Name:		
-------	--	--

- 1. This exam is due on June 22.
- 2. Be sure to show all work and explain your reasoning as clearly as possible.

Problem	Points	Score
1	25	
2	25	
3	25	
4	25	
Total	100	

- 1. (25 points) Please state the divergence theorem in \mathbb{R}^3 and prove it.
- 2. (25 points) Please use Green's theorem to prove the following theorem:

Let Γ be a Jordan region in the uv-plane with a piecewise-smooth boundary C_{Γ} . A vector function r(u,v) = x(u,v)i + y(u,v)j maps Γ onto a region Ω of the xy-plane. r is one-to-one and C^2 function, and the Jacobian J is non-zero on the interior of Γ . Then

Area of
$$\Omega = \int \int_{\Gamma} |J(u,v)| \ du dv$$

3. (25 points) Please sketch the region of the integration and evaluate the integrals.

(a)

$$\int_{-2}^{2} \int_{0}^{\sqrt{4-y^2}} \int_{-\sqrt{4-x^2-y^2}}^{\sqrt{4-x^2-y^2}} y^2 \sqrt{x^2+y^2+z^2} dz dx dy$$

(b)

$$\int_0^1 \int_x^1 \cos(y^2) dy dx$$

(c)

$$\int_C (y+\sin x)dx + (z^2+\cos y)dy + x^3dz,$$

where C is the curve $\mathbf{r}(t) = (\sin t, \cos t, \sin 2t), \quad 0 \le t \le 2\pi$. (in the clockwise direction)

- 4. (25 points)
 - (a) Please state the Mean Value Theorem for the double integral: $\int \int_D f(x,y) \ dx dy$. Here, $D = \{(x,y): x^2 + y^2 \leq 3\}$ is a closed disk. And f is a continuous function.
 - (b) Please prove this theorem.