

The Approximate Solution for A Triangular Fully Fuzzy Matrix Equation

(W.S.W. Daud, N. Ahmad, G. Malkawi and K.A.A. Aziz)

Wan Suhana Wan Daud

Universiti Malaysia Perlis

4 - 5 AUGUST 2021

Introduction

- Matrix is generally known as a rectangular array, arranged in rows and columns.
- ☐ Usually used to represent a linear system of equation, which can be solve analytically or numerically.
- Matrices have also been used independently in the form of matrix equations.

Application of Control System Theory - Used as an equation solver especially in designing and analyzing the feedback loop systems/state space representation (Zanoli & Pepe, 2018)

During designing & analyzing could involved with any uncertainty problems

Conflicting requirements during system process

Instability of environment/economic conditions/Distraction of any elements and noise

Example of Matrix Equations

$$AX = B$$
 $AX \pm XB = C$

$$AXB - X = C$$
 $AXB = C$

$$AXA^T - X = C \qquad AX + XA^T = C$$

THE COEFFICIENTS OF THE MATRIX EQUATIONS WOULD BE CONSIDERED TO BE IN FUZZY NUMBERS.

Objective

To construct a new method for solving a triangular Fully Fuzzy Matrix Equation (FFME)

$$\tilde{A}\tilde{X}\tilde{B} = \tilde{C}$$

$$\begin{pmatrix} \tilde{a}_{11} & \tilde{a}_{12} & \dots & \tilde{a}_{1n} \\ \tilde{a}_{21} & \tilde{a}_{22} & \dots & \tilde{a}_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \tilde{a}_{m1} & \tilde{a}_{m2} & \dots & \tilde{a}_{mn} \end{pmatrix} \otimes \begin{pmatrix} \tilde{x}_{11} & \tilde{x}_{12} & \dots & \tilde{x}_{1m} \\ \tilde{x}_{21} & \tilde{x}_{22} & \dots & \tilde{x}_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ \tilde{x}_{n1} & \tilde{x}_{n2} & \dots & \tilde{x}_{nm} \end{pmatrix} \otimes \begin{pmatrix} \tilde{b}_{11} & \tilde{b}_{12} & \dots & \tilde{b}_{1n} \\ \tilde{b}_{21} & \tilde{b}_{22} & \dots & \tilde{b}_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \tilde{b}_{m1} & \tilde{b}_{m2} & \dots & \tilde{b}_{mn} \end{pmatrix} = \begin{pmatrix} \tilde{c}_{11} & \tilde{c}_{12} & \dots & \tilde{c}_{1n} \\ \tilde{c}_{21} & \tilde{c}_{22} & \dots & \tilde{c}_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \tilde{c}_{m1} & \tilde{c}_{m2} & \dots & \tilde{c}_{mn} \end{pmatrix}$$

where $\tilde{A} = (a_{ij})$, $1 \le i \le m$, $1 \le j \le n$, $\tilde{B} = (b_{ij})$, $1 \le i \le m$, $1 \le j \le n$ and the right-hand side matrix $\tilde{C} = (c_{ij})$, $1 \le i \le m$, $1 \le j \le n$ are the fuzzy matrices, and the solution $\tilde{X} = (x_{ij})$, $1 \le i \le n$, $1 \le j \le m$ is an unknown fuzzy matrix.

Literature Review

$$\tilde{A}\tilde{X}\tilde{B} = \tilde{C}$$
 (Guo & Shang, 2013)

- -Incompatible for large matrices.
- -Limited only for positive fuzzy coefficients.

$$\tilde{A}\tilde{X} + \tilde{X}\tilde{B} = \tilde{C}$$
 (Shang et al., 2015)

$$\tilde{A}\tilde{X} + \tilde{X}\tilde{B} = \tilde{C}$$
 (Malkawi et al., 2015b)

$$\tilde{A}\tilde{X} + \tilde{X}\tilde{B} = \tilde{C}$$
 (Kenyanpour et. al, 2018) (Elsayed et. Al, 2020)

$$\tilde{X}\tilde{A} = \tilde{C}$$
 (Yang et. al, 2019)

$$\tilde{A}\tilde{X} - \tilde{X}\tilde{B} = \tilde{C}$$
 (Daud et. al, 2018*b*)

 $\tilde{A}\tilde{X}\tilde{B} - \tilde{X} = \tilde{C}$ (Daud et. al, 2021)

Methodology

Kronecker product & Vec-operator

$$\left(\begin{array}{c|cc}
m^{\tilde{S}} & 0 & 0 \\
\hline
-\beta^{\tilde{S}} & (m^{\tilde{S}} + \beta^{\tilde{S}})^{+} & -(m^{\tilde{S}} + \beta^{\tilde{S}})^{-} \\
\hline
-\alpha^{\tilde{S}} & -(m^{\tilde{S}} - \alpha^{\tilde{S}})^{-} & (m^{\tilde{S}} - \alpha^{\tilde{S}})^{+}
\end{array}\right) \begin{pmatrix} m^{\tilde{X}} \\
\alpha^{\tilde{X}} \\
\beta^{\tilde{X}} \end{pmatrix} = \begin{pmatrix} m^{\tilde{C}} \\
\alpha^{\tilde{C}} \\
\beta^{\tilde{C}} \end{pmatrix}$$

 $(\tilde{B}^T \bigotimes_k \tilde{A}) Vec(\tilde{X}) = Vec(\tilde{C})$

* S^{\dagger} is the pseudoinverse of S

Numerical Example

Example 1 Consider the following FFME of $\tilde{A}\tilde{X}\tilde{B} = \tilde{C}$

$$\begin{pmatrix} (-3,1,7) \\ (-2,4,10) \end{pmatrix} \otimes \begin{pmatrix} \tilde{x}_{11} & \tilde{x}_{12} & \tilde{x}_{13} \end{pmatrix} \otimes \begin{pmatrix} (9,2,12) & (2,1,3) \\ (6,3,13) & (12,2,7) \\ (11,4,8) & (9,4,9) \end{pmatrix} = \begin{pmatrix} (420,2376,1536) & (327,1787,1133) \\ (280,4192,2654) & (218,3138,1972) \end{pmatrix}$$

where the coefficients \tilde{A} and \tilde{B} are near-zero and positive TFN respectively, while \tilde{X} is a fuzzy solution.

The Solution:

Step 1: Convert the FFME $\tilde{A}\tilde{X}\tilde{B}=\tilde{C}$ to FFLS $\tilde{S}\tilde{X}=\tilde{C}$

$$\tilde{B}^T \otimes_k \tilde{A} = \begin{pmatrix} (9,2,12) & (6,3,13) & (11,4,8) \\ (2,1,3) & (12,2,7) & (9,4,9) \end{pmatrix} \otimes_k \begin{pmatrix} (-3,1,7) \\ (-2,4,10) \end{pmatrix}$$

$$= \begin{pmatrix} (-27,57,111) & (-18,58,94) & (-33,43,109) \\ (-18,108,186) & (-12,102,164) & (-22,92,174) \\ (-6,14,26) & (-36,40,112) & (-27,45,99) \\ (-4,26,44) & (-24,90,176) & (-18,90,162) \end{pmatrix}$$

From that, the FFLS of $\tilde{S}\tilde{X} = \tilde{C}$ is

$$\begin{pmatrix} (-27,57,111) & (-18,58,94) & (-33,43,109) \\ (-18,108,186) & (-12,102,164) & (-22,92,174) \\ (-6,14,26) & (-36,40,112) & (-27,45,99) \\ (-4,26,44) & (-24,90,176) & (-18,90,162) \end{pmatrix} \begin{pmatrix} (m_{11}^{\tilde{X}},\alpha_{11}^{\tilde{X}},\beta_{11}^{\tilde{X}}) \\ (m_{12}^{\tilde{X}},\alpha_{12}^{\tilde{X}},\beta_{12}^{\tilde{X}}) \\ (m_{13}^{\tilde{X}},\alpha_{13}^{\tilde{X}},\beta_{13}^{\tilde{X}}) \end{pmatrix} = \begin{pmatrix} (420,2376,1536) \\ (280,4192,2654) \\ (327,1787,1133) \\ (218,3138,1972) \end{pmatrix}$$

Step 2: Convert FFLS $\tilde{S}\tilde{X} = \tilde{C}$ to an Associated Linear System (ALS) SX = C.

$$m^{\tilde{S}} = \begin{pmatrix} -27 & -18 & -33 \\ -18 & -12 & -22 \\ -6 & -36 & -27 \\ -4 & -24 & -18 \end{pmatrix}, \quad \alpha^{\tilde{S}} = \begin{pmatrix} 57 & 58 & 43 \\ 108 & 102 & 92 \\ 14 & 40 & 45 \\ 26 & 90 & 90 \end{pmatrix}, \quad \beta^{\tilde{S}} = \begin{pmatrix} 111 & 94 & 109 \\ 186 & 164 & 174 \\ 26 & 112 & 99 \\ 44 & 176 & 162 \end{pmatrix} \qquad m^{\tilde{C}} = \begin{pmatrix} 420 \\ 280 \\ 327 \\ 218 \end{pmatrix}, \alpha^{\tilde{C}} = \begin{pmatrix} 2376 \\ 4192 \\ 1787 \\ 3138 \end{pmatrix}, \beta^{\tilde{C}} = \begin{pmatrix} 1536 \\ 2654 \\ 1133 \\ 1972 \end{pmatrix}$$

$$m^{\tilde{C}} = \begin{pmatrix} 420 \\ 280 \\ 327 \\ 218 \end{pmatrix}, \alpha^{\tilde{C}} = \begin{pmatrix} 2376 \\ 4192 \\ 1787 \\ 3138 \end{pmatrix}, \beta^{\tilde{C}} = \begin{pmatrix} 1536 \\ 2654 \\ 1133 \\ 1972 \end{pmatrix}$$

$$(m^{\tilde{S}} + \beta^{\tilde{S}}) = \begin{pmatrix} 84 & 76 & 76\\ 168 & 152 & 152\\ 20 & 76 & 72\\ 40 & 152 & 144 \end{pmatrix},$$

$$m^{\tilde{S}} = \begin{pmatrix} -27 & -18 & -33 \\ -18 & -12 & -22 \\ -6 & -36 & -27 \\ -4 & -24 & -18 \end{pmatrix}, \quad \alpha^{\tilde{S}} = \begin{pmatrix} 57 & 58 & 43 \\ 108 & 102 & 92 \\ 14 & 40 & 45 \\ 26 & 90 & 90 \end{pmatrix}, \quad \beta^{\tilde{S}} = \begin{pmatrix} 111 & 94 & 109 \\ 186 & 164 & 174 \\ 26 & 112 & 99 \\ 44 & 176 & 162 \end{pmatrix}$$

$$m^{\tilde{C}} = \begin{pmatrix} 420\\280\\327\\218 \end{pmatrix}, \alpha^{\tilde{C}} = \begin{pmatrix} 2376\\4192\\1787\\3138 \end{pmatrix}, \beta^{\tilde{C}} = \begin{pmatrix} 15368\\2654\\1133\\1972 \end{pmatrix}$$

$$(m^{\tilde{S}} - \alpha^{\tilde{S}}) = \begin{pmatrix} -84 & -76 & -76 \\ -126 & -114 & -114 \\ -20 & -76 & -72 \\ -30 & -114 & -108 \end{pmatrix},$$

$$\frac{\left(\begin{array}{c|c} m^{\tilde{S}} & 0 & 0 \\ \hline -\beta^{\tilde{S}} & (m^{\tilde{S}} + \beta^{\tilde{S}})^{+} & -(m^{\tilde{S}} + \beta^{\tilde{S}})^{-} \\ \hline -\alpha^{\tilde{S}} & -(m^{\tilde{S}} - \alpha^{\tilde{S}})^{-} & (m^{\tilde{S}} - \alpha^{\tilde{S}})^{+} \end{array}\right) \begin{pmatrix} m^{\tilde{X}} \\ \alpha^{\tilde{X}} \\ \beta^{\tilde{X}} \end{pmatrix} = \begin{pmatrix} m^{\tilde{C}} \\ \alpha^{\tilde{C}} \\ \beta^{\tilde{C}} \end{pmatrix}$$

$ \begin{array}{c c} & M_{1,1}^{\tilde{X}} \\ & M_{1,2}^{\tilde{X}} \\ & M_{1,3}^{\tilde{X}} \\ \hline & \alpha_{1,1}^{\tilde{X}} \\ & \alpha_{1,2}^{\tilde{X}} \\ & \alpha_{1,3}^{\tilde{X}} \\ \hline & \beta_{1,1}^{\tilde{X}} \\ & \beta_{1,2}^{\tilde{X}} \\ & \beta_{1,2}^{\tilde{X}} \end{array} $	$\begin{pmatrix} 420 \\ 280 \\ 327 \\ 218 \\\hline 2376 \\ 4192 \\ 1787 \\ 3138 \\\hline 1536 \\ 2654 \\ 1133 \\ 1972 \end{pmatrix}$
$\langle P_{1,3} \rangle$	

Step 3: Obtaining the solution.

$$\begin{pmatrix} m_{1,1}^{\tilde{X}} \\ m_{1,2}^{\tilde{X}} \\ m_{1,3}^{\tilde{X}} \\ \alpha_{1,1}^{\tilde{X}} \\ \alpha_{1,2}^{\tilde{X}} \\ \beta_{1,1}^{\tilde{X}} \\ \beta_{1,2}^{\tilde{X}} \\ \beta_{1,2}^{\tilde{X}} \end{pmatrix} = \begin{pmatrix} -27 & -18 & -33 & 0 & 0 & 0 & 0 & 0 & 0 \\ -18 & -12 & -22 & 0 & 0 & 0 & 0 & 0 & 0 \\ -6 & -36 & -27 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -6 & -36 & -27 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -4 & -24 & -18 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -111 & -94 & -109 & 84 & 76 & 76 & 0 & 0 & 0 \\ -186 & -164 & -174 & 168 & 152 & 152 & 0 & 0 & 0 \\ -26 & -112 & -99 & 20 & 76 & 72 & 0 & 0 & 0 \\ -44 & -176 & -162 & 40 & 152 & 144 & 0 & 0 & 0 \\ -57 & -58 & -43 & 84 & 76 & 76 & 0 & 0 & 0 \\ -108 & -102 & -92 & 126 & 114 & 114 & 0 & 0 & 0 \\ -14 & -40 & -45 & 20 & 76 & 72 & 0 & 0 & 0 \\ -26 & -90 & -90 & 30 & 114 & 108 & 0 & 0 & 0 \end{pmatrix}^{\dagger} \begin{pmatrix} 420 \\ 280 \\ 327 \\ 218 \\ 2376 \\ 4192 \\ 1787 \\ 3138 \\ 1536 \\ 2654 \\ 1133 \\ 1972 \end{pmatrix}$$

$$\begin{pmatrix}
\begin{pmatrix}
m_{1,1}^{X} \\
m_{1,2}^{X} \\
m_{1,3}^{X}
\end{pmatrix} \\
\begin{pmatrix}
\alpha_{1,1}^{X} \\
\alpha_{1,2}^{X} \\
\alpha_{1,3}^{X}
\end{pmatrix} \\
\begin{pmatrix}
\alpha_{1,3}^{X} \\
\beta_{1,1}^{X} \\
\beta_{1,2}^{X} \\
\beta_{1}^{X}
\end{pmatrix} = \begin{pmatrix}
\begin{pmatrix}
-5.41699 \\
-3.31542 \\
-6.48678
\end{pmatrix} \\
\begin{pmatrix}
1.68041 \\
4.13539 \\
3.95475
\end{pmatrix} \\
\begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix}
\end{pmatrix}$$

$$\begin{split} \tilde{X} &= \left((m_{1,1}^{\tilde{X}}, \alpha_{1,1}^{\tilde{X}}, \beta_{1,1}^{\tilde{X}}) - (m_{1,2}^{\tilde{X}}, \alpha_{1,2}^{\tilde{X}}, \beta_{1,2}^{\tilde{X}}) - (m_{1,3}^{\tilde{X}}, \alpha_{1,3}^{\tilde{X}}, \beta_{1,3}^{\tilde{X}}) \right) \\ &= \left((-5.41699, 1.68041, 0) - (-3.31542, 4.13539, 0) - (-6.48678, 3.95475, 0) \right) \end{split}$$

Step 4: Verification of the solution.

$$\tilde{A}\tilde{X} = \begin{pmatrix} (-3,1,7) \\ (-2,4,10) \end{pmatrix} \otimes ((-5.41699, 1.68041, 0) (-3.31542, 4.13539, 0) (-6.48678, 3.95475, 0))$$

$$= \begin{pmatrix} (16.251, 44.6406, 12.1386) (9.94626, 39.7495, 19.857) (19.4603, 61.2265, 22.3058) \\ (10.834, 67.6132, 31.7504) (6.63084, 66.2373, 38.074) (12.9736, 96.5058, 49.6756) \end{pmatrix}.$$

$$\begin{split} \tilde{A}\tilde{X}\tilde{B} &= \begin{pmatrix} (16.251, 44.6406, 12.1386) & (9.94626, 39.7495, 19.857) & (19.4603, 61.2265, 22.3058) \\ (10.834, 67.6132, 31.7504) & (6.63084, 66.2373, 38.074) & (12.9736, 96.5058, 49.6756) \end{pmatrix} \\ &\otimes \begin{pmatrix} (9, 2, 12) & (2, 1, 3) \\ (6, 3, 13) & (12, 2, 7) \\ (11, 4, 8) & (9, 4, 9) \end{pmatrix} \\ &= \begin{pmatrix} (420, 2376, 1536) & (327, 1787, 1133) \\ (280, 4192, 2654) & (218, 3138, 1972) \end{pmatrix} \\ &= \tilde{C}. \end{split}$$

Thus, the solution is verified.

Conclusion

This study contributes to a simple and direct method for solving the arbitrary FFME $\tilde{A}\tilde{X}\tilde{B}=\tilde{C}$.

The contribution should be beneficial to researchers from diverse fields, such as linear algebra, fuzzy theory, as well as social sciences.

The contributions also should be applicable for real-life applications, particularly in the field of control system engineering.

Suggestion for future research-Considering other type of linear and non-linear matrix equations, such as $AX + XA^T = C$,

 $AXA^T - X = C$ and AXB + CXD = E, that are also crucial in the real control system applications such as in medical imaging acquisition system, image restoration, model reduction, signal processing and stochastic control.

21 THANK YOU

INTERNATIONAL CONFERENCE ON COMPUTING, MATHEMATICS AND STATISTICS