Derivations

Let \mathfrak{g} be a Lie algebra. A *derivation* of \mathfrak{g} is a linear mapping $D: \mathfrak{g} \to \mathfrak{g}$ satisfying the product rule:

$$D([x, y]) = [Dx, y] + [x, Dy],$$

for al $x, y \in \mathfrak{g}$. The set \mathfrak{d} of derivations of \mathfrak{g} is a Lie subalgebra of $\mathfrak{gl}(\mathfrak{g})$ (i.e. $[\mathfrak{d}, \mathfrak{d}] \subset \mathfrak{g}$). Each element x in \mathfrak{g} defines a map $\mathrm{ad}_x : \mathfrak{g} \to \mathfrak{g}$ by $\mathrm{ad}_x(y) = [x, y]$. The map $x \to \mathrm{ad}_x$ is a Lie algebra homomorphism of \mathfrak{g} into \mathfrak{d} . The image of this map is the set of *inner derivations* of \mathfrak{g} . A *characteristic ideal* of \mathfrak{g} is a vector subspace which is stable under every derivation. If \mathfrak{a} and \mathfrak{b} are characteristic ideals of \mathfrak{g} , then $[\mathfrak{a},\mathfrak{b}]$ is also a characteristic ideal.

Fun fact: If $\mathfrak g$ is finite dimensional, then $(\operatorname{Aut}(\mathfrak g))_L=\mathfrak d.$

Semidirect products Let R be a ring and G be a group which acts on R by automorphisms. Recall that the *semidirect product* $R \rtimes G$, is the algebra

$$R \rtimes G = \{ \sum_{g \in G} r_g g \mid r_g \in R \}$$

with multiplication given by $(r_1g_1)(r_2g_2) = r_1g_1(r_2)g_1g_2$. So $\mathbb{C}(G \rtimes H) = \mathbb{C}G \rtimes H$. In the setting of Lie algebras, the semidirect product $\mathfrak{d} \rtimes \mathfrak{g}$, is $\mathfrak{g} \oplus \mathfrak{d}$ with bracket [D, x] = D(x) for $D \in \mathfrak{d}, x \in \mathfrak{g}$. In other (SAT reminiscent) words,

Der is to Lie as Aut is to Grp.

(B-KM Lie algebras arise as semidirect products of \mathfrak{g} with \mathfrak{d} ?)

So, of course, the semidirect product $\mathfrak{a} \times \mathfrak{b}$ of two Lie algebras can be defined when there is a homomorphism $b \mapsto D_b$ of \mathfrak{b} into the derivations of \mathfrak{a} . So

$$[(a,b),(a',b')] = ([b,b'], [a,a'] + (D_b(a') - D_{b'}(a))).$$

This semidirect product is a Lie algebra, with \mathfrak{a} as an ideal and \mathfrak{b} as a Lie subalgebra.

References

[Dx] J. Dixmier, *Enveloping algebras*, Graduate Studies in Mathematics 11, American Mathematical Society, Providence, RI, 1996.