EE5138 OPTIMIZATION FOR ELECTRICAL ENGINEERING/ EE6138 OPTIMIZATION FOR ELECTRICAL ENGINEERING (ADVANCED)

Lecture 1: Convex Sets

Outline

- affine and convex sets
- examples of convex sets
- operations that preserve convexity
- supporting hyperplanes
- generalized inequalities
- dual cones

Required reading: textbook chapter 1 & 2 (2.1, 2.2, 2.3.1, 2.3.2, 2.4.1, 2.5.2, 2.6.1-2.6.2)+appendix A (mathematical background)

Affine sets

line through x_1 , x_2 : all points

$$x = \theta x_1 + (1 - \theta) x_2 \qquad (\theta \in \mathbf{R})$$

affine set: contains the line through any two distinct points in the set

example: solution set of linear equations $\{x \mid Ax = b\}$ (Why?)

Convex sets

line segment between x_1 and x_2 : all points

$$x = \theta x_1 + (1 - \theta)x_2$$

with $0 < \theta < 1$

convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in C$$

examples (one convex, two nonconvex sets)

Convex combination and convex hull

convex combination of x_1, \ldots, x_k : any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

with
$$\theta_1 + \cdots + \theta_k = 1$$
, $\theta_i \ge 0$

convex hull $\operatorname{conv} S$: set of all convex combinations of points in S

Convex cone

conic (nonnegative) combination of x_1 and x_2 : any point of the form

$$x = \theta_1 x_1 + \theta_2 x_2$$

with $\theta_1 \ge 0$, $\theta_2 \ge 0$

convex cone: set that contains all conic combinations of points in the set

Examples of convex sets

- hyperplanes and halfspaces
- polyhedra
- positive semidefinite cone
- norm balls and norm cones
- Euclidean balls and ellipsoids

Hyperplanes and halfspaces

hyperplane: set of the form $\{x \mid a^T x = b\}$ $(a \neq 0)$

halfspace: set of the form $\{x \mid a^T x \leq b\}$ $(a \neq 0)$

- \bullet a is the normal vector
- hyperplanes are affine and convex; halfspaces are convex

Polyhedra

solution set of finitely many linear inequalities and equalities

$$Ax \leq b, \qquad Cx = d$$

 $(A \in \mathbf{R}^{m \times n}, C \in \mathbf{R}^{p \times n}, \leq \text{ is componentwise inequality})$

polyhedron is intersection of finite number of halfspaces and hyperplanes

Positive semidefinite cone

notation:

- \mathbf{S}^n is set of symmetric $n \times n$ matrices
- $\mathbf{S}_{+}^{n} = \{X \in \mathbf{S}^{n} \mid X \succeq 0\}$: positive semidefinite $n \times n$ matrices

$$X \in \mathbf{S}^n_+ \iff z^T X z \ge 0 \text{ for all } z$$

 S_{+}^{n} is a convex cone (Why?)

• $\mathbf{S}_{++}^n = \{X \in \mathbf{S}^n \mid X \succ 0\}$: positive definite $n \times n$ matrices

example: $\begin{bmatrix} x & y \\ y & z \end{bmatrix} \in \mathbf{S}_{+}^{2}$

Norm balls and norm cones

norm: a function $\|\cdot\|$ that satisfies

- $||x|| \ge 0$; ||x|| = 0 if and only if x = 0
- ||tx|| = |t| ||x|| for $t \in \mathbf{R}$ (homogeneous)
- $||x + y|| \le ||x|| + ||y||$ (triangle inequality)

notation: $\|\cdot\|$ is general (unspecified) norm; $\|\cdot\|_{\text{symb}}$ is particular norm

norm ball with center x_c and radius r: $\{x \mid ||x - x_c|| \le r\}$ (see textbook A.1.3)

norm cone: $\{(x,t) \mid ||x|| \le t\}$

Euclidean norm cone is called secondorder cone

norm balls and cones are convex (Why?)

Euclidean balls and ellipsoids

(Euclidean) ball with center x_c and radius r:

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$

ellipsoid: set of the form

$${x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1}$$

with $P \in \mathbf{S}_{++}^n$ (i.e., P symmetric positive definite)

other representation: $\{x_c + Au \mid ||u||_2 \le 1\}$ with A square and nonsingular $(A=P^{1/2})$

Operations that preserve convexity

practical methods for establishing convexity of a set C

1. apply definition

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in C$$

- 2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, . . .) by operations that preserve convexity
 - intersection
 - affine functions
 - . . .

Intersection

the intersection of (any number of) convex sets is convex

example:

$$S = \{x \in \mathbf{R}^m \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3\}$$

where $p(t) = x_1 \cos t + x_2 \cos 2t + \cdots + x_m \cos mt$

for m=2:

Affine functions

suppose $f: \mathbb{R}^n \to \mathbb{R}^m$ is affine $(f(x) = Ax + b \text{ with } A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m)$

ullet the image of a convex set under f is convex

$$S \subseteq \mathbf{R}^n \text{ convex} \implies f(S) = \{f(x) \mid x \in S\} \text{ convex}$$

ullet the inverse image $f^{-1}(C)$ of a convex set under f is convex

$$C \subseteq \mathbf{R}^m \text{ convex} \implies f^{-1}(C) = \{x \in \mathbf{R}^n \mid f(x) \in C\} \text{ convex}$$

examples

- scaling, translation, projection (Why?)
- solution set of linear matrix inequality $\{x \mid x_1A_1 + \cdots + x_mA_m \leq B\}$ (with $A_i, B \in \mathbf{S}^p$) (Why?)
- hyperbolic cone $\{x \mid x^T P x \leq (c^T x)^2, c^T x \geq 0\}$ (with $P \in \mathbf{S}^n_+$) (Why?)

Supporting hyperplane theorem (optional)

supporting hyperplane to set C at boundary point x_0 :

$$\{x \mid a^T x = a^T x_0\}$$

where $a \neq 0$ and $a^T x \leq a^T x_0$ for all $x \in C$

supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C

Generalized inequalities (optional)

a convex cone $K \subseteq \mathbf{R}^n$ is a **proper cone** if

- K is closed (contains its boundary)
- K is solid (has nonempty interior)
- *K* is pointed (contains no line)

examples

- nonnegative orthant $K = \mathbf{R}_+^n = \{x \in \mathbf{R}^n \mid x_i \geq 0, i = 1, \dots, n\}$
- positive semidefinite cone $K = \mathbf{S}^n_+$

generalized inequality defined by a proper cone K:

$$x \leq_K y \iff y - x \in K, \qquad x \prec_K y \iff y - x \in \mathbf{int} K$$

examples

• componentwise inequality $(K = \mathbf{R}_{+}^{n})$

$$x \preceq_{\mathbf{R}^n_+} y \iff x_i \leq y_i, \quad i = 1, \dots, n$$

• matrix inequality $(K = \mathbf{S}_{+}^{n})$

$$X \preceq_{\mathbf{S}^n_+} Y \iff Y - X$$
 positive semidefinite

these two types are so common that we drop the subscript in \leq_K properties: many properties of \leq_K are similar to \leq on \mathbf{R} , e.g.,

$$x \preceq_K y$$
, $u \preceq_K v \implies x + u \preceq_K y + v$

Dual cones (optional)

dual cone of a cone K:

$$K^* = \{ y \mid y^T x \ge 0 \text{ for all } x \in K \}$$

examples

- $K = \mathbf{R}^n_+$: $K^* = \mathbf{R}^n_+$ (Why?)
- $K = \mathbf{S}_{+}^{n}$: $K^{*} = \mathbf{S}_{+}^{n}$ (Why?)

The above two examples are **self-dual** cones

dual cones of proper cones are proper, hence define generalized inequalities:

$$y \succeq_{K^*} 0 \iff y^T x \ge 0 \text{ for all } x \succeq_K 0$$

19