SOME HINTS FOR THE FOCUSED RESEARCH MEETING IN BRISTOL

1 THE CRECENT) PAST

DEF:
$$X$$
 complex manifold of dim Y , $A_c^{p,q}(X)$ (p,q) -diff. forms with compact support on X $D_{p,q}(X) = D^{n-p,n-q}(X)$ is the topological abuse of $A_c^{p,q}(X)$ space of amounts of biologues $(n-p,n-q)$ / bi-dimension (p,q)

Ex: Z closed (simbable) submanifold of
$$X$$
 dim $Z = p$

As correct of integration of bid. (p,p)
 $S_Z(\omega) := \int_Z \omega \qquad \forall \; \omega \in A_c^{p,p}(x)$

([Z])

(Domailly not.)

Notice that we have a convergence of currents

say that $(Te)_2$ of (p,p) -currents

 $S_Z(\omega) := \int_Z \omega \qquad \forall \; \omega \in A_c^{p,p}(x)$
 $S_Z(\omega) := \int_Z \omega \qquad \forall \; \omega \in A_c^{p,p}(x)$
 $S_Z(\omega) := \int_Z \omega \qquad \forall \; \omega \in A_c^{p,p}(x)$
 $S_Z(\omega) := \int_Z \omega \qquad \forall \; \omega \in A_c^{p,p}(x)$
 $S_Z(\omega) := \int_Z \omega \qquad \forall \; \omega \in A_c^{p,p}(x)$
 $S_Z(\omega) := \int_Z \omega \qquad \forall \; \omega \in A_c^{p,p}(x)$
 $S_Z(\omega) := \int_Z \omega \qquad \forall \; \omega \in A_c^{p,p}(x)$
 $S_Z(\omega) := \int_Z \omega \qquad \forall \; \omega \in A_c^{p,p}(x)$
 $S_Z(\omega) := \int_Z \omega \qquad \forall \; \omega \in A_c^{p,p}(x)$
 $S_Z(\omega) := \int_Z \omega \qquad \forall \; \omega \in A_c^{p,p}(x)$
 $S_Z(\omega) := \int_Z \omega \qquad \forall \; \omega \in A_c^{p,p}(x)$

"Dynamics of arrents" CONJ (Dinh-Sibony, 2010-2018) let F be a hol endomorphism of \mathbb{P}^n of degree $d \ge 2$. Jix $p \in \{0,...,n\}$. Then Z be a generic subvariety of P" of dimension p, then the sequence of awvients $\left(\frac{1}{\text{deg}^2} \cdot \frac{1}{J^{(n-p)\cdot l}} (f^l)^* S_z\right)_{l}$ compage to $T_{f,p}$. \sim awarent which only obeyonds on f and p.

THM (Bobace, 2023) let $\Phi_e: (C^*)^n \to (C^*)^n$ be the l-poveer map $(z_1,...,z_n) \longmapsto (z_1^{\ell},...,z_n^{\ell}).$ Let Z be any subvoriet of (C*)" of dimension p. Plan $\left(\frac{1}{\ell^{n-p}}\left(\bar{\Phi}_{\ell}^{*}\right)\delta_{z}\right)_{\ell}$ we we reserve to $\mathcal{T}_{t_{r},q_{\ell}(z)}$ "tropical current of trop (Z)" [Balance 2014] alwayes a fan fix d consider $(\bar{\mathcal{D}}_d)^* S_z = \bar{\mathcal{D}}_d^{\kappa}$

Ram: can stend the Thin to tric varieties

Rom: for a generic choice of a subv. of \mathbb{P}^n of fixed dim, trop (Z) is always the some

Ex: n=1, p=0, $Z=\{a\}$ in C^* $\Phi_{\ell}^*S_z = \sum_{i,k=1}^{\ell} S_{\{a|a\}^i, e^{2\pi i \cdot arg(a) \cdot k/\ell}\}$

or $l \rightarrow \infty$

> the sequence is const. to Hoors = 2/203

2. FUTURE

clumn n 2.1: Extension to monomial maps A non matrix with integer ceff. $A = [A_1 ... A_n]$ $(\Xi,...,\Xi_{n}) \mapsto (\mathcal{Z}_{1}^{A_{11}}...\Xi_{n}^{A_{n1}},...,\Xi_{n}^{A_{nn}})$ Remork: A = d. Inxn no "Farloot's porcer map" can we predict the asymptotic of (arrune φ_A hus degree ≥ 2)

find the $\left(\frac{1}{(\alpha-p)\cdot 2}\right)\left(\varphi_A^2\right)^*S_Z$ for every fixed right who winter Z of $(I^*)^N$ of wdim. P? Insight 1: arrume the requence of coverents has a limit > the trap of their supp has a limit love the support of (92) * Sz has tropicalization (A2)-1. trap (Z) no l'understand limits of tropical agales 1) re dealed also understand xieights EXI $A=\begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$ opply $(A^{l})^{-1}$ to -1> the limit is set-theor. = !

 $A = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$ out on $(0, 1, 0) \in (C^*)^2$ Insight 2: the limit of (Pa)*S(21,22) viill le Hoors, x {2,7 [Idaz]: rue should be correful viith eigenvalue 1, me are going to recover something tropical only outside the corr eigenposes

2.2 COHOHOLOGICAL POV

Obs: $CH_Q^P(\mathbb{P}^n) \simeq \mathbb{Q}$ $\neq p$, the iso is given by the degree map

ab Dinh-Silvay:

$$\lim_{\ell} \frac{1}{J^{(n-p)\ell}} \cdot (F^{\ell})^{*} \mathcal{S}_{Z} = \deg(Z) \cdot \mathcal{C}_{F,p}$$

y ognosic Z

CONT (?) f rational end. of degree ≥ 2 on X of dim n. This pe $\{0,...,n\}$, his $\alpha \in CH^p_{\mathbf{Q}}(X)$.

Then $\forall Z$ mbr. of X of $\dim P$ and $[Z] = \alpha$ we have $\lim_{z \to \infty} \frac{1}{x} (f^{2})^{*} S_{z} = \mathcal{L}_{f,p,\alpha}$ worent of lid (p,p) which only depends on f, p, a Q: is it deckable on toic varieties?

Insight: chomology of toric variations.

2.3 NON-ARCHIMEDEAN

broody gren in high dimension (equidistr.)

reasons:

1 ambient space Pⁿ, an is complicated!
2 need a theory of wordents on X Bark

Q: can rue branslate

Jorhad's thm t

the non-orchimedean sotting?

this is available! (pull-back from tropical)

L> Chambert-Loir - Dicros

L> Gubler - Künnemann (on analytified)

(t Burgos Gil, Jell)

Obs: Alore might be rolations between

Forthod's current and BGJK

connect complex retting and the

non-ordinaedean core

Obs: Indirid paces (Joseph - Boucksom): families of vorieties over the closed junctived dix "converge" non-orchimedeanly to a "tropical degeneration" on the conjunction of skeleton to non-orchimedean