Trigonometry with Triangles

Right Triangle Definitions

$$\begin{split} \sin\theta &= \frac{\text{Opposite}}{\text{Hypotenuse}}, \quad \cos\theta = \frac{\text{Adjacent}}{\text{Hypotenuse}}, \quad \tan\theta = \frac{\text{Opposite}}{\text{Adjacent}} \\ \tan\theta &= \frac{\sin\theta}{\cos\theta}, \quad \csc\theta = \frac{1}{\sin\theta}, \quad \sec\theta = \frac{1}{\cos\theta}, \quad \cot\theta = \frac{1}{\tan\theta} \end{split}$$

Reference Angles

A reference angle is the acute angle ($< 90^{\circ}$) formed by the terminal side of an angle and the horizontal axis.

In this triangle, angle A is 150°, and the reference angle $\theta_{\rm ref}$ is:

$$\theta_{\rm ref} = 180^{\circ} - 150^{\circ} = 30^{\circ}$$

Example: Find the reference angle for $\theta = 150^{\circ}$.

$$\theta_{\rm ref} = 180^{\circ} - 150^{\circ} = 30^{\circ}$$

So, the reference angle is 30° .

When calculating trigonometric functions for obtuse angles, use the reference angle and adjust the sign based on the quadrant.

Example: Find $\sin 150^{\circ}$.

$$\sin 150^\circ = \sin(180^\circ - 30^\circ) = \sin 30^\circ = \frac{1}{2}$$

Since 150° is in Quadrant II, $(\sin+)$, $\sin 150^{\circ} = \frac{1}{2}$.

Example: Find $\cos 150^{\circ}$.

$$\cos 150^{\circ} = -\cos 30^{\circ} = -\frac{\sqrt{3}}{2}$$

Since 150° is in Quadrant II, (cos-), $\cos 150^{\circ} = -\frac{\sqrt{3}}{2}$.

Signs of Trigonometric Functions

Quadrant	Positive Functions
I	sin, cos, tan
II	sin
III	tan
IV	cos

Pythagorean Identity

$$\sin^2\theta + \cos^2\theta = 1$$

Example: If $\sin \theta = \frac{3}{5}$, then:

$$\cos\theta = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \frac{4}{5}$$

Law of Sines

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

Example: If a = 7, $A = 30^{\circ}$, and $B = 45^{\circ}$, find b:

$$\begin{split} \frac{a}{\sin A} &= \frac{b}{\sin B} \\ b &= a \times \frac{\sin B}{\sin A} \\ &= 7 \times \frac{\sin 45^{\circ}}{\sin 30^{\circ}} \\ &= 7 \times \frac{\frac{\sqrt{2}}{2}}{\frac{1}{2}} \\ &= 7 \times \sqrt{2} \approx 9.9 \end{split}$$

Law of Cosines

$$a^2 = b^2 + c^2 - 2bc\cos A$$

Example: Given b = 5, c = 7, and $A = 60^{\circ}$:

$$a^{2} = 5^{2} + 7^{2} - 2 \times 5 \times 7 \times \cos 60^{\circ}$$

$$= 25 + 49 - 70 \times \left(\frac{1}{2}\right)$$

$$= 74 - 35$$

$$= 39$$

$$a = \sqrt{39} \approx 6.24$$

Area of a Triangle

$$Area = \frac{1}{2}ab\sin C$$

Example: For a = 5, b = 7, and $C = 45^{\circ}$:

Area =
$$\frac{1}{2} \times 5 \times 7 \times \sin 45^{\circ} = \frac{35}{2} \times \frac{\sqrt{2}}{2} = \frac{35\sqrt{2}}{4} \approx 12.37$$

Unit Circle and Angles

Unit Circle Diagram

The cosine is the x-value, the sine is the y-value.

Radians and Degrees

$$180^{\circ} = \pi \text{ radians}, \quad 1^{\circ} = \frac{\pi}{180} \text{ radians}$$

Example: Convert 135° to radians:

$$135^{\circ} \times \frac{\pi}{180^{\circ}} = \frac{3\pi}{4}$$

Alternate Formulation

For common angles, sine and cosine values can be calculated as:

$$\sin \theta = \frac{\sqrt{n}}{2}, \quad \cos \theta = \frac{\sqrt{4-n}}{2}$$

where n corresponds to the following angles:

$$n = 0$$
 for $\theta = 0^{\circ}$,
 $n = 1$ for $\theta = 30^{\circ}$,
 $n = 2$ for $\theta = 45^{\circ}$,
 $n = 3$ for $\theta = 60^{\circ}$,
 $n = 4$ for $\theta = 90^{\circ}$.

Reference Angles on the Unit Circle

To find the trigonometric functions of any angle, find its reference angle and determine the sign based on the quadrant.

Example: Find $\tan 225^{\circ}$.

$$\theta_{\rm ref} = 225^{\circ} - 180^{\circ} = 45^{\circ}$$

$$\tan 225^{\circ} = \tan(180^{\circ} + 45^{\circ}) = \tan 45^{\circ} = 1$$

Since 225° is in Quadrant III, tan is positive.

Example: Find $\sin 210^{\circ}$.

$$\theta_{\rm ref} = 210^{\circ} - 180^{\circ} = 30^{\circ}$$

$$\sin 210^{\circ} = -\sin 30^{\circ} = -\frac{1}{2}$$

Since 210° is in Quadrant III, sin is negative.

Example: Find $\cos 300^{\circ}$.

$$\theta_{\rm ref} = 360^{\circ} - 300^{\circ} = 60^{\circ}$$

$$\cos 300^{\circ} = \cos(360^{\circ} - 60^{\circ}) = \cos 60^{\circ} = \frac{1}{2}$$

Since 300° is in Quadrant IV, cos is positive.

Coterminal Angles

Angles that differ by full rotations (360°) are coterminal. **Example:** $\theta = -30^{\circ}$ is coterminal with 330° because:

$$-30^{\circ} + 360^{\circ} = 330^{\circ}$$