

Assignment problem for MAS

Siarhei Dymkou

Temasek Laboratories

National University of Singapore

T-Lab Building 5A, Engineering Drive 1,05-02 Singapore 117411

Assignment problem by cost criteria

 $A_i, i = 1, ..., k$ - number of aerobases,

 $a_i, i = 1, ..., k$ - capacity (maximal number of homogenous UAVs located in aerobase),

 $B_j, j = 1, ..., l$ - areas of operations,

 $b_j, j = 1, \ldots, l$ - numbers of UAVs required for service of B_j zones,

Assignment problem by cost criteria

 $A_i, i = 1, ..., k$ - number of aerobases,

 $a_i, i = 1, ..., k$ - capacity (maximal number of homogenous UAVs located in aerobase),

 $B_j, j = 1, ..., l$ - areas of operations,

 $b_j, j = 1, \ldots, l$ - numbers of UAVs required for service of B_j zones,

 c_{ij} - benfits,

 x_{ij} -number of UAVs from *i*-th aerobase to *j*-th zone of area of operation.

Assignment problem by cost criteria

The most of methods include the following basic steps:

- lacksquare To find initial plan x_{ij} ;
- Check optimality condition for that plan;
- Construct the improved plan in case of nonoptimality.

The condition of that problem can be represented in table form.

$$F = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} \to \min_{x_{ij}}$$

	B_1	B_2	B_3	B_4	a_i
A_1	x_{11}	x_{12}	x_{13}	x_{14}	$a_1 = 3$
A_2	x_{21}	x_{22}	x_{23}	x_{24}	$a_2 = 5$
A_3	x_{31}	x_{32}	x_{33}	x_{34}	$a_3 = 2$
b_j	$b_1 = 4$	$b_2 = 2$	$b_3 = 3$	$b_4 = 1$	$\sum_{i=1}^{3} a_i = \sum_{j=1}^{4} b_j = 10$

$$F = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} \to \min_{x_{ij}}$$

	B_1	B_2	B_3	B_4	a_i
A_1		x_{12}	x_{13}	x_{14}	$a_1 = 3$
A_2	x_{21}	x_{22}	x_{23}	x_{24}	$a_2 = 5$
A_3	x_{31}	x_{32}	x_{33}	x_{34}	$a_3 = 2$
b_j	$b_1 = 4$	$b_2 = 2$	$b_3 = 3$	$b_4 = 1$	$\sum_{i=1}^{3} a_i = \sum_{j=1}^{4} b_j = 10$

 $x_{11} = \min(a_1; b_1);$

$$F = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} \to \min_{x_{ij}}$$

	B_1	B_2	B_3	B_4	a_i
A_1		x_{12}	x_{13}	x_{14}	$a_1 = 3$
A_2	x_{21}	x_{22}	x_{23}	x_{24}	$a_2 = 5$
A_3	x_{31}	x_{32}	x_{33}	x_{34}	$a_3 = 2$
b_j	$b_1 = 4$	$b_2 = 2$	$b_3 = 3$	$b_4 = 1$	$\sum_{i=1}^{3} a_i = \sum_{j=1}^{4} b_j = 10$

$$x_{11} = \min(\mathbf{a_1}; b_1);$$

$$F = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} \to \min_{x_{ij}}$$

	B_1	B_2	B_3	B_4	a_i
A_1	3	x_{12}	x_{13}	x_{14}	$a_1 = 3$
A_2	x_{21}	x_{22}	x_{23}	x_{24}	$a_2 = 5$
A_3	x_{31}	x_{32}	x_{33}	x_{34}	$a_3 = 2$
b_j	$b_1 = 4$	$b_2 = 2$	$b_3 = 3$	$b_4 = 1$	$\sum_{i=1}^{3} a_i = \sum_{j=1}^{4} b_j = 10$

$$x_{11} = \min(\mathbf{a_1}; b_1); \ x_{21} = \min(a_2; b_1 - a_1);$$

$$F = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} \to \min_{x_{ij}}$$

	B_1	B_2	B_3	B_4	a_i
A_1		x_{12}	x_{13}	x_{14}	$a_1 = 3$
A_2		x_{22}	x_{23}	x_{24}	$a_2 = 5$
A_3	x_{31}	x_{32}	x_{33}	x_{34}	$a_3 = 2$
b_j	$b_1 = 4$	$b_2 = 2$	$b_3 = 3$	$b_4 = 1$	$\sum_{i=1}^{3} a_i = \sum_{j=1}^{4} b_j = 10$

$$x_{11} = \min(\mathbf{a_1}; b_1); \ x_{21} = \min(a_2; \mathbf{b_1} - \mathbf{a_1});$$

$$F = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} \to \min_{x_{ij}}$$

	B_1	B_2	B_3	B_4	a_i
A_1		x_{12}	x_{13}	x_{14}	$a_1 = 3$
A_2			x_{23}	x_{24}	$a_2 = 5$
A_3	x_{31}	x_{32}	x_{33}	x_{34}	$a_3 = 2$
b_j	$b_1 = 4$	$b_2 = 2$	$b_3 = 3$	$b_4 = 1$	$\sum_{i=1}^{3} a_i = \sum_{j=1}^{4} b_j = 10$

 $x_{11} = \min(a_1; b_1); \ x_{21} = \min(a_2; b_1 - a_1); \ x_{22} = \min(a_1 + a_2 - b_1; b_2);$

$$F = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} \to \min_{x_{ij}}$$

	B_1	B_2	B_3	B_4	a_i
A_1		x_{12}	x_{13}	x_{14}	$a_1 = 3$
A_2			x_{23}	x_{24}	$a_2 = 5$
A_3	x_{31}	x_{32}	x_{33}	x_{34}	$a_3 = 2$
b_j	$b_1 = 4$	$b_2 = 2$	$b_3 = 3$	$b_4 = 1$	$\sum_{i=1}^{3} a_i = \sum_{j=1}^{4} b_j = 10$

$$x_{11} = \min(a_1; b_1); \ x_{21} = \min(a_2; b_1 - a_1); \ x_{22} = \min(a_1 + a_2 - b_1; b_2);$$

$$F = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} \to \min_{x_{ij}}$$

	B_1	B_2	B_3	B_4	a_i
A_1		x_{12}	x_{13}	x_{14}	$a_1 = 3$
A_2				x_{24}	$a_2 = 5$
A_3	x_{31}	x_{32}	x_{33}	x_{34}	$a_3 = 2$
b_j	$b_1 = 4$	$b_2 = 2$	$b_3 = 3$	$b_4 = 1$	$\sum_{i=1}^{3} a_i = \sum_{j=1}^{4} b_j = 10$

$$x_{11} = \min(a_1; b_1); \ x_{21} = \min(a_2; b_1 - a_1); \ x_{22} = \min(a_1 + a_2 - b_1; b_2);$$

 $x_{23} = \min(a_1 + a_2 - b_1 - b_2; b_3);$

$$F = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} \to \min_{x_{ij}}$$

	B_1	B_2	B_3	B_4	a_i
A_1		x_{12}	x_{13}	x_{14}	$a_1 = 3$
A_2				x_{24}	$a_2 = 5$
A_3	x_{31}	x_{32}	x_{33}	x_{34}	$a_3 = 2$
b_j	$b_1 = 4$	$b_2 = 2$	$b_3 = 3$	$b_4 = 1$	$\sum_{i=1}^{3} a_i = \sum_{j=1}^{4} b_j = 10$

$$x_{11} = \min(a_1; b_1); \ x_{21} = \min(a_2; b_1 - a_1); \ x_{22} = \min(a_1 + a_2 - b_1; b_2);$$

 $x_{23} = \min(a_1 + a_2 - b_1 - b_2; b_3);$

$$F = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} \to \min_{x_{ij}}$$

	B_1	B_2	B_3	B_4	a_i
A_1		x_{12}	x_{13}	x_{14}	$a_1 = 3$
A_2				x_{24}	$a_2 = 5$
A_3	x_{31}	x_{32}		x_{34}	$a_3 = 2$
b_j	$b_1 = 4$	$b_2 = 2$	$b_3 = 3$	$b_4 = 1$	$\sum_{i=1}^{3} a_i = \sum_{j=1}^{4} b_j = 10$

$$x_{11} = \min(a_1; b_1); \ x_{21} = \min(a_2; b_1 - a_1); \ x_{22} = \min(a_1 + a_2 - b_1; b_2);$$

 $x_{23} = \min(a_1 + a_2 - b_1 - b_2; b_3); \ x_{33} = \min(a_3; b_3 - (a_1 + a_2 - b_1 - b_2));$

 x_{34}

$$F = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} \to \min_{x_{ij}}$$

	B_1	B_2	B_3	B_4	a_i
A_1		x_{12}	x_{13}	x_{14}	$a_1 = 3$
A_2				x_{24}	$a_2 = 5$
A_3	x_{31}	x_{32}			$a_3 = 2$
b_j	$b_1 = 4$	$b_2 = 2$	$b_3 = 3$	$b_4 = 1$	$\sum_{i=1}^{3} a_i = \sum_{j=1}^{4} b_j = 10$

$$x_{11} = \min(a_1; b_1); \ x_{21} = \min(a_2; b_1 - a_1); \ x_{22} = \min(a_1 + a_2 - b_1; b_2);$$

$$x_{23} = \min(a_1 + a_2 - b_1 - b_2; b_3); \ x_{33} = \min(a_3; b_3 - (a_1 + a_2 - b_1 - b_2));$$

$$x_{34} = \min(a_1 + a_2 + a_3 - b_1 - b_2 - b_3; b_4).$$
Assignment problem

$$F = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} \to \min_{x_{ij}}$$

	B_1	B_2	B_3	B_4	a_i
A_1		x_{12}	x_{13}	x_{14}	$a_1 = 3$
A_2				x_{24}	$a_2 = 5$
A_3	x_{31}	x_{32}			$a_3 = 2$
b_j	$b_1 = 4$	$b_2 = 2$	$b_3 = 3$	$b_4 = 1$	$\sum_{i=1}^{3} a_i = \sum_{j=1}^{4} b_j = 10$

$$x_{11} = \min(a_1; b_1); \ x_{21} = \min(a_2; b_1 - a_1); \ x_{22} = \min(a_1 + a_2 - b_1; b_2);$$

$$x_{23} = \min(a_1 + a_2 - b_1 - b_2; b_3); \ x_{33} = \min(a_3; b_3 - (a_1 + a_2 - b_1 - b_2));$$

$$x_{34} = \min(a_1 + a_2 + a_3 - b_1 - b_2 - b_3; b_4).$$
Assignment problem

$$F = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} \to \min_{x_{ij}}$$

	B_1	B_2	B_3	B_4	a_i
A_1					3
A_2				0	5
A_3	0	0	1	1	2
b_j	4	2	3	1	

$$x_{11} = 3; x_{21} = 1; x_{22} = 2;$$

$$x_{23} = 2; x_{33} = 1;$$

$$x_{34} = 1.$$

Check the optimality

	B_1	B_2	B_3	B_4	a_i	u_i
A_1	3	0	0	0	3	
A_2	1			0	5	
A_3	0	0			2	
b_j	4	2	3	1	F=60	
$ u_j $						

Find a number u_i and ν_j such that

	B_1	B_2	B_3	B_4	a_i	u_i
A_1	3	0	0	0	3	
A_2	1			0	5	
A_3	0	0			2	
b_j	4	2	3	1	F	=60
ν_j						

$$u_i + \nu_j = c_{ij}, \text{ for } x_{ij} > 0,$$

 $u_i + \nu_j \le c_{ij}, \text{ for } x_{ij} = 0$

Find a number u_i and ν_j such that

	B_1	B_2	B_3	B_4	a_i	u_i
A_1	$\frac{4}{3}$		0	0	3	
A_2	$\frac{4}{1}$			0	5	
A_3	0				2	
b_j	4	2	3	1	F	=60
ν_j						

$$u_i + \nu_j = c_{ij}, \text{ for } x_{ij} > 0,$$

 $u_i + \nu_j \le c_{ij}, \text{ for } x_{ij} = 0$

Find a number u_i and ν_j such that

	B_1	B_2	B_3	B_4	a_i	u_i
A_1	3	0	0	0	3	
A_2	1	12		0	5	
A_3	0	0			2	
b_j	4	2	3	1	F	=60
ν_j						

$$u_i + \nu_j = c_{ij}, \text{ for } x_{ij} > 0,$$

 $u_i + \nu_j \le c_{ij}, \text{ for } x_{ij} = 0$

Find a number u_i and ν_j such that

	B_1	B_2	B_3	B_4	a_i	u_i
A_1	3	0	0	0	3	
A_2	1	12 2		0	5	
A_3	0	0	6 1	4 1	2	
b_j	4	2	3	1	F=	=60
$ u_j $	0					

$$u_i + \nu_j = c_{ij}, \text{ for } x_{ij} > 0,$$

$$u_i + \nu_j \le c_{ij}, \text{ for } x_{ij} = 0$$

Find a number u_i and ν_j such that

 $u_i + \nu_j \le c_{ij}$, for $x_{ij} = 0$

Find a number u_i and ν_j such that

	B_1	B_2	B_3	B_4	a_i	u_i
A_1	$\frac{4}{3}$	0	0	0	3	4
A_2	$\frac{4}{1}$	12 2	$\frac{5}{2}$	0	5	
A_3	0	0			2	
b_j	4	2	3	1	F	=60
$ u_j $	0					

$$u_i + \nu_j = c_{ij}, \text{ for } x_{ij} > 0,$$

 $u_i + \nu_j \le c_{ij}, \text{ for } x_{ij} = 0$

Find a number u_i and ν_j such that

	B_1	B_2	B_3	B_4	a_i	u_i
A_1	$\frac{4}{3}$	0	0	0	3	4
A_2	1	12 2	5 2	0	5	- 4
A_3	0	0	6	1	2	
b_j	4	2	3	1	F	=60
$ u_j $	0]	

$$u_i + \nu_j = c_{ij}, \text{ for } x_{ij} > 0,$$

$$u_i + \nu_j \le c_{ij}, \ for \ x_{ij} = 0$$

Find a number u_i and ν_j such that

	B_1	B_2	B_3	B_4	$a_i u_i$
A_1	$\frac{4}{3}$				3 4
A_2	$rac{4}{1}$	2 12	5 2	0	5 -4
A_3	0	0	6 1	1	2
b_j	4	2	3	1	F=60
$ u_j $	0				

$$u_i + \nu_j = c_{ij}, \text{ for } x_{ij} > 0,$$

 $u_i + \nu_j \le c_{ij}, \text{ for } x_{ij} = 0$

Find a number u_i and ν_j such that

	B_1	B_2	B_3	B_4	a_i	u_i
A_1					3	4
A_2		2 12	5 2	0	5	 4
A_3	0	0	6 1	1	2	
b_j	4	2	3	1	F	=60
$ u_j $	0	8				

$$u_i + \nu_j = c_{ij}, \text{ for } x_{ij} > 0,$$

 $u_i + \nu_j \le c_{ij}, \text{ for } x_{ij} = 0$

Find a number u_i and ν_j such that

	B_1	B_2	B_3	B_4	a_i	u_i
A_1	$\frac{4}{3}$		0	0	3	4
A_2	4	12 2	5	0	5	- 4
A_3	0	0	6	1	2	
b_j	4	2	3	1	F	=60
$ u_j $	0	8				

$$u_i + \nu_j = c_{ij}, \text{ for } x_{ij} > 0,$$

 $u_i + \nu_j \le c_{ij}, \text{ for } x_{ij} = 0$

Find a number u_i and ν_j such that

	B_1	B_2	B_3	B_4	a_i	$ u_i $
A_1	$\frac{4}{3}$				3	4
A_2	4 1	12 2	5	0	5	- 4
A_3	0	0	6	1	2	
b_j	4	2	3	1	F	=60
$ u_j $	0	8	1			

$$u_i + \nu_j = c_{ij}, \text{ for } x_{ij} > 0,$$

 $u_i + \nu_j \le c_{ij}, \text{ for } x_{ij} = 0$

Find a number u_i and ν_j such that

	B_1	B_2	B_3	B_4	a_i	u_i
A_1	$\frac{4}{3}$		0	0	3	4
A_2	4			0	5	4
A_3	0		1		2	
b_j	4	2	3	1	F	=60
$ u_j $	0	8	/1			

$$u_i + \nu_j = c_{ij}, \text{ for } x_{ij} > 0,$$

 $u_i + \nu_j \le c_{ij}, \text{ for } x_{ij} = 0$

Find a number u_i and ν_j such that

	B_1	B_2	B_3	B_4	a_i	u_i
A_1	$\frac{4}{3}$		0	0	3	4
A_2	4			0	5	4
A_3	0	0	1	1	2	→ 5
b_j	4	2	3	1	F	=60
$ u_j $	0	8	1			

$$u_i + \nu_j = c_{ij}, \text{ for } x_{ij} > 0,$$

 $u_i + \nu_j \le c_{ij}, \text{ for } x_{ij} = 0$

Find a number u_i and ν_j such that

	B_1	B_2	B_3	B_4	a_i	u_i
A_1	$\frac{4}{3}$				3	4
A_2	4			0	5	4
A_3	0			$1 \qquad \stackrel{4}{{\int}}$	2	5
b_j	4	2	3	1	F	=60
$ u_j $	0	8	1			

$$u_i + \nu_j = c_{ij}, \text{ for } x_{ij} > 0,$$

$$u_i + \nu_j \le c_{ij}, \text{ for } x_{ij} = 0$$

Find a number u_i and ν_j such that

	B_1	B_2	B_3	B_4	a_i	u_i
A_1	$\frac{4}{3}$	0	0	0	3	4
A_2	4			0	5	4
A_3	0	0		1	2	5
b_j	4	2	3	1	F	=60
$ u_j $	0	8	 1	→ -1		

$$u_i + \nu_j = c_{ij}, \text{ for } x_{ij} > 0,$$

$$u_i + \nu_j \le c_{ij}, \text{ for } x_{ij} = 0$$

				<u> </u>		
	B_1	B_2	B_3	B_4	a_i	u_i
A_1	3		0	0	3	4
A_2	4		$\begin{bmatrix} 5 \\ 2 \end{bmatrix}$		5	4
A_3	0	0			2	5
b_j	4	2	3/	1	F	=60
$ u_j$	0	8		-1		

Denote by \bar{c}_{ij}

			Denote by	c_{ij}	
	B_1	B_2	B_3	B_4	$a_i \mid u_i$
A_1	3	0	0	0	3 4
A_2	4 4 1	12 12 2	5 5 2		5 4
A_3	0	0		$egin{array}{cccccccccccccccccccccccccccccccccccc$	2 5
b_j	4	2	3/	1	F=60
$ u_j$	0	8		-1	

 $u_i + \nu_j = c_{ij}, \text{ for } x_{ij} > 0,$ $u_i + \nu_j \le c_{ij}, \text{ for } x_{ij} = 0$

			Denote by	c_{ij}	
	B_1	B_2	B_3	B_4	$oxed{a_i \ u_i}$
A_1		6 0	8 0	0 2	3 4
A_2			$\begin{bmatrix} 5 & & 5 \\ 2 & & \end{bmatrix}$	1 0	5 4
A_3	8 0	10 0		4 4 1	2 5
b_j	4	2	3/	1	F=60
$ u_j$	0	8		-1	

$$u_i + \nu_j = c_{ij}, \text{ for } x_{ij} > 0,$$

$$u_i + \nu_j \le c_{ij}, \text{ for } x_{ij} = 0$$

			Denote by	c_{ij}	
	B_1	B_2	B_3	B_4	$a_i \mid u_i$
A_1		12 6	5 8	3 2	3 4
711		0	0		0 7
A_2			5 5	3 1	5 4
112	1	2	2	0	
A_3	5 8	13 10	6 6		2 5
713	0	0	1		
b_j	4	2	3	1	F=60
$ u_j$	0	8	1/	-1	

			$Denote\ by$	c_{ij}	
	B_1	B_2	B_3	B_4	$ a_i u_i $
A_1	4 4	12 6	5 8	3 2	3 4
711	3	0	0		0 7
A_2	4 4		5 5	3 1	5 4
112	1		2		
A_3	5 8	13 10	6 6		2 5
713	0	0	1		
b_{j}	4	2	3	1	F=60
$ u_j $	0	8	1	-1	

Check our conditions

	B_1	B_2	B_3	B_4	$a_i \mid u_i$
A_1	4 4	12 6 6	5 √ 8	3 1 2	3 4
	3	0	0	0	
A_2	4 4			3 2 1	5 4
A_2	1			0	7 7
A_3	5 🗸 8	13 3 10			2 5
A3	0				
b_j	4	2	3	1	F=60
$ u_j $	0	8	1	-1	

$$u_i + \nu_j = c_{ij}, \text{ for } x_{ij} > 0,$$

 $\bar{c}_{ij} - c_{ij} \le 0, \text{ for } x_{ij} = 0$

Check our conditions

	B_1	B_2	B_3	B_4	$a_i \mid u_i$
A_1	4 4 3	12-6 6 0	5 √ 8 0	$\begin{bmatrix} 3 & 1 & 2 \\ & 0 \end{bmatrix}$	3 4
A_2	$egin{array}{cccc} 4 & 4 & 1 & \end{array}$	$\begin{array}{ccc} 12 & 12 \\ & 2 & \end{array}$		$egin{array}{cccc} 3 & 2 & 1 \\ & 0 \end{array}$	5 4
A_3	5 √ 8 0	13 \ 3 10			2 5
b_j	4	2	3	1	F=60
$ u_j $	0	8	1	-1	

$$c_{ij}^- - c_{ij} > 0 \to \max, \ for \ x_{ij} = 0$$

Find the maximal admissible value of θ

	B_1	B_2	B_3	B_4	$a_i \mid u_i$
A_1	4 4 3	$12\begin{pmatrix} 6 & 6 \\ \theta & \end{pmatrix}$	5 √ 8 0	$\begin{bmatrix} 3 & 1 & 2 \\ & 0 \end{bmatrix}$	3 4
A_2	$egin{array}{cccccccccccccccccccccccccccccccccccc$	12 12 2	5 5 2	3 2 1 0	5 4
A_3	5 ✓ 8 0	13 3 10 0	6 6 1		2 5
b_j	4	2	3	1	F=60
$ u_j $	0	8	1	-1	

$$c_{ij}^- - c_{ij} > 0 \rightarrow \max, for x_{ij} = 0$$

The maximal admissible value of θ

	B_1	B_2	B_3	B_4	$a_i \mid u_i$
A_1	4 4	12 6 6	5 🗸 8	3 1 2	3 4
211	$3 - \theta$	θ	0	0	
A_2	4 4		5 5	3 2 1	5 4
A_2	$1 + \theta$	$2 - \theta$	2	0	0 4
A_3	5 🗸 8	13 3 10	6 6	4 4	2 5
A3	0	0	1	1	
b_j	4	2	3	1	F=60
ν_j	0	8	1	-1	

$$\min(3 - \theta; 2 - \theta) = 0 \Longrightarrow \theta = 2$$

$New\ feasible\ solution:$

	B_1	B_2	B_3	B_4	a_i	u_i
A_1	4 4	12 6 6	5 √ 8 0	$\begin{array}{cccc} 3 & 1 & 2 \\ & 0 \end{array}$	3	4
A_2	4 4	12 12 0	5 5	$egin{array}{cccc} 3 & 2 & 1 \\ & 0 \end{array}$	5	4
A_3	5 ✓ 8 0	13 3 10 0	6 6	4 4	2	5
b_j	4	2	3	1	F	=48
$ u_j $	0	8	1	-1		

$Find\ new\ potentials:$

	B_1	B_2	B_3	B_4	$a_i \mid u_i$
A_1			√ 8	2	3
711			0	0	
A_2		12		1	5
A_2				0	
1	√ 8	10			2
A_3	0				
b_j	4	2	3	1	F=48
$ u_j $					

$Find\ new\ potentials:$

	B_1	B_2	B_3	B_4	$a_i \mid u_i$
A_1	$egin{array}{cccc} 4 & & 4 \ & 1 \end{array}$		5 ✓ 8 0	3 2 0	3 4
A_2	4 4 3	$ \begin{array}{ccc} 6 & \checkmark & 12 \\ & 0 \end{array} $	5 5 2	$\begin{array}{ccc} 3 & 1 \\ & 0 \end{array}$	5 4
A_3	5 ✓ 8 0	$ \begin{array}{ccc} 7 & \checkmark & 10 \\ & 0 \end{array} $			2 5
b_j	4	2	3	1	F=48
$ u_j $	0	2	1	-1	

 $Find\ new\ potentials:$

	B_1	B_2	B_3	B_4	$a_i \mid u_i$
A_1	$egin{array}{cccc} 4 & 4 & 1 & \end{array}$		5 √ 8 0	$\begin{array}{ccc} 3 & 2 \\ & 0 \end{array}$	3 4
A_2	4 4 3	$ \begin{array}{ccc} 6 & \checkmark & 12 \\ & 0 \end{array} $	$5 \qquad 5$ $2 \qquad - \qquad \theta$	$\begin{array}{ccc} 3 & 1 \\ \theta & \end{array}$	5 4
A_3	5 ✓ 8 0	7 ✓ 10 0	$ \begin{array}{cccc} 6 & & 6 \\ 1 & + & \theta \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 5
b_j	4	2	3	1	F=48
$ u_j $	0	2	1	-1	

$Find\ new\ potentials:$

	B_1	B_2	B_3	B_4	$a_i \mid u_i$
A_1	4 4		√ 8	2	3
	1		0	0	
A_2	4 4	✓ 12			5
	3	0			
A_3	√ 8	√ 10		4	2
	0	0		0	
b_j	4	2	3	1	F=46
$ u_j $					

 $Find\ new\ potentials:$

	B_1	B_2	B_3	B_4	$a_i \mid u_i$
A_1	4 4		5 ✓ 8	1 🗸 2	3 4
	1	2	0	0	
A_2	4 4	6 ✓ 12			5 4
	3	0			
A_3	5 √ 8	7 🗸 10		$2 \checkmark 4$	2 5
	0	0	2	0	
b_{j}	4	2	3	1	F=46
$ u_j$	0	2	1	-3	

$$\min F = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij}$$

Example (Optimal solution)

