Anatomy of a folding scheme

Sonobe, experimental folding schemes library implemented jointly by 0xPARC and PSF.

> 2024-04-22 Barcelona zkDay

Why folding

Motivation

- Repetitive computations take big circuits large proving time
 - o ie. prove a chain of 10k sha256 hashes
- Traditional recursion: verify (in-circuit) a proof of the correct execution of the same circuit for the previous input
 - issue: in-circuit proof verification is expensive (constraints)
 - o ie. verify a Groth16 proof inside a R1CS circuit

Motivation

IVC - Incremental Verifiable Computation

Folding schemes efficitently achieve IVC, where the prover recursively proves the correct execution of the incremental computations.

In other words, it allows to prove efficiently that $z_n = F(\dots F(F(F(F(z_0, w_0), w_1), w_2), \dots), w_{n-1}).$

Decider (Final Proof)

Folding idea

We rely on homomorphic commitments ie. Pedersen commitments

Let
$$g\in\mathbb{G}^n,\ v\in\mathbb{F}_r^n$$
,

$$Com(v) = \langle g, v \rangle = g_1 \cdot v_1 + g_2 \cdot v_2 + \ldots + g_n \cdot v_n$$

Decider (Final Proof)

RI C:

Let $v_1, v_2 \in \mathbb{F}_r^n$, set $cm_1 = Com(v_1), cm_2 = Com(v_2)$. then,

$$v_3 = v_1 + r \cdot v_2$$
$$cm_3 = cm_1 + r \cdot cm_2$$

so that

$$cm_3 = Com(v_3)$$

Sonobe

Relaxed R1CS

R1CS instance: $(\{A,B,C\} \in \mathbb{F}^{n \times n},\ io,\ n,\ l)$, such that for $z=(io \in \mathbb{F}^l,1,w \in \mathbb{F}^{n-l-1}) \in \mathbb{F}^n$,

$$Az \circ Bz = Cz$$

Relaxed R1CS:

$$Az \circ Bz = uCz + E$$

 $\text{ for }u\in\mathbb{F},\ E\in\mathbb{F}^n.$

Committed Relaxed R1CS instance: $CI=(\overline{E},u,\overline{W},x)$ Witness of the instance: WI=(E,W)

(We don't have time for it now, but there is a simple reasoning for the RelaxedR1CS usage explained in Nova paper)

NIFS - Non Interactive Folding Scheme

$$CI_1 = (\overline{E}_1 \in \mathbb{G}, u_1 \in \mathbb{F}, \overline{W}_1 \in \mathbb{G}, x_1 \in \mathbb{F}^n)$$
 $WI_1 = (E_1 \in \mathbb{F}^n, W_1 \in \mathbb{F}^n)$
 $CI_2 = (\overline{E}_2, u_2, \overline{W}_2, x_2)$ $WI_2 = (E_2, W_2)$

where $\overline{V} = Com(V)$

$$T = Az_1 \circ Bz_1 + Az_2 \circ Bz_2 - u_1Cz_1 - u_2Cz_2$$
$$\overline{T} = Com(T)$$

NIFS.P

$$E = E_1 + r \cdot T + r^2 \cdot E_2$$
$$W = W_1 + r \cdot W$$

NIFS.V

$$\overline{E} = \overline{E}_1 + r \cdot \overline{T} + r^2 \cdot \overline{E}_2$$

$$u = u_1 + r \cdot u_2$$

$$\overline{W} = \overline{W}_1 + r \cdot \overline{W}$$

$$x = x_1 + r \cdot x_2$$

New folded Committed Instance: $(\overline{E}, u, \overline{W}, x)$ New folded witness: (E, W)

IVC

 U_i : committed instance for the correct execution of invocations $1, \ldots, i-1$ of F' u_i : committed instance for the correct execution of invocation i of F'

F':

- i) execute a step of the incremental computation, $z_{i+1} = F(z_i)$
- ii) invoke the NIFS.V to fold U_i, u_i into U_{i+1}
- iii) other checks to ensure that the IVC is done properly

Cycle of curves

Motivation

NIFS.V involves \mathbb{G} point scalar mults, which are not native over \mathbb{F}_r . → delegate them into a circuit over a 2nd curve.

We 'mirror' the main F' circuit into the 2nd curve each circuit computes natively the point operations of the other curve

Augmented F Circuit + CycleFold Circuit

Sonobe

Sonobe 000

Other Folding Schemes

With Prover knowing the respective witnesses for $U_n, u_n, U_{EC,n}$

Issue: IVC proof is not succinct

Motivation

Original Nova: generate a zkSNARK proof with Spartan for $U_n, u_n, U_{EC,n}$ \longrightarrow 2 Spartan proofs, one on each curve (with CycleFold is 1 Spartan proof) (not EVM-friendly)

checks (simplified)

- 1 (U_{n+1}, W_{n+1}) satisfy Relaxed R1CS relation of AugmentedFCircuit
- 2 verify commitments of $U_{n+1} \cdot \{\overline{E}, \overline{W}\}$ w.r.t. $W_{n+1} \cdot \{E, W\}$
- 3 $(U_{EC,n}, W_{EC,n})$ satisfy Relaxed R1CS relation of CycleFoldCircuit
- 4 verify commitments of $U_{EC.n}.\{\overline{E},\overline{W}\}$ w.r.t. $W_{EC.n}.\{E,W\}$
- 5 $u_n.E == 0$, $u_n.u == 1$, ie. u_n is a fresh not-relaxed instance
- 6 $u_n.x_0 == H(n, z_0, z_n, U_n)$ $u_n.x_1 == H(U_{EC,n})$
- 7 $NIFS.V(U_n, u_n) == U_{n+1}$

Sonobe

Experimental folding schemes library implemented jointly by 0xPARC and PSE.

Dev flow:

- 1 Define a circuit to be folded
- 2 Set which folding scheme to be used (eg. Nova with CycleFold)
- 3 Set a final decider to generate the final proof (eg. Spartan over Pasta curves)
- 4 Generate the the decider verifier

Code example

Motivation

[show code with a live demo]

Some numbers (still optimizations pending):

- AugmentedFCircuit: $\sim 80k$ R1CS constraints
- DeciderEthCircuit: $\sim 9.6M$ R1CS constraints
 - \circ < 3 minutes in a 32GB RAM 16 core laptop
- \circ gas costs (DeciderEthCircuit proof): $\sim 800k$ gas
 - mostly from G16, KZG10, public inputs processing
 - will be reduced by hashing the public inputs
 - \circ expect to get it down to < 600k gas.

Recall, this proof is proving that applying n times the function F(the circuit that we're folding) to an initial state z_0 results in the state z_n .

In Srinath Setty words, you can prove practically unbounded computation on hain by 800k gas (and soon < 600k).

Wrappup

- https://github.com/privacy-scaling-explorations/sonobe
- https://privacy-scaling-explorations.github.io/sonobe-docs/

2024-04-22

0xPARC & PSE.