금융자산 변동의 비대칭성 연구: 다중회귀분석과 결합가설검정을 통한 단일지수모형의 확장

	성	명	김준용
응모자	대 학 교	명	경희대학교
궁도사	전 공 학	과	경영학과
	주민등록번	호	

Contents

1. Abstract	3
2. Introduction	4
3. Literature Review	8
3.1 금융시장 비대칭성 선행연구	8
3.2 단일지수모형 선행연구	8
4. Econometric Models	10
4.1 ADF단위근검정	10
4.2 다중회귀분석모형	10
4.3 결합가설검정	11
5. Data Description	12
5.1 KOSPI 지수	12
5.2 개별주식 가격	12
6. Main Results	15
6.1 변수의 단위근 존재 여부	15
6.1.1 KOSPI 지수	15
6.1.2 개별주식 가격	16
6.2 확장단일지수모형의 모수 변화 여부	18
6.3 확장단일지수모형의 적합도 검정	20
7. Conclusion	21
7.1 연구 결과	21
7.2 연구 한계	21
Reference	22
Appendix	23
Summary	31

1. Abstract

Markowitz(1952) 이후 재무 및 금융 분야에서 가장 중요하게 다뤄지는 주제 중 하나는 현대 포트폴리오 이론, 즉 분산 투자 효과와 개별 증권의 위험 측정을 통한 자본 자산의 가격 결정이다. Sharpe(1964) 등에 의해 개발된 CAPM(Capital Asset Pricing Model)은 자산의 위험에 따라 기대수익률이 어떻게 결정되는지를 보여주는 균형이론으로서 모든 투자자들이 자산의 속성에 대해 동질적인 기대(Homogeneous Expectation)를 갖고 있다면, 자산의 기대수익률은 리스크 프리미엄과 체계적 위험으로 표현될 수 있으며, 개별 자산의 체계적 위험은 시장포트폴리오의 분산-공분산행렬(Variance-Covariance Matrix) 혹은 단일지수모형(Single Index Model)을 통해계산될 수 있음을 증명했다. 이렇게 측정된 체계적 위험은 선택된 시장요인의 변화의 방향이 양이든 음이든 관계없이 이에 대한 개별 자산의 반응은 언제나 일정하다고 가정하고 있다.

그러나 Oil Crisis, Black Monday, Sub-Prime Mortgage 등의 일련의 사례를 통해 금융시장의 변화는 언제나 대칭적이지 않고, 정규분포에 비해 꼬리가 두꺼운 분포 (fat-tail distribution)처럼 비정상적이라는 주장을 뒷받침하는 근거가 제시되고 있으며, 이에 대한 논의가 진행되고 있다. 시장의 이러한 특성 때문에 시장 변화에 대한 개별 자산의 체계적 위험 측정은 입체적인 관점에 따라 진행되어야 한다.

본 논문은 2008년 5월부터 2010년 4월까지 현재 KOSPI200에 편입되어 있는 주식 200종목의 체계적 위험을 단일지수모형 및 다중회귀분석 방법을 통한 확장단일지수모형을 통해 살펴보았다. ADF단위근검정을 통해 KOSPI 지수 및 개별주식 200종목의 1차 차분된 시계열자료의 안정성을 확인하였고, 다중회귀분석의 형태로 확장된단일지수모형을 통해 시장수익률에 따라 개별주식의 체계적 위험이 비대칭성을 띄는지 결합가설검정을 통해 확인하였다.

연구 결과 개별주식 200종목 중 54종목(27%)에서 시장수익률의 방향성에 따라 체계적 위험이 같다는 귀무가설을 기각해 시장의 상승과 하락에 따라 개별주식에 미치는 민감성이 서로 다른 것을 발견하였다. 또한 99% 이상의 확률로 귀무가설을 기각한 사례가 54종목 중 26종목(48.15%), 95% 이상이 54종목 중 16종목(29.63%)에 달해 개별주식이 시장수익률에 대한 체계적 위험의 비대칭성을 갖고 있는 경우, 그특성이 두드러지게 나타날 수 있음을 확인하였다.

또 199종목에서 두 모형의 적합도(goodness of fit)를 수정결정계수(Adjusted R^2)를 Paired t-Test를 통해 분석한 결과 단일지수모형의 수정결정계수 평균은 0.3386인 반면에 확장단일지수모형의 수정결정계수 평균은 0.3490이고, 확장단일지수모형의 적합도가 더 높았던 사례가 전체 중 123종목(61.81%)이며, t 통계량의 절대치가 임계치보다 큰 것으로 나타나 두 표본 사이에 차이가 없다는 귀무가설을 기각해 적합도 또한 확장단일지수모형이 단일지수모형에 우수함을 확인하였다.

2. Introduction

일반적인 금융투자자는 한 개의 자산만을 보유하지 않고 이를 다변화하여 동시에 보유한다. 자본시장에는 많은 투자대상이 존재하며, 투자자는 목적과 선호에 따라여러 투자대상을 소유하게 되는데, 이와 같은 여러 투자대상의 집합을 포트폴리오라고 한다. 투자자의 기대효용을 극대화시키는 최적 포트폴리오를 선택하기 위해선 포트폴리오 수익률의 확률분포로부터 포트폴리오의 기대수익률과 분산을 구하고, 지배원리를 적용하여 선택의 범위를 좁힌 다음, 무차별 곡선을 이용하여 결정하는데, 이를 평균-분산모형(Mean-Variance Model)이라고 한다. 또한 상관계수가 1이아닌 자산을 결합하여 포트폴리오를 구성함으로써 위험이 줄어들어 기대효용이 중가하는 현상을 분산효과 또는 포트폴리오 효과1)라고 한다.

《그림 1》 포트폴리오의 분산효과

CAPM(Capital Asset Pricing Model)은 자산의 위험에 따라 기대수익률이 어떻게 결정되는지를 보여주는 균형이론으로, 1960년대 이후 Sharpe(1964), Lintner(1965), Mossin(1966) 등에 의하여 거의 동시에 개발되었다. CAPM은 평균-분산모형의 가정에 두 가지 가정을 추가하여 전개하고 있는데, 이는 다음과 같다.

- 증권시장은 완전경쟁시장이며 증권의 공급은 고정되어 있다.
- 모든 투자자들은 자산의 기대수익률, 분산, 공분산에 대해 같은 기대를 한다. 2 동질적 기대에 따라 모든 투자자의 기대효용을 극대화하는 포트폴리오는 시장포트폴리오와 일치하게 되므로, 투자자는 시장포트폴리오와 무위험자산에 대한 자산배분을 통하여 직선을 만들며, 이를 자본시장선(Capital Market Line)이라 부른다. 시장포트폴리오의 기대수익률을 $E(r_{m})$ 이라 하고 표준편차를 σ_{m} 이라 하면 자본시장선

¹⁾ Edwin J. Elton & Martin J. Gruber(1991): *Modern Portfolio Theory and Investment Analysis, 4th ed.*, New York: Wiley & Sons Inc., p. 32

²⁾ 박정식·박종원·조재호(2010): 제7판 현대재무관리, 다산출판사, ch. 10~11

은 다음과 같이 나타낼 수 있다.

$$E(r_P) = r_f + \left[\frac{E(r_m) - r_f}{\sigma_m}\right] \sigma_P$$

위 식은 포트폴리오의 기대수익률과 위험과의 관계를 나타낸다. 선택된 포트폴리오 P의 기대수익률은 무위험수익률에 위험프리미엄을 더한 값으로 결정되며 위험프리미엄은 시장포트폴리오가 갖는 위험의 단위당 가격에 포트폴리오 P의 위험의 크기를 곱한 값으로 결정된다.

자본시장에서 설명한 것처럼 모든 투자자들이 선택하는 위험자산은 시장포트폴리오뿐이고, 따라서 모든 개별주식은 시장포트폴리오의 일부로서만 의미를 갖게 되며, 포트폴리오를 구성하는 상황에서 분산할 수 있는 위험까지 포함하는 개별주식의 전체위험 (σ_i^2) 은 적절한 위험척도가 될 수 없다. 대신 시장포트폴리오의 위험 중에서 개별주식들이 차지하고 있는 분산할 수 없는 부분, 즉 개별주식의 위험 중에서 시장포트폴리오를 구성하더라도 제거되지 않는 위험을 그 주식의 체계적 위험 (Systematic Risk)이라 하며 아래와 같이 나타낼 수 있다.

$$\frac{\sigma_{im}}{\sigma_m^2} = \frac{\sigma_i \sigma_m \rho_{im}}{\sigma_m^2} = \frac{\sigma_i \rho_{im}}{\sigma_m} = \beta_i$$

《그림 2》 개별주식 베타의 크기와 시장수익률에 대한 반응 양상 베타가 시장포트폴리오 수익률에 대한 개별주식 수익률의 민감도를 나타낸다는 사 실은 단일지수모형(Single Index Model)이라고 불리는 다음의 단순회귀분석모형을 통해서도 알 수 있다.

$$r_i = \alpha_i + \beta_i r_m + \epsilon_i$$

여기서 r_i 는 개별주식 i의 수익률, r_m 은 시장포트폴리오의 수익률, ϵ_i 는 잔차 (residual)를 나타내며, 다음의 가정을 전제로 하고 있다.

- $E(\epsilon_i) = 0$: 잔차는 0에 수렴한다.

- $Cov(r_m, \epsilon_i) = 0$: 잔차는 시장포트폴리오와 상관없이 고유하다.
- $Cov(\epsilon_i, \epsilon_i) = 0 \ \forall i \neq j$: 잔차는 다른 개별주식의 잔차와 상관없이 고유하다.

이렇게 단일지수모형에 의해 계산된 모수 베타는 시장의 변화에 대해 항상 일정하게 영향을 준다는 것을 의미한다. 즉, 베타가 양의 값을 갖는다면, 시장수익률이 양의 값을 가질 때 베타의 크기만큼 개별주식 수익률이 증가한다는 뜻이며, 반대로시장수익률이 음의 값을 가질 때 또한 베타의 크기만큼 개별주식 수익률이 하락할 것을 기대할 수 있다.

그러나 1973년 Oil Crisis, 1989년 Black Monday 및 2008년 Sub-Prime Mortgage 와 같은 금융시장의 비정상적 사건에 대한 연구가 이루어지면서 자산 수익률을 비롯한 여러 시장변수들의 확률분포가 비대칭적이라는 근거가 제시되고 있다. 대표적으로 Glosten et al.(1993)은 CRSP 지수3)를 차분했을 때 왜도와 첨도가 정규분포를 따르지 않음을 보이며, ARCH류 변동성모형을 측정하는 경우 비대칭성을 고려했을때 Log Likelihood가 그렇지 않은 경우보다 좋게 나타남을 보였고,4 Rubinstein(1994)은 Black Monday 이후 미국 옵션시장에서 블랙-숄즈 옵션가격결정모형에 따라 측정된 옵션의 Moneyness 수준별 내재변동성이 한쪽으로 기울어진모양(Smirk)을 나타내고 있음을 바탕으로 금융시장의 비대칭성을 주장했다.5)

《그림 3》 S&P500지수옵션의 행사가격별 내재변동성

일반적인 단일지수모형을 통한 체계적 위험의 측정은 금융시장의 이러한 비대칭성을 반영하지 않기 때문에 시장의 상승 또는 하락에 대한 개별주식의 민감성이 일정하게 나타날 것으로 기대하고 있다. 하지만 실제 금융시장의 상승과 하락은 개별주식의 특성에 따라 이질적인 영향을 줄 수 있다. 기업 가치의 변화는 거시경제, 산업효과 등에 따라 전체 금융시장의 변화를 일부 반영하지만, 그 등락을 같은 정도로

6

³⁾ Center for Research in Security Prices, 가치가중방식 주식지수 포트폴리오를 말함

⁴⁾ Lawrence R. Glosten; Ravi Jagannathan; David E. Runkle(1993)

⁵⁾ Mark Rubinstein(1994)

가치에 반영하지는 않기 때문이다. 《그림 4》는 이를 도식화하여 나타낸 것이다.

《그림 4》 시장수익률에 대한 개별주식의 비대칭적 반응 양상 《그림 4》의 비대칭성을 반영하여 단일지수모형을 아래와 같이 확장할 수 있다.

$$\begin{split} r_i &= \alpha_{1,i} + \alpha_{2,i} + \beta_{1,i} r_m^+ + \beta_{2,i} r_m^- + \epsilon_i \\ \alpha_{1,i} &= \alpha_i \text{ if } r_m > 0 \text{ else } \alpha_{1,i} = 0 \\ \alpha_{2,i} &= \alpha_i \text{ if } r_m < 0 \text{ else } \alpha_{2,i} = 0 \\ r_m^+ &= r_m \text{ if } r_m > 0 \text{ else } r_m^+ = 0 \\ r_m^- &= r_m \text{ if } r_m < 0 \text{ else } r_m^- = 0 \\ H_0 : \beta_{1,i} &= \beta_{2,i} \\ H_1 : \beta_{1,i} \neq \beta_{2,i} \end{split}$$

여기서 α_1 은 시장이 상승했을 때, 회귀분석모형의 절편을 나타내며, α_2 는 반대로 시장 하락 시 절편을 나타낸다. 마찬가지로 β_1 은 시장 상승 시 모형의 기울기, 즉시장에 대한 개별주식의 반응을 나타내며, β_2 는 시장 하락에 대한 개별주식의 반응을 나타낸다. 이를 좀 더 이해하기 쉽게 설명하자면 아래 《그림 5》, 《그림 6》 6 의 과 같은 형태로 나타낼 수 있다.

《그림 5》 단일지수모형의 베타

《그림 6》 확장단일지수모형의 베타

⁶⁾ 단일지수모형 및 그 확장을 통해 추정된 동화약품(2008년 5월~2011년 4월)의 베타

3. Literature Review

3.1 금융시장 비대칭성 선행연구

금융시계열자료의 비대칭성은 주로 ARCH류 모형에서 다뤄져 왔다. Nelson(1991)은 Bollerslev(1986)의 GARCH 모형을 확장시켜 과거 시계열자료에서 오차의 부호에 따라 현재 오차의 조건부분산(conditional heteroskedasticity)이 다르게 나타나는 것을 모형화한 EGARCH(Exponential Generalized ARCH)를 제시하였다. 또 실증적분석에서 과거 관측치의 부호가 미래 변동성에 미치는 비대칭적 영향을 반영한 TGARCH(Threshold Generalized ARCH)가 Glosten·Jagannathan·Runkle(1993)과 Rabemananjara·Zakoian(1994) 등에 의해 만들어졌다.

홍선영·최성미·박진아·백지선·황선영(2009)은 2005년부터 2009년까지 KOSPI 지수 및 5종목의 개별주식, 원/엔 환율 금융시계열자료를 바탕으로, 비대칭 변동성과 지속성 효과를 가지는 시계열자료에 적합한 모형인 I-TGARCH 모형을 제시하였고, 그 결과 I-TGARCH 모형이 경제 위기의 영향으로 변동성이 커진 현재의 주가 분석에 적합하다는 사실을 확인했으며, 특히 대부분의 주가변동이 비대칭적인 경향을보이고 있다는 사실을 발견했다.

홍정효·문규현(2010)은 Jacque-Bera Test를 통해 삼성전자, 현대자동차 등 개별주식선물시장 시계열 자료를 차분한 변수들이 정규분포를 따른다는 귀무가설을 기각하고, 시간에 따른 비대칭성을 고려하지 않는 Ederington(1979)의 최소분산헤지모형 (Minimum Variance Hedge Model)에 비해 이를 고려한 Nelson(1990)의 EGARCH 모형이 더 우수함을 보이고 있다.

유병철·전선애(2011)는 금융변수의 비대칭성을 고려할 수 있는 NARDL모형 (Non-Linear Auto-Regressive Distributed Lag Model)을 통해 금리에 대한 통화정책의 파급효과를 분석하였고, 그 결과 금리가 인하되는 시기보다는 인상되는 시기에 금리에 주는 파급효과가 더욱 커 콜금리의 변동 방향에 따른 금융기관 금리의비대칭적인 조정을 관측하였다.

3.2 단일지수모형 선행연구

Markowitz(1952)는 효율적 시장 가설을 바탕으로 자산 선택 과정과 체계적·비체계적 위험의 분류를 보였고, Variance-Covariance Matrix를 통해 체계적 위험의 측정 가능성을 보였다. Sharpe(1964), Lintner(1965), Mossin(1966) 등이 이를 발전시켜 단일지수모형, 특히 개별주식의 체계적 위험을 표준화한 베타를 제시했고, 이는 현재까지 금융자산의 속성을 나타내는 척도로 사용되고 있다.

Nai-Fu Chen & Richard Roll & Stephen A. Ross(1986)⁷⁾은 하나의 시장요인을 가정하는 CAPM 대신 이를 공통요인으로 더욱 일반화시킨 APT를 연구했고, 산업생

⁷⁾ Nai-Fu Chen & Richard Roll & Stephen A. Ross(1986): "Economic Forces and the Stock Market", *Journal of Business*, Vol. 59, pp. 383~403

산의 월별 성장률, 기대인플레이션율의 변동 등 5개의 경제변수를 주식수익률에 영향을 미치는 공통요인으로 선정했으며, 검증한 결과 산업생산의 월별 성장률과 채권의 위험프리미엄의 변화, 그리고 예상치 못한 인플레이션율이 주식수익률에 유의적인 영향을 미치는 공통요인임을 제시하고 있다. 이와 달리 Eugene F. Fama & Kenneth R. French(1996)8)는 주식수익률에 영향을 미치는 공통요인을 기업의 특성과 관련하여 규명했다. 이들은 주식수익률 결정모형으로 단일지수모형을 소규모기업이 대규모기업에 대해 갖는 시장 평균 위험프리미엄, 높은 장부가치/시장가치 비율 기업이 갖는 시장 평균 위험프리미엄까지 고려해 확장한 3요인 모형을 제시했고, 장부가치/시장가치 비율이 높은 기업의 재무적 곤경(financial destress) 가능성과 소규모기업의 경기변동에 대한 민감한 영향 등을 주장했다.

김성표·윤영섭(1999)은 개별주식의 기본적 변수들이 시장지수 베타에서 측정되지 않는 다른 가격화된 위험에 대해 유용한 대용변수인지를 규명하였고, 변수들 중에서 기업규모(SIZE)와 장부/시장가치비율(B/M)이 독립적인 효과를 갖는 유의적인 변수이며, 산업생산변동율, 환율변동 등 거시경제요인이 주식수익률의 횡단면 차이에 통계적으로 유의한 설명력을 가진다는 것을 확인했다. 또한 이러한 두 변수의 변화와 결과는 높은 위험에 따른 보상의 결과고, 이들 위험에 따른 유용한 대용치라는 '위험에 기초한 가설'을 지지할 수 있음을 보였다.

Hui Guo & Robert F. Whitelaw(2006)⁹⁾는 위험(conditional variance)과 주식시장에서의 기대수익률의 약한 음의 상관관계에 대해 연구하였다. 이 연구는 기대수익률의 2가지 구성요소를 개별적으로 정의한 ICAPM 모형을 기초로 실증적 모형을 개발하고 기대수익률을 추정한다. 모형을 구성하는 2가지 요소는 위험 요인과 투자기회 변화를 활용한 헤지 욕구 요소이다. 그 결과 기대수익률은 위험 요인과 통계적으로 유의한 양의 상관관계를 보였다.

⁸⁾ Eugene F. Fama & Kenneth R. French(1996): "Multifactor Explanations of Asset Pricing Anomalies", *Journal of Finance*, Vol. 51, pp. 55~84

⁹⁾ Hui Guo & Robert F. Whitelaw(2005): "Uncovering the Risk-Return Relation in the Stock Market", Working Paper, Federal Reserve Bank of St. Louis

4. Econometric Models

4.1 ADF단위근검정(Augmented Dickey-Fuller Unit Root Test)

Dickey et al.(1984)에 의해 제안된 ADF단위근검정은 시계열자료에 단위근(unit root)이 존재하는지 확인하는 검정이다. 시계열자료에서 단위근이 존재하면 가성적회귀(spurious regression)가 발생할 가능성이 있어 모수 추정치에 대한 신뢰성이 떨어지게 된다. ADF단위근검정은 광범위하고 복잡한 시계열자료를 검정하기 위해 Dickey & Fuller(1979)에 의해 제안된 DF검정(Dickey-Fuller Test)이 발전된 형태다. ADF단위근검정의 통계량은 음의 값을 가지며, 그 절대치가 클수록 각 신뢰구간에서 단위근이 존재한다는 귀무가설을 기각할 확률이 높아진다. 검정 수식은 아래와 같다.

Zero Mean:
$$\Delta Y_t = \theta Y_t + \sum_{i=1}^p \phi_i \Delta Y_t + \epsilon_t$$

Single Mean:
$$\Delta Y_t = \mu + \theta Y_t + \sum_{i=1}^{p} \phi_i \Delta Y_t + \epsilon_t$$

Trend:
$$\Delta Y_t = \mu + \theta Y_t + \gamma t + \sum_{i=1}^p \phi_i \Delta Y_t + \epsilon_t$$

ADF단위근검정의 통계량은 아래와 같다.

$$ADF_{\tau} = n(\hat{\rho} - 1)$$

 H_0 : There exists unit root.

 H_1 : There does not exist unit root.

통계량의 절대치(absolute value)가 임계치(critical value)보다 크면 귀무가설을 기 각하며, 단위근이 존재하지 않는다고 판단할 수 있다.

4.2 다중회귀분석모형(Multiple Regression Analysis Model)

$$Y_t = \beta_0 + \beta_1 X_{1,t} + \beta_2 X_{2,t} + \beta_3 X_{3,t} + \dots + \beta_k X_{k,t} + \epsilon_t$$

회귀분석모형에서 추정해야 할 모수가 3개 이상이면 복잡한 수식으로 표현된다. 이때 행렬을 도입하면 간단하게 최소자승법(Least Square Estimation)을 적용해 모수를 계산할 수 있다. 행렬을 통해 다중회귀분석모형을 아래와 같이 나타낼 수 있다.

$$\begin{pmatrix} Y_1 \\ Y_2 \\ Y_3 \\ \vdots \\ Y_n \end{pmatrix} = \begin{pmatrix} 1 & X_{1,1} & X_{2,1} & X_{3,1} & \cdots & X_{k,1} \\ 1 & X_{1,2} & X_{2,2} & X_{3,2} & \cdots & X_{k,2} \\ 1 & X_{1,3} & X_{2,3} & X_{3,3} & \cdots & X_{k,3} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & X_{1,n} & X_{2,n} & X_{3,n} & \cdots & X_{k,n} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \vdots \\ \beta_k \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \vdots \\ \epsilon_n \end{pmatrix}$$

$$Y_{(n\times 1)} = X_{(n\times k)}\beta_{(k\times 1)} + e_{(n\times 1)}$$

이때 최소자승법에 의하면 모수 β 의 추정량(estimator)은 아래와 같다.

$$\hat{\beta} = (X'X)^{-1}X'Y$$

4.3 결합가설검정(Joint Hypothesis Test)

Gauss-Markov Theorem에 따라 회귀분석모형에서 최소자승법에 따라 추정된 $\hat{\beta}$ 은 최량선형불편추정량(BLUE: Best Linear Unbiased Estimator)이라는 사실이 알려져 있고 다음과 같은 특성을 갖고 있다.

$$\hat{\beta} \sim \mathcal{N}(\beta, \sigma^2 (X'X)^{-1})$$

일반적인 귀무가설의 구조는 다음과 같다.

$$H_0: R\beta = r$$

예를 들어, $H_0: \beta_1=0$ 을 검정하고자 한다면 아래와 같다.

$$R = (0 \ 1 \ 0 \cdots 0)$$

$$R\beta = (0\ 1\ 0 \cdots 0) \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{pmatrix} = \beta_1$$

잔차의 정규성을 가정하면

$$R\hat{\beta} \sim N(R\beta, \sigma^2 R(X'X)^{-1}R')$$

 $R(\hat{\beta} - \beta) \sim N(0, \sigma^2 R(X'X)^{-1}R')$

여기서 $X_{(n \times k)}$ 행렬의 행렬계수(rank of matrix)가 k인, 즉 독립인 경우 $(X'X)^{-1}$ 이 양정치행렬(positive definite matrix)이므로, $R(X'X)^{-1}R'$ 또한 대칭인 양정치행렬이 다. 따라서 다음과 같은 행렬이 정의될 수 있다.

$$R(X'X)^{-\frac{1}{2}}R' \times R(X'X)^{-\frac{1}{2}}R' = R(X'X)^{-1}R'$$

따라서

$$\frac{1}{\sigma} \left[R(X'X)^{-\frac{1}{2}} R' \right] R(\hat{\beta} - \beta) \sim N(0, I_q)$$

q: The row dimension of R

 $z \sim N(0,1^2)$ 이면, $z^2 \sim \chi_1^2$ 이므로 아래와 같이 나타낼 수 있다.

$$\frac{1}{\sigma^2} [R(\hat{\beta} - \beta)]' [R(X'X)^{-1}R'] R(\hat{\beta} - \beta) \sim \chi_q^2$$

 $\frac{1}{\sigma^2}[R(\hat{\beta}-\beta)]'\big[R(X'X)^{-1}R'\big]R(\hat{\beta}-\beta)\sim\chi_q^2$ 또한 $\frac{e'e}{\sigma^2}\sim\chi_{(n-k)}^2$ 이므로, 카이제곱분포를 따르는 독립적인 ϕ_1 과 ϕ_2 에 대하여 다음 이 성립한다.

$$\frac{\phi_1}{\phi_2} = F = \frac{\frac{\left[R(\hat{\beta} - \beta)\right]' \left[R(X'X)^{-1}R'\right]R(\hat{\beta} - \beta)}{q}}{\frac{e'e}{n - k}} \sim F_{q,(n-k)}$$

통계량이 임계치보다 크면 H_0 을 기각하며, $R\beta \neq r$ 이라고 판단할 수 있다.

5. Data Description

5.1 KOSPI 지수

KOSPI 지수는 1980년 1월 4일의 시가총액을 분모로 하고, 산출시점의 시가총액을 분자로 하여 지수화한 것으로 그 산식은 아래와 같다.

한편 지수를 산출할 때 연속성을 유지하기 위하여 유가증권시장 상장종목 중 유·무 상증자, 배당, 합병 등에 의해 주가에 락이 발생하거나 상장주식수에 변동이 있는 경우에는 기준시가총액과 비교시가총액을 수정한다.10) 2008년 5월부터 2011년 4월 까지 주별 시계열자료를 인포맥스에서 추출해 사용했으며, ADF단위근검정을 통해 분석한 결과 1차 차분된 시계열에서 안정성을 확보할 수 있었다.

《그림 7》 KOSPI 지수 시계열

《그림 8》 차분된 KOSPI 지수 시계열

Jarque-Bera 통계량 ¹¹⁾	3.15	Jarque-Bera 통계량	578.30
첨도	-0.54	첨도	9.427181
왜도	-0.21	왜도	-1.209930
표준편차	298.71	표준편차	0.039271
평균	1619.81	평균	0.000757

《표 2》 KOSPI 지수 기초통계량 《표 3》 차분된 KOSPI 지수 기초통계량

5.2 개별주식 가격

현재 한국거래소에 상장되어 있는 개별주식 종목들 중 KOSPI200 지수에 편입되어 있는 아래의 200종목에 대해 2008년 5월부터 2011년 4월까지 주별 시계열자료를 에 프앤가이드에서 추출해 사용했으며, 그 시계열자료와 1차 차분된 자료를 ADF단위 근검정을 통해 분석한 결과 1차 차분된 시계열에서 안정성을 확보할 수 있었다.

이때 주가는 유·무상증자, 배당, 분할 등에 의해 연속성을 상실해 이전과 이후의 자 료를 비교, 분석하는데 어려움을 준다. 따라서 개별주식을 분석할 때, 이를 고려해 연속성을 부여할 수 있게 되는데 이를 수정주가라 한다. 예를 들어 배당락이 있는

$$T_N = \left\{ \frac{N}{6} skew^2 + \frac{N}{24} kurt^2 \right\} \sim \chi_2^2$$

¹⁰⁾ 한국거래소

¹¹⁾ C. M. Jarque & A. K. Bera(1980)에 따르면 변수가 정규분포를 따를 때 아래와 같다.

경우 배당락 직전 주가를 기준으로 이론적 배당락 가격을 계산하는 방법을 통해 수 정주가를 계산하게 된다. 이는 시장에서 특정 시점의 가치를 나타낼 때는 적절하지 않지만, 금융시계열모형 등 여러 시점을 비교하려는 목적으로 활용되고 있다.

동화약품	롯데삼강	POSCO	현대모비스	미래에셋증권
경방	한국제지	삼진제약	삼성테크윈	대우조선해양
삼양사	넥센타이어	삼영전자	현대산업	두산인프라코어
유한양행	KCC	삼성전자	에스원	대우건설
대한통운	한독약품	우리투자증권	동원시스템즈	대우인터내셔널
하이트홀딩스	아모레G	SK케미칼	유니드	성진지오텍
두산	부광약품	LS	대경기계	LG생활건강
대림산업	세아제강	녹십자	한국전력	LG화학
일동제약	일성신약	GS건설	삼성증권	우리금융
한국타이어	알앤엘바이오	카프로	동부제철	신한지주
기아차	태광산업	삼성SDI	퍼시스	케이피케미칼
조선내화	한일시멘트	대한유화	SK텔레콤	S&T대우
동아제약	쌍용양회	대우증권	현대엘리베이	LG전자
하이닉스	현대증권	오뚜기	한국카본	STX조선해양
영풍	한진중공업홀딩스	동아타이어	한라공조	LG생명과학
한진해운홀딩스	대한항공	일양약품	대교	휴켐스
현대건설	영진약품	웅진케미칼	한섬	대웅제약
삼성화재	LG	대덕전자	웅진코웨이	현대백화점
삼성물산	S&T중공업	율촌화학	롯데쇼핑	한국금융지주
한화	SK	한미홀딩스	기업은행	STX엔진
동부하이텍	유니온스틸	삼성전기	KPX케미칼	GS
СЈ	남양유업	무림페이퍼	한국단자	대한제강
JW중외제약	삼양제넥스	광동제약	KPX화인케미칼	엔케이
LG상사	삼성정밀화학	현대중공업	남해화학	현대글로비스
대한제분	현대제철	무림P&P	삼성엔지니어링	하나금융지주
금호전기	대덕GDS	모토닉	STX팬오션	아모레퍼시픽
동국제강	한솔제지	한화케미칼	신도리코	세원셀론텍
제일모직	신세계	OCI	삼성카드	LG패션
세아베스틸	농심	LS산전	제일기획	후성
대한전선	송원산업	고려아연	KT	SK이노베이션
동양메이저	세방전지	삼성중공업	LG유플러스	한진중공업
종근당	한솔테크닉스	현대하이스코	삼성생명	CJ제일제당
대상	효성	현대미포조선	KT&G	S&TC
SK네트웍스	외환은행	S-Oil	두산중공업	풍산
대한제당	롯데제과	LG이노텍	SBS	하이트맥주
오리온	삼광유리	호남석유	LG디스플레이	일진전기
KISCO홀딩스	빙그레	현대상선	강원랜드	한국철강
코오롱	대구은행	금호석유	NHN	KB금융
아세아시멘트	롯데칠성	SKC	한국가스공사	LG하우시스
1 1 1 2	21 1 2 0	**		

《표 4》 2011년 5월 현재 KOSPI200 지수에 편입되어 있는 개별주식 종목

《그림 9》 동화약품 주가 시계열

《그림 10》 롯데삼강 주가 시계열

평균	6849.01	평균	216512.74
표준편차	2071.64	표준편차	50615.03
왜도	1.0981	왜도	-0.2040
첨도	0.7653	첨도	-1.1041

《표 5》 동화약품 주가 기초통계량

《표 6》 롯데삼강 주가 기초통계량

《그림 11》 POSCO 주가 시계열

《그림 12》 현대모비스 주가 시계열

평균	470404.46	평균	159859.24
표준편차	71466.33	표준편차	79676.20
왜도	-0.5547	왜도	0.7183
첨도	0.1871	첨도	-0.5391

《표 7》 POSCO 주가 기초통계량

《표 8》 현대모비스 주가 기초통계량

《그림 13》 미래에셋증권 주가 시계열

《그림 14》 경방 주가 시계열

평균	68140.00	평균	115287.26
표준편차	17432.23	표준편차	25671.80
왜도	1.4565	왜도	-0.6161
첨도	2.5040	첨도	0.0261

《표 9》 미래에셋증권 주가 기초통계량 《표 10》 경방 주가 기초통계량

6. Main Results

6.1 변수의 단위근 존재 여부

단일지수모형 및 확장단일지수모형에서 사용할 KOSPI 지수 및 KOSPI200 편입 종목들에 대한 ADF단위근검정을 실시하였으며 과정 및 4주까지 지연(lag)을 확장시켜 살펴본 결과는 아래와 같다.

Zero Mean:
$$\Delta Y_t = \theta Y_t + \sum_{i=1}^4 \phi_i \Delta Y_t + \epsilon_t$$

Single Mean: $\Delta Y_t = \mu + \theta Y_t + \sum_{i=1}^4 \phi_p \Delta Y_t + \epsilon_t$
Trend: $\Delta Y_t = \mu + \theta Y_t + \gamma t + \sum_{i=1}^4 \phi_p \Delta Y_t + \epsilon_t$
 $ADF_\tau = n \left(\hat{\rho} - 1 \right)$

 H_0 : There exists unit root in the time-series data.

 H_1 : There does not exist unit root in the time-series data.

6.1.1 KOSPI 지수

	Augmented Dickey-Fuller Unit Root Tests							
Type	Lags	Rho	Pr <rho< td=""><td>Tau</td><td>Pr <tau< td=""><td>F</td><td>Pr > F</td></tau<></td></rho<>	Tau	Pr <tau< td=""><td>F</td><td>Pr > F</td></tau<>	F	Pr > F	
Zero Mean	0	0.1265	0.7112	0.32	0.7769			
	1	0.1518	0.7173	0.41	0.8000			
	2	0.0802	0.7003	0.18	0.7389			
	3	0.1269	0.7113	0.30	0.7707			
	4	0.1216	0.7100	0.29	0.7678			
Single Mean	0	-1.2507	0.8607	-0.57	0.8738	0.25	0.9900	
	1	-0.9030	0.8938	-0.43	0.9000	0.21	0.9900	
	2	-1.9065	0.7879	-0.76	0.8261	0.34	0.9826	
	3	-1.6366	0.8191	-0.66	0.8534	0.30	0.9896	
	4	-1.6334	0.8195	-0.65	0.8553	0.29	0.9900	
Trend	0	-9.4183	0.4657	-3.01	0.1322	6.56	0.0439	
	1	-8.8787	0.5059	-3.01	0.1324	6.77	0.0382	
	2	-12.0149	0.3004	-3.55	0.0377	8.37	0.0022	
	3	-11.5682	0.3251	-3.41	0.0536	7.72	0.0155	
	4	-12.3506	0.2827	-3.67	0.0274	8.86	0.0010	

《표 11》 KOSPI 지수 시계열 ADF단위근검정 결과

시계열자료의 안정성이 위배되는 위의 세 가지 형태에 대해 2008년 5월부터 2011 년 4월까지 KOSPI 지수 시계열자료를 분석한 결과 대부분 τ 통계량이 귀무가설을 기각할 수 없어 단위근이 존재하고 있음을 확인하였다.

이에 따라 KOSPI 지수 시계열자료를 1차 차분 12)해 분석한 결과 10%의 유의수준에서 τ 통계량이 귀무가설을 기각해 시계열자료에 안정성이 확보되었음을 확인할

수 있었다. 이에 따라 회귀분석으로 추정된 결과를 신뢰할 수 있게 되었다.

	Augmented Dickey-Fuller Unit Root Tests								
Type	Lags	Rho	Pr <rho< td=""><td>Tau</td><td>Pr <tau< td=""><td>F</td><td>Pr > F</td></tau<></td></rho<>	Tau	Pr <tau< td=""><td>F</td><td>Pr > F</td></tau<>	F	Pr > F		
Zero Mean	0	-168.257	0.0001	-13.38	<.0001				
	1	-123.426	0.0001	-7.83	<.0001				
	2	-129.714	0.0001	-6.70	<.0001				
	3	-134.730	0.0001	-5.91	<.0001				
	4	-134.699	0.0001	-5.30	<.0001				
Single Mean	0	-168.464	0.0001	-13.36	<.0001	89.21	0.0010		
	1	-123.811	0.0001	-7.81	<.0001	30.52	0.0010		
	2	-130.744	0.0001	-6.69	<.0001	22.40	0.0010		
	3	-136.497	0.0001	-5.91	<.0001	17.46	0.0010		
	4	-137.297	0.0001	-5.30	<.0001	14.05	0.0010		
Trend	0	-172.505	0.0001	-13.65	<.0001	93.19	0.0010		
	1	-134.295	0.0001	-8.12	<.0001	33.00	0.0010		
	2	-152.671	0.0001	-7.01	<.0001	24.55	0.0010		
	3	-181.970	0.0001	-6.29	<.0001	19.76	0.0010		
	4	-216.526	0.0001	-5.71	<.0001	16.32	0.0010		

《표 12》 차분된 KOSPI 지수 시계열 ADF단위근검정 결과

6.1.2 개별주식 가격

	Augmented Dickey-Fuller Unit Root Tests								
Type	Lags	Rho	Pr <rho< td=""><td>Tau</td><td>Pr <tau< td=""><td>F</td><td>Pr > F</td></tau<></td></rho<>	Tau	Pr <tau< td=""><td>F</td><td>Pr > F</td></tau<>	F	Pr > F		
Zero Mean	0	-159.479	0.0001	-12.72	<.0001				
	1	-142.189	0.0001	-8.38	<.0001				
	2	-98.6150	<.0001	-6.05	<.0001				
	3	-114.017	0.0001	-5.69	<.0001				
	4	-125.882	0.0001	-5.24	<.0001				
Single Mean	0	-161.049	0.0001	-12.80	<.0001	81.87	0.0010		
	1	-146.233	0.0001	-8.46	<.0001	35.80	0.0010		
	2	-103.394	0.0001	-6.13	<.0001	18.81	0.0010		
	3	-122.282	0.0001	-5.76	<.0001	16.58	0.0010		
	4	-140.910	0.0001	-5.32	<.0001	14.17	0.0010		
Trend	0	-162.105	0.0001	-12.85	<.0001	82.51	0.0010		
	1	-148.946	0.0001	-8.51	<.0001	36.23	0.0010		
	2	-107.189	0.0001	-6.20	<.0001	19.26	0.0010		

¹²⁾ Taylor Theorem에 따라 Log Difference는 변화율과 같고, 이는 연속복리수익률 (Continuous Compounding Interest Rate)을 의미한다. 시계열 I에 대하여 1차 차분했을 때 안정성이 확보되는 경우 I(1)이라 하며 1차 적분되었다고 하며, 대부분의 금융시계열 자료는 I(1)의 특성을 지니고 있다. $\Delta \, Y_t = \ln \left(Y_t \right) - \ln \left(Y_{t-1} \right) \simeq \frac{Y_t - Y_{t-1}}{Y_{t-1}}$

$$\Delta Y_t = \ln (Y_t) - \ln (Y_{t-1}) \simeq \frac{Y_t - Y_{t-1}}{Y_{t-1}}$$

3	-127.352	0.0001	-5.79	<.0001	16.79	0.0010
4	-149.018	0.0001	-5.36	0.0001	14.37	0.0010

《표 13》 차분된 동화약품 주가 시계열 ADF단위근검정 결과 분석에 사용된 모든 시계열에 대해 1차 차분을 실시하고 ADF단위근검정을 실시한 결과 거의 모든 시계열에서 단위근이 존재한다는 귀무가설을 기각해 대부분의 시계 열자료에서 안정성이 확보되고 있는 것으로 나타났다.

	Augmented Dickey-Fuller Unit Root Tests								
Type	Lags	Rho	Pr <rho< td=""><td>Tau</td><td>Pr <tau< td=""><td>F</td><td>Pr > F</td></tau<></td></rho<>	Tau	Pr <tau< td=""><td>F</td><td>Pr > F</td></tau<>	F	Pr > F		
Zero Mean	0	-64.8327	<.0001	-9.60	<.0001				
	1	-44.4144	<.0001	-4.72	<.0001				
	2	-73.4388	<.0001	-4.73	<.0001				
	3	-106.238	0.0001	-4.18	<.0001				
	4	-68.8431	<.0001	-3.33	0.0013				
Single Mean	0	-65.3981	0.0005	-9.59	0.0001	46.04	0.0010		
	1	-45.6025	0.0004	-4.73	0.0004	11.18	0.0010		
	2	-77.3889	0.0004	-4.72	0.0004	11.17	0.0010		
	3	-117.672	0.0001	-4.17	0.0018	8.71	0.0010		
	4	-75.2781	0.0004	-3.32	0.0192	5.52	0.0325		
Trend	0	-65.3251	<.0001	-9.50	<.0001	45.36	0.0010		
	1	-45.7080	<.0001	-4.70	0.0021	11.14	0.0010		
	2	-79.1540	<.0001	-4.76	0.0018	11.51	0.0010		
	3	-128.157	0.0001	-4.28	0.0072	9.35	0.0010		
	4	-90.7841	<.0001	-3.51	0.0491	6.42	0.0640		

《표 14》 차분된 삼성생명 주가 시계열 ADF단위근검정 결과

그러나 상장된 기간 자체가 짧아 시계열자료가 충분하지 않았던 일부 개별주식은 불안정성이 의심되었다. 분석 결과 최근 상장된 BS금융지주를 제외한 모든 시계열은 1차 차분했을 때 안정성을 회복했고, BS금융지주 시계열은 지연을 축소시켜 검정하는 경우 한정적인 의미에서 안정성만 존재하고 있음이 발견되었다.

	Augmented Dickey-Fuller Unit Root Tests							
Type	Type Lags Rho Pr <rho <tau="" f="" pr="" tau=""></rho>							
Zero Mean	0	-5.2489	0.0691	-2.71	0.0146			
	1	-14.0831	0.0007	-2.80	0.0139			
Single Mean	0	-5.3263	0.2458	-2.28	0.2081	2.94	0.3726	
	1	-15.1883	0.0009	-2.32	0.2081	2.73	0.4193	
Trend	0	-5.1181	0.6735	-1.88	0.5437	2.07	0.7702	
	1	-14.5917	0.0086	-1.61	0.6331	1.34	0.8974	

《표 15》 차분된 BS금융지주 주가 시계열 ADF단위근검정 결과

본 논문에서는 시계열자료 표본이 부족해 불안정성이 발견된 BS금융지주를 제외한 199종목의 수정주가 시계열자료의 1차 차분 변수를 사용해 분석을 실시했으며, BS금융지주의 모수 변화 결과 및 적합도 결과는 제외시켰다.

6.2 확장단일지수모형의 모수 변화 여부

Parameter Estimates							
Variable	Parameter Estimate	Standard Error	Pr> t				
$\hat{\alpha}$	0.0006	0.0037	0.8755				
\hat{eta}	1.1081	0.0951	<.0001				

《표 16》 단일지수모형 회귀분석 결과 《그림 15》 r_i 와 r_m 을 통한 eta 추정

$$r_i = \alpha_i + \beta_i r_m + \epsilon_i$$

개별주식 i가 포트폴리오 m을 구성할 때, 단일지수모형을 통한 체계적 위험 β 의 도출은 《표 16》과 《그림 15》에 나타난 것과 같이 단순회귀분석에 따라 이루어 진다. 위와 같은 분석 결과에 의하면 대한항공 주가의 체계적 위험은 1.1081이며, KOSPI 지수, 즉 시장이 1 움직일 때마다 대한항공 주가는 평균적으로 1.1081배 민 감하게 움직이는 특성을 지닌다고 할 수 있다.

	Parameter Estimates							
Variable	DF	Parameter	Standard	t Value	Pr > t			
v arrabie	DF	Estimate	Error	t value	11 / t			
α_1	1	-0.00859	0.00672	-1.28	0.2032			
α_2	1	-0.00308	0.00784	-0.39	0.6951			
β_1	1	1.46867	0.20932	7.02	<.0001			
β_2	1	0.93256	0.16408	5.68	<.0001			

《표 17》 확장단일지수모형 회귀분석 결과

《그림 16》 r_i 와 r_m^+ , r_m^- 을 통한 eta_1 및 eta_2 추정

그러나 《그림 4》에서 이미 말했던 것처럼 시장의 변동이 상승인지 하락인지에

따라 개별주식의 변동에 동일한 정도로 영향을 주지 않는다면 단일지수모형을 확장해 다음과 같이 나타낼 수 있다.

$$r_i = \alpha_{1,i} + \alpha_{2,i} + \beta_{1,i}r_m^+ + \beta_{2,i}r_m^- + \epsilon_i$$

《표 17》과 《그림 16》은 확장단일지수모형에 따라 대한항공의 β_1 과 β_2 를 추정한 결과로, 대한항공은 시장의 호경기에 약 1.46867 정도로 영향을 크게 받는 반면, 불경기에 이와 달리 0.93256 정도로 비교적 적은 영향을 받는 것으로 나타났다.

Test 1 Results for Dependent Variable 대한항공								
Source	DF	Mean	F Value	Pr > F				
		Square						
Numerator	Numerator 1		4.06	0.0456				
Denominator 153 0.00220								

《표 18》 $H_0: \beta_1 = \beta_2$ 에 대한 결합가설검정 결과

또한 4.3의 결합가설검정 절차에 따라 모수 β_1 과 β_2 를 분석한 결과 통계량이 임계 치보다 큰 것으로 나타나 두 모수, 즉 시장 상승이 대한항공 주가에 미치는 영향과 시장 하락이 대한항공 주가에 미치는 영향은 통계적으로 유의하게 서로 비대칭적이라는 사실을 확인할 수 있었다.

《그림 17》 KOSPI200 지수 편입 종목의 $\beta_1 \neq \beta_2$ 구조변화 사례

대한항공처럼 시장 변동에 따라 개별주식이 비대칭적 모수를 갖고 있는지 여부를 확인하기 위해 개별주식 200종목 13 에 대해 《표 18》과 같은 구조변화검정을 실시한 결과, 《그림 17》에 나타난 것과 같이 54종목(27%)이 통계적으로 유의하게 시장 변동의 부호에 따라 서로 다른 체계적 위험을 갖고 있는 것으로 드러났다. 특히모수의 구조변화가 존재하는 종목의 절반에 가까운 경우가 아주 뚜렷하게 $\beta_1 = \beta_2$ 라는 귀무가설을 기각하고 있는 것으로 나타나, 일반적인 단일지수모형을 통한 체계

¹³⁾ BS금융지주는 구조변화가 발생하지 않는 146종목에 포함되어 있다.

적 위험 추정 시 시장 변동의 개별주식 주가 반영의 비대칭성을 간과할 수 있음을 확인했다. 전체 종목의 단일지수모형과 확장단일지수모형의 체계적 위험 추정량은 Appendix에 수록하였다.

6.3 확장단일지수모형의 적합도 검정

모수의 신뢰도 및 구조변화검정 이외에 모형 자체의 적합도를 확인하고자 6.2의 검정 전체에 대하여 모형의 설명력, 즉 적합도(goodness of fit)이 어떠한지를 보여주는 척도인 수정결정계수(Adjusted R-Square)를 비교했다.

일반적으로 결정계수(R-Square)는 아래와 같이 정의된다.

$$R^2 = 1 - \left(\frac{RSS}{TSS}\right)$$

그러나 추정하는 모수의 숫자가 서로 다른 두 모형의 적합도를 비교하기 위해서는 모수를 더 많이 추정하는 모형에 핸디캡을 부여하는 수정결정계수를 고려한다.

$$\overline{R^2} = 1 - \left[\frac{\frac{RSS}{(n-k)}}{\frac{TSS}{(n-1)}} \right]$$

《그림 18》 확장단일지수모형·단일지수모형의 적합도 비교

N	Mean	Std Dev	Std Err	Minimum	Maximum
199	0.0100	0.0195	0.00138	-0.0315	0.0874
DF		t V	alue	Pr >	> t
198		7.5	24	<.0	001

《표 19》 단일지수모형·확장단일지수모형 적합도 Paired t-Test 분석 결과

비교 결과 199종목 중 61.81%인 123종목에서 확장단일지수모형의 적합도가 더 뛰어난 것으로 나타났고, 두 표본에 통계적으로 유의한 차이가 있는지 Paired t-Test로 분석한 결과 두 표본에 차이가 없다는 귀무가설을 1% 유의수준에서 기각하는 것으로 나타나 확장단일지수모형의 적합도가 더 우수한 것으로 나타났다.

7. Conclusion

7.1 연구 결과

자산에 대한 투자는 위험과 위험에 대한 보상의 교환으로 이루어져 있다는 사실에 따라, 1950년대 이후 현대 포트폴리오 이론의 발전으로 금융자산의 비교적 정확한 위험 측정이 가능해졌으며, 특히 Sharpe 등에 의해 개발된 단일지수모형은 체계적위험, 즉 베타라는 개별주식의 특성을 발견해 금융시장의 발전에 기여하였으며, 오늘날 베타는 시장참여자들의 투자판단에 반드시 고려해야 할 척도가 되었다.

본 논문은 개별주식의 변동에 대한 시장요인의 영향력이 시장의 상승 혹은 하락에 따라 대칭적이지 않다는 대립가설을 설정하고, 이를 분석하기 위해 Sharpe의 단일지수모형 및 독립변수의 비대칭적 영향력을 고려하는 확장단일지수모형을 도입해 KOSPI 지수 및 KOSPI200 편입 종목을 각각 독립변수, 종속변수로 설정하고 시장의 변동이 개별주식에 미치는 영향력이 서로 다른지를 중점적으로 파악하고자 했으며, 분석에 사용되는 시계열자료를 1차 차분해 안정성을 확보하였다.

분석 결과 개별주식 200종목 중 57종목에서 시장변동에 대한 비대칭적 반응 양상이 나타났고, 그중 절반에 가까운 26종목은 그 특성이 두드러지게 나타나는 것으로 밝혀져 투자판단에 있어 체계적 위험을 고려할 때, 기존의 단일지수모형을 기반으로 하는 베타 측정 방법으로는 파악할 수 없는 개별주식의 이질적 특성이 존재하고 있음을 실증적으로 제시하였다. 또한 모형 자체의 우수성을 판단함에 있어서도, 확장단일지수모형의 적합도와 단일지수모형의 적합도가 통계적으로 유의하게 다르며, 확장단일지수모형의 적합도가 더 높은 것을 확인하였다.

7.2 연구 한계

CAPM을 기반으로 하는 모든 모형에 대한 논의는 근본적으로 시장이 과연 효율적인가 하는 문제에 직면하게 된다. CAPM은 모든 투자자산에 대한 시장참여자의 동질적인 기대, 산업효과 등을 배제한 투자안, 즉 개별주식의 독립성 등을 가정하고있는데, 이는 현실적으로 납득하기 어렵다.

또한 체계적 위험을 측정하기 위해 어떠한 표본을 사용해야 하는가에 대한 부분도 비교적 널리 통용되고 있는 방법을 크게 벗어나지 않았으나, 자의적인 판단에 의해 이루어졌고, 주별 시계열자료 이외의 일별, 월별 등 다른 형태에 대해서는 다루지 않았으며, 따라서 이에 대한 지속적 연구와 검증 절차가 있어야 할 것이다.

변수 선택의 다양성이 부족했다는 점 또한 본 논문의 한계로 지적될 수 있을 것이다. 단일지수모형은 KOSPI 시장 이외에도 KOSDAQ 등 다른 금융시장에도 적용되며, 우리나라뿐만 아니라 미국, 일본 등 선진금융시장에서도 동일하게 적용 가능한모형이므로 대상 변수로 다양한 시장, 다양한 국가를 고려했다면 더 좋은 결과를얻을 수 있었을 것으로 생각된다.

Reference

Kiseok Lee(2005): *Econometrics with SAS Applications*, Seoul, Korea: Kyung Hee University Press

Kiseok Lee(2011): Lecture Note: Advanced Econometrics

Youngjun Kwon(2011): Lecture Note: Investments

Carlos M. Jarque & Anil K. Bera(1980): Efficient Tests for Normality, Homoscedasticity and Serial Independence of Regression Residuals, *Economic Letters*, Vol. 6, p. 257

Daniel B. Nelson(1991): "Conditional Heteroskedasticity in Asset Returns: A New Approach", *Econometrica*, Vol. 59, pp. 347~350

Edwin J. Elton & Martin J. Gruber(1991): *Modern Portfolio Theory and Investment Analysis, 4th ed.*, New York: Wiley & Sons Inc., p. 32

Eugene F. Fama & Kenneth R. French(1996): "Multifactor Explanations of Asset Pricing Anomalies", *Journal of Finance*, Vol. 51, pp. 55~84

Harry Markowitz(1952): "Portfolio Selection", *Journal of Finance*, Vol. 7, pp. 71 ~91

Hui Guo & Robert F. Whitelaw(2005): "Uncovering the Risk-Return Relation in the Stock Market", Working Paper, Federal Reserve Bank of St. Louis

Jan Mossin(1966): "Equilibrium in a Capital Asset Market", *Econometrica*, Vol. 34, pp. 768~783

John Lintner(1965): "Security Prices, Risk and Maximal Gains from Diversification", *Journal of Finance*, Vol. 20, pp. 587~615

Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle(1993): "On the Relation between the Expected Value and the Volatility of the Nomial Excess Return on Stocks", *Journal of Finance*, Vol. 48, p. 1796

Mark Rubinstein(1994), "Implied Binomial Trees", Journal of Finance, Vol. 49, pp. 776~777, pp. 800~801

Nai-Fu Chen & Richard Roll & Stephen A. Ross(1986): "Economic Forces and the Stock Market", *Journal of Business*, Vol. 59, pp. 383~403

Sharpe(1964): "Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk", *Journal of Finance*, Vol. 19, pp. 425~442

Zvi Bodie & Alex Kane & Alan J. Marcus(2008): *INVESTMENTS Seventh Edition*, McGraw-Hill Korea, pp. 289~295

김홍선·박경찬·김성문(2010): "금융공학: 기대 수익률, 분산, 공분산 예측치의 정확도에 따른 마코위츠 포트폴리오 선정 모형의 성과에 관한 연구", *대한산업공학회 춘계학술대회논문집*, pp. 2~3

박정식·박종원·조재호(2010): 제7판 현대재무관리, 다산출판사, ch. 10~11

유병철·전선애(2011): "장·단기 비대칭성을 고려한 우리나라 통화정책의 파급효과", 산업경제연구, 한국산업경제학회, p. 25

조인호(2010): SAS 강좌와 통계컨설팅 Second Edition, 영진닷컴, ch. 12

홍선영·최성미·박진아·백지선·황선영(2009): "지속-변동성을 가진 비대칭 TGARCH 모형을 이용한 국내금융시계열 분석", 한국통계학회논문집, 한국통계학회, p. 605

홍정효·문규현(2010): "개별주식선물시장의 헤지성과에 관한 실증적 연구: 정태적헤지모형 vs 동태적혜지모형", 제무관리연구, 한국재무관리학회, pp. 34~35

Appendix 단일지수모형·확장단일지수모형의 체계적 위험 추정량

모형	단일지~	수모형		확장단일	지수모형	
종목	α	β	a1	α2	β1	β2
동화약품	-0.0064	0.8185	-0.0163	-0.0001	1.1073	0.8545
경방	-0.0010	0.9876	0.0076	0.0202	0.4574	1.5109
삼양사	0.0022	0.6961	0.0152	-0.0100	0.3588	0.5670
유한양행	-0.0026	0.3581	-0.0025	0.0035	0.2869	0.4881
대한통운	0.0006	0.3760	0.0099	0.0000	0.0508	0.4528
하이트홀딩스	-0.0098	1.0942	-0.0192	-0.0022	1.3516	1.1616
두산	-0.0022	1.3085	0.0035	-0.0064	1.1497	1.2751
대림산업	-0.0025	1.9340	-0.0066	-0.0124	2.1838	1.6900
일동제약	-0.0012	0.8015	-0.0062	0.0153	0.8074	1.0968
한국타이어	0.0065	0.8370	0.0053	0.0157	0.7821	1.0186
기아차	0.0095	1.1980	0.0051	0.0131	1.3174	1.2321
조선내화	-0.0037	0.5880	0.0003	0.0076	0.3250	0.8626
동아제약	-0.0002	0.5084	-0.0114	0.0177	0.7210	0.7738
하이닉스	-0.0008	1.7007	0.0014	0.0243	1.3607	2.2438
영풍	0.0022	0.9922	0.0140	0.0251	0.3294	1.5814
한진해운홀딩스	-0.0096	1.7966	-0.0170	-0.0052	2.0157	1.8176
현대건설	-0.0016	1.2662	-0.0127	-0.0027	1.6776	1.1359
삼성화재	-0.0014	0.8014	0.0033	-0.0013	0.6298	0.8495
삼성물산	-0.0003	1.3319	-0.0060	0.0029	1.5047	1.3425
한화	-0.0011	1.4548	0.0014	0.0031	1.3207	1.5673
동부하이텍	0.0013	1.4538	0.0041	0.0154	1.2036	1.7746
CJ	-0.0012	1.3244	-0.0145	0.0077	1.7099	1.3804
JW중외제약	-0.0020	0.9511	-0.0024	0.0201	0.7357	1.4064
LG상사	0.0039	1.1329	0.0140	0.0268	0.5308	1.7069
대한제분	-0.0022	1.1263	0.0037	0.0231	0.6496	1.7090
금호전기	-0.0024	1.2379	-0.0048	-0.0018	1.3184	1.2256
동국제강	-0.0029	1.7524	-0.0126	0.0087	1.9750	1.9026
제일모직	0.0041	0.8141	0.0104	0.0094	0.5320	0.9851
세아베스틸	0.0050	0.9159	0.0092	0.0143	0.6704	1.1482
대한전선	-0.0131	1.3103	-0.0062	-0.0079	1.0088	1.4839
동양메이저	-0.0116	1.6807	-0.0162	0.0087	1.6320	2.0590
종근당	0.0009	0.8571	0.0013	0.0161	0.6841	1.1771
대상	-0.0025	1.2489	0.0025	0.0122	0.9182	1.6021
SK네트웍스	-0.0043	1.1719	0.0095	-0.0103	0.7413	1.1787
대한제당	-0.0018	0.3778	-0.0109	0.0083	0.5975	0.5018
오리온	0.0045	0.5113	0.0070	0.0126	0.3357	0.7043
KISCO홀딩스	-0.0088	1.4512	-0.0086	-0.0043	1.3961	1.5476
코오롱	0.0003	1.1620	0.0004	0.0186	0.9675	1.5434

아세아시멘트	-0.0027	0.9371	-0.0001	0.0166	0.6415	1.3642
고려제강	0.0009	0.8412	-0.0118	0.0125	1.1766	0.9596
롯데삼강	0.0021	0.8361	0.0107	0.0157	0.3827	1.2035
한국제지	-0.0059	1.1042	-0.0089	0.0136	1.0108	1.4795
넥센타이어	0.0101	1.1753	0.0041	0.0207	1.2789	1.3391
KCC	-0.0033	1.2564	-0.0135	-0.0056	1.6472	1.1106
한독약품	-0.0028	0.3821	0.0067	-0.0007	0.0191	0.5173
아모레G	0.0024	0.8053	0.0088	0.0075	0.5225	0.9730
부광약품	-0.0069	0.8203	-0.0060	-0.0026	0.7417	0.9194
세아제강	0.0017	1.1307	-0.0012	0.0076	1.1711	1.2257
일성신약	-0.0027	0.7023	0.0148	0.0151	-0.1103	1.2401
알앤엘바이오	0.0037	0.4407	0.0296	-0.0444	0.0191	-0.3120
태광산업	0.0023	0.8573	0.0071	0.0245	0.4522	1.3658
한일시멘트	-0.0052	1.0039	-0.0115	0.0127	1.0395	1.3181
쌍용양회	-0.0048	1.0615	0.0042	0.0023	0.6643	1.2949
현대증권	-0.0018	1.4447	0.0016	0.0028	1.2777	1.5720
한진중공업홀딩스	-0.0076	1.5247	-0.0010	0.0014	1.1953	1.7739
대한항공	0.0006	1.0987	-0.0086	-0.0031	1.4687	0.9326
영진약품	-0.0030	1.1536	-0.0051	0.0126	1.0668	1.4581
LG	0.0002	1.2271	0.0033	0.0011	1.1030	1.2781
S&T중공업	0.0006	0.9116	-0.0008	0.0312	0.6411	1.5340
SK	0.0002	1.5020	-0.0043	-0.0045	1.7114	1.3627
유니온스틸	-0.0012	1.0670	0.0140	0.0052	0.4519	1.3476
남양유업	-0.0013	0.9345	0.0010	0.0072	0.7642	1.1324
삼양제넥스	-0.0010	0.3670	0.0045	-0.0056	0.2184	0.3248
삼성정밀화학	0.0009	0.9125	0.0064	0.0014	0.7078	0.9766
현대제철	0.0010	1.5205	-0.0066	0.0132	1.6681	1.6999
대덕GDS	0.0002	0.7965	0.0117	0.0180	0.1948	1.2789
한솔제지	-0.0047	1.1410	-0.0058	-0.0111	1.2457	0.9986
신세계	-0.0013	0.8665	-0.0081	-0.0026	1.1233	0.7751
농심	0.0014	0.2829	0.0001	0.0080	0.2615	0.4074
송원산업	0.0064	0.8515	0.0038	0.0043		0.7826
세방전지	0.0044	1.1842	-0.0046	0.0227	1.3150	1.4778
한솔테크닉스	-0.0001	1.2430	0.0093	-0.0008	0.9123	1.3189
효성	0.0001	0.9875	0.0107	0.0034	0.5725	1.1583
외환은행	-0.0039	0.6577	0.0053	-0.0104	0.3949	0.6104
롯데제과	0.0010	0.3596	0.0073	-0.0111	0.2613	0.1683
삼광유리	0.0029	1.3141	-0.0127	0.0204	1.6925	1.5267
빙그레	0.0024	0.3940	-0.0037	0.0063	0.5703	0.4179
대구은행	-0.0006	0.8513	0.0165	-0.0204	0.4452	0.6052
롯데칠성	-0.0007	0.7262	-0.0057	0.0147	0.7418	1.0004
현대차	0.0052	0.9440	0.0049	0.0010	0.9987	0.8530
POSCO	-0.0026	1.1768	-0.0222	0.0033	1.8194	1.1106

삼진제약	-0.0029	0.8771	-0.0094	0.0167	0.9034	1.2229
삼영전자	-0.0002	1.0016	-0.0017	0.0061	0.9869	1.1198
삼성전자	0.0003	0.9724	-0.0080	-0.0048	1.3206	0.7876
우리투자증권	-0.0015	0.9534	0.0175	-0.0151	0.4173	0.8511
SK케미칼	0.0003	1.1020	-0.0097	0.0128	1.3321	1.2644
LS	0.0000	1.0771	0.0026	0.0020	0.9630	1.1442
녹십자	0.0029	0.3177	0.0116	-0.0006	0.0415	0.3291
GS건설	-0.0027	1.5122	-0.0042	-0.0157	1.7034	1.2265
카프로	0.0045	1.1631	0.0315	0.0203	0.0308	1.7514
삼성SDI	0.0047	0.9263	0.0034	0.0094	0.9252	1.0113
대한유화	0.0056	1.1476	0.0289	-0.0065	0.4392	1.1187
대우증권	-0.0015	1.3429	0.0088	-0.0065	1.0240	1.3387
오뚜기	-0.0018	0.9344	-0.0176	0.0217	1.2559	1.2702
동아타이어	-0.0009	0.3675	0.0057	-0.0082	0.2058	0.2793
일양약품	-0.0088	1.4391	-0.0188	0.0049	1.6562	1.6272
웅진케미칼	0.0009	0.9581	0.0067	0.0260	0.4871	1.5357
대덕전자	0.0044	1.0369	0.0100	0.0019	0.8601	1.0388
율촌화학	0.0006	0.7642	-0.0149	0.0145	1.1726	0.9066
한미홀딩스	-0.0077	0.6601	-0.0192	0.0129	0.8577	0.9776
삼성전기	0.0041	0.7684	0.0043	-0.0059	0.8666	0.5626
무림페이퍼	-0.0038	0.7504	-0.0066	-0.0005	0.8154	0.7925
광동제약	-0.0033	0.8381	0.0003	0.0010	0.6654	0.9611
현대중공업	0.0000	1.6954	-0.0015	0.0004	1.7424	1.6901
무림P&P	0.0002	0.9704	0.0066	0.0119	0.6186	1.2750
모토닉	0.0001	0.5510	0.0055	-0.0031	0.3943	0.5347
한화케미칼	0.0073	1.1030	0.0186	-0.0097	0.8730	0.8595
OCI	0.0006	1.2534	0.0070	0.0042	0.9834	1.3917
LS산전	0.0023	0.6485	0.0162	-0.0076	0.2553	0.5750
고려아연	0.0048	1.3057	-0.0058	0.0113	1.6161	1.3403
삼성중공업	-0.0010	1.6026	-0.0029	0.0134	1.5180	1.8854
현대하이스코	0.0073	1.3160	0.0099	0.0208	1.0795	1.6233
현대미포조선	-0.0036	1.6704	-0.0027	-0.0031	1.6308	1.6899
S-Oil	0.0040	0.8226	0.0003	0.0027	0.9688	0.7600
LG이노텍	0.0056	0.4501	0.0149	0.0012	0.1523	0.4597
호남석유	0.0082	1.4185	0.0113	0.0064	1.3244	1.4113
현대상선	-0.0030	0.6963	0.0027	-0.0104	0.5691	0.5976
금호석유	0.0085	1.7073	0.0297	0.0018	1.0182	1.7705
SKC	0.0063	0.9327	0.0130	0.0208	0.5408	1.2990
STX	-0.0079	1.5148	0.0068	-0.0025	0.9327	1.7680
현대모비스	0.0075	0.7642	0.0172	0.0049	0.4455	0.8026
삼성테크윈	0.0007	0.9314	-0.0025	-0.0048	1.1040	0.7859
현대산업	-0.0066	1.2966	-0.0233	-0.0236	2.0748	0.7809
에스원	-0.0016	0.4196	0.0096	0.0054	-0.0567	0.6743

동원시스템즈	-0.0054	1.3086	0.0002	0.0077	0.9698	1.6348
유니드	0.0031	0.7391	0.0026	0.0253	0.5218	1.1967
대경기계	-0.0040	1.2430	0.0188	-0.0071	0.4601	1.3971
한국전력	-0.0020	0.9150	-0.0147	0.0105	1.2383	1.0535
삼성증권	-0.0003	1.0417	0.0064	-0.0188	0.9959	0.7211
동부제철	-0.0035	1.3564	-0.0090	0.0307	1.1941	2.0162
퍼시스	-0.0001	0.4175	-0.0007	-0.0004	0.4392	0.4061
SK텔레콤	-0.0017	0.1683	-0.0024	0.0034	0.1403	0.2681
현대엘리베이	-0.0008	0.6772	0.0083	-0.0032	0.3774	0.7132
한국카본	-0.0014	1.1620	-0.0025	0.0075	1.1096	1.3352
한라공조	0.0036	0.8268	0.0039	0.0047	0.8078	0.8513
대교	-0.0024	0.4985	0.0137	-0.0092	-0.0093	0.5128
한섬	0.0037	0.6358	0.0192	0.0102	0.0119	0.9201
웅진코웨이	0.0005	0.5096	-0.0013	-0.0019	0.5967	0.4432
롯데쇼핑	0.0018	1.1649	-0.0084	0.0143	1.3984	1.3280
기업은행	-0.0015	1.4842	0.0045	-0.0023	1.2792	1.5245
KPX케미칼	-0.0002	0.3527	0.0117	0.0129	-0.2077	0.7376
한국단자	-0.0022	1.0546	0.0034	0.0148	0.6759	1.4612
KPX화인케미칼	-0.0043	1.3391	-0.0101	0.0024	1.4784	1.4223
남해화학	-0.0061	1.1035	-0.0146	0.0106	1.2318	1.3704
삼성엔지니어링	0.0045	1.1880	0.0058	0.0063	1.1217	1.2394
STX팬오션	-0.0095	1.5845	-0.0026	0.0077	1.1595	2.0075
신도리코	-0.0019	0.5541	-0.0028	0.0054	0.5097	0.6974
삼성카드	-0.0009	1.0610	-0.0036	0.0017	1.1289	1.0906
제일기획	0.0019	0.4272	0.0114	0.0083	0.0186	0.6531
KT	-0.0018	0.5355	-0.0030	0.0148	0.4052	0.8682
LG유플러스	-0.0033	0.2457	0.0043	-0.0122	0.0668	0.1337
삼성생명	-0.0056	0.5704	-0.0021	-0.0016	0.3460	0.7574
KT&G	-0.0024	0.3462	-0.0071	0.0027	0.4615	0.4076
두산중공업	-0.0047	1.4550	-0.0096	0.0012	1.5715	1.5287
SBS	-0.0035	0.2500	0.0129	0.0017	-0.3941	0.5172
LG디스플레이	-0.0022	1.2486	-0.0109	0.0042	1.4954	1.2973
강원랜드	-0.0004	1.0278	-0.0062	0.0069	1.1559	1.1255
NHN	-0.0008	0.8279	-0.0122	-0.0047	1.2752	0.6379
한국가스공사	-0.0066	1.0496	-0.0188	0.0227	1.1775	1.5436
엔씨소프트	0.0101	0.7121	-0.0035	0.0284	1.0067	0.9626
미래에셋증권 대우조선해양	-0.0084	1.4873	-0.0093	-0.0084	1.5191	1.4788
내우소선해당 두산인프라코어	-0.0013	1.5287	0.0248 0.0080	0.0022	0.5537	1.8537
구산인프라코어 대우건설	-0.0032	1.5521	0.0080	-0.0053	1.1730	1.6158 1.1421
대우인터내셔널	-0.0045 - 0.0013	1.2871	0.0060	-0.0163 0.0171	1.0350 0.6281	
성진지오텍	0.0013	1.2 691 1.1743	-0.0078	0.0171	1.5192	1.7718 1.0996
LG생활건강	0.0021	0.4588	-0.0078		0.5790	0.5576
LU경찰인경	0.0041	0.4588	-0.0013	0.0114	0.5790	0.5576

LG화학	0.0067	1.2221	0.0047	0.0005	1.3587	1.0748
우리금융	-0.0040	1.4515	0.0090	-0.0108	1.0582	1.4332
신한지주	-0.0007	0.6494	0.0193	-0.0214	0.1469	0.4125
케이피케미칼	0.0067	1.3757	0.0115	0.0146	1.1217	1.5852
S&T대우	-0.0036	1.6545	-0.0074	0.0179	1.5680	2.0637
LG전자	-0.0029	1.0290	-0.0127	0.0028	1.3184	1.0546
STX조선해양	-0.0031	1.3330	0.0117	-0.0012	0.7795	1.5161
LG생명과학	-0.0030	0.9790	-0.0014	0.0126	0.7598	1.3184
휴켐스	0.0030	0.9589	-0.0013	0.0145	0.9914	1.1571
대웅제약	-0.0053	0.5406	0.0011	-0.0077	0.3343	0.5533
현대백화점	0.0028	0.8856	0.0003	0.0005	0.9979	0.8150
한국금융지주	-0.0033	1.2542	0.0114	-0.0321	1.0310	0.7946
STX엔진	-0.0054	1.5918	0.0054	-0.0005	1.1559	1.7951
GS	0.0041	0.9395	0.0029	-0.0129	1.1604	0.5746
대한제강	-0.0061	1.2101	-0.0205	0.0017	1.6441	1.2344
엔케이	-0.0068	1.3275	-0.0068	0.0123	1.1310	1.7225
현대글로비스	0.0043	0.8333	0.0048	0.0070	0.7883	0.8940
하나금융지주	-0.0021	1.1026	0.0113	-0.0355	0.9728	0.5365
아모레퍼시픽	0.0038	0.2608	0.0085	0.0092	0.0375	0.4164
세원셀론텍	-0.0059	1.4129	-0.0184	0.0150	1.6392	1.7294
LG패션	0.0010	0.6617	0.0058	0.0057	0.4408	0.8050
후성	0.0043	1.4247	0.0090	0.0120	1.1757	1.6302
SK이노베이션	0.0030	1.4642	-0.0030	-0.0002	1.7143	1.3381
한진중공업	-0.0034	1.4905	0.0037	0.0067	1.1313	1.7672
CJ제일제당	-0.0015	0.9760	-0.0130	0.0239	1.1229	1.3924
S&TC	-0.0041	0.7943	-0.0085	-0.0073	0.9881	0.6838
풍산	0.0053	1.2673	0.0123	0.0236	0.8356	1.7002
하이트맥주	-0.0029	0.2005	0.0067	-0.0041	-0.1395	0.2774
일진전기	-0.0018	1.4155	-0.0135	0.0209	1.6212	1.7417
한국철강	-0.0041	0.9227	0.0017	-0.0038	0.7086	0.9905
KB금융	-0.0021	0.8238	0.0168	-0.0231	0.3250	0.6266
LG하우시스	-0.0067	0.6760	-0.0041	-0.0239	0.6578	0.0844
BS금융지주	-0.0185	0.7716	-0.0515	0.0697	2.3768	6.1961

《표 20》회귀분석을 통한 체계적 위험 추정량(흰색: $\beta_1=\beta_2$, 회색: $\beta_1 \neq \beta_2$)

단일지수모형 확장지수모형의 적합도 비교

종목명	단일형	확장형	종목명	단일형	확장형
동화약품	0.2865	0.2925	삼성전기	0.274	0.2753
경방	0.3316	0.3758	무림페이퍼	0.3123	0.3034
삼양사	0.2571	0.2769	광동제약	0.4079	0.4048
유한양행	0.1293	0.1251	현대중공업	0.6511	0.6445
대한통운	0.0956	0.0989	무림P&P	0.3106	0.3177
하이트홀딩스	0.2452	0.2448	모토닉	0.1767	0.1659

두산	0.3616	0.3515	한화케미칼	0.3195	0.3327
대림산업	0.6444	0.6437	OCI	0.4139	0.4087
일동제약	0.2702	0.2791	LS산전	0.2036	0.2204
한국타이어	0.265	0.2667	고려아연	0.4455	0.4469
기아차	0.375	0.376	삼성중공업	0.6333	0.6369
조선내화	0.2384	0.2584	현대하이스코	0.5076	0.5196
동아제약	0.17	0.2051	현대미포조선	0.5599	0.5517
하이닉스	0.5457	0.5667	S-Oil	0.4201	0.4176
영풍	0.2191	0.2558	LG이노텍	0.0481	0.0429
한진해운홀딩스	0.6232	0.6224	호남석유	0.5408	0.5396
현대건설	0.4814	0.4852	현대상선	0.1601	0.15
삼성화재	0.4509	0.446	금호석유	0.4182	0.4319
삼성물산	0.6632	0.6604	SKC	0.2751	0.2952
한화	0.5507	0.5441	STX	0.4303	0.4408
동부하이텍	0.3357	0.3322	현대모비스	0.2384	0.2488
СЈ	0.4847	0.4901	삼성테크윈	0.2396	0.229
JW중외제약	0.2679	0.2869	현대산업	0.3563	0.3942
LG상사	0.4022	0.4575	에스원	0.1183	0.1522
대한제분	0.4375	0.4926	동원시스템즈	0.4716	0.4813
금호전기	0.4318	0.4214	유니드	0.3017	0.3533
동국제강	0.6487	0.6504	대경기계	0.2796	0.2971
제일모직	0.3242	0.3293	한국전력	0.4756	0.4995
세아베스틸	0.3438	0.3507	삼성증권	0.5727	0.6007
대한전선	0.3372	0.3427	동부제철	0.4478	0.4965
동양메이저	0.4108	0.4173	퍼시스	0.1221	0.1051
종근당	0.3216	0.3329	SK텔레콤	0.0498	0.045
대상	0.4851	0.4981	현대엘리베이	0.0992	0.0874
SK네트웍스	0.3783	0.3833	한국카본	0.3978	0.3909
대한제당	0.0757	0.0775	한라공조	0.2795	0.2691
오리온	0.15	0.1539	대교	0.1325	0.1605
KISCO홀딩스	0.4003	0.394	한섬	0.2211	0.2744
코오롱	0.34	0.3469	웅진코웨이	0.2267	0.2147
아세아시멘트	0.4573	0.499	롯데쇼핑	0.4985	0.5065
고려제강	0.3799	0.3991	기업은행	0.6183	0.6141
롯데삼강	0.318	0.3491	KPX케미칼	0.0686	0.1219
한국제지	0.3662	0.3805	한국단자	0.3729	0.3936
넥센타이어	0.3096	0.3141	KPX화인케미칼	0.3785	0.3703
KCC	0.5025	0.507	남해화학	0.3267	0.3331
한독약품	0.0446	0.04	삼성엔지니어링	0.4385	0.4315
아모레G	0.2728	0.272	STX팬오션	0.5712	0.5917
부광약품	0.2242	0.2178	신도리코	0.2465	0.2418
세아제강	0.4897	0.4833	삼성카드	0.4656	0.4563
일성신약	0.2022	0.2896	제일기획	0.104	0.1204

알앤엘바이오	0.0123	0.0426	KT	0.2494	0.2879
태광산업	0.2499	0.2863	LG유플러스	0.0447	0.0514
한일시멘트	0.3813	0.3968	삼성생명	0.1667	0.1352
쌍용양회	0.2513	0.2504	KT&G	0.1504	0.1485
현대증권	0.6114	0.6073	두산중공업	0.5376	0.5322
한진중공업홀딩스	0.582	0.588	SBS	0.0238	0.0648
대한항공	0.4524	0.4571	LG디스플레이	0.5565	0.5567
영진약품	0.3914	0.3951	강원랜드	0.4036	0.3977
LG	0.579	0.5726	NHN	0.2995	0.3113
S&T중공업	0.257	0.3075	한국가스공사	0.3924	0.4478
SK	0.6525	0.6505	엔씨소프트	0.1569	0.1881
유니온스틸	0.3711	0.3954	미래에셋증권	0.6473	0.6442
남양유업	0.4588	0.4601	대우조선해양	0.4499	0.4879
삼양제넥스	0.0948	0.0849	두산인프라코어	0.5099	0.5091
삼성정밀화학	0.3486	0.3411	대우건설	0.4452	0.4477
현대제철	0.649	0.6524	대우인터내셔널	0.4212	0.4573
대덕GDS	0.2846	0.3447	성진지오텍	0.2566	0.249
한솔제지	0.4286	0.423	LG생활건강	0.1536	0.1562
신세계	0.4839	0.4857	LG화학	0.5229	0.5244
농심	0.0858	0.0799	우리금융	0.4452	0.4459
송원산업	0.2252	0.2195	신한지주	0.2266	0.2951
세방전지	0.3919	0.403	케이피케미칼	0.4411	0.4423
한솔테크닉스	0.3544	0.3488	S&T대우	0.4338	0.4379
효성	0.2404	0.2379	LG전자	0.4146	0.4153
외환은행	0.1538	0.1495	STX조선해양	0.3569	0.3617
롯데제과	0.1413	0.1613	LG생명과학	0.3691	0.3815
삼광유리	0.4777	0.4964	휴켐스	0.3373	0.3364
빙그레	0.1325	0.1294	대웅제약	0.1272	0.1222
대구은행	0.2647	0.2954	현대백화점	0.3737	0.366
롯데칠성	0.3086	0.3233	한국금융지주	0.4513	0.4927
현대차	0.3596	0.3549	STX엔진	0.4297	0.4293
POSCO	0.5549	0.5943	GS	0.3444	0.3633
삼진제약	0.2445	0.2553	대한제강	0.3996	0.408
삼영전자	0.4161	0.4081	엔케이	0.2816	0.2835
삼성전자	0.5973	0.6183	현대글로비스	0.2397	0.2299
우리투자증권	0.3267	0.3552	하나금융지주	0.2899	0.3308
SK케미칼	0.3416	0.3417	아모레퍼시픽	0.0497	0.0551
LS	0.3968	0.3866	세원셀론텍	0.3741	0.3827
녹십자	0.0425	0.0379	LG패션	0.2392	0.2347
GS건설	0.5322	0.5335	후성	0.4354	0.4328
카프로	0.2714	0.3411	SK이노베이션	0.6018	0.6007
삼성SDI	0.352	0.3464	한진중공업	0.4819	0.4842
대한유화	0.2221	0.2389	CJ제일제당	0.3401	0.3753

대우증권	0.5629	0.5645	S&TC	0.1995	0.1899
오뚜기	0.3834	0.4321	풍산	0.387	0.4082
동아타이어	0.1027	0.0995	하이트맥주	0.0219	0.0277
일양약품	0.3127	0.3109	일진전기	0.3554	0.361
웅진케미칼	0.2916	0.3382	한국철강	0.305	0.2946
대덕전자	0.3061	0.2989	KB금융	0.2424	0.2839
율촌화학	0.3556	0.3948	LG하우시스	0.0677	0.0626
한미홀딩스	0.1552	0.1837	BS금융지주	-0.1498	-0.0557

《표 21》 두 모형의 수정결정계수(흰색: $\overline{R_{\rm tlel}^2} \geq \overline{R_{lpha lpha}^2}$, 회색: $\overline{R_{
m tlel}^2} < \overline{R_{lpha lpha}^2}$)

Summary

Introduction

Markowitz(1952) 이후 재무 및 금융 분야에서 가장 중요하게 다뤄지는 주제 중 하나는 현대 포트폴리오 이론, 즉 분산 투자 효과와 개별 증권의 위험 측정을 통한 자본 자산의 가격 결정이다. Sharpe(1964) 등에 의해 개발된 CAPM(Capital Asset Pricing Model)은 자산의 위험에 따라 기대수익률이 어떻게 결정되는지를 보여주는 균형이론으로서 모든 투자자들이 자산의 속성에 대해 동질적인 기대(Homogeneous Expectation)를 갖고 있다면, 자산의 기대수익률은 리스크 프리미엄과 체계적 위험으로 표현될 수 있으며, 개별 자산의 체계적 위험은 시장포트폴리오의 분산-공분산 행렬(Variance-Covariance Matrix) 혹은 단일지수모형(Single Index Model)을 통해계산될 수 있음을 증명했다. 이렇게 측정된 체계적 위험은 선택된 시장요인의 변화의 방향이 양이든 음이든 관계없이 이에 대한 개별 자산의 반응은 언제나 일정하다고 가정하고 있다.

그러나 Oil Crisis, Black Monday, Sub-Prime Mortgage 등의 일련의 사례를 통해 금융시장의 변화는 언제나 대칭적이지 않고, 정규분포에 비해 꼬리가 두꺼운 분포 (fat-tail distribution)처럼 비정상적이라는 주장을 뒷받침하는 근거가 제시되고 있으며, 이에 대한 논의가 진행되고 있다. 시장의 이러한 특성 때문에 시장 변화에 대한 개별 자산의 체계적 위험 측정은 입체적인 관점에 따라 진행되어야 한다.

Literature Review

금융시계열자료의 비대칭성은 주로 ARCH류 모형에서 다뤄져 왔다. Nelson(1991)은 Bollerslev(1986)의 GARCH 모형을 확장시켜 EGARCH(Exponential Generalized ARCH)를 제시하였다. 또 과거 관측치가 미래 변동성에 미치는 비대칭성을 반영한 TGARCH(Threshold Generalized ARCH)가 Glosten·Jagannathan·Runkle(1993)과 Rabemananjara·Zakoian(1994) 등에 의해 만들어졌다. 국내에서는 홍선영·최성미·박진아·백지선·황선영(2009), 홍정효·문규현(2010), 유병철·전선애(2011) 등에 의해 이에 대한 연구가 계속되고 있다.

Markowitz(1952)는 효율적 시장 가설을 바탕으로 자산 선택 과정과 체계적·비체계적 위험의 분류를 보였고, Variance-Covariance Matrix를 통해 체계적 위험의 측정 가능성을 보였다. Sharpe(1964), Lintner(1965), Mossin(1966) 등이 이를 발전시켜 단일지수모형, 특히 개별주식의 체계적 위험을 표준화한 베타를 제시했고, 이는 현재까지 금융자산의 속성을 나타내는 척도로 사용되고 있으며, Nai-Fu Chen & Richard Roll & Stephen A. Ross(1986), Eugene F. Fama & Kenneth R. French(1996), Hui Guo & Robert F. Whitelaw(2006) 등 연구가 진행되고 있다.

Econometric Models & Data Description

본 논문은 2008년 5월부터 2010년 4월까지 현재 KOSPI200에 편입되어 있는 주식 200종목의 체계적 위험을 단일지수모형 및 다중회귀분석 방법을 통한 확장단일지수모형을 통해 살펴보았다. 시계열자료는 KOSPI 지수와 개별주식 수정주가는 각각인포맥스와 에프앤가이드를 통해 추출하였다. ADF단위근검정을 통해 KOSPI 지수및 개별주식 200종목의 1차 차분된 시계열자료의 안정성을 확인하였고, 199종목에서 안정석이 확보되었다. 이에 따라 다중회귀분석의 형태로 확장된 단일지수모형을통해 시장수익률에 따라 개별주식의 체계적 위험이 비대칭성을 띄는지 결합가설검정을 통해 확인하였다.

Main Results & Conclusion

연구 결과 개별주식 200종목 중 54종목(27%)에서 시장수익률의 방향성에 따라 체계적 위험이 같다는 귀무가설을 기각해 시장의 상승과 하락에 따라 개별주식에 미치는 민감성이 서로 다른 것을 발견하였다. 또한 99% 이상의 확률로 귀무가설을 기각한 사례가 54종목 중 26종목(48.15%), 95% 이상이 54종목 중 16종목(29.63%)에 달해 개별주식이 시장수익률에 대한 체계적 위험의 비대칭성을 갖고 있는 경우, 그특성이 두드러지게 나타날 수 있음을 확인하였다.

또 199종목에서 두 모형의 적합도(goodness of fit)를 수정결정계수(Adjusted R^2)를 Paired t-Test를 통해 분석한 결과 단일지수모형의 수정결정계수 평균은 0.3386인 반면에 확장단일지수모형의 수정결정계수 평균은 0.3490이고, 확장단일지수모형의 적합도가 더 높았던 사례가 전체 중 123종목(61.81%)이며, t 통계량의 절대치가 임계치보다 큰 것으로 나타나 두 표본 사이에 차이가 없다는 귀무가설을 기각해 적합도 또한 확장단일지수모형이 단일지수모형에 우수함을 확인하였다.

이에 따라 개별주식에서 시장변동에 대한 비대칭적 반응 양상이 나타났고, 그중 절 반 정도가 그 특성이 뚜렷하게 나타나는 것으로 밝혀져 투자판단에 있어 체계적 위 험을 고려할 때, 기존의 단일지수모형을 기반으로 하는 베타 측정 방법으로는 파악 할 수 없는 개별주식의 이질적 특성이 존재하고 있음을 실증적으로 제시하였다.

그러나 CAPM을 기반으로 하는 모든 모형이 직면하는 시장의 효율성에 대한 근본적인 논의, 표본 선택에 있어서 시간 및 공간적인 편의 등 변수 선택의 다양성이 부족했다는 점 등이 본 논문의 한계로 지적될 수 있을 것이다.