Tema 4

Exercițiul 1

Fie X_1, X_2, \dots, X_n un eșantion de talie n de lege

$$\mathbb{P}(X=k) = \frac{\theta^k}{(1+\theta)^{k+1}}$$

unde θ este un parametru pozitiv. Determinați estimatorii obținuți prin metoda momentelor și prin metoda verosimilității maxime și studiați proprietățile acestora.

Exercițiul 2

Să se estimeze, prin metoda verosimilității maxime și prin metoda momentelor, parametrul p al unei repartiții Bernoulli $\mathcal{B}(p)$ plecând de la eșantionul de talie 25:

$$1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0$$

Exercițiul 3

Fie X o v.a. de lege Pareto de densitate:

$$f(x) = \begin{cases} \frac{\alpha - 1}{x^{\alpha}}, & x \ge 1\\ 0, & \text{altfel} \end{cases}$$

unde $\alpha > 2$ este un parametru necunoscut. Determinați estimatorul de verosimilitate maximă plecând de la un eșantion de talie n și arătați că acesta este consistent.

Exercitiul 4

Fie X_1, X_2, \dots, X_n un eșantion de talie n dintr-o populație cu densitatea $f_{\theta}(x) = e^{-(x-\theta)}, x \geq \theta$.

- a) Determinați estimatorul $\tilde{\theta}$ obținut prin metoda momentelor.
- b) Dterminați estimatorul $\hat{\theta}$ obținut prin metoda verosimilității maxime.
- c) Determinați legea variabilei $n(\hat{\theta} \theta)$.
- d) Verificați dacă estimatorul $\hat{\theta}$ este nedeplasat.
- e) Calculati eroarea medie pătratică a lui $\hat{\theta}$.
- f) În cazul în care $\theta = 2$ dorim să generăm 3 valori aleatoare din repartiția lui $X \sim f_{\theta}(x)$. Pentru aceasta dispunem de trei valori rezultate din repartiția uniformă pe [0, 1]: $u_1 = 0.25$, $u_2 = 0.4$ și $u_3 = 0.5$. Descrieți procedura.

Grupele: 301, 311, 321 Pagina 1

Exercițiul 5

Fie $(X_i)_{1 \leq i \leq n}$ un eșantion de talie n dintr-o populație de densitate f_{θ} dată de

$$f_{\theta} = \theta e^{-\theta x} \mathbf{1}_{[0,+\infty)}(x),$$

cu $\theta > 0$ un parametru necunoscut.

- 1. Ne propunem să estimăm θ prin $Y_n = \frac{n}{\sum_{i=1}^n X_i}$
 - a) Arătați că estimatorul Y_n este bine definit.
 - b) Explicați de ce este logic să alegem Y_n ca estimator pentru θ .

 - c) Determinați legea limită a $\sqrt{n}(Y_n \theta)$. d) Determinați legea sumei $\sum_{i=1}^n X_i$ și calculați $\mathbb{E}_{\theta}[(Y_n \theta)^2]$.
- 2. Pentru estimarea lui θ propunem estimatorul $Z_n = \frac{n-1}{n} Y_n$
 - a) Verifică Z_n proprietăți similare de convergență cu Y_n ?
 - b) Pe care dintre cei doi estimatori, Y_n sau Z_n , îl preferați?

Exercițiul 6

Fie $(X_i)_{1 \le i \le n}$ un eșantion de talie n dintr-o populație de densitate

$$f_{\theta}(x) = \frac{2}{\theta^2} x \mathbf{1}_{[0,\theta]}(x),$$

cu $\theta > 0$ un parametru necunoscut.

- 1. Considerăm $X_{(n)}$ statistica de ordine de rang n
 - a) Determinați densitatea lui $X_{(n)}$.
 - b) Calculați media și varianța lui $X_{(n)}$.
 - c) Arătați că $X_{(n)}$ converge în probabilitate la θ .
- 2. Studiați convergența lui \bar{X}_n și determinați un estimator consistent pentru θ .
- 3. Pe care dintre estimatorii $X_{(n)}$ și $\frac{2}{3}\bar{X}_n$ îl preferați pentru a estima pe θ ?

Grupele: 301, 311, 321