Technische Universität Chemnitz Fakultät für Informatik Professur Technische Informatik Prof. Dr. Wolfram Hardt

HW/SW Codesign II

Emulation and (Rapid) Prototyping

Prof. Dr. Wolfram Hardt Dipl.-Inf. Michael Nagler

Contents

- Prototyping
- Emulation
- Rapid Prototyping

IC Design

very slow, complete tests impossible

faster, but if error is found: redesign and refabrication

→ design errors very expensive

very expensive

Simulation of Complex ASICs

design level	description language	primitives	simulation time (cycles/instruction)
algorithm	HLL	instruction sets	10-100
architecture	HLL, HDL	functional blocks	1K-10K
register transfer	HDL	RTL primitives	1M-10M
logic	HDL, netlist	logic gates	10M-100M

Costs for Mask and Prototype Fabrication

Solution

Pro and Contra for FPGA Based Prototyping

- - no masks necessary
 - fast turnaround
 - low NRE (non-recurring engineering) changes
 - low risk
 - efficient design verification
 - low testing cost
- disadvantages in comparison to mask prototype fabrication
 - -
 - chip costs
 - slower speed
 - no accurate timing information

Prototype

definition

A prototype (of an embedded system) is an implementation with ______ of the system specification and relaxed constraints for

- **-**
- design size
- design cost
- remark
 - prototype executes functionality much faster than a simulation

Prototype to Final Design

design step from prototype to final design removes prototype limitations

- may be complex if the prototyping and fabrication architectures differ much
 - **–** ______
 - general purpose processor ←→ microcontroller
- testing still necessary due to missing information about prototype limits (especially timing)

Problems of FPGA Based Prototyping

- FPGA capacity is limited
- implementation of interconnection between blocks and chips is different from final design
- number of I/O pins is limited
- visibility of probes (test points)

homogeneous prototype architectures

- minimises problems
- limits of single technology
- named: ______

Contents

- Prototyping
- Emulation
- Rapid Prototyping

Emulation Systems - Parameters

- FPGA type
 - number of gates
 - number of I/O pins
 - mapping efficiency

- memory blocks
- function blocks
- internal interconnection structure

- system of many FPGAs
 - number of FPGAs

- _____

- software for prototype design (mapping)
 - partitioning of design netlist
 - solving the clock skew problems
 - logic analyzing, stimulus generator

Time Improvement

Quelle: Incisive Enterprise Palladium Series with incisive XE software, Cadence Design Systems, Inc., 2006

Mapping Software

Clock Skew

 no homogenous clock all over the FPGA due to connection delays (clock distribution delay)

hold-time violation occurs when *routing delay* > *LUT delay*

Clock Skew Solutions

- hardware:
 - dedicated clock distribution networks
 - _____ clock distribution

- software:
 - optimising placement and routing (path analysis)
 - inserting combinatorial clock enables

I/O Pin Restrictions

- Rent's Rule
 - relation between gates and I/O pins of a partition

 $-N_p$... number of I/O pins

 $-N_g$... number of gates

- k_p ... factor of proportionality

 $-\beta$ in range of 0.5 (regular designs like SRAM) and 0.75 (random logic)

Example

Multi-FPGA Systems

- to emulate bigger systems it is necessary to build an emulation system of many FPGAs, which differs in
 - number of FPGAs
 - interconnection topologies
 - ______ (nearest neighbouring)
 - _____ (full and partial)

MESH Interconnection

nearest neighbour interconnection

Advantages and Disadvantages

- advantages
 - uniform: all chips the same
 - easy to layout on PCB
- disadvantages
 - -
 - logic utilisation of FPGA is limited by pins, which are used for interconnection
 - long and unpredictable delays
 - no natural hierarchical extension

Partial Crossbar Interconnection (I)

Partial Crossbar Interconnection (II)

- partial crossbar consists of a ______
 connected to logic blocks but not to each other
- I/O pins of each FPGA are divided into subsets
- each subset is connected by a full crossbar circuit switch
- partial crossbar is a potentially blocking network
- partial crossbar's size is proportional to the number of FPGA pins
- all interconnections go through one / three crossbar chips for a one-level / two-level partial crossbar interconnect → delays are uniform and bounded

Virtual Wires (I)

- map several logic wires to a single physically wire (_______)
- all registers are clocked with a virtual clock
- the clock period allows the communication of two neighboured FPGAs
- for partitioning no further limitations for I/O pins
 → leads to good FPGA utilisation
- decreases system speed (due to virtual clock)

Virtual Wires (II)

Contents

- Prototyping
- Emulation
- Rapid Prototyping

Rapid Prototyping

- rapid prototyping uses a ______ hardware platform (remember: emulation uses a homogenous platform)
- rapid prototyping systems offer
 - modules
 - processors
 - special chips (ASICs)
 - FPGAs
 - memory
 - flexible interconnection structure
 - FPGAs
 - FPICS (field-programmable interconnects)

Example – Aptix Exporer

Design Flow - Aptix Explorer

Example - Digilent Nexys 3 (I)

- Digilent Nexys 3 board with
 Xilinx Spartan6 XC6LX16-CS324
 - 2278 logic blocks
 - 576 kbit block RAM
 - 32 DSP slices
 - 500MHz+ clock speeds (DCM)
- peripheries
 - Buttons, Switches, ...
 - LEDs, Seven Segment Display
 - RS232, USB, Ethernet, VGA, ...
- used in practical course

Example - Digilent Nexys 3 (II)

