પ્રશ્ન 1(a) [3 ગુણ]

ઇલેક્ટ્રોનીક નેટવર્ક માટે (i) નોડ (ii) બ્રાંચ અને (iii) લૂપ ની વ્યાખ્યા આપો.

જવાબ:

નોડ:

- જંક્શન પોઈન્ટ જ્યાં બે અથવા વધુ બ્રાંચ નેટવર્કમાં મળે છે
- એવા બિંદુઓ જ્યાં ઘટકો જોડાયેલા હોય છે
- નોડ પર બધી બ્રાંચોનો કરંટ સરવાળો શૂન્ય થાય છે

બાંચ:

- સિંગલ ઘટક (R, L, અથવા C) અથવા બે નોડ્સને જોડતો પાથ
- દરેક બ્રાંચમાં એક ચોક્કસ કરંટ વહે છે
- એક્ટીવ બ્રાંચમાં સોર્સ હોય છે; પેસિવ બ્રાંચમાં R, L, C હોય છે

सूप:

- નેટવર્કમાં જોડાયેલા બ્રાંચોથી બનતો **બંધ પાથ**
- કોઈ નોડ એક કરતાં વધુ વખત આવતું નથી
- નેટવર્ક ઉકેલવા માટે લૂપ એનાલિસિસમાં વપરાય છે

મેમરી ટ્રીક: "NBL: નોડ્સ જોડાય, બ્રાંચેસ કનેક્ટ, લૂપ્સ સર્કલ"

પ્રશ્ન 1(b) [4 ગુણ]

200 Ω, 300 Ω અને 500 Ω ના રેઝીસ્ટર 100 V ના સપ્લાય સાથે પેરેલલમાં જોડાયેલા છે. તો (i) દરેક રેઝીસ્ટરમાંથી પસાર થતો કરંટ તથા કુલ કરંટ (ii) ઇક્વીવેલન્ટ રેઝીસ્ટર શોદ્યો.

જવાબ:

ગણતરીઓનું કોષ્ટક:

પેરામીટર	ફોર્મ્યુલા	ગણતરી	પરિણામ
Ι ₁ (200Ω)	I = V/R	100V/200Ω	0.5A
Ι ₂ (300Ω)	I = V/R	100V/300Ω	0.333A
Ι ₃ (500Ω)	I = V/R	100V/500Ω	0.2A
I _(total)	₁ + ₂ + ₃	0.5+0.333+0.2	1.033A
$R_{(e}q)$	$1/R_{(e}q_{)} = 1/R_{1} + 1/R_{2} + 1/R_{3}$	1/200+1/300+1/500	96.77Ω

મેમરી ટ્રીક: "પેરેલલ પાથ કરંટને અવરોધના વ્યસ્ત પ્રમાણમાં વહેંચે છે"

પ્રશ્ન 1(c) [7 ગુણ]

કેપેસીટર માટે સિરીઝ અને પેરેલલ જોડાણ સમજાવો.

જવાબ:

સિરીઝમાં કેપેસીટર:

કોષ્ટક: સિરીઝ કેપેસીટરોની વિશેષતાઓ

વિશેષતા	ફોર્મ્યુલા	વર્ણન
ઇક્વિવેલન્ટ કેપેસિટન્સ	$1/C_{(e}q) = 1/C_1 + 1/C_2 + 1/C_3$	હંમેશા નાનામાં નાના કેપેસિટર કરતાં નાનું
ચાર્જ	$Q = Q_1 = Q_2 = Q_3$	બદ્યા કેપેસિટર પર સરખો
વોલ્ટેજ	$V = V_1 + V_2 + V_3$	1/C ના રેશિયો પ્રમાણે વહેંચાય છે
ଉର୍ଷ	E = CV ² /2	કેપેસિટર્સમાં વહેંચાયેલી

પેરેલલમાં કેપેસીટર:

કોષ્ટક: પેરેલલ કેપેસીટરોની વિશેષતાઓ

વિશેષતા	ફોર્મ્યુલા	વર્ણન
ઇક્વિવેલન્ટ કેપેસિટન્સ	$C_{(e_{1}}q_{1} = C_{1} + C_{2} + C_{3}$	વ્યક્તિગત કેપેસિટન્સનો સરવાળો
ચાર્જ	$Q = Q_1 + Q_2 + Q_3$	C ની કિંમત અનુસાર વહેંચાય છે
વોલ્ટેજ	$V = V_1 = V_2 = V_3$	બધા કેપેસિટર પર સરખો
<u> </u>	E = CV ² /2	વ્યક્તિગત ઊર્જાનો સરવાળો

મેમરી ટ્રીક: "સિરીઝ કેપ્સમાં વ્યસ્ત સરવાળો, પેરેલલ કેપ્સમાં સીધો સરવાળો"

પ્રશ્ન 1(c) OR [7 ગુણ]

ઇન્ડક્ટર માટે સિરીઝ અને પેરેલલ જોડાણ સમજાવો.

જવાબ:

સિરીઝમાં ઇન્ડક્ટર:

કોષ્ટક: સિરીઝ ઇન્ડક્ટરોની વિશેષતાઓ

વિશેષતા	ફોર્મ્યુલા	વર્ણન
ઇક્વિવેલન્ટ ઇન્ડક્ટન્સ	$L_{(_{\mathbf{e}}}q_{)} = L_{1} + L_{2} + L_{3}$	વ્યક્તિગત ઇન્ડક્ટન્સનો સરવાળો
કરંટ	$ = _1 = _2 = _3$	બધા ઇન્ડક્ટર પર સરખો
વોલ્ટેજ	$V = V_1 + V_2 + V_3$	L ના રેશિયો અનુસાર વહેંચાય છે
এ প্য	E = LI ² /2	વ્યક્તિગત ઊર્જાનો સરવાળો

પેરેલલમાં ઇન્ડક્ટર:

કોષ્ટક: પેરેલલ ઇન્ડક્ટરોની વિશેષતાઓ

વિશેષતા	ફોર્મ્યુલા	นญ์า
ઇક્વિવેલન્ટ ઇન્ડક્ટન્સ	$1/L_{(e}q) = 1/L_1 + 1/L_2 + 1/L_3$	હંમેશા નાનામાં નાના ઇન્ડક્ટર કરતાં નાનું
કરંટ	$ = _1 + _2 + _3$	1/L ના રેશિયો અનુસાર વહેંચાય છે
વોલ્ટેજ	$V = V_1 = V_2 = V_3$	બધા ઇન્ડક્ટર પર સરખો
ଉ ର୍ଷ	E = LI ² /2	ઇન્ડક્ટરોમાં વહેંચાયેલી

મેમરી ટ્રીક: "સિરીઝ ઇન્ડક્ટરોમાં સીધો સરવાળો, પેરેલલ ઇન્ડક્ટરોમાં વ્યસ્ત સરવાળો"

પ્રશ્ન 2(a) [3 ગુણ]

નેટવર્ક એલીમેન્ટને વર્ગીકૃત કરો.

જવાબ:

કોષ્ટક: નેટવર્ક એલીમેન્ટનું વર્ગીકરણ

શ્રેણી	પ્રકારો	ઉદાહરણો
એક્ટિવ vs પેસિવ	એક્ટિવ	વોલ્ટેજ/કરંટ સોર્સ, ટ્રાન્ઝિસ્ટર
	પેસિવ	રેઝિસ્ટર, કેપેસિટર, ઇન્ડક્ટર
લિનિયર vs નોન-લિનિયર	લિનિયર	રેઝિસ્ટર, આદર્શ સોર્સ
	નોન-લિનિયર	ડાયોડ, ટ્રાન્ઝિસ્ટર
બાઇલેટરલ vs યુનિલેટરલ	બાઇલેટરલ	રેઝિસ્ટર, કેપેસિટર, ઇન્ડક્ટર
	યુનિલેટરલ	ડાયોડ, ટ્રાન્ઝિસ્ટર
લમ્પ્ડ vs ડિસ્ટ્રિબ્યુટેડ	લમ્પ્ડ	ડિસક્રીટ R, L, C ઘટકો
	ડિસ્ટ્રિબ્યુટેડ	ટ્રાન્સમિશન લાઇન

મેમરી ટ્રીક: "ALBU: એક્ટિવ/પેસિવ, લિનિયર/નોન-લિનિયર, બાઇલેટરલ/યુનિલેટરલ, લમ્પ્ડ/ડિસ્ટ્રિબ્યુટેડ"

પ્રશ્ન 2(b) [4 ગુણ]

10, 30 અને 70 ohms ના રેઝીસ્ટર સ્ટારમાં કનેક્ટ કરેલા છે. ડેલ્ટા કનેક્શનનાં ઇક્વીવેલન્ટ રેઝીસ્ટર શોધો.

જવાબ:

આકૃતિ: સ્ટાર થી ડેલ્ટા રૂપાંતરણ

કોષ્ટક: સ્ટાર-ડેલ્ટા રૂપાંતરણ ફોર્મ્યુલા અને ગણતરીઓ

ડેલ્ટા રેઝીસ્ટન્સ	ફોર્મ્યુલા	ગણતરી	પરિણામ
R ₁₂	$(R_1 \times R_2 + R_2 \times R_3 + R_3 \times R_1)/R_3$	(10×30+30×70+70×10)/70	47.14Ω
R ₂₃	$(R_1 \times R_2 + R_2 \times R_3 + R_3 \times R_1)/R_1$	(10×30+30×70+70×10)/10	330Ω
R ₃₁	$(R_1 \times R_2 + R_2 \times R_3 + R_3 \times R_1)/R_2$	(10×30+30×70+70×10)/30	110Ω

મેમરી ટ્રીક: "સ્ટાર-ડેલ્ટા: ગુણાકારનો સરવાળો વિરુદ્ધ રેઝ

પ્રશ્ન 2(c) [7 ગુણ]

π નેટવર્ક સમજાવો.

જવાબ:

આકૃતિ: π (પાઈ) નેટવર્ક

કોષ્ટક: π નેટવર્ક વિશેષતાઓ

પેરામીટર	વર્ણન
સ્ટ્રક્ચર	બે શન્ટ ઇમ્પિડન્સ (Z_3 , Z_2) અને એક સિરીઝ ઇમ્પિડન્સ (Z_1)
ટ્રાન્સમિશન પેરામીટર્સ	$A = 1 + Z_1/Z_2$, $B = Z_1$, $C = 1/Z_2 + 1/Z_3 + Z_1/(Z_2 \times Z_3)$, $D = 1 + Z_1/Z_3$
ઇમ્પિડન્સ પેરામીટર્સ	$Z_{11} = Z_1 + Z_3$, $Z_{12} = Z_1$, $Z_{21} = Z_1$, $Z_{22} = Z_1 + Z_2$
ઇમેજ ઇમ્પિડન્સ	$Z_0 \pi = \sqrt{(Z_1 Z_2 Z_3 / (Z_2 + Z_3))}$
એપ્લિકેશન	મેચિંગ નેટવર્ક, ફિલ્ટર, એટેન્યુએટર
રૂપાંતરણ	T-નેટવર્કમાં રૂપાંતરિત કરી શકાય છે

મેમરી ટ્રીક: "π ના બે પગ નીચે, એક શાખા આડી"

પ્રશ્ન 2(a) OR [3 ગુણ]

નેટવર્કનાં પ્રકારો જણાવો.

જવાબ:

કોષ્ટક: નેટવર્કના પ્રકારો

શ્રેણી	પ્રકારો
લિનિયારિટી આધારિત	લિનિયર નેટવર્ક, નોન-લિનિયર નેટવર્ક
ઘટકો આધારિત	પેસિવ નેટવર્ક, એક્ટિવ નેટવર્ક
પેરામીટર આદ્યારિત	ટાઇમ-વેરિયન્ટ, ટાઇમ-ઇન્વેરિયન્ટ નેટવર્ક
કોન્ફિગરેશન આધારિત	Τ-નેટવર્ક, π-નેટવર્ક, લેટિસ નેટવર્ક
પોર્ટ આદ્યારિત	વન-પોર્ટ, ટુ-પોર્ટ, મલ્ટિ-પોર્ટ નેટવર્ક
સિમેટ્રી આદ્યારિત	સિમેટ્રિકલ, એસિમેટ્રિકલ નેટવર્ક
રેસિપ્રોસિટી આધારિત	રેસિપ્રોકલ, નોન-રેસિપ્રોકલ નેટવર્ક

મેમરી ટ્રીક: "LEPCPS: લિનિયારિટી, એલિમેન્ટ્સ, પેરામીટર્સ, કોન્ફિગરેશન, પોર્ટ્સ, સિમેટ્રી"

પ્રશ્ન 2(b) OR [4 ગુણ]

20, 50 અને 100 ohms ના રેઝીસ્ટર ડેલ્ટામાં કનેક્ટ કરેલા છે. સ્ટાર કનેક્શનનાં ઇક્વીવેલન્ટ રેઝીસ્ટર શોદ્યો.

જવાબ:

આકૃતિ: ડેલ્ટા થી સ્ટાર રૂપાંતરણ

કોષ્ટક: ડેલ્ટા-સ્ટાર રૂપાંતરણ ફોર્મ્યુલા અને ગણતરીઓ

સ્ટાર રેઝીસ્ટન્સ	ફોર્મ્યુલા	ગણતરી	પરિણામ
R ₁	$(R_{12} \times R_{31})/(R_{12} + R_{23} + R_{31})$	(20×100)/(20+50+100)	11.76Ω
R_2	$(R_{12} \times R_{23})/(R_{12} + R_{23} + R_{31})$	(20×50)/(20+50+100)	5.88Ω
R ₃	$(R_{23} \times R_{31})/(R_{12} + R_{23} + R_{31})$	(50×100)/(20+50+100)	29.41Ω

મેમરી ટ્રીક: "ડેલ્ટા-સ્ટાર: આજુબાજુના જોડાનો ગુણાકાર બધાના સરવાળા ઉપર"

પ્રશ્ન 2(c) OR [7 ગુણ]

T નેટવર્ક સમજાવો.

જવાબ:

આકૃતિ: T નેટવર્ક

કોષ્ટક: T નેટવર્ક વિશેષતાઓ

પેરામીટર	વર્ણન
સ્ટ્રક્ચર	બે સિરીઝ ઇમ્પિડન્સ (Z₁, Z₂) અને એક શન્ટ ઇમ્પિડન્સ (Z₃)
ટ્રાન્સમિશન પેરામીટર્સ	$A = 1 + Z_1/Z_3$, $B = Z_1 + Z_2 + Z_1Z_2/Z_3$, $C = 1/Z_3$, $D = 1 + Z_2/Z_3$
ઇમ્પિડન્સ પેરામીટર્સ	$Z_{11} = Z_1 + Z_3$, $Z_{12} = Z_3$, $Z_{21} = Z_3$, $Z_{22} = Z_2 + Z_3$
ઇમેજ ઇમ્પિડન્સ	$Z_0T = \sqrt{(Z_1Z_2 + Z_1Z_3 + Z_2Z_3)}$
એપ્લિકેશન	મેચિંગ નેટવર્ક, ફિલ્ટર, એટેન્યુએટર
રૂપાંતરણ	π-નેટવર્કમાં રૂપાંતરિત કરી શકાય છે

મેમરી ટ્રીક: "T ની બે બાહુ આડી, એક પગ નીચે"

પ્રશ્ન 3(a) [3 ગુણ]

Kirchhoff's law સમજાવો.

જવાબ:

Kirchhoff's Current Law (KCL):

- નોડમાં **પ્રવેશતા કરંટનો સરવાળો** તે નોડમાંથી નીકળતા કરંટના સરવાળા બરાબર હોય છે
- કોઈપણ નોડ પર કરંટનો બીજગણિતીય સરવાળો શૂન્ય હોય છે
- ∑I = 0 (પ્રવેશતા કરંટ પોઝિટિવ, નીકળતા નેગેટિવ)

Kirchhoff's Voltage Law (KVL):

- કોઈપણ બંધ લૂપમાં **વોલ્ટેજ ડ્રોપનો સરવાળો** શૂન્ય થાય છે
- ∑V = 0 (વોલ્ટેજ વૃદ્ધિ પોઝિટિવ, ડ્રોપ નેગેટિવ)
- ઊર્જાના સંરક્ષણ પર આધારિત છે

આકૃતિ: Kirchhoff's Laws

```
      KCL:
      KVL:

      I1
      V1

      →
      ↑

      O
      O

      ↑↓
      ✓

      I4
      I2
      V4
      V2

      ↑↓
      ✓
      ✓

      O
      O
      O

      ←
      ↓
      ↓

      I3
      V3
```

મેમરી ટ્રીક: "કરંટ કન્વર્જ, વોલ્ટેજ વોયેજ ઈન અ લૂપ"

પ્રશ્ન 3(b) [4 ગુણ]

Nodal analysis સમજાવો.

જવાબ:

આકૃતિ: નોડલ એનાલિસિસ કોન્સેપ્ટ

કોષ્ટક: નોડલ એનાલિસિસ મેથડ

સ્ટેપ	વર્ણન
1. રેફરન્સ નોડ પસંદ કરો	સામાન્ય રીતે ગ્રાઉન્ડ (0V)
2. વોલ્ટેજ અસાઇન કરો	બાકીના નોડ વોલ્ટેજને લેબલ કરો (V ₁ , V ₂ , વગેરે)
3. KCL લાગુ કરો	દરેક નોન-રેફરન્સ નોડ પર KCL સમીકરણ લખો
4. કરંટને એક્સપ્રેસ કરો	ઓદ્મના નિયમનો ઉપયોગ કરીને બ્રાન્ય કરંટ એક્સપ્રેસ કરો
5. સમીકરણો ઉકેલો	સિમલ્ટેનિયસ ઇક્વેશન વડે નોડ વોલ્ટેજ શોધો

ઉદાહરણ: V1 અને V2 વોલ્ટેજવાળા નોડ્સ માટે:

- \overrightarrow{H} is 1 ue KCL: $(V_1-0)/R_1 + (V_1-V_2)/R_2 + I_1 = 0$
- rìs 2 पर KCL: $(V_2-V_1)/R_2 + (V_2-0)/R_3 + I_2 = 0$

મેમરી ટ્રીક: "નોડલ વોલ્ટેજ એનાલિસિસ માટે KCL જરૂરી છે"

પ્રશ્ન 3(c) [7 ગુણ]

Thevenin's theorem નો ઉપયોગ કરીને ઉપર દશાર્વેલ સર્કિટ માટે 5 Ω રેઝીસ્ટર માંથી પસાર થતો કરંટ શોદ્યો.

જવાબ:

આકૃતિ: મૂળ સર્કિટ અને થેવેનિન ઇક્વિવેલન્ટ

થેવેનિન ઇક્વિવેલન્ટ શોધવા માટેના સ્ટેપ્સ:

કોષ્ટક: થેવેનિનના સિદ્ધાંતની પ્રક્રિયા અને ગણતરીઓ

સ્ટેપ	પ્રક્રિયા	ગણતરી	પરિણામ
1. લોડ (5Ω) દૂર કરો	ઓપન-સર્કિટ વોલ્ટેજ (Voc) ગણો	Voc = વોલ્ટેજ ડિવાઇડર ફોર્મ્યુલા	Vth = 9.33V
2. વોલ્ટેજ સોર્સને શોર્ટ કરો	ઇક્વિવેલન્ટ રેઝિસ્ટન્સ (Req) ગણો	Req = 20Ω	
3. થેવેનિન ઇક્વિવેલન્ટ દોરો	Vth અને Rth ને લોડ સાથે સિરીઝમાં જોડો		
4. લોડ કરંટ ગણો	I = Vth/(Rth+RL)	I = 9.33/(6.67+5)	I = 0.8A

મેમરી ટ્રીક: "થેવેનિન ટ્રાન્સફોર્મ: Voc અને Req શોધી, પછી I ગણો"

પ્રશ્ન 3(a) OR [3 ગુણ]

Maximum Power Transfer Theorem જણાવો અને સમજાવો.

જવાબ:

Maximum Power Transfer Theorem:

- મહત્તમ પાવર સોર્સથી લોડમાં ત્યારે ટ્રાન્સફર થાય છે જ્યારે **લોડ રેઝીસ્ટન્સ સોર્સના આંતરિક રેઝીસ્ટન્સ સમાન હોય** (RL = Rth)
- મહત્તમ પાવર ટ્રાન્સફર પર માત્ર 50% કાર્યક્ષમતા પ્રાપ્ત થાય છે
- DC અને AC સર્કિટ બંને માટે લાગુ પડે છે (કોમ્પ્લેક્સ ઇમ્પિડન્સ સાથે)

આકૃતિ: મહત્તમ પાવર ટ્રાન્સફર

ફોર્મ્યુલા: P = (Vth²×RL)/(Rth+RL)²

મેમરી ટ્રીક: "મહત્તમ પાવર ટ્રાન્સફર માટે લોડને સોર્સ સાથે મેચ કરો"

પ્રશ્ન 3(b) OR [4 ગુણ]

કોઈપણ સર્કિટનો ઉપયોગ કરીને ક્યુઅલ નેટવર્ક દોરવાની પદ્ધતિ સમજાવો.

જવાબ:

આકૃતિ: મૂળ અને ડ્યુઅલ નેટવર્ક ઉદાહરણ

કોષ્ટક: ડ્યુઅલ નેટવર્ક રૂપાંતરણ નિયમો

મૂળ ઘટક	ડ્યુઅલ ઘટક	ઉદાહરણ
સિરીઝ કનેક્શન	પેરેલલ કનેક્શન	સિરીઝ R → પેરેલલ C
પેરેલલ કનેક્શન	સિરીઝ કનેક્શન	પેરેલલ C → સિરીઝ L
વોલ્ટેજ સોર્સ	કરંટ સોર્સ	V સોર્સ → I સોર્સ
કરંટ સોર્સ	વોલ્ટેજ સોર્સ	I સોર્સ → V સોર્સ
રેઝીસ્ટર (R)	કંડક્ટન્સ (1/R)	$R \rightarrow G (1/R)$
ઇન્ડક્ટર (L)	કેપેસિટર (1/L)	L → C (1/L)
કેપેસિટર (C)	ઇન્ડક્ટર (1/C)	C → L (1/C)

ડ્યુઅલિટી પ્રક્રિયા:

- 1. મેશ્સને નોડ્સ તરીકે અને નોડ્સને મેશ્સ તરીકે રિડ્રો કરો
- 2. ઘટકોને તેમના ક્યુઅલ સાથે બદલો
- 3. સિરીઝ અને પેરેલલ કનેક્શન્સને અદલાબદલી કરો

મેમરી ટ્રીક: "ક્યુઅલિટી સ્વેપ્સ: સિરીઝ↔પેરેલલ, V↔l, R↔G, L↔C"

પ્રશ્ન 3(c) OR [7 ગુણ]

ઉપર આપેલ નેટવર્ક માટે નોર્ટનની ઇક્વીવેલન્ટ સર્કિટ શોદ્યો. લોડ કરંટ શોદ્યો જો (i) RL=3 KΩ (ii) RL=1.5 Ω

જવાબ:

આકૃતિ: મૂળ સર્કિટ અને નોર્ટન ઇક્વિવેલન્ટ

કોષ્ટક: નોર્ટનના સિદ્ધાંતની પ્રક્રિયા અને ગણતરીઓ

સ્ટેપ	પ્રક્રિયા	ગણતરી	પરિણામ
1. શોર્ટ-સર્કિટ કરંટ (Isc) ગણો	લોડ ટર્મિનલ્સને શોર્ટ કરો અને કરંટ શોદ્યો Isc = શોર્ટ મારફતે સોર્સ કરંટ		In = 0.5mA
2. નોર્ટન રેઝીસ્ટન્સ (Rn) ગણો	સોર્સને આંતરિક રેઝીસ્ટન્સ સાથે બદલો	Rn = 9KΩ	
3. નોર્ટન ઇક્વિવેલન્ટ દોરો	In અને Rn ને પેરેલલમાં જોડો		
4. લોડ કરંટ (RL = 3KΩ) ગણો	$I = In \times Rn/(Rn + RL)$	I = 0.5mA × 3KΩ/(3KΩ + 3KΩ)	l = 0.25mA
5. લોડ કરંટ (RL = 1.5Ω) ગણો	$I = In \times Rn/(Rn + RL)$	I = 0.5mA × 3KΩ/(3KΩ + 1.5Ω)	I = 0.33mA

મેમરી ટ્રીક: "નોર્ટનને કરંટ સોર્સ બનાવવા Isc અને Req જોઈએ"

પ્રશ્ન 4(a) [3 ગુણ]

કોઇલ માટે ક્વોલિટી ફેક્ટર Q નું સમીકરણ મેળવો.

જવાબ:

આકૃતિ: કોઇલ ઇક્વિવેલન્ટ સર્કિટ

```
R L
O---www---000000---o
```

કોઇલ માટે Q ફેક્ટરની ડેરિવેશન:

કોષ્ટક: કોઇલ માટે Q ફેક્ટર ડેરિવેશન

સ્ટેપ	અભિવ્યક્તિ	સમજૂતી
1. ઇમ્પિડન્સ	$Z = R + j\omega L$	કોઇલનું કોમ્પ્લેક્સ ઇમ્પિડન્સ
2. રિએક્ટિવ પાવર	$PX = (\omega L)I^2$	ઇન્ડક્ટરમાં સંગ્રહિત પાવર
3. રીઅલ પાવર	PR = RI ²	રેઝીસ્ટન્સમાં વેડફાતો પાવર
4. ક્વોલિટી ફેક્ટર	Q = PX/PR	સંગ્રહિત અને વેડફાતા પાવરનો રેશિયો
5. સબ્સ્ટિટ્યુશન	$Q = (\omega L)I^2/RI^2$	અભિવ્યક્તિઓ સબ્સ્ટિટ્યુટ કરો
6. ફાઇનલ ઇક્વેશન	$Q = \omega L/R$	Q ફેક્ટર મેળવવા સરળ કરો

મેમરી ટ્રીક: "ક્વોલિટી કોઇલ્સ: ωL/R ઊર્જા બચાવવાની ક્ષમતા દર્શાવે છે"

પ્રશ્ન 4(b) [4 ગુણ]

શ્રેણી RLC સર્કિટમાં R=50 Ω , L=0.2 H અને C=10 μ F છે. (i)Q પરિબળ, (ii) BW, (iii) અપર કટ ઓફ અને લોઅર કટ ઓફ ફીક્વન્સીઝની ગણતરી કરો.

જવાબ:

આકૃતિ: સિરીઝ RLC સર્કિટ

કોષ્ટક: સિરીઝ RLC સર્કિટ માટે ગણતરીઓ

પેરામીટર	ફોર્મ્યુલા	ગણતરી	પરિણામ
રેઝોનન્ટ ફ્રીક્વન્સી (fr)	fr = 1/(2π√LC)	1/(2π√(0.2×10×10 ⁻⁶))	112.5 Hz
ક્વોલિટી ફેક્ટર (Q)	Q = (1/R)√(L/C)	(1/50)√(0.2/10×10 ⁻⁶)	28.28
બેન્ડવિડ્થ (BW)	BW = fr/Q	112.5/28.28	3.98 Hz
લોઅર કટઓફ (f ₁)	f ₁ = fr - BW/2	112.5 - 3.98/2	110.51 Hz
અપર કટઓફ (f ₂)	$f_2 = fr + BW/2$	112.5 + 3.98/2	114.49 Hz

મેમરી ટ્રીક: "Q કટઓફ ફ્રીક્વન્સી માટે BW નિર્ધારિત કરે છે"

પ્રશ્ન 4(c) [7 ગુણ]

મ્યુચ્યુઅલ ઇન્ડક્ટન્સના કો-એફીસીએન્ટ સાથે મ્યુચ્યુઅલ ઇન્ડક્ટન્સ સમજાવો. K નું સમીકરણ પણ મેળવો.

જવાબ:

આકૃતિ: બે કોઇલ વચ્ચે મ્યુચ્યુઅલ ઇન્ડક્ટન્સ

મ્યુચ્યુઅલ ઇન્ડક્ટન્સ (M):

- જ્યારે એક કોઇલમાં કરંટ નજીકની કોઇલમાં વોલ્ટેજ પ્રેરિત કરે છે
- કોઇલ્સ વચ્ચેની કપલિંગ તેમની સ્થિતિ, ઓરિયેન્ટેશન અને માધ્યમ પર નિર્ભર કરે છે
- મ્યુચ્યુઅલ ઇન્ડક્ટન્સ M હેનરી (H)માં

કોષ્ટક: મ્યુચ્યુઅલ ઇન્ડક્ટન્સ સમીકરણો

પેરામીટર	ફોર્મ્યુલા	વર્ણન
પ્રેરિત વોલ્ટેજ	$v_2 = M(di_1/dt)$	કોઇલ 1માં કરંટને લીધે કોઇલ 2માં પ્રેરિત વોલ્ટેજ
મ્યુચ્યુઅલ ઇન્ડક્ટન્સ	$M = k\sqrt{(L_1L_2)}$	સેલ્ફ-ઇન્ડક્ટન્સ સાથે સંબંધિત મ્યુચ્યુઅલ ઇન્ડક્ટન્સ
કપલિંગ કોઇફિશિયન્ટ (k)	$k = M/\sqrt{(L_1L_2)}$	કોઇત્સ વચ્ચેની કપલિંગનું માપ (0 ≤ k ≤ 1)
કુલ ઇન્ડક્ટન્સ	$Lt = L_1 + L_2 \pm 2M$	કુલ ઇન્ડક્ટન્સ કપલિંગની દિશા પર નિર્ભર

કપલિંગ કોઇફિશિયન્ટ (k)ની ડેરિવેશન:

- M = k√(L₁L₂) માંથી
- ફરી ગોઠવતા: k = M/√(L₁L₂)
- k = 1 પરફેક્ટ કપલિંગ માટે
- k = 0 નો કપલિંગ માટે
- વાસ્તવિક સર્કિટ માટે સામાન્ય રીતે 0.1 થી 0.9

મેમરી ટ્રીક: "M મેગ્નેટિક લિંકેજ માપે, k કપલિંગની ક્વોલિટી દર્શાવે"

પ્રશ્ન 4(a) OR [3 ગુણ]

કપલ સર્કિટ માટે કપ્લીંગના પ્રકારો સમજાવો.

જવાબ:

આકૃતિ: કપલિંગના પ્રકારો

કોષ્ટક: કપલિંગના પ્રકારો

કપલિંગનો પ્રકાર	લક્ષણો	એપ્લિકેશન
ટાઇટ કપલિંગ	k > 0.5, ઉચ્ચ ઊર્જા ટ્રાન્સફર	ટ્રાન્સફોર્મર
લૂઝ કપલિંગ	k < 0.5, સિલેક્ટિવ ફ્રીક્વન્સી રિસ્પોન્સ	RF ટ્યુનિંગ સર્કિટ
ક્રિટિકલ કપલિંગ	k ઓપ્ટિમલ બેન્ડવિડ્થ માટે એડજસ્ટ કરેલું	RF ફિલ્ટર
ડાયરેક્ટ કપલિંગ	ઘટકો સીધા જોડાયેલા	ઓડિયો એમ્પ્લિફાયર
ઇન્ડક્ટિવ કપલિંગ	મેગ્નેટિક ફિલ્ડ ઊર્જા ટ્રાન્સફર કરે છે	ટ્રાન્સફોર્મર, વાયરલેસ ચાર્જિંગ
કેપેસિટિવ કપલિંગ	ઇલેક્ટ્રિક ફિલ્ડ ઊર્જા ટ્રાન્સફર કરે છે	સ્ટેજ વચ્ચે સિગ્નલ કપલિંગ

મેમરી ટ્રીક: "TLCLIC: ટાઇટ, લૂઝ, ક્રિટિકલ, ડાયરેક્ટ, ઇન્ડક્ટિવ, કેપેસિટિવ"

પ્રશ્ન 4(b) OR [4 ગુણ]

ગુણવત્તા પરિબળ Q = 100, રેઝોનન્ટ ફિકવન્સી Fr = 50 KHz સાથે 10 mH નું ઇન્ડક્ટન્સ ધરાવતું સમાંતર રેઝોનન્ટ સર્કિટ. શોધો (i) જરૂરી કેપેસીટન્સ C, (ii) કોઇલનો પ્રતિકાર R, (iii) BW.

જવાબ:

આકૃતિ: પેરેલલ રેઝોનન્ટ સર્કિટ

કોષ્ટક: પેરેલલ રેઝોનન્ટ સર્કિટ માટે ગણતરીઓ

પેરામીટર	ફોર્મ્યુલા	ગણતરી	પરિણામ
રેઝોનન્ટ ફ્રીક્વન્સી	fr = 1/(2π√LC)	50 kHz = 1/(2π√(10×10 ⁻³ ×C))	
કેપેસિટન્સ (C)	$C = 1/(4\pi^2 f r^2 L)$	$C = 1/(4\pi^2 \times (50 \times 10^3)^2 \times 10 \times 10^{-3})$	C = 1.01 nF
રેઝિસ્ટન્સ (R)	$Q = \omega L/R$	$100 = 2\pi \times 50 \times 10^{3} \times 10 \times 10^{-3} / R$	R = 31.4 Ω
બેન્ડવિડ્થ (BW)	BW = fr/Q	BW = 50×10³/100	BW = 500 Hz

મેમરી ટ્રીક: "પેરેલલ રેઝોનન્સ પેરામીટર્સ: C fr માંથી, R Q માંથી, BW fr/Q માંથી"

પ્રશ્ન 4(c) OR [7 ગુણ]

સીરીઝ RLC સર્કિટની Band width અને Selectivity સમજાવો. શ્રેણી રેઝોનન્સ સર્કિટ માટે Q પરિબળ અને BW વચ્ચેનો સંબંધ પણ સ્થાપિત કરો.

જવાબ:

આકૃતિ: સિરીઝ RLC સર્કિટનો ફ્રીક્વન્સી રિસ્પોન્સ

બેન્ડવિડ્થ (BW):

- હાફ-પાવર પોઇન્ટ વચ્ચેની ફ્રીક્વન્સી રેન્જ
- હાફ-પાવર પોઇન્ટ પર ઇમ્પિડન્સ લઘુતમ મૂલ્યના 🗸 ગણું હોય છે
- BW = $f_2 f_1$, જ્યાં f_1 અને f_2 લોઅર અને અપર કટઓફ ફ્રીક્વન્સી છે

સિલેક્ટિવિટી:

- બેન્ડવિડ્થ બહારની ફ્રીક્વન્સીઓને **નકારવાની ક્ષમતા**
- ઉચ્ચ Q એટલે વધુ સિલેક્ટિવિટી અને સાંકડી બેન્ડવિડ્થ
- રિસ્પોન્સ કર્વની તીવ્રતા દ્વારા માપવામાં આવે છે

કોષ્ટક: સિરીઝ RLC બેન્ડવિડ્થ પેરામીટર્સ

પેરામીટર	ફોર્મ્યુલા	વર્ણન
બેન્ડવિડ્થ (BW)	$BW = f_2 - f_1$	અપર અને લોઅર કટઓફ પોઇન્ટ વચ્ચેનો તફાવત
હાફ-પાવર પોઇન્ટ	$Z = \sqrt{2} \times Z_{m_i n}$	જ્યાં પાવર મહત્તમના અર્ધા જેટલો થાય છે
રેઝોનન્ટ ફ્રીક્વન્સી	fr = 1/(2π√LC)	સેન્ટર ફ્રીક્વન્સી
ક્વોલિટી ફેક્ટર	$Q = \omega_{o}L/R$	ઊર્જા સંગ્રહ vs. વેડફાટ રેશિયો

Q-BW સંબંધની ડેરિવેશન:

• રેઝોનન્સ પર ઇમ્પિડન્સ Z = R

• કટઓફ ફ્રીક્વન્સી પર Z = √2R

• આ ત્યારે થાય છે જ્યારે રિએક્ટન્સ XL - XC = ±R

• f_1 42: $\omega L - 1/\omega C = -R$

• f_2 42: $\omega L - 1/\omega C = +R$

• આ સમીકરણો ઉકેલતા: BW = R/2πL = fr/Q

• આથી, Q = fr/BW

મેમરી ટ્રીક: "ક્વોલિટી બેન્ડવિડ્થના વ્યસ્ત પ્રમાણમાં"

પ્રશ્ન 5(a) [3 ગુણ]

60 ડીબીનું એટેન્યુએશન આપવા અને 500 Ω પ્રતિકારના લોડમાં કામ કરવા માટે સપ્રમાણ T પ્રકારના એટેન્યુએટરને ડિઝાઇન કરો.

જવાબ:

આકૃતિ: સપ્રમાણ T-ટાઇપ એટેન્યુએટર

કોષ્ટક: એટેન્યુએટર ડિઝાઇન

પેરામીટર	ફોર્મ્યુલા	ગણતરી	પરિણામ
એટેન્યુએશન (N)	N = 10^(dB/20)	10^(60/20)	N = 1000
Z ₀	આપેલ	500 Ω	500 Ω
R ₁	$R_1 = 2Z_0(N-1)/(N+1)$	2×500×(1000-1)/(1000+1)	R ₁ = 998 Ω
R ₂	$R_2 = Z_0(N+1)/(N-1)$	500×(1000+1)/(1000-1)	$R_2 = 0.5 \Omega$

મેમરી ટ્રીક: "T એટેન્ચુએટર: R_1 સિરીઝ ડિવાઇડ કરે, R_2 શન્ટ કરે"

પ્રશ્ન 5(b) [4 ગુણ]

બેન્ડ પાસ અને બેન્ડ સ્ટોપ ફિલ્ટર્સને સરખાવો.

જવાબ:

આકૃતિ: બેન્ડ પાસ vs બેન્ડ સ્ટોપ રિસ્પોન્સ

કોષ્ટક: બેન્ડ પાસ અને બેન્ડ સ્ટોપ ફિલ્ટર્સની તુલના

પેરામીટર	બેન્ડ પાસ ફિલ્ટર	બેન્ડ સ્ટોપ ફિલ્ટર
ફ્રીક્વન્સી રિસ્પોન્સ	યોક્કસ બેન્ડમાંની ફ્રીક્વન્સીઓ પસાર કરે છે	ચોક્કસ બેન્ડમાંની ફ્રીક્વન્સીઓ નકારે છે
સર્કિટ સ્ટ્રક્ચર	સિરીઝ & પેરેલલ રેઝોનન્ટ સર્કિટ	સિરીઝ & પેરેલલ રેઝોનન્ટ સર્કિટ
કટ-ઓફ ફ્રીક્વન્સી	લોઅર (f ₁) અને અપર (f ₂) કટ-ઓફ છે	લોઅર (f $_1$) અને અપર (f $_2$) કટ-ઓફ છે
બેન્કવિડ્થ	$BW = f_2 - f_1$	$BW = f_2 - f_1$
એપ્લિકેશન	રેડિયો ટ્યુનિંગ, ઓડિયો ઇક્વલાઇઝેશન	નોઇઝ એલિમિનેશન, હાર્મોનિક સપ્રેશન
ઇમ્પ્લિમેન્ટેશન	HPF & LPF ની સિરીઝ/પેરેલલ કોમ્બિનેશન	HPF & LPF ની પેરેલલ/સિરીઝ કોમ્બિનેશન
ફેઝ રિસ્પોન્સ	રેઝોનન્સ પર 0°	રેઝોનન્સ પર 180°

મેમરી ટ્રીક: "મધ્યમાં પાસ કરો અથવા મધ્યમાં સ્ટોપ કરો"

પ્રશ્ન 5(c) [7 ગુણ]

Constant K લો પાસ ફિલ્ટર સમજાવો.

જવાબ:

આકૃતિ: Constant K લો પાસ ફિલ્ટર T અને π સેક્શન

Constant K લો પાસ ફિલ્ટર:

- કટઓફ ફ્રીક્વન્સી (fc) **નીચેની ફ્રીક્વન્સીઓ** પસાર કરે છે
- fc ઉપરની ફ્રીક્વન્સીઓ ઘટાડે છે
- "Constant K" નો અર્થ છે કે સિરીઝ અને શન્ટ ઈમ્પિડન્સના ગુણાકારો બધી ફ્રીક્વન્સી પર સ્થિર રહે છે (Z₁Z₂ = K²)

કોષ્ટક: T અને π સેક્શન પેરામીટર્સ

પેરામીટર	T-સેક્શન	π-સેક્શન
સિરીઝ આર્મ	દરેક છેડે L/2	મધ્યમાં L
શન્ટ આર્મ	મધ્યમાં С	દરેક છેડે C/2
કટઓફ ફ્રીક્વન્સી	fc = 1/(π√LC)	fc = 1/(π√LC)
કેરેક્ટરિસ્ટિક ઇમ્પિડન્સ	$Z_0 = \sqrt{(L/C)}$	$Z_0 = \sqrt{(L/C)}$
L માટે ડિઝાઇન ઇક્વેશન	$L = Z_0/\pi fc$	$L = Z_0/\pi fc$
C માટે ડિઝાઇન ઇક્વેશન	$C = 1/(\pi f c Z_0)$	$C = 1/(\pi f c Z_0)$

ફ્રીક્વન્સી રિસ્પોન્સ:

- DC અને લો ફ્રીક્વન્સીઓ ન્યૂનતમ એટેન્યુએશન સાથે પસાર કરે છે
- કટઓફ ફ્રીક્વન્સી ઉપર એટેન્યુએશન ઝડપથી વધે છે
- ફેઝ શિફ્ટ ફ્રીક્વન્સી સાથે વધે છે

મેમરી ટ્રીક: "Constant K LPF: L સિરીઝ હાઈ બ્લોક, C શન્ટ હાઈ શોર્ટ"

પ્રશ્ન 5(a) OR [3 ગુણ]

500 Ω ના લોડ પ્રતિકાર સાથે 2 KHz ની કટ-ઓફ આવતર્ન ધરાવતા T સવિભાગ સાથે ઉચ્ચ પાસ ફિલ્ટર ડિઝાઇન કરો.

જવાબ:

આકૃતિ: હાઇ પાસ T-સેક્શન ફિલ્ટર

કોષ્ટક: હાઇ પાસ ફિલ્ટર ડિઝાઇન

પેરામીટર	ફોર્મ્યુલા	ગણતરી	પરિણામ
કટઓફ ફ્રીક્વન્સી (fc)	આપેલ	2 kHz	2 kHz
લોડ રેઝીસ્ટન્સ (R ₀)	આપેલ	500 Ω	500 Ω
સિરીઝ કેપેસિટન્સ (C/2)	$C = 1/(\pi f c R_0)$	$C = 1/(\pi \times 2 \times 10^3 \times 500)$	C = 0.318 μF
કુલ કેપેસિટન્સ (C)	2 × (C/2)	2 × 0.159 μF	C = 0.318 μF
શન્ટ ઇન્ડક્ટન્સ (L)	$L = R_0/(\pi fc)$	$L = 500/(\pi \times 2 \times 10^3)$	L = 79.6 mH

મેમરી ટ્રીક: "હાઇ પાસ T: C સિરીઝમાં DC બ્લોક, L શન્ટમાં હાઇ પાસ"

પ્રશ્ન 5(b) OR [4 ગુણ]

ફિલ્ટર્સનું વર્ગીકરણ આપો.

જવાબ:

આકૃતિ: ફિલ્ટર વર્ગીકરણ

કોષ્ટક: ફિલ્ટર્સનું વર્ગીકરણ

વર્ગીકરણ દ્વારા	પ્રકારો	વિશેષતાઓ
ફંક્શન	લો પાસ	કટઓફની નીચેની ફ્રીક્વન્સીઓ પસાર કરે
	હાઇ પાસ	કટઓફની ઉપરની ફ્રીક્વન્સીઓ પસાર કરે
	બેન્ડ પાસ	બેન્ડની અંદરની ફ્રીક્વન્સીઓ પસાર કરે
	બેન્ડ સ્ટોપ	બેન્ડની અંદરની ફ્રીક્વન્સીઓ નકારે
	ઓલ પાસ	બધી ફ્રીક્વન્સીઓ પસાર કરે પણ ફેઝ સુધારે
ડિઝાઇન	પેસિવ	પેસિવ ઘટકો (R, L, C) વાપરે
	એક્ટિવ	એક્ટિવ ઘટકો (ઓપ-એમ્પ્સ) વાપરે
રિસ્પોન્સ	બટરવર્થ	મેક્સિમલી ફલેટ રિસ્પોન્સ
	ચેબિશેવ	પાસબેન્ડમાં રિપલ, સ્ટીપર રોલઓફ
	બેસેલ	લિનિયર ફ્રેઝ રિસ્પોન્સ
	એલિપ્ટિક	પાસબેન્ડ અને સ્ટોપબેન્ડ બંનેમાં રિપલ
ઇમ્પ્લિમેન્ટેશન	પેસિવ ફિલ્ટર પ્રકારો	Constant-k, m-derived, composite

મેમરી ટ્રીક: "FLHBA: ફંક્શન (લો/હાઇ/બેન્ડ/ઓલ-પાસ), ડિઝાઇન, રિસ્પોન્સ, ઇમ્પ્લિમેન્ટેશન"

પ્રશ્ન 5(c) OR [7 ગુણ]

Constant K હાઇ પાસ ફિલ્ટર સમજાવો.

જવાબ:

આકૃતિ: Constant K હાઇ પાસ ફિલ્ટર T અને π સેક્શન

Constant K હાઇ પાસ ફિલ્ટર:

- કટઓફ ફ્રીક્વન્સી (fc) **ઉપરની ફ્રીક્વન્સીઓ** પસાર કરે છે
- fc નીચેની ફ્રીક્વન્સીઓ ઘટાડે છે
- "Constant K" નો અર્થ છે કે સિરીઝ અને શન્ટ ઈમ્પિડન્સના ગુણાકારો બધી ફ્રીક્વન્સી પર સ્થિર રહે છે ($Z_1Z_2 = K^2$)

કોષ્ટક: T અને π સેક્શન પેરામીટર્સ

પેરામીટર	T-સેક્શન	π-સેક્શન
સિરીઝ આર્મ	દરેક છેડે C/2	મધ્યમાં С
શન્ટ આર્મ	મધ્યમાં L	દરેક છેડે L/2
કટઓફ ફ્રીક્વન્સી	fc = 1/(π√LC)	fc = 1/(π√LC)
કેરેક્ટરિસ્ટિક ઇમ્પિડન્સ	$Z_0 = \sqrt{(L/C)}$	$Z_0 = \sqrt{(L/C)}$
L માટે ડિઝાઇન ઇક્વેશન	$L = Z_0/(\pi fc)$	$L = Z_0/(\pi fc)$
C માટે ડિઝાઇન ઇક્વેશન	$C = 1/(\pi f c Z_0)$	$C = 1/(\pi f c Z_0)$

ફ્રીક્વન્સી રિસ્પોન્સ:

- DC અને લો ફ્રીક્વન્સીઓ બ્લોક કરે છે
- હાઇ ફ્રીક્વન્સીઓ ન્યૂનતમ એટેન્યુએશન સાથે પસાર કરે છે
- કટઓફ ફ્રીક્વન્સી નીચે જતાં એટેન્યુએશન વધે છે
- ખૂબ ઊંચી ફ્રીક્વન્સીઓ પર ફેઝ શિફ્ટ 0° તરફ જાય છે

મેમરી ટ્રીક: "Constant K HPF: C સિરીઝ લો બ્લોક, L શન્ટ હાઇ પાસ"