2 PROIECTELE LECȚIILOR

Prof. Adriana Chereș

Stud. Jaclina-Iana Bulat, 931

Data: 22.03.2024 Clasa: a XI-a

Disciplina: Informatică

Unitatea de învățare: Grafuri ponderate

Lecția: Algoritmul lui Dijkstra

Tipul lecției: Transmitere și asimilare de noi cunoștințe

Competențe specifice:

- 1.1. Transpunerea unei probleme din limbaj natural în limbaj de grafuri, folosind corect terminologia specifică
- 1.4. Descrierea algoritmilor fundamentali de prelucrare a grafurilor și implementarea acestora într-un limbaj de programare
- 1.8. Aplicarea în mod creativ a algoritmilor fundamentali în rezolvarea unor probleme concrete

Obiective operaționale: La sfârșitul lecției, elevul va fi capabil să:

- O1. Înțeleagă conceptul algoritmului lui Dijkstra
- O2. Interpreteze corect un graf ponderat și să determine corect dacă e sau nu cazul pentru algoritmul lui Dijkstra
- O3. Să implementeze corect algoritmul

Evenimentele lecției	Activitatea din lecție	Strategia didactică și evaluarea
Captarea atenției	Profesorul începe lecția prin organizarea clasei, și situații cotidiene care ar necesita astfel de rezolvări. (călătoritul cu avionul, mașina, etc)	Conversația
Enunțarea obiectivelor	Profesorul explică clar obiectivele lecției: Înțelegerea conceptului de cost minim pe un graf ponderat, de ce folosim algoritmul lui Dijkstra. Deducerea din cerință a faptului ca trebuie folosit un algoritm de cost minim.	Descrierea
Prezentarea de material nou/ sarcinilor de	Profesorul introduce conceptul de algoritm de rezolvare a unei probleme care cere drumul de cost minim și asocierea sa cu Greedy.	Descrierea Exemplificarea
învățare	Considerăm un graf G cu n perechi de arce și un nod inițial s. În cadrul acestui algoritm, ne propunem să alegem nodul pentru care drumul de la s la x (nodul țintă) va fi de cost minim.	
	Pașii sunt:	

Inițializăm cei doi vectori d (costul minim curent al drumului de la nodul sursa la k) și F(vectorul caracteristic pentru care avem F[k] = 1 dacă s-a determinat costul minim final sau 0 dacă nu s-a determinat încă acest cost)

Luăm un exemplu concret:

Discutăm fiecare iterație în parte:

Pasul 0: Initializăm cei doi vectori, ca mai jos. Inițial în mulțimea F se află doar nodul sursă s=1.

k	1	2	3	4	5	6	
v[k]	1	0	0	0	0	0	
d[k]	0	2	4	00	∞	00	

Pasul 1: Alegem un vårf k din afara lui F, pentru care d[k] este finit şi minim. Acesta este k=2. Îl adăugăm în F şi analizăm nodurile x pentru care (k,x) este arc. Se vor relaxa nodurile 3 4 5.

k	1	2	3	4	5	6
v[k]	1	1	0	0	0	0
d[k]	0	2	3	7	5	00

Pasul 2: Alegem un vârf k din afara lui F, pentru care d[k] este finit și minim. Acesta este k=3. Îl adăugăm în F și analizăm nodurile x pentru care (k,x) este arc. Se vor relaxa nodurile 4 5.

 $\textbf{Pasul 3:} \ \, \text{Alegem un vårf } k \ \, \text{din afara lui F, pentru care } \ \, \textbf{d}[k] \ \, \text{este finit \Si minim. Acesta este } \ \, \textbf{k=5.} \ \, \hat{\textbf{II}} \ \, \\ \text{adäugåm \Sn F \Si analizām nodurile x pentru care } \ \, \textbf{(k,x)} \ \, \text{este arc. Se va relaxa nodul 6.}$

k	1	2	3	4	5	6	
v[k]	1	1	0	0	0	0	
d[k]	0	2	3	5	4	11	

Pasul 4: Alegem un vârf k din afara lui F, pentru care d[k] este finit și minim. Acesta este k=4. Îl adăugăm în F și analizăm nodurile x pentru care (k,x) este arc. Se va relaxa nodul 6.

Pasul 5: Alegem un vârf k din afara lui F, pentru care d[k] este finit și minim. Acesta este k=6. Îl adăugăm în F și analizăm nodurile x pentru care (k,x) este arc. Nu mai există asemenea arce, niciun nod nu se mai relaxează.

5

6

0

0

4

0

d[k]

k	1	2	3	4	5	6	
v[k]	1	1	0	0	0	0	
d[k]	0	2	3	5	4	7	

Algoritmul lui Dijkstra s-a încheiat. Valorile finale din vectorul d[] – distanțele minime de la nodul s-1 la toate celelalte sunt cele de mai sus.

```
#define INFINIT 1000000000
                   //nodul sursa este s
                   for(i = 1 ; i <= n ; i ++ )
                         f[i] = 0;
                         d[i] = a[s][i];
                   f[s] = 1, d[s] = 0;
                   d[0] = INFINIT; // pentru determinarea nodului cu costul minim
                   for(int k = 1; k < n; ++k)
                         int pmax = 0;
                         for(i = 1 ; i \le n ; ++i)
                                if(f[i] == 0 \&\& d[i] < d[pmax])
                                       pmax = i;
                          if(pmax > -1)
                                f[pmax] = 1;
                                for(i = 1; i \le n ; ++i)
                                      if(f[i] == 0 \&\& d[i] > d[pmax] + a[pmax][i])
                                              d[i] = d[pmax] + a[pmax][i];
Dirijarea
                  Elevii sunt invitați să rezolve ei singuri pe un graf nou cu aceeași
                                                                                            Conversația
învățării
                                                                                            Exercitiul
                  cerintă.
                                                                                            Analizarea
                      1. Se dă un graf cu n perechi de muchii si costuri asociate,
                          și un s sursa de unde pornim. Să se stabilească drumul de
                          cost minim de la s la celelalte noduri și să se afișeze cel
                          mai lung drum. (Suntem pe munte și dorim să parcurgem
                          cel mai lung și interesant traseu pentru a ne bucura de
                          drumeție)
Asigurarea
                  Profesorul recapitulează principalele concepte prezentate pe
                                                                                            Conversația
retinerii
                  parcursul lectiei. Întreabă elevii daca există neclarităti.
                  Temă:
                  Se da un graf ponderat. Se citesc n - nr de varfuri, m- nr de arce,
                  arcele si costurile acestora.
                  a) Afisati perechile de varfuri intre care exista legaturi directe si
                  care au lungime minima.
                  b) Care este costul total si costul mediu al grafului.
                  c) Se citesc 3 noduri, X,Y si Z. Sa se verifice care dintre nodurile
                  X si Y este mai apropiat de nodul Z. Daca nu se poate ajunge din
                  ele in Z,
                  se va afisa un mesaj.
                  d) Se citeste un numar t. Sa se afiseze toate perechile de noduri
```

(i,j) pentru care drumul minim din i in j e mai mic decat t e) Sa se afiseze perechile de noduri pentru care nu exista drum	
, ,	
decat intr-un sens.	
f) Sa se afiseze pentru fiecare nod, nodurile in care nu se poate	
ajunge plecand din el.	
g) Sa se afiseze pentru fiecare nod i, cele mai apropiate 2 noduri	
in care se poate ajunge plecand din acesta.	
h) Se citesc doua noduri x si y. Sa se afiseze, daca exista, drumul	
de cost minim de la x la y.	

Data: 22.03.2024 Clasa: a XI-a

Disciplina: Informatică

Unitatea de învățare: Grafuri ponderate Lecția: Algoritmul Roy-Warshall -Floyd

Tipul lecției: Transmitere și asimilare de noi cunoștințe

Competențe specifice:

- 1.1. Transpunerea unei probleme din limbaj natural în limbaj de grafuri, folosind corect terminologia specifică
- 1.4. Descrierea algoritmilor fundamentali de prelucrare a grafurilor și implementarea acestora într-un limbaj de programare
- 1.8. Aplicarea în mod creativ a algoritmilor fundamentali în rezolvarea unor probleme concrete

Obiective operaționale: La sfârșitul lecției, elevul va fi capabil să:

- O1. Înțeleagă conceptul algoritmilor
- O2. Interpreteze corect un graf ponderat și să determine corect dacă e sau nu cazul pentru algoritmul studiat
- O3. Să implementeze corect algoritmii

Evenimentele	Activitatea din lecție	Strategia
lecției		didactică și
		evaluarea
Captarea	Profesorul începe lecția prin organizarea clasei, și situații cotidiene care	Conversația
atenției	ar necesita astfel de rezolvări. (călătoritul cu avionul, mașina, etc)	
Enunțarea	Profesorul explică clar obiectivele lecției:	Descrierea
obiectivelor	Înțelegerea conceptului de cost minim pe un graf ponderat, de ce	
	folosim algoritmii. Deducerea din cerință a faptului ca trebuie folosit	
	un algoritm de cost minim. Înțelegerea conceptului de matricea	
	drumurilor.	
Prezentarea	Profesorul introduce conceptul de algoritm de rezolvare a unei	Descrierea
de material	probleme care cere matricea drumurilor respectiv drumul cu cost	Exemplificarea
nou/	minim.	
sarcinilor de		
învățare		

Algoritmul se regăsește sub diferite denumiri care conțin numele descoperitorilor, este bazat pe programarea dinamică și poate fi utilizat în următoarele două moduri:

- pentru un graf orientat oarecare determină matricea drumurilor – stabilește despre oricare două noduri x y dacă există drum de la x la y – este de regulă cunoscut sub numele Roy-Warshall
- pentru un graf orientat ponderat (cu costuri) determină pentru fiecare pereche de noduri costul minim al unui drum cu extremitățile în acele noduri – este de regulă cunoscut sub numele Roy-Floyd

Considerăm un graf G cu n perechi de arce și costurile aferente. https://www.pbinfo.ro/probleme/589/roy-floyd

Se dorește determinarea pentru fiecare pereche de noduri x y, dacă există, a unui drum de cost minim – în care suma costurilor asociate arcelor care definesc drumul este minimă.

Algoritmul pornește **matricea costurilor** , A – în care:

$$A_{i,j} = egin{cases} 0 & \operatorname{dacă}\ i = j, \\ \operatorname{costul}\ \operatorname{arcului}\ (i,j) & \operatorname{dacă}\ \operatorname{există}\ \operatorname{arc}\ \operatorname{de}\ \operatorname{la}\ i\ \operatorname{la}\ j, \\ \infty & \operatorname{daca}\ \operatorname{nu}\ \operatorname{exista}\ \operatorname{arc}\ \operatorname{de}\ \operatorname{la}\ i\ \operatorname{la}\ j \end{cases}$$

Prin algoritmul Roy-Floyd matricea va fi transformată, astfel încât la final va avea următoarea semnificatie:

```
D_{i,j} = \begin{cases} 0 & \text{dacă } i = j, \\ \text{costul minim al unui drum de la } i \text{ la } j & \text{dacă există un asemenea drum }, \\ \infty & \text{dacă nu există drum de la } i \text{ la } j \end{cases}
```

Pasii sunt:

Inițializăm matricea costurilor conform condițiilor de mai sus Transformăm matricea cu ajutorul algoritmului Roy-Floyd pentru a stabili costurile minime.

```
//D[][] este inițial matricea costurilor arcelor
for(int k = 1 ; k <= n ; k ++)
    for(int i = 1 ; i <= n ; i ++)
        for(int j = 1 ; j <= n ; j ++)
        if(D[i][j] > D[i][k] + D[k][j])
        D[i][j] = D[i][k] + D[k][j];
```

Dirijarea învățării	Elevii sunt invitați să rezolve ei singuri o nou[problemă.	Conversația Exercițiul
mvaşam	Se da un graf orientat tare conex cu n varfuri si m arce prin lista	Analizarea
	arcelor. Se numeste varf central un varf cu proprietatea ca suma distantelor de la el la toate celelalte varfuri este minim. Distanta de la i	7 manzaroa
	la j este egala cu lungimea celui mai scurt drum de la i la j. Afisati varfurile centrale ale grafului. Se va folosi algoritmul Roy-Floyd	
	pentru arce de cost 1.	
	Exemplu:	
	graf.in	
	8 13	
	12	
	13 23	
	34	
	45	
	56	
	67	
	87	
	7 8	
	8 1	
	63	
	62	
	64	
	graf.out	
Asigurarea	6 Profesorul recapitulează principalele concepte prezentate pe parcursul	Conversația
reținerii	lecției. Întreabă elevii daca există neclarități.	Conversația
	recției. Introdou elevii ducu exista neciariuși.	
	Temă:	
	Se da un graf orientat cu n varfuri si m arce avand arcele etichetate	
	cu costuri numere naturale.	
	Se citesc apoi doua varfuri x si y. Afisati drumul de cost minim de la	
	varful x la varful x trecand prin varful y, precum si costul acestui drum.	
	Exemplu:	
	date.in	
	12 21 (n,m)	
	1 2 20 (arcele si costurile)	
	1 3 35	
	1 7 20 2 4 30	
	3 4 40	
	3 6 40	
	3 8 80	
	4 5 25	
	565	
	6 8 30	
	6910	

7 8 15	
7 11 100	
8 9 40	
8 10 30	
8 11 35	
9 10 30	
10 12 25	
11 12 10	
10 5 15	
5 1 10	
1 10 (x,y)	
date.out	
1781051	
90	