ELSEVIER

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jalcom

Enhanced critical current density of MgB₂ superconductor using a milled MgB₄ precursor

Hyeondeok Jeong^a, Haiwoong Park^b, Chan-Joong Kim^c, Byung-Hyuk Jun^{c,*}

- ^a Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology, Icheon 17303, Republic of Korea
- ^b School of Energy Materials and Chemical Engineering, Korea University of Technology and Education, Cheonan 31253, Republic of Korea
- ^c Advanced Materials Research Division, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057, Republic of Korea

ARTICLE INFO

Article history:
Received 6 July 2020
Received in revised form 29 September 2020
Accepted 6 December 2020
Available online 10 December 2020

Keywords: MgB₂ superconductor MgB₄ precursor Planetary milling Grain size Critical current density

ABSTRACT

The synthesis of bulk MgB₂ superconductors from Mg and MgB₄ precursors instead of the conventional in situ process increases the packing density, but further enhancement of the critical current density is required. Herein, to improve the critical current density of bulk MgB₂, the MgB₄ precursor was subjected to planetary milling in toluene. The MgB₄ powder was then mixed with Mg and heat-treated at 650 °C for 1 h to synthesize bulk MgB₂. The microstructure, phases, and superconductivity of bulk MgB₂ were investigated to determine the effect of MgB₄ milling. MgB₄ milling decreased the MgB₂ grain size, and carbon incorporation from the milling solvent was observed, which caused the deterioration of the MgB₂ crystallinity. These changes caused a reduction of the critical temperature; however, the critical current density was improved due to the increased magnetic flux pinning sites such as grain boundary and lattice distortion.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Although superconductors have limited specialized applications, they play important roles in the medical and research fields. For instance, superconductors are core materials in particle accelerators and analytical equipment such as nuclear magnetic resonance spectrometers. In the medical field, superconductors are used in magnetic resonance imaging, the demand for which is increasing with the ageing of the global population and market expansion in developing countries.

In the above applications, the most commonly used superconductors are NbTi and Nb₃Sn, which have extremely low superconducting critical temperatures (T_c) of 9 and 18 K, respectively [1,2]. In addition, these superconductors have low upper critical fields (H_{c2}) of 10 and 20 T at 4.2 K, respectively [1,2], which limit equipment performance. Therefore, there have been various attempts to use high-temperature superconductors, such as ReBCO Re = Y, Sm, Gd, etc.). The T_c values of high-temperature superconductors are greater than 77 K and the H_{c2} at 4.2 K are greater than 100 T, which is superior to the performance of low-temperature superconductors [3]. However, these high-temperature superconductors exhibit

* Corresponding author. E-mail address: bhjun@kaeri.re.kr (B.-H. Jun). anisotropy and are brittle, which hinders the production and processing of wire-shaped products. In addition, the high-temperature superconductors require high process costs.

MgB₂ superconductors have a relatively high T_c of 39 K, low current anisotropy, and a long coherence length [4]. Furthermore, MgB₂ is an intermetallic compound that can be manufactured in wire form by the powder-in-tube (PIT) method. For these reasons, MgB₂ has attracted much attention as a substitute for low-temperature superconductors. Various studies have been conducted to improve the performance of MgB₂ wires by increasing the critical current density (J_c). The most common method of enhancing J_c is to provide magnetic flux pinning sites, such as grain boundaries or defects. The grain boundary density can be increased by either reducing the heat treatment temperature [5–8] or refining the raw material through a milling process [9,10]. Moreover, defects can be introduced by the addition of carbon [11–16] or SiC [17,18] to the MgB₂ lattice.

Conventionally, MgB₂ is produced by an in situ process involving the direct reaction of Mg and B. As an alternative, the production of MgB₂ from MgB₄ and Mg precursors (MgB₄ process) has been attempted with the aim of improving the superconductivity by increasing the MgB₂ packing density [19–24]. With the in situ process, many pores are formed by the diffusion or melting of Mg during heat treatment [25]. It has been reported that such structural defects in MgB₂ significantly reduce the current density [26,27]. As the MgB₄