Facial Authentication for the Web

Creator	Ryan Collins
DATE	3/12/18

TASK TITLE	TIME (Weeks)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
Framework Setup																													
Web Portal to capture and transmit video to a remote server	1																												
Main server applet to receive input from the web portal	1																												
Consolodation layer to manage microservices and process their output and trigger microservice processing	2																												
Facial Recognition																													
Preprocessing layer - obtaining just the facial area, with histogram equalisation to normalise the content	1																												
Autoencoder layer - producing a vector from an image of a face using an autoencoder	3																												
Database searching layer, utilising the vector from the autoencoder, coupled with query to find similarity	1																												
Siamese NN - a potential alternative that could also be tried if necessary	3																												
Liveness Tests																													
Key frame service to pick key frames from a much larger video	1																												
CNN model to detect liveness based on non-linear diffusion	3			***********		0																							
Adding two way communication to our system, allowing instructions to be sent to the client side	1																												
Building a word recognition model based on lipreading	3																												
Building some lipreading confirmation model that's accurate enough for our captcha method	1																												
Pupil tracking - building a model based on this approach	3																												
Gathering statistics for each component, based on accuracy	4																												
		ļ	<u> </u>	<u> </u>	<u> </u>	<u></u>	<u> </u>	<u></u>					<u> </u>	<u>.</u>							<u>.</u>	. <u>.</u>	<u>.</u>	<u>.</u>					ļ
		-																											