Corso di Basi di Dati

ESERCITAZIONI DI ALGEBRA RELAZIONALE

Schema SAILORS

Schema e istanza utilizzati per gli esempi:

sid	sname	rating	agc
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Sailors (S3)

sid	bid	day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

Reserves (R2)

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Boats (B1)

Nomi di tutti i marinai che hanno noleggiato la barca #103

Versione 1:

$$\pi_{sname}(\sigma_{bid=103}(\text{Reserves} \bowtie Sailors))$$

Versione 2:

$$\pi_{sname}((\sigma_{bid=103} \text{Reserves}) \bowtie Sailors)$$

Qual è la differenza importante tra le due versioni?

Q1 (cont.)

- Tutti i marinai che hanno noleggiato la barca #103
 - Versione 2bis (con esplicitazione delle relazioni intermedie)

$$\rho$$
 (Temp1, $\sigma_{bid=103}$ Reserves)
$$\rho$$
 (Temp2, Temp1 \bowtie Sailors)
$$\pi_{sname}$$
 (Temp2)

- Nomi dei marinai che hanno prenotato una barca rossa
 - Versione 1

$$\pi_{sname}((\sigma_{color='red}, Boats) \bowtie Reserves \bowtie Sailors)$$

Versione (più efficiente)

$$\pi_{sname}(\pi_{sid}((\pi_{bid}\sigma_{color='red}, Boats) \bowtie Res) \bowtie Sailors)$$

L'ottimizzatore di query del DBMS è in grado di trasformare automaticamente la prima nella seconda!
Slide 1- 5

Nomi dei marinai che hanno prenotato una barca rossa o verde

$$\rho$$
 (Tempboats, ($\sigma_{color='red' \lor color='green'}$, Boats))
$$\pi_{sname}$$
(Tempboats \bowtie Reserves \times Sailors)

- Come va riscritta la query senza introdurre esplicitamente relazioni intermedie?
- Come si può riscrivere la query usando l'operatore UNIONE?

 Nomi dei marinai che hanno prenotato una barca rossa e una barca verde

```
\rho(Tempred, \pi_{sid}((\sigma_{color='red'}Boats) \bowtie Reserves)))

\rho(Tempgreen, \pi_{sid}((\sigma_{color='green'}Boats) \bowtie Reserves)))

\pi_{sname}((Tempred \cap Tempgreen) \bowtie Sailors))
```

NB: usare una selezione con condizione color='red' AND color='green' ovviamente non sarebbe corretto! Che risultato darebbe?

Q4bis

- Nomi dei marinai che hanno prenotato una barca rossa e una barca verde
- Perché questa versione della query non sarebbe corretta?

```
\rho(Tempred, \pi_{sname}((\sigma_{color='red'}Boats) \bowtie Reserves \bowtie Sailors)))

\rho(Tempgreen, \pi_{sname}((\sigma_{color='green'}Boats) \bowtie Reserves \bowtie Sailors)))

Tempred \cap Tempgreen
```

Indizio: sid è chiave in Sailors, sname no

Nomi dei marinai che hanno prenotato tutte le barche

$$\rho$$
 (Tempsids, ($\pi_{sid,bid}$ Reserves) / (π_{bid} Boats))
$$\pi_{sname}$$
 (Tempsids \bowtie Sailors)

La divisione ci permette di trovare facilmente tutti i *sid* dei marinai che sono associati a tutti i valori di *bid* in *Boats*

Nomi dei marinai che hanno prenotato almeno 2 barche

```
ho(Reservations, \pi_{sid,sname,bid}(Sailors \bowtie Reserves))

ho(Reservationpairs(1 \rightarrow sid1, 2 \rightarrow sname1, 3 \rightarrow bid1, 4 \rightarrow sid2, 5 \rightarrow sname2, 6 \rightarrow bid2), Reservations \bowtie Reservations)
\pi_{sname1}\sigma_{(sid1=sid2) \land (bid1 \neq bid2)}Reservationpairs
```

Mettendo in JOIN una relazione con se stessa, è necessario rinominare gli attributi che si ripetono!