DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/G 13/10
BARE HULL RESISTANCE AND FLOW OBSERVATION EXPERIMENTS FOR CABLE--ETC(U)
SEP 78 H Y YEH
DTNSRDC/SPD-0831-01
NL AD-A061 072 UNCLASSIFIED NL OB1072 END DATE FILMED 2 -79

LEVEL

DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

Bethesda, Md. 20084

BARE HULL RESISTANCE AND FLOW OBSERVATION EXPERIMENTS

FOR CABLE REPAIR SHIP (T-ARC)

DTNSRDC MODEL 5364

BY

HUGH Y. H. YEH

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

SHIP PERFORMANCE DEPARTMENT REPORT

SEPTEMBER 1978

DTNSRDC/SPD-0831-01

8 11

03

057

W. Sale

BARE HULL RESISTANCE AND FLOW OBSERVATION EXPERIMENTS FOR CABLE REPAIR SHIP (T-ARC) DTNSRDC MODEL 5364

MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

UNCLASSIFIED

REPORT DOCUMENTATION PAGE	BEFORE COMPLETING F
DTNSRDC/SPD-0831-01	O. S. RECIPIENTS CATALOG NUMBE
BARE HULL RESISTANCE AND FLOW OBSERVATION EXPERIM FOR CABLE REPAIR SHIP (T-ARC) DINSRDC MODEL 5364	ENTS final Rept
HUGH Y. H. YEH	S. CONTRACT OR GRANT MUMBER
DAVID W. TAYLOR NAVAL SHIP R&D CENTER SHIP PERFORMANCE DEPT. BETHESDA, MD. 20084	10. PROGRAM ELEMENT, PROJECT AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS	SEPTEMBER 1078
NAVAL SHIP ENGINEERING CENTER WASHINGTON, D. C. 20362	UNCLASSIFIED 15a. DECLASSIFICATION/DOWNGR
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different	tran Report)
	trom Report)
18. SUPPLEMENTARY NOTES	
T-ARC CABLE REPAIR SHIP FLOW VISUALIZATION SHIP RESISTANCE	e) e experiments of a Cable ound the underwater body
19. KEY WORDS (Continue on reverse side if necessary and identify by block number T-ARC CABLE REPAIR SHIP FLOW VISUALIZATION SHIP RESISTANCE 20. ABSTRACT (Continue on reverse side if necessary and identify by block number this report presents the results of the resistance Repair Ship (T-ARC). Photographs of the flow are observed in the Circulating Water Channel (CWC) and the continue of the continue water channel (CWC) and the continue of the continue water channel (CWC) and the continue of the continue	e) e experiments of a Cable ound the underwater body

TABLE OF CONTENTS

	page
LIST OF FIGURES	iv
LIST OF TABLES	vi
NOTATION	viii
ABSTRACT	1
ADMINISTRATIVE INFORMATION	1
INTRODUCTION	
EXPERIMENTS * *** *** *** *** *** *** *** *** ***	
Model	2
Resistance Experiments	2
Flow Observation Experiments	3
DISCUSSION	3
Resistance	3
Flow Observation Experiments	5
REFERENCE	6

LIST OF FIGURES

- 1 Abbreviated Lines of T-ARC Model 5364
- 2 Wave Profile Trace of Model 5364 (T-ARC) at 15 Knots Ship Speed
- 3 Effective Horsepower Curves for T-ARC with Model 5364 Bare Hull with Skeg, Sharp Waterline Endings
- 4 Effective Horsepower Curves for T-ARC with Model 5364 Thruster 1, 2, 3 and 4 Opened. Sharp Waterline Endings
- 5 Effective Horsepower Curves for T-ARC with Model 5364
 Bare Hull with Skeg. Rounded Waterline Endings
- 6 Effective Horsepower Curves for T-ARC with Model 5364 Thruster 1 with Gratings
- 7 Effective Horsepower Curves for T-ARC with Model 5364 Thruster 1 without Gratings
- 8 Effective Horsepower Curves for T-ARC with Model 5364 Thruster 1 and 2 with Gratings
- 9 Effective Horsepower Curves for T-ARC with Model 5364 Thruster 1, 2 and 3 with Gratings
- 10 Effective Horsepower Curves for T-ARC with Model 5364 Thrusters 1, 2, 3 and 4 with Gratings
- 11 Effective Horsepower Curves for T-ARC with Model 5364 Thrusters 1, 3, 4 and 5 with Gratings
- 12 Effective Horsepower Curves for T-ARC with Model 5364 Thrusters 3, 4, 5 and 6 with Gratings
- 13 Effective Horsepower Curves for T-ARC with Model 5364 Thruster 5 with Grating
- 14 Effective Horsepower Curves for T-ARC with Model 5364 Bare Hull without Grating
- 15 Bare Hull Resistance Data and Taylor Comparison and Running Water Level of Model 5364 (T-ARC)
- 16 Fitting Room Photographs of T-ARC Model 5364, Bare Hull with Skegs
- 17 Bow and Stern Photographs of T-ARC Model 5364

The state of the s

LIST OF FIGURES (continued)

- 18 Photographs of T-ARC Model 5364 Bow Sheave
- 19 Photographs of T-ARC Model 5364 Bow Thrusters without Gratings
- 20 Photographs of T-ARC Model 5364 Bow Thrusters with Gratings
- 21 Photographs of T-ARC Model 5364 Fully Appended, After Thrusters with Gratings
- 22 T-ARC Model 5364 in Circulating Water Channel. Bow Thruster without Gratings Yaw = 0° Ship Speed 15 Knots
- 23 T-ARC Model 5364 in Circulating Water Channel. Stern Thrusters without Gratings Yaw = 0° Ship Speed 15 Knots
- 24 T-ARC Model 5364 in Circulating Water Channel. Stern Thrusters without Gratings Yaw = 0° Ship Speed 15 Knots
- 25 T-ARC Model 5364 in Circulating Water Channel Yaw = 0° Ship Speed 8 Knots
- 26 T-ARC Model 5364 in Circulating Water Channel Yaw = 0° Ship Speed 15 Knots
- 27 T-ARC Model 5364 in Circulating Water Channel
 Yaw = 0° Ship Speed 8 Knots
- 28 T-ARC Model 5364 in Circulating Water Channel Yaw = 0° Ship Speed 15 Knots
- 29 T-ARC Model 5364 in Circulating Water Channel Yaw = 0° Ship Speed 8 Knots
- 30 T-ARC Model 5364 in Circulating Water Channel Yaw = 5° Port, Ship Speed 8 Knots
- 31 T-ARC Model 5364 in Circulating Water Channel Yaw = 5° Port, Ship Speed 8 Knots
- 32 T-ARC Model 5364 in Circulating Water Channel Yaw = 5° Port, Ship Speed 15 Knots
- 33 T-ARC Model 5364 in Circulating Water Channel
 Yaw = 5° Port, Ship Speed 15 Knots
- 34 T-ARC Model 5364 in Circulating Water Channel Yaw = 5° Starboard, Ship Speed 8 Knots

LIST OF FIGURES (continued)

- 35 T-ARC Model 5364 in Circulating Water Channel Yaw = 5° Starboard, Ship Speed 8 Knots
- 36 T-ARC Model 5364 in Circulating Water Channel Yaw = 5° Starboard, Ship Speed 15 Knots
- 37 T-ARC Model 5364 in Circulating Water Channel Yaw = 5° Starboard, Ship Speed 15 Knots
- 38 T-ARC Model 5364 in Circulating Water Channel Yaw = 10° Port, Ship Speed 8 Knots
- 39 T-ARC Model 5364 in Circulating Water Channel Yaw = 10° Port, Ship Speed 8 Knots
- 40 T-ARC Model 5364 in Circulating Water Channel Yaw = 10° Port, Ship Speed 15 Knots
- 41 T-ARC Model 5364 in Circulating Water Channel Yaw = 10° Port, Ship Speed 15 Knots
- 42 T-ARC Model 5364 in Circulating Water Channel Yaw = 10° Starboard, Ship Speed 8 Knots
- 43 T-ARC Model 5364 in Circulating Water Channel Yaw = 10° Starboard, Ship Speed 8 Knots

LIST OF TABLES

- 1 Ship and Model Data for T-ARC Model 5364 Bare Hull
- 2 Ship and Model Data for T-ARC Model 5364 Bare Hull and Skeg
- 3 Resistance Data for T-ARC, Model 5364 Bare Hull with Skeg (Sharp Waterline Endings)
- 4 Resistance Data for T-ARC, Model 5364 with Thruster 1, 2, 3 and 4 Open
- 5 Resistance Data for T-ARC, Model 5364 Bare Hull with Skeg (Round Waterline Ending)
- 6 Resistance Data for T-ARC, Model 5364 Thruster 1 with Grating
- 7 Resistance Data for T-ARC, Model 5364 Thruster 1 without Grating

LIST OF TABLES (continued)

- 8 Resistance Data for T-ARC, Model 5364 Thruster 1 and 2 with Grating
- 9 Resistance Data for T-ARC, Model 5364 Thruster 1, 2 and 3 with Grating
- 10 Resistance Data for T-ARC, Model 5364 Thruster 1, 2, 3 and 4 with Grating
- 11 Resistance Data for T-ARC, Model 5364 Thruster 1, 3, 4 and 5 with Grating
- 12 Resistance Data for T-ARC, Model 5364 Thruster 3, 4, 5 and 6 with Grating
- 13 Resistance Data for T-ARC, Model 5364 Thruster 5 with Grating
- 14 Resistance Data for T-ARC, Model 5364 Bare Hull (with Skeg)
- 15 The Effect of Thruster on Resistance

NOTATION

AX	Area, maximum transverse section
вх	Beam or breadth, moulded of ship at AX
CA	Correlation allowance
СВ	Block coefficient
CP	Longitudinal prismatic coefficient
CPA	Prismatic coefficient, afterbody
CPE	Prismatic coefficient, entrance
CPF	Prismatic coefficient, forebody
CPR	Prismatic coefficient, run
cs	Wetted surface coefficient
CVP	Prismatic coefficient, vertical
CVPA	Prismatic coefficient, vertical afterbody
CVPF	Prismatic coefficient, vertical forebody
CVOL	Volumetric coefficient
CWP	Designed load waterline coefficient
CWA	Designed load waterline coefficient afterbody
CWF	Designed load waterline coefficient forebody
CWS	Taylor's wetted surface coefficient
сх	Maximum transverse section coefficient
D-L,	Displacement length ratio
EHPT	Total effective horsepower
EHPF	Frictional horsepower
FTE	Taylor sectional area coefficient for bulbous bow

NOTATION (Continued)

L Length of a ship

LE Length of entrance

LOL Length, overall

LP Length of parallel middlebody

LPP Length between perpendiculars

LR Length of run

LWL Length of waterline in general

S Wetted surface

TTE Taylor tangent to the area curve

TX Draught, moulded of ship

XFB Longitudinal centre of buoyancy from forward perpendicular

ABSTRACT

This report presents the results of the resistance experiments of a Cable Repair Ship (T-ARC). Photographs of the flow around the underwater body as observed in the Circulating Water Channel (CWC) are also included.

ADMINISTRATIVE INFORMATION

This work was performed at David W. Taylor Naval Ship R&D Center (DTNSRDC), Bethesda, Maryland 20084. This project was funded under Naval Ship Engineering Center (NAVSEC) Project Order 8382221, Ship Performance Department Work Unit Number 1524-637 and 1524-656.

INTRODUCTION

The Naval Ship Engineering Center (NAVSEC) requested that model tests be conducted at the David W. Taylor Naval Ship R&D Center (DTNSRDC) to evaluate the performance characteristics of a hull design representing the New Cable Repair Ship (T-ARC). This model was built in accordance with the NAVSEC Lines and Body Plan No. 53611-86, dated 15 November 1977, and designated as DTNSRDC Model 5364.

The model was constructed with properly designed openings to accommodate two bow side thrusters, two stern side thrusters and two bottom thrusters at the bow. The purpose of this model test program is to evaluate the effect of these thruster openings on the resistance characteristics and to observe the flow pattern over these openings.

EXPERIMENTS

MODEL

DTNSRDC Model 5364 representing the new T-ARC, in accordance with the NAVSEC Lines and Body Plan 53711-86, dated 15 November 1977, was built of wood with a model-ship linear ratio of 23.5368, complete with bow and stern towing sheaves, thruster openings and removable gratings for the thruster openings.

Abbreviated bare hull lines of Model 5364 are given in Figure 1. Hull form coefficients for T-ARC and Model 5364 are given in Tables 1 and 2.

Side thrusters are numbered from bow to stern (from No. 1 to No. 4), and the bottom thrusters are numbered in pairs, also from bow to stern as No. 5 and No. 6.

RESISTANCE EXPERIMENTS

Model resistance experiments were conducted in the Deep Water Basin (Carriage 1), with the model ballasted to a corresponding ship displacement of 14,530 tonnes (14,300 tons, salt water) at even keel, over a full scale ship speed range of 0 to 20 knots. Effective horsepower predictions for T-ARC based on these experiments are for the ship operated in the North Atlantic at a sea water temperature of 15 C. The correlation allowance coefficient (C) of 0.0005 was used in conjunction with ITTC Friction A Line. The wave Profile of T-ARC at 15 knots is shown in Figure 2. Resistance predictions are given in Figure 3 to 14 and also in Tables 3 to 14. (The corresponding figures with English units are given in the Appendix, with subscript a.). To evaluate the merit of the T-ARC

hull form from the resistance point of view, the resistance data of T-ARC have been compared with those of the corresponding hull forms, one from Taylor Standard Series and the other from the Historical Model Data. Figure 15 gives these comparative results.

Changes of level for T-ARC at various speeds as obtained during the experiments did not vary from test to test for all the experiments conducted.

Figure 16 through 21 show the model and thruster opening as built.

FLOW OBSERVATION EXPERIMENTS

Flow around the thrusters, except the bottom thrusters which were plugged, and around the stern appendages was observed in the DTNSRDC CWC. The model was ballasted to the same condition as in the resistance experiments, and was fitted with all appendages and DTNSRDC Propellers 4484 and 4485. Flow observations were aided by both dye and wool tufts some of which are attached to the hull surface and others away from the hull (0.8m full scale). Three yaw angles were investigated (0, 5, 10 degrees) both port and starboard. Photographs of these experiments are given in Figures 22 through 43.

DISCUSSION

RESISTANCE

The bare hull resistance characteristics of the T-ARC Model 5364 are compared to those from the corresponding Taylor hull in Figure 15.

T-ARC has lower resistance all through the speed range. But, when the comparison was made to the one of the models in the historical model

data bank which has similar hull dimensions (indicated as "stock model" in Figure 15), the T-ARC has higher resistance above 14 knots. However, in comparing the "stock model" to its corresponding Taylor Standard model, the ratio is much closer to one. These seemingly contradictory findings may be due to the difference in prismatic coefficient (C).

The "stock model" has a prismatic coefficient of 0.678 whereas the T-ARC has a prismatic coefficient of 0.695.

The effect of C on resistance can be shown in Taylor's "Speed and P
Power". Reference 1, Appendix B. For a ship with displacement-length ratio of 150 for instance, at speed -length ratio of 0.8, a reduction of 0.02 in prismatic coefficient will result in a 9% reduction in Rr/ (pounds residuary resistance per ton displacement).

Therefore, a slight increase of midship section coefficient of T-ARC, which can be accomplished without affecting the basic hull space requirements, will in effect reduce the C of T-ARC. This in P turn may improve the resistance characteristics of T-ARC.

At the time resistance experiments 1 and 2 were conducted, the model was constructed with sharp forward sides of stem. The Question was raised as to whether this sharp edge would adversely affect the resistance. Therefore, the model was refinished to remove the sharp edges at the stern before subsequent tests were performed, and experiment 1 was repeated with the rounded stern on experiment 3. In comparing results of experiment 1 and 3, no difference in resistance was found.

The affects of various thruster openings and gratings of the thrusters, on resistance are compared at two speeds as shown in Table 15. The effectiveness of the grating in reducing the resistance can

be seen when comparing Tests 4 and 5, or Tests 2 and 3.

The bottom thruster (Thrusters Numbers 5 and 6) cause little increase in resistance. However, it should be noted that the bottom thrusters as tested do not allow water to flow through them. Therefore, the results do not reflect the actual behavior of the thrusters.

In the same vein, all the thrusters used in these experiments are without propulsors. Therefore the results presented here are for comparison only and should not be construed as actual resistance of the T-ARC for each of the arrangements of the thrusters with the propulsor installed. The propulsor in the thruster duct will somewhat restrict the water flow through the duct, therefore, the increase in resistance due to thrusters may not be as great as is shown from these experiments.

The skeg of T-ARC caused an 11 percent increase in resistance through the speed range. This represents a large percent of total drag. Effort should be made to reduce this added drag.

FLOW OBSERVATION EXPERIMENTS

At the design speed of 15 knots the flow at the bow generally appeared to follow the contour of the hull. At 8 knots, however, some separations were observed. At the stern, especially around the end of the skeg and between the rudders, the flow appeared to be stagnating at all speeds tested.

The flow around the thrusters before installing the gratings was quite disturbed; it became fairly smooth after the gratings were installed especially at the speed equivalent to 15 knots full scale as shown in Figure 26. Here again it should be remembered that the thrusters are without propulsor.

From the flow observation, it can be concluded that the flow pattern of T-ARC may be improved by modifying the skeg and stern shape to avoid flow separation. The resistance characteristics would also be improved as the result of a smoother flow around the hull.

REFERENCE

1. Taylor, D. W., "The Speed and Power of Ships", 3rd edition U. S. Government Printing Office, Washington, D. C. (1943).

FIGURE 1. ABBREVIATED LINES OF T-ARC, MODEL 5364

FIGURE 2. WAVE PROFILE TRACE OF T-ARC, MODEL 5364, AT 15 KNOTS SHIP SPEED.

AND THE RESERVE OF THE PARTY OF

Y ST

Company of the State of the Sta

No. of State of State

FIGURE 15. BARE HULL RESISTANCE DATA AND TAYLOR COMPARISON AND CHANGE OF LEVEL OF MODEL 5364 (T-ARC)

The state of the s

FIGURE 16. FITTING ROOM PHOTOGRAPHS OF T-ARC, MODEL 5364, BARE HULL WITH SKEG.

FIGURE 17. BOW AND STERN PHOTOGRAPHS OF T-ARC MODEL 5364.

Y. 18.2

FIGURE 20. PHOTOGRAPHS OF T-ARC, MODEL 5364, BOW THRUSTERS WITH GRATINGS.

description of the state of

PSD 0507-14-78

536/

PSD 0507-17-78

FIGURE 21. PHOTOGRAPHS OF T-ARC, MODEL 5364, FULLY APPENDED, AFTER THRUSTERS WITH GRATINGS.

YEST

FIGURE 22. T-ARC, MODEL 5364 IN CIRCULATING WATER CHANNEL. BOW THRUSTERS WITHOUT GRATINGS. YAW = 0° , SHIP SPEED = 15 KNOTS.

PSD 0506-17-78

PSD 0506-19-78

PSD 0506-14-78

FIGURE 23. T-ARC, MODEL 5364 IN CIRCULATING WATER CHANNEL. STERN THRUSTERS WITHOUT GRATINGS. $YAW = 0^{\circ}$, SHIP SPEED = 15 KNOTS.

V.Mar.

PSD 0506-21-78

PSD 0506-16-78

PSD 0506-15-78

FIGURE 24. T-ARC, MODEL 5364 IN CIRCULATING WATER CHANNEL. STERN THRUSTERS WITHOUT GRATING. YAW = 0° , SHIP SPEED = 15 KNOTS.

ENEX.

PSD 0504-12-78

PSD 0504-10-78

PSD 0504-15-78

FIGURE 25. T-ARC, MODEL 5364 IN CIRCULATING WATER CHANNEL. YAW - 00. SHIP SPEED - 8 KNOTS

FIGURE 26. T-ARC, MODEL 5364 IN CIRCULATING WATER CHANNEL YAW = 0°, SHIP SPEED = 15 KNOTS

PSD 0506-33-78

PSD 0506-30-78

FIGURE 27. T-ARC, MODEL 5364 IN CIRCULATING WATER CHANNEL.

YAW = 0° , SHIP SPEED = 8 KNOTS.

FIGURE 28. T-ARC, MODEL 5364 IN CIRCULATING WATER CHANNEL. $YAW = 0^{\circ}$, SHIP SPEED = 15 KNOTS

PSD 0506-36-78

PSD 0504-3-78

PSD 0505-32-78

PSD 0505-31-78

FIGURE 29. T-ARC, MODEL 5364 IN CIRDULATING WATER CHANNEL. YAW = 0° , SHIP SPEED = 8 KNOTS

PSD 0504-34-78

PSD 0505- 4-78

FIGURE 30. T-ARC, MODEL 5364 IN CIRCULATING WATER CHANNEL. YAW = 5° PORT. SHIP SPEED = 8 KNOTS.

FIGURE 31. T-ARC, MODEL 5364 IN CIRCULATING WATER CHANNEL. YAW = $5^{\rm O}$ PORT. SHIP SPEED = 8 KNOTS.

FIGURE 32. T-ARC, MODEL 5364 IN CIRCULATING WATER CHANNEL YAW = 5° PORT. SHIP SPEED = 15 KNOTS.

FIGURE 33. T-ARC, MODEL 5364 IN CIRCULATING WATER CHANNEL. YAW = 50 PORT. SHIP SPEED = 15 KNOTS

PSD 0504-17-78

PSD 0504-23-78

PSD 0504-19-78

FIGURE 34. T-ARC, MODEL 5364 IN CIRCULATING WATER CHANNEL.

YAW = 5° STARBOARD. SHIP SPEED = 8 KNOTS

PSD 0507- 2-78

PSD 0507- 3-78

FIGURE 35. T-ARC, MODEL 5364 IN CIRCULATING WATER CHANNEL. YAW = 50STARBOARD. SHIP SPEED = 8 KNOTS

PSD 0504-28-78

PSD 0504-26-78

PSD 0504-31-78

FIGURE 36. T-ARC, MODEL 5364 IN CIRCULATING WATER CHANNEL. YAW = 5° STARBOARD. SHIP SPEED = 15 KNOTS

FIGURE 37. T-ARC, MODEL 5364 IN CIRCULATING WATER CHANNEL YAW = 5^{O} STARBOARD. SHIP SPEED = 15 KNOTS

PSD 0505-15-78

PSD 0505-19-78

FIGURE 38. T-ARC, MODEL 5364 IN CIRCULATING WATER CHANNEL.

 $YAW = 10^{O} PORT$. SHIP SPEED = 8 KNOTS

PSD 0505-14-78

FIGURE 39. T-ARC, MODEL 5364 IN CIRCULATING WATER CHANNEL.

YAW = 10° PORT, SHIP SPEED = 8 KNOTS

FIGURE 40. T-ARC, MODEL 5364 IN CIRCULATING WATER CHANNEL. YAW = 10° PORT. SHIP SPEED = 15 KNOTS

FIGURE 41. T-ARC, MODEL 5364 IN CIRCULATING WATER CHANNEL.

YAW = 10°PORT. SHIP SPEED = 15 KNOTS

PSD 0505-36-78

PSD 0506- 1-78

PSD 0505-35-78

PSD 0506- 3-78

FIGURE 42. T-ARC, MODEL 5364 IN CIRCULATING WATER CHANNEL. YAW = 10° STARBOARD. SHIP SPEED = 8 KNOTS.

PSD 0505-33-78

PSD 0505-34-78

FIGURE 43. T-ARC, MODEL 5364 IN CIRCULATING WATER CHANNEL.

YAW = 10° STARBOARD. SHIP SPEED = 8 KNOTS

ABLE 1 SHIP AND MODEL DATA FOR T-ARC, MODEL 5364 - BARE HULL.

(1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (BNG FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	A TRIC	ENG. 454. 428. 73.	13000	138.4 130.5 22.3		118	5.88 5.54 5.54	LINFAK V/SORT FROUDE	LINFAR RATION/SORT(LML) FROUDE NO.		23.537 .939 .279
Company of the Compan	N S I S	S S S	14060SH 38t 7 2 .0	T		234	1.05FW 1.05FW 48.8 68.75 4.12	1.07FW 1.07FW 6.39 2.12	X X X X X X X X X X X X X X X X X X X	74766	SLE= SLE= SLE=	.513 .544 .541 17.0 DEG .297RAD
1 2 2 2 2 2 2 2 2	CCC CCC CCC CCC CCC CCC CCC CCC CCC CC	63 58 76 74 74 74 73		LE/L LP/L L/Bx cx/1x	11111111111111111111111111111111111111	<i>~~~~~~</i>	0-L = 0-L = CW = CS = FTE = TTE = TT	150.26 15.26 15.07 2.55 0.60	,	CV 01-1-00-1-00-1-00-1-00-1-00-1-00-1-00-		. 656 . 737 5.86 . 79.34 6.27E-3
1.33	÷	50 2.	2.00	3.00	00.	5.00	6.00	7.60	00.8	9.10	10.00	61 - 4 (3) 25 93 hay 24 1 - 43
.202	.20. 0		395	.584	.643	.873	.951	696.	1.000	1.000 1	1.000	
2.60 13.63	13.6J 14.iii				.5 54	17.00 18.00	18.50			9.000		
2	1.060 1.660 1.600 1.300		666.	065.	.951	948.	.757	.643	.484	.027		

TABLE 2 SHIP AND MODEL DATA FOR T-ARC, MODEL 5364 - BARE HULL AND SKEG.

AR RATIO = 23.537 RT(LML) = .939 LE NO. = .279 LML = .516 LML = .547 CM = .543 L/BX = 5.86 D-L = 180.78 CVOL = 6.32E-3 L/BX = 5.86 D-L = 1000 1.000 1.000 1.000 1.000 20.00		7 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2	A	2. 29 10 2. 20 2. 20	2 2 2 3 4 4 5 6 6 4 4 6 6 6 4 6 6 6 6 6 6 6 6 6	10 10 10 10 10 10 10 10 10 10 10 10 10 1	3.00 3.00 16	· N M	# 1 O E	THE LENGTH (LML) FT LENGTH 3F (LPP) FT BEAM AT AX (BX) FT URAFT AT AX (TX) FT URAFT AT AX (TX) FT USPLACEMENT (DIS) TON LAS WETTED SUKF (S) SO FT UESIGN SPEED(V) KTS CPE CPE = .623 CPE CPE CPE = .623 CPE CPE CPE = .6700 CPP CNP CNP CNP CNP CNP CNP CNP CNP CNP	#L LENGTH (LML LENGTH 3F (LPP BEAM AT AX (BX URAFT AT AX (TX UISPLACEMENT (DI WETTED SURF. (S) CP = .700 CPF = .67 CPF = .67	CH M C CH I SCI P PIZ
	000	0 7 0	164	147	1.20	200	783	0	956	. GA7	210	1.000
										C 8.2	7	4/AX
			19.00	18.50	18.00			5.00		13.00 1	12.00	FT ST! 11.CU
1.000			. 989		5/8.	261.	****	6 685 •	967.	707.	701.	.013
31												/8X
1.000		•			.786	.643	.472	-292	.204	.116	.039	0.00.0
						*2	S 118.00		0.00			AZAX
			7.00		5.00	90.4	3.00	2.60	1.56	1.00	SNOT IN	200
				***	****	*****	****					
		28								COMP	*/.	
= 6.32E-	CVOL	00			•	11	BX/TX		11	CVPF	19.	11
=1	10	.62			2		CAX		11	CVPA	.816	11
"	(8/	177		5	2		LRL		11	CVP	968.	11
,,	ð	.30E-3		CVOL=	2		LP/L			CPR	.760	**
N	5	47	15		2		LEVL			CPE	.623	11
DEFFICIENTS	TPP CO					NTS	FFICIE		L			
.29		2										
17.0			2.12	4.12		10.3	20.0					ESIGN
.54	•		6.58	0.83	7	3645.4	538.9			(S) SQ FT	SURF.	ETTED
•	8/LPP			7.7	236					LAS		
	RILH		1.07	1.06FW		4401SH	73SH			(DIS) LOV	CEMENT	ISPLA
			.31	1.02		7.3				(IX) FT	AT AX	KAFT
11			6.	3.10		22.3	73.0		I			SEAM A
"	SORT (LN		5.54	8.18	1	130.5	428.0		Σ		3	LENGTH OF
= 23			5.86	9.29		138.4	454.0		Σ			ML LENGTH
		Terren.	ETRIC			MEIKIC	. NG.		TE I K	SEL		

TABLE 3 RESISTANCE DATA FOR T-ARC, MODEL 5364 BARE HULL WITH SKEG (SHARP STEM EDGE) EXPERIMENT 1

WETTED S DISPLASE	SURFACE 39	454.00 FT (39244.53 FT (14301.TONS (138.4 M) 3646. SQ 14531. TO	C T N	19.29 70.84 1.07	FT (5.8 SQ FT (6.5 TONS (1.0	79 41 8 SQ H) 8 TONNE1	
		~ ~	CTION L	ANGE				
3	N.S	34		FRICT TONAL	POWER	Z.	۲-۲ ۲-۲	1000CR
KNOTS	S/H	£	5	d X	3			
1.00	. 51	1.1		6.	7.			
2.03	1.03	8.3	6.2		5.2	N	0	
3.00		56.9					3	0
4.00	5.06	52.1				5		0
5.00		19				1	1	0
5.60		02.	51.	. 59	23.	80		0
7.60	•	15.	35.	. 95	93.	0	~	
8.00		62.	. 5 5	81.	84.	-		9
9.00		. 19	95.	36.	.00	2	~	-
10.00		931.5	94.	28.	43.		9	6
11.00		51.	33.	60.	15.	5	-	
12.00		.04	23.	236.	22.	9	4	
13.00		11.	.96	560.	63.	8	-	-
14.60		73.	68.	934.	.2.	0	5	6
2.		.99	52.	364.	62	0	0	03
16.00		4571.8	.60	851.	.92	2	S	.23
17.30		.00	62.	401.	36.	M	G	94.
13.60		91.	37.	015.	. 16	5	3	.64
13.60		9891.4		4699.5	3504.4	• 255	.892	19
20.00	10.29	12120.1	*	455.	4068.1	~	m	**

TABLE 4 RESISTANCE DATA FOR T-ARC, MODEL 5364 WITH THRUSTER OPENINGS 1, 2, 3 and 4 OPENED EXPERIMENT 2

ETTED S ISPLACE	SURFACE 3	SHIP 454.00 FT (1 39244.53 FT (14301.TONS (3645. SQ 14531. TO	CANO	19.29 70.84 1.07	FT (5.873 SQ FT (6.58 TONS (1.08	SO H)	
	- 10 to 10 to	2 4	RATIO ICTION LIN TION ALLOW	ANCE (CA)	23.537			
	۸s	PE		FRICT TO NAL	1 4	Z	۲-	10000R
KVOTS	S/H	Ηb	X	ΗP	X Y			
1.00	.51	1.6	1.0	6.	~		7,0.	1.240
2.00	1.03	10.3	7.7	6.9	5.5	920.	•	~
3.00			25.1			+	3	2
	5.06		58.4			5		2
2.00		5	112.3			-	3	2
9.00		5	191.7		23.			N
7.03		05.	2	10	93.	0	.329	1.255
9.00		. 80	3.	81.	. 50	-	-	M
9.00	4.63	80.	.9	36.	.00	2	N	m
:	5.14	-	1.	28.	43.		9	3
1:		35.	6	.0	16.	2	-	4.
12.00		39.		23	22.	9	9	1.530
3.		.98	7.	28	63.		-	.6
;		.69	:	9	442.	6	5	1.
5.00		57.	2	~	762.	0	0	6.
5.00		61.	6	651.	126.	2	S	.2
7.03		35.	:	401.	536.	-	0	+
8.00	9.26	-	6721.6	6012.9		5	.845	2.510
9.00			3.	.669	5	9	0	1.
0.00	10.29	277	6	55	90	-	-	

TABLE 5 RESISTANCE DATA FOR T-ARC, MODEL 5364 BARE HULL WITH SKEG (ROUNDED STEM EDGE) EXPERIMENT 3

i
a T
-
6.
1 . 5 % . 1
6. 52. 51.
6. 51. 97.
522. 51. 51. 55.
522.
355
23 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
862 W 35 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
M
6 W S W S W S W S W S W S W S W S W S W
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
100 100 100 100 100 100 100 100 100 100

TABLE 6 RESISTANCE DATA FOR T-ARC, MODEL 5364 THRUSTER OPENING 1 WITH GRATING EXPERIMENT 4

NETTED S DISPLACE	SURFACE	454.00 FT 39244.53 FT 14301.TONS	(138.6 M) (3646. SQ (14531. TO	4)	19.29 F 70.84 S	FF C	5.873	SO H) TONNE)	
	1 1 1 1	LINEAR ITTC FI CORRELL	RATIO ICTION LIN	ANCE (CA)	.00000				
>	SA	à	E		POWER	Z L		<u>۲</u> -۲	1000CR
STCVA	N/S	d I	3 >	Q I	3				
1 "	.51	1.	6.	6.	7.	1 -		.047	
						N		168.	-
		28.		2		30		.141	-
00.4	2.06	0.99	49.2	51.2	38.2	.056		.188	.675
		126.	;	1.		07		-235	-
		215.	90.	. 59	23.	80		242.	-
		336.				6		.329	9
		.064	.29	31.	84.	-		.375	2
9		693.	17.	36.	00.	12		224.	63
10.00	5.14	963.	18.	. 8	43.	*		694.	6
-		1324.	87.	.09	16.	5		.516	0
2.0		1729.	.64	236.	22.	9		.563	10
			55.	- 09	163.	•		.610	
		2834.	13.	934.	42.	9		.657	9
-		3631.	. 80	364.	762.	0		.704	0
		.6994	32.	.159	126.	N		.751	.30
17.00		5959.	.3.	401.	536.	M		862.	.52
3.		7291.	37.	015.	. 466	10		.845	.64
6			96	.669	504.	9		-892	
0									-

TABLE 7 RESISTANCE DATA FOR T-ARC, MODEL 5364 THRUSTER OPENING 1 WITHOUT GRATING EXPERIMENT 5

LENGTH METTED S OISPLACE	URFACE 39	244.53 FT (244.53 FT (301.TONS (ITTC FR	3646. SQ 14531. TO RATIO ICTION LIN	OUNE) NE	19.29 70.84 1.07 23.537	FT (5.8 SQ FT (6.5 TONS (1.0	179 H)	
>	S	PE		FRICTIONAL	POWER	N.T.	V-L	10003R
17	N/S	d I	3 2	d.	¥ ¥			
! "	1 10		6.	6.		1 -	1 3	
2.60	1.03	9.6		6.9	5.5		0	.950
	.5	1:	3.			3		
	0	•	3.	:		5	•	.950
.3	.5	38.	03.	:		-	M	
0	-	35.	75.	. 59	23.			
	.6		16.	58.	93.	6	2	
	-		.60	81.	. 48	-	-	
0	.6		12.	36.	00.	~	2	
0.0	-	10	.00	28.	43.	*	4	
1.0	9.	*	78.	.09	16.	5	-	-
2.0	7	26	36.	236.	22.	9	9	.17
3.6	9	557.	07.	96	163.	•	-	.33
4.0	2	32	.91	934.	442.	6	5	. 68
3.6		236.	03.	364.	762.	0	0	.67
5.0	.2	5452.9	.99	851.	126.	2	5	.86
7.0		67 14 . 1	.90	401.	536.	M	0	16.
9.3	.2	8277.1	72.	015.	. 166	5		-:
19.00	3.77	10238.0		4699.5	3504.4	.265	.892	36
0.0	10.29	12884.9	9508.3	455.	0	-	M	.72

TABLE 8 RESISTANCE DATA FOR T-ARC, MODEL 5364 THRUSTER OPENINGS 1 and 2 WITH GRATING EXPERIMENT 6

9244.S3 FT (4301.TONS (3646. SQ 14531. TO	ONNED	19.29	SQ FT (5.879 41 6.58 SQ M) 1.08 TONNE)	
and the second second	ICTION LIN	ANDE (CA)	.000050			
9		FRICTIONAL	POWER	Z	1-1	1000CR
	3	Ŧ	R.V			
	6.	6.		.014	740.	.770
0.6			•	2	160.	.770
3.	•				191.	.770
	2005	51.2	38.2	• 126	.188	.770
.5	:			~	.235	.770
3.	999	. 59	23.		.282	.770
.3	29.	. 95	93.	5	.329	.755
2.	83	81.	. +9	-	.375	.775
.1		36.	00	~	.422	.730
.7	63.		43.	*	694.	.865
4.6	21.	.09	16.	5	.516	906.
6.3	54.	236.	22.	9	.563	.915
0.1	3	5	163.	•	.610	196.
1.8	93.	934.	442.	0	.657	1.075
8.7	32.	364.	762.	-	.784	1.245
6.5	43.	51.	126.	~	.751	.45
3.8	81	401	536.	m	.798	.63
7.	22		. 966	5	.845	.77
8.6	9.6169	9	3504.4	.265	268.	1.990
2 0			¢		020	

TABLE 9 RESISTANCE DATA FOR T-ARC, MODEL 5364 THRUSTER OPENINGS 1, 2, and 3 WITH GRATING EXPERIMENT 7

LENGTH WETTED SU DISPLACEM	SURFACE 39	\$4.00 FT (39244.52 FT (14301.10NS (138.4 H) 3646. SQ 14531. TO	(ENNO.	MODEL 19.29 70.84 1.07	FT (5. SQ FT (6. TONS (1.	58 SQ M)	
		The second secon	RATIO ICTION L	INE OMANGE (CA)	23.537			
S A		9		FRICTIONAL	6	Z L	7	1000CR
STCNX	R/S	Đ.	3 4	Q I	3 2			
1.00	.51		6.	6.	7.		7.0.	
	1.03	9.6		6.9	5.5	.028	160.	046.
3.00	1.54		3.				.141	
			3.			5	.188	*
5.00	2.57		2.			~	.235	
5.00		234.9	75.	65.		00	.282	
7.00	3.60	366.6	73.	58.		6	.329	~
9.00		542.1	. 40	A1.		-	.375	2
9.00		771.7	15.	36.		2	.422	3
	5.14	1056.4	7.65.2	728.3	543.1		.469	066.
1.00		1421.7	.09	.09		5	.516	01
2.00	6,17		73.	36.		9	.563	02
30		2373.9	70.	1560.0	163.	8	.610	0.0
16.03	7.20		81.	934.	. 244	6	.657	.20
5.63	7.72		21.	364.	762.	0	.704	.33
15.63			.68	851.	126.	2	.751	.59
2.00			12.	401,	536.	M	862.	:
8.09	9.26	8058.1	. 80	015.	. 466	5	.845	.03
9.00	4.17	9746.2	67.	6.6694		9	268.	10
0.00	10.20	1 4718.0	200	456	LOSR. 1	-	010	- 02

TABLE 10 RESISTANCE DATA FOR T-ARC, MODEL 5364 THRUSTER OPENINGS 1, 2, 3 and 4 WITH GRATING EXPERIMENT 8

LENGTH WETTED SU DISPLASEN	URFACE	SHIP 454.00 FT 39244.S3 FT 14301.TONS	138.4 M) 3646. SQ 14531. TO	4)	19.29 70.84 1.07	FT (5.87 SQ FT (6.58 TONS (1.08	SO H)	
a estado do	10 (N) (N)	LINEAR ITTC FR CORRFLA		ANGE CC	23.537			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
VS		PE		FRICTIONAL	POME	N.	1-A	100008
VOTS	W/S	đ	3	d H	¥			
	.51		1.0	6.	7.		.047	.02
						~	160.	.02
		31.	3.				141.	.02
		73.6				5	.188	.02
		141.	15.			-	.235	.02
0		2	.6	65.	23.		.282	- 02
00.	3.60	37	282.1	258.9	193.0	960.	.329	1.020
0		55	16.	81.	84.	-	.375	. 11
0		62	.68	36.	.00	2	.422	.02
		109	814.3	28.	43.		694.	.06
		148	. 70	.09	16.		.516	.14
		19	20.	36.	22.	9	.563	.20
0	69.9	549	26.	9	163.	•	.610	.24
?		3190.	78.	34.	442.	0	.657	.34
		*086.	.7.	19	762.	0	.704	64.
	8.23	5222	34.	2851.7	1 26.	2	.751	69.
		6571.	.00	3401.1	536.	M	86 Z.	.89
	9.26	829	6187.1	15.	96	.251	.845	.15
		10027.	7677.3	\$699°5	- +05	4	.892	.27
-		13681.	10351.7	55	90	-	. 930	.0.

TABLE 11 RESISTANCE DATA FOR T-ARC, MODEL 5364 THRUSTER OPENINGS 1, 3, 4 and 5 WITH GRATING EXPERIMENT 9

LENGTH WETTED DISPLACE	SURFACE	SHIP 454.00 FT 39244.53 FT 14301.TONS	(138.4 H) (3646. SQ (14531. TQ	CENNO	MODEL 19.29 70.84 1.07	FT (5.8 SQ FT (6.5 TONS (1.0	179 4) 18 SD 4) 18 TOWNE)	
		INFA TTC JRRF	RA	ANDE (CA)	23.537			
	٧s		Ed	FRICT IONAL	POWER	Z	V-L	10003R
STCVA	H/S	C.H.	3 ¥	d H	3 2			
1.00	.51	1.1	ec .	6.	2.	. 4	1 3	1 2
2.00	1.0	3 R.3	2.9	6.9		.02R	160.	.529
-	1.50	4 27.1		2.		3	*	CI
4.30			.9	1.		5	•	01
0	2.5	7 12		7.		1	-	2
?	3.0	0	52.	. 59	23.			2
7.00	3.6	0 320.	239.3	258.9		6	~	-
		2 478.	26.	81.	. 48	-	~	10
-		3 685.	111.	36.	.00	~	2	0
_	5.1	6	11.	28.	.3.	3	£	9
11.00		1292.	63.	.09	.91	5	-	M
	6.17	1723.	85.	m	. 22	9	4	~
13.60	•	2261.	. 9W	560.	163.		-	-
		2885.	51.	934.	. 244	6	5	-
5.0		3902.	10.	364.	762.	0	0	.33
-	8.2	3 5082.	.68	51.	126.	~	5	.59
-		6378.	56.	401.	536.	M	9	.77
	9.26	7839.	45.	015.	. 466	5		.92
19.30	9.7	9886.	72.		. 40		0	
0 . 6	10.20	-	00	456	DER	-	~	2

TABLE 12 RESISTANCE DATA FOR T-ARC, MODEL 5364 THRUSTER OPENINGS 3, 4, 5 and 6 WITH GRATING EXPERIMENT 10

TION LINE ON ALLOWANG
L
KM
6.
1:
97.
65.
60.
.98
24.
99
41.
70.
67.
81.
31.
53.4
63
•
19.
5719.4

TABLE 13 RESISTANCE DATA FOR T-ARC, MODEL 5364 THRUSTER OPENING 5 WITH GRATING EXPERIMENT 11

SURFACE	3924	4.53 FT (11.TONS (138.4 M) 3646. SQ 14531. TO	H)	19.29 70.84 1.67	SQ FT (5.879 6.58 1.08	SO M)	
		LINEAR ITTG FR CORRELA	RATIO ICTION LIN TION ALLOM	E (CA)	.00050				
٧S		PE		FRICTIONAL	POWER	Z		7	1000CR
H/S	S	d X	N Y	д¥	3				
5.	51		•	6.		1 -		.047	.460
	03	8.2	6.1	6.9	5.5	.02R		760.	.460
	54		19.8	22.3	16.6			141.	094.
•	90	•	2.	:		5		.188	199.
	25	:	1.			~		.235	60
	60			65.	23.			.282	
•	90	:	34.	58.	93.	0		.329	
	15	468.7	349.5	361.3		-		.375	.500
	63	2	01.	36.	.00	2		.422	
5.1	1,4		. 40	28.	£3.			694.	.635
	99	:	65.	.09	16.	5		.516	m
	11	3.	45.	236.	22.	9		.563	~
	69		55.	95	63.	•		.610	
	50	:	13.	934.	.244	6		.657	2
	22	-	0.	M	762.	0		.704	0
	2.3		82.	35	126.	~		5	.30
	52	5959.2	43.	3401.1	36 .	m		862.	2
	92	:	16.	015.	. 166	5			.70
	11	:	01.	9	504.	9		.892	.94
	00	1 PRRE. O	OKOR. T	455	C	-		010	1

TABLE 14 RESISTANCE DATA FOR T-ARC, MODEL 5364 BARE HULL (WITHOUT SKEG) EXPERIMENT 12

LENGTH WETTED SUPPORTED DISPLASENE	FACE 3	\$41P \$54.00 FT (\$086.50 FT (\$301.10NS (3538. SQ 14531. TO	4) OVNE)	19.29 68.75 1.07	SQ FT (B	5.679 4) 6.39 SO M) 1.08 TONNE	
		LINEAR ITTC FR CORRFLA	RATIO ICTION LIN TION ALLOW	lu d	23.537			
NS NS		a		101	ME.R.	Z	7	1000CR
KNOTS	N/S	a T	2	đ.	3 4			
1.00	.51		•		۲.		740.	062.
2.00		7.5		6.7	5.0	.028	160.	162.
3.60							141.	0
9	2.06					5	.148	0
'3		96.				-	.235	0
0		81.	35.	.09	19.		-282	0
0		:	.60	51.	. 78	0	.329	10
0		10.	.90	70.	75.	-	.375	
13		:	.1.	20.	88.	2	.422	0
0		39.	25.	.90	27.	3	694.	-
9		.3.	55.	32.	. 56	5	.516	80
12.30	6.17	1489.1	1110.4	200.	8.468	9	.563	.505
0		21.	33.	14.	29.		.610	0
4.5		29.	834.	877.	00	6	169.	
5.0	•	99	361.	294.	10.	0	.704	
5.0		.07	03	767.	63.	2	.751	0
7.0		38.	06	300.	61.	m	862.	19
9.0		-	35	. 168	. 90	in	. 845	3.
19.00	9.77	2	-	.095	01.	5	268.	62
0 0		11219.1	35	0	201.8	-	620	20

TABLE 15 THE EFFECT OF THRUSTER OPENINGS ON RESISTANCE

		EHP	/ EHP EXPT. 12
EXPT	EXPT. NO. Model Conditions	8 knots	15 knots
-	Bare hull with skeg, sharp stem edge	1.122	1.119
2	Thruster openings 1, 2, 3 and 4 open sharp stem edge	1.476	1.465
8	Bare hull with skeg, rounded stem edge	1.112	1.119
4	Intruster opening 1 with gratings	1.190	1.142
5	i Thruster opening 1 without gratings	1.332	1.357
65	5 Thruster openings 1 and 2 with gratings	1.253	1.195
1	7 Thruster openings 1, 2, and 3 with gratings	1.315	1.248
80	3 Thruster openings 1, 2, 3, and 4 with gratings	1.355	1.286
6	Thruster openings 1, 3, 4, and 5 with gratings	1.160	1.228
10	Thruster openings 3, 4, 5 and 6 with gratings	1.223	1.237
=	I Thruster opening 5 with gratings	1.137	1.142
12	2 Bare hull without skeg	1.000	1.000

APPENDIX

FIGURE : a. ABBREVIATED LINES OF T-ARC, MODEL 5364.

MAVE PROFILE TRACE OF T-ARC, MODEL 5364, AT 15 KNOTS SHIP SPEED. 2a. FIGURE

AND THE REAL PROPERTY.

DTNSRDC ISSUES THREE TYPES OF REPORTS

- 1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECHNICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.
- 2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIMINARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE. THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.
- 3. TECHNICAL MEMORANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR INTERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE-BY-CASE BASIS.

Armi Z Y