2014-diciembre 2016 ?

```
In [341]: import pandas as pd
          import math
          import numpy as np
          import seaborn as sns
          import matplotlib.pyplot as plt
In [342]: df = pd.read_csv('argentina merged - Arg_pt2 (1).csv')
          df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 271 entries, 0 to 270
          Data columns (total 5 columns):
               Column Non-Null Count Dtype
                        271 non-null
           0
                                       int64
               year
           1
               month
                       271 non-null
                                       int64
           2
               ncpi
                        236 non-null
                                        float64
               ex_rate 271 non-null
                                        float64
               m2
                        271 non-null
                                        float64
          dtypes: float64(3), int64(2)
          memory usage: 10.7 KB
In [343]: pd.set_option('display.max_rows', df.shape[0]+1)
          print(df)
               year month
                                        ex_rate
                                                           m2
                                ncpi
                                        0.99900 2.958935e+04
          0
               2000
                            48.09879
               2000
                             48.10076
                                        0.99900 2.877582e+04
               2000
                             47.84662
                                        0.99900 2.907953e+04
                            47.79282
               2000
                         4
                                        0.99900 2.876504e+04
          3
                                        0.99900 2.920590e+04
          4
               2000
                         5
                            47.60705
               2000
                             47.51903
                                        0.99900 3.001776e+04
               2000
                             47.72541
                                        0.99900 2.960987e+04
          6
               2000
                            47.62273
                                        0.99900 2.914851e+04
                         8
                                        0.99900 2.940293e+04
          8
               2000
                         9
                             47.54960
                                        0.99900 2.845849e+04
          9
               2000
                        10
                            47.63481
          10
               2000
                            47.40065
                                        0.99900 2.813883e+04
                        11
                             47.34766
                                        0.99900
          11
               2000
                        12
                                                 3.004754e+04
                            47.38574
                                        0.99900 2.880066e+04
          12
               2001
                        1
                             47.27780
                                        0.99900 2.912824e+04
          13
               2001
                         2
          14
               2001
                         3
                             47.36788
                                        0.99900 2.579778e+04
               2001
                            47.68451
                                        0.99900 2.691109e+04
          15
               2001
                            47.71537
                                        0.99900 2.640372e+04
          16
                         5
                                        0.99900 2.634358e+04
               2001
          17
                         6
                            47.37121
In [344]: |df['year'] = df['year'].astype(str)
          df['month'] = df['month'].astype(str)
          df['m2_usd'] = df['m2']/df['ex_rate']
          df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 271 entries, 0 to 270
          Data columns (total 6 columns):
           # Column Non-Null Count Dtype
              -----
                       271 non-null
           0
                                       object
               year
           1
               month
                       271 non-null
                                       object
                        236 non-null
                                        float64
               ncpi
               ex_rate 271 non-null
                                        float64
                        271 non-null
                                       float64
           4
               m2
               m2_usd 271 non-null
                                        float64
          dtypes: float64(4), object(2)
          memory usage: 12.8+ KB
```

```
In [345]: plt.xticks([0,24,48,72,96,120,144,168,192,216,240,264], ['2000',"2002","2004","2006","2008","2010","2012","2014","2016","2018",
plt.xlabel("Year")
plt.ylabel("NCPI")

df["ncpi"].plot(color="skyblue")
```

Out[345]: <AxesSubplot:xlabel='Year', ylabel='NCPI'>


```
In [346]: plt.xticks([0,24,48,72,96,120,144,168,192,216,240,264], ['2000',"2002","2004","2006","2008","2010","2012","2014","2016","2018",
plt.xlabel("Year")
plt.ylabel("Money Supply")

df["m2"].plot(color='green')
```

Out[346]: <AxesSubplot:xlabel='Year', ylabel='Money Supply'>


```
In [347]: df["ncpi"].iloc[0:203].plot()
    plt.xticks([0,24,48,72,96,120,144,168,190], ['2000',"2002","2004","2006","2008","2010","2012","2014","2016"])
    plt.legend(loc='upper left')
    plt.xlabel("Year")
    plt.ylabel("NCPI")
```

Out[347]: Text(0, 0.5, 'NCPI')


```
In [348]: df
Out[348]:
                 year month
                                  ncpi
                                         ex_rate
                                                         m2
                                                                   m2_usd
                                         0.99900 2.958935e+04
                                                               29618.972973
              0
                2000
                           1
                              48.09879
                2000
                          2
                              48.10076
                                         0.99900
                                                 2.877582e+04
                                                               28804.628218
                              47.84662
                                         0.99900 2.907953e+04
                                                               29108.641762
              2 2000
                          3
              3
                2000
                          4
                              47 79282
                                         0.99900 2.876504e+04
                                                              28793 836897
                              47.60705
                                         0.99900 2.920590e+04
                                                               29235.134775
                2000
                          5
              5
                2000
                          6
                              47.51903
                                         0.99900 3.001776e+04
                                                               30047.806036
                2000
                          7
                              47.72541
                                         0.99900 2.960987e+04
                                                               29639.510490
              6
                              47.62273
                                         0.99900 2.914851e+04
                                                               29177.691832
              7 2000
                          8
                2000
                          9
                              47.54960
                                         0.99900 2.940293e+04
                                                               29432.364234
                              47.63481
                                         0.99900 2.845849e+04
                                                               28486.976937
                2000
                          10
             10 2000
                          11
                              47.40065
                                         0.99900 2.813883e+04
                                                               28166.993373
In [349]: | numeric_features = df.select_dtypes(include=[np.number])
           corr = numeric_features.corr()
           print (corr['ncpi'].sort_values(ascending=False)[:10], '\n')
           ncpi
                       1.000000
           m2
                       0.974690
                       0.955132
           ex_rate
                       0.340189
           m2_usd
           Name: ncpi, dtype: float64
In [350]: corr_matrix = df.corr()
           sns.heatmap(corr_matrix, annot=True, cmap="YlGnBu")
           plt.show()
                                                          1.0
                                                           0.9
                                               0.34
            ncpi
                            0.96
                                      0.97
                                                           0.8
            ex_rate
                                                           0.7
                  0.96
                                               0.14
                                                          0.6
                                                          - 0.5
            낊
                            0.98
                                               0.23
                                                          0.4
                                                          0.3
            psn
                  0.34
                                      0.23
                            0.14
            겉
                                                          - 0.2
                           ex_rate
                                      m2
                  ncpi
                                              m2_usd
In [358]: df["m2_pctchange"]=df["m2"].pct_change()+1
           df["inflation"]=100*df["ncpi"].pct_change()
           df["inflation"]=df["inflation"].round(decimals = 2)
           df["m2_pctchange"]=df["m2_pctchange"].round(decimals = 2)
           df["ncpi"]=df["ncpi"].round(decimals = 2)
           df["ncpi"]=df["ncpi"].round(decimals = 2)
In [359]: while df['ncpi'].isna().sum() > 0:
               df.loc[df['ncpi'].isna(), 'ncpi'] = df['ncpi'].shift(1) * df['m2_pctchange']
```

```
In [360]: df
            235 2019
                          8 238.30
                                    59.07500 2.092441e+06
                                                           35420.077190
                                                                                1.02
                                                                                        3.88
            236 2019
                          9 252.10
                                    57.55830 2.171913e+06
                                                           37734.148333
                                                                                1.04
                                                                                        5.79
            237 2019
                         10 260.20
                                    59.72670 2.238035e+06
                                                          37471.265950
                                                                                1.03
                                                                                        3.21
                2019
                         11 270.80
                                    59.86330 2.198823e+06
                                                           36730.728677
                                                                                0.98
                                                                                        4.07
            238
            239
                2019
                         12 281.20
                                    59.89500 2.512309e+06
                                                           41945.216462
                                                                                1.14
                                                                                        3.84
            240
                2020
                          1 286.50
                                    60.33120 2.728223e+06
                                                           45220.767364
                                                                                1.09
                                                                                        1.88
            241
                2020
                          2 291.70
                                    62.20800 2.804026e+06
                                                           45075.011413
                                                                                1.03
                                                                                        1.82
            242 2020
                          3 302.20
                                    64.46970 2.970752e+06
                                                           46079.815324
                                                                                1.06
                                                                                        3.60
            243 2020
                          4 306.40
                                    66.83500 3.399888e+06
                                                           50869.874617
                                                                                1.14
                                                                                        1.39
                2020
                                                           53734.649303
            244
                          5 311.10
                                    68.53500 3.682704e+06
                                                                                1.08
                                                                                        1.53
            245 2020
                                                           55497 753176
                          6 317.50
                                    70.45500 3.910094e+06
                                                                                1.06
                                                                                        2.06
            246 2020
                          7 322.70 72.31500 4.113985e+06
                                                           56889.793957
                                                                                1.05
                                                                                        1.64
            247 2020
                          8 331.70 74.17500 4.151495e+06
                                                           55968.928345
                                                                                1.01
                                                                                        2.79
In [361]: df=df.replace([-67.92], 0)
In [362]: #inf 2013
           df["inflation"].iloc[156:168].sum()
Out[362]: 10.45
In [363]: #Inf 2014
           df["inflation"].iloc[168:180].sum()
Out[363]: 27.0
In [364]: #inf 2015
           df["inflation"].loc[180:191].sum()
Out[364]: 28.0
In [365]: #inf 2016
           df["inflation"].loc[192:202].sum()
Out[365]: 11.0
In [366]: #inf 2017
           df["inflation"].loc[203:215].sum().round(decimals = 2)
Out[366]: 22.55
In [367]: #inf 2018
           df["inflation"].loc[216:227].sum()
Out[367]: 39.36
In [368]: #inf acumulada 2014-2016
           df["inflation"].loc[156:202].sum().round(decimals = 2)
Out[368]: 76.45
```

```
In [369]: df.loc[216:227]
```

Out[369]:

	year	month	ncpi	ex_rate	m2	m2_usd	m2_pctchange	inflation
216	2018	1	127.0	19.6525	1671370.26	85046.190561	1.04	1.60
217	2018	2	130.3	20.1150	1625844.54	80827.469053	0.97	2.60
218	2018	3	133.5	20.1433	1614610.84	80156.222665	0.99	2.46
219	2018	4	136.9	20.6917	1621338.59	78356.954238	1.00	2.55
220	2018	5	139.6	24.9475	1671509.20	67001.070248	1.03	1.97
221	2018	6	145.1	28.8617	1776575.23	61554.767391	1.06	3.94
222	2018	7	149.1	27.3425	1774779.85	64909.201792	1.00	2.76
223	2018	8	155.2	37.1250	1759405.38	47391.390707	0.99	4.09
224	2018	9	165.5	40.8967	1877613.23	45911.118256	1.07	6.64
225	2018	10	173.9	36.1967	1714007.75	47352.597060	0.91	5.08
226	2018	11	178.9	38.0217	1689885.17	44445.281773	0.99	2.88
227	2018	12	183.9	37.8083	1863685.87	49293.035392	1.10	2.79

In [370]: df=df.replace([-67.92], 0)

In [371]: df

Out[371]:

	year	month	ncpi	ex_rate	m2	m2_usd	m2_pctchange	inflation
0	2000	1	48.10	0.99900	2.958935e+04	29618.972973	NaN	NaN
1	2000	2	48.10	0.99900	2.877582e+04	28804.628218	0.97	0.00
2	2000	3	47.85	0.99900	2.907953e+04	29108.641762	1.01	-0.52
3	2000	4	47.79	0.99900	2.876504e+04	28793.836897	0.99	-0.13
4	2000	5	47.61	0.99900	2.920590e+04	29235.134775	1.02	-0.38
5	2000	6	47.52	0.99900	3.001776e+04	30047.806036	1.03	-0.19
6	2000	7	47.73	0.99900	2.960987e+04	29639.510490	0.99	0.44
7	2000	8	47.62	0.99900	2.914851e+04	29177.691832	0.98	-0.23
8	2000	9	47.55	0.99900	2.940293e+04	29432.364234	1.01	-0.15
9	2000	10	47.63	0.99900	2.845849e+04	28486.976937	0.97	0.17
10	2000	11	47.40	0.99900	2.813883e+04	28166.993373	0.99	-0.48

Out[372]: Text(0, 0.5, 'NCPI')


```
In [373]: import matplotlib.pyplot as plt
import seaborn as sns

df = df.rename(columns={"ncpi": "NCPI", "ex_rate": "Exchange Rate", "m2": "Monetary Supply (M2)", "m2_usd": "Monetary Supply in U
corr_matrix = df.corr()
sns.heatmap(corr_matrix, annot=True, cmap="YlGnBu")
plt.show()
```



```
In [374]: plt.plot(10000*df['NCPI'], label='Monetary Supply (M2)', color='orange')
   plt.plot(df['Monetary Supply (M2)'], label='Money Supply', color='green')
   plt.xticks([0,24,48,72,96,120,144,168,192,216,240,264], ['2000',"2002","2004","2006","2008","2010","2012","2014","2016","2018",
   plt.legend(loc='upper left', title='Metric')
```

Out[374]: <matplotlib.legend.Legend at 0x25fa704d820>


```
In [375]: plt.plot(30000*df['Exchange Rate'], label='Exchange Rate', color='blue')
    plt.plot(df['Monetary Supply (M2)'], label='Money Supply', color='green')
    plt.xticks([0,24,48,72,96,120,144,168,192,216,240,264], ['2000',"2002","2004","2006","2008","2010","2012","2014","2016","2018",
    plt.legend(loc='upper left', title='Metric')
```

Out[375]: <matplotlib.legend.Legend at 0x25fa705c0a0>


```
In [376]: df["NCPI"].iloc[0:203].plot(color='skyblue')
   plt.xticks([0,24,48,72,96,120,144,168,190], ['2000',"2002","2004","2006","2008","2010","2012","2014","2016"])
   plt.xlabel("Year")
   plt.ylabel("NCPI")
```

```
Out[376]: Text(0, 0.5, 'NCPI')
```



```
In [377]: plt.plot(10*df['Monetary Supply in USD (M2)'], label='M2 in USD', color='green')
    plt.plot(df['Monetary Supply (M2)'], label='M2 in ARS', color='grey')
    plt.xticks([0,24,48,72,96,120,144,168,192,216,240,264], ['2000',"2002","2004","2006","2008","2010","2012","2014","2016","2018",
    plt.legend(loc='upper left', title='Metric')
```

Out[377]: <matplotlib.legend.Legend at 0x25fa6f526a0>


```
In [378]: plt.plot(10000*df["NCPI"].iloc[203:], label='NCPI', color='skyblue')
   plt.plot(df['Monetary Supply (M2)'].iloc[203:], label='M2 in ARS', color='grey')
   plt.xticks([204,216,228,240,252,264], ["2017","2018","2019", "2020","2021","2022"])
   plt.legend(loc='upper left', title='Metric')
```

Out[378]: <matplotlib.legend.Legend at 0x25fa7141490>

