

Vysoké učení technické v Brně

ELEKTRONIKA PRE INFORMAČNÉ TECHNOLÓGIE SEMESTRÁLNY PROJEKT

Martina Grzybowská xgrzyb00 Stanovte napätie $U_{\rm R3}$ a prúd $I_{\rm R3}$. Použite metódu postupného zjednodušovania obvodu. A

sk.	<i>U</i> [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7\left[\Omega ight]$	$R_8 [\Omega]$
С	100	450	810	190	220	220	720	260	180

Riešenie:

1. Hviezda: R_2 , R_3 , R_4

$$egin{aligned} R_A &= rac{R_2 \cdot R_3}{R_2 + R_3 + R_4} = rac{810 \cdot 190}{810 + 190 + 220} = 126.1475 \, arOldsymbol{arOmega} \ R_B &= rac{R_2 \cdot R_4}{R_2 + R_3 + R_4} = rac{810 \cdot 220}{810 + 190 + 220} = 146.0656 \, arOldsymbol{arOmega} \ R_{
m C} &= rac{R_3 \cdot R_4}{R_2 + R_3 + R_4} = rac{190 \cdot 220}{810 + 190 + 220} = 34.2623 \, arOldsymbol{arOmega} \end{aligned}$$

2. Sériové spojenie R_1 , R_A Sériové spojenie R_5 , R_7 , R_B Paralelné spojenie R_6 , R_8

$$\begin{split} R_{1A} &= R_1 + R_A = 450 + 126.1475 = 576.1475 \; \varOmega \\ R_{57B} &= R_5 + R_7 + R_B = 220 + 260 + 146.0656 = 626.0656 \; \varOmega \\ R_{68} &= \frac{R_6 \cdot R_8}{R_6 + R_8} = \frac{720 \cdot 180}{720 + 180} = 144 \; \varOmega \end{split}$$

3. Sériové spojenie $R_{\rm C}$, R_{68}

$$R_{68\mathrm{C}} = R_{68} + R_{\mathrm{C}} = 144 + 34.2623 = 178.2623 \ \varOmega$$

4. Paralelné spojenie R_{57B} , R_{68C}

$$R_{5678BC} = \ rac{R_{57B} \ . \ R_{68C}}{R_{57B} \ + R_{68C}} = \ rac{626.0656 \ . \ 178.2623}{626.0656 + 178.2623} = 138.7542 \ arOmega$$

5. Sériové spojenie R_{1A} , R_{5678BC} , vypočet celkového odporu prúdu $R_{\rm ekv}$

$$R_{15678ABC} = R_{1A} + R_{5678BC} = 576.1475 + 138.7542 \ = 714.9017 \ \varOmega = R_{ekv}$$

6. Výpočet celkového prúdu v obvode I_{ekv}

$$I_{ekv} = rac{U}{R_{ekv}} = rac{100}{714.9017} = 0.1399 \; A$$

7. Výpočet I_3 a U_3

$$\begin{array}{c} U_2=U_3 \ , \ I_3=\frac{U_3}{R_3} \ , \ I_3=I_{ekv} \text{-} \ I_2=I_{ekv} \text{-} \ \frac{U_3}{R_2} \\ \\ \frac{U_3}{190}=0.1399 \text{-} \ \frac{U_3}{810} \ \longrightarrow \ U_3=21.5306 \ V \\ \\ I_3=\frac{U_3}{R_3}=\frac{21.5306}{190}=0.1133 \ A=113.3 \ mA \end{array}$$

 $\overline{\text{Stan}}$ ovte napätie U_{R3} a prúd I_{R3} . Použite metódu Théveninovej vety.

sl	ζ.	U[V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
F	I	220	360	580	205	560	350

Riešenie:

1. Výpočet R_i

$$R_i = rac{R_1 \,.\, R_4}{R_1 + R_4} \,+\, rac{R_2 \,.\, R_5}{R_2 + R_5} = rac{360 \,.\, 560}{360 + 560} \,+\, rac{580 \,.\, 350}{580 + 350} = 437.41 \,arOmega$$

2. Výpočet Ui

$$I_x \cdot R_1 + I_x \cdot R_4 - U_i = 0$$

$$360 \cdot I_x + 560 \cdot I_x - 220 = 0$$

$$I_x = 0,2391 \ A$$

$$I_y \cdot R_2 + I_y \cdot R_5 - U_i = 0$$

$$580 \cdot I_y + 350 \cdot I_y - 220 = 0$$

$$I_y = 0.2366 \ A$$

$$U_i = I_y$$
 . R_2 - I_x . $R_1 = 137.228$ - $86.076 = 51.152 \ V$

3. Výpočet I_3

$$I_{R3} = rac{U_i}{R_i + R_3} = rac{51.152}{437.41 + 205} = 0.0796 \; A = 79.6 \; mA$$

4. Výpočet U_3

$$U_{R3} = I_{R3}$$
 . $R_3 = 0.0796$. $205 = 16.318 \; V$

Stanovte napätie $U_{\rm R3}$ a prúd $I_{\rm R3}$. Použite metódu uzľových napätí ($U_{\rm A},\ U_{\rm B},\ U_{\rm C}$).

sk.	U[V]	$I_1[A]$	$I_2[A]$	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
C	110	0.85	0.75	440	310	560	200	300

Riešenie:

1. Zostavenie rovníc pre uzly

$$A: I_1 + I_{R2} - I_{R3} - I_{R1} = 0$$

$$B: \qquad I_{R3} + I_2 - I_{R2} - I_{R5} = 0$$

C:
$$I_{R5} - I_2 - I_{R4} = 0$$

2. Riešenie sústavy rovníc

$$A: \qquad I_1 + rac{U_B + U - U_A}{R_2} - rac{U_A - U_B}{R_3} - rac{U_A}{R_1} = 0$$

$$B: \qquad rac{U_A - U_B}{R_3} + I_2 - rac{U_B + U - U_A}{R_2} - rac{U_B - U_{
m C}}{R_5} = 0$$

C:
$$\frac{U_B - U_{\rm C}}{R_5} - I_2 - \frac{U_{\rm C}}{R_4} = 0$$

$$A: \qquad 0.85 + rac{U_B + 110 - U_A}{310} - rac{U_A - U_B}{560} - rac{U_A}{440} = 0 \quad ig|. \ 190960ig|$$

B:
$$rac{U_A$$
 - $U_B}{560}$ $+$ 0.75 - $rac{U_B+110$ - U_A $}{310}$ - $rac{U_B$ - $U_{
m C}}{300}$ $=$ 0 $\left[.~260400
ight]$

C:
$$\frac{U_B - U_C}{300} - 0.85 - \frac{U_C}{200} = 0$$
 | . 600

$$A$$
: -1391 . $U_A + 957$. $U_B =$ - 230076

$$B$$
: 1305 . U_A - 2173 . U_B + 868 . $U_{
m C}$ = - 102900

C:
$$2 \cdot U_B - 5 \cdot U_C = 450$$

$$M = \begin{bmatrix} -1391 & 957 & 0 \\ 1305 & -2173 & 868 \\ 0 & 2 & -5 \end{bmatrix}, \quad N = \begin{bmatrix} -230076 \\ -102900 \\ 450 \end{bmatrix}$$

$$D = \begin{bmatrix} -1391 & 957 & 0 \\ 1305 & -2173 & 868 \\ 0 & 2 & -5 \end{bmatrix} \begin{bmatrix} -1391 & 957 \\ 1305 & -2173 \\ 0 & 2 \end{bmatrix} - 15113215 + 2414776 + 6244425 = -6454014$$

$$D_1 = \begin{bmatrix} -230076 & 957 & 0 \\ -102900 & -2173 & 868 \\ 450 & 2 & -5 \end{bmatrix} \begin{bmatrix} -230076 & 957 \\ -102900 & -2173 \\ 450 & 2 \end{bmatrix} - 2449775740 + 373804200 - 399411936 - 492376300 = -2218936104$$

$$D_2 = \begin{bmatrix} -1391 & -230076 & 0 \\ 1305 & -102900 & 868 \\ 0 & 450 & -5 \end{bmatrix} \begin{bmatrix} -1391 & -230076 \\ 1305 & -102900 \\ 0 & 450 \end{bmatrix} - 715669500 + 543324600 + 1501245900 = -1673590800$$

$$U_A = \frac{D_1}{D} = \frac{-2218936104}{-6454014} = 343.8071 \ V$$

$$U_B = \frac{D_2}{D} = \frac{\text{- }1673590800}{\text{- }6454014} = 259.3101 \ V$$

3. Výpočet U_{R3} , I_{R3}

$$U_{R\!3} = U_A$$
 - $U_B = 343.8071$ - $259.3101 = 84.497\ V$

$$I_{R3} = \frac{U_{R3}}{R_3} = \frac{84.497}{560} = 0.1509 A$$

Pre napájacie napätie platí: $u_1 = U_1 \cdot \sin(2\pi f t)$, $u_2 = U_2 \cdot \sin(2\pi f t)$. Vo vzťahu pre napätie $u_{C2} = U_{C2} \cdot \sin(2\pi f t + \varphi_{C2})$ určte $|U_{C2}|$ a φ_{C2} . Použite metódu smľučkových prúdov.

Pozn: Pomocné smery šípok napájacích zdrojov platia pre špeciálny časový okamih ($t=2\omega$).

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	L_1 [mH]	L_2 [mH]	C_1 [μ F]	C_2 [μ F]	f [Hz]	
С	35	45	105	130	220	70	230	85	75	

Riešenie:

1. Vyjadrenie rovníc pre sľučky

$$egin{split} I_1 \ . \left(j \ 2\pi f L_1 + j \ 2\pi f L_2 + R_1
ight) ext{-} I_3 \ . \left(j \ 2\pi f L_2
ight) ext{-} U_1 ext{-} U_2 &= 0 \ & I_2 \ . \left(-j \ rac{1}{j \ 2\pi f \ ext{C}_1} + R_2
ight) ext{-} I_3 \ . \ R_2 + U_1 &= 0 \ & I_1 \ . \left(-j \ 2\pi f L_2
ight) ext{-} I_2 \ . \ R_2 + I_3 \left(j \ 2\pi f L_2 + rac{1}{j \ 2\pi f \ ext{C}_2} + R_2
ight) &= 0 \end{split}$$

2. Riešenie rovníc

$$I_1$$
 . $\left(105+j\,136.6593
ight)+I_3$. $\left(ext{-}j\,32.9867
ight)=80$ I_2 . $\left(130$ - $j\,9.2264
ight)$ - I_3 . $130=$ - 35 I_1 . $\left(ext{-}j\,32.9867
ight)$ - I_2 . $130+I_3$. $\left(130+j\,8.0212
ight)=0$

$$M = egin{bmatrix} 105 + j \, 136.6593 & 0 & -j \, 32.9867 \\ 0 & 130 \, -j \, 9.2264 & -130 \\ -j \, 32.9867 & -130 & 130 \, +j \, 8.0212 \end{bmatrix} \, , \, N = egin{bmatrix} 80 \\ -35 \\ 0 \end{bmatrix}$$

$$D = \begin{bmatrix} 105 + j \, 136.6593 & 0 & -j \, 32.9867 \\ 0 & 130 \, -j \, 9.2264 & -130 \\ -j \, 32.9867 & -130 & 130 + j \, 8.0212 \end{bmatrix} \begin{bmatrix} 105 + j \, 136.6593 & 0 \\ 0 & 130 \, -j \, 9.2264 \\ -j \, 32.9867 & -130 \end{bmatrix} = 170637.8554 - j \, 16376.7149$$

$$D_3 = \begin{bmatrix} 105 + j \, 136.6593 & 0 & 80 \\ 0 & 130 \, -j \, 9.2264 & -35 \\ -j \, 32.9867 & -130 & 0 \end{bmatrix} \begin{bmatrix} 105 + j \, 136.6593 & 0 \\ 0 & 130 \, -j \, 9.2264 \\ -j \, 32.9867 & -130 \end{bmatrix} = -453402.1209 - j \, 278738.135$$

$$I_3 = I_{\text{C2}} = \frac{D_3}{D} = \frac{\text{-} \ 453402.1209 - }{170637.8554 - } \frac{\text{j} \ 278738.135}{16376.7149} = \text{-} \ 2.4475 - \\ \text{j} \ 1.8713 \ A$$

3. Výpočet U_{C2} a ϕ_{C2}

$$U_{\mathrm{C2}} = I_{\mathrm{C2}}$$
 . $X_{\mathrm{C2}} = I_{\mathrm{C2}}$. $\frac{-j}{2\pi f \; \mathrm{C_2}} =$ - $46.7179 + j \; 61.1031 \; V$

$$\left| U_{\mathrm{C2}}
ight| = \sqrt{ \left(ext{- }46.7179
ight)^2 + \left(61.1031
ight)^2 } = 76.9165 \ V$$

$$\varphi_{\text{C2}} = \pi - \arctan\left(\frac{61.1031}{46.7179}\right) = \pi - 0.9180 \text{ rad} = 2.2236 \text{ rad}$$

Zostavte diferenciálnu rovnicu popisujúcu správanie obvodu na obrázku, ďalej ju upravte dosadením hodnôt parametrov. Vypočítajte analytické riešenie $u_c = f(t)$. Urobte kontrolu výpočtu dosadením do zostavenej diferenciálnej rovnice.

sk.	U[V]	C[F]	$R\left[\Omega\right]$	$u_{\mathrm{c}}(0)$
Н	5	50	40	2

Riešenie:

1. Potrebné rovnice

$$egin{align} u_c' &= rac{1}{\mathrm{C}} \cdot i_c \quad , \quad i_c &= rac{u - u_c}{R} \ & \ u_c' &= rac{1}{\mathrm{C}} \cdot rac{u - u_c}{R} \ & \ u_c \left(t
ight) = c \left(t
ight) \cdot e^{\lambda \cdot t} \ \end{array}$$

2. Dosadenie hodnôt parametrov, riešenie rovnice a výpočet $u_c = f(t)$

$$u_c' = rac{1}{50} \cdot rac{5 - u_c}{40} = rac{5 - u_c}{2000}$$
 $2000 \cdot u_c' + u_c = 5 \;\;,\;\; \lambda = -rac{1}{2000}$

$$2000 \cdot \left(c'\left(t\right) \cdot e^{-\frac{t}{2000}} + c\left(t\right) \cdot e^{-\frac{t}{2000}} \cdot \left(-\frac{1}{2000}\right)\right) + c\left(t\right) \cdot e^{-\frac{t}{2000}} = 5$$

$$2000 \cdot c'\left(t\right) \cdot e^{-\frac{t}{2000}} = 5$$

$$c'\left(t\right) = \frac{5}{2000} \cdot e^{-\frac{t}{2000}}$$

$$\int c'\left(t\right) = \int \frac{5}{2000} \cdot e^{-\frac{t}{2000}}$$

$$c\left(t\right) = 5 \cdot e^{-\frac{t}{2000}} + k$$

$$u_{c}\left(t\right) = \left(5 \cdot e^{-\frac{t}{2000}} + k\right) \cdot e^{-\frac{t}{2000}}$$

$$u_{c}\left(0\right) = 2 \quad , \quad 2 = 5 + k \quad , \quad k = -3$$

$$u_{c}\left(t\right) = 5 - 3 \cdot e^{-\frac{t}{2000}}$$

4. Kontrola dosadením

$$2000 \cdot \left(-3 \cdot e^{-\frac{t}{2000}} \cdot \left(-\frac{1}{2000}\right)\right) + 5 - 3 \cdot e^{-\frac{t}{2000}} = 5$$

$$3 \cdot e^{-\frac{t}{2000}} + 5 - 3 \cdot e^{-\frac{t}{2000}} = 5$$

$$5 = 5$$

Číslo príkladu	Varianta	Výsledky		
1.	C	$I_{\rm R3} = 0.1133 \; {\rm A}$	$U_{ m R3} = 21.5306 \; m V$	
2.	Н	$I_{\rm R3} = 0.0796 { m A}$	$U_{ m R3} = 16.318 \; m V$	
3.	C	$I_{\rm R3} = 0.1509 \; {\rm A}$	$U_{ m R3} = 84.497 \; m V$	
4.	C	$ \mathit{U}_{\mathrm{C2}} = 76.9165 \; \mathrm{V}$	$\phi_{\mathrm{C2}} = 2.2236 \; \mathrm{rad}$	
5.	Н	$u_{c}\left(t ight) =5$ -	$3. e^{-\frac{t}{2000}}$	