Applied Science (chemistry)

22211 /EE /AO

ELECTROCHEMISTRY AND BATTERIES

Teaching Hours:12

Marks:14

SYLLABUS

- 5.1 Electrical conductance in metals and electrolytes, specific conductance, equivalent conductance, cell constant.
- 5.2 Conductance: Nature of solute, nature of solvent, temperature, concentration or dilution.
- 5.3 Electrode Hydrogen electrode ,calomel electrode & glass electrode
- 5.4 Conductometric titration
- 5.5 Batteries- Dry cell, Lead -acid cell, Ni-Cd battery, H2-O2 fuel cell, lithium ion battery

ELECTROCHEMISTRY AND BATTERIES

Conductors - The materials which allow the passage of heat or electricity.

Metallic Conductor – All metals conduct electricity. Due to the presence of free electrons.

Electrolytic Conductor - All Salt solution, basic solutions and acid solution, Conduct electricity, due to the presence of free ions.

Ionisation: The process of splitting of molecules of a substance into charged ions in aqueous or fused state.

Strong electrolyte: The substance which solutions ionizes completely in their aqueous or fused state.eg Hydrochloric acid (HCl), Sulphuric acid (H_2SO_4), Nitric Acid(HNO_3), Sodium Hydroxide (NaOH) solution.

Weak electrolyte: The substance which partially ionize in their aqueous solution eg. : Acetic Acid ($CH_{3}COOH$), Ammonium Hydroxide($NH_{4}OH$)

Ohm's law:

$$I = E/R$$

Where

I= Current in amperes

E=Potential difference in volt

R= Resistance in ohms

Conductance: The ease of flow of charge.

It is the reciprocal of Resistance

Unit: ohm $^{-1}$ or mhos or Siemens (S)

Resistance: The Obstruction to flow of charge.

Unit - ohms.

Specific conductance ($\kappa = kappa$): The conductance offered by a conducting wire of length 1cm and cross section area 1 cm sq.

$$\kappa = 1/\rho$$

$$Unit = ohm$$
 ^{-1}cm $^{-1}$

Specific Resistance ($\rho = rho$): The resistance offered by a conducting wire of length 1cm and cross section area 1 cm sq.

$$\rho = R \frac{a}{l}$$

Unit = ohm cm

Equivalent conductance (Λ_{eq}): The conductance due to all the ions produced by dissociation of 1 gram equivalent of an electrolyte dissolved in V ml of Solution.

$$Unit = ohm^{-1} cm^{-2} eq^{-1}$$

Molar conductivity (Λ_m): The conductance due to all the ions produced by dissociation of 1 gram mole of an electrolyte dissolved in V ml of Solution.

$$Unit = ohm^{-1} cm^{2} mol^{-1}$$

Molar conductivity and specific conductivity are related to each other by the given equation.

$$\Lambda_{m} = \kappa. C/1000$$

Where,

$$\Lambda_m = \text{Molar conductivity}$$

K = Specific conductivity

C = Molar concentration.

Conductance: The conductance of Electrolyte depends upon the Dissociation of molecules .

Degree of Dissociation: The fraction of the number of molecules Dissociated to the total number of molecules taken.

Factors affecting the Degree of Dissociation::

Nature of solute: Electrovalent molecules dissociate readily.

Nature of solvent: Polar Solvent like water helps in dissociation of molecules.

Temperature: Rate of Dissociation increases with increase in temperature or Degree of dissociation is directly proportional to temperature.

Concentration or dilution: Rate of Dissociation Increases with Dilution and Decreases with increase in Concentration. Or Degree of dissociation is inversely proportional to concentration.

Electrodes

- Hydrogen rechode
- **❖** Calomel electrode
- **♦** Glass electrode

Construction of Electrodes

Hydrogen electrode

- Standard Hydrogen Electrode (SHE)
- ❖ Consists of -pt wire, and H2 gas is passed.
- ❖ This is also known as standard Hydrogen Electrode (SHE)

Calomel electrode

- Consist of Mercury-mercurous chloride
- ❖ It is filled with Potassium Chloride Solution.

Glass electrode

- ❖ Consist of Ag (Silver) electrode Coated with AgCl
- This electrode is also used as an Internal reference electrode.

Conductometric titrations

- ❖ This is a analysis (Titration) based on change of conductance of solution
- ❖ Conductance in electrolyte depends on the number and mobility of free ions

Types of conductometric titrations

- ❖ Acid -Base Titration
- Precipitation Titration

In acid base -titration strong acid reacts with strong base.

- ❖ The nature of graph is V' shaped
- ❖ Conductivity of electrolyte decrease and then increase again

In weak acid and strong base titration

the graph is 'S' shaped, the conductance slowly increases and at equivalence point rises sharply.

Battery:

- ❖ A battery is a storehouse of energy
- Primary Battery is non rechargeable
- Secondary battery is rechargeable

Electrolytic Cell: A device in which electrolytes decompose by passing electricity.

Electrochemical Cell: A device in which electricity is generated by Spontaneous Redox reaction

Charging - when current from the external some reverse the chemical reaction of battery and restores it.

Discharging - when the battery gives current to the external source.

Primary battery

Dry Cell:

- ❖ (Oxidation) Anode Zinc vessel
- ❖ (Reduction) Cathode Graphite rod surrounded by paste of Carbon powder and Magnesium dioxide (C + MnO 2)
- ❖ Electrolyte Paste of Zinc Chloride and Ammonium Chloride ($ZnCl_{2} + NH_{4}Cl$)
- Separator Muslin cloth.
- ❖ The cell reaction is irreversible as an ammonium complex is formed during the reaction.
- ❖ E.M.F = 1.5V
- Use in torches, door bells, transistors etc

Secondary battery

Ni-Cd (Alkaline batteries)

- (Oxidation) Anode -Cadmium Oxide
- ❖ (Reduction) Cathode Nickel Oxide mixed with Nickel ($Ni_{2}O_{3}/NiO$)

- ❖ Electrolyte 20 to 25% KOH solution
- ❖ Use in power tools, computer power supply & also Space application

Lead acid Storage Cell

- ❖ (Oxidation] Anode Lead Rod
- ❖ (Reduction) Cathode Lead + Lead oxide.
- ❖ Electrolyte- 20% dil Sulphuric Acid
- \clubsuit EMF = 2 to 12 volts
- Use in gas engines, Telephone exchange, mines, laboratories, hospitals, automobiles.

Lithium ion battery

- ♦ (Oxidation) Anode Metal oxide (Lithium Cobalt oxide)
- (Reduction) Cathode Carbon Rod
- ❖ Electrolyte lithium salt in organic solvent.
- ❖ Use in mobile phones, Laptops, tablete, cameras etc

Fuel cell

The cell which converts the chemical energy of fuel directly into Electrical energy. Eg Hydrogen - Oxygen fuel cell ($H_2 - O_2$)

Advantage of fuel cell.

- High energy efficiency
- ❖ No Air pollution
- Efficient use of fuel.
- No noise pollution
- **♦** low maintenance