

Spatial Data Analysis- Functionality and Tools

Kapil Oberai
Scientist/Engineer SF, Geoinformatics Department
kapil@iirs.gov.in

INDIAN INSTITUTE OF REMOTE SENSING, DEHRADUN

Lecture Outline

- Review GIS Data Models
- What is Spatial Data Analysis?
- Broad Classification of analytical GIS capabilities
- Spatial Data Analysis: Vector Based Operations
- Spatial Data Analysis: Raster Based Operations
- Comparison of Vector and Raster-based Spatial Data Analysis
- Example- Site Suitability

Spatial Data Analysis

 It can be defined as <u>computing new information</u> that <u>provides new insight</u> from the existing <u>stored data</u>.

History- Spatial Analysis is not new

London cholera epidemic 1854

Soho

- + Cholera death
- **Water pump**

Source: http://www.ph.ucla.edu/epi/snow/snowcricketarticle.html

INDIAN INSTITUTE OF REMOTE SENSING, DEHRADUN

Broad Classification of analytical GIS capabilities

- Classification, retrieval and measurements
 - All functions in this category are performed on a single (vector or raster) data layer, often using the associated attribute data.
- Overlay functions
 - Combination of two or more spatial data layers.
- Neighborhood functions
 - Evaluate the characteristics of an area surrounding the features location

Overlay Operation

- Standard overlay operators
 - take two input data layers;
 - assume they are **georeferenced** in the same system;
 - overlap in study area.
- If either condition is not met, the use of an overlay operator is senseless.
- The principle is to:
 - compare the characteristics of the same location in both data layers, and
 - to produce a new output value for each location.

Overlay Operations

- Vector (point, lines, polygons)
 - Intersection
 - Clip
 - Union
- Raster
 - Arithmetic operators
 - Comparison and logical operators
 - Conditional

Vector based analysis- Overlay

General Principles of vector overlay

INDIAN INSTITUTE OF REMOTE SENSING, DEHRADUN

Vector based analysis Contd...

Point-in-polygon overlay

Line-in-polygon overlay

Vector based analysis Contd...

Clip (Cookie Cutter)

14

INDIAN INSTITUTE OF REMOTE SENSING, DEHRADUN

Vector based analysis Contd...

Erase

Source: ArcGIS Desktop Documentation (ESRI)

CLIP VS ERASE

- Clip extracts features inside the boundary
- Erase keeps features outside the boundary

Source: https://learngis.org/textbook/section-two-overlay-analysis

16

INDIAN INSTITUTE OF REMOTE SENSING, DEHRADUN

Vector based analysis Contd...

Symmetrical Difference

Source: ArcGIS Desktop Documentation (ESRI)

Dissolve

Vector based analysis

• **Buffering**: also called proximity analysis is based on the distance derived from certain selected features.

Multiple Ring Buffer

19

Raster based analysis

- Overlay operations RASTER
 - New cell values are calculated using map algebra
 - Performed on cell-by-cell basis
 - No geometric calculation

Output_raster_name = Raster_expression

Source: ArcGIS Desktop Documentation (ESRI)

INDIAN INSTITUTE OF REMOTE SENSING, DEHRADUN

Local: Cell by Cell Operations

- Performed on Cell by cell basis
- Computes output cell values as a function of the input cell values
- Can be done using single or multiple raster's
- "No data" cells not included in calculations
- Common examples: overlays and reclassification

Local

 Reclassification: is the process of reassigning a value, a range of values, or a list of values in a raster to new output values

3	3	19	1	6	6	1	Old Values	New Values		5	5	5	5	3	3	
20	3	19	17	1	5	•	1-3	5	•	4	5	5	5	5	3	
	45	4.5	_				3-7	3		_	_	_	_	_	_	
20	15	15	6	11	14		7-8	1		4	2	2	3	5	2	
12	7	15	8	8	10		8-12	5		5	3	2	1	1	Е	
12	/	15	٥	0	10		12-15	2		2	3			_	9	
13	4	18	18		10		15-16	4		2	3	5	5	1	5	
	==						16-19	5		_	_	_	_	·	_	
16	4	18	7		9		19-20	4		4	3	5	3	1	5	
							ND =	1								
	Bas	se l	Ras	te	r				-	Output Raster						

□ Value NaDed

Value = NoData

Source: ArcGIS Desktop Documentation (ESRI)

इसरो डिन्ट

INDIAN INSTITUTE OF REMOTE SENSING, DEHRADUN

Raster Operations Contd...

- Local
 - Reclassification

- Input continuous raster
- **Reclassified raster**

- data involves replacing a range of values with a new values.
 - For example, a raster depicting distance from roads can be reclassified into three distance zones.

26

Source: http://www.geography.hunter.cuny.edu/~jochen/GTECH361/lectures/lecture11/concepts/Reclassifying%20raster%20data.htm

- Local
 - Reclassification

Input discrete raster

Reclassified raster

- Reclassification of categorical data involves replacing individual values with new values.
- For example, land use values can be reclassified into preference values of low (1), medium (2), and high (3).
- Land use values not desired in the analysis are given values of NoData.

27

Source: http://www.geography.hunter.cuny.edu/~jochen/GTECH361/lectures/lecture11/concepts/Reclassifying%20raster%20data.htm

INDIAN INSTITUTE OF REMOTE SENSING, DEHRADUN

Focal (Neighbourhood) Operation

 Value of the output cell determined by the cells in a specified neighbourhood around each input cell

Input processing raste

Input processing raster

Output raster

Output raster

- **Focal Statistics:** calculating a Sum statistic, consider the processing cell with a value of 5 in the diagram.
- A rectangular 3 by 3 cell neighbourhood shape is specified.
- The sum of the values of the neighbouring cells
 (3 + 2 + 3 + 4 + 2 + 1 + 4 = 19) plus the value
 of the processing cell (5) equals 24 (19 + 5 =
 24).
- So a value of 24 is given to the cell in the output raster

Source: http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-focal-statistics-works/htm

Source: ArcGIS Desktop Documentation (ESRI)

INDIAN INSTITUTE OF REMOTE SENSING, DEHRADUN

Raster layer

- · All the cells within a zone have the same value on the output raster layer
- Table
 - Each row in the table contains the statistics for a zone.
 - The first column is the value (or ID) of each zone.
 - The table can be joined back to the zone layer.

Source: ArcGIS Desktop Documentation (ESRI)

Raster Operations Contd...

Global

Euclidean distance: Operations assign to each cell in the output raster dataset its distance from the closest source cell.

31

INDIAN INSTITUTE OF REMOTE SENSING, DEHRADUN

Quiz

- 1) Dissolve operations requires two input layers
- a) True
- b) False
- 2)Re-classification is an example of_____ operation in GIS
- a) Local
- b) Focal
- c) Zonal
- d) Global
- 3) Computing NDVI is an example of ______ operation in GIS.
- a) Local
- b) Focal
- c) Zonal

- d) Global
- 4) Euclidean distance is an example of ______operation in GIS
- a) Local
- b) Focal
- c) Zonal
- d) Global
- 5) Erase Operation keeps features outside the boundary
- a) True
- b) False

Quiz

- 1) Dissolve operations requires two input layers
- a) True
- b) False
- 2)Re-classification is an example of_ operation in GIS
- a) Local
- b) Focal
- c) Zonal
- d) Global
- 3) Computing NDVI is an example of _____ operation in GIS.
- a) Local
- b) Focal
- c) Zonal

- d) Global
 - 4) Euclidean distance is an example of _____ operation in GIS
 - a) Local
 - b) Focal
 - c) Zonal
 - d) Global
- 5) Erase Operation keeps features outside the boundary
- a) True
- b) False

INDIAN INSTITUTE OF REMOTE SENSING, DEHRADUN

Terrain Analysis

Slope:

Aspect:

Contours:

- Map Query Examples
 - Single layer numeric example: elevation > 2000 ft.

35

INDIAN INSTITUTE OF REMOTE SENSING, DEHRADUN

Raster Operations Contd...

- Map Query Examples
 - Single layer numeric example: elevation > 2000 ft.
 - Results in a binary True/False layer

COMPARISON OF VECTOR AND RASTER-BASED DATA ANALYSIS

- Vector and raster data analysis are the two basic types of GIS analysis.
- Treated separately because
 - **GIS software cannot run** them together in the same operation.
- GIS software provide tools to convert vector to raster data and vice-versa.
- GIS software allow use of vector data in some raster data operations (e.g., extraction operations)
 - the data are converted into raster data before the operation starts.
- Each GIS project is different in terms of data sources and objectives.
- Therefore choose the type of data analysis that is efficient and appropriate.
 - depends on the data availability and its format, GIS Software, data complexity and efficiency

37

INDIAN INSTITUTE OF REMOTE SENSING, DEHRADUN

COMPARISON OF VECTOR AND RASTER-BASED DATA ANALYSIS

• Overlay: local operation with multiple raster's is often compared to vector overlay operation.

- vector-based overlay must compute intersections between features and insert points at the intersections.
- not necessary for raster-based local operation; input have same cell size and extent.
- Computation is less complicated than calculating line intersections; even if resampled
- raster-based local operation has access to various tools and operators to create the output whereas a vector-based overlay only combines attributes from input layers.
- Any computations with the attributes must follow the overlay operation.
- So, raster-based overlay is often preferred for projects that involve <u>large number of layers</u> and a <u>considerable amount of computation</u>.
- However an vector overlay operation has advantages that it can combine multiple attributes from each input layer.
- Once combined, <u>all attributes can be queried</u> and analyzed individually or in combination unlike raster operation- one raster for each attribute

COMPARISON OF VECTOR AND RASTER-BASED DATA ANALYSIS

- Buffering: Vector-based buffering and raster physical distance measure operation are similar; both measure distances from select features
- Po 8

- But they differ in following aspects:
 - buffering uses (X,Y) coordinates in measuring distances;
 - raster-based operation uses cells in measuring physical distances.
 - buffering can create more accurate buffer zones than a raster-based operation.
 - accuracy difference can be important, e.g. implementing riparian zone management programs.
 - Second, buffering operation is more flexible- create multiple rings (buffer zones), whereas a raster-based operation creates continuous distance measures.
 - Additional data processing (Reclassification) is required to define buffer zones from continuous distance measures.
 - buffering operation has option of creating separate buffer zones for each select feature or a dissolved buffer zone for all select features.
 - difficult to create and manipulate separate distance measures using a raster-based operation.

20

INDIAN INSTITUTE OF REMOTE SENSING, DEHRADUN

Site Selection/Suitability

Site suitability analysis for construction of school

Problem: Select **suitable sites** for construction of a **new school** (**Intermediate School**) considering following **criteria**:

- 1. The school should be 1km away from existing Inter colleges.
- 2. School should be at least 1 km away from major roads to avoid accidents however for convenience of transportation, it should be within 2 km range.
- 3. To gather a good number of students and to avoid construction of school in congested areas following preference is given to residential areas:
 - a. Medium density residential area: 1st preference
 - b. Minimum and High density areas: 2nd preference
 - c. Highest density residential area: 3rd preference.

2. School should be at least 1 km away from major roads to avoid accidents however for convenience of transportation, it should be within 2 km range.

Site suitability analysis for construction of school

To select suitable sites for construction of a new school (Intermediate School) considering following criteria:

- 1. The school should be 1000 meters away from existing Inter colleges.
- 2. School should be at least 1 km away from major roads to avoid accidents however for convenience of transportation, it should be within 2 km range.
- 3. To gather a good number of students and to avoid construction of school in congested areas following preference is given to residential areas:
 - a. Medium density residential area: 1st preference
 - b. Minimum and High density areas: 2nd preference
 - c. Highest density residential area: 3rd preference.

Thank You

Contact Details of the Faculty:

Email- Kapil@iirs.gov.in Tel-01352524128