AUA CS 108, Statistics, Fall 2019 Lecture 37

Michael Poghosyan
YSU, AUA
michael@ysu.am, mpoghosyan@aua.am

18 Nov 2019

Contents

- ▶ Hypothesis Testing: Error Types, Significance and Power
- ▶ Designing a Test: General Procedure
- ► *Z*-Test

Last Lecture ReCap

► How to choose the Null Hypothesis?

From the last lecture: Type I and II errors

Assume we are Testing the Hypothesis

$$\mathcal{H}_0$$
 vs \mathcal{H}_1 .

Then the following cases can happen:

Test Decision \ Reality	\mathcal{H}_0 is True	\mathcal{H}_0 is False (i.e., \mathcal{H}_1 is True)
Reject \mathcal{H}_0	Type I Error (False Positive)	Correct Decision (True Negative)
Do Not Reject \mathcal{H}_0	Correct Decision (True Positive)	Type II Error (False Negative)

▶ The Probability of Type I Error is called the **Significance** Level of our Test, and is denoted by α :

▶ The Probability of Type I Error is called the **Significance Level** of our Test, and is denoted by α :

$$\alpha = \mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}\;) = \mathbb{P}(\mathsf{Reject}\;\mathcal{H}_0 \mid \mathcal{H}_0 \;\mathsf{is}\;\mathsf{True}).$$

▶ The Probability of Type I Error is called the **Significance** Level of our Test, and is denoted by α :

$$\alpha = \mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}\;) = \mathbb{P}(\mathsf{Reject}\;\mathcal{H}_0 \mid \mathcal{H}_0 \;\mathsf{is}\;\mathsf{True}).$$

▶ The Probability of Type II Error is denoted by β :

$$\beta = \mathbb{P}($$
 Type II Error $) = \mathbb{P}($ Retain $\mathcal{H}_0 \mid \mathcal{H}_0$ is False $)$.

▶ The Probability of Type I Error is called the **Significance** Level of our Test, and is denoted by α :

$$\alpha = \mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}\;) = \mathbb{P}(\mathsf{Reject}\;\mathcal{H}_0 \mid \mathcal{H}_0 \;\mathsf{is}\;\mathsf{True}).$$

▶ The Probability of Type II Error is denoted by β :

$$\beta = \mathbb{P}($$
 Type II Error $) = \mathbb{P}($ Retain $\mathcal{H}_0 \mid \mathcal{H}_0$ is False $)$.

 $(1 - \beta)$ is called the **Power** of the Test.

▶ The Probability of Type I Error is called the **Significance Level** of our Test, and is denoted by α :

$$\alpha = \mathbb{P}(\text{ Type I Error }) = \mathbb{P}(\text{Reject }\mathcal{H}_0 \mid \mathcal{H}_0 \text{ is True}).$$

▶ The Probability of Type II Error is denoted by β :

$$\beta = \mathbb{P}($$
 Type II Error $) = \mathbb{P}($ Retain $\mathcal{H}_0 \mid \mathcal{H}_0$ is False $)$.

 $(1 - \beta)$ is called the **Power** of the Test.

It is easy to see that

Power =
$$1 - \beta = \mathbb{P}(\text{Reject } \mathcal{H}_0 \mid \mathcal{H}_0 \text{ is False}).$$

Significance and Power

Here are the Probabilities of correct/incorrect decisions for a Hypothesis testing, on a Table:

Significance and Power

Here are the Probabilities of correct/incorrect decisions for a Hypothesis testing, on a Table:

Probabilities of Correct/InCorrect Decisions:

Test Decision \ Reality	\mathcal{H}_0 is True	\mathcal{H}_0 is False (i.e., \mathcal{H}_1 is True)
Delega 41	C::f:	1 0 0
Reject \mathcal{H}_0	$\alpha =$ Significance	$1-\beta =$ Power

Choosing a Test

Test Choice: We want to have a Test with small Error Probabilities, i.e., with small α and β .

Choosing a Test

Test Choice: We want to have a Test with small Error Probabilities, i.e., with small α and β . Unfortunately, making them both small is not always possible. So we first think in controlling α : our goal will be to choose the desired α and to have a Test of Significance Level α .

Choosing a Test

Test Choice: We want to have a Test with small Error Probabilities, i.e., with small α and β . Unfortunately, making them both small is not always possible. So we first think in controlling α : our goal will be to choose the desired α and to have a Test of Significance Level α .

Common values of α are 0.05, 0.01 and 0.1 (corresponding to 95%, 99% and 90% Confidence Level!).

Example: Assume we have a Patient in a Hospital, and we want to see if he is ill or not (with some illness). Then the Null Hypothesis is:

Example: Assume we have a Patient in a Hospital, and we want to see if he is ill or not (with some illness). Then the Null Hypothesis is: **Patient is healthy**. Our Test is *the Doctor*.

Example: Assume we have a Patient in a Hospital, and we want to see if he is ill or not (with some illness). Then the Null Hypothesis is: **Patient is healthy**. Our Test is *the Doctor*.

▶ What is means that the Significance level of our Test, α , is small ?

Example: Assume we have a Patient in a Hospital, and we want to see if he is ill or not (with some illness). Then the Null Hypothesis is: **Patient is healthy**. Our Test is *the Doctor*.

- ▶ What is means that the Significance level of our Test, α , is small ?
- ▶ What it means that the Power of our Test, 1β , is high ?

To test a Hypothesis, one is following the following steps $\ddot{\ }$:

Step 1: Choosing a Model: We assume our Data comes from a Parametric Model $\mathcal{F}_{\theta}, \ \theta \in \Theta$

To test a Hypothesis, one is following the following steps $\ddot{\ }$:

Step 1: Choosing a Model: We assume our Data comes from a Parametric Model \mathcal{F}_{θ} , $\theta \in \Theta$

Step 2: We State the Hypotheses: we take Θ_0 and Θ_1 such that $\Theta = \Theta_0 \cup \Theta_1$ and $\Theta_0 \cap \Theta_1 = \emptyset$, and state the Hypothesis:

$$\mathcal{H}_0: \ \theta \in \Theta_0 \qquad \textit{vs} \qquad \mathcal{H}_1: \ \theta \in \Theta_1$$

To test a Hypothesis, one is following the following steps $\ddot{\ }$:

Step 1: Choosing a Model: We assume our Data comes from a Parametric Model \mathcal{F}_{θ} , $\theta \in \Theta$

Step 2: We State the Hypotheses: we take Θ_0 and Θ_1 such that $\Theta = \Theta_0 \cup \Theta_1$ and $\Theta_0 \cap \Theta_1 = \emptyset$, and state the Hypothesis:

$$\mathcal{H}_0: \ \theta \in \Theta_0 \qquad \textit{vs} \qquad \mathcal{H}_1: \ \theta \in \Theta_1$$

Step 3: We choose the desirable Significance Level: we choose α (small enough, say, $\alpha=0.05$).

 $^{^{1}}$ If n is free to choose, then we can find it by taking the desirable Power of the Test.

To test a Hypothesis, one is following the following steps $\ddot{-}$:

Step 1: Choosing a Model: We assume our Data comes from a Parametric Model \mathcal{F}_{θ} , $\theta \in \Theta$

Step 2: We State the Hypotheses: we take Θ_0 and Θ_1 such that $\Theta = \Theta_0 \cup \Theta_1$ and $\Theta_0 \cap \Theta_1 = \emptyset$, and state the Hypothesis:

$$\mathcal{H}_0: \ \theta \in \Theta_0 \qquad \textit{vs} \qquad \mathcal{H}_1: \ \theta \in \Theta_1$$

Step 3: We choose the desirable Significance Level: we choose α (small enough, say, $\alpha = 0.05$).

Step 4: Assume we know how many Observations we will have 1 , say, n.

 $^{^{1}\}mbox{If }n$ is free to choose, then we can find it by taking the desirable Power of the Test.

To test a Hypothesis, one is following the following steps $\ddot{\smile}$:

Step 1: Choosing a Model: We assume our Data comes from a Parametric Model $\mathcal{F}_{\theta},\ \theta\in\Theta$

Step 2: We State the Hypotheses: we take Θ_0 and Θ_1 such that $\Theta = \Theta_0 \cup \Theta_1$ and $\Theta_0 \cap \Theta_1 = \emptyset$, and state the Hypothesis:

$$\mathcal{H}_0: \ \theta \in \Theta_0$$
 vs $\mathcal{H}_1: \ \theta \in \Theta_1$

Step 3: We choose the desirable Significance Level: we choose α (small enough, say, $\alpha = 0.05$).

Step 4: Assume we know how many Observations we will have 1 , say, n. Then we take a Random Sample

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta}$$
.

 $^{^{1}\}mbox{If }n$ is free to choose, then we can find it by taking the desirable Power of the Test.

Step 5: Next, we choose a Test Statistics,

$$T = T(X_1, X_2, ..., X_n)$$

such that

Step 5: Next, we choose a Test Statistics,

$$T = T(X_1, X_2, ..., X_n)$$

such that

▶ We can calculate it, if we will have Observations;

Step 5: Next, we choose a Test Statistics,

$$T = T(X_1, X_2, ..., X_n)$$

such that

- We can calculate it, if we will have Observations;
- ▶ the Distribution (or, at least, the Asymptotic Distribution) of T is known **under** \mathcal{H}_0 .

Step 5: Next, we choose a Test Statistics,

$$T = T(X_1, X_2, ..., X_n)$$

such that

- We can calculate it, if we will have Observations;
- ▶ the Distribution (or, at least, the Asymptotic Distribution) of T is known **under** \mathcal{H}_0 .

Step 6: Then, we specify the **Rejection Region (RR)**, usually of the form

$$RR = \{ |T| > c \}$$
 or $RR = \{ T > c \}$ or $RR = \{ T < c \}$.

Step 5: Next, we choose a Test Statistics,

$$T = T(X_1, X_2, ..., X_n)$$

such that

- We can calculate it, if we will have Observations;
- ▶ the Distribution (or, at least, the Asymptotic Distribution) of T is known **under** \mathcal{H}_0 .

Step 6: Then, we specify the **Rejection Region (RR)**, usually of the form

$$RR = \{|T| > c\}$$
 or $RR = \{T > c\}$ or $RR = \{T < c\}$.

Here c is called **the Critical Value** of the Test. We will choose it (soon).

Step 5: Next, we choose a Test Statistics,

$$T = T(X_1, X_2, ..., X_n)$$

such that

- We can calculate it, if we will have Observations;
- ▶ the Distribution (or, at least, the Asymptotic Distribution) of T is known **under** \mathcal{H}_0 .

Step 6: Then, we specify the **Rejection Region (RR)**, usually of the form

$$RR = \{ |T| > c \}$$
 or $RR = \{ T > c \}$ or $RR = \{ T < c \}$.

Here c is called **the Critical Value** of the Test. We will choose it (soon). We Reject \mathcal{H}_0 if and only if $T \in RR$.

Now, at this step, we need to choose the Critical Value c.

Now, at this step, we need to choose the Critical Value *c*. We choose it to have the desirable Significance Level:

$$\mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}\;) = \alpha,$$

Now, at this step, we need to choose the Critical Value c. We choose it to have the desirable Significance Level:

$$\mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}\;) = \alpha,$$

i.e.,

$$\alpha = \mathbb{P}(\text{Reject } \mathcal{H}_0 \mid \mathcal{H}_0 \text{ is True}) = \mathbb{P}(T \in RR \mid \theta \in \Theta_0).$$

Now, at this step, we need to choose the Critical Value c. We choose it to have the desirable Significance Level:

$$\mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}\;) = \alpha,$$

i.e.,

$$\alpha = \mathbb{P}(\text{Reject } \mathcal{H}_0 \mid \mathcal{H}_0 \text{ is True}) = \mathbb{P}(T \in RR \mid \theta \in \Theta_0).$$

And usually, c is some order quantile of the Distribution of T.

Now, at this step, we need to choose the Critical Value c. We choose it to have the desirable Significance Level:

$$\mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}\;) = \alpha,$$

i.e.,

$$\alpha = \mathbb{P}(\text{Reject } \mathcal{H}_0 \mid \mathcal{H}_0 \text{ is True}) = \mathbb{P}(T \in RR \mid \theta \in \Theta_0).$$

And usually, c is some order quantile of the Distribution of T.

Step 7: We make an observation, $x_1, x_2, ..., x_n$, calculate the Test Statistics at that Observation, $T = T(x_1, ..., x_n)$.

Now, at this step, we need to choose the Critical Value c. We choose it to have the desirable Significance Level:

$$\mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}\;) = \alpha,$$

i.e.,

$$\alpha = \mathbb{P}(\text{Reject } \mathcal{H}_0 \mid \mathcal{H}_0 \text{ is True}) = \mathbb{P}(T \in RR \mid \theta \in \Theta_0).$$

And usually, c is some order quantile of the Distribution of T.

Step 7: We make an observation, $x_1, x_2, ..., x_n$, calculate the Test Statistics at that Observation, $T = T(x_1, ..., x_n)$. Now, we will

▶ Reject \mathcal{H}_0 , if $T(x_1,...,x_n) \in RR$;

Now, at this step, we need to choose the Critical Value c. We choose it to have the desirable Significance Level:

$$\mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}\;) = \alpha,$$

i.e.,

$$\alpha = \mathbb{P}(\text{Reject } \mathcal{H}_0 \mid \mathcal{H}_0 \text{ is True}) = \mathbb{P}(T \in RR \mid \theta \in \Theta_0).$$

And usually, c is some order quantile of the Distribution of T.

Step 7: We make an observation, $x_1, x_2, ..., x_n$, calculate the Test Statistics at that Observation, $T = T(x_1, ..., x_n)$. Now, we will

- ▶ Reject \mathcal{H}_0 , if $T(x_1,...,x_n) \in RR$;
- ▶ Not Reject \mathcal{H}_0 , if $T(x_1,...,x_n) \notin RR$.

Model: Our Data comes from $\mathcal{N}(\mu, \sigma^2)$, σ is known;

Model: Our Data comes from $\mathcal{N}(\mu, \sigma^2)$, σ is known; Our (unknown) Parameter is μ

Hypothesis: We are given some μ_0 , and we want to Test:

Case 1:
$$\mathcal{H}_0$$
: $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu \neq \mu_0$

Model: Our Data comes from $\mathcal{N}(\mu, \sigma^2)$, σ is known; Our (unknown) Parameter is μ

Hypothesis: We are given some μ_0 , and we want to Test:

- Case 1: \mathcal{H}_0 : $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu \neq \mu_0$
- ► Case 2: \mathcal{H}_0 : $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu > \mu_0$

Model: Our Data comes from $\mathcal{N}(\mu, \sigma^2)$, σ is known; Our (unknown) Parameter is μ

Hypothesis: We are given some μ_0 , and we want to Test:

Case 1:
$$\mathcal{H}_0$$
: $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu \neq \mu_0$

• Case 2:
$$\mathcal{H}_0$$
: $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu > \mu_0$

► Case 3:
$$\mathcal{H}_0$$
: $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu < \mu_0$

Model: Our Data comes from $\mathcal{N}(\mu, \sigma^2)$, σ is known; Our (unknown) Parameter is μ

Hypothesis: We are given some μ_0 , and we want to Test:

- Case 1: \mathcal{H}_0 : $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu \neq \mu_0$
- Case 2: \mathcal{H}_0 : $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu > \mu_0$
- ► Case 3: \mathcal{H}_0 : $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu < \mu_0$

Significance Level: $\alpha \in (0,1)$;

Model: Our Data comes from $\mathcal{N}(\mu, \sigma^2)$, σ is known; Our (unknown) Parameter is μ

Hypothesis: We are given some μ_0 , and we want to Test:

► Case 1:
$$\mathcal{H}_0$$
: $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu \neq \mu_0$

Case 2:
$$\mathcal{H}_0$$
: $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu > \mu_0$

► Case 3:
$$\mathcal{H}_0$$
: $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu < \mu_0$

Significance Level: $\alpha \in (0,1)$;

Random Sample: We take $X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2)$;

Model: Our Data comes from $\mathcal{N}(\mu, \sigma^2)$, σ is known; Our (unknown) Parameter is μ

Hypothesis: We are given some μ_0 , and we want to Test:

► Case 1:
$$\mathcal{H}_0$$
: $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu \neq \mu_0$

Case 2:
$$\mathcal{H}_0$$
: $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu > \mu_0$

Case 3:
$$\mathcal{H}_0$$
: $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu < \mu_0$

Significance Level: $\alpha \in (0,1)$;

Random Sample: We take $X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2)$;

Test Statistics: Idea:

Model: Our Data comes from $\mathcal{N}(\mu, \sigma^2)$, σ is known; Our (unknown) Parameter is μ

Hypothesis: We are given some μ_0 , and we want to Test:

- ► Case 1: \mathcal{H}_0 : $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu \neq \mu_0$
- ► Case 2: \mathcal{H}_0 : $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu > \mu_0$
- ► Case 3: \mathcal{H}_0 : $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu < \mu_0$

Significance Level: $\alpha \in (0,1)$;

Random Sample: We take $X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2)$;

Test Statistics: Idea:

• what we have to approximate our Parameter (Estimate) μ ?

Model: Our Data comes from $\mathcal{N}(\mu, \sigma^2)$, σ is known; Our (unknown) Parameter is μ

Hypothesis: We are given some μ_0 , and we want to Test:

- ► Case 1: \mathcal{H}_0 : $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu \neq \mu_0$
- ► Case 2: \mathcal{H}_0 : $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu > \mu_0$
- ► Case 3: \mathcal{H}_0 : $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu < \mu_0$

Significance Level: $\alpha \in (0,1)$;

Random Sample: We take $X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2)$;

Test Statistics: Idea:

what we have to approximate our Parameter (Estimate) μ ? - Easy: \overline{X} ;

Model: Our Data comes from $\mathcal{N}(\mu, \sigma^2)$, σ is known; Our (unknown) Parameter is μ

Hypothesis: We are given some μ_0 , and we want to Test:

- ► Case 1: \mathcal{H}_0 : $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu \neq \mu_0$
- ► Case 2: \mathcal{H}_0 : $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu > \mu_0$
- ► Case 3: \mathcal{H}_0 : $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu < \mu_0$

Significance Level: $\alpha \in (0,1)$;

Random Sample: We take $X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2)$;

Test Statistics: Idea:

- what we have to approximate our Parameter (Estimate) μ ? Easy: \overline{X} ;
- In which case we will not believe that $\mu = \mu_0$? Piece of Cake:

Model: Our Data comes from $\mathcal{N}(\mu, \sigma^2)$, σ is known; Our (unknown) Parameter is μ

Hypothesis: We are given some μ_0 , and we want to Test:

- ► Case 1: \mathcal{H}_0 : $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu \neq \mu_0$
- ► Case 2: \mathcal{H}_0 : $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu > \mu_0$
- Case 3: \mathcal{H}_0 : $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu < \mu_0$

Significance Level: $\alpha \in (0,1)$;

Random Sample: We take $X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma^2)$;

Test Statistics: Idea:

- what we have to approximate our Parameter (Estimate) μ ? Easy: \overline{X} ;
- In which case we will not believe that $\mu = \mu_0$? Piece of Cake: if \overline{X} will be far from μ_0

Test Statistics: So, we will base our Test-Statistics on \overline{X} : as the name is suggesting, we take

Z =

Test Statistics: So, we will base our Test-Statistics on \overline{X} : as the name is suggesting, we take

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}.$$

 $^{^2}$ Note the difference from the Pivot Z: when constructing a CI for μ , we were taking Z with $\mu.$

Test Statistics: So, we will base our Test-Statistics on \overline{X} : as the name is suggesting, we take

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}.$$

²Note the difference from the Pivot Z: when constructing a CI for μ , we were taking Z with μ .

Test Statistics: So, we will base our Test-Statistics on \overline{X} : as the name is suggesting, we take

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}.$$

Let us check² that it satisfies the requirements:

▶ If we will have the Observation, we can calculate it, for sure:

²Note the difference from the Pivot Z: when constructing a CI for μ , we were taking Z with μ .

Test Statistics: So, we will base our Test-Statistics on \overline{X} : as the name is suggesting, we take

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}.$$

- ▶ If we will have the Observation, we can calculate it, for sure;
- ▶ If the Null Hypo is True, then $\mu = \mu_0$. Recall what is the connection between our Statistics, Z and μ :

²Note the difference from the Pivot Z: when constructing a CI for μ , we were taking Z with μ .

Test Statistics: So, we will base our Test-Statistics on \overline{X} : as the name is suggesting, we take

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}.$$

- ▶ If we will have the Observation, we can calculate it, for sure;
- ▶ If the Null Hypo is True, then $\mu = \mu_0$. Recall what is the connection between our Statistics, Z and μ : the Distribution of X_k in Z is $\mathcal{N}(\mu, \sigma^2)$.

²Note the difference from the Pivot Z: when constructing a CI for μ , we were taking Z with μ .

Test Statistics: So, we will base our Test-Statistics on \overline{X} : as the name is suggesting, we take

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}.$$

- ▶ If we will have the Observation, we can calculate it, for sure;
- ▶ If the Null Hypo is True, then $\mu = \mu_0$. Recall what is the connection between our Statistics, Z and μ : the Distribution of X_k in Z is $\mathcal{N}(\mu, \sigma^2)$. So, under \mathcal{H}_0 , $X_k \sim \mathcal{N}(\mu_0, \sigma^2)$, so

$$\overline{X} \sim \mathcal{N}\left(\mu_0, \frac{\sigma^2}{n}\right)$$

²Note the difference from the Pivot Z: when constructing a CI for μ , we were taking Z with μ .

Test Statistics: So, we will base our Test-Statistics on \overline{X} : as the name is suggesting, we take

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}.$$

- ▶ If we will have the Observation, we can calculate it, for sure;
- ▶ If the Null Hypo is True, then $\mu = \mu_0$. Recall what is the connection between our Statistics, Z and μ : the Distribution of X_k in Z is $\mathcal{N}(\mu, \sigma^2)$. So, under \mathcal{H}_0 , $X_k \sim \mathcal{N}(\mu_0, \sigma^2)$, so

$$\overline{X} \sim \mathcal{N}\left(\mu_0, \frac{\sigma^2}{n}\right) \qquad \text{and} \qquad Z = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \sim$$

²Note the difference from the Pivot Z: when constructing a CI for μ , we were taking Z with μ .

Test Statistics: So, we will base our Test-Statistics on \overline{X} : as the name is suggesting, we take

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}.$$

- ▶ If we will have the Observation, we can calculate it, for sure;
- ▶ If the Null Hypo is True, then $\mu = \mu_0$. Recall what is the connection between our Statistics, Z and μ : the Distribution of X_k in Z is $\mathcal{N}(\mu, \sigma^2)$. So, under \mathcal{H}_0 , $X_k \sim \mathcal{N}(\mu_0, \sigma^2)$, so

$$\overline{X} \sim \mathcal{N}\left(\mu_0, \frac{\sigma^2}{n}\right) \qquad \text{and} \qquad Z = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1).$$

²Note the difference from the Pivot Z: when constructing a CI for μ , we were taking Z with μ .

Test Statistics: So, we will base our Test-Statistics on \overline{X} : as the name is suggesting, we take

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}.$$

Let us check² that it satisfies the requirements:

- ▶ If we will have the Observation, we can calculate it, for sure;
- ▶ If the Null Hypo is True, then $\mu = \mu_0$. Recall what is the connection between our Statistics, Z and μ : the Distribution of X_k in Z is $\mathcal{N}(\mu, \sigma^2)$. So, under \mathcal{H}_0 , $X_k \sim \mathcal{N}(\mu_0, \sigma^2)$, so

$$\overline{X} \sim \mathcal{N}\left(\mu_0, \frac{\sigma^2}{n}\right) \qquad \text{and} \qquad Z = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1).$$

Great!

²Note the difference from the Pivot Z: when constructing a CI for μ , we were taking Z with μ .

Rejection Region: Now we choose the RR. The idea is:

If \mathcal{H}_0 is True, then Z is close to

Rejection Region: Now we choose the RR. The idea is:

If \mathcal{H}_0 is True, then Z is close to 0

Rejection Region: Now we choose the RR. The idea is:

If \mathcal{H}_0 is True, then Z is close to 0

We consider our 3 cases:

Case 1: for Testing \mathcal{H}_0 : $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu \neq \mu_0$ In this case we will Reject \mathcal{H}_0 , if

Rejection Region: Now we choose the **RR**. The idea is:

If \mathcal{H}_0 is True, then Z is close to 0

We consider our 3 cases:

Case 1: for Testing
$$\mathcal{H}_0$$
: $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu \neq \mu_0$

In this case we will Reject \mathcal{H}_0 , if Z will be far from 0, i.e., we choose

$$RR = \{|Z| > c\}.$$

Rejection Region: Now we choose the **RR**. The idea is:

If \mathcal{H}_0 is True, then Z is close to 0

We consider our 3 cases:

Case 1: for Testing
$$\mathcal{H}_0$$
: $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu \neq \mu_0$

In this case we will Reject \mathcal{H}_0 , if Z will be far from 0, i.e., we choose $RR = \{|Z| > c\}$. The Critical Value c is yet to be determined.

Rejection Region: Now we choose the **RR**. The idea is:

If \mathcal{H}_0 is True, then Z is close to 0

We consider our 3 cases:

Case 1: for Testing \mathcal{H}_0 : $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu \neq \mu_0$ In this case we will Reject \mathcal{H}_0 , if Z will be far from 0, i.e., we choose $RR = \{|Z| > c\}$. The Critical Value c is yet to be determined.

Case 2: for Testing \mathcal{H}_0 : $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu > \mu_0$ In this case we will not believe in \mathcal{H}_0 , if

Rejection Region: Now we choose the **RR**. The idea is:

If \mathcal{H}_0 is True, then Z is close to 0

We consider our 3 cases:

Case 1: for Testing \mathcal{H}_0 : $\mu=\mu_0$ vs \mathcal{H}_1 : $\mu\neq\mu_0$ In this case we will Reject \mathcal{H}_0 , if Z will be far from 0, i.e., we choose $RR=\{|Z|>c\}$. The Critical Value c is yet to be determined.

Case 2: for Testing \mathcal{H}_0 : $\mu=\mu_0$ vs \mathcal{H}_1 : $\mu>\mu_0$ In this case we will not believe in \mathcal{H}_0 , if Z will be far to the **Right** to 0, i.e., we choose $RR=\{Z>c\}$.

Rejection Region: Now we choose the **RR**. The idea is:

If \mathcal{H}_0 is True, then Z is close to 0

We consider our 3 cases:

Case 1: for Testing \mathcal{H}_0 : $\mu=\mu_0$ vs \mathcal{H}_1 : $\mu\neq\mu_0$ In this case we will Reject \mathcal{H}_0 , if Z will be far from 0, i.e., we choose $RR=\{|Z|>c\}$. The Critical Value c is yet to be determined.

Case 2: for Testing \mathcal{H}_0 : $\mu=\mu_0$ vs \mathcal{H}_1 : $\mu>\mu_0$ In this case we will not believe in \mathcal{H}_0 , if Z will be far to the **Right** to 0, i.e., we choose $RR=\{Z>c\}$. Again, the Critical Value c is yet to be determined.

Rejection Region: Now we choose the **RR**. The idea is:

If \mathcal{H}_0 is True, then Z is close to 0

We consider our 3 cases:

Case 1: for Testing \mathcal{H}_0 : $\mu=\mu_0$ vs \mathcal{H}_1 : $\mu\neq\mu_0$ In this case we will Reject \mathcal{H}_0 , if Z will be far from 0, i.e., we choose $RR=\{|Z|>c\}$. The Critical Value c is yet to be determined.

Case 2: for Testing \mathcal{H}_0 : $\mu=\mu_0$ vs \mathcal{H}_1 : $\mu>\mu_0$ In this case we will not believe in \mathcal{H}_0 , if Z will be far to the **Right** to 0, i.e., we choose $RR=\{Z>c\}$. Again, the Critical Value c is yet to be determined.

Case 3: for Testing \mathcal{H}_0 : $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu < \mu_0$ In this case we will not believe in \mathcal{H}_0 , if

Rejection Region: Now we choose the **RR**. The idea is:

If \mathcal{H}_0 is True, then Z is close to 0

We consider our 3 cases:

Case 1: for Testing \mathcal{H}_0 : $\mu=\mu_0$ vs \mathcal{H}_1 : $\mu\neq\mu_0$ In this case we will Reject \mathcal{H}_0 , if Z will be far from 0, i.e., we choose $RR=\{|Z|>c\}$. The Critical Value c is yet to be determined.

Case 2: for Testing \mathcal{H}_0 : $\mu=\mu_0$ vs \mathcal{H}_1 : $\mu>\mu_0$ In this case we will not believe in \mathcal{H}_0 , if Z will be far to the **Right** to 0, i.e., we choose $RR=\{Z>c\}$. Again, the Critical Value c is yet to be determined.

Case 3: for Testing \mathcal{H}_0 : $\mu=\mu_0$ vs \mathcal{H}_1 : $\mu<\mu_0$ In this case we will not believe in \mathcal{H}_0 , if Z will be far to the **Left** to 0, i.e., we choose $RR=\{Z< c\}$.

Rejection Region: Now we choose the **RR**. The idea is:

If \mathcal{H}_0 is True, then Z is close to 0

We consider our 3 cases:

Case 1: for Testing \mathcal{H}_0 : $\mu=\mu_0$ vs \mathcal{H}_1 : $\mu\neq\mu_0$

In this case we will Reject \mathcal{H}_0 , if Z will be far from 0, i.e., we choose $RR = \{|Z| > c\}$. The Critical Value c is yet to be determined.

Case 2: for Testing \mathcal{H}_0 : $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu > \mu_0$ In this case we will not believe in \mathcal{H}_0 , if Z will be far to the **Right** to 0, i.e., we choose $RR = \{Z > c\}$. Again, the Critical Value c is yet to be determined.

Case 3: for Testing \mathcal{H}_0 : $\mu = \mu_0$ vs \mathcal{H}_1 : $\mu < \mu_0$ In this case we will not believe in \mathcal{H}_0 , if Z will be far to the **Left** to

0, i.e., we choose $RR = \{Z < c\}$. Again, the Critical Value c is yet to be determined.

Now, let us choose c.

Now, let us choose c. We consider only **Case 1**:

$$RR = \{ |Z| > c \}.$$

Now, let us choose c. We consider only **Case 1**:

$$RR = \{|Z| > c\}.$$

We choose c from the requirement to have a Test with Significance Level α :

$$\alpha =$$

Now, let us choose c. We consider only **Case 1**:

$$RR = \{|Z| > c\}.$$

We choose c from the requirement to have a Test with Significance Level α :

$$\alpha = \mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}) =$$

Now, let us choose c. We consider only **Case 1**:

$$RR = \{|Z| > c\}.$$

We choose c from the requirement to have a Test with Significance Level α :

$$\alpha = \mathbb{P}(\mathsf{Type} \; \mathsf{I} \; \mathsf{Error}) = \mathbb{P}(\mathsf{Reject} \; \mathcal{H}_0 | \mathcal{H}_0 \; \mathsf{is} \; \mathsf{True}) =$$

Now, let us choose c. We consider only **Case 1**:

$$RR = \{|Z| > c\}.$$

We choose c from the requirement to have a Test with Significance Level α :

$$\alpha = \mathbb{P}(\mathsf{Type} \; \mathsf{I} \; \mathsf{Error}) = \mathbb{P}(\mathsf{Reject} \; \mathcal{H}_0 | \mathcal{H}_0 \; \mathsf{is} \; \mathsf{True}) =$$

$$= \mathbb{P}(|Z| > c \mid \mu = \mu_0) =$$

Now, let us choose c. We consider only **Case 1**:

$$RR = \{|Z| > c\}.$$

We choose c from the requirement to have a Test with Significance Level α :

$$\alpha = \mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}) = \mathbb{P}(\mathsf{Reject}\;\mathcal{H}_0|\mathcal{H}_0\;\mathsf{is}\;\mathsf{True}) =$$

$$= \mathbb{P}(|Z| > c \mid \mu = \mu_0) = \mathbb{P}(|Z| > c \mid Z \sim \mathcal{N}(0, 1)).$$

Now, let us choose c. We consider only **Case 1**:

$$RR = \{|Z| > c\}.$$

We choose c from the requirement to have a Test with Significance Level α :

$$\alpha = \mathbb{P}(\mathsf{Type} \; \mathsf{I} \; \mathsf{Error}) = \mathbb{P}(\mathsf{Reject} \; \mathcal{H}_0 | \mathcal{H}_0 \; \mathsf{is} \; \mathsf{True}) =$$

$$=\mathbb{P}(|Z|>c\mid \mu=\mu_0)=\mathbb{P}(|Z|>c\mid Z\sim\mathcal{N}(0,1)).$$

This means, geometrically, that

$$c =$$

Now, let us choose c. We consider only **Case 1**:

$$RR = \{|Z| > c\}.$$

We choose c from the requirement to have a Test with Significance Level α :

$$\alpha = \mathbb{P}(\mathsf{Type} \; \mathsf{I} \; \mathsf{Error}) = \mathbb{P}(\mathsf{Reject} \; \mathcal{H}_0 | \mathcal{H}_0 \; \mathsf{is} \; \mathsf{True}) =$$

$$=\mathbb{P}(|Z|>c\mid \mu=\mu_0)=\mathbb{P}(|Z|>c\mid Z\sim \mathcal{N}(0,1)).$$

This means, geometrically, that

$$c = z_{1-\alpha/2}$$

the $1-\frac{\alpha}{2}$ -level quantile of the Standard Normal Distribution.

Now, let us choose c. We consider only **Case 1**:

$$RR = \{|Z| > c\}.$$

We choose c from the requirement to have a Test with Significance Level α :

$$\alpha = \mathbb{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{Error}) = \mathbb{P}(\mathsf{Reject}\;\mathcal{H}_0|\mathcal{H}_0\;\mathsf{is}\;\mathsf{True}) =$$

$$=\mathbb{P}(|Z|>c\mid \mu=\mu_0)=\mathbb{P}(|Z|>c\mid Z\sim\mathcal{N}(0,1)).$$

This means, geometrically, that

$$c = z_{1-\alpha/2}$$

the $1-\frac{\alpha}{2}$ -level quantile of the Standard Normal Distribution.

Now, let us choose c. We consider only **Case 1**:

$$RR = \{|Z| > c\}.$$

We choose c from the requirement to have a Test with Significance Level α :

$$\alpha = \mathbb{P}(\mathsf{Type} \; \mathsf{I} \; \mathsf{Error}) = \mathbb{P}(\mathsf{Reject} \; \mathcal{H}_0 | \mathcal{H}_0 \; \mathsf{is} \; \mathsf{True}) =$$

$$=\mathbb{P}(|Z|>c\mid \mu=\mu_0)=\mathbb{P}(|Z|>c\mid Z\sim\mathcal{N}(0,1)).$$

This means, geometrically, that

$$c = z_{1-\alpha/2}$$

the $1-\frac{\alpha}{2}$ -level quantile of the Standard Normal Distribution.

▶ If
$$|Z| > z_{1-\alpha/2}$$
,

Now, let us choose c. We consider only **Case 1**:

$$RR = \{|Z| > c\}.$$

We choose c from the requirement to have a Test with Significance Level α :

$$\alpha = \mathbb{P}(\mathsf{Type} \; \mathsf{I} \; \mathsf{Error}) = \mathbb{P}(\mathsf{Reject} \; \mathcal{H}_0 | \mathcal{H}_0 \; \mathsf{is} \; \mathsf{True}) =$$

$$= \mathbb{P}(|Z| > c \mid \mu = \mu_0) = \mathbb{P}(|Z| > c \mid Z \sim \mathcal{N}(0, 1)).$$

This means, geometrically, that

$$c = z_{1-\alpha/2}$$

the $1-\frac{\alpha}{2}$ -level quantile of the Standard Normal Distribution.

- ▶ If $|Z| > z_{1-\alpha/2}$, Reject \mathcal{H}_0 ;
- ▶ If $|Z| \le z_{1-\alpha/2}$,

Now, let us choose c. We consider only **Case 1**:

$$RR = \{|Z| > c\}.$$

We choose c from the requirement to have a Test with Significance Level α :

$$\alpha = \mathbb{P}(\mathsf{Type} \; \mathsf{I} \; \mathsf{Error}) = \mathbb{P}(\mathsf{Reject} \; \mathcal{H}_0 | \mathcal{H}_0 \; \mathsf{is} \; \mathsf{True}) =$$

$$= \mathbb{P}(|Z| > c \mid \mu = \mu_0) = \mathbb{P}(|Z| > c \mid Z \sim \mathcal{N}(0, 1)).$$

This means, geometrically, that

$$c = z_{1-\alpha/2}$$

the $1-\frac{\alpha}{2}$ -level quantile of the Standard Normal Distribution.

- ▶ If $|Z| > z_{1-\alpha/2}$, Reject \mathcal{H}_0 ;
- ▶ If $|Z| \le z_{1-\alpha/2}$, **Do Not Reject** \mathcal{H}_0 .

Example: I have generated in **R** a Sample of Size 50 from $\mathcal{N}(3, 2^2)$ and made some rounding:

```
set.seed(20112019)
s.size <-50; sigma <- 2
obs <- rnorm(s.size, mean = 3, sd = sigma)
obs <- round(obs, digits = 2); obs</pre>
```

```
##
   [1]
        1.68 5.48 0.98 3.08 4.79 5.03 1.64
                                              2.35
                                                   0
  [13] 3.86 4.67 1.86 4.38 3.40
##
                                   4.01 - 0.20
                                              3.75
                                                   4
##
  [25] -0.25 4.82 -1.12 0.44 -1.28 7.98 3.11 1.87
                                                   4
##
  [37] 0.99 4.25 7.10 7.35 2.64 4.78 3.55 4.55
                                                   5
## [49] 0.78 0.15
```

Example: I have generated in **R** a Sample of Size 50 from $\mathcal{N}(3, 2^2)$ and made some rounding:

```
set.seed(20112019)
s.size <-50; sigma <- 2
obs <- rnorm(s.size, mean = 3, sd = sigma)
obs <- round(obs, digits = 2); obs</pre>
```

```
## [1] 1.68 5.48 0.98 3.08 4.79 5.03 1.64 2.35 0

## [13] 3.86 4.67 1.86 4.38 3.40 4.01 -0.20 3.75 4

## [25] -0.25 4.82 -1.12 0.44 -1.28 7.98 3.11 1.87 4

## [37] 0.99 4.25 7.10 7.35 2.64 4.78 3.55 4.55 5

## [49] 0.78 0.15
```

I will assume I do not know μ (which is 3, of course), and will just assume my Observation is coming from $\mathcal{N}(\mu, 2^2)$, with some μ .

set.seed(20112019)

[49] 0.78 0.15

Example: I have generated in **R** a Sample of Size 50 from $\mathcal{N}(3, 2^2)$ and made some rounding:

```
s.size <-50; sigma <- 2
obs <- rnorm(s.size, mean = 3, sd = sigma)
obs <- round(obs, digits = 2); obs

## [1] 1.68 5.48 0.98 3.08 4.79 5.03 1.64 2.35 0
## [13] 3.86 4.67 1.86 4.38 3.40 4.01 -0.20 3.75 4
## [25] -0.25 4.82 -1.12 0.44 -1.28 7.98 3.11 1.87 4
```

[37] 0.99 4.25 7.10 7.35 2.64 4.78 3.55 4.55

I will assume I do not know μ (which is 3, of course), and will just assume my Observation is coming from $\mathcal{N}(\mu, 2^2)$, with some μ . And I will test, at the 5% Significance Level, the following Hypothesis:

$$\mathcal{H}_0$$
: $\mu = 4$ vs \mathcal{H}_1 : $\mu \neq 4$.

First, I calculate Z-statistic:

```
mu0 <- 4
Z <- (mean(obs) - mu0)/(sigma/sqrt(s.size)); Z
## [1] -3.63665
```

First, I calculate Z-statistic:

```
mu0 < -4
Z <- (mean(obs) - mu0)/(sigma/sqrt(s.size)); Z</pre>
```

[1] -3.63665

a < -0.05

Now, I am calculating the quantile $z_{1-\alpha/2}$:

```
z \leftarrow qnorm(1-a/2); z
```

[1] 1.959964

First, I calculate *Z*-statistic:

```
mu0 <- 4 
Z <- (mean(obs) - mu0)/(sigma/sqrt(s.size)); Z 
## [1] -3.63665 
Now, I am calculating the quantile z_{1-\alpha/2}:
```

a <- 0.05 z <- qnorm(1-a/2); z

[1] 1.959964

Finally, I am checking if $|Z| > z_{1-\alpha/2}$:

abs(Z) > z

[1] TRUE

First, I calculate Z-statistic:

```
mu0 <- 4
Z <- (mean(obs) - mu0)/(sigma/sqrt(s.size)); Z</pre>
```

Now, I am calculating the quantile $z_{1-\alpha/2}$:

```
a <- 0.05
z <- qnorm(1-a/2); z
```

```
## [1] 1.959964
```

[1] -3.63665

Finally, I am checking if $|Z| > z_{1-\alpha/2}$:

```
abs(Z) > z
```

[1] TRUE

So the decision is:

First, I calculate Z-statistic:

```
mu0 <- 4
Z <- (mean(obs) - mu0)/(sigma/sqrt(s.size)); Z
## [1] -3.63665
```

Now, I am calculating the quantile $z_{1-\alpha/2}$:

```
a <- 0.05
z <- qnorm(1-a/2); z
```

[1] 1.959964

Finally, I am checking if $|Z| > z_{1-\alpha/2}$:

```
abs(Z) > z
```

[1] TRUE

So the decision is: **Reject** \mathcal{H}_0 .

[1] -3.63665

First, I calculate *Z*-statistic:

```
mu0 <- 4
Z <- (mean(obs) - mu0)/(sigma/sqrt(s.size)); Z</pre>
```

Now, I am calculating the quantile $z_{1-\alpha/2}$:

```
a <- 0.05
z <- qnorm(1-a/2); z
```

[1] 1.959964

Finally, I am checking if $|Z| > z_{1-\alpha/2}$:

```
abs(Z) > z
```

[1] TRUE

So the decision is: Reject \mathcal{H}_0 . In this case we say that the result was Statistically Significant.

Example: Now, with the same Observations from the last example, let us test, at the 5% level, the following Hypothesis:

$$\mathcal{H}_0: \ \mu = 3.3$$
 vs $\mathcal{H}_0: \ \mu \neq 3.3$.

Example: Now, with the same Observations from the last example, let us test, at the 5% level, the following Hypothesis:

$$\mathcal{H}_0: \ \mu = 3.3$$
 vs $\mathcal{H}_0: \ \mu \neq 3.3$.

```
mu0 < -3.3; a < -0.05
Z <- (mean(obs) - mu0)/(sigma/sqrt(s.size))</pre>
cat("Z-statistics = ", Z)
## Z-statistics = -1.161776
z \leftarrow qnorm(1-a/2)
cat("critical value = ", z)
## critical value = 1.959964
if (abs(Z) > z) cat("Reject") else cat("Do Not Reject")
## Do Not Reject
```