MATHEMATIK

 $\sqrt{b^2-4ac}$

2009-10

Zum Lösen quadratischer Gleichungen

STATION 2* (NUR MACHEN, WENN ES INTERESSIERT!):**

Herleitung der abc-Formel über die Scheitelpunktform. Bringe die Parabelgleichung auf Scheitelpunktform. Setz diese gleich Null und schon hast du die Formel von Station 3.

! ZUSATZSTOFF!

$$ax^2 + bx + c = 0$$

Wir bringen die linke Seite der Gleichung auf Scheitelpunktform:

$$a\left(x^{2} + \frac{b}{a}x + \frac{c}{a}\right) = a\left(x^{2} + 2 \cdot \frac{b}{2a} \cdot x + \frac{c}{a} + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right) = a\left(x^{2} + 2 \cdot \frac{b}{2a} \cdot x + \left(\frac{b}{2a}\right)^{2} + \frac{c}{a} - \left(\frac{b}{2a}\right)^{2}\right)$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} + \frac{c}{a} - \left(\frac{b}{2a}\right)^{2}\right) = a\left(x + \frac{b}{2a}\right)^{2} + c - \frac{b^{2}}{4a}$$

Und jetzt können wir den ersten Ausdruck "relativ einfach" nach x auflösen:

$$a\left(x + \frac{b}{2a}\right)^{2} + c - \frac{b^{2}}{4a} = 0 \qquad |-c + \frac{b^{2}}{4a}|$$

$$a\left(x + \frac{b}{2a}\right)^{2} = \frac{b^{2}}{4a} - c = \frac{b^{2} - 4ac}{4a} \qquad |:a|$$

$$\left(x + \frac{b}{2a}\right)^{2} = \frac{b^{2} - 4ac}{4a^{2}} \qquad |\sqrt{\dots}|$$

$$\left(x + \frac{b}{2a}\right) = \pm \sqrt{\frac{b^{2} - 4ac}{4a^{2}}} = \pm \frac{\sqrt{b^{2} - 4ac}}{2a}$$

Und bringen wir noch die Konstante b/2a rüber, steht bereits die abc-Formel da:

$$x = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$

ÜBUNGEN*:

Wende die abc-Formel auf die folgenden Parabeln an:

i)
$$y = 3x^2 - 6x - 3$$
 ii) $y = x^2 - 4x$ iii) $y = 2x^2 - 5x - 3$

$$v = x^2 - 4x$$
 iii) $v = 2x^2 - 5x - 3$

Überprüfe mit dem GTR (über das Schaubild), ob deine Ergebnisse stimmen können.

i)
$$x_1 = 1 + \sqrt{2}, x_2 = 1 - \sqrt{2}$$
 ii) $x_1 = 0, x_2 = 4$ iii) $x_1 = 3, x_2 = -\frac{1}{2}$

ÜBUNGEN**:

Wende die abc-Formel auf die folgenden beiden Parabeln an:

iv)
$$y = x^2 + 1$$
 v) $y = x^2$

- Bei (iv) gibt es ein Problem. Welches? Und wenn man sich das Schaubild ansieht, was sieht man darin für Nullstellen?
- Und wieso gibt es eigentlich bei (v) nur eine Nullstelle? Die Formel fordert zwei?! Vergleiche diese Nullstelle mit denen der ersten drei Teilaufgaben. Erkennst du einen Unterschied?

Hier braucht man keinen Taschenrechner!

- iv) Eine (reelle) Quadratzahl ist immer positiv und somit mindestens null. Addieren wir noch 1 dazu, sind wir immer größer gleich 1 im y-Wert! Setzt man also die Gleichung $x^2+1=0$, dann wird man kein Ergebnis finden! In der abc-Formel merkt man das dadurch, dass die Diskriminante negativ ist, sprich, unter der Wurzel steht eine negative Zahl und da gibt es nun einmal keine reelle Lösung für.
- v) Auch hier findet man sofort eine Lösung; x=0. Aber wo ist die zweite?! Die Diskriminante ist hier 0. Daher doppelt sich die Lösung! Man spricht daher von einer **doppelten Nullstelle**.
- i) bis v) zeigen genau die drei denkbaren Fälle, denn entweder steht unter der Wurzel der abc-Formel eine positive Zahl (dann passt alles: i)-iii)) oder eben eine negative Zahl (dann gibt es keine Lösung, siehe iv)) bzw. die Wurzel ist null, dann "fallen beide Lösungen zusammen" und es gibt eine doppelte Nullstelle (siehe v)).

*: LEICHT **: MITTEL ***: SCHWER