Amplificatori operazionali

Simbolo circuitale dell'amplificatore operazionale

$$\emptyset A = A_0 = Y$$

ØA₀ costante, indipendente da f

$$\emptyset i_i = 0$$

$$ot\!O R_i =
ot\!Y$$

$$\emptyset R_0 = 0$$

$$\emptyset$$
CMRR = \mathbf{Y}

Dinamica di uscita

$$L^{\cdot} < V_{O} < L +$$

Dinamica di ingresso

$$L^{-}/A < V_{IN} < L^{+}/A$$

Con
$$A = Y$$

Dinamica di ingresso nulla

(necessaria controreazione)

Se
$$L^{-} < V_{o} < L +$$

$$V_{IN} = (\mathbf{v}_{2} - \mathbf{v}_{1}) = 0$$

$$\mathbf{v}_{2} = \mathbf{v}_{1}$$

Corto circuito virtuale

(stesso potenziale ma corrente nulla)

Controreazione negativa (amplificatori lineari)

Controreazione positiva (multivibratori)

Esempio di amplificatore controreazionato: l'amplificatore invertente oreazione

Configurazioni fondamentali dei circuiti con AO

$$\mathbf{v}_{\mathbf{O}} = \mathbf{A}\mathbf{v}_{\mathbf{d}} = \mathbf{A}(\mathbf{v}_{\mathbf{2}} - \mathbf{v}_{\mathbf{1}})$$

configurazione invertente

v_Oè in opposizione di fase con la tensione di ingresso

configurazione non invertente

v_Oè in fase con la tensione di ingresso

amplificatore differenziale

v_O è l'amplificazione del segnale differenza

Configurazione invertente nel caso di A infinito

$$G \circ \frac{v_O}{v_I} = -\frac{R_2}{R_1}$$

$$R_{in} \circ \frac{v_I}{i_1} = \frac{v_I}{(v_I + v_d)/R_1} \gg R_1$$

$$R_{out} = 0$$

Configurazione invertente nel caso di A finito

$$G \circ \frac{v_O}{v_I} = \frac{-R_2/R_1}{1 + \overset{\text{e}}{c}^1 + \frac{R_2}{c} \overset{\text{o}}{i} \frac{1}{e}}$$

Configurazione non invertente con A infinito

$$R_{in} = \forall$$

$$R_{out} = 0$$

Configurazione non invertente nel caso di A finito

$$G \circ \frac{v_O}{v_I} = \frac{1 + R_2 / R_1}{1 + (1 + R_2 / R_1) / A}$$

Buffer o inseguitore a guadagno unitario

nel caso ideale:

$$v_O = v_I$$

$$R_{in} = \mathbf{Y}$$

$$G = 1$$

$$R_{out} = 0$$

Configurazione invertente con impedenze generiche

Integratore di Miller

Integratore di Miller

In pratica, se proviamo ad utilizzare il precedente schema, un qualsiasi rumore di bassa frequenza, inevitabilmente presente all'ingresso dell'integratore, verrà amplificato a tal punto da diventare rilevante in uscita. Il problema si risolve facendo in modo che l'amplificazione, a bassa frequenza, non possa oltrepassare un certo limite. Questo risultato lo si ottiene inserendo in parallelo al condensatore di capacità C una resistenza R1

Il nostro circuito non è altro che un filtro passa basso attivo la cui frequenza di taglio è:

$$ft = \frac{1}{2\pi CR1}$$

Derivatore

Derivatore

In pratica, se proviamo ad utilizzare il precedente schema, un qualsiasi rumore di alta frequenza, inevitabilmente presente all'ingresso del derivatore, verrà amplificato a tal punto da rendere inutilizzabile l'amplificatore. Il problema si risolve facendo in modo che l'amplificazione, all'aumentare della frequenza, non possa oltrepassare un certo limite. Questo risultato lo si ottiene inserendo in serie al condensatore di capacità C una resistenza R1

Il nostro circuito non è altro che un filtro passa alto attivo la cui frequenza di taglio è:

$$ft = \frac{1}{2\pi CR1}$$

Amplificatore differenziale (1/3)

$$v_{O} = -\frac{R_{2}}{R_{1}}v_{1} + \frac{\overset{\leftarrow}{e} + \frac{R_{2}}{R_{1}}\overset{\circ}{\varnothing}}{\underset{\leftarrow}{e} + \frac{R_{3}}{R_{4}}\overset{\circ}{\varnothing}}v_{2}}{\overset{che \ nel \ caso \ in \ cui}{R_{2}/R_{1} = R_{4}/R_{3} \ diventa:}} v_{O} = \frac{R_{2}}{R_{1}}(v_{2} - v_{1})$$

Amplificatore differenziale (2/3)

Analisi del circuito con il principio di sovrapposizione degli effetti

$$v_{O2} = v_2 \frac{R_4}{R_3 + R_4} \stackrel{\text{ef}}{\dot{e}} + \frac{R_2}{R_1} \stackrel{\ddot{o}}{o}$$

Amplificatore differenziale (3/3)

Calcolo della R_{in} nel caso particolare $R_3 = R_1$ e $R_4 = R_2$

$$R_{in} = 2R_i$$

Amplificatore per strumentazione

Sommatore pesato invertente

Del seguente circuito, con l'amplificatore operazionale ideale, determinare le resistenze R_1 , R_2 e R_3 affinché la tensione di uscita dell'amplificatore valga: $V_{out} = 3V_3 - 4V_2 - 2V_1$

Calcolare la corrente I_L che, nel seguente circuito, scorre nella resistenza R_L , in presenza di una tensione d'ingresso $V_{in} = 2 \text{ V}$.

Amplificatore operazionale ideale V+=-V-=12V

$$R_1 = R_2 = R_3 = R_4 = 4 \text{ KW}$$

$$R_5 = 2 \text{ KW}$$

$$R_6 = 12 \text{ KW}$$

$$R_L = 6 \text{ KW}$$

Il circuito di figura è caratterizzato dai seguenti parametri:

$$i = 1 mA$$
;

$$R_1 = 6 \text{ kW}; \quad R_2 = 2 \text{ kW};$$

op amp ideale con
$$L^+ = |L^-|^{=12V}$$
;

Determinare la corrente i che scorre sulla resistenza di carico R nel caso in cui:

$$_{L}^{a)R} = 1 \text{ kW}$$

b) $_{L}^{a} = 2 \text{ kW}$.

Si consideri il circuito riportato in figura. Dato il segnale di ingresso V_{in} determinare l'andamento temporale della tensione di uscita V_{out} .

Op Amp ideale $V_{sat}^+ = -V_{sat}^- = 20 \text{ V}$

Dato il circuito in figura, considerando l'ingresso a gradino I_s riportato, determinare l'evoluzione temporale della V_A - V_B e disegnarne il grafico riportando i punti significativi fino a t=5 secondi. Supporre gli amplificatori operazionali ideali, con $|L^+| = |L^-| = 12 \text{ V}$, e il condensatore scarico per t < 0.

$$\mathbf{R_1} = 2 \text{ kW},$$

$$\mathbf{R}_2 = 4 \text{ kW},$$

$$R_1 = 2 \text{ kW}, \qquad R_2 = 4 \text{ kW}, \qquad R_3 = 4 \text{ MW}, \qquad C = 1 \text{ mF},$$

$$C = 1 \text{ mF},$$

Dato il circuito di figura, in cui v_{IN} è un generatore di tensione, determinare il valore della resistenza R_3 per avere un guadagno di tensione v_{OUT}/v_{IN} pari a 25. Considerare l'amplificatore operazionale ideale.

$$R_1 = 2k\Omega; R_2 = 18k\Omega; R_3 = ?; R_4 = 1k\Omega; R_5 = 6k\Omega; R_6 = 2k\Omega$$

Dato il circuito di figura, considerando l'op-amp ideale con $L^+ = |L^-| = 10 \text{ V}$, calcolare l'andamento nel tempo della tensione di uscita in risposta ad un gradino ideale di ampiezza 2V applicato al tempo t=0.

$$R_1 = 100 \text{kW}, R_2 = 200 \text{kW}, R_3 = 100 \text{kW}, C = 10 \text{nF}$$

Sapendo che all'istante t=20sec l'interruttore S_1 si apre e contemporaneamente l'interruttore S_2 si chiude e nota la I_S nel tempo (vedi figura), determinare l'evoluzione temporale della V_{out} e disegnarne il grafico riportando i punti significativi.

Supporre l'amplificatore operazionale A ideale e il condensatore scarico per t < 0.

Dato il circuito in figura, considerando l'ingresso a gradino I_s riportato, determinare l'evoluzione temporale della tensione di uscita V_{out} e disegnarne il grafico.

Supporre l'amplificatore operazionale ideale, con $|L^+| = |L^-| = 12 \text{ V}$,

$$\mathbf{R_1} = 2 \text{ kW},$$

$$\mathbf{R}_2 = 2 \text{ kW},$$

$$\mathbf{R_3} = 1 \text{ kW},$$

$$R_1 = 2 \text{ kW}, \quad R_2 = 2 \text{ kW}, \quad R_3 = 1 \text{ kW}, \quad R_4 = 4 \text{ kW}, \quad C = 1 \text{ mF},$$

$$\mathbf{C} = 1 \text{ mF},$$

Dato il circuito in figura, considerando in ingresso il generatore di corrente I_{IN} ad onda quadra riportato in figura, determinare l'evoluzione temporale della tensione di uscita V_{out} e disegnarne il grafico riportando i punti significativi.

Supporre l'amplificatore operazionale ideale, con $|L^+| = |L^-| = 5 \text{ V}$, e il condensatore scarico per t < 0.

Del circuito seguente determinare la tensione di uscita nel tempo con in ingresso il segnale ad onda quadra riportato in figura.

Amplificatore Operazionale ideale; $L^+ = -L^- = 5 \text{ V}$

Dato il circuito in figura, calcolare e graficare l'andamento temporale della tensione di uscita V_{out} in presenza del segnale di ingresso V_{in} sotto riportato.

Considerare l'amplificatore operazionale A_1 ideale con $L^+ = |L^-| = 12 \text{ V}$.

$$R_1 = 1 \text{ kW}$$

$$R_2 = 4 \text{ kW}$$

$$C = 0.1 \text{ mF}$$

Convertitore d'impedenza negativa (NIC)

