## Übungen 3 zur Modellierung und Simulation III (WS 2012/13)

http://www.uni-ulm.de/mawi/mawi-numerik/lehre/wintersemester-20122013/vorlesung-modellierung-und-simulation-3.html

## Aufgabe 3.1 (Potentiale)

Untersuche die Dynamik folgender Systeme mit dem Potentialansatz:

- a)  $\dot{x} = x(1-x)$
- b)  $\dot{x} = -\sinh(x)$
- c)  $\dot{x} = -x^3 + x$

## Aufgabe 3.2 (Numerisches Lösen einer gewöhnlichen DGL)

Eine einfache Methode zum Lösen eines Anfangswertproblems (AWP)

$$\dot{x}(t) = f(x(t)), \qquad x(t_0) = x_0$$

ist das explizite Trapezverfahren

$$x_{i+1} = x_i + \frac{\Delta t_i}{2} (f(x_i) + f(x_i + \Delta t_i f(x_i))), \quad i = 0, 1, 2, \dots$$

- a) Implementiere dieses Verfahren und wende es auf das AWP aus Aufg. 1.2, definiert auf dem Zeithorizont  $[0, t_{\rm end} = 300]$  mit  $g = 9.81~{\rm m\,s^{-1}}, k = 0.73~{\rm kg\,m^{-1}}, m = 120~{\rm kg}$  für eine äquidistante Schrittweite, z. B.  $\Delta t_i = \Delta t = 1$ , an.
- b) Gib den Fehler bzgl. der exaken Lösung

$$v(t) = \frac{\tanh(t\sqrt{(kg)/m} + 1)\sqrt{g}}{\sqrt{k/m}}$$

aus.

c) Zeige, dass das Verfahren die globale Fehlerordnung 2 besitzt, d.h. nach N Zeitschritten gilt

$$|x(t_N) - x_N| \in \mathcal{O}(\Delta t^2).$$

Tipp: Taylorentwicklung.

## Aufgabe 3.3 (Zusatz: Simple Schrittweitensteuerung)

Eine äquidistante Schrittweite mag nicht immer die beste Wahl sein. Eine einfache **Schrittweitensteuerung** geht wie folgt: Sei  $\hat{x}_i$  die diskrete Lösung des Trapezverfahrens (2. Ordnung) im *i.*-ten Schritt und  $x_i$  die diskr. Lösung des im Trapezverfahren verwendeten expliziten Eulers (1. Ordnung). Dann errechnet sich der neue Zeitschritt durch

$$\Delta t_{i+1} = \Delta t_i \cdot \left(\frac{tol}{|\hat{x}_i - x_i|}\right)^{\frac{1}{2}}.$$
 (1)

Implementiere (1) für das explizite Trapezverfahren und untersuche die Effizienz gegenüber einer äquidistanten Diskretisierung für verschiedene Startzeitschritte und Toleranzen tol.