

 S	ΓUΙ	EN	TI	D N	O	

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 1, 2016/2017

ECT2036 - CIRCUITS AND SIGNALS

(All sections / Groups)

12 OCTOBER 2016 2:30 am - 4:30 pm (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This Question paper consists of 8 pages including cover page with 4 Questions only.
- 2. Attempt ALL the questions. All questions carry equal marks and the distribution of the marks for each question is given.
- 3. Please write all your answers in the Answer Booklet provided.
- 4. Appendix is provided after the question pages.

a) i. From your understanding of network graph terminology, draw a possible resistive circuit for the given graph in Figure Q1(a) if there are one current and voltage source each in the circuit. [7 marks]

Figure Q1(a)

ii. List all the fundamental cutset from the graph in Figure Q1(a).

[5 marks]

- b) Use the energy formula to determine the energy of the signal described by $f(t) = t^{2} \{ u(t+1) - u(t-4) \}$ [7 marks]
- c) Sketch the signal given by $g(t) = t\{u(t+1) - u(t)\} + 2e^{-t}\{u(t) - u(t-2)\} + u(t-2) \text{ for } -2 \le t \le 4$ [6 marks]

Continued...

- a) Determine the inverse Laplace transform of $F(s) = \frac{8s + 30}{s^2 + 25}$ [4 marks]
- b) The switch in Figure Q2 is initially closed for a long time.

At t = 0, the switch is opened. For t > 0,

i. draw the s-domain equivalent circuit.

[4 marks]

- ii. determine the current i(t) and voltage drop across the 10Ω resistor. [8+6 marks]
- iii. determine the capacitor voltage, v_C .

[3 marks]

Continued...

a) Consider the two-port network in Figure Q3(a) below.

Figure Q3(a)

i. Determine the impedance parameters.

[8 marks]

ii. Convert the impedance parameters to transmission parameters.

[5 marks]

b) Consider the following circuit in Figure Q3(b) that has two input sources v_1 and v_2 . Determine both the state and output equations if v_0 and i_0 are the output variables.

Figure Q3(b)

[12 marks]

Continued...

a) Test whether the following polynomial is Hurwitz.

[6 marks]

$$P(s) = s^4 + 5s^3 + 5s^2 + 4s + 3$$

b) Synthesize the following function using Cauer 1st Method

[11 marks]

$$Z(s) = \frac{(s+4)(s+9)}{s(s+7)}$$

c) Given the following specifications of a Butterworth filter,

Maximum pass-band attenuation, $A_P = 1.5dB$ Minimum stop-band attenuation, $A_S = 80dB$ Maximum pass-band frequency, $f_p = 10kHz$ Minimum stop-band frequency, $f_s = 200kHz$

i. determine the filter order n.

[5 marks]

ii. determine the cutoff frequency, f_c when it is satisfied in the pass-band. [3 marks]

APPENDIXES

Chapter 1:

Nodal Analysis	Mesh Analysis
$1. Y_N = AYA^T$	1. $Z_M = BZB^T$
$2. e_{\text{Node}} = -Y_{k}^{-1} A (I + YE)$	$2. i_{\text{Mesh}} = Z_M^{-1} B(E + ZI)$
3. $e = A^T e_{\text{Node}}$	$3. i = B^T i_{\text{Mesh}}$
4. i = Ye + (I + YE)	4. e = Zi - (E + ZI)
Fundamental Cutset Analysis	Fundamental Loop Analysis
$1. Y_C = CYC^T$	1. $Z_L = DZD^T$
$2. e_{\text{Twig}} = -Y_C^{-1}C(I + YE)$	$2. i_{\text{Link}} = Z_L^{-1} D(E + ZI)$
3. $e = C^T e_{\text{Twig}}$	3. $i = D^T i_{\text{Link}}$
4. $i = Ye + (I + YE)$	4. $e = Zi - (E + ZI)$

Chapter 2:

Even signal: f(t) = f(-t) or f[n] = f[-n]

Odd signal: f(t) = -f(-t) or f[n] = -f[-n]Energy content: $E = \lim_{t \to \infty} \int_{-T}^{T} f^{2}(t) dt$ or $E = \lim_{N \to \infty} \sum_{n=-N}^{N-1} f^{2}[n]$

Power content: $P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} f^2(t) dt$ or $P = \lim_{N \to \infty} \frac{1}{2N} \sum_{n=-N}^{N-1} f^2[n]$

Chapter 3: Laplace transform pairs

No.	t-domain function	s-domain transform
1.	$\delta(t)$	1/
2.	u(t)	1/8
3.	tu(t)	1/s2
4.	t ⁿ	$\frac{n!}{s^{n+1}}$
5.	e ^{-kt}	$\frac{1}{s+k}$
6.	$t^n e^{-kt}$	$\frac{n!}{(s+k)^{n+1}}$

7.	sinox	$\frac{\omega}{s^2+\omega^2}$
8.	coswt	$\frac{s}{s^2+\omega^2}$
9.	e ^{-ki} sinot	$\frac{\omega}{\left(s+k\right)^2+\omega^2}$
10.	e ^{-kt} cos ωt	$\frac{s+k}{\left(s+k\right)^2+\omega^2}$
11.	tsinwt	$\frac{2\omega s}{\left(s^2+\omega^2\right)^2}$

Chapter 4: Interrelation of parameters

парс	iapter 4: Interrelation of parameters					
	z	у	h	.8	ABCD	abcd
2	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} \underline{y_{22}} & \underline{-y_{12}} \\ \Delta y & \Delta y \\ \underline{-y_{21}} & \underline{y_{11}} \\ \Delta y & \Delta y \end{array}$	$\begin{array}{c c} \Delta h & h_{12} \\ \hline h_{22} & h_{22} \\ \hline -h_{21} & 1 \\ \hline h_{22} & h_{22} \\ \end{array}$	$ \begin{array}{c cccc} \hline & 1 & -g_{12} \\ & g_{11} & g_{11} \\ & \underline{g_{21}} & \underline{Ag} \\ & g_{11} & g_{11} \end{array} $	$ \begin{array}{c c} A & \Delta a \\ \hline C & C \\ \hline 1 & D \\ \hline C & C \end{array} $	$\frac{\frac{d}{c}}{\frac{1}{c}} \frac{\frac{1}{c}}{\frac{a}{c}}$
y	$\begin{array}{ccc} z_{22} & -z_{12} \\ \Delta z & \Delta z \\ \hline -z_{21} & z_{11} \\ \Delta z & \Delta z \end{array}$	y ₁₁ y ₁₂ y ₂₁ y ₂₂	$\begin{array}{ccc} \frac{1}{h_{11}} & \frac{-h_{12}}{h_{11}} \\ \frac{h_{21}}{h_{11}} & \frac{\Delta h}{h_{11}} \end{array}$	$ \begin{array}{c cccc} $	$ \begin{array}{c c} D & -\Delta a \\ \hline B & B \\ \hline -1 & A \\ \hline B & B \end{array} $	$ \begin{array}{ccc} \frac{a}{b} & \frac{-1}{b} \\ -\Delta b & \frac{d}{b} \end{array} $
h	$ \begin{array}{ccc} \Delta z & z_{12} \\ z_{22} & z_{22} \\ -z_{21} & 1 \\ z_{22} & z_{22} \end{array} $	$ \begin{array}{ccc} 1 & -y_{12} \\ y_{11} & y_{11} \\ \underline{y_{21}} & \underline{\Delta y} \\ y_{11} & y_{11} \end{array} $	$h_{11} h_{12} \\ h_{21} h_{22}$	$ \begin{array}{c cc} g_{22} & -g_{12} \\ \hline \Delta g & \Delta g \\ \hline -g_{21} & g_{11} \\ \hline \Delta g & \Delta g \end{array} $	$\begin{array}{c c} B & \Delta a \\ \hline D & D \\ \hline -1 & C \\ \hline D & D \\ \end{array}$	$ \begin{array}{ccc} \frac{b}{a} & \frac{1}{a} \\ -\Delta b & c \\ \hline a & a \end{array} $
8	$ \frac{1}{z_{11}} - \frac{z_{12}}{z_{11}} \\ \frac{z_{21}}{z_{11}} - \frac{\Delta z}{z_{11}} $	$\begin{array}{ccc} \Delta y & y_{12} \\ y_{22} & y_{22} \\ -y_{21} & 1 \\ y_{22} & y_{22} \end{array}$	$\begin{array}{c c} h_{22} & -h_{12} \\ \hline \Delta h & \Delta h \\ \hline -h_{21} & h_{11} \\ \hline \Delta h & \Delta h \end{array}$	811 812 821 822	$ \begin{array}{c c} C & -\Delta a \\ \hline A & A \\ \hline 1 & B \\ A & A \end{array} $	$ \begin{array}{cc} c & -1 \\ d & d \end{array} $ $ \begin{array}{cc} \Delta b & b \\ d & d \end{array} $
A	z_{11} Δz	$-y_{22}$ -1	$-\Delta h$ $-h_{11}$	1 g ₂₂		d b
В	$z_{21} - z_{21}$	$y_{21} = y_{21}$	h_{21} h_{21}	821 821	A B	$\frac{d}{\Delta b} \frac{b}{\Delta b}$
C D	$\frac{1}{z_{21}} \frac{z_{22}}{z_{21}}$	$\frac{-\Delta y}{y_{21}} = \frac{-y_{11}}{y_{21}}$	$\frac{-h_{22}}{h_{21}}$ $\frac{-1}{h_{21}}$	$\frac{g_{11}}{g_{21}} \frac{\Delta g}{g_{21}}$	C D	$\frac{c}{\Delta b} \frac{a}{\Delta b}$
a b	$\begin{array}{cc} \underline{z_{22}} & \underline{\Delta z} \\ \underline{z_{12}} & \underline{z_{12}} \\ \underline{1} & \underline{z_{11}} \end{array}$	$\begin{array}{ccc} -y_{11} & -1 \\ y_{12} & y_{12} \\ -\Delta y & -y_{22} \end{array}$	$\begin{array}{cc} \frac{1}{h_{12}} & \frac{h_{11}}{h_{12}} \\ \underline{h_{22}} & \underline{\Delta h} \end{array}$	$ \begin{array}{c cc} -\Delta g & -g_{22} \\ \hline g_{12} & g_{12} \\ -g_{11} & -1 \end{array} $	$\begin{array}{c c} D & B \\ \hline \Delta a & \Delta a \\ C & A \end{array}$	a b c d
d	z_{12} z_{12}	y_{12} y_{12}	$\frac{2}{h_{12}}$ $\frac{2}{h_{12}}$	812 812	$\frac{\Delta a}{\Delta a} = \frac{\Delta a}{\Delta a}$	e u

OTH / YBC

 $\Delta z = z_{11}z_{22} - z_{12}z_{21}$; $\Delta y = y_{11}y_{22} - y_{12}y_{21}$

 $\Delta h = h_{11}h_{22} - h_{12}h_{21} \; ; \; \Delta g = g_{11}g_{22} - g_{12}g_{21}$

 $\Delta a = AD - BC$; $\Delta b = ad - bc$

Chapter 7: Polynomial functions of $C_n(\omega)$ of a low-pass Chebyshev filter

Order n	Polynomial $C_n(\omega)$		
0	1		
1	ω		
2	$2\omega^2-1$		
3	$4\omega^3-3\omega$		
4	$8\omega^4 - 8\omega^2 + 1$		
5	$16\omega^5 - 20\omega^3 + 5\omega$		
6	$32\omega^6 - 48\omega^4 + 18\omega^2 - 1$		
7	$64\omega^7 - 112\omega^5 + 56\omega^3 - 7\omega$		

End of paper.

OTH / YBC 8/8