Soutenance Projet 4

Anticipez les besoins en consommation électrique de bâtiments

Ordre du jour

1. Introduction

2. Analyse et exploration

3. Modélisation pour la prédiction

4. Analyse du modèle choisi

5. Conclusion

- 1. Problématique
- 2. Base de données
- 3. Les pistes envisagées

1. Problématique

Volonté de connaître:

- ⇒ Emission CO2
- ⇒ Consommation total d'énergie

Problème: relevés couteux

Solution:

Pour connaître les informations CO2 et Energie sur des bâtiments non résidentiels grâce à la prédiction avec les données déclaratives du permis d'exploitation

2.Base de données

 \rightarrow 2015 et 2016

47 (2015) Variables (type, utilisation, 46 (2016) surface, consommation etc...)

3340 (2015), 3376 (2016) Bâtiments

Choix d'une première modification:

- On garde les individus communs entre 2015 et 2016
- On garde les variables communes et utilisables entres les deux années
- On change les types des données pour qu'elles soient communes entre les deux bdd

3.Les pistes envisagées

- Observer les données
- Faire un choix sur les données qu'on veut utiliser pour la problématique
- Arranger les données pour les envoyer dans un modèle
- (feature engineering & pipeline)
- Entrainement de plusieurs modèles et évaluer sur plusieurs métrics
- Analyse du meilleur modèle, comparaison du même travail avec EnergyStarScore

- 1. Nettoyage
- 2. Feature engineering
- 3. Exploration

1.Nettoyage

- Suppression des variables où il y a beaucoup de valeurs manquantes
- Réarrangement des variables d'utilisation du bâtiment en 7 catégories (Autre, Commerce, service public, Entertainment, Enseignement, bureau, logement-hôtel)
- Choix de garder CouncilDistrictCode et non Neighborhood

2. Feature engineering

- Création de d'une transformation logarithmique (Bijection) pour surface total, consommation d'Energie totale et émission de CO2
- Calcul du pourcentage des surfaces Parking, buildings etc.
- Calcul de l'âge du bâtiment en fonction de la date de construction et l'année de collecte d'information
- Pourcentage de consommation d'énergie par rapport au type de source

3.Exploration Corrélation

ParkingPourcent/BuildingPourcent
 &
 ElecPourcent/GazNatPourcent

⇒ Fortement inv. corrélées

- Il existe une corrélation intéressante entre:
 - \Rightarrow Age
 - ⇒ GFAtotlog
 - ⇒ GHGEemissionlog
 - ⇒ Nrjuselog

- 1.00

- 0.75

- 0.50

- 0.25

-0.00

-0.25

Modélisation

- 1. Rappel de la problématique et du Dataset
- 2. Séparation Données entraînement/Validation
- 3. Pipeline modification données pour entrainement
- 4. .Différents modèles envisagés et leurs hyperparamètres testés
- 5. Choix du modèle le plus performant selon plusieurs critères

Modélisation 1.Rappel de la problématique et du Dataset Rappel problématique

- Prédiction CO2 & Energie consommée
- > Choix du modèle le plus performant
 - Comparaison par métriques
 - Évaluation des modèles et choix des hyperparamètres
- Interprétation du modèle sur le jeu de test

Choix pour les données:

- On ne prend pas les différents types d'énergie %
- Nos Targets sont GHGEemissionlog et NRJuselog
- ➤ Avec et sans ENERGYSTARSCORE

Modélisation

2. Séparation Données entraînement/Validation:

train_test_split de Scikit-Learn

<u>Stratify</u>: DataYear, CouncilDistrictCode, LargestPropertyUseType

Train 75%

Test 25%

Modélisation 3. Pipeline modification données pour entrainement:

<u>Remarque</u>: avec EnergyStarScore lors

de la modélisation en prenant

compte.

Modélisation

4.Différents modèles envisagés et leurs hyperparamètres testés

Modèles évalués et hyperparamètres:

- LinearRegression
- ElasticNet:

Alpha, max_iter, l1_ratio

- KnnRegressor:
 N neighbors
- SVR:

RBF, C, gamma

• RandomForestRegressor:

Bootstrap, maxdepth, max_features, Min_samples_leaf, min_samples_split N estimator

• GradientBoostingRegressor:

Learning rate, max_depth, n_estimator, subsample

• MLPregressor:

Early_stopping, hidden_layer_size, Learning rate

GridSearch et CrossValidation:

Modélisation 5.Choix du modèle le plus performant selon plusieurs critères.

Métriques pour comparaison des performances:

- Variance expliquée
- Erreur max
- R2
- RMSE
- MAE

Résultats pour prédiction CO2

	explained_var	test_exp_var	error_max	test_error_max	r2	test_r2	RMSE	test_RMSE	MAE	test_MAE
regression lineaire	0.5136	0.4493	1.5992	1.7049	0.5136	0.4425	0.4278	0.4350	0.3311	0.3364
elasticnet	0.5129	0.4526	1.6110	1.6890	0.5129	0.4459	0.4281	0.4337	0.3324	0.3359
SVR_c100_eps0.1_gamma_0.003	0.5624	0.4663	1.6753	1.7925	0.5621	0.4599	0.4059	0.4282	0.2989	0.3200
KNeighborsRegressor(n_neighbors=12)	0.5510	0.4546	1.8917	1.8843	0.5479	0.4542	0.4124	0.4305	0.3184	0.3284
GradientBoosting_lr_0.01_md_8	0.9968	0.8130	0.2504	1.7984	0.9968	0.8101	0.0349	0.2539	0.0262	0.1598
RandomForestRegressor(max_depth=90, max_features=3, min_samples_leaf=3, min_samples_split=8, n_estimators=200)	0.6844	0.5235	1.5396	1.7724	0.6844	0.5208	0.3446	0.4033	0.2678	0.3081
MLPRegressor(early_stopping=True, hidden_layer_sizes=100, learning_rate='invscaling', verbose=True)	0.6246	0.4977	1.5684	1.7878	0.6246	0.4963	0.3758	0.4135	0.2871	0.3112

Résultats pour prédiction Energie

	explained_var	test_exp_var	error_max	test_error_max	r2	test_r2	RMSE	test_RMSE	MAE	test_MAE
regression lineaire	0.6918	0.5556	1.7282	6.2335	0.6918	0.5524	0.3071	0.4107	0.2178	0.2303
elasticnet	0.6912	0.5569	1.7303	6.2489	0.6912	0.5537	0.3074	0.4101	0.2182	0.2294
SVR(C=100.0, gamma=0.0031622776601683794)	0.7245	0.5695	1.6631	6.2453	0.7245	0.5666	0.2903	0.4041	0.1971	0.2171
KNeighborsRegressor(n_neighbors=12)	0.6859	0.5300	1.8438	6.3437	0.6836	0.5300	0.3111	0.4209	0.2258	0.2421
GradientBoostinginch	0.9992	0.7086	0.0658	6.2788	0.9992	0.7059	0.0160	0.3329	0.0121	0.1245
RandomForestRegressor(max_depth=110, max_features=3, min_samples_leaf=3, min_samples_split=8)	0.7754	0.5528	1.3331	6.3256	0.7754	0.5514	0.2621	0.4112	0.1885	0.2309
MLPRegressor(early_stopping=True, hidden_layer_sizes=1000, learning_rate='invscaling', verbose=True)	0.7858	0.5808	1.5059	6.3000	0.7857	0.5807	0.2560	0.3975	0.1758	0.2154

Modèles finals

- 1.Modèles et hyperparamètres:
- 2.Comparaison prédiction CO2 avec et sans EnergystarScore
- 3.Importance des variables du modèle pour CO2

Modèles et hyperparamètres:

Modèle pour le CO2

GradientBoostingRegressor

GradientBoostingRegressor(learning_rate=0.01, max_depth=8, n_estimators = 1700,

subsample=0.85)

Modèle pour l'énergie

Modèles finals

2.Comparaison prédiction CO2 avec et sans EnergystarScore

Comparaison test set: Emission CO2

Modèles finals

3.Importance des variables du modèle pour CO2

Conclusion

- > découverte et transformation du Dataset
- Exploration avec feature engineering, création de nouvelles variables
- Recherche des meilleurs hyperparamètres avec une validation croisée et un gridsearch
- Comparaison des modèles sélectionnés selon plusieurs métriques
- Analyse du modèle le plus performant en l'interprétant

Aller plus loin

- Explorer plus profondément la base de données notamment avec le résultats de la modélisation
- Prendre en compte d'autres variables
- Changer dans pipeline le Centrage/Normalisation (Standardscaler) ->
 MinMaxScaler
- Recherche encore plus affinée des Hyperparamètres sur le training set

Merci!

Question?