

Smart Grid

What is Smart Grid?

What is Smart Grid?

• In the world of the Smart Grid, consumers and utility companies alike have tools to manage, monitor and respond to energy issues.

- The flow of electricity from utility to consumer becomes
 - A two-way conversation
 - Saving consumers money
 - Energy, delivering more transparency in terms of end-user use
 - Reducing carbon emissions.

What is Smart Grid?

- Modernization of the electricity delivery system so that it
 - Monitors
 - Protects
- Automatically optimizes the operation of its interconnected elements –
 from the central and distributed generator through the high-voltage
 network and distribution system
 - to industrial users and building automation systems
 - to energy storage installations
 - to end-use consumers and their thermostats, electric vehicles, appliances and other household devices
- The Smart Grid in large, sits at the intersection of Energy, IT and Telecommunication Technologies.

Steps involved in Smart Grid

Technology Integration & Grid Management

Need for development in future

- Phasor Measurement Technique
- Wide Area Measurement (WAM)
- Flexible AC Transmission System (FACTS)
- Adoptive Islanding
- Self healing Grids
- Probabilistic and Dynamic Stability Assessment
- Distributed and autonomous Control

Benefits of PMU

- Time synchronized sub-second data
- Dynamic behavior observing
- Directly provides the phase angles (State Estimation to State Measurement)
- Improve post disturbance assessment
- High data rates and low latency due to computation

Smart Grid in Power Sector

• Transmission Asset Management HVDC and UHVAC etc.

Distribution
 Advanced Metering

 Infrastructures
 Asset Management etc.

System Operations

Self Healing Grids
WAMS
Adaptive Islanding etc.

Smart Grid in Distribution

Distribution Automization

Demand Optimization - Selective Load Control

Operation –Islanding of Micro-grids

Distribution Automization/Optimization

Managing Distribution Network Model

Outage management and AMI Integration

DMS & Advanced Switching Applications

Integrated Voltage / VAR Control

Demand Optimization

Demand Response – Utility

• Demand Response – Consumer

Demand Response Management System

In Home Technology enabling

Demand Optimization

- Smart Metering
 - Automatic, Time of Use, Consumer Communication & Load Control
- Communications: Automated Metering Infrastructure (AMI) LAN, WAN, HAN
- DRMS (Demand Response Management)
- In Home enabling technology
 - Demand in three category:
 - Immediate, Deferrable, Storable
 - Customer aggregation & De-aggregation required for Peak shifting

Demand Optimization

Energy Usage Information

Utility Communication

Consumer Enrollment in DR programs

• In Home Technology- Availability & Purchase, Device Provisioning

Control Center with Service Oriented Architecture (BUS)

- Having
 - GIS (geo-spatial Information Systems),
 - AMI,
 - SAP (ERP),
 - OMS (Outage management System),
 - DMS (Distribution Management System),
 - EMS (Energy Management System),
 - DRMS (Demand Response management System).

Model manager synchronizes GIS data with OMS, DMS & EMS.

Why Smart Grid?

- Proactive management of electrical network during emergency situations.
- Better demand supply / demand response management.
- Better power quality
- Reduce carbon emissions.
- Increasing demand for energy: requires more complex and critical solution with better energy managemen

Drivers of Smart Grid

- Increasing demand:
- High Aggregate Technical & Non Technical, Losses:18%-62%
- Ageing assets...transformers, feeders etc.,
- Grid to carry more power: Need for, Reliability and greater Security
- Billing and collections: Profitability of distribution companies
- Energy mix: Need for Renewable to reduce carbon footprint

Implementation leads to

- Deliver sustainable energy
- Increased efficiency
- Empower consumers
- Improve reliability
- Smart Grid

Challenges in Smart Grid

- Present Infrastructure is inadequate and requires augmentation to support the growth of Smart Grids.
- Most renewable resources are intermittent and can not be relied on (in its present form) for secure energy supply
- Regulatory Policies to deal with consequences of Smart Grid; like off peak, peak tariffs and other related matters.
- Grid Operation : Monitoring & control

Thank You

