CMPT440 - Formal Languages and Computability Assignment 6 - Grammars

1. Webber Chap. 9 Exercise 1

For each of the following DFAs, list the unreachable states if any, show L(M, q) for each $q \epsilon Q$, and construct the minimized DFA using the procedure of Section 9.1.

(a) Unreachable states: q2

$$L(M,\,q0) = \{xy \mid x \; \epsilon \; \{0,\,1\} \text{ and } y \; \epsilon \; \{0,\,1\}^*\}$$

$$L(M, q1) = \{x \mid x \in \{0, 1\}^*\}$$

$$L(M, q2) = \{xy \mid x \in \{1, 00, 01\} \text{ and } y \in \{0, 1\}^*\}$$

Minimized DFA:

(b) Unreachable states: q0, q3

$$L(M, q0) = \{x \mid x \in \{a\}^*\}$$

$$L(M, q1) = \{x \mid x \in \{a\}^*\}$$

$$L(M, q2) = \{\}$$

$$L(M, q3) = \{ax \mid x \in \{a, b\}^*\}$$

Minimized DFA:

(c) Unreachable states: q0, q3

$$L(M, q0) = \{(a, b)^n \mid n \ge 0\}$$

$$L(M, q1) = \{(a, b)^n \mid n \ge 1\}$$

$$L(M, q2) = \{(a, b)^n \mid n \ge 1\}$$

$$L(M, q3) = \{\}$$

$$L(M, q4) = \{(a, b)^n \mid n \ge 1\}\}$$

$$L(M, q5) = \{(a, b)^n \mid n \ge 1\}$$

Minimized DFA:

2. Webber Chap. 10 Exercise 3

Grammar G₂:

 $S \to aS$

 $S \to X$

 $X \to bX$

 $X \rightarrow \epsilon$

(a) Show a derivation from S for the string bbb.

 $S \to X \to bX \to bbX \to bbbX \to bbb\epsilon = bbb$

(b) Show a derivation from S for the string aabb.

 $S \rightarrow aS \rightarrow aaS \rightarrow aabX \rightarrow aabbX \rightarrow aabb\epsilon = aabb$

(c) Show a derivation from S for the empty string.

 $S \to X \to \epsilon$

3. Webber Chap. 10 Exercise 4

Give a regular expression for the language generated by each of these grammars.

- (a) $S \to abS \mid \epsilon$ = $L((ab)^*)$
- (b) $S \rightarrow aS \mid aA$

 $A \rightarrow aS \mid aA$

 $= L(a(a)^*$

(c) $S \rightarrow smellA \mid fishA$

 $A \rightarrow y \mid \epsilon$

 $= L((smell+fish)y^*)$

(d) $S \rightarrow aaSa \mid \epsilon$

 $= L((aaa)^*)$

4. Webber Chap. 10 Exercise 5

Give a grammar for each of the following languages. In each case, use S as the start symbol.

(a) $L(a^*)$

$$S \to aS \mid \epsilon$$

(b) L(aa*)

 $S \to aX$

 $X \to aX \mid \epsilon$

(c) L(a*b*c*)

 $S \to aS \mid X$

 $X \rightarrow bX \mid Y$

 $Y \rightarrow cY \mid \epsilon$

(d) $L((abc)^*)$

 $S \to abcS \mid \epsilon$

(e) The set of all strings consisting of one or more digits, where each digit is one of the symbols 0 through 9.

 $S \rightarrow DS \mid DX$

 $D \rightarrow 0|1|2|3|4|5|6|7|8|9$

 $X \rightarrow \epsilon$

5. Webber Chap. 10 Exercise 6

Give a DFA that accepts the language generated by this grammar:

- $S \rightarrow A \mid B \mid C$
- $A \rightarrow aB \mid \epsilon$
- $B \to bC \mid \epsilon$
- $C \to cA \mid \epsilon$

6. Webber Chap. 10 Exercise 12

Using the construction of Theorem 10.1, make a right-linear grammar that generates the language accepted by each of these NFAs.

- (a) $S \rightarrow aS \mid aX$
 - $X \to bX \mid \epsilon$
- (b) $S \rightarrow bS \mid aX$

$$X \to aS \mid bX \mid \epsilon$$

- (c) $S \to aX \mid \epsilon$
 - $X \to bY$
 - $Y \to cS$
- (d) $S \rightarrow 0S \mid 1S \mid 1X$
 - $X \rightarrow 0Y \mid 1Y$
 - $Y \to \ \epsilon$
- (e) $S \rightarrow A \mid B$
 - $A \rightarrow aX \mid \epsilon$
 - $X \to aA$
 - $B \to bY \mid \epsilon$
 - $Y \to bB$