MYOUNGCHUL KIM

Data Scientist

A■ English: Fluent

A■

Japanese: Fluent, JLPT N1

A■ Korean: Native

@ kmc8907@gmail.com
troopl.com/kmc8907

3 080-9801-7956 0000-0002-8624-5564

Greater Tokyo, Japan

MyoungchulK

in myoungchulkim

ABOUT ME

I'm an Astrophysicist used to analyzing large datasets to find astronomical signals and recently graduated from Le Wagon Data Scientist & AI boot camp. I'm seeking to utilize programming skills backed by my scientific background and data science knowledge.

EXPERIENCE

Python Data Scientist/Analyst

Turing

July 2024 - Ongoing

Remote

Multilingual SFT and RLHF Implementation for next-generation AI

July 2024 - Ongoing

Role: LLM Dataset Creation

Team size: 6

- Performed Supervised Fine-Tuning (SFT) and Reinforcement Learning with Human Feedback (RLHF) across English, Korean, and Japanese datasets to improve AI model alignment with human preferences, enhancing the accuracy and reliability.
- Analyzed model performance, focusing on Loss Patterns and Output-Based Evaluations to enhance robustness.
- Curated model responses through Comparative Analysis and Preference Pair evaluation, ensuring accurate and contextually appropriate outputs.

Al Training for Japanese Writers

Outlier

July 2024 - Ongoing

Remote

Fine-Tuning and Validation of Al-Generated Japanese Voice

July 2024 - Ongoing

Role: LLM evaluation

Team size: 12

- Conducted validation of Al-generated voices, focusing on voice quality through data augmentation, pitch, and speech rate to ensure natural and contextually accurate outputs.
- Evaluated voice model performance, ensuring clarity, consistency, and cultural accuracy.

Graduate Research Assistant, Ph.D.

International Center for Hadron Astrophysics (ICEHAP)

Chiba University

Search for Ultra-high Energy Neutrinos from Askaryan Radio Array (ARA) by Template Method ${\cal S}$

🗖 April 2018 - December 2023

Role: Project Leader

Team size: 6

- Classified astronomical signal by Principal Component Analysis (PCA), after obtaining features from ~200 TB of radiofrequency dataset.
 - Optimized the PCA based on Frequentist Statistics and Pseudo Experiment.
 - Implemented the Fast Fourier Transform (FFT), Interferometry, and the Matched Filter, for feature extraction.
- Implemented analysis pipeline used by large CPU & GPU clusters developed with scientific Python & C++ packages. It leads to wide use by international collaborators.
- Evaluated results by calculating statistical significance, including systematic uncertainty, and Monte Carlo simulation.

Development of In Situ Antenna Model for Simulation

🗖 April 2017 - March 2019

Role: Data Management

Team size: 4

 Performed high-precision calibration for the ra Extracted feature pattern from raw data after 		perty.	
Graduate Research Assistant, MSc. Neutrino AstroParticle Physics Lab (NAPPL) March 2015 - February 2017	SungKyunKwan University		
IceCube Camera System to Study Proper	ties of the Antarctic Ice ${\cal S}$		
☐ March 2015 - February 2017	Role: Project Leader	Team size: 5	
• Classified intrinsic camera noise appearing in e traction.	xtremely low-temperature conditions fr	rom images using feature ex-	
 Developed Python package to control the cam Evaluated the performance of camera system be 			
PROJECT			
Sound to Symphony (Al Music Generatio Le Wagon Data Science & Al Bootcamp Danuary 2024 - March 2024 Role: Data Management Generates new music by Recurrent Neural Net Architectures RNN to learn musical patterns for Deployed the project into the Streamlit by utili Built the connection between generated musical	 Le Wagon, Tokyo ♣ Team size: 4 Ework (RNN) that can be easily customize From large classical music datasets that a zing FastAPI 		
EDUCATION			
Data Science & Al Bootcamp			
Le Wagon i January 2024 - March 2024			
 Thorough study in Python for Data Science, wi by a strong foundation in statistics and linear a Delving into Machine Learning and Deep Learn 	th expertise in data extraction, manipul lgebra. ling, with practical application in buildin		
 utilizing Scikit-Learn and designing neural netw Proficiency in ML Engineering, involving the dedeep awareness of the ethical considerations s 	evelopment of Python packages for larg	e-scale data tasks in GCP, and a	
Completion of Ph.D. program (ABD), Astr Chiba University	oParticle Physics		
☐ April 2017 - December 2023	Japan		
 Research topic: Search for Ultra-high Energy N trino Template Method 	eutrinos Using Eight Years of Data from	n Two ARA Stations by the Neu-	
Master of Science, AstroParticle Physics SungKyunKwan University			
March 2015 – February 2017	South Korea	South Korea	
Thesis title: Performance study of camera systems	em for the IceCuhe-Gen? detector		
- mesis tide. I enormance study of camera syste	chi for the recoupe Genz detector		

Bachelor in Science, Physics SungKyunKwan University

March 2011 - February 2015

South Korea

TECHNICAL SKILLS

Coding Tools: Python C++ ROOT Vim HTCondor CVMFS Latex G-Collab & Jupyter
Data Analytics: NumPy SciPy Scikit-learn Pandas SQL Matplotlib Seaborn
Modelling: TensorFlow Deep Learning Unsupervised Leaning NLP CNN Time series Ensemble Methods Statsmodels LLM
Deployment: GCP Docker FastAPI Streamlit
Hardware Experience: Electronics Optics

SELECTED PUBLICATIONS

Journal Articles

- P. Dasgupta, M. S. Muzio, et al., "Progress Towards a Diffuse Neutrino Search in the Full Livetime of the Askaryan Radio Array," PoS, vol. ICRC, p. 1226, 2023.
- M. Kim et al., "Enhanced Ultra-High Energy Neutrino Search at the Askaryan Radio Array using Template-based Techniques," PoS, vol. ICRC, p. 1148, 2023.
- D. Bose, M. Jeong, K. Woosik, J. Kim, M. Kim, C. Rott, et al., "PINGU camera," PoS, vol. ICRC, p. 1145, 2015.

AWARDS

INTERESTS

Classical Music Orchestra Contrabass Universe Fourier Transform