تسرن ع مانن مرنبل

MOIANEVA CILILI cabli

$$\sum_{i=1}^{n} \lambda_{i} \cdot y_{i} = 0 \Rightarrow -\lambda_{1} + \lambda_{1} + \lambda_{2} = 0 \Rightarrow \lambda_{1} = \lambda_{1} + \lambda_{2}$$

$$W = \sum_{i=1}^{n} y_i y_i \lambda_i \implies W = -\lambda_i \begin{bmatrix} -1 \\ 0 \end{bmatrix} + \lambda_i v \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \lambda_i v \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\frac{\partial J}{\partial \lambda_1} = \lambda_1 + \lambda_1 - 1 = 0$$

$$\frac{\partial J}{\partial \lambda_1} = \lambda_1 - 1 = 0$$

$$\lambda_1 = \lambda_1 - 1$$

$$\lambda_1 = 0$$

$$\lambda_1 = \lambda_1 - 1$$

$$\begin{pmatrix}
\lambda_{1} = 0 \\
\lambda_{2} = 1
\end{pmatrix}
\qquad \omega = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$y_{x=1} \longrightarrow y_{x}(w_{x}+b)=1 \longrightarrow 1([1,1][1]+b)=1 \longrightarrow [b=0]$$

K(ni,nj)=モルア(-放川ni-njilc) = 中(ni) 中(nj) 11 A(ni)-A(nj)||Y= (&(ni)-A(nj)) T (&(ni)- &(nj)) = $\varphi(x_i)^T \varphi(x_i) - \varphi(x_i)^T \varphi(x_j) - \varphi(x_j)^T \varphi(x_i) + \varphi(x_j)^T \varphi(x_j)$ = k(%; , %;) _ K(%;, %;) _ k(%;, %;) , k(%;, %;) ماکسم این عبارت یاات پس

11 0(xi) - 0(xj) 11 < Y

$$\varphi(x) = \left[1, \sqrt{x}x, x^{2}\right]^{T} \qquad \varphi(x_{1}) = \left[1, -\sqrt{x}, \sqrt{y}\right]^{T} \qquad y = -1 \qquad y \neq x_{2} \qquad (y_{1}) = \left[1, 0, 0, 0\right]^{T} \qquad y = -1 \qquad y \neq x_{2} \qquad (y_{2}) = \left[1, 0, 0, 0\right]^{T} \qquad y = -1 \qquad y \neq x_{2} \qquad (y_{2}) = \left[1, 0, 0, 0\right]^{T} \qquad y = -1 \qquad y \neq x_{2} \qquad (y_{2}) = \left[1, 0, 0, 0\right]^{T} \qquad y = -1 \qquad y \neq x_{2} \qquad (y_{2}) = \left[1, 0, 0, 0\right]^{T} \qquad y = -1 \qquad y \neq x_{2} \qquad (y_{2}) = \left[1, 0, 0, 0\right]^{T} \qquad y = -1 \qquad y \neq x_{2} \qquad (y_{2}) = \left[1, 0, 0, 0\right]^{T} \qquad y = -1 \qquad y \neq x_{2} \qquad (y_{2}) = \left[1, 0, 0, 0\right]^{T} \qquad y = -1 \qquad y \neq x_{2} \qquad (y_{2}) = \left[1, 0, 0, 0\right]^{T} \qquad y = -1 \qquad y \neq x_{2} \qquad (y_{2}) = \left[1, 0, 0, 0\right]^{T} \qquad (y_{2}) = \left[1, 0\right]^{$$

ما ده ها به جدرات وغل عبال ننج هستند . ها نظور نه دره م نود ما ده ها فارای چه فلسان هستند و بر باشای من قال جاستن سنة ول مراعای ح قال عبراعای هستند والر سيري Margin ما يفاهم صنع با=2 م عَالد بالغ فول دهد.

$$\omega = \left[\exists i \ 2i \ 2i \ \lambda_i \right] = -\lambda_i \left[\exists j \right] + \lambda_r \left[\exists j \right] - \lambda_r \left[\exists j \right]$$

$$\left[\lambda_i \ \exists_i = -\lambda_i + \lambda_r - \lambda_r = 0 \right]$$
(2)

9,TR= + 9cyTrey=1 Statac= & 91TRY=1 24 T27 = 1 れげなびこの min + [+ 1, + hx++ Khy - Yx, hr - Thyde J- 1, - br - he 0] = 4/1-12-1=0

(Y

$$\frac{\partial \lambda}{\partial J} = + \lambda c - \lambda v - 1$$

$$\frac{\partial \lambda}{\partial J} = + \lambda c - \lambda v - 1$$

$$\frac{\partial \lambda}{\partial J} = + \lambda c - \lambda v - 1$$

$$\frac{\partial \lambda}{\partial J} = + \lambda c - \lambda v - 1$$

$$\frac{\partial \lambda}{\partial J} = + \lambda c - \lambda v - 1$$

$$\frac{\partial \lambda}{\partial J} = + \lambda c - \lambda v - 1$$

$$\omega = -\frac{1}{4} \begin{bmatrix} -\frac{1}{4} x \end{bmatrix} + \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \end{bmatrix} - \frac{1}{4} \begin{bmatrix} \frac{1}{4} x \\ \frac{1}{4} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} x \\ \frac{1}{4} x \end{bmatrix}$$

$$y_{\ell}(\omega^{\mathsf{T}} \mathsf{SC}_{\ell} + b) = 1$$
 $\rightarrow 1([\ell] \circ 1][[\ell] \circ 1] + b) = 1$ $\longrightarrow [b = -1]$

 (\bigcirc)

(F)
$$w = \frac{\langle \psi_{m1}, \psi(y) \rangle}{\langle \psi(y), \psi(y) \rangle} \psi(y) , Z = \psi(\alpha) - \omega$$

بایک ۱ بال که بال و کتابی بر ایجات می بر مائی

$$\langle Z, (\rho; J) \rangle = \langle \varphi(x), \frac{\mathcal{L}(\rho(x), \rho(y))}{\langle \varphi(y), \varphi(y) \rangle} \varphi(y), \varphi(y) \rangle = \langle \varphi(x), \varphi(y) \rangle - \frac{\langle \varphi(x), \varphi(y) \rangle}{\langle \varphi(y), \varphi(y) \rangle} \langle \varphi(y), \varphi(y) \rangle = 0$$

$$\langle (\varphi(x), \varphi(x)) \rangle = \frac{\langle \varphi(x), \varphi(y) \rangle}{\langle \varphi(y), \varphi(y) \rangle} \frac{\langle \varphi(x), \varphi(y) \rangle}{\langle \varphi(y), \varphi(y) \rangle} \langle \varphi(y), \varphi(y) \rangle = \frac{\langle (\varphi(x), \varphi(y)) \rangle^{Y}}{\langle \varphi(y), \varphi(y) \rangle}$$

$$\langle (\varphi(x), \varphi(x)) \rangle = \frac{\langle (\varphi(x), \varphi(y)) \rangle^{Y}}{\langle (\varphi(y), \varphi(y)) \rangle} \longrightarrow \langle (\varphi(x), \varphi(y)) \rangle^{Y} \langle (\varphi(x), \varphi(x)) \rangle \langle (\varphi(y), \varphi(y)) \rangle$$

$$\langle (\varphi(x), \varphi(x)) \rangle = \frac{\langle (\varphi(x), \varphi(y)) \rangle^{Y}}{\langle (\varphi(y), \varphi(y)) \rangle} \longrightarrow \langle (\varphi(x), \varphi(y)) \rangle^{Y} \langle (\varphi(x), \varphi(x)) \rangle \langle (\varphi(y), \varphi(y)) \rangle$$

$$\langle (\varphi(x), \varphi(y)) \rangle = \frac{\langle (\varphi(x), \varphi(y)) \rangle^{Y}}{\langle (\varphi(y), \varphi(y)) \rangle} \longrightarrow \langle (\varphi(x), \varphi(y)) \rangle^{Y} \langle (\varphi(x), \varphi(x)) \rangle \langle (\varphi(y), \varphi(y)) \rangle$$

$$\langle (\varphi(x), \varphi(y)) \rangle = \frac{\langle (\varphi(x), \varphi(y)) \rangle^{Y}}{\langle (\varphi(y), \varphi(y)) \rangle} \longrightarrow \langle (\varphi(x), \varphi(y)) \rangle^{Y} \langle (\varphi(y), \varphi(y)) \rangle \langle (\varphi$$

الف)

Rbf = محبوب ترین کرنل است که در ظبقه بندی svm استفاده می شود . بر روی دیتاست های بزرگ بهتر جواب میدهد و روی دیتا ست کوچک احتمال اورفیت شدن را زیاد میکند. وقتی استفاده می شود که شناخت قبلی از دیتا ها نداریم و به صورت radial است.

Linear = وقتی داده ها به صورت خطی جدایی پذیر باشند با یک خط داده ها را جدا میکند. وقتی استفاده می شود که تعداد ویژگی های زیادی داشته باشیم. ساده ترین کرنل است و یک بعد دارد.

Polynomial = معمولاً در svm استفاده می شود. میتوان کرنل های غیر خطی را با ان مدل کرد.مناسب پردازش تصویر است.

ب)

		C=1	C=100		C=1000	
	train	test	train	test	train	test
RBF	0.978767	0.982681	0.984215	0.98044	0.986101	0.97653
Linear	0.978628	0.98156	0.978767	0.98156	0.978767	0.98156
Polynomial	0.976952	0.979608	0.980583	0.979050		
Sigmoid	0.870931	0.872625	0.870652	0.87262		

با توجه به داده های جمع اوری شده بالا بهترین کرنل rbf با c=1000 است.

پ)

با الكوريتم گريدسرچ بهترين پارامتر ها شامل كرنل rbf و c=100 و gamma=0.1 است.

```
from sklearn.metrics import classification_report, confusion_matrix
print(grid.best_params_)
print(grid.best_estimator_)
```

```
{'C': 100, 'gamma': 0.1, 'kernel': 'rbf'}
SVC(C=100, gamma=0.1)
```

حال بهترین طبقه بند ها را روی داده ها اعمال میکنیم و کانفیوژن ماتریس را گزارش میکنیم. کانفیوژن ماتریس بخش ب

	precision	recall	f1-score	support
0	0.98	0.99	0.99	3251
1	0.90	0.84	0.87	329
accuracy			0.98	3580
macro avg	0.94	0.92	0.93	3580
weighted avg	0.98	0.98	0.98	3580

كانفيوژن ماتريس بخش پ

```
grid_predictions = grid.predict(X_test)
print(classification_report(y_test, grid_predictions))
```

	precision	recall	f1-score	support
0 1	0.99 0.93	0.99 0.86	0.99 0.90	3251 329
accuracy macro avg weighted avg	0.96 0.98	0.93 0.98	0.98 0.94 0.98	3580 3580 3580

مشاهده میشود به صورت کلی کرنل rbf و c=100 و c=100 دارای دقت و صحت بیشتری است .

الف)

در این روش به دنبال پیش بینی بهتر هستیم که از طریق ترکیب کردن چند مدل به دست می اید. سه روش اصلی bagging, stacking, boosting, دارد و لازم است این سه روش را بشناسیم و در پیش بینی ها اعمال کنیم. در نهایت برای نتجیه گیری نهایی روی مدل ها رای گیری میکنیم.

ب)

برای جایگذاری داده های از دست رفته از میانگین هر ستون استفاده شده است.

```
updated_df = df
updated_df['Bare Nuclei']=updated_df['Bare Nuclei'].fillna(updated_df['Bare Nuclei'].mean())
updated_df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 699 entries, 0 to 698
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	Sample Code Number	699 non-null	int64
1	Clump Thickness	699 non-null	int64
2	Uniformity of Cell Size	699 non-null	int64
3	Uniformity of Cell Shape	699 non-null	int64
4	Marginal Adhesion	699 non-null	int64
5	Single Epithelial Cell Size	699 non-null	int64
6	Bare Nuclei	699 non-null	float64
7	Bland Chromatin	699 non-null	int64
8	Normal Nucleoli	699 non-null	int64
9	Mitoses	699 non-null	int64
10	Class	699 non-null	int64

dtypes: float64(1), int64(10)

memory usage: 60.2 KB

```
In [138]: X = updated_df
          y = updated_df['Class']
          del X['Class']
          del X['Sample Code Number']
In [139]: X = preprocessing.normalize(X)
          scaler = StandardScaler()
          X = scaler.fit_transform(X)
In [140]: LR = LogisticRegression()
          DT = DecisionTreeClassifier()
          SVM = SVC()
In [141]: fold = KFold(n_splits = 10)
In [142]: voting_clf = VotingClassifier(estimators=[('lr', LR), ('dt', DT), ('svm', SVM)])
          accuracy = cross_val_score(voting_clf, X, y, scoring='accuracy', cv=fold)
          accuracy
Out[142]: array([0.81428571, 0.88571429, 0.91428571, 0.92857143, 0.84285714,
                 0.92857143, 0.8 , 0.95714286, 0.98571429, 0.97101449])
In [143]: mean_accuracy = sum(accuracy)/len(accuracy)
          print('mean accuracy = ',mean_accuracy)
          mean accuracy = 0.902815734989648
```

میانگین دقت بر ابر با 90.28 در صد است.