Acousto-optic tunable filter (AOTF),	DNase treatment, 235
quality assurance, 122, 123,	materials, 232, 233
131, 132	microdissection, 234, 235
AFM, see Atomic force microscopy	overview, 232
Aldehyde fuchsin, elastic fiber staining,	reverse transcriptase-polymerase
142–144	chain reaction, 235
Ammonium molybdate stain, see	slide preparation,
Electron microscopy	dehydration, 234
Angular reconstitution, three-	sectioning, 233
dimensional image	specimen preparation, 233
reconstruction,	Asthma, eosinophil analysis with laser
AOTF, see Acousto-optic tunable filter	scanning cytometry,
Apolipoprotein E knockout mice, see	cell quantification, 207, 209
Atherosclerotic plaque	image acquisition, 205-207, 211
AQP1, see Aquaporin-1	Octospot® cytospin system, 205,
Aquaporin-1 (AQP1), zymogen granule	211
association,	overview, 203, 204
evidence, 322–325	sputum sample preparation, 204
mercury chloride sensitivity, 325,	Atherosclerotic plaque,
326	composition analysis in
swelling regulation, 326–328	apolipoprotein E knockout
tritiated water entry assay, 320	mice,
Asbestos,	confocal laser scanning
confocal laser scanning microscopy	microscopy, 145, 150, 151
of lung tissue activators	fixation and processing of tissue,
after exposure,	141
double and triple labeling, 73	image processing and analysis,
markers, 68	146, 147
materials, 68, 69	materials, 138-141, 149, 150
nuclei detection with fluorescent	overview, 138
dyes, 73–75	polarized light microscopy, 146
single immunofluorescence	sectioning, 141, 142
labeling,	staining,
cell type markers, 71–73	collagen with Picrosirius red,
mitogen-activated protein	145, 150
kinase and protein kinase C	DNA, 142
antibodies, 69–71, 74, 75	elastic fibers with aldehyde
gene expression change studies in	fuchsin, 142–144
laser capture microdissected	immunostaining, 145, 150
bronchiolar epithelial cells,	lipids with Oil red O, 142, 150

wide-field microscopy,	findings, 307
bright-field microscopy, 146,	preparation from pancreas, 299
151	porosome reconstitution, 299, 300
fluorescence microscopy, 146	synaptosome and vesicle
types and stability, 137, 138	preparation, 299
Atomic force microscopy (AFM),	principles, 297, 298, 332-334
cell mechanical properties,	zymogen granules, 319, 320
cell indentation,	AutoPix, see Laser capture
cell culture, 342, 352, 353	microdissection
force mapping, 343, 344, 355,	Axial resolution quality assurance, see
356	Confocal laser scanning
single-force curves, 342, 343, 354	microscopy
cleaning up, 344	Bead test, see Confocal laser scanning
data analysis,	microscopy
contact point identification,	Biopsy,
345–347	cryofixation, see Microbiopsy
Hertz model, 344, 356	system
pointwise elastic modulus	laser scanning cytometry, 179, 180
calculation, 347, 348, 356	reflection contrast microscopy, see
data presentation,	Reflection contrast
arrays of modulus curves, 350	microscopy
elastogram, 350	
pointwise modulus curves, 349,	Calcium flux,
350	cameleons,
functional overview, 331, 332	filter sets, 58, 61
materials, 335–337, 352, 353	fluorescence resonance energy
probe,	transfer, 40
preparation and mounting, 337–339, 353	ratiometric imaging in organelles, 57–59, 61
spring constant determination,	subcellular targeting, 40, 57, 63
340, 341, 353, 354	transfection, 47, 62, 57
tip geometry characterization, 341, 342, 354	types and calcium dissociation constants, 41–43
historical perspective, 296	confocal laser scanning microscopy,
instrumentation, 335-337, 350-353	contrast and resolution, 51
porosomes,	indicators, 51
immunogold localization of	line-scanning mode imaging, 54,
porosomes, 300, 305	55
immunoisolated porosomes, 311	modes for imaging, 53, 54
pancreatic acinar cell isolation,	ratiometric imaging, 51, 52, 56
298	single-wavelength excitation
pits and depressions, 302, 304	measurements, 55, 56
plasma membranes,	fluorescent dye probes,

handling, 46, 61, 62	atherosclerotic plaque composition
loading of cells, 38, 46, 62	analysis in apolipoprotein E
microinjection, 38	knockout mice, 145, 150, 151
organelle loading, 56, 57	calcium flux imaging,
types and biophysical properties,	contrast and resolution, 51
38, 39	indicators, 51
materials for quantitative imaging in	line-scanning mode imaging, 54,
cells, 44, 45	55
microperfusion of cells, 47, 62, 63	modes for imaging, 53, 54
probe selection considerations, 44	ratiometric imaging, 51, 52, 56
signal transduction, 37, 38	single-wavelength excitation
tissue culture for imaging, 45, 46, 61	measurements, 55, 56
wide-field fluorescence imaging,	image size, 124
Fura-2 imaging, 49-51, 63	instrumentation, 78
instrumentation, 47–49	interference contrast, 125, 126
Cameleon, see Calcium flux	laser selection, 127, 128
CF, see Cystic fibrosis	lung tissue activator studies after
CGH, see Comparative genomic	asbestos exposure,
hybridization	double and triple labeling, 73
CLSM, see Confocal laser scanning	markers, 68
microscopy	materials, 68, 69
Coefficient of variation bead test, see	nuclei detection with fluorescent
Confocal laser scanning	dyes, 73–75
microscopy	single immunofluorescence
Collagen,	labeling,
Picrosirius red staining, 145, 150	cell type markers, 71–73
second-harmonic imaging,	mitogen-activated protein
applications, 32, 33	kinase and protein kinase C
detection strategies, 27, 31, 32	antibodies, 69-71, 74, 75
rationale, 18	optimization of images, 126, 127
sample preparation, 26, 27	photomultiplier tube requirements, 124
signal propagation and properties,	purchase considerations, 132, 133
25, 26	quality assurance,
structure, 17	acousto-optic tunable filters, 122,
types and functions, 17, 18	123, 131, 132
Comparative genomic hybridization	axial resolution testing,
(CGH),	bead testing, 90, 117
microarray-based comparative geno-	mirror testing, 87, 88, 116, 117
mic hybridization, 245, 246	coefficient of variation bead test,
principles, 240, 241	cell testing, 105
Confocal laser scanning microscopy	intersystem comparisons, 124
(CLSM),	photomultiplier tube testing,
advantages over wide-field imaging,	101, 102, 117, 118, 124,
67	129, 130

principles, 98–101, 128, 129	spectral registration with 1 mm
dichroic functionality, 87, 115, 116	beads, 91
fiberoptic deterioration in merge	square pixels and phase
modules, 121, 122	alignment, 90, 91, 117
field illumination test, 81–83,	ultraviolet beam shape, 86
107–110	ultraviolet power test, 86, 114,
Focal Check bead test, 91–93	115
histological power meter samples, 86, 87, 113	reflection contrast mode, 374, 391, 392, 398
importance, 78, 133	Cryoelectron microscopy, see Electron
laser adjustments, 114	microscopy
laser stability tests,	Cryofixation, see Microbiopsy system
factors affecting stability, 18	Cystic fibrosis (CF),
heat dissipation testing, 122	gene function and pathology, 155,
short-term tests, 98	156
ultraviolet light, 97, 98, 121	gene therapy,
visible light, 95–97, 119–121	microscopy studies,
materials,	overview, 153
beads as test particles, 79, 80,	resources, 162
91–93	vendors, 154
biological test slides, 80, 123,	vectors,
124	adeno-associated virus, 161
fluorescent slides for field	adenovirus, 157, 160
illumination tests, 78, 79	cell culture studies, 156, 157
lens for laser beam shape	lentiviruses, 160, 161
testing, 80	lipofection, 157
microscope systems in study, 81	pseudoviruses, 161
photomultiplier tube spectral	prevalence, 155
check, 81	
power meter reading, 79, 83	DNA microarray,
reflecting mirror for axial	comparative genomic hybridization,
resolution test, 80	245, 246
software, 81	laser scanning,
square sampling, 80	fluorescent labels, 262, 263
objectives and lens cleaning, 110,	instrumentation, 263, 264, 267
111	light source, 263
photomultiplier tube testing,	materials, 262
coefficient of variation bead	parameter setting, 270, 271, 273
test, 101, 102, 124, 129, 130	photon detection, 263, 265
spectral scanning, 102, 103, 125	scanner comparison, 267, 270
power meter test, 83–86, 111–113	signal-to-noise ratio, 267
sensitivity testing, 105, 106, 130,	simultaneous versus sequential
131	scanning, 265, 267
spectral registration test, 93–95	principles, 261, 262

Doxorubicin, laser scanning cytometry	three-dimensional cryoelectron
of microcapsule uptake by	microscopy of single
breast cancer cells,	particles,
cell selection and subculture, 198,	applications, 403, 404
199	data collection,
doxorubicin linking to	overview, 418, 423
microcapsules, 198	tilt-pairs for random conical
human serum albumin microcapsule	reconstructions, 420, 421
preparation, 198	untilted images, 418–420
image acquisition, 200, 201, 210,	general materials and vendors, 405
211	holey grid preparation,
instrumentation, 202	Formvar holey film
materials, 197, 198	preparation, 407, 421
multidrug resistance analysis, 196	Formvar holey grid
overview, 196, 197	preparation, 407, 408
slide preparation and fluorescence	Formvar solution preparation,
microscopy, 200, 210	407
uptake studies, 199, 200	hole diameters, 405, 406
	slide cleaning, 406
Elastogram, atomic force microscopy,	thin carbon grids, 408
350	image reconstruction,
Electron microscopy (EM),	angular reconstitution, 429
alignment,	image processing systems, 430
high coherence illumination	random conical reconstruction
conditions,	see Random conical
C2 aperture settings, 417, 418	reconstruction
C2 lens settings, 416	theory, 428
gun settings, 416, 417	tomography, 428–430
point mode settings at 100kV,	staining,
418	deep staining, 411, 412, 421
standard alignment, 414–416,	uranyl acetate, 411
423	stain preparation,
cryofixation, see Microbiopsy	ammonium molybdate, 409
system	methylamine tungstate with
historical perspective, 296	bacitracin, 409
porosome transmission electron	uranyl acetate, 408
microscopy,	vitreous ice preparations, 409-
findings, 309, 311, 320	414, 421–423
specimen preparation, 301	zymogen granule immunoelectron
zymogen granule isolation, 300,	microscopy, 319
301	EM, see Electron microscopy
radiation damage of samples, 404	Eosinophil, see Asthma
reflection contrast microscopy	EPON resin, see Reflection contrast
comparison, 363, 364, 393	microscopy
	ERK. see Extracellular signal-regulated

kinase

Extracellular signal-regulated kinase	spectral karyotyping, 240
(ERK), confocal laser	telomere analysis, 241
scanning microscopy studies	near-field scanning optical
of asbestos injury in lung,	microscopy of metaphase
68–70	chromosomes, 283, 285,
	286, 290
FIA, see Fluorescence image analysis	principles, 237, 238
Fiber-FISH, see Fluorescence in situ	probes,
hybridization	centromeric probes, 238
FISH, see Fluorescence in situ	gene-specific probes, 239
hybridization	labeling,
Flow cytometry,	direct versus indirect labeling,
laser scanning cytometry advantages,	249
165, 166, 193, 202	materials, 246, 247
limitations, 165, 166	nick translation, 249, 253
Fluo-3, see Calcium flux	telomere probes, 239
Fluorescence image analysis (FIA), laser	whole-chromosome paints, 239
scanning cytometry, 169	visualization,
Fluorescence in situ hybridization	counterstaining, 251, 253
(FISH),	posthybridization washing for
denaturation of target DNA, 250	direct labeling, 251
fiber-FISH, 245	primary antibody reaction for
formalin-fixed, paraffin-embedded	indirectly labeled slides, 250
tumor samples, 251–253	Formvar holey grid, see Electron
hybridization conditions, 250, 253	microscopy
interphase FISH,	Fourier shell correlation, see Random
clinical applications, 241, 242	conical reconstruction
paraffin-embedded tissues, 242,	Fura-2, see Calcium flux
243, 245	Fusion pore, see Porosome
specimen preparation, 249, 253	
laser capture microdissected nuclei	Gene expression profiling, see DNA
analysis, 252–254	microarray; Laser capture
laser scanning cytometry, 169, 174,	microdissection
181	Gene therapy, see Cystic fibrosis
microarray-based comparative geno-	G protein, zymogen granule
mic hybridization, 245, 246	association, 320, 321
multicolor FISH of metaphase	
preparations,	H&E staining, see Hematoxylin and
comparative genomic	eosin staining
hybridization, 240, 241	Hematoxylin and eosin (H&E) staining,
overview of techniques, 239, 240	formalin-fixed paraffin-embedded
specimen preparation,	tissue sections, 217, 218
fibroblast culture, 248, 253	frozen tissue sections, 216, 217, 225
lymphocyte culture, 248	Holey grid, see Electron microscopy

iGeneration, laser scanning cytometers, frozen tissue sectioning, 216, 225 hematoxylin and eosin staining, 183, 184 Image reconstruction, see Electron formalin-fixed paraffinmicroscopy; Random embedded sections, 217, 218 conical reconstruction Immunoelectron microscopy, see frozen sections, 216, 217, 225, Electron microscopy Interphase FISH, see Fluorescence in manual laser capture situ hybridization microdissection, PixCell system operation, 218– 223, 226, 227 JNK, see Jun N-terminal kinase Jun N-terminal kinase (JNK), confocal sample storage, 223 laser scanning microscopy saving images, 223 studies of asbestos injury in slide preparation, 219 materials, 215, 216, 225 lung, 69, 70 Laser quality assurance, see Confocal Ki-67, confocal laser scanning microslaser scanning microscopy copy studies of asbestos Laser scanning cytometry (LSC), injury in lung, 68, 73 advantages over flow cytometry, 166, 193, 202 Laser capture microdissection (LCM), cell-cell interaction studies, 181, 182 asbestos-induced gene expression clinical pathology applications, change studies in biopsy analysis, 179, 180 bronchiolar epithelial cells, doxorubicin microcapsule uptake DNase treatment, 235 by breast cancer cells, materials, 232, 233 cell selection and subculture, microdissection, 234, 235 198, 199 overview, 232 doxorubicin linking to reverse transcriptase-polymerase microcapsules, 198 chain reaction, 235 human serum albumin microslide preparation, capsule preparation, 198 dehydration, 234 image acquisition, 200, 201, sectioning, 233 210, 211 specimen preparation, 233 instrumentation, 202 fluorescence in situ hybridization materials, 197, 198 analysis of nuclei, 252-254 multidrug resistance analysis, principles, 213-215, 224, 225, 231, 196 232 overview, 196, 197 protein analysis of microdissected slide preparation and fluorescence microscopy, frozen tissue sections, automated laser capture 200, 210 microdissection with uptake studies, 199, 200 AutoPix system, 223, 224, eosinophil analysis in asthma,

cell quantification, 207, 209

227

WinCyte software applications,

image acquisition, 205-207,

clonogenicity assay, 175, 176 cytogenetic studies, 174 Octospot® cytospin system, 205, 211 immunophenotyping of cells, 176, overview, 203, 204 177 sputum sample preparation, protein translocation between nucleoli and nucleoplasm, histologic section analysis, 180, 174, 175 181 LCM, see Laser capture microdissection overview, 195, 196 coupling with flow cytometry and Leica DMR microscope, reflection confocal microscope, 183 contrast microscopy fluorescence image analysis, 169 adaptation, 389 fluorescence in situ hybridization, Leica EM PACT, see Microbiopsy 169, 174, 181 system instrumentation, 166, 167, 182, 194, Lowicryl K4M resin, see Reflection 195, 183, 184 contrast microscopy ligand-receptor association studies, LSC, see Laser scanning cytometry 181 Lung injury, see Confocal laser maximal pixel of fluorescence scanning microscopy intensity applications, apoptosis assays, 170, 173, 174 Maximal pixel of fluorescence cell cycle analysis, 169, 170 intensity, see Laser scanning protein translocation, 170, 171 cytometry Messenger RNA detection, see white blood cell identification, 170 Molecular beacons microgravity conditions and Methylamine tungstate stain, see liquidless staining, 183 Electron microscopy micronucleus assay, 172, 173 mfold, molecular beacon secondary nuclear versus cytoplasmic structure prediction, localization of fluorescence, accessible target region selection criteria, 4, 5, 11 171, 172 principles, 193, 194 file output, 4, 11 recorded parameters, 167-169 parameters, 4, 9, 11 relocation feature applications, server, 3, 4 enzyme kinetics, 179 Microarrays, see DNA microarray; sequential analysis of same cells Tissue microarray with different probes, 178, Microbiopsy system, 179 advantages, 472 anesthesia of rats, 467, 473 visual cell examination, 177, 178 research applications, biopsy excision, 469 live-cell studies, 184 cryofixation advantages, 463 tissue microarray analysis, 184cryofixation in Leica EM PACT, 471 electron microscopy of samples, 472 186

instrumentation, 279, 280, 289

meiotic chromosomes, 286, 287, embedding of samples, 472 freeze substitution of samples, 471, 290, 291 472 metaphase chromosomes after materials, 465, 467 fluorescence in situ hybridization, 283, 285, transfer, station preparation, 467-469, 286, 290 473-475, 477 principles, 276-278, 288, 289 tissue, 469, 477 solutions, 280, 281 Micronucleus assay, laser scanning specimen requirements, 278, 279, cytometry, 172, 173 Molecular beacons, NSOM, see Near-field scanning optical composition and nuclease resistance, microscopy hybridization and fluorescence, 1 Octospot® cytospin system, eosinophil analysis in asthma, 205, 211 length and GC composition, 6, 12 melting profile determination, 7 Oil red O, lipid staining, 142, 150 oskar messenger RNA detection in OligoWalk, molecular beacon analysis, Drosophila oocytes, 9, 12, oskar, messenger RNA detection in purity analysis with signal-to-Drosophila oocytes with background ratios, 6, 7 molecular beacons, 9, 12, 13 target RNA site selection, OligoWalk analysis, 5, 6 PCR, see Polymerase chain reaction overview, 2, 3 Pericam, see Calcium flux secondary structure prediction Photomultiplier tube (PMT), DNA microarray laser scanning and using mfold, photon detection, 263, 265 accessible target region selection criteria, 4, 5, 11 quality assurance, see Confocal laser file output, 4, 11 scanning microscopy, parameters, 4, 9, 11 Picrosirius red, collagen staining, 145, server, 3, 4 150 testing in vitro, 7, 9 PixCell, see Laser capture microdissection PKC, see Protein kinase C Near-field scanning optical microscopy (NSOM), PMT, see Photomultiplier tube applications and advantages, 279, Pointwise modulus curve, atomic force 287, 288 microscopy, 349, 350 Polymerase chain reaction (PCR), cell surface imaging, 281–283, 289, 290 reverse transcriptasediffraction limit, 275, 276 polymerase chain reaction far-field microscopy combination, of laser capture 278, 289 microdissected lung cells, image acquisition, 281, 289 235

Porosome,

487

atomic force microscopy,	file types and data management,
immunogold localization of	431–433
porosomes, 300, 305	image alignment,
immunoisolated porosomes, 311	centration, 435, 436, 457
pancreatic acinar cell isolation,	rotational and translational
298	alignment,
pits and depressions, 302, 304	reference-based alignment,
plasma membranes,	436, 437
findings, 307	reference-free alignment, 437
preparation from pancreas, 299	simultaneous rotational/
porosome reconstitution, 299, 300	translational alignment, 437,
synaptosome and vesicle	438
preparation, 299	image classification,
discovery, 297	correspondence analysis, 439–442
function, 311–314	self-organizing maps, 438, 439
immunoprecipitation and Western	image processing systems, 430, 431
blot analysis, 301, 302,	image recording and negative
307–309	selection, 431, 455
pathology, 295, 296	merging of volumes with different
proteins, 307–311	orientations,
size, 297, 312	alignment of volumes, 449
transient fusion, 313, 314	filtering, 448, 449
transmission electron microscopy,	merging, 449, 450
findings, 309, 311	overview, 448, 449
specimen preparation, 301	multireference alignment, 442
zymogen granule isolation, 300,	particle extraction,
301	selection of particle, 433, 434,
Projection onto convex sets, see	455, 456
Random conical	windowing of untilted images,
reconstruction	contrast normalization, and
Protein kinase C (PKC), confocal laser	tilt axis rotation, 434, 435,
scanning microscopy studies	456
of asbestos injury in lung,	principles, 429, 430
68, 69, 71	projection alignment refinement,
	correction and iteration of
Radon inversion, see Random conical reconstruction	refinement process, 446, 457
Random conical reconstruction,	Radon/Fourier space, 445, 446
angle assignment on tilt images, 443,	reprojection methods, 445
457	signal-to-noise ratio correction,
centration of tilt images, 442, 443	446, 447, 457
class separation, 443, 444	projection onto convex sets,
digitization of images, 433, 455	mask application in real space, 444, 445

Radon transform, 445	observation chambers, 373
resolution,	principles, 366–368
improvement, 451–455	specimen preparation,
measurement with Fourier shell	dehydration and embedding,
correlation, 447, 448, 457	EPON, 380, 381, 395
three-dimensional projection	Lowicryl K4M, 381, 395
alignment, 450, 457, 458	Unicryl, 381, 395
transfer function,	immunostaining, 383–385, 396
correction in tilt images, 454	materials, 369–372
correction in untilted images,	overview, 365, 366, 368, 369,
453, 454	375, 376, 394
fitting to tilt images, 454	sectioning,
fitting to untilted images,	collection and storage, 381–
astigmatism value fitting, 452,	383, 395
453	cryosectioning, 383, 395
averaged periodogram	single-cell experiments,
calculation, 451, 452	gold tracer endocytosis, 387,
defocus value fitting, 452	396, 397
two-step Radon inversion, 444	immunogold staining, 385,
weighted back-projection, 444	387, 396, 397
RCM, see Reflection contrast	peroxidase-conjugated
microscopy	antibody internalization,
Reflection contrast microscopy (RCM),	387, 388
advantages and comparison with	slide cleaning and coating, 376
other microscopy	small cube formation,
techniques, 363, 364, 393	monolayer cultures, 378, 395
applications, 365	single-cell suspensions, 377,
confocal laser scanning microscope	378, 394
in reflection mode, 374,	small biopsies, 377, 394
391, 392, 398	tissue, 376, 394
fluorescence microscope adaptation,	transwell cultures, 378, 379,
equipment, 373, 374, 388, 389,	394
397	tissue processing for pre-
Leica DMR microscope, 389	embedding, 379, 394, 395
Zeiss Axioskop microscope, 389,	RNA localization, see Molecular
398	beacons
image recording,	
conventional photography, 392,	Second-harmonic imaging,
398	collagen,
digital recording, 392, 393	applications, 32, 33
materials, 374, 375	detection strategies, 27, 31, 332
interpretation, 393	rationale for second-harmonic
living cell imaging, 388	imaging, 18
microscope operation 389–391 398	sample preparation 26, 27

signal propagation and properties, 25, 26 generation of signal, 15-17, 33 instrumentation, coupling system, 20 laser, 18-21, 33 microscope, 21, 23, 25 Secretory vesicles, see Porosome; Zymogen granule, Spectral karyotyping, principles, 240 Spectral registration quality assurance, see Confocal laser scanning microscopy

Three-dimensional cryoelectron microscopy, see Electron microscopy; Random conical reconstruction Tissue microarray, laser scanning cytometry analysis, 184-186 Tomography, three-dimensional image reconstruction, 428-430 Transmission electron microscopy, see Electron microscopy

Unicryl resin, see Reflection contrast microscopy Uranyl acetate stain, see Electron microscopy,

Western blot, porosomes, 301, 302, 307-309 zymogen granules, 318, 319 WinCyte software, see Laser scanning cytometry

Zeiss Axioskop microscope, reflection contrast microscopy adaptation, 389, 398

Zymogen granule, aquaporin-1 association, evidence, 322-325 swelling regulation, 326-328 tritiated water entry assay, 320 atomic force microscopy, 319, 320 cell fractionation, 318 G protein association, 320, 321 GTP-induced swelling, mercury chloride sensitivity, 325, 326 immunoelectron microscopy, 319 plasma membrane fusion assays, 318 secretory vesicle swelling and exocytosis, 317, 318 size distribution, 320 transmission electron microscopy, findings, 309, 311, 320 isolation, 300, 301 specimen preparation, 301 Western blot, 318-321

METHODS IN MOLECULAR BIOLOGY™ • 319

Series Editor: John M. Walker

Cell Imaging Techniques

Methods and Protocols

Edited by

Douglas J. Taatjes and Brooke T. Mossman

Department of Pathology, University of Vermont, Burlington, VT

Cell imaging methodologies have now become essential research tools for a variety of disciplines that traditionally had not relied on them. In *Cell Imaging Techniques: Methods and Protocols*, distinguished international researchers describe in detail their state-of-the-art methods for the microscopic imaging of cells and molecules. The authors cover a wide spectrum of complementary techniques, including such methods as fluorescence microscopy, electron microscopy, atomic force microscopy, and laser scanning cytometry. Additional protocols on confocal scanning laser microscopy, quantitative computer-assisted image analysis, laser-capture microdissection, microarray image scanning, near-field scanning optical microscopy, and reflection contrast microscopy round out this eclectic collection of cutting-edge imaging techniques now available. The authors also discuss preparative methods for particles and cells by transmission electron microscopy. The protocols follow the successful *Methods in Molecular Biology*™series format, each offering step-by-step laboratory instructions, an introduction outlining the principles behind the technique, lists of the necessary equipment and reagents, and tips on troubleshooting and avoiding known pitfalls.

Timely and highly practical, *Cell Imaging Techniques: Methods and Protocols* provides researchers and clinicians with a richly useful guide to selecting and performing the best imaging method from a bewildering variety of microscopy-based techniques.

FEATURES

- Basic and clinical microscopic techniques found in today's core cell imaging facilities
- Light microscopic techniques to observe mRNA, calcium, and collagen molecules
- Preparative methods for transmission electron microscopy of particles and cells
- Tutorials to provide background for the more complex imaging techniques
- Step-by-step instructions to ensure successful results
- Tricks of the trade and notes on troubleshooting and avoiding known pitfalls

CONTENTS

Molecular Beacons: Fluorescent Probes for Detection of Endogenous mRNAs in Living Cells. Second-Harmonic Imaging of Collagen. Visualizing Calcium Signaling in Cells by Digitized Wide-Field and Confocal Fluorescent Microscopy. Multifluorescence Labeling Techniques and Confocal Laser Scanning Microscopy on Lung Tissue. Evaluation of Confocal Microscopy System Performance. Quantitative Analysis of Atherosclerotic Lesion Composition in Mice. Applications of Microscopy to Genetic Therapy of Cystic Fibrosis and Other Human Diseases. Laser Scanning Cytometry: Principles and Applications. Near-Clinical Applications of Laser Scanning Cytometry. Laser Capture Microdissection. Analysis of Asbestos-Induced Gene Expression Changes in Bronchiolar Epithelial Cells Using Laser Capture Microdissection and Quantitative Reverse Transcriptase-Polymerase Chain Reaction. New Approaches to Fluorescence In Situ Hybridization. Microarray Image Scanning. Near-Field Scanning Optical Microscopy in Cell Biology and Cytogenetics. Porosome: *The Fusion Pore Revealed by Multiple Imaging Modalities*. Secretory Vesicle Swelling by Atomic Force Microscopy. Imaging and Probing Cell Mechanical Properties With the Atomic Force Microscope. Reflection Contrast Microscopy: *The Bridge Between Light and Electron Microscopy*. Three-Dimensional Analysis of Single Particles by Electron Microscopy: *Sample Preparation and Data Acquisition*. Three-Dimensional Reconstruction of Single Particles in Electron Microscopy: *Image Processing*. A New Microbiopsy System Enables Rapid Preparation of Tissue for High-Pressure Freezing. Index.

0.734588.304578

ISBN 1-58829-157-X

Methods in Molecular Biology[™] • 319
CELL IMAGING TECHNIQUES: METHODS AND PROTOCOLS
ISBN: 1-58829-157-X
E-ISBN: 1-59259-993-1

ISSN: 1064–3745 humanapress.com