Descrição dos Planos Amostrais

Gabriel Ligabo Baba

Maio de 2025

Planos Amostrais Adotados

Neste trabalho, serão utilizados dois planos amostrais distintos: a Amostragem Aleatória Simples sem Reposição (AASs) e a Amostragem Estratificada Proporcional (AEpr) via AASs. A escolha dos planos se dá em função do nível geográfico analisado (estado, região, Brasil) e do cargo político (governador, senador e presidente).

Amostragem Aleatória Simples sem Reposição (AASs)

A AASs consiste em sortear, de forma aleatória e sem reposição, unidades da população $\mathcal{U} = \{1, 2, ..., N\}$, de modo que cada subconjunto de tamanho n possui a mesma probabilidade de ser escolhido.

Este plano será utilizado para a seleção de eleitores em pesquisas referentes ao cargo de governador e senador, nos estados do Amazonas (AM) e Roraima (RR). A escolha desse plano se justifica pela homogeneidade relativa das populações nesses estados e pela simplicidade operacional da técnica.

Estimador da Proporção

Como o objetivo da pesquisa é estimar a proporção de eleitores favoráveis a um determinado candidato "X", o estimador pontual da proporção populacional é dado por:

$$\hat{P} = p = \frac{m}{n}$$

em que:

- m: número de respondentes que indicaram intenção de voto no candidato "X";
- n: tamanho da amostra.

Este estimador é não viciado, como pode ser demonstrado pela esperança:

$$\mathbb{E}[\hat{P}] = \mathbb{E}\left[\frac{1}{n}\sum_{i \in \mathbf{s}} Y_i\right] = \frac{1}{n}\sum_{i \in \mathbf{s}} \mathbb{E}[Y_i] = P$$

Variância do Estimador

A variância da estimativa da proporção, assumindo amostragem sem reposição, é dada por:

$$Var(\hat{P}) = \left(1 - \frac{n}{N}\right) \cdot \frac{P(1 - P)}{n} = \frac{N - n}{N - 1} \cdot \frac{PQ}{n}$$

Como o valor real de P é desconhecido, utilizamos a estimativa da variância:

$$var(\hat{P}) = \left(1 - \frac{n}{N}\right) \cdot \frac{p(1-p)}{n-1}$$

Este plano será aplicado com tamanhos amostrais definidos por:

 n_{AM}, n_{RR} para governador e senador

Os valores de n serão determinados posteriormente com base na margem de erro de 2% e nível de confiança de 95%.

Amostragem Estratificada com Alocação Proporcional (AEpr)

Será adotado o plano AEpr com base em AASs para as pesquisas relacionadas ao cargo de presidente da república, considerando as análises por região e por país. A estratificação será realizada com base nos estados que compõem a região Norte, mantendo a proporcionalidade de suas populações eleitorais na seleção amostral.

Estimador da proporção

 $\acute{\rm E}$ importante ressaltar que, nesse plano amostral, o tamanho dos estratos é dado por:

$$n_h = nW_h = n\frac{N_h}{N}$$

Dito isso, podemos prosseguir para o estimador da proporção:

$$p_{es} = \sum_{h=1}^{H} W_h p_h = \sum_{h=1}^{H} \frac{N_h}{N} p_h$$

, onde p_h é o estimador da proporção no estrato h.

$$p_h = \frac{m_h}{n_h}$$

em que:

- m: número de respondentes que indicaram intenção de voto no candidato "X" no estrato h;
- \bullet n: tamanho da amostra no estrato h.

Variância da proporção

A variância da estimativa da proporção, assumindo amostragem proporcional com amostragem aleatória simples sem reposição é dada por:

$$Var(p_{es}) = Var(\sum_{h=1}^{H} W_h p_h) = \sum_{h=1}^{H} W_h^2 Var(p_h)$$

, onde:

$$Var(p_h) = \frac{N-n}{N-1} \frac{PQ}{n}$$

No geral, o verdadeiro valor de P é desconhecido. Então, utilizamos a estimativa da variância:

$$var(p_{es}) = var(\sum_{h=1}^{H} W_h p_h) = \sum_{h=1}^{H} W_h^2 var(p_h)$$

, onde:

$$var(p_h) = (1 - f)\frac{pq}{n - 1}$$

Cálculos de tamanho de amostra

Com a teoria descrita na seção anterior, podemos prosseguir com os cálculos de tamanho de amostra para cada um dos casos de interesse.

Governador e senador

Fixando um erro de 2 pontos percentuais e uma confiança de 95% ($\alpha=0.05$), considerando AASs, temos que:

$$\begin{split} P\left(\left|\frac{p-P}{\sqrt{\left(\frac{N-n}{N-1}\right)\cdot\frac{PQ}{n}}}\right| \leq z_{\alpha/2}\right) = 0.95 \text{ com isso,} \\ P\left(|p-P| \leq B\right) \end{split}$$

Onde:

- $z_{\alpha/2} = 1.96$
- $B = z_{\alpha/2} \sqrt{\frac{N-n}{N-1} \frac{PQ}{n}} = 0.02$

Realizando as contas considerando o caso conservativo, isto é $P(1-P)=\frac{1}{4},$ chegamos na seguinte expressão:

$$n = \frac{N}{4(N-1)(\frac{B}{z_{\alpha/2}}^2) + 1}$$

Primeiro turno

$$n_{AM} = \frac{N_{AM}}{4(N_{AM} - 1)(\frac{0.02^2}{1.96}) + 1} = \frac{2110875}{4(2110875 - 1)(\frac{0.02^2}{1.96}) + 1} = 2398.2732 = 2399$$

Amostra gerada com a seed 1

$$n_{RR} = \frac{N_{RR}}{4(N_{RR}-1)(\frac{0.02}{1.96}^2)+1} = \frac{304319}{4(304319-1)(\frac{0.02}{1.96})^2+1} = 2382.2127 = 2383$$

Amostra gerada com a seed 2

Segundo turno

$$n_{AM} = \frac{N_{AM}}{4(N_{AM}-1)(\frac{0.02}{1.96}^2)+1} = \frac{2065079}{4(2065079-1)(\frac{0.02}{1.96}^2)+1} = 2398.2128 = 2399$$

Amostra gerada com a seed 3

Presidente

Para presidente, temos que separar em duas categorias:

- Estratos dentro de uma região do país (norte);
- Estratos por estado do país.

Além disso, temos que separar o cálculo do tamanho do amostra em duas etapas:

- Cálculo do tamanho da amostra considerando AASs para cada um dos casos;
- Cálculo do tamanho da amostra por estrato considerando AEpr.

AASs

Nessa etapa, temos a mesma teoria dos cálculos para governador e senador. Fixando um erro de 2 pontos percentuais e uma confiança de 95% ($\alpha = 0.05$):

$$P\left(\left|\frac{p-P}{\sqrt{\left(\frac{N-n}{N-1}\right)\cdot\frac{PQ}{n}}}\right| \le z_{\alpha/2}\right) = 0,95 \text{ com isso,}$$

$$P\left(|p-P| \le B\right)$$

Onde:

•
$$z_{\alpha/2} = 1.96$$

•
$$B = z_{\alpha/2} \sqrt{\frac{N-n}{N-1} \frac{PQ}{n}} = 0.02$$

Assim, podemos calcular o tamanho da amostra considerando a estratificação da por região e por país

Por região:

Primeiro turno

$$n_{NO} = \frac{N_{NO}}{4(N_{NO}-1)(\frac{0.02}{1.96}^2)+1} = \frac{9925507}{4(9925507-1)(\frac{0.02}{1.96}^2)+1} = 2400.4196 = 2401$$

Amostrada gerada com a seed 4 Segundo turno:

$$n_{NO} = \frac{N_{NO}}{4(N_{NO} - 1)(\frac{0.02}{1.96}^2) + 1} = \frac{9675082}{4(9675082 - 1)(\frac{0.02}{1.96}^2) + 1} = 2400.4045 = 2401$$

Amostrada gerada com a seed 5

Pelo país:

Primeiro turno

$$n_{BR} = \frac{N_{BR}}{4(N_{BR} - 1)(\frac{0.02}{1.96}^2) + 1} = \frac{123682372}{4(123682372 - 1)(\frac{0.02}{1.96}^2) + 1} = 2400.9534 = 2401$$

Amostrada gerada com a seed 6 Segundo turno

$$n_{BR} = \frac{N_{BR}}{4(N_{BR} - 1)(\frac{0.02}{1.96}^2) + 1} = \frac{124252796}{4(124252796 - 1)(\frac{0.02}{1.96}^2) + 1} = 2400.9536 = 2401$$

Amostrada gerada com a seed 7

AEpr

Agora, podemos utilizar a alocação proporcional para ambos os casos **Por região:**

O cálculo de tamanho da amostra é dado por:

$$n_{ESTADO} = n_{NORTE} \frac{N_{ESTADO}}{N_{NORTE}}$$

Table 1: Tamanho da Amostra Estratificada (AEpr) – Região Norte

Estado (Norte)	Primeiro Turno	Segundo Turno
Acre (AC)	111	105
Rondônia (RO)	224	229
Amazonas (AM)	511	513
Roraima (RR)	74	72
Amapá (AP)	108	100
Pará (PA)	1158	1166
Tocantins (TO)	215	216

Onde para o primeiro turno, cada uma das amostras foram geradas com as seeds : (8,9,10,11,12,13,14) Já no segundo turno, cada uma das amostras foram geradas com as seguintes seeds : (15, 16, 17, 18, 19, 20, 21)

Por país

O cálculo de tamanho da amostra é dado por:

$$n_{ESTADO} = n_{BRASIL} \frac{N_{ESTADO}}{N_{BRASIL}}$$

Table 2: Tamanho da Amostra Estratificada (AEpr) – Total por País

Estado Estado	Primeiro Turno	Segundo Turno
Espírito Santo (ES)	44	45
Minas Gerais (MG)	246	249
São Paulo (SP)	527	530
Rio de Janeiro (RJ)	193	193
Paraná (PR)	133	134
Rio Grande do Sul (RS)	133	133
Santa Catarina (SC)	88	88
Distrito Federal (DF)	36	36
Goiás (GO)	75	75
Mato Grosso do Sul (MS)	31	29
Mato Grosso (MT)	36	36
Alagoas (AL)	36	35
Bahia (BA)	173	174
Sergipe (SE)	27	27
Ceará (CE)	110	110
Maranhão (MA)	77	75
Piauí (PI)	42	41
Paraíba (PB)	50	50
Pernambuco (PE)	112	113
Rio Grande do Norte (RN)	41	41
Acre (AC)	8	9
Rondônia (RO)	17	17
Amazonas (AM)	42	39
Roraima (RR)	5	6
Amapá (AP)	9	8
Pará (PA)	92	91
Tocantins (TO)	18	17