ryptography best 2

- **1.10.** For each of the gcd(a, b) values in Exercise 1.9, use the extended Euclidean algorithm (Theorem 1.11) to find integers u and v such that au + bv = gcd(a, b).
- (a) gcd(291, 252).
- (b) gcd(16261, 85652).

SO	(a) gi	l u:	V; ~	≥ 291(13)+252(-15)
<i>w</i>	291	1	0	= gcd (291, 252)
	252	0	1	= (3) Ans
	291/.252=291-252=39	1+0(-1)=1	0+1(-1)= -1	$\rightarrow \sqrt{u=13}$
	1		1+(-1)(-6)=7	→ (= 13)
	39%18=39-2.18=3	1-2(-6)=(13)	-1-2(7)= (-15)	013
	18/3=18-6-3= O	l		

(d)	g _i -	u _i 1	√; (
(D)	16261	1	0	7 (72)
	85652	٥	1	$\Rightarrow (y = -74)$
	16261% 85652 = 16261	1	0	V= 15
	85652% 6261 = 85652-5.16261 = 4347	0-5(1)=-5	1-5(0)=1	10.00
	16261%4347=16261-3.4347=3220	1-3(-5) = 16	0+1(-3)=-3	here, a = 16261
	4347% 3220 = 4347-3220 = 1127	-5-16 = -21	1-(-3) = 4	b=85652
	3220% 1127 = 3220 -2.1127 = 966	16-2(-21) = 58	-3-2(4)=-11	
	1127%,966 = 1127-966 = 161	-21-58=(-79	4-(-11) = (15)	J
	966%161=966-6·161= <u>Q</u>			

$$gcd(16261, 85652) \approx 16261(-79) + 85652(15) = [161]$$

1.15. Let
$$m \ge 1$$
 be an integer and suppose that $a_1 \equiv a_2 \pmod{m}$ and b

Prove that
$$a_1 \pm b_1 \equiv a_2 \pm b_2 \pmod{m}$$
 and

$$a_1 \equiv a_2 \pmod m$$
 and $b_1 \equiv b_2 \pmod m$. ve that

$$a_1 \pm b_1 \equiv a_2 \pm b_2 \pmod{m}$$
 and $a_1 \cdot b_1 \equiv a_2 \cdot b_2 \pmod{m}.$ (This is Proposition 1.13(a).)

$$\begin{array}{ccc} a_1 \equiv a_2 \pmod{m} & \Longrightarrow & a_1 = m k_1 + a_2 \\ b_1 \equiv b_2 \pmod{m} & \Longrightarrow & b_1 = m k_1 + b_2 \end{array}$$

$$b_1 \equiv b_2 \pmod{m} \implies b_1 = mK_b + b_2$$

$$Q_1 \pm b_1 = (m k_0 + Q_2) \pm (m k_b + b_2).$$

$$Q_1 \pm b_1 = (m K_0 + Q_2) \pm (m K_b + b_1)$$

$$= m(k_0 \pm k_b) + (q_2 \pm b_2)$$

=
$$m(k_a \pm k_b) + (q_z \pm b_z)$$

As we know that m divides m

$$(a_1 \pm b_1 \equiv a_2 \pm b_2 \pmod{m})$$
, Hence Peroved

Moreover,
$$a_1b_1 = (mk_a+a_2)(mk_b+b_2)$$

Moreover,
$$a_1b_1 = (mk_a + a_2)(mk_b + b_1)$$

= $m^2k_ak_b + mk_ab_2 + a_1$

$$= m^2 k_a k_b + m k_a b_z + m k_b a_z + a_z b_z$$
know that m divides $m^2 k_a k_b$, $m k_a b_z$ and m

As we know that m divides
$$m^2k_ak_b$$
, mk_ab_z and mk_ba_z we can say, $a_1b_1 = m(mk_ak_b + k_ab_z + k_ba_z) + a_2b_z$

if treated as quotient
$$(a_1b_1 = a_2b_2 \pmod{m})$$
, Hence Peroved

- 3. The previous problem shows that congruence modulo m is "compatible with" addition and multiplication, in a suitable sense. In this problem, you'll see that this is **not** true of other arithmetic operations, so you have to be careful.
 - (a) (Congruence is not compatible with powers) Suppose we work modulo 11. It is tempting to think that "if $e \equiv f \mod 11$, then $2^e \equiv 2^f \pmod 11$." Find a counterexample showing that this is false (give specific values of e and f and explain why they give a counterexample).
 - (b) (Congruence is not compatible with division) Suppose that we work modulo 21. It is tempting to think that we can "cancel common factors" in a congruence. For example, one might guess that "if $2x \equiv 12 \pmod{34}$, then $x \equiv 6 \pmod{34}$." Find a counterexample (a specific value of x) showing that this is false, and briefly explain why it is a counterexample.

Note: we'll see later that we can recover a sort of compatibility with both powers and division, but the details are subtle.

Sol (a) "if
$$e = f \mod 11$$
 then $2^e = 2^f \pmod 1$ " (= statement) $= e = 1[k+f]$ then the statement says $2^{lk+f} = 2^f \pmod 1$

if we take
$$k = 1$$
 and $f = 0$, the equation gives...
 $e = ||(1) + 0| = ||$ and
in order to statement to be true, $2 = 2^{\circ} \pmod{||}$
 $\Rightarrow 2048 = | \pmod{||}$ which is False because

(b) "if
$$2x = 12 \pmod{34}$$
, then $x = 6 \pmod{34}$ " \in statement $\Rightarrow (2x = 34k + 12)$ $\forall k$, then the statement says

that
$$(17k+6) \equiv 6 \pmod{34}$$

thus, $17k+6 = 34k'+6 \implies k=2k'$ where $k,k' \in \mathbb{Z}$
But, in the case when $k = odd$ (for eg. 3), then k'
would not be an integer (which shouldn't be the case)

$$\Rightarrow x = 17k + 6 = 17(2) + 6 = 40$$
 [Hence, this is a valid counter example.

4. Prove the following basic facts about congruence, asserted in class.
(a) For any integer $a \in \mathbb{Z}$ and positive integer $m, a \equiv (a\%m) \pmod{m}$.
(b) With a, m as above, the number $a\%m$ is the unique element of $\{0, 1, \dots, m-1\}$ that is congruent to a modulo m (that is, no other element of this set is congruent to a modulo m).
(c) For any two integers $a,b\in\mathbb{Z}$ and any positive integer $m,a\equiv b\pmod m$ if and only if $a\%m=b\%m$.
(a) If we divide two positive integers a and me, let's say we get remainder or and quotient q
. Then, (a = mq+x)
\Rightarrow To prove: $a \equiv (a / m) \pmod{n}$
$\Rightarrow (mq+n) \equiv n \pmod{m}$
and as these must represent the same number,
and as these must represent the same number,
mg+z=mk+z \Rightarrow q=k., Hence froved. D
(b) $a = mq + r$, if $r > m$, then $\exists k$ such that $r - km = r' \geqslant 0$, $(r' < m)$
uniqueness: $ a = mq + n = mq + (k_m + n') = m(q + k) + k^{1} $ $ \Rightarrow a \% m = n' \text{ where } n' \in \{0,1,,m-1\} $ $ \Rightarrow a \% m =$
As we know that the lefthand sides of both equations are equal, then the right hand sides should also equate =) $\frac{r}{r} + k = \frac{(a : m)}{m} + \frac{1}{m}$
As we know, $k \in \left(\frac{a}{m}\right)$ are integers and $\frac{n}{m}$ and $\frac{(a \times m)}{m}$ are between 0 and 1,
Integral & fractional parts should equate separately > [r=a1.m], Hence Proved @
(c) To prove: a ≡b(mod m) ⇔ a%m = b%m
(i) direction" \Rightarrow ": $a = b \pmod{m} \Rightarrow a = mq + b$
= a:1.m=(mq+b):/m = [b:/m] Hence Proved
(ii) direction " \in ": $a\%m = b\%m \Rightarrow (a = mq, +r)$, where $t < m$
$a-b=m(q_1-q_1) \implies m(a-b)$ which is definition of
$a = b \pmod{n}$, Hence Proved \mathbb{Z}

1.16. Write out the following tables for $\mathbb{Z}/m\mathbb{Z}$ and $(\mathbb{Z}/m\mathbb{Z})^*$, as we did in Figs. 1.4 and 1.5.

- (a) Make addition and multiplication tables for $\mathbb{Z}/3\mathbb{Z}$.
- (b) Make addition and multiplication tables for $\mathbb{Z}/6\mathbb{Z}$.
- (c) Make a multiplication table for the unit group $(\mathbb{Z}/9\mathbb{Z})^*$.

SON

(a)

	土	0	1	2	L
	0	O	1	2	
_	1	1	2	0	
•	2	2	0	1	Ţ

($[\cdot]$	0	1	2 _
	0	0	0	0
٦	1	0	1	2
	2	0	2	1

(d)	+	0	1	2	3	4	5
	0	0	1	2	3	4	5
1	1	1	2	3	7	5	٥
1	2	2	3	4	5	0	1
	3	3	Ч	5	0	1	2
•	4	4	5	0	1	2	3
	5	5	0	1	2	3	Ч

l	•	0	1	2	3	7	5	
	0	0	0	0	0	Ö	0	
T	1	0	1	2	3	4	5	
T	2	0	2	4	0	2	4	L
t	3	0	3	0	3	0	3	
1	4	0	4	2	0	4	2	
	5	0	5	4	3	2	1	I

	_			_		$\overline{}$	_
(c)		1	2	4	5	7	8
,	1	1	2	4	5	7	8
•	2	2	4	8	1	5	7
	4	4	8	7	2	1	5
	5	5	1	2	7	8	4
	7	7	5	1	8	4	2
	8	8	7	5	4	2	1

According to the extended Euclidean Algorithm
According to the extended Euclidean Algorithm $\exists u, v \in \mathbb{Z}$ satisfying $au + bv = gcd(a, b)$. Then,
$g^{\text{gcd}(q_1b)} = g^{\text{autbv}} = (g^q)^{\text{u}} \cdot (g^b)^{\text{v}}$
By using the results, $g^a \equiv 1 \pmod{n}$ I from the $g^b \equiv 1 \pmod{n}$ I question by
$g^{gcd(a,b)} = (g^a)^u \cdot (g^b)^v = [1 \pmod m]$, Hence Proved