```
# import all necessary libraries
import warnings
warnings.filterwarnings('ignore')
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
from sklearn.preprocessing import scale
from sklearn.model selection import train test split
from sklearn import metrics
from sklearn.metrics import confusion matrix
from sklearn.svm import SVC
from sklearn.model selection import KFold
from sklearn.model selection import cross val score
from sklearn.model selection import GridSearchCV
#import file and reading few lines
numbers = pd.read_csv('digit_svm.csv')
numbers.head(10)
          pixel0
                  pixel1 pixel2 pixel3
                                             pixel4 pixel5
                                                              pixel6
                                                                       pixel7
   label
0
       1
                0
                        0
                                 0
                                          0
                                                   0
                                                           0
                                                                    0
                                                                             0
1
       0
                0
                        0
                                 0
                                          0
                                                   0
                                                           0
                                                                    0
                                                                             0
2
       1
                0
                        0
                                 0
                                          0
                                                   0
                                                           0
                                                                    0
                                                                             0
3
       4
                0
                        0
                                 0
                                          0
                                                   0
                                                           0
                                                                    0
                                                                             0
4
       0
                0
                        0
                                 0
                                          0
                                                   0
                                                           0
                                                                    0
                                                                             0
5
       0
                0
                        0
                                 0
                                          0
                                                   0
                                                           0
                                                                    0
                                                                             0
6
       7
                0
                        0
                                 0
                                          0
                                                   0
                                                           0
                                                                    0
                                                                             0
7
       3
                0
                        0
                                 0
                                          0
                                                   0
                                                           0
                                                                    0
                                                                             0
8
       5
                0
                                          0
                                                                             0
                        0
                                 0
                                                   0
                                                           0
                                                                    0
9
       3
                0
                        0
                                 0
                                          0
                                                   0
                                                           0
                                                                    0
                                                                             0
   pixel8
           ... pixel774
                           pixel775 pixel776 pixel777
                                                            pixel778
                                                                       pixel779
0
                        0
                                   0
                                              0
                                                                    0
        0
                                                         0
                                                                               0
           . . .
1
                        0
                                   0
                                              0
                                                         0
                                                                    0
                                                                               0
        0
            . . .
2
                                                                               0
        0
                        0
                                   0
                                              0
                                                         0
                                                                    0
            . . .
3
        0
                        0
                                   0
                                              0
                                                         0
                                                                    0
                                                                               0
4
        0
                        0
                                   0
                                              0
                                                         0
                                                                    0
                                                                               0
            . . .
5
                                   0
                                              0
                                                                    0
                                                                               0
                        0
                                                         0
           . . .
6
                        0
                                   0
                                              0
                                                         0
                                                                    0
                                                                               0
        0
           . . .
7
        0
                        0
                                   0
                                              0
                                                         0
                                                                    0
                                                                               0
           . . .
8
                                                                    0
                                                                               0
        0
                        0
                                   0
                                              0
                                                         0
9
                        0
                                   0
                                              0
                                                         0
                                                                    0
                                                                               0
```

pixel780	pixel781	pixel782	pixel783
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

[10 rows x 785 columns]

numbers.shape

(42000, 785)

#checking datatype

numbers.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 42000 entries, 0 to 41999
Columns: 785 entries, label to pixel783

dtypes: int64(785)
memory usage: 251.5 MB

numbers.describe(percentiles = [0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.99])

	1.	abel p	ixel0	pixel1	pixel2	pixel3	pixel4	pixel5	\
count	42000.00	0000 420	0.00	42000.0	42000.0	42000.0	42000.0	42000.0	
mean	4.45	6643	0.0	0.0	0.0	0.0	0.0	0.0	
std	2.88	7730	0.0	0.0	0.0	0.0	0.0	0.0	
min	0.00	0000	0.0	0.0	0.0	0.0	0.0	0.0	
5%	0.00	0000	0.0	0.0	0.0	0.0	0.0	0.0	
10%	1.00	0000	0.0	0.0	0.0	0.0	0.0	0.0	
25%	2.00	0000	0.0	0.0	0.0	0.0	0.0	0.0	
50%	4.00	0000	0.0	0.0	0.0	0.0	0.0	0.0	
75%	7.00	0000	0.0	0.0	0.0	0.0	0.0	0.0	
90%	8.00	0000	0.0	0.0	0.0	0.0	0.0	0.0	
99%	9.00	0000	0.0	0.0	0.0	0.0	0.0	0.0	
max	9.00	0000	0.0	0.0	0.0	0.0	0.0	0.0	
	pixel6	pixel7	pixe	18	pixel	774	pixel775	\	
count	42000.0	42000.0	42000	0.0	42000.000	000 420	00.00000		
mean	0.0	0.0	e	0.0	0.219	286	0.117095		

	pixe16	pixel/	pixe18	• • •	pixel//4	pixel//5	\
count	42000.0	42000.0	42000.0		42000.000000	42000.000000	
mean	0.0	0.0	0.0		0.219286	0.117095	
std	0.0	0.0	0.0		6.312890	4.633819	
min	0.0	0.0	0.0		0.000000	0.000000	
5%	0.0	0.0	0.0		0.000000	0.000000	
10%	0.0	0.0	0.0		0.000000	0.000000	
25%	0.0	0.0	0.0	• • •	0.000000	0.000000	

```
50%
            0.0
                     0.0
                               0.0
                                              0.000000
                                                              0.000000
75%
            0.0
                     0.0
                               0.0
                                               0.000000
                                                              0.000000
                                     . . .
90%
            0.0
                     0.0
                               0.0
                                              0.000000
                                                              0.000000
99%
            0.0
                     0.0
                               0.0
                                               0.000000
                                                              0.000000
                                     . . .
                     0.0
                                            254.000000
max
            0.0
                               0.0
                                                           254.000000
           pixel776
                          pixel777
                                         pixel778
                                                        pixel779
                                                                   pixel780
       42000.000000
count
                      42000.00000
                                     42000.000000
                                                    42000.000000
                                                                    42000.0
                                                                        0.0
mean
           0.059024
                           0.02019
                                         0.017238
                                                        0.002857
                                         1.894498
std
            3.274488
                           1.75987
                                                        0.414264
                                                                        0.0
min
            0.000000
                           0.00000
                                         0.000000
                                                        0.000000
                                                                        0.0
5%
                                                                        0.0
            0.000000
                           0.00000
                                         0.000000
                                                        0.000000
10%
           0.000000
                           0.00000
                                         0.000000
                                                        0.000000
                                                                        0.0
25%
                                                                        0.0
           0.000000
                           0.00000
                                         0.000000
                                                        0.000000
                                                                        0.0
50%
           0.000000
                           0.00000
                                         0.000000
                                                        0.000000
75%
            0.000000
                           0.00000
                                         0.000000
                                                        0.000000
                                                                        0.0
90%
                                                                        0.0
           0.000000
                           0.00000
                                         0.000000
                                                        0.000000
99%
                           0.00000
                                                        0.000000
                                                                        0.0
            0.000000
                                         0.000000
max
         253.000000
                        253.00000
                                       254.000000
                                                       62.000000
                                                                        0.0
       pixel781
                  pixel782
                            pixel783
        42000.0
                   42000.0
                              42000.0
count
             0.0
                       0.0
                                  0.0
mean
             0.0
                       0.0
                                  0.0
std
min
             0.0
                       0.0
                                  0.0
5%
             0.0
                       0.0
                                  0.0
10%
             0.0
                       0.0
                                  0.0
25%
             0.0
                       0.0
                                  0.0
50%
             0.0
                       0.0
                                  0.0
75%
             0.0
                       0.0
                                  0.0
90%
             0.0
                       0.0
                                  0.0
99%
             0.0
                       0.0
                                  0.0
max
             0.0
                       0.0
                                  0.0
[12 rows x 785 columns]
#checking for null values
round(100*(numbers.isnull().sum()/(len(numbers.index))),2).sort_values(ascend
ing = False)
pixel783
             0.0
pixel267
             0.0
             0.0
pixel265
pixel264
             0.0
             0.0
pixel263
             0.0
pixel262
pixel261
             0.0
pixel260
             0.0
pixel259
             0.0
```

pixel258

0.0

pixel257 pixel256 pixel255 pixel254 pixel253 pixel252 pixel251 pixel250 pixel249 pixel248 pixel247 pixel246 pixel266 pixel266 pixel268 pixel269 pixel290 pixel289 pixel288	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
pixel495 pixel494 pixel493 pixel492 pixel491 pixel512 pixel513 pixel514 pixel526 pixel535 pixel534 pixel532 pixel531 pixel530 pixel529 pixel528 pixel527 pixel525 pixel525 pixel515 pixel521 pixel522 pixel521 pixel521 pixel518 pixel517 pixel516	

```
label
            0.0
Length: 785, dtype: float64
# let us check unique entries of label column
np.unique(numbers['label'])
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=int64)
numbers['label'].value_counts()
     4684
1
7
     4401
3
     4351
9
     4188
2
     4177
6
     4137
0
     4132
4
     4072
8
     4063
5
     3795
Name: label, dtype: int64
#visualising the column - label
sns.countplot(numbers['label'],palette = 'icefire')
<matplotlib.axes._subplots.AxesSubplot at 0x2cb8f69b6a0>
```



```
y = pd.value_counts(numbers.values.ravel()).sort_index()
N = len(y)
x = range(N)
```

```
width =0.9
plt.figure(figsize=[8,8])
plt.bar(x, y, width, color="blue")
plt.title('Pixel Value Frequency (Log Scale)')
plt.yscale('log')
plt.xlabel('Pixel Value (0-255)')
plt.ylabel('Frequency')
Text(0, 0.5, 'Frequency')
```

Pixel Value Frequency (Log Scale)


```
plt.figure(figsize=(5,5))
sns.distplot(numbers['pixel656'])
plt.show()
```


plt.figure(figsize=(5,5))
sns.distplot(numbers['pixel684'])

<matplotlib.axes._subplots.AxesSubplot at 0x2cb900f9978>

#Label vs pixel
sns.barplot(x='label', y='pixel683', data=numbers)
<matplotlib.axes._subplots.AxesSubplot at 0x2cb9019b940>

sns.barplot(x='label', y='pixel572', data=numbers)
<matplotlib.axes._subplots.AxesSubplot at 0x2cb90226b38>

#visualize numbers

one = numbers.iloc[2, 1:]
one = one.values.reshape(28,28)

```
plt.imshow(one)
plt.title("Digit 1")
```

Text(0.5, 1.0, 'Digit 1')


```
four = numbers.iloc[3, 1:]
four.shape
four = four.values.reshape(28, 28)
plt.imshow(four, cmap='gray')
```

<matplotlib.image.AxesImage at 0x2cb900c4a20>

visualise the array print(four[5:-5, 5:-5])

```
0 220 179
                  6
                            0
                                 0
                                     0
                                          0
                                               0
                                                    0
                                                        0
                                                             9
                                                                77
                                                                       0
                                                                           0
                                                                                0
                                                                                     0]
        28 247
                 17
                       0
                            0
                                 0
                                     0
                                          0
                                               0
                                                    0
                                                        0
                                                            27 202
                                                                                     0]
                                                                       0
                                                                           0
                            0
                                     0
                                                            27 254
         0 242 155
                       0
                                          0
                                               0
                                                    0
                                                        0
                                                                           0
                                                                      63
                                                                                     01
    0
         0 160 207
                            0
                                 0
                                     0
                                          0
                                               0
                                                    0
                                                        0
                                                            27 254
                                                                                     01
                       6
                                                                      65
                                                                           0
         0 127 254
                            0
                                 0
                                     0
                                          0
                                               0
                                                    0
                                                        0
                                                            20 239
 Γ
    0
                      21
                                                                      65
                                                                           0
                                                                                     0]
 0
         0
            77 254
                      21
                            0
                                 0
                                     0
                                          0
                                               0
                                                    0
                                                        0
                                                             0
                                                               195
                                                                      65
                                                                           0
                                                                                     0]
            70 254
                                                               195 142
    0
         0
                      21
                            0
                                 0
                                     0
                                          0
                                               0
                                                    0
                                                        0
                                                             0
                                                                           0
                                                                                0
                                                                                     0]
    0
         0
            56 251
                      21
                            0
                                 0
                                     0
                                          0
                                               0
                                                    0
                                                        0
                                                             0 195 227
                                                                           0
                                                                                0
                                                                                     0]
              0 222 153
                            5
    0
         0
                                 0
                                     0
                                          0
                                               0
                                                    0
                                                        0
                                                             0
                                                               120 240
                                                                          13
                                                                                0
                                                                                     0]
                 67 251
    0
         0
              0
                           40
                                 0
                                     0
                                          0
                                               0
                                                    0
                                                        0
                                                             0
                                                                 94 255
                                                                          69
                                                                                     0]
                                                                 19 245
    0
         0
              0
                  0 234 184
                                 0
                                     0
                                          0
                                               0
                                                    0
                                                        0
                                                             0
                                                                          69
                                                                                     0]
    0
                  0 234 169
                                     0
                                          0
                                               0
                                                    0
                                                        0
                                                             0
                                                                  3 199 182
 0
              0
                                                                               10
                                                                                     0]
    0
         0
              0
                  0 154 205
                                 4
                                     0
                                          0
                                              26
                                                  72 128 203 208 254 254
                                                                              131
                                                                                     0]
    0
         0
              0
                  0
                      61 254 129 113 186 245 251
                                                      189
                                                            75
                                                                 56 136 254
                                                                               73
                                                                                     0]
                      15 216 233 233 159
 0
         0
              0
                  0
                                            104
                                                  52
                                                        0
                                                             0
                                                                  0
                                                                      38 254
                                                                               73
                                                                                     0]
 0
         0
              0
                  0
                       0
                            0
                                 0
                                     0
                                          0
                                               0
                                                    0
                                                        0
                                                             0
                                                                  0
                                                                      18 254
                                                                               73
                                                                                     0]
    0
         0
              0
                  0
                       0
                            0
                                 0
                                     0
                                          0
                                               0
                                                    0
                                                        0
                                                             0
                                                                  0
                                                                      18 254
                                                                               73
                                                                                     0]
    0
         0
              0
                  0
                       0
                            0
                                 0
                                     0
                                          0
                                               0
                                                    0
                                                        0
                                                             0
                                                                       5 206 106
                                                                  0
                                                                                     0]]
```

missing values - there are none

numbers.isnull().sum()

```
label 0 pixel0 0 pixel1 0 pixel2 0 pixel3 0
```

pixel4 pixel5 pixel6 pixel7 pixel8 pixel9 pixel10 pixel11 pixel12 pixel13 pixel14 pixel15 pixel16 pixel17 pixel18 pixel19 pixel20 pixel21 pixel22 pixel23 pixel24 pixel25 pixel25 pixel26 pixel27 pixel28	000000000000000000000000000000000000000
pixel754 pixel755 pixel756 pixel757 pixel758 pixel759 pixel760 pixel761 pixel762 pixel763 pixel764 pixel765 pixel766 pixel767 pixel767 pixel7768 pixel770 pixel771 pixel771 pixel772 pixel773 pixel774 pixel775 pixel775 pixel776	

```
pixel778
            0
pixel779
            0
pixel780
            0
pixel781
            0
pixel782
            0
pixel783
Length: 785, dtype: int64
description
```

average values/distributions of features

description = numbers.describe()

75%

0.0

0.0

0.0

	lab	el pixel0	pixel1	pixel2	pixel3	pixel4	pixe	15
count	42000.00000	00 42000.0	42000.0	42000.0	42000.0	42000.0	42000	.0
mean	4.4566	43 0.0	0.0	0.0	0.0	0.0	0	.0
std	2.8877	30 0.0	0.0	0.0	0.0	0.0	0	.0
min	0.0000	0.0	0.0	0.0	0.0	0.0	0	.0
25%	2.0000	0.0	0.0	0.0	0.0	0.0	0	.0
50%	4.0000	0.0	0.0	0.0	0.0	0.0		.0
75%	7.0000	0.0	0.0	0.0	0.0	0.0	0	.0
max	9.0000	0.0	0.0	0.0	0.0	0.0	0	.0
	pixel6	pixel7 pi	xel8	nive	1774	pixel775	\	
count	-	•	00.0	42000.00		00.000000		
mean	0.0	0.0	0.0	0.21		0.117095		
std	0.0	0.0	0.0		.2890	4.633819		
min	0.0	0.0	0.0	0.00		0.000000		
25%	0.0	0.0	0.0		0000	0.000000		
50%	0.0	0.0	0.0		0000	0.000000		
75%	0.0	0.0	0.0		0000	0.000000		
max	0.0	0.0	0.0	254.00		54.000000		
					_			
	pixel7	76 pixe	1777	pixel778	pixe	1779 pix	e1780	\
count	42000.00000			90.00000	42000.00	•	000.0	•
mean	0.0590		2019	0.017238	0.00		0.0	
std	3.2744		5987	1.894498	0.41		0.0	
min	0.0000		0000	0.000000	0.00		0.0	
25%	0.0000	00 0.0	0000	0.000000	0.00	0000	0.0	
50%	0.0000	0.0	0000	0.000000	0.00	0000	0.0	
75%	0.0000	0.0	0000	0.000000	0.00	0000	0.0	
max	253.0000	00 253.0	0000 25	54.000000	62.00	0000	0.0	
	pixel781	pixel782 p	ixel783					
count	42000.0	•	42000.0					
mean	0.0	0.0	0.0					
std	0.0	0.0	0.0					
min	0.0	0.0	0.0					
25%	0.0	0.0	0.0					
50%	0.0	0.0	0.0					
J 5,0	0.0	0.0	0.0					

\

```
0.0
                      0.0
                                 0.0
max
[8 rows x 785 columns]
# average feature values
pd.set_option('display.max_rows', 999)
round(numbers.drop('label', axis=1).mean(), 2).sort_values(ascending = False)
pixel407
            139.83
pixel435
            139.07
pixel408
            137.42
            135.52
pixel434
pixel211
            135.49
            133.59
pixel210
pixel602
            132.98
            132.90
pixel212
            132.00
pixel436
pixel601
            130.81
pixel380
            130.66
            130.14
pixel406
            128.65
pixel409
pixel381
            127.50
            127.45
pixel463
pixel575
            126.73
            126.34
pixel603
pixel209
            126.26
pixel629
            126.03
pixel462
            126.01
pixel213
            126.00
            125.56
pixel574
pixel183
            124.89
pixel379
            124.51
            123.89
pixel237
pixel238
            123.23
pixel433
            123.10
pixel628
            122.65
            122.59
pixel600
pixel240
            122.22
            121.98
pixel239
            121.90
pixel184
            121.89
pixel630
            121.77
pixel241
pixel437
            121.70
pixel464
            121.32
pixel236
            120.60
pixel182
            119.70
pixel576
            119.67
            118.65
pixel547
pixel353
            118.46
```

117.19

pixel548

pixel573	116.96
pixel242	116.12
pixel491	115.44
pixel461	115.36
pixel405	114.96
pixel352	113.93
pixel627	113.00
pixel208	112.99
pixel214	112.65
pixel492	112.60
pixel519	112.59
pixel546	112.43
pixel599	112.37
pixel520	112.15
pixel490	112.10
pixel263	111.90
pixel185	111.65
pixel604	111.62
pixel378	111.46
pixel465	111.36
pixel270	111.29
pixel264	111.12
pixel269	110.75
pixel235	110.21
pixel382	109.51 108.68
pixel549 pixel631	108.46
pixel031 pixel325	108.40
pixel323 pixel354	107.83
pixel334 pixel410	107.68
pixel410 pixel181	107.54
pixel298	106.52
pixel572	106.25
pixel572	106.08
pixel518 pixel521	105.99
pixel326	105.68
pixel577	105.26
pixel493	105.24
pixel432	104.61
pixel297	104.54
pixel265	104.09
pixel268	103.87
pixel291	103.60
pixel351	102.12
pixel438	101.92
pixel290	101.85
pixel489	101.21
pixel598	101.02
pixel262	101.01
pixel460	100.51

pixel545	100.33
pixel243	100.19
pixel318	99.96
pixel656	99.90
-	
pixel657	99.82
pixel271	99.14
pixel626	98.92
pixel346	98.91
pixel267	98.87
pixel266	98.53
pixel324	97.82
pixel571	97.62
pixel404	97.16
pixel374	97.15
pixel377	96.88
pixel466	95.93
pixel186	95.59
pixel207	95.42
pixel319	94.94
pixel522	94.60
pixel322 pixel402	94.56
•	
pixel517	94.35
pixel299	94.19
pixel296	93.76
pixel431	93.73
pixel494	93.53
pixel550	93.43
pixel292	93.18
pixel215	92.73
pixel403	92.68
pixel234	92.12
pixel373	91.76
•	91.62
pixel655	
pixel155	91.59
pixel658	91.57
pixel347	91.42
pixel375	91.12
pixel345	91.09
pixel605	90.95
pixel430	90.78
pixel180	90.47
pixel570	90.21
	89.73
pixel401 pixel350	89.73
-	
pixel156	89.45
pixel544	89.26
pixel632	89.06
pixel488	88.92
pixel459	88.88
pixel327	88.70

pixel317	88.65
pixel597	87.45
	86.84
pixel376	
pixel154	86.30
pixel323	85.60
pixel289	85.24
pixel429	85.14
pixel578	85.09
•	
pixel355	84.27
pixel295	83.99
pixel458	83.55
pixel516	82.62
pixel543	82.16
pixel293	82.03
pixel569	81.35
pixel383	81.27
pixel320	81.14
pixel625	80.79
· •	
pixel157	80.30
pixel487	80.26
pixel261	79.87
pixel348	79.76
pixel411	79.75
pixel349	79.70
pixel294	78.92
pixel439	78.86
pixel495	78.66
pixel467	78.36
pixel407 pixel523	78.10
-	
pixel457	77.70
pixel542	77.61
pixel272	76.66
pixel244	76.63
pixel654	76.57
pixel659	76.47
pixel515	76.27
•	
pixel322	76.01
pixel153	75.01
pixel206	74.79
pixel187	74.60
pixel486	74.59
pixel400	73.58
pixel551	73.22
pixel331	72.99
pixel321 pixel372	72.83
•	
pixel179	72.00
pixel514	71.46
pixel300	71.39
pixel541	71.28
pixel428	71.10

pixel596	70.45
pixel344	69.60
pixel485	69.40
pixel233	69.18
pixel568	68.99
pixel216	68.90
pixel606	67.71
pixel633	66.84
pixel456	66.20
pixel513	65.86
pixel158	65.76
pixel316	65.19
pixel328	64.59
pixel540	62.61
pixel579	62.30
•	
pixel288	60.88
pixel624	60.69
pixel484	60.62
pixel468	60.52
pixel496	60.41
pixel152	60.18
pixel440	58.85
	58.56
pixel512	
pixel356	58.37
pixel653	58.29
pixel660	58.16
pixel524	57.81
pixel412	56.31
pixel260	55.56
pixel384	55.37
•	
pixel205	54.74
pixel178	54.01
pixel188	53.74
pixel567	53.74
pixel273	52.10
pixel245	52.02
pixel552	51.85
•	
pixel595	51.39
pixel684	51.24
pixel539	51.12
pixel685	51.04
pixel427	51.02
pixel399	50.57
pixel455	49.76
•	49.76
pixel159	
pixel511	48.30
pixel483	48.02
pixel371	47.93
pixel301	47.89
pixel232	47.38
L	,

pixel217	46.21
pixel683	46.20
pixel607	46.19
pixel127	46.09
pixel686	45.93
pixel634	45.73
pixel151	45.36
•	44.54
pixel128	
pixel343	44.02
pixel126	42.71
pixel469	42.63
pixel329	42.46
pixel441	41.73
pixel497	41.52
pixel580	41.47
pixel661	40.59
pixel623	40.24
pixel315	40.07
pixel652	39.84
pixel413	39.24
•	
pixel129	38.95
pixel525	38.40
pixel357	38.36
pixel177	37.88
pixel385	37.48
pixel287	37.33
pixel687	37.29
pixel682	37.14
pixel566	36.90
pixel538	36.88
pixel204	36.60
pixel125	36.08
pixel189	34.96
-	
pixel510	34.72
pixel259	34.52
pixel160	34.39
pixel553	33.29
pixel482	33.28
pixel594	32.56
pixel454	32.25
pixel150	32.22
pixel246	31.16
•	30.96
pixel130	
pixel274	30.89
pixel426	30.78
pixel231	29.64
pixel635	28.86
pixel608	28.82
pixel398	28.52
pixel302	28.21

pixel124	28.04
pixel688	28.02
pixel218	27.63
pixel442	27.17
pixel470	27.05
pixel681	26.40
pixel414	25.75
pixel370	25.70
pixel662	25.69
pixel330	25.37
pixel498	25.25
=	
pixel581	25.23
pixel386	24.29
pixel176	24.13
pixel358	23.99
pixel651	23.71
pixel622	23.26
pixel131	22.91
pixel342	22.85
•	
pixel526	22.68
pixel203	22.36
pixel537	21.59
pixel161	21.46
pixel149	21.42
pixel314	21.09
pixel190	20.70
pixel565	20.66
•	
pixel286	20.48
pixel123	20.33
pixel509	20.15
pixel258	19.54
pixel689	19.44
pixel554	18.95
pixel481	18.16
pixel712	18.13
pixel712	17.90
•	
pixel593	16.95
pixel230	16.91
pixel636	16.69
pixel711	16.56
pixel680	16.42
pixel453	16.35
pixel609	16.23
pixel714	16.11
•	15.89
pixel247	
pixel663	15.21
pixel443	15.10
pixel275	15.04
pixel132	14.87
pixel415	14.86
r	

pixel219	14.79
pixel471	14.34
pixel425	14.31
•	
pixel175	14.11
pixel387	13.90
pixel122	13.80
pixel582	13.66
pixel715	13.64
pixel303	13.50
pixel710	13.48
pixel99	13.40
pixel100	13.07
pixel359	12.95
pixel148	12.93
pixel499	12.82
pixel331	12.66
pixel202	12.39
pixel397	12.36
pixel162	12.23
pixel690	12.16
pixel98	12.07
pixel650	12.01
pixel101	11.57
pixel527	11.29
•	
pixel191	11.12
pixel621	10.91
pixel716	10.89
pixel369	10.70
pixel97	10.05
pixel257	9.88
	9.81
pixel285	
pixel341	9.56
pixel709	9.44
pixel313	9.44
pixel102	9.30
pixel555	9.13
pixel679	8.93
•	
pixel637	8.91
pixel229	8.70
pixel133	8.69
pixel121	8.68
pixel536	8.62
pixel564	8.58
•	
pixel664	8.41
pixel610	8.40
pixel717	8.06
pixel96	7.75
pixel508	7.52
pixel174	7.37
pixel174 pixel691	7.37
	7 71

pixel147	7.15
pixel248	6.91
•	
pixel220	6.78
pixel592	6.76
pixel103	6.71
pixel740	6.61
•	6.50
pixel583	
pixel741	6.44
pixel163	6.37
pixel201	5.98
pixel739	5.98
pixel480	5.89
•	
pixel444	5.89
pixel276	5.85
pixel416	5.84
pixel708	5.84
pixel95	5.71
pixel742	5.68
•	
pixel472	5.59
pixel718	5.33
pixel388	5.26
pixel192	5.25
pixel500	5.05
pixel649	5.03
pixel120	4.95
pixel743	4.66
pixel256	4.65
pixel738	4.64
•	4.63
pixel304	
pixel134	4.55
pixel638	4.55
pixel360	4.46
pixel452	4.45
pixel528	4.45
pixel284	4.31
pixel665	4.27
pixel678	4.15
•	
pixel104	4.14
pixel332	4.13
pixel611	4.12
pixel620	4.03
pixel692	4.00
pixel228	3.97
pixel71	3.80
pixel744	3.77
pixel94	3.77
pixel72	3.74
pixel72 pixel312	3.57
•	
pixel146	3.56
pixel556	3.54

pixel424	3.48
•	3.39
pixel70	
pixel73	3.33
pixel173	3.27
pixel737	3.24
pixel719	3.19
pixel707	2.99
pixel340	2.98
-	
pixel396	2.94
pixel164	2.91
pixel368	2.81
pixel745	2.75
pixel69	2.70
pixel74	2.68
pixel584	2.63
pixel249	2.48
pixel200	2.45
pixel119	2.45
pixel221	2.38
•	
pixel563	2.29
pixel93	2.29
pixel105	2.27
pixel736	2.16
pixel666	2.11
pixel135	2.10
pixel639	2.10
pixel535	2.04
pixel693	1.99
pixel75	1.99
pixel68	1.98
pixel591	1.91
pixel277	1.84
pixel648	1.81
pixel746	1.80
pixel255	1.80
•	
pixel193	1.77
pixel720	1.72
pixel283	1.71
pixel677	1.64
pixel612	1.63
pixel507	1.51
pixel145	1.44
pixel227	1.40
•	
pixel67	1.35
pixel501	1.33
pixel706	1.31
pixel700	1.29
•	
pixel529	1.25
pixel473	1.24
pixel76	1.20
PINCI/O	1.20

pixel92	1.19
pixel305	1.16
pixel619	1.16
pixel735	1.15
pixel172	1.15
pixel106	1.09
pixel747	1.09
pixel445	1.06
pixel557	1.03
	1.03
pixel118	
pixel479	0.97
pixel667	0.95
pixel694	0.93
pixel339	0.90
pixel66	0.87
pixel136	0.84
pixel721	0.84
pixel417	0.83
pixel640	0.80
pixel165	0.79
pixel585	0.75
pixel770	0.68
pixel333	0.65
pixel451	0.65
pixel199	0.62
pixel389	0.62
pixel367	0.61
pixel77	0.60
pixel771	0.60
pixel769	0.56
pixel676	0.56
pixel748	0.56
pixel254	0.55
pixel282	0.54
pixel91	0.54
pixel65	0.53
pixel768	0.51
•	
pixel734	0.50
pixel772	0.49
pixel222	0.49
pixel361	0.48
pixel423	0.48
pixel250	0.48
pixel705	0.47
pixel647	0.47
pixel310	0.44
pixel395	0.43
pixel613	0.43
pixel1017	0.42
pixel107	0.41
hTVETT44	0.41

måa1767	0 44
pixel767	0.41
pixel695	0.40
pixel117	0.39
pixel226	0.38
pixel722	0.38
pixel194	0.35
pixel773	0.34
pixel278	0.33
pixel562	0.32
pixel668	0.31
pixel64	0.30
pixel766	0.30
•	0.29
pixel78	0.29
pixel534	
pixel590	0.27
pixel338	0.27
pixel90	0.24
pixel749	0.24
pixel171	0.23
pixel306	0.22
pixel774	0.22
pixel137	0.20
pixel502	0.20
pixel42	0.20
pixel641	0.20
pixel40	0.19
pixel474	0.19
pixel41	0.19
pixel765	0.18
pixel43	0.17
pixel108	0.17
pixel39	0.17
pixel506	0.17
pixel618	0.17
pixel530	0.16
pixel44	0.16
pixel558	0.16
pixel723	0.15
pixel/23	0.15
pixel45	0.15
pixe145 pixe1704	0.15
•	0.13
pixel675	
pixel446	0.14
pixel334	0.14
pixel733	0.14
pixel166	0.13
pixel38	0.13
pixel366	0.13
pixel775	0.12
pixel478	0.11

pixel46	0.11
pixel198	0.11
pixel764	0.11
pixel79	0.10
pixel281	0.10
pixel696	0.10
pixel253	0.10
pixel586	0.10
pixel750	0.09
pixel89	0.09
pixel116	0.09
pixel763	0.08
pixel418	0.07
pixel309	0.07
pixel37	0.07
pixel614	0.07
pixel362	0.07
pixel450	0.07
pixel225	0.07
pixel390	0.07
pixel646	0.06
pixel62	0.06
pixel47	0.06
pixel669	0.06
pixel776	0.06
pixel36	0.05
pixel143	0.05
pixel394	0.05
pixel48	0.05
pixel337	0.04
pixel732	0.04
pixel422	0.04
pixel762	0.04
pixel138	0.04
pixel279	0.03
pixel80	0.03
pixel35	0.03
pixel195	0.03
pixel307	0.03 0.02
pixel115 pixel642	0.02
pixe1642 pixe149	0.02
pixel49 pixel88	0.02
pixel697	0.02
pixel197	0.02
pixel777	0.02
pixel1///	0.02
pixel724	0.02
pixel724 pixel778	0.02
pixel778 pixel674	0.02
hTVETO14	0.02

pixel170	0.02
pixel503	0.02
pixel223	0.02
pixel703	0.02
pixel475	0.02
pixel251	0.02
•	
pixel751	0.02
pixel363	0.01
pixel335	0.01
pixel365	0.01
pixel81	0.01
pixel308	0.01
pixel60	0.01
pixel61	0.01
pixel391	0.01
pixel761	0.01
pixel13	0.01
pixel589	0.01
pixel50	0.01
pixel34	0.01
pixel252	0.01
pixel670	0.01
pixel561	0.01
pixel559	0.01
pixel51	0.01
pixel533	0.01
pixel531	0.01
pixel505	0.01
pixel280	0.01
pixel14	0.01
pixel725	0.01
pixel447	0.01
pixel142	0.01
•	0.00
pixel122	
pixel33	0.00
pixel10	0.00
pixel24	0.00
pixel25	0.00
pixel26	0.00
pixel9	0.00
pixel8	0.00
pixel7	0.00
pixel6	0.00
pixel57	0.00
pixel5	0.00
pixel27	0.00
pixel28	0.00
pixel29	0.00
pixel32	0.00
•	
pixel2	0.00

pixel1	0.00
pixel23	0.00
pixel56	0.00
pixel30	0.00
pixel17	0.00
pixel11	0.00
pixel15	0.00
pixel59	0.00
pixel54	0.00
pixel53	0.00
pixel52	0.00
pixel16	0.00
pixel18	0.00
pixel22	0.00
pixel4 pixel58	0.00 0.00
pixel55	0.00
pixel19	0.00
pixel3	0.00
pixel20	0.00
pixel21	0.00
pixel31	0.00
pixel783	0.00
pixel82	0.00
pixel673	0.00
pixel726	0.00
pixel702	0.00
pixel701	0.00
pixel700	0.00
pixel699	0.00
pixel698	0.00
pixel672	0.00
pixel588	0.00
pixel671	0.00
pixel645	0.00
pixel644	0.00
pixel643	0.00
pixel617	0.00
pixel616	0.00
pixel727	0.00
pixel728	0.00
pixel729	0.00
pixel730	0.00
pixel731	0.00
pixel752	0.00
pixel753	0.00 0.00
pixel754	0.00
pixel755 pixel756	0.00
pixe1756 pixe1757	0.00
hTX6T/2/	9.00

```
pixel758
              0.00
               0.00
pixel759
              0.00
pixel760
pixel779
              0.00
              0.00
pixel780
pixel781
              0.00
pixel615
              0.00
pixel587
              0.00
              0.00
pixel83
pixel113
              0.00
              0.00
pixel168
pixel167
              0.00
              0.00
pixel141
pixel140
              0.00
pixel139
              0.00
              0.00
pixel114
pixel112
              0.00
              0.00
pixel560
              0.00
pixel111
pixel110
              0.00
              0.00
pixel87
pixel86
              0.00
pixel85
              0.00
pixel84
              0.00
              0.00
pixel169
pixel196
              0.00
              0.00
pixel224
              0.00
pixel336
pixel364
              0.00
              0.00
pixel782
pixel392
              0.00
pixel393
              0.00
pixel419
              0.00
pixel420
              0.00
pixel421
              0.00
              0.00
pixel448
              0.00
pixel449
pixel476
              0.00
pixel477
              0.00
pixel504
              0.00
pixel532
               0.00
pixel0
              0.00
dtype: float64
# splitting into X and y
X = numbers.drop("label", axis = 1)
y = numbers['label']
# scaling the features
X_scaled = scale(X)
```

```
# train test split
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y,
train size=0.2, test size = 0.8, random state = 101)
print('X_train shape:',X_train.shape)
print('y train shape:',y train.shape)
print('X_test shape:',X_test.shape)
print('y_test shape:',y_test.shape)
X_train shape: (8400, 784)
y train shape: (8400,)
X test shape: (33600, 784)
y_test shape: (33600,)
# linear model
model_linear = SVC(kernel='linear')
model_linear.fit(X_train, y_train)
# predict
y_pred = model_linear.predict(X_test)
# confusion matrix and accuracy, precision, recall
# accuracy
print("accuracy:", metrics.accuracy_score(y_true=y_test, y_pred=y_pred),
"\n")
# cm
print(metrics.confusion_matrix(y_true=y_test, y_pred=y_pred))
accuracy: 0.913125
[[3188
          0
              10
                    5
                        11
                             20
                                   32
                                         3
                                             15
                                                   1]
     0 3677
              14
                   11
                         5
                              7
                                   4
                                         8
                                             30
                                                   4]
    36
         29 3027
                   54
                        55
                             10
                                   30
                                        42
                                             48
                                                  12]
    13
             104 3051
                         9
                            181
                                   5
                                        21
                                             54
                                                  25]
         12
    8
         14
              33
                    2 3057
                                   25
                                        31
                                             6
                                                 110]
    30
         23
              29
                  136
                        44 2622
                                   44
                                        12
                                             72
                                                  27]
                        28
                             33 3113
                                             18
    26
         11
              44
                    4
                                         0
                                                   01
    7
         24
              36
                   19
                                    2 3210
                                              4
                                                 134]
                        59
                              9
    13
         46
              50
                  120
                        21 110
                                   30
                                        18 2843
                                                  21]
    19
         17
              21
                   22 172
                             20
                                   4 161
                                             26 2893]]
#precision, recall and f1-score
scores=metrics.classification_report(y_test, y_pred, labels=[0, 1, 2, 3, 4,
5, 6, 7, 8, 9])
print(scores)
                           recall f1-score
              precision
                                               support
```

```
0.95
                                                    3285
           0
                               0.97
                                         0.96
           1
                    0.95
                                         0.97
                               0.98
                                                    3760
           2
                    0.90
                               0.91
                                         0.90
                                                    3343
           3
                    0.89
                               0.88
                                         0.88
                                                    3475
           4
                    0.88
                               0.93
                                         0.91
                                                    3290
           5
                    0.87
                               0.86
                                         0.87
                                                    3039
           6
                    0.95
                               0.95
                                         0.95
                                                    3277
           7
                    0.92
                               0.92
                                         0.92
                                                    3504
           8
                    0.91
                                                    3272
                               0.87
                                         0.89
           9
                    0.90
                                                    3355
                               0.86
                                         0.88
                                         0.91
                                                   33600
    accuracy
                    0.91
                               0.91
                                         0.91
                                                   33600
   macro avg
                               0.91
                                         0.91
                                                   33600
weighted avg
                    0.91
# non-linear model
# using poly kernel, C=1, default value of gamma
# model
non_linear_model_poly = SVC(kernel='poly')
# fit
non_linear_model_poly.fit(X_train, y_train)
# predict
y_pred = non_linear_model_poly.predict(X_test)
#confusion matrix and accuracy, precision, recall
# accuracy
print("accuracy:", metrics.accuracy score(y true=y test, y pred=y pred),
"\n")
# cm
print(metrics.confusion_matrix(y_true=y_test, y_pred=y_pred))
accuracy: 0.87125
                                             299
[[2893
          0
               8
                     3
                         38
                               13
                                    28
                                          0
                                                     3]
     1 3684
              11
                     1
                         12
                                               43
                                                     2]
                                0
                                     6
                                          0
    14
         18 2489
                    37
                        153
                                1
                                    11
                                         19
                                             588
                                                    13]
     0
         16
               24 2846
                         27
                               36
                                     3
                                         13
                                             464
                                                    46]
                                     3
 3
          8
              15
                     0 3080
                                8
                                          5
                                               17
                                                   151]
                                          7
     6
          1
                    72
                         73 2358
                                    30
                                             442
               5
                                                    45]
    16
                        108
                               43 2901
                                          2
                                             188
                                                     0]
          9
               10
                     0
         41
               7
                     7
                        138
                                1
                                     0 2862
                                             105
     1
                                                   342]
 2
         16
                         20
                               40
                                     1
                                          4 3131
                                                    22]
               6
                    30
 Γ
     6
         14
               1
                    13
                        153
                                8
                                     0
                                         42
                                               88 3030]]
```

```
# non-linear model
# using rbf kernel, C=1, default value of gamma
# modeL
non linear model = SVC(kernel='rbf')
# fit
non linear model.fit(X train, y train)
# predict
y_pred = non_linear_model.predict(X_test)
# confusion matrix and accuracy, precision, recall
# accuracy
print("accuracy:", metrics.accuracy_score(y_true=y_test, y_pred=y_pred),
"\n")
# cm
print(metrics.confusion matrix(y true=y test, y pred=y pred))
accuracy: 0.9396428571428571
[[3195
              19
                     5
                                    32
                                          4
                                               14
                          4
                              11
                                                     1]
     0 3689
              23
                    12
                          8
                                3
                                     7
                                          6
                                               8
                                                     4]
    15
         15 3144
                    29
                         31
                                5
                                    18
                                         37
                                               43
                                                     6]
 5
          8
              92 3191
                          5
                               73
                                     6
                                         31
                                               43
                                                    21]
     3
          7
               57
                     1 3099
                                9
                                    19
                                         21
                                               7
                                                    67]
                                    53
    15
              37
                         16 2776
                                         15
                                               32
 Γ
         10
                    66
                                                    19]
    19
          5
              46
                     1
                         12
                               31 3149
                                          2
                                               12
                                                     01
     6
         21
              66
                    11
                         25
                                3
                                     0 3285
                                                3
                                                    84]
    14
         24
              40
                    63
                         14
                               62
                                    22
                                         19 2996
                                                    18]
         10
               38
                                     0
 Γ
    12
                    40
                         80
                                6
                                         97
                                               24 3048]]
#precision, recall and f1-score
scores=metrics.classification_report(y_test, y_pred, labels=[0, 1, 2, 3, 4,
5, 6, 7, 8, 9])
print(scores)
               precision
                            recall f1-score
                                                 support
           0
                    0.97
                               0.97
                                         0.97
                                                    3285
           1
                    0.97
                               0.98
                                         0.98
                                                    3760
           2
                    0.88
                               0.94
                                         0.91
                                                    3343
           3
                    0.93
                               0.92
                                         0.93
                                                    3475
           4
                    0.94
                               0.94
                                         0.94
                                                    3290
           5
                    0.93
                               0.91
                                         0.92
                                                    3039
           6
                    0.95
                               0.96
                                         0.96
                                                    3277
           7
                    0.93
                              0.94
                                         0.94
                                                    3504
           8
                    0.94
                               0.92
                                         0.93
                                                    3272
```

```
9
                   0.93
                             0.91
                                       0.92
                                                 3355
                                       0.94
                                                 33600
    accuracy
                   0.94
                                       0.94
                                                 33600
   macro avg
                             0.94
weighted avg
                   0.94
                             0.94
                                       0.94
                                                33600
# creating a KFold object with 5 splits
folds = KFold(n_splits = 5, shuffle = True, random_state = 101)
# specify range of hyperparameters
# Set the parameters by cross-validation
hyper_params = [ {'gamma': [0.01, 0.001, 0.0001],
                     'C': [1, 10, 100]}]
# specify model
model = SVC(kernel="rbf")
# set up GridSearchCV()
model_cv = GridSearchCV(estimator = model,
                        param grid = hyper params,
                        scoring= 'accuracy',
                        cv = folds,
                        verbose = 1,
                        return_train_score=True,n_jobs = -1)
# fit the model
model_cv.fit(X_train, y_train)
Fitting 5 folds for each of 9 candidates, totalling 45 fits
[Parallel(n jobs=-1)]: Using backend LokyBackend with 4 concurrent workers.
[Parallel(n jobs=-1)]: Done 45 out of 45 | elapsed: 22.6min finished
GridSearchCV(cv=KFold(n_splits=5, random_state=101, shuffle=True),
             error_score='raise-deprecating',
             estimator=SVC(C=1.0, cache size=200, class weight=None,
coef0=0.0,
                           decision_function_shape='ovr', degree=3,
                           gamma='auto_deprecated', kernel='rbf', max_iter=-
1,
                           probability=False, random state=None,
shrinking=True,
                           tol=0.001, verbose=False),
             iid='warn', n_jobs=-1,
             param_grid=[{'C': [1, 10, 100], 'gamma': [0.01, 0.001,
0.0001]}],
             pre dispatch='2*n jobs', refit=True, return train score=True,
             scoring='accuracy', verbose=1)
```

```
split2_train_score split3_train_score \
```

0.957887

1.000000

1.000000

0.994345

0.959970

1.000000

1.000000

0.994494

5

6

7

8

4

7

2

5

```
0
             0.999851
                                 1.000000
                                                      1.000000
                                 0.972173
1
             0.971429
                                                     0.973214
2
             0.916518
                                 0.921577
                                                     0.919940
3
                                 1.000000
                                                     1.000000
             1.000000
             0.999405
                                 0.999107
4
                                                     0.999256
5
             0.959375
                                 0.957738
                                                     0.959077
6
             1.000000
                                 1.000000
                                                     1.000000
7
             1.000000
                                 1.000000
                                                     1.000000
8
             0.994940
                                 0.993006
                                                     0.994196
   mean_train_score std_train_score
0
           0.999940
                            0.000073
1
           0.972113
                            0.000663
2
           0.918452
                            0.002001
3
           1.000000
                            0.000000
4
           0.999345
                            0.000152
5
           0.958810
                            0.000865
6
           1.000000
                            0.000000
7
           1.000000
                            0.000000
8
           0.994196
                            0.000645
[9 rows x 22 columns]
# converting C to numeric type for plotting on x-axis
cv_results['param_C'] = cv_results['param_C'].astype('int')
# # plotting
plt.figure(figsize=(20,7))
# subplot 1/3
plt.subplot(131)
gamma_01 = cv_results[cv_results['param_gamma']==0.01]
plt.plot(gamma_01["param_C"], gamma_01["mean_test_score"])
plt.plot(gamma_01["param_C"], gamma_01["mean_train_score"])
plt.xlabel('C')
plt.ylabel('Accuracy')
plt.title("Gamma=0.01")
plt.ylim([0.50, 1.1])
plt.legend(['test accuracy', 'train accuracy'], loc='upper left')
plt.xscale('log')
# subplot 2/3
plt.subplot(132)
gamma_001 = cv_results[cv_results['param_gamma']==0.001]
plt.plot(gamma_001["param_C"], gamma_001["mean_test_score"])
plt.plot(gamma_001["param_C"], gamma_001["mean_train_score"])
plt.xlabel('C')
```

```
plt.ylabel('Accuracy')
plt.title("Gamma=0.001")
plt.ylim([0.50, 1.1])
plt.legend(['test accuracy', 'train accuracy'], loc='upper left')
plt.xscale('log')
# subplot 3/3
plt.subplot(133)
gamma_0001 = cv_results[cv_results['param_gamma']==0.0001]
plt.plot(gamma 0001["param C"], gamma 0001["mean test score"])
plt.plot(gamma_0001["param_C"], gamma_0001["mean_train_score"])
plt.xlabel('C')
plt.ylabel('Accuracy')
plt.title("Gamma=0.0001")
plt.ylim([0.50, 1.1])
plt.legend(['test accuracy', 'train accuracy'], loc='upper left')
plt.xscale('log')
                                                             Gamma=0.0001

    test accuracy
    train accuracy

 1.0
                          1.0
                                                    1.0
                         Accuracy
9
                                                   ocourac;
 0.8
 0.7
                          0.7
                                                    0.7
# printing the optimal accuracy score and hyperparameters
best_score = model_cv.best_score_
best_hyperparams = model_cv.best_params_
print("The best test score is {0} corresponding to hyperparameters
{1}".format(best_score, best_hyperparams))
The best test score is 0.9394047619047619 corresponding to hyperparameters
{'C': 10, 'gamma': 0.001}
#BUILDING AND EVALUATING THE FINAL MODEL
# model with optimal hyperparameters
# model
model = SVC(C=10, gamma=0.001, kernel="rbf")
model.fit(X_train, y_train)
```

```
y pred = model.predict(X test)
# metrics
print("accuracy", metrics.accuracy_score(y_test, y_pred), "\n")
print(metrics.confusion_matrix(y_test, y_pred), "\n")
accuracy 0.94770833333333334
              19
                     2
                          2
                                    26
                                          3
                                               8
[[3211
                              12
                                                     2]
     0 3692
               26
                     9
                                     5
                                          9
                                               7
                                                     3]
                          6
                               3
         12 3165
                    29
                         29
    13
                               6
                                    20
                                         40
                                              21
                                                     8]
              77 3232
                              79
                                    1
                                         23
                                              31
                                                    19]
 4
          5
                          4
     5
          8
              42
                     1 3117
                               5
                                    20
                                         19
                                               9
                                                    64]
 33
    15
          8
                    61
                         15 2815
                                    35
                                         11
                                              31
                                                    15]
    19
          5
              44
                    1
                         12
                              18 3167
                                          1
                                              10
                                                    0]
 5
         17
              52
                    12
                         29
                               4
                                     1 3322
                                               4
                                                    581
     7
 16
              42
                    53
                         15
                              51
                                    18
                                         16 3044
                                                    10]
 Γ
     9
          9
              33
                    20
                         81
                              10
                                     0
                                         94
                                              21 3078]]
# different class-wise accuracy - #precision, recall and f1-score
scores=metrics.classification report(y test, y pred, labels=[0, 1, 2, 3, 4,
5, 6, 7, 8, 9])
print(scores)
               precision
                            recall f1-score
                                                support
           0
                    0.98
                              0.98
                                         0.98
                                                    3285
           1
                    0.98
                              0.98
                                         0.98
                                                    3760
           2
                    0.90
                              0.95
                                         0.92
                                                    3343
           3
                    0.95
                              0.93
                                         0.94
                                                    3475
           4
                    0.94
                              0.95
                                         0.94
                                                    3290
           5
                    0.94
                              0.93
                                         0.93
                                                    3039
           6
                    0.96
                              0.97
                                         0.96
                                                    3277
           7
                    0.94
                              0.95
                                         0.94
                                                    3504
           8
                    0.96
                              0.93
                                         0.94
                                                    3272
           9
                    0.95
                              0.92
                                         0.93
                                                    3355
    accuracy
                                         0.95
                                                   33600
   macro avg
                    0.95
                              0.95
                                         0.95
                                                   33600
weighted avg
                    0.95
                              0.95
                                         0.95
                                                   33600
# Let us visualize our final model on unseen training dataset
df = np.random.randint(1,y_pred.shape[0]+1,5)
plt.figure(figsize=(16,4))
for i,j in enumerate(df):
    plt.subplot(150+i+1)
```

```
d = X_test[j].reshape(28,28)
  plt.title(f'Predicted Label: {y_pred[j]}')
  plt.imshow(d)
plt.show()
```

