I - Exercice 1 : Manipulations sur les bornes inférieures et supérieures

I.A -

Soit $(a,b) \in (A \cup B)^2$, on va distinguer deux cas :

▶ S'il existe $p \in A$, $q \in B$ tels que $d(a,b) \leq d(p,q)$, alors pour tout $c \in A$, $d \in B$ on a

$$d(a,b) \le d(p,q) \le d(p,c) + d(c,d) + d(d,q)$$

 $\operatorname{car}(c,p) \in A^2$, $(d,q) \in B^2$, par la définition de borne supérieur, on a donc

$$d(a,b) - d(c,d) \le d(p,c) + d(d,q) \le diam(A) + diam(B)$$

indépendant du choix de $(a,b) \in (A \cup B)^2$, on peut passer à la limite de cette inégalité, on obtient

$$diam(A \cup B) - d(c, d) \le diam(A) + diam(B)$$

donc

$$diam(A \cup B) - (diam(A) + diam(B)) \le d(c, d)$$

indépendant de choix du $(c,d) \in A \times B$, on peut passer à la limite de cette inégalité, on obtient

$$diam(A \cup B) - (diam(A) + diam(B)) \le d(A, B)$$

Finalement,

$$diam(A \cup B) \le d(A, B) + diam(A) + diam(B)$$

▶ S'il n'existe pas $p \in A$, $q \in B$ tels que $d(a,b) \leq d(p,q)$, c'est à dire $(a,b) \in A^2$ ou $(a,b) \in B^2$ et donc $diam(A \cup B) = diam(A)$ ou $diam(A \cup B) = diam(B)$, on a bien

$$diam(A \cup B) \le diam(A) + diam(B) + d(A, B)$$

En tout cas, on a $\begin{bmatrix} diam(A \cup B) \leq diam(A) + diam(B) + d(A, B) \end{bmatrix}$

I.B -

Soient $(x,y) \in E^2$, alors il existe une suite $(u_n)_{n \in \mathbb{N}}$ de A telle que $d(y,u_n) \xrightarrow[n \to +\infty]{} d(y,A)$, Soit $n \in \mathbb{N}$, par inégalité triangulaire, on a $d(x,u_n) - d(y,u_n) \le d(x,y)$. Donc

$$d(x, A) - d(y, u_n) \le d(x, u_n) - d(y, u_n) \le d(x, y)$$

On peut passer à la limite de cette inégalité, on obtient

$$d(x,A) - d(y,A) \le d(x,y)$$

De même, on a aussi $d(y, A) - d(x, A) \le d(x, y)$

Finalement, on a donc $\forall (x,y) \in E^2, d(x,y) \ge |d(x,A) - d(y,A)|$

I.C -

▶ Par définition, $A \subset \overline{A}$, donc $\{(x,a), a \in A\} \subset \{(x,a), a \in \overline{A}\}$, donc $\{d(x,a), a \in \overline{A}\}$, on a donc

$$d(x, \overline{A}) = \inf\{d(x, a), a \in \overline{A}\} \le \inf\{d(x, a), a \in A\} = d(x, A)$$

Soit $a \in \overline{A}$, par définition, il existe une suite $(u_n)_{n \in \mathbb{N}}$ de A tel que $u_n \xrightarrow[n \to +\infty]{} a$, on a $d(x, u_n) \xrightarrow[n \to +\infty]{} d(x, a)$. Par la définition de borne inférieure, on a $\forall n \in \mathbb{N}$, $d(x, u_n) \ge d(x, A)$. Donc $d(x, a) \ge d(x, A)$, ce qui est indépendant du choix de a. On peut passer à la limite de cette inégalité, donc $d(x, \overline{A}) \ge d(x, A)$

Par double inégalité, on a $d(x, \overline{A}) = d(x, A)$

II - Exercice 2

▶ On suppose que $k \ge \sqrt{2}$, on va montrer F_k est un fermé de $(\mathbb{R}^2, \|\cdot\|_2)$. Soit $x \in F_k$, alors il existe $a \in \mathbb{N}^*$, tel que $x \in BF((\frac{1}{a}, \frac{1}{a}), \frac{k}{a})$. Et on a

$$||x, (1, 1)||_{2} \leq ||x, (\frac{1}{a}, \frac{1}{a})||_{2} + ||(\frac{1}{a}, \frac{1}{a}), (1, 1)||_{2}$$
$$\leq \frac{k}{a} + \sqrt{2}(1 - \frac{1}{a})$$
$$= \sqrt{2} + \frac{k - \sqrt{2}}{a}$$

Car $a \in \mathbb{N}^*$ et $k \geq \sqrt{2}$, on a donc $\frac{k-\sqrt{2}}{a} \leq k - \sqrt{2}$, donc

$$||x, (1,1)||_2 \le \sqrt{2} + k - \sqrt{2} \le k$$

donc $x \in BF((1,1), k)$, donc $F_k \subset BF((1,1), k)$.

D'autre part, on a clairement $BF((1,1),k) \subset F_k$, donc $F_k = BF((1,1),k)$ qui est un fermé de $(\mathbb{R}^2, \|\cdot\|_2)$

Donc lorsque $k \geq \sqrt{2}$, F_k est un fermé de $(\mathbb{R}^2, \|\cdot\|_2)$.

▶ Soit $k < \sqrt{2}$, on peut définir la suite $(u_n)_{n \in \mathbb{N}^*}$, telle que $\forall n \in \mathbb{N}^*$, $u_n = (\frac{1}{n} - \frac{k}{\sqrt{2}n}, \frac{1}{n} - \frac{k}{\sqrt{2}n})$. La suite converge vers (0,0), et on a

$$\forall n \in \mathbb{N}^*, \|u_n, (\frac{1}{n}, \frac{1}{n})\| = \|(\frac{k}{\sqrt{2}n}, \frac{k}{\sqrt{2}n})\| = \frac{k}{n}$$

Donc $\forall n \in \mathbb{N}^*, u_n \in BF((\frac{1}{n}, \frac{1}{n}), \frac{k}{n}) \subset F_k$

Mais $\forall a \in \mathbb{N}^*$, $\|(0,0),(\frac{1}{a},\frac{1}{a})\| = \frac{\sqrt{2}}{a} > \frac{k}{a}$, donc $(0,0) \notin F_k$, F_k n'est pas un fermé de $(\mathbb{R}^2,\|\cdot\|_2)$

Finalemnt, on a F_k est fermé si et seulement si $k \ge \sqrt{2}$

III - Exercice 3

III.A -

F n'est pas un fermé de $(\mathbb{R}^2, \|\cdot\|_1)$. En fait, on peut définir une suite $((x_n, y_n))_{n \in \mathbb{N}^*}$ telle que $\forall n \in \mathbb{N}, (x_n, y_n) = (-2^{-n}, 1)$. Pour tout $n \in \mathbb{N}$, on a $x_n < 0$, donc $f(x_n) = 1 \ge y_n$, donc $(x_n, y_n) \in F$.

Mais $(x_n, y_n) \xrightarrow[n \to +\infty]{} (0, 1) \notin F$, donc F n'est pas fermé

III.B -

On note

$$P = F \cup \{(0,y), y \in]0,1]\}$$

- ► On va montrer P est un fermé de $(\mathbb{R}^2, \|\cdot\|_1)$. Soit $(x_n, y_n)_{n \in \mathbb{N}}$ de P qui converge dans \mathbb{R}^2 , alors il existe $(x, y) \in \mathbb{R}^2$ tel que $(x_n, y_n) \xrightarrow[n \to +\infty]{} (x, y)$, donc on a $\|(x_n, y_n), (x, y)\|_1 \xrightarrow[n \to +\infty]{} 0$, donc $x_n \xrightarrow[n \to +\infty]{} x$, $y_n \xrightarrow[n \to +\infty]{} y$
 - Si x < 0, on peut prendre $\epsilon = -\frac{x}{2} > 0$, alors il existe $N_1 \in \mathbb{N}$ tel que $\forall n \ge N_1$, $|x_n x| \le \epsilon = -\frac{x}{2}$. c'est à dire soit $n \ge N_1$, $x_n \le \frac{x}{2} < 0$, donc $y_n \le f(x_n) = 1$. On a donc $y_n \xrightarrow[n \to \infty]{} y \le 1 = f(x)$, donc $(x, y) \in P$
 - Si x > 0, on peut prendre $\epsilon = \frac{x}{2} > 0$, alors il existe $N_2 \in \mathbb{N}$ tel que $\forall n \geq N_2$, $|x_n x| \leq \epsilon = \frac{x}{2}$. c'est à dire soit $n \geq N_2$, $x_n \geq \frac{x}{2} > 0$, donc $y_n \leq f(x_n) = 0$. On a donc $y_n \xrightarrow[n \to \infty]{} y \leq 0 = f(x)$, donc $(x, y) \in P$
 - Si x = 0, car $\forall n \in \mathbb{N}$, $y_n \le f(x_n) \le 1$, donc $y_n \xrightarrow[n \to +\infty]{} y \le 1$, donc $(x, y) \in P$

En tout cas, on a $(x,y) \in P$, donc P est un fermé de $(\mathbb{R}^2, \|\cdot\|_1)$

- ▶ Puisque $F \subset P$, donc $\overline{F} \subset \overline{P} = P$ comme P est un fermé de $(\mathbb{R}^2, \|\cdot\|_1)$
- ▶ Soit $(x,y) \in P$, on peut toujours trouver une suite $(x_n,y_n)_{n\in\mathbb{N}}$ de F qui converge vers (x,y)
 - Si x = 0, on a $y \le 1$, on pose $\forall n \in \mathbb{N}$, $x_n = -2^{-n} < 0$, $y_n = y$, donc soit $n \in \mathbb{N}$, $y_n \le f(x_n) = 1$, donc $(x_n, y_n) \in F$, et on a $\|(x_n, y_n), (x, y)\|_1 = 2^{-n} \xrightarrow[n \to +\infty]{} 0$, donc (x, y) est la limite d'une suite de F, donc $(x, y) \in \overline{F}$

• Si x > 0, on a $y \le f(x) = 0$, on pose $\forall n \in \mathbb{N}$, $x_n = x + 2^{-n} > 0$, $y_n = y$, donc soit $n \in \mathbb{N}$, $y_n \le f(x_n) = 0$, donc $(x_n, y_n) \in F$, et on a $\|(x_n, y_n), (x, y)\|_1 = 2^{-n} \xrightarrow[n \to +\infty]{} 0$, donc (x, y) est la limite d'une suite de F, donc $(x, y) \in \overline{F}$

• Si x < 0, on a $y \le f(x) = 1$, on pose $\forall n \in \mathbb{N}$, $x_n = x - 2^{-n} < 0$, $y_n = y$, donc soit $n \in \mathbb{N}$, $y_n \le f(x_n) = 1$, donc $(x_n, y_n) \in F$, et on a $\|(x_n, y_n), (x, y)\|_1 = 2^{-n} \xrightarrow[n \to +\infty]{} 0$, donc (x, y) est la limite d'une suite de F, donc $(x, y) \in \overline{F}$

On a $\forall (x,y) \in P$, $(x,y) \in \overline{F}$, donc $P \subset \overline{F}$

Finalement, on a

$$\overline{F} = P = F \cup \{(0, y), y \in]0, 1]\}$$