STAT 205A - Homework 9

Hoang Duong

November 17, 2014

Problem 1. Conditional Expectation

Proof. Let $(\Omega_1, \mathcal{F}, \nu_x)$ be the probability space for X, $(\Omega_2, \mathcal{G}, \nu_y)$ be the probability space for Y. Let the product:

$$\begin{split} \Omega &= \Omega_1 \times \Omega_2 = \{(\omega_1, \omega_2) \mid \omega_1 \in \Omega_1, \omega_2 \in \Omega_2\} \\ \mathcal{S} &= \sigma \left(\{S_1 \times S_2 \mid S_1 \in \mathcal{F}, S_2 \in \mathcal{G}\} \right) \\ \nu &= \nu_x \times \nu_y \\ \nu(S_1 \times S_2) &= \nu_x(S_1)\nu_y(S_2), \forall S_1 \in \mathcal{F}, S_2 \in \mathcal{G} \end{split}$$

Let $Z = \mathbb{E}[h(X,Y) \mid \mathcal{G}]$, then by definition of conditional expectation, Z is \mathcal{G} -measurable. Since h is bounded measurable, it is absolutely integrable so we can interchange integrals. By the definition of conditional expectation we have:

$$\begin{split} \mathbb{E}\left[Z\mathbb{I}_{G}\right] &= \mathbb{E}\left[h(X,Y)\mathbb{I}_{G}\right], \forall G \in \mathcal{G} \\ &= \int h(X,Y)\mathbb{I}_{G}\nu(dx,dy) \\ &= \int \left(\int h(x,Y)\mathbb{I}_{G}\mu(Y,dx)\right)\nu_{y}(dy) \\ &= \int \mathbb{I}_{G}\left(\int h(x,Y)\mu(Y,dx)\right)\nu_{y}(dy) \end{split}$$

So Z and $\int h(x,Y)\mu(Y,dx)$ are \mathcal{G} measurable function, that have the same expectation on all measurable set in \mathcal{G} . Thus they are equal almost surely.

Problem 2. Conditional Independence Definition

Proof. (b) \Rightarrow (a) Given (b), (a) is true as we can apply (b) for the case $h_1(X) = \mathbb{I}_{A_1}, h_2(X) = \mathbb{I}_{A_2}$. (a) \Rightarrow (b) Given (a) is true.

First step, since (a) is true, (b) is true for any simple function $h_1(X_1), h_2(X_2)$ each of the form $\sum a_i \mathbb{I}_{A_i}$, by the linearlity of expectation.

Second step, from the first step, we have (b) is true for any bounded positive measurable function $h_i(X_i)$, i = 1, 2 by the Monotone Convergence Theorem

Third step, from the second step, for any bounded measurable function, define h_i^+ as the positive part of h_i , and h_i^- as the negative part, then from h_i^+ and $-h_i^-$ are positive bounded measurable function, so (b) is true for both of these function as by second step. Thus (b) is also true for h.

 $(c) \Rightarrow (b)$ Given (c) we have:

$$\mathbb{E}\left[h_1(X_1)h_2(X_2) \mid \mathcal{G}\right] = \mathbb{E}\left[\mathbb{E}\left[h_1(X_1)h_2(X_2) \mid \mathcal{G}, X_2\right] \mid \mathcal{G}\right]$$

$$= \mathbb{E}\left[h_2(X_2)\mathbb{E}\left[h_1(X_1) \mid \mathcal{G}, X_2\right]\right]; \ h_2(X_2) \text{ is } \sigma(X_2) - measurable$$

$$= \mathbb{E}\left[h_2(X_2)\mathbb{E}\left[h_1(X_1) \mid \mathcal{G}\right] \mid \mathcal{G}\right]; \text{ because of (c)}$$

$$= \mathbb{E}\left[h_1(X_1) \mid \mathcal{G}\right]\mathbb{E}\left[h_2(X_2) \mid \mathcal{G}\right]; \ \mathbb{E}\left[h_1(X_1) \mid \mathcal{G}\right] \text{ is } \mathcal{G} - measurable$$

 $(b) \Rightarrow (c)$ Let Y be a \mathcal{G} -measurable r.v. From (b) we have:

$$\mathbb{E}\left[h_{1}(X_{1})h_{2}(X_{2})Y\right]$$

$$=\mathbb{E}\left[\mathbb{E}\left[h_{1}(X_{1})h_{2}(X_{2})Y\mid\mathcal{G}\right]\right]; \text{ Tower Property}$$

$$=\mathbb{E}\left[\mathbb{E}\left[h_{1}(X_{1})h_{2}(X_{2})\mid\mathcal{G}\right]Y\right]; \text{ Y is }\mathcal{G}\text{-}measurable$$

$$=\mathbb{E}\left[\mathbb{E}\left[h_{1}(X_{1})\mid\mathcal{G}\right]\mathbb{E}\left[h_{2}(X_{2})\mid\mathcal{G}\right]Y\right]; \text{ from (b)}$$

$$=^{(*)}\mathbb{E}\left[\mathbb{E}\left[h_{1}(X_{1})\mid\mathcal{G}\right]h_{2}(X_{2})Y\right]; \text{ why?}$$

The last statement is true for only $h_2(X_2)$ that is independent of \mathcal{G} . So we have to limit the scope of $h_2(X_2)$.

Let $Z = \mathbb{E}[h_1(X_1) \mid \mathcal{G}, X_2]$, since $h_2(X_2)Y$ is $\sigma(\mathcal{G}, X_2) - measurable$, we have:

$$\mathbb{E}\left[Zh_2(X_2)Y\right]$$

$$=\mathbb{E}\left[\mathbb{E}\left[h_1(X_1)\mid\mathcal{G},X_2\right]h_2(X_2)Y\right]; \text{ definition of } Z$$

$$=\mathbb{E}\left[\mathbb{E}\left[h_1(X_1)h_2(X_2)Y\mid\mathcal{G},X_2\right]\right]; h_2(X_2)Y \text{ is } \mathcal{G}-measurable$$

$$=\mathbb{E}\left[h_1(X_1)h_2(X_2)Y\right]; \text{ Tower Property}$$

$$=\mathbb{E}\left[\mathbb{E}\left[h_1(X_1)\mid\mathcal{G}\right]h_2(X_2)Y\right]; \text{ because of (*)}$$

Thus $\mathbb{E}[(Z - \mathbb{E}[h_1(X_1) \mid \mathcal{G}]) h_2(X_2)Y] = 0$, by the $\pi - \lambda$ theorem, we have:

$$\mathbb{E}\left[\left(Z - \mathbb{E}\left[h_1(X_1) \mid \mathcal{G}\right]\right)X\right] = 0$$

for all X that is $\sigma(\mathcal{G}, X_2)$ —measurable. Take $X = Z - \mathbb{E}[h_1(X_1) \mid \mathcal{G}]$ then we have $Z = \mathbb{E}[h_1(X_1) \mid \mathcal{G}]$. \square

Problem 3. Conditional Independence with respect to different σ -algebra.

- (a) X, Y conditional independent given Z
- (b) X, Z conditional independent given \mathcal{F}

Proof. For h bounded and measurable, we have:

$$\mathbb{E}[h(X) \mid Y, Z] = \mathbb{E}[h(X) \mid Z] \text{ by (a) and 2(c)}$$
(1)

$$\mathbb{E}[h(Y) \mid X, Z] = \mathbb{E}[h(Y) \mid Z] \text{ by (a) } 2(c)$$
(2)

$$\mathbb{E}[h(X) \mid Z, \mathcal{F}] = \mathbb{E}[h(X) \mid \mathcal{F}] \text{ by (b) and 2(c)}$$
(3)

$$\mathbb{E}[h(X) \mid Z, \mathcal{F}] = \mathbb{E}[h(X) \mid Z] \text{ because } \mathcal{F} \subset \sigma(Z)$$
(4)

$$\Rightarrow \mathbb{E}\left[h(X) \mid \mathcal{F}\right] = \mathbb{E}\left[h(X) \mid Z\right] \tag{5}$$

So

$$\begin{split} & \mathbb{E}\left[h(X) \mid Y, \mathcal{F}\right] \\ =& \mathbb{E}\left[\mathbb{E}\left[h(X) \mid Y, Z\right] \mid Y, \mathcal{F}\right] \text{ Tower Property} \\ =& \mathbb{E}\left[\mathbb{E}\left[h(X) \mid Z\right] \mid Y, \mathcal{F}\right] \text{ by } (1) \\ =& \mathbb{E}\left[\mathbb{E}\left[h(X) \mid \mathcal{F}\right] \mid Y, \mathcal{F}\right] \text{ by } (5) \\ =& \mathbb{E}\left[h(X) \mid \mathcal{F}\right] \text{ Tower Property} \end{split}$$

So by 2(c) we have X, Y are conditionally independent given \mathcal{F} .

Problem 4. Super martingale

Proof. Given X_n, Y_n sunmartingale, we have:

$$\mathbb{E}\left[X_{n+1} + Y_{n+1} \mid \mathcal{F}_n\right] = \mathbb{E}\left[X_{n+1} \mid \mathcal{F}_n\right] + \mathbb{E}\left[Y_n + 1 \mid \mathcal{F}_n\right]$$

$$\geq X_n + Y_n$$

So $X_n + Y_n$ is a submargingale.

$$\mathbb{E}\left[\max(X_{n+1}, Y_{n+1}) \mid \mathcal{F}_n\right] \ge \mathbb{E}\left[X_{n+1} \mid \mathcal{F}_n\right] \ge X_n$$

$$\mathbb{E}\left[\max(X_{n+1}, Y_{n+1}) \mid \mathcal{F}_n\right] \ge \mathbb{E}\left[Y_{n+1} \mid \mathcal{F}_n\right] \ge Y_n$$

$$\Rightarrow \mathbb{E}\left[\max(X_{n+1}, Y_{n+1}) \mid \mathcal{F}_n\right] \ge \max(X_n + Y_n)$$

So $\max(X_n, Y_n)$ is a submartingale.

Problem 5. Counter Example

Proof. Let W_i be i.i.d with $\mathbb{P}[W_i = 1] = \mathbb{P}[W_i = -1] = 1/2$. Let $X_n = -\sum_{i=1}^n W_i, Y_n = \sum_{i=1}^{n+1} W_i$. Then X_n is a martingale w.r.t. $\sigma(W_1, ..., W_n)$, thus it is a submartingale. Y_n is a martingale w.r.t. $\sigma(W_1, ..., W_{n+1})$, thus it is a submartingale.

We will prove by contradiction, assuming that $X_n + Y_n = W_{n+1}$ is a submartingale. Since $\sup_{n>0} \mathbb{E}[W_n^+] = 1 < \infty$, by the Doob's first martingale convergence theorem, we have W_n converges pointwise to a random variable. But W_n are i.i.d. non constant. Thus we have contradiction. So W_{n+1} is not a submartingale. \square