ANALYSIS OF HEURISTIC COMBINATIONS

Some keywords and terms:

- MRV Minimum remaining values heuristic: The solver will choose a cell that has the smallest domain when deciding on what cell to assign values to next. This is to reduce the number of nodes.
- MD Maximum degree heuristic: The solver will choose a cell with the largest degrees, or the largest unassigned neighbors. This is usually used as a tie-breaker for the MRV heuristic.
 This is also to reduce the number of nodes.
- LCV Least constraining value heuristic: The solver will choose a value that constrains the least number of unassigned neighbors. This is to avoid failure as much as possible.
- ACP Arc consistency 3 pre-processor: The solver will run an ac3 check on the puzzle before solving it. An ac3 check will ensure that each cell's values have at least one value in each of their unassigned neighbors that is consistent, or legal.
- MAC Maintenance of Arc consistency 3: The solver will run an ac3 check on the assigned cell's neighbors after an assignment.
- FC Forward check: The solver will check an assigned cell's neighbors after assignment, and ensure that those cells are consistent with the assignment.
- Puzzle parameters m, n, p, q: m is the number of clues, or already solved cells in the
 puzzle. n is the size of the puzzle. p and q are the height and width of the blocks,
 respectively.

In this part, I ran the solver on the same 10 random puzzles with the parameters: m = 17, n = 9, p = 3, q = 3. The solver is set to timeout after 300s. Each iteration of the test had the solver using a different combination of heuristic methods. First, the solver ran with only constraint propagation. Next, I tested the solver on individual heuristic methods. Then, the solver ran with a few different combinations, and finally with all of the methods. For each iteration, certain statistics were recorded: average number of nodes, dead ends, average time, % completed, etc.

Heuristics Combination	Avg. # Nodes	Avg. # Dead Ends	Avg. Total Time	% Complete
None	262 090	262 032	39.2957s	100%
MRV only	56 169	56 111	15.0611s	100%
MD only	1 937 753	1 937 717	300s	0%
LCV only	4 186	4 128	0.9162s	100%
ACP only	257 130	257 072	38.4658s	100%
MAC only	135 996	135 939	26.4882s	100%
FC only	262 090	262 032	28.5434s	100%
MRV, MD, LCV	67 012	66 951	30.0306s	90%
ACP, MAC, FC	130 624	130 566	25.2502s	100%
MRV, LCV	37 986	37 928	12.8338s	100%
MRV, LCV, ACP,	37 986	37 928	15.2296s	100%
MAC, FC				

All	60 007	59 945	30.0495s	90%
, ,,,	00 00.	000.0	00.0.00	00,0

From this table alone, LCV only has the best performance on the 10 puzzles. Do note that typically, the lower the number of nodes the solver has to expand and explore, the less time it takes to solve. LCV only has the smallest average nodes, 4 186, and thus has the smallest time. This may certainly just be a product of a small sample size, and may not scale well with larger puzzles. Also note, MD only has the highest time, with an average of 300s. This is due to timeout. With only MD, the solver is unable to solve these puzzles within 5 minutes.

Compared to the no heuristics option, ACP only has similar times. ACP only has less nodes than the baseline, but it only saved about 1s. This 1s saved can be attributed to differences in CPU usage and background programs running. How many nodes ACP prunes is most likely not enough to overcome its algorithm time overhead. MAC only, FC only, and ACP, MAC, FC all have similar times.

The solver saved a significant 18s by disabling MD when also using MRV and LCV. This and MD only's 300s average time leads me to believe that the MD implementation is simply too inefficient to be worth it. On a similar not, the solver saved about 15s when disabling only MD when compared to using all of the heuristics.

The next few analyses will be only using the MRV + LCV heuristics and the MRV, LCV, ACP, MAC, FC heuristics only.

ESTIMATION OF THE HARDEST R FOR 9X9 PUZZLES

The Hardest R is a value that denotes how many clues a puzzle will have so that the solver will have the hardest time solving it. R can be calculated as $R=m/n^2$. For each m, 15 random 9x9 puzzles were generated, and the average number of nodes, average dead ends, average time, % complete, and % solvable were recorded. Completed puzzles are puzzles in which the solver has found a solution to or determined unsolvable. Solved puzzles are puzzles in which the solver has found a solution to.

With only MRV and LCV.

m	R	Avg. # Nodes	Avg. # Dead Ends	Avg. Time	% Complete	% Solved
4	0.0494	77	0	0.02262s	100%	100%
8	0.0988	83 946	83 875	20.0193s	93.3%	93.3%
12	0.148	69	0	0.0194s	100%	100%
16	0.198	915	854	0.2251s	100%	93.3%
17	0.210	61	1	0.0169s	100%	93.3%
18	0.222	108	62	0.0437s	100%	73.3%
19	0.235	3 718	3 656	0.9212s	100%	100%
20	0.247	83 051	83 008	20.159s	93.3%	67.7%
21	0.259	6 918	6 866	1.571s	100%	86.7%
22	0.272	11 241	11 198	2.8444s	100%	73.3%
24	0.296	108 140	108 112	25.9309s	93.3%	26.7%
28	0.346	123	119	0.0292s	100%	6.7%

32	0.395	1	1	0.0013s	100%	0%
36	0.444	0	0	0.001s	100%	0%

With only MRV, LCV, ACP, MAC, and FC.

m	R	Avg. # Nodes	Avg. # Dead Ends	Avg. Time	% Complete	% Solved
4	0.0494	77	0	0.05144s	100%	100%
8	0.0988	69 540	69 469	20.0436s	93.3%	93.3%
12	0.148	69	0	0.0406s	100%	100%
16	0.198	915	854	0.249s	100%	93.3%
17	0.210	61	1	0.03505s	100%	93.3%
18	0.222	108	62	0.0262s	100%	73.3%
19	0.235	3 718	3 656	1.076s	100%	100%
20	0.247	69 207	69 163	20.2036s	93.3%	66.7%
21	0.259	6 918	6 866	1.876s	100%	86.7%
22	0.272	11 241	11 198	3.3874s	100%	73.3%
24	0.296	94 509	94 492	27.0683s	93.3%	26.7%
28	0.346	122	118	0.0381s	100%	6.7%
32	0.395	0	0	0.0029s	100%	0%
36	0.444	0	0	0.0014s	100%	0%

As you scan the two tables, you will realize that the MRV + LCV heuristics have faster average times than the other. This is primarily due to the algorithm overhead the ac3 and forward checking has. The MRV and LCV heuristics do most of the node pruning for these puzzles; thus, having extra heuristics doesn't reduce it much further if at all.

Starting at m = 4, the puzzles are fairly easy to solve. There are a few outliers that caused timeouts, but for the most part, m = 4, 8, 12, 16 were all fairly easy. This continues up until about m = 19, where the time becomes > 1s, with 20s for m = 20 and 25 - 27s for m = 24. After that, it again drops to being very easy. This is mostly due to m = 100 being too high, and thus leading to unsolvable puzzles. Based on the % solvable and the average time, the hardest R would be around when m = 24, or m = 100.

You can see that for both heuristic combinations, the average time remains small, except for a few spikes. At R = 0.0988, 0.247, and 0.296, there are large spikes in average time. Now, for 0.0988, this can be explained by an unfortunate difficult puzzle that was generated, which skewed the average time upward. The other two can be explained by it being the hardest R for the solver.

Except for the massive spikes at R = 0.0988, 0.247, 0.296, the average number of nodes stays relatively the same.

The solvability drops as R increases, as expected. When R increases, m increases. As m increases, the likelihood of the generated puzzle being solvable drops as there are much more constraints that may not necessarily be consistent.

LARGEST N COMPLETABLE AT THE HARDEST R

The largest n will show us how well the solver scales with size. This was tested using 10 random puzzles per m, n, p, q parameters. The hardest m was calculated as $m=n^2*R$, using the hardest R calculated in the previous part

With only MRV and LCV.

Hardest m	n	р	q	Avg. # Nodes	Avg. # Dead Ends	Avg. Time	% Completed	% Solved
43	12	3	4	432 560	432 501	180.25s	40%	20%
67	15	3	5	275 902	275 825	180.145s	40%	10%
76	16	4	4	299 246	299 128	219.613s	30%	20%
96	18	3	6	307 319	307 181	300s	0%	0%

With only MRV, LCV, ACP, MAC, and FC.

Hardest m	n	р	q	Avg. # Nodes	Avg. # Dead Ends	Avg. Time	% Completed	% Solved
43	12	3	4	376 982	376 922	180.304s	40%	20%

67	15	3	5	244 316	244 239	180.19s	40%	10%
76	16	4	4	263 653	263 534	220.281s	30%	20%
96	18	3	6	298 727	300 162	300s	0%	0%

The above tables show the solver trying to solve larger puzzles at the hardest R. As you can see, the solver has a lot of trouble solving larger puzzles at that R. After a certain size, n = 16, the solver simply could not solve the puzzles within 5 minutes. Even before at sizes 12 and 15, the percentage of completion if low and continues to drop until size 18. The largest n solvable at the hardest R would then be either 12 or 15. However, one can argue that because of the low completion of size 12 and 15 puzzles, the largest n solvable at the hardest R is in fact 9. For the purposes of the next part, we will say that the largest n is 12.

HARDEST R FOR LARGEST N

This is to test whether the hardest R value for a 9x9 puzzle scales as n grows. This was tested using 15 random 12x12 puzzles per m value.

With only MRV and LCV.

m	R	Avg. # Nodes	Avg. # Dead Ends	Avg. Time	% Completed	% Solved
7	0.0486	59 984	59 849	20.0736s	93.3%	93.3%
14	0.0972	167	37	0.0775s	100%	100%
21	0.1458	528	405	0.2056s	100%	100%
29	0.2014	95 415	94 314	40.1124s	86.7%	80%
30	0.2083	176 899	176 799	70.6323s	80%	73.3%
32	0.2222	110 966	110 859	48.2862s	86.7%	86.7%
34	0.2361	182 517	182 428	77.13s	80%	66.7%
36	0.25	207 477	207 387	86.1668s	83.3%	66.7%
37	0.2569	185 223	185 139	80.0714s	73.3%	60%
39	0.2708	383 863	383 797	161.491s	46.7%	53.3%
43	0.2986	230 518	230 455	97.2483s	73.3%	46.7%
50	0.3472	138 098	137 082	60.219s	80%	66.7%
57	0.3958	5	5	0.0049s	100%	0%
64	0.4444	0	0	0.0029s	100%	0%

With only MRV, LCV, ACP, MAC, and FC.

m	R	Avg. # Nodes	Avg. # Dead Ends	Avg. Time	% Completed	% Solved
7	0.0486	50 772	50 636	20.1611s	93.3%	93.3%
14	0.0972	167	37	0.1672s	100%	100%
21	0.1458	528	405	0.3023s	100%	100%
29	0.2014	80 884	80 782	40.1734s	86.7%	80%

30	0.2083	155 943	155 843	72.2758s	80%	73.3%
32	0.2222	98 373	98 265	49.5991s	80%	86.7%
34	0.2361	162 716	162 627	80.0514s	80%	66.7%
36	0.25	179 620	179 529	87.1337s	83.3%	66.7%
37	0.2569	160 918	160 836	80.1119s	73.3%	60%
39	0.2708	331 069	331 003	161.637s	46.7%	53.3%
43	0.2986	206 546	206 483	99.8994s	73.3%	46.7%
50	0.3472	119 644	119 628	60.2703s	80%	66.7%
57	0.3958	3	3	0.0131s	100%	0%
64	0.4444	0	0	0.0046s	100%	0%

The distribution is similar to finding the hardest R for an 9x9 puzzle: At the low and high ends, the solver completes the puzzle very quickly. As it approaches around m = 39, the solver takes longer and longer to solve. As m increases, the solvability drops to 0% as expected. Comparing the two tables, you can see that the solver with only MRV and LCV heuristics still has a slight time edge over the other. This means that even though the ac3 and forward checking algorithms reduce the search space by eliminating nodes, it does not do this enough to make up for the time overhead. Based on the two tables, the hardest m for a 12x12 puzzle would be around m = 39, or R = 0.2708. This is close to the hardest R = 0.296 for an 9x9 puzzle; there is only a 0.2 difference. This difference can be from the difference in overall difficulties of the puzzles. The hardest R does seem to scale with n; however, it is very likely that the hardest R does not scale 1:1, and may eventually plateau.

As expected, as R approaches the hardest R, the average time increases. Then afterwards, it drops. The low and high R's have low average times.

This follows similarly to the average time, as time taken correlates with number of nodes. As expected, the solver with only the MRV and LCV heuristics has higher average nodes than the other.

The solvability drops to 0% as R increases.

After a series of tests, we can conclude that while the solver does not scale very effectively with the size of the puzzle, it performs reasonably well for regular 9x9 puzzles. Some harder puzzles may take some time, but for most puzzles, the solver should solve it in a short time frame. The solver performs best with simply MRV and LCV heuristics, as the other heuristics do not shorten the search space enough to make up for their time overhead.