Aim: To implement different clustering algorithms.

Theory:

Clustering is an unsupervised machine learning technique used to group similar data points together. The objective is to discover natural groupings within a dataset without prior knowledge of class labels. Clustering is widely used in customer segmentation, anomaly detection, image segmentation, and bioinformatics.

Types of Clustering

- 1. Partition-based Clustering (e.g., K-Means)
 - Divides data into a predefined number of clusters.
 - Each data point belongs to exactly one cluster.
- 2. Density-based Clustering (e.g., DBSCAN)
 - Forms clusters based on dense regions in the data.
 - Can identify clusters of arbitrary shape and detect noise.
- 3. Hierarchical Clustering
 - Builds a tree of clusters using a bottom-up (agglomerative) or top-down (divisive) approach.
- 4. Model-based Clustering
 - Assumes data is generated by a mixture of underlying probability distributions (e.g., Gaussian Mixture Models).

K Means Clustering:

K-Means is a partition-based clustering algorithm that divides data into K clusters.

Algorithm Steps:

- 1. Choose the number of clusters, K.
- 2. Randomly initialize K centroids.
- 3. Assign each data point to the nearest centroid.
- 4. Update centroids by computing the mean of points in each cluster.
- 5. Repeat steps 3 & 4 until convergence (when centroids stop changing significantly).

Key Considerations:

Choosing K: The Elbow method and Silhouette Score help determine the optimal number of clusters.

Limitations: Sensitive to initial centroid placement and does not work well with non-spherical clusters or varying densities.

DBSCAN (Density-Based Spatial Clustering of Applications with Noise):

DBSCAN is a density-based clustering algorithm that groups points closely packed together while marking low-density points as noise.

Algorithm Steps:

- 1. Set parameters:
- 2. ε (epsilon): Maximum distance to be considered a neighbor.
- 3. MinPts: Minimum points required to form a dense region.
- 4. Choose an unvisited point and determine its ε -neighborhood.
- 5. If the point has at least MinPts neighbors, a new cluster is formed.
- 6. Expand the cluster by adding density-reachable points.
- 7. Repeat for all points, marking outliers as noise.

Advantages:

- Handles clusters of arbitrary shape.
- Automatically detects noise and outliers.
- No need to specify the number of clusters.

Disadvantages:

- Choosing optimal ε and MinPts is challenging.
- Struggles with varying density clusters.

Steps:

1. Load and preprocess the dataset.

	Gender	Customer Type	Age	Type of Travel	Class	Flight Distance	Inflight wifi service	Departure/Arrival time convenient	Ease of Online booking	Gate location	 Inflight entertainment	On- board service	Leg room service	Baggage handling
0	1	0	13	1	2	460	3	4	3	1	 5	4	3	4
1	1	1	25	0	0	235	3	2	3	3	 1	1	5	3
2	0	0	26	0	0	1142	2	2	2	2	 5	4	3	4
3	0	0	25	0	0	562	2	5	5	5	 2	2	5	3
4	1	0	61	0	0	214	3	3	3	3	 3	3	4	4

Checkin service	Inflight service	Cleanliness	Departure Delay in Minutes	Arrival Delay in Minutes	satisfaction
4	5	5	25	18.0	0
1	4	1	1	6.0	0
4	4	5	0	0.0	1
1	4	2	11	9.0	0
3	3	3	0	0.0	1

The dataset represents airline passenger satisfaction, containing demographic details (Gender, Age, Customer Type, Type of Travel), flight-related attributes (Class, Flight Distance, Gate Location), in-flight service ratings (Seat Comfort, Inflight WiFi, Entertainment, Food & Drink),

and delay metrics (Departure/Arrival Delay). Satisfaction is labeled as 0 (Unsatisfied) or 1 (Satisfied), making it suitable for classification and clustering.

2. Elbow method for number of clusters

The Elbow Method plot helps determine the optimal number of clusters (K) in K-Means by plotting inertia (sum of squared distances to cluster centers) against different K values. The "elbow" point, where inertia reduction slows significantly, indicates the ideal K.

Formula to calculate:

$$WCSS = \sum_{i=1}^K \sum_{x \in C_i} ||x - \mu_i||^2$$

where,

- Ci = Cluster i
- μi = Centroid of cluster Ci
- $\| xi \mu i \|^2 =$ Squared Euclidean distance between a point and its cluster centroid

The **elbow point** is where the WCSS starts decreasing at a slower rate.

```
# Determine optimal clusters using Elbow Method
inertia = []
k_values = range(1, 11)
for k in k_values:
    kmeans = KMeans(n_clusters=k, random_state=42, n_init=10)
    kmeans.fit(df_scaled)
    inertia.append(kmeans.inertia_)

# Plot the Elbow Method
plt.figure(figsize=(8, 5))
plt.plot(k_values, inertia, marker='o')
plt.xlabel("Number of Clusters")
plt.ylabel("Inertia")
plt.title("Elbow Method for Optimal K")
plt.show()
```


In this plot, the elbow appears around K = 4 or 5. The dataset likely has 4 or 5 naturally distinct groups, and choosing K balances segmentation quality and computational efficiency

3. K means clustering

```
# Apply K-Means with optimal K (assume 3 based on elbow method)
kmeans = KMeans(n_clusters=4, random_state=42, n_init=10)
df['Cluster'] = kmeans.fit_predict(df_scaled)

# Display cluster distribution
print(df['Cluster'].value_counts())

Cluster
1    35729
3    25697
0    22216
2    20262
Name: count, dtype: int64
```

We try out clusters for k = 4 and 5. With k = 5, we find that cluster size of last cluster is very small as compared to the other clusters formed. So we use k = 4, we can observe that the clusters formed are similar in size. The four cluster formed are:

- 0 22216
- 1 35729
- 2 20262
- 3 25697

Visualization of clusters:

```
from mpl_toolkits.mplot3d import Axes3D
from \ sklearn. decomposition \ import \ PCA
# Reduce dimensions to 3
pca_3d = PCA(n_components=3)
df_pca_3d = pca_3d.fit_transform(df_scaled)
df_plot_3d = pd.DataFrame(df_pca_3d, columns=['PC1', 'PC2', 'PC3'])
df_plot_3d['Cluster'] = df['Cluster']
# 3D scatter plot
fig = plt.figure(figsize=(10, 7))
ax = fig.add_subplot(111, projection='3d')
ax.set_title('K-Means Clustering Visualization (3D PCA)')
ax.set_xlabel('Principal Component 1')
ax.set_ylabel('Principal Component 2')
ax.set_zlabel('Principal Component 3')
plt.legend(*scatter.legend_elements(), title='Cluster')
plt.show()
# Ensure feature names match df_scaled
feature_names = df.select_dtypes(include=[np.number]).columns.tolist()[:df_scaled.shape[1]]
# Create PCA components DataFrame
pca_components = pd.DataFrame(pca_3d.components_, columns=feature_names,
                              index=['PC1', 'PC2', 'PC3'])
# Display how features contribute to each principal component
print(pca_components.T)
```

K-Means Clustering Visualization (3D PCA)

To visualize the clusters we perform **Principal Component Analysis (PCA)** to reduce the dataset dimensions to three, making it easier to visualize the clusters obtained from K-Means

clustering. The **3D scatter plot** visualizes the clusters in the transformed feature space, where different colors represent different clusters. The clusters appear to be well-defined, indicating that the K-Means algorithm successfully grouped similar data points.

The PCA components **help analyze the contribution** of original features to the new principal components, providing insights into how data is distributed across clusters.

4. DBSCAN clustering

DBSCAN is an unsupervised clustering algorithm that groups together densely packed points while marking outliers as noise. Unlike K-Means, it does not require specifying the number of clusters in advance and is useful for identifying arbitrarily shaped clusters.

- 1. Defines Two Parameters:
 - ε (epsilon): The radius to consider neighboring points.
 - MinPts: Minimum number of points required in an ε-neighborhood to form a cluster.
- 2. Classifies Points as:
 - Core Points: Points with at least MinPts neighbors within ε.
 - Border Points: Points within ε of a core point but with fewer than MinPts neighbors.
 - Noise Points: Points that are neither core nor border (outliers).

3. Clustering Process:

- Starts with an unvisited point.
- Expands a cluster if it's a core point, connecting all reachable points.

Repeats until all points are classified.

```
from sklearn.cluster import DBSCAN

# Apply DBSCAN clustering
dbscan = DBSCAN(eps=2, min_samples=50)  # Adjust eps and min_samples as needed
clusters = dbscan.fit_predict(df_scaled)

# Add cluster labels to the dataset
df["Cluster"] = clusters

# Display cluster distribution
print(df['Cluster'].value_counts())
```

Cluste	er		
-1	70501		
1	11596		
0	11462		
2	4136		
3	3677		
4	695		
13	259		
11	219		
8	202		
5	178		
7	162		
14	129		
15	113		
6	107		
12	100		
10	75		
9	52		
19	51		
20	50		
16	49		
17	47		
18	44		
Name:	count,	dtype:	int64

We apply **DBSCAN** clustering with eps=2 and min_samples=50, grouping data points based on density. It assigns cluster labels using dbscan.fit_predict(df_scaled) and stores them in the dataset. The output shows that most points (70501) are classified as noise (-1), while the remaining data forms multiple clusters of varying sizes.

The **high number of noise points (-1)** in the output suggests that the chosen eps=2 is **too small to form dense clusters**, causing many points to be classified as outliers. Additionally, min_samples=50 requires at least 50 points in a neighborhood to form a cluster, which may be too restrictive for some regions of the dataset. As a result, only a few dense clusters are detected, while most points remain unclustered.

Visualization:

The DBSCAN clustering visualization in 3D PCA space shows that the majority of points are assigned to cluster -1 (noise) with only a few points belonging to distinct smaller clusters. This suggests that DBSCAN's parameters (epsilon and min_samples) may not be well-tuned for clear separation, leading to most points being grouped together while only a few scattered regions are identified as separate clusters.

Inference from both the clustering:

Overall we can see that the performance of **K means** is **better** than DBSCAN for clustering the dataset.

K-Means was a better choice for this dataset because the data is well-distributed without high-density regions, and clusters can be separated by distance rather than density. DBSCAN struggled due to high dimensionality and the lack of naturally dense clusters, causing excessive noise detection.

Conclusion:

In all, we come to know that K-Means and DBSCAN analyze airline passenger satisfaction data. K-Means (K=4) successfully grouped data into well-separated clusters, confirmed by the Elbow Method and PCA visualization, though it is sensitive to outliers. DBSCAN, however, struggled with this dataset, classifying many points as noise due to a lack of well-defined dense regions, making it less effective for this case.