NYC Taxi Fare Prediction

Group 1

Guilherme, Alex, Rakshit, Seonhye, Michael

Agenda

- 1. Problem Background
- 2. Preprocessing
- 3. EDA
- 4. Models
- 5. GPU Acceleration
- 6. Results
- 7. Conclusion
- 8. Future Work
- 9. Utilized Class Topics

Problem Background

Target:

Predict fare of a taxi ride

• Features:

- O Pickup time and coordinates
- o Drop Off coordinates
- Passenger count

• Historical Results:

o \$3-5 MAE using just ride distance

Preprocessing

- Drop rides that seem faulty/fake
 - O O or more than 6 passengers
 - O Below \$3 and above \$150
 - O Low distance (< 1 km) with excessively high fares (>\$40)
- Compute geographical distances
- Label pick-up and drop-off areas
 - Then one-hot encoded
- Dropped unused columns

Models

- Linear Regression
 - Scikit-Learn and CuML versions
- Random Forest
 - Scikit-Learn and CuML versions
- XGBoost

- Model Objective: Minimize RMSE of Taxi Fare prediction
 - > RMSE penalizes larger errors
 - We report Mean Absolute Error (MAE) for human understanding

GPU Acceleration

- We used CuDF and CuML libraries, developed by NVIDIA for work on NVIDIA GPUs.
- CuDF is a GPU-accelerated dataframe library that is API-compatible with Pandas
 - Utilizes similar Pandas syntax with GPU acceleration
- <u>CuML</u> is a machine learning library of machine learning algorithms optimized for GPU acceleration
 - Designed to work seamlessly with CuDF
- File size and device memory constrained how much data we could utilize
 - O Required to use only 10% of given data to utilize **CuML**
 - Attempted PyTorch implementations failed entirely

Results

CPU; 1 million rows

CPU; 5 million rows

GPU; 5 million rows

CPU; full data (55mil)

Models	train_mae (\$)	test_mae (\$)	train_r2	test_r2	train_time (s)
linear_regression	1.99	2.37	0.7742	0.7798	6.95
random_forest	1.7	1.92	0.8361	0.8379	521.22
xgboost	1.56	1.89	0.8683	0.8433	121.71
linear_regression	1.99	2.36	0.7737	0.7793	30.51
random_forest	1.71	1.92	0.8326	0.8377	3028.52
xgboost	1.63	1.86	0.8491	0.8471	135.56
linear_regression	2.05	2.41	0.7412	0.7624	1.91
random_forest	1.71	1.92	0.8308	0.8377	462.58
xgboost	1.63	1.86	0.8497	0.8468	9.94
linear_regression	1.99	2.36	0.7731	0.779	268.63
random_forest	1.72	1.92	0.8301	0.8373	41023.48

1.85

0.8475

0.8481

1326.78

1.63

xgboost

Conclusions

- Best Model: XGBoost
 - Best MAEs and R^2 scores
 - Ran very efficiently compared to Random Forest
- Linear Model close performance, but faster
 - More suitable for tasks demanding speed
- GPU fastest training speed
 - Suitable for tensor-like data
 - Harder to get devices with required memory
- Best Test MAE: \$1.85
 - O Still large error for fair prediction, needs improvement
 - O Insignificant MAE difference between 5mil and full, significant speed difference

Future Work

- Utilize machines with more memory to use the full dataset
 - O Properly tune model with such hardware
- Parallelize the computation more with more apt machines
- Utilize Google Maps API to try GPS distances and traffic levels as features
 - Required funding for practical use
- More precise EDA and cleaning
 - Finely remove outliers that cannot exist
 - Like being below base-rate
 - Breakdown pick-up and drop-off locations more finely
 - Like how going to an airport entails additional fees beyond regular rates

Utilized Class Topics

- Shell
- Python Performance
- Optimization
- Parallel Programming
- Python for GPUs

ANY QUESTIONS?

