Inhadability Q:/ What is a general purpose computer? · Simple model of computation: DFA · Universal model of computation: Turing madines 2/ Whole algorithms are useful in pradice? · aseful în practice ("efficient") = poly nomial time for all improts Sefinition) A problem is intractable if it cau t be solved in polynomial time Search Problems Search Broblem = given an instance I of the problem, find a solution S (or report nous Requirement: must be able to efficiently cluck that S is a solution

P vs NP NP is the dass of all search problems NP = mondeterministic polynomial since Def/ P = the class of search problems solvable in polynomial time Nondeterminism · Nonde torministic machine can guen the XIP = search problems solvable in polynomial time on a mondeterministic Twing Madine (P) - search problems solvable in polynomial time in the natural world Does [P - NP]? Can you always avoid trute force scarching and do batter? * overwhelmine conserves P + NP

				•	Cli	2 5.	sif	yèn	19	P	Roh	lei	w						
	-1	4 1	bey	ľ	rol.	lei	u:	. 9	abj	fic	bil	liH	,						
		5 <i>A</i> 7	- ,	(o'V	eu	a	St	yte	u.	H		200	lea	L	egi	w	tiou	n
		j'	mo	(a	S	du	tion	u										
$\exists i$	Q7:																		
								Χ/s) n	dus	400		0 -	- tra	10	ام	lan'	s.i.A	Inci
		_						746	7	J'	w	ш	~	· Fin		(4	
		b																	
		V	νου —	vt	O	ase	<u>.</u>	2 u	-										
	1 0	, (,	,										
	! 7	rot	kei	u	K	-/	pd	y-	· hM	æ	res	Qu	ces	17		rd	Lei	u j	9 7
	X	ca	u	be	ક્ર	dv	ed		גיש	L,	:								
		-	- <i>(</i> 3	sol'	yn	vo/	wi	al	1	un	ube	<u>አ</u>	of	0	my	nut	at	ioi	cal
	•	step	•		,														
				0.			. • -	0						,	00 1		1.	(,
			Pe)KL	M	M	ua	الما	(uer	Иb	er	of		·	<i>\</i> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	せ		
	- >	Co	utc	gu	eu	<u>u</u>	:	ı	7	we		χu		pol	y -	- 4i	me	2 Y	udi
		AT												_	-				

that y is (probably) introdable SAT 3-COLOR VERTEX COVER IND-SET EXACT COVER HAN-CLIQUE CYCLE ILP DUBSET SUM HAH -TSP PARTITION PATH BIN PACKING KHAPSACK

XP - Completeness Def/ An NP problem is NP- Complete if all pro-Heres in NP poly-time reduce to it SAT is MP-complete (every MP problem is a SAT problem in disquire) * All the problems in the diagram are NPcomplete; they are manifestations of the same really hood problems agring with Intractability · Explaining it - modern cryptography · Factor - given an u-bit integer x, find a non-trivial factor o Relax one of desired features o special cases may be hadable · approximation algorithm

o solve the problem in proby-time: chaff Solves real-world SAT instances with ~ lok * Most famous NP-complete problem: HAMILTON PATH Goal: Fined a simple path that visits every vertex exactly once