PCB大师篇@电源

【1】Usb16pin部分的PCB设置

【2】DC接口和螺钉式接线端子

【3】DC-DC芯片选择的是->TPS5450

8.2 典型应用

图 8-1 显示了典型 TPS5450 应用的原理图。在额定输出电压为 5V 时,TPS5450 可以提供高达 5A 的输出电流。为了获得适当的热性能,器件下方裸露的 PowerPAD 必须焊接至印刷电路板上。

因为12v电压还是比较大的了,我们这里就使用的耐压比较高的铝电解电容to滤波

CAP-SMD_BD5.0-L5.3-W/5.3-FD ⊗ ··· VILLE CAP-SMD_BD5.0-L5.3-W/5.3-FD

引脚功能

引脚		1/0	24 m			
名称	编号	1/0	说明			
воот	1	0	高侧 FET 栅极驱动器的升压电容器。从 BOOT 引脚至 PH 引脚连接一个 0.01 μ F、低 ESR 电容器。			
NC	2、3		内部未连接。			
VSENSE	4	- 1	稳压器的反馈电压。连接到输出电压分压器。			
ENA	5	1	景通和关闭控制。低于 0.5V,器件停止切换。悬空引脚即可启用。			
GND	6	_	接地。连接到 PowerPAD。			
VIN	7	1	输入电源电压。采用高质量、低 ESR 陶瓷电容器将 VIN 引脚旁路至靠近器件封装的 GND 引脚。			
PH	8	0	高侧功率 MOSFET 的源极。连接至外部电感器和二极管。			
PowerPAD	9	-	必须将 GND 引脚连接到外露焊盘才能正常工作。			

IND-SMD_L7.3-W6.6 采用此封装的电感

TPS5450 的输出电压通过由输出到 VSENSE 引脚的电阻分压器 (R1 和 R2)来设置。使用方程式 2 计算在输出电压为 5V 时的 R2 电阻值:

$$R2 = \frac{R1 \times 1.221}{V_{O\hat{U}T} - 1.221}$$

(2)

【4】合路并完成电源后部分

【5】5V电压转3.3V(采用LDO芯片中的AMS1117)

对于咱们3.3v电压的指示灯泡的话, 我们接一个2K的限流电阻就可以了 (这个数值取多少完全是经验之谈)

【117】PCB大师篇@模数地隔离

【1】模数地分离电路

PCB大师篇@主控

2025年3月4日 20:40

PC14-OSC32K IN

PC15-OSC32K OUT

这个就是stm32单片机的外部低速时钟输入,主要是给RTC时钟提供时钟基准的

VDD数字电源的供电引脚, VSS数字电源的接地引脚 (因为有5个引脚, 所以我们接5个滤波电容吧100nF)

意为此引脚为No Conneted

VBAT引脚为电池引脚,主要是单片机断电后为RTC时钟提供电源 (所以我们使用CR1220这种纽扣电池供电)

巧妙的使用两个二极管让系统选择用电来源 (使我们单片机接电情况下,选择系统电源)

这个就是stm32单片机的外部高速时钟输入

ADC和DAC部分的4个引脚,详细接线,请看下面

Table 59. ADC characteristics								
Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
V _{DDA}	Power supply		2.4	-	3.6	٧		
V _{REF+}	Positive reference voltage		2.4	17.1	V _{DDA}	٧		
V _{REF} -	Negative reference voltage		0			٧		
						_		

 C_L – Load Capacitance – μ F 曲线下的区域表示可能导致器件振荡的条件。针对曲线 В、С 和 D,对 R2 和 V+ 进行了调整,以建立初始 V_{KA} 和 I_{KA} 条件,且 C_L = 0。然后,对 VBATT 和 C_L 进行了调整,以确定移

定范围。

STM32F

10pF C23

10pF

【119】PCB大师篇@接口

2025年3月4日 21:41

【1】STM32单片机的usb接口外围电路

【2】ADC和DAC外围接口电路设计

PA0-WKUP	1/0	-	PA0	WKUP/USART2_CTS ⁽⁹⁾ ADC123_IN0 TIM2_CH1_ETR TIM5_CH1/TIM8_ETR
PA1	1/0	•	PA1	USART2_RTS ⁽⁹⁾ ADC123_IN1/ TIM5_CH2/TIM2_CH2 ⁽⁹⁾
PA2	1/0	-	PA2	USART2_TX ⁽⁹⁾ /TIM5_CH3 ADC123_IN2/ TIM2_CH3 ⁽⁹⁾
PA3	1/0	-	PA3	USART2_RX ⁽⁹⁾ /TIM5_CH4 ADC123_IN3/TIM2_CH4 ⁽⁹⁾

ADC引脚所在位置

【3】LED指示灯的电路(并选择接2K的限流电阻)

【4】按键检测外围电路(其中电容的作用是硬件消抖)

【5】SW调试接口

【6】软件SPI和软件I2C接口的外围电路设计(并使用如下6pin的排口)

【7】串口通信需要的接口电路

预留电阻,如果12C接口不够,可以使用串口的引脚当软件12C用

【8】CH340串口转通信的外围电路设计(标图是5V供电版本)

【10】接GND的4个螺丝孔用于电路板的固定

