

การแข่งขันเคมีโอลิมปิกระดับชาติ ครั้งที่ 15 ณ สำนักวิชาวิทยาศาสตร์ มหาวิทยาลัยวลัยลักษณ์ วันอังคารที่ 11 มิถุนายน พ.ศ. 2562 เวลา 8.00 - 13.00 น.

เฉลยภาคทฤษฎี

เฉลยโจทย์ข้อที่ 1 (10 คะแนน)

(6 points) Identify all possible structures of A-F with stereochemistry.

มี 1 คำตอบ เลือกตอบโครงสร้างแบบใดแบบหนึ่งถูกได้ 1 คะแนน (ไม่พิจารณาสเตอริโอเคมี)

Compound G (1.5 คะแนน)

1.2 (2 points) Draw the structure of compound **G** with each chiral carbon labelled.

H_CH₃

- โครงสร้างถูกต้อง (5 membered– α , β unsaturated ketone) ได้ 0.5 คะแนน
- ระบุตำแหน่ง chiral carbon (*) ที่มี 1 ตำแหน่งถูก ได้
 0.5 คะแนน
- เขียน stereochemistry ถูกได้ 0.5 คะแนน

The absolute configuration of G is 🗹 R 🔲 S (0.5 คะแนน)

*** หากเลือกตอบถูกแต่ในโครงสร้างข้างบนไม่แสดงสเตอริโอเคมี จะไม่ได้คะแนนข้อนี้ (เพราะเป็นการเดา) ***

1.3 (1 point) specific rotation = -37.5°

Calculation

In the reaction mixture, there will be 75% of A and 25% of B,

Since B is optically inactive, the specific rotation of the reaction mixture

$$= \frac{75 (of A)}{75 (of A) + 25 (of B)} \times (-50^{\circ}) = -37.5^{\circ}$$

แสดงวิธีคิดถูกต้อง ได้ 0.4 คะแนน คำนวณผลถูกต้อง ได้ 0.3 คะแนน ใส่เครื่องหมายเป็นลบ ได้ 0.3 คะแนน

1.4 (1 point) Mark ✓ in the box under the compound(s) that gives a positive 2,4-DNP test.

	Α	В	С	D	Е	F	G
Compound(s) giving a positive 2,4-DNP test						✓	✓

คำตอบละ 0.5 คะแนน ตอบเกินมาหักคะแนนคำตอบที่เกินมา คำตอบละ 0.2 คะแนน (คะแนนรวมไม่ติดลบ)

เฉลยโจทย์ข้อที่ 2 (10 คะแนน)

2.1 (5 points) Structures of Compounds A, C, D, E, F, H, J and K are as follows.

Compound A (1 คะแนน)	Compound C (0.5 คะแนน)
Br C=C H	Br. H OH
Compound D (0.5 คะแนน)	Compound E (0.5 คะแนน)
Br	H
Compound F (0.5 คะแนน)	Compound H (0.5 คะแนน)
H _{1,1,1} CH ₂ NH ₂	H CNH ₂
Compound J (0.5 คะแนน)	Compound K (1 คะแนน)
H O = COH	OH H Ph Ph

2.2 (2 points) Isomers B1 and B2:

Wedge-and-dash structure of B1 (0.5 คะแนน)	Fischer projection of B1 (0.5 คะแนน)
Br H Br H	CH_3 $Br \longrightarrow H$ $H \longrightarrow H$ $Br \longrightarrow H$ CH_3
Wedge-and-dash structure of B2 (0.5 คะแนน)	Fischer projection of B2 (0.5 คะแนน)
Br. H H Br	CH ₃ Br—H H—H H—Br CH ₃

2.3 (1.5 point) Reagents 1–3:

Reagent 1 (0.5 คะแนน)	Reagent 2 (0.5 คะแนน)	Reagent 3 (0.5 คะแนน)
TsCl (p-toluenesulfonyl chloride)	SOCl ₂ thionyl chloride	PhMgX (X = Br or I) or PhLi (or other sensible organometallic reagent)

2.4 (0.5 point) Compound G

2.5 (1 point) The gases:

the gas X found in Finding 3 is

 CO_2

the gas Y observed in Finding 4 is

 N_2

เฉลยโจทย์ข้อที่ 3 (10 points)

3.1 (0.5 point) Circle the letter of the most possible UV spectrum of a carotenoid.

3.2 (1 point) Predict the order of migrations in a thin-layer chromatographic separation of the given carotenoids in the problem sheet. Fill in the Roman number (I, II, or III) in the given box below.

Order of migration:

1

2

3

Ш

ต้องถูกต้องทุกช่อง จึงจะได้คะแนน

(1 is the one moving fastest)

Ш

3.3 (3.5 points) Identify A-F.

Reagent A (1 คะแนน)

Et₃N

ตอบ Acid chloride หรือ เบสที่ไม่เป็น nucleophile รุนแรงได้ ไม่ตอบเบส (หรือกรด) หัก 0.5 คะแนน

Compound B (0.5 คะแนน)

ข้อนี้ไม่ตรวจการเขียนสเตอริโอเคมี

Compound C (0.5 คะแนน)

ข้อนี้ไม่ตรวจการเขียนสเตอริโอเคมี

Compound D (1 คะแนน)

ข้อนี้ไม่ตรวจการเขียนสเตอริโอเคมี

Reagent E (0.5 คะแนน)

KOH หรือเบสอื่นที่เหมาะสม (พิจารณาเป็นกรณีไป)

3.4 (5 points) Identify G-H.

Compound **G** (1 คะแนน)

Compound H (1 คะแนน)

Propose the mechanism for Step I. (1.5 คะแนน)

- ขั้นแรกไม่จำเป็นต้องเขียนลูกศรก็ได้ แต่ต้องมีคำอธิบายเพื่อแสดงความเข้าใจว่า ต้องเกิดปฏิกิริยากรด-เบสก่อน
- และการแสดงพันธะ Li อนุโลมเขียน ionic แท้ๆได้ แม้ความเป็นจริงน่าจะมี character ของ covalent มากกว่า
- ปฏิกิริยาขั้นนี้ สเตอริโอเคมีไม่ได้มีความสำคัญ เนื่องจากการเข้าชนของนิวคลีโอไฟล์จะได้ผลิตภัณฑ์สองตัว ซึ่งไม่มีการหักหรือให้คะแนนเพิ่มสำหรับประเด็นนี้

Propose the mechanism for Step II. (1.5 คะแนน)

- เขียนรวบขั้น (รวมขั้นตอน 1 และ 2) หากลูกศรถูกต้องหมด ได้ 0.5 คะแนน
- หากเขียนแยกขั้น สารตัวกลาง ต้องมีสเตอริโอเคมีที่ถูกต้องเหมือนผลิตภัณฑ์ หากวาดตรงข้ามและส่วนอื่นถูกต้อง
 หมด ได้ 1 คะแนน

เฉลยโจทย์ข้อที่ 4 (10 คะแนน)

4.1 (2 คะแนน) อัตราการสลายตัวของแก๊สออกซิเจน =
$$8.06 \times 10^{-6}$$
 M/s (0.5 คะแนน) ตอบในรูป $x.xx \times 10^{n}$

วิธีคำนวณ

จำนวนโมลแก๊สออกซิเจนที่ลดลง เท่ากับ
$$\frac{\frac{(759.0-739.0\text{ mmHg})-(759.0-739.5\text{ mmHg})}{760.0\frac{\text{mmHg}}{\text{atm}}}\cdot (10.00\text{ L})}{10.000\text{ L}} \cdot \frac{\frac{3\text{ mol}_{0_2}}{10.000\text{ mmHg}}\cdot (0.0821\text{ L} \cdot \text{atm} \cdot \text{mol}^{-1} \cdot \text{K}^{-1})(298.15\text{ K})}{(0.5\text{ คะแนน})} = 8.06 \times 10^{-4}\text{mol}$$
อัตราการสลายตัวของแก๊สออกซิเจน เท่ากับ $\frac{\frac{8.06 \times 10^{-4}\text{mol}}{10.00\text{ L}}}{10.0-0.00\text{ s}} = 8.06 \times 10^{-6}\text{ M/s}$ (0.5 คะแนน)

4.2 (2 คะแนน) อัตราการเกิดแก๊สโอโซน =
$$1.08 \times 10^{-5}$$
 M/s (0.5 คะแนน) ตอบในรูป $x.xx \times 10^{n}$

วิธีคำนวณ

จำนวนโมลแก๊สโอโซนที่เกิดขึ้น เท่ากับ
$$\frac{(759.0-719.0~\text{mmHg})-(759.0-720.0~\text{mmHg})}{2~\text{mol}_{0_3}} \cdot \frac{(759.0-719.0~\text{mmHg})-(759.0-720.0~\text{mmHg})}{760.0~\text{mmHg}} \cdot (10.00~\text{L})}{(0.0821~\text{L} \cdot \text{atm} \cdot \text{mol}^{-1} \cdot \text{K}^{-1})(298.15~\text{K})} = 1.08 \times 10^{-3}~\text{mol}$$

$$(0.5~\text{คะแนน}) \qquad \qquad (0.5~\text{คะแนน})$$

$$0.5~\text{คะแนน} = 1.08 \times 10^{-3}~\text{mol}$$

$$0.5~\text{คะแนน} = 1.08 \times 10^{-3}~\text{mol}$$

$$0.5~\text{คะแนน} = 1.08 \times 10^{-3}~\text{mol}$$

$$0.5~\text{คะแนน} = 1.08 \times 10^{-3}~\text{mol}$$

4.3 (2 คะแนน) อันดับของแก๊สออกซิเจน เท่ากับ ₁ (0.5 คะแนน)

วิธีคำนวณ

อัตราเร็วการเกิดปฏิกิริยาของการทดลองที่ 1 เท่ากับ

$$\frac{1}{3}(8.06 \times 10^{-6} \, M/s) = 2.69 \times 10^{-6} \, M/s$$

(0.5 คะแนน)

อัตราเร็วการเกิดปฏิกิริยาของการทดลองที่ 2 เท่ากับ

$$\frac{1}{2}(1.08 \times 10^{-5} \, M/s) = 5.40 \times 10^{-6} \, M/s$$

(0.5 คะแนน)

พบว่า การทดลองที่ 2 มีอัตราเร็วการเกิดปฏิกิริยาเป็น 2 เท่าของการทดลองที่ 1 และ

การทดลองที่ 2 มีความดันแก๊สออกซิเจนเริ่มต้นเป็น 2 เท่าของการทดลองที่ 1 $\left(\frac{759.0-719.0 \text{ mmHg}}{759.0-739.0 \text{ mmHg}} = 2\right)$ (0.5 คะแนน) ดังนั้น อันดับของแก๊สออกซิเจน เป็น อันดับ 1

4.4 (4 คะแนน)

กลไกแบบที่ 1 กฎอัตรา คือ rate =
$$k[O_2]$$
 (0.5 คะแนน) $k = k_1$

วิธีคำนวณ

เนื่องจากขั้นตอนที่ 1 เป็นขั้นกำหนดอัตรา จะได้ rate =
$$k_1[O_2]$$
 (0.5 คะแนน) ดังนั้น rate = $k[O_2]$ โดย $k = k_1$

กลไกแบบที่ 2 กฎอัตรา คือ rate =
$$k[O_2]^{3/2}$$
 (0.5 คะแนน) $k = k_2 \sqrt{\frac{k_1}{k_{-1}}}$

วิธีคำนวณ

จากผลการทดลองในตาราง กลไกการเกิดปฏิกิริยาควรเป็นแบบที่

1 (0.5 คะแนน)

เฉลยโจทย์ข้อที่ 5 (10 คะแนน)

(ไม่มีคะแนน) กราฟระหว่าง อุณหภูมิ (°C) กับ ความดัน (atm)

5.4 (3.5 คะแนน)
$$\Delta H = 1,860.0$$
 J (0.5 คะแนน) $\Delta S = 4.9$ J/K (0.5 คะแนน) $\Delta G = 35.3$ J (0.5 คะแนน)

ตอบทศนิยม 1 ตำแหน่ง

วิธีคำนวณ

$$A(s, 100 \, ^{\circ}\text{C}) \longrightarrow A(s, 107 \, ^{\circ}\text{C}) \; ; \; \Delta H_{1}, \Delta S_{1}, \Delta G_{1}$$

$$A(s, 107 \, ^{\circ}\text{C}) \longrightarrow A(l, 100 \, ^{\circ}\text{C}) \; ; \; \Delta H_{2}, \Delta S_{2}, \Delta G_{2}$$

$$\underline{A(l, 107 \, ^{\circ}\text{C})} \longrightarrow A(l, 100 \, ^{\circ}\text{C}) \; ; \; \Delta H_{2}, \Delta S_{3}, \Delta G_{3}$$

$$A(s, 100 \, ^{\circ}\text{C}) \longrightarrow A(l, 100 \, ^{\circ}\text{C}) \; ; \; \Delta H, \Delta S, \Delta G$$

$$\Delta H_{1} = C_{p}(s) \cdot \Delta T = 30 \cdot (107 - 100) = 210.00 \text{ J}$$

$$\Delta H_{2} = \Delta H_{fus} = 2,000.00 \text{ J}$$

$$\Delta H_{3} = C_{p}(l) \cdot \Delta T = 50 \cdot (100 - 107) = -350.00 \text{ J}$$

$$\Delta H = \Delta H_{1} + \Delta H_{2} + \Delta H_{3} = 210.00 + 2,000.00 - 350.00 = 1,860.00 \text{ J}$$

$$\Delta S_{1} = C_{p}(s) \cdot \ln(T_{2}/T_{1}) = 30 \cdot \ln\left[(107 + 273.15)/(100 + 273.15)\right] = 0.56 \text{ J/K}$$

$$\Delta S_{2} = \Delta S_{fus} = \Delta H_{fus}/T = 2,000/(107 + 273.15) = 5.26 \text{ J/K}$$

$$\Delta S_{3} = C_{p}(l) \cdot \ln(T_{2}/T_{1}) = 50 \cdot \ln\left[(100 + 273.15)/(107 + 273.15)\right] = -0.93 \text{ J/K}$$

$$\Delta S = \Delta S_{1} + \Delta S_{2} + \Delta S_{3} = 0.56 + 5.26 - 0.93 = 4.89 \text{ J/K}$$

$$(0.8 \, \text{Perhau})$$

$$\Delta G = \Delta H - T\Delta S = 1,860.00 - (100 + 273.15) \cdot 4.89 = 35.30 \text{ J}$$

$$(0.4 \, \text{Perhau})$$

ทำอีกแบบหนึ่ง

หา ΔH_1 , ΔS_1 , ΔG_1	ถูกต้อง (0.5 คะแนน)
หา ΔH_2 , ΔS_2 , ΔG_2	ถูกต้อง (0.5 คะแนน)
หา ΔH_3 , ΔS_3 , ΔG_3	ถูกต้อง (0.5 คะแนน)
หา ΔH , ΔS , ΔG	ถูกต้อง (0.5 คะแนน)

วิธีคำนวณ

$S_{140 ^{\circ}\text{C}} = S$	$S_{413.15 \text{ K}} = \Delta S_{0-413.15 \text{K}}$				
	solid (s)	$\underline{s} \longrightarrow \underline{l}$	<u>liquid (l)</u>	$l \rightarrow g$	gas (g)
$= \Delta S_{0-10} +$	$< + \Delta S_{10-380.15 \text{ K}}$	+ ΔS _{380.15 K}	+ ΔS _{380.15-393.15} K	+ ΔS _{393.15 K}	+ ΔS _{393.15-413.15} K
= 2.0	+ $C_p(s) \cdot ln(T_2/T_1)$	+ $\Delta H_{\text{fus}}/T_{\text{mp}}$	+ $C_p(l) \cdot ln(T_2/T_1)$	+ $\Delta H_{vap}/T_{bp}$	+ $C_p(g) \cdot \ln(T_2/T_1)$
= 2.0	+ 30·ln(380.15/10)	+ 2,000/380.15	+ 50·ln(393.15/380.15)	+ 3,000/393.15	+ 20·ln(413.15/393.15)
= 2.0	+ 30×3.64	+ 5.261	+ 50×0.034	+ 7.631	+ 20x0.0496
= 2.0	+ 109.14	+ 5.26	+ 1.68	+ 7.63	+ 0.99
= 126.7 J	/K				

Column แรก ไม่มีคะแนน ที่เหลือคอลัมน์ละ 0.6 คะแนน แต่ละ column เมื่อเขียนสูตรถูกได้ 0.2 คะแนน เมื่อแทนค่าถูกได้ 0.2 คะแนน และเมื่อคิดเลขถูกได้ 0.2 คะแนน

เฉลยโจทย์ข้อที่ 6 (10 คะแนน)

- **6.1** (2.5 คะแนน)
- **6.1.1** แผนผังออร์บิทัลเชิงโมเลกุลของ O_2 (แสดงเฉพาะชั้นเวเลนซ์)

6.1.2 โครงสร้างลิวอิสที่ดีที่สุดของ O_2 คือ

ความสอดคล้อง/ความแตกต่างจากทฤษฎีทั้งสอง พร้อมทั้งคำอธิบายหรือเหตุผลประกอบ

ประเด็นละ 0.5 คะแนน (ต้องมาพร้อมคำอธิบาย) เช่น

- (1) **อันดับพันธะ**: คำนวณได้เท่ากับ 2 (พันธะคู่) ทั้งสองทฤษฎี จำนวนคู่อิเล็กตรอนในพันธะ = 2 คู่ vs B.O. = ½ (6-2) = 2
- (2) **สมบัติแม่เหล็ก**: โครงสร้างลิวอิส = diamagnetic (อิเล็กตรอนอยู่เป็นคู่ทั้งหมด) MO diagram = paramagnetic (อิเล็กตรอนเดี่ยวใน π^*_{2p})
- **6.2** (3 คะแนน)
- 6.2.1 ทำเครื่องหมายในตารางเพื่อระบุคู่ออร์บิทัลที่สามารถเกิดอันตรกิริยาได้

	σ_{2s}	σ_{2p}	π_{2p}	σ_{2s}^*	σ_{2p}^*	π_{2p}^*
2 <i>s</i>	✓B	√ F,G				C,C
$2p_x$				√A	√ H,I	
$2p_y$			✓ D,E			
$2p_z$			✓ D,E			

✓ ช่องละ 0.2 คะแนน
ทำเครื่องหมายเกิน
หักคะแนนเท่ากัน

(0.25 คะแนน)

6.2.2 ลำดับของค่าระดับพลังงานและจำนวนออร์บิทัล

ลำดับพลังงาน	1	2	3	4	5	6	7	8	9	(จากต่ำไปสูง)
ชื่อออร์บิทัล	В	Α	F	Н	Е	С	D	G	I	ช่องละ 0.2
จำนวนออร์บิทัลในระดับชั้นพลังงาน	1	1	1	1	2	2	2	1	1	ช่องละ 0.1

6.3 (4.5 คะแนน)

- 6.3.1 ทำเครื่องหมาย ปิ เพื่อระบุว่าออร์บิทัลนั้นจะมีพลังงานเพิ่มขึ้น
 - 🗸 เพื่อระบุว่าออร์บิทัลนั้นจะมีพลังงานลดลง

และ = หากคิดว่าออร์บิทัลนั้นจะไม่เปลี่ยนแปลงพลังงาน

หากมีจำนวนออร์บิทัลในระดับพลังงานมากกว่าหนึ่งออร์บิทัล ให้ทำเครื่องหมายตามจำนวนออร์บิทัล

	ออร์บิทัล	Α	В	С	D	Е	F	G	Н	I	
LP	ารื่องหมาย	=	=	û û	↑ /=	Û J	仓	û	仓	仓	ช่องละ 0.2

6.3.2 คาดว่า มุมพันธะของโมเลกุลโอโซน คือ $\ \Box$ 90° $\ \Box$ 105° $\ oldsymbol{
omega}$ 120° $\ \Box$ 135° $\ \Box$ 150° $\ \Box$ 165° $\ \Box$

(0.5 คะแนน)

หมายเหตุ ตอบ 135° เนื่องจากประมาณการหักล้างของเส้นที่สูงขึ้นหรือลดลงในแผนภาพก็ให้คะแนน (ต้องมีเหตุผลประกอบ) เหตุผลประกอบ (1 คะแนน)

- เมื่อบรรจุอิเล็กตรอนลงไปใน MO diagram ของรูปเส้นตรงจะมีอิเล็กตรอนบรรจุอยู่ถึงชั้น $2\pi_{
 m u}$ (สองตัว)
- ullet จาก diagram จะเห็นได้ว่าออร์บิทัลที่มีการเปลี่ยนแปลงพลังงานมาก คือ 2 $oldsymbol{\pi}_{\scriptscriptstyle
 m U}$ (ลดลง) และ 1 $oldsymbol{\pi}_{\scriptscriptstyle
 m e}$ (เพิ่มขึ้น)
- ullet มุมที่แคบลงต้องถูก drive ด้วย 2 $\pi_{
 m u}$ (อยากให้เล็กมากๆ) แต่มีพลังงานของออร์บิทัลอื่นที่สูงขึ้นมาต้านไว้
- ค่ามุมที่เล็กที่สุดที่ พลังงานที่ลดต่ำลงมีปริมาณมากกว่าพลังงานที่เพิ่มขึ้นอยู่ราว ๆ 120°
 - ... เทียบระยะในแผนภาพ: จุดตัดระหว่าง 2 $\pi_{_{\! U}}$ และ 1 $\pi_{_{\! S}}\sim$ (1.3/6.9) * (180° 90°) = 17° จากซ้าย
- 6.3.3 ระบุประจุฟอร์มัลของทุกอะตอมในแต่ละโครงสร้างให้ถูกต้อง

ลำดับพลังงาน

$$(||=|||) < (|V=V) < | < V|$$
 $(0.5 คะแนน)$ หรือ $(||=|||) < | < (|V=V) < V|$

6.3.4 โครงสร้างถิวอิสที่ใกล้เคียงโครงสร้างจริงมากที่สุด คือ

|| หรือ |||

(0.5 คะแนน)

เฉลยโจทย์ข้อที่ 7 (15 คะแนน)

วิธีคำนวณ

$$T_{\rm f} = -0.0206\,^{\circ}{\rm C};$$
 $\Delta T_{\rm f} = 0.0000 - (-0.0206) = 0.0206\,^{\circ}{\rm C}$ $\Delta T_{\rm f} = K_{\rm f} \cdot m;$ $m_{
m observed} = \frac{\Delta T_{\rm f}}{K_{\rm f}} = \frac{0.0206\,^{\circ}{\rm C}}{1.86\,^{\circ}{\rm C/m}} = 0.0111\,{\rm m}$ $(1\,$ คะแนน) $= 1.0000\,$ $= 1.00000\,$ $= 1.0000\,$ $= 1.00000\,$ $= 1.00000\,$ $= 1.00000\,$ $= 1.00000\,$ $= 1.00000\,$ $= 1.0$

$$m_{\rm HL} + m_{\rm H_3O^+} + m_{\rm L^-} = 0.0111$$

 $(0.0100 - x) + x + x = 0.0111$

$$x = 0.0011 \text{ m}$$
 (0.5 คะแนน)

ร้อยละการแตกตัวของ HL =
$$\frac{0.0011 \text{ m}}{0.0100 \text{ m}} \times 100$$
 (0.5 คะแนน) = 11

ตอบเลขทศนิยม 2 ตำแหน่ง

วิธีคำนวณ

ปริมาตรสารละลายผสม =
$$225 + 525 = 750 \text{ mL}$$
 ความเข้มข้น HL ในสารละลายผสม = 225 mL HL $\times \frac{0.85 \text{ mol HL}}{1000 \text{ mL}} \times \frac{1}{750 \text{ mL buffer}} \times \frac{1000 \text{ mL buffer}}{1 \text{ L buffer}}$ = 0.255 M (0.5 + 0.5 คะแนน) ความเข้มข้น L⁻ ในสารละลายผสม = 525 mL HL $\times \frac{0.75 \text{ mol NaL}}{1000 \text{ mL NaL}} \times \frac{1}{750 \text{ mL buffer}} \times \frac{1000 \text{ mL buffer}}{1 \text{ L buffer}}$ = 0.525 M (0.5 + 0.5 คะแนน)
$$K_a = \frac{[\text{H}_3\text{O}^+][\text{L}^-]}{[\text{HL}]} = 1.4 \times 10^{-4}$$

$$[\text{H}_3\text{O}^+] = K_a \cdot \frac{[\text{HL}]}{[\text{L}^-]} = 1.4 \times 10^{-4} \times \frac{0.255 \text{ M}}{0.525 \text{ M}} = 6.8 \times 10^{-5} \text{ M}$$
 (0.5 คะแนน)
$$pH = -\log[\text{H}_3\text{O}^+] = -\log(6.8 \times 10^{-5}) = 4.17$$

เมื่อเติม HCl 25 mmol ลงในสารละลายบัฟเฟอร์ ส่งผลให้ความเข้มข้นของ HL และ L⁻ เปลี่ยนแปลงเนื่องจากทำปฏิกิริยากับ HCl ดังสมการ

$$HCl + L^- \rightarrow HL + Cl^-$$
ความเข้มข้น $HL = \frac{\left(750 \text{ mL} \times 0.255 \frac{\text{mmol}}{\text{mL}}\right) + 25 \text{ mmol}}{750 \text{ mL}}$ หรือ $\frac{\left(225 \text{ mL} \times 0.85 \frac{\text{mmol}}{\text{mL}}\right) + 25 \text{ mmol}}{750 \text{ mL}}$ $= 0.288 \text{ M}$ (0.5 + 0.5 คะแนน)

ความเข้มข้น
$$L^- = \frac{\left(750 \text{ mL} \times 0.525 \frac{\text{mmol}}{\text{mL}}\right) - 25 \text{ mmol}}{750 \text{ mL}}$$
 หรือ $\frac{\left(525 \text{ mL} \times 0.75 \frac{\text{mmol}}{\text{mL}}\right) - 25 \text{ mmol}}{750 \text{ mL}}$ $= 0.492 \text{ M}$ (0.5 + 0.5 คะแนน)

$$[H_3O^+] = K_a \cdot \frac{[HL]}{[L^-]} = 1.4 \times 10^{-4} \times \frac{0.288 \text{ M}}{0.492 \text{ M}} = 8.2 \times 10^{-5} \text{ M}$$

$$(0.5 \text{ Pellul})$$

$$pH = -\log[H_3O^+] = -\log(8.2 \times 10^{-5}) = 4.09$$

7.3 (2 คะแนน) 🗖 เป็นไปได้ 🗹 เป็นไปไม่ได้

ให้คะแนนโดยพิจารณาจากเหตุผลประกอบ

เหตุผล

ตัวอย่างคำตอบ

<u>เป็นไปได้</u>

กราฟการไทเทรตมีจุดสมมูล 1 จุด และ pH ที่จุดสมมูลมากกว่า 7 แสดงว่าน่าจะเป็นการไทเทรตระหว่างกรดอ่อนแบบ monoprotic acid กับเบสแก่ \longrightarrow เป็นไปได้ (0.25 คะแนน)

เป็นไปไม่ได้

จากกราฟการไทเทรตปริมาตร NaOH ที่จุดสมมูลอยู่ที่ประมาณ 27 mL ซึ่งหา molar mass ของกรดอ่อนชนิดนี้ (HA) ได้ดังนี้ $g \, HA/mol = {0.412 \, g \, HA \over 27 \, mL \, NaOH} imes {1000 \, mL \, NaOH \over 0.125 \, mol \, NaOH} imes {1 \, mol \, NaOH \over 1 \, mol \, HA}$ (1 คะแนน)

= 122 g/mol

เมื่อเปรียบเทียบกับ molar mass ของกรดแลกติก (CH₃CH(OH)COOH) ซึ่งเท่ากับ 90.0 g/mol จะเห็นว่า molar mass ที่ได้ จากผลการทดลองต่างจาก molar mass ของกรดแลกติกมาก \rightarrow เป็นไปไม่ได้ (1 คะแนน)

ที่ 50% neutralization: $pH = pK_a$ จากกราฟไทเทรตตรงกับ pH ประมาณ 3 แสดงว่า $K_a = 1 \times 10^{-3}$ เมื่อเปรียบเทียบกับ K_a ของกรดแลกติก (1.4×10^{-4}) แตกต่างพอสมควร

7.4 (3.5 คะแนน) ตัวอย่างมีกรดแลกติก =

1.53 mg

(0.5 คะแนน)

ตอบเลขนัยสำคัญ 3 ตัว

วิธีคำนวณ

ประจุไฟฟ้าที่ใช้ =
$$15.6 \text{ mA} \times \frac{1 \text{ A}}{1000 \text{ mA}} \times 105 \text{ s} \times \frac{1 \text{ C}}{1 \text{ A} \cdot \text{s}} = 1.64 \text{ C}$$
 (1 คะแนน)

จำนวนโมลอิเล็กตรอน =
$$1.64 \text{ C} \times \frac{1 \text{ mol e}^-}{96485 \text{ C}} = 1.70 \times 10^{-5} \text{ mol e}^-$$
 (0.5 คะแนน)

จำนวนโมล
$$OH^- = 1.70 \times 10^{-5} \text{ mol e}^- \times \frac{2 \text{ mol } OH}{2 \text{ mol e}^-} = 1.70 \times 10^{-5} \text{ mol } OH^-$$
 (0.5 คะแนน)

$$\mathrm{CH_3CH}(\mathrm{OH})\mathrm{COOH} + \mathrm{OH}^- \longrightarrow \mathrm{CH_3CH}(\mathrm{OH})\mathrm{COO}^- + \mathrm{H_2O}$$
 หรือ $\mathrm{HL} + \mathrm{OH}^- \longrightarrow \mathrm{L}^- + \mathrm{H_2O}$

ตัวอย่างมีกรดแลกติก =
$$1.70 \times 10^{-5} \text{ mol OH}^- \times \frac{1 \text{ mol HL}}{1 \text{ mol OH}^-} \times \frac{90.0 \text{ g HL}}{1 \text{ mol HL}} \times \frac{1000 \text{ mg HL}}{1 \text{ g HL}}$$
 (1 คะแนน) = 1.53 mg

เฉลยโจทย์ข้อที่ 8 (12 คะแนน)

8.1 (7 คะแนน)

วิธีคำนวณ

จากปฏิกิริยาการใหนทรด
$$Y^{4-}(aq) + M^{2+}(aq) \rightleftharpoons MY^{2-}(aq)$$
ความเข้มข้นของ $M^{2+} = 50.0 \text{ mL EDTA} \times \frac{0.0800 \text{ mol EDTA}}{1000 \text{ mL EDTA}} \times \frac{1 \text{ mol } M^{2+}}{1 \text{ mol EDTA}} \times \frac{1}{100.0 \text{ mL } M^{2+}} \times \frac{1000 \text{ mL}}{1 \text{ L}}$
 $= 0.0400 \text{ M}$
(1 คะแนน)

cathode: $Cu^{2+}(aq) + 2 \text{ e}^- \rightarrow Cu(s)$
anode: $M(s) \rightarrow M^{2+}(aq) + 2 \text{ e}^-$
cell reaction: $Cu^{2+}(aq) + M(s) \rightarrow Cu(s) + M^{2+}(aq)$

$$E_{cell}^\circ = E_{cathode}^\circ - E_{anode}^\circ = 0.34 \text{ V}$$

$$= 0.34 - (-1.20) = 1.54 \text{ V}$$
(1 คะแนน)
$$E_{cell}^\circ = E_{cell}^\circ - \frac{0.0592}{n} \log \frac{[M^{2+}]}{[Cu^{2+}]}$$

$$= -1.20 - \frac{0.0592}{2} \log \frac{1}{0.0400}$$

$$= 1.54 - \frac{0.0592}{2} \log \frac{0.0400 \text{ M}}{1.00 \text{ M}}$$
(1 คะแนน)
$$E_{cell}^\circ = E_{cathode}^\circ - E_{anode}^\circ = 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.24)$$

$$= 0.34 - (-1.$$

8.1.2
$$K_{\rm eq}$$
 ของปฏิกิริยาการไทเทรต = 1.42×10^{28} V (0.5 คะแนน) ตอบเลขนัยสำคัญ 3 ตัว

วิธีคำนวณ

เมื่อเติมสารละลาย EDTA เข้มข้น 0.0800 M ปริมาตร 50.0 mL ลงในสารละลาย M^{2+} เข้มข้น 0.0400 M ปริมาตร 100.0 mL EDTA จะทำปฏิกิริยาพอดีกับ M^{2+} และ $E_{cell}=1.98~V$

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.0592}{n} \log \frac{[M^{2+}]}{[Cu^{2+}]}$$

$$1.98 = 1.54 - \frac{0.0592}{2} \log \frac{[M^{2+}]}{1.00 \text{ M}}$$

$$[M^{2+}] = 1.37 \times 10^{-15} M$$
 (1 คะแนน)

จากปฏิกิริยาการไทเทรต $Y^{4-}(aq) + M^{2+}(aq) \rightleftharpoons MY^{2-}(aq)$

ความเข้มข้นของ MY²⁻ =
$$50.0 \text{ mL EDTA} \times \frac{0.0800 \text{ mol EDTA}}{1000 \text{ mL EDTA}} \times \frac{1 \text{ mol MY}^{2-}}{1 \text{ mol EDTA}} \times \frac{1}{150.0 \text{ mL mixture}} \times \frac{1000 \text{ mL}}{1 \text{ L}}$$
 = 0.0267 M (1 คะแนน)

หลังปฏิกิริยาที่จุดสมมูล ระบบเข้าสู่สมดุลดังนี้

$$Y^{4-}(aq) + M^{2+}(aq) \rightleftharpoons MY^{2-}(aq)$$

Initial (M): - - 0.0267

Change (M):
$$+1.37 \times 10^{-15} +1.37 \times 10^{-15}$$
 -1.37×10^{-15}

Equilibrium (M): 1.37×10^{-15} 1.37×10^{-15} $(0.0267 - 1.37 \times 10^{-15})$

$$K = \frac{[MY^{2-}]}{[Y^{4-}][M^{2+}]}$$

$$= \frac{(0.0267 - 1.37 \times 10^{-15})}{(1.37 \times 10^{-15})(1.37 \times 10^{-15})}$$

$$= 1.42 \times 10^{28}$$
(1 คะแนน)

วิธีคำนวณ (แสดงเฉพาะวิธีคำนวณร้อยละโดยมวลของ Fe เท่านั้น)

เมื่อพิจารณาค่าคงที่การเกิดสารเชิงซ้อนในเชิงเปรียบเทียบ จะเห็นว่า ขั้นที่ 1 สามารถหาปริมาณของ Fe+Ni และขั้นที่ 2 หา ปริมาณของ Ni ได้ ดังนั้นปริมาณ Fe จึงหาได้ดังนี้

%Fe =
$$\frac{(13.85-11.60) \text{ mL EDTA}}{10.00 \text{ mL sample}} \times \frac{0.0500 \text{ mol EDTA}}{1000 \text{ mL EDTA}} \times \frac{1 \text{ mol Fe}}{1 \text{ mol EDTA}} \times \frac{55.8 \text{ g Fe}}{1 \text{ mol Fe}} \times \frac{100.00 \text{ mL sample}}{0.540 \text{ g sample}} \times 100 \%$$

$$(0.5 \text{ คะแนน}) \quad (0.5 \text{ คะแนน}) \quad (0.5 \text{ คะแนน}) \quad (0.5 \text{ คะแนน})$$

$$= 11.625 \%$$

หรือ

mol Fe+Ni =
$$13.85 \text{ mL EDTA} \times \frac{0.0500 \text{ mol EDTA}}{1000 \text{ mL EDTA}} \times \frac{1 \text{ mol Fe+Ni}}{1 \text{ mol EDTA}} = 6.925 \times 10^{-4}$$
 (0.75 คะแนน)

mol Ni =
$$11.60 \text{ mL EDTA} \times \frac{0.0500 \text{ mol EDTA}}{1000 \text{ mL EDTA}} \times \frac{1 \text{ mol Ni}}{1 \text{ mol EDTA}} = 5.80 \times 10^{-4}$$
 (0.75 คะแนน)

mol Fe =
$$6.925 \times 10^{-4} - 5.80 \times 10^{-4} = 1.125 \times 10^{-4}$$
 (0.25 คะแนน)

%Fe =
$$\frac{1.125 \times 10^{-4} \text{ mol Fe}}{10.00 \text{ mL sample}} \times \frac{55.8 \text{ g Fe}}{1 \text{ mol Fe}} \times \frac{100.00 \text{ mL sample}}{0.540 \text{ g sample}} \times 100 \%$$

= 11.625 %

$$\% \text{Ni} = \frac{11.60 \text{ mL EDTA}}{10.00 \text{ mL sample}} \times \frac{0.0500 \text{ mol EDTA}}{1000 \text{ mL EDTA}} \times \frac{1 \text{ mol Ni}}{1 \text{ mol EDTA}} \times \frac{58.7 \text{ g Ni}}{1 \text{ mol Ni}} \times \frac{100.00 \text{ mL sample}}{0.540 \text{ g sample}} \times 100 \% = 63.048 \%$$

%Cr =
$$100 - 11.6 - 63.0 = 25.4$$
 %

เฉลยโจทย์ข้อที่ 9 (13.5 คะแนน)

9.1 (1.5 คะแนน)

X อาจเป็น N, Cl, Xe, Rn

N และ Cl ตัวละ 0.25; Xe และ Rn ตัวละ 0.5; แก๊สอื่นตัวละ -0.5 มีสถานะอื่นได้ 0 คะแนน

9.2 (1.5 คะแนน)

1+0.5 คะแนน

9.3 (3 คะแนน)

9.4 (2.5 คะแนน)

9.5 (2 คะแนน)

9.6 (3 คะแนน)

%การละลายเปลี่ยนไปโดย □ เพิ่มขึ้น □ เท่าเดิม ☑ ลดลง = 92.7 % 0.5 ค**ะแนน**

แสดงวิธีคำนวณเปอร์เซ็นต์การละลายที่เปลี่ยนไป

$$[\text{Cu}^+]_{\text{sat'd}} = \frac{73.5 \text{ } \mu\text{g Q}}{175 \text{ } \text{mL}} \times \frac{1 \text{ } \text{mol}}{190.4 \text{ } \text{g}} \times \frac{10^{-6} \text{ } \text{g}}{1 \text{ } \mu\text{g}} \times \frac{1000 \text{ } \text{mL}}{1 \text{ } \text{L}} = 2.206 \times 10^{-6} \text{ M}$$

$$K_{\rm sp} = [{\rm Cu^+}]_{\rm sat'd} [{\rm I^-}]_{\rm sat'd} = \left(\frac{73.5~\mu g~Q}{175~{\rm mL}} \times \frac{1~{\rm mol}}{190.4~{\rm g}} \times \frac{10^{-6}~{\rm g}}{1~\mu \rm g} \times \frac{1000~{\rm mL}}{1~{\rm L}} \right)^2 = 4.87 \times 10^{-12}$$

$$K_{sp} = [Cu^+][I^-] = x[2(1.50 \times 10^{-5}) + x];$$

∴ solubility = [Cu⁺]_{CaI₂} =
$$\frac{4.87 \times 10^{-12}}{2(1.50 \times 10^{-5} \text{ M})}$$
 = 1.62 × 10⁻⁷ M

% solubility change =
$$\frac{(1.62 \times 10^{-7}) - (2.21 \times 10^{-6})}{2.21 \times 10^{-6}} \times 100 \% = -92.7$$

แนวคิด

- จากเฟสไดอะแกรม **X** เป็นแก๊ส **Y** เป็นของแข็ง ธาตุของแข็ง-แก๊สที่อยู่ติดกัน คือ C-N; S-Cl, I-Xe, At-Rn (ถ้ารู้ว่าเป็นของแข็ง ที่ระเหิดเป็นแก๊สทันที ยังต้องตอบ Xe/Rn)
- จำนวน unpaired electron: C-N = 5; S-Cl = 3, I-Xe = 1, At-Rn = 1
- สารประกอบ **X**F_n: ClF₃ T-shaped มุม <180° (175°), XeF₂ เส้นตรง 180°, XeF₄ square planar 90/180°, XeF₆ (capped) octahedron 72/90/180°, RnF₂ ไม่เสถียร ∴ **X** คือ Xe และ **Y** คือ I
- NaCl มีโครงสร้างแบบ rock salt แสดงว่าเกิด Cul ไม่ใช่ Cul_2 // I^- เป็น FCC

unit cell length
$$a = \left(4 \text{ unitsx} \frac{190.4 \text{ g Cul}}{\text{mol}} \times \frac{1 \text{ mol}}{6.02 \times 10^{23} \text{ units}} \times \frac{\text{cm}^3}{5.57 \text{ g}}\right)^{1/3} = 6.10 \times 10^{-8} \text{ cm} = 6.10 \text{ A}$$

$$r_{-} = \frac{\sqrt{2(6.10)^2}}{4} = 2.157 \text{ Å} = 216 \text{ pm; } r_{+}/r_{-} = 77/216 = 0.357$$

้ดังนั้น Cu⁺ ควรอยู่ในช่องว่างเททระฮีดรัลครึ่งหนึ่ง

เฉลยโจทย์ข้อที่ 10 (9.5 คะแนน)

10.1 (2.5 คะแนน)

แนวคิด

- เมื่อสาร A และ B ทำปฏิกิริยากับ $AgNO_3$ แล้วได้ตะกอนสีแดงทันทีนั้น ตะกอนสีแดงคือ Ag_2CrO_4 แสดงว่า CrO_4^{2-} ไม่ได้ โคออร์ดิเนตกับ M โดยตรง และการที่ไม่ได้ให้ตะกอนสีขาวของ AgCl ตกลงมา แสดงว่า คลอไรด์จะต้องโคออร์ดิเนตกับ M ดังนั้น เลขโคออร์ดิเนชันของ M มาจาก 2 Cl^- กับ 4 NH_3 คือเท่ากับ 6
- กลุ่มลิแกนด์ที่โคออร์ดิเนตกับ M แบบโคเวเลนต์คือ Cl^- กับ NH_3 ส่วน K^+ และ $CrO_4^{\ 2^-}$ เป็นไอออนิก
 - การที่ออกซาเลตสามารถแทนที่คลอไรด์ได้บ่งบอกว่า จะต้องเป็นคลอไรด์ที่อยู่ในตำแหน่ง cis กันเท่านั้นเพราะออกซาเลต เป็นคีเลตลิแกนด์ ดังนั้นสาร A จึงต้องเป็น cis isomer ส่วนสาร B จะต้องเป็น trans isomer ทั้ง cis และ trans isomer ไม่เป็น optical isomer เพราะมี plane of symmetry ในโครงสร้าง
- 10.2 (2 คะแนน) สมการแสดงปฏิกิริยาการตกตะกอน

ข้อ (c)
$$KM(CrO_4)Cl_2(NH_3)_4 + 2AgNO_3 \longrightarrow KM(NO_3)_2Cl_2(NH_3)_4 + Ag_2CrO_4(s)$$
 (1 คะแนน) ข้อ (d) $KM(NO_3)_2Cl_2(NH_3)_4 + Ag_2C_2O_4 \longrightarrow KM(NO_3)_2(C_2O_4)(NH_3)_4 + 2AgCl(s)$ (1 คะแนน)

10.3 (1.5 คะแนน)

10.4 (1 คะแนน) ชื่อสารประกอบโคออร์ดิเนชัน KM(CrO₄)Cl₂(NH₃)₄ คือ


```
i=3 เพราะเมื่อ KM(CrO<sub>4</sub>)Cl<sub>2</sub>(NH<sub>3</sub>)<sub>4</sub> ละลายน้ำมี ionic species 3 ชนิดคือ K<sup>+</sup>, [CoCl<sub>2</sub>(NH<sub>3</sub>)<sub>4</sub>]<sup>+</sup> และ CrO<sub>4</sub><sup>2-</sup> คำนวณความเข้มข้นเป็นโมแลลของสารละลายของสารเชิงซ้อน KM(CrO<sub>4</sub>)Cl<sub>2</sub>(NH<sub>3</sub>)<sub>4</sub> จากความเข้มข้นของสารละลาย 0.10 mol/L และความหนาแน่นของสารละลาย 1.03 g/cm³ แสดงว่า สารละลาย 1 L มีมวล = 1030 g     มวลของน้ำในสารละลาย 1 L = 1030 g - 0.10 mol × \frac{353.0 \text{ g}}{1 \text{ mol}} = 994.7 g หรือ 0.9947 kg คังนั้น ความเข้มข้นในหน่วยโมแลล = \frac{0.10 \text{ mol}}{0.9947 \text{ kg}} = 0.10053 mol kg<sup>-1</sup> (1 คะแนน) \DeltaT<sub>f</sub> = i × K<sub>f</sub> × m = 3 × 1.86 mol<sup>-1</sup> kg °C × 0.10053 mol kg<sup>-1</sup> = 0.56 °C (1 คะแนน)
```

เฉลยโจทย์ข้อที่ 11 (5 คะแนน)

11.1 (1.5 คะแนน)

11.1.1 โครงสร้างลิวอิสที่เป็นไปได้ของ NO พร้อมระบุประจุฟอร์มัลของแต่ละอะตอมในโครงสร้าง

(โครงสร้างละ 0.5 คะแนน) เกิน \rightarrow 0

11.1.2 เหตุผล

เนื่องจาก (0.5 คะแนน)

เมื่อ unpaired electron อยู่ที่ในโตรเจนจะได้โครงสร้างที่มีประจุฟอร์มัลของแต่ละอะตอมเท่ากับ ศูนย์ ซึ่งเป็น โครงสร้างที่มีความเสถียรกว่าเมื่อ unpaired electron อยู่ที่ออกซิเจนอะตอม

11.2 (2 คะแนน) การบรรจุอิเล็กตรอนลงใน Molecular Orbitals Diagram ของในตริกออกไซด์ (NO)

11.3 (0.5 คะแนน) อันดับพันธะของ NO คือ

2.5

0.5 คะแนน

11.4 (1 คะแนน) ลำดับของค่าพลังงานไอออไนเซชันลำดับที่ 1 (IE_1) คือ

NO < O < N ถูกทั้งหมดได้ 1 คะแนน

เฉลยโจทย์ข้อที่ 12 (5 คะแนน)

12.1 (0.5 คะแนน) การจัดเรียงอิเล็กตรอนแบบย่อของ U(IV) คือ

[Rn] 5*f*²

. ชี้แจง : ∪ เลขอะตอม 92 และมีเลขออกซิเดชัน +4 จึงมี 88 อิเล็กตรอน

12.2 (1.5 คะแนน) สมการนิวเคลียร์

$$^{222}_{86}$$
Rn $\rightarrow ^{218}_{84}$ Po $+ ^{4}_{2}$ He

ชี้แจง : Po อยู่หมู่เดียวกับกำมะถัน คือ VI จึงมีเลขอะตอมน้อยกว่า Rn อยู่ 2 ดังนั้นอนุภาคที่ปล่อยออกมาต้องมีประจุ +2 คือ แอลฟา

12.3 (1.5 คะแนน) เหลือ ²²²Rn =

(0.5 คะแนน)

(ตอบเป็นเลขจำนวนเต็ม)

วิธีคำนวณ

$$\ln \frac{N_0}{N} = \lambda t$$
 หรือ $2.303 \log \frac{N_0}{N} = \lambda t$ โดย $\lambda = \frac{0.693}{t_{\frac{1}{2}}}$ (0.25 คะแนน)
$$2.303 \log \frac{1000}{N} = \frac{0.693}{3.8} \times 20$$
 (0.25 คะแนน)
$$2.303 \log N = 2.303 \log 1000 - \frac{0.693}{3.8} \times 20$$
 (0.5 คะแนน)

$$N = 10^{1.4163} = 26.08 \approx 26$$

12.4 (1.5 คะแนน) การเปลี่ยนแปลงพลังงาน \square ดูดพลังงาน \square คายพลังงาน (0.25 คะแนน) พลังงานที่เปลี่ยนแปลง = 2.24×10^5 kJ (0.5 คะแนน)

วิธีคำนวณ

 $E = (\Delta m)c^2$ (หน่วย m เป็น kg; c เป็น m/s) (0.25 คะแนน) 232 Th 1.0 g สลายตัวทำให้เกิด $\Delta m = -\frac{5.19 \times 10^{-3} \times 1.66 \times 10^{-24}}{232.0381 \times 1.66 \times 10^{-24}} \times 1.0 g$ (0.25 คะแนน) $= -\frac{5.19 \times 10^{-6}}{232.0381}$ kg $= -\frac{5.19 \times 10^{-6}}{232.0381}$ kg (0.25 คะแนน)

E =
$$\frac{5.19 \times 10^{-6}}{232.0381} kg \times (3.0 \times 10^8 m/s)^2$$
 kg m s⁻² หรือ J (0.25 คะแนน)
= -0.0224×10^{10} J หรือ -2.24×10^5 kJ (เครื่องหมายลบแสดงว่า คายพลังงาน)