Set 12A

Determine the force in each member of the Warren bridge truss shown. State whether each member is in tension or compression.

Before drawing the FBD of a pin, assume all those members for which forces are not known to be in tension

and AC

$$F_{AC} = 4.50 \text{ kN}$$
 $T \blacktriangleleft$

Free body: Joint R

$$\frac{F_{BC}}{5} = \frac{F_{BD}}{6} = \frac{7.5 \text{ kN}}{5}$$

$$F_{BC} = 7.50 \text{ kN}$$
 T

 $F_{BD} = 9.00 \text{ kN}$ C

Use static equilibrium of pin B to find forces in BD and BC

Free body: Joint C

$$+ \int_{0}^{1} \Sigma F_{y} = 0: \frac{4}{5} (7.5) + \frac{4}{5} F_{CD} - 6 = 0$$

$$F_{CD} = 0$$

$$\pm \Sigma F_x = 0$$
: $F_{CE} - 4.5 - \frac{3}{5}(7.5) = 0$
 $\pm F_{CE} = +9 \text{ kN}$

$$F_{CE} = 9.00 \text{ kN}$$
 $T \blacktriangleleft$

Truss and loading symmetrical about &

For the given loading, determine the zero-force members in each of the two trusses shown.

(b)

SOLUTION

Truss (b):

<u>Truss (a)</u>: FB: Joint B: $F_{BJ} = 0$

FB: Joint D: $F_{DI} = 0$

FB: Joint E: $F_{EI} = 0$

FB: Joint I: $F_{AI} = 0$

FB: Joint F: $F_{FK} = 0$

FB: Joint G: $F_{GK} = 0$

FB: Joint K: $F_{CK} = 0$

The zero-force members, therefore, are

FB: Joint K: $F_{FK} = 0$

FB: Joint $O: F_{IO} = 0$

AI,BJ,CK,DI,EI,FK,GK ◀

The zero-force members, therefore, are

FK and IO ◀

All other members are either in tension or compression.

Determine the force in members HJ and IL of the truss shown. (Hint: Use section bb.)

SOLUTION

See the solution to Problem 6.61 for free body diagram and analysis to determine the reactions at supports A and P.

$$\mathbf{A}_x = 0$$
; $\mathbf{A}_y = 12.00 \text{ kN}^{\dagger}$; $\mathbf{P} = 24.0 \text{ kN}^{\dagger}$

+)
$$\Sigma M_L = 0$$
: $F_{HJ}(3.2 \text{ m}) - (12 \text{ kN})(3 \text{ m}) + (24 \text{ kN})(6 \text{ m}) = 0$

$$F_{HJ} = -33.75 \text{ kN}$$
 $F_{HJ} = 33.8 \text{ kN}$ $C \blacktriangleleft$

$$F_{HJ} = 33.8 \text{ kN}$$
 C

$$\pm \Sigma F_x = 0$$
: 33.75 kN $- F_{IL} = 0$

$$F_{II} = +33.75 \text{ kN}$$

$$F_{IL} = +33.75 \text{ kN}$$
 $F_{IL} = 33.8 \text{ kN}$ T

Example System of inter connected rigid bodies

Find M to maintain equilibrium of the mechanism (Noing PVW)

System: entire mechanismi.

FB) AX

FB) P

Ey P

FBD

Using Euler's axionus, unknown M can't be find using this FBD alone. (check) 2. G.c.: 0 3. Allow 0→ 0→ 0+80

4. Ex, Ey are workless because SO can't violate Constrand at E (E remains Stationary)

Ax is also workless SIA L Ax

only P and M will do virtual work.

5. We need find StD

6. Worky csys êx-êz with origin at E (fixed - not affected by virtual displacement)

Find M to maintain lquilibrium of the mechanism

 $r_D = 3l\cos\theta \hat{x} + l\sin\theta \hat{e}_y$ $8r_D = -3l\sin\theta 80 \hat{x} + l\cos\theta 80 \hat{e}_y$

7. PVW:

SU =
$$\sum_{i} F_{i} \cdot Sr_{i} + \sum_{i} M_{j} \cdot S\theta_{j} = 0$$

au external (au RB's) {

forces (noncouple)

$$SU = P\hat{Q} \cdot S_{D} + MS\theta \Rightarrow external trique only
= Pex \cdot [-3lsing Sgex + lcoop Sgey] + MSg
= -3 Plsing Sg + MSg = 0
= -3 Plsing Sg + MSg = 0
= - Sg [-3 Plsing + M] = 0
Since Sg is arbitrary = M= 3 Plsing
-3 Plsing + M = 0 = M= 3 Plsing$$

- Knowing that the spring BC is unstretched
- when $\theta = 0$, determine the position or
- configurations one State or worther.

System = Brok+ bead

2· 6· c· : θ

Sory Ox, Oy,

Moleky do

mol do virtual

molek g. Work

Knowing that the spring BC is unstretched

— when $\theta = 0$, determine the position or

positions of equilibrium and state whether

Since only the spring force and mag could do withual work, and

forces equilibrium is Saustied at that & When $\frac{dV}{d\theta} = 0$ When $V = P.6 \cdot A$ $V(\theta) = V^{sprij} f^{m} + V^{bead}$ weight well a dat

We need a datum: Since spring is unstructched at $\theta=0$, we take $\theta=0$ as datum of both pornhalo

Pop V bead wyle = -magb (1-coop) $V^{\text{Spriy}}(\theta) = \frac{1}{2} k \left(X^{\text{extunion}} \right)^2 = \frac{1}{2} k (\Omega \theta)^2$ V(0)= -magb + magbcooθ + 1 k (aθ)2 $ka^2\theta = m_A gb sin \theta$

0= 0 rad loo Solun = .902 rad.

So equilibrium can exist 0=0 or .902 rad

Deg= .902 rad.

$$\frac{d^{2}v}{d\theta^{2}}\Big|_{\theta_{eg}=.902 \text{ rad}}$$

$$= 7.35 \quad \text{(Ueck)}$$

$$> 0$$
Conclusion: Stable equilibrium

Set 12 B: No submission required

Determine the force in each member of the Gambrel roof truss shown. State whether each member is in tension or compression.

$$\mathbf{F}_{AB} = 5 \text{ kN}$$
 $C \blacktriangleleft$ $F_{CE} = 4 \text{ kN}$ $T \blacktriangleleft$ $F_{DE} = 240 \text{ N}$ $T \blacktriangleleft$

$$\mathbf{F}_{AC} = 4 \text{ kN}$$
 $T \blacktriangleleft$ $F_{EF} = 200 \text{ N}$ $C \blacktriangleleft$

$$F_{DF} = 4 \text{ kN}$$
 $C \blacktriangleleft F_{EG} = 4 \text{ kN}$ $T \blacktriangleleft$

$$F_{FG} = 0$$

$$F_{BD} = 4 \text{ kN}$$
 $C \blacktriangleleft$ $F_{FH} = 5 \text{ kN}$ $C \blacktriangleleft$

$$F_{GH} = 4 \text{ kN}$$
 $T \blacktriangleleft$

A Warren bridge truss is loaded as shown. Determine the force in members CE, DE, and DF.

$$F_{DE} = 2.6 \text{ kN}$$
 $T \blacktriangleleft$ $F_{DF} = 9 \text{ kN}$

$$F_{DF} = 9 \text{ kN}$$

 $F_{CE} = 8 \text{ kN}$ $T \blacktriangleleft$

Use PVW PROBLEM 10.14

The mechanism shown is acted upon by the force P; derive an expression for the magnitude of the force O required to maintain equilibrium.

PROBLEM 10.76 We PVW

A block of weight W is hung from member AB as shown. Neglecting the weight of AB and knowing that the spring is unstretched when $\theta = 20^{\circ}$, determine the value of θ corresponding to equilibrium when W = 6.6 N. State whether the equilibrium is stable, unstable, or neutral.

Use PVW · θ = 31.6° ◀

