BIG DATA COMPUTING

ID's last digit: 0-4

Andrea Pietracaprina

Department of Information Engineering
University of Padova
andrea.pietracaprina@unipd.it

OUTLINE

- Big Data Phenomenon
- Computational Challenges
- Organization of the Course
- Administrative Issues

DATA

"Space is big. Really big" (Douglas Adams, The Hitchhiker's Guide to the Galaxy)

Why is DATA growing so much?

- Technological progress:
 - Growth of storage capacity
 - Growth of comunication bandwith
 - Growth of computing capacity
- Reduction of ICT costs
- Pervasiveness of digital technologies: scientific research, health, business, politics, social interactions, ...

From: The Digitization of the World (IDC, 2018)

How big is 175ZB?:

- 1 ZettaByte (ZB) = 1 trillion GB = 10^{12} GB;
- 175 ZB \equiv 23 parallel stacks of DVD from Earth to Moon;
- Downloading 175 ZB at 1Gb/s takes > 43 million years

The world continuously collects huge amounts of:

- Physical data: from sensors, telescopes, particle physics experiments.

 Biological/medical data: from genetic studies, patient
 - monitoring, epidemic evolution analyses.
- SOCIAL
- Human activity data: from social networks, mobile devices, internet/web traffic, IoT systems.
- Business data: from online stores, customer profiling, bank/credit-card/financial services, quality-of-service monitoring.

The term Big Data relates to two distinct issues:

- ISSUE 1:
 - Data produced everywhere;
 - Need for automated analytics (vs human inspection);
 - Challenges: identification of suitable analysis tools, data selection/preparation.
- · ISSUE 2: Focus: fassibility and efficiency of the computation
 - Massive datasets need to be processed;
 - Traditional (algorithmic) approaches are unsuited;
 - Challenges: development of novel computing frameworks, novel solutions

This course focuses on ISSUE 2!

Computing Challenges

Source: IBM Big Data & Analytics Hub

Computational Challenges

- Volume: processing huge datasets poses several challenges and requires a data-centric perspective.
- Veracity: large datasets coming from real-world applications are likely to contain noisy, uncertain data, hence accuracy of solutions must be reconsidered.
- Velocity: sometimes, the data arrive at such a high rate that they cannot be stored and processed offline. Hence stream processing is needed.
- Variety: large datasets arise in very different scenarios. More
 effective processing is achieved by adapting to the actual
 characteristics of data.

The above issues require a

paradigm shift w.r.t. traditional computing.

Computational Challenges

To tackle the above challenges effectively, one needs:

- Platforms with:
 - High storage capacity and computing power
 parallel/distributed architectures
 - Moderate costs
 - Ease of programming and management
- Focus on accuracy-resource tradeoffs, to cope with size, noise, and uncertainty of data
- Data-centric view
- Data stream processing (sometimes)

Big Data Computing Course

What will we learn?

- Novel computing/programming frameworks for big data processing: theory and practice
- 2 Key techniques to process large-scale data
 - Rigorous setting (provable guarantees)
 - Application to fundamental data analysis primitives

Specific topics

- Frameworks: Distributed (MapReduce, Apache Spark) and Streaming
- 2 Techniques:
 - Coresets (application to clustering);
 - Sampling (application to frequent itemsets);
 - Locality sensitive hashing (application to similarity search);
 - Sketches (application to estimating of moments)

Organization of the Course

Subdivision into classes

The students are subdivided into two parallel classes based on their ID's last digit (same syllabus, homeworks, and exams)

- Class A (prof. Pietracaprina): last digit 0-4
- Class B (prof. Silvestri): last digit 5-9

Lectures

Lectures will be in presence and online via Zoom. For Class A, the Zoom link is

```
https://unipd.zoom.us/j/84232837748
```

- For each topic, partial slide sets are made available in advance.
 Final versions (together with solutions to exercises) are uploaded after the topic is fully covered.
- Attendance and active participation are strongly encouraged.

Organization of the Course

Exam

- Final written exam (26 points)
- Homeworks: programming assignments (6+1 points)
 - Groups of 2-3 students (even from different classes)
 - 3 homeworks, approx. one every 3 weeks.
 - Use of Apache Spark on individual PCs (Homeworks 1-2) and on CloudVeneto (Homework 3)
 - All group members receive the same grade. The extra point is given if all homeworks submitted by the respective deadlines.
- Oral exam: at teacher's discretion (see rules in Moodle)

Organization of the Course

Required background

- Java (preferred) or Python programming
- Basic algorithmics: asymptotic, worst-case analysis; fundamental algorithms and data structures; (e.g., lists, queues, stacks, hash tables, maps/dictionaries)
- Basic math tools, combinatorics, and probability.

Administrative Issues

Online tools

- Course Moodle:
 - Announcements and student forum.
 - Infos: Zoom, contacts, textbooks, exam rules and sessions.
 - Lectures diary.
 - Material: slides, videos, exercises, articles.
 - Preliminary exams grades.
- Uniweb: Official exam lists and final grades.
- Exam Moodle (only one for the two classes):

https://esami.elearning.unipd.it/course/view.php?id=3801

- Formation of groups for Homeworks
- Submission of Homeworks.
- Written tests (if online).

Administrative Issues

Contacts and office hours

- Teacher (prof. Andrea Pietracaprina): andrea.pietracaprina@unipd.it
- TAs (dott. Paolo Pellizzoni and dott. Nicolò Penzo): bdc-course@dei.unipd.it

Office hours are by appointment (via Email). Teaching assistants should be contacted only for questions related to homeworks.

TODO: As soon as possible

- Register in the Course Moodle (no password)
- Register in the Exam Moodle (password: bigdatalab)
- Form groups of size at most 3 for the homeworks by March 15.
 Once a group is formed, it must be registered in the Exam Moodle using the Group registration link.