Balance de materia IMClick Project

Problema 17. Las reacciones:

$$C_2H_6 \longrightarrow C_2H_4 + H_2$$

 $C_2H_6 + H_2 \longrightarrow 2CH_4$

se llevan a cabo en un reactor continuo en estado estacionario. La alimentación contiene 85% (mol) de etano (C_2H_6) y el balance son productos inertes (I). La fracción de conversión del etano es 0.501, y el rendimiento fraccionario de etileno es 0.471.

- a) Presenta el diagrama de flujo del proceso con corrientes, equipos y todos los datos e incógnitas.
- b) Presenta explícitamente los cálculos relevantes para la determinación de los grados de libertad del reactor. ¿Qué puedes concluir?
- c) Calcule la composición molar del gas producido y la selectividad del etileno para la producción de metano.
- d) Presentar una tabla de flujos molares en todas las corrientes de todos los compuestos.

a)

Como es un proceso continuo en estado estacionario reaccionante, entonces la ecuación general de balance en el sistema es:

• Reactivos:

$$\begin{aligned} \text{Entrada} + \frac{\text{Generaci\'on}}{\text{Centrada}} - \text{Salida} - \text{Consumo} &= \frac{\text{Acumulaci\'on}}{\text{Entrada}} \\ &= \text{Salida} + \text{Consumo} \end{aligned}$$

• Productos:

$$\label{eq:consumo} \begin{split} \text{Entrada} + \text{Generación} &- \text{Salida} - \frac{\text{Consumo}}{\text{Consumo}} = \frac{\text{Acumulación}}{\text{Entrada}} \\ &= \text{Salida} - \text{Generación} \end{split}$$

• Inertes:

$$\label{eq:consumo} \begin{aligned} \text{Entrada} + \frac{\text{Generaci\'on}}{\text{Censumo}} - \text{Salida} - \frac{\text{Consumo}}{\text{Salida}} = \frac{\text{Acumulaci\'on}}{\text{Centrada}} \end{aligned}$$

b) Sean ξ_1 y ξ_2 los grados de avance de la primera y segunda reacción, respectivamente.

Ecuaciones independientes (7):

• Balance de C_2H_6 :

$$\label{eq:Corriente} Corriente~1=Corriente~2+Consumo\\ (A~mol)(0.85~mol~C_2H_6/mol)=B_1~mol~C_2H_6+\xi_1~mol~C_2H_6+\xi_2~mol~C_2H_6$$

Balance de materia IMClick Project

• Balance de C_2H_4 :

$$0=$$
 Corriente 2 - Generación 0 mol $C_2H_4=B_2$ mol C_2H_4 - ξ_1 mol C_2H_4

• Balance de H₂:

$$0 = \mbox{Corriente} \ 2 + \mbox{Consumo} \ \mbox{- Generación}$$

$$0 \ \mbox{mol} \ \mbox{H}_2 = \mbox{B}_4 \ \mbox{mol} \ \mbox{H}_2 + \xi_2 \ \mbox{mol} \ \mbox{H}_2 \ \mbox{- } \xi_1 \ \mbox{mol} \ \mbox{H}_2$$

• Balance de CH₄:

$$0 = \mbox{Corriente} \ 2 \mbox{- Generación}$$

$$0 \ \mbox{mol} \ \mbox{CH}_4 = \mbox{B}_3 \ \mbox{mol} \ \mbox{CH}_4 \mbox{- } 2\xi_2 \ \mbox{mol} \ \mbox{CH}_4$$

• Balance de I:

Corriente 1 = Corriente 2
(A mol)(0.15 mol I/mol) =
$$B_5$$
 mol I

• Conversión del etano:

$$0.501 = \frac{Consumido}{Suministrado} = \frac{(A \ mol)(0.85 \ mol \ C_2H_6/mol) - B_1 \ mol \ C_2H_6}{(A \ mol)(0.85 \ mol \ C_2H_6/mol)}$$

• Rendimiento del etileno:

La máxima cantidad de etileno que se puede obtener sin reacciones secundarias y con una conversión del 100% se tiene cuando se consume todo los moles de etano de la entrada [(A mol)(0.85 mol C_2H_6/mol)] y como la relación es 1 : 1 en la primera ecuación química del etano : etileno, entonces la máxima cantidad de etileno que se puede producir es [(A mol)(0.85 mol C_2H_4/mol)].

$$0.471 = rac{ ext{Producido}}{ ext{Máximo}} = rac{ ext{B}_2 ext{ mol } ext{C}_2 ext{H}_4}{(ext{A mol})(0.85 ext{ mol } ext{C}_2 ext{H}_4/ ext{mol})}$$

En donde hay 8 incógnitas = $\{A, B_1, B_2, B_3, B_4, B_5, \xi_1, \xi_2\}$. Entonces, el grado de libertad es:

$$GL = \#$$
 Incógnitas - $\#$ Ecuaciones independientes = 8 - 7 = 1

Por lo que hay que asignar una base de cálculo. Sea A = 100.

c) y d)

En el balance de I:

$$(100 \text{ mol})(0.15 \text{ mol I/mol}) = 15 \text{ mol I} = B_5 \text{ mol I}$$

Con el rendimiento del etileno:

$$0.471 = \frac{B_2 \ \text{mol} \ C_2H_4}{(100 \ \text{mol})(0.85 \ \text{mol} \ C_2H_4/\text{mol})} \\ B_2 \ \text{mol} \ C_2H_4 = (0.471)(100 \ \text{mol})(0.85 \ \text{mol} \ C_2H_4/\text{mol}) = 40.035 \ \text{mol} \ C_2H_4$$

Con la conversión del etano:

$$0.501 = \frac{(100 \text{ mol})(0.85 \text{ mol } C_2H_6/\text{mol}) - B_1 \text{ mol } C_2H_6}{(100 \text{ mol})(0.85 \text{ mol } C_2H_6/\text{mol})} \\ B_1 \text{ mol } C_2H_6 = (100 \text{ mol})(0.85 \text{ mol } C_2H_6/\text{mol}) - (0.501)(100 \text{ mol})(0.85 \text{ mol } C_2H_6/\text{mol}) = 42.415 \text{ mol } C_2H_6/\text{mol}) \\ C_2H_6 = (100 \text{ mol})(0.85 \text{ mol } C_2H_6/\text{mol}) - (0.501)(100 \text{ mol})(0.85 \text{ mol } C_2H_6/\text{mol}) = 42.415 \text{ mol } C_2H_6/\text{mol}) \\ C_2H_6 = (100 \text{ mol})(0.85 \text{ mol } C_2H_6/\text{mol}) - (0.501)(100 \text{ mol})(0.85 \text{ mol } C_2H_6/\text{mol}) = 42.415 \text{ mol } C_2H_6/\text{mol}) \\ C_2H_6 = (100 \text{ mol})(0.85 \text{ mol } C_2H_6/\text{mol}) - (0.501)(100 \text{ mol})(0.85 \text{ mol } C_2H_6/\text{mol}) = 42.415 \text{ mol } C_2H_6/\text{mol}) \\ C_2H_6 = (100 \text{ mol})(0.85 \text{ mol } C_2H_6/\text{mol}) - (0.501)(100 \text{ mol})(0.85 \text{ mol } C_2H_6/\text{mol}) = 42.415 \text{ mol } C_2H_6/\text{mol}) \\ C_2H_6 = (100 \text{ mol})(0.85 \text{ mol } C_2H_6/\text{mol}) - (0.501)(100 \text{ mol})(0.85 \text{ mol } C_2H_6/\text{mol}) = 42.415 \text{ mol } C_2H_6/\text{mol}) \\ C_2H_6 = (100 \text{ mol})(0.85 \text{ mol } C_2H_6/\text{mol}) - (0.501)(100 \text{ mol})(0.85 \text{ mol } C_2H_6/\text{mol}) = 42.415 \text{ mol } C_2H_6/\text{mol}) \\ C_2H_6 = (100 \text{ mol})(0.85 \text{ mol } C_2H_6/\text{mol}) - (0.501)(100 \text{ mol})(0.85 \text{ mol } C_2H_6/\text{mol}) = 42.415 \text{ mol } C_2H_6/\text{mol}) \\ C_2H_6 = (100 \text{ mol})(0.85 \text{ mol } C_2H_6/\text{mol}) - (0.501)(100 \text{ mol})(0.85 \text{ mol } C_2H_6/\text{mol}) = 42.415 \text{ mol } C_2H_6/\text{mol}) \\ C_2H_6 = (100 \text{ mol})(0.85 \text{ mol } C_2H_6/\text{mol}) - (0.501)(100 \text{ mol})(0.85 \text{ mol } C_2H_6/\text{mol}) = 42.415 \text{ mol } C_2H_6/\text{mol}) = (0.501)(100 \text{ mol})(0.85 \text{ mol } C_2H_6/\text{mol}) =$$

Balance de materia IMClick Project

En el balance de C_2H_4 :

0 mol
$$C_2H_4=40.035$$
 mol C_2H_4 - ξ_1 mol C_2H_4
$$\xi_1 \text{ mol } C_2H_4=40.035 \text{ mol } C_2H_4$$

En el balance de C_2H_6 :

$$(100 \text{ mol})(0.85 \text{ mol } C_2H_6/\text{mol}) = 42.415 \text{ mol } C_2H_6 + 40.035 \text{ mol } C_2H_6 + \xi_2 \text{ mol } C_2H_6$$

$$\xi_2 \text{ mol } C_2H_6 = (100 \text{ mol})(0.85 \text{ mol } C_2H_6/\text{mol}) - 42.415 \text{ mol } C_2H_6 - 40.035 \text{ mol } C_2H_6 = 2.55 \text{ mol } C_2H_6$$

En el balance de H_2 :

0 mol H
$$_2$$
 = B $_4$ mol H $_2$ + 2.55 mol H $_2$ - 40.035 mol H $_2$ B $_4$ mol H $_2$ = 40.035 mol H $_2$ - 2.55 mol H $_2$ = 37.485 mol H $_2$

En el balance de CH₄:

0 mol CH
$$_4$$
 = B $_3$ mol CH $_4$ - 2 ξ_2 mol CH $_4$ B $_3$ mol CH $_4$ = 2(2.55) mol CH $_4$ = 5.1 mol CH $_4$

La selectividad del etileno para la producción de metano es:

$$Selectividad = \frac{Moles \ de \ producto \ deseado}{Moles \ de \ producto \ indeseado} = \frac{Moles \ de \ C_2H_4}{Moles \ de \ CH_4} = \frac{40.035 \ mol \ C_2H_4}{5.1 \ mol \ CH_4} = 7.85$$

El gas producido es la Corriente 2:

Cantidad molar (mol)			Fracción molar		
	1	2		1	2
C_2H_6	85	42.415	C_2H_6	0.85	0.3029
C_2H_4	0	40.035	C_2H_4	0	0.2859
H_2	0	37.485	H_2	0	0.2677
CH_4	0	5.1	CH_4	0	0.0364
I	15	15	I	0.15	0.1071
Total	100	140.035			