

Escuela Profesional de Ingeniería Electrónica y de Telecomunicaciones

Curso: Cálculo en una Variable

2023-02

Guía de Práctica Nº 5

Grupo : IET2-1

Profesora : Fiorella Luz Romero Gómez

Fecha : Setiembre del 2023

Tema : Asíntotas

I. Determine las asíntotas de las siguientes funciones:

1.
$$f(x) = \frac{x^2}{\sqrt{x^2 - 1}}$$

Rpta: AV:
$$x = 1$$
, $x = -1$; AH: $y = \pm x$

2.
$$f(x) = \frac{2x-1}{x-3}$$

Rpta: AV:
$$x = 3$$
; AH: $y = 2$

3.
$$f(x) = \frac{x+1}{x^2-9}$$

Rpta: AV:
$$x = -3$$
, $x = 3$; AH: $y = 0$

4.
$$f(x) = \frac{4x^2 + 3x}{2x^2 - 5x}$$

Rpta: AV:
$$x = \frac{5}{2}$$
; AH: $y = 2$

5.
$$f(x) = 3 - 2x - \frac{x^2}{\sqrt{x^2 - x - 2}}$$

Rpta: AV:
$$x = 1, x = 2$$
; AO: $y = -3x + \frac{5}{2}$,

$$y = -x - \frac{7}{2}$$

6.
$$f(x) = \frac{x^2+4}{(x-1)(x+2)(x-3)}$$

Rpta: AV:
$$x = 1, x = -2, x = 3$$
; AH: y=0

7.
$$f(x) = \frac{x^2}{x^4 - 12x^2 + 2x^3 - 8x - 32}$$

Rpta: AV:
$$x = 2$$
, $x = -2$, $x = -4$; AH: $y = 0$

8.
$$f(x) = \frac{x^2 + 2x + 3}{x - 1}$$

Rpta: AV:
$$x = 1$$
; AO: $y = x + 3$

9.
$$f(x) = \frac{x^4 - 2x^3 + 3x^2 - 7x + 2}{(x-2)^2(3x+1)}$$

Rpta: AV:
$$x = -\frac{1}{3}$$
, $x = 2$; AO: $y = \frac{1}{3}x + \frac{5}{9}$

10.
$$f(x) = \frac{2x^3 + 3x^2}{x^2 - 2x - 3}$$

Rpta: AV:
$$x = 3$$
, $x = -1$; AO: $y = 2x + 7$

11.
$$f(x) = \frac{\sqrt{2x^2+1}}{3x-5}$$

Rpta: AV:
$$x = \frac{5}{3}$$
; AH: $y = \frac{\sqrt{2}}{3}$, $y = -\frac{\sqrt{2}}{3}$

12.
$$f(x) = \frac{x^3 - 4x^2}{x^2 - 3x - 10}$$

Rpta: AV:
$$x = 5$$
, $x = -2$; AO: $y = x - 1$

13.
$$f(x) = \frac{x^2-3}{2x-4}$$

Rpta: AV:
$$x = 2$$
; AO: $y = \frac{1}{2}x + 1$

14.
$$f(x) = \frac{x^2+2}{x^2-2x}$$

Rpta: AV:
$$x = 0$$
, $x = 2$; AH: $y = 1$

15. Sea la función $f(x) = \frac{4x^4 - x^2}{2x^3 + 2x^2 - 16x - 24}$, determine las ecuaciones de las asíntotas y realice el bosquejo

del gráfico. Además, se cumple:

$$\lim_{x \to 3^+} f(x) = +\infty$$

$$\lim_{x \to 3^{-}} f(x) = -\infty$$

b.
$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = 2$$

$$\mathbf{c.} \quad \lim_{x \to +\infty} f(x) = \nexists$$

$$\lim_{x \to -\infty} f(x) = \nexists$$

Rpta: A.V.
$$x = -2$$
, $x = 3$; AO: $y = 2x - 2$

16. Sea la función $f(x) = \frac{x^4 - x^3 + x^2 - x + 1}{x^3 - 3x - 2}$ que tiene asíntotas verticales en x = -1 y x = 2 y además

se cumple

a.
$$\lim_{x \to -1^{-}} f(x) = -\infty$$

c.
$$\lim_{x \to 2^+} f(x) = +\infty$$

b.
$$\lim_{x \to -1^+} f(x) = -\infty$$

c.
$$\lim_{x \to 2^+} f(x) = +\infty$$

d.
$$\lim_{x \to 2^-} f(x) = -\infty$$

Halle las asíntotas oblicuas y grafique la función.

17. Indique las ecuaciones de las asíntotas. Bosqueje la gráfica según los siguientes límites dados.

$$a. \lim_{x \to 2^+} f(x) = +\infty$$

c.
$$\lim_{x \to -\infty} f(x) = 1$$

e.
$$\lim_{x \to +\infty} \frac{f(x)}{x} = 1$$

b.
$$\lim_{x \to 2^{-}} f(x) = -\infty$$

d.
$$\lim_{x \to +\infty} f(x) = +\infty$$

a.
$$\lim_{x \to 2^+} f(x) = +\infty$$
 c. $\lim_{x \to -\infty} f(x) = 1$ e. $\lim_{x \to +\infty} \frac{f(x)}{x} = 1$
b. $\lim_{x \to 2^-} f(x) = -\infty$ d. $\lim_{x \to +\infty} f(x) = +\infty$ f. $\lim_{x \to +\infty} (f(x) - x) = -1$

Rpta: A.V.
$$x = 2$$
, AH: $y = 1$, AO: $y = x - 1$

18. Indique las ecuaciones de las asíntotas. Bosqueje la gráfica según los siguientes límites dados.

a.
$$\lim_{x \to -2^-} f(x) = -\infty$$

d.
$$\lim_{x \to 1^+} f(x) = -\infty$$

a.
$$\lim_{x \to -2^-} f(x) = -\infty$$
 d. $\lim_{x \to 1^+} f(x) = -\infty$ g. $\lim_{x \to +\infty} \left(f(x) - \frac{5x}{2} \right) = -\frac{1}{2}$ b. $\lim_{x \to -2^+} f(x) = +\infty$ e. $\lim_{x \to -\infty} f(x) = -1$ h. $\lim_{x \to -1} f(x) = 1$ c. $\lim_{x \to 1^-} f(x) = -\infty$ f. $\lim_{x \to +\infty} \frac{f(x)}{x} = \frac{5}{2}$

b.
$$\lim_{x \to -2^+} f(x) = +\infty$$

e.
$$\lim_{x \to -\infty} f(x) = -1$$

$$h. \quad \lim f(x) = 1$$

c.
$$\lim_{x \to 1^{-}} f(x) = -\infty$$

f.
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \frac{5}{2}$$

Rpta: A.V.
$$x = -2$$
, $x = 1$, AH: $y = -1$, AO: $y = \frac{5}{2}x - \frac{1}{2}$

19. Del gráfico de la función y = f(x) determine

a.
$$\lim_{x \to -\infty} f(x)$$

b.
$$\lim_{x \to -1} f(x)$$

c.
$$\lim_{x\to 2} f(x)$$

d.
$$\lim_{x\to 3} f(x)$$

e.
$$\lim_{x \to +\infty} f(x)$$

f. Indique las ecuaciones de las asíntotas

Rpta: a. $+\infty$; b. no existe; c. no existe; d. 0; e. 3

20. Del gráfico de la función y = f(x)

- $\text{Determine: } \lim_{x \to 4^-} f(x), \lim_{x \to 4^+} f(x), \lim_{x \to -\infty} f(x), \lim_{x \to +\infty} f(x), \lim_{x \to 0^-} f(x), \lim_{x \to 0^+} f(x)$
- b. Indique las ecuaciones de las asíntotas.
- En el intervalo de $]-\infty$; 4[¿f es continua en x=1? Justifique.

Rpta: a. $-\infty, +\infty, 2, +\infty, 2, 2$; b. AV: x = 4, AH: y = 2, AO: y = 2x - 3; c. No porque falla la 2da condición

21. Hallar el dominio de f(x), calcular todas las asíntotas si las hubiera y bosqueje el gráfico de:

$$f(x) = \frac{x^3 - 3x^2 - 4x}{x^2 + 2x - 8}$$

22. Calcular todas asíntotas si las hubiera y bosquejar el gráfico
$$f(x) = \frac{x^3 - 2x^2 - 11x + 12}{x^2 - 4}$$

- 23. Determine las asíntotas de la función $f(x) = \frac{x^3 1}{x^2 9}$, luego esboce su gráfico.
- **24.** Hallar el dominio de f(x), calcular todas las asíntotas si las hubiera y bosqueje el gráfico de:

$$f(x) = \frac{x^3 - 3x^2 - 4x}{x^2 - 9}$$