Notes from Real and Functional Analysis

Andrea

October 12, 2022

1 Lesson 12/09/2022

Element of set theory

Let X be a set. Then

$$\mathcal{P}(X) = \{ Y \mid Y \subseteq X \} \tag{Power Set}$$

Let $I \subseteq \mathbb{R}$ be a set of indexes. A family of sets induced by I is

$$\{E_i\}_{i\in I}, \quad E_i\subseteq X$$
 (Family/Collection)

If $I = \mathbb{N}$ is called a

$$\{E_n\}_{n\in\mathbb{N}}$$
 (Sequence)

Definition 1.1

 $\{E_n\}\subseteq \mathcal{P}(X)$ is monotone increasing (resp. decreasing) if

$$E_n \subseteq E_{n+1} \, \forall n \qquad \text{(resp. } E_n \supseteq E_{n+1} \, \forall n\text{)}$$

and is written as

$$\{E_n\} \nearrow (\text{resp. } \{E_n\} \searrow)$$

Given a family of sets $\{E_i\}_{i\in I}\subseteq \mathcal{P}(X)$, will be often considered

$$\bigcup_{i \in I} E_i = \{ x \in X : \exists i \in I \ s.t. \ x \in E_i \}$$

$$\bigcap_{i \in I} E_i = \{ x \in X : x \in E_i, \, \forall i \in I \}$$

 $\{E_i\}$ is said to be **disjoint** if $E_i \cap E_j = \emptyset \ \forall i \neq j$.

Examples:

$$[a,b] = \bigcap_{n=1}^{\infty} (a - \frac{1}{n}, b + \frac{1}{n})$$

$$(a,b) = \bigcup_{n=1}^{\infty} [a + \frac{1}{n}, b - \frac{1}{n}]$$

Definition 1.2

 ${E_n} \subseteq \mathcal{P}(X)$. We define

$$\limsup_{n} E_{n} := \bigcap_{k=1}^{\infty} \left(\bigcup_{n=k}^{\infty} E_{n} \right)$$

$$\liminf_{n} E_n := \bigcup_{k=1}^{\infty} \left(\bigcap_{n=k}^{\infty} E_n \right)$$

If these two sets are equal, then

$$\lim_{n} E_n = \limsup_{n} E_n = \liminf_{n} E_n$$

Proposition 1.1

Some limits are:

- $\limsup_{n} E_n = \{x \in X : x \in E_n \text{ for } \infty \text{many indexes } n\}$
- $\liminf_n E_n = \{x \in X : x \in E_n \text{ for all but finitely many indexes } n\}$

- $\liminf_n E_n \subseteq \limsup_n E_n$
- $(\liminf_n E_n)^C = \limsup_n E_n^C$

Definition 1.3

$$x \in \limsup_{n} E_{n} \iff x \in \bigcap_{k=1}^{\infty} \left(\bigcup_{n=k}^{\infty} E_{n}\right)$$

$$\iff \forall k \in \mathbb{N} : \bigcup_{n=k}^{\infty} E_{n}$$

$$\iff \forall k \in \mathbb{N} \ \exists n_{k} \geq k \ s.t. \ x \in E_{n_{k}}$$

So
$$x \in \limsup_{n} E_{n} \implies \exists m_{1} = n_{1} \, s.t. \, x \in E_{n_{1}}$$

$$\exists m_{2} := n_{m_{1}+1} \geq m_{1} + 1 \, s.t. \, x \in E_{n_{2}}$$

$$\vdots$$

$$\exists m_{k} := n_{m_{k-1}+1} \geq m_{k-1} + 1 \, s.t. \, x \in E_{n_{k}}$$

$$\vdots$$

$$x \in E_{m_{1}}, \dots, E_{m_{k}}, \dots$$

On the other hand, assume that $x \in E_n$ for ∞ -many indexes. We claim that $\forall k \in \mathbb{N} \exists n_k \ge k \ s.t. \ x \in E_{n_k} \iff x \in \limsup_n E_n$. If that claim is not true, then $\exists \bar{k} \ s.t. \ x \notin E_n \ \forall n > \bar{k} \Longrightarrow x$ belongs at most to $E_1, \ldots, E_{\bar{k}}$, a contradiction.

Definition 1.4

 ${E_i}_{i \in I}$ is a **covering** of X if

$$X \subseteq \bigcup_{i \in I} E_i$$

A subfamily of E_i that is still a covering is called a **subcovering**

Definition 1.5

Let $E \subseteq X$. The function $\chi_E : X \to \mathbb{R}$

$$\chi_E(x) := \begin{cases} 1 & \text{if } x \in E \\ 0 & \text{if } x \in X \backslash E \end{cases}$$

is called **characteristic function** of E

Let E_1, E_2 be sets:

$$\chi_{E_1 \cap E_2} = \chi_{E_1} \cdot \chi_{E_2}$$

$$\chi_{E_1 \cup E_2} = \chi_{E_1} + \chi_{E_2} - \chi_{E_1 \cap E_2}$$

$$\{E_n\} \subseteq \mathcal{P}(X), \text{ disjoint, } E = \bigcup_{n=1}^{\infty} E_n \Longrightarrow \mathcal{X}_{\mathcal{E}} = \sum_{n=1}^{\infty} \chi_{E_n}$$

$$\{E_n\} \subseteq \mathcal{P}, P = \liminf_n E_n, Q = \limsup_n E_n \Longrightarrow \chi_P = \liminf_n \chi_{E_n}, \chi_Q = \limsup_n \chi_{E_n}$$

Recall that $\limsup_n a_n = \lim_{k \to \infty} \sup_{n \ge k} a_n$ and $\liminf_n a_n = \lim_{k \to \infty} \inf_{n \ge k} a_n$ Let's also check that $\chi_Q = \limsup_n \chi_{E_n}$

$$x \in \limsup_{n} E_{n} \iff \chi_{Q}(x) = 1$$

 $\iff \forall k \in \mathbb{N} \,\exists \, n_{k} > k \, s.t. \, x \in E_{n_{k}}$

If we fix k then

$$\sup_{n \ge k} \chi_{E_n}(x) = \chi_{E_{n_k}}(x) = 1$$
$$\lim_{k \to \infty} \sup_{n \ge k} \chi_{E_n}(x) = \lim_{n \to \infty} \sup_{n \ge k} \chi_{E_n}(x) = 1$$

Let now $x \notin \limsup E_n \iff \chi_Q(x) = 0$. Then x belongs at most to finitely many $E_n \implies \exists \bar{k} \ s.t. \ x \notin E_n, \forall n \geq \bar{k}$

If
$$k \geq \bar{k}$$
, then $\sup_{n \geq k} \chi_{E_n}(x) = 0 \Longrightarrow \lim_{k \to \infty} \sup_{n \geq k} \chi_{E_n}(x) = \limsup_n \chi_{E_n}(x) = 0$

Relations

Given X, Y sets, is called a **relation** of X and Y a subset of $X \times Y$

$$R\subseteq X+Y \quad R=\{(x,y)\,:\,x\in X,y\in Y\}$$

$$(x,y)\in R\Longleftrightarrow xRy$$

$$X=\{0,1,2,3\} \quad R=\{(0,1),(1,2),(2,1)\} \text{ is a relation in } X$$

Definition 1.6

A function from X to Y is a relation R s.t. for any element x of X \exists ! element y of Y s.t. xRy

Definition 1.7

R on X is an equivalence relation if

- (1) $xRx \ \forall \ x \in X \ (R \text{ is reflexive})$
- (2) $xRy \Longrightarrow yRx$ (R is symmetric)
- (3) $xRy, yRz \Longrightarrow xRz$ (R is **transitive**)

If R is an equivalence relation, the set $E_X := \{y \in X : yRx\}, x \in X \text{ is called the equivalence class of } X$

Definition 1.8

 $\frac{X}{R} := \{E_X : x \in X\}$ is the **quotient set**

Ex: $X = \mathbb{Z}$, let's say that nRm if n - m is even. This is an equivalence relation.

$$E_n = \{\dots, n-4, n-2, n, n+2, n+4, \dots\}$$

in this case if n is even, $E_n = \{\text{even numbers}\}\$ and if n is odd, $E_n = \{\text{odd numbers}\}\$

Measure theory

Definition 1.9

A family $\mathcal{M} \subseteq \mathcal{P}(X)$ is called a σ -algebra if

- (1) $X \in \mathcal{M}$
- (2) $E \in \mathcal{M} \Longrightarrow E^C = X \backslash E \in \mathcal{M}$
- (3) If $E = \bigcup_{n \in \mathbb{N}}$ and $E_n \in \mathcal{M} \ \forall n$, then $E \in \mathcal{M}$

If \mathcal{M} is a σ -algebra, (X, \mathcal{M}) is called **measurable space** and the sets in \mathcal{M} are called **measurable**. Ex:

• $(X, \mathcal{P}(X))$ is a measurable space

• Let X be a set, then $\{\emptyset, X\}$ is a σ -algebra

Remark 2

 σ is often used to denote the closure w.r.t. countably many operators. If we replace the countable unions with finite unions in the definition of σ -algebra, we obtain an **algebra**.

Some basic properties of a measurable space (X, \mathcal{M}) :

- (1) $\varnothing \in \mathcal{M}$: $\varnothing = X^C$ and $X \in \mathcal{M}$
- (2) \mathcal{M} is an algebra, and $E_1, \ldots, E_n \in \mathcal{M}$

$$E_1 \cup \ldots \cup E_n = E_1 \cup \ldots \cup E_n \cup \underbrace{\varnothing}_{\in \mathcal{M}} \cup \varnothing \ldots \in \mathcal{M}$$

(3) $E_n \in \mathcal{M}, \bigcap_{n \in \mathbb{N}} E_n \in \mathcal{M}$

$$\bigcap_{n\in\mathbb{N}} E_n = \left(\bigcup_{n\in\mathbb{N}} \underbrace{E_n^C}\right)^C \qquad (\mathcal{M} \text{ is also closed under finite intersection})$$

- $E, F \in \mathcal{M} \Longrightarrow E \backslash F \in \mathcal{M} = E \backslash F = E \cap F^C \in \mathcal{M}$
- If $\Omega \subset X$, then the **restriction** of \mathcal{M} to Ω , written as

$$\mathcal{M}|_{\Omega} := \{ F \subseteq \Omega : F = E \cap \Omega, \text{ with } E \in \mathcal{M} \}$$

is a σ -algebra on Ω

Theorem 2.1

 $\mathcal{S} \subseteq \mathcal{P}(X)$. Then it is well defined the smallest σ -algebra containing \mathcal{S} , the σ -algebra generated by $\mathcal{S} := \sigma_0(\mathcal{S})$:

- $S \subseteq \sigma_0(S)$ and thus is a σ -algebra
- $\forall \sigma(\mathcal{M})$ s.t. $\mathcal{M} \supset \mathcal{S}$, we have $\mathcal{M} \supset \sigma_0(\mathcal{S})$

Proof idea.

$$\mathcal{V} = \{\mathcal{M} \subseteq \mathcal{P}(X) : \mathcal{M} \text{ is a σ-algebra and } \mathcal{S} \subseteq \mathcal{M}\} \neq \emptyset \text{ since } \mathcal{P}(X) \in \mathcal{V}$$

We define $\sigma_0(\mathcal{S}) = \bigcap \{\mathcal{M} : \mathcal{M} \in \mathcal{V}\}$, so it can be proved that this is the desired σ -algebra \bigstar

Borel sets

Given (X, d) metric space, the σ -algebra generated by the open sets is called **Borel** σ -algebra, written as $\mathcal{B}(X)$. The sets in $\mathcal{B}(X)$ are called **Borel sets**. The following sets are Borel sets:

- open sets
- closed sets
- countable intersections of open sets: G_{σ} sets
- countable unions of closed sets: F_{σ} sets

Remark 3

 $\mathcal{B}(\mathbb{R})$ can be equivalently defined as the σ -algebra generated by

$$\{(a,b): a,b \in \mathcal{R}, a < b\}$$

$$\{(-\infty,b): b \in \mathcal{R}\}$$

$$\{(a,+\infty): a \in \mathcal{R}\}$$

$$\{[a,b): a,b \in \mathcal{R}, a < b\}$$

$$\vdots$$

4 Lesson 14/09/2022

Question: What is $\mathcal{B}(\mathbb{R})$? Is $\mathcal{B}(\mathbb{R}) \neq \mathcal{P}(\mathbb{R})$? No.

Definition 4.1

 (X, \mathcal{M}) measurable space. A function $\mu : \mathcal{M} \to [0, +\infty]$ is called a **positive measure** if $\mu(\varnothing) = 0$ and if μ is countably additive, that is

$$\forall \{E_n\} \subseteq \mathcal{M}$$
 disjoint

we have that

$$\mu\left(\bigcup_{n=1}^{\infty}\right) = \sum_{n=1}^{\infty} \mu(E_n) \qquad \sigma\text{-additivity}$$

Remark 5

a set A is countable if $\exists f \ 1-1 \ \text{s.t.} \ f : A \to \mathbb{N}$ Examples: \mathbb{Z}, \mathbb{Q} are countable, while \mathbb{R} is not, also (0,1) is uncountable.

We always assume that $\exists E \neq \emptyset, E \in \mathcal{M} \text{ s.t. } \mu(E) \neq \infty.$

If (X, \mathcal{M}) is a measurable space, and μ is a measure on it, then (X, \mathcal{M}, μ) is a measure space.

Then:

(1) μ is finitely additive:

$$\forall E, F \in \mathcal{M}$$
, with $E \cap F \neq \emptyset \Longrightarrow \mu(E \cup F) = \mu(E) + \mu(F)$

(2) the excision property

$$\forall E, f \in \mathcal{M}, \text{ with } E \subset F \text{ and } \mu(E) < +\infty \Longrightarrow \mu(F \setminus E) = \mu(F) - \mu(E)$$

(3) monotonicity

$$\forall E, F \in \mathcal{M}, \text{ with } E \subset F \Longrightarrow \mu(E) < \mu(F)$$

(4) if $\Omega \in \mathcal{M}$ then $(\Omega, \mathcal{M}|_{\Omega}, \mu|_{\mathcal{M}|_{\Omega}})$ is a measure space

Proof. (1) $E_1 = E, E_2 = F, E_3 = \ldots = E_n = \ldots = \emptyset$ This is a disjoint sequence \Longrightarrow by σ -additivity.

$$\mu(E \cup F) = \mu\left(\bigcup_{n} E_{n}\right) = \sum_{n} \mu(E_{n}) = \mu(E) + \mu(F) + \underbrace{\mu(E_{k})}_{=\mu(\varnothing)}$$

(2) $E \subset F$, so $F = E \cup (F \setminus E)$ and this is disjoint $\Longrightarrow \mu(F) = \mu(E) + \mu(F \setminus E)$, and since $\mu(E) < \infty$, the property follows.

(3)
$$E \subset F \Longrightarrow \mu(F) = \mu(E) + \underbrace{\mu(F \backslash E)}_{\geq 0} \geq \mu(E)$$

(4)

\star

Definition 5.1

 (X, \mathcal{M}, μ) measure space.

- If $\mu(X) < +\infty$, we say that μ is finite.
- If $\mu(X) = +\infty$, and $\exists \{E_n\} \subset \mathcal{M}$ s.t. $X = \bigcup_n E_n$ and each E_n has finite measure, then we say that μ is σ -finite.
- If $\mu(X) = 1$ we say that μ is a **probability measure**.

Some examples:

- Trivial Measure: (X, \mathcal{M}) measurable space. $\mu : \mathcal{M} \to [0, \infty]$ defined by $\mu(E) = 0 \quad \forall E \in \mathcal{M}$
- Counting Measure: $(X, \mathcal{P}(X))$ measurable space. We define

$$\mu_C: \mathcal{P}(X) \to [0, \infty], \quad \mu_C(E) = \begin{cases} n & \text{if } E \text{ has } n \text{ elements} \\ \infty & \text{if } E \text{ has } \infty\text{-many elements} \end{cases}$$

• Dirac Measure: $(X, \mathcal{P}(X))$ measurable space, $t \in X$. We define

$$\delta_t : \mathcal{P}(X) \to [0, +\infty], \quad \delta_t(E) = \begin{cases} 1 & \text{if } t \in E \\ 0 & \text{otherwise} \end{cases}$$

Continuity of the measure along monotone sequences

 (X, \mathcal{M}, μ) measure space

(1) $\{E_i\} \subset \mathcal{M}, E_i \subseteq E_{i+1} \ \forall i \text{ and let}$

$$E = \bigcup_{i=1}^{\infty} E_i = \lim_{i} E_i$$

Then:

$$\mu(E) = \lim_{i} \mu(E_i)$$

(2) $\{E_i\} \subset \mathcal{M}, E_{i+1} \subseteq E_i \ \forall i \text{ and let } E = \bigcap_{i=1}^{\infty} E_i = \lim_i E_i.$

Proof. (1) if $\exists i \text{ s.t. } \mu(E_i) = +\infty$, then is trivial. Assume then that every E_i has a finite measure, so that $E = \bigcup_{i=1}^{\infty} E_i = \bigcup_{i=0}^{\infty} (E_{i+1} \setminus E_i)$ with $E_0 = \emptyset$.

So, by σ -additivity

$$\mu(E) = \mu\left(\bigcup_{i=0}^{\infty} (E_{i+1} \backslash E_i)\right) =$$

$$= \sum_{i=0}^{\infty} \mu(E_{i+1} \setminus E_i) \stackrel{(excision)}{=} \sum_{i=0}^{\infty} (\mu(E_{i+1} - \mu(E_i))) =$$

$$\stackrel{(telescopic\ series)}{=} \lim_{n} \mu(E_n) - \underbrace{\mu(E_0)}_{=0} = \lim_{n} \mu(E_n)$$

(2) For simplicity, suppose $\tau = 1$, and define $F_k = E_i \backslash E_k$

$$\{E_k\} \searrow \Longrightarrow \{F_k\} \nearrow$$

$$\mu(E_i) = \mu(E_k) + \mu(F_k) \text{ and } \bigcup_k F_k = E_i \setminus (\bigcap_k E_k)$$

$$\mu(E_i) = \mu(\bigcup_k F_k) + \mu(\bigcap_k E_k) = \bigcup_{\mu(E)} E_k$$

 $\stackrel{(i)}{=} \lim_{k} \mu(F_k) + \mu(E) = \lim_{k} (\mu(E_i) - \mu(E_k)) + \mu(E)$

Since $\mu(E_i) < \infty$ we can subtract it from both sides

$$0 = -\lim_{k} \mu(E_k) + \mu(E)$$

Counterexample: given $(\mathcal{N}, \mathcal{P}(\mathbb{N}), \mu_C)$ measure space. Let $E_n = \{n, n+1, n+2, \ldots\}$. In this case $\mu_C(E_n) = +\infty, E_{n+1} \subseteq E_n \forall n$, but $\bigcap_n E_n = \emptyset \Longrightarrow \mu(\bigcap_n E_n) = 0$

Theorem 5.1 (σ -subadditivity of the measure)

 (X, \mathcal{M}, μ) is a measure space. $\forall \{E_n\} \subseteq \mathcal{M}$ (not necessarily disjoint): $\mu(\bigcup_n E_n) \leq \sum_n \mu(E_n)$

Proof. $E_1, E_2 \in \mathcal{M}$ and also $E_1 \cup E_2 = E_1 \cup (E_2 \setminus E_1)$ disjoint sets.

$$\mu(E_1 \cup E_2) = \mu(\underbrace{E_2 \backslash E_1}) \stackrel{(monotonicity)}{\leq} \mu(E_1) + \mu(E_2)$$

that means that we have the subadditivity for finitely many sets.

$$A = \bigcup_{n=1}^{\infty} E_n, \quad A_k = \bigcup_{n=1}^k E_n$$

$$\{A_k\} \nearrow, A_{k+1} \supseteq A_k, \lim_k A_k = A$$

$$\mu\left(\bigcup_{n=1}^{\infty} E_n\right) \stackrel{(continuity)}{=} \lim_k \mu(A_k) = \lim_k \mu\left(\bigcup_{n=1}^k E_n\right) \le \lim_k \sum_{n=1}^k \mu(E_n) = \sum_{n=1}^{\infty} \mu(E_n)$$

Exercise: (X, \mathcal{M}) measurable space. $\mu : \mathcal{M} \to [0, +\infty]$ s.t. μ is finitely additive, σ -subadditive and $\mu(\emptyset) = 0 \Longrightarrow \mu$ is σ -additive, and hence is a measure.

Exercise: the Borel-Cantelli lemma states that, given (X, \mathcal{M}, μ) and $\{E_n\} \subseteq \mathcal{M}$. Then

$$\sum_{n=0}^{\infty} \mu(E_n) < \infty \Longrightarrow \mu(\limsup_{n} E_n) = 0$$

It can be phrased as:

If the series of the probability of the events E_n is convergent, then the probability that ∞ -many events occur is 0

Proof. The thesis is:

$$\mu(\limsup_{n} E_{n}) = \mu\left(\bigcap_{n=1}^{\infty} \bigcup_{\substack{k \ge n \\ A_{n} := \bigcup_{k > n} E_{k}}} E_{k}\right)$$

Is it true that $\{A_n\} \searrow$? Yes.

$$A_{n+1} = \bigcup_{k > n+1} E_k \subseteq \bigcup_{k > n} E_k = A_n$$

Does some A_n have a finite measure?

$$\mu(A_n) = \mu\left(\bigcup_{k \ge n} E_k\right) \le \sum_{k \ge n} \mu(E_k) < \infty$$

by assumption. Therefore, we can use the continuity along decreasing sequences:

$$\mu(\limsup_{n} E_n) = \lim_{n} \mu(A_n) = \lim_{n} \mu\left(\bigcup_{k > n} E_k\right) \stackrel{\sigma - sub.}{\leq} \lim_{n} \sum_{k = n}^{\infty} \mu(E_k) = 0$$

 \star

Sets of 0 measure

 (X, \mathcal{M}, μ) measure space.

- $N \subseteq X$ is a set of 0 measure if $N \in \mathcal{M}$ and $\mu(N) = 0$
- $E \subseteq X$ is called **negligible set** if $\exists N \in \mathcal{M}$ with 0 measure s.t. $E \subseteq N$ (E does not necessarily stays in \mathcal{M})

Definition 5.2

 (X, \mathcal{M}, μ) measure space s.t. every negligible set is measurable (and hence of 0 measure), then (X, \mathcal{M}, μ) is said to be a **complete measure space**.

A measure space may not be complete. However, let

$$\overline{\mathcal{M}} := \{ E \subseteq X : \exists F, G \in \mathcal{M} \text{ with } F \subseteq E \subseteq G \text{ and } \mu(G \backslash F) = 0 \}$$

Clearly $\mathcal{M} \subseteq \overline{\mathcal{M}}$. For $E \in \overline{\mathcal{M}}$, take F and G as above and let $\bar{\mu}(E) = \bar{\mu}(F)$ then $\bar{\mu}|_{\mathcal{M}} = \mu$, and moreover:

Theorem 5.2

 (X, \mathcal{M}, μ) is a complete measure space. Let's observe that $\bar{\mu}$ is well defined: let $E \subseteq X$ and F_1, F_2, G_1, G_2 s.t. $F_i \subset E \subset G_i$ i = 1, 2. Then $\mu(G_i \backslash F_i) = 0$. Now we have to check that $\mu(F_1) = \mu(F_2)$.

Since

$$F_1 \backslash F_2 \subseteq E \backslash F_2 \subseteq G_2 \backslash F_2$$

and $G_2 \backslash F_2$ has 0 measure $\Longrightarrow \mu(F_1 \backslash F_2) = 0$. Then $F_1 = (F_1 \backslash F_2) \cup (F_1 \cap F_2) \Longrightarrow \mu(F_1) = \mu(F_1 \cap F_2)$. In the same way, $\mu(F_2) = \mu(F_1 \cap F_2)$

6 Lesson 15/09/2022

The elements of $\overline{\mathcal{M}}$ are sets of the type $E \cup N$, with $E \in \mathcal{M}$ and $\bar{\mu}(N) = 0$.

Outer measure

We wish to define a measure λ "on \mathcal{R} " with the following properties:

- (1) $\lambda((a,b)) = b a$
- (2) $\lambda(E+t)^{\dagger} = \lambda(E)$ for every measurable set $E \subset \mathbb{R}$ and $t \in \mathbb{R}$

It would be nice to define such a measure on $\mathcal{P}(\mathbb{R})$. In such case, note that $\lambda(\{x\}) = 0, \forall x \in \mathbb{R}$ But then

Theorem 6.1 (Ulam)

The only measure on $\mathcal{P}(\mathbb{R})$ s.t. $\lambda(\{x\}) = 0 \quad \forall x$ is the trivial measure. Thus, a measure satisfying the two properties of the outer measure cannot be defined on $\mathcal{P}(\mathcal{R})$

We'll learn in what follows how to create a measure space on \mathcal{R} , with a σ -algebra including all the Borel sets, and a measure satisfying properties of the outer measure. This is the so called **Lebesgue measure**.

Definition 6.1

Given a set X. An **outer measure** is a function $\mu^*: \mathcal{P}(\mathbb{R}) \to [0, +\infty]$ s.t.

- $\mu^*(\emptyset) = 0$
- $\mu^*(A) \leq \mu^*(B)$ if $A \subseteq B$ (Monotonicity)
- $\mu^*(\bigcup_{n=1}^{\infty} E_n) \leq \sum_{n=1}^{\infty} \mu^*(E_n)$ (σ -subadditivity)

The common way to define an outer measure is to start with a family of elementary sets \mathcal{E} on which a notion of measure is defined (e.g. intervals on \mathcal{R} , rectangles on \mathcal{R}^2, \ldots) and then to approximate arbitrary sets from outside by **countable** unions of members of \mathcal{E} .

Proposition 6.1

Let $\mathcal{E} \subset \mathcal{P}(\mathbb{R})$ and $\rho : \mathcal{E} \to [0, +\infty]$ be such that $\emptyset \in \mathcal{E}, X \in \mathcal{E}$ and $\rho(\emptyset) = 0$. For any $A \in \mathcal{P}(X)$, let

$$\mu^*(A) := \inf \left\{ \sum_{n=1}^{\infty} \rho(E_n) : E_n \in \mathcal{E} \text{ and } A \subset \bigcup_{n=1}^{\infty} E_n \right\}$$

Then μ^* is an outer measure, the outer measure generated by (\mathcal{E}, ρ) .

 $^{^{\}dagger}\{x\in\mathbb{R}:x=y+t,\text{ with }y\in E\}$

Proof. $\forall A \subset X \exists \{E_n\} \subset \mathcal{E} \text{ s.t. } A \subset \bigcup_n E_n : \text{ take } E_n = X \forall n \text{ then } \mu^* \text{ is well defined.}$ Obviously, $\mu^*(\emptyset) = 0$ (with $E_n = \emptyset \quad \forall n$), and $\mu^*(A) \leq \mu^*(B)$ for $A \subset B$ (any covering of B with elements of \mathcal{E} is also a covering of A.)

We have to prove the σ -subadditivity. Let $\{A_n\}_{n\in\mathbb{N}}\subseteq \mathcal{P}(X)$ and $\epsilon>0$. For each $n,\exists\{E_{n_j}\}_{j\in\mathbb{N}}\in\mathcal{E} \text{ s.t. } A_n\subset\bigcup_{i=1}^\infty E_{n_j} \text{ and } \sum_{j=1}^\infty \rho(E_{n_j})\leq \mu^*(A_n)+\frac{\epsilon}{2^n}$. But then, if $A=\bigcup_{n=1}^\infty A_n$, we have that $A\subset\bigcup_{n,j\in\mathbb{N}^2} E_{n_j}$ and

$$\mu^*(A) \le \sum_{n,j} \rho(E_{n_j}) \le \sum_n \left(\mu^*(A_n) + \frac{\epsilon}{2^n}\right) = \sum_n \mu^*(A_n) + \epsilon$$

Since ϵ is arbitrary, we are done.

Ex:

(1) $X \in \mathbb{R}, \mathcal{E} = \{(a, b) : a \leq b, a, b \in \mathbb{R}\}$ family of open intervals:

$$\rho((a,b)) = b - a$$

 \star

(2)
$$X = \mathbb{R}^n, \mathcal{E} = \{(a_1, b_1) \times \ldots \times (a_n, b_n) : a_i \leq b_i, a_i, b_i \in \mathbb{R}\}:$$

$$\rho((a_1, b_1) \times \ldots \times (a_n, b_n)) = (b_1 - a_1) \cdot \ldots \cdot (b_n - a_n)$$

Remark 7

 $E \in \mathcal{E} \Longrightarrow \mu^*(E) = \rho(E).$

In examples 1 and 2, we have in fact $\mu^*((a,b)) = b - a, \mu^*((a_1,b_1) \times \ldots \times (a_n,b_n)) = \prod_{i=1}^n (b_i - a_i)$

To pass from the outer measure to a measure there is a condition

Definition 7.1 (Caratheodory condition)

If μ^* is an outer measure on X, a set $A \subset X$ is called μ^* -measurable if

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^C) \quad \forall \ E \subset X$$

Remark 8

If E is a "nice" set containing A, then the above equality says that the outer measure of A, $\mu^*(E \cap A)$, is equal to $\mu^*(E) - \mu^*(E \cap A^C)$, which can be thought as an "inner measure". So basically we are saying that A is measurable if the outer and inner measure coincide. (Like the definition of Riemann integration with lower and upper sum)

Remark 9

 μ^* is subadditive by def $\Longrightarrow \mu^*(E) \leq \mu^*(E \cap A) + \mu^*(E \cap A^C) \quad \forall E, A \subset X$. So, to prove that a set is μ^* -measurable it is enough to prove the reverse inequality, $\forall E \subset X$. In fact, if $\mu^*(E) = +\infty$, then $+\infty \geq \mu^*(E \cap A) + \mu^*(E \cap A^C)$, and hence A is μ^* -measurable iff

$$\mu^*(E) \ge \mu(E \cap A) + \mu^*(E \cap A^C) \quad \forall \ E \subset X \text{ with } \mu^*(E) < +\infty$$

Their relevance to the notion of μ^* -measurability is clarified by the following

Theorem 9.1 (Caratheodory)

If μ^* is an outer measure on X, the family

$$\mathcal{M} = \{ A \subseteq X : A \text{ is } \mu^*\text{-measurable} \}$$

is a σ -algebra and $\mu^*|_{\mathcal{M}}$ is a complete measure.

Lemma 9.1

If $A \subset X$ and $\mu^*(A) = 0$, then A is μ^* -measurable.

Proof. Let $E \subset X$ with $\mu^*(E) < +\infty$. Then

$$\mu^*(E) \ge \mu^*(E) + \mu^*(A) \ge \mu^*(E \cap A) + \mu^*(E \cap A^C)$$

This implies that A is μ^* -measurable.

To sum up: X set, (\mathcal{E}, ρ) elementary and measurable sets, so μ^* is an outer measure. Then given μ^* and the Caratheodory condition, we have (X, \mathcal{M}, μ) that is a complete measure space.

Remark 10

So far we did not prove that $\mathcal{E} \subseteq \mathcal{M}$. We will do it in a particular case.

Lebesgue measure

- $X = \mathbb{R}$, \mathcal{E} family of open intervals, $\rho((a,b)) = b a = \lambda((a,b))$, the complete measure space is $(\mathbb{R}, \mathcal{L}(\mathbb{R}), \lambda)$ with $\mathcal{L}(\mathbb{R})$ the Lebesgue-measurable sets on \mathbb{R} and λ the Lebesgue measure on \mathbb{R} .
- $X = \mathbb{R}^n$, $\mathcal{E} = \{\prod_{k=1}^n (a_k, b_k) : a_k \leq b_k \quad \forall \ k = 1, \dots, n\}, \ \rho(\prod_{k=1}^n (a_k, b_k)) = \prod_{k=1}^n (b_k a_k)$ and this is a complete measure space $(\mathbb{R}^n, \mathcal{L}(\mathbb{R}^n), \lambda_n)$

11 Lesson 21/09/2022

Lebesgue measure

 \mathcal{E} = family of open intervals (a,b), $a, b \in \mathbb{R}^*$, a < b. ρ = length l. $\rho((a,b)) = b - a$. Notations: open interval I with length l(I)

Outer measure

 $E \subset \mathbb{R}$. The outer measure of E is

$$\lambda^*(E) = \inf \left\{ \sum_{n=1}^{+\infty} l(I_n) | I_n \text{ is an open interval, } E \subset \bigcup_{n=1}^{\infty} I_n \right\}$$

Caratheodory condition (CC)

 $A \subset \mathbb{R}$ is λ^* -measurable if

$$\lambda^*(E) = \lambda^*(E \cap A) + \lambda^*(E \cap A^C) \qquad \forall \ E \subset \mathbb{R}$$

$$\{A \subset \mathbb{R} : A \text{ is } \lambda^*\text{-measurable}\} =: \mathcal{L}(\mathbb{R}) \qquad \qquad \text{(Lebesgue σ-algebra)}$$

$$\lambda := \lambda^*|_{\mathcal{L}(\mathbb{R})} \qquad \qquad \text{(Lebesgue measure on \mathbb{R})}$$

Then, $(\mathbb{R}, \mathcal{L}(\mathbb{R}), \lambda)$ is a complete measure space. In particular, $\lambda^*(A) = 0 \Longrightarrow A \in \mathcal{L}(\mathbb{R})$ and $\lambda(A) = 0$.

 $^{^{\}ddagger}E\cap A^{C}\subseteq E$ and $E\cap A\subseteq A+$ monotonicity

Remark 12 (CC-Criterion for measurability)

To check that A is λ^* -measurable, it is sufficient to check that

$$\lambda^* \ge \lambda^*(E \cap A) + \lambda^*(E \cap A^C)$$

for every $E \subset \mathbb{R}$ rith $\lambda^*(E) < +\infty$

Proposition 12.1

Any countable set is measurable, with 0 Lebesgue measure.

Proof. Let $a \in \mathbb{R}$,

$$\{a\} \subseteq (a - \epsilon, a + \epsilon), \forall \epsilon > 0 \stackrel{\text{by def.}}{\Longrightarrow} \lambda^*(\{a\}) \le 2\epsilon \stackrel{\text{lim}}{\Longrightarrow} \lambda^*(\{a\}) = 0$$

$$\{a\}$$
 is measurable with $\lambda(\{a\})=0, \forall \ a\in\mathbb{R}$. Now if a set A is countable, $A=\{a_n\}_{n\in\mathbb{N}}=\bigcup_n\{a_n\}$ (disjoint) $\Longrightarrow \lambda(A) \underset{\sigma-add}{=} \sum_n \lambda(\{a_n\})=0$

Remark 13

 $\lambda(\mathbb{Q}=0)$. \mathbb{Q} is dense on \mathbb{R} , $\mathbb{\bar{Q}}=\mathbb{R}$. In general, measure theoretical info and topological info cannot be compared.

Proposition 13.1

 $\mathcal{B}(\mathbb{R})\subseteq\mathcal{L}(\mathbb{R})$

Remark 14

So far we didn't prove the fact that open intervals are \mathcal{L} -measurable.

Proof. We know that $\mathcal{B}(\mathbb{R})$ is generated by $\{(a, +\infty) : a \in \mathbb{R}\}$. Then, we can directly show that $(a, +\infty) \in \mathcal{L}(\mathbb{R}) \ \forall \ a \in \mathbb{R}$. Let $a \in \mathbb{R}$ be fixed. We use the criterion for measurability and we check that

$$\lambda^*(E) \ge \lambda^* \underbrace{(E \cap (a, +\infty))}_{=:E_1} + \lambda^* \underbrace{(E \cap (-\infty, a])}_{=:E_2} \quad \forall \ E \subset \mathbb{R}, \ \lambda^* < +\infty$$

Since $\lambda^*(E) < +\infty$, \exists a countable union $\bigcup_n I_n \supset E$, where I_n is an open interval $\forall n$ and

$$\sum_{n} l(I_n) \le \lambda^*(E) + \epsilon$$

Let $I_n^1 := I_n \cap E_1, I_n^2 := I_n \cap (-\infty, a + \frac{\epsilon}{2^n})$. These are open intervals:

$$E_1 \subset \bigcup_n I_n^1 \qquad E_2 \subset_n I_n^2$$
 countable unions

 \star

and moreover

$$l(I_n) \ge l(I_n^1) + l(I_n^2) - \frac{\epsilon}{2^n}$$

By definition of λ^* , $\lambda^*(E_1) \leq \sum_n l(I_n^1)$ and $\lambda^*(E_2) \leq \sum_n l(I_n^2)$, therefore

$$\lambda^*(E_1) + \lambda^*(E_2) \le \sum_n l(I_n^1) + \sum_n l(I_n^2) \le \sum_n \left(l(I_n) + \frac{\epsilon}{2^n}\right) = \left(\sum_n l(I_n)\right) + \epsilon \le \lambda^*(E) + 2\epsilon$$

Since ϵ was arbitrarily chosen, we have

$$\lambda^*(E) \ge \lambda^*(E_1) + \lambda^*(E_2)$$

which is the thesis.

So, the Lebesgue measure measures all the open, closed G_{δ} , F_{δ} sets. Clearly

$$\lambda((a,b)) = b - a$$

One can also show that λ is invariant under translation.

Questions: $\mathcal{B}(\mathbb{R}) \subseteq \mathcal{L}(\mathbb{R}) \subseteq \mathcal{P}(\mathbb{R})$, is it a strict inclusion or not?

- By Ulam's theorem, if a measure is such that $\lambda(\{a\}) = 0, \forall a$ and all the sets in $\mathcal{P}(\mathbb{R})$ are measurable, then $\lambda \equiv 0$. This and the fact that $\lambda((a,b)) \neq 0$ simply that $\mathcal{L}(\mathbb{R}) \subsetneq ^{\ddagger}\mathcal{P}(\mathbb{R})$: \exists non-measurable sets called Vitali sets. Every measurable set with positive measure contains a Vitali set. (Explanation)
- $\mathcal{B}(\mathbb{R}) \subsetneq \mathcal{L}(\mathbb{R})$. The construction of a \mathcal{L} -measurable se which is not a Borel set will be done during exercise classes.

The relation between $\mathcal{B}(\mathbb{R})$ and $\mathcal{L}(\mathbb{R})$ is clarified by

Theorem 14.1 (Regularity of λ)

The following sentences are equivalent:

- (1) $E \in \mathcal{L}(\mathbb{R})$
- (2) $\forall \epsilon > 0 \exists A \supset E, A \text{ open s.t.}$

$$\lambda (A \backslash E) < \epsilon$$

(3) $\exists G \supset E, G \text{ of class } G_{\delta}, \text{ s.t.}$

$$\lambda(G \backslash E) = 0$$

(4) $\exists C \subset E, C \text{ closed, s.t.}$

$$\lambda(E \backslash C) = 0$$

(5) $\exists F \subset E, F \text{ of class } F_{\delta}, \text{ s.t.}$

$$\lambda(E \backslash F) = 0$$

Consequence: $E \in \mathcal{L}(\mathbb{R}) \Longrightarrow E = F \cup N$, where F is of class F_{δ} , and $\lambda(N) = 0$.

Partial proof. For simplicity, we will consider only sets with finite measure.

 $(1) \Rightarrow (2)$ $E \in \mathcal{L}(\mathbb{R})$. By definition of λ^* , $\forall \epsilon > 0 \exists \bigcup_n I_n \supset E$ s.t. each I_n is an open interval, and

$$\lambda(E) = \lambda^*(E) \ge \sum_{n} l(I_n) - \epsilon$$

We define $A = \bigcup_n I_n$, which is open. Also $A \supset E$ and

$$\lambda(A) = \lambda \left(\bigcup_{n} I_{n}\right) \stackrel{\sigma-\text{sub.}}{\leq} \sum_{n} l(I_{n}) \leq \lambda(E) + \epsilon$$

Then, by excision

$$\lambda(A \backslash E) = \lambda(A) - \lambda(E) \le \epsilon$$

(2) \Rightarrow (3) Define, for every $K \in \mathbb{N}$, an open set A_k s.t. $A_k \supset E$ and $\lambda(A_k \setminus E) < \frac{1}{k}$. Let $A = \bigcap_k A_k$. This is a G_δ set, it contains E (since each A_k contains E) and

$$\lambda(A \backslash E) \leq \sum_{(A \subset A_k \ \forall \ k)} \lambda(A_k \backslash E) < \frac{1}{k} \Longrightarrow \lambda(A \backslash E) = 0 \quad \forall \ k$$

[‡]I had no choice

 $(3) \Rightarrow (1)$ If $E \subset \mathbb{R}$ and $\exists G \supset E$, with G of class G_{δ} , s.t. $\lambda(G \setminus E) = 0$, then

$$E = G \backslash (G \backslash E)$$
 is measurable

since G is a Borel set and $(G \setminus E)$ has 0 measure, then both are in \mathcal{L}

\star

Remark 15

Any countable set has 0 measure. he inverse is false. An example is given by the **Cantor set**.

Let $T_0 = [0, 1]$. Then we define T_{n+1} stating from T_n in the following way: given T_n , finite union of closed disjoint intervals of length $l_n(\frac{1}{3})^n$, T_{n+1} is obtained by removing from each interval of T_n , the open central subinterval of length $\frac{l_n}{3}$.

The Cantor set is $T := \bigcap_{k=0}^{+\infty}$. It can be proved that T is compact, $\lambda(T) = 0$ and T is uncountable.

If, instead of removing intervals of size $\frac{1}{3}, \frac{1}{9}, \dots, \frac{1}{3^k}$, we remove sets of size $\left(\frac{\epsilon}{3}\right)^k$, with $\epsilon \in (0,1)$, we obtain the **generalized Cantor set** (or **fat Cantor set**) T_{ϵ} . T_{ϵ} is uncountable, compact and has no interior points (it contains no intervals). However, $\lambda(T_{\epsilon}) = \frac{3(1-\epsilon)}{3-2\epsilon} > 0$

Remark 16

We worked on \mathbb{R} , but everything can be adapted to \mathbb{R}^n

Measurable functions and integration

Definition 16.1

 $f: X \to Y$, then it is well defined the counterimage

$$f^{-1}: \mathcal{P}(Y) \to \mathcal{P}(Y)$$

$$E\to f^{-1}(E)=\{x\in X: f(x)\in E\}$$

Definition 16.2

 $(X,\mathcal{M}),(Y,\mathcal{N})$ measurable spaces. $f:X\to Y$ is called **measurable** or $(\mathcal{M},\mathcal{N})$ -measurable if

$$f^{-1}(E) \in \mathcal{M}$$
 for every $E \in \mathcal{M}$

so, the counterimage of measurable sets in Y is a measurable set on X.

To check if a function is measurable or not, it is often sed the following proposition

Proposition 16.1

 $(X,\mathcal{M}),(Y,\mathcal{N})$ measurable spaces. Let $\mathcal{F}\subseteq\mathcal{P}(Y)$ be s.t. $\mathcal{N}=\sigma_0(\mathcal{F})$. Then

$$f: X \to Y$$
 is $(\mathcal{M}, \mathcal{N})$ – measurable $\iff f^{-1}(E) \in \mathcal{M}$ for every $E \in \mathcal{F}$

17 Lesson 22/09/2022

We will mainly focus on 2 situations:

- (1) $((X, \mathcal{M}))$ is a measurable space obtained by means of an outer measure. Ex: $(\mathbb{R}^n, \mathcal{L}(\mathbb{R}^n))$, (Y, d_y) metric space If $X \to Y$ is (Lebesgue) measurable $\iff (\mathcal{M}, \mathcal{B}(Y))$ is measurable
- (2) $(X, d_X), (Y, d_Y)$ are metric spaces $\longrightarrow (X, \mathcal{B}(X))$ If $X \to Y$ are borel measurable \iff $(\mathcal{B}(X), \mathcal{B}(Y))$ measurable

Remark 18

f is Lebesgue measurable if the continuity of the borel set is a Lebesgue-measurable set.

Proposition 18.1 (1) $(X, d_X), (Y, d_Y)$ metric spaces. If $X \to Y$ is continuous, then is Borel measurable

(2) (Y, d_Y) metric space. If $\mathbb{R}^n \to Y$ is continuous, then it is a Lebesgue measure.

Proof. (1) f is continuous $\iff f^{-1}(A)$ is open $\forall A \in Y$ open $\implies f^{-1}(A) \in \mathcal{B}(Y) \ \forall A \in Y$ open Since $\mathcal{B}(Y) = \sigma_0$ (open sets) by proposition 1 thus implies that f is Borel measurable

(2) f is continuous $\Longrightarrow f$ is Borel measurable mancano pezzi namely f is Lebesgue measurable

Proposition 18.2

 (X, \mathcal{M}) measurable space, $(X, d_Y), (Y, d_Y)$ metric spaces. if $f: X \to Y$ is $\mathcal{M}, \mathcal{B}(Y)$ -measurable and $g: Y \to Z$ is continuous $\Longrightarrow g \circ f: X \to Z$ is $\mathcal{M}, \mathcal{B}(Y)$ -measurable

Proposition 18.3

 (X, \mathcal{M}) measurable space Let $\Phi : \mathbb{R}^n \to Y$ be continuous where (Y, d_Y) is a metric space. Then $h: X \to Y$ defined by $h(x) = \Phi(u(x), boh)$ is $\mathcal{M}, \mathcal{B}(Y)$ -measurable.

Proof. Define $f: X \to \mathbb{R}^n$, f(x) = u(x), v(x). By def $h = \Phi \circ f$ by prop 3 if we show that f is measurable, then h is measurable. It can be proved that

$$\mathcal{B}(\mathbb{R}^2) = \sigma_0 \left(\{ (a_1, b_1) \times (a_2, b_2) : a, b \in \mathbb{R} \} \right)$$

 \star

pezzi $f^{-1}(\mathcal{R} \in \mathcal{M})$ \forall open rectangle in \mathcal{R}^2 $R = I \times J$ $F^{-1} = \{x \in X\}$

Remark 19

roba

$$g(x) = \begin{cases} x & \text{where } x \ge 0\\ 0 & \text{where } x < 0 \end{cases}$$

cosine (X, \mathcal{M}) measurable space, then such a function f is measurable iff

$$f^{-1}(a, +\infty) \in \mathcal{M} \quad \forall a \in \mathcal{R}$$

LEt now $\{f_n\}$ be a Sequence of measurable functions from X to $\bar{\mathcal{R}}$. Then we define

$$(\inf_{n} f_{n})(x) = \inf_{n} f_{n}(x)$$

$$(\sup_{n} f_{n})(x) = \sup_{n} f_{n}(x)$$

$$(\liminf_{n} f_{n})(x) = \liminf_{n} f_{n}(x)$$

$$(\limsup_{n} f_{n})(x) = \limsup_{n} f_{n}(x)$$

$$(\lim_{n} f_{n})(x) = \lim_{n} f_{n}(x) \text{ if the limit exists}$$

Proposition 19.1

 (X, \mathcal{M}) measurable space, $f_n : X \to \overline{\mathcal{R}}$ measurable, then sup inf $\limsup f_n$ are measurable, in particular if $\lim f_n$ exists, then f is measurable

Proof. $(\sup f_n)^{-1}((a,\infty]) = \{x \in X : \sup f_n(x) > a\}$ (manca pezzi)

$$\bigcup \{x \in X : f_n(x) > a\}$$

Then $(\sup f_n)^{-1}((a,\infty])$ is measurable, cose da aggiungere Noe the limsup

$$\limsup_{n} f_n = \lim_{n} (\sup_{k>n} f_n(x))$$

cose cose

Simple functions

Definition 19.1

 (X, \mathcal{M}) measurable space. A measurable function s: $X \to \bar{\mathcal{R}}$ is said to be simple if s(X) is a finite set altre cose Then $s(x) = \sum_{n=1} a_n \chi_{E_n}(x)$ where E_n is a measurable set sistemare.

<u>Particular case</u>: if s: $\mathbb{R} \to \overline{\mathbb{R}}$ and each E_n is a finite union of intervals, then s is said to be a STEP FUNCTION.

The idea is to approximate functions with simple functions.

Theorem 19.1

 (X, \mathcal{M}) measurable space, $f: X \to [0, \infty]$ measurable. Then \exists a sequence $\{s_n\}$ of simple functions s.t.

$$0 \le s_1 \le \ldots \le s_n \le \ldots \le f$$
 pointwise

and $s_n(x) \to f(x)$ Moreover if f is bounded then $s_n \to f$ uniformly on X as $n \to \infty$

f is bounded. Fix $n \in \mathbb{N}$ and divide [0, n) in $n \cdot 2^n$ intervals called $I_j = [a_j, b_j)$ with length $\frac{1}{2^n}$ Let $E_0 = f^{-1}([n, \infty)), E_j = f^{-1}([a_j, b_j))$ for $j = 1, \ldots, n \cdot 2^n$

We let Array

Namely we define

$$s_n(x) = n\chi_{E_0}(X) + \sum_{j=1}^{n \cdot 2^n} a_j \chi_{E_j}(x)$$

 \star

Then $s_n \leq s_{n+1}$ by contradiction

Then any $x \in X$ stays in $f^{-1}([a_j, b_j))$ for some $j \Longrightarrow$

$20 \quad 06/10/2022$

 $f \notin R(I)$. Is it true that $\exists g \in R(I)$ s.t. g = f almost everywhere (a.e.) on I? No.

For instance, consider $T_{\mathcal{E}}$, the generalized Cantor set $(\lambda(T_{\mathcal{E}}))$. Consider $\chi_{\mathcal{E}}$. In general, χ_A is discontinuous on δA . But $T_{\mathcal{E}}$ has no interior parts $\Longrightarrow T_{\mathcal{E}} = \delta T_{\mathcal{E}} \Longrightarrow \chi_{T_{\mathcal{E}}}$ is discontinuous on $T_{\mathcal{E}}$. cosine

Clearly

$$\int_{[0,1]} \chi_{T_{\mathcal{E}}} d\lambda = \lambda(T_{\mathcal{E}})$$

so $\chi_{T_{\mathcal{E}}} \in \mathcal{L}^1([0,1])$. If $g = \chi_{T_{\mathcal{E}}}$ a.e., then g is discontinuous at almost every part of $T_{\mathcal{E}} \Longrightarrow g$ is discontinuous on a set of positive measure $\Longrightarrow g \notin R(I)$. So, the Lebesgue integral is a true extension of the Riemann one.

Regarding generalized integrals we have

Theorem 20.1

$$-\infty \le a < b \le +\infty$$
, $f \in R^g([a, b])$ where

 $R^g([a,b]) = \{\text{Riemann-int functions on } [a,b] \text{ in the generalized sense}\}$

Then, f is $([a, b], \mathcal{L}([a, b]))$ -measurable. Moreover

(1)
$$f \ge 0$$
 on $[a, b] \Longrightarrow f \in \mathcal{L}^1([a, b])$

$$(2) \ |f| \in R^g([a,b]) \Longrightarrow f \in \mathcal{L}^1([a,b])$$

and in both cases

$$\int_{[a,b]} f d\lambda = \int_a^b f(x) dx$$

If f is in $R^g([a,b])$, but $|f| \notin R^g([a,b])$, then the two notions of \int are not really related

Ex: $f(x) = \frac{\sin x}{x}, \quad x \in [1, \infty]$

$$\int_{1}^{\infty} |f(x)| dx = +\infty \Longrightarrow f \not\in \mathcal{L}^{1}([1, +\infty])$$

. But on the other hand

$$\int_{1}^{\infty} \frac{\sin x}{x} dx = \lim_{\omega \to \infty} \int_{1}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$$

Spaces of integrable functions

 (X, \mathcal{M}, μ) complete measure space.

$$\mathcal{L}^1 = \{ f : X \to \bar{\mathbb{R}} : \text{ f is integrable} \}$$

 \mathcal{L}^1 is a vector space. On \mathcal{L}^1 we can introduce $d: \mathcal{L}^1 \times \mathcal{L}^1 \to [0, +\infty)$ defined by

$$d_1(f,g) = \int_X |f - g|$$

cose

However, d_1 is not a distance on $\mathcal{L}^1(X)$, since

$$d_1(f,g) = 0 \Longrightarrow f = g$$
 a.e on X (Pseudo-distance)

To overcome this problem, we introduce an equivalent relation in $\mathcal{L}^1(X)$: we say that

$$f g \iff f = g$$
 a.e. on X

If $f \in \mathcal{L}^1(X)$, we can consider the equivalence class

$$[f] = \left\{ g \in \mathcal{L}^1(X) : g = f \text{ a.e on } X \right\}$$

We define

$$L^1(X) = \frac{\mathcal{L}^1(X)}{}$$

 $L^1(X)$ is a vector space, and on $L^1(X)$ the function d_1 is a distance:

$$d_1([f],[g])cosoeocoeoce$$

To simplify the notations, the elements of $L^1(X)$ are called functions, and one writes $f \in L^1(X)$. With this, we means that we choose a representative in [f], and f denotes both the representative and the equivalence class. The representative can be arbitrarily modified on any set with 0 measure.

Another relevant space of measurable functions is the space of **essentially bounded** functions

Definition 20.1

 $f: X \to \mathbb{R}$ measurable is called essentially bounded if $\exists M > 0$ s.t.

$$\mu(\{x \in X : |f(x)| \ge M\}) = 0$$

Ex:

$$f(x) = \begin{cases} 1 & x > 0 \\ +\infty & x = 0 \\ 0 & x < 0 \end{cases}$$

For M > 1, $\lambda(\{x \in \mathbb{R} : |f(x)| > M\}) = \lambda(\{0\}) = 0 \implies f$ is essentially bounded. If f is essentially bounded, it is well defined the **essential supremum** of f.

$$\underset{X}{esssupf} := \inf \left\{ M > 0 \text{ s.t. } f \leq M \text{ a.e. on } X \right\} = pezzi$$

It can also be defined on essential inf.

Remark 21

Note that, by def of inf, $\forall \epsilon > 0$ we have

$$f \le (esssupf) + \epsilon$$

We define

$$L^{\infty}(X, \mathcal{M}, \mu) = \frac{\mathcal{L}^{\infty}(X, \mathcal{M}, \mu)}{2}$$

 $L^{\infty}(X)$ is a vector space, and it is also a metric space for $d_{\infty}(f,g) = \underset{X}{essup}|f-g|$

Relation between different types of convergence

 $\{f_n\}$ sequence of measurable functions $X \to \bar{\mathbb{R}}$

- recupera
- $f_n \to f$ pointwise
- $f_n \to f$ uniformly
- $f_n \to f$
- Convergence in $L^1(X)$
- Convergence in measure/probability

cose cose parlavo con ila

Theorem 21.1 (Egorov)

Let $\mu(X) < +\infty$, and suppose that $f_n \to f$ a.e. on X. Then, $\forall \epsilon > 0, \exists X_{\epsilon} \subset X$, measurable, s.t.

$$\mu(X \backslash X_{\epsilon}) < \epsilon$$

and $f_n \to f$ uniformly on X_{ϵ}

Theorem 21.2

If $\mu(X) < +\infty$ and $f_n \to f$ a.e. on $X \Longrightarrow f_n \to f$ is measure on X

Proof. Let $\alpha > 0$. We want to show that $\forall \epsilon > 0 \ \exists \bar{n} \in \mathbb{N} \text{ s.t.}$

$$n > \bar{n} \Longrightarrow \mu(\{\})$$

altre cosette

Remark 22

 $\mu(X) < +\infty$ is essential

For example, in $(\mathbb{R}, \mathcal{L}(\mathbb{R}), \lambda)$ consider

$$f_n(x) = \chi_{[n,n+1)}(x)$$

 $f_n(x) \to 0$ for every $x \in \mathbb{R}$. However, $\lambda(\left\{|f_n| \ge \frac{1}{2}\right\}) = \lambda([n, n+1)) = 1$ not 0