

HY62WT08081E Series 32Kx8bit CMOS SRAM

Document Title

32K x8 bit 2.7~5.5V Low Power Slow SRAM

Revision History

Revision No	<u>History</u>	Draft Date	<u>Remark</u>
00	Initial	Feb.05.2001	Preliminary
01	Revised - Change LL-Part Isb1 Limit @E.T/I.T, 4.5~5.5V : 15uA => 20uA	Feb.13.2001	Final
02	Revised - Marking Information Change : SOP Type - Voh Limit Change : 2.4V => 2.2V @2.7~3.6V	Feb.21.2001	Final
03	Changed Logo - HYUNDAI -> hynix - Marking Information Change	Apr.30.2001	Final
04	Revised - Iccdr Limit Add : 2uA @40°C	May.23.2001	Final

DESCRIPTION

The HY62WT08081E is a high-speed, low power and 32,786 X 8-bits CMOS Static Random Access Memory fabricated using Hynix's high performance CMOS process technology. It is suitable for use in low voltage operation and battery back-up application. This device has a data retention mode that guarantees data to remain valid at the minimum power supply voltage of 2.0 volt.

FEATURES

- Fully static operation and Tri-state output
- TTL compatible inputs and outputs
- Low power consumption
- Battery backup(LL-part)
 - 2.0V(min.) data retention
- Standard pin configuration
 - 28 pin 600mil PDIP
 - 28 pin 330mil SOP
 - 28 pin 8x13.4 mm TSOP-I (Standard)

Product	Voltage	Speed	Operation	Standby Current(uA)	Temperature
No.	(V)	(ns)	Current(mA)	LL-part	(°C)
HY62WT08081E-C	4.5~5.5	55/70	10	10	0~70(Normal)
	2.7~3.6	70*/85	2	5	
HY62WT08081E-E	4.5~5.5	55/70	10	20	-25~85(Extended)
	2.7~3.6	70*/85	2	8	
HY62WT08081E-I	4.5~5.5	55/70	10	20	-40~85(Industrial)
	2.7~3.6	70*/85	2	8	

Note 1. Current value is max.

PIN CONNECTION

PIN DESCRIPTION

Pin Name	Pin Function
/CS	Chip Select
/WE	Write Enable
/OE	Output Enable
A0 ~ A14	Address Inputs
I/O1 ~ I/O8	Data Input/Output
Vcc	Power(+5.0V)
Vss	Ground

BLOCK DIAGRAM

^{* 70}ns is available with 30pF test load

ORDERING INFORMATION

Part No.	Speed		No. Speed		Power	Temp	Package
	4.5~5.5V	2.7~3.6V					
HY62WT08081E-DPC				0 to 70°C			
HY62WT08081E-DPE				-25 to 85°C	PDIP		
HY62WT08081E-DPI				-40 to 85°C			
HY62WT08081E-DGC				0 to 70°C			
HY62WT08081E-DGE	55/70	70*/85	LL-part	-25 to 85°C	SOP		
HY62WT08081E-DGI				-40 to 85°C			
HY62WT08081E-DTC				0 to 70°C			
HY62WT08081E-DTE				-25 to 85°C	TSOP-I Standard		
HY62WT08081E-DTI				-40 to 85°C			

Note * 70ns is available with 30pF test load

ABSOLUTE MAXIMUM RATING (1)

Symbol	Paran	neter	Rating	Unit
Vcc, Vin, Vout	Power Supply,	4.5~5.5V	-0.3 to 7.0	V
	Input/Output Voltage	2.7~3.6V	-0.3 to 4.6	V
TA	Operating Temperature	Operating Temperature HY62WT08081E-C		°C
		HY62WT08081E-E	-25 to 85	°C
		HY62WT08081E-I	-40 to 85	°C
Tstg	Storage Temperature		-65 to 150	°C
Po	Power Dissipation		1.0	W
lout	Data Output Current	50	mA	
TSOLDER	Lead Soldering Temperat	ure & Time	260 •10	°C•sec

Note

^{1.} Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is stress rating only and the functional operation of the device under these or any other conditions above those indicated in the operation of this specification is not implied. Exposure to the absolute maximum rating conditions for extended period may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

Vcc = 4.5~5.5V

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Power Supply Voltage	4.5	5.0	5.5	V
Vss	Ground	0	0	0	V
VIH	Input High Voltage	2.2	-	Vcc+0.3	V
VIL	Input Low Voltage	-0.3(1)	-	0.8	V

Note1. VIL = -3.0V for pulse width less than 50ns

Vcc = 2.7~3.6V

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Power Supply Voltage	2.7	3.0/3.3	3.6	V
Vss	Ground	0	0	0	V
ViH	Input High Voltage	2.2	-	Vcc+0.3	V
VIL	Input Low Voltage	-0.3(1)	-	0.6	V

Note1. VIL = -1.5V for pulse width less than 50ns

TRUTH TABLE

/CS	/WE	/OE	Mode	I/O Operation
Н	Χ	X	Standby	High-Z
L	Н	Н	Output Disabled	High-Z
L	Н	L	Read	Data Out
L	L	Χ	Write	Data In

Note

1. H=VIH, L=VIL, X=Don't Care

DC CHARACTERISTICS

 $Vcc = 4.5 \sim 5.5V$, TA = 0°C to 70°C (Normal) / -25°C to 85°C (Extended) / -40°C to 85°C (Industrial), unless otherwise specified.

Symbol	Parameter	Test Cond	lition	Min.	Тур.	Max.	Unit
ILI	Input Leakage Current	Vss ≤ VIN ≤ Vcc		-1	-	1	uA
ILO	Output Leakage Current	$Vss \le Vout \le Vcc, /C$ /OE = VIH or /WE = V		-1	-	1	uA
Icc	Operating Power Supply Current	/CS = VIL, VIN = VIH or VIL, II/O =	= 0mA	-	-	10	mA
ICC1	Average Operating Current	/CS = VIL, VIN = VIH (-	-	50	mA	
ISB	TTL Standby Current (TTL Inputs)	/CS= VIH, VIN = VIH or VIL		-	-	1	mA
ISB1	CMOS Standby Current (CMOS Inputs)	/CS ≥ Vcc - 0.2V, ViN ≥ Vcc - 0.2V or	0~ 70°C	-	-	10	uA
		ViN <u><</u> Vss + 0.2V	-25~ 85°C or -40~ 85°C	-	-	20	uA
Vol	Output Low Voltage	IOL = 2.1mA		-	-	0.4	V
Voн	Output High Voltage	IOH = -1.0mA		2.4	-	-	V

Note: Typical values are at Vcc =5.0V, TA = 25°C

Vcc = 2.7~3.6V, TA = 0°C to 70°C (Normal) / -25°C to 85°C (Extended) / -40°C to 85°C (Industrial), unless otherwise specified.

Symbol	Parameter	Test Cond	lition	Min.	Тур.	Max.	Unit
ILI	Input Leakage Current	Vss ≤ VIN ≤ Vcc		-1	-	1	uA
ILO	Output Leakage Current	$Vss \leq VOUT \leq Vcc, /(OE = ViH or /WE = ViH $	-1	-	1	uA	
Icc	Operating Power Supply Current	/CS = VIL, VIN = VIH or VIL, II/O =	1	-	2	mA	
ICC1	Average Operating Current	/CS = VIL, VIN = VIH Min. Duty Cycle = 10	1	-	30	mA	
ISB	TTL Standby Current (TTL Inputs)	/CS= VIH, VIN = VIH or VIL		1	-	0.3	mA
ISB1	CMOS Standby Current (CMOS Inputs)	$/CS \ge Vcc - 0.2V$, $Vin \ge Vcc - 0.2V$ or	0~ 70°C	ı	-	5	uA
		VIN <u><</u> Vss + 0.2V	-25~ 85°C or -40~ 85°C	1	-	8	uA
Vol	Output Low Voltage	IOL = 2.1mA		-	-	0.4	V
Voн	Output High Voltage	IOH = -1.0mA		2.2	-	-	V

Note: Typical values are at Vcc =3.0/3.3V, TA = 25°C

Rev 04 / May. 2001 4

AC CHARACTERISTICS

Vcc = 5V \pm 10%, Ta = 0°C to 70°C (Normal) / -25°C to 85°C (Extended) / -40°C to 85°C (Industrial) unless otherwise specified.

#	Symbol	Parameter	-4	55	-7	' 0	Unit	
#	Symbol	Parameter	Min.	Max.	Min.	Max.	Unit	
	READ CYCLE							
1	tRC	Read Cycle Time	55	-	70	-	ns	
2	tAA	Address Access Time	-	55	-	70	ns	
3	tACS	Chip Select Access Time	-	55	-	70	ns	
4	tOE	Output Enable to Output Valid	-	25	-	35	ns	
5	tCLZ	Chip Select to Output in Low Z	10	-	10	-	ns	
6	tOLZ	Output Enable to Output in Low Z	5	-	5	-	ns	
7	tCHZ	Chip Disable to Output in High Z	0	20	0	30	ns	
8	tOHZ	Out Disable to Output in High Z	0	20	0	30	ns	
9	tOH	Output Hold from Address Change	5	-	5	-	ns	
	WRITE	CYCLE						
10	tWC	Write Cycle Time	55	-	70	-	ns	
11	tCW	Chip Selection to End of Write	45	-	60	-	ns	
12	tAW	Address Valid to End of Write	45	-	60	-	ns	
13	tAS	Address Set-up Time	0	-	0	-	ns	
14	tWP	Write Pulse Width	40	-	50	-	ns	
15	tWR	Write Recovery Time	0	-	0	-	ns	
16	tWHZ	Write to Output in High Z	0	20	0	25	ns	
17	tDW	Data to Write Time Overlap	25	-	30	-	ns	
18	tDH	Data Hold from Write Time	0	-	0	-	ns	
19	tOW	Output Active from End of Write	5	-	5	-	ns	

 $Vcc = 2.7 \sim 3.6 V$, TA = 0 ° C to 70 ° C (Normal) / -25 ° C to 85 ° C (Extended) / -40 ° C to 85 ° C (Industrial) unless otherwise specified.

# Symbol		Parameter	-7	' 0*	-8	35	Unit
#	Syllibol	raiailletei		Max.	Min	Max.	Onit
	READ CYCLE						
1	tRC	Read Cycle Time	70	-	85	-	ns
2	tAA	Address Access Time	-	70	-	85	ns
3	tACS	Chip Select Access Time	-	70	-	85	ns
4	tOE	Output Enable to Output Valid	-	35	-	45	ns
5	tCLZ	Chip Select to Output in Low Z	10	-	10	-	ns
6	tOLZ	Output Enable to Output in Low Z	5	-	5	-	ns
7	tCHZ	Chip Disable to Output in High Z	0	30	0	30	ns
8	tOHZ	Out Disable to Output in High Z	0	30	0	30	ns
9	tOH	Output Hold from Address Change	5	-	5	-	ns
	WRITE	CYCLE					
10	tWC	Write Cycle Time	70	-	85	-	ns
11	tCW	Chip Selection to End of Write	60	-	75	-	ns
12	tAW	Address Valid to End of Write	60	-	75	-	ns
13	tAS	Address Set-up Time	0	-	0	-	ns
14	tWP	Write Pulse Width	50	-	60	-	ns
15	tWR	Write Recovery Time	0	-	0	-	ns
16	tWHZ	Write to Output in High Z	0	25	0	30	ns
17	tDW	Data to Write Time Overlap	30	-	40	-	ns
18	tDH	Data Hold from Write Time	0	-	0	-	ns
19	tOW	Output Active from End of Write	5	-	5	-	ns

Note * 70ns is available with 30pF test load

Rev 04 / May. 2001 5

AC TEST CONDITIONS

TA = 0° C to 70° C (Normal) / -25°C to 85° C (Extended) / -40°C to 85° C (Industrial) unless otherwise specified.

Parameter		Value		
Input Pulse Level	Vcc = 4.5~5.5V	0.8V to 2.4V		
	Vcc = 2.7~3.6V	0.4V to 2.2V		
Input Rise and Fall Time		5ns		
Input and Output Timing Reference Level		1.5V		
Output Load	tCLZ,tOLZ,tCHZ,tOHZ,tWHZ,tOW	CL = 5pF + 1TTL Load		
	Others	CL = 100pF + 1TTL Load		
		CL* = 30pF + 1TTL Load		

AC TEST LOADS

Note: Including jig and scope capacitance

CAPACITANCE

 $TA = 25^{\circ}C, f = 1.0MHz$

Symbol	Parameter	Condition	Max.	Unit
CIN	Input Capacitance	VIN = 0V	6	pF
CI/O	Input /Output Capacitance	VI/O = 0V	8	pF

Note: These parameters are sampled and not 100% tested

TIMING DIAGRAM

READ CYCLE 1

Note(READ CYCLE):

- 1. tchz and tohz are defined as the time at which the outputs achieve the open circuit conditions and arenot referenced to output voltage levels.
- 2. At any given temperature and voltage condition, tCHZ max. is less than tCLZ min. both for a given device and from device to device.
- 3. /WE is high for the read cycle.

READ CYCLE 2

Note(READ CYCLE):

- 1. /WE is high for the read cycle.
- 2. Device is continuously selected /CS= VIL.
- 3. /OE =VIL.

WRITE CYCLE 1(/OE Clocked)

WRITE CYCLE 2 (/OE Low Fixed)

Notes(WRITE CYCLE):

- 1. A write occurs during the overlap of a low /CS and a low /WE. A write begins at the latest transition among /CS going low and /WE going low: A write ends at the earliest transition among /CS going high and /WE going high. twp is measured from the beginning of write to the end of write.
- 2. tcw is measured from the later of /CS going low to the end of write.
- 3. tas is measured from the address valid to the beginning of write.
- 4. twn is measured from the end of write to the address change. twn is applied in case a write ends as /CS, or /WE going high.
- 5. If /OE and /WE are in the read mode during this period, and the I/O pins are in the output low-Z state, input of opposite phase of the output must not be applied because bus contention can occur.
- 6. If /CS goes low simultaneously with /WE going low, or after /WE going low, the outputs remain in high impedance state.
- 7. DOUT is the same phase of the latest written data in this write cycle.
- 8. Dout is the read data of the new address.

DATA RETENTION CHARACTERISTIC

TA = 0° C to 70° C (Normal) / -25° C to 85° C (Extended) / -40° C to 85° C (Industrial) unless otherwise specified.

Symbol	Parameter	Test Condition		Min	Typ (1)	Max	Unit
Vdr	Vcc for Data Retention	CS>Vcc-0.2V,		2.0	-	-	V
		VIN > VCC - 0.2V or $VIN < Vss + 0.2V$					
ICCDR(3)	Data Retention Current	Vcc=3.0V,	0~ 70°C	-	0.5	5	uA
		/CS <u>></u> Vcc - 0.2V,					
		VIN≥Vcc - 0.2V or	-25~ 85°C or	-	0.5	8	uA
		VIN <u><</u> Vss + 0.2V	-40~ 85°C				
tCDR	Chip Deselect to Data See Data Retention		0	-	-	ns	
	Retention Time						
tR	Operating Recovery Time Timing Diagram			tRC(2)	-	-	ns

Notes

- 1. Typical values are under the condition of TA = 25°C.
- 2. tRC is read cycle time.
- 3. lccdr : 2uA at Ta < 40°C

DATA RETENTION TIMING DIAGRAM

PACKAGE INFORMATION

28pin 600mil Dual In-Line Package(Blank)

28pin 330mil Small Outline Package(FW)

28pin 8x13.4mm Thin Small Outline Package Standard(T)

MARKING INFORMATION

: Speed • ss : 55ns @ 4.5~5.5V - 55 70ns @ 2.7~3.6V - 70 : 70ns @ 4.5~5.5V 85ns @ 2.7~3.6V • t : Temperature - C : Commercial (0 ~ 70 °C) - E : Extended (-25 ~ 85 °C) : Industrial (-40 ~ 85 °C) - [: Lot Number • xxxxxxxx - Capital Letter : Fixed Item - Small Letter : Non-fixed Item (Except hynix)