19 21112024-163831

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой 732 М Γ ц с внутренним сопротивлением 50 Ом и доступной мощностью 14 дБм.

Ко входу ПЧ подключён генератор меандра частотой 252 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники -3 дБм. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 922 МГц до 1052 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра? Варианты ОТВЕТА:

- 1) -73 дБм
- 2) -78 дБм
- 3) -74 дБм
- 4) -76 дБм

Чему равна частота гетеродина при преобразовании частоты вверх с использованием двойного балансного смесителя, если спектр на выходе РЧ таков, как изображён на рисунке 1?

(Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 1 – Экран анализатора спектра

- 250 MΓι
- 2) 210 MΓ_II
- 3) 240 МГц
- 4) 200 MΓ_I

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что:

$$s_{21} = 0.496 - 0.262i, \, s_{31} = -0.284 - 0.537i.$$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь нижняя боковая составляющая при преобразовании частоты вверх?

- 1) -28 дБн
- 2) -34 дБн
- 3) -24 дБн
- 4) -40 дБн

Ко входу двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью 1.7 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 34 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание мощностью -6 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 2.)

Рисунок 2 – Схема измерения потерь в трансформаторе

- 1) 1 дБ
- 2) 0.5 дБ
- 3) 3.8 дБ
- 4) 1.5 дБ

На рисунке 3 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i при положительном смещении. Известно, что $r_1=r_3$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 3 – Двойной балансный смеситель

Частота гетеродина 436 МГц, частота ПЧ 37 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

- 473 MΓ
- 1345 MΓ
- 3) 1308 МГц
- 4) 1744 MΓ_{II}.

Для

- выделения верхней боковой составляющей при преобразовании вверх
- и полного подавления другой боковой

используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный П-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная -13 градусов.

Чему равна индуктивность компонента фазовращателя, если частота $\Pi \Psi$ равна 67 М Γ_{Π} ?

- 94 нГн
- 2) 153 нГн
- 3) 53 нГн
- 24 нΓн