Todo list

Utile disegnino illustrativo e descrizione a parole	2
Serre lo fa però.	9
Rendere questo capitolo un po' più serio (o inglobarlo altrove)	1
Tor di moduli f.g. è f.g.? Sì, se A è PID \ldots 1	1
Rivedere dopo aver fatto il diagramma del capitolo 1	12
Nella proposizione serve dire che la mappa è il differenziale	13
Spiegare come funziona il prodotto (i segni in particolare)	13
Concludere la dimostrazione noiosa	7
Introdurre questa notazione	19
Farla (dopo averla capita)	22

Successioni spettrali

1.1 Definizioni

Definizione 1.1. Si dice successione spettrale (omologica) una famiglia di gruppi abeliani $E_r^{p,q}$ indicizzata da $p,q\in\mathbb{Z},r\in\mathbb{N}$ dotata di omomorfismi $d_r^{p,q}\colon E_r^{p,q}\to E_r^{p-r,q+r-1}$ (detti mappe di bordo) che soddisfa le seguenti proprietà:

- 1. $E_r^{p,q} = 0$ per p < 0 o q < 0;
- 2. $d_r^{p-r,q+r-1} \circ d_r^{p,q} = 0;$
- 3. $E_{r+1}^{p,q} = \ker d_r^{p,q} / \operatorname{im} d_r^{p+r,q-r+1}$.

Fissati $p,q \geq 0$, per r sufficientemente grande (in particolare r > p e r > q+1) i morfismi di bordo $d_r^{p,q}$ sono nulli, in quanto uno fra dominio e codominio è nullo, dunque $E_r^{p,q}$ è definitivamente uguale a un certo gruppo abeliano $E_{\infty}^{p,q}$.

Utile disegnino illustrativo e descrizione a parole.

Definizione 1.2. Si dice che una successione spettrale $E_r^{p,q}$ converge a una famiglia di gruppi abeliani H_n (e si scrive $E_r^{p,q} \Rightarrow H_{p+q}$) se esistono filtrazioni

$$0 = H_n^{-1} \subseteq H_n^0 \subseteq H_n^1 \subseteq \ldots \subseteq H_n^{n-2} \subseteq H_n^{n-1} \subseteq H_n^n = H_n$$

tali che $E_{\infty}^{p,q} = H_{p+q}^p / H_{p+q}^{p-1}$.

1.2 Una successione esatta

Proposizione 1.1. Sia $E_r^{p,q} \Rightarrow H_{p+q}$ una successione spettrale, i, j, r > 0 con $i \leq j$. Per ogni $i \leq n \leq j$ siano date due coppie di interi $(a'_n, b'_n), (a''_n, b''_n)$ con $a'_n + b'_n = a''_n + b''_n = n$ e $a'_n < a''_n$. Supponiamo che per ogni $i \leq n \leq j$ valga $E_r^{p,q} = 0$ ogniqualvolta:

•
$$p + q = n \ e \ (p,q) \neq (a'_n, b'_n), (a''_n, b''_n);$$

- $p+q=n-1 \ e \ p \le a'_n-r;$
- $p+q=n+1 \ e \ p \ge a''_n + r$.

Denotiamo con ${}^{n}E'_{r}$ il gruppo $E^{p,q}_{r}$ con $p=a'_{n}, q=b'_{n}$, e analogamente sia ${}^{n}E''_{r}$ il gruppo $E^{p,q}_{r}$ con $p=a''_{n}, q=b''_{n}$. Denotiamo inoltre con ${}^{n}d$ l'applicazione $d^{p,q}_{s}: {}^{n}E''_{r} \to {}^{n-1}E'_{r}$ corrispondente a $p=a''_{n}, q=b''_{n}, s=a''_{n}-a'_{n-1}$ oppure l'applicazione nulla se s< r. Allora ${}^{n}d$ è ben definita per ogni $i\leq n< j$ ed esiste una successione esatta

$${}^{j}E'_{r} \longrightarrow H_{j} \longrightarrow {}^{j}E''_{r} \stackrel{{}^{j}d}{\longrightarrow} {}^{j-1}E'_{r} \longrightarrow \dots \stackrel{{}^{i+1}d}{\longrightarrow} {}^{i}E'_{r} \longrightarrow H_{i} \longrightarrow {}^{i}E''_{r}$$

Dimostrazione. Siano $i \leq n \leq j$, p,q interi con p+q=n e $p \neq a'_n, a''_n$. Poiché $E^{p,q}_r = 0$, anche $E^{p,q}_s = 0$ per $s \geq r$, e dunque $E^{p,q}_\infty = 0$. Dalla definizione di convergenza segue che ${}^nE'_\infty = H'_n$ e ${}^nE''_\infty = H''_n/H'_n = H_n/{}^nE'_\infty$, dove H'_n è il termine della filtrazione H^p_n corrispondente a $p = a'_n$ e H''_n quello corrispondente a $p = a''_n$. Abbiamo dunque la successione esatta

$$0 \longrightarrow {}^{n}E'_{\infty} \longrightarrow H_{n} \longrightarrow {}^{n}E''_{\infty} \longrightarrow 0 \tag{(*)}$$

Mostriamo ora i seguenti fatti.

- Per $i \leq n \leq j$ e $s \geq r$ le mappe di bordo $d_s^{p,q} \colon {}^n E_s' \to E_s^{p-s,q+s-1}$ sono nulle, dove $p = a_n', q = b_n'$. Infatti $E_r^{p-s,q+s-1}$ è nullo per ipotesi, dunque anche $E_s^{p-s,q+s-1}$ è nullo.
- Per $i \leq n \leq j$ e $s \geq r$ le mappe di bordo $d_s^{p+s,q-s+1} \colon E_s^{p+s,q-s+1} \to {}^nE_s''$ sono nulle, dove $p = a_n'', q = b_n''$. Infatti $E_r^{p+s,q-s+1}$ è nullo per ipotesi, dunque anche $E_s^{p+s,q-s+1}$ è nullo.
- Per $i \leq n < j$ e $s \geq r$ le mappe di bordo $d_s^{p+s,q-s+1} \colon E_s^{p+s,q-s+1} \to {}^nE_s'$ sono nulle, dove $p = a_n', q = b_n'$, con l'unica eventuale eccezione di $s = a_{n+1}'' a_n'$ (almeno se questo valore è $\geq r$). Infatti gli unici valori di s per cui la mappa di bordo può essere non nulla sono $s = a_{n+1}' a_n'$ e $s = a_{n+1}'' a_n'$, ma abbiamo già visto che le mappe di bordo uscenti da ${}^{n+1}E_s'$ sono nulle per ogni $s \geq r$, dunque l'unica possibilità è $s = a_{n+1}'' a_n'$.
- Per $i < n \le j$ e $s \ge r$ le mappe di bordo $d_s^{p,q} \colon {}^n E_s'' \to E^{p-s,q+s-1}$ sono nulle, dove $p = a_n'', q = b_n''$, con l'unica eventuale eccezione di $s = a_n'' a_{n-1}'$. La dimostrazione è analoga a quella del punto precedente.

Risulta evidente da questi fatti che, fissato $i < n \le j$, l'applicazione nd dell'enunciato è ben definita: infatti se $s = a''_n - a_{n-1} \ge r$ vale

$${}^{n}E_{r}^{"} = {}^{n}E_{r+1}^{"} = \dots = {}^{n}E_{s}^{"}, \qquad {}^{n-1}E_{r}^{'} = {}^{n-1}E_{r+1}^{'} = \dots = {}^{n-1}E_{s}^{'}.$$

Inoltre vale in ogni caso

$${}^nE_{\infty}^{\prime\prime} = \ker {}^nd \subseteq {}^nE_r^{\prime\prime}, \qquad \qquad {}^{n-1}E_{\infty}^{\prime} = {}^{n-1}E_r^{\prime}/\operatorname{im}{}^nd.$$

Partendo dalla (\star) possiamo così scrivere le successioni esatte

$$^{n+1}E''_r \xrightarrow{^{n+1}d} {^n}E'_r \longrightarrow H_n \longrightarrow {^n}E''_r$$

$${}^{n}E'_{r} \longrightarrow H_{n} \longrightarrow {}^{n}E''_{r} \stackrel{{}^{n}d}{\longrightarrow} {}^{n-1}E'_{r}$$

la prima valida per $i \leq n < j$ e la seconda per $i < n \leq j$. Sovrapponendole si ottiene la successione esatta della tesi. \Box

Omologia e coomologia degli spazi fibrati

2.1 Omologia singolare cubica

L'omologia singolare classica utilizza i simplessi singolari come oggetti fondamentali. Per la teoria degli spazi fibrati dovremo introdurre la nozione di omologia singolare cubica, che impiega cubi in luogo dei simplessi. Come è lecito aspettarsi, i cubi si prestano meglio allo studio degli spazi prodotto, e anche a quello degli spazi fibrati che, come vedremo, ne sono una generalizzazione.

Nel seguito indicheremo con I l'intervallo [0,1] con l'usuale topologia euclidea. Sia inoltre X uno spazio topologico.

Definizione 2.1. Sia $n \in \mathbb{N}$. Si dice cubo singolare (o più semplicemente cubo) di dimensione n un'applicazione continua $u \colon I^n \to X$. Un cubo di dimensione $n \geq 1$ si dice degenere se non dipende dall'ultima coordinata, ossia se $u(x_1, \ldots, x_{n-1}, x_n) = u(x_1, \ldots, x_{n-1}, x_n')$ per ogni $x_1, \ldots, x_n, x_n' \in I$.

Denotiamo con $Q_n(X)$ il gruppo abeliano libero avente per base l'insieme dei cubi singolari di dimensione n, con D_n il gruppo abeliano libero avente per base l'insieme dei cubi degeneri di dimensione n. Per definire il complesso $Q_{\bullet}(X)$ è necessario costruire mappe di bordo $d_n \colon Q_n(X) \to Q_{n-1}(X)$.

Sia u un cubo di dimensione $n, p, q \in \mathbb{N}$ con p+q=n, H un sottoinsieme di $\{1, \ldots, n\}$ di cardinalità p, K il complementare di H, φ_K l'unica applicazione strettamente crescente da K in $\{1, \ldots, q\}$; sia inoltre $\epsilon \in \{0, 1\}$. Definiamo allora il cubo singolare $\lambda_H^\epsilon u$ di dimensione q:

$$\lambda_H^{\epsilon} u(x_1, \dots, x_n) = u(y_1, \dots, y_n)$$
 , dove $y_i = \begin{cases} \epsilon & \text{se } i \in H \\ x_{\varphi_K(i)} & \text{se } i \in K \end{cases}$.

Per snellire la notazione, se $H=\{i\}$ (ossia se p=1), scriviamo λ_i^ϵ in luogo di $\lambda_{\{i\}}^\epsilon$. Dato un cubo u di dimensione n, definiamo dunque

$$d_n u = \sum_{i=0}^n (\lambda_i^0 u - \lambda_i^1 u),$$

estendendola per \mathbb{Z} -linearità a tutto $Q_n(X)$. È immediato verificare che $\lambda_i^{\epsilon} \lambda_j^{\epsilon'} = \lambda_{j-1}^{\epsilon'} \lambda_i^{\epsilon}$; un semplice conto mostra allora che $d_n d_{n+1} = 0$. Abbiamo così definito il complesso $Q_{\bullet}(X)$. Si vede inoltre che $D_{\bullet}(X)$ è un sottocomplesso di $Q_{\bullet}(X)$: se u è un cubo degenere di dimensione n, allora anche $\lambda_i^{\epsilon} u$ è degenere per $0 \leq i < n$, mentre $\lambda_n^0 u = \lambda_n^1 u$, pertanto du è degenere.

Definizione 2.2. Si dice complesso singolare (cubico) di X il complesso $C_{\bullet}(X) = Q_{\bullet}(X)/D_{\bullet}(X)$. I suoi gruppi di omologia e coomologia a coefficienti in un gruppo abeliano G si dicono gruppi di omologia e coomologia singolare (cubica) di X a coefficienti in G.

Poiché nel seguito faremo uso esclusivamente dell'omologia singolare cubica, impiegheremo le notazioni classiche dell'omologia singolare:

$$C_{\bullet}(X;G) = C_{\bullet}(X) \otimes G$$

$$H_n(X;G) = H_n(C_{\bullet}(X;G))$$

$$C^{\bullet}(X;G) = \text{Hom}(C_{\bullet}(X),G)$$

$$H^n(X;G) = H^n(C^{\bullet}(X;G)).$$

Osserviamo che $C^n(X;G)$ può essere interpretato come il gruppo delle funzioni dai cubi di dimensione n in G che sono nulle sui cubi degeneri.

Siano inoltre $H(X;G)=\bigoplus_{n\geq 0}H_n(X;G),\ H^*(X;G)=\bigoplus_{n\geq 0}H^n(X;G).$ Esattamente come nel caso della teoria singolare classica, se G è un anello, $H^*(X;G)$ acquisisce una struttura di anello graduato. Si definisce il prodotto cup come segue: se u è un cubo di dimensione p+q e f,g sono cocatene di dimensione p,q rispettivamente, allora

$$(f\smile g)u=\sum_{H}\rho_{H,K}f(\lambda_{K}^{0}u)\cdot g(\lambda_{H}^{1}u),$$

dove H varia fra i sottoinsiemi di $\{1,\ldots,p+q\}$ di cardinalità p,K è il complementare di H e $\rho_{H,K}=(-1)^{\nu}$ (ν indica il numero di coppie $(i,j)\in H\times K$ con j< i). Il prodotto cup è ben definito: poiché f e g sono nulle sui cubi degeneri, si vede anche $f\smile g$ soddisfa la stessa proprietà (se u è degenere, allora anche uno fra $\lambda_K^0 u$ e $\lambda_H^1 u$ lo è). Si verifica poi che \smile è associativo, e che

$$d(f \smile g) = df \smile g + (-1)^p f \smile dg$$

da cui segue che il prodotto cup passa al quoziente, definendo un prodotto in coomologia $\smile: H^*(X;G) \times H^*(X;G) \to H^*(X;G)$.

Si può dimostrare che l'approccio dell'omologia cubica conduce ai medesimi risultati dell'omologia singolare classica.

Proposizione 2.1. Denotiamo con $H_{\Delta}(X;G)$, $H_{\Delta}^{*}(X;G)$ l'omologia e la coomologia singolare standard. Allora $H(X;G) \simeq H_{\Delta}(X;G)$ come gruppi graduati, e $H^{*}(X;G) \simeq H_{\Delta}^{*}(X;G)$ come anelli graduati.

Corollario 2.2. Siano $f, g \in H^*(X; G)$ rispettivamente di grado p e q. Allora $f \smile g = (-1)^{pq} g \smile f$.

Studiando più esplicitamente l'isomorfismo fra l'omologia (e la coomologia) cubica e quella singolare classica si può dimostrare quanto segue.

Proposizione 2.3. Supponiamo che X sia connesso per archi; sia $x \in X$ un punto fissato. Allora i gruppi di omologia e coomologia (cubica) di X rimangono inalterati se ci si limita a considerare cubi singolari aventi tutti i vertici in x.

2.2 Spazi fibrati

Definizione 2.3. Un'applicazione continua suriettiva $p \colon E \to B$ si dice fibrazione se soddisfa la seguente proprietà (sollevamento dell'omotopia per poliedri finiti): dati un poliedro finito P e due applicazioni continue $f \colon I \times P \to B, g \colon P \to E$ tali che pg = fi (dove i denota l'inclusione $i \colon P \to I \times P$ definita da i(x) = (0, x)), esiste un'applicazione continua $h \colon I \times P \to E$ tale che ph = f e hi = g.

$$P \xrightarrow{g} E$$

$$\downarrow_{i} \xrightarrow{h} \downarrow_{p}$$

$$I \times P \xrightarrow{f} B$$

Se $p\colon E\to B$ è una fibrazione, chiameremo E spazio totale e B spazio base. In realtà il sollevamento dell'omotopia per poliedri finiti implica una proprietà più forte.

Proposizione 2.4. Sia $p: E \to B$ una fibrazione, $A \subseteq X$ due poliedri finiti; indichiamo con $i: A \to X$ l'inclusione. Siano $f: X \to B, g: A \to E$ applicazioni continue tali che pg = fi. Allora esiste un'applicazione continua $h: X \to E$ tale che ph = f e hi = g.

$$\begin{array}{ccc}
A & \xrightarrow{g} & E \\
\downarrow_i & & \downarrow_p \\
X & \xrightarrow{f} & B
\end{array}$$

Dimostrazione.

Lemma 2.5. La proposizione è vera se $X = A \times I^n$ per un qualche $n \ge 0$ e i(x) = (x, 0).

Dimostrazione.

Proposizione 2.6. Sia $p: E \to B$ una fibrazione, $e \in E, b = p(e), F = p^{-1}(e)$.

- 1. La mappa p induce un isomorfismo $p_*: \pi_i(E, F, e) \to \pi_i(B, b)$ per ogni i > 1.
- 2. Esiste una successione esatta lunga di gruppi

$$\dots \longrightarrow \pi_{i+1}(E,e) \longrightarrow \pi_{i+1}(B,b) \longrightarrow \pi_i(F,e) \longrightarrow \pi_i(E,e) \longrightarrow \dots \longrightarrow \pi_1(E,e) \longrightarrow \pi_1($$

Dimostrazione.

Proposizione 2.7. Sia $p: E \to B$ una fibrazione, $e \in E, b = p(e), F = p^{-1}(e)$. Supponiamo che B e F siano connesse per archi. Allora anche E e tutte le altre fibre sono connesse per archi.

Dimostrazione.

D'ora in poi considereremo solo fibrazioni con spazio base e fibre connessi per archi. Per la Proposizione 2.3 possiamo limitarci a considerare cubi con vertici in un singolo punto fissato nello studio dell'omologia e della coomologia. Nel seguito supporremo dunque implicitamente che i cubi in F ed E abbiano tutti i vertici in un punto fissato e, e che i cubi in B abbiano tutti i vertici in b = p(e).

2.3 Azione di $\pi_1(B)$ sull'omologia della fibra

Ci proponiamo ora di mostrare come il gruppo fondamentale di B agisca sui gruppi di omologia e coomologia di F.

Definizione 2.4. Sia γ un cammino chiuso in B con estremi in b, T un'applicazione che a ogni cubo u di dimensione n di F ne associa uno Tu di dimensione n+1. T si dice costruzione subordinata a γ se soddisfa le seguenti proprietà per ogni cubo u di dimensione n:

- 1. $\lambda_1^0 T u = u;$
- 2. $(p \circ Tu)(t, t_1, \ldots, t_n) = \gamma(t)$ per ogni $t_1, \ldots, t_n \in I$;
- 3. $T\lambda_i^{\epsilon} u = \lambda_{i+1}^{\epsilon} Tu \text{ per } 0 \leq i \leq n, \epsilon \in \{0, 1\};$
- 4. se u è degenere, allora anche Tu lo è.

Ogni costruzione T induce un morfismo di complessi $S_T \colon C_{\bullet}(F) \to C_{\bullet}(F)$ definito da $(S_T u)(t) = (T u)(1,t)$. Le proprietà delle costruzioni garantiscono che $S_T u$ è effettivamente un cubo di F, che cubi degeneri vengono mandati in cubi degeneri e che S_T commuta con la mappa di bordo. A sua volta, S_T induce endomorfismi dei gruppi di omologia e coomologia di F.

Proposizione 2.8. Siano γ_1, γ_2 cammini chiusi in B con estremi in b, T_1, T_2 costruzioni subordinate rispettivamente a γ_1, γ_2 . Supponiamo che γ_1, γ_2 rappresentino lo stesso elemento del gruppo fondamentale. Allora i morfismi di complessi S_{T_1} e S_{T_2} sono omotopi.

Dimostrazione.

Si potrebbe dimostrare che per ogni cammino γ esiste una costruzione subordinata a γ , e che l'applicazione $\pi_1(B,b) \to \operatorname{Aut}(H_n(F))$ è un omomorfismo di gruppi, ma non utilizzeremo questi risultati. Ci limitiamo a dimostrare quanto segue.

Serre lo fa però.

Proposizione 2.9. Sia γ un cammino chiuso in B con estremi in b, T una costruzione subordinata a γ . Supponiamo che γ sia omotopicamente banale. Allora S_T induce l'identità in omologia e in coomologia.

Dimostrazione.

Motivati dalla proposizione precedente, ci limiteremo spesso a studiare fibrazioni in cui l'azione di $\pi_1(B)$ sui gruppi di omologia e coomologia di F è banale (con questa espressione intendiamo che per ogni costruzione T subordinata a un qualche cammino il morfismo S_T induce l'identità in omologia e in coomologia).

Corollario 2.10. Se B è semplicemente connesso, allora $\pi_1(B)$ agisce banalmente sui gruppi di omologia e coomologia di F.

2.4 Successione spettrale di uno spazio fibrato

Per applicare i risultati di \blacksquare , è necessario definire una filtrazione crescente sul complesso singolare $C_{\bullet}(E)$ (d'ora in poi ometteremo la E dell'argomento). Ciò che faremo sarà filtrare il complesso Q_{\bullet} con dei sottocomplessi Q_{\bullet}^{p} e prenderne le immagini nel quoziente C_{\bullet} . Sia dunque Q_{n}^{p} il sottogruppo di Q_{n} generato dai cubi $u \in Q_{n}$ tali che $p \circ u$ dipende solo dalle prime p coordinate (e $Q_{n}^{p} = Q_{n}$ se p > n). Si vede immediatamente che i Q_{\bullet}^{p} sono sottocomplessi di Q_{\bullet} e che soddisfano le proprietà di una filtrazione crescente. Dunque lo stesso vale per $C_{\bullet}^{p} = (Q_{\bullet}^{p} + D_{\bullet})/D_{\bullet}$, che definiscono una filtrazione crescente per C_{\bullet} . Applicando \blacksquare otteniamo una successione spettrale $E_{r}^{p,q}$ il cui gruppo terminale E_{∞} è isomorfo al gruppo graduato associato a una filtrazione di H(E). Come vedremo, è possibile calcolare esplicitamente i termini $E_{2}^{p,q}$ della successione spettrale in funzione dei gruppi di omologia di B e di F.

Costruiamo due applicazioni B^p e F^p definite sui cubi di Q^p_{\bullet} . Se $u \in Q^p_n$ è un cubo di dimensione n con $n \geq p$, posto q = n - p, definiamo

$$(B^p u)(t_1, \dots, t_p) = pu(t_1, \dots, t_p, 0, \dots, 0);$$

 $(F^p u)(t_1, \dots, t_q) = u(0, \dots, 0, t_1, \dots, t_q).$

 B^pu è un cubo di B di dimensione p; notiamo che, poiché $u\in Q_n^p$, possiamo sostituire gli zeri nella definizione con qualunque altra q-upla di numeri fra 0 e

1. F^pu è invece un cubo di ${\cal F}$ di dimensione q; la sua immagine è contenuta in ${\cal F}$ poiché

$$p(F^p u)(t_1, \dots, t_q) = pu(0, \dots, 0, t_1, \dots, t_q) = pu(0, \dots, 0) = b.$$

Le seguenti proprietà sono di verifica immediata.

- 1. Se $u \in Q_n^{p-1}$ allora $B^p u$ è degenere.
- 2. Se u è degenere e q>0 allora F^pu è degenere; se u è degenere e q=0 allora B^pu è degenere.
- 3. Se $i>p,\epsilon\in\{0,1\}$ allora $B^p\lambda_i^\epsilon u=B^pu$ e $F^p\lambda_i^\epsilon u=\lambda_{i-p}^\epsilon F^pu$.

Ricordiamo che $E_0^{p,q}=C_{p+q}^p/C_{p+q}^{p-1}$ e che il differenziale $d_0^{p,q}\colon E_0^{p,q}\to E_0^{p,q-1}$ si ottiene dalla mappa di bordo di C_{ullet} per passaggio al quoziente.

Lemmi a caso

3.1 Primo lemma

Proposizione 3.1. Sia A un PID, $F \hookrightarrow E \to B$ una fibrazione in cui $\pi_1(B)$ agisce banalmente sui moduli di omologia di F. Supponiamo che tutti i moduli di omologia di E e di B a coefficienti in A siano A-moduli finitamente generati. Allora lo stesso vale per F.

Dimostrazione. Sia $E_r^{p,q}$ la successione spettrale associata alla fibrazione. Mostriamo per induzione su i che $H_i(F;A)$ è un A-modulo finitamente generato. Per i=0 è ovvio, essendo F connesso per archi. Sia ora i>0. Supponiamo per assurdo che $H_i(F;A)=E_2^{0,i}$ non sia finitamente generato. Allora nemmeno $E_3^{0,i}$ è finitamente generato: infatti $E_3^{0,i}$ è il quoziente di $E_2^{0,i}$ per l'immagine del differenziale $d_2^{2,i-1}:E_2^{2,i-1}\to E_2^{0,i}$, la quale è finitamente generata in quanto

$$E_2^{2,i-1} = (H_2(B;A) \otimes H_{i-1}(F;A)) \oplus \operatorname{Tor}(H_1(B;A), H_{i-1}(F;A))$$

<u>è</u> finitamente generato per ipotesi induttiva. Procedendo allo stesso modo si trova che $E_r^{0,i}$ non è finitamente generato per alcun $r \geq 2$. Ma ciò è assurdo, poiché per r sufficientemente grande $E_r^{0,i} = E_{\infty}^{0,i}$ è un sottomodulo del modulo graduato associato a $H_i(E;A)$, e quest'ultimo è finitamente generato per ipotesi.

Tor di moduli f.g. è f.g.? Sì, se A è PID

3.2 Una successione esatta

Proposizione 3.2. Sia A un PID, $F \hookrightarrow E \to B$ una fibrazione in cui $\pi_1(B)$ agisce banalmente sui moduli di omologia di F. Supponiamo che $H_i(B;A) = 0$ per 0 < i < p e che $H_i(F;A) = 0$ per 0 < i < q.

Rendere questo capitolo un po' più serio (o inglobarlo altrove) 1. Esiste una successione esatta

$$H_{p+q-1}(F;A) \longrightarrow H_{p+q-1}(E;A) \longrightarrow H_{p+q-1}(B;A) \xrightarrow{d_{p+q-1}} H_{p+q-2}(F;A) \longrightarrow \dots \longrightarrow H_2(B;A)$$

2. L'applicazione $p_*: H_i(E, F; A) \to H_i(B; A)$ indotta da p è un isomorfismo per $2 \le i ed è suriettiva per <math>i = p + q$.

Dimostrazione.

1. Per il teorema dei coefficienti universali vale

$$E_2^{i,j} = (H_i(B; A) \otimes H_j(F; A)) \oplus \text{Tor}(H_{i-1}(B; A), H_j(F; A)),$$

da cui $E_2^{i,j}=0$ se i,j>0 e $i+j\leq p+q-1$. Pertanto, se $0\leq n\leq p+q-1$, ci sono al più due termini $E_2^{i,j}$ non nulli con i+j=n (ossia (i,j)=(0,n) e (i,j)=(n,0)); è inoltre evidente che le altre condizioni di \blacksquare sono soddisfatte, dunque possiamo applicarl* (ricordando che $E_2^{0,n}=H_n(F;A)$ e $E^{n,0}=H_n(B;A)$) ottenendo la successione esatta della tesi.

2. Sia $2 \leq i \leq p+q$. Abbiamo visto (\blacksquare) che l'immagine di p_* in $H_i(B;A)$ è $E_i^{i,0}$. Notiamo che per $2 \leq r < i$ il differenziale $d_r^{i,0} \colon E_r^{i,0} \to E_r^{i-r,r-1}$ è nullo, in quanto $E_r^{i-r,r-1}$ è nullo (infatti i-r>0, r-1>0 e i-r+r-1=i-1< p+q). Deduciamo che

$$H_i(B;A) = E_2^{i,0} = E_3^{i,0} = \dots = E_i^{i,0} = \operatorname{im} p_*,$$

pertanto p_* è suriettiva. Sia ora $2 \le i < p+q$; consideriamo il diagramma commutativo

$$H_{i}(F;A) \longrightarrow H_{i}(E;A) \longrightarrow H_{i}(E,F;A) \longrightarrow H_{i-1}(F;A) \longrightarrow H_{i-1}(E;A)$$

$$\downarrow^{1} \qquad \downarrow^{1} \qquad \downarrow^{p_{*}} \qquad \downarrow^{1} \qquad \downarrow^{1}$$

$$H_{i}(F;A) \longrightarrow H_{i}(E;A) \longrightarrow H_{i}(B;A) \longrightarrow H_{i-1}(F;A) \longrightarrow H_{i-1}(E;A)$$

La prima riga è la successione esatta lunga della coppia (E,F), la seconda deriva dalla prima parte della proposizione ed è esatta, e la commutatività segue da \blacksquare . La tesi segue allora dal lemma dei cinque.

Naturalmente vale un teorema analogo per i moduli di coomologia.

Corollario 3.3. Supponiamo che $H_i(E;A) = 0$ per ogni i > 0 e che $H_i(B;A) = 0$ per 0 < i < p. Allora la sospensione $\Sigma \colon H_i(F;A) \to H_{i+1}(B;A)$ è un isomorfismo per 0 < i < 2p-2 ed è suriettiva per i = 2p-2.

Dimostrazione. Dalla prima parte della Proposizione 3.2 (applicata con q=1) segue che $H_i(F;A)=0$ per 0 < i < p-1. Dalla seconda parte (applicata con q=p-1) segue immediatamente la tesi, ricordando che $\Sigma=p_*\partial^{-1}$ (dove $\partial: H_{i+1}(E,F;A) \to H_i(F;A)$ denota il morfismo di bordo).

Notiamo in particolare che, nelle ipotesi del corollario, $H_i(F;A)=0$ per 0 < i < p-1.

Rivedere dopo aver fatto il diagramma del capitolo 1.

3.3 Successione esatta di Wang

Proposizione 3.4. Sia A un PID, $F \hookrightarrow E \to B$ una fibrazione in cui $\pi_1(B)$ agisce banalmente sui moduli di coomologia di F. Supponiamo che B sia semplicemente connesso e abbia la stessa A-algebra di coomologia della sfera S^k con $k \geq 2$. Allora esiste una successione esatta

$$\dots \longrightarrow H^n(E;A) \longrightarrow H^n(F;A) \stackrel{\theta}{\longrightarrow} H^{n-k+1}(F;A) \longrightarrow H^{n+1}(E;A) \longrightarrow \dots$$

Inoltre θ è una derivazione se k è dispari e un'antiderivazione se k è pari, ossia

$$\theta(x \cdot y) = \theta x \cdot y + (-1)^{(k+1) \deg x} x \cdot \theta y.$$

Dimostrazione. Denotiamo con E_r la successione spettrale in coomologia associata alla fibrazione. Per ipotesi $H^i(B;A)$ è un A-modulo libero finitamente generato per ogni i, dunque per $\blacksquare E_2$ è isomorfo come A-algebra a $H^*(B;A) \otimes H^*(F;A)$. Pertanto, per ogni grado totale n, E_2 ha al più due termini $E_2^{i,j}$ non nulli, corrispondenti a i=0 e i=k. Applicando \blacksquare otteniamo la successione esatta

Nella proposizione serve dire che la mappa è il differenziale.

$$\dots \longrightarrow H^n(E;A) \longrightarrow E_2^{0,n} \xrightarrow{d_k} E_2^{k,n-k+1} \longrightarrow H^{n+1}(E;A) \longrightarrow \dots$$

Ricordiamo che $E_2^{0,n} = H^n(F; A)$ e che

$$E_2^{k,n-k+1} = H^k(B;A) \otimes H^{n-k+1}(F;A).$$

Sia s un generatore di $H^k(B;A)$; consideriamo l'isomorfismo

$$g: H^{n-k+1}(F; A) \longrightarrow H^k(B; A) \otimes H^{n-k+1}(F; A)$$

 $x \longmapsto s \otimes x$

Posto $\theta=g^{-1}d_k$, otteniamo la successione esatta della tesi. Per mostrare la seconda parte, calcoliamo

$$d_k(x \cdot y) = d_k x \cdot y + (-1)^{\deg x} x \cdot d_k y$$

= $(s \otimes \theta x) \cdot (1 \otimes y) + (-1)^{\deg x} (1 \otimes x) \cdot (s \otimes \theta y)$
= $s \otimes (\theta x \cdot y + (-1)^{(k+1) \deg x} x \cdot \theta y).$

ma anche $d_k(x \cdot y) = s \otimes \theta(x \cdot y)$, da cui la tesi._____

Ripetendo la prima parte della dimostrazione, si vede facilmente che esiste una successione esatta duale in omologia.

Spiegare come funziona il prodotto (i segni in particolare).

Spazi di cammini

4.1 H-spazi

Definizione 4.1. Sia G uno spazio topologico munito di un prodotto $\vee : G \times G \to G$ continuo. G si dice H-spazio se esiste $e \in G$ con $e \vee e = e$ tale che le applicazioni da G in G definite da $x \mapsto x \vee e$ e $x \mapsto e \vee x$ siano omotope all'identità mediante omotopie che fissano e.

Proposizione 4.1. Sia G un H-spazio connesso, $p: T \to G$ un rivestimento. Allora gli automorfismi di rivestimento di T sono omotopi all'identità.

Dimostrazione. Sia $f: T \to T$ un automorfismo di rivestimento, \tilde{e} un elemento della fibra di e, $\tilde{e}' = f(\tilde{e})$. Sia poi $\gamma: I \to G$ con $\gamma(0) = \gamma(1) = e$ il cui sollevamento $\tilde{\gamma}$ soddisfi $\tilde{\gamma}(0) = \tilde{e}, \tilde{\gamma}(1) = \tilde{e}'$. Sia infine $h: I \times G \to G$ un'omotopia con $h_0(x) = x$ e $h_1(x) = e \vee x$. Definiamo l'omotopia

$$H: I \times T \longrightarrow G$$

$$(x,t) \longmapsto \begin{cases} h_{3t}(p(x)) & t \leq \frac{1}{3} \\ \gamma(3t-1) \vee p(x) & \frac{1}{3} \leq t \leq \frac{2}{3} \\ h_{3-3t}(p(x)) & \frac{2}{3} \leq t \end{cases}$$

Per la proprietà di sollevamento dell'omotopia, esiste un'omotopia $\tilde{H}: I \times T \to T$ con $\tilde{H}_0 = \mathbb{1}$ e $p\tilde{H} = H$. Osserviamo che il cammino $t \mapsto H_t(\tilde{e})$ è omotopo a γ e $\tilde{H}_0(\tilde{e}) = \tilde{e}$, pertanto $\tilde{H}_1(\tilde{e}) = \tilde{\gamma}(1) = \tilde{e}'$. Ma allora \tilde{H}_1 è un sollevamento dell'identità di G tale che $\tilde{H}_1(\tilde{e}) = f(\tilde{e})$. Dalla connessione di G segue che $\tilde{H}_1 = f$. Ma $\tilde{H}_1 = f$ e $\tilde{H}_0 = \mathbb{1}$ sono omotope mediante H.

Corollario 4.2. Sia G un H-spazio connesso, T il suo rivestimento universale. Allora il gruppo fondamentale di G agisce banalmente sui gruppi di omotopia, di omologia e di coomologia di T.

4.2 Prime proprietà degli spazi di cammini

Dati due spazi topologici X,Y, denotiamo con C(X,Y) l'insieme delle funzioni continue da X in Y. Riportiamo alcune nozioni di base relative alla topologia compatta-aperta.

Definizione 4.2. La topologia compatta-aperta su C(X,Y) è la topologia generata da $\{V(K,U): K\subseteq X \text{ compatto}, U\subseteq Y \text{ aperto}\}$, dove V(K,U) è l'insieme delle funzioni $f\in C(X,Y)$ tali che $f(K)\subseteq U$.

D'ora in poi considereremo sempre su C(X,Y) la topologia compatta-aperta.

Proposizione 4.3. Siano X, Y, Z spazi topologici con X localmente compatto di Hausdorff.

1. L'applicazione di valutazione

$$\omega: X \times C(X,Y) \longrightarrow Y$$

$$(x,f) \longmapsto f(x)$$

è continua.

2. Una funzione $g: Z \to C(X,Y)$ è continua se e solo se l'applicazione

$$G: Z \times X \longrightarrow Y$$

 $(z, x) \longmapsto g(z)(x)$

è continua.

Dato uno spazio topologico X e due sottospazi $A, B \subseteq X$, denotiamo con $E_{A,B}$ il sottospazio di C(I,X) delle funzioni f tali che $f(0) \in A$ e $f(1) \in B$. Con lieve abuso di notazione, scriveremo $E_{x,B}$ in luogo di $E_{\{x\},B}$ se $A = \{x\}$, e analogamente per B.

Proposizione 4.4. Per ogni $x \in X$ lo spazio $E_{x,X}$ è contrattile.

Dimostrazione. Definiamo l'applicazione

$$H: I \times E_{x,X} \longrightarrow E_{x,X}$$

 $(s,f) \longmapsto H(s,f)$

dove H(s,f)(t)=f(st). Per la Proposizione 4.3, H è continua. Inoltre H_1 è l'identità, mentre per ogni f $H_0(f)$ è il cammino che vale costantemente x. Dunque l'identità su $E_{x,X}$ è omotopa a un'applicazione costante, ossia $E_{x,X}$ è contrattile.

Dati due cammini $f \in E_{x,y}, g \in E_{y,z}$ si definisce il cammino $f * g \in E_{x,z}$ come

$$(f * g)(t) = \begin{cases} f(2t) & t \le \frac{1}{2} \\ g(2t - 1) & t \ge \frac{1}{2} \end{cases}.$$

Per ogni $x \in X$, definiamo $\Omega_x = E_{x,x}$.

Proposizione 4.5. Ω_x , munito del prodotto *, è un H-spazio.

Dimostrazione. Mostriamo innanzitutto che * è continuo. Grazie alla Proposizione 4.3, è sufficiente dimostrare che l'applicazione da $\Omega_x \times \Omega_x \times I$ in X definita da $(f,g,t) \mapsto (f*g)(t)$ è continua, e ciò segue dalla continuità di $(f,t) \mapsto f(2t)$ e di $(g,t) \mapsto g(2t-1)$.

Mostriamo poi che l'applicazione

$$\varphi_1: \Omega_x \longrightarrow \Omega_x$$
$$f \longmapsto f * e$$

è omotopa all'identità su Ω_x (mediante un'omotopia che fissa e), dove e è il cammino che vale costantemente x (è evidente che e*e=e). È sufficiente considerare, per $s\in I$ e $f\in\Omega_x$,

$$\varphi_s(f)(t) = \begin{cases} f((s+1)t) & t \le 1 - \frac{s}{2} \\ x & t \ge 1 - \frac{s}{2} \end{cases}.$$

Osserviamo che $\varphi_s(f)(0) = \varphi_s(f)(1) = x$, dunque $\varphi_s(f) \in \Omega_x$; inoltre $\varphi_0(f) = f$, $\varphi_1(f) = f * e e \varphi_s(e) = e$. Pertanto è sufficiente mostrare che $\varphi \colon I \times \Omega_x \to \Omega_x$ è continua, ossia, per la Proposizione 4.3, che

$$\Phi: I \times \Omega_x \times I \longrightarrow X$$
$$(s, f, t) \longmapsto \varphi_s(f)(t)$$

è continua. Si vede però che $\Phi(s, f, t) = f(\theta(t, s))$, dove

$$\theta(t,s) = \begin{cases} (s+1)t & t \le 1 - \frac{s}{2} \\ 1 & t \ge 1 - \frac{s}{2} \end{cases},$$

perciò Φ è continua. In modo del tutto analogo si mostra che $f\mapsto e*f$ è omotopa all'identità. $\hfill\Box$

Proposizione 4.6. Supponiamo che A si contragga a un punto $x \in X$. Allora $E_{A,B}$ è omotopicamente equivalente a $A \times E_{x,B}$

Dimostrazione. Per ipotesi esiste un'applicazione $D: I \times A \to X$ tale che D(0, a) = a e D(1, a) = x per ogni $a \in A$. Denotiamo con $f_a \in E_{a,x}$ il cammino $f_a(t) = D(t, a)$ e con $g_a \in E_{x,a}$ il cammino $g_a(t) = D(1 - t, a)$. Definiamo le applicazioni continue

$$\varphi: A \times E_{x,B} \longrightarrow E_{A,B}$$

 $(a,h) \longmapsto f_a * h$

$$\psi: E_{A,B} \longrightarrow A \times E_{x,B}$$
$$h \longmapsto (h(0), g_{h(0)} * h)$$

Abbiamo

$$\varphi \psi(h) = f_{h(0)} * (g_{h(0)} * h)$$

 $\psi \varphi(a, h) = (a, g_a * (f_a * h)).$

Corollario 4.7. Se A e B si contraggono rispettivamente a x, y, allora $E_{A,B}$ è omotopicamente equivalente a $A \times B \times E_{x,y}$.

Concludere la dimostrazione noiosa

Corollario 4.8. Supponiamo che X sia connesso per archi. Allora il tipo di omotopia di $E_{x,y}$ non dipende dalla scelta di x e y.

In particolare, se X è connesso per archi il tipo di omotopia di Ω_x è indipendente da x. Indicheremo allora con ΩX (o semplicemente con Ω) lo spazio dei cammini chiusi aventi estremi in un punto $x \in X$ fissato, ma irrilevante. Dalla Proposizione 4.3 segue facilmente che Ω è connesso per archi se e solo se X è semplicemente connesso.

4.3 Fibrazione degli spazi di cammini

Proposizione 4.9. Sia X uno spazio topologico connesso per archi, e siano $A, B \subseteq X$ due sottospazi. Allora l'applicazione

$$p: E_{A,B} \longrightarrow A \times B$$

 $f \longmapsto (f(0), f(1))$

è una fibrazione.

Dimostrazione. Notiamo subito che p è suriettiva, in quanto X è connesso per archi. Mostreremo ora che p soddisfa la proprietà di sollevamento dell'omotopia per tutti gli spazi topologici (e non solo per i poliedri finiti). Sia Y uno spazio topologico, $f = (f_A, f_B) \colon I \times Y \to A \times B$ un'applicazione continua, $g \colon Y \to E_{A,B}$ tale che pg(y) = f(0, y) per ogni $y \in Y$. Per la Proposizione 4.3, l'applicazione

$$G: Y \times I \longrightarrow X$$

 $(y,t) \longmapsto g(y)(t)$

è continua. Dobbiamo trovare una mappa continua $h\colon I\times Y\to E_{A,B}$ tale che h(0,y)=g(y) e ph=f o, equivalentemente, $H\colon I\times Y\times I\to X$ tale che $H(0,y,t)=G(y,t), H(s,y,0)=f_A(s,y), H(s,y,1)=f_B(s,y)$. Dobbiamo dunque estendere a tutto $I\times Y\times I$ una funzione definita su

$$(\{0\} \times Y \times I) \cup (I \times Y \times \{0\}) \cup (I \times Y \times \{1\}),$$

e ciò è reso possibile dal fatto che $(\{0\} \times I) \cup (I \times \{0\}) \cup (I \times \{1\})$ è un retratto di $I \times I$.

Proposizione 4.10. Sia X uno spazio topologico connesso per archi e semplicemente connesso, $x \in X$. Allora esiste una successione spettrale $E_r^{p,q}$ tale che $E_2^{p,q} = H_p(X, H_q(\Omega))$, il cui gruppo terminale E_{∞} è isomorfo al gruppo graduato associato a una filtrazione di $H(E_{x,X})$.

Dimostrazione. Consideriamo la fibrazione $E_{x,X} \to X$ della Proposizione 4.9 (dove abbiamo identificato $\{x\} \times X$ con X). Le fibre sono spazi del tipo $E_{x,y}$, dunque omotopicamente equivalenti a Ω . Poiché X è semplicemente connesso, Ω è connesso per archi, e inoltre l'azione di $\pi_1(X)$ sui gruppi di omologia di Ω è banale. Siamo dunque nelle condizioni di applicare \blacksquare , da cui segue immediatamente la tesi.

Naturalmente esiste la successione spettrale duale in coomologia.

Proposizione 4.11. Siano A un PID, X uno spazio topologico connesso per archi e semplicemente connesso. Supponiamo che tutti i moduli di omologia di X a coefficienti in A siano finitamente generati. Allora vale lo stesso per Ω .

Dimostrazione. Sia $x \in X$ un punto. Poiché $E_{x,X}$ è contrattile, tutti i suoi moduli di omologia sono finitamente generati (in particolare $H_0(E_{x,X};A) = 0$ e $H_i(E_{x,X};A) = A$ per i > 0). Applicando la Proposizione 3.1 alla fibrazione $\Omega \hookrightarrow E_{x,X} \to X$ si ottiene immediatamente la tesi.

Proposizione 4.12. Sia A un PID, X uno spazio topologico connesso per archi e semplicemente connesso. Supponiamo che $H_i(X;A) = 0$ per 0 < i < p. Allora la sospensione $\Sigma \colon H_i(\Omega;A) \to H_{i+1}(X;A)$ è un isomorfismo per 0 < i < 2p-2 ed è suriettiva per i = 2p-2.

Dimostrazione. La tesi segue immediatamente dal Corollario 3.3 applicato alla fibrazione $\Omega \hookrightarrow E_{x,X} \to X$, ricordando che $E_{x,X}$ è contrattile.

Gruppi di omotopia delle sfere

5.1 Metodo generale

Definizione 5.1. Uno spazio topologico X si dice uniformemente localmente contrattile (ULC) se esiste un intorno U della diagonale $\Delta \subseteq X \times X$ tale che le due applicazioni da U in X definite rispettivamente da $(x,y) \mapsto x$ e $(x,y) \mapsto y$ sono omotope mediante un'omotopia che fissa Δ .

Si può mostrare che, se X è connesso per archi e ULC, allora X ammette un rivestimento universale ULC; inoltre, se X è ULC, allora anche ΩX (lo spazio dei cammini chiusi su X) è ULC.

Sia X uno spazio connesso per archi ULC. Definiamo ricorsivamente:

- \bullet $X_0 = X$
- T_{n+1} è il rivestimento universale di X_n per $n \ge 0$;
- $X_n = \Omega T_n \text{ per } n \geq 1.$

Osserviamo che si tratta di buone definizioni: X_0 è connesso per archi e ULC, dunque T_0 è ULC; inoltre T_0 è semplicemente connesso, pertanto X_1 è connesso per archi e ULC, e la costruzione si può ripetere indefinitamente.

Possiamo ora ricavare una relazione interessante fra i gruppi di omotopia di X e i gruppi di omologia di X_n .

Proposizione 5.1. Per ogni
$$n \ge 0, i \ge 1$$
 vale $\pi_i(X_n) = \pi_{i+n}(X)$.

Dimostrazione. La relazione è banalmente vera per n=0. Ragionando per induzione, possiamo supporre che sia vera per n-1. Poiché T_n è il rivestimento universale di X_{n-1} , vale $\pi_1(T_n)=0$ e $\pi_i(T_n)=\pi_i(X_{n-1})=\pi_{i+n-1}(X)$ per $i\geq 2$. Consideriamo la fibrazione $X_n\to E_{x,T_n}\to T_n$ e la successione esatta

Introdurre questa notazione lunga dei gruppi di omotopia

$$\pi_{i+1}(E_{x,T_n}) \longrightarrow \pi_{i+1}(T_n) \longrightarrow \pi_i(X_n) \longrightarrow \pi_i(E_{x,T_n})$$

Ma E_{x,T_n} è contrattile, pertanto per ogni $i \geq 1$ vale $\pi_i(X_n) = \pi_{i+1}(T_n) = \pi_{i+n}(X)$.

Corollario 5.2. Per ogni $n \ge 1$ vale $H_1(X_n) = \pi_{n+1}(X)$.

Dimostrazione. Sappiamo che $\pi_1(X_n) = \pi_{n+1}(X)$; in particolare $\pi_1(X_n)$ è abeliano. Per il teorema di Hurewicz, $\pi_1(X_n) = H_1(X_n)$.

Osserviamo che, per $n \geq 1$, X_n è un H-spazio, dunque il suo gruppo fondamentale, ossia $\pi_{n+1}(X)$, agisce banalmente sui gruppi di omologia e coomologia di T_n (Corollario 4.2).

Proposizione 5.3. Supponiamo che X sia semplicemente connesso, e che i gruppi $H_i(X)$ siano finitamente generati per ogni $i \geq 0$. Allora i gruppi di omologia di X_i e di T_i sono finitamente generati per ogni $i \geq 0$.

Dimostrazione. La tesi è sicuramente vera per X_0 per ipotesi e per T_1 poiché $T_1 = X_0$. Inoltre dalla Proposizione 4.11 segue che anche i gruppi di omologia di X_1 sono fintamente generati. Ragioniamo ora per induzione, supponendo di aver dimostrato che i gruppi di omologia di T_{n-1} e X_{n-1} sono finitamente generati. Sia $\pi = \pi_1(X_{n-1})$. Consideriamo la successione spettrale E_r associata al rivestimento $T_n \to X_{n-1}$ data da \blacksquare (ricordiamo che π agisce banalmente sui gruppi di omologia di T_n). Vale $E_2^{p,q} = H_p(\pi; H_q(T_n))$, e E_∞ è il gruppo graduato associato a $H(X_{n-1})$. Dal il teorema dei coefficienti universali otteniamo

$$E_2^{p,q} = (H_p(\pi) \otimes H_q(T_n)) \oplus \operatorname{Tor}(H_{p-1}(\pi), H_q(T_n)).$$

I gruppi di omologia di X_{n-1} sono finitamente generati per ipotesi induttiva, e π è finitamente generato poiché $\pi = H_1(X_{n-1})$. (?) Ripetendo la dimostrazione della Proposizione 3.1 si ottiene che i gruppi di omologia di T_n sono finitamente generati. Applicando di nuovo Proposizione 4.11 troviamo che anche i gruppi di omologia di X_n sono finitamente generati.

Corollario 5.4. Supponiamo che X sia semplicemente connesso, e che i gruppi $H_i(X)$ siano finitamente generati per ogni $i \geq 0$. Allora i gruppi $\pi_i(X)$ sono finitamente generati per ogni $i \geq 0$.

Dimostrazione. La tesi segue immediatamente dal Corollario 5.2 e dalla Proposizione 5.3 $\hfill\Box$

Proposizione 5.5. Supponiamo che X sia semplicemente connesso, e che i gruppi $H_i(X)$ siano finitamente generati per ogni $i \geq 0$. Sia K un campo. Supponiamo inoltre che $H_i(X;K) = 0$ per 0 < i < n. Allora $\pi_i(X) \otimes K = H_i(X;K)$ per $2 \leq i \leq n$.

Dimostrazione. Dimostriamo inizialmente il seguente fatto: dati $i > 0, 0 \le j \le n-i$ vale $H_i(X_j;K) = H_{i+j}(X;K)$. Mostriamolo per induzione su j. Per j=0 la tesi è ovvia. Sia ora $j \ge 1$. Abbiamo

$$\pi_1(X_{j-1}) \otimes K = H_1(X_{j-1}) \otimes K = H_1(X_{j-1}; K) = H_j(X; K) = 0.$$

Il gruppo abeliano $\pi_1(X_{j-1})$ è finitamente generato, dunque è in realtà finito, e il suo ordine è coprimo con la caratteristica di K. Per \blacksquare vale $H_i(T_j;K) = H_i(X_{j-1};K)$ per ogni $i \geq 0$. Per concludere è sufficiente ricordare che $X_j = \Omega T_j$ e applicare la Proposizione 4.12.

La tesi della proposizione segue ora banalmente: se $2 \le i \le n$ vale

$$\pi_i(X) \otimes K = H_1(X_{i-1}) \otimes K = H_1(X_{i-1}; K) = H_i(X; K).$$

5.2 Sfere di dimensione dispari

Lemma 5.6. Sia X uno spazio topologico connesso per archi e semplicemente connesso; sia inoltre K un campo di caratteristica nulla. Supponiamo che $H^*(X;K)$ sia l'algebra esterna generata da un elemento di grado $n \geq 3$ dispari. Allora $H^*(\Omega;K)$ è l'algebra di polinomi generata da un elemento di grado n-1.

Dimostrazione. Osserviamo che X ha la stessa algebra di coomologia della sfera S^n , dunque possiamo scrivere la successione esatta di Wang associata alla fibrazione $\Omega \hookrightarrow E_{x,X} \to X$:

$$H^{i}(E_{x,X};K) \longrightarrow H^{i}(\Omega;K) \stackrel{\theta}{\longrightarrow} H^{i-k+1}(\Omega K) \longrightarrow H^{i+1}(E_{x,X};K)$$

Poiché $E_{x,X}$ è contrattile, $H^i(E_{x,X};K)=0$ per i>0, dunque θ è un isomorfismo e $H^i(\Omega;K)=H^{i+(k-1)}(\Omega;K)$ per ogni $i\geq 0$, ossia

$$H^i(\Omega; K) = \begin{cases} K & \text{se } i \equiv 0 \pmod{k-1} \\ 0 & \text{altrimenti} \end{cases}.$$

Definiamo per ogni $i \geq 0$ un elemento $e_i \in H^{(k-1)i}(\Omega;K)$ per ricorsione: $e_0 = 1 \in H^0(\Omega;K)$ e $e_i = i\theta^{-1}e_{i-1}$. È evidente che gli e_i formano una base di $H^*(\Omega;K)$ come K-modulo; basta allora dimostrare che $e_i \cdot e_j = e_{i+j}$ per concludere che $H^*(\Omega;K)$ è l'algebra di polinomi generata da e_1 . Dalla successione esatta di Wang sappiamo che θ è una derivazione, in quanto n è dispari. Per induzione su i+j si vede che

$$\theta(e_i \cdot e_j) = \theta e_i \cdot e_j + e_i \cdot \theta e_j$$

$$= i e_{i-1} \cdot e_j + e_i \cdot j e_{j-1}$$

$$= (i+j)e_{i+j-1}$$

$$= \theta e_{i+j}$$

da cui (essendo θ un isomorfismo) $e_i \cdot e_j = e_{i+j}$.

Lemma 5.7. Sia X uno spazio topologico connesso per archi e semplicemente connesso; sia inoltre K un campo. Supponiamo che $H^*(X;K)$ sia l'algebra di polinomi generata da un elemento u di grado $n \geq 2$ pari. Allora $H^*(\Omega;K)$ è l'algebra esterna generata da un elemento v di grado v 1.

Dimostrazione.

Farla (dopo averla capita).

Proposizione 5.8. Per ogni $n \geq 3$ dispari e per ogni i > n, il gruppo $\pi_i(S^n)$ è finito.

Dimostrazione. Sia $X = S^n$, e siano X_i, T_i gli spazi costruiti secondo il metodo generale della sezione precedente. Sia K un campo di caratteristica nulla; calcoliamo le algebre di coomologia degli spazi X_i e T_i a coefficienti in K. Abbiamo che $T_1 = X$, dunque la sua algebra di coomologia è l'algebra esterna generata da un elemento di grado n. Per il Lemma 5.6, l'algebra di coomologia di X_1 è l'algebra di polinomi generata da un elemento di grado n-1. Dalla Proposizione 5.1 deduciamo che $\pi_1(X_1) = \pi_2(X) = 0$, ossia X_1 è semplicemente connesso, da cui $T_2 = X_1$. Applicando il Lemma 5.7 otteniamo che l'algebra di coomologia di X_2 è l'algebra esterna generata da un elemento di grado n-2. Proseguendo in questo modo risulta che l'algebra di coomologia di X_{n-1} è l'algebra esterna generata da un elemento di grado 1; in particolare $H^i(X_{n-1};K)=0$ per $i\geq 2$. Dal teorema dei coefficienti universali si deduce immediatamente che $H_i(X_{n-1};K)=0$ per $i \geq 2$. Essendo $\pi_1(X_{n-1}) = \pi_n(X) = \mathbb{Z}$, da \blacksquare segue che $H_i(T_n; K) = 0$ per i > 0. Ma T_n è semplicemente connesso e i suoi gruppi di omologia sono finitamente generati, dunque possiamo applicare la Proposizione 5.5 e dedurre che $\pi_i(T_n) \otimes K = 0$ per ogni $i \geq 2$. Sfruttando la Proposizione 5.1 e il fatto che T_n è il rivestimento universale di X_{n-1} otteniamo infine che

$$\pi_{n+i-1}(X) \otimes K = \pi_i(X_{n-1}) \otimes K = \pi_i(T_n) \otimes K = 0$$

per ogni $i \geq 2$, ossia che $\pi_i(X) \otimes K = 0$ per i > n. Ricordando che i gruppi di omotopia di X sono finitamente generati (Corollario 5.4) possiamo concludere che $\pi_i(S^n)$ è un gruppo abeliano finito per i > n.