Neutrinos via Charm Decays in Astrophysical Sources

by
FRITZ ALI AGILDERE
fritz.agildere@udo.edu

Abstract

Acknowledgements

Abbreviations

Contents

1	Introduction	1
	1.1 Motivation	1
	1.2 Organisation	1
2	Methods	2
3	Results	3
4	Discussion	4
Αŗ	ppendix	5

1 Introduction

- 1.1 Motivation
- 1.2 Organisation

2 Methods

$$\mu = \frac{BR^3}{2} \tag{2.1}$$

$$\dot{E} = -\frac{2\mu^2 \omega^4}{3c^3} \sin^2 \chi \tag{2.2}$$

$$\dot{E} = -\frac{\mu^2 \omega^4}{c^3} \left(1 + \sin^2 \chi \right)$$
 (2.3)

$$\tau \equiv -\frac{E}{\dot{E}} \tag{2.4}$$

$$I = \frac{2MR^2}{5} \tag{2.5}$$

$$E = \frac{I\omega^2}{2} \tag{2.6}$$

$$\dot{E} = \omega \dot{\omega} = K \omega^4 \tag{2.7}$$

$$I\dot{\omega} = K\omega^3 \tag{2.8}$$

$$I\omega^{-3}d\omega = Kdt (2.9)$$

$$\omega^{-2} = \omega_0^{-2} - \frac{2Kt}{I} = \omega_0^{-2} \left(1 + \frac{t}{\tau} \right)$$
 (2.10)

$$\tau = -\frac{I}{2K\omega^2} \tag{2.11}$$

$$\omega = \frac{\omega_0}{\sqrt{1 + \frac{t}{\tau}}} \tag{2.12}$$

3 Results

4 Discussion

Appendix