Soal dan Solusi UTS Struktur Aljabar I 2022

Wildan Bagus Wicaksono

Математіка 2022

Question 1

Diberikan himpunan $G = \left\{ \begin{pmatrix} m & n \\ -n & m \end{pmatrix} \mid m, n \in \mathbb{R} \text{ dan } m, n \text{ tidak keduanya } 0 \right\}$. Buktikan bahwa himpunan G terhadap operasi perkalian matriks membentuk grup abelian (grup komutatif).

Penyelesaian.

Akan dibuktikan G merupakan grup. Perhatikan bahwa $m, n \in \mathbb{R}$ tidak keduanya nol ekuivalen dengan $m, n \in \mathbb{R}$ yang memenuhi $m^2 + n^2 > 0$ (kondisi $m^2 + n^2 = 0$ jika dan hanya jika m = n = 0).

• Akan dibuktikan (G, \times) tertutup. Ambil sebarang $\begin{pmatrix} m & n \\ -n & m \end{pmatrix}$, $\begin{pmatrix} x & y \\ -y & x \end{pmatrix} \in G$ di mana $m^2 + n^2 > 0$ dan $x^2 + y^2 > 0$. Perhatikan bahwa

$$\begin{pmatrix} m & n \\ -n & m \end{pmatrix} \begin{pmatrix} x & y \\ -y & x \end{pmatrix} = \begin{pmatrix} mx - ny & my + nx \\ -nx - my & -ny + mx \end{pmatrix} = \begin{pmatrix} mx - ny & my + nx \\ -(my + nx) & mx - ny \end{pmatrix} \in G,$$

terbukti.

• Akan dibuktikan berlaku sifat asosiatif. Ambil sebarang $\begin{pmatrix} m & n \\ -n & m \end{pmatrix}$, $\begin{pmatrix} x & y \\ -y & x \end{pmatrix}$, $\begin{pmatrix} a & b \\ -b & a \end{pmatrix} \in G$ di mana $m^2 + n^2 > 0$, $x^2 + y^2 > 0$, dan $a^2 + b^2 > 0$. Maka

$$\begin{bmatrix} \begin{pmatrix} m & n \\ -n & m \end{pmatrix} \begin{pmatrix} x & y \\ -y & x \end{pmatrix} \end{bmatrix} \begin{pmatrix} a & b \\ -b & a \end{pmatrix} = \begin{pmatrix} mx - ny & my + nx \\ -(my + nx) & mx - ny \end{pmatrix} \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \\
= \begin{pmatrix} (mx - ny)a - (my + nx)b & (mx - ny)b + (my + nx)a \\ -(my + nx)a - (mx - ny)b & -(my + nx)b + (mx - ny)a \end{pmatrix} \\
= \begin{pmatrix} m(ax - by) + n(-ay - bx) & m(ay + bx) + n(ax - by) \\ -m(ay + bx) - n(ax - by) & m(ax - by) + n(-ay - bx) \end{pmatrix} \\
= \begin{pmatrix} m & n \\ -n & m \end{pmatrix} \begin{pmatrix} ax - by & bx + ay \\ -ay - bx & ax - by \end{pmatrix} \\
= \begin{pmatrix} m & n \\ -n & m \end{pmatrix} \begin{bmatrix} x & y \\ -y & x \end{pmatrix} \begin{pmatrix} a & b \\ -b & a \end{pmatrix},$$

terbukti.

• Akan dibuktikan (G, \times) memiliki elemen identitas. Tinjau $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -0 & 1 \end{pmatrix} \in G$ merupakan elemen identitas di G karena untuk setiap $\begin{pmatrix} m & n \\ -n & m \end{pmatrix} \in G$ dengan $m, n \in \mathbb{R}$ dan $m^2 + n^2 > 0$ memenuhi

$$\begin{pmatrix} m & n \\ -n & m \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} m & n \\ -n & m \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} m & n \\ -n & m \end{pmatrix}.$$

Terbukti G merupakan elemen identitas, yaitu $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

• Akan dibuktikan setiap elemen di G memiliki invers. Ambil sebarang $\begin{pmatrix} m & n \\ -n & m \end{pmatrix} \in G$ di mana $m,n \in \mathbb{R}$ dengan $m^2+n^2>0$. Karena $m^2+n^2\neq 0$, maka $\frac{m}{m^2+n^2},\pm \frac{n}{m^2+n^2}\in \mathbb{R}$. Selain itu,

$$\left(\frac{m}{m^2+n^2}\right)^2 + \left(\frac{n}{m^2+n^2}\right)^2 = \frac{1}{m^2+n^2} > 0.$$

Ini berarti $\begin{pmatrix} \frac{m}{m^2+n^2} & -\frac{n}{m^2+n^2} \\ \frac{n}{m^2+n^2} & \frac{m}{m^2+n^2} \end{pmatrix} \in G \text{ dan memenuhi}$

$$\begin{pmatrix} \frac{m}{m^2+n^2} & -\frac{n}{m^2+n^2} \\ \frac{n}{m^2+n^2} & \frac{m}{m^2+n^2} \end{pmatrix} \begin{pmatrix} m & n \\ -n & m \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} m & n \\ -n & m \end{pmatrix} \begin{pmatrix} \frac{m}{m^2+n^2} & -\frac{n}{m^2+n^2} \\ \frac{n}{m^2+n^2} & \frac{m}{m^2+n^2} \end{pmatrix}.$$

Jadi,
$$\begin{pmatrix} m & n \\ -n & m \end{pmatrix}^{-1} = \begin{pmatrix} \frac{m}{m^2+n^2} & -\frac{n}{m^2+n^2} \\ \frac{n}{m^2+n^2} & \frac{m}{m^2+n^2} \end{pmatrix}$$
 yang membuktikan setiap elemen di G memiliki invers.

Jadi, G merupakan grup. Terlebih lagi, untuk setiap $\binom{m}{-n}$, $\binom{x}{-y}$, dengan $m, n, x, y \in \mathbb{R}$, $m^2+n^2>0$, dan $x^2+y^2>0$ berlaku

$$\begin{pmatrix} m & n \\ -n & m \end{pmatrix} \begin{pmatrix} x & y \\ -y & x \end{pmatrix} = \begin{pmatrix} mx - ny & my + nx \\ -(my + nx) & mx - ny \end{pmatrix} = \begin{pmatrix} x & y \\ -y & x \end{pmatrix} \begin{pmatrix} m & n \\ -n & m \end{pmatrix}$$

yang berarti G abelian. Terbukti G merupakan grup abelian.

Question 2

Misalkan H dan K keduanya merupakan subgrup dari grup G. Buktikan bahwa $H \cup K$ adalah subgrup dari G jika dan hanya jika $H \subseteq K$ atau $K \subseteq H$.

Penyelesaian.

- (\Leftarrow) Jika $H \subseteq K$ atau $K \subseteq H$, akan dibuktikan bahwa $H \cup K$ subgrup dari G. Tanpa mengurangi keumuman, misalkan $H \subseteq K$. Maka berlaku $H \cup K = K$ yang jelas subgrup dari G.
- (⇒) Jika $H \cup K$ subgrup dari G, akan dibuktikan bahwa $H \subseteq K$ atau $K \subseteq H$. Andaikan $H \not\subseteq K$ dan $K \not\subseteq H$, ini berarti $H \setminus K$ dan $K \setminus H$ masing-masing tak kosong. Misalkan $x \in H \setminus K$ dan $y \in K \setminus H$, jelas bahwa $x, y \in H \cup K$. Karena $H \cup K$ subgrup dari G, maka $xy \in H \cup K$. Maka berlaku $xy \in H$ atau $xy \in K$.

Misalkan $xy \in H$. Karena $x \in H \setminus K \implies x \in H$ dan H merupakan subgrup dari G, maka $x^{-1} \in H$. Ini berarti $y = ey = (x^{-1}x)$ $y = x^{-1}(xy) \in H$, namun ini kontradiksi karena $y \in K \setminus H$. Secara analog, jika $xy \in K$ akan diperoleh $x \in K$ yang mana kontradiksi. Jadi, haruslah $H \subseteq K$ atau $K \subseteq H$.

Question 3

Diberikan himpunan $A = \{\overline{0}, \overline{2}, \overline{4}\} \subseteq \mathbb{Z}_6$ dan $B = \{\overline{0}, \overline{2}\} \subseteq \mathbb{Z}_4$. Definisikan operasi \bigoplus pada grup $A \times B$, sebagai berikut:

$$(m,n) \bigoplus (p,q) = (m+p,n+q)$$

untuk setiap $(m, n), (p, q) \in A \times B$.

- (a). Tentukan semua anggota dari $A \times B$.
- (b). Hitunglah semua order elemen di $A \times B$.
- (c). Carilah 2 subgrup sejati dari $A \times B$.
- (d). Periksa apakah $(A \times B, \bigoplus)$ merupakan grup siklik. Jika benar merupakan grup siklik, sebutkan semua unsur yang merupakan pembangun atau generator di $A \times B$.

Penyelesaian.

(a).
$$A \times B = \{ (\overline{0}, \overline{0}), (\overline{0}, \overline{2}), (\overline{2}, \overline{0}), (\overline{2}, \overline{2}), (\overline{4}, \overline{0}), (\overline{4}, \overline{2}) \}.$$

(b). Tinjau bahwa $(\overline{0}, \overline{0})$ merupakan elemen identitas di $G := A \times B$ karena $(\overline{0}, \overline{0}) \bigoplus (\overline{a}, \overline{b}) = (\overline{a}, \overline{b}) = (\overline{a}, \overline{b}) \bigoplus (\overline{0}, \overline{0})$ untuk setiap $(\overline{a}, \overline{b}) \in G$. Ini berarti elemen $(\overline{a}, \overline{b}) \in G$ memiliki order n apabila n bilangan asli terkecil yang memenuhi $(\overline{a}, \overline{b})^n = (n\overline{a}, n\overline{b})$. Dari sini diperoleh $o((\overline{0}, \overline{0})) = 1$, $o((\overline{0}, \overline{2})) = 2$, $o((\overline{2}, \overline{0})) = 3$, $o((\overline{2}, \overline{2})) = 6$, $o((\overline{4}, \overline{0})) = 3$, dan $o((\overline{4}, \overline{2})) = 6$.

Catatan. Penentuan order dapat ditinjau dengan $o\left((\overline{a}, \overline{b})\right) = \text{kpk}(o(a), o(b))$. Dapat dibuktikan sebagai berikut, misalkan $o\left(\left((\overline{a}, \overline{b})\right) = n$, maka $\left(n\overline{a}, n\overline{b}\right) = \left((\overline{0}, \overline{0})\right)$. Ini berarti $n\overline{a} = \overline{0}$ dan $n\overline{b} = \overline{0}$ yang berarti $o(a) \mid n$ dan $o(b) \mid n$. Akibatnya, kpk $(o(a), o(b)) \mid n$. Di sisi lain,

$$o\left(\left(\left(\overline{a},\overline{b}\right)\right)^{\operatorname{kpk}(o(a),o(b))} = \left(\operatorname{kpk}(o(a),o(b))\overline{a},\operatorname{kpk}(o(a),o(b))\overline{b}\right) = \left(\left(\overline{0},\overline{0}\right)\right)^{\operatorname{kpk}(o(a),o(b))}$$

karena $o(a), o(b) \mid \text{kpk}(o(a), o(b))$. Jadi, n = kpk(o(a), o(b)).

(c). Tinjau $A_1 = \{(\overline{0}, \overline{0})\} \subseteq G$ merupakan subgrup dari G karena $(\overline{0}, \overline{0}) \bigoplus (\overline{0}, \overline{0}) = (\overline{0}, \overline{0}) \in G$ dan $(\overline{0}, \overline{0})^{-1} = (\overline{0}, \overline{0}) \in G$.

Tinjau $A_2 = \{(\overline{0}, \overline{0}), (\overline{0}, \overline{2})\} \subseteq G$ dan perhatikan tabel berikut.

\oplus	$(\overline{0},\overline{0})$	$(\overline{0},\overline{2})$
$\left(\overline{0},\overline{0}\right)$	$(\overline{0},\overline{0})$	$(\overline{0},\overline{2})$
$(\overline{0},\overline{2})$	$\left(\overline{0},\overline{2}\right)$	$(\overline{0},\overline{0})$

Berlaku sifat tertutup pada (A_2, \bigoplus) , kemudian $(\overline{0}, \overline{0})^{-1} = (\overline{0}, \overline{0})$ dan $(\overline{0}, \overline{2})^{-1} = (\overline{0}, \overline{2})$ yang menunjukkan invers setiap elemennya di G. Jadi, A_2 subgrup dari G.

Catatan. Salah satu strategi untuk menentukan subgrup dari hasil kali kartesian dua grup dapat menggunakan fakta: jika X subgrup adri G dan Y subgrup dari H, maka $X \times Y$ subgrup dari $G \times H$. Bukti diserahkan kepada pembaca sebagai latihan.

(d). Ya. Pembaca dapat memverivikasinya dengan meninjau $\langle (\overline{a}, \overline{b}) \rangle$ untuk setiap $\langle (\overline{a}, \overline{b}) \rangle \in G$. Identifikasi lainnya dapat menggunakan lemma berikut.

Lemma. Jika G grup berhingga dengan order n dan terdapat $g \in G$ yang memenuhi $g^n = e$, maka G grup siklis.

Bukti. Akan dibuktikan bahwa $\langle g \rangle = \left\{ e,g,g^2,\cdots,g^{n-1} \right\} = G$. Andaikan $\langle g \rangle = G$, maka terdapat $1 \leq i < j \leq n-1$ yang memenuhi $g^i = t = g^j$ untuk suatu $t \in G$. Ini berarti $g^i = g^j \iff e = g^j g^{-i} = g^{j-i}$. Ini haruslah $o(g) \mid j-i \implies n \mid j-i$, kontradiksi karena $|j-i| \leq n-1$. Jadi, haruslah $\langle g \rangle = G$ yang berarti G grup siklis.

Dari lemma dan (b), tinjau $o\left(\left(\overline{2},\overline{2}\right)\right) = 6 = o\left(\left(\overline{4},\overline{2}\right)\right)$ yang mana $o(A \times B) = 6$, ini berarti $A \times B$ grup siklis dengan dua elemen tersebut sebagai generatornya.

V