Machine Learning od podstaw

Michał Lipka SAP 20 Listopada, 2019

PUBLIC

Hack Your Career

Fit yourself in IT – Rozegraj swoją rekrutację

15.10.2019

Marek Nawa Maciej Ogrodnik Machine Learning od podstaw

20.11.2019 Michał Lipka

Getting started with OAUTH 2.0

29.10.2019

Tomasz Miler

Building a city with SCRUM - Workshop

12.12.2019

Michał Drzewiecki

SAP Labs Poland

Top ecommerce, marketing, billing

Development: Go, Java, Cloud Native solutions

> 400 pracowników

Najlepszy Pracodawca w rankingu AON

Jedno z 20 centrów SAP's Labs Network

Agenda:

- Co to tak w ogóle jest machine learning?
- Sposoby uczenia
- Reprezentacja modelu: hipoteza, funkcja kosztu, gradient prosty
- Regresja liniowa
- Klasyfikacja
- Sieci neuronowe

"The field of study that gives computers the ability to learn without being explicitly programmed."

Arthur Samuel

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E."

Tom M. Mitchell

Sortowanie tablic

Teoria grafów

Rodzaje uczenia:

- Nadzorowane
- Nienadzorowane
- Inne: drzewa decyzji, uczenie przez wzmacnianie

Hipoteza

Regresja liniowa

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

	X (rozmiar w m2)	Y (cena w tyś)
$x^{(1)}, y^{(1)}$	28	100
$x^{(2)}, y^{(2)}$	29	110
$x^{(3)}, y^{(3)}$	31	130
$x^{(4)}, y^{(4)}$	31	133
$x^{(i)}, y^{(i)}$	•••	

Dwa pytania:

- skąd wiemy, że dana prosta jest "dobra" ?
- jak ją policzyć?

Funkcja kosztu

$$J(\theta)$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = h_{\theta}(x^{(i)}) - y^{(i)}$$

$$J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\min_{(\theta_0,\theta_1)} (\theta_0,\theta_1)$$

Jak wygląda proces uczenia?

Gradient prosty

Gradient prosty

- Zaczynami z dowolnymi θ_0 , θ_1
- Zmieniamy θ_0 , θ_1 tak żeby $J(\theta)$ się zmniejszało

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m ((h_\theta(x^{(i)}) - y^{(i)}) * x^{(i)})$$

Wiele atrybutów

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$
 gdzie: $x_0 = 1$

$$h_{\theta}(x) = \theta^{T} x \qquad \qquad x = \begin{bmatrix} x_{0} \\ x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} \qquad \theta = \begin{bmatrix} \theta_{0} \\ \theta_{1} \\ \theta_{2} \\ \vdots \\ \theta_{n} \end{bmatrix}$$

Nieliniowa hipoteza

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_1^2$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_1^2 + \theta_2 x_1 x_2 + \theta_2 x_2 + \theta_2 x_2^2$$

Klasyfikacja

Regresja logistyczna

$$h_{\theta}(x) = g(\theta^T x)$$

$$z = \theta^T x$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Funkcja logistyczna

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$h_{\theta}(x) = g(\theta^T x)$$

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$
 $\theta_0 = 7, \theta_1 = -1, \theta_2 = 1$

Funkcja kosztu dla regresji logistycznej:

$$J(\theta) = \frac{1}{m} \sum_{i=0}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & y = 1\\ -\log(1 - h_{\theta}(x)) & y = 0 \end{cases}$$

$$J(\theta) = -\frac{1}{m} \sum_{i=0}^{m} \left[y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right]$$

Gradient prosty

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

$$\theta_{j} := \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} ((h_{\theta}(x^{(i)}) - y^{(i)}) * x^{(i)})$$

Sieci neuronowe

Warstwy ukryte

Warstwa wejściowa

Funkcja kosztu sieci neuronowej:

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{K} \left[y_k^{(i)} log \left(\left(h_{\theta}(x^{(i)}) \right)_k \right) + (1 - y_k^{(i)}) log \left(1 - \left(h_{\theta}(x^{(i)}) \right)_k \right) \right]$$

https://www.coursera.org/learn/machine-learning/

Dziękuję.

Michał Lipka michal.lipka@sap.com

