Semaine 2

Joshua Freeman

March 2021

5 Disjonctions de cas

1. Soient $n, m \in \mathbb{N}$. Il s'agit d'étudier si $\frac{(n+1)(m+1)(n+m+2)}{2}$ est entier. Notons que pour ceci il suffit qu'un des facteurs en numérateur soit pair. Supposons d'une part que $n \equiv 0 \equiv m \mod 2$. Dans ce cas,

$$n + m + 2 \equiv 0 \mod 2$$
,

et notre propriété est démontrée. Dans tous les cas restants, au moins l'un des deux est impair. Sans perte de généralité, supposons que c'est n. On aura alors $n+1\equiv 0\mod 2$ et t sera entier.

- 2. Il s'agit de montrer $v \equiv 0 \mod 2 \iff x, y, z$ sont tous pairs. Notons pour cela qu'un carré est toujours congru à 0 ou 1 modulo 4.
 - (a) \implies . Considérons le cas où il y a deux nombres du triplet x,y,z pairs et un impair. Dans ce cas v est congru à 2 modulo 4, ce qui est absurde pour un carré en général. Ce cas n'arrivera donc jamais tant que v,x,y,z, satisferont $x^2 + y^2 + z^2 = v^2$ (de la même manière pour x,y,z tous impairs). D'autre part qu'en est-il si un deux cette fois sont pairs et un seul impair? Puisque v^2 est alors congru à 1 mod 4, ceci est contradictoire avec le fait qu'il soit pair. Or dans le cas où tous les trois xy, et z sont pairs on a bien $v^2 \equiv 0 \mod 4 \implies v \equiv 0 \mod 2$. Ayant dénombré tous les cas possibles, on peut affirmer que $v \equiv 0 \mod 2 \implies x,y,z$ tous pairs.
 - (b) \Leftarrow . Trivialement, on peut montrer qu'on a déjà prouvé cela en citant ce qu'on a dit plus haut : Dans le cas où tous les trois xy, et z sont pairs on a bien $v^2 \equiv 0 \mod 4 \implies v \equiv 0 \mod 2$.

cqfd

6 Implications

- 1. $x^2 + ax + b = 0$
 - (a) $P \implies Q$. Supposons que z, \overline{z} soient les deux solutions de l'équation. Alors, par le théorème fondamental de l'algèbre,

$$x^2 + ax + b = (x - z)(x - \overline{z}) \iff a = -(z + \overline{z}) \land b = z\overline{z}.$$

En tant que nombre complexe, $z=\alpha+i\beta=\rho e^{i\phi}, \rho, \phi, \alpha, \beta\in\mathbb{R}$. On remarque alors que $z\overline{z}=\rho^2 e^{i\phi-i\phi}=\rho^2\in\mathbb{R}$, et que $-(z+\overline{z})=-(\alpha+\beta i+\alpha-\beta i)=-2\alpha\in\mathbb{R}$. Ainsi $a,b\in\mathbb{R}$.

- (b) Contre-exemple pour $Q \stackrel{?}{\Longrightarrow} P$. Soit a = 2, b = 1. Alors les deux solutions sont $x_1 = x_2 = -1$. On remarque que $x_1 \neq \overline{x_2}$.
- 2. (A = B) ?? $(B \setminus A = A \setminus B)$
 - (a) $A = B \implies B \setminus A = A \setminus B$. $A = B \implies B \setminus B = B \setminus A = A \setminus B$.
 - (b) $B \setminus A = A \setminus B \implies B = A$

Proof. Soit Soit $A, B, B \setminus A = A \setminus B$. Alors on a

$$(x \in A \land x \notin B) \iff (x \in B \land x \notin A).$$

Ceci est équivalent à

$$\left[\neg((x \in A) \land (x \notin B)) \lor ((x \in B) \land (x \notin A))\right] \land \left[\neg(x \in B \land x \notin A) \lor (x \in A \land x \notin B)\right].$$

On réécrit brièvement ceci (grâce aux lois de Morgan) comme

$$\left[\underbrace{(\underbrace{(x\not\in A)\vee(x\in B))}_r\vee\underbrace{((x\in B)\wedge(x\not\in A))}_p}\right]\wedge\left[\underbrace{(x\not\in B\vee x\in A)\vee\underbrace{(x\in A\wedge x\not\in B)}_q}\right].$$

Comme $p \iff r$ et $q \iff s$, on peut écrire

$$[x \not\in A \lor x \in B] \land [x \not\in B \lor x \in A]$$
.

Autrement dit,

$$x \in A \iff x \in B.$$
 (1)

On a donc bien que A = B.