Dr. Jürg M. Stettbacher

Neugutstrasse 54 CH-8600 Dübendorf

Telefon: +41 43 299 57 23 Email: dsp@stettbacher.ch

Übung

Zahlensysteme

Führen Sie die folgenden Aufgaben von Hand und schriftlich im angegebenen Zahlensystem aus. Achten Sie darauf, dass Sie eine Addition tatsächlich als Addition berechnen und eine Subtraktion als Subtraktion.

- 1. Addieren Sie 10010111_b und 110110_b .
- 2. Addieren Sie die folgenden vier Zahlen: 111110_b , 101001_b , 100111_b und 1010_b .
- 3. Subtrahieren Sie 1011_b von 111000_b .
- 4. Subtrahieren Sie 24_d von 21_d im Dualsystem.
- 5. Addieren Sie -24_d und 21_d im Dualsystem unter Verwendung des 2-er Komplements.
- 6. Multiplizieren Sie 5_d und -19_d im Binärsystem.
- 7. Subtrahieren Sie 145 $_o$ von 416 $_o$.
- 8. Addieren Sie -145_o und 416_o unter Verwendung des 8-er Komplements.
- 9. Subtrahieren Sie $8F9A_h$ von $C5D7_h$.
- 10. Wir denken uns einen Prozessor mit 8 Bit breiten Registern. Addiert werden die vorzeichenlosen Werte 170_d und 90_d . Zeigen Sie, was auf Register-Ebene abläuft.
- 11. Stellen Sie 11011001 $_b$ in BCD dar.

Antworten

1. Addition im 2-er System:

	1	0	0	1	0	1	1	1
+			1	1	0	1	1	0
		1	1		1	1		
	1	1	0	0	1	1	0	1

2. Addition im 2-er System:

			1	1	1	1	1	0
+			1	0	1	0	0	1
+			1	0	0	1	1	1
+					1	0	1	0
	1		1	0	2	0	1	
	1	0	0	1	1	0	0	0

Beachte Folgendes: Der Übertrag (Carry) der ersten Spalte $(1+1=10_b)$ wird in der zweiten Spalte notiert. In der zweiten Spalte haben wir dann, einschliesslich dem Übertrag, $1+1+1+1=4_d=100_b$. In der dritten Spalte notieren wir folglich den Übertrag 0 und in der vierten Spalte den Übertrag 1. Aus der dritten Spalte resultiert nochmals ein Übertrag, so dass in der vierten Spalte schliesslich der Übertrag 2_d steht. Damit wird die Summe der vierten Spalte $1+1+1+2=5_d=101_b$. Es gibt also wiederum einen Übertrag in die übernächste Spalte.

 $3. \,$ Subtraktion im 2-er System:

Beachte, dass der Übertrag hier ein *Borrow* ist. Er wird also in der betreffenden Spalte gemeinsam mit dem Subtrahenden subtrahiert.

4. Für die Umrechnung ins Binärsystem können wir das Horner-Schema verwenden und erhalten: $24_d = 11000_b$, $21_d = 10101_b$. Subtraktion in 2-er System:

Das Resultat ist negativ. Das 2-er Komplement davon ist 11_b . Folglich ist das Resultat -3_d , wie erwartet.

5. $24_d = 11000_b, \ -24_d = \dots 11101000_b \ 21_d = 10101_b.$ Addition in 2-er System:

+	 1	1	1	_	0 1	_	-	_
	 1	1	1	1	1	1	0	1

2

Das Resultat ist das selbe, wie bei der vorhergehenden Aufgabe.

6. $5_d = 101_b$, $19_d = 10011_b$, $-19_d = \dots 11101101_b$. Multiplikation im 2-er System:

1	0	1	x	•••	1	1	1	1	1	0	1	1	0	1
					1	1	1	1	1	0	1	1	0	1
					0	0	0	0	0	0	0	0	0	
					1	1	1	0	1	1	0	1		
					1	1	1	1	1	1	1			
					1	1	1	0	1	0	0	0	0	1

Das Resultat ist negativ. Das 2-er Komplement davon ist $1011111_b = 95_d$. Also ist das Resultat -95_d . Beachte, dass wir für das Resultat genügend Stellen vorsehen müssen. 5_d hat mindestens 4 Stellen, inkl. dem Vorzeichenbit. -19_d hat mindestens 6 Stellen, inkl. dem Vorzeichenbit. Für das Resultat müssen wir demnach mindestens 9 Stellen vorsehen. Dabei dürfen wir nicht vergessen, den negativen Faktor im selben Format darzustellen, das heisst ebenfalls mit mindestens 9 Bit. Man nennt dies Sign Extension.

7. Subtraktion im Oktalformat:

8. 8-er Komplement: $-145_o = \dots 777633_0$. Addition im Oktalformat:

Das Resultat ist das selbe, wie in der Aufgabe zuvor.

9. Subtraktion im Hexadeziamlsystem:

	С	5	D	7
-	8	F	9	Α
	1		1	
	3	6	3	D

10. Die Register sind 8 Bit breit. Wir stellen also die vorzeichenlosen Werte binär in 8 Bit dar: $170_d = 1010'1010_b$, $90_d = 0101'1010_b$. Addition im 2-er System:

		1	0	1	0	1	0	1	0
+		0	1	0	1	1	0	1	0
	1	1	1	1	1		1		
		0	0	0	0	0	1	0	0

Das Resultat in 8 Bit lautet $0000'0100_b = 4_d$, und ist daher offensichtlich falsch. Betrachten wir aber die Überträge (*Carries*), so sehen wir, dass ein Carry stehen geblieben ist, das im Resultat-Register keinen Platz mehr fand.

Würden wir das Carry mit der Wertigkeit $2^8 = 256$ berücksichtigen (was man normalerweise nicht tut), so wäre das Resultat korrekt, nämlich $256_d + 4_d = 260_d$.

11. Für die Umrechnung von 11011001_b ins Dezimalsystem verwenden wir das Horner-Schema rückwärts. Wir beginnen mit der 1 ganz links:

3

Folglich ist $11011001_b = 217_d$. Damit können wir die Dezimalziffern direkt als BCD-Ziffern angeben:

$$11011001_b = 0010'0001'0111_{BCD}$$