1	2	3	4	5	T1a	T1b	T2a	T2b

- 1.- Calcule la masa del cuerpo definido por $1 \le z \le 5 x^2 y^2$, con $y \ge 0$, sabiendo que la densidad del material es, en cada punto, $\delta(x, y, z) = x^2$.
- 2.- Recurra al Teorema del Rotor para calcular la circulación del campo vectorial $\vec{f}(x,y,z) = (z + y\cos(xy), x\cos(xy), x + y)$ sobre la curva definida por la intersección de las superficies $x^2 + y^2 = 1$ $\land x + z = 1$. Indique en un gráfico aproximado el sentido en que ha elegido recorrer la curva.
- 3.- Evalúe el flujo del campo $\vec{f}(x,y,z) = (z+y,x+y,2z)$ a través de la superficie definida por $y = \sqrt{4-x^2-z^2}$. Indique en un gráfico el sentido considerado para la normal.
- 4.- Halle la solución del problema $\begin{cases} y'' y = 2xe^x \\ y(0) = 1 \\ y'(0) = -1 \end{cases}$
- T1.- a) Defina campo vectorial conservativo.
- b) Analice si el campo $\vec{f}(x, y, z) = (-\frac{z^2 + y^2}{2x^2}, \frac{y}{x}, \frac{z}{x})$ lo es en el semiespacio x > 1.
- T2.- a) Enuncie el Teorema de Gauss.
- b) ¿V ó F? Justifique: "El volumen encerrado por el elipsoide $2x^2 + y^2 + 3z^2 = 1$ es igual al flujo entrante de $\vec{f}(x,y,z) = (e^{yz}, x 2y, z + x^3)$ a través de su superficie."

1	2	3	4	5	T1a	T1b	T2a	T2b

- 1.- Calcule la masa del cuerpo definido por $2 \le z \le 6 x^2 y^2$, con $y \ge 0$, sabiendo que la densidad del material es, en cada punto, $\delta(x, y, z) = y^2$.
- 2.- Recurra al Teorema del Rotor para calcular la circulación del campo vectorial $\vec{f}(x,y,z) = (z + ysen(xy), xsen(xy), x y)$ sobre la curva definida por $x^2 + y^2 = 1 \land y + z = 1$. Indique en un gráfico aproximado el sentido en que ha elegido recorrer la curva.
- 3.- Evalúe el flujo del campo $\vec{f}(x,y,z) = (z+y,x-y,4z)$ a través de la superficie definida por $y = -\sqrt{4-x^2-z^2}$. Indique en un gráfico el sentido considerado para la normal.
- 4.- Halle la solución del problema $\begin{cases} y'' 4y = 3xe^{2x} \\ y(0) = -1 \\ y'(0) = 1 \end{cases}$
- T1.- a) Defina campo vectorial conservativo.
- b) Analice si el campo $\vec{f}(x, y, z) = (\frac{x}{y}, -\frac{z^2 + x^2}{2y^2}, \frac{z}{y})$ lo es en el semiespacio y > 1.
- T2.- a) Enuncie el Teorema de Gauss.
- b) ¿V ó F? Justifique: "El volumen encerrado por el elipsoide $x^2 + 2y^2 + 3z^2 = 1$ es igual al flujo entrante de $\vec{f}(x,y,z) = (y-2x,e^{xz},z+x^3)$ a través de su superficie."