Modal Logic, Winter 2019 Homework 5 due Tuesday, February 12

Note In this homework, and in all work in this class: unless otherwise stated, you may use the soundness or completeness of a proof system. But whenever you do, you need to say which one you are using.

1 de Morgan's Laws

1. Give a derivation that shows $\vdash \neg(\varphi \land \psi) \rightarrow (\neg \varphi) \lor (\neg \psi)$.

1.	$\neg(\varphi \wedge \psi)$	Assume
2.	φ	Assume
3.	ψ	Assume
4.	$\varphi \wedge \psi$	\wedge_i , 2 – 4
5.	F	F _i ,1,4
6.	$\neg \psi$	¬ _i , 3-5
7.	$\neg \varphi \lor \neg \psi$	V _i , 6
8.	$\varphi \to \neg \varphi \vee \neg \psi$	→ _i ,2-7
9.	$\varphi \lor \neg \varphi$	pem
10.	φ	Assume
11.	$\neg \varphi \lor \neg \psi$	→ _e ,8,10
12.		Assume
13.	$\neg \varphi \lor \neg \psi$	<i>or</i> _i ,12
14.	$\neg \varphi \lor \neg \psi$	∨ _e , 9, 10-11, 12-13
15. $\neg(\varphi \land \psi) \rightarrow \neg \varphi \lor \neg \psi$		\rightarrow_i , 1-7

2. Give a derivation that shows $\vdash (\neg \varphi) \lor (\neg \psi) \rightarrow \neg (\varphi \land \psi)$.

In one of the two parts, you will need to use the Law of the Excluded Middle.

2 Satisfiability in propositional logic

Recall that a propositional logic sentence φ is *satisfiable* if there is some valuation v such that $[\![\varphi]\!]_v = \mathsf{T}$.

For each of the following sentences, tell whether true or false. For the true ones, give a short proof. For the false ones, give a counterexample.

- 1. Every sentence φ or its negation $\neg \varphi$ is satisfiable. Fix φ . We know that $\llbracket \varphi \rrbracket_v = \mathsf{T}$ or $\llbracket \varphi \rrbracket_v = \mathsf{F}$. If $\llbracket \varphi \rrbracket_v = \mathsf{T}$ then we're done. Otherwise, if $\llbracket \varphi \rrbracket_v = \mathsf{F}$, then $\llbracket \neg \varphi \rrbracket_v = \neg \llbracket \varphi \rrbracket = \neg \mathsf{F} = \mathsf{T}$. Hence $\neg \varphi$ is also satisfiable.
- 2. Both φ and $\neg \varphi$ are satisfiable. Let $\varphi = p \land \neg p$. This sentence and it's negation are not satisfiable.
- 3. If $\varphi \wedge \psi$ is satisfiable, then both φ and ψ are satisfiable.

Fix φ and ψ .

Assume $\llbracket \varphi \land \psi \rrbracket = \mathsf{T}$. Then $\llbracket \varphi \rrbracket \land \llbracket \psi \rrbracket = \mathsf{T}$, where the \land is based on truth-tables. Hence $\llbracket \varphi \rrbracket = \mathsf{T}$ and $\llbracket \psi \rrbracket = \mathsf{T}$. Therefore both φ and ψ are satisfiable.

4. If both φ and ψ are satisfiable, then $\varphi \wedge \psi$ is satisfiable.

Fix φ and ψ . Assume $\llbracket \varphi \rrbracket = \mathsf{T}$ and $\llbracket \psi \rrbracket = \mathsf{T}$. Then

$$\llbracket \varphi \wedge \psi \rrbracket = \llbracket \varphi \rrbracket \wedge \llbracket \psi \rrbracket = \mathsf{T} \wedge \mathsf{T} = \mathsf{T}$$

Hence $\varphi \wedge \psi$ is satisfiable.

5. If $\varphi \lor \psi$ is satisfiable, then either φ or ψ (or both) are satisfiable.

Fix φ and ψ . Assume $\varphi \lor \psi$ is satisfiable. This means $\llbracket \varphi \lor \psi \rrbracket = \mathsf{T}$.

Then $\llbracket \varphi \rrbracket \lor \llbracket \psi \rrbracket = \mathsf{T}$, where the \lor is based on truth-tables.

In the case that $\llbracket \varphi \rrbracket = \mathsf{T}$, we see that φ is satisfiable. So either φ or ψ are satisfiable. Now consider if $\llbracket \varphi \rrbracket = \mathsf{F}$, then $\llbracket \varphi \rrbracket \vee \llbracket \psi \rrbracket = \mathsf{F} \vee \llbracket \psi \rrbracket = \mathsf{T}$. So $\llbracket \psi \rrbracket = \mathsf{T}$, and either φ or ψ are satisfiable. The case where both are satisfiable is trivial, since we need not consider $\llbracket \varphi \rrbracket = \mathsf{F}$ and one of the cases for $\llbracket \varphi \rrbracket \vee \llbracket \psi \rrbracket = \mathsf{T}$ must have $\llbracket \psi \rrbracket = \mathsf{T}$ again, so both are satisfiable.

6. If either φ or ψ is satisfiable, then $\varphi \lor \psi$ is satisfiable.

Fix φ and ψ . Assume either φ or ψ is satisfiable. First, consider φ is satisfiable. Then $[\![\varphi]\!] = \mathsf{T}$. And

$$\llbracket \varphi \lor \psi \rrbracket = \llbracket \varphi \rrbracket \lor \llbracket \psi \rrbracket = \mathsf{T} \lor \llbracket \psi \rrbracket = \mathsf{T}$$

so $\varphi \lor \psi$ is satisfiable.

Next, consider φ is not satisfiable but ψ is satisfiable. So $\llbracket \varphi \rrbracket = \mathsf{F}$ and $\llbracket \psi \rrbracket = \mathsf{T}$.

$$\llbracket \varphi \lor \psi \rrbracket = \llbracket \varphi \rrbracket \lor \llbracket \psi \rrbracket = \mathsf{F} \lor \mathsf{T} = \mathsf{T}$$

So $\varphi \lor \psi$ is satisfiable.

7. If φ and $\varphi \to \psi$ are satisfiable, then ψ is satisfiable. Fix φ and ψ . Assume φ is satisfiable and $\varphi \to \psi$ is satisfiable. We show ψ is satisfiable. Our assumptions mean that $[\![\varphi]\!] = \mathsf{T}$ and $[\![\varphi \to \psi]\!] = \mathsf{T}$. Unfolding the valuation,

$$\llbracket \varphi \to \psi \rrbracket = \mathsf{T}$$

$$\llbracket \varphi \rrbracket \to \llbracket \psi \rrbracket = \mathsf{T}$$

$$\mathsf{T} \to \llbracket \psi \rrbracket = \mathsf{T}$$

Since \rightarrow here is based on truth-tables, we must have that $[\![\psi]\!] = \mathsf{T}$. Hence ψ is satisfiable.

8. Every sentence φ or its negation $\neg \varphi$ is a tautology.

This is not true because we can take φ to be an atomic sentence p, and it is not true that for any valuation v, $[\![p]\!]_v = \mathsf{T}$ or $[\![\neg p]\!] = \mathsf{T}$.

9. If $\varphi \wedge \psi$ is a tautology, then both φ and ψ are tautologies.

Fix φ and ψ . Assume for any valuation v, $\llbracket \varphi \land \psi \rrbracket_v = \mathsf{T}$. We prove for all valuations w_1, w_2 that $\llbracket \varphi \rrbracket_{w_1} = \mathsf{T}$ and $\llbracket \psi \rrbracket_{w_2} = \mathsf{T}$. So $\llbracket \varphi \land \psi \rrbracket_v = \mathsf{T} = \llbracket \varphi \rrbracket_v \land \llbracket \psi \rrbracket_v$ where \wedge is based on truth tables. So both are true and both are tautologies since we chose a random valuation v.

10. If $\varphi \lor \psi$ is a tautology, then either φ or ψ (or both) are tautologies.

This is not true. We can take φ to be p and ψ to be $\neg p$, where $\varphi \lor \psi$ is a tautology, but neither p or $\neg p$ is a tautology.

11. If φ and $\varphi \to \psi$ are tautologies, then ψ is a tautology. Fix φ and ψ . Assume for any valuation v, $\llbracket \varphi \rrbracket_v = \mathsf{T}$ and for any valuation v', $\llbracket \varphi \to \psi \rrbracket_v' = \mathsf{T}$. It is our job to prove that for any valuation w, $\llbracket \psi \rrbracket_w = \mathsf{T}$.

3 Avoiding confusion

It is easy to confuse the following two assertions:

- (i) $\forall \varphi \rightarrow \psi$
- (ii) $\vdash \varphi \rightarrow \neg \psi$.
- (i) says that there is *no* derivation in our system that has no premises and ends with $\varphi \to \psi$. (ii) says that there *is* a derivation in our system that has no premises and ends with $\varphi \to \neg \psi$.
 - 1. Give an example of two sentences φ and ψ in propositional logic with the property that $\forall \varphi \rightarrow \psi$ but $\forall \varphi \rightarrow \neg \psi$. This shows that (i) does not in general imply (ii).

Fix two atomic sentences p and q such that $\varphi = p$ and $\psi = q$. Then we see that both $\not\mid p \to q$ and $\not\mid p \to \neg q$.

2. Give an example of two sentences φ and ψ in propositional logic with the property that $\vdash \varphi \rightarrow \psi$ and also $\vdash \varphi \rightarrow \neg \psi$. This shows that (ii) does not in general imply (i).

Fix an atomic sentence p. Let $\varphi = \mathsf{F}$ and $\psi = p \vee \neg p$. Then we see that $\vdash \mathsf{F} \to (p \vee \neg p)$ and $\vdash \mathsf{F} \to \neg (p \vee \neg p)$

4 A step in the lemma on state descriptions

Recall from class the main lemma on state descriptions. It says: For all sentences φ , and all state descriptions α , if $occ(\varphi) \subseteq occ(\alpha)$, then either $\vdash \alpha \to \varphi$, or else $\vdash \alpha \to \neg \varphi$.

The proof was by induction on φ . In the lecture slides, you can find the induction steps for \wedge and for \neg . Your task: prove the induction step for \rightarrow . Be sure to use the relation between the sets $occ(\varphi \rightarrow \psi)$, $occ(\varphi)$, and $occ(\psi)$.

Fix φ and ψ . Assume if $occ(\varphi) \subseteq occ(\alpha)$ then either $\vdash \alpha \to \varphi$ or $\vdash \alpha \to \neg \varphi$.

Also assume that if $occ(\psi) \subseteq occ(\alpha)$ then either $\vdash \alpha \rightarrow \psi$ or $\vdash \alpha \rightarrow \neg \psi$.

We prove if $occ(\varphi \to \psi) \subseteq occ(\alpha)$ then either $\vdash \alpha \to (\varphi \to \psi)$ or $\vdash \alpha \to \neg(\varphi \to \psi)$. Suppose $occ(\varphi \to \psi) \subseteq occ(\alpha)$. We show that $\vdash \alpha \to (\varphi \to \psi)$ or $\vdash \alpha \to \neg(\varphi \to \psi)$.

Note that $occ(\varphi \to \psi) = occ(\varphi) \cup occ(\psi)$. So $occ(\varphi) \subseteq occ(\varphi \to \psi)$ and $occ(\psi) \subseteq occ(\varphi \to \psi)$.

Then by our assumption $\vdash \alpha \to \varphi$ or $\vdash \alpha \to \neg \varphi$. By our other assumption $\vdash \alpha \to \psi$ or $\vdash \alpha \to \neg \psi$

We must prove 4 different cases:

$$\alpha \to \varphi, \alpha \to \psi \vdash \alpha \to (\varphi \to \psi)$$

1.
$$\alpha \rightarrow \varphi$$

2. $\alpha \rightarrow \psi$

3.

4.

5.

6.

7. $\alpha \rightarrow (\varphi \rightarrow \varphi)$

Premise

Premise

Assume

Assume

 \rightarrow_e , 2, 3

 \rightarrow_i , 4, 5

 \rightarrow_i , 3-6

$$\alpha \to \neg \varphi, \alpha \to \psi \vdash \alpha \to (\varphi \to \psi)$$

1. $\left[\alpha \rightarrow \neg \varphi \right]$

 α

2. $\alpha \rightarrow \psi$

3.

4.

5.

6.

7. $\alpha \to (\varphi \to \psi)$

 $\varphi \to \psi$

Premise

Premise

Assume

Assume

 \rightarrow_e , 2, 3

 \rightarrow_i , 4, 5

 \rightarrow_i , 3-6

$$\alpha \to \varphi, \alpha \to \neg \psi \vdash \alpha \to \neg (\varphi \to \psi)$$

1.
$$\alpha \to \varphi$$

2. $\alpha \rightarrow \neg \psi$

α

 $\varphi \to \psi$

ψ

F

 $\neg(\varphi \to \psi)$

3.

4.

5.

6.

7.

8.

9.

10. $\alpha \rightarrow$

Premise

Premise

Assume

Assume

 \rightarrow_e , 1, 3

 \rightarrow_e , 3, 4

 \rightarrow_e , 2, 3

 F_i , 5,6

 \rightarrow_i , 4, 5

 \rightarrow_i , 3-6

$$\alpha \to \neg \varphi, \alpha \to \neg \psi \vdash \alpha \to (\varphi \to \psi)$$

- 1. $\alpha \to \neg \varphi$
- 2. $\alpha \rightarrow \neg \psi$

 α

 $\neg \psi$

- 3.
- 4.
- 5.
- 6.
- 7. φ
- 8. $\alpha \to (\varphi \to \psi)$

Premise

Premise

Assume

Assume

 \rightarrow_e , 1, 3

 \rightarrow_i , 4-5

Contrapositive

→*i*, 3-7

By showing all the possible cases we conclude that $\vdash \alpha \to (\varphi \to \psi)$ or $\vdash \alpha \to \neg(\varphi \to \psi)$. This concludes the induction step for \to .

Below is the necessary proof of contrapositive used in the previous result.

$$\vdash (\neg \psi \to \neg \varphi) \to (\varphi \to \psi)$$

1.	$\neg \psi \to \neg \varphi$	Assume
2.	φ	Assume
3.	$\neg \psi$	Assume
4.	$ \mid \mid \neg \varphi \mid \mid $	\rightarrow_e , 1, 3
5.	F	F _i , 2, 4
6.	$\neg\neg\psi$	¬ _i , 3-5
7.	ψ	$\neg \neg_e$
8.	$\varphi \to \psi$	→ _i , 2-7

5 Consistent and satisfiable

A sentence φ in propositional logic is *consistent* if $\vdash \! / \neg \varphi$. That is, $\neg \varphi$ is *not* provable.

1. Prove that if φ is consistent, then φ is satisfiable.

Fix φ . We prove the contrapositive. Assume φ is not satisfiable and we show φ is not consistent. φ not satisfiable means for all valuations v, $\llbracket \varphi \rrbracket_v = \mathsf{F}$. Then $\llbracket \neg \varphi \rrbracket_v = \mathsf{T}$, so $\models \neg \varphi$. By completeness, $\vdash \neg \varphi$ and therefore φ is inconsistent.

2. Prove that if φ is satisfiable, then φ is consistent.

Fix φ . We prove the contrapositive. Assume φ is inconsistent. We have to show φ is not satisfiable. This means $\vdash \neg \varphi$. Then by soundness, $\models \neg \varphi$. So there are no valuations such that $\llbracket \varphi \rrbracket = \mathsf{T}$, therefore $\not\models \varphi$ and φ is not satisfiable.

You will need to use either the soundness or completeness of our logic, or both. Please be sure to write down exactly where you used these results.