Advanced Mathematics Textbook A Comprehensive Guide

Your Name

August 27, 2025

Contents

Preface							
1	Ma	thematical Foundations	1				
	1.1	Set Theory	1				
		1.1.1 Set Operations	1				
	1.2	Logic and Proof Techniques	2				
		1.2.1 Logical Statements	2				
		1.2.2 Methods of Proof	2				
	1.3	Functions and Relations	3				
	1.4	Exercises	3				
2	Abstract Algebra 5						
	2.1	Groups	5				
		2.1.1 Subgroups	6				
	2.2	Rings	7				
	2.3	Vector Spaces	7				
	2.4	Exercises	8				
3	Calculus						
	3.1	Limits and Continuity	9				
	3.2	Differentiation	10				
		3.2.1 Applications of Derivatives	10				
	3.3	Integration	11				
	3.4	Techniques of Integration	12				
		3.4.1 Integration by Parts	12				
		3.4.2 Trigonometric Substitution	12				
	3.5	Series	12				
	3.6	Exercises	13				
4	Linear Algebra 15						
-	4.1	Matrices and Systems of Linear Equations	15				
		4.1.1 Gaussian Elimination	16				
	4.2	Determinants	16				
	4.3	Vector Spaces and Subspaces	17				
	4.4	Eigenvalues and Eigenvectors	18				

ii CONTENTS

	4.5	Inner Products and Orthogonality	19					
	4.6	Exercises	19					
5	Real Analysis 2							
	5.1	The Real Number System	21					
	5.2	Sequences and Series	22					
	5.3	Continuity and Uniform Continuity	22					
	5.4	Differentiation	23					
	5.5	Integration	$\frac{1}{24}$					
	5.6	Metric Spaces	$\overline{24}$					
	5.7	Exercises	25					
6	Dia	crete Mathematics	27					
U	6.1		27					
	6.2	Graph Theory	28					
	0.2		29					
	6.2	r	29					
	6.3	Number Theory	$\frac{29}{30}$					
	6.1							
	6.4	Recurrence Relations	30 31					
	6.5	Boolean Algebra						
	6.6	Exercises	31					
7	Probability Theory 33							
	7.1	Sample Spaces and Events	33					
	7.2	Probability Measures	34					
	7.3	Conditional Probability	34					
	7.4	Random Variables	35					
	7.5	Expected Value and Variance	36					
	7.6	Common Discrete Distributions	36					
		7.6.1 Binomial Distribution	36					
		7.6.2 Poisson Distribution	37					
	7.7	Continuous Distributions	37					
		7.7.1 Normal Distribution	37					
	7.8	Limit Theorems	38					
	7.9	Exercises	38					
8	Geo	ometry	39					
U	8.1	Euclidean Geometry	39					
	0.1	8.1.1 Euclid's Axioms	39					
	8.2	Triangles and Congruence	40					
	8.3	Circles	41					
	8.4	Coordinate Geometry	41					
	8.5	Transformations	42					
	8.6	Area and Volume	42					
	8.7	Vectors in Geometry	43					

CONTENTS

	8.8 8.9	Introduction to Non-Euclidean Geometry	43 44					
\mathbf{A}	Mathematical Notation 45							
	A.1	Set Theory Notation	45					
	A.2	Number Systems	46					
	A.3	Logic and Proof Notation	46					
	A.4	Functions and Relations	46					
	A.5	Calculus Notation	47					
	A.6	Linear Algebra Notation	47					
	A.7	Probability Notation	48					
	A.8	Number Theory Notation	48					
	A.9	Graph Theory Notation	48					
	A.10	Common Mathematical Constants	49					
В	Sele	ected Solutions	51					
_		Chapter 1: Mathematical Foundations	51					
		B.1.1 Exercise 1	51					
		B.1.2 Exercise 3	51					
	B.2	Chapter 2: Abstract Algebra	52					
		B.2.1 Exercise 1	52					
	В.3	Chapter 3: Calculus	52					
		B.3.1 Exercise 1	52					
		B.3.2 Exercise 4	52					
	B.4	Chapter 4: Linear Algebra	53					
		B.4.1 Exercise 2	53					
	B.5	Chapter 5: Real Analysis	53					
		B.5.1 Exercise 1	53					
	B.6	Chapter 6: Discrete Mathematics	54					
		B.6.1 Exercise 1	54					
	B.7	Chapter 7: Probability Theory	54					
		B.7.1 Exercise 2	54					
	B.8	Chapter 8: Geometry	54					
		B.8.1 Exercise 4	54					

iv

List of Figures

vi LIST OF FIGURES

List of Tables

viii LIST OF TABLES

Preface

This textbook provides a comprehensive introduction to advanced mathematical concepts. Each chapter builds upon previous knowledge while introducing new ideas and techniques essential for higher mathematics.

The book is organized into several major areas of mathematics, from foundational algebra and calculus through more advanced topics in analysis, linear algebra, and discrete mathematics. The approach follows classical treatments found in works such as Rudin [4] for analysis, Dummit and Foote [1] for abstract algebra, and Strang [6] for linear algebra.

Mathematical rigor is emphasized throughout, with careful attention to definitions, theorems, and proofs as advocated by Spivak [5]. The probability chapter draws from the foundational work of Ross [3], while discrete mathematics concepts follow the comprehensive treatment in Rosen [2].

LIST OF TABLES

Chapter 1

Mathematical Foundations

This chapter establishes the fundamental concepts and notation that will be used throughout the textbook. We begin with set theory, logic, and proof techniques.

1.1 Set Theory

Definition

Definition 1.1 (Set). A **set** is a well-defined collection of distinct objects, called elements or members of the set.

Example

Example 1.1. The set of natural numbers less than 5 can be written as:

$$N_5 = \{1, 2, 3, 4\}$$

1.1.1 Set Operations

Let A and B be sets. We define the following operations:

Definition

Definition 1.2 (Union). The union of sets A and B is:

$$A \cup B = \{x : x \in A \text{ or } x \in B\}$$

Definition

Definition 1.3 (Intersection). The intersection of sets A and B is:

$$A \cap B = \{x : x \in A \text{ and } x \in B\}$$

Definition

Definition 1.4 (Complement). The **complement** of set A with respect to universal set U is:

$$A^c = \{ x \in U : x \notin A \}$$

1.2 Logic and Proof Techniques

1.2.1 Logical Statements

Definition

Definition 1.5 (Proposition). A **proposition** is a statement that is either true or false, but not both.

Example

Example 1.2. The following are propositions:

- 2 + 2 = 4 (True)
- All prime numbers are odd (False, since 2 is prime and even)
- $\sqrt{2}$ is irrational (True)

1.2.2 Methods of Proof

Definition

Definition 1.6 (Direct Proof). A **direct proof** of a statement "If P, then Q" assumes P is true and uses logical steps to show that Q must be true.

Theorem

Theorem 1.1. If n is an even integer, then n^2 is even.

Proof. Let n be an even integer. Then n = 2k for some integer k. We have:

$$n^2 = (2k)^2 = 4k^2 = 2(2k^2)$$

Since $2k^2$ is an integer, $n^2 = 2(2k^2)$ is even.

Definition

Definition 1.7 (Proof by Contradiction). A **proof by contradiction** assumes the negation of what we want to prove and shows this leads to a logical contradiction.

Theorem

Theorem 1.2. $\sqrt{2}$ is irrational.

Proof. Assume for contradiction that $\sqrt{2}$ is rational. Then $\sqrt{2} = \frac{p}{q}$ where p and q are integers with gcd(p,q) = 1.

Squaring both sides: $2 = \frac{p^2}{q^2}$, so $2q^2 = p^2$.

This means p^2 is even, which implies p is even. Let p = 2r for some integer r.

Substituting: $2q^2 = (2r)^2 = 4r^2$, so $q^2 = 2r^2$.

This means q^2 is even, which implies q is even.

But if both p and q are even, then $gcd(p,q) \geq 2$, contradicting our assumption that gcd(p,q) = 1.

Therefore, $\sqrt{2}$ is irrational.

1.3 Functions and Relations

Definition

Definition 1.8 (Function). A function $f: A \to B$ is a relation that assigns to each element $a \in A$ exactly one element $f(a) \in B$.

Definition

Definition 1.9 (Injective Function). A function $f: A \to B$ is **injective** (one-to-one) if for all $a_1, a_2 \in A$:

$$f(a_1) = f(a_2) \implies a_1 = a_2$$

Definition

Definition 1.10 (Surjective Function). A function $f: A \to B$ is surjective (onto) if for all $b \in B$, there exists $a \in A$ such that f(a) = b.

Definition

Definition 1.11 (Bijective Function). A function is **bijective** if it is both injective and surjective.

1.4 Exercises

- 1. Prove that the intersection of two sets is commutative: $A \cap B = B \cap A$.
- 2. Show that if $f:A\to B$ and $g:B\to C$ are both injective, then $g\circ f:A\to C$ is injective.

- $3.\ \,$ Prove by contradiction that there are infinitely many prime numbers.
- 4. Let $A = \{1, 2, 3, 4\}$ and $B = \{2, 4, 6, 8\}$. Find $A \cup B$, $A \cap B$, and $A \setminus B$.

Chapter 2

Abstract Algebra

This chapter introduces the fundamental algebraic structures that form the foundation of modern algebra.

2.1 Groups

Definition

Definition 2.1 (Binary Operation). A **binary operation** on a set S is a function $*: S \times S \to S$ that assigns to each ordered pair (a, b) of elements in S an element a * b in S.

Definition

Definition 2.2 (Group). A **group** is a set G together with a binary operation * such that:

- 1. Closure: For all $a, b \in G$, we have $a * b \in G$.
- 2. **Associativity:** For all $a, b, c \in G$, we have (a * b) * c = a * (b * c).
- 3. **Identity:** There exists an element $e \in G$ such that for all $a \in G$, e*a = a*e = a.
- 4. **Inverse:** For each $a \in G$, there exists an element $a^{-1} \in G$ such that $a * a^{-1} = a^{-1} * a = e$.

Example

Example 2.1 (The Integers under Addition). The set \mathbb{Z} with the operation of addition forms a group:

- Closure: If $a, b \in \mathbb{Z}$, then $a + b \in \mathbb{Z}$
- Associativity: (a+b)+c=a+(b+c) for all $a,b,c\in\mathbb{Z}$
- Identity: 0 is the identity element since a + 0 = 0 + a = a
- Inverse: For each $a \in \mathbb{Z}$, the inverse is -a since a + (-a) = 0

Theorem

Theorem 2.1. In any group G, the identity element is unique.

Proof. Suppose e and e' are both identity elements in G. Then:

$$e = e * e' = e'$$

where the first equality uses the fact that e' is an identity, and the second equality uses the fact that e is an identity.

2.1.1 Subgroups

Definition

Definition 2.3 (Subgroup). Let (G, *) be a group. A subset $H \subseteq G$ is a **subgroup** of G if (H, *) is itself a group.

Theorem

Theorem 2.2 (Subgroup Test). A non-empty subset H of a group G is a subgroup if and only if:

- 1. For all $a, b \in H$, we have $ab \in H$ (closure)
- 2. For all $a \in H$, we have $a^{-1} \in H$ (inverse)

2.2. RINGS 7

2.2 Rings

Definition

Definition 2.4 (Ring). A **ring** is a set R with two binary operations, addition (+) and multiplication (\cdot) , such that:

- 1. (R, +) is an abelian group
- 2. Multiplication is associative
- 3. The distributive laws hold: $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(a+b) \cdot c = a \cdot c + b \cdot c$

Example

Example 2.2 (The Integers). The set \mathbb{Z} with ordinary addition and multiplication forms a ring.

Definition

Definition 2.5 (Field). A **field** is a commutative ring with unity in which every non-zero element has a multiplicative inverse.

Example

Example 2.3 (The Rational Numbers). The set \mathbb{Q} of rational numbers forms a field under ordinary addition and multiplication.

2.3 Vector Spaces

Definition

Definition 2.6 (Vector Space). Let F be a field. A **vector space** over F is a set V together with operations of vector addition and scalar multiplication such that:

- 1. (V, +) is an abelian group
- 2. For all $\alpha \in F$ and $\mathbf{v} \in V$, we have $\alpha \mathbf{v} \in V$
- 3. $\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$
- 4. $(\alpha + \beta)\mathbf{v} = \alpha\mathbf{v} + \beta\mathbf{v}$
- 5. $(\alpha\beta)\mathbf{v} = \alpha(\beta\mathbf{v})$
- 6. $1\mathbf{v} = \mathbf{v}$ where 1 is the multiplicative identity in F

Example

Example 2.4 (Euclidean Space). The set \mathbb{R}^n with componentwise addition and scalar multiplication forms a vector space over \mathbb{R} .

Definition

Definition 2.7 (Linear Independence). Vectors $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$ in a vector space V are linearly independent if the only solution to

$$\alpha_1 \mathbf{v_1} + \alpha_2 \mathbf{v_2} + \dots + \alpha_n \mathbf{v_n} = \mathbf{0}$$

is
$$\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$$
.

Definition

Definition 2.8 (Basis). A **basis** for a vector space V is a set of vectors that is both linearly independent and spans V.

2.4 Exercises

- 1. Prove that in any group, each element has a unique inverse.
- 2. Show that the set of even integers forms a subgroup of $(\mathbb{Z}, +)$.
- 3. Verify that the set $\mathbb{Z}/n\mathbb{Z}$ forms a ring under addition and multiplication modulo n.
- 4. Prove that if $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$ are linearly independent, then any subset is also linearly independent.
- 5. Find a basis for the vector space of 2×2 matrices over \mathbb{R} .

Chapter 3

Calculus

This chapter covers the fundamental concepts of differential and integral calculus, building upon the foundations established in previous chapters.

3.1 Limits and Continuity

Definition

Definition 3.1 (Limit). Let f be a function defined on some open interval containing a, except possibly at a itself. We say that

$$\lim_{x \to a} f(x) = L$$

if for every $\varepsilon > 0$, there exists a $\delta > 0$ such that whenever $0 < |x-a| < \delta$, we have $|f(x) - L| < \varepsilon$.

Example

Example 3.1. To show that $\lim_{x\to 2} (3x - 1) = 5$:

Given $\varepsilon > 0$, we need $|(3x-1)-5| < \varepsilon$, which simplifies to $|3x-6| = 3|x-2| < \varepsilon$. Taking $\delta = \frac{\varepsilon}{3}$, whenever $0 < |x-2| < \delta$, we have:

$$|(3x-1)-5| = 3|x-2| < 3 \cdot \frac{\varepsilon}{3} = \varepsilon$$

Definition

Definition 3.2 (Continuity). A function f is **continuous** at a if:

$$\lim_{x \to a} f(x) = f(a)$$

Theorem

Theorem 3.1 (Intermediate Value Theorem). If f is continuous on [a, b] and k is any number between f(a) and f(b), then there exists a number $c \in (a, b)$ such that f(c) = k.

3.2 Differentiation

Definition

Definition 3.3 (Derivative). The **derivative** of a function f at a is:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

provided this limit exists.

Theorem

Theorem 3.2 (Chain Rule). If g is differentiable at a and f is differentiable at g(a), then the composite function $f \circ g$ is differentiable at a and:

$$(f \circ g)'(a) = f'(g(a)) \cdot g'(a)$$

Example

Example 3.2 (Computing a Derivative). Let $f(x) = \sin(x^2)$. Using the chain rule:

$$f'(x) = \cos(x^2) \cdot \frac{d}{dx}[x^2] = \cos(x^2) \cdot 2x = 2x\cos(x^2)$$

3.2.1 Applications of Derivatives

Theorem

Theorem 3.3 (Mean Value Theorem). If f is continuous on [a, b] and differentiable on (a, b), then there exists a number $c \in (a, b)$ such that:

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Definition

Definition 3.4 (Critical Point). A **critical point** of a function f is a number c in the domain of f where either f'(c) = 0 or f'(c) does not exist.

3.3 Integration

Definition

Definition 3.5 (Riemann Sum). For a function f defined on [a, b], a **Riemann sum** is:

$$S = \sum_{i=1}^{n} f(x_i^*) \Delta x_i$$

where $\Delta x_i = x_i - x_{i-1}$ and $x_i^* \in [x_{i-1}, x_i]$.

Definition

Definition 3.6 (Definite Integral). The **definite integral** of f from a to b is:

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$$

where $\Delta x = \frac{b-a}{n}$ and $x_i^* = a + i\Delta x$.

Theorem

Theorem 3.4 (Fundamental Theorem of Calculus). If f is continuous on [a, b], then:

- 1. If $g(x) = \int_a^x f(t) dt$, then g'(x) = f(x)
- 2. $\int_a^b f(x) dx = F(b) F(a)$ where F is any antiderivative of f

Example

Example 3.3 (Definite Integral). Evaluate $\int_0^1 x^2 dx$:

Since $\frac{d}{dx} \left[\frac{x^3}{3} \right] = x^2$, we have:

$$\int_0^1 x^2 dx = \left[\frac{x^3}{3}\right]_0^1 = \frac{1^3}{3} - \frac{0^3}{3} = \frac{1}{3}$$

3.4 Techniques of Integration

3.4.1 Integration by Parts

Theorem

Theorem 3.5 (Integration by Parts).

$$\int u \, dv = uv - \int v \, du$$

Example

Example 3.4. Evaluate $\int xe^x dx$:

Let u = x and $dv = e^x dx$. Then du = dx and $v = e^x$.

$$\int xe^x \, dx = xe^x - \int e^x \, dx = xe^x - e^x + C = e^x(x-1) + C$$

3.4.2 Trigonometric Substitution

For integrals involving $\sqrt{a^2-x^2}$, $\sqrt{a^2+x^2}$, or $\sqrt{x^2-a^2}$, we can use trigonometric substitutions:

- For $\sqrt{a^2 x^2}$: use $x = a \sin \theta$
- For $\sqrt{a^2 + x^2}$: use $x = a \tan \theta$
- For $\sqrt{x^2 a^2}$: use $x = a \sec \theta$

3.5 Series

Definition

Definition 3.7 (Infinite Series). An **infinite series** is an expression of the form:

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots$$

Definition

Definition 3.8 (Convergence). A series $\sum_{n=1}^{\infty} a_n$ converges to S if:

$$\lim_{n\to\infty} S_n = S$$

where $S_n = \sum_{k=1}^n a_k$ is the *n*-th partial sum.

3.6. EXERCISES

Theorem

Theorem 3.6 (Ratio Test). For a series $\sum a_n$ with positive terms, let $L = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$.

- If L < 1, the series converges
- If L > 1, the series diverges
- If L = 1, the test is inconclusive

3.6 Exercises

- 1. Use the definition of limit to prove that $\lim_{x\to 3} (2x+1) = 7$.
- 2. Find the derivative of $f(x) = \ln(\cos(x^2))$.
- 3. Use the Mean Value Theorem to show that $|\sin a \sin b| \le |a b|$ for all real numbers a and b.
- 4. Evaluate $\int_0^{\pi/2} x \sin x \, dx$ using integration by parts.
- 5. Determine the convergence of the series $\sum_{n=1}^{\infty} \frac{n!}{n^n}$.

Chapter 4

Linear Algebra

Linear algebra studies vector spaces and linear transformations between them. This chapter covers the essential concepts and computational techniques.

4.1 Matrices and Systems of Linear Equations

Definition

Definition 4.1 (Matrix). An $m \times n$ matrix is a rectangular array of numbers arranged in m rows and n columns:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

Definition

Definition 4.2 (Matrix Addition). If A and B are both $m \times n$ matrices, then A + B is the $m \times n$ matrix whose (i, j)-entry is $a_{ij} + b_{ij}$.

Definition

Definition 4.3 (Matrix Multiplication). If A is an $m \times p$ matrix and B is a $p \times n$ matrix, then AB is the $m \times n$ matrix whose (i, j)-entry is:

$$(AB)_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}$$

Example

Example 4.1 (Matrix Multiplication). Let $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}$. Then:

$$AB = \begin{pmatrix} 1 \cdot 5 + 2 \cdot 7 & 1 \cdot 6 + 2 \cdot 8 \\ 3 \cdot 5 + 4 \cdot 7 & 3 \cdot 6 + 4 \cdot 8 \end{pmatrix} = \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix}$$

4.1.1 Gaussian Elimination

Definition

Definition 4.4 (Row Echelon Form). A matrix is in row echelon form if:

- 1. All nonzero rows are above any rows of all zeros
- 2. Each leading entry is in a column to the right of the leading entry in the row above it
- 3. All entries in a column below a leading entry are zeros

Definition

Definition 4.5 (Reduced Row Echelon Form). A matrix is in **reduced row echelon form** if it is in row echelon form and:

- 1. The leading entry in each nonzero row is 1
- 2. Each leading 1 is the only nonzero entry in its column

4.2 Determinants

Definition

Definition 4.6 (Determinant (2×2)). For a 2 × 2 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$:

$$\det(A) = ad - bc$$

Definition

Definition 4.7 (Determinant $(n \times n)$). For an $n \times n$ matrix A, the determinant can be computed using cofactor expansion:

$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} M_{ij}$$

where M_{ij} is the (i, j)-minor of A.

Theorem

Theorem 4.1 (Properties of Determinants). Let A and B be $n \times n$ matrices. Then:

- 1. det(AB) = det(A) det(B)
- 2. $det(A^T) = det(A)$
- 3. If A is invertible, then $\det(A^{-1}) = \frac{1}{\det(A)}$
- 4. $det(cA) = c^n det(A)$ for scalar c

4.3 Vector Spaces and Subspaces

Definition

Definition 4.8 (Subspace). A subset W of a vector space V is a subspace if:

- 1. The zero vector is in W
- 2. W is closed under addition
- 3. W is closed under scalar multiplication

Example

Example 4.2 (Column Space). The **column space** of an $m \times n$ matrix A is the subspace of \mathbb{R}^m spanned by the columns of A:

$$\operatorname{Col}(A) = \{ \mathbf{b} \in \mathbb{R}^m : A\mathbf{x} = \mathbf{b} \text{ has a solution} \}$$

Definition

Definition 4.9 (Null Space). The **null space** of an $m \times n$ matrix A is:

$$Null(A) = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \}$$

4.4 Eigenvalues and Eigenvectors

Definition

Definition 4.10 (Eigenvalue and Eigenvector). Let A be an $n \times n$ matrix. A scalar λ is an **eigenvalue** of A if there exists a nonzero vector \mathbf{v} such that:

$$A\mathbf{v} = \lambda \mathbf{v}$$

The vector \mathbf{v} is called an **eigenvector** corresponding to λ .

Definition

Definition 4.11 (Characteristic Polynomial). The **characteristic polynomial** of an $n \times n$ matrix A is:

$$p(\lambda) = \det(A - \lambda I)$$

The eigenvalues of A are the roots of this polynomial.

Example

Example 4.3 (Finding Eigenvalues). For $A = \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}$:

$$A - \lambda I = \begin{pmatrix} 3 - \lambda & 1\\ 0 & 2 - \lambda \end{pmatrix}$$

$$\det(A - \lambda I) = (3 - \lambda)(2 - \lambda) = \lambda^2 - 5\lambda + 6 = (\lambda - 2)(\lambda - 3)$$

So the eigenvalues are $\lambda_1 = 2$ and $\lambda_2 = 3$.

Theorem

Theorem 4.2 (Diagonalization). An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors. In this case, $A = PDP^{-1}$ where D is diagonal and the columns of P are eigenvectors of A.

4.5 Inner Products and Orthogonality

Definition

Definition 4.12 (Inner Product). An **inner product** on a real vector space V is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ that satisfies:

- 1. $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$
- 2. $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$
- 3. $\langle c\mathbf{u}, \mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle$
- 4. $\langle \mathbf{v}, \mathbf{v} \rangle \geq 0$ with equality if and only if $\mathbf{v} = \mathbf{0}$

Definition

Definition 4.13 (Orthogonal Vectors). Two vectors \mathbf{u} and \mathbf{v} are **orthogonal** if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

Definition

Definition 4.14 (Orthogonal Matrix). A square matrix Q is **orthogonal** if $Q^TQ = I$, or equivalently, $Q^{-1} = Q^T$.

Theorem

Theorem 4.3 (Gram-Schmidt Process). Given linearly independent vectors $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_k}$, the Gram-Schmidt process produces orthogonal vectors $\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_k}$ such that $\mathrm{span}\{\mathbf{u_1}, \dots, \mathbf{u_j}\} = \mathrm{span}\{\mathbf{v_1}, \dots, \mathbf{v_j}\}$ for each j.

4.6 Exercises

- 1. Compute AB and BA for $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$.
- 2. Find the determinant of $A = \begin{pmatrix} 2 & -1 & 3 \\ 1 & 0 & 4 \\ -2 & 1 & 1 \end{pmatrix}$.
- 3. Determine if the vectors $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$, and $\begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix}$ are linearly independent.
- 4. Find the eigenvalues and eigenvectors of $A = \begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix}$.

5. Use the Gram-Schmidt process to orthogonalize the vectors $\mathbf{v_1} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ and $\mathbf{v_2} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$.

Chapter 5

Real Analysis

Real analysis provides the rigorous foundation for calculus and studies the properties of real numbers, sequences, series, and functions.

5.1 The Real Number System

Definition

Definition 5.1 (Supremum). Let $S \subseteq \mathbb{R}$ be bounded above. The **supremum** (or least upper bound) of S, denoted $\sup S$, is the smallest number that is greater than or equal to every element of S.

Theorem

Theorem 5.1 (Completeness Axiom). Every non-empty subset of \mathbb{R} that is bounded above has a supremum in \mathbb{R} .

Definition

Definition 5.2 (Archimedean Property). For any real numbers x and y with x > 0, there exists a positive integer n such that nx > y.

5.2 Sequences and Series

Definition

Definition 5.3 (Convergent Sequence). A sequence (a_n) converges to L if for every $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$:

$$|a_n - L| < \varepsilon$$

We write $\lim_{n\to\infty} a_n = L$.

Theorem

Theorem 5.2 (Monotone Convergence Theorem). Every bounded monotone sequence converges.

Proof. Let (a_n) be a bounded increasing sequence. Since (a_n) is bounded above, by the completeness axiom, $S = \{a_n : n \in \mathbb{N}\}$ has a supremum $L = \sup S$.

For any $\varepsilon > 0$, since L is the least upper bound, $L - \varepsilon$ is not an upper bound. Therefore, there exists N such that $a_N > L - \varepsilon$.

Since (a_n) is increasing, for all $n \geq N$:

$$L - \varepsilon < a_N \le a_n \le L < L + \varepsilon$$

Thus $|a_n - L| < \varepsilon$, proving convergence to L.

Definition

Definition 5.4 (Cauchy Sequence). A sequence (a_n) is **Cauchy** if for every $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $m, n \geq N$:

$$|a_m - a_n| < \varepsilon$$

Theorem

Theorem 5.3 (Cauchy Criterion). A sequence in \mathbb{R} converges if and only if it is Cauchy.

5.3 Continuity and Uniform Continuity

Definition

Definition 5.5 (Continuity at a Point). A function $f: D \to \mathbb{R}$ is **continuous at** $c \in D$ if for every $\varepsilon > 0$, there exists $\delta > 0$ such that for all $x \in D$:

$$|x - c| < \delta \implies |f(x) - f(c)| < \varepsilon$$

Definition

Definition 5.6 (Uniform Continuity). A function $f: D \to \mathbb{R}$ is **uniformly continuous** on D if for every $\varepsilon > 0$, there exists $\delta > 0$ such that for all $x, y \in D$:

$$|x - y| < \delta \implies |f(x) - f(y)| < \varepsilon$$

Theorem

Theorem 5.4 (Uniform Continuity on Compact Sets). If f is continuous on a compact set K, then f is uniformly continuous on K.

5.4 Differentiation

Theorem

Theorem 5.5 (Rolle's Theorem). If f is continuous on [a, b], differentiable on (a, b), and f(a) = f(b), then there exists $c \in (a, b)$ such that f'(c) = 0.

Theorem

Theorem 5.6 (Mean Value Theorem). If f is continuous on [a, b] and differentiable on (a, b), then there exists $c \in (a, b)$ such that:

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Definition

Definition 5.7 (Uniform Convergence). A sequence of functions (f_n) converges uniformly to f on a set E if for every $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$ and all $x \in E$:

$$|f_n(x) - f(x)| < \varepsilon$$

Theorem

Theorem 5.7 (Uniform Convergence and Continuity). If (f_n) is a sequence of continuous functions that converges uniformly to f on a set E, then f is continuous on E.

5.5 Integration

Definition

Definition 5.8 (Riemann Integrable). A bounded function f on [a, b] is **Riemann** integrable if:

$$\overline{\int_{a}^{b}} f = \underline{\int_{a}^{b}} f$$

where $\overline{\int_a^b} f$ and $\underline{\int_a^b} f$ are the upper and lower Darboux integrals, respectively.

Theorem

Theorem 5.8 (Riemann Integrability Criterion). A bounded function f on [a, b] is Riemann integrable if and only if the set of discontinuities of f has measure zero.

Theorem

Theorem 5.9 (Fundamental Theorem of Calculus (Rigorous)). Let f be Riemann integrable on [a, b].

- 1. If $F(x) = \int_a^x f(t) dt$, then F is continuous on [a, b].
- 2. If f is continuous at $c \in [a, b]$, then F'(c) = f(c).
- 3. If g is differentiable on [a, b] and g' = f, then $\int_a^b f(x) dx = g(b) g(a)$.

5.6 Metric Spaces

Definition

Definition 5.9 (Metric Space). A **metric space** is a set X together with a function $d: X \times X \to [0, \infty)$ such that for all $x, y, z \in X$:

- 1. d(x,y) = 0 if and only if x = y
- 2. d(x,y) = d(y,x) (symmetry)
- 3. $d(x, z) \le d(x, y) + d(y, z)$ (triangle inequality)

5.7. EXERCISES 25

Definition

Definition 5.10 (Open Ball). In a metric space (X, d), the **open ball** of radius r > 0 centered at $x \in X$ is:

$$B_r(x) = \{ y \in X : d(x, y) < r \}$$

Definition

Definition 5.11 (Compact Set). A subset K of a metric space is **compact** if every open cover of K has a finite subcover.

Theorem

Theorem 5.10 (Heine-Borel Theorem). A subset of \mathbb{R}^n is compact if and only if it is closed and bounded.

5.7 Exercises

- 1. Prove that $\lim_{n\to\infty} \frac{1}{n} = 0$ using the definition of convergence.
- 2. Show that the sequence $a_n = \frac{n}{n+1}$ is Cauchy.
- 3. Prove that $f(x) = x^2$ is uniformly continuous on any bounded interval [a, b].
- 4. Use the Mean Value Theorem to prove that $|\sin x \sin y| \le |x y|$ for all real x, y.
- 5. Show that the function $f(x) = \frac{1}{x}$ is not uniformly continuous on (0,1).

Chapter 6

Discrete Mathematics

Discrete mathematics studies mathematical structures that are fundamentally discrete rather than continuous, forming the foundation for computer science and combinatorics.

6.1 Graph Theory

Definition

Definition 6.1 (Graph). A graph G = (V, E) consists of a finite set V of vertices (or nodes) and a set E of edges, where each edge connects two vertices.

Definition

Definition 6.2 (Degree). The **degree** of a vertex v, denoted deg(v), is the number of edges incident to v.

Theorem

Theorem 6.1 (Handshaking Lemma). For any graph G = (V, E):

$$\sum_{v \in V} \deg(v) = 2|E|$$

Proof. Each edge contributes 1 to the degree of each of its two endpoints, so the sum of all degrees counts each edge exactly twice. \Box

Definition

Definition 6.3 (Path). A **path** in a graph is a sequence of vertices v_1, v_2, \ldots, v_k such that for each i, there is an edge between v_i and v_{i+1} .

Definition

Definition 6.4 (Connected Graph). A graph is **connected** if there is a path between every pair of vertices.

Definition

Definition 6.5 (Tree). A tree is a connected graph with no cycles.

Theorem

Theorem 6.2 (Tree Characterization). For a graph G with n vertices, the following are equivalent:

- 1. G is a tree
- 2. G is connected and has n-1 edges
- 3. G is acyclic and has n-1 edges
- 4. There is exactly one path between any two vertices in G

6.2 Combinatorics

Definition

Definition 6.6 (Permutation). A **permutation** of n distinct objects is an arrangement of these objects in a specific order. The number of permutations of n objects is n!.

Definition

Definition 6.7 (Combination). A **combination** is a selection of objects where order does not matter. The number of ways to choose k objects from n objects is:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Theorem

Theorem 6.3 (Binomial Theorem). For any real numbers x and y and positive integer n:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

Example

Example 6.1 (Counting Problem). How many ways can we arrange the letters in "MATHEMATICS"?

The word has 11 letters with repetitions: M(2), A(2), T(2), H(1), E(1), I(1), C(1), S(1).

The number of arrangements is:

$$\frac{11!}{2! \cdot 2! \cdot 2! \cdot 1! \cdot 1! \cdot 1! \cdot 1! \cdot 1!} = \frac{11!}{2^3} = \frac{39,916,800}{8} = 4,989,600$$

6.2.1 Inclusion-Exclusion Principle

Theorem

Theorem 6.4 (Inclusion-Exclusion Principle). For finite sets A_1, A_2, \ldots, A_n :

$$|A_1 \cup A_2 \cup \dots \cup A_n| = \sum_{i} |A_i| - \sum_{i < j} |A_i \cap A_j|$$

$$+ \sum_{i < j < k} |A_i \cap A_j \cap A_k| - \dots + (-1)^{n+1} |A_1 \cap A_2 \cap \dots \cap A_n|$$
(6.2)

6.3 Number Theory

Definition

Definition 6.8 (Divisibility). An integer a divides an integer b (written $a \mid b$) if there exists an integer k such that b = ak.

Theorem

Theorem 6.5 (Division Algorithm). For any integers a and b with b > 0, there exist unique integers q and r such that:

$$a = bq + r$$
 where $0 \le r < b$

Definition

Definition 6.9 (Greatest Common Divisor). The **greatest common divisor** of integers a and b, denoted gcd(a, b), is the largest positive integer that divides both a and b.

Theorem

Theorem 6.6 (Euclidean Algorithm). The Euclidean algorithm computes gcd(a, b) by repeatedly applying:

$$gcd(a, b) = gcd(b, a \mod b)$$

until one of the numbers becomes 0.

Theorem

Theorem 6.7 (Bézout's Identity). For any integers a and b, there exist integers x and y such that:

$$\gcd(a,b) = ax + by$$

6.3.1 Prime Numbers

Definition

Definition 6.10 (Prime Number). A positive integer p > 1 is **prime** if its only positive divisors are 1 and p.

Theorem

Theorem 6.8 (Fundamental Theorem of Arithmetic). Every integer greater than 1 can be expressed uniquely (up to order) as a product of prime numbers.

Theorem

Theorem 6.9 (Infinitude of Primes). There are infinitely many prime numbers.

Euclid's Proof. Suppose there are only finitely many primes p_1, p_2, \ldots, p_k . Consider:

$$N = p_1 p_2 \cdots p_k + 1$$

Since N > 1, it has a prime divisor p. But p cannot be any of p_1, \ldots, p_k since $N \equiv 1 \pmod{p_i}$ for each i. This contradicts our assumption that we listed all primes.

6.4 Recurrence Relations

Definition

Definition 6.11 (Recurrence Relation). A **recurrence relation** is an equation that defines a sequence recursively, expressing each term in terms of previous terms.

Example

Example 6.2 (Fibonacci Sequence). The Fibonacci sequence is defined by:

$$F_0 = 0$$
, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$

Theorem

Theorem 6.10 (Linear Homogeneous Recurrence Relations). The recurrence relation $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ with characteristic equation $r^2 - c_1 r - c_2 = 0$ has:

- If roots $r_1 \neq r_2$: general solution $a_n = Ar_1^n + Br_2^n$
- If repeated root r: general solution $a_n = (A + Bn)r^n$

6.5 Boolean Algebra

Definition

Definition 6.12 (Boolean Algebra). A **Boolean algebra** is a set B with two binary operations \land (AND) and \lor (OR), a unary operation \neg (NOT), and constants 0 and 1, satisfying certain axioms.

Theorem

Theorem 6.11 (De Morgan's Laws). For any Boolean expressions A and B:

$$\neg (A \land B) = \neg A \lor \neg B \tag{6.3}$$

$$\neg (A \lor B) = \neg A \land \neg B \tag{6.4}$$

Definition

Definition 6.13 (Boolean Function). A **Boolean function** is a function $f : \{0,1\}^n \to \{0,1\}$ that maps n-tuples of Boolean values to a Boolean value.

6.6 Exercises

- 1. Prove that in any graph, the number of vertices with odd degree is even.
- 2. Find the number of ways to distribute 10 identical balls into 4 distinct boxes.
- 3. Use the inclusion-exclusion principle to find the number of integers from 1 to 100 that are divisible by 2, 3, or 5.
- 4. Find gcd(252, 198) using the Euclidean algorithm and express it in the form 252x+198y.

5. Solve the recurrence relation $a_n = 5a_{n-1} - 6a_{n-2}$ with initial conditions $a_0 = 1, a_1 = 0$.

Chapter 7

Probability Theory

Probability theory provides the mathematical foundation for analyzing random phenomena and uncertainty.

7.1 Sample Spaces and Events

Definition

Definition 7.1 (Sample Space). A sample space Ω is the set of all possible outcomes of a random experiment.

Definition

Definition 7.2 (Event). An **event** is a subset of the sample space Ω .

Example

Example 7.1 (Coin Flipping). For the experiment of flipping a coin twice:

- Sample space: $\Omega = \{HH, HT, TH, TT\}$
- Event "at least one head": $A = \{HH, HT, TH\}$
- Event "exactly one tail": $B = \{HT, TH\}$

7.2 Probability Measures

Definition

Definition 7.3 (Probability Measure). A **probability measure** P on a sample space Ω is a function that assigns to each event A a number P(A) satisfying:

- 1. $P(A) \ge 0$ for all events A
- 2. $P(\Omega) = 1$
- 3. If A_1, A_2, \ldots are pairwise disjoint events, then:

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

Theorem

Theorem 7.1 (Basic Properties of Probability). For any events A and B:

- 1. $P(\emptyset) = 0$
- 2. $P(A^c) = 1 P(A)$
- 3. If $A \subseteq B$, then $P(A) \le P(B)$
- 4. $P(A \cup B) = P(A) + P(B) P(A \cap B)$

7.3 Conditional Probability

Definition

Definition 7.4 (Conditional Probability). The **conditional probability** of event A given event B with P(B) > 0 is:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Theorem

Theorem 7.2 (Law of Total Probability). If B_1, B_2, \ldots, B_n form a partition of Ω with $P(B_i) > 0$ for all i, then:

$$P(A) = \sum_{i=1}^{n} P(A|B_i)P(B_i)$$

Theorem

Theorem 7.3 (Bayes' Theorem). If B_1, B_2, \ldots, B_n form a partition of Ω with $P(B_i) > 0$ for all i, then:

$$P(B_j|A) = \frac{P(A|B_j)P(B_j)}{\sum_{i=1}^{n} P(A|B_i)P(B_i)}$$

Example

Example 7.2 (Medical Testing). A disease affects 1% of the population. A test for the disease is 95% accurate (both sensitivity and specificity). If someone tests positive, what's the probability they have the disease?

Let D = "has disease" and T = "tests positive".

$$P(D) = 0.01, \quad P(D^c) = 0.99$$
 (7.1)

$$P(T|D) = 0.95, \quad P(T|D^c) = 0.05$$
 (7.2)

By Bayes' theorem:

$$P(D|T) = \frac{P(T|D)P(D)}{P(T|D)P(D) + P(T|D^c)P(D^c)} = \frac{0.95 \times 0.01}{0.95 \times 0.01 + 0.05 \times 0.99} \approx 0.161$$

7.4 Random Variables

Definition

Definition 7.5 (Random Variable). A random variable is a function $X : \Omega \to \mathbb{R}$ that assigns a real number to each outcome in the sample space.

Definition

Definition 7.6 (Probability Mass Function). For a discrete random variable X, the **probability mass function** (PMF) is:

$$p_X(x) = P(X = x)$$

Definition

Definition 7.7 (Cumulative Distribution Function). The **cumulative distribution** function (CDF) of a random variable X is:

$$F_X(x) = P(X \le x)$$

7.5 Expected Value and Variance

Definition

Definition 7.8 (Expected Value). The **expected value** of a discrete random variable X is:

$$E[X] = \sum_{x} x \cdot P(X = x)$$

Definition

Definition 7.9 (Variance). The **variance** of a random variable X is:

$$Var(X) = E[(X - E[X])^{2}] = E[X^{2}] - (E[X])^{2}$$

Theorem

Theorem 7.4 (Linearity of Expectation). For random variables X and Y and constants a and b:

$$E[aX + bY] = aE[X] + bE[Y]$$

7.6 Common Discrete Distributions

7.6.1 Binomial Distribution

Definition

Definition 7.10 (Binomial Distribution). A random variable X follows a **binomial** distribution with parameters n and p, denoted $X \sim \text{Binomial}(n, p)$, if:

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$
 for $k = 0, 1, \dots, n$

Theorem

Theorem 7.5. If $X \sim \text{Binomial}(n, p)$, then:

$$E[X] = np (7.3)$$

$$Var(X) = np(1-p) (7.4)$$

7.6.2 Poisson Distribution

Definition

Definition 7.11 (Poisson Distribution). A random variable X follows a **Poisson distribution** with parameter $\lambda > 0$, denoted $X \sim \text{Poisson}(\lambda)$, if:

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$$
 for $k = 0, 1, 2, ...$

Theorem

Theorem 7.6. If $X \sim \text{Poisson}(\lambda)$, then:

$$E[X] = \lambda \tag{7.5}$$

$$Var(X) = \lambda \tag{7.6}$$

7.7 Continuous Distributions

7.7.1 Normal Distribution

Definition

Definition 7.12 (Normal Distribution). A random variable X follows a **normal distribution** with parameters μ and σ^2 , denoted $X \sim N(\mu, \sigma^2)$, if it has probability density function:

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Theorem

Theorem 7.7. If $X \sim N(\mu, \sigma^2)$, then:

$$E[X] = \mu \tag{7.7}$$

$$Var(X) = \sigma^2 \tag{7.8}$$

Theorem

Theorem 7.8 (Central Limit Theorem). Let X_1, X_2, \ldots, X_n be independent and identically distributed random variables with mean μ and variance σ^2 . Then:

$$\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \xrightarrow{d} N(0,1)$$
 as $n \to \infty$

where $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

7.8 Limit Theorems

Theorem

Theorem 7.9 (Law of Large Numbers). Let X_1, X_2, \ldots be independent and identically distributed random variables with finite mean μ . Then:

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \to \mu \quad \text{as } n \to \infty$$

7.9 Exercises

- 1. A fair six-sided die is rolled twice. Find the probability that the sum is 7 given that at least one roll shows a 3.
- 2. If $X \sim \text{Binomial}(10, 0.3)$, compute P(X = 3) and E[X].
- 3. Customers arrive at a store according to a Poisson process with rate 2 per hour. What is the probability that exactly 3 customers arrive in a 2-hour period?
- 4. If $X \sim N(50, 100)$, find P(40 < X < 60).
- 5. Use Bayes' theorem to solve: A bag contains 3 red balls and 2 blue balls. A ball is drawn and replaced 3 times, with 2 reds and 1 blue observed. What's the probability the bag actually contains 4 red balls and 1 blue ball?

Chapter 8

Geometry

This chapter explores the fundamental concepts of Euclidean geometry, coordinate geometry, and introduces elements of non-Euclidean geometry.

8.1 Euclidean Geometry

Definition

Definition 8.1 (Point, Line, Plane). The fundamental objects of Euclidean geometry are:

- A **point** has no dimension (position only)
- A line is one-dimensional and extends infinitely in both directions
- A plane is two-dimensional and extends infinitely in all directions

8.1.1 Euclid's Axioms

Theorem

Theorem 8.1 (Euclid's Five Postulates). 1. A straight line can be drawn between any two points

- 2. Any finite straight line can be extended indefinitely
- 3. A circle can be drawn with any center and any radius
- 4. All right angles are equal to each other
- 5. If a line intersects two other lines such that the sum of interior angles on one side is less than two right angles, then the two lines will intersect on that side when extended

Theorem

Theorem 8.2 (Parallel Postulate Equivalent). Through a point not on a given line, there exists exactly one line parallel to the given line.

8.2 Triangles and Congruence

Definition

Definition 8.2 (Triangle). A **triangle** is a polygon with three vertices and three sides.

Theorem

Theorem 8.3 (Triangle Congruence Criteria). Two triangles are congruent if any of the following conditions hold:

1. **SSS:** Three sides are equal

2. **SAS:** Two sides and the included angle are equal

3. ASA: Two angles and the included side are equal

4. AAS: Two angles and a non-included side are equal

5. **RHS:** Right angle, hypotenuse, and one side are equal

Theorem

Theorem 8.4 (Pythagorean Theorem). In a right triangle with legs of length a and b and hypotenuse of length c:

$$a^2 + b^2 = c^2$$

Proof. Consider a square with side length (a+b) containing four copies of the right triangle. The area can be computed in two ways:

$$(a+b)^2 = 4 \cdot \frac{1}{2}ab + c^2 \tag{8.1}$$

$$a^2 + 2ab + b^2 = 2ab + c^2 (8.2)$$

$$a^2 + b^2 = c^2 (8.3)$$

8.3. CIRCLES 41

8.3 Circles

Definition

Definition 8.3 (Circle). A **circle** is the set of all points in a plane that are equidistant from a fixed point called the center.

Theorem

Theorem 8.5 (Inscribed Angle Theorem). An inscribed angle is half the central angle that subtends the same arc.

Theorem

Theorem 8.6 (Power of a Point). For a point P and a circle with center O and radius r, the power of P is $|PO|^2 - r^2$. For any line through P intersecting the circle at points A and B:

$$PA \cdot PB = ||PO|^2 - r^2|$$

8.4 Coordinate Geometry

Definition

Definition 8.4 (Distance Formula). The distance between points (x_1, y_1) and (x_2, y_2) is:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Definition

Definition 8.5 (Equation of a Line). A line can be represented by:

- Slope-intercept form: y = mx + b
- Point-slope form: $y y_1 = m(x x_1)$
- General form: Ax + By + C = 0

Definition

Definition 8.6 (Equation of a Circle). A circle with center (h, k) and radius r has equation:

$$(x-h)^2 + (y-k)^2 = r^2$$

8.5 Transformations

Definition

Definition 8.7 (Rigid Transformations). **Rigid transformations** preserve distances and angles:

- Translation: $(x,y) \mapsto (x+a,y+b)$
- Rotation: $(x, y) \mapsto (x \cos \theta y \sin \theta, x \sin \theta + y \cos \theta)$
- Reflection: $(x, y) \mapsto (-x, y)$ (across y-axis)

Definition

Definition 8.8 (Similarity Transformations). **Similarity transformations** preserve angles but may change distances by a constant factor:

- Scaling: $(x,y) \mapsto (kx,ky)$ for some k>0
- Homothety: Combination of scaling and translation

8.6 Area and Volume

Theorem

Theorem 8.7 (Area Formulas). • Triangle: $A = \frac{1}{2}bh$ or $A = \sqrt{s(s-a)(s-b)(s-c)}$ (Heron's formula)

- Rectangle: A = lw
- Circle: $A = \pi r^2$
- Ellipse: $A = \pi ab$ where a and b are the semi-axes

Theorem

Theorem 8.8 (Volume Formulas). • Rectangular prism: V = lwh

- Cylinder: $V = \pi r^2 h$
- Sphere: $V = \frac{4}{3}\pi r^3$
- Cone: $V = \frac{1}{3}\pi r^2 h$

8.7 Vectors in Geometry

Definition

Definition 8.9 (Vector). A **vector** is a quantity with both magnitude and direction, often represented as \overrightarrow{AB} or $\mathbf{v} = \langle a, b \rangle$.

Definition

Definition 8.10 (Dot Product). For vectors $\mathbf{u} = \langle u_1, u_2 \rangle$ and $\mathbf{v} = \langle v_1, v_2 \rangle$:

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 = |\mathbf{u}| |\mathbf{v}| \cos \theta$$

where θ is the angle between the vectors.

Definition

Definition 8.11 (Cross Product). For vectors $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$:

$$\mathbf{u} \times \mathbf{v} = \langle u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_1 \rangle$$

8.8 Introduction to Non-Euclidean Geometry

Definition

Definition 8.12 (Hyperbolic Geometry). **Hyperbolic geometry** is a non-Euclidean geometry where the parallel postulate is replaced with: Through a point not on a given line, there exist infinitely many lines parallel to the given line.

Definition

Definition 8.13 (Spherical Geometry). **Spherical geometry** is the geometry on the surface of a sphere, where "lines" are great circles and there are no parallel lines.

Theorem

Theorem 8.9 (Gauss-Bonnet Theorem (Simple Form)). For a triangle on a sphere with angles α , β , and γ :

$$\alpha + \beta + \gamma = \pi + \frac{A}{R^2}$$

where A is the area of the triangle and R is the radius of the sphere.

8.9 Exercises

- 1. Prove that the diagonals of a rhombus are perpendicular bisectors of each other.
- 2. Find the equation of the circle passing through points (1,2), (3,4), and (5,2).
- 3. Use vectors to prove that the diagonals of a parallelogram bisect each other.
- 4. A triangle has sides of length 3, 4, and 5. Find its area using both the base-height formula and Heron's formula.
- 5. In spherical geometry, what is the sum of angles in a triangle whose area is $\frac{1}{4}$ the area of a hemisphere of radius 1?

Appendix A

Mathematical Notation

This appendix provides a comprehensive reference for the mathematical notation used throughout this textbook.

A.1 Set Theory Notation

Symbol	Meaning	
\in	Element of (belongs to)	
∉	Not an element of	
C	Subset of	
\subseteq	Subset of or equal to	
\supset	Superset of	
♥	Superset of or equal to	
U	Union	
\cap	Intersection	
	Set difference	
A^c	Complement of set A	
Ø	Empty set	
$\mid \mathbb{U}$	Universal set	
A	Cardinality of set A	
$\mathcal{P}(A)$	Power set of A	

A.2 Number Systems

Symbol	Meaning
N	Natural numbers $\{1, 2, 3, \ldots\}$
\mathbb{N}_0	Natural numbers including zero $\{0, 1, 2, 3, \ldots\}$
\mathbb{Z}	Integers $\{\ldots, -2, -1, 0, 1, 2, \ldots\}$
\mathbb{Q}	Rational numbers
\mathbb{R}	Real numbers
\mathbb{C}	Complex numbers
\mathbb{Z}^+	Positive integers
\mathbb{R}^+	Positive real numbers

A.3 Logic and Proof Notation

Symbol	Meaning
\wedge	Logical AND
V	Logical OR
_	Logical NOT
\implies	Implies
\iff	If and only if
\forall	For all (universal quantifier)
∃	There exists (existential quantifier)
∃!	There exists a unique
·:	Therefore
::	Because
	End of proof

A.4 Functions and Relations

Symbol	Meaning	
$f:A\to B$	Function from set A to set B	
f(x)	Value of function f at x	
$\int f^{-1}$	Inverse function of f	
$f \circ g$	Composition of functions f and g	
dom(f)	Domain of function f	
$\operatorname{ran}(f)$	Range of function f	
$ f _A$	Restriction of f to set A	

A.5 Calculus Notation

Symbol	Meaning	
$\lim_{x\to a} f(x)$	Limit of $f(x)$ as x approaches a	
$\lim_{x\to a^+} f(x)$	Right-hand limit	
$\lim_{x\to a^-} f(x)$	Left-hand limit	
$\int f'(x)$	Derivative of f with respect to x	
$\frac{df}{dx}$	Derivative of f with respect to x	
$\frac{\overline{dx}}{d^n f}$	n-th derivative of f	
$\int \int f(x) dx$	Indefinite integral of f	
$\int_a^b f(x) dx$	Definite integral from a to b	
$\sum_{i=1}^{n} a_i$	Sum from $i = 1$ to n	
$\prod_{i=1}^{n} a_i$	Product from $i = 1$ to n	

A.6 Linear Algebra Notation

Symbol	Meaning	
v	Vector v	
$\ \mathbf{v}\ $ or $\ \mathbf{v}\ $	Magnitude (norm) of vector \mathbf{v}	
$\mathbf{u} \cdot \mathbf{v}$	Dot product of vectors u and v	
$\mathbf{u} \times \mathbf{v}$	Cross product of vectors u and v	
A^T	Transpose of matrix A	
A^{-1}	Inverse of matrix A	
$\det(A)$	Determinant of matrix A	
$\operatorname{tr}(A)$	Trace of matrix A	
rank(A)	Rank of matrix A	
$\operatorname{null}(A)$	Null space of matrix A	
col(A)	Column space of matrix A	
$\mid I$	Identity matrix	
0	Zero vector or zero matrix	

A.7 Probability Notation

Symbol	Meaning
P(A)	Probability of event A
P(A B)	Conditional probability of A given B
$A \cap B$	Intersection of events A and B
$A \cup B$	Union of events A and B
A^c	Complement of event A
Ω	Sample space
X	Random variable
E[X]	Expected value of random variable X
Var(X)	Variance of random variable X
σ_X	Standard deviation of random variable X
$X \sim D$	Random variable X follows distribution D
$F_X(x)$	Cumulative distribution function
$f_X(x)$	Probability density function
$p_X(x)$	Probability mass function

A.8 Number Theory Notation

Symbol	Meaning	
a b	$a ext{ divides } b$	
$a \nmid b$	a does not divide b	
$\gcd(a,b)$	Greatest common divisor of a and b	
lcm(a,b)	Least common multiple of a and b	
$a \equiv b \pmod{n}$	a is congruent to b modulo n	
$a \mod n$	Remainder when a is divided by n	
$\phi(n)$	Euler's totient function	
\mathbb{Z}_n	Integers modulo n	

A.9 Graph Theory Notation

Symbol	Meaning	
G = (V, E)	Graph with vertex set V and edge set E	
V	Number of vertices	
E	Number of edges	
$\deg(v)$	Degree of vertex v	
d(u,v)	Distance between vertices u and v	
K_n	Complete graph on n vertices	
C_n	Cycle graph on n vertices	
P_n	Path graph on <i>n</i> vertices	

A.10 Common Mathematical Constants

Symbol	Name	Approximate Value
π	Pi	3.14159
e	Euler's number	2.71828
ϕ	Golden ratio	1.61803
$ \gamma $	Euler-Mascheroni constant	0.57721
$\sqrt{2}$	Square root of 2	1.41421

Appendix B

Selected Solutions

This appendix provides detailed solutions to selected exercises from each chapter.

B.1 Chapter 1: Mathematical Foundations

B.1.1 Exercise 1

Problem: Prove that the intersection of two sets is commutative: $A \cap B = B \cap A$.

Solution: We need to show that $A \cap B = B \cap A$ by proving two inclusions.

First, we show $A \cap B \subseteq B \cap A$: Let $x \in A \cap B$. By definition of intersection, $x \in A$ and $x \in B$. Since $x \in B$ and $x \in A$, we have $x \in B \cap A$. Therefore, $A \cap B \subseteq B \cap A$.

Next, we show $B \cap A \subseteq A \cap B$: Let $x \in B \cap A$. By definition of intersection, $x \in B$ and $x \in A$. Since $x \in A$ and $x \in B$, we have $x \in A \cap B$. Therefore, $B \cap A \subseteq A \cap B$.

Since both inclusions hold, $A \cap B = B \cap A$.

B.1.2 Exercise 3

Problem: Prove by contradiction that there are infinitely many prime numbers.

Solution: Assume for contradiction that there are only finitely many prime numbers. Let these primes be p_1, p_2, \ldots, p_k .

Consider the number $N = p_1 \cdot p_2 \cdot \ldots \cdot p_k + 1$.

Since N > 1, by the fundamental theorem of arithmetic, N must have at least one prime divisor. Let p be a prime divisor of N.

If p is one of p_1, p_2, \ldots, p_k , then p divides the product $p_1 \cdot p_2 \cdot \ldots \cdot p_k$. Since p also divides N, it must divide their difference: $N - p_1 \cdot p_2 \cdot \ldots \cdot p_k = 1$

But no prime can divide 1, which is a contradiction.

Therefore, p cannot be any of p_1, p_2, \ldots, p_k , meaning we have found a new prime not in our original list. This contradicts our assumption that we had listed all primes.

Therefore, there must be infinitely many prime numbers.

B.2 Chapter 2: Abstract Algebra

B.2.1 Exercise 1

Problem: Prove that in any group, each element has a unique inverse.

Solution: Let G be a group with operation * and identity element e. Let $a \in G$.

Suppose b and c are both inverses of a. Then: -a * b = b * a = e - a * c = c * a = e

We need to show b = c.

Starting with b:

$$b = b * e$$
 (identity property) (B.1)

$$= b * (a * c) \quad \text{(since } a * c = e) \tag{B.2}$$

$$= (b * a) * c$$
 (associativity) (B.3)

$$= e * c \quad \text{(since } b * a = e) \tag{B.4}$$

$$= c \quad \text{(identity property)} \tag{B.5}$$

Therefore, b = c, proving uniqueness of the inverse.

B.3 Chapter 3: Calculus

B.3.1 Exercise 1

Problem: Use the definition of limit to prove that $\lim_{x\to 3}(2x+1)=7$.

Solution: We need to show that for every $\varepsilon > 0$, there exists $\delta > 0$ such that whenever $0 < |x - 3| < \delta$, we have $|(2x + 1) - 7| < \varepsilon$.

First, let's simplify the expression we need to bound: |(2x+1)-7|=|2x-6|=2|x-3|For this to be less than ε , we need: $2|x-3|<\varepsilon$ $|x-3|<\frac{\varepsilon}{2}$

Therefore, we can choose $\delta = \frac{\varepsilon}{2}$.

Verification: If $0 < |x-3| < \delta = \frac{\varepsilon}{2}$, then: $|(2x+1)-7| = 2|x-3| < 2 \cdot \frac{\varepsilon}{2} = \varepsilon$

This proves that $\lim_{x\to 3}(2x+1)=7$.

B.3.2 Exercise 4

Problem: Evaluate $\int_0^{\pi/2} x \sin x \, dx$ using integration by parts.

Solution: Using integration by parts with u = x and $dv = \sin x \, dx$: - du = dx - $v = -\cos x$

Applying the integration by parts formula:

$$\int_0^{\pi/2} x \sin x \, dx = \left[x(-\cos x) \right]_0^{\pi/2} - \int_0^{\pi/2} (-\cos x) \, dx \tag{B.6}$$

$$= \left[-x \cos x \right]_0^{\pi/2} + \int_0^{\pi/2} \cos x \, dx \tag{B.7}$$

$$= \left[-x \cos x \right]_0^{\pi/2} + \left[\sin x \right]_0^{\pi/2} \tag{B.8}$$

$$= \left[-\frac{\pi}{2} \cos \frac{\pi}{2} - (-0 \cos 0) \right] + \left[\sin \frac{\pi}{2} - \sin 0 \right]$$
 (B.9)

$$= [0-0] + [1-0] \tag{B.10}$$

$$= 1 \tag{B.11}$$

Therefore, $\int_0^{\pi/2} x \sin x \, dx = 1$.

Chapter 4: Linear Algebra B.4

B.4.1 Exercise 2

Problem: Find the determinant of $A = \begin{pmatrix} 2 & -1 & 3 \\ 1 & 0 & 4 \\ -2 & 1 & 1 \end{pmatrix}$.

Solution: Using cofactor expansion along the second row (which has a zero):

$$\det(A) = 1 \cdot \det\begin{pmatrix} -1 & 3\\ 1 & 1 \end{pmatrix} - 0 \cdot (\text{something}) + 4 \cdot \det\begin{pmatrix} 2 & -1\\ -2 & 1 \end{pmatrix}$$

Computing the 2×2 determinants: $-\det \begin{pmatrix} -1 & 3 \\ 1 & 1 \end{pmatrix} = (-1)(1) - (3)(1) = -1 - 3 = -4$

$$\det \begin{pmatrix} 2 & -1 \\ -2 & 1 \end{pmatrix} = (2)(1) - (-1)(-2) = 2 - 2 = 0$$

Therefore: $det(A) = 1 \cdot (-4) - 0 + 4 \cdot 0 = -4$

B.5Chapter 5: Real Analysis

B.5.1Exercise 1

Problem: Prove that $\lim_{n\to\infty}\frac{1}{n}=0$ using the definition of convergence.

Solution: We need to show that for every $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \ge N$: $\left| \frac{1}{n} - 0 \right| < \varepsilon$

This simplifies to showing $\frac{1}{n} < \varepsilon$.

Given $\varepsilon > 0$, by the Archimedean property, there exists a positive integer N such that $N > \frac{1}{\varepsilon}$, which means $\frac{1}{N} < \varepsilon$.

For any $n \geq N$, we have $n \geq N > \frac{1}{\varepsilon}$, so $\frac{1}{n} \leq \frac{1}{N} < \varepsilon$. Therefore, $\left|\frac{1}{n} - 0\right| = \frac{1}{n} < \varepsilon$ for all $n \geq N$. This proves that $\lim_{n \to \infty} \frac{1}{n} = 0$.

Chapter 6: Discrete Mathematics B.6

B.6.1Exercise 1

Problem: Prove that in any graph, the number of vertices with odd degree is even.

Solution: Let G = (V, E) be a graph. Let V_{odd} be the set of vertices with odd degree and V_{even} be the set of vertices with even degree.

By the handshaking lemma: $\sum_{v \in V} \deg(v) = 2|E|$

Since 2|E| is even, the sum of all degrees is even.

We can partition this sum: $\sum_{v \in V} \deg(v) = \sum_{v \in V_{\text{even}}} \deg(v) + \sum_{v \in V_{\text{odd}}} \deg(v)$ The first sum, $\sum_{v \in V_{\text{even}}} \deg(v)$, is a sum of even numbers, so it's even.

Since the total sum is even and the first part is even, the second part $\sum_{v \in V_{\text{add}}} \deg(v)$ must also be even.

But this is a sum of odd numbers. For a sum of odd numbers to be even, there must be an even number of terms.

Therefore, $|V_{\text{odd}}|$ is even, meaning the number of vertices with odd degree is even.

Chapter 7: Probability Theory B.7

B.7.1Exercise 2

Problem: If $X \sim \text{Binomial}(10, 0.3)$, compute P(X = 3) and E[X].

Solution: For a binomial distribution with parameters n = 10 and p = 0.3:

 $P(X=3) = \binom{10}{3}(0.3)^3(0.7)^7$

Computing each part: $-\binom{10}{3} = \frac{10!}{3! \cdot 7!} = \frac{10 \cdot 9 \cdot 8}{3 \cdot 2 \cdot 1} = 120 - (0.3)^3 = 0.027 - (0.7)^7 = 0.0823543$

Therefore: $P(X = 3) = 120 \times 0.027 \times 0.0823543 \approx 0.2668$

For the expected value: $E[X] = np = 10 \times 0.3 = 3$

B.8 Chapter 8: Geometry

B.8.1 Exercise 4

Problem: A triangle has sides of length 3, 4, and 5. Find its area using both the base-height formula and Heron's formula.

Solution: First, note that $3^2 + 4^2 = 9 + 16 = 25 = 5^2$, so this is a right triangle with legs of length 3 and 4, and hypotenuse of length 5.

Method 1: Base-height formula Using the legs as base and height: $A = \frac{1}{2} \times \text{base} \times \text{base}$ height $=\frac{1}{2}\times 3\times 4=6$

Method 2: Heron's formula First, find the semi-perimeter: $s = \frac{3+4+5}{2} = 6$

Then apply Heron's formula:

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$
(B.12)

$$= \sqrt{6(6-3)(6-4)(6-5)}$$
 (B.13)

$$=\sqrt{6\times3\times2\times1}\tag{B.14}$$

$$=\sqrt{36}\tag{B.15}$$

$$= 6 \tag{B.16}$$

Both methods give the same result: the area is 6 square units.

Bibliography

- [1] David S Dummit and Richard M Foote. Abstract Algebra. John Wiley & Sons, 3rd edition, 2004.
- [2] Kenneth H Rosen. Discrete Mathematics and Its Applications. McGraw-Hill, 8th edition, 2019.
- [3] Sheldon M Ross. A First Course in Probability. Pearson, 9th edition, 2014.
- [4] Walter Rudin. Principles of Mathematical Analysis. McGraw-Hill, 3rd edition, 1976.
- [5] Michael Spivak. Calculus. Publish or Perish, 4th edition, 2008.
- [6] Gilbert Strang. *Introduction to Linear Algebra*. Wellesley-Cambridge Press, 5th edition, 2016.