Clase 02

IIC 1253

Prof. Miguel Romero

Outline

Introducción

Definiciones inductivas

Inducción estructural

Epílogo

Objetivos de la clase

- Comprender definiciones inductivas
- □ Definir operadores inductivamente
- □ Demostrar propiedades mediante inducción estructural

Outline

Introducción

Definiciones inductivas

Inducción estructural

Epílogo

Estrategia

Para definir inductivamente un conjunto necesitamos:

- 1. Un conjunto (no necesariamente finito) de elementos base, que se supondrá que inicialmente pertenecen al conjunto que se quiere definir.
- 2. Un conjunto finito de reglas de construcción de nuevos elementos del conjunto a partir de elementos que ya están en él.
- 3. Establecer que el conjunto es el menor que cumple las reglas.

Pueden haber infinitos casos base y más de una regla recursiva

Ejemplo

El conjunto de los números pares es el menor conjunto tal que

- 1. El 0 es un número par.
- 2. Si n es número par, n+2 es un número par.

¿Podemos definir inductivamente algo que no sea un número?

Definición $(\mathcal{L}_{\mathbb{N}})$

El conjunto $\mathcal{L}_{\mathbb{N}}$ es el menor conjunto que cumple las siguientes reglas:

- 1. $\emptyset \in \mathcal{L}_{\mathbb{N}}$.
- 2. Si $L \in \mathcal{L}_{\mathbb{N}}$ y $k \in \mathbb{N}$, entonces $L \to k \in \mathcal{L}_{\mathbb{N}}$.

¿Qué representan los elementos de $\mathcal{L}_{\mathbb{N}}$?

Ejemplo

Los siguientes son elementos de $\mathcal{L}_{\mathbb{N}}$

- Ø
- $\varnothing \to 6$ o análogamente, $\to 6$ (omitiremos \varnothing cuando hay más elementos)
- $\rightarrow 6 \rightarrow 5 \rightarrow 6 \rightarrow 0$

Definición (listas enlazadas)

El conjunto de las listas enlazadas sobre los naturales $\mathcal{L}_{\mathbb{N}}$ es el menor conjunto que cumple las siguientes reglas:

- 1. $\emptyset \in \mathcal{L}_{\mathbb{N}}$.
- 2. Si $L \in \mathcal{L}_{\mathbb{N}}$ y $k \in \mathbb{N}$, entonces $L \to k \in \mathcal{L}_{\mathbb{N}}$.

Además de conjuntos, podemos definir **operaciones o funciones** sobre elementos de conjuntos definidos inductivamente.

Ejemplo

El operador factorial se define sobre $\mathbb N$ según

- 1. 0! = 1
- 2. $(n+1)! = (n+1) \cdot n!$

Además de operadores, ¿se pueden definir propiedades?

¿Cuándo dos listas enlazadas son iguales?

- 1. Si alguna es vacía, son iguales si y solo si la otra también es vacía
- 2. Si ninguna es vacía, entonces estamos en un escenario

$$L_1 \rightarrow k_1$$
 versus $L_2 \rightarrow k_2$

En este caso, resulta natural considerar

$$L_1 \rightarrow k_1 = L_2 \rightarrow k_2$$
 si y solo si $L_1 = L_2$ y $k_1 = k_2$

Es decir, la **igualdad de listas** se puede definir a partir de la def. de $\mathcal{L}_{\mathbb{N}}$

Solo nos falta ser capaces de demostrar propiedades inductivas

Outline

Introducción

Definiciones inductivas

Inducción estructural

Epílogo

Demostración de propiedades inductivas

Consideremos una lista $L \in \mathcal{L}_{\mathbb{N}}$ y la propiedad

P(L): L tiene el mismo número de flechas que de elementos

¿Cómo abordamos esta demostración?

Principio de Inducción estructural

Sea A un conjunto definido inductivamente y P una propiedad sobre los elementos de A. Si se cumple que:

- 1. Todos los elementos base de A cumplen la propiedad P,
- 2. Para cada regla de construcción, si la regla se aplica sobre elementos en A que cumplen la propiedad P, entonces los elementos producidos por la regla también cumplen la propiedad P

entonces todos los elementos en A cumplen la propiedad P.

¡El PIS es un caso particular de este principio!

Ejemplo

P(L): L tiene el mismo número de flechas que de elementos

BI: El único caso base es la lista vacía \emptyset , la cual no tiene flechas ni elementos, y por lo tanto $P(\emptyset)$ es verdadera.

HI: Supongamos que una lista cualquiera L cumple P(L), es decir, tiene exactamente la misma cantidad de flechas que de elementos.

¿Qué elemento tomamos para la TI?

Ejemplo

HI: Supongamos que una lista cualquiera L cumple P(L), es decir, tiene exactamente la misma cantidad de flechas que de elementos.

TI: Debemos demostrar que $P(L \to k)$ es verdadero, es decir, que $L \to k$ tiene tantas flechas como elementos, con $k \in \mathbb{N}$. Es claro que $L \to k$ tiene exactamente una flecha y un elemento más que L. Por HI, sabemos que L tiene la misma cantidad de flechas y de elementos, y por lo tanto $P(L \to k)$ es verdadera.

Por inducción estructural se sigue que todas las listas en $\mathcal{L}_{\mathbb{N}}$ tienen la misma cantidad de flechas que de elementos.

La def. de $\mathcal{L}_{\mathbb{N}}$ nos guía en las demostraciones de propiedades dentro de $\mathcal{L}_{\mathbb{N}}$

Para demostrar propiedades más complejas en $\mathcal{L}_{\mathbb{N}}$, definamos más operadores.

Ejemplo

Definiremos los siguientes operadores para listas

Largo, recibe lista y entrega número de elementos (números)

$$|\cdot| : \mathcal{L}_{\mathbb{N}} \to \mathbb{N}$$

■ Suma, recibe lista y entrega la suma de sus elementos

sum :
$$\mathcal{L}_{\mathbb{N}} \to \mathbb{N}$$

■ Máximo, recibe lista y entrega el máximo (o −1 si es vacía)

$$\mathsf{max}:\ \mathcal{L}_{\mathbb{N}}\to\mathbb{N}\cup\{-1\}$$

■ Cabeza, recibe lista no vacía y entrega su primer elemento

head:
$$\mathcal{L}_{\mathbb{N}} \setminus \{\emptyset\} \rightarrow \mathbb{N}$$

Ejemplo

Largo, recibe lista y entrega número de elementos (números)

$$|\cdot|\colon \mathcal{L}_{\mathbb{N}} \to \mathbb{N}$$

- 1. $|\emptyset| = 0$
- 2. Si $L \in \mathcal{L}_{\mathbb{N}}$ y $k \in \mathbb{N}$, entonces $|L \to k| = |L| + 1$
- Suma, recibe lista y entrega la suma de sus elementos

$$\mathsf{sum}:\ \mathcal{L}_{\mathbb{N}}\to\mathbb{N}$$

- 1. $sum(\emptyset) = 0$
- 2. Si $L \in \mathcal{L}_{\mathbb{N}}$ y $k \in \mathbb{N}$, entonces sum $(L \to k) = \text{sum}(L) + k$

Ejemplo

■ Máximo, recibe lista y entrega el máximo (o -1 si es vacía)

$$\mathsf{max}:\ \mathcal{L}_{\mathbb{N}}\to\mathbb{N}\cup\{-1\}$$

- 1. $\max(\emptyset) = -1$
- 2. Si $L \in \mathcal{L}_{\mathbb{N}}$ y $k \in \mathbb{N}$, entonces

$$\max(L \to k) = \begin{cases} \max(L) & \text{si } \max(L) \ge k \\ k & \text{en otro caso} \end{cases}$$

Cabeza, recibe lista no vacía y entrega su primer elemento

$$\mathsf{head}:\ \mathcal{L}_{\mathbb{N}}\setminus\{\varnothing\}\to\mathbb{N}$$

- 1. Si $k \in \mathbb{N}$, entonces head $(\rightarrow k) = k$
- 2. Si $L \in \mathcal{L}_{\mathbb{N}}$ no vacía y $k \in \mathbb{N}$, entonces head $(L \to k) = \text{head}(L)$

Además, podemos definir operadores que retornan listas!

Ejemplo

El operador sufijo recibe una lista no vacía y entrega la lista resultante de sacarle el primer elemento

$$\mathsf{suf}\colon\thinspace\thinspace \mathcal{L}_{\mathbb{N}}\setminus\{\varnothing\}\to\mathcal{L}_{\mathbb{N}}$$

- 1. Si $k \in \mathbb{N}$, entonces suf $(\rightarrow k) = \emptyset$
- 2. Si $L \in \mathcal{L}_{\mathbb{N}}$ no vacía y $k \in \mathbb{N}$, entonces $suf(L \to k) = suf(L) \to k$

Con estos operadores podemos demostrar propiedades más complejas en $\mathcal{L}_{\mathbb{N}}$

```
Teorema (props. listas)
```

Si $L, L_1, L_2 \in \mathcal{L}_{\mathbb{N}}$, entonces

- 1. $sum(L) \ge 0$
- 2. $\max(L) \leq \operatorname{sum}(L)$
- 3. sum(L) = head(L) + sum(suf(L))
- 4. Si $L_1, L_2 \neq \emptyset$, entonces

$$L_1 = L_2$$
 si y solo si $suf(L_1) = suf(L_2)$ y $sum(L_1) = sum(L_2)$

Demostraremos 4.

El resto queda propuesto (\bigstar)

Teorema (prop. 4. de listas)

Sean $L_1, L_2 \in \mathcal{L}_{\mathbb{N}}$. Si $L_1, L_2 \neq \emptyset$, entonces

$$L_1 = L_2$$
 si y solo si $suf(L_1) = suf(L_2)$ y $sum(L_1) = sum(L_2)$

Demostración

La dirección (⇒) es trivial.

Para la dirección (\Leftarrow), supondremos que L_1, L_2 son listas tales que

$$\operatorname{suf}(L_1) = \operatorname{suf}(L_2) \operatorname{y} \operatorname{sum}(L_1) = \operatorname{sum}(L_2)$$

¿Cuál(es) es(son) CB?

Demostración

Para la dirección (\Leftarrow), supondremos que L_1, L_2 son listas tales que

$$\operatorname{suf}(L_1) = \operatorname{suf}(L_2) \operatorname{y} \operatorname{sum}(L_1) = \operatorname{sum}(L_2)$$

■ BI: Sean $L_1 = \rightarrow k$ y $L_2 = \rightarrow j$ dos listas tales que $suf(L_1) = suf(L_2)$ y $sum(L_1) = sum(L_2)$. Por definición de sum, tenemos que

$$k = \operatorname{sum}(\rightarrow k) = \operatorname{sum}(\rightarrow j) = j$$

y luego k = j. Concluimos que $L_1 = L_2$.

■ **HI:** Dadas dos listas L_1 y L_2 cualquiera, supongamos que si $suf(L_1) = suf(L_2)$ y $sum(L_1) = sum(L_2)$, entonces $L_1 = L_2$.

Ojo: el antecedente de la **HI** no necesariamente se cumple. Cuando se cumple, entonces podemos concluir que $L_1 = L_2$

- **HI:** Dadas dos listas L_1 y L_2 cualquiera, supongamos que si $suf(L_1) = suf(L_2)$ y $sum(L_1) = sum(L_2)$, entonces $L_1 = L_2$.
- TI: Sean ahora dos listas $L_1 \to k$ y $L_2 \to j$. Queremos demostrar que si $suf(L_1 \to k) = suf(L_2 \to j)$ y $sum(L_1 \to k) = sum(L_2 \to j)$, entonces $L_1 \to k = L_2 \to j$.

Supongamos entonces que $suf(L_1 \rightarrow k) = suf(L_2 \rightarrow j)$ y $sum(L_1 \rightarrow k) = sum(L_2 \rightarrow j)$. Por definición de ambas funciones, obtenemos que $suf(L_1) \rightarrow k = suf(L_2) \rightarrow j$

$$\operatorname{sut}(L_1) \to k = \operatorname{sut}(L_2) \to j$$

 $\operatorname{sum}(L_1) + k = \operatorname{sum}(L_2) + j$

Por igualdad de listas, sabemos que necesariamente $suf(L_1) = suf(L_2)$ y k = j. Usando este último resultado, obtenemos también que $sum(L_1) = sum(L_2)$. Luego, por **HI** tenemos que $L_1 = L_2$, y como k = j concluimos que $L_1 \rightarrow k = L_2 \rightarrow j$.

Outline

Introducción

Definiciones inductivas

Inducción estructural

Epílogo

Objetivos de la clase

- Comprender definiciones inductivas
- Definir operadores inductivamente
- Demostrar propiedades mediante inducción estructural