Übungen zu Strahlungskorrekturen in Eichtheorien*

Matthias Steinhauser

II. Institut für Theoretische Physik, Universität Hamburg, 22761 Hamburg

Herbstschule für Hochenergiephysik, Maria Laach 2003

Inhalt

1	Vorl	pemerkungen	1
2	Quantenelektrodynamik		7
	2.1	Lagrange-Dichte der QED, Feynman-Regeln	7
	2.2	Green'sche und Vertexfunktionen der QED	15
	2.3	Einschleifen-Integrale	19
	2.4	QED-Korrekturen in Einschleifen-Näherung	36
	2.5	Renormierung der QED	42
	2.6	Anomales magnetisches Moment des Elektrons	52
	2.7	Infrarot-Problem, Bremsstrahlung	55
3	Star	ndardmodell der Elektroschwachen Wechselwirkung	57
	3.1	Lagrange-Dichte, Feynman-Regeln	57
	3.2	Renormierung im Eichboson- und Fermion-Sektor	62
	3.3	Beiträge von Fermion-Schleifen zu Eichbosonselbstenergien	68
	3.4	Myon-Zerfall und W-Masse	72

^{*}Basiert auf Aufzeichnungen von W. Hollik, A. Denner, H. Spiesberger, S. Dittmaier, H. Anlauf und W. Kilian

1 Vorbemerkungen

Was sind Strahlungskorrekturen?

Ausgangspunkt: Störungstheoretische Auswertung einer Quantenfeldtheorie, d. h.

Wechselwirkungen werden als Störungen zur Theorie freier Felder

betrachtet.

Diagrammatische Veranschaulichung: Feynman-Graphen.

Niedrigste Ordnung: "Born'sche Näherung"

Baumgraphen:

Höhere Ordnungen: "Strahlungskorrekturen"

Schleifendiagramme:

Historisch: Photonabstrahlung bei Elektron-Kern-Streuung:

Photonspektrum für $E_{\gamma} \to 0$: $d\sigma \sim \frac{dE_{\gamma}}{E_{\gamma}} \longrightarrow Infrarot-Divergenz!$

Kompensation der IR-Divergenz durch virtuelle Beiträge:

1 VORBEMERKUNGEN 2

Weiterer Beitrag in gleicher Ordnung:

"Vakuumpolarisation"

Strahlungskorrekturen führen zu (i.A.) kleinen, beobachtbaren Effekten.

Beobachtbare Effekte der Quantenelektrodynamik (QED):

• Lamb-Shift: Verschiebung atomarer Energieniveaus durch Strahlungskorrekturen.

H-Atom: $\Delta E(2s_{1/2} - 2p_{1/2})_{exp} = 1057.85 \text{ MHz}.$

Energieniveaus:

$$2
ho_{\!_{3/2}}$$
 $\!_{----}$ $2
ho_{\!_{3/2}}$

Dirac-Coulomb

QED-Strahlungskorrekturen

• Anomales magnetisches Moment von e, μ : $\vec{m} = \mp g \frac{\mu_{\rm B}}{\hbar} \vec{s}$,

z.B.
$$\frac{g_{\mu}-2}{2}\Big|_{\rm exp}=a_{\mu}^{\rm exp}=11\,659\,203\,(8)\cdot 10^{-10}$$
, $a_{\mu}^{\rm exp}-a_{\mu}^{\rm th}=(27.5\pm 11)\cdot 10^{-10}$.

Relevante Diagramme:

$$g_{\mu} = 2\left[1 + \frac{\alpha}{2\pi} + \ldots\right]$$

1 VORBEMERKUNGEN 3

Beobachtbare Effekte der elektroschwachen Theorie (SM):

Inputparameter: α , G_{μ} , $M_{\rm Z}$, rel. Fehler $\lesssim 2 \cdot 10^{-5}$

 m_f , effektive Quarkmassen für $q \neq \text{top aus } \alpha(M_Z^2)$

 $M_{\rm H}$, (Higgs-Boson bisher nicht gefunden!)

 α_s starke Kopplungskonstante; rel. Fehler 2-3%

Observablen: M_Z (LEP1)

 $M_{\rm W}$ (UA2, CDF, D0, LEP2)

 $\bar{s}_W^2(M_7^2)$ (LEP1, SLD)

 Γ_{Z} , $\Gamma_{7 \to f\bar{f}}$ (LEP1)

 $m_{\rm t}$ (CDF, D0)

Theoretische Vorhersagen: $F\left(\alpha(M_7^2), G_{\mu}, M_Z, m_t, M_H, \alpha_s\right)$

Fit des SM an Daten liefert:

- gute Übereinstimmung nur nach Einbeziehung von Strahlungskorrekturen,
- Vorhersage von $m_{\rm t}$ über Strahlungskorrekturen in Übereinstimmung mit direkter Messung von $m_{\rm t}^{\rm exp}=174.3\pm5.1~{\rm GeV},$
- Ableitung von Schranken für M_H (genauer: log M_H) aus M_H -Abhängigkeit der Strahlungskorrekturen (falls das minimale Modell korrekt ist).

Allgemeines Vorgehen:

• Theorie formulieren:

Felder & Symmetrien

 \downarrow

Lokale Lagrange-Dichte

 \downarrow

• Störungstheorie:

Feynman-Regeln

 \downarrow

Feynman-Graphen

 \downarrow

Schleifenintegrale

 \downarrow

• Technisches Problem: Divergenzen

Regularisierung

 \downarrow

• Kompensation der Divergenzen und Restaurierung der Symmetrien:

Lokale Counterterme

• Fixierung der Parameter:

Renormierung

 \downarrow

• Vorhersagen der Theorie:

Berechnung von Observablen

(Zerfallsbreiten, Wirkungsquerschnitte, ...)

• Vergleich mit Experiment

Konventionen:

Lorentz-Algebra:

4-Vektor:
$$p^{\mu} = (p^0, \vec{p}),$$

Metrik:
$$g_{\mu\nu} = g^{\mu\nu} = {\rm diag}(1, -1, -1, -1),$$

Skalarprodukt:
$$p\cdot q=p^\mu q_\mu=p^\mu q^\nu g_{\mu\nu}=p^0 q^0-\vec p\cdot\vec q\;,$$

Gradient:
$$\partial_{\mu} = \frac{\partial}{\partial x^{\mu}}$$
, $\partial^{\mu} = \frac{\partial}{\partial x_{\mu}}$,

Wellenoperator:
$$\Box = \partial^{\mu} \partial_{\mu} = \frac{\partial^{2}}{\partial x_{0}^{2}} - \Delta .$$

Dirac-Algebra: (4-dimensional)

Dirac-Matrizen:
$$\gamma_{\mu}$$
, $\gamma_5 = -i\gamma_0\gamma_1\gamma_2\gamma_3 = +i\gamma^0\gamma^1\gamma^2\gamma^3$, $\gamma_0\gamma_{\mu}\gamma_0 = \gamma_{\mu}^{\dagger}$,

$$\sigma_{\mu\nu}=rac{i}{2}\left[\gamma_{\mu},\,\gamma_{
u}
ight]$$
, etc.

Dirac-Slash:
$$p = p^{\mu} \gamma_{\mu} = p_{\mu} \gamma^{\mu} ,$$

Antikommutatoren:
$$\{\gamma_\mu, \gamma_\nu\} = \gamma_\mu \gamma_\nu + \gamma_\nu \gamma_\mu = 2g_{\mu\nu} \cdot \mathbf{1}$$
, $(\text{Tr}\{\mathbf{1}\} = 4)$,

$$\{\gamma_{\mu},\gamma_5\}=0$$
 .

Dirac-Spinoren:

Dirac-Gleichung:
$$(\not p - m)u_{\sigma}(p) = 0$$
, $(\not p + m)v_{\sigma}(p) = 0$,

adjungierte Spinoren:
$$\bar{u}_{\sigma}(p) = u_{\sigma}^{\dagger}(p)\gamma_{0}$$
, $\bar{v}_{\sigma}(p) = v_{\sigma}^{\dagger}(p)\gamma_{0}$,

Normierung:
$$\bar{u}_{\sigma}(p)u_{\sigma'}(p)=2m\delta_{\sigma\sigma'}$$
,

$$\bar{v}_{\sigma}(p)v_{\sigma'}(p) = -2m\delta_{\sigma\sigma'}$$
,

$$\bar{u}_{\sigma}(p) \gamma_0 u_{\sigma'}(p) = 2p_0 \delta_{\sigma\sigma'}$$
,

$$\bar{v}_{\sigma}(p) \gamma_0 v_{\sigma'}(p) = 2p_0 \delta_{\sigma\sigma'}$$
.

Einheitensystem:

SI-Einheiten
$$\longrightarrow$$
 "natürliche Einheiten",

$$\hbar$$
, c \longrightarrow 1.

1 VORBEMERKUNGEN **6**

Fouriertransformation:

$$f(x) = \int \frac{\mathrm{d}^4 q}{(2\pi)^4} e^{-iqx} \tilde{f}(q),$$
 $\tilde{f}(q) = \int \mathrm{d}^4 x e^{+iqx} f(x)$

Übung:

Vergewissern Sie sich, daß (es gilt $c=1; x^0=t; x^i=(\vec{x})_i, i=1,2,3$):

$$\partial^{\mu} = \left(\frac{\partial}{\partial t}, -\frac{\partial}{\partial x^{1}}, -\frac{\partial}{\partial x^{2}}, -\frac{\partial}{\partial x^{3}}\right) = \left(\frac{\partial}{\partial t}, -\nabla\right) ,$$

$$\phi = p^{\mu}\gamma_{\mu} = p_{\mu}\gamma^{\mu} ,$$

$$\phi \phi = p^{\mu}p_{\mu} \cdot \mathbf{1} = p^{2} \cdot \mathbf{1} ,$$

$$\frac{1}{\phi - m} = \frac{\phi + m}{p^{2} - m^{2}} ,$$

$$\{\gamma_{\mu}, \gamma_{5}\} = 0 ,$$

$$\gamma^{\rho}\gamma_{\rho} = 4 \cdot \mathbf{1} ,$$

$$\gamma^{\rho}\gamma_{\mu}\gamma_{\rho} = -2\gamma_{\mu} ,$$

$$\operatorname{Tr} (\gamma_{\mu}\gamma_{\nu}) = 4g_{\mu\nu} ,$$

2 Quantenelektrodynamik

Relativistische, quantenfeldtheoretische Beschreibung der elektromagnetischen Wechselwirkung von e^- und Photonen.

2.1 Lagrange-Dichte der QED, Feynman-Regeln

Annahmen: Spin- $\frac{1}{2}$ -Feld ψ (Elektron), Spin-1-Feld A (Photon), Lorentzinvarianz, Skaleninvarianz für hohe Energien (\rightarrow lokale Wechselwirkungen mit Dimension \leq 4),

Eichinvarianz: \mathcal{L} ist invariant unter der lokalen Eichtransformation $\Lambda(x)$:

$$\psi(x) \longrightarrow e^{ie\Lambda(x)}\psi(x)$$
, $\bar{\psi}(x) \longrightarrow \bar{\psi}(x)e^{-ie\Lambda(x)}$, $A_{\mu}(x) \longrightarrow A_{\mu}(x) + \partial_{\mu}\Lambda(x)$.

Lagrangedichte:

$$\mathcal{L} = \underbrace{-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}}_{\text{freies Photonfeld}} + \underbrace{\bar{\psi}(i\phi)\psi - m\bar{\psi}\psi}_{\text{freies Elektronfeld}} + \underbrace{e\bar{\psi}\not{A}\psi}_{\text{Wechselwirkung}}$$

Felder: ψ = Elektron-Positron-Feld (Dirac-Spinor),

 A_{μ} = Photonfeld (masseloses Vektorfeld),

 $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} = \text{Feldstärketensor}.$

Parameter: m = Elektronmasse,

e = Elektron-Photon-Kopplungskonstante

(= Elementarladung = e^+ -Ladung)

Abkürzung: kovariante Ableitung $D_{\mu} = \partial_{\mu} - ieA_{\mu}$:

$$\mathcal{L} = -rac{1}{4}F_{\mu
u}F^{\mu
u} + ar{\psi}(i
ot\!\!/ - m)\psi$$

Propagatoren

Propagatoren = Green'sche Funktionen der freien Feldgleichungen (e = 0).

Elektronpropagator:

Freie Feldgleichung:

$$\partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \bar{\psi})} - \frac{\partial \mathcal{L}}{\partial \bar{\psi}} = 0 \implies (i\partial \!\!\!/ - m)\psi = 0$$
 ("Dirac-Gleichung").

Definition:

$$(i\partial \!\!\!/ - m)S(x) = \delta^4(x)$$
.

Lösung durch Fouriertransformation:

$$S(x) = \int \frac{\mathrm{d}^4 p}{(2\pi)^4} \, e^{-ipx} \tilde{S}(p) \,.$$

$$\longrightarrow \int \frac{\mathrm{d}^4 p}{(2\pi)^4} \, e^{-ipx} (\not p - m) \tilde{S}(p) = \delta^4(x) = \int \frac{\mathrm{d}^4 p}{(2\pi)^4} \, e^{-ipx} \,,$$

$$\Longrightarrow \quad \tilde{S}(p) = \frac{1}{\not p - m} = \frac{\not p + m}{p^2 - m^2} \quad \text{für} \quad p^2 \neq m^2 \,.$$

S(x) erhält man durch Rücktransformation.

Kausalität liefert Randbedingungen zur Behandlung der Pole bei $p_0 = \pm \sqrt{\vec{p}^2 + m^2}$.

 \implies Elektronpropagator:

$$i\tilde{S}(p) = \frac{i(\not p + m)}{p^2 - m^2 + i\epsilon} = \frac{i}{\not p - m + i\epsilon}$$
.

 $(\epsilon > 0$, infinitesimal)

Übung: Überzeugen Sie sich, daß:

$$(i\partial \!\!\!/ - m) \int \!\!\!\! \frac{\mathrm{d}^4 p}{(2\pi)^4} \, e^{-ipx} \tilde{S}(p) = \delta^4(x) .$$

Photonpropagator:

Freie Feldgleichung:

$$\partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} A^{\nu})} - \frac{\partial \mathcal{L}}{\partial A^{\nu}} = 0 \qquad \longrightarrow \qquad (-g_{\mu\nu}\Box + \partial_{\mu}\partial_{\nu})A^{\nu} = 0 .$$

Versuch: Definiere Photonpropagator $D^{\mu\nu}(x)$ über

$$(-g_{\mu\nu}\Box + \partial_{\mu}\partial_{\nu})D^{\nu\rho}(x) = -\delta^{\rho}_{\mu}\delta^{4}(x) .$$

Fouriertransformation:

$$D_{\mu\nu}(x) = \int \frac{\mathrm{d}^4 q}{(2\pi)^4} \, e^{-iqx} \tilde{D}_{\mu\nu}(q) .$$

$$\longrightarrow \underbrace{(q^2 g_{\mu\nu} - q_{\mu} q_{\nu})}_{M_{\mu\nu}} \tilde{D}^{\nu\rho}(q) = -\delta^{\rho}_{\mu} .$$

Achtung: $q^{\mu}M_{\mu\nu}=0 \implies M_{\mu\nu}$ nicht invertierbar

Grund: Eichinvarianz von $\mathcal{L}_A = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu}$.

Eichfixierung:

$${\cal L}
ightarrow {\cal L} - rac{1}{2 \xi} (\partial A)^2$$
 ,

 $\xi = \text{Eichparameter}$ (allgemein: R_{ξ} -Eichung; $\xi = 1$: Feynman-Eichung)

Observable hängen nicht von ξ ab.

Definition:

$$\label{eq:continuous} \begin{bmatrix} -g_{\mu\nu}\Box + \left(1-\frac{1}{\xi}\right)\partial_{\mu}\partial_{\nu} \end{bmatrix} D^{\nu\rho}(x) = -\delta^{\rho}_{\mu}\delta^{4}(x) \ .$$

$$\longrightarrow \left[q^{2}g_{\mu\nu} - \left(1-\frac{1}{\xi}\right)q_{\mu}q_{\nu} \right] \tilde{D}^{\nu\rho}(q) = -\delta^{\rho}_{\mu} \ .$$

Berücksichtigung der Kausalität (Verhalten bei $q^2 \to 0$) liefert den Photonpropagator:

$$i\tilde{D}_{\mu\nu}(q) = \frac{-i}{q^2 + i\epsilon} \left[g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^2 + i\epsilon} (1 - \xi) \right].$$

Herleitung von Feynman-Regeln

Allgemeine Bemerkungen

Vertizes: Jeder Term in $\mathcal L$ mit einem Produkt aus Feldern $\phi_1,\ldots\phi_n$

liefert einen Vertex mit diesen äußeren Feldern.

Ortsraum: Funktionalableitungen

Impulsraum: Übergang durch Fourier-Transformation

 $\longrightarrow \delta$ -Funktion für Impulserhaltung an jedem Vertex.

Propagatoren: = inverse 2er-Vertizes.

$$P_{\phi\phi^{\dagger}} = -(V_{\phi\phi^{\dagger}})^{-1}|_{p^2 \to p^2 + i\epsilon}.$$

Rezept zur Ableitung der Feynman-Regeln aus $\mathcal L$

1. Suche alle Produkte in $i\mathcal{L}$, die genau eine bestimmte Auswahl von Feldern enthalten; diese bilden die äußeren Linien des Vertex.

$$Z.B.: -g(\partial_{\mu}A_{\nu})A^{\mu}B^{\nu} = -g(\partial_{\mu}A^{\rho})g_{\rho\nu}A^{\mu}B^{\nu}.$$

2. Ersetze alle Ableitungen durch (-i) mal die einlaufenden Impulse der Felder, auf die sie wirken.

$$\longrightarrow -g(-iq_{\mu})g_{\rho\nu}A^{\rho}A^{\mu}B^{\nu} = ig(q_{\mu}g_{\rho\nu})A^{\rho}A^{\mu}B^{\nu}$$
.

3. Summiere über alle Permutationen der Indizes und Impulse gleicher äußerer Felder.

$$\longrightarrow ig(q_{\mu}g_{\rho\nu}+q_{\rho}'g_{\mu\nu})A^{\rho}A^{\mu}B^{\nu}$$
.

4. Streiche alle äußeren Felder.

$$\longrightarrow$$
 $ig(q_{\mu}g_{\rho\nu}+q'_{\rho}g_{\mu\nu})$.

Bemerkungen:

- 2. entspricht der Fourier-Transformation,
- 3. + 4. entsprechen der Funktionalableitung.

Übung: Skalar-Vektor-Vertex

Sei $A_{\mu}(x)$ ein Vektorfeld, und B(x) und C(x) skalare Felder. Bestimmen Sie die Feynmanregel für die Vertices

(a)
$$\mathcal{L}_g = g A^{\mu} \left(B \partial_{\mu} C - C \partial_{\mu} B \right)$$
 .

(b)
$$\mathcal{L}_{q} = gA^{\mu}A_{\mu}CD$$
.

Feynman-Regeln der QED

ēeA-Vertex:

- 1. $ie \bar{\psi} \gamma_{\mu} \psi A^{\mu}$
- 2. $ie \bar{\psi} \gamma_{\mu} \psi A^{\mu}$
- 3. $ie \bar{\psi} \gamma_{\mu} \psi A^{\mu}$
- 4. $ie \gamma_{\mu}$

$\bar{e}e$ -Propagator:

- 1. $i \bar{\psi} (i \gamma_{\mu} \partial^{\mu} m) \psi$
- 2. $i \bar{\psi} (i \gamma_{\mu} (-i p^{\mu}) m) \psi$ = $i \bar{\psi} (\not p - m) \psi$
- 3. $i \bar{\psi}(\not p m) \psi$
- 4. $i(\not p m)$

Propagator:

$$-\left[i(\not p-m)\right]^{-1} = \frac{i}{\not p-m} = \frac{i(\not p+m)}{p^2 - m^2}$$

$$\implies \frac{i(\not p+m)}{p^2 - m^2 + i\epsilon} \qquad \bar{e} \stackrel{p}{\longleftarrow} \qquad \bullet \epsilon$$

AA-Propagator:

$$\begin{aligned} 1. & -\frac{i}{4}(\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu})(\partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}) - \frac{i}{2\xi}(\partial_{\mu}A^{\mu})(\partial_{\nu}A^{\nu}) \\ & = -\frac{i}{2}(\partial_{\mu}A_{\nu})(\partial^{\mu}A^{\nu}) + \frac{i}{2}(\partial_{\nu}A_{\mu})(\partial^{\mu}A^{\nu}) - \frac{i}{2\xi}(\partial_{\mu}A^{\mu})(\partial_{\nu}A^{\nu}) \\ & = \frac{i}{2}A_{\nu}g^{\mu\nu}\partial_{\alpha}\partial^{\alpha}A_{\mu} - \frac{i}{2}\left(1 - \frac{1}{\xi}\right)A_{\nu}\partial^{\mu}\partial^{\nu}A_{\mu} & + \underbrace{\partial_{\rho}(\cdots)}_{\text{,Oberflächenterm"}} \\ & \longrightarrow \text{kein Beitrag} \end{aligned}$$

AA-Vertex:
$$A_{\mu}$$
 $k' = -k$ A_{ν}

2.
$$\frac{i}{2}A_{\nu}g^{\mu\nu}(-ik_{\alpha})(-ik^{\alpha})A_{\mu} - \frac{i}{2}\left(1 - \frac{1}{\xi}\right)A_{\nu}(-ik^{\mu})(-ik^{\nu})A_{\mu}
= A_{\mu}A_{\nu}\frac{i}{2}\left[-k^{2}g^{\mu\nu} + \left(1 - \frac{1}{\xi}\right)k^{\mu}k^{\nu}\right]$$

3. Faktor 2! wegen Symmetrisierung

4.
$$-i\left[k^2g^{\mu\nu} - \left(1 - \frac{1}{\xi}\right)k^{\mu}k^{\nu}\right] = -\left(P_{AA}^{-1}\right)^{\mu\nu}$$
 (*)

Übung: Bestimmen Sie den Propagator aus (*) mit Hilfe des Ansatzes:

$$P_{AA}^{\mu\nu} = i\tilde{D}^{\mu\nu} = a\left(g^{\mu\nu} - \frac{k^{\mu}k^{\nu}}{k^2}\right) + b\frac{k^{\mu}k^{\nu}}{k^2}, \qquad P_{AA}^{\mu\nu}\left(P_{AA}^{-1}\right)_{\nu\rho} = \delta_{\rho}^{\mu}.$$

Lösung: Einsetzen und Koeffizientenvergleich liefert

$$aik^2 = 1$$
, $a - b\frac{1}{\xi} = 0$,
 $\Rightarrow a = \frac{-i}{k^2}$, $b = \xi a = -\xi \frac{i}{k^2}$.

Ergebnis:

$$i\tilde{D}^{\mu\nu}(k) = \frac{i}{k^2 + i\epsilon} \left[-g^{\mu\nu} + (1 - \xi) \frac{k^{\mu}k^{\nu}}{k^2 + i\epsilon} \right] \qquad A_{\mu} - A_{\nu}$$

Feynman-Regeln der QED (Zusammenfassung):

Propagatoren:

$$A_{\mu} \longrightarrow A_{\nu}$$

$$\frac{i}{\not p - m + i\epsilon}$$

$$\frac{i}{k^2 + i\epsilon} \left[-g^{\mu\nu} + (1 - \xi) \frac{k^{\mu}k^{\nu}}{k^2 + i\epsilon} \right]$$

Vertex:

 $ie \gamma_{\mu}$

Impulse:

- Impulserhaltung an jedem Vertex,
- Integration über jeden freien Schleifenimpuls: $\int \frac{\mathrm{d}^4 q}{(2\pi)^4}$.

Dirac-Ketten:

- Reihenfolge der Dirac-Matrizen und -Spinoren verläuft entgegen der Pfeilrichtung im Feynman-Graphen,
- Faktor (−1) und Dirac-Spurbildung in Fermion-Schleifen,
- Faktor (−1) für Vertauschung äußerer Fermionlinien.

Für S-Matrixelemente:

äußere Linien: $e^ e^+$ γ einlaufend: $u_{\sigma}(p)$ $\bar{v}_{\sigma}(p)$ $\varepsilon_{\mu}(k,\lambda)$ auslaufend: $\bar{u}_{\sigma}(p)$ $v_{\sigma}(p)$ $\varepsilon_{\mu}(k,\lambda)$

2.2 Green'sche und Vertexfunktionen der QED

a) Photonpropagator

Darstellung der Korrekturen zur Photon-Zweipunktfunktion durch die Verkettung von irreduziblen Vertexfunktionen (Selbstenergie-Einsetzungen) und freien Propagatoren: Dyson-Reihe

$$G_{\mu\nu}^{AA} = i\tilde{D}_{\mu\nu} + i(\tilde{D}\Sigma\tilde{D})_{\mu\nu} + i(\tilde{D}\Sigma\tilde{D}\Sigma\tilde{D})_{\mu\nu} + \cdots$$

Selbstenergie: Summe aller Schleifendiagramme, die zwei Photonpropagatoren verbinden können und nicht selbst aus zwei durch einen Photonpropagator verbundenen Stücken bestehen.

$$-i\Sigma_{\mu\nu}(k) = \mu \sim \nu$$

Zerlegung nach Lorentz-Kovarianten:

$$\Sigma_{\mu\nu}^{AA}(k) = \left(g_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^2}\right) \underbrace{\Sigma_{T}^{AA}(k^2)}_{\text{Transversalanteil}} + \underbrace{\frac{k_{\mu}k_{\nu}}{k^2}}_{\text{Longitudinalanteil}} \underbrace{\Sigma_{L}^{AA}(k^2)}_{\text{Longitudinalanteil}}$$

Übung: Nehmen Sie an, daß die Funktionen $\Sigma_T^{AA}(k^2)$ und $\Sigma_L^{AA}(k^2)$ bekannt sind. Bestimmen Sie damit den korrigierten Photonpropagator als Summe der Dyson-Reihe!

Lösung:

$$G_{\mu\nu}^{AA}(k) = -i\left(g_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^{2}}\right)\left(k^{2} + \Sigma_{T}^{AA}(k^{2})\right)^{-1} - i\frac{k_{\mu}k_{\nu}}{k^{2}}\left(\frac{k^{2}}{\xi} + \Sigma_{L}^{AA}(k^{2})\right)^{-1}$$

Bemerkung: Photonpropagator in der QED ist eichinvariant \Longrightarrow Aufsummation sinnvoll SM \longrightarrow Eichbosonpropagatoren sind nicht eichinvariant.

Photonselbstenergie:

Störungsentwicklung:

Einschleifen-Näherung:

$$\mu \stackrel{k}{\longrightarrow} \nu = -i\Sigma_{\mu\nu}^{(2)AA}(k) + \mathcal{O}\left(e^{4}\right)$$

$$= (-1)\int_{\overline{(2\pi)^{4}}}^{d^{4}q} \operatorname{Tr}\left\{ie\gamma_{\mu}\frac{i}{\phi-m}ie\gamma_{\nu}\frac{i}{\phi+k-m}\right\},$$

$$\Longrightarrow \Sigma_{\mu\nu}^{(2)AA}(k) = -ie^{2}\int_{\overline{(2\pi)^{4}}}^{d^{4}q} \frac{\operatorname{Tr}\left\{\gamma_{\mu}(\phi+m)\gamma_{\nu}(\phi+k+m)\right\}}{(q^{2}-m^{2})[(q+k)^{2}-m^{2}]}.$$

UV-Verhalten: $q^2 \to \infty$

$$\int d^4q \sim \int_0^\infty dq \ q^3 \ d\Omega; \quad q^2 - m^2, (q+k)^2 - m^2 \sim q^2$$

$$\longrightarrow \int \frac{d^4q}{q^4} \{1, q, q^2\} \sim \int dq \{q^{-1}, 1, q\}$$

⇒ Logarithmisch, linear, quadratisch divergente Integrale!

Saubere Definition der Integrale durch "Regularisierung" erforderlich! (= Modifikation der Theorie, so daß divergente Integrale definiert, also endlich sind).

b) Elektronpropagator

$$G^{\bar{e}e}(p) = iS(p) + i(S(p) \sum_{\bar{e}e}(p) S(p)) + \cdots$$
Elektronselbstenergie

Zerlegung nach Kovarianten:

$$\Sigma^{\bar{e}e}(p) = \not p \underbrace{\Sigma_V^{\bar{e}e}(p^2)}_{\text{Vektoranteil}} + m \underbrace{\Sigma_S^{\bar{e}e}(p^2)}_{\text{Skalaranteil}}$$

Einschleifen-Näherung: (Feynman-Eichung $\xi = 1$)

$$\frac{q-p}{p \quad \alpha \quad q \quad \beta \quad p} = i\Sigma^{\bar{e}e}(p) + \mathcal{O}(e^4)$$

$$= \int \frac{\mathrm{d}^4 q}{(2\pi)^4} \; ie \, \gamma_\alpha \frac{i}{\not q - m} ie \, \gamma_\beta \frac{-ig^{\alpha\beta}}{(q-p)^2 - \underbrace{\lambda^2}}$$
 Infinitesimale Photon-
"masse" zur Regularisierung der IR-Divergenz

$$\Longrightarrow \quad \Sigma^{\bar{e}e}(p) = ie^2 \int \frac{\mathrm{d}^4 q}{(2\pi)^4} \frac{\gamma_\alpha(\not q+m)\gamma^\alpha}{(q^2-m^2)[(q-p)^2-\lambda^2]}$$

UV-Verhalten:
$$\int \frac{dq}{q} \{1, q\} \implies \text{logarithmische, lineare Divergenz.}$$

c) Photon-Elektron-Vertex

Einschleifen-Näherung: (Feynman-Eichung $\xi = 1$)

$$\mu \sim \begin{array}{c} p' - p \\ q + p' \end{array} = ie \Lambda_{\mu}(p', p) + \mathcal{O}(e^{5})$$

$$= \int \frac{d^{4}q}{(2\pi)^{4}} ie \gamma_{\alpha} \frac{i}{\not{q} + \not{p}' - m} ie \gamma_{\mu} \frac{i}{\not{q} + \not{p} - m} ie \gamma_{\beta} \cdot \frac{-ig^{\alpha\beta}}{q^{2} - \lambda^{2}}$$

UV-Verhalten: $\int \frac{dq}{q} \implies logarithmische Divergenz.$

Übung:

Uberlegen Sie sich eine Faustformel zur Bestimmung des Divergenzgrades eines beliebigen Einschleifen-Diagramms in der QED (in Feynman-Eichung).

2.3 Einschleifen-Integrale

Regularisierung:

"Erweiterung" der Theorie durch Modifikation des UV-Verhaltens, so daß divergente Integrale endlich werden.

Einführung eines neuen freien Parameters δ , so daß sich formal die ursprüngliche Theorie ergibt für $\delta \to \delta_0$.

 $I^{\mathrm{reg}}(\delta)$ ist endlich für allgemeines δ , aber $I^{\mathrm{reg}}(\delta) \underset{\delta \to \delta_0}{\longrightarrow} \infty$ für ursprünglich divergente Integrale. Für ursprünglich konvergente Integrale muß $\lim_{\delta \to \delta_0} I^{\mathrm{reg}}(\delta)$ das richtige Ergebnis liefern.

Renormierung:

Korrekturterme zur Lagrangedichte zur Restaurierung der Eichinvarianz und "Beseitigung" der Divergenzen durch Neudefinition der Inputparamete:

Vollständige Absorption der Divergenzen in einer endlichen Anzahl von Parametern. In renormierbaren Theorien (z.B. QED, SM) bleibt die Anzahl der Parameter in allen Ordnungen gleich.

Ergebnis:

- $\delta \to \delta_0$ durchführbar nach Renormierung.
 - ⇒ Endliche Ergebnisse ausgedrückt durch renormierte Parameter.
- Unabhängigkeit von der Art der Regularisierung.

Dimensionale Regularisierung

Berechnung von Loop-Integralen in $D=4-\epsilon$ Dimensionen:

(Achtung: oft auch $D = 4 - 2\epsilon$)

$$\int \frac{\mathrm{d}^4 q}{(2\pi)^4} \longrightarrow \mu^{4-D} \int \frac{\mathrm{d}^D q}{(2\pi)^D} .$$

Integrale, die für D=4 UV-divergent sind, sind konvergent für hinreichend kleines D.

 \longrightarrow Analytische Fortsetzung zu beliebigem komplexem D!

(Erwartung: Divergenzen \rightarrow Singularitäten in der komplexen D-Ebene.)

 $(\mu = beliebige Referenzmasse)$

Rechenregeln (in D Dimensionen)

Metrik: $q^{\mu\nu}$ ist *D*-dimensional: $\mu, \nu = 0, 1, \dots, D-1$;

 $\delta^\mu_\mu = g^\mu_\mu = D$.

Dirac-Matrizen: γ^{μ} sind entsprechend zu verallgemeinern:

(in geradzahligen Dimensionen D: $\dim(\gamma^{\mu}) = 2^{D/2}$),

 $\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu} \cdot \mathbf{1}$,

 $Tr \{1\} = 4$. (per Definition)

Vorteile: Lorentzinvarianz, Eichinvarianz, Einfachheit.

Probleme: γ_5 -Algebra, SUSY \longrightarrow keine konsistente Definition in D=

 $4-2\epsilon$ Dimensionen möglich.

Übung:

Zeigen Sie, ausgehend von $g^\mu_\mu=D$ und $\{\gamma^\mu,\gamma^\nu\}=2g^{\mu\nu}\cdot{\bf 1}$ in D Dimensionen:

$$\gamma^{
ho}\gamma_{
ho} = D\cdot {f 1}$$
 ,

$$\gamma^{\rho}\gamma_{\mu}\gamma_{\rho} = (2-D)\gamma_{\mu}$$
 ,

$$\gamma^{\rho}\gamma_{\mu}\gamma_{\nu}\gamma_{\rho} = 4g^{\mu\nu}\cdot\mathbf{1} + (D-4)\gamma_{\mu}\gamma_{\nu}$$

Bemerkungen zur mathematischen Definition

Einbettung in ∞-dimensionalen Raum:

• Äußere Impulse \vec{e}_i spannen "Parallelraum" auf:

$$ec{k}=ec{k}_{||}+ec{k}_{\perp}$$
 , $ec{k}_{||}=\sum_{j=1}^{J}k^{j}ec{e}_{j}$ = paralleler Anteil, $ec{k}_{\perp}$ = orthogonaler Anteil.

ullet Funktionen f(ec k) hängen nicht von der Richtung von $ec k_\perp$ ab.

Definition:

 \longrightarrow Analytische Fortsetzung zu komplexem D möglich.

Eigenschaften:

- Linearität,
- Skalierungseigenschaft: $\int d^D k \ f(\lambda \vec{k}) = \lambda^{-D} \int d^D k \ f(\vec{k})$ für $\lambda > 0$,
- Translationsinvarianz,
- Unabhängigkeit von der Paralleldimension J,
- $\int d^D k \ (\vec{k}^2)^{\alpha} = 0$ für alle α (Definition!),
- Partielle Integration: $\int d^D k \; \frac{\partial}{\partial k^{\mu}} f(\vec{k}^2) = 0$ (Oberflächenintegral),
- Isotropie: $\int d^D k \ k^i k^j f(\vec{k}^2) = \frac{\delta^{ij}}{D} \int d^D k \ \vec{k}^2 f(\vec{k}^2) \ .$

Bemerkung: dimensionale Regularisierung bewirkt eine effektive Modifikation der Physik bei Skalen, die wesentlich größer oder wesentlich kleiner sind als μ und regularisiert dadurch gleichzeitig UV- und IR-Singularitäten.

Standardisierte Einschleifen-Integrale

Allgemeines N-Punkt-Tensorintegral:

$$T_{\mu_1\cdots\mu_M}^N(p_1,\ldots,p_{N-1},m_0,\ldots,m_{N-1}) = \frac{(2\pi\mu)^{4-D}}{i\pi^2} \int d^D q \frac{q_{\mu_1}\cdots q_{\mu_M}}{(q^2-m_0^2+i\epsilon)[(q+p_1)^2-m_1^2+i\epsilon]\cdots[(q+p_{N-1})^2-m_{N-1}^2+i\epsilon]}.$$

Konvention: $T^1 \to A$, $T^2 \to B$, $T^3 \to C$, ...

Skalare Integrale (M = 0): A_0 , B_0 , C_0 , ...

Kovariantenzerlegung von Tensorintegralen:

$$B^{\mu} = p_{1}^{\mu}B_{1},$$

$$B^{\mu\nu} = g^{\mu\nu}B_{00} + p_{1}^{\mu}p_{1}^{\nu}B_{11},$$

$$C^{\mu} = p_{1}^{\mu}C_{1} + p_{2}^{\mu}C_{2},$$

$$C^{\mu\nu} = g^{\mu\nu}C_{00} + p_{1}^{\mu}p_{1}^{\nu}C_{11} + (p_{1}^{\mu}p_{2}^{\nu} + p_{1}^{\nu}p_{2}^{\mu})C_{12} + p_{2}^{\mu}p_{2}^{\nu}C_{22},$$

$$C^{\mu\nu\rho} = (p_{1}^{\mu}g^{\nu\rho} + p_{1}^{\nu}g^{\mu\rho} + p_{1}^{\rho}g^{\mu\nu})C_{001} + (p_{2}^{\mu}g^{\nu\rho} + \dots)C_{002}$$

$$+ p_{1}^{\mu}p_{1}^{\nu}p_{1}^{\rho}C_{111} + (p_{1}^{\mu}p_{1}^{\nu}p_{2}^{\rho} + p_{1}^{\mu}p_{2}^{\nu}p_{1}^{\rho} + p_{2}^{\mu}p_{1}^{\nu}p_{1}^{\rho})C_{112}$$

$$+ (p_{1}^{\mu}p_{2}^{\nu}p_{2}^{\rho} + \dots)C_{122} + p_{2}^{\mu}p_{2}^{\nu}p_{2}^{\rho}C_{222},$$

Allgemein: Aufbau von $T^N_{\mu_1...\mu_M}$ aus allen symmetrischen Tensorstrukturen M. Stufe, die sich aus den $p^\mu_1,\ldots,p^\mu_{N-1}$ und $g^{\mu\nu}$ bilden lassen.

Hilfsintegral

$$I_n(A) = \int d^D q \, \frac{1}{(q^2 - A + i\epsilon)^n}$$
, $D < 2n$, $A > 0$.

1. Schritt: Wick-Drehung

Pole in q_0 -Ebene:

$$\begin{split} 0 &= q^2 - A + i\epsilon = q_0^2 - \vec{q}^2 - A + i\epsilon \ , \\ q_0 &= \pm \sqrt{\vec{q}^2 + A - i\epsilon} = \pm \sqrt{\vec{q}^2 + A} \mp i\epsilon' \ . \end{split}$$

$$\oint\limits_{\mathcal{C}}\mathrm{d}q_0\;(q^2-A+i\epsilon)^{-n}=0\;,$$

Kreisbeiträge verschwinden:

$$\longrightarrow \int_{-\infty}^{\infty} dq_0 \cdots = \int_{-i\infty}^{i\infty} dq_0 \cdots$$

Euklidische Koordinaten:

$$q_0 = iq_{E,0}$$
, $q^k = q_E^k$,
 $q^2 = q_0^2 - \vec{q}^2 = -q_{E,0}^2 - \vec{q}_E^2 = -q_E^2 \le 0$,
 $\int_{-i\infty}^{i\infty} dq_0 \cdot \dots = i \int_{-\infty}^{\infty} dq_{E,0} \cdot \dots$.

2. Schritt: Integration in Polarkoordinaten

$$\int d^{D}q_{E} = \int_{\Omega_{D}} d\Omega_{D} \int_{0}^{\infty} dq_{E} \ q_{E}^{D-1} = \int_{\Omega_{D}} d\Omega_{D} \int_{0}^{\infty} dq_{E}^{2} \ \frac{1}{2} (q_{E}^{2})^{\frac{D}{2}-1} \ ,$$

$$\Omega_{D} = \frac{2\pi^{D/2}}{\Gamma(D/2)} = D\text{-dimensionaler Raumwinkel.}$$
[Herleitung: $\sqrt{\pi}^{D} = \left(\int_{0}^{\infty} dx \ e^{-x^{2}}\right)^{D} = \int dx_{1} \dots dx_{D} \ e^{-\sum x_{i}^{2}}$

$$= \int d\Omega_{D} \int_{0}^{\infty} dx \ x^{D-1} \ e^{-x^{2}} = \int d\Omega_{D} \frac{1}{2} \int_{0}^{\infty} dx^{2} \ (x^{2})^{(D-2)/2} \ e^{-x^{2}} = \int d\Omega_{D} \frac{1}{2} \Gamma(D/2)]$$

$$\longrightarrow I_{n}(A) = i \left(-1\right)^{n} \Omega_{D} \int_{0}^{\infty} dq_{E}^{2} \ \frac{1}{2} (q_{E}^{2})^{\frac{D}{2}-1} (q_{E}^{2} + A - i\epsilon)^{-n}$$

$$= i \left(-1\right)^{n} \frac{2\pi^{D/2}}{\Gamma(D/2)} \int_{0}^{\infty} dx \ \frac{1}{2} x^{\frac{D}{2}-1} (x + A - i\epsilon)^{-n}$$

$$= i \left(-1\right)^{n} \frac{\pi^{D/2}}{\Gamma(D/2)} \left(A - i\epsilon\right)^{\frac{D}{2}-n} \int_{0}^{\infty} dy \ y^{\frac{D}{2}-1} (1 + y)^{-n}$$

$$= B \left(\frac{D}{2}, n - \frac{D}{2}\right)$$
[Beta-Funktion: $B(x, y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x + y)}$]
$$= i \left(-1\right)^{n} \pi^{D/2} \frac{\Gamma\left(n - \frac{D}{2}\right)}{\Gamma(n)} \left(A - i\epsilon\right)^{\frac{D}{2}-n}.$$

Eigenschaften der Γ -Funktion:

- $\Gamma(z)$ ist meromorph, Pole bei $z=0,-1,-2,-3,\ldots;$ $\frac{1}{\Gamma(z)}$ ist analytisch,
- $\Gamma(z+1) = z\Gamma(z)$,
- $\Gamma(n+1) = n!$ für n = 0, 1, 2, 3, ...; $\Gamma(\frac{1}{2}) = \sqrt{\pi}$,
- $\Gamma(z) \sim \frac{1}{z \to 0} \frac{1}{z} \gamma_E + \mathcal{O}(z)$ mit $\gamma_E = -\Gamma'(1) = 0.5772...$ (Euler-Konstante)
- \longrightarrow Analytische Fortsetzung in D und A möglich!
- \implies UV-Divergenzen treten als Pole in (D-4) auf.

Skalare Integrale

1-Punkt-Funktion $A_0(m)$:

$$A_{0}(m) = \frac{(2\pi\mu)^{4-D}}{i\pi^{2}} \int d^{D}q (q^{2} - m^{2} + i\epsilon)^{-1}$$

$$= \frac{(2\pi\mu)^{4-D}}{i\pi^{2}} I_{1}(m^{2})$$

$$= -m^{2} \left(\frac{m^{2}}{4\pi\mu^{2}}\right)^{\frac{D-4}{2}} \Gamma\left(\frac{2-D}{2}\right)$$

Übung: Entwickeln Sie $A_0(m)$ für $D \rightarrow 4!$

Hinweise: Bestimmen Sie zunächst die Taylorentwicklung von x^y für $y \to 0$, $\Gamma(z-1)$ für $z \to 0$ sowie 1/(D-2) für $D \to 4$ und zeigen Sie damit

$$\left(\frac{m^2}{4\pi\mu^2}\right)^{\frac{D-4}{2}} = 1 + \frac{D-4}{2}\log\left(\frac{m^2}{4\pi\mu^2}\right) + \mathcal{O}\left((D-4)^2\right) ,$$

$$\Gamma\left(\frac{2-D}{2}\right) = -\left(\frac{2}{4-D} - \gamma_E + 1\right) + \mathcal{O}\left(D-4\right) .$$

Lösung:

$$A_0(m) = m^2 \left[\underbrace{\frac{2}{4 - D} - \gamma_E + \log 4\pi}_{=: \Delta} - \log \left(\frac{m^2}{\mu^2} \right) + 1 \right] + \mathcal{O}(D - 4)$$

$$= m^2 \left[\Delta - \log \left(\frac{m^2}{\mu^2} \right) + 1 \right] + \mathcal{O}(D - 4) .$$

Beachte: $(D-4) A_0(m) = -2m^2 + \mathcal{O}(D-4)$.

2-Punkt-Funktion:

$$B_0(p_1, m_0, m_1) = \frac{(2\pi\mu)^{4-D}}{i\pi^2} \int d^D q \left\{ \underbrace{(q^2 - m_0^2 + i\epsilon)}_{=: a} \underbrace{[(q + p_1)^2 - m_1^2 + i\epsilon]}_{=: b} \right\}^{-1}$$

Feynman-Trick:
$$\frac{1}{ab} = \int_{0}^{1} dx \left[a(1-x) + bx \right]^{-2} , \quad (\ddot{\mathbf{U}}\mathbf{bung})$$

$$\frac{1}{ab} = \int_{0}^{1} dx \left\{ (q^{2} - m_{0}^{2} + i\epsilon)(1 - x) + [(q + p_{1})^{2} - m_{1}^{2} + i\epsilon]x \right\}^{-2}$$

$$= \int_{0}^{1} dx \left\{ (q^{2} + x(2qp_{1}) + x(p_{1}^{2} - m_{1}^{2} + m_{0}^{2}) - m_{0}^{2} + i\epsilon \right\}^{-2}$$

$$= \int_{0}^{1} dx \left\{ \underbrace{(q + xp_{1})^{2}}_{=: q'^{2}} \underbrace{-x^{2}p_{1}^{2} + x(p_{1}^{2} - m_{1}^{2} + m_{0}^{2}) - m_{0}^{2} + i\epsilon} \right\}^{-2}$$

$$=: -A$$

$$\longrightarrow B_0 = \frac{(2\pi\mu)^{4-D}}{i\pi^2} \int_0^1 dx \underbrace{\int d^D q' (q'^2 - A + i\epsilon)^{-2}}_{= I_2(A)}.$$

$$B_{0} = \left(4\pi\mu^{2}\right)^{\frac{4-D}{2}} \Gamma\left(\frac{4-D}{2}\right) \int_{0}^{1} dx \left[x^{2} p_{1}^{2} - x(p_{1}^{2} - m_{1}^{2} + m_{0}^{2}) + m_{0}^{2} - i\epsilon\right]^{\frac{D-4}{2}}$$

$$= \Delta - \int_{0}^{1} dx \log\left[\frac{x^{2} p_{1}^{2} - x(p_{1}^{2} - m_{1}^{2} + m_{0}^{2}) + m_{0}^{2} - i\epsilon}{\mu^{2}}\right] + \mathcal{O}(D-4)$$

Beachte: $(D-4) B_0 = -2 + \mathcal{O} (D-4)$

Bemerkungen:

- $B_0(p_1, m_0, m_1)$ hängt nur von p_1^2, m_0, m_1 ab. \longrightarrow Alternative Notation: $B_0(p_1^2, m_0, m_1)$.
- Symmetrie: $B_0(p_1^2, m_0, m_1) = B_0(p_1^2, m_1, m_0)$.

Berechnung von B_0 für Spezialfälle:

• $p_1 = p$, $m_0 = 0$, $m_1 = m$:

$$B_{0}(p^{2}, 0, m) = \Delta - \int_{0}^{1} dx \log \left[\frac{x^{2}p^{2} - x(p^{2} - m^{2}) - i\epsilon}{\mu^{2}} \right]$$

$$= \Delta + \log \mu^{2} - \int_{0}^{1} dx \log x - \int_{0}^{1} dx \log \left[m^{2} - p^{2} + xp^{2} - i\epsilon \right]$$

$$= \frac{1}{p^{2}} \cdot \int_{m^{2} - p^{2} - i\epsilon}^{m^{2} - i\epsilon} dy \log y$$

$$= \frac{1}{p^{2}} \cdot (y \log y - y)|_{m^{2} - p^{2} - i\epsilon}^{m^{2} - i\epsilon}$$

$$= \Delta - \log \left(\frac{m^{2}}{\mu^{2}} \right) + 2 + \frac{m^{2} - p^{2}}{p^{2}} \log \left(\frac{m^{2} - p^{2} - i\epsilon}{m^{2}} \right)$$

Übung: Berechnen Sie $B_0(0, 0, m)$, $B_0(m^2, 0, m)$ und $B_0(p^2, 0, 0)$!

Lösung:

$$B_0(0, 0, m) = \Delta - \log\left(\frac{m^2}{\mu^2}\right) + 1,$$

 $B_0(m^2, 0, m) = \Delta - \log\left(\frac{m^2}{\mu^2}\right) + 2,$
 $B_0(p^2, 0, 0) = \Delta - \log\left(\frac{-p^2 - i\epsilon}{\mu^2}\right) + 2.$

•
$$p_1 = p$$
, $m_0 = m_1 = m$, $|p^2| \ll m^2$:

$$B_{0}(p^{2}, m, m) = \Delta - \int_{0}^{1} dx \log \left[\frac{x^{2} p^{2} - x p^{2} + m^{2} - i\epsilon}{\mu^{2}} \right]$$

$$= \Delta - \log \left(\frac{m^{2}}{\mu^{2}} \right) - \int_{0}^{1} dx \log \left[1 + \frac{p^{2}}{m^{2}} x (x - 1) - i\epsilon' \right]$$

$$= \Delta - \log \left(\frac{m^{2}}{\mu^{2}} \right) + \frac{p^{2}}{m^{2}} \int_{0}^{1} dx \ x (1 - x) + \mathcal{O}\left(\frac{p^{4}}{m^{4}} \right)$$

$$= \Delta - \log \left(\frac{m^{2}}{\mu^{2}} \right) + \frac{p^{2}}{6m^{2}} + \mathcal{O}\left(\frac{p^{4}}{m^{4}} \right).$$

$$\implies B_{0}(0, m, m) = \Delta - \log \left(\frac{m^{2}}{\mu^{2}} \right),$$

$$B'_{0}(0, m, m) = \frac{\partial}{\partial p^{2}} B_{0}(p^{2}, m, m) \Big|_{p^{2} = 0} = \frac{1}{6m^{2}}.$$

Übung: Führen Sie $A_0(m)$, $B_0(0, 0, m)$ und $B_0(m^2, 0, m)$ auf $B_0(0, m, m)$ zurück!

Lösung:

$$A_0(m) = m^2 B_0(0, 0, m) = m^2 (B_0(0, m, m) + 1)$$

 $B_0(m^2, 0, m) = B_0(0, m, m) + 2$.

Übung: Zeigen Sie für $\lambda \ll m$:

$$B_0'(m^2, \lambda, m) \equiv \left. \frac{\partial B_0(p^2, \lambda, m)}{\partial p^2} \right|_{p^2 = m^2} = -\frac{1}{m^2} \left[\log \frac{\lambda}{m} + 1 \right] + \mathcal{O}\left(\frac{\lambda^2}{m^4}\right) .$$

3-Punkt-Funktion $C_0(p_1, p_2, m_0, m_1, m_2)$:

Integral ist UV-konvergent. \longrightarrow D = 4.

$$C_0 = \frac{1}{i\pi^2} \int d^4q \left\{ \underbrace{(q^2 - m_0^2 + i\epsilon)}_{=: a} \underbrace{[(q + p_1)^2 - m_1^2 + i\epsilon]}_{=: b} \underbrace{[(q + p_2)^2 - m_2^2 + i\epsilon]}_{=: c} \right\}^{-1}$$

Feynman-Trick:
$$\frac{1}{abc} = 2 \int_{0}^{1} dx \int_{0}^{1-x} dy [a(1-x-y) + bx + cy]^{-3}$$
,

$$\frac{1}{abc} = 2 \int_{0}^{1} dx \int_{0}^{1-x} dy \left\{ (q^{2} - m_{0}^{2} + i\epsilon)(1 - x - y) + [(q + p_{1})^{2} - m_{1}^{2} + i\epsilon]x + [(q + p_{2})^{2} - m_{2}^{2} + i\epsilon]y \right\}^{-3}$$

$$= 2 \int_{0}^{1} dx \int_{0}^{1-x} dy \left\{ q^{2} + x2qp_{1} + y2qp_{2} + x(p_{1}^{2} - m_{1}^{2} + m_{0}^{2}) + y(p_{2}^{2} - m_{2}^{2} + m_{0}^{2}) - m_{0}^{2} + i\epsilon \right\}^{-3}$$

$$= 2 \int_{0}^{1} dx \int_{0}^{1-x} dy \left\{ (q + xp_{1} + yp_{2})^{2} - x^{2}p_{1}^{2} - y^{2}p_{2}^{2} - xy2p_{1}p_{2} + x(p_{1}^{2} - m_{1}^{2} + m_{0}^{2}) + y(p_{2}^{2} - m_{2}^{2} + m_{0}^{2}) - m_{0}^{2} + i\epsilon \right\}^{-3}$$

$$= 2 \int_{0}^{1} dx \int_{0}^{1-x} dy \left(q^{\prime 2} - A + i\epsilon \right)^{-3}, \quad q' := q + xp_{1} + yp_{2}.$$

$$\longrightarrow C_{0} = \frac{2}{i\pi^{2}} \int_{0}^{1} dx \int_{0}^{1-x} dy \underbrace{\int_{0}^{1-x} dy' \left(q^{\prime 2} - A + i\epsilon \right)^{-3}}_{=I_{3}(A)}.$$

$$C_0 = -\int_0^1 dx \int_0^{1-x} dy \left[x^2 p_1^2 + y^2 p_2^2 + xy2p_1 p_2 - x(p_1^2 - m_1^2 + m_0^2) - y(p_2^2 - m_2^2 + m_0^2) + m_0^2 - i\epsilon \right]^{-1}.$$

Beachte: $(D-4) C_0 = \mathcal{O}(D-4)$. C_0 ist UV-endlich.

Bemerkungen zur C_0 -Funktion:

Alternative Notation:

$$C_0\left(p_1^2,\;(p_1-p_2)^2,\;p_2^2,\;m_0,m_1,m_2\right)$$
 unabhängige Skalarprodukte

- Diskrete Symmetrien durch Permutation äußerer Beine, z.B.: $C_0(p_1^2, (p_1 - p_2)^2, p_2^2, m_0, m_1, m_2) = C_0((p_1 - p_2)^2, p_2^2, p_1^2, m_1, m_2, m_0)$.
- Allgemeine Lösung des $\int dx \int dy$ -Integrals durch:
 - 1. Linearisierung des Nenners in x bzw. y durch Euler-Transformation, d.h. z.B. $x \to x + \alpha y$ und Wahl von α , so daß kein y^2 -Term übrig bleibt. \longrightarrow y-Integration!
 - 2. Zerlegung der quadratischen Formen in Linearfaktoren.

$$\longrightarrow$$
 Integrale der Form: $\int dx \frac{\log(ax+b)}{cx+d}$

3. Endergebnis ausdrückbar durch log, log², Li₂.

Dilogarithmus:
$$\operatorname{Li}_2(x) = -\int\limits_0^1 rac{\mathsf{d}\,t}{t}\,\log(1-x\,t)$$
 , $|\operatorname{arg}(1-x)| < \pi$.

Beispiel $(m_0 =: \lambda, m_1 = m_2 =: m; p_1^2 = p_2^2 = m^2, (p_1 - p_2)^2 =: t; \lambda \ll m)$:

$$C_{0}(m^{2}, t, m^{2}, \lambda, m, m)$$

$$= \frac{x_{t}}{m^{2}(1 - x_{t}^{2})} \left\{ \ln x_{t} \left[2\ln(1 + x_{t}) - \frac{1}{2}\ln x_{t} - 2\ln\frac{\lambda}{m} \right] + \frac{\pi^{2}}{6} + 2\text{Li}_{2}(-x_{t}) \right\},$$

$$x_{t} = \frac{\sqrt{1 - \frac{4m^{2}}{t + i\epsilon}} - 1}{\sqrt{1 - \frac{4m^{2}}{t + i\epsilon}} + 1}.$$

M. Steinhauser

Tensorintegrale

Allgemeines Verfahren:

Algebraische Reduktion der Tensorkoeffizienten B_1 , B_{11} , B_{00} , C_1 , ... auf skalare Integrale A_0 , B_0 , C_0 , ...

- Gut geeignet für analytische Rechnungen, automatisierbar
- Nachteil: Problematisch bei der numerischen Auswertung

Vorgehen: Rekursiver Algorithmus.

- **1. Schritt:** Kontraktion der Integraldarstellung und der Kovariantenzerlegung von $T^N_{\mu_1 \cdots \mu_M}$ mit den äußeren Impulsen $p^{\mu_1}_i$ und der Metrik $g^{\mu_1 \mu_2}$.
 - (a) im Integranden:

•
$$p_i^{\mu_1} q_{\mu_1} = \underbrace{\frac{1}{2} \left[(q + p_i)^2 - m_i^2 \right]}_{\text{kürzt } i. \text{ Nenner}} - \underbrace{\frac{1}{2} (q^2 - m_0^2)}_{\text{kürzt } 0. \text{ Nenner}} - \underbrace{\frac{1}{2} (p_i^2 - m_i^2 + m_0^2)}_{\text{Tensor } (M - 1). \text{ Stufe}}$$

 \Longrightarrow Alle Kontraktionen von $T^N_{\mu_1...\mu_M}$ sind auf Tensorintegrale der Stufen (M-2) und (M-1) der (N-2)- und (N-1)-Punkt-Integrale zurückführbar.

- (b) in der Kovariantenzerlegung: Linearkombination von Tensorkoeffizienten.
- 2. Schritt: Auflösung des linearen Gleichungssystems nach den Tensorkoeffizienten.

 $B_{\mu}(p, m_0, m_1)$:

Abkürzung:
$$\langle \cdots \rangle_q := \frac{(2\pi\mu)^{4-D}}{i\pi^2} \int d^D\!q \cdots$$

$$B_{\mu}(p, m_0, m_1) = \left\langle \frac{q_{\mu}}{(q^2 - m_0^2)[(q+p)^2 - m_1^2]} \right\rangle_q$$
$$= p_{\mu} B_1(p^2, m_0, m_1).$$

Multiplikation mit p^{μ} liefert:

$$p^{2}B_{1} = \left\langle \frac{pq}{(q^{2} - m_{0}^{2})[(q+p)^{2} - m_{1}^{2}]} \right\rangle_{q}$$

$$= \left\langle \frac{\frac{1}{2}[(q+p)^{2} - m_{1}^{2}] - \frac{1}{2}(q^{2} - m_{0}^{2}) - \frac{1}{2}(p^{2} - m_{1}^{2} + m_{0}^{2})}{(q^{2} - m_{0}^{2})[(q+p)^{2} - m_{1}^{2}]} \right\rangle_{q}$$

$$= \frac{1}{2} \left\langle \frac{1}{q^{2} - m_{0}^{2}} \right\rangle_{q} - \frac{1}{2} \left\langle \frac{1}{(q+p)^{2} - m_{1}^{2}} \right\rangle_{q}$$

$$- \frac{1}{2} \left\langle \frac{p^{2} - m_{1}^{2} + m_{0}^{2}}{(q^{2} - m_{0}^{2})[(q+p)^{2} - m_{1}^{2}]} \right\rangle_{q}$$

$$= \frac{1}{2} A_{0}(m_{0}) - \frac{1}{2} A_{0}(m_{1}) - \frac{1}{2} (p^{2} - m_{1}^{2} + m_{0}^{2}) B_{0}.$$

$$\implies B_1(p^2, m_0, m_1) = \frac{1}{2p^2} \left[A_0(m_0) - A_0(m_1) - (p^2 - m_1^2 + m_0^2) B_0(p^2, m_0, m_1) \right].$$

Divergenter Anteil von B_1 : $B_1 = -\frac{1}{2}\Delta + \text{endlicher Anteil}$

$$\implies (D-4) B_1 = 1 + \mathcal{O}(D-4) .$$

Beispiel:

M. Steinhauser

$$B_1(p^2, m, m) = -\frac{1}{2}B_0(p^2, m, m)$$
.

Übung: Berechnen Sie $A_{\mu\nu}(m) = \left\langle \frac{q_{\mu}q_{\nu}}{q^2-m^2} \right\rangle_{q}!$

 $B_{\mu\nu}(p, m_0, m_1)$:

$$B_{\mu\nu}(p, m_0, m_1) = \left\langle \frac{q_{\mu}q_{\nu}}{(q^2 - m_0^2)[(q+p)^2 - m_1^2]} \right\rangle_q$$

= $g_{\mu\nu} B_{00}(p^2, m_0, m_1) + p_{\mu}p_{\nu} B_{11}(p^2, m_0, m_1)$.

Kontraktion mit $g^{\mu\nu}$:

$$DB_{00} + p^2 B_{11} = \left\langle \frac{(q^2 - m_0^2) + m_0^2}{(q^2 - m_0^2)[(q+p)^2 - m_1^2]} \right\rangle_q = A_0(m_1) + m_0^2 B_0.$$

Kontraktion mit p^{μ} :

$$\begin{aligned}
\rho_{\nu}(B_{00} + \rho^{2}B_{11}) \\
&= \left\langle \frac{q_{\nu} \left\{ \frac{1}{2} [(q+p)^{2} - m_{1}^{2}] - \frac{1}{2}(q^{2} - m_{0}^{2}) - \frac{1}{2}(p^{2} - m_{1}^{2} + m_{0}^{2}) \right\}}{(q^{2} - m_{0}^{2})[(q+p)^{2} - m_{1}^{2}]} \right\rangle_{q} \\
&= \frac{1}{2} \left\langle \frac{q_{\nu}}{q^{2} - m_{0}^{2}} \right\rangle_{q} - \frac{1}{2} \left\langle \frac{q_{\nu}}{(q+p)^{2} - m_{1}^{2}} \right\rangle_{q} - \frac{1}{2}(p^{2} - m_{1}^{2} + m_{0}^{2}) \underbrace{B_{\nu}}_{= p_{\nu} B_{1}} \\
&= \left\langle \frac{q'_{\nu} - p_{\nu}}{q'^{2} - m_{1}^{2}} \right\rangle_{q'} \\
&= p_{\nu} \left[\frac{1}{2} A_{0}(m_{1}) - \frac{1}{2}(p^{2} - m_{1}^{2} + m_{0}^{2}) B_{1} \right] .
\end{aligned}$$

 \implies Lineares Gleichungssystem für B_{11} , B_{00} :

$$DB_{00} + p^2 B_{11} = A_0(m_1) + m_0^2 B_0$$
,
 $B_{00} + p^2 B_{11} = \frac{1}{2} A_0(m_1) - \frac{1}{2} (p^2 - m_1^2 + m_0^2) B_1$.

Übung: Drücken Sie B_{00} bzw. B_{11} durch A_0 , B_0 und B_1 aus und betrachten Sie den Grenzfall $D \rightarrow 4!$ Bestimmen Sie auch die divergenten Anteile.

Lösung:

$$B_{00} = \frac{1}{2(D-1)} \left[A_0(m_1) + 2m_0^2 B_0 + (p^2 - m_1^2 + m_0^2) B_1 \right] ,$$

$$B_{11} = \frac{1}{2(D-1)p^2} \left[(D-2)A_0(m_1) - 2m_0^2 B_0 - D(p^2 - m_1^2 + m_0^2) B_1 \right] .$$

Verhalten für $D \rightarrow 4$:

$$B_{00} = \frac{1}{6} \left[A_0(m_1) + 2m_0^2 B_0 + (p^2 - m_1^2 + m_0^2) B_1 + m_0^2 + m_1^2 - \frac{p^2}{3} \right] ,$$

$$B_{11} = \frac{1}{6p^2} \left[2A_0(m_1) - 2m_0^2 B_0 - 4(p^2 - m_1^2 + m_0^2) B_1 - m_0^2 - m_1^2 + \frac{p^2}{3} \right] .$$

Divergente Anteile:

$$B_{00} = -\frac{1}{12} \left[p^2 - 3(m_0^2 + m_1^2) \right] \Delta + \text{endliche Anteile},$$

 $B_{11} = \frac{1}{3} \Delta + \text{endliche Anteile}.$

$$\longrightarrow (4-D)B_{00} = \frac{1}{6} \left[p^2 - 3(m_0^2 + m_1^2) \right] + \mathcal{O}(D-4) ,$$

$$(4-D)B_{11} = -\frac{2}{3} + \mathcal{O}(D-4) .$$

M. Steinhauser

 $C_{\mu}(p_1, p_2, m_0, m_1, m_2)$:

$$C_{\mu} = \left\langle \frac{q_{\mu}}{(q^2 - m_0^2)[(q + p_1)^2 - m_1^2][(q + p_2)^2 - m_2^2]} \right\rangle_q$$
$$= p_{1,\mu} C_1 + p_{2,\mu} C_2.$$

Kontraktion mit p_1^{μ} :

$$\begin{split} & p_1^2 C_1 + p_1 p_2 C_2 \\ & = \left\langle \frac{\frac{1}{2} [(q+p_1)^2 - m_1^2] - \frac{1}{2} (q^2 - m_0^2) - \frac{1}{2} (p_1^2 - m_1^2 + m_0^2)}{(q^2 - m_0^2) [(q+p_1)^2 - m_1^2] [(q+p_2)^2 - m_2^2]} \right\rangle_q \\ & = \frac{1}{2} B_0(p_2^2, m_0, m_2) - \frac{1}{2} B_0((p_1 - p_2)^2, m_1, m_2) - \frac{1}{2} (p_1^2 - m_1^2 + m_0^2) C_0 \ . \end{split}$$

Kontraktion mit p_2^μ : wie mit p_1^μ , aber $1\leftrightarrow 2$.

 \longrightarrow Gleichungssystem für $C_{1,2}$:

$$\begin{pmatrix} p_1^2 & p_1 p_2 \\ p_1 p_2 & p_2^2 \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{2} B_0(p_2^2, m_0, m_2) - \frac{1}{2} B_0((p_1 - p_2)^2, m_1, m_2) - \frac{1}{2} f_1 C_0 \\ \frac{1}{2} B_0(p_1^2, m_0, m_1) - \frac{1}{2} B_0((p_1 - p_2)^2, m_1, m_2) - \frac{1}{2} f_2 C_0 \end{pmatrix}$$
mit: $f_i = p_i^2 - m_i^2 + m_0^2$, $i = 1, 2$

Lösung:

$$\begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} p_1^2 & p_1 p_2 \\ p_1 p_2 & p_2^2 \end{pmatrix}^{-1} \cdot \begin{pmatrix} \frac{1}{2} B_0(p_2^2, m_0, m_2) - \frac{1}{2} B_0((p_1 - p_2)^2, m_1, m_2) - \frac{1}{2} f_1 C_0 \\ \frac{1}{2} B_0(p_1^2, m_0, m_1) - \frac{1}{2} B_0((p_1 - p_2)^2, m_1, m_2) - \frac{1}{2} f_2 C_0 \end{pmatrix}$$

Bemerkung:

 $C_{1,2}$ sind UV-konvergent.

$$\longrightarrow \quad (D-4) \ C_{1,2} = \mathcal{O} \left(D-4\right) \ .$$

2.4 QED-Korrekturen in Einschleifen-Näherung

(a) Photonselbstenergie

$$\Sigma_{\mu\nu}^{AA} = -ie^2 \mu^{4-D} \int \frac{\mathrm{d}^D q}{(2\pi)^D} \frac{\mathrm{Tr} \left\{ \gamma_{\mu} (\not q + m) \gamma_{\nu} (\not q + \not k + m) \right\}}{(q^2 - m^2)[(q + k)^2 - m^2]} .$$

Übung: Berechnung der Spur im Zähler:

$$\operatorname{Tr} \{ \cdots \} = 4(2q_{\mu}q_{\nu} - q^2g_{\mu\nu}) + 4(q_{\mu}k_{\nu} + q_{\nu}k_{\mu} - qkg_{\mu\nu}) + 4m^2g_{\mu\nu}.$$

 $g_{\mu\nu}$ -Term:

$$-4(q^2 + qk - m^2) = -2(q^2 - m^2) - 2[(q + k)^2 - m^2] + 2k^2.$$

Zurückführung auf Standardintegrale:

$$\begin{split} \Sigma_{\mu\nu}^{AA} &= -ie^2\mu^{4-D} \int \frac{\mathrm{d}^Dq}{(2\pi)^D} \left\{ \frac{4(2q_\mu q_\nu + q_\mu k_\nu + q_\nu k_\mu)}{(q^2 - m^2)[(q+k)^2 - m^2]} \right. \\ &\quad + g_{\mu\nu} \left[\frac{-2}{(q+k)^2 - m^2} + \frac{-2}{q^2 - m^2} \right. \\ &\quad + \frac{2k^2}{(q^2 - m^2)[(q+k)^2 - m^2]} \right] \right\} \\ &= \frac{e^2}{16\pi^2} \Big\{ 4(2B_{\mu\nu} + k_\mu B_\nu + k_\nu B_\mu) \\ &\quad + g_{\mu\nu} [-2A_0(m) - 2A_0(m) + 2k^2 B_0] \Big\} \\ &= \frac{e^2}{16\pi^2} \Big\{ 8g_{\mu\nu} B_{00} + 8k_\mu k_\nu B_{11} + 8k_\mu k_\nu B_1 \\ &\quad - 4g_{\mu\nu} A_0(m) + 2k^2 g_{\mu\nu} B_0 \Big\} \;, \\ \Sigma_{\mu\nu}^{AA} &= \frac{\alpha}{\pi} \left\{ g_{\mu\nu} \Big[2B_{00} - A_0(m) + \frac{1}{2}k^2 B_0 \Big] + k_\mu k_\nu \Big[2B_{11} + 2B_1 \Big] \right\} \;, \\ \text{wobei: } \alpha &= \frac{e^2}{4\pi} = 1/137.0 \ldots = \; \text{Feinstrukturkonstante}, \quad B_{\cdots} = B_{\cdots}(k^2, m, m) \;. \end{split}$$

Zerlegung in Σ_{T}^{AA} und Σ_{I}^{AA} :

$$\Sigma_{\mu\nu}^{AA}(k) = \left(g_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^{2}}\right) \Sigma_{T}^{AA}(k^{2}) + \frac{k_{\mu}k_{\nu}}{k^{2}} \Sigma_{L}^{AA}(k^{2}) ,$$

$$\Sigma_{T}^{AA}(k^{2}) = \frac{\alpha}{\pi} \left[2B_{00} + \frac{1}{2}k^{2}B_{0} - A_{0}(m)\right] ,$$

$$\Sigma_{L}^{AA}(k^{2}) = \frac{\alpha}{\pi} \left[2B_{00} + 2k^{2}(B_{11} + B_{1}) + \frac{1}{2}k^{2}B_{0} - A_{0}(m)\right] .$$

Übung: Reduktion der Tensorkoeffizienten

$$\Sigma_T^{AA}(k^2) = \frac{\alpha}{3\pi} \Big[(k^2 + 2m^2) B_0(k^2, m, m) - \frac{1}{3} k^2 - 2m^2 B_0(0, m, m) \Big] ,$$

$$\Sigma_L^{AA}(k^2) \equiv 0 .$$

Allgemeine Struktur von $\Sigma^{AA}_{\mu\nu}$:

- $\Sigma_L^{AA}(k^2) \equiv 0$ gilt in jeder Schleifen-Ordnung als Folge der Erhaltung des elektromagnetischen Stromes: $\partial^{\mu}(\bar{\psi}\gamma_{\mu}\psi) = 0 \implies k^{\mu}\Sigma_{\mu\nu}^{AA}(k) \equiv 0$,
- $\Sigma^{AA}_{\mu\nu}(k)$ ist für $k\to 0$ analytisch, woraus wegen $\Sigma^{AA}_L(k^2)\equiv 0$ folgt: $\Sigma^{AA}_T(0)=0$.
- ⇒ Allgemeine Form des Photonpropagators:

$$G_{\mu\nu}^{AA}(k) = \frac{-i}{k^2(1+\Pi^{AA}(k^2))} \left(g_{\mu\nu} - \frac{k_\mu k_\nu}{k^2}\right) - \xi \frac{i}{k^2} \frac{k_\mu k_\nu}{k^2}$$

mit der "Vakuumpolarisation":

$$\Pi^{AA}(k^2) = \frac{1}{k^2} \, \Sigma_T^{AA}(k^2) \; .$$

Grenzfälle von $\Sigma_T^{AA}(k^2)$:

• kleine Impulsüberträge: $|k^2| \ll m^2$.

$$B_0(k^2, m, m) = \Delta - \log \frac{m^2}{\mu^2} + \frac{k^2}{6m^2} + \mathcal{O}\left(\frac{k^4}{m^4}\right),$$

$$\longrightarrow \Sigma_T^{AA}(k^2) = \frac{\alpha}{3\pi} k^2 \left(\Delta - \log \frac{m^2}{\mu^2}\right) + \mathcal{O}\left(\frac{k^4}{m^4}\right),$$

$$\Pi^{AA}(0) = \frac{\alpha}{3\pi} \left(\Delta - \log \frac{m^2}{\mu^2}\right).$$

• große Impulsüberträge: $|k^2|\gg m^2$.

$$B_0(k^2, m, m) \sim B_0(k^2, 0, 0) = \Delta - \log\left(\frac{-k^2 - i\epsilon}{\mu^2}\right) + 2,$$

 $\longrightarrow \Sigma_T^{AA}(k^2) \sim \frac{\alpha}{3\pi} k^2 \left[\Delta - \log\frac{|k^2|}{\mu^2} + i\pi\Theta(k^2) + \frac{5}{3}\right].$

Bedeutung von Im $\{\Sigma_T^{AA}(k^2)\}$:

Im
$$\left\{ \Sigma_T^{AA}(k^2) \right\}$$
: $\begin{cases} = 0 & \text{für } k^2 < (m_1 + m_2)^2 = 4m^2, \\ > 0 & \text{für } k^2 > (m_1 + m_2)^2 = 4m^2. \end{cases}$

Physikalische Bedeutung: für $k^2 > (m_1 + m_2)^2$ ist reelle Paarerzeugung möglich.

(b) Elektronselbstenergie

$$\Sigma^{\bar{e}e}(p) = ie^2 \mu^{4-D} \int \frac{d^D q}{(2\pi)^D} \frac{\gamma_{\alpha}(\not q + m) \gamma^{\alpha}}{(q^2 - m^2)[(q - p)^2 - \lambda^2]}.$$

Übung: Berechnen Sie die Elektronselbstenergie! Führen Sie dazu für obigen Ausdruck die Tensorreduktion durch und zerlegen Sie das Resultat nach den Kovarianten $\Sigma_V^{\bar{e}e}$ und $\Sigma_S^{\bar{e}e}$.

Lösung:

Dirac-Algebra:

$$\gamma_{\alpha}(\phi + m)\gamma^{\alpha} = (2 - D)\phi + Dm$$
.

Zurückführung auf Standardintegrale:

$$\begin{split} \Sigma^{\bar{e}e}(\rho) &= ie^2 \mu^{4-D} \int_{}^{} \frac{\mathrm{d}^D q}{(2\pi)^D} \; \frac{(2-D) \not q + Dm}{(q^2 - m^2)[(q-p)^2 - \lambda^2]} \\ &= -\frac{e^2}{16\pi^2} \big[(2-D) \gamma^\mu B_\mu(-p,m,\lambda) + Dm \, B_0(p^2,m,\lambda) \big] \\ &= -\frac{\alpha}{4\pi} \big[(D-2) \not p B_1(p^2,m,\lambda) + Dm \, B_0(p^2,m,\lambda) \big] \; , \\ \Sigma^{\bar{e}e}(\rho) &= -\frac{\alpha}{4\pi} \left\{ \not p \big[2B_1(p^2,m,\lambda) + 1 \big] + m \big[4B_0(p^2,m,\lambda) - 2 \big] \right\} \; . \end{split}$$

Kovariantenzerlegung:

$$\begin{split} \Sigma_{V}^{\bar{e}e}(\rho^{2}) &= -\frac{\alpha}{4\pi} \big[2B_{1}(\rho^{2}, m, \lambda) + 1 \big] \\ &= -\frac{\alpha}{4\pi} \frac{1}{\rho^{2}} \big[A_{0}(m) - (\rho^{2} + m^{2}) B_{0}(\rho^{2}, m, \lambda) + \rho^{2} \big] , \\ \Sigma_{S}^{\bar{e}e}(\rho^{2}) &= -\frac{\alpha}{4\pi} \big[4B_{0}(\rho^{2}, m, \lambda) - 2 \big] . \end{split}$$

(c) Photon-Elektron-Vertexkorrektur

$$\Lambda_{\mu}(p',p) = -ie^{2}\mu^{4-D} \int \frac{d^{D}q}{(2\pi)^{D}} \frac{\gamma_{\alpha}(\not q + \not p' + m)\gamma_{\mu}(\not q + \not p + m)\gamma^{\alpha}}{(q^{2} - \lambda^{2})[(q + p)^{2} - m^{2}][(q + p')^{2} - m^{2}]}.$$

Zurückführung auf C_0 , C_μ , $C_{\mu\nu}$ bzw. A_0 , B_0 , C_0 möglich analog zu Selbstenergien.

Aber: längere Rechnung \longrightarrow z.B. Computeralgebra!

Beispiel: Vertexkorrektur für On-Shell-Elektronen

$$\bar{u}(p') \cdot \left\{ \begin{array}{c} p' \\ k \end{array} \right\} \cdot u(p) \qquad \text{für } p^2 = p'^2 = m^2,$$

$$\begin{split} \bar{u}(p')\Lambda_{\mu}(p',p)u(p) \\ &= \bar{u}'\gamma_{\mu}u \cdot \frac{\alpha}{4\pi} \Big[4B_{0}(m^{2},m,0) - 3B_{0}(k^{2},m,m) + 2(2m^{2} - k^{2})C_{0} - 2 \Big] \\ &+ \bar{u}'u \cdot (p+p')_{\mu} \cdot \frac{m}{4m^{2} - k^{2}} \cdot \frac{\alpha}{2\pi} \Big[B_{0}(k^{2},m,m) - 2B_{0}(m^{2},m,0) \\ &+ B_{0}(0,0,m) + 1 \Big] \; . \end{split}$$

Berechnung des UV-divergenten Anteils von $\Lambda_{\mu}(p', p)$:

Integral logarithmisch divergent für $q \to \infty$.

 \longrightarrow p, p' irrelevant für UV-divergente Terme!

$$\Lambda_{\mu}(p',p)\big|_{\text{div}} = \Lambda_{\mu}(0,0)\big|_{\text{div}} = -ie^2\mu^{4-D} \int \frac{d^Dq}{(2\pi)^D} \left. \frac{\gamma_{\alpha} \rlap/q \gamma_{\mu} \rlap/q \gamma^{\alpha}}{(q^2-\lambda^2)(q^2-m^2)^2} \right|_{\text{div}}.$$

Dirac-Algebra: $\gamma_{\alpha} \not q \gamma_{\mu} \not q \gamma^{\alpha} = (D-2)(q^2 \gamma_{\mu} - 2 \not q q_{\mu})$.

Kovariantenzerlegung: $\Lambda_{\mu}(0,0) = \Lambda_0 \gamma_{\mu} \longrightarrow \Lambda_0 = \frac{1}{D} \gamma^{\mu} \Lambda_{\mu}(0,0)$.

$$\begin{split} \Lambda_0 \big|_{\text{div}} &= -ie^2 \mu^{4-D} \int \frac{\mathrm{d}^D q}{(2\pi)^D} \, \frac{(D-2)^2}{D} \, \frac{q^2}{(q^2 - \lambda^2)(q^2 - m^2)^2} \Big|_{\text{div}} \\ &= -ie^2 \mu^{4-D} \int \frac{\mathrm{d}^D q}{(2\pi)^D} \, \frac{1}{(q^2 - m^2)^2} \Big|_{\text{div}} = \frac{e^2}{16\pi^2} B_0(0, m, m) \big|_{\text{div}} \,, \end{split}$$

$$\Lambda_{\mu}(p',p) = \frac{\alpha}{4\pi} \Delta \gamma_{\mu} + \text{UV} - \text{endlicheTerme}.$$

Berechnung von $\Lambda_{\mu}(p, p)$:

Trick:

$$0 = \frac{\partial}{\partial \rho^{\mu}} (1) = \frac{\partial}{\partial \rho^{\mu}} \left[(\not q + \not p - m) \frac{1}{\not q + \not p - m} \right]$$

$$= \gamma_{\mu} \frac{1}{\not q + \not p - m} + (\not q + \not p - m) \frac{\partial}{\partial \rho^{\mu}} \frac{1}{\not q + \not p - m}$$

$$\implies \frac{1}{\not q + \not p - m} \gamma_{\mu} \frac{1}{\not q + \not p - m} = -\frac{\partial}{\partial \rho^{\mu}} \frac{1}{\not q + \not p - m}.$$

Anwendung:

$$\Lambda_{\mu}(p,p) = -ie^{2}\mu^{4-D} \int \frac{d^{D}q}{(2\pi)^{D}} \frac{1}{q^{2} - \lambda^{2}} \gamma_{\alpha} \frac{1}{\not q + \not p - m} \gamma_{\mu} \frac{1}{\not q + \not p - m} \gamma^{\alpha}$$

$$= \frac{\partial}{\partial p^{\mu}} ie^{2}\mu^{4-D} \int \frac{d^{D}q}{(2\pi)^{D}} \frac{1}{q^{2} - \lambda^{2}} \gamma_{\alpha} \frac{1}{\not q + \not p - m} \gamma^{\alpha}$$

$$= \frac{\partial}{\partial p^{\mu}} ie^{2}\mu^{4-D} \int \frac{d^{D}q'}{(2\pi)^{D}} \frac{1}{(q' - p)^{2} - \lambda^{2}} \gamma_{\alpha} \frac{1}{q' - m} \gamma^{\alpha}$$

$$= \sum_{\bar{e}e}(p).$$

$$\implies$$
 Ward-Identität: $\Lambda_{\mu}(p,p) = \frac{\partial}{\partial p^{\mu}} \Sigma^{\bar{e}e}(p)$.

Bemerkung: Die Ward-Identität ist eigentlich eine Renormierungsbedingung (Eichsymmetrie) und muß daher für die renormierten Vertexfunktionen gelten. In dimensionaler Regularisierung mit On-Shell-Renormierung ist sie automatisch erfüllt.

2.5 Renormierung der QED

Frage: Stellen die Parameter m, -e die physikalische Masse bzw. Ladung des Elektrons dar?

a) Elektronmasse: $m_{\rm phys}^2 = {\rm Pol~im~Elektronpropagator}$.

niedrigste Ordnung:
$$G_0^{\bar{e}e}(-p,p) = \frac{i}{\not p - m} = \frac{i(\not p + m)}{p^2 - m^2}$$
,

mit Korrekturen: $G_0^{\bar{e}e}(-p,p) = \frac{I}{\not p - m + \Sigma^{\bar{e}e}(p)}$

$$= \frac{i}{\not p(1+\Sigma_V^{\bar ee})-m(1-\Sigma_S^{\bar ee})} \ .$$

 \longrightarrow physikalische Masse: $m_{\text{phys}} = \frac{1 - \sum_{S}^{\bar{e}e}}{1 + \sum_{S}^{\bar{e}e}} m \neq m$.

b) Elektronladung: $e_{\mathrm{phys}} = e \, e \gamma$ –Kopplung für On-Shell-Elektronen und -Photonen.

niedrigste Ordnung:

$$A_{\mu}$$
 = $ie\gamma_{\mu}$

mit Korrekturen:

$$A_{\mu} \sim \left(\underbrace{e - \delta e}_{\mathsf{phys}} \right) \gamma_{\mu} .$$

Fazit: Strahlungskorrekturen beeinflussen die physikalische Interpretation der Parameter in der Lagrange-Dichte

⇒ Redefinition (= **Renormierung**) der Parameter notwendig!

Prinzipielles Vorgehen

Ausgangspunkt: unrenormierte Lagrange-Dichte mit unrenormierten ("nackten") Parametern m, e.

Berechne physikalische Größen: Obs(m, e),

$$m_{\text{phys}} = m_{\text{phys}}(m, e), \quad e_{\text{phys}} = e_{\text{phys}}(m, e)$$
.

Drücke unrenormierte durch renormierte (physikalische)

Parameter aus:

$$m = m(m_{\text{phys}}, e_{\text{phys}}), \quad e = e(m_{\text{phys}}, e_{\text{phys}}).$$

Renormierte Lagrange-Dichte, wohldefinierte Vorhersagen für Observable: Obs (m_{phys}, e_{phys}) .

Vorgehen in der Störungstheorie

$$m_{\text{phys}} = m + f_1(m, e) + f_2(m, e) + \dots,$$

$$e_{\text{phys}} = e + g_1(m, e) + g_2(m, e) + \dots$$

Ansatz:

$$m = m_{\text{phys}} + \delta m = m_{\text{phys}} + \delta m_1 + \delta m_2 + \dots$$

$$e = e_{\text{phys}} + \delta e = e_{\text{phys}} + \delta e_1 + \delta e_2 + \dots$$

 $(\delta m, \delta e : "Counterterme")$

1-Loop:
$$\delta m_1 = -f_1(m_{ extsf{phys}}, e_{ extsf{phys}})$$
 ,

$$\delta e_1 = -g_1(m_{ extsf{phys}}, e_{ extsf{phys}})$$
 .

N-Loop: Iterative Lösung.

Multiplikative Renormierung

Urspüngliche (unrenormierte, nackte) Größen: A_0^{μ} , ψ_0 , m_0 , e_0 , ξ_0 .

Renormierte Größen: A^{μ} , ψ , m, e, ξ .

Multiplikative Renormierung: Renormierungskonstanten $Z_i = 1 + \mathcal{O}\left(\alpha\right)$

$$A_0^\mu = \sqrt{Z_A}A^\mu$$
 , $\psi_0 = \sqrt{Z_\psi}\psi$, Feldrenormierung

$$m_0 = Z_m m$$
, $e_0 = Z_e e$, Parameterrenormierung

$$= m + \delta m$$
, $= e + \delta e$,

$$\xi_0 = Z_{\xi} \xi$$
 . Eichparameterrenormierung

"Multiplikative Renormierung" bedeutet:

Änderung der nackten Lagrange-Dichte durch (multiplikative) Renormierungskonstanten, aber keine Einführung neuer Terme.

Renormierte Lagrange-Dichte:

$$\mathcal{L} = -\frac{1}{2} (\partial_{\mu} A_{0\nu}) (\partial^{\mu} A_{0}^{\nu}) + \frac{1}{2} \left(1 - \frac{1}{\xi_{0}} \right) (\partial_{\mu} A_{0}^{\mu}) (\partial_{\nu} A_{0}^{\nu})
+ \bar{\psi}_{0} (i \partial \!\!\!/ - m_{0}) \psi_{0}
+ e_{0} \bar{\psi}_{0} A_{0} \psi_{0}
= -\frac{1}{2} Z_{A} (\partial_{\mu} A_{\nu}) (\partial^{\mu} A^{\nu}) + \frac{1}{2} \left(1 - \frac{1}{Z_{\xi} \xi} \right) Z_{A} (\partial_{\mu} A^{\mu}) (\partial_{\nu} A^{\nu})
+ Z_{\psi} \bar{\psi} (i \partial \!\!\!/ - Z_{m} m) \psi
+ Z_{e} Z_{\psi} \sqrt{Z_{A}} e \bar{\psi} A \psi .$$

(On-Shell-) Renormierung ist die Bestimmung der Z_i so, daß m und e die physikalische Masse und Ladung sind. Die Pole der Zweipunktfunktionen sollen Residuum 1 haben.

Bemerkung 1: Die Feldrenormierungen Z_A , Z_{ψ} sind physikalisch irrelevant, denn die Residuen der Einteilchenpole kürzen sich aus Observablen heraus.

Bemerkung 2: Es ist nicht notwendig, $m=m_{phys}$ und $e=e_{phys}$ zu setzen. Daher sind auch andere Renormierungsschemata möglich (z.B.: $\overline{\text{MS}}$, MOM).

Einschleifen-Entwicklung:

$$\begin{split} \mathcal{Z}_{i} &= 1 + \delta \mathcal{Z}_{i} \;, \quad \delta \mathcal{Z}_{i} = \mathcal{O}\left(\alpha\right) \;. \\ \mathcal{L} &= -\frac{1}{2}(\partial_{\mu}A_{\nu})(\partial^{\mu}A^{\nu}) & -\delta \mathcal{Z}_{A} \cdot \frac{1}{2}(\partial_{\mu}A_{\nu})(\partial^{\mu}A^{\nu}) \\ &+ \frac{1}{2}\left(1 - \frac{1}{\xi}\right)(\partial_{\mu}A^{\mu})(\partial_{\nu}A^{\nu}) &+ \left[\delta \mathcal{Z}_{A}\left(1 - \frac{1}{\xi}\right) + \delta \mathcal{Z}_{\xi}\frac{1}{\xi}\right] \cdot \frac{1}{2}(\partial_{\mu}A^{\mu})(\partial_{\nu}A^{\nu}) \\ &+ \bar{\psi}(i\partial \!\!\!/ - m)\psi & + \delta \mathcal{Z}_{\psi} \cdot \bar{\psi}(i\partial \!\!\!/ - m)\psi - \delta m \cdot \bar{\psi}\psi \\ &+ e\bar{\psi} \!\!\!/ \!\!\!/ \psi & + \left(\delta \mathcal{Z}_{e} + \delta \mathcal{Z}_{\psi} + \frac{1}{2}\delta \mathcal{Z}_{A}\right) \cdot e\bar{\psi} \!\!\!/ \!\!\!/ \psi \\ &+ \mathcal{O}\left(\delta \mathcal{Z}_{i}^{2}\right) \\ &= \mathcal{L}\big|_{A_{0} \to A, \psi_{0} \to \psi, \dots} & + \underbrace{\delta \mathcal{L}}_{\text{"Counterterme"}} \end{split}$$

⇒ Feynman-Regeln:

"alte Feynman-Regeln" mit renormierten Parametern + ("neue") Feynman-Regeln für Counterterm-Vertizes.

 \implies Zusätzliche Feynman-Graphen: Einschleifen-Counterterm-Vertizes (Übung!)

$$A^{\mu} \xrightarrow{k} A^{\nu} -i\delta Z_{A} \left[k^{2} g^{\mu\nu} - \left(1 - \frac{1}{\xi} \right) k^{\mu} k^{\nu} \right] + i\delta Z_{\xi} \frac{1}{\xi} k^{\mu} k^{\nu} ,$$

$$e \xrightarrow{p} \bar{e} + i\delta Z_{\psi} (\not p - m) - i\delta m ,$$

$$A_{\mu}$$
 \longleftrightarrow $+ie \gamma_{\mu} \left(\delta Z_{e} + \delta Z_{\psi} + \frac{1}{2}\delta Z_{A}\right)$.

Renormierte Vertexfunktionen (1-Loop)

a) AA-Vertex:

Renormierte Zweipunktfunktion in Einschleifenordnung:

$$\hat{G}_{\mu\nu}^{AA}(k) = i\tilde{D}_{\mu\nu}(k) + i\Big(\tilde{D}(k)\hat{\Sigma}^{AA}(k)\tilde{D}(k)\Big)_{\mu\nu} + \cdots
= i\tilde{D}_{\mu}^{\rho}(k)\Big(-i\tilde{D}_{\mu\sigma}^{-1}(k) - i\hat{\Sigma}_{\mu\sigma}^{AA}(k)\Big)i\tilde{D}_{\nu}^{\sigma}(k) + \cdots
\equiv i\tilde{D}_{\mu}^{\rho}(k)\hat{\Gamma}_{\mu\sigma}^{AA}(k)i\tilde{D}_{\nu}^{\sigma}(k) + \cdots$$

Abspaltung der äußeren Propagatoren: Renormierte Vertexfunktion

$$\hat{\Gamma}_{\mu\nu}^{AA}(k) = -i(k^{2}g_{\mu\nu} - k_{\mu}k_{\nu}) - \frac{i}{\xi}k_{\mu}k_{\nu}$$

$$-i\left(g_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^{2}}\right)\sum_{T}^{AA}(k^{2}) - \frac{i}{\xi}\frac{k_{\mu}k_{\nu}}{k^{2}}\sum_{L}^{AA}(k^{2})$$

$$-i(k^{2}g_{\mu\nu} - k_{\mu}k_{\nu})\delta Z_{A} - \frac{i}{\xi}k_{\mu}k_{\nu}\left(\delta Z_{A} - \delta Z_{\xi}\right)$$

$$= -i\left(g_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^{2}}\right)\left[k^{2} + \sum_{T}^{AA}(k^{2}) + k^{2}\delta Z_{A}\right]$$

$$=: \hat{\Sigma}_{T}^{AA}(k^{2}).$$

$$-i\frac{k_{\mu}k_{\nu}}{k^{2}}\left[k^{2} + \sum_{L}^{AA}(k^{2}) + k^{2}\left(\delta Z_{A} - \delta Z_{\xi}\right)\right].$$

$$=: \hat{\Sigma}_{T}^{AA}(k^{2}).$$

Renormierte Photonselbstenergie:

$$\hat{\Sigma}_{T}^{AA}(k^{2}) = \Sigma_{T}^{AA}(k^{2}) + k^{2} \delta Z_{A},$$

$$\hat{\Sigma}_{L}^{AA}(k^{2}) = \underbrace{\Sigma_{L}^{AA}(k^{2})}_{=0} + k^{2} (\delta Z_{A} - \delta Z_{\xi}).$$

b) $\bar{e}e$ -Vertex:

$$\hat{\Gamma}^{\bar{e}e}(-p,p) = \Gamma^{\bar{e}e}(-p,p) + \delta\Gamma^{\bar{e}e}(-p,p)$$

Renormierte Elektronselbstenergie:

$$\hat{\Sigma}_{V}^{\bar{e}e}(p^{2}) = \Sigma_{V}^{\bar{e}e}(p^{2}) + \delta Z_{\psi} ,$$

$$\hat{\Sigma}_{S}^{\bar{e}e}(p^{2}) = \Sigma_{S}^{\bar{e}e}(p^{2}) - \delta Z_{\psi} - \frac{\delta m}{m} .$$

c) $A\bar{e}e$ -Vertex:

Renormierte Vertexkorrektur:

$$\hat{\Lambda}_{\mu}(p',p) = \Lambda_{\mu}(p',p) + \gamma_{\mu} \left(\delta Z_{e} + \delta Z_{\psi} + \frac{1}{2}\delta Z_{A}\right).$$

Renormierungsbedingungen und -konstanten

a) Massenrenormierung des Elektrons:

Pol des Elektronpropagators $\hat{G}^{\bar{e}e}$ bei $p^2=m^2$:

$$\hat{G}^{\bar{e}e}(-p,p)^{-1} u(p) = -\hat{\Gamma}^{\bar{e}e}(-p,p) u(p) \stackrel{!}{=} 0$$
.

Benutzung der Dirac-Gleichung (p - m)u(p) = liefert:

$$0 = \left[\hat{\Sigma}_{V}^{\bar{e}e}(m^{2}) + \hat{\Sigma}_{S}^{\bar{e}e}(m^{2})\right] u(p)$$

$$= \left[\Sigma_{V}^{\bar{e}e}(m^{2}) + \Sigma_{S}^{\bar{e}e}(m^{2}) - \frac{\delta m}{m}\right] u(p) .$$

$$\longrightarrow \frac{\delta m}{m} = \Sigma_{V}^{\bar{e}e}(m^{2}) + \Sigma_{S}^{\bar{e}e}(m^{2}) .$$

b) Wellenfunktionsrenormierung des Elektrons:

Residuum des Elektronpropagators bei p = m soll 1 sein.

$$[\Leftrightarrow \hat{\Gamma}^{\bar{e}e}(-p,p) = i(\not p - m) \text{ für } p^2 \to m^2]$$

$$\Rightarrow \left[\lim_{\rho^2 \to m^2} \frac{i}{\not p - m} \hat{\Sigma}^{\bar{e}e}(p)\right] u(p) \stackrel{!}{=} 0.$$

$$0 = \left[\lim_{\rho^2 \to m^2} \frac{1}{\not p - m} \left(\not p \hat{\Sigma}_V^{\bar{e}e}(p^2) + m \hat{\Sigma}_S^{\bar{e}e}(p^2) + \delta Z_{\psi}(\not p - m) - \delta m\right)\right] u(p)$$

$$= \left[\hat{\Sigma}_V^{\bar{e}e}(m^2) + \delta Z_{\psi} + m \lim_{\rho^2 \to m^2} \frac{1}{\not p - m} \left(\hat{\Sigma}_V^{\bar{e}e}(p^2) + \hat{\Sigma}_S^{\bar{e}e}(p^2) - \frac{\delta m}{m}\right)\right] u(p)$$

$$= \left[\hat{\Sigma}_V^{\bar{e}e}(m^2) + \delta Z_{\psi} + \lim_{\rho^2 \to m^2} \frac{m(\not p + m)}{p^2 - m^2} \left(\hat{\Sigma}_V^{\bar{e}e}(p^2) - \hat{\Sigma}_V^{\bar{e}e}(m^2) + \hat{\Sigma}_S^{\bar{e}e}(p^2) - \hat{\Sigma}_S^{\bar{e}e}(m^2)\right)\right] u(p)$$

$$= \left[\delta Z_{\psi} + \hat{\Sigma}_V^{\bar{e}e}(m^2) + 2m^2 \left(\hat{\Sigma}_V^{\bar{e}e'}(m^2) + \hat{\Sigma}_S^{\bar{e}e'}(m^2)\right)\right] u(p).$$

$$\longrightarrow \delta Z_{\psi} = -\Sigma_{V}^{\bar{e}e}(m^{2}) - 2m^{2} \left(\Sigma_{V}^{\bar{e}e'}(m^{2}) + \Sigma_{S}^{\bar{e}e'}(m^{2}) \right) .$$

Übung: Drücken Sie δZ_{ψ} durch die skalaren Zweipunkt-Funktionen aus!

Lösung:

$$\delta Z_{\psi} = \frac{\alpha}{4\pi} \left[-B_0(0, m, m) + 4m^2 B_0'(m^2, m, \lambda) \right] .$$

c) Wellenfunktionsrenormierung des Photons:

Residuum des Photonpropagators für $k^2 = 0$ soll 1 sein:

$$\implies \left[\lim_{k^2 \to 0} \frac{-ig^{\mu\nu}}{k^2} \hat{\Sigma}^{AA}_{\nu\rho}(k) \right] \epsilon^{\rho}(k) \stackrel{!}{=} 0.$$

Benutzung von $k_{\rho}\epsilon^{\rho}(k)=0$ liefert:

$$0 = \lim_{k^2 \to 0} \frac{1}{k^2} \hat{\Sigma}_T^{AA}(k^2) = \hat{\Pi}^{AA}(0)$$
$$= \Sigma_T^{AA}(0) + \delta Z_A = \Pi^{AA}(0) + \delta Z_A.$$

$$\implies \delta Z_A = -\Sigma_T^{AA\prime}(0) = -\Pi^{AA}(0) .$$

d) Eichparameterrenormierung:

$$\hat{\Sigma}_L^{AA}(k^2)\stackrel{!}{\equiv} 0$$
 in Analogie zu $\Sigma_L^{AA}(k^2)\equiv 0$.

$$\implies \delta Z_{\xi} = \delta Z_A$$
.

Bemerkungen:

- Wie ξ hat auch $Z_{\xi}=1+\delta Z_{\xi}$ keinen Einfluß auf physikalische Observable.
- Die Bedingung $\hat{\Sigma}_L^{AA}(k^2) \equiv 0$ führt auf Grund der Identität $\Sigma_L^{AA}(k^2) \equiv 0$ in jeder Schleifen-Ordnung auf die Beziehung: $Z_{\xi} = Z_A$.
 - \implies Keine Renormierung des Eichfixierungstermes $\mathcal{L}_{\text{fix}} = -\frac{1}{2\xi}(\partial A)^2$.

e) Ladungsrenormierung:

 $e \stackrel{!}{=}$ physikalische Ladung, die in klassischer Thomson-Streuung gemessen wird.

(Compton-Streuamplitude für $E_{\gamma} \to 0$; $\longrightarrow A\bar{e}e$ -Amplitude für p'=p).

$$\bar{u}(p) \hat{\Gamma}_{\mu}(0,-p,p) u(p) \stackrel{!}{=} \bar{u}(p) \gamma_{\mu} u(p)$$
.

$$0 = \bar{u}(p) \hat{\Lambda}_{\mu}(p, p) u(p)$$

= $\bar{u}(p) \left[\Lambda_{\mu}(p, p) + \gamma_{\mu} \left(\delta Z_{e} + \delta Z_{\psi} + \frac{1}{2} \delta Z_{A} \right) \right] u(p)$.

Benutzung der beiden Beziehungen:

$$\bullet \ \Lambda_{\mu}(p,p) = \frac{\partial}{\partial p^{\mu}} \Sigma^{\bar{e}e}(p) = \gamma_{\mu} \, \Sigma_{V}^{\bar{e}e}(p^{2}) + 2p_{\mu} \left[\not p \Sigma_{V}^{\bar{e}e}{}'(p^{2}) + m \Sigma_{S}^{\bar{e}e}{}'(p^{2}) \right] ,$$

•
$$\bar{u}(p) \gamma_{\mu} u(p) = \frac{p_{\mu}}{m} \bar{u}(p) u(p)$$

und der Dirac-Gleichung liefert:

$$0 = \bar{u}(p) \gamma_{\mu} u(p) \left[\underbrace{\Sigma_{V}^{\bar{e}e}(m^{2}) + 2m^{2} \left(\Sigma_{V}^{\bar{e}e}'(m^{2}) + \Sigma_{S}^{\bar{e}e}'(m^{2}) \right) + \delta Z_{\psi}}_{= 0} + \delta Z_{e} + \frac{1}{2} \delta Z_{A} \right].$$

$$\implies \delta Z_e = -\frac{1}{2} \delta Z_A \ .$$

Bemerkung: Die Identität $Z_e = Z_A^{-1/2}$ ist eine Folge der Eichinvarianz und damit im On-Shell-Schema bei dimensionaler Regularisierung automatisch erfüllt.

Renormierte Vakuumpolarisation

$$\hat{\Pi}^{AA}(k^2) = \Pi^{AA}(k^2) - \Pi^{AA}(0) =: f(k^2, m) .$$

Reine QED:

$$\Pi^{AA}(0) = \frac{\alpha}{3\pi} \left(\Delta - \log \frac{m^2}{\mu^2} \right) ,$$

für $|k^2| \gg m^2$:

$$\Pi^{AA}(k^2) \sim \frac{\alpha}{3\pi} \left(\Delta - \log \frac{|k^2|}{\mu^2} + i\pi\Theta(k^2) + \frac{5}{3} \right)$$

$$\longrightarrow \quad \hat{\Pi}^{AA}(k^2) \sim \frac{\alpha}{3\pi} \left(-\log \frac{|k^2|}{m^2} + \frac{5}{3} + i\pi \Theta(k^2) \right) .$$

Realistisch(er): alle (geladenen) Fermionen tragen bei:

$$f = e, \mu, \tau, \underbrace{u, d, s, c, b, t}$$
; Ladungen: Q_f .
 $\times 3 = N_c^f = \text{Colourfaktor}.$

$$\times 3 = N_c^f = \text{Colourfaktor}$$

$$\hat{\Pi}^{AA}(k^2) = \sum_f N_c^f Q_f^2 f(k^2, m_f). \qquad (N_c^{e,\mu,\tau} = 1)$$

Z.B. für $k^2 \gtrsim (10 \text{ GeV})^2$:

$$\hat{\Pi}^{AA}(k^2) \sim \sum_{f \neq \text{top}} \frac{\alpha}{3\pi} N_c^f Q_f^2 \left(-\log \frac{|k^2|}{m_f^2} + \frac{5}{3} + i\pi \Theta(k^2) \right) + \hat{\Pi}_{\text{top}}^{AA}(k^2) .$$

Problem: Quarkmassen? m_u , m_d , $m_s = ?$

Ausweg: $\hat{\Pi}_{had}^{AA}(s)_{exp.}$ wird praktisch bestimmt durch Messung des Verhältnisses $R(s) := \frac{\sigma(e^+e^- \to had)}{\sigma(e^+e^- \to \mu^+\mu^-)}$ und mittels der "Dispersionsrelation":

$$\hat{\Pi}_{\text{had}}^{AA}(s) = \left\{ \begin{array}{c} \Sigma \text{ "uber alle hadronischen} \\ \text{Zwischenzust" ande:} \\ \\ & \downarrow \\ \\ ----- \\ \end{array} \right\} = \frac{\alpha}{3\pi} s \int\limits_{4m_{\pi}^2}^{\infty} \frac{ds'}{s'} \frac{R(s')}{s - s' - i\epsilon} \; .$$

2.6 Anomales magnetisches Moment des Elektrons

Situation: Wechselwirkung von Elektronen mit "quasi-statischen" elektromagnetischen Feldern $(k \to 0)$.

Betrachte Aēe-Vertex für reelle Teilchen!

"Gordon-Zerlegung":

$$\bar{u}(p') \hat{\Gamma}_{\mu}^{A\bar{e}e}(k,-p',p) \Big|_{k^2=0} u(p)$$

$$= i \bar{u}(p') \Big[e \frac{(p'+p)_{\mu}}{2m} + g \frac{e}{2m} \cdot \frac{\sigma_{\mu\nu}}{2} i(p'-p)^{\nu} \Big] u(p)$$

e: Ladung des Elektrons (Renormierungsbedingung!)

 $g\frac{e}{2m}=g\mu_B$: magnetisches Moment des Elektrons (g= "g-Faktor")

Born-Niveau:

$$\bar{u}(p') \Gamma_{\mu,0}^{A\bar{e}e} u(p) = ie \, \bar{u}(p') \gamma_{\mu} u(p)$$
.

Benutze "Gordon-Identität":

$$\bar{u}(p') \gamma_{\mu} u(p) = \frac{1}{2m} \bar{u}(p') \Big[(p'+p)_{\mu} + i \sigma_{\mu\nu} (p'-p)^{\nu} \Big] u(p) .$$

$$\longrightarrow \bar{u}(p') \Gamma_{\mu,0}^{A\bar{e}e} u(p) = i \bar{u}(p') \left[e \frac{(p'+p)_{\mu}}{2m} + 2 \frac{e}{2m} \cdot \frac{\sigma_{\mu\nu}}{2} i(p'-p)^{\nu} \right] u(p) ,$$

$$\Longrightarrow g_0 = 2 .$$

Übung: Berechnen Sie den Einschleifen-Beitrag zu g! Führen Sie die Gordon-Zerlegung für $\Gamma_{\mu,1}^{A\bar{e}e} \equiv ie\hat{\Lambda}_{\mu}(p',p)$ durch, und leiten Sie die Beziehung $m^2 \left[B_0'(m^2,m,\lambda) + C_0(m^2,0,m^2,\lambda,m,m) \right] = -1$ her.

Einschleifen-Näherung für g

$$\begin{split} &\bar{u}(p')\,\hat{\Gamma}_{\mu,1}^{A\bar{e}e}(k,-p',p)\Big|_{k^2=0}\,u(p)\\ &= ie\,\bar{u}(p')\,\hat{\Lambda}_{\mu}(p',p)\Big|_{k^2=0}\,u(p)\\ &= ie\,\bar{u}(p')\,\hat{\Lambda}_{\mu}(p',p)\Big|_{k^2\to0}\,u(p)\,+\,ie\,\delta Z_{\psi}\,\bar{u}(p')\,\gamma_{\mu}\,u(p)\\ &= ie\,\bar{u}'\gamma_{\mu}\,u\cdot\frac{\alpha}{4\pi}\Big[4B_0(m^2,m,0)-3B_0(0,m,m)+4m^2C_0-2\Big]\\ &+ie\,\bar{u}'\,u\cdot\frac{(p'+p)_{\mu}}{2m}\cdot\frac{\alpha}{4\pi}\Big[B_0(0,m,m)-2B_0(m^2,m,0)+B_0(0,0,m)+1\Big]\\ &+ie\,\bar{u}'\gamma_{\mu}\,u\cdot\frac{\alpha}{4\pi}\Big[-B_0(0,m,m)+4m^2B_0'(m^2,m,\lambda)\Big]\\ &= ie\,\bar{u}'\gamma_{\mu}\,u\cdot\frac{\alpha}{4\pi}\Big[4B_0(m^2,m,0)-4B_0(0,m,m)+4m^2B_0'(m^2,m,\lambda)\\ &+4m^2C_0-2\Big]\\ &+ie\,\bar{u}'\,u\cdot\frac{(p'+p)_{\mu}}{2m}\cdot\frac{\alpha}{4\pi}\Big[2B_0(0,m,m)-2B_0(m^2,m,0)+2\Big]\\ &= ie\,\bar{u}'\,u\cdot\frac{(p'+p)_{\mu}}{2m}\cdot\frac{\alpha}{4\pi}\Big[2B_0(m^2,m,0)-2B_0(0,m,m)\\ &+4m^2B_0'(m^2,m,\lambda)+4m^2C_0\Big]\\ &\stackrel{(*)}{=}0\\ &+\frac{ie}{2m}\bar{u}'\,i\sigma_{\mu\nu}(p'-p)^{\nu}\,u\cdot\frac{\alpha}{4\pi}\Big[4B_0(m^2,m,0)-4B_0(0,m,m)\\ &+4m^2B_0'(m^2,m,\lambda)+4m^2C_0-2\Big]\\ &\stackrel{(*)}{=}\frac{ie}{2m}\bar{u}'\,i\sigma_{\mu\nu}(p'-p)^{\nu}\,u\cdot\frac{\alpha}{4\pi}\Big[4B_0(m^2,m,0)-4B_0(0,m,m)-6\Big]\\ &= i\,\bar{u}\,\bar{u}(p')\Big[\frac{\alpha}{\pi}\cdot\frac{e}{2m}\cdot\frac{\sigma_{\mu\nu}}{2}\,i(p'-p)^{\nu}\Big]\,u(p)\,. \end{split}$$

Verfikation von (*):

• Aus Kapitel 1.3:

$$B_0(0, m, m) = \Delta - \log(m^2/\mu^2),$$

 $B_0(0, 0, m) = \Delta - \log(m^2/\mu^2) + 1,$
 $B_0(m^2, m, 0) = \Delta - \log(m^2/\mu^2) + 2.$

•
$$C_0(m^2, 0, m^2, \lambda, m, m)$$
 (λ infinitesimal!)

$$= -\int_{0}^{1} dx \int_{0}^{1} dy \left[m^{2}(x+y)^{2} + \lambda^{2}(1-x-y) \right]^{-1}, \quad (y = z - x, dy = dz)$$

$$= -\int_{0}^{1} dx \int_{x}^{1} dz \left[m^{2}z^{2} + \lambda^{2}(1-z) \right]^{-1}$$

$$= \int_{0}^{1} dz \int_{0}^{z} dx$$

$$= -\int_{0}^{z} dz \frac{z}{m^2 z^2 + \lambda^2 (1-z)} = \cdots = \frac{1}{m^2} \log \frac{\lambda}{m} + \mathcal{O}\left(\frac{\lambda^2}{m^4}\right).$$

•
$$B'_0(p^2, m_0, m_1) = \frac{\partial}{\partial p^2} B_0(p^2, m_0, m_1)$$

$$= -\int_{0}^{1} dx \frac{x(x-1)}{x^{2}p^{2}-x(p^{2}-m_{1}^{2}+m_{0}^{2})+m_{0}^{2}-i\epsilon},$$

$$B'_0(m^2, m, \lambda) = -\int_0^1 dx \frac{x(x-1)}{(x-1)^2 m^2 + \lambda^2 x}, \qquad (z = 1 - x)$$

$$= -\int_0^1 dz \frac{-z + z^2}{m^2 z^2 + \lambda^2 (1 - z)}$$

$$= -C_0 - \frac{1}{m^2} = -\frac{1}{m^2} \left[\log \frac{\lambda}{m} + 1 \right].$$

 \implies (*) folgt durch Einsetzen der expliziten Ausdrücke für B_0 , B_0' , C_0 .

2.7 Infrarot-Problem, Bremsstrahlung

Betrachte Prozeß mit geladenen äußeren Teilchen, z.B. $e^-\gamma \to e^-\gamma$, $e^+e^- \to \gamma\gamma$, $e^+e^- \to \mu^+\mu^-$.

Virtuelle Korrekturen: Schleifendiagramme

IR-Divergenzen verschwinden nicht! $\Rightarrow \alpha \log(\lambda/m)$ -Terme in 1-Loop.

Grund: Masselosigkeit des Photons (allgemeines störungstheoretisches Problem)

Reelle Korrekturen: Photon-Bremsstrahlung

IR-Divergenzen bei Emission niederenergetischer ("soft") Photonen $(E_{\gamma} \rightarrow 0)!$

 $\implies \alpha \log(\lambda/m)$ -Terme bei 1-Photon-Emission.

Bloch-Nordsieck-Theorem:

IR-Divergenzen in virtuellen und reellen Korrekturen kompensieren sich.

- ⇒ Trennung von virtuellen und reellen Korrekturen ist "unphysikalisch"!
 - Experimentell: in einem realistischen Detektor können Photonen mit beliebig kleinen Energien nicht detektiert werden, d.h. der elastische Prozeß kann nicht vom Prozeß mit Emission eines hinreichend weichen Photons unterschieden werden
- ⇒ Theoretische Vorhersagen hängen von der Behandlung emittierter Photonen ab (inklusiver oder exklusiver Prozeß, Energie- und Winkel-Schnitte ("Cuts")).

Soft-Photon-Approximation

Betrachte nur Photonen mit Energie $k_0 \rightarrow 0$.

Elastischer Streuprozeß:

$$e \longrightarrow p$$

$$\mathcal{M}_0 = \mathcal{A}(p)u(p)$$
.

Prozeß mit 1-Photon-Emission:

$$e \xrightarrow{p} p \xrightarrow{p-k} \emptyset$$

$$\mathcal{M}_{1} = \mathcal{A}(p-k) \underbrace{\frac{i(\not p-\not k+m)}{(p-k)^{2}-m^{2}}}_{=-2pk} ie \not \epsilon^{*}(k) u(p)$$

$$\sim e \frac{p\epsilon^{*}}{pk} \mathcal{A}(p) u(p) = e \frac{p\epsilon^{*}}{pk} \mathcal{M}_{0}.$$

allgemein: ein- (aus-) laufende
$$e^-(e^+)$$
 $\Longrightarrow \pm e \, \frac{p\epsilon^*}{pk}$.

 \implies Soft-Photon-Korrekturfaktor zu $|\mathcal{M}_0|^2$:

$$\delta_S = -\frac{\alpha}{2\pi^2} \int_{k_0 < \Delta E} \frac{\mathrm{d}^3 \vec{k}}{2k_0} \sum_{i,j} \frac{\pm (p_i p_j)}{(p_i k)(p_j k)}.$$

Bemerkungen:

- Integral über Photonphasenraum mit $k_0^2 = \vec{k}^2 + \lambda^2$, $0 < \lambda \le k_0 < \Delta E$.
- Summe über alle Kombinationen abstrahlender äußerer Linien mit Impuls p_i (Vorzeichen = Produkt aus obiger Unterscheidung).
- Faktorisierung der Emission weicher Photonen auch in höheren Ordnungen und bei Mehrfachemission gültig (Resummation z.B. à la Yennie-Frautschi-Suura, kohärente Zustände).
- \bullet ΔE -Abhängigkeit wird von den Beiträgen mit harter Bremsstrahlung zum Wirkungsquerschnitt kompensiert.

3 Standardmodell der Elektroschwachen Wechselwirkung

3.1 Lagrange-Dichte, Feynman-Regeln

Standardmodell (SM, GSW-Modell): Nicht-Abelsche Eichtheorie mit spontaner Symmetriebrechung, bestehend aus:

a) Yang-Mills-Sektor:

Eichgruppe:
$$SU(2)_W \times U(1)_Y$$

Eichkopplungen:
$$g_2 = g$$
 $g_1 = g'$

Eichfelder:
$$W_{\mu}^{a}$$
, $a=1,2,3$. B_{μ}

Eichfelder:
$$W_{\mu}^{a}$$
, $a=1,2,3$. B_{μ}
Feldstärken: $W_{\mu\nu}^{a}=\partial_{\mu}W_{\nu}^{a}-\partial_{\nu}W_{\mu}^{a}$ $B_{\mu\nu}=\partial_{\mu}B_{\nu}-\partial_{\nu}B_{\mu}$

$$+g_2\epsilon^{abc}W^b_\mu W^c_\nu$$

Lagrange-Dichte:

$$\mathcal{L}_{YM} = -\frac{1}{4}W_{\mu\nu}^{a}W^{a,\mu\nu} \qquad -\frac{1}{4}B_{\mu\nu}B^{\mu\nu}$$

Physikalische Felder (Eigenzustände zu Ladung und Masse):

$$W^{\pm}$$
-Boson: $W_{\mu}^{\pm} = \frac{1}{\sqrt{2}}(W_{\mu}^{1} \mp iW_{\mu}^{2})$,

$$Z^{0}\text{-Boson:} \qquad \left(\begin{array}{c} Z_{\mu} \\ A_{\mu} \end{array} \right) = \left(\begin{array}{cc} c_{W} & s_{W} \\ -s_{W} & c_{W} \end{array} \right) \left(\begin{array}{c} W_{\mu}^{3} \\ B_{\mu} \end{array} \right) \; ,$$

mit:
$$s_W \equiv \sin \theta_W = \frac{g_1}{\sqrt{g_1^2 + g_2^2}}$$
, $c_W = \cos \theta_W$,

 θ_W = elektroschwacher Mischungswinkel (Weinbergwinkel).

$$\longrightarrow$$
 $g_2 = \frac{e}{s_W}$, $g_1 = \frac{e}{c_W}$,

Elementariadung:
$$e = \frac{g_1 g_2}{\sqrt{g_1^2 + g_2^2}}$$

b) Higgs-Sektor: $(\longrightarrow$ Massen der Teilchen)

Skalares Higgs-Dublett:
$$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$$
 $(\phi^+, \phi^0 \text{ komplexe Felder}).$

Higgs-Potential:
$$V(\Phi) = -\mu^2 \Phi^{\dagger} \Phi + \frac{\lambda}{4} (\Phi^{\dagger} \Phi)^2$$
, μ^2 , $\lambda > 0$.

Minimum des Potentials: Vakuumserwartungswert $\Phi_0 = \langle 0|\Phi|0\rangle \neq 0$ nicht eindeutig: "Spontane Symmetriebrechung".

Spezielle Wahl:
$$\Phi_0 = \begin{pmatrix} 0 \\ v/\sqrt{2} \end{pmatrix}$$
, $v := 2\sqrt{\mu^2/\lambda}$.

Feldkomponenten:
$$\Phi = \begin{pmatrix} \phi^+ \\ (v + H + i\chi)/\sqrt{2} \end{pmatrix}$$
.

Lagrange-Dichte:

$$\mathcal{L}_{H} = (D_{\mu}\Phi)^{\dagger}(D^{\mu}\Phi) - V(\Phi),$$

$$I_{W,\Phi} = \frac{1}{2}, \qquad Y_{W,\Phi} = 1$$
schwacher Isospin

Hyperladung

"Kovariante Ableitung":

$$D_{\mu} = \partial_{\mu} - ig_{2}I_{W}^{a}W_{\mu}^{a} + ig_{1}\frac{Y_{W}}{2}B_{\mu}, \qquad I_{W,\Phi}^{a} = \frac{\sigma^{a}}{2}.$$

$$\mathcal{L}_{H} = \frac{1}{2}(\partial H)^{2} - \frac{1}{2}M_{H}^{2}H^{2} + (\partial \phi^{+})(\partial \phi^{-}) + \frac{1}{2}(\partial \chi)^{2} + M_{W}^{2}W_{\mu}^{+}W^{-,\mu} + \frac{1}{2}M_{Z}^{2}Z^{2} + \cdots$$

Dynamische Erzeugung von Eichbosonmassen: $M_W = c_W M_Z = \frac{1}{2} g_2 v$.

Bedeutung der Felder:

- $H = \text{physikalisches Higgs-Feld, Masse: } M_{\text{H}} = \sqrt{2}\mu.$
- ϕ^{\pm} , $\chi=$ unphysikalische (Pseudo-) Goldstone-Felder (Mischung mit ∂W^{\pm} , ∂Z).
 - \longrightarrow notwendig für longitudinale W^{\pm} , Z.

c) Eichfixierung, Faddeev-Popov-Geister:

Lineare Eichfixierung:

$$\mathcal{L}_{\text{fix}} = -F^{+}F^{-} - \frac{1}{2}(F^{Z})^{2} - \frac{1}{2}(F^{A})^{2},$$
 mit:
$$F^{\pm} = (\xi_{1}^{W})^{-1/2}\partial W^{\pm} \mp iM_{W}(\xi_{2}^{W})^{1/2}\phi^{\pm},$$

$$F^{Z} = (\xi_{1}^{Z})^{-1/2}\partial Z - M_{Z}(\xi_{2}^{Z})^{1/2}\chi,$$

$$F^{A} = (\xi_{1}^{A})^{-1/2}\partial A,$$

$$\xi_{i}^{a} \ (i = 1, 2; \ a = W, Z, A) = \text{Eichparameter},$$

$$\xi_{i}^{a} = 1 \longrightarrow \text{'t Hooft-Feynman-Eichung}.$$

$$\xi_{1}^{a} = \xi_{2}^{a} \longrightarrow \text{keine } \phi W_{-}, \ \chi Z\text{-Mischung in niedrigster Ordnung}.$$

Beachte: Beiträge nicht-physikalischer Anteile von nicht-Abelschen Eichfeldern werden durch Beiträge der (antikommutierenden) "Faddeev-Popov-Geistfelder" u^a , \bar{u}^a kompensiert.

$$\mathcal{L}_{\text{FP}} = (\xi_1^a)^{1/2} \ \overline{u}^a \ \frac{\delta F^a}{\delta \theta^b} \ u^b \ , \qquad a, b = +, -, Z, A \ .$$

 $\frac{\delta F^a}{\delta \theta^b}$: Variation von F^a durch Eichgruppenparameter θ^b .

d) Fermion-Sektor:

Felder: Unterscheide rechts-/linkshändige Anteile: $\psi^{R/L} = \frac{1}{2}(1 \pm \gamma_5)\psi$.

• Leptonen:
$$\Psi_{l}^{L} = \begin{pmatrix} \nu_{e}^{L} \\ e^{L} \end{pmatrix}, \quad \begin{pmatrix} \nu_{\mu}^{L} \\ \mu^{L} \end{pmatrix}, \quad \begin{pmatrix} \nu_{\tau}^{L} \\ \tau^{L} \end{pmatrix}, \quad \begin{pmatrix} \nu_{\tau}^{R} \\ \tau^{R} \end{pmatrix}, \quad \begin{pmatrix} \nu_{\tau}^{R} \\ \tau^{R}$$

Eichkopplung: Minimale Substitution $\partial_{\mu} \to D_{\mu}$ liefert mit $Q = I_W^3 + \frac{Y_W}{2}$:

Yukawa-Kopplung (hier nur Dirac-Massen für Neutrinos):

$$\mathcal{L}_{F,Yuk} = -g_{ll'} \bar{\Psi}_{l}^{L} \Phi \psi_{l'}^{R} - g_{l\nu'_{l}} \bar{\Psi}_{l}^{L} \tilde{\Phi} \psi_{\nu'_{l}}^{R} -g_{qq'+} \bar{\Psi}_{q}^{L} \tilde{\Phi} \psi_{q'+}^{R} - g_{qq'-} \bar{\Psi}_{q}^{L} \Phi \psi_{q'-}^{R} + \text{h.c.} \qquad (\tilde{\Phi} = i\sigma^{2}\Phi^{*}) = -\bar{\psi}_{f} m_{f} \psi_{f} + \cdots$$

 $g_{ll'}$, $g_{l\nu'_l}$, $g_{qq'\pm}$ = Yukawa-Kopplungskonstanten

 $g_{ff'}$ i.A. nichtdiagonale Matrizen im Flavor-Raum \longrightarrow Quark- bzw. Lepton-Mischung

Feynman-Regeln

a) Propagatoren ('t Hooft-Feynman-Eichung):

b) Vertizes:

außerdem:

etc.

3.2 Renormierung im Eichboson- und Fermion-Sektor

Vorgehen:

Definiere Felder, Symmetrien und Darstellungen

Lagrange-Dichte: $\mathcal{L} = \mathcal{L}_{YM} + \mathcal{L}_{H} + \mathcal{L}_{Fix} + \mathcal{L}_{FP} + \mathcal{L}_{f,Eich} + \mathcal{L}_{f,Yuk}$.

Addiere Counterterme zur Restaurierung der Eichsymmetrie.

Erzeuge übrige Counterterme duch multiplikative Renormierungstransformation in \mathcal{L} .

Fixiere Counterterme durch Renormierungsbedingungen.

Berechne Counterterme aus relevanten Vertexfunktionen \to Definition der physikalischen Parameter.

Berechne Observable als Funktionen der physikalischen Parameter.

Multiplikative Renormierung: (Im folgenden nur Eichbosonen und Fermionen!)

Feldrenormierung:

$$W_0^{\pm} = Z_W^{1/2} W^{\pm} = (1 + \frac{1}{2} \delta Z_W) W^{\pm},$$

$$\begin{pmatrix} Z_0 \\ A_0 \end{pmatrix} = \begin{pmatrix} Z_{ij}^{1/2} \end{pmatrix} \begin{pmatrix} Z \\ A \end{pmatrix} = \begin{pmatrix} 1 + \frac{1}{2} \delta Z_{ZZ} & \frac{1}{2} \delta Z_{ZA} \\ \frac{1}{2} \delta Z_{AZ} & 1 + \frac{1}{2} \delta Z_{AA} \end{pmatrix} \begin{pmatrix} Z \\ A \end{pmatrix},$$

$$\psi_{f,0}^L = (Z_L^f)^{1/2} \psi_f^L = (1 + \frac{1}{2} \delta Z_L^f) \psi_f^L,$$

$$\psi_{f,0}^R = (Z_R^f)^{1/2} \psi_f^R = (1 + \frac{1}{2} \delta Z_R^f) \psi_f^R, \dots$$

Parameterrenormierung:

$$e_0 = Z_e e = (1 + \delta Z_e) e ,$$
 $M_{W,0}^2 = M_W^2 + \delta M_W^2 ,$
 $M_{Z,0}^2 = M_Z^2 + \delta M_Z^2 , ...$

Einschleifen-Counterterme

a) 2-Punkt-Vertizes: ('t Hooft-Feynman-Eichung)

$$\mathcal{L}_{VV'} = -(\partial_{\mu}W_{\nu}^{+})(\partial^{\mu}W^{-,\nu}) + M_{W}^{2}W_{\mu}^{+}W^{-,\mu}
- \frac{1}{2}(\partial_{\mu}Z_{\nu})(\partial^{\mu}Z^{\nu}) + \frac{1}{2}M_{Z}^{2}Z_{\mu}Z^{\mu} - \frac{1}{2}(\partial_{\mu}A_{\nu})(\partial^{\mu}A^{\nu})
+ \delta Z_{W} \left[-(\partial_{\mu}W_{\nu}^{+})(\partial^{\mu}W^{-,\nu}) + M_{W}^{2}W_{\mu}^{+}W^{-,\mu} \right] + \delta M_{W}^{2}W_{\mu}^{+}W^{-,\mu}
+ \delta Z_{ZZ} \left[-\frac{1}{2}(\partial_{\mu}Z_{\nu})(\partial^{\mu}Z^{\nu}) + \frac{1}{2}M_{Z}^{2}Z_{\mu}Z^{\mu} \right] + \delta M_{Z}^{2}\frac{1}{2}Z_{\mu}Z^{\mu}
+ \delta Z_{AA} \left[-\frac{1}{2}(\partial_{\mu}A_{\nu})(\partial^{\mu}A^{\nu}) \right]
+ \delta Z_{AZ} \left[-\frac{1}{2}(\partial_{\mu}A_{\nu})(\partial^{\mu}Z^{\nu}) \right]
+ \delta Z_{ZA} \left[-\frac{1}{2}(\partial_{\mu}Z_{\nu})(\partial^{\mu}A^{\nu}) + M_{Z}^{2}Z_{\mu}A^{\mu} \right] .$$

$$W_{\mu}$$
 \longrightarrow W_{ν} $-ig_{\mu\nu}\left[\left(k^2-M_{\mathrm{W}}^2\right)\delta Z_{\mathrm{W}}-\delta M_{\mathrm{W}}^2\right]$,

$$Z_{\mu}$$
 $\sim\sim\sim$ Z_{ν} $-ig_{\mu\nu}\left[\left(k^2-M_Z^2\right)\delta Z_{ZZ}-\delta M_Z^2\right]$,

$$A_{\mu}$$
 \longrightarrow A_{ν} $-ig_{\mu\nu}\left[k^2 \delta Z_{AA}\right]$,

$$Z_{\mu}$$
 \longrightarrow A_{ν} $-ig_{\mu\nu}\left[k^2 \delta Z_{AZ} + (k^2 - M_Z^2) \delta Z_{ZA}\right] \cdot \frac{1}{2}$.

$$\mathcal{L}_{\psi\psi} = \bar{\psi}_{f}(i\partial \!\!\!/ - m_{f})\psi_{f}$$

$$+ \delta Z_{L}^{f}(\bar{\psi}_{f}^{L}i\partial \!\!\!/ \psi_{f}^{L} - \frac{1}{2}m_{f}\bar{\psi}_{f}\psi_{f})$$

$$+ \delta Z_{R}^{f}(\bar{\psi}_{f}^{R}i\partial \!\!\!/ \psi_{f}^{R} - \frac{1}{2}m_{f}\bar{\psi}_{f}\psi_{f})$$

$$- \delta m_{f}\bar{\psi}_{f}\psi_{f}.$$

⇒ Countervertex:

Fourtervertex.
$$i \not b \left(\delta Z_L^f \frac{1 - \gamma_5}{2} + \delta Z_R^f \frac{1 + \gamma_5}{2} \right) - \frac{i}{2} m_f (\delta Z_L^f + \delta Z_R^f) - i \delta m_f.$$

b) Eichboson-Fermion-Vertizes:

Zur Parameterrenormierung: $c_{W,0} := \frac{M_{W,0}}{M_{7,0}}$, $c_W := \frac{M_W}{M_7}$.

$$\mathcal{L}_{V\bar{f_{1}}f_{2}} = \frac{e}{\sqrt{2}s_{W}} \left(\bar{\psi}_{f+}^{L} W^{+} \psi_{f-}^{L} + \bar{\psi}_{f-}^{L} W^{-} \psi_{f+}^{L} \right) - e Q_{f} \, \bar{\psi}_{f} A \psi_{f}$$

$$+ e \, \bar{\psi}_{f} Z \left(v_{f} - a_{f} \gamma_{5} \right) \psi_{f}$$

$$+ \left(\delta Z_{e} - \frac{\delta s_{W}}{s_{W}} + \frac{1}{2} \delta Z_{W} + \frac{1}{2} \delta Z_{L}^{f+} + \frac{1}{2} \delta Z_{L}^{f-} \right)$$

$$\cdot \frac{e}{\sqrt{2}s_{W}} \left(\bar{\psi}_{f+}^{L} W^{+} \psi_{f-}^{L} + \bar{\psi}_{f-}^{L} W^{-} \psi_{f+}^{L} \right)$$

$$- e Q_{f} \, \bar{\psi}_{f} A \left(\delta Z_{e} + \frac{1}{2} \delta Z_{AA} + \delta Z_{L}^{f} \frac{1 - \gamma_{5}}{2} + \delta Z_{R}^{f} \frac{1 + \gamma_{5}}{2} \right) \psi_{f}$$

$$+ \frac{1}{2} \delta Z_{ZA} \, e \, \bar{\psi}_{f} A \left(v_{f} - a_{f} \gamma_{5} \right) \psi_{f}$$

$$+ Z \bar{\psi}_{F} - \text{Terme.}$$

⇒ Countervertizes:

$$W_{\mu}^{\pm} \sim \left(\delta Z_{e} - \frac{\delta s_{W}}{s_{W}} + \frac{1}{2}\delta Z_{W} + \frac{1}{2}\delta Z_{L}^{f+} + \frac{1}{2}\delta Z_{L}^{f-}\right) \frac{ie}{\sqrt{2}s_{W}} \gamma_{\mu} \frac{1-\gamma_{5}}{2} ,$$

$$f$$

$$A_{\mu} \sim \left(\delta Z_{e} - \frac{\delta s_{W}}{s_{W}} + \frac{1}{2}\delta Z_{W} + \frac{1}{2}\delta Z_{L}^{f+} + \frac{1}{2}\delta Z_{L}^{f-}\right) \frac{ie}{\sqrt{2}s_{W}} \gamma_{\mu} \frac{1-\gamma_{5}}{2} ,$$

$$f = -ie Q_{f} \gamma_{\mu} \left(\delta Z_{e} + \frac{1}{2}\delta Z_{AA} + \delta Z_{L}^{f} \frac{1-\gamma_{5}}{2} + \delta Z_{R}^{f} \frac{1+\gamma_{5}}{2}\right) + ie \gamma_{\mu} (v_{f} - a_{f}\gamma_{5}) \frac{1}{2}\delta Z_{ZA} ,$$

$$\bar{f}$$

$$\delta Z_{e}, \delta s_{W}, \delta Z_{ZZ}, \delta Z_{AZ}, \delta Z_{R}^{f}, Z_{L}^{f-} \text{Terme}.$$

Renormierungsbedingungen ("On-Shell-Schema")

a) Massenrenormierung:

 $M_{\rm W}^2$, $M_{\rm Z}^2$, $M_{\rm H}^2$, m_f^2 = Polstellen in physikalischen Anteilen der Propagatoren (\rightarrow physikalische Massen):

$$\operatorname{Re}\left\{\hat{\Sigma}_{T}^{W}(M_{\mathsf{W}}^{2})\right\} \stackrel{!}{=} \operatorname{Re}\left\{\hat{\Sigma}_{T}^{ZZ}(M_{\mathsf{Z}}^{2})\right\} \stackrel{!}{=} \operatorname{Re}\left\{\hat{\Sigma}^{H}(M_{\mathsf{H}}^{2})\right\} \stackrel{!}{=} 0.$$

$$\longrightarrow \delta M_{\mathsf{W}}^{2}, \, \delta M_{\mathsf{Z}}^{2}, \delta M_{\mathsf{H}}^{2}.$$

$$\operatorname{Re}\left\{\hat{\Sigma}^{\bar{f}f}(p)\right\} u(p)\Big|_{p^{2}=m^{2}} \stackrel{!}{=} 0. \quad \longrightarrow \quad \delta m_{f}.$$

Bemerkung: Obige Forderung an die Selbstenergien setzen voraus, daß der renormierte "Tadpole" verschwindet:

$$\hat{\Gamma}^H = 0$$
, $----- \Rightarrow = 0$.

b) Wellenfunktionsrenormierung:

On-Shell-Felder sind normiert (Residuum $\stackrel{!}{=} 1$ am Propagatorpol) und mischen nicht untereinander:

$$0 \stackrel{!}{=} \lim_{k^{2} \to 0} \frac{\hat{\Sigma}_{T}^{AA}(k^{2})}{k^{2}} \stackrel{!}{=} \lim_{k^{2} \to M_{Z}^{2}} \frac{\operatorname{Re}\left\{\hat{\Sigma}_{T}^{ZZ}(k^{2})\right\}}{k^{2} - M_{Z}^{2}} \stackrel{!}{=} \lim_{k^{2} \to M_{W}^{2}} \frac{\operatorname{Re}\left\{\hat{\Sigma}_{T}^{WW}(k^{2})\right\}}{k^{2} - M_{W}^{2}}$$

$$\stackrel{!}{=} \lim_{k^{2} \to M_{H}^{2}} \frac{\operatorname{Re}\left\{\hat{\Sigma}^{H}(k^{2})\right\}}{k^{2} - M_{H}^{2}} . \longrightarrow \delta Z_{AA}, \, \delta Z_{ZZ}, \, \delta Z_{W}, \, \delta Z_{H} .$$

$$0 \stackrel{!}{=} \hat{\Sigma}_{T}^{AZ}(0) \stackrel{!}{=} \operatorname{Re}\left\{\hat{\Sigma}_{T}^{AZ}(M_{Z}^{2})\right\} . \longrightarrow \delta Z_{ZA}, \, \delta Z_{AZ} .$$

$$0 \stackrel{!}{=} \lim_{p^{2} \to m^{2}} \frac{1}{\not p - m} \operatorname{Re}\left\{\hat{\Sigma}_{T}^{\bar{f}f}(p)\right\} u(p) . \longrightarrow \delta Z_{L}^{f}, \, \delta Z_{R}^{f} .$$

c) Ladungsrenormierung:

e = klassische Elementarladung aus Thomson-Streuung:

$$\bar{u}(p) \, \hat{\Gamma}_{\mu}^{A\bar{e}e}(0,-p,p) \, u(p) \stackrel{!}{=} ie \, \bar{u}(p) \, \gamma_{\mu} \, u(p) \, . \longrightarrow \delta Z_e \, .$$

Berechnung der Renormierungskonstanten (1-Loop)

a) Eichbosonselbstenergien:

$$\hat{\Sigma}_{T}^{W}(k^{2}) = \Sigma_{T}^{W}(k^{2}) - \delta M_{W}^{2} + \delta Z_{W}(k^{2} - M_{W}^{2}) ,$$

$$\hat{\Sigma}_{T}^{ZZ}(k^{2}) = \Sigma_{T}^{ZZ}(k^{2}) - \delta M_{Z}^{2} + \delta Z_{ZZ}(k^{2} - M_{Z}^{2}) ,$$

$$\hat{\Sigma}_{T}^{AA}(k^{2}) = \Sigma_{T}^{AA}(k^{2}) + \delta Z_{AA} k^{2} ,$$

$$\hat{\Sigma}_{T}^{AZ}(k^{2}) = \Sigma_{T}^{AZ}(k^{2}) + \frac{1}{2}\delta Z_{AZ} k^{2} + \frac{1}{2}\delta Z_{ZA}(k^{2} - M_{Z}^{2}) .$$

Renormierungsbedingung

$$\operatorname{Re}\left\{\hat{\Sigma}_{T}^{W}(M_{W}^{2})\right\} \stackrel{!}{=} 0 \qquad \longrightarrow \qquad \delta M_{W}^{2} = \operatorname{Re}\left\{\Sigma_{T}^{W}(M_{W}^{2})\right\},$$

$$\operatorname{Re}\left\{\hat{\Sigma}_{T}^{ZZ}(M_{Z}^{2})\right\} \stackrel{!}{=} 0 \qquad \longrightarrow \qquad \delta M_{Z}^{2} = \operatorname{Re}\left\{\Sigma_{T}^{ZZ}(M_{Z}^{2})\right\},$$

$$\hat{\Sigma}_{T}^{AZ}(0) \stackrel{!}{=} 0 \qquad \longrightarrow \qquad \delta Z_{ZA} = 2\Sigma_{T}^{AZ}(0)/M_{Z}^{2},$$

$$\operatorname{Re}\left\{\hat{\Sigma}_{T}^{AZ}(M_{Z}^{2})\right\} \stackrel{!}{=} 0 \qquad \longrightarrow \qquad \delta Z_{AZ} = -2\operatorname{Re}\left\{\Sigma_{T}^{AZ}(M_{Z}^{2})\right\}/M_{Z}^{2},$$

$$\operatorname{Re}\left\{\hat{\Sigma}_{T}^{W'}(M_{W}^{2})\right\} \stackrel{!}{=} 0 \qquad \longrightarrow \qquad \delta Z_{W} = -\operatorname{Re}\left\{\Sigma_{T}^{W'}(M_{W}^{2})\right\},$$

$$\operatorname{Re}\left\{\hat{\Sigma}_{T}^{ZZ'}(M_{Z}^{2})\right\} \stackrel{!}{=} 0 \qquad \longrightarrow \qquad \delta Z_{ZZ} = -\operatorname{Re}\left\{\Sigma_{T}^{ZZ'}(M_{Z}^{2})\right\},$$

$$\hat{\Sigma}_{AA}^{AA'}(0) \stackrel{!}{=} 0 \qquad \longrightarrow \qquad \delta Z_{AA} = -\Sigma_{T}^{AA'}(0).$$

b) Fermionselbstenergien:

$$\hat{\Sigma}^{\bar{f}f}(p) = \not p \frac{1 - \gamma_5}{2} \left(\Sigma_L^{\bar{f}f}(p^2) + \delta Z_L^f \right) + \not p \frac{1 + \gamma_5}{2} \left(\Sigma_R^{\bar{f}f}(p^2) + \delta Z_R^f \right) + m_f \left(\Sigma_S^{\bar{f}f}(p^2) - \frac{\delta m_f}{m_f} - \frac{1}{2} \delta Z_L^f - \frac{1}{2} \delta Z_R^f \right).$$

$$\implies \frac{\delta m_f}{m_f} = \operatorname{Re} \left\{ \Sigma_S^{\bar{f}f}(m_f^2) + \frac{1}{2} \Sigma_L^{\bar{f}f}(m_f^2) + \frac{1}{2} \Sigma_R^{\bar{f}f}(m_f^2) \right\} ,$$

$$\delta Z_L^f = -\operatorname{Re} \left\{ \Sigma_L^{\bar{f}f}(m_f^2) + m_f^2 \left[\Sigma_L^{\bar{f}f'}(m_f^2) + \Sigma_R^{\bar{f}f'}(m_f^2) + 2 \Sigma_S^{\bar{f}f'}(m_f^2) \right] \right\} ,$$

$$\delta Z_R^f = -\operatorname{Re} \left\{ \Sigma_R^{\bar{f}f}(m_f^2) + m_f^2 \left[\Sigma_L^{\bar{f}f'}(m_f^2) + \Sigma_R^{\bar{f}f'}(m_f^2) + 2 \Sigma_S^{\bar{f}f'}(m_f^2) \right] \right\} .$$

c) Ladungsrenormierung:

Renormierte Vertexkorrektur:

$$\hat{\Lambda}_{\mu}^{A\bar{f}f}(p',p) = \Lambda_{\mu}^{A\bar{f}f}(p',p) - Q_{f}\gamma_{\mu}\left(\delta Z_{e} + \frac{1}{2}\delta Z_{AA} + \delta Z_{L}^{f}\frac{1-\gamma_{5}}{2} + \delta Z_{R}^{f}\frac{1+\gamma_{5}}{2}\right) + \gamma_{\mu}\left(v_{f} - a_{f}\gamma_{5}\right)\frac{1}{2}\delta Z_{ZA}.$$

Renormierungsbedingung (f = e):

$$\bar{u}(p)\,\hat{\Lambda}_{\mu}^{A\bar{f}f}(p,p)\,u(p)\stackrel{!}{=}0$$
.

Ward-Identität:

$$\bar{u}(p) \Lambda_{\mu}^{A\bar{f}f}(p,p) u(p) = -Q_f \bar{u}(p) \left[\frac{\partial}{\partial p^{\mu}} \Sigma^{\bar{f}f}(p) \right] u(p) -a_f \bar{u}(p) \gamma_{\mu} (1 - \gamma_5) u(p) \Sigma_T^{AZ}(0) / M_Z^2.$$

Benutzung der Beziehungen:

•
$$\bar{u}(p) \left[\frac{\partial}{\partial p^{\mu}} \Sigma^{\bar{f}f}(p) \right] u(p) = -\bar{u}(p) \gamma_{\mu} \left(\delta Z_L^f \frac{1 - \gamma_5}{2} + \delta Z_R^f \frac{1 + \gamma_5}{2} \right) u(p) ,$$

$$\bullet \ \Sigma_T^{AZ}(0) = \frac{1}{2} M_Z^2 \, \delta Z_{ZA} \ ,$$

$$\bullet \ \ V_f - a_f = -Q_f \, \frac{S_W}{C_W} \ ,$$

liefert:

$$\delta Z_e = -\frac{1}{2} \delta Z_{AA} - \frac{s_W}{c_W} \cdot \frac{1}{2} \delta Z_{ZA}$$
$$= +\frac{1}{2} \Sigma_T^{AA\prime}(0) - \frac{s_W}{c_W} \Sigma_T^{AZ}(0) / M_Z^2.$$

Bemerkung:

 δZ_e ist unabhängig davon, für welches Fermion f die Ladungsrenormierung durchgeführt wird.

→ Ladungsuniversalität!

3.3 Beiträge von Fermion-Schleifen zu Eichbosonselbstenergien

Allgemeines Integral: $-i\Sigma_{\mu\nu}(k) = \mu \sim 1 \qquad m_1 \qquad 2 \qquad \nu$

$$= (-1)\mu^{4-D} \int \frac{d^{D}q}{(2\pi)^{D}} \frac{\operatorname{Tr} \left\{ ie \, \gamma_{\mu} (v_{1} - a_{1}\gamma_{5}) i (\not q + m_{1}) ie \, \gamma_{\nu} (v_{2} - a_{2}\gamma_{5}) i (\not q + \not k + m_{2}) \right\}}{(q^{2} - m_{1}^{2}) [(q + k)^{2} - m_{2}^{2}]}$$

$$= -e^{2} \, \mu^{4-D} \int \frac{d^{D}q}{(2\pi)^{D}} \left[\frac{\operatorname{Tr} \left\{ \gamma_{\mu} \not q \gamma_{\nu} (\not q + \not k) (v_{1}v_{2} + a_{1}a_{2} + v_{1}a_{2}\gamma_{5} + v_{2}a_{1}\gamma_{5}) \right\}}{(q^{2} - m_{1}^{2}) [(q + k)^{2} - m_{2}^{2}]} + m_{1} m_{2} \frac{\operatorname{Tr} \left\{ \gamma_{\mu} \gamma_{\nu} (v_{1}v_{2} - a_{1}a_{2} + v_{1}a_{2}\gamma_{5} - v_{2}a_{1}\gamma_{5}) \right\}}{(q^{2} - m_{1}^{2}) [(q + k)^{2} - m_{2}^{2}]} \right]$$

(Beiträge mit einem γ_5 unter der Spur verschwinden!)

$$\begin{split} &=-e^2\,\mu^{4-D}\!\!\int\!\!\frac{\mathrm{d}^Dq}{(2\pi)^D}\left[\frac{4\{2q_\mu q_\nu+q_\mu k_\nu+q_\nu k_\mu-g_{\mu\nu}(q^2+qk)\}}{(q^2-m_1^2)[(q+k)^2-m_2^2]}(v_1v_2+a_1a_2)\right.\\ &\qquad \qquad + m_1m_2\frac{4g_{\mu\nu}}{(q^2-m_1^2)[(q+k)^2-m_2^2]}(v_1v_2-a_1a_2)\right]\\ &=-\frac{ie^2}{16\pi^2}\Big[4(v_1v_2+a_1a_2)\big\{2B_{\mu\nu}+k_\nu B_\mu+k_\mu B_\nu\\ &\qquad \qquad -\frac{1}{2}g_{\mu\nu}[A_0(m_1)+A_0(m_2)-(k^2-m_1^2-m_2^2)B_0]\big\}\\ &\qquad \qquad + 4m_1m_2(v_1v_2-a_1a_2)g_{\mu\nu}B_0\Big], \qquad \qquad (B...=B...(k,m_1,m_2))\\ &=-i\frac{\alpha}{\pi}\Big[g_{\mu\nu}\big\{(v_1v_2+a_1a_2)\big[2B_{00}-\frac{1}{2}A_0(m_1)-\frac{1}{2}A_0(m_2)+\frac{1}{2}(k^2-m_1^2-m_2^2)B_0]\big]\\ &\qquad \qquad + (v_1v_2-a_1a_2)m_1m_2B_0\big\}\\ &\qquad \qquad + k_\mu k_\nu(v_1v_2+a_1a_2)(2B_{11}+2B_1)\Big]\\ &=:-i\left(g_{\mu\nu}-\frac{k_\mu k_\nu}{k^2}\right)\Sigma_T(k^2)-i\frac{k_\mu k_\nu}{k^2}\Sigma_L(k^2)\;. \end{split}$$

$$\begin{split} \Sigma_T(k^2) &= \frac{\alpha}{\pi} \left\{ (v_1 v_2 + a_1 a_2) \left[2B_{00} - \frac{1}{2} A_0(m_1) - \frac{1}{2} A_0(m_2) + \frac{1}{2} (k^2 - m_1^2 - m_2^2) B_0 \right] \right. \\ &\quad + (v_1 v_2 - a_1 a_2) m_1 m_2 B_0 \right\} \\ &= \frac{\alpha}{3\pi} \left\{ (v_1 v_2 + a_1 a_2) \left[\left(k^2 - \frac{1}{2} m_1^2 - \frac{1}{2} m_2^2 + 3 m_1 m_2 - \frac{(m_1^2 - m_2^2)^2}{2k^2} \right) B_0(k^2) \right. \\ &\quad - m_1^2 \left(1 + \frac{m_2^2 - m_1^2}{2k^2} \right) B_0(0, 0, m_1) + m_1^2 \\ &\quad - m_2^2 \left(1 + \frac{m_1^2 - m_2^2}{2k^2} \right) B_0(0, 0, m_2) + m_2^2 - \frac{k^2}{3} \right] \\ &\quad - 6 a_1 a_2 m_1 m_2 B_0(k^2, m_1, m_2) \right\} \,, \end{split}$$

$$\Sigma_T(k^2) =: \frac{\alpha}{3\pi} \Big\{ (v_1 v_2 + a_1 a_2) H(k^2, m_1, m_2) - 6 a_1 a_2 m_1 m_2 B_0(k^2, m_1, m_2) \Big\} .$$

$$AA: m_1 = m_2 = m_f, a_1 = a_2 = 0, v_1 = v_2 = -Q_f.$$

$$\Sigma_{T, {
m ferm}}^{AA}(k^2) = rac{lpha}{3\pi} \sum_f N_c^f \, Q_f^2 \, H(k^2, m_f, m_f) \; .$$

$$AZ: m_1 = m_2 = m_f, a_1 = 0, a_2 = a_f, v_1 = -Q_f, v_2 = v_f$$

$$\Sigma_{T, {
m ferm}}^{AZ}(k^2) = -rac{lpha}{3\pi} \sum_f N_c^f \, Q_f \, v_f \, H(k^2, m_f, m_f) \; .$$

$$ZZ$$
: $m_1 = m_2 = m_f$, $a_1 = a_2 = a_f$, $v_1 = v_2 = v_f$.

$$\Sigma_{T,\text{ferm}}^{ZZ}(k^2) = \frac{\alpha}{3\pi} \sum_f N_c^f \left[(v_f^2 + a_f^2) H(k^2, m_f, m_f) - 6a_f^2 m_f^2 B_0(k^2, m_1, m_2) \right].$$

$$W: m_1 = m_{f-}, m_2 = m_{f+}, a_1 = a_2 = v_1 = v_2 = \frac{1}{2\sqrt{2}s_W}.$$

$$\Sigma_{T,\text{ferm}}^{W}(k^2) = \frac{\alpha}{3\pi} \cdot \frac{1}{4s_W^2} \sum_{(f+f-)} N_c^f \left[H(k^2, m_{f-}, m_{f+}) - 3m_{f-}m_{f+} B_0(k^2, m_{f-}, m_{f+}) \right].$$

 $(\sum$: Summe über alle Fermion-Dubletts)

Spezialfälle für $H(k^2, m_1, m_2)$:

$$H(0,0,m) = m^{2} \left[-\frac{3}{2}B_{0}(0,0,m) - \frac{m^{2}}{2}B'_{0}(0,0,m) + 1 \right]$$

$$= -\frac{3}{2}m^{2} \left[\Delta - \log \frac{m^{2}}{\mu^{2}} + \frac{1}{2} \right] ,$$

$$H'(0,0,m) = B_{0}(0,0,m) - \frac{m^{2}}{2}B'_{0}(0,0,m) - \frac{m^{4}}{4}B''_{0}(0,0,m) - \frac{1}{3}$$

$$= \Delta - \log \frac{m^{2}}{\mu^{2}} + \frac{1}{3} ,$$

$$H(0,m,m) = 2m^{2} \left[B_{0}(0,m,m) - B_{0}(0,0,m) + 1 \right] = 0 ,$$

$$H'(0,m,m) = B_{0}(0,m,m) + 2m^{2}B'_{0}(0,m,m) - \frac{1}{3} = \Delta - \log \frac{m^{2}}{\mu^{2}} ,$$

$$H(0,m_{1},m_{2}) = \mathcal{O}\left(m_{1}^{2},m_{1}m_{2},m_{2}^{2}\right) ,$$

$$H(k^{2},0,0) = k^{2} \left[B_{0}(k^{2},0,0) - \frac{1}{3} \right] = k^{2} \left[\Delta - \log \frac{|k^{2}|}{\mu^{2}} + \frac{5}{3} + i\pi\Theta(k^{2}) \right] .$$

Spezialfälle für $\Sigma_{T,\text{ferm}}(k^2, m_1, m_2)$:

Exakte Beziehungen:

$$\Sigma_{T,\text{ferm}}^{AA}(0) = \Sigma_{T,\text{ferm}}^{AZ}(0) = 0 ,$$

$$\Sigma_{T,\text{ferm}}^{AA}'(0) = \frac{\alpha}{3\pi} \sum_{f} N_c^f Q_f^2 \left(\Delta - \log \frac{m_f^2}{\mu^2} \right) .$$

Näherungen für $m_f \to 0$, $(f \neq t)$, $|k^2| \ll m_{\rm t}^2$ (z.B. $|k^2| \sim M_{\rm W}^2$, $M_{\rm Z}^2$):

$$\begin{split} \Sigma_{T,\text{ferm}}^{ZZ}(k^2) &= \frac{\alpha}{3\pi} \sum_{f \neq t} N_c^f \left(v_f^2 + a_f^2 \right) k^2 \left[\Delta - \log \frac{|k^2|}{\mu^2} + \frac{5}{3} + i\pi \Theta(k^2) \right] \\ &+ \frac{\alpha}{3\pi} N_c^t \left[\left(v_t^2 + a_t^2 \right) k^2 \left(\Delta - \log \frac{m_t^2}{\mu^2} \right) \right. \\ &\left. - 6a_t^2 \left\{ m_t^2 \left(\Delta - \log \frac{m_t^2}{\mu^2} \right) + \frac{1}{6} k^2 \right\} \right] \\ &+ \mathcal{O}\left(m_t^{-2} \right) \;, \end{split}$$

$$\begin{split} \Sigma_{T,\text{ferm}}^{W}(k^2) &= \frac{\alpha}{3\pi} \cdot \frac{1}{4s_W^2} \sum_{\stackrel{(f+,f-)}{\neq (t,b)}} N_c^f \, k^2 \left[\Delta - \log \frac{|k^2|}{\mu^2} + \frac{5}{3} + i\pi \Theta(k^2) \right] \\ &+ \frac{\alpha}{3\pi} \cdot \frac{1}{4s_W^2} N_c^t \left[-\frac{3}{2} m_t^2 \left(\Delta - \log \frac{m_t^2}{\mu^2} + \frac{1}{2} \right) \right. \\ &+ k^2 \left(\Delta - \log \frac{m_t^2}{\mu^2} + \frac{1}{3} \right) \right] \\ &+ \mathcal{O}\left(m_t^{-2} \right) \; . \end{split}$$

3.4 Myon-Zerfall und W-Masse

Bornsche Näherung

$$\mathcal{M}_{0} = \bar{u}_{\nu_{\mu}} \frac{ie}{\sqrt{2}s_{W}} \gamma^{\alpha} \frac{1 - \gamma_{5}}{2} u_{\mu} \cdot \underbrace{\frac{-ig_{\alpha\beta}}{(p_{\mu} - p_{\nu_{\mu}})^{2}} - M_{W}^{2}}_{=\mathcal{O}(m_{\mu}^{2})} \cdot \bar{u}_{e} \cdot \bar{u}_{e} \underbrace{\frac{ie}{\sqrt{2}s_{W}} \gamma^{\beta} \frac{1 - \gamma_{5}}{2} u_{\nu_{e}}}_{(m_{e}, m_{\mu} \ll M_{W})}.$$

$$\mathcal{M}_0 = -\frac{ie^2}{8s_W^2 M_W^2} \; \bar{u}_{\nu_{\mu}} \, \gamma_{\alpha} (1 - \gamma_5) \, u_{\mu} \cdot \bar{u}_e \, \gamma^{\alpha} (1 - \gamma_5) \, u_{\nu_e} \; .$$

Myon-Lebensdauer au_{μ} in niedrigster Ordnung:

$$\frac{1}{\tau_{\mu}^{(0)}} = \frac{\alpha^2}{384\pi} \cdot \frac{m_{\mu}^5}{M_W^4 s_W^4} \cdot \left(1 - 8\frac{m_e^2}{m_{\mu}^2}\right) .$$

Fermi-Konstante, Δr und W-Masse

$$\frac{1}{\tau_{\mu}} =: \frac{G_{\mu}^2 \, m_{\mu}^5}{192\pi^3} \cdot \left(1 - 8\frac{m_e^2}{m_{\mu}^2}\right) \cdot \underbrace{\left[1 + \frac{\alpha}{2\pi} \left(\frac{25}{4} - \pi^2\right) + \mathcal{O}(\alpha^2)\right]}_{\text{QED-Korrektur im Fermi-Modell}}.$$

- Messung von τ_{μ} ergibt G_{μ} .
- Berechnung von τ_{μ} im SM liefert Präzisionstest für das SM, da $\tau_{\mu}(G_{\mu})$ sehr genau bekannt ist.

Übliches Vorgehen: Berechnung von M_{W} aus G_{μ} und Vergleich mit $M_{\mathrm{W}}^{\mathrm{exp}}$.

$$G_{\mu} = \frac{\pi \alpha}{\sqrt{2} M_{\text{W}}^2 (1 - M_{\text{W}}^2 / M_{\text{Z}}^2)} \cdot (1 + \mathcal{O}(\alpha))$$

$$= \frac{\pi \alpha}{\sqrt{2} M_{\text{W}}^2 (1 - M_{\text{W}}^2 / M_{\text{Z}}^2)} \cdot (1 + \Delta r + \mathcal{O}(\alpha^2)) .$$

 $\Delta r = (\text{Einschleifen-SM-Korrektur}) - (\text{Einschleifen-Korrektur im Fermi-Modell}).$

Beachte: $\Delta r = \Delta r(\alpha, M_Z, M_W, M_H, m_f)$.

Fermionische Einschleifen-Korrekturen zu Δr

Relevante Beiträge:

Beachte: keine Beiträge von Fermion-Schleifen in $\delta Z_{R,L}^f$ bzw. zu den virtuellen Korrekturen der $\Gamma^{W\bar{\nu}_{\mu}\mu}$, $\Gamma^{W\bar{e}\nu_{e}}$ und $\Gamma^{\bar{\nu}_{\mu}\mu\bar{e}\nu_{e}}$ -Vertexfunktionen!

$$\Rightarrow \Delta r_{\text{ferm}} = \left[\frac{\Sigma_{T}^{W}(0)}{M_{\text{W}}^{2}} - \frac{\delta M_{\text{W}}^{2}}{M_{\text{W}}^{2}} + 2 \delta Z_{e} + \frac{c_{W}^{2}}{s_{W}^{2}} \left(\frac{\delta M_{\text{W}}^{2}}{M_{\text{W}}^{2}} - \frac{\delta M_{Z}^{2}}{M_{Z}^{2}} \right) \right]_{\text{ferm}}$$

$$= \left[\frac{\Sigma_{T}^{W}(0) - \text{Re} \left\{ \Sigma_{T}^{W}(M_{\text{W}}^{2}) \right\}}{M_{\text{W}}^{2}} + \Sigma_{T}^{AA'}(0) + 2 \frac{s_{W}}{c_{W}} \frac{\Sigma_{T}^{AZ}(0)}{M_{Z}^{2}} + \frac{c_{W}^{2}}{s_{W}^{2}} \text{Re} \left\{ \frac{\Sigma_{T}^{W}(M_{\text{W}}^{2})}{M_{\text{W}}^{2}} - \frac{\Sigma_{T}^{ZZ}(M_{Z}^{2})}{M_{Z}^{2}} \right\} \right]_{\text{ferm}}.$$

Näherung für Δr_{ferm} : $m_{f \neq t} = 0$, M_{W} , $M_{\text{Z}} \ll m_{\text{t}}$.

$$\begin{split} \Sigma_T^W(0) &= \frac{\alpha}{3\pi} \cdot \frac{1}{4s_W^2} N_c^t \left(-\frac{3}{2} m_t^2 \right) \left(\Delta - \log \frac{m_t^2}{\mu^2} + \frac{1}{2} \right) + \dots \,, \\ \operatorname{Re} \left\{ \Sigma_T^W(M_W^2) \right\} &= \Sigma_T^W(0) + \frac{\alpha}{3\pi} \cdot \frac{1}{4s_W^2} \sum_{\substack{f+f-f-1\\ \neq (t,b)}} N_c^f M_W^2 \left(\Delta - \log \frac{M_W^2}{\mu^2} + \frac{5}{3} \right) \\ &+ \frac{\alpha}{3\pi} \cdot \frac{1}{4s_W^2} \cdot N_c^t M_W^2 \left(\Delta - \log \frac{M_W^2}{\mu^2} + \frac{1}{3} \right) + \dots \,, \\ \operatorname{Re} \left\{ \Sigma_T^{ZZ}(M_Z^2) \right\} &= \frac{\alpha}{3\pi} \sum_{f \neq t} N_c^f \left(v_f^2 + a_f^2 \right) M_Z^2 \left(\Delta - \log \frac{M_Z^2}{\mu^2} + \frac{5}{3} \right) \\ &+ \frac{\alpha}{3\pi} N_c^t \left[\left(v_t^2 + a_t^2 \right) M_Z^2 \left(\Delta - \log \frac{m_t^2}{\mu^2} \right) - a_t^2 M_Z^2 \right. \\ &\left. - 6a_t^2 m_t^2 \left(\Delta - \log \frac{m_t^2}{\mu^2} \right) \right] + \dots \,, \\ \Sigma_T^{AA'}(0) &= \frac{\alpha}{3\pi} \sum_f N_c^f Q_f^2 \left(\Delta - \log \frac{m_f^2}{\mu^2} \right) \,. \end{split}$$

Benutzung von $|I_{W,f}^3| = \frac{1}{2}$ und $\sum_{\text{Dublett}} \left(I_{W,f}^3 Q_f - \frac{1}{4}\right) = 0$ liefert:

$$\Delta r_{\text{ferm}} = \frac{\frac{\alpha}{3\pi} \sum_{f \neq t} N_c^f \left(\log \frac{M_Z^2}{m_f^2} - \frac{5}{3} \right)}{=: \Delta \alpha (M_Z^2) = +5.9\%}$$

$$+ \frac{\alpha}{3\pi} \sum_{f \neq t, b} N_c^f \frac{2s_W^2 - 1}{8s_W^4} \log c_W^2$$

$$- \frac{\alpha}{3\pi} N_c^t \frac{1}{8s_W^4} \left[\frac{3}{2} \frac{m_t^2}{M_Z^2} + \left(1 - \frac{4}{3} s_W^2 \right) \log \frac{m_t^2}{M_Z^2} + \frac{1}{2} - \frac{8}{9} s_W^2 \right]$$

$$+ \mathcal{O} \left(\frac{M_Z^2}{m_t^2} \log \frac{m_t^2}{M_Z^2} \right).$$

Beachte: der Korrekturterm $\sim m_{\rm t}^2$ entspricht $\approx -3\%$ für $m_{\rm t} \approx 175$ GeV.

Einschleifen-Näherung für Δr im SM

$$\Delta r = \sum_{T}^{AA'}(0) + 2\frac{c_W}{s_W} \frac{\sum_{T}^{AZ}(0)}{M_Z^2} + \frac{\alpha}{4\pi s_W^2} \left(6 + \frac{7 - 4s_W^2}{2s_W^2} \log c_W^2\right) + \frac{\sum_{T}^{W}(0) - \text{Re}\left\{\sum_{T}^{W}(M_W^2)\right\}}{M_W^2} + \frac{c_W^2}{s_W^2} \operatorname{Re}\left\{\frac{\sum_{T}^{W}(M_W^2)}{M_W^2} - \frac{\sum_{T}^{ZZ}(M_Z^2)}{M_Z^2}\right\}.$$

Führende M_H -Abhängigkeit ist logarithmisch ("Screening theorem"):

$$(\Delta r)_{
m Higgs} \sim rac{lpha}{4\pi\,s_W^2} rac{11}{12} \log rac{M_{
m H}^2}{M_{
m Z}^2} \qquad {
m für} \qquad M_{
m H} \gg M_{
m Z} \; .$$

Bemerkung: Zwei- (teilweise Drei-) Schleifenkorrekturen zu Δr bekannt:

$$\mathcal{O}\left(\alpha^n \log^n m_{f \neq t}, \alpha^2, \alpha \alpha_s, \alpha \alpha_s^2, G_F^3 m_t^6, G_F^2 m_t^4 \alpha_s\right)$$
.

Vergleich von M_{W}^{th} **aus** G_{μ} (LEPEWWG, Aachen 2003)

$$(m_{\rm t}^{\rm exp}=174.3\pm5.1~{\rm GeV},~~M_{\rm W}^{\rm exp}=80.426\pm0.034~{\rm GeV})$$

Literatur 76

Literatur

QED:

Peskin, Schroeder: Introduction to Quantum Field Theory,

Bjorken, Drell: Relativistische Quantenmechanik,

Relativistische Quantenfeldtheorie,

Itzykson, Zuber: Quantum Field Theory,

Jauch, Rohrlich: The Theory of Photons and Electrons,

Pokorski: Gauge Field Theories.

Renormierung / dimensionale Regularisierung:

Collins: Renormalization.

Skalare *n*-**Punkt-Integrale**:

't Hooft, Veltman: Nucl. Phys. **B153** (1979) 365.

Reduktion von Tensorintegralen:

Passarino, Veltman: Nucl. Phys. **B160** (1979) 151.

Elektroschwaches Standardmodell:

Nachtmann: Elementarteilchenphysik,

Cheng, Li: Gauge Theory of Elementary Particle Physics,

Becher, Böhm, Joos: Eichtheorien,

Taylor: Gauge Theories for Weak Interactions.

Renormierung des Standardmodells:

Böhm, Hollik, Spiesberger: Fortschr. Phys. **34** (1986) 687,

Hollik: Fortschr. Phys. **38** (1990) 165,

Denner: Fortschr. Phys. **41** (1993) 307,

Denner, Dittmaier, Weiglein: Nucl. Phys. **B440** (1995) 95.