EJERCICIOS PARA PRACTICAR

(1) Resuelve:

a)
$$(a^x)^x = (a^{24})^6$$
 b) $a^{(x-2)x} = a^x$ c) $5^{x-4} = 1$ d) $6^{(x-1)x} = 36$

$$b) \ a^{(x-2)x} = a^x$$

c)
$$5^{x-4} = 1$$

$$d) 6^{(x-1)x} = 36$$

(2) Resuelve:

a)
$$2^{x+1} - 5 \cdot 2^x + 3 = 0$$

c)
$$36^x - 42 \cdot 6^x + 216 = 0$$

b)
$$9^x - 90 \cdot 3^x + 729 = 0$$

(3) Resuelve:

$$a) \log x - \log 36 = 3$$

c)
$$\log(x+4) - \log(x-5) = 1$$

$$b) \log \sqrt{x} - \log \sqrt{5} = 0.5$$

d)
$$\log(2x+1)^2 + \log(3x-4)^2 = 2$$

(4) Si
$$\log_5 x = h$$
 ¿cuánto vale $\log_5 \frac{x}{25}$?

- (5) Calcula $\log_8 4$ y $\log_4 8$ ¿Existe alguna relación entre ellos?
- (6) Calcula $\log \frac{1}{250}$ sabiendo que $\log 2 = 0'301030$
- (7) Calcula: $\log 10^{-5}$; $\log_5 625$; $\log_{27} 3$.
- (8) Calcula:

$$a) - \log_2 \log_2 \sqrt{\sqrt{\sqrt{2}}}$$

$$b) -\log_2\log_2\sqrt{\sqrt{\sqrt{\sqrt{2}}}}$$

- (9) Determina los números cuyos logaritmos decimales están comprendidos entre números -2 y 2
- (10) Calcula, usando la definición de logaritmo:

a)
$$\log_6 216$$

$$b) \log_{36} 6$$

$$c) \log_{100} 10$$

(11) Calcula
$$\log 2 + \log 4 + \log 8 + \ldots + \log 2^n$$

(12) Calcula:

a)
$$\log 1000 - \log 0'001 + \log \frac{1}{1000}$$
 b) $\log 5 + \log \frac{1}{5}$

b)
$$\log 5 + \log \frac{1}{5}$$

- (13) Demuestra que: $\log_a b \cdot \log_b a = 1$
- (14) Calcula x sabiendo que: $\frac{\log_a x}{\log_{ab} x} = 1 + \log_a b$
- (15) ¿Verdadero o falso?

$$a) \ a^{4\log_a x} = x^4$$

b)
$$\log(a+b) + \log\left(\frac{a}{b} - 1\right) = \log\left(\frac{a}{b} + 1\right) + \log(a-b)$$

(16) Resuelve, descomponiendo el segundo miembro en factores:

a)
$$2^x = 8$$

d)
$$2^{2x} = 1024$$

$$q) \ 3^{x+1} = 729$$

d)
$$2^{2x} = 1024$$
 g) $3^{x+1} = 729$ j) $5^{x+1} = 15625$

b)
$$2^x = 64$$

$$e) \ 3^x = 27$$

b)
$$2^x = 64$$
 e) $3^x = 27$ h) $3^{2x} = 6561$ k) $5^{2x} = 625$

$$k) 5^{2x} = 625$$

c)
$$2^{x+1} = 512$$

$$f) \ 3^x = 81$$

$$i) 5^x = 125$$

c)
$$2^{x+1} = 512$$
 f) $3^x = 81$ i) $5^x = 125$ l) $5^x = 390625$

(17) Resuelve, utilizando logaritmos:

a)
$$5^x = 10$$

c)
$$3^{x+1} = 80$$

a)
$$5^x = 10$$

b) $2^x = 25$
c) $3^{x+1} = 80$
e) $2 \cdot 5^x = 250$
g) $3 \cdot 5^x = 75$
h) $7 \cdot 2^x = 224$

$$(a) \ 3 \cdot 5^x = 75$$

$$b) 2^x = 25$$

$$d) 7^x = 39$$

$$f) \ 3 \cdot 2^x = 24$$

$$h) \ 7 \cdot 2^x = 224$$

(18) Resuelve:

a)
$$\log_2 x = 1$$

$$d \log_2 x = -10$$

$$q$$
) $\log_{x} 9 = 2$

$$j) \ 2\log x = 10$$

b)
$$\log_2 x = 5$$

$$e) \log_x 125 = 3$$

$$h) \log_x 0'001 = 3$$

$$k) \ 3\log x = -3$$

$$c) \log_2 x = -1$$

a)
$$\log_2 x = 1$$

b) $\log_2 x = 5$
c) $\log_2 x = -1$
d) $\log_2 x = -10$
e) $\log_2 x = -10$
f) $\log_x 125 = 3$
f) $\log_x 125 = 3$

$$i) \ 3\log x = 3$$

$$l) \ 2\log x = -10$$

(19) Resuelve:

$$a) \begin{cases} x - y = 15 \\ \log x + \log y = 2 \end{cases}$$

$$c) \begin{cases} 3^{2x+y} = 3^7 \\ 3^{x-2y} = 3 \end{cases}$$

$$b) \begin{cases} 2\log x + \log y = 5\\ \log xy = 4 \end{cases}$$

$$d) \begin{cases} 2^x + 5^y = \\ 2^{x-1} + 5^{y+1} = 9 \end{cases}$$

(20) Resuelve:

a)
$$3^{x-1} + 3^x + 3^{x+1} = 117$$

$$b) \ 5^{2x} - 30 \cdot 5^x + 125 = 0$$

(21) Resuelve los siguientes sistemas de ecuaciones:

a)
$$\begin{cases} 3^x + 3^y = 90\\ 3^{x+y} = 729 \end{cases}$$

$$b) \begin{cases} 3^x + 5^y = 14 \\ 3^{2x+1} - 5^{2y+1} = 118 \end{cases}$$

Sugerencia: en el segundo sistema prueba a hacer el cambio de variable $3^x = x'$, $5^y = y'$

(22) Resuelve:

a)
$$2^{x+1} = 2^{2x-2}$$

b)
$$4\sqrt[3]{16^{2x}} = \left(\frac{1}{2}\right)^{x+1}$$
 c) $5^{x^2-6x+8} = 1$

c)
$$5^{x^2-6x+8} = 1$$

$$d) \ 2^x \cdot 3^x = 12 \cdot 18$$

$$e) \ln 3x = 6$$

e)
$$\ln 3x = 6$$

f) $\ln e^x = 5$
g) $10^{\log x^2} = 4$
h) $\frac{\log(16 - x^2)}{\log(3x - 4)} = 2$
j) $2^{2x} = 5^{1-2x}$
k) $4e^x - 5e^{-x} + e^x = 0$

$$j) \ 2^{2x} = 5^{1-2x}$$

$$f) \ln e^x = 5$$

$$a) 10^{\log x^2} = 4$$

$$i) \ 2^x \cdot 5^x = 20$$

$$k) 4e^x - 5e^{-x} + e^x = 0$$

(23) Resuelve:
$$2^{2x} + 2^{2x-1} + 2^{2(x-1)} + 2^{2x-3} + 2^{2(x-2)} = 1984$$

(24) Resuelve:
$$\begin{cases} \log_x(y+8) = 2 \\ \log_y(x-4) = \frac{1}{2} \end{cases}$$