安徽大学电子信息工程学院 20 18 — 20 19 学年第 1 学期

《高等数学 A (一)》咸鱼班学业水平检测试卷 时间 120 分钟) (闭卷

考场座位号

题 -	号	1	П	Щ	四	五	总分
得:	分						
阅卷	人						

一、填空题(每小题 2 分, 共 10 分)

亭

死/然

得分

- 1. 曲线若 $y = e^{\frac{1}{x^2}} \arctan \frac{x^2 + x + 1}{(x 1)(x 2)}$ 的渐近线有_____条。
- 3. 若曲线 $L_1: y = x^2 + ax + b$ 与 $L_2: 2y = -1 + xy^3$ 在 (1,-1) 处相切,则 $a = ____$, $b = ___$
- 4. 设常数 k > 0, 函数 $f(x) = \ln x \frac{x}{e} + k \, \text{在}(0, +\infty)$ 内零点个数为_____。
- 二、单项选择题(每小题2分,共10分)

得分

- 6. 设在[0,1]上f''(x) > 0,则f'(0),f'(1),f(1) f(0)和f(0) f(1)四个数的大小顺 序为()
 - A, f'(1) > f'(0) > f(1) f(0) B, f'(1) > f(1) f(0) > f'(0)
 - C, f(1)-f(0) > f'(1) > f'(0) D, f'(1) > f(0)-f(1) > f'(0)

- A、连续点 B、可去间断点 C、跳跃间断点 D、第二类间断点

- 8. 设f(x)在R上有一阶导数,记 $\Gamma(x) = f(x)x^2$,则 $\Gamma(x)$ 在x = 0点有()导数。
 - A、1阶
- B、2阶
- C、不存在 3 阶 D、不能确定
- 9. 设 $f'(x_0) = f''(x_0) = 0$, $f'''(x_0) > 0$, 则下列正确的表述为 ()
- A、 $f'(x_0)$ 是f'(x)的极大值
- $B \cdot f(x_0)$ 是 f(x) 的极大值
- C、 $(x_0, f(x_0))$ 是曲线 y = f(x) 的拐点 D、 $f(x_0)$ 是 f(x) 的极小值
- 10. 己知 $\lim_{x\to 0} f(x)$ 存在,且 $\lim_{x\to 0} \frac{\sqrt{1+f(x)\sin 2x}-1}{e^{3x}-1} = 2$,则 $\lim_{x\to 0} f(x) = ($)
- A, 6

- B、3
- C、1
- D, 2
- 三、计算题(11、12、15 题每题 10 分, 13、14 每题 12 分, 共 54 分)

得分

11. 己知 $x_{n+1} = \sqrt{2+x_n} \ (n \in N_*)$,且 $x_1 = \sqrt{2}$, 求 $\lim_{n \to \infty} x_n$ 。(**10** 分)

12. 求下列函数的极限。(10分)

(1)
$$\lim_{x \to +\infty} \left(\frac{2}{\pi} \arctan x \right)^x$$

$$(2) \lim_{x\to 0} \left[\frac{1}{\ln(1+x)} - \frac{1}{x} \right]$$

13. 求下列函数的导数。(12分)

- (1) 已知 $y = \sqrt{x \sin x \sqrt{1 e^x}}$, 求 y 的一阶导数;
- (2) 设y = y(x)是由 $e^y + xy = e$ 所确定,求y的二阶导数;

14. 计算下列不定积分。(12分)

- $(1) \quad I = \int \frac{xe^x dx}{\sqrt{1 + e^x}};$
- (2) 设 $\frac{\sin x}{x}$ 是 f(x)的一个原函数,求 $I = \int d[f(x)x^2]$;

答题勿超装订线

15. 判断 $\int_{1}^{2} \frac{1}{x\sqrt{x^{2}-1}} dx$ 的敛散性, 若收敛, 计算它的值, 若发散, 给出理由。(10 分)

四、应用题(每小题8分,共16分)

得分

16. 设有曲线 $y = \sqrt{x-1}$,过原点做其切线,求由此曲线、切线及 x 轴围成平面图形绕 x 轴旋转一周所得到旋转体的表面积。(8分)

17. 在单位圆 $x^2 + y^2 = 1$ 的第二象限部分上求一点 P,使过该点的切线、单位圆以及两坐标轴所围成的图形的面积最小,写出切线方程,并求出最小面积。要求:画图示意+公式理论求解。(8分)

五、证明题(每小题5分,共10分)

18. 设函数 f(x)在 [a,b]上连续,在 (a,b)内可导,且 f(a) = f(b) = 0,试证:存在 $\xi \in (a,b)$,使得 $f'(\xi) = \lambda f(\xi)$ 。(5 分)

19. 设 f(x)在[0,1]上可导,且 f(0) = f(1) = 0,试证: 存在 $\xi \in (0,1)$,使得 $f''(\xi) = \frac{2f'(\xi)}{1-\xi}$ 。
(5 分)