Fast Autonomous Flight in Warehouses for Inventory Applications

Marius Beul, David Droeschel, Matthias Nieuwenhuisen, Jan Quenzel, Sebastian Houben, and Sven Behnke

Abstract—The past years have shown a remarkable growth in use-cases for micro aerial vehicles (MAVs). Conceivable indoor applications require highly robust environment perception, fast reaction to changing situations, and stable navigation, but reliable sources of absolute positioning like GNSS or compass measurements are unavailable during indoor flights.

We present a high-performance autonomous inventory MAV for operation inside warehouses. The MAV navigates along warehouse aisles and detects the placed stock in the shelves alongside its path with a multimodal sensor setup containing an RFID reader and two high-resolution cameras. We describe in detail the SLAM pipeline based on a 3D lidar, the setup for stock recognition, the mission planning and trajectory generation, as well as a low-level routine for avoidance of dynamical or previously unobserved obstacles. Experiments were performed in an operative warehouse of a logistics provider, in which an external warehouse management system provided the MAV with high-level inspection missions that are executed fully autonomously.

Index Terms—Aerial Systems: Applications; Aerial Systems: Perception and Autonomy; Motion and Path Planning;

I. INTRODUCTION

N the last years, many novel applications for flying robots emerged, enabled by two main factors: i) manufacturers developed affordable and capable micro aerial vehicles (MAVs) for hobby, recreation and professional usage that do not require extensive flight training; ii) recent advances in robotic research led to efficient methods for environment perception and safe navigation, enabling various applications that can only be performed autonomously. This includes operations at high velocities and close to structures. Both conditions are prohibitive for safe operation by a human pilot. One driver for developing such systems is also the DARPA-formulated goal of flying fast and autonomously in cluttered environments without GPS and external sensing or control in their Fast Lightweight Autonomy Program (FLA) [?].

While in most current applications, MAVs maintain a safe distance from the object to inspect or follow; many future applications require the MAV to operate close to obstacles or even in restricted indoor spaces. As an example, in this paper, we consider the use case of automatic inventory in a warehouse. It requires the MAV to quickly detect, identify,

Manuscript received: February 23, 2018; Revised: May 17, 2018; Accepted: June 6, 2018

This paper was recommended for publication by Editor Jonathan Roberts upon evaluation of the Associate Editor and Reviewers' comments.

This work was supported by the German Bundesministerium für Wirtschaft und Energie in the Autonomics for Industry 4.0 project InventAIRy, and grants BE 2556/7-2 and BE 2556/8-2 of the German Research Foundation (DFG).

The authors are with the Autonomous Intelligent Systems Group, University of Bonn, Germany mbeul@ais.uni-bonn.de

Digital Object Identifier (DOI): see top of this page.

Fig. 1. Our inventory system performs a fully autonomous inspection of a warehouse. The main challenges are the fast navigation in narrow passages close to structures and the localization in a large self-similar indoor environment with distant walls.

and map the stored items. In this way, it is possible to keep an always-up-to-date inventory record of the contents within the warehouse. Current commercial systems [?], [?] for this task merely deploy a scanner on the platform and perform a piloted flight in order to read tags on the goods.

Autonomous maneuvering inside such a building is highly challenging as most of the space is occupied with high shelves filled with stocked goods as shown in Fig. 1. This leaves only small aisles for navigation which might also be obstructed by other objects like forklifts. Additionally, the shelf rows lack distinctive geometric features and are highly self-similar which makes precise self-localization difficult. On the other hand, these narrow structures are embedded in large halls with stable, but far-away localization aids like walls. This requires real-time localization with long-distance sensors in large maps with many structures.

We present our self-localization and mapping approach based on a 3D lidar, which is able to handle these challenging situations robustly. The lidar is also the basis of a low-level obstacle avoidance mechanism. In addition, the robot carries a sensor setup to identify the stocked material by means of fiducial markers and RFID tags. The flight mission is provided by a warehouse management system (WMS) as a sequence of storage panels that have to be inspected. The mission is planned in a semantic, yet metric, map of the warehouse that contains the approximate placing of all the shelf rows and the number and relative position of the storage panels within. The laser-based map is aligned with this representation in order to define the inspection poses that the robot consecutively visits during its flight.

Experiments are performed in a warehouse of a logistics provider containing narrow aisles between shelves and larger open areas. We mapped several shelf rows and performed autonomous inventory missions including the transition between rows and the avoidance of static obstacles. Furthermore, we demonstrated the reactive avoidance of dynamic obstacles approaching the MAV. We discuss guidelines for the development of future systems for autonomous indoor operation and draw prospects for the future of autonomous inventory robots.