

S3-Euclidean Spaces Least-Squares

Linear Algebra
Ingeniería del Software-Universidad de Oviedo
Juan Luis Fernández Martínez
Class-30 October 2020

Least-squares in
$$C^{\circ}[a_1b]$$
 \vec{f}
 \vec{f}

Least-squares in $C^{\circ}[a_1b]$ $\vec{f}, \vec{g} \in C^{\circ}[a_1b]$ Vector space $\vec{f}, \vec{g} = \int_a^b f(x) \cdot g(x) dx$ (scalar product) space of Layrange Subspaces of finite dimension $\begin{cases} P_n(x) = \langle 1, x,, x^m \rangle & x \in [a,b] \end{cases}$.	dimension polynemials.
$T_{M}(x) = \langle 1, C_{0}Sx, Sinx, C_{0}J2x, Sin^{2}x,,$	中等级
Spau it trigonsmetric (somx, sin nx). Fourier Polynormals polynormals	

R2 Linear variety	Distance from a point to a plane (R^3) to straightine (R^2, R^3) $ax + by = c$ $ax + by = 0 (Subspace in R^2)$		d L √⊕ ((a1p))>
(a,b)	(XIY) Ro(Xoito) (a1b), (X) = 0 Evelidean Scalar Product in The	Po (x0, y0)	from Po to

