Blixtkurs i flervariabelsanalys

• 1 dimension:

- Givet: en funktion y = f(x), dvs $f: \mathbb{R}^1 \to \mathbb{R}^1$ (från skalär till skalär).
- Derivataoperatorn definieras som $\frac{\delta}{\delta x} f(x) = \frac{\delta f(x)}{\delta x} = f_x'(x) = \lim_{h \to 0} \frac{f(x+h) + f(x)}{h}$.

En liten, men viktig, detalj:

• $\frac{\delta f(x)}{\delta x}\Big|_{x=a} = f_x'(a)$ betecknar värdet för derivatafunktionen i punkten a. Vi kan <u>inte</u> skriva detta som $\frac{\delta f(a)}{\delta x}$, eftersom $\frac{\delta f(a)}{\delta x} = \frac{\delta}{\delta x} f(a) = \frac{\delta}{\delta x} (constant) = 0$.

•
$$\frac{\delta}{\delta x} f(x) = \frac{\delta f(x)}{\delta x} = f_x'(x)$$
 är en funktion $f_x': R^1 \to R^1$ (från skalär till skalär).

• Notera: den negativa derivatans tecken för en punkt a anger i vilken riktning längs x-axeln från punkten x=a man bör förflytta sig för att nå ett (lokalt) minimum.

Blixtkurs i flervariabelsanalys

- n≥2 dimensioner:
 - Givet: en funktion $y = f(x) = f(x_1, x_2, ..., x_n)$, dvs $f: \mathbb{R}^n \to \mathbb{R}^1$ (från n-vektor till skalär)
 - Gradientoperatorn ∇_x ("nabla") ges av $\nabla_x = \nabla_{x_1, x_2, \dots} = (\frac{\delta}{\delta x_1}, \frac{\delta}{\delta x_2}, \dots, \frac{\delta}{\delta x_n})^T$
 - Funktionen f:s gradient är $\nabla_{\mathbf{x}} f(\mathbf{x}) = (\frac{\delta f(\mathbf{x})}{\delta x_1}, \frac{\delta f(\mathbf{x})}{\delta x_2}, \dots)^T = (f'_{x_1}(\mathbf{x}), f'_{x_2}(\mathbf{x}), \dots)^T$
 - $\nabla_x f(x)|_{x=x_{val}} = \nabla_x f(x_1, x_2, \dots)|_{(x_1, x_2, \dots) = (a, b, \dots)}$ betecknar gradientvektorns faktiska värde i punkten $x_{val} = (a, b, \dots)$.

- Gradienten är en funktion $\nabla_x f: \mathbb{R}^n \to \mathbb{R}^n$ (från n-vektor till n-vektor)
- Gradienten i en punkt pekar i den riktning vartåt funktionen ökar snabbast. Des storlek representerar hur stor ökningen är. Den negativa gradienten anger därför hur man bör förflytta sig i rymden av möjliga input $\mathbf{x} = (x_1, x_2, ...)$ för att nå ett (lokalt) minimum.

Grundläggande optimering

- Givet: En cost/loss-funktion $C = L(x, w) = L(x_1, x_2, ..., w_1, w_2, ...)$.
- Problem: Välj element i \boldsymbol{w} för att göra C så litet som möjligt.
 - Dvs x är här att betrakta som konstant(er)
- Den faktiska lösningen $\mathbf{w}^{opt} = (w_1^{opt}, w_2^{opt}, \dots)$ finns bland lösningarna till ekvationssystemet:

$$\left. oldsymbol{
abla}_w L \right|_{w=w^{opt}} = \mathbf{0} \leftrightarrow \left. \left\{ egin{array}{c} rac{\delta L}{\delta w_1} \middle|_{w_1=w_1^{opt}} = 0 \\ rac{\delta L}{\delta w_2} \middle|_{w_2=w_2^{opt}} = 0 \end{array}
ight.$$
 ; ty gradienten är noll i alla minima/maxima.

• (Vi antar här att funktionen L är kontinuerlig och deriverbar överallt, dvs inga "hopp" eller "kanter" i funktionsytan).

Grundläggande optimering

Gradient Descent:

- Hur hittar man ner från ett berg om man är blind och har minnesförlust? Följ lutningen.
- Ett iterativt alternativ f\u00f6r hitta en l\u00f6sning utan att beh\u00f6va l\u00f6sa ekvationssystem.
 - För komplicerade kostnadsfunktioner som beror olinjärt på miljontals parametrar kan det helt saknas metoder för att lösa $\nabla_w L = \mathbf{0}$ analytiskt.
 - Att hitta gradienten i en given punkt är dock alltid en (jämförelsevis) enkel operation.

Algoritmen:

- 1. Initialisera w_0 (exempelvis slumpmässigt).
- 2. Uppdatera $w_{t+1} \leftarrow w_t \alpha \cdot \nabla_w L(x, w)|_{w=w_t}$, (där α är det vi kallar learning rate eller step size).
- 3. Repetera steg 2 ovan n gånger (n stort). w_n är (approximativt) lösningen.
- Metoden är matematiskt garanterad hamna godtyckligt nära ett lokalt minimum efter ett ändligt antal n steg givet tillräckligt litet α !

Grundläggande optimering

- Stochastic Gradient Descent, SGD:
 - Problem: Kostnadsfunktionen L(x, w) kanske inte är "känd" i bemärkelsen att den beror på input x som inte är konstant, utan dragen från en (okänd) slumpfördelning.
 - Lösning: För $I \ge 1$ observationer av x (skrivet x^{obs}), beräkna medelvärdet av kostnaden:

$$\widehat{L}(\mathbf{x}^{obs}, \mathbf{w}) = \frac{\sum_{i=1}^{I} L(\mathbf{x}_{i}^{obs}, \mathbf{w})}{I} \approx L(\mathbf{x}, \mathbf{w})$$

- Nu kan vi använda ungefär samma metod som innan för att minimera \widehat{L} :
 - 1. Initialisera w_0
 - 2. Generera observationer x^{obs}
 - 3. Uppdatera $w_{t+1} \leftarrow w_t \alpha \cdot \nabla_w \hat{L}(x^{obs}, w)|_{w=w_t}$
 - 4. Repetera steg 2-3 ovan.
- Detta minimerar även L över stora mängder observerade x.

Neuronnät

• (nästan) alla modeller har följande struktur:

- Ett neuronnät $NN(\cdot)$ är en *universal function approximator* som kan lära sig efterlikna någon funktion $f: x \to y$. Exempelvis kan x vara en bild, f(x) = y är 1 om bilden föreställer en katt, 0 annars. f antas a priori existera och vara beräkningsbar.
- Vi vill minimera kostnaden C, som mäter hur lika \hat{y} och y är, med avseende på nätverkets justerbara parametrar w. När C är minimerad lär $NN(\cdot, w)$ "likna" f.
- Vi kan tillämpa SGD, där "observationerna" utgörs av exempel på par (x, y). Förhoppningen är att för någon konfiguration av w kommer nätverket att beräkna den funktion som (x, y) är exempel på input resp. output från.

Exempel:

- Vi använder SGD för att uppdatera w och b:
 - 1. Initialisera $\mathbf{w}_0 = (w_0, b_0)$
 - 2. Generera ett exempel x med motsvarande y
 - 3. Uppdatera $(w_{t+1}, b_{t+1}) \leftarrow (w_t, b_t) \alpha \cdot \nabla_{w,b} (\hat{y} y)^2 \Big|_{w = w_t, b = b_t}$
 - 4. Repetera steg 2-3 ovan.
- För att kunna beräkna $\nabla_{w,b}L=(\frac{\delta L}{\delta w},\frac{\delta L}{\delta b})$ behöver vi använda kedjeregeln:

•
$$\frac{\delta L}{\delta w} = \frac{\delta L}{\delta \hat{y}} \frac{\delta \hat{y}}{\delta x_2} \frac{\delta x_2}{\delta x_1} \frac{\delta x_1}{\delta w} \text{ och } \frac{\delta L}{\delta b} = \frac{\delta L}{\delta \hat{y}} \frac{\delta \hat{y}}{\delta x_2} \frac{\delta x_2}{\delta x_b}$$

• Detta kallas backpropagation