Two sided matching

- More widely used because of its application domain.

Examples:

- Marriage and od dating markets
- Medical residencies
- University Student matching (IITJEE seat allocation)
- Job market: Employers and Candidates

We will refer to this setting as marriage problem

M: Set of men

W: set of Women

For simplicity, we assume |M|=|W|, but this is not necessary. The nesults extend to more general settings too.

Every m

M has a strict preference Prover W.

Similarly WEM has a strict preference Pw over M.

a Pmy () m strictly prefero a over y, x,y EW.

A matching is a bijective mapping $\mu: M \to W$.

 $\mu(m)$: woman matched to m

μ'(w): man matched to w.

Stable marriage problem

Stability in this context is slightly different from the one-sided matching model.

Example:		$M = \{2m, m_2\}$		$, w_3 $	$W = \{w_1, w_2, w_3\}$	
	P _m ,	Pm2	_	Pw,	Pw2	Pw ₃
Table 1:	ω,	ω,	ω_1	mi	(m 3)	m,
	ω,	ω ₃	W2	m 3	m_1	m ₃
	ω3	ω_2	ω_3	m 2	m 2	m2

A condidate matching:

$$\mu: \mu(m_1) = \omega_1$$
, $\mu(m_2) = \omega_2$, $\mu(m_3) = \omega_3$
but, $\omega_2 P_{m_3} \mu(m_3)$ and $m_3 P_{w_2} \mu'(w_2)$
 (m_3, ω_2) can move out and block this matching.

- Defy (Stability): A matching u is pairwise unstable at a preference profile P if I m, m' such that (a) $\mu(m')$ P_m $\mu(m)$ and (b) m $P_{\mu(m')}$ m'
 - · The pair (m, $\mu(m')$) is called a blocking pair of mat P.
 - . If a matching u has no blocking pairs at any a preference profile P, then it is called a pairwise stable matching at P.

Questiono:

1) Existence of pairwise stable matching?

m₂-w₃
m₃-w₂

2) Why pair vise? Contrast with the one-sided matching - a group of people can redistribute their initial endowments and be strictly better off. Group blocking.

Group blocking:

A coalition $S \subseteq (MUW)$ blocks a matching μ at a profile P 'if \exists another matching μ' 1.t.

- (i) for all $m \in M \cap S$, $\mu'(m) \in W \cap S$, and for all $w \in W \cap S$, $\mu'^{-1}(w) \in M \cap S$, and
- (ii) for all $m \in MAS$, $\mu'(m) P_m \mu(m)$ and for all $\omega \in WAS$, $\mu'^{-1}(\omega) P_w \mu^{-1}(\omega)$.

A matching μ is in the cone of as the induced coalitional game at a profile P if no coalition cumblock μ at P.

The following he sult shows that this condition is equivalent to pair wise blocking.

Theorem: A motching is pairwise stable at a profile iff it belongs to the cone at that profile.

Pf: (\(\in\)) direction is trivial. It no coalition of arbitrary size can block the matching, clearly a coalition of size 2 cannot block it - hence pairwise stable.

 \Rightarrow

(⇒) Let µ be pair vise stable at P. For contradiction, assume µ is not in the cone at P.

Then F S ⊆ (MUW) and as a matching û such that

for all m EMMS and w E & WAS with $\hat{\mu}(m)$, $\hat{\mu}'(\omega)$ ES we have $\hat{\mu}(m)$ P_m $\mu(m)$ and $\hat{\mu}'(\omega)$ P_w $\hat{\mu}'(\omega)$.

This means that $\exists m \in \mathbb{S}$ s.t. $\hat{\mu}(m) \in WAS$

This means that I m & s.t. $\hat{\mu}$ (m) \in Was

Call $\hat{\mu}(m) = \omega$, hence

w Pm $\mu(m)$ and $m \not\vdash w \mu'(w)$ pat f thence (m, w) is a blocking pair of μ . This is a contradiction to μ being pair wise stable at f. \Box

Stable from now on will neger to pairwise stability. Answering the other question of existence.

Deferred Acceptance Algorithm (Gale-Shapley)

A stable matching always exist in a marriage market. This is proved via exhibiting an algorithm to find such a metching.

2 versions: men-proposing and women-proposing

One-side of the market proposes the other side, and the proposed agent may accept on neject the offer.

Men-proposing Deferred Acceptance Algorithm

- Step 1: Every man proposes thintop-nanked woman
- Step 2: Every woman who got at least one proposal tentatively keeps the top man among the neceived proposals and nejects the nest.
- Step 3: Every man who was hejected in the last nound, proposed to the top woman who has not rejected him in earlier nounds.
- Step 4: Every woman who gets at least one proposal, including the tentative accepted proposal tentatively keeps the top man and nejects the next. The process is repeated from step 33 & 1 iV each woman gets at least one proposal, at this point the tentative accepts become final accepts.

Example: Construct the men and Women proposing versions intubles illustration: See the app www.facebook.com/adstudmatch/

Remarks:

- · Since each woman is allowed to keep only one proposal, no woman gets more than one man
- · Similarly, if a man's proposal is tentatively accepted he is not allowed to propose more, that ensures one woman is assigned to one man.
- · The algorithm terminates in finite steps
 since the set of woman a man proposes does not increase and strictly decreases for at least one man.
- · This also shows that the algorithm terminates in a matching.

(3-6) Stability and Optimality of The DA algorithm

Thm: At every preference profile, The DA algorithm terminates at a stable matching for that profile.

Proof: Consider men-proposing DA algorithm (similar proof for women-proposing) for a preference profile P.

Let pu be the metching of the DA algorithm.

Assume for contradiction, μ is not stable.

Hence I m EM and us EW s.t. (m, w) is a blocking pair. By assumption, now w \neq \mu(m) \text{ funce and } w \mathbb{P}_m \mu(m). Then in this algorithm m must have proposed w at some nound and the inejected before being matched to \mu(m). But us rejected m since she got a better proposal. Therefore

\(\mu'(w) \) Pw m. This contradicts the fact that (m, w) is a blocking pair.

Questiono:

1) Men-proposing and Women-proposing versions of DA de may lead to different stable matches. Is there a neason to prefer one?

2) How should we define a desirable critetion for selecting one stable matching?