Ds 02/04/2022

Exercice 1

1) a+b|b|ac

2) - montrer que A est non déterministe

une ambiguité à l'état 1 : delta(1,a)={2,3}---> AFN

Donner l'automate A' déterministe équivalent à A

	а	b	С
{1} A	{2,3}B	{4}C	-
{2,3}B	{2}D	{4}C	{4}C
{4}C	-	-	_
{2}D	{2}D	{4}C	-

3) Algorithme de minimisation

1ère itération (ABD)I (C)II

	Α	В	D
а	1	I	I
b	II	II	II
С	-	П	-

2ème itération (AD)I (B)II (C)III

	А	D	
а	II	I	
b	III	III	
С	-	-	

A' est déjà minimal.

- 4) 1. A' est déterministe
 - 2. A' n'est pas complet

Rendre complet A'

Inverser les états

Exercice 2

а

ab*(a|b)a* ab* а 3 3

3

(a|b)

ab*(a|b)

a*

ab*(a|b)a*

2) Algorithme ε-fermeture

1ère itération:

$$\epsilon.f(\{0\})=\{0\}A$$

 $\epsilon.f(tr(A,a))=\epsilon.f(\{1\})=\{1,2,4,5,7\}B$

$$\epsilon.(tr(A,b))=vide$$

$$\epsilon.f(B)=\{1,2,4,5,7\}B$$

 $\epsilon.f(tr(B,a))=\epsilon.f(\{6\})=\{6,9,10,12\}C$

$$\epsilon.f(tr(B,b))=\epsilon.f({3,8})={3,8,2,4,5,7,9,10,12}D$$

$$\epsilon.f(c)=\{6,9,10,12\}C$$

 $\epsilon.f(tr(C,a))=\epsilon.f(\{11\})=\{11,10,12\}E$

$$\epsilon.f(tr(C,b))=vide$$

$$\epsilon.f(D)={3,8,2,4,5,7,9,10,12}D$$

$$\epsilon.f(tr(D,a)) = \epsilon.f(\{6,11\}) = \{6,11,9,10,12\}F$$

$$\epsilon.f(tr(D,b)) = \epsilon.f(3,8) = D$$

$$\epsilon.f(E)=\{11,10,12\}E$$

$$\epsilon.f(tr(E,a))=\epsilon.f(\{11\})=E$$

$$\epsilon.f(tr(E,b))=vide$$

$$\epsilon.f(F)=\{6,11,9,10,12\}F$$

$$\varepsilon.f(tr(F,a))=\varepsilon.f(\{11\})=E$$

$$\epsilon.f(tr(F,b))=vide$$

3) Algorithme de minimisation

1ère itération (AB)I (CDEF)II

	А	В
а	I	II
b	-	II

	С	D	E	F
а	II	II	II	II
b	-	II	-	-

2ème itération (A)1 (B)2 (D)3 (CEF)4

	С	Е	F
а	4	4	4
b	-	-	-

Exercice 3

```
a^*|b^* \subseteq (a|b)^*
ac|bd \subseteq (a|b)(c|d)
a** =a*
(b*a)* = a*|(a|b)*a
(a*b*)* = (a|b)*
a*b|ba= a+b|b|ba
```

1ère possibilité

```
L1 a(a|b|c)*c
L2 a*
%%
{L1} printf("[%s] commence par a et se termine par c\n",yytext);
{L2} printf("[%s] une suite de a\n",yytext);
{} printf("Autre");
int yywrap(){return 1;}
main()
yylex();
```

a- [aaaabcabc] commence par a et se termine par c

b- [aaaabbbc] commence par a et se termine par c

c- [aaaaabcc] commence par a et se termine par c [a] une suite de a

2ème possibilité

L1 a(a|b|c)*c L2 a* L3 .* {L1} printf("[%s] commence par a et se termine par c\n",yytext); {L2} printf("[%s] une suite de a\n",yytext); {L3} printf("Autre"); int yywrap(){return 1;} main() yylex();

b- [aaaabbbc] commence par a et se termine par c

a- [aaaabcabc] commence par a et se termine par c

c- [aaaaabcca] Autre