Classic Methods

for Multi-Objective Optimization

Giuseppe Narzisi

Courant Institute of Mathematical Sciences New York University

31 January 2008

Outline

- Introduction
- Weighted Sum Method
- 3 Non-convex problems
- 4 ϵ -Constraint method
- Weighted Metric Methods
 - Tchebycheff problem
- 6 Rotated Weighted Metric Method
- 7 Dynamically Changing the Ideal Solution
- 8 Benson's Method
- 9 Value Function Method

Introduction

- We will talk about classical methods for handling multi-objective optimization problems.
- We refer to this methods as classical to distinguish them from the evolutionary methods (which we will cover later).

Two approaches to Multi-Objective Optimization

- PREFERENCE-BASED PROCEDURE:
 - Composite objective function as the weighted sum of the objectives
 - Only useful if a relative preference factor of the objectives is known in advance.
- ② IDEAL PROCEDURE:
 - Find multiple trade-off solutions with a wide range of values for the objectives.
 - ② Choose one of the obtained solution using higher-level information

Preference-Based method

Illustration

Ideal Multi-Objective procedure

Illustration

Classification

of the classical methods

- Classical method have been around for the past four decades.
- They can be classified in the following classes:
 - Non-preference methods
 - These methods do not assume any information about the importance of objectives, but an heuristic is used to find a single optimum solution. They do not make any attempt to find multiple Pareto-optimal solutions.
 - Posteriori methods
 - Posteriori methods use preference information of each objective and iteratively generate a set of Pareto-optimal solutions.
 - A priori methods
 - On the other hand, a priori methods use more information about the preferences of objectives and they usually find one preferred Pareto-optimal solution.
 - Interactive methods
 - These methods use the preference information progressively during the optimization process.

- This method is the simplest approach and probably the most widely used classical method.
- This method scalarizes the set of objectives into a single objective by multiplying each objective with a user supplied weight.
- Although simple, it introduces a non-simple question: What value of the weights must be used? The answer depend on the relative importance of each objective.

formulation

min
$$\mathcal{F}(\mathbf{x}) = \sum_{m=1}^{M} w_m f_m(\mathbf{x})$$
subject to
$$\mathcal{G}(\mathbf{x}) = [g_1(\mathbf{x}), g_2(\mathbf{x}), \dots, g_J(\mathbf{x})] \ge 0$$

$$\mathcal{H}(\mathbf{x}) = [h_1(\mathbf{x}), h_2(\mathbf{x}), \dots, h_K(\mathbf{x})] = 0$$

$$x_i^{(L)} \le x_i \le x_i^{(U)}, i = 1, \dots, N$$
(1)

- where the objectives are normalized.
- $w_m \in [0, 1]$ is the weight of the m-th objective function.
- It is usual practice to chose weights such that $\sum_{m=1}^{M} w_m = 1$.

Properties

Theorem

The solution to the problem presented in equation (1) is Pareto-optimal if the weight is positive for all objectives: $w_m > 0, m = 1, ..., M$

- The proof is achieved by contradiction considering a solution with all positive weights and that is not Pareto-optimal and showing that this brings to a contradiction.
- Note that the theorem does not imply that any Pareto-optimal solution can be obtained using a positive weight vector.

Properties

Theorem

if \mathbf{x}^* is a Pareto-optimal solution of a convex multi-objective optimization problem, then there exists a non-zero positive weight vector \mathbf{w} such that \mathbf{x}^* is a solution of problem (1)

 The theorem suggests that for a convex MOOP any Pareto solution can be found using the weighted sum method (see Miettinen's book on Nonlinear Multiobjective Optimization [2] for the proof).

Illustration

Advantages and disadvantages

Advantages

- Simple and easy to use.
- For convex problems it guarantees to find solutions on the entire Pareto-optimal set.

Disadvantages

- For mixed optimization problems (min-max), we need to convert all the objectives into one type.
- Uniformly distributed set of weights does not guarantee a uniformly distributed set of Pareto-optimal solutions.
- Two different set of weight vectors not necessarily lead to two different Pareto-optimal solutions.
- There may exists multiple minimum solutions for a specific weight vector that represents different solutions in the Pareto-optimal front (wasting the search effort).

Non-convex problems

Difficulties

ϵ -Constraint method

- Idea: keep only one of the objectives and restrict the rest of the objectives within some user-specified values.
- The modified problem is the following:

min
$$f_{u}(\mathbf{x})$$

subject to $[f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \dots, f_{u-1}(\mathbf{x}), f_{u+1}(\mathbf{x}), \dots, f_{M}(\mathbf{x})] \leq \epsilon$
 $\mathcal{G}(\mathbf{x}) = [g_{1}(\mathbf{x}), g_{2}(\mathbf{x}), \dots, g_{J}(\mathbf{x})] \geq 0$ (2)
 $\mathcal{H}(\mathbf{x}) = [h_{1}(\mathbf{x}), h_{2}(\mathbf{x}), \dots, h_{K}(\mathbf{x})] = 0$
 $x_{i}^{(L)} \leq x_{i} \leq x_{i}^{(U)}, i = 1, \dots, N$

ϵ -Constraint method

Illustration

ϵ -Constraint method Properties

Theorem

The unique solution of the ϵ -constraint problem stated in (2) is Pareto-optimal for any given upper bound vector:

$$\epsilon = (\epsilon_1, \dots, \epsilon_{u-1}, \epsilon_{u+1}, \dots, \epsilon_m)^T$$

• The proof is again achieved by contradiction assuming that a unique solution of the ϵ -constraint problem is not Pareto-optimal and than showing that this assumption violates the definition of Pareto-optimality [2].

ϵ -Constraint method

Advantages and disadvantages

Advantages

- Different Pareto-optimal solution can be found using different ϵ_m values
- the method can be used also for non-convex multi-objective optimization problems

Disadvantages

- The solution to the problem largely depends on the selection of the ϵ vector. In particular, it must be chosen such that it lies between the minimum and maximum value of each objective function.
- As the number of objectives increase more information from the user is required (ϵ_m) .

Definition

 Idea: instead of using a weighted sum of the objectives, we can consider other ways of combining multiple objectives.

min
$$\mathcal{L}_{p}(\mathbf{x}) = \left(\sum_{m=1}^{M} w_{m} | f_{m}(\mathbf{x}) - \mathbf{z}_{m}^{*}|^{p}\right)^{\frac{1}{p}}$$
subject to
$$\mathcal{G}(\mathbf{x}) = [g_{1}(\mathbf{x}), g_{2}(\mathbf{x}), \dots, g_{J}(\mathbf{x})] \geq 0$$

$$\mathcal{H}(\mathbf{x}) = [h_{1}(\mathbf{x}), h_{2}(\mathbf{x}), \dots, h_{K}(\mathbf{x})] = 0$$

$$x_{i}^{(L)} \leq x_{i} \leq x_{i}^{(U)}, i = 1, \dots, N$$
(3)

- Weights are non-negative.
- $p \in [1, \infty]$
- z* is called reference point.
- When p = 1 is used, (3) is equivalent to the weighted sum method.

(p = 1) Taxicab or Manhattan norm

(p = 2) Euclidean norm

Tchebycheff problem

$$(p=\infty)$$

min
$$\mathcal{L}_{\infty}(\mathbf{x}) = \max_{m=1}^{M} w_m | f_m(\mathbf{x}) - \mathbf{z}_m^* |$$

subject to $\mathcal{G}(\mathbf{x}) = [g_1(\mathbf{x}), g_2(\mathbf{x}), \dots, g_J(\mathbf{x})] \geq 0$
 $\mathcal{H}(\mathbf{x}) = [h_1(\mathbf{x}), h_2(\mathbf{x}), \dots, h_K(\mathbf{x})] = 0$
 $x_i^{(L)} \leq x_i \leq x_i^{(U)}, i = 1, \dots, N$ (4)

 If the Tchebycheff metric is used, any Pareto optimal solution can be found

Theorem

Let \mathbf{x} be a Pareto-optimal solution, then there exists a positive weighting \mathbf{w} vector such that \mathbf{x} is a solution of the weighted Tchebycheff problem (4) where the reference point is the utopian objective vector.

Weighted Metric Methods $(p = \infty)$

Advantages and disadvantages

Advantages

 The Tchebycheff metric allows to find each and every Pareto-optimal solution when z* is the utopian objective vector [2].

Disadvantages

- It is advisable to normalize the objective functions, which requires knowledge of the minimum and maximum values of each objective.
- It requires the knowledge of the ideal solution \mathbf{z}^* . So we need to optimize each objective function before we can compute the \mathcal{L}_p metric.

Rotated Weighted Metric Method

- Instead of using directly the \mathcal{L}_p metric as it is stated in equation (3), the \mathcal{L}_p metric can be applied with an arbitrary rotation from the ideal point.
- Let us say that the relation between the rotated objective vector $\hat{\mathbf{f}}$ and the original objective vector \mathbf{f} is : $\hat{\mathbf{f}} = R\mathbf{f}$, where R is the rotation matrix of size $M \times M$.
- The modified \mathcal{L}_p metric is:

$$\hat{\mathcal{L}}_{p}(\mathbf{x}) = \left(\sum_{m=1}^{M} w_{m} |\hat{f}_{m}(\mathbf{x}) - \mathbf{z}_{m}^{*}|^{p}\right)^{\frac{1}{p}}$$
(5)

Rotated Weighted Metric Method

Illustration

Dynamically Changing the Ideal Solution

- Idea: update the reference point z* every time that a Pareto-optimal solution is found.
- The \mathcal{L}_p distance of the ideal solution comes closer to the Pareto-optimal front and new previous undiscovered solution can now be found.

Dynamically Changing the Ideal Solution

Benson's Method

- Idea: take the reference solution z* randomly from the feasible region. Let us call it z⁰.
- The non-negative difference $(z_m^0 f_m(\mathbf{x}))$ for each objective is calculated and their sum is maximized

max
$$\mathcal{B}(\mathbf{x}) = \sum_{m=1}^{M} \max(0, (z_m^0 - f_m(\mathbf{x})))$$
subject to
$$\mathcal{F}(\mathbf{x}) = [f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_M(\mathbf{x})] \leq \mathbf{z^0}$$
$$\mathcal{G}(\mathbf{x}) = [g_1(\mathbf{x}), g_2(\mathbf{x}), \dots, g_J(\mathbf{x})] \geq 0$$
$$\mathcal{H}(\mathbf{x}) = [h_1(\mathbf{x}), h_2(\mathbf{x}), \dots, h_K(\mathbf{x})] = 0$$
$$x_i^{(L)} \leq x_i \leq x_i^{(U)}, i = 1, \dots, N$$
 (6)

Benson's Method

Illustration

Benson Method

Advantages and disadvantages

Advantages

- Avoid scaling problems: individual differences can be normalized before the summation.
- If the point z⁰ is chosen appropriately than this method can be used also for non-convex multi-objective problems.

Disadvantages

- It has an additional number of constraints.
- The objective function is non-differentiable, causing difficulties for gradient based methods.

(or Utility Function Method)

- **Idea**: the user provides an utility function $\mathcal{U}: \mathbb{R}^M \to \mathbb{R}$ relating all M objectives.
- The utility function must be valid over the entire feasible space.
- Among two solutions i and j, i is preferred to j if $\mathcal{U}(\mathbf{f}(\mathbf{x}_i)) > \mathcal{U}(\mathbf{f}(\mathbf{x}_j))$.

max
$$\mathcal{U}(\mathbf{f}(\mathbf{x}))$$

subject to $\mathcal{G}(\mathbf{x}) = [g_1(\mathbf{x}), g_2(\mathbf{x}), \dots, g_J(\mathbf{x})] \ge 0$
 $\mathcal{H}(\mathbf{x}) = [h_1(\mathbf{x}), h_2(\mathbf{x}), \dots, h_K(\mathbf{x})] = 0$
 $x_i^{(L)} \le x_i \le x_i^{(U)}, i = 1, \dots, N$ (7)

where $\mathbf{f}(\mathbf{x}) = [f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_M(\mathbf{x})]^T$.

Properties

- The utility function must be strongly decreasing before it can be used in multi-objective optimization.
- This means that the preference of a solution must increase
 if one of the objective function values is decreased while
 keeping the other objective function values the same.

Theorem

Let the utility function $\mathcal{U}: \mathbb{R}^M \to \mathbb{R}$ be strongly decreasing. Let \mathcal{U} attain its maximum at f^* . Then f^* is Pareto-optimal.

Illustration

Advantages and disadvantages

Advantages

- The idea is simple and ideal, if adequate value function information is available.
- Mainly used for multi-attribute decision analysis problems with a discrete set of feasible solutions.

Disadvantages

- The solution entirely depends on the chosen value function.
- It requires the users to come up with a value function that is globally applicable over the entire search space.

For Further Reading

Kalyanmoy Deb Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Inc, New York, NY, USA, 2001.

Kaisa Miettinen

Nonlinear Multiobjective Optimization.

Kluwer Academic Publishers, 1999. International Series in Operations Research & Management Science, Volume 12.