

planetmath.org

Math for the people, by the people.

symmetric random variable

Canonical name SymmetricRandomVariable

Date of creation 2013-03-22 16:25:45 Last modified on 2013-03-22 16:25:45

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 8

Author CWoo (3771)
Entry type Definition
Classification msc 60E99
Classification msc 60A99

Defines symmetric distribution function

Let (Ω, \mathcal{F}, P) be a probability space and X a real random variable defined on Ω . X is said to be *symmetric* if -X has the same distribution function as X. A distribution function $F : \mathbb{R} \to [0, 1]$ is said to be *symmetric* if it is the distribution function of a symmetric random variable.

Remark. By definition, if a random variable X is symmetric, then E[X] exists $(< \infty)$. Furthermore, E[X] = E[-X] = -E[X], so that E[X] = 0. Furthermore, let F be the distribution function of X. If F is continuous at $x \in \mathbb{R}$, then

$$F(-x) = P(X \le -x) = P(-X \le -x) = P(X \ge x) = 1 - P(X \le x) = 1 - F(x),$$

so that F(x) + F(-x) = 1. This also shows that if X has a density function f(x), then f(x) = f(-x).

There are many examples of symmetric random variables, and the most common one being the normal random variables centered at 0. For any random variable X, then the difference ΔX of two independent random variables, identically distributed as X is symmetric.