18.5 注释

张志聪

2025年5月31日

说明 1. 引理 18.5.10 中, 证明:

$$g^{-1}((a, +\infty]) = \bigcup_{n>1} f_n^{-1}((a, +\infty])$$

证明:

这是上确界函数,书中没找到明确定义的地方,这里先说明一下:

 $\sup_{n\geq 1} f_n$ 表示一系列函数 f_n (其中 $n\geq 1$) 的上确界函数。具体来说,对于每一个自变量 x,这个函数的值是所有函数 f_n 在 x 处的上确界(即最小的上界)。数学表达式为:

$$\left(\sup_{n\geq 1} f_n\right)(x) = \sup(f_1(x), f_2(x), \cdots)$$

• 从右到左

设任意 $x_0 \in g^{-1}((a, +\infty])$,那么 $g(x_0) \in (a, +\infty]$,由上确界函数的定义可知,存在 $f_n(x_0) = g(x_0)$,从而 $g^{-1}((a, +\infty]) \subseteq \bigcup_{n \ge 1} f_n^{-1}((a, +\infty])$ 。

• 从左到右

设任意 $x_0 \in \bigcup_{n \geq 1} f_n^{-1}((a, +\infty])$,那么存在某个 n,使得 $f_n(x_0) \in (a, +\infty]$,于是我们有

$$g(x_0) \ge f_n(x_0) > a$$

所以
$$x_0 \in g^{-1}((a, +\infty])$$
,从而 $\bigcup_{n \geq 1} f_n^{-1}((a, +\infty]) \subseteq g^{-1}((a, +\infty])$ 。

说明 2. 引理 18.5.10, f_n 逐点收敛于函数 f 时, f 是可测的。

证明:

只需证明 $f=\inf_{N\geq 1}\sup_{n\geq N}f_n=\sup_{N\geq 1}\inf_{n\geq N}f_n$ 即可。以 $f=\inf_{N\geq 1}\sup_{n\geq N}f_n$ 为例, $f=\sup_{N\geq 1}\inf_{n\geq N}f_n$ 证明类似。

 f_n 逐点收敛于函数 f,那么对任意 $x \in \Omega, \epsilon > 0$,存在 $N' \ge 1$ 使得只要 n > N' 就有

$$|f(x) - f_n(x)| < \epsilon$$

于是可得

$$|f(x) - \sup_{n \ge N'} f_n(x)| \le \epsilon$$

$$|f(x) - \inf_{n \ge N'} f_n(x)| \le \epsilon$$

因为

$$\sup_{n \ge N'} f_n(x) \ge \inf_{n \ge N'} f_n(x)$$

由 $\sup_{n>N} f_n(x)$ 单调递减和 $\inf_{n\geq N} f_n(x)$ 单调递增,于是有,

$$\inf_{N \ge 1} \sup_{n \ge N} f_n(x) \le \sup_{n \ge N'} f_n(x) \tag{1}$$

$$\inf_{n \ge N'} f_n(x) \le \sup_{N \ge 1} \inf_{n \ge N} f_n(x) \tag{2}$$

利用引理 6.4.13 (比较原理) 可知

$$\sup_{N\geq 1} \inf_{n\geq N} f_n(x) \leq \inf_{N\geq 1} \sup_{n\geq N} f_n(x)$$

结合 (1)(2) 式, 我们有

$$\inf_{n \ge N'} f_n(x) \le \inf_{N \ge 1} \sup_{n > N} f_n(x) \le \sup_{n > N'} f_n(x)$$

综上可得

$$|f(x) - \inf_{N \ge 1} \sup_{n \ge N} f_n(x)| \le \epsilon$$

所以由 x, ϵ 的任意性可知, $f = \inf_{N \ge 1} \sup_{n \ge N} f_n$ 。