4. SOLUTIONS

- 4.1. a) Fe²⁺ $3d^6$, $4\mu_B$, Fe³⁺ $3d^5$, $5\mu_B$, Mn²⁺ $3d^5$, $5\mu_B$, and Zn²⁺ $3d^{10}$, $0\mu_B$
- b) Mn^{2+} prefers the A sites even more than Fe^{3+} does, so unlike the other transition metal ferrites, Mn occupies A site and $2Fe^{3+}$ occupy B sites. However, this makes no difference to the moment per FU because Mn^{2+} and Fe^{3+} have the same moment. Net moment is $5\mu_B$ per FU.
- c) As Zn replaces Mn, there is no change in iron B-site occupation but the reduction of the moment on the A sublattice, $Mn_{1-x} + Zn_x$, allows the net moment to increase linearly because a smaller A-site moment is subtracted from the 10 Bohr magnetons on the B sublattice. At some value of x, the weaker moment on the A sites will allow the antiferromagnetic interaction between the two moments on B sites to take precedence. Beyond this Zn concentration, the net moment decreases as the moment on the B sites decreases rapidly from 10 Bohr magnetons.
- 4.2 Substitution of Zn for Ni in Fe₂NiO₄. Ni²⁺ has less tetrahedral (A) preference than Fe³⁺ so site distribution is as indicated in table. But Zn²⁺ has stronger A preference than Fe³⁺ so while it substitutes for Ni, it displaces Fe³⁺ from A sites to B sites.

	A	В
Fe ₂ NiO ₄	Fe ³⁺	Fe ³⁺ Ni ²⁺
$Fe_2Ni_{1-x}Zn_xO_4$	(1-x)Fe ³⁺ x Zn ²⁺	(1+x)Fe ³⁺ $(1-x)$ Ni ²⁺
Moment	-(1-x)5 - 0x	+(1+x)5 + (1-x)2
$\mu_m = [2 + 8x] \mu_B$		

This is the initial linear increase shown in Fig.4.15.

- 4.3 a) There are two Ni atoms per unit cell so $C = N_{\nu}\mu_{o}\mu m^{2}/k_{B} \approx 0.48$. Hence, for $T_{C} = 630$ K, $\lambda = T_{C}/C = 1300$.
- b) Use $\chi = C/(T T_C)$. For T = 730 and 930K, $\chi \approx 3.3 \times 10^{-3}$ and 1.1×10^{-3} , respectively. Thus, C = 0.99 and 0.11 respectively and $\lambda = 5730$ and 636, respectively.