

INDEX

- 1. Problem Definition
 - 1.1 Dataset Attributes
 - 1.2 Objective and Key Questions
 - 1.3 Technologies and Programming Language
- 2. First Steps
- 3. Data GAP
- 4. Data Analysis
 - 4.1 Valuable Users
 - 4.2 Channels & Valuable Users
 - 4.3 Convertion Rate
 - 4.4 Recommendations
- 5. Predictive Modeling

1.1 DATASET ATTRIBUTES

Acquisitions
userID
ACQUISITION_DATE
ORDER_SEASON
PLAN_CODE
SAME_DAY_REFUND
CURRENT_SUBSCRIPTIO NS_STATE
AGE
USER_REGION
LTV14

Visits
userID
SEASON
CAMPAIGN_ID
WINDOW_NUMBER
CAMPAIGN_TITLE
CAMPAIGN_TYPE
WINDOW_START_TS_PST
WINDOW_END_TS_PST
CHANNEL
NEW_OR_RETURNING_M EMBER
VISIT_CNT

Campaign (DIM) Purchases SEASON userID CAMPAIGN_ID CAMPAIGN_ID CAMPAIGN_TITLE CAMPAIGN_TITLE CAMPAIGN_TYPE SKU CART_QUANTITY **MSRP** COGS SALE_PRICE CATEGORY

1.2 OBJECTIVES AND KEY QUESTIONS

- Who are our most valuable members? How are they different from our less valuable members?
- Which channels are best at driving these members to sales?
- Where are purchase conversion rates strong?
- Based on your analysis, provide actionable recommendations to improve the conversion rate from visits to purchases. Explain the rationale behind each recommendation.

1.3 TECHNOLOGIES AND PROGRAMMING LANGUAGE

Environment using Anaconda

 All analysis performed using Python

• Used libraries: NumPy, Pandas, Matplotlib, Sklearn

 Visual Studio Code used as IDE

2. FIRST STEPS

2. FIRST STEPS

3. DATA GAPS

3.1 CAMPAIGN ID

INSIGHTS

Only 96 campaigns are available in the 3 datasets.

3.2 USER ID

INSIGHTS

Only 873 users are available in the 4 datasets.

3.3 AGE

INSIGHTS

Ages has the higher quantity of Nulls, preventing its usage for deeper insights about users

3.4 MISSING PRIMARY KEY

INSIGHTS

- i. Relationship between
 Visits and Purchases table
 is N:N
- ii. No PK in Visits and Purchases

3.5 JOIN BETWEEN VISITS AND PURCHASES

INSIGHTS

By joining visits and purchases using User ID and Campaign ID, we'll have a GAP of 29.3% of missing values for Window Start and Window End.

In addition, there's no window number in purchases.

4.1 VALUEABLE USERS

By performing this join, we kept 70.71% of the rows from Fact Purchases.

4.1 VALUEABLE USERS

- Sort values by WINDOW_END_TS_PST and drop duplicates of userID and CAMPAIGN_ID
- Inner join Fact Purchases with Fact Visits using of userID and CAMPAIGN_ID
- Calculate TOTAL_REVENUE by performing CART_QUANTITY x SALE_PRICE

By performing this join:

- Kept 70.71% of the rows from Fact Purchases
- Kept 77.77% of the users from Fact Purchases
- Kept 53.33% of the campaigns from Fact Purchases

4.1 VALUEABLE USERS

4.1 VALUEABLE USERS

falsfilfun.

4.1 VALUEABLE USERS

RFM Segment Distribution

INSIGHTS

From 451 customers from 2023-08-06 to 2024-08-06:

- 39.7% have High Value
- 44.1% have Mid Value
- 16.2% have Low Value

4.2 DIFFERENCE BETWEEN VALUEABLE USERS AND OTHER USERS

4.2 DIFFERENCE BETWEEN VALUEABLE USERS AND OTHER USERS

INSIGHTS

4.2 DIFFERENCE BETWEEN VALUEABLE USERS AND OTHER USERS

Most of the features doesn't represent much of the differences between clusters. Let's create a thresh hold for over 3% to consider as an important feature

4.2 DIFFERENCE BETWEEN VALUEABLE USERS AND OTHER USERS

Recalculated the new feature importances for the algorithm.

4.2 DIFFERENCE BETWEEN VALUEABLE USERS AND OTHER USERS

INSIGHTS

From 451 customers from 2023-08-06 to 2024-08-06:

- 77.61% are in cluster 0
- 03.10% are in cluster 1
- 19.29% are in cluster 2

4.2 DIFFERENCE BETWEEN VALUEABLE USERS AND OTHER USERS

			.		٦		
CLUSTER	RFM SCORE	TOTAL REVENUE	UNIQUE SKU COUNT	TOTAL VISIT CNT	% Of High Value Users	% Of Mid Value Users	% Of Low Value Users
0	6.65	81.10	4.92	11.24	25.71%	20.86%	53.43%
1	11.29	1599.75	79.07	52.93	100%	0.00%	0.00%
2	10.67	398.96	22.56	44.21	86.21%	0.00%	13.79%

MEAN

Most valueble users are in cluster 0 and 2. They differ from cart quantity, total revenue, unique skus and visits.

4.2 CHANNELS

CHANNEL	High-Value	Low-Value	Mid-Value
Facebook	158	3	18
Non-Attributed	1644	67	405
Rakuten	20	0	1
crm_email	550	9	75
crm_sms	143	1	46
mobile_android	166	3	29
mobile_ios	mobile_ios 1339		198

The channels that best drives these members to sales are: Mobile IOS and E-mail

falsfit fun.

4.3 STRONG CONVERTION RATE

user_region	users_campaign_visited	users_campaign_bought	conversion_rate
canada	536	150.0	27.99
military	3	0.0	0.0
non-continental us	22	7.0	31.82
other	44	5.0	11.36
us-midwest	1040	253.0	24.33

INSIGHTS

The locations with a stronger convertion rates are, respectively:

- Non-continental us = 31.82%
- Canada = 27.99%
- Us-midwest = 24.33%

The locations with a stronger convertion rates are, respectively: Non-continental us (31.82%), Canada (27.99%), us-midwest (24.33%).

