

Universidade Federal do Rio de Janeiro

IM – Instituto de Matemática

Disciplina: Projeto de Teste de Software

Trabalho: Cobertura de critérios Lógicos

Professor(a): Anamaria

Alunos: Igor Fonseca – DRE: 112214399

Matheus Pinheiro - DRE: 112191208

Rio de Janeiro, RJ.

Junho 2017

Predicados:

```
P1 - ((letra != EOF && letra != '\n') && contador_entrada <= 10)
P2 - (letra != ' ')
P3 - (j > i)
P4 - (texto[i] != texto[j])
P5 - (palindromo == 1)
```

Cláusulas:

```
C1 - (letra != EOF)
C2 - (letra != '\n')
C3 - (contador_entrada <= 10)
C4 - (letra != ' ')
C5 - (j > i)
C6 - (texto[i] != texto[j])
C7 - (palindromo == 1)
```

Critérios Lógicos de Teste

Obs: como nosso programa em java não possui a cláusula C2, alguns requisitos se tornaram redundantes, mas para não facilitar o trabalho de achar requisitos, fizemos todas as coberturas utilizando o código original em C e marcamos estes requisitos com a cor vermelha.

→ predicado P1 no código java: (sc.hasNext() && contador_entrada <= 10)

Cobertura de Predicados:

```
TR: { (P1, !P1), (P2, !P2), (P3, !P3), (P4, !P4), (P5, !P5) } Casos de teste: CT1, CT2, CT4
```

Cobertura dos requisitos				
Predicados	CT1	CT2	CT3	CT4
P1				
!P1				

P2		
!P2		
P3		
!P3		
P4		
!P4		
P5		
!P5		

Cobertura de Cláusulas:

TR: {(C1, !C1), (C2, !C2), (C3, !C3), (C4, !C4), (C5, !C5), (C6, !C6), (C7, !C7)}

Casos de teste: CT1, CT2, CT3

	Cobertura dos requisitos				
Cláusulas	CT1	CT2	СТЗ	CT4	
C1					
!C1					
C3					
!C3					
C4					
!C4					
C5					
!C5					
C6					
!C6					

C7		
!C7		

Para cobertura combinatorial e de cláusulas ativas, não consideramos as cláusulas C4, C5, C6 e C7, pois correspondem à predicados de apenas 1 cláusula e os requisitos foram cobertos na cobertura de cláusulas.

Cobertura Combinatorial:

- Tabela Verdade do predicado P1:

1	C1	C2	C3	Т
2	C1	C2	!C3	F
3	C1	!C2	C3	F
4	C1	!C2	!C3	F
5	!C1	C2	C3	F
6	!C1	C2	!C3	F
7	!C1	!C2	C3	F
8	!C1	!C2	!C3	F

Neste caso, a combinação é feita entre todas as linhas onde o predicado é avaliado como **True** com todas as linhas onde o predicado é avaliado como **False**.

TR: { (1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8) }

Casos de teste: CT1, CT2, CT3

Cobertura dos requisitos				
	CT1	CT2	СТ3	
C1 C2 C3				
C1 C2 !C3				

!C1 C2 C3		
!C1 C2 !C3		

Cobertura de Cláusulas Ativas:

- Neste problema, para as cláusulas do Predicado P1 serem ativas, só existem as seguintes possibilidades:
 - C1 ativa = C2 true e C3 true;
 - C2 ativa = C1 true e C3 true;
 - o C3 ativa = C1 true e C2 true;

Com isso, temos abaixo as tabelas verdade e os requisitos de testes correspondentes de cada abordagem:

- Predicado P1, Cláusula ativa C1:

1	C1	C2	C3	Т
2	C1	C2	!C3	F
3	C1	!C2	C3	F
4	C1	!C2	!C3	F
5	!C1	C2	С3	F
6	!C1	C2	!C3	F
	!C1	!C2	C3	F
7	2	2	3	

- Predicado P1, Cláusula ativa C2:

9	C1	C2	C3	Τ
10	!C1	C2	C3	F
11	C1	C2	!C3	F
12	!C1	C2	!C3	F
13	C1	!C2	C3	F
14	!C1	!C2	C3	F
15	C1	!C2	!C3	F

16 !0	C1 !C2	!C3	F
-------	---------------	-----	---

- Predicado P1, Cláusula ativa C3:

17	C1	C2	С3	T
18	!C1	C2	С3	F
19	C1	!C2	С3	F
20	!C1	!C2	С3	F
21	C1	C2	!C3	F
22	!C1	C2	!C3	F
23	C1	!C2	!C3	F
24	!C1	!C2	!C3	F

Obs: Cada número representa uma linha correspondente da tabela verdade

GACC (Geral):

TR: { (1,5),(9,13),(17,21) } Casos de teste: CT1, CT2

CACC (Correlacionado):

TR: { (1,5),(9,13),(17,21) } Casos de teste: CT1, CT2

RACC (Restrito):

TR: { (1,5),(9,13),(17,21) } Casos de teste: CT1, CT2

Obs: Neste exemplo, os requisitos de testes encontrados em cada abordagem (GACC, CACC e RACC) foram os mesmos

Cobertura dos requisitos				
	CT1	CT2		
C1 C2 C3				
!C1 C2 C3				

04.00.100	
C1 C2 !C3	
0.0=.00	

Casos de teste:

• CT1: " arara "

Resultado obtido: SIMResultado esperado: SIM

CT2: "socorrammesubinoonibusemmarrocos"

Resultado obtido: NAOResultado esperado: SIM

■ obs: o tamanho máximo da entrada foi excedido

• CT3: "socorrammes"

Resultado obtido: NAOResultado esperado: NAO

• CT4: ""

Resultado obtido: SIMResultado esperado: SIM

Obs: executamos os testes para o código do palíndromo sem erro e cobriram todos os requisitos. Preferimos rodar no código sem erro, pois o erro proposto acabava dando problema nas execuções, menos na que a entrada era vazia. Pelo tempo corrido, não adicionamos um novo erro para testar.