- Mark Scheme /

Question	Answer	Marks	AO Element	Notes	Guidance
1(a)	$(E =) mc\Delta T$ OR $0.30 \times 4200 \times (100 - 95) (1)$ 6300 J (1)	2			
1(b)	(C =) E ÷ Δ T OR 6300 ÷ 84 (1) 75 J/°C (1)	2			
2	molecules do work against attractive force as they evaporate (1) more energetic molecules more likely to escape (1) average energy of remaining molecules decreases (1)	3			
3	cold junction labelled or shown in ice or something similar OR diagram with two junctions with voltmeter labelled (1) two different metals labelled (1) galvanometer or voltmeter joining ends of wires (1)	3			

- Mark Scheme /

Question	Answer	Marks	AO Element	Notes	Guidance
4	pV = constant OR $p_1V_1 = p_2V_2$ in any form (1) $p_1 \times 820 = 20000 \times 330$ OR $(p_1 =) 20000 \times 330$ / 820 (1) $(p_1 =) 8000$ Pa (1)	3			
5	molecules touching OR no space between molecules (1) large (repulsive / intermolecular) forces (when moved closer) (1)	2			
6	1st box gas (1) 2nd box solid (1)	2			
7	any one from: A has a <u>capillary</u> / <u>tube</u> of greater cross-section / diameter / radius / width A contains a liquid with less expansion per degree / unit temperature rise A is longer than B A has a smaller bulb	1			
8	C - 1000 J / °C	1			

- Mark Scheme /

Question	Answer	Marks	AO Element	Notes	Guidance
9(a)	$(E =) \text{ mc}\Delta\theta \text{ OR}$ $65 \times 720 \times 7 \text{ (1)}$ $3.3 \times 10^5 \text{ (J) (1)}$ P = E / t in any form OR (t=) E / P OR $3.3 \times 10^6 / 1.5 \times 10^3 \text{ (1)}$ 220 s (1)	4			
9(b)	any two from: the heater warms walls / floor / ceiling / windows / furniture / objects thermal energy conducted through walls / floor / ceiling / windows (to exterior) thermal energy used to raise temperature of air entering room via draughts / openings	2			

[Total: 25]