HOMEWORK ROUTE FORM

Stanford Center for Professional Development Student Information

Course No. Faculty / Ir	nstructor Boris Murmann	Date 3 Feb 2016		
Student Name Samuel Lenius		Phone 701.388.0568		
2 2				
Company Google Inc	Email lenius@star	nford.edu		
8				
City. Mountain View	State CA Cor	untry USA		
Check One: Homework #: 4	Midterm Other			
The email address provided on this form will be used to return homework, exams, and other documents and correspondence that require routing.				
Total number of pages faxed including cover she	eet 22			
8	For Stanford Use Only	120 E		
, · · · · · · · · · · · · · · · · · · ·	1	2 5 8		
Date Received by the Stanford Center	3 9	Date the Stanford Center for		
for Professional Development	Date Instructor returned graded project	Professional Development returned graded project:		
	Score/Grade: (to be completed by instructor or by teaching assistant)			
*		e		

Please attach this route form to ALL MATERIALS and submit ALL to:

Stanford Center for Professional Development

496 Lomita Mall, Durand Building, Rm 410, Stanford, CA 94305-4036
Office 650.725.3015 | Fax 650.736.1266 or 650.725.4138
For homework confirmation, email scpd-distribution@lists.stanford.edu
http://scpd.stanford.edu

1. \[\\ \frac{\frac{1}{3}}{13/2} \] for \[\(\text{0.18}\text{mn} \) Nmos \$\$ \$PMos at 8 \\ \frac{5}{4} \]

	1	Nos	PMOS	PMOS
0.18pm	弘	26.4GHz 42.5 4A	8.876Hz	2.97
0.36pm	ξ ₁ /ω	7,89 GH2 20,57 m	2.19GH, 5.90 A	3.55
0.36un	+T 1/6 /	0,299	0.246 0.391	

to be 1

Is/w < 30 herce for Zix length expect current density to be 1

2. gm/to= 7 s all pessions the some

Specs "

R_= 1k C= Soff Rs = 104 Avo = -4 L= 0.18pm

a.) Find regulared toil whent

$$\frac{g_{1}}{f_{2}} = 7\frac{s}{A}$$
 $Av_{1} = -4 = -gm \cdot R_{1}$ $g_{1} = -\frac{Av_{2}}{R_{1}} = 4ms$

$$I_{2} = \frac{g_{1}}{g_{1}} = 571uA = I_{1} = I_{1}$$

ITE: 1 = 1142 .. A

c) = ZBGHZ

Open Circuit Time Constat

$$z_1 = c_{gs} \cdot R_s$$
 $z_2 \cdot c_{sd} \left(1 + |A_{val}| \right) \cdot R_s$ $z_3 = R_c \cdot \left(c_c + c_{db} \right)$

Pole OCT = 322 MHz

Problem 2 Part E

subckt		
element	0:m1	0:m2
model	0:nmos214	0:nmos214
region	Saturati	Saturati
id	571.0000u	571.0000u
ibs	0.	0.
ibd	0.	0.
vgs	783.0706m	783.0706m
vds	1.0121	1.0121
vbs	-216.9294m	-216.9294m
vth	541.1596m	541.1596m
vdsat	176.8482m	176.8482m
vod	241.9110m	241.9110m
beta	22.0948m	22.0948m
gam eff	583.6854m	583.6854m
gm	4.0170m	4.0170m
gds	123.2972u	123.2972u
gmb	887.5677u	887.5677u
cdtot	12.6847f	12.6847f
cgtot	22.4760f	22.4760f
cstot	25.7820f	25.7820f
cbtot	19.4629f	19.4629f
cgs	16.2104f	16.2104f
cgd	5.2983f	5.2983f

Somel Lerius

EEZIYB HWY

3. Oc Gain Av=1 Jose 1,16Hz C_ = 500 HF minimum IT. 1 Rs=0 Lp= 24 = 0,24 um VIc= 1.7V Vop= 1,8V

c)
$$\frac{9^{mr}}{I_a} = 8\frac{5}{A}$$
 $I_{ap} = I_{an}$ $g_{np} = g_{nn} = > \frac{9^{mn}}{I_a} = \frac{9^{mr}}{I_a} = 8$
Find I_{ss} and device widths

Samuel Levis

EEZIYB HNY

for constant gm increasing Is results in increasing gm Constat on leads to constat to but increasing Id means that the fraction of Load determining the total Copecitive is decreesing, hence for increases

h) with Av= 1 the Codn capacitor is bootstrapped. With a Rs=0 Cgin is not considered. Heree Cabois the only drain connected NMOS cap left. Coop is shorted, hence we need to consider Cabo and Cosp.

Plot attached.

Is converged to 1154 uA first ratio 1.33

- i) Pros with = 54.4 pm Nmos with = 18.4 pm
- j) Benduiste: 18 Plot and op list attached.

Problem 3 Part D

subckt				
element	0:mn1	0:mn2	0:mp1	0:mp2
model	0:nmos214	0:nmos214	0:pmos214	0:pmos214
region	Saturati	Saturati	Saturati	Saturati
id	547.7760u	547.7760u	-547.7760u	-547.7760u
ibs	0.	0.	0.	0.
ibd	0.	0.	0.	0.
vgs	766.8026m	766.8026m	-705.2563m	-705.2563m
vds	861.5463m	861.5463m	-705.2563m	-705.2563m
vbs	-233.1974m	-233.1974m	0.	0.
vth	539.3613m	539.3613m	-473.2138m	-473.2138m
vdsat	176.0868m	176.0868m	-201.6380m	-201.6380m
vod	227.4413m	227.4413m	-232.0425m	-232.0425m
beta	24.8611m	24.8611m	20.9143m	20.9143m
gam eff	584.3111m	584.3111m	535.9921m	535.9921m
gm	` 4.3913m	4.3913m	4.3583m	4.3583m
gds	89.8445u	89.8445u	126.0953u	126.0953u
gmb	1.0058m	1.0058m	1.3630m	1.3630m
cdtot	20.2688f	20.2688f	76.9346f	76.9346f
cgtot	43.0812f	43.0812f	141.0176f	141.0176f
cstot	48.3107f	48.3107f	159.6900f	159.6900f
cbtot	32.8565f	32.8565f	113.7785f	113.7785f
cgs	32.7243f	32.7243f	102.1611f	102.1611f
cgđ	8.3798f	8.3798f	35.5343f	35.5343f

Problem 3 Part F

0:mn1	0:mn2	0:mp1	0:mp2
0:nmos214	0:nmos214	0:pmos214	0:pmos214
Saturati	Saturati	Saturati	Saturati
547.7760u	547.7760u	-547.7760u	-547.7760u
0.	0.	0.	0.
0.	0.	0.	0.
766.8026m	766.8026m	-705.2563m	-705.2563m
861.5463m	861.5463m	-705.2563m	-705.2563m
-233.1974m	-233.1974m	0	0.
539.3613m	539.3613m	-473.2138m	-473.2138m
176.0868m	176.0868m	-201.6380m	-201.6380m
227.4413m	227.4413m	-232.0425m	-232.0425m
24.8611m	24.8611m	20.9143m	20.9143m
584.3111m	584.3111m	535.9921m	535.9921m
4.3913m	4.3913m	4.3583m	4.3583m
89.8445u	89.8445u	126.0953u	126.0953u
1.0058m	1.0058m	1.3630m	1.3630m
20.2688f	20.2688f	76.9346f	76.9346f
43.0812f	43.0812f	141.0176f	141.0176f
48.3107f	48.3107f	159.6900f	159.6900f
32.8565f	32.8565f	113.7785f	113.7785f
32.7243f	32.7243f	102.1611f	102.1611f
8.3798f	8.3798f	35.5343f	35.5343f
	0:nmos214 Saturati 547.7760u 0. 0. 766.8026m 861.5463m -233.1974m 539.3613m 176.0868m 227.4413m 24.8611m 584.3111m 4.3913m 89.8445u 1.0058m 20.2688f 43.0812f 48.3107f 32.8565f 32.7243f	0:nmos214	Saturati Saturati Saturati 547.7760u 547.7760u -547.7760u 0. 0. 0. 0. 0. 0. 766.8026m 766.8026m -705.2563m 861.5463m 861.5463m -705.2563m -233.1974m 0. 0. 539.3613m -233.1974m 0. 539.3613m -473.2138m 176.0868m 176.0868m -201.6380m 227.4413m 227.4413m -232.0425m 24.8611m 20.9143m 535.9921m 4.3913m 4.3913m 4.3583m 89.8445u 89.8445u 126.0953u 1.0058m 1.0058m 1.3630m 20.2688f 43.0812f 141.0176f 48.3107f 48.3107f 159.6900f 32.8565f 32.8565f 113.7785f 32.7243f 32.7243f 102.1611f

Problem 3 Part J

subckt				
element	0:mn1	0:mn2	0:mp1	0:mp2
model	0:nmos214	0:nmos214	0:pmos214	0:pmos214
region	Saturati	Saturati	Saturati	Saturati
id	577.0000u	577.0000u	-577.0000u	-577.0000u
ibs	0.	0.	0.	0.
ibd	0.	0.	0.	0.
vgs	766.9958m	766.9958m	-705.3199m	-705.3199m
vds	861.6758m	861.6758m	-705.3199m	-705.3199m
vbs	-233.0042m	-233.0042m	0.	0.
vth	539.3270m	539.3270m	-473.2214m	-473.2214m
vdsat	176.2447m	176.2447m	-201.7064m	-201.7064m
vod	227.6688m	227.6688m	-232.0985m	-232.0985m
beta	26.1364m	26.1364m	22.0171m	22.0171m
gam eff	584.3389m	584.3389m	536.0068m	536.0068m
gm	4.6204m	4.6204m		
gds	94.5421u	94.5421u	132.8016u	132.8016u
gmb	1.0584m	1.0584m	1.4355m	1.4355m
cdtot	21.3001f	21.3001f	80.9822f	80.9822f
cgtot	45.3017f	45.3017f	148.4556f	148.4556f
cstot	50.7881f	50.7881f	168.1033f	168.1033f
cbtot	34.5234f	34.5234f	119.7571f	119.7571f
cgs	34.4107f	34.4107f	107.5503f	107.5503f
cgd	8.8119f	8.8119f	37.4090f	37.4090f

Sancel beni-, EEZIYB HWY 4. Plot attached 6) 6) Nnos: 33.2 um PMos: 124.04d.) Printant & Plat attached

Problem 4 Part D

subckt				
element	0:mn1	0:mn2	0:mp1	0:mp2
model	0:nmos214	0:nmos214	0:pmos214	0:pmos214
region	Saturati	Saturati	Saturati	Saturati
id	442.0000u	442.0000u	-442.0000u	-442.0000u
ibs	0.	0.	0.	0.
ibd	0.	0.	0.	0.
vgs	689.1093m	689.1093m	-607.5475m	-607.5475m
vds	881.5618m	881.5618m	-607.5475m	-607.5475m
vbs	-310.8907m	-310.8907m	0.	0.
vth	558.9171m	558.9171m	-473.7236m	-473.7236m
vdsat	117.8577m	117.8577m	-127.0213m	-127.0213m
vod	130.1922m	130.1922m	-133.8239m	-133.8239m
beta	54.1946m	54.1946m	48.5372m	48.5372m
gam eff	584.3667m	584.3667m	536.1561m	536.1561m
gm	5.955m	5.9555m	5.8582m	5.8582m
gds	107.8540u	107.8540u	141.0537u	141.0537u
gmb	1.3490m	1.3490m	1.8036m	1.8036m
cdtot	43.5573f	43.5573f	177.0913f	177.0913f
cgtot	93.0095f	93.0095f	317.8289f	317.8289f
cstot	102.9546f	102.9546f	358.7041f	358.7041f
cbtot	69.7235f	69.7235f	260.9957f	260.9957f
cgs	70.1527f	70.1527f	228.1761f	228.1761f
cgd	18.3062f	18.3062f	80.8248f	80.8248f

a) R_= 6k C_= 100 + Ip: = 100.A V_0= 18V L= 0.18/ 51

Common gate stage - consider only egs & gm

input impedence = gn 11 scgs output inpedent to (1+gn Rs) + 0

10 = 1 - 1 - 1 - 10 - 10 - (R. 11 st.) . 10 : St. = 10 | Rc | 1+ s R. C.

1 + 3 Cgs/gm (+ 1 5 Rili + 52 Cgs 62 Rilga

b = C35/gn + RcCc

biz Cost Rulga

 $\omega_{p_1} = \frac{1}{b_1}$ $\omega_{p_2} = \frac{b_1}{b_2}$

5.) c)
$$5^{m}/cgs$$
 such that $\frac{\omega_{Pl}}{\omega_{Pl}} = 100$

$$\omega_{Pl} = \frac{b_{l}}{b_{l}} \qquad \omega_{Pl} = \frac{b_{l}}{b_{l}}$$

$$\frac{\omega_{Pl}}{\omega_{Pl}} = \frac{b_{l}}{b_{l}} \qquad \omega_{Pl} = \frac{b_{l}}{b_{l}}$$

$$\frac{\omega_{Pl}}{\omega_{Pl}} = \frac{b_{l}^{2}}{b_{l}} \qquad \omega_{Pl} = \frac{b_{l}^{2}}{gm} + R_{l}C_{l}^{2} = \frac{C_{03}^{2}}{3^{m}} + R_{l}^{2}C_{l}^{2} + 2C_{03}C_{l}R_{l}$$

$$\frac{\omega_{Pl}}{\omega_{Pl}} = \frac{b_{l}^{2}}{b_{l}} \qquad \omega_{Pl} = \frac{b_{l}^{2}}{gm} + R_{l}C_{l}^{2} = \frac{C_{03}^{2}}{3^{m}} + R_{l}^{2}C_{l}^{2} + 2C_{03}C_{l}R_{l}$$

$$\frac{b_{1}^{2}}{b_{1}^{2}} \cdot \frac{c_{3}^{2}}{c_{3}^{2}} + \frac{R_{1}^{2}c_{4}^{2}}{c_{4}^{2}} + \frac{2c_{3}c_{4}R_{1}}{g_{2}^{2}} + \frac{2c_{3}c_{4}R_{1}}{g_{2}^{2}} + \frac{c_{3}^{2}c_{4}R_{1}}{g_{2}^{2}} \\
= \frac{c_{3}c_{3}}{c_{4}R_{1}} + \frac{c_{4}R_{1}}{c_{5}^{2}} + \frac{c_{4}R_{1}^{2}}{c_{4}R_{1}} + \frac{c_{5}c_{4}R_{1}}{c_{4}R_{1}^{2}} + \frac{c_{5}c_{5}c_{4}R_{1}}{c_{5}c_{5}c_{5}R_{1}} + \frac{c_{5}c_{5}c_{5}R_{1}}{c_{4}R_{1}^{2}} + \frac{c_{5}c_{5}c_{5}R_{1}}{c_{4}R_{1}^{2}} + \frac{c_{5}c_{5}c_{5}R_{1}}{c_{4}R_{1}^{2}} + \frac{c_{5}c_{5}c_{5}R_{1}}{c_{4}R_{1}^{2}} + \frac{c_{5}c_{5}c_{5}R_{1}}{c_{4}R_{1}^{2}} + \frac{c_{5}c_{5}c_{5}R_{1}}{c_{4}R_{1}^{2}} + \frac{c_{5}c_{5}c_{5}R_{1}}{c_{5}c_{5}R_{1}} + \frac{c_{5}c_{5}c_{5}R_{1}}{c_{5}c_{5}R_{1}} + \frac{c_{5}c_{5}c_{5}R_{1}}{c_{5}c_{5}R_{1}^{2}} + \frac{$$

d) SS model from Ch4 SLide &

$$\omega_{PL} = \frac{b_{1}}{b_{2}} = \frac{\frac{c_{1}n}{gn'}}{\frac{gn'}{gn'}} + \frac{R_{1} Cont}{Cont} \frac{1}{gn'} + \frac{gn'}{Cont} \frac{1}{gn'} + \frac$$

$$\omega_{\tau} = \frac{g_m}{c_{sg}} \qquad \frac{1}{\omega_{\tau}} = \frac{c_{sg}}{g_m}$$

$$\frac{R_{L}C_{out} = R_{L}C_{dd} + R_{L}C_{L}}{I} \quad C_{dd} = \frac{C_{dd}}{C_{99}} \cdot \frac{C_{39}}{C_{99}} \cdot \frac{C_{3$$

These values are very above to the design point

Problem 5 Part H

subckt	
element	0:mn1
model	0:nmos214
region	Saturati
id	100.0000u
ibs	0.
ibd	0.
vgs	723.6087m
vds	1.0236
vbs	-176.3913m
vth	528.9008m
vdsat	149.2505m
vod	194.7079m
beta	5.7016m
gam eff	580.2213m
gm	901.8837u
gds	25.8755u
gmb	201.3754u
cdtot	3.3806f
cgtot	5.6258f
cstot	6.6973f
cbtot	5.3412f
cgs	4.0470f
cgd	1.3242f