DA 675 Fuzzy Systems and Applications

Nishi Chaudhary(246150001)
Under the guidance of
Dr. Teena Sharma

TABLE OF CONTENT

- > INTRODUCTION
- > CNN ARCHITECTURE
- > WHY TO USE POOLING LAYERS
- > FUZZY POOLING
- > DATASET
- MODEL EVALUATION
- > CONCLUSION
- > REFERENCES

INTRODUCTION

- CNNs utilize convolution and pooling for feature extraction and dimension reduction in image classification.
- Traditional pooling methods overlook uncertainty that can propagate through layers.
- A novel fuzzy pooling approach, based on type-1 fuzzy sets, addresses <u>local imprecision</u> in feature maps.
- Fuzzy pooling includes <u>fuzzification</u>, <u>aggregation</u>, and <u>defuzzification</u> steps, acting as a drop-in replacement for standard pooling layers.

CNN ARCHITECTURE

Why to use Pooling Layers?

- Pooling layers are used to reduce the dimensions of the feature maps. It reduces the number of parameters to learn, and the amount of computation performed in the network.
- The pooling layer summarizes the features present in a region of the feature map generated by a convolution layer.

Max Pooling

 Max pooling is a pooling operation that selects the maximum element from the region of the feature map covered by the filter.

	3	7	2	2
	1	6	4	9
Fil St	4	2	5	8
	6	2	1	3

$$f_{\max}(\mathbf{z}) = \max_{m} (z_m)$$

Average Pooling

Average pooling computes the average of the elements present in the region of feature map covered by the filter.

2	2	7	3
9	4	6	1
8	5	2	4
3	1	2	6

$$f_{ ext{avg}}(\mathbf{z}) = rac{1}{M} \sum_{m=1}^{M} z_m$$

Fuzzy Pooling

- Fuzzification: Converts numerical values in a pooling region into fuzzy values based on defined membership functions.
- Aggregation: Combines the fuzzy values in each pooling window, often using a mathematical operation like a fuzzy algebraic sum.
- Defuzzification: Produces a single representative value for the pooling region, based on the aggregated fuzzy values.

Fuzzy Pooling

MNIST DATASET

- MNIST dataset consists of 70.000 grayscale 28×28 pixels in size images of handwritten digits.
- It is split into two subsets from which 60.000 are used for training and 10.000 for testing.

```
000000000000000
 1 1 1 / 1 1 / 7 1 1 / / /
2222222222222
444444444444
555555555555555
66666666666666
ファチ17ァフフフフフフフ)フ
9999999999
```

Fig. 2. Sample images of the 10 classes from MNIST [32] dataset

CIFAR- 10 DATASET

- CIFAR- 10 dataset is consisting of 60.000
 natural RGB images of 32×32 pixels in size from 10 different classes.
- It is split into two subsets from which, 50.000 are used for training and 10.000 for testing.
- The dataset contains 6.000 images per class.

Fig. 4. Sample images from the 10 classes of CIFAR-10 [34] dataset

MODEL EVALUATION

COMPARATIVE ACCURACY RESULTS OF THE PROPOSED TYPE-1 FUZZY POOLING METHODOLOGY ON MNIST DATASET

Methodology	Loss	Accuracy
Max Pooling	0.0430	98.12%
Average Pooling	0.0521	98.26%
RegP	0.0700	97.96%
Proposed	0.0681	98.85%

Max Pooling

Average pooling

Fuzzy Pooling

MODEL EVALUATION

COMPARATIVE ACCURACY RESULTS OF THE PROPOSED TYPE-1 FUZZY POOLING METHODOLOGY ON CIFAR-10 DATASET

Methodology	Loss	Accuracy
Max Pooling	0.0530	75.03%
Average Pooling	0.0621	62.94%
RegP	0.0534	58.52%
Proposed	0.0581	78.14%

CONCLUSION

- A novel fuzzy pooling operation for CNNs is introduced, addressing feature uncertainty.
- Experiments demonstrate significant improvements in CNN classification performance over traditional pooling methods.
- Fuzzy pooling can replace standard pooling layers, enhancing generalization and retaining important features.
- Visual and statistical validation confirm improved feature preservation.

REFERENCES

- H.-J. Zimmermann, *Fuzzy set theory—and its applications*. Springer Science & Business Media, 2011.
- K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
- Mixed fuzzy pooling in convolutional neural networks for image classification.
- Fuzzy based Pooling in Convolutional Neural Network for Image Classification.

THANK YOU