Algèbre et géométrie 1

Patrick Le Meur et Pierre Gervais

September 17, 2016

Contents

1 (Groupes	1
1 D	Définitions et premiers exemples	1
2 S	ous-groupe	2
II	Opérations de groupes	3
III	Groupes symétriques	4
IV	Sous-groupes distingués et groupes quotient	4
V	Théorème de Sylow	4
VI	Solutions des exercices	4

Part I

Groupes

1 Définitions et premiers exemples

Définition 1. Un groupe est un couple (G,*) où

- G est un ensemble

- * : $\begin{cases} G \times G & \longrightarrow & G \\ (g,h) & \longmapsto & g*h \end{cases}$ est une loi de composition interne associative admettant un élément neutre e, c'est à dire tel que $\forall g \in G, g*e = e*g = g$
- tout élément g admet un symétrique pour * noté g^{-1} tel que $g*g^{-1}=g^{-1}*g=e$

Remarque 1.

- L'élément neutre et le symétrique d'un élément donné est unique.
- Pour tout $g, h \in G$ on a $(g * h^{-1}) = h^{-1} * g^{-1}$
- Si on a qh = e, alors $q = h^{-1}$
- Soit $g \in G$ et n > 0, on définit $g^n = \underbrace{g * g * g ... g}_{n \text{ fois}}, g^0 = e, g^{n+1} = g * g^n \text{ et } g^{-n} = \left(g^{-1}\right)^n$

Exercice 1. Montrer que pour tout $m, n \in \mathbb{Z}$ on a $g^{m+n} = g^m * g^n$ et $g^{-n} = (g^{-1})^n$ Exemple 1.

- 1. $G = \mathbb{Z}, * = +$
- 2. Soit E un espace vectoriel, (E, +)
- 3. (\mathbb{C}^*, \times) et $(\mathbb{C}, +)$
- 4. Si $\mathbb K$ est un corps, $(\mathbb K,*)$

Ces exemples sont des groupes abéliens (c'est à dire commutatifs), les suivants n'en sont pas.

5. Soit
$$(G, \cdot)$$
 un groupe fini, on définit \otimes :
$$\begin{cases} \mathbb{Z}^G \times \mathbb{Z}^G & \longrightarrow \mathbb{Z}^G \\ (f_1, f_2) & \longmapsto \begin{pmatrix} g \longmapsto \sum_{h \in G} f_1(h) f_2(h^{-1} * g) \end{pmatrix}$$

Exercice 2. Montrer que \mathbb{Z}^G muni de cette opération est un groupe.

6. $GL_n(\mathbb{R})$ muni de la multiplication de matrices.

Proposition 1. Soit E un ensemble non-vide, on note $\mathfrak{S}(E)$ l'ensemble des applications bijectives de E dans E et $(\mathfrak{S}(E), \circ)$ est un groupe.

2 Sous-groupe

Définition 2. Soit (G,*) un groupe, on appelle sous-groupe de G toute partie $H \subseteq G$ munie de * telle que $e \in H$, $\forall (h_1,h_2) \in H^2, h_1 * h_2 \in H$ et $\forall h \in H, h^{-1} \in H$. On note $H \leqslant G$

Exemple 2. 1. Si (G, *) est un groupe alors $\{e\} \leq G$

- 2. On définit $SL_n(\mathbb{R}) = \{ M \in \mathcal{M}_n | \det M = 1 \}$ le groupe spécial linéaire qui est un sous-groupe de $GL_n(\mathbb{R})$
- 3. On définit $\mathcal{O}_n(\mathbb{R}) = \{M \in \mathcal{M}_n | {}^t MM = I_n \}$ le groupe orthogonal qui est un sous-groupe de $GL_n(\mathbb{R})$
- 4. $\mathfrak{U} = \{z \in \mathbb{C} \mid |z| = 1\} \leqslant (\mathbb{C}^*, \times)$

5. Pour n > 0, $\mathfrak{U}_n = \{z \in \mathbb{C}^* \mid z^n = 1\} \leqslant \mathfrak{U} \leqslant \mathbb{C}^*$

Proposition 2.

- 1. Soit $n \in \mathbb{Z}$, $n\mathbb{Z} \leqslant \mathbb{Z}$
- 2. Tout sous-groupe de \mathbb{Z} est de cette forme

Preuve 1.

- 1. $n\mathbb{Z} \subseteq \mathbb{Z}$, $0 \in \mathbb{Z}$, $xn + yn = (x + y)n \in n\mathbb{Z}$ et $-(xn) \in n\mathbb{Z}$
- 2. Soit $H \leq \mathbb{Z}$, si $H = \{0\}$

Soit $n = min\{h \in H \mid h > 0\}$ (il existe par la propriété de la borne supérieure), montrons $H = n\mathbb{Z}$

$$nZ\subseteq H$$
 \checkmark

 $nZ \subset H$ Soit $h \in H$, on considère sa division euclidienne par n : h = nq + r avec $0 \le r < n$. $h - nq = r \in H$, et n est le plus petit élément non-nul, donc r = 0.

Lemme 1. Soit G un groupe et $(H_i)_i \in I$ une famille de sous-groupes de G, alors $\bigcap_{i \in I} H_i \leqslant G$

Définition 3. Soit G un groupe et A une partie de G, l'intersection des sous-groupes de G contenant A est appelée sous-groupe engendré par A et notée $\langle A \rangle$.

Propriété 1.

- $A \subset \langle A \rangle \leqslant G$
- Si H est un sous-groupe contenant A, alors $\langle A \rangle \subseteq H$

Exercice 3. Montrer que $\langle A \rangle$ est l'unique sous-groupe vérifiant ces propriétés.

Propriété 2. Soit G un groupe et $g \in G$, $\langle \{g\} \rangle = \langle g \rangle = \{g^n, n \in \mathbb{Z}\}$

Exercice 4. Le démontrer.

Part II

Opérations de groupes

Part III

Groupes symétriques

Part IV

Sous-groupes distingués et groupes quotient

Part V

Théorème de Sylow

Part VI

Solutions des exercices

Solution de l'exercice 1 Commençons par montrer pour tout n > 0, $(g^n)^{-1} = g^{-n}$:

$$(g^n)^{-1} = (g * g^{n-1})^{-1} = ((g^{n-1})^{-1} * g^{-1})^{-1}$$

 $(g^n)^{-1} = ((g^{n-2})^{-1} * g^{-1} * g^{-1})^{-1}$

. . .

$$(g^n)^{-1} = \underbrace{g^{-1} * g^{-1} \dots g^{-1}}_{n \text{ fois}} = (g^{-1})^n = g^{-n}$$

Pour tout $m, n \in \mathbb{Z}$, on distingue plusieurs cas :

- m = 0 ou n = 0
- m, n > 0 : ✓
- m > 0, n < 0 avec m + n < 0:

$$g^m * g^n = g^m * \left(g^{-1}\right)^{|n|} = g^m * \left(g^{-1}\right)^m * \left(g^{-1}\right)^{|n|-m} = e * \left(g^{-1}\right)^{|n|-m} = \left(g^{-1}\right)^{-n-m} = g^{m+n}$$

- m, n < 0:

$$g^{m+n} = (g^{-1})^{|m|+|n|} = (g^{-1})^{|m|} * (g^{-1})^{|n|} = g^m * g^n$$

- les autres cas se démontrent de la même façon

Solution de l'exercice 2 Supposons par l'absurde que (\mathbb{Z}^G, \otimes) est un groupe :

Stabilité de l'opération : 🗸

Élément neutre : On cherche $\epsilon: G \longrightarrow \mathbb{Z}$ tel que

$$\forall f \in \mathbb{Z}^G, \ \forall g \in G, \ \sum_{h \in G} \epsilon(h) f(h^{-1} * g) = \sum_{h \in G} f(h) \epsilon(h^{-1} * g) = f(g)$$

Pour f valant 1 sur G on a

$$\sum_{h \in G} \epsilon(h) = \sum_{h \in G} \epsilon(h^{-1} * g) = 1$$

Vérifions que si ϵ est définie par $\epsilon(g) = \left\{ \begin{array}{l} 1, \text{ si } g = e \\ 0, \text{ sinon} \end{array} \right.$, alors elle est neutre pour \otimes :

$$\sum_{h \in G} \underbrace{\epsilon(h)}_{1 \text{ ssi } h = e} f(h^{-1} * g) = f(e^{-1} * g) = f(g)$$

$$\sum_{h \in G} f(h) \underbrace{\epsilon(h^{-1} * g)}_{1 \text{ ssi } h = g} = f(g)$$

 \checkmark

Existence d'un inverse : Soit $f:G\longrightarrow \mathbb{Z}$, il existe $\phi:G\longrightarrow \mathbb{Z}$ telle que $f\otimes \phi=\phi\otimes f=\epsilon$

$$\forall g \neq e, \ \sum_{h \in G} \phi(h) f(h^{-1} * g) = \sum_{h \in G} f(h) \phi(h^{-1} * g) = 0$$

et

$$\sum_{h \in G} \phi(h) f(h^{-1}) = \sum_{h \in G} f(h) \phi(h^{-1}) = 1$$

la deuxième égalité est impossible lorsque f est la fonction nulle, (\mathbb{Z}^G, \otimes) n'est donc pas un groupe.

Solution de l'exercice 3 Soit H un sous-groupe vérifiant les propriété énoncées, montrons que $H = \langle A \rangle$ H vérifie la première propriété donc $A \subseteq H$ donc par la deuxième propriété $\langle A \rangle \subseteq H$. De plus, H

Solution de l'exercice 4 On pose $A = \{g^n \mid n \ge 0\}$.

 $\langle g \rangle \subseteq A$ est le plus petit sous-groupe contenant g, or tout sous-groupe contient g si et seulement si il contient A, d'où $A \subseteq \langle g \rangle$.