MATEMÁTICA UNINOVE

Módulo - VI

Regularidades númericas e geométricas

Lei de formação

Objetivo: Identificar regularidades numéricas e/ou geométricas e determinar a lei de formação sequência.

Este material faz parte da UNINOVE. Acesse atividades, conteúdos, encontros virtuais e fóruns diretamente na plataforma.

Pense no meio ambiente: imprima apenas se necessário.

Problema proposto

Uma pessoa decidiu depositar moedas de 1, 5, 10, 25 e 50 centavos em um cofre durante certo tempo. Todo dia da semana ela depositava uma única moeda, sempre nesta ordem: 1, 5, 10, 25, 50, e, novamente, 1, 5, 10, 25, 50, assim sucessivamente.

Se a primeira moeda foi depositada em uma segunda-feira, então essa pessoa conseguiu a quantia exata de RS 95,05 após depositar a moeda de?

Solução

524 dias e a última moeda é 0,25 centavos.

Introdução

É comum percebermos em nosso dia a dia conjuntos cujos elementos estão dispostos em certa ordem, obedecendo a uma **sequência.**

Sucessão ou sequência é todo conjunto que consideramos os elementos dispostos em certa ordem.

(janeiro, fevereiro, ..., dezembro)

EXEMPLO 2

(0, 1, 2, 3, ...)

Sequência numérica

É um conjunto de números reais dispostos numa certa ordem. Pode ser finita ou infinita.

EXEMPLO 1

(2, 5, 8, 11, 14) - Sequência finita.

EXEMPLO 2

(4, 8, 10, ...) - Sequência infinita.

Representação de uma sucessão

A representação matemática de uma sucessão é:

Os índices representam a posição de cada termo, primeiro, segundo, n-ésimo (índice n), etc.

EXEMPLO 1

Dada a sequência (2, 5, 9, 14, 20, 27), calcule $a_1 - 2$. $(a_5)^2$

$$2 - 2 \cdot 20^2 = -798$$

Observe as sequências e determine o centésimo primeiro elemento de cada sequência:

DICA:

Observe que nas duas sequências um grupo de $a_n = a_1 + (n - 1)$. r elementos se repete periodicamente.

Na primeira sequência, o grupo que se repete é formado por três elementos (1, 1, 2). Portanto, para determinar o centésimo primeiro elemento desta sequência, bastaria dividir 101 por 3 (101 ÷ 3). Divisão

que deixa **resto 2.** Fato que nos leva a concluir que o centésimo elemento é igual ao segundo elemento da sequência, isto é, igual a **1**.

Na segunda sequência, o grupo que se repete é formado por quatro elementos (5, 4, 8, 1). Portanto, para determinar o centésimo elemento desta sequência, bastaria dividir 100 por 4 (101 ÷4). Divisão que deixaria **resto 1**. Fato que nos leva a concluir que o centésimo primeiro elemento é igual ao primeiro elemento da sequência, isto é, igual a **5**.

EXEMPLO 2

Resolução

Podemos observar que a sétima figura é igual à primeira. Se continuássemos a desenhar todas as figuras, seguindo a sequência, perceberíamos que a 13ª figura, também seria igual à primeira, e assim por diante. Ou seja, cada grupo é formado por **seis** figuras. Sendo

assim, para respondermos às questões anteriores, bastaria dividir os números 152 e 183 por 6 para obtermos as figuras que ocupariam, respectivamente, as posições 152° e 183°.

Assim:

- A divisão de (152 ÷ 6) deixaria resto 2, o que significa dizer que a figura que ocupa a posição 152 é igual à figura que ocupa a 2^a posição.
- A divisão de (183 ÷ 6) deixaria resto 3, o que significa dizer que a figura que ocupa a posição 183 é igual à figura que ocupa a 3^a posição.

EXEMPLO 3

Hoje é quarta-feira. Devo pagar uma dívida exatamente daqui a 90 dias. Em qual dia da semana cairá o 90° dia?

Resolução

Uma semana é igual a 7 dias. A divisão de 90 por 7 deixa resto 6, portanto o 90° dia será o sexto elemento da sequência dos dias da semana iniciada na quinta-feira. Logo, o 90° dia será terça-feira.

EXEMPLO 4

Em uma sequência numérica, o primeiro termo é uma fração de numerador 1 e denominador 5. Os termos seguintes ao primeiro podem ser obtidos adicionando sempre uma unidade ao numerador e ao denominador da fração do termo imediatamente anterior.

- a) Quais são cinco primeiros termos da sequência?
- **b)** Chamando o primeiro termo de a_1 , o segundo termo de a_2 , o terceiro termo a_3 e assim por diante, quanto é a_{10} ?
- c) Quanto é a₆₁?
- **d)** Como se pode determinar um termo a_n qualquer?

Resolução

a) Quais são cinco primeiros termos da sequência?

$$\frac{1}{5}, \frac{2}{6}, \frac{3}{7}, \frac{4}{8}, \frac{5}{9}$$

DICA:

Diante das condições estabelecidas, você pode observar um padrão, qual seja: o denominador é sempre **4 unidades a mais** do que o numerador.

b) Chamando o primeiro termo de a_1 , o segundo termo de a_2 , o terceiro termo a_3 e assim por diante, quanto é a_{10} ?

Como queremos determinar o décimo termo da sequência, então o numerador é **igual a 10.** Sabendo que o denominador é 4 unidades a mais do que o numerador, teremos que o denominador será 10 + 4 = 14. Assim:

$$a_{10} = \frac{10}{14}$$

c) Quanto é a₆₁?

Como queremos determinar o termo de ordem 61 (a61) da sequência então o numerador é **igual a 61.** Sabendo que o denominador é 4 unidades a mais do que o numerador, teremos que o denominador será 61 + 4 = 65. Assim:

$$a_{61} = \frac{61}{65}$$

d) Como se pode determinar um termo a_n qualquer?

Um termo qualquer an é uma fração em que o numerador é igual a n e o denominador é 4 unidades a mais do que n, isto é, igula a n + 3. Assim:

$$a_n = \frac{n}{n+3}$$

EXEMPLO 5

Resolução

Para organizar os dados, podemos construir uma tabela, como a que se segue:

Posição da figura na	Número de	Número de
sequência	quadradinhos pretos	quadradinhos brancos
1	1	$0(1^2-1=0)$
2	2	$2(2^2-2=2)$
3	3	$6(3^2 - 3 = 6)$
4	4	12 (4 ² - 4 = 12)
n	n	$n^2 - n$

DICA:

Observe que o padrão da sequência n² - n é dado pelo número que representa a posição da figura ao quadrado menos ele próprio.

Você pode observar que a partir da fórmula **(n2 - n)** podemos responder várias perguntas relacionadas à sequência, como:

a) Quantos quadradinhos brancos terá a décima figura dessa sequência?

Resolução

$$10^2 - 10 = 90$$

b) Quantos quadradinhos brancos deverá ter a 39ª figura dessa sequência?

Resolução

$$39^2 - 39 = 1482$$

Agora é a sua vez! Resolva os exercícios, verifique seu conhecimento e acesse o espaço online da UNINOVE para assistir à videoaula referente ao conteúdo assimilado.

REFERÊNCIAS

GIOVANNI, José Ruy; BONJORNO, José. *Matemática Completa*: ensino médio - 1º ano. 2. ed. São Paulo: Ática, 2005.

IEZZI, Gelson; DOLCE, Osvaldo. *Matemática Ciência e Aplicação*: ensino médio. 6. ed. São Paulo: Saraiva, 2010.

SÃO PAULO. Secretaria da Educação. *Caderno do professor - Ensino Médio*. São Paulo: Secretaria da Educação, 2011.

XAVIER, Claudio da Silva; BARRETO, Benigno Filho. *Matemática Aula por Aula*: ensino médio - 1 º ano. São Paulo: FTD, 2005