参 腾讯云丨云社区│ TBase

扫码进群参与抽奖:企鹅公仔、腾讯云数据库200元代金券

扫码或搜索微信号 tencentdbhelper ,添加官方小助手为好友给小助手发送关键词"加群"即可进群

TBase核心架构演进

数据风云·洞见未来 TBase系列技术分享

李跃森 | 腾讯云TBase技术总监

参 腾讯云 | 云社区 | TBase | □

数据库产品分类 01 数据库核心技术选型 02 TBase典型案例介绍 03 TBase国产化支持 04

数据库产品分类

数据库分类—业务场景

业务场景	业务特点	典型产品
OLAP (on line analytic processing)	 数据量大(10PB+) 对存储成本敏感(压缩技术) 并发量相对不高(数百) 查询复杂,每个查询需要消耗大量的资源,一般要求多个用户查询之间减少相互影响,进行资源隔离 	 TeraData SybaseIQ Greenplum HP Vetica HW Gauss300 VectorWise RedShift ClickHouse
OLTP (on line transaction processing)	数据量相对较小(<tb)< li="">低延时(ms级)高吞吐(百万级TPS以上)对容灾能力要求较高(99.99%以上)</tb)<>	OracleIBM DB2InformixMysqlPostgreSQL
HTAP (hybrid transaction and analytic processing)	单集群处理OLTP&OLAP业务OLTP与OLAP之间有良好的资源隔离	TiDBTBase

数据库分类—概念诞生时间

定义	技术	典型产品
Old SQL(传统SQL数据库)	传统的关系型数据库,支持完整的关系模型,具备完整的事务能力	OracleIBM DB2InformixMysqlPostgreSQL
No SQL数据库	 泛指非关系型数据库 无事务支持 不需要预定义模式 无共享架构,弹性可扩展 可分区 异步复制,最终一致性(弱一致性) 	 Redis Cassandra HBase MongoDB Neo4J InfoGrid
New SQL数据库	具备No SQL运维的便利性同时支持传统数据库的ACID模型关系模型完备性存在或多或少的问题	TiDBCockRoachDB其他

数据库分类—架构

单体数据库

- 单个实例独立提供服务
- 主备通过流复制做HA
- Oracle, mysql, PostgreSQL

共享存储 (share everything/share disk)

- 多个数据库实例访问一份数据
- 数据存储在专门的存储设备中
- Oracle RAC, SybaseIQ

无共享 (share nothing/MPP)

- 每个DN节点存储一个数据分片
- CN节点接收业务请求
- TeraData, GreenPlum, TBase, TDSQL, TiDB

当前比较流行的一种架构: 云原生数据库

存储集群 Raft Raft

日志即数据库

- 数据库逻辑下沉到存储节点
- 数据库实例处理计算请求,不存储数据
- 多个数据库实例共享一个存储集群
- 存储集群内部多个数据副本之间通过一致性协 议进行复制

业界其他产品

腾讯CynosDB、AWS Aurora、阿里PolarDB、华为TarusDB

主要技术优点

- 存储计算分离
- 存储和计算可以单独扩容
- 可以实现存储超卖

PostgreSQL数据库介绍

- 一个开源的RDBMS,由图灵奖得主Michael Stonebraker主
- 导
- BSD风格的协议,源代码可以修改发布不受任何制约
- 最先进的开源数据库,最新版本12.0
- 官网地址: https://www.postgresql.org

最近今年发展迅速

PostgreSQL与MySQL的对比

项目	PostgreSQL	Mysql
开源协议	BSD (自由修改不受限制)	GPL(修改后的代码必须开源)
运作机制	由社区志愿者自主支持开发	背后是成熟的商业公司Oracle
事务ACID	完全支持ACID特性	innodb引擎支持事务ACID
并发控制	基于MVCC的并发控制,append update(最新版本采用了可选的类似undo 日志)	InnoDB中支持MVCC,在undo log中实现,高并发场景表现良好
表存储方式	堆表存储,支持超大规格单表(100G以上)	索引组织表,使用索引检索表,单表容量有限
多存储引擎支持	固定的存储引擎(存储引擎可插拔在开发中)	存储引擎可插拔,多种存储引擎可选
表连接方式	Hash, nestloop, merge三种方式	Nestloop,hash(最新版本支持)
外部数据源接入	支持fdw连接多种外部数据源,比如hive,其他数据库	NA
多进程/多线程	多进程	多线程

TBase是基于PostgreSQL研发的分布式数据库:

V1: 具备完整的分布式事务处理能力,具有良好SQL兼容性及在线扩展能力

V2: 数据更安全, 具备三权分立安全体系, 内核独有支持透明数据脱敏

V3: 支持OLTP+OLAP混合场景, 行列混合存储

2009.7

引入 PostgreSQL 作为 TDW的补充,弥补TDW 小数据分析性能低的不足

2014.4

TBase V1发布 数平内部开始使用 2015春节

TBase微信支付商户 集群上线,目前每天 超过5亿笔交易 2018.1

TBase V2发布 同年5月份在数字广 东及云南公安上线 2019.2

TBase V3发布 PICC集团业务上线

数据库核心技术选型

数据量

交易数据量大于1T以上,或分析数据量大于5T以上

9 并发能力

并发连接数量达到2000以上,业务要求每秒峰值100万笔业务交易

在线水平扩展

替代业务原有需要分库分表的场景

✓ HTAP能力

具备高并发的OLTP处理能力的同时,兼顾相当量级的OLAP分析能力,支持一站式解决业务对数据库的诉求

分布式事务 将事务机制融入到数据库内,解决分库分表模式的痛点

TBase的物理架构

Sharding模式分布式事务存在的问题

事务一致性的例子:假设有A,B两个账户,每个账户余额是10元,账户总额是20元,在这个2个账户之间发生转账,

无论并发多少个,两个账户总额也应该还是20元

TBase分布式事务系统的目标

分布式事务ACID、分布式事务故障恢复、分布式死锁检测

事务模型:分布式快照隔离 (DSI)

DSI技术特征

段页式存储快照隔离

01 基于数据库的段页式存储,结合活跃事务列表的MVCC并发控制

快照尺寸过大

8户端获取快照时GTM要计算一个快照,时间复杂度为O(N),N为并发事务量;每个快照占用网络带宽为N*4字节,占用较多网络资源

GTM网络占用过高

对于Read-Committed隔离,事务中每个语句都需要获取一个快照,假设每个事务M条语句,GTM计算量O(N*N*M),网络带宽占用N*N*M*4,若每秒60K个事务,每个事务5条语句,计算量为18G指令,带宽为72GB=576Gb。

GTM单点全局加锁

活跃事务列表是集群全局资源,需要全局 加锁保护,影响集群吞吐量

Google Spanner 是Google的全球分布式数据库,可以在全球各大洲之间提供一致的分布式数据库服务,支持百万级数据库节点

并发控制技术特点:

- 使用KV存储基于全局时间快照隔离的多版本并发控制 (MVCC)
- 使用GPS和一起提供全球一致的时间戳服务,成本高昂
- TrueTime API提供时间戳,平均误差6ms;事务时延较高

CockRoachDB是原Google工程师参考Spanner论文实现的 分布式数据库,具备Spanner的扩展性和易用性优点

并发控制主要特点:

- 和Spanner一样使用KV存储,基于本地时间的多版本并发控制(MVCC)
- 使用混合逻辑时钟 (HLC) 版作为本时间戳
- 可以无中心时间戳提供节点,易于实现跨数据中心,无特殊硬件要求
- 分布式事务处理容易受到本地时间调整的影响(NTP同步),造成不必要的事务中断,事务平均延时较高

事务模型:基于逻辑时间的并发控制

整体架构 Start(gts:3) Prepare(gts:5) TSO(Timestamp ORACLE) Commit(gts:20) Balance += 510 10 1 15 15 T1 Start(gts:3) Prepare(gts:5) Commit(gts:20) KV2 KV3 KV2 KV3 KV2 Balance -= 10 10 10 KV3 KV1 KV1 DN0 DN2 DN1

分布式事务处理过程

Percolator是为了提升Google的搜索引擎索引系统效率而设计的一个分布式数据库:

并发控制技术特点:

- 使用KV存储,基于全局时间戳的MVCC并发控制
- 时间戳由专门的时间戳服务提供
- 分布式事务第一阶段需要对修改记录加锁,提交阶段结束锁定;事务提交时间复杂度为O(N)N是记录数,实时性不高

TBase: GlobalTimeStamp(GTS)的MVCC并发控制

GTS核心要点

QT工存储的MVCC是整个并发控制的基础;同时约定:事务的gts_start > gts_min并且

gts_max没有提交或者gts_start < gts max才能看到对应的事务

GTS从哪里来

MVCC能力

02 逻辑时钟从零开始内部单向递增且唯一,由 GTM维护,定时和服务器硬件计数器对齐;

硬件保证时钟源稳定度

GTM单点可靠性问题

03 多个GTM节点构成集群,主节点对外提供服务;主备之间通过日志同步时间戳状态,

保证GTS核心服务可靠性

GTM单点瓶颈问题

根据测试推算,TS85服务器每秒能够处 理1200万QPS,几乎能满足所有场景需

TBase 事务处理加速机制

核心要点

01 记录头部缓存事务的GTS信息, 加速查询执行效率

记录头部缓存GTS信息

DN/CN节点中使用GTS Store 存储每个事务提交的GTS信息, 在事务提交时只需要记录事务的 GTS信息,事务提交复杂度为 O(1)

事务GTS信息单独存储

记录头部GTS延迟写入 记录创建时头部GTS无效,首次 扫描到记录时从GTS Store中获 取事务GTS信息并写入记录头部, 加速后续查询

数据库表存储格式: ROW or COLUMN or HYBRID

姓名	部门	年龄
蜘蛛侠	工程部	18
超人	外联部	100
火箭浣熊	外联部	6
闪电侠	工程部	17

按行存储表:

- 每行数据存储所有列
- 一次磁盘IO可以访问一行中所有列
- 适合OLTP场景

按行存储

蜘蛛侠	部门	年龄
超人	工程部	18
火箭浣熊	外联部	100
闪电侠	外联部	6
蜘蛛侠	工程部	17

按列存储表:

- 每列单独存储,多个列逻辑组成一行
- 一次磁盘IO只包含一列数据
- 方便做数据压缩
- 适合OLAP场景

按列存储

部门	年龄		蜘蛛侠	收入
工程部	18		超人	
外联部	100	+	火箭浣熊	
外联部	6		闪电侠	
工程部	17		蜘蛛侠	
COLUMN	COLUMN		RC)W

单表行列混合表:

- 经常发生更新的列集合作为列簇按行存储
- 很少发生更新的列作为列存储
- 可以适合不同的业务场景

行列混合存储

分布式数据库的表分布类型

分布式JOIN执行方式: PUSH QUERY OR PULL DATA

F2 JOIN F1

下推查询:

- CN接收到请求后,把请求下推给下层计算节点
- DN节点根据本地数据完成计算
- DN节点之间根据需要在节点间交换数据

分布式原理: SQL shipping or PLAN shipping

SQL Shipping:

- CN接收到请求后,生成分段SQL,下发到底层节点
- DN节点拿到SQL后再次进行解析,优化,执行

特点:

- 适合不是很复杂的SQL的执行
- 架构较简单,易开发易维护

PLAN shipping:

- CN接收到请求后,生成全局执行计划,下发到相关DN节点; 并协调执行计划的执行过程
- DN节点负责接收到的执行计划分片的执行,不会二次的解析和优化

特点:

- 对复杂SQL的优化执行能力较好
- 整体结构较复杂, 开发难度较高

数据库执行计划SQL优化方式选择: RBO OR CBO

规则优化(RBO): RULE BASED

OPTIMIZER

所用的判断原则为一组内置的规则,这些规则是硬编码在数据库的代码中的,优化器会根据这些规则从目标SQL诸多可能的执行路径选择一条来作为执行计划。

优点:

• 实现简单,某些场景下会比较高效

缺点:

• 弹性不足,无法应对复杂场景

代价优化(CBO): COST BASED OPTIMIZER

优化器会从目标SQL诸多可能的执行路径中选择成本最小的一条作为执行计划,成本值是根据目标SQL语句所涉及的表、索引、列等相关对象的统计信息算出来的。

优点:

• 有较好的适用性,能够适合复杂场景的优化,性能表现较稳定

缺点:

• 实现复杂,需要一定的前置条件;包括统计信息,代价计算模型构建等

数据库执行计划SQL优化方式选择: RBO OR CBO

目标:业务SQL无需感知集群结构,像使用单机数据库一样使用TBase数据库集群

TBL_A(f1--分布列, f2)

TBL B(f1--分布列, f2)

TBase全并行计算能力

select * from tbl a, tbl b where tbl a.f1 = tbl b.f2;

基于流复制的容灾方式:

- 复制的内容可以是基于日志,也可以是基于数据块
- 复制方式一般分为同步复制,异步复制,代表了不同的RPO
- 容灾倒换逻辑体外实现,多RTO有一定影响

• 协议天然支持容灾倒换,RTO表现较好

TBase运维管控整体

ETCD集群:全局元数据管理,辅助运维管

控中心选主

运维管控中心:实时监控集群状态,并触发

故障处理逻辑

数据库探活集群:实时探测上报实例状态

数据库实例:资源池化部署数据库实例,各 个组件通过流复制实现容灾

为什么需要数据库冷备

携程网挂了?数据库被物理删除、无法正常使用?

● A5创业网 2015年05月28日 14:52

分布式数据库冷备可能存在的问题

冷备一致性的例子: 假设有A,B两个账户,每个账户余额是10元,账户总额是20元,在这个2个账户之间发生转账, 冷备恢复后事务应该还是 A + B = 20

分布式数据库冷备一致点生成的常用方法

TBase MLS数据安全体系

TBase 数据安全体系

安全管理员

- 强制安全规则
- 数据透明加密
- 数据脱敏

审计管理员

- 细粒度审计
- 用户审计
- SQL审计

数据管理员

- 数据权限管理
- 数据库运维

三权分立

TBase MLS之强制行级安全规则

Level (级别)

Catalog/compartment (目录)

Group (组)

(公安全规则
(保密

公开

Alpha

Beta

Gamma

Xx纲

Yy纲

Zz纲

成都分公司经理:

Level	catalog	Group
机密	成都	工程部,人力资源

总部人力资源经理:

Level	evel catalog Group	
机密	北京,成都	人力资源

董事长:

Level	catalog	Group	
绝密	北京,成都	董事局	

姓名	部门	薪酬	家庭信息	Level	Catalog	Group
蜘蛛侠	工程部	200	XX	公开	成都	工程部
超人	采购部	300	YY	机密	北京	人力资源
火箭浣熊	采购部	150	ZZ	公开	成都	人力资源
闪电侠	工程部	100	EE	机密	北京	工程部
钢铁侠	董事局	500	EE	绝密	北京	董事局

TBase MLS之列级访问规则控制-ACL

普通员工无授权	普通员工无授权

姓名	部门	薪酬	家庭信息	Level	catalog	Group
蜘蛛侠	工程部	200	XX	公开	成都	工程部
超人	采购部	300	YY	机密	北京	人力资源
火箭浣熊	采购部	150	ZZ	公开	成都	人力资源
闪电侠	工程部	100	EE	机密	北京	工程部
钢铁侠	董事局	500	EE	绝密	北京	董事局

蜘蛛侠(普通员工)

Level	Catalog	Group
机密	成都	工程部

姓名	部门	Level	Level Catalo g	
蜘蛛侠	工程部	公开	成都	工程部

钢铁侠(董事局主席)

Level	Catalog	Group
绝密	北京,成都	董事局

姓名	部门	薪酬	家庭信息	Level	Catalog	Group
蜘蛛侠	工程部	200	XX	公开	成都	工程部
超人	采购部	300	YY	机密	北京	人力资源
火箭浣熊	采购部	150	ZZ	公开	成都	人力资源
闪电侠	工程部	100	EE	机密	北京	工程部
钢铁侠	董事局	500	EE	绝密	北京	董事局

TBase MLS透明脱敏和透明加密

TBase MLS透明脱敏和透明加密举例

对非董事长	对非董事长
加密脱敏	加密脱敏

姓名	部门	薪酬	家庭信息	Level	Catalog	Group
蜘蛛侠	工程部	200	XX	公开	成都	工程部
超人	采购部	300	YY	机密	北京	人力资源
火箭浣熊	采购部	150	ZZ	公开	成都	人力资源
闪电侠	工程部	100	EE	机密	北京	工程部
钢铁侠	董事局	500	EE	绝密	北京	董事局

董事长

Level	Catalog	Group
绝密	北京,成都	董事局

姓名	部门	薪酬	家庭信息	Level	Catalog	Group
蜘蛛侠	工程部	0	NULL	公开	成都	工程部
火箭浣熊	采购部	0	NULL	公开	成都	人力资源

成都分公司经理

Level	Catalog	Group
机密	成都	工程部,人力资源

姓名	部门	薪酬	家庭信息	Level	Catalog	Group
蜘蛛侠	工程部	0	NULL	公开	成都	工程部
超人	采购部	0	NULL	机密	北京	人力资源
火箭浣熊	采购部	0	NULL	公开	成都	人力资源
闪电侠	工程部	0	NULL	机密	北京	工程部

总部人力资源经理

Level	Catalog	Group
机密	北京,成都	人力资源

TBase MLS之审计能力

审计功能	功能	举例
语句审计	针对某一种特定的语句进行审计	AUDIT CREATE VIEW
对象审计	审计对某个数据库对象的操作	AUDIT ALTER ON JASON.tbl_test
用户审计	审计某个数据库用户的操作	AUDIE VIEW by JASON
细粒度审计FGA (Fine -Grained Audit)	高级审计选项,使用表达式来作为审计条件,并可以设置审计被触 发时的动作,比如发邮件打电话等	add_policy('JASON', 'ACCOUNTS', 'ACCOUNTS_ACCESS', 'BALANCE', 'BALANCE > = 11000', 'JASON', 'email_alert', true, ALL_COLUMNS)

TBase客户案例

TBase微信支付商户系统案例

发展历程: 2016年初上线替换微信支付原有分库分表集群上线,支撑微信支付从每天500万笔到每天超过10亿笔,保证业务稳定性和连续性

大小商户策略:解决不同体量商户数据倾斜问题,有效保证系统的稳定运行

冷热分离策略:解决长尾业务成本和效率之间的平衡,帮助业务降低四分之三的成本

跨城容灾能力: 为业务提供跨城容灾能力保证金融级连续性

数据安全体系: 完善的数据安全防护体系, 满足监管部门要求

TBase微信支付商户系统案例

TBase外部某保险案例

国产化能力建设

TBase国产化平台支持

操作系统

TBase 支持国产主流的操作系统以及业界通用的开源操作系统,有需求会增加支持。

分类	名称
国产操作系统	中标麒麟、深度、腾讯 tlinux
开源系统	CentOS、RedHat、SuseLinux
国外操作系统	IBM LinuxOne

国产芯片

TBase 支持国产主流的服务器,对于专项领域方面的服务器,有需求会增加支持。

芯片	体系架构	是否支持
海思	ARM	是
飞腾	ARM	是
兆 芯	X86	是
海光	X86	是
龙芯	MIPS	否
申威	Alpha	否

异构数据库迁移整体步骤

工具+专家咨询

源数据库

MySQL

腾讯政务数据库迁移服务

目标数据库

多种硬件平台的性能测试结果

服务器类型	X86服务器	LinuxOne服务器	ARM服务器
CPU	2个Intel(R) Xeon(R) CPU 每个CPU有12 个物理核,24个逻辑核。	8 ECPU 48VCPU	2个 Kunpeng920CPU 每个CPU24个物理 核,48个逻辑核
内存	512GB	1000GB	512GB
SSD	6TB NVMe SSD卡	SATA	12TB NVMe SSD 卡

	1个客户端(TPM)	2个客户端(TPM)
X86服务器	688138	305989
LinuxOne服务器	1275982	619718
ARM服务器	163697	83609

- ✓ 测试模型使用TPCC
- ✓ 工具采用benchmarksql
- ✓ 每个客户端使用200仓库
- ✓ 每个客户端100并发
- ✓ 使用1或多个客户端同时进行

Oracle兼容能力说明

分类	细项	TBase支持情况
对象类型	表	支持
	视图	支持
	序列	支持
	同义词	支持
	触发器	支持
数据类型	数字	支持
	字符	部分支持(GBK系列计划改造)
	lob(blob clob)	支持
	interval	支持
	日期、时间、时间戳	支持
	隐式数据类型转换	支持
	数学函数	支持
	字符串函数	支持
	格式化或者转化函数	
函数	日期与时间函数	支持
	序列操作函数	支持
	聚合函数	支持
	分析函数	支持
	merge	支持
	rownum、rowid	支持
	分组函数	支持
SOL特性	SQL hints	支持
20r4.II	connect by	支持
	union查询	支持
	from子查询别名	支持
	运算	支持

分类	细项	TBase支持情况
存储过程语言	自治事务	不支持 (计划支持)
	存储过程	支持
	包	支持
	块	支持
	自定义数据类型	支持
	自定义函数	支持
	游标	支持
	PIPE ROW	支持
	btree	支持
	hash	支持
索引	倒排	支持
	全文索引	支持
	函数索引	不支持 (计划支持)
包	包内置函数	不支持 (计划支持)
OCI客户端驱动	OCI客户端驱动	支持
	分区类型	支持
分区表	添加分区	支持
	删除分区	支持
	闪回查询	不支持 (计划支持)
古细节化	闪回库及表	不支持 (计划支持)
高级功能	DBLINK	支持
	EM	支持

分类	细项	TBase支持情况
备份恢复	备份	支持
	基于时间的恢复 (PITR)	支持
高可用	多地域部署	支持
	rac	支持
	多副本	支持
运维管理	AWR报告	部分支持 (计划支持)
	ash	支持
	监控与告警	支持
	数据加密	支持
安全性	SQL审计	支持
	连接加密	支持
	数据脱敏	支持
扩展性	多租户	支持
	读写分离	支持
	扩展	支持
	访问同构或异构数据库	支持
高性能	TPCC	支持
	峰值性能	支持
	业务峰值的周期性规律	支持
工具	提供 PL/SQL 调试工具	支持
业务规模	单表格数据量	支持
	分区数量	支持
	集群数据量	支持

Q&A 时间

扫码进群参与抽奖

扫码或搜索微信号 tencentdbhelper ,添加官方小助手为好友给小助手发送关键词"加群"即可进群

Thanks