"Электромагнитный поезд"

Сафиуллин Роберт 785 группа 13 января 2019 г.

1 Устройство

Рассчитаем силы, действующие в установке:

Сила сцепления магнитов с $d=10\,$ mm, $h=5\,$ mm: $2.66kg \Rightarrow 26.1*10^5\,$ дин \Rightarrow магнитный момент неодимового магнита найдем по формуле:

$$P_m = \sqrt{\frac{F*d^4}{6}} = 164.9cm^2$$

Поле соленоида $B = \frac{2\pi In}{c}(\cos\beta - \cos\alpha)$

Учитывая, что n=3.5 витка/сm, длина соленоида l=4.2cm, а радиус r=0.85 cm, найдем поле у торца:

$$B_1 =$$

А также в центре неодимового магнита $(\cos \beta = \frac{r}{l + \frac{h}{2}})$

 $B_2 =$

2 Цель работы:

изучение вольт-ампернйо характеристики нормального тлеющего разряда; исследование релаксационного генератора на стабилитроне. стабилитрон СГ-2, амперметр, вольтметр, магазин сопротивлений, магазин емкостей, источник питания, осциллограф, генератор звуковой частоты

3 Экспериментальная установка:

4 Ход работы

I: Характеристика стабилитрона

1) Собрали первую схему 2) Сняли вольт-амперную характеристику. Результаты занессли в таблицу:

V, B	I, *0.25 mA	V_z , B	I_z , *0.25 mA	V_g , B	I_g , *0.25 mA
87	11	96.9	18	75	2.3
84.7	10	97	18.5	75.7	2.2
82	8	97.03	19.3	•	•
81.4	7	•	•	•	•
79.7	6	•	•	•	•
78.2	5	•	•	•	•
77.2	4	•	•	•	•
75.9	2.5	•	•	•	•
97	14	•	•	•	•
93	15	•	•	•	•
94	16	•	•	•	•
89	12	•	•	•	•
85	10	•	•	•	•
84	9	•	•	•	•

1) Снимем зависимость отклонения зайчика х от сопротивления магазина, при постоянном положении делителя $\frac{R_1}{R_2} = \frac{1}{1000}$. Результаты занесем в таблицу, рассчитав ток по формуле: $I = \frac{R_1 U_0}{R_2 (R + R_0)}$, $R_0 = 610~\Omega$:

x, mm	$R, \kappa\Omega$	$I, A*10^{-9}$
12	50	2.96
25	30	4.9
51	20	7.3
71	17	8.5
83	16	9.03
98	15	9.6
118	14	10.2
151	13	11
209	12	11.9

Построим график I(х) по этой таблице:

Динамическую постоянную найдем по формуле: $C_I = 2ak$, где арасстояние до гальванометра=132см

$$C_I = 1.14 * 10^{-9} \frac{A*m}{mm}$$

$C_I = 1.14*10^{-9} \frac{A*m}{mm}$ II Определение критического сопротивления

2) Разомкнем К2 и пронаблюдаем свободные колебания рамки. Измерим

декремент затухания разомкнутого гальванометра

	-			
	x_1 , mm	x_2 , mm	T_0 , c	
a.	174	146	2.5	

 $\Theta_0 = 0.18$

- 3) Снова замкнем ключ К2 и подберем наибольшее значение магазина, при котором зайчик не переходит нулевое значение при размыкании К3. Это сопротивление близко к критическому: $R_{kr}=3800\Omega$
- 2)Проведем измерения двух последовательных отклонений зайчика и рассчитаем логарифмический декремент затухания. Результаты занесем в таблицу:

16					
x1, mm	x2, mm	R, Ω	Θ	$1/\Theta^2$	$((R+R_0)^2)*10^6$, Ω^2
67	9	12000	2	0.25	159
89	15	14000	1.78	0.72	213.5
86	17	16000	1.62	0.38	276
82	20	18000	1.41	0.5	346
121	32	20000	1.33	0.56	425
119	32	22000	1.31	0.58	511
117	35	23000	1.2	0.69	557.5
110	38	24000	1.06	0.9	605.6

По данным таблицы построим график зависимости $(1/\Theta^2)((R+R_0)^2)$

Отсюда по формуле $R_{kr}=\frac{1}{2\pi}\sqrt{\frac{\Delta X}{\Delta Y}}-R_0$ получим, что $R_{kr}=3645\Omega$

III Баллистический режим

- 5) Соберем схему: рис.3
- 6)Измерим первый отброс зайчика в режиме свободных колебаний, при установим делиттель в положение $\frac{R_1}{R_2}=\frac{1}{10}$ 7) Снимем зависимость первого отброса зайчика l_{ma} от сопротивления
- магазина. Результаты занесем в таблицу:

l_{max}, mm	R, Ω	$1/(R+R_0)*10^{-6},\Omega^{-1}$
260	∞	0
240	50	19
231	45	27
226	40	25
215	30	33
210	25	39
196	20	48
181	15	64
171	13	73
165	12	79
161	11	86
150	9	104
142	8	116
132	7	131
121	6	151
90	4	217
80	3	277
65	2.5	321
225	35	28

8) По этим данным построим график $l_{max}(1/(R+R_0))$

Отсюда, зная что R_{kr} соответствует значению l=95.5 mm, получим $R_{kr}=3895 \Omega$

Все 3 полученных разными способами значения R_{kr} лежат в диапозоне 3.6-3.9 kΩ

9) Посчитаем баллистическую постоянную в критическом рижеим по формуле:

$$C_{kr}=2arac{R_1}{R_2}rac{CU_0}{L_{max_{kr}}},$$
 где C=2 мк Φ . $C_{kr}=8.3*10^{-9}rac{K*m}{mm}$

 $C_{kr}=2arac{R_1}{R_2}rac{CU_0}{L_{max_{kr}}}$, где ${
m C=2~mk\Phi}$. $C_{kr}=8.3*10^{-9}rac{K*m}{mm}$ Отношение баллистических постоянных: $rac{C_{kr}}{C_I}=7.28$ Время релаксации: ${
m t=}CR_0=0.00122<<<2.5=T_0$