

MS SIO

Introduction au Machine Learning

Compte rendu de Travaux Pratiques

Jérémy CAO William AFONSO

Code source accessible à : https://github.com/will-afs/IML

Plan de présentation

Introduction au Machine Learning - Compte rendu d'apprentissage et de Travaux Pratiques

1. Analyse descriptive de notre ensemble de données

1. Analyse descriptive de notre ensemble de données

1. Présentation des données brutes

Accéléromètre (x, y, z)

- 1 Working at Computer
- 2 Standing up
- 3 Standing
- 4 Walking
- 5 Going up/down stairs
- 6 Walking + talking with someone

Activités

7 - Talking while standing

	csv Mes	ure n°	Accélér	ation x	Accélér	ation y	Accélér	ation z	N° act	ivité
x CSV	Mesure n°	1 Accélé	180 ration x		eration y		ration z		ctivité)
	1 	15	502 -	22	215	21	L53 -		1	
	53440	18	878	22	277	19	988		3	
			-		-		-			15 in
	162501	15	550	16	600	14	155		7	15 in

Jeu de données brut

Objectif:

Raffiner nos données pour les rendre exploitables Trouver l'algorithme le plus approprié pour déduire l'activité à partir d'accélérations (x, y, z)

Analyse descriptive de notre ensemble de données

2. Analyse des données brutes et commentaires

- Standing up, walking and going up\down stairs
- Standing
- Walking
- Going up\down stairs
- Walking and talking with someone
- Talking while standing

Périodiques ?

1. Analyse descriptive de notre ensemble de données

3. Suppression des régimes transitoires sur l'activité 1

Suppression des transitoires sur l'activité 1

Activities

- Working at a computer
- Standing up, walking and going up\down stairs
- Standing
- Walking
- Going up\down stairs
- Walking and talking with someone Learning Compte rendu d'apprentissage et de Travaux Pratiques
- Talking while standing

Analyse descriptive de notre ensemble de données

4. Augmentation de l'échantillon de données

Mesure n°	Accélération x	Accélération y	Accélération z	N° activité
1	1502	2215	2153	1
	-	-	-	-
53440	1878	2277	1988	3
	-	-	-	
162501	1550	1600	1455	7

Mesure n°	Accélération x	Accélération y	Accélération z	N° activité	1
1	1897	2198	2110	1	15
•••	-	-	-	-	ㅁ
53440	1877	2455	2322	3	Ĭ <u>Š</u>
•••	-	-	-		pu
145099	1887	2110	2232	7	1 =

2. Prédictions avec la méthode KNN

- 2. Prédictions avec la méthode KNN
 - 1. Comparaison de la précision du modèle avant et après data-processing

Kopt = 9

Suppression des transitoires sur l'activité 1

Activités prédites par le modèle

- 2. Prédictions avec la méthode KNN
 - 1. Comparaison de la précision du modèle avant et après data-augmentation

Kopt = 9

Concaténation des données de chaque individu

Avant: 85 %

Après: 77%

3. Prédictions avec la méthode d'arbre de décisions

3. Construction d'un arbre de décisions

1. Comparaison de la précision du modèle avant et après data-processing

Kleaf = +- 209

Suppression des transitoires sur l'activité 1

Avant: 85-%

Après : 85+%

- 2 Standing up
- 3 Standing
- 4 Walking
- 5 Going up/down stairs
- 6 Walking + talking with someone
- 7 Talking while standing

- 3. Construction d'un arbre de décisions
 - 1. Comparaison de la précision du modèle avant et après data-augmentation

Kleaf = +- 209

Concaténation des données de chaque individu

Avant: 85-%

Après : 71%

Conclusion

MERCI! Des questions?

ANNEXES

1. Méthode KNN

On prédit la caractéristique du point à partir de ses K voisins les plus proches

Attention aux données et au paramétrage!

rning – Compte rendu d'apprentissage et de Travaux Pratiques

2. Arbres de décision

Apprentissage supervisé (comme Knn)

Segmentation de l'espace en sous-espaces où l'entropie est minimale

∢□ → ∢∄ →

Puis, à partir des caractéristiques de l'échantillon étudié, l'algorithme pourra prédire sa classe, en s'orientant grâce à l'arbre

Il est possible d'élaguer des branches de l'arbre pour éliminer les moins pertinentes et ainsi améliorer la précision de l'arbre

3. Kmeans

Analyse des données (sources)

Analyse descriptive de notre ensemble de données Calcul de l'angle Thêta pour corriger les valeurs

GRAVITY Your = 0g $X_{OUT} = 1g$ $Y_{OUT} = 0g$ TOP $X_{OUT} = 0g$ $Y_{OUT} = -1g$ $X_{OUT} = 0g$ $Y_{OUT} = 1g$ **40T** $X_{OUT} = -1g$ $Y_{OUT} = 0g$ $Z_{OUT} = 0g$ Output Response vs. Orientation to Gravity 6

CentraleSupéleo

Un problème de repère ?

Repère terrestre

(1)
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$$

(2)
$$z = \sqrt{{x'}^2 + {y'}^2 + {z'}^2} \Rightarrow g$$

Analyse descriptive de notre ensemble de données Calcul de l'angle Thêta pour corriger les valeurs

Isolation des valeurs d'accélération sur l'activité 1 (stable)

Analyse descriptive de notre ensemble de données Analyse des données - Activités dynamiques très peu représentées

- 1 Working at Computer
- 2 Standing up
- 3 Standing
- 4 Walking
- 5 Going up/down stairs
- 6 Walking + talking with someone
- 7 Talking while standing

Analyse descriptive de notre ensemble de données Analyse des données brutes

	Moyennes					
Activité	Accélération x	Accélération y	Accélération z			
1	1965	2373	2119			
2	1892	2376	2067			
3	1893	2383	2011			
4	1884	2381	2051			
5	1918	2373	2103			
6	1888	2381	2031			
7	1900	2383	2008			

Pour toutes les activités, c'est l'accélération en y (resp. x) qui est la plus (resp. moins) élevée

Les activités « statiques »
(1, 3, 7) ont des
accélérations
anormalement élevées

	Ecart-types					
Activité	Accélération x	Accélération y	Accélération z			
1	28	22	24			
2	33	50	49			
3	20	24	33			
4	45	88	49			
5	49	89	76			
6	46	79	59			
7	20	9	39			

Les activités « dynamiques » (2, 4, 5, 6) – les moins représentées - ont les écartstypes plus élevés

Analyse descriptive de notre ensemble de données Analyse des données

	Accélération x	Accélération y	Accélération z
Moyenne	1910	2380	2041
Ecart-type	41	42	60
Min	1455	1697	1644
Max	1935	2386	2101

Analyse statistique sur l'ensemble des accélérations, toutes activités confondues

Analyse descriptive de notre ensemble de données Preprocessing

	Moyennes des accélérations				
Activité	En x	En y	En z		
1	1965	2373	2119		
2	1892	2376	2067		
3	1893	2383	2011		
4	1884	2381	2051		
5	1918	2373	2103		
6	1888	2381	2031		
7	1900	2383	2008		

Entraînement d'un modèle de ML avec KNN (snippets)

1. Import des données via Pandas

```
X=pd.read_csv('data/1.csv',header=None,delimiter=',',usecols=[1, 2, 3])
y=pd.read_csv('data/1.csv',header=None,delimiter=',',usecols=[4])

X = X.values
y = y.values[:,0]
```


2. Entraînement et test avec exactement les mêmes données

```
KNeighborsClassifier(n neighbors=10)
   # If we were in regresssion
   # clf = neighbors.KNeighborsRegressor(n neighbors=) # je précise la méthode et ses hyperparamètres
                                                                                                                       Python
 0.3s
   # prevision
   clf.predict(X)
   7.7s
                                                                                                                       Python
array([0.0000e+00, 1.0000e+00, 2.0000e+00, ..., 3.6985e+04, 1.5683e+05,
      1.5807e+05])
 clf.score(X,Y) # predit + calcul le score = la précision

√ 7.1s

                                                                                                                       Python
0.10551384615384615 10% de précision! C'est très faible! Overfitting?
```


Entraînement d'un modèle de ML avec KNN (snippets)

2. Méthode KFold pour compléter les données manquantes

```
# Pour voir l'effet du partage ...
   from sklearn.model selection import KFold
   kf=KFold(n splits=4, shuffle=True) # partages de validation
   XXX = X train[:12,:] # je prends uniquement les 12 premières lignes
   #print(XXX)
   for learn, test in kf.split(XXX): # boucle sur différents partages de validation
     print("Learn")
     print(learn)
     print("test")
     print(test)
 ✓ 0.6s
                                                                                                            Python
Learn
[0 2 3 4 5 6 7 9 10]
test
[ 1 8 11]
Learn
[1 3 4 5 6 7 8 9 11]
test
[ 0 2 10]
Learn
[0 1 2 4 5 7 8 10 11]
```

Entraînement d'un modèle de ML avec KNN (snippets)

3. Préparation des échantillons d'entraînement et de test

3. Préparation des échantillons d'entraînement et de test

On entraîne notre modèle avec les données splittées en 70/30

```
n_neighbors=9
clf = neighbors.KNeighborsClassifier(n_neighbors) # je précise la méthode et ses hyperparamètres
clf.fit(X_train, Y_train) # je lance l'apprentissage
prev_test = clf.predict(X_test)
sc_train = clf.score(X_train,Y_train)
sc_test = clf.score(X_test,Y_test)
print(sc_train)
print(sc_train)
print(sc_test)

15] 

5.1s

Python

0.8255648351648351
0.8105641025641026

Le score est intéressant, mais pas non plus imbattable...
```


Entraînement d'un modèle de ML avec KNN (snippets)

Activités prédites par le modèle

4. Evaluation du modèle avec la matrice de confusion

Entraînement d'un modèle de ML avec KNN (snippets)

1. Recherche de l'hyperparamètre K optimal

```
from sklearn.model selection import KFold
kf=KFold(n splits=3, shuffle=True) # partages de validation
from sklearn import neighbors
                        Recherche du meilleur hyperparamètre K
scores=[]
for k in range(1,10): # les différentes valeurs de k à tester
    clf=neighbors.KNeighborsClassifier(k)
    for learn, test in kf.split(X train): # boucle sur différents partages de validation
        X app=X train[learn]
        Y app=Y train[learn]
        clf.fit(X app,Y app)
       X val=X train[test]
       Y val=Y train[test]
       score+=clf.score(X val,Y val)
    scores.append(score)
print(scores)
#plt(scores)
k opt=scores.index(max(scores)) + 1 # valeur optimale de k
print(k opt)
```

```
Centrale Supélec
```

```
[2.430260421697527, 2.4124207978205026, 2.5024149145857715, 2.5292163036099855, 2.5417375292364217, 2.55765088301482, 2.561503642421665, 2.5670314489655865, 2.567910907329197]

9 Index du score maximal

Score maximal
```


Entraînement d'un modèle d'arbre de décisions

1. Construction simple

```
Même chose qu'avec KNN
import random
from sklearn.model selection import train test split
from sklearn.metrics import confusion matrix
X=pd.read csv('data/3.csv',header=None,delimiter=',',usecols=[1, 2, 3]).values
Y=pd.read csv('data/3.csv',header=None,delimiter=',',usecols=[4]).values[:,0]
X train, X test, Y train, Y test = train test split(X, Y, test size=0.3, random state=random.seed())
clf=tree.DecisionTreeClassifier max leaf nodes=199,criterion='entropy'
clf.fit(X train,Y train)
prev test = clf.predict(X test)
                                                                    On peut construire notre DTC selon
#print(prev)
                                                                    différents critères
scoretree = clf.score(X test,Y test)
# Compute the confusion matrix between kmean label and iris types
                                                     On configure le nombre de
cm=confusion matrix(Y test,prev test)
# the confusion matrix is difficult to read as labels assigned feuilles maximal bitrary
print(cm)
                                                             (ici au doigt mouillé)
print(scoretree)
                   Même chose qu'avec KNN
 1.6s
                                                                                                              Python
```


Construction d'un arbre de décisions (snippets)

CentraleSupéle

2. Recherche de l'hyperparamètre K (nombre de feuilles) optimal

```
from sklearn import neighbors
   scores=[]
   for k in range(190,210):
                             # les différentes valeurs de k à tester
       score=0
       clf=tree.DecisionTreeClassifier(max leaf nodes=k,criterion='entropy')
        for learn, test in kf.split(X train): # boucle sur différents partages de validation
            X app=X train[learn]
            Y app=Y train[learn]
            clf.fit(X app,Y app)
           X val=X train[test]
           Y val=Y train[test]
           score+=clf.score(X val,Y val)
       scores.append(score)
   print(scores)
   #plt(scores)
   k opt=scores.index(max(scores)) + 1 # valeur optimale de k
   print(k opt)
    6.2s
 [2.5648120535533594, 2.563806944251248, 2.560624199841145, 2.5633881329256107, 2.56853901822021, 2.565398323471006,
2.565691397927982, 2.5633461639338417, 2.563555691477194, 2.5664033556113415, 2.5655238534058125, 2.56732454095933,
2.5637231097346387, 2.566193915751826, 2.5682039449589613, 2.5657332985263572, 2.5659846898408736,
2.569292811615906. 2.5637232324920105, 2.56481198340629]
               Le nombre de feuilles optimal vaut donc 190+18 = 208
18
```