CMP(N)302: Algorithms Design and Analysis

Lecture 01: Introduction

Ahmed Hamdy

Computer Engineering Department

Cairo University

Fall 2017

What is an Algorithm?

Algorithm: is any well-defined computational procedure that takes some value, or set of values, as input and produces some value, or set of values, as output.

An algorithm is thus a sequence of computational steps that transform the input into the output.

Problem example: Sorting

- Input: A sequence of n numbers $\langle a_1, a_2, ..., a_n \rangle$
- Output: A permutation (reordering) $\langle a'_1, a'_2, ..., a'_n \rangle$ of the input sequence such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n$

Algorithms:

- Insertion sort: $2n^2$ instructions
- Merge sort: $50n \log_2 n$ instructions

Insertion vs Merge sort

Input size	Insertion sort	Merge sort
n	$2n^2$	$50n\log_2 n$
2	8	100
10	200	1661
100	20,000	33,219
1K	2,000,000	498,289
10K	200,000,000	6,643,856

- For n = 2, 10, 100, Insertion sort is faster
- For n = 1K, 10K, ..., Merge sort is faster
- Recommendation?

^{*}Merge sort constants can be less than the above, they are just for illustration

Sorting algorithm

- How to come up with an algorithm based on our daily problems?
- Imagine you are playing cards and you have 13 cards of the same suit. How typically you sort them??

Insertion sort

How to write it in pseudo-code??

Insertion sort

```
INSERTION-SORT (A)
```

```
for j = 2 to A.length

key = A[j]

// Insert A[j] into the sorted sequence A[1...j-1].

i = j-1

while i > 0 and A[i] > key

A[i+1] = A[i]

i = i-1

A[i+1] = key
```


Algorithm analysis

• Based on loops, what is the running time T(n) in terms of the size of the input n?

INSERTION-SORT (A)
$$cost$$
 times

1 **for** $j = 2$ **to** $A.length$ c_1 n

2 $key = A[j]$ c_2 $n-1$

3 // Insert $A[j]$ into the sorted

sequence $A[1..j-1]$. 0 $n-1$

4 $i = j-1$ c_4 $n-1$

5 **while** $i > 0$ and $A[i] > key$ c_5 $\sum_{j=2}^{n} t_j$

6 $A[i+1] = A[i]$ c_6 $\sum_{j=2}^{n} (t_j-1)$

7 $i = i-1$ c_7 $\sum_{j=2}^{n} (t_j-1)$

8 $A[i+1] = key$ c_8 $n-1$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j-1)$$
 $+ c_7 \sum_{j=2}^{n} (t_j-1) + c_8 (n-1)$.

Algorithm analysis

- Worst-case: Max(T(n))
 - applies to certain input cases
- Best-case: Min(T(n))
 - applies to certain input cases
- Average-case: E[T(n)], requires knowledge of statistical distribution of inputs (can be biased)
 - Approx. to worst-case (when the best-case is the exception)
 - Approx. to best-case (when the worst-case is the exception)

Order of growth

- Instruction delays are machine-dependent
 - IPC (Instructions per cycle) is machine dependent
 - CPU frequency varies even with same IPC
- Exact running time is overly complex
 - Significance of Lower-order terms in $T(n) \downarrow$ as $n \uparrow$: in quadratic running time, linear term is insignificant with large n
 - Care for the case $n \to \infty$, the highest-order term dominates
- Highest-order term represents order of growth
- Neglect constants

• Define $\theta - notation$ (Theta):

```
\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}.
```

• We say that g(n) is an asymptotically tight

bound for f(n)

Algorithm analysis

- What about Insertion sort?
- Best-case: when input is (nearly) sorted, $\Theta(n)$.
- Worst-case: when input is (nearly) sorted in reverse, $\Theta(n^2)$.
- Average-case:
 - On average, half of the checks in the inner loop condition are true, so $t_i = j/2$. So $\Theta(n^2)$.

Another sorting algorithm

- How to come up with an algorithm based on our daily problems?
- Imagine 10 persons want to sort 1000 student exam papers by sequential ID#. What typically they do??

Design strategies

- In Insertion sort, one element at a time is inserted in the previously sorted subarray → Incremental approach
- Divide-and-conquer:
 - Divide the problem into a number of subproblems that are smaller instances of the same problem.
 - Conquer
 - Solve subproblems in a straightforward manner if simple
 - Otherwise solve subproblems recursively
 - Combine the solutions to the subproblems into the solution for the original problem.

- Divide-and-conquer:
 - Divide: Divide the n-element sequence to be sorted into two subsequences of n=2 elements each
 - Conquer: Sort the two subsequences recursively using merge sort
 - Combine the solutions to the subproblems into the solution for the original problem.

Merge step

$$A = \begin{bmatrix} 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\ ... & 2 & 4 & 5 & 7 & 1 & 2 & 3 & 6 & ... \\ \hline k \\ L & 2 & 4 & 5 & 7 & \infty \\ \hline i & & & & & & \\ R & 1 & 2 & 3 & 6 & \infty \\ \hline i & & & & & \\ I & 2 & 3 & 6 & \infty \\ \hline i & & & & & \\ I & 2 & 3 & 6 & \infty \\ \hline i & & & & & \\ I & 2 & 3 & 6 & \infty \\ \hline i & & & & & \\ I & 2 & 3 & 6 & \infty \\ \hline i & & & & \\ I & 2 & 3 & 6 & \infty \\ \hline i & & & & \\ I & 2 & 3 & 6 & \infty \\ \hline i & & & & \\ I & 2 & 3 & 6 & \infty \\ \hline i & & & & \\ I & 2 & 3 & 6 & \infty \\ \hline i & & & & \\ I & 2 & 3 & 6 & \infty \\ \hline i & & & & \\ I & 2 & 3 & 6 & \infty \\ \hline i & & & & \\ I & 2 & 3 & 6 & \infty \\ \hline i & & & & \\ I & 2 & 3 & 6 & \infty \\ \hline i & & & & \\ I & 2 & 3 & 6 & \infty \\ \hline i & & & & \\ I & 2 & 3 & 6 & \infty \\ \hline i & & & & \\ I & 2 & 3 & 6 & \infty \\ \hline i & & & & \\ I & 2 & 3 & 6 & \infty \\ \hline i & & & \\ I & 2 & 3 & 6 & \infty \\ \hline i & & & \\ I & 2 & 3 & 6 & \infty \\ \hline i & & & \\ I & 2 & 3 & 6 & \infty \\ \hline i & & & \\ I & 2 & 3 & 6 & \infty \\ \hline i & & & \\ I & 2 & 3 & 6 & \infty \\ \hline i & & & \\ I & 2 & 3 & 6 & \infty \\ \hline i & & & \\ I & 2 & 3 & 6 & \infty \\ \hline i & & & \\ I & 2 & 3 & 6 & \infty \\ \hline i & & & \\ I & 2 & 3 & 6 & \infty \\ \hline i & & & \\ I & 2 & 3 & 6 & \infty \\ \hline i & & & \\ I & 2 & 3 & 6 & \infty \\ \hline i & & & \\ I & 2 & 3 & 6 & \infty \\ \hline i & & \\ I & 2 & 3 & 6 & \infty \\ \hline i & & \\ I & 2 & 3 & 6 & \infty \\ \hline i & 2 & 3 & 6 & \infty \\ \hline i & 2 & 3 & 6 & \infty \\ \hline i & 2 & 3 & 6 & \infty \\ \hline i & 2 & 3 & 6 & \infty \\ \hline i & 2 & 3 & 6 & \infty \\ \hline i & 3 & 3 & 6 & \infty$$

$$A = \begin{bmatrix} 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\ \hline & ... & 1 & 4 & 5 & 7 & 1 & 2 & 3 & 6 & ... \\ \hline & & & & & & \\ \hline & & & & & \\ L = \begin{bmatrix} 2 & 3 & 4 & 5 \\ 2 & 4 & 5 & 7 & \infty \end{bmatrix} \qquad R = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ \hline 1 & 2 & 3 & 6 & \infty \end{bmatrix}$$

$$(b)$$

Merge step (cont.)

(i)

```
MERGE(A, p, q, r)
1 \quad n_1 = q - p + 1
2 n_2 = r - q
3 let L[1...n_1 + 1] and R[1...n_2 + 1] be new arrays
4 for i = 1 to n_1
 5 	 L[i] = A[p+i-1]
6 for j = 1 to n_2
  R[j] = A[q+j]
 8 L[n_1 + 1] = \infty
9 R[n_2 + 1] = \infty
10 i = 1
11 j = 1
  for k = p to r
12
13
       if L[i] \leq R[j]
           A[k] = L[i]
14
15
           i = i + 1
16 else A[k] = R[j]
           j = j + 1
17
```

Main subroutine

```
MERGE-SORT (A, p, r)

1 if p < r

2 q = \lfloor (p+r)/2 \rfloor

3 MERGE-SORT (A, p, q)

4 MERGE-SORT (A, q+1, r)

5 MERGE (A, p, q, r)
```

Initial call:

MERGE-SORT(A, 1, A.length)

Merge sort analysis

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \le c, \\ aT(n/b) + D(n) + C(n) & \text{otherwise}. \end{cases}$$

- Divide: just computes the middle of the subarray. Thus, $D(n) = \Theta(1)$.
- Conquer: recursively solve two subproblems, each of size n/2, which contributes 2T (n/2) to the running time.
- Combine: MERGE procedure on an n-element subarray takes time $\Theta(n)$, and so $C(n) = \Theta(n)$.

Merge sort analysis

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 2T(n/2) + \Theta(n) & \text{if } n > 1. \end{cases}$$

$$T(n)$$
 cn cn cn $T(n/2)$ $T(n/2)$ $cn/2$ $cn/2$ $cn/2$ $T(n/4)$ $T(n/4)$ $T(n/4)$ $T(n/4)$ $T(n/4)$ $T(n/4)$

Merge sort analysis

Space complexity

- Insertion sort:
 - Does sorting in-place, thus $\Theta(1)$.

- Merge sort:
 - Merge subroutine requires temporary space with complexity $\Theta(n)$.

Insertion vs Merge sort

- Insertion sort:
 - Time complexity $T(n) = \Theta(n^2)$.
 - Space complexity (in-place) $S(n) = \Theta(1)$.

- Merge sort:
 - Time complexity $T(n) = \Theta(n \log n)$.
 - Space complexity $S(n) = \Theta(n)$.

• For small n, Insertion sort is better while Merge sort is better for large n.

• Define $\Omega - notation$ (Big-Omega):

```
\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}.
```

• We say that g(n) is an **asymptotically lower bound** for f(n)

f(n) cg(n) n $f(n) = \Omega(g(n))$

Define 0 – notation (Big-O):

$$O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$$
.

• We say that g(n) is an **asymptotically upper**

bound for f(n)

- May be asymptotically tight; $2n^2 = O(n^2)$
- May not be asymptotically tight; $2n = O(n^2)$

Non-asymptotically tight bounds:

- Define o notation (little-o)
 - Similar to Big-O, but not tight

- Define $\omega notation$ (little-omega)
 - Similar to Big-Omega, but not tight

Recurrences

- Substitution method
 - Guess a bound
 - Use mathematical induction to prove
- Recursion-tree method
 - Convert recurrence into a tree
 - Use techniques for bounding summations
- Master method
 - Provides bounds for recurrences with the form

$$T(n) = aT(n/b) + f(n)$$

Substitution method

- Find upper bound for $T(n) = 2T(\lfloor n/2 \rfloor) + n$
- Guess $T(n) = O(n \lg n)$
- Use mathematical induction:
 - Base case: assume it holds for all m < n, say $m = \lfloor n/2 \rfloor$, thus $T(\lfloor n/2 \rfloor) \le c \lfloor n/2 \rfloor \lg(\lfloor n/2 \rfloor)$.
 - Induction: $T(n) \leq 2(c \lfloor n/2 \rfloor \lg(\lfloor n/2 \rfloor)) + n$ $\leq cn \lg(n/2) + n$ $= cn \lg n - cn \lg 2 + n$ $= cn \lg n - cn + n$ $\leq cn \lg n$,
 - Holds for $c \ge 1$

$$T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$$

$$T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$$

Total: $O(n^2)$

$$T(n) = cn^{2} + \frac{3}{16}cn^{2} + \left(\frac{3}{16}\right)^{2}cn^{2} + \dots + \left(\frac{3}{16}\right)^{\log_{4}n - 1}cn^{2} + \Theta(n^{\log_{4}3})$$

$$= \sum_{i=0}^{\log_{4}n - 1} \left(\frac{3}{16}\right)^{i}cn^{2} + \Theta(n^{\log_{4}3})$$

$$= \frac{(3/16)^{\log_{4}n} - 1}{(3/16) - 1}cn^{2} + \Theta(n^{\log_{4}3}) \qquad \text{(by equation (A.5))}.$$

$$T(n) = \sum_{i=0}^{\log_{4}n - 1} \left(\frac{3}{16}\right)^{i}cn^{2} + \Theta(n^{\log_{4}3})$$

$$< \sum_{i=0}^{\infty} \left(\frac{3}{16}\right)^{i}cn^{2} + \Theta(n^{\log_{4}3})$$

$$= \frac{1}{1 - (3/16)}cn^{2} + \Theta(n^{\log_{4}3})$$

$$= \frac{16}{13}cn^{2} + \Theta(n^{\log_{4}3})$$

$$= O(n^{2}).$$

- Verify using substitution method
- Base case: $T(n) = O(n^2)$
- Induction:

$$T(n) \leq 3T(\lfloor n/4 \rfloor) + cn^{2}$$

$$\leq 3d \lfloor n/4 \rfloor^{2} + cn^{2}$$

$$\leq 3d(n/4)^{2} + cn^{2}$$

$$= \frac{3}{16} dn^{2} + cn^{2}$$

$$\leq dn^{2},$$

where the last step holds as long as $d \ge (16/13)c$.

$$T(n) = T(n/3) + T(2n/3) + cn$$

Total: $O(n \lg n)$

$$T(n) \leq T(n/3) + T(2n/3) + cn$$

$$\leq d(n/3) \lg(n/3) + d(2n/3) \lg(2n/3) + cn$$

$$= (d(n/3) \lg n - d(n/3) \lg 3) + (d(2n/3) \lg n - d(2n/3) \lg(3/2)) + cn$$

$$= dn \lg n - d((n/3) \lg 3 + (2n/3) \lg(3/2)) + cn$$

$$= dn \lg n - d((n/3) \lg 3 + (2n/3) \lg 3 - (2n/3) \lg 2) + cn$$

$$= dn \lg n - dn (\lg 3 - 2/3) + cn$$

$$\leq dn \lg n,$$

as long as
$$d \ge c/(\lg 3 - (2/3))$$

T(n) = aT(n/b) + f(n)

Theorem 4.1 (Master theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n) ,$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) has the following asymptotic bounds:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Lemma 4.2

Let $a \ge 1$ and b > 1 be constants, and let f(n) be a nonnegative function defined on exact powers of b. Define T(n) on exact powers of b by the recurrence

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ aT(n/b) + f(n) & \text{if } n = b^i, \end{cases}$$

where i is a positive integer. Then

$$T(n) = \Theta(n^{\log_b a}) + \sum_{j=0}^{\log_b n-1} a^j f(n/b^j).$$
 (4.21)

Lemma 4.3

Let $a \ge 1$ and b > 1 be constants, and let f(n) be a nonnegative function defined on exact powers of b. A function g(n) defined over exact powers of b by

$$g(n) = \sum_{j=0}^{\log_b n - 1} a^j f(n/b^j)$$
 (4.22)

has the following asymptotic bounds for exact powers of b:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $g(n) = O(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $g(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $af(n/b) \le cf(n)$ for some constant c < 1 and for all sufficiently large n, then $g(n) = \Theta(f(n))$.

Proof For case 1, we have $f(n) = O(n^{\log_b a - \epsilon})$, which implies that $f(n/b^j) = O((n/b^j)^{\log_b a - \epsilon})$. Substituting into equation (4.22) yields

$$g(n) = O\left(\sum_{j=0}^{\log_b n - 1} a^j \left(\frac{n}{b^j}\right)^{\log_b a - \epsilon}\right). \tag{4.23}$$

$$\sum_{j=0}^{\log_b n-1} a^j \left(\frac{n}{b^j}\right)^{\log_b a-\epsilon} = n^{\log_b a-\epsilon} \sum_{j=0}^{\log_b n-1} \left(\frac{ab^{\epsilon}}{b^{\log_b a}}\right)^j$$

$$= n^{\log_b a-\epsilon} \sum_{j=0}^{\log_b n-1} (b^{\epsilon})^j$$

$$= n^{\log_b a-\epsilon} \left(\frac{b^{\epsilon \log_b n}-1}{b^{\epsilon}-1}\right)$$

$$= n^{\log_b a-\epsilon} \left(\frac{n^{\epsilon}-1}{b^{\epsilon}-1}\right)$$

$$n^{\log_b a-\epsilon} O(n^{\epsilon}) = O(n^{\log_b a})$$

$$g(n) = O(n^{\log_b a})$$

Because case 2 assumes that $f(n) = \Theta(n^{\log_b a})$, we have that $f(n/b^j) = \Theta((n/b^j)^{\log_b a})$. Substituting into equation (4.22) yields

$$g(n) = \Theta\left(\sum_{j=0}^{\log_b n - 1} a^j \left(\frac{n}{b^j}\right)^{\log_b a}\right). \tag{4.24}$$

$$\sum_{j=0}^{\log_b n-1} a^j \left(\frac{n}{b^j}\right)^{\log_b a} = n^{\log_b a} \sum_{j=0}^{\log_b n-1} \left(\frac{a}{b^{\log_b a}}\right)^j$$

$$= n^{\log_b a} \sum_{j=0}^{\log_b n-1} 1$$

$$= n^{\log_b a} \log_b n.$$

$$g(n) = \Theta(n^{\log_b a} \log_b n)$$

= $\Theta(n^{\log_b a} \lg n)$,