Mid Term Exam-IBM 311 (Autumn 2023)

Duration: From 7:30 am to 9:15 am. Maximum Marks: 52.

Name:		
Subject Name:		
Subject Code:		
Serial number (assigned for this course):		
Enrollment No.:		
Date:		
Signature of the Student	Signature of the Invigilator	
Standard normal table is provided as a separate shee	et and will be collected at the end	
of the exam. Do not write/mark anything on this she		
. 0		
All questions carry 1 mark and has <u>one third negative marking</u> . Unanswered questions		
will not be marked.		
Your answers should be marked in response sheet (hackside of this page) This page	
will be collected at the end of the exam.		
Right side margin of the question paper can be used	l for rough work.	
Evaminar'a Signatura		
Examiner's Signature		

Response Sheet

Question Paper Set:

Fill in the correct option (tick mark, darken or cross one box for each response) for each question.

Section	1	Section	2		Section	า 6
Q. No.	Options	Q. No.	Optio	ons	Q. No.	Options
1		1			1	
2		2			2	
3		3			3	
4					4	
5						
6						
7		Section	3		Section	n 7
8		Q. No.	Optio	ons	Q. No.	Options
9		1			1	
10		2			2	
11		3			3	
12		4			4	
13		5				
14						
15		Section	4			
16		Q. No.	Optio	ons		
17		1				
18		2				
19		3				
20		4				
21						
22						
23		Section	5			
24		Q. No.	Optio	ons		
25		1				
26		2				
27		3				
28		4				

Section 1: General

- 1. Which of the following statements about the ABC classification system are true:
- i) It is a method for classifying inventory based on the percentage of total value and the percentage of total quantity.
- ii) Class A items in the ABC classification system require less monitoring and control than Class C items.

b

- iii) It is useful in rationing monitoring capability.
- iv) It is useful in determining EOQ.
 - it is useful in determining 20
 - a) i and ii
- b) i and iii
- c) iii and iv
- d) ii and iv
- 2. The underlying rational for ABC classification scheme for inventory control is (Choose only 1 option):
- a) Rationing of monitoring capability
- b) Speed
- c) Excellence
- d) Redundancy

a

- 3. Select the correct order of steps involved in ABC Classification given below:
 - i) Evaluate cumulative % age value and quantity across rows
 - ii) Sort in descending order the table along the column containing the total value

d

- iii) List the inventories items, their cost and quantity
- iv) Evaluate %age of total value and total quantity for each row
- a) i, ii, iii, iv b) iii, i, iv, ii c) ii, iv, i, iii d) iii, ii, iv, i
- 4. Forecast methods based on judgment, opinion, past experiences, or best guesses are known as _____ methods.

b

- a) quantitative b) qualitative c) time series d) regression
- 5. Which of the following is not a forecasting method
- a) Technology diffusion curves b) Associative c) Time Series b) Back casting

d

- 6. Which of the following is not a type of predictable demand behavior?
- a) trend b) random variation c) cycle d) seasonal pattern

b

b

а

- 7. The sum of the weights in a weighted moving average forecast must
- a. equal the number of periods being averaged. b) equal 1.00.
 - c) be less than 1.00.

- d) be greater than 1.00.
- 8. The sum of weights in exponential smoothing is
- a) Equal to 1 b) Equal to e c) Equal to 1/e d) Greater than e

9. Given the demand and forecast values below, the naïve forecast for September is:

Period	Demand	Forecast
April	100	97
May	105	103
June	97	98
July	102	105
August	99	102
September		

b

a) 100.6 b) 99 c) 102.0 d) Cannot be determined

	The smoothing constant, α , in the exponential smoothing forecast	
a)	must always be a value greater than 1.0.	
	must always be a value less than 0.10. must be a value between 0.0 and 1.0.	С
c) d)	should be equal to the time frame for the forecast.	
u)	should be equal to the time frame for the forecast.	
11.	The closer the smoothing constant, α , is to 1.0 the	
a.	greater the reaction to the most recent demand.	
b.	greater the dampening, or smoothing, effect.	
	more accurate the forecast.	
a.	less accurate the forecast.	
con	The exponential smoothing model produces a naïve forecast when the smoothing astant, α , is equal to 0.00. b) 1.00. c) 0.50. d) 2.00	b
13.	For the demand values and the January forecast shown in the table below the exponential smoothing forecast for March using $\alpha = 0.30$ is	
	Period Demand Forecast	
	January 500 480	
	February 476 March 503	
	March 503 April	
	a) 489. b) 486. c) 483. d)480.	
	Which of the following is not an assumption of the EOQ model?	
	demand rate is known and constant	
	shortages are allowed b	
c) d)	lead time is constant order quantity is received all at once	
u)	order quantity is received an at once	
	The extent to which the firm will produce the inputs and control the outputs of each	a
	ge of the production process is known as: vertical integration b) process flexibility c) process planning d) capital intensity.	
u) v	vertical integration by process flexibility by process planning ay capital intensity.	
	The conditions when the economic order quantity model results in periodic ordering are:	i
a) d) V	Fixed lead time b) Variable lead time c) Fixed Demand rate Variable demand rate	
	i) a and c ii) a and b iii) c and d iv) b and d v) a and d	
171	Fundamental problem of O&SCM is	
1/1	Fundamental problem of O&SCM is a) Demand and supply are not collocated	
	b) Demand and supply are coincidental in time	
	c) Demand and supply are not coincidental in time	
	d) Demand and supply are not relevant	
	i) All of the above	
	ii) a) & c)	
	iii) b) & d)	
	iv) c) & d)	

18 Generally, which of the following O&SC processes	add the highest value	
a) Marketing and Brandingb) Manufacturing	II	
c) Design		
d) Assembly		
•		
i) a and b ii) c and a iii) d iv) b		
19 Which of the following statements is not correct:		
a) Tracking signal is used to monitor forecasts		
b) Control chart is used for monitoring of forecast		С
c) Upper and lower limits on the control chart are standard deviation of the error.	fixed numbers and not multiples of	Ü
d) Upper and lower limits on the tracking signal co	hart are fixed numbers and not	
multiples of its standard deviation.		
20 When we incorrectly label a forecast out of control v	while it is actually in control it is	
called as type II error.	while it is actually in control, it is	
a) True		b
b) False		
21 When we incorrectly label a forecast in control while	e it is actually out of control it is	
called as Type II error.	·	
a) True	•	a
b) False		
22. If the limits of the control chart are set at 3 sigma or	n either side of the centre line and	
the distribution of the variable being monitored is norm		we want the measured mean to calculate type I
a) .0027 b) Can't Say c) .027 d) .27	, I 3 31	error. => b
2. If the limits of the central abort are set at 2.1 sigms	on either side of the centre line and	
2 <mark>3. If t</mark> he limits of the control chart are set at 3.1 sigma the distribution of the variable being monitored is norm		remaining area => d
a) .0027 b) .00006 c) Can't Say d) .0019	ar, the productiney of type 1 error is	•
24. How many feedback loops are there in the flowchar a) 1 b) 2 c) 3 d) 0	t of the forecasting process:	b
a) 1 b) 2 c) 3 d) 0		
25. The daily demand for a product is normally distribu		
the variance of 25, what is the probability that on any g greater than 105	iven day the demand would be	а
a) .158 b) .27 c) .33 d) .015		
26. Which of the following statements is true for demar	nd per period which is independent	
and normally distributed a) The standard deviation for the aggregate demand dur	ing the lead time is the sum of the	
demand per period.	ing the lead time is the sum of the	
b) The standard deviation for the aggregate demand dur	ring the lead time is the product of	С
the demand per period.	nd time is the sum of the demand	
 c) The variance for the aggregate demand during the leaperiod. 	id time is the sum of the demand per	
d) The variance for the aggregate demand during the lea	ad time is the product of the demand	
per period.		

	Cactical Planning above	b) Operational Planning	c) Strategic Planning d) None	of
		g is not a variable in production acting c) Capital Investment		
Sec	ction 2: Service leve			
	nand of 500 units and a		stributed with an average daily lead-time for the component is 9)
1.		% is desired then the company	y's reorder point for this compone	ent
a.	is approximately 3,785 units.			d
	4,500 units. 4,627units.			
	4,747units.			
	is approximately	% is desired, then the compan	y's safety stock for this compone	ent
a. b.	150 units. 247 units.			b
	336 units.			
d.	740 units.			
	demand of 500 units, a is 9 days. If the compa service level is approx	nd a standard deviation of 50 ny sets a reorder point of 4,65	y distributed with an average dail The lead time for the componen of for this component then its	
a. b.	50 percent. 84 percent.			b
c.	92 percent.			
d.	98 percent.			
	ction 3: Inventory			
the	365 days the company		act is used at a constant rate over all holding cost for the product is ch order is \$125.00.	
1.	its optimal order size f		der quantity (EOQ) formula then	l
a. b.	2,000 units. 4,000 units.			a
c.	20,000 units.			
d.	40,000 units.			
2.	orders are p	according to the economic ordinated annually.	der quantity (EOQ) formula then	
a. b.	5 10			d
c.	15			
d.	20			

3. If the company orders according to the economic order quantity (EOQ) formula, then the time between orders (order cycle time) is

С

d

- a. 18.25 days.b. 24.33 days.c. 36.5 days.d. 73 days.
- 4. If the company orders according to the economic order quantity (EOQ) formula then its total annual inventory cost for this product is
- a. \$100,000.
- b. \$50,000.
- c. \$5,000.
- d. \$2,500.
- 5. If the company orders according to the economic order quantity (EOQ) formula, then its average inventory level for this product is
- a. 20,000 units.
- b. 10,000 units.
- c. 2,500 units.
- d. 1,000 units.

Section 4: Forecasting

A forecasting model has produced the following forecasts:

Period	Demand	Forecast	Error
January	120	110	
February	110	115	
March	115	120	
April	125	115	
May	130	125	

- 1. The mean absolute deviation (MAD) for the end of May is
- (a) 7.0.
 - (b) 7.5.
- (c) 10.0.
- (d) 3.0
- 2. The mean absolute percent deviation (MAPD) for the end of May is
- (a) 0.0250.
- (b) 0.0583.
- (c) 0.5830.
- (d) 0.6670.

a

С

d

b

- 3. At the end of May, the average error would be
 - (a) 7.
- (b) 5.
- (c) 3.
- (d) 1.
- 4. At the end of May, the tracking signal would be
 - (a) 0.000.
- (b) 0.667.
- (c) 1.333.
- (d) 2.143.

Section 5: Forecasting II

A local building products store has accumulated sales data for 2*4 lumber and the number of building permits in its area for the past 10 quarters

or bullating	permits in	ns area r
Quarter	Permits	Lumber
		sales
1	8	12.6
2	12	16.3
3	7	9.3
4	9	11.5
5	15	18.1
6	6	7.6
7	5	6.2
8	8	14.2
9	10	15
10	12	17.8

1. Using time series regression the forecast for quarter 11 is:

a) 14 b) 16 c) 12 d) 10

2. On an average, if the number of permits increase by 1, by how much the lumber sales increase:

a => do by Linear regression

- a) 1.25
- b) 2.25
- c) 0.25
- d) .75
- 3. Regressing lumber sales on number of building permits, the sales forecast for 11 building permits is:

b

a => 14.04

- a) 13 b) 15 c) 10 d) 17
- 4. For which of the following pairs is the correlation coefficient value higher
 - a) Quarter and lumber sales
- b) Permits and Lumber Sales

Section 6: Forecasting III

A computer software firm has experienced the following demand for its software package. Calculate the exponential smoothing forecast using alpha = 0.4 and adjusted exponential smoothing forecast using alpha = 0.4 and beta = 0.2.

Period	Units
1	56
2	61
3	55
4	70
5	66
6	65
7	72
8	75

1. The MAD value, considering forecast values period 2 onwards, using Exponential smoothing is: (for period 2 the forecast would be the naïve forecast)

d

- a. 5.34
- b) 3.34 c) 6.34 d) 5.99
- The MAD, considering forecast values period 2 onwards, using adjusted Exponential smoothing is: (for period 2 the forecast would be the naïve forecast, the trend factor for period 2 would be 0)

Adjusted expo smoothing on book given...answer => a

- a. 5.34 b) 3.34 c) 6.34 d) 5.99
- 3. Basis MAD, which method would you prefer:

- b => as MAD is less
- a. Exponential Smoothing b) Adjusted Exponential Smoothing
- 4. Using best of the two techniques, the forecast for period 9 is: a) 72.19 b) 70.39 c) 76.19 d) 73.39

Section 7: Production Planning

The demand for a product exhibits the following pattern. Given the demand pattern, production costs and the constraints, design the lowest cost production plan.

Month	Demand
1	100
2	130
3	200
4	300

Maximum regular production: 100 units/month Maximum overtime production: 50 units/month Maximum subcontracting: 50 units/month

Regular production cost: 10/unit Overtime production cost: 25/unit Sub-contracting cost: 35/unit

Inventory holding cost: 5/unit/month

Beginning inventory: 0

Answer the following questions for the optimal plan: