Die Friedmann-Gleichung

$$H(t)^2 = \left(\frac{\dot{a}}{a}\right)^2 = H_0^2 \left(\frac{\Omega_r}{a^4} + \frac{\Omega_m}{a^3} + \Omega_{\Lambda} - \frac{\Omega_0 - 1}{a^2}\right)$$

- a) Ω_0 ... total density
 - Ω_r ... radiation density
 - Ω_m ... matter density (Dark + Baryonic)
 - Ω_{Λ} ... cosmological constant (vacuum density)

b)

$$H(t)^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \left(\frac{\mathrm{d}a}{\mathrm{d}t}\right)^{2} \quad \Rightarrow \quad a^{2}H^{2}(t) = \left(\frac{\mathrm{d}a}{\mathrm{d}t}\right)^{2} \quad \Rightarrow \quad \mathrm{d}a = \frac{\mathrm{d}t}{aH(t)}$$

$$\int 1 \, \mathrm{d}t = \int \frac{1}{aH(a)} \, \mathrm{d}a$$

- c) $\Omega_0 \propto a^{-2}$
 - $\Omega_r \propto a^{-4}$, as it gets redshifted in addition to space expanding by a^3
 - $\Omega_m \propto a^{-3}$, as space expands by a^3
 - $\Omega_{\Lambda} \propto \text{const.}$, since it seems to be an intrinsic property of vacuum/spacetime
- d) Radiation dominated: $H(t) = H_0 \sqrt{\frac{1}{a(t)^4}}$

$$\int_{0}^{t} 1 \, \mathrm{d}\tilde{t} = \int_{0}^{a(t)} \frac{1}{\tilde{a}H(\tilde{a})} \, \mathrm{d}\tilde{a} = \int_{0}^{a(t)} \frac{\tilde{a}}{H_{0}} \, \mathrm{d}\tilde{a} = \frac{a(t)^{2}}{2H_{0}}$$

$$a(t) = \underline{\sqrt{2H_0t}}$$

Matter dominated: $H(t) = H_0 \sqrt{\frac{1}{a(t)^4}}$

$$\int_{0}^{t} 1 \, \mathrm{d}\tilde{t} = \int_{0}^{a(t)} \frac{1}{\tilde{a}H(\tilde{a})} \, \mathrm{d}\tilde{a} = \int_{0}^{a(t)} \frac{\sqrt{\tilde{a}}}{H_{0}} \, \mathrm{d}\tilde{a} = \frac{2\sqrt{a(t)^{3}}}{3H_{0}}$$

$$a(t) = \underline{\left(\frac{3H_0t}{2}\right)^{\frac{2}{3}}}$$

Cosmological Constant: $H(t) = H_0$

$$\int_{0}^{t} 1 \, \mathrm{d}\tilde{t} = \int_{c}^{a(t)} \frac{1}{\tilde{a}H(\tilde{a})} \, \mathrm{d}\tilde{a} = \int_{c}^{a(t)} \frac{1}{\tilde{a}H_{0}} \, \mathrm{d}\tilde{a} = \frac{\ln(a(t))}{H_{0}}$$

$$a(t) = \underbrace{e^{H_0 t + c}}$$

Curvature dominated: $H(t) = H_0 \sqrt{\frac{1}{a(t)^2}}$

$$\int_{0}^{t} 1 \, \mathrm{d}\tilde{t} = \int_{0}^{a(t)} \frac{1}{\tilde{a}H(\tilde{a})} \, \mathrm{d}\tilde{a} = \int_{0}^{a(t)} \frac{1}{H_{0}} \, \mathrm{d}\tilde{a} = \frac{a(t)}{H_{0}}$$

$$a(t) = \underline{\underline{H_0 t}}$$

 $\Omega_0 < 1 \mbox{ leads to a negative Curvature}$ and to an ever expanding Universe

 $\Omega_0=1$ leads to zero Curvature and to an expansion, where the rate of expansion approaches zero asymptotically

 $\Omega_0 > 1$ leads to a positive Curvature and to a collapsing Universe