

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
5 June 2003 (05.06.2003)

PCT

(10) International Publication Number
WO 03/045921 A1

(51) International Patent Classification⁷: **C07D 213/89**,
277/40, 401/06, 209/44, 295/02, 403/04, A61K 31/395,
A61P 3/06

(21) International Application Number: PCT/JP02/11034

(22) International Filing Date: 24 October 2002 (24.10.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

PR 9164	28 November 2001 (28.11.2001)	AU
PS 0443	11 February 2002 (11.02.2002)	AU
91106855	4 April 2002 (04.04.2002)	TW
PCT/JP02/03529	9 April 2002 (09.04.2002)	JP

(71) Applicants (for all designated States except US): **FUJISAWA PHARMACEUTICAL CO., LTD.** [JP/JP]; 4-7, Doshomachi 3-chome, Chuo-ku, Osaka-shi, Osaka 541-8514 (JP). **DAISO CO., LTD.** [JP/JP]; 10-8, Edobori 1-chome, Nishi-ku, Osaka-shi, Osaka 550-0002 (JP).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **TAKASUGI, Hisashi** [JP/JP]; c/o Fujisawa Pharmaceutical Co., Ltd., 4-7, Doshomachi 3-chome, Chuo-ku, Osaka-shi, Osaka 541-8514 (JP). **INOUE, Yoshikazu** [JP/JP]; c/o Fujisawa Pharmaceutical Co., Ltd., 4-7, Doshomachi 3-chome, Chuo-ku, Osaka-shi, Osaka 541-8514 (JP). **TERASAWA, Takeshi** [JP/JP]; c/o Fujisawa Pharmaceutical Co., Ltd., 4-7, Doshomachi 3-chome, Chuo-ku, Osaka-shi, Osaka 541-8514 (JP). **NAGAYOSHI, Akira** [JP/JP]; c/o Fujisawa Pharmaceutical Co., Ltd., 4-7, Doshomachi 3-chome, Chuo-ku, Osaka-shi, Osaka 541-8514 (JP). **FURUKAWA, Yoshiro** [JP/JP]; c/o DAISO CO., LTD., 10-8, Edobori 1-chome, Nishi-ku, Osaka-shi, Osaka 550-0002 (JP).

1-chome, Nishi-ku, Osaka-shi, Osaka 550-0002 (JP). **MIKAMI, Masafumi** [JP/JP]; c/o DAISO CO., LTD., 10-8, Edobori 1-chome, Nishi-ku, Osaka-shi, Osaka 550-0002 (JP). **HINOUE, Kazumasa** [JP/JP]; c/o DAISO CO., LTD., 10-8, Edobori 1-chome, Nishi-ku, Osaka-shi, Osaka 550-0002 (JP). **OHTSUBO, Makoto** [JP/JP]; c/o DAISO CO., LTD., 10-8, Edobori 1-chome, Nishi-ku, Osaka-shi, Osaka 550-0002 (JP). **FUKUMOTO, Daisuke** [JP/JP]; c/o DAISO CO., LTD., 10-8, Edobori 1-chome, Nishi-ku, Osaka-shi, Osaka 550-0002 (JP).

(74) Agent: **TAKASHIMA, Hajime**; Fujimura Yamato Seimei Bldg., 2-14, Fushimimachi 4-chome, Chuo-ku, Osaka-shi, Osaka 541-0044 (JP).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 03/045921 A1

(54) Title: HETEROCYCLIC AMIDE COMPOUNDS AS APOLIPOPROTEIN B INHIBITORS

derived from the group consisting of cycloalkene, naphthalene, unsaturated 5 or 6-membered heteromonocyclic group, each of which is optionally substituted, and substituted benzene; Y is -(A¹)_{m1}-(A²)_{m2}-; and Z is direct bond or piperazine, or a salt thereof. The compound of the present invention and a salt thereof inhibit apolipoprotein B (Apo B) secretion and are useful as a medicament for prophylactic and treatment of diseases or conditions resulting from elevated circulating levels of Apo B.

(57) Abstract: The present invention relates to a compound of the formula (I) wherein R¹ is optionally substituted aryl; R² is optionally substituted aryl, optionally substituted heteroaryl, optionally substituted lower cycloalkyl, optionally substituted aryloxy, optionally substituted arylsulfonyl, vinyl, carbamoyl, protected carboxy or protected amino; ring A is bivalent residue derived from optionally substituted aryl or optionally substituted heteroaryl; X is bivalent residue

DESCRIPTION

HETEROCYCLIC AMIDE COMPOUNDS AS APOLIPOPROTEIN B INHIBITORS

TECHNICAL FIELD

This invention relates to new amide compounds and salts thereof which inhibit apolipoprotein B (Apo B) secretion and are useful as a medicament.

BACKGROUND ART

Apo B is the main component of lipoprotein such as VLDL (very low density lipoprotein), IDL (intermediate density lipoprotein) and LDL (low density lipoprotein). Compounds that inhibit Apo B secretion are useful for the treatment of diseases or conditions resulting from elevated circulating levels of Apo B, such as hyperlipemia, hyperlipidemia, hyperlipoproteinemia, hypercholesterolemia, hypertriglyceridemia, atherosclerosis, pancreatitis, non-insulin dependent diabetes mellitus (NIDDM), obesity and coronary heart diseases. Compounds that inhibit Apo B secretion have been described in WO96/40640, WO98/23593, WO98/56790 and WO00/32582. Compounds that inhibit Apo B secretion are also useful in reducing intestinal fat absorption, reducing food intake and treating obesity in combination with a known anti-obesity agent (EP 1 099 438, EP 1 099 439 and EP 1 099 441).

DISCLOSURE OF INVENTION

This invention relates to new amide compounds.

One object of this invention is to provide new and useful amide compounds and salts thereof that inhibit Apo B secretion.

A further object of this invention is to provide a pharmaceutical composition comprising said amide compound or a pharmaceutically acceptable salt thereof.

Still further object of this invention is to provide a use of said amide compounds or pharmaceutically acceptable salts thereof as a medicament for prophylactic and therapeutic treatment of diseases or conditions resulting from elevated circulating levels of Apo B, such as hyperlipemia, hyperlipidemia, hyperlipoproteinemia, hypercholesterolemia, hypertriglyceridemia, atherosclerosis, pancreatitis, non-

insulin dependent diabetes mellitus (NIDDM), obesity, coronary heart diseases, myocardial infarction, stroke, restenosis and Syndrome X.

Another object of this invention is to provide a method 5 for inhibiting or decreasing Apo B secretion in a mammal, which comprises administering an Apo B secretion inhibiting or decreasing amount of said amide compound or a pharmaceutically acceptable salt thereof to the mammal.

Still further object of this invention is to provide a 10 method for preventing or treating a disease or condition resulting from elevated circulating levels of Apo B in a mammal, such as hyperlipemia, hyperlipidemia, hyperlipoproteinemia, hypercholesterolemia, hypertriglyceridemia, atherosclerosis, pancreatitis, NIDDM, 15 obesity, coronary heart diseases, myocardial infarction, stroke, restenosis and Syndrome X, which method comprises administering an effective amount of said amide compound or a pharmaceutically acceptable salt thereof to the mammal.

20 The object amide compounds of the present invention are novel and can be represented by the following general formula (I)

25 wherein
 R^1 is aryl optionally substituted by substituent(s);
 R^2 is aryl, heteroaryl, lower cycloalkyl, aryloxy, arylsulfonyl, vinyl, carbamoyl, protected carboxy or protected amino, each of said aryl, heteroaryl, lower 30 cycloalkyl, aryloxy and arylsulfonyl is optionally substituted by substituent(s);

is bivalent residue derived from aryl or heteroaryl,

each of which is optionally substituted by nitro, oxo or optionally protected amino;

X is bivalent residue derived from the group consisting of cycloalkene, naphthalene, unsaturated 5 or 6-membered heteromonocyclic group, each of which is optionally substituted by substituent(s), and benzene which is substituted by substituent(s);

Y is $-(A^1)_{m1}-(A^2)_{m2}-$ wherein A¹ is -NH-, -N(R³)-, -CO-, -NH-CO-, -CO-NH-, -CO-CH=CH-, -O-, -CH₂-O-, -CH₂-NH-CO-, -CH₂-CO-NH- or -CH(OH)-, wherein R³ is amino protective group, A² is lower alkylene optionally substituted by aryl, and m₁ and m₂ are independently 0 or 1; and

10 Z is direct bond or bivalent residue derived from piperazine or piperazine substituted by lower alkyl; provided that when Z is direct bond, then R² is aryl, heteroaryl, lower cycloalkyl, aryloxy, arylsulfonyl or protected amino, each of said aryl, heteroaryl, lower cycloalkyl, aryloxy and arylsulfonyl is optionally substituted by substituent(s),

15 20 or a salt thereof.

The preferred embodiments of the amide compound of the present invention represented by the general formula (I) are as follows.

25 (1) The compound of the general formula (I), wherein R¹ is aryl optionally substituted by substituent(s); R² is aryl, heteroaryl, lower cycloalkyl, aryloxy, arylsulfonyl, vinyl, carbamoyl, protected carboxy or protected amino, each of said aryl, heteroaryl, lower cycloalkyl, aryloxy and arylsulfonyl is optionally substituted by substituent(s) selected from the group 30 consisting of lower alkyl, trihalo(lower)alkyl, optionally protected amino, optionally substituted heteroaryl, cyano, lower alkoxy, halogen, aryloxy, lower alkylenedioxy, oxo, lower alkanoylamino and amino protective group;

35

is bivalent residue derived from aryl or heteroaryl, each of which is optionally substituted by nitro, oxo or optionally protected amino;

- 5 X is bivalent residue derived from the group consisting of cycloalkene, naphthalene, unsaturated 5 or 6-membered heteromonocyclic group, each of which is optionally substituted by substituent(s), and benzene which is substituted by substituent(s);
- 10 Y is $-(A^1)_{m1}-(A^2)_{m2}-$
wherein A^1 is $-\text{NH}-$, $-\text{N}(\text{R}^3)-$, $-\text{CO}-$, $-\text{NH-CO}-$, $-\text{CO-NH}-$,
 $-\text{CO-CH=CH-}$, $-\text{O-}$, $-\text{CH}_2\text{-O-}$, $-\text{CH}_2\text{-NH-CO-}$, $-\text{CH}_2\text{-CO-NH-}$ or
 $-\text{CH(OH)-}$, wherein R^3 is amino protective group,
 A^2 is lower alkylene optionally substituted by aryl, and
15 m_1 and m_2 are independently 0 or 1; and
Z is direct bond or bivalent residue derived from piperazine or piperazine substituted by lower alkyl;
provided that when Z is direct bond, then R^2 is aryl,
heteroaryl, lower cycloalkyl, aryloxy, arylsulfonyl or
20 protected amino, each of said aryl, heteroaryl, lower cycloalkyl, aryloxy and arylsulfonyl is optionally substituted by substituent(s) selected from the group consisting of lower alkyl, trihalo(lower)alkyl, optionally protected amino, optionally substituted heteroaryl, cyano, lower alkoxy, halogen, aryloxy, lower alkylenedioxy, oxo, lower alkanoylamino and amino protective group,
25 or a salt thereof.
- (2) The compound of (1) above, wherein
- 30 R^1 is phenyl optionally substituted by substituent(s) selected from the group consisting of lower alkyl, lower alkoxy, halogen, trihalo(lower)alkyl, trihalo(lower)alkoxy, lower alkanoyl, di(lower)alkylamino and lower alkylthio;
- 35 R^2 is phenyl, naphthyl, indanyl, pyridinyl, pyrimidinyl, pyrazinyl, thiazolyl, pyrrolyl, imidazolyl, triazolyl, thienyl, indolyl, lower cycloalkyl, phenoxy, naphthoxy,

phenylsulfonyl or protected amino, each of said phenyl, naphthyl, indanyl, pyridinyl, pyrimidinyl, pyrazinyl, thiazolyl, pyrrolyl, imidazolyl, triazolyl, thieryl, indolyl, lower cycloalkyl, phenoxy, naphthyloxy and phenylsulfonyl is optionally substituted by substituent(s) selected from the group consisting of lower alkyl, trihalo(lower)alkyl, optionally protected amino, optionally substituted pyrrolyl, cyano, lower alkoxy, halogen, aryloxy, lower alkylenedioxy, oxo, lower alkanoylamino and amino protective group;

is bivalent residue derived from phenyl optionally substituted by nitro or optionally protected amino, indanyl, pyridinyl, indolinyl, tetrahydroisoquinolyl or isoindolinyl each of which is optionally substituted by oxo or amino;

X is bivalent residue derived from the group consisting of cycloalkene, naphthalene, unsaturated 5 or 6-membered heteromonocyclic group, each of which is optionally substituted by substituent(s), and benzene which is substituted by substituent(s), wherein the substituent is selected from the group consisting of lower alkyl, lower alkoxy, halogen, lower alkanoyl, lower alkoxy(lower)alkyl and hydroxy(lower)alkyl;

25 Y is $-(A^1)_{m1}-(A^2)_{m2}-$
wherein A^1 is $-NH-$, $-N(R^3)-$, $-CO-$, $-NH-CO-$, $-CO-NH-$, $-CO-CH=CH-$, $-O-$, $-CH_2-O-$, $-CH_2-NH-CO-$, $-CH_2-CO-NH-$ or $-CH(OH)-$, wherein R^3 is amino protective group,
 A^2 is lower alkylene optionally substituted by aryl, and
m1 and m2 are independently 0 or 1; and

30 Z is direct bond,
or a salt thereof.

(3) The compound of (2) above, wherein
R¹ is phenyl optionally substituted by substituent(s) selected
35 from the group consisting of methyl, ethyl, isopropyl,
methoxy, chloro, fluoro, bromo, trifluoromethyl,

trifluoromethoxy, acetyl, dimethylamino and methylthio; R² is pyridinyl, pyrimidinyl, pyrazinyl or thiazolyl, each of said pyridinyl, pyrimidinyl, pyrazinyl and thiazolyl is optionally substituted by substituent(s) selected from the group consisting of methyl, amino, acetylamino or tert-butoxycarbonylamino, optionally substituted pyrrolyl, cyano and methoxy;

5

is bivalent residue derived from phenyl or pyridinyl;

10 X is

wherein R⁴ is lower alkyl, lower alkoxy, lower alkanoyl, hydroxy(lower)alkyl, lower alkoxy(lower)alkyl or halogen, R⁵ is hydrogen or lower alkyl, and

15 n is 3, 4, 5 or 6;

Y is direct bond or bivalent residue selected from the group consisting of

wherein q is an integer of 0 to 3, and R⁶ is amino protective group,

5 or a salt thereof.

(4) The compound of the formula (I), wherein X is

wherein n is 3, 4, 5 or 6,

or a salt thereof.

10 (5) The compound of (4) above, wherein

R¹ is phenyl optionally substituted by substituent(s) selected from the group consisting of lower alkyl, lower alkoxy, halogen, trihalo(lower)alkyl, trihalo(lower)alkoxy, lower alkanoyl, di(lower)alkylamino and lower alkylthio;

15 R² is aryl, heteroaryl, lower cycloalkyl, aryloxy,

arylsulfonyl, vinyl, carbamoyl, protected carboxy or protected amino, each of said aryl, heteroaryl, lower cycloalkyl, aryloxy and arylsulfonyl is optionally substituted by substituent(s) selected from the group

20 consisting of lower alkyl, trihalo(lower)alkyl,

optionally protected amino, optionally substituted heteroaryl, cyano, lower alkoxy, halogen, aryloxy, lower alkylenedioxy, oxo, lower alkanoylamino and amino protective group;

5

is bivalent residue derived from aryl or heteroaryl;

X is

wherein n is 3, 4, 5 or 6;

10 Y is $-(A^1)_{m1}-(A^2)_{m2}-$

wherein A^1 is $-NH-$, $-N(R^3)-$, $-CO-$, $-NH-CO-$, $-CO-NH-$, $-CO-CH=CH-$, $-O-$, $-CH_2-O-$, $-CH_2-NH-CO-$, $-CH_2-CO-NH-$ or $-CH(OH)-$, wherein R^3 is amino protective group, A^2 is lower alkylene optionally substituted by aryl, and

15 $m1$ and $m2$ are independently 0 or 1; and

Z is direct bond or bivalent residue derived from piperazine or piperazine substituted by lower alkyl;

provided that when Z is direct bond, then R^2 is aryl,

heteroaryl, lower cycloalkyl, aryloxy, arylsulfonyl or

20 protected amino, each of said aryl, heteroaryl, lower cycloalkyl, aryloxy and arylsulfonyl is optionally substituted by substituent(s) selected from the group consisting of lower alkyl, trihalo(lower)alkyl, optionally protected amino, optionally substituted

25 heteroaryl, cyano, lower alkoxy, halogen, aryloxy, lower alkylenedioxy, oxo, lower alkanoylamino and amino protective group,

or a salt thereof.

(6) The compound of (5) above, wherein

30 R^2 is phenyl, naphthyl, indanyl, pyridinyl, pyrimidinyl,

thiazolyl, pyrrolyl, imidazolyl, triazolyl, thienyl, indolyl, lower cycloalkyl, phenoxy, naphthoxy, phenylsulfonyl, vinyl, carbamoyl, protected carboxy or

protected amino, each of said phenyl, naphthyl, indanyl, pyridinyl, pyrimidinyl, thiazolyl, pyrrolyl, imidazolyl, triazolyl, thienyl, indolyl, lower cycloalkyl, phenoxy, naphthyloxy and phenylsulfonyl is optionally substituted by substituent(s) selected from the group consisting of lower alkyl, trihalo(lower)alkyl, optionally protected amino, optionally substituted pyrrolyl, cyano, lower alkoxy, halogen, aryloxy, lower alkylenedioxy, oxo, lower alkanoylamino and amino protective group;

is bivalent residue derived from phenyl, indanyl, pyridinyl, indolinyl, isoindolinyl or 1,2,3,4-tetrahydroisoquinolinyl;

Y is direct bond or bivalent residue selected from the group consisting of

wherein q is an integer of 0 to 3, and R^6 is amino protective group;

provided that when Z is direct bond, then R^2 is phenyl, naphthyl, indanyl, pyridinyl, pyrimidinyl, thiazolyl, pyrrolyl, imidazolyl, triazolyl, thienyl, indolyl; lower cycloalkyl, phenoxy, naphthyloxy, phenylsulfonyl or protected amino, each of said phenyl, naphthyl, indanyl, pyridinyl, pyrimidinyl, thiazolyl, pyrrolyl, imidazolyl, triazolyl, thienyl, indolyl, lower cycloalkyl, phenoxy, naphthyloxy and phenylsulfonyl is optionally substituted by substituent(s) selected from the group consisting of lower alkyl, trihalo(lower)alkyl, optionally protected amino, optionally substituted pyrrolyl, cyano, lower alkoxy, halogen, aryloxy, lower alkylenedioxy, oxo,

lower alkanoylamino and amino protective group,
or a salt thereof.

(7) The compound of (4) above, having the following formula:

5

wherein

R¹ is phenyl optionally substituted by substituent(s) selected from the group consisting of lower alkyl, lower alkoxy, halogen, trihalo(lower)alkyl, trihalo(lower)alkoxy, lower alkanoyl and di(lower)alkylamino;

R² is aryl or heteroaryl, each of said aryl and heteroaryl is optionally substituted by substituent(s) selected from the group consisting of lower alkyl, trihalo(lower)alkyl, optionally protected amino, optionally substituted heteroaryl, cyano, lower alkoxy, lower alkanoylamino and amino protective group;

W is CH or N;

Y is -(A¹)_{m1}-(A²)_{m2}-

wherein A¹ is -NH-, -N(R³)-, -CO-, -NH-CO-, -CO-NH-,

-CO-CH=CH-, -O-, -CH₂-O-, -CH₂-NH-CO-, -CH₂-CO-NH- or -CH(OH)-, wherein R³ is amino protective group,

A² is lower alkylene optionally substituted by aryl, and m₁ and m₂ are independently 0 or 1;

Z is direct bond; and

n is 3, 4, 5 or 6,

or a salt thereof.

(8) The compound of (7) above, having the following formula:

30 wherein

- R¹ is phenyl optionally substituted by substituent(s) selected from the group consisting of lower alkyl and trihalo(lower)alkyl;
- R² is pyridinyl or thiazolyl, each of said pyridinyl and
5 thiazolyl is optionally substituted by optionally protected amino;
- W is CH or N;
- Y is -(A¹)_{m1}-(A²)_{m2}-
wherein A¹ is -NH-, -N(R³)- or -O-, wherein R³ is amino
10 protective group,
- A² is lower alkylene optionally substituted by aryl, and m1 and m2 are independently 0 or 1;
- Z is direct bond; and
- n is 4,
- 15 or a salt thereof.

(9) The compound of (4) above, having the following formula:

wherein

- R¹ is phenyl optionally substituted by substituent(s) selected from the group consisting of lower alkyl, lower alkoxy, halogen, trihalo(lower)alkyl, trihalo(lower)alkoxy, lower alkanoyl, di(lower)alkylamino and lower alkylthio;
- R² is aryl, heteroaryl or protected amino, each of said aryl and heteroaryl is optionally substituted by
25 substituent(s) selected from the group consisting of lower alkyl, trihalo(lower)alkyl, optionally protected amino, optionally substituted heteroaryl, cyano, lower alkoxy, halogen, aryloxy, lower alkylenedioxy, lower alkanoyleamino and amino protective group;
- Y is -(A¹)_{m1}-(A²)_{m2}-
wherein A¹ is -NH-, -N(R³)-, -CO-, -NH-CO-, -CO-CH=CH- or -O-, wherein R³ is amino protective group,
30 A² is lower alkylene optionally substituted by aryl, and

- m₁ and m₂ are independently 0 or 1;
 Z is direct bond; and
 n is 3, 4, 5 or 6,
 or a salt thereof.
- 5 (10) The compound of (4) above, having the following formula:

- wherein
- R¹ is phenyl optionally substituted by substituent(s) selected from the group consisting of lower alkyl, lower alkoxy, halogen, trihalo(lower)alkyl, trihalo(lower)alkoxy, lower alkanoyl, di(lower)alkylamino and lower alkylthio;
- 10 R² is aryl or heteroaryl, each of said aryl and heteroaryl is optionally substituted by substituent(s) selected from the group consisting of lower alkyl, trihalo(lower)alkyl, optionally protected amino, optionally substituted heteroaryl, cyano, lower alkoxy, halogen, aryloxy, lower alkylenedioxy, oxo, lower alkanoylamino and amino protective group;
- 15 Y is -(A¹)_{m1}-(A²)_{m2}-
 wherein A¹ is -NH-, -N(R³)-, -CO-, -NH-CO-, -CO-CH=CH- or -O-, wherein R³ is amino protective group,
 A² is lower alkylene optionally substituted by aryl, and m₁ and m₂ are independently 0 or 1;
- 20 Z is direct bond;
 n is 3, 4, 5 or 6; and
 n₁ is 1 or 2,
 or a salt thereof.
- (11) The compound of (4) above, having the following formula:

30

wherein

R¹ is phenyl optionally substituted by substituent(s) selected from the group consisting of lower alkyl, lower alkoxy,

5 halogen, trihalo(lower)alkyl, trihalo(lower)alkoxy, lower alkanoyl, di(lower)alkylamino and lower alkylthio;

10 R² is aryl, heteroaryl, vinyl, carbamoyl, protected carboxy or protected amino, each of said aryl and heteroaryl is optionally substituted by substituent(s) selected from the group consisting of lower alkyl, trihalo(lower)alkyl, optionally protected amino, optionally substituted heteroaryl, cyano, lower alkoxy, halogen, aryloxy, lower alkylenedioxy, oxo, lower alkanoylamino and amino protective group;

15 W is CH or N;

Y is -(A¹)_{m1}-(A²)_{m2}-

wherein A¹ is -NH-, -N(R³)-, -CO-, -NH-CO-, -CO-CH=CH- or -O-, wherein R³ is amino protective group,

A² is lower alkylene optionally substituted by aryl, and

20 m1 and m2 are independently 0 or 1;

n is 3, 4, 5 or 6,

or a salt thereof..

(12) The compound of (11) above, having the following formula:

25

wherein

R¹ is phenyl optionally substituted by substituent(s) selected from the group consisting of lower alkyl and

trihalo(lower)alkyl;

R² is aryl optionally substituted by cyano;

W is CH or N;

Y is -(A²)_{m2}-

5 wherein A² is lower alkylene, and
m2 is 1;

n is 4,

or a salt thereof.

(13) The compound of (4) above, having the following formula:

10

wherein

R¹ is phenyl optionally substituted by substituent(s) selected from the group consisting of lower alkyl, lower alkoxy,

15 halogen, trihalo(lower)alkyl, trihalo(lower)alkoxy, lower alkanoyl, di(lower)alkylamino and lower alkylthio;

R² is aryl, heteroaryl or protected amino, each of said aryl and heteroaryl is optionally substituted by

substituent(s) selected from the group consisting of

20 lower alkyl, trihalo(lower)alkyl, optionally protected amino, optionally substituted heteroaryl, cyano, lower alkoxy, halogen, aryloxy, lower alkylenedioxy, oxo, lower alkanoylamino and amino protective group;

Y is -(A¹)_{m1}-(A²)_{m2}-

25 wherein A¹ is -NH-, -N(R³)-, -CO-, -NH-CO-, -CO-CH=CH- or -O-, wherein R³ is amino protective group,

A² is lower alkylene optionally substituted by aryl, and m1 and m2 are independently 0 or 1;

Z is direct bond;

30 Q is O or a pair of hydrogen atoms;

n is 3, 4, 5 or 6; and

n2 is 0 or 1,

or a salt thereof.

(14) The compound of the formula (I), wherein X is

wherein R⁴ is lower alkyl, lower alkoxy, lower alkanoyl, hydroxy(lower)alkyl, lower alkoxy(lower)alkyl or halogen, and R⁵ is hydrogen or lower alkyl,

5 or a salt thereof.

(15) The compound of (14) above, wherein

R¹ is phenyl optionally substituted by substituent(s) selected from the group consisting of lower alkyl and trihalo(lower)alkyl;

10 R² is heteroaryl optionally substituted by optionally protected amino;

is bivalent residue derived from aryl or pyridinyl;

X is

15 wherein R⁴ is lower alkyl, and R⁵ is hydrogen;

Y is -(A¹)_{m1}-(A²)_{m2}-

wherein A¹ is -NH-, -N(R³)-, -O-, wherein R³ is amino protective group,

20 A² is lower alkylene optionally substituted by aryl, and m1 and m2 are independently 0 or 1; and

Z is direct bond,

or a salt thereof.

(16) The compound of the formula (I) selected from the group consisting of

4',5-dimethyl-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-1,1'-biphenyl-2-carboxamide (Example 43),

5-methyl-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (Example 44),

30 N-{4-[2-(6-amino-2-pyridinyl)ethoxy]phenyl}-5-methyl-4'-(

- (trifluoromethyl)-1,1'-biphenyl-2-carboxamide (Example 106),
 2-(4-methylphenyl)-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-1-cyclohexene-1-carboxamide (Example 115),
 N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (Example 116),
 N-(4-{[2-(6-amino-2-pyridinyl)ethyl]amino}phenyl)-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (Example 145),
5 N-(4-{[2-(2-amino-1,3-thiazol-4-yl)ethyl]amino}phenyl)-2-(4-methylphenyl)-1-cyclohexene-1-carboxamide (Example 169),
 N-{4-[4-(3-cyanobenzyl)-1-piperazinyl]phenyl}-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (Example 190),
10 N-{6-[4-(3-cyanobenzyl)-1-piperazinyl]-3-pyridinyl}-2-[4-(6-{[2-(6-amino-2-pyridinyl)ethyl]amino}-3-pyridinyl)-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (Example 212),
15 N-(6-{[2-(6-amino-2-pyridinyl)ethyl]amino}-3-pyridinyl)-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (Example 388), or a salt thereof.
- (17) A compound of the following formula:

wherein

R^1 is

25

wherein R^{23} and R^{24} are independently hydrogen or a substituent;

R^{21} and R^{22} are independently hydrogen or a substituent;

R^2 is unsaturated 5 to 6-membered heteromonocyclic group,

which is optionally substituted by one or more substituent(s);

X is cycloalkenylene optionally substituted by one or more substituent(s);

5 Y¹ is bivalent group selected from the group consisting of ethylene, trimethylene and vinylene, wherein CH₂ is optionally replaced by NH or O, and CH is optionally replaced by N, and said bivalent group is optionally substituted by one or more substituent(s);

10 and

Y is -(CH₂)_r-, -CO-(CH₂)_s- or -CO-NH-, wherein r is 1, 2 or 3 and s is 1 or 2,

or a salt thereof.

(18) A compound of the formula:

15

wherein

R²³ is hydrogen, lower alkyl, lower alkoxy, halogen, trihalo(lower)alkyl or di(lower)alkylamino;

R² is

20

wherein R²⁵ is hydrogen, amino or

X is

wherein p is 1 or 2;

Y^1 is $-\text{CH}_2-\text{CH}_2-$; and

Y is $-\text{CO}-\text{CH}_2-$,

or a salt thereof.

5

Examples of a preferable group represented by Y include the following.

10 wherein q is an integer of 0 to 3, and R^6 is amino protective group.

Examples of a preferable group represented by the formula: $-Z-Y-R^2$ include $-Z-(\text{CH}_2)_q-R^2$, $-Z-\text{CONH}-(\text{CH}_2)_q-R^2$, $-Z-\text{NHCO}-(\text{CH}_2)_q-R^2$, $-Z-\text{NH}-(\text{CH}_2)_q-R^2$, $-Z-\text{N}(\text{R}^3)-(\text{CH}_2)_q-R^2$, $15 -Z-\text{O}-(\text{CH}_2)_q-R^2$, $-Z-\text{CH}_2\text{O}-(\text{CH}_2)_q-R^2$, $-Z-\text{CO}-(\text{CH}_2)_q-R^2$, $-Z-\text{CH}(\text{OH})-(\text{CH}_2)_q-R^2$ and $-Z-\text{CO}-\text{CH}=\text{CH}-(\text{CH}_2)_q-R^2$ wherein R^2 , R^3 , Z and q are as defined above.

Suitable salts of the object compound (I) may be 20 pharmaceutically acceptable salts such as conventional non-toxic salts and include, for example, a salt with a base or an acid addition salt such as a salt with an inorganic base, for example, an alkali metal salt (e.g., sodium salt, potassium

salt, etc.), an alkaline earth metal salt (e.g., calcium salt, magnesium salt, etc.), an ammonium salt; a salt with an organic base, for example, an organic amine salt (e.g., triethylamine salt, pyridine salt, picoline salt, ethanolamine salt, triethanolamine salt, dicyclohexylamine salt, N,N'-dibenzylethylenediamine salt, etc.); an inorganic acid addition salt (e.g., hydrochloride, hydrobromide, sulfate, phosphate, etc.); an organic carboxylic or sulfonic acid addition salt (e.g., formate, acetate, trifluoroacetate, maleate, tartrate, citrate, fumarate, methanesulfonate, benzenesulfonate, toluenesulfonate, etc.); and a salt with a basic or acidic amino acid (e.g., arginine, aspartic acid, glutamic acid, etc.).

In the above and subsequent descriptions of the present specification, suitable examples and illustration of the various definitions which the present invention intends to include within the scope thereof are explained in detail as follows.

20

The term "lower" is used to intend a group having 1 to 6, preferably 1 to 4, carbon atom(s), unless otherwise provided.

Suitable "lower alkyl" and "lower alkyl" moiety in the terms "trihalo(lower)alkyl", "di(lower)alkylamino", "lower alkylthio", "hydroxy(lower)alkyl", "lower alkoxy(lower)alkyl", "mono(or di or tri)aryl(lower)alkyl", "mono or di or tri)phenyl(lower)alkyl", "lower alkylsulfonyl", "aryl(lower)alkylsulfonyl", "lower alkylsulfonylamino", "aryl(lower)alkylsulfonylamino", "bis[(lower)alkylsulfonyl]amino" and "bis[aryl(lower)alkylsulfonyl]amino", include straight or branched alkyl having 1 to 6 carbon atom(s), such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, tert-pentyl and hexyl, in which more preferred one is C₁-C₄ alkyl.

Suitable "lower alkoxy" and "lower alkoxy" moiety in the terms "trihalo(lower)alcoxy", "lower alkoxy(lower)alkyl", "(lower)alkoxycarbonyl", "mono(or di or

tri)phenyl(lower)alkoxycarbonyl" and "(lower)alkoxycarbonylamino" include straight or branched alkoxy having 1 to 6 carbon atom(s), such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy, pentyloxy, tert-pentyloxy and hexyloxy, in which more preferred one is C₁-C₄ alkoxy.

5 Suitable "halogen" and "halogen" moiety in the terms "trihalo(lower)alkyl" and "trihalo(lower)alkoxy" may be fluorine, bromine, chlorine and iodine.

10 Suitable "trihalo(lower)alkyl" includes trihalo(C₁-C₆)alkyl such as trifluoromethyl, trichloromethyl and tribromomethyl, in which more preferred one is trihalo(C₁-C₄)alkyl, and the particularly preferred one is trifluoromethyl.

15 Suitable "trihalo(lower)alkoxy" includes trihalo(C₁-C₆)alkoxy such as trifluoromethoxy, trichloromethoxy and tribromomethoxy, in which more preferred one is trihalo(C₁-C₄)alkoxy, and the particularly preferred one is trifluoromethoxy.

20 Suitable "lower alkanoyl" includes straight or branched alkanoyl having 1 to 6 carbon atom(s), such as formyl, acetyl, propanoyl, butanoyl, 2-methylpropanoyl, pentanoyl, 3-methylbutanoyl, 2,2-dimethylpropanoyl and hexanoyl, in which more preferred one is C₁-C₄ alkanoyl, and the particularly preferred one is acetyl.

25 Suitable "di(lower)alkylamino" includes di(C₁-C₆)alkylamino such as dimethylamino, diethylamino, dipropylamino, diisopropylamino, dibutylamino, dipentylamino, dihexylamino, ethylmethylamino, methylpropylamino and ethylpropylamino, in which more preferred one is di(C₁-C₄)alkylamino, and the particularly preferred one is dimethylamino.

30 Suitable "lower alkylthio" includes (C₁-C₆)alkylthio such as methylthio, ethylthio, propylthio, isopropylthio, butylthio, isobutylthio, sec-butylthio, tert-butylthio, pentylthio, tert-pentylthio and hexylthio, in which more preferred one is C₁-C₄ alkylthio, and the particularly preferred one is methylthio.

Suitable "lower alkylene" includes straight or branched alkylene having 1 to 6 carbon atoms, such as methylene, ethylene, trimethylene, tetramethylene, propylene, ethylidene and propylidene, in which more preferred one is C₁-C₃ alkylene.

- 5 Suitable "lower alkylenedioxy" includes straight or branched alkylenedioxy having 1 to 6 carbon atoms, such as methylenedioxy, ethylenedioxy, trimethylenedioxy, tetramethylenedioxy, propylenedioxy, ethylidenedioxy and propylidenedioxy, in which more preferred one is C₁-C₃
- 10 alkylenedioxy, and most preferred one is methylenedioxy.

Suitable "hydroxy(lower)alkyl" includes hydroxy(C₁-C₆)alkyl such as hydroxymethyl, 2-hydroxyethyl, 1-hydroxyethyl, 3-hydroxypropyl, 2-hydroxypropyl, 1-hydroxypropyl and 4-hydroxybutyl, in which more preferred one is hydroxymethyl.

- 15 Suitable "lower alkoxy(lower)alkyl" includes (C₁-C₆)alkoxy(C₁-C₆)alkyl such as methoxymethyl, 2-methoxyethyl, 3-methoxypropyl, 1-methoxy-1-methylethyl, 4-methoxybutyl and ethoxymethyl, 2-ethoxyethyl, 3-ethoxypropyl and 4-ethoxybutyl, in which more preferred ones are methoxymethyl and 1-methoxy-
- 20 1-methylethyl.

Suitable "cycloalkene" includes cycloalkene having 3 to 8 carbon atoms, preferably 5 to 8 carbon atoms, more preferably 5 or 6 carbon atoms, and having 1 or 2 double bonds, preferably 1 double bond in the ring. Suitable examples of

- 25 "cycloalkene" include cyclopropene, cyclobutene, cyclopentene, cyclohexene, cycloheptene, cyclooctene, cyclohexadiene, cycloheptadiene and cyclooctadiene, in which more preferred one is cyclohexene.

- 30 "Cycloalkene" at X is optionally substituted by 1 to 4 substituent(s). Suitable examples of such substituent include lower alkyl, lower alkoxy, hydroxy(lower)alkyl, lower alkoxy(lower)alkyl and halogen.

- 35 Suitable "unsaturated 5 or 6-membered heteromonocyclic group" includes 5 or 6-membered aromatic heteromonocyclic group containing 1 to 4 heteroatom(s) selected from sulfur, oxygen and nitrogen such as pyridinyl, N-oxidopyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, thiazolyl, isothiazolyl, thiadiazolyl, oxazolyl, isoxazolyl, imidazolyl, pyrazolyl,

furyl, thieryl, pyrrolyl and dihydrofuryl, in which more preferred ones are pyrimidinyl, thiazolyl, thietyl and dihydrofuryl.

"Unsaturated 5 or 6-membered heteromonocyclic group" at

- 5 X is optionally substituted by 1 to 4 substituent(s).

Suitable examples of such substituent include lower alkyl, lower alkoxy, hydroxy(lower)alkyl, lower alkoxy(lower)alkyl and halogen, in which more preferred one is lower alkyl.

"Benzene" at X is substituted by 1 to 4 substituent(s).

- 10 Suitable examples of such substituent include lower alkyl, lower alkoxy, hydroxy(lower)alkyl, lower alkoxy(lower)alkyl and halogen.

"Bivalent residue derived from the group consisting of cycloalkene, naphthalene, unsaturated 5 or 6-membered

- 15 heteromonocyclic group, each of which is optionally substituted by substituent(s), and benzene which is substituted by substituent(s)" means a bivalent residue derived from the ring selected from "cycloalkene, naphthalene, unsaturated 5 or 6-membered heteromonocyclic group, each of 20 which is optionally substituted by substituent(s), and benzene which is substituted by substituent(s)" by removal of two hydrogen atoms. Preferably, X is

wherein R⁴ is lower alkyl, lower alkoxy, hydroxy(lower)alkyl,

- 25 lower alkoxy(lower)alkyl or halogen,

R⁵ is hydrogen or lower alkyl, and

n is 3, 4, 5 or 6.

Suitable examples of "amino protective group" include

acyl such as lower alkanoyl (e.g., formyl, acetyl, etc.),

- 30 lower alkoxy carbonyl (e.g., tert-butoxycarbonyl, etc.),

mono(or di or tri)phenyl(lower)alkoxycarbonyl (e.g., benzyloxycarbonyl, etc.), and a conventional protective group such as mono(or di or tri)aryl(lower)alkyl, for example, mono(or di or tri)phenyl(lower)alkyl (e.g., benzyl, trityl, etc.), lower alkylsulfonyl (e.g., methylsulfonyl, etc.), aryl(lower)alkylsulfonyl (e.g., benzylsulfonyl, etc.) and

"Optionally protected amino" include amino and protected amino. Suitable examples of protected amino include lower alkanoylamino, lower alkylsulfonylamino, aryl(lower)alkylsulfonylamino, (lower)alkoxycarbonylamino, bis[(lower)alkylsulfonyl]amino, bis[aryl(lower)alkylsulfonyl]amino and

Suitable "lower alkanoyl" and "lower alkanoyl" moiety in the term "lower alkanoylamino" includes alkanoyl having 1 to 6 carbon atom(s) such as formyl, acetyl, propionyl, butyryl, isobutyryl, valeryl, isovaleryl, pivaloyl and hexanoyl, in which more preferred one is C₁-C₄ alkanoyl.

Suitable "(lower)alkoxycarbonyl" includes methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, sec-butoxycarbonyl, tert-butoxycarbonyl, pentyloxycarbonyl, tert-pentyloxycarbonyl and hexyloxycarbonyl, in which more preferred ones are methoxycarbonyl and tert-butoxycarbonyl.

Suitable "mono(or di or tri)phenyl(lower)alkoxycarbonyl" includes benzyloxycarbonyl and phenethyloxycarbonyl.

Suitable "aryl" and "aryl" moiety in the term "aryloxy" includes aryl having 6 to 10 carbon atoms which is optionally substituted by suitable substituent such as lower alkyl. "Aryl" includes fused carbocyclic group wherein benzen ring is fused with a saturated or unsaturated carbon ring. Suitable

examples of aryl include phenyl, tolyl, naphthyl, indenyl and indanyl, in which more preferred ones are phenyl, tolyl and naphthyl.

- Suitable "aryl" moiety in the terms "mono(or di or tri)aryl(lower)alkyl", "aryl(lower)alkylsulfonyl", "aryl(lower)alkylsulfonylamino", "bis[aryl(lower)alkylsulfonyl]amino" and "arylsulfonyl" includes aryl having 6 to 10 carbon atoms which is optionally substituted by suitable substituent such as lower alkyl.
- 5 Suitable examples of aryl moiety include phenyl, tolyl and naphthyl, in which more preferred ones are phenyl and tolyl.

- 10 Suitable "mono(or di or tri)aryl(lower)alkyl" include mono(or di or tri)phenyl(lower)alkyl such as benzyl, benzydryl and trityl.
- 15 Suitable "lower alkylsulfonyl" include methylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, butylsulfonyl, isobutylsulfonyl, sec-butylsulfonyl, tert-butylsulfonyl, pentylsulfonyl and hexylsulfonyl, in which more preferred one is methylsulfonyl.

- 20 Suitable "aryl(lower)alkylsulfonyl" include phenyl(lower)alkylsulfonyl such as benzylsulfonyl, phenethylsulfonyl and 1-phenylethylsulfonyl.
- 25 Suitable "lower alkanoylamino" includes formylamino, acetylamino, propionylamino, butyrylamino, isobutyrylamino, valerylamino, isovalerylamino, pivaloylamino and hexanoylamino, in which more preferred ones are formylamino and acetylamino.

- 30 Suitable "lower alkylsulfonylamino" includes methylsulfonylamino, ethylsulfonylamino, propylsulfonylamino, isopropylsulfonylamino, butylsulfonylamino, isobutylsulfonylamino, sec-butylsulfonylamino, tert-butylsulfonylamino, pentylsulfonylamino and hexylsulfonylamino, in which more preferred one is methylsulfonylamino.

- 35 Suitable "aryl(lower)alkylsulfonylamino" includes benzylsulfonylamino, phenylethylsulfonylamino and phenylpropylsulfonylamino, in which more preferred one is benzylsulfonylamino.

- Suitable "(lower)alkoxycarbonylamino" includes methoxycarbonylamino, ethoxycarbonylamino,

- propoxycarbonylamino, isopropoxycarbonylamino,
butoxycarbonylamino, isobutoxycarbonylamino, sec-
butoxycarbonylamino, tert-butoxycarbonylamino,
pentyloxycarbonylamino, tert-pentyloxycarbonylamino and
5 hexyloxycarbonylamino, in which more preferred ones are
methoxycarbonylamino and tert-butoxycarbonylamino.

Suitable "bis[(lower)alkylsulfonyl]amino" includes
bis(methylsulfonyl)amino, bis(ethylsulfonyl)amino,
bis(propylsulfonyl)amino, bis(isopropylsulfonyl)amino,
10 bis(butylsulfonyl)amino, bis(isobutylsulfonyl)amino, bis(sec-
butylsulfonyl)amino, bis(tert-butylsulfonyl)amino,
bis(pentylsulfonyl)amino and bis(hexylsulfonyl)amino, in which
more preferred one is bis(methylsulfonyl)amino.

Suitable "bis[aryl(lower)alkylsulfonyl]amino" includes
15 bis(benzylsulfonyl)amino, bis(phenylethylsulfonyl)amino and
bis(phenylpropylsulfonyl)amino, in which more preferred one is
bis(benzylsulfonyl)amino.

Suitable "heteroaryl" includes 5 to 10-membered aromatic
heteromonocyclic or fused heterocyclic group containing 1 to 4
20 heteroatom(s) selected from sulfur atom, oxygen atom and
nitrogen atom. "Heteroaryl" includes fused heterocyclic group
wherein benzene ring is fused with a saturated or unsaturated
heterocyclic ring.

Suitable examples of "heteroaryl" include pyridinyl,
25 pyrimidinyl, pyrazinyl, pyridazinyl, pyrrolyl, imidazolyl,
pyrazolyl, triazolyl, tetrazolyl, thiazolyl, isothiazolyl,
thiadiazolyl, oxazolyl, isoxazolyl, furyl, thienyl, indolyl,
isoindolyl, indolizinyl, indazolyl, benzimidazolyl,
benzotriazolyl, quinolyl, isoquinolyl, phthalazinyl,
30 quinoxalinyl, quinazolinyl, cinnolinyl, benzofuranyl,
benzothienyl, benzoxazolyl, benzothiazolyl, benzimidazolyl,
indolinyl, isoindolinyl, tetrahydroquinolinyl and
tetrahydroisoquinolinyl.

Suitable examples of "heteroaryl" at R² include
35 pyridinyl, thiazolyl, pyrimidinyl, imidazolyl, pyrrolyl,
triazolyl and indolyl, in which more preferred ones are
pyridinyl and thiazolyl, and the most preferred one is
pyridinyl.

Suitable "bivalent residue derived from aryl" includes C₆-C₁₀ arylene. "Bivalent residue derived from aryl" include bivalent fused carbocyclic group wherein benzene ring is fused with a saturated or unsaturated carbon ring.

- 5 Suitable examples of "bivalent residue derived from aryl" include phenylene, naphthylene, indenediyl and indandiyl, in which more preferred one is phenylene.

Suitable "bivalent residue derived from heteroaryl" includes bivalent 5 to 10-membered aromatic heteromonocyclic 10 or fused heterocyclic group containing 1 to 4 heteroatom(s) selected from sulfur atom, oxygen atom and nitrogen atom. "Bivalent residue derived from heteroaryl" includes bivalent fused heterocyclic group wherein benzene ring is fused with a saturated or unsaturated heterocyclic ring.

- 15 Suitable examples of "bivalent residue derived from heteroaryl" include pyridinediyl, pyrimidinediyl, pyrazinediyl, pyridazinediyl, pyrrolediyl, imidazolediyl, pyrazolediyl, triazolediyl, tetrazaolediyl, thiazaolediyl, isothiazaolediyl, thiadiazolediyl, oxazaolediyl, isooxazaolediyl, furandiyl, 20 thiophenediyl, indolediyl, isoindolediyl, indolizinediyl, indazolediyl, benzimidazolediyl, benzotriazalediyl, quinolinediyl, isoquinolinediyl, phthalazinediyl, quinoxalinediyl, quinazolinediyl, cinnolinediyl, benzofurandiyl, benzothiophenediyl, benzoxazaolediyl, 25 benzothiazaolediyl, benzimidazolediyl, indolinediyl, isoindolinediyl, tetrahydroquinolinediyl and tetrahydroisoquinolinediyl.

Suitable examples of "bivalent residue derived from heteroaryl" at ring A include pyridinediyl, indolinediyl, 30 1,2,3,4-tetrahydroisoquinolinediyl and isoindolinediyl.

- Suitable "lower cycloalkyl" includes cycloalkyl having 3 to 8 carbon atoms, preferably 3 to 6 carbon atoms, more preferably 5 or 6 carbon atoms. Suitable examples of "lower cycloalkyl" include cyclopropyl, cyclobutyl, cyclopentyl, 35 cyclohexyl, cycloheptyl and cyclooctyl, in which more preferred one is cyclopentyl and cyclohexyl.

"Bivalent residue derived from piperazine" means bivalent residue derived from piperazine by removal two

hydrogen atoms, such as piperazine-1,4-diyl, piperazine-1,3-diyl, piperazine-1,2-diyl, piperazine-2,3-diyl and piperazine-2,5-diyl, in which more preferred one is piperazine-1,4-diyl.

- Suitable "bivalent residue derived from piperazine
5 substituted by lower alkyl" includes 3-methylpiperazine-1,4-diyl.

- Suitable "optionally substituted heteroaryl" for substituent(s) at R² includes optionally substituted pyrrolyl, preferably pyrrolyl optionally substituted by 1 to 3 lower
10 alkyl, in which more preferred one is 2,5-dimethyl-1H-pyrrol-1-yl.

- Suitable examples of "carboxy protective group" include lower alkyl (e.g., methyl, ethyl, tert-butyl, etc.) and mono(or di or tri)phenyl(lower)alkyl optionally substituted by
15 nitro (e.g., benzyl, 4-nitrobenzyl, benzhydryl, trityl, etc.).

- "Optionally protected carboxy" include carboxy and protected carboxy. Suitable examples of protected carboxy include lower alkoxy carbonyl (e.g., methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl,
20 butoxycarbonyl, isobutoxycarbonyl, tert-butoxycarbonyl, etc.) and mono(or di or tri)phenyl(lower)alkoxycarbonyl optionally substituted by nitro (e.g., benzyloxycarbonyl, 4-nitrobenzyloxycarbonyl, benzhydryloxycarbonyl, trityloxycarbonyl, etc.).

25

The object compound (I) of the present invention can be prepared by the following processes.

Process (1)

(II)

(III)

or its reactive derivative
at the carboxy group,
or a salt thereof

or its reactive derivative
at the amino group,
or a salt thereof

(I)

or a salt thereof

Process (2)

(IV)

or its reactive derivative
at the carboxy group,
or a salt thereof

or a salt thereof

(I)-1

or a salt thereof

Process (3)

(VI)

or its reactive derivative
at the carboxy group,
or a salt thereof

(VII)

or its reactive derivative
at the amino group,
or a salt thereof

(I)-2

or a salt thereof

Process (4)

(VIII)

or its reactive derivative
at the amino group,
or a salt thereof

(IX)

or its reactive derivative
at the carboxy group,
or a salt thereof

(I)-3

or a salt thereof

Process (5)

or its reactive derivative
at the amino group,
or a salt thereof

or its reactive derivative
at the carboxy group,
or a salt thereof

(I)-4
or a salt thereof

Process (18)

Process (19)

or its reactive derivative
at the carboxy group,
or a salt thereof

or its reactive derivative
at the amino group,
or a salt thereof

or a salt thereof

Process (20)

Elimination reaction
of the amino
protective group

(I)-14

or a salt thereof

(I)-15

or a salt thereof

Process (21)

(II)

or its reactive derivative
at the carboxy group,
or a salt thereof

(XVII)

or its reactive derivative
at the amino group,
or a salt thereof

(I)-16

or a salt thereof

Process (22)

or a salt thereof

or a salt thereof

Process (23)

Process (24)

(I)-18

or a salt thereof

(I)-19

or a salt thereof

Process (25)

(XXIII)

(XXIV)

(I)

5

Process (26)5 Process (27)

wherein R^1 , R^2 , R^3 , X , Y , Z , ring A , A^2 and $m2$ are as defined
10 above,

R^{16} is amino protective group,

R^2a is aryl, heteroaryl, lower cycloalkyl, aryloxy or arylsulfonyl, each of which is substituted by protected amino,

5 R^2b is aryl, heteroaryl, lower cycloalkyl, aryloxy or arylsulfonyl, each of which is substituted by amino,
 R^2c is aryl, heteroaryl or lower cycloalkyl, each of which is optionally substituted by substituent(s), and
 X^1 and X^2 are each leaving group.

10

The starting compounds can be prepared by the following processes or by the method of Preparation mentioned below or by a process known in the art for preparing their structurally analogous compounds.

15 Process (A)

(II)

or its reactive derivative
at the carboxy group,
or a salt thereof

(XIX)

or its reactive derivative
at the amino group,
or a salt thereof

(XX)

or a salt thereof

Process (B)

Elimination reaction
of the carboxy
protective group

(XX)

or a salt thereof

(IV)

or a salt thereof

Process (C)

+

(II)

or its reactive derivative
at the carboxy group,
or a salt thereof

(XXI)

or its reactive derivative
at the amino group,
or a salt thereof

(XXII)

or a salt thereof

Process (D)

(XXII)

or a salt thereof

(VIII)

or a salt thereof

Process (E)

(XXV)

(XXVI)

(XXVII)

5 Process (F)

(XXVII)

(II)

wherein R¹, X, Z and ring A are as defined above,
 R¹⁷ and R¹⁹ are each carboxy protective group,
 R¹⁸ is amino protective group, and
 X³ is leaving group.

10

Suitable examples of a leaving group represented by X¹, X² and X³ include halogen (e.g., fluorine, bromine, chlorine and iodine), alkylsulfonyloxy group (e.g.,

trifluoromethanesulfonyloxy and methanesulfonyloxy) and arylsulfonyloxy group (e.g., p-toluenesulfonyloxy).

The processes for preparing the object and starting
5 compounds are explained in detail in the following.

Process (1)

The compound (I) or a salt thereof can be prepared by reacting the compound (II) or its reactive derivative at the carboxy group, or a salt thereof with the compound (III) or
10 its reactive derivative at the amino group, or a salt thereof.

Suitable reactive derivative of the compound (III)
includes Schiff's base type imino or its tautomeric enamine type isomer formed by the reaction of the compound (III) with a carbonyl compound such as aldehyde, ketone or the like; a
15 silyl derivative formed by the reaction of the compound (III) with a silyl compound such as N,O-bis(trimethylsilyl)acetamide, N-trimethylsilylacetamide or the like; a derivative formed by the reaction of the compound (III) with phosphorus trichloride or phosgene.

20 Suitable reactive derivative of the compound (II)
includes an acid halide, an acid anhydride and an activated ester. The suitable example may be an acid chloride; an acid azide; a mixed acid anhydride with an acid such as substituted phosphoric acid (e.g., dialkylphosphoric acid,
25 phenylphosphoric acid, diphenylphosphoric acid, dibenzylphosphoric acid, halogenated phosphoric acid, etc.), dialkylphosphorous acid, sulfurous acid, thiosulfuric acid, alkanesulfonic acid (e.g., methanesulfonic acid, ethanesulfonic acid, etc.), sulfuric acid, alkylcarbonic acid,
30 aliphatic carboxylic acid (e.g., pivalic acid, pentanoic acid, isopentanoic acid, 2-ethylbutyric acid, trichloroacetic acid, etc.); aromatic carboxylic acid (e.g., benzoic acid, etc.); a symmetrical acid anhydride; an activated amide with imidazole, 4-substituted imidazole, dimethylpyrazole, triazole or
35 tetrazole; an activated ester (e.g., cyanomethyl ester, methoxymethyl ester, dimethyliminomethyl [(CH₃)₂N⁺=CH-] ester, vinyl ester, propargyl ester, p-nitrophenyl ester, 2,4-dinitrophenyl ester, trichlorophenyl ester, pentachlorophenyl

ester, mesylphenyl ester, phenylazophenyl ester, phenyl thioester, p-nitrophenyl thioester, p-cresyl thioester, carboxymethyl thioester, pyranyl ester, pyridinyl ester, piperidyl ester, 8-quinolyl thioester, etc.); or an ester with 5 an N-hydroxy compound (e.g., N,N-dimethylhydroxylamine, 1-hydroxy-2-(1H)-pyridone, N-hydroxysuccinimide, N-hydroxybenzotriazole, N-hydroxyphthalimide, 1-hydroxy-6-chloro-1H-benzotriazole, etc.). These reactive derivatives can optionally be selected from them according to the kind of 10 the compound (II) to be used.

The reaction is usually carried out in a conventional solvent such as water, acetone, dioxane, acetonitrile, chloroform, methylene chloride, ethylene dichloride, tetrahydrofuran, ethyl acetate, N,N-dimethylformamide, 15 pyridine or any other organic solvents which do not adversely affect the reaction, or a mixture thereof.

When the compound (II) is used in free acid form or its salt form in the reaction, the reaction is preferably carried out in the presence of a conventional condensing agent such as 20 N,N'-dicyclohexylcarbodiimide; N-cyclohexyl-N'-morpholinoethylcarbodiimide; N-cyclohexyl-N'-(4-diethylaminocyclohexyl)carbodiimide; N,N'-diisopropylcarbodiimide; N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide; N,N-carbonyl-bis-(2-methylimidazole); pentamethyleneketene-N-cyclohexylimine; 25 diphenylketene-N-cyclohexylimine; ethoxyacetylene; 1-alkoxy-1-chloroethylene; trialkyl phosphite; isopropyl polyphosphate; phosphorus oxychloride (phosphoryl chloride); phosphorus trichloride; thionyl chloride; oxalyl chloride; 30 triphenylphosphine; 2-ethyl-7-hydroxybenzisoxazolium salt; 2-ethyl-5-(m-sulfophenyl)isoxazolium hydroxide intramolecular salt; 1-(p-chlorobenzenesulfonyloxy)-6-chloro-1H-benzotriazole; so-called Vilsmeier reagent prepared by the reaction of N,N-dimethylformamide with thionyl chloride, 35 phosgene, phosphorus oxychloride, etc.; or the like.

The reaction may also be carried out in the presence of an organic or inorganic base such as an alkali metal bicarbonate, tri(lower)alkylamine, pyridine, N-

(lower)alkylmorpholine, N,N-di(lower)alkylbenzylamine, or the like.

The reaction temperature is not critical, and the reaction is usually carried out under cooling to heating.

5

Process (2)

The compound (I)-1 or a salt thereof can be prepared by reacting the compound (IV) or its reactive derivative at the carboxy group, or a salt thereof with the compound (V) or its reactive derivative at the amino group, or a salt thereof.

This reaction can be carried out in the same manner as in the aforementioned Process (1), and therefore the reagents to be used and the reaction conditions (e.g., solvent, reaction temperature, etc.) can be referred to those of

15 Process (1).

Process (3)

The compound (I)-2 or a salt thereof can be prepared by reacting the compound (VI) or its reactive derivative at the carboxy group, or a salt thereof with the compound (VII) or its reactive derivative at the amino group, or a salt thereof.

This reaction can be carried out in the same manner as in the aforementioned Process (1), and therefore the reagents to be used and the reaction conditions (e.g., solvent, reaction temperature, etc.) can be referred to those of

Process (1).

Process (4)

The compound (I)-3 or a salt thereof can be prepared by reacting the compound (VIII) or its reactive derivative at the amino group, or a salt thereof with the compound (IX) or its reactive derivative at the carboxy group, or a salt thereof.

This reaction can be carried out in the same manner as in the aforementioned Process (1), and therefore the reagents to be used and the reaction conditions (e.g., solvent, reaction temperature, etc.) can be referred to those of

Process (1).

Process (5)

The compound (I)-4 or a salt thereof can be prepared by reacting the compound (X) or its reactive derivative at the amino group, or a salt thereof with the compound (XI) or its reactive derivative at the carboxy group, or a salt thereof.

5 This reaction can be carried out in the same manner as in the aforementioned Process (1), and therefore the reagents to be used and the reaction conditions (e.g., solvent, reaction temperature, etc.) can be referred to those of

10 Process (1).

Process (6)

The compound (I)-5 or a salt thereof can be prepared by reacting the compound (II) or its reactive derivative at the carboxy group, or a salt thereof with the compound (XII) or its reactive derivative at the amino group, or a salt thereof.

15 This reaction can be carried out in the same manner as in the aforementioned Process (1), and therefore the reagents to be used and the reaction conditions (e.g., solvent, reaction temperature, etc.) can be referred to those of

20 Process (1).

Process (7)

The compound (I)-6 can be prepared by subjecting the compound (I)-5 to catalytic hydrogenation.

25 Suitable catalysts to be used in the catalytic hydrogenation are conventional ones such as platinum catalysts (e.g., platinum plate, spongy platinum, platinum black, colloidal platinum, platinum oxide, platinum wire, etc.), palladium catalysts (e.g., spongy palladium, palladium black, palladium oxide, palladium on carbon, palladium hydroxide on carbon, colloidal palladium, palladium on barium sulfate, palladium on barium carbonate, etc.), and the like.

30 The hydrogenation is usually carried out in a conventional solvent such as water, alcohol (e.g., methanol, ethanol, isopropyl alcohol, etc.), tetrahydrofuran, dioxane, toluene, methylene chloride, ethylene dichloride, chloroform, N,N-dimethylformamide, N,N-dimethylacetamide or any other

organic solvents which do not adversely affect the reaction, or a mixture thereof.

The reaction temperature is not critical, and the reaction is usually carried out under cooling to warming.

5

Process (8)

The compound (I)-7 can be prepared by subjecting the compound (I)-6 to reduction using a suitable reducing agent.

Suitable reducing agents to be used in the reduction are 10 hydrides (e.g., sodium borohydride, sodium cyanoborohydride, lithium aluminum hydride, etc.).

The reduction is usually carried out in a conventional solvent such as water, alcohol (e.g., methanol, ethanol, isopropyl alcohol, etc.), tetrahydrofuran, dioxane, toluene, 15 methylene chloride, ethylene dichloride, chloroform, N,N-dimethylformamide, N,N-dimethylacetamide or any other organic solvents which do not adversely affect the reaction, or a mixture thereof.

The reaction temperature is not critical, and the 20 reaction is usually carried out under cooling to warming.

Process (9)

The compound (I)-8 can be prepared by subjecting the compound (I)-7 to catalytic hydrogenation in the presence of 25 an acid.

Suitable catalysts to be used in the catalytic hydrogenation are conventional ones such as platinum catalysts (e.g., platinum plate, spongy platinum, platinum black, colloidal platinum, platinum oxide, platinum wire, etc.), 30 palladium catalysts (e.g., spongy palladium, palladium black, palladium oxide, palladium on carbon, palladium hydroxide on carbon, colloidal palladium, palladium on barium sulfate, palladium on barium carbonate, etc.), and the like.

Suitable acid to be used in the catalytic hydrogenation 35 includes hydrochloric acid, hydrogen chloride, and the like.

The hydrogenation is usually carried out in a conventional solvent such as water, alcohol (e.g., methanol, ethanol, isopropyl alcohol, etc.), tetrahydrofuran, dioxane,

toluene, methylene chloride, ethylene dichloride, chloroform, N,N-dimethylformamide, N,N-dimethylacetamide or any other organic solvents which do not adversely affect the reaction, or a mixture thereof.

- 5 The reaction temperature is not critical, and the reaction is usually carried out under cooling to warming.

Process (10)

10 The compound (I)-9 can be prepared by subjecting the compound (I)-5 to reduction using a suitable reducing agent.

This reaction can be carried out in the same manner as in the aforementioned Process (8), and therefore the reagents to be used and the reaction conditions (e.g., solvent, reaction temperature, etc.) can be referred to those of

- 15 Process (8).

Process (11)

The compound (I)-8 can be prepared by subjecting the compound (I)-9 to catalytic hydrogenation in the presence of 20 an acid.

This reaction can be carried out in the same manner as in the aforementioned Process (9), and therefore the reagents to be used and the reaction conditions (e.g., solvent, reaction temperature, etc.) can be referred to those of

- 25 Process (9).

Process (12)

The compound (I)-10 or a salt thereof can be prepared by reacting the compound (II) or its reactive derivative at the 30 carboxy group, or a salt thereof with the compound (XIII) or its reactive derivative at the amino group, or a salt thereof.

This reaction can be carried out in the same manner as in the aforementioned Process (1), and therefore the reagents to be used and the reaction conditions (e.g., solvent, 35 reaction temperature, etc.) can be referred to those of Process (1).

Process (13)

The compound (I)-11 can be prepared by subjecting the compound (I)-10 to catalytic hydrogenation.

This reaction can be carried out in the same manner as in the aforementioned Process (7), and therefore the reagents to be used and the reaction conditions (e.g., solvent, reaction temperature, etc.) can be referred to those of Process (7).

Process (14)

10 The compound (I)-12 can be prepared by subjecting the compound (I)-11 to reduction using a suitable reducing agent.

This reaction can be carried out in the same manner as in the aforementioned Process (8), and therefore the reagents to be used and the reaction conditions (e.g., solvent, reaction temperature, etc.) can be referred to those of Process (8).

Process (15)

20 The compound (I)-8 can be prepared by subjecting the compound (I)-12 to catalytic hydrogenation in the presence of an acid.

This reaction can be carried out in the same manner as in the aforementioned Process (9), and therefore the reagents to be used and the reaction conditions (e.g., solvent, reaction temperature, etc.) can be referred to those of Process (9).

Process (16)

30 The compound (I)-13 can be prepared by subjecting the compound (I)-10 to reduction using a suitable reducing agent.

This reaction can be carried out in the same manner as in the aforementioned Process (8), and therefore the reagents to be used and the reaction conditions (e.g., solvent, reaction temperature, etc.) can be referred to those of Process (8).

Process (17)

The compound (I)-8 can be prepared by subjecting the

compound (I)-13 to catalytic hydrogenation in the presence of an acid.

This reaction can be carried out in the same manner as in the aforementioned Process (9), and therefore the reagents 5 to be used and the reaction conditions (e.g., solvent, reaction temperature, etc.) can be referred to those of Process (9).

Process (18)

10 The compound (I)-5 can be prepared by reacting the compound (XIV) with the compound (XV) in the presence of a base or an acid.

Suitable base to be used in the reaction includes an inorganic base and an organic base such as alkali metal hydroxide (e.g., sodium hydroxide, potassium hydroxide, etc.), 15 alkaline earth metal hydroxide (e.g., magnesium hydroxide, calcium hydroxide, barium hydroxide, etc.), alkali metal carbonate (e.g., sodium carbonate, potassium carbonate, etc.), alkaline earth metal carbonate (e.g., magnesium carbonate, 20 calcium carbonate, barium carbonate, etc.), alkoxide (e.g., sodium methoxide, sodium ethoxide, etc.), trialkylamine (e.g., trimethylamine, triethylamine, etc.), and the like.

Suitable acid to be used in the reaction includes hydrochloric acid, hydrobromic acid, hydrogen chloride, 25 hydrogen bromide, and the like.

This reaction is usually carried out in a conventional solvent such as water, alcohol (e.g., methanol, ethanol, isopropyl alcohol, etc.), tetrahydrofuran, dioxane, toluene, 30 methylene chloride, ethylene dichloride, chloroform, or any other organic solvents which do not adversely affect the reaction, or a mixture thereof.

The reaction temperature is not critical, and the reaction is usually carried out under cooling to heating.

35 Process (19)

The compound (I)-14 or a salt thereof can be prepared by reacting the compound (II) or its reactive derivative at the carboxy group, or a salt thereof with the compound (XVI) or

its reactive derivative at the amino group, or a salt thereof.

This reaction can be carried out in the same manner as in the aforementioned Process (1), and therefore the reagents to be used and the reaction conditions (e.g., solvent, 5 reaction temperature, etc.) can be referred to those of Process (1).

Process (20)

The compound (I)-15 or a salt thereof can be prepared by 10 subjecting the compound (I)-14 or a salt thereof to elimination reaction of the amino protective group.

Suitable method of this elimination reaction includes conventional one such as hydrolysis, reduction and the like.

(i) For hydrolysis:

15 The hydrolysis is preferably carried out in the presence of a base or an acid including Lewis acid.

Suitable base includes an inorganic base and an organic base such as an alkali metal [e.g., sodium, potassium, etc.], an alkaline earth metal [e.g., magnesium, calcium, etc.], the 20 hydroxide or carbonate or hydrogencarbonate thereof, trialkylamine [e.g., trimethylamine, triethylamine, etc.], picoline, 1,5-diazabicyclo[4.3.0]non-5-ene, or the like.

Suitable acid includes an organic acid [e.g., formic acid, acetic acid, propionic acid, trichloroacetic acid, 25 trifluoroacetic acid, etc.], and an inorganic acid [e.g., hydrochloric acid, hydrobromic acid, sulfuric acid, hydrogen chloride, hydrogen bromide, etc.].

The elimination using Lewis acid such as trihaloacetic acid [e.g., trichloroacetic acid, trifluoroacetic acid, etc.], 30 or the like is preferably carried out in the presence of cation trapping agents [e.g., anisole, phenol, etc.]. This reaction is usually carried out without solvent.

The reaction may be carried out in a conventional solvent such as water, alcohol (e.g., methanol, ethanol, 35 isopropyl alcohol, etc.), tetrahydrofuran, dioxane, toluene, methylene chloride, ethylene dichloride, chloroform, N,N-dimethylformamide, N,N-dimethylacetamide or any other organic solvents which do not adversely affect the reaction, or a

mixture thereof.

The reaction temperature is not critical and the reaction is usually carried out under cooling to warming.

(ii) For reduction:

5 Reduction is carried out in a conventional manner, including chemical reduction and catalytic reduction.

Suitable reducing reagent to be used in chemical reduction are hydrides (e.g., hydrogen iodide, hydrogen sulfide, lithium aluminum hydride, sodium borohydride, sodium

10 cyanoborohydride, etc.), or a combination of a metal (e.g., tin, zinc, iron, etc.) or metallic compound (e.g., chromium chloride, chromium acetate, etc.) and an organic acid or inorganic acid (e.g., formic acid, acetic acid, propionic acid, trifluoroacetic acid, p-toluenesulfonic acid, hydrochloric acid, hydrobromic acid, etc.).

Suitable catalysts to be used in catalytic reduction are conventional ones such as platinum catalysts (e.g., platinum plate, spongy platinum, platinum black, colloidal platinum, platinum oxide, platinum wire, etc.), palladium catalysts (e.g., spongy palladium, palladium black, palladium oxide, palladium on carbon, palladium hydroxide on carbon, colloidal palladium, palladium on barium sulfate, palladium on barium carbonate, etc.), nickel catalysts (e.g., reduced nickel, nickel oxide, Raney nickel, etc.), cobalt catalysts (e.g., reduced cobalt, Raney cobalt, etc.), iron catalysts (e.g., reduced iron, Raney iron, Ullman iron, etc.), and the like.

The reduction is usually carried out in a conventional solvent such as water, alcohol (e.g., methanol, ethanol, isopropyl alcohol, etc.), tetrahydrofuran, dioxane, toluene, 30 methylene chloride, ethylene dichloride, chloroform, N,N-dimethylformamide, N,N-dimethylacetamide or any other organic solvents which do not adversely affect the reaction, or a mixture thereof.

Additionally, in case that the above-mentioned acids to 35 be used in chemical reduction are in a liquid state, they can also be used as a solvent.

The reaction temperature of this reduction is not critical and the reaction is usually carried out under cooling

to warming.

Process (21)

The compound (I)-16 or a salt thereof can be prepared by
5 reacting the compound (II) or its reactive derivative at the carboxy group, or a salt thereof with the compound (XVII) or its reactive derivative at the amino group, or a salt thereof.

This reaction can be carried out in the same manner as
in the aforementioned Process (1), and therefore the reagents
10 to be used and the reaction conditions (e.g., solvent,
reaction temperature, etc.) can be referred to those of
Process (1).

Process (22)

15 The compound (I)-17 or a salt thereof can be prepared by subjecting the compound (I)-16 or a salt thereof to elimination reaction of the amino protective group.

This reaction can be carried out in the same manner as
in the aforementioned Process (20), and therefore the reagents
20 to be used and the reaction conditions (e.g., solvent,
reaction temperature, etc.) can be referred to those of
Process (20).

Process (23)

25 The compound (I)-18 or a salt thereof can be prepared by reacting the compound (II) or its reactive derivative at the carboxy group, or a salt thereof with the compound (XVIII) or its reactive derivative at the amino group, or a salt thereof.

This reaction can be carried out in the same manner as
30 in the aforementioned Process (1), and therefore the reagents to be used and the reaction conditions (e.g., solvent,
reaction temperature, etc.) can be referred to those of
Process (1).

Process (24)

35 The compound (I)-19 or a salt thereof can be prepared by subjecting the compound (I)-18 or a salt thereof to elimination reaction of the amino protective group.

This reaction can be carried out in the same manner as in the aforementioned Process (20), and therefore the reagents to be used and the reaction conditions (e.g., solvent, reaction temperature, etc.) can be referred to those of

5 Process (20).

Process (25):

The compound (I) can be prepared by reacting the compound (XXIII) and the compound (XXIV) in the presence of 10 tetrakis(triphenylphosphine)palladium and a base such as triethylamine.

This reaction can be carried out in a solvent such as N,N-dimethylformamide which does not adversely affect the reaction. The reaction temperature is not critical and the 15 reaction is usually carried out under cooling to heating.

Process (26):

The compound (I)-20 or a salt thereof can be prepared by reacting the compound (XXVIII) or a salt thereof with the 20 compound (XXIX) in the presence of a reducing agent. Suitable reducing agent to be used in the reaction includes sodium triacetoxyborohydride, and the like.

This reaction is usually carried out in a conventional solvent such as methylene chloride, ethylene dichloride, 25 chloroform, tetrahydrofuran, dioxane or any other organic solvents which do not adversely affect the reaction, or a mixture thereof.

The reaction temperature is not critical, and the reaction is usually carried out under cooling to heating.

30

Process (27):

The compound (I)-21 or a salt thereof can be prepared by reacting the compound (XXVIII) or a salt thereof and the compound (XXX) in the presence of a base.

35 Suitable base to be used in the reaction includes an inorganic base and an organic base such as alkali metal hydroxide (e.g., sodium hydroxide, potassium hydroxide, etc.), alkaline earth metal hydroxide (e.g., magnesium hydroxide,

calcium hydroxide, barium hydroxide, etc.), alkali metal carbonate (e.g., sodium carbonate, potassium carbonate, cesium carbonate, etc.), alkaline earth metal carbonate (e.g., magnesium carbonate, calcium carbonate, barium carbonate, etc.), alkoxide (e.g., sodium methoxide, sodium ethoxide, etc.), trialkylamine (e.g., trimethylamine, triethylamine, etc.), and the like.

This reaction is usually carried out in a conventional solvent such as water, alcohol (e.g., methanol, ethanol, isopropyl alcohol, etc.), acetone, tetrahydrofuran, dioxane, toluene, methylene chloride, ethylene dichloride, chloroform, or any other organic solvents which do not adversely affect the reaction, or a mixture thereof.

The reaction temperature is not critical and the reaction is usually carried out under cooling to heating.

Process (A)

The compound (XX) or a salt thereof can be prepared by reacting the compound (II) or its reactive derivative at the carboxy group, or a salt thereof with the compound (XIX) or its reactive derivative at the amino group, or a salt thereof.

This reaction can be carried out in the same manner as in the aforementioned Process (1), and therefore the reagents to be used and the reaction conditions (e.g., solvent, reaction temperature, etc.) can be referred to those of Process (1).

Process (B)

The compound (IV) or a salt thereof can be prepared by subjecting the compound (XX) or a salt thereof to elimination reaction of the carboxy protective group.

Suitable method of this elimination reaction includes conventional one such as hydrolysis.

The hydrolysis can be carried out in the same manner as in the aforementioned Process (20), and therefore the reagents to be used and the reaction conditions (e.g., solvent, reaction temperature, etc.) can be referred to those of Process (20).

Process (C)

The compound (XXII) or a salt thereof can be prepared by reacting the compound (II) or its reactive derivative at the carboxy group, or a salt thereof with the compound (XXI) or its reactive derivative at the amino group, or a salt thereof.

This reaction can be carried out in the same manner as in the aforementioned Process (1), and therefore the reagents to be used and the reaction conditions (e.g., solvent, reaction temperature, etc.) can be referred to those of Process (1).

Process (D)

The compound (VIII) or a salt thereof can be prepared by subjecting the compound (XXII) or a salt thereof to elimination reaction of the amino protective group.

This reaction can be carried out in the same manner as in the aforementioned Process (20), and therefore the reagents to be used and the reaction conditions (e.g., solvent, reaction temperature, etc.) can be referred to those of Process (20).

Process (E)

The compound (XXVII) can be prepared by reacting the compound (XXV) and the compound (XXVI) in the presence of lithium chloride, tetrakis(triphenylphosphine)palladium(0) and a base such as sodium carbonate.

This reaction can be carried out in a solvent such as a mixture of toluene and water. The reaction temperature is not critical and the reaction is usually carried out under cooling to heating.

This reaction can be carried out in a similar manner as in Preparation 18 mentioned below.

35 Process (F)

The compound (II) can be prepared by subjecting the compound (XXVII) to elimination reaction of the carboxy protective group.

Suitable method of this elimination reaction includes conventional one such as hydrolysis.

The hydrolysis can be carried out in the same manner as in the aforementioned Process (20), and therefore the reagents 5 to be used and the reaction conditions (e.g., solvent, reaction temperature, etc.) can be referred to those of Process (20).

Suitable salts of the starting compounds and their 10 reactive derivatives in Processes (1) to (27) and (A) to (F) can be referred to the ones as exemplified for the compound (I).

The compounds obtained by the above processes can be 15 isolated and purified by a conventional method such as pulverization, recrystallization, column chromatography, reprecipitation, or the like.

It is to be noted that the compound (I) and the other 20 compounds may include one or more stereoisomer(s) such as optical isomer(s) and geometrical isomer(s) due to asymmetric carbon atom(s) and double bond(s), and all of such isomers and mixtures thereof are included within the scope of this invention.

The object compounds (I) and pharmaceutically acceptable 25 salts thereof include solvates [e.g., enclosure compounds (e.g., hydrate, etc.)].

The object compounds (I) and pharmaceutically acceptable salts thereof possess a strong inhibitory activity on the secretion of Apo B.

Accordingly, the object compounds (I) and 30 pharmaceutically acceptable salts thereof are useful as an Apo B secretion inhibitor.

The object compounds (I) and pharmaceutically acceptable salts thereof are useful as a medicament for the prophylaxis or treatment of diseases or conditions resulting from elevated 35 circulating levels of Apo B such as hyperlipidemia, hyperlipoproteinemia, hypoalphalipoproteinemia, hypercholesterolemia, hypertriglyceridemia, atherosclerosis, pancreatitis, non-insulin dependent diabetes mellitus (NIDDM),

obesity, coronary heart diseases, myocardial infarction, stroke, restenosis and Syndrome X.

The present invention therefore provides a method for inhibiting or decreasing Apo B secretion in a mammal, in particular in human, which comprises administering an Apo B secretion inhibiting or decreasing amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof to the mammal.

The present invention also provides a method for preventing or treating diseases or conditions resulting from elevated circulating levels of Apo B in a mammal, in particular in human, which comprises administering an effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof to the mammal.

The object compounds (I) and pharmaceutical acceptable salts thereof are also useful in reducing intestinal fat absorption and reducing food intake for the prophylaxis or treatment of obesity. Furthermore, the object compounds (I) and pharmaceutical acceptable salts thereof possess an inhibitory activity on the lipid transfer of microsomal triglyceride transfer protein (MTP).

In order to illustrate the usefulness of the object compound (I), the pharmacological test result of the compound (I) is shown in the following.

Test Compounds:

4'-chloro-4-methyl-N-(4-([2-(2-pyridinyl)ethyl]amino)phenyl)-1,1'-biphenyl-2-carboxamide (Example 31)
30 5-methyl-N-(4-([2-(2-pyridinyl)ethyl]amino)phenyl)-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (Example 44)
4'-fluoro-5-methyl-N-(4-([2-(2-pyridinyl)ethyl]amino)phenyl)-1,1'-biphenyl-2-carboxamide (Example 46)
N-(4-([2-(6-amino-2-pyridinyl)ethyl]amino)phenyl)-4,4'-dimethyl-1,1'-biphenyl-2-carboxamide (Example 53)
35 N-(4-([2-(6-amino-2-pyridinyl)ethyl]amino)phenyl)-4'-chloro-4-methyl-1,1'-biphenyl-2-carboxamide (Example 55)
N-(4-([2-(6-amino-2-pyridinyl)ethyl]amino)phenyl)-4'-fluoro-4-

- methyl-1,1'-biphenyl-2-carboxamide (Example 56)
N-[6-[4-(3-cyanobenzyl)-1-piperazinyl]-3-pyridinyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (Example 212)
- 5 N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-2-[4-(trifluoromethyl)phenyl]-1-cycloheptene-1-carboxamide (Example 232)

Test 1: Measurement of inhibition of Apo B secretion

10 HepG2 cells were seeded in Eagles medium containing 10% fetal calf serum (FCS) at a density of 30000 cells/well in 96-well plates and allowed to grow for 3 days before treatment. At this time, the medium was replaced with fresh medium containing 0.1% dimethyl sulfoxide (DMSO) and the indicated 15 concentrations of a test compound. After 15-hour incubation, the amount of Apo B and Apo AI accumulated in the media was determined by ELISA.

The assay was carried out at ambient temperature. A flat bottomed micro ELISA plate (manufactured by Nunc) was 20 coated with an anti Apo B monoclonal antibody solution (5 mg/ml in 0.05% carbonate buffer, pH 9.6). by adding the antibody solution at a volume of 100 μ l per well. After 1-hour incubation on a plate mixer, the unbound materials were removed by washing the well 3 times with a washing buffer 25 (phosphate buffered saline, pH 7.2 containing 0.1% bovine serum albumin and 0.05% Tween-20). Then 20 μ l of a solution of the test compound (dissolved in the culture medium) and 100 μ l of a solution of peroxidase coupled anti Apo B antibody were added. After 1-hour incubation on a plate mixer, washing 30 was performed 3 times to remove the unbound materials. A freshly prepared substrate solution (2.5 mg/ml ortho-phenylene diamine and 0.018% H₂O₂ in 0.11 M Na₂HPO₄ - 0.044 M sodium citrate buffer, pH 5.4) at a volume of 200 μ l was then added to each well. After 20-minute incubation, the enzyme reaction 35 was terminated by adding 50 μ l of 0.5 M sulfuric acid. Absorbance of each well was determined at 490 nm using a microplate reader. Apo B concentration was calculated from a standard curve generated from purified Apo B standard that was

run in parallel in the same plate. Inhibition of Apo B secretion by the test compound is calculated taking 0.1% DMSO treated cells as controls.

Measurement of Apo AI was performed similar to that of 5 Apo B, except for diluting the sample 11-fold with a dilution buffer (phosphate buffered saline, pH 7.2 containing 0.5% bovine serum albumin and 0.05% Tween-20).

Apo B secretion inhibitors are identified as compounds that decrease Apo B secretion without affecting the secretion 10 of Apo AI.

Test results:

Table 1

Test compound (Example No.)	Inhibition of Apo B secretion at 10^{-8} M (%)
31	96
44	83
46	94
53	84
55	86
56	93
212	84
232	93

Test 2: Lipids lowering effect on ddY-mice

15 Male ddY-mice were housed in temperature- and humidity-controlled rooms and fed with laboratory chow. The animals were randomized according to their body weight and deprived of food just before the experiment. A blood sample (baseline blood sample) was collected from the retro orbital venous 20 plexus before administration of the test drug, and then the animals were orally dosed with the test drug in a vehicle (aqueous solution of 0.5% methylcellulose). Blood samples were drawn at 2 hours after drug administration for the measurement of cholesterol and triglyceride.

25 Plasma total-cholesterol and plasma triglyceride were determined by conventional enzyme methods using commercially available kits. The cholesterol CII-Test Wako (Wako Pure Chemical Industries, Ltd.) was used for the measurement of cholesterol, and the triglyceride E-test Wako (Wako Pure

Chemical Industries, Ltd.) was used for the measurement of triglyceride.

Lipids lowering effects were shown in percent relative to the baseline level (level at 0 hr).

5 Test results:

Table 2

Test compound (Example No.)	Dose (mg/kg)	Cholesterol	Triglyceride
		(% of 0 hr)	(% of 0 hr)
31	3.2	86	36
44	3.2	80	25
46	3.2	79	19
53	3.2	71	17
55	3.2	75	16
56	3.2	81	31

Test 3: Lipid lowering effect on ddY-mice

Male ddY-mice were housed in temperature- and humidity-controlled rooms and fed with laboratory chow. The animals were randomized according to their body weight and food was deprived about 16 hours before experiment. Baseline blood sample was collected from the retro orbital venous plexus then the animals were orally dosed with drugs in olive oil (10 ml/kg). For control group, 10 ml/kg of olive oil was loaded orally. Blood samples were drawn at 2 hours after drug administration for the measurement of triglyceride (TG) elevation. Plasma TG was determined by conventional enzyme method (The triglyceride E-test Wako).

Lipid lowering effects were shown in percent of the TG increase in drug treated group, relative to the TG increase in control group.

Lipid lowering effect (%) = (TG increase in drug treated group/TG increase in control group) x 100

Table 3

Test compound (Example No.)	Dose (mg/kg)	Lipid lowering effect (%)
212	0.32	55
232	0.32	29

For therapeutic administration, the object compound (I) of the present invention and pharmaceutically acceptable salts thereof are used in the form of a conventional pharmaceutical preparation in admixture with a conventional pharmaceutically acceptable carrier such as an organic or inorganic solid or liquid excipient which is suitable for oral, parenteral or external administration. The pharmaceutical preparation may be compounded in a solid form such as granule, capsule, tablet, dragee, suppository or ointment, or in a liquid form such as solution, suspension or emulsion for injection, intravenous drip, ingestion, eye drop, endermism, inhalation, etc. If needed, there may be included in the above preparation auxiliary substance such as stabilizing agent, wetting or emulsifying agent, buffer or any other commonly used additives.

The effective ingredient may usually be administered in a unit dose of 0.01 mg/kg to 100 mg/kg, preferably 0.1 mg/kg to 10 mg/kg, 1 to 4 times a day. However, the above dosage may be increased or decreased according to age, body weight and conditions of the patient or administering method.

Suitable mammal to which the object compounds (I) and pharmaceutical acceptable salts thereof or above preparations are applied, includes a human being, a companion animal such as a dog and a cat, livestock such as a cow and a pig, and the like.

The object compounds (I) and pharmaceutical acceptable salts thereof may, if desired, be administered with one or more therapeutic agents and formulated for administration by any convenient route in a conventional manner. Appropriate doses will be readily appreciated by those skilled in the art. For example, the object compounds (I) and pharmaceutical acceptable salts thereof may be administered in combination with an HMG CoA reductase inhibitor. The object compounds (I) and pharmaceutical acceptable salts thereof may be also administered in combination with a known anti-obesity agent, for example, β_3 -adrenergic receptor agonist, a cholecystokinin-A agonist, a monoamine reuptake inhibitor, a sympathomimetic agent, a serotoninergic agent, a dopamine

agonist, a melanocyte-stimulating hormone receptor agonist or mimetic, a melanocyte-stimulating hormone receptor analog, a cannabinoid receptor antagonist, a melanin concentrating hormone antagonist, leptin, a leptin analog, a leptin receptor agonist, a galanin antagonist, a lipase inhibitor, a bombesin agonist, a Neuropeptide-Y antagonist, a thyromimetic agent, dehydroepiandrosterone or an analog thereof, a glucocorticoid receptor agonist or antagonist, an orexin receptor antagonist, a urocortin binding protein antagonist, a glucagon-like peptide-1 receptor agonist, a ciliary neurotrophic factor, a human agouti-related protein antagonist, and the like, for the prophylaxis or treatment of obesity.

The following Preparations and Examples are given for the purpose of illustrating the present invention in detail.

15 Preparation 1

To a solution of 4-fluoronitrobenzene (12.71 g) and 2-(2-pyridinyl)ethylamine (12.22 g) in N,N-dimethylformamide (70 ml) was added triethylamine (10.12 g) at ambient temperature and the mixture was stirred at 60°C for 16 hours. The mixture was cooled to 5°C and poured into a mixture of ethyl acetate and water. The separated organic layer was washed with water and brine, dried over magnesium sulfate and evaporated in vacuo. The residue was triturated with diisopropyl ether, collected by filtration, washed with diisopropyl ether and dried in vacuo to give 2-[2-(4-nitroanilino)ethyl]pyridine (21.21 g) as a yellow solid.

¹H-NMR (DMSO-d₆): δ 3.02 (2H, t, J=7.0Hz), 3.55 (2H, td, J=7.0Hz, 5.6Hz), 6.65 (2H, d, J=9.3Hz), 7.24 (1H, dd, J=7.8Hz, 4.9Hz), 7.31 (1H, d, J=7.8Hz), 7.39 (1H, t, J=5.6Hz), 7.65-7.8 (1H, m), 7.98 (1H, d, J=9.3Hz), 8.52 (1H, d, J=4.0Hz)
APCI-MS (m/z): 244 (M⁺+1)

Preparation 2

To a solution of 2-[2-(4-nitroanilino)ethyl]pyridine (17.87 g) in tetrahydrofuran (150 ml) were added di-tert-butyl dicarbonate (19.25 g) and triethylamine (8.92 g) at ambient temperature and the mixture was refluxed for 16 hours. The mixture was evaporated in vacuo and the residue was purified by column chromatography on silica gel eluting with

hexane:ethyl acetate (2:1) to give tert-butyl 4-nitrophenyl[2-(2-pyridinyl)ethyl]carbamate (18.21 g) as a yellow solid.

$^1\text{H-NMR}$ (DMSO-d₆): δ 1.37 (9H, s), 2.95 (2H, t, J=8.0Hz), 4.09 (2H, t, J=8.0Hz), 7.2-7.3 (2H, m), 7.52 (2H, d, J=9.1Hz),

5 7.65-7.75 (1H, m), 8.17 (2H, d, J=9.1Hz), 8.23 (1H, d, J=4.8Hz)

APCI-MS (m/z): 344 (M⁺+1)

Preparation 3

To a suspension of tert-butyl 4-nitrophenyl[2-(2-

10 pyridinyl)ethyl]carbamate (20.03 g) in ethanol (400 ml) were added iron(III) chloride (anhydrous) (189 mg) and active-charcoal (20 g) and the mixture was heated to 80°C. To the mixture was added dropwise hydrazine hydrate (11.67 g) and the mixture was stirred at 80°C for 4 hours. The active-charcoal
15 was filtered off by celite and washed with ethanol. The filtrate was evaporated in vacuo and the residue was purified by column chromatography on silica gel eluting with ethyl acetate to give tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate (15.03 g) as a light brown soild.

20 $^1\text{H-NMR}$ (DMSO-d₆): δ 1.29 (9H, s), 2.86 (2H, t, J=7.0Hz), 3.78 (2H, t, J=7.0Hz), 5.04 (2H, br s), 6.52 (2H, d, J=8.5Hz), 6.80 (2H, d, J=8.5Hz), 7.15-7.3 (2H, m), 7.65-7.75 (1H, m), 8.45 (1H, d, J=4.2Hz)

APCI-MS (m/z): 314 (M+H)⁺

25 Example 1

A mixture of 2-isopropyl-4-[4-(trifluoromethyl)phenyl]-5-pyrimidinecarboxylic acid (495 mg), tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate (470 mg) and 1-hydroxybenzotriazole hydrate (223 mg) and 1-[3-

30 (dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (315 mg) in N,N-dimethylformamide (20 ml) was stirred at ambient temperature for 15 hours. The reaction mixture was poured into a mixture of ethyl acetate and water. The organic layer was washed with brine and dried over magnesium sulfate and the
35 solvent was evaporated in vacuo. A mixture of the residue and trifluoroacetic acid (8 ml) was stirred at ambient temperature for 2 hours. The reaction mixture was poured into a mixture of ethyl acetate and water and adjusted to pH 8.0 with 20%

- aqueous potassium carbonate solution. The organic layer was washed with brine and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was chromatographed on silica gel eluting with ethyl acetate:n-hexane (7:3). The fractions containing the desired product were collected and evaporated in vacuo and the residue was recrystallized from ethyl acetate and diisopropyl ether to give 2-isopropyl-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-4-[4-(trifluoromethyl)phenyl]-5-pyrimidinecarboxamide (0.366 g).
- 10 $^1\text{H-NMR}$ (DMSO-d₆): δ 1.36 (6H, d, J=6.88Hz), 2.97 (2H, d, J=7.42Hz), 3.21-3.41 (3H, m), 5.64 (1H, t, J=5.76Hz), 6.56 (2H, d, J=8.86Hz), 7.19-7.32 (4H, m), 7.64-7.74 (1H, m), 7.88 (2H, d, J=8.20Hz), 7.98 (2H, d, J=8.20Hz), 8.51 (1H, d, J=4.80Hz), 8.97 (1H, s), 10.28 (1H, s)
- 15 Example 2
- A mixture of 2-methyl-4-[4-(trifluoromethyl)phenyl]-5-pyrimidinecarboxylic acid (423 mg), tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate (470 mg) and 1-hydroxybenzotriazole hydrate (223 mg) and 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (315 mg) in N,N-dimethylformamide (20 ml) was stirred at ambient temperature for 15 hours. The reaction mixture was poured into a mixture of ethyl acetate and water. The organic layer was washed with 5% aqueous potassium carbonate solution and brine, and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was chromatographed on silica gel eluting with ethyl acetate:n-hexane (8:2→10:0). The fractions containing the desired product were collected and evaporated in vacuo to give tert-butyl 4-[{(2-methyl-4-[4-(trifluoromethyl)phenyl]-5-pyrimidinyl)carbonyl}amino]phenyl-[2-(2-pyridinyl)ethyl]carbamate (0.65 g).
- 20 $^1\text{H-NMR}$ (DMSO-d₆): δ 1.32 (9H, s), 2.73 (3H, s), 2.89 (2H, t, J=6.78Hz), 3.91 (2H, t, J=6.78Hz), 7.15-7.25 (4H, m), 7.54 (2H, d, J=8.80Hz), 7.65-7.69 (1H, m), 7.86-7.98 (4H, m), 8.44-8.47 (1H, m), 9.01 (1H, s), 10.71 (1H, s)
- 25 Example 3
- A mixture of tert-butyl 4-[{(2-methyl-4-[4-(trifluoromethyl)phenyl]-5-pyrimidinyl)carbonyl}amino]phenyl-
- 30
- 35

[2-(2-pyridinyl)ethyl]carbamate (0.65 g) and trifluoroacetic acid (6 ml) was stirred at ambient temperature for 2 hours. The reaction mixture was poured into a mixture of ethyl acetate and water and adjusted to pH 8.0 with 20% aqueous 5 potassium carbonate solution. The organic layer was washed with brine and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was recrystallized from ethyl acetate and diisopropyl ether to give 2-methyl-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-4-[4-(trifluoromethyl)-10 phenyl]-5-pyrimidinecarboxamide (0.52 g).

¹H-NMR (DMSO-d₆): δ 2.76 (3H, s), 2.97 (2H, t, J=7.44Hz), 3.31-3.42 (2H, m), 5.63 (1H, t, J=5.70Hz), 6.55 (2H, d, J=8.88Hz), 7.19-7.31 (4H, m), 7.66-7.71 (1H, m), 7.85-7.97 (4H, m), 8.49-8.53 (1H, m), 8.93 (1H, s), 10.24 (1H, s)

15 APCI-MS (m/z): 478 (M+H)⁺

Example 4

tert-Butyl 4-{[4-(4-chlorophenyl)-2-methyl-5-pyrimidinyl]carbonyl}amino)phenyl[2-(2-pyridinyl)ethyl]carbamate was obtained from 4-(4-chlorophenyl)-2-methyl-5-pyrimidinecarboxylic acid and tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate in the same manner as in Example 2.

¹H-NMR (DMSO-d₆): δ 1.33 (9H, s), 2.73 (3H, s), 2.86-2.94 (2H, m), 3.87-3.95 (2H, m), 7.15-7.26 (4H, m), 7.52-7.81 (5H, m), 7.79 (2H, d, J=8.61Hz), 8.46 (1H, d, J=3.98Hz), 8.94 (1H, s), 10.67 (1H, s)

Example 5

4-(4-Chlorophenyl)-2-methyl-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-5-pyrimidinecarboxamide was obtained from tert-butyl 4-{[4-(4-chlorophenyl)-2-methyl-5-pyrimidinyl]carbonyl}amino)phenyl[2-(2-pyridinyl)ethyl]-carbamate in the same manner as in Example 3.

¹H-NMR (DMSO-d₆): δ 2.74 (3H, s), 2.98 (2H, t, J=7.26Hz), 3.32-3.41 (2H, m), 5.60-5.66 (1H, m), 6.56 (2H, d, J=8.74Hz), 7.19-7.32 (2H, m), 7.28 (2H, d, J=8.74Hz), 7.56 (2H, d, J=8.44Hz), 7.70-7.74 (1H, m), 7.79 (2H, d, J=8.44Hz), 8.51 (1H, d, J=4.80Hz), 8.86 (1H, s), 10.21 (1H, s)

Preparation 4

- A mixture of methyl 3-(4-chlorophenyl)-3-oxopropanoate (3.2 g), 25% hydrobromide-acetic acid (2 ml) and pyridinium tribromide (5.9 g) in acetic acid (10 ml) was stirred at ambient temperature for 3 hours. The reaction mixture was
- 5 poured into a mixture of ethyl acetate and water. The organic layer was washed with 5% aqueous potassium carbonate solution and brine, dried over magnesium sulfate, and evaporated in vacuo. A mixture of the residue and thioacetamide (1.7 g) in ethanol (10 ml) was refluxed under stirring for 1.5 hours.
- 10 The reaction mixture was poured into a mixture of ethyl acetate and water. The organic layer was washed with 5% aqueous potassium carbonate solution and brine, and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was chromatographed on silica gel eluting with
- 15 ethyl acetate:n-hexane (8:2). The fractions containing the desired product were collected and evaporated in vacuo to give methyl 4-(4-chlorophenyl)-2-methyl-1,3-thiazole-5-carboxylate (1.35 g).
- 1H-NMR(DMSO-d₆) : δ 2.73 (3H, s), 4.29 (3H, s), 7.21 (2H, d, J=7.56Hz), 7.95 (2H, d, J=7.56Hz)

Preparation 5

- A solution of methyl 4-(4-chlorophenyl)-2-methyl-1,3-thiazole-5-carboxylate (1.2 g) in 4N sodium hydroxide solution (1.6 ml), methanol (20 ml) and tetrahydrofuran (10 ml) was refluxed under stirring for 1.5 hours. The reaction mixture was evaporated in vacuo and the residue was dissolved in a mixture of ethyl acetate and water. The aqueous layer was acidified to pH 1.0 with 10% hydrochloric acid and extracted with ethyl acetate. The extract was washed with brine and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was washed with n-hexane to give 4-(4-chlorophenyl)-2-methyl-1,3-thiazole-5-carboxylic acid.
- 30

¹H-NMR(DMSO-d₆) : δ 2.70 (3H, s), 7.49 (2H, d, J=8.58Hz), 7.77 (2H, d, J=8.58Hz)

Example 6

A mixture of 4-(4-chlorophenyl)-2-methyl-1,3-thiazole-5-carboxylic acid (251 mg) and 1-hydroxybenzotriazole hydrate (149 mg) and 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide

hydrochloride (210 mg) in N,N-dimethylformamide (15 ml) was stirred at ambient temperature for 1 hour. 4-(2-Pyridinylmethyl)phenylamine (193 mg) was added to the mixture and the resultant mixture was stirred at ambient temperature 5 for 8 hours. The resultant mixture was poured into a mixture of ethyl acetate and water. The organic layer was washed with brine and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was chromatographed on silica gel eluting with ethyl acetate:n-hexane (8:2). The 10 fractions containing the desired product were collected and evaporated in vacuo and the residue was recrystallized from ethyl acetate and diisopropyl ether to give 4-(4-chlorophenyl)-2-methyl-N-[4-(2-pyridinylmethyl)phenyl]-1,3-thiazole-5-carboxamide (0.241 g).

15 $^1\text{H-NMR}$ (DMSO-d₆): δ 2.74 (3H, s), 4.04 (2H, s), 7.17-7.27 (4H, m), 7.45-7.57 (4H, m), 7.67-7.99 (3H, m), 8.41 (1H, d, J=3.96Hz), 10.45 (1H, s)

Example 7

20 4-(4-Chlorophenyl)-2-methyl-N-[4-(2-pyridinylmethyl)-phenyl]-5-pyrimidinecarboxamide was obtained from 4-(4-chlorophenyl)-2-methyl-5-pyrimidinecarboxylic acid and 4-(2-pyridinylmethyl)phenylamine in the same manner as in Example 6.

15 $^1\text{H-NMR}$ (DMSO-d₆): δ 2.74 (3H, s), 4.04 (2H, s), 7.17-7.27 (4H, m), 7.46-7.57 (4H, m), 7.65-7.79 (3H, m), 8.41 (1H, d, J=4.82Hz), 8.89 (1H, s), 10.58 (1H, s)

Example 8

25 4-(4-Chlorophenyl)-N-[4-(2-pyridinylmethyl)phenyl]-5-pyrimidinecarboxamide was obtained from 4-(4-chlorophenyl)-5-pyrimidinecarboxylic acid and 4-(2-pyridinylmethyl)phenylamine. 30 in the same manner as in Example 6.

15 $^1\text{H-NMR}$ (DMSO-d₆): δ 4.04 (2H, s), 7.17-7.24 (4H, m), 7.47-7.82 (7H, m), 8.46 (1H, d, J=3.97Hz), 9.02 (1H, s), 9.37 (1H, s), 10.65 (1H, s).

Example 9

35 A mixture of 4'-chloro-5-methyl-1,1'-biphenyl-2-carboxylic acid (370 mg), 4-[2-(2-pyridinyl)ethoxy]aniline (321 mg) and 1-hydroxybenzotriazole hydrate (213 mg) and 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (301

mg) in N,N-dimethylformamide (10 ml) was stirred at ambient temperature for 15 hours. The reaction mixture was poured into a mixture of ethyl acetate and water. The organic layer was washed with 5% aqueous potassium carbonate solution and brine and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was chromatographed on silica gel eluting with ethyl acetate:n-hexane (7:3). The fractions containing the desired product were collected and evaporated in vacuo and the residue was recrystallized from ethyl acetate and diisopropyl ether to give 4'-chloro-5-methyl-N-{4-[2-(2-pyridinyl)ethoxy]phenyl}-1,1'-biphenyl-2-carboxamide (354 mg).

¹H-NMR(DMSO-d₆): δ 2.40 (3H, s), 3.16 (2H, t, J=6.64Hz), 4.30, (2H, t, J=6.64Hz), 6.84 (2H, d, J=9.00Hz), 7.22-7.48 (11H, m), 7.68-7.72 (1H, m), 8.51 (1H, d, J=4.32Hz), 10.01 (1H, s)
APCI-MS(m/z): 443(M+H)⁺

Example 10

4',5-Dimethyl-N-{4-[2-(2-pyridinyl)ethoxy]phenyl}-1,1'-biphenyl-2-carboxamide was obtained from 4',5-dimethyl-1,1'-biphenyl-2-carboxylic acid and 4-[2-(2-pyridinyl)ethoxy]-aniline in the same manner as in Example 9.

¹H-NMR(DMSO-d₆): δ 2.28 (3H, s), 2.39 (3H, s), 3.15 (2H, t, J=6.62Hz), 4.29 (2H, t, J=6.62Hz), 6.83 (2H, d, J=8.96Hz), 7.14-7.43 (11H, m), 7.68-7.76 (1H, m), 8.51 (1H, d, J=4.30Hz), 9.95 (1H, s)
APCI-MS(m/z): 423(M+H)⁺

Example 11

4'-Chloro-4-methyl-N-{4-[2-(2-pyridinyl)ethoxy]phenyl}-1,1'-biphenyl-2-carboxamide was obtained from 4'-chloro-4-methyl-1,1'-biphenyl-2-carboxylic acid and 4-[2-(2-pyridinyl)ethoxy]aniline in the same manner as in Example 9.

¹H-NMR(DMSO-d₆): δ 2.40 (3H, s), 3.16 (2H, t, J=6.62Hz), 4.31 (2H, t, J=6.62Hz), 6.85 (2H, d, J=8.94Hz), 7.20-7.45 (11H, m), 7.68-7.76 (1H, m), 8.51 (1H, d, J=4.44Hz), 10.11 (1H, s)
APCI-MS(m/z): 443(M+H)⁺

Example 12

4,4'-Dimethyl-N-{4-[2-(2-pyridinyl)ethoxy]phenyl}-1,1'-biphenyl-2-carboxamide was obtained from 4,4'-dimethyl-1,1'-

biphenyl-2-carboxylic acid and 4-[2-(2-pyridinyl)ethoxy]-aniline in the same manner as in Example 9.

¹H-NMR (DMSO-d₆): δ 2.28 (3H, s), 2.39 (3H, s), 3.16 (2H, t, J=6.66Hz), 4.30 (2H, t, J=6.66Hz), 6.84 (2H, d, J=8.98Hz),

5 7.13-7.44 (11H, m), 7.68-7.76 (1H, m), 8.51 (1H, d, J=4.40Hz), 10.04 (1H, s)

APCI-MS (m/z): 423 (M+H)⁺

Example 13

4-Methoxy-N-{4-[2-(2-pyridinyl)ethoxy]phenyl}-4'-

10 (trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained from 4-methoxy-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid and 4-[2-(2-pyridinyl)ethoxy]aniline in the same manner as in Example 9.

¹H-NMR (DMSO-d₆): δ 3.16 (2H, t, J=6.62Hz), 3.87 (3H, s), 4.31

15 (2H, t, J=6.62Hz), 6.85 (2H, d, J=8.94Hz), 7.15-7.45 (11H, m), 7.68-7.46 (3H, m), 7.59 (2H, d, J=8.18Hz), 8.51 (1H, d, J=4.26Hz), 10.19 (1H, s)

APCI-MS (m/z): 493 (M+H)⁺

Preparation 6

20 A mixture of 2-chloro-5-nitropyridine (3.13 g), 2-(2-aminoethyl)pyridine (2.93 g) and triethylamine (3.03 g) in N,N-dimethylformamide (20 ml) was stirred at ambient temperature for 20 hours. The reaction mixture was poured into water and the precipitate was collected by filtration.

25 The precipitate was dissolved in a mixture of ethyl acetate and tetrahydrofuran, washed with brine, and dried over magnesium sulfate. The solvent was concentrated in vacuo and the precipitate was collected by filtration to give 5-nitro-N-[2-(2-pyridinyl)ethyl]-2-pyridinamine (4.42 g).

30 ¹H-NMR (DMSO-d₆): δ 3.04 (2H, t, J=7.39Hz), 3.98-4.09 (2H, m), 6.56 (1H, d, J=9.38Hz), 7.20-7.27 (2H, m), 7.67-7.75 (1H, m), 8.09 (1H, d, J=7.55Hz), 8.20-8.25 (1H, m), 8.51-8.53 (1H, m), 8.93 (1H, d, J=2.72Hz)

Preparation 7

35 A mixture of 5-nitro-N-[2-(2-pyridinyl)ethyl]-2-pyridinamine (710 mg) in methanol (40 ml) and tetrahydrofuran (10 ml) was hydrogenated over 10% palladium on carbon (230 mg) under an atmospheric pressure of hydrogen at ambient

temperature under stirring for 3 hours. After removal of the catalyst, the solvent was evaporated in vacuo to give N²-[2-(2-pyridinyl)ethyl]-2,5-pyridinediamine (621 mg).

Example 14

5 A mixture of 4-methoxy-4'--(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid (445 mg), N²-[2-(2-pyridinyl)ethyl]-2,5-pyridinediamine (354 mg) and 1-hydroxybenzotriazole hydrate (213 mg) and 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (301 mg) in N,N-dimethylformamide (10 ml) was stirred at ambient temperature for 15 hours. The reaction mixture was poured into a mixture of ethyl acetate and water. The organic layer was washed with 5% aqueous potassium carbonate solution and brine and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was chromatographed on silica gel eluting with ethyl acetate:methanol (94:6). The fractions containing the desired product were collected and evaporated in vacuo and the residue was recrystallized from ethyl acetate and diisopropyl ether to give 4-methoxy-N-(6-{[2-(2-pyridinyl)ethyl]amino}-3-pyridinyl)-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (507 mg).

10 ¹H-NMR (DMSO-d₆): δ 2.97 (2H, t, J=7.38Hz), 3.51-3.61 (2H, m), 3.87 (3H, s), 6.41 (1H, d, J=8.90Hz), 6.46 (1H, t, J=5.64Hz), 7.15-7.28 (4H, m), 7.42-7.76 (7H, m), 8.07 (1H, d, J=2.43Hz), 8.50 (1H, d, J=4.42Hz), 10.00 (1H, s)

15 APCI-MS (m/z): 493 (M+H)⁺

Example 15

4'-Chloro-5-methyl-N-(6-{[2-(2-pyridinyl)ethyl]amino}-3-pyridinyl)-1,1'-biphenyl-2-carboxamide was obtained from 4'-chloro-5-methyl-1,1'-biphenyl-2-carboxylic acid and N²-[2-(2-pyridinyl)ethyl]-2,5-pyridinediamine in the same manner as in Example 14.

20 ¹H-NMR (DMSO-d₆): δ 2.40 (3H, s), 2.97 (2H, t, J=7.40Hz), 3.51-3.61 (2H, m), 6.40-6.47 (2H, m), 7.17-7.31 (3H, m), 7.42-7.51 (7H, m), 7.64-7.69 (1H, m), 8.04 (1H, d, J=2.45Hz), 8.50 (1H, d, J=4.20Hz), 9.84 (1H, s)

25 APCI-MS (m/z): 443 (M+H)⁺

Example 16

5-Methyl-N-(6-{[2-(2-pyridinyl)ethyl]amino}-3-pyridinyl)-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained from 5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid and N²-[2-(2-pyridinyl)ethyl]-2,5-

5 pyridinediamine in the same manner as in Example 14.

1H-NMR(DMSO-d₆): δ 2.42 (3H, s), 2.97 (2H, t, J=7.40Hz), 3.53-3.60 (2H, m), 6.39-6.47 (2H, m), 7.17-7.31 (4H, m), 7.44-7.78 (7H, m), 8.05 (1H, d, J=2.43Hz), 8.50 (1H, d, J=4.12Hz), 9.92 (1H, s)

10 APCI-MS(m/z): 477 (M+H)⁺

Preparation 8

2-Chloro-5-nitropyridine (4.76 g) was added portionwise to a solution of 2-hydroxyethylpyridine (4.43 g) and potassium tert-butoxide (4.04 g) in tetrahydrofuran (60 ml). The mixture was stirred at a temperature between 5 to 20°C under ice-cooling and the resultant mixture was stirred at ambient temperature for 3 hours. The reaction mixture was poured into a mixture of ethyl acetate and water. The organic layer was washed with 5% aqueous potassium carbonate solution and brine and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was chromatographed on silica gel eluting with ethyl acetate:n-hexane (5:5). The fractions containing the desired product were collected and concentrated in vacuo and the precipitate was collected by filtration to give 5-nitro-2-[2-(2-pyridinyl)ethoxy]pyridine (2.42 g).

1H-NMR(DMSO-d₆): δ 3.24 (2H, t, J=6.68Hz), 4.80 (2H, t, J=6.68Hz), 6.98 (1H, d, J=9.16Hz), 7.24-7.28 (1H, m), 7.35 (1H, d, J=7.78Hz), 7.69-7.77 (1H, m), 8.42-8.52 (2H, m), 9.09 (1H, d, J=2.86Hz).

30 Preparation 9

A mixture of 5-nitro-2-[2-(2-pyridinyl)ethoxy]pyridine (736 mg), iron powder (900 mg) and ammonium chloride (101 mg) in ethanol (40 ml) and water (8 ml) was refluxed under stirring for 2.5 hours. After removal of the insoluble materials by filtration, the solvent was evaporated in vacuo and the residue was dissolved in ethyl acetate and water. The organic layer was washed with brine and dried over magnesium sulfate. The solvent was evaporated in vacuo to give 6-[2-(2-

pyridinyl)ethoxy]-3-pyridinamine (664 mg).

Example 17

A mixture of 5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid (420 mg), 6-[2-(2-pyridinyl)ethoxy]-3-pyridinamine (339 mg) and 1-hydroxybenzotriazole hydrate (213 mg) and 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (301 mg) in N,N-dimethylformamide (10 ml) was stirred at ambient temperature for 14 hours. The reaction mixture was poured into a mixture of ethyl acetate and water. The organic layer was washed with 5% aqueous potassium carbonate solution and brine and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was chromatographed on silica gel eluting with ethyl acetate:n-hexane (8:2). The fractions containing the desired product were collected and evaporated in vacuo and the residue was recrystallized from ethyl acetate and diisopropyl ether to give 5-methyl-N-{6-[2-(2-pyridinyl)ethoxy]-3-pyridinyl}-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (567 mg).

¹H-NMR (DMSO-d₆): δ 2.43 (3H, s), 3.17 (2H, t, J=6.72Hz), 4.58 (2H, t, J=6.72Hz), 6.72 (1H, d, J=8.86Hz), 7.23-7.38 (4H, m), 7.55-7.74 (7H, m), 8.28 (1H, d, J=2.46Hz), 8.51 (1H, d, J=4.26Hz), 10.27 (1H, s)
APCI-MS (m/z): 478 (M+H)⁺

Example 18

4'-Chloro-5-methyl-N-{6-[2-(2-pyridinyl)ethoxy]-3-pyridinyl}-1,1'-biphenyl-2-carboxamide was obtained from 4'-chloro-5-methyl-1,1'-biphenyl-2-carboxylic acid and 6-[2-(2-pyridinyl)ethoxy]-3-pyridinamine in the same manner as in Example 17.

Example 17.

¹H-NMR (DMSO-d₆): δ 2.41 (3H, s), 3.17 (2H, t, J=6.84Hz), 4.58 (2H, t, J=6.84Hz), 6.72 (1H, d, J=8.84Hz), 7.20-7.67 (9H, m), 7.70-7.82 (2H, m), 8.28 (1H, d, J=2.54Hz), 8.51 (1H, d, J=4.24Hz), 10.19 (1H, s)
APCI-MS (m/z): 444 (M+H)⁺

Example 19

4-Methoxy-N-{6-[2-(2-pyridinyl)ethoxy]-3-pyridinyl}-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained

from 4-methoxy-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid and 6-[2-(2-pyridinyl)ethoxy]-3-pyridinamine in the same manner as in Example 17.

5 $^1\text{H-NMR}$ (DMSO-d₆): δ 3.17 (2H, t, J=6.78Hz), 4.58 (2H, t, J=6.78Hz), 6.73 (1H, d, J=8.80Hz), 7.17-7.26 (3H, m), 7.32 (1H, d, J=7.84Hz), 7.46 (1H, d, J=8.20Hz), 7.59 (2H, d, J=8.16Hz), 7.68-7.83 (4H, m), 8.30 (1H, d, J=2.46Hz), 8.51 (1H, d, J=4.40Hz), 10.36 (1H, s)
APCI-MS (m/z): 494 (M+H)⁺

10 Preparation 10

A solution of 5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid (1.4 g), thionyl chloride (0.55 ml) and N,N-dimethylformamide (11 mg) in toluene (14 ml) was stirred at 55-60°C for 2 hours. The reaction mixture was 15 evaporated in vacuo and the residue was dissolved in toluene and evaporated in vacuo to give 5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carbonyl chloride (1.5 g).

Preparation 11

An aqueous solution of 4N NaOH (12 ml) was added to a 20 solution of 4'-aminoacetophenone (5.4 g) and 2-pyridinecarboxaldehyde (4.5 g) in ethanol (50 ml) at ambient temperature under stirring and the resultant mixture was stirred at ambient temperature for 2 hours. The reaction mixture was adjusted to pH 8.0 with 6N hydrochloric acid and 25 concentrated in vacuo to about 1/2 volume. Water (150 ml) was added to the above resultant mixture and the mixture was stirred at ambient temperature for 0.5 hour. The precipitate was collected by filtration, washed with water and dried to give (2E)-1-(4-aminophenyl)-3-(2-pyridinyl)-2-propen-1-one 30 (7.0 g).

1^H-NMR (DMSO-d₆): δ 6.22 (2H, s), 6.47 (2H, d, J=8.64Hz), 7.32-7.48 (1H, m), 7.64 (1H, d, J=15.35Hz), 7.79-8.00 (4H, m), 8.15 (1H, d, J=15.35Hz), 8.68 (1H, d, J=4.67Hz)

Preparation 12

35 A solution of (2E)-1-(4-aminophenyl)-3-(2-pyridinyl)-2-propen-1-one (2.52 g) in methanol (100 ml) was hydrogenated over 10% palladium on carbon (1.25 g) under an atmospheric pressure of hydrogen at ambient temperature under stirring for

2.5 hours. After removal of the catalyst, the solvent was evaporated in vacuo and the residue was triturated with a mixture of ethyl acetate and diisopropyl ether to give 1-(4-aminophenyl)-3-(2-pyridinyl)-1-propanone (3.52 g).

- 5 $^1\text{H-NMR}$ (DMSO-d₆): δ 3.05 (2H, t, J=7.01Hz), 3.29 (2H, t, J=7.01Hz), 6.03 (2H, s), 6.57 (2H, d, J=8.62Hz), 7.14 (1H, m), 7.31 (1H, d, J=7.76Hz), 7.71 (2H, d, J=8.62Hz), 7.63-7.69 (1H, m), 8.45 (1H, d, J=4.51Hz)

Example 20

- 10 A solution of 5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carbonyl chloride (598 mg) in tetrahydrofuran (5 ml) was added to a mixture of 1-(4-aminophenyl)-3-(2-pyridinyl)-1-propanone (453 mg) and triethylamine (405 mg) in tetrahydrofuran (15 ml) at ambient temperature. The mixture was stirred at ambient temperature for 3 hours. The resultant mixture was poured into a mixture of ethyl acetate and water and the organic layer was washed with 5% aqueous potassium carbonate solution and brine and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was chromatographed on silica gel eluting with ethyl acetate and n-hexane (8:2). The fractions containing the desired product were collected and evaporated and the residue was recrystallized from ethyl acetate and diisopropyl ether to give 5-methyl-N-{4-[3-(2-pyridinyl)propanoyl]phenyl}-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (718 mg).
- 20
- 25

$^1\text{H-NMR}$ (DMSO-d₆): δ 2.43 (3H, s), 3.08 (2H, t, J=6.88Hz), 3.43 (2H, t, J=6.88Hz), 7.15-7.18 (1H, m), 7.30-7.40 (3H, m), 7.56-7.76 (8H, m), 7.93 (2H, d, J=8.76Hz), 8.44 (1H, d, J=4.20Hz), 10.61 (1H, s)

- 30 APCI-MS(m/z): 530(M+H)⁺

Example 21

- 35 Sodium borohydride (70 mg) was added to a solution of 5-methyl-N-{4-[3-(2-pyridinyl)propanoyl]phenyl}-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (600 mg) in methanol (15 ml) at ambient temperature under stirring. The mixture was stirred at ambient temperature for 3 hours. The resultant solution was evaporated in vacuo and residue was dissolved in a mixture of ethyl acetate and water. The

organic layer was washed with 5% aqueous potassium carbonate solution and brine and dried over magnesium sulfate. The solvent was evaporated in vacuo to give N-[4-[1-hydroxy-3-(2-pyridinyl)propyl]phenyl]-5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (470 mg).

5 $^1\text{H-NMR}$ (DMSO-d₆): δ 1.90-1.97 (2H, m), 2.42 (3H, s), 2.64-2.78 (2H, m), 4.47 (1H, m), 5.23 (1H, d, J=4.36Hz), 7.16-7.25 (4H, m), 7.35 (2H, d, J=9.02Hz), 7.44-7.65 (6H, m), 7.74 (2H, d, J=8.32Hz), 8.45 (1H, d, J=4.34Hz), 10.23 (1H, s)

10 Example 22

A solution of N-[4-[1-hydroxy-3-(2-pyridinyl)propyl]phenyl]-5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (450 mg) in methanol (15 ml) and 4N hydrogen chloride in dioxane (1 ml) was hydrogenated over 10% palladium on carbon (200 mg) under an atmospheric pressure of hydrogen at ambient temperature under stirring for 6 hours. After removal of the catalyst, the solvent was evaporated in vacuo and the residue was dissolved in a mixture of water and ethyl acetate. The solution was adjusted to pH 8.0 with 5% aqueous potassium carbonate solution. The organic layer was washed with brine and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was chromatographed on silica gel eluting with ethyl acetate and n-hexane (5:5). The fractions containing the desired product were collected and evaporated and the residue was crystallized from ethyl acetate and diisopropyl ether to give 5-methyl-N-[4-[3-(2-pyridinyl)propyl]phenyl]-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (236 mg).

15 $^1\text{H-NMR}$ (DMSO-d₆): δ 1.86-1.97 (2H, m), 2.43 (3H, s), 2.49-2.59 (2H, m), 2.71 (2H, t, J=7.34Hz), 7.10 (1H, d, J=8.36Hz), 7.18-

16 7.76 (13H, m), 8.47 (1H, d, J=4.16Hz), 10.20 (1H, s)

APCI-MS (m/z): 475(M+H)⁺

Preparation 13

4-Nitrobenzoyl chloride (3.71 g) was added to a mixture of 2-(2-aminoethyl)pyridine (2.93 g) and triethylamine (4.04 g) in tetrahydrofuran (80 ml) under cooling. The mixture was stirred at ambient temperature for 3 hours. The resultant mixture was poured into a mixture of ethyl acetate and water

and the organic layer was washed with 5% aqueous potassium carbonate solution and brine and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was recrystallized from ethyl acetate and diisopropyl ether to give 4-nitro-N-[2-(2-pyridinyl)ethyl]benzamide (4.7 g).

5 $^1\text{H-NMR}$ (DMSO-d₆): δ 3.04 (2H, t, J=7.56Hz), 3.66-3.73 (2H, m), 7.20-7.28 (2H, m), 7.68-7.76 (1H, m), 8.04-8.99 (2H, m), 8.29-8.34 (2H, m), 8.52-8.54 (1H, m), 8.94 (1H, t, J=5.35Hz)

Preparation 14

10 A solution of 4-nitro-N-[2-(2-pyridinyl)ethyl]benzamide (1.0 g) in methanol (30 ml) and tetrahydrofuran (30 ml) was hydrogenated over 10% palladium on carbon (500 mg) under an atmospheric pressure of hydrogen at ambient temperature under stirring for 5 hours. After removal of the catalyst, the solvent was evaporated in vacuo to give 4-amino-N-[2-(2-pyridinyl)ethyl]benzamide (750 mg) as a white solid.

15 $^1\text{H-NMR}$ (DMSO-d₆): δ 2.96 (2H, t, J=7.78Hz), 3.50-3.60 (2H, m), 5.57 (2H, s), 6.50 (2H, d, J=8.60Hz), 7.18-7.24 (2H, m), 7.54 (2H, d, J=8.60Hz), 7.65-7.74 (1H, m), 8.08 (1H, t, J=5.46Hz), 20 8.50 (1H, d, J=4.48Hz)

Example 23

A solution of 5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carbonyl chloride (298 mg) in tetrahydrofuran (5 ml) was added to a mixture of 4-amino-N-[2-(2-pyridinyl)ethyl]benzamide (241 mg) and triethylamine (202 mg) in tetrahydrofuran (10 ml) at ambient temperature. The mixture was stirred at ambient temperature for 3 hours. The resultant mixture was poured into a mixture of ethyl acetate and water and the organic layer was washed with 5% aqueous potassium carbonate solution and brine and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was chromatographed on silica gel eluting with ethyl acetate and n-hexane (5:5-7:3). The fractions containing the desired product were collected and evaporated and the residue was recrystallized from ethyl acetate and diisopropyl ether to give 5-methyl-N-[4-((2-(2-pyridinyl)ethyl)amino)carbonyl]phenyl]-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (417 mg).

¹H-NMR (DMSO-d₆) : δ 2.43 (3H, s), 2.98 (2H, t, J=7.72Hz), 3.51-3.65 (2H, m), 7.22-7.39 (3H, m), 7.76-7.78 (11H, m), 8.46-8.52 (2H, m), 10.49 (1H, s)
APCI-MS (m/z) : 504 (M+H)⁺

5 Preparation 15

A mixture of (4-nitrophenyl)acetic acid (3.62 g), 2-pyridinamine (2.26 g), 1-hydroxybenzotriazole hydrate (2.97 g) and 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (4.2 g) in N,N-dimethylformamide (10 ml) was stirred at ambient temperature for 14 hours. The reaction mixture was poured into a mixture of ethyl acetate and water. The organic layer was washed with 5% aqueous potassium carbonate solution and brine, and dried over magnesium sulfate. The solvent was concentrated in vacuo and the resulting precipitate was collected by filtration to give 2-(4-nitrophenyl)-N-(2-pyridinyl)acetamide (3.23 g).

¹H-NMR (DMSO-d₆) : δ 3.92 (2H, s), 7.08-7.14 (1H, m), 7.63 (2H, d, J=8.76Hz), 7.76-7.81 (1H, m), 8.04 (1H, d, J=8.39Hz), 8.18 (2H, d, J=8.76Hz), 8.31-8.34 (1H, m), 10.82 (1H, s)

20 Preparation 16

2-(4-Aminophenyl)-N-(2-pyridinyl)acetamide was obtained from 2-(4-nitrophenyl)-N-(2-pyridinyl)acetamide in the same manner as in Preparation 14.

¹H-NMR (DMSO-d₆) : δ 3.53 (2H, s), 5.09 (2H, br s), 6.51-6.65 (2H, m), 6.93-7.09 (3H, m), 7.69-7.78 (1H, m), 8.07 (1H, d, J=8.36Hz), 8.28-8.31 (1H, m), 10.47 (1H, s)

Example 24

A mixture of 5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid (420 mg), 2-(4-aminophenyl)-N-(2-pyridinyl)acetamide (358 mg), 1-hydroxybenzotriazole hydrate (213 mg) and 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (301 mg) in N,N-dimethylformamide (10 ml) was stirred at ambient temperature for 14 hours. The reaction mixture was poured into a mixture of ethyl acetate and water. The organic layer was washed with 5% aqueous potassium carbonate solution and brine, and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was chromatographed on silica gel eluting with ethyl acetate and

n-hexane (5:5-7:3). The fractions containing the desired product were collected and evaporated and the residue was recrystallized from ethyl acetate and diisopropyl ether to give 5-methyl-N-(4-[2-oxo-2-(2-pyridinylamino)ethyl]phenyl)-

5 4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide.

¹H-NMR (DMSO-d₆): δ 2.42 (3H, s), 3.65 (2H, s), 7.08-7.09 (1H, m), 7.24 (2H, d, J=8.44Hz), 7.35 (2H, d, J=8.52Hz), 7.44-7.76 (8H, m), 8.04 (1H, d, J=8.24Hz), 8.29-8.32 (1H, m), 10.26 (1H, s), 10.63 (1H, s)

10 Preparation 17

A solution of 5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carbonyl chloride (598 mg) in tetrahydrofuran (5 ml) was added to a mixture of 4'-aminoacetophenone (270 mg) and triethylamine (405 mg) in tetrahydrofuran (15 ml) at ambient temperature. The mixture was stirred at ambient temperature for 3 hours. The resultant mixture was poured into a mixture of ethyl acetate and water and the organic layer was washed with 5% aqueous potassium carbonate solution and brine and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was recrystallized from ethyl acetate and diisopropyl ether to give N-(4-acetylphenyl)-5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (676 mg).

¹H-NMR (DMSO-d₆): δ 2.44 (3H, s), 2.52 (3H, m), 7.36-7.40 (2H, m), 7.57-7.76 (7H, m), 7.90 (2H, d, J=8.70Hz), 10.62 (1H, s)

25 Example 25

An aqueous solution of 4N NaOH (0.5 ml) was added to a solution of N-(4-acetylphenyl)-5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (650 mg) and 2-acetoaminopyridine-6-carboxaldehyde (292 mg) in ethanol (15 ml) at ambient temperature under stirring and the resultant mixture was stirred at ambient temperature for 4 hours. The reaction mixture was poured into a mixture of water and ethyl acetate and extracted with ethyl acetate. The extract was washed with brine and dried over magnesium sulfate. The solvent was evaporated in vacuo to give N-(4-{(2E)-3-[6-(acetylamino)-2-pyridinyl]-2-propenoyl}phenyl)-5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (920 mg) as a yellow powder.

¹H-NMR (DMSO-d₆) : δ 2.14 (3H, s), 2.44 (3H, m), 7.36-7.41 (2H, m), 7.57-7.81 (11H, m), 7.91-8.14 (3H, dm), 10.54 (1H, s), 10.71 (1H, s)

Example 26

5 A solution of N-(4-{(2E)-3-[6-(acetylamino)-2-pyridinyl]-2-propenoyl}phenyl)-5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (920 mg) in methanol (30 ml) was hydrogenated over 10% palladium on carbon (350 mg) under an atmospheric pressure of hydrogen at ambient temperature under
10 stirring for 5 hours. After removal of the catalyst, the solvent was evaporated in vacuo and the residue was chromatographed on silica gel eluting with ethyl acetate and n-hexane (5:5-7:3). The fractions containing the desired product were collected and evaporated to give N-(4-{3-[6-(acetylamino)-2-pyridinyl]-1-hydroxypropyl}phenyl)-5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide.

15 ¹H-NMR (DMSO-d₆) : δ 1.87-1.95 (2H, m), 2.09 (3H, s), 2.43 (3H, m), 2.58-2.70 (2H, m), 4.50-4.52 (1H, m), 5.19 (1H, d, J=4.28Hz), 6.91 (1H, d, J=7.44Hz), 7.23 (2H, d, J=8.46Hz),
20 7.33-7.67 (8H, m), 7.25 (2H, d, J=8.30Hz), 7.87 (1H, d, J=8.18Hz), 10.22 (1H, s), 10.33 (1H, s)

Example 27

25 N-(4-{3-[6-(Acetylamino)-2-pyridinyl]propyl}phenyl)-5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained from N-(4-{3-[6-(acetylamino)-2-pyridinyl]-1-hydroxypropyl}phenyl)-5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide in the same manner as in Example 22.
30 ¹H-NMR (DMSO-d₆) : δ 1.83-1.94 (2H, m), 2.06 (3H, s), 2.42 (3H, m), 2.51-2.67 (4H, m), 6.93 (1H, d, J=7.26Hz), 7.10 (2H, d, J=8.38Hz), 7.33-7.76 (10H, m), 7.88 (1H, d, J=8.20Hz), 10.19 (1H, s), 10.35 (1H, s)
(-)APCI-MS (m/z) : 530 (M-H)⁻

Example 28

35 A solution of N-(4-{3-[6-(acetylamino)-2-pyridinyl]propyl}phenyl)-5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (150 mg) and 6N hydrochloric acid (5 ml) in methanol (10 ml) was refluxed under stirring for 4 hours. The resultant mixture was evaporated in vacuo and the

residue was dissolved in a mixture of ethyl acetate and water. The mixture was adjusted to pH 9.0 with 20% aqueous potassium carbonate solution and the organic layer was washed with brine and dried over magnesium sulfate. The solvent was evaporated
5 in vacuo and the residue was chromatographed on silica gel eluting with ethyl acetate and n-hexane (6:4). The fractions containing the desired product were collected and evaporated and the residue was recrystallized from ethyl acetate and diisopropyl ether to give N-[4-[3-(6-amino-2-
10 pyridinyl)propyl]phenyl]-5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide.

¹H-NMR (DMSO-d₆): δ 1.77-1.99 (2H, m), 2.42 (3H, m), 2.46-2.57 (4H, m), 5.75 (2H, s), 6.24 (1H, d, J=8.18Hz), 6.32 (1H, d, J=7.20Hz), 7.09 (2H, d, J=8.36Hz), 7.23 (1H, d J=7.50Hz),
15 7.29-7.45 (4H, m), 7.53 (1H, d, J=7.64Hz), 7.62 (2H, d, J=8.20Hz), 10.19 (1H, s)
APCI-MS (m/z): 490 (M+H)⁺

Preparation 18

To a mixture of methyl 5-methyl-2-
20 {[(trifluoromethyl)sulfonyl]oxy}benzoate (16.0 g), lithium chloride (6.8 g) and tetrakis(triphenylphosphine)palladium(0) (3.1 g) in toluene (192 ml) was added a solution of sodium carbonate (14.8 g) in water (74 ml) under stirring and followed by addition of 4-methylbenzeneboronic acid (8.0 g).
25 The mixture was stirred at 100°C for 6 hours. The mixture was poured into a mixture of ethyl acetate and water. The separated organic layer was washed with water and evaporated in vacuo. To the residue was added a mixture of sodium hydroxide (5.3 g) in water (53 ml) and ethanol (64 ml) and the
30 mixture was stirred under reflux for 8 hours. The solvent was evaporated. To the residue was added a mixture of ethyl acetate and water and the mixture was adjusted to pH 2 with 6N hydrochloric acid. The separated organic layer was washed with water, dried over magnesium sulfate and evaporated in vacuo. The residue was triturated with hexane and collected
35 by filtration. The precipitate was recrystallized from a mixture of toluene and n-hexane to give 4,4'-dimethyl-1,1'-biphenyl-2-carboxylic acid (7.83 g).

¹H-NMR (DMSO-d₆): δ 2.33 (3H, s), 2.36 (3H, s), 7.19 (4H, s), 7.24 (1H, d, J=7.8Hz), 7.35 (1H, dd, J=1.3Hz, 7.8Hz), 7.50 (1H, d, J=1.3Hz), 12.66 (1H, s)

Example 29

5 1-[3-(Dimethylamino)propyl]-3-ethylcarbodiimide (0.17 g) was added to a solution of tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate (0.31 g), 4,4'-dimethyl-1,1'-biphenyl-2-carboxylic acid (0.25 g), 1-hydroxybenzotriazole hydrate (0.17 g) and 4-dimethylaminopyridine (2.4 mg) in
 10 dichloromethane (3 ml) under ice-cooling and the mixture was stirred at ambient temperature for 18 hours. To the reaction mixture was added a solution of 10% hydrogen chloride in methanol (9 ml) and the mixture was stirred at ambient temperature for 24 hours. The reaction mixture was poured
 15 into a mixture of ethyl acetate, tetrahydrofuran and water and the mixture was adjusted to pH 9 with 20% aqueous potassium carbonate solution. The separated organic layer was washed with water, dried over magnesium sulfate and evaporated in vacuo. The residue was triturated with a mixture of ethyl
 20 acetate and diethyl ether to give 4,4'-dimethyl-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-1,1'-biphenyl-2-carboxamide (0.15 g).

¹H-NMR (DMSO-d₆): δ 2.28 (3H, s), 2.38 (3H, s), 2.96 (2H, t, J=7.1Hz), 3.30-3.39 (2H, m), 5.50 (1H, t, J=5.5Hz), 6.50 (2H, d, J=8.7Hz), 7.12-7.32 (11H, m), 7.70 (1H, dt, J=1.8Hz, 7.5Hz), 8.48-8.52 (1H, m), 9.78 (1H, s)
 25 (+)APCI-MS: 422 (M+H)⁺

Preparation 19

30 4-Methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid was obtained in the same manner as in Preparation 18.

Example 30

35 4-Methyl-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained from 4-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate in the same manner as in Example 29.

¹H-NMR (DMSO-d₆): δ 2.42 (3H, s), 2.96 (2H, t, J=7.2 Hz), 3.28-3.40 (2H, m), 5.53 (1H, t, J=5.7 Hz), 6.51 (2H, d, J=8.8 Hz),

7.18-7.42 (7H, m), 7.57-7.77 (5H, m), 8.50 (1H, dt, $J=0.8\text{Hz}$, 4.9 Hz), 9.91 (1H, s)
(+)APCI-MS: 476 ($M+H$)⁺

Preparation 20

5 4'-Chloro-4-methyl-1,1'-biphenyl-2-carboxylic acid was obtained in the same manner as in Preparation 18.

¹H-NMR (DMSO-d₆): δ 2.38 (3H, s), 7.22-7.47 (6H, m), 7.61 (1H, s), 12.78 (1H, s)

Example 31

10 4'-Chloro-4-methyl-N-(4-{{[2-(2-pyridinyl)ethyl]amino}-phenyl)-1,1'-biphenyl-2-carboxamide was obtained from 4'-chloro-4-methyl-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate in the same manner as in Example 29.

15 ¹H-NMR (DMSO-d₆): δ 2.39 (3H, s), 2.96 (2H, t, $J=7.2\text{Hz}$), 3.28-3.40 (2H, m), 5.53 (1H, t, $J=5.7\text{Hz}$), 6.51 (2H, d, $J=8.8\text{Hz}$), 7.18-7.38 (7H, m), 7.42 (4H, s), 7.70 (1H, dt, $J=1.8\text{Hz}$, 7.6Hz), 8.51 (1H, dd, $J=0.8\text{Hz}$, 4.8Hz), 9.84 (1H, s)

(+)APCI-MS: 442 ($M+H$)⁺

20 Preparation 21

4'-Fluoro-4-methyl-1,1'-biphenyl-2-carboxylic acid was obtained in the same manner as in Preparation 18.

¹H-NMR (DMSO-d₆): δ 7.15-7.41 (6H, m), 7.56 (1H, s), 12.74 (1H, s)

25 Example 32

4'-Fluoro-4-methyl-N-(4-{{[2-(2-pyridinyl)ethyl]amino}-phenyl)-1,1'-biphenyl-2-carboxamide was obtained from 4'-fluoro-4-methyl-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate in the same

30 manner as in Example 29.

¹H-NMR (DMSO-d₆): δ 2.39 (3H, s), 2.96 (2H, t, $J=7.2\text{Hz}$), 3.27-3.39 (2H, m), 5.51 (1H, t, $J=5.7\text{Hz}$), 6.51 (2H, d, $J=8.8\text{Hz}$), 7.13-7.47 (11H, m), 7.70 (1H, dt, $J=1.8\text{Hz}$, 7.6Hz), 8.51 (1H, d, $J=4.1\text{Hz}$), 9.79 (1H, s)

35 (+)-ESI-MS: 426 ($M+H$)⁺, 448 ($M+Na$)⁺

Preparation 22

4-Methyl-1,1'-biphenyl-2-carboxylic acid was obtained in the same manner as in Preparation 18.

¹H-NMR(DMSO-d₆): δ 2.38(3H, s), 7.23-7.45(7H, m), 7.53(1H, s), 12.69(1H, s)

Example 33

- 4-Methyl-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-1,1'-biphenyl-2-carboxamide was obtained from 4-methyl-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate in the same manner as in Example 29.
- ¹H-NMR(DMSO-d₆): δ 2.39 (3H, s), 2.96 (2H, t, J=7.2Hz), 3.27-3.38 (2H, m), 5.50 (1H, t, J=5.6Hz), 6.50 (2H, d, J=8.7Hz), 7.17-7.45 (12H, m), 7.70 (1H, dt, J=1.6Hz, 7.7Hz), 8.50 (1H, d, J=4.5Hz), 9.76 (1H, s)
- (+)ESI-MS: 408(M+H)⁺, 430(M+Na)⁺

Preparation 23

- 4-Ethyl-4'-methyl-1,1'-biphenyl-2-carboxylic acid was obtained in the same manner as in Preparation 18.
- ¹H-NMR(DMSO-d₆): δ 1.22 (3H, t, J=7.6Hz), 2.33 (3H, s), 2.67 (2H, q, J=7.6Hz), 7.20 (4H, s), 7.26 (1H, d, J=7.8Hz), 7.39 (1H, dd, J=1.7Hz, 7.8Hz), 7.52 (1H, d, J=1.7Hz), 12.67 (1H, s)

Example 34

- 4-Ethyl-4'-methyl-N-(4-{[2-(2-pyridinyl)ethyl]amino}-phenyl)-1,1'-biphenyl-2-carboxamide was obtained from 4-ethyl-4'-methyl-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate in the same manner as in Example 29.
- ¹H-NMR(DMSO-d₆): δ 1.24 (3H, t, J=7.5Hz), 2.29 (3H, s), 2.69 (2H, q, J=7.5Hz), 2.96 (2H, t, J=7.2Hz), 2.28-3.44 (2H, m), 5.50 (1H, t, J=5.7Hz), 6.50 (2H, d, J=8.8Hz), 7.13-7.38 (11H, m), 7.70 (1H, dt, J=1.8Hz, 7.7Hz), 8.50 (1H, d, J=4.5 Hz), 9.76 (1H, s)
- (+)ESI-MS: 436(M+H)⁺, 458(M+Na)⁺

Preparation 24

4-Ethyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid was obtained in the same manner as in Preparation 18.

- ¹H-NMR(DMSO-d₆): δ 1.23 (3H, t, J=7.6Hz), 2.71 (2H, q, J=7.6Hz), 7.32 (1H, d, J=7.9Hz), 7.47 (1H, dd, J=1.6Hz, 7.9Hz), 7.52 (2H, d, J=8.2Hz), 7.66 (1H, d, J=1.6Hz), 7.75 (2H, d, J=8.2Hz), 12.82 (1H, s)

Example 35

4-Ethyl-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-4'-
 (trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained
 from 4-ethyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic
 acid and tert-butyl 4-aminophenyl[2-(2-
 5 pyridinyl)ethyl]carbamate in the same manner as in Example 29.
¹H-NMR(DMSO-d₆): δ 1.26 (3H, t, J=7.5Hz), 2.72 (2H, q, J=7.5Hz),
 2.96 (2H, t, J=7.4Hz), 3.28-3.39 (2H, m), 5.52 (1H, t,
 J=5.7Hz), 6.51 (2H, d, J=8.8Hz), 7.17-7.25 (3H, m), 7.30 (1H,
 J=7.8Hz), 7.37-7.45 (3H, m), 7.58-7.77 (5H, m), 8.49-8.53
 10 (1H, m), 9.68 (1H, s)
 (+)ESI-MS: 490(M+H)⁺, 512(M+Na)⁺

Preparation 25

4'-Chloro-4-ethyl-1,1'-biphenyl-2-carboxylic acid was
 obtained in the same manner as in Preparation 18.
 15 ¹H-NMR(DMSO-d₆): δ 1.22 (3H, t, J=7.5Hz), 2.69 (2H, q, J=7.5Hz),
 7.25-7.41 (3H, m), 7.41-7.48 (3H, m), 7.57-7.62 (1H, m), 12.77
 (1H, s)

Example 36

4'-Chloro-4-ethyl-N-(4-{[2-(2-pyridinyl)ethyl]amino}-
 20 phenyl)-1,1'-biphenyl-2-carboxamide was obtained from 4'-
 chloro-4-ethyl-1,1'-biphenyl-2-carboxylic acid and tert-butyl
 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate in the same
 manner as in Example 29.
¹H-NMR(DMSO-d₆): δ 1.24 (3H, t, J=7.5Hz), 2.70 (2H, q, J=7.5Hz),
 25 2.96 (2H, t, J=7.0Hz), 3.28-3.40 (2H, m), 5.52 (1H, t,
 J=5.7Hz), 6.51 (2H, d, J=8.8Hz), 7.18-7.38 (7H, m), 7.42 (4H,
 s), 7.70 (1H, dt, J=1.8Hz, 7.6Hz), 8.49-8.53 (1H, m), 9.82 (1H,
 s)
 (+)ESI-MS: 456(M+H)⁺, 478(M+Na)⁺

Preparation 26

4-Ethyl-4'-fluoro-1,1'-biphenyl-2-carboxylic acid was
 obtained in the same manner as in Preparation 18.
¹H-NMR(DMSO-d₆): δ 1.22 (3H, t, J=7.6Hz), 2.68 (2H, q, J=7.6Hz),
 7.16-7.45 (6H, m), 7.58 (1H, d, J=1.6Hz), 12.74 (1H, s)

Example 37

4-Ethyl-4'-fluoro-N-(4-{[2-(2-pyridinyl)ethyl]amino}-
 phenyl)-1,1'-biphenyl-2-carboxamide was obtained from 4-ethyl-
 4'-fluoro-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-

aminophenyl[2-(2-pyridinyl)ethyl]carbamate in the same manner as in Example 29.

¹H-NMR (DMSO-d₆) : δ 1.24 (3H, t, J=7.5Hz), 2.70 (2H, q, J=7.5Hz), 2.96 (2H, t, J=7.2Hz), 3.28-3.39 (2H, m), 5.51 (1H, t,

5 J=5.8Hz), 6.50 (2H, d, J=8.8Hz), 7.14-7.48 (11H, m), 7.70 (1H, dt, J=1.8Hz, 7.6Hz), 8.45-8.52 (1H, m), 9.77 (1H, s)
(+)ESI-MS: 440 (M+H)⁺, 462 (M+Na)⁺

Preparation 27

4-Ethyl-1,1'-biphenyl-2-carboxylic acid was obtained in
10 the same manner as in Preparation 18.

¹H-NMR (DMSO-d₆) : δ 1.22 (3H, t, J=7.6Hz), 2.68 (2H, q, J=7.6Hz), 7.26-7.58 (8H, m), 12.71 (1H, s)

Example 38

4-Ethyl-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-1,1'-biphenyl-2-carboxamide was obtained according from 4-ethyl-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate in the same manner as in Example 29.

¹H-NMR (DMSO-d₆) : δ 1.25 (3H, t, J=7.5Hz), 2.70 (2H, q, J=7.5Hz), 2.96 (2H, t, J=7.2Hz), 3.28-3.44 (2H, m), 5.50 (1H, t, J=5.7Hz), 6.50 (2H, d, J=8.8Hz), 7.17-7.46 (12H, m), 7.70 (1H, dt, J=1.7Hz, 7.6Hz), 8.48-8.52 (1H, m), 9.75 (1H, s)
(+)ESI-MS: 422 (M+H)⁺, 444 (M+Na)⁺

Preparation 28

25 4-Fluoro-4'-methyl-1,1'-biphenyl-2-carboxylic acid was obtained in the same manner as in Preparation 18.

¹H-NMR (DMSO-d₆) : δ 2.34 (3H, s), 7.21 (4H, s), 7.37-7.43 (2H, m), 7.46-7.53 (1H, m), 13.01 (1H, s)

Example 39

30 4-Fluoro-4'-methyl-N-(4-{[2-(2-pyridinyl)ethyl]amino}-phenyl)-1,1'-biphenyl-2-carboxamide was obtained from 4-fluoro-4'-methyl-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate in the same manner as in Example 29.

35 ¹H-NMR (DMSO-d₆) : δ 2.29 (3H, s), 2.96 (2H, t, J=7.2Hz), 3.28-3.40 (2H, m), 5.53 (1H, t, J=5.7Hz), 6.51 (2H, d, J=8.8Hz), 7.14-7.49 (11H, m), 7.70 (1H, dt, J=1.8Hz, 7.6Hz), 8.51 (1H, d, J=4.1Hz), 9.87 (1H, s)

(+) ESI-MS: 426 (M+H)⁺, 448 (M+Na)⁺

Preparation 29

4-Fluoro-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid was obtained in the same manner as in Preparation 18.

5 Example 40

4-Fluoro-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained from 4-fluoro-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]-carbamate in the same manner as in Example 29.

10

¹H-NMR (DMSO-d₆): δ 2.96 (2H, t, J=7.2Hz), 3.30-3.39 (2H, m), 5.56 (1H, t, J=5.6Hz), 6.51 (2H, d, J=8.7Hz), 7.20 (2H, d, J=8.7Hz), 7.21-7.33 (2H, m), 7.48-7.79 (8H, m), 8.50 (1H, d, J=4.5Hz), 9.99 (1H, s)

15 (+) ESI-MS: 480 (M+H)⁺, 502 (M+Na)⁺

Preparation 30

4'-Chloro-4-fluoro-1,1'-biphenyl-2-carboxylic acid was obtained in the same manner as in Preparation 18.

¹H-NMR (DMSO-d₆): δ 7.29-7.63 (7H, m), 13.13 (1H, s)

20 Example 41

4'-Chloro-4-fluoro-N-(4-{[2-(2-pyridinyl)ethyl]amino}-phenyl)-1,1'-biphenyl-2-carboxamide was obtained from 4'-chloro-4-fluoro-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate in the same

25

manner as in Example 29.

¹H-NMR (DMSO-d₆): δ 2.96 (2H, t, J=7.2Hz), 3.28-3.41 (2H, m), 5.55 (1H, t, J=5.7Hz), 6.52 (2H, d, J=8.8Hz), 7.18-7.36 (2H, m), 7.21 (2H, d, J=8.8Hz), 7.27-7.53 (7H, m), 7.70 (1H, dt, J=1.8Hz, 7.6Hz), 8.51 (1H, d, J=4.1Hz), 9.93 (1H, s)

30 (+) ESI-MS: 446 (M+H)⁺, 468 (M+Na)⁺

Preparation 31

4,4'-Difluoro-1,1'-biphenyl-2-carboxylic acid was obtained in the same manner as in Preparation 18.

¹H-NMR (DMSO-d₆): δ 7.17-7.46 (6H, m), 7.51-7.58 (1H, m), 13.09 (1H, m)

35

Example 42

4,4'-Difluoro-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-1,1'-biphenyl-2-carboxamide was obtained from 4,4'-difluoro-

1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate in the same manner as in Example 29.

- 5 $^1\text{H-NMR}$ (DMSO-d₆): δ 2.96 (2H, t, J=7.2Hz), 3.28-3.40 (2H, m),
 5.54 (1H, t, J=5.7Hz), 6.51 (2H, d, J=8.8Hz), 7.16-7.48 (11H, m), 7.68 (1H, dt, J=1.8Hz, 7.7Hz), 8.51 (1H, d, J=4.1Hz), 9.88 (1H, s)
 (+)ESI-MS: 430 (M+H)⁺, 452 (M+Na)⁺

Preparation 32

- 10 4-Chloro-4'-methyl-1,1'-biphenyl-2-carboxylic acid was obtained in the same manner as in Preparation 18.

$^1\text{H-NMR}$ (DMSO-d₆): δ 7.22 (4H, s), 7.39 (2H, d, J=8.3Hz), 7.61 (1H, dd, J=2.2Hz, 8.3Hz), 7.71 (1H, d, J=2.2Hz), 13.70 (1H, s)

Preparation 33

- 15 4,4'-Dichloro-1,1'-biphenyl-2-carboxylic acid was obtained in the same manner as in Preparation 18.

$^1\text{H-NMR}$ (DMSO-d₆): δ 7.31-7.51 (5H, m), 7.66 (1H, dd, J=2.3Hz, 8.4Hz), 7.78 (1H, d, J=2.3Hz), 13.16 (1H, s)

Preparation 34

- 20 4-Chloro-4'-fluoro-1,1'-biphenyl-2-carboxylic acid was obtained in the same manner as in Preparation 18.

$^1\text{H-NMR}$ (DMSO-d₆): δ 7.14-7.45 (5H, m), 7.64 (1H, dd, J=2.3Hz, 8.3Hz), 7.76 (1H, d, J=2.3Hz), 13.14 (1H, s)

Preparation 35

- 25 4-Methoxy-4'-methyl-1,1'-biphenyl-2-carboxylic acid was obtained in the same manner as in Preparation 18.

$^1\text{H-NMR}$ (DMSO-d₆): δ 2.33 (3H, s), 3.82 (3H, s), 7.11 (1H, dd, J=2.7Hz, 8.4Hz), 7.15-7.22 (5H, m), 7.28 (1H, d, J=8.4Hz), 12.77 (1H, s)

30 Preparation 36

4'-Chloro-4-methoxy-1,1'-biphenyl-2-carboxylic acid was obtained in the same manner as in Preparation 18.

$^1\text{H-NMR}$ (DMSO-d₆): δ 3.83 (3H, s), 7.15 (1H, dd, J=2.7Hz, 8.5Hz), 7.25-7.34 (4H, m), 7.43 (2H, d, J=8.5Hz), 12.88 (1H, s)

35 Preparation 37

4'-Fluoro-4-methoxy-1,1'-biphenyl-2-carboxylic acid was obtained in the same manner as in Preparation 18.

$^1\text{H-NMR}$ (DMSO-d₆): δ 3.83 (3H, s), 7.07-7.36 (7H, m), 12.84 (1H,

s)

Example 43

4',5-Dimethyl-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-1,1'-biphenyl-2-carboxamide was obtained from 4',5-dimethyl-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate in the same manner as in Example 29.

10 $^1\text{H-NMR}$ (DMSO- d_6) : δ 2.29 (3H, s), 2.38 (3H, s), 2.96 (2H, t, $J=7.2\text{Hz}$), 3.28-3.39 (2H, m), 5.49 (1H, t, $J=5.7\text{Hz}$), 6.50 (2H, d, $J=8.8\text{Hz}$), 7.14-7.42 (11H, m), 7.69 (1H, dt, $J=1.8\text{Hz}$, 7.6Hz), 8.50 (1H, d, $J=4.8\text{Hz}$), 9.69 (1H, s)
 (+) APCI-MS: 422 ($M+\text{H}$)⁺

Example 44

15 5-Methyl-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained from 5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate in the same manner as in Example 29.

20 $^1\text{H-NMR}$ (DMSO- d_6) : δ 2.41 (3H, s), 2.96 (2H, t, $J=7.1\text{Hz}$), 3.25-3.38 (2H, m), 5.54 (1H, s), 6.50 (2H, d, $J=8.7\text{Hz}$), 7.16-7.36 (6H, m), 7.49 (1H, d, $J=7.6\text{Hz}$), 7.58-7.78 (5H, m), 8.51 (1H, d, $J=4.1\text{Hz}$), 9.83 (1H, s)
 (+) ESI-MS: 476 ($M+\text{H}$)⁺, 498 ($M+\text{Na}$)⁺

Example 45

25 4'-Chloro-5-methyl-N-(4-{[2-(2-pyridinyl)ethyl]amino}-phenyl)-1,1'-biphenyl-2-carboxamide was obtained from 4'-chloro-5-methyl-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate in the same manner as in Example 29.

30 $^1\text{H-NMR}$ (DMSO- d_6) : δ 2.39 (3H, s), 2.96 (2H, t, $J=7.2\text{Hz}$), 3.28-3.39 (2H, m), 5.52 (1H, t, $J=5.7\text{Hz}$), 6.51 (2H, d, $J=8.8\text{Hz}$), 7.18-7.33 (6H, m), 7.40-7.47 (5H, m), 7.70 (1H, dt, $J=1.7\text{Hz}$, 7.6Hz), 8.51 (1H, d, $J=4.7\text{Hz}$), 9.76 (1H, s)
 (+) APCI-MS: 442 ($M+\text{H}$)⁺

Example 46

35 4'-Fluoro-5-methyl-N-(4-{[2-(2-pyridinyl)ethyl]amino}-phenyl)-1,1'-biphenyl-2-carboxamide was obtained from 4'-fluoro-5-methyl-1,1'-biphenyl-2-carboxylic acid and tert-butyl

4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate in the same manner as in Example 29.

- 5 $^1\text{H-NMR}$ (DMSO-d₆): δ 2.39 (3H, s), 2.96 (2H, t, J=7.2Hz), 3.28-3.39 (2H, m), 5.51 (1H, t, J=5.7Hz), 6.50 (2H, d, J=8.8Hz), 7.14-7.33 (8H, m), 7.37-7.49 (3H, m), 7.70 (1H, dt, J=1.8Hz, 7.6Hz), 8.51 (1H, dd, J=0.8Hz, 4.8Hz), 9.71 (1H, s)
 (-)APCI-MS: 424 (M+H)⁻

Example 47

- 10 4'-Methoxy-5-methyl-N-(4-{[2-(2-pyridinyl)ethyl]amino}-phenyl)-1,1'-biphenyl-2-carboxamide was obtained from 4'-methoxy-5-methyl-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate in the same manner as in Example 29.

- 15 $^1\text{H-NMR}$ (DMSO-d₆): δ 2.38 (3H, s), 2.96 (2H, t, J=7.2Hz), 3.24-3.39 (2H, m), 3.75 (3H, s), 5.50 (1H, t, J=5.6Hz), 6.50 (2H, d, J=8.9Hz), 6.92 (2H, d, J=8.8Hz), 7.18-7.40 (9H, m), 7.70 (1H, dt, J=1.9Hz, 7.6Hz), 8.50 (1H, d, J=4.8Hz), 9.67 (1H, s)
 (-)APCI-MS: 438 (M+H)⁻

Preparation 38

- 20 5-Methyl-1,1'-biphenyl-2-carboxylic acid was obtained in the same manner as in Preparation 18.

$^1\text{H-NMR}$ (DMSO-d₆): δ 2.38 (3H, s), 7.18 (1H, s), 7.23-7.43 (6H, m), 7.66 (1H, d, J=7.8Hz), 12.56 (1H, s)

Example 48

- 25 5-Methyl-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-1,1'-biphenyl-2-carboxamide was obtained from 5-methyl-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate in the same manner as in Example 29.

- 30 $^1\text{H-NMR}$ (DMSO-d₆): δ 2.40 (3H, s), 2.95 (2H, t, J=7.1Hz), 3.27-3.40 (2H, m), 5.49 (1H, t, J=5.7Hz), 6.49 (2H, d, J=8.7Hz), 7.14-7.46 (12H, m), 7.70 (1H, dt, J=1.6Hz, 7.6Hz), 8.50 (1H, d, J=4.1Hz), 9.66 (1H, s)
 (+)ESI-MS: 408 (M+H)⁺, 430 (M+Na)⁺

Example 49

- 35 5-(Methoxymethyl)-N-(4-{[2-(2-pyridinyl)ethyl]amino}-phenyl)-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained from 5-(methoxymethyl)-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl[2-(2-

pyridinyl)ethyl]carbamate in the same manner as in Example 29.
¹H-NMR(DMSO-d₆): δ 2.96 (2H, t, J=7.2Hz), 3.28-3.38 (2H, m),
 3.34 (3H, s), 4.53 (2H, s), 5.54 (1H, t, J=5.7Hz), 6.50 (2H, d,
 J=8.8Hz), 7.17-7.32 (2H, m), 7.20 (2H, d, J=8.8Hz), 7.40-7.49
 5 (2H, m), 7.55-7.79 (6H, m), 8.48-8.53 (1H, m), 9.90 (1H, s)
 (+)APCI-MS: 506(M+H)⁺

Example 50

5-(Hydroxymethyl)-N-(4-{[2-(2-pyridinyl)ethyl]amino}-phenyl)-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained from 5-(acetoxymethyl)-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate in the same manner as in Example 29.
¹H-NMR(DMSO-d₆): δ 2.96 (2H, t, J=7.2Hz), 3.28-3.39 (2H, m),
 4.61 (2H, d, J=5.6Hz), 5.36 (1H, t, J=5.6Hz), 5.53 (1H, t,
 15 J=5.6Hz), 6.51 (2H, d, J=8.7Hz), 7.18-7.32 (2H, m), 7.20 (2H,
 d, J=8.7Hz), 7.40-7.48 (2H, m), 7.53-7.79 (6H, m), 8.51 (1H, d,
 J=4.1Hz), 9.86 (1H, s)
 (+)APCI-MS: 492(M+H)⁺

Example 51

20 4',6-Dimethyl-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-1,1'-biphenyl-2-carboxamide was obtained from 4',6-dimethyl-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate in the same manner as in Example 29.
 25 ¹H-NMR(DMSO-d₆): δ 2.08 (3H, s), 2.29 (3H, s), 2.942 (2H, t,
 J=7.2Hz), 3.25-3.44 (2H, m), 5.47 (1H, t, J=5.8Hz), 6.45 (2H,
 d, J=8.8Hz), 7.11 (2H, d, J=8.8Hz), 7.15 (4H, s), 7.17-7.25
 (1H, m), 7.26-7.40 (4H, m), 7.69 (1H, dt, J=1.8Hz, 7.6Hz),
 8.50 (1H, dd, J=0.8Hz, 4.8 Hz), 9.56 (1H, s)
 30 (+)ESI-MS: 422(M+H)⁺, 444(M+Na)⁺

Example 52

35 6-Methyl-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained from 6-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate in the same manner as in Example 29.
¹H-NMR(DMSO-d₆): δ 2.08 (3H, s), 2.94 (2H, t, J=7.2Hz), 3.26-
 3.37 (2H, m), 5.50 (1H, t, J=5.7Hz), 6.46 (2H, d, J=8.8Hz),

7.07 (2H, d, J=8.8Hz), 7.21 (1H, dd, J=5.0Hz, 7.4 Hz), 7.29 (1H, d, J=7.8Hz), 7.37-7.51 (5H, m), 7.64-7.77 (3H, m), 8.50 (1H, d, J=4.1Hz), 9.71(1H, s)
(+)APCI-MS: 476 (M+H)⁺

5 Preparation 39

To a solution of ethyl {6-[(tert-butoxycarbonyl)amino]-2-pyridinyl}acetate (0.835 g) in tetrahydrofuran (20 ml) was added lithium borohydride (0.097 g) at ambient temperature. The reaction mixture was refluxed for 4 hours, cooled to ambient temperature, quenched with water and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, filtered and concentrated in vacuo. The residue was purified by column chromatography on silica gel eluting with hexane:ethyl acetate (2:1) to give tert-butyl 6-(2-hydroxyethyl)-2-pyridinylcarbamate (0.627 g) as a white solid.

¹H-NMR (CDCl₃): δ 1.51 (9H, s), 2.92 (2H, t, J=5.4Hz), 3.99(2H, t, J=5.4Hz), 6.80 (1H, d, J=6.9Hz), 7.58 (1H, dd, J=8.2Hz, 6.9Hz), 7.79(1H, d, J=8.2Hz)

20 Preparation 40

To a solution of tert-butyl 6-(2-hydroxyethyl)-2-pyridinylcarbamate (0.606 g), triethylamine (0.7 ml) and 4-dimethylaminopyridine (15 mg) in 1,2-dichloroethane (25 ml) was added p-toluenesulfonyl chloride (0.582 g) portionwise at ambient temperature. The reaction mixture was stirred for 15 hours, quenched with water and extracted with 1,2-dichloroethane. The organic layer was washed with brine, dried over magnesium sulfate, filtered and concentrated in vacuo. The residue was purified by column chromatography on silica gel eluting with hexane:ethyl acetate (4:1) to give 2-{6-[(tert-butoxycarbonyl)amino]-2-pyridinyl}ethyl 4-methylbenzenesulfonate (0.785 g) as a clear oil.

¹H-NMR (CDCl₃): δ 1.52 (9H, s), 2.43 (3H, s), 2.96 (2H, t, J=6.6Hz), 4.37 (2H, t, J=6.6Hz), 6.76 (1H, d, J=7.2Hz), 7.00 (1H, br s), 7.26 (2H, d, J=7.9Hz), 7.52 (1H, dd, J=8.2Hz, 7.2Hz), 7.65 (2H, d, J=7.9Hz), 7.73 (1H, d, J=8.2Hz)

Preparation 41

A mixture of 2-{6-[(tert-butoxycarbonyl)amino]-2-

pyridinyl}ethyl 4-methylbenzenesulfonate (1.342 g) and sodium azide (0.444 g) in N,N-dimethylformamide (20 ml) was stirred at ambient temperature for 15 hours. The solvent was evaporated. The residue was dissolved in a mixture of ethyl acetate and water, and extracted with ethyl acetate. The organic layer was washed with water and brine, dried over magnesium sulfate, filtered and concentrated in vacuo to give tert-butyl 6-(2-azidoethyl)-2-pyridinylcarbamate (0.880 g) as a yellow oil. The product was used for the next step without further purification.

15 $^1\text{H-NMR}(\text{CDCl}_3)$: δ 1.52 (9H, s), 2.93 (2H, t, $J=6.9\text{Hz}$), 3.64 (2H, t, $J=6.9\text{Hz}$), 6.84 (1H, d, $J=6.6\text{Hz}$), 7.59 (1H, dd, $J=8.2\text{Hz}$, 6.6Hz), 7.78 (1H, d, $J=8.2\text{Hz}$)

Preparation 42

15 A solution of tert-butyl 6-(2-azidoethyl)-2-pyridinylcarbamate (0.88 g) in methanol (35 ml) was hydrogenated over 10% palladium on carbon at ambient temperature under atmospheric pressure of hydrogen for 1 hour. The reaction mixture was filtered through a pad of celite, and 20 the filtrate was concentrated in vacuo to give tert-butyl 6-(2-aminoethyl)-2-pyridinylcarbamate (0.776 g) as a yellow oil. The product was used for the next step without further purification.

25 $^1\text{H-NMR}(\text{CDCl}_3)$: δ 1.51 (9H, s), 2.79 (2H, t, $J=6.3\text{Hz}$), 3.05 (2H, t, $J=6.3\text{Hz}$), 6.81 (1H, d, $J=7.3\text{Hz}$), 7.57 (1H, dd, $J=8.2\text{Hz}$, 7.3Hz)

Preparation 43

30 A mixture of tert-butyl 6-(2-aminoethyl)-2-pyridinylcarbamate (0.776 g), 1-fluoro-4-nitrobenzene (0.462 g) and triethylamine (0.69 ml) in 1,3-dimethyl-2-imidazolidinone (10 ml) was heated to 50°C for 3.5 hours. The reaction mixture was cooled to ambient temperature, poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, 35 filtered and concentrated in vacuo. The residue was purified by column chromatography on silica gel eluting with hexane:ethyl acetate (3:2) to give tert-butyl 6-[2-(4-nitroanilino)ethyl]-2-pyridinylcarbamate (0.666 g) as a yellow

oil.

¹H-NMR(CDCl₃): δ 1.53 (9H, s), 2.99 (2H, t, J=6.6Hz), 3.57 (2H, dd, J=12.2Hz, 6.2Hz), 5.21 (1H, br s), 6.53 (2H, d, J=9.2Hz), 6.82 (1H, dd, J=7.6Hz, 0.7Hz), 7.30 (1H, br s), 7.59 (1H, d, J=7.8Hz), 7.95 (1H, d, J=7.9Hz), 8.05 (2H, d, J=8.9Hz)

Preparation 44

To a solution of tert-butyl 6-[2-(4-nitroanilino)ethyl]-2-pyridinylcarbamate (0.666 g) and 4-dimethylaminopyridine (23 mg) in tetrahydrofuran (25 ml) was added di-tert-butyl dicarbonate (0.608 g) and the mixture was heated at 50°C for 1 hour. The reaction mixture was cooled to ambient temperature and concentrated in vacuo. The residue was dissolved in ethyl acetate and water, and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, filtered and concentrated in vacuo to give tert-butyl 2-{6-[(tert-butoxycarbonyl)amino]-2-pyridinyl}ethyl(4-nitrophenyl)carbamate (0.851 g). The product was used for the next step without further purification.

Preparation 45

A solution of tert-butyl 2-{6-[(tert-butoxycarbonyl)amino]-2-pyridinyl}ethyl(4-nitrophenyl)carbamate (0.851 g) in methanol (30 ml) was hydrogenated over 10% palladium on carbon at ambient temperature under atmospheric pressure of hydrogen for 1 hour. The reaction mixture was filtered through a pad of celite, and the filtrate was concentrated in vacuo. The residue was purified by column chromatography on silica gel eluting with hexane:ethyl acetate (3:2) to give tert-butyl 6-{2-[4-amino(tert-butoxycarbonyl)anilino]ethyl}-2-pyridinylcarbamate (0.701 g) as a yellow oil.

Example 53

N-(4-{[2-(6-Amino-2-pyridinyl)ethyl]amino}phenyl)-4,4'-dimethyl-1,1'-biphenyl-2-carboxamide was obtained from 4,4'-dimethyl-1,1'-biphenyl-2-carboxylic acid and tert-butyl 6-{2-[4-amino(tert-butoxycarbonyl)anilino]ethyl}-2-pyridinylcarbamate in the same manner as in Example 29.

¹H-NMR(DMSO-d₆): δ 2.29 (3H, s), 2.38 (3H, s), 2.71 (2H, t, J=7.2Hz), 3.18-3.33 (2H, m), 5.49 (1H, t, J=5.6Hz), 5.82 (2H,

s), 6.27 (1H, d, J=8.1Hz), 6.39 (1H, d, J=7.1Hz), 6.50 (2H, d, J=8.7Hz), 7.12-7.35 (10H, m), 9.77 (1H, s)
 (+)ESI-MS: 437 (M+H)⁺, 459 (M+Na)⁺

Example 54

5 N-(4-{[2-(6-Amino-2-pyridinyl)ethyl]amino}phenyl)-4-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained from 4-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid and tert-butyl 6-{2-[4-amino(tert-butoxycarbonyl)anilino]ethyl}-2-pyridinylcarbamate in the same
 10 manner as in Example 29.

15 ¹H-NMR (DMSO-d₆): δ 2.41 (3H, s), 2.71 (2H, t, J=7.2Hz), 3.22-3.32 (2H, m), 5.51 (1H, t, J=5.6Hz), 5.81 (2H, s), 6.27 (1H, d, J=8.1Hz), 6.39 (1H, d, J=7.2Hz), 6.50 (2H, d, J=8.7Hz), 7.21 (2H, d, J=8.7Hz), 7.22-7.31 (1H, m), 7.37-7.41 (3H, m), 7.61 (2H, d, J=8.2Hz), 7.74 (2H, d, J=8.2Hz), 9.89 (1H, s)
 15 (+)ESI-MS: 491 (M+H)⁺, 513 (M+Na)⁺

Example 55

20 N-(4-{[2-(6-Amino-2-pyridinyl)ethyl]amino}phenyl)-4'-chloro-4-methyl-1,1'-biphenyl-2-carboxamide was obtained from 4'-chloro-4-methyl-1,1'-biphenyl-2-carboxylic acid and tert-butyl 6-{2-[4-amino(tert-butoxycarbonyl)anilino]ethyl}-2-pyridinylcarbamate in the same manner as in Example 29.

25 ¹H-NMR (DMSO-d₆): δ 2.39 (3H, s), 2.71 (2H, t, J=7.2Hz), 3.19-3.31 (2H, m), 5.51 (1H, t, J=5.6Hz), 5.82 (2H, s), 6.27 (1H, d, J=8.1Hz), 6.39 (1H, d, J=7.1Hz), 6.51 (2H, d, J=8.8Hz), 7.19-7.43 (10H, m), 9.83 (1H, s)
 25 (+)ESI-MS: 457 (M+H)⁺, 479 (M+Na)⁺

Example 56

30 N-(4-{[2-(6-Amino-2-pyridinyl)ethyl]amino}phenyl)-4'-fluoro-4-methyl-1,1'-biphenyl-2-carboxamide was obtained from 4'-fluoro-4-methyl-1,1'-biphenyl-2-carboxylic acid and tert-butyl 6-{2-[4-amino(tert-butoxycarbonyl)anilino]ethyl}-2-pyridinylcarbamate in the same manner as in Example 29.

35 ¹H-NMR (DMSO-d₆): δ 2.39 (3H, s), 2.71 (2H, t, J=7.1Hz), 3.25 (2H, t, J=7.1Hz), 5.52 (1H, s), 5.81 (2H, s), 6.28 (1H, d, J=8.2Hz), 6.39 (1H, d, J=7.1Hz), 6.50 (2H, d, J=8.6Hz), 7.16-7.35 (8H, m), 7.40-7.46 (2H, m), 9.77 (1H, s)
 35 (+)ESI-MS: 441 (M+H)⁺, 463 (M+Na)⁺

Example 57

N-(4-{[2-(6-Amino-2-pyridinyl)ethyl]amino}phenyl)-4-methyl-1,1'-biphenyl-2-carboxamide was obtained from 4-methyl-1,1'-biphenyl-2-carboxylic acid and tert-butyl 6-{2-[4-

5 amino(tert-butoxycarbonyl)anilino]ethyl}-2-pyridinylcarbamate in the same manner as in Example 29.

¹H-NMR (DMSO-d₆): δ 2.39 (3H, s), 2.71 (2H, t, J=7.2 Hz), 3.18-3.30 (2H, m), 5.49 (1H, t, J=5.6 Hz), 5.81 (2H, s), 6.27 (1H, d, J=8.1 Hz), 6.39 (1H, d, J=7.2 Hz), 6.49 (2H, d, J=8.8 Hz),

10 7.20 (2H, d, J=8.8 Hz), 7.22-7.46 (9H, m), 9.75 (1H, s)
 (+)ESI-MS: 423 (M+H)⁺, 445 (M+Na)⁺

Example 58

N-(4-{[2-(6-Amino-2-pyridinyl)ethyl]amino}phenyl)-4-chloro-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained from 4-chloro-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid and tert-butyl 6-{2-[4-amino(tert-butoxycarbonyl)anilino]ethyl}-2-pyridinylcarbamate in the same manner as in Example 29.

¹H-NMR (DMSO-d₆): δ 2.71 (2H, t, J=7.2Hz), 3.18-3.30 (2H, m), 5.55 (1H, t, J=5.6Hz), 5.82 (2H, s), 6.27 (1H, d, J=8.1Hz), 6.39 (1H, d, J=7.2Hz), 6.51 (2H, d, J=8.8Hz), 7.20 (2H, d, J=8.8Hz), 7.22-7.31 (1H, m), 7.48-7.55 (1H, m), 7.59-7.68 (4H, m), 7.77 (2H, d, J=8.4Hz), 10.04 (1H, s)
 (+)ESI-MS: 511 (M+H)⁺, 533 (M+Na)⁺

Example 59

N-(4-{[2-(6-Amino-2-pyridinyl)ethyl]amino}phenyl)-4-fluoro-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained from 4-fluoro-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid and tert-butyl 6-{2-[4-amino(tert-butoxycarbonyl)anilino]ethyl}-2-pyridinylcarbamate in the same manner as in Example 29.

¹H-NMR (DMSO-d₆): δ 2.71 (2H, t, J=7.2Hz), 3.18-3.30 (2H, m), 5.55 (1H, t, J=5.6Hz), 5.81 (2H, s), 6.27 (1H, d, J=8.0Hz), 6.38 (1H, d, J=6.9Hz), 6.50 (2H, d, J=8.8Hz), 7.19 (2H, d, J=8.8Hz), 7.22-7.31 (1H, m), 7.42-7.59 (3H, m), 7.61 (2H, d, J=8.3Hz), 7.76 (2H, d, J=8.3Hz), 9.98 (1H, s)
 (+)ESI-MS: 495 (M+H)⁺, 517 (M+Na)⁺

Example 60

N-(4-{[2-(6-Amino-2-pyridinyl)ethyl]amino}phenyl)-4-methoxy-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained from 4-methoxy-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid and tert-butyl 6-{2-[4-amino(tert-

5 butoxycarbonyl)anilino]ethyl}-2-pyridinylcarbamate in the same manner as in Example 29.

¹H-NMR (DMSO-d₆): δ 2.71 (2H, t, J=7.2Hz), 3.19-3.30 (2H, m), 3.86 (3H, s), 5.52 (1H, t, J=5.6Hz), 5.82 (2H, s), 6.27 (1H, d, J=8.1Hz), 6.39 (1H, d, J=7.1Hz), 6.51 (2H, d, J=8.8Hz), 7.11-10 7.31 (5H, m), 7.39-7.46 (1H, m), 7.59 (2H, d, J=8.2Hz), 7.72 (2H, d, J=8.2Hz), 9.91 (1H, s)

(+)ESI-MS: 507(M+H)⁺, 529(M+Na)⁺

Example 61

5-Chloro-4'-methyl-N-(4-{[2-(2-pyridinyl)ethyl]amino}-phenyl)-1,1'-biphenyl-2-carboxamide was obtained from 5-chloro-4'-methyl-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate in the same manner as in Example 29.

¹H-NMR (DMSO-d₆): δ 2.30 (3H, s), 2.96 (2H, t, J=7.2Hz), 3.29-20 3.39 (2H, m), 5.53 (1H, t, J=5.8Hz), 6.51 (2H, d, J=8.8Hz), 7.17-7.52 (11H, m), 7.70 (1H, dt, J=1.9Hz, 7.6Hz), 8.48-8.53 (1H, m), 9.84 (1H, s)

(+)APCI-MS: 442(M+H)⁺

Example 62

25 5-Chloro-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained from 5-chloro-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate in the same manner as in Example 29.

30 ¹H-NMR (DMSO-d₆): δ 2.95 (2H, t, J=7.4Hz), 3.27-3.40 (2H, m), 5.56 (1H, t, J=5.6Hz), 6.51 (2H, d, J=8.8Hz), 7.15-7.32 (2H, m), 7.18 (2H, d, J=8.8Hz), 7.56-7.98 (8H, m), 8.48-8.52 (1H, m), 9.95 (1H, s)

(+)APCI-MS: 496(M+H)⁺

35 Example 63

4',5-Dichloro-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-1,1'-biphenyl-2-carboxamide was obtained from 4',5-dichloro-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-

aminophenyl[2-(2-pyridinyl)ethyl]carbamate in the same manner as in Example 29.

¹H-NMR (DMSO-d₆): δ 2.96 (2H, t, J=7.2Hz), 3.28-3.40 (2H, m), 5.55 (1H, t, J=5.7Hz), 6.51 (2H, d, J=8.8Hz), 7.17-7.25 (1H,

- 5 m), 7.2 (2H, d, J=8.8Hz), 7.30 (1H, d, J=7.8Hz), 7.52 (4H, s), 7.50-7.60 (3H, m), 7.70 (1H, dt, J=1.8Hz, 7.6Hz), 8.48-8.53 (1H, m), 9.89 (1H, s)

(+)APCI-MS: 463 (M+H)⁺

Example 64

- 10 6-Methoxy-4'-methyl-N-(4-{[2-(2-pyridinyl)ethyl]amino}-phenyl)-1,1'-biphenyl-2-carboxamide was obtained from 6-methoxy-4'-methyl-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate in the same manner as in Example 29.

- 15 ¹H-NMR (DMSO-d₆): δ 2.27 (3H, s), 2.94 (2H, t, J=7.2Hz), 3.25-3.37 (2H, m), 3.7 (3H, s), 5.47 (1H, t, J=5.7Hz), 6.46 (2H, d, J=8.8Hz), 7.04-7.25 (9H, m), 7.29 (1H, d, J=7.8Hz), 7.40 (1H, t, J=7.8Hz), 7.69 (1H, dt, J=1.7Hz, 7.6Hz), 8.50 (1H, d, J=4.6Hz), 9.57 (1H, s)

- 20 (+)APCI-MS: 438 (M+H)⁺.

Example 65

- 25 6-Methoxy-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained from 6-methoxy-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl[2-(2-

- pyridinyl)ethyl]carbamate in the same manner as in Example 29.
- 1¹H-NMR (DMSO-d₆): δ 2.95 (2H, t, J=7.2Hz), 3.27-3.37 (2H, m), 3.74 (3H, s), 5.60 (1H, s), 6.46 (2H, d, J=8.7Hz), 7.05-7.32 (4H, m), 7.08 (2H, d, J=8.7Hz), 7.44-7.53 (3H, m), 7.65-7.75 (3H, m), 8.50 (1H, d, J=4.3Hz), 9.71 (1H, s)

- 30 (+)APCI-MS: 492 (M+H)⁺

Example 66

- 35 1-[3-(Dimethylamino)propyl]-3-ethylcarbodiimide (0.17 g) was added to a solution of N-(4-aminophenyl)-2-(2-pyridinyl)acetamide (0.23 g), 6-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid (0.31 g), 1-hydroxybenzotriazole (0.15 g) and 4-dimethylaminopyridine (2.4 mg) in dichloromethane (3 ml) under ice-cooling and the

mixture was stirred at ambient temperature for 18 hours. The reaction mixture was poured into a mixture of ethyl acetate and tetrahydrofuran, and the mixture was washed with saturated aqueous sodium hydrogencarbonate solution and water. The 5 organic layer was dried over magnesium sulfate and evaporated in vacuo. The residue was purified by column chromatography on silica gel using a mixture of ethyl acetate and diisopropyl ether (1:1) as an eluant. The eluted fractions containing the desired product were collected and evaporated in vacuo. The 10 residue was recrystallized from a mixture of ethyl acetate and diisopropyl ether to give 6-methyl-N-{4-[(2-pyridinylacetyl)amino]phenyl}-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (0.1 g).

15 $^1\text{H-NMR}$ (DMSO-d₆): δ 2.09 (3H, s), 3.80 (2H, s), 7.22-7.50 (11H, m), 7.70-7.79 (3H, m), 8.47-8.51 (1H, m), 10.08 (1H, s), 10.16 (1H, s)

(+)APCI-MS: 490 (M+H)⁺

Example 67

6-Methoxy-N-{4-[(2-pyridinylacetyl)amino]phenyl}-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained 20 from 6-methoxy-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid and N-(4-aminophenyl)-2-(2-pyridinyl)acetamide in the same manner as in Example 66.

25 $^1\text{H-NMR}$ (DMSO-d₆): δ 3.75 (3H, s), 3.80 (2H, s), 7.16-7.56 (11H, m), 7.66-7.79 (1H, m), 7.68 (2H, d, J=8.2Hz), 8.47-8.51 (1H, m), 10.09 (1H, s), 10.17 (1H, s)

(+)APCI-MS: 506 (M+H)⁺

Example 68

5-Methyl-N-{4-[2-(2-pyridinyl)ethoxy]phenyl}-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained 30 from 5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid and 4-[2-(2-pyridinyl)ethoxy]aniline in the same manner as in Example 66.

35 $^1\text{H-NMR}$ (DMSO-d₆): δ 2.42 (3H, s), 3.16 (2H, t, J=6.5Hz), 6.84 (2H, d, J=8.8Hz), 7.20-7.77 (12H, m), 8.51 (1H, d, J=3.9Hz), 10.11 (1H, s)

(+)APCI-MS: 477 (M+H)⁺

Example 69

6-Methyl-N-{4-[2-(2-pyridinyl)ethoxy]phenyl}-4'-
 (trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained
 from 6-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic
 acid and 4-[2-(2-pyridinyl)ethoxy]aniline in the same manner
 5 as in Example 66.

¹H-NMR(DMSO-d₆): δ 2.09 (3H, s), 3.14 (2H, t, J=6.6Hz), 4.28
 (2H, t, J=6.6Hz), 6.79 (2H, d, J=8.9Hz), 7.19-7.50 (9H, m),
 7.66-7.75 (3H, m), 8.50 (1H, d, J=4.8Hz), 9.99 (1H, s)
 (+)APCI-MS: 477 (M+H)⁺

10 Preparation 46

A mixture of 4-nitrobenzyl bromide (25.0 g), 2-
 pyridinemethanol (11.2 ml), and 1N sodium hydroxide (116 ml)
 in tetrahydrofuran (375 ml) was stirred at ambient temperature
 for 24 hours. The solvent was removed by concentration and to
 15 the residue was added a mixture of ethyl acetate and water.
 The mixture was adjusted to pH 1 with 6N hydrochloric acid.
 The separated aqueous layer was adjusted to pH 8 with 20%
 aqueous potassium carbonate solution and extracted with ethyl
 acetate. The extract was washed with water, dried over
 20 magnesium sulfate and evaporated in vacuo to give 2-[(4-
 nitrobenzyl)oxy]methyl}pyridine (9.55 g) as an oil.

¹H-NMR(DMSO-d₆): δ 4.68 (2H, s), 4.78 (2H, s), 7.29-7.36 (1H,
 m), 7.51 (1H, d, J=7.8Hz), 7.67 (2H, d, J=8.8Hz), 7.83 (1H, dt,
 J=1.7Hz, 7.8Hz), 8.24 (2H, d, J=8.8Hz), 8.52-8.55 (1H, m)

25 Preparation 47

4-[(2-Pyridinylmethoxy)methyl]aniline was obtained from
 2-[(4-nitrobenzyl)oxy]methyl}pyridine in the same manner as
 in Preparation 3.

¹H-NMR(DMSO-d₆): δ 4.39 (2H, s), 4.52 (2H, s), 5.07 (2H, s),
 30 6.54 (2H, d, J=8.3Hz), 7.02 (2H, d, J=8.3Hz), 7.27-7.31 (1H,
 m), 7.43 (1H, d, J=7.8Hz), 7.79 (1H, dt, J=1.7Hz, 7.8Hz),
 8.48-8.53 (1H, m)

Example 70

4',5-Dimethyl-N-{4-[(2-pyridinylmethoxy)methyl]phenyl}-
 35 1,1'-biphenyl-2-carboxamide was obtained from 4',5-dimethyl-
 1,1'-biphenyl-2-carboxylic acid and 4-[(2-pyridinylmethoxy)-
 methyl]aniline in the same manner as in Example 66.

¹H-NMR(DMSO-d₆): δ 2.28 (3H, s), 2.40 (3H, s), 4.53 (2H, s),

4.57 (2H, s), 7.16 (2H, d, J=8.0Hz), 7.24-7.35 (7H, m), 7.41-7.56 (4H, m), 7.80 (1H, dt, J=1.8Hz, 7.6Hz), 8.51 (1H, d, J=4.1Hz), 10.16 (1H, s)
 (-)APCI-MS: 421 (M+H)⁻

5 Example 71

4-Methoxy-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained from 4-methoxy-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate in the same manner as in Example 29 as white crystals.

¹H-NMR (DMSO-d₆): δ 2.96 (2H, t, J=7.4Hz), 3.33 (2H, td, J=7.4, 5.8Hz), 3.86 (3H, s), 5.53 (1H, t, J=5.8Hz), 6.51 (2H, d, J=8.9Hz), 7.1-7.8 (8H, m), 8.45-8.55 (1H, m), 9.91 (1H, s)
 ESI-MS (m/z): 514 (M+Na)⁺, 492 (M+H)⁺

Example 72

4-Methoxy-4'-methyl-N-(4-{[2-(2-pyridinyl)ethyl]amino}-phenyl)-1,1'-biphenyl-2-carboxamide was obtained from 4-methoxy-4'-methyl-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate in the same manner as in Example 29 as white crystals.

¹H-NMR (DMSO-d₆): δ 2.28 (3H, s), 2.96 (2H, t, J=7.0Hz), 3.33 (2H, td, J=7.0, 5.7Hz), 3.83 (3H, s), 5.50 (1H, t, J=5.7Hz), 6.51 (2H, d, J=8.8Hz), 7.0-7.4 (12H, m), 7.65-7.75 (1H, m), 8.50 (1H, d, J=4.1Hz), 9.78 (1H, s)
 ESI-MS (m/z): 460 (M+Na)⁺, 438 (M+H)⁺

Example 73

4'-Chloro-4-methoxy-N-(4-{[2-(2-pyridinyl)ethyl]amino}-phenyl)-1,1'-biphenyl-2-carboxamide was obtained from 4'-chloro-4-methoxy-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate in the same manner as in Example 29 as white crystals.

¹H-NMR (DMSO-d₆): δ 2.96 (2H, t, J=7.1Hz), 3.34 (2H, td, J=7.1, 5.7Hz), 3.85 (3H, s), 5.52 (1H, t, J=5.7Hz), 6.51 (2H, d, J=8.8Hz), 7.1-7.4 (11H, m), 7.7-7.85 (1H, m), 8.55-8.65 (1H, m), 9.84 (1H, s)
 ESI-MS (m/z): 480 (M+Na)⁺, 458 (M+H)⁺

Example 74

4'-Fluoro-4-methoxy-N-(4-([2-(2-pyridinyl)ethyl]amino)-phenyl)-1,1'-biphenyl-2-carboxamide was obtained from 4'-fluoro-4-methoxy-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate in the same
5 manner as in Example 29 as white crystals.

¹H-NMR (DMSO-d₆) : δ 2.96 (2H, t, J=7.0Hz), 3.33 (2H, td, J=7.0, 5.7Hz), 3.84 (3H, s), 5.52 (1H, t, J=5.7Hz), 6.51 (2H, d, J=8.8Hz), 7.0-7.5 (11H, m), 7.65-7.8 (1H, m), 8.50 (1H, d, J=4.8Hz), 9.80 (1H, s)

10 ESI-MS (m/z) : 464 (M+Na)⁺, 442 (M+H)⁺

Example 75

To a suspension of tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate (1.567 g), 2-(4-fluorophenyl)-1-cyclohexene-1-carboxylic acid (1.1 g) and 1-hydroxybenzotriazole hydrate (766 mg) in tetrahydrofuran (40 ml) was added 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide (776 mg) at ambient temperature. The resulting solution was stirred at ambient temperature for 20 hours and poured into water. The separated organic layer was washed with brine,
15 dried over magnesium sulfate and evaporated in vacuo. The residue was purified by column chromatography on silica gel eluting with hexane:ethyl acetate (1:2) to give tert-butyl 4-((2-(4-fluorophenyl)-1-cyclohexen-1-yl)carbonyl)amino)-phenyl[2-(2-pyridinyl)ethyl]carbamate (1.59 g) as a light
20 yellow solid.
25

¹H-NMR (DMSO-d₆) : δ 1.29 (9H, s), 1.7-1.9 (4H, m), 2.35-2.5 (4H, m), 2.85 (2H, t, J=7.5Hz), 3.84 (2H, t, J=7.5Hz), 7.01 (2H, d, J=8.9Hz), 7.10 (2H, d, J=8.9Hz), 7.15-7.35 (6H, m), 7.6-7.75 (1H, m), 8.43 (1H, d, J=4.8Hz), 9.58 (1H, s)

30 APCI-MS (m/z) : 516 (M+H)⁺

Example 76

To a solution of tert-butyl 4-((2-(4-fluorophenyl)-1-cyclohexen-1-yl)carbonyl)amino)phenyl[2-(2-pyridinyl)ethyl]carbamate (1.58 g) in dichloromethane (10 ml) was added trifluoroacetic acid (2.8 g) at ambient temperature and the mixture was stirred at ambient temperature for 19 hours. The mixture was evaporated in vacuo and a mixture of dichloromethane and aqueous sodium hydrogencarbonate solution

was added to the residue. The separated organic layer was washed with brine, dried over magnesium sulfate and evaporated in vacuo. The residue was purified by column chromatography on silica gel eluting with ethyl acetate and crystallized from 5 ethyl acetate to give 2-(4-fluorophenyl)-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-1-cyclohexene-1-carboxamide (796 mg) as white crystals.

10 $^1\text{H-NMR}$ (DMSO-d₆): δ 1.7-1.9 (4H, m), 2.35-2.5 (4H, m), 2.96 (2H, t, J=7.4Hz), 3.34 (2H, td, J=7.4, 5.8Hz), 5.51 (1H, t, J=5.8Hz), 6.50 (2H, d, J=8.9Hz), 7.2-7.6 (15H, m), 7.65-7.8 (1H, m), 8.52 (1H, d, J=4.9Hz), 9.80 (1H, s)
APCI-MS(m/z): 416(M+H)⁺

Preparation 48

15 A mixture of tert-butyl 4-(2-aminoethyl)-1,3-thiazol-2-ylcarbamate (0.882 g), 1-fluoro-4-nitrobenzene (0.511 g) and triethylamine (0.76 ml) in 1,3-dimethyl-2-imidazolidinone (10 ml) was heated at 50°C for 3 hours. The reaction mixture was cooled to ambient temperature, poured into water and extracted with ethyl acetate. The organic layer was washed with brine, 20 dried over magnesium sulfate, filtered and concentrated in vacuo. The residue was purified by column chromatography on silica gel eluting with hexane:ethyl acetate (2:1) to give tert-butyl 4-[2-(4-nitroanilino)ethyl]-1,3-thiazol-2-ylcarbamate (0.763 g) as a yellow oil.

25 $^1\text{H-NMR}$ (CDCl₃): δ 1.54 (9H, s), 2.97 (2H, t, J=6.3Hz), 3.47 (2H, q, J=6.3Hz), 5.04 (1H, br s), 6.48 (2H, d, J=9.2Hz), 6.59 (1H, s), 8.04 (2H, d, J=9.2Hz)

Preparation 49

30 To a solution of tert-butyl 4-[2-(4-nitroanilino)ethyl]-1,3-thiazol-2-ylcarbamate (0.749 g) and 4-dimethylaminopyridine (25 mg) in tetrahydrofuran (30 ml) was added di-tert-butyl dicarbonate (0.673 g) and the mixture was heated at 50°C for an hour. The reaction mixture was cooled to ambient temperature and concentrated in vacuo to give tert-butyl 2-{2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl(4-nitrophenyl)carbamate (0.955 g) as a yellow oil. 35 The product was used for the next step without further purification.

Preparation 50

A solution of tert-butyl 2-{2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl(4-nitrophenyl)carbamate (0.955 g) in methanol (30 ml) was hydrogenated over 10% palladium on carbon at ambient temperature under atmospheric pressure of hydrogen for an hour. The reaction mixture was filtered through a pad of celite, and the filtrate was concentrated in vacuo. The residue was purified by column chromatography on silica gel eluting with hexane:ethyl acetate (2:1) to give tert-butyl 4-{2-[N-(4-aminophenyl)-N-(tert-butoxycarbonyl)amino]ethyl}-1,3-thiazol-2-ylcarbamate (0.709 g) as a yellow oil.

¹H-NMR (CDCl₃): δ 1.51 (18H, s), 2.94 (2H, t, J=6.6Hz), 3.38 (2H, t, J=6.6Hz), 6.52 (2H, d, J=8.6Hz), 6.60 (2H, d, J=8.9Hz), 6.76 (1H, s)

Example 77

To a solution of tert-butyl 4-{2-[N-(4-aminophenyl)-N-(tert-butoxycarbonyl)amino]ethyl}-1,3-thiazol-2-ylcarbamate (0.329 g), 5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid (0.212 g) and 1-hydroxybenzotriazole (0.123 g) in N,N-dimethylformamide (15 ml) was added 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (0.174 g), followed by addition of triethylamine (0.16 ml) at ambient temperature. The reaction mixture was stirred at 50°C for 12 hours and concentrated in vacuo. The residue was dissolved in ethyl acetate and water, and extracted with ethyl acetate. The organic layer was washed with water and brine, dried over magnesium sulfate, filtered and concentrated in vacuo. The residue was purified by column chromatography on silica gel eluting with hexane:ethyl acetate (1:1) to give tert-butyl 2-{2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl[4-((5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-yl)carbonyl)amino]phenyl]carbamate (0.387 g) as a pale yellow foam.

Example 78

To a solution of tert-butyl 2-{2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl[4-((5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-yl)carbonyl)amino]phenyl]-

carbamate (0.387 g) in dichloromethane (15 ml) was added trifluoroacetic acid (1.3 ml). The reaction mixture was stirred for 15 hours, quenched with 10% aqueous potassium carbonate solution and extracted with dichloromethane. The 5 organic layer was washed with brine, dried over magnesium sulfate, filtered and concentrated in vacuo. The residue was recrystallized from ethyl acetate-diisopropyl ether to give N-(4-[(2-(2-amino-1,3-thiazol-4-yl)ethyl]amino)phenyl)-5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (0.163 g) as 10 a white solid.

15 $^1\text{H-NMR}$ (DMSO-d₆): δ 2.41 (3H, s), 2.63 (2H, t, J=7.3Hz), 3.19 (2H, q, J=6.9Hz), 5.46 (1H, t, J=5.7Hz), 6.20 (1H, s), 6.47 (2H, d, J=8.9Hz), 6.85 (2H, s), 7.19 (1H, d, J=8.9Hz), 7.32 (2H, d, J=10.2Hz), 7.48 (1H, d, J=7.6Hz), 7.61 (2H, d, J=7.9Hz), 7.74 (2H, d, J=8.2Hz), 9.84 (1H, s)
ESI-MS (m/z): 497 (M+H)⁺

20 Example 79
tert-Butyl 2-{2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl(4-[(4',5-dimethyl-1,1'-biphenyl-2-yl)carbonyl]amino)phenyl carbamate was obtained from 4',5-dimethyl-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-{2-[N-(4-aminophenyl)-N-(tert-butoxycarbonyl)amino]ethyl}-1,3-thiazol-2-ylcarbamate in the same manner as in Example 77 as a pale yellow foam.

25 Example 80
N-(4-[(2-Amino-1,3-thiazol-4-yl)ethyl]amino)phenyl)-4',5-dimethyl-1,1'-biphenyl-2-carboxamide was obtained from tert-butyl 2-{2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl(4-[(4',5-dimethyl-1,1'-biphenyl-2-yl)carbonyl]amino)phenyl carbamate in the same manner as in Example 78 as an orange foam.

30 $^1\text{H-NMR}$ (DMSO-d₆): δ 2.29 (3H, s), 2.38 (3H, s), 2.63 (2H, t, J=7.3Hz), 3.19 (2H, q, J=6.9Hz), 5.43 (1H, t, J=5.7Hz), 6.20 (1H, s), 6.47 (2H, d, J=8.9Hz), 6.85 (2H, s), 7.14-7.24 (6H, m), 7.32 (2H, d, J=8.2Hz), 7.37 (2H, d, J=8.2Hz), 9.69 (1H, s)
ESI-MS (m/z): 443 (M+H)⁺

35 Example 81
To a solution of 6-methyl-4'-(trifluoromethyl)-1,1'-

biphenyl-2-carboxylic acid (232 mg) in toluene (5 ml) were added thionyl chloride (0.1 ml) and N,N-dimethylformamide (1 drop) and the mixture was stirred at 100°C for 3 hours. The mixture was evaporated in vacuo and the residue was dissolved in tetrahydrofuran (2 ml). The obtained acid chloride solution in tetrahydrofuran was added to a solution of tert-butyl 4-aminophenyl[2-{2-[{(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl]carbamate (300 mg) and triethylamine (0.19 ml) in tetrahydrofuran (5 ml) at ambient temperature and the mixture was stirred at ambient temperature for 2 hours. The mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate and evaporated in vacuo. The residue was purified by column chromatography on silica gel eluting with hexane:ethyl acetate (3:1) to give tert-butyl 2-{2-[{(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl[4-{{[6-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-yl]carbonyl}amino}phenyl]carbamate (387 mg) as a yellow foam.

Example 82

To a solution of tert-butyl 2-{2-[{(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl[4-{{[6-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-yl]carbonyl}amino}phenyl]carbamate (387 mg) in dichloromethane (15 ml) was added trifluoroacetic acid (1.7 ml). The reaction mixture was stirred for 15 hours, quenched with 10% aqueous potassium carbonate solution and extracted with dichloromethane. The organic layer was washed with brine, dried over magnesium sulfate, filtered and concentrated in vacuo. The residue was purified by column chromatography on silica gel eluting with hexane:ethyl acetate (3:1) to give N-(4-{[2-(2-amino-1,3-thiazol-4-yl)ethyl]amino}phenyl)-6-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (179 mg) as an orange foam.

¹H-NMR(DMSO-d₆): δ 2.08 (3H, s), 2.61 (2H, t, J=7.1Hz), 3.16 (2H, t, J=7.1Hz), 5.41 (1H, t, J=5.6Hz), 6.18 (1H, s), 6.42 (2H, d, J=8.6Hz), 6.83 (2H, br s), 7.05 (2H, d, J=8.6Hz), 7.37-7.48 (5H, m), 7.73 (2H, d, J=8.2Hz), 9.68 (1H, s)
ESI-MS (m/z): 497 (M+H)⁺

Example 83

tert-Butyl 2-{2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl[4-({[4-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-yl]carbonyl}amino)phenyl]carbamate was obtained
 5 from 4-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl(2-{2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl)carbamate in the same manner as in Example 81 as a pale yellow oil.

Example 84

10 N-(4-{[2-(2-Amino-1,3-thiazol-4-yl)ethyl]amino}phenyl)-4-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained from tert-butyl 2-{2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl[4-({[4-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-yl]carbonyl}amino)phenyl]carbamate in the same
 15 manner as in Example 82 as a white solid.

¹H-NMR (DMSO-d₆): δ 2.41 (3H, s), 2.62 (2H, t, J=7.1Hz), 3.21 (2H, t, J=7.1Hz), 5.47 (1H, br s), 6.20 (1H, s), 6.48 (2H, d, J=8.9Hz), 6.84 (2H, s), 7.20 (2H, d, J=8.9Hz), 7.38 (1H, s), 7.39 (2H, d, J=7.9Hz), 7.60 (2H, d, J=7.9Hz), 7.73 (2H, d,
 20 J=8.9Hz), 9.90 (1H, s)
 ESI-MS (m/z): 497 (M+H)⁺

Example 85

tert-Butyl 2-{2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl(4-{[(4',6-dimethyl-1,1'-biphenyl-2-yl)carbonyl]amino}phenyl)carbamate was obtained from 4',6-dimethyl-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl(2-{2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl)carbamate in the same manner as in Example 81 as a pale yellow oil.
 30

Example 86

N-(4-{[2-(2-Amino-1,3-thiazol-4-yl)ethyl]amino}phenyl)-4',6-dimethyl-1,1'-biphenyl-2-carboxamide was obtained from tert-butyl 2-{2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl(4-{[(4',6-dimethyl-1,1'-biphenyl-2-yl)carbonyl]amino}phenyl)carbamate in the same manner as in Example 82 as a yellow foam.
 35

¹H-NMR (DMSO-d₆): δ 2.07 (3H, s), 2.29 (3H, s), 2.60 (2H, t, J=7.1Hz), 3.17 (2H, t, J=7.1Hz), 5.38 (1H, t, J=5.7Hz), 6.19

(1H, s), 6.42 (2H, d, J=8.9Hz), 6.83 (2H, s), 7.08-7.14 (6H, m), 7.28-7.37 (3H, m), 9.54 (1H, s)

ESI-MS (m/z) : 443 (M+H)⁺

Example 87

5 tert-Butyl 2-{2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl(4-{{(4,4'-dimethyl-1,1'-biphenyl-2-yl)carbonyl}amino}phenyl)carbamate was obtained from 4,4'-dimethyl-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl(2-{2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl)carbamate in the same manner as in Example 81 as a pale yellow oil.

10 Example 88
15 N-(4-{[2-(2-Amino-1,3-thiazol-4-yl)ethyl]amino}phenyl)-4,4'-dimethyl-1,1'-biphenyl-2-carboxamide was obtained from
20 tert-butyl 2-{2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl(4-{{(4,4'-dimethyl-1,1'-biphenyl-2-yl)carbonyl}amino}phenyl)carbamate in the same manner as in Example 82 as a pale brown foam.

25 ¹H-NMR (DMSO-d₆) : δ 2.07 (3H, s), 2.29 (3H, s), 2.60 (2H, t, J=7.1Hz), 3.17 (2H, t, J=7.1Hz), 5.38 (1H, t, J=5.7Hz), 6.19 (1H, s), 6.42 (2H, d, J=8.9Hz), 6.83 (2H, s), 7.08-7.14 (6H, m), 7.28-7.37 (3H, m), 9.54 (1H, s)
30 ESI-MS (m/z) : 443 (M+H)⁺

Example 89

35 tert-Butyl 2-{2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl(4-{{(4'-chloro-5-methyl-1,1'-biphenyl-2-yl)carbonyl}amino}phenyl)carbamate was obtained from 4'-chloro-5-methyl-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl(2-{2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl)carbamate in the same manner as in Example 81 as a pale yellow oil.

Example 90

40 N-(4-{[2-(2-Amino-1,3-thiazol-4-yl)ethyl]amino}phenyl)-4'-chloro-5-methyl-1,1'-biphenyl-2-carboxamide was obtained
45 from tert-butyl 2-{2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl(4-{{(4'-chloro-5-methyl-1,1'-biphenyl-2-yl)carbonyl}amino}phenyl)carbamate in the same manner as in Example 82 as a brown foam.

¹H-NMR (DMSO-d₆): δ 2.40 (3H, s), 2.63 (2H, t, J=7.2Hz), 3.19 (2H, dd, J=12.8, 6.9Hz), 5.44 (1H, t, J=5.7Hz), 6.20 (1H, s), 6.48 (2H, d, J=8.9Hz), 6.84 (2H, s), 7.18-7.29 (4H, m), 7.42-7.44 (5H, m), 9.75 (1H, s)

5 ESI-MS (m/z): 485 (M+Na)⁺

Example 91
tert-Butyl 2-{2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl(4-{{[4'-chloro-4-methyl-1,1'-biphenyl-2-yl]carbonyl}amino}phenyl)carbamate was obtained from 4'-
10 chloro-4-methyl-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl(2-{2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl)carbamate in the same manner as in Example 81 as a pale yellow oil.

Example 92
15 N-(4-{[2-(2-Amino-1,3-thiazol-4-yl)ethyl]amino}phenyl)-4'-chloro-4-methyl-1,1'-biphenyl-2-carboxamide was obtained from tert-butyl 2-{2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl(4-{{[4'-chloro-4-methyl-1,1'-biphenyl-2-yl]carbonyl}amino}phenyl)carbamate in the same manner as in
20 Example 82 as a pale brown solid.

¹H-NMR (DMSO-d₆): δ 2.39 (3H, s), 2.64 (2H, t, J=7.2Hz), 3.20 (2H, t, J=7.2Hz), 5.46 (1H, br s), 6.20 (1H, s), 6.48 (2H, d, J=8.6Hz), 6.84 (2H, s), 7.21 (2H, d, J=8.9Hz), 7.30-7.41 (8H, m), 9.83 (1H, s)

25 ESI-MS (m/z): 485 (M+Na)⁺

Example 93
tert-Butyl 2-{2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl[4-{{[6-methoxy-4'-(trifluoromethyl)-1,1'-biphenyl-2-yl]carbonyl}amino}phenyl]carbamate was obtained from 6-methoxy-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic
30 acid and tert-butyl 4-aminophenyl(2-{2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl)carbamate in the same manner as in Example 81 as a pale yellow oil.

Example 94
35 N-(4-{[2-(2-Amino-1,3-thiazol-4-yl)ethyl]amino}phenyl)-6-methoxy-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained from tert-butyl 2-{2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl[4-{{[6-methoxy-4'-(trifluoromethyl)-1,

1,1'-biphenyl-2-yl]carbonyl}amino)phenyl]carbamate in the same manner as in Example 82 as a yellow foam.

¹H-NMR (DMSO-d₆) : δ 2.61 (2H, t, J=7.2Hz), 3.17 (2H, q, J=6.7Hz), 3.75 (3H, s), 5.43 (1H, t, J=5.6Hz), 6.18 (1H, s), 6.43 (2H, d, J=8.9Hz), 6.83 (2H, br s), 7.06 (2H, d, J=8.9Hz), 7.14 (1H, d, J=6.9Hz), 7.23 (1H, d, J=7.9Hz), 7.45-7.50 (3H, m), 7.68 (2H, d, J=8.2Hz), 9.70 (1H, s)

ESI-MS (m/z) : 513 (M+H)⁺

Preparation 51

10 A mixture of 2-(2-methyl-1,3-thiazol-4-yl)ethylamine (6.823 g), 1-fluoro-4-nitrobenzene (8.123 g) and triethylamine (5.829 g) in 1,3-dimethyl-2-imidazolidinone (50 ml) was heated at 50°C for 16 hours. The reaction mixture was cooled to ambient temperature, poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, filtered and concentrated in vacuo. The residue was purified by column chromatography on silica gel eluting with hexane:ethyl acetate (2:1) to give N-[2-(2-methyl-1,3-thiazol-4-yl)ethyl]-4-nitroaniline (7.764 g) as a yellow oil.

¹H-NMR (CDCl₃) : δ 2.78 (3H, s), 3.05 (2H, t, J=6.3Hz), 3.54 (2H, t, J=6.3Hz), 6.54 (2H, d, J=8.9Hz), 6.83 (1H, s), 8.09 (2H, d, J=9.2Hz)

Preparation 52

25 To a solution of N-[2-(2-methyl-1,3-thiazol-4-yl)ethyl]-4-nitroaniline (7.764 g) and 4-dimethylaminopyridine (1.081 g) in tetrahydrofuran (100 ml) was added di-tert-butyl dicarbonate (8.366 g) and the mixture was heated at 50°C for 12 hours. The reaction mixture was cooled to ambient temperature and concentrated in vacuo. The residue was dissolved in ethyl acetate and water, and extracted with ethyl acetate. The organic layer was washed with water and brine, dried over magnesium sulfate, filtered and concentrated in vacuo. The residue was purified by column chromatography on silica gel eluting with hexane:ethyl acetate (4:1) to give tert-butyl 2-(2-methyl-1,3-thiazol-4-yl)ethyl(4-nitrophenyl)carbamate (10.62 g) as a dark orange oil.

¹H-NMR (CDCl₃) : δ 1.47 (9H, s), 2.60 (3H, s), 3.03 (2H, t,

WO 03/045921

J=7.0Hz), 4.08 (2H, t, J=7.0Hz), 6.76 (1H, s), 7.31 (2H, d, J=9.2Hz), 8.14 (2H, d, J=9.2Hz)

Preparation 53

A solution of tert-butyl 2-(2-methyl-1,3-thiazol-4-yl)ethyl(4-nitrophenyl)carbamate (10.63 g) in methanol (100 ml) was hydrogenated over 10% palladium on carbon (5.0 g, 50% wet) at ambient temperature under atmospheric pressure of hydrogen for 4.5 hours. The reaction mixture was filtered through a pad of celite, and the filtrate was concentrated in vacuo. The residue was purified by column chromatography on silica gel eluting with chloroform:methanol (19:1) to give tert-butyl 4-aminophenyl[2-(2-methyl-1,3-thiazol-4-yl)ethyl]carbamate (9.295 g) as yellow crystals.

¹H-NMR (CDCl₃): δ 1.39 (9H, s), 2.64 (3H, s), 2.96 (2H, t, J=7.6Hz), 3.63 (2H, br s), 3.90 (2H, t, J=7.6Hz), 6.67 (2H, d, J=7.9Hz), 6.78 (1H, s), 6.90 (2H, d, J=7.9Hz)

Example 95

To a solution of 6-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid (178 mg) in toluene (2 ml) were added thionyl chloride (151 mg) and N,N-dimethylformamide (1 drop) and the mixture was stirred at 80°C for 2 hours. The mixture was evaporated in vacuo and the residue was dissolved in tetrahydrofuran (2 ml). The obtained acid chloride solution in tetrahydrofuran was added to a solution of tert-butyl 4-aminophenyl[2-(2-methyl-1,3-thiazol-4-yl)ethyl]carbamate (176.5 mg) and triethylamine (107.1 mg) in tetrahydrofuran (5 ml) at ambient temperature and the mixture was stirred at ambient temperature for 30 minutes. The mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate and evaporated in vacuo to give tert-butyl 2-(2-methyl-1,3-thiazol-4-yl)ethyl[4-({[6-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-yl]carbonyl}amino)-phenyl]carbamate (350.4 mg) as an orange foam.

Example 96

To a solution of tert-butyl 2-(2-methyl-1,3-thiazol-4-yl)ethyl[4-({[6-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-yl]carbonyl}amino)phenyl]carbamate (315.1 mg) in

- dichloromethane (8 ml) was added trifluoroacetic acid (1.13 ml). The reaction mixture was stirred for 15 hours, quenched with 10% aqueous potassium carbonate solution and extracted with dichloromethane. The organic layer was washed with brine,
- 5 dried over magnesium sulfate, filtered and concentrated in vacuo. The residue was recrystallized from ethyl acetate-hexane to give 6-methyl-N-(4-{[2-(2-methyl-1,3-thiazol-4-yl)ethyl]amino}phenyl)-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (215.6 mg) as pale yellow crystals.
- 10 $^1\text{H-NMR}$ (CDCl_3): δ 2.16 (3H, s), 2.69 (3H, s), 2.98 (2H, t, $J=6.6\text{Hz}$), 3.40 (2H, t, $J=6.6\text{Hz}$), 6.47 (2H, d, $J=8.6\text{Hz}$), 6.67 (1H, s), 6.76 (1H, s), 6.83 (2H, d, $J=8.6\text{Hz}$), 7.38-7.40 (2H, m), 7.45 (2H, d, $J=8.0\text{Hz}$), 7.61 (1H, t, $J=5.3\text{Hz}$), 7.70 (2H, d, $J=8.0\text{Hz}$)
- 15 ESI-MS (m/z): 496 ($\text{M}+\text{H}$)⁺

Example 97

tert-Butyl 2-(2-methyl-1,3-thiazol-4-yl)ethyl[4-({[5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-yl]carbonyl}amino)phenyl]carbamate was obtained from 5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl[2-(2-methyl-1,3-thiazol-4-yl)ethyl]carbamate in the same manner as in Example 95 as a pale yellow foam.

Example 98

25 5-Methyl-N-(4-{[2-(2-methyl-1,3-thiazol-4-yl)ethyl]amino}phenyl)-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained from tert-butyl 2-(2-methyl-1,3-thiazol-4-yl)ethyl[4-({[5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-yl]carbonyl}amino)phenyl]carbamate in the same

30 manner as in Example 96 as pale yellow crystals.

16 $^1\text{H-NMR}$ (CDCl_3): δ 2.45 (3H, s), 2.69 (3H, s), 2.99 (2H, t, $J=6.6\text{Hz}$), 3.42 (2H, t, $J=6.6\text{Hz}$), 6.50 (2H, d, $J=8.6\text{Hz}$), 6.68 (1H, s), 6.77 (1H, s), 6.93 (2H, d, $J=8.6\text{Hz}$), 7.21-7.32 (2H, m), 7.57-7.72 (5H, m)

35 ESI-MS (m/z): 496 ($\text{M}+\text{H}$)⁺

Preparation 54

A mixture of tert-butyl 6-(2-aminoethyl)-2-pyridinylcarbamate (0.776 g), 1-fluoro-4-nitrobenzene (0.462

g) and triethylamine (0.69 ml) in 1,3-dimethyl-2-imidazolidinone (10 ml) was heated at 50°C for 3.5 hours. The reaction mixture was cooled to ambient temperature, poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, filtered and concentrated in vacuo. The residue was purified by column chromatography on silica gel eluting with hexane:ethyl acetate (3:2) to give tert-butyl 6-[2-(4-nitroanilino)ethyl]-2-pyridinylcarbamate (0.666 g) as a yellow oil.

¹H-NMR (CDCl₃): δ 1.53 (9H, s), 2.99 (2H, t, J=6.6Hz), 3.57 (2H, dd, J=12.2, 6.2Hz), 5.21 (1H, br s), 6.53 (2H, d, J=9.2Hz), 6.82 (1H, dd, J=7.6, 0.7Hz), 7.30 (1H, br s), 7.59 (1H, d, J=7.8Hz), 7.95 (1H, d, J=7.9Hz), 8.05 (2H, d, J=8.9Hz)

15 Preparation 55

A solution of tert-butyl 6-[2-(4-nitroanilino)ethyl]-2-pyridinylcarbamate (553 mg) in methanol (10 ml) was hydrogenated over 10% palladium on carbon (200 mg, 50% wet) at ambient temperature under atmospheric pressure of hydrogen for 2 hours. The reaction mixture was filtered through a short pad of celite, and the filtrate was concentrated in vacuo to give tert-butyl 6-{2-[(4-aminophenyl)amino]ethyl}-2-pyridinylcarbamate (426 mg) as a brown foamy solid.

¹H-NMR (CDCl₃): δ 1.52 (9H, s), 3.07 (2H, br s), 3.55 (2H, br s), 6.64 (2H, brd, J = 8.6 Hz), 6.78 (1H, d, J=6.9Hz), 7.07 (2H, brd, J=8.6Hz), 7.57 (1H, t, J=7.7Hz), 7.67 (1H, d, J=7.9Hz)
ESI-MS (m/z): 329 (M+H)⁺.

Example 99

To a solution of tert-butyl 6-{2-[(4-aminophenyl)amino]ethyl}-2-pyridinylcarbamate (213 mg), 5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid (181 mg) and 1-hydroxybenzotriazole (129 mg) in N,N-dimethylformamide (10 ml) was added 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (WSC.HCl) (162 mg), followed by addition of triethylamine (92 mg) at ambient temperature. The reaction mixture was stirred for 4 hours and concentrated in vacuo. The residue was dissolved in ethyl acetate and water, and extracted with ethyl

acetate. The organic layer was washed with brine, dried over magnesium sulfate, filtered and concentrated in vacuo. The residue was purified by column chromatography on silica gel eluting with chloroform:methanol (39:1) to give tert-butyl 6-(2-{[4-({[5-methyl-4'-trifluoromethyl]-1,1'-biphenyl-2-yl]carbonyl}amino)phenyl]amino}ethyl)-2-pyridinylcarbamate (339 mg) as a brown foam.

ESI-MS (m/z) : 613 (M+Na)⁺

Example 100

10 To a solution of tert-butyl 6-(2-{[4-({[5-methyl-4'-trifluoromethyl]-1,1'-biphenyl-2-yl]carbonyl}amino)phenyl]amino}ethyl)-2-pyridinylcarbamate (339 mg) in dichloromethane (10 ml) was added trifluoroacetic acid (0.99 g) by a syringe at 0°C. The reaction mixture was allowed to warm up to ambient 15 temperature and stirred for 12 hours. The reaction mixture was quenched with 10% aqueous potassium carbonate solution. The separated organic layer was washed with brine, dried over magnesium sulfate, filtered and concentrated in vacuo to give N-(4-{[2-(6-amino-2-pyridinyl)ethyl]amino}phenyl)-5-methyl-4'-trifluoromethyl)-1,1'-biphenyl-2-carboxamide (193 mg) as a 20 greenish yellow foam.

¹H-NMR (DMSO-d₆) : δ 2.41 (3H, s), 2.70 (2H, t, J=7.3Hz), 3.23 (2H, t, J=7.3Hz), 5.85 (2H, br s), 6.26 (1H, d, J=7.6Hz), 6.38 (1H, d, J=6.6Hz), 6.49 (2H, d, J=8.9Hz), 7.17-7.34 (5H, m),

25 7.48 (1H, d, J=7.6Hz), 7.61 (1H, d, J=7.9Hz), 7.74 (2H, d, J=8.2Hz), 9.84 (1H, s)

ESI-MS (m/z) : 491 (M+H)⁺

Example 101

30 tert-Butyl 6-{2-[{4-[(4',5-dimethyl-1,1'-biphenyl-2-yl)carbonyl}amino]phenyl]amino}ethyl}-2-pyridinylcarbamate was obtained from 4',5-dimethyl-1,1'-biphenyl-2-carboxylic acid and tert-butyl 6-{2-[{(4-aminophenyl)amino}ethyl]-2-pyridinylcarbamate in the same manner as in Example 99 as a dark brown oil.

35 ESI-MS (m/z) : 559 (M+Na)⁺

Example 102

N-(4-{[2-(6-Amino-2-pyridinyl)ethyl]amino}phenyl)-4',5-dimethyl-1,1'-biphenyl-2-carboxamide was obtained tert-butyl

WO 03/045921

6-{2-[{4-[{(4',5-dimethyl-1,1'-biphenyl-2-yl)carbonyl]amino}-phenyl]amino}ethyl]-2-pyridinylcarbamate in the same manner as in Example 100 as a pale brown foam.

5 $^1\text{H-NMR}$ (CDCl_3): δ 2.39 (3H, s), 2.42 (3H, s), 2.86 (2H, t, $J=6.6\text{Hz}$), 3.41 (2H, t, $J=6.6\text{Hz}$), 4.45 (2H, br s), 6.35 (1H, d, $J=7.9\text{Hz}$), 6.47-6.51 (3H, m), 6.70 (1H, br s), 6.90 (2H, d, $J=8.9\text{Hz}$), 7.18-7.37 (7H, m), 7.78 (1H, d, $J=7.9\text{Hz}$)
 ESI-MS (m/z): 437 ($\text{M}+\text{H})^+$

Preparation 56

10 To a solution of tert-butyl 6-(2-hydroxyethyl)-2-pyridinylcarbamate (3.92 g) in tetrahydrofuran (50 ml) was added potassium t-butoxide (1.85 g), and the mixture was stirred at ambient temperature for 1 hour. 1-Fluoro-4-nitrobenzene (2.79 g) in tetrahydrofuran (10 ml) was added and the mixture was heated at 75°C for 15 hours. The reaction mixture was cooled to ambient temperature, poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, filtered and concentrated in vacuo. The residue was purified by column chromatography on silica gel eluting with hexane:ethyl acetate (4:1→1:1) to give tert-butyl 6-[2-(4-nitrophenoxy)ethyl]-2-pyridinylcarbamate (3.86 g) as a yellow oil.

15 $^1\text{H-NMR}$ (CDCl_3): δ 1.51 (9H, s), 3.16 (2H, t, $J=6.7\text{Hz}$), 4.41 (2H, t, $J=6.7\text{Hz}$), 6.90 (1H, d, $J=7.2\text{Hz}$), 6.94 (2H, d, $J=9.5\text{Hz}$), 7.26 (1H, br s), 7.60 (1H, t, $J=7.7\text{Hz}$), 8.17 (2H, d, $J=9.2\text{Hz}$)

Preparation 57

20 A solution of tert-butyl 6-[2-(4-nitrophenoxy)ethyl]-2-pyridinylcarbamate (3.858 g) in methanol (150 ml) was hydrogenated over 10% palladium on carbon (1.543 g) at ambient temperature under atmospheric pressure of hydrogen for 1 hour. The reaction mixture was filtered through a short pad of celite, and the filtrate was concentrated in vacuo to give tert-butyl 6-[2-(4-aminophenoxy)ethyl]-2-pyridinylcarbamate (3.42 g) as a yellow oil.

25 $^1\text{H-NMR}$ (CDCl_3): δ 1.49 (9H, s), 3.09 (2H, t, $J=6.7\text{Hz}$), 4.20 (2H, t, $J=6.7\text{Hz}$), 6.71 (2H, d, $J=8.6\text{Hz}$), 6.84 (2H, d, $J=8.6\text{Hz}$), 6.89 (1H, d, $J=7.2\text{Hz}$), 7.58 (1H, dd, $J=8.2, 7.2\text{Hz}$), 7.78 (1H, d, $J=8.2\text{Hz}$)

Example 103

To a solution of tert-butyl 6-[2-(4-aminophenoxy)ethyl]-2-pyridinylcarbamate (0.504 g), 6-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid (0.429 g) and 1-hydroxybenzotriazole (0.248 g) in N,N-dimethylformamide (15 ml) was added 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (WSC.HCl) (0.352 g), followed by addition of triethylamine (0.32 ml) at ambient temperature. The reaction mixture was stirred at 50°C for 12 hours and concentrated in vacuo. The residue was dissolved in ethyl acetate and water, and extracted with ethyl acetate. The organic layer was washed with water and brine, dried over magnesium sulfate, filtered and concentrated in vacuo. The residue was purified by column chromatography on silica gel eluting with hexane:ethyl acetate (2:1) to give tert-butyl 6-{2-[4-({[6-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-yl]carbonyl}amino)phenoxy]ethyl}-2-pyridinylcarbamate (0.756 g) as a pale yellow oil.

¹H-NMR (DMSO-d₆): δ 1.45 (9H, s), 2.09 (3H, s), 3.03 (2H, t, J=6.7Hz), 4.24 (2H, t, J=6.7Hz), 6.79 (2H, d, J=8.9Hz), 6.97 (1H, dd, J=5.3, 2.6Hz), 7.28 (2H, d, J=8.9Hz), 7.40-7.49 (5H, m), 7.63-7.65 (2H, m), 7.73 (2H, d, J=7.9Hz), 9.61 (1H, s), 9.99 (1H, s)

Example 104

To a solution of tert-butyl 6-{2-[4-({[6-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-yl]carbonyl}amino)phenoxy]ethyl}-2-pyridinylcarbamate (0.756 g) in dichloromethane (30 ml) was added trifluoroacetic acid (1.5 ml). The reaction mixture was stirred for 15 hours, quenched with 10% aqueous potassium carbonate solution and extracted with dichloromethane. The organic layer was washed with brine, dried over magnesium sulfate, filtered and concentrated in vacuo. The residue was recrystallized from ethyl acetate-diisopropyl ether to give N-{4-[2-(6-amino-2-pyridinyl)ethoxy]phenyl}-6-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (0.416 g) as a white solid.

¹H-NMR (DMSO-d₆): δ 2.09 (3H, s), 2.89 (2H, t, J=6.7Hz), 4.18 (2H, t, J=6.7Hz), 5.87 (2H, br s), 6.29 (1H, d, J=8.2Hz), 6.43

(1H, d, J=7.2Hz), 6.79 (2H, d, J=8.9Hz), 7.26-7.32 (3H, m),
7.40-7.49 (5H, m), 7.73 (2H, d, J=8.2Hz), 9.98 (1H, s)
ESI-MS (m/z) : 492 (M+H)⁺

Example 105

5 tert-Butyl 6-{2-[4-({[5-methyl-4'-(trifluoromethyl)-
1,1'-biphenyl-2-yl]carbonyl}amino)phenoxy]ethyl}-2-
pyridinylcarbamate was obtained from 5-methyl-4'-
(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid and tert-
butyl 6-[2-(4-aminophenoxy)ethyl]-2-pyridinylcarbamate in the
10 same manner as in Example 103 as a faintly orange foamy solid.
1H-NMR (CDCl₃) : δ 1.51 (9H, s), 2.45 (3H, s), 3.09 (2H, t,
J=6.7Hz), 4.25 (2H, t, J=6.7Hz), 6.77 (2H, d, J=8.9Hz), 6.80
(1H, br s), 6.88 (1H, d, J=7.6Hz), 7.03 (2H, d, J=8.9Hz), 7.22
(2H, br s), 7.31 (1H, d, J=7.3Hz), 7.54-7.78 (7H, m)

15 Example 106

N-{4-[2-(6-Amino-2-pyridinyl)ethoxy]phenyl}-5-methyl-4'-
(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained
from tert-butyl 6-{2-[4-({[5-methyl-4'-(trifluoromethyl)-1,1'-
biphenyl-2-yl]carbonyl}amino)phenoxy]ethyl}-2-
20 pyridinylcarbamate in the same manner as in Example 104 as
colorless crystals.
1H-NMR (DMSO-d₆) : δ 2.42 (3H, s), 2.90 (2H, t, J=6.8Hz), 3.32
(2H, s), 4.20 (2H, t, J=6.8Hz), 5.83 (1H, br s), 6.29 (1H, d,
J=8.2Hz), 6.43 (1H, d, J=7.3Hz), 6.83 (2H, d, J=9.2Hz), 7.26-
25 7.41 (5H, m), 7.52 (1H, d, J=7.6Hz), 7.61 (2H, d, J=8.2Hz),
7.74 (2H, d, J=7.9Hz), 10.09 (1H, s)
ESI-MS (m/z) : 492 (M+H)⁺

Example 107

To a solution of tert-butyl 6-[2-(4-aminophenoxy)ethyl]-
30 2-pyridinylcarbamate (0.506 g), 4',6-dimethyl-1,1'-biphenyl-2-
carboxylic acid (0.348 g) and 1-hydroxybenzotriazole (0.249 g)
in N,N-dimethylformamide (15 ml) was added 1-[3-
(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride
(WSC.HCl) (0.353 g), followed by addition of triethylamine
35 (0.32 ml) at ambient temperature. The reaction mixture was
stirred at 50°C for 12 hours and concentrated in vacuo. The
residue was dissolved in ethyl acetate and water, and
extracted with ethyl acetate. The organic layer was washed

with water and brine, dried over magnesium sulfate, filtered and concentrated in vacuo. The residue was purified by column chromatography on silica gel eluting with hexane:ethyl acetate (2:1) to give tert-butyl 6-[2-(4-[(4',6-dimethyl-1,1'-biphenyl-2-yl)carbonyl]amino)phenoxy]ethyl]-2-pyridinylcarbamate (0.712 g) as a pale yellow oil.

5 $^1\text{H-NMR}$ (DMSO-d₆): δ 1.45 (9H, s), 2.08 (3H, s), 2.28 (3H, s), 3.02 (2H, t, J=6.7Hz), 4.24 (2H, t, J=6.7Hz), 6.79 (2H, d, J=8.9Hz), 6.95-6.98 (1H, m), 7.14-7.64 (11H, m), 9.61 (1H, s), 10 9.83 (1H, s)

Example 108

To a solution of tert-butyl 6-[2-(4-[(4',6-dimethyl-1,1'-biphenyl-2-yl)carbonyl]amino)phenoxy]ethyl]-2-pyridinylcarbamate (0.712 g) in dichloromethane (30 ml) was added trifluoroacetic acid (1.53 ml). The reaction mixture was stirred for 15 hours, quenched with 10% aqueous potassium carbonate solution and extracted with dichloromethane. The organic layer was washed with brine, dried over magnesium sulfate, filtered and concentrated in vacuo. The residue was recrystallized from ethyl acetate-diisopropyl ether to give N-(4-[2-(6-amino-2-pyridinyl)ethoxy]phenyl)-4',6-dimethyl-1,1'-biphenyl-2-carboxamide (0.484 g) as a white solid.

20 $^1\text{H-NMR}$ (DMSO-d₆): δ 2.08 (3H, s), 2.28 (3H, s), 2.88 (2H, t, J=6.7Hz), 4.18 (2H, t, J=6.7Hz), 5.82 (2H, br s), 6.27 (1H, d, J=8.2Hz), 6.42 (1H, d, J=7.2Hz), 6.78 (2H, d, J=9.2Hz), 7.14 (4H, br s), 7.25-7.38 (6H, m), 9.83 (1H, s)

25 ESI-MS (m/z): 438 (M+H)⁺

Example 109

To a solution of 4',5-dimethyl-1,1'-biphenyl-2-carboxylic acid (266 mg), tert-butyl 6-[2-(4-aminophenoxy)ethyl]-2-pyridinylcarbamate (387 mg) and 1-hydroxybenzotriazole (216 mg) in N,N-dimethylformamide (10 ml) was added 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (WSC.HCl) (270 mg), followed by addition of triethylamine (155 mg) at ambient temperature. The reaction mixture was stirred at 50°C for 16 hours and concentrated in vacuo. The residue was dissolved in ethyl acetate and water, and extracted with ethyl acetate. The organic layer was

washed with brine, dried over magnesium sulfate, filtered and concentrated in vacuo. The residue was purified by column chromatography on silica gel eluting with hexane:ethyl acetate (2:1) to give tert-butyl 6-[2-(4-{[(4',5-dimethyl-1,1'-

5 biphenyl-2-yl)carbonyl]amino}phenoxy)ethyl]-2-pyridinylcarbamate (466 mg) as a pale brown foamy solid.

¹H-NMR (CDCl₃): δ 1.52 (9H, s), 2.39 (3H, s), 2.43 (3H, s), 3.08 (2H, t, J=6.7Hz), 4.25 (2H, t, J=6.7Hz), 6.75 (2H, d, J=8.9Hz), 6.79 (1H, br s), 6.88 (1H, d, J=7.6Hz), 6.99 (2H, d, J=8.9Hz), 7.16-7.27 (5H, m), 7.35 (2H, d, J=7.9Hz), 7.57 (1H, t, J=7.8Hz), 7.78 (2H, t, J=8.4Hz)

Example 110

To a solution of tert-butyl 6-[2-(4-{[(4',5-dimethyl-1,1'-biphenyl-2-yl)carbonyl]amino}phenoxy)ethyl]-2-pyridinylcarbamate (527 mg) in dichloromethane (20 ml) was added trifluoroacetic acid (1.59 g) by a syringe at 0°C. The reaction mixture was allowed to warm up to ambient temperature and stirred for 16 hours. The reaction was quenched with 10% aqueous potassium carbonate solution. The separated organic layer was washed with brine, dried over magnesium sulfate, filtered and concentrated in vacuo. The residue was purified by column chromatography on silica gel eluting with chloroform:methanol (19:1) to give N-{4-[2-(6-amino-2-pyridinyl)ethoxy]phenyl}-4',5-dimethyl-1,1'-biphenyl-2-carboxamide (388 mg) as a pale brown foamy solid.

¹H-NMR (DMSO-d₆): δ 2.29 (3H, s), 2.39 (3H, s), 2.90 (2H, t, J=6.9Hz), 3.32 (2H, br s), 4.20 (2H, t, J=6.9Hz), 5.82 (1H, br s), 6.27 (1H, d, J=8.2Hz), 6.43 (1H, d, J=6.6Hz), 6.83 (2H, d, J=8.9Hz), 7.16 (2H, d, J=7.9Hz), 7.23-7.42 (8H, m), 9.95 (1H, br s)

ESI-MS (m/z): 438 (M+H)⁺

Example 111

4-Chloro-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained from 4-chloro-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate in the same manner as in Example 29.

¹H-NMR (DMSO-d₆): δ 2.96 (2H, t, J=7.32Hz), 3.30-3.40 (2H, m),

5.57 (1H, t, J=5.68Hz), 6.52 (2H, d, J=8.74Hz), 7.19-7.32 (4H, m), 7.50-7.79 (9H, m), 8.51 (1H, d, J=4.30Hz), 10.04 (1H, s)
APCI-MS (m/z) : 496 (M+H)⁺

Example 112

5 4,4'-Dichloro-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-1,1'-biphenyl-2-carboxamide was obtained from 4,4'-dichloro-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate in the same manner as in Example 29.

10 ¹H-NMR (DMSO-d₆) : δ 2.96 (2H, t, J=7.36Hz), 3.30-3.40 (2H, m), 5.56 (1H, t, J=5.76Hz), 6.52 (2H, d, J=8.78Hz), 7.19-7.32 (4H, m), 7.44-7.70 (8H, m), 8.51 (1H, d, J=4.56Hz), 9.98 (1H, s)
APCI-MS (m/z) : 462 (M+H)⁺

Example 113

15 4-Chloro-4'-fluoro-N-(4-{[2-(2-pyridinyl)ethyl]amino}-phenyl)-1,1'-biphenyl-2-carboxamide was obtained from 4-chloro-4'-fluoro-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate in the same manner as in Example 29.

20 ¹H-NMR (DMSO-d₆) : δ 2.96 (2H, t, J=7.34Hz), 3.39-3.39 (2H, m), 5.55 (1H, t, J=5.74Hz), 6.52 (2H, d, J=8.80Hz), 7.18-7.32 (6H, m), 7.41-7.48 (3H, m), 7.58-7.70 (3H, m), 8.51 (1H, d, J=4.44Hz), 9.94 (1H, s)
APCI-MS (m/z) : 446 (M+H)⁺

25 Example 114

4-Chloro-4'-methyl-N-(4-{[2-(2-pyridinyl)ethyl]amino}-phenyl)-1,1'-biphenyl-2-carboxamide was obtained from 4-chloro-4'-methyl-1,1'-biphenyl-2-carboxylic acid and tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate in the same manner as in Example 29.

30 ¹H-NMR (DMSO-d₆) : δ 2.29 (3H, s), 2.96 (2H, t, J=7.32Hz), 3.30-3.40 (2H, m), 5.57 (1H, t, J=5.68Hz), 6.52 (2H, d, J=8.74Hz), 7.19-7.32 (4H, m), 7.50-7.79 (9H, m), 8.51 (1H, d, J=4.30Hz), 10.04 (1H, s)

35 APCI-MS (m/z) : 442 (M+H)⁺

Example 115

A mixture of 2-(4-methylphenyl)-1-cyclohexene-1-carboxylic acid (325 mg), tert-butyl 4-aminophenyl[2-(2-

- pyridinyl)ethyl]carbamate (494 mg), 1-hydroxybenzotriazole hydrate (242 mg) and 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (301 mg) in dichloromethane (8 ml) was stirred at ambient temperature overnight.
- 5 Trifluoroacetic acid (8 ml) was added to the reaction mixture and the resultant mixture was stirred at ambient temperature for 4 hours. The reaction mixture was concentrated in vacuo. The residue was dissolved in a mixture of ethyl acetate and water, and the solution was adjusted to pH 8.0 with aqueous potassium carbonate solution. The organic layer was washed with brine and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was chromatographed on silica gel eluting with ethyl acetate:n-hexane (8:2). The fractions containing the desired product were collected and evaporated in vacuo and the residue was recrystallized from ethyl acetate and diisopropyl ether to give 2-(4-methylphenyl)-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-1-cyclohexene-1-carboxamide (85 mg).
- 10 $^1\text{H-NMR}$ (DMSO-d₆): δ 1.70 (4H, br s), 2.22 (3H, s), 2.33 (4H, br s), 2.93 (2H, t, J=7.33Hz), 3.26-3.34 (2H, m), 5.45 (1H, s), 6.43 (2H, d, J=8.80Hz), 7.03-7.07 (4H, m), 7.16-7.30 (4H, m), 7.65-7.73 (1H, m), 8.48-8.51 (1H, m), 9.06 (1H, s)
- 15 ESI-MS (m/z): 412 (M+H)⁺
- Example 116
- 20 N-(4-{[2-(2-Pyridinyl)ethyl]amino}phenyl)-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide was obtained from 2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxylic acid and tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate in the same manner as in Example 115.
- 25 $^1\text{H-NMR}$ (DMSO-d₆): δ 1.72 (4H, br s), 2.38 (4H, br s), 2.93 (2H, t, J=7.38Hz), 3.26-3.34 (2H, m), 5.52 (1H, s), 6.43 (2H, d, J=8.80Hz), 7.00 (2H, d, J=8.80Hz), 7.17-7.30 (2H, m), 7.48 (2H, d, J=8.16Hz), 7.65-7.73 (3H, m), 8.48-8.51 (1H, m), 9.20 (1H, s)
- 30 ESI-MS (m/z): 466 (M+H)⁺
- Example 117
- 35 2-(4-Methoxyphenyl)-N-(4-{[2-(2-pyridinyl)ethyl]amino}-phenyl)-1-cyclohexene-1-carboxamide was obtained from 2-(4-

methoxyphenyl)-1-cyclohexene-1-carboxylic acid and tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate in the same manner as in Example 115.

5 $^1\text{H-NMR}$ (DMSO-d₆) : δ 1.69 (4H, br s), 2.33 (4H, br s), 2.93 (2H, t, J=7.39Hz), 3.29-3.33 (2H, m), 3.63 (3H, s), 5.44 (1H, br s), 6.43 (2H, d, J=8.80Hz), 6.80 (2H, d, J=8.80Hz), 7.05 (2H, d, J=8.80Hz), 7.17-7.30 (4H, m), 7.65-7.73 (1H, m), 8.48-8.51 (1H, m), 9.54 (1H, s)

ESI-MS (m/z) : 428 (M+H)⁺

10 Example 118

2-(4-Chlorophenyl)-N-(4-{[2-(2-pyridinyl)ethyl]amino}-phenyl)-1-cyclohexene-1-carboxamide was obtainind from 2-(4-chlorophenyl)-1-cyclohexene-1-carboxylic acid and tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate in the same

15 manner as in Example 115.

1 $^1\text{H-NMR}$ (DMSO-d₆) : δ 1.71 (4H, br s), 2.34 (4H, br s), 2.94 (2H, t, J=7.34Hz), 3.27-3.33 (2H, m), 5.50 (1H, br s), 6.44 (2H, d, J=8.76Hz), 7.04 (2H, d, J=8.76Hz), 7.18-7.36 (6H, m), 7.65-7.73 (1H, m), 8.48-8.51 (1H, m), 9.16(1H, s)

20 ESI-MS (m/z) : 432 (M+H)⁺

Example 119

A mixture of 2-[4-(dimethylamino)phenyl]-1-cyclohexene-1-carboxylic acid (367 mg), tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate (494 mg), 1-hydroxybenzotriazole hydrate (242 mg) and 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (301 mg) in N,N-dimethylformamide (10 ml) was stirred at ambient temperature overnight. The reaction mixture was poured into a mixture of ethyl acetate and water, and the mixture was adjusted to pH 8.0 with aqueous potassium carbonate solution. The organic layer was washed with brine and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was dissolved in a mixture of dichloromethane (5 ml) and trifluoroacetic acid (8 ml). The resultant mixture was stirred at ambient temperature for 4 hours. The reaction mixture was concentrated in vacuo. The residue was dissolved in a mixture of ethyl acetate and water, and the solution was adjusted to pH 8.0 with aqueous potassium carbonate solution.

The organic layer was washed with brine and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was chromatographed on silica gel eluting with ethyl acetate:n-hexane (8:2). The fractions containing the desired product were collected and evaporated in vacuo and the residue was recrystallized from ethyl acetate and diisopropyl ether to give 2-[4-(dimethylamino)phenyl]-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-1-cyclohexene-1-carboxamide (140 mg).

¹H-NMR (DMSO-d₆): δ 1.68 (4H, br s), 2.32 (4H, br s), 2.83 (6H, s), 2.94 (2H, t, J=7.39Hz), 3.27-3.33 (2H, m); 5.44 (1H, br s), 6.44 (2H, d, J=8.80Hz), 6.59 (2H, d, J=8.76Hz), 7.07-7.30 (6H, m), 7.64-7.73 (1H, m), 8.48-8.51 (1H, m), 8.98 (1H, s)
ESI-MS (m/z): 441 (M+H)⁺

15 Preparation 58

To a suspension of 5-nitroindoline (3.28 g), 2-pyridylacetic acid hydrochloride (3.82 g), 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (4.22 g) and 1-hydroxybenzotriazole hydrate (3.37 g) in dichloromethane (100 ml) was added dropwise triethylamine (4.45 g) at ambient temperature and the resultant solution was stirred at ambient temperature for 18 hours. The mixture was poured into water and the separated organic layer was washed with water and brine, dried over magnesium sulfate and evaporated in vacuo. The residue was purified by column chromatography on silica gel eluting with ethyl acetate to give 5-nitro-1-(2-pyridylacetyl)indoline (3.58 g) as a yellow solid.

¹H-NMR (DMSO-d₆): δ 3.26 (2H, t, J=8.5Hz), 4.10 (2H, s), 4.33 (2H, t, J=8.5Hz), 7.25-7.35 (1H, m), 7.38 (1H, d, J=7.8Hz), 7.75-7.9 (1H, m), 8.1-8.2 (3H, m), 8.50-8.55 (1H, m)
APCI-MS (m/z): 284 (M+H)⁺

Preparation 59

To a solution of 5-nitro-1-(2-pyridylacetyl)indoline (3.54 g) in methanol (50 ml) and tetrahydrofuran (THF) (50 ml) was added 10% palladium on carbon (50% wet, 3.5 g) and the mixture was hydrogenated under hydrogen at atmospheric pressure for 5 hours. After removing the palladium on carbon

- by filtration, the filtrate was evaporated in vacuo. The residue was purified by column chromatography on silica gel eluting with ethyl acetate:methanol (10:1) to give 1-(2-pyridinylacetyl)-5-indolinamine (2.16 g) as pale brown crystals.
- 5 ¹H-NMR (DMSO-d₆) :δ 3.01(2H, t, J=8.4Hz), 3.92(2H, s), 4.11(2H, t, J=8.4Hz), 4.84(2H, br s), 6.32(1H, d, J=8.4Hz), 6.45(1H, s), 7.1-7.2(1H, m), 7.33(1H, d, J=7.8Hz), 7.7-7.85(2H, m), 8.48(1H, d, J=4.0Hz)
- 10 APCI-MS (m/z) : 254 (M+H)⁺

Example 120

To a suspension of 1-(2-pyridinylacetyl)-5-indolinamine (506 mg), 2-(4-fluorophenyl)-1-cyclohexene-1-carboxylic acid (440 mg) and 1-hydroxybenzotriazole hydrate (337 mg) in N,N-dimethylformamide (30 ml) was added dropwise 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide (341 mg) at ambient temperature and the resultant solution was stirred at the same temperature for 18 hours. The reaction mixture was poured into water and the separated organic layer was washed with water and brine, dried over magnesium sulfate and evaporated in vacuo. The residue was purified by column chromatography on silica gel eluting with ethyl acetate to give 2-(4-fluorophenyl)-N-[1-(2-pyridinylacetyl)-2,3-dihydro-1H-indol-5-yl]-1-cyclohexene-1-carboxamide (620 mg) as white crystals.

15 ¹H-NMR (DMSO-d₆) :δ 1.6-1.8(4H, m), 2.25-2.45(4H, m), 3.06(2H, t, J=8.2Hz), 3.96(2H, s), 4.15(2H, t, J=8.2Hz), 7.0-7.4(8H, m), 7.7-7.95(2H, m), 8.45-8.55(1H, m), 9.49(1H, s)

20 negative ESI-MS (m/z) : 454 (M-H)⁻

Preparation 60

- 30 1-{[6-(2,5-Dimethyl-1H-pyrrol-1-yl)-2-pyridinyl]acetyl}-5-nitroindoline was obtained from 5-nitroindoline and [6-(2,5-dimethyl-1H-pyrrol-1-yl)-2-pyridinyl]acetic acid in the same manner as in Preparation 58 as light yellow crystals.
- 35 ¹H-NMR (DMSO-d₆) :δ 2.02(6H, s), 3.25(2H, t, J=8.6Hz), 4.16(2H, s), 4.30(2H, t, J=8.6Hz), 5.77(2H, s), 7.31(1H, d, J=8.6Hz), 7.31(1H, d, J=8.6Hz), 7.98(1H, dd, J=8.6Hz, 8.6Hz), 8.00-8.15(3H, m)
- APCI-MS (m/z) : 377 (M+H)⁺

Preparation 61

1-{[6-(2,5-Dimethyl-1H-pyrrol-1-yl)-2-pyridinyl]acetyl}-5-indolinamine was obtained in the same manner as in Preparation 59 as light yellow crystals.

- 5 $^1\text{H-NMR}$ (DMSO-d₆): δ 2.22(6H, s), 2.99(2H, t, J=8.4Hz), 3.98(2H, s), 4.08(2H, t, J=8.4Hz), 4.84(2H, br s), 5.77(2H, s), 6.32(1H, dd, J=8.5Hz, 2.2Hz), 6.45(1H, d, J=2.2Hz), 7.27(1H, d, J=7.7Hz), 7.39(1H, d, J=7.3Hz), 7.73(1H, d, J=8.5Hz), 7.94(1H, dd, J=7.7Hz, 7.3Hz)
- 10 ESI-MS (m/z): 369 (M+Na)⁺, 347 (M+H)⁺

Example 121

- To a suspension of 1-{[6-(2,5-dimethyl-1H-pyrrol-1-yl)-2-pyridinyl]acetyl}-5-indolinamine (1.04 g), 2-(4-fluorophenyl)-1-cyclohexene-1-carboxylic acid (661 mg) and 1-hydroxybenzotriazole hydrate (505 mg) in N,N-dimethylformamide (30 ml) was added dropwise 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide (512 mg) at ambient temperature and the resultant solution was stirred at the same temperature for 18 hours. The reaction mixture was poured into water and the separated organic layer was washed with water and brine, dried over magnesium sulfate and evaporated in vacuo. The residue was purified by column chromatography on silica gel eluting with ethyl acetate to give N-(1-{[6-(2,5-dimethyl-1H-pyrrol-1-yl)-2-pyridinyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-2-(4-fluorophenyl)-1-cyclohexene-1-carboxamide (1.24 g) as a white solid.

- $^1\text{H-NMR}$ (DMSO-d₆): δ 1.6-1.8(4H, m), 2.01(6H, s), 2.3-2.45(4H, m), 3.05(2H, t, J=8.3Hz), 4.02(2H, s), 4.12(2H, t, J=8.3Hz), 5.77(2H, s), 7.0-7.15(3H, m), 7.25-7.4(5H, m), 7.83(1H, d, J=8.7Hz), 7.94(1H, dd, J=7.7Hz, 7.7Hz), 9.48(1H, s)
- 30 ESI-MS (m/z): 571 (M+Na)⁺, 549 (M+H)⁺

Example 122

- To a suspension of N-(1-{[6-(2,5-dimethyl-1H-pyrrol-1-yl)-2-pyridinyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-2-(4-fluorophenyl)-1-cyclohexene-1-carboxamide (1.23 g) in a mixture of ethanol (40 ml) and water (10 ml) were added hydroxylamine hydrochloride (1.56 g) and triethylamine (454 mg) at ambient temperature. The mixture was refluxed for 8

hours and evaporated to dryness. The residue was extracted with ethyl acetate and the organic layer was washed with brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was recrystallized from acetonitrile, collected by 5 filtration and washed with acetonitrile to give N-[1-[(6-amino-2-pyridinyl)acetyl]-2,3-dihydro-1H-indol-5-yl]-2-(4-fluorophenyl)-1-cyclohexene-1-carboxamide (630 mg) as white crystals.

¹H-NMR (DMSO-d₆) : δ 1.6-1.8 (4H, m), 2.25-2.45 (4H, m), 3.04 (2H, t, J=8.3Hz), 3.67 (2H, s), 4.13 (2H, t, J=8.3Hz), 5.85 (2H, br s), 6.29 (1H, d, J=8.0Hz), 6.90 (1H, d, J=7.0Hz), 7.0-7.2 (3H, m), 7.25-7.4 (4H, m), 7.84 (1H, d, J=8.6Hz), 9.47 (1H, s)
negative ESI-MS (m/z) : 469 (M-H)⁻

Example 123

15 2-(4-Chlorophenyl)-N-[1-[(6-(2,5-dimethyl-1H-pyrrol-1-yl)-2-pyridinyl)acetyl]-2,3-dihydro-1H-indol-5-yl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 121 as a white solid.

1H-NMR (DMSO-d₆) : δ 1.6-1.8 (4H, m), 2.01 (6H, s), 2.3-2.5 (4H, m), 3.06 (2H, t, J=8.3Hz), 4.03 (2H, s), 4.13 (2H, t, J=8.3Hz), 5.77 (2H, s), 7.05 (1H, dd, J=8.7Hz, 2.0Hz), 7.25-7.45 (7H, m), 7.84 (1H, d, J=8.7Hz), 7.85-7.95 (1H, m), 9.53 (1H, s)
negative ESI-MS (m/z) : 563 (M-H)⁻

Example 124

25 N-[1-[(6-Amino-2-pyridinyl)acetyl]-2,3-dihydro-1H-indol-5-yl]-2-(4-chlorophenyl)-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 122 as white crystals.

1H-NMR (DMSO-d₆) : δ 1.6-1.8 (4H, m), 2.25-2.4 (4H, m), 3.05 (2H, t, J=8.3Hz), 3.67 (2H, s), 4.14 (2H, t, J=8.3Hz), 5.85 (2H, br s), 6.29 (1H, d, J=8.0Hz), 6.40 (1H, d, J=7.0Hz), 7.04 (1H, dd, J=8.5Hz, 1.8Hz), 7.25-7.4 (6H, m), 7.85 (1H, d, J=8.5 Hz), 9.52 (1H, s)
negative ESI-MS (m/z) : 485 (M-H)⁻

35 Example 125

N-[1-[(6-(2,5-Dimethyl-1H-pyrrol-1-yl)-2-pyridinyl)acetyl]-2,3-dihydro-1H-indol-5-yl]-2-(4-methylphenyl)-1-cyclohexene-1-carboxamide was obtained in the

same manner as in Example 121 as a white solid.

- ¹H-NMR (DMSO-d₆) : δ 1.6-1.8 (4H, m), 2.21 (3H, s), 2.25-2.4 (4H, m),
 3.05 (2H, d, J=8.4Hz), 4.02 (2H, s), 4.12 (2H, d, J=8.4Hz),
 5.77 (2H, s), 7.04 (2H, d, J=8.1Hz), 7.17 (2H, d, J=8.1Hz),
 7.28 (1H, d, J=7.7Hz), 7.35-7.45 (2H, m), 7.82 (1H, d, J=8.7Hz),
 7.94 (1H, dd, J=7.7Hz, 7.7Hz), 9.44 (1H, s)
 ESI-MS (m/z) : 567 (M+Na)⁺, 545 (M+H)⁺

Example 126

- N-{1-[(6-Amino-2-pyridinyl)acetyl]-2,3-dihydro-1H-indol-5-yl}-2-(4-methylphenyl)-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 122 as white crystals.

- ¹H-NMR (DMSO-d₆) : δ 1.6-1.8 (4H, m), 2.21 (3H, s), 2.25-2.4 (4H, m),
 3.04 (2H, t, J=8.3Hz), 3.67 (2H, s), 4.13 (2H, t, J=8.3Hz),
 5.85 (2H, br s), 6.29 (1H, d, J=8.1Hz), 6.40 (1H, d, J=7.0Hz),
 7.03 (2H, d, J=8.1Hz), 7.05 (1H, s), 7.17 (2H, d, J=8.1Hz), 7.25-
 7.35 (2H, m), 7.84 (1H, d, J=8.6Hz), 9.43 (1H, s)
 ESI-MS (m/z) : 489 (M+Na)⁺, 467 (M+H)⁺

Example 127

- N-(1-{[6-(2,5-Dimethyl-1H-pyrrol-1-yl)-2-pyridinyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-2-(4-methoxyphenyl)-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 121 as a white solid.

- ¹H-NMR (DMSO-d₆) : δ 1.6-1.8 (4H, m), 2.01 (6H, s), 2.25-2.4 (4H, m),
 3.05 (2H, t, J=8.3 Hz), 3.67 (3H, s), 4.01 (2H, s), 4.13 (2H, t,
 J=8.3Hz), 5.77 (2H, s), 6.80 (2H, d, J=8.8Hz), 7.05 (1H, dd,
 J=8.7Hz, 1.8Hz), 7.21 (2H, d, J=8.7Hz), 7.28 (1H, d, J=7.9Hz),
 7.39 (2H, d, J=7.5Hz), 7.83 (1H, d, J=8.7Hz), 7.94 (1H, dd,
 J=7.8Hz, 7.8Hz), 9.43 (1H, s)

- ESI-MS (m/z) : 583 (M+Na)⁺, 561 (M+H)⁺

Example 128

- N-{1-[(6-Amino-2-pyridinyl)acetyl]-2,3-dihydro-1H-indol-5-yl}-2-(4-methoxyphenyl)-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 122 as white crystals.

- ¹H-NMR (DMSO-d₆) : δ 1.6-1.8 (4H, m), 2.25-2.4 (4H, m), 3.04 (2H, t,
 J=8.5Hz), 3.67 (3H, s), 4.13 (2H, t, J=8.5Hz), 5.84 (2H, br s),
 6.29 (1H, d, J=8.2Hz), 6.40 (1H, d, J=7.4Hz), 6.79 (2H, d,

$J=8.8\text{Hz}$), 7.00(1H, dd, $J=7.4\text{Hz}$, 2.1Hz), 7.20(2H, d, $J=8.8\text{Hz}$), 7.28(1H, d, $J=7.4\text{Hz}$), 7.34(1H, d, $J=2.1\text{Hz}$), 7.84(1H, d, $J=8.7\text{Hz}$), 9.40(1H, s)
negative ESI-MS (m/z) : 481(M-H)⁻

5 Example 129

- N-(1-{[6-(2,5-Dimethyl-1H-pyrrol-1-yl)-2-pyridinyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 121 as a white solid.
- 10 $^1\text{H-NMR}$ (DMSO-d₆): δ 1.6-1.8(4H, m), 2.01(6H, s), 2.25-2.4(4H, m), 3.04(2H, t, $J=8.4\text{Hz}$), 4.02(2H, s), 4.12(2H, t, $J=8.4\text{Hz}$), 5.76(2H, s), 7.00(1H, dd, $J=8.6\text{Hz}$, 1.8Hz), 7.28(2H, d, $J=7.8\text{Hz}$), 7.38(1H, d, $J=7.5\text{Hz}$), 7.47(2H, d, $J=8.2\text{Hz}$), 7.62(2H, d, $J=8.2\text{Hz}$), 7.85(1H, d, $J=8.6\text{Hz}$), 7.94(1H, dd, $J=8.6\text{Hz}$, 7.5Hz), 9.56(1H, s)
ESI-MS (m/z) : 621(M+Na)⁺, 599(M+H)⁺

Example 130

- N-{1-[(6-Amino-2-pyridinyl)acetyl]-2,3-dihydro-1H-indol-5-yl}-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 122 as white crystals.
- 15 $^1\text{H-NMR}$ (DMSO-d₆): δ 1.65-1.85(4H, m), 2.3-2.5(4H, m), 3.03(2H, t, $J=8.1\text{Hz}$), 3.67(2H, s), 4.13(2H, t, $J=8.1\text{Hz}$), 5.85(2H, br s), 6.29(1H, d, $J=8.0\text{Hz}$), 6.40(1H, d, $J=7.2\text{Hz}$), 6.99(1H, dd, $J=8.7\text{Hz}$, 1.8Hz), 7.30(1H, dd, $J=8.0\text{Hz}$, 7.2Hz), 7.31(1H, d, $J=1.8\text{Hz}$), 7.47(2H, d, $J=8.3\text{Hz}$), 7.62(2H, d, $J=8.3\text{Hz}$), 7.84(1H, d, $J=8.7\text{Hz}$), 9.56(1H, s)
ESI-MS (m/z) : 543(M+Na)⁺, 521(M+H)⁺

Preparation 62

- 30 To a solution of 4-methyl-2-pyrimidinamine (10.0 g) in toluene (200 ml) were added 2,5-hexanedione (11.5 g) and p-toluenesulfonic acid hydrate (1.74 g) at ambient temperature and the mixture was refluxed for 20 hours. The reaction mixture was concentrated to ca. 50 ml and purified by column chromatography on silica gel to give 2-(2,5-dimethyl-1H-pyrrol-1-yl)-4-methylpyrimidine (14.10 g) as a red oil.
- 35 $^1\text{H-NMR}$ (DMSO-d₆): δ 2.23(6H, s), 2.52(3H, s), 5.81(2H, s), 7.35(1H, d, $J=5.1\text{Hz}$), 8.73(1H, d, $J=5.1\text{Hz}$)

ESI-MS (m/z) : 210 (M+Na)⁺, 188 (M+H)⁺

Preparation 63

- To a 1 mol/L solution of sodium bis(trimethylsilyl)amide in tetrahydrofuran (82.2 ml) was added dropwise a solution of 5 2-(2,5-dimethyl-1H-pyrrol-1-yl)-4-methylpyrimidine (14.0 g) in tetrahydrofuran (100 ml) at 5°C under a nitrogen atmosphere and the mixture was stirred at 5°C for 1.5 hours. To the mixture was added carefully crushed Dry Ice (ca. 10 g) and the mixture was stirred at ambient temperature for 30 minutes.
- 10 The reaction mixture was poured into a mixture of ethyl acetate and water, and adjusted to pH 2 with 6N HCl. The separated organic layer was washed with water and brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was purified by column chromatography on silica gel and 15 triturated with diisopropyl ether to give [2-(2,5-dimethyl-1H-pyrrol-1-yl)-4-pyrimidinyl]acetic acid (8.86 g) as light brown crystals.

¹H-NMR (DMSO-d₆) : δ 2.23 (6H, s), 3.85 (2H, s), 5.82 (2H, s), 7.43 (1H, d, J=5.1Hz), 8.83 (1H, d, J=5.1Hz), 12.72 (1H, br)

20 Preparation 64

1-[2-(2,5-Dimethyl-1H-pyrrol-1-yl)-4-pyrimidinyl]acetyl}-5-nitroindoline was obtained in the same manner as in Preparation 58 as light yellow crystals.

- 25 ¹H-NMR (DMSO-d₆) : δ 2.21 (6H, s), 3.27 (2H, t, J=8.5Hz), 4.21 (2H, s), 4.31 (2H, t, J=8.5Hz), 5.80 (2H, s), 7.47 (1H, d, J=5.1Hz), 8.1-8.2 (3H, m), 8.85 (1H, d, J=5.1Hz)

ESI-MS (m/z) : 400 (M+Na)⁺, 378 (M+H)⁺

Preparation 65

- 1-[2-(2,5-Dimethyl-1H-pyrrol-1-yl)-4-pyrimidinyl]acetyl}-5-indolinamine was obtained in the same manner as in Preparation 59 as light yellow crystals.
- 30 ¹H-NMR (DMSO-d₆) : δ 3.02 (2H, t, J=8.2Hz), 4.04 (2H, s), 4.10 (2H, t, J=8.2Hz), 4.88 (2H, br s), 5.80 (2H, s), 6.33 (1H, dd, J=8.5Hz, 1.8Hz), 6.46 (1H, d, J=1.8Hz), 7.43 (1H, d, J=5.1Hz), 7.73 (1H, d, J=8.5Hz), 8.81 (1H, d, J=5.1Hz)

35 ESI-MS (m/z) : 370 (M+Na)⁺, 348 (M+H)⁺

Example 131

N-(1-[2-(2,5-Dimethyl-1H-pyrrol-1-yl)-4-

pyrimidinyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-2-(4-fluorophenyl)-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 121 as a light brown solid.

5 $^1\text{H-NMR}$ (DMSO-d₆) : δ 1.6-1.8 (4H, m), 2.20 (6H, s), 2.25-2.4 (4H, m),
 3.08 (2H, t, J=7.6Hz), 4.08 (2H, s), 4.14 (2H, t, J=7.6Hz),
 5.80 (2H, s), 6.95-7.15 (3H, m), 7.2-7.35 (3H, m), 7.43 (1H, d,
 J=5.0Hz), 7.83 (1H, d, J=8.7Hz), 8.82 (1H, d, J=5.0Hz), 9.50 (1H,
 s)

Example 132

10 N-{1-[2-Amino-4-pyrimidinyl]acetyl}-2,3-dihydro-1H-indol-5-yl}-2-(4-fluorophenyl)-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 122 as white crystals.

15 $^1\text{H-NMR}$ (DMSO-d₆) : δ 1.65-1.9 (4H, m), 2.3-2.5 (4H, m), 3.06 (2H, t,
 J=8.5Hz), 3.71 (2H, s), 4.12 (2H, t, J=8.5Hz), 6.51 (1H, d,
 J=5.0Hz), 6.56 (2H, br s), 7.0-7.15 (3H, m), 7.25-7.4 (3H, m),
 7.83 (1H, d, J=8.7Hz), 8.14 (1H, d, J=5.0Hz), 9.49 (1H, s)
 negative ESI-MS (m/z) : 470 (M-H)⁻

Example 133

20 2-[4-(Dimethylamino)phenyl]-N-(1-[(6-(2,5-dimethyl-1H-pyrrol-1-yl)-2-pyridinyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 121 as a light brown solid.

25 $^1\text{H-NMR}$ (DMSO-d₆) : δ 1.6-1.8 (4H, m), 2.01 (6H, s), 2.3-2.55 (4H, m),
 2.82 (6H, s), 3.05 (2H, t, J=8.3Hz), 4.02 (2H, s), 4.13 (2H, t,
 J=8.3Hz), 5.76 (2H, s), 6.58 (2H, d, J=8.9Hz), 7.07 (1H, d,
 J=7.2Hz), 7.13 (2H, d, J=8.9Hz), 7.28 (1H, d, J=7.8Hz), 7.37 (1H,
 s), 7.39 (1H, d, J=7.2Hz), 7.83 (1H, d, J=8.7Hz), 7.94 (1H, dd,
 J=8.7Hz, 7.8Hz), 9.66 (1H, s)

30 ESI-MS (m/z) : 596 (M+Na)⁺, 574 (M+H)⁺

Example 134

35 N-{1-[(6-Amino-2-pyridinyl)acetyl]-2,3-dihydro-1H-indol-5-yl}-2-[4-(dimethylamino)phenyl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 122 as white crystals.

1 H-NMR (DMSO-d₆) : δ 1.6-1.8 (4H, m), 2.2-2.35 (4H, m), 2.82 (6H, s),
 3.05 (2H, t, J=8.4Hz), 3.67 (2H, s), 4.13 (2H, t, J=8.4Hz),
 5.84 (2H, br s), 6.29 (1H, d, J=8.1Hz), 6.40 (1H, d, J=7.0Hz),

6.58 (2H, d, J=8.9Hz), 7.07 (1H, d, J=8.7Hz), 7.13 (2H, d, J=8.9Hz), 7.30 (1H, dd, J=8.1Hz, 7.0Hz), 7.84 (1H, d, J=8.7Hz), 9.35 (1H, s)
ESI-MS (m/z) : 518 (M+Na)⁺, 496 (M+H)⁺

5 Example 135

2-(4-Ethylphenyl)-N-[1-(2-pyridinylacetyl)-2,3-dihydro-1H-indol-5-yl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 121 as white crystals.

¹H-NMR (DMSO-d₆) : δ 1.11 (3H, t, J=7.6Hz), 1.6-1.8 (4H, m), 2.25-10 2.4 (4H, m), 2.53 (2H, q, J=7.6Hz), 3.06 (2H, t, J=8.3Hz), 3.96 (2H, s), 4.15 (2H, t, J=8.3Hz), 6.9-7.35 (7H, m), 7.7-7.9 (2H, m), 8.49 (1H, d, J=5.0Hz), 9.37 (1H, s)
ESI-MS (m/z) : 488 (M+Na)⁺, 466 (M+H)⁺

Example 136

15 N-(1-{[6-(2,5-Dimethyl-1H-pyrrol-1-yl)-2-pyridinyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-2-(4-ethylphenyl)-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 121 as a light brown solid.
¹H-NMR (DMSO-d₆) : δ 1.11 (3H, t, J=7.6Hz), 1.6-1.8 (4H, m), 2.01 (6H, s), 2.3-2.45 (4H, m), 2.54 (2H, q, J=7.6Hz), 3.04 (2H, t, J=7.8Hz), 4.02 (2H, s), 4.12 (2H, t, J=7.8Hz), 5.76 (2H, s), 6.9-7.4 (8H, m), 7.8-8.0 (2H, m), 9.38 (1H, s)
negative ESI-MS (m/z) : 557 (M-H)⁻

Example 137
25 N-[1-(6-Amino-2-pyridinyl)acetyl]-2,3-dihydro-1H-indol-5-yl]-2-(4-ethylphenyl)-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 122 as white crystals.

¹H-NMR (DMSO-d₆) : δ 1.11 (3H, t, J=7.6Hz), 1.6-1.8 (4H, m), 2.25-30 2.4 (4H, m), 2.51 (2H, q, J=7.6Hz), 3.12 (2H, t, J=8.4Hz), 4.04 (2H, s), 4.15 (2H, t, J=8.4 Hz), 6.75 (1H, d, J=7.1Hz), 6.87 (1H, d, J=8.7Hz), 7.04 (1H, dd, J=8.7Hz, 1.6Hz), 7.07 (2H, d, J=8.1Hz), 7.20 (2H, d, J=8.1Hz), 7.35 (1H, d, J=1.6Hz), 7.78 (2H, br s), 7.75-7.9 (2H, m), 9.45 (1H, s)
35 ESI-MS (m/z) : 503 (M+Na)⁺, 481 (M+H)⁺

Example 138

N-[1-(2-Pyridinylacetyl)-2,3-dihydro-1H-indol-5-yl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide was

obtained in the same manner as in Example 120.

- ¹H-NMR (DMSO-d₆) : δ 1.64-1.84 (4H, m), 2.33-2.48 (4H, m), 3.05 (2H, t, J=8.4Hz), 3.96 (2H, s), 4.15 (2H, t, J=8.4Hz), 6.96-7.06 (1H, m), 7.22-7.38 (3H, m), 7.47 (2H, d, J=8.2Hz), 7.62 (2H, d, J=8.2Hz), 7.75 (1H, dt, J=1.8Hz, 7.7Hz), 7.83 (1H, d, J=8.7Hz), 8.45-8.52 (1H, m), 9.56 (1H, s)

negative ESI-MS (m/z) : 504 (M-H)⁻

Example 139

- 2-(4-Methylphenyl)-N-[1-(2-pyridinylacetyl)-2,3-dihydro-1H-indol-5-yl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 120.

- ¹H-NMR (DMSO-d₆) : δ 1.60-1.81 (4H, m), 2.20 (3H, s), 2.28-2.42 (4H, m), 3.06 (2H, t, J=8.3Hz), 3.96 (2H, s), 4.15 (2H, t, J=8.3Hz), 7.00-7.09 (3H, m), 7.17 (2H, d, J=8.1Hz), 7.22-7.40 (3H, m), 7.75 (1H, dt, J=1.8Hz, 7.7Hz), 7.83 (1H, d, J=8.7Hz), 8.44-8.52 (1H, m), 9.44 (1H, s)

negative ESI-MS (m/z) : 450 (M-H)⁻

Example 140

- 2-(4-Chlorophenyl)-N-[1-(2-pyridinylacetyl)-2,3-dihydro-1H-indol-5-yl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 120.

- ¹H-NMR (DMSO-d₆) : δ 1.62-1.80 (4H, m), 2.39-2.43 (4H, m), 3.07 (2H, t, J=8.3Hz), 3.97 (2H, s), 4.16 (2H, t, J=8.3Hz), 7.05 (1H, dd, J=1.8Hz, 8.6Hz), 7.22-7.38 (7H, m), 7.75 (1H, dt, J=1.8Hz, 7.6Hz), 7.84 (1H, d, J=8.6Hz), 8.46-8.52 (1H, m), 9.53 (1H, s)

negative ESI-MS (m/z) : 470 (M-H)⁻

Example 141

- 2-(4-Methoxyphenyl)-N-[1-(2-pyridinylacetyl)-2,3-dihydro-1H-indol-5-yl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 120.

- ¹H-NMR (DMSO-d₆) : δ 1.60-1.80 (4H, m), 2.27-2.40 (4H, m), 3.06 (2H, t, J=8.3Hz), 3.67 (3H, s), 3.96 (2H, s), 4.15 (2H, t, J=8.3Hz), 6.80 (2H, d, J=8.7Hz), 7.01-7.09 (1H, m), 7.17-7.40 (5H, m), 7.75 (1H, dt, J=1.9Hz, 7.6Hz), 7.84 (1H, d, J=8.7Hz), 8.45-8.52 (1H, m), 9.42 (1H, s)

negative ESI-MS (m/z) : 466 (M-H)⁻

Preparation 66

2-[4-(Dimethylamino)phenyl]-1-cyclohexene-1-carboxylic

acid was obtained in the same manner as in Preparation 120.
¹H-NMR (DMSO-d₆) : δ 1.53-1.75(4H, m), 2.20-2.37(4H, m), 2.87(6H, s), 6.57-6.68(2H, m), 6.98-7.07(2H, m), 11.84(1H, s)
negative ESI-MS (m/z) : 244 (M-H)⁻

5 Example 142

2-[4-(Dimethylamino)phenyl]-N-[1-(2-pyridinylacetyl)-2,3-dihydro-1H-indol-5-yl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 120.
¹H-NMR (DMSO-d₆) : δ 1.58-1.80(4H, m), 2.26-2.40(4H, m), 2.81(6H, s), 3.06(2H, t, J=8.3Hz), 3.96(2H, s), 4.14(2H, t, J=8.3Hz), 6.58(2H, d, J=8.7Hz), 7.04-7.19(3H, m), 7.21-7.42(3H, m), 7.74(1H, dt, J=1.8Hz, 7.6Hz), 7.84(1H, d, J=8.7Hz), 8.44-8.52(1H, m), 9.38(1H, s)
negative ESI-MS (m/z) : 479 (M-H)⁻

15 Preparation 67

To a suspension of sodium hydride (60% oil dispersion) (5.16 g) in N,N-dimethylformamide (160 ml) was added dropwise a solution of methyl 2-oxocycloheptanecarboxylate (20.0 g) at 10°C under a nitrogen atmosphere and the mixture was warmed to ambient temperature and stirred for an hour. To this mixture was added dropwise 1,1,2,2,3,3,4,4,4-nonafluoro-1-butanesulfonyl fluoride (39.0 g) at ambient temperature and the mixture was warmed to 35°C and stirred at 35°C for 20 hours. The reaction mixture was poured into a mixture of ethyl acetate and ice water and adjusted to pH ca.2 with 6N hydrochloric acid. The separated organic layer was washed with water and brine, dried over magnesium sulfate and evaporated in vacuo. The residue was purified by column chromatography on silica gel eluting with hexane:toluene (1:1) to give methyl 2-{{[(nonafluorobutyl)sulfonyl]oxy}-1-cycloheptene-1-carboxylate (29.82 g) as a colorless oil.
¹H-NMR (DMSO-d₆) : δ 1.6-1.9(6H, m), 2.6-2.9(4H, m), 3.70(3H, s)
ESI-MS (m/z) : 475 (M+Na)⁺

Preparation 68

35 To a suspension of zinc chloride (17.91 g) in tetrahydrofuran (200 ml) was added dropwise a 1 mol/L solution of tolylmagnesium bromide in tetrahydrofuran (98.6 ml) at 0°C under a nitrogen atmosphere and the mixture was stirred at 0°C

- for 30 minutes. To this suspension were added bis(dibenzylideneacetone) palladium (1.13 g) and 1,1'-bis(diphenylphosphino) ferrocene (1.09 g), followed by dropwise addition of methyl 2-[(*n*onafluorobutyl)sulfonyl]oxy}-1-
- 5 cycloheptene-1-carboxylate (29.72 g) in tetrahydrofuran (90 ml). The mixture was refluxed for 16 hours under a nitrogen atmosphere. The reaction mixture was poured into a mixture of ethyl acetate and ice water and adjusted to pH ca.2 with 6N hydrochloric acid. The separated organic layer was washed
- 10 with water and brine, dried over magnesium sulfate and evaporated in vacuo. The residue was purified by column chromatography on silica gel eluting with hexane:toluene (1:3) to give methyl 2-(4-methylphenyl)-1-cycloheptene-1-carboxylate (13.77 g) as a colorless oil.
- 15 $^1\text{H-NMR}$ (DMSO-d₆): δ 1.6-1.9 (6H, m), 2.28 (3H, s), 2.5-2.8 (4H, m), 3.70 (3H, s), 6.95-7.0 (2H, m), 7.1-7.15 (2H, m)
ESI-MS (m/z): 267 (M+Na)⁺

Preparation 69

- To a solution of methyl 2-(4-methylphenyl)-1-
- 20 cycloheptene-1-carboxylate (13.76 g) in ethanol (130 ml) was added 5N aqueous sodium hydroxide solution (22.6 ml) at ambient temperature and the mixture was refluxed for 4 hours. The reaction mixture was cooled to 5°C and ice-water (60 ml) was added. The mixture was adjusted to pH ca.7 with 6N hydrochloric acid and concentrated in vacuo. To the residue was added a mixture of ethyl acetate and water and the mixture was adjusted to pH ca.2 with 6N hydrochloric acid. The separated organic layer was washed with water and brine, dried over magnesium sulfate and evaporated in vacuo. The residue
- 25 was triturated with hexane to give 2-(4-methylphenyl)-1-cycloheptene-1-carboxylic acid (3.58 g) as white crystals.
- 30 $^1\text{H-NMR}$ (DMSO-d₆): δ 1.45-1.6 (4H, m), 1.7-1.9 (2H, m), 2.27 (3H, s), 2.4-2.55 (4H, m), 7.0-7.15 (4H, m), 11.90 (1H, br s)
ESI-MS (m/z): 253 (M+Na)⁺

35 Example 143

2-(4-Methylphenyl)-N-[1-(2-pyridinylacetyl)-2,3-dihydro-1H-indol-5-yl]-1-cycloheptene-1-carboxamide was obtained in the same manner as in Example 120 as white crystals.

- ¹H-NMR (DMSO-d₆) : δ 1.6-1.9 (6H, m), 2.21 (3H, s), 2.4-2.5 (4H, m), 2.85 (2H, t, J=7.7 Hz), 3.99 (2H, t, J=7.7 Hz), 7.0-7.3 (8H, m), 7.37 (2H, d, J=8.7 Hz), 7.6-7.7 (1H, m), 8.25 (1H, s), 8.45 (1H, d, J=3.9 Hz), 9.42 (1H, s)
- 5 ESI-MS (m/z) : 488 (M+Na)⁺, 466 (M+H)⁺

Example 144

To a solution of 2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxylic acid (499 mg) in toluene (5 ml) were added thionyl chloride (0.27 ml) and N,N-dimethylformamide (1 drop) and the mixture was stirred at 50°C for 1 hour. The reaction mixture was evaporated in vacuo and the residue was dissolved in tetrahydrofuran (2 ml). The obtained acid chloride in tetrahydrofuran was added to a solution of tert-butyl 4-aminophenyl(2-{6-[(tert-butoxycarbonyl)amino]-2-pyridinyl}ethyl)carbamate (720 mg) and triethylamine (0.47 ml) in tetrahydrofuran (30 ml) at ambient temperature and the mixture was stirred at the same temperature for 30 minutes. The mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was purified by column chromatography on silica gel by eluting with hexane:ethyl acetate (3:1→2:1) to give tert-butyl 2-{6-[(tert-butoxycarbonyl)amino]-2-pyridinyl}ethyl{4-[(2-[4-(trifluoromethyl)phenyl]-1-cyclohexen-1-yl)carbonyl]amino}phenyl}carbamate (1.123 g) as a yellow foam.

1H-NMR (DMSO-d₆) : δ 1.36 (18H, br s), 1.74 (4H, br s), 2.40 (4H, br s), 2.83 (2H, t, J=7.4 Hz), 3.79 (2H, t, J=7.4 Hz), 7.02 (2H, d, J=8.6 Hz), 7.13 (2H, d, J=7.2 Hz), 7.18 (2H, d, J=7.9 Hz), 7.31 (2H, d, J=8.9 Hz), 7.49 (2H, d, J=8.2 Hz), 7.61 (2H, d, J=8.6 Hz), 7.73 (1H, t, J=7.8 Hz), 9.45 (1H, s), 9.69 (1H, s)

ESI-MS (m/z) : 703 (M+Na)⁺

Example 145

To a solution of tert-butyl 2-{6-[(tert-butoxycarbonyl)amino]-2-pyridinyl}ethyl{4-[(2-[4-(trifluoromethyl)phenyl]-1-cyclohexen-1-yl)carbonyl]amino}phenyl}carbamate (1.116 g) in dichloromethane (10 ml) was added trifluoroacetic acid (1.6 ml). The reaction mixture was stirred for 15 hours, quenched

with 10% aqueous potassium carbonate solution, and extracted with ethyl acetate-tetrahydrofuran. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was recrystallized from 5 ethyl acetate-diisopropyl ether to give N-(4-[(2-(6-amino-2-pyridinyl)ethyl]amino)phenyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (0.646 g) as a white solid.

¹H-NMR (DMSO-d₆) : δ 1.72(4H, br s), 2.37(4H, br s), 2.68(2H, t, J=7.2 Hz), 3.21(2H, q, J=7.0 Hz), 5.67(1H, br s), 5.87(2H, br 10 s), 6.27(1H, d, J=8.2 Hz), 6.37(1H, d, J=7.2 Hz), 6.42(2H, d, J=8.6 Hz), 6.99(2H, d, J=8.2 Hz), 7.27(1H, t, J=7.8 Hz), 7.48(2H, d, J=8.2 Hz), 7.62(2H, d, J=8.2 Hz), 9.19(1H, s)
ESI-MS (m/z) : 480 (M+H)⁺

Example 146

15 To a solution of tert-butyl 4-aminophenyl(2-{6-[(tert-butoxycarbonyl)amino]-2-pyridinyl}ethyl)carbamate (772 mg), 2-(4-methylphenyl)-1-cyclohexene-1-carboxylic acid (409 mg) and 1-hydroxybenzotriazole hydrate (292 mg) in N,N-dimethylformamide (20 ml) was added 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (WSC.HCl) (414 mg), followed by triethylamine (0.38 ml) at ambient temperature. The reaction mixture was stirred at 50°C for 2 hours and concentrated in vacuo. The residue was dissolved in ethyl acetate and water, and extracted with ethyl 20 acetate. The organic layer was washed with water and brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel by eluting with hexane:ethyl acetate (4:1→2:1) to give tert-butyl 2-{6-[(tert-butoxycarbonyl)amino]-2-pyridinyl}ethyl[4-((2-(4-methylphenyl)-1-cyclohexen-1-yl)carbonyl)amino)phenyl]carbamate (0.557 g) as a pale yellow 25 solid.

Example 147

To a solution of tert-butyl 2-{6-[(tert-butoxycarbonyl)-amino]-2-pyridinyl}ethyl[4-((2-(4-methylphenyl)-1-cyclohexen-1-yl)carbonyl)amino)phenyl]carbamate (1.116 g) in dichloromethane (10 ml) was added trifluoroacetic acid (1.6 ml). The reaction mixture was stirred for 15 hours, quenched 35

with 10% aqueous potassium carbonate solution, and extracted with ethyl acetate-tetrahydrofuran. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was recrystallized from

5 ethyl acetate-diisopropyl ether to give N-(4-{[2-(6-amino-2-pyridinyl)ethyl]amino}phenyl)-2-(4-methylphenyl)-1-cyclohexene-1-carboxamide (0.253 g) as a white solid.

10 $^1\text{H-NMR}$ (DMSO-d₆): δ 1.69(4H, br s), 2.21(3H, s), 2.33(4H, br s), 2.68(2H, t, J=7.3 Hz), 3.20(2H, q, J=6.9 Hz), 5.43(1H, t, J=5.6 Hz), 5.82(2H, br s), 6.26(1H, d, J=7.9 Hz), 6.36(1H, d, J=7.2 Hz), 6.42(2H, d, J=8.6 Hz), 7.04(4H, d, J=8.6 Hz), 7.17(2H, d, J=7.9 Hz), 7.25(1H, t, J=7.7 Hz), 9.05(1H, s)

ESI-MS (m/z): 426 (M+H)⁺

Example 148

15 tert-Butyl 2-{6-[(tert-butoxycarbonyl)amino]-2-pyridinyl}ethyl[4-({[2-(4-ethylphenyl)-1-cyclohexen-1-yl]carbonyl}amino)phenyl]carbamate was obtained in the same manner as in Example 146 as a pale yellow foam.

Example 149

20 N-(4-{[2-(6-Amino-2-pyridinyl)ethyl]amino}phenyl)-2-(4-ethylphenyl)-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 147 as white crystals.

1 $^1\text{H-NMR}$ (DMSO-d₆): δ 1.12(3H, t, J=7.6 Hz), 1.69(4H, br s), 2.52(2H, q, J=7.6 Hz), 2.68(2H, t, J=7.3 Hz), 3.20(2H, q, J=6.9 Hz), 5.43(1H, t, J=5.6 Hz), 5.82(2H, br s), 6.26(1H, d, J=8.2 Hz), 6.36(1H, d, J=7.2 Hz), 6.41(2H, d, J=8.6 Hz), 7.00(2H, d, J=8.9 Hz), 7.07(2H, d, J=8.2 Hz), 7.20(2H, d, J=8.2 Hz), 7.25(1H, dd, J=7.9, 7.2 Hz), 8.98(1H, s)

ESI-MS (m/z): 440 (M+H)⁺

Example 150

To a solution of 2-(4-methylphenyl)-1-cyclohexene-1-carboxylic acid (49.5 mg) in toluene (3 ml) were added thionyl chloride (0.033 ml) and N,N-dimethylformamide (1 drop) and the mixture was stirred at 50°C for an hour. The mixture was evaporated in vacuo and the residue was dissolved in tetrahydrofuran (1 ml). The acid chloride in tetrahydrofuran was added to a solution of tert-butyl 5-amino-2-pyridinyl(2-{6-[(tert-butoxycarbonyl)amino]-2-pyridinyl}ethyl)carbamate

(82 mg) and triethylamine (0.053 ml) in tetrahydrofuran (5 ml) at ambient temperature and the mixture was stirred at the same temperature for 30 minutes. The mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was purified by column chromatography on silica gel by eluting with hexane:ethyl acetate (3:1→2:1) to give tert-butyl 2-{6-[(tert-butoxycarbonyl)amino]-2-pyridinyl}ethyl[5-({[2-(4-methylphenyl)-1-cyclohexen-1-yl]carbonyl}amino)-2-pyridinyl]carbamate (0.117 g) as a yellow foam.

¹H-NMR (DMSO-d₆) : δ 1.34-1.45(18H, m), 1.72(4H, br s), 2.21(3H, s), 2.37(4H, br s), 2.81(2H, t, J=7.3 Hz), 4.02(2H, t, J=7.4 Hz), 6.80(1H, t, J=4.1 Hz), 7.06(2H, d, J=8.2 Hz), 7.18(2H, d, J=8.2 Hz), 7.35(1H, d, J=8.9 Hz), 7.59(2H, d, J=4.0 Hz), 7.75(1H, dd, J=8.9, 2.6 Hz), 8.32(1H, d, J=2.3 Hz), 9.55(1H, s), 9.72(1H, s)

ESI-MS (m/z) : 628 (M+H)⁺

Example 151

To a solution of tert-butyl 2-{6-[(tert-butoxycarbonyl)amino]-2-pyridinyl}ethyl[5-({[2-(4-methylphenyl)-1-cyclohexen-1-yl]carbonyl}amino)-2-pyridinyl]carbamate (107 mg) in dichloromethane (3 ml) was added trifluoroacetic acid (0.52 ml). The reaction mixture was stirred at ambient temperature for 16 hours, quenched with 10% aqueous potassium carbonate solution, and extracted with ethyl acetate-tetrahydrofuran. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was recrystallized from ethyl acetate-diisopropyl ether to give N-(6-({[2-(6-amino-2-pyridinyl)ethyl]amino}-3-pyridinyl)-2-(4-methylphenyl)-1-cyclohexene-1-carboxamide (0.043 g) as white crystals.

¹H-NMR (DMSO-d₆) : δ 1.70(4H, br s), 2.23(3H, s), 2.34(4H, br s), 2.68(2H, t, J=7.3 Hz), 3.41(2H, q, J=7.3 Hz), 5.85(2H, br s), 6.26(1H, d, J=8.2 Hz), 6.32(1H, d, J=3.6 Hz), 6.35(1H, d, J=1.3 Hz), 7.05(2H, d, J=8.2 Hz), 7.17(2H, d, J=8.2 Hz), 7.25(1H, t, J=8.2 Hz), 7.30(1H, dd, J=8.9, 2.6 Hz), 7.83(1H, d, J=2.6 Hz), 9.12(1H, s)

ESI-MS (m/z) : 428 (M+H)⁺

Example 152

tert-Butyl 2-{6-[(tert-butoxycarbonyl)amino]-2-pyridinyl}ethyl[5-({[2-(4-ethylphenyl)-1-cyclohexen-1-yl]carbonyl}amino)-2-pyridinyl]carbamate was obtained in the same manner as in Example 150 as a pale yellow foam.

¹H-NMR (DMSO-d₆) : δ 1.09(3H, t, J=7.6 Hz), 1.34(9H, s), 1.45(9H, s), 1.72(4H, br s), 2.37(4H, br s), 2.52(2H, q, J=7.6 Hz), 2.80(2H, t, J=7.1 Hz), 4.01(2H, t, J=7.1 Hz), 6.78(2H, t, J=4.1 Hz), 7.08(2H, d, J=8.2 Hz), 7.20(2H, d, J=7.9 Hz), 7.35(1H, d, J=8.9 Hz), 7.58-7.60(2H, m), 7.72(1H, dd, J=8.9, 2.6 Hz), 8.29(1H, d, J=2.3 Hz), 9.55(1H, s), 9.67(1H, s)

ESI-MS (m/z) : 664 (M+Na)⁺

Example 153

N-(6-{{2-(6-Amino-2-pyridinyl)ethyl}amino}-3-pyridinyl)-2-(4-ethylphenyl)-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 151 as white crystals.

¹H-NMR (DMSO-d₆) : δ 1.12(3H, t, J=7.6 Hz), 1.69(4H, br s), 2.34(4H, br s), 2.53(2H, q, J=7.6 Hz), 2.67(2H, t, J=7.3 Hz), 3.37(2H, t, J=7.3 Hz), 5.82(2H, br s), 6.25(1H, d, J=8.2 Hz), 6.30-6.35(3H, m), 7.09(2H, d, J=8.2 Hz), 7.19(1H, d, J=7.9 Hz), 7.21-7.28(3H, m), 7.79(1H, d, J=2.6 Hz), 9.06(1H, s)

ESI-MS (m/z) : 442 (M+H)⁺

Example 154

To a solution of tert-butyl 6-[2-(4-aminophenoxy)ethyl]-2-pyridinylcarbamate (609 mg), 2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxylic acid (500 mg) and 1-hydroxybenzotriazole hydrate (340 mg) in N,N-dimethylformamide (5 ml) was added 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (WSC.HCl) (425.6 mg), followed by triethylamine (0.387 ml) at ambient temperature. The reaction mixture was stirred at 50°C for 2 hours and concentrated in vacuo. The residue was dissolved in ethyl acetate and water, and extracted with ethyl acetate. The organic layer was washed with water and brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel by eluting with hexane:ethyl acetate (6:1→2:1) to give tert-

butyl 6-(2-{4-[({2-[4-(trifluoromethyl)phenyl]-1-cyclohexen-1-yl}carbonyl)amino]phenoxy}ethyl)-2-pyridinylcarbamate (0.712 g) as a pale yellow foam.

¹H-NMR(CDCl₃): δ 1.51(9H, s), 1.80(4H, br s), 2.43(2H, br s), 5 2.54(2H, br s), 3.07(2H, t, J=6.5 Hz), 4.22(2H, t, J=6.8 Hz), 6.42(1H, s), 6.70(2H, d, J=8.9 Hz), 6.85-6.88(3H, m), 7.14(1H, s), 7.41(2H, d, J=7.8 Hz), 7.53-7.60(3H, m), 7.74(1H, d, J=8.4 Hz)

ESI-MS(m/z): 604 (M+Na)⁺

10 Example 155

To a solution of tert-butyl 6-(2-{4-[({2-[4-(trifluoromethyl)phenyl]-1-cyclohexen-1-yl}carbonyl)amino]phenoxy}ethyl)-2-pyridinylcarbamate (700 mg) in dichloromethane (7 ml) was added trifluoroacetic acid (1.39 ml). The reaction mixture was stirred for 7 hours, quenched with 10% aqueous potassium carbonate solution, and extracted with dichloromethane. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was recrystallized from ethyl acetate-diisopropyl ether to give N-{4-[2-(6-amino-2-pyridinyl)ethoxy]phenyl}-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (0.473 g) as a white solid.

¹H-NMR(DMSO-d₆): δ 1.74(4H, br s), 2.39(4H, br s), 2.88(2H, t, J=7.0 Hz), 4.16(2H, t, J=7.0 Hz), 5.87(2H, br s), 6.28(1H, d, J=8.4 Hz), 6.42(1H, d, J=7.3 Hz), 6.75(2H, d, J=8.9 Hz), 7.21(2H, d, J=8.9 Hz), 7.28(1H, t, J=7.8 Hz), 7.48(2H, d, J=8.1 Hz), 7.62(2H, d, J=8.6 Hz), 9.48(1H, s)
ESI-MS(m/z): 482 (M+H)⁺.

Example 156

30 tert-Butyl 6-{2-[4-[{2-(4-methylphenyl)-1-cyclohexen-1-yl}carbonyl]amino]phenoxy}ethyl)-2-pyridinylcarbamate was obtained by in the same manner as in Example 154 as a pale yellow foam.

¹H-NMR(DMSO-d₆): δ 1.46(9H, s), 1.70(4H, br s), 2.21(3H, s), 35 2.34(4H, br s), 3.02(2H, t), 4.22(2H, t), 6.76(2H, d, J=9.2 Hz), 6.96(1H, dd, J=5.9, 2.7 Hz), 7.03(2H, d, J=7.8 Hz), 7.17(2H, d, J=7.8 Hz), 7.24(2H, d, J=8.9 Hz), 7.58-7.69(2H, m), 9.33(1H, s), 9.60(1H, s)

ESI-MS (m/z) : 550 (M+Na)⁺

Example 157

5 N-{4-[2-(6-Amino-2-pyridinyl)ethoxy]phenyl}-2-(4-methylphenyl)-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 155 as a pale yellow powder.

10 ¹H-NMR (DMSO-d₆) : δ 1.71(4H, br s), 2.34(4H, br s), 2.90(2H, t, J=6.8 Hz), 4.17(2H, t, J=6.8 Hz), 6.07(2H, br s), 6.34(1H, d, J=8.4 Hz), 6.46(1H, d, J=7.8 Hz), 6.76(2H, d, J=8.9 Hz), 7.04(2H, d, J=8.4 Hz), 7.17(2H, d, J=8.4 Hz), 7.24(2H, d, J=8.6 Hz), 7.34(1H, t, J=7.3 Hz), 9.34(1H, s)

ESI-MS (m/z) : 428 (M+H)⁺

Example 158

15 tert-Butyl 6-{2-[4-({[2-(4-ethylphenyl)-1-cyclohexen-1-yl]carbonyl}amino)phenoxy}ethyl}-2-pyridinylcarbamate was obtained in the same manner as in Example 154 as a pale yellow foam.

20 ¹H-NMR (CDCl₃) : δ 1.21(3H, t, J=7.6 Hz), 1.51(9H, s), 1.77(4H, br s), 2.42(2H, br s), 2.52(2H, br s), 2.62(2H, q, J=7.6 Hz), 3.06(2H, t, J=6.6 Hz), 4.21(2H, t, J=6.6 Hz), 6.74(1H, s), 6.67(2H, d, J=8.9 Hz), 6.78(2H, d, J=8.9 Hz), 6.86(1H, d, J=7.0 Hz), 7.14-7.18(5H, m), 7.56(1H, t, J=7.6 Hz), 7.74(1H, d, J=8.1 Hz)

ESI-MS (m/z) : 564 (M+Na)⁺

Example 159

25 N-{4-[2-(6-Amino-2-pyridinyl)ethoxy]phenyl}-2-(4-ethylphenyl)-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 155 as a pale pink powder.

30 ¹H-NMR (DMSO-d₆) : δ 1.11(3H, t, J=7.6 Hz), 1.71(4H, br s), 2.35(4H, br s), 2.50(2H, q, J=7.6 Hz), 2.87(2H, t, J=7.0 Hz), 4.16(2H, t, J=7.0 Hz), 5.84(2H, br s), 6.28(1H, d, J=7.8 Hz), 6.41(1H, d, J=7.3 Hz), 6.75(2H, d, J=8.9 Hz), 7.07(2H, d, J=8.1 Hz), 7.18-7.22(4H, m), 7.28(1H, t, J=7.8 Hz), 9.29(1H, s)

ESI-MS (m/z) : 442 (M+H)⁺

35 Example 160

To a solution of 2-(4-methylphenyl)-1-cyclohexene-1-carboxylic acid (363 mg) in toluene (10 ml) were added thionyl chloride (0.19 ml) and N,N-dimethylformamide (1 drop) and the

mixture was stirred at 50°C for an hour. The mixture was evaporated in vacuo and the residue was dissolved in tetrahydrofuran (5 ml). The acid chloride in tetrahydrofuran was added to a solution of tert-butyl 6-{2-[(5-amino-2-

5 pyridinyl)oxy]ethyl}-2-pyridinylcarbamate (462 mg) and triethylamine (0.39 ml) in tetrahydrofuran (15 ml) at ambient temperature and the mixture was stirred at the same temperature for 30 min. The mixture was poured into water and extracted with ethyl acetate. The organic layer was washed

10 with brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was purified by column chromatography on silica gel by eluting with hexane:ethyl acetate (3:1→2:1) to give tert-butyl 6-(2-{{5-({{2-(4-methylphenyl)-1-cyclohexen-1-yl}carbonyl}amino)-2-pyridinyl}oxy}ethyl)-2-pyridinylcarbamate

15 (0.731 g) as a yellow foam.

¹H-NMR (DMSO-d₆) : δ 1.45(9H, s), 1.70(4H, br s), 2.21(3H, s), 2.35(4H, br s), 3.02(2H, t, J=6.6 Hz), 4.49(2H, t, J=6.6 Hz), 6.63(1H, d, J=8.9 Hz), 6.93(1H, dd, J=5.3, 3.0 Hz), 7.05(2H, d, J=7.9 Hz), 7.17(2H, d, J=8.2 Hz), 7.57-7.63(3H, m), 8.08(1H, d, J=2.6 Hz), 9.49(1H, s), 9.62(1H, s)

ESI-MS (m/z) : 551 (M+Na)⁺

Example 161

To a solution of tert-butyl 6-(2-{{5-({{2-(4-methylphenyl)-1-cyclohexen-1-yl}carbonyl}amino)-2-pyridinyl}oxy}ethyl)-2-pyridinylcarbamate (720 mg) in dichloromethane (30 ml) was added trifluoroacetic acid (2.1 ml). The reaction mixture was stirred for 15 hours, quenched with 10% aqueous potassium carbonate solution, and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was recrystallized from ethyl acetate-diisopropyl ether to give N-{6-[2-(6-amino-2-pyridinyl)ethoxy]-3-pyridinyl}-2-(4-methylphenyl)-1-cyclohexene-1-carboxamide (0.505 g) as a white solid.

35 ¹H-NMR (DMSO-d₆) : δ 1.71(4H, br s), 2.21(3H, s), 2.35(4H, br s), 2.89(2H, t, J=6.9 Hz), 4.44(2H, t, J=6.9 Hz), 6.03(2H, br s), 6.32(1H, d, J=7.9 Hz), 6.42(1H, d, J=7.2 Hz), 6.64(1H, d, J=8.9 Hz), 7.05(2H, d, J=7.9 Hz), 7.17(2H, d, J=7.9 Hz),

WO 03/045921

7.32(1H, dd, J=8.2, 7.2 Hz), 7.60(1H, dd, J=8.9, 2.6 Hz),
 8.07(1H, d, J=2.6 Hz), 9.49(1H, s)
 ESI-MS (m/z) : 429 (M+H)⁺

Example 162

5 tert-Butyl 6-[2-({5-[{2-[4-(trifluoromethyl)phenyl]-1-
 cyclohexen-1-yl}carbonyl]amino}-2-pyridinyl)oxy]ethyl]-2-
 pyridinylcarbamate was obtained in the same manner as in
 Exampe 160 as a white solid.

10 ¹H-NMR (CDCl₃) : δ 1.51(9H, s), 1.72-1.90(4H, m), 2.40-2.50(2H, m),
 2.50-2.62(2H, m), 3.06(2H, t, J=6.5 Hz), 4.53(2H, t, J=6.5 Hz),
 6.44(1H, s), 6.55(1H, d, J=8.6 Hz), 6.85(1H, d, J=7.0 Hz),
 7.17(1H, s), 7.34-7.43(3H, m), 7.51-7.63(4H, m), 7.73(1H, d,
 J=8.4 Hz).
 ESI-MS (m/z) : 583 (M+H)⁺

Example 163

15 N-{6-[2-(6-Amino-2-pyridinyl)ethoxy]-3-pyridinyl}-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 161 as a white solid.
¹H-NMR (CDCl₃) : δ 1.78-1.81(4H, m), 2.40-2.46(2H, m), 2.49-
 2.57(2H, m), 3.02(2H, t, J=7.0 Hz), 4.34(2H, s), 4.53(2H, t,
 J=7.0 Hz), 6.33(1H, d, J=8.4 Hz), 6.43(1H, s), 6.54-6.59(2H,
 m), 7.26-7.43(4H, m), 7.58-7.63(3H, m).
 ESI-MS (m/z) : 483 (M+H)⁺

Example 164

20 tert-Butyl 6-(2-{{5-[{2-(4-ethylphenyl)-1-cyclohexen-1-yl}carbonyl]amino}-2-pyridinyl)oxy}ethyl)-2-pyridinylcarbamate was obtained in the same manner as in Example 160 as a white solid.

25 ¹H-NMR (CDCl₃) : δ 1.22(3H, t, J=7.6 Hz), 1.51(9H, s), 1.73-
 1.83(4H, m), 2.40-2.50(2H, m), 2.50-2.58(2H, m), 2.63(2H, q,
 J=7.6 Hz), 3.06(2H, t, J=7.0 Hz), 4.52(2H, t, J=7.0 Hz),
 6.45(1H, s), 6.53(1H, d, J=8.6 Hz), 6.85(1H, d, J=7.6 Hz),
 7.15-7.20(5H, m), 7.38(1H, dd, J=8.9, 2.7 Hz), 7.47(1H, d,
 J=2.7 Hz), 7.55(1H, t, J=7.8 Hz), 7.73(1H, d, J=8.4 Hz).

30 ESI-MS (m/z) : 543 (M+H)⁺

Example 165

N-{6-[2-(6-Amino-2-pyridinyl)ethoxy]-3-pyridinyl}-2-(4-ethylphenyl)-1-cyclohexene-1-carboxamide was obtained in the

same manner as in Example 161 as a white solid.

- ¹H-NMR (CDCl₃): δ 1.22(3H, t, J=7.6 Hz), 1.70-1.82(4H, m), 2.40-2.47(2H, m), 2.47-2.56(2H, m), 2.64(2H, q, J=7.6 Hz), 3.02(2H, t, J=6.8 Hz), 4.36(2H, s), 4.51(2H, t, J=6.8 Hz), 6.34(1H, d, J=8.1 Hz), 6.46(1H, s), 6.53-6.58(2H, m), 7.15-7.23(4H, m), 7.34(1H, t, J=8.4 Hz), 7.40(1H, dd, J=8.9, 3.0 Hz), 7.45(1H, d, J=2.4 Hz).

ESI-MS (m/z): 443 (M+H)⁺

Example 166

- To a solution of tert-butyl 4-aminophenyl(2-{2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl)carbamate (531 mg), 2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxylic acid (329 mg) and 1-hydroxybenzotriazole hydrate (223.7 mg) in N,N-dimethylformamide (6.5 ml) was added 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (WSC.HCl) (279.5 mg), followed by triethylamine (0.255 ml) at ambient temperature. The reaction mixture was stirred at 50°C for 12 hours and concentrated in vacuo. The residue was dissolved in ethyl acetate and water, and extracted with ethyl acetate. The organic layer was washed with water and brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel by eluting with hexane:ethyl acetate (9:1→4:1→2:1) to give tert-butyl 2-{2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl{4-[{(2-[4-(trifluoromethyl)phenyl]-1-cyclohexen-1-yl)carbonyl}amino]phenyl}carbamate (0.609 g) as a pale yellow foam.

- ¹H-NMR (CDCl₃): δ 1.38(9H, s), 1.48(9H, s), 1.80(4H, br s), 2.44(2H, br s), 2.55(2H, br s), 2.88(2H, t, J=7.0 Hz), 3.84(2H, t, J=7.0 Hz), 6.52(1H, s), 6.74(1H, s), 6.95-7.02(4H, m), 7.42(2H, d, J=8.5 Hz), 7.59(2H, t, J=8.5 Hz)

ESI-MS (m/z): 709 (M+Na)⁺

Example 167

- To a solution of tert-butyl 2-{2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl{4-[{(2-[4-(trifluoromethyl)phenyl]-1-cyclohexen-1-yl)carbonyl}amino]phenyl}carbamate (694.5 mg) in dichloromethane (7 ml) was added trifluoroacetic acid (1.95

ml). The reaction mixture was stirred for 14 hours, quenched with 10% aqueous potassium carbonate solution, and extracted with dichloromethane. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was recrystallized from ethyl acetate-diisopropyl ether to give N-(4-{{2-(2-amino-1,3-thiazol-4-yl)ethyl}amino}phenyl)-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (0.359 g) as a pale brown powder.

¹H-NMR (DMSO-d₆) : δ 1.73(4H, br s), 2.38(4H, br s), 2.61(2H, t, J=7.2 Hz), 3.16(2H, q, J=7.0 Hz), 5.40(1H, s), 6.18(2H, s), 6.40(1H, d, J=8.8 Hz), 6.84(2H, s), 6.99(2H, d, J=8.8 Hz), 7.48(2H, d, J=8.2 Hz), 7.62(2H, d, J=8.2 Hz), 9.19(1H, s)

ESI-MS (m/z) : 509 (M+Na)⁺

Example 168

tert-Butyl 2-{2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl[4-({[2-(4-methylphenyl)-1-cyclohexen-1-yl]carbonyl}amino)phenyl]carbamate was obtained in the same manner as in Example 166 as a pale yellow foam.

¹H-NMR (CDCl₃) : δ 1.51(9H, s), 1.75(4H, br s), 2.32(3H, s), 2.40(4H, br s), 2.51(4H, br s), 2.91(2H, t, J=6.8 Hz), 3.36(2H, t, J=6.8 Hz), 6.43(2H, d, J=8.6 Hz), 6.45(1H, s), 6.73(1H, s), 6.75(2H, d, J=8.6 Hz), 7.11-7.19(4H, m)

ESI-MS (m/z) : 655 (M+Na)⁺

Example 169

N-(4-{{2-(2-Amino-1,3-thiazol-4-yl)ethyl}amino}phenyl)-2-(4-methylphenyl)-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 167 as a pale brown powder.

¹H-NMR (DMSO-d₆) : δ 1.70(4H, br s), 2.22(3H, s), 2.34(4H, br s), 2.61(2H, t, J=7.0 Hz), 3.16(2H, t, J=7.0 Hz), 6.19(1H, s), 6.40(2H, d, J=8.9 Hz), 6.87(2H, s), 7.04(4H, d, J=8.4 Hz), 7.18(2H, d, J=8.1 Hz), 9.05(1H, s)

ESI-MS (m/z) : 455 (M+Na)⁺

Example 170

tert-Butyl 2-{2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl[4-({[2-(4-ethylphenyl)-1-cyclohexen-1-yl]carbonyl}amino)phenyl]carbamate was obtained in the same manner as in Example 166 as a pale yellow foam.

¹H-NMR (CDCl₃) : δ 1.21(3H, t, J=7.6 Hz), 1.29(9H, s), 1.48(9H, s),

1.77(4H, br s), 2.43(2H, br s), 2.53(2H, br s), 2.63(2H, q,
J=7.6 Hz), 2.88(2H, t, J=7.9 Hz), 3.83(2H, t, J=7.9 Hz),
6.60(1H, s), 6.74(1H, s), 6.86-6.96(4H, m), 7.12-7.24(4H, m)
ESI-MS (m/z) : 669 (M+Na)⁺

5 Example 171

N-(4-{[2-(2-Amino-1,3-thiazol-4-yl)ethyl]amino}phenyl)-
2-(4-ethylphenyl)-1-cyclohexene-1-carboxamide was obtained in
the same manner as in Example 167 as a pale brown powder.

10 ¹H-NMR(DMSO-d₆):δ 1.13(3H, t, J=7.3 Hz), 1.70(4H, br s),
2.33(4H, br s), 2.54(2H, t, J=7.3 Hz), 2.61(2H, t, J=7.3 Hz),
3.16(2H, dd, J=7.3, 5.7 Hz), 5.36(1H, t, J=5.7 Hz), 6.18(1H,
s), 6.39(2H, d, J=8.6 Hz), 6.83(2H, s), 6.99(2H, d, J=8.6 Hz),
7.08(2H, d, J=8.2 Hz), 7.20(2H, d, J=8.2 Hz), 8.98(1H, s)
ESI-MS (m/z) : 447 (M+H)⁺

15 Example 172

To a solution of tert-butyl 4-[2-(4-aminophenoxy)ethyl]-
1,3-thiazol-2-ylcarbamate(578 mg), 2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxylic acid(510
mg) and 1-hydroxybenzotriazole hydrate (315 mg) in N,N-
20 dimethylformamide (20 ml) was added 1-[3-(dimethylamino)-
propyl]-3-ethylcarbodiimide hydrochloride (WSC.HCl) (395 mg),
followed by triethylamine (0.36 ml) at ambient temperature.
The reaction mixture was stirred at 50°C for 2 hours and
concentrated in vacuo. The residue was dissolved in ethyl
acetate and water, and extracted with ethyl acetate. The
organic layer was washed with water and brine, dried over
magnesium sulfate, filtered, and concentrated in vacuo. The
residue was purified by column chromatography on silica gel by
eluting with hexane:ethyl acetate (2:1→3:2) to give tert-
30 butyl 4-(2-{4-[{(2-[4-(trifluoromethyl)phenyl]-1-cyclohexen-1-
yl}carbonyl]amino}phenoxy}ethyl)-1,3-thiazol-2-ylcarbamate
(1.011 g) as a pale yellow foam.

1¹H-NMR(DMSO-d₆):δ 1.46(3H, t, J=7.6 Hz), 1.73(94H, sbr s),
2.39(4H, br s), 2.95(2H, t, J=6.6 Hz), 4.13(2H, t, J=6.6 Hz),
35 6.76(2H, d, J=9.2 Hz), 6.82(1H, s), 7.21(2H, d, J=9.2 Hz),
7.48(2H, d, J=8.2 Hz), 7.62(2H, d, J=8.2 Hz), 9.48(1H, s),
11.36(1H, s)
ESI-MS (m/z) : 610 (M+Na)⁺

Example 173

To a solution of tert-butyl 4-(2-{4-[({2-[4-(trifluoromethyl)phenyl]-1-cyclohexen-1-yl}carbonyl)amino]phenoxy}ethyl)-1,3-thiazol-2-ylcarbamate (1.011 g) in dichloromethane (25 ml) was added trifluoroacetic acid (2.6 ml). The reaction mixture was stirred at ambient temperature for 13 hours, quenched with 10% aqueous potassium carbonate solution, and extracted with ethyl acetate-tetrahydrofuran. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was recrystallized from ethyl acetate-diisopropyl ether to give N-{4-[2-(2-amino-1,3-thiazol-4-yl)ethoxy]phenyl}-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (0.791 g) as white crystals.

¹H-NMR (DMSO-d₆) : δ 1.73(4H, br s), 2.39(4H, br s), 2.91(2H, t, J=6.3 Hz), 4.11(2H, t, J=6.4 Hz), 6.56(1H, s), 6.78(2H, d, J=8.9 Hz), 7.22(2H, d, J=8.9 Hz), 7.48(2H, d, J=8.2 Hz), 7.61(2H, d, J=8.2 Hz), 9.51(1H, s)
ESI-MS (m/z) : 487 (M+H)⁺

Example 174

tert-Butyl 4-{2-[4-({[2-(4-methylphenyl)-1-cyclohexen-1-yl}carbonyl)amino]phenoxy}ethyl}-1,3-thiazol-2-ylcarbamate (1.213 g) was obtained in the same manner as in Example 172 as a pale yellow foam.

¹H-NMR (DMSO-d₆) : δ 1.46(9H, s), 1.69(4H, br s), 2.21(3H, s), 2.34(4H, br s), 2.98(2H, t, J=6.6 Hz), 4.13(2H, t, J=6.6 Hz), 6.76(2H, d, J=8.9 Hz), 6.82(1H, s), 7.04(2H, d, J=7.9 Hz), 7.17(2H, d, J=7.9 Hz), 7.25(2H, d, J=8.9 Hz), 9.33(1H, s)
ESI-MS (m/z) : 534 (M+H)⁺

Example 175

N-{4-[2-(2-Amino-1,3-thiazol-4-yl)ethoxy]phenyl}-2-(4-methylphenyl)-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 173 as white crystals.

¹H-NMR (DMSO-d₆) : δ 1.70(4H, br s), 2.21(3H, s), 2.34(4H, br s), 2.80(2H, t, J=6.9 Hz), 4.09(2H, t, J=6.9 Hz), 6.23(1H, s), 6.84(2H, br s), 7.04(2H, d, J=8.2 Hz), 7.17(2H, d, J=7.9 Hz), 7.25(2H, d, J=8.9 Hz), 9.33(1H, s)
ESI-MS (m/z) : 434 (M+H)⁺

Example 176

tert-Butyl 4-{2-[4-({[2-(4-ethylphenyl)-1-cyclohexen-1-yl]carbonyl}amino)phenoxy]ethyl}-1,3-thiazol-2-ylcarbamate was obtained in the same manner as in Example 172 as a pale yellow
5 foam.

¹H-NMR (DMSO-d₆) : δ 1.11(3H, t, J=7.6 Hz), 1.46(9H, s), 1.70(4H, br s), 2.35(4H, br s), 2.51(2H, q, J=7.6 Hz), 2.95(2H, t, J=6.7 Hz), 4.13(2H, t, J=6.7 Hz), 6.75(2H, d, J=8.2 Hz), 6.82(1H, s), 7.07(2H, d, J=8.2 Hz), 7.18(2H, d, J=4.6 Hz),
10 7.21(2H, d, J=5.3 Hz), 9.29(1H, s), 11.36(1H, s)
ESI-MS (m/z) : 548 (M+H)⁺

Example 177

N-{4-[2-(2-Amino-1,3-thiazol-4-yl)ethoxy]phenyl}-2-(4-ethylphenyl)-1-cyclohexene-1-carboxamide was obtained in the
15 same manner as in Example 173 as white crystals.

¹H-NMR (DMSO-d₆) : δ 1.11(3H, t, J=7.6 Hz), 1.70(4H, br s), 2.35(4H, br s), 2.50(2H, q, J=7.6 Hz), 2.80(2H, t, J=6.7 Hz), 4.09(2H, t, J=6.7 Hz), 6.22(1H, s), 6.75(2H, d, J=8.9 Hz), 6.85(2H, s), 7.07(2H, d, J=7.9 Hz), 7.21(2H, d, J=8.9 Hz),
20 7.19(2H, d, J=7.6 Hz), 9.29(1H, s)
ESI-MS (m/z) : 448 (M+H)⁺

Preparation 70

A mixture of tert-butyl 4-(2-aminoethyl)-1,3-thiazol-2-ylcarbamate (2.44 g), 2-chloro-5-nitropyridine (2.38 g) and
25 triethylamine (2.8 ml) in N,N-dimethylformamide (20 ml) was heated at 50°C for 2 hours. The reaction mixture was concentrated in vacuo. To the residue added water and extracted with ethyl acetate and tetrahydrofuran. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was recrystallized from ethyl acetate-hexane to give tert-butyl 4-{2-[(5-nitro-2-pyridinyl)amino]ethyl}-1,3-thiazol-2-ylcarbamate (3.596 g) as pale yellow powder.
30

¹H-NMR (DMSO-d₆) : δ 1.47(9H, s), 2.83(2H, t, J=6.8 Hz), 3.66(2H, br s), 6.55(1H, d, J=9.5 Hz), 6.79(1H, s), 8.09(1H, br d, J=8.6 Hz), 8.18(1H, br s, J=3.0 Hz), 8.92(1H, d, J=2.7 Hz), 11.4(1H, s)
ESI-MS (m/z) : 388 (M+Na)⁺

Preparation 71

To a solution of tert-butyl 4-[2-[(5-nitro-2-pyridinyl)amino]ethyl]-1,3-thiazol-2-ylcarbamate (2.0 g) in tetrahydrofuran (40 ml) was added di-t-butyl dicarbonate (1.43

- 5 g) and the mixture was heated at 55°C for 2 hours. The reaction mixture was cooled to room temperature and concentrated in vacuo. The residue was dissolved in ethyl acetate and water, and extracted with ethyl acetate. The organic layer was washed with water and brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel by eluting with hexane:ethyl acetate (4:1) to give tert-butyl 2-[2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl]ethyl(5-nitro-2-pyridinyl)carbamate (2.059 g) as a brown oil.
- 15 $^1\text{H-NMR}(\text{CDCl}_3):\delta$ 1.57(18H, s), 3.04(2H, t, $J=7.6$ Hz), 4.37(2H, t, $J=7.6$ Hz), 6.74(1H, s), 8.03(1H, d, $J=9.5$ Hz), 8.34(1H, dd, $J=9.2$, 3.0 Hz), 9.17(1H, d, $J=3.0$ Hz)
- ESI-MS(m/z): 488(M+Na)⁺

Preparation 72

- 20 A solution of tert-butyl 2-[2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl]ethyl(5-nitro-2-pyridinyl)carbamate (1.937 g) in methanol (19 ml) was hydrogenated over 10% palladium on carbon (0.969 g, 50% wet) at ambient temperature under atmospheric pressure of hydrogen for 2 hours. The reaction mixture was filtered through a short pad of celite, and the filtrate was concentrated in vacuo. The residue was purified by column chromatography on silica gel by eluting with hexane:ethyl acetate (1:2) to give tert-butyl 5-amino-2-pyridinyl(2-[2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl]ethyl)carbamate (1.673 g) as a pale yellow solid.

25 $^1\text{H-NMR}(\text{CDCl}_3):\delta$ 1.50(18H, s), 2.97(2H, t), 2.63(2H, s), 4.07(2H, t), 6.75(1H, s), 6.95(1H, dd, $J=8.6$, 3.0 Hz), 7.10(1H, br d, $J=8.1$ Hz), 7.86(1H, d, $J=3.0$ Hz)

30 ESI-MS(m/z): 458(M+Na)⁺

Example 178

To a solution of 2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxylic acid (332 mg) in toluene (3.3 ml)

were added thionyl chloride (0.179 ml) and N,N-dimethylformamide (1 drop) and the mixture was stirred at 80°C for an hour. The mixture was evaporated in vacuo and the residue was dissolved in tetrahydrofuran (5.76 ml). The acid chloride in tetrahydrofuran was added to a solution of tert-butyl 5-amino-2-pyridinyl(2-{2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl)carbamate (411.1 mg) and triethylamine (0.197 ml) in tetrahydrofuran at ambient temperature and the mixture was stirred at the same temperature for an hour. The mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was recrystallized from ethyl acetate-hexane to give tert-butyl 2-{2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl{5-[{(2-[4-(trifluoromethyl)phenyl]-1-cyclohexen-1-yl)carbonyl}amino]-2-pyridinyl}carbamate (532 mg) as a white solid.

¹H-NMR (DMSO-d₆) : δ 1.39(9H, s), 1.47(9H, s), 1.75(4H, br s), 2.41(4H, br s), 2.80(2H, br t, J=7.3 Hz), 3.97(2H, br t, J=6.5 Hz), 7.06(1H, s), 7.33(1H, d, J=8.9 Hz), 7.48(2H, d, J=8.3 Hz), 7.63(2H, d, J=8.6 Hz), 7.70(1H, dd, J=8.9, 2.7 Hz), 8.29(1H, d, J=2.2 Hz)

ESI-MS (m/z) : 710(M+Na)⁺

Example 179

To a solution of tert-butyl 2-{2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl{5-[{(2-[4-(trifluoromethyl)phenyl]-1-cyclohexen-1-yl)carbonyl}amino]-2-pyridinyl}carbamate (490.5 mg) in dichloromethane (4.9 ml) was added trifluoroacetic acid (0.824 ml). The reaction mixture was stirred for 19 hours, quenched with 10% aqueous potassium carbonate solution, and extracted with dichloromethane. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was recrystallized from ethyl acetate-hexane to give N-(6-{[2-(2-amino-1,3-thiazol-4-yl)ethyl]amino}-3-pyridinyl)-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (296 mg) as a pale yellow powder.

¹H-NMR (DMSO-d₆) : δ 1.73(4H, br s), 2.38(4H, br s), 2.60(2H, t, J=7.3 Hz), 3.38(2H, br t, J=7.3 Hz), 6.15(1H, s, J=7.3 Hz),

WO 03/045921

6.32(1H, d, J=8.9 Hz), 6.85(2H, br s), 7.24(1H, dd, J=8.9, 2.4 Hz), 7.48(2H, d, J=8.4 Hz), 7.64(2H, d, J=8.1 Hz), 7.80(1H, dd, J=2.2 Hz), 9.27(1H, s)
 ESI-MS (m/z) : 488 (M+H)⁺

5 Example 180

tert-Butyl 2-{2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl[5-({[2-(4-methylphenyl)-1-cyclohexen-1-yl]carbonyl}amino)-2-pyridinyl]carbamate was obtained in the same manner as in Example 178 as a pale yellow foam.

10 ¹H-NMR (DMSO-d₆) : δ 1.39(9H, s), 1.47(9H, br s), 1.73(4H, br s), 1.99(3H, s), 2.37(4H, br s), 2.81(2H, br t, J=7.8 Hz), 3.97(2H, br t, J=8.6 Hz), 7.05(2H, d, J=7.8 Hz), 7.07(1H, s), 7.18(2H, d, J=7.8 Hz), 7.75(1H, dd, J=8.9, 2.4 Hz), 8.31(1H, d, J=2.4 Hz), 9.71(1H, s)

15 ESI-MS (m/z) : 656 (M+Na)⁺

Example 181

N-(6-{[2-(2-Amino-1,3-thiazol-4-yl)ethyl]amino}-3-pyridinyl)-2-(4-methylphenyl)-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 179 as a pale yellow powder.

20 ¹H-NMR (DMSO-d₆) : δ 1.71(4H, br s), 2.23(3H, s), 2.34(4H, br s), 2.60(2H, t, J=7.3 Hz), 3.36(2H, t, J=8.1 Hz), 6.15(1H, s), 6.25-6.33(2H, m), 6.81(2H, br s), 7.06(2H, d, J=7.8 Hz), 7.17(2H, d, J=7.8 Hz), 7.30(1H, dd, J=8.6, 2.4 Hz), 7.82(1H, d, J=2.2 Hz), 9.11(1H, s)

25 ESI-MS (m/z) : 456 (M+Na)⁺

Example 182

tert-Butyl 2-{2-[(tert-butoxycarbonyl)amino]-1,3-thiazol-4-yl}ethyl[5-({[2-(4-ethylphenyl)-1-cyclohexen-1-yl]carbonyl}amino)-2-pyridinyl]carbamate was obtained in the same manner as in Example 178 as a pale yellow foam.

30 ¹H-NMR (DMSO-d₆) : δ 1.09(3H, t, J=7.6 Hz), 1.39(9H, s), 1.47(9H, s), 1.72(4H, br s), 2.37(4H, br s), 2.80(2H, t, J=7.8 Hz), 3.96(2H, t, J=8.1 Hz), 7.06(1H, s), 7.08(2H, d), 7.19(2H, d, J=7.8 Hz), 7.32(1H, d, J=8.6 Hz), 7.72(1H, dd, J=8.9, 2.4 Hz), 8.27(1H, d, J=2.4 Hz), 9.65(1H, s)

35 ESI-MS (m/z) : 670 (M+Na)⁺

Example 183

N-(6-{[2-(2-Amino-1,3-thiazol-4-yl)ethyl]amino}-3-pyridinyl)-2-(4-ethylphenyl)-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 179 as a pale yellow powder.

- 5 ¹H-NMR (DMSO-d₆) :δ 1.13(3H, t, J=7.8 Hz), 1.70(4H, br s), 2.34(4H, br s), 2.50-2.62(4H, m), 3.36(2H, q, J=7.8 Hz), 6.14(1H, s), 6.27-6.32(mH, m), 6.81(2H, s), 7.09(2H, d, J=8.1 Hz), 7.19(2H, d, J=8.4 Hz), 7.24(1H, dd, J=8.9, 2.7 Hz), 7.79(1H, d, J=2.2 Hz), 9.05(1H, s)

- 10 ESI-MS (m/z) : 470 (M+Na)⁺

Preparation 73

- To a suspension of sodium hydride in 60% oil (0.245 g) in tetrahydrofuran (9 ml) was added tert-butyl 4-(2-hydroxyethyl)-1,3-thiazol-2-ylcarbamate (1.0 g) at 0°C. After 15 minutes, 2-bromo-5-nitropyridine was added to the reaction mixture at 0°C, and the mixture was stirred at 55°C for 18 hours. The reaction mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel by eluting with hexane:ethyl acetate (8:1→6:1) to give a yellow foam. The foam was recrystallized from ethyl acetate-hexane to give tert-butyl 4-{2-[(5-nitro-2-pyridinyl)oxy]ethyl}-1,3-thiazol-2-ylcarbamate (0.623 g) as a yellow solid.

¹H-NMR (CDCl₃) :δ 1.53(9H, s), 3.16(2H, t, J=6.9 Hz), 4.71(2H, t, J=6.9 Hz), 6.60(1H, s), 6.77(1H, d, J=9.5 Hz), 8.31(1H, dd, J=9.5, 3.0 Hz), 9.05(1H, d, J=3.0 Hz)

ESI-MS (m/z) : 389 (M+Na)⁺

Preparation 74

- A solution of tert-butyl 4-{2-[(5-nitro-2-pyridinyl)oxy]ethyl}-1,3-thiazol-2-ylcarbamate (0.672 g) in ethyl acetate (10 ml) was hydrogenated over 10% palladium on carbon (0.336 g, 50% wet) at ambient temperature under atmospheric pressure of hydrogen for an hour. The reaction mixture was filtered through a short pad of celite, and the filtrate was concentrated in vacuo. The residue was purified by column chromatography on silica gel by eluting with

hexane:ethyl acetate (1:1→1:2→1:3) to give tert-butyl 4-{2-[5-amino-2-pyridinyl]oxy}ethyl]-1,3-thiazol-2-ylcarbamate (0.561 g) as yellow crystals.

5 $^1\text{H-NMR}(\text{CDCl}_3):\delta$ 1.52(9H, s), 3.13(2H, t, $J=6.6$ Hz), 4.48(2H, t, $J=6.6$ Hz), 6.55(1H, d, $J=8.9$ Hz), 6.59(1H, s), 6.99(1H, dd, $J=8.9$, 3.2 Hz), 7.63(1H, d, $J=3.2$ Hz)
ESI-MS (m/z): 359(M+Na)⁺

Example 184

To a solution of 2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxylic acid (275 mg) in toluene (4 ml) were added thionyl chloride (0.15 ml) and N,N-dimethylformamide (1 drop) and the mixture was stirred at 80°C for an hour. The mixture was evaporated in vacuo and the residue was dissolved in tetrahydrofuran (2 ml). The acid chloride in 15 tetrahydrofuran was added to a solution of tert-butyl 4-{2-[5-amino-2-pyridinyl]oxy}ethyl]-1,3-thiazol-2-ylcarbamate (263 mg) and triethylamine (0.16 ml) in tetrahydrofuran (3 ml) at ambient temperature and the mixture was stirred at the same temperature for 11 hours. The reaction mixture was poured 20 into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was purified by column chromatography on silica gel by eluting with hexane:ethyl acetate (6:1→4:1→2:1) to give tert-butyl 4-[2-{5-[{(2-[4-(trifluoromethyl)phenyl]-1-cyclohexen-1-yl)carbonyl]amino}-2-pyridinyl]oxy}ethyl]-1,3-thiazol-2-ylcarbamate (329 mg) as a 25 yellow solid.

30 $^1\text{H-NMR}(\text{CDCl}_3):\delta$ 1.52(9H, s), 1.80(4H, br s), 2.43(2H, br s), 2.53(2H, br s), 3.07(2H, t, $J=7.0$ Hz), 4.47(2H, t, $J=7.0$ Hz), 6.44(1H, s), 6.55(1H, d, $J=8.6$ Hz), 6.56(1H, s), 7.36(1H, dd, $J=8.6$, 2.7 Hz), 7.41(2H, d, $J=7.8$ Hz), 7.59(2H, d, $J=8.1$ Hz), 7.61(1H, d, $J=2.4$ Hz)

ESI-MS (m/z): 611(M+Na)⁺

Example 185

35 To a solution of tert-butyl 4-[2-{5-[{(2-[4-(trifluoromethyl)phenyl]-1-cyclohexen-1-yl)carbonyl]amino}-2-pyridinyl]oxy}ethyl]-1,3-thiazol-2-ylcarbamate (329 mg) in dichloromethane (3.3 ml) was added trifluoroacetic acid (0.647

ml). The reaction mixture was stirred for 14 hours, quenched with 10% aqueous potassium carbonate solution, and extracted with dichloromethane. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was recrystallized from ethyl acetate-hexane to give N-[6-[2-(2-amino-1,3-thiazol-4-yl)ethoxy]-3-pyridinyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (257 mg) as pale orange powder.

10 $^1\text{H-NMR}$ (DMSO-d₆) : δ 1.75(4H, m), 2.40(4H, br s), 2.79(2H, t, J=7.0 Hz), 4.37(2H, t, J=7.0 Hz), 6.20(1H, s), 6.66(1H, d, J=8.6 Hz), 6.84(2H, s), 7.48(2H, d, J=8.1 Hz), 7.58(1H, dd, J=8.6, 2.7 Hz), 7.64(2H, d, J=8.3 Hz), 8.05(1H, d, J=2.7 Hz), 9.63(1H, s)

15 ESI-MS (m/z) : 511 (M+Na)⁺

15 Example 186

tert-Butyl 4-(2-{[5-({[2-(4-methylphenyl)-1-cyclohexen-1-yl]carbonyl}amino)-2-pyridinyl]oxy}ethyl)-1,3-thiazol-2-ylcarbamate was obtained in the same manner as in Example 184 as a pale yellow foam.

20 $^1\text{H-NMR}$ (CDCl₃) : δ 1.52(9H, s), 1.77(4H, br s), 2.33(3H, s), 2.42(2H, br s), 2.51(2H, br s), 3.07(2H, t, J=7.0 Hz), 4.47(2H, t, J=6.8 Hz), 6.50(1H, s), 6.55(1H, d, J=8.6 Hz), 6.56(1H, s), 7.16(4H, s), 7.44(1H, d, J=2.2 Hz), 7.48(1H, dd, J=8.9, 2.7 Hz)

25 ESI-MS (m/z) : 557 (M+Na)⁺

Example 187

N-[6-[2-(2-Amino-1,3-thiazol-4-yl)ethoxy]-3-pyridinyl]-2-(4-methylphenyl)-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 185 as a pale yellow powder.

30 $^1\text{H-NMR}$ (DMSO-d₆) : δ 1.72(4H, s), 2.22(3H, s), 2.34(4H, s), 2.80(2H, t, J=6.8 Hz), 4.37(2H, t, J=6.8 Hz), 6.20(1H, s), 6.66(1H, d, J=8.9 Hz), 6.85(2H, s), 7.06(2H, d, J=7.8 Hz), 7.18(2H, d, J=8.1 Hz), 7.61(1H, dd, J=8.9, 2.4 Hz), 8.07(1H, d, J=2.2 Hz), 9.48(1H, s)

35 ESI-MS (m/z) : 457 (M+Na)⁺

Example 188

tert-Butyl 4-(2-{[5-({[2-(4-ethylphenyl)-1-cyclohexen-1-yl]carbonyl}amino)-2-pyridinyl]oxy}ethyl)-1,3-thiazol-2-

ylcarbamate was obtained in the same manner as in Example 184 as a pale yellow foam.

¹H-NMR(CDCl₃): δ 1.21(3H, t, J=7.6 Hz), 1.52(9H, s), 1.77(4H, br s), 2.43(2H, br s), 2.52(2H, br s), 2.61(2H, q, J=7.6 Hz), 5 3.08(2H, t, J=6.8 Hz), 4.46(2H, t, J=7.0 Hz), 6.47(1H, s), 6.53(1H, d, J=8.9 Hz), 6.56(1H, s), 7.18(4H, s), 7.37(1H, dd, J=8.9, 2.7 Hz), 7.45(1H, d, J=2.2 Hz), 9.26(1H, br s)
ESI-MS(m/z): 571(M+Na)⁺

Example 189

10 N-{6-[2-(2-Amino-1,3-thiazol-4-yl)ethoxy]-3-pyridinyl}-2-(4-ethylphenyl)-1-cyclohexene-1-carboxamide was obtained in the same manner as in Exampple 185 as a pale yellow powder.

¹H-NMR(DMSO-d₆): δ 1.10(3H, t, J=7.6 Hz), 1.72(4H, br s), 2.36(4H, br s), 2.37(2H, q, J=7.6 Hz), 2.79(2H, t, J=6.8 Hz), 15 4.37(2H, t, J=6.8 Hz), 6.20(1H, s), 6.64(1H, d, J=8.9 Hz), 6.86(2H, s), 7.08(2H, d, J=7.8 Hz), 7.19(2H, d, J=7.8 Hz), 7.56(1H, dd, J=8.9, 2.7 Hz), 8.03(1H, d, J=2.4 Hz), 9.42(1H, s)

ESI-MS(m/z): 471(M+Na)⁺

20 Preparation 75

A solution of tert-butyl 4-(4-nitrophenyl)-1-piperazinecarboxylate (207 mg) in methanol (5 ml) and tetrahydrofuran (2 ml) was hydrogenated over 10% palladium on carbon (40 mg) at ambient temperature under atmospheric pressure of hydrogen for 4 hours. The reaction mixture was filtered through a pad of celite, and the filtrate was concentrated in vacuo to give tert-butyl 4-(4-aminophenyl)-1-piperazinecarboxylate (186 mg) as a dark red tar. The product was used for the next step without further purification.

30 Preparation 76

To a solution of tert-butyl 4-(4-aminophenyl)-1-piperazinecarboxylate (182 mg), 2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxylic acid (187 mg) and 1-hydroxybenzotriazole monohydrate (134 mg) in N,N-dimethylformamide (5 ml) was added 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (WSC.HCl) (168 mg), followed by triethylamine (100 mg) at ambient temperature. The reaction mixture was stirred for 3

days and concentrated in vacuo. The residue was dissolved in ethyl acetate and water. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel by eluting with hexane:ethyl acetate (2:1) to give tert-butyl 4-[4-[(2-[4-(trifluoromethyl)phenyl]amino]phenyl]-1-piperazinecarboxylate (321 mg) as white crystals.

10 $^1\text{H-NMR}(\text{CDCl}_3):\delta$ 7.58(2H, d, J=8.6 Hz), 7.42(2H, d, J=8.2 Hz), 6.85(2H, d, J=8.9 Hz), 6.74(2H, d, J=8.9 Hz), 6.41(1H, brs), 3.54(4H, brt, J=5.1 Hz), 3.02(4H, brt, J=4.9 Hz), 2.54(2H, brs), 2.43(2H, brs), 1.80(4H, brs), 1.47(9H, s)
(+)ESI-MS (m/z): 552 (M+Na)⁺

15 Preparation 77

To a solution of tert-butyl 4-[4-[(2-[4-(trifluoromethyl)phenyl]amino]phenyl]-1-piperazinecarboxylate (313 mg) in dichloromethane (10 ml) was added trifluoroacetic acid (1.033 g). The reaction mixture was stirred for 18 hours, quenched with 10% aqueous potassium carbonate solution, and extracted with dichloromethane. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated in vacuo to give N-[4-(1-piperazinyl)phenyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (245 mg) as yellow crystals.

10 $^1\text{H-NMR}(\text{CDCl}_3):\delta$ 7.58(2H, d, J=8.6 Hz), 7.41(2H, d, J=7.9 Hz), 6.84(2H, d, J=8.9 Hz), 6.73(2H, d, J=8.9 Hz), 6.41(1H, brs), 3.04(4H, brs), 3.02(4H, brs), 2.54(2H, brs), 2.43(2H, brs), 1.84(4H, brs)
(+)ESI-MS (m/z): 430 (M+H)⁺

Example 190

To a solution of N-[4-(1-piperazinyl)phenyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (360 mg) and 3-formylbenzonitrile (220 mg) in dichloromethane (15 ml) was added sodium triacetoxyborohydride (530 mg) was added at ambient temperature. The reaction mixture was stirred for 3 hours, quenched with 10% aqueous potassium carbonate solution,

and extracted with dichloromethane twice. The combined organic layers were washed with brine, dried over magnesium sulfate, and concentrated in vacuo. The residue was recrystallized from diisopropyl ether to give N-[4-[4-(3-cyanobenzyl)-1-piperazinyl]phenyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (355 mg) as colorless crystals.

Example 191

Example 192

To a solution of tert-butyl 6-[2-oxo-2-(4-{4-[(2-[4-

(trifluoromethyl)phenyl]-1-cyclohexen-1-yl}carbonyl)amino]phenyl}-1-piperazinyl)ethyl]-2-pyridinylcarbamate (155 mg) in dichloromethane (10 ml) was added trifluoroacetic acid (400 mg). The reaction mixture was 5 stirred for 36 hours, quenched with 10% aqueous potassium carbonate solution, and extracted with dichloromethane. The organic layer was washed with brine, dried over magnesium sulfate, and concentrated in vacuo. The residue was recrystallized from ethyl acetate-diisopropyl ether to give N-
10 (4-{(6-amino-2-pyridinyl)acetyl]-1-piperazinyl}phenyl)-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (83 mg) as pale brown crystals.

¹H-NMR(DMSO-d₆):δ 9.41(1H, s), 7.61(2H, d, J=8.2 Hz), 7.47(2H, d, J=8.2 Hz), 7.28(1H, t, J=7.7 Hz), 7.17(2H, d, J=8.9 Hz), 15 6.78(2H, d, J=8.9 Hz), 6.35(1H, d, J=7.3 Hz), 6.27(1H, d, J=8.2 Hz), 5.81(2H, brs), 3.62(2H, s), 3.61(4H, brs), 2.96(4H, brs), 2.38(4H, brs), 1.73(4H, brs)
(+)ESI-MS(m/z): 564(M+H)⁺, 586(M+Na)⁺

Example 193
20 To a solution of N-[4-(1-piperazinyl)phenyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (203 mg), 2-pyridinylacetic acid hydrochloride (90 mg) and 1-hydroxybenzotriazole (73 mg) in N,N-dimethylformamide (10 ml) was added 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (WSC.HCl) (109 mg), followed by triethylamine (0.17 ml) at ambient temperature. The reaction mixture was stirred for 12 hours at 40°C and concentrated in vacuo. The residue was dissolved in ethyl acetate and water, and extracted with ethyl acetate. The organic layer was washed 25 with water and brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel by eluting with ethyl acetate:methanol (10:1) to give N-{4-[4-(2-pyridinylacetyl)-1-piperazinyl]phenyl}-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (120 mg) as a brown solid.
30
35

¹H-NMR(DMSO-d₆):δ 1.73(4H, br s), 2.38(4H, br s), 2.96(4H, br s), 3.57(2H, br s), 3.64(2H, br s), 3.90(2H, s), 7.15-7.30(4H, m), 7.47(2H, d, J=8.2 Hz), 7.62(2H, d, J=8.2 Hz), 7.72(1H, td,

$J=7.6$, 1, 6 Hz), 8.46(1H, d, $J=4.0$ Hz), 9.42(1H, s),
ESI-MS (m/z) : 549 (M+H)⁺

Example 194

To a suspension of N-[4-(1-piperazinyl)phenyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (200 mg) and 1,3-thiazole-2-carbaldehyde (105 mg) in dichloromethane (20 ml) was added sodium triacetoxyborohydride (296 mg) at ambient temperature. The reaction mixture was stirred for 20 hours, quenched with 10% aqueous potassium carbonate solution, and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, and concentrated in vacuo. The residue was recrystallized from ethyl acetate-diisopropyl ether to give N-[4-[4-(1,3-thiazol-2-ylmethyl)-1-piperazinyl]phenyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (178 mg) as a pale brown solid.

¹H-NMR (DMSO-d₆) : δ 1.73(4H, br s), 2.38(4H, br s), 2.60(4H, br t, $J=4.7$ Hz), 3.05(4H, br t, $J=4.7$ Hz), 3.87(2H, s), 6.77(2H, d, $J=8.9$ Hz), 7.15(2H, d, $J=8.9$ Hz), 7.47(2H, d, $J=7.9$ Hz), 7.61(2H, d, $J=8.2$ Hz), 7.66(1H, d, $J=3.3$ Hz), 7.72(1H, d, $J=3.3$ Hz), 9.39(1H, s)
ESI-MS (m/z) : 527 (M+H)⁺

Example 195

N-[4-[4-(1H-Pyrrol-2-ylmethyl)-1-piperazinyl]phenyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 194 as a pale brown solid.

¹H-NMR (DMSO-d₆) : δ 1.72(4H, br s), 2.37(4H, br s), 2.44(4H, br s), 3.00(4H, br s), 3.42(2H, s), 5.88(1H, s), 5.91(1H, q, $J=2.6$ Hz), 6.62(1H, q, $J=2.6$ Hz), 6.75(2H, d, $J=9.2$ Hz), 7.14(2H, d, $J=8.9$ Hz), 7.47(2H, d, $J=7.9$ Hz), 7.61(2H, d, $J=8.2$ Hz), 9.39(1H, s), 10.68(1H, s)
ESI-MS (m/z) : 509 (M+H)⁺

Example 196

To a suspension of N-[4-(1-piperazinyl)phenyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (200 mg) and 3-chloro-1-propene (71.3 mg) in acetone (30 ml) was added cesium carbonate (228 mg) at ambient temperature. The

reaction mixture was stirred at 70°C for 14 hours. After cooling, water was added, and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, and concentrated in vacuo. The residue was

- 5 recrystallized from ethyl acetate-diisopropyl ether to give N-[4-(4-allyl-1-piperazinyl)phenyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (82 mg) as a pale yellow solid.

10 $^1\text{H-NMR}$ (DMSO-d₆) : δ 1.73(4H, br s), 2.38(4H, br s), 2.45(4H, br t, J=4.7 Hz), 2.98(2H, d, J=6.2 Hz), 3.01(4H, br t, J=5.7 Hz), 5.11-5.22(2H, m), 5.74-5.89(1H, m), 6.75(2H, d, J=9.2 Hz), 7.16(2H, d, J=8.9 Hz), 7.48(2H, d, J=7.9 Hz), 7.62(2H, d, J=8.2 Hz), 9.40(1H, s)
ESI-MS (m/z) : 470 (M+H)⁺

15 Example 197

N-[4-[4-(1H-Imidazol-5-ylmethyl)-1-piperazinyl]phenyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 194 as a white solid .

20 $^1\text{H-NMR}$ (DMSO-d₆) : δ 1.73(4H, br s), 2.37(4H, br s), 2.50(4H, br s), 3.01(4H, br t, J=4.6 Hz), 3.45(2H, s), 6.75(2H, d, J=9.2 Hz), 6.89(1H, s), 7.15(2H, d, J=9.2 Hz), 7.48(2H, d, J=8.2 Hz), 7.55(1H, d, J=1.0 Hz), 7.61(2H, d, J=8.2 Hz), 9.38(1H, s), ESI-MS (m/z) : 510 (M+H)⁺

25 Example 198

To a solution of N-[4-(1-piperazinyl)phenyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (200 mg) and 2-bromoacetamide (77 mg) in tetrahydrofuran (15 ml) was added triethylamine (78 μ l) at ambient temperature. The reaction mixture was stirred at 70°C for 2 hours. After cooling, the solvent was concentrated in vacuo, and the concentrate was extracted with dichloromethane. The organic layer was washed with brine, dried over magnesium sulfate, and concentrated in vacuo. The residue was recrystallized from ethyl acetate-diisopropyl ether to give N-[4-[4-(2-amino-2-oxoethyl)-1-piperazinyl]phenyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (168 mg) as a pale yellow solid.

$^1\text{H-NMR}$ (DMSO-d₆) : δ 1.73(4H, br s), 2.38(4H, br s), 2.54(4H, br

s), 2.89(2H, s), 3.05(4H, br t, J=4.6 Hz), 6.75(2H, d, J=8.9 Hz), 7.14(2H, br s), 7.16(2H, d, J=8.9 Hz), 7.48(2H, d, J=7.9 Hz), 7.62(2H, d, J=8.2 Hz), 9.39(1H, s),
ESI-MS (m/z) : 487 (M+H)⁺

5 Example 199

To a solution of N-[4-(1-piperazinyl)phenyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (200 mg), (2-(formylamino)-1,3-thiazol-4-yl)acetic acid (91 mg) and 1-hydroxybenzotriazole (76 mg) in dichloromethane (20 ml) was added 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (WSC.HCl) (107 mg), followed by triethylamine (0.1 ml) at ambient temperature. The reaction mixture was stirred for 12 hours and extracted with dichloromethane. The organic layer was washed with water and brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel by eluting with ethyl acetate:methanol (10:1) to give N-[4-(4-[[2-(formylamino)-1,3-thiazol-4-yl]acetyl]-1-piperazinyl)phenyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (232 mg) as a white solid..

15 ¹H-NMR (DMSO-d₆) : δ 1.73(4H, br s), 2.38(4H, br s), 2.98(4H, br s), 3.55-3.64(4H, m), 3.76(2H, s), 6.79(2H, d, J=8.9 Hz), 6.95(1H, s), 7.18(2H, d, J=8.9 Hz), 7.48(2H, d, J=7.9 Hz), 7.62(2H, d, J=8.2 Hz), 8.44(1H, s), 9.42(1H, s), 12.18(1H, s),
20 ESI-MS (m/z) : 598 (M+H)⁺

25 Example 200

To a suspension of N-[4-(4-[[2-(formylamino)-1,3-thiazol-4-yl]acetyl]-1-piperazinyl)phenyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (200 mg). 30 in methanol (5 ml) was added concentrated hydrochloric acid (0.16 ml). The reaction mixture was stirred at 50°C for 2 hours, quenched with 10% aqueous potassium carbonate solution, and extracted with ethyl acetate-tetrahydrofuran. The organic layer was washed with brine, dried over magnesium sulfate, 35 filtered, and concentrated in vacuo. The residue was recrystallized from ethyl acetate-diisopropyl ether to give N-(4-{4-[(2-amino-1,3-thiazol-4-yl)acetyl]-1-piperazinyl}phenyl)-2-[4-(trifluoromethyl)phenyl]-1-

cyclohexene-1-carboxamide (167 mg) as a pale brown solid.

¹H-NMR (DMSO-d₆) : δ 1.72(4H, br s), 2.38(4H, br s), 2.97(4H, br s), 3.52(2H, s), 3.56-3.60(4H, m), 6.22(1H, s), 6.79(2H, d, J=8.9 Hz), 6.84(1H, s), 7.17(2H, d, J=9.2 Hz), 7.48(2H, d,

5 J=8.2 Hz), 7.62(2H, d, J=8.2 Hz), 9.42(1H, s)

ESI-MS (m/z) : 570 (M+H)⁺

Example 201

To a solution of N-[4-(1-piperazinyl)phenyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (200 mg) and 2-{6-[(tert-butoxycarbonyl)amino]-2-pyridinyl}ethyl 4-methylbenzenesulfonate (192 mg) in tetrahydrofuran (15 ml) was added triethylamine (78 ml) at ambient temperature. The reaction mixture was stirred at 70°C for 30 hours. After cooling, water was added, and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, and concentrated in vacuo. The residue was purified by column chromatography on silica gel by eluting with ethyl acetate to give tert-butyl 6-[2-(4-{4-[{2-[4-(trifluoromethyl)phenyl]-1-cyclohexen-1-

20 yl}carbonyl)amino]phenyl]-1-piperazinyl)ethyl]-2-pyridinylcarbamate (122 mg) as a pale yellow solid.

¹H-NMR (DMSO-d₆) : δ 1.45(9H, s), 1.74(4H, br s), 2.39(4H, br s), 2.51(4H, br s), 2.65(2H, m), 2.79(2H, m), 3.01(4H, br s), 6.75(2H, d, J=8.9 Hz), 6.91(1H, dd, J=5.9, 2.6 Hz), 7.15(2H, d, J=9.2 Hz), 7.48(2H, d, J=7.9 Hz), 7.59-7.63(4H, m), 9.40(1H, s), 9.58(1H, s)

ESI-MS (m/z) : 650 (M+H)⁺

Example 202

To a solution of tert-butyl 6-[2-(4-{4-[{2-[4-(trifluoromethyl)phenyl]-1-cyclohexen-1-yl}carbonyl)amino]phenyl]-1-piperazinyl)ethyl]-2-pyridinylcarbamate (112 mg) in dichloromethane (5 ml) was added trifluoroacetic acid (0.27 ml). The reaction mixture was stirred at ambient temperature for 14 hours, quenched with 10% aqueous potassium carbonate solution, and extracted with ethyl acetate-tetrahydrofuran. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was recrystallized from

ethyl acetate-diisopropyl ether to give N-(4-{4-[2-(6-amino-2-pyridinyl)ethyl]-1-piperazinyl}phenyl)-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (68 mg) as a pale brown solid.

- 5 $^1\text{H-NMR}$ (DMSO- d_6): δ 1.72(4H, br s), 2.38(4H, br s), 2.54(2H, br s), 2.63(4H, br s), 3.01(4H, br s), 3.34(2H, br s), 5.79(2H, br s), 6.24(1H, d, $J=8.2$ Hz), 6.37(1H, d, $J=7.2$ Hz), 6.76(2H, d, $J=8.9$ Hz), 7.15(2H, d, $J=8.9$ Hz), 7.25(1H, t, $J=7.9$ Hz), 7.48(2H, d, $J=7.9$ Hz), 7.62(2H, d, $J=8.6$ Hz), 9.40(1H, s)

- 10 ESI-MS (*m/z*) : 550 (M+H)⁺

Example 203

Example N-[4-[4-(1H-Imidazol-2-ylmethyl)-1-piperazinyl]phenyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 194 as a pale yellow solid.

- 15 solid .

- ¹H-NMR (DMSO-d₆): δ 1.73(4H, br s), 2.38(4H, br s), 2.50(4H, br s), 3.01(4H, br t, J=4.6 Hz), 3.51(2H, s), 6.75(2H, d, J=8.9 Hz), 6.91(1H, s), 7.14(2H, d, J=9.2 Hz), 7.47(2H, d, J=8.2 Hz), 7.61(2H, d, J=8.2 Hz), 9.40(1H, s)

- 20 ESI-MS (m/z): 510 ($M+H$)⁺

Example 204

N-{4-[4-(3-Chlorobenzyl)-1-piperazinyl]phenyl}-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 194 as a white solid.

- 25 $^1\text{H-NMR}$ (DMSO- d_6): δ 1.73(4H, br s), 2.38(4H, br s), 2.47(4H, br s), 3.02(4H, br t, $J=4.6$ Hz), 3.51(2H, s), 6.75(2H, d, $J=8.9$ Hz), 7.15(2H, d, $J=8.6$ Hz), 7.26-7.39(4H, m), 7.48(2H, d, $J=7.9$ Hz), 7.60(2H, d, $J=8.2$ Hz), 9.39(1H, s)

- ### ESI-MS (m/z)

Example 205
N-(4-[4-(3-Methylbenzyl)-1-piperazinyl]phenyl)-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 194 as a white solid.

- ³⁵ ¹H-NMR (DMSO-d₆) : δ 1.73(4H, br s), 2.29(3H, s), 2.37(4H, br s), 2.45(4H, br s), 3.01(4H, br s), 3.44(2H, s), 6.75(2H, d, J=8.9 Hz), 7.04-7.23(6H, m), 7.47(2H, d, J=8.2 Hz), 7.61(2H, d, J=8.2 Hz), 9.38(1H, s)

ESI-MS (m/z) : 534 (M+H)⁺

Example 206

- N-[4-[4-(3-Methoxybenzyl)-1-piperazinyl]phenyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 194 as a white solid .
¹H-NMR (DMSO-d₆) : δ 1.73(4H, br s), 2.37(4H, br s), 2.46(4H, br s), 3.02(4H, br s), 3.46(2H, s), 3.73(3H, s), 6.75(2H, d, J=8.9 Hz), 6.79-6.83(1H, m), 6.87(2H, d, J=7.9 Hz), 7.14(2H, d, J=8.9 Hz), 7.23(1H, dd, J=8.2, 7.9 Hz), 7.48(2H, d, J=7.9 Hz), 7.61(2H, d, J=8.2 Hz), 9.38(1H, s)
ESI-MS (m/z) : 550 (M+H)⁺

Example 207

- To a solution of N-[4-(1-piperazinyl)phenyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (200 mg) and ethyl bromoacetate (117 mg) in acetone (10 ml) was added a potassium carbonate (193 mg) at ambient temperature. The reaction mixture was stirred at 70°C for 2 hours. After cooling, acetone was evaporated and the concentrate was extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, and concentrated in vacuo. The residue was purified by column chromatography on silica gel by eluting with ethyl acetate to give ethyl (4-{4-[({2-[4-(trifluoromethyl)phenyl]-1-cyclohexen-1-yl}carbonyl)amino]phenyl}-1-piperazinyl)acetate (141 mg) as a white solid.

¹H-NMR (DMSO-d₆) : δ 1.19(3H, t, J=7.1 Hz), 1.73(4H, br s), 2.38(4H, br s), 2.60(4H, br t, J=4.7 Hz), 3.01(4H, br t, J=4.9 Hz), 3.24(2H, s), 4.08(2H, q, J=7.1 Hz), 6.76(2H, d, J=8.9 Hz), 7.16(2H, d, J=9.2 Hz), 7.48(2H, d, J=7.9 Hz), 7.62(2H, d, J=8.2 Hz), 9.40(1H, s)
ESI-MS (m/z) : 516 (M+H)⁺

Example 208

- To a suspension of N-[4-(1-piperazinyl)phenyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (200 mg) and triethylamine (0.1 ml) in dichloromethane (10 ml) was added 3-cyanobenzoyl chloride (93 mg) at 0°C. The reaction mixture was stirred for 2 hours at ambient temperature, poured

WO 03/045921

into water, and extracted with dichloromethane. The organic layer was washed with brine, dried over magnesium sulfate, and concentrated in vacuo. The residue was recrystallized from ethyl acetate-diisopropyl ether to give N-[4-[4-(3-ethyl acetate-diisopropyl ether to give N-[4-[4-(3-

5 cyanobenzoyl)-1-piperazinyl]phenyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (203 mg) as a white solid.

10 $^1\text{H-NMR}$ (DMSO-d₆) : δ 1.72 (4H, br s), 2.38 (4H, br s), 3.06 (4H, br s), 3.42 (2H, br s), 3.73 (2H, br s), 6.80 (2H, d, J=9.2 Hz), 7.18 (2H, d, J=9.2 Hz), 7.48 (2H, d, J=7.9 Hz), 7.61 (2H, d, J=8.9 Hz), 7.68 (1H, d, J=8.2 Hz), 7.76 (1H, dt, J=7.9, 1,3 Hz), 7.91-7.95 (2H, m), 9.43 (1H, s)

ESI-MS (m/z) : 581 (M+Na)⁺

Example 209

15 N-[4-[4-(3,4-Dimethoxybenzyl)-1-piperazinyl]phenyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 194 as a white solid .

20 $^1\text{H-NMR}$ (DMSO-d₆) : δ 1.73 (4H, br s), 2.38 (4H, br s), 3.01 (4H, br s), 3.42 (2H, s), 3.72 (3H, s), 3.73 (3H, s), 6.77-6.90 (5H, m), 7.15 (2H, d, J=8.9 Hz), 7.48 (2H, d, J=8.2 Hz), 7.62 (2H, d, J=8.6 Hz), 9.40 (1H, s)

ESI-MS (m/z) : 580 (M+H)⁺

Example 210

25 N-[4-(4-Allyl-1-piperazinyl)phenyl]-2-(4-methylphenyl)-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 196 as a pale brown solid.

30 $^1\text{H-NMR}$ (DMSO-d₆) : δ 1.70 (4H, br s), 2.21 (3H, s), 2.33 (4H, br s), 2.45 (4H, br t, J=4.6 Hz), 2.96 (2H, d, J=6.2 Hz), 2.99 (4H, br s), 5.11-5.23 (2H, m), 5.74-5.89 (1H, m), 6.75 (2H, d, J=8.9 Hz), 7.04 (2H, d, J=8.2 Hz), 7.17 (2H, d, J=7.9 Hz), 7.19 (2H, d, J=8.9 Hz), 9.25 (1H, s)

ESI-MS (m/z) : 416 (M+H)⁺

Example 211

35 2-(4-Methylphenyl)-N-[4-[4-(1H-pyrrol-2-ylmethyl)-1-piperazinyl]phenyl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 194 as a brown foam.

$^1\text{H-NMR}$ (DMSO-d₆) : δ 1.70 (4H, br s), 2.20 (3H, s), 2.33 (4H, br s),

2.43(4H, br s), 3.00(4H, br s), 3.42(2H, s), 5.88(1H, br s),
5.91-5.93(1H, m), 6.63(1H, d, J=1.6 Hz), 6.74(2H, d, J=9.2 Hz),
7.03(2H, d, J=7.9 Hz), 7.16-7.20(4H, m), 9.25(1H, s), 10.68(1H,
s)

5 ESI-MS (m/z) : 477 (M+Na)⁺

Preparation 78

tert-Butyl 4-(5-amino-2-pyridinyl)-1-piperazinecarboxylate was obtained in the same manner as in Preparation 75 as a dark purple oil.

10 Preparation 79

To a solution of 2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxylic acid (555 mg) in toluene (10 ml) were added thionyl chloride (366 mg) and N,N-dimethylformamide (2 drops) and the mixture was stirred at 50°C for an hour. The mixture was evaporated in vacuo and the residue was dissolved in tetrahydrofuran (5 ml). The acid chloride in tetrahydrofuran was added to a solution of tert-butyl 4-(5-amino-2-pyridinyl)-1-piperazinecarboxylate (571 mg) and triethylamine (250 mg) in tetrahydrofuran (20 ml) at ambient temperature and the mixture was stirred at the same temperature for an hour. The mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, and evaporated in vacuo to give tert-butyl 4-{5-[{2-[4-(trifluoromethyl)phenyl]-1-cyclohexen-1-yl}carbonyl]amino}-2-pyridinyl}-1-piperazinecarboxylate (1.088 g) as pale purple crystals.

¹H-NMR (CDCl₃) : δ 7.63(1H, d, J=2.6 Hz), 7.59(2H, d, J=8.2 Hz), 7.41(2H, d, J=8.2 Hz), 7.36(1H, dd, J=8.9 and 2.6 Hz), 6.51(1H, d, J=8.9 Hz), 6.38(1H, brs), 3.47-3.51(4H, m), 3.39-3.44(4H, m), 2.53(2H, brs), 2.42(2H, brs), 1.80(4H, brs), 1.47(9H, s)
(+)ESI-MS (m/z) : 531 (M+H)⁺, 553 (M+Na)⁺

Preparation 80

N-[6-(1-Piperazinyl)-3-pyridinyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Preparation 77 as a dark purple oil.

¹H-NMR (DMSO-d₆) : δ 9.43(1H, s), 7.98(1H, d, J=2.6 Hz), 7.64(2H,

d, J=8.6 Hz), 7.48(2H, d, J=8.3 Hz), 7.42(1H, d, J=2.3 Hz), 6.67(1H, d, J=9.2 Hz), 3.29(4H, t, J=4.9 Hz), 2.76(4H, t, J=4.9 Hz), 2.39(4H, brs), 1.73(4H, brs)
(+)ESI-MS (m/z) : 431 (M+H)⁺

5 Example 212

N-[6-[4-(3-Cyanobenzyl)-1-piperazinyl]-3-pyridinyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 212 as a dark purple oil.

10 ¹H-NMR (DMSO-d₆) :δ 9.44(1H, s), 7.98(1H, d, J=2.3 Hz), 7.43-7.75(9H, m), 6.68(1H, d, J=9.2 Hz), 3.56(2H, s), 3.37(4H, brs), 2.39-2.43(8H, m), 1.74(4H, brs)
(+)ESI-MS (m/z) : 546 (M+H)⁺, 568 (M+Na)⁺

Example 213

15 To a solution of N-[6-(1-piperazinyl)-3-pyridinyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (250 mg), 2-pyridinylacetic acid hydrochloride (101 mg) and 1-hydroxybenzotriazole (116 mg) in N,N-dimethylformamide (10 ml) was added 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide

20 hydrochloride (WSC.HCl) (145 mg), followed by triethylamine (153 mg) at ambient temperature. The reaction mixture was stirred for 12 hours and concentrated in vacuo. The residue was dissolved in ethyl acetate and water, and extracted with ethyl acetate. The organic layer was washed with brine, dried

25 over magnesium sulfate, and concentrated in vacuo. The residue was purified by column chromatography on silica gel by eluting with ethyl acetate to give N-[6-[4-(2-pyridinylacetyl)-1-piperazinyl]-3-pyridinyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (232 mg)

30 as a colorless sticky oil.

¹H-NMR (DMSO-d₆) :δ 9.47(1H, s), 8.47(1H, d, J=3.0 Hz), 8.01(1H, d, J=2.6 Hz), 7.72(1H, dt, J=7.6 and 1.7 Hz), 7.63(2H, d, J=8.2 Hz), 7.46-7.50(3H, m), 7.29(1H, d, J=7.9 Hz), 7.23(1H, dd, J=7.6 and 4.9 Hz), 6.73(1H, d, J=9.2 Hz), 3.91(2H, s), 3.61(2H, brs), 3.54(2H, brs), 3.33(4H, brs), 2.39(4H, brs), 1.74(4H, brs)
(+)ESI-MS (m/z) : 572 (M+Na)⁺

Example 214

tert-Butyl 6-[2-oxo-2-(4-{5-[(2-[4-(trifluoromethyl)phenyl]-1-cyclohexen-1-yl}carbonyl)amino]-2-pyridinyl}-1-piperazinyl)ethyl]-2-pyridinylcarbamate (478 mg) was obtained in the same manner as in Example 191 as a pale

5 yellow foam.

¹H-NMR (CDCl₃): δ 7.78(1H, d, J=8.2 Hz), 7.62(2H, d, J=2.3 Hz), 7.58(2H, d, J=8.2 Hz), 7.41(2H, d, J=8.2 Hz), 7.36(1H, dd, J=8.9 and 2.6 Hz), 7.13(1H, brs), 6.95(1H, d, J=7.6 Hz), 6.48(1H, d, J=8.9 Hz), 6.40(1H, brs), 3.81(2H, s), 3.71(2H, brt, J=5.3 Hz), 3.61(2H, brt, J=5.3 Hz), 3.39(4H, brt, J=5.3 Hz), 2.53(2H, brs), 2.42(2H, brs), 1.79(4H, brs), 1.51(9H, s)
10 (+)ESI-MS (m/z): 687 (M+Na)⁺

Example 215

N-(6-{4-[(6-Amino-2-pyridinyl)acetyl]-1-piperazinyl}-3-pyridinyl)-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 192 as colorless crystals.

¹H-NMR (DMSO-d₆): δ 9.46(1H, s), 8.00(1H, d, J=2.3 Hz), 7.63(2H, d, J=8.6 Hz), 7.47(3H, d, J=8.6 Hz), 7.28(1H, t, J=7.7 Hz), 6.72(1H, d, J=9.2 Hz), 6.36(1H, d, J=7.3 Hz), 6.27(1H, d, J=8.2 Hz), 5.83(2H, brs), 3.62(2H, s), 3.52-3.60(4H, m), 3.32(4H, brs), 2.39(4H, brs), 1.73(4H, brs)
(+)-ESI-MS (m/z): 565 (M+H)⁺

Preparation 81

25 A solution of 2-chloro-4-nitrobenzoic acid (7.5 g) in dimethyl malonate (90 ml) was degassed with argon for 15 min. Copper(I) bromide (0.54 g) was added in one portion. Sodium methoxide (4.83 g) was added in one portion with stirring. After being stirred for 15 minutes, the reaction mixture was
30 heated to 70°C for 24 hours. Water (90 ml) was added to the cooled reaction mixture, followed by hexane (90 ml). The aqueous layer was separated. Toluene (90 ml) was added to the aqueous layer, and the biphasic mixture was filtered through Celite to remove insoluble substances. The aqueous layer was
35 separated, acidified with 6N hydrochloric acid. A pale brown precipitate formed, and the mixture was stirred for 18 hours. The obtained product was collected by filtration and dried to give 2-[2-methoxy-1-(methoxycarbonyl)-2-oxoethyl]-4-

nitrobenzoic acid (8.3 g) as a pale brown solid.

¹H-NMR (DMSO-d₆) :δ 3.70(6H, s), 5.82(1H, s), 8.17(1H, d, J=8.6 Hz), 8.22(1H, d, J=2.2 Hz), 8.31(1H, dd, J=8.6, 2.2 Hz)

Preparation 82

5 To a solution of 2-[2-methoxy-1-(methoxycarbonyl)-2-oxoethyl]-4-nitrobenzoic acid (3.0 g) in methanol (24 ml) was added sodium hydroxide (2.02 g) in water (24 ml) over 85 minutes at ambient temperature. After 3 hours, methanol was removed under vacuum, and the concentrate was acidified with 10 concentrated hydrochloric acid (4.48 ml) at ambient temperature. The resulting white aqueous suspension was extracted twice with ethyl acetate (30 ml and 15 ml), the combined organic layers were dried over magnesium sulfate and concentrated to 11 ml. The resulting ethyl acetate slurry was 15 heated to 65°C for 6 hours, filtered off at room temperature and dried to give 2-(carboxymethyl)-4-nitrobenzoic acid (1.93 g) as a white solid.

¹H-NMR (DMSO-d₆) :δ 4.10(2H, s), 8.09(1H, d, J=8.6 Hz), 8.21(1H, dd, J=8.6, 2.2 Hz), 8.27(1H, d, J=2.2 Hz)

20 Preparation 83

To a solution of 2-(carboxymethyl)-4-nitrobenzoic acid (1.92 g) in tetrahydrofuran (42 ml) was added sodium borohydride (0.968 g) in portions. The contents were cooled to 0°C, and boron trifluoride diethyl etherate (3.63 g) was 25 added dropwise over an hour and stirred at ambient temperature for 16 hours. The reaction mixture was cooled to 0°C and quenched with 1N aqueous sodium hydroxide (34 ml). The reaction mixture was stirred for 3 hours, tetrahydrofuran was removed under vacuum. The resulting aqueous suspension was 30 cooled to 0°C, and the product was filtered off and dried to give 2-[2-(hydroxymethyl)-5-nitrophenyl]ethanol (1.44 g) as a white solid.

¹H-NMR (DMSO-d₆) :δ 2.82(2H, t, J=6.0 Hz), 3.62-3.69(2H, m), 4.66(2H, d, J=3.8 Hz), 4.76(1H, t, J=5.0 Hz), 5.45(1H, s), 35 7.68(1H, d, J=9.2 Hz), 8.05-8.09(2H, m)

Preparation 84

To a solution of 2-[2-(hydroxymethyl)-5-nitrophenyl]ethanol (1.941 g) and triethylamine (3.43 ml) in

methylene chloride (55.5 ml) was added methanesulfonyl chloride (1.75 ml) at 0°C for 30 minutes. The reaction mixture was washed with 10% aqueous hydrochloric acid, saturated aqueous sodium bicarbonate, and brine. The organic layer was dried with magnesium sulfate, and methylene chloride was removed under vacuum. The residue was purified by column chromatography on silica gel by eluting with chloroform to give 2-{2-[(methylsulfonyl)oxy]ethyl}-4-nitrobenzyl methanesulfonate (2.922 g) as a white solid.

10 $^1\text{H-NMR}(\text{CDCl}_3):\delta$ 3.00(3H, s), 3.15(3H, s), 3.30(2H, t, J=6.5 Hz), 4.56(2H, t, J=6.5 Hz), 4.69(2H, s), 7.58(1H, d, J=8.1 Hz), 8.10-8.17(2H, m)

Preparation 85

To a solution of 2-{2-[(methylsulfonyl)oxy]ethyl}-4-nitrobenzyl methanesulfonate (2.12 g) in tetrahydrofuran (10.6 ml) was added triethylamine (4.18 ml) and N-acetylenediamine (3.06 g). After stirring for an hour, the reaction mixture was heated to 60°C for 16 hour. The mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was recrystallized from ethyl acetate and hexane to give N-[2-(6-nitro-3,4-dihydro-2(1H)-isoquinolinyl)ethyl]acetamide (1.24 g) as a yellow powder.

25 $^1\text{H-NMR}(\text{CDCl}_3):\delta$ 1.98(3H, s), 2.69(2H, t, J=5.9 Hz), 2.80(2H, t, J=5.9 Hz), 3.00(2H, t, J=5.1 Hz), 3.46(2H, q, J=5.1 Hz), 3.72(2H, s), 6.01(1H, br s), 7.18(1H, d, J=8.9 Hz), 7.95-8.00(2H, m)

ESI-MS (m/z) : 264 (M+H)⁺

Preparation 86

A solution of N-[2-(6-nitro-3,4-dihydro-2(1H)-isoquinolinyl)ethyl]acetamide (1.23 g) in ethyl acetate (12 ml) was hydrogenated over 10% palladium on carbon (0.61 g, 50% wet) at ambient temperature under atmospheric pressure of hydrogen for 3 hours. The reaction mixture was filtered through a short pad of celite, and the filtrate was concentrated in vacuo to give N-[2-(6-amino-3,4-dihydro-2(1H)-isoquinolinyl)ethyl]acetamide (1.09 g) as a pale yellow foam.

¹H-NMR (CDCl₃) : δ 1.93(3H, s), 2.60(2H, t, J=6.5 Hz), 2.69(2H, t, J=5.7 Hz), 2.75-2.82(2H, m), 3.39(2H, q, J=5.7 Hz), 3.45-3.70(4H, m), 6.43(1H, d, J=2.3 Hz), 6.48(1H, dd, J=7.8, 2.3 Hz), 6.81(1H, d, J=7.8 Hz)

5 ESI-MS (m/z) : 234 (M+H)⁺

Example 216

To a solution of 2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxylic acid (229 mg) in toluene (4.6 ml) were added thionyl chloride (0.08 ml) and N,N-dimethylformamide (1 drop) and the mixture was stirred at 80°C for an hour. The mixture was evaporated in vacuo and the residue was dissolved in tetrahydrofuran (1.2 ml). The acid chloride in tetrahydrofuran was added to a solution of N-[2-(6-amino-3,4-dihydro-2(1H)-isoquinolinyl)ethyl]acetamide (1.09 g) and triethylamine (0.136 ml) in tetrahydrofuran (3.6 ml) at ambient temperature and the mixture was stirred at the same temperature for 2 hours. The reaction mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was recrystallized from ethyl acetate and hexane to give N-[2-[2-(acetylamino)ethyl]-1,2,3,4-tetrahydro-6-isooquinolinyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (0.251 g) as a white powder.

25 ¹H-NMR (DMSO-d₆) : δ 1.74(4H, br s), 1.78(3H, s), 2.39(4H, br s), 2.46(2H, t, J=7.0 Hz), 2.64(4H, dd, J=14.6, 4.1 Hz), 3.21(2H, q, J=12.4, 5.9 Hz); 3.45(2H, s), 6.85(1H, d, J=8.4 Hz), 7.01(1H, dd, J=8.4, 2.2 Hz), 7.10(1H, s), 7.47(2H, d, J=8.1 Hz), 7.62(2H, d, J=8.1 Hz), 7.78(1H, t, J=5.4 Hz), 9.50(1H, s)

30 ESI-MS (m/z) : 486 (M+H)⁺

Example 217

N-[2-[2-(Acetylamino)ethyl]-1,2,3,4-tetrahydro-6-isooquinolinyl]-2-(4-methylphenyl)-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 216 as a pale yellow powder.

35 ¹H-NMR (DMSO-d₆) : δ 1.71(4H, br s), 1.78(3H, s), 2.21 (3H, s), 2.34(6H, br s), 2.51-2.69(4H, m), 3.22(2H, dd, J=12.2, 6.2 Hz), 3.47(2H, br s), 6.58(2H, d, J=8.1 Hz), 7.02-7.05(3H, m), 7.15-

7.18(3H, m), 7.79(1H, br s), 9.37(1H, s)

ESI-MS (m/z) : 432 (M+H)⁺

Example 218

N-[2-[2-(Acetylamino)ethyl]-1,2,3,4-tetrahydro-6-isoquinolinyl]-2-(4-ethylphenyl)-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 216 as a pale yellow powder.

¹H-NMR (DMSO-d₆) : δ 1.11(3H, t, J=7.6 Hz), 1.70(4H, br s), 1.78(3H, s), 2.35(4H, br s), 2.43-2.55(4H, m), 2.64(4H, dd, J=15.0, 4.3 Hz), 3.21(2H, dd, J=13.0, 6.8 Hz), 3.45(2H, s), 6.84(2H, d, J=8.4 Hz), 6.99-7.20(6H, m), 7.78(1H, br t, J=5.1 Hz), 9.32(1H, s)

ESI-MS (m/z) : 445 (M+H)⁺

Preparation 87

To a solution of 2-{2-[(methylsulfonyl)oxy]ethyl}-4-nitrobenzyl methanesulfonate (500 mg) in tetrahydrofuran (2.5 ml) were added triethylamine (0.493 ml) and 2-phenylethanamine (206 mg) and the mixture was stirred at 60°C for 13 hours. To the reaction mixture was added water and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel by eluting with hexane:ethyl acetate (4:1) to give 6-nitro-2-(2-phenylethyl)-1,2,3,4-tetrahydroisoquinoline (228 mg) as a brown foam.

¹H-NMR (CDCl₃) : δ 2.80-3.10(8H, m), 3.79(2H, s), 7.15-7.39(6H, m), 2.95-8.05(2H, m)

ESI-MS (m/z) : 283 (M+H)⁺

Preparation 88

A solution of 6-nitro-2-(2-phenylethyl)-1,2,3,4-tetrahydroisoquinoline (220 mg) in methanol (3.3 ml) was hydrogenated over 10% palladium on carbon (110 mg, 50% wet) at ambient temperature under atmospheric pressure of hydrogen for an hour. The reaction mixture was filtered through a short pad of celite, and the filtrate was concentrated in vacuo. The residue was recrystallized from ethyl acetate-hexane to give 2-(2-phenylethyl)-1,2,3,4-tetrahydro-6-isoquinolinamine (196 mg) as a yellow powder.

¹H-NMR (DMSO-d₆) : δ 2.87-3.98(1H, m), 3.09-3.35(3H, m), 3.68(1H, br s), 3.20-3.55(2H, m), 3.68(1H, m), 4.16(1H, m), 4.42(1H, m), 6.44(1H, s), 6.53(1H, dd, J=6.5, 2.4 Hz), 6.87(1H, d, J=8.6 Hz), 7.24-7.39(5H, m)

5 ESI-MS (m/z) : 253(M+H)⁺

Example 219

To a solution of 2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxylic acid (274 mg) in toluene (1.37 ml) were added thionyl chloride (0.147 ml) and N,N-

10 dimethylformamide (1 drop) and the mixture was stirred at 80°C for an hour. The mixture was evaporated in vacuo and the residue was dissolved in tetrahydrofuran (1.5 ml). The acid chloride in tetrahydrofuran was added to a solution of 2-(2-phenylethyl)-1,2,3,4-tetrahydro-6-isooquinolinamine (197 mg) and triethylamine (0.163 ml) in tetrahydrofuran (1.5 ml) at ambient temperature and the mixture was stirred at the same temperature for 2 hours. The mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was recrystallized from ethyl acetate and hexane to give N-[2-(2-phenylethyl)-1,2,3,4-tetrahydro-6-isooquinolinyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (107 mg) as a pale brown powder.

20 ¹H-NMR (DMSO-d₆) : δ 1.73(4H, br s), 2.39(4H, br s), 2.60-2.85(8H, m), 3.52(2H, s), 6.87(1H, d, J=8.1 Hz), 7.02(1H, d, J=8.3 Hz), 7.10(1H, s), 7.14-7.30(5H, m), 7.47(2H, d, J=8.1 Hz), 7.62(2H, d, J=7.8 Hz), 9.51(1H, s)

25 ESI-MS (m/z) : 505(M+H)⁺

Preparation 89

30 6-Nitro-2-[2-(2-pyridinyl)ethyl]-1,2,3,4-tetrahydroisoquinoline was obtained in the same manner as in Preparation 87 as a pale yellow foam.

35 ¹H-NMR (CDCl₃) : δ 2.86(2H, t, J=5.7 Hz), 2.95-3.05(4H, m), 3.07-3.13(2H, m), 3.82(2H, s), 7.10-7.24(3H, m), 7.61(1H, td, J=7.6, 1.9 Hz), 7.93-7.99(2H, m), 8.52-8.56(1H, m)

ESI-MS (m/z) : 284(M+H)⁺

Preparation 90

2-[2-(2-Pyridinyl)ethyl]-1,2,3,4-tetrahydro-6-

isoquinolinamine was obtained in the same manner as in Preparation 88 as a pale yellow foam.

¹H-NMR (CDCl₃): δ 2.75-2.85(4H, m), 2.88-2.95(2H, m), 3.06-3.13(2H, m), 3.52(2H, br s), 3.64(2H, s), 6.44-6.51(2H, m),

5 6.82(1H, d, J=7.8 Hz), 7.08-7.14(1H, m), 7.22(1H, d, J=8.1 Hz), 7.59(1H, td, J=7.6, 1.9 Hz), 8.51-8.55(1H, m)

ESI-MS (m/z): 254 (M+H)⁺

Example 220

N-[2-[2-(2-Pyridinyl)ethyl]-1,2,3,4-tetrahydro-6-

10 isoquinolinyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 219 as a pale yellow powder.

¹H-NMR (DMSO-d₆): δ 1.74(4H, br s), 1.99(4H, br s), 4.66(4H, br s), 2.75-2.79(2H, m), 2.96(2H, t, J=14.6 Hz), 3.52(2H, s),

15 6.86(1H, d, J=8.1 Hz), 7.01(1H, dd, J=8.4, 1.9 Hz), 7.10(1H, br s), 7.15-7.21(1H, m), 7.30(1H, d, J=8.1 Hz), 7.47(2H, d, J=8.4 Hz), 7.62(2H, d, J=8.4 Hz), 7.67(1H, td, J=7.6, 1.9 Hz), 8.46(1H, br d, J=4.1 Hz), 9.50(1H, s)

ESI-MS (m/z): 506 (M+H)⁺

20 Preparation 91

tert-Butyl 6-[2-(6-nitro-3,4-dihydro-2(1H)-isoquinolinyl)ethyl]-2-pyridinylcarbamate (329 mg) was obtained in the same manner as in Preparation 87 as a pale brown foam.

25 ¹H-NMR (CDCl₃): δ 1.52(9H, s), 2.83(2H, t, J=5.9 Hz), 2.93(4H, br s), 2.30(2H, t, J=5.9 Hz), 3.78(2H, s), 6.86(1H, dd, J=7.6, 1.1 Hz), 7.15-7.20(2H, m), 7.57(1H, t, J=5.4 Hz), 7.75(1H, d, J=8.1 Hz), 7.94-7.99(2H, m)

ESI-MS (m/z): 399 (M+H)⁺

30 Preparation 92

tert-Butyl 6-[2-(6-amino-3,4-dihydro-2(1H)-isoquinolinyl)ethyl]-2-pyridinylcarbamate was obtained in the same manner as in Preparation 88 as a pale yellow powder.

35 ¹H-NMR (DMSO-d₆): δ 2.75-2.85(4H, m), 2.88-2.95(2H, m), 3.06-3.13(2H, m), 3.52(2H, br s), 3.64(2H, s), 6.44-6.51(2H, m), 6.82(1H, d, J=7.8 Hz), 7.08-7.14(1H, m), 7.22(1H, d, J=8.1 Hz), 7.59(1H, td, J=7.6, 1.9 Hz), 8.51-8.55(1H, m)

ESI-MS (m/z): 369 (M+H)⁺

Example 221

tert-Butyl 6-{2-[6-[(2-[4-(trifluoromethyl)phenyl]-1-cyclohexen-1-yl]carbonyl)amino]-3,4-dihydro-2(1H)-isoquinolinyl}ethyl}-2-pyridinylcarbamate was obtained in the same manner as in Example 219 as a pale yellow powder.

5 $^1\text{H-NMR}(\text{CDCl}_3):\delta$ 1.50(9H, s), 1.70-1.81(4H, m), 2.32-2.54(5H, m), 2.83(2H, br s), 3.01(5H, br s), 3.86(1H, br s), 6.55(1H, br s), 6.81(1H, d, J=8.1 Hz), 6.82(2H, d, J=7.8 Hz), 7.24(2H, d, J=8.0 Hz), 7.43(2H, t, J=8.3 Hz), 7.50-7.65(3H, m), 7.75(1H, d, J=7.8 Hz)

10 ESI-MS (m/z): 621 (M+H)⁺

Example 222

To a solution of tert-butyl 6-{2-[6-[(2-[4-(trifluoromethyl)phenyl]-1-cyclohexen-1-yl]carbonyl)amino]-3,4-dihydro-2(1H)-isoquinolinyl}ethyl}-2-pyridinylcarbamate (105 mg) in dichloromethane (1 ml) was added trifluoroacetic acid (0.13 ml). The reaction mixture was stirred for 12 hours, quenched with 10% aqueous potassium carbonate solution, and extracted with dichloromethane. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was recrystallized from ethyl acetate-hexane to give N-{2-[2-(6-amino-2-pyridinyl)ethyl]-1,2,3,4-tetrahydro-6-isoquinolinyl}-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (54 mg) as a pale yellow powder.

20

25

25 $^1\text{H-NMR}(\text{DMSO-d}_6):\delta$ 1.73(4H, br s), 2.39(4H, br s), 2.67(4H, br s), 2.72(4H, br s), 3.52(2H, s), 5.79(2H, s), 6.24(1H, d, J=8.1 Hz), 6.38(1H, d, J=7.3 Hz), 6.87(1H, d, J=8.4 Hz), 7.02(1H, dd, J=8.1, 1.9 Hz), 7.10(1H, d, J=1.6 Hz), 7.25(1H, t, J=7.0 Hz), 7.47(2H, d, J=7.8 Hz), 7.62(2H, d, J=7.8 Hz), 9.51(1H, s)

30 ESI-MS (m/z): 521 (M+H)⁺

Preparation 93

To a suspension of sodium hydride (60% oil dispersion) (3.66 g) in N,N-dimethylformamide (150 ml) was added dropwise a solution of methyl 2-oxocyclopentanecarboxylate (11.84 g) at 10°C under nitrogen and the mixture was stirred at ambient temperature for 1.5 hours. To this solution was added

35

dropwise 1,1,2,2,3,3,4,4-nonafluoro-1-butanesulfonyl fluoride (27.7 g) over 2 hours and the mixture was stirred at ambient temperature for 18 hours. The mixture was poured into a mixture of ethyl acetate, water and 6N hydrochloric acid.

- 5 The separated organic layer was washed with water and brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was purified by column chromatography on silica gel eluting with hexane:toluene (1:1) to give methyl 2-{[(nonafluorobutyl)sulfonyl]oxy}-1-cyclopentene-1-carboxylate
- 10 (14.20 g) as a colorless oil.

¹H-NMR(DMSO-d₆):δ 1.9-2.1(2H, m), 2.65-2.85(4H, m), 3.71(3H, s)
ESI-MS(m/z): 462(M+Na)⁺, 440(M+H)⁺

Preparation 94

- To a suspension of zinc chloride (9.05 g) in tetrahydrofuran (120 ml) was added dropwise a 1.0 mol/L solution of p-tolylmagnesium bromide in tetrahydrofuran (49.9 ml) at 0°C and the mixture was stirred vigorously at the same temperature for 30 minutes. To the suspension were added bis(dibenzylideneacetone)palladium (573 mg) and 1,1'-diphenylphosphino)ferrocene (553 mg); followed by dropwise addition of a solution of methyl 2-{[(nonafluorobutyl)sulfonyl]oxy}-1-cyclopentene-1-carboxylate (14.10 g) in tetrahydrofuran (50 ml) at 0°C. The mixture was refluxed for 4 hours under nitrogen and poured into a mixture of ethyl acetate, water and 6N hydrochloric acid. The separated organic layer was washed with water and brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was purified by column chromatography on silica gel eluting with hexane:toluene (1:1) to give methyl 2-(4-methylphenyl)-1-cyclopentene-1-carboxylate (6.74 g) as a colorless oil.
- ¹H-NMR(DMSO-d₆):δ 1.8-2.0(2H, m), 2.30(3H, s), 2.6-2.9(4H, m), 3.54(3H, s), 7.14(2H, d, J=8.2 Hz), 7.24(2H, d, J=8.2 Hz)
ESI-MS(m/z): 239(M+Na)⁺

Preparation 95

- 35 To a solution of methyl 2-(4-methylphenyl)-1-cyclopentene-1-carboxylate (6.73 g) in ethanol (67 ml) was added 5N aqueous sodium hydroxide solution (13.4 ml) and the mixture was refluxed for 4 hours. The mixture was cooled to

ambient temperature and neutralized by addition of 6N hydrochloric acid. The mixture was concentrated in vacuo to remove ethanol and the residue was adjusted to pH ca.2 by addition of 6N hydrochloric acid. The residue was extracted 5 with ethyl acetate and the separated organic layer was washed with water and brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was triturated with hexane and the solids were collected by filtration and washed with hexane to give 2-(4-methylphenyl)-1-cyclopentene-1-carboxylic 10 acid (4.48 g) as pale purple crystals.

$^1\text{H-NMR}$ (DMSO-d₆) : δ 1.8-2.0(2H, m), 2.29(3H, s), 2.7-2.9(4H, m), 7.12(2H, d, J=8.2 Hz), 7.25(2H, d, J=8.2 Hz)

ESI-MS (m/z) : 225 (M+Na)⁺

Example 223

15 To a solution of 4-aminophenyl(2-(2-pyridinyl)ethyl)formamide (1.95 g), 2-(4-methylphenyl)-1-cyclopentene-1-carboxylic acid (1.80 g) and benzotriazol-1-yl-oxytritypyrrolidinophosphonium hexafluorophosphate (PyBOP) (5.05 g) in N,N-dimethylformamide (40 ml) was added.

20 diisopropylethylamine (2.09 g) at ambient temperature and the mixture was stirred at the same temperature for 16 hours. The mixture was poured into a mixture of ethyl acetate, water and 6N hydrochloric acid, and the separated organic layer was washed with water and brine, dried over magnesium sulfate, and 25 evaporated in vacuo. The residue was purified by column chromatography on silica gel eluting with ethyl acetate to give N-(4-{formyl[2-(2-pyridinyl)ethyl]amino}phenyl)-2-(4-methylphenyl)-1-cyclopentene-1-carboxamide (2.78 g) as a pale brown powder.

30 $^1\text{H-NMR}$ (DMSO-d₆) : δ 1.9-2.1(2H, m), 2.26(3H, s), 2.7-2.9(6H, m), 4.0-4.1(2H, m), 7.1-7.4(8H, m), 7.55-7.75(3H, m), 8.30(1H, s), 8.46(1H, d, J=5.0 Hz), 10.01(1H, s)

ESI-MS (m/z) : 448 (M+Na)⁺, 426 (M+H)⁺

Example 224

35 To a solution of N-(4-{formyl[2-(2-pyridinyl)ethyl]amino}phenyl)-2-(4-methylphenyl)-1-cyclopentene-1-carboxamide (2.75 g) in methanol (15 ml) was added concentrated hydrochloric acid (2.7 ml) and the mixture

was stirred at 30°C for 16 hours. To the mixture was added a mixture of ethyl acetate and water and adjusted to pH 8 by addition of 50% aqueous potassium carbonate solution. The separated organic layer was washed with water and brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was purified by column chromatography on silica gel eluting with ethyl acetate:methanol (10:1) and crystallized from ethyl acetate to give 2-(4-methylphenyl)-N-(4-[[2-(2-pyridinyl)ethyl]amino]phenyl)-1-cyclopentene-1-carboxamide (1.69 g) as white crystals.

10 ¹H-NMR (DMSO-d₆) :δ 1.9-2.1(2H, m), 2.26(3H, s), 2.7-2.85(4H, m),
15 3.00(2H, t, J=7.4 Hz), 3.34(2H, td, J=7.4 and 5.8 Hz), 5.52(1H, t, J=5.8 Hz), 6.52(2H, d, J=8.8 Hz), 7.11(2H, d, J=8.8 Hz), 7.15-7.35(6H, m), 7.65-7.75(1H, m), 8.45-8.5(1H, m), 9.49(1H, s)

ESI-MS (m/z) : 420 (M+Na)⁺, 398 (M+H)⁺

Preparation 96

To a solution of methyl 2-{{(nonafluorobutyl)sulfonyl}-oxy}-1-cyclopentene-1-carboxylate (3.08 g) in toluene (80 ml) were added tetrakis(triphenylphosphine)palladium (419 mg) and lithium chloride (923 mg) and the mixture was stirred at ambient temperature for 10 minutes. To the mixture were added 4-(trifluoromethyl)phenylboronic acid (1.65 g) and a solution of sodium carbonate (2.0 g) in water (20 ml) and the mixture was stirred vigorously at 100°C for 16 hours. The mixture was poured into a mixture of ethyl acetate, water and active-charcoal (10 g) and adjusted to pH 2 by addition of 6N hydrochloric acid. The active-charcoal was removed by filtration and the separated organic layer was washed with water and brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was purified by column chromatography on silica gel eluting with hexane:tolune (1:2) to give methyl 2-[4-(trifluoromethyl)phenyl]-1-cyclopentene-1-carboxylate (1.68 g) as a pale green oil.

35 ¹H-NMR (DMSO-d₆) :δ 1.9-2.05(2H, m), 2.75-3.0(4H, m), 3.56(3H, s), 7.54(2H, d, J=8.2 Hz), 7.70(2H, d, J=8.2 Hz)
ESI-MS (m/z) : 293 (M+Na)⁺

Preparation 97

2-(4-(Trifluoromethyl)phenyl)-1-cyclopentene-1-carboxylic acid was obtained in the same manner as in Preparation 95 as white crystals.

5 $^1\text{H-NMR}$ (DMSO-d₆) : δ 1.85-2.05(2H, m), 2.7-2.95(4H, m), 7.54(2H, d, J=8.2 Hz), 7.74(2H, d, J=8.2 Hz), 12.55(1H, br)

negative ESI-MS (m/z) : 255(M-H)⁺

Example 225

N-(4-{Formyl[2-(2-pyridinyl)ethyl]amino}phenyl)-2-[4-(trifluoromethyl)phenyl]-1-cyclopentene-1-carboxamide was obtained in the same manner as in Example 223 as a brown amorphous solid.

10 $^1\text{H-NMR}$ (DMSO-d₆) : δ 1.9-2.15(2H, m), 2.85-3.1(6H, m), 4.08(2H, t, J=7.6 Hz), 7.1-7.3(6H, m), 7.55-7.8(5H, m), 8.31(1H, s), 8.46(1H, d, J=4.7 Hz), 10.09(1H, s)

15 ESI-MS (m/z) : 502(M+Na)⁺, 480(M+H)⁺

Example 226

N-(4-{[2-(2-Pyridinyl)ethyl]amino}phenyl)-2-[4-(trifluoromethyl)phenyl]-1-cyclopentene-1-carboxamide was obtained in the same manner as in Example 224 as yellow crystals.

20 $^1\text{H-NMR}$ (DMSO-d₆) : δ 1.95-2.1(2H, m), 2.75-2.95(4H, m), 2.96(2H, t, J=7.4 Hz), 3.34(2H, td, J=7.4 and 5.8 Hz), 5.54(1H, t, J=5.8 Hz), 6.52(2H, d, J=8.8 Hz), 7.26(2H, d, J=8.8 Hz), 7.15-7.3(2H, m), 7.58(2H, d, J=8.4 Hz), 7.68(2H, d, J=8.4 Hz), 7.7-7.8(1H, m), 8.5-8.55(1H, m), 9.58(1H, s)

25 ESI-MS (m/z) : 474(M+Na)⁺, 452(M+H)⁺

Preparation 98

Ethyl 2-(4-ethylphenyl)-1-cyclohexene-1-carboxylate was obtained in the same manner as in Preparation 96 as a pale green oil.

30 $^1\text{H-NMR}$ (DMSO-d₆) : δ 0.76(3H, t, J=7.1 Hz), 1.14(3H, t, J=7.6 Hz), 1.6-1.8(4H, m), 2.25-2.4(4H, m), 2.58(2H, q, J=7.1 Hz), 3.78(2H, q, J=7.6 Hz), 7.02(2H, d, J=8.1 Hz), 7.13(2H, d, J=8.1 Hz)

35 ESI-MS (m/z) : 281(M+Na)⁺

Preparation 99

2-(4-Ethylphenyl)-1-cyclohexene-1-carboxylic acid was obtained in the same manner as in Preparation 95 as white

crystals.

¹H-NMR (DMSO-d₆) : δ 1.17 (3H, t, J=7.6 Hz), 1.55-1.75 (4H, m), 2.25-2.4 (4H, m), 2.57 (2H, q, J=7.6 Hz), 7.0-7.2 (4H, m), 119.4 (1H, br)

5 negative ESI-MS (m/z) : 229 (M-H)⁻

Example 227

2-(4-Ethylphenyl)-N-(4-[2-(2-pyridinyl)ethyl]amino)phenyl)-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 223 as a brown

10 powder.

¹H-NMR (DMSO-d₆) : δ 1.10 (3H, t, J=7.5 Hz), 1.6-1.8 (4H, m), 2.3-2.45 (4H, m), 2.53 (2H, q, J=7.5 Hz), 2.85 (2H, t, J=7.3 Hz), 4.03 (2H, t, J=7.3 Hz), 7.1-7.25 (9H, m), 7.39 (2H, d, J=8.8 Hz), 8.07 (1H, s), 8.4-8.5 (1H, m), 9.60 (1H, s)

15 ESI-MS (m/z) : 476 (M+Na)⁺, 454 (M+H)⁺

Example 228

2-(4-Ethylphenyl)-N-(4-[2-(2-pyridinyl)ethyl]amino)phenyl)-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 224 as white

20 crystals.

¹H-NMR (DMSO-d₆) : δ 1.12 (3H, t, J=7.6 Hz), 1.6-1.8 (4H, m), 2.3-2.45 (4H, m), 2.52 (2H, q, J=7.6 Hz), 2.93 (2H, t, J=7.4 Hz), 3.29 (2H, td, J=7.4 and 5.7 Hz), 5.44 (1H, t, J=5.7 Hz), 6.42 (2H, d, J=8.8 Hz), 7.00 (2H, d, J=8.8 Hz), 7.08 (2H, d, J=8.1 Hz),

25 7.20 (2H, d, J=8.1 Hz), 7.2-7.3 (2H, m), 7.75-7.85 (1H, m), 9.00 (1H, s)

ESI-MS (m/z) : 448 (M+Na)⁺, 426 (M+H)⁺

Preparation 100

To a suspension of sodium hydride (60% oil dispersion)

30 (5.16 g) in N,N-dimethylformamide (160 ml) was added dropwise a solution of methyl 2-oxocycloheptanecarboxylate (20.0 g) at 10°C under nitrogen and the mixture was warmed to ambient temperature and stirred for an hour. To this mixture was added dropwise 1,1,2,2,3,3,4,4,4-nonafluoro-1-butanesulfonyl fluoride (39.0 g) at ambient temperature and the mixture was warmed to 35°C and stirred at the same temperature for 20 hours. The mixture was poured into a mixture of ethyl acetate and ice water and adjusted to pH ca.2 by addition of 6N

hydrochloric acid. The separated organic layer was washed with water and brine, dried over magnesium sulfate and evaporated in vacuo. The residue was purified by column chromatography on silica gel eluting with hexane:toluene (1:1) to give methyl 2-{{(nonafluorobutyl)sulfonyl}oxy}-1-cycloheptene-1-carboxylate (29.82 g) as a colorless oil.

¹H-NMR(DMSO-d₆):δ 1.6-1.9(6H, m), 2.6-2.9(4H, m), 3.70(3H, s)
ESI-MS (m/z) : 475 (M+Na)⁺

Preparation 101

To a suspension of zinc chloride (17.91 g) in tetrahydrofuran (200 ml) was added dropwise a 1 mol/L solution of p-tolylmagnesium bromide in tetrahydrofuran (98.6 ml) at 0°C under nitrogen and the mixture was stirred at the same temperature for 30 minutes. To this suspension were added bis(dibenzylideneacetone) palladium (1.13 g) and 1,1'-bis(diphenylphosphino)ferrocene (1.09 g), followed by dropwise addition of methyl 2-{{(nonafluorobutyl)sulfonyl}oxy}-1-cycloheptene-1-carboxylate (29.72 g) in tetrahydrofuran (90 ml) and the mixture was refluxed for 16 hours under nitrogen. The mixture was poured into a mixture of ethyl acetate and ice water and adjusted to pH ca.2 by addition of 6N hydrochloric acid. The separated organic layer was washed with water and brine, dried over magnesium sulfate and evaporated in vacuo. The residue was purified by column chromatography on silica gel eluting with hexane:toluene (1:3) to give methyl 2-(4-methylphenyl)-1-cycloheptene-1-carboxylate (13.77 g) as a colorless oil.

¹H-NMR(DMSO-d₆):δ 1.6-1.9(6H, m), 2.28(3H, s), 2.5-2.5(4H, m), 3.70(3H, s), 6.95-7.0(2H, m), 7.1-7.15(2H, m)
ESI-MS (m/z) : 267 (M+Na)⁺

Preparation 102

To a solution of methyl 2-(4-methylphenyl)-1-cycloheptene-1-carboxylate (13.76 g) in ethanol (130 ml) was added 5N aqueous sodium hydroxide solution (22.6 ml) at ambient temperature and the mixture was refluxed for 4 hours. The mixture was cooled to 5°C and ice-water (60 ml) was added. The mixture was adjusted to pH ca.7 by addition of 6N hydrochloric acid and concentrated in vacuo. The residue was

poured into a mixture of ethyl acetate and water and adjusted to pH ca.2 by addition of 6N hydrochloric acid. The separated organic layer was washed with water and brine, dried over magnesium sulfate and evaporated in vacuo. The residue was

- 5 triturated with hexane and the solids were collected by filtration and washed with hexane to 2-(4-methylphenyl)-1-cycloheptene-1-carboxylic acid (3.58 g) as white crystals.

¹H-NMR (DMSO-d₆) : δ 1.45-1.6 (4H, m), 1.7-1.9 (2H, m), 2.27 (3H, s), 2.4-2.55 (4H, m), 7.0-7.15 (4H, m), 11.90 (1H, brs)

- 10 ESI-MS (m/z) : 253 (M+Na)⁺

Example 229

N-(4-{Formyl[2-(2-pyridinyl)ethyl]amino}phenyl)-2-(4-methylphenyl)-1-cycloheptene-1-carboxamide was obtained in the same manner as in Example 223 as a brown powder.

- 15 ¹H-NMR (DMSO-d₆) : δ 1.6-1.9 (6H, m), 2.21 (3H, s), 2.4-2.5 (4H, m), 2.85 (2H, t, J=7.7 Hz), 3.99 (2H, t, J=7.7 Hz), 7.0-7.3 (8H, m), 7.37 (2H, d, J=8.7 Hz), 7.6-7.7 (1H, m), 8.25 (1H, s), 8.45 (1H, d, J=3.9 Hz), 9.42 (1H, s)

ESI-MS (m/z) : 448 (M+Na)⁺, 426 (M+H)⁺

- 20 Example 230

2-(4-Methylphenyl)-N-(4-{[2-(2-pyridinyl)ethyl]amino}-phenyl)-1-cycloheptene-1-carboxamide was obtained in the same manner as in Example 224 as white crystals.

- 1H-NMR (DMSO-d₆) : δ 1.55-1.9 (6H, m), 2.22 (3H, s), 2.4-2.5 (4H, m), 2.93 (2H, t, J=7.1 Hz), 3.29 (2H, t, J=7.1 and 5.8 Hz), 5.44 (1H, t, J=5.8 Hz), 6.42 (2H, d, J=8.8 Hz), 6.99 (2H, d, J=8.8 Hz), 7.03 (2H, d, J=8.2 Hz), 7.15 (2H, d, J=8.2 Hz), 7.2-7.35 (2H, m), 7.65-7.75 (1H, m), 8.50 (1H, d, J=5.1 Hz), 8.86 (1H, s)

ESI-MS (m/z) : 448 (M+Na)⁺, 426 (M+H)⁺

- 30 Preparation 103

Methyl 2-[4-(trifluoromethyl)phenyl]-1-cycloheptene-1-carboxylate was obtained in the same manner as in Preparation 96 as a pale green oil.

- 1H-NMR (DMSO-d₆) : δ 1.5-1.7 (4H, m), 1.75-1.9 (2H, s), 2.5-2.65 (4H, m), 3.34 (3H, s), 7.30 (2H, d, J=8.2 Hz), 7.67 (2H, d, J=8.2 Hz)

ESI-MS (m/z) : 321 (M+Na)⁺, 299 (M+H)⁺

Preparation 104

2-[4-(Trifluoromethyl)phenyl]-1-cycloheptene-1-

WO 03/045921

carboxylic acid was obtained in the same manner as in Preparation 95 as white crystals.

$^1\text{H-NMR}$ (DMSO-d₆) : δ 1.5-1.9 (6H, m), 2.4-2.5 (4H, m), 7.34 (2H, d, J=8.2 Hz), 7.65 (2H, d, J=8.2 Hz), 12.12 (1H, brs)

5 negative ESI-MS (m/z) : 283 (M-H)⁻

Example 231

N-(4-{Formyl[2-(2-pyridinyl)ethyl]amino}phenyl)-2-[4-(trifluoromethyl)phenyl]-1-cycloheptene-1-carboxamide was obtained in the same manner as in Example 223 as a brown

10 powder.

$^1\text{H-NMR}$ (DMSO-d₆) : δ 1.6-1.9 (6H, m), 2.4-2.6 (4H, m), 2.85 (2H, t, J=7.0 Hz), 4.06 (2H, t, J=7.0 Hz), 7.1-7.7 (11H, m), 8.25 (1H, s), 8.4-8.5 (1H, m), 9.56 (1H, s)

ESI-MS (m/z) : 530 (M+Na)⁺, 508 (M+H)⁺

15 Example 232

N-(4-{[2-(2-Pyridinyl)ethyl]amino}phenyl)-2-[4-(trifluoromethyl)phenyl]-1-cycloheptene-1-carboxamide was obtained in the same manner as in Example 224 as white crystals.

20 $^1\text{H-NMR}$ (DMSO-d₆) : δ 1.6-1.9 (6H, m), 2.4-2.6 (4H, m), 2.93 (2H, t, J=7.0 Hz), 3.27 (2H, td, J=7.0 and 5.7 Hz), 5.47 (1H, t, J=5.7 Hz), 6.41 (2H, d, J=8.7 Hz), 6.91 (2H, d, J=8.7 Hz), 7.15-7.3 (3H, m), 7.44 (2H, d, J=8.1 Hz), 7.62 (2H, d, J=8.1 Hz), 8.45-8.5 (1H, m), 8.99 (1H, s)

25 ESI-MS (m/z) : 502 (M+Na)⁺, 480 (M+H)⁺

Preparation 105

Ethyl 2-{{(nonafluorobutyl)sulfonyl}oxy}-1-cyclooctene-1-carboxylate was obtained in the same manner as in Preparation 93 as a colorless oil.

30 $^1\text{H-NMR}$ (DMSO-d₆) : δ 1.23 (3H, t, J=7.1 Hz), 1.4-1.8 (8H, m), 2.45-2.65 (4H, m), 4.18 (2H, q, J=7.1 Hz)

ESI-MS (m/z) : 503 (M+Na)⁺, 481 (M+H)⁺

Preparation 106

Ethyl 2-(4-methylphenyl)-1-cyclooctene-1-carboxylate was obtained in the same manner as in Preparation 96 as a colorless oil.

35 $^1\text{H-NMR}$ (DMSO-d₆) : δ 1.6-1.9 (6H, m), 2.28 (3H, s), 2.5-2.5 (4H, m), 3.70 (3H, s), 6.95-7.0 (2H, m), 7.1-7.15 (2H, m)

ESI-MS (m/z) : 267 (M+Na)⁺

Preparation 107

2-(4-Methylphenyl)-1-cyclooctene-1-carboxylic acid was obtained in the same manner as in Preparation 95 as white 5 crystals.

¹H-NMR (DMSO-d₆) : δ 1.4-1.8 (8H, m), 2.28 (3H, s), 2.4-2.6 (4H, m), 7.0-7.15 (4H, m), 11.82 (1H, brs)

negative ESI-MS (m/z) : 243 (M-H)⁻

Example 233

10 N-(4-{Formyl[2-(2-pyridinyl)ethyl]amino}phenyl)-2-(4-methylphenyl)-1-cyclooctene-1-carboxamide was obtained in the same manner as in Example 223 as a brown powder.

¹H-NMR (DMSO-d₆) : δ 1.4-1.9 (8H, m), 2.21 (3H, s), 2.3-2.5 (4H, m), 2.84 (2H, t, J=8.3 Hz), 3.35 (2H, t, J=8.3 Hz), 6.9-7.4 (9H, m),

15 7.6-7.8 (2H, m), 8.24 (1H, s), 8.4-8.5 (1H, m), 9.34 (1H, s)

ESI-MS (m/z) : 490 (M+Na)⁺

Example 234

2-(4-Methylphenyl)-N-(4-{[2-(2-pyridinyl)ethyl]amino}-phenyl)-1-cyclooctene-1-carboxamide was obtained in the same 20 manner as in Example 224 as a brown powder.

¹H-NMR (DMSO-d₆) : δ 1.4-1.8 (8H, m), 2.32 (3H, s), 2.35-2.6 (4H, m), 2.93 (2H, t, J=7.2 Hz), 3.27 (2H, td, J=7.2 and 5.7 Hz), 5.41 (1H, t, J=5.7 Hz), 6.40 (2H, d, J=8.8 Hz), 6.95 (2H, d, J=8.8 Hz), 7.05 (2H, d, J=8.1 Hz), 7.19 (2H, d, J=8.1 Hz), 7.15-7.3 (2H, m),

25 7.6-7.7 (1H, m), 8.49 (1H, d, J=4.8 Hz), 8.73 (1H, s)

ESI-MS (m/z) : 462 (M+Na)⁺, 440 (M+H)⁺

Preparation 108

Ethyl 2-[4-(trifluoromethyl)phenyl]-1-cyclooctene-1-carboxylate was obtained in the same manner as in Preparation 30 96 as a colorless oil.

¹H-NMR (DMSO-d₆) : δ 1.6-1.9 (6H, m), 2.28 (3H, s), 2.5-2.5 (4H, m), 3.70 (3H, s), 6.95-7.0 (2H, m), 7.1-7.15 (2H, m)

ESI-MS (m/z) : 267 (M+Na)⁺

Preparation 109

35 2-[4-(Trifluoromethyl)phenyl]-1-cyclooctene-1-carboxylic acid was obtained in the same manner as in Preparation 95 as white crystals.

¹H-NMR (DMSO-d₆) : δ 1.4-1.8 (8H, m), 2.4-2.6 (4H, m), 7.36 (2H, d,

J=8.0 Hz), 7.67(2H, d, J=8.0 Hz), 12.05(1H, brs)

ESI-MS (m/z) : 321 (M+Na)⁺

Example 235

N-(4-{Formyl[2-(2-pyridinyl)ethyl]amino}phenyl)-2-[4-(trifluoromethyl)phenyl]-1-cyclooctene-1-carboxamide was obtained in the same manner as in Example 223 as a brown powder.

¹H-NMR (DMSO-d₆) : δ 1.4-1.9(8H, m), 2.4-2.6(4H, m), 2.8-2.9(2H, m), 4.0-4.1(2H, m), 7.0-7.7(15H, m), 8.22(1H, s), 8.4-8.45(1H, m), 9.56(1H, s), 9.49(1H, s)

negative ESI-MS (m/z) : 520 (M-H)⁻

Example 236

N-(4-{[2-(2-Pyridinyl)ethyl]amino}phenyl)-2-[4-(trifluoromethyl)phenyl]-1-cyclooctene-1-carboxamide was obtained in the same manner as in Example 224 as white crystals.

¹H-NMR (DMSO-d₆) : δ 1.5-1.9(8H, m), 2.35-2.6(4H, m), 2.93(2H, t, J=7.1 Hz), 3.29(2H, t, J=7.1 Hz), 5.62(1H, br), 6.39(2H, d, J=8.7 Hz), 6.88(2H, d, J=8.7 Hz), 7.15-7.3(2H, m), 7.48(2H, d, J=8.1 Hz), 7.64(2H, d, J=8.1 Hz), 7.65-7.75(1H, m), 8.45-8.55(1H, m), 8.90(1H, s)

ESI-MS (m/z) : 516 (M+Na)⁺, 494 (M+H)⁺

Example 237

To a suspension of 2-(4-methylphenyl)-1-cyclohexene-1-carboxylic acid (648 mg) in toluene (30 ml) were added thionyl chloride (535 mg) and N,N-dimethylformamide (5 drops) and the mixture was stirred at 70°C for 4 hours. The resulting solution was evaporated in vacuo to give the acid chloride as an orange oil. To a solution of 4-[2-(2-pyridinyl)ethoxy]aniline (642 mg) and triethylamine (455 mg) in dichloromethane (30 ml) was added dropwise a solution of the acid chloride in dichloromethane (20 ml) at ambient temperature and the mixture was stirred at the same temperature for 16 hours under nitrogen. Water (20ml) was added and the separated organic layer was washed with water and brine, dried over magnesium sulfate and evaporated in vacuo. The residue was purified by column chromatography on silica gel eluting with hexane:ethyl acetate (1:1) to give 2-

(4-methylphenyl)-N-{4-[2-(2-pyridinyl)ethoxy]phenyl}-1-cyclohexene-1-carboxamide (944 mg) as white crystals.

¹H-NMR (DMSO-d₆) : δ 1.6-1.8 (4H, m), 2.21 (3H, s), 2.25-2.4 (4H, m), 3.13 (2H, t, J=6.6 Hz), 4.26 (2H, t, J=6.6 Hz), 6.75 (2H, d,

5 J=9.0 Hz), 7.04 (2H, d, J=8.0 Hz), 7.18 (2H, d, J=8.0 Hz), 7.24 (2H, d, J=9.0 Hz), 7.25-7.35 (2H, m), 7.65-7.75 (1H, m), 8.49 (1H, d, J=4.0 Hz), 9.34 (1H, s)

APCI-MS (m/z) : 413 (M+H)⁺

Example 238

10 2-(4-Methylphenyl)-N-{6-[2-(2-pyridinyl)ethoxy]-3-pyridinyl}-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 237 as white crystals.

¹H-NMR (DMSO-d₆) : δ 1.6-1.8 (4H, m), 2.21 (3H, s), 2.3-2.45 (4H, m), 3.13 (2H, t, J=6.8 Hz), 4.52 (2H, t, J=6.8 Hz), 6.63 (1H, d,

15 J=8.8 Hz), 7.05 (2H, d, J=8.1 Hz), 7.20 (2H, d, J=8.1 Hz), 7.2-7.3 (1H, m), 7.3 (1H, d, J=7.8 Hz), 7.6-7.8 (2H, m), 8.07 (1H, d, J=2.5 Hz), 8.49 (1H, d, J=4.1 Hz), 9.49 (1H, s)

ESI-MS (m/z) : 436 (M+Na)⁺, 414 (M+H)⁺

Preparation 110

20 To a solution of 4-nitroaniline (6.91 g), [6-(2,5-dimethyl-1H-pyrrol-1-yl)-2-pyridinyl]acetic acid (11.50 g) and benzotriazol-1-yl-oxytritypyrrolidinophosphonium hexafluorophosphate (PyBOP) (31.2 g) in N,N-dimethylformamide (150 ml) was added dropwise diisopropylamine (12.90 g) at

25 ambient temperature and the mixture was stirred at the same temperature for 24 hours. The mixture was poured into a mixture of ethyl acetate, water and 6N hydrochloric acid and the separated organic layer was washed with water and brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was purified by column chromatography on silica gel eluting with ethyl acetate to give 2-[6-(2,5-dimethyl-1H-pyrrol-1-yl)-2-pyridinyl]-N-(4-nitrophenyl)acetamide (5.29 g) as a brown powder.

30 ¹H-NMR (DMSO-d₆) : δ 2.02 (6H, s), 4.01 (2H, s), 5.77 (2H, s), 7.31 (1H, d, J=7.6 Hz), 7.45 (1H, d, J=7.4 Hz), 7.8-7.9 (2H, m), 7.97 (1H, dd, J=7.6 and 7.4 Hz), 8.15-8.25 (2H, m), 10.87 (1H, s)

ESI-MS (m/z) : 373 (M+Na)⁺

Preparation 111

- To a solution of 2-[6-(2,5-dimethyl-1H-pyrrol-1-yl)-2-pyridinyl]-N-(4-nitrophenyl)acetamide (5.90 g) in tetrahydrofuran (100 ml) and methanol (100 ml) was added 5% palladium on carbon (3 g, 50% wet) and the mixture was
- 5 hydrogenated at ambient temperature under atmospheric pressure of hydrogen for 6 hours. Palladium on carbon was removed by filtration and the filtrate was evaporated in vacuo to give N-(4-aminophenyl)-2-[6-(2,5-dimethyl-1H-pyrrol-1-yl)-2-pyridinyl]acetamide (4.25 g) as a brown powder.
- 10 $^1\text{H-NMR}$ (DMSO- d_6) : δ 2.04(6H, s), 3.79(2H, s), 4.84(2H, brs), 5.78(2H, s), 6.45-6.55(2H, m), 7.15-7.25(2H, m), 7.27(1H, d, J=7.7 Hz), 7.41(1H, d, J=7.6 Hz), 7.93(1H, d, J=7.7 and 7.6 Hz), 9.80(1H, s)
negative ESI-MS (m/z) : 319 (M-H)⁻
- 15 Example 239
N-[4-({[6-(2,5-Dimethyl-1H-pyrrol-1-yl)-2-pyridinyl]acetyl}amino)phenyl]-2-(4-methylphenyl)-1-cyclohexene-1-carboxamide was obtained in the same manner as in Preparation 110 as a brown powder.
- 20 $^1\text{H-NMR}$ (DMSO- d_6) : δ 1.65-1.8(4H, m), 2.02(6H, s), 2.21(3H, s), 2.3-2.4(4H, m), 3.83(2H, s), 5.77(2H, s), 7.03(2H, d, J=8.0 Hz), 7.17(2H, d, J=8.0 Hz), 7.15-7.25(1H, m), 7.28(2H, d, J=8.8 Hz), 7.39(2H, d, J=8.8 Hz), 7.93(1H, dd, J=7.7 and 7.6 Hz), 9.44(1H, s), 10.11(1H, s)
- 25 ESI-MS (m/z) : 541 (M+Na)⁺
- Example 240
To a suspension of N-[4-({[6-(2,5-dimethyl-1H-pyrrol-1-yl)-2-pyridinyl]acetyl}amino)phenyl]-2-(4-methylphenyl)-1-cyclohexene-1-carboxamide (1.62 g) in ethanol (32 ml) and
- 30 water (8 ml) were added hydroxylamine hydrochloride (2.17 g) and triethylamine (632 mg) and the mixture was refluxed for 6 hours. The mixture was poured into a mixture of ethyl acetate and water and adjusted to pH 8 by addition of 50% aqueous potassium carbonate solution. The separated organic layer was washed with water and brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was purified by column chromatography on silica gel eluting with ethyl acetate and crystallized from acetonitrile to give N-(4-{[(6-amino-2-

pyridinyl)acetyl]amino}phenyl)-2-(4-methylphenyl)-1-cyclohexene-1-carboxamide (827 mg) as white crystals.

¹H-NMR (DMSO-d₆) : δ 1.6-1.8 (4H, m), 2.20 (3H, s), 2.3-2.4 (4H, m), 3.51 (2H, s), 5.89 (2H, brs), 6.29 (1H, d, J=8.2 Hz), 6.44 (1H, d, J=7.1 Hz), 7.03 (2H, d, J=8.1 Hz), 7.2-7.3 (1H, m), 7.28 (2H, d, J=8.9 Hz), 7.42 (2H, d, J=8.9 Hz), 9.42 (1H, s), 10.08 (1H, s)
ESI-MS (m/z) : 463 (M+Na)⁺, 441 (M+H)⁺

Example 241

N-[4-({[6-(2,5-Dimethyl-1H-pyrrol-1-yl)-2-pyridinyl]acetyl]amino}phenyl)-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Preparation 110 as a brown powder.
¹H-NMR (DMSO-d₆) : δ 1.7-1.85 (4H, m), 2.02 (6H, s), 2.35-2.5 (4H, m), 3.83 (2H, s), 5.76 (2H, s), 7.2-7.35 (4H, m), 7.40 (2H, d, J=9.0 Hz), 7.47 (2H, d, J=8.3 Hz), 7.62 (2H, d, J=8.3 Hz), 7.93 (1H, dd, J=7.8 and 7.8 Hz), 9.56 (1H, s), 10.13 (1H, s)
ESI-MS (m/z) : 595 (M+Na)⁺

Example 242

N-(4-{[(6-Amino-2-pyridinyl)acetyl]amino}phenyl)-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 240 as white crystals.
¹H-NMR (DMSO-d₆) : δ 1.65-1.9 (4H, m), 2.35-2.5 (4H, m), 3.51 (2H, s), 5.88 (2H, brs), 6.29 (1H, d, J=8.0 Hz), 6.43 (1H, d, J=7.0 Hz), 7.23 (2H, d, J=9.1 Hz), 7.30 (1H, dd, J=8.0 and 7.0 Hz), 7.39 (2H, d, J=8.6 Hz), 7.47 (2H, d, J=9.1 Hz), 7.62 (2H, d, J=8.0 Hz), 9.55 (1H, s), 10.08 (1H, s)
ESI-MS (m/z) : 495 (M+H)⁺

Preparation 112

To a mixture of methyl 5-ethoxy-2-{{(trifluoromethyl)sulfonyl}oxy}benzoate (5.0 g), lithium chloride (1.9 g) and tetrakis(triphenylphosphine)palladium(0) (0.9 g) in toluene (60 ml) was added a solution of sodium carbonate (4.2 g) in water (21 ml) under stirring and followed by 4-(trifluoromethyl)phenylboronic acid (3.2 g). The mixture was stirred at 100°C for 8 hours. To the reaction mixture were added activated charcoal and toluene (50 ml) and the mixture was stirred for 30 minutes. The insoluble materials were

removed by filtration on celite pad and the separated organic layer was washed with water and evaporated in vacuo. The residue was dissolved in ethanol (50 ml) and treated with a solution of sodium hydroxide (1.5 g) in water (15 ml). The mixture was stirred at 90°C for 10 hours and concentrated in vacuo. To the residue was added a mixture of ethyl acetate and water and the mixture was adjusted to pH 2 with 6N hydrochloric acid. The separated organic layer was washed with water, dried over magnesium sulfate and evaporated in vacuo. The residue was triturated with hexane:toluene (5:1) and collected by filtration to give 4-ethoxy-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid (2.88 g) as white crystals.

¹H-NMR (DMSO-d₆): δ 1.36(3H, t, J=7.0 Hz), 4.12(2H, q, J=7.0 Hz), 7.17(1H, dd, J=2.7 Hz, 8.5 Hz), 7.30(1H, d, J=2.7 Hz), 7.33(1H, d, J=8.5 Hz), 7.50(2H, d, J=8.1 Hz), 7.74(2H, d, J=8.1 Hz), 12.93(1H, s)

Example 243

1-[3-(Dimethylamino)propyl]-3-ethylcarbodiimide (0.17 g) was added to a solution of tert-butyl 4-aminophenyl[2-(2-pyridinyl)ethyl]carbamate (0.31 g), 4-ethoxy-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid (0.25 g), 1-hydroxybenzotriazole hydrate (0.17 g) and 4-dimethylaminopyridine (2.4 mg) in dichloromethane (3 ml) under ice-cooling and the mixture was stirred at ambient temperature for 18 hours. To the reaction mixture was added a solution of 10% hydrogen chloride in methanol (9 ml) and the mixture was stirred at the same temperature for 24 hours. The reaction mixture was poured into a mixture of ethyl acetate, tetrahydrofuran and water, and the mixture was adjusted to pH 9 with 20% aqueous potassium carbonate solution. The separated organic layer was washed with water, dried over magnesium sulfate and evaporated in vacuo. The residue was triturated with a mixture of ethyl acetate and diethyl ether to give 4-ethoxy-N-(4-([2-(2-pyridinyl)ethyl]amino)phenyl)-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (0.26 g).
¹H-NMR (DMSO-d₆): δ 1.37(3H, t, J=6.9 Hz), 2.96(2H, t, J=7.2 Hz), 3.28-3.41(2H, m), 4.14(2H, q, J=6.9 Hz), 5.54(1H, t, J=5.6 Hz),

6.52(2H, d, J=8.7 Hz), 7.09-7.33(6H, m), 7.41(1H, d, J=8.8 Hz),
 7.59(2H, d, J=8.1 Hz), 7.64-7.75(3H, m), 8.48-8.53(1H, m),
 9.92(1H, s)
 (+)ESI-MS: 506(M+H)⁺, 528(M+Na)⁺

5 Preparation 113

4-Ethoxy-4'-methyl-1,1'-biphenyl-2-carboxylic acid was obtained in the same manner as in Preparation 112.

¹H-NMR(DMSO-d₆):δ 1.35(3H, t, J=6.9 Hz), 2.32(3H, s), 4.09(2H, q, J=6.9 Hz), 7.09(1H, dd, J=2.8Hz, 8.4 Hz), 7.16-7.21(5H, m),
 7.26(1H, d, J=8.4 Hz), 12.73(1H, br-s)

Example 244

4-Ethoxy-4'-methyl-N-(4-[[2-(2-pyridinyl)ethyl]amino]phenyl)-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 243.

¹H-NMR(DMSO-d₆):δ 1.35(3H, t, J=6.9 Hz), 2.28(3H, s), 2.96(2H, t, J=7.1 Hz), 3.28-3.44(2H, m), 4.11(2H, q, J=6.9 Hz), 5.51(1H, t, J=5.6 Hz), 6.51(2H, d, J=8.7 Hz), 6.92-7.35(11H, m),
 7.69(1H, dt, J=1.5Hz, 7.6 Hz), 8.48-8.53(1H, m), 9.79(1H, s)
 (+)ESI-MS: 452(M+H)⁺, 474(M+Na)⁺

20 Preparation 114

4'-Chloro-4-ethoxy-1,1'-biphenyl-2-carboxylic acid was obtained in the same manner as in Preparation 112.

¹H-NMR(DMSO-d₆):δ 1.35(3H, t, J=7.0 Hz), 4.10(2H, q, J=7.0 Hz),
 7.13(1H, dd, J=2.8Hz, 8.5 Hz), 7.21-7.33(4H, m), 7.43(2H, d,
 J=8.5 Hz), 12.86(1H, s)

Example 245

4'-Chloro-4-ethoxy-N-(4-[[2-(2-pyridinyl)ethyl]amino]phenyl)-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 243.

¹H-NMR(DMSO-d₆):δ 1.36(3H, t, J=6.9 Hz), 2.97(2H, t, J=7.2 Hz),
 3.29-3.40(2H, m), 4.12(2H, q, J=6.9 Hz), 5.53(1H, t, J=5.7 Hz),
 6.52(2H, d, J=8.8 Hz), 7.05-7.12(2H, m), 7.17-7.44(5H, m),
 7.40(4H, s), 7.70(1H, dt, J=1.7Hz, 7.6 Hz), 8.48-8.53(1H, m),
 9.85(1H, s)

(+)ESI-MS: 472(M+H)⁺, 494(M+Na)⁺

Preparation 115

4-Ethoxy-4'-fluoro-1,1'-biphenyl-2-carboxylic acid was obtained in the same manner as in Preparation 112.

¹H-NMR (DMSO-d₆) : δ 1.35(3H, t, J=6.9 Hz), 4.10(2H, q, J=6.9 Hz), 7.08-7.35(7H, m), 12.83(1H, s)

Example 246

4-Ethoxy-4'-fluoro-N-(4-{[2-(2-pyridinyl)ethyl]amino}-phenyl)-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 243.

¹H-NMR (DMSO-d₆) : δ 1.36(3H, t, J=6.9 Hz), 2.96(2H, t, J=7.2 Hz), 3.28-3.40(2H, m), 4.12(2H, q, J=6.9 Hz), 5.52(1H, t, J=5.7 Hz), 6.51(2H, d, J=8.7 Hz), 7.03-7.45(11H, m), 7.70(1H, dt, J=1.6Hz, 7.6 Hz), 8.48-8.53(1H, m), 9.80(1H, s)

(+)ESI-MS: 456(M+H)⁺, 478(M+Na)⁺

Preparation 116

4-Isopropoxy-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid was obtained in the same manner as in Preparation 112.

¹H-NMR (DMSO-d₆) : δ 1.21(6H, d, J=6.0 Hz), 4.65-4.78(1H, m), 7.16(1H, dd, J=2.6Hz, 8.5 Hz), 7.28(1H, d, J=2.6 Hz), 7.32(1H, d, J=8.5 Hz), 7.50(2H, d, J=8.0 Hz), 7.73(2H, d, J=8.0 Hz), 12.88(1H, s)

Example 247

4-Isopropoxy-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 243.

¹H-NMR (DMSO-d₆) : δ 1.32(6H, d, J=6.0 Hz), 2.96(2H, t, J=7.3 Hz), 3.28-3.40(2H, m), 4.68-4.81(1H, m), 5.54(1H, t, J=5.7 Hz), 6.51(2H, d, J=8.8 Hz), 7.06-7.32(6H, m), 7.40(1H, d, J=8.3 Hz), 7.59(2H, d, J=8.1 Hz), 7.64-7.74(3H, m), 8.48-8.52(1H, m), 9.92(1H, s)

(-)ESI-MS: 518(M-H)⁻

Preparation 117

4-Isopropoxy-4'-methyl-1,1'-biphenyl-2-carboxylic acid was obtained in the same manner as in Preparation 112.

¹H-NMR (DMSO-d₆) : δ 1.29(6H, d, J=6.0 Hz), 2.32(3H, s), 4.61-4.74(1H, m), 7.09(1H, dd, J=2.8Hz, 8.4 Hz), 7.14-7.23(5H, m), 7.25(1H, d, J=8.4 Hz), 12.73(1H, s)

Example 248

4-Isopropoxy-4'-methyl-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-1,1'-biphenyl-2-carboxamide was

obtained in the same manner as in Example 243.

- ¹H-NMR (DMSO-d₆) : δ 1.30 (6H, d, J=6.0 Hz), 2.28 (3H, s), 2.96 (2H, t, J=7.2 Hz), 3.28-3.40 (2H, m), 4.63-4.76 (1H, m), 5.51 (1H, t, J=5.7 Hz), 6.51 (2H, d, J=8.7 Hz), 6.96-7.33 (11H, m), 7.70 (1H, dt, J=1.6Hz, 7.6 Hz), 8.48-8.53 (1H, m), 9.79 (1H, s)
 5 (-)ESI-MS: 464 (M-H)⁻

Preparation 118

4'-Chloro-4-isopropoxy-1,1'-biphenyl-2-carboxylic acid was obtained in the same manner as in Preparation 112.

- 10 ¹H-NMR (DMSO-d₆) : δ 1.30 (6H, d, J=6.0 Hz), 4.62-4.76 (1H, m), 7.12 (1H, dd, J=2.7Hz, 8.5 Hz), 7.21-7.33 (4H, m), 7.43 (2H, d, J=8.5 Hz), 12.85 (1H, s)

Example 249

- 15 4'-Chloro-4-isopropoxy-N-(4-{[2-(2-pyridinyl)ethyl]-amino}phenyl)-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 243.

- 19 ¹H-NMR (DMSO-d₆) : δ 1.31 (6H, d, J=6.0 Hz), 2.97 (2H, d, J=7.2 Hz), 3.28-3.41 (2H, m), 4.64-4.79 (1H, m), 5.53 (1H, t, J=5.7 Hz), 6.52 (2H, d, J=8.8 Hz), 7.01-7.11 (2H, m), 7.17-7.44 (5H, m), 20 7.40 (4H, s), 7.70 (1H, dt, J=1.8Hz, 7.6 Hz), 8.48-8.53 (1H, m), 9.86 (1H, s).

Preparation 119

4'-Fluoro-4-isopropoxy-1,1'-biphenyl-2-carboxylic acid was obtained in the same manner as in Preparation 112.

- 25 ¹H-NMR (DMSO-d₆) : δ 1.30 (6H, d, J=6.0 Hz), 4.62-4.75 (1H, m), 7.07-7.16 (1H, m), 7.18-7.36 (6H, m), 12.82 (1H, s)

Example 250

- 29 4'-Fluoro-4-isopropoxy-N-(4-{[2-(2-pyridinyl)ethyl]-amino}phenyl)-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 243.

- 33 ¹H-NMR (DMSO-d₆) : δ 1.31 (6H, d, J=6.0 Hz), 2.97 (2H, t, J=7.2 Hz), 3.28-3.40 (2H, m), 4.63-4.78 (1H, m), 5.52 (1H, t, J=5.6 Hz), 6.52 (2H, d, J=8.7 Hz), 7.00-7.46 (11H, m), 7.64-7.75 (1H, m), 8.48-8.53 (1H, m), 9.82 (1H, s)

- 35 (+)ESI-MS: 470 (M+H)⁺, 492 (M+Na)⁺

Preparation 120

To a mixture of methyl 5-acetyl-2-{{(trifluoromethyl)sulfonyl]oxy}benzoate (9.0 g), lithium chloride (3.5 g) and

tetrakis(triphenylphosphine)palladium(0) (1.6 g) in toluene (108 ml) was added a solution of sodium carbonate (7.6 g) in water (38 ml) under stirring and followed by 4-(trifluoromethyl)phenylboronic acid (5.8 g). The mixture was 5 stirred at 100°C for 6 hours. The reaction mixture was poured into a mixture of ethyl acetate and water. The separated organic layer was washed with water and evaporated in vacuo. The residue was purified by column chromatography on silica 10 gel using a mixture of hexane and ethyl acetate (4:1) as an eluent. The eluted fractions containing the desired product were collected and evaporated in vacuo to give methyl 4-acetyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylate (8.38 g).

15 $^1\text{H-NMR}$ (DMSO-d₆): δ 2.67 (3H, s), 3.67 (3H, s), 7.56 (2H, d, J=8.2 Hz), 7.64 (1H, d, J=8.0 Hz), 7.82 (2H, d, J=8.2 Hz), 8.22 (1H, dd, J=1.8Hz, 8.0 Hz), 8.35 (1H, d, J=1.8 Hz)

Preparation 121

A mixture of methyl 4-acetyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylate (1.5 g) and sodium hydroxide (0.47 g) 20 in a mixture of water (5.0 ml) and ethanol (10.0 ml) was stirred under reflux for 8 hours. The solvent was removed by evaporation. The residue was dissolved in water and the solution was adjusted to pH 2 with 6N hydrochloric acid. The extract was 25 washed with brine, dried over magnesium sulfate and evaporated in vacuo. The residue was triturated with hexane to give 4-acetyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid (1.33 g).

30 $^1\text{H-NMR}$ (DMSO-d₆): δ 2.67 (3H, s), 7.50-7.67 (3H, m), 7.84 (2H, d, J=8.2 Hz), 8.17 (1H, dd, J=1.8Hz, 8.0 Hz), 8.34 (1H, d, J=1.8 Hz), 13.14 (1H, s).

Example 251

4-Acetyl-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained in 35 the same manner as in Example 243.

35 $^1\text{H-NMR}$ (DMSO-d₆): δ 2.68 (3H, s), 2.97 (2H, t, J=7.3 Hz), 3.31-3.38 (2H, m), 5.58 (1H, t, J=5.7 Hz), 6.53 (2H, d, J=8.9 Hz), 7.19-7.24 (3H, m), 7.30 (1H, d, J=7.8 Hz), 7.64-7.73 (4H, m),

7.80(2H, d, J=8.3 Hz), 8.11-8.15(2H, m), 8.49-8.52(1H, m),
10.07(1H, s)

(+)ESI-MS: 504(M+H)⁺, 526(M+Na)⁺

Preparation 122

5 Methyl 4-acetyl-4'-methyl-1,1'-biphenyl-2-carboxylate
was obtained in the same manner as in Preparation 120.

¹H-NMR(DMSO-d₆):δ 2.36(3H, s), 2.64(3H, s), 3.65(3H, s), 7.19-
7.30(4H, m), 7.58(1H, d, J=8.1 Hz), 8.15(1H, dd, J=1.8Hz, 8.1
Hz), 8.23(1H, d, J=1.8 Hz)

10 Preparation 123

4-Acetyl-4'-methyl-1,1'-biphenyl-2-carboxylic acid was
obtained in the same manner as in Preparation 121.

¹H-NMR(DMSO-d₆):δ 2.36(3H, s), 2.64(3H, s), 7.20-7.31(4H, m),
7.52(1H, d, J=8.0 Hz), 8.05-8.13(1H, m), 8.22(1H, d, J=1.8 Hz),

15 12.99(1H, s)

Example 252

4-Acetyl-4'-methyl-N-(4-{[2-(2-pyridinyl)ethyl]amino}-
phenyl)-1,1'-biphenyl-2-carboxamide was obtained in the same
manner as in Example 243.

20 ¹H-NMR(DMSO-d₆):δ 2.31(3H, s), 2.65(3H, s), 2.97(2H, t, J=7.3
Hz), 3.31-3.38(2H, m), 5.55(1H, t, J=5.8 Hz), 6.53(2H, d,
J=8.9 Hz), 7.20-7.26(1H, m), 7.22(2H, d, J=8.1 Hz), 7.25(2H, d,
J=8.9 Hz), 7.31(1H, d, J=7.8 Hz), 7.39(2H, d, J=8.1 Hz),
7.58(1H, d, J=8.0 Hz), 7.67-7.73(1H, m), 8.04(1H, d, J=1.8 Hz),
25 8.07(1H, dd, J=1.8Hz, 8.0 Hz), 8.49-8.52(1H, m), 9.96(1H, s)
(+)ESI-MS: 450(M+H)⁺, 472(M+Na)⁺

Preparation 124

A solution of methyl 4-acetyl-4'-(trifluoromethyl)-1,1'-
biphenyl-2-carboxylate (6.3 g) in tetrahydrofuran (63 ml) was
30 added a mixture of methyltriphenylphosphonium bromide (21.6 g)
and potassium tert-butoxide (6.6 g) in tetrahydrofuran (216
ml) and the mixture was stirred under reflux for 5 hours. The
reaction mixture was poured into water and the mixture was
adjusted to pH 2 with 6N hydrochloric acid. The mixture was
35 extracted with ethyl acetate. The extract was washed with
water, dried over magnesium sulfate and evaporated in vacuo.
The residue was purified by column chromatography on silica
gel using a mixture of hexane and ethyl acetate (9:1) as an

eluent. The eluted fractions containing the desired product were collected and evaporated in vacuo to give methyl 4-isopropenyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylate (3.25 g).

- 5 $^1\text{H-NMR}$ (DMSO-d₆) : δ 2.17(3H, s), 3.63(3H, s), 5.24(1H, s),
5.58(1H, s), 7.46(1H, d, J=8.1 Hz), 7.52(1H, d, J=8.1 Hz),
7.76-7.83(3H, m), 7.91(1H, d, J=1.9 Hz)

Preparation 125

- 10 4-Isopropenyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid was obtained in the same manner as in Preparation 121.
1 H-NMR (DMSO-d₆) : δ 2.17(3H, s), 5.22(1H, s), 5.56(1H, s),
7.41(1H, d, J=8.1 Hz), 7.55(2H, d, J=8.0 Hz), 7.72-7.80(3H, m),
7.90(1H, d, J=1.9 Hz), 12.96(1H, s)

15 Example 253

- 1-((1-Methoxy-1-methylethyl)-N-(4-[2-(2-pyridinyl)ethyl]amino)phenyl)-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 243.
20 $^1\text{H-NMR}$ (DMSO-d₆) : δ 1.53(6H, s), 2.97(2H, t, J=7.3 Hz), 3.09(3H, s), 3.31-3.37(2H, m), 5.55(1H, t, J=5.7 Hz), 6.52(2H, d, J=8.9 Hz), 7.19-7.23(3H, m), 7.30(1H, d, J=7.8 Hz), 7.48(1H, d, J=8.1 Hz), 7.55(1H, d, J=1.8 Hz), 7.59(1H, dd, J=1.8Hz, 8.1 Hz), 7.65(2H, d, J=8.2 Hz), 7.66-7.72(1H, m), 7.75(2H, d, J=8.2 Hz),
25 8.49-8.52(1H, m), 9.89(1H, s)
(+)ESI-MS: 534(M+H)⁺, 556(M+Na)⁺

Preparation 126

- Methyl 4-isopropenyl-4'-methyl-1,1'-biphenyl-2-carboxylate was obtained in the same manner as in Preparation 124.

30 124.

$^1\text{H-NMR}$ (DMSO-d₆) : δ 2.15(3H, s), 2.35(3H, s), 3.61(3H, s),
5.20(1H, s), 5.53(1H, s), 7.15-7.22(4H, m), 7.40(1H, d, J=8.0 Hz),
7.73(1H, dd, J=1.9Hz, 8.0 Hz), 7.78(1H, d, J=1.9 Hz)

Preparation 127

- 4-Isopropenyl-4'-methyl-1,1'-biphenyl-2-carboxylic acid was obtained in the same manner as in Preparation 121.
35 $^1\text{H-NMR}$ (DMSO-d₆) : δ 2.15(3H, s), 2.34(3H, s), 5.18(1H, s),
5.52(1H, s), 7.17-7.27(4H, m), 7.35(1H, d, J=8.0 Hz), 7.68(1H,

dd, $J=2.0\text{ Hz}$, 8.0 Hz), 7.76(1H, d, $J=2.0\text{ Hz}$), 12.77(1H, s)

Example 254

4-(1-Methoxy-1-methylethyl)-4'-methyl-N-(4-[(2-(2-pyridinyl)ethyl]amino)phenyl]-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 243.

5 $^1\text{H-NMR}(\text{DMSO-d}_6):\delta$ 1.51(6H, s), 2.29(3H, s), 2.96(2H, t, $J=7.2\text{ Hz}$), 3.07(3H, s), 3.27-3.40(2H, m), 5.51(1H, t, $J=5.7\text{ Hz}$), 6.51(2H, d, $J=8.8\text{ Hz}$), 7.13-7.29(5H, m), 7.30-7.47(5H, m), 7.52(1H, dd, $J=1.9\text{ Hz}$, 8.0 Hz), 7.70(1H, dt, $J=1.9\text{ Hz}$, 7.6 Hz),

10 8.48-8.53(1H, m), 9.76(1H, s)

(-)ESI-MS: 478(M-H)⁻

Preparation 128

To a solution of 4-isopropenyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid (2.0 g) in methanol (20 ml) was added 10% palladium on carbon (0.5g, 50% wet). The mixture was stirred at ambient temperature for 6 hours under hydrogen atmosphere. The catalyst was filtered off and the solvent was removed by concentration to give 4-isopropyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid (2.00 g).

20 $^1\text{H-NMR}(\text{DMSO-d}_6):\delta$ 1.26(6H, d, $J=6.9\text{ Hz}$), 2.89-3.11(1H, m), 7.33(1H, d, $J=7.9\text{ Hz}$), 7.47-7.56(3H, m), 7.68(1H, d, $J=1.7\text{ Hz}$), 7.75(2H, d, $J=8.2\text{ Hz}$), 12.84(1H, s)

Example 255

4-Isopropyl-N-(4-[(2-(2-pyridinyl)ethyl]amino)phenyl]-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 243.

25 $^1\text{H-NMR}(\text{DMSO-d}_6):\delta$ 1.28(6H, d, $J=6.9\text{ Hz}$), 2.94-3.04(3H, m), 3.30-3.37(2H, m), 5.55(1H, t, $J=5.8\text{ Hz}$), 6.51(2H, d, $J=8.9\text{ Hz}$), 7.19-7.23(3H, m), 7.30(1H, d, $J=7.8\text{ Hz}$), 7.39-7.48(3H, m), 7.62(2H, d, $J=8.2\text{ Hz}$), 7.70(1H, dt, $J=1.8\text{ Hz}$, 7.6 Hz), 7.74(2H, d, $J=8.2\text{ Hz}$), 8.49-8.52(1H, m), 9.89(1H, s)

(+)ESI-MS: 504(M+H)⁺, 526(M+Na)⁺

Preparation 129

4-Isopropyl-4'-methyl-1,1'-biphenyl-2-carboxylic acid was obtained in the same manner as in Preparation 128.

30 $^1\text{H-NMR}(\text{DMSO-d}_6):\delta$ 1.24(6H, d, $J=6.8\text{ Hz}$), 2.33(3H, s), 2.87-3.07(1H, m), 7.20(4H, s), 7.27(1H, d, $J=7.9\text{ Hz}$), 7.43(1H, dd, $J=1.8\text{ Hz}$, 7.9 Hz), 7.54(1H, d, $J=1.8\text{ Hz}$), 12.67(1H, s)

Example 256

4-Isopropyl-4'-methyl-N-(4-{[2-(2-pyridinyl)ethyl]-amino}phenyl)-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 243.

5 $^1\text{H-NMR}$ (DMSO-d₆) : δ 1.26(6H, d, J=6.9 Hz), 2.28(3H, s), 2.92-3.02(3H, m), 3.30-3.39(2H, m), 5.52(1H, t, J=5.8 Hz), 6.51(2H, d, J=8.9 Hz), 7.16(2H, d, J=8.0 Hz), 7.19-7.22(1H, m), 7.24(2H, d, J=8.9 Hz), 7.28-7.35(5H, m), 7.37-7.41(1H, m), 7.70(1H, dt, J=1.8Hz, 7.6 Hz), 8.49-8.52(1H, m), 9.77(1H, s)

10 (+)ESI-MS: 450(M+H)⁺, 472(M+Na)⁺

Preparation 130

Methyl 4-acetyl-4'-fluoro-1,1'-biphenyl-2-carboxylate was obtained in the same manner as in Preparation 120.

15 $^1\text{H-NMR}$ (DMSO-d₆) : δ 2.65(3H, s), 3.65(3H, s), 7.24-7.43(4H, m), 7.60(1H, d, J=8.0 Hz), 8.17(1H, dd, J=1.8Hz, 8.0 Hz), 8.28(1H, d, J=1.8 Hz)

Preparation 131

Methyl 4'-fluoro-4-isopropenyl-1,1'-biphenyl-2-carboxylate was obtained in the same manner as in Preparation 124.

20 $^1\text{H-NMR}$ (DMSO-d₆) : δ 2.16(3H, s), 3.62(3H, s), 5.21(1H, s), 5.55(1H, s), 7.20-7.38(4H, m), 7.41(1H, d, J=8.1 Hz), 7.75(1H, dd, J=2.0Hz, 8.1 Hz), 7.83(1H, d, J=2.0 Hz)

Preparation 132

25 4'-Fluoro-4-isopropenyl-1,1'-biphenyl-2-carboxylic acid was obtained in the same manner as in Preparation 121.

30 $^1\text{H-NMR}$ (DMSO-d₆) : δ 2.16(3H, s), 5.20(1H, s), 5.53(1H, s), 7.18-7.41(5H, m), 7.70(1H, dd, J=2.0Hz, 8.1 Hz), 7.82(1H, d, J=2.0 Hz), 12.88(1H, s)

Preparation 133

35 4'-Fluoro-4-isopropyl-1,1'-biphenyl-2-carboxylic acid was obtained in the same manner as in Preparation 128.

40 $^1\text{H-NMR}$ (DMSO-d₆) : δ 1.24(6H, d, J=6.9 Hz), 2.88-3.10(1H, m), 7.16-7.38(5H, m), 7.45(1H, dd, J=1.8Hz, 7.9 Hz), 7.60(1H, d, J=1.8 Hz), 12.76(1H, s)

Example 257

4'-Fluoro-4-isopropyl-N-(4-{[2-(2-pyridinyl)ethyl]-amino}phenyl)-1,1'-biphenyl-2-carboxamide was obtained in the

same manner as in Example 243.

- ¹H-NMR (DMSO-d₆) : δ 1.27 (6H, d, J=6.9 Hz), 2.94-3.03 (3H, m), 3.30-3.37 (2H, m), 5.53 (1H, t, J=5.8 Hz), 6.51 (2H, d, J=8.9 Hz), 7.16-7.24 (5H, m), 7.30 (1H, d, J=7.8 Hz), 7.33-7.38 (2H, m), 5 7.39-7.47 (3H, m), 7.70 (1H, dt, J=1.8Hz, 7.6 Hz), 8.49-8.52 (1H, m), 9.78 (1H, s)

(+)ESI-MS: 454 (M+H)⁺, 476 (M+Na)⁺

Preparation 134

- Methyl 4-acetyl-1,1'-biphenyl-2-carboxylate was obtained
10 in the same manner as in Preparation 120.

¹H-NMR (DMSO-d₆) : δ 2.65 (3H, s), 3.63 (3H, s), 7.31-7.37 (2H, m), 7.40-7.50 (3H, m), 7.60 (1H, d, J=8.0 Hz), 8.17 (1H, dd, J=1.8Hz, 8.0 Hz), 8.27 (1H, d, J=1.8 Hz)

Preparation 135

- 15 Methyl 4-isopropenyl-1,1'-biphenyl-2-carboxylate carboxylate was obtained in the same manner as in Preparation 124.

¹H-NMR (DMSO-d₆) : δ 2.16 (3H, s), 3.59 (3H, s), 5.21 (1H, s), 5.55 (1H, s), 7.26-7.32 (2H, m), 7.36-7.45 (4H, m), 7.75 (1H, dd, 20 J=2.0Hz, 8.1 Hz), 7.81 (1H, d, J=2.0 Hz)

Preparation 136

4-Isopropenyl-1,1'-biphenyl-2-carboxylic acid was obtained in the same manner as in Preparation 121.

¹H-NMR (DMSO-d₆) : δ 2.16 (3H, s), 5.20 (1H, s), 5.54 (1H, s), 7.29-25 7.47 (6H, m), 7.70 (1H, dd, J=2.0Hz, 8.0 Hz), 7.80 (1H, d, J=2.0 Hz), 12.84 (1H, s)

Preparation 137

4-Isopropyl-1,1'-biphenyl-2-carboxylic acid was obtained in the same manner as in Preparation 128.

30 ¹H-NMR (DMSO-d₆) : δ 1.25 (6H, d, J=6.9 Hz), 2.88-3.08 (1H, m), 7.27-7.47 (7H, m), 7.58 (1H, d, J=1.8 Hz), 12.71 (1H, br-s)

Example 258

4-Isopropyl-N-(4-([2-(2-pyridinyl)ethyl]amino)phenyl)-1,1'-biphenyl-2-carboxamide was obtained in the same manner as 35 in Example 243.

¹H-NMR (DMSO-d₆) : δ 1.27 (6H, d, J=6.9 Hz), 2.93-3.04 (3H, m), 3.29-3.37 (2H, m), 5.51 (1H, t, J=5.8 Hz), 6.50 (2H, d, J=8.9 Hz), 7.18-7.23 (3H, m), 7.24-7.32 (2H, m), 7.33-7.38 (4H, m), 7.39-

WO 03/045921

7.45(3H, m), 7.70(1H, dt, J=1.9Hz, 7.6 Hz), 8.49-8.52(1H, m),
 9.75(1H, s)
 (+) ESI-MS: 436(M+H)⁺, 458(M+Na)⁺

Example 259

5 N-(4-{[2-(6-Amino-2-pyridinyl)ethyl]amino}phenyl)-4-ethyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 243.
¹H-NMR(DMSO-d₆):δ 1.26(3H, t, J=7.5 Hz), 2.65-2.79(4H, m), 3.08-3.34(2H, m), 5.52(1H, t, J=5.5 Hz), 5.82(2H, s), 6.27(1H, d, J=8.2 Hz), 6.39(1H, d, J=7.1 Hz), 6.50(2H, d, J=8.7 Hz), 7.18-7.31(3H, m), 7.37-7.48(3H, m), 7.62(2H, d, J=8.2 Hz), 7.74(2H, d, J=8.2 Hz), 9.89(1H, s)
 (+) ESI-MS: 505(M+H)⁺, 527(M+Na)⁺

Example 260

15 N-(4-{[2-(6-Amino-2-pyridinyl)ethyl]amino}phenyl)-4-isopropyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 243.
¹H-NMR(DMSO-d₆):δ 1.28(6H, d, J=6.9 Hz), 2.71(2H, t, J=7.3 Hz), 2.97-3.07(1H, m), 3.21-3.27(2H, m), 5.53(1H, t, J=5.6 Hz), 5.83(2H, s), 6.27(1H, d, J=8.2 Hz), 6.39(1H, d, J=7.2 Hz), 6.50(2H, d, J=8.8 Hz), 7.20(2H, d, J=8.8 Hz), 7.26-7.29(1H, m), 7.39-7.48(3H, m), 7.62(2H, d, J=8.2 Hz), 7.74(2H, d, J=8.2 Hz), 9.88(1H, s)
 (+) ESI-MS: 519(M+H)⁺, 541(M+Na)⁺

Example 261

25 N-(4-{[2-(6-Amino-2-pyridinyl)ethyl]amino}phenyl)-5-methyl-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 243.
¹H-NMR(DMSO-d₆):δ 2.40(3H, s), 2.70(2H, t, J=7.2 Hz), 3.18-3.32(2H, m), 5.48(1H, t, J=5.4 Hz), 5.82(2H, s), 6.27(1H, d, J=8.1 Hz), 6.38(1H, d, J=7.1 Hz), 6.48(2H, d, J=8.8 Hz), 7.18(2H, d, J=8.8 Hz), 7.21-7.46(9H, m), 9.66(1H, s)
 (+) ESI-MS: 423(M+H)⁺, 445(M+Na)⁺

Example 262

35 N-(4-{[2-(6-Amino-2-pyridinyl)ethyl]amino}phenyl)-5-chloro-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 243.
¹H-NMR(DMSO-d₆):δ 2.71(2H, t, J=7.2 Hz), 3.19-3.30(2H, m),

5.55(1H, t, J=5.6 Hz), 5.82(2H, s), 6.27(1H, d, J=8.1 Hz),
 6.38(1H, d, J=7.0 Hz), 6.50(2H, d, J=8.8 Hz), 7.18(2H, d,
 J=8.8 Hz), 7.22-7.29(1H, m), 7.56-7.68(5H, m), 7.78(2H, d,
 J=8.3 Hz), 9.95(1H, s)

5 (+)ESI-MS: 511(M+H)⁺, 533(M+Na)⁺

Example 263

4,5-Dimethyl-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 243.

10 ¹H-NMR(DMSO-d₆):δ 2.32(6H, s), 2.96(2H, t, J=7.3 Hz), 3.30-
 3.36(2H, m), 5.53(1H, t, J=5.7 Hz), 6.51(2H, d, J=8.7 Hz),
 7.19-7.24(3H, m), 7.26(1H, s), 7.30(1H, d, J=7.5 Hz), 7.37(1H,
 s), 7.59(2H, d, J=8.1 Hz), 7.67-7.74(3H, m), 8.49-8.52(1H, m),
 9.84(1H, s)

15 (+)ESI-MS: 490(M+H)⁺, 512(M+Na)⁺

Example 264

4,4',5-Trimethyl-N-(4-{[2-(2-pyridinyl)ethyl]amino}-phenyl)-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 243.

20 ¹H-NMR(DMSO-d₆):δ 2.29(9H, s), 2.96(2H, t, J=7.2 Hz), 3.28-
 3.39(2H, m), 5.49(1H, t, J=5.7 Hz), 6.50(2H, d, J=8.8 Hz),
 7.11-7.33(10H, m), 7.70(1H, dt, J=1.9Hz, 7.7 Hz), 8.48-8.53(1H,
 m), 9.68(1H, s)

(+)ESI-MS: 436(M+H)⁺, 458(M+Na)⁺

25 Preparation 138

4'-Chloro-4,5-dimethyl-1,1'-biphenyl-2-carboxylic acid was obtained in the same manner as in Preparation 112.

¹H-NMR(DMSO-d₆):δ 2.29(6H, s), 7.13(1H, s), 7.26-7.31(2H, m),
 7.40-7.45(2H, m), 7.58(1H, s), 12.59(1H, s)

30 Example 265

4'-Chloro-4,5-dimethyl-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 243.

35 ¹H-NMR(DMSO-d₆):δ 2.30(6H, s), 2.96(2H, t, J=7.2 Hz), 3.31-
 3.39(2H, m), 5.51(1H, t, J=5.7 Hz), 6.51(2H, d, J=8.8 Hz),
 7.17-7.34(6H, m), 7.41(4H, s), 7.70(1H, dt, J=1.9Hz, 7.6 Hz),
 8.48-8.52(1H, m), 9.75(1H, s)

(+)ESI-MS: 456(M+H)⁺, 478(M+Na)⁺

Preparation 139

4'-Fluoro-4,5-dimethyl-1,1'-biphenyl-2-carboxylic acid was obtained in the same manner as in Preparation 112.

- 5 $^1\text{H-NMR}$ (DMSO-d₆) : δ 2.28(6H, s), 7.12(1H, s), 7.17-7.23(2H, m), 7.28-7.32(2H, m), 7.56(1H, s), 12.54(1H, s)

Example 266

4'-Fluoro-4,5-dimethyl-N-(4-{{[2-(2-pyridinyl)ethyl]amino}phenyl}-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 243.

- 10 $^1\text{H-NMR}$ (DMSO-d₆) : δ 2.22(6H, s), 2.96(2H, t, J=7.2 Hz), 3.29-3.37(2H, m), 5.51(1H, t, J=5.7 Hz), 6.50(2H, d, J=8.8 Hz), 7.16-7.23(6H, m), 7.28-7.32(2H, m), 7.39-7.44(2H, m), 7.67-7.73(1H, m), 8.51(1H, dd, J=0.7Hz, 4.7 Hz), 9.72(1H, s)
 (+)ESI-MS: 440(M+H)⁺, 462(M+Na)⁺

Preparation 140

4,5-Dimethyl-1,1'-biphenyl-2-carboxylic acid was obtained in the same manner as in Preparation 112.
 $^1\text{H-NMR}$ (DMSO-d₆) : δ 2.29(6H, s), 7.14(1H, s), 7.25-7.41(5H, m), 7.53(1H, s), 12.48(1H, s)

Example 267

4,5-Dimethyl-N-(4-{{[2-(2-pyridinyl)ethyl]amino}phenyl}-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 243.
 20 $^1\text{H-NMR}$ (DMSO-d₆) : δ 2.30(6H, s), 2.96(2H, t, J=7.2 Hz), 3.27-3.38(2H, m), 5.49(1H, t, J=5.7 Hz), 6.50(2H, d, J=8.8 Hz), 7.15-7.45(11H, m), 7.70(1H, dt, J=1.8Hz, 7.6 Hz), 8.48-8.52(1H, m), 9.67(1H, s)
 (+)ESI-MS: 422(M+H)⁺, 444(M+Na)⁺

Preparation 141

30 3-[4-(Trifluoromethyl)phenyl]-2-naphthoic acid was obtained in the same manner as in Preparation 112.
 $^1\text{H-NMR}$ (DMSO-d₆) : δ 7.62-7.69(4H, m), 7.80(2H, d, J=8.1 Hz), 7.98(1H, s), 8.04(1H, d, J=8.0 Hz), 8.13(1H, d, J=7.8 Hz), 8.51(1H, s), 12.99(1H, s)

Example 268

N-(4-{{[2-(2-Pyridinyl)ethyl]amino}phenyl}-3-[4-(trifluoromethyl)phenyl]-2-naphthamide was obtained in the same manner as in Example 243.

¹H-NMR (DMSO-d₆) : δ 2.98 (2H, t, J=7.2 Hz), 3.33-3.39 (2H, m), 5.57 (1H, t, J=5.8 Hz), 6.55 (2H, d, J=8.8 Hz), 7.19-7.23 (1H, m), 7.28-7.33 (3H, m), 7.62-7.66 (2H, m), 7.69-7.75 (3H, m), 7.77-7.81 (2H, m), 8.02-8.12 (3H, m), 8.22 (1H, s), 8.50-8.53 (1H, m),

5 10.20 (1H, s)

(+) ESI-MS: 512 (M+H)⁺, 534 (M+Na)⁺

Example 269

4,5-Dimethoxy-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-4'- (trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained
10 in the same manner as in Example 243.

¹H-NMR (DMSO-d₆) : δ 2.96 (2H, t, J=7.1 Hz), 3.27-3.44 (2H, m), 3.86 (3H, s), 3.87 (3H, s), 5.52 (1H, t, J=5.6 Hz), 6.51 (2H, d, J=8.7 Hz), 7.03 (1H, s), 7.16-7.25 (4H, m), 7.30 (1H, d, J=7.7 Hz), 7.58-7.75 (5H, m), 8.48-8.53 (1H, m), 9.74 (1H, s)

15 (+) ESI-MS: 522 (M+H)⁺, 544 (M+Na)⁺

Example 270

4,5-Dimethoxy-4'-methyl-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 243.

20 ¹H-NMR (DMSO-d₆) : δ 2.29 (3H, s), 2.96 (2H, t, J=7.2 Hz), 3.27-3.35 (2H, m), 3.83 (6H, s), 5.49 (1H, t, J=5.7 Hz), 6.50 (2H, d, J=8.8 Hz), 6.93 (1H, s), 7.05-7.36 (9H, m), 7.69 (1H, dt, J=1.6Hz, 7.6 Hz), 8.48-8.53 (1H, m), 9.58 (1H, s)

(+) ESI-MS: 468 (M+H)⁺, 490 (M+Na)⁺

25 Preparation 142

3-Methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid was obtained in the same manner as in Preparation 112.

¹H-NMR (DMSO-d₆) : δ 2.37 (3H, s), 7.26 (1H, d, J=7.4 Hz), 7.31-7.48 (2H, m), 7.60 (2H, d, J=8.2 Hz), 7.80 (2H, d, J=8.2 Hz),

30 13.14 (1H, s)

(-) ESI-MS: 279 (M-H)⁻

Example 271

1-[3-(Dimethylamino)propyl]-3-ethylcarbodiimide (0.31 g) was added to a solution of 4-aminophenyl(2-(2-pyridinyl)ethyl)formamide (0.4 g), 3-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid (0.56 g), 1-hydroxybenzotriazole (0.27 g) and 4-dimethylaminopyridine (20 mg) in 1,3-dimethyl-2-imidazolidinone (4 ml) at ambient

temperature and the mixture was stirred at 120°C for 20 hours. The reaction mixture was poured into a mixture of ethyl acetate and water. The separated organic layer was washed with water, dried over magnesium sulfate and evaporated in vacuo. The residue was purified by column chromatography on silica gel using ethyl acetate as an eluent. The eluted fractions containing the desired product were collected and evaporated in vacuo to give N-(4-(formyl[2-(2-pyridinyl)ethyl]amino)phenyl)-3-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (70.0 mg).

10 ¹H-NMR (DMSO-d₆): δ 2.38(3H, s), 2.87(2H, t, J=7.5 Hz), 4.06(2H, t, J=7.5 Hz), 7.13-7.26(4H, m), 7.31(1H, d, J=7.0 Hz), 7.37-7.56(4H, m), 7.60-7.80(5H, m), 8.29(1H, s), 8.42-8.48(1H, m), 10.45(1H, s).

15 Example 272

A mixture of N-(4-(formyl[2-(2-pyridinyl)ethyl]amino)phenyl)-3-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (0.3 g) and conc. hydrochloric acid (0.3 ml) in methanol (1.5 ml) was stirred at ambient temperature for 20 hours. The reaction mixture was poured into a water and the mixture was adjusted to pH 9 with 20% aqueous potassium carbonate solution. The mixture was extracted with ethyl acetate. The extract was washed with brine, dried over magnesium sulfate and evaporated in vacuo. The residue was purified by column chromatography on silica gel using a mixture of ethyl acetate and diisopropyl ether (2:1) as an eluent. The eluted fractions containing the desired product were collected and evaporated in vacuo to give 3-methyl-N-(4-([2-(2-pyridinyl)ethyl]amino)phenyl)-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (45.0 mg).

30 ¹H-NMR (DMSO-d₆): δ 2.37(3H, s), 2.95(2H, t, J=7.2 Hz), 3.26-3.39(2H, m), 5.53(1H, t, J=5.6 Hz), 6.49(2H, d, J=8.7 Hz), 7.13(2H, d, J=8.7 Hz), 7.16-7.50(5H, m), 7.63-7.79(5H, m), 8.48-8.54(1H, m), 9.89(1H, s)

35 (-)ESI-MS: 474 (M-H)⁻

Example 273

4'-(Dimethylamino)-4-methyl-N-(4-([2-(2-pyridinyl)ethyl]amino)phenyl)-1,1'-biphenyl-2-carboxamide was

obtained in the same manner as in Example 243.

¹H-NMR (DMSO-d₆) :δ 2.37(3H, s), 2.88(6H, s), 2.97(2H, t, J=7.3 Hz), 3.30-3.40(2H, m), 5.49(1H, t, J=5.8 Hz), 6.52(2H, d, J=8.8 Hz), 6.70(2H, d, J=8.8 Hz), 7.18-7.34(9H, m), 7.67-

5 7.73(1H, m), 8.49-8.54(1H, m), 9.73(1H, s)

(+)ESI-MS: 451(M+H)⁺, 473(M+Na)⁺

Example 274

4'-(Dimethylamino)-5-methyl-N-(4-[(2-(2-pyridinyl)ethyl]amino)phenyl]-1,1'-biphenyl-2-carboxamide was

10 obtained in the same manner as in Example 243.

¹H-NMR (DMSO-d₆) :δ 2.37(3H, s), 2.88(6H, s), 2.96(2H, t, J=7.3 Hz), 3.29-3.40(2H, m), 5.48(1H, t, J=5.8 Hz), 6.51(2H, d, J=8.8 Hz), 6.70(2H, d, J=8.8 Hz), 7.14-7.37(9H, m), 7.67-7.73(1H, m), 8.49-8.53(1H, m), 9.63(1H, s)

15 (+)ESI-MS: 451(M+H)⁺, 473(M+Na)⁺

Example 275

5-Chloro-4'-(dimethylamino)-N-(4-[(2-(2-pyridinyl)ethyl]amino)phenyl]-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 243.

20 ¹H-NMR (DMSO-d₆) :δ 2.90(6H, s), 2.96(2H, t, J=7.3 Hz), 3.27-3.42(2H, m), 5.54(1H, t, J=5.6 Hz), 6.52(2H, d, J=8.8 Hz), 6.71(2H, d, J=8.8 Hz), 7.17-7.52(9H, m), 7.70(1H, dt, J=1.8Hz, 7.6 Hz), 8.47-8.54(1H, m), 9.83(1H, s)

(+)ESI-MS: 471(M+H)⁺, 493(M+Na)⁺

25 Example 276

To a solution of 4-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid (221 mg) in toluene (5 ml) were added thionyl chloride (188 mg) and N,N-dimethylformamide (1 drop) and the mixture was stirred at 80°C for 30 minutes. The mixture was evaporated in vacuo and the residue was dissolved in tetrahydrofuran (5 ml). The acid chloride in tetrahydrofuran was added to a solution of tert-butyl 6-[2-(4-aminophenoxy)ethyl]-2-pyridinylcarbamate (236 mg) and triethylamine (160 mg) in tetrahydrofuran (5 ml) at ambient temperature and the mixture was stirred at the same temperature for an hour. The mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, and

evaporated in vacuo. The residue was purified by column chromatography on silica gel by eluting with ethyl acetate : hexane (1:3) to give tert-butyl 6-{2-[4-({[4-methyl-4'-hexane (1:3) to give tert-butyl 6-{2-[4-({[4-methyl-4'-
5 (trifluoromethyl)-1,1'-biphenyl-2-yl]carbonyl}amino)phenoxy]-
ethyl}-2-pyridinylcarbamate (386 mg) as a colorless foam.

¹H-NMR (CDCl₃) : δ 1.51(9H, s), 2.45(3H, s), 3.08(2H, t, J=6.6 Hz),
4.25(2H, t, J=6.6 Hz), 6.77(2H, d, J=8.9 Hz), 6.78(1H, s),
6.88(1H, d, J=7.6 Hz), 7.03(2H, d, J=8.9 Hz), 7.33(2H, t,
J=6.9 Hz), 7.55-7.68(6H, m), 7.76(1H, d, J=8.3 Hz)

10 Example 277

To a solution of tert-butyl 6-{2-[4-({[4-methyl-4'-
(trifluoromethyl)-1,1'-biphenyl-2-yl]carbonyl}amino)phenoxy]-
ethyl}-2-pyridinylcarbamate (378 mg) in dichloromethane (10
ml) was added trifluoroacetic acid (1.00 ml). The reaction
15 mixture was stirred for 19 hours, quenched with 10% aqueous
potassium carbonate solution, and extracted with
dichloromethane. The organic layer was washed with brine,
dried over magnesium sulfate, filtered, and concentrated in
vacuo. The residue was recrystallized from ethyl acetate-
20 diisopropyl ether to give N-{4-[2-(6-amino-2-
pyridinyl)ethoxy]phenyl}-4-methyl-4'-(trifluoromethyl)-1,1'-
biphenyl-2-carboxamide (246 mg) as colorless crystals.

¹H-NMR (CDCl₃) : δ 2.45(3H, s), 3.04(2H, t, J=6.9 Hz), 4.25(2H, t,
J=6.9 Hz), 4.38(2H, brs), 6.35(1H, d, J=8.2 Hz), 6.59(1H, d,
J=7.3 Hz), 6.79(2H, d, J=8.9 Hz), 6.80(1H, s), 7.03(2H, d,
J=8.2 Hz), 7.29-7.38(3H, m), 7.55-7.68(5H, m)
ESI-MS (m/z) : 492 (M+H)⁺

Example 278

tert-Butyl 6-[2-(4-[(4,4'-dimethyl-1,1'-biphenyl-2-
30 yl)carbonyl]amino)phenoxy]ethyl]-2-pyridinylcarbamate (375 mg)
was obtained in the same manner as in Example 276.

¹H-NMR (CDCl₃) : δ 1.52(9H, s), 2.38(3H, s), 2.43(3H, s), 3.08(2H,
t, J=6.7 Hz), 4.24(2H, t, J=6.7 Hz), 6.74-6.77(3H, m), 6.88(1H,
d, J=7.3 Hz), 6.99(2H, d, J=9.2 Hz), 7.21-7.35(6H, m), 7.57(1H,
35 t, J=7.8 Hz), 7.68(1H, s), 7.76(1H, d, J=7.9 Hz)

Example 279

To a solution of tert-butyl 6-[2-(4-[(4,4'-dimethyl-
1,1'-biphenyl-2-yl)carbonyl]amino)phenoxy]ethyl]-2-

- pyridinylcarbamate (379 mg) in dichloromethane (10 ml) was added trifluoroacetic acid (1.00 ml). The reaction mixture was stirred for 40 hours, quenched with 10% aqueous potassium carbonate solution, and extracted with dichloromethane. The 5 organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel by eluting with chloroform : methanol (19:1) to give N-[4-[2-(6-amino-2-pyridinyl)ethoxy]phenyl]-4,4'-dimethyl-1,1'-biphenyl-2-carboxamide (246 mg) as a colorless foam.
- 10 $^1\text{H-NMR}$ (CDCl_3): δ 2.38 (3H, s), 2.43 (3H, s), 3.05 (2H, t, $J=6.7$ Hz), 4.24 (2H, t, $J=6.7$ Hz), 4.58 (2H, brs), 6.37 (1H, d, $J=8.2$ Hz), 6.59 (1H, d, $J=7.3$ Hz), 6.77 (2H, d, $J=8.9$ Hz), 6.78 (1H, s), 6.99 (2H, d, $J=8.9$ Hz), 7.21-7.40 (7H, m), 7.68 (1H, s)
- 15 ESI-MS (m/z): 438 ($M+\text{H}^+$)⁺

Example 280

- tert-Butyl 6-[2-(4-[(4'-chloro-4-methyl-1,1'-biphenyl-2-yl)carbonyl]amino)phenoxy]ethyl]-2-pyridinylcarbamate was obtained in the same manner as in Example 276 as a yellow foam:
- 20 $^1\text{H-NMR}$ (CDCl_3): δ 1.52 (9H, s), 2.43 (3H, s), 3.09 (2H, t, $J=6.7$ Hz), 4.26 (2H, t, $J=6.7$ Hz), 6.78 (1H, s), 6.79 (2H, d, $J=8.9$ Hz), 6.89 (1H, d, $J=7.3$ Hz), 7.07 (2H, d, $J=8.9$ Hz), 7.24-7.38 (8H, m), 7.54-7.60 (2H, m), 7.76 (1H, d, $J=7.9$ Hz)

Example 281

- 25 N-[4-[2-(6-Amino-2-pyridinyl)ethoxy]phenyl]-4'-chloro-4-methyl-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 277 as colorless crystals.
- 30 $^1\text{H-NMR}$ (CDCl_3): δ 2.43 (3H, s), 3.05 (2H, t, $J=6.9$ Hz), 4.26 (2H, t, $J=6.9$ Hz), 4.38 (2H, brs), 6.35 (1H, d, $J=7.9$ Hz), 6.59 (1H, d, $J=7.3$ Hz), 6.79 (1H, s), 6.80 (2H, d, $J=8.9$ Hz), 7.06 (2H, d, $J=8.9$ Hz), 7.25-7.38 (6H, m), 7.60 (1H, s)
- ESI-MS (m/z): 458, 460 ($M+\text{H}^+$)⁺

Preparation 143

- A mixture of 2-(2-methyl-1,3-thiazol-4-yl)ethanamine (6.823 g), 1-fluoro-4-nitrobenzene (8.123 g) and triethylamine (5.829 g) in 1,3-dimethyl-2-imidazolidinone (50 ml) was heated to 50°C for 16 hours. The reaction mixture was cooled to ambient temperature, poured into water and extracted with

ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel by eluting with hexane:ethyl acetate (2:1) to give N-[2-(2-methyl-1,3-thiazol-4-yl)ethyl]-4-nitroaniline (7.764 g) as a yellow oil.

5 $^1\text{H-NMR}(\text{CDCl}_3):\delta$ 2.71 (3H, s), 3.05 (2H, t, J = 6.3 Hz), 3.50-3.59 (2H, m), 5.20-5.31 (1H, m), 6.54 (2H, d, J = 8.9 Hz), 6.83 (1H, s), 8.09 (2H, d, J = 9.2 Hz)

10 Preparation 144

To a solution of N-[2-(2-methyl-1,3-thiazol-4-yl)ethyl]-4-nitroaniline (7.764 g) and 4-(N,N-dimethylamino)pyridine (1.081 mg) in tetrahydrofuran (100 ml) was added di-t-butyl dicarbonate (8.366 g) and heated to 50°C for 12 hours. The reaction mixture was cooled to ambient temperature and concentrated in vacuo. The residue was dissolved in ethyl acetate and water, and extracted with ethyl acetate. The organic layer was washed with water and brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel by eluting with hexane:ethyl acetate (4:1) to give tert-butyl 2-(2-methyl-1,3-thiazol-4-yl)ethyl(4-nitrophenyl)carbamate (10.62 g) as a dark orange oil.

20 $^1\text{H-NMR}(\text{CDCl}_3):\delta$ 1.47 (9H, s), 2.60 (3H, s), 3.03 (2H, t, J=7.0 Hz), 4.08 (2H, t, J=7.0Hz), 6.76 (1H, s), 7.31 (2H, d, J=9.2 Hz), 8.14 (2H, d, J=9.2 Hz)

25 Preparation 145

A solution of tert-butyl 2-(2-methyl-1,3-thiazol-4-yl)ethyl(4-nitrophenyl)carbamate (10.63 g) in methanol (100 ml) was hydrogenated over 10% palladium on carbon (5.00 g, 50% wet) at ambient temperature under atmospheric pressure of hydrogen for 4.5 hours. The reaction mixture was filtered through a short pad of celite, and the filtrate was concentrated in vacuo. The residue was purified by column chromatography on silica gel by eluting with chloroform:methanol (19:1) to give tert-butyl 4-aminophenyl[2-(2-methyl-1,3-thiazol-4-yl)ethyl]carbamate (9.295 g) as yellow crystals.

¹H-NMR (CDCl₃): δ 1.39 (9H, s), 2.64 (3H, s), 2.96 (2H, t, J=7.6 Hz), 3.51–3.76 (2H, m), 3.90 (2H, t, J=7.6 Hz), 6.67 (2H, d, J=7.9 Hz), 6.78 (1H, s), 6.90 (2H, brd, J=7.9 Hz)

Example 282

5 To a solution of 4',6-dimethyl[1,1'-biphenyl]-2-carboxylic acid (226.27 mg) in toluene (2 ml) were added thionyl chloride (145.6 mg) and N,N-dimethylformamide (1 drop) and the mixture was stirred at 80°C for 2 hours. The mixture was evaporated in vacuo and the residue was dissolved in
10 tetrahydrofuran (2 ml). The acid chloride in tetrahydrofuran was added to a solution of tert-butyl 4-aminophenyl[2-(2-methyl-1,3-thiazol-4-yl)ethyl]carbamate (170 mg) and triethylamine (103.2 mg) in tetrahydrofuran (5 ml) at ambient temperature and the mixture was stirred at the same
15 temperature for 30 minutes. The mixture was poured into 10% aqueous potassium carbonate solution and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, and evaporated in vacuo to give tert-butyl 4-{[(4',6-dimethyl-1,1'-biphenyl-2-yl)carbonyl]amino}phenyl[2-(2-methyl-1,3-thiazol-4-yl)ethyl]carbamate (276.2 mg) as a
20 yellow foam.

Example 283

To a solution of tert-butyl 4-{[(4',6-dimethyl-1,1'-biphenyl-2-yl)carbonyl]amino}phenyl[2-(2-methyl-1,3-thiazol-4-yl)ethyl]carbamate (276.2 mg) in dichloromethane (8 ml) was added trifluoroacetic acid (0.982 ml). The reaction mixture was stirred for 24 hours, quenched with 10% aqueous potassium carbonate solution, and extracted with dichloromethane. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was recrystallized from ethyl acetate-hexane to give 4',6-dimethyl-N-(4-{[2-(2-methyl-1,3-thiazol-4-yl)ethyl]amino}phenyl)-1,1'-biphenyl-2-carboxamide (186.8 mg) as a pale brown foam.
35 ¹H-NMR (DMSO-d₆): δ 2.16 (3H, s), 2.41 (3H, s), 2.69 (3H, s), 2.98 (2H, t, J=6.6 Hz), 3.40 (2H, t, J=6.6 Hz), 6.46 (2H, t, J=8.9 Hz), 6.71 (1H, s), 6.76 (1H, s), 6.81 (2H, d, J=8.9 Hz), 7.18–7.38 (6H, m), 7.74 (1H, dd, J=6.6, 2.3 Hz)

ESI-MS (m/z) : 442 (M+H)⁺

Preparation 146

4-[2-(4-Nitroanilino)ethyl]-1,3-thiazole was obtained in the same manner as in Preparation 143 as a brown oil.

- 5 ¹H-NMR (CDCl₃) : δ 3.17 (2H, t, J=6.4Hz), 3.60 (2H, q, J=6.1Hz),
6.53-8.09 (4H, AaBb), 7.08 (1H, d, J=2.0Hz), 8.80 (1H, s)

Preparation 147

tert-Butyl 4-nitrophenyl[2-(1,3-thiazol-4-yl)ethyl]carbamate was obtained in the same manner as in

- 10 Preparation 144 as a yellow oil.

11 ¹H-NMR (CDCl₃) : δ 1.46 (9H, s), 3.14 (2H, t, J=6.8Hz), 4.11 (2H, t, J=7.1Hz), 7.01 (1H, d, J=2.0Hz), 7.26-8.16 (4H, AaBb), 8.69 (1H, d, J=2.0Hz)

Preparation 148

- 15 tert-Butyl 4-aminophenyl[2-(1,3-thiazol-4-yl)ethyl]carbamate was obtained in the same manner as in Preparation 145 as an orange oil.

16 ¹H-NMR (CDCl₃) : δ 1.39 (9H, s), 3.07 (2H, t, J=7.4Hz), 3.93 (2H, t, J=7.4Hz), 6.11 (2H, d, J=8.6Hz), 6.9 (2H, br s), 7.00 (1H, br s), 8.7 (1H, d, J=2.0Hz)

Example 284

To a solution of 5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid (212 mg) in toluene (5 ml) were added thionyl chloride (0.11 ml) and N,N-dimethylformamide (1 drop) and the mixture was stirred at 100°C for 2 hours. The mixture was evaporated in vacuo and the residue was dissolved in tetrahydrofuran (2 ml). The acid chloride in tetrahydrofuran was added to a solution of tert-butyl 4-aminophenyl[2-(1,3-thiazol-4-yl)ethyl]carbamate (201 mg) and triethylamine (0.18 ml) in tetrahydrofuran (5 ml) at ambient temperature and the mixture was stirred at the same temperature for 2 hours. The reaction mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was purified by column chromatography on silica gel by eluting with hexane:ethyl acetate (3:1) to give tert-butyl 4-({[5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-yl]carbonyl}amino)phenyl[2-

(1,3-thiazol-4-yl)ethyl]carbamate (291 mg) as a yellow foam.

Example 285

- To a solution of tert-butyl 4-({[5-methyl-4'-
5 (trifluoromethyl)-1,1'-biphenyl-2-yl]carbonyl}amino)phenyl[2-
10 (1,3-thiazol-4-yl)ethyl]carbamate (291 mg) in dichloromethane
(15 ml) was added trifluoroacetic acid (0.77 ml). The
reaction mixture was stirred for 15 hours, quenched with 10%
aqueous potassium carbonate solution, and extracted with
dichloromethane. The organic layer was washed with brine,
15 dried over magnesium sulfate, filtered, and concentrated in
vacuo. The residue was recrystallized from ethyl acetate-
diisopropyl ether to give 5-methyl-N-(4-{[2-(1,3-thiazol-4-
15 yl)ethyl]amino}phenyl)-4'-(trifluoromethyl)-1,1'-biphenyl-2-
carboxamide (161 mg) as a pale yellow solid.
20 $^1\text{H-NMR}$ (DMSO-d₆): δ 2.41 (3H, s), 2.99 (2H, t, J=7.2 Hz), 3.31
(2H, q, J=6.9 Hz), 5.51 (1H, t, J=5.9 Hz), 6.50 (2H, d, J=8.9
Hz), 7.19 (2H, d, J=8.9 Hz), 7.29 (1H, s), 7.32 (1H, d, J=8.2
Hz), 7.41 (1H, d, J=1.6 Hz), 7.48 (1H, d, J=7.6 Hz), 7.61 (2H,
d, J=7.9 Hz), 7.74 (2H, d, J=8.2 Hz), 9.03 (1H, d, J=2.0 Hz),
25 9.82 (1H, s)
ESI-MS (m/z): 482 (M+H)⁺

Example 286

- tert-Butyl 4-({[4-methyl-4'-(trifluoromethyl)-1,1'-
biphenyl-2-yl]carbonyl}amino)phenyl[2-(1,3-thiazol-4-
25 yl)ethyl]carbamate was obtained in the same manner as in
Example 284 as a yellow foam.

Example 287

- 4-Methyl-N-(4-{[2-(1,3-thiazol-4-yl)ethyl]amino}phenyl)-
4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained
30 in the same manner as in Example 285 as a pale yellow solid.
1H-NMR (DMSO-d₆): δ 2.41 (3H, s), 2.99 (2H, t, J=7.2 Hz), 3.31
(2H, q, J=6.9 Hz), 5.55 (1H, t, J=5.6 Hz), 6.50 (2H, d, J=8.9
Hz), 7.21 (2H, d, J=8.6 Hz), 7.38-7.41 (4H, m), 7.60 (2H, d,
J=7.9 Hz), 7.73 (2H, d, J=8.2 Hz), 9.03 (1H, d, J=2.0 Hz),
35 9.54 (1H, s)
ESI-MS (m/z): 482 (M+H)⁺

Example 288

tert-Butyl 4-[(4',6-dimethyl-1,1'-biphenyl-2-

yl) carbonyl]amino}phenyl[2-(1,3-thiazol-4-yl)ethyl]carbamate was obtained in the same manner as in Example 284 as a yellow foam.

Example 289

5 4',6-Dimethyl-N-(4-{[2-(1,3-thiazol-4-yl)ethyl]amino}phenyl)-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 285 as a yellow solid.

10 $^1\text{H-NMR}$ (DMSO-d₆): δ 2.07 (3H, s), 2.29 (3H, s), 2.97 (2H, t, J=7.2 Hz), 3.28 (2H, q, J=6.9 Hz), 5.45 (1H, t, J=5.6 Hz), 6.45 (2H, d, J=8.9 Hz), 7.08-7.14 (6H, m), 7.28-7.40 (4H, m), 9.02 (1H, d, J=1.6 Hz), 9.54 (1H, s)
ESI-MS(m/z): 428(M+H)⁺

Example 290

15 tert-Butyl 4-{[(4',5-dimethyl-1,1'-biphenyl-2-yl)carbonyl]amino}phenyl[2-(1,3-thiazol-4-yl)ethyl]carbamate was obtained in the same manner as in Example 284 as a yellow foam.

Example 291

20 4',5-Dimethyl-N-(4-{[2-(1,3-thiazol-4-yl)ethyl]amino}phenyl)-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 285 as a yellow solid.

25 $^1\text{H-NMR}$ (DMSO-d₆): δ 2.29 (3H, s), 2.38 (3H, s), 2.99 (2H, t, J=7.2 Hz), 3.31 (2H, q, J=6.9 Hz), 5.47 (1H, t, J=5.6 Hz), 6.49 (2H, d, J=8.9 Hz), 7.16 (2H, d, J=7.9 Hz), 7.21-7.23 (4H, m), 7.30-7.41 (4H, m), 9.03 (1H, d, J=2.0 Hz), 9.68 (1H, s)
ESI-MS(m/z): 428(M+H)⁺

Example 292

30 To a solution of 4'-chloro-4-methyl-1,1'-biphenyl-2-carboxylic acid (167 mg) in toluene (5 ml) were added thionyl chloride (161 mg) and N,N-dimethylformamide (1 drop) and the mixture was stirred at 100°C for an hour. The mixture was evaporated in vacuo and the residue was dissolved in tetrahydrofuran (5 ml). The acid chloride in tetrahydrofuran was added to a solution of tert-butyl 4-aminophenyl[2-(1,3-thiazol-4-yl)ethyl]carbamate (196 mg) and triethylamine (137 mg) in tetrahydrofuran (10 ml) at ambient temperature and the

mixture was stirred at the same temperature for an hour. The mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was purified by column chromatography on silica gel by eluting with ethyl acetate : hexane (2:3) to give tert-butyl 4-{{(4'-chloro-4-methyl-1,1'-biphenyl-2-yl)carbonyl}amino}phenyl[2-(1,3-thiazol-4-yl)ethyl]carbamate (332 mg) as a yellow tar.

¹H-NMR (CDCl₃): δ 1.40 (9H, s), 2.44 (3H, s), 3.06 (2H, t, J=6.6 Hz), 3.97 (2H, t, J=6.6 Hz), 6.94-7.02 (4H, m), 7.14 (2H, d, J=8.9 Hz), 7.27-7.38 (6H, m), 7.62 (1H, s), 8.69 (1H, s)

Example 293

To a solution of tert-butyl 4-{{(4'-chloro-4-methyl-1,1'-biphenyl-2-yl)carbonyl}amino}phenyl[2-(1,3-thiazol-4-yl)ethyl]carbamate (294 mg) in dichloromethane (10 ml) was added trifluoroacetic acid (0.65 ml). The reaction mixture was stirred for 17 hours, quenched with 10% aqueous potassium carbonate solution, and extracted with dichloromethane. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was recrystallized from ethyl acetate-diisopropyl ether to give 4'-chloro-4-methyl-N-(4-{{[2-(1,3-thiazol-4-yl)ethyl]amino}phenyl}-1,1'-biphenyl-2-carboxamide (160 mg) as colorless crystals.

¹H-NMR (CDCl₃): δ 2.43 (3H, s), 3.11 (2H, t, J=6.6 Hz), 3.47 (2H, t, J=6.6 Hz), 4.04 (1H, brs), 6.52 (2H, d, J=8.9 Hz), 6.71 (1H, brs), 6.97 (2H, d, J=8.9 Hz), 7.02 (1H, s), 7.28-7.42 (6H, m), 7.60 (1H, s), 8.77 (1H, s)

ESI-MS (m/z): 448, 450 (M+H)⁺

Example 294

tert-Butyl 4-{{(4,4'-dimethyl-1,1'-biphenyl-2-yl)carbonyl}amino}phenyl[2-(1,3-thiazol-4-yl)ethyl]carbamate was obtained in the same manner as in Example 292 as a yellow tar.

¹H-NMR (CDCl₃): δ 1.39 (9H, s), 2.39 (3H, s), 2.44 (3H, s), 3.05 (2H, t, J=7.3 Hz), 3.95 (2H, t, J=7.3 Hz), 6.91-6.99 (4H, m), 7.06 (2H, d, J=8.6 Hz), 7.22-7.35 (6H, m), 7.70 (1H, s), 8.68 (1H, s)

Example 295

4,4'-Dimethyl-N-(4-{[2-(1,3-thiazol-4-yl)ethyl]amino}phenyl)-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 293 as pale yellow crystals.

5 $^1\text{H-NMR}$ (CDCl₃): δ 2.38(3H, s), 2.42(3H, s), 3.10(2H, t, J=6.6 Hz), 3.46(2H, t, J=6.6 Hz), 3.99(1H, brs), 6.50(2H, d, J=8.6 Hz), 6.71(1H, brs), 6.91(2H, d, J=8.9 Hz), 7.01(1H, s), 7.20-7.36(6H, m), 7.67(1H, s), 8.77(1H, s)
ESI-MS(m/z): 428(M+H)⁺

10 Example 296
tert-Butyl 4-{[(4',5-dimethyl-1,1'-biphenyl-2-yl)carbonyl]amino}phenyl[2-(2-methyl-1,3-thiazol-4-yl)ethyl]carbamate was obtained in the same manner as in Example 282 as a pale yellow oil.

15 Example 297
4',5-Dimethyl-N-(4-{[2-(2-methyl-1,3-thiazol-4-yl)ethyl]amino}phenyl)-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 283 as a pale brown foam.
20 $^1\text{H-NMR}$ (DMSO-d₆): δ 2.39 (3H, s), 2.42 (3H, s), 2.69 (3H, s), 2.99 (2H, t, J=6.6 Hz), 3.41 (2H, t, J=6.6 Hz), 6.49 (2H, t, J=8.9 Hz), 6.71 (1H, s), 6.77 (1H, s), 6.91 (2H, d, J=8.9 Hz), 7.19-7.26 (4H, m), 7.35 (2H, d, J=7.9), 7.78 (1H, d, J=7.9 Hz)
ESI-MS(m/z): 442(M+H)⁺

25 Example 298
tert-Butyl 4-{[(4,4'-dimethyl-1,1'-biphenyl-2-yl)carbonyl]amino}phenyl[2-(2-methyl-1,3-thiazol-4-yl)ethyl]carbamate was obtained in the same manner as in Example 282 as a pale yellow oil.

30 Example 299
4,4'-Dimethyl-N-(4-{[2-(2-methyl-1,3-thiazol-4-yl)ethyl]amino}phenyl)-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 283 as a pale brown foam.
35 $^1\text{H-NMR}$ (DMSO-d₆): δ 2.39 (3H, s), 2.43 (3H, s), 2.70 (3H, s), 3.00 (2H, t, J=6.6 Hz), 3.42 (2H, t, J=6.6 Hz), 6.50 (2H, t, J=8.9 Hz), 6.71 (1H, s), 6.78 (1H, s), 7.21-7.36 (6H, m), 7.67 (1H, s)

ESI-MS (m/z) : 442 (M+H)⁺

Example 300

tert-Butyl 4-({[6-methoxy-4'--(trifluoromethyl)-1,1'-biphenyl-2-yl]carbonyl}amino)phenyl[2-(2-methyl-1,3-thiazol-4-yl)ethyl]carbamate was obtained in the same manner as in Example 282 as a pale yellow oil.

Example 301

6-Methoxy-N-(4-{{2-(2-methyl-1,3-thiazol-4-yl)ethyl}amino}phenyl)-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 283 as a pale brown foam.

¹H-NMR (DMSO-d₆) : δ 2.69 (3H, s), 2.98 (2H, t, J=6.6 Hz), 3.40 (2H, t, J=6.6 Hz), 3.79 (3H, s), 6.47 (2H, d, J=8.7 Hz), 6.57 (1H, s), 6.76 (1H, s), 6.80 (2H, d, J=8.7 Hz), 7.09 (1H, dd, J=7.9, 1.3 Hz), 7.38-7.49 (2H, m), 7.53 (2H, d, J=8.2 Hz), 7.67 (2H, d, J=8.2 Hz)

ESI-MS (m/z) : 512 (M+H)⁺

Example 302

tert-Butyl 2-(2-methyl-1,3-thiazol-4-yl)ethyl[4-({[4-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-yl]carbonyl}amino)phenyl]carbamate was obtained in the same manner as in Example 282 as a pale yellow oil.

Example 303

4-Methyl-N-(4-{{2-(2-methyl-1,3-thiazol-4-yl)ethyl}amino}phenyl)-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 283 as a pale brown foam.

¹H-NMR (DMSO-d₆) : δ 2.45 (3H, s), 2.69 (3H, s), 2.99 (2H, t, J=6.6 Hz), 3.42 (2H, t, J=6.6 Hz), 6.51 (2H, d, J=8.9 Hz), 6.71 (1H, s), 6.77 (1H, s), 6.93 (2H, d, J=8.9 Hz), 7.29-7.37 (2H, m), 7.56-7.68 (5H, m)

ESI-MS (m/z) : 496 (M+H)⁺

Example 304

tert-Butyl 4-{{[(4'-chloro-5-methyl-1,1'-biphenyl-2-yl)carbonyl}amino}phenyl][2-(2-methyl-1,3-thiazol-4-yl)ethyl]carbamate was obtained in the same manner as in Example 282 as a pale yellow oil.

Example 305

4'-Chloro-5-methyl-N-(4-[(2-(2-methyl-1,3-thiazol-4-yl)ethyl]amino)phenyl]-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 283 as a pale brown foam.

- 5 $^1\text{H-NMR}$ (DMSO-d₆) : δ 2.43(3H, s), 2.70(3H, s), 3.00(2H, t, J=6.6 Hz), 3.42(2H, t, J=6.6 Hz), 6.52(2H, d, J=8.9 Hz), 6.70(1H, s), 6.77(1H, s), 6.97(2H, d, J=8.9 Hz), 7.18-7.40(6H, m), 7.70(1H, d, J=7.6 Hz)
ESI-MS (m/z) : 462 (M+H)⁺

10 Example 306

tert-Butyl 4-[(4'-chloro-4-methyl-1,1'-biphenyl-2-yl)carbonyl]amino)phenyl[2-(2-methyl-1,3-thiazol-4-yl)ethyl]carbamate was obtained in the same manner as in Example 282 as a pale yellow oil.

15 Example 307

4'-Chloro-4-methyl-N-(4-[(2-(2-methyl-1,3-thiazol-4-yl)ethyl]amino)phenyl]-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 283 as a pale brown foam.

- 20 $^1\text{H-NMR}$ (DMSO-d₆) : δ 2.43(3H, s), 2.69(3H, s), 2.70(2H, t, J=6.6 Hz), 3.42(2H, t, J=6.6 Hz), 6.52(2H, d, J=8.9 Hz), 6.71(1H, s), 6.77(1H, s), 6.96(2H, d, J=8.9 Hz), 7.25-7.48(6H, m), 7.60(1H, d, J=0.7 Hz)
ESI-MS (m/z) : 462 (M+H)⁺

25 Preparation 149

- To a solution of tert-butyl 4-(2-hydroxyethyl)-1,3-thiazol-2-ylcarbamate (4.36 g) in tetrahydrofuran (90 ml) was added potassium tert-butoxide (2.00 g), and the mixture was stirred at ambient temperature for an hour. 1-Fluoro-4-nitrobenzene (3.02 g) in tetrahydrofuran (10 ml) was added and heated to 75 °C for 24 hours. The reaction mixture was cooled to ambient temperature, poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel by eluting with hexane:ethyl acetate (4:1→2:1) to give tert-butyl 4-[2-(4-nitrophenoxy)ethyl]-1,3-thiazol-2-ylcarbamate (4.75 g) as a yellow solid.

¹H-NMR (CDCl₃): δ 1.54 (9H, s), 3.21 (2H, t, J=6.6 Hz), 4.33 (2H, t, J=6.6 Hz), 6.63 (1H, s), 6.92 (2H, d, J=9.2 Hz), 8.16 (2H, d, J=9.2 Hz), 9.57 (1H, br s)

Preparation 150

- 5 A solution of tert-butyl 4-[2-(4-nitrophenoxy)ethyl]-1,3-thiazol-2-ylcarbamate (2.00 g) in methanol (80 ml) and tetrahydrofuran (30 ml) was hydrogenated over 10% palladium on carbon (0.8 g) at ambient temperature under atmospheric pressure of hydrogen for an hour. The reaction mixture was
10 filtered with a pad of celite, and the filtrate was concentrated in vacuo. The residue was purified by column chromatography on silica gel by eluting with hexane:ethyl acetate (1:1) to give tert-butyl 4-[2-(4-aminophenoxy)ethyl]-1,3-thiazol-2-ylcarbamate (1.43 g) as a yellow oil.
15 ¹H-NMR (CDCl₃): δ 1.53 (9H, s), 3.12 (2H, t, J=6.9 Hz), 4.16 (2H, t, J=6.9 Hz), 6.60 (2H, d, J=8.9 Hz), 6.61 (1H, s), 6.73 (2H, d, J=8.9 Hz)

Example 308

- To a solution of tert-butyl 4-[2-(4-aminophenoxy)ethyl]-1,3-thiazol-2-ylcarbamate (329 mg), 5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid (2.212 g) and 1-hydroxybenzotriazole (1.123 g) in N,N-dimethylformamide (15 ml) was added 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (WSC.HCl) (174 mg), followed by triethylamine (0.16 ml) at ambient temperature. The reaction mixture was stirred for 12 hours and concentrated in vacuo. The residue was dissolved in ethyl acetate and water, and extracted with ethyl acetate. The organic layer was washed with water and brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel by eluting with hexane:ethyl acetate (1:1) to give tert-butyl 4-{2-[4-((5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-yl]carbonyl)amino)phenoxy]ethyl}-1,3-thiazol-2-ylcarbamate (387 mg) as a pale yellow foam.

Example 309

- To a solution of tert-butyl 4-{2-[4-((5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-yl]carbonyl)amino)phenoxy}-

ethyl}-1,3-thiazol-2-ylcarbamate (476 mg) in dichloromethane (30 ml) was added trifluoroacetic acid (1.2 ml). The reaction mixture was stirred for 15 hours, quenched with 10% aqueous potassium carbonate solution, and extracted with

5 dichloromethane. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was recrystallized from ethyl acetate-diisopropyl ether to give N-{4-[2-(2-amino-1,3-thiazol-4-yl)ethoxy]phenyl}-5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-
10 2-carboxamide (320 mg) as white crystals.

¹H-NMR (DMSO-d₆) : δ 2.42(3H, s), 2.94(2H, t, J=6.3 Hz), 4.15(2H, t, J=6.3 Hz), 6.56(1H, s), 6.86(2H, d, J=8.9 Hz), 7.31-7.42(4H, m), 7.50(1H, d, J=7.6 Hz), 7.60(2H, d, J=7.6 Hz), 7.72(2H, d, J=8.2 Hz), 10.10(1H, s)

15 ESI-MS (m/z) : 498 (M+H)⁺

Example 310

tert-Butyl 4-{2-[4-({[4-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-yl]carbonyl}amino)phenoxy}ethyl}-1,3-thiazol-2-ylcarbamate was obtained in the same manner as in Example 308 as a pale yellow foam.

20

Example 311

N-{4-[2-(2-Amino-1,3-thiazol-4-yl)ethoxy]phenyl}-4-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 309 as white

25 crystals.

¹H-NMR (DMSO-d₆) : δ 2.42(3H, s), 2.83(2H, t, J=6.9 Hz), 4.14(2H, t, J=6.9 Hz), 6.24(1H, s), 6.84(2H, d, J=9.2 Hz), 6.85(2H, s), 7.39-7.43(5H, m), 7.59(2H, d, J=7.9 Hz), 7.73(2H, d, J=8.2 Hz), 10.17(1H, s)

30 ESI-MS (m/z) : 498 (M+H)⁺

Example 312

tert-Butyl 4-[2-(4-{[(4',5-dimethyl-1,1'-biphenyl-2-yl)carbonyl}amino)phenoxy}ethyl]-1,3-thiazol-2-ylcarbamate was obtained in the same manner as in Example 308 as a pale yellow

35 foam.

Example 313

N-{4-[2-(2-Amino-1,3-thiazol-4-yl)ethoxy]phenyl}-4',5-dimethyl-1,1'-biphenyl-2-carboxamide was obtained in the same

manner as in Example 309 as white crystals.

1H-NMR(DMSO-d₆):δ 2.28(3H, s), 2.39(3H, s), 2.82(2H, t, J=6.7 Hz), 4.13(2H, t, J=6.7 Hz), 6.24(1H, s), 6.82(2H, s), 6.83(2H, d, J=8.9 Hz), 7.30(2H, d, J=7.9 Hz), 7.38-7.42(3H, m), 9.95(1H, s)

5 ESI-MS (m/z) : 444 (M+H)⁺

Example 314

tert-Butyl 4-[2-(4-{[(4,4'-dimethyl-1,1'-biphenyl-2-yl)carbonyl]amino}phenoxy)ethyl]-1,3-thiazol-2-ylcarbamate was obtained in the same manner as in Example 308 as a pale yellow foam.

Example 315

N-[4-[2-(2-Amino-1,3-thiazol-4-yl)ethoxy]phenyl]-4,4'-dimethyl-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 309 as white crystals.

1H-NMR(DMSO-d₆):δ 2.28(3H, s), 2.39(3H, s), 2.83(2H, t, J=6.9 Hz), 4.14(2H, t, J=6.9 Hz), 6.24(1H, s), 6.83(2H, d, J=8.9 Hz), 6.85(2H, s), 7.14(2H, d, J=7.9 Hz), 7.28-7.32(5H, m), 7.42(2H, d, J=8.9 Hz), 10.04(1H, s)

20 ESI-MS (m/z) : 444 (M+H)⁺

Example 316

tert-Butyl 4-[2-(4-{[(4'-chloro-5-methyl-1,1'-biphenyl-2-yl)carbonyl]amino}phenoxy)ethyl]-1,3-thiazol-2-ylcarbamate was obtained in the same manner as in Example 308 as a pale yellow foam.

Example 317

N-[4-[2-(2-Amino-1,3-thiazol-4-yl)ethoxy]phenyl]-4'-chloro-5-methyl-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 309 as pale brown crystals.

30 1H-NMR(DMSO-d₆):δ 2.40(3H, s), 2.83(2H, t, J=6.9 Hz), 4.13(2H, t, J=6.9 Hz), 6.24(1H, s), 6.83(2H, d, J=8.9 Hz), 6.85(2H, s), 7.26-7.30(2H, m), 7.38-7.47(7H, m), 10.01(1H, s)

ESI-MS (m/z) : 464 (M+H)⁺

Example 318

35 tert-Butyl 4-[2-(4-{[(4'-chloro-4-methyl-1,1'-biphenyl-2-yl)carbonyl]amino}phenoxy)ethyl]-1,3-thiazol-2-ylcarbamate was obtained in the same manner as in Example 308 as a pale yellow foam.

Example 319

N-{4-[2-(2-Amino-1,3-thiazol-4-yl)ethoxy]phenyl}-4'-chloro-4-methyl-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 309 as pale yellow crystals.

- 5 $^1\text{H-NMR}(\text{DMSO-d}_6):\delta$ 2.40(3H, s), 2.83(2H, t, $J=6.9$ Hz), 4.14(2H, t, $J=6.9$ Hz), 6.25(1H, s), 6.83(2H, d, $J=8.9$ Hz), 6.84(2H, s), 7.31-7.43(9H, m), 10.09(1H, s)
 ESI-MS(m/z): 464(M+H)⁺

Example 320

- 10 To a solution of 4,4'-dimethyl-1,1'-biphenyl-2-carboxylic acid (123 mg) in toluene (4 ml) was added thionyl chloride (0.08 ml) and N,N-dimethylformamide (1 drop) and the mixture was stirred at 80°C for an hour. The mixture was evaporated in vacuo and the residue was dissolved in tetrahydrofuran (2 ml). The acid chloride in tetrahydrofuran was added to a solution of tert-butyl 6-{2-[(5-amino-2-pyridinyl)oxylethyl]-2-pyridinylcarbamate (150 mg) and triethylamine (0.127 ml) in tetrahydrofuran (3 ml) at ambient temperature and the mixture was stirred at the same temperature for an hour. The mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, and evaporated in vacuo to give tert-butyl 6-{2-[(5-{[(4,4'-dimethyl-1,1'-biphenyl-2-yl)carbonyl]amino}-2-pyridinyl)oxy]ethyl}-2-pyridinylcarbamate (244 mg) as a pale yellow foam.
- 15 $^1\text{H-NMR}(\text{CDCl}_3):\delta$ 1.51(9H, s), 2.40(3H, s), 2.44(3H, s), 3.09(2H, t, $J=6.8$ Hz), 4.56(1H, t, $J=7.0$ Hz), 6.61(1H, d, $J=10.0$ Hz), 6.77(1H, br s), 6.87(1H, d, $J=7.0$ Hz), 7.16-7.35(7H, m), 7.55(1H, d, $J=8.1$ Hz), 7.59-7.64(2H, m), 7.69(1H, br s), 7.74(1H, d, $J=8.1$ Hz)
- 20 ESI-MS(m/z): 539(M+H)⁺

Example 321

- 25 To a solution of tert-butyl 6-{2-[(5-{[(4,4'-dimethyl-1,1'-biphenyl-2-yl)carbonyl]amino}-2-pyridinyl)oxy]ethyl}-2-pyridinylcarbamate (244 mg) in dichloromethane (10 ml) was added trifluoroacetic acid (0.873 ml). The reaction mixture was stirred for 14 hours, quenched with 10% aqueous potassium

carbonate solution, and extracted with dichloromethane. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was recrystallized from tetrahydrofuran-diisopropyl ether to give

5 N-{6-[2-(6-amino-2-pyridinyl)ethoxy]-3-pyridinyl}-4,4'-dimethyl-1,1'-biphenyl-2-carboxamide (110 mg) as a white powder.

¹H-NMR (DMSO-d₆) : δ 2.40(3H, s), 2.44(3H, s), 3.04(2H, t, J=7.0 Hz), 4.40(2H, br s), 4.55(2H, t, J=6.8 Hz), 6.34(1H, d, J=7.8 Hz), 6.58(1H, d, J=7.3 Hz), 6.63(1H, d, J=8.6 Hz), 6.78(1H, s), 7.22-7.37(7H, m), 7.59-7.69(3H, m)

ESI-MS (m/z) : 439 (M+H)⁺

Example 322

tert-Butyl 6-(2-{{5-({{4-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-yl}carbonyl}amino)-2-pyridinyl}oxy}ethyl)-2-pyridinylcarbamate was obtained in the same manner as in Example 320 as a pale yellow foam.

¹H-NMR (CDCl₃) : δ 1.51(9H, s), 2.46(3H, s), 3.08(2H, t, J=6.8 Hz), 4.56(2H, t, J=7.0 Hz); 6.62(1H, d, J=8.9 Hz), 6.81(1H, s); 6.87(1H, d, J=7.3 Hz), 7.30-7.37(3H, m), 7.45-7.63(5H, m), 7.67(2H, d, J=8.4 Hz), 7.75(1H, d, J=8.4 Hz), 7.81(1H, 7.81, J=2.7 Hz)

ESI-MS (m/z) : 593 (M+H)⁺

Example 323

25 N-{6-[2-(6-Amino-2-pyridinyl)ethoxy]-3-pyridinyl}-4-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 321 as a pale yellow powder.

¹H-NMR (CDCl₃) : δ 2.46(3H, s), 3.05(2H, t, J=6.8 Hz), 4.45(2H, br s), 4.57(2H, t, J=7.0 Hz), 6.35(1H, d, J=8.1 Hz), 6.58(1H, d, J=7.6 Hz), 6.65(1H, d, J=8.6 Hz), 6.78(1H, br s), 7.30-7.40(3H, m), 7.55-7.61(4H, m), 7.68(2H, d, J=7.8 Hz), 7.81(1H, d, J=2.4 Hz)

ESI-MS (m/z) : 493 (M+H)⁺

35 Example 324

tert-Butyl 6-{2-[(5-[(4'-chloro-4-methyl-1,1'-biphenyl-2-yl)carbonyl]amino)-2-pyridinyl]oxy}ethyl)-2-pyridinylcarbamate was obtained in the same manner as in

Example 320 as a pale yellow foam.

- ¹H-NMR(CDCl₃): δ 1.51(9H, s), 2.45(3H, s), 3.09(2H, t, J=7.0 Hz), 4.58(2H, t, J=6.8 Hz), 6.64(1H, d, J=8.9 Hz), 6.76(1H, s), 6.88(1H, d, J=7.3 Hz), 7.15-7.37(4H, m), 7.39(4H, s), 7.54-5 7.68(2H, m), 7.72-7.77(2H, m)
- ESI-MS(m/z): 560(M+H)⁺

Example 325

- N-{6-[2-(6-Amino-2-pyridinyl)ethoxy]-3-pyridinyl}-4'-chloro-4-methyl-1,1'-biphenyl-2-carboxamide was obtained in 10 the same manner as in Example 321 as a pale yellow powder.
- ¹H-NMR(CDCl₃): δ 2.45(3H, s), 3.05(2H, t, J=6.8 Hz), 4.42(2H, br s), 4.57(2H, t, J=6.8 Hz), 6.35(1H, d, J=8.4 Hz), 6.59(1H, d, J=7.0 Hz), 6.66(1H, d, J=8.9 Hz), 6.77(1H, br s), 7.30-7.40(7H, m), 7.63(1H, d, J=2.2 Hz), 7.66(1H, d, J=3.0 Hz), 7.77(1H, d, 15 J=3.0 Hz)
- ESI-MS(m/z): 459(M+H)⁺

Example 326

- To a solution of 4-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid (117 mg) in toluene (4 ml) was 20 added thionyl chloride (0.06 ml) and N,N-dimethylformamide (1 drop) and the mixture was stirred at 80°C for an hour. The mixture was evaporated in vacuo and the residue was dissolved in tetrahydrofuran (2 ml). The acid chloride in 25 tetrahydrofuran was added to a solution of tert-butyl 5-amino-2-pyridinyl(2-{6-[(tert-butoxycarbonyl)amino]-2-pyridinyl}ethyl)carbamate (150 mg) and triethylamine (0.097 ml) in tetrahydrofuran (3 ml) at ambient temperature and the mixture was stirred at the same temperature for an hour. The mixture was poured into water and extracted with ethyl acetate. 30 The organic layer was washed with brine, dried over magnesium sulfate, and evaporated in vacuo to give tert-butyl (2-{6-[(tert-butoxycarbonyl)amino]-2-pyridinyl}ethyl)[5-({[4-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-yl]carbonyl}amino)-2-pyridinyl]carbamate (241 mg) as a pale yellow foam.
- 35 ¹H-NMR(CDCl₃): δ 1.44(9H, s), 1.51(9H, s), 2.47(3H, s), 2.93(2H, t, J=7.6 Hz), 4.19(2H, t, J=7.6 Hz), 6.78(1H, d, J=6.5 Hz), 7.02(1H, s), 7.16(1H, s), 7.23-7.71(11H, m), 8.11(1H, d, J=2.7 Hz)

ESI-MS (m/z) : 692 (M+H)⁺

Example 327

To a solution of tert-butyl 2-{6-[(tert-butoxycarbonyl)amino]-2-pyridinyl}ethyl) [5-({[4-methyl-4'-trifluoromethyl)-1,1'-biphenyl-2-yl]carbonyl}amino)-2-pyridinyl]carbamate (241 mg) in dichloromethane (15 ml) was added trifluoroacetic acid (0.671 ml). The reaction mixture was stirred for 14 hours, quenched with 10% aqueous potassium carbonate solution, and extracted with dichloromethane. The 10 organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was recrystallized from ethyl acetate-diisopropyl ether to give N-(6-{[2-(6-amino-2-pyridinyl)ethyl]amino}-3-pyridinyl)-4-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (127 mg) as pale gray powder.

15 ¹H-NMR (CDCl₃) : δ 2.46(3H, s), 2.89(2H, t, J=6.5 Hz), 3.60(2H, t, J=6.5 Hz), 4.85(2H, br s), 6.33-6.38(2H, m), 6.52(1H, d, J=7.0 Hz), 6.69(1H, br s), 7.29-7.43(4H, m), 7.56-7.60(3H, m), 7.66-7.71(3H, m)

20 ESI-MS (m/z) : 492 (M+H)⁺

Example 328

tert-Butyl (2-{6-[(tert-butoxycarbonyl)amino]-2-pyridinyl}ethyl) [5-({[4'-chloro-4-methyl-1,1'-biphenyl-2-yl]carbonyl}amino)-2-pyridinyl]carbamate was obtained in the same manner as in Example 326 as a pale yellow foam.

25 ¹H-NMR (CDCl₃) : δ 1.45(9H, s), 1.51(9H, s), 2.46(3H, s), 2.94(2H, t, J=7.6 Hz), 4.20(2H, t, J=7.3 Hz), 6.79(1H, d, J=6.5 Hz), 6.94(1H, br s), 7.13-7.55(9H, m), 7.64(1H, br s), 7.70(2H, d, J=8.6 Hz), 8.06(1H, d, J=2.4 Hz)

30 ESI-MS (m/z) : 659 (M+H)⁺

Example 329

N-(6-{[2-(6-Amino-2-pyridinyl)ethyl]amino}-3-pyridinyl)-4'-chloro-4-methyl-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 327 as a pale yellow powder.

35 ¹H-NMR (CDCl₃) : δ 2.43(3H, s), 2.87(2H, t, J=6.5 Hz), 3.59(2H, t, J=6.6 Hz), 4.48(2H, br s), 6.34(2H, d, J=8.4 Hz), 6.51(1H, d, J=7.3 Hz), 6.72(1H, br s), 7.26-7.39(7H, m), 7.50(1H, dd, J=8.9, 2.7 Hz), 7.60(1H, br s), 7.64(1H, d, J=2.7 Hz)

ESI-MS (m/z) : 458 (M+H)⁺

Preparation 151

A mixture of 2-(2-methyl-1,3-thiazol-4-yl)ethanol (5.00 g), 1-fluoro-4-nitrobenzene (5.91 g) and potassium tert-butoxide (4.7 g) in tetrahydrofuran (70 ml) was heated to 70°C for 1.5 hours. The mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was purified by column chromatography on silica gel by eluting with hexane:ethyl acetate (2:1) to give 2-methyl-4-[2-(4-nitrophenoxy)ethyl]-1,3-thiazole (3.57 g) as a pale yellow oil.

¹H-NMR (CDCl₃) : δ 2.70 (3H, s), 3.24 (2H, t, J=6.5 Hz), 4.39 (2H, t, J=6.5 Hz), 6.89 (1H, s), 6.95 (2H, d, J=9.2 Hz), 8.18 (2H, d, J=9.2 Hz)

ESI-MS (m/z) : 265 (M+H)⁺

Preparation 152

A solution of 2-methyl-4-[2-(4-nitrophenoxy)ethyl]-1,3-thiazole (3.57 g) in methanol (15 ml) was hydrogenated over 10% palladium on carbon (1.79 g, 50% wet) at ambient temperature under atmospheric pressure of hydrogen for 2.0 hours. The reaction mixture was filtered through a short pad of celite, and the filtrate was concentrated in vacuo. The residue was purified by column chromatography on silica gel by eluting with hexane:ethyl acetate (2:1→1:1) to give 4-[2-(2-methyl-1,3-thiazol-4-yl)ethoxy]aniline (3.06 g) as a pale yellow oil.

¹H-NMR (CDCl₃) : δ 2.69 (3H, s), 3.17 (2H, t, J=6.5 Hz), 3.42 (2H, br s), 4.21 (2H, t, J=6.5 Hz), 6.62 (2H, d, J=8.9 Hz), 6.75 (2H, d, J=8.9 Hz), 6.87 (1H, s)

ESI-MS (m/z) : 235 (M+H)⁺

Example 330

To a solution of 4,4'-dimethyl-1,1'-biphenyl-2-carboxylic acid (209 mg) in toluene (4 ml) was added thionyl chloride (0.134 ml) and N,N-dimethylformamide (1 drop) and the mixture was stirred at 80°C for an hour. The mixture was evaporated in vacuo and the residue was dissolved in tetrahydrofuran (2 ml). The acid chloride in tetrahydrofuran

was added to a solution of 4-[2-(2-methyl-1,3-thiazol-4-yl)ethoxy]aniline (180 mg) and triethylamine (0.214 ml) in tetrahydrofuran (3 ml) at ambient temperature and the mixture was stirred at the same temperature for an hour. The mixture
5 was poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was recrystallized from ethyl acetate and hexane to give 4,4'--dimethyl-N-{4-[2-(2-methyl-1,3-thiazol-4-yl)ethoxy]phenyl}-
10 1,1'-biphenyl-2-carboxamide (172 mg) as a white powder.
¹H-NMR (CDCl₃) : δ 2.38(3H, s), 2.43(3H, s), 2.68(3H, s), 3.17(2H, t, J=6.6 Hz), 4.23(2H, t, J=6.6 Hz), 6.75-6.79(3H, m), 6.85(1H, s), 6.99(2H, d, J=8.9 Hz), 7.20-7.36(6H, m), 7.67(1H, s)
ESI-MS (m/z) : 443 (M+H)⁺

15 Example 331

4-Methyl-N-{4-[2-(2-methyl-1,3-thiazol-4-yl)ethoxy]phenyl}-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 330 as a pale brown powder.
20 ¹H-NMR (CDCl₃) : δ 2.46(3H, s), 2.69(3H, s), 3.18(2H, t, J=6.6 Hz), 4.23(2H, t, J=6.6 Hz), 6.75-6.81(3H, m), 6.85(1H, s), 7.03(2H, d, J=9.2 Hz), 7.22(2H, m), 7.56-7.73(5H, m)
ESI-MS (m/z) : 497 (M+H)⁺

Example 332

4'-Chloro-4-methyl-N-{4-[2-(2-methyl-1,3-thiazol-4-yl)ethoxy]phenyl}-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 330 as a pale brown powder.
25 ¹H-NMR (CDCl₃) : δ 2.44(3H, s), 2.69(3H, s), 3.18(2H, t, J=6.6 Hz), 4.24(2H, t, J=6.6 Hz), 6.78-6.86(4H, m), 7.07(2H, d, J=9.2 Hz),
30 7.29-7.39(6H, m), 7.60(1H, s)
ESI-MS (m/z) : 463 (M+H)⁺

Example 333

4',5-Dimethyl-N-{4-[2-(2-methyl-1,3-thiazol-4-yl)ethoxy]phenyl}-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 330 as a pale brown powder.
35 ¹H-NMR (CDCl₃) : δ 2.39(3H, s), 2.43(3H, s), 2.69(3H, s), 3.17(2H, t, J=6.6 Hz), 4.23(2H, t, J=6.6 Hz), 6.74-6.79(3H, m), 6.85(1H, s), 6.99(2H, d, J=9.2 Hz), 7.19-7.36(5H, m), 7.79(1H, d, J=7.9

Hz)

ESI-MS (m/z) : 443 (M+H)⁺

Example 334

5-Methyl-N-{4-[2-(2-methyl-1,3-thiazol-4-yl)ethoxy]phenyl}-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 330 as a pale brown powder.

5 ¹H-NMR (CDCl₃) : δ 2.45(3H, s), 2.69(3H, s), 3.18(2H, t, J=7.0 Hz), 4.23(2H, t, J=6.5 Hz), 6.75-6.80(3H, m), 6.85(1H, s), 7.03(2H, 10 d, J=9.2 Hz), 7.22(1H, s), 7.31(1H, d, J=7.8 Hz), 7.58(2H, d, J=8.1 Hz), 7.65-7.23(3H, m)

ESI-MS (m/z) : 497 (M+H)⁺

Example 335

4'-Chloro-5-methyl-N-{4-[2-(2-methyl-1,3-thiazol-4-yl)ethoxy]phenyl}-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 330 as a pale brown powder.

15 ¹H-NMR (CDCl₃) : δ 2.44(3H, s), 2.69(3H, s), 3.18(2H, t, J=7.0 Hz), 4.24(2H, t, J=6.8 Hz), 6.78-6.82(4H, m), 6.86(1H, s), 7.07(2H, d, J=8.9 Hz), 7.19(1H, s), 7.28(1H, d, J=8.9 Hz), 7.39(4H, s), 20 7.47(2H, d, J=7.8 Hz)

ESI-MS (m/z) : 463 (M+H)⁺

Preparation 153

To a mixture of 3-bromo-2-thiophenecarbaldehyde (2.0 g), 4-(trifluoromethyl)phenylboronic acid (2.58 g) and triethylamine (3.33 g) in N,N-dimethylformamide (40 ml) were added tetrakis(triphenylphosphine) palladium(0) (363 mg) and 2M sodium carbonate aqueous solution (14.7 ml) under nitrogen at ambient temperature. The mixture was heated to 100°C and stirred for 3 hours. The mixture was poured into water and extracted with ethyl acetate. The separated organic layer was washed with water and brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was purified by column chromatography on silica gel and crystallized from hexane to give 3-[4-(trifluoromethyl)phenyl]-2-thiophenecarbaldehyde (1.69 g) as white crystals. The second crop (0.67 g) was obtained from the filtrate.

30 ¹H-NMR (DMSO-d₆) : δ 7.50(1H, d, J=5.0 Hz), 7.88(4H, s), 8.23(1H, dd, J=5.0 and 1.2 Hz), 9.83(1H, d, J=1.2 Hz)

APCI-MS (m/z) : 257 (M+H)⁺

Preparation 154

To a solution of 3-[4-(trifluoromethyl)phenyl]-2-thiophenecarbaldehyde (690 mg) in acetone (7 ml) and tert-butanol (7 ml) were added 2-pentene (947 mg) and sodium dihydrogenphosphate dihydrate (420 mg) at ambient temperature. To this mixture was added portionwise sodium chlorite (730 mg) at ambient temperature and the mixture was stirred at the same temperature for 4 hours. The mixture was poured into a mixture of ethyl acetate and water and adjusted to pH 2 by addition of 6N hydrochloric acid. The separated organic layer was washed with water and brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was triturated with hexane: diisopropyl ether (1:1), collected by filtration, washed with hexane, and dried in vacuo to give 3-[4-(trifluoromethyl)phenyl]-2-thiophenecarboxylic acid (670 mg) as white crystals.

¹H-NMR (DMSO-d₆) : δ 7.24(1H, d, J=5.1 Hz), 7.68(2H, d, J=8.4 Hz), 7.76(2H, d, J=8.4 Hz), 8.23(1H, d, J=8.1 Hz)

APCI-MS (m/z) : 273 (M+H)⁺

Example 336

To a suspension of N-(4-aminobenzyl)-2-pyridinecarboxamide (227 mg), 3-[4-(trifluoromethyl)phenyl]-2-thiophenecarboxylic acid (212 mg) and 1-hydroxybenzotriazole hydrate (158 mg) in dichloromethane (40 ml) was added 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide (155 mg) at ambient temperature. The resulting solution was stirred at same temperature for 20 hours and poured into water. The separated organic layer was washed with brine, dried over magnesium sulfate and evaporated in vacuo. The residue was purified by column chromatography on silica gel by eluting with hexane:ethyl acetate (1:2) to give N-{4-[{(3-[4-(trifluoromethyl)phenyl]2-thienyl}carbonyl]amino}benzyl]-2-pyridinecarboxamide (198 mg) as a white solid.

¹H-NMR (DMSO-d₆) : δ 4.44(2H, d, J=6.4 Hz), 7.26(2H, d, J=8.4 Hz), 7.38(1H, d, J=5.0 Hz), 7.46(2H, d, J=8.4 Hz), 7.6-8.1(8H, m), 8.65(1H, d, J=4.8 Hz), 9.30(1H, d, J=6.3 Hz), 10.23(1H, s)

APCI-MS (m/z) : 482 (M+H)⁺

Preparation 155

To a solution of diisopropylamine (6.07 g) in tetrahydrofuran was added dropwise n-butyllithium (1.57M hexane solution) (38.2 ml) at -60°C under nitrogen and the mixture was stirred at the same temperature for 30 minutes. To this lithium diisopropylamide solution was added dropwise a solution of 2-(2,5-dimethyl-1H-pyrrol-1-yl)-6-methylpyridine (9.31 g) in tetrahydrofuran (40 ml) at -60°C under nitrogen and the mixture was stirred at the same temperature for 1.5 hours. To the mixture was added a solution of oxirane (ca. 5M toluene solution) (20 ml) at -60°C and the resultant yellow solution was warmed gradually to ambient temperature. The mixture was poured into ethyl acetate and water and the separated organic layer was washed with water, brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was purified by column chromatography on silica gel eluting with hexane:ethyl acetate (1:3) to give 3-[6-(2,5-dimethyl-1H-pyrrol-1-yl)-2-pyridinyl]-1-propanol (8.66 g) as a yellow oil.

Preparation 156

To a suspension of potassium tert-butoxide (4.15 g) in tetrahydrofuran (100 ml) were added a solution of 3-[6-(2,5-dimethyl-1H-pyrrol-1-yl)-2-pyridinyl]-1-propanol (8.51 g) in tetrahydrofuran (20 ml), followed by addition of 1-fluoro-4-nitrobenzene (5.21 g) at ambient temperature and the mixture was refluxed for 5 hours under nitrogen. The mixture was poured into ethyl acetate and water and the separated organic layer was washed with water, brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was purified by column chromatography on silica gel eluting with hexane:ethyl acetate (2:1) to give 2-(2,5-dimethyl-1H-pyrrol-1-yl)-6-[3-(4-nitrophenoxy)propyl]pyridine (7.70 g) as a yellow oil.

m), 7.22(1H, d, J=7.9 Hz), 7.34(1H, d, J=7.4 Hz), 7.89(1H, dd, J=7.9 and 7.4 Hz), 8.15-8.25(2H, m)
ESI-MS (m/z) : 374 (M+Na)⁺, 352 (M+H)⁺

Preparation 157

5 To a solution of 2-(2,5-dimethyl-1H-pyrrol-1-yl)-6-[3-(4-nitrophenoxy)propyl]pyridine (7.52 g) in tetrahydrofuran (60 ml) and methanol (60 ml) was added hydrogenated over 10% palladium on carbon (3 g, 50% wet) at ambient temperature under atmospheric pressure of hydrogen for 4 hours. The
10 reaction mixture was filtered through a short pad of celite, and the filtrate was concentrated in vacuo. The residue was purified by column chromatography on silica gel by eluting with hexane:ethyl acetate (1:1) to give 4-{3-[6-(2,5-dimethyl-1H-pyrrol-1-yl)-2-pyridinyl]propoxy}aniline (5.44 g) as a
15 yellow oil.

¹H-NMR (DMSO-d₆) : δ 2.04(6H, s), 2.0-2.15(2H, m), 2.91(2H, t, J=7.9 Hz), 3.84(2H, t, J=6.9 Hz), 4.56(2H, brs), 5.79(2H, s), 6.45-6.65(4H, m), 7.20(1H, d, J=7.8 Hz), 7.33(1H, d, J=7.1 Hz), 7.88(1H, dd, J=7.8 and 7.1 Hz)

20 ESI-MS (m/z) : 344 (M+Na)⁺, 322 (M+H)⁺

Example 337

To a solution of 4-{3-[6-(2,5-dimethyl-1H-pyrrol-1-yl)-2-pyridinyl]propoxy}aniline (642 mg), 5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxylic acid (560 mg) and
25 1-hydroxybenzotriazole hydrate (336 mg) in N,N-dimethylformamide (20 ml) was added 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide (341 mg) at ambient temperature and the mixture was stirred for 16 hours at the same temperature. The mixture was poured into ethyl acetate
and water and the separated organic layer was washed with water, brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was purified by column chromatography on silica gel eluting with hexane:ethyl acetate (1:3) to give N-(4-{3-[6-(2,5-dimethyl-1H-pyrrol-1-yl)-2-pyridinyl]propoxy}phenyl)-5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (950 mg) as a brown powder.

¹H-NMR (DMSO-d₆) : δ 2.04(6H, s), 2.1-2.25(2H, m), 2.42(3H, s), 2.92(2H, t, J=7.8 Hz), 3.96(2H, t, J=6.3 Hz), 5.78(2H, s),

6.81(2H, d, J=9.0 Hz), 7.21(1H, d, J=7.4 Hz), 7.35-7.5(6H, m),
 7.52(1H, d, J=7.6 Hz), 7.61(2H, d, J=8.4 Hz), 7.74(2H, d,
 J=8.4 Hz), 7.88(1H, dd, J=7.6 and 7.4 Hz), 10.07(1H, s)
 ESI-MS (m/z) : 606 (M+Na)⁺, 584 (M+H)⁺

5 Example 338

To a suspension of N-(4-{3-[6-(2,5-dimethyl-1H-pyrrol-1-yl)-2-pyridinyl]propoxy}phenyl)-5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (920 mg) in a mixture of ethanol (20 ml) and water (5 ml) were added hydroxylamine hydrochloride (1.1 g) and triethylamine (319 mg) at ambient temperature. The mixture was refluxed for 6 hours and evaporated to dryness. The residue was extracted from ethyl acetate and the organic layer was washed with brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was purified by column chromatography on silica gel eluting with ethyl acetate to give N-{4-[3-(6-amino-2-pyridinyl)propoxy]phenyl}-5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (497 mg) as white crystals.

¹H-NMR (DMSO-d₆) : δ 1.9-2.1(2H, m), 2.42(3H, s), 2.61(2H, t, J=7.1 Hz), 3.92(2H, t, J=6.3 Hz), 5.77(1H, brs), 6.24(1H, d, J=7.7 Hz), 6.34(1H, d, J=7.7 Hz), 6.55(1H, s), 6.83(2H, d, J=9.0 Hz), 7.25(1H, dd, J=7.7 and 7.1 Hz), 7.3-7.45(6H, m), 7.52(1H, d, J=7.6 Hz), 7.61(2H, d, J=8.3 Hz), 7.74(2H, d, J=8.3 Hz), 10.08(1H, s)

ESI-MS (m/z) : 528 (M+Na)⁺, 506 (M+H)⁺

Example 339

5-Methyl-N-[4-(2-pyridinylmethyl)phenyl]-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 24.

¹H-NMR (DMSO-d₆) : δ 2.42 (3H, s), 4.01 (2H, s), 7.15-7.68 (13H, m), 7.73 (2H, d, J=8.4Hz), 8.46 (1H, d, J=5.2Hz), 10.23 (1H, s)

Example 340

N-(4-{2-[6-(Acetylamino)-2-pyridinyl]ethyl}phenyl)-5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 24.

¹H-NMR (DMSO-d₆) : δ 2.09 (3H, s), 2.42(3H, s), 2.90 (4H, s), 6.93 (1H, d, J=7.4Hz), 7.10 (2H, d, J=8.4Hz), 7.33-7.67 (8H, m),

7.74 (2H, d, J=8.3Hz), 7.90 (1H, d, J=8.2Hz), 10.19 (1H, s),
10.41 (1H, s)

Example 341

- A solution of N-(4-{2-[6-(acetylamino)-2-pyridinyl]ethyl}phenyl)-5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (485 mg) and 6N hydrochloric acid (5 ml) in methanol (10 ml) was refluxed under stirring for 4 hours. The resultant mixture was evaporated in vacuo and the residue was dissolved in a mixture of ethyl acetate and water.
- The mixture was adjusted to pH 9.0 with 20% aqueous potassium carbonate solution and the organic layer was washed with brine and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was recrystallized from ethyl acetate and diisopropyl ether to give N-(4-[2-(6-amino-2-pyridinyl)ethyl]phenyl)-5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (320 mg).
- ¹H-NMR (DMSO-d₆): δ 2.48 (3H, s), 2.68-2.88 (4H, m), 5.79 (2H, s), 6.24 (1H, d, J=8.2Hz), 6.32 (1H, d, J=7.1Hz), 7.10 (2H, d, J=8.4Hz), 7.20-7.43 (5H, m), 7.52 (1H, d, J=7.6Hz), 7.61 (2H, d, J=8.1Hz), 7.74 (2H, d, J=8.3Hz), 10.18 (1H, s)
- APCI-MS (m/z): 490 (M+H)⁺

Example 342

- 5-Methyl-N-{4-[2-(4-pyrimidinyl)ethyl]phenyl}-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 24.

- ¹H-NMR (DMSO-d₆): δ 2.42 (3H, s), 2.98-3.06 (4H, m), 7.11 (2H, d, J=8.4Hz), 7.32-7.54 (6H, m), 7.61 (2H, d, J=8.2Hz), 7.74 (2H, d, J=8.3Hz), 8.64 (1H, d, J=5.1Hz), 9.08 (1H, d, J=1.0Hz), 10.19 (1H, s)

Example 343

- N-(4-{2-[2-(Acetylamino)-4-pyrimidinyl]ethyl}phenyl)-4'-chloro-5-methyl-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 24.

- ¹H-NMR (DMSO-d₆): δ 2.19 (3H, s), 2.40 (3H, s), 2.73-2.77 (2H, m), 2.83-2.87 (2H, m), 6.44 (1H, d, J=5.1Hz), 6.49 (1H, s), 7.02 (1H, d, J=5.1Hz), 7.12 (2H, d, J=8.3Hz), 7.27-7.49 (6H, m), 8.47 (1H, d, J=5.0Hz), 10.12 (1H, s), 10.42 (1H, s)

Example 344

N-{4-[2-(2-Amino-4-pyrimidinyl)ethyl]phenyl}-4'-chloro-5-methyl-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 341.

5 $^1\text{H-NMR}$ (DMSO-d₆) : δ 2.40 (3H, s), 2.70-2.77 (2H, m), 2.83-2.90 (2H, m), 6.43-6.49 (3H, m), 7.12 (2H, d, J=8.4Hz), 7.29 (2H, d, J=9.2Hz), 7.40-7.49 (5H, m), 8.10 (1H, d, J=5.0Hz), 10.12 (1H, s)

Preparation 158

A mixture of 2-pyridinylacetic acid dihydrochloride (3.47 g), 1,4-phenylenediamine (4.32 g), 1-hydroxybenzotriazole hydrate (2.84 g) and 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (3.21 g) in N,N-dimethylformamide (20 ml) was stirred at ambient temperature for 14 hours. The reaction mixture was poured into a mixture of ethyl acetate and water. The organic layer was washed with 5% aqueous potassium carbonate solution and brine, and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was chromatographed on silica gel eluting with ethyl acetate and n-hexane(8:2) and then ethyl acetate. The fractions containing the desired product were collected and concentrated in vacuo and the resulting precipitate was collected by filtration to give N-(4-aminophenyl)-2-(2-pyridinyl)acetamide (506 mg).

10 $^1\text{H-NMR}$ (DMSO-d₆) : δ 3.75 (2H, s), 4.84 (2H, s), 6.47-6.51 (2H, m), 7.22-7.27 (3H, m), 7.38 (1H, d, J=7.8Hz), 7.72-7.74 (1H, m), 8.48-8.50 (1H, m), 9.80 (1H, s)

Example 345

4'-Chloro-5-methyl-N-{4-[{(2-pyridinylacetyl)amino}phenyl]-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 24.

30 $^1\text{H-NMR}$ (DMSO-d₆) : δ 2.40 (3H, s), 3.82 (2H, s), 7.25-7.33 (3H, m), 7.40-7.75 (10H, m), 7.73-7.75 (1H, m), 8.49-8.50 (1H, m), 10.13 (1H, s), 10.19 (1H, s)

Preparation 159

35 4',5-Dimethyl-1,1'-biphenyl-2-carbonyl chloride was obtained in the same manner as in Preparation 10.

Example 346

4',5-Dimethyl-N-{4-[3-(2-pyridinyl)propanoyl]phenyl}-

1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 20.

¹H-NMR (DMSO-d₆) : δ 2.27 (3H, s), 2.41 (3H, s), 3.09 (2H, t, J=6.8Hz), 3.43 (2H, t, J=6.8Hz), 6.56 (2H, d, J=8.7Hz), 6.50-5 7.14 (1H, m), 7.14-7.34 (5H, m), 7.63-7.72 (3H, m), 7.92 (2H, d, J=8.7Hz), 8.43-8.45 (1H, m), 10.48 (1H, s)

Example 347

N-{4-[1-Hydroxy-3-(2-pyridinyl)propyl]phenyl}-4',5-dimethyl-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 21.

¹H-NMR (DMSO-d₆) : δ 1.90-1.99 (2H, m), 2.28 (3H, s), 2.40 (3H, s), 2.49-2.51 (2H, m), 4.46-4.54 (1H, m), 5.22 (1H, d, J=4.4Hz), 7.14-7.48 (11H, m), 7.47 (2H, d, J=8.6Hz), 7.62-7.70 (1H, m), 8.45 (1H, d, J=4.6Hz), 10.08 (1H, s)

Example 348

4',5-Dimethyl-N-{4-[3-(2-pyridinyl)propyl]phenyl}-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 22.

¹H-NMR (DMSO-d₆) : δ 1.85-1.97 (2H, m), 2.28 (3H, s), 2.39 (3H, s), 2.50-2.55 (2H, m), 2.68-2.75 (2H, m), 7.07-7.46 (13H, m), 7.63-7.72 (1H, m), 8.47 (1H, d, J=4.3Hz), 10.05 (1H, s)
(+)ESI-MS (m/z) : 421 (M+H), 443 (M+Na)⁺

Preparation 160

N-(4-Acetylphenyl)-4',5-dimethyl-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Preparation 17.

¹H-NMR (DMSO-d₆) : δ 2.27 (3H, s), 2.40 (3H, s), 2.48 (3H, s), 7.15 (2H, d, J=8.0Hz), 7.27-7.33 (4H, m), 7.48 (1H, d, J=8.2Hz), 7.67 (2H, d, J=8.7Hz), 7.88 (2H, d, J=8.7Hz), 10.49 (1H, s)

Example 349

N-(4-{(2E)-3-[6-(Acetylamino)-2-pyridinyl]-2-propenoyl}phenyl)-4',5-dimethyl-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 25.

¹H-NMR (DMSO-d₆) : δ 2.07 (3H, s), 2.27 (3H, s), 2.41 (3H, s), 2.99 (2H, t, J=7.2Hz), 3.41 (2H, t, J=7.2Hz), 7.01 (1H, d, J=7.3Hz), 7.15 (2H, d, J=8.1Hz), 7.22-7.32 (4H, m), 7.47 (1H, d, J=8.2Hz), 7.61-7.63 (3H, m), 7.86-7.94 (3H, m), 10.32

(1H, s), 10.48 (1H, s)

Example 350

- A solution of N-(4-{(2E)-3-[6-(acetylamino)-2-pyridinyl]-2-propenoyl}phenyl)-4',5-dimethyl-1,1'-biphenyl-2-carboxamide (980 mg) in methanol (30 ml) was hydrogenated over 5% palladium on carbon (400 mg) under an atmospheric pressure of hydrogen at ambient temperature under stirring for 7 hours. After removal of the catalyst, the solvent was evaporated in vacuo and the residue was chromatographed on silica gel 10 eluting with ethyl acetate and n-hexane (6:4-7:3). The fractions containing the desired product were collected and evaporated in vacuo to give N-(4-{3-[6-(acetylamino)-2-pyridinyl]propanoyl}phenyl)-4',5-dimethyl-1,1'-biphenyl-2-carboxamide (600 mg).
- 15 $^1\text{H-NMR}$ (DMSO- d_6): δ 2.07 (3H, s), 2.27 (3H, s), 2.41 (3H, s), 2.99 (2H, t, $J=7.2\text{Hz}$), 3.41 (2H, t, $J=7.2\text{Hz}$), 7.01 (1H, d, $J=7.3\text{Hz}$), 7.15 (2H, d, $J=8.1\text{Hz}$), 7.22-7.32 (4H, m), 7.47 (1H, d, $J=8.2\text{Hz}$), 7.61-7.67 (3H, m), 7.86-7.94 (3H, m), 10.32 (1H, s); 10.48 (1H, s)

20 Example 351

- N-(4-{3-[6-(Acetylamino)-2-pyridinyl]-1-hydroxypropyl}phenyl)-4',5-dimethyl-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 21.
- 15 $^1\text{H-NMR}$ (DMSO- d_6): δ 1.87-2.08 (2H, m), 2.10 (3H, s), 2.28 (3H, s), 2.40 (3H, s), 2.58-2.70 (2H, m), 4.50-4.55 (1H, m), 5.19 (1H, d, $J=4.3\text{Hz}$), 6.92 (1H, d, $J=7.3\text{Hz}$), 7.08-7.30 (8H, m), 7.41-7.49 (3H, m), 7.59-7.67 (1H, m), 7.87 (1H, d, $J=8.2\text{Hz}$), 10.09 (1H, s), 10.34 (1H, s)

Example 352

- 30 N-(4-{3-[6-(Acetylamino)-2-pyridinyl]propyl}phenyl)-4',5-dimethyl-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 22.
- 15 $^1\text{H-NMR}$ (DMSO- d_6): δ 1.83-1.94 (2H, m), 1.99 (3H, s), 2.28 (3H, s), 2.40 (3H, s), 2.49-2.67 (4H, m), 6.94 (1H, d, $J=7.3\text{Hz}$), 7.08-7.60 (11H, m), 7.64-7.68 (1H, m), 7.90 (1H, d, $J=8.2\text{Hz}$), 10.07 (1H, s), 10.36 (1H, s)

Example 353

N-{4-[3-(6-Amino-2-pyridinyl)propyl}phenyl}-4',5-

dimethyl-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 28.

¹H-NMR (DMSO-d₆): δ 1.77-1.92 (2H, m), 2.28 (3H, s), 2.42 (3H, s), 2.46-2.56 (4H, m), 5.75 (2H, s), 6.23 (1H, d, J=8.0Hz), 6.32 (1H, d, J=7.1Hz), 7.06-7.34 (10H, m), 7.42 (2H, dd, J=1.6 and 8.3Hz), 10.05 (1H, s)

Example 354

A mixture of 2-pyridylethanol (560 mg) and potassium tert-butoxide (406 mg) in tetrahydrofuran (30 ml) was stirred at ambient temperature for 30 minutes. N-(4-Fluoro-3-nitrophenyl)-5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (1.26g) was added to the above mixture and the mixture was refluxed under stirring for 6 hours. The reaction mixture was poured into a mixture of ethyl acetate and water and extracted with ethyl acetate. The extract was washed with brine and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was chromatographed on silica gel eluting with ethyl acetate and n-hexane(5:5). The fractions containing the desired product were collected and evaporated in vacuo and the residue was recrystallized from ethyl acetate and diisopropyl ether to give 5-methyl-N-{3-nitro-4-[2-(2-pyridinyl)ethoxy]phenyl}-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (522 mg).

¹H-NMR (DMSO-d₆): δ 2.43 (3H, s), 3.18 (2H, t, J=6.6Hz), 4.49 (2H, t, J=6.6Hz), 7.10-7.39 (5H, m), 7.56-7.77 (7H, m), 8.11 (1H, d, J=2.5Hz), 8.48-8.51 (1H, m), 10.51 (1H, s)

Example 355

A mixture of 5-methyl-N-(3-nitro-4-[2-(2-pyridinyl)ethoxy]phenyl)-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (590 mg) in methanol (30 ml) and tetrahydrofuran (30 ml) was hydrogenated over 10% palladium on carbon (250 mg) under an atmospheric pressure of hydrogen at ambient temperatute under stirring for 8 hours. After removal of the catalyst, the solvent was evaporated in vacuo and the residue was chromatographed on silica gel eluting with ethyl acetate and n-hexane (8:2). The fractions containing the desired product were collected and evaporated in vacuo to give N-{3-amino-4-[2-(2-pyridinyl)ethoxy]phenyl}-5-methyl-4'-

(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (232 mg).

¹H-NMR (DMSO-d₆) : δ 2.41 (3H, s), 3.16 (2H, t, J=6.5Hz), 4.23 (2H, t, J=6.5Hz), 4.63 (2H, s), 6.60-6.71 (2H, m), 6.95 (1H, d, J=2.2Hz), 7.21-7.41 (4H, m), 7.47 (1H, d, J=7.6Hz), 7.60 (2H, d, J=8.1Hz), 7.68-7.76 (3H, m), 8.49-8.51 (1H, m), 9.91 (1H, s)

Example 356

A solution of N-(3-amino-4-[2-(2-pyridinyl)ethoxy]phenyl)-5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (230 mg) and acetic anhydride (191 mg) in ethyl acetate (20 ml) was refluxed under stirring for 9 hours. The reaction mixture was poured into a mixture of ethyl acetate and water and adjusted to pH 8.0 with 10% aqueous potassium carbonate solution. The organic layer was washed with brine and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was chromatographed on silica gel eluting with ethyl acetate and n-hexane(8:2). The fractions containing the desired product were collected and evaporated in vacuo and the residue was recrystallized from ethyl acetate and diisopropyl ether to give N-(3-(acetylamino)-4-[2-(2-pyridinyl)ethoxy]phenyl)-5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (140 mg).

¹H-NMR (DMSO-d₆) : δ 2.03 (3H, s), 2.41 (3H, s), 3.20 (2H, t, J=6.6Hz), 4.33 (2H, t, J=6.6Hz), 6.97 (1H, d, J=8.9Hz), 7.23-7.42 (5H, m), 7.50 (1H, d, J=7.6Hz), 7.60 (2H, d, J=8.2Hz), 7.70-7.78 (3H, m), 8.06 (1H, s), 8.52 (1H, d, J=4.1Hz), 8.83 (1H, s), 10.16 (1H, s)

Preparation 161

30 5-Methyl-N-(4-nitrophenyl)-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Preparation 17.

¹H-NMR (DMSO-d₆) : δ 2.44 (3H, s), 7.39 (2H, d, J=10.0Hz), 7.58-7.64 (3H, m), 7.72-7.82 (4H, m), 8.16-8.23 (2H, m), 10.92 (1H, s)

Preparation 162

A solution of 5-methyl-N-(4-nitrophenyl)-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (800 mg) in

methanol (30 ml) was hydrogenated over 10% palladium on carbon (400 mg) under an atmospheric pressure of hydrogen at ambient temperatute under stirring for 5 hours. After removal of the catalyst, the solvent was evaporated in vacuo to give N-(4-aminophenyl)-5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (740 mg).

¹H-NMR(DMSO-d₆):δ 2.41 (3H, s), 4.87 (2H, s), 6.45 (2H, d, J=8.5Hz), 7.15 (2H, d, J=8.5Hz), 7.21-7.34 (2H, m), 7.48 (1H, d, J=7.6Hz), 7.61 (2H, d, J=8.2Hz), 7.74 (2H, d, J=8.2Hz), 9.78 (1H, s)

Example 357

A mixture of N-(4-aminophenyl)-5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (371 mg), 2-pyridinylacetic acid dihydrochloride (183 mg), 1-hydroxybenzotriazole hydrate (142 mg) and 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (163 mg) in N,N-dimethylformamide (15 ml) was stirred at ambient temperature for 14 hours. The reaction mixture was poured into a mixture of ethyl acetate and water. The organic layer was washed with 5% aqueous potassium carbonate solution and brine, and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was recrystallized from ethyl acetate and diisopropyl ether to give 5-methyl-N-{4-[(2-pyridinylacetyl)amino]phenyl}-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (285 mg).

¹H-NMR(DMSO-d₆):δ 2.42 (3H, s), 3.82 (2H, s), 7.24-7.59 (11H, m), 7.63-7.95 (3H, m), 8.50 (1H, d, J=4.5Hz), 10.20 (2H, s)
(+)ESI-MS (m/z): 490(M+H)⁺, 512(M+Na)⁺

Example 358

N-[4-({[6-(2,5-Dimethyl-1H-pyrrol-1-yl)-2-pyridinyl]acetyl}amino)phenyl]-5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide was obtained in the same manner as in Example 357.

¹H-NMR(DMSO-d₆):δ 2.03 (6H, s), 2.42 (3H, s), 3.85 (2H, s), 5.77 (2H, s), 7.27-7.63 (9H, m), 7.61 (2H, d, J=8.2Hz), 7.94 (2H, d, J=8.3Hz), 7.90-7.98 (1H, m), 10.19 (2H, s)

Example 359

A mixture of N-[4-({[6-(2,5-dimethyl-1H-pyrrol-1-yl)-2-

pyridinyl]acetyl}amino)phenyl]-5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (420 mg), hydroxylamine hydrochloride (501 mg) and triethylamine (146 mg) in water (10 ml) and ethanol (20 ml) was refluxed under stirring for 9.5 hours. The reaction mixture was evaporated in vacuo and the residue was dissolved in a mixture of water and ethyl acetate and adjusted to pH 8.0 with 10% aqueous potassium carbonate solution. The organic layer was washed with brine and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was chromatographed on silica gel eluting with ethyl acetate and n-hexane (7:3). The fractions containing the desired product were collected and concentrated in vacuo and the resulting precipitate was collected by filtration to give N-(4-{[(6-amino-2-pyridinyl)acetyl]amino}phenyl)-5-methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-carboxamide (156 mg).

¹H-NMR(DMSO-d₆):δ 2.42 (3H, s), 3.54 (2H, s); 5.89 (2H, s), 6.31 (1H, d, J=8.0Hz), 6.46 (1H, d, J=7.1Hz), 7.29-7.36 (3H, m), 7.44 (2H, d, J=9.0Hz), 7.61 (2H, d, J=8.1Hz), 7.74 (2H, d, J=8.2Hz), 10.14 (1H, s), 10.17 (1H, s)
(-)ESI-MS(m/z): 503(M-H)⁻

Preparation 163

N-(4-Aminobenzyl)-2-pyridine carboxamide was obtained in the same manner as in Preparation 14.

¹H-NMR(DMSO-d₆):δ 4.31-4.35 (2H, m), 4.95 (2H, s), 6.50 (2H, d, J=8.3Hz), 7.00 (2H, d, J=8.3Hz), 7.57-7.60 (1H, m), 7.97-8.06 (2H, m), 8.61-8.63 (1H, m), 8.98-9.00 (1H, m)

Example 360

N-[4-{[5-Methyl-4'-(trifluoromethyl)-1,1'-biphenyl-2-yl]carbonyl}amino]benzyl]-2-pyridinecarboxamide was obtained in the same manner as in Example 24.

¹H-NMR(DMSO-d₆):δ 2.42 (3H, s), 4.43 (2H, d, J=6.4Hz), 7.24 (2H, d, J=8.4Hz), 7.35 (2H, d, J=8.3Hz), 7.46 (1H, d, J=8.4Hz), 7.51-7.63 (5H, m), 7.74 (2H, d, J=8.3Hz), 7.99-8.07 (2H, m), 8.64-8.66 (1H, m), 9.27 (1H, t, J=6.4Hz), 10.25 (1H, s)

Example 361

A mixture of 2-(4-(trifluoromethyl)phenyl)-1-cyclohexene-1-carboxylic acid (405 mg) and N²-[2-(2-

pyridinyl)ethyl]-2,5-pyridinediamine (355 mg), 1-hydroxybenzotriazole hydrate (241 mg) 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide (244 mg) and 4-(dimethylamino)pyridine (4 mg) in N,N-dimethylformamide (15 ml) was stirred at ambient temperature overnight. The reation mixture was poured into a mixture of ethyl acetate and water, and the organic layer was washed with brine and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was chromatographed on silica gel eluting with ethyl acetate and methanol (96:4). The fractions containing the desired product were collected and evaporated in vacuo and the residue was recrystallized from ethyl acetate and diisopropyl ether to give N-(6-{[2-(2-pyridinyl)ethyl]amino}-3-pyridinyl)-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (497 mg).

¹H-NMR (DMSO-d₆): δ 1.73 (4H, br.s), 2.40 (4H, br.s), 2.95 (2H, t, J=7.3Hz), 3.41-3.52 (2H, m), 6.23-6.37 (2H, m), 7.08-7.30 (3H, m), 7.50 (2H, d, J=8.1Hz), 7.63-7.72 (3H, m), 7.86 (1H, d J=2.2Hz), 8.49 (1H, d, J=4.3Hz), 8.49 (1H, d, J=4.3Hz), 9.30 (1H, s)

(+)ESI-MS: 467 (M+H)⁺, 489 (M+Na)⁺

Example 362

N-{6-[2-(2-Pyridinyl)ethoxy]-3-pyridinyl}-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 361.

¹H-NMR (DMSO-d₆): δ 1.74 (4H, br.s), 2.41 (4H, br.s), 3.14 (2H, t, J=6.7Hz), 6.70 (2H, t, J=6.7Hz), 6.64 (1H, d, J=8.9Hz), 7.19-7.33 (2H, m), 7.47-7.80 (6H, m), 8.08 (1H, d, J=2.4Hz), 8.50 (1H, d, J=4.3Hz), 9.65 (1H, s)

(+)ESI-MS: 468 (M+H)⁺, 490 (M+Na)⁺

Example 363

N-{4-[2-(2-Pyridinyl)ethoxy]phenyl}-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 361.

¹H-NMR (DMSO-d₆): δ 1.73 (4H, br.s), 2.39 (4H, br.s), 3.14 (2H, t, J=6.6Hz), 4.27 (2H, t, J=6.6Hz), 6.77 (2H, d, J=9.0Hz), 7.20-7.25 (3H, m), 7.33 (1H, d J=7.7Hz), 7.49 (2H, d, J=8.2Hz), 7.61-7.75 (3H, m), 8.49-8.51 (1H, m), 9.49 (1H, s)

(+) ESI-MS: 467 (M+H)⁺, 489 (M+Na)⁺

Example 364

2-(4-Methylphenyl)-N-(6-{[2-(2-pyridinyl)ethyl]amino}-3-pyridinyl)-1-cyclohexene-1-carboxamide was obtained in the

5 same manner as in Example 361.

¹H-NMR (DMSO-d₆): δ 1.70 (4H, br.s), 2.23 (3H, s), 2.34 (4H, br.s), 2.93 (2H, t, J=7.4Hz), 3.49-3.56 (2H, m), 6.23-6.38 (2H, m), 7.07 (2H, d, J=8.1Hz), 7.16-7.34 (5H, m), 7.64-7.72 (1H, m), 7.85 (1H, d, J=2.5Hz), 8.47-8.51 (1H, m), 9.13 (1H, s)

10 (+) ESI-MS: 413 (M+H)⁺, 435 (M+Na)⁺

Example 365

2-(4-Ethylphenyl)-N-(6-{[2-(2-pyridinyl)ethyl]amino}-3-pyridinyl)-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 361.

15 ¹H-NMR (DMSO-d₆): δ 1.27 (3H, t, J=7.5Hz), 1.70 (4H, br.s), 2.35 (4H, br.s), 2.53 (2H, q, J=7.5Hz), 2.94 (2H, t, J=7.4Hz), 3.46-3.56 (2H, m), 6.13-6.38 (2H, m), 7.10 (2H, d, J=8.1Hz), 7.17-7.29 (5H, m), 7.63-7.72 (1H, m), 7.82 (1H, d, J=2.4Hz), 8.47-8.50 (1H, m), 9.08 (1H, s)

20 Example 366

A mixture of 2-(4-methylphenyl)-1-cyclohexene-1-carboxylic acid (1.08 g) and tert-butyl 4-(4-aminophenyl)-1-piperazinecarboxylate (1.39 g), 1-hydroxybenzotriazole hydrate (803 mg), 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide (814 mg) and 4-(dimethylamino)pyridine (12 mg) in N,N-dimethylformamide (20 ml) was stirred at ambient temperature overnight. The reaction mixture was poured into a mixture of ethyl acetate and water, and the organic layer was washed with brine and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was chromatographed on silica gel eluting with ethyl acetate and n-hexane (5:5). The fractions containing the desired product were collected and evaporated in vacuo to give tert-butyl 4-[4-({[2-(4-methylphenyl)-1-cyclohexen-1-yl]carbonyl}amino)phenyl]-1-piperazinecarboxylate (2.24 g).

35 ¹H-NMR (DMSO-d₆): δ 1.41 (9H, s), 1.71 (4H, br.s), 2.21 (3H, s), 2.34 (4H, br.s), 2.93-2.98 (4H, m), 3.39-3.44 (4H, m), 6.79 (2H, d, J=9.0Hz), 7.04 (2H, d, J=8.0Hz), 7.16-7.43 (4H, m),

9.29 (1H, s)

Preparation 164

A mixture of tert-butyl 4-[4-({[2-(4-methylphenyl)-1-cyclohexen-1-yl]carbonyl}amino)phenyl]-1-piperazinecarboxylate (2.2 g) and trifluoroacetic acid (10.7 ml) in dichloromethane (5 ml) was stirred at ambient temperature for 4 hours. The reaction mixture was evaporated in vacuo and the residue was dissolved in a mixture of ethyl acetate and water and adjusted to pH 8.0 with aqueous potassium carbonate solution. The organic layer was washed with brine and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was crystallized from ethyl acetate and diisopropyl ether to give 2-(4-methylphenyl)-N-[4-(1-piperazinyl)phenyl]-1-cyclohexene-1-carboxamide (1.19 g).

15 $^1\text{H-NMR}$ (DMSO-d₆): δ 1.70 (4H, br.s), 2.21 (3H, s), 2.34 (4H, br.s), 2.78-2.81 (4H, m), 2.89-2.94 (4H, m), 6.74 (2H, d, J=9.0Hz), 7.03 (2H, d, J=8.0Hz), 7.16-7.22 (4H, m), 9.25 (1H, s)

Example 367

20 A mixture of 2-(4-methylphenyl)-N-[4-(1-piperazinyl)phenyl]-1-cyclohexene-1-carboxamide (298 mg), 3-cyanobenzaldehyde (210 mg) and sodium triacetoxyborohydride (510 mg) in dichloromethane (20 ml) was stirred at ambient temperature for 14 hours. Water (20 ml) was added to the reaction mixture and adjusted to pH 8.5 with 10% aqueous potassium carbonate solution and the mixture was stirred for 30 minutes. The organic layer was washed with brine and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was chromatographed on silica gel eluting with ethyl acetate and n-hexane (7:3-9:1). The fractions containing the desired product were collected and evaporated in vacuo and the residue was recrystallized from ethyl acetate and diisopropyl ether to give N-[4-[4-(3-cyanobenzyl)-1-piperazinyl]phenyl]-2-(4-methylphenyl)-1-cyclohexene-1-carboxamide (297 mg).

35 $^1\text{H-NMR}$ (DMSO-d₆): δ 1.70 (4H, br.s), 2.21 (3H, s), 2.34 (4H, br.s), 2.49-2.50 (4H, m), 3.03 (4H, m), 3.57 (2H, s), 6.76 (2H, d, J=9.0Hz), 7.04 (2H, d, J=8.0Hz), 7.16-7.23 (4H, m), 7.51-

7.59 (1H, m), 7.66-7.76 (3H, m), 9.26 (1H, s)
 (+)ESI-MS: 491 (M+H)⁺, 513 (M+Na)⁺

Example 368

- tert-Butyl 4-[5-({[2-(4-methylphenyl)-1-cyclohexen-1-yl]carbonyl}amino)-2-pyridinyl]-1-piperazinecarboxylate was obtained in the same manner as in Example 366.
- 5 ¹H-NMR (DMSO-d₆) : δ 1.41 (9H, s), 1.70 (4H, br.s), 2.22 (3H, s),
 2.35 (4H, br.s), 3.36 (8H, m), 6.72 (1H, d, J=9.1Hz), 7.05 (2H,
 d, J=8.1Hz), 7.17 (2H, d, J=8.1Hz), 7.20-7.28 (1H, m), 7.50-
 10 7.57 (1H, m), 8.03 (1H, m), 9.32 (1H, s)

Preparation 165

2-(4-Methylphenyl)-N-[6-(1-piperazinyl)-3-pyridinyl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Preparation 164.

- 15 ¹H-NMR (DMSO-d₆) : δ 1.71 (4H, br.s), 2.22 (3H, s), 2.35 (4H,
 br.s), 2.71-2.75 (4H, m), 3.25-3.28 (4H, m), 6.66 (1H, d,
 J=9.1Hz), 7.05 (2H, d, J=8.1Hz), 7.18 (2H, d, J=8.1Hz), 7.48
 (1H, dd, J=2.5 and 9.1Hz), 8.00 (1H, d, J=2.5Hz), 9.28 (1H, s)

Example 369

- 20 N-[6-[4-(3-Cyanobenzyl)-1-piperazinyl]-3-pyridinyl]-2-(4-methylphenyl)-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 367.

- 15 ¹H-NMR (DMSO-d₆) : δ 1.70 (4H, br.s), 2.22 (3H, s), 2.35 (4H,
 br.s), 2.43-2.50 (4H, m), 3.34-3.39 (4H, m), 3.56 (2H, s),
 25 6.69 (1H, d, J=9.1Hz), 7.05 (2H, d, J=8.1Hz), 7.18 (2H, d,
 J=8.1Hz), 7.47-7.59 (2H, m), 7.67-7.76 (3H, m), 8.00 (1H, d,
 J=2.5Hz), 9.30 (1H, s)

Example 370

- 30 N-[4-(4-{[6-(Acetylamino)-2-pyridinyl]methyl}-1-piperazinyl)phenyl]-2-(4-methylphenyl)-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 367.
- 15 ¹H-NMR (DMSO-d₆) : δ 1.70 (4H, br.s), 2.08 (3H, s), 2.21 (3H, s),
 2.34 (4H, br.s), 2.50-2.52 (4H, m), 3.03 (4H, s), 3.53 (2H, s),
 6.76 (2H, d, J=9.0Hz), 7.04 (2H, d, J=8.1Hz), 7.12-7.22 (5H,
 35 m), 7.75 (1H, d, J=8.0Hz), 7.96 (1H, d, J=8.0Hz), 9.25 (1H,
 s), 10.51 (1H, s)
- (+)ESI-MS: 524 (M+H)⁺, 546 (M+Na)⁺

Example 371

A mixture of N-[4-(4-{[6-(acetylamino)-2-pyridinyl]methyl}-1-piperazinyl)phenyl]-2-(4-methylphenyl)-1-cyclohexene-1-carboxamide (295 mg) and 6N hydrochloric acid (10 ml) in methanol (10 ml) was refluxed under stirring for 5 hours. The reaction mixture was evaporated in vacuo and the residue was dissolved in a mixture of ethyl acetate and water and adjusted to pH 8.0 with aqueous potassium carbonate solution. The organic layer was washed with brine and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was recrystallized from ethyl acetate and diisopropyl ether to give N-(4-{4-[(6-amino-2-pyridinyl)methyl]-1-piperazinyl}phenyl)-2-(4-methylphenyl)-1-cyclohexene-1-carboxamide (180 mg).

¹H-NMR(DMSO-d₆):δ 1.70 (4H, br.s), 2.21 (3H, s), 2.34 (4H, br.s), 2.50-2.51 (4H, m), 3.35-3.36 (4H, m), 3.36 (2H, s), 5.85 (2H, s), 6.30 (1H, d, J=8.1Hz), 6.55 (1H, d, J=7.2Hz), 6.76 (2H, d, J=9.0Hz), 7.04 (2H, d, J=8.0Hz), 7.16-7.36 (5H, m), 9.25 (1H, s)

(+)ESI-MS: 482(M+H)⁺, 504(M+Na)⁺

20 Example 372

2-(4-Methylphenyl)-N-(6-[4-(2-pyridinylmethyl)-1-piperazinyl]-3-pyridinyl)-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 367.

¹H-NMR(DMSO-d₆):δ 1.70 (4H, br.s), 2.22 (3H, s), 2.35(4H, br.s), 2.47-2.51 (4H, m), 3.36-3.39 (4H, m), 3.62 (2H, s), 6.69 (1H, d, J=9.1Hz), 7.06 (2H, d, J=8.0Hz), 7.17 (2H, d, J=8.0Hz), 7.25-7.28 (1H, m), 7.45-7.50 (2H, m), 7.74-7.77 (1H, m), 8.01 (1H, d J=2.6Hz), 8.50 (1H, m), 9.27 (1H, s)

(+)ESI-MS: 468(M+H)⁺, 490(M+Na)⁺

30 Example 373

A mixture of 4-cyanobenzyl chloride (150 mg) and sodium iodide (180 mg) in acetone (30 ml) was stirred at ambient temperature for 2 hours. 2-(4-Methylphenyl)-N-[4-(1-piperazinyl)phenyl]-1-cyclohexene-1-carboxamide (334 mg) and powder potassium carbonate (273 mg) were added to the above mixture and the obtained mixture was refluxed under stirring for 3 hours. The reaction mixture was evaporated in vacuo and the residue was dissolved in a mixture of ethyl acetate and

water, and the organic layer was washed with brine and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was recrystallized from ethyl acetate and diisopropyl ether to give N-[4-(4-cyanobenzyl)-1-piperazinyl]phenyl]-2-(4-methylphenyl)-1-cyclohexene-1-carboxamide (324 mg).

¹H-NMR (DMSO-d₆): δ 1.70 (4H, br.s), 2.21 (3H, s), 2.34 (4H, br.s), 2.49-2.50 (4H, m), 3.03 (4H, m), 3.60 (2H, s), 6.86 (2H, d, J=9.0Hz), 7.04 (2H, d, J=8.1Hz), 7.16-7.23 (4H, m), 7.53 (2H, d, J=8.1Hz), 7.80 (2H, d, J=8.1Hz), 9.26 (1H, s)

Example 374

A mixture of 2-cyanobenzyl chloride (149 mg) and sodium iodide (130 mg) in acetone (30 ml) was stirred at ambient temperature for 2 hours. 2-(4-Methylphenyl)-N-[4-(1-piperazinyl)phenyl]-1-cyclohexene-1-carboxamide (333 mg) and powder potassium carbonate (273 mg) was added to the above mixture and the obtained mixture was refluxed under stirring for 3 hours. The reaction mixture was evaporated in vacuo and the residue was dissolved in a mixture of ethyl acetate and water, and the organic layer was washed with brine and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was chromatographed on silica gel eluting with ethyl acetate and n-hexane (6:4). The fractions containing the desired product were collected and evaporated in vacuo and the residue was recrystallized from ethyl acetate and diisopropyl ether to give N-[4-(4-(2-cyanobenzyl)-1-piperazinyl)phenyl]-2-(4-methylphenyl)-1-cyclohexene-1-carboxamide (85 mg).

¹H-NMR (DMSO-d₆): δ 1.70 (4H, br.s), 2.21 (3H, s), 2.34 (4H, br.s), 2.50-2.56 (4H, m), 3.00-3.02 (4H, m), 3.69 (2H, s), 6.76 (2H, d, J=9.0Hz), 7.04 (2H, d, J=8.0Hz), 7.16-7.22 (4H, m), 7.47-7.51 (1H, m), 7.58-7.80 (2H, m), 7.82 (1H, d, J=6.9Hz), 9.26 (1H, s)

(+)ESI-MS: 491 (M+H)⁺, 513 (M+Na)⁺

Example 375

A mixture of 2-(4-methylphenyl)-1-cyclohexene-1-carboxylic acid (270 mg) and 4-(4-benzyl-1-piperazinyl)phenylamine (280 mg), 1-hydroxybenzotriazole

hydrate (161 mg), 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide (163 mg) and 4-(dimethylamino)pyridine (2.4 mg) in N,N-dimethylformamide (20 ml) was stirred at ambient temperature overnight. The reation mixture was poured into a mixture of ethyl acetate and water and the organic layer was washed with brine and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was recrystallized from ethyl acetate and diisopropyl ether to give N-[4-(4-benzyl-1-piperazinyl)phenyl]-2-(4-methylphenyl)-1-cyclohexene-1-carboxamide (304 mg).

15 $^1\text{H-NMR}$ (DMSO- d_6): δ 1.70 (4H, s), 2.21 (3H, s), 2.45 (4H, br.s), 2.47-2.51 (4H, m), 2.99-3.04 (4H, m), 3.50 (2H, s), 6.75 (2H, d, $J=9.0\text{Hz}$), 7.04 (2H, d, $J=8.0\text{Hz}$), 7.16-7.38 (9H, m), 9.25 (1H, s)

15 (+)ESI-MS: 466 ($M+\text{H}$) $^+$, 488 ($M+\text{Na}$) $^+$

Example 376

N-[4-(4-Benzyl-1-piperazinyl)phenyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 375.

20 $^1\text{H-NMR}$ (DMSO- d_6): δ 1.73 (4H, s), 2.38 (4H, br.s), 2.45-2.51 (4H, m), 3.00-3.02 (2H, m), 3.50 (2H, s), 6.75 (2H, d, $J=8.0\text{Hz}$), 7.16 (2H, d, $J=8.9\text{Hz}$), 7.22-7.38 (5H, m), 7.48 (2H, d, $J=8.2\text{Hz}$), 7.62 (2H, d, $J=8.2\text{Hz}$), 9.40 (1H, s)

(+)ESI-MS: 520 ($M+\text{H}$) $^+$, 542 ($M+\text{Na}$) $^+$

Preparation 166

A mixture of 2,3-dihydro-1H-inden-2-ylamine hydrochloride (1.7 g) and picolinic acid (1.3 g), 1-hydroxybenzotriazole hydrate (1.69 g), 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide (1.71 g) and 4-(dimethylamino)pyridine (24.5 mg) in N,N-dimethylformamide (20 ml) was stirred at ambient temperature for 15 hours. The reation mixture was poured into a mixture of ethyl acetate and water and the organic layer was washed with brine and dried over magnesium sulfate. The solvent was evaporated in vacuo to give N-(2,3-dihydro-1H-inden-2-yl)-2-pyridinecarboxamide (2.99 g).

15 $^1\text{H-NMR}$ (DMSO- d_6): δ 3.00-3.11 (2H, m), 3.17-3.29 (2H, m), 4.69-4.87 (1H, m), 7.14-7.25 (2H, m), 7.60-7.61 (2H, m), 8.01-8.08

(2H, m), 8.63 (1H, d, J=4.7Hz), 8.91 (1H, d, J=7.8Hz), 13.67 (1H, br.s)

Preparation 167

N-(2,3-Dihydro-1H-inden-2-yl)-2-pyridinecarboxamide

5 (2.95 g) was portionwise added to fuming nitric acid (d=1.52) (50 ml) at -30°C to -10°C and the resultant mixture was stirred at -10°C to -5°C for 15 minutes. The reaction mixture was poured into ice-water and adjusted to pH 8.0 with aqueous potassium carbonate solution and extracted with ethyl acetate and tetrahydrofuran. The organic layer was washed with brine and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was chromatographed on silica gel 10 eluting with ethyl acetate and n-hexane (6:4). The fractions containing the desired product were collected and evaporated in vacuo and the residue was recrystallized from ethyl acetate and diisopropyl ether to give N-(5-nitro-2,3-dihydro-1H-inden-2-yl)-2-pyridinecarboxamide (1.16 g).

15 $^1\text{H-NMR}$ (DMSO-d₆): δ 3.09-3.40 (4H, m), 4.74-4.93 (1H, m), 7.50 (1H, d J=8.1Hz), 7.57-7.64 (1H, m), 7.96-8.09 (3H, m), 8.61-20 8.69 (1H, m), 9.05 (1H, d, J=7.7Hz)

Preparation 168

A mixture of N-(5-nitro-2,3-dihydro-1H-inden-2-yl)-2-pyridinecarboxamide (623 mg) in methanol (20 ml) and tetrahydrofuran (20 ml) was hydrogenated over 10% palladium on carbon (300 mg) under an atmospheric pressure of hydrogen at 25 ambient temperatute under stirring for 7 hours. After removal of the catalyst, the solvent was evaporated in vacuo to give N-(5-amino-2,3-dihydro-1H-inden-2-yl)-2-pyridinecarboxamide (557 mg).

30 $^1\text{H-NMR}$ (DMSO-d₆): δ 2.79-3.11 (4H, m), 4.58-4.77 (1H, m), 4.85 (2H, s), 5.73-5.76 (1H, m), 6.36-6.45 (2H, m), 6.81 (1H, d, J=7.9Hz), 7.56-7.63 (1H, m), 7.95-8.08 (2H, m), 8.62 (1H, d, J=5.8Hz), 8.77 (1H, d, J=8.0Hz)

Example 377

35 A mixture of 2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxylic acid (270 mg) and N-(5-amino-2,3-dihydro-1H-inden-2-yl)-2-pyridinecarboxamide (266 mg), 1-hydroxybenzotriazole hydrate (242 mg), 1-[3-

(dimethylamino)propyl]-3-ethylcarbodiimide (163 mg) and 4-(dimethylamino)pyridine (2.5 mg) in N,N-dimethylformamide (8 ml) was stirred at ambient temperature for 14 hours. The reaction mixture was poured into a mixture of ethyl acetate and water and the organic layer was washed with brine and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was chromatographed on silica gel eluting with ethyl acetate and n-hexane (9:4). The fractions containing the desired product were collected and evaporated in vacuo and the residue was recrystallized from ethyl acetate and diisopropyl ether to give N-[5-[(2-[4-(trifluoromethyl)phenyl]-1-cyclohexen-1-yl)carbonyl]amino]-2,3-dihydro-1H-inden-2-yl]-2-pyridinecarboxamide (202 mg).

¹H-NMR (DMSO-d₆): δ 1.74 (4H, br.s), 2.40 (4H, br.s), 2.86-3.16 (4H, m), 4.62-4.80 (1H, m), 7.01-7.10 (2H, m), 7.28 (1H, s), 8.50 (2H, d, J=8.1Hz), 7.56-7.66 (3H, m), 7.95-8.07 (2H, m), 8.62 (1H, d, J=4.6Hz), 8.86 (1H, d J=8.0Hz), 9.57 (1H, s)

Example 378

Methyl 5-[(2-[4-(trifluoromethyl)phenyl]-1-cyclohexen-1-yl)carbonyl]amino]-2,3-dihydro-1H-inden-2-ylcarbamate was obtained in the same manner as in Example 377.

¹H-NMR (DMSO-d₆): δ 1.73 (4H, br.s), 2.49 (4H, br.s), 2.61-2.82 (2H, m), 2.96-3.07 (2H, m), 3.52 (3H, s), 4.11-4.25 (1H, m), 6.96-7.06 (2H, m), 7.06 (1H, s), 7.40-7.50 (1H, m), 7.48 (2H, d, J=8.3Hz), 7.63 (2H, d J=8.3Hz), 9.53 (1H, s)

(+)ESI-MS: 459 (M+H)⁺, 481 (M+Na)⁺

Example 379

Methyl 5-[(2-(4-methylphenyl)-1-cyclohexen-1-yl)carbonyl]amino]-2,3-dihydro-1H-inden-2-ylcarbamate was obtained in the same manner as in Example 377.

¹H-NMR (DMSO-d₆): δ 1.71 (4H, br.s), 2.21 (3H, s), 2.49 (4H, br.s), 2.60-2.91 (2H, m), 2.95-3.08 (2H, m), 3.52 (2H, s), 4.14-4.25 (1H, m), 6.96-7.09 (4H, m), 7.18 (2H, d J=8.0Hz), 7.29 (1H, s), 7.40-7.43 (1H, m), 9.39 (1H, s)

(+)ESI-MS: 405 (M+H)⁺, 427 (M+Na)⁺

Example 380

N-[5-[(2-(4-Methylphenyl)-1-cyclohexen-1-yl)carbonyl]amino]-2,3-dihydro-1H-inden-2-yl]-2-

pyridinecarboxamide was obtained in the same manner as in Example 377.

5 $^1\text{H-NMR}$ (DMSO-d₆) : δ 1.71 (4H, br.s), 2.22 (3H, s), 2.49 (4H, br.s), 2.85-3.16 (4H, m), 7.01-7.12 (3H, m), 7.19 (2H, d, J=8.0Hz), 7.34 (1H, s), 7.56-7.62 (1H, m), 7.95-8.07 (2H, m), 8.62 (1H, d, J=4.6Hz), 8.85 (1H, d, J=8.0Hz), 9.43 (1H, s)
 (+)ESI-MS: 452(M+H)⁺, 474(M+Na)⁺

Preparation 169

10 N-(2,3-Dihydro-1H-inden-2-yl)-2-(2-pyridinyl)acetamide
 was obtained in the same manner as in Preparation 166.
 $^1\text{H-NMR}$ (DMSO-d₆) : δ 2.73-2.89 (2H, m), 3.12-3.36 (2H, m), 3.61 (2H, s), 4.38-4.55 (1H, m), 7.12-7.26 (4H, m), 7.33 (1H, d, J=7.8Hz), 7.68-7.72 (1H, m), 8.45-8.47 (2H, m)

Preparation 170

15 N-(5-Nitro-2,3-dihydro-1H-inden-2-yl)-2-(2-pyridinyl)acetamide was obtained in the same manner as in Preparation 167.
 $^1\text{H-NMR}$ (DMSO-d₆) : δ 2.84-3.00 (2H, m), 3.24-3.36 (2H, m), 3.59 (2H, s), 4.45-4.61 (1H, m), 7.20-7.27 (1H, m), 7.32 (1H, d, J=7.9Hz), 7.51 (1H, d, J=8.2Hz), 7.68-7.73 (1H, m), 8.03-8.11 (2H, m), 8.41-8.68 (2H, m)

Preparation 171

20 N-(5-Amino-2,3-dihydro-1H-inden-2-yl)-2-(2-pyridinyl)acetamide was obtained in the same manner as in Preparation 168.

25 $^1\text{H-NMR}$ (DMSO-d₆) : δ 2.79-3.11 (4H, m), 3.61 (2H, s), 4.58-4.77 (1H, m), 4.85 (2H, s), 5.73-5.76 (1H, m), 6.36-6.45 (2H, m), 6.87 (1H, d, J=7.9Hz), 7.56-7.63 (1H, m), 7.95-8.08 (2H, m), 8.62 (1H, d, J=5.8Hz), 8.77 (1H, d, J=8.0Hz)

Example 381

30 2-(4-Methylphenyl)-N-{2-[(2-pyridinylacetyl)amino]-2,3-dihydro-1H-inden-5-yl}-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 377.

35 $^1\text{H-NMR}$ (DMSO-d₆) : δ 1.71 (4H, br.s), 2.24 (3H, s), 2.49 (4H, br.s), 2.49-2.72 (2H, m), 2.96-3.13 (2H, m), 3.58 (2H, s), 4.36-4.46 (1H, m), 6.99-7.33 (9H, m), 7.67-7.75 (1H, m), 8.40-8.46 (2H, m), 9.41 (1H, s)
 (+)ESI-MS: 466(M+H)⁺, 488(M+Na)⁺

Preparation 172

Methyl 2,3-dihydro-1H-inden-2-ylcarbamate (1.7 g) was portionwise added to fuming nitric acid ($d=1.52$) (20 ml) at -30°C to -10°C and the resultant mixture was stirred at -10°C to -5°C for 15 minutes. The reaction mixture was poured into ice-water and adjusted to pH 8.0 with aqueous potassium carbonate solution and extracted with ethyl acetate and tetrahydrofuran. The organic layer was washed with brine and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was chromatographed on silica gel eluting with ethyl acetate and n-hexane (6:4). The fractions containing the desired product were collected and evaporated in vacuo to give methyl 4,6-dinitro-2,3-dihydro-1H-inden-2-ylcarbamate (1.21 g).

¹H-NMR (DMSO-d₆): δ 3.30-3.48 (2H, m), 3.50-3.75 (2H, m), 3.79 (3H, s), 5.50-5.70 (1H, m), 8.09 (2H, s)

Preparation 173

Methyl 4,6-diamino-2,3-dihydro-1H-inden-2-ylcarbamate was obtained in the same manner as in Preparation 168.

¹H-NMR (DMSO-d₆): δ 2.50-2.59 (2H, m), 2.82-2.93 (2H, m), 3.33 (3H, s), 4.04-4.58 (3H, m), 6.34-6.39 (2H, m), 7.31-7.42 (1H, m)

Example 382

A mixture of 2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxylic acid (270 mg) and methyl 4,6-diamino-2,3-dihydro-1H-inden-2-ylcarbamate (232 mg), 1-hydroxybenzotriazole hydrate (161 mg), 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide (163 mg) and 4-(dimethylamino)pyridine (2.5 mg) in N,N-dimethylformamide (8 ml) was stirred at ambient temperature for 14 hours. The reaction mixture was poured into a mixture of ethyl acetate and water and the organic layer was washed with brine and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was chromatographed on silica gel eluting with ethyl acetate and n-hexane (9:4). The fractions containing the desired product were collected and evaporated in vacuo and the residue was recrystallized from ethyl acetate and diisopropyl ether to give methyl 6-amino-4-[(2-[4-

(trifluoromethyl)phenyl]-1-cyclohexen-1-yl}carbonyl)amino]-
2,3-dihydro-1H-inden-2-ylcarbamate (156 mg).

5 $^1\text{H-NMR}$ (DMSO-d₆) : δ 1.73 (4H, br.s), 2.49 (4H, br.s), 2.50-2.73
10 (2H, m), 2.84-2.98 (2H, m), 3.33 (3H, s), 4.04-4.18 (1H, m),
15 4.29 (2H, s), 6.37 (1H, s), 6.46 (1H, s), 7.37 (1H, d,
J=6.8Hz), 7.51 (2H, d, J=8.2Hz), 7.67 (2H, d, J=8.2Hz), 8.78
(1H, s)

Example 383

10 Methyl 6-amino-4-({[2-(4-methylphenyl)-1-cyclohexen-1-
15 yl]carbonyl}amino)-2,3-dihydro-1H-inden-2-ylcarbamate was
obtained in the same manner as in Example 382.

15 $^1\text{H-NMR}$ (DMSO-d₆) : δ 1.70 (4H, br.s), 2.22 (3H, s), 2.49 (4H,
br.s), 2.56-2.63 (2H, m), 2.83-2.98 (2H, m), 3.34 (3H, s),
4.05-4.17 (3H, m), 6.43 (1H, s), 6.56 (1H, s), 7.09 (2H, d,
J=8.1Hz), 7.16 (2H, d, J=8.1Hz), 7.39 (1H, d, J=6.9Hz), 8.52
(1H, s)

Preparation 174

20 A mixture of 2-formylbenzoic acid (3.0 g), 2-(2-
aminoethyl)pyridine (3.66 g) and sodium triacetoxyborohydride
25 (12.7 g) in dichloromethane (50 ml) was stirred at ambient
temperature for 14 hours. Water (30 ml) was added to a
reaction mixture and adjusted to pH 8.5 with 10% aqueous
potassium carbonate solution and stirred for 30 minutes. The
organic layer was washed with brine and dried over magnesium
sulfate. The solvent was evaporated in vacuo and the residue
was recrystallized from ethyl acetate and diisopropyl ether to
give 2-[2-(2-pyridinyl)ethyl]-1-isoindolinone (4.16 g).
30 $^1\text{H-NMR}$ (DMSO-d₆) : δ 3.13 (2H, t, J=7.1Hz), 3.92 (2H, t, J=7.1Hz),
4.43 (2H, s), 7.22-7.29 (1H, m), 7.31 (1H, d, J=7.8Hz), 7.50-
7.70 (5H, m), 8.48-8.51 (1H, m)

Preparation 175

35 2-[2-(2-Pyridinyl)ethyl]-1-isoindolinone (1.71 g) was
portionwise added to fuming nitric acid (d=1.52) (15 ml) at
-30°C to -10°C and the resultant mixture was stirred at -10°C
to -5°C for 20 minutes. The reaction mixture was poured into
ice-water and adjusted to pH 8.0 with aqueous potassium
carbonate solution and extracted with ethyl acetate and
tetrahydrofuran. The organic layer was washed with brine and

dried over magnesium sulfate. The solvent was concentrated in vacuo and the precipitate was collected by filtration to give 6-nitro-2-[2-(2-pyridinyl)ethyl]-1-isoindolinone (1.76 g)

5 $^1\text{H-NMR}$ (DMSO-d₆) : δ 3.11 (2H, t, J=7.0Hz), 3.94 (2H, t, J=7.0Hz),
4.61 (2H, s), 7.19-7.25 (1H, m), 7.32 (1H, d, J=7.8Hz), 7.66-
7.70 (1H, m), 7.87 (1H, d, J=8.0Hz), 8.30 (1H, d, J=2.1Hz),
8.41-8.49 (2H, m)

Preparation 176

A mixture of 6-nitro-2-[2-(2-pyridinyl)ethyl]-1-isoindolinone (760 mg) in methanol (20 ml) and tetrahydrofuran (10 ml) was hydrogenated over 10% palladium on carbon (300 mg) under an atmospheric pressure of hydrogen at ambient temperatute under stirring for 6 hours. After removal of the catalyst, the solvent was evaporated in vacuo and the residue 15 was washed with diisopropyl ether to give 6-amino-2-[2-(2-pyridinyl)ethyl]-1-isoindolinone (545 mg).

15 $^1\text{H-NMR}$ (DMSO-d₆) : δ 3.04 (2H, t, J=7.5Hz), 3.84 (2H, t, J=7.5Hz),
4.20 (2H, s), 5.27 (2H, s), 6.78-6.80 (2H, m), 7.13-7.30 (3H,
m), 7.64-7.69 (1H, m), 8.48-8.50 (1H, m)

20 Example 384

A mixture of 2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxylic acid (270 mg) and 6-amino-2-[2-(2-pyridinyl)ethyl]-1-isoindolinone (270 mg), 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide (163 mg) and 4-(dimethylamino)pyridine (2.5 mg) in N,N-dimethylformamide (30 ml) was stirred at ambient temperature overnight. The reation mixture was poured into a mixture of ethyl acetate and water and the organic layer was washed with brine and dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was chromatographed on silica gel eluting with ethyl acetate and methanol (96:4). The fractions containing the desired product were collected and evaporated in vacuo and the residue was recrystallized from ethyl acetate and diisopropyl ether to give N-{3-oxo-2-[2-(2-pyridinyl)ethyl]-2,3-dihydro-1H-isoindol-5-yl}-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (57 mg).

35 $^1\text{H-NMR}$ (DMSO-d₆) : δ 1.75 (4H, br.s), 2.50 (4H, br.s), 3.04 (2H, t, J=7.2Hz), 3.85 (2H, t, J=7.2Hz), 4.30 (2H, s), 7.18-7.30 (2H,

m), 7.38-7.72 (7H, m), 7.78 (1H, s), 8.47 (1H, d, J=4.2Hz),
9.87 (1H, s)

(+)ESI-MS: 506 (M+H)⁺, 528 (M+Na)⁺

Example 385

5 1-[3-(Dimethylamino)propyl]-3-ethylcarbodiimide (0.17 g) was added to a solution of 4-(2-pyridinylmethyl)aniline (0.18 g), 2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxylic acid (0.3 g), 1-hydroxybenzotriazole (0.15 g) and 4-dimethylaminopyridine (6 mg) in tetrahydrofuran (3ml) under ice-cooling and the mixture was stirred at ambient temperature for 18 hours. The reaction mixture was poured into water and the mixture was extracted with ethyl acetate. The organic layer was washed with water, dried over magnesium sulfate and evaporated in vacuo. The residue was crystallized from a mixture of ethyl acetate and diisopropyl ether to give N-[4-(2-pyridinylmethyl)phenyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (0.15 g).

10 ¹H-NMR (DMSO-d₆): δ 1.63-1.81 (4H, m), 2.34-2.47 (4H, m), 3.97 (2H, s), 7.10 (2H, d, J=8.4 Hz), 7.14-7.23 (2H, m), 7.25 (2H, d, J=8.4 Hz), 7.48 (2H, d, J=8.1 Hz), 7.61 (2H, d, J=8.1 Hz), 7.63-7.70 (1H, m), 8.45 (1H, dd, J=0.7Hz, 4.7 Hz), 9.59 (1H, s)

(+)ESI-MS: 437 (M+H)⁺, 459 (M+Na)⁺

Example 386

25 N-{4-[4-(2-Pyridinyl)-1-piperazinyl]phenyl}-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 385.

30 ¹H-NMR (DMSO-d₆): δ 1.68-1.80 (4H, m), 2.36-2.44 (4H, m), 3.08-3.16 (4H, m), 3.56-3.64 (4H, m), 6.63-6.69 (1H, m), 6.81-6.90 (3H, m), 7.20 (2H, d, J=9.0 Hz), 7.49 (2H, d, J=8.1 Hz), 7.52-7.57 (1H, m), 7.62 (2H, d, J=8.1 Hz), 8.11-8.16 (1H, m), 9.41 (1H, s)

(+)ESI-MS: 507 (M+H)⁺, 529 (M+Na)⁺

Example 387

To a solution of 2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxylic acid (698 mg) in toluene (8 ml) were added thionyl chloride (0.38 ml) and N,N-dimethylformamide (2 drops) and the mixture was stirred at 50°C for an hour. The mixture was evaporated in vacuo and the residue was dissolved in tetrahydrofuran (1 ml). The acid chloride in

tetrahydrofuran was added to a solution of tert-butyl 5-amino-2-pyridinyl(2-{6-[tert-butoxycarbonyl]amino}-2-pyridinyl)ethyl carbamate (1.11 g) and triethylamine (0.54 ml) in tetrahydrofuran (8 ml) at ambient temperature and the

5 mixture was stirred at the same temperature for an hour. The mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was purified by column chromatography on silica gel by eluting with

10 hexane:ethyl acetate (2:1→1:1) to give tert-butyl 2-{6-[(tert-butoxycarbonyl)amino]-2-pyridinyl}ethyl{5-[(2-[4-(trifluoromethyl)phenyl]-1-cyclohexen-1-yl)carbonyl]amino}-2-pyridinyl carbamate (1.458 g) as a white solid.

¹H-NMR(CDCl₃):δ 1.43(9H, s), 1.48(9H, s), 1.75-1.85(4H, m),
 15 2.40-2.50(2H, m), 2.50-2.60(2H, m), 3.05(2H, dd, J=8.9, 6.5 Hz);
 6.52(1H, s), 7.04(2H, d, J=8.1 Hz), 7.35-7.45(4H, m), 7.55-
 7.62(3H, m), 7.89(1H, d, J=2.4 Hz)
 ESI-MS (m/z): 704 (M+Na)⁺

Example 388

20 To a solution of tert-butyl 2-{6-[(tert-butoxycarbonyl)amino]-2-pyridinyl}ethyl{5-[(2-[4-(trifluoromethyl)phenyl]-1-cyclohexen-1-yl)carbonyl]amino}-2-pyridinyl carbamate (1.465 g) in dichloromethane (3 ml) was added trifluoroacetic acid (2.48 ml). The reaction mixture
 25 was stirred at ambient temperature for 22 hours, quenched with 10% aqueous potassium carbonate solution, and extracted with dichloromethane. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was recrystallized from ethyl acetate-diisopropyl ether to give N-(6-[(2-(6-amino-2-

30 pyridinyl)ethyl]amino)-3-pyridinyl)-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (680 mg) as white crystals.

¹H-NMR(CDCl₃):δ 1.70-1.90(4H, m), 2.40-2.48(2H, m), 2.48-2.5(2H, m), 2.85(2H, t, J=6.5 Hz), 3.54(2H, t, J=6.5 Hz), 4.43(2H, s),
 35 4.98(1H, s), 6.26(2H, d, J=8.9 Hz), 6.31-6.36(2H, m), 6.49(1H, d, J=7.3 Hz), 7.22(1H, dd, J=8.9, 2.7 Hz), 7.41(2H, d, J=8.1 Hz), 7.52(1H, d, J=2.7 Hz), 7.59(2H, d, J=8.4 Hz)

ESI-MS (m/z) : 482 (M+H)⁺

Example 389

To a solution of N-[4-(1-piperazinyl)phenyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (300 mg) and (1-trityl-1H-1,2,4-triazol-3-yl)methyl methanesulfonate (381 mg) in tetrahydrofuran (10 ml) was added triethylamine (92 mg) at ambient temperature. The mixture was stirred at the same temperature for 9 hours and poured into water followed by the extraction with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate and concentrated in vacuo. The residue was purified by column chromatography on silica gel by eluting with chloroform:methanol (9:1) to give 2-[4-(trifluoromethyl)phenyl]-N-(4-{4-[(1-trityl-1H-1,2,4-triazol-3-yl)methyl]-1-piperazinyl}phenyl)-1-cyclohexene-1-carboxamide (337 mg) as white crystals.

¹H-NMR (CDCl₃) : δ 1.79 (4H, brs), 2.42 (2H, brs), 2.54 (2H, brs), 2.64 (4H, brs), 3.10 (4H, brs), 3.76 (2H, s), 6.40 (1H, s), 6.72 (2H, d, J=8.9 Hz), 6.82 (2H, d, J=9.2 Hz), 7.11-7.17 (5H, m), 7.25-7.35 (10H, m), 7.41 (2H, d, J=7.9 Hz), 7.58 (2H, d, J=7.9 Hz), 7.92 (1H, s)

ESI-MS (m/z) : 775 (M+Na)⁺

Example 390

To a solution of 2-[4-(trifluoromethyl)phenyl]-N-(4-{4-[(1-trityl-1H-1,2,4-triazol-3-yl)methyl]-1-piperazinyl}phenyl)-1-cyclohexene-1-carboxamide (312 mg) in methanol (3 ml) was added 35% hydrochloric acid (230 mg). The mixture was stirred at ambient temperature for 3 hours. Ethyl acetate and 10% aqueous potassium carbonate solution were added, then the separated organic layer was washed with brine, dried over magnesium sulfate, and concentrated in vacuo. The residue was purified by column chromatography on silica gel by eluting with chloroform:methanol (19:1 to 9:1) to give N-{4-[4-(1H-1,2,4-triazol-3-ylmethyl)-1-piperazinyl]phenyl}-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (200 mg) as pale yellow crystals.

¹H-NMR (DMSO-d₆) : δ 1.73 (4H, brs), 2.50 (8H, brs), 3.02 (4H, brs), 3.67 (2H, brs), 6.75 (2H, d, J=8.9 Hz), 7.15 (2H, d, J=8.9 Hz),

7.47(2H, d, J=7.9 Hz), 7.61(2H, d, J=8.2 Hz), 7.86(0.55H, brs),
 8.48(0.45H, brs), 9.39(1H, s), 13.86(1H, brs)
 ESI-MS (m/z) : 533 (M+Na)⁺

Example 391

5 To a solution of N-[4-(1-piperazinyl)phenyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (300 mg) and 2-vinylpyridine (88 mg) in 2-propanol was added acetic acid (0.04 ml). The reaction mixture was refluxed for 20 hours, cooled, and concentrated in vacuo. The residue was
 10 crystallized from ethyl acetate-diisopropyl ether to give N-(4-{4-[2-(2-pyridinyl)ethyl]-1-piperazinyl}phenyl)-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (230 mg) as a white solid.

15 ¹H-NMR (DMSO-d₆) : δ 1.73(4H, br s), 2.38(4H, br s), 3.21(4H, br s), 3.24(6H, m), 3.53(2H, br s), 6.85(2H, d, J=8.9 Hz), 7.22(2H, d, J=8.6 Hz), 7.30(1H, dd, J=7.6, 4.9 Hz), 7.36(2H, d, J=7.9 Hz), 7.48(2H, d, J=8.2 Hz), 7.62(2H, d, J=8.2 Hz), 7.78(1H, td, J=7.6, 1.6 Hz), 8.53(1H, d, J=4.6 Hz), 9.49(1H, s)
 ESI-MS (m/z) : 535 (M+H)⁺

20 Preparation 177

To a solution of 2-methylpiperazine (5.02 g) in N,N-dimethylimidazolidinone (20 ml) was added 1-fluoro-4-nitrobenzene (2.36 g) at ambient temperature. The reaction was heated to 50°C and stirred for an hour. The reaction mixture was poured into water, then extracted with ethyl acetate. The separated organic layer was washed with water (three times) and brine, dried over magnesium sulfate and concentrated in vacuo to yield 3-methyl-1-(4-nitrophenyl)piperazine (3.35 g) as yellow crystals.

30 ¹H-NMR (CDCl₃) : δ 1.16(3H, d, J=6.3 Hz), 2.58(1H, dd, J=10.2 and 12.2 Hz), 2.86-3.04(3H, m), 3.10-3.19(1H, m), 3.70-3.83(2H, m), 6.82(2H, d, J=9.6 Hz), 8.12(2H, d, J=9.2 Hz)
 (+)ESI-MS (m/z) : 222 (M+H)⁺

Preparation 178

35 To a solution of 3-methyl-1-(4-nitrophenyl)piperazine (1.09 g) and di-tert-butyl dicarbonate (1.20 g) in tetrahydrofuran (20 ml) was added 4-(N,N-dimethyl)aminopyridine (30 mg) as a solid at ambient

temperature. The reaction mixture was stirred at ambient temperature for 19 hours and concentrated in vacuo. The residue was purified by column chromatography on silica gel by eluting with hexane:ethyl acetate (3:1) to give tert-butyl 2-methyl-4-(4-nitrophenyl)-1-piperazinecarboxylate (1.55 g) as orange colored crystals.

5 ¹H-NMR (CDCl₃): δ 1.23(3H, d, J=6.6 Hz), 1.49(9H, s), 3.13(1H, dt, J=4.0 and 10.6 Hz), 3.36(1H, dt, J=3.3 and 10.2 Hz), 3.61(1H, d, J=12.9 Hz), 3.74(1H, brd, J=12.2 Hz), 3.94(1H, dt, J=3.9 and 7.6 Hz), 4.34(1H, brs), 6.76(2H, d, J=9.6 Hz), 8.13(2H, d, J=9.3 Hz)

10 (+)ESI-MS (m/z): 344 (M+Na)⁺

Preparation 179

A solution of tert-butyl 2-methyl-4-(4-nitrophenyl)-1-piperazinecarboxylate (166 mg) in methanol (5 ml) was hydrogenated over 10% palladium on carbon (33 mg) at ambient temperature under atmospheric pressure of hydrogen for 40 minutes. The reaction mixture was filtered through a pad of celite, and the filtrate was concentrated in vacuo to give 15 tert-butyl 4-(4-aminophenyl)-2-methyl-1-piperazinecarboxylate (151 mg) as a dark red tar. The product was used for the next step without further purification.

Preparation 180

To a solution of 2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxylic acid (140 mg) in toluene (10 ml) were added thionyl chloride (92 mg) and N,N-dimethylformamide (2 drops) and the mixture was stirred at 50°C for 40 minutes. The mixture was evaporated in vacuo and the residue was dissolved in tetrahydrofuran (10 ml). The acid chloride in 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 67

phenyl}-1-piperazinecarboxylate (258 mg) as faintly purple crystals.

¹H-NMR (CDCl₃): δ 1.23(3H, d, J=6.6 Hz), 1.49(9H, s), 3.13(1H, dt, J=4.0 and 10.6 Hz), 3.36(1H, dt, J=3.3 and 10.2 Hz), 3.61(1H,

5 d, J=12.9 Hz), 3.74(1H, brd, J=12.2 Hz), 3.94(1H, dt, J=3.9 and 7.6 Hz), 4.34(1H, brs), 6.76(2H, d, J=9.6 Hz), 8.13(2H, d, J=9.3 Hz)

(+)ESI-MS (m/z): 566 (M+Na)⁺

Preparation 181

10 To a solution of tert-butyl 2-methyl-4-{4-[{(2-[4-(trifluoromethyl)phenyl]-1-cyclohexen-1-yl}carbonyl]amino}phenyl}-1-piperazinecarboxylate (238 mg) in dichloromethane (10 ml) was added trifluoroacetic acid (1.11 g). The reaction mixture was stirred for 13 hours, quenched 15 with 10% aqueous potassium carbonate solution, and extracted with dichloromethane. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated in vacuo to give N-[4-(3-methyl-1-piperazinyl)phenyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (187 mg)

20 as pale brown crystals.

¹H-NMR (CDCl₃): δ 1.49(3H, d, J=6.3 Hz), 1.80(4H, brs), 2.44(2H, brs), 2.54(2H, brs), 2.96(1H, brt, J=10.2 Hz), 3.10-3.28(2H, m), 3.35-3.52(4H, m), 6.46(1H, s), 6.73(2H, d, J=8.9 Hz), 6.87(2H, d, J=8.9 Hz), 7.41(2H, d, J=8.3 Hz), 7.59(2H, d,

25 J=8.2 Hz)

(+)ESI-MS (m/z): 444 (M+H)⁺

Example 392

To a solution of N-[4-(3-methyl-1-piperazinyl)phenyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (181 mg) and 3-formylbenzonitrile (111 mg) in dichloromethane (10 ml) was added sodium triacetoxyborohydride (268 mg) at ambient temperature. The reaction mixture was stirred for 17 hours, quenched with 10% aqueous potassium carbonate solution, and extracted with dichloromethane twice. The combined organic 30 layers were washed with brine, dried over magnesium sulfate, and concentrated in vacuo. The residue was purified by column chromatography on silica gel by eluting with hexane:ethyl acetate (2:1 to 1:1) to give N-{4-[4-(3-cyanobenzyl)-3-methyl-

1-piperazinyl]phenyl}-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (107 mg) as colorless crystals.

¹H-NMR (CDCl₃) :δ 1.17(3H, d, J=4.6 Hz), 1.80(4H, brs), 2.22-2.38(1H, m), 2.43(2H, brs), 2.54(2H, brs), 2.60-2.89(4H, m),

5 3.15-3.38(3H, m), 4.07(1H, d, J=14.2 Hz), 6.41(1H, brs), 6.73(2H, d, J=9.2 Hz), 6.83(2H, d, J=9.2 Hz), 7.35-7.46(3H, m), 7.51-7.62(4H, m), 7.68(1H, s)

(+)ESI-MS (m/z) :559 (M+H)⁺

Preparation 182

10 To a solution 2-{2-[(methylsulfonyl)oxy]ethyl}-4-nitrobenzyl methanesulfonate (1.5 g) in tetrahydrofuran (3 ml) was added ammonia (13.1 ml) at -78°C in the glass autoclave. The mixture was warmed at 24°C for 28 hours (120 psi). Ammonia was distilled off, and the mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, and evaporated in vacuo to give 6-nitro-1,2,3,4-tetrahydroisoquinoline (756 mg) as brown oil.

15 ¹H-NMR (CDCl₃) :δ 2.90(2H, t, J=5.7 Hz), 3.17(2H, t, J=5.9 Hz), 4.09(2H, s), 7.15(1H, d, J=9.2 Hz), 7.94-7.98(2H, m)

20 ESI-MS (m/z) : 179 (M+H)⁺

Preparation 183

To a solution of 6-nitro-1,2,3,4-tetrahydroisoquinoline (756 mg) in tetrahydrofuran (13.4 ml) was added di-t-butyl dicarbonate (1.02 g) and the mixture was stirred at ambient temperature for 15 hours. The mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was purified by column chromatography on silica gel by eluting with hexane:ethyl acetate (6:1) to give tert-butyl 6-nitro-3,4-dihydro-2(1H)-isoquinolinecarboxylate (906 mg) as a pale yellow powder.

25 ¹H-NMR (CDCl₃) :δ 1.50(9H, s), 2.94(2H, t, J=5.7 Hz), 3.69(2H, t, J=5.9 Hz), 4.66(2H, s), 7.26(1H, d, J=8.9 Hz), 8.02-8.06(2H,

30 m)

Preparation 184

A solution of tert-butyl 6-nitro-3,4-dihydro-2(1H)-isoquinolinecarboxylate (906 mg) in methanol (9 ml) was

hydrogenated over 10% palladium on carbon (453 mg, 50% wet) at ambient temperature under atmospheric pressure of hydrogen for 2 hours. The reaction mixture was filtered through a short pad of celite, and the filtrate was concentrated in vacuo to give tert-butyl 6-amino-3,4-dihydro-2(1H)-isoquinolinecarboxylate (808 mg) as a pale brown oil.

¹H-NMR (CDCl₃): δ 1.48(9H, s), 2.73(2H, t, J=5.4 Hz), 3.40-3.80(4H, m), 4.54(2H, s), 6.47(1H, d, J=2.2 Hz), 6.54(1H, dd, J=8.1, 2.2 Hz), 6.89(1H, d, J=7.8 Hz)

ESI-MS (m/z): 271 (M+Na)⁺

Preparation 185

To a solution of 2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxylic acid (1.14 g) in toluene (11.4 ml) were added thionyl chloride (0.617 ml) and N,N-dimethylformamide (3 drops) and the mixture was stirred at 80°C for an hour. The mixture was evaporated in vacuo and the residue was dissolved in tetrahydrofuran (3 ml). The acid chloride in tetrahydrofuran was added to a solution of tert-butyl 6-amino-3,4-dihydro-2(1H)-isoquinolinecarboxylate (808 mg) and triethylamine (0.68 ml) in tetrahydrofuran (5 ml) at ambient temperature and the mixture was stirred at the same temperature for 2 hours. The mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was recrystallized from ethyl acetate and hexane to give tert-butyl 6-[{(2-[4-(trifluoromethyl)phenyl]-1-cyclohexen-1-yl)carbonyl}amino]-3,4-dihydro-2(1H)-isoquinolinecarboxylate (1.382 g) as a white powder.

¹H-NMR (CDCl₃): δ 1.47(9H, s), 1.80(4H, br s), 2.44(2H, br s), 2.55(2H, br s), 2.69(2H, t, J=5.9 Hz), 3.56(2H, t, J=5.9 Hz), 4.59(2H, s), 6.45(1H, s), 6.67-6.80(1H, m), 6.90(1H, d, J=8.1 Hz), 7.41(2H, d, J=8.1 Hz), 7.59(2H, d, J=8.4 Hz)

ESI-MS (m/z): 523 (M+Na)⁺

Preparation 186

To a solution of tert-butyl 6-[{(2-[4-(trifluoromethyl)phenyl]-1-cyclohexen-1-yl)carbonyl}amino]-3,4-dihydro-2(1H)-isoquinolinecarboxylate (1.3 g) in

dichloromethane (6.5 ml) was added trifluoroacetic acid (1 ml). The reaction mixture was stirred at ambient temperature for 22.5 hours, quenched with 10% aqueous potassium carbonate solution, and extracted with tetrahydrofuran and ethyl acetate.

5 The organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was recrystallized from ethyl acetate-hexane to give N-(1,2,3,4-tetrahydro-6-isoquinolinyl)-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (1.016 g) as a white powder.

10 $^1\text{H-NMR}$ (DMSO-d₆): δ 1.75(4H, br s), 2.39(4H, br s), 2.67(2H, t, J=5.8 Hz), 3.03(2H, t, J=5.4 Hz), 3.88(2H, s), 6.89(1H, d, J=8.6 Hz), 7.04(1H, d, J=8.4 Hz), 7.14(1H, s), 7.47(2H, d, J=8.4 Hz), 7.62(2H, d, J=8.4 Hz), 9.54(1H, s)
ESI-MS (m/z): 401 (M+H)⁺

15 Example 393

To a solution N-(1,2,3,4-tetrahydro-6-isoquinolinyl)-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (165.6 mg) in dichloromethane (2.32 ml) was added 3-formylbenzonitrile (108 mg) and sodium triacetoxyborohydride (263 mg). The mixture was stirred at ambient temperature for 3 hours. The reaction mixture was quenched with 10% aqueous potassium carbonate solution, and extracted with tetrahydrofuran and ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was recrystallized from ethyl acetate-hexane to give N-[2-(3-cyanobenzyl)-1,2,3,4-tetrahydro-6-isoquinolinyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (194 mg) as a white powder.

16 $^1\text{H-NMR}$ (DMSO-d₆): δ 1.74(4H, br s), 2.39(4H, br s), 2.61-2.70(4H, m), 3.43(2H, s), 3.66(2H, s), 6.82(1H, d, J=8.4 Hz), 7.00(1H, dd, J=8.1, 1.9 Hz), 7.12(1H, d, J=2.2 Hz), 7.47(2H, d, J=8.4 Hz), 7.55(1H, t, J=7.6 Hz), 7.62(2H, d, J=8.4 Hz), 7.67-7.77(3H, m), 9.51(1H, s)
ESI-MS (m/z): 516 (M+H)⁺

35 Example 394

N-[2-(2-Cyanobenzyl)-1,2,3,4-tetrahydro-6-isoquinolinyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 393.

as a pale yellow powder.

¹H-NMR (DMSO-d₆) :δ 1.74(4H, br s), 2.38(4H, br s), 2.68(4H, br s), 3.49(2H, s), 3.78(2H, s), 6.83(1H, d, J=8.4 Hz), 7.00(1H, dd, J=8.4, 1.9 Hz), 7.13(1H, d, J=1.6 Hz), 7.45-7.50(3H, m), 5 7.60-7.71(4H, m), 7.82(1H, d, J=7.6 Hz), 9.52(1H, s)
ESI-MS (m/z) : 516 (M+H)⁺

Example 395

N-[2-(4-Cyanobenzyl)-1,2,3,4-tetrahydro-6-isoquinolinyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 393
10 as a white powder.

¹H-NMR (DMSO-d₆) :δ 1.74(4H, br s), 2.38(4H, br s), 2.61-2.70(4H, m), 3.43(2H, s), 3.69(2H, s), 6.82(1H, d, J=8.6 Hz), 7.00(1H, br d, J=8.4 Hz), 7.13(1H, br s), 7.47(2H, d, J=8.4 Hz), 15 7.54(2H, d, J=8.4 Hz), 7.62(2H, d, J=8.4 Hz), 7.79(2H, d, J=8.1 Hz), 9.51(1H, s)
ESI-MS (m/z) : 516 (M+H)⁺

Example 396

N-[2-(1,3-Thiazol-2-ylmethyl)-1,2,3,4-tetrahydro-6-isoquinolinyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 393
20 as pale yellow powder.

¹H-NMR (DMSO-d₆) :δ 1.73(4H, br s), 2.39(4H, br s), 2.72(4H, br s), 3.59(2H, s), 3.96(2H, s), 6.85(1H, d, J=8.1 Hz), 7.02(1H, dd, J=8.4, 2.2 Hz), 7.14(1H, d, J=1.9 Hz), 7.47(2H, d, J=8.4 Hz), 25 7.62(2H, d, J=8.1 Hz), 7.66(1H, d, J=3.2 Hz), 7.73(1H, d, J=3.2 Hz), 9.54(1H, s)
ESI-MS (m/z) : 498 (M+H)⁺

Example 397

30 To a solution of N-(1,2,3,4-tetrahydro-6-isoquinolinyl)-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (193.3 mg) in tetrahydrofuran (3.87 ml) were added triethylamine (80.7 μl) and (1-trityl-1H-1,2,4-triazol-3-yl)methyl methanesulfonate (243 mg). The mixture was stirred at ambient temperature for 4.5 hours. The reaction mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was purified by
35

column chromatography on silica gel by eluting with hexane:ethyl acetate (1:2) to give 2-[4-(trifluoromethyl)phenyl]-N-{2-[(1-trityl-1H-1,2,4-triazol-3-yl)methyl]-1,2,3,4-tetrahydro-6-isooquinolinyl}-1-cyclohexene-1-carboxamide (274 mg) as a pale yellow solid.

5 $^1\text{H-NMR}(\text{CDCl}_3):\delta$ 1.80(4H, br s), 2.43-2.54(4H, m), 2.74(4H, s), 3.57(2H, s), 3.85(2H, s), 6.41(1H, s), 6.61-6.76(3H, m), 7.12-7.16(6H, m), 7.28-7.34(9H, m), 7.40(2H, d, $J=8.1$ Hz), 7.59(2H, d, $J=8.1$ Hz), 7.92(1H, s)

10 ESI-MS (m/z): 746(M+Na)⁺

Example 398

To a solution of 2-[4-(trifluoromethyl)phenyl]-N-{2-[(1-trityl-1H-1,2,4-triazol-3-yl)methyl]-1,2,3,4-tetrahydro-6-isooquinolinyl}-1-cyclohexene-1-carboxamide (262.5 mg) in methanol (2.6 ml) was added 35% hydrochloric acid (0.15 ml). The mixture was stirred at ambient temperature for 24 hours. The mixture was poured into a mixture of water and saturated aqueous sodium bicarbonate solution, and extracted with ethyl acetate and tetrahydrofuran. The organic layer was washed with brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was recrystallized from ethyl acetate-hexane to give N-[2-(1H-1,2,4-triazol-3-ylmethyl)-1,2,3,4-tetrahydro-6-isooquinolinyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (143 mg) as a pale yellow powder.

15 $^1\text{H-NMR}(\text{DMSO-d}_6):\delta$ 1.73(4H, br s), 2.38(4H, br s), 2.67(4H, br s), 3.49(2H, s), 3.74(2H, s), 6.83(1H, d, $J=8.6$ Hz), 7.01(1H, dd, $J=8.4$, 2.2 Hz), 7.11(1H, s), 7.47(2H, d, $J=8.1$ Hz), 7.62(2H, d, $J=8.4$ Hz), 7.87(1/2H, br s), 8.46(1/2H, br s), 9.51(1H, s), 13.86(1H, s)

20 ESI-MS (m/z): 482(M+Na)⁺

Example 399

To a solution N-(1,2,3,4-tetrahydro-6-isooquinolinyl)-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (90 mg) in dichloromethane (1.3 ml) were added 3-methylbenzaldehyde (54 mg) and sodium triacetoxyborohydride (143 mg). The mixture was stirred at ambient temperature for 3.5 hours. The reaction mixture was quenched with 10% aqueous potassium carbonate solution, and extracted with ethyl acetate.

The organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The residue was recrystallized from ethyl acetate-hexane to give N-[2-(3-methylbenzyl)-1,2,3,4-tetrahydro-6-isoquinolinyl]-2-[4-

- 5 (trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide (90.2 mg) as a white powder.

¹H-NMR (DMSO-d₆) : δ 1.73(4H, br s), 2.29(3H, s), 2.38(4H, br s), 2.59-2.68(4H, m), 3.38(2H, s), 3.55(2H, s), 6.81(1H, d, J=8.1 Hz), 6.97-7.23(6H, m), 7.47(2H, d, J=7.8 Hz), 7.61(2H, d,

10 J=8.4 Hz), 9.48(1H, s)

ESI-MS (m/z) : 505 (M+H)⁺

Example 400

N-[2-(3-Methoxybenzyl)-1,2,3,4-tetrahydro-6-isoquinolinyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 399 as a pale yellow powder.

¹H-NMR (DMSO-d₆) : δ 1.23(4H, br s), 2.38(4H, br s), 2.59-2.68(4H, m), 3.42(2H, s), 3.60(2H, s), 3.73(3H, s), 6.82(1H, d, J=8.1 Hz), 6.88(1H, s), 6.90(1H, d, J=7.3 Hz), 7.00(1H, d, J=8.1 Hz), 7.11(1H, s), 7.23(1H, t, J=7.8 Hz), 7.31-7.38(1H, m), 7.47(2H, d, J=7.8 Hz), 7.61(2H, d, J=7.8 Hz), 9.49(1H, s)

ESI-MS (m/z) : 521 (M+H)⁺

Example 401

N-[2-(3-Chlorobenzyl)-1,2,3,4-tetrahydro-6-isoquinolinyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 399 as a white powder.

¹H-NMR (DMSO-d₆) : δ 1.73(4H, br s), 2.38(4H, br s), 2.61-2.69(4H, m), 3.42(2H, s), 3.61(2H, s), 6.81(1H, d, J=8.1 Hz), 7.00(1H, d, J=8.4 Hz), 7.12(1H, s), 7.25-7.38(4H, m), 7.47(2H, d, J=7.8 Hz), 7.62(2H, d, J=8.4 Hz), 9.49(1H, s)

ESI-MS (m/z) : 526 (M+H)⁺

Example 402

N-[2-(1H-Imidazol-5-ylmethyl)-1,2,3,4-tetrahydro-6-isoquinolinyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 399 as a pale yellow powder.

¹H-NMR (DMSO-d₆) : δ 1.24(4H, br s), 2.38(4H, br s), 2.62-2.65(4H,

m), 3.42(2H, s), 3.54(2H, s), 6.82(1H, d, J=8.6 Hz), 6.87(1H, s), 7.00(1H, d, J=8.4 Hz), 7.09(1H, s), 7.46(2H, d, J=8.4 Hz), 7.54(1H, s), 7.61(2H, d, J=8.1 Hz), 9.48(1H, s)
ESI-MS (m/z) : 481 (M+H)⁺

5 Example 403

N-[2-(1H-Imidazol-2-ylmethyl)-1,2,3,4-tetrahydro-6-isoquinolinyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 399 as a pale yellow powder.

10 ¹H-NMR (DMSO-d₆) : δ 1.73(4H, br s), 2.38(4H, br s), 2.60-2.68(4H, m), 3.44(2H, s), 3.63(2H, s), 6.53(1H, s), 6.83(1H, d, J=8.4 Hz), 6.91(2H, s), 7.01(1H, d, J=8.1 Hz), 7.11(1H, s), 7.46(2H, d, J=8.4 Hz), 7.60(2H, d, J=8.4 Hz), 9.49(1H, s)
ESI-MS (m/z) : 516 (M+H)⁺

15 Example 404

N-[2-(1H-Pyrrol-2-ylmethyl)-1,2,3,4-tetrahydro-6-isoquinolinyl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide was obtained in the same manner as in Example 399 as a pale brown powder.

20 ¹H-NMR (DMSO-d₆) : δ 1.73(4H, br s), 2.38(4H, br s), 2.56-2.66(4H, m), 3.38(2H, s), 3.52(2H, s), 5.91(2H, m), 6.23(1H, s), 6.81(1H, d, J=8.4 Hz), 7.00(1H, d, J=8.4 Hz), 7.10(1H, s), 7.46(2H, d, J=8.4 Hz), 7.61(2H, d, J=8.4 Hz), 9.48(1H, s), 10.67(1H, s)

25 ESI-MS (m/z) : 480 (M+H)⁺

Example 405

To a solution of 1-(2-pyridinylacetyl)-5-indolinamine (760 mg), 2-[4-(trifluoromethyl)phenyl]-1-cyclopentene-1-carboxylic acid (846 mg) and benzotriazol-1-yl-oxytritypyrrolidinophosphonium hexafluorophosphate (PyBOP) (2.92 g) in N,N-dimethylformamide (30 ml) was added dropwise diisopropylethylamine (776 mg) at ambient temperature and the mixture was stirred at the same temperature for 16 hours. The mixture was poured into a mixture of ethyl acetate, water and 6N hydrochloric acid, and the separated organic layer was washed with water and brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was purified by column chromatography on silica gel eluting with ethyl acetate and

crystallized from ethyl acetate to give N-[1-(2-pyridinylacetyl)-2,3-dihydro-1H-indol-5-yl]-2-[4-(trifluoromethyl)phenyl]-1-cyclopentene-1-carboxamide (754 mg) as white crystals.

- 5 ¹H-NMR (DMSO-d₆) :δ 1.9-2.1(2H, m), 2.8-2.95(4H, m), 3.12(2H, t, J=8.3 Hz), 3.99(2H, s), 4.19(2H, t, J=8.3 Hz), 7.2-7.4(3H, m), 7.5-7.8(6H, m), 7.2-7.4(5H, m), 7.92(1H, d, J=8.7 Hz), 8.45-8.5(1H, m), 9.91(1H, s)
 ESI-MS (m/z) : 514 (M+Na)⁺, 492 (M+H)⁺

10 Example 406

N-[1-(2-Pyridinylacetyl)-2,3-dihydro-1H-indol-5-yl]-2-[4-(trifluoromethyl)phenyl]-1-cycloheptene-1-carboxamide was obtained in the same manner as in Example 405 as white crystals.

- 15 ¹H-NMR (DMSO-d₆) :δ 1.6-1.9(6H, m), 2.21(3H, s), 2.4-2.5(4H, m), 2.85(2H, t, J=7.7 Hz), 3.99(2H, t, J=7.7 Hz), 7.0-7.3(8H, m), 7.37(2H, d, J=8.7 Hz), 7.6-7.7(1H, m), 8.25(1H, s), 8.45(1H, d, J=3.9 Hz), 9.42(1H, s)
 ESI-MS (m/z) : 488 (M+Na)⁺, 466 (M+H)⁺

20 Example 407

N-[1-(2-Pyridinylacetyl)-2,3-dihydro-1H-indol-5-yl]-2-[4-(trifluoromethyl)phenyl]-1-cyclooctene-1-carboxamide was obtained in the same manner as in Example 405 as white crystals.

- 25 ¹H-NMR (DMSO-d₆) :δ 1.6-1.9(6H, m), 2.21(3H, s), 2.4-2.5(4H, m), 2.85(2H, t, J=7.7 Hz), 3.99(2H, t, J=7.7 Hz), 7.0-7.3(8H, m), 7.37(2H, d, J=8.7 Hz), 7.6-7.7(1H, m), 8.25(1H, s), 8.45(1H, d, J=3.9 Hz), 9.42(1H, s)
 ESI-MS (m/z) : 488 (M+Na)⁺, 466 (M+H)⁺

30 Example 408

2-(4-Methylphenyl)-N-[1-(2-pyridinylacetyl)-2,3-dihydro-1H-indol-5-yl]-1-cyclooctene-1-carboxamide was obtained in the same manner as in Example 405 as white crystals.

- 35 ¹H-NMR (DMSO-d₆) :δ 1.6-1.9(6H, m), 2.21(3H, s), 2.4-2.5(4H, m), 2.85(2H, t, J=7.7 Hz), 3.99(2H, t, J=7.7 Hz), 7.0-7.3(8H, m), 7.37(2H, d, J=8.7 Hz), 7.6-7.7(1H, m), 8.25(1H, s), 8.45(1H, d, J=3.9 Hz), 9.42(1H, s)
 ESI-MS (m/z) : 488 (M+Na)⁺, 466 (M+H)⁺

Example 409

2-(4-Methylphenyl)-N-[1-(2-pyridinylacetyl)-2,3-dihydro-1H-indol-5-yl]-1-cyclopentene-1-carboxamide was obtained in the same manner as in Example 405 as white crystals.

- 5 $^1\text{H-NMR}$ (DMSO- d_6) : δ 1.85-2.05(2H, m), 2.25(3H, s), 2.7-2.9(4H, m),
 3.12(2H, t, $J=8.5$ Hz), 3.99(2H, s), 4.19(2H, t, $J=8.5$ Hz),
 7.10(2H, d, $J=8.0$ Hz), 7.2-7.4(5H, m), 7.56(1H, s), 7.65-
 7.8(1H, m), 7.92(1H, d, $J=8.7$ Hz), 8.49(1H, d, $J=4.1$ Hz),
 9.85(1H, s)
- 10 negative ESI-MS (m/z) : 436(M-H)⁻

Example 410

- To a suspension of 2-(4-methylphenyl)-1-cyclohexene-1-carboxylic acid (2.38 g) in toluene (23 ml) were added thionyl chloride (1.78 g) and N,N-dimethylformamide (3 drops) and the mixture was stirred at 70°C for 3 hours. The mixture was evaporated to dryness and the crude acid chloride was dissolved in tetrahydrofuran (15 ml). To a solution of 4-aminophenyl(2-(2-pyridinyl)ethyl)formamide (2.413 g) in tetrahydrofuran (40 ml) and triethylamine (2.02 g) was added dropwise the above acid chloride solution at ambient temperature and the mixture was stirred at the same temperature for 16 hours. The mixture was poured into a mixture of ethyl acetate, water, and 6N hydrochloric acid and the separated organic layer was washed with water and brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was purified by column chromatography on silica gel eluting with ethyl acetate to give N-(4-{formyl[2-(2-pyridinyl)ethyl]amino}phenyl)-2-(4-methylphenyl)-1-cyclohexene-1-carboxamide (3.58 g) as a brown powder.

- 30 $^1\text{H-NMR}$ (DMSO- d_6) : δ 1.6-1.8(4H, m), 2.3-2.45(4H, m), 2.85(2H, t, $J=7.2$ Hz), 4.04(2H, t, $J=7.2$ Hz), 7.0-7.25(8H, m), 7.42(2H, d, $J=8.8$ Hz), 7.6-7.75(1H, m), 8.25(1H, s), 8.45-8.5(1H, m), 9.65(1H, s)
- ESI-MS (m/z) : 462(M+Na)⁺, 440(M+H)⁺

Example 411

To a suspension of N-(4-{formyl[2-(2-pyridinyl)ethyl]amino}phenyl)-2-(4-methylphenyl)-1-cyclohexene-1-carboxamide (3.56 g) in methanol (20 ml) was

added dropwise concentrated hydrochloric acid (3.8 ml) at ambient temperature and the mixture was stirred at 35°C for 5 hours. The mixture was poured into a mixture of ethyl acetate and water, and adjusted to pH 8 with 50% aqueous potassium carbonate solution. The separated organic layer was washed with water and brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was purified by column chromatography on silica gel eluting with ethyl acetate and recrystallized from ethyl acetate and diisopropyl ether to give 2-(4-methylphenyl)-N-(4-({2-(2-pyridinyl)ethyl}amino)-phenyl)-1-cyclohexene-1-carboxamide (1.29 g) as white crystals.

¹H-NMR (DMSO-d₆) : δ 1.5-2.0 (4H, m), 2.2-2.35 (4H, m), 2.94 (2H, t, J=7.0 Hz), 3.32 (2H, td, J=7.0 and 5.7 Hz), 5.46 (1H, t, J=5.7 Hz), 6.48 (2H, d, J=8.8 Hz), 7.07 (2H, d, J=8.0 Hz), 7.15-7.35 (6H, m), 7.65-7.8 (1H, m), 8.50 (1H, d, J=4.4 Hz), 9.55 (1H, s)

ESI-MS (m/z) : 434 (M+Na)⁺, 412 (M+H)⁺

Preparation 187

To a solution of 1,4-benzenediamine (1.298 g) and triethylamine (1.52 g) in acetonitrile (50 ml) was added dropwise a solution of 2-(4-methylphenyl)-1-cyclohexene-1-carboxylic acid chloride (3.52 g) in acetonitrile (20 ml) at 5°C under a nitrogen atmosphere and the mixture was stirred at the same temperature for 4 hours. Methanol (4 ml) was added and the mixture was stirred for 10 minutes. The mixture was extracted with ethyl acetate and the separated organic layer was washed with water and brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was dissolved in ethyl acetate (80 ml) and methanesulfonic acid (1.15 g) was added to the solution. The resulting precipitates were collected by filtration and washed with ethyl acetate to give N-(4-aminophenyl)-2-(4-methylphenyl)-1-cyclohexene-1-carboxamide methanesulfonate (4.28 g) as a pale brown powder.

¹H-NMR (DMSO-d₆) : δ 1.6-1.8 (4H, m), 2.20 (3H, s), 2.31 (3H, s), 2.25-2.4 (4H, m), 6.95-7.3 (6H, m), 7.4-7.5 (2H, m), 9.66 (1H, s)

ESI-MS (m/z) : 329 (M+Na)⁺, 307 (M+H)⁺

Example 412

To a suspension of N-(4-aminophenyl)-2-(4-methylphenyl)-

- 1-cyclohexene-1-carboxamide methanesulfonate (3.06 g) in 2-propanol (30 ml) was added 2-vinylpyridine (961 mg) and the mixture was refluxed for 16 hours. The reaction mixture was evaporated in vacuo. The residue was purified by column chromatography on silica gel eluting with ethyl acetate and recrystallized from ethyl acetate:diisopropyl ether (1:1) to give 2-(4-methylphenyl)-N-(4-[(2-(2-pyridinyl)ethyl]amino)-phenyl)-1-cyclohexene-1-carboxamide (2.15 g) as pale brown crystals.
- 5 chromatography on silica gel eluting with ethyl acetate and recrystallized from ethyl acetate:diisopropyl ether (1:1) to give 2-(4-methylphenyl)-N-(4-[(2-(2-pyridinyl)ethyl]amino)-phenyl)-1-cyclohexene-1-carboxamide (2.15 g) as pale brown crystals.
- 10 $^1\text{H-NMR}$ (DMSO-d₆): δ 1.7-1.9 (4H, m), 2.22 (3H, s), 2.25-2.4 (4H, m), 2.94 (2H, t, J=7.0 Hz), 3.30 (2H, td, J=7.0 and 5.6 Hz), 5.43 (1H, t, J=5.6 Hz), 6.43 (2H, d, J=8.9 Hz), 6.95-7.3 (10H, m), 7.6-7.75 (1H, m), 8.45-8.5 (1H, m), 9.05 (1H, s)
ESI-MS (m/z): 434 (M+Na)⁺, 412 (M+H)⁺
- 15 Example 413
To a solution of 2-(phenylacetyl)-5-isoindolinamine in N,N-dimethylformamide (0.5 mol/L, 20 μ l) were added a solution of 1-hydroxybenzotriazole hydrate in N,N-dimethylformamide (1 mol/L, 15 μ l) and a solution of 2-[4-(trifluoromethyl)phenyl]-1-cyclopentene-1-carboxylic acid in N,N-dimethylformamide (0.1 mol/L, 150 μ l) at ambient temperature. To the mixture was added a solution of 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide (1 mol/L, 15 μ l) and the mixture was stirred at 50°C for 6 hours. The reaction mixture was diluted with ethyl acetate (10 ml), washed with water, saturated aqueous sodium hydrogencarbonate solution and brine, and evaporated in vacuo to give N-[2-(phenylacetyl)-2,3-dihydro-1H-isoindol-5-yl]-2-[4-(trifluoromethyl)phenyl]-1-cyclopentene-1-carboxamide as a solid.
- 20 25 30 (+)ESI-MS (m/z): 513 (M+Na)⁺

Examples 414-419

The compounds of Examples 414-419 shown in Table 4 were obtained in the same manner as in Example 413 as a solid.

Example 420

- 35 To a solution of 2-(4-bromophenyl)-N-(2,3-dihydro-1H-isoindol-5-yl)-1-cyclohexene-1-carboxamide in N,N-dimethylformamide (0.5 mol/L, 20 μ l) were added a solution of 1-hydroxybenzotriazole hydrate in N,N-dimethylformamide (1

mol/L, 15 μ l) and a solution of 2-phenoxypropanoic acid in N,N-dimethylformamide (0.1 mol/L, 150 μ l) at ambient temperature. To the mixture was added a solution of 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide (1 mol/L, 15 μ l) 5 and the mixture was stirred at 50°C for 6 hours. The reaction mixture was diluted with ethyl acetate (10 ml), washed with water, saturated aqueous sodium hydrogencarbonate solution and brine, and evaporated in vacuo to give 2-(4-bromophenyl)-N-[2-(2-phenoxypropanoyl)-2,3-dihydro-1H-isoindol-5-yl]-1-
10 cyclohexene-1-carboxamide as a solid.

(+)ESI-MS (m/z) : 568 (M+Na)⁺

Examples 421-449

The compounds of Examples 421-449 shown in Table 4 were obtained in the same manner as in Example 420 as a solid.

15

Table 4

Example No.	IUPAC name	(+) ESI-MS M+Na
413	N-[2-(phenylacetyl)-2,3-dihydro-1H-isoindol-5-yl]-2-[4-(trifluoromethyl)phenyl]-1-cyclopentene-1-carboxamide	513
414	N-[2-(phenylacetyl)-2,3-dihydro-1H-isoindol-5-yl]-2-[4-(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide	527
415	N-[2-(phenylacetyl)-2,3-dihydro-1H-isoindol-5-yl]-4-[4-(trifluoromethyl)phenyl]-2,5-dihydro-3-furancarboxamide	515
416	2-(4-fluorophenyl)-N-[2-(phenylacetyl)-2,3-dihydro-1H-isoindol-5-yl]-1-cyclohexene-1-carboxamide	477
417	2-(4-chlorophenyl)-N-[2-(phenylacetyl)-2,3-dihydro-1H-isoindol-5-yl]-1-cyclohexene-1-carboxamide	494
418	2-(4-bromophenyl)-N-[2-(phenylacetyl)-2,3-dihydro-1H-isoindol-5-yl]-1-cyclohexene-1-carboxamide	538
419	2-phenyl-N-[2-(phenylacetyl)-2,3-dihydro-1H-isoindol-5-yl]-1-cyclopentene-1-carboxamide	445
420	2-(4-bromophenyl)-N-[2-(2-phenoxypropanoyl)-2,3-dihydro-1H-isoindol-5-yl]-1-cyclohexene-1-carboxamide	568
421	2-(4-bromophenyl)-N-[2-(1-naphthylacetyl)-2,3-dihydro-1H-isoindol-5-yl]-1-cyclohexene-1-carboxamide	588
422	2-(4-bromophenyl)-N-[2-[2-(4-chlorophenoxy)-2-methylpropanoyl]-2,3-dihydro-1H-isoindol-5-yl]-1-cyclohexene-1-carboxamide	617
423	2-(4-bromophenyl)-N-[2-[(4-chlorophenoxy)acetyl]-2,3-dihydro-1H-isoindol-5-yl]-1-cyclohexene-1-carboxamide	589
424	2-(4-bromophenyl)-N-[2-[(2-chlorophenyl)acetyl]-2,3-dihydro-1H-isoindol-5-yl]-1-cyclohexene-1-carboxamide	573
425	2-(4-bromophenyl)-N-[2-[(3,4-dimethoxyphenyl)acetyl]-2,3-dihydro-1H-isoindol-5-yl]-1-cyclohexene-1-carboxamide	598
426	2-(4-bromophenyl)-N-[2-[(4-fluorophenyl)acetyl]-2,3-dihydro-1H-isoindol-5-yl]-1-cyclohexene-1-carboxamide	556
427	2-(4-bromophenyl)-N-[2-((2E)-3-phenyl-2-propenoyl)-2,3-dihydro-1H-isoindol-5-yl]-1-cyclohexene-1-carboxamide	550

Example No.	IUPAC name	(+) ESI-MS M+Na
428	2-(4-bromophenyl)-N-[2-[(2E)-3-(3,4-dimethoxyphenyl)-2-propenoyl]-2,3-dihydro-1H-isoindol-5-yl]-1-cyclohexene-1-carboxamide	610
429	2-(4-bromophenyl)-N-[2-(4-phenylbutanoyl)-2,3-dihydro-1H-isoindol-5-yl]-1-cyclohexene-1-carboxamide	566
430	2-(4-bromophenyl)-N-[2-(2-thienylacetyl)-2,3-dihydro-1H-isoindol-5-yl]-1-cyclohexene-1-carboxamide	544
431	2-(4-bromophenyl)-N-[2-(1H-indol-3-ylacetyl)-2,3-dihydro-1H-isoindol-5-yl]-1-cyclohexene-1-carboxamide	577
432	2-(4-bromophenyl)-N-[2-(cyclopentylacetyl)-2,3-dihydro-1H-isoindol-5-yl]-1-cyclohexene-1-carboxamide	530
433	2-(4-bromophenyl)-N-[2-(cyclohexylacetyl)-2,3-dihydro-1H-isoindol-5-yl]-1-cyclohexene-1-carboxamide	544
434	2-(4-bromophenyl)-N-[2-(3-phenoxybenzoyl)-2,3-dihydro-1H-isoindol-5-yl]-1-cyclohexene-1-carboxamide	616
435	2-(4-bromophenyl)-N-[2-(3-phenylpropanoyl)-2,3-dihydro-1H-isoindol-5-yl]-1-cyclohexene-1-carboxamide	552
436	2-(4-bromophenyl)-N-[2-[(1-naphthoxy)acetyl]-2,3-dihydro-1H-isoindol-5-yl]-1-cyclohexene-1-carboxamide	604
437	2-(4-bromophenyl)-N-[2-(2-naphthylacetyl)-2,3-dihydro-1H-isoindol-5-yl]-1-cyclohexene-1-carboxamide	588
438	2-(4-bromophenyl)-N-[2-(diphenylacetyl)-2,3-dihydro-1H-isoindol-5-yl]-1-cyclohexene-1-carboxamide	614
439	2-(4-bromophenyl)-N-[2-(phenoxyacetyl)-2,3-dihydro-1H-isoindol-5-yl]-1-cyclohexene-1-carboxamide	554
440	2-(4-bromophenyl)-N-[2-[(2-bromophenyl)acetyl]-2,3-dihydro-1H-isoindol-5-yl]-1-cyclohexene-1-carboxamide	617
441	2-(4-bromophenyl)-N-[2-[(2-(trifluoromethyl)phenyl)acetyl]-2,3-dihydro-1H-isoindol-5-yl]-1-cyclohexene-1-carboxamide	606
442	2-(4-bromophenyl)-N-[2-[(3-(trifluoromethyl)phenyl)acetyl]-2,3-dihydro-1H-isoindol-5-yl]-1-cyclohexene-1-carboxamide	606

Example No.	IUPAC name	(+) ESI-MS M+Na
443	2-(4-bromophenyl)-N-{2-[(4-bromophenyl)acetyl]-2,3-dihydro-1H-isoindol-5-yl}-1-cyclohexene-1-carboxamide	617
444	2-(4-bromophenyl)-N-{2-[(4-chlorophenyl)acetyl]-2,3-dihydro-1H-isoindol-5-yl}-1-cyclohexene-1-carboxamide	573
445	2-(4-bromophenyl)-N-{2-[(4-methoxyphenyl)acetyl]-2,3-dihydro-1H-isoindol-5-yl}-1-cyclohexene-1-carboxamide	568
446	N- (2-{{3,5-bis(trifluoromethyl)phenyl}acetyl}-2,3-dihydro-1H-isoindol-5-yl)-2-(4-bromophenyl)-1-cyclohexene-1-carboxamide	674
447	2-(4-bromophenyl)-N-{2-[3-(phenylsulfonyl)propanoyl]-2,3-dihydro-1H-isoindol-5-yl}-1-cyclohexene-1-carboxamide	616
448	N-[2-(1,3-benzodioxol-5-ylacetyl)-2,3-dihydro-1H-isoindol-5-yl]-2-(4-bromophenyl)-1-cyclohexene-1-carboxamide	582
449	2-(4-bromophenyl)-N-{2-[(3-oxo-2,3-dihydro-1H-inden-1-yl)carbonyl]-2,3-dihydro-1H-isoindol-5-yl}-1-cyclohexene-1-carboxamide	578

This application is based on application No. PR 9164
 filed in Australia, application No. PS 0443 filed in Australia,
 application No. 91106855 filed in Republic of China (Taiwan),
 5 and PCT application No. PCT/JP02/03529, the content of which
 is incorporated hereinto by reference.

CLAIMS

1. A compound of the formula (I)

5. wherein . . .

R^1 is aryl optionally substituted by substituent(s);

R^2 is aryl, heteroaryl, lower cycloalkyl, aryloxy, arylsulfonyl, vinyl, carbamoyl, protected carboxy or protected amino, each of said aryl, heteroaryl, lower cycloalkyl, aryloxy and arylsulfonyl is optionally substituted by substituent(s);

is bivalent residue derived from aryl or heteroaryl, each of which is optionally substituted by nitro, oxo or 15 optionally protected amino;

X is bivalent residue derived from the group consisting of cycloalkene, naphthalene, unsaturated 5 or 6-membered heteromonocyclic group, each of which is optionally substituted by substituent(s), and benzene which is 20 substituted by substituent(s);

Y is $-(\text{A}^1)_{m1}-(\text{A}^2)_{m2}-$

wherein A^1 is $-\text{NH}-$, $-\text{N}(\text{R}^3)-$, $-\text{CO}-$, $-\text{NH-CO}-$, $-\text{CO-NH}-$, $-\text{CO-CH=CH-}$, $-\text{O}-$, $-\text{CH}_2-\text{O}-$, $-\text{CH}_2-\text{NH-CO}-$, $-\text{CH}_2-\text{CO-NH}$ or $-\text{CH}(\text{OH})-$, wherein R^3 is amino protective group,

25 A^2 is lower alkylene optionally substituted by aryl, and $m1$ and $m2$ are independently 0 or 1; and

Z is direct bond or bivalent residue derived from piperazine or piperazine substituted by lower alkyl;

provided that when Z is direct bond, then R^2 is aryl,

30 heteroaryl, lower cycloalkyl, aryloxy, arylsulfonyl or protected amino, each of said aryl, heteroaryl, lower cycloalkyl, aryloxy and arylsulfonyl is optionally substituted by substituent(s),

or a salt thereof.

2. The compound of claim 1, wherein
 R¹ is aryl optionally substituted by substituent(s);
 5 R² is aryl, heteroaryl, lower cycloalkyl, aryloxy,
 arylsulfonyl, vinyl, carbamoyl, protected carboxy or
 protected amino, each of said aryl, heteroaryl, lower
 cycloalkyl, aryloxy and arylsulfonyl is optionally
 substituted by substituent(s) selected from the group
 10 consisting of lower alkyl, trihalo(lower)alkyl,
 optionally protected amino, optionally substituted
 heteroaryl, cyano, lower alkoxy, halogen, aryloxy, lower
 alkylenedioxy, oxo, lower alkanoylamino and amino
 protective group;

15

- is bivalent residue derived from aryl or heteroaryl,
 each of which is optionally substituted by nitro, oxo or
 optionally protected amino;
 X is bivalent residue derived from the group consisting of
 20 cycloalkene, naphthalene, unsaturated 5 or 6-membered
 heteromonocyclic group, each of which is optionally
 substituted by substituent(s), and benzene which is
 substituted by substituent(s);
 Y is -(A¹)_{m1}-(A²)_{m2}-
 25 wherein A¹ is -NH-, -N(R³)-, -CO-, -NH-CO-, -CO-NH-,
 -CO-CH=CH-, -O-, -CH₂-O-, -CH₂-NH-CO-, -CH₂-CO-NH or
 -CH(OH)-, wherein R³ is amino protective group,
 A² is lower alkylene optionally substituted by aryl, and
 m1 and m2 are independently 0 or 1; and
 30 Z is direct bond or bivalent residue derived from piperazine
 or piperazine substituted by lower alkyl;
 provided that when Z is direct bond, then R² is aryl,
 heteroaryl, lower cycloalkyl, aryloxy, arylsulfonyl or
 35 protected amino, each of said aryl, heteroaryl, lower
 cycloalkyl, aryloxy and arylsulfonyl is optionally
 substituted by substituent(s) selected from the group

consisting of lower alkyl, trihalo(lower)alkyl,
 optionally protected amino, optionally substituted
 heteroaryl, cyano, lower alkoxy, halogen, aryloxy, lower
 alkylenedioxy, oxo, lower alkanoylamino and amino
 5 protective group,
 or a salt thereof.

3. The compound of claim 2, wherein
 R¹ is phenyl optionally substituted by substituent(s) selected
 10 from the group consisting of lower alkyl, lower alkoxy,
 halogen, trihalo(lower)alkyl, trihalo(lower)alkoxy,
 lower alkanoyl, di(lower)alkylamino and lower alkylthio;
 R² is phenyl, naphthyl, indanyl, pyridinyl, pyrimidinyl,
 15 pyrazinyl, thiazolyl, pyrrolyl, imidazolyl, triazolyl,
 thienyl, indolyl, lower cycloalkyl, phenoxy, naphthyloxy,
 phenylsulfonyl or protected amino, each of said phenyl,
 naphthyl, indanyl, pyridinyl, pyrimidinyl, pyrazinyl,
 thiazolyl, pyrrolyl, imidazolyl, triazolyl, thienyl,
 20 indolyl, lower cycloalkyl, phenoxy, naphthyloxy and
 phenylsulfonyl is optionally substituted by
 substituent(s) selected from the group consisting of
 lower alkyl, trihalo(lower)alkyl, optionally protected
 amino, optionally substituted pyrrolyl, cyano, lower
 25 alkoxy, halogen, aryloxy, lower alkylenedioxy, oxo,
 lower alkanoylamino and amino protective group;

is bivalent residue derived from phenyl optionally
 substituted by nitro or optionally protected amino,
 indanyl, pyridinyl, indolinyl, tetrahydroisoquinolyl or
 30 isoindolinyl each of which is optionally substituted by
 oxo or amino;
 X is bivalent residue derived from the group consisting of
 cycloalkene, naphthalene, unsaturated 5 or 6-membered
 heteromonocyclic group, each of which is optionally
 35 substituted by substituent(s), and benzene which is
 substituted by substituent(s), wherein the substituent

is selected from the group consisting of lower alkyl, lower alkoxy, halogen, lower alkanoyl, lower alkoxy(lower)alkyl and hydroxy(lower)alkyl;

Y is $-(A^1)^{m1}-(A^2)^{m2}-$

5 wherein A^1 is $-NH-$, $-N(R^3)-$, $-CO-$, $-NH-CO-$, $-CO-NH-$, $-CO-CH=CH-$, $-O-$, $-CH_2-O-$, $-CH_2-NH-CO-$, $-CH_2-CO-NH-$ or $-CH(OH)-$, wherein R^3 is amino protective group, A^2 is lower alkylene optionally substituted by aryl, and $m1$ and $m2$ are independently 0 or 1; and

10 Z is direct bond,
or a salt thereof.

4. The compound of claim 3, wherein

R¹ is phenyl optionally substituted by substituent(s) selected
15 from the group consisting of methyl, ethyl, isopropyl, methoxy, chloro, fluoro, bromo, trifluoromethyl, trifluoromethoxy, acetyl, dimethylamino and methylthio;
R² is pyridinyl, pyrimidinyl, pyrazinyl or thiazolyl, each of
20 said pyridinyl, pyrimidinyl, pyrazinyl and thiazolyl is optionally substituted by substituent(s) selected from the group consisting of methyl, amino, acetylamino or tert-butoxycarbonylamino, optionally substituted pyrrolyl, cyano and methoxy;

25 is bivalent residue derived from phenyl or pyridinyl;

X is

wherein R^4 is lower alkyl, lower alkoxy, lower alkanoyl,

hydroxy(lower)alkyl, lower alkoxy(lower)alkyl or halogen,

R⁵ is hydrogen or lower alkyl, and

n is 3, 4, 5 or 6;

Y is direct bond or bivalent residue selected from the group

5 consisting of

wherein q is an integer of 0 to 3, and R⁶ is amino protective group,

10 or a salt thereof.

5. The compound of claim 1, wherein X is

wherein n is 3, 4, 5 or 6,

15 or a salt thereof.

6. The compound of claim 5, wherein

R¹ is phenyl optionally substituted by substituent(s) selected from the group consisting of lower alkyl, lower alkoxy, halogen, trihalo(lower)alkyl, trihalo(lower)alkoxy,

20

lower alkanoyl, di(lower)alkylamino and lower alkylthio;
R² is aryl, heteroaryl, lower cycloalkyl, aryloxy,
arylsulfonyl, vinyl, carbamoyl, protected carboxy or
protected amino, each of said aryl, heteroaryl, lower
5 cycloalkyl, aryloxy and arylsulfonyl is optionally
substituted by substituent(s) selected from the group
consisting of lower alkyl, trihalo(lower)alkyl,
optionally protected amino, optionally substituted
heteroaryl, cyano, lower alkoxy, halogen, aryloxy, lower
10 alkylenedioxy, oxo, lower alkanoylamino and amino
protective group;

is bivalent residue derived from aryl or heteroaryl;

X is

15 wherein n is 3, 4, 5 or 6;

Y is -(A¹)_{m1}-(A²)_{m2}-
wherein A¹ is -NH-, -N(R³)-, -CO-, -NH-CO-, -CO-NH-,
-CO-CH=CH-, -O-, -CH₂-O-, -CH₂-NH-CO-, -CH₂-CO-NH- or
-CH(OH)-, wherein R³ is amino protective group,

20 -CH₂-OH, wherein R³ is amino protective group,
A² is lower alkylene optionally substituted by aryl, and
m₁ and m₂ are independently 0 or 1; and

Z is direct bond or bivalent residue derived from piperazine
or piperazine substituted by lower alkyl;

25 provided that when Z is direct bond, then R² is aryl,
heteroaryl, lower cycloalkyl, aryloxy, arylsulfonyl or
protected amino, each of said aryl, heteroaryl, lower
cycloalkyl, aryloxy and arylsulfonyl is optionally
substituted by substituent(s) selected from the group
30 consisting of lower alkyl, trihalo(lower)alkyl,
optionally protected amino, optionally substituted
heteroaryl, cyano, lower alkoxy, halogen, aryloxy, lower
alkylenedioxy, oxo, lower alkanoylamino and amino

protective group,
or a salt thereof.

7. The compound of claim 6, wherein
 5 R² is phenyl, naphthyl, indanyl, pyridinyl, pyrimidinyl,
 thiazolyl, pyrrolyl, imidazolyl, triazolyl, thienyl,
 indolyl, lower cycloalkyl, phenoxy, naphthyloxy,
 phenylsulfonyl, vinyl, carbamoyl, protected carboxy or
 protected amino, each of said phenyl, naphthyl, indanyl,
 10 pyridinyl, pyrimidinyl, thiazolyl, pyrrolyl, imidazolyl,
 triazolyl, thienyl, indolyl, lower cycloalkyl, phenoxy,
 naphthyloxy and phenylsulfonyl is optionally substituted
 by substituent(s) selected from the group consisting of
 lower alkyl, trihalo(lower)alkyl, optionally protected
 15 amino, optionally substituted pyrrolyl, cyano, lower
 alkoxy, halogen, aryloxy, lower alkylenedioxy, oxo,
 lower alkanoylamino and amino protective group;

- is bivalent residue derived from phenyl, indanyl,
 20 pyridinyl, indolinyl, isoindolinyl or 1,2,3,4-tetrahydroisoquinolinyl;
 Y is direct bond or bivalent residue selected from the group
 consisting of

- 25 wherein q is an integer of 0 to 3, and R⁶ is amino
 protective group;
 provided that when Z is direct bond, then R² is phenyl,
 naphthyl, indanyl, pyridinyl, pyrimidinyl, thiazolyl,
 pyrrolyl, imidazolyl, triazolyl, thienyl, indolyl, lower
 30 cycloalkyl, phenoxy, naphthyloxy, phenylsulfonyl or

protected amino, each of said phenyl, naphthyl, indanyl, pyridinyl, pyrimidinyl, thiazolyl, pyrrolyl, imidazolyl, triazolyl, thienyl, indolyl, lower cycloalkyl, phenoxy, naphthoxy and phenylsulfonyl is optionally substituted by substituent(s) selected from the group consisting of lower alkyl, trihalo(lower)alkyl, optionally protected amino, optionally substituted pyrrolyl, cyano, lower alkoxy, halogen, aryloxy, lower alkylenedioxy, oxo, lower alkanoylamino and amino protective group,

5 or a salt thereof.

10 8. The compound of claim 5 having the following formula:

15 wherein

R¹ is phenyl optionally substituted by substituent(s) selected from the group consisting of lower alkyl, lower alkoxy, halogen, trihalo(lower)alkyl, trihalo(lower)alkoxy, lower alkanoyl and di(lower)alkylamino;

20 R² is aryl or heteroaryl, each of said aryl and heteroaryl is optionally substituted by substituent(s) selected from the group consisting of lower alkyl, trihalo(lower)alkyl, optionally protected amino, optionally substituted heteroaryl, cyano, lower alkoxy, lower alkanoylamino and amino protective group;

25

W is CH or N;

Y is -(A¹)_{m1}-(A²)_{m2}-

wherein A¹ is -NH-, -N(R³)-, -CO-, -NH-CO-, -CO-NH-, -CO-CH=CH-, -O-, -CH₂-O-, -CH₂-NH-CO-, -CH₂-CO-NH- or -CH(OH)-, wherein R³ is amino protective group,

30 A² is lower alkylene optionally substituted by aryl, and m1 and m2 are independently 0 or 1;

Z is direct bond; and

n is 3, 4, 5 or 6,

or a salt thereof.

9. The compound of claim 8 having the following formula:

5

wherein

- R¹ is phenyl optionally substituted by substituent(s) selected from the group consisting of lower alkyl and trihalo(lower)alkyl;
 - 10 R² is pyridinyl or thiazolyl, each of said pyridinyl and thiazolyl is optionally substituted by optionally protected amino;
 - W is CH or N;
 - Y is -(A¹)_{m₁}-(A²)_{m₂}-
 - 15 wherein A¹ is -NH-, -N(R³)- or -O-, wherein R³ is amino protective group,
 - A² is lower alkylene optionally substituted by aryl, and m₁ and m₂ are independently 0 or 1;
 - Z is direct bond; and
 - 20 n is 4,
- or a salt thereof.

10. The compound of claim 5 having the following formula:

25

wherein

- R¹ is phenyl optionally substituted by substituent(s) selected from the group consisting of lower alkyl, lower alkoxy, halogen, trihalo(lower)alkyl, trihalo(lower)alkoxy, lower alkanoyl, di(lower)alkylamino and lower alkylthio;
- 30

R² is aryl, heteroaryl or protected amino, each of said aryl and heteroaryl is optionally substituted by substituent(s) selected from the group consisting of lower alkyl, trihalo(lower)alkyl, optionally protected amino, optionally substituted heteroaryl, cyano, lower alkoxy, halogen, aryloxy, lower alkylenedioxy, lower alkanoylamino and amino protective group;

- 5 Y is -(A¹)_{m1}-(A²)_{m2}-
 wherein A¹ is -NH-, -N(R³)-, -CO-, -NH-CO-, -CO-CH=CH- or
 10 -O-, wherein R³ is amino protective group,
 A² is lower alkylene optionally substituted by aryl, and
 m1 and m2 are independently 0 or 1;
 Z is direct bond; and
 n is 3, 4, 5 or 6,
 15 or a salt thereof.

11. The compound of claim 5 having the following formula:

- 20 wherein
 R¹ is phenyl optionally substituted by substituent(s) selected from the group consisting of lower alkyl, lower alkoxy, halogen, trihalo(lower)alkyl, trihalo(lower)alkoxy, lower alkanoyl, di(lower)alkylamino and lower alkylthio;
- 25 R² is aryl or heteroaryl, each of said aryl and heteroaryl is optionally substituted by substituent(s) selected from the group consisting of lower alkyl, trihalo(lower)alkyl, optionally protected amino, optionally substituted heteroaryl, cyano, lower alkoxy, halogen, aryloxy, lower alkylenedioxy, oxo, lower alkanoylamino and amino protective group;
- 30 Y is -(A¹)_{m1}-(A²)_{m2}-
 wherein A¹ is -NH-, -N(R³)-, -CO-, -NH-CO-, -CO-CH=CH- or

-O-, wherein R³ is amino protective group,
A² is lower alkylene optionally substituted by aryl, and
m₁ and m₂ are independently 0 or 1;
Z is direct bond;
5 n is 3, 4, 5 or 6; and
n₁ is 1 or 2,
or a salt thereof.

12. The compound of claim 5 having the following formula:

10

wherein

R¹ is phenyl optionally substituted by substituent(s) selected from the group consisting of lower alkyl, lower alkoxy, halogen, trihalo(lower)alkyl, trihalo(lower)alkoxy, lower alkanoyl, di(lower)alkylamino and lower alkylthio;
15 R² is aryl, heteroaryl, vinyl, carbamoyl, protected carboxy or protected amino, each of said aryl and heteroaryl is optionally substituted by substituent(s) selected from the group consisting of lower alkyl, trihalo(lower)alkyl, optionally protected amino, optionally substituted heteroaryl, cyano, lower alkoxy, halogen, aryloxy, lower alkylenedioxy, oxo, lower alkanoylamino and amino protective group;
20 W is CH or N;
25 Y is -(A¹)_{m₁}-(A²)_{m₂}
wherein A¹ is -NH-, -N(R³)-, -CO-, -NH-CO-, -CO-CH=CH- or -O-, wherein R³ is amino protective group,
A² is lower alkylene optionally substituted by aryl, and
30 m₁ and m₂ are independently 0 or 1;
n is 3, 4, 5 or 6,
or a salt thereof.

13. The compound of claim 12 having the following formula:

wherein

- 5 R¹ is phenyl optionally substituted by substituent(s) selected from the group consisting of lower alkyl and trihalo(lower)alkyl;
 - R² is aryl optionally substituted by cyano;
 - W is CH or N;
 - 10 Y is -(A²)_{m2-} wherein A² is lower alkylene, and m2 is 1;
 - n is 4,
 - or a salt thereof.
- 15

14. The compound of claim 5 having the following formula:

wherein

- 20 R¹ is phenyl optionally substituted by substituent(s) selected from the group consisting of lower alkyl, lower alkoxy, halogen, trihalo(lower)alkyl, trihalo(lower)alkoxy, lower alkanoyl, di(lower)alkylamino and lower alkylthio;
- R² is aryl, heteroaryl or protected amino, each of said aryl and heteroaryl is optionally substituted by
- 25 substituent(s) selected from the group consisting of lower alkyl, trihalo(lower)alkyl, optionally protected amino, optionally substituted heteroaryl, cyano, lower alkoxy, halogen, aryloxy, lower alkylenedioxy, oxo,

- lower alkanoylamino and amino protective group;
- Y is $-(A^1)_{m1}-(A^2)_{m2}-$
 wherein A^1 is $-NH-$, $-N(R^3)-$, $-CO-$, $-NH-CO-$, $-CO-CH=CH-$ or
 $-O-$, wherein R^3 is amino protective group,
- 5 A^2 is lower alkylene optionally substituted by aryl, and
 $m1$ and $m2$ are independently 0 or 1;
- Z is direct bond;
- Q is 0 or a pair of hydrogen atoms;
- n is 3, 4, 5 or 6; and
- 10 n2 is 0 or 1,
 or a salt thereof.

15. The compound of claim 1, wherein X is

- 15 wherein R^4 is lower alkyl, lower alkoxy, lower alkanoyl,
 hydroxy(lower)alkyl, lower alkoxy(lower)alkyl or halogen, and
 R^5 is hydrogen or lower alkyl,
 or a salt thereof.
- 20 16. The compound of claim 15, wherein
 R^1 is phenyl optionally substituted by substituent(s) selected
 from the group consisting of lower alkyl and
 trihalo(lower)alkyl;
 R^2 is heteroaryl optionally substituted by optionally
 protected amino;
- 25

is bivalent residue derived from aryl or pyridinyl;
 X is

- 30 wherein R^4 is lower alkyl, and R^5 is hydrogen;

Y is $-(A^1)^{m1}-(A^2)^{m2}-$
wherein A¹ is -NH-, -N(R³)-, -O-, wherein R³ is amino
protective group,
A² is lower alkylene optionally substituted by aryl, and
5 m1 and m2 are independently 0 or 1; and
Z is direct bond,
or a salt thereof.

17. The compound of claim 1 selected from the group
10 consisting of
4',5-dimethyl-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-1,1'-
biphenyl-2-carboxamide,
5-methyl-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-4'-
(trifluoromethyl)-1,1'-biphenyl-2-carboxamide,
15 N-{4-[2-(6-amino-2-pyridinyl)ethoxy]phenyl}-5-methyl-4'-
(trifluoromethyl)-1,1'-biphenyl-2-carboxamide,
2-(4-methylphenyl)-N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-
1-cyclohexene-1-carboxamide,
N-(4-{[2-(2-pyridinyl)ethyl]amino}phenyl)-2-[4-
20 (trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide,
N-(4-{[2-(6-amino-2-pyridinyl)ethyl]amino}phenyl)-2-[4-
(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide,
N-(4-{[2-(2-amino-1,3-thiazol-4-yl)ethyl]amino}phenyl)-2-(4-
methylphenyl)-1-cyclohexene-1-carboxamide,
25 N-{4-[4-(3-cyanobenzyl)-1-piperazinyl]phenyl}-2-[4-
(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide,
N-{6-[4-(3-cyanobenzyl)-1-piperazinyl]-3-pyridinyl}-2-[4-
(trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide,
N-(6-{[2-(6-amino-2-pyridinyl)ethyl]amino}-3-pyridinyl)-2-[4-
30 (trifluoromethyl)phenyl]-1-cyclohexene-1-carboxamide, or a
salt thereof.

18. A compound of the following formula:

wherein

R¹ is

5 wherein R²³ and R²⁴ are independently hydrogen or a
 substituent;

R²¹ and R²² are independently hydrogen or a substituent;

R² is unsaturated 5 to 6-membered heteromonocyclic group,
 which is optionally substituted by one or more
10 substituent(s);

X is cycloalkenylene optionally substituted by one or more
 substituent(s);

Y¹ is bivalent group selected from the group consisting of
 ethylene, trimethylene and vinylene, wherein CH₂ is
15 optionally replaced by NH or O, and CH is optionally
 replaced by N, and said bivalent group is optionally
 substituted by one or more substituent(s);

and

Y is -(CH₂)_r- , -CO-(CH₂)_s- or -CO-NH-, wherein r is 1, 2 or 3
20 and s is 1 or 2,
 or a salt thereof.

19. A compound of the formula:

wherein

R^{23} is hydrogen, lower alkyl, lower alkoxy, halogen, trihalo(lower)alkyl or di(lower)alkylamino;

R^2 is

5

wherein R^{25} is hydrogen, amino or

X is

10

wherein p is 1 or 2;

Y^1 is $-CH_2-CH_2-$; and

Y is $-CO-CH_2-$,

or a salt thereof.

15 20. The compound of claim 1 or a pharmaceutically acceptable salt thereof for use as a medicament.

21. A process for preparing a compound of the formula (I)

20

wherein

R^1 is aryl optionally substituted by substituent(s);

R^2 is aryl, heteroaryl, lower cycloalkyl, aryloxy,

arylsulfonyl, vinyl, carbamoyl, protected carboxy or

25 protected amino, each of said aryl, heteroaryl, lower cycloalkyl, aryloxy and arylsulfonyl is optionally

substituted by substituent(s);

is bivalent residue derived from aryl or heteroaryl, each of which is optionally substituted by nitro, oxo or
5 optionally protected amino;

X is bivalent residue derived from the group consisting of cycloalkene, naphthalene, unsaturated 5 or 6-membered heteromonocyclic group, each of which is optionally substituted by substituent(s), and benzene which is
10 substituted by substituent(s);

Y is $-(A^1)_{m1}-(A^2)_{m2}-$
wherein A^1 is $-NH-$, $-N(R^3)-$, $-CO-$, $-NH-CO-$, $-CO-NH-$,
 $-CO-\overset{\wedge}{CH}=CH-$, $-O-$, $-CH_2-O-$, $-CH_2-NH-CO-$, $-CH_2-CO-NH$ or
 $-CH(OH)-$, wherein R^3 is amino protective group,

15 A^2 is lower alkylene optionally substituted by aryl, and m1 and m2 are independently 0 or 1; and

Z is direct bond or bivalent residue derived from piperazine or piperazine substituted by lower alkyl;

provided that when Z is direct bond, then R^2 is aryl,

20 heteroaryl, lower cycloalkyl, aryloxy, arylsulfonyl or protected amino, each of said aryl, heteroaryl, lower cycloalkyl, aryloxy and arylsulfonyl is optionally substituted by substituent(s),

or a salt thereof, which comprises

25 (a) reacting a compound of the formula (II).

wherein R^1 and X are each as defined above, or its reactive derivative at the carboxy group, or a salt thereof with a compound of the formula (III)

30 wherein R^2 , Y, Z and ring A are each as defined above, or its

reactive derivative at the amino group, or a salt thereof to give a compound of the formula (I)

wherein R^1 , R^2 , X , Y , Z and ring A are each as defined above,

5 or

(b) reacting a compound of the formula (II)

wherein R^1 and X are each as defined above, or its reactive derivative at the carboxy group, or a salt thereof with a compound of the formula (XVI)

10

wherein R^2a is aryl, heteroaryl, lower cycloalkyl, aryloxy or arylsulfonyl, each of which is substituted by protected amino, and Y , Z and ring A are each as defined above, or its reactive derivative at the amino group, or a salt thereof to give a compound of the formula (I)-14

15

wherein R^1 , R^2a , X , Y , Z and ring A are each as defined above, or a salt thereof, or

20 (c) subjecting a compound of the formula (I)-14

wherein R^1 , R^2a , X , Y , Z and ring A are each as defined above, or a salt thereof to elimination reacation of the amino protective group to give a compound of the formula (I)-15

wherein R^{2b} is aryl, heteroaryl, lower cycloalkyl, aryloxy or arylsulfonyl, each of which is substituted by amino, and R^1 , X , Y , Z and ring A are each as defined above, or salt thereof, or

- 5 (d) reacting a compound of the formula (II)

wherein R^1 and X are each as defined above, or its reactive derivative at the carboxy group, or a salt thereof with a compound of the formula (XVIII)

10

wherein R^2 , R^3 , Z , ring A , A^2 and $m2$ are each as defined above, or its reactive derivative at the amino group, or a salt thereof to give a compound of the formula (I)-18

- 15 wherein R^1 , R^2 , R^3 , X , Z , ring A , A^2 and $m2$ are each as defined above, or a salt thereof, or

- (e) subjecting a compound of the formula (I)-18

- 20 wherein R^1 , R^2 , R^3 , X , Z , ring A , A^2 and $m2$ are each as defined above, or a salt thereof to eliminatin reaction of the amino protective group to give a compound of the formula (I)-19

wherein R¹, R², X, Z, ring A, A² and m2 are each as defined above, or a salt thereof, or

(f) reacting a compound of the formula (XXVIII)

5

wherein R¹, X and ring A are each as defined above, or a salt thereof with a compound of the formula (XXIX)

10

wherein R²C is aryl, heteroaryl or lower cycloalkyl, each of which is optionally substituted by substituent(s) in the presence of a reducing agent to give a compound of the formula

(I)-20

15

wherein R¹, R²C, X and ring A are each as defined above, or a salt thereof, or

(g) reacting a compound of the formula (XXVIII)

20 wherein R¹, X and ring A are each as defined above, or a salt thereof with a compound of the formula (XXX)

wherein R² and Y are each as defined above, and X² is leaving group in the presence of a base to give a compound of the formula (I)-21

5 wherein R¹, R², X, Y and ring A are each as defined above, or a salt thereof.

22. A pharmaceutical composition comprising a compound of
10 claim 1 or a pharmaceutically acceptable salt thereof in admixture with a pharmaceutically acceptable carrier.

23. Use of a compound of claim 1 or a pharmaceutically acceptable salt thereof for preparing a medicament as an
15 apolipoprotein B (Apo B) secretion inhibitor.

24. Use of a compound of claim 1 or a pharmaceutically acceptable salt thereof for preparing a medicament for the prophylaxis or treatment of a disease or condition resulting
20 from elevated circulating levels of Apo B.

25. Use of a compound of claim 1 or a pharmaceutically acceptable salt thereof for preparing a medicament for the prophylaxis or treatment of hyperlipemia, hyperlipidemia,
hyperlipoproteinemia, hypoalphalipoproteinemia,
25 hypercholesterolemia, hypertriglyceridemia, atherosclerosis, pancreatitis, non-insulin dependent diabetes mellitus (NIDDM), obesity, coronary heart diseases, myocardial infarction, stroke, restenosis or Syndrome X.

30 26. A method for inhibiting or decreasing Apo B secretion in a mammal, which comprises administering an Apo B secretion inhibiting or decreasing amount of a compound of claim 1 or a pharmaceutically acceptable salt thereof to the mammal.

27. A method for preventing or treating a disease or condition resulting from elevated circulating levels of Apo B in a mammal, which comprises administering an effective amount 5 of a compound of claim 1 or a pharmaceutically acceptable salt thereof to the mammal.

28. The method of claim 27 wherein the disease or condition resulting from the elevated circulating levels of Apo B is 10 selected from the group consisting of hyperlipidemia, hyperlipidemia, hyperlipoproteinemia, hypoalphalipoproteinemia, hypercholesterolemia, hypertriglyceridemia, atherosclerosis, pancreatitis, non-insulin dependent diabetes mellitus (NIDDM), obesity, coronary heart diseases, myocardial infarction, 15 stroke, restenosis and Syndrome X.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/JP 02/11034

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C07D213/89	C07D277/40	C07D401/06	C07D209/44	C07D295/02
C07D403/04	A61K31/395	A61P3/06		

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, BEILSTEIN Data, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 96 40640 A (QUALLICH GEORGE J ;DORFF PETER H (US); CHANG GEORGE (US); PFIZER ()) 19 December 1996 (1996-12-19) cited in the application page 45 -page 48; claims; examples —	2-4, 20-28
X	WO 98 23593 A (CHANG GEORGE ;PFIZER (US); QUALLICH GEORGE JOSEPH (US)) 4 June 1998 (1998-06-04) cited in the application examples 52,62-66,75,76,86,111 —	2,3, 20-28
X	WO 00 32582 A (DAUGAN ALAIN CLAUDE MARIE ;GLAXO GROUP LTD (GB)) 8 June 2000 (2000-06-08) page 12 -page 18 —	2-4, 20-28

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents:

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

10 December 2002

17/12/2002

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Menegaki, F

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 1, 20-28; 2-8(partly),10-12(partly),14-16(partly)

Present Claim 1 and partly also Claims 2-8, 10-12, 14, 15, 20-28 relate to an extremely large number of possible compounds. In fact, claim 1 contains so many variables, and provisos that a lack of clarity (and/or conciseness) within the meaning of Article 6 PCT arises to such an extent as to render a meaningful search of said claims impossible. Consequently, the search has been carried out for those parts of the application which do appear to be clear (and/or concise), namely Claims 2-8, 10-12, 14, 16, 20-28 wherein the definition of ring A, link group Y and substituent groups X, R2 are specified according to Claims 3, 9, 15, the examples and Claim 3 respectively. Claims 9, 13, 16-19 have been searched completely.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP 02/11034

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

Although claims 26–28 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. Claims Nos.: 1, 20–28; 2–8(partly), 10–12(partly), 14–16(partly)
because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

see FURTHER INFORMATION sheet PCT/ISA/210
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/JP 02/11034

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9640640	A 19-12-1996	CA 2223574 A1 HU 9601566 A2 WO 9640640 A1 AU 3585399 A AU 703493 B2 AU 5478496 A BG 62442 B1 BG 100637 A BR 9602628 A CN 1141918 A ,B CZ 9601644 A3 EP 0832069 A1 FI 974440 A HR 960270 A1 IL 118484 A IL 135375 A IL 135376 A IL 135377 A KR 225713 B1 LV 11615 A LV 11615 B NO 962385 A NZ 286733 A PL 314636 A1 RO 116897 B1 RU 2141478 C1 SG 44952 A1 SI 9600183 A SK 72696 A3 TR 961058 A2 TW 476756 B US 5919795 A	19-12-1996 29-09-1997 19-12-1996 16-09-1999 25-03-1999 19-12-1996 30-11-1999 31-03-1997 08-09-1998 05-02-1997 15-01-1997 01-04-1998 27-01-1998 31-12-1997 25-11-2001 24-07-2001 20-05-2001 20-05-2001 15-10-1999 20-12-1996 20-04-1997 09-12-1996 26-02-1998 09-12-1996 30-07-2001 20-11-1999 19-12-1997 30-04-1997 05-11-1997 21-12-1996 21-02-2002 06-07-1999
WO 9823593	A 04-06-1998	AP 804 A AU 716151 B2 AU 4634797 A BG 103434 A BR 9714364 A CN 1238764 A EA 1539 B1 EP 0944602 A1 HR 970642 A1 WO 9823593 A1 JP 2000505810 T JP 3270764 B2 KR 2000057269 A NO 992525 A NZ 335162 A SK 65499 A3 TR 9901180 T2 US 6121283 A ZA 9710641 A	28-01-2000 17-02-2000 22-06-1998 31-07-2000 21-03-2000 15-12-1999 23-04-2001 29-09-1999 31-10-1998 04-06-1998 16-05-2000 02-04-2002 15-09-2000 26-05-1999 28-01-2000 10-05-2001 23-08-1999 19-09-2000 26-05-1999
WO 0032582	A 08-06-2000	AU 750259 B2 AU 1656600 A BR 9915895 A CN 1334808 T CZ 20011973 A3	11-07-2002 19-06-2000 21-08-2001 06-02-2002 12-09-2001

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/JP 02/11034

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 0032582	A	WO 0032582 A1	08-06-2000
		EP 1135378 A1	26-09-2001
		HU 0104497 A2	29-05-2002
		JP 2002531444 T	24-09-2002
		NO 20012688 A	31-05-2001
		PL 348042 A1	06-05-2002
		TR 200101513 T2	22-10-2001

Form PCT/ISA/210 (patent family annex) (July 1992)

page 2 of 2

THIS PAGE BLANK (USPTO)