on facts about permutations proven in the $list_util$ library.

```
 \begin{array}{l} \mathsf{Lemma\ substP\_distr\_addPP} : \forall\ p\ q\ s, \\ \mathsf{is\_poly}\ p \to \\ \mathsf{is\_poly}\ q \to \\ \mathsf{substP}\ s\ (\mathsf{addPP}\ p\ q) = \mathsf{addPP}\ (\mathsf{substP}\ s\ p)\ (\mathsf{substP}\ s\ q). \\ \mathsf{Proof.} \end{array}
```

```
intros p \neq s Hp Hq. unfold substP, addPP.
  apply Permutation_sort_eq. apply Permutation_trans with (l':=
    (nodup\_cancel mono\_eq\_dec (map make\_mono (concat (map (substM <math>s)))
    (nodup_cancel mono_eq_dec (map make_mono (p ++ q))))))).
    apply nodup_cancel_Permutation. apply Permutation_map.
    apply Permutation_concat. apply Permutation_map. unfold make_poly.
    rewrite ← Permutation_MonoSort_I. auto.
  apply Permutation_sym. apply Permutation_trans with (l':=(nodup\_cancel
    mono_eq_dec (map make_mono (nodup_cancel mono_eq_dec (map make_mono (concat
    (\mathsf{map}\ (\mathsf{substM}\ s)\ (p)))) ++ (\mathsf{nodup\_cancel}\ \mathsf{mono\_eq\_dec}\ (\mathsf{map}\ \mathsf{make\_mono}\ (\mathsf{concat}\ \mathsf{mono\_eq}\ \mathsf{mono}))
    (map (substM s) q)))))))) apply nodup_cancel_Permutation.
    apply Permutation_map. apply Permutation_app; unfold make_poly;
    rewrite ← Permutation_MonoSort_I; auto.
  rewrite (no_map_make_mono ((nodup_cancel _ _) ++ (nodup_cancel _ _))).
  rewrite nodup_cancel_pointless. apply Permutation_trans with (l':=
    (nodup_cancel mono_eq_dec (nodup_cancel mono_eq_dec (map make_mono (concat
    (map (substM s) q))) ++ map make_mono (concat (map (substM s) p)))).
    apply nodup_cancel_Permutation. apply Permutation_app_comm.
  rewrite nodup_cancel_pointless. rewrite \leftarrow map_app. rewrite \leftarrow concat_app.
  rewrite \leftarrow map_app. rewrite (no_map_make_mono (p++q)).
  apply Permutation_trans with (l':=(nodup\_cancel mono\_eq\_dec (map make\_mono
    (concat (map (substM s) (p \leftrightarrow q))))). apply nodup_cancel_Permutation.
    apply Permutation_map. apply Permutation_concat. apply Permutation_map.
    apply Permutation_app_comm.
  apply Permutation_sym. repeat rewrite List.concat_map.
  repeat rewrite map_map. apply nodup_cancel_concat_map.
  intros x. rewrite no_map_make_mono. apply NoDup_MonoSorted;
    apply substM_is_poly.
  intros m Hin. apply (substM_is_poly s x); auto.
  intros m Hin. apply in_app_iff in Hin as ||; destruct Hp; destruct Hq; auto.
  intros m Hin. apply in_app_iff in Hin as []; apply nodup_cancel_in in H;
    apply mono_in_map_make_mono in H; auto.
Qed.
```

The next six lemmas deal with proving that substitution distributes over polynomial multiplication. Given a substitution s and two terms in polynomial form p and q, it is shown that $s(p \times q) = s(p) \times s(q)$. The proof turns out to be much more difficult than the one for addition because the underlying arithmetic operation is more complex.

If two monomials are permutations (obviously not in monomial form), then applying any substitution to either will produce the same result. A weaker form that follows from this is that the results are permutations as well.

```
Lemma substM_Permutation_eq : \forall \ s \ m \ n,

Permutation m \ n \rightarrow
```

```
substM \ s \ m = substM \ s \ n.
Proof.
  intros s m n H. induction H; auto.
  - simpl. rewrite IHPermutation. auto.
  - simpl. rewrite mulPP_comm. rewrite mulPP_assoc.
    rewrite (mulPP_comm (substM s l)). auto.
  - rewrite IHPermutation1. rewrite IHPermutation2. auto.
Lemma substM_Permutation : \forall s m n,
  Permutation m n \rightarrow
  Permutation (substM s m) (substM s n).
Proof.
  intros s m n H. rewrite (substM_Permutation_eq s m n); auto.
Qed.
   Adding duplicate variables to a monomial doesn't change the result of applying a substi-
tution. This is only true if the substitution's domain only has polynomials.
Lemma substM_nodup_pointless : \forall s m,
  is_poly_subst s \rightarrow
  substM s (nodup var_eq_dec m) = substM s m.
Proof.
  intros s \ m \ Hps. induction m; auto. simpl. destruct in_dec.
  - apply in_split in i. destruct i as [l1 \ [l2 \ H]].
    assert (Permutation m (a :: l1 ++ l2)). rewrite H. apply Permutation_sym.
      apply Permutation_middle.
    apply substM_Permutation_eq with (s:=s) in H0. rewrite H0. simpl.
    rewrite (mulPP_comm _ (substM _ _)). rewrite mulPP_comm.
    rewrite mulPP_assoc. rewrite mulPP_p_p. rewrite mulPP_comm. rewrite IHm.
    rewrite H0. simpl. auto. apply substV_is_poly. auto.
  - simpl. rewrite IHm. auto.
Qed.
   The idea behind the following two lemmas is that substitutions distribute over multi-
plication of a monomial and polynomial. The specifics of both are convoluted yet easier to
prove than distribution over two polynomials.
Lemma substM_distr_mulMP : \forall m \ n \ s,
  is_poly_subst s \rightarrow
  is_mono n \rightarrow
  Permutation
    (nodup\_cancel mono\_eq\_dec (map make\_mono (substM s (make\_mono)))
      (\mathsf{make\_mono}\ (m ++ n)))))
```

(nodup_cancel mono_eq_dec (map make_mono (concat (map (mulMP'' (map make_mono (substM s m))) (map make_mono (substM s n))))).

```
intros m n s Hps H. rewrite (no_make_mono (make_mono (m ++ n))); auto.
  repeat rewrite (no_map_make_mono (substM s _)); auto. apply Permutation_trans
    with (l':=(nodup\_cancel mono\_eq\_dec (substM s (nodup var_eq\_dec
    (m ++ n)))). apply nodup_cancel_Permutation. apply substM_Permutation.
    unfold make_mono. rewrite ← Permutation_VarSort_I. auto.
  induction m.
  - simpl. pose (mulPP_1r (substM s n)). rewrite mulPP_comm in e.
    pose (substM_is_poly s n). apply e in i. rewrite mulPP_mulPP''' in i.
    unfold mulPP''' in i. rewrite \leftarrow no_make_poly in i; auto.
    apply Permutation_sort_eq in i. rewrite i. rewrite no_nodup_NoDup.
    rewrite no_map_make_mono. auto. intros m \ Hin. apply (substM_is_poly s \ n);
    auto. apply NoDup_VarSorted. auto.
  - simpl substM at 2. apply Permutation_sort_eq. rewrite make_poly_refold.
    rewrite mulPP'''_refold. rewrite ← mulPP_mulPP'''. rewrite mulPP_assoc.
    repeat rewrite mulPP_mulPP'". apply Permutation_sort_eq.
    rewrite substM_nodup_pointless; auto. simpl. rewrite mulPP_mulPP'''.
    unfold mulPP'" at 1. apply Permutation_sort_eq in IHm.
    rewrite make_poly_refold in IHm. rewrite mulPP'"_refold in IHm.
    rewrite no_nodup_cancel_NoDup in IHm. rewrite no_sort_MonoSorted in IHm.
    rewrite \( \to \) substM_nodup_pointless; auto. rewrite IHm. unfold make_poly.
    apply Permutation_trans with (l':=(nodup_cancel mono_eq_dec (nodup_cancel
      mono_eq_dec (map make_mono (concat (map (mulMP'' (substV s a))
      (muIPP''' (substM <math>s m) (substM s n))))))).
      rewrite no_nodup_cancel_NoDup; auto.
    apply NoDup_nodup_cancel. apply substM_is_poly. apply NoDup_MonoSorted.
    apply substM_is_poly.
  - intros m\theta Hin. apply (substM_is_poly s n). auto.
  - intros m\theta Hin. apply (substM_is_poly s m). auto.
 - intros m\theta Hin. apply (substM_is_poly s (make_mono (m ++ n))). auto.
Qed.
Lemma map_substM_distr_map_mulMP : \forall m p s,
  is_poly_subst s \rightarrow
  is_poly p \rightarrow
  Permutation
    (nodup\_cancel\ mono\_eq\_dec\ (map\ make\_mono\ (concat\ (map\ (substM\ s)\ (map\ substM\ s)))
      make_mono (mulMP'' p m)))))
    (nodup_cancel mono_eq_dec (map make_mono (concat (map (muIMP'' (map
      make\_mono (concat (map (substM <math>s) p)))) (map make\_mono (substM <math>s m))))).
Proof.
  intros m p s Hps H. unfold mulMP" at 1. apply Permutation_trans with (l':=
```

Proof.

```
(nodup\_cancel\ mono\_eq\_dec\ (map\ make\_mono\ (concat\ (map\ (substM\ s)\ (map\ substM\ s)))
         make_mono (nodup_cancel mono_eq_dec (map make_mono (map (app m) p))))))))).
         apply nodup_cancel_Permutation, Permutation_map, Permutation_concat,
          Permutation_map, Permutation_map. unfold make_poly.
         rewrite ← Permutation_MonoSort_I. auto.
    apply Permutation_trans with (l':=(nodup\_cancel mono\_eq\_dec (map make\_mono\_eq\_dec (map make\_mono_eq\_dec (map
          (concat (map (substM s) (map make_mono (map make_mono (map (app m)
         (p)))))))). repeat rewrite List.concat_map. rewrite map_map.
         rewrite map_map. rewrite (map_map _ (map make_mono)).
         rewrite (map_map make_mono). rewrite nodup_cancel_concat_map. auto.
          intros x. rewrite no_map_make_mono. apply NoDup_MonoSorted.
         apply (substM_is_poly s (make_mono x)). intros m\theta Hin.
         pose (substM_is_poly s (make_mono x)). apply i. auto.
    induction p; simpl.
    - induction (map make_mono (substM s m)); auto.
    - rewrite map_app. apply Permutation_sym. apply Permutation_trans with (l':=
              (nodup_cancel mono_eq_dec (map make_mono (concat (map (muIMP'' (map
              make_mono (substM s m))) (map make_mono (substM s a ++ concat (map
              (substM s) p)))))))) apply Permutation_sort_eq. repeat (rewrite
              make_poly_refold, mulPP'''_refold, ← mulPP_mulPP'''). apply mulPP_comm.
         repeat rewrite map_app. rewrite concat_app, map_app. apply Permutation_sym.
         apply nodup_cancel_app_Permutation. apply substM_distr_mulMP; auto. apply H.
          intuition. apply Permutation_sym. apply Permutation_trans with (l':=
              (nodup_cancel mono_eq_dec (map make_mono (concat (map (mulMP'' (map
              make\_mono (concat (map (substM <math>s) p)))) (map make\_mono (substM <math>s m)))))).
              apply Permutation_sort_eq. repeat (rewrite make_poly_refold,
              mulPP'''_refold, ← mulPP_mulPP'''). apply mulPP_comm.
         apply Permutation_sym. apply IHp. apply poly_cons in H. apply H.
Qed.
```

Here is the formulation of substitution distributing over polynomial multiplication. Similar to the proof for addition, it is very dense and makes common use of permutation facts. Where it differs from that proof is that it relies on the commutativity of multiplication. The proof of distribution over addition didn't need any properties of addition.

```
Lemma substP_distr_mulPP: \forall p \ q \ s, is_poly_subst s \rightarrow is_poly p \rightarrow substP s (mulPP p \ q) = mulPP (substP s \ p) (substP s \ q). Proof.

intros p \ q \ s \ Hps \ H. repeat rewrite mulPP_mulPP'''. unfold substP, mulPP'''. apply Permutation_sort_eq. apply Permutation_trans with (l':=(\text{nodup\_cancel mono\_eq\_dec (map make\_mono (concat (map (substM <math>s) (nodup\_cancel mono_eq_dec (map make_mono (concat (map (mulMP'' p) q)))))))).
```

```
apply nodup_cancel_Permutation. apply Permutation_map.
    apply Permutation_concat. apply Permutation_map. unfold make_poly.
   rewrite ← Permutation_MonoSort_I. auto.
apply Permutation_sym. apply Permutation_trans with (l':=(nodup\_cancel
    mono_eq_dec (map make_mono (concat (map (mulMP'' (make_poly (concat (map
    (substM \ s) \ p)))) (nodup_cancel mono_eq_dec (map \ make_mono \ (concat \ (map \ make \ (map \
    (substM s) q)))))))), apply nodup_cancel_Permutation.
    apply Permutation_map. apply Permutation_concat. apply Permutation_map.
   unfold make_poly. rewrite ← Permutation_MonoSort_I. auto.
apply Permutation_trans with (l':=(nodup\_cancel mono\_eq\_dec (map make\_mono
    (concat (map (mulMP'' (make_poly (concat (map (substM <math>s) p)))) (map (concat (map (substM <math>s) p))))
    make_mono(concat (map (substM s) q))))))), repeat rewrite (List.concat_map
    make_mono (map (mulMP'' _) _)). repeat rewrite (map_map _ (map make_mono)).
   apply nodup_cancel_concat_map. intros x. rewrite no_map_make_mono.
   unfold mulMP". apply NoDup_MonoSorted. apply make_poly_is_poly.
    intros m Hin. apply mono_in_make_poly in Hin; auto.
apply Permutation_sort_eq. rewrite make_poly_refold. rewrite mulPP'''_refold.
rewrite ← mulPP_mulPP'''. rewrite mulPP_comm. rewrite mulPP_mulPP'''.
apply Permutation_sort_eq. apply Permutation_trans with (l':=(nodup_cancel
    mono_eq_dec (map make_mono (concat (map (mulMP'' (map make_mono (concat (map
    (substM s) q)))) (nodup_cancel mono_eq_dec (map make_mono (concat (map make_mono))))) (modup_cancel mono_eq_dec (map make_mono)))) (modup_cancel mono_eq_dec (map make_mono)))) (modup_cancel mono_eq_dec (map make_mono)))))
    (substM s) p)))))))), apply nodup_cancel_Permutation.
    apply Permutation_map. apply Permutation_concat. apply Permutation_map.
   unfold make_poly. rewrite ← Permutation_MonoSort_I. auto.
apply Permutation_trans with (l':=(nodup\_cancel mono\_eq\_dec (map make\_mono))
    (concat (map (mulMP'' (map make_mono (concat (map (substM s) q)))) (map
    make\_mono\ (concat\ (map\ (substM\ s)\ p))))))). repeat rewrite (List.concat\_map)
   make_mono (map (mulMP" _) _)). repeat rewrite (map_map _ (map make_mono)).
   apply nodup_cancel_concat_map. intros x. rewrite no_map_make_mono.
   unfold mulMP". apply NoDup_MonoSorted. apply make_poly_is_poly.
    intros m Hin. apply mono_in_make_poly in Hin; auto.
apply Permutation_sort_eq. rewrite make_poly_refold. rewrite mulPP'''_refold.
rewrite ← mulPP_mulPP'''. rewrite mulPP_comm. rewrite mulPP_mulPP'''.
apply Permutation_sort_eq. apply Permutation_sym.
apply Permutation_trans with (l':=(nodup\_cancel mono\_eq\_dec (map make\_mono))
   (concat (map (substM s) (map make_mono (concat (map (mulMP'' p) q))))))).
   repeat rewrite (List.concat_map make_mono (map _ _)).
   repeat rewrite map_map. rewrite nodup_cancel_concat_map. auto. intros x.
   rewrite no_map_make_mono. apply NoDup_MonoSorted; apply substM_is_poly.
    intros m Hin; apply (substM_is_poly s x); auto.
induction q; auto. simpl. repeat rewrite map_app. repeat rewrite concat_app.
repeat rewrite map_app. repeat rewrite \leftarrow (nodup_cancel_pointless (map__)).
```

```
repeat rewrite \leftarrow (nodup_cancel_pointless_r _ (map _ _)). apply nodup_cancel_Permutation. apply Permutation_app. apply map_substM_distr_map_mulMP; auto. apply IHq. Qed.
```

7.4 Unifiable Definitions

 $\exists s$, unifier s p.

The following six definitions are all predicate functions that verify some property about substitutions or polynomials.

A unifier for a given polynomial p is a substitution s such that s(p) = 0. This definition also includes that the domain of the substitution only contain terms in polynomial form.

```
Definition unifier (s: \mathsf{subst})\ (p: \mathsf{poly}): \mathsf{Prop} := \mathsf{is\_poly\_subst}\ s \land \mathsf{substP}\ s\ p = \texttt{[]}.
A polynomial p is unifiable if there exists a unifier for p. Definition unifiable (p: \mathsf{poly}): \mathsf{Prop} := \mathsf{Implies}
```

A substitution u is a composition of two substitutions s and t if u(x) = t(s(x)) for every variable x. The lemma $subst_comp_poly$ below extends this definition from variables to polynomials.

```
Definition subst_comp (s \ t \ u : \mathsf{subst}) : \mathsf{Prop} := \forall \ x, \\ \mathsf{substP} \ t \ (\mathsf{substP} \ s \ [[x]]) = \mathsf{substP} \ u \ [[x]].
```

A substitution s is more general than a substitution t if there exists a third substitution u such that t is a composition of u and s.

```
Definition more_general (s \ t : \mathsf{subst}) : \mathsf{Prop} := \exists \ u, \mathsf{subst\_comp} \ s \ u \ t.
```

Given a polynomial p, a substitution s is the most general unifier of p if s is more general than every unifier of p.

```
\begin{array}{l} {\rm Definition\ mgu\ }(s:{\rm subst})\ (p:{\rm poly}):{\rm Prop}:=\\ {\rm unifier\ }s\ p\ \land\\ \forall\ t,\\ {\rm unifier\ }t\ p\rightarrow\\ {\rm more\_general\ }s\ t. \end{array}
```

Given a polynomial p, a substitution s is a reproductive unifier of p if t is a composition of itself and s for every unifier t of p. This property is similar but stronger than most general because the substitution that composes with s is restricted to t, whereas in most general it can be any substitution.

```
\forall t, unifier t p \rightarrow subst_comp s t t.
```

Because the notion of most general is weaker than reproductive, it can be proven to logically follow as shown below. Any unifier that is reproductive is also most general.

```
Lemma reprod_is_mgu : \forall p \ s, reprod_unif s \ p \rightarrow  mgu s \ p.

Proof.

unfold mgu, reprod_unif, more_general, subst_comp. intros p \ s []. split; auto. intros. \exists \ t\theta. intros. apply H\theta; auto. Qed.
```

As stated earlier, substitution composition can be extended to polynomials. This comes from the implicit fact that if two substitutions agree on all variables then they agree on all terms.

```
Lemma subst_comp_poly : \forall s \ t \ u,
  is_poly_subst s \rightarrow
  is_poly_subst t \rightarrow
  is_poly_subst u \rightarrow
  (\forall x, \mathsf{substP}\ t\ (\mathsf{substP}\ s\ [[x]]) = \mathsf{substP}\ u\ [[x]]) \rightarrow
  substP \ t \ (substP \ s \ p) = substP \ u \ p.
Proof.
  intros. induction p; auto. simpl. unfold substP at 2. simpl.
  rewrite ← make_poly_pointless_r. rewrite addPP_refold.
  rewrite substP_distr_addPP; auto. unfold substP at 3. simpl.
  rewrite \( \tau \) make_poly_pointless_r. rewrite addPP_refold. f_equal.
  - induction a; auto. simpl. rewrite substP_distr_mulPP; auto. f_equal; auto.
     + rewrite ← subst_var_eq; auto. rewrite ← subst_var_eq; auto.
     + apply substV_is_poly; auto.
  - rewrite substP_refold. apply IHp.
Qed.
```

The last lemmas of this section state that the identity substitution is a reproductive unifier of the constant zero. Therefore it is also most general.

```
Lemma empty_unifier : unifier [] []. Proof.
```

```
unfold unifier, is_poly_subst. split; auto.
    intros. inversion H.

Qed.

Lemma empty_reprod_unif : reprod_unif [] [].

Proof.
    unfold reprod_unif, more_general, subst_comp.
    split; auto. apply empty_unifier.

Qed.

Lemma empty_mgu : mgu [] [].

Proof.
    apply reprod_is_mgu. apply empty_reprod_unif.

Qed.
```

Chapter 8

Library B_Unification.sve

Require Import List.
Import ListNotations.
Require Import Arith.
Require Import Permutation.
Require Export poly_unif.

8.1 Introduction

Here we implement the algorithm for successive variable elimination. The basic idea is to remove a variable from the problem, solve that simpler problem, and build a solution from the simpler solution. The algorithm is recursive, so variables are removed and problems generated until we are left with either of two problems; $1 = B \ 0$ or $0 = B \ 0$. In the former case, the whole original problem is not unifiable. In the latter case, the problem is solved without any need to substitute since there are no variables. From here, we begin the process of building up substitutions until we reach the original problem.

8.2 Eliminating Variables

This section deals with the problem of removing a variable x from a term t. The first thing to notice is that t can be written in polynomial form p. This polynomial is just a set of monomials, and each monomial a set of variables. We can now separate the polynomials into two sets qx and r. The term qx will be the set of monomials in p that contain the variable x. The term q, or the quotient, is qx with the x removed from each monomial. The term r, or the remainder, will be the monomials that do not contain x. The original term can then be written as $x \times q + r$.

Implementing this procedure is pretty straightforward. We define a function div_bv_var that produces two polynomials given a polynomial p and a variable x to eliminate from it. The first step is dividing p into qx and r which is performed using a partition over p with

the predicate has_var. The second step is to remove x from qx using the helper elim_var which just maps over the given polynomial removing the given variable.

```
Definition has_var (x: var) := existsb (beq_nat x).

Definition elim_var (x: var) (p: poly) : poly := make_poly (map (remove var_eq_dec <math>x) p).

Definition div_by_var (x: var) (p: poly) : prod poly poly := let <math>(qx, r) := partition (has_var x) p in (elim_var <math>x qx, r).
```

We would also like to prove some lemmas about variable elimination that will be helpful in proving the full algorithm correct later. The main lemma below is div_eq , which just asserts that after eliminating x from p into q and r the term can be put back together as in $p = x \times q + r$. This fact turns out to be rather hard to prove and needs the help of 10 or so other sudsidiary lemmas.

```
Lemma elim_var_not_in_rem : \forall x p r,
  \operatorname{elim}_{-}\operatorname{var} x p = r \rightarrow
  (\forall m, \ln m \ r \rightarrow \neg \ln x \ m).
Proof.
  intros.
  unfold elim_var in H.
  unfold make_poly in H.
  rewrite \leftarrow H in H0.
  apply In_sorted in H0.
  apply nodup_cancel_in in H\theta.
  rewrite map_map in H0.
  apply in_map_iff in H\theta as [n].
  rewrite \leftarrow H0.
  intro.
  rewrite make_mono_ln in H2.
  apply remove_ln in H2.
  auto.
Qed.
Lemma elim_var_poly : \forall x p,
  is_poly (elim_var x p).
Proof.
  intros.
  unfold elim_var.
  apply make_poly_is_poly.
Qed.
Lemma elim_var_map_remove_Permutation : \forall p x,
  is_poly p \rightarrow
   (\forall m, \ln m \ p \rightarrow \ln x \ m) \rightarrow
```

```
Permutation (elim_var x p) (map (remove var_eq_dec x) p).
Proof.
  intros p \times H H\theta. destruct p as [|a|p].
  - simpl. unfold elim_var, make_poly, MonoSort.sort. auto.
  - simpl. unfold elim_var. simpl. unfold make_poly.
    rewrite ← Permutation_MonoSort_l. rewrite unsorted_poly; auto.
    + rewrite ← map_cons. apply NoDup_map_remove; auto.
    + apply poly_cons in H. intros m Hin. destruct Hin.
       \times rewrite \leftarrow H1. apply remove_is_mono. apply H.
       \times apply in_map_iff in H1 as [y \parallel]. rewrite \leftarrow H1. apply remove_is_mono.
          destruct H. unfold is_poly in H. destruct H. apply H4. auto.
Qed.
Lemma rebuild_map_permutation : \forall p x,
  is_poly p \rightarrow
  (\forall m, \ln m \ p \rightarrow \ln x \ m) \rightarrow
  Permutation (mulPP [[x]] (elim_var x p))
                 (map (fun \ a \Rightarrow make\_mono (a ++ [x]))
                       (map (remove var_eq_dec x) p)).
Proof.
  intros p \times H H0. apply mulPP_map_app_permutation.
  - apply elim_var_poly.
  - apply (elim_var_not_in_rem x p); auto.
  - apply elim_var_map_remove_Permutation; auto.
Qed.
Lemma elim_var_permutation : \forall p x,
  is_poly p \rightarrow
  (\forall m, \ln m \ p \rightarrow \ln x \ m) \rightarrow
  Permutation p (mulPP [[x]] (elim_var x p)).
Proof.
  intros p \times H H0. pose (rebuild_map_permutation p \times H H0).
  apply Permutation_sym in p\theta. pose (p_map_Permutation p \ x \ H \ H\theta).
  apply (Permutation_trans p1 p0).
Qed.
Lemma elim_var_mul : \forall x p,
  is_poly p \rightarrow
  (\forall m, \ln m \ p \rightarrow \ln x \ m) \rightarrow
  p = \text{mulPP} [[x]] (\text{elim\_var } x \ p).
Proof.
  intros. apply Permutation_Sorted_eq.
  - apply elim_var_permutation; auto.
  - unfold is_poly in H. apply Sorted_MonoSorted. apply H.
  - pose (mulPP_is_poly [[x]] (elim_var x p)). unfold is_poly in i.
```

```
apply Sorted_MonoSorted. apply i.
Qed.
Lemma has_var_eq_in : \forall x m,
  has\_var x m = true \leftrightarrow ln x m.
Proof.
  intros.
  unfold has_var.
  rewrite existsb_exists.
  split; intros.
  - destruct H as [x\theta \ ]].
     apply Nat.eqb_eq in H0.
     rewrite H0. apply H.
  -\exists x. rewrite Nat.eqb_eq. auto.
Qed.
Lemma part_var_eq_in : \forall x p i o,
  partition (has_var x) p = (i, o) \rightarrow
  ((\forall m, \ln m \ i \rightarrow \ln x \ m) \land 
    (\forall m, \ln m \ o \rightarrow \neg \ln x \ m)).
Proof.
  intros.
  split; intros.
  - apply part_fst_true with (a:=m) in H.
     + apply has_var_eq_in. apply H.
     + apply H0.
  - apply part_snd_false with (a:=m) in H.
     + rewrite \leftarrow has_var_eq_in. rewrite H. auto.
     + apply H0.
Qed.
Lemma div_is_poly : \forall x p q r,
  is_poly p \rightarrow
  div_by_var x p = (q, r) \rightarrow
  is_poly q \land is_poly r.
Proof.
  intros.
  unfold div_by_var in H\theta.
  destruct (partition (has_var x) p) eqn:Hpart.
  apply (part_is_poly \_ \_ \_ \_ H) in Hpart as Hp.
  destruct Hp as [Hpl \ Hpr].
  injection H0. intros Hr Hq.
  rewrite Hr in Hpr.
  apply part_var_eq_in in Hpart as [Hin Hout].
  split.
```

```
- rewrite \leftarrow Hq. apply elim_var_poly.
  - apply Hpr.
Qed.
    As explained earlier, given a polynomial p decomposed into a variable x, a quotient q,
and a remainder r, div_eq asserts that p = x \times q + r.
Lemma div_eq : \forall x p q r,
  is_poly p \rightarrow
  div_by_var x p = (q, r) \rightarrow
  p = \text{addPP (mulPP [[x]] } q) r.
Proof.
  intros x p q r HP HD.
  assert (HE := HD).
  unfold div_by_var in HE.
  destruct ((partition (has_var x) p)) as [qx \ r\theta] \ eqn:Hqr.
  injection HE. intros Hr Hq.
  assert (HIH: \forall m, \ln m \ qx \rightarrow \ln x \ m). intros.
  apply has_var_eq_in.
  apply (part_fst_true \_ \_ \_ \_ \_ Hqr \_ H).
  assert (is_poly q \wedge \text{is_poly } r) as [HPq \ HPr].
  apply (div_is_poly _ _ _ HP HD).
  assert (is_poly qx \wedge \text{is_poly } r\theta) as [HPqx \ HPr\theta].
  apply (part_is_poly \_ \_ \_ HP Hqr).
  rewrite \leftarrow Hq.
  rewrite \leftarrow (elim_var_mul x \ qx \ HPqx \ HIH).
  apply (part_add_eq (has_var x) _ _ _ HP).
  rewrite \leftarrow Hr.
  apply Hqr.
Qed.
Lemma has_var_in : \forall x m,
  \ln x \ m \to \text{has\_var} \ x \ m = \text{true}.
Proof.
  intros.
  unfold has_var.
  apply existsb_exists.
  \exists x.
  split; auto.
  symmetry.
  apply beq_nat_refl.
Qed.
Lemma div_var_not_in_qr : \forall x p q r,
  div_by_var x p = (q, r) \rightarrow
```

```
((\forall m, \ln m \ q \rightarrow \neg \ln x \ m) \land 
   (\forall m, \ln m \ r \rightarrow \neg \ln x \ m)).
Proof.
  intros.
  unfold div_by_var in H.
  assert (\exists qxr, qxr = partition (has_var x) p) as [[qx r\theta] Hqxr]. eauto.
  rewrite \leftarrow Hqxr in H.
  injection H. intros Hr Hq.
  split.
  - apply (elim_var_not_in_rem _ _ _ Hq).
  - rewrite Hr in Hqxr.
     symmetry in Hqxr.
     intros. intro.
     apply has_var_in in H1.
     apply Bool.negb_false_iff in H1.
     revert H1.
     apply Bool.eq_true_false_abs.
     apply Bool.negb_true_iff.
     revert m H0.
     apply (part_snd_false \_ \_ \_ \_ \_ Hqxr).
Qed.
```

The second main lemma about variable elimination is below. Given that a term p has been decomposed into the form $x \times q + r$, we can define $p' = (q + 1) \times r$. The lemma div_build_unif states that any unifier of p = B 0 is also a unifier of p' = B 0. Much of this proof relies on the axioms of polynomial arithmetic.

This helper function build_poly is used to construct $p' = (q + 1) \times r$ given the quotient and remainder as inputs.

```
Definition build_poly (q\ r: poly): poly:= mulPP\ (addPP\ [[]]\ q)\ r.
Lemma build_poly_is_poly: \forall\ q\ r, is_poly (build_poly\ q\ r).
Proof.
unfold build_poly. auto.
Qed.
Hint Resolve build_poly_is_poly.
Lemma div_build_unif: \forall\ x\ p\ q\ r\ s, is_poly\ p\ \rightarrow div_by_var\ x\ p=(q,r)\ \rightarrow unifier\ s\ p\ \rightarrow unifier\ s\ (build_poly\ q\ r).
Proof.
```

```
unfold build_poly, unifier.
  intros x p q r s HPp HD [Hps Hsp0].
  apply (div_eq_{---} HPp) in HD as Hp.
  assert (\exists q1, q1 = addPP [[]] q) as [q1 Hq1]. eauto.
  assert (\exists sp, sp = substP s p) as [sp Hsp]. eauto.
  assert (\exists sq1, sq1 = substP \ s \ q1) as [sq1 \ Hsq1]. eauto.
  rewrite \leftarrow (mulPP_0 (substP s \ q1)).
  rewrite \leftarrow Hsp\theta.
  rewrite Hp, Hq1.
  rewrite ← substP_distr_mulPP; auto.
  f_equal.
  apply (div_is_poly x p q r HPp) in HD.
  destruct HD as [HPq HPr].
  rewrite mulPP_addPP_1; auto.
Qed.
Lemma incl_div : \forall x p q r xs,
  is_poly p \rightarrow
  div_by_var x p = (q, r) \rightarrow
  incl (vars p) (x :: xs) \rightarrow
  incl (vars q) xs \wedge incl (vars r) xs.
Proof.
  intros. assert (Hdiv := H0). unfold div_by_var in H0.
  destruct partition as [qx \ r0] \ eqn: Hpart. apply partition_Permutation in Hpart.
  apply Permutation_incl in Hpart as []. inversion H0. clear H2.
  assert (incl (vars q) (vars p)). unfold incl, vars in *. intros a Hin.
    apply nodup_In. apply nodup_In in Hin. apply In_concat_exists in Hin.
    destruct Hin as [m] . rewrite \leftarrow H5 in H2. unfold elim_var in H2.
    apply \ln_{\text{sorted}} in H2. apply \text{nodup\_cancel\_in} in H2. rewrite \text{map\_map} in H2.
    apply in_map_iff in H2 destruct H2 as [mx]. rewrite \leftarrow H2 in H4.
    rewrite make_mono_ln in H_4. apply In_remove in H_4. apply In_concat_exists.
     \exists mx. split; auto. apply H3. intuition.
  assert (incl (vars r) (vars p)). rewrite H6 in H3. unfold incl, vars in *.
     intros a Hin. apply nodup_In. apply nodup_In in Hin.
     apply ln\_concat\_exists in Hin. destruct Hin as [l].
    apply ln\_concat\_exists. \exists l. split; auto. apply H3. intuition.
  split.
  - rewrite H5. apply incl_tran with (n:=(x::xs)) in H2; auto.
    apply incl_not_in in H2; auto. apply div_var_not_in_qr in Hdiv as [Hq_{-}].
    apply in_mono_in_vars in Hq. auto.
  - apply incl_tran with (n:=(x::xs)) in H_4; auto.
    apply incl_not_in in H_4; auto. apply div_var_not_in_qr in Hdiv as |H_7|.
    apply in_{mono_in_vars} in Hr. auto.
```

```
Qed.
Lemma div_vars : \forall x xs p q r,
  is_poly p \rightarrow
  incl (vars p) (x :: xs) \rightarrow
  div_by_var x p = (q, r) \rightarrow
  incl (vars (build_poly q r)) xs.
Proof.
  intros x xs p q r H Hincl Hdiv. unfold build_poly.
  apply div_var_not_in_gr in Hdiv as Hin. destruct Hin as [Hing Hinr].
  apply in_mono_in_vars in Hing. apply in_mono_in_vars in Hinr.
  apply incl_vars_mulPP. apply (incl_div _ _ _ _ H Hdiv) in Hincl. split.
  - apply incl_vars_addPP; auto. apply div_is_poly in Hdiv as []; auto. split.
    + unfold vars. simpl. unfold incl. intros a [].
    + apply Hincl.
  - apply Hincl.
Qed.
Hint Resolve div_vars.
```

8.3 Building Substitutions

This section handles how a solution is built from subproblem solutions. Given that a term p has been decomposed into the form $x \times q + r$, we can define $p' = (q+1) \times r$. The lemma reprod_build_subst states that if some substitution s is a reproductive unifier of p' = B 0, then we can build a substitution s' which is a reproductive unifier of p = B 0. The way s' is built from s is defined in build_subst. Another replacement is added to s of the form $s \to s$ to construct s'.

```
Definition build_subst (s: \text{subst}) (x: \text{var}) (q \ r: \text{poly}): \text{subst} := \text{let } q1 := \text{addPP [[]]} \ q \text{ in} let q1s := \text{substP} \ s \ q1 \text{ in} let rs := \text{substP} \ s \ r \text{ in} let xs := (x, \text{addPP (mulPP [[x]]} \ q1s) \ rs) \text{ in} xs :: s.

Lemma build_subst_is_poly: \forall \ s \ x \ q \ r, is_poly_subst s \rightarrow \text{is_poly_subst} (build_subst s \ x \ q \ r).

Proof.

unfold build_subst.

unfold is_poly_subst.

intros.

destruct H0.
- inversion H0. auto.
```

```
- apply (H x\theta). auto.
Qed.
Lemma build_subst_is_unif : \forall x p q r s,
  is_poly p \rightarrow
  div_by_var x p = (q, r) \rightarrow
  reprod_unif s (build_poly q r) \rightarrow
  unifier (build_subst s \ x \ q \ r) p.
Proof.
  unfold reprod_unif, unifier.
  intros x p q r s Hpoly Hdiv [[Hps Hunif] Hreprod].
  assert (is_poly_subst (build_subst s x q r)).
    apply build_subst_is_poly; auto.
  split; auto.
  unfold build_poly in Hunif.
  assert (Hngr := Hdiv).
  apply div_var_not_in_qr in Hnqr.
  destruct Hnqr as [Hnq\ Hnr].
  assert (HpolyQR := Hdiv).
  apply div_is_poly in HpolyQR as [HpolyQ\ HpolyR]; auto.
  apply div_eq in Hdiv; auto.
  rewrite Hdiv.
  rewrite substP_distr_addPP; auto.
  rewrite substP_distr_mulPP; auto.
  unfold build_subst.
  rewrite (substP_cons _ _ Hnq).
  rewrite (substP_cons _ _ Hnr).
  assert (Hsx: (substP
         ((x,
          addPP
            (mulPP [[x]]
   (substP s (addPP [[]] q)))
             (substP s r)) :: s)
         [[x]] = (addPP)
          (mulPP [[x]]
   (substP \ s \ (addPP \ [[]] \ q)))
          (substP s r)).
    unfold substP. simpl.
    rewrite ← beg_nat_refl.
    rewrite mulPP_1r; auto. rewrite app_nil_r.
    rewrite no_make_poly; auto.
  rewrite Hsx.
  rewrite substP_distr_addPP; auto.
```

```
rewrite substP_1.
  rewrite mulPP_distr_addPPr; auto.
  rewrite mulPP_1r; auto.
  rewrite mulPP_distr_addPP; auto.
  rewrite mulPP_distr_addPP; auto.
  rewrite mulPP_assoc.
  rewrite mulPP_p_p; auto.
  rewrite addPP_p_p; auto.
  rewrite addPP_0; auto.
  rewrite ← substP_distr_mulPP; auto.
  rewrite ← substP_distr_addPP; auto.
  rewrite \leftarrow (mulPP_1r r) at 2; auto.
  rewrite mulPP_comm; auto.
  rewrite (mulPP_comm r [[]]); auto.
  rewrite ← mulPP_distr_addPP; auto.
  rewrite addPP_comm; auto.
Qed.
Lemma build_subst_is_reprod : \forall x p q r s,
  is_poly p \rightarrow
  div_by_var x p = (q, r) \rightarrow
  reprod_unif s (build_poly q r) \rightarrow
  \forall t, unifier t p \rightarrow
             subst\_comp (build_subst s \ x \ q \ r) t \ t.
Proof.
  unfold reprod_unif.
  intros x p q r s HpolyP Hdiv [[HpsS HunifS] Hsub_comp] t HunifT.
  assert (HunifT' := HunifT).
  destruct HunifT as [HpsT \ HunifT].
  apply (div_build_unif _ _ _ _ HpolyP Hdiv) in HunifT'.
  unfold subst_comp in *.
  intros y.
  destruct (y = ? x) eqn:Hyx.
  - unfold build_subst.
    assert (H: (substP ((x, addPP (mulPP [[x]] (substP s (addPP [[]] q)))
                                       (\operatorname{substP} s r)) :: s) [[y]]) =
                 (addPP (mulPP [[x]] (substP s (addPP [[]] q))) (substP s r))).
      unfold substP. simpl.
      rewrite Hyx.
      rewrite mulPP_1r; auto. rewrite app_nil_r.
      rewrite no_make_poly; auto.
    rewrite H.
    rewrite substP_distr_addPP; auto.
```

```
rewrite substP_distr_mulPP; auto.
    pose (div_is_poly _ _ _ _ HpolyP Hdiv); destruct a.
    rewrite substP_distr_addPP; auto.
    rewrite substP_distr_addPP; auto.
    rewrite substP_1.
    assert (Hdiv2 := Hdiv).
    apply div_eq in Hdiv; auto.
    apply div_is_poly in Hdiv2 as [HpolyQ\ HpolyR]; auto.
    rewrite (subst_comp_poly s t t); auto.
    rewrite (subst_comp_poly s t t); auto.
    rewrite mulPP_comm; auto.
    rewrite mulPP_distr_addPP; auto.
    rewrite mulPP_comm; auto.
    rewrite mulPP_1r; auto.
    rewrite (addPP_comm (substP t [[x]]) _); auto.
    rewrite addPP_assoc; auto.
    rewrite (addPP_comm (substP t [[x]]) _ ); auto.
    rewrite ← addPP_assoc; auto.
    rewrite ← substP_distr_mulPP; auto.
    rewrite ← substP_distr_addPP; auto.
    rewrite mulPP_comm; auto.
    \texttt{rewrite} \leftarrow \textit{Hdiv}.
    unfold unifier in HunifT.
    rewrite HunifT.
    rewrite addPP_0; auto.
    apply beq_nat_true in Hyx.
    rewrite Hyx.
    reflexivity.
  unfold build_subst.
    rewrite substP_cons; auto.
    intros.
    inversion H; auto.
    rewrite \leftarrow H0.
    simpl. intro.
    destruct H1; auto.
    apply Nat.eqb_eq in H1.
    rewrite Hyx in H1.
    inversion H1.
Qed.
Lemma reprod_build_subst : \forall x p q r s,
  is_poly p \rightarrow
  div_by_var x p = (q, r) \rightarrow
```

```
reprod_unif s (build_poly q r) \rightarrow reprod_unif (build_subst s x q r) p. Proof.
intros. unfold reprod_unif.
split.
- apply build_subst_is_unif; auto.
- apply build_subst_is_reprod; auto.
```

8.4 Recursive Algorithm

Now we define the actual algorithm of successive variable elimination. Built using five helper functions, the definition is not too difficult to construct or understand. The general idea, as mentioned before, is to remove one variable at a time, creating simpler problems. Once the simplest problem has been reached, to which the solution is already known, every solution to each subproblem can be built from the solution to the successive subproblem. Formally, given the polynomials $p = x \times q + r$ and $p' = (q + 1) \times r$, the solution to p = B 0 is built from the solution to p' = B 0. If s solves p' = B 0, then s' = s U $(x \to x \times (s(q) + 1) + s(r))$ solves p = B 0.

The function sve is the final result, but it is sveVars which actually has all of the meat. Due to Coq's rigid type system, every recursive function must be obviously terminating. This means that one of the arguments must decrease with each nested call. It turns out that Coq's type checker is unable to deduce that continually building polynomials from the quotient and remainder of previous ones will eventually result in 0 or 1. So instead we add a fuel argument that explicitly decreases per recursive call. We use the set of variables in the polynomial for this purpose, since each subsequent call has one less variable.

```
Fixpoint sveVars (varlist : list \ var) \ (p : poly) : option \ subst := match \ varlist \ with
| \ [] \Rightarrow match \ p \ with
| \ [] \Rightarrow Some \ []
| \ \_ \Rightarrow None
end
| \ x :: \ xs \Rightarrow
let \ (q, \ r) := div\_by\_var \ x \ p \ in
let \ p' := (build\_poly \ q \ r) \ in
match \ sveVars \ xs \ p' \ with
| \ None \Rightarrow None
| \ Some \ s \Rightarrow Some \ (build\_subst \ s \ x \ q \ r)
end
end.
```

8.5 Correctness

Finally, we must show that this algorithm is correct. As discussed in the beginning, the correctness of a unification algorithm is proven for two cases. If the algorithm produces a solution for a problem, then the solution must be most general. If the algorithm produces no solution, then the problem must not be unifiable. These statements have been formalized in the theorem sve_correct with the help of the predicates mgu and unifiable as defined in the library poly_unif.v. The two cases of the proof are handled seperately by the lemmas sveVars_some and sveVars_none.

```
Lemma sveVars_poly_subst : \forall xs p,
  incl (vars p) xs \rightarrow
  is_poly p \rightarrow
  \forall s, sveVars xs p = Some s \rightarrow
  is_poly_subst s.
Proof.
  induction xs as [|x|xs]; intros.
  - simpl in H1. destruct p; inversion H1. unfold is_poly_subst.
     intros x p \parallel.
  - intros.
     assert (\exists qr, div_by_var x p = qr) as [[q r] Hqr]. eauto.
     simpl in H1.
     rewrite Hqr in H1.
     destruct (sveVars xs (build_poly q r)) eqn:Hs\theta; inversion H1.
     apply IHxs in Hs\theta; eauto.
     apply build_subst_is_poly; auto.
Qed.
Lemma sveVars_some : \forall (xs : list var) (p : poly),
  NoDup xs \rightarrow
  incl (vars p) xs \rightarrow
  is_poly p \rightarrow
  \forall s, sveVars xs p = Some s \rightarrow
               mgu s p.
Proof.
  intros xs p Hdup H H0 s H1.
  apply reprod_is_mgu.
  revert xs p Hdup H H0 s H1.
  induction xs as ||x|xs|.
  - intros. simpl in H1. destruct p; inversion H1.
     apply empty_reprod_unif.
```

```
- intros.
     assert (\exists qr, \text{div\_by\_var } x \ p = qr) as [[q \ r] \ Hqr]. eauto.
    simpl in H1.
    rewrite Hqr in H1.
    destruct (sveVars xs (build_poly q(r)) eqn:Hs\theta; inversion H1.
    apply NoDup_cons_iff in Hdup as Hnin. destruct Hnin as [Hnin Hdup0].
    apply sveVars_poly_subst in Hs\theta as HpsS\theta; eauto.
     apply IHxs in Hs\theta; eauto.
    apply reprod_build_subst; auto.
Qed.
Lemma sveVars_none : \forall (xs : list var) (p : poly),
  NoDup xs \rightarrow
  incl (vars p) xs \rightarrow
  is_poly p \rightarrow
  sveVars xs p = None \rightarrow
  \neg unifiable p.
Proof.
  induction xs as [|x|xs].
  - intros p \ Hdup \ H \ H0 \ H1. simpl in H1. destruct p; inversion H1. intro.
    unfold unifiable in H2. destruct H2. unfold unifier in H2.
    apply incl_nil in H. apply no_vars_is_ground in H; auto.
    destruct H; inversion H.
    rewrite H4 in H2.
    rewrite H5 in H2.
    rewrite substP_1 in H2.
    inversion H2. inversion H6.
  - intros p Hdup H H0 H1.
    assert (\exists qr, div\_by\_var x p = qr) as [[q r] Hqr]. eauto.
    simpl in H1.
    rewrite Hqr in H1.
    destruct (sveVars xs (build_poly q(r)) eqn:Hs\theta; inversion H1.
    apply NoDup_cons_iff in Hdup as Hnin. destruct Hnin as [Hnin Hdup0].
    apply IHxs in Hs\theta; eauto.
    unfold not, unifiable in *.
    intros.
    apply Hs0.
    destruct H2 as [s Hu].
    \exists s.
    apply (div_build_unif x p); auto.
Qed.
Hint Resolve NoDup_vars incl_reft.
Lemma sveVars_correct : \forall (p : poly),
```

```
is_poly p \rightarrow
  {\tt match}\ {\sf sveVars}\ ({\sf vars}\ p)\ p\ {\sf with}
   | Some s \Rightarrow \text{mgu } s p
   None \Rightarrow \neg unifiable p
   end.
Proof.
   intros.
   \verb"destruct" (sveVars" (vars" p) p) eqn: Hsve.
   - apply (sveVars_some (vars p)); auto.
  - apply (sveVars_none (vars p)); auto.
Qed.
Theorem sve_correct : \forall (p : poly),
   is_poly p \rightarrow
   {\tt match}\ {\tt sve}\ p\ {\tt with}
   \mid \mathsf{Some}\ s \Rightarrow \mathsf{mgu}\ s\ p
   | None \Rightarrow \neg unifiable p
   end.
Proof.
   intros.
   apply sveVars_correct.
   auto.
Qed.
```