

- Homework
 - Online HW2 due tonight!
 - Online HW3 will be due on Friday
- Video HW's graded and comments emailed back to you
- We will almost finish Chapter 13 today
- Polling: rembold-class.ddns.net

Given the dipole to the left, in what direction would a negative charge placed at the black dot feel a force?

- A) Up
- B) Down
- C) Left
- D) Right

Solution: Down

2 / 14

Dipole Refresher

Perpendicular to the Axis: More Numbers

Dancing round the Dipole

Perpendicular to the Axis: More Numbers

Perpendicular to the Axis: More Numbers

$$egin{aligned} \mathbf{\hat{r}}_+ &= rac{\left< -rac{s}{2}, r, 0
ight>}{\sqrt{\left(rac{s}{2}
ight)^2 + r^2}} \ \mathbf{\hat{r}}_- &= rac{\left<rac{s}{2}, r, 0
ight>}{\sqrt{\left(rac{s}{2}
ight)^2 + r^2}} \end{aligned}$$

$$\vec{\mathbf{E}}_{+} = \frac{1}{4\pi\epsilon_0} \frac{q}{(\frac{s}{2})^2 + r^2} \cdot \frac{\left\langle -\frac{s}{2}, r, 0 \right\rangle}{\sqrt{(\frac{s}{2})^2 + r^2}}$$

$$\vec{\mathbf{E}}_{-} = \frac{1}{4\pi\epsilon_0} \frac{-q}{(\frac{s}{2})^2 + r^2} \cdot \frac{\left\langle \frac{s}{2}, r, 0 \right\rangle}{\sqrt{(\frac{s}{2})^2 + r^2}}$$

Simplifying the Perpendicular

- Y-components equal and opposite ⇒ cancel
- X-components equal and the same direction ⇒ double
- Results in

$$ec{\mathsf{E}}_{net,\perp} = rac{1}{4\pi\epsilon_0} rac{-qs}{[(rac{s}{2})^2 + r^2]^{3/2}} \langle 1,0,0
angle$$

• Again, if $r \gg s$, then this simplifies to become:

$$\left| \vec{\mathsf{E}}_{net,\perp} \right| = \frac{1}{4\pi\epsilon_0} \frac{qs}{r^3}$$

$$egin{aligned} \left| ec{\mathbf{E}}_{\mathsf{ax}\mathsf{is}}
ight| &pprox rac{1}{4\pi\epsilon_0} rac{2qs}{r^3} \ \left| ec{\mathbf{E}}_\perp
ight| &pprox rac{1}{4\pi\epsilon_0} rac{qs}{r^3} \end{aligned}$$

- \bullet E-field along axis points from \rightarrow +
- ullet E-field along perpendicular points from +
 ightarrow -

From this Moment on...

- Notice that qs shows up in both expressions
- Given some distance away, qs is what dictates the strength of the field
- Give it a fancy name!

The Electric Dipole Moment

The electric dipole moment is defined as

$$p = qs$$

where q is the charge, s the separation and p the dipole moment. It can also be defined as a vector that points from the negative charge to the positive charge.

Suppose a dipole located at the origin has a dipole moment of $\langle 0.01, 0, 0 \rangle$ C m. What force does a 10 mC particle at $\vec{r} = \langle 0, 6, 2 \rangle$ experience?

Solution: 3.56 kN

 Let's consider the behavior of a dipole in a constant electric field

- Let's consider the behavior of a dipole in a constant electric field
 - System should have net force zero: zero movement

- Let's consider the behavior of a dipole in a constant electric field
 - System should have net force zero: zero movement
 - Individual charges will feel a force

- Let's consider the behavior of a dipole in a constant electric field
 - System should have net force zero: zero movement
 - Individual charges will feel a force
 - Results in torque that spins the dipole around

- Let's consider the behavior of a dipole in a constant electric field
 - System should have net force zero: zero movement
 - Individual charges will feel a force
 - Results in torque that spins the dipole around
 - End result? \vec{p} aligned with \vec{E}

Understanding Check!

Consider our previous dipole instead is in an electric field that increased to the right.

$$\vec{\mathbf{E}} = \langle 2x, 0, 0 \rangle$$

What will the net motion of the dipole be over a prolonged amount of time?

- A) It should move to the right
- B) It should move to the left
- C) It should not move left or right
- D) It should move out of the board

Solution: Move to the right

Computationally Making the Magic

At this point we have everything we need to computationally draw electric fields:

- 1. Define your source charges
- 2. Choose the points you want to investigate the E-field at
- 3. Looping through those points:
 - i. Calculate your displacement
 - ii. Calculate your electric field
 - iii. Draw your E-field vector
- 4. Behold the splendor of what you have drawn!

Some Example Code

```
ball = sphere(pos=vec(0,0,0), radius=1, color=color.red)
ball.q = 10E-6

oofpez=9E9
scf=0.0001

for i in arange(-10,10,1):
    for j in arange(-10,10,1):
        r = vec(i,j,0) - ball.pos
        Efield = oofpez*ball.q*r.hat/mag(r)**2
        arrow(pos=vec(i,j,0), axis=Efield*scf, shaftwidth=0.1)
```

Defining constants and sources

Some Example Code

```
ball = sphere(pos=vec(0,0,0), radius=1, color=color.red)
ball.q = 10E-6

oofpez=9E9
scf=0.0001

for i in arange(-10,10,1):
    for j in arange(-10,10,1):
        r = vec(i,j,0) - ball.pos
        Efield = oofpez*ball.q*r.hat/mag(r)**2
        arrow(pos=vec(i,j,0), axis=Efield*scf, shaftwidth=0.1)
```

Some Example Code

```
ball = sphere(pos=vec(0,0,0), radius=1, color=color.red)
ball.q = 10E-6

oofpez=9E9
scf=0.0001

for i in arange(-10,10,1):
    for j in arange(-10,10,1):
        r = vec(i,j,0) - ball.pos
        Efield = oofpez*ball.q*r.hat/mag(r)**2
        arrow(pos=vec(i,j,0), axis=Efield*scf, shaftwidth=0.1)
Calculating E-field
and drawing
```


Fancier Pictures!

