UNIT - 6

MODULE - 10

STANDARD COSTING

PRACTICAL PROBLEMS

MATERIAL VARIANCE

Problem - 1:

A manufacturing concern, which has adopted standard costing, furnished the following information:

Standard Material for 70 kg finished product: 100 kg.

Price of materials: Re. 1 per kg.

Actual Output: 2,10,000 kg.

Material used: 2,80,000 kg.

Cost of material: Rs. 2,52,000.

Calculate:

(a) Material Usage Variance (b) Material Price Variance (c) Material Cost Variance

Solution:

(1) Standard quantity	For 70 kg standard output	
	Standard quantity of material = 100 kg.	
	2,10,000 kg. of finished products	
	<u>2,10,000 x 100</u> = 3,00,000 kg.	
	70	

(2) Actual price per kg.	Rs.2,52,000	= Re.0.90	
	2,80,000		

(a) Material Usage Variance	= Standard Rate (Standard quantity for
	actual output – Actual quantity)
	D = 4 /2 00 000 2 00 000)
	=Re. 1 (3,00,000 – 2,80,000)
	=Re. 1 x 20,000
	=Rs. 20,000 (favorable)

(b) Material Price Variance	=Actual quantity(Standard price -Actual	
	price)	
	2,80,000 (Re.1 – Re.0.90)	
	2,80,000 x Re.0.10	
	Rs. 28,000 (Favorable)	

(c) Material Cost Variance	= Standard quantity for actual output x Standard rate) – (Actual quantity x Actual rate)	
	=(3,00,000 x 1) - (2,80,000 x 0.90)	
	= Rs.3,00,000 x Rs. 2,52,000	
	Rs.48,000(favorable)	

Verification:

MCV = MPV + MUV

Rs. 48,000 (F) = Rs.28,000 (F) + Rs.20,000 (F)

Problem - 2

The standard mix to produce one unit of product is as follows:

Material A 60 units @ Rs. 15 per unit = Rs. 9,00

Material B 80 units @ Rs. 20 per unit = Rs. 1,600

Material C 100 units @ Rs. 25 per unit = Rs. 2,500

240 units Rs. 5,000

During the month of April, 10 units were actually produced and consumption was as follows:

Material A 640 units @ Rs. 17.50 per unit = Rs. 11,200

Material B 950 units @ Rs. 18.00 per unit = Rs. 17,100

Material C 870 units @ Rs. 27.50 per unit =Rs. 23,925

2,460 units Rs. 52,225

Calculate all material variances.

Solution:-

Material	Standard for 10 units		Standard for 10 units Actual for 10 units		units	
	Qty	Rate	Amt. Rs.	Qty	Rate	Amt. Rs.
А	600	15	9,000	640	17.50	11,200
В	800	20	16,000	950	18.00	17,100
С	1,000	25	25,000	870	27.50	23,925
Total	2,400		50,000	2,460		52,225

(1) Material Cost Variance	= Standard cost – Actual cost
	=Rs. 50,000 – Rs.52,225
MCV	= Rs.2,225(A)

(2) Material Price Variance	=(St. Price – Actual Price) x Actual Qty
Material A	= (15- 17.50) x 640 = Rs. 1,600 (A)
Material B	= (20 – 18) x 950 = Rs. 1,900 (F)
Material C	= (25 – 27.50) x 870 = Rs. 2,175 (A)
MPV	= Rs.1,875 (A)

(3) Material Usage Variance	= (St. Qty – Actual Qty.) x St. Price
Material A	= (600 – 640) x 15 = Rs. 600(A)
Material B	= (800- 950) x 20 = Rs.3,000 (A)
Material C	= (1,000 – 870) x 25 = Rs. 3,250 (F)
MUV	= Rs.350 (A)

Check:

MCV =	MPV + MUV
Rs. 2,225 (A) =	Rs. 1,875 (A) + Rs.350 (A)

(4) Material Mix Variance	= (Revised St. Qty – Actual Qty.) x St. Price
Material A	= (615* - 640) x 15 = Rs.375 (A)

Material B	=(820* - 950) x 20 = Rs. 2,600 (A)
Material C	= (1,025* - 870) x 25 = Rs. 3,875 (F)
MMV	= Rs. 900(F)

*Revised Standard Quantity is calculated as follows:

Material A =	2460 x 600	= 615 Units
	2400	
Material B =	2460 x 800	= 820 Units
	2400	
Material C =	2460 x 1,000	= 1,025 Units
	2400	

(5) Material Yield Variance	= (Actual yield – Standard yield) x St. output price
	= (10 -10.25) x 5000 = Rs. 1,250 (A)

Check

MCV = MPV + MMV + MYV

Rs. 2,225 (A) = Rs. 1,875 (A) + 900 (F) + Rs.1,250 (A)

Problem: 3

For making 10 kg. of yarn, the standard material requirement is:

Material	Quantity (kg.)	Rate per kg. (Rs.)
White	8	6.00
Black	4	4.00

In March, 1,000 kg. of yarn was produced. The actual consumption of materials is as under:

Material	Quantity (kg.)	Rate per kg. (Rs.)
White	750	7.00
Black	500	5.00

Calculate: (1) MCV (2) MPV (3) MUV

Solution:

Dortioulor	Standard for 1000 kgs.		Actual for 1000 kgs.			
Particular	Quantity	Rate	Amount	Quantity	Rate	Amount
Α	800	6	4,800	750	7	5,250
В	400	4	1,600	500	5	2,500
Total	1,200		6,400	1,250		7,750

(1) MCV: SC - AC

= Rs. 1,350 (A)

(2) MPV: (SP - AP) x AQ

$$A = (6 - 7) \times 750$$
 = Rs. 750 (A)

B =
$$(4-5) \times 500$$
 = Rs. 500 (A) = 1,250(A)

(3) MUV: (SQ - AQ) x SP

$$A = (800 - 750) \times 6$$
 = Rs. 300 (F)

B =
$$(400 - 500) \times 4$$
 = Rs. 400 (A) = Rs. 100 (A)

Labour Variance:

Problem-4

Calculate Labour cost variance from the information:

Standard production : 100 units

Standard Hours : 500 hours

Wage rate per hour : Rs. 2

Actual production : 85 units

Actual time taken : 450 hours

Actual wage rate paid : Rs. 2.10 per hour

Solution:

Standard time for one unit = 500 hours ÷ 100 units = 5 hours

Standard hours for actual production 85 units = $85 \times 5 = 425$ hours

Labour cost Variance = (Std. Hours of Actual Production x Std. Rate) --- (Actual Hours x Actual Rate)

$$= RS. 95 (U)$$

Problem - 5

Standard wage rate is Rs. 2 per hour and standard time is 10 hours. But actual wage rate is Rs. 2.25 per hour and actual hours used are 12 hours.

Calculate Labour cost variance.

Solution:

Here labour variance is adverse because actual labour cost exceeds standard cost by Rs. 7

Problem - 6

Standard labour hours and rate for production of one unit of Article P is given below:

	Per Unit Hour	Rate per Hour	Total (Rs.)
Skilled worker	5	1.50	7.50
Unskilled worker	8	0.50	4.00
Semi- skilled worker	4	0.75	3.00

Actual Data	Rate per Hour	Total (Rs.)
Articles produced 1,000 units		
Skilled worker 4,500 hour	2.00	9,000
Unskilled worker 10,000 hour	0.45	4,500
Semi- skilled worker 4,200 hour	0.75	3,150

Calculate Labour cost variance.

Solution:

Total Labour cost variance = Rs. 2,150(Adverse)

Problem - 7

India Ltd. Manufactures a particular product, the standard direct labour cost of which is Rs. 120 per unit whose manufacture involves the following:

Type of workers	Hours	Rate (Rs.)	Amount (Rs.)
Α	30	2	60
В	20	3	60
	50		120

During a period, 100 units of the product were produced, the actual labour cost of which was as follows:

Type of workers	Hours	Rate (Rs.)	Amount (Rs.)
Α	3,200	1.50	4,800
В	1,900	4.00	7,600
	5,100		12,400

Calculate: (1) Labour cost variance (2) Labour Rate variance (3) Labour Efficiency variance (4) Labour mix variance.

Solution:

Type of Worker	Standard for 100 units		Actual for 100 units			
Type of worker	Hours	Rate	Amount	Hours	Rate	Amount
Α	3,000	2	6,000	3,200	1.50	4,800
В	2,000	3	6,000	1,900	4.00	7,600
Total	5,000		12,000	5,100		12,400

(2) LRV:
$$(SR - AR) \times AH$$

 $A = (2 - 1.50) \times 3,200$ = Rs. 1,600 (F)
 $B = (3 - 4) \times 1,900$ = Rs. 1,900 (A)
= Rs. 300 (A)

Working: Revised standard Hours:

RSH = St. hours of the type x Total actual hours / Total St. hours $A = 3,000 \times 5,100 / 5,000 = 3,060 \text{ hrs.}$ $B = 2,000 \times 5,100 / 5,000 = 2,040 \text{ hrs.}$

Overhead Variance:

Problem - 8

MLM Ltd. has furnished you the following information for the month of January:

	Budget	Actual
Outputs (units)	30,000	32,500
Hours	30,000	33,000
Fixed overhead	45,000	50,000
Variable overhead	60,000	68,000
Working days	25	26

Calculate overhead variances.

Solution:

Necessary calculations

Standard hour per unit = Budgeted hours =
$$\frac{30,000}{}$$

Budgeted units = $\frac{30,000}{}$

Standard hour for actual output = 32,500 units x 1 hour = 32,500

Standard overhead rate per hour = Budgeted overheads

Budgeted hours

For fixed overhead =
$$\frac{45,000}{30,000}$$
 = Rs. 1.50 per unit

For variable overhead =
$$60,000$$
 = Rs. 2 per unit $30,000$

Standard fixed overhead rate per day = Rs. 45,000 ÷ 25 days = Rs. 1,800

Recovered overhead = Standard hours for actual output x Standard Rate

For fixed overhead = 32,500 hours x Rs. 1.50 = Rs. 48,750

For variable overhead = 32,500 hours x Rs. 2 = Rs. 65,000

Standard overhead = Actual hours x Standard Rate

For fixed overhead =33,000 x 1.50 =Rs. 49,500

For variable overhead $=33,000 \times 2 = Rs. 66,000$

Budgeted Days

Revised budgeted overhead = $31,200 \times 1.50 = Rs. 46,800$

Calculation of Variances

Fixed Overhead Variances:

Fixed Overhead Cost Variance = Recovered Overhead – Actual Overhead

$$=48,750-50,000$$
 =Rs. 1,250 (A)

Fixed Overhead Expenditure Variance = Budgeted Overhead – Actual Overhead

$$=45,000-50,000$$
 =Rs. 5,000 (A)

 Fixed Overhead Volume Variance = Recovered Overhead – Budgeted Overhead

$$=48,750-45,000$$
 =Rs. 3,750 (F)

 Fixed Overhead Efficiency Variance = Recovered Overhead – Standard Overhead

$$= 48,750 - 49,500 = Rs. 750 (A)$$

 Fixed Overhead Capacity Variance = Standard Overhead – Revised Budgeted Overhead

Calendar Variance =(Actual days – Budgeted days) x

Standard rate per day=

Variable Overhead Variances:

 Variable Overhead Cost Variance = Recovered Overhead – Actual Overhead

$$= 65,000 - 68,000 =$$
Rs. 3,000 (A)

 Variable Overhead Expenditure Variance = Standard Overhead – Actual Overhead

Variable Overhead Efficiency Variance = Recovered Overhead - Actual
 Overhead = 65,000 -- 66,000 = Rs. 1,000 (A)