MS Project

On consistency of Exponentially Embedded Family (EEF) rule for 1-D and 2-D cisoid model and Interval estimation of model order using residual bootstrapping

Anupreet Porwal¹
Supervised by: Prof. Amit Mitra¹, Prof. Sharmishtha Mitra¹

¹Department of Mathematics and Statistics Indian Institute of Technology Kanpur

April 15, 2017

Outline

- A Quick Recap
- 2 Introduction
 - EEF rule
- 3 EEF rule consistency for 1-D cisoid model
 - 1-D cisoid model
 - EEF rule for 1-D cisoid
 - Consistency of EEF rule
 - Numerical examples
- EEF rule consistency for 2-D Cisoid model
 - 2-Dimensional Cisoid Model
 - EEF rule for 2-D cisoid model
 - Consistency of EEF rule
 - Numerical examples
- Confidence Interval for Model order
 - A discussion
 - Algorithm for Confidence interval estimation
 - Numerical Simulations

Outline

- A Quick Recap
- 2 Introduction
 - EEF rule
- EEF rule consistency for 1-D cisoid model
 - 1-D cisoid model
 - EEF rule for 1-D cisoid
 - Consistency of EEF rule
 - Numerical examples
- 4 EEF rule consistency for 2-D Cisoid model
 - 2-Dimensional Cisoid Model
 - EEF rule for 2-D cisoid model
 - Consistency of EEF rule
 - Numerical examples
- 5 Confidence Interval for Model order
 - A discussion
 - Algorithm for Confidence interval estimation
 - Numerical Simulations

A Quick Recap

- Model order selection- fundamental problem in signal processing
- A novel rule introduced by Stoica and Babu[3], where model order estimation based on penalizing adaptively the likelihood (PAL)
- PAL rule can be expressed as a function of model order m as follows:

A Quick Recap

- Model order selection- fundamental problem in signal processing
- A novel rule introduced by Stoica and Babu[3], where model order estimation based on penalizing adaptively the likelihood (PAL)
- PAL rule can be expressed as a function of model order m as follows:

$$PAL(m) = -2\ln(f_m(y,\hat{\theta}_m^*)) + (3m+1)\ln(3\tilde{m}+1)\frac{\ln(r_m+1)}{\ln(\rho_m+1)}$$
 (1)

$$\hat{m} = \underset{m \in \{1, 2, \dots, \tilde{m}\}}{\min} [PAL(m)]$$
(2)

where,

$$r_m = 2 \ln \left[\frac{f_{m-1}(y, \hat{\theta}^*_{m-1})}{f_0(y, \hat{\theta}^*_0)} \right]$$
 $\rho_m = 2 \ln \left[\frac{f_{\tilde{m}}(y, \hat{\theta}^*_{\tilde{m}})}{f_{m-1}(y, \hat{\theta}^*_{m-1})} \right]$

A Quick Recap

- Model order selection- fundamental problem in signal processing
- A novel rule introduced by Stoica and Babu[3], where model order estimation based on penalizing adaptively the likelihood (PAL)
- PAL rule can be expressed as a function of model order m as follows:

$$PAL(m) = -2\ln(f_m(y,\hat{\theta}_m^*)) + (3m+1)\ln(3\tilde{m}+1)\frac{\ln(r_m+1)}{\ln(\rho_m+1)}$$
 (1)

$$\hat{m} = \underset{m \in \{1, 2, \dots, \tilde{m}\}}{\min} [PAL(m)]$$
(2)

where,

$$r_{m} = 2 \ln \left[\frac{f_{m-1}(y, \hat{\theta}_{m-1}^{*})}{f_{0}(y, \hat{\theta}_{0}^{*})} \right] \qquad \rho_{m} = 2 \ln \left[\frac{f_{\tilde{m}}(y, \hat{\theta}_{\tilde{m}}^{*})}{f_{m-1}(y, \hat{\theta}_{m-1}^{*})} \right]$$

 Proved that PAL rule for model order selection 1-D and 2-D cisoid models in white noise is consistent

Outline

- A Quick Recap
- 2 Introduction
 - EEF rule
- EEF rule consistency for 1-D cisoid model
 - 1-D cisoid model
 - EEF rule for 1-D cisoid
 - Consistency of EEF rule
 - Numerical examples
- 4 EEF rule consistency for 2-D Cisoid model
 - 2-Dimensional Cisoid Model
 - EEF rule for 2-D cisoid model
 - Consistency of EEF rule
 - Numerical examples
- 5 Confidence Interval for Model order
 - A discussion
 - Algorithm for Confidence interval estimation
 - Numerical Simulations

EEF rule

- Use of exponential embedding of pdfs for model order estimation was introduced by Kay[1]
- Stoica and Babu[2] proposed a Generalised Likelihood Ratio (GLR) based derivation of EEF rule
- Here, we investigate the asymptotic statistical properties of the same for 1-D and 2-D cisoid models
- Simulation examples to compare EEF's performance with other order selection rules for 1-D and 2-D cisoid models

Outline

- A Quick Recap
- 2 Introduction
 - EEF rule
- EEF rule consistency for 1-D cisoid model
 - 1-D cisoid model
 - EEF rule for 1-D cisoid
 - Consistency of EEF rule
 - Numerical examples
- EEF rule consistency for 2-D Cisoid model
 - 2-Dimensional Cisoid Model
 - EEF rule for 2-D cisoid model
 - Consistency of EEF rule
 - Numerical examples
- 5 Confidence Interval for Model order
 - A discussion
 - Algorithm for Confidence interval estimation
 - Numerical Simulations

1-Dimensional Cisoid model

Building blocks of Digital signal processing

1-Dimensional Cisoid model

- Building blocks of Digital signal processing
- $\forall t = 1, 2, ..., n$

$$y_t = \sum_{k=1}^{m} \alpha_k e^{it\omega_k} + \epsilon_t \tag{3}$$

$$y_t = f(t, \theta_m) + \epsilon_t \tag{4}$$

where

 $\theta_{\it m} = (\alpha_{1_{\it R}}, \alpha_{1_{\it C}}, \omega_1, ..., \alpha_{\it m_{\it R}}, \alpha_{\it m_{\it C}}, \omega_{\it m})'_{\rm 3mx1} = \text{unknown signal parameter vector}$

 α_{j_R} and α_{j_C} denotes the real and the imaginary part of α_j for j=1,..., m m_o = true number of components in the the observed signal

1-Dimensional Cisoid model-Assumptions

• ϵ_t are i.i.d complex valued gaussian with zero mean s.t.

$$\epsilon_t = \epsilon_{t_R} + i\epsilon_{t_C} \tag{5}$$

$$\epsilon_{t_R} \sim \mathcal{N}(0, \sigma^2/2)$$
 (6)

$$\epsilon_{t_C} \sim \mathcal{N}(0, \sigma^2/2)$$
 (7)

and ϵ_{t_R} and ϵ_{t_C} are independent

- $\forall k = 1, 2, ..., m_o : \omega_k \in (0, 2\pi); \ \omega_j \neq \omega_k, \forall j \neq k$. Furthermore, α_k are bounded
- The true model parameter vector θ_{m_o} is an interior point in the parameter space $\Theta \subset \mathbb{R}^{3m_o}$

EEF rule for 1-D cisoid

Consider the Generalized likelihood ratio,

$$r_m = 2 \ln \left[\frac{f_{m-1}(y, \hat{\theta}_{m-1}^*)}{f_0(y, \hat{\theta}_0^*)} \right]$$

where,

 $\hat{\theta}_k^* = (\hat{\theta}_k, \hat{\sigma}_k^2) = \text{M.L.E.}$ of underlying signal and noise parameter vector θ_k^* $f_0(y, \hat{\theta}_0^*) = \text{p.d.f}$ of y when M_0 is the model i.e., $f(\theta_0) = 0$

EEF rule for 1-D cisoid

Consider the Generalized likelihood ratio,

$$r_m = 2 \ln \left[\frac{f_{m-1}(y, \hat{\theta}_{m-1}^*)}{f_0(y, \hat{\theta}_0^*)} \right]$$

where,

 $\hat{\theta}_k^* = (\hat{\theta}_k, \hat{\sigma}_k^2) = \text{M.L.E.}$ of underlying signal and noise parameter vector $\theta_k^* = f_0(y, \hat{\theta}_0^*) = \text{p.d.f}$ of y when M_0 is the model i.e., $f(\theta_0) = 0$

The EEF rule can then be defined using the GLR ratio as follows:

$$\textit{EEF}(m) = \begin{cases} \hat{r}_{m+1} - (3m+1) \left[1 + \ln\left(\frac{\hat{r}_{m+1}}{3m+1}\right) \right] & \text{if } \hat{r}_{m+1} > 3m+1 \\ 0 & \text{otherwise} \end{cases}$$

(8)

10 / 33

$$\hat{m} = \underset{m \in \{1, 2, \dots, \tilde{m}\}}{\text{arg max}} [EEF(m)] \tag{9}$$

where \tilde{m} is the maximum number of cisoid components.

Anupreet Porwal (IITK) MS Project April 15, 2017

Consistency of EEF rule

Lemma 1

Under the assumptions A1-A3, $\forall m \leq m_o$, as $n \to \infty$

$$\hat{\sigma}_{m}^{2} = \sigma^{2} + \sum_{i=1}^{m_{o}} \alpha_{j}^{H} \alpha_{j} - \sum_{i=1}^{m} \hat{\alpha}_{j}^{H} \hat{\alpha}_{j} + o(1) \text{a.s.}$$
 (10)

Consistency of EEF rule

Lemma 1

Under the assumptions A1-A3, $\forall m \leq m_o$, as $n \to \infty$

$$\hat{\sigma}_{m}^{2} = \sigma^{2} + \sum_{j=1}^{m_{o}} \alpha_{j}^{H} \alpha_{j} - \sum_{j=1}^{m} \hat{\alpha}_{j}^{H} \hat{\alpha}_{j} + o(1) \text{a.s.}$$
 (10)

Lemma 2

Under A1-A3, for any integer $k \ge 1$

$$\hat{\sigma}_{m_o+k}^2 = \hat{\sigma}_{m_o}^2 - \sum_{j=1}^k \frac{I_{\epsilon}(\hat{\omega}_{m_o+j})}{n} + o\left(\frac{\ln n}{n}\right) \text{ a.s. as } n \to \infty$$
 (11)

where $I_{\epsilon}(\omega)$ corresponds to periodogram of underlying white noise process and $\hat{\omega}_{m_o+1}, \hat{\omega}_{m_o+2}, ..., \hat{\omega}_{m_o+k}$ are the k largest frequencies corresponding to $I_{\epsilon}(\omega)$

Consistency of EEF rule-II

Lemma 3

Under assumptions A1-A3, r_m satisfies

$$r_m = \begin{cases} 0 & m = 1 \\ O(n) & 2 \le m \le \tilde{m} \end{cases}$$
 (12)

Consistency of EEF rule-III

Theorem

Under A1-A3, if m_o is true order $(m_o \leq \tilde{m})$ and \hat{m} is the estimated model order using EEF rule then

$$P(\hat{m} \neq m_o) \to 0 \text{ as } n \to \infty$$
 (13)

Consistency of EEF rule-III

Theorem

Under A1-A3, if m_o is true order $(m_o \leq \tilde{m})$ and \hat{m} is the estimated model order using EEF rule then

$$P(\hat{m} \neq m_o) \to 0 \text{ as } n \to \infty$$
 (13)

Sketch of the Proof:Consider sub-cases of Over and Under estimation: Case I-**Underestimation** ($m < m_o$):

Sub-case 1- $\hat{r}_{m+1} > 3m+1$; $\hat{r}_{m_o+1} > 3m_o+1$: Show that

$$\frac{1}{n}(EEF(m) - EEF(m_o)) \rightarrow -2\ln\left(1 + \frac{\sum_{j=m+1}^{m_o} \alpha_j^H \alpha_j}{\sigma^2}\right) \text{ a.s.}$$
 (14)

as $n \to \infty$ where R.H.S. is a strictly negative and bounded quantity. Use it to show $P(\hat{m} < m_o) \to 0$ as $n \to \infty$.

Sub-case 2- $\hat{r}_{m+1} < 3m+1$; $\hat{r}_{m_o+1} > 3m_o+1$: Show that function of form $g(x) = x - \ln x - 1 \ge 0$ to show that underestimation is not possible.

Sub-case $3-\hat{r}_{m+1}>3m+1$; $\hat{r}_{m_o+1}<3m_o+1$: From [2], for large samples $EEF(m)\cong\hat{r}_{m+1}-(3m+1)\ln n$. Use this result and Lemma 3 to show

$$\frac{\textit{EEF}(m) - \textit{EEF}(m_o)}{n \ln n} \to 0 \text{ as } n \to \infty$$
 (15)

which can be used to show $P(\hat{m} < m_o) \to 0$ as $n \to \infty$.

Case II-Overestimation ($m > m_o$):For Sub-case 1, Using the asymptotic

theory of likelihood ratios(see [4,5]),
$$\frac{1}{\ln(n)} \left(2n \ln \left(\frac{\hat{\sigma}_m^2}{\hat{\sigma}_{m_o}^2} \right) \right) = o_p(1)$$

Use this to show:

$$P\left(\frac{1}{\ln n}\left(EEF(m) - EEF(m_o)\right) < 0\right) \to 1 \text{ as } n \to \infty \tag{16}$$

Sub-case 2 and Sub-case 3 goes through as the underestimation case. Thus as $n \to \infty$,

$$P(\hat{m} > m_o) = P(EEF(m) > EEF(m_o) \text{ for some } m > m_o) \rightarrow 0$$
 (17)

This implies

$$P(\hat{m} \neq m_o) \to 0$$
 as $n \to \infty$ (18)

Anupreet Porwal (IITK) MS Project April 15, 2017 14

Numerical examples

Example

Simulation example

$$y_t = \sum_{k=1}^{3} \alpha_k e^{it\omega_k} + \epsilon_t$$

$$\alpha_1 = 3 + i2$$
, $\alpha_2 = 2 + i1.66$, $\alpha_3 = 1.75 + i$

$$\omega_1 = 0.8\pi, \quad \omega_2 = 1.2\pi, \quad \omega_3 = 1.4\pi$$

 ϵ_t are i.i.d complex valued gaussian with zero mean s.t.

$$\epsilon_t = \epsilon_{t_R} + i\epsilon_{t_C} \tag{19}$$

$$\epsilon_{t_R} \sim \mathcal{N}(0, \sigma^2/2)$$
 (20)

$$\epsilon_{t_C} \sim \mathcal{N}(0, \sigma^2/2)$$
 (21)

 ϵ_{t_R} and ϵ_{t_C} are independent

Figure: (a)-(d):Plot of the probability of correct estimation of model order against different sample size for fixed values of variance of noise; (e)-(f) plot the probability of correct estimation with different values of σ^2 for fixed sample sizes of 25 and 50

Outline

- A Quick Recap
- 2 Introduction
 - EEF rule
- EEF rule consistency for 1-D cisoid model
 - 1-D cisoid model
 - EEF rule for 1-D cisoid
 - Consistency of EEF rule
 - Numerical examples
- EEF rule consistency for 2-D Cisoid model
 - 2-Dimensional Cisoid Model
 - EEF rule for 2-D cisoid model
 - Consistency of EEF rule
 - Numerical examples
- 5 Confidence Interval for Model order
 - A discussion
 - Algorithm for Confidence interval estimation
 - Numerical Simulations

2-Dimensional Cisoid Model

• Widespread application in wireless communication

2-Dimensional Cisoid Model

- Widespread application in wireless communication
- $\forall s, t \text{ such that } 1 \leq s \leq S; 1 \leq t \leq T$

$$y(s,t) = \sum_{k=1}^{m} \alpha_k e^{i(s\beta_k + t\omega_k)} + \epsilon(s,t)$$
 (22)

$$y(s,t) = f(s,t,\theta_m) + \epsilon(s,t)$$
 (23)

 $\theta_{\textit{m}} = (\alpha_{1_{\textit{R}}}, \alpha_{1_{\textit{C}}}, \beta_{1}, \omega_{1}, ..., \alpha_{\textit{m}_{\textit{R}}}, \alpha_{\textit{m}_{\textit{C}}}, \beta_{\textit{m}}, \omega_{\textit{m}})'_{4\textit{mx}1} \text{: vector of unknown signal parameters}$

 m_o =True number of components in the the observed signal.

2-Dimensional Cisoid Model-Assumptions

 \bullet $\epsilon(s,t)$ are i.i.d complex valued gaussian with zero mean s.t.

$$\epsilon(s,t) = \epsilon_R(s,t) + i\epsilon_C(s,t) \tag{24}$$

$$\epsilon_R(s,t) \sim \mathcal{N}(0,\sigma^2/2)$$
 (25)

$$\epsilon_C(s,t) \sim \mathcal{N}(0,\sigma^2/2)$$
 (26)

and $\epsilon_R(s,t)$ and $\epsilon_C(s,t)$ are independent.

- $\forall k = 1, 2, ..., m_o : (\beta_k, \omega_k) \in (0, 2\pi) \times (0, 2\pi);$ where (β_k, ω_k) are pairwise different i.e. $\omega_j \neq \omega_k$ or $\beta_j \neq \beta_k, \forall j \neq k.$ Furthermore, $\forall k = 1, 2..., m_o : \alpha_k$ are bounded
- The true model parameter vector θ_{m_o} is an interior point in the parameter space $\Theta \subset \mathbb{R}^{4m_o}$

EEF rule for 2-D cisoid model

Using the Generalized likelihood ratio defined before, the EEF rule for this model can then be defined as follows:

EEF rule for 2-D cisoid model

Using the Generalized likelihood ratio defined before, the EEF rule for this model can then be defined as follows:

$$\mathit{EEF}(m) = egin{cases} \hat{r}_{m+1} - (4m+1) igg[1 + \ln \Bigl(rac{\hat{r}_{m+1}}{4m+1} \Bigr) igg] & ext{if } \hat{r}_{m+1} > 4m+1 \ 0 & ext{otherwise} \end{cases}$$

$$\hat{m} = \underset{m \in \{1, 2, \dots, \tilde{m}\}}{\text{arg max}} [EEF(m)]$$
(28)

where \tilde{m} is the maximum number of components in the model

(27)

EEF rule for 2-D cisoid model

Using the Generalized likelihood ratio defined before, the EEF rule for this model can then be defined as follows:

$$\textit{EEF}(m) = egin{dcases} \hat{r}_{m+1} - (4m+1) igg[1 + \ln \Bigl(rac{\hat{r}_{m+1}}{4m+1} \Bigr) igg] & ext{if } \hat{r}_{m+1} > 4m+1 \ 0 & ext{otherwise} \end{cases}$$

$$\hat{m} = \underset{m \in \{1, 2, \dots, \tilde{m}\}}{\text{arg max}} [EEF(m)]$$
(28)

(27)

where \tilde{m} is the maximum number of components in the model Remark:Let $\{\Psi_i\}$ be a sequence of rectangles s.t.

$$\Psi = \{ (s, t) \in \mathbb{Z}^2 | 1 \le s \le S_i, 1 \le t \le T_i \}$$
 (29)

Then, sequence of subsets $\{\Psi_i\}$ is said to tend to infinity as $i \to \infty$ if

$$\lim_{i \to \infty} \min(S_i, T_i) \to \infty \text{ and } 0 < \lim_{i \to \infty} \left(\frac{S_i}{T_i}\right) < \infty$$
 (30)

Anupreet Porwal (IITK) MS Project April 15, 2017 20 / 33

Consistency of EEF rule

Lemma 1

Under the assumptions A1-A3, $\forall m \leq m_o$, as $\Psi(S,T) \rightarrow \infty$

$$\hat{\sigma}_{m}^{2} = \sigma^{2} + \sum_{j=1}^{m_{o}} \alpha_{j}^{H} \alpha_{j} - \sum_{j=1}^{m} \hat{\alpha}_{j}^{H} \hat{\alpha}_{j} + o(1) \text{ a.s.}$$
 (31)

Consistency of EEF rule

Lemma 1

Under the assumptions A1-A3, $\forall m \leq m_o$, as $\Psi(S,T) \rightarrow \infty$

$$\hat{\sigma}_{m}^{2} = \sigma^{2} + \sum_{j=1}^{m_{o}} \alpha_{j}^{H} \alpha_{j} - \sum_{j=1}^{m} \hat{\alpha}_{j}^{H} \hat{\alpha}_{j} + o(1) \text{ a.s.}$$
 (31)

Lemma 2

Under A1-A3, for any integer $k \geq 1$,as $\Psi(S, T) \rightarrow \infty$

$$\hat{\sigma}_{m_o+k}^2 = \hat{\sigma}_{m_o}^2 - \sum_{j=1}^k \frac{I_{\epsilon}(\hat{\beta}_{m_o+j}, \hat{\omega}_{m_o+j})}{ST} + o\left(\frac{(\ln(ST)\ln S\ln T)^{1/2}}{ST}\right) \text{ a.s. } (32)$$

where $I_{\epsilon}(\beta,\omega)$ corresponds to periodogram of underlying white noise process and $(\hat{\beta}_{m_o+1},\hat{\omega}_{m_o+1}),(\hat{\beta}_{m_o+2},\hat{\omega}_{m_o+2}),...,(\hat{\beta}_{m_o+k},\hat{\omega}_{m_o+k})$ are the k largest frequencies corresponding to $I_{\epsilon}(\beta,\omega)$

Consistency of EEF rule-II

Lemma 3

Under assumptions A1-A3, r_m satisfies

$$r_m = \begin{cases} 0 & m = 1 \\ O(ST) & 2 \le m \le \tilde{m} \end{cases}$$
 (33)

Consistency of EEF rule-III

Theorem

Under A1-A3, if m_o is true order $(m_o \leq \tilde{m})$ and \hat{m} is the estimated model order using EEF rule then

$$P(\hat{m} \neq m_o) \to 0 \text{ as } \Psi(S, T) \to \infty$$
 (34)

Consistency of EEF rule-III

Theorem

Under A1-A3, if m_o is true order $(m_o \leq \tilde{m})$ and \hat{m} is the estimated model order using EEF rule then

$$P(\hat{m} \neq m_o) \to 0 \text{ as } \Psi(S, T) \to \infty$$
 (34)

Sketch of the Proof:Consider sub-cases of Over and Under estimation: Case I-**Underestimation** $(m \le m_o)$:

Sub-case 1- $\hat{r}_{m+1} > 4m+1$; $\hat{r}_{m_o+1} > 4m_o+1$: Show that

$$\frac{1}{ST}(EEF(m) - EEF(m_o)) \rightarrow -2\ln\left(1 + \frac{\sum_{j=m+1}^{m_o} \alpha_j^H \alpha_j}{\sigma^2}\right) \text{ a.s.}$$
 (35)

as $\Psi(S,T) \to \infty$ where R.H.S. is a strictly negative and bounded quantity. Use it to show $P(\hat{m} < m_o) \to 0$ as $\Psi(S,T) \to \infty$. Sub-case 2- $\hat{r}_{m+1} < 4m+1$; $\hat{r}_{m_o+1} > 4m_o+1$: Show that function of form $g(x) = x - \ln x - 1 \ge 0$ to show that underestimation is not possible.

Sub-case 3- $\hat{r}_{m+1} > 4m+1$; $\hat{r}_{m_o+1} < 4m_o+1$: From [2], for large samples $EEF(m) \cong \hat{r}_{m+1} - (4m+1)\ln(ST)$. Use this result and Lemma 3 to show

$$\frac{\textit{EEF}(m) - \textit{EEF}(m_o)}{\textit{ST} \ln \textit{ST}} \to 0 \text{ as } \Psi(\textit{S},\textit{T}) \to \infty \tag{36}$$

which can be used to show $P(\hat{m} < m_o) \to 0$ as $\Psi(S, T) \to \infty$.

Case II-Overestimation $(m > m_o)$: For Sub-case 1, Using the asymptotic

theory of likelihood ratios(see [4,5]),
$$\frac{1}{\ln(ST)} \left(2ST \ln \left(\frac{\hat{\sigma}_m^2}{\hat{\sigma}_{m_o}^2} \right) \right) = o_p(1)$$

Use this to show:

$$P\left(\frac{1}{\ln(ST)}\left(EEF(m) - EEF(m_o)\right) < 0\right) \to 1 \text{ as } \Psi(S, T) \to \infty$$
 (37)

Sub-case 2 and Sub-case 3 goes through as the underestimation case. Thus as $\Psi(S,T) \to \infty$,

$$P(\hat{m} > m_o) = P(EEF(m) > EEF(m_o) \text{ for some } m > m_o) \rightarrow 0$$
 (38)

This implies

$$P(\hat{m} \neq m_o) \to 0$$
 as $\Psi(S, T) \to \infty$ (39)

Numerical examples

Example

Simulation example

$$y(s,t) = \sum_{k=1}^{2} \alpha_k e^{i(s\beta_k + t\omega_k)} + \epsilon(s,t)$$

$$\alpha_1 = 1 + \sqrt{2}i, \quad \beta_1 = 0.26\pi, \quad \omega_1 = 0.26\pi$$
 $\alpha_2 = 2 + 2i, \quad \beta_2 = 0.62\pi, \quad \omega_2 = 0.62\pi$

 $\epsilon(s,t)$ are i.i.d complex valued gaussian with zero mean s.t.

$$\epsilon(s,t) = \epsilon_R(s,t) + i\epsilon_C(s,t) \tag{40}$$

$$\epsilon_R(s,t) \sim \mathcal{N}(0,\sigma^2/2)$$
 (41)

$$\epsilon_C(s,t) \sim \mathcal{N}(0,\sigma^2/2)$$
 (42)

and $\epsilon_R(s,t)$ and $\epsilon_C(s,t)$ are independent

Figure: (a)-(d):Plot of the probability of correct estimation of model order against different S, T values for fixed values of variance of noise; (e)-(f) plot the probability of correct estimation with different values of σ^2 for fixed S,T values of 9 and 20 each

Outline

- A Quick Recap
- 2 Introduction
 - EEF rule
- EEF rule consistency for 1-D cisoid model
 - 1-D cisoid model
 - EEF rule for 1-D cisoid
 - Consistency of EEF rule
 - Numerical examples
- 4 EEF rule consistency for 2-D Cisoid model
 - 2-Dimensional Cisoid Model
 - EEF rule for 2-D cisoid model
 - Consistency of EEF rule
 - Numerical examples
- Confidence Interval for Model order
 - A discussion
 - Algorithm for Confidence interval estimation
 - Numerical Simulations

A discussion

- Model order estimation rules like PAL and EEF given only a point estimate
- Interval estimates would provide a range of values with a known probability of capturing the model order
- Propose an algorithm based on residual bootstrapping to generate confidence for model order using PAL rule

$\textbf{Algorithm 1} \ \, \textbf{Confidence interval estimation of model order}$

- 1: Define the number of components m_o and model parameter values $\alpha_k, \beta_k \forall k = 1 \dots m_o$
- 2: $n \leftarrow \mathsf{Sample}$ size
- 3: for isim=1 to nsim do
- 4: $y \leftarrow \text{generate-data}(n, m_o, \alpha, \beta)$
- 5: Estimate model order for y using PAL rule
- 6: Estimate $\alpha_k, \beta_k \ \forall k = 1 \dots m$
- 7: Calculate \hat{y}_i and use it to Calculate $\hat{\epsilon}_i = y_i \hat{y}_i \ \forall i = 1, \dots, n$
- 8: **for** b=1 to bootsim **do**
- 9: Draw a bootstrap sample $\hat{\epsilon}_b$ of size n from $\hat{\epsilon}$
- 10: Calculate $y_b = \hat{y} + \hat{\epsilon}_b$
- 11: Estimate model order for y_b using PAL rule
- 12: end for
- 13: Find the empirical interval with α level of confidence using Bootsim number of estimated model orders
- 14: end for
- 15: Calculate average over confidence interval for nsim simulations

Numerical examples

Example

Simulation example

$$y_t = \sum_{k=1}^m \alpha_k e^{it\omega_k} + \epsilon_t$$

$$\alpha_1 = 3 + i2$$
, $\alpha_2 = 2 + i1.66$, $\alpha_3 = 1.75 + i$

$$\omega_1 = 0.8\pi, \quad \omega_2 = 1.2\pi, \quad \omega_3 = 1.4\pi$$

 ϵ_t are i.i.d complex valued gaussian with zero mean s.t.

$$\epsilon_t = \epsilon_{t_R} + i\epsilon_{t_C} \tag{43}$$

$$\epsilon_{t_R} \sim \mathcal{N}(0, \sigma^2/2)$$
 (44)

$$\epsilon_{t_C} \sim \mathcal{N}(0, \sigma^2/2)$$
 (45)

 ϵ_{t_R} and ϵ_{t_C} are independent

Table: Average quantiles from 100 bootstrap samples of different sample sizes

	Quantile values				
Sample Size	0.025	0.05	0.5	0.95	0.975
15	1.51	1.725	2.2	7.45	8.5
25	1.18	1.265	1.905	3.62	4.34
50	1.56	1.79	2.775	3.995	4.35
100	2.39	2.6	3.06	4.125	4.35
200	2.95	3	3.05	3.915	4.15

Figure: (a)-(c):Plot of the Histogram for estimated model order over 100 bootstrap samples for a simulation for different sample size at a fixed noise variance σ^2 =30

 The model order estimator based on EEF is asymptotically consistent for 1-D and 2-D cisoid models

- The model order estimator based on EEF is asymptotically consistent for 1-D and 2-D cisoid models
- Simulation tests suggests EEF performance is comparable to other popular order selection rules

- The model order estimator based on EEF is asymptotically consistent for 1-D and 2-D cisoid models
- Simulation tests suggests EEF performance is comparable to other popular order selection rules
- As sample size increase or signal to noise ratio increases(with decrease in noise variance), the probability of correct estimation using EEF based approach goes to 1

- The model order estimator based on EEF is asymptotically consistent for 1-D and 2-D cisoid models
- Simulation tests suggests EEF performance is comparable to other popular order selection rules
- As sample size increase or signal to noise ratio increases(with decrease in noise variance), the probability of correct estimation using EEF based approach goes to 1
- Proposed a residual bootstrapping based algorithm for confidence interval estimation of model order

- The model order estimator based on EEF is asymptotically consistent for 1-D and 2-D cisoid models
- Simulation tests suggests EEF performance is comparable to other popular order selection rules
- As sample size increase or signal to noise ratio increases(with decrease in noise variance), the probability of correct estimation using EEF based approach goes to 1
- Proposed a residual bootstrapping based algorithm for confidence interval estimation of model order
- Outlook
 - PAL and EEF rule consistency for chirp signal model
 - Consistency of PAL based order selection rule and EEF rule in presence of coloured noise

References

- Kay, Steven. "Exponentially embedded families-new approaches to model order estimation." IEEE Transactions on Aerospace and Electronic Systems 41.1 (2005): 333-345.
- 2 Stoica, Petre, and Prabhu Babu. "On the exponentially embedded family (EEF) rule for model order selection." IEEE Signal Processing Letters 19.9 (2012): 551-554.
- Stoica, Petre, and Prabhu Babu. "Model order estimation via penalizing adaptively the likelihood (PAL)." Signal processing 93.11 (2013): 2865-2871.
- Wilks, Samuel S. "Sample criteria for testing equality of means, equality of variances, and equality of covariances in a normal multivariate distribution." The Annals of Mathematical Statistics (1946): 257-281.
- Lehmann, Erich L., and Joseph P. Romano. "Testing Statistical Hypotheses (Springer Texts in Statistics)." (2005).