线

西安电子科技大学

考试时间 120 分钟

题

题号	_	1	=	四	总分
分数					

2.本试卷共四大题,满分100分; 1.考试形式: 闭卷:

3.考试日期: 年 月 日: (答题内容请写在装订线外)

单项选择题(本大题共 15 小题, 每小题 2 分, 共 30 分)

- 1. 下面关于数据结构的说法,正确的是(C)。
 - (A) 逻辑上相邻的元素在存储位置上一定相邻
 - (B) 算法的实现依赖于采用的逻辑结构
 - (C) 数据的逻辑结构分为线性结构和非线性结构
 - (D) 以上说法都正确
- 2. 算法分析的两个主要方面是(A):
 - (A) 空间复杂度和时间复杂度 (B) 正确性和简明性
 - (C) 可读性和文档性
- (D) 数据复杂性和程序复杂性
- 3. 具有线性结构的数据结构是(C)。

 - (A) 广义表 (B) 数组 (C) 双端队列 (D) 二叉树
- 4. 将两个各有 n 个元素的有序表归并成一个有序表, 其最少的比较次数是
 - (A).
 - (B) 2n-1 (C) 2n
- $(\mathbf{D}) \mathbf{n} \mathbf{1}$
- 5. 在具有 n 个结点的单链表中,实现(A)的操作,其算法的时间复杂度是 O(n).
 - (A) 遍历链表或求链表的第 i 个结点 (B)删除地址为 P 的结点的后继结点
 - (C) 在地址为 P 的结点之后插入一个结点 (D) 删除首元结点
- 6. 若一个栈的输入序列是 1,2,3, ..., n, 输出序列的第一个元素是 n, 则第 i 个输 出元素是(B)。
 - (A) n-i
- (B) n-i+1
- (C) i
- (D) n-i-1
- 7. 约定满队时队首指针与队尾指针相差 1, 判定一个循环队列 O (队列空间大 小为 n) 为满队列的条件是(A)。

第1页共8页

8. 设 A 为一个 10 阶的对称矩阵,采用压缩存储方式,以行序为主序, a_{11} 为第
一元素,其存储地址为 1,每个元素占一个地址空间,则 \mathbf{a}_{85} 的地址为(\mathbf{B})。
(A) 13 (B) 33 (C) 18 (D) 40
9. 若树中用一个分支把两个结点连接起来,则 (B)。
(A) 不一定出现环 (B) 一定出现环
(C) 使树的度数增一 (D) 前面说法都不正确
10. 下面几个符号串编码集合中,不是前缀编码的是(B)。
(A) $\{0, 10, 110, 1111\}$ (B) $\{11, 10, 001, 101, 0001\}$
(C) { 00, 010, 0110, 1000} (D) { b, c, aa, ac, aba, abb, abc }
11. 把一棵树转换为二叉树后,这棵二叉树的形态是(A)。
(A) 唯一的 (B) 有多种,但根结点都没有左孩子
(C) 有多种 (D) 有多种,但根结点都没有右孩子
12. 深度优先遍历类似于二叉树的 (A)。
(A) 先序遍历 (B) 中序遍历 (C) 后序遍历 (D) 层次遍历
13. 如果要求一个线性表既能较快地查找,又能适应动态变化的要求,则可采
用(A)查找方法。
(A) 分块查找 (B) 顺序查找
(C) 折半查找 (D) 基于属性的查找
14. 哈希函数有一个共同的性质,即函数值应当以(D)取其值域的每个值。
(A) 最大概率 (B) 最小概率 (C) 平均概率 (D) 同等概率
15. 下列 (D)排序算法在最坏情况下不会达到 O (n ²)。
(A) 插入排序 (B) 冒泡排序
(C) 快速排序 (D) 2-路归并排序
二、填空题(本大题共 13 小题, 每空 1 分, 共 20 分)
1. 数据结构一般包括三个方面的内容,也就是它的三要素,它们分别是:
数据的逻辑结构,数据的存储结构,数据的运算。
2. 在一个具有 n 个结点的有序单链表中插入一个新结点并仍然有序的时间复杂
度为 <u>O(n)</u> 。
3. 在非空双向循环链表中(结点有 prior 和 next 指针),在指针 q 所指的结点
前插入一个由指针 p 所指结点的过程依次为: p->next=q; p->prior=q->prior;
第2页 共 8 页
2 = 21 71 ° 21

(B) Q.rear - Q.front - 1 == n

(D) Q.front == Q.rear+1

(A) Q.front == (Q.rear+1)% n

(C) Q.front == Q.rear

q->prior=p;	p->prior->next=p	_。

- 4. 循环队列定义为: rear 指示队尾元素的位置, length 指示元素的个数, 队列已分配空间的大小为 Maxlen。循环队列的队满条件为<u>length==Maxlen</u>, 队头元素的位置为<u>front = (rear-length+1+Maxlen)%Maxlen</u>。
- 6. 广义表 A=(a, (a,b), d, e, ((i,j), k)), 其长度为<u>5</u>, 深度为<u>3</u>,
- Head(A)的结果为<u>a</u>, Head(Tail(A)) 的结果为<u>(a, b)</u>。
- 7. 一棵有 n 个结点的树,所有结点的度之和为 _____n-1___。
- 8. 用一维数组存放的一棵完全二叉树: ABCDEFGHIJKL。请写出该二叉树的后序遍历序列 HIDJKEBLFGCA 。
- 9. 设 F 是由 T_1 , T_2 , T_3 三棵树组成的森林,与 F 对应的二叉树为 B(按 T_1 , T_2 , T_3 依次合并而成)。若 T_1 , T_2 , T_3 的结点数分别为 N_1 , N_2 , N_3 ,则二叉树 B 的左子树中有 N_1 -1 个结点,二叉树 B 的右子树中有 N_2 + N_3 个结点。
- 10. 设 n_0 为赫夫曼树的叶子结点数,则该赫夫曼树共有 $2n_0-1$ 个结点。
- 11. 设有向图有 n 个顶点和 e 条边,采用邻接表进行存储,对其进行拓扑排序,其时间复杂度为 O(n+e) 。
- 12. 一个无序序列可以通过构造一棵 <u>二叉排序</u> 树而变成一个有序序列,构造树的过程即为对无序序列进行排序的过程。
- 13. __基数 __排序方法不需要进行记录关键字间的比较。

三 应用题(本大题共 5 小题, 共 32 分)

1.(6分) 分析下面三小段程序的时间复杂度。

```
for (i=0; i<n; i++)
                                           b. s=0;
         for (j=0; j<m; j++)
                                              for i=0; i<n; i++)
             A[i][j]=0;
                                                   for(j=0; j< n; j++)
答: O (m*n) --2 分
                                                       s+=B[i][j];
                                                   sum=s:
c. x=0;
                                           答: O (n²) --2 分
   for(i=1; i<n; i++)
     for (j=1; j \le n-i; j++)
      x++;
解: 因为 x++共执行了 n-1+n-2+ ·····+1=
n(n-1)/2,所以执行时间为 O(n^2) --2 分
```

2. (6分)设有编号为1,2,3,4的四辆列车,顺序进入一个栈式结构的车站, 具体写出这四辆列车开出车站的所有可能的顺序。

答: 至少有 14 种。 (酌情给分)

- ① 全进之后再出情况,只有1种:4,3,2,1
- ② 进3个之后再出的情况,有3种,3,4,2,1 3,2,4,1 3,2,1,4
- ③ 进 2 个之后再出的情况,有 5 种, 2,4,3,1 2,3,4,1 2,1,3,4 2,1,4,3 2,1,3,4
- ④ 进1个之后再出的情况,有5种,1,4,3,2 1,3,2,4 1,3,4,2 1,2,3,4 1,2,4,3

3、(6分)已知图 G 的邻接矩阵如下所示: (1) 求从项点 1 出发的广度优先搜索序列; (2) 根据 prim 算法,求图 G 从项点 1 出发的最小生成树,要求表示出其每一步生成过程。(用图或者表的方式均可)。

$$\begin{bmatrix}
\infty & 6 & 1 & 5 & \infty & \infty \\
6 & \infty & 5 & \infty & 3 & \infty \\
1 & 5 & \infty & 5 & 6 & 4 \\
5 & \infty & 5 & \infty & \infty & 2 \\
\infty & 3 & 6 & \infty & \infty & 6 \\
\infty & \infty & 4 & 2 & 6 & \infty
\end{bmatrix}$$

答案: (1)广度优先遍历序列: 1; 2, 3, 4; 5; 6 (2)最小生成树 (prim 算法)

--3 分 --3 分

4、(6分)设哈希表 HT 表长 m 为 13,哈希函数为 H(k)=k MOD m,给定的关键值序列为 $\{19,14,23,10,68,20,84,27,55,11\}$ 。试求出用线性探测法解决冲突时所构造的哈希表,并求出在等概率的情况下查找成功的平均查找长度 ASL。

答案: (1)表形态:

--3 分

	0	1	2	3	4	5	6	7	8	9	10	11	12	
		14	27	68	55		19	20	84		23	10	11	
		1	2	1	2		1	1	3	•	1	2	2	

(2)平均查找长度: ASL(10)=(1*5+2*4+3*1)/10=1.6

--3分

5. (8分)某一序列为{49,38,20,90,51,82,75,10,66}。请回答以下四小问题: (1)以第一元素为枢轴,写出快速排序第一趟结果; (2)写出进行2-路归并排序的过程; (3)判断该序列是否为堆。若不是,将该序列调整成小顶堆; (4)对 n 个元素进行排序,写出上述三种排序方法所需辅助空间和在最坏情况下的时间复杂度。

```
答: (1) {10, 38, 20, 49, 51, 82, 75, 90, 66} (---2分)
(2) (---2分)
49 38 20 90 51 82 75 10 66
38 49 20 90 51 82 10 75 66
20 38 49 90 10 51 75 82 66
10 20 38 49 51 75 82 90 66
10 20 38 49 51 66 75 82 90
```

- (3) 不是堆。小顶堆: {10, 38, 20, 49, 51, 82, 75, 90, 66} (---2 分)
- (4) 辅助空间: 堆 O(1), 快速 O(logn), 归并 O(n).

时间复杂度: 堆 O(nlogn), 快速 O(n²), 归并 O(nlogn). (---2 分)

三 算法题(本大题共 2 小题, 共 18 分)

void decompose(Linklist La,Linklist &Lb,Linklist &Lc)

1. (8分)设计算法将一个带头结点的单链表 A 分解为两个具有相同结构的链表 B、C,其中 B 表的结点为 A 表中值小于零的结点,而 C 表的结点为 A 表中值大于零的结点(链表 A 的元素类型为整型,要求 B、C 表利用 A 表的结点)。

{
Linknode *p;
Lc=(Linknode *)malloc(sizeof(Linknode));
Lc->next=NULL;
p=La->next;
Lb=La;
Lb->next=NULL;
while(p)
{

La=p->next;

2. $(10\ f)$ 一个双向栈 S 是在同一向量空间内实现的两个栈(顺序栈),它们的栈底分别设在向量空间的两端。如下图所示。 试为此双向栈设计初始化 InitStack (S)、入栈 Push(S,i,x) 和出栈 Pop(S,i)等三个子操作算法,其中i 为 0 或 1,用以表示栈号。

双向栈 S

第7页 共8页

```
S.base\_one=S.top\_one=(\ SElemType\ *) malloc(STACK\_SIZE\ *\ sizeof(SElemType));
    // 第二个栈底和栈顶指向数组终点
    S.base\_two=S.top\_two=S.base\_one + STACK\_SIZE-1;
    S.stacksize= STACK_SIZE;
    return OK;
}//InitStack
Status Push (SqStack &S, int i, SElemType e)
{ //入栈操作, i=0 时将 e 存入前栈, i=1 时将 e 存入后栈
    if(S.top_two < S.top_one) return OVERFLOW;//栈满,不考虑追加空间
    if (i = 0)
       *S.top_one++ = e;
     else
       *S.top_two-- = e;
     return OK;
}//Push
SElemType Pop ( SqStack &S, int i)
{ //出栈操作, i=0 出前栈, i=1 出后栈
   if( i==0 )
    {
      if ( S.top_one==S.base_one) return ERROR;
      S.top_one--; e=*S.top_one;
    }
    else
    {
        if ( S.top_two==S.base_two) return ERROR;
        S.top_two++; e=*S.top_two;
    }
    return e;
  }//Pop
```