Stochastic programming and robust optimisation

Prof. Fabricio Oliveira (MS/SCI) Kick-off session

EV-0017

06.09.2023

Outline

- 1. Course overview
- 2. Course organisation
 - 1. Lectures
 - 2. Paper presentations
 - 3. Projects
- 3. Course assessment
- 4. Set dates
- 5. Lectures content

Introductions

Introductions

Please let us know:

- 1. Your prefered name
- 2. MSc or DSc?
- 3. Major (if MSc) or Dept. & School and Supervisor (if DSc)

Course overview

Course overview

Part I

- Lectures
 - 2/3 Lecture
 - 1/3 Guided tutorial

Part II

- Seminars
 - Article of your choice
- Project presentations
 - Application of your choice

Course organisation

Administratrivia

Sessions: Wednesday 9.15 am @ Y405

People:

- Lecturer: Fabricio (fabricio.oliveira@aalto.fi)

- TA: Paula (paula.weller@aalto.fi)

Support:

- MS Teams (Mon-Fri, 9-5) or Email: for short questions and bookings
- (Video) meetings: bookable in advance (no fixed office hours)
 - "Technical support": Paula
 - Projects and papers: Fabricio

Lectures & tutorials

Topics we will cover:

- Two- and multi-stage stochastic programming
- Scenario generation and sample average approximation (SAA)
- Chance constraints and risk measures
- Decomposition methods (Progressive Hedging and SDDP)
- Static and adaptive robust optimisation

Tutorial: guided demos using Julia with examples and applications related to the topics presented.

Seminars

- You are expected to give a presentations on a paper of your choice
- Learning based to a large extent on the classroom discussion

Format: conference presentation: 25 + 5 minutes

- Use slides (+ whiteboard if you wish)
- Practice a few times beforehand to control time
- Some time control tips:
 - Number slides (e.g., 2/25 current slide/total slides)
 - Break presentation in sections and know your target time stamps

Language: English

Projects

You are also expected to develop a practical application project

- Main requirement: employ one or more of the ideas discussed in the lectures
- Topic of your choosing
- Deliverables: oral presentation, slides, and code

Ideas

- Choose a textbook problem and develop a version of it under uncertainty
- Apply seen techniques to a problem of your own choice
- Replicate/extend computational experiments from a article (can be, e.g., the same presented)

Course assessment

Grading principles

Participation: 20pt

- Proportional to attendance
 - Present 80% (8/10) of contact sessions = 20pt
 - Otherwise proportional

Research paper presentation: 30pt

- Presentations anonymously graded by peers (1-5)
- Average of peer grades x 6.

Grading principles

Project: 50pt (graded by me)

Criteria

- Appropriate choice of techniques
- Depth of analysis
- Main conclusions

Presentation should cover in 25 + 5 minutes:

- Project scope and hypotheses (research question)
- Main conclusions (supported by numeric evidence)

Set the dates

Important dates

Choice of paper for seminar part: Friday 13.10.2023

Definition of project topic: Friday 03.11.2023

Seminar presentations			
25.10.2023	01.11.2023	(08.11.2023)	

Project presentations			
15.11.2023	22.11.2023	(29.11.2023)	

Lectures content

Optimisation under uncertainty

Mathematical programming-based methods are not able to explicitly consider uncertainty in their evaluations.

Optimisation under uncertainty

To be useful, a unique strategy must be defined *beforehand* for meaningful decision making.

K-stage problems under uncertainty

Basic steps:

- 1. Break time flow into points of interest;
- 2. Gather decisions that must be made at each point;
- 3. Explicitly represent scenarios.

2-stage problems under uncertainty

In a two-stage setting, we have the following:

$$\max_{x} c^{\top} x + \mathbb{E}_{\Omega} [Q(x, \omega)]$$

s.t.: $Ax \leq b$
$$x \in X$$

where
$$Q(x,\omega) = \max \ q_\omega^{ op} y$$

$$\mathrm{s.t.:} \ T_\omega x + W_\omega y = h_\omega$$
 $y \in Y$

2-stage problems under uncertainty

Which is in turn is (deterministically) equivalent to

$$\max_{x,y} c^{\top}x + \sum_{\omega \in \Omega} P_{\omega} (q_{\omega}^{\top}y_{\omega})$$
s.t.: $Ax \leq b$

$$x \in X$$

$$T_{\omega}x + W_{\omega}y_{\omega} = h_{\omega}, \ \forall \omega \in \Omega$$

$$y_{\omega} \in Y_{\omega}, \ \forall \omega \in \Omega$$

Modelling problems under uncertainty

There are 4 main aspects that must be considered for this framework to be meaningful:

- 1. How to *sync* decisions and uncertain events?
- 2. How to generate good *discrete* representations?
- 3. Risk tolerance profiles?
- 4. Can we solve these problems?

$$\max_{x,y} c^{\top} x + \sum_{\omega \in \Omega} P_{\omega} \left(q_{\omega}^{\top} y_{\omega} \right)$$

s.t.:
$$Ax \leq b$$

 $x \in X$
 $T_{\omega}x + W_{\omega}y_{\omega} = h_{\omega}, \ \forall \omega \in \Omega$
 $y_{\omega} \in Y_{\omega}, \ \forall \omega \in \Omega$

2-stage deterministic equivalent problem

Optimisation under uncertainty

A general toolset that requires full consideration of four aspects:

