

Human femur fracture: experimental and numerical analysis

Miguel Marco¹, Adrián Arias-Blanco¹, José Ramón Caeiro², Ricardo Larraínzar³, Eugenio Giner⁴, María Henar Miguélez¹

1 Department of Mechanical Engineering, Universidad Carlos III de Madrid 2 Department of Mechanical and Materials Engineering, Universitat Politècnica de València 3 Orthopedic Surgery and Traumatology Service, Complejo Hospitalario Universitario de Santiago de Compostela, 4 Orthopaedics and Trauma Department, Surgery Department, Hospital Universitario Infanta Leonor

- 1. Introduction
- 2. Experimental work
- 3. Numerical models
- 4. Results
- 5. Application to cut-out phenomenon
- 6. Conclusions

- 1. <u>Introduction</u>
- 2. Experimental work
- 3. Numerical models
- 4. Results
- 5. Application to cut-out phenomenon
- 6. Conclusions

- Hip fracture
 - **Very common disease** (1.6 million worldwide in 2000)
 - In-hospital mortality (22% men and 14% women)
 - Surgical revision needed in 12% of patients
 - ▶ Twice as many fractures in 2050 compared to 2018 [Cheung 2022]

- Some parameters in Spain
 - **40.000-50.000** fractures per year (2012)
 - ▶ 75% of patients → women
 - Social cost: 8.365 € per patient, nearly 1.591 M€

Global Women's Health Initiative, 2019

General objective

Analyse the mechanical behaviour of the **human femur** (experimentally and numerically)

Partial goals

- Predict femur fracture morphology in different individuals (patientspecific philosophy)
 - Analyse femur-related data to explain fracture morphology
- Use experimental and numerical methods in a common clinical problem: the cut-out phenomenon

Cracks in bone tissue

Microscopic scale (cortical bone)

Cortical bone structure

- Crack propagation through cement lines
- Non-precise prediction in other works

[Evans, 1976]

Macroscopic scale (human femur)

- Differences in fracture morphology under similar conditions
- Importance of the type of fracture: different surgery and treatment
- Patient-specific

- Types of fractures and their treatments:
 - Intracapsular → whole femoral head prosthesis
 - Extracapsular → union with intramedullary nail

Bloody supply in the femur

- 1. Introduction
- 2. <u>Experimental work</u>
- 3. Numerical models
- 4. Results
- 5. Application to cut-out phenomenon
- 6. Conclusions

Experimental work

Methodology

Experimental work

Donor anthropometric data

Specimen	Side	Sex	Age	Height (cm)	Weight (kg)
#1	Left	Woman	72	158	78
#2	Right	Man	73	170	88

Scan and geometry acquisition

Specimen 2

- Through Computed Tomography (CT)
- ▶ Resolution: $0.2 \times 0.2 \times 0.2 \text{ mm}^3$
- Material distinction via Hounsfield Units

Mechanical tests

Elastic regime tests

Specimen 1

Specimen 2

- 4 loads: 500 N, 1000 N, 1500 N and 2000 N
- 2 uniaxial strain gauges (1 y 2)
- 1 rosette gauge (3)
- 32 measurements points

Mechanical tests

Fracture tests

Specimen 1

- $F_{\text{max}} = 6010 \text{ N}$
- Intracapsular
- Femoral head prosthesis

Specimen 2

- $F_{\text{max}} = 7120 \text{ N}$
- Extracapsular
- Intramedullary nail

Patient-specific treatment

Qualitative analysis of specimens

Global Bone Mineral Density (BMD) analysis

- Greater cortical thickness in specimen 2
- Higher trabecular density in specimen 2
- Weakened neck in specimen 1
- Reinforced neck in specimen 2

Relative parameters to BMD

Parameter	Specimen 1	Specimen 2		
% trabecular	76.5	66.0		
% cortical	23.5	34.0		
$ ho_{ ext{trab,aver}}$ (g/cm3)	1.49	1.54		
$ ho_{ m cort,aver}$ (g/cm3)	2.46	2.54		

- Lower cortical percentage in specimen 1
- Lower trabecular and cortical density in specimen 1

- 1. Introduction
- 2. Experimental work
- 3. <u>Numerical models</u>
- 4. Results
- 5. Application to cut-out phenomenon
- 6. Conclusions

Numerical models

Model characteristics

- Mesh
 - C3D10 elements
 - Diaphysis \rightarrow 3 mm
 - Proximal zone → 2 mm
 - Fracture zone → 1 mm
 - $\sim 0.5 \cdot 10^6$ elements
 - ~1·10⁶ nodes

- Materials properties dependents on BMD
 - ▶ Relationship $\rho \rightarrow E$ (15 materials)

$$ho(g/cm^3) = 0.1259 + 1.1563 \cdot 10^{-3} HU$$

$$E(MPa) = 6850 \cdot \rho^{1.49}$$

	Specimen 1	Specimen 2
$ ho$ (g/cm 3)	0.20 – 2.44	0.21 – 2.47
E (MPa)	650 - 25953	651 - 26304
v	0.3	0.3

Numerical models 15

Fracture modelling

- Strength limits as a function of BMD (patient-specific)
 - Common use of homogeneous criteria

Implementation of heterogeneous damage

▶ Via USDFLD subroutine ($f = \sigma_{\text{max,ppal}} / \sigma_{\text{ult}}$)

Stiffness degradation of elementsAutomated successive analysis

Numerical models 16

- 1. Introduction
- 2. Experimental work
- 3. Numerical models
- 4. Results
- 5. Application to cut-out phenomenon
- 6. Conclusions

Elastic regime

- Relative error = 6%
- Maximum strains located in the upper neck region
- Early indicators of final fracture morphology

Results 18

Maximum load

Analysis of force-displacement curve

8000 -	.		0 0	0				-
7000	Specimen 2	0		0				-
6000		0						-
5000	0				0			-
Carga (N)	0							-
3000	0				0			-
2000 -	0	F_{Rotur}	a = 81	178 N				-
1000	0					0		-
00-							0 (
00	1	² Desplaza	miento	(mm)		5		6

Specimen	Exp. (N)	Num. (N)
#1	6010	6572
#2	7120	8178

Relative errors of **9%** and **15%**

Results 19

9000

Fracture morphology, comparison

Comparison between experimental and numerical fracture path

Results 20

- 1. Introduction
- 2. Experimental work
- 3. Numerical models
- 4. Results
- 5. Application to cut-out phenomenon
- 6. Conclusions

Application to cut-out phenomenon

Cut-out phenomenon: collapse of the intramedullary nail-femur structure

Extracapsular fracture Fixed with intramedullary nail

Cut-out phenomenon

- Gaps and rotations
- Incidence: 5 12%
- Need of revision surgery
- Influence of nail-femoral neck position?
- Most studies are clinical or experimental

Methodology

Experimental tests

Numerical models

Walking and standing up

Left femoral head seen frontwards

- Variation of positions
 - Sagittal plane: ±5 mm
 - Coronal plane: ±5 mm
- Results to analyze
 - Displacements in the femur
 - Torque in the nail
 - Damage in trabecular bone

Results

Validation of the numerical model

- - - - Critical torque according to literature

Results

Damage in trabecular bone

Damaged volume of elements after one load cycle (walking)

- 1. Introduction
- 2. Experimental work
- 3. Numerical models
- 4. Results
- 5. Application to cut-out phenomenon
- 6. Conclusions

Conclusions

- Satisfactory combination of experimental tests and numerical models
- Numerical models are able to predict different femur fracture trajectories → Different surgical treatment
- Fracture path and mechanical behaviour related to the mechanical state of the femur
- Cut-out phenomenon: numerical models help to optimize the intramedullary nail position: torque and trabecular bone damage

Human femur fracture: experimental and numerical analysis

Miguel Marco¹, Adrián Arias-Blanco¹, José Ramón Caeiro², Ricardo Larraínzar³, Eugenio Giner⁴, María Henar Miguélez¹

1 Department of Mechanical Engineering, Universidad Carlos III de Madrid 2 Department of Mechanical and Materials Engineering, Universitat Politècnica de València 3 Orthopedic Surgery and Traumatology Service, Complejo Hospitalario Universitario de Santiago de Compostela, 4 Orthopaedics and Trauma Department, Surgery Department, Hospital Universitario Infanta Leonor