Logique

I. Propositions et connecteurs logiques

1. propositions

Définition 2.1

Une **proposition** est une affirmation qui ne comporte pas d'ambiguité et qui peut être soit **vraie** soit **fausse**. Une proposition peut dépendre d'un ou plusieurs paramètres.

Exemple 2.1

Les énoncés suivants sont des propositions mathématiques :

- 2 + 2 = 4 (0 paramètre, toujours vraie)
- 2 + 2 = 5 (0 paramètres, toujours fausse)
- $x \in \mathbb{R}, x \ge 3$ (1 paramètre x, peut être vraie ou fausse selon la valeur de x)
- $y \in \mathbb{R}$, $y^2 = -1$ (1 paramètre y, toujours fausse)
- Le carré d'un entier pair est divisible par 4. (0 paramètre, toujours vraie)

Exemple 2.2

Les énoncés suivants ne sont pas des propositions au sens mathématique :

- "Cette phrase est fausse" (paradoxe : problème de l'auto-référencement)
- "L'actuel roi de France est chauve" (Enoncé fictif indéfini puisqu'il n'y a pas de roi de France, pb avec le principe du tiers exclu)
- Si *F* = {*E* | *E* ∉ *E*}, la proposition *F* ∈ *F* est paradoxale (paradoxe de Russel : *F* est l'ensemble des ensembles qui ne se contiennent pas eux-même, si *F* ∈ *F* alors *F* ∉ *F* et si *F* ∉ *F* alors *F* ∈ *F*, équivalent en langage courant au paradoxe du barbier)

Un raisonnement mathématiques se construit à partir de résultats admis, en progressant par inférence déductive, c'est à dire par un mouvement de la pensée qui établit un lien entre des prémisses et une conclusion.

Exemple 2.3

Si j'ai établi les prémisses suivant : "Tous les hommes sont mortels" et "Socrate est un homme", alors je peux en déduire par déduction que Socrate est mortel.

Cette déduction repose sur le syllogisme suivant : "Si tous les B ont la propriété C, et que A est un B, alors A a la propriété C". Ce mouvement de la pensée est valable quel que soit les noms mis à la place de A, B et C.

On construit donc des énoncés vrais à partir d'autres énoncés considérés comme **vrais**. Puisqu'il faut bien commencer cette chaîne déductive quelque part, il est nécessaire d'admettre comme vrai certaines propositions élémentaires appelées **axiomes**.

Remarque

Il existe de nombreux systèmes axiomatiques différents, débouchant parfois sur des résultats différents voir contradictoires. On peut citer les axiomes d'Euclide, les axiomes de Peano, la théorie des ensembles...

Ainsi, les géométries dites "non-euclidiennes" sont construites sans le 5e axiome d'Euclide qui dit que *"étant donné un point et une droite ne passant pas par ce point, il existe une seule droite passant par ce point et parallèle à la première."* La théorie des ensembles, communément appelée théorie ZF (Zermelo - Fraenkel) est l'axiomatique la plus admise dans les mathématiques modernes. En pratique, dans le chapitre 3, le vocabulaire ensembliste sera expliqué de manière intuitive et sans recourir à tous les axiomes.

2. Connecteurs

On peut relier entre elles différentes propositions pour former de nouvelles propositions à l'aide de **connecteurs logiques**. Les trois connecteurs logiques élémentaires sont $ET(\Lambda)$, OU(V) et $NON(\neg)$

Définition 2.2

Soient A et B deux propositions

- la proposition $A \land B$ (A et B) est vraie si A et B sont vrais simultanément, et fausse sinon.
- $A \lor B$ (A ou B) est vraie si A est vraie, B est vraie, ou si les deux sont vraies, et fausse sinon.
- $\neg A$ (Non A) est vraie si A est fausse, et fausse si A est vraie.

Remarque

Le OU mathématique est inclusif.

Dans le langage courant, le OU est souvent exclusif (« fromage ou dessert »)

Blague du logicien qui attend un enfant : «-C'est un garçon ou une fille? - Oui ».

- → Exercice de cours nº 1.
- → Exercice de cours nº 2.

3. Tables de vérité

Définition 2.3

Une table de vérité est un tableau permettant de décrire le statut de vérité d'une proposition mathématique composée de plusieurs propositions combinées à l'aide de connecteurs.

Les premières colonnes sont remplies de sorte à faire figurer toutes les configurations possibles pour les propositions à combiner.

a. Une première table de vérité

Propriété 2.1

Table de vérité de $\neg A$, $A \land B$ et $A \lor B$:

		NON	ET	OU
A	В	$\neg A$	$A \wedge B$	$A \lor B$
V	V	F	V	V
V	F	F	F	V
F	V	V	F	V
F	F	V	F	F

Définition 2.4

Deux propositions sont dites **logiquement équivalentes** ou simplement **équivalente** si elles ont les mêmes valeurs de vérité pour tous les paramètres.

On note $A \leftrightarrow B$ si A et B sont logiquement équivalentes.

b. Double négation

Proposition 2.2

Soit A une proposition, alors la proposition $\neg(\neg A)$ est logiquement équivalente à A

c. Lois de De Morgan

Propriété 2.3

Table de vérité de $\neg (A \lor B)$:

A	В	$A \lor B$	$\neg (A \lor B)$
V	V	V	F
V	F	V	F
F	V	V	F
F	F	F	V

Cette table de vérité est la même que celle de $(\neg A) \land (\neg B)$:

Propriété 2.4 -

Table de vérité de $(\neg A) \land (\neg B)$:

A	В	$\neg A$	$\neg B$	$(\neg A) \wedge (\neg B)$
V	V	F	F	F
V	F	F	V	F
F	V	V	F	F
F	F	V	V	V

On peut en déduire la proposition suivante :

Proposition 2.5 (Loi de De Morgan)

Les propositions $\neg (A \lor B)$ et $(\neg A) \land (\neg B)$ sont logiquement équivalente.

On peut écrire cela $(\neg(A \lor B)) \iff ((\neg A) \land (\neg B))$

De même, on a la proposition suivante :

Proposition 2.6

La proposition $\neg(A \land B)$ est logiquement équivalente à $(\neg A) \lor (\neg B)$

- → Exercice de cours nº 3.
- \rightarrow Exercice de cours nº 4.

4. Implication, équivalence

a. Implication

Définition 2.5

Soient A et B deux propositions.

On dit que la proposition « A implique B » (notée $A \Rightarrow B$) est vraie si B est vraie dès que A est vraie.

Table de vérité de $A \Rightarrow B$:

A	В	$A \Rightarrow B$
V	V	V
V	F	F
F	V	V
F	F	V

On appelle **réciproque** de $A \Rightarrow B$ la proposition $B \Rightarrow A$.

Une implication peut être vraie sans que sa réciproque le soit.

Exemple 2.4

L'implication « (f est croissante sur [a;b]) \Rightarrow ($f(b) \ge f(a)$) »est vraie.

La réciproque de cette implication « $(f(b) \ge f(a)) \Rightarrow (f \text{ est croissante sur } [a,b])$ »est fausse en général (par exemple $3^2 \ge (-1)^2$ mais la fonction $x \mapsto x^2$ n'est pas croissante sur [-1;3])

Remarque

On peut constater que $A \Rightarrow B$ est vraie dès que A est fausse ou que B est vraie.

Table de vérité de $(\neg A) \lor B$:

A	В	$\neg A$	$(\neg A) \lor B$
V	V	F	V
V	F	F	F
F	V	V	V
F	F	V	V

Proposition 2.7 –

 $(\neg A) \lor B$ a la même table de vérité que $A \Rightarrow B$ donc ces deux propositions sont logiquement équivalentes.

Proposition 2.8

La négation de $A \Rightarrow B$ est $A \land (\neg B)$.

Attention, comme on l'a vu dans l'exemple a, la réciproque d'une implication n'est pas toujours vraie.

Exemple 2.5

Admettons que la proposition suivantes soit une vérité mathématiques :

« Si j'ai mangé trop de bonbons, alors j'ai mal au ventre »

Sa réciproque serait :

« Si j'ai mal au ventre, alors j'ai mangé trop de bonbons »

Cette implication n'est pas nécessairement vraie puisque mon mal de ventre peut être causé par autre chose qu'un excès de bonbons.

b. Équivalence

Propriété 2.9

Soient A et B deux propositions. On note $A \Longleftrightarrow B$ si A a les mêmes valeurs de vérité que B et on lit « A si et seulement si B ».

la proposition $A \Leftrightarrow B$ est vraie si et seulement si $A \Rightarrow B$ est vraie et $B \Rightarrow A$ est vraie.

Autrement dit, $A \Leftrightarrow B$ est vraie si et seulement si $(A \Rightarrow B) \land (B \Rightarrow A)$ est vraie.

A	В	$A \Rightarrow B$	$B \Rightarrow A$	$A \Leftrightarrow B$
V	V	V	V	V
V	F	F	V	F
F	V	V	F	F
F	F	V	V	V

Exemple 2.6

Un exemple connu d'équivalence est le théorème de Pythagore : la proposition « Si ABC est un triangle rectangle en B, alors $AB^2 + B^2 = AC^2$ » est vraie.

Sa réciproque, « Si $AB^2 + BC^2 = AC^2$ alors ABC est un triangle rectangle en B » est également vraie.

On appelle en général la première proposition « Théorème de Pythagore », et la seconde « Réciproque du théorème de Pythagore ».

Les propositions « ABC est rectangle en B » et $AB^2 + BC^2 = AC^2$ sont **équivalentes** :

ABC est rectangle en B si et seulement si $AB^2 + BC^2 = AC^2$

Remarque

Pour démontrer une équivalence $A \Leftrightarrow B$, il faut parfois procéder en deux temps et démontrer $A \Rightarrow B$ puis $B \Rightarrow A$. On appelle cela un raisonnement par double implication.

→ Exercice de cours nº 5.

Remarque

On a $(A \iff B) \iff (B \iff A)$, autrement dit l'équivalence « A si et seulement si B »est équivalente à l'équivalence « B si et seulement si A ».

c. Conditions nécessaires, conditions suffisantes

Définition 2.6

L'implication $A \Rightarrow B$ peut se lire :

- Si *A* alors *B* (*A* est une condition suffisante de *B*)
- B si A
- A seulement si B (B est une condition nécessaire de A)

L'équivalence $A \iff B$ peut se lire :

- *A* si et seulement si *B* (*A* est une condition nécessaire et suffisante de *B*).
- *B* si et seulement si *A* (*B* est une condition nécessaire et suffisante de *A*)

Exemple 2.7

- « Manger trop de bonbons » est une condition suffisante pour « avoir mal au ventre »
- « Avoir mal au ventre » est une condition nécessaire pour « manger trop de bonbons ».

Être un triangle rectangle est une condition nécessaire et suffisante pour avoir le carré de l'hypoténuse égal à la somme des carrés des deux autres côtés.

II. Quantificateur

1. Quantificateur universel, quantificateur existentiel

Définition 2.7

• le quantificateur universel (∀) se lit « Pour tout » ou « Quel que soit » .

 $\forall x \in E, P(x)$ signifie que tout x appartenant à l'ensemble E a la propriété P

• le quantificateur existentiel (\exists) se lit « il existe ».

 $\exists x \in E, P(x)$ signifie qu'il existe un x appartenant à l'ensemble E ayant la propriété P

• On peut ajouter le symbole! s'il y a unicité en plus de l'existence

 $\exists ! x \in EP(x)$ signifie qu'il existe un unique x appartenant à E ayant la propriété P

Remarque

La proposition « $\forall x \in E, P(x)$ » forme un tout lié : la variable x n'a pas de sens hors de cette proposition. On peut d'ailleurs la remplacer par une autre variable : $\forall y \in E, P(y)$ est exactement la même proposition que $\forall x \in E, P(x)$.

Exemples 2.8

- $\forall x \in \mathbb{R}, x^2 \ge 0$ est vrai.
- $\forall x \in \mathbb{R}, x \ge 0$ est faux.
- $\exists x \in \mathbb{R}, x \ge 0$ est vrai.
- $\forall x \in \mathbb{R}, \forall y \ge 0, x + y \ge x \text{ est vrai.}$
- $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y^2 = x \text{ est faux.}$
- → Exercice de cours nº 6.

→ Exercice de cours nº 7.

Exemple 2.9

On rappelle qu'on dit qu'une suite (u_n) tend vers $+\infty$ si tout intervalle de la forme $[A; +\infty[$ avec $A \in \mathbb{R}$ contient tous les termes de la suite à partir d'un certain rang.

Avec des quantificateurs on dit que (u_n) tend vers $+\infty$ si

$$\forall A \in \mathbb{R}, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \ge N) \Rightarrow (u_n \ge A)$$

2. Négation

Proposition 2.10 —

- La négation de $\forall x \in EP(x)$ est $\exists x \in E, \neg P(x)$ Le contraire de « Tout élément x de E a la propriété P » est « Il existe un élément x de E qui n'a pas la propriété P ».
- La négation de ∃x ∈ E, P(x) est ∀x ∈ E, ¬P(x).
 Le contraire de « Il existe un élément x de E ayant la propriété P » est « Il n'existe pas d'élément x de E ayant la propriété P » c'est à dire « Quel que soit x dans E, x n'a pas la propriété P ».

Exemple 2.10

La négation de la proposition

 $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x < y$

est la proposition

$$\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x \geq y$$

Ainsi, dans l'exercice 6, la seconde proposition est la négation de la première.

- → Exercice de cours nº 8.
- → Exercice de cours nº 9.

III. Raisonnements

1. Par équivalence

Pour montrer que $A \Leftrightarrow B$, un raisonnement **par équivalence** consiste à démontrer une suite finie d'équivalence intermédiaire : $A \Leftrightarrow A_1 \Leftrightarrow A_2 \Leftrightarrow \cdots \iff A_n \Leftrightarrow B$

C'est en général ce type de raisonnement qu'on utilise pour résoudre une (in)équation simple. Il faut être vigilant et vérifier à chaque étape qu'on a bien une équivalence \Leftrightarrow et pas une simple implication \Rightarrow .

De même, un raisonnement par implication consiste à montrer que $A\Rightarrow B$ en montrant une suite finie d'implications : $A\Rightarrow A_1\Rightarrow A_2\cdots\Rightarrow A_n\Rightarrow B$

Lorsque le raisonnement par équivalence n'est pas possible, on peut raisonner **par analyse synthèse**.

2. Par analyse-synthèse

La méthode de raisonnement par analyse-synthèse consiste à d'abord supposer un résultat vrai pour en déduire des conditions nécessaires, puis à déterminer parmi les conditions nécessaires lesquelles sont suffisantes.

 \rightarrow Exercice de cours nº 10.

Remarque

Résoudre une équation (E), c'est trouver toutes les solutions possibles. On cherche donc un ensemble de solution S tel que x est solution de (E) si et seulement si $x \in S$.

Pour résoudre une équation il est donc obligatoire de prouver une équivalence logique. Lorsque des étapes du calcul sont de simples implications, on doit faire une synthèse (c'est à dire étudier les implications réciproques et retenir seulement celles qui sont vraies).

→ Exercice de cours nº 11.

3. Par contraposée

Définition 2.8

La contraposée d'une implication $A \Rightarrow B$ est l'implication $(\neg B) \Rightarrow (\neg A)$.

Propriété 2.11 —

Une implication est vraie si et seulement si sa contraposée est vraie.

Exemple 2.11

Si je n'ai pas mal au ventre, je peux en déduire que je n'ai pas mangé trop de bonbons (voir l'exemple a).

Définition 2.9

Un raisonnement par contraposée est un raisonnement dans lequel on démontre que $(\neg B) \Rightarrow (\neg A)$ pour montrer que $A \Rightarrow B$.

- → Exercice de cours nº 12.
- → Exercice de cours nº 13.

4. Par l'absurde

Proposition 2.12

Si une proposition A implique quelque chose de faux, par exemple une contradiction évidente, alors A est faux. Autrement dit, pour toute proposition A, la proposition $(A \Rightarrow F) \Rightarrow \neg A$ est vraie.

Définition 2.10

Pour montrer qu'une proposition *A* est vraie, on peut montrer que la supposition « *A* est faux »aboutit à une contradiction. On appelle cela un **raisonnement par l'absurde**.

Remarque

Le raisonnement par l'absurde est donc le raisonnement $((\neg A) \Rightarrow F) \Rightarrow A$.

- → Exercice de cours nº 14.
- → Exercice de cours nº 15.

5. Par disjonction de cas

Le raisonnement par disjonction de cas consiste à étudier séparément plusieurs cas recouvrant l'ensemble des cas possibles.

- → Exercice de cours nº 16.
- → Exercice de cours nº 17.

6. Par récurrence

Voir chapitre 3

IV. Compléments

Quelques opérations sur les connecteurs

Proposition 2.13 (Associativité) —

Quelles que soient les propositions A, B et C, on a :

 $(A \land B) \land C \Longleftrightarrow A \land (B \land C)$

 $(A \lor B) \lor C \Longleftrightarrow A \lor (B \lor C)$

Proposition 2.14 (Distributivité) —

Quelles que soient les propositions A, B et C, on a :

$$A \wedge (B \vee C) \Longleftrightarrow (A \wedge B) \vee (A \wedge C)$$

$$A \vee (B \wedge C) \Longleftrightarrow (A \vee B) \wedge (A \vee C)$$

Proposition 2.15 (Distributivité des quantificateurs) —

Soient P une proposition qui dépend d'un paramètre x, et Q une proposition. Alors :

$$(\forall x, P(x)) \vee Q \Longleftrightarrow \forall x, (P(x) \vee Q)$$

$$(\exists x, P(x)) \vee Q \Longleftrightarrow \exists x, (P(x) \vee Q)$$

$$(\forall x, P(x)) \land Q \Longleftrightarrow \forall x, (P(x) \land Q)$$

$$(\exists x, P(x)) \land Q \Longleftrightarrow \exists x, (P(x) \land Q)$$

	Exercice	es de cours
_	Exe	rcice 1
Déter	erminer dans chaque cas l'ensemble des nombres x vé	rifiant les propositions suivantes :
	$(x > 0) \land (x \le 10)$	
	2. $x \in \mathbb{N}$, (x divise 12) \vee (x divise 15)	
	3. $(x > 4) \land (x < 2)$	
	1. $(x > 4) \lor (x < 2)$	
-	Exe	rcice 2
Écrire	re les énoncés suivants à l'aide de connecteurs logique	rs
1.	$x \in [3;7]$	
	$2. \ x \in]-\infty; 2[\cup[5;+\infty[$	
-	Exe	rcice 3
Mont	ntrer que la proposition $\neg (A \land B)$ est logiquement équi	valente à $(\neg A) \lor (\neg B)$
-	Exe	rcice 4
Écrire	re la négation des propositions suivantes :	
	$1. x \le 1 \text{ et } x^2 > 4$	
	$2. \ y \in A \text{ et } y \in B$	
	3. x > 3 ou x < -4	
Э.	7. A > 3 Ou A < 4	
_	Exe	rcice 5
Soien	ent x et y deux réels. Montrer que $ x + y = 0 \iff x = y$	= 0
ooicii	x = y deal roots. Final relations of x = y	- 0.
_	Exe	rcice 6
Tradı	duire par des phrases les propositions suivantes et dire	si elles sont vraies ou fausse :
	1. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x < y$	57 61165 66111 174166 64 144666 V
	$2. \exists m \in \mathbb{R}, \forall q \in \mathbb{R}, m \geqslant q$	
	3. $\exists x \in]-\infty, 0[, \exists y \in]0; +\infty[x^2 = y^2]$	
-	Exe	rcice 7
Tradı	luire à l'aide de quantificateurs les propositions suivar	tes:
	Le carré d'un nombre réel est positif.	
	2. Tout nombre positif est le carré d'un nombre réel.	
	B. La somme de deux entiers positifs est un entier posi	if
	La fonction carré est strictement décroissante sur] -	
1.		,
-	Exe	rcice 8
Mont	ntrer que la proposition suivante est fausse : $\exists x \in \mathbb{R}^+, \forall$	$v \in \mathbb{R}$, $v^2 > x$.
	The market contained out that the call of	,,,,
_	Exe	rcice 9

Exprimer à l'aide de quantificateur la proposition « (u_n) ne tend pas vers $+\infty$ ».

	Exercice 10
Résoudre dans \mathbb{R} l'équation d'inconnue x suivante : x	$x - 4 = \sqrt{2x - 5}$
	Exercice 11
Soit f la fonction définie sur $]2, +\infty[$ par $f(x) = \frac{3+2x}{x-2}$ Montrer que pour tout $y \in]2, +\infty[$, il existe $x \in]2, +\infty[$	C -
Montrer que pour tout $y \in]2, +\infty[$, il existe $x \in]2, +\infty[$	tel que $f(x) = y$.
	Exercice 12
Soit $n \in \mathbb{N}$. Montrer que si n^2 est pair, alors n est pair.	
	Exercice 13
Démontrer par contraposée les propositions suivante	es:
1. $m \in \mathbb{N}$ et $n \in \mathbb{N}$. Si mn est impair alors m est imp	pair ou n est impair.
2. Si $x \neq 0$ et $y \neq 0$, alors $xy \neq 0$	
3. $a \in \mathbb{R}$, $(\forall \epsilon > 0, a < \epsilon) \Rightarrow a = 0$	
	Exercice 14
Montrer que $\sqrt{2}$ est un nombre irrationnel.	
	Exercice 15
Montrer par l'absurde qu'il existe une infinité de nom	abres premiers.
	Exercice 16
Résoudre $ x+8 + x-6 \ge 4$	
	Exercice 17

Démontrer que pour tout entier $n \in \mathbb{N}$, le nombre n(n+1)(n+2) est un multiple de 3.