(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-150230

(43)公開日 平成11年(1999)6月2日

(51) Int.CL⁶

H01L 27/04

21/822

識別記号

FΙ

H01L 27/04

В

請求項の数9 OL (全 13 頁) 審査請求 有

(21)出願番号

特願平9-315255

(71)出顧人 000004237

日本電気株式会社

東京都港区芝五丁目7番1号

(22)出願日

平成9年(1997)11月17日

(72)発明者 岡本 利治

東京都港区芝五丁目7番1号 日本電気株

式会社内

(74)代理人 弁理士 若林 忠 (外4名)

(54) 【発明の名称】 負電圧生成回路

(57)【要約】

【課題】 複雑な回路を必要とせずに、精度の高い負電 圧を生成する。

【解決手段】 基準電圧発生回路1は、電源電圧Vcc から定電圧を生成して基準電圧101として分圧回路2 に入力し、分圧回路2では、基準電圧101と負電圧1 04を分圧して分圧電圧102として出力する。分圧回 路2では、負電圧104が設定したい電圧値となった時 に分圧電圧102がグランド電位となるように設定され ていて、比較回路3は分圧電圧102をグランド電位と 比較することによりオシレータ制御信号103を生成す る。したがって、分圧回路2は電源電圧Vccの変動の 影響を受けずに分圧電圧102を生成することができ、 比較回路3はグランド電位を基準として分圧電圧102 を比較するため複雑な回路を必要としない。

【特許請求の範囲】

【請求項1】 電源電圧とグランド電位との間の電圧値を有する定電圧を生成し基準電圧として出力する基準電圧発生回路と、

前記基準電圧と負電圧との間の電圧を分割して分圧電圧 として出力し、前記負電圧が設定したい電圧値となった 場合に前記分圧電圧がグランド電位となるように設定さ れている分圧回路と、

前記分圧電圧の電圧値をグランド電位と比較し、前記分 圧電圧の電圧値がグランド電位より高い場合にはオシレータ制御信号をアクティブとし、前記分圧電圧の電圧値 がグランド電位より低い場合には前記オシレータ制御信 号をインアクティブとする比較回路と、

前記オシレータ制御信号がアクティブとなると位相が反対の第1および第2の2つのオシレータ出力信号を生成 し出力するオシレータと、

前記第1のオシレータ出力信号を入力して第1の相補パルス信号として出力し、前記第2のオシレータ出力信号を入力して第2の相補パルス信号として出力しするクロックバッファと、

前記第1および前記第2の相補パルス信号から前記負電 圧を生成し出力する負電圧チャージボンプとから構成さ れる負電圧生成回路。

【請求項2】 前記分圧回路が、前記電源電圧とグランド電位との間に直列に接続された複数の抵抗からなる抵抗分割回路である請求項1記載の負電圧生成回路。

【請求項3】 前記各抵抗が、p型半導体基板と、 前記p型半導体基板の上に設けられたnウェルと、 前記nウェルの表面に構成された複数のp型不純物拡散 層により構成されている請求項2記載の負電圧生成回 路。

【請求項4】 前記各抵抗が、p型半導体基板と、 前記p型半導体基板の上に形成されたnウェルと、 前記nウェルの上に形成された複数のpウェルと、 前記各pウェルの表面に形成された複数のn型不純物拡 散層により構成されている請求項2記載の負電圧生成回 数

【請求項5】 前記分圧回路が、ゲートとドレイン及びソースとバックゲート(基板またはウェル)が接続された複数のnチャネルMOSトランジスタが隣接するものどうしがそれぞれソースとドレインが接続されることにより前記電源電圧とグランド電位との間に直列に接続されている回路である請求項1記載の負電圧生成回路。

【請求項6】 前記分圧回路が、前記各nチャネルMO Sトランジスタ間の配線パターンを変更することにより 設定する前記負電圧の電圧値を変更することができる構 造である請求項5記載の負電圧生成回路。

【請求項7】 前記各nチャネルMOSトランジスタが、p型半導体基板と、

前記p型半導体基板の上に形成されたnウェルと、前記

nウェルの上に形成された複数のpウェルと、前記各pウェルの表面に形成された複数のドレイン拡散層と、前記各pウェルの表面に形成された複数のソース拡散層と、前記各pウェルの表面に形成された複数のpウェルコンタクトと、前記各pウェルの上に絶縁膜を介して形成された複数のゲート電極とから構成されている請求項5または6記載の負電圧生成回路。

【請求項8】 前記基準電圧発生回路と前記比較回路のグランドパターンが同一のグランドパッドに接続されているとともに前記基準電圧発生回路と前記比較回路前記が前記グランドパッドからの電流特性がほぼ等しくなるような位置に配置されている請求項1から7のいずれか1項記載の負電圧生成回路。

【請求項9】 前記比較回路が、ゲートがグランド電位 に接続された第1のpチャネルMOSトランジスタと、前記分圧電圧をゲートに入力する第2のpチャネルMOSトランジスタと、

前記電源電圧から一定の電流値の電流を前記第1および 第2のpチャネルMOSトランジスタのソースに供給す る電流源と、

ドレインが前記第1のpチャネルMOSトランジスタの ドレインに接続され、ゲートがドレインに接続され、ソ ースがグランドに接続された第1のnチャネルMOSト ランジスタと、

ドレインが前記第2のpチャネルMOSトランジスタのドレインに接続され、ゲートが前記第1のnチャネルMOSトランジスタのゲートに接続され、ソースがグランドに接続された第2のnチャネルMOSトランジスタレ

前記第2のnチャネルMOSトランジスタのドレインの 電圧を反転して前記オシレータ制御信号として出力する インバータとから構成されている請求項1から8のいず れか1項記載の負電圧生成回路。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、フラッシュメモリ 等と同じチップ上に設けられ、負電圧を生成し出力する ための負電圧生成回路に関する。

[0002]

【従来の技術】フラッシュメモリ等の記憶内容の消去には、負電圧が用いられるのが一般的である。しかし、フラッシュメモリ等に供給する電圧は一般的にはVcc-GNDであり、負電圧は供給していない。従って、負電圧を生成するためにフラッシュメモリ等と同じチップ上に設けられた負電圧生成回路が用いられる。

【0003】従来の負電圧生成回路を図8のブロック図を用いて説明する。

【0004】この従来の負電圧生成回路は、分圧回路8 2と、比較回路3と、オシレータ4と、クロックバッファ5と、負電圧チャージボンプ6とから構成されてい る

【0005】分圧回路82は、負電圧104と電源電圧 Vccとの間の電圧を分圧して分圧電圧102として出 力する。

【0006】比較回路3は、基準電圧120の電圧値と分圧電圧102の電圧値とを比較し、分圧電圧102の電圧値が基準電圧102の電圧値より高い場合にはオシレータ制御信号103をアクティブとし、分圧電圧102の電圧値が基準電圧102の電圧値より低い場合にはオシレータ制御信号103をインアクティブとする。この比較回路3の具体的な構成を図9を用いて説明する。

【0007】図9に示すように比較回路3は、抵抗97と、カレントミラーを構成しているpチャネルMOSトランジスタ91、92と、ゲートに基準電圧120が入力されたpチャネルMOSトランジスタ93と、ゲートに分圧電圧102が入力された94と、カレントミラーを構成しているnチャネルMOSトランジスタ95、96と、インバータ98とから構成されている。

【0008】pチャネルMOSトランジスタ91は、その特性と抵抗97によって決定される電流がソース・ドレイン間を流れる。そして、pチャネルMOSトランジスタ91と共にカレントミラーを構成しているpチャネルMOSトランジスタ92にも同じ電流値の電流がソース・ドレイン間を流れる。このようにしてpチャネルMOSトランジスタ92は、pチャネルMOSトランジスタ93、94に電流を供給する電流源として動作している。

【0009】そして、カレントミラーを構成している n チャネルMOSトランジスタ95、96はそれぞれ p チャネルMOSトランジスタ93、94の負荷として接続 されている。

【0010】ここで、分圧電圧102の電圧値が基準電 圧120の電圧値より大きい場合には、pチャネルMO Sトランジスタ94のソース・ドレイン間を流れる電流 は減少し、分圧電圧102の電圧値が基準電圧120の 電圧値より小さい場合には、pチャネルMOSトランジ スタ94のソース・ドレイン間を流れる電流は増加す る。このことにより、分圧電圧102の電圧値が基準電 圧120の電圧値より大きい場合には、インバータ98 に出力される電圧は低くなり、分圧電圧102の電圧値 が基準電圧120の電圧値より小さい場合には、インバ ータ98に出力される電圧は高くなる。このように、分 圧電圧102の電圧値が基準電圧120より高いか低い かによってインバータ98に入力される電圧がある振幅 をもって変化する。そのため、インバータ98の論理し きい値をこの振幅の間になるように設定すると、分圧電 圧102が基準電圧120より高いか低いかを示したオ シレータ制御信号103を得ることができる。

【0011】オシレータ4は、オシレータ制御信号10 3がアクティブとなると位相が反対の2つのオシレータ 出力信号105、106を生成し出力する。

【0012】このオシレータ4の具体的な構成を図10を用いて説明する。

【0013】図10に示すようにオシレータ4は、ナンド回路110と、インバータ 111_1 ~ 111_6 とから構成されるリングオシレータとなっている。

【0014】ナンド回路110は、このリングオシレータの途中に設けられその一方の入力にはオシレータ制御信号103が入力され、オシレータ制御信号103がインアクティブ(ロウレベル)となった場合にオシレータ4の動作を停止するために設けられている。

【0015】そして、インバータ 111_i ~ 111_6 はリング状に直列に接続されインバータ 111_6 の出力はオシレータ出力信号105として出力され、インバータ 11_6 の出力はオシレータ出力信号106として出力される。

【0016】図11は、オシレータ制御信号103とオシレータ出力信号105、106の動作を示したタイミングチャートである。

【0017】この図を参照すると、オシレータ制御信号 103がアクティブ (Vcc)となると位相が反対の2 つのオシレータ出力信号105、106が出力され、オシレータ制御信号103がインアクティブ (GND)になるとオシレータ出力信号105、106が出力されなくなることがわかる。

【0018】また、クロックバッファ5は、図12に示すように、オシレータ4から出力されたオシレータ出力信号105、106を入力し、それぞれインバータ121、122およびインバータ123、124を介してから相補パルス信号107、108として出力する。

【0019】負電圧チャージポンプ6は、相補パルス信号107、108から負電圧104を生成し出力する。

【0020】この負電圧チャージボンプ6の具体的な構成を図13を用いて説明する。

【0021】図13に示すように負電圧チャージポンプ 6は、pチャネルMOSトランジスタ 131_1 ~ 131_6 と、12デンサ 132_1 ~ 132_6 と、 $132_$

【0022】pチャネルMOSトランジスタ 131_1 ~ 131_6 は、それぞれゲートとドレインが接続され、隣接するものどうしでソースとドレインが接続されることにより直列に接続されている。

【0023】そして、pチャネルMOSトランジスタ 131_1 、 131_3 、 131_5 のドレインは、それぞれコンデンサ 132_1 、 132_3 、 132_5 により相補パルス信号107に接続され、pチャネルMOSトランジスタ 131_2 、 131_4 、 131_6 のドレインは、それぞれコンデンサ 132_2 、 132_4 、 132_6 により相補パルス信号108に接続されている。そして、pチャネルMOSトランジスタ 131_1 のソースは負電圧104として出

力され、pチャネルMOSトランジスタ1316のドレ インはpチャネルMOSトランジスタ133のソースに 接続されている。 pチャネルMOSトランジスタ133 は、ゲートおよびドレインがグランドに接続され、pチ ャネルMOSトランジスタ131gのドレインをグラン ド電位としている。

【0024】次にこの負電圧チャージボンプ6の動作に ついて説明する.

【0025】ここでは説明のために、pチャネルMOS トランジスタ131₂のみを用いて説明するが他のpチ ャネルMOSトランジスタ1311、1313~1316 の動作も同様である。ここで、説明のためにpチャネル MOS トランジスタ131 $_2$ のソースをノード13a、 ドレインをノード13bとする。

【0026】先ずあるタイミングで、相補パルス信号1 **07が電源電圧Vccで相補パルス信号108がグラン** ド電位になっているとする。この場合には、ノード13 aはコンデンサ1321によって押し上げられることに より電位が高くなり、ノード13bはコンデンサ132 ₂によって引き下げられることにより電位が低くなる。 そして、pチャネルMOSトランジスタ131₂は、ノ ード13aとノード13bとの間の電位差がしきい値以 上となるとオン状態となりノード13aの電荷は電位の 低いノード13bに流れ込む。そして、ノード13aで は電荷が少なくなることにより電位が低下し、ノード1 3 bでは電荷が多くなることにより電位が増加する。 そ して、この電荷の移動は、ノード13a、13bの電位 が等しくなるまで継続する。

【0027】そして、次のタイミングでは、相補パルス 信号107はグランド電位となり、相補パルス信号10 8は電源電圧Vccとなる。この場合には、ノード13 aはコンデンサ1321に引き下げられることにより電 位が低くなり、ノード13bはコンデンサ132₂に押 し上げられることにより電位が高くなる。ノード13b は電位が高くなってもゲートとドレインは接続されてい るため同電位のままであるためpチャネルMOSトラン ジスタ1312はオフ状態のままとなる。しかし、隣接 するpチャネルMOSトランジスタ131₁、131₃で は、上記で説明したような電荷の移動が行われる。

【0028】そして、パルス相補信号107、108が 電源電圧の状態とグランド電位の状態とを交互に切り替 え、pチャネルMOSトランジスタ1311~1316が 上記で説明したような動作を繰り返すことにより、電荷 はpチャネルMOSトランジスタ1311からpチャネ ルMOSトランジスタ131gの方向へ順繰りに転送さ れ、p チャネルMOSトランジスタ 131_1 のソースは 負電圧チャージポンプ回路6の中で一番低い電位となり 負電圧104として出力される。

【0029】次に、この従来の負電圧生成回路の動作に ついて図8を参照して説明する。

【0030】負電圧104の絶対値が設定した電圧値の 絶対値より低い場合は、分圧電圧102は基準電圧12 0より高くなるため、比較回路3はオシレータ制御信号 103をアクティブとする。そのためオシレータ4は、 オシレータ出力信号105、106を生成して出力す る。そして、クロックバッファ5は、オシレータ出力信 号105、106を入力し、相補パルス信号107、1 08として出力する。このため、負電圧チャージポンプ 6は、負電圧104の電圧を下げるように動作する。 【0031】そして、負電圧104が設定した電圧値と なり分圧回路82から出力される分圧電圧102が基準 電圧120と等しくなると、比較回路3はオシレータ制 御信号103をインアクティブとするためオシレータ4 はオシレータ出力信号105、106を出力しなくな

る。そのため、負電圧チャージポンプ6は動作を停止 し、負電圧104の電圧値は設定された電圧値に維持さ ha.

【0032】このようにして生成された負電圧104 は、フラッシュメモリ等の記憶内容の消去に用いられる が、負電圧104の電圧の絶対値が小さくなるとメモリ セルの消去時間が長くなってしまうという問題が発生 し、負電圧104の電圧の絶対値が大きくなると消去時 間は短くなるが、メモリセルのデータ保持特性の悪化等 の信頼性の問題が発生してしまう。これらの条件を考慮 すると最適な電圧値は限られたられた電圧値となるため フラッシュメモリ等の最適な動作を得るためには、負電 圧104の電圧値には高い精度が要求される.

【0033】この従来の負電圧生成回路では、電源電圧 Vccと負電圧104を分圧回路82により分圧して分 圧電圧102を生成しているが、外部から印加される電 源電圧Vccの電圧は使用される状況により異なるため 負電圧104の電圧値に高い精度を得ることができな

【0034】この問題を解決しようとして、図14に示 すように分圧回路82に電源電圧Vccを入力するかわ りに変動の少ないグランド電位を印加して、そのグラン ド電位と負電圧104を分圧して負電圧102を生成す れば精度の高い負電圧104を得ることができる。

【0035】しかし、この図14の負電圧生成回路で は、比較回路3に入力する基準電圧120として負の電 位を入力することが必要となり、比較回路3の回路の構 成が複雑となる。

[0036]

【発明が解決しようとする課題】上述した従来の負電圧 生成回路では、下記のような問題点があった。

- (1)電源電圧と負電圧の間の電圧を分圧して分圧電圧 を生成する場合では、電源電圧のばらつきの影響により 精度の高い負電圧を生成することができない。
- (2)グランドと負電圧の間の電圧を分圧して分圧電圧 を生成する場合では、比較回路の基準電圧として負電圧

を必要とするため比較回路の構成が複雑となる。

【0037】本発明の目的は、複雑な回路を必要とせず に、精度の高い負電圧を生成することができる負電圧生 成回路を提供することである。

[0038]

【課題を解決するための手段】上記目的を達成するため に、本発明の負電圧生成回路は、電源電圧とグランド電 位との間の電圧値を有する定電圧を生成し基準電圧とし て出力する基準電圧発生回路と、前記基準電圧と負電圧 との間の電圧を分割して分圧電圧として出力し、前記負 電圧が設定したい電圧値となった場合に前記分圧電圧が グランド電位となるように設定されている分圧回路と、 前記分圧電圧の電圧値をグランド電位と比較し、前記分 圧電圧の電圧値がグランド電位より高い場合にはオシレ ータ制御信号をアクティブとし、前記分圧電圧の電圧値 がグランド電位より低い場合には前記オシレータ制御信 号をインアクティブとする比較回路と、前記オシレータ 制御信号がアクティブとなると位相が反対の第1および 第2の2つのオシレータ出力信号を生成し出力するオシ レータと、前記第1のオシレータ出力信号を入力して第 1の相補パルス信号として出力し、前記第2のオシレー 夕出力信号を入力して第2の相補パルス信号として出力 しするクロックバッファと、前記第1および前記第2の 相補パルス信号から前記負電圧を生成し出力する負電圧 チャージポンプとから構成される。

【0039】本発明は、基準電圧発生回路を用いて電源電圧から定電圧を生成して基準電圧として分圧回路に入力するようにしているので、分圧回路は電源電圧の変動の影響を受けずに分圧電圧を生成することができ、負電圧が設定したい電圧となった場合に分圧回路から出力される分圧電圧がグランド電位となるように分圧回路は設定されているので比較回路は分圧電圧を電位の安定したグランド電位と比較することによりオシレータ制御信号を生成するようにしたものである。

【0040】したがって、比較回路に複雑な回路を必要とせずに、精度の高い負電圧を生成することができる。 【0041】本発明の実施態様によれば、前記分圧回路が、前記電源電圧とグランド電位との間に直列に接続された複数の抵抗からなる抵抗分割回路である。

【0042】また、本発明の実施態様によれば、前記各抵抗が、p型半導体基板と、前記p型半導体基板の上に設けられたnウェルと、前記nウェルの表面に構成された複数のp型不純物拡散層により構成されている。

【0043】本発明は、ツィンウェルにより形成された 抵抗を用いて分圧回路を構成するようにしたものであ る。

【0044】また、本発明の実施態様によれば、前記各抵抗が、p型半導体基板と、前記p型半導体基板の上に形成されたnウェルと、前記nウェルの上に形成された複数のpウェルと、前記各pウェルの表面に形成された

複数のn型不純物拡散層により構成されている。

【0045】本発明は、トリプルウェル構造により形成された抵抗を用いて分圧回路を構成するようにしたものである。

【0046】したがって、ツインウェル構造により形成された抵抗を用いた場合と比較して、接合間の電位差を小さくすることができる。

【0047】また、本発明の実施態様によれば、前記分 圧回路が、ゲートとドレイン及びソースとバックゲート (基板またはウェル)が接続された複数のnチャネルM OSトランジスタが隣接するものどうしがそれぞれソー スとドレインが接続されることにより前記電源電圧とグ ランド電位との間に直列に接続されている回路である。

【0048】本発明は、直列に接続された複数のnチャネルMOSトランジスタを用いて分圧回路を構成しているので、精度の高い負電圧を発生する負電圧生成回路を小さなブロックサイズで構成することができるとともに消費電流を小さくすることができる。

【〇〇49】また、本発明の実施態様によれば、前記分 圧回路が、前記各nチャネルMOSトランジス夕間の配 線パターンを変更することにより設定する前記負電圧の 電圧値を変更することができる構造である。

【0050】本発明は、分圧回路の配線パターンのみを 変更することで、負電圧の設定電圧を容易に変更することができるようにしたものである。

【0051】本発明の実施態様によれば、前記各nチャネルMOSトランジスタが、p型半導体基板と、前記p型半導体基板の上に形成されたnウェルと、前記nウェルの上に形成された複数のpウェルと、前記各pウェルの表面に形成された複数のドレイン拡散層と、前記各pウェルの表面に形成された複数のソース拡散層と、前記各pウェルの表面に形成された複数のpウェルコンタクトと、前記各pウェルの上に絶縁膜を介して形成された複数のゲート電極とから構成されている。

【0052】また、本発明の実施態様によれば、前記基準電圧発生回路と前記比較回路のグランドパターンが同一のグランドパッドに接続されているとともに前記基準電圧発生回路と前記比較回路前記が前記グランドパッドからの電流特性がほぼ等しくなるような位置に配置されている。

【0053】本発明は、基準電圧発生回路と比較回路と の間の電圧のずれを無くすようにして、精度の高い負電 圧を得ることができるようにしたものである。

[0054]

【発明の実施の形態】次に、本発明の実施形態について 図面を参照して詳細に説明する。

【0055】(第1の実施形態)図1は本発明の第1の 実施形態の負電圧生成回路の構成を示したブロック図で ある。図8中と同番号は同じ構成要素を示す。

【0056】本実施形態の負電圧生成回路は、図8の従

来の負電圧生成回路に対して、基準電圧発生回路1を設け、分圧回路82を分圧回路2に置き換えたものである。

【0057】基準電圧発生回路1は、電源電圧Vccと グランドとの間の電圧値を有する定電圧を生成し基準電 圧101として出力する。

【0058】分圧回路2は、基準電圧発生回路1から出力された基準電圧101と負電圧104を分圧して分圧電圧102として出力する。そして、この分圧回路2では、負電圧104が設定したい電圧値となった時に分圧電圧102がグランド電位となるように設定されている。

【0059】また、比較回路3は、従来の負電圧生成回路では基準電圧120と分圧電圧104との比較を行っていたが、本実施形態では基準電圧120の代わりにグランド電位を比較の基準とする。

【0060】本実施形態の負電圧生成回路は、基準電圧発生回路1により生成した定電圧を基準電圧101として分圧回路2に入力しているため、分圧回路2は電源電圧Vccの変動の影響を受けずに分圧電圧102を生成することがでる。また、負電圧104が設定したい電圧となった時に、分圧回路2から出力される分圧電圧102がグランド電位となるように分圧回路2を設定しているため、比較回路3では分圧電圧104をグランド電位と比較することによりオシレータ制御信号103を生成すればよく、比較回路3に複雑な回路を用いなくてすむ。

【0061】次に、この分圧回路2の具体的な例を図 2、図3を用いて説明する。

【0062】先ず、分圧回路2を抵抗分割回路により構成した場合の例を図2に示す。図2(a)は、分圧回路2の具体例としての分圧回路2aを示したものである。

【0063】この分圧回路2aは、直列に接続された抵抗値が異なる2つの抵抗21、22により構成されている。そして、抵抗21、22のそれぞれの抵抗値を変更することにより設定したい負電圧104で分圧電圧102がグランド電位となるようにする。

【0064】図2(b)は、分圧回路2の具体例としての分圧回路2bを示したものである。

【0065】この分圧回路2 bは、同じ抵抗値を有する 7つの抵抗 $23_1 \sim 23_7$ が直列に接続されている。この 分圧回路2 bでは、接続する抵抗の数を変化させること により設定したい負電圧104で分圧電圧102がグランドと同電位となるようにする。

【0066】次に、図2(a)に示した分圧回路2aの 半導体構造の断面図を図3に示す。図3(a)はツィン ウェル構造により分圧回路2aを構成した場合、図3 (b)はトリプルウェル構造により分圧回路2aを構成

【0067】先ず図3(a)のツィンウェル構造場合に

した場合である。

ついて説明する。

【0068】この図3 (a)の分圧回路2aは、p型基 板31の上にnウェル34が形成されていて、nウェル 34の表面にp型不純物拡散層32、33が形成されて いる。そして、p型不純物拡散層32の一端には基準電 圧101が印加され、他端はp型不純物拡散層33の一 端と接続されるとともに分圧電圧102が出力されてい る。そして、p型不純物拡散層33の他端には負電圧1 04が印加されている。また、nウェル34にはnウェ ルコンタクト39を介して電源電圧Vccが印加され、 p型基板31はグランドに接続されている。このことに より、nウェル34の電位はp型基板31より高くなっ ているため、p型基板31とnウェル34は電気的に絶 縁されている状態が保たれている。また、p型不純物拡 散層32に印加されている基準電圧101およびp型不 純物拡散層33に印加されている負電圧104は、電源 電圧Vccよりも低い電圧なので、p型不純物拡散層3 2、33とnウェル34は電気的に絶縁されている状態 が保たれている。

【0069】この図3(a)の分圧回路2aでは、p型 不純物拡散層32により抵抗21が形成され、p型不純 物拡散層33により抵抗22が形成される。

【0070】そして、p型不純物拡散層32、33の電気的導電特性は、拡散している不純物の同度、拡散深さ、および面積で決定されるため、負電圧104が設定したい電圧値となった時に、分圧電圧102がグランド電位となるようにp型不純物拡散層32、33の不純物濃度、拡散深さ、面積等を調整して抵抗値を設定する。【0071】次に、図3(b)のトリプルウェル構造の場合について説明する。

【0072】この図3(b)の分圧回路2aは、p型基 板31の上にnウェル37が形成されていて、nウェル 37の上にpウェル38が形成され、pウェル38の表 面にn型不純物拡散層35、36が形成されている。そ して、n型不純物拡散層35の一端には基準電圧101 が印加され、他端はn型不純物拡散層36の一端と接続 されるとともに分圧電圧102が出力されている。そし て、n型不純物拡散層36の他端には負電圧104が印 加されている。また、nウェル37にはnウェルコンタ クト40を介して電源電圧Vccが印加され、p型基板 31はグランドに接続されている。そのため、p型基板 31とnウェル37は電気的に絶縁されている状態が保 たれている。また、pウェル38に印加されてい負電圧 104は、電源電圧Vccよりも低い電圧なので、pウ ェル38とnウェル37は電気的に絶縁されている状態 が保たれている。

【0073】この図3(b)において、抵抗値を構成するのは図3(a)と同様な方法で行なわれる。また、この図3(b)のトリプルウェル構造では、nウェル37とpウェル38のマスクパターン設計時にマージンが必

要なため面積が増加してしまうという欠点がある。しか し、トリプルウェル構造では、ツィンウェル構造に比べ て、接合間の電位差を小さくすることができるという利 点を有する。

【0074】具体的に説明すると、図3(a)のツィンウェル構造では、電源電圧Vccと同電位となっているnウェル34と負電圧104の間の電圧が接合間の最大の電圧となり、例えば電源電圧Vcc=5V、負電圧104=-12Vである場合には、この電圧は17Vとなる。

【0075】これに対して図3(b)のトリプルウェル構造では、負電圧104と同電位となっているpウェル38と基準電圧101の間の電圧が接合間の最大の電圧となり、基準電圧101=2V、負電圧104=-12Vである場合には、この電圧は14Vとなり、17Vよりも小さい電圧となる。このように、トリプルウェル構造では、接合間の電位差を小さくすることができる。

【0076】ここでは、図2(a)の分圧回路2aの構造を説明したが、図2(b)の分圧回路2bも同様にしてツィンウェル構造およびトリプルウェル構造を用いて構成することができる。

【0077】この場合には同じサイズの抵抗を複数形成することとなるが、これらの同じサイズの抵抗は、マスクパターン、不純物濃度、拡散深さ等がばらついた場合でも同じ方向にばらつくため、同じサイズの抵抗を複数設けて電圧を分割する方が、異なるサイズの抵抗で分圧するよりも高精度の分圧回路を得ることができる。

【0078】(第2の実施形態)次に、本発明の第2の 実施形態について説明する。

【① 0 7 9】本実施形態の負電圧生成回路は、図1の上記第1の実施形態において分圧回路2の具体例として図4に示す分圧回路2cを用いたものである。第1の実施形態では抵抗分割回路により分圧回路2を構成していたが、本実施形態は、nチャネルMOSトランジスタにより基準電圧101と負電圧104を分圧して分圧電圧102を生成するものである。

【0080】分圧回路2cは、図4に示されるように、7つのn チャネルMOSトランジスタ 42_1 ~ 42_7 が直列に接続されているものである。

【0081】次に、図4の分圧回路2cの断面図を図5に示す。ここでは、7つのn チャネルMOSトランジスタ42 $_1$ ~42 $_7$ は全て同じ構造なのでn チャネルMOSトランジスタ42 $_1$ の構造のみについて説明する。

【0082】このnチャネルMOSトランジスタ42₁ は、p型基板56の上にnウェル55が形成され、nウェル55の上にpウェル54が形成され、pウェル54の表面にドレイン拡散層51、ソース拡散層52およびpウェルコンタクト53が形成されている。そして、さらにpウェル54の上には絶縁膜を介してゲート電極58が形成されている。

【0083】そして、ゲート電極58とドレイン拡散層51は接続され基準電圧101が印加されている。また、ソース拡散層52とpウェルコンタクト53は接続され隣接するnチャネルMOSトランジスタ42 $_2$ のドレイン拡散層と接続されている。そして、nチャネルMOSトランジスタ42 $_1$ とnチャネルMOSトランジスタ42 $_2$ の間から分圧電圧102が出力されている。また、nウェル55にはnウェルコンタクト57を介して電源電圧Vc cが印加されている。

【0084】このn チャネルMOSトランジスタ 42_1 は、ドレイン拡散層51に電圧が印加されていった場合、ソース拡散層52とドレイン拡散層51間の電位差がn チャネルMOSトランジスタ 42_1 のしきい値以上となった場合に導通状態となり電流が流れ始める。

【0085】例えばここでしきい値を1Vであるとすると、図4の分圧回路2cは7つのnチャネルMOSトランジスタ 42_1 ~ 42_7 で構成されているため、基準電圧101と負電圧104の間の電位差が7V以上となると電流が流れ始め分圧回路としての動作を開始する。この時にnチャネルMOSトランジスタ 42_1 ~ 42_7 は全て同じ電流が流れるため、どのnチャネルMOSトランジスタ 42_1 ~ 42_7 もゲート電極58とソース拡散層52間の電位差は同じ電圧となる。そして、ソース拡散層52はそれぞれpウェルコンタクト53を介してpウェル54と接続されているため基板効果によるしきい値の変動はない。

【0086】このようにして、本実施形態では、nチャネルMOSトランジスタ 42_1 ~ 42_7 の相互コンダクタンスg mを全て等しく設計すれば、精度が高くて消費電流が小さくブロックサイズも小さな分圧回路を得ることができる。

【0087】また、この分圧回路2cは、図2(b)の 抵抗分割を用いた分圧回路2bと同様に、同じサイズの n チャネルMOSトランジスタ4 2_1 ~4 2_7 を直列に接 続しているので、マスクパターン、不純物濃度、拡散深 さ等がばらついた場合でも同じ方向にばらつくため、異 なるサイズのn チャネルMOSトランジスタを用いて分 圧するよりも高精度の分圧回路を得ることができる。

【0088】(第3の実施形態)次に、本発明の第3の 実施形態について説明する。

【0089】本実施形態の負電圧生成回路は、図1の上 記第1の実施形態において分圧回路2の具体例として図 6に示す分圧回路2dを用いたものである。

【0090】この分圧回路2dは、上記第2の実施形態における分圧回路2cと同様にnチャネルMOSトランジスタ4 2_1 ~4 2_8 、 62_6 ~6 2_8 により基準電圧101と負電圧104を分圧するものである。そして、スイッチ6 4_1 ~6 4_8 を設けて設定することができる負電圧104の電圧値を切り替えることができるようにしたものである。

【0091】ここで、nチャネルMOSトランジスタ6 2_6 ~ 62_8 の相互コンダクタンスgmは、nチャネルMOSトランジスタ4 2_1 ~ 42_8 の相互コンダクタンスgmと比較して大きくなるように設計し、ソースとドレイン間の電圧がnチャネルMOSトランジスタ4 2_1 ~ 42_8 の半分となるように設定する。

【0092】例えば、基準電圧101が2Vの場合に、スイッチ 64_1 、 64_4 、 64_7 のみをオンし、それ以外のスイッチをオフとすると図4の分割回路2cと同様な回路となり負電圧104が-14Vとなった場合に分圧電圧102がグランド電位となる。

【0093】また、スイッチ 62_1 、 62_4 、 62_8 のみをオンさせ、それ以外のスイッチをオフとした場合には、負電圧104が-13 Vとなった場合に分圧電圧102がグランド電位となる。

【0094】本実施形態では、このようにして下記の表1に示されたようにスイッチ 64_1 ~ 64_9 ($SW64_1$ ~ 64_9)を切り替えると、基準電圧101が2Vの場合に、負電圧104として設定できる電圧値を-8~-14Vの間で1Vステップで選択することができる。

[0095]

【表1】

負電 圧104 (V)	SW64,	SW64,	SW6-L,	SW64,	SW6-1 _s	SW64.	SW64,	SW6-1,	SW64 ₃
-14	ON	OFF	OFF	ON	OFF	190	ON	OFF	OFF
-13	OFF	ON	OFF	ON	01:17	O(:1;	ON	OFF	OFF
-12	OFF	OFF	ON	ON	01:13	1710	ON	01/17	OFF
-11	OFF	0177	ON	OFF	UN	0[7]7	ON	01यर	OFF?
-10	OFF	ाग	ON	017F	UPF	000	ON	अःह	OFF
-9	01717	OFF	ON	OFF	OFF	ON	OF	ON	OFF
-8	OFF	UFF	ON	0517	OFF	ON	004	0177	ON

本実施形態は、nチャネルMOSトランジスタの接続を スイッチにより切り替えることにより設定できる負電圧 104の電圧値を選択することができるようにしたもの である。

【0096】本実施形態は、スイッチ 64_1 ~ 64_9 によりnチャネルMOSトランジスタの接続を切り替えるようにして説明したが、実際に半導体として構成する場合には配線パターンを変更することにより接続を切り替えてnチャネルMOSトランジスタ間の接続を切り替えることができる。

【0097】(第4の実施形態)次に、本発明の第4の 実施形態について説明する。

【0098】本実施形態の負電圧生成回路は、上記第1から第3の実施形態の負電圧生成回路において、基準電圧発生回路1と比較回路3のグランドパターンを共通のグランドパッドに接続し、かつグランドパッドからの電流特性がほぼ等しくなるような位置に配置したものである。本実施形態では、このような位置関係に配置することにより基準電圧発生回路1と比較回路3間の電圧のずれを無くすことができ、上記第1から第3の実施形態の効果に加えて精度の高い負電圧104を得ることができる。

【0099】具体的には、図7に示すように基準電圧発生回路1と比較回路3をAとBの位置関係に配置して、グランドパターン71と接続すれば上記の条件を満たしているが、AとC、BとCの位置関係の場合には上記の条件を満たしていない。

[0100]

【発明の効果】以上説明したように、本発明は、複雑な 回路を必要とせずに、精度の高い負電圧を生成すること ができるという効果を有する。

【図面の簡単な説明】

【図1】本発明の第1の実施形態の負電圧生成回路の構成を示したブロック図である。

【図2】図1の中の分圧回路2を抵抗分割により構成した場合の回路図である。

【図3】図2(a)の分圧回路2aをツィンウェル構造で構成した場合の断面図(図3(a))およびトリプルウェル構造で構成した場合の断面図(図3(b))である。

【図4】本発明の第2の実施形態の負電圧生成回路における分圧回路2cの回路図である。

【図5】図4の分圧回路2cをトリプルウェル構造で構成した場合の断面図である。

【図6】本発明の第3の実施形態の負電圧生成回路における分圧回路2dの回路図である。

【図7】本発明の第4の実施形態の負電圧生成回路における結線を示した図である。

【図8】従来の負電圧生成回路の構成を示したブロック 図である。

【図9】図8の比較回路3の回路図である。

【図10】図8のオシレータ4の回路図である。

【図11】図8のオシレータ4の信号波形を示すための タイミングチャートである。

【図12】図8のクロックバッファ5の回路図である。

【図13】図8の負電圧チャージポンプ6の回路図であ

る。

【図14】従来の他の負電圧生成回路の構成を示したブロック図である。

【符号の説明】

- 1 基準電圧発生回路
- 2、2a、2b、2c、2d 分圧回路
- 3 比較回路
- 4 オシレータ
- 5 クロックバッファ
- 6 負電圧チャージポンプ
- 21、22 抵抗
- 231~237 抵抗
- 31 p型基板
- 32、33 p型不純物拡散層
- 34 nウェル
- 35、36 n型不純物拡散層
- 37 nウェル
- 38 pウェル
- 39、40 pウェルコンタクト
- 421~427 nチャネルMOSトランジスタ
- 51 ドレイン拡散層
- 52 ソース拡散層
- 53 pウェルコンタクト
- 54 pウェル
- 55 nウェル

【図1】

- 56 p型基板
- 57 nウェルコンタクト
- 58 ゲート電極
- 62₆~62₈ nチャネルMOSトランジスタ
- 641~649 スイッチ
- 71 グランドパターン
- 82 分圧回路
- 91~94 pチャネルMOSトランジスタ
- 95、96 nチャネルMOSトランジスタ
- 97 抵抗
- 98 インバータ
- 101 基準電圧
- 102 分圧電圧
- 103 オシレータ制御信号
- 104 負電圧
- 105、106 オシレータ出力信号
- 107、108 相補パルス信号
- 110 ナンド回路
- 1111~1116 インバータ
- 120 基準電圧
- 121~124 インバータ
- 1311~1316 pチャネルMOSトランジスタ
- 1321~1326 コンデンサ
- 133 pチャネルMOSトランジスタ

【図3】

(a)

【図5】 58 ゲート電極 基準電圧 102 分圧電圧 ドレイン拡散層 51 п n 54 nウェル 53 pウェル コンタクト , 52 ソース拡散層 422 427 421 nチャネルMOSトランジスタ

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

