Цель работы: научиться экспериментально определять действующие значения и начальные фазы токов и напряжений в цепи; освоить метод расчета цепей синусоидального тока комплексным методом, построение векторных диаграмм; экспериментально проверить выполнение законов Кирхгофа.

1. Задание на предварительный расчет.

1.1. Схема замещения электрической цепи

Схема электрической цепи для предварительного расчета представлена на рисунке 1. Формируем комплексную схему замещения для данной схемы, см. рисунок 2.

Рисунок 1 – Схема электрической цепи для предварительного расчета

Исходные данные для расчета представлены в таблице 1.

Таблица 1 – Исходные данные для расчета

№ стенда	Номер варианта	f, кГц	Ветвь L, R ₂		Ветвь С, R ₃	
			L	ф, град	C	ф, град
2	1	1	L_{B}	25	C_{B}	45

Параметры цепи:

$$U = 2 B;$$

 $L = L_B = 25,3 \text{ м}\Gamma\text{H};$
 $C = C_B = 19,2 \text{ H}\Phi.$

Определяем сопротивление катушки индуктивности и емкости на заданной частоте

$$X_{L} = 2\pi \cdot f \cdot L = 2\pi \cdot 1 \cdot 10^{3} \cdot 25,3 \cdot 10^{-3} = 159 \text{ Om},$$

$$X_{C} = \frac{1}{2\pi \cdot f \cdot C} = \frac{1}{2\pi \cdot 1 \cdot 10^{3} \cdot 19,2 \cdot 10^{-9}} = 8289,3 \text{ Om}.$$

Активные сопротивления ветвей равны

$$R_1 = 100 \text{ Om};$$

$$R_2 = \frac{X_L}{tg\varphi_2} = \frac{159}{tg25^{\circ}} = 341OM, R_3 = \frac{X_C}{tg\varphi_3} = \frac{8289.3}{tg45^{\circ}} = 8289.3OM.$$

Комплексная схема замещения цепи представлена на рисунке 2.

Рисунок 2 – Комплексная схема замещения цепи

1.2. Расчет комплексных значений токов в ветвях Сопротивления ветвей в комплексном виде

$$\underline{Z}_1 = R_1 = 100 \text{ OM},$$

$$\underline{Z}_2 = R_2 + jX_L = 341 + j159 = 376,2e^{+j\ 25^{\circ}} \text{ OM},$$

$$\underline{Z}_3 = R_3 - jX_C = 8289,3 - j8289,3 = 11722,8e^{-j\ 45^{\circ}} \text{ OM},$$

Комплексное действующее напряжение источника равно

$$U = Ue^{j \cdot 0} = 2e^{j \cdot 0^{\circ}} B.$$

Входное сопротивление цепи в комплексном виде:

$$\underline{Z} = \underline{Z}_1 + \frac{\underline{Z}_2 \cdot \underline{Z}_3}{\underline{Z}_2 + \underline{Z}_3} = 100 + \frac{376,2e^{+j\ 25^\circ} \cdot 11722,8e^{-j_-45^\circ}}{341 + j159 + 8289,3 - j8289,3} = \\ = 100 + \frac{376,2e^{+j\ 25^\circ} \cdot 11722,8e^{-j_-45^\circ}}{8630,3 - j8130,3} = 100 + \frac{376,2e^{+j\ 25^\circ} \cdot 11722,8e^{-j_-45^\circ}}{11856,81e^{-j\ 43,3^\circ}} = \\ = 100 + \frac{376,2e^{+j\ 25^\circ} \cdot 11722,8e^{-j_-45^\circ}}{8630,3 - j8130,3} = 100 + \frac{376,2e^{+j\ 25^\circ} \cdot 11722,8e^{-j_-45^\circ}}{11856,81e^{-j\ 43,3^\circ}} = \\ = 100 + \frac{376,2e^{+j\ 25^\circ} \cdot 11722,8e^{-j_-45^\circ}}{8630,3 - j8130,3} = 100 + \frac{376,2e^{+j\ 25^\circ} \cdot 11722,8e^{-j_-45^\circ}}{11856,81e^{-j\ 43,3^\circ}} = \\ = 100 + \frac{376,2e^{+j\ 25^\circ} \cdot 11722,8e^{-j_-45^\circ}}{8630,3 - j8130,3} = 100 + \frac{376,2e^{+j\ 25^\circ} \cdot 11722,8e^{-j_-45^\circ}}{11856,81e^{-j\ 43,3^\circ}} = \\ = 100 + \frac{376,2e^{+j\ 25^\circ} \cdot 11722,8e^{-j_-45^\circ}}{8630,3 - j8130,3} = 100 + \frac{376,2e^{+j\ 25^\circ} \cdot 11722,8e^{-j_-45^\circ}}{11856,81e^{-j\ 43,3^\circ}} = \\ = 100 + \frac{376,2e^{+j\ 25^\circ} \cdot 11722,8e^{-j_-45^\circ}}{8630,3 - j8130,3} = \\ = 100 + \frac{376,2e^{+j\ 25^\circ} \cdot 11722,8e^{-j_-45^\circ}}{8630,3 - j8130,3} = \\ = 100 + \frac{376,2e^{+j\ 25^\circ} \cdot 11722,8e^{-j_-45^\circ}}{8630,3 - j8130,3} = \\ = 100 + \frac{376,2e^{+j\ 25^\circ} \cdot 11722,8e^{-j_-45^\circ}}{8630,3 - j8130,3} = \\ = 100 + \frac{376,2e^{+j\ 25^\circ} \cdot 11722,8e^{-j_-45^\circ}}{8630,3 - j8130,3} = \\ = 100 + \frac{376,2e^{+j\ 25^\circ} \cdot 11722,8e^{-j_-45^\circ}}{8630,3 - j8130,3} = \\ = 100 + \frac{376,2e^{+j\ 25^\circ} \cdot 11722,8e^{-j_-45^\circ}}{8630,3 - j8130,3} = \\ = 100 + \frac{376,2e^{+j\ 25^\circ} \cdot 11722,8e^{-j_-45^\circ}}{8630,3 - j8130,3} = \\ = 100 + \frac{376,2e^{+j\ 25^\circ} \cdot 11722,8e^{-j_-45^\circ}}{8630,3 - j8130,3} = \\ = 100 + \frac{376,2e^{+j\ 25^\circ} \cdot 11722,8e^{-j_-45^\circ}}{8630,3 - j8130,3} = \\ = 100 + \frac{376,2e^{+j\ 25^\circ} \cdot 11722,8e^{-j_-45^\circ}}{8630,3 - j8130,3} = \\ = 100 + \frac{376,2e^{+j\ 25^\circ} \cdot 11722,8e^{-j_-45^\circ}}{8630,3 - j8130,3} = \\ = 100 + \frac{376,2e^{+j\ 25^\circ} \cdot 11722,8e^{-j_-45^\circ}}{8630,3 - j8130,3} = \\ = 100 + \frac{376,2e^{+j\ 25^\circ} \cdot 11722,8e^{-j_-45^\circ}}{8630,3 - j8130,3} = \\ = 100 + \frac{376,2e^{+j\ 25^\circ} \cdot 11722,8e^{-j_-45^\circ}}{8630,3 - j8130,3} = \\ = 100 + \frac{376,2e^{+j\ 25^\circ} \cdot 11722,8e^{-j_-45^\circ}}{8630,3 - j8130,3} =$$

 $=100+371,99e^{\mathrm{j}\ 23.3^{\circ}}=100+341,68+\mathrm{j}147,08=441,68+\mathrm{j}147,08=465,53e^{\mathrm{j}\ 18,4^{\circ}}\mathrm{Ом}.$ Токи ветвей в комплексном виде равны:

$$\underline{I}_{1} = \frac{\underline{U}}{\underline{Z}} = \frac{2e^{j \cdot 0^{\circ}}}{465,53e^{j \cdot 18,4^{\circ}}} = 4,296 \cdot 10^{-3} e^{-j \cdot 18,4^{\circ}} = (4,076 - j1,356) \cdot 10^{-3} A,$$

$$\underline{I}_{2} = \underline{I}_{1} \cdot \frac{\underline{Z}_{3}}{\underline{Z}_{2} + \underline{Z}_{3}} = 4,296 \cdot 10^{-3} e^{-j \cdot 18,4^{\circ}} \cdot \frac{11722,8e^{-j \cdot 45^{\circ}}}{11856,81e^{-j \cdot 43,3^{\circ}}} = 4,247 \cdot 10^{-3} e^{-j \cdot 20,1^{\circ}} A,$$

 $\underline{I}_{3} = \underline{I}_{1} \cdot \frac{\underline{Z}_{2}}{\underline{Z}_{2} + \underline{Z}_{3}} = 4,296 \cdot 10^{-3} e^{-j \cdot 18,4^{\circ}} \cdot \frac{376,2e^{+j \cdot 25^{\circ}}}{11856,81e^{-j \cdot 43,3^{\circ}}} = 0,136 \cdot 10^{-3} e^{+j \cdot 49,9^{\circ}} \text{ A.}$

Проверка расчетов:

$$\underline{\mathbf{I}}_1 = \underline{\mathbf{I}}_2 + \underline{\mathbf{I}}_3,$$

$$\begin{split} \underline{I}_2 + \underline{I}_3 &= 4,247 \cdot 10^{-3} \, \text{e}^{-\text{j} \, 20,1^\circ} + 0,\!136 \cdot 10^{-3} \, \text{e}^{+\text{j} \, 49,9^\circ} = (3,\!988 - \text{j}1,\!459) \cdot 10^{-3} + \\ &+ (0,\!088 + \text{j}0,\!104) \cdot 10^{-3} = (4,\!076 - \text{j}1,\!355) \cdot 10^{-3} = 4,\!296 \cdot 10^{-3} \, \text{e}^{-\text{j} \, 18,4^\circ} \, \text{A} - \\ \text{проверка выполняется.} \end{split}$$

1.3. Баланс мощностей

Мощность источника:

- полная мощность в комплексном виде

$$\underline{S}_{\text{M}} = \underline{U} \cdot \underline{I}_{1}^{*} = 2e^{\int_{0}^{0} 0^{\circ}} \cdot 4,296 \cdot 10^{-3} e^{\int_{0}^{18,4^{\circ}} e^{\int_{0}^$$

- активная мощность

$$P_{\text{W}} = 8.153 \cdot 10^{-3} \text{ BT};$$

- реактивная мощность

$$Q_{\rm H} = 2,712 \cdot 10^{-3} \text{ BAp.}$$

Мощность приемника:

- активная мощность

$$P_{\Pi} = I_{1}^{2} \cdot R_{1} + I_{1}^{2} \cdot R_{1} + I_{3}^{2} \cdot R_{3},$$

$$P_{\Pi} = (4,296 \cdot 10^{-3})^{2} \cdot 100 + (4,247 \cdot 10^{-3})^{2} \cdot 341 + (0,136 \cdot 10^{-3})^{2} \cdot 8289,3 = 8,149 \cdot 10^{-3} \text{BT};$$

- реактивная мощность

$$Q_{\Pi} = I_2^2 \cdot X_L + I_3^2 \cdot (-X_C),$$

$$Q_{\Pi} = (4,247 \cdot 10^{-3})^2 \cdot 159 - (0,136 \cdot 10^{-3})^2 \cdot 8289,3 = 2,715 \cdot 10^{-3} \text{ BAp.}$$

Погрешность расчетов составила

$$\delta_{P} = \left| \frac{P_{\text{M}} - P_{\text{\Pi}}}{P_{\text{M}}} \right| \cdot 100\% = \left| \frac{8,153 \cdot 10^{-3} - 8,149 \cdot 10^{-3}}{8,153 \cdot 10^{-3}} \right| \cdot 100\% = 0,05\%,$$

$$\delta_{Q} = \left| \frac{Q_{\text{M}} - Q_{\text{\Pi}}}{Q_{\text{M}}} \right| \cdot 100\% = \left| \frac{2,712 \cdot 10^{-3} - 2,715 \cdot 10^{-3}}{2,712 \cdot 10^{-3}} \right| \cdot 100\% = 0,1\%.$$

1.4. Расчет потенциалов точек и построение векторной диаграммы

Комплексные напряжения на элементах цепи равны

$$\begin{split} & \underline{U}_{R.1} = \underline{I}_1 \cdot R_1 = 4,296 \cdot 10^{-3} \, e^{-j \, 18,4^\circ} \cdot 100 = 0,429 e^{-j \, 18,4^\circ} \, B, \\ & \underline{U}_{R.2} = \underline{I}_2 \cdot R_2 = 4,247 \cdot 10^{-3} \, e^{-j \, 20,1^\circ} \cdot 341 = 1,448 e^{-j \, 20,1^\circ} \, B, \\ & \underline{U}_{R.3} = \underline{I}_3 \cdot R_3 = 0,136 \cdot 10^{-3} \, e^{+j \, 49,9^\circ} \cdot 8289,3 = 1,127 e^{+j \, 49,9^\circ} \, B, \\ & \underline{U}_L = \underline{I}_2 \cdot j X_L = 4,247 \cdot 10^{-3} \, e^{-j \, 20,1^\circ} \cdot 159 e^{+j \, 90^\circ} = 0,675 e^{j \, 69,9^\circ} \, B, \\ & \underline{U}_C = \underline{I}_3 \cdot (-j X_C) = 0,136 \cdot 10^{-3} \, e^{+j \, 49,9^\circ} \cdot 8289,3 e^{-j \, 90^\circ} = 1,127 e^{-j \, 40,1^\circ} \, B. \end{split}$$

Значение потенциалов точек цепи в комплексном виде равны

$$\underline{\varphi}_0 = 0B,$$

$$\underline{\varphi}_1 = \underline{\varphi}_0 + \underline{U}_{R.1} = 0 + 0.429e^{-j \cdot 18.4^{\circ}} = 0.429e^{-j \cdot 18.4^{\circ}}B,$$

$$\begin{split} \underline{\varphi}_{A} &= \underline{\varphi}_{1} + \underline{U}_{R.2} = 0,429 e^{-j \ 18,4^{\circ}} + 1,448 e^{-j \ 20,1^{\circ}} = 1,878 e^{-j \ 19,7^{\circ}} \, B, \\ \underline{\varphi}_{B} &= \underline{\varphi}_{1} + \underline{U}_{R.3} = 0,429 e^{-j \ 18,4^{\circ}} + 1,127 e^{+j \ 49,9^{\circ}} = 1,347 e^{+j \ 32,6^{\circ}} \, B, \\ \underline{\varphi}_{2} &= \underline{\varphi}_{3} + \underline{U} = 0 + 2 e^{+j \ 0^{\circ}} = 2 e^{+j \ 0^{\circ}} \, B. \end{split}$$

Векторная диаграмма изображена на рисунке 3, масштаб построения M_U = 0,5 B/10 дел, M_I = 1 мA/10 дел.

Рисунок 3 – Векторная диаграмма токов и напряжения

2. Задание на эксперимент

2.1. Собираем цепь для эксперимента, представленную на рисунке 4.

Рисунок 4 – Схема цепи для эксперимента

- 2.2. Устанавливаем напряжение на генераторе и частоту согласно предварительному расчету. Измеряем потенциалы и фазы точек 1, 2, а и b и заносим в таблицу 2. Значение тока I_1 рассчитываем по значению потенциала ϕ_1 .
- 2.3. Уменьшаем частоту генератора в 2 раза, выполняем эксперимент аналогично п. 2.1, результаты заносим в таблицу 2.

Таблица 2 – Результаты эксперимента и предварительного расчета

Измеряемые	вмеряемые При частоте f			При частоте 0,5f	
величины	По предваритель-	Получено при	σ, %	Получено при	
	ному расчету	эксперименте		эксперименте	
$\underline{\mathbf{I}}_1$, $\mathbf{M}\mathbf{A}$	$4,296e^{-j 18,4^{\circ}}$				
$\underline{\mathbf{I}}_2$, м \mathbf{A}	4,247e ^{-j 20,1°}				
$\underline{\mathbf{I}}_3$, MA	0,136e ^{+j 49,9°}				
$\underline{\varphi}_1$, B	$0,429e^{-j 18,4^{\circ}}$				
$\underline{\varphi}_2$, B	2e ^{+j 0°}				
$\underline{\varphi}_{\mathrm{A}}$, B	$1,878e^{-j 19,7^{\circ}}$				
$\underline{\varphi}_{\mathrm{B}},\mathrm{B}$	1,347e ^{+j 32,6°}				

Погрешность измерений рассчитываем, используя выражение

$$\delta_{\varphi} = \frac{|\varphi_{\text{PAC}} - \varphi_{\text{ЭКСП}}|}{\varphi_{\text{ЭКСП}}} \cdot 100\% \text{ и } \delta_{\text{I}} = \frac{|\mathbf{I}_{\text{PAC}} - \mathbf{I}_{\text{ЭКСП}}|}{\mathbf{i}_{\text{ЭКСП}}} \cdot 100\%.$$