

Group Theory

Definition.

A **group** is a set G with an operation \cdot such that:

- 1. G is closed under the operation.
- 2. The operation is associative.
- 3. There is an identity element.
- 4. Every element has an inverse.

Corollary.

The identity element is unique in any group.

Remark.

This result follows from the definition of groups.

Example.

Consider the group (Z, +), the set of integers under addition. The identity element is 0, and each element $z \in Z$ has an inverse -z.

Exercise 1.

Prove the following theorem about groups.

Theorem.

No group can be written down as the union of two of its proper subgroups.

Solution.

We provide a proof by contradiction.

Proof.

Assume two proper subgroups of group G, call them H_1 and H_2 .

Assume $H_1 \cup H_2 = G$. We know that $e \in H_1 \cap H_2$, so $e \in H_1 \cup H_2$.

Let $h_1 \in G$ such that $h_1 \in H_1 \setminus H_2$.

Since $H_1 \neq H_2 \neq G \neq \emptyset$, there exists h_1 only in $H_1 \setminus H_2$. Similarly, $h_2 \in G$ exists such that $h_2 \in H_2 \setminus H_1$.

If $h_1h_2 \in H_1$, then $h_2 \in H_1$, which contradicts our assumption. Therefore, $H_1 \cup H_2 \neq G$.