

Licence de Mathématiques et Informatique 2020-2021

Analyse 3

TD2

1 Exercices d'application

Exercice 1. Montrer, en utilisant la définition de la limite, que :

1.
$$\lim_{n \to +\infty} \frac{1}{n^2 + 1} = 0$$

$$2. \lim_{n \to +\infty} \frac{\cos(n) + n + 1}{n} = 1$$

$$3. \lim_{n \to +\infty} \ln n = +\infty$$

Exercice 2. Soit $(u_n)_n$ une suite convergente. La suite $(\lfloor u_n \rfloor)_n$ (où $\lfloor \cdot \rfloor$ désigne la fonction partie entière) est-elle convergente?

Exercice 3. Soit $(u_n)_n$ une suite à valeurs dans \mathbb{Z} . Montrer que si $(u_n)_n$ converge, alors $(u_n)_n$ est stationnaire.

Exercice 4. Soit $(u_n)_n$ une suite réelle. On pose $S_n = \frac{1}{n} \sum_{k=1}^n u_k$.

- **1.** On suppose que $(u_n)_n$ converge vers 0. Soit $\varepsilon > 0$ et $N \in \mathbb{N}$ tels que, pour tout $n \ge N$, on ait $|u_n| \le \varepsilon$.
 - **1.1.** Montrer qu'il existe une constante M_N tel que, pour tout $n \ge N$, on a :

$$|S_n| \leqslant \frac{M_N}{n} + \varepsilon$$

- **1.2.** En déduire que $(S_n)_n$ converge vers 0.
- **2.** On suppose que $(u_n)_n$ converge vers l. Montrer que $(S_n)_n$ converge vers l.
- **3.** On suppose que $u_n = (-1)^n$. Que dire de $(S_n)_n$? Qu'en déduisez-vous?

4. On suppose que $(u_n)_n$ tend vers $+\infty$. Montrer que $(S_n)_n$ tend vers $+\infty$.

Exercice 5. Soit $(u_n)_{n\geq 0}$ une suite de réels strictement positifs telle que : $\lim_{n\to +\infty}\frac{u_{n+1}}{u_n}=l$

- **1.** On suppose l < 1 et on fixe $\varepsilon > 0$ tel que $l + \varepsilon < 1$.
 - **1.1.** Montrer qu'il existe un entier N tel que, pour tout $n \ge N$, on ait : $u_n \le u_N (l+\varepsilon)^{n-N}$
 - **1.2.** En déduire que $(u_n)_{n\geqslant 0}$ converge vers 0
- **2.** On suppose l > 1. Montrer que $(u_n)_{n \ge 0}$ tend vers $+\infty$.
- **3.** Étudier le cas l=1.

Exercice 6. Étudier la nature des suites suivantes, et calculer leur limite éventuelle :

1.
$$u_n = \frac{\sin n + 3\cos(n^2)}{\sqrt{n}}$$

2.
$$u_n = \frac{2n + (-1)^n}{5n + (-1)^{n+1}}$$

3.
$$u_n = \frac{n^3 + 5n}{4n^2 + \sin n + \ln n}$$

4.
$$u_n = \frac{a^n - b^n}{a^n + b^n}$$
, où $a, b > 0$

Exercice 7. Étudier la nature des suites suivantes :

1.
$$u_n = \sum_{k=1}^n \frac{n}{n+k}$$

2.
$$u_n = \sum_{k=0}^{2n+1} \frac{n}{n^2 + k}$$

Exercice 8. Étudier la limite de la suite $(u_n)_{n\geqslant 1}$ lorsque :

1.
$$u_n = \sqrt{n^2 + 9} - n$$
;

2.
$$u_n = (1 + \frac{1}{n})^n$$
;

3.
$$u_n = (n^2 + n + 1)^{1/n}$$
;

4.
$$u_n = \int_0^1 \frac{e^{-nt}}{1 + e^{-t}} dt$$
;

5.
$$u_n = \prod_{k=1}^n (1 + e^{-k});$$

6.
$$u_n = \int_0^{\pi/2} \cos^n(t) dt$$
 (plus difficile).

Exercice 9.

1. Montrer que pour tout $n \in \mathbb{N}$, on a :

$$\sqrt{n+1} - \sqrt{n} \leqslant \frac{1}{2\sqrt{n}}$$

2. En déduire le comportement de la suite définie par :

$$u_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$$

Exercice 10. On définit la suite (u_n) par : $u_0 = 1$ et $u_{n+1} = \ln(1 + u_n)$ pour $n \in \mathbb{N}$.

- **1.** Montrer que pour tout $n \in \mathbb{N}^*$, $u_n \in]0,1]$.
- **2.** Montrer que la suite (u_n) est convergente et déterminer sa limite.

Exercice 11. Soit k un entier naturel non nul. Pour tout $n \in \mathbb{N}$, on considère la fonction f_n de \mathbb{R} dans \mathbb{R} définie par

$$\forall x \in \mathbb{R}, \quad f_n(x) = x^{k+1} + x^k - n.$$

- **1.** Montrer que, pour tout entier $n \in \mathbb{N}$, il existe un unique réel positif x tel que $f_n(x) = 0$. On le note u_n .
- **2.** Étudier la monotonie de $(u_n)_{n\in\mathbb{N}}$.
- **3.** Montrer que $\lim_{n\to+\infty}u_n=+\infty$.

Exercice 12. Soit a et b tels que 0 < a < b, on considère les suites (u_n) et (v_n) définies par :

$$u_0 = a, \ v_0 = b, \ u_{n+1} = \sqrt{u_n v_n}, \ v_{n+1} = \frac{1}{2}(u_n + v_n).$$

3

Montrer que (u_n) et (v_n) convergent vers une même limite l.

2 Exercices de synthèse

Exercice 13. Soit
$$H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$$
.

- **1.** En utilisant une intégrale, montrer que pour tout n > 0: $\frac{1}{n+1} \le \ln(n+1) \ln(n) \le \frac{1}{n}$.
- **2.** En déduire que $\ln(n+1) \leqslant H_n \leqslant \ln(n) + 1$.
- **3.** Déterminer la limite de H_n .
- **4.** Montrer que $u_n = H_n \ln(n)$ est décroissante et positive.
- **5.** Conclusion?

Exercice 14. Soit a > 0. On définit la suite $(u_n)_{n \in \mathbb{N}}$ par u_0 un réel vérifiant $u_0 > 0$ et par la relation

$$u_{n+1} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right)$$

- **1.** Montrer que $u_{n+1}^2 a = \frac{(u_n^2 a)^2}{4u_n^2}$
- **2.** Montrer que si $n \ge 1$ alors $u_n \ge \sqrt{a}$ puis que la suite $(u_n)_{n \ge 1}$ est décroissante.
- **3.** En déduire que la suite (u_n) converge vers \sqrt{a}
- **4.** Donner une majoration de $u_{n+1} \sqrt{a}$ en fonction de $u_n \sqrt{a}$
- **5.** Si $u_1 \sqrt{a} \leqslant k$ et pour $n \geqslant 1$, montrer que

$$u_n - \sqrt{a} \leqslant 2\sqrt{a} \left(\frac{k}{2\sqrt{a}}\right)^{2^{n-1}}$$

Exercice 15. Soit $(u_n)_n$ la suite définie par :

$$u_n = \prod_{k=1}^n \left(1 + \frac{k}{n^2} \right)$$

On pose $v_n = \ln u_n$ pour tout $n \in \mathbb{N}^*$.

1. Montrer pour tout $x \ge 0$, l'inégalité :

$$x - \frac{x^2}{2} \leqslant \ln\left(1 + x\right) \leqslant x$$

2. Montrer par récurrence que pour tout $n \in \mathbb{N}$:

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

3. En déduire que :

$$\frac{n+1}{2n} - \frac{(n+1)(2n+1)}{12n^3} \leqslant v_n \leqslant \frac{n+1}{2n}$$

- **4.** Montrer que $(v_n)_n$ converge et préciser sa limite.
- **5.** Montrer que $(u_n)_n$ converge et préciser sa limite.