A very small intro to CTMC in phylogenetics

Rosana Zenil-Ferguson, Will Freyman, and Jordan Koch

University of Minnesota

Botany 2018

In a Bayesian framework

We are always interested in knowing the posterior distribution

$$P(\theta|D) \propto P(D|\theta) P(\theta)$$

Example

X(t) = Evolution of flower color at time changes according time t

Example

X(t) = Evolution of flower color at time changes according time t

M is our Model (a.k.a.the hypothesis)
Red flowers evolve into purple and viceversa

$$\theta = (q_{BR}, q_{RB})$$

Example

X(t) = Evolution of flower color at time changes according time t

M is our Model (a.k.a.the hypothesis)

Red flowers evolve into purple and viceversa

$$\theta = (q_{BR}, q_{RB})$$

▶ In Bayesian framework: q_{BR}, and q_{RB} are unknown and random variables (they have a probability)

- ▶ In Bayesian framework: q_{BR} , and q_{RB} are unknown and random variables (they have a probability)
- q_{BR} and q_{RB} are instantaneous rates.

- ▶ In Bayesian framework: q_{BR} , and q_{RB} are unknown and random variables (they have a probability)
- q_{BR} and q_{RB} are instantaneous rates.

- ▶ In Bayesian framework: q_{BR} , and q_{RB} are unknown and random variables (they have a probability)
- q_{BR} and q_{RB} are instantaneous rates.

The prior distribution: $P(\theta)$

How are these assumptions represented graphically?

D is our data

We go into our favorite herbarium, field site, or green house and we collect color of multiple species

How do we integrate our model θ and our data D?

Calculating the likelihood $P(D|\theta)$

• We assume a phylogenetic tree Ψ (for this example is fixed)

Calculating the likelihood $P(D|\theta)$

- We assume a phylogenetic tree Ψ (for this example is fixed)
- Data: a sample of red and purple flowers on the tips of our phylogeny tree

Likelihood function: The probability of the sample given our hypothesis θ

The probability of a single possible story in phylogenetics

$$P(X(t_2) = B|X(t_1) = B)P(X(t_2) = B|X(t_1) = B) \times$$

$$\times P(X(t_1) = B|X(t_0) = B)P(X(t_3) = R|X(t_0) = B)P(X(t_0) = B)$$

Calculating the likelihood is computationally challenging

► Felsenstein (1981)= Pruning algorithm, reduces the complexity in the calculation.

Calculating the likelihood is computationally challenging

- ► Felsenstein (1981)= Pruning algorithm, reduces the complexity in the calculation.
- Reminder: Optimizations to find maximum likelihood estimates and confident intervals require challenging numerical algorithms

How do the rates connect with the probabilities?

Q-matrix= The infinitesimal probability matrix is the derivative of the probability

$$Q = \begin{pmatrix} \frac{dP(t)}{dt} = Q \\ -q_{BR} & q_{BR} \\ q_{RB} & -q_{RB} \end{pmatrix} P(t) = e^{Qt}$$

Likelihood in graphical form $P(D|\theta)$

Fixed value Function calculated from r.v.

Evaluate in observed data.

The posterior distribution: the model conditional to the observed data

Graphical model benefits

Explicit notation: In RevBayes we have notation for fixed variables, random variables, observed data, deterministic function,...

Graphical model benefits

- Explicit notation: In RevBayes we have notation for fixed variables, random variables, observed data, deterministic function....
- Modularity: Once I have built a model I can connect other as a module (building blocks!)