A Meta-Regression Analysis of the Relationship Between ADHD Symptomatology and Caffeinated Beverage Consumption: Age, Gender, Geographic Location and Beverage Types as Moderators

Tyler Gross
Dr. Sunha Kim (Chair)
Dr. Michele Shanahan
Department of Counseling, School, and Educational Psychology
University at Buffalo

Overview

1. Introduction

- a. Existing research on stimulant use in ADHD
- b. Theoretical basis for current meta-analysis
- c. Research questions

2. Methodology

- a. Literature Search
- b. Data Analysis Strategy

3. Results

4. Discussion

- a. Limitations
- b. Future Directions

Attention-deficit/Hyperactivity Disorder (ADHD)

Neurodevelopmental disorder

Challenges with:

- Attentional control
- Impulsivity
- Hyperactivity

Global prevalence between 2% and 7%

Source: Reichenberg, 2016; Sayal, 2018; Vazquez, 2022

Background: ADHD and Stimulant Use

Stimulant prescription medications for ADHD

- Effective but not without side effects (Meszaros, 2009; Nanda, 2023)

Is there a significant association between ADHD symptoms and other non-prescription stimulant drugs?

- Turns out, there is a significant association/prevalence
 - Cigarette smoking (Kollins, 2005)
 - Cocaine (Oliva, 2021)
 - Sugary beverages (Farsad-Naeimi, 2020)

Background: Self Medication of ADHD Symptoms With Caffeine?

Theoretical basis for self medication:

- Avoiding prescription stimulant medication side effects
- Higher prevalence of other non-prescription stimulants
- Alleviation of ADHD symptoms in animal models (Vazquez, 2022)

First, the association between ADHD symptoms and caffeinated beverage consumption should be investigated

Research Questions

What is the association between ADHD symptomatology and caffeinated beverage consumption?

What might be moderating this potential association?

- Moderators to explore
 - Age
 - Gender
 - Geographic Region
 - Type of Caffeinated Beverage

Methodology: Literature Search

<u>Databases:</u> ERIC, Medline, ProQuest, PsycInfo, PubMed

<u>Search Terms:</u> ADHD (or related terms) AND Caffeine (or related terms)

658 studies identified, 413 remaining are duplicate removal using EndNote

Figure 1. Flow diagram of study selection process.

Methodology: Title/Abstract Screening

Inclusion Criteria: English, Human Subjects, Cross-Sectional, Measure of Caffeinated Beverage Consumption, Measure of ADHD Symptomatology

After title/abstract screening, 35 studies remained

Screening Pair	Cohen's Kappa Interrater Reliability
1	0.50
2	0.81

Table 1. Interrater reliability for title/abstract screening

Methodology: Full Text Screening

32 of the 35 full text articles were retrievable

After screening at the full-text level using the previously outlined inclusion criteria, 14 studies remained

Effect sizes and moderators of interested were coded from full text

Figure 1. Flow diagram of study selection process.

Methodology: Analysis

Random-effects model used

Does not assume that all studies have a common effect size

Conducted meta-analysis using the metafor package in R

Conversion of all effect sizes to correlation coefficients

Moderator variables:

- Mean participant age (continuous)
- Proportion of male participants (continuous)
- US-based study (dummy variable)
- Type of caffeinated beverage (separate dummy variables)
 - Total caffeine
 - Coffee
 - Energy Drinks

Included Studies

	Fisher's Z		Mean	Proportion of Male	Doverage	Country of
Author	Effect Size	Sample Size	Participant Age (Years)	Participant s	Beverage Type*	Country of Study
James et al.,	0.13	1828	15.5	1.00		Other
James et al.,	0.18	1842	15.5	0.00	300000000000000000000000000000000000000	Other
Schwartz et a	0.07	1649	16.5	0.33	25000 CONT.	United States
Narine et al.,	0.05	72	15.0	0.55	E	United States
Narine et al.,	0.03	69	42.9	0.33	E	United States
Cipollone et	0.09	18913	13.0	0.14	E	United States
Cipollone et	0.05	18913	14.0	0.48	0	United States
Cipollone et	0.09	18913	13.0	0.51	0	United States
Agoston et al	0.02	2259	15.0	0.33	T, E, C	Other
Cusick et al.,	0.13	302	42.9	0.14	Т	United States
Cusick et al.,	0.22	302	12.4	0.55	T	United States
Cusick et al.,	0.16	302	28.7	0.88	T	United States
Rios-Hernan	0.27	120	28.7	0.88	Т	Other
Salvat et al.,	0.24	200	28.7	0.88	0	Other
Bae et al., 20	0.12	511	23.2	0.63	I	Other
Martin et al.,	0.23	132	8.3	0.72	T	United States
Galimov, 202	0.05	5478	34.0	0.49	E	Other
Chamberlain	0.21	126	9.3	0.57	T	United States
Walker et al.,	0.22	448	22.9	0.50	T, C	United States
Farber et al.,	0.04	7245	15.0	0.61	T	United States
*Beverage Type: T=Total Caffeine, E=Energy Drinks, C=Coffee, O=Other						

Results: Random-Effects Model

Fisher's Z (Effect Size): 0.1141 95% CI: [0.08, 0.15] I² (Heterogeneity): 92.07%

Assessing for Influential Studies

No studies were shown be particularly influential on the pooled effect size

Assessing for Publication Bias

Evidence of possible small study publication bias

Moderating Variables

Moderating Variable	Coefficient	p-value	
Age	0.0003	0.8673	
Gender	0.0790	0.2679	
Geographic Location	-0.0086	0.8059	
Total Caffeine Intake	0.0368	0.2811	
Coffee Consumption	0.0219	0.5655	
Energy Drink Consumption	-0.0541	0.1089	

Table 2. Meta-Regression Results

Gender as a Moderator

Male participants tended to report a larger effect size

Statistically insignificant (p=0.2679)

Energy Drink Consumption as a Moderator

Studies specifically assessing energy drink consumption reported a smaller effect size

Statistically insignificant (p=0.1089)

Discussion

A statistically significant overall effect size between ADHD symptomatology and caffeinated beverage consumption (Fisher's Z: 0.11 [0.08, 0.15])

No particularly influential studies on overall effect size

No significant moderators discovered

- Greater number of studies with larger sample sizes may change this

Limitations

Cross-sectional studies do not provide directionality of relationship

Relatively large between-study heterogeneity ($I^2 = 92.07\%$)

Evidence for small study publication bias (small sample size studies not reporting insignificant results)