Diagrams and algebraic expressions at order (2,2;2) in BIMSRG

The ADG Dev Team

February 5, 2021

$$C = [A, B]$$
 with $N_A = 2$, $N_B = 2$ and $N_C = 2$ $d_{\text{max}} \equiv \max(d_A, d_B, d_C)$

Valid diagrams: 82 $d_{\rm max} = 1 \ {\rm diagrams:} \ 10$ $d_{\rm max} = 2 \ {\rm diagrams:} \ 72$

Contents

1	Per	ermutators definitions															1																	
2	d_{\max}	ς =	=	1																														1
	d_{max} 2.1 2.2	(\mathcal{C}^0	0.																 														1
	2.2	(\mathcal{I}^2	0.																 														2
	2.3	(\mathcal{I}^{1}	Ι.																 				 										2
	2.4	(\mathcal{I}^0	² .																 														3
	_			_																														
3	d_{max} 3.1	κ =	= [2																														3
	3.1	(\mathcal{I}^0	٠.																 														3
	3.2	(\mathcal{I}^2	0.																 														4
	3.2 3.3	(\mathcal{I}^4	0.																 														5
	3.4	(\mathcal{I}^1	¹ .																 				 										6
	3.5																																	
	3.6	(\mathcal{I}^0	² .																 				 										10
	3.7	(\mathcal{I}^2	² .																 				 										11
	3.8	(\mathcal{I}^1	³ .																 														14
	3.9	(\mathcal{I}^0	4 .																 				 										17

1 Permutators definitions

$$\begin{split} P(k_1/k_2) &= 1 - P_{k_1k_2} \\ P(k_1/k_2k_3) &= 1 - P_{k_1k_2} - P_{k_1k_3} \\ P(k_1/k_2k_3k_4) &= 1 - P_{k_1k_2} - P_{k_1k_3} - P_{k_1k_4} \\ P(k_1k_2/k_3k_4) &= 1 - P_{k_1k_3} - P_{k_1k_4} - P_{k_2k_3} - P_{k_2k_4} + P_{k_1k_3}P_{k_2k_4} + P_{k_2k_3}P_{k_1k_4} \end{split}$$

2
$$d_{\text{max}} = 1$$

2.1 C^{00}

Diagram 1 (+AB):

$$C^{00}(02,20) = \frac{1}{2} \sum_{p_1 p_2} A^{02}_{p_1 p_2} B^{20}_{p_1 p_2}$$
(1)

Diagram 2 (-BA):

$$C^{00}(20,02) = -\frac{1}{2} \sum_{p_1 p_2} B_{p_1 p_2}^{02} A_{p_1 p_2}^{20}$$
(2)

2.2 C^{20}

Diagram 3 (+AB):

$$C^{20}(11,20) = P(k_1/k_2) \sum_{p_1} A_{k_1 p_1}^{11} B_{p_1 k_2}^{20}$$
(3)

Diagram 4 (-BA):

$$C^{20}(20,11) = -P(k_1/k_2) \sum_{p_1} B_{k_1p_1}^{11} A_{p_1k_2}^{20}$$
(4)

2.3 C^{11}

Diagram 5 (+AB):

$$C^{11}(11,11) = \sum_{p_1} A_{k_1 p_1}^{11} B_{p_1 k_2}^{11}$$
(5)

Diagram 6 (+AB):

$$C^{11}(02,20) = \sum_{p_1} A_{k_2 p_1}^{02} B_{p_1 k_1}^{20}$$
(6)

Diagram 7 (-BA):

$$C^{11}(11,11) = -\sum_{p_1} B_{k_1 p_1}^{11} A_{p_1 k_2}^{11}$$

$$\tag{7}$$

Diagram 8 (-BA):

$$C^{11}(20,02) = -\sum_{p_1} B_{k_2 p_1}^{02} A_{p_1 k_1}^{20}$$
(8)

2.4 C^{02}

Diagram 9 (+AB):

$$C^{02}(02,11) = P(k_1/k_2) \sum_{p_1} A_{k_1 p_1}^{02} B_{p_1 k_2}^{11}$$
(9)

Diagram 10 (-BA):

$$C^{02}(11,02) = -P(k_1/k_2) \sum_{p_1} B_{k_1 p_1}^{02} A_{p_1 k_2}^{11}$$
(10)

 $3 \quad d_{\max} = 2$

3.1 C^{00}

Diagram 11 (+AB):

$$C^{00}(04,40) = \frac{1}{24} \sum_{p_1 p_2 p_3 p_4} A^{04}_{p_1 p_2 p_3 p_4} B^{40}_{p_1 p_2 p_3 p_4}$$

$$\tag{11}$$

Diagram 12 (-BA):

$$C^{00}(40,04) = -\frac{1}{24} \sum_{p_1 p_2 p_3 p_4} B^{04}_{p_1 p_2 p_3 p_4} A^{40}_{p_1 p_2 p_3 p_4}$$

$$\tag{12}$$

3.2 C^{20}

Diagram 13 (+AB):

$$C^{20}(02,40) = \frac{1}{2} \sum_{p_1 p_2} A^{02}_{p_1 p_2} B^{40}_{p_1 p_2 k_1 k_2}$$
(13)

Diagram 14 (+AB):

$$C^{20}(13,40) = P(k_1/k_2) \frac{1}{6} \sum_{p_1 p_2 p_3} A^{13}_{k_1 p_1 p_2 p_3} B^{40}_{p_1 p_2 p_3 k_2}$$
(14)

Diagram 15 (+AB):

$$C^{20}(22,20) = \frac{1}{2} \sum_{p_1 p_2} A_{k_1 k_2 p_1 p_2}^{22} B_{p_1 p_2}^{20}$$
(15)

Diagram 16 (-BA):

$$C^{20}(40,02) = -\frac{1}{2} \sum_{p_1 p_2} B^{02}_{p_1 p_2} A^{40}_{p_1 p_2 k_1 k_2}$$

$$\tag{16}$$

Diagram 17 (-BA):

$$C^{20}(40,13) = -P(k_1/k_2) \frac{1}{6} \sum_{p_1 p_2 p_3} B^{13}_{k_1 p_1 p_2 p_3} A^{40}_{p_1 p_2 p_3 k_2}$$

$$\tag{17}$$

Diagram 18 (-BA):

$$C^{20}(20,22) = -\frac{1}{2} \sum_{p_1 p_2} B_{k_1 k_2 p_1 p_2}^{22} A_{p_1 p_2}^{20}$$
(18)

3.3 C^{40}

Diagram 19 (+AB):

$$C^{40}(11,40) = P(k_1/k_2k_3k_4) \sum_{p_1} A_{k_1p_1}^{11} B_{p_1k_2k_3k_4}^{40}$$
(19)

Diagram 20 (+AB):

$$C^{40}(22,40) = P(k_1 k_2 / k_3 k_4) \frac{1}{2} \sum_{p_1 p_2} A_{k_1 k_2 p_1 p_2}^{22} B_{p_1 p_2 k_3 k_4}^{40}$$
(20)

Diagram 21 (+AB):

$$C^{40}(31,20) = P(k_1 k_2 k_3 / k_4) \sum_{p_1} A_{k_1 k_2 k_3 p_1}^{31} B_{p_1 k_4}^{20}$$
(21)

Diagram 22 (-BA):

$$C^{40}(40,11) = -P(k_1/k_2k_3k_4) \sum_{p_1} B_{k_1p_1}^{11} A_{p_1k_2k_3k_4}^{40}$$
(22)

Diagram 23 (-BA):

$$C^{40}(40,22) = -P(k_1k_2/k_3k_4)\frac{1}{2}\sum_{p_1p_2}B_{k_1k_2p_1p_2}^{22}A_{p_1p_2k_3k_4}^{40}$$
(23)

Diagram 24 (-BA):

$$C^{40}(20,31) = -P(k_1 k_2 k_3 / k_4) \sum_{p_1} B_{k_1 k_2 k_3 p_1}^{31} A_{p_1 k_4}^{20}$$
(24)

3.4 C^{11}

Diagram 25 (+AB):

$$C^{11}(02,31) = \frac{1}{2} \sum_{p_1 p_2} A^{02}_{p_1 p_2} B^{31}_{p_1 p_2 k_1 k_2}$$
 (25)

Diagram 26 (+AB):

$$C^{11}(13,31) = \frac{1}{6} \sum_{p_1 p_2 p_3} A_{k_1 p_1 p_2 p_3}^{13} B_{p_1 p_2 p_3 k_2}^{31}$$
 (26)

Diagram 27 (+*AB*):

$$C^{11}(04,40) = \frac{1}{6} \sum_{p_1 p_2 p_3} A_{k_2 p_1 p_2 p_3}^{04} B_{p_1 p_2 p_3 k_1}^{40}$$
(27)

Diagram 28 (+*AB*):

$$C^{11}(13,20) = \frac{1}{2} \sum_{p_1 p_2} A^{13}_{k_1 k_2 p_1 p_2} B^{20}_{p_1 p_2}$$
(28)

Diagram 29 (-BA):

$$C^{11}(31,02) = -\frac{1}{2} \sum_{p_1 p_2} B_{p_1 p_2}^{02} A_{p_1 p_2 k_1 k_2}^{31}$$
(29)

Diagram 30 (-BA):

$$C^{11}(31,13) = -\frac{1}{6} \sum_{p_1 p_2 p_3} B_{k_1 p_1 p_2 p_3}^{13} A_{p_1 p_2 p_3 k_2}^{31}$$

$$\tag{30}$$

Diagram 31 (-BA):

$$C^{11}(40,04) = -\frac{1}{6} \sum_{p_1 p_2 p_3} B_{k_2 p_1 p_2 p_3}^{04} A_{p_1 p_2 p_3 k_1}^{40}$$
(31)

Diagram 32 (-BA):

$$C^{11}(20,13) = -\frac{1}{2} \sum_{p_1 p_2} B_{k_1 k_2 p_1 p_2}^{13} A_{p_1 p_2}^{20}$$
(32)

3.5 C^{31}

Diagram 33 (+AB):

$$C^{31}(11,31) = P(k_1/k_2k_3) \sum_{p_1} A_{k_1p_1}^{11} B_{p_1k_2k_3k_4}^{31}$$
(33)

Diagram 34 (+AB):

$$C^{31}(22,31) = P(k_1 k_2 / k_3) \frac{1}{2} \sum_{p_1 p_2} A_{k_1 k_2 p_1 p_2}^{22} B_{p_1 p_2 k_3 k_4}^{31}$$
(34)

Diagram 35 (+AB):

$$C^{31}(31,11) = \sum_{p_1} A^{31}_{k_1 k_2 k_3 p_1} B^{11}_{p_1 k_4}$$
(35)

Diagram 36 (+AB):

$$C^{31}(02,40) = \sum_{p_1} A_{k_4 p_1}^{02} B_{p_1 k_1 k_2 k_3}^{40}$$
(36)

Diagram 37 (+*AB*):

$$C^{31}(13,40) = P(k_1/k_2k_3) \frac{1}{2} \sum_{p_1p_2} A_{k_1k_4p_1p_2}^{13} B_{p_1p_2k_2k_3}^{40}$$
(37)

Diagram 38 (+*AB*):

$$C^{31}(22,20) = P(k_1 k_2 / k_3) \sum_{p_1} A_{k_1 k_2 k_4 p_1}^{22} B_{p_1 k_3}^{20}$$
(38)

Diagram 39 (-BA):

$$C^{31}(31,11) = -P(k_1/k_2k_3) \sum_{p_1} B_{k_1p_1}^{11} A_{p_1k_2k_3k_4}^{31}$$
(39)

Diagram 40 (-BA):

$$C^{31}(31,22) = -P(k_1k_2/k_3)\frac{1}{2}\sum_{p_1p_2}B_{k_1k_2p_1p_2}^{22}A_{p_1p_2k_3k_4}^{31}$$

$$\tag{40}$$

Diagram 41 (-BA):

$$C^{31}(11,31) = -\sum_{p_1} B_{k_1 k_2 k_3 p_1}^{31} A_{p_1 k_4}^{11}$$

$$\tag{41}$$

Diagram 42 (-BA):

$$C^{31}(40,02) = -\sum_{p_1} B_{k_4 p_1}^{02} A_{p_1 k_1 k_2 k_3}^{40}$$

$$\tag{42}$$

Diagram 43 (-BA):

$$C^{31}(40,13) = -P(k_1/k_2k_3)\frac{1}{2}\sum_{p_1,p_2}B^{13}_{k_1k_4p_1p_2}A^{40}_{p_1p_2k_2k_3}$$

$$\tag{43}$$

Diagram 44 (-BA):

$$C^{31}(20,22) = -P(k_1 k_2 / k_3) \sum_{p_1} B_{k_1 k_2 k_4 p_1}^{22} A_{p_1 k_3}^{20}$$
(44)

3.6 C^{02}

Diagram 45 (+AB):

$$C^{02}(02,22) = \frac{1}{2} \sum_{p_1 p_2} A^{02}_{p_1 p_2} B^{22}_{p_1 p_2 k_1 k_2}$$

$$\tag{45}$$

Diagram 46 (+AB):

$$C^{02}(04,31) = P(k_1/k_2) \frac{1}{6} \sum_{p_1 p_2 p_3} A_{k_1 p_1 p_2 p_3}^{04} B_{p_1 p_2 p_3 k_2}^{31}$$

$$\tag{46}$$

Diagram 47 (+*AB*):

$$C^{02}(04,20) = \frac{1}{2} \sum_{p_1 p_2} A^{04}_{k_1 k_2 p_1 p_2} B^{20}_{p_1 p_2}$$

$$\tag{47}$$

Diagram 48 (-BA):

$$C^{02}(22,02) = -\frac{1}{2} \sum_{p_1 p_2} B_{p_1 p_2}^{02} A_{p_1 p_2 k_1 k_2}^{22}$$

$$\tag{48}$$

Diagram 49 (-BA):

$$C^{02}(31,04) = -P(k_1/k_2) \frac{1}{6} \sum_{p_1 p_2 p_3} B_{k_1 p_1 p_2 p_3}^{04} A_{p_1 p_2 p_3 k_2}^{31}$$

$$\tag{49}$$

Diagram 50 (-BA):

$$C^{02}(20,04) = -\frac{1}{2} \sum_{p_1 p_2} B_{k_1 k_2 p_1 p_2}^{04} A_{p_1 p_2}^{20}$$

$$\tag{50}$$

3.7 C^{22}

Diagram 51 (+AB):

$$C^{22}(11,22) = P(k_1/k_2) \sum_{p_1} A_{k_1 p_1}^{11} B_{p_1 k_2 k_3 k_4}^{22}$$
(51)

Diagram 52 (+AB):

$$C^{22}(22,22) = \frac{1}{2} \sum_{p_1 p_2} A_{k_1 k_2 p_1 p_2}^{22} B_{p_1 p_2 k_3 k_4}^{22}$$

$$(52)$$

Diagram 53 (+AB):

$$C^{22}(02,31) = P(k_3/k_4) \sum_{p_1} A_{k_3p_1}^{02} B_{p_1k_1k_2k_4}^{31}$$
(53)

Diagram 54 (+AB):

$$C^{22}(13,31) = P(k_1/k_2)P(k_3/k_4)\frac{1}{2}\sum_{p_1p_2}A^{13}_{k_1k_3p_1p_2}B^{31}_{p_1p_2k_2k_4}$$
(54)

Diagram 55 (+AB):

$$C^{22}(22,11) = P(k_3/k_4) \sum_{p_1} A_{k_1 k_2 k_3 p_1}^{22} B_{p_1 k_4}^{11}$$
(55)

Diagram 56 (+AB):

$$C^{22}(04,40) = \frac{1}{2} \sum_{p_1 p_2} A^{04}_{k_3 k_4 p_1 p_2} B^{40}_{p_1 p_2 k_1 k_2}$$
(56)

Diagram 57 (+AB):

$$C^{22}(13,20) = P(k_1/k_2) \sum_{p_1} A_{k_1 k_3 k_4 p_1}^{13} B_{p_1 k_2}^{20}$$
(57)

Diagram 58 (-BA):

$$C^{22}(22,11) = -P(k_1/k_2) \sum_{p_1} B_{k_1 p_1}^{11} A_{p_1 k_2 k_3 k_4}^{22}$$
(58)

Diagram 59 (-BA):

$$C^{22}(22,22) = -\frac{1}{2} \sum_{p_1 p_2} B_{k_1 k_2 p_1 p_2}^{22} A_{p_1 p_2 k_3 k_4}^{22}$$

$$\tag{59}$$

Diagram 60 (-BA):

$$C^{22}(31,02) = -P(k_3/k_4) \sum_{p_1} B_{k_3p_1}^{02} A_{p_1k_1k_2k_4}^{31}$$

$$\tag{60}$$

Diagram 61 (-BA):

$$C^{22}(31,13) = -P(k_1/k_2)P(k_3/k_4)\frac{1}{2}\sum_{p_1p_2}B^{13}_{k_1k_3p_1p_2}A^{31}_{p_1p_2k_2k_4}$$

$$\tag{61}$$

Diagram 62 (-BA):

$$C^{22}(11,22) = -P(k_3/k_4) \sum_{p_1} B_{k_1 k_2 k_3 p_1}^{22} A_{p_1 k_4}^{11}$$
(62)

Diagram 63 (-BA):

$$C^{22}(40,04) = -\frac{1}{2} \sum_{p_1 p_2} B^{04}_{k_3 k_4 p_1 p_2} A^{40}_{p_1 p_2 k_1 k_2}$$

$$\tag{63}$$

Diagram 64 (-BA):

$$C^{22}(20,13) = -P(k_1/k_2) \sum_{p_1} B_{k_1 k_3 k_4 p_1}^{13} A_{p_1 k_2}^{20}$$
(64)

3.8 C^{13}

Diagram 65 (+AB):

$$C^{13}(11,13) = \sum_{p_1} A_{k_1 p_1}^{11} B_{p_1 k_2 k_3 k_4}^{13}$$

$$(65)$$

Diagram 66 (+AB):

$$C^{13}(02,22) = P(k_2/k_3k_4) \sum_{p_1} A_{k_2p_1}^{02} B_{p_1k_1k_3k_4}^{22}$$
(66)

Diagram 67 (+*AB*):

$$C^{13}(13,22) = P(k_2/k_3k_4) \frac{1}{2} \sum_{p_1p_2} A^{13}_{k_1k_2p_1p_2} B^{22}_{p_1p_2k_3k_4}$$

$$\tag{67}$$

Diagram 68 (+AB):

$$C^{13}(04,31) = P(k_2 k_3/k_4) \frac{1}{2} \sum_{p_1 p_2} A^{04}_{k_2 k_3 p_1 p_2} B^{31}_{p_1 p_2 k_1 k_4}$$
(68)

Diagram 69 (+AB):

$$C^{13}(13,11) = P(k_2 k_3 / k_4) \sum_{p_1} A_{k_1 k_2 k_3 p_1}^{13} B_{p_1 k_4}^{11}$$

$$(69)$$

Diagram 70 (+AB):

$$C^{13}(04,20) = \sum_{p_1} A_{k_2 k_3 k_4 p_1}^{04} B_{p_1 k_1}^{20}$$

$$\tag{70}$$

Diagram 71 (-BA):

$$C^{13}(13,11) = -\sum_{p_1} B_{k_1 p_1}^{11} A_{p_1 k_2 k_3 k_4}^{13}$$

$$\tag{71}$$

Diagram 72 (-BA):

$$C^{13}(22,02) = -P(k_2/k_3k_4) \sum_{p_1} B_{k_2p_1}^{02} A_{p_1k_1k_3k_4}^{22}$$
(72)

Diagram 73 (-BA):

$$C^{13}(22,13) = -P(k_2/k_3k_4)\frac{1}{2}\sum_{p_1,p_2}B^{13}_{k_1k_2p_1p_2}A^{22}_{p_1p_2k_3k_4}$$

$$\tag{73}$$

Diagram 74 (-*BA*):

$$C^{13}(31,04) = -P(k_2k_3/k_4)\frac{1}{2}\sum_{p_1p_2}B^{04}_{k_2k_3p_1p_2}A^{31}_{p_1p_2k_1k_4}$$

$$\tag{74}$$

Diagram 75 (-BA):

$$C^{13}(11,13) = -P(k_2k_3/k_4) \sum_{p_1} B_{k_1k_2k_3p_1}^{13} A_{p_1k_4}^{11}$$
(75)

Diagram 76 (-BA):

$$C^{13}(20,04) = -\sum_{p_1} B_{k_2 k_3 k_4 p_1}^{04} A_{p_1 k_1}^{20}$$

$$\tag{76}$$

3.9 C^{04}

Diagram 77 (+*AB*):

$$C^{04}(02,13) = P(k_1/k_2k_3k_4) \sum_{p_1} A_{k_1p_1}^{02} B_{p_1k_2k_3k_4}^{13}$$
(77)

Diagram 78 (+AB):

$$C^{04}(04,22) = P(k_1 k_2 / k_3 k_4) \frac{1}{2} \sum_{p_1 p_2} A_{k_1 k_2 p_1 p_2}^{04} B_{p_1 p_2 k_3 k_4}^{22}$$

$$(78)$$

Diagram 79 (+*AB*):

$$C^{04}(04,11) = P(k_1 k_2 k_3 / k_4) \sum_{p_1} A_{k_1 k_2 k_3 p_1}^{04} B_{p_1 k_4}^{11}$$
(79)

Diagram 80 (-BA):

$$C^{04}(13,02) = -P(k_1/k_2k_3k_4) \sum_{p_1} B_{k_1p_1}^{02} A_{p_1k_2k_3k_4}^{13}$$
(80)

Diagram 81 (-BA):

$$C^{04}(22,04) = -P(k_1k_2/k_3k_4)\frac{1}{2}\sum_{p_1p_2}B_{k_1k_2p_1p_2}^{04}A_{p_1p_2k_3k_4}^{22}$$
(81)

Diagram 82 (-BA):

$$C^{04}(11,04) = -P(k_1 k_2 k_3 / k_4) \sum_{p_1} B_{k_1 k_2 k_3 p_1}^{04} A_{p_1 k_4}^{11}$$
(82)

