Chapter 1 Matrix Algebra

CONTENTS

- 1. Matrices
- 2. Special matrices
- 3. Matrix Addition, Scalar Multiplication, and Transposition
- 4. Matrix Multiplication (2.3 7e)
- 5. Elementary row operations
- 6. Rank of the matrix
- 7. Matrix Inverses (2.4 7e)
- 8. Matrix Transformations (2.2 & 2.6 7e)

OBJECTIVES

- * Practicing some matrix operations
- ★ Find matrix inverse
- * Using matrix transformations to reveal the geometrical meaning of matrix multiplication and inverse.
- ★ The relationship of matrix algebra to linear equations

DEFINITIONS

Definition. An $m \times n$ matrix (or a matrix of size $m \times n$) is a rectangular array of numbers with m rows and n columns

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}_{m \times n} = (a_{ij})_{m \times n}$$

- \star A is denoted simply as A = (aij)
- \star $m \times n$ size of the matrix A
- * The (i,j)-entry of A (denoted by a_{ij}) lies in row i and column j

Example.

$$A = \begin{bmatrix} 7 & -3 & 1/2 \\ 3 & -5 & 0 \end{bmatrix} \xrightarrow{\begin{array}{c} (1,3)-\text{entry} \\ a[1,3] = 1/2 \\ a_{13} = 1/2 \end{array}}$$

A is a 2×3 matrix (or a matrix of size 2×3)// 2 rows, 3 columns

$$B = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 2 & 5 & -1 \end{array} \right]$$

$$C = \left[\begin{array}{c} 2.00 \\ -3.00 \\ 1.75 \end{array} \right]$$

 3×3 matrix,a square matrix

 3×1 matrix, column matrix

ZERO MATRIX

Definition. The zero matrix (ma trận không) is a matrix in which all elements are zero, denoted by $0_{m \times n}$ (or 0).

SQUARE MATRIX

Definition. An $n \times n$ matrix is called a square matrix (ma trận vuông) of size m.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{2n} \end{pmatrix}$$

 $M_n(\mathbb{R})$: the set of all n square matrices on \mathbb{R} .

The elements $a_{11}; a_{22}; ...; a_{nn}$ are called the main diagonal (đường chéo chính) of A.

Example.
$$A = \begin{pmatrix} 2 & -3 & 1 \\ 0 & 4 & 1 \\ 2 & -2 & -3 \end{pmatrix}$$

TRIANGULAR MATRICES

* An upper triangular matrix (ma trận tam giác trên) is a square matrix in which all entries below the main diagonal are zero.

$$M = \begin{pmatrix} -1 & 0 & 3 \\ 0 & 4 & 2 \\ 0 & 0 & -5 \end{pmatrix}, N = \begin{pmatrix} -2 & 3 \\ 0 & 1 \end{pmatrix}$$

* A lower triangular matrix (ma trận tam giác dưới) is a square matrix in which all entries above the main diagonal are zero.

$$P = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 0 & 0 \\ 3 & 1 & 0 \end{pmatrix}, Q = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 3 & 1 & 0 & 0 \\ -4 & 2 & 0 & 0 \\ 0 & -1 & 0 & 5 \end{pmatrix}$$

* Matrix A is called **triangular** if it is upper or lower triangular

DIAGONAL MATRIX

A diagonal matrix (ma trận đường chéo) is a square matrix with zero entries except possibly on the main diagonal.

$$A = \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix} = \operatorname{diag}(a_{11}, a_{22}, \dots, a_{nn})$$

$$A = \left(\begin{array}{ccc} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 5 \end{array}\right)$$

IDENTITY MATRIX

The square matrix

$$I_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

is known as the **identity matrix** (ma trận đơn vị) of dimension n.

Example.
$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, ...

EQUAL MATRIX

Two matrices $A = (a_{ij})$ and $B = (b_{ij})$.

$$A = B \Leftrightarrow \begin{cases} A, B \text{ have the same size} \\ a_{ij} = b_{ij}, \forall i, j \end{cases}$$

Example. Given
$$A=\begin{pmatrix}a&b\\c&d\end{pmatrix}, B=\begin{pmatrix}1&2&-1\\3&0&1\end{pmatrix}, C=\begin{pmatrix}1&0\\-1&2\end{pmatrix}$$
, discuss the possibility that $A=B, B=C, A=C$.

Example. Find x, y, z, t to

$$\begin{pmatrix} 1 & x - 1 & y \\ z & -3 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1 \\ 2 & -3 & 1 - 2t \end{pmatrix} \Leftrightarrow \begin{cases} x = 1 \\ y = -1 \\ z = 2 \\ t = -2 \end{cases}$$

TRANSPOSE

- * If $A = (a_{ij})$ is any $m \times n$ matrix, the transpose of A, written A^T , is an $n \times m$ matrix defined by $A^T = (a_{ji})$.
- * The row i of A is the column i of A^T
- * The **column** j of A is the **row** j of A^T

$$A = \begin{pmatrix} 1 & -1 & 4 & 5 \\ 6 & -8 & 0 & 1 \\ 0 & 4 & -3 & 6 \end{pmatrix} \Longrightarrow A^{T} = \begin{pmatrix} 1 & 6 & 0 \\ -1 & -8 & 4 \\ 4 & 0 & -3 \\ 5 & 1 & 6 \end{pmatrix}$$

SYMMETRIC MATRIX - SKEW SYMMETRIC MATRIX

- * If $A^T = A$, then A is a symmetric matrix (ma trận đối xứng).
- \star If $A^T = -A$, then A is a skew symmetric matrix (ma trận phản xạ).

$$\star A = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 4 & 5 \\ -2 & 5 & 6 \end{pmatrix}$$
 is a symmetric matrix.

$$\star B = \begin{pmatrix} 0 & -2 & 1 \\ 2 & 0 & -3 \\ -1 & 3 & 0 \end{pmatrix}$$
 is a skew symmetric matrix.

SCALAR MULTIPLICATION (PHÉP NHÂN VÔ HƯỚNG)

$$\star$$
 If $A = [a_{i,j}]$, that is

$$kA = [ka_{i,j}]$$

$$\star kA = 0 \rightarrow \text{(either } k = 0 \text{ or } A = 0 \text{)}$$

$$\star$$
 $(k=0 \text{ or } A=0) \rightarrow kA=0$

Example. Let
$$A = \begin{pmatrix} 3 & 4 & 1 \\ 0 & 1 & -3 \end{pmatrix}$$
. Then

$$\star 2A = \left(\begin{array}{ccc} 6 & 8 & 2\\ 0 & 2 & -6 \end{array}\right).$$

$$\star -A = \left(\begin{array}{ccc} -3 & -4 & -1 \\ 0 & -1 & 3 \end{array} \right).$$

MATRIX ADDITION OF SAME SIZE MATRICES

If $A = (a_{ij})$ and $B = (b_{ij})$, this take the form

$$A \pm B = (a_{ij} \pm b_{ij})_{m \times n}$$

$$\star \left(\begin{array}{rrr} -1 & 0 & 2 \\ 2 & 3 & -4 \end{array} \right) + \left(\begin{array}{rrr} 2 & 0 & 2 \\ 5 & -3 & 1 \end{array} \right) = \left(\begin{array}{rrr} 1 & 0 & 4 \\ 7 & 0 & -3 \end{array} \right)$$

$$\star \left(\begin{array}{rrr} -1 & 0 & 2 \\ 2 & 3 & -4 \end{array} \right) - \left(\begin{array}{rrr} 2 & 0 & 2 \\ 5 & -3 & 1 \end{array} \right) = \left(\begin{array}{rrr} -3 & 0 & 0 \\ -3 & 6 & -5 \end{array} \right)$$

$$5\begin{pmatrix} 1 & -2 \\ 4 & 0 \\ -2 & 4 \end{pmatrix} - 2\begin{pmatrix} 9 & 2 & -1 \\ -8 & 8 & 4 \end{pmatrix}^{T} = \begin{pmatrix} 5 & -10 \\ 20 & 0 \\ -10 & 20 \end{pmatrix} - \begin{pmatrix} 18 & -16 \\ 4 & 16 \\ -2 & 8 \end{pmatrix}$$
$$= \begin{pmatrix} -13 & 6 \\ 16 & -16 \\ -8 & 12 \end{pmatrix}$$

PROPERTIES

Let A, B and C denote arbitrary $n \times m$ matrices where n and m are fixed. Let k and p denote arbitrary real numbers. Then

- 1. A + B = B + A (commutative law: giao hoán)
- 2. A + (B + C) = (A + B) + C (associative law: kết hợp)
- **3.** There is an $n \times m$ matrix 0, such that 0 + A = A for each A.
- **4.** For each A there is an $n \times m$ matrix, -A, such that A + (-A) = 0
- 5. k(A+B) = kA + kB.
- **6.** (k+p)A = kA + pA.
- 8. 1A = A.

7. (kp)A = k(pA).

DOT PRODUCT (TÍCH VÔ HƯỚNG)

$$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} = 1 \times 3 + 2 \times 2 + 3 \times 1 = 10$$

MATRIX MULTIPLICATION

Suppose $A=[a_{ij}]$ is an $m\times k$ matrix and $B=[b_{ij}]$ is an $k\times n$ matrix, then the product $AB=[c_{ij}]$ is an $m\times n$ matrix whose the (i,j)-entry is the dot product of row i of A and column j of B

$$c_{ij} = (\text{row } i \text{ of } A).(\text{column } j \text{ of } B) = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{ik}b_{kj}$$

Example. Give
$$A = \begin{pmatrix} 2 & -1 & 4 \\ 4 & 1 & 0 \end{pmatrix}$$
; $B = \begin{pmatrix} 1 & -2 & 2 \\ 3 & 0 & 1 \\ 2 & 4 & 3 \end{pmatrix}$ Find AB và BA ?

$$AB = \begin{pmatrix} 2 & -1 & 4 \\ 4 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -2 & 2 \\ 3 & 0 & 1 \\ 2 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 7 & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \end{pmatrix}$$
$$c_{11} = \begin{pmatrix} 2 & -1 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} = 2 \times 1 + (-1) \times 3 + 4 \times 2 = 7$$

Example. Give
$$A = \begin{pmatrix} 2 & -1 & 4 \\ 4 & 1 & 0 \end{pmatrix}$$
; $B = \begin{pmatrix} 1 & -2 & 2 \\ 3 & 0 & 1 \\ 2 & 4 & 3 \end{pmatrix}$ Find AB và BA ?

$$AB = \begin{pmatrix} 2 & -1 & 4 \\ 4 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -2 & 2 \\ 3 & 0 & 1 \\ 2 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 7 & 12 & c_{13} \\ c_{21} & c_{22} & c_{23} \end{pmatrix}$$
$$c_{12} = \begin{pmatrix} 2 & -1 & 4 \end{pmatrix} \begin{pmatrix} -2 \\ 0 \\ 4 \end{pmatrix} = 2 \times (-2) + (-1) \times 0 + 4 \times 4 = 12$$

Example. Give
$$A = \begin{pmatrix} 2 & -1 & 4 \\ 4 & 1 & 0 \end{pmatrix}$$
; $B = \begin{pmatrix} 1 & -2 & 2 \\ 3 & 0 & 1 \\ 2 & 4 & 3 \end{pmatrix}$ Find AB và BA ?

$$AB = \begin{pmatrix} 2 & -1 & 4 \\ 4 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -2 & 2 \\ 3 & 0 & 1 \\ 2 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 7 & 12 & 15 \\ 7 & -8 & 9 \end{pmatrix}$$
$$c_{23} = \begin{pmatrix} 4 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} = 4 \times 2 + 1 \times 1 + 0 \times 3 = 9$$

Example. Compute
$$AB$$
 if $A = \begin{pmatrix} 2 & 3 & 5 \\ 1 & 4 & 7 \\ 0 & 1 & 8 \end{pmatrix}$ and $B = \begin{pmatrix} 8 & 9 \\ 7 & 2 \\ 6 & 1 \end{pmatrix}$.

Solution.

$$C = AB = \begin{pmatrix} 2 & 3 & 5 \\ 1 & 4 & 7 \\ 0 & 1 & 8 \end{pmatrix} \begin{pmatrix} 8 & 9 \\ 7 & 2 \\ 6 & 1 \end{pmatrix} = \begin{pmatrix} 2 \cdot 8 + 3 \cdot 7 + 5 \cdot 6 & 2 \cdot 9 + 3 \cdot 2 + 5 \cdot 1 \\ 1 \cdot 8 + 4 \cdot 7 + 7 \cdot 6 & 1 \cdot 9 + 4 \cdot 2 + 7 \cdot 1 \\ 0 \cdot 8 + 1 \cdot 7 + 8 \cdot 6 & 0 \cdot 9 + 1 \cdot 2 + 8 \cdot 1 \end{pmatrix}$$
$$= \begin{pmatrix} 67 & 29 \\ 78 & 24 \\ 55 & 10 \end{pmatrix}$$

Does BA exist?

THEOREM

Assume that a is any scalar, and that A,B, and C are matrices of sizes such that the indicated matrix products are defined. Then:

- 1. IA = A and AI = A where I denotes an identity matrix.
- **2.** A(BC) = (AB)C.
- **3.** A(B+C) = AB + AC
- **4.** (B+C)A = BA + CA
- **5.** a(AB) = (aA)B = A(aB).
- **6.** $(AB)^T = B^T A^T$.

KTH POWER OF A

For a square matrix A and positive integer k, the k th power of A is defined by multiplying this matrix by itself repeatedly; that is

$$A^k = \underbrace{AA \cdots A}_{k \text{ times}}$$

where there are k copies of the matrix A.

Example. For
$$A = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$$
. Calculate A^2 and A^3

ROW-ECHELON MATRIX

$$\begin{pmatrix}
0 & 1 & * & * & * & * & * \\
0 & 0 & 0 & 1 & * & * & * \\
0 & 0 & 0 & 0 & 1 & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

A row-echelon matrix has 3 properties

- * All the zero rows are at the bottom
- ★ The first nonzero entry from the left in each nonzero row is a 1, called the leading 1 for that row
- * Each leading 1 is **to the right** of all leading 1's in the rows above it

ROW-ECHELON MATRIX

The row-echelon matrix has the "staircase" form

(for any choice in *-position)

ROW-ECHELON MATRIX

$$\begin{pmatrix} 1 & * & * \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & * & * \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

A REDUCED ROW-ECHELON MATRIX

A reduced row-echelon matrix (ma trận bậc thang theo dòng thu gọn) has the properties

- * It is a row-echelon matrix
- ★ Each leading 1 is the **only nonzero** entry in its column

$$\begin{pmatrix}
1 & 0 & * & 0 \\
0 & 1 & * & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

REDUCED ROW- ECHELON MATRIX

$$\begin{pmatrix}
1 & 0 & * & 0 \\
0 & 1 & * & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & * & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

Example. Find x, y so that the matrix

$$\left(\begin{array}{ccc} 1 & x & y \\ 0 & x & 1 \end{array}\right)$$

- a) is row-echelon matrix
- b) is reduced row-echelon matrix

ELEMENTARY ROW OPERATIONS

The three elementary row operations are:

- \star (Row Swap) Exchange any two rows: $d_i \leftrightarrow d_j$
- \star (Scalar Multiplication) Multiply any row by a constant: $d_i := \alpha d_i, \alpha \neq 0$
- \star (Row Sum) Add a multiple of one row to another row: $d_i := d_i + \beta d_j, \beta \neq 0$

Example. Use elementary row operations to transform A to B.

$$A = \begin{pmatrix} 2 & 1 & -1 \\ 1 & -2 & 3 \\ 3 & -1 & 2 \end{pmatrix}; B = \begin{pmatrix} 1 & -2 & 3 \\ 0 & 1 & -7/5 \\ 0 & 0 & 0 \end{pmatrix}.$$

GAUSSIAN ALGORITHM

Theorem. Every matrix can be brought to (reduced) row-echelon form by a series of elementary row operations

- * Step 1. If all row are zeros, stop
- * Step 2. Otherwise, find the first column from the left containing a nonzero entry (call it a) and move the row containing a to the top position
- \star Step 3. Multiply that row by 1/a to creat the leading 1
- ★ Step 4. By subtracting multiples of that row from the rows below it, make each entry below the leading 1 zero
- ★ Step 5. Repeat step 1-4 on the matrix consisting of the remaining rows

Example. Carry the matrix

$$A = \left(\begin{array}{rrrr} 2 & 6 & -2 & 2 \\ -2 & -3 & 11 & 4 \\ 3 & 11 & 3 & 0 \end{array}\right)$$

- ⋆ to row-echelon matrix
- * to reduced row-echelon matrix

Solution.

$$\begin{pmatrix} 2 & 6 & -2 & 2 \\ -2 & -3 & 11 & 4 \\ 3 & 11 & 3 & 0 \end{pmatrix} \xrightarrow{r_1 \to \frac{1}{2}r_1} \begin{pmatrix} 1 & 3 & -1 & 1 \\ -2 & -3 & 11 & 4 \\ 3 & 11 & 3 & 0 \end{pmatrix} \xrightarrow{r_2 \to r_2 + 2r_1} \begin{pmatrix} 1 & 3 & -1 & 1 \\ 0 & 3 & 9 & 6 \\ 0 & 2 & 6 & -3 \end{pmatrix}$$

$$\xrightarrow{r_2 \to \frac{1}{3}r_2} \begin{pmatrix} 1 & 3 & -1 & 1 \\ 0 & 1 & 3 & 2 \\ 0 & 2 & 6 & -3 \end{pmatrix} \xrightarrow{r_3 \to r_3 - 2r_2} \begin{pmatrix} 1 & 3 & -1 & 1 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & -7 \end{pmatrix}$$

$$\xrightarrow{r_3 \to -\frac{1}{7}r_3} \begin{pmatrix} 1 & 3 & -1 & 1 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_1 \to r_1 - 2r_3} \begin{pmatrix} 1 & 3 & -1 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_1 \to r_1 - 2r_3} \begin{pmatrix} 1 & 3 & -1 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_1 \to r_1 - 3r_2} \begin{pmatrix} 1 & 0 & -10 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

reduced row-echelon matrix

RANK OF THE MATRIX

- * The reduced row-echelon form of a matrix A is uniquely determined by A, but the row-echelon form of A is not unique
- \star The number r of leading 1's is the same in each of the different row-echelon matrices
- * As r depends only on A and not on the row-echelon forms, it is called the rank of the matrix A, and written rank(A) = r

Example. If the a matrix A has the row-echelon matrix is

$$\begin{pmatrix} 0 & 1 & * & * & * & * & * \\ 0 & 0 & 0 & 1 & * & * & * \\ 0 & 0 & 0 & 0 & 1 & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

then
$$rank(A) = 4$$

Example. Compute the rank of

$$A = \left(\begin{array}{rrrr} 1 & 1 & -1 & 4 \\ 2 & 1 & 3 & 0 \\ 0 & 1 & -5 & 8 \end{array}\right)$$

Solution. The reduction of A to row - echelon form is

$$A = \begin{pmatrix} 1 & 1 & -1 & 4 \\ 2 & 1 & 3 & 0 \\ 0 & 1 & -5 & 8 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 & 4 \\ 0 & -1 & 5 & -8 \\ 0 & 1 & -5 & 8 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 & 4 \\ 0 & 1 & -5 & 8 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Because this row - echelon matrix has two leading 1 's, rank(A) = 2.

Exercise. Determine the rank of matrix

$$B = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 4 & -3 \\ 3 & -1 & 0 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 9 \\ 3 & 6 & 9 & 11 \\ 4 & 8 & 14 & 10 \end{pmatrix}$$

$$D = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 2 & 5 & 1 & 3 \\ 5 & 12 & 2 & 7 \end{pmatrix} \quad E = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{pmatrix}$$

INVERTIBLE MATRIX

If A is a square matrix, a matrix B is called an **inverse** (nghich dao) of A if and only if

$$AB = I$$
 and $BA = I$

A matrix A that has an inverse is called an **invertible matrix** (ma trận khả nghịch).

The inverse of A is denoted by A^{-1} .

$$AA^{-1} = A^{-1}A = I_n$$

Example. Show that
$$B = \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix}$$
 is an inverse of $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$.

Solution. Compute AB and BA

$$AB = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad BA = \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Hence AB = I = BA, so B is indeed an inverse of A.

THE INVERSE OF AN 2×2 MATRIX

Consider the matrix

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

The adjugate matrix (ma trận liên hợp) of A is defined by $\operatorname{adj} A = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

The **determinant** of A is det(A) = ad - bc

The determinant of A is det(A) = aa - ba

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj} A = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Example.
$$A = \begin{pmatrix} 3 & 2 \\ -1 & -1 \end{pmatrix} \Longrightarrow A^{-1} = \frac{1}{-1} \begin{pmatrix} -1 & -2 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ -1 & -3 \end{pmatrix}$$

Exercise. Find the inverse of the following matrices

a)
$$A = \begin{pmatrix} 4 & 3 \\ 6 & 5 \end{pmatrix}$$

c)
$$C = \begin{pmatrix} 1 & 2 \\ 4 & 8 \end{pmatrix}$$

$$b) B = \begin{pmatrix} -2 & 1 \\ 7 & 5 \end{pmatrix}$$

$$d) D = \begin{pmatrix} a & 2 \\ 1 & a \end{pmatrix}$$

THEOREM

All the following matrices are square matrices of the same size.

- **1.** I is invertible and $I^{-1} = I$.
- **2.** If A is invertible, so A^{-1} , and $(A^{-1})^{-1} = A$.
- 3. If A and B are invertible, so is AB, and $(AB)^{-1} = B^{-1}A^{-1}$.
- **4.** If A_1, A_2, \ldots, A_k are all invertible, so is their product $A_1 A_2 \ldots A_k$, and $(A_1 A_2 \dots A_k)^{-1} = A_1^{-1} \dots A_2^{-1} A_1^{-1}$
- 5. If A is invertible, so is A^k for any $k \ge 1$, and $(A^k)^{-1} = (A^{-1})^k$.
- **6.** If A is invertible and $a \neq 0$ is a number, then aA is invertible and $(aA)^{-1} = {1 \over 2}A^{-1}$.
 - 7. If A is invertible, so is its transpose A^T , and $(A^T)^{-1} = (A^{-1})^T$.

FIND AN INVERSE MATRIX BY USING ELEMENTARY ROW OPERATIONS

$$(A \mid I_n) \xrightarrow{\varphi_1} (A_1 \mid B_1) \to \dots \xrightarrow{\varphi_p} (I_n \mid A^{-1})$$

Example. Find the inverse of the following matrix

$$A = \left(\begin{array}{rrr} 1 & -1 & 0 \\ 1 & 0 & -1 \\ -6 & 2 & 3 \end{array}\right)$$

$$(A \mid I_{3}) = \begin{pmatrix} 1 & -1 & 0 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 & 1 & 0 \\ -6 & 2 & 3 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_{2} \to r_{2} - r_{1}} \begin{pmatrix} 1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & -4 & 3 & 6 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{r_{1} \to r_{1} + r_{2}} \xrightarrow{r_{3} \to r_{3} + 4r_{2}} \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -2 & -4 & -1 \end{pmatrix}$$

$$\xrightarrow{r_{3} \to -r_{3}} \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -2 & -4 & -1 \end{pmatrix}$$

$$\xrightarrow{r_{1} \to r_{1} + r_{3}} \xrightarrow{r_{2} \to r_{2} + r_{3}} \begin{pmatrix} 1 & 0 & 0 & -2 & -3 & -1 \\ 0 & 1 & 0 & -3 & -3 & -1 \\ 0 & 0 & 1 & -2 & -4 & -1 \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} -2 & -3 & -1 \\ -3 & -3 & -1 \\ -2 & -4 & -1 \end{pmatrix}$$

Following

MATRIX EQUATIONS

Let $A, A' \in M_n(\mathbb{R})$ be invertible and $B \in M_{n \times p}(\mathbb{R}), C \in M_{m \times n}(\mathbb{R})$, $D \in M_n(\mathbb{R})$. Then

1.
$$AX = B \iff X = A^{-1}B$$

2.
$$XA = C \iff X = CA^{-1}$$

3.
$$AXA' = D \iff X = A^{-1}DA'^{-1}$$

Example.

1. Solve the equation
$$\begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix} X = \begin{pmatrix} -2 & 3 \\ 2 & 5 \end{pmatrix}$$

2. Solve the equation
$$X \begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix} = \begin{pmatrix} -2 & 3 \\ 2 & 5 \end{pmatrix}$$

3. Solve the equation
$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix} X \begin{pmatrix} 3 & 2 \\ 3 & 3 \end{pmatrix} = \begin{pmatrix} 1 & -2 \\ 3 & 1 \\ 2 & -1 \end{pmatrix}$$

LINEAR TRANSFORMATION

A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is called a **linear transformation** (biến đổi tuyến tính) if it satisfies the following two conditions for all vectors x and y in \mathbb{R}^n and all scalars a:

1.
$$T(x+y) = T(x) + T(y)$$

$$2. T(ax) = aT(x)$$

Theorem. If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then for each $k = 1, 2, \ldots$

$$T(a_1x_1 + a_2x_2 + \dots + a_kx_k) = a_1T(x_1) + a_2T(x_2) + \dots + a_kT(x_k)$$

for all scalars a_i and all vectors x_i in \mathbb{R}^n .

Example. If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation, $T\begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ and

$$T\begin{pmatrix}1\\-2\end{pmatrix}=\begin{pmatrix}5\\1\end{pmatrix}$$
, find $T\begin{pmatrix}4\\3\end{pmatrix}$.

Solution. Write
$$z = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$
, $x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, and $y = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$.

- \star We want to find numbers a and b such that z = ax + by.
- * The solution is, $a=\frac{11}{3}$ and $b=\frac{1}{3}$, so $z=\frac{11}{3}x+\frac{1}{3}y$.

Thus

$$T(z) = T\left(\frac{11}{3}x + \frac{1}{3}y\right) = \frac{11}{3}T(x) + \frac{1}{3}T(y) = \frac{11}{3}\left(\begin{array}{c} 2 \\ -3 \end{array}\right) + \frac{1}{3}\left(\begin{array}{c} 5 \\ 1 \end{array}\right) = \frac{1}{3}\left(\begin{array}{c} 27 \\ -32 \end{array}\right)$$

ROTATIONS

Let

$$R_{ heta}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

denote the transformation that rotates any vector counterclockwise about the origin through an angle of θ .

Theorem. The rotation $R_{\theta}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is a linear transformation, and is induced by the matrix

$$e^2 \longrightarrow \mathbb{R}^2$$
 is a linear t
$$\left(\begin{array}{cc} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array} \right).$$

Example. We denote by $R_{\pi}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ counterclockwise rotation about the origin through an angle of π . We see that

$$R_{\pi} \left(\begin{array}{c} a \\ b \end{array} \right) = \left(\begin{array}{c} -1 & 0 \\ 0 & -1 \end{array} \right) \left(\begin{array}{c} a \\ b \end{array} \right) = \left(\begin{array}{c} -a \\ -b \end{array} \right)$$

so R_{π} is a matrix transformation

Let

denote reflection in the line
$$y = mx$$
.

Theorem. The transformation $Q_m: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, reflection in the line y=mx, is a linear transformation and is induced by the matrix

 $Q_m: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$

$$\frac{1}{1+m^2} \left(\begin{array}{cc} 1-m^2 & 2m \\ 2m & m^2-1 \end{array} \right)$$

Example. We denote by $Q_m: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ reflection in the line y=x. We see that

$$Q_m \left(\begin{array}{c} a \\ b \end{array} \right) = \left(\begin{array}{c} 0 & 1 \\ 1 & 0 \end{array} \right) \left(\begin{array}{c} a \\ b \end{array} \right) = \left(\begin{array}{c} b \\ a \end{array} \right)$$

so Q_m is a matrix transformation

$$P_m:\mathbb{R}^2\longrightarrow\mathbb{R}^2$$
 denote projection on the line $y=mx$.

Theorem. The transformation $P_m: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, projection on the line y = mx, is a linear transformation and is induced by the matrix

$$rac{1}{1+m^2}\left(egin{array}{cc} 1 & m \ m & m^2 \end{array}
ight)$$

Example. Let
$$P_m: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 be projection on the line $x-2y=0$. Find $P_m\left(\begin{array}{c} -5 \\ 6 \end{array} \right)$.

Solution. We have

$$P_m \begin{pmatrix} -5 \\ 6 \end{pmatrix} = \begin{pmatrix} 0.8 & 0.4 \\ 0.4 & 0.2 \end{pmatrix} \begin{pmatrix} -5 \\ 6 \end{pmatrix} = \begin{pmatrix} -1.6 \\ -0.8 \end{pmatrix}$$

Thank you for your attention.

Prob 1. Let
$$A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} -1 & 1 \\ 3 & 2 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 3 & -4 \\ -1 & 2 & 1 \end{bmatrix}$. Compute the matrix

c) BA

d) AC

e)
$$CC^T$$
. f) C^TC g) A^3 h) B^2A^T

Prob 2. Suppose that A and B are $n \times n$ matrices. Simplify the expression

a)
$$(A+B)^2 - (A-B)^2$$

a) $2A - B^T$

b)
$$A(BC-CD) + A(C-B)D - AB(C-D)$$

b) *AB*

Prob 3. Let $A = \begin{bmatrix} 3 & 1 & 2 \\ 4 & 8 & 0 \\ 0 & 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 5 & 2 & 1 \\ 1 & 8 & 0 & -6 \\ 1 & 4 & 3 & 7 \end{bmatrix}$. Compute AB

Prob 4. Find the inverse of each of the following matrices.

a)
$$\begin{bmatrix} 1 & 5 \\ 2 & -1 \end{bmatrix}$$

b)
$$\begin{bmatrix} 1 & -1 & 2 \\ -5 & 7 & -11 \\ -2 & 3 & -5 \end{bmatrix}$$

Prob 5. Given $A^{-1} = \begin{bmatrix} 1 & -1 & 3 \\ 2 & 0 & 5 \\ -1 & 1 & 0 \end{bmatrix}$. Find a matrix X such that

a)
$$AX = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$$

a)
$$AX = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$$
 b) $AX = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ c) $XA = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 1 & 1 \end{bmatrix}$

c)
$$XA = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 1 & 1 \end{bmatrix}$$

Prob 6. Find A when

a)
$$(3A)^{-1} = \begin{bmatrix} 1 & 2 \\ 0 & -2 \end{bmatrix}$$

b)
$$(I+2A)^{-1} = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$$

c)
$$(A^{-1} - 2I)^T = -2\begin{bmatrix} 1 & 4 \\ 3 & 11 \end{bmatrix}$$

Prob 7. Find A^{-1} if

a)
$$A^2 - 6A + 5I = 0$$

b)
$$A^2 + 3A - I = 0$$

c)
$$A^4 = I$$

Prob 8. Compute
$$\begin{bmatrix} -1 & 3 \\ 0 & 1 \end{bmatrix}^{101}$$

Prob 9. Solve for X

a)
$$\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} X = \begin{bmatrix} 1 & -1 \\ 3 & 3 \end{bmatrix}$$

- b) $ABXC = B^T$
- c) $AX^TBC = B$ where A, B and C are $n \times n$ invertible matrices.

Prob 10. Find the (2,1)-entry of the product

$$\left[\begin{array}{cccc}
1 & 2 & 0 & 1 \\
0 & 2 & 5 & 1 \\
4 & -1 & 2 & 3
\end{array}\right]
\left|\begin{array}{cccc}
4 & 2 & 1 \\
2 & 3 & 2 \\
5 & 1 & 0 \\
0 & 4 & 3
\end{array}\right|$$

Prob 11. Compute the rank of each of the following matrices.

a)
$$\begin{bmatrix} 1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 4 \end{bmatrix}$$

b)
$$\begin{bmatrix} 1 & 1 & -1 & 3 \\ -1 & 4 & 5 & -2 \\ 1 & 6 & 3 & 4 \end{bmatrix}$$

Prob 12. Determine the values of m such that the rank of the matrix is 2.

a)
$$\begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 5 \\ 1 & 2 & m \end{bmatrix}$$

b)
$$\begin{vmatrix} 1 & 2 & 1 & 4 \\ 2 & 1 & 1 & 5 \\ -3 & 6 & 1 & m \end{vmatrix}$$

Prob 13. Find all values of m for which the matrix is invertible $\begin{bmatrix} m & 1 & 3 \\ 1 & 3 & 2 \\ 1 & 4 & 5 \end{bmatrix}$

$$\begin{bmatrix} 1 & 3 & 2 \\ 1 & 4 & 5 \end{bmatrix}$$

Prob 14. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation, and assume that T(1,2) =(-1,1) and T(0,3)=(-3,3).

- a) Compute T(11, -5) b) Compute T(1, 11) c) Find the matrix of T

Prob 15. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that the matrix of T is $\begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$. Find T(3,2)