ALGORITMI ANALIZE MASIVNIH PODATKOV

DOMEN MONGUS

PO5 – Analiza časovnih vrst

Motivacija - V 4 Velocity

- □ Časovna vrsta:
 - Beli šum, naključni sprehod,...
- Razlogi za variabilnost vrednosti
 - Dekompozicija signala:
 - Trend:
 - Sezonski efekti:
 - Neregularne fluktuacije

Avtokorelacija in linearna regresija

□ Pearsonov korelacijski koeficient

$$r=r_{xy}=rac{\sum x_iy_i-nar{x}ar{y}}{\sqrt{(\sum x_i^2-nar{x}^2)}}rac{\sqrt{(\sum y_i^2-nar{y}^2)}}{}.$$

□ Avtokorelacija je korelacija med signalom $X = \{x_t\}$ in njegovo zakasnjeno kopijo $X_h = \{x_{t+h}\}$

- oxdot Generalizirana regresijska enačba ${f y}_- = {f X}{f b} + {f e}_$
 - lacksquare Metoda najmanjših kvadratov $\mathbf{b} = \left(\mathbf{X}^T\mathbf{X}\right)^{-1}\mathbf{X}^T\mathbf{y}$

Vsebina

- □ Tradicionalni pristopi, ki napovedovanju vrednosti v časovnih vrstah:
 - Premikajoče povprečje
 - Avtoregresijski model
 - ARIMA

Načrtovanje napovedovalnih modelov

Beli šum

- □ Definicija
 - □ Povprečje = 0
 - Varianca = konstanta
 - Je nekoreliran
- V signalu ne ugotovimo vzorca
 - Množica statističnih testov
- Zaključni kriterij vsake časovne analize.

Nelinearna regresija z metodo najmanjših kvadratov

Matrična predstavitev metode najmanjših kvadratov

v linearnem sistemu: $y_i = \beta_1 x_{i,1} + \beta_2 x_{i,2} + \ldots + \beta_k x_{i,k} + \varepsilon_i$

$$\begin{bmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,k} \\ x_{2,1} & x_{2,2} & \dots & x_{2,k} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix}$$

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,k} \\ x_{2,1} & x_{2,2} & \dots & x_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & \dots & x_{n,k} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{bmatrix}$$

$$\begin{bmatrix} \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & \dots & x_{n,k} \end{bmatrix} \begin{bmatrix} \vdots \\ b_k \end{bmatrix} \begin{bmatrix} \vdots \\ e_n \end{bmatrix}$$

□ Polinomska regresija:

$$y_i \,=\, eta_0 + eta_1 x_i + eta_2 x_i^2 + \cdots + eta_m x_i^m + arepsilon_i \; (i=1,2,\ldots,n)$$

Kako z več spremenljivkami?

$$egin{bmatrix} y_1 \ y_2 \ y_3 \ dots \ y_n \end{bmatrix} = egin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^m \ 1 & x_2 & x_2^2 & \dots & x_2^m \ 1 & x_3 & x_3^2 & \dots & x_3^m \ dots \ dots & dots & dots & dots \ dots \ y_n \end{bmatrix} egin{bmatrix} eta_0 \ eta_1 \ eta_2 \ dots \ eta_3 \ dots \ eta_m \end{bmatrix} + egin{bmatrix} arepsilon_1 \ arepsilon_2 \ dots \ dots \ eta_3 \ dots \ eta_m \end{bmatrix}$$

Avtoregresijski model

- □ Notacija *AR(p)*
 - p število preteklih vrednosti, ki jih uporabimo za napoved
- □ Definicija: $x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + \dots + \phi_p x_{t-p} + w_t$
 - Rešljivo s tradicionalno linearno regresijo
- □ Zahteva stacionarne vrednosti!
 - Povprečje = 0
 - Standardna deviacija = konstanta

Premikajoče povprečje

- Ang. moving average
- □ Notacija: MA(q)
 - q določa dolžino modela
- au Definicija: $X_t = \mu + arepsilon_t + heta_1 arepsilon_{t-1} + \dots + heta_q arepsilon_{t-q}$
 - lacktriangledown hinspace hinsp
 - $\mathbf{E}_t, \, \mathcal{E}_{t-1}, \dots, \, \mathcal{E}_{t-q}$ napake prejšnjih napovedih (stacionarni)
 - lacktriangledown povprečje zadnjih q vrednosti

Reševanje MA modelov

 Napake v napovedovanju so nedoločljive, zato potrebujemo iterativni pristop.

- Množica možnih pristopov:
 - Metoda Yule-Walker
 - Metoda največje verjetnosti (Maximum Likelihood)
 - Newton-Raphsonov in Scoring Algorithmi
 - Iterativni Gauss Newtonov algoritem

Avtoregresijsko premikajoče povprečje

- □ Ang. autoregresive moving average
- □ Notacija: ARMA(p,q)
 - □ p število avtoregresijskih členov
 - □ q ševilo členov belega šuma (napak)

□ Definicija:

$$x_t = \phi_1 x_{t-1} + \dots + \phi_p x_{t-p} + w_t + \theta_1 w_{t-1} + \dots + \theta_q w_{t-q}$$

Integrirana ARMA

- □ Ang. Avtoregresive Integrated Moving Average
- □ Notacija: ARIMA(p,d,q)
 - p in q prevzeta iz ARMA
 - d red diferenciacije
- □ Diferenciacija:

$$extstyle extstyle ext$$

□ Drugi red:
$$y_t^* = y_t' - y_{t-1}'$$
 $= (y_t - y_{t-1}) - (y_{t-1} - y_{t-2})$
 $= y_t - 2y_{t-1} + y_{t-2}$

Načrtovanje modelov

- □ Metoda Box-Jenkins
 - Identifikacija modela
 - □ Izvedba modela
 - Diagnostika

- □ Pred uporabo B-J izvedi:
 - Ali so podatki beli šum?
 - Ali je časovna vrsta stacionarna?
 - Če ni, izvedi diferenciacijo

Izračun korelograma

- Procese modeliramo glede ne vrste, ki jih razberemo na osnovi korelograma:
 - To je graf avtokorelacije glede na zakasnitev
 - Lahko izberemo optimalno zakasnitev?

Delna avtokorelacija

- Korelacija je približek regresije z navadnimi najmanjšimi kvadrati:
 - $\square x: \{22,17,16,14,13,10,1215,21,19,18,16,19,20,24\}$
 - \mathbf{x}_1 : {17,16,14,13,10,1215,21,19,18,16,19,20,24, 21}
 - Korelacijski faktor: 0.68132
 - Regresijski koeficient (AR(1) model): 0.69608
 - Vsaka vrednost "ima 69% vpliva na naslednjo vrednost"
- □ PRIMER AR(3) modela:
 - $X = k_1 x_1 + k_2 x_2 + k_3$
 - \blacksquare Zanima nas koliko točno vpliva $k_2 x_2$ npr. brez $k_1 x_1$
 - Izkaže se, da je vpliv n-tega zamika enak koeficientu n-tega člena regresije n-zamikov.

Metoda Box-Jenkins

- □ Identifikacija modela in optimalne zakasnitve
 - Analiza avtokorelacije za določitev najprimernejše zakasnitve (optimal lag).
 - Upoštevanje delne avtokorelacije
 - Izločanje ekstremnih dogodkov

MODEL	Avtokorelacija	Delna avtokorelacija
AR(p)	Pada počasi proti 0	Takoj upade blizu 0
MA(q)	Takoj upade blizu 0	Pada počasi proti 0
ARMA(p,q)	Pada počasi proti 0	Pada počasi proti 0

Metoda B-J

- □ Diagnostika:
 - Običajno izračun korena povprečne kvadratne napake (ang. root mean square error)

$$RMSE = \sqrt{\sum \frac{(y_{pred} - y_{ref})^2}{N}}$$

Izris grafa napake in preveri ali so napake res beli šum?