第8讲线性规划(下)

罗国杰

gluo@pku.edu.cn

2024年春季学期

算 P 法 K 设山 分 析 实 验

练习题

Exercise 69. In some applications we are interested in minimizing *two* cost functions, $c^T x$ and $d^T x$, over a polyhedron $\mathcal{P} = \{x \mid Ax \leq b\}$. For general c and d, the two objectives are competing, *i.e.*, it is not possible to minimize them simultaneously, and there exists a tradeoff between them. The problem can be visualized as in the figure below.

The shaded region is the set of pairs $(c^T x, d^T x)$ for all possible $x \in \mathcal{P}$. The circles are the values $(c^T x, d^T x)$ at the extreme points of \mathcal{P} . The lower part of the boundary, shown as a heavy line, is called the *trade-off curve*. Points $(c^T \hat{x}, d^T \hat{x})$ on this curve are efficient in the following sense: it is not possible to improve both objectives by choosing a different feasible x.

Suppose $(c^T \hat{x}, d^T \hat{x})$ is a breakpoint of the trade-off curve, where \hat{x} is a nondegenerate extreme point of \mathcal{P} . Explain how the left and right derivatives of the trade-off curve at this breakpoint can be computed.

Hint. Compute the largest and smallest values of γ such that \hat{x} is optimal for the LP

minimize
$$d^T x + \gamma c^T x$$

subject to $Ax \le b$.

本节提要

- Linear programming tricks
 - ▶ minimax 目标函数
 - ▶绝对值
 - ▶范围约束
 - ▶分式目标函数
 - ▶约束包含有界未知系数
 - ▶约束右侧是随机变量

- Integer programming tricks
 - ▶特殊的"或"约束
 - ▶ "或"约束
 - ▶条件约束
 - ▶固定成本
 - ▶乘积消除

minimax 目标函数

min
$$\max_{k \in K} \sum_{j \in J} c_{kj} x_j$$

s.t. $\sum_{j \in J} a_{ij} x_j \ge b_i \quad \forall i \in I$

min
$$z$$

s.t. $\sum_{j \in J} a_{ij} x_j \ge b_i$ $\forall i \in I$
 $\sum_{j \in J} c_{kj} x_j \le z$ $\forall k \in K$

绝对值

min
$$\sum_{j \in J} c_j |x_j| \qquad (c_j > 0)$$
s.t.
$$\sum_{j \in J} a_{ij} x_j \ge b_i \quad \forall i \in I$$

min
$$\sum_{j \in J} c_j t_j \qquad (c_j > 0)$$
s.t.
$$\sum_{j \in J} a_{ij} x_j \ge b_i \qquad \forall i \in I$$

$$-t_j \le x_j \le t_j \qquad \forall j \in J$$

或

min
$$\sum_{j \in J} c_j (x_j^+ + x_j^-) \qquad (c_j > 0)$$
s.t.
$$\sum_{j \in J} a_{ij} (x_j^+ - x_j^-) \ge b_i \qquad \forall i \in I$$

$$x_j^+, x_j^- \ge 0 \qquad \forall j \in J$$

范围约束

min
$$\sum_{j \in J} c_j x_j$$

s.t. $d_i \leq \sum_{j \in J} a_{ij} x_j \leq e_i \quad \forall i \in I$

min
$$\sum_{j \in J} c_j x_j$$

s.t.
$$u_i + \sum_{j \in J} a_{ij} x_j = e_i \quad \forall i \in I$$

$$0 \le u_i \le e_i - d_i \quad \forall i \in I$$

分式目标函数

min
$$\frac{c^T x + \alpha}{d^T x + \beta}$$

s.t.
$$Ax \ge b$$

$$x \ge 0$$

- ▶常出现在财务规划模型
 - 收益率、周转率、生产率等
- ▶ 假设分母在可行域恒为正(或恒为负)
- ▶假设可行域非空且有界
 - 用约束 $t \ge 0$ 求解,能保证 t > 0

约束包含有界的未知系数

- 系数未知的线性约束 $\sum_{j \in J} \tilde{a}_j x_j \leq b$
 - ▶ãj 具体值未知
 - ▶只知道 $\tilde{a}_j \in [L_j, U_j]$
- 建模成 $\sum_{j \in J} \tilde{a}_j x_j \le b + \delta \cdot \max(1, |b|)$
 - $\blacktriangleright \, \forall \tilde{a}_j \in \left[L_j, U_j \right]$
 - ▶ 为避免过分保守,右侧放宽一定比例
 - ▶挑战:有无穷个约束

- **■** $i \exists a_j = (L_j + U_j)/2$, $\Delta_j = (U_j L_j)/2$
- 有 $\tilde{a}_j \in [a_j \Delta_j, a_j + \Delta_j]$
- 观察到
 - $\blacktriangleright \stackrel{\omega}{=} x_j \ge 0 \ , \ \tilde{a}_j x_j \le a_j x_j + \Delta_j x_j$
 - $\blacktriangleright \stackrel{\omega}{=} x_j \le 0 \ , \ \tilde{a}_j x_j \le a_j x_j \Delta_j x_j$
 - ▶都有 $\tilde{a}_j x_j \leq a_j x_j + \Delta_j |x_j|$
- ▶ 转化成线性约束

$$\sum_{j \in J} a_j x_j + \sum_{j \in J} \Delta_j y_j \le b + \delta \cdot \max(1, |b|)$$
$$-y_j \le x_j \le y_j$$

约束右侧是随机变量

- 约束 $\sum_{j \in J} a_j x_j \le B$
 - ▶ B 是随机变量
- ▶ 约束的意义?
 - ▶ $\stackrel{\square}{=} B_{min} \leq B \leq B_{max}$
- 概率约束 $Pr\left[\sum_{j\in J} a_j x_j \le B\right] = 1 \alpha$

from: J. Bisschop, "AIMMS: Optimization Modeling," 2006.

整数线性规划的分支限界算法

- 整数线性规划 在线性规划上对变量增添整数的要求
- 纯整数线性规划(全整数线性规划) 要求所有变量是整数
- 混合整数线性规划 只要求部分变量是整数
- ▶ 0-1型整数线性规划 要求所有变量是0或1
- ▶ 松弛规划(简称松弛) 删去整数要求后得到的线性规划
 - ▶ 松弛规划的最优值是原整数规划的最优值的界限
 - (最小化的下界,最大化的上界)
 - ▶但通常不是原整数规划的最优解

11 分支限界法 (最小化问题的上界、最大化问题的下界)

- 记整数线性规划为 ILP, 其松弛为 LP
- 如果 LP 的最优解 α 满足整数要求,则 α 是 ILP 的最优解
- 否则,设α,分量不满足整数要求,分别添加以下约束构造子问题

$$x_1 \leq \lfloor \alpha_1 \rfloor$$
 (构造LP₁) 和 $x_1 \geq \lfloor \alpha_1 \rfloor + 1$ (构造LP₂)

- 如果 LP₁或 LP₂的最优解符合整数要求,那么这个解也是 ILP 的可行解,得到 ILP 的最优值的一个界限,该子问题的计算结束
- 如果子问题的最优解不满足整数要求。则继续分支计算
- 如果子问题的最优值超过界限,则往下计算不可能得到 ILP 的最优解。计算结束
- 当没有待计算的子问题时,所有可行解中最好的是 ILP 的最优解

ILP 分支限界法例子

应用: 最小顶点覆盖

■ 顶点覆盖问题

给定图 G = (V,E),G 的顶点覆盖是顶点子集 $S \subseteq V$,使得每条边至少有一个端点属于S. 求G的最小的顶点覆盖.

■ 转化为0-1线性规划问题

令
$$V=\{1,2,...,n\}$$
, $\forall e \in E$, 存在 $i,j \in V$, 使得 $e=(i,j)$ $\forall i \in V$, 定义变量 $x_i \in \{0,1\}$, 且 $x_i=1 \Leftrightarrow i \in S$ $\forall e=(i,j) \in E$, $x_i+x_j \geq 1$ $\min \sum_{i \in V} x_i$ s.t. $x_i+x_j \geq 1$ $\forall (i,j) \in E$ $x_i \in \{0,1\}$ $\forall i \in V$

应用: 最小顶点覆盖

- 顶点覆盖属于NP难问题.
- 近似算法的设计思想
 - 1. 放松 x_i ∈ {0,1}的约束条件,令 x_i 为[0,1]区间任意实数,转化为线性规划问题.
 - 2. 用线性规划算法找到一组 $x_i \in [0,1]$, i = 1,2,...,n, 使得其和达到最小.
 - 3. $\Leftrightarrow S = \{ i \mid x_i \ge 1/2 \}.$
- 算法分析

可证明四舍五入得到的 $S \in G$ 的顶点覆盖,且 $|S| \le 2|S^*|$,其中 S^* 为最优解.

 $|S|/|S^*| = cost_{rounding} / cost_{ILP} \le cost_{rounding} / cost_{LP} \le 2$

应用: 负载均衡问题

■ 负载均衡问题

给定作业集合J={1, 2, ..., n},作业j 加工时间为 t_j , j = 1, 2, ..., n. 机器集合 M ={1, 2, ..., m},对每个作业分配一台机器,作业j 可分配的机器集合为 M_j . J_i 是分配到机器 i上的作业集合. 机器 i 的负载是 L_i . 设分配方案的负载为L,其中

$$L = \max_{i \in \{1,2,...,m\}} L_i$$
, $L_i = \sum_{j \in J_i} t_j$

问题: 求分配方案 使得 L 达到最小.

负载均衡问题: 转化为线性规划

 x_{ij} : 任务j 在机器i 上的负载 min L

S.t.
$$\sum_{i} x_{ij} = t_{j}$$
 $\forall j \in J$ 任务 j 在各机器的负载之和等于加工时间
$$\sum_{j} x_{ij} \leq L \quad \forall i \in M$$
 任何机器的负载总量不超过 L $x_{ij} \geq 0 \quad \forall j \in J, i \in M_{j}$

- 如果上述线性规划有值不超过 L 的解,那么最优负载的值至少是 L.
- 线性规划的最优解有可能把一个作业分配到多台机器 上,即负载是分数.需要调整这个解,以满足原问题 的需求:每个作业只能分配到一台机器上.

若干混合整数线性规划求解器

- CPLEX https://www.ibm.com/analytics/cplex-optimizer
- Gurobi (Gu, Rothberg, Bixby) https://www.gurobi.com/
- 杉数科技 http://www.cardopt.com/
- ► 天筹 https://www.huaweicloud.com/product/modelarts/optverse.html
- MindOpt https://tianchi.aliyun.com/mindopt

Some Examples of ILP Formulation

- H. Paul Williams, "Model Building in Mathematical Programming (5th Edition)", John Wiley & Sons Inc., 2013.
- Gurobi Jupyter Notebook Modeling Examples
 - ► https://www.gurobi.com/resource/modeling-examples-using-the-gurobi-python-api-in-jupyter-notebook/
- The OPL model library: a collection of known problems in the academia and industry
 - ► https://www.ibm.com/docs/zh/icos/22.1.0?topic=examples-opl-model-library

均 特殊的"或"约束

$$x = 0$$
 or $l \le x \le u$

■ 引入指示变量 y, 使得

$$y = \begin{cases} 0 & \text{for } x = 0 \\ 1 & \text{for } l \le x \le u \end{cases}$$

■ 整数线性约束

$$x \ge ly$$
$$x \le uy$$
$$y \in \{0,1\}$$

"或"约束

min $c^T x$ s. t. $A_1 x \le b_1$ (1) $A_2 x \le b_2$ (2) $x \ge 0$ where (1) or (2) holds

min
$$c^T x$$

s. t. $A_1 x \le b_1 + M y$
 $A_2 x \le b_2 + M(1 - y)$
 $x_j \ge 0$ $\forall j \in J$
 $y \in \{0,1\}$

条件约束

- \blacksquare if $A_1x \leq b_1$, then $A_2x \leq b_2$
- \blacksquare 等价于 $A_1x > b_1$ or $A_2x \leq b_2$

$$\alpha \to \beta$$

$$\Leftrightarrow \neg(\alpha \land \neg \beta)$$

$$\Leftrightarrow \neg \alpha \lor \beta$$

 $A_1 x \ge b_1 + \varepsilon \quad \text{or} \quad A_2 x \le b_2$

$$A_1 x \ge b_1 + \varepsilon - My$$

$$A_2 x \le b_2 + M(1 - y)$$

$$y \in \{0,1\}$$

固定成本

min
$$C(x)$$
s.t.
$$a_i x + \sum_{j \in J} a_{ij} w_j \ge b_i \quad \forall i \in I$$

$$x \ge 0$$

$$w_j \ge 0 \quad \forall j \in J$$
where
$$C(x) = \begin{cases} 0 & x = 0 \\ k + cx & x > 0 \end{cases}$$

$$\blacksquare$$
 引入指示变量 $y = \begin{cases} 0 & \text{for } x = 0 \\ 1 & \text{for } x > 0 \end{cases}$

■ 整数线性规划

$$w_{j} \ge 0 \qquad \forall j \in J \qquad \min \qquad ky + cx$$

$$C(x) = \begin{cases} 0 & x = 0 \\ k + cx & x > 0 \end{cases} \qquad \text{s.t.} \quad a_{i}x + \sum_{j \in J} a_{ij}w_{j} \ge b_{i} \quad \forall i \in I$$

$$x \le My$$

$$x \ge 0$$

$$w_{j} \ge 0 \qquad \forall j \in J$$

$$y \in \{0,1\}$$

乘积消除

 $x_1x_2 : x_1, x_2 \in \{0,1\}$

$$y \le x_1$$

$$y \le x_2$$

$$y \ge x_1 + x_2 - 1$$

$$y \in \{0,1\}$$

 $x_1x_2 : x_1 \in \{0,1\}, x_2 \in [0,u]$

$$y \le ux_1$$

$$y \le x_2$$

$$y \ge x_2 - u \cdot (1 - x_1)$$

$$y \ge 0$$

- $x_1x_2 : x_1 \in [l_1, u_1], x_2 \in [l_2, u_2]$
 - ▶特殊情况: $l_1, l_2 \ge 0 \, \text{且} \, x_1 \, \text{只出现在} \, x_1 x_2 \, \text{项}$
 - ▶ 用 $l_1x_2 \le z \le u_1x_2$ 替换非线性项 x_1x_2
 - ▶一般情况
 - ▶用 $y_1^2 y_2^2$ 替换 x_1x_2
 - 用 $y_1 + y_2$ 替换 x_1
 - 用 y₁ y₂ 替换 x₂
 - ト分段线性的 λ formulation 近似 y_1^2 和 y_2^2
 - 详见 G. Dantzig, "Linear Programming and Extensions", Pirnceton University Press, 1998.

问题求解技术的不完全二分类

- 基于模型的通用求解器
 - ▶布尔可满足性 (SAT)
 - ► satisfiability modulo theories (SMT)
 - ▶ optimization modulo theories (OMT)
 - ▶ (混合) 整数线性规划 (ILP & MILP)
 - ▶ constraint programming (CP)
 - ▶ 混合技术 (LCG = CP + SAT, ...)

- 无模型的求解方法学
 - ▶动态规划
 - ▶贪心算法
 - ▶近似算法
 - ▶局部搜索
 - ▶遗传算法
 - **.**..

本节小结

- Linear programming tricks
 - ▶ minimax 目标函数
 - ▶绝对值
 - ▶范围约束
 - ▶分式目标函数
 - ▶约束包含有界未知系数
 - ▶约束右侧是随机变量

- Integer programming tricks
 - ▶特殊的"或"约束
 - ▶ "或"约束
 - ▶条件约束
 - ▶固定成本
 - ▶乘积消除