```
import pandas as pd
import numpy as np
import seaborn as sns
                                            #visualisation
import matplotlib.pyplot as plt
                                            #visualisation
%matplotlib inline
sns.set(color codes=True)
pd.set option('display.max rows',None)
pd.set_option('display.max_columns',None)
from sklearn.preprocessing import StandardScaler
                                                    #Importing StandardScaler using sklearn library
from sklearn.model selection import train test split  #To split the data in training and testing part
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score #To generate classification report and acuracy score
df=pd.read_csv('/content/drive/MyDrive/creditcard_2023.csv')
df.head()
```

	id	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	V13	
0	0	-0.260648	-0.469648	2.496266	-0.083724	0.129681	0.732898	0.519014	-0.130006	0.727159	0.637735	-0.987020	0.293438	-0.941386	0.
1	1	0.985100	-0.356045	0.558056	-0.429654	0.277140	0.428605	0.406466	-0.133118	0.347452	0.529808	0.140107	1.564246	0.574074	0.
2	2	-0.260272	-0.949385	1.728538	-0.457986	0.074062	1.419481	0.743511	-0.095576	-0.261297	0.690708	-0.272985	0.659201	0.805173	0.
3	3	-0.152152	-0.508959	1.746840	-1.090178	0.249486	1.143312	0.518269	-0.065130	-0.205698	0.575231	-0.752581	0.737483	0.592994	0.
4	4	-0.206820	-0.165280	1.527053	-0.448293	0.106125	0.530549	0.658849	-0.212660	1.049921	0.968046	-1.203171	1.029577	1.439310	0.

Start coding or generate with AI.

```
df.shape
```

(568630, 31)

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 568630 entries, 0 to 568629 Data columns (total 31 columns):

Data	columns	(total 31 columns):			
#	Column	Non-Null Count Dtype			
0	id	568630 non-null int64			
1	V1	568630 non-null float64	-		
2	V2	568630 non-null float64	ŀ		
3	V3	568630 non-null float64	ŀ		
4	V4	568630 non-null float64	-		
5	V5	568630 non-null float64	-		
6	V6	568630 non-null float64	ŀ		
7	V7	568630 non-null float64	ŀ		
8	V8	568630 non-null float64	ŀ		
9	V9	568630 non-null float64	ŀ		
10	V10	568630 non-null float64	ŀ		
11	V11	568630 non-null float64	ŀ		
12	V12	568630 non-null float64	ŀ		
13	V13	568630 non-null float64	ŀ		
14	V14	568630 non-null float64	ŀ		
15	V15	568630 non-null float64	ŀ		
16	V16	568630 non-null float64	ŀ		
17	V17	568630 non-null float64	ŀ		
18	V18	568630 non-null float64	ŀ		
19	V19	568630 non-null float64	ŀ		
20	V20	568630 non-null float64	ŀ		
21	V21	568630 non-null float64	ŀ		
22	V22	568630 non-null float64	ŀ		
23	V23	568630 non-null float64	ŀ		
24	V24	568630 non-null float64	ŀ		
25	V25	568630 non-null float64	ŀ		
26	V26	568630 non-null float64	ŀ		
27	V27	568630 non-null float64	ŀ		
28	V28	568630 non-null float64	ŀ		
29	Amount	568630 non-null float64	ŀ		
30	Class	568630 non-null int64			
dtypes: float64(29), int64(2)					
momony usage: 124 F MP					

memory usage: 134.5 MB

df.describe()

	id	V1	V2	V3	V4	V5	V6	V7
count	568630.000000	5.686300e+05	5.686300e+05	5.686300e+05	5.686300e+05	5.686300e+05	5.686300e+05	5.686300e+05
mean	284314.500000	-5.638058e-17	-1.319545e-16	-3.518788e-17	-2.879008e-17	7.997245e-18	-3.958636e- 17	-3.198898e-17
std	164149.486122	1.000001e+00	1.000001e+00	1.000001e+00	1.000001e+00	1.000001e+00	1.000001e+00	1.000001e+00
min	0.000000	-3.495584e+00	-4.996657e+01	-3.183760e+00	-4.951222e+00	-9.952786e+00	-2.111111e+01	-4.351839e+00
25%	142157.250000	-5.652859e-01	-4.866777e-01	-6.492987e-01	-6.560203e-01	-2.934955e-01	-4.458712e- 01	-2.835329e-01
50%	284314.500000	-9.363846e-02	-1.358939e-01	3.528579e-04	-7.376152e-02	8.108788e-02	7.871758e-02	2.333659e-01
75%	426471.750000	8.326582e-01	3.435552e-01	6.285380e-01	7.070047e-01	4.397368e-01	4.977881e-01	5.259548e-01
max	568629.000000	2.229046e+00	4.361865e+00	1.412583e+01	3.201536e+00	4.271689e+01	2.616840e+01	2.178730e+02

df.dtypes

id	int64
V1	float64
V2	float64
V3	float64
V4	float64
V5	float64
V6	float64
V7	float64
V8	float64
V9	float64
V10	float64
V11	float64
V12	float64
V13	float64
V14	float64
V15	float64
V16	float64
V17	float64
V18	float64
V19	float64
V20	float64
V21	float64
V22	float64
V23	float64

```
V24 float64
V25 float64
V26 float64
V27 float64
V28 float64
Amount float64
Class int64
dtype: object
```

df.tail()

3/5/24, 9:58 PM

```
id
                   V1
                            V2
                                     V3
                                              ٧4
                                                       ۷5
                                                                ۷6
                                                                         V7
                                                                                  ٧8
                                                                                           ۷9
                                                                                                   V10
568625
      568625
              -0.833437
                       0.061886
                               -0.899794
                                         0.904227
                                                 -1.002401
                                                           0.481454 -0.370393
                                                                             0.189694
                                                                                     -0.938153 -1.161847
568626
      568626
             -0.670459
                      -0.202896 -0.068129
                                        -0.267328
                                                 -0.133660
                                                           0.237148 -0.016935
                                                                            -0.147733
                                                                                      0.483894 -0.210817 0.
568627
      568627
              -0.311997 -0.004095
                                0.137526
                                        -0.035893
                                                 -0.042291
                                                           0.121098 -0.070958
                                                                            -0.019997
                                                                                     -0.122048
                                                                                              -0.144495
568628
      568628
              0.636871 -0.516970 -0.300889
                                        -0.144480
                                                  0.131042 -0.294148
                                                                    0.580568 -0.207723
                                                                                      0.893527 -0.080078 -0.
568629
      568629
             0.253971 -0.513556 0.
```

```
df.columns
```

```
print("****** Amount Lost due to fraud:********\n")
print("Total amount lost to fraud")
print(df.Amount[df.Class == 1].sum())
print("Mean amount per fraudulent transaction")
print(df.Amount[df.Class == 1].mean().round(4))
print("Compare to normal transactions:")
print("Total amount from normal transactions")
print(df.Amount[df.Class == 0].sum())
print("Mean amount per normal transactions")
print(df.Amount[df.Class == 0].mean().round(4))
     ****** Amount Lost due to fraud: *******
     Total amount lost to fraud
     3428157045.3500004
     Mean amount per fraudulent transaction
     12057.6018
     Compare to normal transactions:
     Total amount from normal transactions
     3419261324.3999996
     Mean amount per normal transactions
     12026.3135
```

observations

- 1)we have 568630 rows of obervations having 31 columns
- 2)'class' is our output feature indicating whether the transaction is "Fraudulent" (1) or "Not Fraudulent" (0)
- 3)"v1-v28" anonymized features representing various transaction attributes.
- 4)dtype(data type) of all the features looks perfects

DATA PREPROCESSING

```
# Checking null values in the dataset
print(df.isnull().sum())

id      0
V1      0
V2      0
V3      0
```

```
3/5/24, 9:58 PM
         ٧4
                    0
         V5
                    0
         V6
                    0
         V7
                    0
         ٧8
                    0
         V9
                    0
                    0
         V10
         V11
                    0
         V12
                    0
                    0
         V13
                    0
         V14
         V15
                    0
                    0
         V16
         V17
                    0
         V18
                    0
         V19
                    0
         V20
                    0
         V21
                    0
         V22
                    0
                    0
         V23
         V24
                    0
                    0
         V25
         V26
                    0
         V27
                    0
                    0
         V28
                    0
         Amount
         Class
                    0
         dtype: int64
   # Checking duplicate values in the dataset
   df.duplicated().any()
         False
```

Observation- No missing values No duplicates

```
plt.figure(figsize=(20, 40))
for i, col in enumerate(df.columns):
    plt.subplot(7, 5, i+1)
    sns.boxplot(df[col])
plt.show()
```


ML16.ipynb - Colaboratory

- # Summary of the boxplots
- # The boxplots show the distribution of each numerical variable in the dataset.
- # The median is represented by the line in the middle of the box.
- # The upper and lower quartiles are represented by the top and bottom of the box, respectively.
- # The whiskers extend to the maximum and minimum values of the data, excluding outliers.
- # Outliers are represented by individual points.
- # The boxplots show that the numerical variables have a wide range of values.
- # Some variables, such as 'Amount', 'Time', and 'V1', have a few outliers.
- # Other variables, such as 'V2', 'V3', and 'V4', have no outliers.
- # The boxplots can be used to identify potential outliers and to compare the distributions of different variables.

Double-click (or enter) to edit

```
# Doing pairplots would take massive amount of time therefore we will just do a heatmap in python
plt.figure(figsize=(20, 20))
sns.heatmap(df.corr(), annot=True, annot_kws={'size':5})
plt.show()
```


- 1.00


```
newdf = df.drop(columns=['V1', 'V3', 'V6', 'V7', 'V9', 'V10', 'V12', 'V14', 'V16', 'V17', 'V18'])
plt.figure(figsize=(20, 20))
sns.heatmap(newdf.corr(), annot=True, annot_kws={'size':5})
plt.show()
```


- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

- -0.4

EDA (Exploratory Data Analysis)

```
# Observing the Distribution of Feature V1
plt.figure(figsize=(9, 4.5))
sns.histplot(df['V1'], bins=25, kde=True, color='darkblue')
plt.title('Distribution of Feature V1')
plt.xlabel('V1 Value')
plt.ylabel('Frequency')
plt.show()
```



```
# Observing the Distribution of Feature V9
plt.figure(figsize=(9, 4.5))
sns.histplot(df['V9'], bins=25, kde=True, color='green')
plt.title('Distribution of Feature V9')
plt.xlabel('V9 Value')
plt.ylabel('Frequency')
plt.show()
```



```
# Observing the Distribution of Feature V17
plt.figure(figsize=(9, 4.5))
sns.histplot(df['V17'], bins=25, kde=True, color='darkblue')
plt.title('Distribution of Feature V17')
plt.xlabel('V17 Value')
plt.ylabel('Frequency')
plt.show()
```



```
# Observing the Distribution of Feature V26
plt.figure(figsize=(9, 4.5))
sns.histplot(df['V26'], bins=25, kde=True, color='green')
plt.title('Distribution of Feature V26')
plt.xlabel('V26 Value')
plt.ylabel('Frequency')
plt.show()
```



```
# Observing the Amount Disribution
sns.kdeplot(data= df['Amount'],color = 'blue', fill=True)
plt.title('Amount Distribution',size=14)
plt.show()
```



```
# Observing the Disribution of the Feature 'Class'
colors = ['blue', 'green']
explode = [0.1, 0]
df['Class'].value_counts().plot.pie(
        explode=explode,
        autopct='%3.1f%%',
        shadow=True,
        legend=True,
        startangle=45,
        colors=colors,
        wedgeprops=dict(width=0.4)
)
plt.title('Distribution of Class',size=14)
plt.show()
```

Distribution of Class


```
# Observing the Disribution of the Feature 'Class'
plt.figure(figsize=(8, 6))
df['Class'].value_counts().plot(kind='bar', color=['blue', 'green'])
plt.title('Distribution of Classes (0: Non-Fraudulent, 1: Fraudulent)')
plt.xlabel('Class')
plt.ylabel('Count')
plt.xticks([0, 1], ['Non-Fraudulent', 'Fraudulent'])
plt.show()
```



```
dtype='object')
# Pulling the least correlated feature to the feature 'Class'
cols_negative = corrmat.nsmallest(15, 'Class')['Class'].index
cols negative
     Index(['V14', 'V12', 'V3', 'V10', 'V9', 'V16', 'V1', 'V7', 'V17', 'V6', 'V18',
            'V5', 'V24', 'V13', 'V15'],
           dtype='object')
# Joining the two above variables in one variable 'Credit card'
Credit card = []
for i in cols:
    Credit_card.append (i)
for j in cols_negative:
    Credit_card.append(j)
Credit card
     ['Class',
      'id',
      'V4',
      'V11',
      'V2',
      'V19',
      'V27',
      'V20',
      'V8',
      'V21',
      'V28',
      'V26',
      'V25',
      'V22',
      'V23',
      'V14',
      'V12',
      'V3',
      'V10',
      'V9',
      'V16',
      'V1',
      '۷7',
      'V17',
      'V6',
      'V18',
```

```
3/5/24, 9:58 PM
          'V5',
         'V24',
         'V13',
          'V15']
   # Observing the Correlation between features using a heatmap
   corrmat = df[Credit_card].corr()
   sns.set(font_scale=1.15)
   f, ax = plt.subplots(figsize=(12,12))
   hm = sns.heatmap(corrmat,
                    cmap='PuBu',
                    cbar=True,
                     annot=True,
                    square=True,
                    fmt='.2f',
                    annot_kws={'size': 7},
                    yticklabels=corrmat.columns,
```

xticklabels=corrmat.columns)

-0.75

Split Data into Test and Train

Ü

```
# Split the data into features (X) and target (y).
x = df.drop(['id','Class'],axis=1)
y = df.Class
# Standardize the feature data (x)
scaler = StandardScaler()
X = scaler.fit transform(x)
print(X)
    [[-0.2606478 -0.46964845 2.49626608 ... -0.08123011 -0.15104549
      0.85844694]
     -0.79636931]
     [-0.26027161 -0.94938461 1.72853778 ... -0.30025804 -0.24471823
     -1.37701093]
     [-0.31199739 -0.00409479 0.13752559 ... -0.48753975 -0.26874127
      1.66640101]
     [ 0.63687054 -0.51696952 -0.30088853 ... -0.15926926 -0.07625057
     -0.27185346]
     1.3659619 ]]
# Split the data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42,stratify=y)
```

Decision Tree Classifier

```
# Create a Decision Tree model
from sklearn.tree import DecisionTreeClassifier
decision tree model = DecisionTreeClassifier(random state=42)
# Train the model
decision tree model.fit(X train, y train)
               DecisionTreeClassifier
     DecisionTreeClassifier(random_state=42)
# Predictions on the test set
y_pred = decision_tree_model.predict(X_test)
print("Decision Tree")
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
print("\nClassification Report:\n", classification_report(y_test, y_pred))
print("\nAccuracy Score:", accuracy score(y test, y pred)*100,"%")
     Decision Tree
     Confusion Matrix:
      [[56683 180]
      [ 73 56790]]
     Classification Report:
                    precision
                                 recall f1-score
                                                    support
                0
                                            1.00
                                                     56863
                        1.00
                                  1.00
                        1.00
                                  1.00
                                            1.00
                1
                                                     56863
         accuracy
                                            1.00
                                                    113726
        macro avg
                        1.00
                                  1.00
                                            1.00
                                                    113726
     weighted avg
                        1.00
                                  1.00
                                            1.00
                                                    113726
```

Accuracy Score: 99.77753548001337 %

Support Vector Machine

```
from sklearn.svm import SVC
clf = SVC()
clf.fit(X_train, y_train)
      ▼ SVC
     SVC()
y_pred_svm = clf.predict(X_test)
print("Support Vector Machine")
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred_svm))
print("\nClassification Report:\n", classification_report(y_test, y_pred_svm))
print("\nAccuracy Score:", accuracy_score(y_test, y_pred_svm)*100,"%")
     Support Vector Machine
     Confusion Matrix:
      [[56654 209]
      [ 122 56741]]
     Classification Report:
                    precision
                                 recall f1-score
                                                     support
                0
                        1.00
                                  1.00
                                            1.00
                                                      56863
                        1.00
                                  1.00
                                            1.00
                                                      56863
         accuracy
                                            1.00
                                                     113726
                        1.00
                                  1.00
                                            1.00
                                                     113726
        macro avg
     weighted avg
                        1.00
                                  1.00
                                            1.00
                                                     113726
```

```
Accuracy Score: 99.70894958057085 %
Support_Vector_Machine = accuracy_score(y_test, y_pred_svm)*100
```

Logistic Regression

```
from sklearn.linear model import LogisticRegression
reg = LogisticRegression()
reg.fit(X_train, y_train)
     ▼ LogisticRegression
     LogisticRegression()
y_pred_reg = reg.predict(X_test)
print("Logistic Regression Model")
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred_reg))
print("\nClassification Report:\n", classification report(y test, y pred reg))
print("\nAccuracy Score:", accuracy score(y test, y pred reg)*100,"%")
     Logistic Regression Model
     Confusion Matrix:
      [[55593 1270]
      [ 2715 54148]]
     Classification Report:
                    precision
                                 recall f1-score
                                                     support
                0
                        0.95
                                  0.98
                                             0.97
                                                      56863
                1
                        0.98
                                  0.95
                                            0.96
                                                      56863
         accuracy
                                            0.96
                                                     113726
                                             0.96
                                                     113726
        macro avg
                        0.97
                                  0.96
     weighted avg
                        0.97
                                  0.96
                                             0.96
                                                     113726
```

```
Accuracy Score: 96.49596398360973 %
Logistic_Regression = accuracy_score(y_test, y_pred_reg)*100
```

Gradient Boosting Classifier(XGBoost)

```
!pip3 install xgboost
     Requirement already satisfied: xgboost in /usr/local/lib/python3.10/dist-packages (2.0.3)
     Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from xgboost) (1.23.5)
     Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from xgboost) (1.11.4)
from xgboost import XGBClassifier
xgb = XGBClassifier()
xgb.fit(X_train, y_train)
                                      XGBClassifier
     XGBClassifier(base score=None, booster=None, callbacks=None,
                   colsample_bylevel=None, colsample bynode=None,
                   colsample bytree=None, device=None, early stopping rounds=None,
                   enable categorical=False, eval metric=None, feature types=None,
                   gamma=None, grow policy=None, importance type=None,
                   interaction constraints=None, learning rate=None, max bin=None,
                   max_cat_threshold=None, max_cat_to_onehot=None,
                   max_delta_step=None, max_depth=None, max_leaves=None,
                   min child weight=None, missing=nan, monotone constraints=None,
```

multi_strategy=None, n_estimators=None, n_jobs=None,
num parallel tree=None, random state=None, ...)

```
y pred xgb = xgb.predict(X test)
```