DIGITALNA ELEKTRONIKA

SVEUČILIŠNI

DIGITALNA ELEKTRONIKA FESB 72x, 110

DIGITALNI SUSTAVI I STRUKTURE FESB 750

DISKRETNI SUSTAVI I STRUKTURE FESB 120

STRUČNI

DIGITALNA TEHNIKA FESB 612, 650, 412, 450

DIGITALNA I MIKROPROCESORSKA TEHNIKA OSS RAČUNARSTVO

DIGITALNA ELEKTRONIKA DIGITALNI SUSTAVI I STRUKTURE DISKRETNI SUSTAVI I STRUKTURE

1. UVOD

- 2. SINTEZA KOMBINACIJSKIH LOGIČKIH STRUKTURA
- 3. SINTEZA SEKVENCIJALNIH SKLOPOVA, regularni izrazi

DIGITALNA TEHNIKA

1. UVOD

2. SINTEZA KOMBINACIJSKIH LOGIČKIH STRUKTURA

3. SINTEZA SEKVENCIJALNIH SKLOPOVA

DIGITALNA I MIKROPROCESORSKA TEHNIKA

1. UVOD

- 2. SINTEZA KOMBINACIJSKIH LOGIČKIH STRUKTURA
- 3. SINTEZA SEKVENCIJALNIH SKLOPOVA
- 4. OSNOVE ARHITEKTURE MIKRORAČUNALA

NASTAVA

KOMUNIKACIJA

- E-learning portal,
- www.fesb.hr/~julije
- julije.ozegovic@fesb.hr
- srdjana.dragicevic@fesb.hr

NASTAVA

- Predavanja 3 sata
 - J. Ožegović: Digitalna i mikroprocesorska tehnika
 - Tkalić, Kunštić: Logičko projektiranje digitalnih sustava (FER)
 - Glavinić: **Digitalni sustavi** (FER novo)
 - ulazni i izlazni test svaki termin, potrebno 50% pozitivnih testova

NASTAVA

- Auditorne vježbe 2 sata (1 sat)
 - provjera znanja na ploči, testovi
 - zbirke nema, neke zadaće na ~julije i ~pravdica
- Laboratorijske vježbe 1 sat (2 sata)
 - ulazni test svake vježbe, 100% obavezne
 - upute u skriptarnici i na portalu

ISPITNA PITANJA – 1/3

- 1. PRIKAZ INFORMACIJA U DIGITALNIM SUSTAVIMA
- 2. BROJEVNI SUSTAVI
- 3. ARITMETIKA PO MODULU
- 4. ELEMENTARNI LOGIČKI SKLOPOVI
- 5. BOOLEOVA ALGEBRA
- 6. BOOLEOVE FUNKCIJE
- 7. NORMALNI ALGEBARSKI OBLICI
- 8. POTPUNI SKUPOVI FUNKCIJA
- 9. MINIMIZACIJA NORMALNIH OBLIKA
- 10. POSTUPCI MINIMIZACIJE I REALIZACIJA NI I NILI VRATIMA

ISPITNA PITANJA – 2/3

- 11. KOMBINACIJSKI SKLOPOVI SREDNJEG STUPNJA INTEGRACIJE
- 12. REALIZACIJA BF MULTIPLEKSEROM
- 13. REALIZACIJA BF DEMULTIPLEKSEROM
- 14. MULTIPLEKSERSKO-DEMULTIPLEKSERSKA (MD) STRUKTURA
- 15. PROGRAMABILNE LOGIČKE STRUKTURE
- 16. SEKVENCIJALNI SKLOPOVI
- 17. RAD SKLOPA U DISKRETNOM VREMENU
- 18. BISTABIL KAO SKLOP
- 19. SINTEZA OPĆIH BISTABILA
- 20. SLOŽENI SKLOPOVI S BISTABILIMA

ISPITNA PITANJA – 3/3

- 21. DIGITALNI AUTOMAT
- 22. APSTRAKTNI MODEL DIGITALNOG AUTOMATA
- 23. ZADAVANJE AUTOMATA
- 24. EKVIVALENTNOST AUTOMATA
- 25. NAPREDNI POSTUPCI MINIMIZACIJE AUTOMATA
- 26. STRUKTURNA SINTEZA AUTOMATA
- 27. AUTOMATI I ALGORITMI
- 28. AUTOMATI I JEZICI
- 29. ALGEBRA DOGAĐAJA
- 30. ZADAVANJE AUTOMATA REGULARNIM IZRAZOM

I. UVOD

1. PRIKAZ INFORMACIJA U DIGITALNIM SUSTAVIMA

2. BROJEVNI SUSTAVI

3. ARITMETIKA PO MODULU

4. ELEMENTARNI LOGIČKI SKLOPOVI

1. PRIKAZ INFORMACIJA U DIGITALNIM SUSTAVIMA

1. PRIKAZ INFORMACIJA U DIGITALNIM SUSTAVIMA

- 1.1. Analogni i digitalni sustavi
- 1.2. Informacijski volumen i digitalni sustav
- 1.3. Kodovi i kodiranje

1.1. ANALOGNI I DIGITALNI SUSTAVI

ELEKTROTEHNIKA = PRIMIJENJENA FIZIKA

FENOMEN ELEKTRICITETA I MAGNETIZMA

ELEKTROENERGETIKA

Električnim signalom prenosimo energiju

ELEKTRONIKA

Električnim signalom prenosimo informaciju

INFORMACIJA

- ČINJENICA
 neka pojava postoji bez obzira da li je osjećamo
- INFORMACIJA
 pojava je primijećena, a informacija o tome je priopćena (prenesena, zapisana)
- DRUŠTVO
 ovisi o prijenosu i obradi informacija

MODULACIJA

UTISKIVANJE INFORMACIJE U SIGNAL (MODULACIJA)

ANALOGNO

DIGITALNO

MODULACIJA

ANALOGNO

informaciji pridružujemo veličinu signala, npr. masi napon (1g = 1mV; 0-10kg odgovara 0-9999mV) povećanje točnosti → povećati točnost sklopovlja

DIGITALNO

informaciji pridružujemo broj broju pridružimo onoliko signala koliko ima znamenki npr. masi broj od 4 znamenke, 0000-9999 broju pridružimo 4 signala, znamenki napon povećanje točnosti → povećati broj znamenki

1.2. INFORMACIJSKI VOLUMEN

INFORMACIJSKI VOLUMEN V=2BDTK

2B DVOSTRUKA ŠIRINA POJASA

= BRZINA SIGNALIZACIJE

U jednom periodu prenosimo dva signalna elementa

D DINAMIKA

= BROJ BITA PO SIGNALNOM ELEMENTU

Po jednom signalnom elementu prenosimo jedan ili više bita (binarnih znamenki)

T VRIJEME

= PERIOD U KOJEM JE SUSTAV RASPOLOŽIV

Sustav može biti raspoloživ trajno ili samo dio ukupnog vremena

K BROJ KANALA

= BROJ PARALELNIH INFORMACIJSKIH SUSTAVA

Informaciju prenosimo, pamtimo ili obrđujemo paralelno po jednom ili više sustava

DVOSTRUKA ŠIRINA POJASA 2B

SUSTAV SA NISKIM PROPUSTOM

- širina pojasa $B = f_g f_d = f_g 0 = f_g$
- u jednom periodu signala fg prenesemo DVA signalna elementa
- odatle 2B signalnih elemenata u sekundi (Bd)

DINAMIKA D

BROJ RAZINA PO SIGNALNOM ELEMENTU

- Broj razina R = U/u
- Raspon signala ograničen dogovorom
- Minimalni signal ograničen smetnjama
- dogovor: $D = log_2(R) = ld(R)$ bita/sign.elementu

KAPACITET 2B*D

KAPACITET SUSTAVA

- Izražava
 - brzinu obrade
 - brzinu prijenosa
 - brzinu pristupa podacima
- Kapacitet C

C = 2B*D [se/sek * bit/se = bit/sek]

• Kapacitet C je "bandwidth" u žargonu Interneta

BROJ PARALELNIH KANALA K

VIŠE ISTOVRSNIH KANALA

• volumen je 2BDTK, inače suma pojedinačnih

ANALOGNI SUSTAV

ANALOGNO

- informaciju prenosimo kroz dinamiku D
- ograničeni smo točnošću očitanja
- ovisi o točnosti sklopovlja i smetnjama
- cijena raste eksponencijalno s točnošću

DIGITALNI SUSTAV

DIGITALNO

- informaciju prenosimo kroz prostor K
- ograničeni smo brojem znamenki
- ovisi o veličini sklopa (po volji velik, ali konačan)
- cijena raste linearno s točnošću

PROBLEM PARALELNOG PRIJENOSA

PROBLEM RAZLIKE KAŠNJENJA

 povećanjem brzine dolaze do izražaja različita kašnjenja po pojedinačnim vodovima

SERIJSKI I PARALELNI PRIJENOS

SERIJSKI: 1 kanal k puta veće brzine

PARALELNO: k kanala jedinične brzine

1.3. KODOVI I KODIRANJE

KOD

- dogovorno uspostavljen sustav simbola
- kojima označavamo neke pojmove (informacije)

JEDNOZNAČNOST I RAZLUČIVOST

- jednom pojmu najmanje jedan simbol
- treba dovoljan broj simbola

KODIRANJE I DEKODIRANJE

KODIRANJE SKUPA INFORMACIJA

postupak konstrukcije koda (dodjeljivanje simbola)

KODIRANJE

postupak primjene koda,
 prevođenje informacije u simbole

DEKODIRANJE

postupak primjene koda,
 prevođenje simbole natrag u informacije

NEPOSREDNI I POSREDNI KODOVI

NEPOSREDNI KODOVI

- nekom pojmu zasebni simbol
- primjer: kinesko pismo

POSREDNI KODOVI

- nekom pojmu dodijelimo riječ
- riječ formiramo izborom malog broja simbola slova
- primjer: latinično pismo

ANALOGNI I DIGITALNI SUSTAVI

KODNA RIJEČ ili KOMPLEKSIJA

- kodnu riječ formiramo iz skupa elementarnih simbola
- elementarni simbol = slovo
- kompleksija: cjelina sastavljena od više dijelova

ANALOGNI I DIGITALNI SUSTAVI

- analogni: neposredno kodiranje,
 - •signalni element je nosilac informacije
- digitalni: posredno kodiranje
 - •kodna riječ je nosilac informacije

KONAČNOST KODA

KONAČNI I BESKONAČNI KODOVI

- teoretski: mogu biti beskonačni
- u praksi: konačni
- neposredni: ograničeni konačnim brojem simbola
- posredni: ograničeni konačnom duljinom riječi

2. BROJEVNI SUSTAVI

2. BROJEVNI SUSTAVI

- 2.1. Poliadski brojevni sustavi
- 2.2. Izbor brojevnog sustava za digitalne sustave
- 2.3. Prikaz brojeva binarnim kodovima
- 2.4. Primjene binarnih kodova

KORISTIMO BROJEVE

- N prirodni
- N₀ prirodni s nulom
- Z cijeli
- Q racionalni
- R realni
- C kompleksni

BROJEVE ZAPISUJEMO

- rimska notacija
- poliadska notacija poliadski brojevni sustavi

• DEFINICIJA

$$a = \sum_{k=0}^{n-1} a_k s^k = a_{n-1} s^{n-1} + a_{n-2} s^{n-2} + \dots + a_2 s^2 + a_1 s + a_0$$

gdje je:

- a_k znamenka na mjestu k
- s baza brojevnog sustava
- *n* broj znamenki u kodnoj riječi

BROJ ZAPISUJEMO

- pišemo samo znamenke jednu iza druge
- potencije baze ne pišemo, podrazumijevaju se
- govorimo o težini mjesta na kojem je znamenka
- kod je težinski
- desno od broja podrazumijevamo (decimalni) zarez
- za racionalne i realne pišemo zarez

ZA CIJELE BROJEVE

znamenke iz skupa

$$a_k \in \{0, 1, 2, \dots, s-1\}$$

 $N = s^n$

• broj mogućih kodnih riječi

maksimalni broj

$$a_{\text{max}} = \sum_{k=0}^{n-1} (s-1)s^k = s^n - 1$$

• brojevi su iz skupa

$$a \in F = \{0, 1, 2, \dots, s^{n} - 1\}$$

uvjet jednoznačnosti

$$N \ge N' : n \ge \log_s(N')$$

ZA REALNE BROJEVE

• zapisujemo kao racionalni broj s djeliteljem s^d:

$$a = \frac{a_i}{s^d} = \frac{1}{s^d} \sum_{k=0}^{n-1} a_k s^k = \sum_{k=0}^{n-1} a_k s^{k-d} =$$

$$= a_{n-1} s^{n-d-1} + a_{n-2} s^{n-d-2} + \dots + a_{d+1} s + a_d + a_{d-1} s^{-1} + a_{d-2} s^{-2} + \dots + a_0 s^{-d}$$

ili

$$a = \sum_{k=-d}^{n-d-1} a_k s^k = a_{n-d-1} s^{n-d-1} + a_{n-d-2} s^{n-d-2} + \dots + a_1 s + a_0 + a_{-1} s^{-1} + a_{-2} s^{-2} + \dots + a_{-d} s^{-d}$$

- dekadski: decimalni zarez (točka)
- binarni: binarni zarez (točka)

INTERESANTNI BROJEVNI SUSTAVI:

• **Dekadski**: s=10; $a_k \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$;

$$N=10^n$$
; $n \ge \log(N')$; $a_{max} = 10^n-1$;

npr.
$$29_{10} = 2*10 + 9*1 = 20 + 9 = 29$$

• Oktalni: s=8; $a_k \in \{0, 1, 2, 3, 4, 5, 6, 7\}$;

$$N=8^n$$
; $n \ge \log_8(N')$; $a_{max}=8^n-1$;

npr.
$$35_8 = 3*8 + 5*1 = 24 + 5 = 29$$

INTERESANTNI BROJEVNI SUSTAVI:

• **Ternarni**: s=3; $a_k \in \{0, 1, 2\}$; $N=3^n$; $n \ge \log_3(N')$; $a_{max} = 3^n-1$;

npr.
$$1002_3 = 1 \times 27 + 0 \times 9 + 0 \times 3 + 2 \times 1 = 27 + 2 = 29$$

• **Binarni**: s=2; $a_k \in \{0, 1\}$; $N=2^n$; $n \ge \log_2(N') = ld(N')$; $a_{max} = 2^n-1$;

npr.
$$11101_2 = 1*16+1*8+1*4+0*2+1*1=16+8+4+1=29$$

INTERESANTNI BROJEVNI SUSTAVI:

• Heksadecimalni: s=16; $N=16^n$; $n \ge \log_{16}(N')$; $a_{max}=16^n-1$;

$$a_k \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F\};$$

npr.
$$1D_{16}=1*16+13*1=16+13=29$$

- **Baza s=1** ????? --> rimska notacija !!!
 - koristi se i kod ispitivanja složenosti numeričkih algoritama
 Turingovim strojem

ODNOS BINARNOG; OKTALNOG I HEKSADECIMALNOG:

odnos baza je:

$$s_8 = (s_2)^3$$
; $s_{16} = (s_2)^4$

znamenke je moguće prevesti bez ostatka:

$$\underbrace{011101}_{3} \ 35_{8} = 29_{10} \ ; \ \underbrace{00011101}_{1} \ 1D_{16} = 29_{10}$$

programski jezici: 0x1D

2.2. IZBOR BROJEVNOG SUSTAVA

PROMJENA BAZE:

povećavamo li bazu

$$s_2 < s_3 < s_8 < s_{10} < s_{16}$$

• trebamo sve manje znamenki:

$$\log_2 N' > \log_3 N' > \log_8 N' > \log_{10} N' > \log_{16} N'$$

dovoljno velika baza => analogni signal!

PRIKAŽIMO JEDNU ZNAMENKU ELEKTRIČNIM SIGNALOM (npr. koristimo napon):

Želimo da signal bude u sredini pojasa:

NAPON NE MOŽE IĆI IZVAN GRANICA:

NAJVEĆA POGRJEŠKA ZA RAZNE BAZE:

S	ε _{max} (s razina)	ε _{max} (s-1 razina)
2	±25%	±50%
3	±16,6%	±25%
8	±6,25%	±7,14%
10	±5%	±5,55%
16	±3,125%	±3,33%

OPTIMALAN JE BINARNI SUSTAV!

BINARNU ZNAMENKU PRIKAZUJEMO NAPONOM:

a) pozitivna logika

b) negativna logika

TRANZISTOR KAO SKLOPKA:

Struja kolektora: $I_c = I_{c0} + \beta * I_b$ Napon kolektora: $u_c = U - R * i_c$

Zakočenje: $I_b=0$ Zasićenje: $I_b>Ic/\beta$

SVOJSTVA BINARNOG SUSTAVA

Binarna znamenka bit (binary digit)

Najčešće binarne kodne riječi:

2.3. PRIMJENE KODIRANJA

PRIKAZ BROJEVA

PRIRODNI BINARNI KOD

BINARNO KODIRANI DECIMALNI BROJEVI

Prirodni binarni kod:

 $\mathbf{a}_{\text{max}} = 2^{\text{n}} - 1$ ili $\mathbf{n} = \mathbf{ld}(\mathbf{a}_{\text{max}} + 1)$

Čovjek: dekadski

Računalo: binarno => pretvorba!

PRIRODNI BINARNI KOD

Prirodni binarni kod za n=4:

	8 4 2 1		
TEŽINA	$2^3 2^2 2^1 2^0$		
DEK	3 2 1 0	HEX	OCT
0	0 0 0 0	0	00
1	0 0 0 1	1	01
2	0 0 1 0	2	02
3	0 0 1 1	3	03
4	0 1 0 0	4	04
5	0 1 0 1	5	05
6	0 1 1 0	6	06
7	0 1 1 1	7	07

	8 4 2 1		
TEŽINA	$2^3 2^2 2^1 2^0$		
DEK	3 2 1 0	HEX	OCT
8	1 0 0 0	8	10
9	1 0 0 1	9	11
10	1 0 1 0	A	12
11	1 0 1 1	В	13
12	1 1 0 0	C	14
13	1 1 0 1	D	15
14	1 1 1 0	Е	16
15	1 1 1 1	F	17

Pretvorba dekadski-binarni

Čovjek: dekadsko binarni sukcesivnim dijeljenjem s 2.

stupac čitamo od dole prema gore:

$$\mathbf{a}_2 = 11101 = \mathbf{a}_{10} = 29_{10}$$

Pretvorba dekadski-binarni

Stroj: binarno-dekadski sukcesivnim dijeljenjem s 10.

$$BIN \underset{\text{sukc/10}}{\Rightarrow} BCD \underset{+0 \times 30}{\Rightarrow} ASCII \underset{\text{out}}{\Rightarrow}$$

Pretvorba binarni-dekadski

Čovjek: binarno dekadski sukcesivnim množenjem s 2 izračunamo:

$$a_{10} = \sum_{k=0}^{n-1} a_k 2^k$$

npr.:
$$1 1 1 0 1$$
 $+ + + + + +$
 $0 2 6 14 28$
 $1 3 7 14 29 = 29$

Pretvorba binarni-dekadski

Stroj: dekadsko binarni sukcesivnim množenjem s 10.

$$BIN \underset{sukc*10}{\Leftarrow} BCD \underset{-0x30}{\Leftarrow} ASCII \underset{in}{\Leftarrow}$$

BCD KODOVI

Binarno kodirani decimalni kodovi (BCD):

bin		8 4 2 1	2 4 2 1
0	0 0 0 0	0	0
1	0 0 0 1	1	1
2	0 0 1 0	2	2
3	0 0 1 1	3	3
4	0 1 0 0	4	4
5	0 1 0 1	5	R
6	0 1 1 0	6	R
7	0 1 1 1	7	R

bin		8 4 2 1	2 4 2 1
8	1 0 0 0	8	R
9	1 0 0 1	9	R
10	1 0 1 0	R	R
11	1 0 1 1	R	5
12	1 1 0 0	R	6
13	1 1 0 1	R	7
14	1 1 1 0	R	8
15	1 1 1 1	R	9

npr. **29**₁₀: 8421: **0010 1001** 2421: **0010 1111**

 2_{10} 9_{10} 2_{10} 9_{10}

2.4. PRIMJENE BINARNIH KODOVA

Kodovi za otkrivanje pogrješki:

POGRJEŠKA: prevodi 1-->0, 0-->1

Novo nastala kodna riječ razlikuje se u onoliko bita, koliko ih je promijenjeno djelovanjem smetnje.

DISTANCA (kodna udaljenost) d:

Broj bita u kojima se razlikuju dvije kodne riječi.

SUSJEDNOST (kodnih riječi) d=1:

Dvije kodne riječi su susjedne, kada im je distanca (kodna udaljenost) jednaka 1, tj. razlikuju se u jednom bitu.

Kodovi za otkrivanje pogrješki

REDUNDANCIJA (zalihost):

U kodu neke kodne riječi nisu iskorištene. Namjerno povećavamo redundanciju korištenjem dužih kodnih riječi.

Tada će potreban broj kodnih riječi biti iskorišten, a veliki broj će biti neiskorišten.

OTKRIVANJE (detekcija) pogrješki:

Pogrješku je moguće otkriti, ako smetnja prevodi korištenu (ispravnu) kodnu riječ u neku neiskorištenu (neispravnu).

SVOJSTVO POGRJEŠKI:

Višestruke pogrješke su manje vjerojatne (uglavnom)!

Kodovi za otkrivanje pogrješki

KONSTRUKCIJA KODA:

Želimo da između bilo koje dvije ispravne kodne riječi distanca bude najmanje "d". Tada možemo:

otkriti d-1 struku pogrješku ispraviti (d/2) struku pogrješku:

ARITMETIČKE OPERACIJE

ZBRAJANJE:

NA POJEDINOJ ZNAMENCI:

c_{k-1}	$\mathbf{a}_{\mathbf{k}}$	b _k	$\mathbf{c}_{\mathbf{k}}$	$\mathbf{S}_{\mathbf{k}}$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

ARITMETIČKE OPERACIJE

MNOŽENJE:

svodi se na pribrajanje broja ako je znamenka desnog u jedinici, te nakon toga pomak u lijevo

POMAK U LIJEVO (DESNO)

množenje (dijeljenje) s 2

BCD: znamenka po znamenka, pretek s četvrtog bita

3. ARITMETIKA PO MODULU

3. ARITMETIKA PO MODULU

- 3.1. Definicija sume po modulu kao grupe
- 3.2. Neutralni element i inverz za sumu po modulu
- 3.3. Binarni brojevni sustav i suma po modulu
- 3.4. Primjena drugog komplementa

3.1. SUMA PO MODULU KAO GRUPA

Stvarni sklopovi su konačni!

- Po volji veliki:
 - u nekom trenutku rezultat će biti prevelik
 - neke znamenke će biti izgubljene
 - informacija će biti izgubljena
- Zbrajanje: suma po modulu

SUMA PO MODULU KAO GRUPA

Definirajmo algebarsku grupu od:

skup F:
$$F = \{0, 1, 2, ..., m-1\}$$
 $m : mod ul$ $m \in N$ $m > 1$ ili $m \ge 2$

operacija
$$\oplus$$
: $a \oplus b = c = \text{Re } z \left(\frac{a+b}{m} \right)$

"Rez" = ostatak cjelobrojnog dijeljenja

npr:
$$3+4 = 2^{-1} \xrightarrow{\text{ostatak}}$$

$$3 \oplus 4 = 2$$

$$3 \oplus 4 = 2$$

$$7 : (\text{modul } 5) = 1 * 5 + 2^{-1} \text{ ostatak}$$

SUMA PO MODULU KAO GRUPA

Vrijede svojstva:

 $\forall a, b \in F : a \oplus b = c : c \in F$

 $\forall a \oplus b \oplus c = (a \oplus b) \oplus c = a \oplus (b \oplus c)$

 $\forall a, b \in F : a \oplus b = b \oplus a$

 $\exists e \in F : \forall a \in F : a \oplus e = e \oplus a = a$

 $\forall a \in F \ \exists a' \in F : a \oplus a' = a' \oplus a = e$

zatvorenost

asocijativnost

komutativnost

neutralni element

inverz

3.2. NEUTRALNI ELEMENT I INVERZ

Izračunajmo neutralni element:

cunajmo neutralni element:
$$a \oplus e = a \implies \operatorname{Re} z \left(\frac{a+e}{m} \right) = \operatorname{Re} z \left(\frac{a}{m} \right) \implies a+e=a \implies e=0$$

$$Rez \left(\frac{A}{m} \right)$$

$$m = 2m \quad 3m \quad 4m \quad A$$

$$\Rightarrow a + e + k'm = a + k''m$$

$$e = (k'' - k')m \qquad e = km - neutralni element$$

$$k = 0 \Rightarrow e = 0 - zbog uvjeta zatvorenosti$$

NEUTRALNI ELEMENT I INVERZ

Izračunajmo inverzni element od a:

$$a \oplus a' = e = 0$$
 $a + a' = 0 + k m$
 $a' = k m - a$

Imamo dva slučaja:

$$a = 0 \implies k = 0 \implies a' = 0$$

$$a > 0 \implies k = 1 \quad a' = m - a$$

Slijedi:

$$a' = \begin{cases} a = 0 : a' = 0 \\ a > 0 : a' = m - a \end{cases}$$

3.3. BINARNI BROJEVNI SUSTAV I SUMA PO MODULU

Konačni sklop za obično zbrajanje:

$$\begin{array}{c}
 1001 \equiv 9 \\
 +1100 \equiv 12
 \end{array}$$

$$5 = 21_{\text{mod } 16} = \text{rez} \left(\frac{21}{16}\right) = 5$$

$$1 \downarrow 0101 \equiv 5$$

jer je ograničen na 4 bita:

$$s = 2$$
 $n = 4$ $a_{max} = 2^{n} - 1 = 15$ $N = 2^{n} = 16$

Sklop se ponaša kao da imamo sumu po modulu m=2ⁿ:

$$F \in \{0, ..., m-1\} = \{0, ..., 2^n - 1\} = \{0, ..., a_{max}\}$$

Povezali smo binarni brojevni sustav i sumu po modulu!

Izračunajmo inverz za binarni sustav:

$$a' = m - a$$
 $m = 2^n$ $a_{max} = 2^n - 1 \implies 2^n = m = a_{max} + 1$

$$\Rightarrow a' = a_{\text{max}} + 1 - a = a_{\text{max}} - a + 1$$

Uvrstimo u formule za poliadske sustave:

$$a' = \sum_{k=0}^{n-1} (s-1)s^k - \sum_{k=0}^{n-1} a_k s^k + 1$$

Svedimo na jednu sumu:

$$a' = \sum_{k=0}^{n-1} (s-1-a_k)s^k + 1$$
; $s-1-a_k = \overline{a}_k \equiv \text{komplement znamenke}$

Za binarni sustav s=2:

$$a' = \sum_{k=0}^{n-1} \overline{a}_k 2^k + 1$$

gdje je:

$$2 - 1 - a_k = 1 - a_k = \overline{a}_k$$

obični komplement (negacija) znamenke prema tablici:

a _k	$1 - a_k$
0	1
1	0

odnosno:

Inverz ili "drugi komplement" ili "komplement po modulu 2"

$$a' = \overline{a} + 1$$

dobijemo povećanjem običnog komplementa za jedan

gdje je ā "obični komplement" ili "prvi komplement" ili "komplement po modulu 1" broja a dobiven komplementiranjem pojedinih znamenki

Sjetimo se i 0, pa dobijemo:

$$\mathbf{a'} = \begin{cases} \mathbf{a} = 0 & \mathbf{a'} = 0 \\ \mathbf{a} > 0 & \mathbf{a'} = \overline{\mathbf{a}} + 1 \end{cases} = \overline{\mathbf{a}} \oplus 1$$

Obični komplement jednostavno izračunamo invertorima:

a povećanje za jedan ostvarimo istim sklopom za zbrajanje ili brojilom.

Ukratko, inverz je lako izračunati pa bi ga mogli koristit u praksi!

Svojstva prvog i drugog komplementa:

prvi komplement

drugi komplement

3.4. PRIMJENA DRUGOG KOMPLEMENTA

Definirajmo oduzimanje po modulu:

$$a \ominus b = \operatorname{Re} z \left(\frac{a - b}{m} \right) = \operatorname{Re} z \left(\frac{a - b + k m}{m} \right)^{k=1} =$$

$$= \operatorname{Re} z \left(\frac{a + m - b}{m} \right) = \operatorname{Re} z \left(\frac{a + b'}{m} \right)$$

ili

$$a \ominus b = a \oplus b'$$

odnosno, oduzimanje jednostavno ostvarimo pribrajanjem inverza.

Inverz ima značenje negativnog broja!

PRIMJENA DRUGOG KOMPLEMENTA

Raspoložive brojeve možemo smatrati

pozitivnima:

Kontroliramo pretek na najznačajnijem bitu (C, Carry)

PRIMJENA DRUGOG KOMPLEMENTA

Raspoložive brojeve možemo smatrati

pozitivnima, a inverze negativnima:

Kontroliramo pretek na predzadnjem najznačajnijem bitu (V, Overflow).

4. ELEMENTARNI LOGIČKI SKLOPOVI

4. ELEMENTARNI LOGIČKI SKLOPOVI

- 4.1. Koncept elementarnih logičkih sklopova
- 4.2. Klasifikacija digitalnih tehnologija
- 4.3. Diodna i diodno-tranzistorska logika
- 4.4. Tranzistorski-tranzistorska logika
- 4.5. Komplementarna MOS tehnologija
- 4.6. Primjena elementarnih logičkih sklopova

4.1. Koncept elementarnih logičkih sklopova

U ALGEBRI LOGIKE OPERATORI SU:

KONJUNKCIJA &
DISJUNKCIJA V
NEGACIJA -

Definiramo ih tablicom istine:

\mathbf{x}_1 \mathbf{x}_2	$x_1 & x_2$	$x_1 V x_2$	$\overline{\mathbf{x}}_{1}$
0 0	0	0	1
0 1	0	1	1
1 0	0	1	0
1 1	1	1	0

Koncept elementarnih logičkih sklopova

SINTEZA SKLOPA:

- funkciju zadamo tablicom istine
- odredimo algebarski oblik funkcije (minimalan)
- nacrtamo logički dijagram
- nacrtamo shema sklopa

NPR:
$$x_1 \quad x_2 \quad y \quad y = \overline{x}_1 \cdot x_2 \lor x_1 \cdot \overline{x}_2$$
 $0 \quad 0 \quad \overline{x}_1$
 $0 \quad 1 \quad 1 \quad x_2$
 $1 \quad 0 \quad 1 \quad \overline{x}_1$
 $1 \quad 0 \quad 0$

Koncept elementarnih logičkih sklopova

SHEMU SKLOPA CRTAMO KORISTEĆI KOMPONENTE

Elementarni logički sklopovi - logička vrata:

Koncept elementarnih logičkih sklopova

Npr. U relejnoj tehnici:

ili kraće:

za gornji primjer:

4.2. Klasifikacija digitalnih tehnologija

Klasifikacija digitalnih tehnologija

PODJELA PO STUPNJU INTEGRACIJE:

- SSI (Small Scale Integration):
 niski stupanj integracije,
 do 100 tranzistora, do 10 logičkih vrata
- MSI (Medium Scale Integration): srednji stupanj integracije, do 1000 tranzistora, do 100 logičkih vrata
- LSI (Large Scale integration): visoki stupanj integracije, do 10000 tranzistora, do 1000 logičkih vrata
- VLSI (Very Large Scale Integration)
 vrlo visoki stupanj integracije
 danas oko 750 000 000 tranzistora

Klasifikacija digitalnih tehnologija

PODJELA PO VRSTI IZLAZA:

- BIPOLARNI (Totem Pole, TP): aktivno generira nulu i jedinicu
- S VISOKOM IMPEDANCIJOM (TRI-STATE, TS): za pogon sabirnice računala
- S OTVORENIM KOLEKTOROM:
 (Open Collector, OC):
 za aktiviranje potrošača (žaruljice, releji)
 ožičeno & (Wired AND), starije sabirnice

4.3. Diodna i diodno-tranzistorska logika

GRADIMO IH OD DIODA, OTPORNIKA, TRANZISTORA DIODNA TEHNIKA (DL):

konjunkcija

disjunkcija

mana: nemogućnost spajanja više od dva sklopa u seriju

Diodna i diodno-tranzistorska logika

OTPORNO-TRANZISTORSKA TEHNIKA (RTL):

konjunkcija ili disjunkcija ovisno o ulaznim otpornicima

mana: proračun i upotreba preciznih otpornika

Diodna i diodno-tranzistorska logika

DIODNO-TRANZISTORSKA TEHNIKA (DTL):

(ujedno prva integrirana tehnologija)

prednost: brza improvizacija ni i i nili vrata

4.4. Tranzistorski-tranzistorska logika

TRANZISTORSKO-TRANZISTORSKA TEHNIKA (TTL):

- SSI i MSI integrirani sklopovi
- Višeemiterski tranzistori na ulazu
- Kašnjenje 2-10 ns, ovisno o RC članovima
- R moguće smanjiti, po cijeni povećane potrošnje

VIŠE FAMILIJA TTL INTEGRIRANIH KRUGOVA:

```
74xx = normalni,
```

74Lxx = niska potrošnja i brzina,

74Hxx = velika brzina i potrošnja,

74Sxx = normalni shottky,

74LSxx = shottky sa malom potrošnjom,

74ALSxx novija familija sa manjom dimenzijom tranzistora

74Fxx = novija familija brzih TTL integriranih krugova

Tranzistorski-tranzistorska logika

TTL NI VRATA S BIPOLARNIM ILI TRI-STATE IZLAZOM:

Tranzistorski-tranzistorska logika

TTL NI VRATA

Generiranje jedinice i nule:

Tranzistorski-tranzistorska logika

TTL NI VRATA S OTVORENIM KOLEKTOROM NA IZLAZU:

74xx00: (TTL)

4.5. Komplementarna MOS tehnologija

potrošnja ovisi o brzini (broju promjena u sekundi)

CMOS tehnologija

CMOS logička vrata

CMOS tehnologija

CMOS 1-bit sumator

Razlikujemo: kašnjenje jedinice t_{dlh}

kašnjenje nule t_{dhl}

Mjerimo: od sredine do sredine brida signala

VRIJEME PORASTA I PADA SIGNALA

(što brže to bolje)

Razlikujemo: vrijeme porasta t_r

vrijeme pada t_f

Mjerimo: od 10% do 90% brida signala

FAKTOR GRANANJA

(jednostavna provjera ispravnosti dizajna)

ŽELIMO očuvati naponske razine za 0 i 1, povijesno određene prema zahtjevima TTL tehnologije:

$$1 \qquad U_{oh} > 2,4V$$

$$0 \qquad U_{\rm ol} < 0.8V$$

MJERIMO maksimalne struje

koje sklop može dati u 1 koje sklop može i primiti u 0

a da pri tome ostanu zadovoljeni definirani naponski uvjeti

I_{ih0}

 I_{il0}

Mjerimo struje STANDARDNOG ULAZA

(ulazne struje): 1

 $I_{ih0} = 5V$ $I_{il0} = 5V$ $y = x_1 & x_2$ GND

definiramo FAKTOR IZLAZNOG GRANANJA

(koliko standardnih ulaza možemo spojiti na izlaz)

$$FG_{izl} = min (I_{ohm}/I_{ih0}; I_{olm}/I_{il0})$$

definiramo FAKTOR ULAZNOG GRANANJA

(koliko stvarni ulaz opterećuje izlaz

u odnosu na standardni ulaz)

 $\mathbf{FG_{ul}} = \mathbf{max} \left(\mathbf{I_{ih}} / \mathbf{I_{ih0}} ; \mathbf{I_{il}} / \mathbf{I_{il0}} \right)$

STRUJE MJERIMO: (napajanje se podrazumijeva)

Vježba 1

Zadatak na vježbi 1:

Za TTL, LSTTL, OCTTL i CMOS invertore na modelu

snimiti

tablice istine za elementarna logička vrata

izmjeriti

struju potrošnje, vremena kašnjenja,

ulazne struje i maksimalne izlazne struje.

Izračunati

faktore grananja i produkte kašnjenja i potrošnje

Pod strujom potrošnje podrazumijevamo struju koju sklop uzima iz izvora za napajanje (5V).