# MS-C2111 Stochastic Processes



Lecture 5
General Markov chains and random walks

Jukka Kohonen Aalto University

# Contents

Markov chains on infinite spaces

Reversible chains

Random walks

## Contents

Markov chains on infinite spaces

Reversible chains

Random walks

# Countable state spaces

Let S be a countable (finite or countably infinite) state space

Initial distribution is a map  $\mu_0:S o [0,1]$  such that

$$\sum_{x \in S} \mu_0(x) = 1$$

Transition matrix is a map  $P: S \times S \rightarrow [0,1]$  such that

$$\sum_{y \in S} P(x, y) = 1 \text{ for all } x \in S$$

Product  $\mu_0 P$  (row vector  $\times$  square matrix) is a map defined by

$$(\mu_0 P)(y) = \sum_{x \in S} \mu_0(x) P(x, y)$$
 for all  $y \in S$ 

# Multiplication of infinite matrices

The product of nonnegative matrices P and Q is the nonnegative matrix R = PQ defined by

$$R(x,y) = \sum_{z \in S} P(x,z)Q(z,y) \in [0,\infty].$$

When P and Q are transition matrices, then so is R, because  $R(x,y) \geq 0$  and

$$\sum_{y \in S} R(x,y) = \sum_{z \in S} P(x,z) \sum_{y \in S} Q(z,y) = \sum_{z \in S} P(x,z) = 1.$$

Matrix powers are defined by  $P^0 = I$  and  $P^{t+1} = P^t P$ .

# Time-dependent distributions

Consider a Markov chain on a countably infinite state space with transition matrix P and initial distribution  $\mu_0$ .

#### **Theorem**

The distribution of a Markov chain at time t = 0, 1, 2, ... can be computed by  $\mu_t = \mu_0 P^t$ . Moreover,

$$\mathbb{P}(X_t = y | X_0 = x) = P^t(x, y).$$

#### Proof.

The proof for the finite state space works here equally well.

## What is different?

#### **Theorem**

Any irreducible Markov chain on a finite state space admits a unique invariant distribution  $\pi$ .

For an irreducible Markov chain on an infinite state space, two things may happen:

- There is a unique invariant distribution  $\pi$
- There is no invariant distribution at all

We will see examples of both cases soon.

# Convergence theorem

#### **Theorem**

If an irreducible and aperiodic Markov chain on a countable state space has an invariant distribution  $\pi$ , then the invariant distribution is unique and, regardless of the initial state,

$$\sum_{y} |\mu_t(y) - \pi(y)| \to 0 \quad \text{as } t \to \infty.$$

### Especially:

- $\mu_t(y) \to \pi(y)$  for every y
- $d_{\mathrm{tv}}(\mu_t,\pi) o 0$  where  $d_{\mathrm{tv}}$  is the total variation metric
- $\mathbb{P}(X_t = y \mid X_0 = x) \rightarrow \pi(y)$  for all x, y

The proof (Lecture notes, Sec 5.4) is based on a stochastic coupling method + Markov chain covering theorem.

# Markov chain covering theorem

#### **Theorem**

If an irreducible Markov chain on a countable state space S has an invariant distribution  $\pi$ , then the chain visits every state of the state space infinitely often with probability one.

#### Proof.

Lecture notes, Sec 5.3.

The positive passage time into state y is defined by

$$T_y^+ = \min\{t \ge 1 : X_t = y\}.$$

The probability that a chain started at x later visits y is

$$\rho(x,y)=\mathbb{P}_x(T_y^+<\infty).$$

When x = y, the above number is the return probability of x.

Always

$$\rho(x,y) \geq P(x,y).$$

State x is recurrent if  $\rho(x,x) = 1$  and transient otherwise.

## Contents

Markov chains on infinite spaces

Reversible chains

Random walks

# Reversibility

Transition matrix P is reversible with respect to distribution  $\pi$  (or  $\pi$ -reversible) if the following detailed balance conditions are valid:

$$\pi(x)P(x,y) = \pi(y)P(y,x)$$
 for all  $x,y$ .

#### **Theorem**

If P is  $\pi$ -reversible, then  $\pi$  is an invariant distribution of P.

Proof.

$$(\pi P)(y) = \sum_{x} \pi(x)P(x,y) = \sum_{x} \pi(y)P(y,x) = \pi(y)\sum_{x} P(y,x) = \pi(y)$$

# Reversibility in time

For a Markov chain with a  $\pi$ -reversible transition matrix P, such that  $X_0$  (and hence also every  $X_t$ ) is  $\pi$ -distributed,

$$\mathbb{P}(X_{0} = x_{0}, X_{1} = x_{1}, \dots, X_{t} = x_{t}) 
= \pi(x_{0})P(x_{0}, x_{1})P(x_{1}, x_{2})P(x_{2}, x_{3}) \cdots P(x_{t-1}, x_{t}) 
= P(x_{1}, x_{0})\pi(x_{1})P(x_{1}, x_{2})P(x_{2}, x_{3}) \cdots P(x_{t-1}, x_{t}) 
= P(x_{1}, x_{0})P(x_{2}, x_{1})\pi(x_{2})P(x_{2}, x_{3}) \cdots P(x_{t-1}, x_{t}) 
= \cdots 
= P(x_{1}, x_{0})P(x_{2}, x_{1})P(x_{3}, x_{2}) \cdots P(x_{t}, x_{t-1})\pi(x_{t}) 
= \pi(x_{t})P(x_{t}, x_{t-1}) \cdots P(x_{1}, x_{0}) 
= \mathbb{P}(X_{t} = x_{0}, X_{t-1} = x_{1}, \dots, X_{0} = x_{t})$$

Statistically the chain looks the same when observed backwards in time.

## Birth-death chains

A birth–death chain is a Markov chain on  $S \subset \mathbb{Z}_+$  with a transition matrix such that P(i,j) = 0 for |j-i| > 1.

#### Note

- Birth-death chain can only move to its nearby states (or stay in the current state)
- Birth-death chains with constant transition probabilities (outside boundaries) are called random walks
- The state space can be finite (e.g. gambler's ruin) or countably infinite (e.g. random walk on Z<sub>+</sub>)

## Invariant distributions of birth-death chains

#### **Theorem**

If a birth-death chain has an invariant distribution  $\pi$ , then the chain is  $\pi$ -reversible.

## Proof.

- (i) If |j-i| > 1, then evidently  $\pi_i P_{i,j} = 0 = \pi_j P_{j,i}$ .
- (ii) If j=i+1, then a chain with initial distribution  $\pi$  satisfies (draw a picture)

$$\begin{split} & \mathbb{P}(X_{t+1} \leq i) \\ & = \mathbb{P}(X_t \leq i - 1) + \mathbb{P}(X_t = i)(1 - P_{i,i+1}) + \mathbb{P}(X_t = i + 1)P_{i+1,i} \\ & = \mathbb{P}(X_t \leq i) - \mathbb{P}(X_t = i)P_{i,i+1} + \mathbb{P}(X_t = i + 1)P_{i+1,i} \\ & = \mathbb{P}(X_t \leq i) - \pi_i P_{i,i+1} + \pi_{i+1} P_{i+1,i} \end{split}$$

Because both  $X_t$  and  $X_{t+1}$  are  $\pi$ -distributed,

$$\pi_i P_{i,i+1} = \pi_{i+1} P_{i+1,i}.$$

## Contents

Markov chains on infinite spaces

Reversible chains

Random walks

# Random walk on $\mathbb{Z}_+$

A random walk on  $\mathbb{Z}_+ = \{0, 1, \dots\}$  moves from x > 0 to the right with probability 0 and to the left with probability <math>q = 1 - p.



When the boundary condition is P(0,0) = q we obtain a transition matrix

$$P = \begin{bmatrix} q & p & 0 & 0 & 0 & \cdots \\ q & 0 & p & 0 & 0 & 0 \\ 0 & q & 0 & p & 0 & 0 \\ 0 & 0 & q & 0 & p & \vdots & \ddots & \ddots & \ddots \end{bmatrix}$$

Irreducible? YES. Aperiodic? YES. Invariant distribution exists? (Nontrivial question!)

# ...Random walk on $\mathbb{Z}_+$

The random walk is a birth-death chain, so if an invariant distribution exists, it must satisfy the detailed balance conditions

$$\pi(x)P(x,x-1) = \pi(x-1)P(x-1,x)$$
 that is 
$$\pi(x) \ q = \pi(x-1) \ p, \qquad x \ge 1.$$
 
$$\implies \pi(x) = \alpha^x \pi(0), \ x \ge 0, \ \text{where } \frac{p}{a}.$$

If  $\pi$  is a probability distribution, then

$$1 = \sum_{x=0}^{\infty} \pi(x) = \pi(0) \sum_{x=0}^{\infty} \alpha^{x} = \begin{cases} \pi(0) \left(\frac{1}{1-\alpha}\right), & 0 < \alpha < 1, \\ \pi(0) \cdot \infty, & \alpha \ge 1. \end{cases}$$

- If p < 1/2, then the chain does have an invariant distribution  $\pi(x) = (1 \alpha)\alpha^x$ .
- If  $p \ge 1/2$ , the chain does not have an invariant distribution.

# Random walk on $\mathbb{Z}_+$ , $p < \frac{1}{2}$

Now  $\alpha = p/q < 1$ , so the invariant distribution is a geometric distribution

$$\pi(x) = (1 - \alpha)\alpha^{x}, \quad x = 0, 1, ...$$

#### Note

- By the convergence theorem, the distribution of  $X_t$  converges to  $\pi$ , as  $t \to \infty$ .
- Every state of the chain is recurrent, so the chain visits all states of  $\mathbb{Z}_+$  infinitely often.
- Hence  $\limsup_{t\to\infty} X_t = \infty$  with probability one, so the path of the chain does not converge anywhere.
- Nevertheless the chain reaches its statistical equilibrium

$$\mathbb{P}_i(X_t = j) \rightarrow (1 - \alpha)\alpha^j$$
 for all  $i, j \ge 0$ .

What about  $p > \frac{1}{2}$ ?

Random walk on  $\mathbb{Z}_+$ ,  $p > \frac{1}{2}$ 

When  $p > \frac{1}{2}$ , the chain does not have an invariant distribution.

What happens in the long run?

Define 
$$Y_t = \begin{cases} +1, & \text{if the } t\text{-th step is to the right,} \\ -1, & \text{else} \end{cases}$$

## Note

- $\mathbb{P}(Y_t = 1) = 1 \mathbb{P}(Y_t = -1) = p \text{ for all } t \ge 1.$
- $\mathbb{E}(Y_t) = 2p 1 > 0$ .
- $Y_1, Y_2, \ldots$  are independent
- $(Y_t)_{t\geq 1}$  is a Markov chain on  $\{-1,1\}$ , irreducible, aperiodic, invariant distribution  $\pi$  such that  $\pi(-1)=1-p, \ \pi(1)=p$
- By ergodic theorem,  $\frac{1}{t}\sum_{s=1}^{t}Y_{s} \to \sum_{s}x\pi(x) = 2p-1$  w.pr. 1
- $X_t X_{t-1} > Y_t$  for all t > 1.

Random walk on  $\mathbb{Z}_+$ ,  $p > \frac{1}{2}$ 

The law of large numbers implies that with probability one,

$$\lim_{t\to\infty}\frac{\sum_{s=1}^t Y_s}{t}=2p-1>0 \quad \Longrightarrow \quad \lim_{t\to\infty}\sum_{s=1}^t Y_s=\infty.$$

On the other hand,  $X_t-X_0=\sum_{s=1}^t(X_s-X_{s-1})\geq\sum_{s=1}^tY_s$ , so that

$$X_t \to \infty$$
 with probability one.

Hence if p > 1/2, then all states are transient.

What about  $p = \frac{1}{2}$ ?

Random walk on  $\mathbb{Z}_+$ ,  $p=\frac{1}{2}$ 

$$p = \frac{1}{2} \implies$$
 no invariant distribution

What happens in the long run?

 $T_i$  = passage time into state j

- Starting from state 1, the probability to reach N before 0 is  $\mathbb{P}_1(T_N < T_0)$
- Gambler's ruin on  $\{0,\ldots,N\} \implies \mathbb{P}_1(T_N < T_0) = \frac{1}{N}$
- The probability of never visiting 0 equals

$$\mathbb{P}_1(T_0 = \infty) = \lim_{N \to \infty} \ \mathbb{P}_1(T_N < T_0) = \lim_{N \to \infty} \ \frac{1}{N} = 0$$

- Hence  $\mathbb{P}_0(T_0^+ < \infty) = \mathbb{P}_1(T_0 < \infty) = 1$ , so state 0 is recurrent.
- Because the chain is irreducible, all states are recurrent.

# Random walk on $\mathbb{Z}_+$ , $p=\frac{1}{2}$

What about the expected passage time  $\mathbb{E}_i(T_0)$  from state i to state 0?

- Clearly  $\mathbb{E}_i(T_0) \geq \mathbb{E}_i(\min\{T_0, T_N\})$ .
- When  $i \leq N$ , the latter expectation is the same as for a gambler's ruin, so that  $\mathbb{E}_i(\min\{T_0, T_N\}) = i(N i)$ .
- When  $N \to \infty$ , it hence follows that

$$\mathbb{E}_i(T_0) \geq \mathbb{E}_i(\min\{T_0, T_N\}) = i(N-i) \to \infty.$$

for all  $i \geq 1$ .

• The expected return time to state zero is  $1 + \mathbb{E}_1(T_0) = \infty$ .

Although the return time to state 0 is surely finite, the expected return time is infinite.

# Random walk on $\mathbb{Z}_+$ — Summary

Irreducible and aperiodic Markov chain with infinite state space



$$P = \begin{bmatrix} q & p & 0 & 0 & 0 & \cdots \\ q & 0 & p & 0 & 0 & 0 \\ 0 & q & 0 & p & 0 & 0 \\ 0 & 0 & q & 0 & p & 0 \\ \vdots & & \ddots & \ddots & \ddots & \ddots \end{bmatrix}$$

- If  $p < \frac{1}{2}$ , then chain has the geometric distribution  $\frac{\pi(x)}{\pi(x)} = (1 p/q)(p/q)^x$  as the unique invariant distribution.
- If  $p = \frac{1}{2}$ , then there is no invariant distribution, and all states are recurrent (the chain surely visits all states infinitely many times)
- If  $p > \frac{1}{2}$ , then there is no invariant distribution, and all states are transient (after visiting a state, the chain might never visit it again)

# Random walks in multiple dimensions



The symmetric random walk on the d-dimensional integer lattice is recurrent for d=1,2 but transient for  $d\geq 3$ . (Georg Pólya 1920)

A drunk man will find his way home, but a drunk bird might get lost forever. (Shizuo Kakutani)

## References



Richard Durrett.

Essentials of Stochastic Processes.

Springer, second edition, 2012.

## Sources

### **Photos**

1. Image courtesy of think4photop at FreeDigitalPhotos.net