ARM Cortex M4 - Visão geral e conceitos

Slide 2

 $Rafael\ Corsi\ -\ corsiferrao@gmail.com$

January 24, 2016

Instituto Mauá de Tecnologia EEN251 - Microcontroladores e Sistemas Embarcado

Conteúdo

- 1. Visão Geral
- 2. Barramento
- 3. Cortex M4

Visão Geral

ARM

- Funfada em 1990 com fundos iniciais da Apple, Acorn e VLSI
- desenvolve arquiteturas de microcontrolador e microprocessador porém não fabrica chips
- disponibiliza as ferramentas necessárias para um bom desenvolvimento de um projeto em eletrônica embarcada :
 - compilador c, c++
 - debug em hardware
 - sistemas operacionais (RTOS, linux, windows)

ARM IP Core

Figure 1: Definitive Guide to ARM Cortex-M3 and Cortex-M4 Processors, The - Yiu, Joseph

Famílias de processadores

Seus processadores são distribuídos em diversas famílias, sendo elas :

Famílias de processadores

Seus processadores são distribuídos em diversas famílias, sendo elas :

ARM Cortex-A family (v7-A):

Applications processors for full OS and 3rd party applications

ARM Cortex-R family (v7-R):

Embedded processors for real-time signal processing, control applications

ARM Cortex-M family (v7-M):

Microcontroller-oriented processors for MCU and SoC applications

Uma lista completa pode ser encontrada em : https: //en.wikipedia.org/wiki/List_of_applications_of_ARM_cores

ARM Performance

Exemplo de aplicações

- Arduino Due : Cortex M3
- Raspberry Pi 2 : Cortex A7
- Iphone 6 : Cortex A8
- ChromeBook : Cortex A9-A15

Arquiteturas

Cortex-A8

- Architecture v7A
- MMU
- AXI
- VFP & NEON support

Cortex-R4

- Architecture v7R
- MPU (optional)
- AXI
- Dual Issue

Cortex-M3

- Architecture v7M
- MPU (optional)
- AHB Lite & APB

Arquiteturas

Cortex-A8

- Architecture v7A
- MMU
- AXI
- VFP & NEON support

Cortex-R4

- Architecture v7R
- MPU (optional)
- AXI
- Dual Issue

Cortex-M3

- Architecture v7M
- MPU (optional)
- AHB Lite & APB

• VFP : Operações em ponto flutuante

- NEON: DSP
- MPU : Memory protection unit

Iremos trabalhar com o Cortex M4/M3

Barramento

AMBA - Barramento

AMBA - Barramento - SAM4S

2. Block Diagram

Figure 2-1. SAM4SD32/SD16/SA16 100-pin Version Block Diagram

Cortex M4

Visão geral

As principais vantagens da família Cortex M são :

- Baixo consumo : Em torno de 100 μ A/MHz, além de incluir modos de sleep.
- Performance: 1.25 DMIPS/MHz, 32 bits com operações de multiplicação e divisão em hardware.

DMIPS

Dhrystone é uma maneira de mensurar desempenho de microprocessadores, outro maneira seria : instruções por minuto.

Visão geral

As principais vantagens da família Cortex M são :

- Baixo consumo : Em torno de 100 μ A/MHz, além de incluir modos de sleep.
- Performance : 1.25 DMIPS/MHz, 32 bits com operações de multiplicação e divisão em hardware.
- Densidade de código: As instruções Thumb ISA permite executar a mesma tarefa porém com menor linhas de programação.
- Interrupções: Seu controlador de interrupções pode lidar com mais de 240 interrupções e diferentes níveis de prioridade. Sua latência da interrupção é de 12 clocks.
- **Escalabilidade** : O mesmo código pode ser portado para uC com frequências maiores/menores e também para sistemas multicores.

Diagrama de blocos - M3 e M4

Debug

Perguntas ?

Pesquisa 1