Advanced Data Structures and Algorithms

Divide and Conquer

Dr G.Kalyani

Department of Information Technology
Velagapudi Ramakrishna Siddhartha Engineering College

Topics

- General method
- Binary Search
- Merge Sort
- Quick Sort
- Finding the Maximum Minimum
- Strassen's Matrix Multiplication

General Method of Divide-and-Conquer

- The Divide and Conquer Technique splits n inputs into k subsets, $1 < k \le n$, yielding k sub problems.
- These sub problems will be solved and then combined by using a separate method to get a solution to a whole problem.
- If the sub problems are large, then the Divide and Conquer Technique will be reapplied.
- Often sub problems resulting from a Divide and Conquer Technique are of the same type as the original problem.

Divide-and-Conquer

- Divide the problem into a number of sub-problems
 - Similar sub-problems of smaller size
- Solve the sub-problems
 - Solve the sub-problems <u>recursively</u>
 - Sub-problem size small enough ⇒ solve the problems in straightforward manner
- Combine the solutions of the sub-problems
 - Obtain the solution for the original problem

General Method of Divide-and-Conquer

```
Algorithm DandC(p)
  if Small(p) then return s(p);
  else
      Divide p into smaller instances p1,p2,.....,pk, k>1;
      DandC(p1), DandC(p2),..., DandC(pk);
      return Combine();
```

General Method of Divide-and-Conquer

If the size of p is n and the sizes of the k sub problems are $n_1, n_2,, n_k$, then the computing time of DandC is described by the recurrence relation

$$T(n) = \begin{cases} g(n) & n \text{ small} \\ T(n_1) + T(n_2) + \dots + T(n_k) + f(n) & Otherwise \end{cases}$$

$$T(n) = \begin{cases} T(1) & n = 1 \\ aT(n/b) + f(n) & n > 1 \end{cases}$$

- Where T(n) is the time for DandC on any input of size n and
- g(n) is the time to compute the answer directly for small inputs.
- The function f(n) is the time for dividing p and combining the solutions to sub problems.

Topics

- General method
- Binary search
- Merge sort
- Quick sort
- Finding the Maximum Minimum
- Strassen's matrix multiplication

Binary Search

• Consider the problem of determining whether a given element x is present in the list.

 If x is present, we are to determine a value j such that a[j] = x.

• If x is not in the list, then j is to be set to -1.

Steps in Binary Search

- Calculate the middle position
- Compare x with the middle element.
- If x matches with middle element, we return the mid index.
- Else If x is greater than the mid element, then x can only lie in right half sub array after the mid element. So we recur for right half.
- Else (x is smaller) recur for the left half.

Binary Search

Example 3.6 Let us select the 14 entries

-15, -6, 0, 7, 9, 23, 54, 82, 101, 112, 125, 131, 142, 151

Search for the following values of x:151, -14, and 9

found

Recursive Algorithm for Binary Search

```
Algorithm BinSrch(a, i, l, x)
    // Given an array a[i:l] of elements in nondecreasing
\frac{2}{3} \frac{4}{5} \frac{6}{7}
    // order, 1 \le i \le l, determine whether x is present, and
    // if so, return j such that x = a[j]; else return 0.
         if (l = i) then // If Small(P)
8
              if (x = a[i]) then return i;
9
              else return 0;
10
11
         else
12
         { // Reduce P into a smaller subproblem.
13
              mid := \lfloor (i+l)/2 \rfloor;
              if (x = a[mid]) then return mid;
14
              else if (x < a[mid]) then
15
                         return BinSrch(a, i, mid - 1, x);
16
                    else return BinSrch(a, mid + 1, l, x);
17
18
19
```

Time Complexity of Binary Search

Best Case

Array contains single element (or) The search
 element is exactly in the middle position

Worst Case

The search element is not present in the array

Average Case

The search element is present but not in the middle position

Time Complexity of Binary Search

Best Case:

-0(1)

```
Algorithm BinSrch(a, i, l, x)
    // Given an array a[i:l] of elements in nondecreasing
    // order, 1 \le i \le l, determine whether x is present, and
    // if so, return j such that x = a[j]; else return 0.
5
           (l=i) then // If Small(P)
            if (x = a[i]) then return i;
            else return 0;
10
11
        else
12
             Reduce P into a smaller subproblem.
13
            mid := |(i+l)/2|;
            if (x = a[mid]) then return mid:
14
            else if (x < a|mid|) then
15
16
                       return BinSrch(a, i, mid - 1, x);
17
                  else return BinSrch(a, mid + 1, l, x);
18
19
```

Time Complexity of Binary Search

Worst Case and Average

Case:

```
T(n)=T(n/2)+C
                =[T(n/4)+C]+C
                =[T(n/8)+C]+2.C
                =T(n/2^{i})+i*C
Assume n=2^{i} \rightarrow \log n = \log 2^{i} \rightarrow i = \log n
           T(n)=T(1)+C*\log n
                = O(1) + (C * log n)
           O(log n)
Hence
```

```
Algorithm BinSrch(a, i, l, x)
    // Given an array a[i:l] of elements in nondecreasing
     // order, 1 \le i \le l, determine whether x is present, and
     // if so, return j such that x = a[j]; else return 0.
         if (l=i) then // If Small(P)
             if (x = a[i]) then return i;
             else return 0;
         else
         \{ // \text{ Beduce } P \text{ into a smaller subproblem.} \}
             mid := |(i+l)/2|;
             if (x = a[mid]) then return mid;
             else if (x < a[mid]) then
                       return BinSrch(a, i, mid - 1, x);
17
                  else return BinSrch(a, mid + 1, l, x)
18
19
```

Topics

- General method
- Binary search
- Merge sort
- Quick sort
- Finding the Maximum Minimum
- Strassen's matrix multiplication

Merge Sort: Idea

Example for Merge Sort

Example for Merge Sort

• Ex 2:-179, 254, 285, 310, 351, 423, 450, 520, 652,861

Example for Merge Sort

Tree calls for Recursive Merge Sort

Tree calls for Merge Operation

Merge Sort: Algorithm

```
Algorithm MergeSort(low, high)
   //a[low:high] is a global array to be sorted.
   // Small(P) is true if there is only one element
    // to sort. In this case the list is already sorted.
6
        if (low < high) then // If there are more than one element
8
             // Divide P into subproblems.
                  // Find where to split the set.
                      mid := \lfloor (low + high)/2 \rfloor;
10
             // Solve the subproblems.
11
                  MergeSort(low, mid);
12
                  MergeSort(mid + 1, high);
13
             // Combine the solutions.
14
                  Merge(low, mid, high);
15
16
```

Merge Sort: Algorithm for Merge

```
Algorithm Merge(low, mid, high)
   i := low; k := low; j := mid + 1;
   while ((i \leq mid)) and (j \leq high) do
      if (a[i] \le a[j]) then
          b[k] := a[i]; i := i + 1;
     else
          b[k] := a[j]; j := j + 1;
    k := k + 1;
   if (i > mid) then
   {
      for x := i to high do
          b[k] := a[x]; k := k + 1;
  else
  £
     for x := h to mid do
         b[k] := a[x]; k := k + 1;
 for x := low to high do a[x] := b[x];
```

Time Complexity of Merge Sort

- Best Case
- Worst Case
- Average Case
- All the three cases are similar irrespective of whether the given array is already sorted or unsorted.

Time Complexity of Merge Sort

$$T(n)=2*T(n/2)+c*n$$

=2*[2*T(n/4)+c*n/2]+c*n = 4*T(n/4)+2*c*n
=4*[2*T(n/8)+c*n/4]+2*c*n = 8*T(n/8)+3*c*n
=16*T(n/16)+4*c*n

Assume 2ⁱ =n i=logn

Topics

- General method
- Binary search
- Merge sort
- Quick sort
- Finding the Maximum Minimum
- Strassen's matrix multiplication

Quick Sort

• Sort an array A[S...E]

Divide

- Partition the array A into 2 subarrays A[S..q-1] and A[q+1..E],
 such that each element of A[S..q-1] is smaller than A[q] and
 each element in A[q+1..E] is greater than equal to A[q]
- Need to find index q to partition the array

Quick Sort

$$A[S...q-1] \leq A[q+1...E]$$

Conquer

- Recursively sort A[S..q-1] and A[q+1..E] using Quicksort

Combine

- Trivial: the arrays are sorted in place
- No additional work is required to combine them

Quick Sort

Divide:

- Pick any element as the pivot, e.g, the first element
- Partition the remaining elements into

```
FirstPart, which contains all elements < pivot SecondPart, which contains all elements > pivot
```

- Recursively sort FirstPart and SecondPart.
- Combine: no work is necessary since sorting is done in place.

Quick Sort procedure

- 1. First element will be taken as a pivot element
- 2. Move "i" towards right until it satisfies a[i]>pivot
- 3.Move "j" towards left until it satisfies a[j]≤pivot
- 4.If (i<j) then swap a[i] and a[j] & continue from step 2
- **5.**If (i≥j) then swap a[j] and pivot
- 6.If pivot is moved then array will be divided into 2 halfs.
- 7. First sub array < pivot and second sub array >pivot
- 8. Again apply the quick sort procedure to both halfs till the elements are sorted

Process:

Keep going from left side as long as a[i]<=pivot and from right side as long as a[j]>pivot

pivot →		24	63	95	17	31	45	98
	i							j
	85	24	63	95	17	31	45	98
			i					j
	85	24	63	95	17	31	45	98
				i				j
	85	24	63	95	17	31	45	98
				i			j	

If i<j interchange ith and j th elements and then Continue the process.

If i ≥j interchange jth and pivot elements and then divide the list into two sublists.

31 24 63 45 17 85 95 98 :

Two sublists:

 31
 24
 63
 45
 17
 85
 95
 98

Recursively sort

FirstPart and SecondPart
QickSort(low, j-1) QickSort(j+1,high)

Quick Sort-Another Example

Sort the Elements

24 9 29 4 19 27

Algorithm for Quick Sort

Algorithm QuickSort(low,high)

```
//Sorts the elements a[low],....,a[high] which resides in the global array a[0:n-1] into ascending order;
// a[n] is considered to be defined and must \geq all the elements in a[1:n].
                    if( low< high )
                                                     // if there are more than one element
                                                     // divide p into two subproblems.
                              j :=Partition (low,high);
                              QuickSort (low,j-1);
                              QuickSort (j+1,high);
                                                  // There is no need for combining solutions.
```

Algorithm for Quick Sort

```
Algorithm Partition(I,h)
          pivot:= a[l]; i:=l;
                                        j:= h;
          while(i < j) do
                    while(a[i] <= pivot && i<=h) do
                         i++;
                    while(a[j] > pivot && j>=l) do
                         j--;
                    if ( i < j ) then Interchange(a[i],a[j]); // interchange i^{th} and j^{th} elements.
                                         // interchange pivot and j<sup>th</sup> element.
          Interchange(pivot, a[j] );
          return j;
```

Time Complexity of Quick Sort

Best Case:

Pivot element will positioned at exactly middle position

Worst Case:

Pivot element will positioned at any one end

Average Case:

Pivot element will be positioned at any position

Time Complexity of Quick Sort: Best Case

 It occurs only if each partition divides the list into two equal size sub lists.

$$T(n)=2*T(n/2)+(n+1)\\ =2*[2*T(n/4)+(n/2+1)]+(n+1)=4*T(n/4)+2*n+3\\ =4*[2*T(n/8)+(n/4+1)]+2*n+c=8*T(n/8)+3*n+7\\ =16*T(n/16)+4*n+15\\ ...\\ Assume 2^i=n\\ i=logn\\ =2^{logn}*T(1)+n*logn+2^{logn}-1\\ =n*O(1)+n*logn+n-1\\ =O(nlogn)$$

Time Complexity of Quick Sort: Worst Case

It occurs only if each partition divides the list into two sub lists like one sublist is empty and other sub list contains (n-1) elements.

```
T(n)=T(n-1)+(n+1)
   = [T(n-2)+(n)]+(n+1)
   = T(n-2)+[(n)+(n+1)]
   = [T(n-3)+(n-1)]+ [(n)+(n+1)]
   =T(n-3)+[(n-1)+(n)+(n+1)]
   =T(n-4)+[(n-2)+(n-1)+(n)+(n+1)]
   =T(1)+[3...+n+(n+1)]
   = 1 + [(n*(n+1)/2)-3+n+1]
```

Time Complexity of Quick Sort: Average Case

After the partition, pivot can be placed at any position in 1 to n. Partition divides the list into two sub lists such that both the sub lists are of random sizes less than n.

$$C_A(n) = n + 1 + \frac{1}{n} \sum_{1 \le k \le n} [C_A(k-1)) + C_A(n-k)]$$
 (3.5)

The number of element comparisons required by Partition on its first call is n + 1. Note that $C_A(0) = C_A(1) = 0$. Multiplying both sides of (3.5) by n, we obtain

$$nC_A(n) = n(n+1) + 2[C_A(0) + C_A(1) + \dots + C_A(n-1)]$$
(3.6)

Replacing n by n-1 in (3.6) gives

$$(n-1)C_A(n-1) = n(n-1) + 2[C_A(0) + \dots + C_A(n-2)]$$

Subtracting this from (3.6), we get

$$nC_A(n) - (n-1)C_A(n-1) = 2n + 2C_A(n-1)$$
or
$$C_A(n)/(n+1) = C_A(n-1)/n + 2/(n+1)$$

Time Complexity of Quick Sort: Average Case

Repeatedly using this equation to substitute for $C_A(n-1), C_A(n-2), \ldots$, we get

$$\frac{C_A(n)}{n+1} = \frac{C_A(n-2)}{n-1} + \frac{2}{n} + \frac{2}{n+1}
= \frac{C_A(n-3)}{n-2} + \frac{2}{n-1} + \frac{2}{n} + \frac{2}{n+1}
\vdots
= \frac{C_A(1)}{2} + 2\sum_{3 \le k \le n+1} \frac{1}{k}
= 2\sum_{3 \le k \le n+1} \frac{1}{k}$$
(3.7)

Since

$$\sum_{3 \le k \le n+1} \frac{1}{k} \le \int_2^{n+1} \frac{1}{x} \, dx = \log_e(n+1) - \log_e 2$$

$$C_A(n) \le 2(n+1)[\log_e(n+2) - \log_e 2] = O(n \log n)$$

Topics

- General method
- Binary search
- Merge sort
- Quick sort
- Finding the Maximum Minimum
- Strassen's matrix multiplication

Divide-and-Conquer Approach

 Let P = (n, a[i],....,a[j]) denote an arbitrary instance of the problem.

• Here n is the number of elements in the list a[i],...,a[j]and we are interested in finding the maximum and minimum of this list.

- Small(P):when n <= 2.
 - If n=1, the maximum and minimum is a[i].
 - If n=2, the problem can be solved by making one comparison.

Divide-and-Conquer Approach

- If the list has more than two elements, P has to be divided into smaller instances stances.
- For example, we might divide P into the two instances
 - P1 = (n/2,a[1],...,a[|n/2]) and
 - P2 = (n-[n/2], a[[n/2+1],...,a..[n]).
- After having divided P into two smaller sub problems wee can solve them by recursively invoking the same divide-andconquer algorithm.
- How can we combine the solutions for P1 and P2 to obtain a solution for P?
- If MAX(P) and MIN(P) are the maximum and minimum of the elements in P, then
 - MAX(P) is the larger of MAX(P1) and MAX(P2).
 - MIN(P) is the smaller of MIN(P1) and MIN(P2).

Working Example of Finding Max Min

Algorithm for Finding MaxMin

```
Algorithm MaxMin(i, j, max, min)
    //a[1:n] is a global array. Parameters i and j are integers,
^{2}
3
    1/1 \le i \le j \le n. The effect is to set max and min to the
    // largest and smallest values in a[i:j], respectively.
\mathbf{4}
5
6
         if (i = j) then max := min := a[i]; // Small(P)
7
         else if (i = j - 1) then // Another case of Small(P)
8
                  if (a[i] < a[j]) then
9
10
                      max := a[j]; min := a[i];
11
12
13
                  else
14
                      max := a[i]; min := a[j];
15
16
17
             else
18
                  // If P is not small, divide P into subproblems.
19
20
                  // Find where to split the set.
21
                       mid := \lfloor (i+j)/2 \rfloor;
^{22}
                  // Solve the subproblems.
23
                       MaxMin(i, mid, max, min);
^{24}
                       MaxMin(mid + 1, j, max1, min1);
25
                  // Combine the solutions.
26
                      if (max < max1) then max := max1;
27
                      if (min > min1) then min := min1;
28
             }
29
```

Time Complexity of Finding MaxMin

- Best Case
- Worst Case
- Average Case
- All the three cases are similar irrespective of elements in the array.

Time Complexity

```
T(n)=2*T(n/2)+5
T(n)=2*T(n/2)+c
    =2*[2*T(n/4)+c]+c = 4*T(n/4)+3c
    =4*[2*T(n/8)+c]+3c = 8*T(n/8)+7c
                              =16*T(n/16)+15c
                              =2^{i}T(n/2^{i})+(2^{i}-1)c
   Assume 2<sup>i</sup> =n
                              = 2^{\log n} * O(1) + (2^{\log n} - 1)c
          i=logn
                              = n*O(1) + (n-1)c
                              = O(n)
```

Topics

- General method
- Binary search
- Merge sort
- Quick sort
- Finding the Maximum Minimum
- Strassen's matrix multiplication

Matrix Multiplication

multiply two 2×2 matrices

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 3 & 5 \\ 1 & 4 \end{pmatrix} = \begin{pmatrix} 1*3+2*1 & 1*5+2*4 \\ 3*3+4*1 & 3*5+4*4 \end{pmatrix}$$
$$= \begin{pmatrix} 5 & 13 \\ 13 & 31 \end{pmatrix}$$

How many multiplications and additions did we need?

Basic Matrix Multiplication

Let A and B two n×n matrices. The product C=A*B is also an n×n matrix.

```
void matrix_mult (A, B, N)
 for (i = 1; i \le N; i++)
    for (j = 1; j \le N; j++)
         for(k=1; k<=N; k++)
          C[i,j]=C[i,j]+A[i,k]*B[k,j];
 return C;
```

Time complexity of above algorithm is $T(n)=O(n^3)$

Divide and Conquer technique

- We want to compute the product C=A*B, where each of A,B, and C are n×n matrices.
- Assume n is a power of 2.
- If n is not a power of 2, add enough rows and columns of zeros.
- We divide each of A,B, and C into four n/2×n/2 matrices, rewriting the equation C=A* B as follows:

$$\begin{pmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{pmatrix} = \begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix} * \begin{pmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{pmatrix}$$

Divide and Conquer technique

Then,

$$C_{11}=A_{11}B_{11}+A_{12}B_{21}$$
 $C_{12}=A_{11}B_{12}+A_{12}B_{22}$
 $C_{21}=A_{21}B_{11}+A_{22}B_{21}$
 $C_{22}=A_{21}B_{12}+A_{22}B_{22}$

$$\left[\begin{array}{c|c} c_{11} & c_{12} \\ \hline \\ c_{21} & c_{22} \end{array}\right]$$

- Each of these four equations specifies two multiplications of $n/2 \times n/2$ matrices and the addition of their $n/2 \times n/2$ products.
- We can derive the following recurrence relation for the time T(n) to multiply two n×n matrices:

T(n)=
$$\int c_1$$
 if n<=2
8T(n/2)+ cn² if n>2

$$T(n) = 8T(n/2) + cn^{2}$$

$$= 8 \left[8T(n/4) + c(n/2)^{2} \right] + cn^{2}$$

$$= 8^{2} T(n/4) + c2n^{2} + cn^{2}$$

$$= 8^{2} \left[8T(n/8) + c(n/4)^{2} \right] + c2n^{2} + cn^{2}$$

$$= 8^{3} T(n/8) + c2^{2}n^{2} + c2n^{2} + cn^{2}$$

$$= 8^{i}T(n/2^{i}) + cn^{2}[2^{i-1}...... + 2^{2} + 2 + 1]$$

$$= 8^{log}{}_{2}^{n} 1 + [(2^{i-1+1}-1)/2]cn^{2}$$

$$= n^{log}{}_{2}^{8} * 1 + 2^{i}c n^{2}$$

$$= n^{3} + [2^{log}{}_{2}^{n}]cn^{2}$$

$$= n^{3} + [n]cn^{2} = O(n^{3})$$
• T

$$S_{n} = a + ar + ar^{2} + \dots + ar^{n-1}.$$

$$\text{When } r > 1, S_{n} = a \frac{(r^{n} - 1)}{(r - 1)}$$

$$T(n) = O(n^{3})$$

 This method is no faster than the ordinary method.

Strassen's Matrix Multiplication

- Matrix multiplications are more expensive than matrix additions or subtractions ($O(n^3)$ versus $O(n^2)$).
- Strassen has discovered a way to compute the multiplication using only 7 multiplications and 18 additions or subtractions.
- His method involves computing 7 n×n matrices P,Q,R,S,T,U, and V then Cij's are calculated using these matrices.

Formulas for Strassen's Algorithm

$$S =$$

$$T =$$

$$U =$$

$$V =$$

$$\begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} * \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$C_{11} =$$

$$C_{12} =$$

$$C_{21} =$$

$$C_{22} =$$

Formulas for Strassen's Algorithm

$$P = (A_{11} + A_{22}) * (B_{11} + B_{22})$$

$$Q = (A_{21} + A_{22}) * B_{11}$$

$$R = A_{11} * (B_{12} - B_{22})$$

$$S = A_{22} * (B_{21} - B_{11})$$

$$T = (A_{11} + A_{12}) * B_{22}$$

$$U = (A_{21} - A_{11}) * (B_{11} + B_{12})$$

$$V = (A_{12} - A_{22}) * (B_{21} + B_{22})$$

$$Q = (A_{21} + A_{22}) * B_{11}$$

$$R = A_{11} * (B_{12} - B_{22})$$

$$S = A_{22} * (B_{21} - B_{11})$$

$$T = (A_{11} + A_{12}) * B_{22}$$

$$U = (A_{21} - A_{11}) * (B_{11} + B_{12})$$

$$U = (A_{21} - A_{11}) * (B_{11} + B_{12})$$

$$U = (A_{21} - A_{11}) * (B_{21} - B_{22})$$

$$U = (A_{21} - A_{21}) * (B_{21} - B_{22})$$

$$U = (A_{21} - A_{21}) * (B_{21} - B_{22})$$

$$C_{11}=P + S - T + V$$
 $C_{12}=R + T$
 $C_{21}=Q + S$
 $C_{22}=P + R - Q + U$

Example on Strassen's Algorithm

$$P = (A_{11} + A_{22}) * (B_{11} + B_{22})$$

$$Q = (A_{21} + A_{22}) * B_{11}$$

$$R = A_{11} * (B_{12} - B_{22})$$

$$S = A_{22} * (B_{21} - B_{11})$$

$$T = (A_{11} + A_{12}) * B_{22}$$

$$U = (A_{21} - A_{11}) * (B_{11} + B_{12})$$

$$V = (A_{12} - A_{22}) * (B_{21} + B_{22})$$

$$\begin{bmatrix} \begin{bmatrix} c_{11} \\ c_{21} \end{bmatrix} \begin{bmatrix} c_{12} \\ c_{21} \end{bmatrix} = \begin{bmatrix} c_{12} \\ c_{21} \end{bmatrix} = \begin{bmatrix} c_{11} \\ c_{21} \\ c_{21} \end{bmatrix} \begin{bmatrix} c_{12} \\ c_{21} \end{bmatrix} \begin{bmatrix} c_{12}$$

$$C_{11}=P + S - T + V$$
 $C_{12}=R + T$
 $C_{21}=Q + S$
 $C_{22}=P + R - Q + U$

The resulting recurrence relation for T(n) is

$$T(n) = 7T(n/2) + cn^{2}$$

$$= 7[7T(n/4) + c*(n/2)^{2}] + cn^{2} = 7^{2} * T(n/4) + cn^{2}[7/4+1]$$

$$= 7^{2}[7T(n/8) + c*(n/4)^{2}] + cn^{2}[7/4+1]$$

$$= 7^{3} * T(n/8) + cn^{2}[(7/4)^{2} + (7/4) + 1]$$

$$\dots \qquad S_{n} = a + ar + ar$$

$$= 7^{i} * T(n/2^{i}) + cn^{2}[(7/4)^{i-1} + ... + (7/4) + 1]$$

$$= 7^{\log n} T(1) + cn^{2} [(7/4)^{i-1}]/[7/4 - 1]$$

$$= 7^{\log n} * 1 + c n^{2} (7/4)^{\log n}$$

$$= n^{\log 7} + c n^{\log 4} (n^{\log 7 - \log 4})$$

$$= n^{\log 7} + c n^{\log 4} + \log 7 - \log 4$$

$$= n^{\log 7} + c n^{\log 7}$$

$$= (c+1) n^{\log_{2} 7}$$

$$= O(n^{\log_{2} 7}) \sim O(n^{2.81})$$

) + cn²[7/4+1]

$$S_n = a + ar + ar^2 + + ar^{n-1}$$
.
When $r > 1$, $S_n = a \frac{(r^n - 1)}{(r - 1)}$

Topics

- General method
- Binary search
- Merge sort
- Quick sort
- Finding the Maximum Minimum
- Strassen's matrix multiplication