

25 SEQUENCE LISTING

	(1) GENE	RAL INFORMATION:
5	(i)	APPLICANT: Lobb, Roy R.; Burkly, Linda C.
	(ii)	TITLE OF INVENTION: Treatment for Asthma
10	· (iii)	NUMBER OF SEQUENCES: 11
	(iv)	CORRESPONDENCE ADDRESS: (A) ADDRESSEE: LAHIVE & COCKFIELD
		(B) STREET: 60 State Street, Suite 510
15		(C) CITY: Boston (D) STATE: Massachusetts
13		(E) COUNTRY: USA
•		(F) ZIP: 02109-1875
	(v)	COMPUTER READABLE FORM:
20		(A) MEDIUM TYPE: Floppy disk
		(B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS
		(D) SOFTWARE: PatentIn Release #1.0, Version #1.25
25	(vi)	CURRENT APPLICATION DATA:
		(A) APPLICATION NUMBER:
		(B) FILING DATE:
	(vii)	PRIOR APPLICATION DATA:
30		(A) APPLICATION NUMBER: US 08/374,331
		(B) FILING DATE: 18-JAN-1995
	(vii)	PRIOR APPLICATION DATA:
		(A) APPLICATION NUMBER: US 08/256,631
35		(B) FILING DATE: 12-JUL-1994
	(vii)	PRIOR APPLICATION DATA:
		(A) APPLICATION NUMBER: PCT/US93/00030
		(B) FILING DATE: 12-JAN-1993
40	/	DDTOD ADDITON DAMA
	(V11)	PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 07/821,768
		(B) FILING DATE: 13-JAN 1992
45	(wi i i)	ATTORNEY/AGENT INFORMATION:
1.5	(*111/	(A) NAME: Myers, Louis (PLM)
		(B) REGISTRATION NUMBER: 35,965
		(C) REFERENCE/DOCKET NUMBER: BGP-021USCP2
50	(ix)	TELECOMMUNICATION INFORMATION:
	•==•	(A) TELEPHONE: (617)227-7400
		(B) TELEFAX: (617)227-5941

55 (2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 360 base pairs

				((FRANI	DEDNI	ESS:	acio sino ear									
	5		(ii) MOI	LECU	LE T	YPE:	cDN	A									
	(ix) FEATURE: (A) NAME/KEY: CDS 10 (B) LOCATION: 1360																	
	15		(ix	(1	A) N	AME/I OCAT: THER Cha	ION: INFO	1 DRMA' varia		: /nd	ote= ion;	ami	no a				L/2 h (E)	
124	20	•	(xi) SE	QUEN	CE DI	ESCR:	IPTI	ON: S	SEQ :	ID NO	0:1:						
open at the state open will fine that	25								GCA Ala									48
den destruktion statischen der Generalier fank den fank	23								TCT Ser									96
	30								CCT Pro 40									144
Harry Harry	35								GAT Asp									192
	40								GAC Asp									240
	45								GAG Glu									 288
									GGA Gly									336
	50			ACG Thr 115														360
	55	(2)	INF	ORMA'	TION	FOR	SEQ	ID I	NO: 2	:								

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 120 amino acids

amino	acid
	amino

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Val Lys Leu Gln Gln Ser Gly Ala Glu Leu Val Lys Pro Gly Ala Ser 1 5 10 15

10

Val Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys Asp Thr Tyr 20 25 30

Met His Trp Val Lys Gln Arg Pro Glu Gln Gly Leu Glu Trp Ile Gly
15 35 40 45

Arg Ile Asp Pro Ala Ser Gly Asp Thr Lys Tyr Asp Pro Lys Phe Gln
50 55 60

Val Lys Ala Thr Ile Thr Ala Asp Thr Ser Ser Asn Thr Ala Trp Leu
65
70
75
80

Gln Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95

25

35

45

50

Asp Gly Met Trp Val Ser Thr Gly Tyr Ala Leu Asp Phe Trp Gly Gln 100 105 110

Gly Thr Thr Val Thr Val Ser Ser 30 115 120

- (2) INFORMATION FOR SEQ ID NO:3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 318 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- 40 (ii) MOLECULE TYPE: cDNA
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..318
 - (D) OTHER INFORMATION: /note= "HP1/2 light chain variable region"
 - (ix) FEATURE:
 - (A) NAME/KEY: misc_feature
 - (B) LOCATION: 1
 - (D) OTHER INFORMATION: /note= "pBAG172 insert: HP1/2 light chain variable region"
- 55
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

28 Ser Ile Val Met Thr Gln Thr Pro Lys Phe Leu Leu Val Ser Ala Gly 10 GAC AGG GTT ACC ATA ACC TGC AAG GCC AGT CAG AGT GTG ACT AAT GAT 96 Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Ser Val Thr Asn Asp 20 25 GTA GCT TGG TAC CAA CAG AAG CCA GGG CAG TCT CCT AAA CTG CTG ATA 144 Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile 10 TAT TAT GCA TCC AAT CGC TAC ACT GGA GTC CCT GAT CGC TTC ACT GGC 192 Tyr Tyr Ala Ser Asn Arg Tyr Thr Gly Val Pro Asp Arg Phe Thr Gly 55 50 15 AGT GGA TAT GGG ACG GAT TTC ACT TTC ACC ATC AGC ACT GTG CAG GCT 240 Ser Gly Tyr Gly Thr Asp Phe Thr Phe Thr Ile Ser Thr Val Gln Ala 65 288 GAA GAC CTG GCA GTT TAT TTC TGT CAG CAG GAT TAT AGC TCT CCG TAC 20 Glu Asp Leu Ala Val Tyr Phe Cys Gln Gln Asp Tyr Ser Ser Pro Tyr 85 318 ACG TTC GGA GGG GGG ACC AAG CTG GAG ATC 25 Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile 100 (2) INFORMATION FOR SEQ ID NO:4: 30 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 106 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 35 (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4: Ser Ile Val Met Thr Gln Thr Pro Lys Phe Leu Leu Val Ser Ala Gly 40 5 10 Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Ser Val Thr Asn Asp 20 45 Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile Tyr Tyr Ala Ser Asn Arg Tyr Thr Gly Val Pro Asp Arg Phe Thr Gly 50 50 Ser Gly Tyr Gly Thr Asp Phe Thr Phe Thr Ile Ser Thr Val Gln Ala Glu Asp Leu Ala Val Tyr Phe Cys Gln Gln Asp Tyr Ser Ser Pro Tyr 55

Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile

ij
į.
ijī.
} ≜
4.4
1
¥
Ŋ
4
11
15
1

5	2) INFORMATION FOR SEQ ID NO: 5:
3	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 1347 base pairs
	(B) TYPE: nucleic acid (C) STRANDEDNESS: single
10	
10	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: cDNA
15	(ix) FEATURE:
	(A) NAME/KEY: CDS
	(B) LOCATION: 11338
	(ix) FEATURE:
20	(A) NAME/KEY: VCAM-1 gene segment
	(B) LOCATION: 1219
	(D) OTHER INFORMATION: This portion of the sequence
	corresponds, in part, to Exons I, II and III
	nucleotide sequence of Cybulsky et al. Proc. Nat'l.
25	Acad. Sci. USA 88: 7861(1991).
	(ix) FEATURE:
	(A) NAME/KEY: Hinge region
	(B) LOCATION: 220229
30	(D) OTHER INFORMATION: This portion of the sequence
	corresponds, in part, to Fig. 12A in PCT/US92/02050 and
	represents the hinge region of Human IgGl heavy chain
	constant region.
35	(ix) FEATURE:
,,,	(A) NAME/KEY: Heavy chain constant region 2
	(B) LOCATION: 230338
	(D) OTHER INFORMATION: This portion of the sequence
	corresponds, in part, to Fig. 12A in PCT/US92/02050 and
40	represents the heavy chain constant region 2 of Human
	IgGl heavy chain constant region.
	(ix) FEATURE:
	(A) NAME/KEY: Heavy chain constant region 3
45	(B) LOCATION: 339446
	(D) OTHER INFORMATION: This portion of the sequence
	corresponds, in part, to Fig. 12A in PCT/US92/02050 and
	represents the heavy chain constant region 3 of Human
	IgGl heavy chain constant region.
50	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:
	ATG CCT GGG AAG ATG GTC GTG ATC CTT GGA GCC TCA AAT ATA CTT TGG 48
55	Met Pro Gly Lys Met Val Val Ile Leu Gly Ala Ser Asn Ile Leu Trp
J.	110 115 120 125
	AND AND THE GCA GOT TOT CAA GOT THE AAA ATO GAG ACC ACC CCA GAA 96
	ATA ATG TTT GCA GCT TCT CAA GCT TTT AAA ATC GAG ACC ACC CCA GAA 96

		Ile	Met	Phe	Ala	Ala 130	Ser	Gln	Ala	Phe	30 Lys 135	Ile	Glu	Thr	Thr	Pro 140	Glu	
	5												TCA Ser					144
	10												AGA Arg					192
	15	Ser											ACC Thr 185					. 240
	13												TCT Ser					288
THE PARTY OF THE P	20												ATC Ile					`336
	25	TAC Tyr	TCT Ser	TTT Phe	CCT Pro 225	AAG Lys	GAT Asp	CCA Pro	GAG Glu	ATT Ile 230	CAT His	TTG Leu	AGT Ser	GGC Gly	CCT Pro 235	CTG Leu	GAG Glu	384
	30	GCT Ala	GGG Gly	AAG Lys 240	CCG Pro	ATC Ile	ACA Thr	GTC Val	AAG Lys 245	TGT Cys	TCA Ser	GTT Val	GCT Ala	GAT Asp 250	GTA Val	TAC Tyr	CCA Pro	432
din. din. disk representation being taal taab mab ter tama taab	25												GAT Asp 265					480
43	35												TCC Ser					528
	40	AGT Ser	TTG Leu	GAA Glu	GTA Val	ACC Thr 290	TTT Phe	ACT Thr	CCT Pro	GTC Val	ATT Ile 295	GAG Glu	GAT Asp	ATT Ile	GGA Gly	AAA Lys 300	GTT Val	576
	45	CTT Leu	GTT Val	TGC Cys	CGA Arg 305	GCT Ala	AAA Lys	TTA Leu	CAC His	ATT Ile 310	GAT Asp	GAA Glu	ATG Met	GAT Asp	TCT Ser 315	GTG Val	CCC Pro	624
	50												GAC Asp					672
	E E	TGC Cys	CCA Pro 335	CCG Pro	TGC Cys	CCA Pro	GCA Ala	CCT Pro 340	GAA Glu	CTC Leu	CTG Leu	GGG Gly	GGA Gly 345	CCG Pro	TCA Ser	GTC Val	TTC Phe	720
	55	CTC Leu 350	Phe	CCC Pro	CCA Pro	AAA Lys	CCC Pro 355	Lys	GAC Asp	ACC Thr	CTC Leu	ATG Met 360	Ile	TCC Ser	CGG Arg	ACC Thr	CCT Pro 365	768

	_			ACA Thr														816
	.			AAC Asn														864
	10			CGG Arg 400														912
	15			GTC Val														960
dans dans	20			TCC Ser														1008
ogen has deal by and how link dark	25			AAA Lys													CCA Pro	1056
There also don't	25			GAT Asp														1104
the state of the south species	30			TTC Phe 480														1152
Min. Min. Will Smil buil mi	35			GAG Glu														1200
	40			TTC Phe														1248
	4.5	_CAG Gln	_CAG Gln	_GGG Gly	AAC Asn	GTC Val 530	TTC Phe	TCA Ser	TGC Cys	TCC Ser	GTG Val 535	ATG Met	CAT His	GAG Glu	GCT Ala	CTG Leu 540	CAC His	1296
	45			TAC Tyr												•		1338
	50	TGA	GTGC	GG														1347

(2) INFORMATION FOR SEQ ID NO: 6:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 24 base pairs(B) TYPE: nucleic acid

55

		32	
	•	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	5	(ii) MOLECULE TYPE: cDNA	
		(ix) FEATURE: (A) NAME/KEY: CDS	
	10	(B) LOCATION: 623(D) OTHER INFORMATION: This corresponds to KinasePrimer 370-31.	
	15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:	
		TCGTC GAC AAA ACT CAC ACA TGC C Asp Lys Thr His Thr Cys 1 5	2
und Grus And Ink	20	(2) INFORMATION FOR SEQ ID NO: 7:	
Gran then host In was Gras	25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
1 1fi	30	(ii) MOLECULE TYPE: cDNA	
A I'm I'm I'm	35	(ix) FEATURE:(A) NAME/KEY:(B) LOCATION:(D) OTHER INFORMATION: This corresponds to KinasePrimer 370-32.	
	40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
		GTAAATGAGT GCGGCGGCCG CCAA	2
	45	(2) INFORMATION FOR SEQ ID NO: 8:	
		(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 115 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
	50	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA	
		(II, MODECODE IIIE. COMA	
	55		

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

		GCGGCCGCGG TCCAACCACC AATCTCAAAG CTTGGTACCC GGGAATTCAG ATCTGCAGCA	60
		TGCTCGAGCT CTAGATATCG ATTCCATGGA TCCTCACATC CCAATCCGCG GCCGC	115
	5	(2) INFORMATION FOR SEQ ID NO: 9:	
	10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 41 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	15	(ii) MOLECULE TYPE: cDNA	
13 miles	20	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 2141	
Regions of the Ages of the Age		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
	25	GAGCTCGAGG CGGCCGCACC ATG CCT GGG AAG ATG GTC GTG Met Pro Gly Lys Met Val Val 1 5	41
	30	(2) INFORMATION FOR SEQ ID NO: 10:	
And and the time had		(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 23 base pairs(B) TYPE: nucleic acid	
	35	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: cDNA	
	40		
		-(xi) SEQUENCE DESCRIPTION: SEQ -ID NO: -10:	
	45	AAGTCGACTT GCAATTCTTT TAC	23
		(2) INFORMATION FOR SEQ ID NO: 11:	
	50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	55	(ii) MOLECULE TYPE: cDNA	

34

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

TCGACGCGGC CGCG

5

der, den dern der eine gegen der gegen der programmen der gener gegen wenn der gegen der gegen der gegen der d Gesel bereit aus Fer Cara beat Cara finn finn band bear beat band band