```
In [1]:
                                                                                        H
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
```

In [2]: H

car_data = pd.read_csv("car_price.csv")

In [3]:

car_data.head()

Out[3]:

	car_ID	symboling	CarName	fueltype	aspiration	doornumber	carbody	drivewheel	engi	
0	1	3	alfa-romero giulia	gas	std	two	convertible	rwd		
1	2	3	alfa-romero stelvio	gas	std	two	convertible	rwd		
2	3	1	alfa-romero Quadrifoglio	gas	std	two	hatchback	rwd		
3	4	2	audi 100 ls	gas	std	four	sedan	fwd		
4	5	2	audi 100ls	gas	std	four	sedan	4wd		
5 r	5 rows × 26 columns									

5 rows × 26 columns

```
In [4]:
car_data.tail()
```

Out[4]:

	car_ID	symboling	CarName	fueltype	aspiration	doornumber	carbody	drivewheel	engine
200	201	-1	volvo 145e (sw)	gas	std	four	sedan	rwd	
201	202	-1	volvo 144ea	gas	turbo	four	sedan	rwd	
202	203	-1	volvo 244dl	gas	std	four	sedan	rwd	
203	204	-1	volvo 246	diesel	turbo	four	sedan	rwd	
204	205	-1	volvo 264gl	gas	turbo	four	sedan	rwd	

5 rows × 26 columns

In [5]: ▶

car_data.shape

Out[5]:

(205, 26)

In [6]: ▶

car_data.columns

Out[6]:

In [7]: ▶

```
car_data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 26 columns):
```

Data	COIUMNIS (COCAI 20	•	
#	Column	Non-Null Count	Dtype
0	car_ID	205 non-null	int64
1	symboling	205 non-null	int64
2	CarName	205 non-null	object
3	fueltype	205 non-null	object
4	aspiration	205 non-null	object
5	doornumber	205 non-null	object
6	carbody	205 non-null	object
7	drivewheel	205 non-null	object
8	enginelocation	205 non-null	object
9	wheelbase	205 non-null	float64
10	carlength	205 non-null	float64
11	carwidth	205 non-null	float64
12	carheight	205 non-null	float64
13	curbweight	205 non-null	int64
14	enginetype	205 non-null	object
15	cylindernumber	205 non-null	object
16	enginesize	205 non-null	int64
17	fuelsystem	205 non-null	object
18	boreratio	205 non-null	float64
19	stroke	205 non-null	float64
20	compressionratio	205 non-null	float64
21	horsepower	205 non-null	int64
22	peakrpm	205 non-null	int64
23	citympg	205 non-null	int64
24	highwaympg	205 non-null	int64
25	price	205 non-null	float64
d+vn	ac. float64(9) int	+61(0) object(1	۵ ۱

dtypes: float64(8), int64(8), object(10)

memory usage: 41.8+ KB

In [8]: ▶

```
car_data.describe()
```

Out[8]:

	car_ID	symboling	wheelbase	carlength	carwidth	carheight	curbweight
count	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000
mean	103.000000	0.834146	98.756585	174.049268	65.907805	53.724878	2555.565854
std	59.322565	1.245307	6.021776	12.337289	2.145204	2.443522	520.680204
min	1.000000	-2.000000	86.600000	141.100000	60.300000	47.800000	1488.000000
25%	52.000000	0.000000	94.500000	166.300000	64.100000	52.000000	2145.000000
50%	103.000000	1.000000	97.000000	173.200000	65.500000	54.100000	2414.000000
75%	154.000000	2.000000	102.400000	183.100000	66.900000	55.500000	2935.000000
max	205.000000	3.000000	120.900000	208.100000	72.300000	59.800000	4066.000000
4							•

In [9]: ▶

```
car_data.isnull().sum()
```

Out[9]:

car_ID	0
symboling	0
CarName	0
fueltype	0
aspiration	0
doornumber	0
carbody	0
drivewheel	0
enginelocation	0
wheelbase	0
carlength	0
carwidth	0
carheight	0
curbweight	0
enginetype	0
cylindernumber	0
enginesize	0
fuelsystem	0
boreratio	0
stroke	0
compressionratio	0
horsepower	0
peakrpm	0
citympg	0
highwaympg	0
price	0
dtype: int64	

In [10]: ▶

car_data.nunique()

Out[10]:

car_ID	205
symboling	6
CarName	147
fueltype	2
aspiration	2
doornumber	2
carbody	5
drivewheel	3 2
enginelocation	2
wheelbase	53
carlength	75
carwidth	44
carheight	49
curbweight	171
enginetype	7
cylindernumber	7
enginesize	44
fuelsystem	8
boreratio	38
stroke	37
compressionratio	32
horsepower	59
peakrpm	23
citympg	29
highwaympg	30
price	189
dtype: int64	

```
In [11]:
for i in car_data[['symboling', 'fueltype', 'aspiration', 'doornumber', 'carbody', 'driv
                   'enginelocation', 'enginetype', 'cylindernumber', 'fuelsystem']]:
    sns.countplot(car_data[i], data = car_data, palette='hls')
    plt.xticks(rotation = 90)
    plt.show()
   70
   60
   50
   40
 count
   30
   20
   10
                        symboling
In [12]:
plt.figure(figsize=(15,6))
sns.distplot(car_data['price'])
plt.xticks(rotation = 90)
plt.show()
  0.00010
  0.00008
```


In [13]: ▶

```
from sklearn.preprocessing import PowerTransformer
p = PowerTransformer(method = 'box-cox')
car_data['price'] = p.fit_transform(car_data[['price']])
sns.distplot(car_data.price)
```

Out[13]:

<AxesSubplot:xlabel='price', ylabel='Density'>

car_data.drop(columns = ['car_ID'],inplace = True)

```
In [15]: ▶
```

```
car = car_data.CarName.str.split(expand = True)
Brand = car[0]
car_data['Brand'] = Brand
car_data
```

Out[15]:

	symboling	CarName	fueltype	aspiration	doornumber	carbody	drivewheel	engineloca
0	3	alfa-romero giulia	gas	std	two	convertible	rwd	1
1	3	alfa-romero stelvio	gas	std	two	convertible	rwd	1
2	1	alfa-romero Quadrifoglio	gas	std	two	hatchback	rwd	1
3	2	audi 100 ls	gas	std	four	sedan	fwd	1
4	2	audi 100ls	gas	std	four	sedan	4wd	1
200	-1	volvo 145e (sw)	gas	std	four	sedan	rwd	1
201	-1	volvo 144ea	gas	turbo	four	sedan	rwd	1
202	-1	volvo 244dl	gas	std	four	sedan	rwd	1
203	-1	volvo 246	diesel	turbo	four	sedan	rwd	1
204	-1	volvo 264gl	gas	turbo	four	sedan	rwd	1

205 rows × 26 columns

In [16]:

car_data.drop(columns = ['CarName'],inplace = True)

In [18]: ▶

car_data.head(10)

Out[18]:

	symboling	fueltype	aspiration	doornumber	carbody	drivewheel	enginelocation	wheelbase
0	3	gas	std	two	convertible	rwd	front	88.6
1	3	gas	std	two	convertible	rwd	front	88.€
2	1	gas	std	two	hatchback	rwd	front	94.5
3	2	gas	std	four	sedan	fwd	front	99.8
4	2	gas	std	four	sedan	4wd	front	99.4
5	2	gas	std	two	sedan	fwd	front	99.8
6	1	gas	std	four	sedan	fwd	front	105.8
7	1	gas	std	four	wagon	fwd	front	105.8
8	1	gas	turbo	four	sedan	fwd	front	105.8
9	0	gas	turbo	two	hatchback	4wd	front	99.5

10 rows × 25 columns

In [19]: ▶

```
car_data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 25 columns):
```

#	Column	Non-Null Count	Dtype
0	symboling	205 non-null	int64
1	fueltype	205 non-null	object
2	aspiration	205 non-null	object
3	doornumber	205 non-null	object
4	carbody	205 non-null	object
5	drivewheel	205 non-null	object
6	enginelocation	205 non-null	object
7	wheelbase	205 non-null	float64
8	carlength	205 non-null	float64
9	carwidth	205 non-null	float64
10	carheight	205 non-null	float64
11	curbweight	205 non-null	int64
12	enginetype	205 non-null	object
13	cylindernumber	205 non-null	object
14	enginesize	205 non-null	int64
15	fuelsystem	205 non-null	object
16	boreratio	205 non-null	float64
17	stroke	205 non-null	float64
18	compressionratio	205 non-null	float64
19	horsepower	205 non-null	int64
20	peakrpm	205 non-null	int64
21	citympg	205 non-null	int64
22	highwaympg	205 non-null	int64
23	price	205 non-null	float64
24	Brand	205 non-null	object
4+	oc. £100±64/0\ in	+C1(7) abias+(1	۵١

dtypes: float64(8), int64(7), object(10)

memory usage: 40.2+ KB

In [20]: ▶

car_data.corr()

Out[20]:

	symboling	wheelbase	carlength	carwidth	carheight	curbweight	enginesize
symboling	1.000000	-0.531954	-0.357612	-0.232919	-0.541038	-0.227691	-0.105790
wheelbase	-0.531954	1.000000	0.874587	0.795144	0.589435	0.776386	0.569329
carlength	-0.357612	0.874587	1.000000	0.841118	0.491029	0.877728	0.683360
carwidth	-0.232919	0.795144	0.841118	1.000000	0.279210	0.867032	0.735433
carheight	-0.541038	0.589435	0.491029	0.279210	1.000000	0.295572	0.067149
curbweight	-0.227691	0.776386	0.877728	0.867032	0.295572	1.000000	0.850594
enginesize	-0.105790	0.569329	0.683360	0.735433	0.067149	0.850594	1.000000
boreratio	-0.130051	0.488750	0.606454	0.559150	0.171071	0.648480	0.583774
stroke	-0.008735	0.160959	0.129533	0.182942	-0.055307	0.168790	0.203129
compressionratio	-0.178515	0.249786	0.158414	0.181129	0.261214	0.151362	0.028971
horsepower	0.070873	0.353294	0.552623	0.640732	-0.108802	0.750739	0.809769
peakrpm	0.273606	-0.360469	-0.287242	-0.220012	-0.320411	-0.266243	-0.244660
citympg	-0.035823	-0.470414	-0.670909	-0.642704	-0.048640	-0.757414	-0.653658
highwaympg	0.034606	-0.544082	-0.704662	-0.677218	-0.107358	-0.797465	-0.677470
price	-0.091310	0.633710	0.791501	0.795125	0.181206	0.888370	0.779846
4							>

In [21]:

car_data.corr().style.background_gradient(cmap = 'coolwarm')

Out[21]:

	symboling	wheelbase	carlength	carwidth	carheight	curbweight	enginesize
symboling	1.000000	-0.531954	-0.357612	-0.232919	-0.541038	-0.227691	-0.105790
wheelbase	-0.531954	1.000000	0.874587	0.795144	0.589435	0.776386	0.569329
carlength	-0.357612	0.874587	1.000000	0.841118	0.491029	0.877728	0.683360
carwidth	-0.232919	0.795144	0.841118	1.000000	0.279210	0.867032	0.735433
carheight	-0.541038	0.589435	0.491029	0.279210	1.000000	0.295572	0.067149
curbweight	-0.227691	0.776386	0.877728	0.867032	0.295572	1.000000	0.850594
enginesize	-0.105790	0.569329	0.683360	0.735433	0.067149	0.850594	1.000000
boreratio	-0.130051	0.488750	0.606454	0.559150	0.171071	0.648480	0.583774
stroke	-0.008735	0.160959	0.129533	0.182942	-0.055307	0.168790	0.203129
compressionratio	-0.178515	0.249786	0.158414	0.181129	0.261214	0.151362	0.028971
horsepower	0.070873	0.353294	0.552623	0.640732	-0.108802	0.750739	0.809769
peakrpm	0.273606	-0.360469	-0.287242	-0.220012	-0.320411	-0.266243	-0.244660
citympg	-0.035823	-0.470414	-0.670909	-0.642704	-0.048640	-0.757414	-0.653658
highwaympg	0.034606	-0.544082	-0.704662	-0.677218	-0.107358	-0.797465	-0.677470
price	-0.091310	0.633710	0.791501	0.795125	0.181206	0.888370	0.779846
4							>

```
In [22]: ▶
```

```
plt.figure(figsize=(15,6))
sns.heatmap(car_data.corr())
plt.show()
```



```
In [23]: ▶
```

```
car_data = car_data[car_data[("cylindernumber")].map(car_data["cylindernumber"].value_cotor_data = car_data[car_data[("enginetype")].map(car_data["enginetype"].value_counts());
car_data = car_data[car_data[("fueltype")].map(car_data["fueltype"].value_counts())>3]
car_data = car_data[car_data[("Brand")].map(car_data["Brand"].value_counts())>9]
car_data = car_data[car_data.carbody!='convertable']
car_data = car_data[car_data.fueltype!='mfi']
```

```
In [24]: ▶
```

car_data.shape

Out[24]:

(119, 25)

```
In [25]:

car_data.head(10)
```

Out[25]:

	symboling	fueltype	aspiration	doornumber	carbody	drivewheel	enginelocation	wheelbas			
30	2	gas	std	two	hatchback	fwd	front	86.			
31	2	gas	std	two	hatchback	fwd	front	86.			
32	1	gas	std	two	hatchback	fwd	front	93.			
33	1	gas	std	two	hatchback	fwd	front	93.			
34	1	gas	std	two	hatchback	fwd	front	93.			
35	0	gas	std	four	sedan	fwd	front	96.			
36	0	gas	std	four	wagon	fwd	front	96.			
37	0	gas	std	two	hatchback	fwd	front	96.			
38	0	gas	std	two	hatchback	fwd	front	96.			
39	0	gas	std	four	sedan	fwd	front	96.			
10 r	10 rows × 25 columns										

←

```
In [26]:

x = car_data.iloc[:,0:23]
y = car_data[['price']]

In [27]:

x = car_data.drop(columns = ['price'])

In [28]:

x.shape

Out[28]:
(119, 24)

In [29]:

y.shape
```

(119, 1)

Out[29]:

```
In [31]:
nomi_col = [4,5,12,15,23,13]
ordinal_col = [1,2,3,6]
numeric_col = [0,9,10,14,16,17,18,20,21,22]
KBin col = [11,19]
Bina\_col = [7,8]
In [32]:
from sklearn.preprocessing import KBinsDiscretizer,Binarizer,PowerTransformer
from sklearn.preprocessing import OneHotEncoder,OrdinalEncoder
from sklearn.compose import make_column_transformer
```

```
from sklearn import set_config
trans = make_column_transformer((OneHotEncoder(sparse = False),nomi_col),
                                (OrdinalEncoder(),ordinal_col),
                                  (PowerTransformer(), numeric_col),
                                  (KBinsDiscretizer(), KBin_col),
                                   (Binarizer(threshold = 50), Bina_col),
                                   remainder = 'passthrough')
set_config(display ='diagram')
trans
```

Out[32]:


```
In [33]:
                                                                                                  H
```

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.3)
```

```
In [34]:
```

```
from sklearn.linear_model import LinearRegression
model = LinearRegression()
from sklearn.pipeline import make pipeline
pipe = make_pipeline(trans,model)
```

```
In [35]:
model
Out[35]:
▼ LinearRegression
LinearRegression()
In [36]:
                                                                                         H
pipe
Out[36]:
                                              Pipeline
                               columntransformer: ColumnTransformer
   onehotencoder
                  ordinalencoder
                                   powertransformer
                                                      kbinsdiscretizer
                                                                         binar:
   OneHot#ncoder
                  OrdinalEncoder
                                   PowerTransformer
                                                      KBinsDiscretizer
                                                                         Binar:
                                        ▶ LinearRegression
In [37]:
pipe.fit(x_train,y_train)
Out[37]:
                                              Pipeline
                               columntransformer: ColumnTransformer
                  ordinalencoder
   onehotencoder
                                   powertransformer
                                                      kbinsdiscretizer
   OneHot#ncoder
                  OrdinalEncoder
                                   PowerTransformer
                                        LinearRegression
In [38]:
                                                                                         M
pred = pipe.predict(x_test)
```

```
In [40]:
print("Training Accuracy :", pipe.score(x_train, y_train))
print("Testing Accuracy :", pipe.score(x_test, y_test))
Training Accuracy: 0.9592467871600668
Testing Accuracy: 0.8779740982655544
In [41]:
from sklearn.metrics import mean_squared_error
mean_squared_error(pred,y_test)
Out[41]:
0.085096556437029
In [42]:
                                                                                      Н
model.coef
Out[42]:
array([[-1.04085006e+12, -1.04085006e+12, -1.04085006e+12,
        -1.04085006e+12, -1.04085006e+12, 3.89404297e-02,
        -1.42700195e-01,
                         1.07421875e-01, 3.82934570e-01,
         2.44140625e-03, -3.72314453e-03, -2.66235352e-01,
        -1.15112305e-01, -8.17565918e-01, -6.60400391e-02,
         1.65466309e-01, 3.99810791e-01, 3.17840576e-01,
                         1.18896484e-01, -4.76409912e-01,
         5.78292847e-01,
                         2.47955322e-03, -2.66387939e-01,
         5.32531738e-02,
        -4.01832581e-01, 3.87405396e-01, -6.98776245e-02,
         6.98471069e-02, -1.65409088e-01, 3.31193924e-01,
        -3.09400558e-01, 0.00000000e+00, 8.09755325e-02,
        -4.23507690e-02, -6.19957447e-02, 1.91562653e-01,
        -7.85109997e-02, 4.25249338e-02, -4.28781509e-02,
         0.00000000e+00, -2.18933821e-01, 2.55770683e-02,
        -4.57489014e-01, -6.58786297e-02, 3.97436619e-02,
         3.20430756e-01, 1.61612034e-01, 1.67842627e-01,
         3.00986767e-01, 1.89422965e-01, -1.94146633e-01,
```

0.00000000e+00, 0.0000000e+00]])

-4.59057689e-01,