

# GEOMETRY

2th secondary

ÁREAS DE REGIONES

<u>CIRCULARES</u>





Uno de los grandes inventos del hombre fue la rueda (la que denominamos círculo) cuya mayor aplicación era en el transporte; hoy en día se fabrican en serie, círculos que tienen infinitas aplicaciones y para generar dicha producción se diseñan moldes llamados matrices utilizando para ello las fórmulas de cálculo





### **ÁREAS DE REGIONES CIRCULARES**

<u>Círculo</u>.- Es la unión de la circunferencia y su interior



S : Área del círculo

 $S = \pi r^2$ 

L : longitud de la circunferencia

$$L = 2\pi.r$$

#### **Sector circular**

Es una parte del círculo limitada por dos radios y su arco correspondiente.



### **Semicírculo**



O: Centro

$$S = \frac{\pi \cdot r^2}{2}$$

### **Cuadrante**



O: Centro

$$S = \frac{\pi \cdot r^2}{4}$$

#### **HELICO | PRACTICE**



1. En la figura, O es centro, M es punto de tangencia y OP = 12 m. Calcule el área del círculo.





$$\Rightarrow$$
 S =  $\pi$ .6<sup>2</sup>

$$\therefore$$
 S = 36 $\pi$ 

$$S = 36\pi \text{ m}^2$$



#### 2. Calcule el área de un semicírculo de diámetro 20 m.



## **RESOLUCIÓN**

Piden: S

$$S = \frac{\pi r^2}{2}$$

En la figura:

$$2r = 20$$
  
 $r = 10$ 

Aplicando el teorema:

$$S = \frac{\pi . 10^2}{2}$$

$$S = 50\pi \text{ m}^2$$



### 3. Calcule el área del siguiente sector circular.





## 4. Calcule el área de un círculo cuyo perímetro es 12π m.

# RESOLUCIÓN



- Piden: S
- Por dato:

$$L = 12\pi$$

$$2\pi r = 12\pi$$

$$r = 6$$

$$L = 2\pi r$$

Aplicando el teorema:

$$S = \pi.6^2$$

$$S = 36\pi \text{ m}^2$$



#### 5. Calcule el área del sector circular mostrado.





6. En la figura se muestra un disco compacto para almacenar datos, hecho de fibra plastificada y con diámetros de longitudes 12 cm y 2 cm. ¿Cuántos cm² de área tiene una cara del CD?.



### **RESOLUCIÓN**

Pide: S<sub>x</sub>

$$S_x = S_{circulo\ mayor} - S_{circulo\ menor}$$

$$S_{x} = \pi. R^{2} - \pi. r^{2}$$

$$S_x = \pi.6^2 - \pi.1^2$$

$$S_{\rm x} = 36\pi - 1\pi$$

$$S_x = 35\pi \text{ cm}^2$$

#### **HELICO | PRACTICE**



7. Se ha construido una puerta de madera para cubrir temporalmente un túnel semicircular. Si O es centro, T es punto de tangencia y ET =  $6\sqrt{3}$  m, calcule el área de la región pintada de dicha puerta?.

