ACM/ICPC Template Manaual

CSL

October 7, 2017

Contents

0	头文	件	1										
1	数学		2										
	1.1	素数	2										
		1.1.1 埃氏筛	2										
		1.1.2 欧拉筛	2										
		1.1.3 分解质因数	3										
		1.1.4 随机素数判定	3										
	1.2	欧拉函数	4										
		1.2.1 求一个数的欧拉函数	4										
		1.2.2 筛法求欧拉函数	4										
	1.3	扩展欧几里得-乘法逆元	5										
		1.3.1 扩展欧几里得	5										
		1.3.2 求 ax+by=c 的解	5										
		1.3.3 乘法逆元	5										
	1.4	模线性方程组	6										
		1.4.1 中国剩余定理	6										
		1.4.2 一般模线性方程组	6										
	1.5	组合数学	7										
		1.5.1 一般组合数	7										
		1.5.2 Lucas 定理	7										
		1.5.3 大组合数	8										
		1.5.4 Polya 定理	9										
	1.6	快速乘-快速幂	9										
	1.7		0										
		2 - - 1//10 - 0 1	0										
		2 T = 1//1	0										
			1										
	1.8		1										
			1										
		• · · · =	1										
		22.1 · · · · · · ·	$\lfloor 2$										
	1.9		13										
2	字符串												
	2.1		16										
	2.2	4//00	16										
	2.3		17										
	2.4	- 21 · · ·	18										
	2.5	后缀数组 2	20										
3	数据	结构 9	2										
	3.1	AH I A	22										
	3.2	14 / 1991-	22										
		. 10414	22										

		3.2.2	单点更新-区间查询.															22
		3.2.3	区间更新-区间查询.															23
	3.3	划分树																25
	3.4	主席树																26
	3.5	RMQ																26
4	图论																	29
4	4.1																	29
	4.2	—	· · · · · · · · · · · · · · · · · · ·															$\frac{29}{29}$
	4.4	取小生4.2.1	Kruskal															$\frac{29}{29}$
		4.2.1	Prim															$\frac{29}{30}$
	4.3																	31
	4.5	取 四 4.3.1	Dijkstra-邻接矩阵 .															31
		4.3.1	,															$\frac{31}{32}$
		-	Dijkstra-优先队列 .															
		4.3.3	Bellman-Ford(可判负	-	/													33
		4.3.4	SPFA															34
	4 4	4.3.5	Floyd 算法															35
	4.4	拓扑排																35
		4.4.1	邻接矩阵															35
		4.4.2	邻接表															36
	4.5		· · · · · · · · · · · · · · · · · · ·															37
		4.5.1	Tarjan 离线															37
	4.6		的双连通分量															38
	4.7		的强联通分量															40
	4.8	二分图																41
		4.8.1	匈牙利算法 (领接矩阵															41
		4.8.2	匈牙利算法 (领接表)															42
		4.8.3	Hopcroft-Carp 算法	•					•			•	 •				•	43
	4.9	2-SAT		•		•	•	 •		 •		•	 ٠	•		•	•	45
5	网络	流																47
	5.1																	47
			EdmondKarp															47
		5.1.2	Dinic															48
		5.1.3	ISAP															50
	5.2		用最大流															53
C) I. &&	п <i>Е</i>																
6	计算		¥/~															55
	6.1		数															55
	6.2	位置关	•															56
		6.2.1	两点间距离															56
		6.2.2	直线与直线的交点 .															56
		6.2.3	判断线段与线段相交															56
		6.2.4	判断线段与直线相交															57
		6.2.5	点到直线距离															57
		6.2.6	点到线段距离															57
		6.2.7	点在线段上															58

6.3	多边形	3
		3
		3
	5.3.3 点在任意多边形内)
)
6.4)
)
)
)
6.5	2 · = · 2 · · · · · · · · · · · · · · ·)
)
-1 1.	t but	_
	D. 17	
7.1		
	-1474-1474	
	7.1.3 最长公共上升子序列 LCIS	3
其他	64	1
0		
8.2	1,47911142	
O. _		
	1.4.114.50	
8.3	76241470	
8.4		
	6.4 3 6.5 6 7.1 5 数 数 数 数 数 数 数 8 8 2 8 8 3 3 4 4 8 5 5 6 6 8 7 8 8 9 9 9 9 1 9 1 1 1 1 1 1 1 1 1 1	6.3.1 多边形面积 58 6.3.2 点在凸多边形内 58 6.3.3 点在任意多边形内 55 6.3.4 判断凸多边形 55 6.4 整数点问题 66 6.4.1 线段上整点个数 66 6.4.2 多边形边上整点个数 66 6.4.3 多边形内整点个数 66 6.5 圆 66 6.5.1 过三点求圆心 66 6.5.1 过三点求圆心 66 7.1.1 最大子序列和 62 7.1.1 最大子序列 LIS 7.1.2 最长上升子序列 LCIS 62 7.1.3 最长公共上升子序列 LCIS 63 其他 64 8.1 矩阵 64 8.1 矩阵 64 8.1.1 矩阵快速幂 64 8.1.1 矩阵快速幂 64 8.1.1 矩阵快速幂 65 8.2.1 高精度 66 8.2.2 完全高精度 66 8.2.2 完全高精度 66 8.3.3 莫队算法 76

0 头文件

```
#include <bits/stdc++.h>
using namespace std;
#define clr(a, x) memset(a, x, sizeof(a))
#define mp(x, y) make_pair(x, y)
#define pb(x) push_back(x)
#define X first
#define Y second
#define fastin \
   ios_base::sync_with_stdio(0); \
   cin.tie(0);
typedef long long 11;
typedef long double ld;
typedef pair<int, int> PII;
typedef vector<int> VI;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + 7;
const double eps = 1e-6;
vim 配置
syntax on
set cindent
set nu
set tabstop = 4
set shiftwidth = 4
set background = dark
map < C - A > ggVG'' + y
map<F5>: call Run()<CR>
func !Run()
   exec "w"
   exec "!g++ -Wall % -o %<"
   exec "!./%<"
endfunc
```

1 数学

1.1 素数

```
1.1.1 埃氏筛
O(n \log \log n) 筛出 maxn 内所有素数 notprime[i] = 0/1 0 为素数 1 为非素数
const int maxn = "Edit":
bool notprime[maxn] = {1, 1}; // 0 && 1 为非素数
void GetPrime()
{
   for (int i = 2; i < maxn; i++)
      if (!notprime[i] && i <= maxn / i) // 筛到√n为止
         for (int j = i * i; j < maxn; j += i)
            notprime[j] = 1;
}
1.1.2 欧拉筛
O(n) 得到欧拉函数 phi[]、素数表 prime[]、素数个数 tot 传入的 n 为函数定义域上界
const int maxn = "Edit";
bool vis[maxn];
int tot, phi[maxn], prime[maxn];
void CalPhi(int n)
   clr(vis, 0);
   phi[1] = 1;
   tot = 0:
   for (int i = 2; i < n; i++)
   {
      if (!vis[i])
      {
         prime[tot++] = i;
         phi[i] = i - 1;
      for (int j = 0; j < tot; j++)
         if (i * prime[j] > n) break;
         vis[i * prime[j]] = 1;
         if (i % prime[j] == 0)
            phi[i * prime[j]] = phi[i] * prime[j];
            break:
         else phi[i * prime[j]] = phi[i] * (prime[j] - 1);
```

```
}
   }
}
1.1.3 分解质因数
函数返回素因数个数数组以 fact[i][0]^{fact[i][1]} 的形式保存第 i 个素因数
ll fact\lceil 100 \rceil \lceil 2 \rceil;
int getFactors(ll x)
   int cnt = 0;
   for (int i = 0; prime[i] <= x / prime[i]; i++)</pre>
   {
      fact[cnt][1] = 0;
      if (x % prime[i] == 0 )
      {
         fact[cnt][0] = prime[i];
         while (x % prime[i] == 0)
             fact[cnt][1]++;
             x /= prime[i];
         }
         cnt++;
   }
if (x != 1)
      fact[cnt][0] = x;
      fact[cnt++][1] = 1;
   return cnt;
}
1.1.4 随机素数判定
O(s \log n) 内判定 2^{63} 内的数是不是素数, s 为测定次数
bool Miller_Rabin(ll n, int s)
   if (n == 2) return 1;
   if (n < 2 | | !(n & 1)) return 0;
   int t = 0;
   ll x, y, u = n - 1;
   while ((u & 1) == 0) t++, u >>= 1;
   for (int i = 0; i < s; i++)
```

```
{
      ll a = rand() % (n - 1) + 1;
      ll x = Pow(a, u, n);
      for (int j = 0; j < t; j++)
         ll y = Mul(x, x, n);
         if (y == 1 \&\& x != 1 \&\& x != n - 1) return 0;
         x = y;
      if (x != 1) return 0;
   return 1;
}
1.2 欧拉函数
1.2.1 求一个数的欧拉函数
ll Euler(ll n)
{
   11 rt = n;
   for (int i = 2; i * i <= n; i++)
      if (n \% i == 0)
         rt -= rt / i;
         while (n % i == 0) n /= i;
   if (n > 1) rt -= rt / n;
   return rt;
}
1.2.2 筛法求欧拉函数
const int N = "Edit";
int phi[N] = \{0, 1\};
void CalEuler()
   for (int i = 2; i < N; i++)
      if (!phi[i]) for (int j = i; j < N; j += i)
             if (!phi[j]) phi[j] = j;
phi[j] = phi[j] / i * (i - 1);
}
```

```
1.3 扩展欧几里得-乘法逆元
1.3.1 扩展欧几里得
ll exgcd(ll a, ll b, ll &x, ll &y)
   11 d = a;
   if (b)
      d = exgcd(b, a \% b, y, x), y -= x * (a / b);
   else
      x = 1, y = 0;
   return d;
}
1.3.2 求 ax+by=c 的解
// 引用返回通解: X = x + k * dx, Y = y - k * dy
// 引用返回的x是最小非负整数解,方程无解函数返回0
#define Mod(a,b) (((a)\%(b)+(b))\%(b))
bool solve(ll a, ll b, ll c, ll &x, ll &y, ll &dx, ll &dy)
   if (a == 0 \&\& b == 0) return 0;
   ll x0, y0;
   11 d = exgcd(a, b, x0, y0);
   if (c % d != 0) return 0;
   dx = b / d;
  dy = a / d;
   x = Mod(x0 * c / d, dx);
   y = (c - a * x) / b;
// y = Mod(y0 * c / d, dy); x = (c - b * y) / a;
   return 1;
}
1.3.3 乘法逆元
// 利用exgcd求a在模m下的逆元,需要保证gcd(a, m) == 1.
ll inv(ll a, ll m)
{
   11 x, y;
   ll d = exgcd(a, m, x, y);
   return d == 1 ? (x + m) % m : -1;
}
// a < m 且 m为素数时,有以下两种求法
ll inv(ll a, ll m)
{
   return a == 1 ? 1 : inv(m \% a, m) * (m - m / a) \% m;
```

```
}
ll inv(ll a, ll m)
   return Pow(a, m - 2, m);
1.4 模线性方程组
1.4.1 中国剩余定理
// X = r[i] (mod m[i]); 要求m[i]两两互质
// 引用返回通解X = re + k * mo;
void crt(ll r[], ll m[], ll n, ll &re, ll &mo)
   mo = 1, re = 0;
   for (int i = 0; i < n; i++) mo *= m[i];
   for (int i = 0; i < n; i++)
      ll x, y, tm = mo / m[i];
     ll d = exgcd(tm, m[i], x, y);
      re = (re + tm * x * r[i]) % mo;
   re = (re + mo) \% mo;
1.4.2 一般模线性方程组
// X = r[i] (mod m[i]); m[i]可以不两两互质
// 引用返回通解X = re + k * mo; 函数返回是否有解
bool excrt(ll r[], ll m[], ll n, ll &re, ll &mo)
{
   11 x, y;
   mo = m[0], re = r[0];
   for (int i = 1; i < n; i++)
      ll d = exgcd(mo, m[i], x, y);
      if ((r[i] - re) % d != 0) return 0;
     x = (r[i] - re) / d * x % (m[i] / d);
      re += x * mo;
     mo = mo / d * m[i];
      re %= mo;
   re = (re + mo) \% mo;
   return 1;
}
```

1.5 组合数学

1.5.1 一般组合数

```
0 \le m \le n \le 1000
const int maxn = 1010;
11 C[maxn][maxn];
void CalComb()
{
   C[0][0] = 1;
   for (int i = 1; i < maxn; i++)
   {
      C[i][0] = 1;
      for (int j = 1; j <= i; j++)
         C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) \% mod;
   }
}
0 \le m \le n \le 10^5, 模 p 为素数
const int maxn = 100010;
11 f[maxn];
void CalFact()
{
   f[0] = 1;
   for (int i = 1; i < maxn; i++)</pre>
      f[i] = (f[i - 1] * i) \% mod;
11 C(int n, int m)
   return f[n] * inv(f[m] * f[n - m] % mod, mod) % mod;
1.5.2 Lucas 定理
// 1 <= n, m <= 10000000000, 1 < p < 100000, p是素数
const int maxp = 100010;
11 f[maxp];
void CalFact(ll p)
{
   f[0] = 1;
   for (int i = 1; i <= p; i++)
      f[i] = (f[i - 1] * i) % p;
Il Lucas(ll n, ll m, ll p)
   ll ret = 1;
```

```
while (n && m)
   {
      11 a = n \% p, b = m \% p;
      if (a < b) return 0;
      ret = (ret * f[a] * Pow(f[b] * f[a - b] % p, p - 2, p)) % p
      n \neq p;
      m /= p;
   return ret;
}
1.5.3 大组合数
// 0 <= n <= 109, 0 <= m <= 104, 1 <= k <= 109+7
vector<int> v;
int dp[110];
11 Cal(int 1, int r, int k, int dis)
   ll res = 1;
   for (int i = l; i <= r; i++)
      int t = i;
      for (int j = 0; j < v.size(); j++)</pre>
         int y = v[j];
         while (t % y == 0)
            dp[j] += dis, t /= y;
      res = res * (ll)t % k;
   return res;
Il Comb(int n, int m, int k)
   clr(dp, 0);
   v.clear();
   int tmp = k;
   for (int i = 2; i * i <= tmp; i++)</pre>
      if (tmp \% i == 0)
      {
         int num = 0;
         while (tmp % i == 0)
             tmp /= i, num++;
         v.pb(i);
```

```
}
   if (tmp != 1) v.pb(tmp);
   ll ans = Cal(n - m + 1, n, k, 1);
   for (int j = 0; j < v.size(); j++)</pre>
      ans = ans * Pow(v[j], dp[j], k) % k;
   ans = ans * inv(Cal(2, m, k, -1), k) % k;
   return ans;
}
1.5.4 Polya 定理
推论: 一共 n 个置换, 第 i 个置换的循环节个数为 gcd(i,n) N*N 的正方形格子, c^{n^2} +
2c^{\frac{n^2+3}{4}}+c^{\frac{n^2+1}{2}}+2c^{n\frac{n+1}{2}}+2c^{\frac{n(n+1)}{2}} 正六面体,\frac{m^8+17m^4+6m^2}{24} 正四面体,\frac{m^4+11m^2}{12}
// 长度为n的项链串用C种颜色染
ll solve(int c, int n)
{
   if (n == 0) return 0;
   11 \text{ ans} = 0;
   for (int i = 1; i <= n; i++)
      ans += Pow(c, __gcd(i, n));
   if (n & 1)
       ans += n * Pow(c, n + 1 >> 1);
       ans += n / 2 * (1 + c) * Pow(c, n >> 1);
   return ans / n / 2;
}
1.6 快速乘-快速幂
ll Mul(ll a, ll b, ll mod)
   11 t = 0;
   for (; b; b >>= 1, a = (a << 1) \% \mod)
      if (b \& 1) t = (t + a) \% mod;
   return t;
Il Pow(ll a, ll n, ll mod)
   ll t = 1;
   for (; n; n >>= 1, a = (a * a \% mod))
       if (n \& 1) t = (t * a % mod);
   return t;
}
```

1.7 莫比乌斯反演

1.7.1 莫比乌斯

```
F(n) = \sum_{d|n} f(d) \Rightarrow f(n) = \sum_{d|n} \mu(d) F(\frac{n}{d}) F(n) = \sum_{n|d} f(d) \Rightarrow f(n) = \sum_{n|d} \mu(\frac{d}{n}) F(d)
ll ans;
const int maxn = "Edit";
int n, x, prime[maxn], tot, mu[maxn];
bool check[maxn];
void calmu()
   mu[1] = 1;
   for (int i = 2; i < maxn; i++)
       if (!check[i])
          prime[tot++] = i, mu[i] = -1;
       for (int j = 0; j < tot; j++)
       {
          if (i * prime[j] >= maxn) break;
          check[i * prime[j]] = true;
          if (i % prime[j] == 0)
             mu[i * prime[j]] = 0;
              break:
          else
              mu[i * prime[j]] = -mu[i];
      }
   }
}
1.7.2 n 个数中互质数对数
// 有n个数 (n<=100000), 问这n个数中互质的数的对数
clr(b, 0);
_{max} = 0;
ans = 0;
for (int i = 0; i < n; i++)
   scanf("%d", &x);
   if (x > \_max) \_max = x;
   b[x]++;
int cnt;
for (int i = 1; i <= _max; i++)
{
```

```
cnt = 0;
   for (ll j = i; j \leftarrow \max; j \leftarrow i)
      cnt += b[j];
   ans += 1LL * mu[i] * cnt * cnt;
printf("%lld\n", (ans - b[1]) / 2);
1.7.3 VisibleTrees
// gcd(x,y)==1的对数 x<=n, y<=m
int main()
{
   calmu();
   int n, m;
   scanf("%d %d", &n, &m);
   if (n < m) swap(n, m);
   11 \text{ ans} = 0;
   for (int i = 1; i <= m; ++i)
   {
      ans += (ll)mu[i] * (n / i) * (m / i);
   printf("%lld\n", ans);
   return 0;
}
1.8 其他
1.8.1 Josephus 问题
int num, m, r
while (cin >> num >> m)
   r = 0;
   for (int k = 1; k \leftarrow num; ++k)
      r = (r + m) \% k;
   cout << r + 1 << endl;
}
1.8.2 数位问题
// n^n最左边一位数
int leftmost(int n)
{
   double m = n * log10((double)n);
   double g = m - (long long)m;
   g = pow(10.0, g);
```

```
return (int)g;
}
// n!位数
int count(ll n)
   return n == 1 ? 1 : (int)ceil(0.5 * log10(2 * M_PI * n) + n *
     log10(n) - n * log10(M_E));
}
1.8.3 FFT
const double PI = acos(-1.0);
//复数结构体
struct Complex
   double x, y; //实部和虚部 x+yi
   Complex(double _x = 0.0, double _y = 0.0)
     X = _X;
     y = _y;
   Complex operator-(const Complex& b) const
      return Complex(x - b.x, y - b.y);
   Complex operator+(const Complex& b) const
      return Complex(x + b.x, y + b.y);
   Complex operator*(const Complex& b) const
      return Complex(x * b.x - y * b.y, x * b.y + y * b.x);
};
* 进行FFT和IFFT前的反转变换。
* 位置i和 (i二进制反转后位置) 互换
* len必须取2的幂
void change(Complex y[], int len)
   for (int i = 1, j = len / 2; i < len - 1; i++)
      if(i < j)
         swap(y[i], y[j]);
```

```
//交换互为小标反转的元素, i<j保证交换一次
      //i做正常的+1, j左反转类型的+1,始终保持i和j是反转的
      int k = len / 2;
      while (j >= k)
      {
         j -= k;
k /= 2;
      if (j < k)
   }
}
/*
* 做FFT
* len必须为2^k形式,
* on==1时是DFT, on==-1时是IDFT
void fft(Complex y[], int len, int on)
   change(y, len);
   for (int h = 2; h <= len; h <<= 1)
      Complex wn(cos(-on * 2 * PI / h), sin(-on * 2 * PI / h));
      for (int j = 0; j < len; j += h)
         Complex w(1, 0);
         for (int k = j; k < j + h / 2; k++)
            Complex u = y[k];
            Complex t = w * y[k + h / 2];
            y[k] = u + t;
            y[k + h / 2] = u - t;
            W = W * Wn;
         }
      }
   if (on == -1)
      for (int i = 0; i < len; i++)
         y[i].x /= len;
}
1.9 相关公式
 1. 约数定理: 若 n = \prod_{i=1}^{k} p_i^{a_i},则
   (a) 约数个数 f(n) = \prod_{i=1}^{k} (a_i + 1)
```

- (b) 约数和 $g(n) = \prod_{i=1}^{k} (\sum_{j=0}^{a_i} p_i^j)$
- 2. 小于 n 且互素的数之和为 $n\varphi(n)/2$
- 3. 若 gcd(n,i) = 1,则 $gcd(n,n-i) = 1(1 \le i \le n)$
- 4. 错排公式: $D(n) = (n-1)(D(n-2) + D(n-1)) = \sum_{i=2}^{n} \frac{(-1)^{k} n!}{k!} = \left[\frac{n!}{e} + 0.5\right]$
- 5. 威尔逊定理: $p \text{ is prime } \Rightarrow (p-1)! \equiv -1 \pmod{p}$
- 6. 欧拉定理: $gcd(a,n) = 1 \Rightarrow a^{\varphi(n)} \equiv 1 \pmod{n}$
- 7. 欧拉定理推广: $gcd(n,p) = 1 \Rightarrow a^n \equiv a^{n\%\varphi(p)} \pmod{p}$
- 8. 素数定理: 对于不大于 n 的素数个数 $\pi(n)$, $\lim_{n\to\infty}\pi(n)=\frac{n}{\ln n}$
- 9. 位数公式: 正整数 x 的位数 N = log10(n) + 1
- 10. 斯特灵公式 $n! \approx \sqrt{2\pi n} \left(\frac{n}{a}\right)^n$
- 11. 设 a > 1, m, n > 0, 则 $gcd(a^m 1, a^n 1) = a^{gcd(m,n)} 1$

$$G = \gcd(C_n^1, C_n^2, ..., C_n^{n-1}) = \begin{cases} n, & n \text{ is prime} \\ 1, & n \text{ has multy prime factors} \\ p, & n \text{ has single prime factor } p \end{cases}$$

$$\gcd(Fib(m),Fib(n))=Fib(\gcd(m,n))$$

- 13. 若 gcd(m,n) = 1, 则:
 - (a) 最大不能组合的数为 m*n-m-n
 - (b) 不能组合数个数 $N = \frac{(m-1)(n-1)}{2}$
- 14. $(n+1)lcm(C_n^0, C_n^1, ..., C_n^{n-1}, C_n^n) = lcm(1, 2, ..., n+1)$
- 15. 若 p 为素数,则 $(x + y + ... + w)^p \equiv x^p + y^p + ... + w^p \pmod{p}$
- 16. 卡特兰数: 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012 $h(0) = h(1) = 1, h(n) = \frac{(4n-2)h(n-1)}{n+1} = \frac{C_{2n}^n}{n+1} = C_{2n}^n C_{2n}^{n-1}$

$$a_{n+m} = \sum_{i=0}^{m-1} b_i a_{n+i} \Rightarrow \begin{pmatrix} a_{n+m} \\ a_{n+m-1} \\ \vdots \\ a_{n+1} \end{pmatrix} = \begin{pmatrix} b_{m-1} & \cdots & b_1 & b_0 \\ 1 & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 1 & 0 \end{pmatrix} \begin{pmatrix} a_{n+m-1} \\ a_{n+m-2} \\ \vdots \\ a_n \end{pmatrix}$$

$$a_{n+m} = \sum_{i=0}^{m-1} b_i a_{n+i} + c \Rightarrow \begin{pmatrix} a_{n+m} \\ a_{n+m-1} \\ \vdots \\ a_{n+1} \\ 1 \end{pmatrix} = \begin{pmatrix} b_{m-1} & \cdots & b_1 & b_0 & c \\ 1 & \cdots & 0 & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \cdots & 1 & 0 & 0 \\ 0 & \cdots & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{n+m-1} \\ a_{n+m-2} \\ \vdots \\ a_n \\ 1 \end{pmatrix}$$

2 字符串

```
2.1 KMP
// 返回y中x的个数
int ne[N];
void initkmp(char x[], int m)
   int i, j;
   j = ne[0] = -1;
   i = 0;
   while (i < m)
      while (j != -1 && x[i] != x[j])
         j = ne[j];
      ne[++i] = ++j;
   }
int kmp(char x[], int m, char y[], int n)
   int i, j, ans;
   i = j = ans = 0;
   initkmp(x, m);
   while (i < n)
   {
      while (j != -1 \&\& y[i] != x[j]) j = ne[j];
      1++;
      j++;
      if (j >= m)
         ans++;
         j = ne[j];
   }
   return ans;
}
2.2 扩展 KMP
//next[i]:x[i...m-1]与x[0...m-1]的最长公共前缀
//extend[i]:y[i...n-1]与x[0...m-1]的最长公共前缀
void pre_EKMP(char x[], int m)
   next[0] = m;
   int j = 0;
   while (j + 1 < m \&\& x[j] == x[j + 1])j++;
```

```
next[1] = j;
   int k = 1;
   for (int i = 2; i < m; i++)
      int p = next[k] + k - 1;
      int L = next[i - k];
      if (i + L 
      else
      {
         j = max(0, p - i + 1);
         while (i + j < m \&\& x[i + j] == x[j])j++;
         next[i] = j;
         k = i;
   }
void EKMP(char x[], int m, char y[], int n)
   pre_EKMP(x, m, next);
   int j = 0;
   while (j < n \& j < m \& x[j] == y[j])j++;
   extend[0] = j;
   int k = 0;
   for (int i = 1; i < n; i++)
      int p = extend[k] + k - 1;
      int L = next[i - k];
      if (i + L extend<math>[i] = L;
      else
         j = max(0, p - i + 1);
         while (i + j < n \&\& j < m \&\& y[i + j] == x[j])j++;
         extend[i] = j;
         k = i;
      }
   }
}
2.3 Manacher 最长回文子串
// 0(n)求解最长回文子串
const int N = "Edit";
char s[N], str[N << 1];</pre>
int p[N << 1];
void Manacher(char s□, int &n)
{
```

```
str[0] = '$';
str[1] = '#';
   for (int i = 0; i < n; i++)
      str[(i << 1) + 2] = s[i];
      str[(i << 1) + 3] = '#';
   n = 2 * n + 2;
   str[n] = 0;
   int mx = 0, id;
   for (int i = 1; i < n; i++)
      p[i] = mx > i ? min(p[2 * id - i], mx - i) : 1;
      for (; str[i - p[i]] == str[i + p[i]]; p[i]++);
      if (p[i] + i > mx)
         mx = p[i] + i;
         id = i;
      }
   }
int solve(char s[])
   int n = strlen(s);
   Manacher(s, n);
   int res = 0;
   for (int i = 0; i < n; i++)
      res = max(res, p[i]);
   return res - 1;
}
2.4 AC 自动机
多模式匹配,返回主串中有多少模式串
const int maxn = "Edit"
struct Trie
{
   int ch[maxn][26], f[maxn], val[maxn];
   int sz, rt;
   int newnode()
   {
      clr(ch[sz], -1), val[sz] = 0;
      return sz++;
   void init() { sz = 0, rt = newnode(); }
```

```
inline int idx(char c) { return c - 'A'; };
void insert(const char* s)
   int u = 0, n = strlen(s);
   for (int i = 0; i < n; i++)
      int c = idx(s[i]);
      if (ch[u][c] == -1) ch[u][c] = newnode();
      u = ch[u][c];
   val[u]++;
void build()
   queue<int> q;
   f[rt] = rt;
   for (int c = 0; c < 26; c++)
      if (~ch[rt][c])
         f[ch[rt][c]] = rt, q.push(ch[rt][c]);
      else
         ch[rt][c] = rt;
  while (!q.empty())
      int u = q.front();
      q.pop();
      for (int c = 0; c < 26; c++)
         if (~ch[u][c])
            f[ch[u][c]] = ch[f[u]][c];
            q.push(ch[u][c]);
         else
            ch[u][c] = ch[f[u]][c];
      }
   }
int query(const char* s)
{
   int u = rt, n = strlen(s);
   int res = 0;
   for (int i = 0; i < n; i++)
      int c = idx(s[i]);
```

```
u = ch[u][c];
         int tmp = u;
         while (tmp != rt)
            res += val[tmp];
            end[tmp] = 0;
            tmp = f[tmp]:
      return res;
   }
};
2.5 后缀数组
//倍增算法构造后缀数组,复杂度O(nlogn)
const int maxn = "Edit";
char s[maxn];
int sa[maxn], t[maxn], t2[maxn], c[maxn];
int rnk[maxn], height[maxn];
//n为字符串的长度,字符集的值为0~m-1
void build_sa(int m, int n)
{
   n++;
   int *x = t, *y = t2;
   //基数排序
   for (int i = 0; i < m; i++) c[i] = 0;
   for (int i = 0; i < n; i++) c[x[i] = s[i]]++;
   for (int i = 1; i < m; i++) c[i] += c[i - 1];
   for (int i = n - 1; \sim i; i--) sa[--c[x[i]]] = i;
   for (int k = 1; k \le n; k \le 1)
   {
      //直接利用SQ数组排序第二关键字
      int p = 0;
      for (int i = n - k; i < n; i++) y[p++] = i;
      for (int i = 0; i < n; i++)
         if (sa[i] >= k) y[p++] = sa[i] - k;
      //基数排序第一关键字
      for (int i = 0; i < m; i++) c[i] = 0;
      for (int i = 0; i < n; i++) c[x[y[i]]]++;
      for (int i = 0; i < m; i++) c[i] += c[i - 1];
      for (int i = n - 1; \sim i; i--) sa[--c[x[y[i]]]] = y[i];
      //根据Sa和Y数组计算新的X数组
      swap(x, y);
      p = 1;
      x[sa[0]] = 0;
```

```
for (int i = 1; i < n; i++)
         x[sa[i]] = y[sa[i - 1]] == y[sa[i]] && y[sa[i - 1] + k]
           == y[sa[i] + k] ? p - 1 : p++;
      if (p >= n) break; //以后即使继续倍增, sa也不会改变, 推出
      m = p; // 下次基数排序的最大值
   }
   n--;
   int^{'}k = 0;
   for (int i = 0; i <= n; i++) rnk[sa[i]] = i;</pre>
   for (int i = 0; i < n; i++)
   {
      if (k) k--;
      int j = sa[rnk[i] - 1];
      while (s[i + k] == s[j + k]) k++;
      height[rnk[i]] = k;
   }
int dp[maxn][30];
void initrmq(int n)
   for (int i = 1; i <= n; i++)
      dp[i][0] = height[i];
   for (int j = 1; (1 << j) <= n; j++)
      for (int i = 1; i + (1 << j) - 1 <= n; i++)
         dp[i][j] = min(dp[i][j - 1],
                    dp[i + (1 << (j - 1))][j - 1]);
int rmq(int 1, int r)
   int k = 0;
   while ((1 << (k + 1)) <= r - l + 1) k++;
   return min(dp[l][k], dp[r - (1 << k) + 1][k]);
// 求两个后缀的最长公共前缀
int lcp(int a, int b)
   a = rnk[a], b = rnk[b];
   if (a > b) swap(a, b);
   a++;
   return rmq(a, b);
}
```

3 数据结构

3.1 树状数组

```
O(\log n) 查询和修改数组的前缀和
// 注意下标应从1开始 n是全局变量
const int maxn = "Edit";
int bit[N], n;
int sum(int x)
{
   int s = 0;
   for (int i = x; i; i -= i \& -i)
     s += bit[i];
   return s;
void add(int x, int v)
   for (int i = x; i \le n; i + i \& -i)
     bit[i] += v;
}
3.2 线段树
3.2.1 声明
#define lson rt << 1 // 左儿子
#define rson rt << 1 | 1 // 右儿子
#define Lson 1, m, lson // 左子树
#define Rson m + 1, r, rson // 右子树
void PushUp(int rt); // 用lson和rson更新rt
void PushDown(int rt[, int m]);
// rt的标记下移, m为区间长度(若与标记有关)
void build(int l, int r, int rt);
// 以rt为根节点,对区间[1, r]建立线段树
void update([...,] int l, int r, int rt)
// rt[l, r]内寻找目标并更新
int query(int L, int R, int l, int r, int rt)
// rt-[1, r]内查询[L, R]
3.2.2 单点更新-区间查询
const int maxn = "Edit";
int sum[maxn << 2];</pre>
void PushUp(int rt)
```

```
sum[rt] = sum[lson] + sum[rson];
void build(int 1, int r, int rt)
   if (l == r)
   {
      scanf("%d", &sum[rt]);
      return;
   } // 建立的时候直接输入叶节点
   int m = (l + r) >> 1;
   build(Lson);
   build(Rson);
   PushUp(rt);
void update(int p, int add, int l, int r, int rt)
   if (l == r)
   {
      sum[rt] += add;
      return;
   int m = (l + r) >> 1;
   if (p <= m) update(p, add, Lson);</pre>
   else update(p, add, Rson);
   PushUp(rt);
int query(int L, int R, int l, int r, int rt)
   if (L <= 1 && r <= R) return sum[rt];</pre>
   int m = (l + r) >> 1, s = 0;
   if (L \le m) s += query(L, R, Lson);
   if (m < R) s += query(L, R, Rson);
   return s;
}
3.2.3 区间更新-区间查询
// seg[rt]用于存放懒惰标记,注意PushDown时标记的传递
const int maxn = "Edit";
int seg[maxn << 2], sum[maxn << 2];</pre>
void PushUp(int rt)
   sum[rt] = sum[lson] + sum[rson];
void PushDown(int rt, int m)
```

```
if (seq[rt] == 0) return;
   seg[lson] += seg[rt];
   seg[rson] += seg[rt];
sum[lson] += seg[rt] * (m - (m >> 1));
   sum[rson] += seg[rt] * (m >> 1);
   seq[rt] = 0;
void build(int 1, int r, int rt)
   seg[rt] = 0;
   if (l == r)
   {
      scanf("%lld", &sum[rt]);
      return;
   int m = (l + r) >> 1;
   build(Lson);
   build(Rson);
   PushUp(rt);
void update(int L, int R, int add, int l, int r, int rt)
   if (L <= 1 && r <= R)
   {
      seg[rt] += add;
      sum[rt] += add * (r - l + 1);
      return;
   PushDown(rt, r - l + 1);
   int m = (l + r) >> 1;
   if (L <= m) update(L, R, add, Lson);</pre>
   if (m < R) update(L, R, add, Rson);</pre>
   PushUp(rt);
int query(int L, int R, int l, int r, int rt)
   if (L <= l && r <= R) return sum[rt];
   PushDown(rt, r - l + 1);
   int m = (l + r) >> 1, ret = 0;
   if (L <= m) ret += query(L, R, Lson);</pre>
   if (m < R) ret += query(L, R, Rson);</pre>
   return ret;
}
```

3.3 划分树

```
#define Lson l, m, dep + 1
#define Rson m + 1, r, dep + 1
int tree[20][maxn]; //表示每层每个位置的值
int sorted[maxn]; //已经排序好的数
int toleft[20][maxn]; //toleft[p][i]表示第i层从1到i有数分入左边
void build(int 1, int r, int dep)
   if (l == r) return;
   int m = (l + r) >> 1, same = m - l + 1; //表示等于中间值而且被分入
      左边的个数
   for (int i = l; i <= r; i++)
      if (tree[dep][i] < sorted[m])</pre>
         same--;
   int lpos = 1;
   int rpos = m + 1;
   for (int i = l; i <= r; i++)
      if (tree[dep][i] < sorted[m])</pre>
         tree[dep + 1][lpos++] = tree[dep][i];
      else if (tree[dep][i] == sorted[m] && same > 0)
         tree[dep + 1][lpos++] = tree[dep][i];
         same--;
      }
      else
         tree[dep + 1][rpos++] = tree[dep][i];
      toleft[dep][i] = toleft[dep][l - 1] + lpos - l;
   build(Lson);
   build(Rson);
}
//查询区间第k小的数
int query(int L, int R, int k, int l, int r, int dep)
{
   if (L == R) return tree[dep][L];
   int m = (l + r) >> 1;
   int cnt = toleft[dep][R] - toleft[dep][L - 1];
   if (cnt >= k)
   {
      int newl = l + toleft[dep][L - 1] - toleft[dep][l - 1];
      int newr = newl + cnt - 1;
      return query(newl, newr, k, Lson);
   }
```

```
else
   {
      int newr = R + toleft[dep][r] - toleft[dep][R];
      int newl = newr - (R - L - cnt);
      return query(newl, newr, k - cnt, Rson);
   }
}
3.4 主席树
// 静态查询区间第k小的值
const int maxn = "Edit";
int a[maxn], rt[maxn];
int cnt;
int lson[maxn << 5], rson[maxn << 5], sum[maxn << 5];</pre>
#define Lson l, m, lson[x], lson[y]
#define Rson m + 1, r, rson[x], rson[y]
void update(int p, int l, int r, int& x, int y)
   lson[++cnt] = lson[y], rson[cnt] = rson[y], sum[cnt] = sum[y]
      + 1, x = cnt;
   if (l == r) return;
   int m = (l + r) >> 1;
   if (p \ll m)
      update(p, Lson);
   else
      update(p, Rson);
}
int query(int l, int r, int x, int y, int k)
   if (l == r) return l;
   int m = (l + r) >> 1;
   int s = sum[lson[y]] - sum[lson[x]];
   if (s >= k)
      return query(Lson, k);
   else
      return query(Rson, k - s);
}
3.5 RMQ
const int maxn = "Edit";
int mmax[maxn][30], mmin[maxn][30];
int a[maxn], n, k;
```

```
void init()
{
   for (int i = 1; i <= n; i++)
   {
      mmax[i][0] = mmin[i][0] = a[i];
   for (int j = 1; (1 << j) <= n; j++)
      for (int i = 1; i + (1 << j) - 1 <= n; i++)
         mmax[i][i] =
            \max(\max\{i\}[j-1], \max\{i+(1<<(j-1))\}[j-1]);
         mmin[i][j] =
            min(mmin[i][j-1], mmin[i+(1 << (j-1))][j-1]);
      }
// op=0/1 返回[l,r]最大/小值
int rmq(int l, int r, int op)
   int k = 0;
   while ((1 << (k + 1)) <= r - l + 1) k++;
   if (op == 0)
      return max(mmax[l][k], mmax[r - (1 << k) + 1][k]);
   return min(mmin[l][k], mmin[r - (1 << k) + 1][k]);</pre>
}
// 二维RMQ
void init()
   for (int i = 0; (1 << i) <= n; i++)
      for (int j = 0; (1 << j) <= m; j++)
         if (i == 0 \&\& j == 0) continue;
         for (int row = 1; row + (1 << i) - 1 <= n; row++)
            for (int col = 1; col + (1 << j) - 1 <= m; col++)
               //当x或y等于0的时候,就相当于一维的RMQ了
               if (i == 0)
                  dp[row][col][i][j] =
                     max(dp[row][col][i][j - 1],
                        dp[row][col + (1 << (j - 1))][i][j - 1]);
               else if (j == 0)
                  dp[row][col][i][j] =
                     max(dp[row][col][i - 1][j],
                        dp[row + (1 << (i - 1))][col][i - 1][j]);
               else dp[row][col][i][j] =
                     max(dp[row][col][i][j - 1],
                        dp[row][col + (1 << (j - 1))][i][j - 1]);
```

```
}
}
int rmq(int x1, int y1, int x2, int y2)
{
    int kx = 0, ky = 0;
    while (x1 + (1 << (1 + kx)) - 1 <= x2) kx++;
    while (y1 + (1 << (1 + ky)) - 1 <= y2) ky++;
    int m1 = dp[x1][y1][kx][ky];
    int m2 = dp[x2 - (1 << kx) + 1][y1][kx][ky];
    int m3 = dp[x1][y2 - (1 << ky) + 1][kx][ky];
    int m4 = dp[x2 - (1 << kx) + 1][y2 - (1 << ky) + 1][kx][ky];
    return max(max(m1, m2), max(m3, m4));
}</pre>
```

4 图论

```
4.1 并查集
const int maxn = "Edit";
int n, fa[maxn], ra[maxn];
void init()
{
   for (int i = 0; i <= n; i++)</pre>
      fa[i] = i;
      ra[i] = 0;
   }
int find(int x)
   return fa[x] != x ? fa[x] = find(fa[x]) : x;
void unite(int x, int y)
   x = find(x);
   y = find(y);
   if (x == y) return;
   if (ra[x] < ra[y])</pre>
      fa[x] = y;
   else
   {
      fa[y] = x;
      if (ra[x] == ra[y]) ra[x]++;
bool same(int x, int y)
   return find(x) == find(y);
}
4.2 最小生成树
4.2.1 Kruskal
vector<pair<int, PII> > G;
void add_edge(int u, int v, int d)
{
   G.pb(mp(d, mp(u, v)));
int Kruskal(int n)
```

```
init(n);
   sort(G.begin(), G.end());
   int m = G.size();
   int num = 0, ret = 0;
   for (int i = 0; i < m; i++)
      pair<int, PII> p = G[i];
      int x = p.Y.X;
      int y = p.Y.Y;
      int d = p.X;
      if (!same(x, y))
         unite(x, y);
         num++;
         ret += d;
      if (num == n - 1) break;
   return ret;
}
4.2.2 Prim
// 耗费矩阵cost[][],标号从0开始,0~n-1
// 返回最小生成树的权值,返回-1表示原图不连通
const int maxn = "Edit";
bool vis[maxn];
int lowc[maxn];
int Prim(int cost[][maxn], int n)
{
   int ans = 0;
   clr(vis, 0);
   vis[0] = 1;
   for (int i = 1; i < n; i++)
      lowc[i] = cost[0][i];
   for (int i = 1; i < n; i++)
      int minc = INF;
      int p = -1;
      for (int j = 0; j < n; j++)
         if (!vis[j] && minc > lowc[j])
         {
            minc = lowc[j];
            p = j;
      if (minc == INF) return -1;
```

```
vis[p] = 1;
      ans += minc;
      for (int j = 0; j < n; j++)
         if (!vis[j] && lowc[j] > cost[p][j])
            lowc[j] = cost[p][j];
   return ans;
}
4.3 最短路
4.3.1 Dijkstra-邻接矩阵
// N为点数最大值 求S到所有点的最短路
// 要求边权值为非负数 模板为有向边
// dis[x]为起点到点x的最短路 inf表示无法走到
// 记得初始化
const int N = "Edit"; // 点数最大值
int G[N][N], dis[N];
bool vis[N];
void init(int n)
{
   clr(G, 0x3f);
void add_edge(int u, int v, int w)
   G[u][v] = min(G[u][v], w);
void Dijkstra(int s, int n)
   clr(vis, 0);
   clr(dis, 0x3f);
   dis[s] = 0;
   for (int i = 0; i < n; i++)
   {
      int x, minDis = INF;
      for (int j = 0; j < n; j++)
      {
         if (!vis[j] && dis[j] <= minDis)</pre>
           x = j;
           minDis = dis[j];
         }
      vis[x] = 1;
      for (int j = 0; j < n; j++)
         dis[j] = min(dis[j], dis[x] + G[x][j]);
```

```
}
}
4.3.2 Dijkstra-优先队列
// pair<权值, 点>
// 记得初始化
const int maxn = "Edit";
typedef pair<int, int> PII;
typedef vector<PII> VII;
VII G[maxn];
int vis[maxn], dis[maxn];
void init(int n)
{
   for (int i = 0; i < n; i++)
      G[i].clear();
void add_edge(int u, int v, int w)
   G[u].pb(mp(w, v));
void Dijkstra(int s, int n)
   clr(vis, 0);
   clr(dis, 0x3f);
   dis[s] = 0;
   priority_queue<PII, VII, greater<PII> > q;
   q.push(mp(dis[s], s));
   while (!q.empty())
   {
      PII t = q.top();
      int x = t.Y;
      q.pop();
      if (vis[x]) continue;
      vis[x] = 1;
      for (int i = 0; i < G[x].size(); i++)
         int y = G[x][i].Y;
         int w = G[x][i].X;
         if (!vis[y] && dis[y] > dis[x] + w)
            dis[y] = dis[x] + w;
            q.push(mp(dis[y], y));
      }
   }
```

```
}
4.3.3 Bellman-Ford(可判负环)
// 求出起点S到每个点X的最短路dis[x]
// 存在负环返回1 否则返回0
// 记得初始化
const int MAX_N = "Edit"; // 点数最大值 const int MAX_E = "Edit"; // 边数最大值
const int INF = 0x3f3f3f3f;
int From[MAX_E], To[MAX_E], W[MAX_E];
int dis[MAX_N], tot;
void init()
{
   tot = 0;
void add_edge(int u, int v, int d)
   From[tot] = u;
   To[tot] = v;
   W[tot++] = d;
bool Bellman_Ford(int s, int n)
   clr(dis, 0x3f);
   dis[s] = 0;
   for (int k = 0; k < n - 1; k++)
      bool relaxed = 0;
      for (int i = 0; i < tot; i++)</pre>
         int x = From[i], y = To[i];
         if (dis[y] > dis[x] + W[i])
             dis[y] = dis[x] + W[i];
             relaxed = 1;
      if (!relaxed) break;
```

for (int i = 0; i < tot; i++)

return 1;

return 0;

}

if (dis[To[i]] > dis[From[i]] + W[i])

4.3.4 SPFA

```
// G[u] = mp(v, w)
// SPFA()返回0表示存在负环
const int maxn = "Edit";
vector<pair<int, int> > G[maxn];
bool vis[maxn];
int dis[maxn];
int inqueue[maxn];
void init(int n)
{
   for (int i = 0; i < n; i++)
      G[i].clear();
void add_edge(int u, int v, int w)
   G[u].pb(mp(v, w));
bool SPFA(int s, int n)
   clr(vis, 0);
   clr(dis, 0x3f);
   clr(inqueue, 0);
   dis[s] = 0;
   queue<int> q; // 待优化的节点入队
   q.push(s);
   while (!q.empty())
   {
      int x = q.front();
      q.pop();
      vis[x] = false;
      for (int i = 0; i < G[x].size(); i++)
         int y = G[x][i].X;
         int w = G[x][i].Y;
         if (dis[y] > dis[x] + w)
            dis[y] = dis[x] + w;
            if (!vis[y])
            {
               q.push(y);
               vis[y] = true;
               if (++inqueue[y] >= n) return 0;
            }
        }
      }
   }
```

```
return 1;
}
4.3.5 Floyd 算法
O(n^3) 求出任意两点间最短路
const int maxn = "Edit";
const int INF = 0x3f3f3f3f;
int G[maxn][maxn];
void init(int n)
{
   clr(G, 0x3f);
   for (int i = 0; i < n; i++)
     G[i][i] = 0;
void add_edge(int u, int v, int w)
   G[u][v] = min(G[u][v], w);
void Floyd(int n)
   for (int k = 0; k < n; k++)
      for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++)
           G[i][j] = min(G[i][j], G[i][k] + G[k][j]);
}
4.4 拓扑排序
4.4.1 邻接矩阵
// 存图前记得初始化
// Ans存放拓排结果, G为邻接矩阵, deg为入度信息
// 排序成功返回1, 存在环返回0
const int maxn = "Edit";
int Ans[maxn]; // 存放拓扑排序结果
int G[maxn][maxn]; // 存放图信息
int deg[maxn]; // 存放点入度信息
void init()
{
   clr(G, 0);
   clr(deg, 0);
   clr(Ans, 0);
void add_edge(int u, int v)
```

```
{
   if (G[u][v]) return;
   G[u][v] = 1;
   deg[v]++;
bool Toposort(int n)
   int tot = 0;
   queue<int> que;
   for (int i = 0; i < n; ++i)
      if (deg[i] == 0) que.push(i);
   while (!que.empty())
   {
      int v = que.front();
      que.pop();
      Ans\lceil tot + + \rceil = v;
      for (int i = 0; i < n; ++i)
         if (G[v][i] == 1)
            if (--deg[i] == 0) que.push(i);
   if (tot < n) return false;</pre>
   return true;
}
4.4.2 邻接表
// 存图前记得初始化
// Ans排序结果, G邻接表, deg入度, map用于判断重边
// 排序成功返回1, 存在环返回0
const int maxn = "Edit";
typedef pair<int, int> PII;
int Ans[maxn];
vector<int> G[maxn];
int deg[maxn];
map<PII, bool> S;
void init(int n)
   S.clear();
   for (int i = 0; i < n; i++) G[i].clear();
   clr(deg, 0);
   clr(Ans, 0);
void add_edge(int u, int v)
   if (S[mp(u, v)]) return;
   G[u].pb(v);
```

```
S[mp(u, v)] = 1;
   deg[v]++;
bool Toposort(int n)
   int tot = 0;
   queue<int> que;
   for (int i = 0; i < n; ++i)
      if (deq[i] == 0) que.push(i);
   while (!que.empty())
   {
      int v = que.front();
      que.pop();
      Ans[tot++] = v;
      for (int i = 0; i < G[v].size(); ++i)
         int t = G[v][i];
         if (--deg[t] == 0) que.push(t);
   if (tot < n) return false;</pre>
   return true;
}
4.5 LCA
4.5.1 Tarjan 离线
//Tarjan离线算法求LCA
const int maxn = "Edit";
int par[maxn]; //并查集
int ans[maxn]; //存储答案
vector<int> G[maxn]; //邻接表
vector<int> query[maxn], num[maxn]; //存储查询信息
bool vis[maxn]; //是否被遍历
void init(int n)
{
   for (int i = 1; i <= n; i++)
      G[i].clear();
      query[i].clear();
      num[i].clear();
      par[i] = i;
      vis[i] = 0;
   }
void add_edge(int u, int v)
```

```
G[u].pb(v);
void add_query(int id, int u, int v)
   query[u].pb(v);
   query[v].pb(u);
   num[u].pb(id);
   num[v].pb(id);
void tarjan(int u)
   vis[u] = 1;
   for (int i = 0; i < G[u].size(); i++)</pre>
      int v = G[u][i];
      if (vis[v]) continue;
      tarjan(v);
      unite(u, v);
   for (int i = 0; i < query[u].size(); i++)</pre>
      int v = query[u][i];
      if (!vis[v]) continue;
      ans[num[u][i]] = find(v);
   }
}
4.6 无向图的双连通分量
//割顶的bccno无意义
const int maxn = "Edit";
int pre[maxn], iscut[maxn], bccno[maxn], dfs_clock, bcc_cnt;
vector<int> G[maxn], bcc[maxn];
stack<PII> s;
void init(int n)
{
   for (int i = 0; i < n; i++)
      G[i].clear();
void add_edge(int u, int v)
   G[u].pb(v);
   G[v].pb(u);
int dfs(int u, int fa)
```

```
{
   int lowu = pre[u] = ++dfs_clock;
   int child = 0;
   for (int i = 0; i < G[u].size(); i++)</pre>
   {
      int v = G[u][i];
      PII e = mp(u, v);
      if (!pre[v])
      {
         //没有访问过V
         s.push(e);
         child++;
         int lowv = dfs(v, u);
         lowu = min(lowu, lowv); //用后代的low函数更新自己
         if (lowv >= pre[u])
         {
            iscut[u] = true;
            bcc_cnt++;
            bcc[bcc_cnt].clear(); //注意! bcc从1开始编号
            for (;;)
            {
               PII x = s.top();
               s.pop();
               if (bccno[x.X] != bcc_cnt)
                  bcc[bcc_cnt].pb(x.X);
                  bcc[x.X] = bcc\_cnt;
               if (bccno[x.Y] != bcc_cnt)
                  bcc[bcc_cnt].pb(x.Y);
                  bcc[x.Y] = bcc_cnt;
               if (x.X == u \&\& x.Y == v) break;
            }
         }
      }
      else if (pre[v] < pre[u] && v != fa)</pre>
         s.push(e);
         lowu = min(lowu, pre[v]); //用反向边更新自己
   if (fa < 0 \&\& child == 1) iscut[u] = 0;
   return lowu;
}
```

```
void find_bcc(int n)
{
   //调用结束后S保证为空, 所以不用清空
   clr(pre, 0);
   clr(iscut, 0);
   clr(bccno, 0);
   dfs_clock = bcc_cnt = 0;
   for (int i = 0; i < n; i++)
      if (!pre[i]) dfs(i, -1);
}
4.7 有向图的强联通分量
const int maxn = "Edit";
vector<int> G[maxn];
int pre[maxn], lowlink[maxn], sccno[maxn], dfs_clock, scc_cnt;
stack<int> S;
void add_edge(int u, int v)
{
   G[u].pb(v);
void dfs(int u)
   pre[u] = lowlink[u] = ++dfs_clock;
   S.push(u);
   for (int i = 0; i < G[u].size(); i++)
   {
      int v = G[u][i];
      if (!pre[v])
      {
         dfs(v):
         lowlink[u] = min(lowlink[u], lowlink[v]);
      else if (!sccno[v])
         lowlink[u] = min(lowlink[u], pre[v]);
   }
if (lowlink[u] == pre[u])
      scc_cnt++;
      for (;;)
         int x = S.top();
         S.pop();
         sccno[x] = scc_cnt;
         if (x == u) break;
      }
```

```
}
}
void find_scc(int n)
{
    dfs_clock = 0, scc_cnt = 0;
    clr(sccno, 0);
    clr(pre, 0);
    for (int i = 0; i < n; i++)
        if (!pre[i]) dfs(i);
}</pre>
```

4.8 二分图匹配

1) 一个二分图中的最大匹配数等于这个图中的最小点覆盖数

König 定理是一个二分图中很重要的定理, 它的意思是, 一个二分图中的最大匹配数等于这个图中的最小点覆盖数。如果你还不知道什么是最小点覆盖, 我也在这里说一下: 假如选了一个点就相当于覆盖了以它为端点的所有边, 你需要选择最少的点来覆盖所有的边。

2) 最小路径覆盖 =|G|-最大匹配数

在一个 N*N 的有向图中, 路径覆盖就是在图中找一些路经, 使之覆盖了图中的所有顶点, 且任何一个顶点有且只有一条路径与之关联;

(如果把这些路径中的每条路径从它的起始点走到它的终点,那么恰好可以经过图中的每个顶点一次且仅一次);如果不考虑图中存在回路,那么每每条路径就是一个弱连通子集.

由上面可以得出:

- 1. 一个单独的顶点是一条路径;
- 2. 如果存在一路径 p_1, p_2,p_k, 其中 p_1 为起点, p_k 为终点, 那么在覆盖图中, 顶点 p_1, p_2,p_k 不再与其它的顶点之间存在有向边.

最小路径覆盖就是找出最小的路径条数, 使之成为 G 的一个路径覆盖.

路径覆盖与二分图匹配的关系: 最小路径覆盖 =|G|-最大匹配数;

3) 二分图最大独立集 = 顶点数-二分图最大匹配

独立集: 图中任意两个顶点都不相连的顶点集合。

4.8.1 匈牙利算法 (领接矩阵)

```
/*
二分图匹配(匈牙利算法的DFS实现)(邻接矩阵形式)
初始化:g[][]两边顶点的划分情况
建立g[i][j]表示i->j的有向边就可以了,是左边向右边的匹配
g没有边相连则初始化为0
uN是匹配左边的顶点数,vN是匹配右边的顶点数
调用:res=hungary();输出最大匹配数
优点:适用于稠密图,DFS找增广路,实现简洁易于理解
时间复杂度:O(VE)
顶点编号从0开始的
*/
const int maxn = "Edit";
int uN, vN; //u,v的数目,使用前面必须赋值
```

```
int g[maxn][maxn]; //邻接矩阵
int linker[maxn];
bool used[maxn];
bool dfs(int u)
{
   for (int v = 0; v < vN; v++)
      if (g[u][v] && !used[v])
         used[v] = true;
         if (linker[v] == -1 || dfs(linker[v]))
            linker[v] = u;
            return true;
   return false;
int hungary()
   int res = 0;
   clr(linker, -1);
   for (int u = 0; u < uN; u++)
   {
      clr(used, 0);
      if (dfs(u)) res++;
   return res;
}
4.8.2 匈牙利算法 (领接表)
/*
匈牙利算法邻接表形式
使用前用init()进行初始化
加边使用函数addedge(u,v)
const int maxn = "Edit";
int n;
vector<int> G[maxn];
int linker[maxn];
bool used[maxn];
void init(int n)
   for (int i = 0; i < n; i++)
      G[i].clear();
}
```

```
void addedge(int u, int v)
{
   G[u].pb(v);
bool dfs(int u)
   for (int i = 0; i < G[u].size(); i++)</pre>
   {
      int v = G[u][i];
      if (!used[v])
      {
         used[v] = true;
         if (linker[v] == -1 || dfs(linker[v]))
            linker[v] = u;
            return true;
      }
   }
   return false;
int hungary()
   int ans = 0;
   clr(linker, -1);
   for (int u = 0; u < n; v++)
   {
      clr(vis, 0);
      if (dfs(u)) ans++;
   return ans;
}
4.8.3 Hopcroft-Carp 算法
/*
二分图匹配(Hopcroft-Carp算法)
复杂度O(sqrt(n)*E)
邻接表存图, vector实现
vector先初始化,然后加边
uN 为左端的顶点数,使用前赋值(点编号0开始)
*/
const int maxn = "Edit";
vector<int> G[maxn];
int uN;
int Mx[maxn], My[maxn];
```

```
int dx[maxn], dy[maxn];
int dis;
bool used[maxn];
bool SearchP()
{
   queue<int> Q;
   dis = INF;
   clr(dx, -1);
   clr(dy, -1);
   for (int i = 0; i < uN; i++)
      if (Mx[i] == -1)
         Q.push(i);
         dx[i] = 0;
   while (!Q.empty())
      int u = Q.front();
      Q.pop();
      if (dx[u] > dis) break;
      int sz = G[u].size();
      for (int i = 0; i < sz; i++)
         int v = G[u][i];
         if (dy[v] == -1)
         {
            dy[v] = dx[u] + 1;
            if (My[v] == -1)
               dis = dy[v];
            else
            {
               dx[My[v]] = dy[v] + 1;
               Q.push(My[v]);
            }
         }
   }
   return dis != INF;
bool DFS(int u)
   int sz = G[u].size();
   for (int i = 0; i < sz; i++)
   {
      int v = G[u][i];
      if (!used[v] && dy[v] == dx[u] + 1)
```

```
{
          used[v] = true;
         if (My[v] != -1 \&\& dy[v] == dis) continue;
          if (My[v] == -1 \mid I \mid DFS(My[v]))
             My[v] = u;
             Mx[u] = v;
             return true;
         }
      }
   }
   return false;
int MaxMatch()
   int res = 0;
   clr(Mx, -1);
   clr(My, -1);
   while (SearchP())
   {
      clr(used, false);
      for (int i = 0; i < uN; i++)
          if (Mx[i] == -1 \&\& DFS(i))
             res++;
   }
   return res;
}
4.9 2-SAT
struct TwoSAT
   int n;
   vector<int> G[maxn << 1];</pre>
   bool mark[maxn << 1];</pre>
   int S[maxn << 1], c;
   void init(int n)
      this -> n = n;
      for (int i = 0; i < (n << 1); i++) G[i].clear();</pre>
      clr(mark, 0);
   bool dfs(int x)
      if (mark[x ^ 1]) return false;
      if (mark[x]) return true;
```

```
mark[x] = true;
      S[c++] = x;
      for (int i = 0; i < G[x].size(); i++)
         if (!dfs(G[x][i])) return false;
      return true;
   }
   //x = xval or y = yval
   void add_clause(int x, int xval, int y, int yval)
      x = (x \ll 1) + xval;
      y = (y << 1) + yval;
      G[x \wedge 1].pb(y);
      G[y \wedge 1].pb(x);
   bool solve()
      for (int i = 0; i < (n << 1); i += 2)
         if (!mark[i] && !mark[i + 1])
         {
            c = 0;
            if (!dfs(i))
               while (c > 0) mark[S[--c]] = false;
               if (!dfs(i + 1)) return false;
            }
      return true;
   }
};
```

5 网络流

```
5.1 最大流
5.1.1 EdmondKarp
const int maxn = "Edit";
struct Edge
{
   int from, to, cap, flow;
   Edge(int u, int v, int c, int f) : from(u), to(v), cap(c),
     flow(f) {}
};
struct EdmonsKarp //时间复杂度O(v*E*E)
   int n, m;
   vector<Edge> edges; //边数的两倍
   vector<int> G[maxn]; //邻接表, G[i][j]表示节点i的第j条边在e数组中的
     序号
  int a[maxn]; //起点到i的可改进量
   int p[maxn]; //最短路树上p的入弧编号
   void init(int n)
      for (int i = 0; i < n; i++) G[i].clear();
      edges.clear();
   void AddEdge(int from, int to, int cap)
      edges.pb(Edge(from, to, cap, 0));
      edges.pb(Edge(to, from, 0, 0)); //反向弧
     m = edges.size();
      G[from].pb(m - 2);
     G[to].pb(m - 1);
   }
   int Maxflow(int s, int t)
      int flow = 0;
      for (;;)
      {
        clr(a, 0);
        queue<int> q;
        q.push(s);
        a[s] = INF;
        while (!q.empty())
         {
            int x = q.front();
            q.pop();
```

```
for (int i = 0; i < G[x].size(); i++)
            {
              Edge& e = edges[G[x][i]];
              if (!a[e.to] \&\& e.cap > e.flow)
                 p[e.to] = G[x][i];
                 a[e.to] = min(a[x], e.cap - e.flow);
                 q.push(e.to);
           if (a[t]) break;
        if (!a[t]) break;
        for (int u = t; u != s; u = edges[p[u]].from)
            edges[p[u]].flow += a[t];
            edges[p[u] ^1].flow -= a[t];
        flow += a[t];
      return flow;
  }
};
5.1.2 Dinic
const int maxn = "Edit";
struct Edge
   int from, to, cap, flow;
   Edge(int u, int v, int c, int f): from(u), to(v), cap(c),
     flow(f) {}
struct Dinic
   int n, m, s, t; //结点数, 边数(包括反向弧), 源点编号和汇点编号
   vector<Edge> edges; //边表。edge[e]和edge[e^1]互为反向弧
   vector<int> G[maxn]; //邻接表, G[i][j]表示节点i的第j条边在e数组中的
     序号
   bool vis[maxn]; //BFS使用
   int d[maxn]; //从起点到i的距离
   int cur[maxn]; //当前弧下标
   void init(int n)
   {
     this->n = n;
      for (int i = 0; i < n; i++) G[i].clear();
```

```
edges.clear();
void AddEdge(int from, int to, int cap)
   edges.pb(Edge(from, to, cap, 0));
   edges.pb(Edge(to, from, 0, 0));
  m = edges.size();
   G[from].pb(m - 2);
   G[to].pb(m - 1);
bool BFS()
{
   clr(vis, 0);
   clr(d, 0);
   queue<int> q;
   q.push(s);
   d[s] = 0;
   vis[s] = 1;
   while (!q.empty())
   {
      int x = q.front();
      q.pop();
      for (int i = 0; i < G[x].size(); i++)
         Edge& e = edges[G[x][i]];
         if (!vis[e.to] && e.cap > e.flow)
            vis[e.to] = 1;
            d[e.to] = d[x] + 1;
            q.push(e.to);
         }
      }
   return vis[t];
int DFS(int x, int a)
   if (x == t \mid | a == 0) return a;
   int flow = 0, f;
   for (int& i = cur[x]; i < G[x].size(); i++)
   {
      //从上次考虑的弧
      Edge& e = edges[G[x][i]];
      if (d[x] + 1 == d[e.to] \&\& (f = DFS(e.to, min(a, e.cap -
          e.flow))) > 0)
      {
```

```
e.flow += f;
           edges[G[x][i] ^ 1].flow -= f;
           flow += f;
           a -= f;
           if (a == 0) break;
        }
      return flow;
   int Maxflow(int s, int t)
   {
      this -> s = s;
     this->t = t;
      int flow = 0;
     while (BFS())
        clr(cur, 0);
        flow += DFS(s, INF);
     return flow;
   }
};
5.1.3 ISAP
const int maxn = "Edit";
struct Edge
   int from, to, cap, flow;
   Edge(int u, int v, int c, int f): from(u), to(v), cap(c),
     flow(f) {}
};
struct ISAP
   int n, m, s, t; //结点数, 边数 (包括反向弧), 源点编号和汇点编号
   vector<Edge> edges; //边表。edges[e]和edges[e^1]互为反向弧
   vector<int> G[maxn]; //邻接表, G[i][j]表示结点i的第j条边在e数组中的
     序号
   bool vis[maxn]; //BFS使用
   int d[maxn]; //起点到i的距离
   int cur[maxn]; //当前弧下标
   int p[maxn]; //可增广路上的一条弧
  int num[maxn]; //距离标号计数
   void init(int n)
   {
      this->n = n;
```

```
for (int i = 0; i < n; i++) G[i].clear();
   edges.clear();
void addEdge(int from, int to, int cap)
{
   edges.pb(Edge(from, to, cap, 0));
   edges.pb(Edge(to, from, 0, 0));
   int m = edges.size();
   G[from].pb(m - 2);
   G[to].pb(m - 1);
int Augumemt()
   int x = t, a = INF;
  while (x != s)
      Edge& e = edges[p[x]];
      a = min(a, e.cap - e.flow);
      x = edges[p[x]].from;
   x = t;
  while (x != s)
      edges[p[x]].flow += a;
      edges[p[x] ^ 1].flow -= a;
      x = edges[p[x]].from;
   return a;
void BFS()
   clr(vis, 0);
   clr(d, 0);
   queue<int> q;
   q.push(t);
   d[t] = 0;
   vis[t] = 1;
   while (!q.empty())
   {
      int x = q.front();
      q.pop();
      int len = G[x].size();
      for (int i = 0; i < len; i++)
      {
         Edge& e = edges[G[x][i]];
         if (!vis[e.from] && e.cap > e.flow)
```

```
{
            vis[e.from] = 1;
            d[e.from] = d[x] + 1;
            q.push(e.from);
         }
      }
   }
int Maxflow(int s, int t)
   this -> s = s;
   this->t = t;
   int flow = 0;
   BFS();
   clr(num, 0);
   for (int i = 0; i < n; i++) num[d[i]]++;</pre>
   int x = s;
   clr(cur, 0);
   while (d[s] < n)</pre>
   {
      if(x == t)
      {
         flow += Augumemt();
         X = S;
      int ok = 0;
      for (int i = cur[x]; i < G[x].size(); i++)
         Edge& e = edges[G[x][i]];
         if (e.cap > e.flow && d[x] == d[e.to] + 1)
         {
            ok = 1;
            p[e.to] = G[x][i];
            cur[x] = i;
            x = e.to;
            break;
         }
      }
if (!ok) //Retreat
         int m = n - 1;
         for (int i = 0; i < G[x].size(); i++)
         {
            Edge& e = edges[G[x][i]];
             if (e.cap > e.flow)
                m = min(m, d[e.to]);
```

```
}
if (--num[d[x]] == 0) break; //gap优化
            num[d[x] = m + 1]++;
            cur[x] = 0;
            if (x != s) x = edges[p[x]].from;
         }
      return flow;
   }
};
5.2 最小费用最大流
const int maxn = "Edit";
struct Edge
   int from, to, cap, flow, cost;
   Edge(int u, int v, int c, int f, int w) : from(u), to(v), cap(
     c), flow(f), cost(w) {}
};
struct MCMF
   int n, m;
   vector<Edge> edges;
   vector<int> G[maxn];
   int inq[maxn]; //是否在队列中
   int d[maxn]; //bellmanford
   int p[maxn]; //上一条弧
   int a[maxn]; //可改进量
   void init(int n)
   {
      this -> n = n;
      for (int i = 0; i < n; i++) G[i].clear();
      edges.clear();
   void AddEdge(int from, int to, int cap, int cost)
   {
      edges.pb(Edge(from, to, cap, 0, cost));
      edges.pb(Edge(to, from, 0, 0, -cost));
      m = edges.size();
      G[from].pb(m - 2);
      G[to].pb(m - 1);
   bool BellmanFord(int s, int t, int& flow, ll& cost)
   {
      for (int i = 0; i < n; i++) d[i] = INF;
```

```
clr(inq, 0);
      d[s] = 0;
      inq[s] = 1;
      p[s] = 0;
      a[s] = INF;
      queue<int> q;
      q.push(s);
      while (!q.empty())
         int u = q.front();
         q.pop();
         inq[u] = 0;
         for (int i = 0; i < G[u].size(); i++)
            Edge& e = edges[G[u][i]];
            if (e.cap > e.flow && d[e.to] > d[u] + e.cost)
            {
               d[e.to] = d[u] + e.cost;
               p[e.to] = G[u][i];
               a[e.to] = min(a[u], e.cap - e.flow);
               if (!ing[e.to])
                  q.push(e.to);
                  inq[e.to] = 1;
               }
            }
         }
      if (d[t] == INF) return false; // 当没有可增广的路时退出
      flow += a[t];
      cost += (\bar{l}l)d[t] * (ll)a[t];
      for (int u = t; u != s; u = edges[p[u]].from)
         edges[p[u]].flow += a[t];
         edges[p[u] ^1].flow -= a[t];
      return true;
   int MincostMaxflow(int s, int t, ll& cost)
      int flow = 0;
      cost = 0;
      while (BellmanFord(s, t, flow, cost));
      return flow;
   }
};
```

6 计算几何

6.1 基本函数

```
#define zero(x) ((fabs(x) < eps ? 1 : \emptyset))
#define sgn(x) (fabs(x) < eps ? 0 : ((x) < 0 ? -1 : 1))
struct point
   double x, y;
   point(double a = 0, double b = 0)
     x = a;
     y = b;
   point operator-(const point& b) const
      return point(x - b.x, y - b.y);
   point operator+(const point& b) const
      return point(x + b.x, y + b.y);
   }
   // 两点是否重合
   bool operator==(point& b)
   {
      return zero(x - b.x) && zero(y - b.y);
   // 点积(以原点为基准)
   double operator*(const point& b) const
   {
      return x * b.x + y * b.y;
  // 叉积(以原点为基准)
   double operator^(const point& b) const
      return x * b.y - y * b.x;
   // 绕P点逆时针旋转a弧度后的点
   point rotate(point b, double a)
   {
      double dx, dy;
      (*this - b).split(dx, dy);
      double tx = dx * cos(a) - dy * sin(a);
      double ty = dx * sin(a) + dy * cos(a);
      return point(tx, ty) + b;
   }
```

```
// 点坐标分别赋值到a和b
   void split(double& a, double& b)
      a = x;
      b = y;
   }
struct line
   point s, e;
   line() {}
   line(point ss, point ee)
      s = ss;
      e = ee;
   }
};
6.2 位置关系
6.2.1 两点间距离
double dist(point a, point b)
{
   return sqrt((a - b) * (a - b));
}
6.2.2 直线与直线的交点
// <0, *> 表示重合; <1, *> 表示平行; <2, P> 表示交点是P;
pair<int, point> spoint(line 11, line 12)
   point res = 11.s;
   if (sgn((l1.s - l1.e) \wedge (l2.s - l2.e)) == 0)
      return mp(sgn((l1.s - l2.e) ^ (l2.s - l2.e)) != 0, res);
   double t = ((l1.s - l2.s) \wedge (l2.s - l2.e)) / ((l1.s - l1.e) \wedge
      (12.s - 12.e));
   res.x += (l1.e.x - l1.s.x) * t;
res.y += (l1.e.y - l1.s.y) * t;
   return mp(2, res);
}
6.2.3 判断线段与线段相交
bool segxseg(line l1, line l2)
{
```

```
return
                               max(11.s.x, 11.e.x) >= min(12.s.x, 12.e.x) &&
                               max(12.s.x, 12.e.x) >= min(11.s.x, 11.e.x) &&
                               max(11.s.y, 11.e.y) >= min(12.s.y, 12.e.y) &&
                               \max(12.s.y, 12.e.y) >= \min(11.s.y, 11.e.y) &&
                                sgn((l2.s - l1.e) \wedge (l1.s - l1.e)) * sgn((l2.e-l1.e) \wedge (l1.e)) * sgn((l2.e-l1.e) \ (l1.e)) * sgn((l2.e-l1.e) \ (l1.e)) * sgn((l2.e-l1.e)) * sgn(
                                               s - 11.e) <= 0 &&
                                sgn((l1.s - l2.e) \wedge (l2.s - l2.e)) * sgn((l1.e-l2.e) \wedge (l2.e)) * sgn((l1.e-l2.e) \ (l2.e)) * sgn((l1.e-l2.e) \ (l2.e)) * sgn((l1.e-l2.e)) * sgn(
                                              s - 12.e)) <= 0;
}
6.2.4 判断线段与直线相交
//11是直线,12是线段
 bool segxline(line l1, line l2)
 {
                return sgn((12.s - 11.e) \wedge (11.s - 11.e)) * sgn((12.e - 11.e))
                               ^ (l1.s - l1.e)) <= 0;
 }
6.2.5 点到直线距离
point pointtoline(point P, line L)
                point res:
                double t = ((P - L.s) * (L.e - L.s)) / ((L.e - L.s) * (L.e - L
                                .s));
                res.x = L.s.x + (L.e.x - L.s.x) * t;
                res.y = L.s.y + (L.e.y - L.s.y) * t;
                return dist(P, res);
}
 6.2.6 点到线段距离
point pointtosegment(point p, line l)
                point res;
                double t = ((p - l.s) * (l.e - l.s)) / ((l.e - l.s) * (l.e - l
                                 .s));
                if (t >= 0 && t <= 1)
                 {
                                res.x = 1.s.x + (1.e.x - 1.s.x) * t;
                                res.y = l.s.y + (l.e.y - l.s.y) * t;
                else
```

```
res = dist(p, l.s) < dist(p, l.e) ? l.s : l.e;
   return res;
}
6.2.7 点在线段上
bool PointOnSeg(point p, line l)
   return
      sgn((1.s - p) \wedge (1.e-p)) == 0 \&\&
      sgn((p.x - l.s.x) * (p.x - l.e.x)) <= 0 &&
      sgn((p.y - l.s.y) * (p.y - l.e.y)) <= 0;
}
6.3 多边形
6.3.1 多边形面积
double area(point p[], int n)
   double res = 0;
   for (int i = 0; i < n; i++)
      res += (p[i] \wedge p[(i + 1) \% n]) / 2;
   return fabs(res);
}
6.3.2 点在凸多边形内
// 点形成一个凸包, 而且按逆时针排序(如果是顺时针把里面的<0改为>0)
// 点的编号: [0,n)
// -1: 点在凸多边形外
// 0: 点在凸多边形边界上
// 1: 点在凸多边形内
int PointInConvex(point a, point p∏, int n)
   for (int i = 0; i < n; i++)
   {
      if (sgn((p[i] - a) \land (p[(i + 1) \% n] - a)) < 0)
         return -1;
      else if (PointOnSeg(a, line(p[i], p[(i + 1) \% n])))
         return 0;
   return 1;
}
```

6.3.3 点在任意多边形内

```
// 射线法,poly□的顶点数要大于等于3,点的编号0~n-1
// -1: 点在凸多边形外
// 0: 点在凸多边形边界上
// 1: 点在凸多边形内
int PointInPoly(point p, point poly[], int n)
{
  int cnt;
  line ray, side;
  cnt = 0;
  ray.s = p;
  ray.e.y = p.y;
  for (int i = 0; i < n; i++)
  {
     side.s = poly[i];
     side.e = poly[(i + 1) % n];
     if (PointOnSeg(p, side)) return 0;
     //如果平行轴则不考虑
     if (sgn(side.s.y - side.e.y) == 0)
        continue;
     if (PointOnSeg(sid e.s, r ay))
        if (sgn(side.s.y - side.e.y) > 0) cnt++;
     else if (PointOnSeg(side.e, ray))
        if (sgn(side.e.y - side.s.y) > 0) cnt++;
     else if (segxseg(ray, side))
        cnt++;
  return cnt % 2 == 1 ? 1 : -1;
}
6.3.4 判断凸多边形
//点可以是顺时针给出也可以是逆时针给出
//点的编号1~n-1
bool isconvex(point poly[], int n)
{
  bool s[3];
  set(s, 0);
  for (int i = 0; i < n; i++)
```

```
s[sgn((poly[(i + 1) % n] - poly[i]) ^ (poly[(i + 2) % n] -
         poly[i]) + 1] = 1;
      if (s[0] && s[2]) return 0;
   return 1;
}
6.4 整数点问题
6.4.1 线段上整点个数
int OnSegment(line 1)
   return \_gcd(fabs(l.s.x - l.e.x), fabs(l.s.y - l.e.y)) + 1;
6.4.2 多边形边上整点个数
int OnEdge(point p[], int n)
   int i, ret = 0;
   for (i = 0; i < n; i++)
      ret += \_gcd(fabs(p[i].x - p[(i + 1) % n].x), fabs(p[i].y -
          p[(i + 1) \% n].y));
   return ret;
}
6.4.3 多边形内整点个数
int InSide(point p[], int n)
{
   int i, area = 0;
   for (i = 0; i < n; i++)
      area += p[(i + 1) \% n].y * (p[i].x - p[(i + 2) \% n].x);
   return (fabs(area) - 0nEdge(n, p)) / 2 + 1;
}
6.5 圆
6.5.1 过三点求圆心
point waixin(point a, point b, point c)
   double a1 = b.x - a.x, b1 = b.y - a.y, c1 = (a1 * a1 + b1 * b1
      ) / 2;
```

```
double a2 = c.x - a.x, b2 = c.y - a.y, c2 = (a2 * a2 + b2 * b2
    ) / 2;
double d = a1 * b2 - a2 * b1;
return point(a.x + (c1 * b2 - c2 * b1) / d, a.y + (a1 * c2 -
    a2 * c1) / d);
}
```

7 动态规划

```
7.1 子序列
7.1.1 最大子序列和
// 传入序列a和长度n, 返回最大子序列和
// 限制最短长度:用cnt记录长度,rt更新时判断
int MaxSeqSum(int a[], int n)
{
   int rt = 0, cur = 0;
   for (int i = 0; i < n; i++)
      cur += a[i];
     rt = rt < cur ? cur : rt;
      cur = cur < 0 ? 0 : cur;
   return rt;
}
7.1.2 最长上升子序列 LIS
// 序列下标从1开始, LIS()返回长度, 序列存在lis[]中
#define N 100100
int n, len, a[N], b[N], f[N];
int Find(int p, int l, int r)
   int mid;
  while (l \ll r)
     mid = (l + r) >> 1;
     if (a[p] > b[mid]) l = mid + 1;
      else r = mid - 1;
  return f[p] = 1;
int LIS(int lis[])
   int len = 1;
   f[1] = 1;
   b[1] = a[1];
  for (int i = 2; i <= n; i++)
      if (a[i] > b[len]) b[++len] = a[i], f[i] = len;
      else b[Find(i, 1, len)] = a[i];
   for (int i = n, t = len; i >= 1 && t >= 1; i--)
```

```
if (f[i] == t)
         lis[--t] = a[i];
   return len;
}
7.1.3 最长公共上升子序列 LCIS
// 序列下标从1开始
int LCIS(int a[], int b[], int n, int m)
   clr(dp, 0);
   for (int i = 1; i <= n; i++)
   {
      int ma = 0;
      for (int j = 1; j \le m; j++)
         dp[i][j] = dp[i - 1][j];
         if (a[i] > b[j]) ma = max(ma, dp[i - 1][j]);
         if (a[i] == b[j]) dp[i][j] = ma + 1;
      }
   return *max_element(dp[n] + 1, dp[n] + 1 + m);
}
```

```
8 其他
8.1 矩阵
8.1.1 矩阵快速幂
typedef vector<ll> vec;
typedef vector<vec> mat;
mat mul(mat& A, mat& B)
   mat C(A.size(), vec(B[0].size()));
   for (int i = 0; i < A.size(); i++)</pre>
      for (int k = 0; k < B.size(); k++)
         if (A[i][k]) // 对稀疏矩阵的优化
            for (int j = 0; j < B[0].size(); j++)
               C[i][j] = (C[i][j] + A[i][k] * B[k][j]) % mod;
   return C;
}
mat Pow(mat A, ll n)
   mat B(A.size(), vec(A.size()));
   for (int i = 0; i < A.size(); i++)
      B[i][i] = 1;
   for (; n; n >>= 1, A = mul(A, A))
      if (n \& 1) B = mul(B, A);
   return B;
}
8.1.2 高斯消元
void gauss()
   int now = 1, to;
   double t:
   for (int i = 1; i <= n; i++) {</pre>
      /*for (to = now; !a[to][i] && to <= n; to++);
      //做除法时减小误差, 可不写
      if (to != now)
         for (int j = 1; j \le n + 1; j++)
            swap(a[to][j], a[now][j]);*/
      t = a[now][i];
      for (int j = 1; j <= n + 1; j++)
         a[now][j] /= t;
      for (int j = 1; j \le n; j++)
         if (j != now) {
            t = a[j][i];
            for (int k = 1; k \le n + 1; k++)
```

```
a[j][k] -= t * a[now][k];
      now++;
   }
}
求线性基
for (int i = 1; i <= m; i++)
   for (int j = 63; \sim j; j--)
      if ((a[i] >> j) & 1) {
         if (!ins[j])
            ins[j] = a[i];
            break;
         }
         else
            a[i] ^= ins[j];
      }
8.2 高精度
8.2.1 高精度
// 加法 乘法 小于号 输出
struct bint
{
   int l;
   short int w[100];
   bint(int x = 0)
      1 = x == 0;
      clr(w, 0);
      while (x != 0) {
         w[l++] = x \% 10;
         x /= 10;
   bool operator<(const bint& x) const</pre>
      if (l != x.l) return l < x.l;
      int i = 1 - 1;
      while (i >= 0 && w[i] == x.w[i]) i--;
      return (i >= 0 && w[i] < x.w[i]);
   bint operator+(const bint& x) const
      bint ans;
```

```
ans.l = l > x.l ? l : x.l;
      for (int i = 0; i < ans.l; i++)
         ans.w[i] += w[i] + x.w[i];
         ans.w[i + 1] += ans.w[i] / 10;
         ans.w[i] = ans.w[i] % 10;
      if (ans.w[ans.l] != 0) ans.l++;
      return ans;
   bint operator*(const bint& x) const
      bint res;
      int up, tmp;
      for (int i = 0; i < 1; i++)
         up = 0;
         for (int j = 0; j < x.1; j++)
            tmp = w[i] * x.w[j] + res.w[i + j] + up;
            res.w[i + j] = tmp \% 10;
            up = tmp / 10;
         if (up != 0) res.w[i + x.l] = up;
      res.l = l + x.l;
      while (res.w[res.l - 1] == 0 \& res.l > 1) res.l--;
      return res;
   void print()
      for (int i = l - 1; i >= 0; i--)
         printf("%d", w[i]);
      printf("\n");
   }
};
8.2.2 完全高精度
#define N 10000
class bint
{
private:
   int a[N]; // 用 N 控制最大位数
   int len; // 数字长度
public:
```

```
// 构造函数
bint()
   len = 1;
   clr(a, 0);
// int -> bint
bint(int n)
{
   len = 0;
   clr(a, 0);
   int d = n;
   while (n) {
      d = n / 10 * 10;
      a[len++] = n - d;
      n = d / 10;
}
// char[] -> int
bint(const char s[])
   clr(a, 0);
   len = 0;
   int l = strlen(s);
   for (int i = l - 1; i >= 0; i--)
      a[len++] = s[i];
// 拷贝构造函数
bint(const bint& b)
   cclr(a, 0);
   len = b.len;
   for (int i = 0; i < len; i++)</pre>
      a[i] = b.a[i];
}
// 重载运算符 bint = bint
bint& operator=(const bint& n)
{
   len = n.len;
   for (int i = 0; i < len; i++)</pre>
      a[i] = n.a[i];
   return *this;
// 重载运算符 bint + bint
bint operator+(const bint& b) const
{
```

```
bint t(*this);
   int res = b.len > len ? b.len : len;
   for (int i = 0; i < res; i++) {
      t.a[i] += b.a[i];
      if (t.a[i] >= 10) {
         t.a[i + 1]++;
         t.a[i] -= 10;
   t.len = res + a[res] == 0;
   return t;
}
// 重载运算符 bint - bint
bint operator-(const bint& b) const
{
   bool f = *this > b;
   bint t1 = f ? *this : b;
   bint t2 = f ? b : *this;
   int res = t1.len, j;
   for (int i = 0; i < res; i++)
      if (t1.a[i] < t2.a[i])
      {
         j = i + 1;
         while (t1.a[j] == 0) j++;
         t1.a[j--]--;
         while (j > i)
            t1.a[j--] += 9;
         t1.a[i] += 10 - t1.a[i];
      }
      else
         t1.a[i] -= t2.a[i];
   t1.len = res;
   while (t1.a[len - 1] == 0 \&\& t1.len > 1)
      t1.len--, res--;
   if (f) t1.a[res - 1] = 0 - t1.a[res - 1];
   return t1;
// 重载运算符 bint * bint
bint operator*(const bint& b) const
{
   bint t;
   int i, j, up, tmp, tmp1;
   for (i = 0; i < len; i++)
   {
      up = 0;
      for (j = 0; j < b.len; j++)
```

```
{
         tmp = a[i] * b.a[j] + t.a[i + j] + up;
         if (tmp > 9)
         {
            tmp1 = tmp - tmp / 10 * 10;
            up = tmp / 10;
            t.a[i + j] = tmp1;
         else
         {
            up = 0;
            t.a[i + j] = tmp;
      if (up) t.a[i + j] = up;
   t.len = i + j;
  while (t.a[t.len - 1] == 0 \&\& t.len > 1) t.len--;
   return t;
}
// 重载运算符 bint / int
bint operator/(const int& b) const
{
   bint t;
   int down = 0;
   for (int i = len - 1; i >= 0; i--)
      t.a[i] = (a[i] + down * 10) / b;
      down = a[i] + down * 10 - t.a[i] * b;
  t.len = len;
  while (t.a[t.len - 1] == 0 \& t.len > 1) t.len--;
   return t;
}
// 重载运算符 bint ^ n (n次方快速幂, 需保证n非负)
bint operator^(const int n) const
{
  bint t(*this), rt(1);
   if (n == 0) return 1;
   if (n == 1) return *this;
   int m = n;
  while (m)
   {
      if (m & 1) rt = rt * t;
      t = t * t;
      m >>= 1;
```

```
return rt;
   }
   // 重载运算符 bint > bint 比较大小
   bool operator>(const bint& b) const
   {
      int p;
      if (len > b.len) return 1;
      if (len == b.len)
         p = len - 1;
         while (a[p] == b.a[p] \&\& p >= 0) p--;
         return p >= 0 \&\& a[p] > b.a[p];
     return 0;
   }
   // 重载运算符 bint > int 比较大小
   bool operator>(const int& n) const
      return *this > bint(n);
   }
   // 输出
   void out()
      printf("%d", a[len - 1]);
      for (int i = len - 2; i >= 0; i--)
         printf("%d", a[i]);
      puts("");
   }
};
8.3 莫队算法
莫队算法, 可以解决一类静态, 离线区间查询问题。分成 \sqrt{x} 块, 分块排序。
struct query
{
   int L, R, id;
} node[maxn];
void solve()
   tmp = 0;
   clr(num, 0);
   clr(ans, 0);
   sort(node, node + m, □(query a, query b) { return a.l / unit
     < b.l / unit || a.l / unit == b.l / unit && a.r < b.r; });
```

```
int L = 1, R = 0;
   for (int i = 0; i < m; i++)
      while (node[i].L < L) add(a[--L]);
      while (node[i].L > L) del(a[L++]);
      while (node[i].R < R) del(a[R--]);
      while (node[i].R > R) add(a[++R]);
      ans[node[i].id] = tmp;
   }
}
8.4 输入输出外挂
// 适用于正负整数
template <class T>
inline bool scan_d(T &ret)
{
   char c;
   int sqn;
   if (c = getchar(), c == EOF) return 0; //EOF
   while (c != '-' \&\& (c < '0' || c > '9')) c = getchar();
   sgn = (c == '-') ? -1 : 1;
   ret = (c == '-') ? 0 : (c - '0');
   while (c = getchar(), c >= '0' && c <= '9') ret = ret * 10 + (
     c - '0');
   ret *= sgn;
   return 1;
inline void out(int x)
   if (x > 9) out(x / 10);
   putchar(x % 10 + '0');
}
```