

d = L0

$$F = k8$$

$$-xin\theta = \frac{d}{L} \approx \theta = k(x, y)$$

if the determinant of A= \$\psi\$ then there are zero or infinite # of norms to this if | R = 0 and {b?={o}, then there are \$\infty\$ # notins

$$[A]\{x\} = \{b\} = 0$$
 (homogeneous be of the 0)

{ x} = 0 = 7 the trivial not n ... since there is one now then the theorem where means that we have infinite

1b mystem ex. =
$$5 \times = 2$$

[A]

 (4)
 (5)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)

determinant is 5 then one soln, X=0

$$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{cases} x_1 \\ x_2 \end{cases} = \begin{cases} 0 \\ 0 \end{cases} \qquad = \rangle \qquad \begin{cases} x_1 = -2 \times 2 \\ -4 \times 1 - 4 \times 2 = 0 \end{cases}$$

$$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{cases} -2 \\ 1 \end{cases} = \begin{cases} 0 \\ 0 \end{cases}$$

now pretend we multiply both mass by 5 ... The be correct

any linear homogeneous system, if $\{x\}$ is a solution then $\alpha\{x\}$ is also a solution

how does this apply to vibrations?

$$\left[\left[\kappa\right]-m_{s}\left[\omega\right]\right]\left\{ X\right\} =\left\{ 0\right\}$$

If we want multiple I then determinant of [[K]-w2[m]] must be zero

$$\{X\}=0$$
 for more which are to exact $|[K]-w^2[M]|=0$

polynomial of highest power (w2) =0

N=2 ()(
$$\omega^2$$
)² + ()(ω^2) + () = 0
N=3 ()(ω^2)³ + () ω^2)² + ()(ω^4) + () = 0

one often finds N values of w

roots () command in MATLAB allows us to find noots of polynomials