Cross-Validation, Regularization (Reading: <u>15.3</u>, <u>Ch 16</u>)

Learning goals:

- Learn how to perform K-fold CV and its benefits over a held-out validation set.
- Understand L2 and L1
 regularization and how to
 use regularization to manage
 the bias-variance tradeoff.

UC Berkeley Data 100 Summer 2019 Sam Lau

(Slides adapted from Sandrine Dudoit and Joey Gonzalez)

Announcements

- HW5 out, due tomorrow
- HW6 out tomorrow, due Tuesday
- Screencast yesterday got frozen but audio is there
 - If you leave a comment on the YT video with the slide numbers and times I can update the description, e.g.
 - 00:00 Slide 101:30 Slide 2etc.

Cross-Validation

Simple Validation

Assessing Model Risk

Model Selection

- Given models: $f^1_{ heta}(m{x}), f^2_{ heta}(m{x}), \dots, f^m_{ heta}(m{x})$
 - E.g. f¹ is linear, f² is deg 2 poly, f³ is linear with fewer features, etc.
- Fit θ for each model by minimizing the training error.
- Compute validation error for each model.
- Pick the model with the lowest validation error.
 - This is model selection.
- Now, report the test error of chosen model.

K-Fold CV

- Intuition: Validation error will not always be close to true risk. (Sometimes we are just unlucky!)
 - To address, compute multiple validation errors for each model.

K-Fold cross-validation:

- Set aside test set from sample.
- Split sample into K equal sized partitions
- Use K 1 splits to train, last split as validation set.
- Repeat K times, average of K errors is validation error.

K-Fold CV Analysis

- K usually chosen to be 5 or 10.
- Advantages:
 - Makes use of more data for training (data often scarce)
 - Repeated estimates mitigates variance of splits
 - Can create confidence intervals for validation error
- Disadvantages:
 - More computationally expensive

(Demo)

Estimating Risk, Bias, and Variance

- CV lets us see bias and variance!
- Training errors show model bias
- Validation errors show risk, Cls show model variance

Break! Fill out Attendance: http://bit.ly/at-d100

Regularization

Weighty Issues

Large model weights create complicated models.

Idea: Prevent large weights to make simpler models.

Regularization

- **Regularization** (aka shrinkage) adds a penalty for model weights to the loss function.
- MSE loss with L2 regularization:

$$L(\boldsymbol{\theta}, \boldsymbol{X}, \boldsymbol{y}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f_{\theta}(\boldsymbol{X}_i))^2 + \lambda \sum_{j=1}^{p} \theta_j^2$$

Penalty for θ values

λ: Regularization parameter (non-negative)

Same ol' loss as usual

Ridge and Lasso Regression

(Demo)

Ridge regression: linear model with L2 regularization

$$L(\boldsymbol{\theta}, \boldsymbol{X}, \boldsymbol{y}) = \frac{1}{n} \sum_{i=1}^n (y_i - \boldsymbol{X_i} \cdot \boldsymbol{\theta})^2 + \lambda \sum_{j=1}^p \theta_j^2$$

$$\mathbf{L_2 norm}$$

Lasso regression: linear model with L1 regularization

$$L(m{ heta},m{X},m{y}) = rac{1}{n}\sum_{i=1}^n(y_i-m{X_i}\cdotm{ heta})^2 + egin{bmatrix} \lambda\sum_{j=1}^p| heta_j| \ \mathbf{L_1} \ \mathrm{norm} \end{bmatrix}$$

© \$0 BY NC SA

Regularization Parameter

L2
$$L(\boldsymbol{\theta}, \boldsymbol{X}, \boldsymbol{y}) = \frac{1}{n} \sum_{i=1}^n (y_i - f_{\theta}(\boldsymbol{X_i}))^2 + \lambda \sum_{j=1}^p \theta_j^2$$
 L1
$$L(\boldsymbol{\theta}, \boldsymbol{X}, \boldsymbol{y}) = \frac{1}{n} \sum_{i=1}^n (y_i - f_{\theta}(\boldsymbol{X_i}))^2 + \lambda \sum_{j=1}^p |\theta_j|$$

- \bullet λ is the regularization parameter.
- Higher values penalize model weights more.
- Discuss:
 - \circ What happens when $\lambda = 0$?
 - What happens when $\lambda = \infty$?
 - Does this change between L2 and L1 regularization?

What happens when...

- $\lambda = 0$?
 - No regularization, back to linear model
- $\lambda = \infty$?
 - Flat line, all model weights = 0
- Does this change between L2 and L1 regularization?
 - No

Don't regularize the bias

Notice that we don't regularize the bias term!

$$f_{\theta}(\boldsymbol{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_p x_p$$

$$L(\boldsymbol{\theta}, \boldsymbol{X}, \boldsymbol{y}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f_{\theta}(\boldsymbol{X}_i))^2 + \lambda \sum_{j=1}^{p} \theta_j^2$$

- Discuss: why not?
 - Bias term doesn't add complexity to model

Normalize Data Before Using Regularization

$$L(\boldsymbol{\theta}, \boldsymbol{X}, \boldsymbol{y}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f_{\theta}(\boldsymbol{X}_i))^2 + \lambda \sum_{j=1}^{p} \theta_j^2$$

- Before using regularization, normalize data
 - Subtract mean and scale data to lie between -1 and 1.
- Discuss: what happens if we don't do this?
 - Artificial penalty on features with small numbers

Exercise to take home:

 Prove that the stochastic gradient descent update rule for ridge regression is:

$$\boldsymbol{\theta}^{(t+1)} = (1 - 2\lambda\alpha)\boldsymbol{\theta}^{(t)} + 2\alpha(y_i - \boldsymbol{\theta} \cdot \boldsymbol{x})(\boldsymbol{x})$$

(Lasso is a bit tricker but also doable.)

Why two kinds of regularization?

- Intuitive, hand-wavy explanation:
- L2 regularization typically has all non-zero weights.
 - Makes sense when we think many small factors contribute to outcome.
- L1 regularization will set some model weights = 0 depending on how big λ is.
 - L1 regularization lets us perform feature selection.
 - Makes sense when we think a few major factors contribute to outcome.

A more sophisticated explanation

Suppose we have a linear model with two parameters and no intercept term.

As we tweak the two parameters, loss changes.

Without regularization, we just pick θ .

A more sophisticated explanation

Regularization balances loss with the regularization penalty.

For L2 regularization, we have circular contours for the penalty. Why?

A more sophisticated explanation

For L1 regularization, we have diamond-shaped contours for the penalty. Why?

Notice that this sets one parameter = 0!

This idea extends to multiple dimensions.

A tuning knob for bias-variance

- Regularization gives us yet another way to manage the bias-variance tradeoff.
 - \circ Increase λ = more bias, less variance
 - \circ Decrease λ = less bias, more variance
- How do we pick λ?
 - Cross-validation!

Summary

- K-Fold cross-validation lets us estimate model bias, model variance, and overall risk.
 - We use CV to perform model and feature selection.
- Regularization gives us a way to add complexity to our models while avoiding overfitting.
 - We use CV to tune the regularization amount.