Assignments 3.3-Solution

一、阅读 (Reading)

- 1. 阅读教材.
- 2. 课外阅读:
- Predicate Logic (3) -by Gerard O'Regan.pdf.pdf

二、问题解答 (Problems)

1. 教材 P53: 题 14.

设个体域为全总个体域。令 a: 小王; Y(x): x 是一年级生; L(x): x 是理科生;

W(x): x 是文科生; F(x,y): y 是 x 的辅导员,则推理可以形式化为

前提:

 $\forall x(Y(x) \land \neg W(x) \rightarrow \exists y F(x,y)),$

Y(a), E(a),

 $\forall x(F(a, x) \rightarrow L(x)),$

 $\forall x(L(x) \rightarrow \neg W(x))$

结论:

 $\exists x \exists y (\neg W(x) \land F(x, y))$

- 2. 教材 P53: 题 15 (5, 6).
- (5) 设个体域为全总个体域。 令 M(x): x 是人; C(x): x 长期吸烟; K(x): x 长期酗酒; J(x): x 身体健康; P(x): x 能参加体育比赛,则推理可以形式化为: ∀x((M(x)∧(C(x)∨K(x)))→→J(x)), ∀x((M(x)∧¬J(x))→¬P(x)),∃x(M(x)∧P(x)) ⇒∃x(M(x)∧¬K(x))

(6) 设个体域为全总个体域。

令 M(x): x 是人; K(x): x 是科学工作者; Q(x): x 勤奋; T(x): x 聪明; S(x): x 将获得成功; a: 王大志,则推理可以形式化为:

$$\forall x((M(x)\land K(x))\rightarrow Q(x)), \ \forall x((M(x)\land Q(x)\land T(x))\rightarrow S(x)), \ M(a)\land K(a)\land T(a)\Rightarrow S(a)$$

- 3. Formalize and prove the following three statements(the domain of discourse is universe, 论域为全总域).
- (1) Every computer science major is a logical thinker.

John is a computer science major.

Therefore, there is some logical thinker.

Let C(x) mean "x is a computer science major," let L(x) mean "x is a logical thinker," and let the constant b mean "John."

$$\forall x (C(x) \rightarrow L(x)) \land C (b) \rightarrow \exists x L(x).$$

(2)All computer science majors are people.

Some computer science majors are logical thinkers.

Therefore, some people are logical thinkers.

$$\forall x (C(x) \rightarrow P(x)) \land \exists x (C(x) \land L(x)) \rightarrow \exists x (P(x) \land L(x)).$$

(3) Socrates is a philosopher.

All philosophers are human.

All humans are mortal.

Therefore Socrates is mortal.

$$\forall x(P(x) \rightarrow H(x)) \land \forall x(H(x) \rightarrow M(x)) \land P(s) \rightarrow M(s).$$

4. Consider the following problem. We know that horses are faster than dogs and that there is a greyhound that is faster than every rabbit. We know that Harry is a horse and that Ralph is a rabbit. Our job is to derive the fact that Harry is faster than Ralph.

Problem translated in FOPL:

```
\forall x \ \forall y \ ((Horse(x) \land Dog(y)) \rightarrow Faster(x,y))
\exists y \ (Greyhound(y) \land (\forall z \ Rabbit(z) \rightarrow Faster(y,z)))
Horse(Harry)
Rabbit(Ralph)
```

Derive the following fact:

Faster(Harry, Ralph)

Added axioms to represent commonsense knowledge:

```
\forally (Greyhound(y) \rightarrow Dog(y))
\forallx \forally \forallz ((Faster(x,y) \wedge Faster(y,z)) \rightarrow Faster(x,z))
```

Proving using Proof Theory and a set of inference rules

1.	$\forall x \ \forall y \ Horse(x) \land Dog(y) \longrightarrow Faster(x,y)$	Premise
2.	$\exists y \; Greyhound(y) \land (\forall z \; Rabbit(z) \longrightarrow Faster(y,z))$	Premise
3.	\forall y Greyhound(y) \longrightarrow Dog(y)	Premise
4.	$\forall x \forall y \forall z \; Faster(x,y) \land Faster(y,z) \longrightarrow Faster(x,z)$	Premise
5.	Horse(Harry)	Premise
6.	Rabbit(Ralph)	Premise
7.	$Greyhound(Greg) \wedge (\forall z \; Rabbit(z) \longrightarrow Faster(Greg, z))$	ES (2)
8.	Greyhound(Greg)	T,I (7)
9.	\forall z Rabbit(z) \rightarrow Faster(Greg,z))	T,I (7)

10. Rabbit(Ralph) \rightarrow Faster(Greg,Ralph)	US (9)
11. Faster(Greg,Ralph)	T,I (6),(10)
12. Greyhound(Greg) \rightarrow Dog(Greg)	US (3)
13. Dog(Greg)	T,I (12), (8)
14. Horse(Harry) \land Dog(Greg) \rightarrow Faster(Harry, Greg)	US (1)
15. Horse(Harry) ∧ Dog(Greg)	T,I (5), (13)
16. Faster(Harry, Greg)	T,I (14), (15)
17. Faster(Harry, Greg) \land Faster(Greg, Ralph) \longrightarrow Faster(Harry, Ralph)	US (4)
18. Faster(Harry, Greg) ∧ Faster(Greg, Ralph)	T,I (11), (16)
19. Faster(Harry,Ralph)	T,I (17), (19)

Using Resolution to determine logical entailment

1.	${\neg Horse(x), \neg Dog(y), Faster(x,y)}$	Premise
2.	{Greyhound(Greg)}	Premise
3.	{¬Rabbit(z),Faster(Greg,z)}	Premise
4.	$\{\neg Greyhound(y), Dog(y)\}$	Premise
5.	$\{\neg Faster(x,y), \neg Faster(y,z), Faster(x,z)\}$	Premise
6.	{Horse(Harry)}	Premise
7.	{Rabbit(Ralph)}	Premise
8.	{¬Faster(Harry, Ralph)}	Negated Goal
9.	{Dog(Greg)}	2 4
Э.	(pog(greg))	2, 4
	{¬Dog(y), Faster(Harry, y)}	6, 1
10.		
10. 11.	{¬Dog(y), Faster(Harry, y)}	6, 1
10. 11. 12.	{¬Dog(y), Faster(Harry, y)} {Faster(Harry, Greg)}	6, 1 9, 10
10. 11. 12. 13.	{¬Dog(y), Faster(Harry, y)} {Faster(Harry, Greg)} {Faster(Greg, Ralph)}	6, 1 9, 10 7, 3