Roteiro da Aula 6

Roteiro

Pilha

Sintaxe

Semantica

- 1 Autômatos de Pilha
- 2 Sintaxe Representação gráfica
- 3 Semântica
- 4 Exemplos

Roteiro

Autômatos de Pilha

Sintaxe

Semântica

Exemplos

Esquema de um AFN/AFD

A memória é finita! Só o Controle Finito (estados)

Roteiro

Autômatos de Pilha

Sintax

Semântic

Exemplos

Esquema de um AP

A memória é infinita! Mas é uma pilha!

Exemplo

Intuição sobre computação com pilha

$$\mathcal{L}_1 = \{0^n 1^n \mid n \ge 0\}$$

- Para cada 0 na entrada, acrescente um 0 na pilha;
- Quando o primeiro 1 for visto na entrada: para cada 1 na entrada, retire um 0 da pilha;
- A palavra pertence à linguagem se e somente se a pilha estiver vazia quando o autômato terminar de lê-la.

Sintaxe

Sintaxe

Sejam
$$\Sigma_\varepsilon = \Sigma \cup \{\varepsilon\}$$
 e $\Gamma_\varepsilon = \Gamma \cup \{\varepsilon\}$

Um Autômato de Pilha é um tupla
$$G = (Q, \Sigma, \Gamma, \delta, q_0, F)$$
, onde

$$\begin{array}{ll} Q & \text{conjunto finito de e} \\ \Sigma & \text{alfabeto finito de er} \\ \Gamma & \text{alfabeto finito da pi} \\ q_0 \in Q & \text{estado inicial} \\ F \subseteq Q & \text{conjunto de estados} \\ \delta : Q \times \Sigma_\varepsilon \times \Gamma_\varepsilon \to \mathcal{P}(Q \times \Gamma_\varepsilon) & \text{função de transição} \end{array}$$

conjunto finito de estados alfabeto finito de entrada alfabeto finito da pilha estado inicial conjunto de estados finais

Roteiro

Autômatos de Pilha

Sintaxe

Representação gráfica

Semantic

Exemplo

Sintaxe

Exemplo

$$A_1 = (Q, \Sigma, \Gamma, \delta, q_0, F)$$
, onde:

- $Q = \{q_1, q_2, q_3, q_4\};$
- $\Sigma = \{0, 1\};$
- $\Gamma = \{0, \$\};$
- $F = \{q_1, q_4\};$
- $q_0 = q_1$;

Sintaxe

Roteiro

Autômatos d Pilha

Sintaxe

Representação gráfica

Semantic

Exemplos

 δ é dado pela tabela, exemplo:

$$\delta \underbrace{(q_2, 0, \varepsilon)}_{Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon}} = \underbrace{\{(q_2, 0)\}}_{Q \times \Gamma_{\varepsilon}}$$

$$\underbrace{Q \times \Gamma_{\varepsilon}}_{P(Q \times \Gamma_{\varepsilon})}$$

Entrada	0		1			arepsilon			
Pilha	0	\$	ε	0	\$	ε	0	\$	ε
q_1									$\{(q_2,\$)\}$
q_2			$\{(q_2,0)\}$	$\{(q_3,\varepsilon)\}$					
q_3				$\{(q_3,\varepsilon)\}$				$\{(q_4,\varepsilon)\}$	
q_4									

Roteiro

Autômatos d

C:---

Representação gráfica

Samântic

Exemplos

Representação gráfica

Vamos ver intuitivamente o funcionamento desse AP...

Intuição sobre o funcionamento de um AP

Roteiro

Autômatos de

C*...

Representação gráfica

Semântic

Exemplos

Entrada	Estado	Pilha
$\varepsilon 0011\varepsilon$	q_1	
\uparrow		

Roteiro

Autômatos d Pilha

Sintaxe

Semântica

Exemplo

Semântica

Dado um AP $A=(Q,\Sigma,\Gamma,\delta,q_0,F)$ e uma palavra $w\in \Sigma.$ A aceita w se:

- w pode ser escrita como $w = w_1 w_2 \dots w_m$, $w_i \in \Sigma_{\varepsilon}$;
- existe uma seqüência de estados r_0, r_1, \ldots, r_m , $r_i \in Q$;
- existe uma seqüência de palavras s_0, s_1, \ldots, s_m , $s_i \in \Gamma^*$;

tal que:

- $r_0 = q_0 \ e \ s_0 = \varepsilon$;
- $r_m \in F$ e $s_m = \varepsilon$;
- Para todo $i=0,1,\ldots,m-1$ vale $(r_{i+1},b)\in\delta(r_i,w_{i+1},a)$ onde $s_i=at$ e $s_{i+1}=bt$ para $a,b\in\Gamma_\varepsilon$ e $t\in\Gamma^*$.

Roteiro

Autômatos d Pilha

Sintaxe

Semântica

Exemplo

Exemplo de computação formal

$$A_1$$
 aceita $w=0011$ pois

- $w = \varepsilon 0011\varepsilon = w_1w_2w_3w_4w_5w_6$;
- existe seqüência de estados $q_1q_2q_2q_3q_3q_4$;
- existe seqüência de palavras ε , \$, 0\$, 00\$, 0\$, \$, ε .

tal que as 3 condições são satisfeitas

Exemplo: para
$$i=2$$
, $(q_2,\underbrace{0}_b)\in\delta(q_2,0,\underbrace{\varepsilon}_a)$,

onde
$$s_2 = \varepsilon 0\$$$
, $s_3 = 00\$$ e $t = 0\$$

Agora, construir autômato é projetar algoritmo!

Roteiro

Autômatos d

Sintava

Semântica

Exemplos

Como usar uma pilha para aceitar a linguagem

$$\mathcal{L}_2 = \{ ww^R \mid w \in \Sigma^* \}, \quad \Sigma = \{0, 1\}$$

onde w^R é w "de trás para frente" ...

Roteiro

Autômatos d

Sintave

Semântica

Exemplos

Exemplos

$$\mathcal{L}_2 = \{ww^R \mid w \in \Sigma^*\}, \quad \Sigma = \{0, 1\}$$

Autômatos d

Cintow

Samântic

Exemplos

$$\mathcal{L} = \{ w \mid w \text{ possui três 1's consecutivos} \}$$

Não é necessário usar a pilha, pois \mathcal{L} é regular!

Exercício

Roteiro

Autômatos de Pilha

Sintaxe

Somântica

Exemplos

Construa um AP para aceitar a linguagem:

 $\mathcal{L} = \{ w \mid w \text{ tem tamanho impar e o símbolo do meio \'e 0} \}$