Assignment: Housing Survey

Name: Rapuru, Supraja

Date: 2021-08-01

Housing Survey

```
> library(readxl)
> library(dplyr)
> library(purrr)
> library(QuantPsyc)
> library(car)
> library(tidyverse)
> library(ggplot2)
> library(lmtest)
# # Set the working directory to the root of your DSC 520 directory
> setwd("/Users/Supraja/dsc520")
> housing <- read_excel("data/week-6-housing.xlsx")
> str(housing)
tibble [12,865 x 24] (S3: tbl_df/tbl/data.frame)
$ Sale Date
                   : POSIXct[1:12865], format: "2006-01-03" "2006-01-03" ...
$ Sale Price
                  : num [1:12865] 698000 649990 572500 420000 369900 ...
$ sale reason
                  : num [1:12865] 1 1 1 1 1 1 1 1 1 1 ...
$ sale instrument
                      : num [1:12865] 3 3 3 3 3 15 3 3 3 3 ...
$ sale_warning
                     : chr [1:12865] NA NA NA NA ...
$ sitetype
                  : chr [1:12865] "R1" "R1" "R1" "R1" ...
$ addr_full
                  : chr [1:12865] "17021 NE 113TH CT" "11927 178TH PL NE" "13315 174TH AVE NE"
"3303 178TH AVE NE" ...
$ zip5
                : num [1:12865] 98052 98052 98052 98052 98052 ...
$ ctyname
                   : chr [1:12865] "REDMOND" "REDMOND" NA "REDMOND" ...
```

\$ postalctyn : chr [1:12865] "REDMOND" "REDMOND" "REDMOND" "REDMOND" ...

\$ lon : num [1:12865] -122 -122 -122 -122 -122 ...

\$ lat : num [1:12865] 47.7 47.7 47.7 47.6 47.7 ...

\$ building_grade : num [1:12865] 9 9 8 8 7 7 10 10 9 8 ...

\$ square_feet_total_living: num [1:12865] 2810 2880 2770 1620 1440 4160 3960 3720 4160 2760 ...

\$ bedrooms : num [1:12865] 4 4 4 3 3 4 5 4 4 4 ...

\$ bath_full_count : num [1:12865] 2 2 1 1 1 2 3 2 2 1 ...

\$ bath_half_count : num [1:12865] 1 0 1 0 0 1 0 1 1 0 ...

\$ bath_3qtr_count : num [1:12865] 0 1 1 1 1 1 1 0 1 1 ...

\$ year_built : num [1:12865] 2003 2006 1987 1968 1980 ...

\$ year_renovated : num [1:12865] 0 0 0 0 0 0 0 0 0 0 ...

\$ current_zoning : chr [1:12865] "R4" "R4" "R6" "R4" ...

\$ sq_ft_lot : num [1:12865] 6635 5570 8444 9600 7526 ...

\$ prop_type : chr [1:12865] "R" "R" "R" "R" ...

\$ present_use : num [1:12865] 2 2 2 2 2 2 2 2 2 2 2 ...

> glimpse(housing)

Rows: 12,865

Columns: 24

\$ `Sale Date` <dttm> 2006-01-03, 2006-01-03, 2006-01-03, 2006~

\$ `Sale Price` <dbl> 698000, 649990, 572500, 420000, 369900, 1~

\$ sale_instrument <dbl> 3, 3, 3, 3, 3, 15, 3, 3, 3, 3, 3, 3, 3, 3

\$ sale_warning <chr> NA, NA, NA, NA, "15", "18 51", NA, NA, NA~

\$ sitetype <chr> "R1", "

\$ zip5 <dbl> 98052, 98052, 98052, 98052, 98052, 98053,~

\$ ctyname <chr> "REDMOND", "REDMOND", NA, "REDMOND", "RED~

\$ postalctyn <chr> "REDMOND", "REDMOND", "REDMOND", "REDMOND"

```
$ lon
                <dbl>-122.1124, -122.1022, -122.1085, -122.103~
```

> sum(is.na(housing\$ctyname))

[1] 6078

> apply(housing, 2, function(x) any (is.na(x)))

	Sale Date	Sale Price	sale_reason	
	FALSE	FALSE	FALSE	
	sale_instrument	sale_warning	sitetype	
	FALSE	TRUE	FALSE	
	addr_full	zip5	ctyname	
	FALSE	FALSE	TRUE	
	postalctyn	lon	lat	
	FALSE	FALSE	FALSE	
building_grade square_feet_total_living				

ooms

FALSE FALSE FALSE bath_full_count bath_half_count bath_3qtr_count

FALSE FALSE FALSE

year_built year_renovated current_zoning

FALSE FALSE FALSE

sq_ft_lot prop_type present_use

FALSE FALSE FALSE

By looking at the data, i can see that there is missing data for sale_warning and ctyname

I. Explain any transformations or modifications you made to the dataset ----

- > colnames(housing)[1] <- "Sale_Date"
- > colnames(housing)[2] <- "Sale_Price"
- > library(magrittr)
- > housing %<>%
- + mutate ("year_of_sale" = substr(housing\$Sale_Date,1,4))
- > str(housing)

tibble [12,865 x 25] (S3: tbl_df/tbl/data.frame)

\$ Sale_Date : POSIXct[1:12865], format: "2006-01-03" "2006-01-03" ...

\$ Sale_Price : num [1:12865] 698000 649990 572500 420000 369900 ...

\$ sale_reason : num [1:12865] 1 1 1 1 1 1 1 1 1 1 ...

\$ sale_instrument : num [1:12865] 3 3 3 3 3 15 3 3 3 3 ...

\$ sale_warning : chr [1:12865] NA NA NA NA ...

\$ sitetype : chr [1:12865] "R1" "R1" "R1" "R1" ...

\$ addr_full : chr [1:12865] "17021 NE 113TH CT" "11927 178TH PL NE" "13315 174TH AVE NE"

"3303 178TH AVE NE" ...

\$ zip5 : num [1:12865] 98052 98052 98052 98052 98052 ...

\$ ctyname : chr [1:12865] "REDMOND" "REDMOND" NA "REDMOND" ...

\$ postalctyn : chr [1:12865] "REDMOND" "REDMOND" "REDMOND" "REDMOND" ...

\$ lon : num [1:12865] -122 -122 -122 -122 -122 ...

\$ lat : num [1:12865] 47.7 47.7 47.7 47.6 47.7 ...

\$ building_grade : num [1:12865] 9 9 8 8 7 7 10 10 9 8 ...

\$ square feet total living: num [1:12865] 2810 2880 2770 1620 1440 4160 3960 3720 4160 2760 ...

\$ bedrooms : num [1:12865] 4 4 4 3 3 4 5 4 4 4 ...

\$ bath full count : num [1:12865] 2 2 1 1 1 2 3 2 2 1 ...

\$ bath_half_count : num [1:12865] 1 0 1 0 0 1 0 1 1 0 ...

\$ bath_3qtr_count : num [1:12865] 0 1 1 1 1 1 1 0 1 1 ...

\$ year_built : num [1:12865] 2003 2006 1987 1968 1980 ...

\$ year_renovated : num [1:12865] 0 0 0 0 0 0 0 0 0 0 ...

\$ current_zoning : chr [1:12865] "R4" "R4" "R6" "R4" ...

\$ sq_ft_lot : num [1:12865] 6635 5570 8444 9600 7526 ...

\$ prop_type : chr [1:12865] "R" "R" "R" "R" ...

\$ present_use : num [1:12865] 2 2 2 2 2 2 2 2 2 2 2 ...

\$ year_of_sale : chr [1:12865] "2006" "2006" "2006" "2006" ...

I have Changed the name of Sale Date and Sale Price

I have also created new field year_of_sale that will be useful to predict the sale price

- # II. Create two variables;----
- # one that will contain the variables Sale Price and Square Foot of Lot (same variables used from previous assignment on simple regression)
- # and one that will contain Sale Price and several additional predictors of your choice.
- # Explain the basis for your additional predictor selections.
- > housing_lm_1 <- lm(formula = Sale_Price ~ sq_ft_lot, data = housing)
- > housing_lm_2 <- lm(formula = Sale_Price ~ zip5 + bedrooms + year_built, data = housing)
- # III. Execute a summary() function on two variables defined in the previous step to compare the model results. ----
- # What are the R2 and Adjusted R2 statistics? Explain what these results tell you about the overall model.
- # Did the inclusion of the additional predictors help explain any large variations found in Sale Price?
- > summary(housing_lm_1)

```
Call:
Im(formula = Sale_Price ~ sq_ft_lot, data = housing)
Residuals:
  Min
         1Q Median 3Q Max
-2016064 -194842 -63293 91565 3735109
Coefficients:
      Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.418e+05 3.800e+03 168.90 <2e-16 ***
sq_ft_lot 8.510e-01 6.217e-02 13.69 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 401500 on 12863 degrees of freedom
Multiple R-squared: 0.01435, Adjusted R-squared: 0.01428
F-statistic: 187.3 on 1 and 12863 DF, p-value: < 2.2e-16
> summary(housing_lm_2)
Call:
Im(formula = Sale_Price ~ zip5 + bedrooms + year_built, data = housing)
Residuals:
  Min 1Q Median 3Q Max
-997873 -161449 -62624 63853 4115141
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.054e+09 1.957e+08 -5.385 7.35e-08 ***
        1.064e+04 1.996e+03 5.330 1.00e-07 ***
zip5
bedrooms 1.035e+05 3.842e+03 26.931 < 2e-16 ***
year_built 5.527e+03 1.963e+02 28.152 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 381500 on 12861 degrees of freedom
Multiple R-squared: 0.1103, Adjusted R-squared: 0.1101
F-statistic: 531.7 on 3 and 12861 DF, p-value: < 2.2e-16
# IV. Considering the parameters of the multiple regression model you have created, ----
# What are the standardized betas for each parameter and what do the values indicate?
> library(lm.beta)
> coef_lmbeta <- lm.beta(housing_lm_2)
> coef_lmbeta
Call:
Im(formula = Sale_Price ~ zip5 + bedrooms + year_built, data = housing)
Standardized Coefficients::
(Intercept)
              zip5 bedrooms year_built
0.00000000 0.04458759 0.22417183 0.23537926
# zip5 (standardized \beta = 0.04458759) - This value indicates that as zip code increase by
# 1 standard deviation, sales price increase by 0.04458759 standard deviation.
# bedrooms (standardized \beta = 0.22417183) -This value indicates that as bedrooms
```

increase by 1 standard deviation, sales price increase by 0.22417183 standard deviation. # year_built(standardized β = 0.23537926) - This value indicates that as year_# built # increase by 1 standard deviation, sales price increase by 0.23537926 standard deviation.

V. Calculate the confidence intervals for the parameters in your model and

explain what the results indicate.

> confint(housing_lm_2)

2.5 % 97.5 %

(Intercept) -1.437177e+09 -6.701687e+08

zip5 6.724735e+03 1.454870e+04

bedrooms 9.593698e+04 1.109984e+05

year built 5.142553e+03 5.912266e+03

In this model, the two best predictor (year_built) have very tight confidence intervals,

indicating that the estimates for the current model are likely

to be representative of the true population

values. The interval for (zip5 and bedrooms) is wider (but still does not cross zero),

indicating that the parameter for this variable is less representative, but nevertheless significant.

VI. Assess the improvement of the new model compared to your original model (simple regression model) ----

by testing whether this change is significant by performing an analysis of variance.

> anova(housing_lm_1,housing_lm_2)

Analysis of Variance Table

Model 1: Sale_Price ~ sq_ft_lot

Model 2: Sale_Price ~ zip5 + bedrooms + year_built

Res.Df RSS Df Sum of Sq F Pr(>F)

1 12863 2.0734e+15

```
2 12861 1.8715e+15 2 2.0192e+14 693.82 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# The value in column labelled Pr(>F) is 2.2e-16 (i.e., 2.2 with the decimal
# place moved 16 places to the left, or a very small value indeed);
# we can say that housing_lm_2 significantly improved
# the fit of the model to the data compared to housing_lm_1, F(2, 12861) = 69
# 3.82, p < .001.
# VII. Perform casewise diagnostics to identify outliers and/or influential cases, ----
    storing each function's output in a dataframe assigned to a unique variable name.
> housing$residuals<-resid(housing_lm_2)
> housing$standardized.residuals<- rstandard(housing_lm_2)
> housing$studentized.residuals<-rstudent(housing_lm_2)
> housing$cooks.distance<-cooks.distance(housing_lm_2)
> housing$dfbeta<-dfbeta(housing_lm_2)
> housing$dffit<-dffits(housing_lm_2)
> housing$leverage<-hatvalues(housing_lm_2)
> housing$covariance.ratios<-covratio(housing_lm_2)
> housing
# A tibble: 12,865 x 33
 Sale Date
                Sale_Price sale_reason sale_instrument sale_warning
 <dttm>
                  <dbl>
                           <dbl>
                                       <dbl> <chr>
1 2006-01-03 00:00:00 698000
                                     1
                                               3 NA
2 2006-01-03 00:00:00 649990
                                     1
                                               3 NA
3 2006-01-03 00:00:00 572500
                                               3 NA
                                     1
4 2006-01-03 00:00:00 420000
                                               3 NA
5 2006-01-03 00:00:00 369900
                                     1
                                               3 15
```

```
7 2006-01-04 00:00:00 1050000
                                                 3 NA
                                       1
8 2006-01-04 00:00:00 875000
                                       1
                                                3 NA
9 2006-01-04 00:00:00 660000
                                       1
                                                3 NA
10 2006-01-04 00:00:00 650000
                                                 3 NA
# ... with 12,855 more rows, and 28 more variables: sitetype <chr>,
# addr_full <chr>, zip5 <dbl>, ctyname <chr>, postalctyn <chr>,
# lon <dbl>, lat <dbl>, building_grade <dbl>,
# square_feet_total_living <dbl>, bedrooms <dbl>, bath_full_count <dbl>,
# bath half count <dbl>, bath 3gtr count <dbl>, year built <dbl>,
# year_renovated <dbl>, current_zoning <chr>, sq_ft_lot <dbl>,
# prop_type <chr>, present_use <dbl>, year_of_sale <chr>,
# residuals <dbl>, standardized.residuals <dbl>,
# studentized.residuals <dbl>, cooks.distance <dbl>, dfbeta <dbl[,4]>,
# dffit <dbl>, leverage <dbl>, covariance.ratios <dbl>
# VIII. Calculate the standardized residuals using the appropriate command, ----
    specifying those that are +-2, storing the results of large residuals in a variable you create.
> housing$large.residual <- housing$standardized.residuals > 2 | housing$standardized.residuals < -2
# IX. Use the appropriate function to show the sum of large residuals. ----
> sum(housing$large.residual)
[1] 346
# X. Which specific variables have large residuals (only cases that evaluate as TRUE)? ----
> housing[housing$large.residual,c("Sale_Price", "zip5", "bedrooms",
"year_built","standardized.residuals")]
# A tibble: 346 x 5
 Sale_Price zip5 bedrooms year_built standardized.residuals
```

6 2006-01-03 00:00:00 184667

1

15 18 51

	<dbl> <dbl></dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	1900000 9805	3 4	1990	3.14
2	1520000 9805	52 5	1952	2.45
3	1390000 9805	3 0	1955	3.40
4	1588359 9805	3 2	2005	2.65
5	1450000 9805	52 3	1972	2.52
6	1450000 9805	2 2	1918	3.58
7	2500000 9805	3 4	2005	4.49
8	2169000 9805	3 4	2005	3.63
9	1534000 9805	52 4	1963	2.60
10	1968000 980	53 4	1998	3.20
#	with 226 more	o rouge		

... with 336 more rows

>

- # XI. Investigate further by calculating the ----
- # leverage,
- # cooks distance,
- # and covariance rations.
- # Comment on all cases that are problematics.
- > housing[housing\$large.residual, c("cooks.distance", "leverage", "covariance.ratios")]
- # A tibble: 346 x 3

cooks.distance leverage covariance.ratios

	<dbl> <dbl></dbl></dbl>	<dbl></dbl>
1	0.000284 0.000115	0.997
2	0.00114 0.000761	0.999
3	0.00484 0.00167	0.998
4	0.000597 0.000341	0.998
5	0.000347 0.000219	0.999
6	0.00563 0.00176	0.998
7	0.000738 0.000146	0.994

```
8
     0.000480 0.000146
                                0.996
9
     0.000581 0.000344
                                0.999
      0.000300 0.000117
10
                                0.997
# ... with 336 more rows
# Executing this command prints the variables (or columns) labelled cooks.
# distance, leverage, and covariance.ratios but only for cases for which large.
# residual is TRUE.
# Output shows these values; none of them has a Cook's distance greater than 1,
# so none of the cases is having an undue influence
# on the model. The average leverage can be calculated as 0.011 (k + 1/n = 4/346)
# and so we are looking for values either twice as large as this (0.022) or
# three times as large (0.033) depending on which statistician you trust most.
# All cases are within the boundary of three times the average and only case 1
# is close to two times the average.
# XII. Perform the necessary calculations to assess the assumption of independence ----
   and state if the condition is met or not.
> durbinWatsonTest(housing_lm_2)
lag Autocorrelation D-W Statistic p-value
      0.6278972 0.7442029
Alternative hypothesis: rho != 0
# From the output we can see that the test statistic is 0.7442029 and the
# corresponding p-value is 0. Since this p-value is less than 0.05, we can reject
# the null hypothesis and conclude that the residuals in this regression model
# are autocorrelated. As a conservative rule, D-W Statistic values less than 1
# or greater than 3 should definitely raise alarm bells.
# The closer to 2 that the value is, the better, and for these data the value
```

```
# is 0.744, which is less than 1 suggests that the assumption might not certainly
# been met.
# XIII. Perform the necessary calculations to assess the assumption of no multicollinearity ----
  and state if the condition is met or not.
> vif(housing_lm_2)
   zip5 bedrooms year_built
 1.011771 1.001607 1.010570
# tolerance statistics
> 1/vif(housing_lm_2)
   zip5 bedrooms year_built
0.9883661 0.9983956 0.9895403
> mean(vif(housing_lm_2))
[1] 1.007983
# For our current model the VIF values are all well below 10 and the tolerance
# statistics all well above 0.2. Also, the average VIF is very close to 1.
# Based on these measures we can safely conclude that there is no collinearity
# within our data.
# XIV. Visually check the assumptions related to the residuals using the plot() and hist() functions. ----
    Summarize what each graph is informing you of and if any anomalies are present.
> housing$fitted <- housing_lm_2$fitted.values
> library(ggplot2)
> histogram<-ggplot(housing, aes(studentized.residuals)) + geom_histogram(aes(y = ..density..),
colour = "black", fill = "white") + labs(x = "Studentized
+ Residual", y = "Density")
> histogram + stat_function(fun = dnorm, args = list(mean = mean(housing$studentized.residuals,
na.rm = TRUE), sd = sd(housing$studentized.residuals,
na.rm = TRUE)), colour= "red", size = 1)
`stat bin()` using `bins = 30`. Pick better value with `binwidth`.
```

```
> qplot(sample = housing$studentized.residuals, stat="qq") + labs(x ="Theore
+ tical Values", y = "Observed Values")
Warning message:
'stat' is deprecated
# The histogram should look like a normal distribution (a bell-shaped curve).
# For the housing data data, the distribution is roughly normal.
# We could summarize by saying that the model appears, in most senses, to be
# both accurate for the sample and generalizable to the population.
# XV. Overall, is this regression model unbiased? ----
  If an unbiased regression model, what does this tell us about the sample vs. the entire population
model?
# vif values to check model bias
# When we check multi collinearity we check for vif score
> vif(housing_lm_2)
   zip5 bedrooms year_built
 1.011771 1.001607 1.010570
# None of the vif scores are near 5 or greater and thus predictors does not
# have any significant multi collinearity. Multi collinearity problems consist of
# including, in the model, different variables that have a similar predictive
# relationship with the outcome.
> mean(vif(housing_lm_2))
[1] 1.007983
# Average vif is >1 but nowhere close to 5 or greater. Model does not appear
# to have significant proof that model is biased.
```