Chapitre 2 : Modèles en couches des réseaux

Modèle en couches des réseaux

- Conception du réseau comme un ensemble de blocs fonctionnels (couches)
 - Chaque couche est responsable d'un certains nombre tâches
 - Interagit avec les couches adjacentes
 - Conceptuellement, les couches sont disposées en verticale (comme une pile)
- Un modèle universellement reconnu permet une interopérabilité universelle
- Deux principaux modèles
 - Modèle OSI : Modèle de référence
 - Modèle TCP/IP : Modèle actuellement implémenté dans les communications sur Internet

Modèle OSI

- Standard pour les réseaux
 - Modèle en 7 couches
 - □ Facilite l'interopérabilité des réseaux

Rôle des couches (1/2)

- Physique (Couche 1)
 - Assure le transport des informations, c'est le lien physique entre les composants du réseau
- Liaison (Couche 2)
 - Acheminement des blocs d'informations sans erreurs. Les informations sont des trames
- Réseau (Couche 3)
 - Assure l'opération d'adressage, de routage et aussi le contrôle des flux des blocs d'information au niveau des nœuds. Les informations sont des paquets

Rôle des couches (2/2)

- Transport (Couche 4)
 - Contrôle du transport de bout en bout, elle assure le découpage, le réassemblage et la cohérence des bloc d'informations. Les informations sont des segments
- Session (Couche 5)
 - Synchronisation des données applicatives
- Présentation (Couche 6)
 - Structuration (mise en forme) des données échangées par les applications
- Application (Couche 7)
 - Applications utilisateurs. Les réseaux sont conçus pour une utilisation de ces applications.

A retenir

Modèle TCP/IP de l'Internet

- Standard de l'Internet
 - Ne conserve que 5 couches
 - Couches session et présentation absentes

Protocole

- Un protocole
 - Définit la manière dont les applications doivent s'échanger des informations

Spécifie donc la forme et la manière dont les

messages doivent être échangés

 A chaque couche du modèle
 TCP/IP nous allons étudier un protocole correspondant

Interaction entre couches

Analogie au langage

Université de Thiès

 Il faut dont utiliser le même protocole pour que les personnes puissent se comprendre

Encapsulation des données

- Chaque couche de l'émetteur doit ajouter une entête sur les données pour effectuer son rôle
 - Encapsulation
- C'est la couche de même niveau du récepteur qui se chargera d'enlever ces en-têtes pour récupérer les données émises :
 - Désencapsulation

Encapsulation dans le modèle OSI

Fragmentation des données

- Chaque réseau possède sa MTU
 - Maximum Transmission Unit
 - Définit la taille maximale en octet des données
 - \blacksquare Ethernet \rightarrow 1580 octets
- Au-delà de cette taille nécessité de fragmentation des paquets
 - Découpage en des paquets plus petits

Fragmentation des données

Efficacité d'une transmission

- Transmission des données et des en-têtes
- Les données contiennent les informations utiles
- ullet Efficacité noté η

$$\eta = \frac{\text{Donn\'ees}}{\text{Donn\'ees+En-t\^etes}}$$

Activité 1

- On souhaite transférer 80000 de données d'une application A vers une application B utilisant le modèle TCP/IP. La couche transport rajoute 300 d'en-tête, la couche réseau 200, la couche liaison de données 400 et la couche physique 500.
- Calculer la taille totale des en-têtes rajoutées ?
- Sachant que la MTU au niveau la couche physique est de 1500o par PDU, combien de PDU (Packet Data Unit) seront transmises entre A et B et avec quelles tailles?
- Calculer l'efficacité de cette transmission ?

Techniques de transfert

- Ce sont les techniques utilisées pour acheminer des informations entre une source et une destination
- On parle de commutation en réseau
- On distingue généralement trois types de commutation
 - La commutation de circuit
 - La commutation de messages
 - La commutation de paquets

Commutation de circuit

- Le réseau est commuté, une transmission s'établit en 3 phases :
 - Établir un circuit de bout en bout (end-to-end)
 - Communiquer (Toutes les informations suivent le même chemin : « c'est le circuit »)
 - Fermer le circuit
- Exemple : Réseau téléphonique classique (RTC)

Commutation de messages

- Pas de phase de connexion entre la source et la destination
- Transfert de messages pouvant avoir de grande tailles jusqu'au destinataire
- En cas de perte de données, tout le message est perdu

Commutation de paquets

- Chaque paquet est émis de manière indépendante et peut prendre des chemins différents > reconstruction
- La perte d'un paquet est moins importante que le message
- * Le <u>Réseau Internet</u> utilise ce type de commutation

Equipements réseaux

- Concentrateurs ou Hubs
 - Diffuse le signal reçus sur un port en entrée sur tous les autres ports en sortie

- Switch (Commutateurs)
 - Envoi le signal reçu sur un port en entrée au niveau du port de sortie où se trouve l'équipement de destination
 - Si le destinataire est inconnu il se comporte comme un hub

Hub vs Switch

Routeurs

- Equipements d'interconnexion de réseaux
 - Le routeur détermine les meilleurs chemins vers une destination précise à l'aide d'un protocole de routage et du contenu de sa table de routage
 - Le routeur utilise les adresses
 IP du destinataire pour le transfert des données
 - □ Fonction de routage

Equipements et TCP/IP

Qu'est ce que l'Internet

- L'Internet est une interconnexion de plusieurs réseaux à travers le monde
- On l'appelle aussi le « réseau des réseaux »
- Internet divisés en AS gérés par les FAI ou ISP
- Pour pouvoir communiquer sur Internet les équipements utilisent un protocole de la couche réseau : le protocole IP pour (Internet Protocol)
- Grâce au protocole IP nous pouvons
 - □ Identifier des machines grâce à une adresse IP unique → Identification
 - □ Faire communiquer ces machines distantes → Routage

Qu'est ce que l'Internet

Évolution de l'Internet

Croissance exponentielle des utilisateurs

En résumé

- Modèle OSI de référence
- Modèle TCP/IP utilisé sur Internet
- Commutation de paquets sur Internet
- Les fonctions à assurer pour un réseau
 - Adressage
 - Acheminement
 - Contrôle de flux
 - Détection d'erreurs
 - Corrections d'erreurs
 - Séquencement des données
- Généralisation de l'accès à Internet