Math 240 Tutorial Questions

May 30

Question 1. Consider the set $S = \{(1, 3, -4, 2), (2, 2, -4, 0), (1, -3, 2, -4), (-1, 0, 1, 0)\}$ of vectors in \mathbf{R}^4 . Show they form a linearly dependent set, and express one vector as a linear combination of the others.

Question 2. Consider the set $S = \{(1,0,0,-1),(0,1,0,-1),(0,0,1,-1),(0,0,0,1)\}$ of vectors in \mathbb{R}^4 . Show they form a linearly independent set. For a general vector $(a_1,a_2,a_3,a_4) \in \mathbb{R}^4$, derive the coefficients for this vector when it is expanded as a linear combination of the vectors in S.

Question 3. Let S_1 and S_2 be finite subsets of \mathbb{R}^n , for some n, such that $S_1 \subseteq S_2$. Prove that if S_1 is a linearly dependent set, then so is S_2 . Show that this is equivalent to if S_2 is a linearly independent set, then so is S_1 .

Question 4. Let S be a linearly independent set of \mathbb{R}^n , and let \vec{v} be a vector in \mathbb{R}^n that is not in S. Prove that $S \cup \{\vec{v}\}$ is linearly dependent if and only if $\vec{v} \in \operatorname{span}(S)$.

Question 5. Do the following.

- (a) Let \vec{u} and \vec{v} be distinct vectors in \mathbf{R}^n . Prove that $\{\vec{u}, \vec{v}\}$ is linearly independent if and only if $\{\vec{u} + \vec{v}, \vec{u} \vec{v}\}$ is linearly independent.
- (b) Let $\vec{u}, \vec{v}, \vec{w}$ be distinct vectors in \mathbf{R}^n . Prove that $\{\vec{u}, \vec{v}, \vec{w}\}$ is linearly independent if and only if $\{\vec{u} + \vec{v}, \vec{u} + \vec{w}, \vec{v} + \vec{w}\}$ is linear independent.

Question 6. Show the following for \mathbb{R}^n .

- (a) Show that scalar multiplication is a linear transformation.
- (b) When is this linear map invertible?
- (c) Is its inverse a linear transformation?
- (d) Fix an element $a \in \mathbf{R}^n$. What is the matrix corresponding to the linear transformation $\vec{v} \mapsto a\vec{v}$?

Question 7. Fix $a \in \mathbf{R}$ and $\vec{u} \in \mathbf{R}^n$ with $\vec{u} \neq \vec{0}$. Is the map given by $\vec{v} \mapsto a\vec{v} + \vec{u}$, linear? Why or why not?

Question 8. Consider a linear transformation $T: \mathbf{R}^n \to \mathbf{R}^n$, and define $\mathrm{Ker}(T) = \{ \vec{v} \in \mathbf{R}^n : T(\vec{v}) = \vec{0} \}$. This is the kernel of the linear transformation T. For $\vec{v} \in \mathbf{R}^n$, define $\vec{v} + \mathrm{Ker}(T) = \{ \vec{v} + \vec{u} : \vec{u} \in \mathrm{Ker}(T) \}$. Show the following.

- (a) Ker(T) is closed under scalar multiplication and vector addition.
- (b) For $\vec{v} \in \mathbf{R}^n$, show that $\vec{v} + \operatorname{Ker}(T)$ consists of all and only those elements of \mathbf{R}^n that map to $T(\vec{v})$ under T.
- (c) For $\vec{v}_1, \vec{v}_2 \in \mathbf{R}^n$, show that either $\vec{v}_1 + \operatorname{Ker}(T) = \vec{v}_2 + \operatorname{Ker}(T)$ or $\vec{v}_1 + \operatorname{Ker}(T) \cap \vec{v}_2 + \operatorname{Ker}(T) = \emptyset$.