

ЛЕКТОР: РОМАН ИСАЧЕНКО СЕМИНАРИСТ: ПЕТР МОКРОВ

CTAPT KYPCA: 12.09.2022

Al Masters

О ПРЕПОДАВАТЕЛЯХ И КУРСЕ

РОМАН ИСАЧЕНКО, лектор

- Кандидат физико-математических наук, преподаватель МФТИ
- Старший разработчик в Yandex, Служба компьютерного зрения

ПЕТР МОКРОВ, семинарист

- **⊘** Выпускник МФТИ (2022)
- 🖆 Исследователь в Skoltech

КОРОТКО О КУРСЕ

Курс посвящен современным методам построения генеративных порождающих моделей. Рассматриваются следующие классы генеративных моделей:

- авторегрессионные модели,
- модели скрытых переменных,
- модели нормализационных потоков,
- состязательные модели,
- диффузионные модели.

Особое внимание уделяется свойствам различных классов генеративных моделей, их взаимосвязям, теоретическим предпосылкам и методам оценивания качества.

Целью курса является знакомство слушателя с широко применяемыми продвинутыми методами глубокого обучения.

Курс сопровождается практическими заданиями, позволяющими на практике понять принципы устройства рассматриваемых моделей.

Al Masters

ГЕНЕРАТИВНЫЕ МОДЕЛИ

he was silent for a long moment. he was silent for a moment . it was quiet for a moment . it was dark and cold there was a pause . it was my turn.

Text analysis

Active Learning

Reinforcement Learning

Image analysis

Generated

AND

Graph analysis

Medical data

Audio analysis

СТРУКТУРА КУРСА

14 лекций

14 семинаров

6 домашних заданий

экзамен

КАК ФОРМИРУЕТСЯ ОЦЕНКА?

6 дз по 13 баллов: **78 БАЛЛОВ**

устный экзамен: 26 БАЛЛОВ

максимум за курс: **104 БАЛЛА** Финальная оценка выставляется по формуле:

floor(relu(#баллов/8 - 2))

Nº	ТЕМА ЛЕКЦИИ
1	Логистика. Введение в генеративное моделирование. Постановка задачи. Минимизация дивергенций. Авторегрессионное моделирование.
2	Авторегрессионные модели (WaveNet, PixelCNN, PixelCNN++). Основы байесовского вывода. Модели скрытых переменных.
3	Вариационная нижняя оценка (ELBO). EM-алгоритм, амортизированный вывод. Градиент ELBO, репараметризация.
4	Вариационный автокодировщик (VAE). Коллапс апостериорного распределения VAE. Техники ослабления декодера. Выборка по значимости для ELBO.
5	Модели нормализующих потоков. Прямая и обратная KL дивергенции. Линейные потоки (Glow). Остаточные потоки (Planar/Sylvester flows).
6	Авторегрессионные потоки (MAF/IAF/ReaINVP).
7	Равномерная и вариационная деквантизации. Теорема об операции над ELBO. Оптимальное априорное распределение в VAE. Потоки в апостериорном и априорном распределении VAE.
8	Задача распутывания представлений (beta-VAE, DIP-VAE). Неявные генеративные модели без оценки правдоподобия. Модель генеративных состязательных сетей (GAN).
9	Проблемы обучения GAN моделей (затухающие градиенты, коллапс мод). КL дивергенция vs JS дивергенция. VAE с неявным энкодером. Топологические особенности обучения GAN моделей. Расстояние Вассерштейна.
10	Дуальность Канторовича-Рубинштейна. Wasserstein GAN. GAN с градиентным штрафом. GAN со спектральной нормализацией. Вариационная минимизация f-дивергенций.
11	Оценивание качества неявных моделей (Inception score, FID, Precision-Recall, truncation trick). Разбор конкретных GAN моделей (Self-attention GAN, BigGAN, Progressive Growing GAN, StyleGAN).
12	VAE с дискретным скрытым пространством. Векторная квантизация, сквозной градиент (VQ-VAE). Гумбель-софтмакс трюк (DALL-E). Нейронные дифференциальные уравнения.
13	Непрерывные во времени нормализационные потоки. Несмещенная оценка следа матрицы. Уравнение Колмогорова-Фоккера-Планка и динамика Ланжевена.
14	Модели оценки score функции (NCSM). Модель диффузионного процесса. Диффузионная генеративная модель (DDPM).

ЧТО НУЖНО ЗНАТЬ?

- Теория вероятностей + Статистика
- Машинное обучение + Основы глубокого обучения
- Python + Основы одного из DL фреймворков (pytorch/tensorflow/etc)

КЛЮЧЕВЫЕ МОМЕНТЫ

- Курс математически нагружен.
- Курс постоянно развивается.
- Любой фидбек, особенно негативный, приветствуется!

REPO:

https://github.com/r-isachenko/2022-2023-DGM-AIMasters-course

РОМАН ИСАЧЕНКО

ДО ВСТРЕЧИ НА КУРСЕ!