$\begin{array}{c} \text{Math 344 Lecture } \#18 \\ 3.4 \text{ QR with Householder Transformations} \end{array}$

We detail a different algorithm for finding a QR-decomposition of a matrix through left multiplication by special orthonormal matrices knows as Householder transformations.

3.4.1 The Geometry of Householder Transformations

Definition 3.4.1. For a nonzero vector $v \in \mathbb{F}^n$, the orthogonal complement of v, denoted by v^{\perp} , is the set of all vectors $x \in \mathbb{F}^n$ that are orthogonal to v, i.e.,

$$v^{\perp} = \{x \in \mathbb{F}^n : \langle v, x \rangle = 0\}.$$

For each $x \in \mathbb{F}^n$, the residual $x - \operatorname{proj}_v(x)$ is orthogonal to v, and so

$$x - \operatorname{proj}_v(x) \in v^{\perp}$$
.

This means that the map $x \mapsto x - \operatorname{proj}_v(x)$ is the projection of x onto the orthogonal complement v^{\perp} , i.e.,

$$\operatorname{proj}_{v^{\perp}}(x) = x - \operatorname{proj}_{v}(x) = x - \frac{v}{\|v\|^{2}} \langle v, x \rangle = x - \frac{vv^{H}x}{v^{H}v} = \left(I - \frac{vv^{H}}{v^{H}v}\right)x.$$

The idea of a Householder transformation is to double the vector $\operatorname{proj}_v(x)$ subtracted from x, resulting in a reflection of vectors across an orthogonal complement of a vector.

Definition 3.4.3. For a fixed nonzero $v \in \mathbb{F}^n$ the Householder transformation of $x \in \mathbb{F}^n$ is the map H_v given by

$$H_v(x) = x - 2\operatorname{proj}_v(x) = \left(I - 2\frac{vv^{\mathrm{H}}}{v^{\mathrm{H}}v}\right)x.$$

Proposition 3.4.4. Assume $v \in \mathbb{F}^n$ is nonzero. Then,

- (i) $H_v(x)$ or an orthonormal transformation, and
- (ii) $H_v(x) = x$ for all $x \in v^{\perp}$.

The proof of these is HW (Exercise 3.20).

3.4.2 Computing the QR Decomposition via Householder

The first step in finding a QR decomposition of a matrix is to find for each nonzero $x \in \mathbb{F}^n$ the nonzero $v \in \mathbb{F}^n$ for which $H_v(x) \in \text{span}(e_1)$, where e_1 is the first standard basis vector of \mathbb{F}^n .

Lemma 3.4.5. For $x \in \mathbb{R}^n$, if $v = x + ||x||e_1$ is nonzero, then $H_v(x) = -||x||e_1$, and if $v = x - ||x||e_1$ is nonzero, then $H_v(x) = ||x||e_1$.

Proof. The argument for the two cases is similar; we show the argument for $v = x + ||x||e_1 \neq 0$. For x_1 the first entry of x we have

$$v^{T}v = (x + ||x||e_{1})^{T}(x + ||x||e_{1})$$

$$= x^{T}x + ||x||x^{T}e_{1} + ||x||e_{1}^{T}x + ||x||^{2}e_{1}^{T}e_{1}$$

$$= 2||x||^{2} + 2||x||x_{1} = 2||x||(||x|| + x_{1}),$$

and

$$vv^{T}x = (x + ||x||e_{1})(x + ||x||e_{1})^{T}x$$

$$= xx^{T}x + ||x||xe_{1}^{T}x + ||x||e_{1}x^{T}x + ||x||^{2}e_{1}e_{1}^{T}x$$

$$= ||x||^{2}x + ||x||x_{1}x + ||x||^{3}e_{1} + ||x||^{2}x_{1}e_{1}$$

$$= ||x||(||x||x + x_{1}x + ||x||^{2}e_{1} + ||x||x_{1}e_{1})$$

$$= ||x||((||x|| + x_{1})x + ||x||(||x|| + x_{1})e_{1})$$

$$= ||x||(||x|| + x_{1})(x + ||x||e_{1}).$$

Then

$$H_{v}(x) = x - 2\frac{vv^{T}x}{v^{T}v}$$

$$= x - 2\frac{\|x\|(\|x\| + x_{1})(x + \|x\|e_{1})}{2\|x\|(\|x\| + x_{1})}$$

$$= x - (x + \|x\|e_{1})$$

$$= -\|x\|e_{1}.$$

This gives the result.

The complex sign of a complex number z is sign(z) = z/|z| when $z \neq 0$, and sign(0) = 1. Lemma 3.4.7. Let x_1 be the first entry of a nonzero $x \in \mathbb{C}^n$. If $v = x + sign(x_1)||x||e_1$, then

$$H_v(x) = -\operatorname{sign}(x_1) ||x|| e_1.$$

The proof of this is HW (Exercise 3.21).

Remark 3.4.8. The vector $v = x + \operatorname{sign}(x_1) ||x|| e_1$ is never zero unless x = 0. For if $x + \operatorname{sign}(x_1) ||x|| e_1 = 0$ when $x \neq 0$, then $x = -\operatorname{sign}(x_1) ||x|| e_1$ which implies that $x_1 = -\operatorname{sign}(x_1) |x_1|$, but since $x_1 = \operatorname{sign}(x_1) |x_1|$ we would get $\operatorname{sign}(x_1) = -\operatorname{sign}(x_1)$, which implies that $\operatorname{sign}(x_1) = 0$, which is a contradiction.

The algorithm for computing a QR decomposition by means of Householder transformations is repeated applications of Lemma 3.4.5 and/or Lemma 3.4.7.

Theorem 3.4.9. For $A \in M_{m \times n}(\mathbb{F})$ with $m \geq n$ there are vectors $v_1, v_2, \dots, v_l \in \mathbb{F}^n$ where $l = \min\{m-1, n\}$ such that $R = H_{v_l} \cdots H_{v_2} H_{v_1} A$ is upper triangular matrix and $Q = H_{v_1}^H H_{v_2}^H \cdots H_{v_l}^H$ is an orthonormal matrix that satisfy A = QR.

The proof of this is quite long and involved. We will demonstrate the proof by way of an example.

3.4.3 A Complete Worked Example

Recall that previously we found a QR decomposition for

$$A = \begin{bmatrix} 1 & -1 & 4 \\ 1 & 4 & -2 \\ 1 & 4 & 2 \\ 1 & -1 & 0 \end{bmatrix}$$

by means of the Gram-Schmidt process, obtaining

$$Q = \begin{bmatrix} 1/2 & -1/2 & 1/2 & -1/2 \\ 1/2 & 1/2 & -1/2 & -1/2 \\ 1/2 & 1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 & -1/2 & 1/2 \end{bmatrix}, \quad R = \begin{bmatrix} 2 & 3 & 2 \\ 0 & 5 & -2 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{bmatrix}.$$

To find a QR decomposition of A by means of Householder transformations, we start with the first column x_1 of A, set

$$v_1 = x_1 - \operatorname{sign}(x_{11}) ||x_1|| e_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} - 2 \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} = \begin{bmatrix} -1\\1\\1\\1 \end{bmatrix},$$

and get the Householder transformation

$$H_{v_1} = \begin{bmatrix} 1/2 & 1/2 & 1/2 & 1/2 \\ 1/2 & 1/2 & -1/2 & -1/2 \\ 1/2 & -1/2 & 1/2 & -1/2 \\ 1/2 & -1/2 & -1/2 & 1/2 \end{bmatrix}.$$

Multiplying A on the left by H_{v_1} gives

$$H_{v_1}A = \begin{bmatrix} 2 & 3 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 4 \\ 0 & -5 & 2 \end{bmatrix}.$$

Notice that the first column of $H_{v_1}A$ is a positive scalar multiple of e_1 as Lemma 3.4.5 predicted.

We now consider the second column x_2 of $H_{v_1}A$ which can we written as

$$x_2 = x_2' + x_2'' = \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ -5 \end{bmatrix}$$

where $x_2' \in \text{span}(\{e_1\})$ and $x_2'' \in e_1^{\perp}$.

Taking x_{22}'' to be the second entry of x_2'' we set

$$v_2 = x_2'' - \operatorname{sign}(x_{22}'') ||x_2''|| e_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ -5 \end{bmatrix} + (-1) \begin{bmatrix} 0 \\ 5 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -5 \\ 0 \\ -5 \end{bmatrix}.$$

The Householder transformation associated to v_2 is

$$H_{v_2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}.$$

Since x_2'' and e_2 are both orthogonal to e_1 , the vector v_2 is orthogonal to e_1 .

Since $x'_2 \in \text{span}(\{e_1\})$, we obtain by Proposition 3.4.4 part (ii) that $H_{v_2}(x'_2) = x'_2$.

Thus
$$H_{v_2}(x_2) = H_{v_2}(x_2' + x_2'') = x_2' + H_{v_2}(x_2'')$$
.

By the appropriate adaptation of Lemma 3.4.7 the vector $H_{v_2}(x_2'')$ belongs to span($\{e_2\}$).

Thus $H_{v_2}(x_2)$ belongs to span($\{e_1, e_2\}$), and so the second column of $H_{v_2}(H_{v_1}A)$ belongs to span($\{e_1, e_2\}$).

We verify this:

$$H_{v_2}(H_{v_1}A) = \begin{bmatrix} 2 & 3 & 2 \\ 0 & 5 & -2 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{bmatrix}.$$

This is R and

$$Q = (H_{v_2}H_{v_1})^T = H_{v_1}^T H_{v_2}^T = \begin{bmatrix} 1/2 & -1/2 & 1/2 & -1/2 \\ 1/2 & 1/2 & -1/2 & -1/2 \\ 1/2 & 1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 & -1/2 & 1/2 \end{bmatrix}.$$

[All the matrix computations, including the entries of the Householder matrices, were performed in Maple.]