Decompositions with Orthogonality w.r.t. Arbitrary Inner Product

We want to replace the condition $A^*A = I$ with $A^*GA = I$ where $G = LL^*$ is a hermitian positive definite matrix representing an arbitrary inner product.

Some other decompositions not listed are done in similar ways

QR Decomposition

Let $Q' := (L^*)^{-1}Q$ and R' = R and decompose $L^*A = QR$

$$Q'R' = (L^*)^{-1}L^*QR = A$$

$$Q'^*GQ' = ((L^*)^{-1}Q)^*G(L^*)^{-1}Q = Q^*L^{-1}G(L^*)^{-1}Q$$
$$= Q^*L^{-1}LL^*(L^*)^{-1}Q = I$$

Credit to 21-242 (this was inspired by and solves a homework problem)

SVD

Let $U' := (L^*)^{-1}U$ and $V' := (L^*)^{-1}V$ and decompose $L^*AL = U\Sigma V^*$

$$U'\Sigma'{V'}^* = (L^*)^{-1}U\Sigma V^*L^{-1} = (L^*)^{-1}L^*ALL^{-1} = A$$

Same as with the QR

$${U^\prime}^*GU^\prime=I$$

$$V'^*GV' = I$$

EVD

We only consider $A^* = A$

I don't think there is any solution C_0 to the problem of this form:

$$\begin{split} Q' &:= C_0 Q \\ C_0^{-1} A C_0 &= C_0^* A {(C_0^*)}^{-1} = Q \Lambda Q^{-1} \\ Q' \Lambda' {Q'}^{-1} &= C_0 Q \Lambda Q^{-1} C_0^{-1} = A \\ Q'^* G Q &= Q^* C_0^* G C_0 Q = I \end{split}$$

I can't see any way for hermiticity of $C_0^{-1}AC_0$ to hold unless C_0 is hermitian, in which case

$$Q'^*GQ = Q^*C_0^{-1}GC_0Q = I$$

$$\Rightarrow C_0^{-1}GC_0 = (Q^*)^{-1}Q^{-1} = I$$

$$\Rightarrow G = C_0C_0^{-1} = I$$