SE 143B Team Airbenders MATLAB Code User Manual
Developed By: Jonathan Rodriguez, Gabriel Gutierrez, Farris Atif, Hannah Kim, Hayden Hui, Jennifer
MacAulay, Taren Bhakta, and Juan Campos

Contents

1 Cell Homogenous Analysis	3
1 Cell Composite Analysis	9
2 Cell Homogenous Analysis	18
2 Cell Composite Analysis	24
3 Cell Composite Analysis	33

1 Cell Homogenous Analysis

Step #1

In order to run the necessary 1 Cell Homogenous test case the user will need to open the 'SE143A UAV-CSA INPUT.xlsx' file within the file directory of the submitted code. Please be in the Excel Sheet labeled 'Team (B)'. Once the file is opened, it should look like the file below.

Step #2

The user should proceed to the section of the file corresponding to heading 'Project 2: Validation Studies Input'. In order to ensure that 1 Cell Homogenous Analysis is being analyzed, be sure to input a value of 1 to the corresponding 'Test Case Input Flag' as shown here.

Х	Project 2:
Test Case Input Flag	1
1 Cell Isotropic	1
1 Cell Composite	2
2 Cell Isotropic	3
2 Cell Composite	4
3 Cell Wing	5

Step #3
Beside this 'Input Flag' identifier, here is where applied tip loading, uniformly distributed loads, or linearly distributed loads can be assigned for this 1 Cell Analysis as shown below.

$p_{\perp}x$	Distributed Force x-	0	lb/in
<i>p_y</i>	Distributed Force y-	0	lb/in
<i>p_z</i>	Distributed Force z-	0	lb/in
m_x	Distributed Torque	0	lb-in/in
m_y	Distributed Momen	0	lb-in/in
m_z	Distributed Momen	0	lb-in/in
plied Tip Loa	ding		
Px	Applied Force x-dr	0	lb
Py	Applied Force y-di	0	lb
Pz	Applied Force z-di	0	lb
Mx.	Applied Torque x-	0	lb/in
My	Applied Moment y	0	lb/in
Mz	Applied Moment z	0	lb/in
iformly Dis	tributed Loads		
<i>p_x</i>	Distributed For	0	lb/in
<i>p_y</i>	Distributed For	0	lb/in
<i>p_z</i>	Distributed For	8	lb/in
m_x	Distributed To	0	lb-in/in
m_y	Distributed Mo	0	lb-in/in
m_z	Distributed Mo	0	lb-in/in

After providing the above input, proceed to the section '1) cantilever beam with thin-wall 1-cell rectangular cross-section - isotropic', it should look like the image seen here. In this section, make sure the white cells in the region seen here are populated with 11.0 values.

Test Case 1	Stringer ID (fro	m Database)
Station (x/c) - PREFERRED	y (upper)	y (lower)
0.000		
0.010		
0.025		
0.050		
0.100		
0.150	11.000	11.000
0.250	11.000	11.000
0.350		
0.500		
0.650	11.000	11.000
0.800	11.000	11.000
1.000		

This corresponds to how the bending and shear flow analysis is conducted and is necessary for the code to run.

To the right of the previous table, here is where the user can define the geometry needed for 1 Cell Analysis, the blacked out cells should not have any input.

Test Cases (1 Cell)				1000	
Node Location	x (inches)	y (inches)	Node Location	x (inches)	y (inches)
1			7	-1.5	-2.5
2			8	-0.5	-2.5
3			9	0.5	-2.5
4			10	1.5	-2.5
5			11	2.5	-2.5
6	-2.5	-2.5	12		

Also, it is assumed that the user inputs the node locations corresponding to an origin defined at the geometric center for 1 Cell Analysis. This is highlighted with a reference of a 1 Cell example further to the right of the table shown above. Please note that these nodes correspond only to the lower half of the geometry. The MATLAB Code will then mirror them about the y = 0 axis.

Below the user defined node locations, is a table where the user can define the material properties required for analysis, as seen here.

Test Case 1	in ID (from Databas	se)
Skin Connectivity	y (upper)	y (lower)
node 1 to node 2		
node 2 to node 3		
node 3 to node 4		
node 4 to node 5		
node 5 to node 6		
node 6 to node 7	1	1
node 7 to node 8	1	1
node 8 to node 9	1	1
node 9 to node 10	1	1
node 10 to node 1	1	1
node 11 to node 1		

Spar	ID
Fwd Vertical Box	1
Vertical Shear We	
Bck Vertical Box V	1
Struct Box Wall (no	1

Because this is an isotropic analysis, only input one material ID to all the corresponding cells. Also, for the spar ID's only the 'Fwd Vertical Box' and 'Struct Box Wall' ID's are used, but all 4 cells need input to run the code.

Step #7

After assigning the material ID, scroll back up to right above the section 'Project 2: Validation Studies Input'. The section should look similar to the picture below.

WING SKIN DATA BASE				
Variable	Description	Units	ID: 1	ID: 2
t	thickness	inch or mm	0.040	12141
E	Young's Mod	Msi or Gpa	1.700	
G	Shear Modu	Msi or Gpa	1.079	
σ _τ	Allowable St	Ksi or Mpa	3.8	
σ˙c	Allowable St	Ksi or Mpa	-60	
σ^{\bullet}_{s}	Allowable St	Ksi or Mpa	8.6	1
ρ	Density	lb/in3 or gm/in3	0.023	

Make sure that only ID:1 values are populated to material properties that the user would like to define as seen in the above table. Also, make sure to populate ID:11 values to be zero, this is needed for how the code is written. Therefore, ID:11 should look like this.

ID: 7	ID: 8	ID:9	ID: 10	ID: 11
				0.000
				0.000
				0.000
				0
				0
				0
				0

After all the inputs have been assigned to the Excel sheet 'Team (B)', please go to the Excel sheet within the same workbook labeled 'Input'. The file should look like the figure below.

Do not worry about the input in any of the cells except the ones talked about in the following steps, as the code does not read these cells for this 1 Cell Analysis.

Step #9

Scroll down to the cell 'E83', this is where you will define the beam length for this analysis. The units will correspond to inches as this analysis is done in the English system.

L Wing-Structural Length	60	inch or m	╛
--------------------------	----	-----------	---

Scroll down to cell 'E:153', this is where the number of cross sections are accounted for. Enter the desired refinement in the cell given below.

Variable	Description	Value	Units
dx	discretize wing length	80	1

Step #11

Scroll down to cell 'E:188', this is where the number of subdivisions of each wing segment (corresponding to the node locations specified earlier) can be defined.

Variable	Description	Value	Units
ds	subdivide each wing skin segmer	10	1

Step #12

Finally, save and close the file 'SE143A UAV-CSA INPUT (v4).xlsx' and open up the MATLAB file labeled 'SE143A_WingAnalysisCode_vGJnCo.m'. The file pop-up screen should be similar to the one seen below.

Simply, run the code using the 'Run' button in the 'Editor' section of the 'Toolstrip'.

Step #13

To view results, open up the Excel file 'SE143A UAV CSA OUTPUT (v1)'. The first few sheets will not be populated as those belong to the Wing Analysis portion of the code, but the following sheets will be populated with figures depicting the analysis conclusions: '3) Wing Definition', '4) Shear Moment Diagrams', '5) Wing Bending', '6) Wing Shear'.

1 Cell Composite Analysis

Step #1

In order to run the necessary 1 Cell Composite test case the user will need to open the 'SE143A UAV-CSA INPUT.xlsx' file within the file directory of the submitted code. Please be in the Excel Sheet labeled 'Team (B)'. Once the file is opened, it should look like the file below.

Step #2

The user should proceed to the section of the file corresponding to heading 'Project 2: Validation Studies Input'. In order to ensure that 1 Cell Composite Analysis is being analyzed, be sure to input a value of 2 to the corresponding 'Test Case Input Flag' as shown here.

Х	Project 2:
Test Case Input Flag	2
1 Cell Isotropic	1
1 Cell Composite	2
2 Cell Isotropic	3
2 Cell Composite	4
3 Cell Wing	5

<u>Step #3</u>
Beside this 'Input Flag' identifier, here is where applied tip loading, uniformly distributed loads, or linearly distributed loads can be assigned for this 1 Cell Analysis as shown below.

p_x	Distributed Force x-	0	lb/in
<i>p_y</i>	Distributed Force y-	0	lb/in
<i>p_z</i>	Distributed Force z-	0	lb/in
m_x	Distributed Torque	0	lb-in/in
m_y	Distributed Momen	0	lb-in/in
m_z	Distributed Momen	0	lb-in/in
ed Tip Loa	ading		
Px	Applied Force x-dr	0	lb
Py	Applied Force y-di	0	lb
Pz	Applied Force z-di	0	lb
Мx	Applied Torque x-	0	lb/in
My	Applied Moment y	0	lb/in
Mz	Applied Moment z	0	lb/in
rmly Dis	stributed Loads		
p_x	Distributed For	0	lb/in
<i>p_y</i>	Distributed For	0	lb/in
p_z	Distributed For	8	lb/in
m_x	Distributed To	0	lb-in/in
m_y	Distributed Mo	0	lb-in/in
m z	Distributed Mo	0	lb-in/in

After providing the above input, proceed to the section '2) cantilever beam with thin-wall 1-cell rectangular cross-section - laminated composite', it should look like the image seen here. In this section, make sure the white cells in the region seen here are populated with 11.0 values.

Test Case 1	Stringer ID (fro	m Database)
Station (x/c) - PREFERRED	y (upper)	y (lower)
0.000		
0.010		
0.025		
0.050		
0.100		
0.150	11.000	11.000
0.250	11.000	11.000
0.350		
0.500		
0.650	11.000	11.000
0.800	11.000	11.000
1.000		

This corresponds to how the bending and shear flow analysis is conducted and is necessary for the code to run.

Step #5

To the right of the previous table, here is where the user can define the geometry needed for 1 Cell Analysis, the blacked out cells should not have any input.

Test Cases (1 Cell)				1000	
Node Location	x (inches)	y (inches)	Node Location	x (inches)	y (inches)
1			7	-1.5	-2.5
2			8	-0.5	-2.5
3			9	0.5	-2.5
4			10	1.5	-2.5
5			11	2.5	-2.5
6	-2.5	-2.5	12		

Also, it is assumed that the user inputs the node locations corresponding to an origin defined at the geometric center for 1 Cell Analysis. This is highlighted with a reference of a 1 Cell example further to the right of the table shown above. Please note that these nodes correspond only to the lower half of the geometry. The MATLAB Code will then mirror them about the y = 0 axis.

Below the user defined node locations, is a table where the user can define the material properties required for analysis, as seen here.

Test Case 1	in ID (from Databas	se)
Skin Connectivity	y (upper)	y (lower)
node 1 to node 2		
node 2 to node 3		
node 3 to node 4		
node 4 to node 5		
node 5 to node 6		
node 6 to node 7	4	4
node 7 to node 8	4	4
node 8 to node 9	6	7
node 9 to node 10	6	7
node 10 to node 1	8	9
node 11 to node 1		

Spar	ID
Fwd Vertical Box	5
Vertical Shear We	
Bck Vertical Box V	1
Struct Box Wall (no	2

Because this is a composite laminate analysis, various material ID's will be input here. Also, for the spar ID's only the 'Fwd Vertical Box' and 'Struct Box Wall' ID's are used, but all 4 cells need input to run the code.

<u>Step #7</u>

After assigning the material ID, scroll back up to the section 'Project 1: Additional Input'. The section should look similar to the first picture of the '1 Cell Analysis Composite Analysis' previously shown. This is where the user can define the unique laminate layups that will be used in their structure.

Step #8
Looking at the first region, as seen below

X	Project 1:	Additional Input	
Ply#	1	2	3
CompID1 (Material ID)	7	7	7
CompID2 (Material ID)	7	7	7
CompID3 (Material ID)	4	4	
CompID4 (Material ID)	7	7	7
CompID5 (Material ID)	1	1	1
CompID6 (Material ID)	1	1	1
CompID7 (Material ID)	1	1	1
CompID8 (Material ID)	1	1	1
CompID9 (Material ID)	1	1	1
CompID10 (Material ID)	1	1	1
CompID11(Material ID)	1	1	1

This is where laminates are defined to a corresponding material ID. This corresponding material ID pertains to an ID in another Excel file. Please open the Excel file 'SE142_Material_DataBaseHK.xlsx'.

Step #9

The file should resemble the figure below.

Aerospao	e and Composite Material Data Base, Com	piled by John Ko	osmatka						
	11/10/2018								
Reinforcer	ment (Fiber) Properties Data Base								
		2							
Variable	Description	Units				Carbon			
	Material ID Number		1	2	3	4	5	6	7
	Material Name:	1	A54	T300	TS00	IME	IM7	High Modulus	Utra Modul
	Fiber Diameter	inch	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003
E ₄	Young's Modulus (Longitudinal)	lb/in ²	33000000	33500000	3401.1300	36330000	40080000	330000	7000000
En	Young's Modulus (Transverse)	lb/in ²	2400000	2179000	2047900	2020000	2755700	1300000	1100000
Gu	Shear Modulus (L-T plane)	lb/in ³	360000	400000	2132000	7390000	3916000	2700000	2700000
G _m	Shear Modulus (T-T plane)	lb/in²	1000000	1019000	930850	1200000	1015000	700000	700000
Vsi	Poisson ratio (L-T plane)		0.2	0.2	0.2462	0.26	0.2	0.2	0.2
V _H	Poisson ratio (T-T plane)		0.2	0.2	0.1	0.33	0.2	0.25	0.25
Pr	Weight Density	lb/in*	0.05	0.06338	0.06903	0.063	0.0643	0.068	0.072
an	Thermal expansion coefficient (Longitidinal)	(in/in)*F	000000	0.0000004	0.000004	-0.000000566	-0.0000001	0.0000035	0.0000
a) T	Thermal expansion coefficient (Tranverse)	(inlin)/F	0.0000083	0.0000067	0.0000067	0.0000018	0.00000%	0.00000%	0.000003
Kr	Heat Conduction (Longitudinal)	BTU/hr/tt/°F/in	580	580	380	580	600	600	600
Ker	Heat Conduction (Transverse)	BTU/m/tt/~F/in	38	38	58	38	60	60	60
FR	Tension strength	lb/in²	570000	362590	362990	415000	751.295	190000	150000
FR	Compression strength	lb/in ²	400000	290000	290000	-367000	464120	170000	150000
En	TensionStrain - Ultimate	in/in	0.0173	0.0109	0.0107	0.0115	0.0188	0.0036	0.0022
£ _{cc}	Compression Strain - Ultimate	in/in	0.0122	0.0087	0.00%	0.0302	0.0116	0.0033	0.0022
1000	Reference	7.50						1:	19

Please scroll down to the section labeled 'Orthotropic Lamina Properties-Unidirectional and Fabrics'.

	Orthotro pl	c Lamina Properties - Unidirectional and	d Fabrics				
	Variable	Description	Units		Carbon	/ероху	**
1		Material ID Number		1	2	3	4
2		Material Name:		uni (AS-4/3501-6)	uni (1M6/3501-6)	uni (IM7/977-3)	Wowen (AGP370-5H/3)
3	Vr	Fiber Volume Fraction		0.63	0.635	0.65	0.62
4	E ₁	Young's Modulus (Longitudinal)	lb/In ²	21300000	23300000	27700000	11200000
5	E2	Young's Modulus (Transverse)	lb/In ²	1500000	1395000	1440000	10900000
6	E3	Young's Modulus (Out-of-Plane)	lb/in ²	1500000	1395000	1440000	2000000
7	G ₁₂	Shear Modulus (1-2 plane)	lb/in ²	1000000	916000	1130000	940000
8	Gis	Shear Modulus (1-3 plane)	lb/In ²	1000000	916000	1130000	740000
9	G ₂₃	Shear Modulus (2-3 plane)	lb/in ²	540000	520000	600000	590000
10	V ₁₂	Poiss on Ratio (1-2 plane)		0.27	0.2965	0.35	0.06
11	V13	Poiss on Ratio (1-3 plane)		0.27	0.2965	0.35	0.37
12	V ₂₃	Poisson Ratio (2-3 plane)		0.45	0.468	0.45	0.45

As can be seen there are material ID's underneath the heading 'Carbon/epoxy' to help designate which material corresponds to which ID's. The previously mentioned Excel file uses

these ID's to designate what the material properties are for each lamina in a specific layup. Now we can go back to the 'SE143A UAV-CSA INPUT.xlsx' file to continue interpreting the inputs.

Step #10

Looking at the region below were we previously defined the layup materials that pertained to each lamina, we can see another region corresponding to thicknesses of each lamina of each layup, as seen here.

THICKNESSID1	0.0085	0.0085	0.0085
THICKNESSID2	0.0085	0.0085	0.0085
THICKNESSID3	0.012	0.012	
THICKNESSID4	0.0085	0.0085	0.0085
THICKNESSID5	0.001	0.001	0.001
THICKNESSID6	0.001	0.001	0.001
THICKNESSID7	0.001	0.001	0.001
THICKNESSID8	0.001	0.001	0.001
THICKNESSID9	0.001	0.001	0.001
THICKNESSID10	0.001	0.001	0.001
THICKNESSID11	0.001	0.001	0.001

Here the user can define what thickness each lamina for every layup will be.

Step #11

After defining the thickness of each lamina for each individual laminate, we can define the appropriate lamina orientation as well as seen down below.

RotationID1	45	45	45
RotationID2	45	45	45
RotationID3	45	45	
RotationID4	45	45	45
RotationID5	0	0	0
RotationID6	0	0	0
RotationID7	0	0	0
RotationID8	0	0	0
RotationID9	0	0	0
RotationID10	0	0	0
RotationID11	0	0	0

Also, the laminate section of the 'SE 143A UAV-CSA INPUT.xlsx' requires the number of plies for each laminate definition to be defined as seen in the region here.

Number of PliesID1	3
Number of PliesID2	6
Number of PliesID3	2
Number of PliesID4	3
Number of PliesID5	8
Number of PliesID6	8
Number of PliesID7	8
Number of PliesID8	8
Number of PliesID9	8
Number of PliesID10	8
Number of PliesID11	8

Step #13

Lastly, it is **required** that every row of the laminate definition table is populated with values. All the columns do not have to be populated, as this corresponds to the amount of plies in each laminate definition. This can be seen in an example given here.

X	Project 1:
Ply#	1
CompID1 (Material ID)	7
CompID2 (Material ID)	7
CompID3 (Material ID)	4
CompID4 (Material ID)	7
CompID5 (Material ID)	1
CompID6 (Material ID)	1
CompID7 (Material ID)	1
CompID8 (Material ID)	1
CompID9 (Material ID)	1
CompID10 (Material ID)	1
ComplD11(Material ID)	1
THICKNESSID1	0.0085
THICKNESSID2	0.0085
THICKNESSID3	0.012
THICKNESSID4	0.0085
THICKNESSID5	0.001
THICKNESSID6	0.001
THICKNESSID7	0.001
THICKNESSID8	0.001
THICKNESSID9	0.001
THICKNESSID10	0.001
THICKNESSID11	0.001
RotationID1	45
RotationID2	45
RotationID3	45
RotationID4	45
RotationID5	0
RotationID6	0
RotationID7	0
RotationID8	0
RotationID9	0
RotationID10	0
RotationID11	0
Number of PliesID1	3
Number of PliesID2	6
Number of PliesID3	2
Number of PliesID4	3
Number of PliesID5	8
Number of PliesID6	8
Number of PliesID7	8
Number of PliesID8	8
Number of PliesID9	8
Number of PliesID10	8
Number of PliesID11	8

After all the inputs have been assigned to the Excel sheet 'Team (B)', please go to the Excel sheet within the same workbook labeled 'Input'. The file should look like the figure below.

Do not worry about the input in any of the cells except the ones talked about in the following steps, as the code does not read these cells for this 1 Cell Analysis.

Step #15

Scroll down to the cell 'E83', this is where you will define the beam length for this analysis. The units will correspond to inches as this analysis is done in the English system.

227.47	4 P.C. 100 100 100 100 100 100 100 100 100 10	0.00	- N N	\neg
L	Wing-Structural Length	60	inch or m	- 1

Step #16

Scroll down to cell 'E:153', this is where the number of cross sections are accounted for. Enter the desired refinement in the cell given below.

Variable	Description	Value	Units
dx	discretize wing length	80	1

Scroll down to cell 'E:188', this is where the number of subdivisions of each wing segment (corresponding to the node locations specified earlier) can be defined.

Variable	Description	Value	Units
ds	subdivide each wing skin segmer	10	1

Step #18

Finally, save and close the file 'SE143A UAV-CSA INPUT (v4).xlsx' and open up the MATLAB file labeled 'SE143A_WingAnalysisCode_vGJnCo.m'. The file pop-up screen should be similar to the one seen below.

Simply, run the code using the 'Run' button in the 'Editor' section of the 'Toolstrip'.

Step #19

To view results, open up the Excel file 'SE143A UAV CSA OUTPUT (v1)'. The first few sheets will not be populated as those belong to the Wing Analysis portion of the code, but the following sheets will be populated with figures depicting the analysis conclusions: '3) Wing Definition', '4) Shear Moment Diagrams', '5) Wing Bending', '6) Wing Shear'.

2 Cell Homogenous Analysis

Step #1

In order to run the necessary 2 Cell Homogenous test case the user will need to open the 'SE143A UAV-CSA INPUT.xlsx' file within the file directory of the submitted code. Please be in the Excel Sheet labeled 'Team (B)'. Once the file is opened, it should look like the file below.

Step #2

The user should proceed to the section of the file corresponding to heading 'Project 2: Validation Studies Input'. In order to ensure that 2 Cell Homogenous Analysis is being analyzed, be sure to input a value of 3 to the corresponding 'Test Case Input Flag' as shown here.

Х	Project 2:
Test Case Input Flag 1 Cell Isotropic	3
1 Cell Composite	2
2 Cell Isotropic	3
2 Cell Composite	4
3 Cell Wing	5

<u>Step #3</u>
Beside this 'Input Flag' identifier, here is where applied tip loading, uniformly distributed loads, or linearly distributed loads can be assigned for this 2 Cell Analysis as shown below.

p_x	Distributed Force x-	0	lb/in
_v	Distributed Force y-	0	lb/in
_z	Distributed Force z-	0	lb/in
_x	Distributed Torque	0	lb-in/in
_y	Distributed Momen	0	lb-in/in
<u>ı_</u> z	Distributed Momen	0	lb-in/in
Tip Loa	ading		
P _X	Applied Force x-dr	0	lb
y	Applied Force y-di	0	lb
P _Z	Applied Force z-di	0	lb
I x	Applied Torque x-	0	lb/in
I y	Applied Moment y	0	lb/in
1z	Applied Moment z	0	lb/in
mly Di	stributed Loads		
<i>p_x</i>	Distributed For	0	lb/in
<i>p_y</i>	Distributed For	0	lb/in
p_z	Distributed For	8	lb/in
n_x	Distributed To	0	lb-in/in
n_y	Distributed Mo	0	lb-in/in
n_z	Distributed Mo	0	lb-in/in

After providing the above input, proceed to the section '3) cantilever beam with thin-wall 2-cell D-Section (ABAQUS comparison) - isotropic', it should look like the image seen here. In this section, make sure the white cells in the region seen here are populated with 11.0 values.

TestCase 2	er ID (from Database)		
Station (x/c) - PREFERRED	y (upper)	y (lower)	
0.000			
0.010	11.000	11.000	
0.025	2		
0.050			
0.100			
0.150	11.000	11.000	
0.250	11.000	11.000	
0.350			
0.500			
0.650	11.000	11.000	
0.800	11.000	11.000	
1.000			

This corresponds to how the bending and shear flow analysis is conducted and is necessary for the code to run.

Step #5

To the right of the previous table, here is where the user can define the geometry needed for 2 Cell Analysis, the blacked out cells should not have any input.

Test Cases (2 Cell)					
Node Location	x (inches)	y (inches)	Node Location	x (inches)	y (inches)
1	-1.5	0	7	1	-1.5
2	-1.47	-0.3	8	4	-1.5
3	-1.22	-0.869	9	5	-1.5
4	-1	-1.1	10	7	-1.5
5	-0.6	-1.37	11	8	-1.5
6	0	-1.5	12		

Also, it is assumed that the user inputs the node locations corresponding to an origin defined at the radial definition for a semi-circle for 2 Cell Analysis. This is highlighted with a reference of a 2 Cell example further to the right of the table shown above. Please note that these nodes correspond only to the lower half of the geometry. The MATLAB Code will then mirror them about the y = 0 axis.

<u>Step #6</u> Below the user defined node locations, is a table where the user can define the material properties required for analysis, as seen here.

Test Case 2	in ID (from Databas	se)
Skin Connectivity	y (upper)	y (lower)
node 1 to node 2	1	1
node 2 to node 3	1	1
node 3 to node 4	1	1
node 4 to node 5	1	1
node 5 to node 6	1	1
node 6 to node 7	1	1
node 7 to node 8	1	1
node 8 to node 9	1	1
node 9 to node 10	1	1
node 10 to node 1	. 1	1
node 11 to node 1		

Spar	ID	
Fwd Vertical Box	1	
Vertical Shear We		
Bck Vertical Box V	1	
Struct Box Wall (no	1	

Because this is an isotropic analysis, only input one material ID to all the corresponding cells. Also, for the spar ID's only the 'Fwd Vertical Box' and 'Struct Box Wall' ID's are used, but all 4 cells need input to run the code.

<u>Step #7</u>
After assigning the material ID, scroll back up to right above the section 'Project 2: Validation Studies Input'. The section should look similar to the picture below.

WING SKIN DATA BASE				
Variable	Description	Units	ID: 1	ID: 2
t	thickness	inch or mm	0.040	111000
E	Young's Mod	Msi or Gpa	1.700	
G	Shear Modu	Msi or Gpa	1.079	
σ _τ	Allowable St	Ksi or Mpa	3.8	
σ˙c	Allowable St	Ksi or Mpa	-60	
σ_{s}^{\bullet}	Allowable St	Ksi or Mpa	8.6	
ρ	Density	lb/in3 or gm/in3	0.023	

Make sure that only ID:1 values are populated to material properties that the user would like to define as seen in the above table. Also, make sure to populate ID:11 values to be zero, this is needed for how the code is written. Therefore, ID:11 should look like this.

ID: 7	ID: 8	ID:9	ID: 10	ID: 11
				0.000
				0.000
				0.000
				0
				0
				0
				0

After all the inputs have been assigned to the Excel sheet 'Team (B)', please go to the Excel sheet within the same workbook labeled 'Input'. The file should look like the figure below.

Do not worry about the input in any of the cells except the ones talked about in the following steps, as the code does not read these cells for this 2 Cell Analysis.

Step #9

Scroll down to the cell 'E83', this is where you will define the beam length for this analysis. The units will correspond to inches as this analysis is done in the English system.

L Wing-Structural Length	60	inch or m	
--------------------------	----	-----------	--

Scroll down to cell 'E:153', this is where the number of cross sections are accounted for. Enter the desired refinement in the cell given below.

Variable	Description	Value	Units
dx	discretize wing length	80	1

Step #11

Scroll down to cell 'E:188', this is where the number of subdivisions of each wing segment (corresponding to the node locations specified earlier) can be defined.

Variable	Description	Value	Units
ds	subdivide each wing skin segmer	10	1

Step #12

Finally, save and close the file 'SE143A UAV-CSA INPUT (v4).xlsx' and open up the MATLAB file labeled 'SE143A_WingAnalysisCode_vGJnCo.m'. The file pop-up screen should be similar to the one seen below.

Simply, run the code using the 'Run' button in the 'Editor' section of the 'Toolstrip'.

Step #13

To view results, open up the Excel file 'SE143A UAV CSA OUTPUT (v1)'. The first few sheets will not be populated as those belong to the Wing Analysis portion of the code, but the following sheets will be populated with figures depicting the analysis conclusions: '3) Wing Definition', '4) Shear Moment Diagrams', '5) Wing Bending', '6) Wing Shear'.

2 Cell Composite Analysis

Step #1

In order to run the necessary 2 Cell Composite test case the user will need to open the 'SE143A UAV-CSA INPUT.xlsx' file within the file directory of the submitted code. Please be in the Excel Sheet labeled 'Team (B)'. Once the file is opened, it should look like the file below.

Step #2

The user should proceed to the section of the file corresponding to heading 'Project 2: Validation Studies Input'. In order to ensure that 2 Cell Composite Analysis is being analyzed, be sure to input a value of 4 to the corresponding 'Test Case Input Flag' as shown here.

Х	Project 2
Test Case Input Flag	4
1 Cell Isotropic	1
1 Cell Composite	2
2 Cell Isotropic	3
2 Cell Composite	4
3 Cell Wing	5

Step #3
Besides this 'Input Flag' identifier, here is where applied tip loading, uniformly distributed loads, or linearly distributed loads can be assigned for this 2 Cell Analysis as shown below.

p_x	Distributed Force x-	0	lb/in
<i>p_y</i>	Distributed Force y-	0	lb/in
p_z	Distributed Force z-	0	lb/in
m_x	Distributed Torque	0	lb-in/in
m_y	Distributed Momen	0	lb-in/in
m_z	Distributed Momen	0	lb-in/in
Applied Tip Loa	ding		
Px	Applied Force x-dr	0	lb
Py	Applied Force y-di	0	lb
Pz	Applied Force z-di	0	lb
Mx.	Applied Torque x-	0	lb/in
My	Applied Moment	0	lb/in
Mz	Applied Moment z	0	lb/in
Jniformly Dis	tributed Loads		
<i>p_x</i>	Distributed For	0	lb/in
<i>p_y</i>	Distributed For	0	lb/in
<i>p_z</i>	Distributed For	8	lb/in
m_x	Distributed To	0	lb-in/in
m_y	Distributed Mo	0	lb-in/in
m_z	Distributed Mo	0	lb-in/in

After providing the above input, proceed to the section '4) cantilever beam with thin-wall 2-cell D-Section (ABAQUS comparison) - laminated composite', it should look like the image seen here. In this section, make sure the white cells in the region seen here are populated with 11.0 values.

TestCase 2	er ID (from Data	base)
Station (x/c) - PREFERRED	y (upper)	y (lower)
0.000		
0.010	11.000	11.000
0.025		
0.050		
0.100		
0.150	11.000	11.000
0.250	11.000	11.000
0.350		
0.500		
0.650	11.000	11.000
0.800	11.000	11.000
1.000		

This corresponds to how the bending and shear flow analysis is conducted and is necessary for the code to run.

Step #5

To the right of the previous table, here is where the user can define the geometry needed for 2

Cell Analysis, the blacked out cells should not have any input.

Test Cases (2 Cell)					
Node Location	x (inches)	y (inches)	Node Location	x (inches)	y (inches)
1	-1.5	0	7	1	-1.5
2	-1.47	-0.3	8	4	-1.5
3	-1.22	-0.869	9	5	-1.5
4	-1	-1.1	10	7	-1.5
5	-0.6	-1.37	11	8	-1.5
6	0	-1.5	12		

Also, it is assumed that the user inputs the node locations corresponding to an origin defined at the radial definition for a semi-circle for 2 Cell Analysis. This is highlighted with a reference of a 2 Cell example further to the right of the table shown above. Please note that these nodes correspond only to the lower half of the geometry. The MATLAB Code will then mirror them about the y = 0 axis.

<u>Step #6</u>
Below the user defined node locations, is a table where the user can define the material properties required for analysis, as seen here.

Test Case 2	in ID (from Databas	se)
Skin Connectivity	y (upper)	y (lower)
node 1 to node 2	1	1
node 2 to node 3	1	1
node 3 to node 4	1	1
node 4 to node 5	1	1
node 5 to node 6	1	1
node 6 to node 7	2	2
node 7 to node 8	1	1
node 8 to node 9	1	1
node 9 to node 10	1	1
node 10 to node 1	2	2
node 11 to node 1		

Spar	ID
Fwd Vertical Box	3
Vertical Shear We	
Bck Vertical Box V	1
Struct Box Wall (no	3

Because this is a composite laminate analysis, various material ID's will be input here. Also, for the spar ID's only the 'Fwd Vertical Box' and 'Struct Box Wall' ID's are used, but all 4 cells need input to run the code.

Step #7

After assigning the material ID, scroll back up to the section 'Project 1: Validation Studies Input'. The section should look similar to the first picture of the '2 Cell Analysis Composite Analysis' previously shown. This is where the user can define the unique laminate layups that will be used in their structure.

Step #8
Looking at the first region, as seen below

Х	Project 1:	Additional Input	
Ply#	1	2	3
CompID1 (Material ID)	7	7	7
CompID2 (Material ID)	7	7	7
CompID3 (Material ID)	4	4	
CompID4 (Material ID)	7	7	7
CompID5 (Material ID)	1	1	1
CompID6 (Material ID)	1	1	1
CompID7 (Material ID)	1	1	1
CompID8 (Material ID)	1	1	1
CompID9 (Material ID)	1	1	1
CompID10 (Material ID)	1	1	1
CompID11(Material ID)	1	1	1

This is where laminates are defined to a corresponding material ID. This corresponding material ID pertains to an ID in another Excel file. Please open the Excel file 'SE142_Material_DataBaseHK.xlsx'.

Step #9

The file should resemble the figure below.

Aerospao	e and Composite Material Data Base, Com	piled by John Ko	osmatka						
	11/10/2018								
Reinforcer	ment (Fiber) Properties Data Base								
		2							
Variable	Description	Units				Carbon			
	Material ID Number		1	2	3	4	5	6	7
	Material Name:	1	A54	T300	TS00	IME	IM7	High Modulus	Utra Modul
	Fiber Diameter	inch	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003
E ₄	Young's Modulus (Longitudinal)	lb/in ²	33000000	33500000	3401.1300	36330000	40080000	330000	7000000
En	Young's Modulus (Transverse)	lb/in ²	2400000	2179000	2047900	2020000	2755700	1300000	1100000
Gu	Shear Modulus (L-T plane)	lb/in ³	360000	400000	2132000	7390000	3916000	2700000	2700000
G _m	Shear Modulus (T-T plane)	lb/in²	1000000	1019000	930850	1200000	1015000	700000	700000
Vsi	Poisson ratio (L-T plane)		0.2	0.2	0.2462	0.26	0.2	0.2	0.2
V _H	Poisson ratio (T-T plane)		0.2	0.2	0.1	0.33	0.2	0.25	0.25
Pr	Weight Density	lb/in*	0.05	0.06338	0.06903	0.063	0.0643	0.068	0.072
an	Thermal expansion coefficient (Longitidinal)	(in/in)*F	000000	0.0000004	0.000004	-0.000000566	-0.0000001	0.0000035	0.0000
a) T	Thermal expansion coefficient (Tranverse)	(inlin)/F	0.0000083	0.0000067	0.0000067	0.0000018	0.00000%	0.00000%	0.000003
Kr	Heat Conduction (Longitudinal)	BTU/hr/tt/°F/in	580	580	380	580	600	600	600
Ker	Heat Conduction (Transverse)	BTU/m/tt/~F/in	38	38	58	38	60	60	60
FR	Tension strength	lb/in²	570000	362590	362990	415000	751.295	190000	150000
FR	Compression strength	lb/in ²	400000	290000	290000	-367000	464120	170000	150000
En	TensionStrain - Ultimate	in/in	0.0173	0.0109	0.0107	0.0115	0.0188	0.0036	0.0022
£ _{cc}	Compression Strain - Ultimate	in/in	0.0122	0.0087	0.00%	0.0302	0.0116	0.0033	0.0022
1000	Reference	7.50						1:	19

Please scroll down to the section labeled 'Orthotropic Lamina Properties-Unidirectional and Fabrics'.

on ,	Orthotropl	c Lamina Properties - Unidirectional and	l Fabrics				
	Variable	Description	Units	"	Carbon	/epoxy	
1		Material ID Number	5	1	2	3	4
2	J.	Material Name:		uni (AS-4/3501-6)	uni (1M6/3501-6)	uni (IM7/977-3)	Woven (AGP370-5H/3)
3	V _f	Fiber Volume Fraction		0.63	0.635	0.65	0.62
4	E ₁	Young's Modulus (Longitudinal)	lb/in ²	21300000	23300000	27700000	11200000
5	E2	Young's Modulus (Transverse)	lb/In ²	1500000	1395000	1440000	10900000
6	E3	Young's Modulus (Out-of-Plane)	lb/in ²	1500000	1395000	1440000	2000000
7	G ₁₂	Shear Modulus (1-2 plane)	lb/In ²	1000000	916000	1130000	940000
8	Gis	Shear Modulus (1-3 plane)	lb/In ²	1000000	916000	1130000	740000
9	G ₂₃	Shear Modulus (2-3 plane)	lb/in ²	540000	520000	600000	590000
10	V ₁₂	Poiss on Ratio (1-2 plane)	- 7	0.27	0.2965	0.35	0.06
11	V13	Poisson Ratio (1-3 plane)		0.27	0.2965	0.35	0.37
12	V ₂₃	Poisson Ratio (2-3 plane)		0.45	0.468	0.45	0.45

As can be seen there are material ID's underneath the heading 'Carbon/epoxy' to help designate which material corresponds to which ID's. The previously mentioned Excel file uses

these ID's to designate what the material properties are for each lamina in a specific layup. Now we can go back to the 'SE143A UAV-CSA INPUT.xlsx' file to continue interpreting the inputs.

Step #10

Looking at the region below were we previously defined the layup materials that pertained to each lamina, we can see another region corresponding to thicknesses of each lamina of each layup, as seen here.

THICKNESSID1	0.0085	0.0085	0.0085
THICKNESSID2	0.0085	0.0085	0.0085
THICKNESSID3	0.012	0.012	
THICKNESSID4	0.0085	0.0085	0.0085
THICKNESSID5	0.001	0.001	0.001
THICKNESSID6	0.001	0.001	0.001
THICKNESSID7	0.001	0.001	0.001
THICKNESSID8	0.001	0.001	0.001
THICKNESSID9	0.001	0.001	0.001
THICKNESSID10	0.001	0.001	0.001
THICKNESSID11	0.001	0.001	0.001

Here the user can define what thickness each lamina for every layup will be.

Step #11

After defining the thickness of each lamina for each individual laminate, we can define the appropriate lamina orientation as well as seen down below.

RotationID1	45	45	45
RotationID2	45	45	45
RotationID3	45	45	
RotationID4	45	45	45
RotationID5	0	0	0
RotationID6	0	0	0
RotationID7	0	0	0
RotationID8	0	0	0
RotationID9	0	0	0
RotationID10	0	0	0
RotationID11	0	0	0

Also, the laminate section of the 'SE 143A UAV-CSA INPUT.xlsx' requires the number of plies for each laminate definition to be defined as seen in the region here.

Number of PliesID1	3
Number of PliesID2	6
Number of PliesID3	2
Number of PliesID4	3
Number of PliesID5	8
Number of PliesID6	8
Number of PliesID7	8
Number of PliesID8	8
Number of PliesID9	8
Number of PliesID10	8
Number of PliesID11	8

Step #13

Lastly, it is **required** that every row of the laminate definition table is populated with values. All the columns do not have to be populated, as this corresponds to the amount of plies in each laminate definition. This can be seen in an example given here.

X	Project 1:
Ply#	1
CompID1 (Material ID)	7
CompID2 (Material ID)	7
CompID3 (Material ID)	4
CompID4 (Material ID)	7
CompID5 (Material ID)	1
CompID6 (Material ID)	1
CompID7 (Material ID)	1
CompID8 (Material ID)	1
CompID9 (Material ID)	1
CompID10 (Material ID)	1
CompID11(Material ID)	1
THICKNESSID1	0.0085
THICKNESSID2	0.0085
THICKNESSID3	0.012
THICKNESSID4	0.0085
THICKNESSID5	0.001
THICKNESSID6	0.001
THICKNESSID7	0.001
THICKNESSID8	0.001
THICKNESSID9	0.001
THICKNESSID10	0.001
THICKNESSID11	0.001
RotationID1	45
RotationID2	45
RotationID3	45
RotationID4	45
RotationID5	0
RotationID6	0
RotationID7	0
RotationID8	0
RotationID9	0
RotationID10	0
RotationID11	0
Number of PliesID1	3
Number of PliesID2	6
Number of PliesID3	2
Number of PliesID4	3
Number of PliesID5	8
Number of PliesID6	8
Number of PliesID7	8
Number of PilesID7	8
Number of PliesID9	8
Number of PliesID10	8
Number of PliesID11	8

After all the inputs have been assigned to the Excel sheet 'Team (B)', please go to the Excel sheet within the same workbook labeled 'Input'. The file should look like the figure below.

Do not worry about the input in any of the cells except the ones talked about in the following steps, as the code does not read these cells for this 2 Cell Analysis.

Step #15

Scroll down to the cell 'E83', this is where you will define the beam length for this analysis. The units will correspond to inches as this analysis is done in the English system.

L Wing-Structural Length	60	inch or m	
--------------------------	----	-----------	--

Step #16

Scroll down to cell 'E:153', this is where the number of cross sections are accounted for. Enter the desired refinement in the cell given below.

Variable	Description	Value	Units
dx	discretize wing length	80	1

Scroll down to cell 'E:188', this is where the number of subdivisions of each wing segment (corresponding to the node locations specified earlier) can be defined.

Variable	Description	Value	Units
ds	subdivide each wing skin segmer	10	1

Step #18

Finally, save and close the file 'SE143A UAV-CSA INPUT (v4).xlsx' and open up the MATLAB file labeled 'SE143A_WingAnalysisCode_vGJnCo.m'. The file pop-up screen should be similar to the one seen below.

Simply, run the code using the 'Run' button in the 'Editor' section of the 'Toolstrip'.

Step #19

To view results, open up the Excel file 'SE143A UAV CSA OUTPUT (v1)'. The first few sheets will not be populated as those belong to the Wing Analysis portion of the code, but the following sheets will be populated with figures depicting the analysis conclusions: '3) Wing Definition', '4) Shear Moment Diagrams', '5) Wing Bending', '6) Wing Shear'.

3 Cell Composite Analysis

Step #1

In order to run the necessary 3 Cell Composite Wing Analysis test case the user will need to open the 'SE143A UAV-CSA INPUT.xlsx' file within the file directory of the submitted code. Please be in the Excel Sheet labeled 'Input'. Once the file is opened, it should look like the file below.

SE-143A Desi	gn of Composite Structures, Un									
	,			-47.4						
Version	Winter, 2020 (v 4)						4			
ProjectTitle:	UCS D Sterna UAV Test Case									
Variable	Description	Value	Units							
input	Input Units	1	1=US, 2=S1.							
Output	Output Units	1	1=US, 2=St							
						-		-		
Project 1:	Aircraft Performance - Calculat	tion of Aircr	aft Performance, Weig	ht and V-n Dia	gran					
	lynamic Definition									
		Value	Units							
Variable	Description	Value	Units							
Variable dC _L /da	Description Lift Curve Slope	0.113	1/degrae							
Variable dC _L /ds a _c	Description Lift Curve Slope Zero Lift Angle	0.113								
Variable dC _L /ds a _c C _{Loan} (+)	Description Lift Curve Slope Zero Lift Angle Max Lift at Stall (+)	0.113 -2.2 1.4	1/dagrase dagrase 1							
Variable dC_t/ds a _c C_tean (+) a _{total} (+)	Description Lift Curve Slope Zero Lift Angle Max Lift at Stell (+) Stell Angle (+)	0.113 -2.2 1.4 10.2	1/degrae							
Variable dC_L/ds a _c C_L _{max} (+) a _{tot} (-)	Description Lift Curve Slope Lift Curve Slope Ann Lift Angle Max Lift as Stall (4) Stall Angle (+) Max Lift at Stall (-)	0.113 -2.2 1.4	1/dagrase dagrase 1							
Variable dC_L/ds a _c C_L_max (*) a _{total} (*) C_L_max (c)	Description Lift Curve Slope Zeno Lift Angle Mac Lift at Stall (+) Stall Angle (+) Mac Lift at Stall (-) Stall Angle (-)	0.113 -2.2 1.4 10.2 -1.4 -14.6	1/dagrase dagrase 1							
Variable dC_L/ds a _c C_L _{max} (+) a _{tot} (-)	Description Lift Curve Slope Lift Curve Slope Ann Lift Angle Max Lift as Stall (4) Stall Angle (+) Max Lift at Stall (-)	0.113 -2.2 1.4 10.2 -1.4	1/dag rea dag rea 1 dag rea 1							
Variable dC_L/ds a _c C_L_max (*) a _{total} (*) C_L_max (c)	Description Lift Curve Slope Zeno Lift Angle Mac Lift at Stall (+) Stall Angle (+) Mac Lift at Stall (-) Stall Angle (-)	0.113 -2.2 1.4 10.2 -1.4 -14.6	1/dag rea dag rea 1 dag rea 1							
Variable dC_/ds a _c C_L_max (*) a _{tot} (*) C_L_max (c) a _{tot} (c) a _{tot} (c)	Description Lift Curve Slope Zeno Lift Angle Max Lift at Stall (4) Stall Angle (1) Max Lift at Stall (-) Stall Angle (-) Wing Moment Coefficient	0.113 -2.2 1.4 10.2 -1.4 -14.6 -0.095	1/dag rea dag rea 1 dag rea 1							
Variable dC_{Lobe} a _c C_{Lobe}(+) a _{min} (-) C_{Lobe}(-) C_{Lobe}(-) C_{Lobe}(-)	Description Lift Curve Slope Zeno Lift Angle Mar Lift at Stall (+) Stall Angle (+) Mhar Lift at Stall (-) Wing Moment Coefficient Panaistic Ong - Pusalage	0.113 -2.2 1.4 10.2 -1.4 -14.6 -0.095 0.017	1/dag rea dag rea 1 dag rea 1							
Variable dC_t/ds a _c C_{Lean} (+) a _{mid} (-) C_{Lean} (-) C_{Lean} (-) C_{Lean} (-) C_{Lean} (-)	Description Lift Curve Slope Zeno Lift Angle Max Lift at Stall (4) Stall Angle (+) Max Lift at Stall (-) Stall Angle (-) Wing Moment Coefficient Passitic Dog - Fuselage Passitic Dog - Wing	0.113 -2.2 1.4 30.2 -1.4 -34.6 -0.095 0.017	1/dag rea dag rea 1 dag rea 1							
Variable dC_t/ds a _c C_{Lean} (+) a _{mid} (-) C_{Lean} (-) C_{Lean} (-) C_{Lean} (-) C_{Lean} (-) C_{Lean} (-) C_{Lean} (-)	Description Lift Curve Slope Zeno Lift Angle Max Lift at Stall (4) Stall Angle (+) Max Lift at Stall (-) Stall Angle (-) Stall Angle (-) Parasitic Drag - Fusalage Parasitic Drag - Wing Induced Drag Coefficient	0.113 -2.2 1.4 10.2 -1.4 -14.6 -0.095 0.017 0.011 0.0226	1/dag rea dag rea 1 dag rea 1							
Variable dC_t/da a_0 C_t_max (+) a_{mit} (+) C_t_max (-) a_{mit} (-) C_m C_hot C_hot C_hot d_0	Description Lift Curve Slope Zeno Lift Angle Man Lift at Stall (4) Stall Angle (1) Man Lift at Stall (-) Stall Angle (1) Wing Moment Coefficient Parasitic Drag - Fuselage Induced Drag Coefficient Spanwise drag amplification	0.113 -2.2 1.4 10.2 -1.4 -14.5 -0.095 0.017 0.011 0.0226 1	1/dag rea dag rea 1 dag rea 1							

Step #2

Underneath the heading 'Project 1: Aircraft Performance - Calculation of Aircraft Performance, Weight, and V-n Diagram' proceed to fill in all the highlighted yellow cells with user input.

Step #3

Underneath the heading 'Project 2: Aircraft Wing Definition and Loading - Calculate Wing and Tail Loading' proceed to fill in all the highlighted yellow cells. However, there is no need to populate the region down below, as the 3 Cell Composite Analysis Code does not read from here.

(x/L)	Wing Station	Linear Chord	Actual Chord	Linear Sweep	(c/4) Sweep	Linear Twist	Twist
nondimen			inch			degr	ee
0	0	12		0.000		0	0
0.05	3.225	11.462		0.000		0.025	0
0.1	6.45	10.924		0.000		0.05	0
0.15	9.675	10.386		0.000		0.075	0
0.2	12.9	9.848	7A AV	0.000		0.1	0
0.25	16.125	9.31		0.000		0.125	0
0.3	19.35	8.772		0.000		0.15	0
0.35	22.575	8.234	2 2	0.000		0.175	0
0.4	25.8	7.696		0.000		0.2	0
0.45	29.025	7.158		0.000		0.225	0
0.5	32.25	6.62		0.000		0.25	0
0.55	35.475	6.082		0.000		0.275	0.05
0.6	38.7	5.544		0.000		0.3	0.1
0.65	41.925	5.006		0.000		0.325	0.15
0.7	45.15	4.468	*	0.000		0.35	0.2
0.75	48.375	3.93		0.000		0.375	0.25
0.8	51.6	3.392		0.000		0.4	0.3
0.85	54.825	2.854		0.000		0.425	0.35
0.9	58.05	2.316	33 33	0.000		0.45	0.4
0.95	61.275	1.778		0.000		0.475	0.45
1	64.5	1.24		0.000		0.5	0.5

Underneath the heading 'Project 3: Aircraft Wing Structural Definition and Section Properties' do not fill in any of the highlighted cells, as the 3 Cell Composite Analysis Code does not read from here.

Step #5

Underneath the heading 'Project 4: Internal Shear and Moment Diagrams' do not fill in any of the highlighted cells, as the 3 Cell Composite Analysis Code does not read from here.

Step #6

Underneath the heading 'Project 6: Wing Shear Behavior - Calculate Stringer Stresses Only", fill cell 'E:188' so that the wing skin segments along the half-span can be discretized, as seen below. Note for the 3 Cell Composite Analysis, because there is a fixed number of 89 cross sections, increasing the subdivisions will cause the code to take a long time to run due to first ply failure analysis. For reference, a ds value of 2 will take about 10 minutes to run with FPF.

Variable	Description	Value	Units
ds	subdivide each wing skin segmer	10	1

Underneath the heading 'Project 8: Fuselage Analysis' do not populate these cells, we do not read this data for our 3 Cell Composite Analysis for the wing.

Step #8

After populating the sheet 'Input', we can begin to populate the necessary cells within the same workbook, but now open the sheet labeled 'Team (B)'. The file should look like the one below.

Step #9

The user should proceed to the section of the file corresponding to heading 'Project 2: Validation Studies Input'. In order to ensure that 3 Cell Composite Analysis is being analyzed, be sure to input a value of 5 to the corresponding 'Test Case Input Flag' as shown here.

Х	Project 2:
Test Case Input Flag	5
1 Cell Isotropic	1
1 Cell Composite	2
2 Cell Isotropic	3
2 Cell Composite	4
3 Cell Wing	5

After providing the above input, proceed to the section 'Project 3: Large Wing Design Studies Input', it should look like the image seen here. In this section, make sure the white cells in the region seen here are populated with 11.0 values.

Test Case 3	er ID (from Data	ibase)
Station (x/c) - PREFERRED	y (upper)	y (lower)
0.000		
0.010	11.000	11.000
0.025		
0.050		
0.100		
0.150	11.000	11.000
0.250	11.000	11.000
0.350	11.000	11.000
0.500		
0.650	11.000	11.000
0.800	11.000	11.000
1.000		5

This corresponds to how the bending and shear flow analysis is conducted and is necessary for the code to run.

Step #11

To the right of the previous table, here is where the user can define the geometry needed for 3 Cell Analysis, the blacked out cells should not have any input.

Node Location	x (inches)	y (inches)	Node Location	x (inches)	y (inches)
1			7		
2			8		
3			9		
4			10		
5			11		
6			12		

Note, all the cells are blacked out, this is because the nodes on the airfoil are placed in their respective position relative to the chord, by the figure in 'Step #10' highlighted yellow cells. These are the x/c positions of the nodes for a user defined NACA 4 series airfoil that was defined in 'Step: #3'. Using this airfoil data and the Excel file '2020 03 09 Wing Planform.xlsx' that yields the planform geometry and corresponding sweep, the total wing geometry is given. In our Full Wing Analysis, we used the NACA 4314 airfoil with this wing planform data to construct the wing that was to be analyzed (for a fixed amount of 89 cross sections which was given in the planform Excel file).

Step #12
Below the user defined node locations, is a table where the user can define the material properties required for analysis, as seen here.

Test Case (3 Cell)	in ID (from Databas	se)
Skin Connectivity	y (upper)	y (lower)
node 1 to node 2	10	10
node 2 to node 3	8	1
node 3 to node 4	8	1
node 4 to node 5	8	1
node 5 to node 6	8	1
node 6 to node 7	2	2
node 7 to node 8	2	2
node 8 to node 9	2	2
node 9 to node 10	7	3
node 10 to node 1	6	4
node 11 to node 1		

Spar	ID
Fwd Vertical Box	5
Vertical Shear We	
Bck Vertical Box V	5
Struct Box Wall (no	9

Because this is a composite laminate analysis, various material ID's will be input here. Also, for the spar ID's only the 'Fwd Vertical Box', 'Bck Vertical Box', 'Struct Box Wall' ID's are used, but all 4 cells need input to run the code. Below is a reference to the node locations that correspond to any cross section on the 3 Cell Full Wing Analysis..

After assigning the material ID, scroll back up to the section 'Project 1: Additional Input'. This is where the user can define the unique laminate layups that will be used in their structure.

Step #14 Looking at the first region, as seen below

X	Project 1:	Additional Input	
Ply#	1	2	3
CompID1 (Material ID)	7	7	7
CompID2 (Material ID)	7	7	7
CompID3 (Material ID)	4	4	
CompID4 (Material ID)	7	7	7
CompID5 (Material ID)	1	1	1
CompID6 (Material ID)	1	1	1
CompID7 (Material ID)	1	1	1
CompID8 (Material ID)	1	1	1
CompID9 (Material ID)	1	1	1
CompID10 (Material ID)	1	1	1
ComplD11(Material ID)	1	1	1

This is where laminates are defined to a corresponding material ID. This corresponding material ID pertains to an ID in another Excel file. Please open the Excel file 'SE142_Material_DataBaseHK.xlsx'.

Step #15
The file should resemble the figure below.

Aerospao	e and Composite Material Data Base, Com	pilled by John Ko	osmatka						
Updated:	11/10/2018								
Reinforcer	ment (Fiber) Properties Data Base								
Variable	Description	Units				Carbon			
1	Material ID Number		1	2	3	4	5	6	7
- 0	Material Name:	S	A54	T300	TS00	1M6	IM7	High Modulus	Ultra Modulu
	Fiber Diameter	inch	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003
Ea	Young's Modulus (Longitudinal)	lb/in ²	33000000	33500000	3401.1300	36330000	4000000	3300000	700000
En	Young's Modulus (Transverse)	lb/in ²	2400000	2179000	2047900	2020000	2755700	1300000	1100000
Gu	Shear Modulus (L-T plane)	lb/in ³	360000	400000	2132000	7390000	3916000	2700000	2700000
G _m	Shear Modulus (T-T plane)	lb/in²	1000000	1019000	930850	1200000	1015000	700000	700000
Val	Poisson ratio (L-T plane)		0.2	0.2	0.2462	0.26	0.2	0.2	0.2
V _{rit}	Poisson ratio (T-T plane)		0.2	0.2	0.1	0.33	0.2	0.25	0.25
Pr	Weight Density	lb/in*	0.05	0.0838	0.06903	0.063	0.0643	0.068	0.072
an	Thermal expansion coefficient (Longitidinal)	(in/in)*F	000000	0.0000004	0.000004	-0.000000566	0.0000000	0.0000035	0.000003
a) T	Thermal expansion coefficient (Tranverse)	(inln)°E	0.0000083	0.0000067	0.0000067	8100000.0	0.00000%	0.00000%	0.00000%
Kri	Heat Conduction (Longitudinal)	BTU/hr/tt/°F/in	580	580	380	580	600	600	600
Ker	Heat Conduction (Transverse)	BTU/m/tt/*F/in	38	38	58	58	60	60	60
FR	Tension strength	lb/in²	570000	362590	362990	415000	751295	190000	150000
Fic	Compression strength	lb/in²	400000	290000	290000	-367000	464120	170000	150000
En	TensionStrain - Ultimate	in/in	0.0173	0.0109	0.0107	0.0115	0.0188	0.0036	0.0022
z _e	Compression Strain - Ultimate	in/in	0.0122	0.0087	0.0086	0.0302	0.0115	0.0033	0.0022
1270	Reference	7/24							15

Please scroll down to the section labeled 'Orthotropic Lamina Properties-Unidirectional and Fabrics'.

	Orthotropl	c Lamina Properties - Unidirectional and	d Fabrics				
	Variable	Description	Units		Carbon	/epoxy	
1		Material ID Number		1	2	3	4
2	J.	Material Name:		uni (AS-4/3501-6)	uni (1M6/3501-6)	umi (IM7/977-3)	Woven (AGP370-SH/3
3	V _f	Fiber Volume Fraction		0.63	0.635	0.65	0.62
4	E ₁	Young's Modulus (Longitudinal)	lb/In ²	21300000	23300000	27700000	11200000
5	E2	Young's Modulus (Transverse)	lb/In ²	1500000	1395000	1440000	10900000
6	E ₃	Young's Modulus (Out-of-Plane)	lb/in ²	1500000	1395000	1440000	2000000
7	G ₁₂	Shear Modulus (1-2 plane)	lb/In ²	1000000	916000	1130000	940000
8	Gis	Shear Modulus (1-3 plane)	lb/In ²	1000000	916000	1130000	740000
9	G ₂₃	Shear Modulus (2-3 plane)	lb/in ²	540000	520000	600000	590000
10	V ₁₂	Poiss on Ratio (1-2 plane)		0.27	0.2965	0.35	0.06
11	V13	Poiss on Ratio (1-3 plane)	Î	0.27	0.2965	0.35	0.37
12	V ₂₃	Poisson Ratio (2-3 plane)		0.45	0.468	0.45	0.45

As can be seen there are material ID's underneath the heading 'Carbon/epoxy' to help designate which material corresponds to which ID's. The previously mentioned Excel file uses these ID's to designate what the material properties are for each lamina in a specific layup. Now we can go back to the 'SE143A UAV-CSA INPUT.xlsx' file to continue interpreting the inputs.

Step #16

Looking at the region below were we previously defined the layup materials that pertained to each lamina, we can see another region corresponding to thicknesses of each lamina of each layup, as seen here.

THICKNESSID1	0.0085	0.0085	0.0085
THICKNESSID2	0.0085	0.0085	0.0085
THICKNESSID3	0.012	0.012	
THICKNESSID4	0.0085	0.0085	0.0085
THICKNESSID5	0.001	0.001	0.001
THICKNESSID6	0.001	0.001	0.001
THICKNESSID7	0.001	0.001	0.001
THICKNESSID8	0.001	0.001	0.001
THICKNESSID9	0.001	0.001	0.001
THICKNESSID10	0.001	0.001	0.001
THICKNESSID11	0.001	0.001	0.001

Here the user can define what thickness each lamina for every layup will be.

Step #18
After defining the thickness of each lamina for each individual laminate, we can define the appropriate lamina orientation as well as seen down below.

RotationID1	45	45	45
RotationID2	45	45	45
RotationID3	45	45	
RotationID4	45	45	45
RotationID5	0	0	0
RotationID6	0	0	0
RotationID7	0	0	0
RotationID8	0	0	0
RotationID9	0	0	0
RotationID10	0	0	0
RotationID11	0	0	0

Also, the laminate section of the 'SE 143A UAV-CSA INPUT.xlsx' requires the number of plies for each laminate definition to be defined as seen in the region here.

Number of PliesID1	3
Number of PliesID2	6
Number of PliesID3	2
Number of PliesID4	3
Number of PliesID5	8
Number of PliesID6	8
Number of PliesID7	8
Number of PliesID8	8
Number of PliesID9	8
Number of PliesID10	8
Number of PliesID11	8

Lastly, it is **required** that every row of the laminate definition table is populated with values. All the columns do not have to be populated, as this corresponds to the amount of plies in each laminate definition. This can be seen in an example given here.

Х	Project 1:
Ply#	1
CompID1 (Material ID)	7
CompID2 (Material ID)	7
CompID3 (Material ID)	4
CompID4 (Material ID)	7
CompID5 (Material ID)	1
CompID6 (Material ID)	1
CompID7 (Material ID)	1
CompID8 (Material ID)	1
CompID9 (Material ID)	1
ComplD10 (Material ID)	1
CompID11(Material ID)	1
THICKNESSID1	0.0085
THICKNESSID2	0.0085
THICKNESSID3	0.012
THICKNESSID4	0.0085
THICKNESSID5	0.001
THICKNESSID6	0.001
THICKNESSID7	0.001
THICKNESSID8	0.001
THICKNESSID9	0.001
THICKNESSID10	0.001
THICKNESSID11	0.001
RotationID1	45
RotationID2	45
RotationID3	45
RotationID4	45
RotationID5	0
RotationID6	0
RotationID7	0
RotationID8	0
RotationID9	0
RotationID10	0
RotationID11	0
Number of PliesID1	3
Number of PliesID2	6
Number of PliesID3	2
Number of PliesID4	3
Number of PliesID5	8
Number of PliesID6	8
Number of PliesID7	8
Number of PliesID8	8
Number of PliesID9	8
Number of PliesID10	8
Number of PliesID11	8

Step #21

Finally, save and close the file 'SE143A UAV-CSA INPUT (v4).xlsx' and open up the MATLAB file labeled 'SE143A_WingAnalysisCode_vGJnCo.m'. The file pop-up screen should be similar to the one seen below.

Simply, run the code using the 'Run' button in the 'Editor' section of the 'Toolstrip'.

Step #13

To view results, open up the Excel file 'SE143A UAV CSA OUTPUT (v1)'. All sheets besides the '0) Echo' and '7) Wing Vibrations' should be populated.