Homework IV (2022)

1. Let Y be a random variable from $N(0, r^{-1})$ and r be a random variable from $Gamma(\nu/2, \nu/2)$, respectively. Note that the pdf of $Gamma(\nu/2, \nu/2)$ random variable is

$$p(r) = \frac{(\nu/2)^{\nu/2}}{\Gamma(\nu/2)} r^{\nu/2 - 1} e^{-\nu r/2}.$$

(a) Show that the marginal distribution of Y is Student's t distribution with degree of freedom (df) ν . Note that the pdf of distribution with df ν is

$$p(y) = \frac{\nu^{-1/2}\Gamma((\nu+1)/2)}{\sqrt{\pi}\Gamma(\nu/2)} \left(1 + \frac{y^2}{\nu}\right)^{-(\nu+1)/2}$$

- (b) Present an algorithm to generate t_{ν} random variable with $\nu=4$ and generate 10000 random numbers using above result. Then calculate mean of the 10000 random numbers and compare true mean 0.
- (c) Using a Metropolis-Hastings algorithm with the following candidate densities, N(0,1) and t_2 , generate 10000 random numbers. Then compare two results (acceptance rates and mixing). Also, calculate the sample means using the random numbers in (b) and (c) and compare them.
- 2. Data file 'bikes.txt' has counts of the number of bicycles and other vehicles for 10 randomly selected residential streets with bike routes in Berkeley, CA.
 - (a) Set up a hierarchical model for the observed number of bicycles on streets $j=1,\ldots,10$ that is binomial with unknown probability θ_j and sample size equal to the total number of vehicles (bicycles included) in that block. Assign a beta population distribution for the parameter θ_j ($\theta_j \sim^{iid} Beta(\alpha,\beta)$) and a non-informative hyperprior distribution ($p(\alpha,\beta) \propto (\alpha+\beta)^{-5/2}$). Write down the joint posterior distribution.
 - (b) Compute the marginal posterior density of the hyperparameters and draw simulations from the joint posterior distribution of the parameters and hyperparameters.
 - (c) Compare the posterior distributions of the parameters θ_j to the raw proportions in location j.
 - (d) Give a 95% CI for the average underlying proportion of traffic that is bicycles.
 - (e) A location on a new residential street with a bicycle route is sampled at random during which time 100 vehicles of all kinds go by. Give a 95% CI for the number of those vehicles that are bicycles.

- 3. Solve the following problems:
 - (a) For a standard normal random variable Z, calculate P(Z > 2.5) using Monte Carlo sums based on indicator function. How many simulated random variables are needed to obtain three digits of accuracy?
 - (b) Using Monte Carlo sums verify that if $X \sim Gamma(1, 1)$, $P(X > 5.3) \approx .005$. Find the exact .995 cutoff to three digits of accuracy.
- 4. In this problem, we will analyze the Scottish lip cancer data available at icampus. O_i and E_i are the observed and expected number of cases of cancer in region $i = 1, \dots, n = 56$. Assume that $O_i | \lambda_i \sim Poisson(E_i \lambda_i)$, independent over i given $\lambda_1, \dots, \lambda_n$. We consider two models for $\lambda_1, \dots, \lambda_n$:
 - 1. $\lambda_i \sim Gamma(a, b)$, where $a \sim Gamma(0.1, 0.1)$ and $b \sim Gamma(0.1, 0.1)$.
 - 2. $\lambda_i = \exp(\gamma_i)$, where $\gamma_i \sim^{iid} N(\mu, \sigma^2)$, $\mu \sim N(0, 10^2)$, and $\sigma^2 \sim InvGamma(0.1, 0.1)$. Run MCMC algorithms for both models using WinBUGS (10000 iterations and 2000 burn-ins) and compare the posterior means and corresponding 95% confidence intervals for λ 's. Discuss whether inference on λ 's is affected by model choice.