

Lecture 1. Intro to ML

이재현

전산학부 18학번

99jaehyunlee@kaist.ac.kr

https://github.com/wenko99

김동주

전산학부 18학번

wnehdrla@kaist.ac.kr

https://github.com/dongjoo0-0

김재영

수리과학과 11학번

ygn123456@kaist.ac.kr

Group Study based on Stanford cs231n

본인의 코딩 경험

응답 10개

Python을 사용한 경험

응답 10개

없다.

● 1년

● 2년

● 1년 미만

● 3년 이상

Our Objective : Getting to Know the ABCs of DL

This course is NOT the BEST choice

HOWEVER, 혼자 공부하기는 어렵다.

Questions via Github / KakaoTalk / ...

- 1. Intro to ML
- 2. Linear Classifier
- 3. Model Optimization
- 4. Neural Network Basics
- 5. Convolutional Neural Network

- 6. Training Neural Networks I
- 7. Training Neural Networks II
- 8. Various Neural Network Structures I
- 9. Various Neural Network Structures II

https:/github.com/wenko99/Standalone_DDL

열심히 들어주실거죠?

응답 10개

Today's Contents

- 1. What is Machine Learning?
- 2. Making a Model I
- 3. Testing a Model
- 4. Making a Model II

AI? ML? DL?

AI? ML? DL?

Al is the intelligence demonstrated by Machines

"The field of **machine learning** is concerned with the question of how to construct computer programs that automatically improve with experience."

- Tom M. Mitchell

경험을 통해 학습, 발전하는 컴퓨터 프로그램 만들기

Deep Learning

Supervised Learning **Unsupervised Learning** Discrete classification or clustering categorization Continuous dimensionality regression reduction

However

여기 있는 사람들

** Live Classifier Running at : http://cs231n.stanford.edu/

1. Train

2. Predict

강아지? 고양이?

... 고양이?!

2. Predict

강아지? 고양이?

Making a Model

Narrow Down to : Iris Classification

Narrow Down to : Iris Classification

	Petal						
Iris Versi		A	В	С	D	E	F
	1	caseno	SepalLength	SepalWidth	PetalLength	PetalWidth	Species
	2	1	5.1	3.5	1.4	0.2	setosa
	3	2	4.9	3	1.4	0.2	setosa
	4	3	4.7	3.2	1.3	0.2	setosa
	5	4	4.6	3.1	1.5	0.2	setosa
	6	5	5	3.6	1.4	0.2	setosa
	7	6	5.4	3.9	1.7	0.4	setosa
	8	7	4.6	3.4	1.4	0.3	setosa
	9	8	5	3.4	1.5	0.2	setosa
	10	9	4.4	2.9	1.4	0.2	setosa
	11	10	4.9	3.1	1.5	0.1	setosa

Narrow Down to : Iris Classification

주어진 정보는, Training Data: (Feature, Label) 뿐!

목표는, 새로운 input feature에 대해 label을 predict하는 것!

How...?

Making a Model: Data-Driven Approach

현재 가지고 있는 data를 통한 분류

Train: Memorize all training data: (feature, label)

Predict: Predict the label of the most similar training data

How do we define "similar"?

Nearest Neighbor

"similar" 판단 기준 = **distance btw feature vectors**

LI distance)
$$d_1(x_1, x_2) = \sum_{i=1}^{n} |x_i^i - x_2^{i}|$$

(L2 distance) $d_2(x_1, x_2) = \int_{x_1}^{x_2} (x_1^{x_1} - x_2^{x_2})^2$

Nearest Neighbor

"similar" 판단 기준 = **distance btw feature vectors**

(L) distance)
$$d_1(x_1, x_2) = \sum_{i=1}^{n} |x_i^2 - x_2^{i}|$$
(L) distance) $d_2(x_1, x_2) = \sum_{i=1}^{n} (x_i^2 - x_2^{i})^2$

S

The doctate on Ditte, distancest 12 22 label = prediction.

K-Nearest Neighbor

전체 dataset 중에서,

distance 작은 순서대로 K개 data 뽑은 다음,

majority를 차지하는 label로 predict

** Live K-NN running at : http://vision.stanford.edu/teaching/cs231n-demos/knn/

Model을 열심히 만들었다.

그럼 이 Model을 Prediction에 바로 투입?!?!?

Model을 열심히 만들었다.

그럼 이 Model을 Prediction에 바로 투입?!?!?

이 Model은 얼마나 정확한 Model인가?

이 Model의 Accuracy를 어떻게 신뢰할 것인가?

train

- 1. Training set으로 model fit
- 2. Test set에서 performance 계산

Model은 1개만 만들 수 있을까?

Model은 1개만 만들 수 있을까?

No!

L1 distance / L2 distance

$$K = 1 / K = 2 / K = 3 / ...$$

Testing a Model: Hyperparameter

choices about the algorithm that we set rather than learn

- L1 distance or L2 distance?
- K를 얼마로 설정할 것인가?

•

Model의 performance를 maximize하는 선택 하고 싶음. How?

IDEA 1.

- 1. 여러가지 hyperparameter set으로 model들을 만들어 train시킴
- 2. Test set에서의 performance가 가장 높은 model을 선택

IDEA 1.

- 1. 여러가지 hyperparameter set으로 model들을 만들어 train시킴
- 2. Test set에서의 performance가 가장 높은 model을 선택

However,

2에서의 performance를

unseen data에 대한 performance라 할 수는 없다.

Test set은 model을 만드는 과정에 포함되어서는 안된다.

Test set의 존재 의의는, unseen data에 대한 performance를 얻기 위함.

IDEA 2.

- 1. 여러가지 hyperparameter set으로 model들을 만들어 train시킴
- 2. Validation set에서의 performance가 가장 높은 model을 선택
- 3. Test set로 unseen data에 대한 performance 계산

train

Testing a Model: Cross Validation

전체 dataset의 size가 작으면,

전과 같이 dataset을 나눴을 때 training set의 크기가 너무 작아진다.

Thus, use **Cross Validation**

Testing a Model: Cross Validation

K-Fold Cross Validation

Test set을 제외한 나머지 부분을 k 조각(fold)로 나눈다.

한 iteration에서 조각 1개를 validation set으로 사용해,

총 k번의 iteration 후, performance의 평균으로 hyperparameter 채택

Back to K-NN

전체 dataset 중에서,

distance 작은 순서대로 K개 data 뽑은 다음,

majority를 차지하는 label로 predict

Limitations of K-NN

1. Poor classification performance

Limitations of K-NN

2. Poor prediction efficiency

K-NN은 train O(1), predict O(N)

in real world problems, we want train O(N), predict O(1)

Making a Model

Data-Driven Approach에서 벗어나,

꽃잎, 꽃받침의 길이 정보에서 꽃의 종의 특징 뽑아내기

How...?

Making a Model: Parametric Approach

train data에서 뽑아낸 label별 특징들을 parameter에 저장

then, prediction에서는 parameter만 사용해 predict!

Setosa의 꽃잎 길이가 다른 종에 비해 길다면...?

Feature를 각 Label에 대한 점수로 Mapping하자!

Feature
$$f$$
 store \Rightarrow prediction = arginax (s).

feature
$$f$$
 store $X \longrightarrow prediction = argmax(s).$

점수 계산 함수 f는,

각 feature의 중요도를 반영하여 점수 계산

점수 계산 방법

: 각각의 Feature에 가중치를 곱해서 더하기!


```
feature: (xo. x1. x2. x3)

1. Setosa of the the their in the the their interpretation of the their their interpretation of the their interpretation of the setosa score: woodo + Wolder + Wooda + Wolder + W
```

2. Versicolor oil tilly 1/2/1: (W10.W11. W12. W13)

1

Versicolor store: W1020+W1121+W1222+W1323

3. Virginica 5 HITH UNDS.

	A	В	С	D	E
1	caseno	SepalLength	SepalWidth	PetalLength	PetalWidth
2	1	4.8	3	1.4	0.3

$$\begin{pmatrix} 1.063 & 2.179 & -1.557 & -0.611 \\ 0.952 & 0.259 & 0.532 & -0.182 \\ -0.851 & -1.12 & 2.865 & 2.254 \end{pmatrix} \begin{pmatrix} 4.8 \\ 3 \\ 1.4 \\ 0.3 \end{pmatrix} + \begin{pmatrix} 0.262 \\ 0.495 \\ 0.294 \end{pmatrix} = \begin{pmatrix} 9.5383 \\ 6.5318 \\ -2.4636 \end{pmatrix}$$

	A	В	С	D	E	F
1	caseno	SepalLength	SepalWidth	PetalLength	PetalWidth	Species
2	1	4.8	3	1.4	0.3	setosa

$$\begin{pmatrix} 1.063 & 2.179 & -1.557 & -0.611 \\ 0.952 & 0.259 & 0.532 & -0.182 \\ -0.851 & -1.12 & 2.865 & 2.254 \end{pmatrix} \begin{pmatrix} 4.8 \\ 3 \\ 1.4 \\ 0.3 \end{pmatrix} + \begin{pmatrix} 0.262 \\ 0.495 \\ 0.294 \end{pmatrix} = \begin{pmatrix} 9.5383 \\ 6.5318 \\ -2.4636 \end{pmatrix}$$

Why is it a "Linear" Classifier?

$$\begin{pmatrix} 1.063 & 2.179 & -1.557 & -0.611 \\ 0.952 & 0.259 & 0.532 & -0.182 \\ -0.851 & -1.12 & 2.865 & 2.254 \end{pmatrix} \begin{pmatrix} x0 \\ x1 \\ x2 \\ x3 \end{pmatrix} + \begin{pmatrix} 0.262 \\ 0.495 \\ 0.294 \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$

$$\begin{pmatrix} 1.063 & 2.179 & -1.557 & -0.611 \\ 0.952 & 0.259 & 0.532 & -0.182 \\ -0.851 & -1.12 & 2.865 & 2.254 \end{pmatrix} \begin{pmatrix} x0 \\ x1 \\ x2 \\ x3 \end{pmatrix} + \begin{pmatrix} 0.262 \\ 0.495 \\ 0.294 \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ 0 \end{pmatrix}$$

$$1.063 * x0 + 2.179 * x1 - 1.577 * x2 - 0.611 * x3 + 0.262 = 0$$

는, Setosa를 표현하는 **Hyperplane**

각각의 data는 feature가 4개이므로,

4차원 공간상의 한 점이다.

또, 같은 종의 꽃들은

서로 비슷한 곳에 위치할 것이다.

(4차원 공간을 visualize할 수 없으므로, 왼쪽에서는 2차원으로 줄여서 표현함)

then, bias가 왜 필요할까?

then, bias가 왜 필요할까?

bias B가 없었다면,

모든 hyperplane이 원점을 지나야 함.

따라서, classify가 잘 안됨!

However,

In reality, the correct parameter W is not given from the start

따라서, **(current)** incorrect param. **(objective)** correct param.

How should we optimize the model?

** Live Linear Classifier Running at :

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/

Questions on Model Optimization

• Train이 잘 되었는지 판단할 수치적 척도 필요

: define a **Loss Function** that quantifies our unhappiness with the scores across the training data

• Parameter를 update하는 algorithm 필요

: come up with a way of efficiently finding the parameters that minimize the **Loss Function**

Review

1. What is Machine Learning?

- Definition
- Fields of ML
- Narrow down to Image Classification

2. Making a Model I

- Narrow down to Iris Classification
- Data-Driven Approach
 - NN, K-NN Algorithms

How to Test a Model

- Hyper parameter
- Cross Validation

4. Making a Model II

- Score Function
- Linear Classifier : Algebraic & Geometric

Preview on Next Lecture

Questions

• Train이 잘 되었는지 판단할 수치적 척도 필요

: define a **Loss Function** that quantifies our unhappiness with the scores across the training data

• Parameter를 update하는 algorithm 필요

: come up with a way of efficiently finding the parameters that minimize the **Loss Function**

More on Linear Classifier

How to calculate the Loss

Coding: Nearest-Neighbor Classifier for Iris Classification

Define L2 distance function

```
In [0]: def dist_12(array1, array2):

Write your code for L2 distance here
```

Test Model