# Introduction to Large Language Model

Lecture 2: Preliminary - Linear and logistic regressoin

Kun Yuan

Peking University

#### Main contents in this lecture

- Linear regression
- Logistic regression
- Multi-class classification

#### Motivation

- You consider renting an apartment
- You don't know whether the price the agent offered is good or not
- You collect a dataset

Table: Collected dataset

| Size                  | Location | Green rate | Decoration | Price |
|-----------------------|----------|------------|------------|-------|
| $(x_1)$               | $(x_2)$  | $(x_3)$    | $(x_4)$    | (y)   |
| $80~\mathrm{m}^2$     | 8        | 20%        | 6          | 10000 |
| $60~\mathrm{m}^2$     | 10       | 30%        | 8          | 9000  |
| $100 \; \mathrm{m}^2$ | 5        | 20%        | 5          | 9000  |
| :                     | :        | :          | :          | :     |
| 70 m <sup>2</sup>     | 10       | 25%        | 9          | 12000 |

#### Motivation

 Below is your target apartment's description. What should be the reasonable price for this apartment?

Table: Your target apartment

| Size                  | Location | Green rate | Decoration | Price |
|-----------------------|----------|------------|------------|-------|
| $(x_1)$               | $(x_2)$  | $(x_3)$    | $(x_4)$    | (y)   |
| $100 \; \mathrm{m}^2$ | 8        | 35%        | 8          | ?     |

- You need to learn how  $(x_1, x_2, x_3, x_4)$  will map to y from your dataset
- This is a typical task in machine learning: linear regression

### **Linear regression**

ullet Consider a set of data  $\{(oldsymbol{x}_i, y_i)\}_{i=1}^N$  where

$$\boldsymbol{x}_i = (x_{i1}, x_{i2}, \cdots, x_{id}) \in \mathbb{R}^d$$

is the feature vector, e.g.,  $x_{i1}=$  "Size" and  $x_{i2}=$  "Location", etc., and y is the label, e.g., y= "Price"

ullet We assume the mapping between  $oldsymbol{x}_i$  and  $oldsymbol{y}_i$  is in the **linear** form

$$y_i \approx \boldsymbol{x}_i^\top \boldsymbol{w} \tag{1}$$

where  $oldsymbol{w} \in \mathbb{R}^d$  is the unknown parameter to learn

• If the parameter w is known, given a new feature vector x (e.g., the data for your target apartment), you can estimate its lable y according to (1)

### **Linear regression**

- How to get the parameter w? We can calculate it with  $\{(x_i,y_i)\}_{i=1}^N$
- A good w will incur the minimum estimation error

$$\boldsymbol{w}^{\star} = \arg\min_{\boldsymbol{w} \in \mathbb{R}^d} \left\{ \frac{1}{2N} \sum_{i=1}^{N} (\boldsymbol{x}_i^{\top} \boldsymbol{w} - y_i)^2 \right\}$$
(2)

where is called the linear regression problem

If we introduce

$$X = [\boldsymbol{x}_1^\top; \cdots; \boldsymbol{x}_N^\top] \in \mathbb{R}^{N \times d} \quad y = [y_1; y_2; \cdots; y_N] \in \mathbb{R}^N$$

problem (2) becomes

$$\boldsymbol{w}^{\star} = \arg\min_{\boldsymbol{w} \in \mathbb{R}^d} \left\{ \frac{1}{2} \|X\boldsymbol{w} - y\|^2 \right\}$$

# Solve the linear regression problem

• Consider the linear regression problem

$$\boldsymbol{w}^{\star} = \arg\min_{\boldsymbol{w} \in \mathbb{R}^d} \left\{ \frac{1}{2} \|X\boldsymbol{w} - y\|^2 \right\}$$

• Let  $f(w) = \frac{1}{2} ||Xw - y||^2$ , the gradient is given by

$$\nabla f(\boldsymbol{w}) = X^{\top}(X\boldsymbol{w} - y)$$

• The gradient descent is

$$\boldsymbol{w}_{k+1} = \boldsymbol{w}_k - \gamma \boldsymbol{X}^{\top} (\boldsymbol{X} \boldsymbol{w}_k - \boldsymbol{y})$$

# A code example

# **Logistic regression**

• Another important machine learning task is classification



# **Logistic regression**

Again, we collect the dataset

| Size    | Ear shape | Tail length | Color   | Label |
|---------|-----------|-------------|---------|-------|
| $(x_1)$ | $(x_2)$   | $(x_3)$     | $(x_4)$ | (y)   |
| 100 cm  | round     | 30cm        | yellow  | dog   |
| 40 cm   | triangle  | 20cm        | white   | cat   |
| :       | :         | ÷           | :       | :     |

ullet We need to establish the mapping between  $(x_1,x_2,x_3,x_4)$  and the discrite lable  $y\in\{0,1\}$  in which 1 indicates dog while 0 indicates cat

### An intuitive approach

- ullet We associate each feature item  $x_i$  with a weight  $w_i$
- An intuivie hard classification approach is

$$(x_1, x_2, \cdots, x_d) \longrightarrow y = \begin{cases} 1 & \text{if } \sum_{i=1}^d x_i w_i > c \\ 0 & \text{otherwise} \end{cases}$$

where c is a pre-defined threshold

• While intuitive, it is hard to construct smooth loss functions that facilitate to learn the weights (parameters)  $\{w_i\}_{i=1}^d$ 

# **Sigmoid function**

- Now we consider a different approach
- $\bullet$  Sigmoid function maps  $[-\infty,+\infty]$  to [0,1]

$$\phi(z) = \frac{1}{1 + e^{-z}}$$



### **Predicted probability**

• With sigmoid function, we can map  $(x_1, \dots, x_d)$  to a probability

$$p(z) = \frac{1}{1 + e^{-z}} \in (0, 1)$$
 where  $z = \sum_{i=1}^{d} w_i x_i$  (3)

• With (3), we map  $(x_1, \dots, x_d)$  to a probability distribution

$$(x_1, \cdots, x_d) \longrightarrow \begin{bmatrix} p(z) \\ 1 - p(z) \end{bmatrix} \in \mathbb{R}^2$$

where p(z) is the probability that  $(x_1, \dots, x_d)$  belongs to class 1

### Real probability

ullet Given the label y, the real probability distribution is

$$\left[\begin{array}{c} y\\1-y\end{array}\right] \in \mathbb{R}^2$$

where label  $y \in \{0,1\}$  can be regarded as the probability of class 1

• We need to measure the difference between

(Predicted prob.) 
$$\left[ egin{array}{c} p(z) \\ 1-p(z) \end{array} 
ight]$$
 and (Real prob.)  $\left[ egin{array}{c} y \\ 1-y \end{array} 
ight]$ 

# Cross entropy

ullet Cross entropy can measure the difference between two probability distributions  $m{p}\in\mathbb{R}^d$  and  $m{q}\in\mathbb{R}^d$ 

$$H(\boldsymbol{p}, \boldsymbol{q}) = -\sum_{i=1}^{d} p_i \log(q_i)$$

Smaller cross entropy indicates smaller difference between p and q.

• Examples:

$$p = (1, 0, 0, 0)$$
  $q = (0.25, 0.25, 0.25, 0.25)$   $\longrightarrow$   $H(p, q) = 2$   
 $p = (1, 0, 0, 0)$   $q = (0.91, 0.03, 0.03, 0.03)$   $\longrightarrow$   $H(p, q) = 0.136$ 

#### Loss function

• Given a data pair (x,y) where  $x \in \mathbb{R}^d$  is the feature vector and  $y \in \{0,1\}$  is the label. Using the sigmoid function, we can predict the probability:

$$\begin{bmatrix} \frac{1}{1 + \exp(-\boldsymbol{x}^{\top}\boldsymbol{w})} \\ \frac{\exp(-\boldsymbol{x}^{\top}\boldsymbol{w})}{1 + \exp(-\boldsymbol{x}^{\top}\boldsymbol{w})} \end{bmatrix} \in \mathbb{R}^2$$

• The difference between the predicted and real probability is given by

$$\ell(\boldsymbol{x}, y; \boldsymbol{w}) = -y \log \left( \frac{1}{1 + \exp(-\boldsymbol{x}^{\top} \boldsymbol{w})} \right) - (1 - y) \log \left( \frac{\exp(-\boldsymbol{x}^{\top} \boldsymbol{w})}{1 + \exp(-\boldsymbol{x}^{\top} \boldsymbol{w})} \right) \tag{4}$$

ullet Given the dataset  $\{(x_i,y_i)\}_{i=1}^N$ , the loss function is to measure the averaged difference

$$L(\{(\boldsymbol{x}_i, y_i)\}_{i=1}^N; \boldsymbol{w}) = \frac{1}{N} \sum_{i=1}^N \ell(\boldsymbol{x}_i, y_i; \boldsymbol{w})$$

where  $\ell(\boldsymbol{x}_i, y_i; \boldsymbol{w})$  is in (4).

# Logisic regression

• By solving the following optimization problem

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} \frac{1}{N} \sum_{i=1}^N \ell(\boldsymbol{x}_i, y_i; \boldsymbol{w})$$
 (5)

where  $\ell(\boldsymbol{x}_i, y_i; \boldsymbol{w})$  is defined as

$$\ell(\boldsymbol{x}_i, y_i; \boldsymbol{w}) = -y_i \log \left( \frac{1}{1 + \exp(-\boldsymbol{x}_i^{\top} \boldsymbol{w})} \right) - (1 - y_i) \log \left( \frac{\exp(-\boldsymbol{x}_i^{\top} \boldsymbol{w})}{1 + \exp(-\boldsymbol{x}_i^{\top} \boldsymbol{w})} \right),$$

we can achieve the model parameters  $w^{\star}$ .

ullet Given  $w^{\star}$  and a new feature vector x, we can decide its lable by

$$y = \left\{ \begin{array}{ll} 1 & \text{if } p \geq 0.5 \\ 0 & \text{otherwise} \end{array} \right. \quad \text{where} \quad p = \frac{1}{1 + \exp(-\boldsymbol{x}^{\top}\boldsymbol{w})}$$

### Logisic regression: simplified loss

• The loss in (4) can be written as

$$\ell(\boldsymbol{x}, y; \boldsymbol{w}) = \begin{cases} \log(1 + \exp(-\boldsymbol{x}^{\top} \boldsymbol{w})) & \text{if } y = 1\\ \log(1 + \exp(\boldsymbol{x}^{\top} \boldsymbol{w})) & \text{if } y = 0 \end{cases}$$
 (6)

• If we modify the label as follows:

$$y \leftarrow \begin{cases} 1 & \text{if } y = 1 \\ -1 & \text{if } y = 0 \end{cases}$$

the loss in (6) becomes

$$\ell(\boldsymbol{x}, y; \boldsymbol{w}) = \log \left( 1 + \exp(-y \boldsymbol{x}^{\top} \boldsymbol{w}) \right)$$
 (7)

### Logisic regression: simplified loss

• Substituting (7) to (5), logistic regression becomes

$$\min_{oldsymbol{w} \in \mathbb{R}^d} \quad rac{1}{N} \sum_{i=1}^N \ln(1 + \exp(-y_i oldsymbol{x}_i^ op oldsymbol{w}))$$

where  $y \in \{+1, -1\}$  is the modified label

• Exercise: the gradient descent recursion to solve the above problem

# A code example

# **Multi-class classification**

To be added

# Summary

• Linear regression

$$\min_{w \in \mathbb{R}^d} \quad \frac{1}{2N} \sum_{i=1}^N (\boldsymbol{x}_i^\top \boldsymbol{w} - y_i)^2$$

• Logistic regression

$$\min_{oldsymbol{w} \in \mathbb{R}^d} \quad \frac{1}{N} \sum_{i=1}^N \ln(1 + \exp(-y_i oldsymbol{x}_i^ op oldsymbol{w}))$$