PCT

WORLD INTELLECTUAL PROPERTY ORGANIZ... ON International Bureau

A

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:

C07D 205/12, 471/10, A61K 31/395 //
(C07D 471/10, 221:00, 205:00)

(11) International Publication Number:

WO 94/17038

(43) International Publication Date:

4 August 1994 (04.08.94)

(21) International Application Number:

PCT/US94/00421

A1

(22) International Filing Date:

19 January 1994 (19.01.94)

(30) Priority Data:

08/006,439

21 January 1993 (21.01.93) US

(60) Parent Application or Grant

(63) Related by Continuation

US Fil∞i on 08/006,439 (CIP) 21 January 1993 (21.01.93)

(71) Applicant (for all designated States except US): SCHERING CORPORATION [US/US]; 2000 Galloping Hill Road, Kenilworth, NJ 07033 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): DUGAR, Sundeep [IN/US]; 749 Wingate Drive, Bridgewater, NJ 08807 (US). CLADER, John, W. [US/US]; 428 North Union Avenue, Cranford, NJ 07016 (US). BURNETT, Duane, A. [US/US]; 59 Helen Street, Fanwood, NJ 07023 (US). BROWNE, Margaret, E. [US/US]; 84 Park Street, Montelair, NJ 07042 (US). DAVIS, Harry, R. [US/US]; 64 River Bend Road, Berkeley Heights, NJ 07922 (US).

(74) Agents: MAGATTI, Anita, W. et al.; Schering-Plough Corporation, One Giralda Farms, M3W, Madison, NJ 07940-1000 (US).

(81) Designated States: AU, BB, BG, BR, BY, CA, CN, CZ, FI, HU, JP, KR, KZ, LK, LV, MG, MN, MW, NO, NZ, PL, RO, RU, SD, SK, UA, US, UZ, VN, European parent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI parent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: SPIROCYCLOALKYL-SUBSTITUTED AZETIDINONES USEFUL AS HYPOCHOLESTEROLEMIC AGENTS

$$R_1$$
 $(R_2)_v$ R_{20} $(R_3)_v$ R_{21}

-CH-, -C(lower alkyl)-, -CF-, -C(OH)-, -C(C₆H₆)-, -C(C₈H₄-R₁₅)-, -N- or -N σ (A)

·

(A)

(57) Abstract

Novel compounds of formula (1) or a pharmaceutically acceptable salt thereof, wherein R₁ is (A); R₂ and R₃ are independently selected from the group consisting of -CH₂-, -CH(lower alkyl)-, -C(di-lower alkyl)-, -CH=CH- and -C(lower alkyl)=CH-; or R₁ together with an adjacent R₂, or R₁ together with an adjacent R₃, form a -CH=CH- or a -CH=C(lower alkyl)- group; u and v are independently 0, 1, 2 or 3, provided both are not zero; provided that when R₂ is -CH=CH- or -C(lower alkyl)=CH-, v is 1; provided that when R₃ is -CH=CH- or -C(lower alkyl)=CH-, u is 1; provided that when v is 2 or 3, the R₂'s can be the same or different; R₄ is B-(CH₂)_mC(O)-, wherein m is 0-5; B-(CH₂)_m, wherein q is 0-6; B-(CH₂)_m-Z-(CH₂)_m, wherein Z is -O, -C(O)-, phenylene, -N(R₃) or -S(O)₀₋₂, e is 0-5 and r is 0-5, provided that the sum of e and r is 0-6; B-(CH₂)_m-Z-(CH₂)_m-Z-(C4-C₆ alkenylene)-; B'-(C4-C₆ alkadienylene)-; B-(CH₂)_m-Z-(C₂-C₆ alkenylene)-, wherein t is 0-3, provided that the sum of t and the number of carbon atoms in the alkenylene chain is 2-6; B-(CH₂)_m-Z-(CH₂)_m-X

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom		
ΑŪ	Australia	GE	Georgia	MIR	Mauritania
BB	Berbedos	GN	Guinea	MW	Malawi
BE	Belgium	GR		NE	Niger
BF	Burkina Faso		Greece	NL	Netherlands
BG	Bulgaria	ETU	Hungary	NO	Norway
BJ.	•	Œ	Ireland	· NZ	New Zealand
BR	Benin	п	Italy	PL	Poland
	Brazil	JP.	Japan	PT	Portugal
BY	Belarus	KE	Kettya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CP	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CC	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	
α	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovenia
CM	Cameroon	Ц	Liechtengein		Slovakia
CN	China	LK	Sri Laoka	SN	Scoogal
CZ	Czzchoslovakia	ᄺ	Lixenbourg	110	Chad
cz	Czech Republic	LV	Latvia	TG	Togo
DE	Germany	MC		TJ	Tajikistan
DK	Demark	-	Monaco	TT	Trinidad and Tobago
ES	Spain	MD	Republic of Moldova	ŪA	Ukraine
FI	Finland	MG	Madagascer	US	United States of America
FR		ML	Mali	UZ	Uzbekistan
	France	MN	Mongolia	VN	Vict Nam
GA	Gebog				

WO 94/17038 PCT/US94/00421

5

10

15

20

25

30

35

SPIROCYCLOALKYL-SUBSTITUTED AZETIDINONES USEFUL AS HYPOCHOLESTEROLEMIC AGENTS

BACKGROUND OF THE INVENTION

The present invention relates to spirocycloalkyl-substituted azetidinones useful as hypocholesterolemic agents in the treatment and prevention of atherosclerosis, and to the combination of a spirocycloalkyl-substituted azetidinone of this invention and a cholesterol biosynthesis inhibitor for the treatment and prevention of atherosclerosis.

Atherosclerotic coronary heart disease represents the major cause for death and cardiovascular morbidity in the western world. Risk factors for atherosclerotic coronary heart disease include hypertension, diabetes mellitus, family history, male sex, cigarette smoke and serum cholesterol. A total cholesterol level in excess of 225-250 mg/dl is associated with significant elevation of risk.

Cholesteryl esters are a major component of atherosclerotic lesions and the major storage form of cholesterol in arterial wall cells. Formation of cholesteryl esters is also a key step in the intestinal absorption of dietary cholesterol. Thus, inhibition of cholesteryl ester formation and reduction of serum cholesterol is likely to inhibit the progression of atherosclerotic lesion formation, decrease the accumulation of cholesteryl esters in the arterial wall, and block the intestinal absorption of dietary cholesterol.

A few azetidinones have been reported as being useful in lowering cholesterol and/or in inhibiting the formation of cholesterol-containing lesions in mammalian arterial walls. U.S. 4,983,597 discloses N-sulfonyl-2-azetidinones as anticholesterolemic agents and Ram, et al., in Indian J Chem. Sect. B. 29B, 12 (1990), p. 1134-7, disclose ethyl 4-(2-oxoazetidin-4-yl)phenoxy-alkanoates as hypolipidemic agents.

European Patent Application 337,549 discloses elastase inhibitory substituted azetidinones comprising a spirocyclo substituent at the 3-position; elastase inhibitors are said to be useful in treating inflammatory conditions resulting in tissue destruction which are associated with various disease states, e.g. atherosclerosis.

10

15

20

25

PCT/US92/05972, filed July 21, 1992, and published as WO93/02048 on February 4, 1993 discloses β-lactam (i.e., azetidinone) cholesterol absorption inhibitors which lack a spirocycloalkyl group at the 3-position.

In addition to regulation of dietary cholesterol, the regulation of whole-body cholesterol homeostasis in humans and animals involves modulation of cholesterol biosynthesis, bile acid biosynthesis, and the catabolism of the cholesterol-containing plasma lipoproteins. The liver is the major organ responsible for cholesterol biosynthesis and catabolism and, for this reason, it is a prime determinant of plasma cholesterol levels. The liver is the site of synthesis and secretion of very low density lipoproteins (VLDL) which are subsequently metabolized to low density lipoproteins (LDL) in the circulation. LDL are the predominant cholesterol-carrying lipoproteins in the plasma and an increase in their concentration is correlated with increased atherosclerosis.

When cholesterol absorption in the intestines is reduced, by whatever means, less cholesterol is delivered to the liver. The consequence of this action is a decreased hepatic lipoprotein (VLDL) production and an increase in the hepatic clearance of plasma cholesterol, mostly as LDL. Thus, the net effect of an inhibition of intestinal cholesterol absorption is a decrease in plasma cholesterol levels.

The inhibition of cholesterol biosynthesis by 3-hydroxy-3-methylglutaryl coenzyme A reductase (EC1.1.1.34) inhibitors has been shown to be an effective way to reduce plasma cholesterol (Witzum, *Circulation*, *80*, 5 (1989), p. 1101-1114) and reduce atherosclerosis. Combination therapy of an HMG CoA reductase inhibitor and a bile acid sequestrant has been demonstrated to be more effective in human hyperlipidemic patients than either agent in monotherapy (Illingworth, *Drugs*, *36* (Suppl. 3) (1988), p. 63-71).

30

SUMMARY OF THE INVENTION

Novel hypocholesterolemic compounds of the present invention are represented by the formula I

10

15

20

25

30

or a pharmaceutically acceptable salt thereof, wherein:

$$R_1$$
 is -CH-, -C(lower alkyl)-, -CF-, -C(OH)-, -C(C₆H₅)-, -C(C₆H₄-R₁₅)-, -N- or $\xrightarrow{-1}$ O :

R₂ and R₃ are independently selected from the group consisting of -CH₂-, -CH(lower alkyl)-, -C(di-lower alkyl)-, -CH=CH- and -C(lower alkyl)=CH-; or R₁ together with an adjacent R₂, or R₁ together with an adjacent R₃, form a -CH=CH- or a -CH=C(lower alkyl)- group;

u and v are independently 0, 1, 2 or 3, provided both are not zero; provided that when R_2 is -CH=CH- or -C(lower alkyl)=CH-, v is 1; provided that when R_3 is -CH=CH- or -C(lower alkyl)=CH-, u is 1; provided that when v is 2 or 3, the R_2 's can be the same or different; and provided that when u is 2 or 3, the R_3 's can be the same or different;

 R_4 is B-(CH₂)_mC(O)-, wherein m is 0, 1, 2, 3, 4 or 5;

B- $(CH_2)_{q^-}$, wherein q is 0, 1, 2, 3, 4, 5 or 6;

B-(CH₂)_e-Z-(CH₂)_r, wherein Z is -O-, -C(O)-, phenylene,

-N(R₈)- or -S(O)₀₋₂-, e is 0, 1, 2, 3, 4 or 5 and r is 0, 1, 2, 3, 4 or 5, provided that the sum of e and r is 0, 1, 2, 3, 4, 5 or 6;

B-(C2-C6 alkenylene)-; B'-(C4-C6 alkadienylene)-;

B- $(CH_2)_t$ -Z- $(C_2$ - C_6 alkenylene)-, wherein Z is as defined above, and wherein t is 0, 1, 2 or 3, provided that the sum of t and the number of carbon atoms in the alkenylene chain is 2, 3, 4, 5 or 6;

B- $(CH_2)_f$ -V- $(CH_2)_g$ -, wherein V is C₃-C₆ cycloalkylene, f is 1, 2, 3, 4 or 5 and g is 0, 1, 2, 3, 4 or 5, provided that the sum of f and g is 1, 2, 3, 4, 5 or 6;

B- $(CH_2)_t$ -V- $(C_2$ -C₆ alkenylene)- or B'- $(C_2$ -C₆ alkenylene)-V- $(CH_2)_t$ -, wherein V and t are as defined above, provided that the sum of t and the number of carbon atoms in the alkenylene chain is 2, 3, 4, 5 or 6;

B- $(CH_2)_a$ -Z- $(CH_2)_b$ -V- $(CH_2)_d$ -, wherein Z and V are as defined above and a, b and d are independently 0, 1, 2, 3, 4, 5 or 6, provided that the sum of a, b and d is 0, 1, 2, 3, 4, 5 or 6:

 $T-(CH_2)_s$ -, wherein T is cycloalkyl of 3-6 carbon atoms and s is 0, 1, 2, 3, 4, 5 or 6; or

R₁ and R₄ together form the group. B-CH=C-;

B is indanyl, indenyl, naphthyl, tetrahydronaphthyl, heteroaryl or W-substituted heteroaryl, wherein heteroaryl is selected from the group consisting of pyrrolyl, pyridinyl, pyrimidinyl, pyrazinyl, triazinyl, imidazolyl, thiazolyl, pyrazolyl, thienyl, oxazolyl and furanyl, and for nitrogencontaining heteroaryls, the N-oxides thereof, or

W is 1 to 3 substituents independently selected from the group consisting of lower alkyl, hydroxy lower alkyl, lower alkoxy, alkoxyalkyl, alkoxyalkoxy, alkoxycarbonylalkoxy, (lower alkoxyimino)-lower alkyl, lower alkanedioyl, lower alkyl lower alkanedioyl, allyloxy, -CF3, -OCF3, benzyl, R7-benzyl, benzyloxy, R7-benzyloxy, phenoxy, R7-phenoxy, dioxolanyl, NO2, -N(R8)(R9), N(R8)(R9)-lower alkylene-, N(R8)(R9)-lower alkylenyloxy-, OH, halogeno, -CN, -N3, -NHC(O)OR10, -NHC(O)R10, R11O2SNH-, (R11O2S)2N-, -S(O)2NH2, -S(O)0-2R8, tert-butyldimethyl-silyloxymethyl, -C(O)R12, -COOR19, -CON(R8)(R9), -CH=CHC(O)R12, -lower alkylene-C(O)R12, R10C(O)(lower alkylenyloxy)-,

N(R₈)(R₉)C(O)(lower alkylenyloxy)- and for substitution on ring carbon atoms, and the substituents on the substituted heteroaryl ring nitrogen atoms, when present, are selected from the group consisting of lower alkyl, lower alkoxy, -C(O)OR₁₀, -C(O)R₁₀, OH, N(R₈)(R₉)-lower alkylene-, N(R₈)(R₉)-lower alkylenyloxy-, -S(O)₂NH₂ and 2-(trimethylsilyl)-ethoxymethyl;

 R_7 is 1-3 groups independently selected from the group consisting of lower alkyl, lower alkoxy, -COOH, NO2, -N(R8)(R9), OH or halogeno;

R₈ and R₉ are independently H or lower alkyl;

R₁₀ is lower alkyl, phenyl, R₇-phenyl, benzyl or R₇-benzyl;
R₁₁ is OH, lower alkyl, phenyl, benzyl, R₇-phenyl or R₇-benzyl;
R₁₂ is H, OH, alkoxy, phenoxy, benzyloxy, -N R₁₃

-N(R₈)(R₉), lower alkyl, phenyl or R₇-phenyl;

10

25

30

35

R₁₃ is -O-, -CH₂-, -NH-, -N(lower alkyl)- or -NC(O)R₁₉;
R₁₅, R₁₆ and R₁₇ are independently selected from the group consisting of H and the groups defined for W; or R₁₅ is hydrogen and R₁₆ and R₁₇, together with adjacent carbon atoms to which they are attached, form a dioxolanyl ring;

R₁₉ is H, lower alkyl, phenyl or phenyl lower alkyl; and R₂₀ and R₂₁ are independently selected from the group consisting of phenyl, W-substituted phenyl, naphthyl, W-substituted naphthyl, indanyl, indenyl, tetrahydronaphthyl, benzodioxolyl, heteroaryl, W-substituted heteroaryl, benzofused heteroaryl, W-substituted benzofused heteroaryl and cyclopropyl, wherein heteroaryl is as defined above.

One group of preferred compounds of formula I is that

wherein R₂₁ is phenyl, W-substituted phenyl, indanyl, benzofuranyl,
benzodioxolyl, tetrahydronaphthyl, pyridyl, pyrazinyl, pyrimidinyl, quinolyl
or cyclopropyl, wherein W is lower alkyl, lower alkoxy, OH, halogeno,
-N(R₈)(R₉), -NHC(O)OR₁₀, -NHC(O)R₁₀, NO₂, -CN, -N₃, -SH,
-S(O)₀₋₂-(lower alkyl), -COOR₁₉, -CON(R₈)(R₉), -COR₁₂, phenoxy,
benzyloxy, -OCF₃, -CH=C(O)R₁₂ or tert-butyldimethylsilyloxy, wherein R₈,
R₉, R₁₀, R₁₂ and R₁₉ are as defined for formula I. When W is 2 or 3
substituents, the substituents can be the same or different.

Another group of preferred compounds of formula I is that wherein R₂₀ is phenyl or W-substituted phenyl, wherein preferred meanings of W are as defined above for preferred definitions of R₂₁.

More preferred are compounds of formula I wherein R_{20} is phenyl or W-substituted phenyl and R_{21} is phenyl, W-substituted phenyl, indanyl, benzofuranyl, benzodioxolyl, tetrahydronaphthyl, pyridyl, pyrazinyl, pyrimidinyl, quinolyl or cyclopropyl; W is lower alkyl, lower alkoxy, OH, halogeno, -N(R_8)(R_9), -NHC(O)OR₁₀, -NHC(O)R₁₀, NO₂, -CN, -N₃, -SH, -S(O)₀₋₂-(lower alkyl), -COOR₁₉, -CON(R_8)(R_9), -COR₁₂, phenoxy, benzyloxy, -CH=CHC(O)R₁₂, -OCF₃ or tert-butyl-dimethyl-silyloxy, wherein when W is 2 or 3 substituents, the substituents can be the same or different, and wherein R_8 , R_9 , R_{10} , R_{12} and R_{19} are as defined in formula I.

Also preferred are compounds of formula I wherein R_1 is -CH- or -C(OH)- . Another group of preferred compounds of formula I is

10

15

20

25

30

35

that wherein R_2 and R_3 are each -CH₂- and the sum of u and v is 2, 3 or 4, with u=v=2 being more preferred. R_4 is preferably B-(CH₂)_q- or B-(CH₂)_e- Z-(CH₂)_r, wherein B, Z, q, e and r are as defined above. B is preferably

R₁₇, wherein R₁₆ and R₁₇ are each hydrogen and wherein R₁₅ is preferably H, OH, lower alkoxy, especially methoxy, or halogeno, especially chloro. A preferred definition of Z is -O-, e is preferably 0, and r is preferably 0. A preferred definition of q is 0-2. R₂₀ is preferably phenyl or W-substituted phenyl. Preferred W substituents for R₂₀ are lower alkoxy, especially methoxy and ethoxy, OH, and -C(O)R₁₂, wherein R₁₂ is preferably lower alkoxy. Preferred definitions for R₂₁ are phenyl, lower alkoxy-substituted phenyl and F-phenyl.

Especially preferred are compounds of formula I wherein R_1 is -CH-, or -C(OH)-, R_2 and R_3 are each -CH₂-, u=v=2, R_4 is B-(CH₂)_q-, wherein B is phenyl or phenyl substituted by lower alkoxy or chloro, q is 0-2, R_{20} is phenyl, OH-phenyl, lower alkoxy-substituted phenyl or lower alkoxycarbonyl-substituted phenyl, and R_{21} is phenyl, lower alkoxy-substituted phenyl or F-phenyl.

This invention also relates to a method of lowering the serum cholesterol level in a mammal in need of such treatment comprising administering an effective amount of a compound of formula I. That is, the use of a compound of the present invention as an hypocholesterolemic agent is also claimed.

In still another aspect, the present invention relates to a pharmaceutical composition comprising a serum cholesterol-lowering effective amount of a compound of formula I in a pharmaceutically acceptable carrier.

The present invention also relates to a method of reducing plasma cholesterol levels, and to a method of treating or preventing atherosclerosis, comprising administering to a mammal in need of such treatment an effective amount of a combination of a spirocycloalkyl-substituted azetidinone cholesterol absorption inhibitor of this invention and a cholesterol biosynthesis inhibitor. That is, the present invention relates to the use of a spirocycloalkyl-substituted azetidinone cholesterol absorption inhibitor for combined use with a cholesterol biosynthesis inhibitor (and, similarly, use of a cholesterol biosynthesis inhibitor for

10

15

20

25

35

combined use with a spirocycloalkyl-substituted azetidinone cholesterol absorption inhibitor) to treat or prevent athersclerosis or to reduce plasma cholesterol levels

In yet another aspect, the invention relates to a pharmaceutical composition comprising an effective amount of a spirocycloalkyl-substituted azetidinone cholesterol absorption inhibitor, a cholesterol biosynthesis inhibitor, and a pharmaceutically acceptable carrier. In a final aspect, the invention relates to a kit comprising in one container an effective amount of a spirocycloalkyl-substituted azetidinone cholesterol absorption inhibitor in a pharmaceutically acceptable carrier, and in a separate container, an effective amount of a cholesterol biosynthesis inhibitor in a pharmaceutically acceptable carrier.

DETAILED DESCRIPTION:

As used herein, the term "lower alkyl" means straight or branched alkyl chains of 1 to 6 carbon atoms and "lower alkyoxy" similarly refers to alkoxy groups having 1 to 6 carbon atoms.

"Alkenyl" means straight or branched carbon chains having one or more double bonds in the chain, conjugated or unconjugated, and alkadienyl refers to chains having two double bonds in the chain.

Where an alkyl or alkenyl chain joins two other variables and is therefore bivalent, the terms alkylene and alkenylene are used.

"Cycloalkyl" means a saturated carbon ring of 3 to 6 carbon atoms, while "cycloalkylene" refers to a corresponding bivalent ring, wherein the points of attachment to other groups include all positional isomers.

"Halogeno" refers to fluorine, chlorine, bromine or iodine radicals.

"Heteroary!" includes all positional isomers for a given
heteroaryl group as defined above, for example 2-pyridyl, 3-pyridyl and 4pyridyl. Benzofused heteroaryl refers to radicals formed by the bonding of
a benzene radical to adjacent carbon atoms on a heteroaryl ring;
examples are indolyl, quinolyl, quinazolinyl, quinoxalinyl, benzotriazolyl,
indazolyl, benzoxazolyl, benzothienyl and benzofuranyl.

"Phenylene" means a bivalent phenyl group, including ortho, meta and para-substitution.

"(Lower alkoxyimino)lower alkyl" refers to the group (C₁-C₆ lower alkoxy)-N=CH-(C₁-C₅ lower alkyl). "Lower alkanedioyl" means

10

15

25

30

radicals of the formula $-OC(O)(CH_2)_{1-4}C(O)OH$, while "lower alkyl lower alkanedioyl" means radicals of the formula $-OC(O)(CH_2)_{1-4}C(O)O$ -(lower alkyl).

R7-benzyl and R7-benzyloxy refer to benzyl and benzyloxy radicals which are substituted on the phenyl ring.

Compounds of the invention have at least one asymmetrical carbon atom and therefore all isomers, including diastereomers and rotational isomers are contemplated as being part of this invention. The invention includes d and I isomers in both pure form and in admixture, including racemic mixtures. Isomers can be prepared using conventional techniques, either by reacting enantiomeric starting materials or by separating isomers of a compound of formula I. Isomers may also include geometric isomers, e.g. when a double bond is present. All such geometric isomers are contemplated for this invention.

For compounds of the invention wherein R₁ is not N, at least two diastereomeric forms are possible. The following formulae IA and IB represent structures designated herein as "diastereomer A", wherein the lactam carbonyl group and the R₄ group are SYN, and "diastereomer B", wherein the lactam carbonyl group and the R₄ group are ANTI,

20 respectively:

$$R_{4}$$
 R_{5}
 R_{5}
 R_{1}
 R_{20}
 R_{21}
 R_{20}
 R_{21}
 R_{20}
 R_{21}
 R_{20}
 R_{21}
 R_{20}
 R_{21}
 R_{21}
 R_{20}
 R_{21}
 R_{21}

wherein R_5 is hydrogen, lower alkyl, fluoro, hydroxy, phenyl, or R_{15} -substituted phenyl, and R_2 , R_3 , R_4 , R_{15} , R_{20} , R_{21} , u and v are as defined above.

Those skilled in the art will appreciate that for some compounds of formula I, one isomer will show greater pharmacological activity than another isomer.

Compounds of the invention with an amino group can form pharmaceutically acceptable salts with organic and inorganic acids.

Examples of suitable acids for salt formation are hydrochloric, sulfuric, phosphoric, acetic, citric, oxalic, malonic, salicylic, malic, fumaric, succinic, ascorbic, maleic, methanesulfonic and other mineral and carboxylic acids

10

15

20

25

well known to those in the art. The salt is prepared by contacting the free base form with a sufficient amount of the desired acid to produce a salt. The free base form may be regenerated by treating the salt with a suitable dilute aqueous base solution such as dilute aqueous sodium bicarbonate. The free base form differs from its respective salt form somewhat in certain physical properties, such as solubility in polar solvents, but the salt is otherwise equivalent to its respective free base forms for purposes of the invention.

Certain compounds of the invention are acidic (e.g., those compounds which possess a carboxyl group). These compounds form pharmaceutically acceptable salts with inorganic and organic bases. Examples of such salts are the sodium, potassium, calcium, aluminum, gold and silver salts. Also included are salts formed with pharmaceutically acceptable amines such as ammonia, alkyl amines, hydroxyalkylamines, N-methylglucamine and the like.

Cholesterol biosynthesis inhibitors for use in the combination of the present invention include HMG CoA reductase inhibitors such as lovastatin, pravastatin, fluvastatin, simvastatin and CI-981; HMG CoA synthetase inhibitors, for example L-659,699 ((E,E-11-[3'R-(hydroxymethyl)-4'-oxo-2'R-oxetanyl]-3,5,7R-trimethyl-2,4-undecadienoic acid); squalene synthesis inhibitors, for example squalestatin 1; and squalene epoxidase inhibitors, for example, NB-598 ((E)-N-ethyl-N-(6,6-dimethyl-2-hepten-4-ynyl)-3-[(3,3'-bithiophen-5-yl)methoxy]benzene-methanamine hydrochloride). Preferred HMG CoA reductase inhibitors are lovastatin, pravastatin and simvastatin.

Compounds of formula I, wherein R_1 , R_2 , R_3 , R_4 , R_{20} , R_{21} , u and v are as defined above, can be prepared by known methods as shown in the following processes A to F.

30 Process A:

$$R_4$$
 R_1
 $(R_2)_v$
 R_{20}
 R_{20}
 R_{20}
 R_{21}
 R_{21}
 R_{21}
 R_{21}
 R_{21}

A carboxylic acid of formula II can be converted to the corresponding acid chloride by refluxing with a reagent such as oxalyl

15

20

chloride in an inert solvent such as CH₂Cl₂. The acid chloride is then refluxed with an imine of formula III in an inert solvent such as CH₂Cl₂, heptane or toluene, in the presence of a trialkylamine (i.e., (alkyl)₃N) such as triethylamine, tributylamine or diisopropylethylamine. Generally, all possible diastereomers of formula I are produced by this process. Process B:

$$(R_2)v$$
 R_4
 $(R_2)v$
 R_4
 $(R_2)v$
 R_4
 $(R_2)v$
 R_4
 $(R_2)v$

$$R_3$$
) U
 R_{21}
 R_{21}
 R_{31}
 R_{21}
 R_{31}
 R_{21}
 R_{21}

A keto-azetidinone of formula IV can be converted to a carbinol of formula Ia, i.e., a compound of formula I wherein R₁ is

-C(OH)-, by treatment with a Grignard reagent of formula R₄MgX, wherein R₄ is as defined above and X is a halogen such as bromine, chlorine or iodine.

Process C:

Ia
$$\frac{\text{TsOH/toluene or}}{\text{CH}_3\text{O}_2\text{CNSO}_2\text{NEt}_3}$$
 $(R_3)_u$ R_{20} R_{21} Ib (wherein $R_1 + R_2 = -\text{CH=CH-}$)

A carbinol of formula Ia is converted to an olefin of formula Ib, wherein R₁ and an adjacent R₂ form a double bond (other R₂ groups can also be present) by dehydration with a mild acid such as ptoluenesulfonic acid (p-TsOH) under anhydrous conditions, e.g., using toluene as a solvent, or by treatment with a dehydrating agent such as (methoxycarbonylsulfamoyl)-triethylammonium hydroxide inner salt. Process D:

An olefin of formula Ib is reduced with hydrogen in the presence of a suitable catalyst such as palladium or an iridinium salt to

obtain the desired azetidinone of formula I. When the iridinium salt is used, the resulting products have primarily the ANTI stereochemistry, IB.

Keto-azetidinone starting materials of formula IV can be prepared, for example, by the following processes:

Process E:

A carboxylic acid ester of formula V, wherein R₂₂ is lower alkyl, such as ethyl, or a chiral moiety such as menthyl or 10-(diisopropyl-sulfonamido)-isobornyl, is treated with a strong base such as lithium diisopropylamide (LDA) in a suitable solvent such as tetrahydrofuran (THF) at -78°C. An imine of formula III is added and the reaction mixture is stirred at -78°C for a suitable period, e.g., one hour, then allowed to warm to room temperature. The product of formula VI is isolated using conventional purification techniques. When the ester group R₂₂ is chiral, the product is non-racemic. The ketal protecting group is removed by treatment with a mild acid such as p-TsOH to obtain the keto-azetidinone of formula IV.

Process F:

10

15

20

$$\begin{array}{c|c}
O & (R_2)_v & 1) \text{ CICOCOCI} \\
(R_3)_u & COOH & 2) & A-R_{20} \\
VII & N & (alkyl)_3N \\
\hline
R_{21} & III & \\
\end{array}$$

A ketoacid of formula VII can be treated with CICOCOCI and reacted with an imine of formula III as described in Process A to obtain a keto-azetidinone of formula IV.

10

15

20

The carboxylic acids and imines of formulas II, III, V and VII used as starting materials in the above process are known in the art or can be prepared by one skilled in the art using well known procedures. Typical procedures for preparing a variety of carboxylic acids are described below in Preparations 1 to 6.

Reactive groups not involved in the above processes can be protected during the reactions with conventional protecting groups which can be removed by standard procedures after the reaction. The following Table 3 shows some typical protecting groups:

We have found that the compounds of this invention lower serum lipid levels, in particular serum cholesterol levels. Compounds of this invention have been found to inhibit the intestinal absorption of cholesterol and to significantly reduce the formation of liver cholesteryl esters in animal models. Thus, compounds of this invention are hypocholesterolemic agents by virtue of their ability to inhibit the esterification and/or intestinal absorption of cholesterol; they are, therefore, useful in the treatment and prevention of atherosclerosis in mammals, in particular in humans.

The <u>in vivo</u> activity of the compounds of formula I can be determined by the following procedure:

10

15

20

25

30

35

In Vivo Assay of Hypolipidemic Agents Using the Hyperlipidemic Hamster Hamsters are separated into groups of six and given a controlled cholesterol diet (Purina Chow #5001 containing 0.5% cholesterol) for seven days. Diet consumption is monitored to determine dietary cholesterol exposure in the face of test compounds. The animals are dosed with the test compound once daily beginning with the initiation of diet. Dosing is by oral gavage of 0.2mL of corn oil alone (control group) or solution (or suspension) of test compound in corn oil. All animals moribund or in poor physical condition are euthanized. After seven days, the animals are anesthetized by IM injection of ketamine and sacrificed by decapitation. Blood is collected into vacutainer tubes containing EDTA for plasma lipid analysis and the liver excised for tissue lipid analysis. Data is reported as percent reduction of lipid versus control.

The present invention also relates to a pharmaceutical composition comprising a compound of formula I and a pharmaceutically acceptable carrier. The compounds of formula I can be administered in any conventional dosage form, preferably an oral dosage form such as a capsule, tablet, powder, cachet, suspension or solution. The formulations and pharmaceutical compositions can be prepared using conventional pharmaceutically acceptable excipients and additives and conventional techniques. Such pharmaceutically acceptable excipients and additives include non-toxic compatible fillers, binders, disintegrants, buffers, preservatives, anti-oxidants, lubricants, flavorings, thickeners, coloring agents, emulsifiers and the like.

The daily hypocholesteremic dose of a compound of formula I is about 7 to about 30 mg/kg of body weight per day. For an average body weight of 70kg, the dosage level is therefore from about 500 to about 2000 mg of drug per day, given in a single dose or 2-4 divided doses. The exact dose, however, is determined by the attending clinician and is dependent on the potency of the compound administered, the age, weight, condition and response of the patient.

Following are examples of preparing carboxylic acid starting materials and novel compounds of formula I. The stereochemistry listed is relative stereochemistry unless otherwise noted.

Preparation 1

4-Phenyl-cyclohexanecarboxylic acid

- STEP 1: Cool a mixture of 4-phenyl-cyclohexanone (30 g) and tosylmethyl isocyanide (36.9 g) in dimethoxyethane (800 mL) in an ice/acetone bath. Add a solution of potassium t-butoxide (38.7 g) in dimethoxyethane (300 mL) and t-butanol (300 mL). Stir the reaction mixture for 4h, pour into water and extract the product with ethyl acetate (EtOAc). Separate the organic layer, concentrate and use in STEP 2 without purification.
- STEP 2: Dissolve the product from STEP 1 (32.8 g) in CH₃OH (240 mL) and add water (800 mL), Ba(OH)₂ (95 g) and NaOH (7.8 g). Heat the reaction mixture at reflux for 24h. Remove most of the CH₃OH under vacuum and extract the aqueous solution with ether (Et₂O). Separate the aqueous layer, acidify with conc. HCl and extract the product with Et₂O.
- 15 Concentrate the ether solution to obtain the title compound (17.6 g).

 4-Phenyl-4-methyl-cyclohexanecarboxylic acid is similarly prepared from 4-phenyl-4-methyl-cyclohexanone.

Preparation 2

4-(4-Chlorophenyl)-cyclohexanecarboxylic acid

- STEP 1: Slowly add 4-chlorophenylmagnesium chloride (5.9 mL of 1M solution) to a solution of ethyl 4-oxo-cyclohexanecarboxylate (1.0 g) in Et₂O at 0°C. After 1h, pour the reaction mixture into 1N HCl and extract with Et₂O. Separate the organic layer, wash with water, brine and concentrate to give ethyl 4-(4-chlorophenyl)-4-hydroxy-cyclohexane-
- carboxylate (1.75 g) which is used without purification in the next step. STEP 2: Dissolve the product (1.75 g) from STEP 1 in THF (100 mL), treat with 40% H₂SO₄ (25 mL) and heat the reaction mixture at reflux for 5.5h. Remove most of the solvent in vacuo, dilute the reaction mixture with water and extract with Et₂O. Separate the organic layer and concentrate to give 4-(4-chlorophenyl)-cyclohex-3-enecarboxylic acid (1.36 g).
- STEP 3: Reduce a solution of the product of STEP 2 (1.36 g) in EtOAc (50 mL) over 10% Pd/C under H₂ (50 psi) for 14 h. Filter the catalyst and concentrate the solution to give the title compound (1.36 g).
 - 4-(4-Methoxyphenyl)-cyclohexanecarboxylic acid is similarly
- 35 prepared.

20

25

Preparation 3

4-Cyclohexyl-cyclohexanecarboxylic acid

Reduce a solution of 4-biphenylcarboxylic acid (10 g) in ethanol (EtOH) (175 mL) and EtOAc (30 mL) over 5% rhodium/alumina (7 g) under H₂ (60 psi) for 8 days. Filter the catalyst and concentrate the solution to obtain the title compound (9.92 g).

Preparation 4

4-Benzyl-cyclohexanecarboxylic acid

STEP 1: Reduce a solution of terphthalic acid mono-methyl ester (12.6 g)
using a procedure similar to that of Preparation 3 to obtain 1,4-cyclohexanedicarboxylic acid mono-methy ester (12.64 g). The crude product
is used without purification in the next step.

STEP 2: Add CICOCOCI (4.1 g) to a solution of the product of STEP 1 (3.0 g) in CH₂Cl₂ (15 mL) and heat the mixture at reflux for 1.5h. Remove excess CICOCOCI in vacuo and dissolve the product in benzene. Cool the reaction mixture in an ice/water bath and slowly add AlCl₃ (4.74 g). Stir the reaction mixture ovemight as it warms to ambient temperature and pour into a conc. HCl/ice mixture. Extract the product with Et₂O, separate the organic layer, wash with water and brine, then concentrate to obtain

methyl 4-(4-benzoyl)-cyclohexane-carboxylate (3.9 g). STEP 3: Reduce a solution of the product of STEP 2 (2.5 g) in EtOAc (15 mL) and acetic acid (HOAc) (50 mL) over 10%Pd/C (0.3 g) under H₂ (60 psi) for 22h. Filter the catalyst, dilute the reaction mixture with water and extract the product with Et₂O. Separate the organic layer and concentrate to obtain a mixture of methyl 4-(α -hydroxybenzyl)-cyclohexanecarboxylate and methyl (4-benzylcyclohexane-carboxylate (2.46 g).

STEP 4: Dissolve the product from STEP 3 (2.46 g) in THF (100 mL), treat with 40% H₂SO₄ (25 mL) and heat the reaction mixture at reflux for 5 h. Pour the reaction mixture into excess water and extract with EtOAc.

Separate the organic layer, concentrate, and reduce the crude mixture over 10%Pd/C (0.25 g) under H₂ (60 psi) overnight. Filter the catalyst and concentrate the solution to obtain the title compound (2.42 g).

Preparation 5

4-(2-Phenylethyl)-cyclohexanecarboxylic acid

STEP 1: Slowly add 2-phenylethyl bromide (2.6 g) to a slurry of Mg (0.37 g) in THF (50 mL) and heat at reflux for 4h. Cool the solution to ambient temperature and add to a solution of ethyl 4-oxo-cyclo-hexane-carboxylate (2.4 g) in THF (50 mL). After 2h, pour the reaction mixture into

a half-saturated solution of NH₄Cl and extract with EtOAc. Partially purify the product on a silica gel column, eluting with EtOAc. Dissolve the product in toluene (100 mL), treat with p-TsOH and heat at reflux overnight with azeotropic removal of water. Cool the reaction mixture, wash with saturated NaHCO3 solution and concentrate. Purify the crude 5 product on a silica gel column, eluting with CH2Cl2 to obtain ethyl 4-(2phenylethyl)-cyclohex-3-enecarboxylate (0.45 g) and 1-(2-phenyl-ethyl)-2-oxabicyclo[2.2.2]octan-3-one (0.71 g). Dissolve 1-(2-phenyl-ethyl)-2oxabicyclo[2.2.2]octan-3-one in EtOH, treat with conc.HCl (catalytic) and 10 heat at reflux overnight. Dilute the reaction mixture with water and extract with EtOAc. Concentrate the organic layer to obtain additional ethyl 4-(2phenylethyl)-cyclohex-3-enecarboxylate (0.88 g). STEP 2: To a solution of the product of STEP 1 (1.33 g) in EtOAc (40 mL), add 10% Pd/C (0.2 g) and hydrogenate overnight at 58 psi. Filter the 15 catalyst and concentrate the reaction mixture to give ethyl 4-(2phenylethyl)-cyclohexanecarboxylate (1.26 g). STEP 3: To a solution of the product of STEP 2 (1.26 g) in MeOH (20 mL), add water (5 mL) and LiOH (0.61 g) and stir overnight at ambient temperature. Dilute the reaction mixture with water and extract with Et₂O. 20 Acidify the aqueous layer with conc. HCI and extract with EtOAc. Separate the organic layer, wash with water and brine, and concentrate to obtain the title compound (1.06 g).

Preparation 6

3-Benzyl-cyclobutanecarboxylic acid

STEP 1: Slowly add a solution of diethyl 2-benzylmalonate (20 g) in Et₂O 25 (300 mL) to a slurry of LiAlH₄ (6 g) in Et₂O (300 mL), then heat the reaction mixture at reflux for 14h. Carefully add 4N NaOH to the reaction mixture until there is no precipitate, then extract with EtOAc. Concentrate the organic layer and purify the crude product on a silica gel column. 30 eluting with EtOAc to obtain 2-benzyl-1,3-propanediol (8.45 g). STEP 2: Slowly add (C₆H₅)₃P (17.4 g) to a solution of the product of STEP 1 (5 g) in CH₂Cl₂ (200 mL) containing CBr₄ (21 g) at 0°C. Stir the reaction mixture overnight and allow to warm to ambient temperature. Evaporate the solvent in vacuo, triturate the crude product with pentane, 35 filter, concentrate the filtrate and purify the residue on a silica gel column. eluting with hexane to give 2-benzyl-1,3-propanedibromide (5.47 g). STEP 3: Add diethyl malonate (3 g) to a slurry of NaH (0.514 g) in dimethylformamide (DMF) (75 mL) at ambient temperature. After 1 h, heat

10

15

the reaction mixture to 100°C for 1h, cool to ambient temperature, add a solution of the product of STEP 2 (5 g) in DMF (25 mL) and stir at ambient temperature for 2.5h, followed by 2h at 150°C. Cool the mixture to ambient temperature, add NaH (0.514 g) and after 30 min., heat at 150°C overnight. Cool the reaction mixture, pour into excess water and extract with EtOAc. Separate the organic layer, wash with water and concentrate. Purify the crude product on a silica gel column, eluting with EtOAc:hexane (1:9) to obtain diethyl (3-benzyl)-cyclobutyl-1,1-dicarboxylate (3 g). STEP 4: To a solution of the product of STEP 3 (3 g) in EtOH (20 mL), add water (5 mL) and KOH (2.9 g) and heat at reflux overnight. Dilute the reaction mixture with water and extract with Et₂O. Acidify the aqueous layer with conc.HCl and extract with CH₂Cl₂. Separate the organic layer and concentrat to give 3-benzyl-cyclobutyl-1,1-dicarboxylic acid (2.31 g). STEP 5: Heat the product of STEP 4 (2.31 g) at 170-180°C under vacuum (60-70 mm) for 1.5h to obtain the title compound (1.85 g).

In a similar manner, 2-(2-phenylethyl)malonate is converted to 2-(2-phenylethyl)cyclobutanecarboxylic acid.

20 STEP 1: Heat a mixture of 4-carbomethoxycyclohexanone (4.4 g, 0.028 moles), HOCH2CH2OH (3.2 mL, 0.056 moles), and a catalytic amount of p-TsOH in toluene at reflux for 4 hr with continuous removal of water. Cool to room temperature, wash the organic layer with water, dry over MgSO4, and evaporate to give the crude ketal. Dissolve ketal in MeOH (80 mL) 25 containing KOH (5.6 g) and stir at room temperature overnight. Concentrate to dryness and dissolve in Et₂O (100 mL). Adjust to pH 2 with 1N HCl. Extract with Et₂O (3 x 100 mL), dry over MgSO₄ and evaporate to obtain 4.0 grams of the ethylene ketal of 4-cyclohexanonecarboxylic acid. STEP 2: Add the product from Step 1 (0.344 g, 1.8 mmol) and 10-30 diisopropylsulfonamido)-isobomeol (0.570 g, 1.8 mmol) to a mixture of DCC (0.556 g, 2.7 mmol), dimethylaminopyridine (DMAP) (0.330 g, 2.7 mmol), and DMAP HCI (0.003 g) in CH₂Cl₂ (5 mL). Stir at room temp. overnight, dilute with Et₂O (150 mL) and filter. Concentrate the filtrate

10

15

20

25

30

under vacuum and purify the crude ester by chromatography on silica gel, eluting with 30% EtOAc/hexane to obtain 0.508 grams of the ester. STEP 3: Prepare a solution of LDA (from [(CH₃)₂CH]₂NH (0.23 mL) and 1.6M CH₃(CH₂)₃Li (1.03 mL) in hexane) in THF (5 mL), cool to -78° C and add a solution of the product of Step 2 in THF (5 mL). Stir at -78° C for 1.5 hr, then add a solution of (N-(4-methoxy-benzylidine)aniline (0.278 g, 1.32 mmol) in THF (5 mL). Stir this mixture at -78° C for 1 hr and at room temperature for 1 hr. Quench the reaction with a solution of 10 % aqueous KHSO₄ (20 mL), extract with EtOAc (3x20 mL), dry the organic layers over MgSO₄ and evaporate. Purify the crude product by chromatography over silica gel, eluting with 40% EtOAc/hexane to obtain 0.266 g of product. STEP 4: Stir the product of Step 3 overnight in 5:1 acetone: 3N HCl to obtain 0.21 grams of the title compound. If 10-diisolpropylsulfonamido)-isoborneol derived from (+)-10-camphorsulfonyl chloride is used in Step 1, the product has the (S)-configuration.

Preparation 8

STEP 1: To a solution of ethyl 3-oxocyclopentanecarboxylate (2.63 g, 0.0169 moles) in benzene (50 mL), add HOCH₂CH₂OH (2.10 g, 0.0338 moles) and pyridinium tosylate (0.85 g, 0.0034 moles). Heat at reflux with removal of water for 2.5 hr. Remove the solvent under vacuum and take up the residue in Et₂O (100 mL). Wash with saturated Na₂CO₃ and concentrate to a yellow oil. Purify by chromatography on silica gel, eluting with 10 % EtOAc/hexane to obtain 2.92 grams of the ketal ester.

STEP 2: React the product of Step 1 (0.30 g, 0.0015 moles) with LDA (1.2 equivalents) in THF followed by N-(4-methoxybenzylidine)aniline as described for Preparation 7, Step 3, to obtain 0.52 grams of the resulting azetidinone as a mixture of diastereomers. Separate these diastereomers by chromatography on silica gel, eluting with 20% EtOAc/hexane to obtain 0.16 grams of component A and 0.22 grams of component B.

STEP 3: Treat component A of Step 2 (1.38 g) with aqueous HCl as described for Preparation 7, Step 4, to obtain 1.15 grams of rel (3R,4R)-3-(4-methoxyphenyl)-2-phenyl-2-azaspiro[3.4]octane-1,6-dione. Similar

10

15

20

25

treatment of component B yields rel (3R,4S)-3-(4-methoxyphenyl)-2-phenyl-2-azaspiro[3.4]octane-1,6-dione.

Preparation 9

Treat a solution of 4-cyclohexanonecarboxylic acid (4.6 g, 0.0323 moles)in CH₂Cl₂ (50 mL) with CICOCOCI (5.7 mL, 0.0648 moles) as described in Example 1, below. React the resulting acid chloride with N-(4-methoxybenzylidene)aniline using the procedure described in Example 1 to obtain the title compound (10.03 g).

In a similar manner, using N-(4-methoxybenzylidine)-4(t-butyl-dimethylsilyloxy)aniline, prepare:

Examples 1 and 1A

2.3-Bis-(4-methoxyphenyl)-7-(4-chlorophenyl)-

2-azaspiro[3,5]nonan-1-one

Add CICOCOCI (1.43 g) to a solution of the product of Preparation 2 (1.34 g) in CH₂Cl₂ (15 mL) and heat at reflux for 2h. Remove the solvent and excess CICOCOCI under vacuum. Dissolve the resultant acid chloride in CH₂Cl₂ (5 mL), add this solution to N-(4-methoxybenzylidene)anisidine (1.35 g) and triethylamine (Et₃N) (1.25 g) in CH₂Cl₂ (25 mL) and heat at reflux overnight. Pour the reaction mixture into 1N HCI and extract the product with CH₂Cl₂. Separate the organic layer, wash with saturated NaHCO₃ and concentrate. Purify the crude material on a silica gel column, eluting with CH₂Cl₂:hexane (95:5) to give:

(1) Diastereomer A of the title compound: 0.52 g; m.p. 166-167;

Mass spectrum: Calculated 461 and observed 462;

Elemental analysis: Calculated: C=72.8, H=6.11, N=3.03

Found: C=72.72, H=6.11, N=3.15

5 (1A) Diastereomer B of the title compound: 0.475 g; m.p. 87-89

Mass spectrum: Calculated 461 and observed 462;

Elemental analysis: Calculated: C=72.8, H=6.11, N=3.03

Found: C=72.79, H=6.17, N=3.12.

Other 2-azaspiro[3.5]nonan-1-ones and 2-azaspiro[3.3]heptan-1-ones similarly prepared are shown in the following table:

						- 21 -				
		Elem. Anal.		Cakd: C: 78.66, H: 6.84, N: 3.28 Found:	C: 78.28, H: 6.77, N: 3.36 Cakd: C: 81.58, H: 6.85, N: 3.52 Found:	C: 81.06, H: 6.76, N: 3.65 Calcd: C: 81.58, H: 6.85, N: 3.52 Found:	C: 80.87, H: 6.75, N: 3.68 Calcd: C: 81.72, H: 7.10, N: 3.40 Found:	C: 81.59, H: 7.05, N: 3.60	Calcd: C: 75.68, H: 6.59, N: 6.54 Found:	C: 75.40, H: 6.66, N: 6.52 Calcd: C: 81.58, H: 6.85, N: 3.52 Found: C: 81.57, H: 6.84, N: 3.55
		MS	Calcd: 427 Obs: 427	Calcd: 427 Obs: 427	Calcd: 397 Obs: 398	Calcd: 397 Obs: 398	Calcd: 411 Obs: 412	Calcd: 411 Obs: 411	Calcd: 428 Obs: 429	Calcd: 396 Obs: 397
		mp.	2 89 2	75- 77	1	1	ı	1	1	191-
		H21	CH30 OCH3	°H∞ ()			P	P	CH20 CCH3	-{-}
R ₁ - (R ₂) _v		R ₂₀	-{\rightarrow} och;	HDO (Shoo CH3	-{	-{	-Choch2cH3	°H00 ⟨ _}	
		R4		-{}						
		-(R ₃) _u -	-(CH2)2-	-(CH ₂) ₂ -	-(CH ₂) ₂ -	-(CH ₂) ₂	-(CH ₂)2	-(CH ₂) ₂ -	-(CH ₂)2-	-(CH ₂) ₂ -
		-(R ₂)v-	-(CH2)2-	-(CH2) <i>z</i> -	-(CH ₂)2-	-(CH ₂) ₂ -	-(CH ₂) ₂ -	-(CH2)2-	-(CH2)2-	-(CH ₂) ₂ -
		Æ	동	공	공	ᆼ	공	ᆼ	Z	용
	- 1	Dia- ster.	∢	8	∢	80	«	B	•	⋖
		Ä.	2	က	4	2		7	80	6

						- 22 -				
Elem. Anal.		C: 81.56, H: 6.82, N: 3.56		Cakcd: C: 76.46, H: 6.42, N: 3.07 Found: C: 76.20, U: 6.20, N: 9.27	Cakcd: Cakcd: C: 76.46, H: 6.42, N: 3.07 Found:	Calcd: Calcd: C: 78.66, H: 6.84, N: 3.28 Found:	Cakcd: Cakcd: C: 78.66, H: 6.84, N: 3.28 Found:	- 75.55, FL 6.60, N. 5.47		HRMS Calcd: 412.2277 Found: 412.2272
WS	Calcd: 396 Obs: 397	Calcd: 411 Obs: 412	Calcd: 411 Obs: 412	Calcd: 455 Obs: 455	Calcd: 455 Obs: 455	Calcd: 427 Obs: 428	Calcd: 427 Obs: 428	Calcd: 413 Obs: 414	Calcd: 413 Obs: 413	Calcd: 411 Obs: 412
چ و ئ	178-	-		184-	125- 127	149- 150	161-	1	-	65- 69
R21	(1) OCH3		9	CH20 CCH3	CH2 OCH3				P	
H20		€ноо {	-{} och;	€ноооо-{}	€нооосн³	-{\} och	-CD och	-ScH ₃	-SCH ₃	-{_} осн
R4	-{		-()		-()	-{}-0°но	-{}-0°но			CH ₂ -
-(R ₃)u-	-(CH ₂) ₂ -	-(CH ₂)z-	-(CH ₂)₂-	-(CH ₂)2-	-(CH2)3-	-(CH2) <i>2</i> -	-(CH ₂) ₂ -			
-(R ₂)v-	-(CH ₂)≥	-(CH ₂) ₂ -		-(CH2)2-	-(CH₂) <i>2</i> -	-(CH ₂)₹	-(CH₂) <i>2</i> -	-(cH2) <i>2-</i>	-(CH2)2-	-(CH ₂)2-
R ₁	ᆼ	С(СН3)	С(СН3)	문	당	Н	СН	СН	СН	용
Dia- ster.	8	∢	8	V	60	«	8	4	8	4
Ä	10	11	12	13	14	15	16	17 A	17 B	18

						- 23 -				
Elem. Anal.	HRMS Calcd: 412.2277 Found: 412.2269	Calcd: C: 75.08, H: 6.07, N: 3.24 Found:	C: 75.07, H: 6.07, N: 3.31 Cakct: C: 75.08, H: 6.07, N: 3.24 Found:	C, 75.20, N. 6.04, N. 5.33	Calcd: C: 78.85, H: 6.62, N: 3.28 Found:	Calcd: C: 81.85, H: 7.34, N: 3.29 Found: C: 81.97, H: 7.34, N: 3.39	Calcd: C: 81.85, H: 7.34, N: 3.29 Found:	Calcd: Calcd: C: 78.16, H: 6.07, N: 3.38 Found -(C: 78.20, H: 6.10, N: 3.39	Calcd: C: 78.16, H: 6.07, N: 3.38 Found: C: 78.17, H: 6.00, N: 3.38	Calcd: Calcd: C: 75.43, H: 5.63, N: 3.26 Found: C: 75.35, H: 5.67, N: 3.35
MS	Calcd: 411 Obs: 412	Calcd: 431 Obs: 432	Calcd: 431 Obs: 432	Calcd: 427 Obs: 428	Calcd: 427 Obs: 428	Calcd: 425 Obs: 426	Calcd: 425 Obs: 426	Calcd: 414 Obs: 415	Calcd: 414 Obs: 415	Calcd: 429 Obs: 430
E C	126- 130	167- 168	76- 78	76- 77	76- 77	57- 59	53- 55	174- 175	174- 175	163-
H21			P	-CH20 OCH3	CH3 OCH3					
H20	-{-}	HOO (eHoo (EHOO (-{_}} ocH ₃	-CH20 OCH3	-(1) och	-СПЭ осн	—(1) och	—() ocH ₃
R4	−²H⊃	-{}p	d O		-()	(CH ₂) ₂ -	(T)-(CH ₂) ₂ -	a-{}-		٥
-(R ₃)u-	-(CH ₂) ₂ -	-(CH ₂)2-	-(CH ₂) ₂ -	-(CH2) <i>2</i> -	-(CH ₂) ₂ -	-(CH ₂)₂-	-(CH ₂)2-	-(CH ₂) ₂ -	-(CH2) <i>2</i> -	-(CH2)2-
-(R ₂)v-	-(CH ₂)2-	-(CH ₂) ₂ -	-(CH ₂) ₂ -	-(CH ₂)2-	-(CH ₂) ₂ -	-(CH ₂)2-	-(CH2)2-	-(CH ₂)2-	-(CH2) <i>2</i> -	
H,	공	공	용	Ю	ᆼ	СН	H	R	ᆼ	-ö
Dia- ster.	8	≪	8	В	8	Y	8	8	ω	,
Ë.	19	50	21	22	23	24	25	26	27	28

_								
Elem, Anal,	Cakcd: C: 81.43, H: 6.57, N: 3.65 Found:	C: 81.54, H: 6.49, N: 3.56 Calcd: C: 81.43, H: 6.57, N: 3.65 Found:	C: 81.09, H: 6.36, N: 3.42 ¹ H NMR (400 MHz, CDCl ₃) δ 6.90-7.30(m, ^{14H}), 4.71(s, 1H), 3.82(s, 3H), 2.66(ddd, 1H, ^{1=3.00} , 7.73, 11.60), 2.29(ddd, 1H, J=4.20, ^{7.94} , 11.91), 1.94(dd, 1H, J=9.56, 11.60), ¹ 2.3(dd, 1H, J=8.54, 11.91), 2.46(m, 3H).	1.59(m, 2H) 1 H NMR (400 MHz, CDCl ₃) & 6.90-7.32(m, 14H), 4.87(s, 1H), 3.82(s, 3H), 2.42-2.56(m, 3H), 2.95(dd, 1H, J=7.39, 11.9), 2.05(m 1H), 1.92(dd, 1H, J=7.63, 12.2), 1.64(ddd,	.83(q. 80.36 und:	C: 80.41, H: 8.19, N: 3.57 Calcd: C: 80.36, H: 8.24, N: 3.47 Found:	C: 80.35, H: 8.15, N: 3.74 Calcd: C: 79.74, H: 7.53, N: 3.87 Found:	C: 79.36, H: 7.57, N: 3.98
MS	Calcd; 383 Obs: 384	Calcd: 383 Obs: 384	MAR (400 MHz, 4.71(s, 1H), 500, 7.73, 11.6(d, 1H, J=8.5)	1.59(m, 2H) ¹ H NMR (400 MHz, CDCl ₃) ¹ H ¹ H, 4.87(s, 1H), 3.82(s, 3H), 2.95(dd, 1H, J=7.39, 11, 1.92(dd, 1H, J=7.63, 12.2),	J=8.24, 3.36, 11.9), 1 180- Calcd: 403 Ca 181 Obs: 404 C. Fe	Calcd: 403 Obs: 404	ı	Calcd: 361 Obs: 361
m du	လို နိုင	97-	14H) J=3. 7.94 1.23	1.59 1.92 1.92	J=8.2 180- 181	141-	1	1
R21				P		P	Y	Y
R ₂₀	€ ОСН3	HDO (CH3	FHOO (HDO (-{_}} ocH ₃	-СТУ осн	OCH ₃	-{_} осн
R4			(CH ₂) ₂ -	(T)-(CH ₂) ₂ -		6		
-(R ₃) _u -	-CH2-	-CH2-	-CH ₂ -	-cH2-	-(CH ₂) ₂ -	-(CH ₂) ₂ -	-(CH ₂) ₂ -	-(CH ₂)2-
-(R ₂) _v -	-ç Қ	-CH ₂ -	-CH2-	-CH ₂ -	-(CH ₂) ₂ -	-(CH ₂)2-	-(CH ₂) ₂ -	-(CH2)2-
H,	ਲ	공	ਲ	ᆼ	공	공	ਲ	공
Dia- ster.	V	8	∢	æ	∀	8	4	8
Ex.	29 A	29 B	30 A	30 B	31	32	33	34

* = Single Enantiomers

10

15

20

Enantiomeric compounds of Examples 22 and 23 were prepared by chromatographic resolution of the racemate in a CHIRACEL OD HPLC column eluting with 93:7 hexane:isopropanol at a flow rate of 5 mL/min.

Enantiomeric compounds of Examples 26 and 27 were prepared by chromatographic resolution of the racemate in a CHIRACEL OD HPLC column eluting with 95:5 hexane:isopropanol at a flow rate of 5 mL/min.

Example 26:
$$\left[\alpha\right]_{0}^{25} = +60.7^{\circ} (CH_{3}OH)$$

Example 27:
$$[\alpha]_D^{25} = -58.1^{\circ} (CH_3OH)$$

Examples 35A, 35B, 35C, 35D and 35E

To a solution of the product of Preparation 7 (1.1 g, 3.28 mmol) in Et₂O (20 mL) at 0°C, add a solution of 4-fluorophenylmagnesium bromide (4.9 mL, 4.92 mmol) in THF over 5 min. Stir at 0°C for 1.5 hr, then stir at room temperature for 3 hr. Quench the reaction with sat'd NaHSO₄ and extract with EtOAc (3 x 30 mL). Dry the organic layers over Na₂SO₄ and evaporate the solvent to obtain 1.57 grams of crude product. Purify by chromatography over silica gel, eluting with 95:5 Ch₂Cl₂:EtOAc to obtain 0.9 g of the ANTI isomer, mp=168-169° C, and 0.27 g of the SYN isomer.

In a similar manner, the following compounds are prepared:

MS calcd: 433; obs: 416 (M-H₂O)

mp=94-96°C

MS calcd: 427; obs: 427

MS calcd: 429; obs: 412 (M-H₂O)

Examples 36, 36A, 36B, 37 and 38

Using appropriate starting materials in a procedure similar to that described in Example 35, the following compounds are prepared:

<u>36</u>

36A

mp = 100.0-103.0°C

$$[\alpha]_{D}^{20} = +55.9^{\circ} \text{ (CH}_{3}\text{OH)}$$

single enantiomer

36B

mp = 60.0-65.0°C

$$[\alpha]_{D}^{24.2}$$
 = -52.0° (CH₃OH)

single enantiomer

Examples 39, 40, 40A,

STEP 1: Add p-TsOH (0.08 g) to a solution of the product of Example 35 (0.5 g) and stir at 60° C over 4A sieves for 3.5 hr. Filter the mixture through celite, wash with sat'd NaHCO₃, dry over Na₂SO₄, and evaporate to obtain 7-(4-fluorophenyl)-7-hydroxy-3-(4-methoxyphenyl)-2-phenyl-2-azaspiro[3.5]non-6-en-1-one, which can be used in STEP 2 with or without purification by chromatography over silica gel.

STEP 2: To a solution of the product of STEP 1, (0.415 g,1 mmol) in CH₂Cl₂ (15 mL), add (tricyclohexylphosphine)-(1,5-cyclooactadiene)-(pyridine) Iridium(I) hexafluorophosphate (0.010 g, 0.05 mmol). Stir under one atm H₂ at room temperature for 52 hr. Filter the mixture through a bed of silica gel, eluting with CH₂Cl₂ to give 0.161 g of the title compound, mp=146-147° C. MS calcd: 415; obs: 415.

In a similar manner, except using 10% Pd/C as the hydrogenation catalyst, use the compound of Example 38 as the starting material to prepare the following compounds:

mp = 102-103°C

CI Mass Spectrum, M/z(intensity): 398 (100, M+), 279 (13), 211 (18).

Examples 41, 42 and 42A

Use the product of Preparation 8 in the procedure of Example 35, followed by the procedure of Example 39, STEP 1, to obtain the compound of Example 41. Treat the compound of Example 41 using the procedure of Example 39, STEP 2, to obtain compounds of Examples 42 and 42A:

41

5

 $mp = 67.0-69.0^{\circ}C$

mp = 99-101°C

mp = 102.0-103.0°C

44B

5

10

15

20

Examples 43A and 43B

Use the product of Preparation 7 in the procedure of Example 35, followed by the procedures of Example 39, STEP 1 and STEP 2, to obtain compounds of Examples 43A and 43B:

43A

$$H_3CO$$
 $[\alpha]_D^{20} = +28.3^{\circ} \text{ (MeOH)}$

43B

 H_3CO
 $[\alpha]_D^{20} = +28.3^{\circ} \text{ (MeOH)}$

single enantiomer

single enantiomer

Examples 44A and 44B OCH₃ H_3CO 44A

Dissolve the compound of Example 36 (0.31 g, 0.693 moles) in CH2Cl2 (7 mL) at -78°C and add dropwise, over 2-3 min., diethylaminosulfur trifluoride (0.145 mL, 1.09 mmoles). Stir the mixture for 2 hr. at -78°C. Quench the mixture with ice-cold saturated NaHCO₃ and extract with CH₂Cl₂ (2x10 mL). Dry the combined organic layers over Na₂SO₄ and concentrate to an oil. Purify by flash chromatography on silica gel to obtain pure SYN diastereomer (0.146 mg) and impure ANTI diastereomer (0.72 mg). Purify the ANTI diastereomer by preparative TLC on a 20x20 cm silica gel plate, eluting with CH₂Cl₂ to obtain 0.026 g.

The following formulations exemplify some of the dosage forms of this invention. In each the term "active compound" designates a compound of formula I.

- 30 -

EXAMPLE A Tablets

No.	Ingredient	mg/tablet	mg/tablet
		•	
1	Active Compound	100	500
2	Lactose USP	122	113
3	Corn Starch, Food Grade, as a 10% paste in Purified Water	30	40
4	Corn Starch, Food Grade	45	40
5	Magnesium Stearate	<u>3</u>	Z
	Total	300	700

Method of Manufacture

5

10

Mix Item Nos. 1 and 2 in suitable mixer for 10-15 minutes. Granulate the mixture with Item No. 3. Mill the damp granules through a coarse screen (e.g., 1/4*, 0.63 cm) if necessary. Dry the damp granules. Screen the dried granules if necessary and mix with Item No. 4 and mix for 10-15 minutes. Add Item No. 5 and mix for 1-3 minutes. Compress the mixture to appropriate size and weight on a suitable tablet machine.

EXAMPLE B Capsules

No.	ingredient	mg/tablet	mg/tablet
1	Active Compound	100	500
2	Lactose USP	106	123
3	Com Starch, Food Grade	40	70
4	Magnesium Stearate NF	4	7
	Total	250	700

15 <u>Method of Manufacture</u>

Mix Item Nos. 1, 2 and 3 in a suitable blender for 10-15 minutes. Add Item No. 4 and mix for 1-3 minutes. Fill the mixture into suitable two-piece hard gelatin capsules on a suitable encapsulating machine.

20

Using the test procedures described above, the following <u>in vivo</u> data were obtained for the exemplified compounds. Data is reported

as percent change (i.e., percent reduction in cholesterol esters) versus control, therefore, negative numbers indicate a positive lipid-lowering effect.

Ex.	%	Dose	Ex.	%	Dose	Ex.	%	Dose
No.	Change	mpk	No.	Change	mpk	No.	Change	mpk
1.	-25	50	18	0	50	35A	0	10
1A	-89	50	19	-43	50	35B	-93	10
2	-17	50	20	0	50	35C	-31	10
3	-87	50	21	-92	50	36	-92	10
4	0	50	22	-		36A	-85	3
5	-95	50	23	•			-62	1
6	-26	50	24	0	50	36B	-18	3
7	-64	50	25	-43	50	37	-91	10
8	-17	50	26	-97	25	38	-21	10
9	-46	50	27	-32	25	39	•••	
10	0	50	28	-65	50	40	-90	50
11	-25	50	29A	-9	50		-89	10
12	-36	50	29B	0	50	40A	-65	10
13	-21	50	30A	-65	10	41	-35	10
14	-30	50	30B	-42	10	42	-84	50
15	31	50	31	-15	50	42A	0	10
16	0	50	32	-30	50	43A	-75	10
17A	••		33	0	50		-55.5	3
17B			34	0	50	43B		

20

25

We claim:

1. A compound represented by the formula

or a pharmaceutically acceptable salt thereof, wherein:

R₁ is -CH-, -C(lower alkyl)-, -CF-, -C(OH)-, -C(C₆H₅)-, -C(C₆H₄-R₁₅)-, -C(C₆H₅)-, -C(C₆H₅)

R₂ and R₃ are independently selected from the group consisting of -CH₂-, -CH(lower alkyl)-, -C(di-lower alkyl)-, -CH=CH- and -C(lower alkyl)=CH-; or R₁ together with an adjacent R₂, or R₁ together with an adjacent R₃, form a -CH=CH- or a -CH=C(lower alkyl)- group;

u and v are independently 0, 1, 2 or 3, provided both are not zero; provided that when R_2 is -CH=CH- or -C(lower alkyl)=CH-, v is 1; provided that when R_3 is -CH=CH- or -C(lower alkyl)=CH-, u is 1; provided that when v is 2 or 3, the R_2 's can be the same or different; and provided that when u is 2 or 3, the R_3 's can be the same or different;

 R_4 is B-(CH₂)_mC(O)-, wherein m is 0, 1, 2, 3, 4 or 5;

B- $(CH_2)_{q}$, wherein q is 0, 1, 2, 3, 4, 5 or 6;

B- $(CH_2)_e$ -Z- $(CH_2)_r$, wherein Z is -O-, -C(O)-, phenylene, -N(R₈)- or -S(O)₀₋₂-, e is 0, 1, 2, 3, 4 or 5 and r is 0, 1, 2, 3, 4 or 5, provided that the sum of e and r is 0, 1, 2, 3, 4, 5 or 6;

B-(C2-C6 alkenylene)-; B'-(C4-C6 alkadienylene)-;

B- $(CH_2)_t$ -Z- $(C_2$ - C_6 alkenylene)-, wherein Z is as defined above, and wherein t is 0, 1, 2 or 3, provided that the sum of t and the number of carbon atoms in the alkenylene chain is 2, 3, 4, 5 or 6;

B- $(CH_2)_f$ -V- $(CH_2)_g$ -, wherein V is C_3 - C_6 cycloalkylene, f is 1, 2, 3, 4 or 5 and g is 0, 1, 2, 3, 4 or 5, provided that the sum of f and g is 1, 2, 3, 4, 5 or 6;

B-(CH₂)_t-V-(C₂-C₆ alkenylene)- or B'-(C₂-C₆ alkenylene)-V-(CH₂)_t-, wherein V and t are as defined above, provided that the sum of t and the number of carbon atoms in the alkenylene chain is 2, 3, 4, 5 or 6;

15

20

25

B- $(CH_2)_a$ -Z- $(CH_2)_b$ -V- $(CH_2)_d$ -, wherein Z and V are as defined above and a, b and d are independently 0, 1, 2, 3, 4, 5 or 6, provided that the sum of a, b and d is 0, 1, 2, 3, 4, 5 or 6;

 $T-(CH_2)_s$ -, wherein T is cycloalkyl of 3-6 carbon atoms and s is 0, 1, 2, 3, 4, 5 or 6; or

R₁ and R₄ together form the group B-CH=C-;

B is indanyl, indenyl, naphthyl, tetrahydronaphthyl, heteroaryl or W-substituted heteroaryl, wherein heteroaryl is selected from the group consisting of pyrrolyl, pyridinyl, pyrimidinyl, pyrazinyl, triazinyl, imidazolyl, thiazolyl, pyrazolyl, thienyl, oxazolyl and furanyl, and for nitrogencontaining heteroaryls, the N-oxides thereof, or

W is 1 to 3 substituents independently selected from the group consisting of lower alkyl, hydroxy lower alkyl, lower alkoxy, alkoxyalkyl, alkoxyalkoxy, alkoxycarbonylalkoxy, (lower alkoxyimino)-lower alkyl, lower alkanedioyl, lower alkyl lower alkanedioyl, allyloxy, -CF₃, -OCF₃, benzyl, R₇-benzyl, benzyloxy, R₇-benzyloxy, phenoxy, R₇-phenoxy, dioxolanyl, NO₂, -N(R₈)(R₉), N(R₈)(R₉)-lower alkylene-, N(R₈)(R₉)-lower alkylenyloxy-, OH, halogeno, -CN, -N₃, -NHC(O)OR₁₀, -NHC(O)R₁₀, R₁₁O₂SNH-, (R₁₁O₂S)₂N-, -S(O)₂NH₂, -S(O)₀₋₂R₈, tert-butyldimethyl-silyloxymethyl, -C(O)R₁₂, -COOR₁₉, -CON(R₈)(R₉), -CH=CHC(O)R₁₂, -lower alkylene-C(O)R₁₂, R₁₀C(O)(lower alkylenyloxy)-,

N(R₈)(R₉)C(O)(lower alkylenyloxy)- and for substitution on ring carbon atoms, and the substituents on the substituted heteroaryl ring nitrogen atoms, when present, are selected from the group consisting of lower alkyl, lower alkoxy, -C(O)OR₁₀, -C(O)R₁₀, OH, N(R₈)(R₉)-lower alkylene-, N(R₈)(R₉)-lower alkylenyloxy-, -S(O)₂NH₂ and 2-(trimethylsilyl)-ethoxymethyl;

R₇ is 1-3 groups independently selected from the group consisting of lower alkyl, lower alkoxy, -COOH, NO₂, -N(R₈)(R₉), OH or halogeno;

R₈ and R₉ are independently H or lower alkyl; R₁₀ is lower alkyl, phenyl, R₇-phenyl, benzyl or R₇-benzyl; R₁₁ is OH, lower alkyl, phenyl, benzyl, R₇-phenyl or R₇-benzyl;

10

15

25

R₁₂ is H, OH, alkoxy, phenoxy, benzyloxy, -N R₁₃

-N(R₈)(R₉), lower alkyl, phenyl or R₇-phenyl;

R₁₃ is -O-, -CH₂-, -NH-, -N(lower alkyl)- or -NC(O)R₁₉;

 R_{15} , R_{16} and R_{17} are independently selected from the group consisting of H and the groups defined for W; or R_{15} is hydrogen and R_{16} and R_{17} , together with adjacent carbon atoms to which they are attached, form a dioxolanyl ring;

R₁₉ is H, lower alkyl, phenyl or phenyl lower alkyl; and R₂₀ and R₂₁ are independently selected from the group consisting of phenyl, W-substituted phenyl, naphthyl, W-substituted naphthyl, indanyl, indenyl, tetrahydronaphthyl, benzodioxolyl, heteroaryl, W-substituted heteroaryl, benzofused heteroaryl, W-substituted benzofused heteroaryl and cyclopropyl, wherein heteroaryl is as defined above.

- 2. A compound of claim 1 wherein R₁ is -CH- or -C(OH)-.
- 3. A compound as claimed in claim 1 or claim 2 wherein R_2 and R_3 are each -CH₂- and the sum of u and v is 2, 3 or 4.
- 4. A compound as claimed in any one of claims 1 to 3 wherein
- 20 R₄ is B-(CH₂)_q or B-(CH₂)_e-Z-(CH₂)_r, wherein B is R₁₇, q is 0-2, Z is -O-, e is 0, r is 0, R₁₆ is H, R₁₇ is H and R₁₅ is as defined in claim 1.
 - 5. A compound as claimed in claim 4 wherein R₁₅ is H, OH, lower alkoxy or chloro.
 - 6. A compound as claimed in any one of claims 1 to 5 wherein R₂₀ is phenyl or W-substituted phenyl, wherein W is as defined in claim 1.
- 7. A compound of claim 6 wherein R₂₀ is W-substituted phenyl and W is lower alkoxy, OH or -C(O)R₁₂, wherein R₁₂ is lower alkoxy.
 - 8. A compound as claimed in any one of claims 1 to 7 wherein R₂₁ is phenyl, W-substituted phenyl, indanyl, benzofuranyl, benzodioxolyl,

tetrahydronaphthyl, pyridyl, pyrazinyl, pyrimidinyl, quinolyl or cyclopropyl, wherein W is lower alkyl, lower alkoxy, OH, halogeno, -N(R₈)(R₉),

- --NHC(O)OR₁₀, -NHC(O)R₁₀, NO₂, -CN, -N₃, -SH, -S(O)₀₋₂-(lower alkyl),
- -COOR₁₉, -CON(R₈)(R₉), -COR₁₂, phenoxy, benzyloxy, -OCF₃,
- 5 -CH=CHC(O)R₁₂ or tert-butyldimethylsilyloxy, and when W is 2 or 3, the groups can be the same or different.
 - 9. A compound of claim 1 represented by the formula

10 wherein R₁, R₂, R₃, R₄, R₂₀, R₂₁, u and v are as follows:

	R ₁	√R2>~	-(R ₃) _U -	R ₄	R ₂₀	R ₂₁
i	а	-(CH ₂) ₂ -	-(CH ₂) ₂ -	a-{\(\)}-	-{_} ∞H3	-{_} ccH³
i	ан	-(CH ₂) ₂ -	-(CH ₂) ₂ -		− (∑) 00H3	— ∞H3
, iii	어	-(CH ₂) ₂ -			— (→) ∞H,	
iv	어	-(CH ₂) ₂ -			—————————————————————————————————————	-
v	N	-(CH ₂) ₂ -			—————————————————————————————————————	− ₹} ∞H₃
vi	ан	-(CH ₂) ₂ -				- €} ∞H ₃
Vii	C(CH ₃)	-(CH ₂) ₂ -	-(CH ₂) ₂ -		→ COH ₃	
Viii	СН	-(CH ₂) ₂ -	-(CH ₂) ₂ -		—(¯) × ∞ × × × × × × × × × × × × × × × × ×	- ⟨_} ∞H³
İΧ	러	-(CH ₂) ₂ -	-(CH ₂) ₂ -	CH3O-{}	- ₹} ∞4,	
x	어	-(CH ₂) ₂ -	-(CH ₂) ₂ -		-√SCH3	
хi	<u>장</u>	-(CH ₂) ₂ -	-(CH ₂) ₂ -	CH₂−	—————————————————————————————————————	
χii	£.	-(CH ₂) ₂ -	-(CH ₂) ₂ -	a—()	-{ } ∞H₃	-
xiii	сн	-(CH ₂) ₂ -	-(CH ₂) ₂ -	(CH ₂) ₂ —	√D ∞H3	
xiv	- a+	= 0+-	-(CH ₂) ₂ -		→ COH,	

	R ₁	-(R2)v-	-(R ₃) _U -	R ₄	R ₂₀	R ₂₁
XV	ан	-CH2-	-CH ₂ -			1121
	5				→ OCH3	
xvi	d-	-CH ₂ -	-CH ₂ -	(CH ₂) ₂ —	→ COH ₃	
xvii	ан	-(CH ₂) ₂ -	-(CH ₂) ₂ -	· 🔷	→	
xviii	-C(OH)-	-(CH ₂) ₂ -	-(CH ₂) ₂ -	F-(-)-	→ ∞H ₃	
xix	-C(OH)-	-(CH ₂) ₂ -	-(CH ₂) ₂ -	н₃с-{¯}-	− €} ∞4₃	
×	-C(OH)-	-(CH ₂) ₂ -	-(CH ₂) ₂ -	a-{-}-	но-{	
xxi	I -C(OH)-	-(CH ₂) ₂ -	-(CH ₂) ₂ -	ю-{¯}	- ₹} ∞H₃	
xxii	I -C(OH)-	-(CH ₂) ₂ -	-(CH ₂) ₂ -	α α	− () 00H3	
xxiii	I -C(OH)-	-(CH ₂) ₂ -	-(CH ₂) ₂ -	a-{\bar{\bar{\bar{\bar{\bar{\bar{\bar	—————————————————————————————————————	F——
xxiv	1 -C(OH)-	-(CH ₂) ₂ -	-CH ₂ -	CH ₂ -	—————————————————————————————————————	
ΧXV	а	-(CH ₂) ₂ -	-(CH ₂) ₂ -	F-(-)-	-{ }∞4,	
xxvi	ъ	-(CH ₂) ₂ -	-CH ₂ •	CH2 -	→ COH3	
xxvii	see R4	-CH ₂ -	-(CH ₂) ₂ -	R ₁ and R ₄ together are	− (∑) ccH3	
				_>- ⊂ <		
iiivxx	СН	-CH ₂ -	-(CH ₂) ₂ -	(T)- CH ₂ -	—√∑ och3	-
XXX	-C(F)-	-(CH ₂) ₂ -	-(CH ₂) ₂ -	a -{-}-	-√ } ∞H₃	-

10. A compound of claim 1 selected from the group consisting of: 7-(4-chlorophenyl)-3-(4-methoxyphenyl)-2-phenyl-2-azaspiro[3.5]nonan-1-one; 7-(4-chlorophenyl)-7-hydroxy-3-(4-methoxyphenyl)-2-phenyl-2-azaspiro[3.5]nonan-1-one; 7-(4-chlorophenyl)-2-(4-fluorophenyl)-7-hydroxy-3-(4-methoxyphenyl)-2-azaspiro[3.5]nonan-1-one; and 7-(4-chlorophenyl)-7-hydroxy-3-(4-hydroxyphenyl)-2-phenyl-2-azaspiro[3.5]nonan-1-one.

- 11. A pharmaceutical composition comprising an effective amount of a compound as claimed in any one of claims1 to 10 in a pharmaceutically acceptable carrier.
- 5 12. The use of a compound as claimed in any one of claims 1 to 10 for the manufacture of a medicament for the treatment or prevention of athersclerosis, or for the reduction of plasma cholesterol levels.
- 13. A process for the preparation of a pharmaceutical
 10 composition as claimed in claim 12 which comprises admixing a compound as defined in claim 12 with a pharmaceutically acceptable carrier.
- 14. A method of lowering the serum cholesterol level, or treating or preventing athersclerosis, in a mammal in need of such treatment comprising administering an effective amount of a compound of claim 1.
- 15. The use of a compound as claimed in any one of claims 1 to 10 for the manufacture of a medicament for the combined use with a cholesterol biosynthesis inhibitor in the treatment or prevention of athersclerosis, or for the reduction of plasma cholesterol levels.
- 16. The use of a cholesterol biosynthesis inhibitor for the manufacture of a medicament for the combined use with a compound as
 25 claimed in any one of claims 1 to 10 in the treatment or prevention of athersclerosis, or for the reduction of plasma cholesterol levels.
- 17. The use as claimed in claim 16, wherein the cholesterol biosynthesis inhibitor is selected from the group consisting of HMG CoA reductase inhibitors, squalene synthesis inhibitors and squalene epoxidase inhibitors.
- 18. The use as claimed in claim 17, wherein the cholesterol biosynthesis inhibitor is selected from the group consisting of lovastatin, pravastatin, fluvastatin, simvastatin, Cl-981, L-659,699, squalestatin 1 and NB-598.

- 19. The use as claimed in claim 15, wherein the cholesterol biosynthesis inhibitor is as specified in claim 17 or claim 18.
- 20. A pharmaceutical composition for the treatment or prevention of athersclerosis, or for the reduction of plasma cholesterol levels, comprising a compound as defined in any one of claims 1 to 10, a cholesterol biosynthesis inhibitor and a pharmaceutically acceptable carrier.
- 10 21. A pharmaceutical composition as claimed in claim 20, wherein the cholesterol biosynthesis inhibitor is as defined in claim 17 or claim 18.
- 22. A method for preparing a pharmaceutical composition as claimed in claim 20 or claim 21 comprising admixing a cholesterol biosynthesis inhibitor and a compound as defined in any one of claims 1 to 10 with a pharmaceutically acceptable carrier.
- 23. A method as claimed in claim 22 comprising admixing a cholesterol biosynthesis inhibitor as defined in claim 17 or claim 18, and a compound as defined in any one of claims 1 to 10 with a pharmaceutically acceptable carrier.
- 24. A kit comprising in separate containers in a single package pharmaceutical compositions for use in combination to treat or prevent athersclerosis or to reduce plasma cholesterol levels which comprises in one container an effective amount of a cholesterol biosynthesis inhibitor in a pharmaceutically acceptable carrier, and in a second container, an effective amount of a compound as defined in any one of claims 1 to 10 in a pharmaceutically acceptable carrier.
- 25. A kit as claimed in claim 24 which comprises in one container an effective amount of a cholesterol biosynthesis inhibitor as defined in claim 17 or claim 18 in a pharmaceutically acceptable carrier, and in a second container, an effective amount of a compound as defined in any one of claims 1 to 10 in a pharmaceutically acceptable carrier.

- 26. A method of treating or preventing atherosclerosis or reducing plasma cholesterol levels comprising simultaneously or sequentially administering to a mammal in need of such treatment an effective amount of a cholesterol biosynthesis inhibitor and a compound as defined in any one of claims 1 to 10.
- 27. A method as claimed in claim 26, wherein the cholesterol biosynthesis inhibitor is as defined in claim 17 or claim 18.
- 10 28. A process for preparing a compound of claim 1 comprising Process A: Converting a carboxylic acid of formula II to the corresponding acid chloride, followed by reacting with an imine of formula III to obtain a compound of formula I

$$R_4 - R_1 - (R_2)_v$$
 R_{20}
 R_{3}
 R_{20}
 R_{20}
 R_{20}
 R_{21}
 R_{21}
 R_{21}

wherein R₁, R₂, R₃, R₄, R₂₀, R₂₁, u and v are as defined in claim 1;

Process B: Reacting a keto-azetidinone of formula IV with a Gringard reagent of the formula R₄MgX, wherein R₄ is as defined in claim 1 and X is halogen, to obtain a carbinol of formula Ia

$$(R_3)$$
 (R_2)
 (R_3)
 (R_3)
 (R_3)
 (R_3)
 (R_3)
 (R_3)
 (R_3)
 (R_2)
 (R_3)
 (R_3)
 (R_2)
 (R_3)
 $(R_3$

wherein R_2 , R_3 , R_4 , R_{20} , R_{21} , u and v are as defined in claim 1 and R_1 is -C(OH)- ;

<u>Process C</u>: Dehydrating a carbinol of formula Ia as defined in Process B to obtain an olefin of formula Ib

$$\begin{array}{c|c} R_4 & CH \\ \hline (R_2)_v & R_4 - R_1 - (R_2)_v \\ \hline (R_3)_u & R_{20} \\ \hline Ia & R_{21} & Ib \\ \end{array}$$

wherein $R_1+R_2=$ -CH=CH- and R_2 , R_3 , R_4 , R_{20} , R_{21} , u and v are as defined in claim 1; or

Process D: Reducing an olefin of formula Ib as defined in Process C to obtain a compound of formula I

$$R_4 - R_{1^-}(R_2)_v$$
 $R_4 - R_{1^-}(R_2)_v$
 $R_{3})_u$
 R_{20}
 R_{21}
 R_{21}
 R_{21}
 R_{21}
 R_{21}
 R_{21}
 R_{21}

wherein R_1 , R_2 , R_3 , R_4 , R_{20} , R_{21} , u and v are as defined in claim 1.

T/US 94/00421

A. CLASSIFICATION OF SUBJECT MATTER
1PC 5 C07D205/12 C07D471/10 A61K31/395 //(C07D471/10,221:00, 205:00) According to international Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Mimmum documentation searched (classification system followed by classification symbols) C07D A61K IPC 5 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electrome data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. TETRAHEDRON LETTERS 1,28 vol. 33, no. 15 , 1992 , OXFORD GB pages 1993 - 1996 S. LE BLANC ET AL. 'New access to spiranic beta-lactams' see the whole document CHEMICAL ABSTRACTS, vol. 90, no. 11, A 1,28 1979, Columbus, Ohio, US; abstract no. 87242k, O. IWAO 'Beta-lactams from schiff bases and ketene silylacetals' see abstract & JP, A, 78 108 962 (SAGAMI CHEMICAL RESEARCH CENTER) 22 September 1978 GB, A, 1 356 145 (B.A.S.F. AG.) 12 June 1974 1,11,28 see page 3, line 106 - line 110; example 5 -/--X Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention esmot be considered to involve an inventive sich when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or other means ts, such combination being obvious to a person skilled document published prior to the international filing date but later than the priority date claimed in the art. '&' document member of the same patent family Date of the actual completion of the international march Date of mailing of the international search report 2 6. 04. 94 18 April 1994 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Riptwijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016 Chouly, J

Form PCT/ISA/218 (second short) (July 1992)

Inv _________No PL US 94/00421

Category' Citation of document, with indication, where appropriate, of the relevant passages A CHEMICAL ABSTRACTS, vol. 97, no. 9, 1982, Columbus, Ohio, US; abstract no. 72198w, KHRISTOSKOVA S. ET AL. 'Asymmetric synthesis of 3-anilinopropanols and 2-azetidinones' see abstract & DOKL. BOLG. AKAD. NAUK vol. 34, no. 11, 1981, SOFIA pages 1509 - 1512	Relevant to claim No.
1982, Columbus, Ohio, US; abstract no. 72198w, KHRISTOSKOVA S. ET AL. 'Asymmetric synthesis of 3-anilinopropanols and 2-azetidinones' see abstract & DOKL. BOLG. AKAD. NAUK vol. 34, no. 11, 1981, SOFIA	
CHEMICAL ABSTRACTS, vol. 74, no. 21, 1971, Columbus, Ohio, US; abstract no. 111819w, SIMOVA E. ET AL. 'Reactions of schiff bases with carboxylic acid derivatives in the presence of alkaline catalysts. Synthesis of 3,3-disubstituted 1,4-diphenyl-2-azetidinones.' see abstract & IZV. OTD. KHIM. NAUKI, BULG. AKAD. NAUK. vol. 3, no. 3, 1970, SOFIA pages 497 - 508	1,28
US,A,4 692 515 (V.S. GEORGIEV ET AL.) 8 September 1987 see the whole document	1,11,28
A US,A,5 130 425 (M.S. MALAMAS) 14 July 1992 see the whole document	1,11,28
EP,A,O 524 595 (SCHERING CORPORATION) 27 January 1993 see claims & WO,A,93 02048 (SCHERING CORPORATION) 4 February 1993 cited in the application	1,11,28

1

rnational application No.

PCT/US 94/00421

Box I	Observations where certain clair. were found unsearchable (Continuation of item 1 of first sheet)
This int	ernational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
	The second secon
1.	Claims Nos.: because they relate to subject matter not required to be searched by the Authority, namely:
	"Remark: Although claims 14, 26, 27 are directed to a method of
ł	treatment of (diagnostic method practised on) the human/animal
1	body the search has been carried out and based on the alleged
ł	effects of the compound/composition."
l. —	
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such
l	an extent that no meaningful international search can be carried out, specifically:
ļ	••
3	Claims Nos.:
	because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Par II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
B0X 11	Observations where unity of invention is tacking (Continuation of item 2 of tirst sheet)
This Inte	rnational Searching Authority found multiple inventions in this international application, as follows:
	·
	As all required additional search fees were timely paid by the applicant, this international search report covers all
_	searchable claims.
	•
, [As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment
	of any additional fee.
. —	
3. 🗀 ;	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
,	· · · · · · · · · · · · · · · · · · ·
, ,	No required additional search fees were timely paid by the applicant. Consequently, this international search report is
~· `	restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
	·
	·
	·
D	Declarate the second se
Remark o	n Protest The additional search fees were accompanied by the applicant's protest.
	No protest accompanied the payment of additional search fees.
	1.4 braner mercimbanes are haliment at annual and an ices.

forms

in parent family members

PCT/US 94/00421

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
JP-A-78108962	ă.	NONE	
GB-A-1356145	12-06-74	77. CH-A- 54	8080 25-05-72 3173 28-03-72 6759 15-03-74 8681 19-05-72
US-A-4692515	08-09-87	NONE	•
US-A-5130425 *	14-07-92	NONE	
EP-A-0524595	27-01-93	CN-A- 106	8092 23-02-93 9024 17-02-93 2048 04-02-93
WO-A-9302048	04-02-93		3092 23-02-93 9024 17-02-93 4595 27-01-93