计算物理 homework13

李明达 PB180206161*

摘要

这是计算物理第三次作业,作业题目是用 Metropolis-Hasting 抽样方法计算积分:

$$I = \int_0^\infty (x - \alpha \beta)^2 f(x) dx = \alpha \beta^2$$

其中

$$f(x) = \frac{1}{\beta\Gamma(\alpha)} (\frac{x}{\beta})^{\alpha-1} exp(-x/\beta)$$

设积分的权重函数为: p(x)=f(x) 和 $p(x)=(x-\alpha\beta)^2f(x)$ 给定参数 α,β ,并用不同的 γ 值,分别计算积分,讨论计算精度和效率.

关键词

Metropolis-Hasting 抽样方法

1 中国科学技术大学物理学院 * 作者: dslmd@mail.ustc.edu.cn

1. 前言和讨论

在周二下课后,我已经告诉丁泽军老师本题的第二个抽样函数 $p(x) = (x - \alpha\beta)^2 f(x)$ 实际上并不好操作,理由如下:

- 1. $p(x) = (x \alpha\beta)^2 f(x)$ 并不是一个归一的函数
- 2. 如果想要归一,则必须知道最后的积分结果, 所以此方法不行

下面是正文:

2. 算法和程序

2.1 算法

对于一个 γ ,我们假设随机数 $R \in [0,1]$,此时猜测的 x 值为 $x' = -\gamma lnR$,我们设初始值 $x_0 = 1$,由此可以知道比较函数 r 可以写作:

$$r = \left(\frac{x'}{x_i}\right)^{\alpha - 1} exp((x_i - x')/\beta) exp((x' - x_i)/\gamma)$$

这时候把 R 与 r 进行比较从而得出 x_{i+1}

$$x_{i+1} = \begin{cases} x' & if & R < \min\{1, r\} \\ x_i & if & R > \min\{1, r\} \end{cases}$$

从而我们可以得出一个 x 的数组,再进行求平均即可得到积分值。

2.2 程序

在程序中,前面 Seed 和 Schrage_int 是随机数产生器的两部分.

接下来是 Metropolis_Hasting_sampling(int seed,float alpha, float beta, float gamma) 这个函数,他的功能是进行 Metropolis Hasting 抽样,保存抽样结果到 "Metropolis_Hasting_sampling.txt",并且把最后的积分结果 printf 到屏幕上. 每一次抽样都生成一个 N=100000 个 x 值的数组。

3. 实验结果

我选取了两个 $\{\alpha,\beta\}$ 进行了实验,分别是 $\alpha=1,\beta=1$ 、 $\alpha=2,\beta=4$ 。

每次实验我采用 7 个 γ , 从 1 到 7. 所得的实验 结果如表 1 所示。

4. 实验结果分析

通过表 1 的结果, 我们可以作如下分析:

对于不同的 γ 值,计算精度和效率相差比较大,比如 $\alpha=1,\beta=1$ 的时候,可以看出 $\gamma=3,4,5$ 的时候计算的误差远远小于其他时候(当然效率也 更高),并且当 $\gamma=2$ 的时候误差达到了惊人的 4.029184,这比实际积分值还大!(不仅如此,我重 复了多次发现 $\gamma=2$ 的时候误差总是在 4 左右,这 说明这一个点不是偶然的!)所以我推测如果想保证 更小的误差和更高的效率, γ 的取值范围应该有一

表 1. 模拟所得的实验结果

参数值	γ	种子值	理论值	模拟值	误差值
$\alpha = 1$	1	350807120	1	1.006297	0.006297
$\beta = 1$	2	350807120	1	5.029184	4.029184
	3	350807120	1	0.999267	-0.00073
	4	350807120	1	0.999176	-0.00082
	5	350807120	1	0.999114	-0.00089
	6	350807120	1	0.998958	-0.00104
	7	350807120	1	0.998798	-0.0012
$\alpha = 2$	1	1765456300	32	25.82414	-6.17586
$\beta = 4$	2	1765456300	32	15.9436	-16.0564
	3	1765456300	32	18.22591	-13.7741
	4	1765456300	32	23.00902	-8.99098
	5	1765456300	32	28.02898	-3.97103
	6	1765456300	32	34.68905	2.689045
	7	1765456300	32	45.35759	13.35759

个区间: 比如在这种情况, 我们的选择首先要避开 像 $\gamma = 2$ 这种点, 其次应该靠近 3, 4, 5 这些点。

同理,我们还可以分析 $\alpha=2,\beta=4$ 的时候,可以看出在 $\gamma=6$ 的时候,误差最小,效率也最高。但是在 $\gamma=2,3,7$ 的时候,误差就会特别大,效率也特别小。如果想保证更小的误差和更高的效率, γ 的取值范围应该有一个区间,如在这种情况,我们的选择首先要避开像 $\gamma=2,3,7$ 这种点,其次应该靠近 $\gamma=6$ 。

结合两者一起看,最佳的 γ 应该和 α , β 具有正相关关系,过大过小都不好。

5. 总结

总的来说,本次实验中,我用 Metropolis Hasting 抽样方法求解了 $I=\int_0^\infty (x-\alpha\beta)^2 f(x) dx = \alpha\beta^2$ 积分,并且探究了计算精度和效率随 γ 的变化关系,实验圆满顺利完成。