Replacement sheet

$$W = \sum_{i=1}^{3} \sum_{j=1}^{m} \frac{\mu_{j}}{\alpha_{j}} \left[\left(\lambda_{i}^{\alpha_{j}} - 1 \right) + \frac{1}{n} \left(J^{-n\alpha_{j}} - 1 \right) \right]$$

$$J = \lambda_{1} \lambda_{2} \lambda_{3};$$

$$J\sigma_{i} = \sum_{j=1}^{m} \mu_{j} \left[\lambda_{i}^{\alpha_{j}} - J^{-n\alpha_{j}} \right], i = 1, 2, 3$$

$$\sigma_{oi} = \frac{1}{\lambda_i} \sum_{j=1}^{m} \mu_j \left[\lambda_i^{\alpha_j} - J^{-n\alpha_j} \right], i = 1, 2, 3$$

$$\lambda_{2} = \lambda_{3}; \lambda_{3} = \lambda_{1}^{-n/(2n+1)}$$

$$n = \frac{-\ln \lambda_{3}}{2 \ln \lambda_{3} + \ln \lambda_{1}}$$
140

$$\sigma_{0}(\lambda_{1}) = \frac{1}{\lambda_{1}} \sum_{j=1}^{m} \mu_{j} \left[\lambda_{1}^{\alpha_{j}} - \lambda_{1}^{\frac{-n\alpha_{j}}{2n+1}} \right]$$
150

FIG. 1 (Prior Art)