

Основы Мар Reduce

Чего НЕ будет в презентации

- •Технические подробности организации MR
- •MR глазами разработчика
- •Сравнения разных MR на предмет какую выбрать

1. Основные понятия **Мар Reduce**

План

2. Примеры MR задач

3. Библиотеки для MR

1. Основные понятия

Зачем это вообще нужно?

•Горизонтальная масштабируемость

Горизонтальная масштабируемость

Зачем это вообще нужно?

- •Горизонтальная масштабируемость
- •Отказоустойчивость

Отказоустойчивость

Зачем это вообще нужно?

- •Горизонтальная масштабируемость
- •Отказоустойчивость
- •Локальность данных

Локальность данных

Зачем это вообще нужно?

- •Горизонтальная масштабируемость
- •Отказоустойчивость
- •Локальность данных

Как это идеологически работает

- •Делаете тар
- •Делаете shuffle
- •Делаете reduce
- •????
- •PROFIT!!!!

Map Reduce

Подсчет слов

14

Какие шаги есть на практике

- •map
- •sort
- •join
- •groupby
- reduce/aggregate

Какие шаги есть на практике

- •map
- •sort
- •join
- •groupby
- reduce/aggregate
- •похоже на pandas, не находите?

- •Файлы с данными нужно хранить
- •Есть три лимита: объём данных, количество объектов в системе и количество «чанков»

- •Файлы с данными нужно хранить
- •Есть три лимита: объём данных, количество объектов в системе и количество «чанков»

Одна таблица данных, 100ТБ – суммарный объём, при хранении разбито на 10 чанков

- •Файлы с данными нужно хранить
- •Есть три лимита: объём данных, количество объектов в системе и количество «чанков»
- •MR операции можно балансировать по CPU/disk
 - Много CPU много чанков, долгое сохранение файлов
 - Мало CPU большие чанки, долго ждать вычисления

- MR операции можно и нужно оптимизировать
- Что-то сделают за вас, что-то нет
 - map + map = map
 - map + aggregate sum можно считать суммы ещё в map-e
 - предыдущее верно для любые ассоциативных функций
 - join-ы можно делать более эффективно, если ключи уникальны
 - или одна из таблиц помещается в память

2. Примеры MR задач

Поиск максимума

- Есть таблица: дата, id магазина, сумма покупки
- Нужно найти для каждого магазина максимальную сумму покупки за каждый день

Поиск максимума

- Есть таблица: дата, id магазина, сумма покупки
- Нужно найти для каждого магазина максимальную сумму покупки за каждый день
- Что выдавать в map-e, и что делать в reduce?

Поиск максимума

- Есть таблица дата, id магазина, сумма покупки
- Нужно найти для каждого магазина
 максимальную сумму покупки за каждый день
- Что выдавать в map-e, и что делать в reduce?
- А как использовать тот факт, что в одном mapе будут данные скорее всего одного магазина

Построение истории

- Есть таблица: timestamp, id пользователя, id чека
- Нужно найти для каждого пользователя список его покупок, отсортированный по времени

Построение истории

- Есть таблица: timestamp, id пользователя, id чека
- Нужно найти для каждого пользователя список его покупок, отсортированный по времени
- Что выдавать в map-e, и что делать в reduce?

Построение истории

- Есть таблица: timestamp, id пользователя, id чека
- Нужно найти для каждого пользователя список его покупок, отсортированный по времени
- Что выдавать в map-e, и что делать в reduce?
- А теперь усложним нужно построить такую историю для каждого чека (нужно знать какие чеки были до)

3. Библиотеки для MR

Библиотеки для MR

Hadoop это стек технологии, вот его основные части:

- Hadoop Distributed File System (HDFS)
- Hadoop YARN

Библиотеки для MR

Миллионы их, все и не перечесть, но с большой вероятностью это будет <u>Hive</u> или <u>Apache Spark</u>

Аналитикам обычно удобнее SQL-like запросы

A разработчикам написать код на условном python или scala