Resumo do artigo científico "Reconhecimento de Plantas Medicinais através de Características das Folhas e Aprendizagem de Máquina"

Bianca D. Guarizi¹

¹Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (Cefet/RJ) Petrópolis – RJ – Brasil

Abstract. This work aims to do an abstract about the article "Recognition of Medicinal Plants through Leaf Characteristics and Machine Learning", published in the Annals of XIV Brazilian e-Science Workshop (BreSci), being part of XL Congress of the Brazilian Computing Society, with the theme "Artificially human or humanly artificial? Challenges for society 5.0", in 2020.

Resumo. O presente trabalho tem por objetivo criar uma visão resumida, porém suficiente, sobre o artigo "Reconhecimento de Plantas Medicinais através de Características das Folhas e Aprendizagem de Máquina" publicado nos Anais do XIV Brazilian e-Science Workshop (BreSci), sendo parte do XL Congresso da Sociedade Brasileira de Computação (CSBC), que teve como tema "Artificialmente humano ou Humanamente artificial? Desafios para a sociedade 5.0", no ano de 2020.

1. Introdução

O título do artigo a ser resumido é "Reconhecimento de Plantas Medicinais através de Características das Folhas e Aprendizagem de Máquina". Este foi desenvolvido por Luciano D. S. Pacifico (Departamento de Computação (DC) – Universidade Federal Rural de Pernambuco (UFRPE) – Recife – PE – Brasil), Larissa F. S. Britto (Departamento de Computação (DC) – Universidade Federal Rural de Pernambuco (UFRPE) – Recife – PE – Brasil) e Teresa B. Ludermir (Centro de Informática (CIn) – Universidade Federal de Pernambuco (UFPE) – Recife - PE - Brasil).

Tendo sido publicado nos Anais do XIV Brazilian e-Science Workshop (BreSci), como parte do XL Congresso da Sociedade Brasileira de Computação (CSBC), no ano de 2020. Sendo o tema do evento "Artificialmente humano ou Humanamente artificial? Desafios para a sociedade 5.0".

2. Motivação dos autores

O trabalho analisado tem como premissa o fato de que para a identificação e classificação de plantas medicinais, normalmente é preciso recorrer ao auxilio de um profissional especializado na área e com os conhecimentos necessários para realizar este reconhecimento. E mesmo tendo a possibilidade de contar com estes profissionais para tal feito, há possibilidade de o mesmo ser capaz de identificar apenas alguns tipos de plantas e para outros seja necessário recorrer a um novo profissional. Isto torna o processo de reconhecimento das plantas mais demorado e dificultado.

Também se leva em conta como motivação para o desenvolvimento do trabalho analisado que plantas medicinais podem ajudar muito na prevenção ou combate de doenças, e fazem isto, caso utilizadas de forma correta, com maior satisfação que remédios e drogas farmacêuticas desenvolvidas em laboratório, possuindo uma taxa menor de efeitos colaterais, por exemplo.

3. Definição do Problema

O texto traz como base de conhecimento alguns sistemas que buscam retratar este problema através de Aprendizado de Máquina e Visão Computacional, [Agarwal et al. 2006, Kumar et al. 2012, Mallah et al. 2013, Jin et al. 2015, Jose et al. 2018, Adinugroho and Sari 2018], são exemplos de referências utilizadas pelos autores, porém durante o texto são citados outras referências importantes na área.

Os sistemas já criados, em geral, trabalham com 3 módulos básicos citados no texto, sendo eles a aquisição das imagens das espécies de plantas escolhidas, extração de características das mesmas e a etapa de reconhecimento/classificação das espécies inseridas. E estes focam na extração de características como formato da planta, textura, entre outras. E vêm sendo aplicados vários algoritmos distintos para Aprendizado de Máquina como Arvores de Decisão, K-Vizinhos Mais Próximos, Máquinas de Vetores de Suporte, Algoritmo de Floresta Aleatória e Redes Neurais Artificiais.

4. Solução Proposta

O presente trabalho analisado tem por objetivo dar continuidade a um dos sistemas inicialmente propostos, sendo este o sistema referenciado em [Britto et al. 2019, Pacifico et al. 2019]. A partir deste sistema, os autores acabam por incrementar as ideias iniciais propostas por ele, criando-se uma nova base de dados feita a partir de 16 espécies de plantas medicinais encontradas no Brasil. Neste sistema proposto pelos autores, são utilizadas apenas as características de textura e formato das plantas. E também utilizam os 4 algoritmos de Aprendizado de Máquina diferentes, Árvore de Decisão (DT), k-Vizinhos mais Próximos (KNN) e suas variações, k-Vizinhos mais Próximos Ponderado (WKNN), e o Classificador de Floresta Aleatoria (RFC).

As imagens utilizadas para incremento da base de dados são todas retiradas da internet e do estudo de campo realizado pelos autores, e todas foram analisadas por especialistas na área.

Figure 1. Pré-processamento

A imagem adicionada acima mostra como é feito o pré-processamento das imagens obtidas pelos autores.

Como pode ser visto na imagem anterior (Figure 1), temos 5 fases de préprocessamento da imagem, sendo elas indicadas abaixo:

- (a) Imagem Original;
- (b) Obtenção dos Segmentos de Imagem;
- (c) Segmento de Imagem isolado;
- (d) Conversão de um Segmento de Imagem para Níveis de Cinza;
- (e) Binarização de um Segmento de Imagem.

A primeira fase (a) Imagem Original, é referente à imagem que foi retirada da internet ou obtida pelos estudos de campo realizados, é a primeira imagem retirada das plantas analisadas. A Segunda fase (b) Obtenção dos Segmentos de Imagem, é feita separando-se cada uma das folhas que tem na imagem original e reaproveitando seus posicionamentos, rotacionando as folhas e guardando cada uma como um seguimento diferente da mesma planta, sendo assim, a partir de apenas uma imagem é possível retirar vários segmentos distintos para incrementar ainda mais a base de dados e aumentar a possibilidade de reconhecimento das plantas pelo sistema. A fase seguinte (c) Segmento de Imagem isolado, separa apenas um dos seguimentos distintos que foram adquiridos na fase anterior para que seja realizado em (d) a Conversão de um Segmento de Imagem para Níveis de Cinza, tirando os tons de coloração (RGB) do seguimento de imagem e trazendo para cores com tonalidade cinza. Por fim, em (e) Binarização de um Segmento de Imagem, a imagem é binarizada e é neste momento que as características de forma e textura das folhas são adquiridas.

Os autores destacam que para garantir que a base de dados seja melhor aproveitada eles utilizam 4 dimensionamentos diferentes para as imagens armazenadas 30x30 pixels, 60x60 pixels, 90x90 pixels e 120x120 pixels. E isto é feito com o intuito de ser encontrada a melhor dimensão de forma a garantir uma boa taxa de acerto sobre as espécies das plantas pelo sistema.

5. Avaliação e Resultados

Os algoritmos utilizados foram implementados em Python e os experimentos realizados utilizaram um framework de validação cruzada 10-fold, neste tipo de validação o banco de dados é subdividido em 10 partes de forma aleatória, sendo assim, para cada interação em que o experimento é repetido uma das partes é tratada como conjunto de testes e as 9 que restam ficam como conjunto de treinamento.

Os autores repetiram este processo 10 vezes, o que totaliza 100 experimentos realizados.

A tabela apresentada a seguir é a tabela em que os autores inseriram os dados dos resultados obtidos, separado por cada tipo de algoritmo de aprendizado de máquina e também pelo dimensionamento feito das imagens.

Table 1. Resultados Experimentais

Algoritmo	30 x 30		60 x 60		90 x 90		120 x 120	
	Média	Std	Média	Std	Média	Std	Média	Std
DT	0.8854	0.0302	0.9120	0.0275	0.9365	0.0275	0.9352	0.0302
KNN_3	0.4279	0.0398	0.5124	0.0409	0.5859	0.0377	0.6191	0.0385
KNN_4	0.4032	0.0399	0.4837	0.0424	0.5547	0.0417	0.5895	0.0430
KNN ₅	0.4344	0.0436	0.5101	0.0472	0.5751	0.0399	0.6198	0.0420
$WKNN_3$	0.8631	0.0331	0.9130	0.0264	0.9241	0.0296	0.9315	0.0291
$WKNN_4$	0.8474	0.0365	0.9063	0.0268	0.9193	0.0316	0.9285	0.0305
WKNN ₅	0.8425	0.0341	0.8974	0.0290	0.9134	0.0316	0.9215	0.0316
RFC	0.9471	0.0263	0.9681	0.0233	0.9788	0.0182	0.9795	0.0170

Na tabela anterior o valor descrito como "Média" é o "valor médio da acurácia de teste nos 100 experimentos"; e o "Std" é o "desvio padrão da acurácia de teste nos 100 experimentos".

Analisando os dados inseridos na (Table 1), é possível ver que o algoritmo do tipo RFC possui os melhores resultados para todos os dimensionamentos de imagens criados. Em segundo e terceiro lugar temos, respectivamente, os algoritmos DT e WKNN(3).

6. Conclusão e Trabalhos Futuros

O objetivo deste trabalho era buscar o melhor algoritmo de Aprendizagem de Máquina para realizar a função de reconhecimento e classificação de plantas medicinais e também encontrar o melhor dimensionamento de imagens que leve o algoritmo à uma maior taxa de acerto. Como conclusão dos dados obtidos, pode-se afirmar que o melhor algoritmo, que obteve os maiores níveis de acerto no geral, foi o RFC, mas também é possível verificar que a sua maior taxa de acerto ocorreu quando as imagens possuíam 90x90 pixels, obtendo uma acurácia média de 97,88%.

Como objetivos futuros e aprimoramento do trabalho apresentado, os autores pontuam que pretendem realizar o aumento da base de dados, adicionando-se novas espécies para poder ampliar a área de conhecimento e atender a mais solicitações sobre plantas medicinais. Além disso, também desejam aumentar a quantidade de características utilizadas, assim poderão obter uma precisão ainda maior no reconhecimento das plantas, pois terão ainda mais características para serem consideradas. E, por fim, também objetivam que o algoritmo seja ampliado para que, além de apenas reconhecer os tipos de plantas medicinais, também seja capaz de informar características sobre aquela determinada planta e os modos como ela poderá ser utilizada.

7. Referências

Pacifico, L. D. S. and Britto, L. F. S. and Ludermir, T. B. (2020). "Reconhecimento de Plantas Medicinais através de Características das Folhas e Aprendizagem de Máquina". XL Congresso da Sociedade Brasileira de Computação (CSBC).