1.- DATOS DE LA ASIGNATURA

Nombre de la asignatura:	Nanofísica II
Carrera:	Ingeniería en Nanotecnología
Clave de la asignatura:	NAF-0916
SATCA ¹ :	3-2-5

2.- PRESENTACIÓN

Caracterización de la asignatura.

La asignatura de Nanofísica II está enfocada a dar un panorama sobre la importancia de la Nanotermodinámica en el estudio de las propiedades de los materiales a nanoescala.

Los estudios realizados a los materiales a nanoescala que contienen un número relativamente pequeño de constituyentes han mostrado que sus propiedades difieren de sus homólogos macroscópicos. Esto ha dado la pauta de introducir un nuevo enfoque denominado "Nanotermodinámica"

La Nanotermodinámica se encuentra entre la termodinámica clásica y la termodinámica cuántica. Como su propio nombre lo indica, la Nanotermodinámica estudia sistemas a la nanoescala.

Intención didáctica.

El temario está distribuido en cinco unidades. En la primera unidad se empieza con una breve recapitulación de la termodinámica clásica y la investigación de los cambios en la energía provenientes de una reacción química o física.

En la segunda unidad se analiza la mecánica estadística que involucra los conocimientos de los niveles de energía moleculares y atómicos con la expresión macroscópica de las propiedades de las materiales y su uso de enlace entre la mecánica cuántica y la termodinámica clásica.

En la tercera unidad se muestran algunas consideraciones sobre procesos que ocurren fuera del estado de equilibrio en un sistema termodinámico.

En la cuarta unidad se aborda el estudio de la teoría de Terrell L. Hill, el cuál modifica las relaciones termodinámicas debido a los efectos del entorno y se muestra como la Nanotermodinámica conecta a los nanosistemas con la

¹ Sistema de asignación y transferencia de créditos académicos

termodinámica a macroescala.

En la última unidad se analiza el modelado de nanosistemas mediante la mecánica estadística y se hace una reflexión de lo que se puede hacer con la Nanotermodinámica.

Es muy recomendable que el profesor trabaje en el área de su profesión para estar al tanto de los últimos acontecimientos. La enseñanza debe proporcionar entornos de aprendizaje ricos en recursos educativos (información bien estructurada, actividades adecuadas y significativas). Es importante crear el interés que lleve a una construcción del aprendizaje por propia convicción del estudiante y no solo para pasar un examen, sabemos que no es fácil, pero es nuestra tarea.

3.- COMPETENCIAS A DESARROLLAR

Competencias Específicas	Competencias Genéricas
Analizar las propiedades termodinámicas de los materiales a nanoescala tomando en cuenta los efectos del entorno. Utilizar la mecánica estadística como una herramienta de enlace entre la mecánica cuántica y la termodinámica clásica.	 Competencias instrumentales Capacidad de análisis y síntesis. Conocimiento de una segunda lengua. Habilidades de gestión de la información. Comunicación oral y escrita. Competencias interpersonales Trabajo en equipo. Apreciación de la diversidad y multiculturalidad. Competencias sistémicas Habilidades de investigación. Capacidad de aprender. Habilidad de trabajar en forma autónoma.

4.- HISTORIA DEL PROGRAMA

Lugar y fecha de elaboración o revisión	Participantes	Observaciones (cambios y justificación)
Instituto Tecnológico	Representantes de los	Primera Reunión Nacional de
de Ciudad Juárez del	Institutos Tecnológicos	diseño e innovación
27 al 29 de Abril de	de: Tijuana, Querétaro,	curricular para el desarrollo
2009.	Celaya, Saltillo, Ciudad	de competencias

	Luáro- Cuporior de	profesionales de les estrates
	Juárez, Superior de	profesionales de las carreras
	Irapuato, San Luis	de Ingeniería en
	Potosí, Chihuahua.	Nanotecnología e Ingeniería
		Logística del SNEST.
Instituto Tecnológico	Representantes de los	Reunión de seguimiento de
de Puebla del 8 al 12	Institutos Tecnológicos	diseño e innovación
de Junio de 2009	de: Tijuana, Querétaro,	curricular para el desarrollo
	Celaya, Saltillo, Ciudad	de competencias
	Juárez, Superior de	profesionales de las carreras
	Irapuato, San Luis	de Ing. en Nanotecnología,
	Potosí, Chihuahua	Gestión Empresarial,
		Logística, y asignaturas
		comunes del SNEST.
Instituto Tecnológico	Representantes de los	Segunda Reunión de
de Mazatlán del 23 al	Institutos Tecnológicos	seguimiento de diseño e
27 de Noviembre de	de: Tijuana, Querétaro,	innovación curricular para el
2009	Ciudad Juárez, Superior	desarrollo de competencias
	de Irapuato, San Luis	profesionales de la carrera
	Potosí, Chihuahua	de Ing. en Nanotecnología,
	1 Stoot, Chinadhad	del SNEST.
Instituto Tecnológico	Representantes de los	Reunión Nacional de
_	•	
de Villahermosa del	Institutos Tecnológicos	Consolidación de la carrera
24 al 28 de Mayo de	de: Tijuana, Querétaro,	de Ingeniería en
2010	Superior de Irapuato,	Nanotecnología.
	Chihuahua y Saltillo	

5.- OBJETIVO(S) GENERAL(ES) DEL CURSO (competencia específica a desarrollar en el curso

Analizar las propiedades termodinámicas de los materiales a nanoescala tomando en cuenta los efectos del entorno. Utilizar la mecánica estadística como una herramienta de enlace entre la mecánica cuántica y la termodinámica clásica.

6.- COMPETENCIAS PREVIAS

- Manejar elementos básicos de las tecnologías de la información y comunicación.
- Tener habilidad para la lectura.
- Saber comunicarse en forma oral.
- Conocimientos básicos de Termodinámica.
- Conocimientos básicos de Fisicoquímica.

7.- TEMARIO

Unidad	Temas	Subtemas
1	Termodinámica y	1.1. Antecedentes
	Nanotermodinámica	1.2. Leyes de la termodinámica
		1.3. Ecuaciones fundamentales de
		termodinámica
		1.4. Constantes de equilibrio y cinética de reacción
		1.5. Perspectiva a Nanoescala
_		1.6.
2	Mecánica Estadística	2.1. Microestados y macroestados
		2.2. Ensamble canónico
		2.3. Funciones de partición.
3	Termodinámica fuera del	2.4.3.1. Relaciones Onsager
3	equilibrio	3.2. Termodinámica fuera de equilibrio
	- oquillotto	3.3. El concepto de pseudoequilibrio
		3.4. Sistemas celulares y subcelulares
		,
4	Nanotermodinámica	4.1. Antecedentes
		4.2. Aplicación de termodinámica
		clásica a nanomateriales
		4.3. Termodinámica de sistemas
		pequeños 4.4. Introducción del termino
		Nanotermodinámica
		4.5. Teoría de Terrell L. Hill
		4.6. Variables ambientales
5	Tendencias de la	5.1. No extensividad y no intensividad
	nanotermodinámica	5.2. La ecuación de Gibbs para
		nanosistemas
		5.2. Nanotermodinámica de una
		molécula simple
		5.3. Modelado de nanosistemas
		mediante mecánica estadística.

8.- SUGERENCIAS DIDÁCTICAS (desarrollo de competencias genéricas)

- Realizar síntesis y abstracción de la información relevante en forma oral o escrita.
- Impulsar la transferencia de las competencias adquiridas en la asignatura a diferentes contextos

- Crear situaciones que permitan al estudiante la integración de contenidos de la asignatura y entre distintas asignaturas, para su análisis y para la solución de problemas.
- Desarrollar actividades de aprendizaje que propicien la aplicación los conceptos, modelos y metodologías que se van aprendiendo en el desarrollo de la asignatura.
- Proponer ejemplos guía.
- Propiciar en el estudiante, el sentimiento de logro y de ser competente.
- Propiciar el planteamiento de preguntas y la solución de problemas, así como el aprendizaje a partir del error.
- Enseñar a valorar los aciertos y corregir los errores.
- Procurar que los estudiantes participen en la definición de los conceptos y evitar dárselos elaborados.
- Retroalimentar de manera permanente el trabajo de los estudiantes.
- Evaluar los contenidos de acuerdo a la forma como fueron enseñados.

9.- SUGERENCIAS DE EVALUACIÓN

La evaluación deber ser continua y formativa, por lo que se debe considerar el desempeño de cada una de las actividades de aprendizaje, haciendo énfasis en:

- Participa activamente en clase.
- Expone trabajos.
- Realiza ejercicios prácticos.
- Realiza pruebas escritas.
- Participa en debates, foros y/o diálogos.
- Realiza lecturas y análisis de textos
- Redacta textos.

Instrumentos de Evaluación:

- Resúmenes y síntesis.
- Exámenes escritos.
- Informes.
- Presentaciones electrónicas.

Organizadores gráficos (Mapas conceptuales, mapas mentales, cuadros sinópticos, diagramas, tablas, cuadros comparativos

10.- UNIDADES DE APRENDIZAJE

Unidad 1: Termodinámica y Nanotermodinámica

Competencia específica a	Actividades de Aprendizaje
desarrollar	

Describir Elaborar un resumen de los cincos tipos el comportamiento sistemas macroscópico de de energía. usando los principios de la Representar la ley cero de la termodinámica clásica. termodinámica mediante la analogía del axioma de transitividad de álgebra. Realizar una tabla de los parámetros termodinámicos con sus principales características. Calcular la constante de equilibro para una reacción dada.

Unidad 2: Mecánica Estadística

Competencia específica a desarrollar	Actividades de Aprendizaje
Derivar las propiedades termodinámicas de abajo hacia arriba ("bottom-up") utilizando las	 Investigar sobre los personajes que establecieron las bases de la mecánica estadística.
herramientas de la mecánica estadística.	 Distinguir la diferencia entre "micro" y "macro" estado.
	 Elaborar un mapa mental de los ensambles canónicos.
	 Expresar parámetros termodinámicos con la adición de un componente estadístico.

Unidad 3: Termodinámica fuera del equilibrio

Competencia específica a desarrollar	Actividades de Aprendizaje
Relacionar el comportamiento termodinámico de los nanomateriales con el entorno inmediato.	 Discutir la cuantificación de la entropía como un factor importante en nanotermodinámica. Hacer un listado de reacciones irreversibles. Investigar el mecanismo convencional de la célula Bénard. Elaborar un mapa mental del concepto de pseudoequlibrio. Discutir la eficiencia y disipación de calor de la acción de la kinesina.

Unidad 4: Nanotermodinámica

Competencia específica a desarrollar Actividades de Aprendizaje

Estudiar nanosistemas en	• Elaborar un cuadro comparativo de los
equilibrio a partir de la teoría de	parámetros entre "macro" y "nano"
Terrell L. Hill.	termodinámica.
	 Discutir aplicaciones de la termodinámica clásica a nanomateriales.
	 Calcular la entalpía de reacción de nanotubos de pared sencilla a partir de la descomposición de metano.
	 Investigar la teoría de Terrell L. Hill para sistemas pequeños.

Unidad 5: Tendencias de la nanotermodinámica

Competencia específica a desarrollar			Actividades de Aprendizaje
contribución de	le la la	•	Investigar la formulación de Tsallis y la formulación sin considerar la termodinámica de Tsallis. Distinguir la diferencia entre no extensividad y no intensividad. Exponer ejemplos de simulaciones computacionales de nanomateriales. Realizar una reflexión de las tendencias de la nanotermodinámica.

11.- FUENTES DE INFORMACIÓN

- Hornyak, G. L.; Dutta, J.; Tibbals, H. F. & Rao, A. K. Introduction to Nanoscience. CRC Press, Boca Raton, USA; 2008.
- Hill, T. L. Thermodynamics of Small Systems. Dover, New York; 1994.
- CRC Handbook of Chemistry & Physics. 2001-2002.

12.- PRÁCTICAS PROPUESTAS

• Cálculo de propiedades termodinámicas de nanosistemas empleando software de trabajo.