AD-A100 734 UNCLASSIFIED	DEC 80 W A	ER WATERWAYS RENCE MANUAL PRICE, R L TION-K-80-7	EXPERIM : COMPUT HALL, H	ENT STA	TION BRAM FO	VICKSBU R DESIG	R6 MS	F/6 ANALYS- NL	13, -E1	
0F 40 A 0100734										
										İ
										İ
		سه سب								Á

INSTRUCTION REPORT K-80-7

USER'S REFERENCE MANUAL: COMPUTER PROGRAM FOR DESIGN AND ANALYSIS OF INVERTED-T RETAINING WALLS AND FLOODWALLS (TWDA)

(12)

William A. Price. Robert L. Hall
H. Wisser Junes. Reed L. Mosher, Michael E. George
Automatic Data Processing Center
U. S. A. y E. giseer Waterways Experiment Station
F. O. Box 631, Vicksburg, Miss. 39180

December 1980 Find Report

Control 2 months and Engineering (CASE) Project

Here will be tuber in a more t

TIC FILE COPY

Crepared for Office, Chief of Engineers, U. S. Army Washington, D. C. 20314

P. O. Box 80, Vicksburg, Miss. 39180

Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

DEPARTMENT OF THE ARMY OFFICE OF THE CHIEF OF ENGINEERS WASHINGTON, D.C. 20314

REPLY TO ATTENTION OF:

DAEN-CWE-DS

23 February 1981

SUBJECT: Instruction Reports K-80-6, K-80-7, and K-81-3: The Basic User's Guide, User's Reference Manual, and Validation Report for a Computer Program for Design and Analysis of Inverted-T Retaining Walls and Floodwalls (TWDA)

All Corps Elements with Civil Works Responsibilities

- 1. The subject reports document a computer program for analyzing and designing reinforced concrete retaining walls and floodwalls. This computer program was developed according to specifications provided by the members of the Computer-Aided Structural Engineering (CASE) Task Group for T-Walls. As is the goal with all CASE tasks, the intent is to make an organized, costeffective computer solution available to the Corps' designers for use when the need arises.
- 2. Engineers will be readily able to tell by the description of the program and by the examples given in the reports of the applicability toward their needs. Detailed documentation of the program may be obtained from the Engineering Computer Programs Library (ECPL) of the U. S. Army Engineer Waterways Experiment Station (WES), Vicksburg, Miss.
- 3. We strongly encourage the use of this program where applicable throughout the Corps.

FOR THE CHIEF OF ENGINEERS

LLOYD A. DUSCHA

Chief, Engineering Division Directorate of Civil Works

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVY ACCESSION NO. 1. Instruction Report K-80-7 2. GOVY ACCESSION NO. 1. Alpho 7.34	3. RECIPIENT'S CATALOG NUMBER
USER'S REFERENCE MANUAL: COMPUTER PROGRAM FOR DESIGN AND ANALYSIS OF INVERTED-T RETAINING WALLS	5. TYPE OF REPORT & PERIOD COVERED Final report
AND FLOODWALLS (TWDA)	6. PERFORMING ORG. REPORT NUMBER
ए. AUTHOR(*) William A. Price Reed L. Mosher Robert L. Hall Michael E. George H. Wayne √Jones	8. CONTRACT OR GRANT NUMBER(*)
9. PERFORMING ORGANIZATION NAME AND ADDRESS U. S. Army Engineer Waterways Experiment Station Automatic Data Processing Center P. O. Box 631, Vicksburg, Miss. 39180	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS Office, Chief of Engineers	December 1980
Washington, D. C. 20314 and U. S. Army Engineer Division	13. NUMBER OF PAGES:
Lower Mississippi Valley P. O. Box 80, Vicksburg, Miss. 39180	15. SECURITY CLASS. (of this report)
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	SCHEDULE
Approved for public release; distribution unlimited	d .
17. DISTRIBUTION STATEMENT (of the ebetract entered in Block 20, If different fro	m Report)
18. SUPPLEMENTARY NOTES	
This report was prepared under the Computer-Aided Project. A list of published CASE reports is prin cover.	ted on the inside of the back
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)	
Computer programs Floodwalls Computerized simulation Retaining walls Design criteria	
20. ABSTRACT (Continue on reverse etch # necessary and identify by block number) Computer program TWDA (T-wall design/analysi versationally interactive, modular time-sharing pr aided structural design of inverted-T retaining wa earth or rock. Its essential characteristics incl	ogram system for computer- lls and floodwalls founded on ude:
 a. List-directed input with prompting avail to be needed. Data lists may be entered 	able on request or as shown interactively or in a data

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

file.

Unclassified

(Continued)

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. ABSTRACT (Continued).

r.t.

- b. Design for minimum cost including excavation, backfill, slab concrete, and stem concrete, with inputted unit costs. Default is to design for minimum concrete volume.
- c. Multiple soils strata may be used as existing and/or backfill earth. Either Coulomb's equation or trial wedges may be used to get active earth pressures.
- $\underline{\underline{d}}$. Multiple slopes may be used to model existing and/or finished grade surfaces.
- e. Time-sharing printout is limited to the minimum needed by the user to make his design decisions. A full analysis report is available in an optional output file that may be listed on any terminal.
- f. The program is structured to permit easy updating as criteria change.
- g. Up to 10 load cases may be used. The user does not need to reenter any data by hand into subsequent runs.
- h. The 1977 edition of ACI code 318 is used. Default procedures conform to the Corps of Engineers' Engineer Manuals in effect in 1980. The user may, however, direct the program to change many of the standard procedures as needed.
- <u>i</u>. Earthquakes may be considered using an acceleration factor that is applied to the static load.
- Input data and output results may be displayed on a Tektronix 4014 terminal.
- k. Multiple surcharges may be included in the data.

The program is divided into three major sections: the executive command phase, the stability group of modules, and the structural group of modules:

- a. The executive command phase is where the program starts executing and where it returns to after running the computational modules. Commands and data are entered in this phase of the program.
- b. The stability group of computational modules computes active earth pressures and determines overturning and sliding stability.
- <u>c</u>. The structural group of computational modules performs a stress analysis of the wall or designs for minimum slab thicknesses.

The philosphy of TWDA is to (a) ensure minimum-cost adequate design based on current codes and criteria, independent of the user's experience, and to (b) promote the use of personal judgment and imagination through man-machine interaction.

Unclassified

PREFACE

This manual describes an detail the use of TWDA, a computer program for design and analysic of inverted-T retaining walls and floodwalls. The program is a product of the Computer-Aided Structural Engineering (CASE) Project of the Office, Chief of Engineers, U. S. Army (OCE), and of the Computer-Aided Structural Design (CASD) Project of the U. S. Army Engineer Division, Lower Mississippi Valley (LMVD).

Mr. William A. Price, Chief, Computer-Aided Design Croup (CADG), Automatic Data Processing (ADP) Center, U. S. Army Engineer Waterways Experiment Station (WES), provided the overall design of the program and led the program development team. The program and this manual were written by Mr. Price and Messrs. Robert L. Hall, H. Wayne Jones, Reed L. Mosher, and Michael E. George, all of the CADG. The work was managed and coordinated by Dr. N. Radhakrishnan, Special Technical Assistant, ADP Center, assisted by Mr. Paul K. Senter, CADG. Mr. Donald L. Neumann was Chief of the ADP Center. Mr. Donald R. Dressler was the point of contact in OCE.

The program was written according to specifications provided by the members of the CASE Task Group on T-Walls and of LMVD's CASD Committee and by other Corps personnel:

CASE Task Group on T-Walls

Victor M. Agostinelli, LMVD (Chairman)
Tercy C. Cox, LMVD
Alvis Eikstrems, North Atlantic Division
Stacey Anastos, North Atlantic Division
Joseph V. Milliorn, formerly with New Orleans District
Raymond Veselka, Galveston District

LMVD's CASD Committee

Victor M. Agostinelli, LMVD (Chairman)
Arvis R. Dennis, Vicksburg District
Clifton C. Hamby, Vicksburg District
Sefton B. Lucas, Memphis District
Joseph Barber, Memphis District
James G. Bigham, New Orleans District
Joseph V. Milliorn, formerly with New Orleans District
James J. Smith, St. Louis District
Thomas J. Mudd, St. Louis District

LMVD's CASD Committee (Continued)

James Cronin, St. Louis District Carlton Smith, St. Louis District

OCE (DAEN-CWE-DS) Personnel

Keith O. O'Donnell, former Chief, Structural Engineering Section (retired)
Donald R. Dressler
Lucian G. Guthrie

Other Corps Personnel

Carl E. Pace, Structures Laboratory, WES William A. Price, ADP Center, WES James D. Wall, South Atlantic Division

The following WES personnel contributed to the coding of the program: Messrs. Price, Hall, Jones, Mosher, and George of the CADG and Messrs. Edward F. O'Neil III and Roy E. Campbell of the Structures Laboratory. Dr. William P. Dawkins, Oklahoma State University, and Dr. Michael W. O'Neill, University of Houston, contributed routines under contract to WES.

A basic user's guide and a program validation report will also be published on TWDA. Copies of the Program Criteria Specifications Document are available from LMVD.

Directors of WES during the development of this program and the publication of this user's guide were COL J. L. Cannon, CE, and COL N. P. Conover, CE. Technical Director was Mr. F. R. Brown.

HOW TO USE THIS BOOK

Instructions for the preparation of data are presented in four ways. The user is urged to make himself aware of all four presentations and select the one that best meets his particular needs:

- 1. For the beginning user: Paragraph 12-3, Data Preparation Checklist. See especially paragraph 12-3-12.
- 2. Data arrangement reminder: Paragraph 12-2-10. This and the list of commands in paragraph 2-3-1 are available while the program is running by typing a question mark (?) as a command.
- 3. List of data lists and the variable names in them: Paragraph 12-2 and Figures 3-1 through 3-5. This is intended for use as a checklist for the experienced user.
- 4. Detailed data definitions, arranged by data list: Chapters 2 and 3, plus the first part of each of Chapters 4 through 8.

A pull-out summary of all data lists is given at the end of Chapter 12.

MAJOR CONTENTS

Chapter	Title
1	INTRODUCTION
2	EXECUTIVE COMMAND/DATA ENTRY PHASE
3	DATA FOR ALL MODULES
4	MODULES SA AND SPACTIVE EARTH PRESSURES
5	MODULE FAFOUNDATION STABILITY ANALYSIS
6	MODULE FDFOUNDATION STABILITY DESIGN
7	MODULE WA(WORKING) STRESS ANALYSIS
8	MODULE WD(WORKING) STRESS DESIGN
9	MODULE UA(ULTIMATE) STRENGTH ANALYSIS
10	MODULE UD(ULTIMATE) STRENGTH DESIGN
11	LINKAGE BETWEEN FA/FD STABILITY AND WA/WD/UA/UD STRESS ANALYSIS/DESIGN MODULES
12	DATA LISTS AND OTHER TABULATIONS
13	GRAPHICS DISPLAY OF DATA AND RESULTS
14	EXAMPLES

		Page
PREFACE .		i
HOW TO USE	THIS BOOK	i i i
CONVERSION	FACTORS, INCH-POUND TO METRIC (SI)	
	MEASUREMENT	x
CHAPTER 1:	INTRODUCTION	1-1
1-1	Purpose of Program TWDA and This Manual	1 – 1
1-2	Organization and Summary Description of Program	1-1
	1-2-1 Structure	1 – 1
	1-2-2 Brief Description of Data Entry	1-1
	1-2-3 Data Review	1-2
	1-2-4 Restart Capability	1-3
	1-2-5 Volume of Printout	1-3
	1-2-6 Calculation Modules	1-3
1-3	Data	1-4
	1-3-1 General Description	1,
	1-3-2 Basic General Description Data	1-4
	1-3-3 Load Case Data	1-4
1-4	Highlights of TWDA Design	
1-4		1-5
	1-4-1 The Stability Design/Analysis Phase	1-5
	1-4-2 The Structural Design/Analysis Phase	1-6
CHAPTER 2:	EXECUTIVE COMMAND/DATA ENTRY PHASE	2-1
2-1	Function	2-1
2-2	Command Format	2-1
2-3	Command Options	2-1
	2-3-1 Table of Commands	2-1
	2-3-2 Special Notes on UPDATE, RESTart, and SAVE	- 1
	Commands	2-4
	2-3-3 Command Error Recovery	2-5
2-4	Starting a Program Run	2-5
	2-4-1 Starting Sequence, Part I	2-5
	2-4-2 Starting Sequence, Part 2	2-6
2-5	Data File Input	2-7
	2-5-1 Data File Format	2-8
	2-5-2 Required Information	2-8
	2-5-3 Data Error Recovery	2-8
	2-5-4 Supplemental Question and Answer Sequences	2-9
	2-5-5 End of Data File	2-9

		Page
2-6	Data Entry	2-9
	2-6-1 General	2-9 2-10 2-11 2-11 2-12 2-12 2-13
2-7	Report File	2-13
CHAPTER 3:	DATA FOR ALL MODULES	3-1
3-1	Data Common to All Modules	3-1
3-2	General Data	3-1
	3-2-1 Data List NAME	3-1 3-1 3-2 3-2
3-3	Soils and Seepage Data	3-2
	3-3-1 General	3-2 3-4 3-23
3-4	Surcharge Data	3-29
	3-4-1 All Surcharge Data Lists Are Optional 3-4-2 Surcharge Data Item Definitions	3-29 3-29
3-5	Cost Data	3-31
	3-5-1 Use of Cost Data	3-31 3-33
3-6	Wall Geometry Data	3-33
	3-6-1 Internal Coordinate System	3-33 3-34 3-35
CHAPTER 4:	MODULES SA AND SPACTIVE EARTH PRESSURES	4 – 1
4-1	General	4-1
4-2	Purpose	4 – 1
4-3	Active Earth Pressure Calculation	4-1
4-4	Required Data	4-1

	P <u>ag</u>	€,
	4-4-1 Soils	1
4-5	Optional Data That Will Be Used If Entered 4-	2
	4-5-1 Soils 4- 4-5-2 General 4- 4-5-3 Surcharges 4- 4-5-4 Geometry 4-	3 3
4-6	Interpretation of Output	3
	4-6-1 Meaning of Values	3 4
4-7	Modification of Module SA Output for Use by Module FA	4
4-8	Modification of Output of Module SP for Use in Structural Design/Analysis	5
CHAPTER 5:	MODULE FAFOUNDATION STABILITY ANALYSIS 5-	ı
5-1	Action of Module FA	1
5-2	General Data	1
5-3	Soils and Seepage Data 5-	1
	5-3-1 5- 5-3-2 Required Soil Data	•)
5-4	Surcharge Data	3
5-5	Cost Data	3
5-6	Geometry Data	3
	5-6-1	4
5-7	Restrictions on Input Loading Cases 5-	7
CHAPTER 6:	MODULE FDFOUNDATION STABILITY DESIGN 6-	l
6-1	Action of Module FD 6-	1
6-2	General Data	ì
6-3	Soils and Seepage Data 6-	
	6-3-1 6- 6-3-2 Required Soils Data 6- 6-3-3 Optional Soils and Seepage Data 6-	3

	$\mathbf{P}_{\mathbf{q}}$	а <u>я</u> е
6-4	Surcharge Data	6-4
6-5	Cost Data	6-4
6-6	Geometry Data	0- 4
	6-6-2 Optional Geometry Data	6-4 6-5 6-5
CHAPTER 7:	MODULE WA(WORKING) STRESS ANALYSIS	7 ~ 1
7 – 1	Action of Module WA	7-1
7-2	Data	7 – 1
		7-1 7-1
7-3	User Control of Module WA	7-9
	7-3-2 Interactive Analysis Control	7-9 7-9 7-1: 7-1: 7-1
7-4	Interpretation of Output	7-1
		7-1° 7-1
CHAPTER 8:	MODULE WD(WORKING) STRESS DESIGN	8-1
8-1	Action of Module WD	8-1
8-2		8-2
	8-2-2 Additional Data	3-2 3-2 8-2
8-3	Output	8-5
	8-3-2 Wall Geometry	8-5 8-6 8-6
CHAPTER 9:	MODULE UA~-(ULTIMATE) STRENGTH ANALYSIS	9-1
9-1	Action of Module UA	9-1
CHAPTER 10	: MODULE UD(ULTIMATE) STRENGTH DESIGN	()-1
1.0 1	Action of Modulo III)	0_1

		<u>Page</u>
CHAPTER 11:	LINKAGE BETWEEN FA/FD STABILITY AND WA/WD/UA/UD STRESS ANALYSIS/DESIGN MODULES	11-1
11-1		11-1
11-2	Load Groups	11-2
11-3	Illustrations	11-3
11-4	11-3-1 ACPH	11-4 11-5 11-6 11-7 11-8 11-9 11-10 11-11 11-11 11-11 11-13 11-13
CHAPTER 12:	DATA LISTS AND OTHER TABULATIONS	12-1
12-1	Purpose	12-1
12-2	Data Lists	12-1
	12-2-1 General	12-1 12-1 12-2 12-2 12-3 12-3 12-4 12-4 12-5 12-5
12-3	Data Preparation Checklists	12-6
	12-3-1 General Information Data	12-6 12-6 12-7 12-7 12-8 12-8 12-10

		Page
	12-3-9 Wall Geometry	12-11 12-11
	12-3-10 Additional Data for Structural Analysis and Design	12-11
		12-13 12-13
12-4	Data Item References	12-13
12-5	Summary of Data List Contents	12-24
CHAPTER 13:	GRAPHICS DISPLAY OF DATA AND RESULTS	13-1
13-1	General	13-1
13-2	Equipment Variation Effects	13-1
	13-2-1 Tektronix 4014 Terminal with	
	13-2-2 Tektronix 4014 Terminal Without	13~1
	1	13-1 13-2
13-3	Display Options	13-2
13-4	Input Data	13-2
	13-4-2	13-2 13-2 13-7
13-5	Computed Member Forces and Moments	13-7
	13-5-2 13-5-3	13-7 13-7 13-8 13-12
13-6	Termination	13-12
CHAPTER 14:	EXAMPLES	14-1
14-1	Example A: Analysis of a Complex Retaining Wall	14-1
14-2	Example B: Design of a Complex Floodwall	14-24
14-3	Example C: Stability Analysis and Structural Design of Exhibit H Wall	14-68

CONVERSION FACTORS, INCH-POUND TO METRIC (SI) UNITS OF MEASUREMENT

Inch-pound units of measurement used in this manual can be converted to metric (SI) units as follows:

Multiply	Ву	To Obtain
cubic yards	0.7645549	cubic metres
feet	0.3048	metres
inches	2.54	centimetres
pounds (force)	4.448222	newtons
pound (force)-feet	1.355818	newton-metres
pounds (force) per foot	14.5939	newtons per metre
pounds (force) per square foot	47.88026	pascals
pounds (force) per square inch	6.894757	kilopascals
pounds (mass) per cubic foot	16.01846	kilograms per cubic metre
square inches	6.4516	square centimetres

ELECTRONIC COMPUTER PROGRAM ABSTRACT

TITLE OF PROGRAM

TWDA - T-Wall Design Analysis (CORPS No. X0053)

PROGRAM NO 713~F3-R0~027

PREPARING AGENCY

U. S. Army Engineer Waterways Experiment Station, ADP Center, CADG

AUTHOR(S) William A. Price, Robert L. DATE PROGRAM COMPLETED STATUS OF PROGRAM

Hall, H. Wayne Jones, Reed L.

June 1980

PHASE STAGE

Mosher, and Michael E. George

Operational

A. PURPOSE OF PROGRAM

Analysis or design of an inverted-T wall subjected to retaining wall and/or floodwall loadings. Design comparisons for finding the most economical combination of base embedment, key length, base width, and base slope are based on construction cost of excavation, concrete, and backfill. Performs stability analysis or design and structural analysis or design. Conforms to Engineer Manual 1110-2-2501, EM 1110-2-2505, and other Corps of Engineers standards.

B. PROGRAM SPECIFICATIONS

The program is written in FORTRAN IV. The graphics display option uses the Graphics Compatibility System (GCS).

C. METHODS

Active earth pressures may be calculated by Coulomb's equations or by the incremental wedge method. The program is highly interactive, following a computer-aided design methodology. The analysis procedure considers overturning, sliding, and bearing pressure, relative to the soil immediately adjacent to the wall. Earthquake effects are included. Stress design includes determination of reinforcement.

D. EQUIPMENT DETAILS

Time-sharing mainframe computer (overlaid for 49k words of main memory).

Time-sharing terminal--Tektronix 4014 needed for graphic display option. Rest of program may be run on any interactive terminal.

Remote high-speed job entry terminal (COPE, etc.).

E. INPUT-OUTPUT

Input is by time-sharing keyboard, either directly or via data files. Intermediate data are stored in disc files. Output is to the time-sharing terminal and/or to a high-speed computer terminal.

F. ADDITIONAL REMARKS. This program was written under the auspices of the ΩCE Computer-Aided Structural Engineering (CASE) Project Task Group on T-Walls and the LMVD Computer-Aided Structural Design (CASD) Committee. Call W. A. Price, FTS: 542-3645, for more information. Available publications include the Basic User's Guide, the User's Reference Manual, and the Validation Report. They are available from the ECPL of the WES Technical Information Center. Copies of the Program Criteria Specifications Document are available from LMVD.

WES , 1000 2205

REPLACES ING FORM, ARE WHICH IS OBSOLD IF

FOR DESIGN AND ANALYSIS OF INVERTED-T RETAINING WALLS AND FLOODWALLS (TWDA)

CHAPTER 1: INTRODUCTION

1-1 PURPOSE OF PROGRAM TWDA AND THIS MANUAL. TWDA is a computer-aided structural design system for analysis and/or design of inverted-T cantilever walls founded on earth or rock. Multiple load cases allow the wall to act as a floodwall or a retaining wall. This manual is intended for use by structural engineers. The program does not attempt to establish any soil design criteria; such data must be entered by the user after consultation with a soil design engineer. There are no default values for soil criteria parameters, except as provided in Corps engineering standards for structural design.

1-2 ORGANIZATION AND SUMMARY DESCRIPTION OF PROGRAM

- 1-2-1 Structure. TWDA is a series of design/analysis modules,* each performing one specific step in the design or analysis process. These modules are callable, in any logical sequence, from an executive command phase.** While in this executive phase, the user may call various procedures for data entry, data review, saving the current design status, restoring from an old status save, etc. This organization is illustrated in Figure 1-1.
- 1-2-2 Brief Description of Data Entry. The data entry procedure is similar to that for program TGDA, + except that the data phase is combined with the command phase instead of being separate as in TGDA. Features include:
 - a. Data are entered by naming the group and listing the values in that group, all on one line.
 - b. Default values are requested by entering the letter D for the desired data item(s), instead of a numerical value.
 - c. Values to be left undefined or changed to the undefined state are identified to the program by typing the letter C instead

^{*} A module is a subprogram that is controlled as one unit and that performs one complete aspect of the purpose of the entire program.

^{**} The executive phase of this program is the central core of the user's flow of control. The user may enter data or start a module while in the executive phase.

[†] TGDA (three-girder tainter gate design/analysis) is a computer program (713-F3-R0-022) developed for the Lower Mississippi Valley Division's Computer-Aided Structural Design (CASD) Committee in 1976.

Figure 1-1. Basic program flowchart

of entering a value for the particular item(s).

- d. A value to be left unchanged from its previous state is identified to the program by typing the letter S for the particular item, instead of repeating the earlier value.
- e. The program looks for illogical and inconsistent data and identifies such items to the user for correction or use anyway.
- f. The current status of items of input data or of all data values can be reviewed.
- g. Multiple-level prompting is provided, with more detailed information when the user answers with a question mark.

Thus the program will accept several sets of input data, where the following sets contain only the changes to the data comprising the preceding sets. Repetitive data will remain unchanged.

1-2-3 Data Review. Two methods of data reveiw are available:

- a. Input data may be reviewed with the LOOK command.
- b. Default value review is available at selected points in the interaction as described else where in this manual. Unless reviewed with this option, default values are set automatically by the user's selection of:
 - (1) Floodwall or retaining wall criteria.
 - (2) Hydraulic or nonhydraulic structure criteria.

Making the review of default values optional is expected to enable the experienced user to simplify and expedite his preliminary designs. In any case, the values are printed out in the report file. The combination of a nonhydraulic floodwall, being illogical, will be rejected. Default values are taken from Corps engineering publications; nonstandard values set by the user are printed in the report file.

- 1-2-4 Restart Capability. In addition to the user-controlled SAVE files, the program uses an automatic UPDATE file that is reset (brought up-to-date) after the completion of a calculation module and after many of the commands. The message UPDATE FILE RESET is printed each time this happens. The RESTart command restarts the program from either an old update file or a previously saved snapshot file.
- 1-2-5 Volume of Printout. Printout is of two types:
 - a. The printout to the user's time-sharing terminal.
 - b. A full report of calculations made is written to a report file that can be listed at a time-sharing terminal and/or sent to the high-speed printer in the user's District Office ADP Center.

The amount of terminal printing is controlled by the ALLP and MINP commands. The amount of report file printout is controlled by the TRCE 3 and TRCE 0 commands.

1-2-6 Calculation Modules:

- a. <u>SA.</u> <u>Stability analysis active pressures for overturning and sliding; calculated along a vertical plane at the end of the heel:</u>
 - (1) Coulomb's equations plus surcharge pressure equations assuming elastic soil.
 - (2) Incremental wedge methods.
 - (3) As inputted.
- b. <u>FA.</u> Foundation stability <u>analysis</u> of a completely defined wall (overturning, sliding, and bearing); uses module SA as needed. (Modules SA and SP need not be called by the user when modulue FA is used.)
- c. <u>FD.</u> Foundation stability design, uses modules SA and FA as needed. (Modules SA and FA are called automatically by module FD as needed.)
- d. SP. Stem pressures for structural analysis. Same basis as module SA, except that the pressures are calculated at the stem face instead of at the end of the heel. This is for structural analysis of the stem. Heel, toe, and key slabs will use pressures based on the stability analysis from modules FA or FD.
- e. WA. Working stress structural analysis.
- f. WD. Working stress structural design.
- g. UA. Ultimate strength structural analysis. (Not implemented vet.)
- h. UD. Ultimate strength structural design. (Not impletement yet.)

1-3 DATA

1-3-1 General Description. Data are of two types, basic data and load case data. Basic data are used as if common to all load cases unless overridden by data for a particular load case. Load case data consist of values applicable to only one load case. Basic data also include unchanging data such as wall dimensions.

1-3-2 Basic General Description Data:

- a. Criteria Selection:
 - (1) Floodwall or retaining wall.
 - (2) Hydraulic or nonhydraulic structure.
- b. Wall geometry (Figure 3-5).
- c. Soils data for existing earth (Figure 3-2).
- d. <u>Loads</u> common to all load cases (except ones for which value(s) are reset in load case data) (Figure 3-4).

1-3-3 Load Case Data (for each individual load case):

- a. Possible Factors For Describing Any ONE Load Case (in addition to or in place of basic data):
 - (1) Water (Figure 3-1):
 - (a) Water elevations over heel and over toe; unit weight of water (default = 62.5).
 - (b) Seepage pressures according to description in paragraph 3-2-2.
 - (2) Earth (Figures 3-1 and 3-2):
 - (a) Geometry and soil properties for earth layers over heel and over toe.
 - (b) Earth pressures on wall (1) calculated from the earth elevations and k value Coulomb theory, (2) calculated from the earth elevations and incremental wedge theory, or (3) as inputted separately.
 - (3) Horizontal loads (Figure 3-4):
 - (a) Trapezoidal (linearly varying distributed) loads, horizontal on stem, W_1 and W_3 through W_4 in Figure 3-4.
 - (b) Concentrated horizontal forces and their elevations, PH_1 and PH_2 .
 - (4) Surcharges over heel and over toe, values and locations (Figure 3-4):
 - (a) Distributed, over all or any part of the cross section, $\mathbf{W}_{\mathbf{b}}$ and $\mathbf{W}_{\mathbf{f}}$.

- (b) Up to five vertical concentrated line loads parallel to the wall (P_{v1} through P_{v5} in Figure 3-3) plus the force P_{v5} centered on the top of the stem and P_{vB} anywhere on the base.
- (5) Wind direction and magnitude (Figure 3-1).
- (6) Earthquake effect acceleration factors or effective K a values.
- (7) Design criteria
 - (a) Load factors for reinforced concrete strength design and overstress factors for working stress design.
 - (b) Allowable bearing capacity, interpolated values over ranges of allowable toe base elevations and base widths (see paragraph 3-2-2), for each layer of existing earth.
 - (c) Minimum factor of safety against shear friction sliding.
 - (d) Minimum safety factor for cohesion and tan \$\phi\$ data values used in the sliding determination by allowable strength equilibrium methods.
 - (e) Limiting value of the overturning stability resultant ratio.
 - (f) Reinforced concrete design parameters.
 - (g) Specification of "hydraulic" or "nonhydraulic" structure.
 - (h) Heel earth cover crack control.
- b. Typical Application of Load Cases. Any load case may have any or all of the effects described above.

1-4 HIGHLIGHTS OF TWDA DESIGN

1-4-1 The Stability Design/Analysis Phase.

- a. This place finds the least-cost combination of values inside user-defined ranges of base width, bottom of tow elevation, base slope, and key length, for a given stem ratio or toe width, that satisfies stability requirements for up to 10 load cases. Cost factors include:
 - (1) Structural excavation, with separate unit prices in each existing soils layer and for the key.
 - (2) Concrete, with separate unit prices for the stem, base slab, and key.
 - (3) Structural backfill, with separate unit prices for each backfill layer.

- b. Earth pressures for design are calculated by using either Coulomb's equations for earth pressure and Boussinesq's equations for surcharge pressures or by an incremental wedge technique. Earthquake effects are based on the Mononobe-Okabe method of equivalent K_a for earth pressure and Westergaard theory for dynamic water pressure. Earth pressures for analysis can be either as just described for design or as read in by the user.
- c. Hydrostatic pressures are calculated by the line of creep or design and by either the line of creep or as defined by the user for analysis. Control options include:
 - (1) Crack over heel or not.
 - (2) Each load case calculates its own pressures or all load cases use the value determined for one selected load case.
 - (3) Choice of:
 - (a) Creep.
 - (b) Hydrostatic over heel and toe; linear variation between heel and toe (as for dams).
 - (c) User-defined vertical and horizontal pressures.
 - (d) Water over toe sets the weight on the toe; water over heel sets the weight on the heel and the uplift under the base (as for the wall of a lock with an impervious floor).

1-4-2 The Structural Design/Analysis Phase.

- a. This phase uses the working stress (ACI alternate) method and provides for future addition of strength design. Design is for minimum slab thickness within the controls selected by the user in the input data. Default is to a simple, basic wall that the user may elaborate on by adding additional input data as desired. After the concrete dimensions have been set for moment, axial force, shear, and architectural considerations, reinforcing steel requirements at critical and selected locations are calculated directly for the actual thickness, moment, axial force, and shear at each location. The need for multiple layers of steel is checked based on maximum bar size and minimum spacing as selected by the user. Multiple layers are used if needed, including adjustment of slab thickness. The 1977 edition of ACI 318 is used.
- b. Maximum wall height from top of stem to bottom of key is 68.0 ft*; maximum base width is 48.0 ft. These maximum dimensions may be increased later.

^{*} A table of factors for converting inch-pound units of measurement to metric (S1) units is presented on page x.

c. The output of an independent stability analysis, such as from a finite element analysis or pressure measurements, may be used as input to the stress analysis or design modules. See Chapter 11 for details on this form of analysis.

CHAPTER 2: EXECUTIVE COMMAND/DATA ENTRY PHASE

2-1 <u>FUNCTION.</u> The executive command and data entry phase controls the restart files, accepts data, reviews data, starts computation modules, directs the report file to storage or a high-speed printer, and performs other miscellaneous chores for the user.

2-2 COMMAND FORMAT

2-2-1 Commands are typed interactively by the user immediately after the question mark (?) under the prompting word COMMAND. For commands that need supplemental information, the terminal asks for that supplemental information unless it is typed in by the user following a blank space after the command word. Do not use commas. For example, the command RUN needs the module name it is to run as supplemental information:

COMMAND
?RUN
ENTER MODULE NAME OR A '?' FOR LIST OF MODULES
?

An example of entering supplemental information on the command line is

COMMAND ?RUN FA

where FA is the name of the module to be run. A ? entry by the user will call a list of the modules followed by a repeat of the ? prompt. The ? entry may be used in many places in the program to request additional information on the user's options at those places in the program.

2-2-2 Commands with four letters may be typed as complete words. For example, UPDA may be typed as UPDATE.

2-3 COMMAND OPTIONS

2-3-1 <u>Table of Commands.</u> In this table, supplemental information given in lower case letters describes the information and is not itself acceptable as input when spelled out as shown:

Command Name	Supplemental Information	Action Taken by Program
?		Prints this table
	?	Prints additional information, if available
	((Continued)

2-3-1 Table of Commands (Continued):

HELP NAME	60 characters maximum of alphanumeric	Prints the information file. Prints the job name and date and time
NAME	maximum of	· · · · · · · · · · · · · · · · · · ·
	job name	of day at selected locations in the report file
INIT or NEW		Initializes all data (sets data to undefined state) for new start
REST		Restores the data to the values in an old update or snapshot file
NOBE		Removes the bell (or beep) from command and other entry prompting. Does not remove it from important error messages
BELL*		Cancels action of NOBE command (restores bell)
REVI**		Turns on full review of detault values before being used
NORE*		Turns off automatic review of default values (automatic with REST command)
TRCE*	()	Cancels action of TRCE 3
TRCE	3	Turns on printing of more information to the report file; mainly verifica- tion of input data values and tables of informediate answers. This status is saved with SAVE and SNAP commands
KEY		Returns control to keyboard it used in data file error recovery procedure

(Continued)

^{*} Assumed at beginning of a run; retained until changed by the opposite command.

^{**} Not vet implemented.

2-3-1 Table of Commands (Continued):

Command Name	Supplemental Information	Action Taken by Program		
RELE	old file name (question asked by program)	Releases a file from the user's master catalog to make room for a new status save file that could not otherwise be created. Any file may be released ex- cept the current update file		
RUN	module name (FA, FD, WA, WD, SA, SP, UA, UD)	Starts execution of the named computation module		
LOOK	data list name	Reviews (prints for the user to see) the current values of all variables in the designated data list		
LOOK	module name	Reviews all data for the designated module		
LOOK	ALL	Review all data for the entire program (takes a long time to print)		
LOOK	XY	Prints a table of the X and Y coordinates of the corners of the wall cross section		
LOOK	1 ND 1	Prints a table showing the user which modules have been run		
LOOK	IL	Prints current values of basic data lists NAME, CASE, HYD, and TYPE and intermediate data lists ACPH, ACPS, BPH, BPV, HSPH, HSPV, PPD, and VLP		
UPD or UPDA		Resets the update file values to the current values of all data		
RUN or EXE or EXEC	module name module name module name	Starts the designated module		
IR6†		Merges the report file with time-sharing terminal output; prints it all to the terminal. Does not work when in a data file.		
	(Continued)		

 $^{^{\}pm}$ For debugging purposes; causes double printing of some items.

2-3-1 Table of Contents (Concluded):

Command Name	Supplemental Information	Action Taken by Program
IR8*		Cancels the IR6 command (automatic with REST command)
SAVE or SNAP	new file name new file name	Creates a new status snapshot file to save the current status of all data and intermediate answers for possible future use in a REST command. Does not save the status of IR6 or REVI commands. Does not save the status of TRCE and ALLP commands
REPT or REPO		Ends the report file and directs it as decided by the user in response to questions that it asks, then starts a new report file
REM	comment	No action, lets user place a remark in a data file or in the terminal printouts
ALLP**		Turns on full prompting. Status is saved with SAVE and SNAP commands
MINP*		Minimum prompting only
END		Terminates the program execution, after asking questions about what to do with the report file
data list name	data items	(See information on data entry)

^{*} Assumed at beginning of a run; retained until changed by the opposite command.

- 2-3-2 Special Notes on UPDATE, RESTart, and SAVE Commands. These commands provide a restarting capability that serves four purposes:
 - a. A run may be restarted after stoping for lunch or to study intermediate answers or at the end of the day by using the REST command with the update tile name from the previous run. An old report file cannot be used with the REST command. Neither can a data file.
 - b. A run may be restarted after a power or computer failure by

^{**} Not yet implemented.

using the REST command with the update file name from the run underway at the time of failure. This restart will be from the last time that the message UPDATE FILE RESET was printed at the terminal.

- c. A run may be backed up to the status of an earlier SAVL file by using the REST command with the name of the SAVE file.
- d. The user must have a new name ready to enter for the program to use when creating the update file for that run.
- 2-3-3 Command Error Recovery. Many of the commands have procedures built in for using question and answer sequences to recover from illogical or unexpected supplemental information. These sequences are not shown in this manual but are believed to be self-explanatory. A response of END will end the run; a null response (a simple carriage return) will return to the "COMMAND?" prompt.
- 2-4 STARTING A PROGRAM RUN. The beginning portion of a run can follow any of several scenarios, depending on whether a data file is to be used and whether the INIT or REST commands are used. See paragraph 2-5 for the meaning of "data file." A data file is not the same as an update or a snapshot file.
- 2-4-1 Starting Sequence, Part 1. The update file in this example is to be named "WP07091"; the report file is to go to the ADP Center, station code "R1," with the ADP Center terminal operator to route the report file output to "WESKD-WAP." It is suggested that the report file instruction questions be answered with meaningful information even if the user wants to make it a permanent file, because any system problem in creating the permanent file will cause automatic directing of the report file to the given station code.

PROGRAM TWDA -- 713-F3-R0- 027

T-WALL DESIGN/ANALYSIS

REL 0.3 OCT 79

(RESPOND WITH ? FOR ANY HELP)

ENTER UPDATE FILE NAME (7 CHAR MAX) ?WP07091

FOR REPORT FILE, ENTER NAME TO BE USED ON REPORT FILE IDENT CARD, 12 CHAR. MAX. ?WESKD-WAP ENTER YOUR MACON ACCOUNT NUMBER ?888888 The questions here will depend on the computer system being used

ENTER NAME OF COMMAND-DATA FILE OR ENTER A CARRIAGE RETURN IF COMMANDS ARE TO BE ENTERED INTERACTIVELY?

2-4-2 Starting Sequence, Part 2. Part 2 of the starting sequence depends on the answer to the last question of part 1. Four options are available:

a. Data file used (the data file used in this example was named "XIBITQ"):

ENTER NAME OF COMMANE-DATA FILE OR ENTER A CARAIAGE RETURN IF COMMANDS ARE TO BE ENTERED INTERACTIVELY ?XIBITQ PROCESSING DATA FILE ...

COMMAND ?

b. Data file used, with last line in the file not containing KEY or END commands (the data file used in this example was named "XIBITX"):

ENTER NAME OF COMMAND-DATA FILE OR ENTER A CARRIABE RETURN IF COMMANDS ARE TO BE ENTERED INTERACTIVELY ?XIBITX PROCESSING DATA FILE ...

END OF FILE ON COMMAND DATA FILE RETURN TO KEYBOARD ENTRY.

COMMAND 2

c. Data file not used, and all input to be interactive at the keyboard. In this example, this is a new start, there will be one load case, and the wall is a hydraulic floodwall:

ENTER NAME OF COMMAND-DATA FILE OR ENTER A CARRIAGE RETURN IF COMMANDS ARE TO BE ENTERED INTERACTIVELY

? | NO INFORMATION, JUST A CARRIAGE RETURN ANSWER |

IS THIS AN INITIAL RUN OR A RESTART OF A PREVIOUS RUN? ENTER 'INIT' OR 'REST'

COMMAND ?INIT

- ALL DATA RESET FOR FRESH START -
ENTER NUMBER OF LOAD CASES (1 TO 10)
?1

IS THE WALL GENERALLY A FLOOD WALL OR A RETAINING WALL? ENTER 'F' OR 'R' ?F IS STRUCTURE HYDRAULIC OR NON-HYDRAULIC? ENTER 'H' OR 'N' ?H

COMMAND 2

d. Data file not used; a restart of a previous run. In this example, the file being restarted from is named "WAP1101":

ENTER NAME OF COMMAND-DATA FILE OR ENTER A CARRIAGE RETURN IF COMMANDS ARE TO BE ENTERED INTERACTIVELY

? ONLY A CARRIAGE RETURN

IS THIS AN INITIAL RUN OR A RESTART OF A PREVIOUS RUN? ENTER 'INIT' OR 'REST'

COMMAND ?REST WAP1101

- *- ALL DATA RESET FOR FRESH START -*
- *- COMMON DATA RESET FROM RESTART FILE WAP1101 , UPDATE FILE RESET -*

COMMAND

2-5 <u>DATA FILE INPUT.</u> Input to the program, beginning with the answer to the INIT/REST question in part 2 of the program starting sequence, may be placed in advance in a data file and entered into the program as shown earlier in this manual. This file may contain both data lists and commands. Each line of the data file is printed into the report file as the line is read from the data file. Note that a report file from one program run cannot be used as a data file for a later

program run. This is also true of update files, which can be read only by the REST command.

- 2-5-1 <u>Date File Format.</u> The data tile must have line numbers. Each line in file must contain one command and its supplemental information or one data list, arranged with the line number followed by a blank space, followed by the command word or data list name. See paragraph 2-6 for data list information.
- 2-5-2 Required Information. The data file must begin with lines containing the information shown to be entered by the user in paragraph 2-4-2c for a new run or as shown in paragraph 2-4-2d for a restart run. An example of the beginning of a data file for a new run is shown below. This is to be a new run with two load cases on a hydraulic floodwall. Three lists are shown on the lines following the starting response lines:

1000 INIT 1010 2 1020 F 1030 H 1040 NAME STRESS ANALYSIS OF EXHIBIT Q PRESSURES 1050 REM -- REDEFINE LOAD CASE 2 TO BE HYDRAULIC RETAINING WALL --1060 TYPE 2 2

NOTE: list TYPE was used to change load case 2 from floodwall to retaining wall default values.

- 2-5-3 <u>Data Error Recovery.</u> An invalid data list line or command will cause one of several interactive error recovery procedures, one of which is illustrated below.
 - a. Data list line No. 1080 with too many items:

1080 CASE 2 1 3 4

b. Error recovery:

*** ERROR IN DATA FILE-RETURN TO KEYBOARD *** BAD LINE FOLLOWS:

CASE 2 1 3 4

TOO MANY VALUES ENTERED IN DATA LIST - CASE COMMAND IGNORED - TRY AGAIN ?CASE 2 1 3

c. Control returned to the data file after the corrected line was typed in. If the user had typed the command KEY instead of the corrected data list, control would have remained with the

keyboard, and the erroneous line and the rest of the data file would have been ignored.

- 2-5-4 Supplemental Question and Answer Sequences. Some of the commands (RELE, REPO, and REPT) have supplemental question and answer sequences that are interactive and cannot be placed on the command line. These sequences will occur at the keyboard and be answered by the user just as if the command line had just been typed in instead of being in a data file.
- 2-5-5 End of Data File. There are three ways to end a data file:
 use the KEY command or END command or just let it run out of
 commands and data lists. It is strongly recommended that the last line
 be the UPDA command to reset the update file so that it will contain
 the data in the file. It is much faster to restore from an old update
 file than to re-read a data file. The KEY command returns control to
 the keyboard. It is interded for use when an error message (paragraph
 2-5-3) is printed and the user decides to stop the list processing and
 finish it interactively. It may also be used at the end of a data list,
 but is not necessary there. The END command in the last line will cause
 a normal program termination with report file destination questions and
 answers.

2-6 DATA ENTRY

2-6-1 General. This program provides for list-directed input of data. Error recovery and two types of prompting are available as requested. A data list consists of the name of the list and the values of the data items (variables) included in the list, separated with one or more blank spaces. Commas may not be used. Data lists in a data file must be preceded by a line number. Data lists entered interactively from the time-sharing keyboard after the ? prompting message must not have line numbers. All of the items in a list must be on one line. Only the lists actually needed for a particular problem need to be used. The data items in a list must be entered in the prescribed order but the lists in a group may be entered in any order. For example, the two groups shown below are equivalent:

CASE	3	2	1	3 }	
TYPE	2	2		}	group a
HYD	2	1		}	
TYPE	4.	2		ì	
CASE	3	2	1	3	group b
HYD	2	1		J	

Chapter 12 includes a listing of the data lists, by subject matter, that can be used to verify lists needed for each module. Other tabulations in Chapter 12 provide additional information.

- 2-6-2 Prompting. There are two types of data entry prompting available in the executive phase of the program.
 - a. Simply typing in the name of a data list, with no values given after the list name, will cause printing of a one-line definition of each item in the list. The prompting information will be in the same order as the variables in the data list:

COMMAND ?WLD

```
DATA LIST - WLD
VARIABLE
                       DEFINITION
             UNITS
             F00T
                       TOP OF STEM ELEV. (ALL ELEVATIONS MUST BE +)
   ETS
   TW2
             F00T
                       HORIZ PROJECTION OF CLEAR WIDTH OF TOE FROM STEM
   STR
             RATIO
                       STEM RATIO (TOE WIDTH TW2/BASE WIDTH BW)
                       HORIZ PROJECTION OF CLEAR WIDTH OF HEEL FROM STEM
HEELW
             F00T
                       HORIZ PROJECTION OF STEM THICKNESS AT BASE
 TSTB
             INCH
 TMINB
             INCH
                       MINIMUM CONCRETE THICKNESS IN BASE SLAB
```

COMMAND 2

b. Typing a question mark (?) instead of a numeric value in a data list—this type of prompting is available in many places throughout the program besides the executive phase—yields a one—line definition for the one variable. An example of its use in a data list follows.

COMMAND

?WLD 100.0 10.0 ? C D S

VARIABLE

UNITS - DEFINITION

STR RATIO STEM RATIO (TOE WIDTH TW2/BASE WIDTH BW)

TRY AGAIN ENTER VALUE FOR - STR

c. Additional prompting will be printed if a nonnumeric value is used as the response to the data list prompting in paragraph 2-6-2b:

?
BAD VALUE ENTERED FOR STR
ENTER NEW REAL VAUE
'D' - TO GET DE

'D' - TO GET DEFAULT VALUE

'C' - TO TELL PROGRAM TO CALCULATE VALUE

'S' - TO KEEP PREVIOUS VALUE

?0.3333

- The kind of information available with repeated use of the ? response depends on the location in the program of the prompting or question being responsed to.
- d. Complete information on data entry can be brought to the time-sharing terminal by (1) use of the ? as a command to get the information in paragraphs 12-1-10 and 2-3-1, or by (2) use of the HELP command to get the ? command information plus the paragraph 2-6-2a information for all data lists.
- 2-6-3 Special Data Identifiers D, C, and S. The use of the identifiers D, S, or C in an executive phase data list, in place of a numeric value, will cause the program to take special action regarding that data item. These identifiers may not be used for load case (LC), reinforcing steel layer number (LN,LNA, or LNB), or location code (LOC).
 - The identifier D will set the value of a new data item to -0.4321E+31 and the value of an integer item to -100010, special values that will cause later substitution of the default value (if there is a default value for that item). If there is no default value, it will leave the value in its undefined state. There may be more than one default value for a particular data item variable, depending on the values of ITYPE (1 for a floodwall, 2 for a retaining wall) and IHYD (1 for a hydraulic structure, 2 for a nonhydraulic structure). Once these two indicator variables are set in the program starting sequence or modified by the data lists TYPE or HYD, the appropriate default value will be substituted automatically. In many cases, the absence of a default value will cause the value of the data item to be changed from D to C. In the LOOK command output, the identifier D will be shown by the message DEFAULT VALUE REQUESTED.
 - b. The identifier C will set real data item values to -0.1234E+31, and integer data items to -100000, special values that mean that a variable is undefined. One use of this is to tell the program which one of a set of several redundant variables is to be calculated from the others in the set. See paragraph 8-15 for one such set. Another use is to identify an array of pressure values to be calculated (seepage and earth pressures) by setting the first location element to "undefined" or "C" (see Chapter 11). All variables are automatically initialized to this state at the start of a run or by use of the INIT command. Thus, the letter C can stand for either "calculate" or "cancel." The LOOK command output will use the words VALUE NOT DEFINED to indicate the use of the letter C.
 - c. The identifier S tells the program to leave the value of that data item alone; to keep the same value that it had before the data list was entered.
- 2-6-4 Redundant Lists. The same variable name may appear in more than one data list. This is for the user's convenience so that only

the list most directly useful need be entered. For example, the list SOLW contains all of the data items (ESHW, HS3) in data list SOLC for Coulomb horizontal active earth pressures, plus the <u>additional</u> data items (HS1, DS1H, HS2, WDS2) needed for the wedge method description.

2-6-5 Optional Lists. If a data list contains information needed by an optional capability, the list is to be entered only if the procedure is wanted. Examples of such lists are NAME, TYPE, HYD, TRCE, WLBR, WLDR, SOLF, etc. Lists may also be omitted if all of the items in that list are to be calculated, such as ACPH, ACPS, BPA, etc.

2-6-6 Load Case Dependent Items. Many of the variables may have different values for different load cases. The load case is specified by the first item in the data list containing the "load cased" variable data item. For example, the data list SOLT has three data items. The first data item in this list is the load case number for the other two items in the list. In the example shown below, the values of ESTW and SST can be tabulated by hand as being

Load Case Number	ESTW	SST
1	526.34	100.0
2	528.34	100.0

and entered as data into the program with the following two data lines.

SST 1 526.34 100.0 SST 2 528.34 100.0

If all of the variables in a list will have the same value, one data list entry will suffice for all of the load cases by using a zero for the load case number. If all except a few of the load cases will have the same values of a data item variable, it can be handled by first entering the majority value with a load case number of zero and then redefining the exception:

SST 0 526.34 100.0 SST 2 528.34 S

The example pair of data lists, entered in the order shown (load case code 0 first), will set ESTW to 526.34 and SST to 100.0 for load cases 1 and 3 through 10 and will set ESTW to 528.34 and keep SST at 100.0 for load case 2. The zero load case code will set the data items for load cases 1 through 10, not just the load cases numbered in data list CASE.

2-6-7 Partial Lists. An incomplete list may be entered if all of the following conditions are satisfied:

a. All of the missing data values are to be zero.

- b. None of the missing values are for load case manher (10). layer number (EN, ENA, or ENB), or location code manher (200).
- c. When a value is omitted, the rest of that list hart also be omitted.

2-7 REPORT_FILE

- 2-7-1 Program output is in two parts, time-sharing terminal (fintout and report file output. The report file is created automatically when the program starts running and at the researce FOR Siw REPORT FILE: in the REPO command's question and answer sequence. This sequence is described in paragraph 2-4-1. Each new report file starts with a section of FORTRAN coding that sends the file to the selected station code if the user so elects after the END command or at the message FOR ENDSI-ING REPORT FILE: in the REPO command. The user's other two options are to place the report file in a permanent file in the user's master catalogor to destroy the file. The report file may be listed at a time-sharing terminal but cannot be read later by program FWDA.
- 2-7-2 A value of -0.1234h+31 in the program printout means that that item has not been defined in the particular program run. A value of -0.1234E+31 means that the detault value has been requested (the letter D option described in paragraph 2-n-3) but not yet substituted by the program.
- 2-7-3. The following tabulation turnishes guidance to the user for obtaining the total program output best suited to his needs:

Purpose of Run	Do This
General design memo or survey report	After the END command, let the program destroy the report file
Feature design memo	Get the report file output, either at your ADP Center high-speed printer or as a permanent file and list it
Contract plans tiles	Use the TRCE 3 command to get the report file

CHAPTER 3: DATA FOR ALL MODULES

3-1 <u>DATA COMMON TO ALL MODULES.</u> The general, soil, and surcharge data needed to define a particular problem must be defined before any of the modules can be run. The wall description needed will be different for different modules and is explained in Chapters 4 through 10 of this manual. See also Chapter 12 for checklists of required and optional data. Units are in pounds and feet except for slab thickness and batters.

3-2 GENERAL DATA

- 3-2-1 Data List NAME (optional). The data list NAME provides for up to 60 characters of alphanumeric job identification to be entered after the blank following the command word. This job identification will be placed in the report file at least once in each module. The date and time of day are written on the line following each job identification line in the report file.
- 3-2-2 Data List CASE (mandatory only if more then one load case and if the load case numbers are not in ascending order from LCS(1) to LCS(NLC)).
 - a. This is the only data list that has a variable number of data items in it. The list contains, in addition to the list name, the number (quantity) of load cases and the load case numbers (identification codes):

CASE NLC LCS(1) LCS(2) ... LCS(NLC)

where NLC is the quantity of load cases to be activated and LCS(1) is the identification code number of the first load case. LCS(2) is the identification code of the second load case, etc. The identification codes may be in any order, with the one exception that LCS(1) must be the desired load case if the variable ISLC in data list SEEP has a value of 2. The usual procedure, except for the ISLC = 2 situation, is for the numbers to be in ascending order from LCS(1) to LCS(NLC). The value of NLC must be from 1 to 10, and the values of LCS(1) through LCS(NLC) must also be from 1 through 10.

- b. The use of a load case number of zero in a data list other than CASE (see paragraph 2-6-6) will cause the values in the list to be assigned to all 10 load case identification codes, whether or not the cases have been activated with the data list CASE.
- c. If the question

ENTER NUMBER OF LOAD CASES (1 TO 10)

in part 2 of the program starting sequence is answered with a 1, then NLC and LCS(1) are automatically set to 1, and data list CASE need not be used (unless the user wants another identification code number for the single load case).

- 3-2-3 Data Lists HYD and TYPE (normally not needed). These two lists are needed to change one or more of the load cases from floodwall default values to retaining wall default values or from hydraulic structure to nonhydraulic structure, or vice versa. One use for such a "mixed" wall might be where the long-term action is as a retaining wall and a short-term case is as a floodwall:
 - a. Data list HYD is entered in the format

HYD LC IHYD

where

HYD = list name

LC = load case number (or zero)

b. Data list TYPE is entered in the format

TYPE LC ITYPE

where

TYPE = list name

LC = load case number (or zero)

ITYPE = 1 for a floodwall or 2 for a retaining wall

Data items affected include CRACK in data list SEEP, NSLIDE and FSMIN in data list SLID, and NPPD in data list SOLP.

- c. The illogical combination of IHYD = 2 and ITYPE = 1 (non-hydraulic floodwall) will not be checked for or rejected if caused by data list entry. It is, however, checked for in part 2 of the program starting sequence.
- 3-2-4 <u>Data List INDL</u>. This is not actually data--it is only to be "LOOK'd" at. The value names are made up of the letter 1 and a module name. The values will be zero for "not run," for "run successfully," or 2 for "run aborted."
- 3-3 SOILS AND SEEPAGE DATA
- 3-3-1 General. There are three types of soils data: soil surface, soil properties, and soil design parameters. Not all modules need all of this information, as may be seen from the following table. There is

a random relationship between existing soil layers 3-4-5 and backfill soil layers FZ-1-2-6-7 as the w .1 and its backfill move up and down.

D. A. L. J. A.	1)	Mandatory	Used in	Used in	Used in	See
Data List	Page	Where Used?	SA-SP	FA-FD	WA-WD-UA-UD	Figure
BOIL	3-4	no		yes		
ONEA	3-5	no		yes		
RRD	3-6	no		FD		
SEEP	3-6	(5)			(1)	3-1
SLID	3-9	no		yes		
SPHF	3-9	(4)	yes	yes	yes	3-1
SPH1	3-10	(6)	yes	yes	ves	3-1
SPH2	3-10	(4)	yes	yes	yes	3-1
SPE3	3-11	yes	yes	yes		3-1
SPE4	3-12	no	yes	yes		3-1
SPE5	3-12	no	ves	yes		3-1
SPT6	3-13	(3)		yes		3 – 1
SPT7	3-13	(6)		yes	ves	3 – 1
SSEE	3-13	(7)	yes	yes		3-2,3-3
SOLP	3-14	no	yes	yes	(2)	~ -
SST	3-17	yes		yes	yes	3-1
SSHW	3-17					
or	}	yes	yes	yes	yes	3- 1
SSHC	3-18					
WGHT	3-18	no	yes	yes	yes	

- NOTES: (1) ELWT, ELWH, ISLC are optional; KRACK has a default value; HGSW and ISFT are not used in these modules.
 - (2) NPPD, RKH, RKV, CFMA have default values; IFWOC, NODE, and IFSOM are not used.
 - (3) SPT7 data will be assumed to be also for SPT6 if SPT6 is not entered. SPT7, in turn, will be copied from SPE3 if SPT7 is omitted.
 - (4) Soil layer 1 is assumed over all of the heel unless SPHF or SPH2 is entered for soil below or above soil type 1.
 - (5) SEEP is mandatory only it water exists.
 - (6) Soil properties from SPE3 are used for layer 1 (SPH1) if data list SPH1 is omitted. Similarly, SPE3 values are used for SPT7 if SPT7 is omitted.
 - (7) List SSEE is needed only for design (module FD).

3-3-2 Soils and Seepage Data Item Definitions:

List Name	Variable Name	Units	Default Value	Definition
BOIL				Boil control data, optional
	ELSPT	ft	0.0	Elevation of tip of impervious sheet pile cutoff wall below center of key. In module FA (and FD), the presence of this data item variable will cause the program to calculate and print out the average creep ratio to the report file
	CRMIN	ratio		Minimum allowable creep ratio. In module FA (and FD), the presence of this data item will cause the program to calculate and print out to the report file the highest ELSPT that will satisfy the CRMIN limit
	ІРАТН	1 or 2	1	Controls the location of the creep path portion between the bottom of effective length of sheet pile and the end of the toe:

1 to select the path that includes a line along the toe-side face of the sheet pile, key, and bottom of the base:

	Variable Name	Units	Default Value	Definition
BOIL	ГРАТН			2 to select the path that includes a single straight line from the tip

OR

ONEA OMEGA deg C Single set value for sliding neutral block bottom angle from horizontal. The critical value will be found if left undefined (data list omitted) (see paragraph 3-3-3)

3-3-2 Soils and Seepage Data Item Definitions (Continued):

List Name	Variable Name	Units	Default Value	Definition
RRD	LC	0, 1-10		Load case number (see paragraph 2-6-6)
	RRMIN	ratio	1/3 un- less ELWH is within 1.05 ft of top of stem, in which case the default value is 0.25	Minimum allowable resultant ratio (resultant arm/BW) from both ends of the base. Module FD only
SEEP	LC	0, 1-10		Load case number (see paragraph 2-6-6)
	ELWT	ft	С	Elevation of water over the toe. Must not be between points 2 and 4 in Figure 3-5
	ELWH	ft	C	Elevation of water over the heel
	(The lis	st may be	terminated	here if defaults below are OK.)
SEEP	HGSW		0.0	Soil weight change due to hydraulic gradient. The effective unit weight is taken to be the buoyant unit weight plus (HGSW times GAMAW) on the wall side with the higher water elevation and the buoyant unit weight minus (HGSW times GAMAW) on the wall side with the lower water elevation. HGSW is equivalent to AH/L gradient. Zero value yields no effect
	ISLC	1 or 2	1	One value for all load cases: 1 if each load case is to determine its own seepage pressure 2 if the first load case code number mentioned in data list CASE is to
				determine the seepage pressures for all load cases

3-3-2 Soils and Seepage Data Item Definitions (Continued):

List	Variable		Default	
Name	Name	Units	Value	Definition
SEEP	ISFT	1-4	1	Option 1: The line of creep calcu-

Option 1: The line of creep calculations are as described in EM 1110-2-2501 and as illustrated and discussed in detail in Exhibit H for sliding and Exhibit K for overturning of the Program Criteria Specifications Document. This is the default option for this control. Its action combines with the heel earth crack control (KRACK) to determine how the pressures are determined

Option 2: Perched water table. Any load case(s) will use the water elevation over the toe for weight and horizontal pressure above the toe only. Uplift will be hydrostatic, based on the water elevation over the heel. This would be selected by the user for a channel with an impervious floor:

Option 3: Pressures will be those caused by the weight of water over the heel and toe. Uplift will be a linear variation between the heel

_	Variable		Default	
Name	Name	Units	Value	Definition
SEEP	I SFT			and toe hydrostatic pressure. The user might select this option for a wall on rock

Option 4: Water weight and horizontal pressures above the base will be hydrostatic pressures calculated from the input water elevations. Uplift pressures will be input data for analysis only; will be used as zero for design

List	Variable		Default	
<u>Name</u>	Name	Units	Value	Definition
SEED	ISFT			

Values as inputted by user for analysis. May be zero as described in paragraph S-15e of EM 1110-2-2501. Will be taken as zero during design. Use array FV in data list HSPV to input these pressures; to cancel these pressures, use this data list entry:

KRACK 1 or 2 (1)*

Option 1 (default for floodwalls) is to have a vertical crack in the earth cover over the heel (see page S-9 and paragraph S-15a on page S-18 of EM 1110-2-2501). This eliminates any active earth pressure at the heel (module SA) and enables the use of W3-W4 surcharge pressures

^{*} This and other reference numbers given in parentheses in this table refer to notes listed on page 3-20.

3-3-2 Soils and Seepage Data Item refinitions (Continued):

List	Variable		Default	
Name	Name	Units	Value	Definition
SEEP	KRACK			Option 2 (default for retaining walls) is to have no crack over the heel. This enables active earth pressure and disables any W3-W4 surcharge pressures
SLID	LC	0, 1-10		Load case number (see paragraph 2-6-6)
	NSLIDE	1-4	(1)	l to use ETL 1110-2-184 Shear Friction Method (default for retaining walls). See Exhibit H of the Program Criteria Specifications Document)
				2 to use the Allowable Strength Equilibrium Method with c' = c/(FS+2c'), according to Ex- hibit I of the Program Criteria Specifications Document (default for floodwalls)
				3 to use the Aliowable Strength Equilibrium Method with c' = c/FS, according to Exhibit J of the Pro- gram Criteria Specifications Document
				4 is not implemented (see paragraph 3-2-3)
	FSMIN	ratio	1.5 for flood-walls; 2.0 for retaining walls	Minimum allowable factor of safety against sliding [force ratio for NSLIDE = 1 (or NPPD = 5 in data list SOLP); allowable strength ratio FS for NSLIDE = 2 or 3]. (see paragraph 3-2-3)
SPHF				See notes (10), (11), (12), and (13)
	LC	0, 1-10		Load case number (see raragraph 2-6-6)
	FZTAH	ft	0.0	Thickness of filter zone at end of heel, measured vertically up from base of slab (top of key if key is at end of heel)

3-3-2 Soils and Seepage Data Item Definitions (Continued):

List	Variable		Default	
Name	Name_	Units	Value	Definition
SPHF	PHIFZ	deg	0.0	Angle of internal friction (2)
	COHFZ	psf	0.0	Cohesive strength of filter zone (2)
	GAMASF	pcf	0.0	Unit weight of filter (including weight of water if submerged) (2)
	RKAFZ	factor	С	Active earth pressure coefficient for filter. Will be calculated from PHIFZ if not defined and if IFWOC = 2. Will be ignored if IFWOC = 1
	DELTAF	deg	0.0	Wall friction angle for pressures on face of stem
	RKAEFZ	factor	С	Mononobe-Okable earthquake active pressure factor. See Chapter 8 of the Program Criteria Specifications Document. Dynamic K_a needs RKH and RKV from data list SOLP if it is to be calculated. Will be ignored if IFWOC = 1
SPH1				See note (10) and note (6) the table in paragraph 3-3-1
	LC	0, 1-10		Load case number (see paragraph 2-5-6)
	PHI1	deg	0.0	Angle of internal friction (9)
	COH1	psf	0.0	Cohesive length (9)
	GAMAS1	pcf	0.0	Unit weight of soil (including weight of water if submerged)
	(The lis	t may be 1	terminated	here if defaults below are OK.)
SPH1	RKA1	factor	С	Active earth pressure coefficient. Will be calculated from PHI1 if not defined and if IFWOC = 2. Will be ignored if IFWOC = 1
	DELTA1	deg	0.0	Wall friction angle for pressures on face of stem
	RKAE1	factor	С	Mononobe-Okabe earthquake active earth pressure factor. See

3-3-2 Soils and Seepage Data Item Definitions (Continued):

List	Variable		Default	
Name	Name	Units	Value	Definition
SPH1	RKAE1			Chapter 8 of the Program Criteria Specifications Document. RKAEl needs RKH and RKV from data list SOLP if it is to be calculated. Will be ignored if IFWOC = 1
	HCMIN	ft	*	Minimum allowable earth cover over the heel, measured vertically. This is used as a constraint in module FD and is compared in module FA. It is ignored in mod- ules SA, SP, WA, WD, UA, and UD
SPH2				See note (10)
	LC	0, 1-10		Load case number
	ELTS1	ft		Elevation of top of soil layer 1. Soil layer 2 need not be included if it is the same as soil layer l
	PHI2	deg	0.0	Angle of internal friction
	сон2	psf	0.0	Cohesive strength
	GAMAS2	pcf	0.0	Unit weight of soil (including weight of water if submerged)
	(The lis	t may be	terminated	here if defaults below are OK.)
	RKA2	factor	С	Active earth pressure coefficient. Will be calculated from PHI2 if not defined and if IFWOC = 2. Will be ignored if IFWOC = 1
	DELTA2	deg	0.0	Wall friction angle for pressures on face of stem
	RKAE2	factor	С	Mononobe-Okabe earthquake active earth pressure factor. See Chap- ter 8 of the Program Criteria Speci- fication Document. RKAE2 needs RKH
			(Con	tinued)

^{*} The default calculation for HCMIN is (3 + 0.1(ETS-ESHW) ± 5.0 and is calculated separately for each load case if the default is requested and the wall is a floodwall. The default value for retaining walls is zero. If a value is inputted in the data list, it will be used for all load cases.

3-3-2 Soils and Seepage Data Item Definitions (Continued):

List	Variable	71	Default	D. 63. 74. 7
Name	Name	<u>Units</u>	Value	Definition
SPH2	RKAE2			and RKV from data list SOLP if it is to be calculated. Will be ignored if IFWOC = 1
SPE3				See note (11)
	PHI3	deg		Angle of internal friction (3)
	сон3	psf		Cohesive strength (3)
	GAMAS3	pcf		Unit weight of soil (including weight of water if submerged)
	PH1S3	deg		Angle of sliding friction on concrete (4)
	ADHS3	psf	-	Adhesive strength against concrete (4)
(Th	e rest of	this list		itted if allowable bearing pressure is be checked.)
SPE3	ABP3TN	psf		Allowable gross bearing pressure under a base BWl feet wide (data list WLDB) at top of soil zone 3. See note (5)
	ABP3BN	psf		Allowable gross bearing pressure under a base PWl feet wide (data list WLDB) at elevation ELBS3. See note (5)
	ABP3TW	psf		Allowable gross bearing pressure under a base BW2 feet wide (data list WLDB) at the top of soil zone zone 3. See note (5)
	ABP3BW	psf		Allowable gross bearing pressure under a base BW2 feet wide (data list WLDB) at elevation ELBS3. See note (5)
	ELBS3	ft	С	Elevation used as a basis for ABP3BN and ABP3BW. Must be below all concrete. The default value is the lowest concrete elevation
SPE4				See note (11)

3-3-2 Soils and Seepage Data Item Definitions (Continued):

List	Variable		Default	
Name	Name	Units	Value	Definition
SPE4	ELTS3	ft		Elevation of top of soil layer 3. See note (6)
	PHI4	deg	0.0	Angle of internal friction (3)
	сон4	psf	0.0	Cohesive strength (3)
	GAMAS4	pcf	0.0	Unit weight of soil (including weight of water if submerged)
	PHIS4	deg	0.0	Angle of sliding friction on concrete (4)
	ADHS4	psf	0.0	Adhesive strength against con- crete (4)
		(The rest	of this 1	list may be omitted.)
SPE4	ABP4TN	psf		Allowable gross bearing pressure under a base BWl feet wide (data list WLDB) at the top of soil layer 4. See note (5)
	ABP4BN	psf		Allowable gross bearing pressure under a base BWl feet wide (data list WLDB) at the bottom of soil layer 4. See note (5)
	ABP4TW	psf		Allowable gross bearing pressure under a base BW2 feet wide (data list WLDB) at the top of soil layer 4. See note (5)
	ABP4BW	psf		Allowable gross bearing pressure under a base BW2 feet wide (data list WLDB) at the bottom of soil layer 4. See note (5)
SPE5				See note (11)
	ELTS4	ft		Elevation of top of soil layer 4. See note (6)
	PHI5	deg	0.0	Angle of internal friction. See note (3)
	сон5	psf	0.0	Cohesive strength (3)
	GAMAS5	pcf	0.0	Unit weight of soil (including weight of water if submerged)

3-3-2 Soils and Seepage Data Item Definitions (Continued):

List	Variable		Default	
Name	Name	Units	Value	Definition
SPE5	PHIS5	deg	0.0	Angle of sliding friction on concrete (4)
	ADHS5	psf	0.0	Adhesive strength against concrete (4)
		(The rest	of this	list may be omitted.)
	ABP5TN	psf	0.0	Allowable gross bearing pressure value under a base BWl feet wide (data list WLDB) at the surface defined by data list SSEE. See note (5)
	ABP5BN	psf		Allowable gross bearing pressure under a base BWl feet wide (data list WLDB) at the bottom of soil layer 5. See note (5)
	ABP5TW	psf		Allowable gross bearing pressure value under a base BW2 feet wide (data list WLDB) at the surface defined by data list SSEE. See note (5)
	ABP5BW	psf		Allowable gross bearing pressure under a base BW2 feet wide (data list WLDB) at the bottom of soil layer 5. See note (5)
SPT6				See note (10)
	LC	0, 1-10		Load case number (see paragraph 2-6-6)
	PH16	deg	0.0	Angle of internal friction
	сон6	psf	0.0	Cohesive strength
	GAMAS6	pcf	0.0	Unit weight of soil (including weight of water if submerged)
SPT7				See note (11) and note (6) in the table in paragraph 3-3-1
	LC	0, 1-10		Load case number (see paragraph 2-6-6)
	РНТ 7	deg	0.0	Angle of internal friction (9)

3-3-2 Soils and Seepage Data Item Definitions (Continued):

list Name	Variable Name	Units	Default Value	Definition
SPT7	сон7	psf	0.0	Cohesive strength (9)
	GAMAS7	pcf	0.0	Unit weight of soil (including weight of water if submerged)
SSEE				See notes (7), (11), (12), and (14). See Figures 3-2 and 3-3. This list is optional
	EXW	ft	2.0	Excavation bottom extra width, each side
	ESS	ratio	1.0	Excavation side slope, 1.0 vertical: ESS horizontal. Must not be zero
	HSS5T	ratio	100.0	Existing ground side slope beyond ELTS5T (toe side), 1.0 vertical: HSS5T horizontal, 100.0 if level
	ELTS5T	ft		Elevation of existing ground at a distance from the basic working line of DTS5T toward the toe
	DTS5T	ft	0.0	Horizontal distance from basic working point to ELTS5T toward toe
	ELTS5W	ft		Elevation of existing ground di- rectly under basic working point
	ELTS5H	ft		Elevation of existing ground at a distance from the basic working line of DTS5H toward the heel
	DTS5H	ft	0.0	Horizontal distance from basic working point to ELISSH toward heel
	нѕѕ5н	ratio	100.0	Existing ground side slope beyond ELTS5H (heel side), 1.0 vertical: HSS5H horizontal, 100.0 if level
SOLP	LC	0, 1-10		Load case number (see paragraph 2-6-6)
	I FWOC	1 or 2	2	1 if an incremental wedge method is to be used to calculate active earth pressures, and horizontal pressures of surcharge. See notes (12) and (14)

3-3-2 Soils and Seepage Data Item Definitions (Continued):

List Name	Variable Name	Units	Default Value	Definition
SOLP	I FWOC			2 if Coulomb's equation is to be used to calculate active earth pressures and if modified theory of elasticity equations described in Addendum B to Exhibit A of the Program Criteria Specifications Document are to be used for horizontal pressures due to vertical surcharges
	NODF.	each	C.	Number of wedge increments (nodes) to be used in modules SA and SP when IFWOC = 1 and IFSOM = 2. Default (D or C) is to use one node per foot of height, which becomes excessively expensive for higher walls. NODE is ignored in module FD because IFSOM is used as 1 if IFWOC = 1 during the design process. The final analysis of the selected design, however, uses IFSOM and NODE as actually defined by the user
	IFSOM	1 or 2	1	l for one-piece trial failure sur- faces in the incremental wedge method calculations with multiple layers of soil
				2 for piece-wise linear trial failure surfaces in the incremental wedge method calculations with multiple layers of soil. Option 2 is not allowed in the design stage of module FD because of the much greater cost. The analysis stage of module FD uses the IFSOM value set by the user. See paragraph 4.3.1.b of the Program Criteria Specifications Document
	NPPD	1-5	(1)	Overturning analysis passive pressure shape code. See Figure 4-1 and pages K-6 through K-11 of the Program Criteria Specifications
			(Con	tinued)

List	Variable		Default	
Name	Name	Units	Value	Definition

SOLP NPPD

Document. Note that the difference between Figures K-lc and K-2b is that the wall in Figure K-lc has a key (0.01 ft long). A quick reference shape diagram follows, but it is important for the user to read pages K-6 through K-11 before coding a wall with a sloping base and no key. Level base, no key (DKEY = 0.0):

NPPD = 1 or 3:

NPPD = 2 or 4: No <u>passive</u> pressure possible

<u>Level base</u>, <u>DKEY</u> at least 0.01 ft long:

Sloping base, no key (DKEY = 0.0): NPPD = 1 or 3:

List Name	Variable Name	Units	Default Value	Definition
SOLP	NPPD			NPPD = 2 or 4: No passive pressure possible
				Sloping base, DKEY at least 0.01 ft long:

Any base, with or without a key:

NPPD = 5: This option precludes the use of any subgrade friction or passive pressure in either sliding or overturning

Note that in walls with a key at least 0.01 ft long, the horizontal force in the overturning calculations is resisted entirely by passive pressure, with no limit on the magnitude of the passive pressure. Walls without a key have this horizontal force resisted by only a force along the base unless this force exceeds a (N tan \emptyset + cA) limit, in which case the amount of force in excess of the limit will be taken up by passive pressure shaped according to the value of NPPD

3-3-2 Soils and Seepage Data Item Definitions (Continued):

List	Variable		Default	
Name	Name	Units	Value	Definition
SOLP	NPPD			The NPPD default value for floodwalls is 1; the default value for retaining wall is 3
	RKH	ratio	0.0	Mononobe-Okabe earthquake horizon- tal acceleration factor, as a deci- mal fraction of gravity. See note (8)
	RKV	ratio	0.0	Mononobe-Okabe earthquake vertical acceleration factor, as a decimal fraction of gravity. See note (8)
	C FMA	factor	1.0	Arching-active correction factor for moment arm used to increase moments due to arching active earth pressure. See paragraph 4.3.1.c of the Program Criteria Specifications Document. M = F * arm * CFMA(LC)
SST	LC	0, 1-10		Load case number (see paragraph 2-6-6)
	ESTW	ft		Elevation of backfill earth cover over toe, where it passes directly underneath the basic working point. See note (9)
	SST	ratio		Slope of backfill earth cover over the toe, 1.0 vertical: SST horizon- tal, level = 100.0. See note (9). This slope may intersect anywhere on the excavation side slope or on existing ground
SSHW				This data list is used to define the backfill earth cover over the heel when the incremental wedge method is to be used for active earth pressures. If the Coulomb method is to be used, use data list SOLC
	LC	0, 1-10		Load case number (see paragraph 2-6-6)
	ESHW	ft		Elevation of backfill earth cover over the heel, where it passes
			1	

3-3-2 Soils and Seepage Data Item Definitions (Continued):

List	Variable		Default	
Name	Name	Units	Value	Definition
SSHW	ESHW			directly underneath the basic working point. This earth cover must intersect the heel-side face of the stem and not the top of stem
	HS1	ratio	100.0	Heel earth backfill slope nearest the stem. 100.0 = level. Usable only if IFWOC = 1. Must be "C" unless 3 slopes are used
	DS1H	ft	0.0	Width of slope HS1. Needed only if IFWOC = 1. Must be "C" unless HS1 is defined
	нѕ2	ratio	100.0	Heel earth backfill slope, beyond DS1H, for a distance of WDS2. Must be used if more than 1 slope. 100.0 = level. Usable only if IFWOC = 1. Must be used if more than 1 slope
	WDS2	ft	0.0	Width of slope HS2. Needed only if IFWOC = 1. Must be "C" unless HS2 is defined
	НS3	ratio		Heel earth backfill slope, beyond WDS2 for list SSHW or from stem over heel for list SSHC. Must not intersect the base slab. 100.0 if level. Must always be defined
SSHC				SOLC is a subset of data list SSHW containing LC, ESHW, and HS3 only. If list SSHC is entered, the program will automatically set HS1, DS1H, HS2, and WDS2 to undefined C
WGHT	GAMAC	pcf	150.0	Unit weight of reinforced concrete
	GAMAW	pcf	62.5	Unit weight of water

NOTES: (1) Default values described in definition column.

⁽²⁾ Soil layer 1 values are used for filter zone if wedge method is used (IFWOC = 1).

- (3) Used for sliding strength determination wherever the assumed failure path is in soil (if key present or no key but sloping base) (PHIx and COHx).
- (4) Used for sliding strength determination wherever the assumed failure path is along the soil-concrete interface (PHISx and ADHx).
- (5) The program uses an isoparametric interpolation procedure to determine the allowable bearing pressure corresponding to the actual base width (BW) and the elevation at each soil layer interface and concrete outline corner along the base. The actual base width must lie at or between BWl and BW2. Default (D or C) is for the maximum bearing pressure to be ignored. See note (6) and then (7).
- (6) Soil layer 3 must always be defined for modules SA, SP, FA, or FD. Soil layer 5 may be omitted if its properties are identical with soil layer 4. Layer 4 may be omitted if layer 5 has been omitted and all of layers 3, 4, and 5 are identical.
- (7) If layer 5 has been omitted, then ABP4TN and ABP4TW must be for the surface defined by data list SSEE. If layers 5 and 4 have been omitted, then ABP3TN and ABP3TW must be for the surface defined by data list SSEE.
- (8) The equation that uses factors RKH and RKV is in paragraph 8.5.1.b (equation for "angle" 0) of the Program Criteria Specifications Document, for calculating RKAE factors for the filter zone and soil layers 1 through 5. In addition, the factors are multiplied by the various unit weights to get inertial forces within the neutral block. To completely avoid earthquake effects in a load case, all of these data item variables must be zero: RKAEFZ, RKAE1, RKAE2, RKH, and RKV.
- (9) The backfill earth surface must never be below the top of the base slab. This affects data lists SPT7, SPH1, SST, and SSHW or SSHC.
- (10) See Figure 3-1 for illustration of data lists SPHF, SPHI, SPH2, SPT6, SPT7, SSHW, SSHC, SST, and part of SEEP.
- (11) See Figure 3-2 for illustration of lists SSEE, SPE3, SPE4, and SPE5.
- (12) Data lists SOLF and SOL5 are ignored by the wedge method option for active earth computation (1FWOC = 1).

- (13) Special notes about the filter zone:
 - a. Line-of-creep calculations (ISFT = 1 in data list SEEP) assume no loss of head in the filter zone.
 - b. Soil properties for soil layer 1 are used in the filter zone, instead of the SPHF properties, when IFWOC = 1 (wedge method) in data list SOLP.
- (14) With the wedge method, a line from the lowest concrete at the end of the heel, extending outward at an angle 15 deg upward from the horizontal, must intersect the existing grade line defined by data list SSEE. See Figure 3-2.
- 3-3-3 Sliding Data. Sliding control data are included in data lists ONEA and SLID, plus the values of KFLAG and DKEY in data lists WLAK and WLDK, and NPPD in data list SOLP. Data lists ONEA and SLID are optional for analysis. Data list ONEA is optional for design.
 - a. Sliding calculations use the method of wedges: an active wedge beyond the heel, a neutral block between the ends of the heel and the key, and a passive wedge beyond the toe. The passive wedge does not include any use of the variable NPPD in data list SOLP unless NPPD = 5, in which case the passive wedge is replaced with a rigid strut.
 - b. Walls with no key and a level base use neutral block base sliding resistance calculated from the sliding friction angle and adhesion soils data values from soil layers 3, 4, and/or 5 along the base.
 - c. Walls with no key and a sloping base use a variable angle OMEGA to define the bottom of the neutral block:

(1) With maximum OMEGA, base sliding resistance includes the use of sliding friction and adhesion strength from the

or negative.

Figure 3-1. Backfill soils data (illustration of data lists SPHF, SPHL, SPH2, SPT6, SPT7, SSHW, SSHC, SST, and part of SEEP)

^{**} Must be C or 0.0 for IFWOC=2 (Coulomb). See data list SSEE.

Optional. Omit this layer and its data list it no such layer exists.

^{##} See note (13) at the end of paragraph 3-3-2.

Figure 3-2. Existing ground soil and cost data (Illustration of data lists SPE3, SPE4, SPE5, and SSEE

Figure 3-3. Additional notes on intersection of existing and heel backfill soil surfaces

- soil layers under the base, as well as the parallel component of the weight of the neutral block.
- (2) With OMEGA less than the maximum, base sliding resistance includes the use of soil internal friction and cohesion instead of sliding friction and adhesion.
- d. A single value of OMEGA may be specified in data list ONEA, or it may be made variable by either not using list ONEA or canceling an input value by reentering the list with the letter C for an OMEGA value.
- e. Walls with a key not less than 0.01 ft long (DKEY in data list WLAK or the result of module FD) will use a neutral block base that depends on the value of KFLAG (data list WLAK or WLDK).
 - (1) With KFLAG = 0 (key at end of heel), the computation will be as described in Exhibits H, I, and J and in Chapter 6 of the Program Criteria Specifications Document. The bottom of the neutral block will be like the sketch below for a level base:

And like this for a sloping base:

(2) With KFLAG = 1 (key under stem), the computations will be similar to the KFLAG = 0 situation, but will be based on the descriptions given in paragraph 6.3.1 of the Program Criteria Specifications Document and diagrammed below. Read this reference carefully before using this option. Surfaces 1 and 2 are always both considered:

f. All situations with OMEGA greater than zero also include the resisting force of the parallel component of the weight of the neutral block, along the inclined failure surface.

3-4 SURCHARGE DATA

3-4-1 All Surcharge Data Lists Are Optional:

- All surcharge data lists may be used in modules SA, SP, FA, and FD.
- b. Surcharge data lists SCFD, SCFH, and SCWH may be used in modules WA, WD, UA, and UD.
- c. Surcharge data lists SCFV and SCWV are not used in modules WA, WD, UA, and UD.

3-4-2 Surcharge Data Item Definitions (See Figure 3-4):

list	Variable		Default	
Name	Name	Units	Value	Definition (See Note 1)
SCFD				Vertical forces on concrete
	LC	0, 1-10		Load case number (see paragraph 2-6-6)
	PVS	lb/ft	0.0	Line load centered on top of stem
	PVB	lb/ft	0.0	Line load on base slab at X coordinate value DVB from vertical line through the basic working point
	DVB	ft	0.0	X coordinate from basic working point to PVB. Negative if PVB is on toe
SCFH				Horizontal forces on concrete
	LC	0, 1-10		Load case number (see paragraph 2-6-6)
	PH1	lb/ft	0.0	Line load at elevation ELPH1. Must be negative if on toe
	ELPH1	ft		Elevation of force PHI. May be at any elevation on or above bottom of toe
	PH2	lb/ft	0.0	Line load at elevation ELPH2
	ELPH2	ft		Elevation of force PH2. Must be above base, on stem only
SCFV				Vertical line loads on soil surface
	LC	0, 1-10		Load case number (see paragraph 2-6-6)
	PV1	lb/ft	0.0	Line surcharge at X coordinate DV1
	DV1	ſt	0.0	X coordinate at line load PVI. See note (2)

3-4-2 Surcharge Data Item Definitions (Continued):

List	Variable		Default	
Name	Name	Units	<u>Value</u>	Definition (See Note 1)
SCFV	PV2	lb/ft	0.0	Line surcharge at X coordinate DV2
	DV2	ft	0.0	X coordinate at line load PV2
	PV3	lb/ft	0.0	Line surcharge at X coordinate DV3
	DV3	ft	0.0	X coordinate at line load PV3
	PV4	1b/ft	0.0	Line surcharge at X coordinate DV4
	DV4	ſt	0.0	X coordinate at line load PV4
	PV5	1b/ft	0.0	Line surcharge at X coordinate DV5
	DV5	ft	0.0	X coordinate at line load PV5
SCWH				Horizontal pressures
	LC	0, 1-10		Load case number (see paragraph 2-6-6)
	WI	psf	0.0	Pressure on any portion of stem above finished grade
	ELWIT	ft		Elevation of top of Wl. Must be between the top of stem and ELW1B
	ELWIB	ft		Elevation of bottom of Wl. Must be below ELWlT
	W3	psf	0.0	Pressure at finished grade elevation over end of heel. See note (2)
	W4	psf	0.0	Pressure at bottom of key if key is at end of heel (KFLAG = 0) or at bottom of end of heel if no key or if key is under the stem (KFLAG = positive)
SCWV				Vertical surcharge pressures on soil surface
	LC	0, 1-10		Load case number (see paragraph 2-6-6)
	WT	psf	0.0	Area surcharge, over a portion of toe only
	TWW	ft	0.0	Width of WT
	DWT	ft	0.0	Horizontal distance from basic working point to stem-side edge of area covered by WT. Always entered positive, over toe only

3-4-2 Surcharge Data Item Definitions (Concluded):

List Name	Variable Name	Units	Default Value	Definition (See Note 1)
SCWV	WH	psf	0.0	Area surcharge, over a portion of heel only
	WWH	f t	0.0	Width of WH
	DWH	fι	0.0	Horizontal distance from basic working point to stem-side edge of area cov- ered by WH. Always positive, over heel only
WIND	LC	0, 1-10		Load case number (see paragraph 2-6-6)
	W	psf	0.0	Wind pressure (positive from heel, negative from toe) on exposed surface of stem not covered by pressure Wl in data list SCWH

NOTES: (1) All forces and pressures are positive downward or acting toward the toe from beyond the heel.

(2) Used only if KRACK = 1; ignored if KRACK = 2. Pressures W3-W4 are in addition to all seepage pressures. They are intended for use to model the momentary increase in hydrostatic pressure caused by the rise in mean water level as a wave approaches the stem. Pressures W3-W4 act instead of active earth on the neutral block if KRACK = 1.

3-5 COST DATA

3-5-1 Use of Cost Data:

- a. Cost data are all optional. Default values will be used if not entered (it is not necessary to enter a list just to use the D option).
- b. Module FA calculates the estimated construction cost of the completed wall, in dollars per lineal foot.
- c. Module FD uses the construction cost estimated by module FA as its basis of optimization.
- d. Modules SA, SP, WA, WD, UA, and UD ignore the cost factors.
- e. Cost data are illustrated in Figure 3-2.

- (either direction); positive if over heel, negative it over toe.
- ** Centered on top of stem.

At or below top of stem.

Below ELWII; may be below ground (must be on stem).

Figure 3-4. Illustration of applied loads and surcharges

3-5-2 Cost Data Item Definitions:

List Name	Variable Name	Units	Default Value	Definition
			· · · · ·	THE THIE CONTRACTOR
CSTB*				Unit costs of structural backfill
	UCBFFZ	\$/ft ³	().()	Unit cost of filter zone
	UCBFS1	s/ft ³	0.0	Unit cost of soil layer 1
	UCBFS2	s/ft ³	0.0	Unit cost of soil layer 2
	UCBFS6	s/ft ³	0.0	Unit cost of soil layer 6
	UCBFS7	s/ft ³	0.0	Unit cost of soil layer 7
CSTC				Unit costs of reinforced concrete
	UCWB	\$/ft ³	1.0	Unit cost of concrete in base slab
	UCWS	\$/ft ³	1.0	Unit cost of concrete in stem
	UCWK	\$/ft ³	1.0	Unit cost of concrete in key
CSTE*				Unit costs of structural excavation
	UCFXS3	\$/ft ³	0.0	Unit cost of excavation in soil layer 3
	UCEXS4	\$/ft ³	0.0	Unit cost of excavation in soil layer 4
	UCEXS5	s/ft ³	0.0	Unit cost of excavation in soil layer 5
	UCEXWK	S/ft ³	0.0	Unit cost of key excavation

^{*} CSTB and CSTE values must be omitted (for default value substitution) or zero when hypothetical existing earth elevations and distances are used in data list SOLE.

3-6 WALL GEOMETRY DATA

3-6-1 Internal Coordinate System. A system of orthogonal coordinates is calculated internally and used to define locations of corners of the concrete outline, as well as of the soils system and sliding failure planes. See the circled numbers in Figure 3-5.

- a. X coordinates are measured horizontally from an origin along the Y axis which runs vertically through the basic working point (BWP). Positive values are toward the heel; negative values are toward the too.
- b. Y coordinates are elevations. All values must be positive.

- 3-6-2 Data Redundancy. The data items are more than sufficient to describe a wall. This redundancy gives the user more flexibility in how a wall can be described, or verifies the consistency of a description calculated elsewhere. Major redundant data sets are described below:
 - a. Stem location on base. The location of the stem (toe side of stem at base) can be established by defining any one of the following sets of data. See paragraph 3-6-4 for definition of the variables. It is assumed that the base width (BW) has already been established:
 - (1) TW2 (toe width).
 - (2) BW, STR (BW times stem ratio).
 - (3) TSTB, HEELW (toe width is remainder of BW).
 - b. Heel thickness at stem. The possibilities here are based on the fact that the program always completes the definition of the toe width and thicknesses first. Alternate sets are listed below:
 - (1) Toe description, IBSAME = 1, HEELT2
 - (2) HEELT1, HEELT2.

HEELT2 is set to its default value of TMINB if undefined. TMINB is determined from the following rules if undefined. HEELT1 and HEELT2 cannot be less than TMINB; TMINB must be entered if it is to be less than the default value.

ETS-BTE1	TMINB and TMINS Default Values
Up to 15.0 ft	12.0 in.
Over 15 ft	18.0 in.

- c. Heel-side bottom panel batter of stem. This value, HSBPB, is always calculated by the program as it closes the perimeter description of the wall cross section. The calculated value is printed in the report file.
- 3-6-3 Data Lists. Many of the wall geometry data items appear in more than one list to aid the user in entering the fewest number of lists possible. In general, there are two types of lists: those describing the wall for analysis, and those describing the wall for design. The first two letters of the list names are "WL" for "wall." The third letter is either "A" for "analysis" or "D" for "design." The fourth letter, if used, is "B" for "base," "H" for "heel," "K" for "key," "S" for "stem," or "T" for "toe."
 - a. Lists for analysis:

*WLA ETS TW2 STR HEELW

*WLAB BW BW1 BW2 BS

*WLAH HEELT2 HEELW HEELT1

WLAK KFLAG DKEY WKEY BKTF

*WLAS TSTT TSB TSTB HSTPH HSTPB HSPBP

*WLAT BTE1 TOEHT TS2 TW1 TS1

WLBR BASER

b. Lists for design:

*WLD ETS TW2 STR HEELW TSTB TMINB

*WLDB BW1 BW2 BS1 BS2 (needed only for stability design)

WLDH HEELT2

WLDK KFLAG BKTF DKEY1 DKEY2

WLDS TMINS TSB HSTPH HSTPB HSBPB

*WLDT BTE11 BTE12 TOEHT TW1

WLBR BASER

Note that TMINB in list WLD must be used for slab thicknesses below the default for TMINB and TMINS in list WLDS must be used for stem thickness less than the default for TMINS. Note that this list may not be terminated after TMINS because the rest of the list must be "S," not "D."

3-6-4 Wall Geometry Data Item Definitions (See Figure 3-5). Wall parts are listed in the approximate order that they are used in the program. See Chapters 5 and 6 for illustrations.

Variable Name	Units	Default Value	Definition
			Stem Description
TSTT	in.	TMINS	Stem thickness t at top. See note (11)
ETS	ft	(1)	Elevation of top of stem
TSB	in./ft	0.0	Toe-side batter, inches horizontal per foot vertical
TSTB	in.	(10)	Stem t at base. See note (11)
TMINS	in.	(3)	Minimum allowable stem t . See paragraph 3-6-2b(2)
			(Continued)

^{*} Denotes a required list.

3-6-4 Wall Geometry Data Item Definitions (Continued):

Variable Name	Units	Default Value	Definition	
нѕтрн	ťt	(2)	Heel-side top panel height. Should be 0.0 if no top panel. See note (13)	
нѕтрв	in./ft	0.0	Heel-side top panel batter, in inches horizontal per foot vertical. See note (13)	
нѕврв	in./ft	(3)	Heel-side bottom panel batter, in inches hor zontal per foot vertical. There must be a bottom stem t at base (horizontal projec- tion). See notes (10) and (13)	
			Toe Description	
TW1	f t	0.0	Width of part 1 of toe (at stem)	
TS1	ratio	100.0	Slope of top of part 1 of toe, 1.0 vertical to TS1 horizontal, 100.0 = level. Must always be positive	
TW2	ft	(4)	Width of entire toe. See note (10)	
TS2	rat io	100.0	Slope of top of part 2 of toe (at end), 1.0 vertical to TS2 horizontal, 100.0 = hori- zontal. Must always be positive	
TOEHT	in.	TMINB	Toe t at end; always vertical. See note (12)	
BTE1	ft	(1)	Elevation of bottom of toe at end	
BTELL	ft	(1)	Lowest value of BTE1 in module FD	
BTE12	ft	(5)	Highest value of BTEl in module FD	
	ratio	none	Stem ratio (design value for TW2/BW)	

BW	ft	(6)	Base width (horizontal projection). See note (10)
BW1	ſt	(1)	Minimum value for BW in module FD. Also needed for allowable bearing pressure inter- polation in modules FA and FD

(Continued)

3-6-4 Wall Geometry Data Item Definitions (Continued):

Variable Name	Units	Default Value	Definition
BW2	Ít	(1)	Maximum value for BW in module FD. Also needed for allowable bearing pressure inter- polation in modules FA and FD. Must be larger than BWl
BS	rat io	0.0	Base bottom-side slope, BS vertical to 1.0 horizontal, 0.0 = level
BS1	ratio	0.0	Minimum value for BS in module FD
BS2	ratio	0.3333	Maximum value for BS in module FD
BASER	ft	0.0	Base horizontal radius defining trapezoidal plan, measured from basic working point, positive over heel. Base is always 1.0 ft wide under the basic working point. 0.0 = rectangular (infinite radius)
TMINB	in.	(3)	Minimum allowable base slab t . See paragraph
			Key Description
KFLAG	0 or 1	1	0 if key is at end of heel;
			l if key is under stem
DKEY	f t	0.0	Key length, measured vertically along heel side
DKEYI	ft	0.0	Minimum value for DKEY in module FD
DKEY2	ft	(3)	Maximum value for DKEY in module FD
BKTF	ratio	3.0	Toe-side face batter, 1.0 horizontal to BKTF vertical
WKEY	in.	TMINB	Width (thickness) at bottom of key. See note (12)
			Heel Description
HEELT1	in.	(8)	Thickness at stem. See note (12)
HEELT2	in.	TMINB	Thickness at end, not including any key. May not be greater than HEELTI
HEELW	ft	(9)	Width (horizontal projection). See note (10)

(Continued)

3-6-4 Wall Geometry Data Item Definitions (Concluded):

- NOTES: (1) Required data item with no default value or default calculation procedure.
 - (2) Will be calculated to be as large as possible. See Figure 3-6.
 - (3) Calculated by program.
 - (4) See paragraph 3-6-2a(1).
 - (5) Note (1); must be below top of soil layer 7 as defined by data list SOLT.
 - (6) Three fifths of ETS BTE1 or, as determined by module FD, between BW1 and BW2.
 - (7) Default value for a floodwall is 0.8 of ETS BTE1; default value for a retaining wall is zero.
 - (8) Default values:
 - a. TMINB.
 - b. Top of heel must not slope down toward the stem.
 - c. Set at top of toe at stem if IBSAME = 1 and if it is strong enough.
 - (9) See paragraph 3-6-2a(3).
 - (10) Program verifies consistency of following equations, within 0.01 ft, or calculates values to complete the equations:

$$BW = TW2/STR = TW2 + (TSTB/12.0) + HEELW$$

- (11) May not be less than TMINS.
- (12) May not be less than TMINB.
- (13) When a single batter is desired on the heel-side face of the stem, use HSTPH = 0 and HSTPB = anything and use HSBPB for the single batter.

- 4. Circled numbers are cross-sectional corner numbers.
- -3 May never be negative.

 $\rm Value = 100.0$ if level; must never slope dewnward toward stem.

Controlled by design process in mostly ID.

Figure 3-5. Wall cross-sectional data variables

Figure 3-6. Wall cross section with illustration of all default values for hydraulic structures (default values are taken from EM 1110-2-2501, unless otherwise noted)

CHAPTER 4: MODULES SA AND SP--ACTIVE EARTH PRESSURES

- 4-1 GENERAL. Modules SA and SP are not normally run separately by the user. Normal use of the program would include running module FA for overall stability analysis or module FD for overall stability design. When modules FA and FD need the output of modules SA and SP, they are called automatically.
- 4-2 PURPOSE. Module SA calculates active earth and horizontal surcharge effect forces acting on a vertical plane through the end of the heel. Module SP performs the same calculations as module SA, except that the forces are the ones acting on the heel-side face of stem. Calculation procedures are explained in Exhibit A to the Program Criteria Specifications Document.
- 4-3 ACTIVE EARTH PRESSURE CALCULATION. Active earth forces may be calculated by either Coulomb's equation (IFWOC = 2) or an incremental wedge method (IFWOC = 1). Data lists ACPH and ACPS permit the user to edit the forces so obtained for analysis (not for design) or to input for analysis a complete set of forces obtained elsewhere. Earth pressures for stability design must be as calculated within the program (see Chapter 11).

4-4 REQUIRED DATA

- 4-4-1 Soils. See paragraph 3-3-2 and Figure 3-1 for details. DELTA1 of data list SPH1 and DELTA2 of data list SPH2 are required for modules SP only.
- *SPE3 PHI3 COH3 GAMAS3 PHIS3 ADHS3 ABP3TN ABP3BN ABP3TW ABP3BW ELBS3 SSHW LC ESHW HS1 DS1H HS2 WDS2 HS3

or

SSHC LC ESHW HS3 (HS1, DS1H, HS2, and WDS2 will be cancelled.)

4-4-2 General. See paragraph 3-2-2a for details.

CASE NLC LCS(1) LCS(2) ... LCS(NLC)

4-4-3 Geometry. See paragraph 3-6 and Figure 3-5 for details.

^{*} Only PHI3, COH3, and GAMAS3 are used in module SA. The entire list is ignored if IFWOC = 2 (Coulomb), but the list must be inputted with positive values even if the values are not needed.

- *WLA ETS TW2 STR HEELW
- *WLAB BW BW1 BW2 BS
- *WLAH HEELT2 HEELW HEELT1
- WLAK KFLAG DKEY WDEY BKTF
- *WLAS TSTT TSB TSTB HSTPH HSTPB HSBPB
- *WLAT BTE1 TOEHT TS2 TW1 TS1

Much of this data is redundant, as is described in paragraph 3-3-2. The lists are shown here only as a reminder to the experienced user. The beginning user is urged to refer to Chapter 5.

- 4-5 OPTIONAL DATA THAT WILL BE USED IF ENTERED
- 4-5-1 <u>Soils.</u> See paragraph 3-3-2 and Figure 3-1 for details. DELTA2 and DELTAF are used only in module SP.
- **SPH1 LC PHI1 COH1 GAMAS1 RKA1 DELTA1 RKAE1 HCMIN
- **SPH2 LC ELTS1 PHI2 COH2 GAMAS2 RKA2 DELTA2 RKAE2
- **SPHF LC FZTAH PHIFZ COHFZ GAMASF RKAFZ DELTAF RKAEFZ
- †SPE4 ELTS3 PHI4 COH4 GAMAS4 PHIS4 ADHS4 ABP4TN ABP4BN ABP4TW ABP4BW
- †SPE5 ELTS4 PHI5 COH5 GAMAS5 PHIS5 ADHS5 ABP5TN ABP5BN ABP5TW ABP5BW
- THE SEEP LC ELWT ELWH HGSW ISLC ISFT KRACK
- *SOLP LC IFWOC NODE IFSOM NPPD RKH RKV CFMA
- SSEE EXW ESS HSS5T ELTS5T DTS5T ELTS5W ELTS5H DTS5H HSS5H
- ** WGHT GAMAC GAMAW

^{*} Denotes a required list.

^{**} DELTA1, DELTA2 and DELTAF are ignored by module SA; RKA1, RKA2, RKAFZ, and RKAEFZ are optional (see note (8) and the detailed definitions in paragraph 3-3-2). HCMIN is used by module FD only.

 $[\]pm$ Only PHI, COH, and GAMAS are used in module SA. The values in the entire list are ignored if IFWOC = 2 in modules SA and S

the only variable actually needed is KRACK (LC), to educe on be set to 2 (no crack) if the wall is a floodwall. ISLC has a dy value. This is also an optional list.

^{*} NODE and IFSOM are ignored if IFWOC = 2 (Coulomb); NPPD is ignored by both modules.

^{**} List WGHT is needed only if ELWH is used to achieve buoyant earth below some elevation. Default values are 150.0 and 62.5.

4-5-2 General. See paragraph 3-2 for details.

NAME (job name, 60 characters maximum)

*TYPE LC ITYPE(LC)

(HYD is ignored by both module SA and module SP.)

4-5-3 Surcharges. See paragraph 3-3-1 and Figure 3-4 for details.

Data lists SCFD, SCFH, and SCWH are not used in modules SA and SP.

SCFV LC PV1 DV1 PV2 DV2 PV3 DV3 PV4 DV4 PV5 DV5

SCWV LC WT WWT DWT WH WWH DWH

4-5-4 Geometry. The geometry data for analysis (all data lists beginning with the letters "WLA") contain the capability of a highly redundant description. The purpose of this redundancy is to furnish the user with flexibility in completing a wall description. It can also be used to verify the consistency of a description calculated elsewhere, since the program verifies such redundant data. See paragraph 3-6 for details.

4-6 INTERPRETATION OF OUTPUT

4-6-1 Meaning of Values:

- a. The values calculated by models SA and SP are in the form of a series of arrays, each element of which is a lumped force summed from the segment of pressure diagram centered on a row of nodal points that are evenly spaced along the vertical surface specified in paragraph 4-2. The spacing may be controlled by the data item variable NODE in data list SOLP described in paragraph 3-3-2. A summation of lumped force values is thus equivalent to the total area under the active earth pressure diagram.
- b. Each module produces three arrays—lumped force elevations, static effect forces, and additional forces due to earthquake—as tabulated below:

Module	Lumped Force	Static Force	Additional Earthquake	Acting
Name	Elevations	Values	Force_Values	Λt
SA SP	YH(LC, location) YVS(LC, location)	H(LC, location) HS(LC, location)	EH(LC, location) EHS(LC, location)	heel stem

^{*} If the wall is floodwall (ITYPE(LC) = 1) and if KRACK in data list SEEP is 1 (with crack, default for floodwalls), then module SA will produce all zero values. See the detailed definitions of KRACK and W3 in paragraph 3-2-2.

The location subscript for a given module run always starts with 1 and goes until the lowest possible elevation has been reached using the given (NODE set by user) or calculated spacing of nodal points. YVS values will be calculated for elevations below the top of heel, but the total forces shown in the report file will include only the pressure above the top of heel slab.

- 4-6-2 Report File Output. The report file output includes a table of lumped force values and the total force and its moment about the bottom of the end of the toe. Other information in the report file includes a summary of input data and the wall description. The wall description includes X and Y coordinates of the corners of the concrete outline, where X is positive over the heel and negative over the toe from the basic working point and Y is an elevation.
- 4-6-3 Time-Sharing Terminal Output. The output arrays and wall corner coordinates described in paragraphs 4-6-1 and 4-6-2 may be seen through use of the LOOK command. "LOOK ACPH" will display the output of module SA; "LOOK ACPS" will display the output of module SP; and "LOOK XY" will display the wall corner coordinates and wall geometry data list values.

4-7 MODIFICATION OF MODULE SA OUTPUT FOR USE BY MODULE FA

4-7-1 After using the LOOK command to inspect the contents of data list ACPH or examining the report file from module SA, the arrays mentioned in paragraph 4-6-1b may be edited by entering new values in data list ACPH. In the example that follows, "LC" refers to the load case number and "LOC" refers to the location code (array element sequence number). The data list is listed below:

ACPH LC LOC H(LC,LOC) EH(LC,LOC) YH(LC,LOC)

For diagrams of these variables, see Chapter 11. The LOOK IL command shows their values. An example report file table is shown below. In this example, the backfill earth surface elevation over the end of the heel is 119.5 ft, and nodes are at the default spacing of 1.0 ft.

HORIZONTAL ACTIVE EARTH PRESSURES FOR LOAD CASE 1 FOR CLASSIC (COULOMB) ANALYSIS IN SA

OUTPUT OF ARRAYS H, EH, AND YH IN MODULE SA FOR CLASSIC ANALYSIS.

ARRAY ELEMENT LOCATION CODE	ELEVATION (FT)	INCREMENTAL HORIZONTAL STATIC FORCE (LBS)	INCREMENTAL HORIZONTAL EARTHQUAKE FORCE (LBS)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	119.00 118.00 117.00 116.00 115.00 114.00 113.00 112.00 111.00 109.00 108.00 107.00 106.00 105.00 104.00 103.00 102.00	6.1467 36.880 73.760 110.64 147.52 184.40 221.28 258.16 295.3÷ 331.92 368.80 405.68 442.56 479.44 516.32 553.20 590.08 626.96	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
19 20	101.00	663.84 344.24	0.0 0.0 0.0

For example, to change the lumped force H(1,10) at elevation 110.00 from 331.92 to 500.00 1b/ft, with no change in EH(1,10) of 0.0, this data list entry would be made in the executive phase:

ACPH 1 10 500.0 S S

4-7-2 To eliminate these values, for recalculation with changed data, the following data entry must be made. This entry will undefine array element location code number 1 for H(static) and EH(earthquake) forces. It is immaterial whether or not the corresponding elevation array element is undefined once the force element values are canceled.

ACPH LC 1 C C C

where "LC" is a specific load case number or is zero for "all load cases."

4-8 MODIFICATION OF OUTPUT OF MODULE SP FOR USE IN STRUCTURAL DESIGN/ANALYSIS. The output of module SP is edited as described above for module SA, using data list ACPS.

CHAPTER 5: MODULE FA--FOUNDATION STABILITY ANALYSIS

5-1 ACTION OF MODULE FA

- 5-1-1 Module FA performs an analysis of a completely defined wall and its environment for the load cases activated with data list CASE. In addition to running under user control, the component routines of module FA are used by module FD during foundation stability design.
- 5-1-2 Module FA accomplishes the following actions while performing its analysis:
 - a. Seepage pressure calculations (or uses seepage pressure arrays inputted by the user with data lists HSPH and HSPV).
 - b. Sliding safety, as controlled by data lists SOLP (data item NPPD), SLID, and ONEA.
 - c. Overturning stability.
 - d. Bearing pressure limitations.
 - e. Boil control, as determined by data list BOIL.
 - f. Cost analysis, including earthwork and concrete volumes as controlled by data lists CSTB, CSTC, and CSTE.
 - g. Building arrays of earth and seepage effects for use in a later structural analysis or design.

See Chapter 11 for more detail.

5-2 GENERAL DATA. See paragraph 3-2.

NAME (60 characters maximum of alphanumeric job name)

CASE NLC LCS(1) LCS(2) ... LCS(NLC)

HYD LC IHYD (optional)

TYPE LC ITYPE (optional)

5-3 SOILS AND SEEPAGE DATA.

- 5-3-1 See paragraph 3-3-2 and Figures 3-1 and 3-2 for detailed descriptions of data items. Major soils data preparation concepts are listed below:
 - a. Soils data names are modular:
 - (1) Phi value names always begin with the letters PHI, such as PHIFZ in the filter zone, PHI2 for laver 2, etc.
 - (2) Cohesion strength value names always begin with the letters COH, such as COH3 for layer 3, etc.

- (3) Unit weight names always begin with the letters GAMA, such as GAMAS for soils, GAMAS3 for layer 3, etc.
- (4) Allowable bearing pressure data names begin with the letter ABP, followed by the soils layer number, followed by a B for the bottom of the soil layer or a T for the top of the layer, followed by an N for a base width of BWl or a W for a base width of BW2.
- b. PHIx and COHx must be defined or zero in all soil layers before sliding stability can be calculated.
- c. In the heel earth backfill soil layers FZ, 1, and 2, RKAx will be calculated from PHIx if RKAx is not defined. (RKAx means RKAFZ, RKA1, RKA2, etc.)
- d. See paragraph 3-3-2 for special information on sliding data.
- 5-3-2 Required Soil Data. See paragraphs 3-3-2 and 3-3-3 for detailed information.

SPE3 PHI3 COH3 GAMAS3 PHIS3 ADHS3 ABP3TN ABP3BN ABP3TW ABP3BW ELBS3

SST LC ESTW SST SSHW LC ESHW HS1 DS1H HS2 WDS2 HS3

optional portion of list if allowable bearing pressures are not to be considered.

or

SSHC LC ESHW HS3 (HS1, DS1H, HS2, WDS2, are set undefined)

5-3-3 Optional Soil Data. See paragraph 3-3-2 for detailed descriptions.

SLID LC NSLIDE FSMIN

The information in data list SLID is required to run sliding, but the default values

	NSLIDE	FSMIN
floodwall	2	1.5
retaining wall	1	2.0

will be used au. (tically if not defined by the user's input data, so the list is optional.

BOIL ELSPT CRMIN IPATH ONEA OMEGA SEEP LC ELWT ELWH HGSW ISLC* ISFT KRACK

SOLP LC IFWOC NODE IFSOM NPPD RKH RKV CFMA

SPE4 ELTS3 PHI4 COH4 GAMAS4 PHIS4 ADHS4 ABP4TN ABP4BN ABP4TW ABP4BW

optional portion of lists if allowable bearing is not applicable

SPE5 ELTS4 PHI5 COH5 GAMAS5 PHIS5 ADHS5 ABP5TN ABP5BN ABP5TW ABP5BW

SPHF LC FZTAH PHIFZ COHFZ GAMASF RKAFZ DELTAF RKAEFZ

SPH1 LC PHI1 COH1 GAMAS1 RKA1 DELTA1 RKAE1 HCMIN*

SPH2 ELTS1 PHI2 COH2 GAMAS2 RKA2 DELTA2 RKAE2

SPT6 LC PHI6 COH6 GAMAS6

SPT7 LC PHI7 COH7 GAMAS7

SSEE EXW ESS HSS5T ELTS5T DTS5T ELTS5W ELTS5H DTS5H HSS5H

WGHT GAMAC GAMAW

5-4 SURCHARCE DATA. See paragraph 3-4-2 and Figure 3-4 for detailed data descriptions. All surcharge data are optional.

SCFD LC PVS PVB DVB

SCFH LC PH1 ELPH1 PH2 ELPH2

SCFV LC PV1 DV1 PV2 DV2 PV3 DV3 PV4 DV4 PV5 DV5

SCWH LC W1 ELW1T ELW1B W3 W4

SCWV LC WT WWT DWT WH WWH DWH

WIND LC W

5-5 <u>COST DATA</u>. See paragraph 3-5-2 and Figure 3-2 for detailed descriptions of data items. All of these data are optional in that the mandatory items in data list CSTC (concrete) will be used as \$1.00/ft³ if not defined by the user's data. Excavation and backfill costs will default to 0.0.

CSTB UCBFFZ UCBFS1 UCBFS2 UCBFS6 UCBFS7

CSTC UCWB UCWS UCWK

CSTE UCEXS3 UCEXS4 UCEXS5 UCEXWK

5-6 GEOMETRY DATA

^{*} This item has only one value and does not vary with the load case number, unless the default identifier D is used.

5-6-1 See paragraph 3-6-2 and Figures 3-5 and 3-6 for detailed descriptions.

WLA ETS TW2 STR HEELW
WLAB BW BW1 BW2 BS
WLAH HEELT2 HEELW HEELT1
WALK KFLAG DKEY WKEY BKTF
WLAS TSTT TSB TSTB HSTPH HSTPB HSBPB
WLAT BTE1 TOEHT TS2 TW1 TS1
WLBR BASER (optional list)

5-6-2 Typical Geometry Data For Basic Wall:

REM BASIC FLOODWALL, NO TAPERED MEMBERS

WLA 100.0 4.0 C 14.5 see notes (1) and (6)

WLAB 20.0 20.0 20.0 D see note (2)

See note (3).

WLAK 0 5.0 16.0 D see note (4)

See note (5).

- NOTES: (1) With BW and TW2 set, either TSTB or HEELW may be left undefined. In this example, TSTB is left undefined and HEELW is defined.
 - (2) For analysis in module FA, BWl and BW2 may both be set to BW to simplify the soil data preparation.
 - (3) List WLAH is omitted since HEELW is already defined and HEELT1 and HEELT2 are both of default thickness (18 inches for walls over 15 ft high).
 - (4) If there had been no key, this list could have been omitted.
 - (5) List WLAS is omitted since the stem is of default, constant thickness.
 - (6) STR is entered as "C" since TW2 is defined.
 - (7) The letter D for TOEHT will cause it to default to 18 inches for a wall over 15 ft high.

Thus, nine items are needed to describe the plain wall. Two more could have been omitted if there had been no key. The resulting X and Y coordinates are

COORDINATES OF CORNERS OF WALL CROSS-SECTION

X-COORDINATES ARE + TOWARD HEEL FROM BASIC WORKING POINT (BWP) Y-COORDINATES ARE ELEVATIONS

PT.	X	Υ	DESCRIPTION OF POINT
1	0.0	100.0000	BASIC WORKING POINT = TOE-SIDE OF STEM TOP
2	0.0	81.5000	BOTTOM OF TOE-SIDE FACE OF STEM (AT TS1)
3	0.0	81.5000	BETWEEN TS1 AND TS2, ON TOP FACE OF TOE
4	-4.0000	81.5000	TOP OF TOEHT = AT OUTER END OF TW2
5	-4.0000	80.0000	TOE END OF BASE = AT BTE1
6	12.8333	80.0000	TOP OF TOE-SIDE FACE OF KEY
7	14.5000	75.0000	BOTTOM OF TOE-SIDE FACE OF KLY
8	16.0000	75.0000	BOTTOM OF HEEL-SIDE FACE OF KEY
9	16.0000	80.0000	TOP OF HEEL-SIDE FACE OF KEY
10	16.0000	80.0000	HEEL END OF BASE
11	16.0000	81.5000	TOP OF HEELT2 = TOP OF OUTER END OF HEEL
12	1.5000	82.0000	BOTTOM OF HEEL-SIDE FACE OF STEM

<u>PT.</u>	X	<u> </u>	DESCRIPTION OF POINT
13	1.5000	100.0000	BOTTOM OF HEEL-SIDE TOP PANEL OF STEM TOP OF HEEL-SIDE FACE OF STEM
14	1.5000	100.0000	

NOTE: If the toe thickness had not been constant, and if the user had wanted the heel thickness at the stem to match that of the toe at the stem, IBSAME could have been set to I ("make them the same") with data list CNWD:

CNWD D D D 1 D

5-6-3 Typical Geometry Data for Special Wall:

REM SPECIAL FLOODWALL WITH TAPERED MEMBERS

WLA 80.0 20.0 C 17.0

WLAB 50.0 50.0 50.0 0.2

either of these could have been "C" or "D" (but not both)

WLAH 48.0 S 127.2

WLAK 0 5.0 24.0 D

WLAS 48.0 1.2 156.0 10.0 1.2 C

WLAT 54.0 48.0 5.0 10.0 D

This calculates out to the following \boldsymbol{X} and \boldsymbol{Y} coordinates:

X-COORDINATES ARE + TOWARD HEEL FROM BASIC WORKING POINT (BWP) Y-COORDINATES ARE ELEVATIONS

PT.	_ X	Y	DESCRIPTION OF POINT
l	0.0	80.0000	Basic working point = toe-side of stem top
2	-2.0000	60.0000	Bottom of toe-side face of stem (at 181)
3	-12.0000	60.0000	Between TS1 and TW2, on top face of tee
4	-22.0000	58.0000	Top of TOEHT / at outer end of TW.
5	-22.0000	54.0000	Toe end of base i at BIE1
6	24.0714	44.7857	Top of toe-side face of key
7	26.0000	39.0000	Bottom of toe-side face of Res
8	28.0000	39.0000	Bottom of heel-side face of ke.
ij	/8.0000	44.0000	Top of heel-side take of key
10	28.0000	4.0000	Heel and of base
1.1	28.0000	48.0000	Top of HEELE? Top of outer and of cel
1.1	11.0000	58.0000	Bottom of heel-side face of ster.
13	5.0000	70.0000	Bottom of heel-side top panel of fer
1 •	4.0000	80,0000	Top of heel-side tace of stem

5-7 RESTRICTIONS ON INPUT LOADING CASES. Earth pressure calculations assume that (1) horizontal earth pressures on the neel side are active and that (2) the net applied horizontal force summation produces passive earth pressure on the toe side. Module FA will reject any load case that does not conform to the second assumption. There are, however, no restrictions on the net direction of overturning.

CHAPTER 6: MODULE FD--FOUNDATION STABILITY DESIGN

6-1 ACTION OF MODULE FD

6-1-1 Module FD determines the combination of values for variables

BTE1 (between the limits of BTE11 and BTE12)

BS (between the limits of BS1 and BS2)

DKEY (between the limits of DKEY1 and DKEY2)

BW (between the limits of BW1 and BW2)

that will produce the wall with the least construction cost. The construction cost is determined by the volumes of structural excavation, concrete, and structural backfill, combined with the cost figures in data lists CSTB, CSTC, and CSTE. Program running time and cost increase as the sizes of the ranges for BTE1, BS, DKEY, and BW are made larger by the user.

6-1-2 Module FD uses the elements of module FA in the process summarized below and described in detail in the Program Criteria Specifications Document. The user must set either the key length or the stem ratio in the input data.

BTEL varied from BTELL to BTEL2

BS varied from BS1 to BS2

DKEY varied from DKEY1 to DKEY2

Program determines minimum BW, between BWl and BW2 to nearest 0.25 ft, that satisfies the stability checks for sliding, resultant ratio, bearing pressure, and earth cover over the heel. It a value is found for BW that is within the range and satisfies the checks, the cost is determined. This cost is compared with the previous lowest cost and saved it a new low has been reached. The program then proceeds to the next combination of BIEL, BS, DKFY with the set TW2 or STR.

- 6-1-3 Module ED calls module FA automatically for a final complete analysis of the selected design.
- 6-2 GENERAL DATA. See part raph 3-2 for details.

NAME (60 characters maximum of alphanumeric job name)

CASE NLC LCS(1) LCS(2) ... LCS(NLC)

HYD LC IHYD (optional)

TYPE LC ITYPE (optional)

SPECIAL NOTE ON DESIGN ACTION

The cost of running this module is profoundly affected by the number of variables the user allows to vary out of the list in paragraph 6-1-1:

Variable	Lower Limit	Upper Limit
BTE1	BTE11	BTE12
BS	BS1	BS2
DKEY	DKEY 1	DKEY 2
BW	BV1	BW2

The cost is proportional to the value of $\$X\11^n where n = 1 to 4, depending on how many of the four variables are allowed to vary:

n	\$ Factor
1	11
2	121
}	1,331
- 4	14,641

To keep a value from varying, so thoth the lower and upper limits to the single desired value. For example, to keep a level base, set both BS1 and BS2 to zero. BS will then hold the single value and will not constribute to increasing the run cost. The increment used for varying Birl, BS, and DKLY is 1/10 of the range between the specified limits. That, if DKLYL is 1.0 it and DKLY 2 is 11.0 it, then the value of DKLY will be calculated to the nearest foot:

6-3 SOILS AND SELPAGE DATA

- 6--3--1 . These data are the same as those given in Chapter) for module 1A except for special limits on ISF1 = 4, IFSOM, and NODE:
 - a. See paragraph 3-3-2 and Figures 3-1 and 3-7 for detailed description of data item variables.
 - b. See paragraph >-3 (module FA) for additional explanation.
 - c. Additional information, for module FD only, is listed below:

6-3-2 Required Soils Data:

SLID LC NSLIDE FSMIN

SPE3 PHI3 COH3 GAMAS3 PHIS3 ADHS3 ABP3TN ABP3BN ABP3TW ABP3EW ELBS3

SST LC ESTW SST

SSHW LC ESHW HS1 DS1H HS2 WDS2 HS3

or

SSHT LC ESHW HS3 (HS1, DS1H, HS2, and WDS2 are set to undefined)

6-3-3 Optional Soils and Seepage Data:

BOIL ELSPT CRMIN IPATH

ONEA OMEGA

RRD LC RRMIN

SEEP LC ELWT ELWH HGSW ISLC* ISFT** KRACK

SPHF LC FZTAH PHIFZ COHFZ GAMASF RKAFZ DELTAF RKAEFZ

SPH1 LC PH1 COH1 GAMAS1 RKA1 DELTA: RKAE1 HCMIN*

SPH2 LC ELTS1 PHI2 COH2 GAMAS2 RKA2 DELTA2 RKAE2

SPE4 ELTS3 PHI4 COH4 GAMAS4 PHIS4 ADHS4 ABP4TN ABP4BN ABP4TW ABP4BW

SPE5 ELTS4 PHI5 COH5 GAMAS5 PHIS5 ADHS5 ABP5TN ABP5BN ABP5TW ABP5BW

SPT6 LC PHI6 COH6 GAMAS6

SPT7 LC PHI7 COH7 GAMAS7

SOLP LC IFWOC NODE: IFSOM: NPPD RKH RKV CEMA

SSEL EXW ESS HSS5T ELTS5T DTS5T ELTS5W FLTS5H DTS5H HSS5H

WGHT GAMAC GAMAW

^{*} This data item has only one value and does not vary with the load case number.

^{**} ISFT = 4 cannot use user-defined uplift pressures during stability design. Uplift is used as zero in module FD.

^{*} IFSOM is used as 1 (one-piece trial failure surface) and NODE is controlled automatically during design in module FD.

 $\frac{\text{SURCHARGE DATA.}}{\text{ter 5 for module}}$ These data are the same as those given in Chapter 5 for module FA. See paragraph 3-4-2 and Figure 3-3 for detailed descriptions. All surcharge data are optional.

SCFD LC PVS PVB DVB

SCFH LC PH1 ELPH1 PH2 ELPH2

SCFV LC PV1 DV1 PV2 DV2 PV3 DV3 PV4 DV4 PV5 DV5

SCWH LC W1 ELW1T ELW1B W3 W4

SCWV LC WT WWT DWT WH WWH DWH

WIND LC W

6-5 COST DATA. These data are the same as those given in Chapter 5 for module FA. See paragraph 3-5-2 and Figure 3-2 for detailed descriptions of data items. All of these data are optional if the user accepts a design optimization based on zero excavation and backfill costs and a unit cost for all concrete (all items in data list CSTC).

CSTB UCBFFZ UCBFS1 UCBFS2 UCBFS7

CSTC UCWB UCWS UCWK

CSTE UCEXS3 UCEXS4 UCEXS5 UCEXWK

Users who want to optimize on only base width can approximate this by entering data list CSTC as follows:

CSTC 1.0 0.0 0.0

6-6 GEOMETRY DATA. See paragraph 3-6-2 and Figures 3-4 and 3-5 for detailed descriptions.

6-6-1 Required Geometry Data:

WLD ETS TW2 STR HEELW TSTB TMINB

ETS is required. TW2, STR, HEELW, and ISIB form a data set for locating the stem on the base as described in paragraph 3-6-2a. TMINB has a default value that will be used as 12 in. for walls up to 15.0 ft high (ETS - BTE1) or 18 in. for walls over 15.0 ft high. Note that the default value may change as BTE1 is varied by the design searching in module FD.

WLDB BW1 BW2 BS1 BS2

WLDT BTE11 BTE12 TOEHT TW1

BTE11 and BTE12 are required if BTE1 is to vary. TOEHT defaults to TMINB if entered as D or C. TWl defaults to zero if entered as D or C. Data list CND is needed only if HSTPH is not set in list WLDS and if the following default values are not acceptable (see paragraph 7-2-2b):

CND RATION FPCON ESTL IFEM

RATION defaults to ESTL/code E based on GAMAC value. FPCON default to 3000.0 psi. ESTL defaults to 29,000,000.0 psi. See also data list CNWD in paragraph 7-2-2b.

6-6-2 Optional Geometry Data.

WLDH HEELT2 (defaults to TMINB)
WLDK KFLAG BKTF DKEY1 DKEY2
WLDS TMINS TSB HSTPH HSTPB HSBPB

TMINS defaults to TMIN. TSB defaults to 0.0 (vertical). HSTPH will be estimated if not set (use zero if a single slope is wanted). HSTPB defaults to vertical. HSBPB will always be calculated.

6-6-3 Typical Geometry Data for a Basic Floodwall:

CNWD D D D 1 0 (needed to set IBSAME to 1)

WLD 100.0 C 0.333 C C D

WLDB 15.0 25.0 0.0 0.333

WLDK 0 D 0.0 10.0

WLDT 75.0 85.0 D C

6-6-4 Typical Geometry Data for a Basic Retaining Wall:

CNWD D D D 1 0 (needed to set IBSAME to 1)
WLD 100.0 C 0.333 C C D See note (1)
WLDB 15.0 25.0 0.0 0.0
WLDR 0 C 0.0 0.0
WLDT 75.0 85.0 D C

With 8% controlled by the design procedure and with TW2 determined from the stam ratio STR, either TSTB or HEELW need to be defined if the value own. If both are left undefined, the program will estimate TSTB and then subtract out a corresponding value for HEELW.

CHAFTER 7: MODULE WA--(WORKING) STRESS ANALYSIS

7-1 ACTION OF MODULE WA

- 7-1-1 Module WA performs a stress analysis of a fully defined wall and reports shear and flexural stresses at locations selected by the user and/or at expected critical locations. Stress analysis procedures conform to appendix 8, "Alternate Design Method," of ACT Code 318-71. The equations used are described in Chapter 9 and Exhibit E of the Program Criteria Specifications Document.
- 7-1-2 Module WA is highly interactive when the RUX WA command is entered from the keyboard and provides for no interaction when the RUX WA command is in a data file. This feature will be described later in this chapter.

7-2 DATA

7-2-1 Prodetined Data:

- a. Module WA is normally run after module FA (or, less probable, module FD). Module FA, when run separately or as the final part of module FD, calculates seepage and earth pressures that combine with the data for modules FA and FD to form the predefined portion of the data for module WA.
- b. The predefined data can also be entered independently by the user without having run modules FA or FD. This is exclaimed in Chapter II of this manual.
- 7-2-2 Additional Data. Two types of additional data are required for module WA--reinforcing steel descriptions and concrete anchesis parameters and data:
 - a. Reinforcement Description. Reinforcement data are stored in the program in arrays ASTEK for the key, ASTESI (location code) for the toe-side face of the stem, ASTESI (location code, layer number) for the heel-side face of the stem, ASTESI. (location code, layer number) for the top face of the pair slab, and ASTESE (location code, layer number) for the pair face of the base slab. The location code (called DC margins and layer number (called EX, EXA, or ESE) are defined in the sketches following this discussion. Only stimilicant less tions along the wall need be defined; the program will trill in the intermediate locations. Significant locations include the outer end of each slab and any intermediate location where bars are cut off (theoretical cutoff). Detailed in tructions follow this summary.

COVR COVHS COVTS COVTB COVBB SPABL

STLB LOC LNA ASTLBT(LOC, LNA) LNB ASTLBB(LOC, LNB)

STLK ASTLK (may be omitted if no key) STLS LOC ASTLST(LOC) LN ASTLSH(LOC,LN)

(1) <u>Bar cover</u> (optional data list COVR) from surface to center of the bar layer closest to the surface (layer number 1); units are inches:

		Defaul	t Values
Data Item	Location	Hydraulic (IHYD = 1)	Nonhydraulic (IHYD = 2)
COVHS	Heel side of stem	3.5 in.	2.5 in.
COVTS	Toe side of stem	3.5	2.5
COVTB	Toe of base slab	3.5	2.5
COVBB	Bottom of base, key	4.5	3.5
SPABL	Spacing between layers, normal to face, center-to-center bars	list STLD) + list STLD has entered, the value for SP	n the default ABL is 2.37 in. eter of a #11

ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG MS F/6 13, USER'S REFERENCE MANUAL: COMPUTER PROGRAM FOR DESIGN AND ANALYS--E1 DEC 80 W A PRICE, R L HALL, H W JONES WES-INSTRUCTION-K-80-7 NL AD-A100 734 UNCLASSIFIED 2 of #

(2) Stem:

- * Must be defined at all significant locations.
- ** Must be zero at LOC = 1 if reinforcement in this layer does not extend to the end of the member.

Example ASTLSH:

Layer 1 has 0.66 in. 2/ft at top of stem, changing to 1.32 in. 2/ft 4 ft down.

Layer 2 begins 2 ft down with 0.66 in. 2/ft.

No layer 3 used.

Example ASTLST:

0.66 in.2/ft for entire height. Stem is 10 ft high.

Four data lines will be needed to describe this stem pattern:

STLS	roc	ASTLST(LOC)	<u>LN</u>	ASTLSH(LOC, LN)		
STLS	1	0.66	l	0.66	Note	1
STLS	i	0.66	2	0.0	Note	1
STLS	3	0.66	2	0.66	Note	
STLS	5	0.66	1	1.32	Note	3

NOTES: (1) All layers to be used anywhere in member must be defined (even if zero at this point) at end of member.

- (2) LOC = 3 at 2 ft down.
 (3) LOC = 3 at 4 ft down.
- * LOC = "last" need not be entered.

(3) Key:

This list may be omitted if DKEY = less than 0.02 it long or if data lists WLAK and WLDK were not used.

Example for ASTLK = $1.32 \text{ in.}^2/\text{ft}$:

STLK 1.32

(4) Toe and Heel:

(a) Sketch of toe:

Notice Steel definition rules in data list

STEB LOC ENA ASTEBT(LOC, ENA) ENB ASTEBB(LOC, ENB)

are the same as those for a stem with 100 \pm 1 at the send of the foe.

(b) Sketch of heel:

Rules are the same as for stem and toe, except that the "first" element in the heel sketch has the same special rules as element LOC = 1 for the stem and toe. Element P in the heel sketch is the "last" element for heel reinforcement. All this means that the heel reinforcement is entered working inward toward the stem from the end of the heel. The "first" location code LOC is used as being at the lowest numbered whole foot mark, measured from the toe, at or just beyond the end of the heel. The procedure for getting the LOC value for the "first" location code at the end of the heel is:

- 1. Calculate BW + 1.9999.
- 2. Discard (truncate) the decimals.

For example,

BW	BW + 1.9999	Element for Heel
15.0	16.9999	16
15.5	17.4999	17

(e) Example of base slab reinforcement (too and heel):

Data List STLB contains LOC, LNA, ASTLBT(LOC, LNA), LNB, ASTLBB(LOC, LNB)

TOE REINF	{	STLB STLB STLB STLB	1 1 3 4	1 1 1	0.66 S S S	1 2 1 2	1.56 0.00 2.56 0.44
HEEL	-	STLB	12	1	0.66	1	1.00
REINF		STLB	12	1	S	2	0.44

(5) Changing Steel Description After a Module Has Been Run:

After module WA. Module WA fills in the intermediate location values for the reinforcing steel arrays in data lists STLB and STLS, working from the data entered by the user. It will therefore be necessary to change the intermediate locations, one at a time, as well as the significant locations if the description is to be changed. This can be a lengthy process. A simpler procedure for changing the description in a particular layer is to first enter the letter C for the steel area at location code LOC = 1 in that layer. This will cancel all of the values in that layer. Then, enter the complete (first location and significant locations) new description. For example, to cancel the old toeside steel in the stem and substitute a new description, do this:

List	LOC	ASTLST (LOC)	LN	ASTLSH(LOC, LN)
Cancel old STLS	1	С	1	S (no change)
Enter new STLS	1	0.44	1	S (no change)
Enter new STLS	Ď	0.66	1	S (no change)

- (b) After module WD. The reinforcing steel description produced by this module is listed at the end of the module's report file. The description may be edited by entering the appropriate data list(s) just as any other data edited. Or, the procedure described in paragraph can be used.
- b. Concrete Analysis/Design Parameters. Data lists CND and CNWD are used in both module WA and module WD. Data list STLD is used only in module WD. All of these lists are optional. Default values are based on whether the first load case (No. 1 unless data list CASE is used to designate another number as the "first") is hydraulic or nonhydraulic.

CND RATION FPCON ESTL IFEM

CNWD RATIOF FYSTL FSTLMX IBSAME IFDR

STLD MAXBAR SPAMIN

Data List	Variable Name	Units	Default	Values	Definition
STLD	MAXBAR	ASTM size number	1	1	Maximum bar size allowed by user (3-11, 14, or 18 only)
	SPAMIN	in.	MAXBAR's diam MAXBAR's diam whichever is	eter + 2.25,	Minimum allowable clear spacing between bars in same row. Used with MAXBAR to determine maximum steel allowed in one layer, square inches perfoot
			Hydraulic	Nonhydraulic	
CND	RATION	ratio	(1)	(1)	$N = E_S/E_C$
	FPCON	psi	3,000.0	3,000.0	Concrete ultimate strength
	ESTL	psi	29,000,000.0	29,000,000.0	Reinforcing modulus E_s

(Continued)

b. Concrete Analysis/Design Parameters (Continued).

Data	Variable	"		Values					
List	Name	<u>Units</u>	Hydraulic	Nonhydraulic	Definition				
CND	IFEM	0 or 1*	1	1	1 to implement the alternate special loadings of para- graph S-21 on page S-23 of EM 1110-2-2501				
					O to use loads as described in load case*				
CNWD	RATIOF	ratio	0.35**	0.45**	Allowable f_c/f_c , EM 1110-1-2101				
	FYSTL	psi	40,000.0	40,000.0*	Reinforcing yield strength				
	FSTLMX	psi	20,000.0	(2)	Allowable maximum f s				
	IESAME	0 or 1	(3)	(3)	1 to force the top of heel at stem to the same elevation as the top of toe at the stem				
					O to allow them to vary independently				
	IFDR	0 cr 1	1	1	l to conform to ACI 318-77, Appen- dix B, paragraph B.2.3 (in module WA, report dead and live stresses separately if of opposite sign; in module WD, use 80				
	(Continued)								

⁽Continued)

^{*} See paragraph 7-4-1d for more information on IFEM = 1. 1 is Corps of Engineers default; others may prefer 0.

^{**} Set for hydraulic/nonhydraulic status of the "first" load case. The "first" load case is number 1 unless data list CASE has been used to designate another number as "first."

^{† 20,000.0} is the Corps of Engineers' limit for hydraulic structures; nonhydraulic structures may use the default of 50 percent of FYSTL.

b. Concrete Analysis/Design Parameters (Concluded).

Data	Variable		Default	Values	
List	Name	Units	Hydraulic	Nonhydraulic	Definition
CNWD	I FDR				percent of dead load moment if in opposition to live load moment)
					O to use total D+L stress

NOTES: (1) E_c is calculated from the expression in ACI 318-77 code paragraph 8-5-1:

$$E_{c} = (GAMAC - 5.0)^{1.5}$$
 33.0 \sqrt{FPCON}

(GAMAC is the weight with reinforcing steel, so 5 pcf is deducted to get to unreinforced concrete.)

- (2) FSTLMX is taken at one half of FYSTL for nonhydraulic structures.
- (3) IBSAME generally defaults to zero but will be used as one for analysis of a level base of constant thickness.

7-3 USER CONTROL OF MODULE WA

- 7-3-1 Data Check. The data check procedures at the beginning of module WA perform a variety of checks to make sure that enough data items have been defined to enable the program to:
 - a. Locate all of the corners of the concrete outline.
 - b. Describe the outlines of the various pressure diagrams (seepage, passive pressure, vertical earth and surcharge pressures, etc.).
 - c. Know which option to use in the analysis procedure.

The questions and printout statements possible during the data check are numerous and varied. Care has been taken to make them self-explanatory and to allow interactive recovery where feasible. Where it is not teasible, the module aborts with a message telling the user what to do in the executive phase before trying again to run the module.

7-3-2 Interactive Analysis Control. There are five basic divisions to the analysis. User responses are underlined in the examples to follow. See paragraph 7-3-5 for sign conventions.

- a. Preliminary. Three questions control the analysis:
 - (1) Since locations on the wall are described in terms of X and Y coordinates, the user is offered a table of coordinates for the particular wall unless the IR6 command has been used:

ENTER 1 TO SEE A TABLE OF X AND Y CORNER COORDINATES OR C TO CONTINUE WITHOUT SEEING THE TABLE ?C

The table is not shown here. It will automatically be placed in the report file. This is the table also available with the LOOK XY command.

(2) Location of answers (this is the restart point for option R in the analysis type question). This is omitted if the IR6 command has been used:

BEGIN STRESS ANALYSIS

ENTER T TO GET THE ANALYSIS RESULTS AT YOUR TERMINAL OR R TO PUT THEM IN THE REPORT FILE OR B TO PUT THEM BOTH PLACES
?B

(3) How complete an analysis is desired:

ENTER THE LOAD CASE NUMBER YOU WANT ANALYZED

OR A ZERO FOR ALL LOAD CASES IN DATA LIST "CASE"

OR * TO ABORT THE MODULE

?0

The preliminary division ends with the milestone message

#
BEGIN STEM STRESS ANALYSIS
#

b. Stem Stress Analysis. This begins with the question:

SELECT TYPES C, S, OR F ANALYSIS FOR STEM (OR ?, N, R, OR *):

which will yield the following if answered with a question mark:

??
ANALYSIS TYPE SELECTION:

ENTER C FOR ANALYSIS AT CRITICAL SECTIONS

OR S FOR ANALYSIS AT SELECTED LOCATIONS

OR F FOR ANALYSIS AT 1-FOOT INTERVALS

OR ? TO SEE A LIST OF CRITICAL SECTIONS

OR N TO GO ON TO THE TOE

OR R TO RESTART MODULE WA TO TAKE ANOTHER LOOK AT SOMETHING

OR * TO ABORT THE MODULE

SHEAR	MOMENT	CRITICAL SECTION LOCATIONS
Х	X X	BETWEEN TOP & BOTTOM PANELS ON HEEL-SIDE FACE (POINT 13) AT THE BASE
Χ		ALTERNATE LOCATIONS:
		IF THERE IS A TOE, THEN A DISTANCE D ABOVE THE BASE IF NO TOE, THEN AT THE TOP OF THE BASE
Χ		IMMEDIATELY BELOW CONCENTRATED FORCES PH1 AND PH2
SELECT	TYPE C	S OR E ANALYSIS FOR STEM (OR 2 N P OR +).

SELECT TYPE C, S, OR F ANALYSIS FOR STEM (OR ?, N, R, OR \star): ?

For this sample, a type "C" analysis was selected. A type "S" analysis is demonstrated for the toe.

?<u>C</u>

SHEAR AT A DISTANCE D ABOVE THE (POINT 2) BASE--

S	HEAR ANALY	SIS AT ELEVA	TION 86.25 (+	V FROM TOP	PUSHED TOWARD	TOE)
LOAD	٧	N (COMP +)	M	UNIT SHEAR	ALLOWABLE	ACI318-77
CASE	LB/SLICE	LB/SLICE_	LB-FT/SLICE	STRESS PSI	UNIT STRESS	PROVISION
1	3407.6	3551.2	12848.	13.318	60.708	B.7.4.5
2	3447.9	3551.2	12865.	13.475	60.708	B.7.4.5

MOMENT AT THE BASE (POINT 2) --

FLEXURE	ANALYSIS AT ELEVATION	84.50 (+ M = T)	ENSION AT HEEL)	
LOAD	N (COMP=+)	M	FC	FS
CASE	LB/SLICE	LB-FT/SLICE	PSI	PSI
1	4069.	,19184.	446.	9249.
2	4069.	19416.	451.	9386.

STEM ANALYSIS COMPLETE TO BASE

Each analysis ends with the question:

SELECT TYPE C, S, OR F ANALYSIS FOR STEM (OR ?, N, R, OR \star): ?N

that is answered with an "N" here to go on to the toe.

c. Toe Stress Analysis:

BEGIN TOE STRESS ANALYSIS

SELECT TYPE C, S, OR F ANALYSIS FOR TOE (OR ?, N, R, OR *): ?S

BEGIN ANALYSIS AT SELECTED SECTIONS END OF TOE IS AT X = -5.850, STEM FACE AT -0.250 POINT BETWEEN TOP SLOPE PANELS IS AT -0.250

ENTER THE X-COORDINATE (DIST FROM BASIC WORK POINT)
OR D TO RETURN TO THE ANALYSIS TYPE SELECTION
(OMIT SIGN OF X)
?3.0

HERE AND MOMENT AT X = -3.000

SH	EAR ANALYSI	IS AT X = -3	.000 (2.8	50 FROM	END OF T	TOE) (+ V =	END DOWN)
LOAD	٧	N (COMP +)	M	UNI	T SHEAR	ALLOWABLE	ACI318-77
CASE	LB/SLICE	LB/SLICE	LB-FT/SL	ICE STR	ESS PSI	UNIT STRES	SS PROVISION
1		929.40			_		B.7.4.5
	ALTERNATE	LOAD CASE	1 ANALYSIS	S FOR VE	RT. LOAD	OS ONLY:	
1	-1866.6	0.	-2442.1	0	9.7221	61.543	B.7.4.4 B
2	-2404.6	639.15	-2735.8	8 1	2.524	60.356	B.7.4.5
	ALTERNATE	LOAD CASE	2 ANALYSI:	S FOR VE	RT. LOAD	OS ONLY:	
2	-2080.1	0.	-2767.8	3 1	0.834	61.543	B.7.4.4 B
FLEXU	RE ANALYSIS	S AT X = -3.	000 (2.85)	O FROM E	ND OF TO	DE) (+ M = 7	TENSION IN TOP)
LOAD	N (COMP=+)) M	FC	FS			
CASE	LB/SLICE	LB-FT/SLI	CE PSI	PSI			
		1675.		1375.	Data i	item IFDR=1	will cause

1 L 929. -4071. 152. 2858. dead and live stresses to be considered separately ALTERNATE LOAD CASE 1 ANALYSIS FOR VERT. LOADS ONLY:

1 D 0. 1675. 55. 1375. If M_{OL} and M_{LL} have

(Continued)

```
FS
LOAD N (COMP=+)
                               FC
                      Μ
CASE LB/SLICE LB-FT/SLICE PSI
                                     PSI
           0.
                    -4117.
                               136.
                                     3380.
                                              different signs in moment
1 L
2 D
                     1675.
                                55. 1375.
                                              analysis
           0.
                               158.
2 L
         639.
                    -4411.
                                     3289.
      ALTERNATE LOAD CASE 2 ANALYSIS FOR VERT. LOADS ONLY:
2 D
                                55, 1375.
           0.
                     1675.
                                              Alternate analysis in EM
                    -4443.
2 L
           0.
                               146.
                                     3648.
                                              1110-2-2501 paragraph S-21
ENTER THE X-COORDINATE (DIST FROM BASIC WORK POINT)
   OR D TO RETURN TO THE ANALYSIS TYPE SELECTION
OMIT SIGN OF X)
SELECT TYPE C, S, OR F ANALYSIS FOR TOE (OR ?, N, R, OR *):
?_
       d. Key Stress Analysis. In this example, the preliminary divi-
           sion question about where to put the analysis results is
           answered with a "R" to put the output only in the report
           file:
# BEGIN KEY STRESS ANALYSIS
SELECT TYPE C, S, OR F ANALYSIS FOR KEY (OR ?, N, R, OR *):
?F
KEY ANALYSIS COMPLETE TO SLAB
SELECT TYPE C, S, OR F ANALYSIS FOR KEY (OR ?, N, R, OR *):
?N
       e. Heel Stress Analysis. This example demonstrates a type "S"
           analysis with the output to the report file:
# BEGIN HEEL STRESS ANALYSIS
SELECT TYPE C, S, OR F ANALYSIS FOR HEEL (OR ?, N, R, OR *):
?S
BEGIN ANALYSIS AT SELECTED SECTIONS
END OF HEEL IS AT X = 10.450, STEM FACE AT 1.750
ENTER THE X-COORDINATE (DIST FROM BASIC WORK POINT)
   OR D TO RETURN TO THE ANALYSIS TYPE SELECTION
```

ENTER THE X-COORDINATE (DIST FROM BASIC WORK POINT)
OR D TO RETURN TO THE ANALYSIS TYPE SELECTION
?D

SELECT TYPE C, S, OR F ANALYSIS FOR HEEL (OR ?, N, R, OR *): ?N

7-3-3 Critical Sections for Analysis:

a. Stem:

SHEAR	MOMENT	CRITICAL SECTION LOCATIONS						
Χ	Χ	BETWEEN TOP & BOTTOM PANELS ON HEEL-SIDE FACE (POINT 13)						
	Х	AT THE BASE						
Χ		ALTERNATE LOCATIONS:						
		IF THERE IS A TOE, THEN A DISTANCE D ABOVE THE BASE						
		IF NO TOE, THEN AT THE TOP OF THE BASE						
Χ		IMMEDIATELY BELOW CONCENTRATED FORCES PH1 AND PH2						

b. <u>Toe:</u>

SHEAR	MOMENT	CRITICAL SECTION LOCATIONS
Χ	Х	BETWEEN PANELS 1 (BY STEM) AND 2 (OUTER)
Χ		AT A DISTANCE D FROM THE STEM
	Х	AT THE STEM (POINT 2)
	Χ	IMMEDIATELY TOWARD STEM FROM FORCE PVB

c. Key (if over 0.01 ft long):

SHEAR	MOMENT	CRITICAL SECTION LOCATIONS		
X	X	AT TOP OF KEY (POINT 9) ALTERNATE LOCATIONS: IF KEY AT END OF HEEL, AT TOP OF KEY (PT. 6) IF KEY UNDER STEM, DISTANCE D BELOW BASE		

d. Heel:

SHEAR	MOMENT	CRITICAL SECTION LOCATIONS		
Χ	Χ	AT THE STEM (POINT 12)		
Х	X	AT KEY FACE TOWARD THE STEM (POINT 6) (IF KEY UNDER HEEL AND OVER 0.1 LONG)		

7-3-4 Noninteractive Data File Analysis Control:

a. When running from a data file, there is no interaction.

 $\Delta \Pi$ questions are assumed to be answered in the most general or complete way.

- b. Analysis types performed will include types C (critical section) and F (1-tt intervals).
- c. All output is to the report file.

7-3-5 Output Sign Convention:

- a. Axial force. Compression is positive.
- b. Positive Shear:

c. Positive Moment:

7-4 INTERPRETATION OF OUTPUT

7-4-1 Analysis Results to Time-Sharing Terminal and/or the Report File:

- a. The first line describes the location in terms of elevation for stem or toe and X coordinate for toe or heel. See paragraph 7-3-5 for sign conventions.
- b. Allowable shear Stress. The ACI code paragraph basis for the allowable unit shear stress is given in the column immediately after the allowable stress:

B.7.4.3 Moment + Axial Tension:
$$v_c = 1.1 \left(1 + 0.004 \frac{N}{A_g}\right) \sqrt{f_c^*}$$

B.7.4.4 Moment Only:
$$v_c = \sqrt{f_c^* + 1300p_w(\frac{Vd}{M})}$$
 (A)

but
$$\frac{Vd}{M}$$
 cannot exceed 1.0 (B)

$$v_{c} = 1.9\sqrt{f_{c}^{\dagger}}$$
 (C)

B.7.4.5 Moment at Axial Compression:

$$v_c = 1.1 \left(1 + 0.0006 \frac{N}{A_g} \right) \sqrt{f'_c}$$

- c. Dead and live load stresses are reported separately when IFDR = 1 and the effect of adding dead load is to reduce the effect of live load. For shear stress analysis, this can also affect the allowable stress because of the effects of moment and axial force.
- d. Alternate load cases are provided when IFEM = 1, as described in paragraph S-21 of EM 1110-2-2501:
 - (1) Stem. Total load case only.
 - (2) Toe:
 - (a) Total load case.
 - (b) Vertical forces only (to yield more tension in the bottom face reinforcement).
 - (3) Key:
 - (a) Total load case.
 - (b) Vertical forces plus horizontal resisting forces only. Driving forces (from beyond heel) are omitted. This is to yield more tension in the toe-side face reinforcement.
 - (4) <u>Heel</u> (applicable only if there is a key at the end of the heel):
 - (a) Total load case.
 - (b) Ignore passive pressure to get more tension in the top face at the stem. This is an approximation of the requirements in paragraph S-21a(1) of EM 1110-2-2501. To get the full implementation, a special load case must be prepared, using NPPD = 5 in data list SOLP, where overturning analysis is based on a horizontal resisting torce that is based

on friction instead of passive pressure. The following procedure is one way to do this:

- 1. Run module FA or FD in the usual way.
- Run module WA with:
 - a. Reinforcement data in the usual way and
 - b. IFEM = 1 in data list CND.
- Change IFEM to zero in list CND and NPPD to 5 in list SOLP.
- 4. Run module FA. Each load case will be analyzed with the horizontal resisting force acting on the end of the toe and not as pressure on the key.
- 5. Run module WA. Each load case will be analyzed for the special loading only, but will not be labeled as being an alternate loading.
- (c) Ignore all horizontal forces and pressures to get maximum tension in bottom at stem.
- (d) Ignore driving forces and pressures to get maximum tension in bottom at the key (if DKEY is at least 0.02 ft long).
- (e) Note that paragraph S-21a(3) of EM 1110-2-2301 implies that the top of the heel at the key must not have less reinforcement than is determined for the toe-side face of the key.
- e. The combination of IFDR = 1 and IFEM can lead to an output as shown in paragraph 7-3-2c for the toe. In this example, each load case takes 5 lines to print: total load case dead load, total load case live load, the heading for the alternate loading, alternate load case dead load, and alternate load case live load. In the case of the heal, one load case could take 11 lines (total load case plus three alternates).
- 7-4-2 Analysis Results to the Report File Only. This is for the same loads as the examples just shown for the stem at a distance d above the base:
 - a. Initial explanation at the beginning of the stress analysis report;

BEGIN STRESS ANALYSIS

EXPLANATION OF "OUTPUT FROM STRUCTURAL ANALYSIS SUBROUTINES" (FT, LB/SLICE)
TAD, TAV, TAW, TAE, TAH, TAF, & CPPA ARE AXIAL FORCES

```
TVD, TVV, TVW, TVE, TVH, TVF, WATERV, EWTV, & CPPV ARE SHEARS
TMD, TMV, TMW, TME, TMH, TMF, WATERM, EWTM, & CPPM ARE MOMENTS
TAD, TVD, & TMD ARE DUE TO THE FULL WEIGHT OF CONCRETE
TAV, TVV, & TMV ARE DUE TO VERTICAL SURCHARGES
TAW, TVW, & TMW ARE DUE TO WIND
TAE, TVE, & TME ARE DUE TO EARTHQUAKE EFFECTS
TAH, TVH, & TMH ARE DUE TO HORIZONTAL EARTH + SURCHARGES
TAF, TVF, & TMF ARE DUE TO HORIZONTAL SEEPAGE + UPLIFT
WATERV & WATERM ARE DUE TO THE WEIGHT OF WATER OVER BASE
EWTV & EWTM ARE DUE TO THE WEIGHT OF EARTH OVER BASE EXCLUDING PORE WATER
CPPA, CPPV, & CPPM ARE TOTAL PASSIVE PRESSURE, IF NON-ZERO
    (IF CPPA, ETC., ARE ZERO THEN THE PASSIVE PRESSURE
    EFFECTS ARE INCLUDED WITH THE LOADS CAUSING THEM.)
       b. Stem stress analysis at critical sections for shear at a
           distance d above the base. Tables with a ">" mark in
           column 1 of their first lines are printed only if the TRCE 3
           command has been used:
# BEGIN STEM STRESS ANALYSIS
SHEAR AT A DISTANCE d ABOVE THE (POINT 2) BASE--
>OUTPUT FROM STRUCTURAL ANALYSIS SUBROUTINES--
--- LOAD CASE 1 ---
TAD(LC), TVD(LC), TMD(LC) =
                                      3551.159
                                                        0.
                                                                       0.
TAV(LC), TVV(LC), TMV(LC) =
                                    0.
                                                   0.
                                                                  0.
TAW(LC), TVW(LC), TMW(LC) =
                                    0.
                                                   0.
                                                                  0.
                                    0.
TAE(LC), TVE(LC), TME(LC) =
                                                   0.
                                                                  0.
                                                   -129.0833
TAH(LC), TVH(LC), TMH(LC) =
                                    0.
                                                                  ~53.78472
                                    0.
                                                    3536.647
                                                                   12901.65
TAF(LC), TVF(LC), TMF(LC) =
WATERV(LC), WATERM(LC) =
                                                   0.
                                                                  0.
EWTV(LC), EWTM(LC) =
                                                   0.
                                                                  0.
CPPA(LC), CPPV(LC), CPPM(LC) =
                                                   0.
                                                                  0.
>OUTPUT FROM STRUCTURAL ANALYSIS SUBROUTINES--
 --- LOAD CASE 2 ---
TAD(LC), TVD(LC), TMD(LC) =
TAV(LC), TVV(LC), TMV(LC) =
TAW(LC), TVW(LC), TMW(LC) =
                                                                       0.
                                      3551.159
                                                        0.
                                     0.
                                                    0.
                                                                  0.
                                    0.
                                                   0.
                                                                  0.
                                                                  0.
 TAE(LC), TVE(LC), TME(LC) =
                                    0.
                                                   0.
                                                   -88.77145
                                    0.
                                                                  -36.98810
 TAH(LC), TVH(LC), TMH(LC) =
 TAF(LC), TVF(LC), TMF(LC) =
                                     0.
                                                    3536.647
                                                                   12901.65
WATERV(LC), WATERM(LC) =
                                                   0.
                                                                  Û.
 EWTV(LC), EWTM(LC) =
                                                   0.
                                                                  0.
 CPPA(LC), CPPV(LC), CPPM(LC) =
```

0.

0.

MOM. SIGN +	COMP FACE	SECTION PRO OVERALL DEPTH IN. 23.32 23.32	DEPTH, 21.32	REINFORGIN. AREA, SG	CING TENSI O IN. FACE O HEEL	ON <u>k j</u>
LOAD	V N	(COMP +)	M	UNIT SHEAR	ALLOWABLE	OWARD TOE) ACI318-77 S PROVISION
1 2	3407.6 3447.9	3551.2 3551.2				B.7.4.5 B.7.4.5
		tress analys f the stem:	is at crit:	ical section	for flexure	at the
MOMENT	T AT THE BAS	E (POINT 2)~	-			
TAD(L TAV(L TAW(L TAE(L TAH(L TAF(L WATER EWTV(LOAD CASE 1 LC), TVD(LC) LC), TVV(LC) LC), TVW(LC) LC), TVE(LC) LC), TVH(LC) LC), TVF(LC) RV(LC), WATE (LC), EWTM(L	, TMD(LC) = , TMV(LC) = , TMW(LC) = , TME(LC) = , TMH(LC) = , TMF(LC) = RM(LC) =	4068 0. 0. 0. 0.	3.750 0. 0. 0. -74	43.5200 474.758	0. 0. 0. 0. -743.5200 19927.50 0. 0.
TAD(L TAV(L TAW(L TAE(L TAH(L TAF(L WATEF	LOAD CASE LC), TVD(LC) LC), TVV(LC) LC), TVW(LC) LC), TVE(LC) LC), TVH(LC) LC), TVF(LC) RV(LC), WATE (LC), EWTM(L	, TMD(LC) = , TMV(LC) = , TMW(LC) = , TME(LC) = , TMH(LC) = , TMF(LC) = RM(LC) =	4068 0. 0. 0. 0.	3.750 0. 0. 0. -5	11.3235 174.758	0. 0. 0. 0. -511.3235 19927.50 0. 0.
MOM. SIGN	COMP. FACE WIDTH, IN.		EFFECTIVE	ELEVATION REINFORCING AREA, SQ IN	S TENSION	<u>k</u> <u>j</u>

1.00

1.00

HEEL

TOE

22.00

22.00

12.00 12.00 24.00

24.00

0.226 0.925 0.226 0.925

FLEXURE	ANALYSIS AT ELEVATION	84.50 (+ M = TENS)	ION AT HEEL)	
LOAD	N (COMP=+)	M	FC	FS
CASE	LB/SLICE	LB-FT/SLICE	PSI	PSI
1	4069.	19184.	446.	9249.
2	4069.	19416.	451.	9386.

- d. Typical report file information from data check. Tables with a ">" in the first column of first line are printed with the TRCE 3 command:
 - (1) NAME data list, time, and date:

STRESS ANALYSIS OF EXHIBIT Q PRESSURES 18:23: 7 on 7/6/79

(2) Geometry data review:

BEGIN MODULE WA

#

DEFAULT VALUE OF 0.

USED FOR BASER

STR CALCULATED TO BE 0.34356

YOUR YOUR HEELT1 VALUE OF 18.00 INCHES SET THE TOP OF THE HEEL AT THE STEM (84.5000) SO CLOSE TO THE TOP OF THE TOE AT THE STEM THAT BOTH WERE SET TO THE SAME VALUE OF 84.5000 FEET.

DEFAULT VALUE OF 0.1935483 USED FOR HSBPB

SLOPE OF TOP OF HEEL SLAB = 100.00 H : 1 V (100.0:1 = LEVEL)

COORDINATES OF CORNERS OF WALL CROSS-SECTION

X-COORDINATES ARE + TOWARD HEEL FROM BASIC WORKING POINT (BWP) Y-COORDINATES ARE ELEVATIONS

PT.	X	Y	DESCRIPTION OF POINT
1	0.	100.0000	BASIC WORKING POINT = TOE-SIDE OF STEM TOP
2	-0.2500	84.5000	BOTTOM OF TOE-SIDE FACE OF STEM (AT TS1)
3	-0.2500	84.5000	BETWEEN TS1 AND TW2, ON TOP FACE OF TGE
4	-5.8500	84.5000	TOP OF TOEHT = AT OUTER END OF TW2
5	-5.8500	83.0000	TOE END OF BASE = AT BTE1
6	8.2500	83.0000	TOP OF TOE-SIDE FACE OF KEY
7	8.9500	77.3000	BOTTOM OF TOE-SIDE FACE OF KEY
			10

PT.	X	Υ	DESCRIPTION OF POINT
8	10.4500	77.3000	BOTIOM OF HEEL-SIDE FACE OF KEY
9	10.4500	83.0000	TOP OF HEEL-SIDE FACE OF KEY
10	10.4500	83.0000	HEEL END OF BASE
11	10.4500	84.5000	TOP OF HEELT2 = TOP OF OUTER END OF HEEL
12	1.7500	84.5000	BOTTOM OF HEEL-SIDE FACE OF STEM
13	1.5000	100.0000	BOTTOM OF HEEL-SIDE TOP PANEL OF STEM
14	1.5000	100.0000	TOP OF HEEL-SIDE FACE OF STEM
15	9.7000	77.3000	BOTTOM OF CUTOFF WALL UNDER KEY

WITH BASE RADIUS ("BASER", 0.0 FOR RECTANGULAR) = 0. FEET, TOE END OF BASE UNIT WIDTH = 1.0000 FT. AND HEEL END OF BASE UNIT WIDTH = 1.0000 FT. (BASIC WORKING POINT IS 1.0 FT. WIDE).

LOWEST CONCRETE = 77.30 FT., AT BOTTOM OF KEY COMPARED WITH THE PREVIOUS LOW OF-0.12340000E 31 FT.

> Y-COORDINATES OF BASE SLAB SURFACE POINTS OPPOSITE CORNERS BELOW 3 BELOW 2 ABOVE 6 BELOW 12 83.0000 83.0000 84.5000 83.0000

(3) Reinforcing steel data, with intermediate values inserted by program:

> TABLE	OF STEEL	VALUES IN ST	EM, SQ. IN./FT.		
М	ELEV.	ASTLST(M)	ASTLSH(M,1)	ASTLSH(M,2)	ASTLSH(M,3)
1	100.00	1.000	1.000	****	*****
2	99.00	1.000	1.000	*****	*****
3	98.00	1.000	1.000	****	*****
4	97.00	1.000	1.000	*****	*****
5	96.00	1.000	1.000	*****	
6	95.00			****	
7				****	

(4) Pressure transferred in from module FA (repeated for each load case):

----- PRESSURE DATA VERIFICATION FOR LOAD CASE 1 -----

FH TOP CALCUL^TED TO BE 97.000 FOR LOAD CASE 1

> FHTOP IS 97.000

TABLE OF HORIZONTAL NET HYDRO PRESSURES FOR LC = 1

```
FH(LC,I)
                                                                  EFH(LC.I)
                   ELEV.
                   97.00
                                         0.
                   96.00
                                          62.50
                   95.00
                                          125.0
                   94.00
                                          187.5
  5
                   93.00
> TABLE OF VERTICAL UPLIFT PRESSURES FOR LC = 1
                                                                    FV(LC,I)
                    DIST.
                                          X-COORD.
                    0.
                                          -5.850
                                                                    -357.5
                    1.00
                                          -4.850
                                                                    -374.5
  3
                    2.00
                                          -3.850
                                                                    -391.4
                    3.00
                                          -2.850
                                                                    -408.4
  5
                    4.00
                                          -1.850
                                                                    -425.3
  6
                    5.00
                                                                    -442.3
> TABLE OF VERTICAL EARTH WEIGHT + SURCHARGE PRESSURES FOR LC = 1
                                                                     V(LC,I)
                                           X-COORD.
                     DIST.
  OVER TOE:
                      0.
                                            -5.850
                                                                     187.5
   1
   2
                      1.00
                                            -4.850
                                                                     187.5
   3
                      2.00
                                            -3.850
                                                                     187.5
   4
                      3.00
                                            -2.850
                                                                     187.5
   5
                      4.00
                                            -1.850
                                                                     187.5
   6
                      5.00
                                            -0.8500
                                                                     187.5
                                            0.1500
                                                                     187.5
   7
                      6.00
  OVER HEEL:
                                                                     125.0
   8
                      6.00
                                            0.1500
                      7.00
                                                                     125.0
   9
                                             1.150
  10
                      8.00
                                              2.150
                                                                     125.0
                      9.00
  11
                                              3.150
                                                                     125.0
                     10.00
                                              4.150
                                                                     125.0
  12
                     11.00
                                              5.150
                                                                     125.0
  13
                     12,00
                                              6.150
                                                                     125.0
  14
  15
                     13.00
                                              7,150
                                                                     125.0
                     14.00
                                              8,150
                                                                     125.0
  16
  17
                     15.00
                                              9.150
                                                                     125.0
  18
                     16.00
                                              10.15
                                                                     125.0
  19
                     17.00
                                              11.15
                                                                     125.0
> TABLE OF VERTICAL EARTH + SURCHARGE EARTHQUAKE PRESSURES FOR LC = 1
                X-COORD.
                             EV(LC,I)
   I DIST.
  OVER TOE :
  OVER HEEL:
```

> YTTOP IS

87.500

CHAPTER 8: MODULE WD--(WORKING) STRESS DESIGN

8-1 ACTION OF MODULE WD

- 8-1-1 Module WD selects data values for slab thickness and surface slopes, beginning with the output of module FD. The design process yields minimum total concrete volume for the given value of base width, toe embedment, base slope, toe width, and key length. Certain other geometry data items may be set by the user. The design procedure follows Appendix B, "Alternate Design Method," of ACI Code 318-77. The equations used are described in Chapter 9 and Exhibit G of the Program Criteria Specifications Document and summarized in paragraph 7-4-1 of this user's guide.
- 8-1-2 The design procedure starts with two baselines. One baseline is the battered (TSB) toe-side face of the stem, extended down along the batter to the bottom of the base slab. The other baseline is the bottom of the base slab. The design procedure is described below.

 Refer to Figure 3-5 for the locations of coordinate points:
 - a. Toe. Point 2 is moved upward from the base slab bottom, along the battered toe-side base line, until strength and geometric criteria are satisfied. Points 3 and 4 are moved upward vertically from the base bottom until strength and geometric criteria are satisfied. Geometric criteria include the two items that the absolute minimum thickness is TMINB and that TS1 and TS2 may not be negative (or zero).
 - b. Stem. Points 12, 13, and 14 are moved horizontally toward the heel side of the wall until strength and geometric criteria are satisfied. Geometric criteria include the two items that the absolute minimum thickness is TMINS and that HSTPB and HSBPB may not be negative (zero is acceptable). Point 12 is temporarily located at the elevation of point 2 and HSBPB is considered extended downward to the bottom of the base slab. Point 12 is then moved temporarily down to the slab bottom along batter HSBPB.
 - c. Key. The two variable BKTF and WKEY are adjusted until WKEY is at least as large as TMINB or the user's input value, whichever is larger, and BKTF is such that the top of the key is strong enough and an least as thick as WKEY.
 - d. <u>Heel</u>. Point 11 is moved upward vertically and point 12 is moved upward along batter HSBPB until the strength and geometric criteria are satisfied. Geometric criteria include the two items that the absolute minmum thickness is IMINB and that point 11 may not be above point 12.
- 8-1-3 Module WD is interactive only during the data checking division of the module. Major error messages (fatal conditions) are printed at the time-sharing terminal and in the report file. Minor

warning messages are printed only in the report file. There is no interaction if the module is started by a RUN WD command in a data file.

8-1-4 Alternate load cases are provided when IFEM = 1 in list CND, as described in paragraph 7-4-1d.

8-2 DATA

3-2-1 Predefined Data:

- a. Module WD is normally run after module FD (or, less probably, module FA). A module FD run finishes with a run of module FA to get seepage and earth pressures that combine with the data for module FA or FD to form the predefined portion of the data for module WD.
- b. The predefined data can also be entered independently by the user without having run module FA or FD. This is explained in Chapter 11 of this manual.
- 8-2-2 Additional Data. Module WD needs additional data for concrete design parameters:

CND RATION FPCON ESTL IFEM

CNWD RATIOF FYSTL FSTLMX IBSAME IFDR

COVR COVHS COVTS COVTB COVBB SPABL

OVRS LC AOSF(LC)

STLD MAXBAR SPAMIN

WGHT GAMAC GAMAW

All of these lists are optional.

8-2-3 <u>Concrete Data Item Definitions.</u> Data item definitions are repeated here for convenience:

Data	ata Variable Default Value				
List	Name	Units	Hydraulic	Nonhydraulie	Definition
CND	RAT 10N	ratio	(1)	(1)	$N = E_s/E_c$
	FPCON	psi	3,000.0	3,000.0	Concrete ultimate strength f_{c}^{\dagger}
	ESTL	psi	29,000,000.0	29,000,000.0	Reinforcing modulus $E_{\mathbf{s}}$
	IFEM	0 or 1	1	l	l to implement the alternate special loadings

8-2-3 <u>Concrete Data Item Definitions (Continued):</u>

Data	Variable		Defau	lt_Value	
List	Name	Units	Hydraulic	Nonhydraulic	Definition
CND	IFEM				of paragraph S-21 on page S-23 of EM 1110-2-2501
					O to use loads as described in the load case*
CNWD	RATIOF	ratio	0.35**	0.45**	Allowable f_c/f_c^{\dagger} ,
					EM 1110-1-1201
	FYSTL	psi	40000.0†	40000.0#	Reinforcing steel yield strength
	FSTLMX	psi	20000.0	(2)	Allowable maximum f_s
	IBSAME	0 or 1	(3)	(3)	l to force the top of heel at stem to the same elevation as the top of toe at the stem, if strong enough
					O to allow the tops of toe and heel to vary independently
	I FDR	0 or 1	1	1	1 to conform to ACI 318-77, Appen- dix B, paragraph B.2.3 (use 80 per- cent of dead load and its reactions if they oppose the stresses of live load)
			(Conti	nued)	

^{*} See paragraph 7-4-1d.

^{**} Set for hydraulic (IHYD = 1)/nonhydraulic (IHYD = 2) status for the first load case number in data list CASE. (Load case No. 1 if list CASE is not used).

^{† 20,000.0} is the Corps of Engineer ! limit for hydraulic structures; nonhydraulic structures may use the default of 50 percent of FYSTL.

8-2-3 Concrete Data Item Definitions (Continued):

Data	Variable			lt Value	
List	Name	_Units_	Hydraulie	Nonhydraulic	Definition
CNWD	I FDR				0 to use the actual D + L
COVR					Reinforcing bar placement clearances, measured to center of bars
	COVHS	in.	3.5	2.5	Cover at heel-side face of stem
	COVTS	in.	3.5	2.5	Cover at toe-side face of stem
	COVTB	in.	3.5	2.5	Cover at top face of base slab
	COVBB	in.	4.5	3.5	Cover at bottom of base slab
	SPABI.	in.	1.0	1.0	Spacing between layers, measured nor- mal to face of mem- ber, from center to center of bars
OVRS	LC	0, 1-10	1	1	Load case number (see paragraph 2-6-6)
	AOSF	factor	1.0	1.0	Allowable overstress factor, multiply by code allowable stresses to get usable allowable stresses (1.0 ± no effect)
STLD					The data in this list are used to establish the maximum amount (in.2 it) of reinforcing steel to be placed in any one row. Checks are made to see that standard size bars are used at a spacing allowed by ACI Code 318-77

8-2-3 Concrete Data Item Definitions (Concluded):

Data	Variable		Defaul	t Value	
List	Name	Units	Hydraulic	Nonhydraulic	Definition
STLD	MAXBAR	ASTM size number	11	11	Maximum bar size allowed by user (3-11, 14, or 18 only)
	SPAMIN	in.	MAXBAR's diameter < 2 or MAXBAR's diameter + 2.25, which- ever is larger		Minimum acceptable clear spacing for bar size entered for MAXBAR
WGHT	GAMAC	pcf	150.0	150.0	Unit weight of concrete
	GAMAW	pcf	62.5	62.5	Unit weight of water

NOTES: (1) E_c is calculated from the expression in paragraph 8.5.1 of ACI code 318-77: E_c = GAMAC-5.0 33.0 FPCON

- (2) FSTLMX is taken at one half of FYSTL for nonhydraulic structures.
- (3) IBSAME generally defaults to zero but will be used as one for analysis of a level base of default thickness.
- 8-3 OUTPUT. Output information is placed in data lists WLA, WLAB, WLAH, WLAK, WLAS, WLAT, STLB, STLK, and STLS.
- 8-3-1 <u>Data Check.</u> The data check procedures at the beginning of module WD perform a variety of checks to make sure that enough data items have been defined to enable the program to:
 - a. Establish the concrete dimensions with enough accuracy for the program to be able to compute the total forces from loads in the form of pressure diagrams.
 - b. Describe the outlines of the various pressure diagrams (seepage, passive pressure, vertical earth and surcharge pressures, ets).

The questions and printout statements possible during the data check are numerous and varied. Care has been taken to make them self-explanatory and to allow interactive recovery where feasible. Where it is not feasible, the module aborts with a message telling the user what to do in the executive phase before trying again to run the module.

- 8-3-2 Wall Geometry. The wall geometry established by module WD is reported in two ways:
 - a. A table of analysis geometry data lists is printed in the format shown below. The wall is the one described in Exhibits K-L of the Program Criteria Specifications Document. The table is printed to the time-sharing terminal and the report file:

# DESIGN	N SUMMARY				
WLA	ETS 100.0000	TW2 5.600000	STR 0.4000000	HEELW 8.700000	
WLAB	BW 16.30000	BS O.		BASER (LI	ST=WLBR)
WLAH	HEELT2, 18.00000	HEELW 8.700000	HEELT1 18.00000		
WLAK	KFLAG O	DKEY 5.700000	WKEY 18.00000	BKTF 8.142857	
WLAS	TSTT 18.00000 HSBPB 0.1935484	TSB 0.1935484	TSTB 24.00000	HSTPH O.	HSTPB O.
WLAT	BTE1 83.00000	TOEHT 18.00000	TS2 100.0000	TW1 0.	TS1 100.0000
	TMINB 18.00000	TMINS 18.00000			

A value of -.1234E30 means that that item is not defined.

- b. A table of wall corner coordinates is printed to the report file. This table is illustrated in paragraph 7-4-2d(2) and is also available with the LOOK XY command.
- 8-3-3 Reinforcement data are printed in the report file in tabular form as shown in paragraph 7-4-2d(3) for module WA. This is also available with the LOOK command for data lists STLB, STLK, and STLS. Reed paragraph 7-2-2a(5) about editing the reinforcing steel description produced by module WD before running module WA to analyze that description.

CHAPTER 9: MODULE UA--(ULTIMATE) STRENGTH ANALYSIS

9-1 ACTION OF MODULE UA

- 9-1-1 Module UA is similar to module WA, except that the concrete analysis is according to the strength design concepts in ACI Code 318-77 and Exhibit F to the Program Criteria Specifications Document.
- 9-1-2 Coding on this module has been deferred pending adoption of strength design procedures for Corps of Engineers hydraulic structures
- 9-1-3 Output is expected to be in the form of:
 - a. Available flexural and shear strengths/ultimate strengths.
 - b. Serviceability indicators.

CHAPTER 10: MODULE UD--(ULTIMATE) STRENGTH DESIGN

10-1 ACTION OF MODULE UD

- 10-1-1 Module UD is similar to module WD, except that the concrete analysis is according to the strength design concepts in ACI Code 318-77 and Exhibit F to the Program Criteria Specifications Document.
- 10-1-2 Coding on this module has been deferred pending adoption of strength design procedures for Corps of Engineers hydraulic structures.
- 10-1-3 Output is expected to be similar to that of module WD.

CHAPTER 11: LINKAGE BETWEEN FA/FD STABILITY AND WA/WD/UA/UD STRESS ANALYSIS/DESIGN MODULES

- 11-1 The variables used to transfer the earth pressure and horizontal surcharge lumped forces, vertical earth and surcharge pressures, seepage pressures, bearing pressures, and passive earth pressures calculated in the foundation stability modules (FA and FD) are transferred to the structural design/analysis modules (WA, WD, UA, UD) by a series of arrays. These arrays have been made available to the data entry and review process in the form of the following data lists. The information in this chapter is intended for the experienced user and is not described in the detail used elsewhere in this manual.
- 11-1-1 Horizontal lumped forces of active earth pressures and surcharges:
 - a. On a vertical plane at the end of the heel, from modules SA, FA, and FD. See paragraph 4-6-1 for details:
- ACPH LC LOC H(LC,LOC) EH(LC,LOC) YH(LC,LOC)
 - b. On the heel-side face of the stem, from modules SP, FA, and FD. See paragraph 4-6-1 for details:
- ACPS LC LOC HS(LC,LOC) EHS(LC,LOC) YVS(LC,LOC)
- 11-1-2 Bearing pressures from modules FA and FD:
 - a. From horizontal load groups W, H, EH, and FH:
- BPH LC N IRLT(LC) EPBW(LC) WB(LC,N) HB(LC,N) EHB(LC,N) FHB(LC,N)
 - b. From vertical load groups D, V, EV, FV:
- BPV LC N IRLT(LC) EPBW(LC) DB(LC,N) VB(LC,N) EVB(LC,N) FVB(LC,N)
- 11-1-3 Hydrostatic seepage pressures, net horizontal, from modules FA and FD:
- HSPH LC LOC FH(LC,LOC) EFH(LC,LOC)
- 11-1-4 Hydrostatic uplift pressure from modules FA and FD:
- HSPV LC LOC FV(LC,LOC)
- 11-1-) Passive pressures from modules FA and FD:

PPD LC YTTOP(LC) WPE(LC) EHPE(LC) HPE(LC) FHPE(LC)

11-1-6 Vertical pressures of earth over base and surcharges, from modules FA and FD:

VLP LC LOC V(LC,LOC) EV(LC,LOC)

11-2 LOAD GROUPS

11-2-1 The following load groups were selected to enable the use of various load factors in the application of ACI 318-77 code requirements for structural design. See Exhibit F of the Program Criteria Specifications Document:

Load Group Code	Strength Design Load F a ctor Data Item Name	Description
D	DLF	Weight of concrete and water above base
Е	ELF	Earthquake effects to be added to static loads
F	FLF	Hydrostatic pressure (not including the direct weight of water over the base)
н	HLF	Horizontal earth and surcharges pressures
V	VLF	Vertical earth and surcharge pressures
W	WLF	Wind

11-2-2 These load group code letters are used in the names of program data and internal variables to aid the user in identifying them. See paragraph 7-4-2a for additional use of these codes in module WA:

Load Group Code	Bearing Pressure Array	Passive Pressure Array	Direct Surcharge Data Item	Other Intermediate Arrays
D	DB(LC,N)	n/a		
E	EHB(LC,N) EVB(LC,N)	EHPE(LC) n/a		EH,EFH,EHS EV
F	FHB(LC,N) FVB(LC,N)	FHPE(LC) n/a	W1, W3-W4	FH FV
H	HB(LC,N)	HPE(LC)	PH1, PH2	H
V	VB(LC,N)	n/a	PVS, PVB	V
W	WB(LC,N)	WPE(LC)	K	

 $\frac{\text{ILLUSTRATIONS.}}{\text{data lists:}}$ Illustrations are shown below for the following

Data List	Array Names	Paragraph References
АСРН	н ен үн	4-6-1 11-1-1a
ACPS	HS EHS YVS	4-6-1 11-1-1b
ВРН	WB HB EHB FHB	11-1-2a
BPV	DB VB EVB FVB	11-1-2b
нѕрн	FH EFH	11-1-3
HSPV	FV	11-1-4
PPD	WPF EHPE LPE FHPE	11-1-5
VLP	V EV	11-1-6

11-3-1 ACPH:

ACPH LC LOC H(LC,LOC) EH(LC,LOC) YH(LC,LOC)

LC = load case subscript (0 or 1-10)

LOC = location subscript (1-68)

 $H(LC,n) = \text{static horizontal } \underline{\text{lumped force}}$ on vertical plane at heel, at elevation YH(LC,n), lb/horizontal ft

EH(LC,n) = dynamic horizontal <u>lumped</u> aditional <u>force</u> on vertical plane at heel, at elevation <math>YH(LC,n), Ib/horizontal ft

NOTES:

1.	Intermodular	YH(LC,1)	H(LC,1)	EH(LC,I)
	<pre>transfer of in- termediate answers:</pre>	YH(LC,2)	H(LC,2)	EH(LC,2)

- a. Top element (LOC = 1) YH(LC,3) H(LC,3) EH(LC,3) of heel.
- b. One element at each node. (See NODE and IFWOC in data list SOLP in paragraph 3-3-2.
- c. Bottom element (LOC = last) is at lowest concrete elevation on vertical plane at end of heel.

2. User-defined input:

- a. Elements may be at any convenient elevations, but the LOC subscripts must start with 1 and be in order.
- b. The first element not used must have YH(LC,last + 1) = undefined (C).
- c. Once the user has assumed manual control of data list ACPH by using it, he must use the data entry line "ACPH LC 1 C C" before calling modules SA, SP, FA, or FD to return to having new values calculated. This same procedure applies also to data lists ACPS, HSPH, and HSPV.

Data List ACPH--Arrays H, EH, YH from Modules SA, FA

11-3-2 ACPS:

ACPS LC LOC HS(LC,LOC) EHS(LC,LOC) YVS(LC,LOC)

LC = load case subscript (0 or 1-10)

LOC = location subscript (1-68 maximum)

YVS(LC,n) = elevation of HS(LC,n) and EHS(LC,n)

 See note 2c for data list ACPB (paragraph 11-3-1) for a warning about use of data list ACPS.

Data List ACPS--Arrays HS, EHS, YVS from Modules SP, FA

11-3-3 BPH and BPV:

BPH LC N IRLT(LC) EPBW(LC) WB(LC,N) HB(LC,N) EHB(LC,N) FHB(LC,N) BPV LC N IRLT(LC) EPBW(LC) DB(LC,N) VB(LC,N) EVB(LC,N) FVB(LC,N)

LC = load case subscript (0, 1-10)

N = base end code subscript (1 or 2)

IRLT(LC) = resultant location code (-1, 0, or +1)

EPBW(LC) = effective portion of base width, ft

See paragraph 11--12. Array VB(LC,N) contains the total bearing pressures calculated by module FA.

Values are illustrated with negative direction (the usual one)

Value () = WB () for wind load

(psf) = HB () for earth horizontal + surcharge horizontal

= EHB () for horizontal earthquake additional pressures

= FHB () for horizontal net hydrostatic

= DB () for weight of concrete

= VB () for applied forces vertical (see array V)

= EVB () for vertical earthquake additional pressures

= FVB () for uplift

Data Lists BPH and BPV--General Description.

11-3-4 HSPH:

HSPH LC LOC FH(LC,LOC) EFH(LC,LOC)

LC = load case number (0, 1-10)

LOC = location code (1-68 maximum)

FH(LC,LOC) = net horizontal hydrostatic pressures

EFH(LC,LOC) = net norizontal additional hydrodynamic pressures

Data List HSPH--Arrays FH and EFH from Module FA

11-3-5 HSPV:

HSPV LC LOC FV(LC,LOC)

LC = load case (0, 1-10)

LOC = location code (1-48)

NOTES:

- 1. Values are illustrated in negative direction (the usual one).
- 2. LOC = 1 at end of toe.
- 3. Location values are spaced I ft apart.
- Data list HSPV must be used when data list HSPH is used, until HSPV is cancelled as described in note 2c (paragraph 11-4-1) for data list ACPH.

Data List HSPV--Array FV from Module FA

11-3-6 PPD:

PPD LC YTTOP(LC) WPE(LC) EHPE(LC) HPE(LC) FHPE(LC)

See data list PPD in paragraph 3-3-2 for more detail.

NOTES:

- 1. Value for MPPO = 1, 2, 3, or 4 = pressure, psf.
- 2. Value for NPPD = 5 = force, lb/ft, at el 8Tél.
- 3. Values shown above are negative (the usual case).
- inis list is ignored if put in by the user, if module FA is run. Module FA calculates a combined passive pressure, PEHF(LC), that can be seen with the LOOK PPD or LOOK IL commands.

Data List PPD--Passive Pressures from Module FA

11-3-7 VLP:

VLP LC LOC V(LC,LOC) EV(LC,LOC)

LC = load case subscript (0, 1-10)

LOC = location subscript (1-49 maximum)

V(LC,LOC) = vertical pressures due to earth over base, plus vertical pressures due to surcharges, both in psf. Pore water weight is not included

EV(LC,LOC) = additional pressures due to earthquake, psf

Data List VLP--Arrays V and EV from Module FA

- $\frac{\text{EXAMPLES.}}{\text{gram Criteria Specifications Document.}}$
- 11-4-1 Active earth pressures are all zero because of the relatively large cohesive strength (700 psf).
- 11-4-2 Bearing pressures (use VB for total pressures):

Use C for EPBW(LC,N) when IRLT = 0 (within kern). Note that the (upward) values have negative signs.

a. Floodwall, load case 1 (page K-13)--1177.24 psf at toe, 110.62 psf at heel; resultant within kern:

BPV 1 1 0 C C -1177.24 C C BPV 1 2 0 C C -110.62 C C

b. Retaining wall, load case 2 (page K-15)--1268.03 psf at toe, 19.82 psf at heel; resultant within kern:

BPV 2 1 0 C C -1268.03 C C BPV 2 2 0 C C -19.83 C C

11-4-3 Net Horizontal Seepage Pressures (page K-2):

HSPH LC LOC FH(LC,LOC) EFH(LC,LOC)

Only the points of change of slope need to be described.

The approximations of even-foot description points and use of net values cause an error of -74.27 lb per slice out of an exact value of 5914.29 lb per slice; i.e., 1.26 percent. Values are positive because ELWH is greater than ELWT.

HSPH	0	1	0.0	С
HSPH	0	9	500.0	С
HSPH	0	10	522.78	С
HSPH	0	11	521.72	С
HSPH	0	12	520.67	С
HSPH	0	15	458.20	С
HSPH	0	16	185.28	С
НЅРН	0	21	15.21	С

Note: the value of the last FH element defined (15.21 ft for LOC = 21) was extrapolated 0.3 ft below the lowest concrete elevation of 77.3 ft (top elevation = 97.0 ft).

11-4-4 Uplift (page K-2):

HSPV LC LOC FV(LC,LOC)

The approximation of even-foot description points causes an error of -151.75 lb per slice out of an exact value of -8895.18 lb per slice; i.e., 1.71 percent. Note that the (upward) values are negative.

HSPV 0 1 -357.5

HSPV 0 15 -594.71 (interpolated between X = 0 and X = 14.1)

HSPV 0 16 -1179.5 (extrapolated beyond X = 14.8 from X = 14.1)

HSPV 0 18 -1087.2 (extrapolated beyond X = 16.3 from X = 14.8)

11-4-5 Passive Pressure (use HPE for total pressure):

PPD LC YTTOP WPE EHPE HPE FHPE
SOLP LC IFWOC NODE IFSOM NPPD RKH RKV CFMA

Use HPE for total pressure (which one of WPE, EHPE, HPE, or FHPE is actually immaterial) and use C for the other pressures. Note that the values pushing on the toe are negative.

a. Floodwall, load case I (page K-12):

PPD 1 87.5 C C -743.52 C SOLP 1 2 C C 1 C C 1.0

b. Retaining wall, load case 2 (page K-14):

PPD 2 87.5 C C -1159.0 C SOLP 2 2 C C 3 C C 1.0

11-4-6 Vertical Pressures of Earth over Base Slab (page K-5):

VLP LC LOC V(LC,LOC) EV(LC,LOC)

With earth unit weight = 62.5 pcf buoyant, positive down.

VLP 0 1 187.5 C

VLP 0 7 187.5 C

VLP 0 8 125.0 C

VLP 0 18 125.0 C

CHAPTER 12: DATA LISTS AND OTHER TABULATIONS

- 12-1 PURPOSE. Paragraph 12-2 is a summary of data lists, intended for the experienced user of this program. Paragraph 12-3 is a data preparation checklist, intended for the beginning user. Paragraph 12-4 is an alphabetized list of all data variables, with the list name and the numbers of the pages where each data variable is defined and otherwise mentioned. Paragraph 12-5 is an alphabetized list of all data lists, with one-line definitions of the variables in each list.
- 12-2 DATA LISTS (Some lists are in more than one group). This presentation is intended as a checklist for the experienced user.
- 12-2-1 General. See paragraph 3-2:

NAME (60 characters maximum of alphanumeric job name)

*CASE NLC LCS(1) LCS(2) ... LCS(NLC) (see page 3-1)

HYD LC IHYD (see page 3-2)

REM (remarks or user's notes; this command is not processed)

TYPE LC ITYPE (see page 3-2)

- 12-2-2 Soils Description. See paragraph 3-3-2:
 - a. Backfill. See also Figure 3-1:
 - (1) Soil properties (all lists are optional unless different from the values in data list SPE3):
- SPHF LC FZTAH PHIFZ COHFZ GAMASE RKAFZ DELTAF RKAEFZ (see page 3-4)
- SPH1 LC PHI1 COH1 GAMASI RKA1 DELTA1 RKAE1 HCMIN** (see page 3-10)
- SPH2 LC ELTS1 PHI2 COH2 GAMAS2 RKA2 DELTA2 RKAE2 (see page 3-10)
- SPT6 LC PHI6 COH6 GAMAS6 (see page 3-13)
- SPT7 LC PHI7 COH7 GAMAS7 (see page 3-13)
 - (2) Top surface geometry:

^{*} Required only if loadcase numbers are not 1, 2, 3, ..., in in ascending order with no missing numbers.

^{**} HCMIN is not load case dependent if a value is entered. The last value entered is used for all load cases. The default value, however, will be recalculated for each load case.

*SSHC LC ESHW HS3 (see page 3-18)

**SST LC ESTW SST (see page 3-17)

*SSHW LC ESHW HS1 DS1H HS2 WDS2 HS3 (see page 3-17)

- b. Existing Earth. See also Figure 3-2:
 - (1) Soil properties. See pages 3-11 through 3-13:
- **SPE3 PHI3 COH3 GAMAS3 PHIS3 ADHS3 ABP3TN ABP3BN ABP3TW ABP3BW ELBS3

SPE4 ELTS3 PHI4 COH4 GAMAS4 PHIS4 ADHS4 ABP4TN ABP4BN ABP4TW ABP4BW

this much of lists SPE3, SPE4, SPE5 is optional*

SPE5 ELTS4 PHI5 COH5 GAMAS5 PHIS5 ADHS5 ABP5TN ABP5BN ABP5TW ABP5BW

(2) Soil surface geometry. See page 3-13:

#SSEE EXW ESS HSS51 ELTS5T DTS5T ELTS5W ELTS5H DTS5H HSS5H

12-2-3 Soils and Foundation Stability Parameters. See paragraph 3-3-2 and Figure 3-1:

ONEA OMEGA (see page 3-5)

RRD LC RRMIN (see page 3-6)

SLID LC NSLIDE FSMIN (see page 3-9)

SOLP LC IFWOC NODE IFSOM NPPD RKH RKV CFMA (see page 3-14)

12-2-4 Surcharges and Direct Loads. See paragraph 3-4-2 and Figure 3-3:

SCFD LC PVS PVB DVB

SCFH LC PH1 ELPH1 PH2 ELPH2

SCFV LC PV1 DV1 PV2 DV2 PV3 DV3 PV4 DV4 PV5 DV5

^{*} One of these two lists is required. Entering list SOLC automatically undefines data items HSI, DSIH, HS2, and WDS2 out of list SOLW.

^{**} Required.

^{*} Required for design only.

SCWH LC W1 ELW1T ELW1B W3 W4
SCWV LC WT WWT DWT WH WWH DWH
WGHT GAMAC GAMAW (see page 3-18)
WIND LC W

12-2-5 Seepage and Boil Control:

BOIL ELSPT CRMIN IPATH (see page 3-4)
*SEEP LC ELWT ELWH HGSW ISLC ISFT KRACK (see page 3-6)

 $\frac{12-2-6}{\text{condition of required or optional.}}$ See the notes for each module.

a. For Analysis:

WGHT GAMAC GAMAW

**WLA ETS TW2 STR HEELW

**WLAB BW BW1 BW2 BS

**WLAH HEELT2 HEELW HEELT1

WLAK KFLAG DKEY WKEY DKTF

**WLAS TSTT TSB TSTB HSTPH HSTPB HSBPB

**WLAT BTE1 TOEHT TS2 TW1 TS1

WLBR BASER

b. For Design (see also IBSAME in lists CUND and CNWD):

WGHT GAMAC GAMAW

WLBR BASER

**WLD ETS TW2 STR HEELW TSTB TMINB

**WLDB BW1 BW2 BS1 BS2

WLDH HEELT2

WLDK KFLAG BKTF DKEY1 DKEY2

WLDS TMINS TSB HSTPH HSTPB HSBPB

 $[\]star$ ISLC is not load case dependent. The last value entered is used for all load cases.

^{**} Required.

*WLDT BTE11 BTF12 TOEHT TW1

12-2-7 Costs. See paragraph 3-5-2 and Figure 3-2:

CSTB UCBFFZ UCBFS1 UCBFS2 UCBFS6 UCBFS7

CSTC UCWB UCWS UCWK

CSTE UCEXS3 UCEXS4 UCEXS5 UCESWK

12-2-8 Stress Analysis and Design:

a. Paragraph 7-2-2b (modules WA, WD):

CND RATION FPCON ESTL IFEM

CNWD RATIOF FYSTL FSTLMX IBSAME IFDR

**OVRS LC AOSF

WGHT GAMAC GAMAW

b. Paragraph 8-2-2 (modules UA, UD):

CND RATION FPCON ESTL IFEM

CNUD FYSTL IBSAME PHIFLX PHISHR RLIMIT EPSC SRM BETA1

**LDF DLF VLF WLF ELF HLF FLF

**OVRS LC AOSF

WGHT GAMAC GAMAW

- c. Reinforcing Steel. See pages 7-1 through 7-8.
 - (1) Required for stress analysis (see par aph 7-2-2a):

COVR COVHS COVTS COVTB COVBB SPABL

*STLB LOC LNA ASTLBT(LOC, LNA) LNB ASTLBB(LOC, LNB)

-STLK ASTLK

*STLS LOC ASTLST(LOC) LN ASTLSH(LOC,LN)

(2) Optional for design (see paragraph 8-2-3):

^{*} Required.

^{**} Design only.

^{*} Required only if there is a key.

STLD MAXBAR SPAMIN

12-2-9 Intermediate. See Chapter 11:

ACPH LC LOC H(LC,LOC) EH(LC,LOC) YH(LC,LOC)

ACPS LC LOC HS(LC,LOC) EHS(LC,LOC) YVS(LC,LOC)

BPH LC N IRLT(LC) EPBW(LC) WB(LC,N) HB(LC,N) EHB(LC,N) FHB(LC,N)

BPV LC N IRLT(LC) EPBW(LC) DB(LC,N) VB(LC,N) EVB(LC,N) FVB(LC,N)

HSPH LC LOC FH(LC,LOC) EFH(LC,LOC)

HSPV LC LOC FV(LC,LOC)

PPD LC YTTOP WPE EHPE HPE FHPE

VLP LC LOC V(LC,LOC) EV(LC,LOC)

12-2-10 Main Modules and Their Data Lists (see table in paragraph 12.1):

- a. Module FA--Foundation Analysis:
 - (1) Required data lists: SSHC or SSHW SST SPE3 WLA WLAB WLAH WLAS (or WLDS to use TMINS) WLAT
 - (2) Other usable data lists: CASE HYD TYPE NAME SSEE SPHF SPH1 SPH2 SPT6 SPT7 SPE4 SPE5 ONEA SLID SOLP SCFD SCFV SCWH SCWV WGHT BOIL SEEP WLBR CSTB CSTC CSTE WIND WLAK
- b. Module FD--Foundation Design:
 - (1) Required data lists: SSHC or SSHW SST SPE3 WLD WLDB WLDT
 - (2) Other usable data lists: CASE HYD TYPE NAME SSEE SPHF SPH1 SPH2 SPT6 SPT7 SPE4 SPE5 ONEA SLID SOLP RRD SCFD SCFH SCFV SCWH SCWV WGHT BOIL SEEP WLBR WLDH WLDK WLDS CSTB CSTC CSTE WIND
- c. Module WA--(Working) Stress Analysis:
 - (1) Usual Set:
 - (a) Required: Modules FA or FD; STLB STLK STLS
 - (b) Other usable data lists: CND CNWD COVR ACPH ACPS BPH BPV HSPH HSPV VLP
 - (2) Alternate data set (modules FA and FD not run): Lists SPH1 and SPT7 may be omitted if list SPE3 is used.
 - (a) Required data lists: SPH1 SPT7 SSHC or SSHW SST SOLP WLA WLAB WLAH WLAS WLAT STLB STLK STLS
 - (b) Other usable data lists: CASE HYD TYPE NAME SPHF SPH2 SPT6 SCFD SCFH SCFV SCWH SCWV

WGHT WIND BOIL SEEP WLBR CND CNWD COVR ACPH ACPS BPH BPV HSPH HSPV PPD VLP WLAK

- d. Module WD--(Working) Stress Design:
 - (1) Usual Set:
 - (a) Required: Module FA or FD.
 - (b) Other usable data lists: CND CNWD COVR ACPH ACPS BPH BPV HSPH HSPV VLP
 - (2) Alternate set (modules FA and FD not run): Lists SPH1 and SPT7 may be omitted if list SPE3 is used.
 - (a) Required data lists: SPH1 SPT7 SSHC or SSHW SST SOLP WLD(or WLA) WLAB WLDH WLAT
 - (b) Other usable data lists: CASE HYD TYPE NAME
 SPHF SPH2 SPT6 SCFD SCFH SCFV SCWH SCWV
 WIND BOIL SEEP WLAK WLDS WGHT CND CNWD
 COVR OVRS WLBR ACPH ACPS BPH BPV HSPH HSPV
 PPD VLP STLD
- 12-3 <u>DATA PREPARATION CHECKLISTS</u>. This checklist is intended for the beginning user. See also paragraph 12-2-10 for a list of required and optional data lists, arranged by module name.
- 12-3-1 General Information Data. See paragraph 3-2.
- 12-3-2 Backfill Soil Properties Data. See Figure 3-1:
 - a. Soil over toe--data list SPT7. This list is optional. Its values will be copied from list SPE3 if SPT7 is omitted.

SPT7 LC PHI7 COH7 GAMAS7

b. Soil at end of toe--data list SOL6. If it is the same as the soil above the toe end, use only list SPT7 and ignore list SPT6. If different, use both lists.

SPT6 LC PHI6 COH6

- c. Soil over heel--Read also the notes at the end of paragraph 3-3-2.
 - (1) Data list SPHL. This list is optional. Its value will be copied from list SPE3 if SPHL is omitted.

SPHI LC PHI1 COH1 GAMASI RKAI DELTAI RKAEI HCMIN

(2) Are there two soil lavers? If so, add data list SPH2.

SPH2 LC ELTS1 PHI2 COH2 GAMAS2 RKA2 DELTA2 RKAE2

(3) Is there a filter zone under the backfill soil? If so, add data list SPHF, unless the wedge method will be used, in which case read note (13)b at the end of paragraph 3-3-2 and remember that the filter zone is always taken as being a zone where creep head loss does not occur.

SPHF LC FZTAH PHIFZ COHFZ GAMASF RKAFZ DELTAF RKAEFZ

12-3-3 Backfill Finished Grade Data. See Figure 3-1:

a. Over toe--data list SST (mandatory):

SST LC ESTW SST

- b. Over heel--data list SSHC or data list SSHW (see also data item IFWOC in data list SOLP):
 - (1) Wedge method for active earth pressures? If so, use data list SSHW:

SSHW LC ESHW HS1 DS1H HS2 WDS2 HS3

If there is only one slope to the surface, data list SSHC maybe used instead of SSHW.

(2) Coulomb's method for active earth pressures (the default value for IFWOC in data list SOLP)? If so, data list SSHC must be used:

SSHC LC ESHW HS3

The use of data list SSHC automatically cancels any previous values in variables ${\rm HS1},~{\rm DS1H},~{\rm HS2},~{\rm and}~{\rm WDS2}$ in data list SSHW.

12-3-4 Existing Soil Properties. See Figure 3-2:

a. Data list SPE3 for soil laver 3 (mandatory):

SPE3 PHI3 COH3 GAMAS3 PHIS3 ADHS3 ABP3TN ABP3BN ABP3TW ABP3BW ELBS3

b. Are there two soil layers? If so, add data list SPE4:

SPE4 ELTS3 PHI4 COH4 GAMAS4 PHIS4 ADHS4 ABP4TN ABP4BN ABP4TW ABP4BW

- c. Are there three soil layers? Add data list SPE5 to lists SPE3 and SPE4, unless you are using the wedge method. The wedge method (1FWOC = 1) ignores SPE5 and assumes that soil layer 4 (data list SPE4) extends up to existing grade.
- 12-3-5 Existing Grade Data. See Figures 3-2 and 3-3. Use data list SSEE on page 3-13. If there actually is no existing grade (wall on fill, for example), this list may be omitted.
- 12-3-6 Foundation Design Parameters. All of this information is covered by default values and need not be entered if all of the default values and procedures are acceptable. This paragraph describes the use of several data lists:

ONEA OMEGA RRD LC RRMIN

SLID LC NSLIDE FSMIN

SOLP LC IFWOC NODE IFSOM NPPD RKH RKV CFMA

These data lists are explained below:

- a. Active earth forces. Two methods are available for calculating active earth forces, the trial wedge method and Coulomb's equations:
 - (1) Trial wedge method (available option):
 - (a) IFWOC in data list SOLP must be set to a value of 1.
 - (b) If you want the nodes (points at which the earth pressure lumped forces are calculated) to be at a spacing other than 1 ft apart, use data item NODE in data list SOLP to enter the number of nodes that will space out to the desired spacing. If the default spacing is acceptable, use the letter "D" instead of a numeric value. See paragraph 2-6-3 for an explanation of the use of the letters D, S, or C as data values. If the wall is unusually tall, computer costs can be reduced by using special values for NODE to put the nodes at a spacing of several feet.
 - (c) If you have several soil layers in the backfill over the heel and/or the existing soil, then the variable ITSOM in data list SOLP must be considered. The default value of I averages out a single planar wedge failure surface through a multiple—layer soil system. The optional value of 2 (which

may not be used with module FD) uses a multiplanar failure surface that is explained in paragraph 3-3-2.

(d) The following variables are ignored when the wedge method is selected (1FWOC = 1):

Variable Name	Data List Name
Entire list	SPHF
RKA1, RKAE1	SPH1
RKA2, RKAE2	SPH2
Entire list	SPE5

- (2) Classic Coulomb's method (the default procedure):
 - (a) IFWOC in data list SOLP must be set to a value of 2.
 - (b) The following combinations of variables are optional, separately in the heel earth backfill soil layers:

Data List	Coulomb Equation Option	Alternate Option
SPHF	PHIFZ, COHFZ, DELTAF	RKAFZ
SPHI	PHII, COHI, DELTA	KKM
SPH2	PHI2, COH2, DELTA2	RKA2

If the RKA... option is selected, the input value will be used in getting active earth pressure forces. If the letters C or D are entered as the value, then Coulomb's equation will use the input values of PHI..., COH..., DELTA..., and HS3.

- (c) IFSOM and NODE will be ignored and may have any value (such as C).
- (3) Wedge or Coulomb's methods. Data item CFMA in data list SOLP has a default value of 1, for no effect. It is used as a multiplier for the active earth pressure moment arm, to allow for the arching active case.
- b. Passive pressures. See NPPD in data list SOLP and read paragraph 3-3-3 for selecting the appropriate value. Default values are 1 for floodwalls (trapezoidal shape) and 3 for retaining walls (triangular shape).
- c. Earthquake calculations:
 - (1) If earthquake calculations are to be omitted, the following data items must be zero or the letter C: RKH and RKV in data list SOLP.
 - (2) The equivalent additional dynamic "active" earth pressure coefficients, RKAEFZ, RKAEL, and RKAE2, are calculated from the PHI, DELIA, and HS3 data

- for heel earth backfill, using acceleration coefficients RKH (horizontal) and RKV (vertical) in data list SOLP.
- (3) This means that RKH and RKV must be specified (and non-zero) for the earthquake inertial effects of earth, water, and soil above the base to be included. Also, RKAEFZ, RKAEl, and RKAE2 may be specified by the user, in which case they will be used as they are instead of being calculated. If they are left undefined (C or D as values), they will be calculated.
- d. <u>Sliding calculations</u>. Variables involved in controlling sliding are listed below. All are optional data with default values, in data lists ONEA, SLID, and SOLP;

Variable Name	List Name	Paragraph Reference
FSMIN	SLID	3-3-3
NPPD	SOLP	3-3-2 and $3-3-3$
NSLID	SLID	3-3-2
OMEGA	ONEA	3-3-2 and $3-3-3$

- e. Overturning control in stability design (module FD). Data variable RRMIN is the minimum allowable resultant ratio control for the stability design checks in module FD. Other controls include the allowable bearing pressures (variable names that start with the letters ABP in data lists SOL3, SOL4, and SOL5). See paragraph 6-1-2 for more information.
- 12-3-7 Surcharges and Direct Loads. See Figure 3-4 and paragraph 3-4-2. All data lists in this group are optional:

SCFD LC PVS PVB DVB

SCFH LC PH1 ELPH1 PH2 ELPH2

SCFV LC PV1 DV1 PV2 DV2 PV3 DV3 PV4 DV4 PV5 DV5

SCWH LC W1 ELW1T ELW1B W3 W4

SCWV LC WT WWT DWT WH WWH DWH

WGHT GAMAC GAMAW

WIND LC W

The following items should be noted:

- a. Distributed load WWT is usable only over (or beyond) the toe, not on the stem. DWT is always positive.
- b. Distributed load WWH is usable only over (or beyond) the heel and not on the stem.
- c. Concentrated loads PVI through PV5 may be over the toe or heel (or beyond them), but not on the stem or directly on the base.

- d. PVB may be on the toe (with DVB negative) or on the heel (DVB positive), but not on the stem.
- e. PVS in considered centered on the top of the stem.
- f. PH1 may be anywhere on the end of the toe or on the stem. PH2 may be on the stem only.
- g. WI may act on either side of the stem (positive if from the heel, negative if from the toe) above finished grade at the stem.
- h. Wind may be in either direction, as for Wl. It acts on the exposed portion of the stem not covered by load Wl.
- 12-3-8 Seepage and Boil Control. See Figure 3-1 and paragraph 3-3-2:
 - a. The minimum data if all default values are acceptable consists on one list, SEEP:

SEEP LC ELWT ELWH HGSW ISLC ISFT KRACK

which can be simplified down to

SEEP LC ELWT ELWH 0.0 1 1 D

b. Is boil control desired? If so, add data list BOIL in paragraph 3-3-2:

BOIL ELSPT CRMIN IPATH

- 12-3-9 <u>Wall Geometry.</u> Read paragraph 3-6 for wall description instructions. There are several ways to describe a wall:
 - a. For analysis. See also paragraph 5-6.
 - b. For design. See also paragraph 6-6.
- 12-3-10 Additional Data for Structural Analysis and Design. See paragraph 7-2-2b (analysis) or paragraph 8-2-3 (design) for definitions. All of the data items in this group of data lists have default values. The data lists therefore should be used only if the default values are not acceptable. The first three lists are applicable for both analysis and design:

CND RATION FPCON ESTL IFEM
CNWD RATIOF FYSTL FSTLMX IBSAME IFDR
CGVR COVHS COVTS COVTB COVBB SPABL

The fourth fist is applicable to design only:

STLD MAXBAR SPAMIN

12-3-11 Additional Data for Structural Analysis Only (description of reinforcing steel). See paragraph 7-2-2.

STLB LOC LNA ASTLBT(LOC,LNA) LNB ASTLBB(LOC,LNB)
STLK ASTLK
STLS LOC ASTLST(LOC) LN ASTLSH(LOC,LN)

- 12-3-12 The beginning user is encouraged to read the following items before starting preparation of data:
 - a. Chapter 1, especially Figure 1-1.
 - b. Chapter 2.
 - c. Chapter 3, paragraph 3-3-1.
 - d. The warning on page 6-2.
 - e. Chapter 11.
 - f. The list in paragraph 12-2-10.

The remainder of this manual is intended to be reference for the experienced user.

12-4 DATA ITEM REFERENCES:

Data Item Name	Name of Data List(s)	Page(s) on Which Defined	Page Number(s) of Other References
ABP3BN	SPE3	3-13	6-3, 12-2, 12-7
ABP3BW	SPE3	3-13	6-3, 12-2, 12-7
ABP3TN	SPE3	3-13	3-22, 6-3, 12-2, 12-7
ABP3TW	SPE3	3-13	3-22, 6-3, 12-2, 12-7
ABP4BN	SPE4	3-14	5-3, 6-3, 12-2, 12-8
ABP4BW	SPE4	3-14	5-3, 6-3, 12-2, 12-8
ABP4TN	SPE4	3-14	3-22, 5-3, 6-3, 12-2, 12-8
ABP4TW	SPE4	3-14	3-22, 5-3, 6-3, 12-2, 12-8
ABP5BN	SPE5	3-15	5-3, 6-3, 12-2
ABP5BW	SPE5	3-15	5-3, 6-3, 12-2
ABP5TN	SPE5	3-15	5-3, 6-3, 12-2
ABP 5TW	SPE5	3-15	5-3, 6-3, 12-2
ADHS3	SPE3	3-13	3-25, 6-3, 12-2, 12-7
ADHS4	SPE4	3-14	3-25, 5-3, 6-3, 12-2, 12-8
ADHS5	SPE5	3-15	3-25, 5-3, 6-3, 12-2
AOSF	OVRS	8-4	12-4
ASTLBB(LOC, LNB)	STLB	7-4	7-1, 7-5, 7-6, 12-4, 12-12
ASTLBT (LOC, LNA)	STLB	7-4	7-1, 7-5, 7-6, 12-4, 12-12
ASTLK	STLK	7-4	7-1, 7-2, 12-4, 12-12
ASTLSH(LOC, LN)	STLS	7-3	7-2, 7-6, 12-4, 12-12
ASTLST(LOC)	STLS	7-3	7-1, 7-2
BASER	WLBR	3~37	3-39, 5-4, 7-20, 7-21, 8-6, 12-3
BETA1	CNUD		12-4
BKTF	WLAK, WLDK	3-37	3-39, 5-4, 6-5, 8-1, 8-6, 12-3
BS	WLAB	3-37	3-39, 5-4, 8-6, 12-3
BS1	WLDB	3-37	6-1, 6-2, 6-4, 12-3
BS2	WLDB	3-37	6-1, 6-2, 6-4, 12-3

12-4 DATA ITEM REFERENCES (Continued):

		Page(s)	
Data Item Name	Name of Data List(s)	on Which Defined	Page Number(s) of Other References
BTE1	WLAT	3-36	3-34, 3-39, 5-4, 5-5, 5-7, 6-1, 6-2, 6-4, 6-5, 7-20, 8-6, 11-9, 12-3
BTE11	WLDT	3-36	6-1, 6-2, 6-4, 6-5, 12-4
BTE12	WLDT	3-36	6-1, 6-2, 6-4, 6-5, 12-4
BIA	WLAB	3-36	3-22, 3-34, 3-39, 3-40, 5-4, 5-5, 6-2, 6-5, 6-6, 7-5, 8-6, 11-6, 11-10, 12-3
BMT	WLAB, WLDB	3–36	3-13, 3-14, 3-15, 3-22, 5-4, 5-5, 6-1, 6-2, 6-4, 12-3
BW2	WLAB, WLDB	3-37	3-13, 3-14, 3-15, 3-22, 5-4, 5-5, 6-1, 6-2, 6-4, 12-3
CFMA	SOLP	3-20	3-3, 5-3, 6-3, 11-13, 12-2 12-8, 12-9
COH1	SPH1	3-11	5-3, 6-3, 12-1, 12-6, 12-9
СОН2	SPH2	3-12	5-3, 6-3, 12-1, 12-7, 12-9
сон3	SPE3	3-13	3-25, 4-1, 5-1, 6-3, 12-2, 12-7
СОН4	SPE4	3-14	3-25, 5-3, 6-3, 12-2, 12-8
сон5	SPE5	3-14	3-25, 5-3, 6-3, 12-2
СОН6	SPT6	3-15	5-3, 6-3, 12-1, 12-6
СОН7	SPT7	3-16	5-3, 6-3, 12-1, 12-6
COHFZ	SPHF	3-11	5-3, 6-3, 12-1, 12-7, 12-9
COVBB	COVR	8-4, 7-2	7-1, 7-4, 7-5, 12-4, 12-11
COVHS	COVR	8-4, 7-2	7-1, 7-3, 12-4, 12-11
COVTB	COVR	8-4, 7-2	7-1, 7-4, 7-5, 12-4, 12-11
COVTS	COVR	8-4, 7-2	7-1, 7-3, 12-4, 12-11
CRMIN	BOIL	3-4	3-2, 5-2, 6-3, 12-3, 12-11
DB(LC,N)	BPV	11-6	11-1,11-2, 11-3, 11-11, 12-5
DELTA1	SPH1	3-11	4-1, 4-2, 5-3, 6-3, 12-1, 12-6

12-14

12-4 DATA ITEM REFERENCES (Continued):

Data Item Name	Name of Data List(s)	Page(s) on Which Defined	Page Number(s) of Other References
DELTA2	SPH2	3-12	4-1, 4-2, 5-3, 6-3, 12-1, 12-7, 12-9
DELTAF	SPHF	3-11	4-2, 5-3, 6-3, 12-1, 12-7, 12-9
DKEY	WLAK	3–37	3-18, 3-19, 3-23, 3-27, 3-39, 5-4, 6-2, 6-5, 7-17, 8-6, 12-3
DKEY1	WLDK	3-37	6-1, 6-2, 6-5, 12-3
DKEY2	WLDK	3-37	6-1, 6-2, 6-5, 12-3
DLF	LDF	11-2	
DS1H	SSHW	3-21	2-12, 3-21, 6-3, 12-2, 12-7
DTS5H	SSEE	3-16	3-25, 5-3, 6-3, 12-2
DTS5T	SSEE	3-16	3-25, 5-3, 6-3, 12-2
DV1	SCFV	3-29	3-32, 5-3, 6-4, 12-2, 12-10
DV2	SCFV	3-30	3-32, 5-3, 6-4, 12-2, 12-10
DV3	SCFV	3-30	3-32, 5-3, 6-4, 12-2, 12-10
DV4	SCFV	3-30	3-32, 5-3, 6-4, 12-2, 12-10
DV5	SCFV	3-30	3-32, 5-3, 6-4, 12-2, 12-10
DVB	SCFD	3-29	3-32, 5-3, 6-4, 12-2, 12-10, 12-11
DWH	SCWV	3-31	3-32, 5-3, 6-4, 12-3, 12-10
DWT	SCWV	3-30	3-32, 5-3, 6-4, 12-3, 12-10
EFH(LC,LOC)	НЅРН	11-7	11-1,11-2, 11-3, 11-11, 12-5
EH(LC,LOC)	АСРН	11-4	4-3, 11-1, 11-2, 11-3, 12-5
EHB(LC,N)	ВРН	11-6	11-1, 11-2, 11-3, 12-5
ЕНРЕ	PPD	11-9	11-2, 11-3, 11-13, 12-5
EHS(LC,LOC)	ACPS	11-5	4-3, 11-1, 11-2, 11-3, 12-5
ELBS3	SPE3	3-13	3-13, 3-25, 6-3, 12-2, 12-7
ELF	LDF	11-2	12-4
ELPH1	SCFH	3-29	3-32, 5-3, 6-4, 12-2, 12-10
	_		

12-4 DATA ITEM REFERENCES (Continued):

Data Item Name	Name of Data List(s)	Page(s) on Which Defined	Page Number(s) of Other References
ELPH2	SCFH	3-29	3-32, 5-3, 6-4, 12-2, 12-10
ELSPT	BOIL	3-4	3-39, 5-2, 6-3, 12-3, 12-11
ELTS1	SPH2	3-12	5-3, 6-3, 12-7
ELTS3	SPE4	3-14	3-25, 5-3, 6-3, 12-2, 12-8
ELTS4	SPE5	3-14	3-25, 5-3, 6-3, 12-2
ELTS5H	SSEE	3-16	3-25, 5-3, 6-3, 12-2
ELTS5T	SSEE	3-16	3-25, 5-3, 6-3, 12-2
ELTS5W	SSEE	3-16	3-25, 5-3, 6-3, 12-2
ELWIB	SCWH	3-30	3-32, 5-3, 6-4, 12-3, 12-10
ELWIT	SCWH	3-30	3-32, 5-3, 6-4, 12-3, 12-10
ELWH	SEEP	3-6	3-3, 3-24, 5-3, 6-3, 11-7, 11-11, 12-3, 12-11
ELWT	SEEP	3-6	3-3, 3-24, 5-3, 6-3, 11-7, 11-11, 12-3, 12-11
EPBW(LC)	врн,вр	11-6	11-1, 11-11, 12-5
EPSC	CNUD		12-4
ESHW	SSHW,SSHC	3-20	2-10, 3-21, 6-3, 12-2, 12-7
ESS	SSEE	3-16	3-25, 5-3, 6-3, 12-2
ESTL	CND	7-7, 8-2	6-5, 7-7, 12-4, 12-11
ESTW	SST	3-20	2-12, 6-3, 12-2, 12-7
ETS	WLA, WLD	3-35	2-10, 3-34, 3-39, 5-4, 6-4, 8-6, 12-3
EV(LC,LOC)	VLP	11-10	11-2, 11-9, 11-3, 12-5
EVB(LC,N)	вру	11-6	11-1, 11-2, 11-3, 11-11, 12-5
EXW	SSEE	3-16	3-25, 5-3, 6-3, 12-2
FH(LC,LOC)	НЅРН	11-7	11-1, 11-2, 11-3, 11-11, 12-5
FHB(LC,N)	врн	11-6	11-1, 11-2, 11-3, 12-5
FHPE	PPD	11-9	11-2, 11-3, 11-13, 12-5
	(c)	antinuod)	

12-4 DATA ITEM REFERENCES (Continued):

Data Item Name	Name of Data List(s)	Page(s) on Which Defined	Page Number(s) of Other References
FLF	LDF	11-2	12-4
FPCON	CND	7-7, 8-2	6-5, 7-7, 8-5, 12-4, 12-11
FSMIN	SLID	3-10	3-2, 5-2, 6-3, 12-2, 12-8, 12-10
FSTLMX	CNVD	7-8, 8-3	7-7, 7-9, 8-5, 12-4, 12-11
FV(LC,LOC)	HSPV	11-8	3-9, 11-1, 11-2, 11-3, 11-12, 12-5
FVB(LC,N)	BPV	11-6	11-1, 11-2, 11-3, 11-11, 12-5
FYSTL	CNWD, CNUD	7-8, 8-3	7-7, 8-3, 8-5, 12-4, 12-11
FZTAH	SPHF	3-10	5-3, 6-3, 12-1, 12-7
GAMAC	WGHT	3-21, 8-5	5-3, 6-3, 6-5, 7-9, 12-3, 12-4, 12-10
GAMAS1	SPH1	3-11	5-3, 6-3, 12-1, 12-6
GAMAS2	SPH2	3-12	5-3, 6-3, 12-1, 12-7
GAMAS3	SPE3	3-13	3-25, 4-1, 5-2, 6-3, 12-2, 12-7
GAMAS4	SPE4	3-14	3-25, 5-3, 6-3, 12-2, 12-8
GAMAS5	SPE5	3-14	3-25, 5-3, 6-3, 12-2
GAMAS6	SPT6	3-15	5-3, 6-3, 12-1
GAMAS7	SPT7	3-16	5-3, 6-3, 12-1, 12-6
GAMASE	SPHF	3-11	5-3, 6-3, 12-1, 12-7
GAMAW	WGHT	8-5	3-6, 5-3, 6-3, 12-3, 12-4, 12-10
H(LC,LOC)	ACPH	11-4	4-3, 11-1, 11-2, 11-3, 12-5
НВ	ВРН	11-6	11-1, 11-2, 11-3
HCMIN	SPH1	3-12	4-2, 5-3, 6-3, 12-1, 12-6
HEELT1	WLAH, WLDH	3-37	3-34, 3-39, 5-4, 5-5, /-20, 8-6, 12-3
HEELT2	WLAH	3-37	3-34, 3-39, 5-4, 5-5, 5-7, 6-5, 7-21, 8-6, 12-3

12-4 DATA ITEM REFERENCES (Continued):

Data Item Name	Name of Data List(s)	Page(s) on Which Defined	Page Number(s) of Other References
HEELW	WLA, WLAH, WLD	3-37	2-10, 3-34, 3-39, 5-4, 5-5, 6-4, 6-6, 8-6, 12-3
HGSW	SEEP	3-6	3-3, 3-6, 5-3, 6-3, 12-3, 12-11
HLF	LDF	11-2	12-4
HPE	PPD	11-9	11-2, 11-3, 11-13, 12-5
HS(LC,LOC)	ACPS	11-5	4-3, 11-1, 11-4, 12-5
HS1	SSHW	3-21	2-12, 6-3, 12-2, 12-7
HS2	SSHW	3-21	2-12, 6-3, 12-2, 12-7
HS3	SSHC, SSIIW	3-21	2-12, 3-21, 6-3, 12-2, 12-7, 12-9
HSBPB	WLAS, WLDS	3-36	3-34, 3-39, 5-4, 6-5, 7-20, 8-1, 8-6, 12-3
HSS5H	SSEE	3-16	3-25, 6-3, 12-2
HSS5T	SSEE	3-16	3-25, 5-3, 6-3, 12-2
НЅТРВ	WLAS, WLDS	3-36	3-39, 5-4, 6-5, 8-1, 8-6, 12-3
HSTPH	WLDS	3-36	3-39, 5-4, 6-5, 8-6, 12-3
IBSAME	CNWD, CNUD	7-8, 8-3	3-34, 5-6, 6-5, 6-6, 7-7, 7-9, 8-5, 12-4, 12-11
IFDR	CNWD	7-8, 8-3	7-7, 7-16, 7-17, 12-4, 12-11
IFEM	CND	7-8, 8-2	6-5, 7-7, 7-16, 7-17, 8-2, 12-4, 12-11
IFSOM	SOLP	3-17	3-3, 4-2, 4-3, 4-4, 5-3, 6-2, 6-3, 11-13, 12-2, 12-8, 12-9
I FWOC	SOLP	3–16	3-3, 3-11, 3-21, 3-22, 3-23, 3-25, 4-1, 4-2, 5-3, 6-3, 11-4, 11-5, 11-13, 12-2, 12-7, 12-8, 12-9
IHYD	HYD	3-2	2-11, 3-2, 6-1, 7-2, 8-3, 12-1
IPATH	BOIL	3-4	5-2, 6-3, 12-3, 12-11

12-4 DATA ITEM REFERENCES (Continued):

Data List Name	Name of Data List(s)	Page(s) on Which Defined	Page Number(s) of Other References
IRLT	BPH, BPV	11-6	11-1, 11-11
ISFT	SEEP	3-7	3-3, 3-23, 5-3, 6-2, 6-3, 12-3, 12-11
ISLC	SEEP	3-6	3-3, 4-2, 5-3, 6-3, 12-3, 12-11
ITYPE	TYPE	3-2	2-9, 2-11, 4-3, 6-1, 12-1
KFLAG	WLAK,WLDK	3-37	3-23, 3-27, 3-28, 3-39, 5-4, 6-5, 8-6, 12-3
KRACK	SEEP	3–9	3-2, 3-3, 3-7, 4-2, 4-3, 5-3, 6-3, 7-23, 12-3, 12-11
LC		*	NOTE: LC is a subscript for other data items.
LCS	CASE	3-1	2-9
LN	STLS	7-3	7-2, 7-6, 12-4, 12-12
LNA	STLB	7-4, 7-5	2-11, 7-1, 7-6, 12-4, 12-12
LNB	STLB	7-4, 7-5	2-11, 7-1, 7-6, 12-4, 12-12
LOC	(LOC is a loc subscript fo data lists)		2-11, 7-1, 7-2, 7-3, 7-4, 7-5, 7-6, 11-1, 11-4, 11-5, 11-7, 11-8, 11-10, 11-11, 11-12, 11-14, 12-4, 12-5, 12-11
MAXBAR	STLD	7-7, 8-5	7-2, 7-5
N	BPH, BPV	11-6	11-1, 11-11, 12-5
NODE	SOLP	3-14, 3-17	3-3, 4-2, 4-3, 4-4, 5-3, 6-2, 6-3, 11-4, 11-5, 11-13, 12-8
NPPD	SOLP	3-17, 3-18, 3-19, 3-20	3-2, 3-3, 3-10, 3-23, 4-2, 5-1, 5-3, 6-3, 7-16, 7-17, 7-23, 11-9, 11-13, 12-2, 12-8, 12-9, 12-10
NSLIDE	SLID	3-10	3-2, 3-10, 5-2, 6-3, 12-2, 12-8
	(Co	ontinued)	

^{*} Para 2-6-6, p 2-12; para 3-2-2, p 3-1.

12-4 DATA ITEM REFERENCES (Continued):

Data Item Name	Name of Data List(s)	Page(s) on Which Defined	Page Number(s) of Other References
OMEGA	ONEA	3-5	3-23, 3-27, 3-28, 5-2, 6-3, 12-2, 12-8, 12-10
PEHF		11-9	
PH1	SCFH	3-29	3-32, 5-3, 6-3, 6-4, 11-2, 12-2, 12-10, 12-11
PH2	SCFH	3-29	5-3, 6-4, 11-2, 12-2, 12-10, 12-11
PHI1	SPH1	3-11.	5-3, 12-1, 12-6
PHI2	SPH2	3-12	3-32, 5-1, 5-3, 6-3, 12-1, 12-7
PH13	SPE3	3-13	3-25, 4-1, 6-3, 12-2, 12-7
PHI4	SPE4	3-14	3-25, 5-3, 6-3, 12-2, 12-8
PHI5	SPE5	3-14	3-25, 5-3, 6-3, 12-2
РН16	SPT6	3-15	5-3, 6-3, 12-1, 12-6
PHI7	SPT7	3-15	5-3, 6-3, 12-1, 12-6
PHIFLX	CNUD		
PHIFZ	SPHF	3-11	5-1, 5-3, 6-3, 12-1, 12-7
"HIS3	SPE3	3-13	3-25, 6-3, 12-2, 12-7
PHIS4	SPE4	3-14	3-25, 5-3, 6-3, 12-2, 12-7
PHIS5	SPE5	3-15	3-25, 5-3, 6-3, 12-2
PHISHR	CNUD		12-4
PVI	SCFV	3-29	5-3, 6-4, 12-2, 12-10
PV2	SCFV	3-30	3-32, 5-3, 6-4, 12-2, 12-10
PV3	SCFV	3-30	3-32, 5-3, 6-4, 12-2, 12-10
PV4	SCFV	3-30	3-32, 5-3, 6-4, 12-2, 12-10
PV5	SCFV	3-30	3-32, 5-3, 6-4, 12-2, 12-10
PVB	SCFD	3-29	3-32, 5-3, 6-4, 11-2, 12-2, 12-10, 12-11
PVS	SCFD	3-29	3-32, 5-2, 6-4, 11-2, 12-2, 12-10, 12-11
RATIOF	CNWD	7-8, 8-3	7-5, 12-4
RATION	CND	7_7 8_2	6-5, 7-5, 12-4

12-4 DATA ITEM REFERENCES (Continued):

Data Item Name	Name of Data List(s)	Page(s) on Which Defined	Page Number(s) of Other References
RKA1	SPH1	3-11	4-2, 5-2, 5-3, 6-3, 12-1, 12-6, 12-9
RKA2	SPH2	3-12	4-2, 5-2, 5-3, 6-3, 12-1, 12-7, 12-9
RKAE1	SPH1	3–11	3-22, 5-3, 6-3, 12-1, 12-6, 12-9, 12-10
RKAE2	SPH2	3-12	3-22, 5-3, 6-3, 12-1, 12-7, 12-9, 12-10
RKAEFZ	SPHF	3-11	3-22, 4-2, 5-2, 5-13, 6-3, 12-1, 12-7, 12-9, 12-10
RKAFZ	SPHF	3-11	4-2, 5-3, 6-3, 12-1, 12-7, 12-9
RKH	SOLP	3–20	3-3, 3-12, 3-22, 5-3, 6-3, 11-13, 12-2, 12-8, 12-9, 12-10
RKV	SOLP	3–20	3-3, 3-12, 3-22, 5-3, 6-3, 11-13, 12-2, 12-8, 12-9, 12-10
RLIMIT	CNUD		12-4
RRMIN	RRD	3-6	6-3, 12-2, 12-8, 12-10
SPABL	COVR	8-4, 7-2	7-1, 7-3, 7-4, 7-5, 12-4, 12-11
SPAMIN	STLD	7-7, 8-5	12-5
SRM	CNUD		12-4
SST	SST	3-20, 3-22	2-12, 6-3, 12-2, 12-7
STR	WI.A, WLD	3-36	2-10, 3-34, 3-39, 5-4, 5-5, 6-1, 6-4, 6-5, 6-6, 7-20, 8-6, 12-3
TMINB	WI.D	3-37	2-10, 3-34, 3-35, 3-39, 6-4, 6-5, 8-1, S-6, 12-3
TMINS	WLDS	3-35	3-34, 3-35, 6-5, 8-1, 8-6, 12-3
ТОЕНТ	WLAT, WLDT	3-36	3-39, 5-4, 5-5, 5-7, 6-4, 6-5, 7-20, 8-6, 12-3, 12-4

12-4 DATA ITEM REFERENCES (Continued):

Data Item Name	Name of Data List(s)	Page(s) on Which Defined	Page Number(s) of Other References
TS1	WLAT	3-36	3-39, 5-4, 5-5, 5-7, 7-20, 8-1, 8-6, 12-3
TS2	WLAT	3-36	3-39, 5-4, 5-5, 7-20, 8-1, 8-6, 12-3
TSB	WLAS, WLDS	3-35	3-39, 5-4, 6-5, 8-1, 8-6, 12-3
TSTB	WLAS, WLD	3-35	2-10, 3-34, 3-39, 5-4, 5-5, 6-4, 6-6, 8-6, 12-3
TSTT	WLAS	3 - 35	3-39, 5-4, 7-3, 8-6, 12-3
TW1	WLAT, WLDT	3-36	3-39, 5-4, 6-4, 6-5, 8-6, 12-3, 12-4
TW2	WLA,WLD	3-36	2-10, 3-34, 3-39, 5-4, 5-5, 5-7, 6-4, 6-6, 7-20, 8-6, 12-3
UCBFFZ	CSTB	3-33	5-3, 6-4, 12-4
UCBFS1	CSTB	3-33	5-3, 6-4, 12-4
UCBFS2	CSTB	3-33	5-3, 6-4, 12-4
UCBFS6	CSTB	3-33	5-3, 12-4
UCBFS7	CSTB	3-33	5-3, 6-4, 12-4
UCEXS3	CSTE	3-33	5-3, 6-4, 12-4
UCEXS4	CSTE	3-33	5-3, 6-4, 12-4
UCEXS5	CSTE	3-33	5-3, 6-4, 12-4
USCEXWK	CSTE	3-33	5-3, 6-4, 12-4
UCWB	CSTC	3-33	5-3, 6-4, 12-4
UCWK	CSTC	3-33	5-3, 6-4, 12-4
UCWS	CSTC	3-33	5-3, 6-4, 12-4
V(LC,N)	VLP	11-10	11-2, 11-3, 11-13
VB(LC,N)	VPV	116	11-1, 11-2, 11-3, 11-11, 12-5
VLF	LDF	11-2	12-4
M	WIND	3-31	5-3, 6-4, 11-2, 12-3, 12-10
W1	SCWH	3-30	3-32, 5-3, 6-4, 11-2, 12-3, 12-10, 12-11

12-4 DATA ITEM REFERENCES (Concluded):

Data Item Name	Name of Data List(s)	Page(s) on Which Defined	Page Number(s) of Other References
W3	SCWH	3-30	3-32, 4-3, 5-3, 6-4, 11-2, 12-3, 12-10
W4	SCWH	3-30	3-32, 5-3, 6-4, 11-2, 12-3, 12-10
WB(LC,N)	ВРН	11-6	11-1, 11-2, 11-3, 12-5
WDS2	SSHW	3-21	2-12, 6-3, 12-2, 12-7
WH	SCWV	3-31	3-32, 5-3, 6-4, 12-3, 12-10
WKEY	WŁAK	3-37	3-39, 5-4, 8-1, 8-6, 12-3
WLF	LDF	11-2	12-4
WPE	PPD	11-9	11-2, 11-3, 11-13, 12-5
WT	SCWV	3-30	3-32, 5-3, 6-4, 12-3, 12-10
W√H	SCWV	3-31, 3-32	5-3, 6-4, 12-3, 12-10
WWT	SCWV	3-30	3-32, 5-3, 6-4, 12-3
YH	АСРН	11-4	4-3, 11-1, 11-3, 11-4
YVS(LC,LOC)	ACPS	11-5	4-3, 11-1, 11-3, 12-5
YTTOP	PPD	11-9	7-22, 11-13, 12-5

12-5 SUMMARY OF DATA LIST CONTENTS:

Data List	Data Item	Units	
ACPH			Active earth lumbed forces over end of heel
	1.0	EACH	LOAD CASE NUMBER (1-10 OR O FOR ALL LOAD CASES)
	1 OC	F ACT	SEQUENCE NO OF WALLIS OF H, ELL & YH (TOL) NO 1 -
	14	1.13.15	ACTIVE LARTH + SURCED FUMBLE VERTICALLY, FIZZET HOR
	FH	1.60/13	DYNAMEC CARTE + SURCES CHAPTER VERTICALLY, 10/FT HOR
	ΥH	F F 101	THE A OF CORK SEOVEDING IT AN OF CAME LOC WINERS
3 (21) ()			
ACE'S	1.43		Active earth lumbed facces on face of stem
	11,	LACH	LOAU CASE NUMBER (1 TO OR O FOR ALL LOAD CASES)
	1.00	f. (40°14	SEQUENCE NO OF VALUES OF H. LU. & PHOTOE - NEL 1)
	HG	LBZET	HORZ CHARTH F SURCHARGE) ON STEM AT YUS
	1.46	1.1821 1	OYNAMIO HORIZ (EARTH + STIRCH) DN STEM AT YUS
	YVS	11101	FILL OF APTIER OF HE & FILL FORCES
(A) []			Boil control data
	1.1 SET	1.131.1	THEV TOO PERCENT FEFTCHIVE SHELT PILE THE
	CRM IN	RATIO	MIN ALLOWARE CREET RATTO FOR ROLL CONTROL
	UPATH	1.3	BOLL CONTROL SELPAGE PATH CONTROL PARTS STEED A 1
			Construction of the control of the c
BI 11	1.0	P. A. S. I	Bouring pressures due to vertical effort
	L.C	FACH	FLOATE CASE NUMBER (1-10 OR O LOR ALL LUADE ASTRO-
	N	1 2	LITTLE INTO VALUE TOWARD TOL . TODE ENTO THWARD HELD
	UKLI		MIRT OF SULTANT AT 1 TETUE. OF THE MINN AT HELL
) [.Eu*	F1717.3	DEFECTIVE WIGHER OF RASE IN CONTACT
	WILL	11:31	REARING PRESS FROM WIND LOAD
	148	1.31.	BEARING PRESS FROM HOREZ CHARTH + SUBCHARGE)
	LHB	F#HT	BEARING PRESS FROM HOREZ BYNAMIC LIFE OF.
	F 14 (e	USI	BLOKING PRISS TROM NET HORLY SEEPAGE
RPU			Bearing pressures due to horizontal office.
	1.7	LACH	LOATE CAGE NUMBER (1-10 OR) FOR ALL LUATE CASES
	8	ા હૈ	I FOR LINE VALUE TOWARD TOE FOR END TOWARD HELD
	TRL f	• •-	VERT RESULTANT AT LIDE O IN KERN HI HE
	E FILL	FET	EFFECTIVE WINTH OF BASE IN CONTACT
	10H	1131	
	VR		BEARING PRESS FROM CONCRETE + WATER UN BASE
		1.31	BLARTING PRESS CROWN MILET OF DROPE & COROTT WILL
	しいに	175F	BLARING PRESS FROM WERT GRANAMIE FEFFOR
	おいし	11	OF MICHAEL CREASE LINOR THE BLILL GALLECTORE
CASI			Load case numbers (1 - 10 only)
	141-1	FACH	NUMBER OF FOAD CASES GO MAXE
	1,12%	LAFH	FUNDO CASE NUMBERS (S. TERLES MAY MULTI FUM ESTS
เป็นเป			Charles despite him of data
	RULLUM	165 1 1 13	A STOLE STENSIONS OF GRANDSPEED OF ARCHIOLOGICAL
	Finitis	1711	SPECIAL II O COMPRESSION COMPRESSION SALES ASTO
	1.73 [1]	10.1	MODIFIED BY WALLESTA OF BUILDING AND ARTHUR
	HIM	0.1	The first time of the artificial transfer of the second of the
CNHI			
	1 Y . T	1:31	temperate descripts the ran adoption of the
			THE CONTRACTOR CONTRACTOR OF THE CONTRACTOR
	(IC.AM)) (
	194411 F	0.04 (0.00)	Grant will be such knowing troop as a first some such as
	THEMP	45.97 (1.1)	And the other states of the first that the second of the s
	MI [MIII	1994-10	AND DESCRIPTION DATE OF THE PROPERTY OF THE PR
	F 1 150	RAT [II]	MAX ASSUMED CONCRETE FORMING SOCREE DOALN
		100(110)	CONC. COMPANION OF THE CONC. IN THE CONC.
	Stem		The state of the s
	H IAL	RATIO	THOM FORTURE DELINION IN ALL CERTS OF A DESCRIPTION OF A STREET OF THE PROPERTY OF A DESCRIPTION OF A DESCRI

Data List	Data Item	Units	Definition
CMMD	KATURE	RATIO	Concrete (Working) Stress Design add/1 data MAX ALLOW LUNC STRESS / LPCON (WSD)
	CYST	12.1	Y FLE TO STREET MOTHER OF STEPLE HELD NECESSARIES MENT
	I SH MX	19.4	MAX ALLOWARD WATER INFORMATION XAM
	LICIANI	11.1	THE HELL & FOR TOPS FRANCE OF SAME CLEVE. IT NOT
	D file	1 - 1	TO BY ACT SHE 22 PAR ROLLS OF HIGHER CO.
1 ()VIK			Conceels cover to conter of cold to.
	CHIVEIS	1.01.11	EDNOTED THE PROPERTY OF THE PR
	CHUTS	TRUT	CONCIN FACE OF REINE MARKET NIER TO SEE STEM
	COPIE	I MULH	TOWNER BELLEVILLE THE RELEASE TO THE THE TABLE
	FEDVER	LNCH	THUNGER OF SAID TO THE REMEMBER OF ALCOHOLOGY AND A CONTRACT OF A CONTRA
	D) £ . E	[e#]+	CHANCERACE BETWEEN HEAD LANCE AT
CHE			that control had fift taxons
	thate.	\$ 11 F	THAT COLD BACKLES OF THE STATE
	10 to 11	to Ci	TONE COUNTY OF BOARDERS OF SOME SAFERS
	16 16 17 (B (1)	THE THE PROPERTY OF THE PROPER
	10 (0 - 8	t- (3)	TINET COST OF GACKERS - CONTRACTS
	OF THE STATE	B { \$	TIME COLD BACKLES SOLVED STORY
10 m			Unit cost of reinforced concerts
	THEWARE	6 27 F (4)	THAT YOUT OF COMOSE OF 1920 OF 20
	HEIME	Fe CI	TIME LEGGE OF LUMBER IT . THE VEHICLE ROLE 126
	HEAR	F -, C1	TIMET COST OF STANCED IN SERVER ROLLING TOWNS SERVER
CSH			Unit cost of structural excavations
	10 L X3.3	B F	BMIT COLE OF EXEMPLIAN 1. 1] (2018)
	310.1 X.3.4	B - (₹	TIME LUCY, ULL ACVINITION OF DEPTH A
	OCE XS2	\$ 70°1"	UNIT COST OF EXCAVATION SOLD LAYER "
	LICE XMY	\$ 701	TINIT COST OF FYCAUGITON - KLY BELOW BASE STAP
HSPH			Horizontal sectorge not tiressure values,
	1	LACH	LINATO CASH NUMBERS OF TO DESCRIPT ALS FORTH FAST
	1.131.	1.09.114	THE INTERVALS OF A ALMOHOUS WALLS OF STREET
	i 11	6.50	NUT HURSTONIAL GLEGARI FRONZULA (1974)
	1.514	(2.0	MET HOMEZHNIAL SELENAGE ERGSSCHRE DOWAMES
++ -F*!,1			Start rate grat for marriage of participations, gives
	t t	HALIF	THAN CASE NUMBER OF LOOK OF OIL ACCUMANCE OF A
	LUh	FULH	THE PROTESTAL SOCIAL PLANTAGE OF
	\$ **	! .1	THE TELEPHORETATE ENGINEER OF COLUMN CONTRACTOR
ily:c			Wednesday now builting to a regular conduction
		1.9001	TO OTHER MEMBERS OF TO THE OTHER VETT ROUTE WELL
	[14+]+	(Y +)	TO THE HEFTERALL DESTRUCTIONS OF A NOW HEAD OFF TO
1-1mi	II i I i	AL PHA	Fight regimes (200) of photographics for their policies, where it is not a support that the first section is a support to the
N) 1			straff carallerine progress of contract his
	· iMi · lA	or e	I first to a Agreed of the construction of the construction with the last of the construction of the const
etign e			Althought of Cartain Land of the Contraction
	90.00 Fi	PATTI PATTI	TO DATE FOR A NUMBER OF 10 OR OFFICE ALL TOATS ASSOCIATED ASSOCIAT

•

Data	Data	_	
List	Item	Units	Definition
.,	• • • • • • • • • • • • • • • • • • • •		
PPU			
1 1 (1		1: 24211	Fassive pressure dindram ordinates
	1,1	1,000	LOAD CASE NUMBER OF 10 OF O FOR ACT FOAD CASE
	A LTIM.	1.001	THE VERY DECEMBER OF TAKESTAL PRESSURE REQUIRED
	IAII 1	1.431	MAY TASSIVE POLSCOND FROM WIND LOAD
	FHM.	F.431.	MAX PASCHUM FRESSHER CROWNER HORE, ADDITIONAL
	1 II 11.	4 31	- MAX - LACKIO CRESTRA TREBA HORES TARTO + CONTRADIGA-
	1 1414	15.21	МАХ ЭМАЧДИ (МИ,ЧЭЙИ ГРИМ ИВРИД (АДСА)
RECU		F 4.11.	Minimum allowable meaglight onlin
	1.0	Factor	CHARLEGAS, NUMBER OF TO SHE DEFINE ALL FLOAD CASES.
	totam I M	RATIO	WIN SUCCEMBER OF COMPATAGE STATE OF THE
acur to			flowers and the state of the st
,, , (,			Direct ventical line loads on stem and have
	L C	LUCH	LOAD CASE NUMBER (1 TO DE 0 FOR ALL LOAD CASES
	1.03	FRONT	LINE LOAD THUM ON CENTER OF FOU OF STEM
	EAR	LIGHT	LENE LOAD DOWN ON BASE SLAB CONCRETE
	DVG	FENIT	HORIZONIAL OTSTANCE WORKING FT TO FORCE + TO HELL
SELLI			The state to see an extend of the state of t
	(,(*	LACH	- Mugh Cast Whitehald from the alone of the Cast is a finite from the Cast is a finite from the first term.
	1441	1.6.4.1	
			TINE COAD MORE COME THE OR FINE CO. THE CAR CO. RESERVE
	1993 1993	1.001	TILLA DE TARE (GN TRE DESCRIPTION)
		1 (4 - 1 - 1	TINE CONTROL THREE ON STOM CONTROL OF CORRESPONDENCE
	(+ PHQ)	LULL L	THE GLOUD CONTINUONED
Salt V			Surcharge line toats on Sud-Citi
	+ 1	CACR	FUATO CASE NUMBER OF STORE OF OUR ALL COMPLETE
	1901	1,071.1	4 INC BUIGHARD CHRISTON - 20 -
	001	1 ()(11	High the state of
	POS	+ (4:1-T	CANT SUBSTRACE VELCED AL. ALL
	nv.	1 (111)	THOUGHT TO COLD BEACH MINER OF THOSE A SECTION
	1:03	1,0711	
	nv 3	1.001	TEL NEW SURCHARGE VERY HAR HAR ENDER OF THE TO SERVE A SURFE SERVE.
	1974	1 (6.1.1	THAT BELLY TO MAKE THE WARREN TO THE ACTION OF THE PROPERTY OF
	rii) 4	1404	
	1101		
	003	1,021°T 1 ()01°T	TINE SURPLIANCE THE FOLLOWING STATES AND AND AND AND AND AND AND AND AND AND
	17.1	1 19111	HORE A COUNTY OF THE WHOLE OF SOME CONTRACTOR
SCMH			Mirrort himse programs on stones needed as
	1,1	1,74014	THAN GOTH, NUMBER OF THE OFFICE OFFICE CAR COSES
	i di l	12.1	HOREZ THE CRURE COMBINE THAT A LINUM HITT
	I F.W.L.T	1.001	THE OF THE OF CORD RECEMBLY AT TWO SERVE
	11/1/11/	Light	THE ALL GALLOW OF COMPLETE CHARACTER VICENCE PROPERTY.
	Wi	15.1	THE REPORT OF THE PROPERTY OF
	144	1	TXTHRNAL HORES PRESCRIPT AT LOTE MARCH AT A 15 W.
		,	
SHWU			Superfrequence and London and English (1)
	1.1	1,90.0	THIAD COME NOWHELD OF THE LIKE OF LINE BLEECOME COME OF A CO.
	(a) I	12517	ALL CONTRACTOR CONSTRAINS OF THE TWO
	tallal (1.000	भा (ताम भारताच्या मन्त्राम स्ट्रम् नामानाच्या । म
	[1]	1 (16)	MOREST RELIGIOUS ROLLS MORE FORM TO CHAINDERS MY
	1411	1 11 1	ALBO DESTRICTED COMPUTATIONS OF BUILDING A
	네네ㅋ	i DAT	WIGHT OF STRIFF FRADICE BY SURCHARD WIL
	[IWI f	Loot	HOREZ DESTANCE, RASHE WORK PRIJECTO PROHABLE C

Data	Data		
List	ltem	Units	Definition
SEEF			Water elevations and sections outlines
11 . 1_1	LC	FACH	LOAD CASE NUMBER (1 10 OR 0 FOR ALL LOAD CASES)
	11.41	roor	ELEV OF WATER LEVEL OVER TOE
	ULWH	i not	TELLY OF WATER LEVEL DOOR HEEL (WAVE STILL WATER)
	HOSM		SOLLS WEIGHT CHANGE DUE TO HODRAULIC CRADILATIONER
	1/a.c	i 🔆	1 CACH LOAD CASE SEPARATE CHIEFS 2 = ALL AS NO 1
	151.1	1.34	1. 25 3, OR 4 POR TYPE OF SEPAGE FLOWS 1 (COLF)
	NEACK		LITTOR CRACK OF WS. WAY OVER HELE, 2 FOR ALTEUR SOLE
	KERICIX	1.5	TOTAL CITATION AT MINE MAN COMMAN CONTRACTOR OF LOSS OF LEAST
St. [6			Stiding control data - see also ANIA
	1 C	LACH	LOAD CASE NUMBER (1:10 OR O FOR ALL LOAD CASES)
	NSLIUE	1234	1, 2. 3, OR 4 FOR SLIDING CALCULATION TYPE OPTION
	LISMIN	RATIO	MINIMUM FACTOR OF SAFETY AGAINST SETTING
		• • • • • • • • • • • • • • • • • • • •	
cott.			Soils design parameters
	1.C	LACH	LUAD CASE NUMBER (1-10 OR O FOR ALL LUAD CASES)
	TE MOC	LORG	1 FOR INCREMENTAL WEDGE METHOD OR 2 FOR COULDME
	NODE	LACH	NUMBER OF NODES TO USE WHEN ITWOC -1 & ITSOM
	LL SUM	1.0832	1 FOR SINGLE WEDGE TRIAL SURFACE, 2 FOR MULTIPLE
	MELL	1 5	OVERTURNING PASSIVE OR SSUM SHAPE CODE SECTION
	RRH	RATIO	HORIZ EARTHOUAN ACCELLRATION FACTOR
	RKŲ	RAT (O	VERT EARTHQUAKE ACCELERATION FACTOR
	CEMA	RATIO	- ACTIVE PRESSURE MOMENT ARM FACTOR FOR ARCHING CAST
3/4/-3			Soil importies, exist soil layer 3 (basic)
	PHE	tileta.	ANDLE DE INTERNAL PRICTION SOIL LAYER &
	COH.3	LYSE	
			COHESIVE STRENGTH OF SOH LAYER 3
	GAMAS3	l'exci	TIMEL METCH OF BUT FOREM 3. CALIBUTED IN MELON ME
	PHI S3	UE, G	MAX ANGLE OF 13 LILING FRITTION (IN 101) LAYER 3
	A0H93	1:36	SLITTING ADMESTIVE STOLNGTOLLOW SOTE LAYER S
	ABBIT ATN	1.13F	ALLOW BRING OF REPORT, TOP OF LATTE A NAME ON TAKE
	ARITHMY	123	ALLOW BONG THE SSURE, MILLS OF LATER 3. NAMED OF BOTH
	ARPSTW	FBF	ALLOW GRNG PRESSURE, TOP OF LAYER 3 WERE BASE
		138	
	ARE 30W		ALLOW BRAG FRESCURE, BUTT OF LAYER 3, WHO BASE
	0.883	letin t	LITE AUT LOW CORRECTED TO THE SEM TWO THE SEM
GFI 4			Soil properties cristing soil loyer 4
	OF COR	1.001	ELEVOR FOR OF SOLE LANGE
	FH14	(IF G	ANGEL OF INTURNAL ERBOTION COTE FAMILE A
	C(H14	1.36	CONCRIVE STRENGTH OF SQLL LAYER 4
	COMMOC 4	UBZCI	THE WELL OF TAMENTAL ASSESSED TO THOSE OF THE TRANSPORTED TO THE TRANS
	141[54	ta G	MAX ANGLE OF SELECTION ON COLD LAST OF A
	200123	1751	OF THE PARTY OF THE NOTE FOR SHIPL FAYER &
	UKI 314	1 31	ALTIM MANG PRESSION FOR GLASSES AL MARKING TRACE
	QBL4BN	1.31	ALLOW REMOTE THE SOURCE DOLL OF LAND AS MARROW BOST
	_000141 ₩	1.531	ALLOW THANK PROGRAMS THE HE CAN BE SO WITH PACE
	ARPARW	4.231	ALLOW REMOTE PROPERTIES BOLLS OF LANCE A MEDICAL SECTION
St 4.5			Soil properties, existing soil time:
	11.154	1.000	THE DESIGNATION OF TAKEN
	11107	(fl. G	ANGEL OF INTERNAL FRICTIONS SOLIT LATER S
	COHT	1.31	CONTRACTOR CONTRACTOR OF CARD CARD AS A
	CAMAGG	1 (6.1)	STANDER OF CONTRACTOR OF A PART OF CONTRACTOR OF THE PART OF THE P
	BHES.	(4, 6)	TALL THE ME WILL THE WALLE IN THINK XAM
	តាមមនុស	1:31	SELECTION AGENCY OF STRENGTH FOR COME CARRY
	ARC'TA	1,1.	
	O(H°'5RN	1.31.	ALLOW PANG LENGTHA FOLL OF LAVING WARRANT BY
	VIEL LA	1.31	- VETOR BROWN SERBITING THE UP LVALK 25 MILE DOUGH
	4H., HM	11.4	- UPLOM REMOVE THE COMMERCENT OF LAVER AN MEDITALISM

Data List	Data Item	Units	Detinition
SHIT			holf properties, heel backfill troop '
	ιc	LACH	LOAD CASE NUMBER (1 to OR O LOR ALL LEAD CALL)
	1943.1	OFG	ANDLE OF INTERNAL FROM TOOM, TOOM ARCH. 1
	F10111	1:51	CONTRACT STANGIH OF COLUMN AND A
	CIAMACE	1.14 4.11	SUNIT WEIGHT OF BUILDING AND CONSTITUTED DELONG WIT
	RNAT	641300	CONTROL TAKER FREE SURF COLLEGE AND A RESOLUTION OF A STATE OF A S
	OF U 19 F	(0.54	WALL INTELLINE AND THE CONTOURS ASSESSED.
	RIVALT	ewi în	TARTHQUARE ACTIVE LAWING FILESCOPE COLORS AND
	LICW IN	1 (3(1))	MINIMUM HELE, CARTH CONFECTION OF STATE
CEHO			Soil momenties, heat builtill tone, ?
	1.0	LUCH	TUAR CASE NUMBER 31 10 OR O CHE ACT COACTAC
	1511	1.010.1	TIES OF THE OF COLUMN 1
	1014103	TIET.	ANGLE OF INTERMAL SERECTION, TOTAL STATE S
	0.000	F F	CORP. STRENGTH OF SOME CAN BE S
	BAMACC	L (C/C)	SAMEL OF DEBLE OF ADDITIONAL SECTION OF DESIGNATION OF CONTRACTOR OF THE CONTRACTOR
	PRVS	RATUR	OFTIPE LARMING COURT COURT FOR YOUR TOPE COURT FOR
	0EF195	Ut G	MONTERICATION SOURCE FOR COMPUME PETENCE EN BORNE
	RKALS	RATIO	FARTHQUAKE ACTIVE FALTH PRESSURE COFFEE CHAI
CENTO.			foil properties, filter zone over heel
	F.C.	LACH	TOATE CASE NUMBER (I TO THE O LOR ALL LUMIETAGE)
	LETALL) (it)i	THE INJUST TO SERVICE AND AND THEFT
	THILZ	OUTC	ONGEL OF INTERNAL FRICTION, FOR THE ZUNL
	COREZ	1.431	COULSINE STRENGTH OF TILTER ZONE
	Light Model	1 RZC1	UNIT WEIGHT OF FILTER ZONE. SATORATION OF (01.00) W.
	RIVAL Z	RATED	ACTIVE PROFESSION CONTINUE FOR CHITER ZONE
	OF LIGHT	003G	WALL FIRST TION AND I FOR COULDING ACTION . I STITLE TON
	PX EXT III., III. 4	RATTO	CARTHOUANE ACTIVE PRESSURE CORFEE CORE ELETER COME
0.016			Soil manual pass the had full larger to
	LC	DACH	CHOULT VE MANNET OF THE UNIT OF THE PIET TRACE COLL.
	FH13	(0.43	ANGLE OF ENTERNAL PRICTION, SOLI LAYER A
	EMHA.	1931	ECHEDINE CIM NOTH OF BOIL FALLY ?
	ተማስተፈና ኤሌ	1.90201	TINTE WE SHELL THE SHELL LAYER A. CATHEATED BELOW WIT
r Pri Z			
	1, 0	LACH	- North arabeet was transfer to the Art League 2 - 19Afr CASE NUMBER of to the O Pob Art League 2
	1111	10) (a	ANGLE OF INTERNAL PRICEION, SQUE CAPID S
	1.00	14	CONCLUE STUNCTOR SOIL LAYER
	GAMAS	i ezgi	UNIT WEIGHT OF SUIT, LAYER 2. SATURATED DE BLOOM WE
		1 (11 (2)	we train an order title as advantage to the control of
1.13F.12			Small surface. Esseting anale & Eccapation
	11.8W	1.001	TX CANAL MAN BULLOW TX FIRM OF THE CHECKLE OF 182 3
	193	1U XH	UNIAVATION SIDE STORE
	urs Par	10 811	TXIST GROUND STOE CLORE BEYOND STORE CONT. HOLD
	13 112-1	Lant	TXIST ORANG 05351 OF TROM FORSAU CTOE SITE
	0151	Lant	HORES LUSTANCE CHONCEL CON TO FLICH CON THE
	FERSSW	11011	EXIST GRACE CEREBLEY HADER BOSTER WORKERN COUNT
	TI, PAH	1.001	TXTO ORADI. 1055H PT TROM O FOR OHER SEDES
	CETSTALL	FOOT	HOW Z DECAMO FROM IT TO WELL TO HE TO HE STOLE
	HSCSH	LO XH	EXIST GROUND SETTE SERIES BEYONG FITS SHELL SHEET
			=

Data List	Data Item	Units	Definition
GSHC			Soil surface decometry over head. Confort
	1.0	EACH	LOAD CASE NUMBER OF 10 DR D LOR ALL COAD PAGE
	1 5 HW	F 1 11 1 1	THE COLUMN THE RESIDENCE OF A STREET AND A STREET OF THE S
	11:3	TV XII	STORE OF ORDER HELD, SURFACE TRANSMENT, 1999 OF A 1999
35.00			Sail surface geometry over head. Wegan method
	1.1	LACH	LOAD CASE NUMBER OF 10 OR O FOR ALL LOAD CASES
	t 93 HJ	1 13111	THE DIE HELL STOPP HIST EXTENDED UNDER SE WORL OF
	14' - [UC XH	SHOPE OF CIRST HILL SHREACE SLIGHTNIS LOSS OF STATE
	565334	11101	HOREZ TOPATANIEL FROM BASTA WORK SET OF THE
	HSC	TU XH	SHOPLOR ON THE HELL GURLACE GROWENTS 100 00 11200
	WDS2	1 (417	WINTER OF CANDE HELL SOMEOUS A CAMENT
	14113	TV XH	SALURE OF OUR LITTLE CREATER SUBSECTION OF STREET
eg et			Soft surface over the top
	1.1	CACH	THROUGH IN MINISTER OF THE OFFICE OF THE OUT OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OW
	1 T lá	1 13115	THEY OF THE STORY IST. EXTENDED UNDER H. WHITE
	qr. f	TV KH	SHOPE OF SURFACE OF SULF FAYER - DOES TOF 100 - 15
STER			Reinforcing steel in the base slab
	LDU	LACH	INTEGERS OF FROM TOP TOWARD BULL OF I AT THE COLO
	LHA	LACH	LAYER NO . I HOUTED. 2 MAX LOW ASTERS
	HITLET	1.0 * 2	SULIN TELEVISION OF A THE LAND OF RACE STATE
	1111 E	LACH	TAYER NO . I SOUTER 3 MAX FOR ACTURE
	HITLEE	SQ*ZF	SQ IN CIFT. RELINE IN ROTTOM LACE OF BASE COAL
·; t) ()			Postin for ener stood dostan ron goods
	HAMHA MUXHUK	MIM(d):	ASTM RELIEF TRAIS NUMBER OF THE LAST ON THE SHORE MAN MENTHUM CLEAR STACTING BETWEEN BASES IN JAME FOR
$\mathrm{SH} \mathrm{K}$			Reinforming steel in the few
	BOTH K	SQ* /1	GU IN 11. REINE IN NEY
SHS			Repairemented to the stem
	1,58	LAFIL	ANTHORISE TO THE HOLD TORE OF STUME AND A DECEMBER OF THE
	ATTSI	130 " 71	SO IN CEL MAINT IN THE SITE COLUMN
	923 H 211 3 9 ACK	1 (A) (1) 1 (4) * (4)	TO THE PROPERTY OF THE PROPERT
7.54 1	,		
TRU!	TRACE	0 1	Remark file 4 debug trace control filek Nifelistins tractions of or or
TYFT			I lood wall a lastain pur well control a
	t C	LACH	TOATECASE NUMBERS OF TO OBE OF USE ADDITIONAL INACTIONS
	FFYLL	1 '	TOTAL COROLNATION OF RELATIONS AND
OFF.			Landth worthist is operforcing to be more and topic
	1 (FOUR	TOUR LUPPE MINOR ROLL OF HOLD OF USE OF LICENSE AND COMPANY OF A NOTICE OF A N
	I fif	LACH	COCATTON NUMBER OF THE OBJECT STORY
	1.∆	16.8 18.1	CONTINUE FOR CONTINUE OF CONTINUES. OTNOMER OF AN ELLIPTICAL OF STREET CONTINUES.
Мент			(Intel we comb)
	GAMAC	THATE	TINIT WEIGHT OF REINFORCED CONFER DESCRIPTION OF A PROPERTY OF THE PROPERTY OF
	HAMAW	I BOOK	UNIT WITCHE OF WATER OF FAMILY AND TO AN AND COMMENTAL OF THE COMMENT OF THE COME

Data List	Pata Item	Units	Definition
MINI			Want loads
	ιc	Face	LOAD LASE NUMBER OF TO THE OTHER ALL LUADE LAST ST
	in .	Em J	A LIA M महा वचतावात्रमा इसमान ॥ एते विभावत वामहा
المالية			Mall geometre Co. and a constant see of the seem of the
	(-1%)	1.001	THE OF SERMINE ENGLY COLD FIRE WATER AND A REST OF A SE
	ru.	1 (1) 1	HORES TRAINER TON OF LESSON WITHOUT OF THE CROSS CO. M.
	1116	1651.10	CITEM RESTRICT A THE WILDING TWO STORY SHOPLING SWITCH
	111.1.110	1 (11)3	THORE, THROUGH THE WITCHEST WITCHEST COMES TO ME
141 A11			Wall decompton for Anglers, back producets on
	RIJ	1.001	HORELS SECONDETERIN OF BOST WHITE STORE TO DELL BOTTOS
	(44)	1.1011	MINIMUM CALLE FOR RM CRASH WILLIAM BOWLING DESIGN
	6042	+ +1(17	MAXIMUM VALUE LOR HIA CRASH WINTED HOR HAD CLOSE C
	10.	MALLU	MASS ROTTEM SHORT IN THE FOREST STATES AND A STATE OF STATES
iai Ali	,		Wall decompative for Analysis theel
	HE-T	INCH	HELL THICKNESS AT END CHOT LESS THAN THINKS
	HILLW	0.1017	HOREZ CHOULCTION OF CLUDE WIDOU OF HELL THOM STORE
	ास El । र	LNCH	THEFT THIS BREET AT THE MENT OF THE DIAM HELDER
WE AL			Wall decometric to Anathrs , tea
	KELAG	(i	TO BE KEY IS OF URLE INDOOR WAY OF OUR PRINCE TO SE
	THALY	F (#1) T	MEY MERCHANDED BY STON TONORIO NO OFFI
	Mr L A	INCH	KLY WIDTH AT BOITHM CNOT LECS THAN THENDS
	105,11	RATIO	KEY, MATTER OF LACT TOWARD THE THINK I TO DEFAULT
₩ AS			Wall remotes for Analysis, tem
	11.11	1 11 1911	COLLAR THECKNESS OF THE SWILL LESS THAN SMOKEN
	11 11	18/11	STEM THE STHE BATTLE. IN HIT CONCUSTING TO BE
	15 18	LetC14	THORAGE TRAINING FROM SECURITION CONTRACTOR
	146 11/14	1.1.1.1	WELL WITH LEADING TOO DAME OF TOOLS
	HEATTER	18/4/1	STEP OF BELLEVIOLET OF LOWER WATERS FROM THE CO.
	14/364/16	14 11	STEM BUT STOLEGITOM FRANCE BATHER TWO HER SE
what			Wall grownelity fro Angers, so the
	e# [1.0017	ROTHER OF THE SELECT AT LABOUR TOR
	1:01:10	Lorent	CHICKNESS OF THE ACCURE ONLY NOT SESS THAN THENRE
	155	RATIO	CARDIN OF THE OF ORDER PANEL OF THE 19 MIL 199 MIL
	141	1 (0.1)	AUDITHOR TO COLOR INNERS CAPTS OF TO STORE THAT ACTS
	13.1	PATEO	STUDY OF THE ON TWANTS PANELS OF THE JOSEPH COST 2
जा ।			May [Locument up of a a ten
	RASIER	FOOT	RASI RADIAS FROM DAGIO WORKING LOTAL + OULE DEC.

Data List	Data Item	Units	Definition
WL U			Wall deametry for design (modules fit or Wit)
	FTC	1.001	THE HE STEM LITEV. (ALL FEETVATIONS MUST BE F)
	ENC:	: OUF	TOWAR THE PROPERTY OF THE SECTION OF
	15716	RATIO	ገ. LI M P.A.T.LO (100 MILOTH IN) - (CAY) - WIJOTH (CA)
	HILL U	LUUT	HORE THROUGH OF DECEMBER WITHOUT OF HELL CHAMPS AND
	11.18	1001	TOUGHT PROJECTION OF STEM THEFAULTS AT UNIT
	IMINE	108711	MINIMUM PRINCIPLIE THEFT FINESCOLOR BOYSE OF ALL
WEHH			Will promoting fine the pair the interior Court
	(4)1	1:424	्रम्भावतालाम् १५५ ता । स्तिह स्मित्र स्थापन् विकेतारानः १०५ विकार स्थापन् ।
	1세세 :	1.10 tT	HAS CHARM COLLECTOR ON COOKER PROTECTION OF EACH OF FIRE
	1834	160110	MINIMEM CALLS FOR BUT FOR A TOLER CONTRACTOR OF THE
	H.C.	BUT IO	MAXIMUM UMUUL LORGIRG (1655) Jahren Gerland (166-158)
W TIH			Walt grounding in the spine to it
	HELL ES	INCH	THE THE PRINCE OF TWO TOTALS WITH FIRE THESE SMINE
LIE TIN			Wall manually for Newton, too
	KELAG	0.1	OF THE STREAM OF SOME BOTH TO SEE A SERVICE OF THE CHARLES OF THE CO.
	RKIE	1031.00	TRACTICE OF ALL LACE LOUGHER FOR THE AVERAGE TO A SE
	DEL YE	1.003	MINIMUM VALUE OF OUR FOR HIS OF THE MINIMUM PARTY.
	DEL 45	1.001	MAXIMUM VALUE OF ORES, FOR MESSAGEMENT SERVICE
M 115			Hall grammetry for Decretary from
	IMINS	1 NCH	MINIMUM CONFIDER TO THE KNESS IN SITEM
	134	INALT	CHIM THE CHIE INTERIOR IN HER PERSONS AND A STREET
	HE HELL	1.004	STEM DELL STOLETON CAMEL HILLOUT
	LPS TURE	1N/1 T	STEM HIGH STOR TOP PARTY DATERS IN HILL V
	URBHITE	19/1-1	STEM HELE SHOT BOTTOM PANEL BATTUR. IN HEFT V
LJI [17			Wall genmetou for hor con-
	BD 11	1.001	MINIMUM CLOWESTS MARCH FOR BULL DESIGN TO HE
	RELEASE	LOOT	- MANTHUM CUTCHECTS PALCE FOR 10H 1 THE 1999
	100.141	INCL	THE CONTROL OF THE AT OFFICE UNITED AND THE STATE OF THE CONTROL
	rw r	LOGI	WHOTH OF TOP OF INNER PANEL OF TOE, LIKEM STEM LAST

CHAPTER 13: GRAPHICS DISPLAY OF DATA AND RESULTS

- 13-1 GENERAL. Module FA has the capability of displaying the input data and computed applied and reactive pressures in graphical form on a Tektronix 4014 graphics display terminal. Output examples are shown later in this Chapter. The program may be run without graphics, on any kind of terminal.
- 13-2 EQUIPMENT VARIATION EFFECTS. The nongraphics portion of the time-sharing terminal printout from the program does not keep track of how much has been printed on a page. It keeps on printing line after line in typical paper copy fashion. Allowing for this makes the following alternate procedure necessary, depending on which type of Tektronix terminal is available.
- 13-2-1 Tektronix 4014 terminal with option 40-41 installed. Use these switch settings:
 - a. OFF key to setting 1.
 - b. AUTO PRINT key to the left, for automatic printing of each page.

The screen will automatically be printed, then cleared for the next page as the printout continues with nothing lost. Use the program in the usual way, getting a stack of paper copies in the hard copy unit hopper. Answer the question at the end of module FA

ENTER 1 TO SEE PLOTS OF THE DATA AND ANALYSES

(NOTE: DO NOT ENTER 1 IF YOU ARE GOING TO RUN MODULE WD.)

OR Ø TO OMIT THE PLOTS

with a 1. A hard copy will automatically be taken. The screen will be erased and execution will proceed as described in paragraph 13-3.

13-2-2 Tektronix 4014 terminal without the 40-41 option installed. Use a regular paper copy printing terminal such as Teletype, Texas Instruments Silent 700, DECWRITER, etc., and answer the question at the end of module FA with a zero. When module FA is complete, either stop the program run with the END command or let the terminal sit waiting for the next command while you move to a Tektronix 4014 terminal. Start the program running on the 4014 and restore (REST command in the program starting sequence) from the UPDATE file from the printing terminal program run. Note that this will not interfere with the program still running on the printing terminal provided that it is waiting for a command. Then RUN module GA, ignoring the printout until the question appears. Answer it with a Land proceed to paragraph 13-3. This process may be repeated each time the UPDATE file is reset in the run in the printing terminal using the REST command as described above.

- 13-2-3 No Tektronix 4014 terminal available. Plots are not possible.
- 13-3 DISPLAY OPTIONS. After the user responds to the first question with a 1, the screen is erased and the following is written:
- NOTE --- A BELL WILL RING AT SELECTED TIMES
 TO ALLOW YOU TO MAKE A HARDCOPY IF
 YOU SO DESIRE. TO RESUME EXECUTION
 SIMPLY ENTER A CARRIAGE RETURN
- ENTER 1 TO PLOT INPUT DATA
 - 1 TO PLOT FORCES AND MOMENTS
 - * TO TERMINATE GRAPHICS

?

13-4 INPUT DATA. Responding to the above question with a 1 starts the input plotting portion of the code. The active load cases will be printed. The user must then enter the number of the load case he wants plotted:*

ACTIVE LOAD CASES

1
2
ENTER DESIRED ACTIVE LOAD CASE
OR AN * TO RETURN
2

13-4-1 If the user responds with a load case not available, the following message is written:

LOAD CASE SELECTION NOT ACTIVE

The load case question is then repeated. If the user enters an *, the input graphics portion of the code is terminated.

13-4-2 If the user responds with a load case number that has been processed, the screen is erased and the following pictures are output:

^{*} NOTE: If there is only one load case, the question will be skipped.

a. Earth and water data and resulting pressures:

PH1 (90.00) - 75.000 PSF PH1 (90.00) - 75.000 PSF PH2 (92.00) - 75.000 PSF PH3 (92.00) - 75.000 PSF PH3 (92.00) - 75.000 PSF PH3 (92.00)

b. Surcharges and direct loads. If any loads have been applied to the structure or the top soil layer, the following graphs are output:

13-4-3 The user is then given the opportunity to plot the input for another load case:

```
ENTER 1 TO PLOT ANOTHER LOAD CASE Ø TO CONTINUE?
```

Responding with a 1 returns the user to the question in paragraph 13-4. A response of 0 terminates the input plotting section of the code and returns the user to the question in paragraph 13-3.

13-5 COMPUTED MEMBER FORCES AND MOMENTS

13-5-1 If the user responds with a 2 to the question in paragraph 13-3, the output portion of TWDA is invoked. The available load case numbers are output and the user is given the opportunity to select a load case to be processed:*

```
ACTIVE LOAD CASES

1
2
ENTER DESIRED ACTIVE LOAD CASE
OR AN * TO RETURN
?
```

If the user selects a load case other than the ones output, the following is output:

LOAD CASE SELECTION NOT ACTIVE

The load case question is then repeated. If the user enters an \ast , the output graphics portion of the code is terminated.

13-5-2 Once a correct load case has been selected, the user must then choose which member of the wall he wants output displayed for:

```
ENTER MEMBER NUMBER
STEM --- 1
TOE --- 2
KEY --- 3
HEEL --- 4
* --- RETURN
?
```

^{*} NOTE: If there is only one load case, the question will be skipped.

If the user responds with any number other than $1 \le n \le 4$, the following is output and the user is given another chance to input a member number:

THE 'TOE' IS NOT DEFINED FOR THIS GEOMETRY

The user is then given the opportunity to select another member or return:

ENTER 1 TO PLOT ANOTHER MEMBER Ø TO CONTINUE?

A response of 1 returns the user to the question in paragraph 13-5-2. A response of 0 returns the user to the load case selection question in paragraph 13-5-1. Any other response repeats the question. The user must enter either 0 or 1.

13-5-3 If the selection of a member (paragraph 13-5-2) is successful, the screen is erased and the plot selection is displayed to the user:

ENTER PLOT SELECTION
TYPE 1 --- AXIAL FORCE
2 --- SHEAR FORCE
3 --- MOMENT

4 --- ALL PLOTS

* --- RETURN

?

a. A response of 1 gives the user a plot of axial force versus elevation for the member selected. An example of this is as follows:

b. A response of 2 gives the user a plot of shear force versus elevation for the member selected. An example of this plot is below:

c. A response of 3 allows the user to display moment versus elevation for the member selected. An example of this is as follows:

If the user responds with 4, all of the preceding plots will be displayed sequentially with a pause between each one.

13-5-4 If the user responds with an *, the member selection portion of the output graphics routine is again invoked:

ENTER 1 TO PLOT ANOTHER MEMBER Ø TO CONTINUE

Are sponse of 1 allows the user to select another member for plotting (paragraph 13-5-2). A response of 0 returns the user to the load case level of selection.

ENTER 1 TO PLOT ANOTHER LOAD CASE Ø TO CONTINUE

A response of 1 allows the user to select another load case to be displayed (paragraph 13-5-1). A response of 0 returns the user to inputoutput selection (paragraph 13-3).

13-6 TERMINATION. Referring to the question in paragraph 13-3, a response of an * terminates the graphics portion of TWDA.

14-1 EXAMPLE A: ANALYSIS OF A COMPLEX RETAINING WALL:

Extreme Operating Condition

CASE III STRUCTURE Complete, backfill in place, callector system clagged, water in Lacefill to cler. 84.5, backfill on passine side submerged, surcharge loads over too and heel.

Rendering seed = 3.89 E, is out in members

STARTING SECUENCE DATA, paragraph 2-5-2:

- * INIT = Start of fresh NA
- 1 = 1 lord czs.
- A R = Retsing will definit value wanted:

list	variable	page		ault values
name	name	number	flood wall	retaining wall
SEEP	KRACK	3-8	1 (yes)	2 (no)
SLID	NSLIDE	3-9	2	1
	FSMIN	3-9	1.5	2.0
SOLP	NPPD	3-15	1(🛮)	3(4)

THH = hydrovice structure detruit values wanted - See paragraphs 7.4,2 (1) and 7.12.

ANALYSIS OF COMPLEX RET IVALL

Use date list COSE to designate the ONE last case es case no. 3, to match the problem description:

* CASE 1 3

BACKFILL SOILS PROPERTIES DATA, por 12-3-2

2. Soils Over Loe - Data lit SPT7 is needed because the properties are different from those in the subgrade.

1/st LC PHIT COHT GAMAST NOME & CAST YS POF SPTT 0 30.0 0.0 120.0

b. The soil of the old of the too is the some is the soil over the too, so does his SPT6 is iscot perded.

C. Soil Over heel - Data Fist SPHI is need because the properties are different from those in the subgride. PHII COHI GAMASI PERAL DELTAI REAL HIMON 115+ nome K, SPHI 30,0 0,0 120,0 \boldsymbol{C} 0.0 with all of these being Only one layer, so dats C or defour value this last part of the list my be truncoted. THE not Used. BACKFILL FINISHED SOIL SURFACE DATA por 12-3-3 a. Overtoe 115+ ESTW 557 nome 12 X 5. Overheel: (Colomb methol) 115+ 46 name 55#6 87.29 0 EXISTING SOIL PROPERTIES, POID 12-3-4 Data list SPE3 15 Kywal. with only one lager of Subgrade suil, data lits SPET and SPES am not pridel. Since 110 allowing bearing pressure are specified, omit inst part of the list omit ABFSTN PHISI BOHS? CUHZ GANES DHII 115+ DB P3BN \$ stills 18 PJ 700 18.0 18.0 SPE3 EL853 EXISTING SOIL SURFACE DATA, pr. 12-3-5 Data the Sile is not needed for an antioni proces.

while it and so used its whom are not somether.

FOUNDATION DESIGN PARAMETERS, PORD. 12-3-6

With a pure retaining wall, all of the retaining wall default values and procedures are acceptable. 50, none of these lists DR Decdel:

ONEA, RRO, SLID, SOLP

SURCHARGES AND PIRECT LOADS pm 12-3-7

Vertical forces on bockfill are in data list SCEV: PV4 SY PV3 PVZ 46 43/62 46/44 nome 4 PVS DVS not not needed so pri. # A SCEV 3 400.0 2.0 800.0 4.0 400.0 7.0

Vertual area loads on backfill are in list school

list D~7 46 * SCWV 600,0 3.0 with all value = C the last par of this to

SEEPAGE AND BOIL CONTROL, prin 12-3-8

2. Water levels and seepage calculation control

LC ELINT ELINA HGSW ISLL ISFT KILACK D=0.0 D=1 D=1 84.5

D no sine * SEEP 3 77.0 with all values a defaut # this is returned to the is not never the state of the is not never the state of th

S. Boll inter contone not specified so est usel

= but could rise seen incheed as "D" a 6 21 2 nones, m

WALL GEOMETRY, pro 12-3-9 Colculated from 8W-TW2-TST 115+ name 87.5 A WLA 135 115+ 8WZ with allowable bearing By BWI Slope prisons not to be colculated, swift in 2 nome 11.0 WLAB 12.0 0,0 10,0 are immorcially but thog most not be equal and BW most be 5w1 = 8w = 8w2 /ist TSTB HSTPH HSTPB ナシナブ 758 HSBPB 10/64 لموسمر 17/5+ nami 10/52 12.0 < * WLAS 0,0 18.0 0.0 0,0 Cheek TSTT for complete with TITENS deform limitation: (paragol 3-6-2 6(2)): ETS -8TEL = 87.5-12.5 = 15.0 Lehi+= 12 10 04 with defaut for TMENS STSTT, list LLDS is nut needed BJEI TOEAT TSZ TWI TSI hore 72.5 18.0 100.0 0.0 with no keep list wick is not needed. HEELTZ HEELW HEELT! 18.0 LUCKH 24.0

ADD'L DATA FOR STRUCTURE 1. 1ALTIS on 12-3-13

All so the defect values of date l'as C. D. C. n. p. Co. R.
are according so the lists are not pervise.

Reinforing Steel por 12-3-11 5+ em = LN ASTLEH (LOGLN) 1,5+ 400 ASTLST(LOC) 17 219 6 5765 0.89 0,89 toe = LOC LNA ASTLBT (LOC, LNB) LNB ASTLBB (LOC, LNB) list 0,89 5TLB 0,89 Cend) heel: LOC >+ OUTW OND: BW+1.9999 = 11+1.9999 = 12,9999 use Luc = 12 @ end Tist none LOC LAA ASTERT (LOC, LAA) LNB ASTERD (LOC, LNB) 0.89 # 57LB 12 0,89 Put into dota list form, with line numbers.

HEIST EXOUNTA 11ML 0001 1010 1 1020 K 1030 H ANALYSIS OF COMPLEX RETAINING WALL 1040 NAME 1050 CASE 1 2000 SET7 2000 UPDATE ŧ ARMOUNT IS IM MORE 14 520 12701780 FROGRAM (WDA - - 713 F3 R0 027 T WALL DESIGN/ANALYSTS REL 1 0 AUG 80 CRESPOND WITH 2 FOR ANY HELP) LITTER UPDATE FILE NAME (7 CHAR MAX) HINDONE FOR REPORT FUEL LOTER NAME TO BE USED ON REPORT FILE IDENT CARD, 12 CHAR MAX OLD MALIES LNIER YOUR MACON ACCOUNT NUMBER -ENTER NAME OF COMMAND DATA FILE OR ENTER A CARRELAGE RETURN 11 COMMANUS ARE TO BE ENTERED INTERACTIVELY A PAUA LA PROCESSING DATA FILE MOT ENOUGH VALUES ENTERED IN DATA LIST -TRAILING VALUES SET TO 101 ROT FROMGH VALUES ENTERED IN DATA CIST TRAILING VALUES SET TO $^{\prime}\mathrm{C}^{\prime}$ SEE 3 201 ENDUGH VALUES ENTERED IN DATA LIST SCEV

TRAILING VALUES SET TO 'C'

```
NOT ENOUGH VALUES ENTERED IN DATA LIST - SCWV
TRAILING VALUES SET TO 101
NOT ENOUGH VALUES ENTERED IN DATA LIST - SEEP
TRAILING VALUES SET TO 'C'
1 UPDATE FILE RESET
# DATA FIFE PROCESSING DONE
I RETURN TO INTERACTIVE INFOR
TOMMAND
SERBURG.
HIE RESULTANT RATIO
                            0 3541, FOR LOAD CASE 3
Timal factor of safety against stiding \varepsilon=-1 of, for Load case -3
BY SHEAR PRICTION METHOD
TOTAL CONCRETE VOLUME :
                                  - 35 38 (CU FT / LF), FOR LOAD CASE - 3
THIER 1 TO SEE PLUTS OF THE DATA AND ANALYSES
         (MAN) HART COPY REFORE CARRIAGE RETURN'
(MOTE - DO NOT ENTER 1 IF YOU ARE GOING TO RUN MODULE WIL.)
   OR O TO OMET THE PLOTS
A UPDATE LIFE RESET
I COMMAND DATA PHASE ENTERED
COMMAND
 131 M 140
A REGIN MODULE WA
THIER I TO SEE A TABLE OF X AND Y CURNER COORDINATES
  THE C TO CONTINUE WITHOUT SEFING THE TABLE
TO GET DEFAULT VALUE FOR "TEEM", ANSWER NEXT DUESTION WITH A CARRIAGE RETURN
III H: M IS NOT DELINED, SO YOU MUST
    INTER 0 TO USE LUAU CASES AS - IS
           1 TO ALSO USE EM ACTERNATE SCILLAL LOADINGS
CA CARRIAGE RETURN WILL INSERT THIS DEFAULT
           VALUE OF 1)
2 FOR MORE INFORMATION
           C TO CONTINUE DATA CHECK WITHOUT COMPUTATIONS
    (IK
    OR
           * TO ABORT THE MODICE
DELAULT VALUE OF
                              1 USEB
```

```
# BEGUN STRESS ANALYSIS
ENTER I TO GET THE ANALYSIS RESULTS AT YOUR TERMINAL
   OR R TO PUT THEM IN THE REPORT FILE
  OR B TO PUT THEM BOTH PLACES
LMTER THE LUMB LASE NUMBER YOU WANT ANALYZED.
  BUY A ZERO FOR ALL LOAD CASES IN DATA LIST *CASE*
   OR * TO STOP THE MODULE
*** NUMBERS MUST BE INTEGER *** UNEXPECTED CHARACTER IN *O
                                                                        . ...
TRY AGAIN (OR ? FOR FROMPTING OR * TO ARORT)---
1 BEGIN STEM STRESS ANALYSIS
SILECT TYPE C, S, OR F ANALYSIS FOR STEM (OR 7, N, R, OR *)
VN.
# REGIN TOE STRESS ANALYSIS
SLIFCT TYPE C, S, OR F ANALYSIS FOR TOE (OR ?) N, R, OR *)
  -2 ANALYSIS WITHIN 1-FOOT OF END OF TOE IS MEANINGLESS C---
THE ANALYSIS COMPLETE TO STEM
SELECT TYPE C. S. OR F ANALYSIS FOR TOE (OR ?, N. R. OR *).
UFGIN ANALYSIS AT SELECTED SECTIONS
UND OF THE 1S AT X = -2.000, STEM FACE AT FOINT RETWEEN THE SLOPE PANELS IS AT -0.000
INTER THE X COORDINATE (DIST FROM BASIC WORK POINT)
   OR I) TO RETURN TO THE ANALYSIS TYPE SELECTION
COMIT SIGN OF X)
   OR N. R. OR * FROM TYPE SELECTION
20.0
INTER THE X-COORDINATE (DIST FROM BASIC WORK FOINT)
   OR TO TO RETURN TO THE ANALYSTS TYPE SELECTION
COMIT SIGN OF X)
   OR N. R. OR * FROM TYPE SELECTION
# BEGIN HEEL STRESS ANALYSIS
```

```
SITELL TYPE C. S. OR F ANALYSIS FOR HEEL (OR 7, N. R. OR *)
THEE ANALYSIS COMPLETE TO END
SCIECT TYPE C. S. UR F ANALYSIS FOR HELL (OR 7, N, R, OR *)
 11
# MODULE WAS COMPLETE
■ UPDATE FILE RESET
I COMMANDI-DATA PHASE ENTERED
( (IMAAMI)
11 N(I
ENTER 5 TO SEND REPORT TO ADEC TERMINAL
   OR O TO SAVE IT AS A PERMANENT FILE
   OR 1 TO DETACH (DESTROY) IT--
INTER YOUR AMP CENTER TERMINAL MACON STATION CODE
SNUMB # 7/90A
uour update file for future restart is named \mathsf{EXAUFI}
      - UK (release unneeded files)
<.top
14132129 NN 127 1780
 SOTES TO EXPLAIN SPECIAL PRINTOUT THAT MIGHT BE IN THIS FILE ...
 THE VALUE "=.1234F+31" IS USED TO MENOTE AN UNDEFINED TIEM; THE VALUE "=.1432F+31" MEANS THAT THE DEFAULT VALUE WAS REQUESTED.
 A "MEMIRY FAULT AT ..." MESSAGE PROPABLY MEANS THAT NEFDED DATA IS UNDEFINED.
 FUD OF MOTES.
 COMMAND ENTEREDS
 1111
 ## ALL DATA RESET FOR FRESH START .#
 COMMAND ENTERFOR
 COMMAND FATEREDS
```


14:12:51 ON 12/ 1/80

WALL DECLAPED TO HE A HYDRAULIC RETAINING WALL

COMMAND ENTERED: NAME ANALYSIS OF COMPLEX RETAINING WALL

COMMAND ENTEREDS

COMMAND ENTEREDS SPT7 0 30.0 0.0 120.0

COMMAND ENTERED: SPH1 0 30.0 0.0 120.0

NOT ENDUGH VALUES ENTERED IN DATA LIST - SPH1
TRAILING VALUES SET TO "C"

COMMAND ENTEREDS SST 0 77.0 100.0

COMMAND FUTEREDS SSHC O A7.29 6.0

COMMAND ENTERED: SPF3 1A.0 0.0 120.0 1A.0 0.0

NOT ENDUGH VALUES ENTERED IN DATA LIST - SPESTRATLING VALUES SET TO "C"

COMMAND ENTERED: SCFV 3 400.0 2.0 800.0 4.0 400.0 7.0

NOT ENDING VALUES ENTERED IN DATA LIST . SCFV THATLING VALUES SET TO "C"

COMMAND ENTEREDS SCWV \$ 600.0 \$.0 0.5

NOT ENOUGH VALUES ENTERED IN DATA LIST + SCHV THAILING VALUES SET TO $^{\circ}\text{C}^{\circ}$

COMMAND FRITEREDS SEEP 3 77.0 H4.5

NOT ENDUGH VALUES ENTERED IN DATA LIST . SEFP TRAILING VALUES SET TO "C"

COMMAND ENTEREDS WEA 87.5 2.0 C C

CHMMANN ENTENENT HAR OLD GLO C

COMMAND ENTERFO: WLAT 72.5 18.0 100.0 0.0 100.0

COMMAND ENTERED!

1

COMMAND ENTEREDS STUD 1 0.89

COMMAND ENTEREDS STER 1 1 C.HP 1 0.49

CHAMMOND ENTENEDS 1 D'86 1 D'86

CHMMAND ENTEREDS

W OPPATE FILE RESET

COMMAND ENTEREDS

COMMAND ENTEREDS

ANALYSIS OF COMPLEX RETAINING WALL 14:36:51 ON 127 1780

REGIN MASTE STABILITY DATA CHECK

DEFAULT	VALUE	DF	62.50000	USED	FOR	6 4 × 4 ×	ELDAD	CASE	3)
DEFAULT	VALLE	()F	150,0000	USED	FOR	GAMAC	(LOAD	CASE	3)
PEFAULT	V A L (□€	ΩF	1,000000	USED	FOR	F 5 5	CLOAD	CASE	3)
DEFAULT	V & L t ⋅ E	ΝF	2.00000	USED	FOR	E X №	(LOAD	CASE	3)
DEFAULT	VALTE	CF	0.	usen	FOR	UCEXS3	(LOAD	CASE	3)
PEFAULT	VALIFE	OF	0.	USED	FOR	UCEXS4	(LOAD	CASE	3)
DEFAULT	VALLIF	OF	0.	USED	FOR	UCF XS5	(LOAD	CASE	3)
PEFAULT	VALUE	() F	0.	usen	FOR	UCHFSI	(L OAD	CASE	3)
PEFAULT	VALIF	{1 F	٠.	usen	FOR	OCBF S 2	(L040	CASE	31
DEFAULT	VALTE	n#	o.,	USED	FOR	UCRFFZ	(L 040	CASE	3)
DEFAULT	VALUE	115	o.	USED	FOR	UCHEST	CLOAD	CASE	3)
DEFAULT	v & L _L · E	n F	·.	usen	FOR	UCRES6	(LOAD	CASE	31
DEFAULT	VALIF	()F	1.000000	HSED	FOR	UC S	CLOAD	CASE	31
DEFAULT	VALIF	O#	1,000000	USED	FOR	UC#H	(LOAD	CASE	3)
DEFAULT	VALUE	OF	1.000000	USED	FOR	UC WK	CLOAD	CASE	3)
PEFAULT	VALIF	OF	2	HSED	FOR	IFWOC	(L nan	C & S E	3)
DEFAULT	VALUE	C.E	1	USER	FOR	1 F S O M	(L DAD	CASE	3)

DEFAULT	VALCE	194	1.000000	ESED FOR	CtmT	CLUAD CASE	31
DEFAULT	VALLE	176	0,1131133	LSED FOR	88*17	(1 OAD CASE	31
SFALLT	VALLE	-> F	2	DEFT FOR		CLOAD CASE	31
MERANIT	V 41 + F	16	2.000000	LSED FOR	FSMIN	TOTAL CASE	4.1
ne = 1 .	VALIF	16	1	LEFO FOR	NSUIDE	CHURAN CASE	33
NEFAILT	val t	16	С.	isto tub	HGSK	CLOAD CASE	3.1
OFFA-LT	VAC ()	1,	100.000	USEC FOR	H\$\$\$H	HEAD CASE	3.7
ne + 4: 1 1	VAL E	Ł	· •	USED FOR	n1554	CLUAD CASE	•)

ANALYSTS OF COMPLEX METATATION HALL THE STATE OF THE STAT

* HEGEN MARY 2 OF STABLISTS DATA CHECK

ANALYSIS OF COMPLEX RETAINING MALL THEORY ON 121 AND

HELLA MODILE FA

VARIABLE HEREN CALCULATED TO CROSE COORDINATES, HEREN # 0,461538 INVET.

COORDINATES OF CORNERS OF WALL CHOSS-SECTION

x-coordinates are a toward HEEL FROM HASIC WORKING POINT (HMP) v-coordinates are elevations

- T	τ.	Y	DESCRIPTION OF PUINT
- •			*****************************
•	n,	87,5000	HANTE WORKING POINT . THE STOR OF STEM TOP
2	٠.	74 0000	BOTTOM OF THE STOE FACE OF STEM (AT TST)
•	ο,	74,0000	HETHERN THE AND THE, ON TOP FACE OF THE
44	->,000a	74 1100	THE OF THEHT & AT HITTER FAD OF THE
4	-2.0000	72,5000	TOF END OF BASE # AT RTES
10	9.0000	72.5000	MEEL END OF HASE
1.1	0.000	74,0000	TOP OF HEELTS IN TOP OF DITER END OF HEEL
9.2	1,5000	14,5000	MOTTOM OF HEEL-SIDE FACE OF STEM
1.3	1.0000	87 5000	HOTTOM OF HEEL STOP TOP PANEL OF STEM
1 4	1.0000	87,5000	TOP OF HEEL-SIDE FACE OF STEM

ANALYSIS OF COMPLEX RETAINING HALL 14:36:55 ON 127 1/80

HEGIN DATA CHECK FOR ACTIVE EARTH PRESSURES COMPUTATION

DEFAULT VALUE OF 0. USED FOR DELTATILED (LOAD CASE 3)

COULOMB'S CHEFFICIENTS OF ACTIVE EARTH PRESSURES FOR:

BACKFILL LAYER KA VALUE
1 0.3711
2 0.3711

HORIZONTAL ACTIVE EARTH PRESSURES FOR LOAD CASE 3 FOR CLASSIC (COULOMB) ANALYSIS IN SA (END OF MEEL)

DUTPHT OF ARRAYS H, EH, AND YH IN MODULE SA FOR CLASSIC ANALYSIS.

ELEVATION	INCHEMENTAL HORIZONTAL STATIC FORCE	INCREMENTAL MORIZONTAL EARTHOUAKE FORCE
(FT)	(LRS/FT)	(LBS/FT)
,		
88.790	7.4212	o.
87.790	44,527	0
86.79n	89.055	0.
85.790	133,5A	0.
84.790	176.73	0.
A3.770	206.0A	0.
82.790	227.51	0
81.790	248.84	0
80.790	270.1A	0,
79.790	291,51	n.
78.790	312,85	Ĉ.
77.790	334,19	0
76.790	355,52	n.
75.790	376.8A	n .
74.790	398.19	n .
73.790	419.53	n.
72.790	281,10	0.
72.500	64.524	•

FOR THE AROVE LOAD CASE THE RESULTANT FORCES ARE:

RESULTANT HORIZONTAL STATIC ACTIVE FORCE = 4238,20 LHSZHURIZ FT ACTING AT ELEVATION 78.49

REQUITANT HORIZONTAL ACTIVE FORCE (IN EXCESS OF STATICY DUE TO FARTHQUAKE # 0. LRS/HORIZ FT ACTING AT ELEVATION 0.

THE FOULDWING TABLE INCLUDES HALL AND SOIL+MATER MASS ABOVE MASE, AND THE FORCES ACTING ON IT, EXCEPT THAT MORIZONTAL SEPACE AND REPLIFT ARE NOT INCLUDED MERE. MACTIVE EARTHM INCLUDES THE MAGNUM MATER PHESSURE IF A CHACK IS ASSUMED IN THE FARTH COVER OVER THE END OF THE HEEL.

	LOAD CAS	4 3	
	VERTICAL FORCE	HORTZONTAL FORCE	MOMENT
	LE/SLTCE	LHISLICE	LH-FT/SLICE
~ 4 L L	5306.25	0.	22028.13
ACTIVE FARTH	٥.	05.4554	-25401.20
501L+A1FR	13631.94	0.	93749.52
SURTHARGES	1593,12	n .	8624.35
DIRECT LOADS	r •	0.	0
☆ J № つ	^•	٠,	0.
EARTHQUAKE	0.	0.	0
T	20531.31	4234.20	99240.80

ANALYSIS OF COMPLEX PETATNING WALL 14:37:19 ON 127 1780

REGIN THE OVERTURNING COMPUTATION

.

LOAD CASE 3

DEFAULT VALUE OF 1 USED FOR ISFT(LC) (LOAD CASE 3)

DEFAULT VALUE OF 3 USED FOR NPPD(LC) (LOAD CASE 3)

RESIDETANT IS WITHIN THE KERN

CREEP PATH DESCRIPTION FOR LOAD CASE 3

TSTS. . THETOTHE TO PRACTE A

```
3
> VALUE OF KPPD(LC)
                      FOUND E
                                              IN SIR CHEKIT (LOAD CASE 3)
                                               IN SIR CHEERT (LOAD CASE
> VALUE OF ADMSS
                      FI)HNO =
                                                                           5)
> VALUE OF PHIST
                      FORIND =
                                  18,00000
                                               IN SUR CHERRY (LOAD CASE
> VALUE OF ADMS4
                      FOIIND &
                                 ٥.
                                               TH SAR CHERRY (1 DAD CASE
> VALUE OF ADMSS
                                               TH SIR CHERRY (LPAD CASE
                      FOUND E
                                 0.
                                                                           3)
> VALUE OF PHISU
                      FOIINT E
                                 ρ.
                                               IN SUR CHERRY (LOAD CASE
                                                                          51
> VALUE OF DHISS
                      FINISH #
                                 ٥.
                                               IN SIR PHENRY (LOAD CASE 3)
```

```
AT HASP-SOIL INTERFACES CORRESCIENT OF PHICTION =
                                                                  0.32
                                                                 0. (( May as
11.00 (FEET)
  WEIGHTED AVERAGE ANHESTON
                                                                         (( H3/50,F1)
  EFFECTIVE HASE KIDTH
FFFECTIVE LENGTH ALBNG HASE SLOPE
                                                                 11.00 (FEET)
                                                            15562.56 (LBS/5LICE)
5056.58 (LBS/5LICE)
  NORMAL FORCE ACTING ON MASE
                                                       Ξ
  FRICTIONAL FORCE
  FORCE DUE TO ADHESTON TOTAL FORCE ALONG BASE
                                                                 ٥.
                                                                        (LBS/SLICE)
                                                       # 5056.58 (LBS/SLICE)
# 5056.58 (LBS/SLICE)
  HORIZONTAL COMPONENT OF TOTAL FORCE
```

PASSIVE EARTH PRESSURES FOR LCAD CASE 3

```
FLEVATION OF TOP OF SOIL # 77,020 (FT)

PPFSSURE AT TOP OF SOIL # 0, (LHS/SO,FT)

FLEVATION OF LOWEST POINT ON WALL # 72,500 (FT)

PHFSSURE AT LOWEST POINT ON WALL # 729,62 (LHS/SO,FT)

PASSIVE EARTH FORCE # 1648,9 (LHS/SOLICE)

PASSIVE FAPTH MOMENT # 2484,4 (FT-188/SLICE)
```

```
OTSTANCE FROM THE TOE TO THE RESULTANT = 3.90 (FT)
VERTICAL FORCE DUE TO UPLIET PRESSURE ON BASE = 4968.75 (LBS/SLICE)
HOHT/ONTAL FORCE DUE TO HYDROSTATIC PRESSURES = 2467.33 (LBS/SLICE)
MOMENT DUE TO UPLIET AND HYDROSTATIC PRESSURES = 41101.56 (FT-LBS/SLICE)
```

THE RESULTANT RATIO # 0.3541, FOR LOAD CASE 3

ANALYSIS OF COMPLEX RETAINING WALL 14:37:20 ON 127 1780

BEGIN SLIPING COMPUTATION

FINAL FACTOR OF SAFETY AGAINST SLIDING # 1.01, FOR LOAD CASE 3 RV SHEAR FRICTION METHOD

SUM OF DRIVING FORCES # 6705,529 (LBS/SLICE)
SUM OF RESISTING FORCES # 6802,835 (LBS/SLICE)

PASSIVE FARTH FORCE = 1745.75 (LBS/SLICE)
ACTIVE FARTH FORCE = 4238.20 (LBS/SLICE)
HPLIFT FORCE = 4968.75 (LBS/SLICE)
SUMMATION OF HORIZONTAL WATER FORCES = 2467.33 (LBS/SLICE)

FAILURE PATH COURDINATES UNDER THE NEUTRAL BLOCK

ANALYSTS OF COMPLEX RETAINING WALL 14:37:21 ON 127 1780

* HEGIN ALLOWABLE REARING CAPACITY COMPUTATIONS

ELASS SET TO 10 FEFT RELOW LOWEST POINT ON BASE

ALLOWARDE HEARING PRESSURES WILL NOT HE COMPARED. TO THE ACTUAL HEARING PRESSURES HECAUSE THE ALLOWABLES WERE NOT DEFINED.

FUR LOAD CASE 3.

FOR THE BASE COORDINATES X= =2.00 Y= 72.50, THE ABSOLUTE VALUE OF ETHE ACTUAL BEARING PRESSURE = 2652.98 (LBS/SQ.FT)

FOR THE HASE COORDINATES XM 9.00 YM 77.50, THE ARSOLUTE VALUE OF: THE ACTUAL REARING PRESSURE # 176.58 (LBS/SQ.FT)

ANALYSIS OF COMPLEX RETAINING WALL 14:57:21 ON 12/ 1/80

HEGIN COST ANALYSTS

	ST K VOLUME OF	EXCAVATED MATERIAL	
Snit LAYER	VOLIME	UNIT COST	TOTAL CUST
	(CH.FT/L.FT)	(DOLLARS/CU.FT)	(DOLLAHS/L.FT)
3	0.	0.	0.
4	Ο.	0.	0 •
5	n .	ο.	0.

COST & VOLUME OF HACKFILL MATERIAL.

SOIL LAYER	VOLUME	UNIT COST (DOLLARS/CU.FT)	TOTAL CUST (DOLLARS/L.FT)
1	0.	n.	0.
5	0.	0.	0.
FILTER ZONE	0.	0	0.
7	0	0 .	0.
b	n •	0 .	ο.

	COST & VOLU	ME OF CONCRETE	
SECTION	VAL HAVE	UNIT COST	TUTAL CUST
	(CU_FT/L_FT)	(DOLLARS/CU.FT)	(DOLLARS/L.FT)
STEM	16.63	1.00	16,63
HASE	18.75	1,00	18.75
L F U	• • •	1 00	^ ~

TOTAL CONCRETE VOLUME # 35.3H (CIL FT / LF), FOR LOAD CASE 'S

THE COMPUTED CREEP RATIO FOR A TIP FLEV. OF 72.50 IS 3.1898

[#] HEGIN HOIL CONTROL CALCULATIONS FOR LOAD CASE 3

ANALYSIS OF COMPLEX RETAINING WALL 14:57:23 ON 12/ 1/HO

* REGIN DATA CHECK FOR ACTIVE FARTH PRESSURES COMPUTATION

CONTOUR'S COEFFICIENTS OF ACTIVE FARTH PRESSURES FOR:

HACKETT LAYER KA VALUE

1 0,3886

HORIZONTAL ACTIVE EARTH PRESSURES FOR LOAD CASE 3 FOR CLASSIC(COULDMR) ANALYSIS IN SP (FACE OF STEM)

DETPUT OF ARRAYS HS, FHS, AND YVS IN MODULE SP FOR CLASSIC ANALYSIS.

FLFVATTON	INCREMENTAL HORIZONTAL STATIC FORCE	INCREMENTAL HORIZONTAL EARTHOLIANE FORCE
(FT)	(LHS/FT)	(LBS/FT)
87.457	18.227	o <u>.</u>
P4.057	105,75	۸ 🕻
NS. 457	192,51	n .
A4.057	544 94	n .
A3.457	272,42	o <u>.</u>
A2.457	242.24	ດີ
R1 . US7	289 18	n <u>,</u>
An.457	296 R5	n [
79,457	<u></u>	n _
78.457	51H.57	0.
77.457	332,61	n.
74.457	348,3h	n,
74.457	357,21	n <u>.</u>
74,500	180.20	n.

FOR THE AMOVE LOAD CASE THE RESULTANT FORCES ARE:

RESULTANT HORIZONTAL STATIC ACTIVE FORCE = 3550.87 LHS/HURIZ FT ACTING AT ELEVATION 79.95

WE SHE TALL HURST COULT ACTIVE FORCE (THE EXCESS OF STATIC) Out the Farthquare \pm 0. They horized active at elevation - 0.

FXIT ™NOULE FA

HPINATE FTLE HESET

COMMAND ENTEREDS

ANALYSIS OF COMPLEX RETAINING WALL 14:39:41 ON 127 1780

A AFGIN MODILE WA

DEFAULT VALUE OF USER FOR HASER (I DAD CASE 3) HISEN FOR KELAG NEFAULT VALUE OF n (LOAD CASE 3) DEFAULT VALUE OF USED FOR DKEY (LOAD CASE 3) 0. MEELH CALCULATED TO RE 7,5000 315 CAUCHLATED TO BE 0.18182

SLOPE OF TOP OF HEEL SLAR = 15.00 H & 1 V (100,011 & LEVEL)

COORDINATES OF CORNERS OF WALL CROSS-SECTION

x=COORDINATES ARE + TOWARD HEEL FROM BASIC WORKING POINT (BMP) Y=COORDINATES ARE ELEVATIONS

PT.	x	Y	DESCRIPTION OF POINT
	,,,,,,,		
1	0.	87,5000	HASIC WORKING POINT & TOE-SIDE OF STEM TOP
2	0.	74,0000	ROTTUM OF THE SIDE FACE OF STEM (AT TS1)
3	Λ.	74.0000	PETWEEN IST AND ISS, ON TOP FACE OF THE
Ц	-2.0000	74.0000	TOP OF THEMT = AT HUTER END OF THE
5	-2.0000	72.5000	THE END HE RASE # AT RIEL
10	9.0000	72.5000	HEFL END OF BASE
1.1	9.0000	74,0000	TOP OF HEELTS . TOP OF OUTER END OF HEEL
12	1.5000	74.5000	BOTTOM OF HEEL-STOE FACE OF STEM
13	1.0000	87.5000	HOTTOM OF HEEL+SIDE TOP PANEL OF STEM
14	1.0000	A7.5000	TOP OF HEEL-SIDE FACE OF STEM
15	A.5000	72.5000	ROTTUM OF CUTOFF WALL HADER KEY

with mask radius ("maskr", 0.0 for rectangular) = 0. FEET, the end of mask unit width = 1.0000 ft. and meet end of mask unit width = 1.0000 ft. (Rasic working point is 1.0 ft. width.

WALL DATA LISTS:

w L A	E 1 5	147	918	HFF1 W
	87.50000	5.000000	0.1818187	7.500000
≈(≜9	Fi m	не		RASER (LISTENLAR)
	11.00000	0.		n •
ml AH	HFF(12	HEFT	HEFLT1	
	18,00000	7.500000	24.00000	

HEAR KELAG DEFY HKTF WKFY ο, 100,0000 "LAS TSTI TSR TSTH HSTPH 12,00000 14,00000 0. HSRPH 0.4615585 HTF1 TOFHT 152 151 0. 72.50000 18,00000 100,0000 100.0000 ---- TMINH TMINS

LOWEST CONCRETE = 72.50 FT., AT HEEL END OF BASE COMPARED WITH THE PREVIOUS LOW OF 72.500000 FT.

----- PHESSURE DATA VERIFICATION FOR LOAD CASE 3 -----

FH TOP CALCILATED TO BE 84.500 FOR LOAD CASE 3

-0.1234000E 31 -0.1234000E 31

> NPPO IS 3

----- END OF PRESSURE DATA VERIFICATION ------DEFAULT VALUE OF 3000,000 USED FOR FPCON (LOAD CASE 3) DEFAULT VALUE OF 0.2900000E OR HISED FOR ESTL IL DAD CASE DEFAULT VALUE OF 9,190000 LISEN FOR MATION (LOAD CASE DEFAULT VALUE OF 0.3500000 HISED FOR RATIOF TUNAD CASE 3) DEFAULT VALUE OF USED FOR FSTLMX CLOAD CASE 3) 90000.00 DEFAULT VALUE OF ດ USED FOR IFOR CLOAD CASE 3) PERABLE VALUE OF 3.500000 HISEL FOR COVHS (I DAD CASE DEFAMIT VALUE OF 3.500000 HISED FOR COVIS ILDAD CASE DEFAULT VALUE OF 1.500000 COVER USED FOR (LOAD CASE 3) DEFAULT VALUE OF COVBB 4,500000 USED FOR CLOAD CASE 3) MERAULT VALUE OF 2.370000 USED FOR SPAHL TI DAD CASE 3) COMMINED PASSIVE PRESSURE VALUE DE -729.6231 USED FOR LOAD CASE 4

AVALYSTS OF COMPLEX RETAINING WALL 14:40:444 ON 12/ 1/80

HEGIN STRESS AMALYSTS

ANALYSIS OF COMPLEY RETAINING WALL 14:50:43 ON 127 1780

M HEGIN STEM STRESS ANALYSIS

```
ANALYSTS OF COMPLEX RETAINING WALL
14:51:27 ON 12/ 1/HO

# REGIV TOE STRESS ANALYSTS
#
SHEAR AT A DISTANCE D FROM THE STETS
--- ANALYSTS WITHIN 1-FOOT OF END OF TOE IS MEANINGLESS <---
```

MOMENT AT THE STEM (POINT 2) --

		PERTIES AT X					
SIGN	winin, in.	OVERALL E					J
•	12.00	18.00 18.00					
L D A D C A S F	N (COMP=+) LB / SLICE	AT X = =0,001 M LR=FT/SLIČE	F.C PST	FS PST	٦ξ) (+ M ≡	E TENSIU	N IN TOP)
	915.	=3891. PAD CASE 3 AN =3936.	188. TALYSTS FOR	3623. R VERT, LOADS	UNTA:		

SHEAR AND MOMENT AT X = 0.

				2.000 FEET FRO		
SIGN	MIDTH, IN.	DEPTH IN. DE	PTH, IN.	ARFA, SO IN	FACE K	J
••••	******					
•	12.00	18,00	14.50	0,69	TOP 0.263	0.912
•	12.00	18,00	13,50	0 ୍ଟିବ	HOTT 0.271	0.910
9	HEAR ANALYSTS	SATX = 0.	000,51	FROM END OF THE	(+ V = END	DOWN)
LUVU	V	N (COMP +)	M	UNIT SHEAR	ALLOWABLE	AC1318=77
CASE	LR / SLICE	IR / SLICE	LB-FT/SLIC	E STRESS PST	HAIT STRESS	PROVISION
	•••••					
3	-3898 O	912.84	- 5037.1	24,062	60.402	H.7.4.5
	ALTERNATE LUA	AD CASE 3 ANA	LYSTS FOR	VERT. LOADS ONL	. 41	
3	-3RQH_O	٥.	-3742.5	24,062	61.914	B.7.4.4 B
F [E x 1)	HE ANALYSTS A	AT X = n	1 2 000 FR	OM END OF THEY	(+ M = TENSTO	IN IN TOPS
		м "				
CASE	LA / SLICE	LH-FT/SLICE	PST P	51		
• • • •	******		• • • • • • • • • • • • • • • • • • • •			
5		- 5757.				
				VERT. LUBUS CAL	Y 1	
5	n •	=39A5.	177. 43	73.		

```
ANALYSIS OF COMPLEX RETAINING WALL
            14:54: 6 04 12/ 1/80
# REGIN HEEL STRESS ANALYSIS
SHEAR AND MOMENT AT THE STEMBE
---- SECTION PROPERTIES AT X 3 1,501 (7,499 FEET FROM END OF MEEL) ----
MOM. COMP. FACE OVERALL EFFECTIVE REINFORCING TENSION
SIGN WINTH, IN. DEPTH IN. DEPTH. IN. AREA, SO IN FACE K J
                                                                        TOP 0.227 0.924
0.232 0.923
----
        ***---
                        -----
                                                     .....
                                          20,50
19,50
                                                            0.89
           15.00
                          24.00
            12.00
                          24.00
                                                            0.89
--- SHEAR ANALYSIS AT X ± 1.501 ( 7.499 FROM END OF HEEL) ( V X END DOWN) ---
LOAD V N (COMP +) M UNIT SHEAR ALLOHABLE ACI318-77
CASE LR / SLICE LR / SLICE LR-FT/SLICE STRESS PSI UNIT STRESS PROVISION
3 3556 A 679.03 20858 14.459 60.335 B.7.4.5
       ALTERNATE LOAD CASE 3 ANALYSIS MITHOUT PASSIVE (MAX +M AT STEM) 1 3554.A 1176.5 21355. 14,459 60.397 8.7.4.5
      56.119 8.7.4.4 A
FLEXURE ANALYSIS AT X = 1,501 ( 7,499 FROM END OF HEEL) (+M = TENSION IN TOP)
LOAD N (COMPR+) M Fr FS
LOAD N (COMPR+)
                                           FC FS
PST PST
CASE LR / SLICE LR-FT/SLICE
                                         PST
••••
      679. 20858, URU. 14420. ALTERNATE LOAD CASE 3 ANALYSIS WITHOUT PASSIVE (MAX +M AT STEM);
      1177. 21355. 504. 14466. ALTERNATE LOAD CASE 3 ANALYSTS WITHOUT HORIZ, FFFECTS (MAX WM AT STEM):
                            21225. 4AP. 15102.
```

MODELE WA COMPLETE

UPPATE FILE RESET

COMMAND ENTERED!

14-2 EXAMPLE B: DESIGN OF A COMPLEX FLOODWALL:

^{*}To be calculated by Program Input C in Data File.

Data Preparation.

The data file begins with four lines of data which.

- (1) initiates the data for a new run.
- (2) designates that there will be two load cases.(3) designates the wall as a floodwall.(4) designates the wall as a hydraulic structure.

- 50 INIT
- 60 2 70 F
- 80 H

The fifth data line is optional and it will cause the message "Floodwall Example 3 (Design/Complex Wall)" to be printed in the output.

90 NAME FLOODWALL EXAMPLE 3 (DESIGN/COMPLEX WALL)

The next five data lines describe the wall concrete geometry.

Stem Lists.

WI.D ETS TW2 STR HEELW TSTB TMINB 100 WLD 60 С 0.33 С

LIST WLD

ETS ----- Elevation of top of stem in feet.
TW2 ----- Width of entire toe in feet.
STR ----- Stem ratio.
HEELW ----- Width of heel in feet.

TSTB ----- Stem thickness at base in inches. TMINB ----- Minimum allowable base slab in inches.

WLDS TMINS TSB HSTPH HSTPB HSBPB 110 WLDS 18 0.5 С

LIST WLDS

TMINS ----- Minimum allowable stem thickness in inches. TSB ----- Stem toe-side batter, inches horizontal

per foot vertical.

HSTPH ------ Stem heel side top panel height in feet.

HSTPB ----- Stem heel side top panel batter, inches

horizontal per foot vertical.

HSBPB ----- Stem heel side bottom panel batter, inches horizontal per foot vertical. Base Lists.

WLDB BW1 BW2 BS1 BS2 120 WLDB 25 40 0.167 0.167

LIST WLDB

BW1 ------ Minimum trial value for base width in feet.
BW2 ------ Maximum trial value for base width in feet.
BS1 ----- Minimum trial base bottom slope ratio.
BS1 vertical to 1.0 horizontal, BS1 = 0

for horizontal.

BS2 ----- Maximum trial base bottom slope ratio,
BS2 vertical to 1.0 horizontal.

WLDT BTE11 BTE12 TOEHT TW1 130 WLDT 20 30 D 0

LIST WLDT

BTE11 ----- Lowest trial value of elevation of bottom of toe at end.
BTE12 ----- Highest trial value of elevation of bottom of toe at end.

TOEHT ----- Toe thickness at end in inches. default = TMINB.

WLDK KFLAG BKTF DKEY1 DKEY2 140 WLDK 0 D 5 5

LIST WLDK

BKTF ------ Key toe side face batter, 1.0 horizontal to BKTF vertical, default = 3.0.

DKEY1 ------ Minimum trial value for key length in feet.

DKEY2 ------ Maximum trial value for key length in feet.

The next seven data lines describe the soil geometry and properties. $% \left(1\right) =\left(1\right) \left(1\right$

First describe the original soil before the wall is constructed.

Describe original ground surface and excavation limits.

SSEE EXW ESS HSS5T ELTS5T DTS5T ELTS5W ELTS5H
150 SSEE D D 100 35 0 35 35
0 100

Ļ	Ι	S	Ţ	S	S	Ε	Ξ
_	_	_	_				

EVW	Turner Wildeline of the control of t
F.7M	Extra Width of excavation at each side for
	construction in feet. Default = 2.0.
ESS	Excavation side slope, 1.0 vertical to ESS
	horizontal. Default = 1.0.
HSS5T	Existing ground slope beyond ELTS5T (toe
	side), 1.0 vertical to HSS5T horizontal.
	Level = 100.
ELTS5T	Elevation of existing ground at a distance
	of DTS5T from the basic working line.
DTS5T	
D1001	
*** ******	point to ELTS5T, toward toe in feet.
ELTSSW	Elevation of existing ground directly
	under basic working point.
ELTS5H	Elevation of existing ground at a distance
	of ELTS5H from the basic working point
	toward the heel.
DTS5H	· · · · · · · · · · · · · · · · · · ·
D155H	
	working point to ELTS5H, toward the heel.
HSS5H	Existing ground side slope key and ELTS5H
	(heel side), 1.0 vertical to HSS5H hori-
	zontal, 100.0 if level.

Original Soil Properties.

SPE3	PHIS	COHS	GAMAS3	PHIS3		ABP3TN ABP3BW	ABP3BN ELBS3
160 SPE3	20	600	120	20		2150	515 3
					3150	6150	Ω

LIST SPE3

	Soil angle of internal friction in degrees. Soil cohesive strength, psf. Soil unit weight including water if sub-
PHIS3	merged, psf. Angle of sliding friction between soil and concrete in degrees.
ADHS3	Adhesive strength between soil and concrete psf.
ABP3TN	Allowable gross bearing pressure under a base BW1 feet wide at top of soil zone
ABP3BN	SPE3, psf. Allowable gross bearing pressure under a base BW1 feet wide at elevation ELBS3, psf.
ABP3TW	Allowable gross bearing pressure under a base BW2 feet wide at top of soil zone SPE3, psf.
ABP3BW	Allowable gross bearing pressure under a
ELBS3	base BW2 feet wide at elevation EKBS3, psf. Elevation used as a base for APP3BN and ABP3BW. Must be below all concrete.

	SPE4	ELTS3	PHI	4 COH4	GAMAS4	PHIS4 ABP4BN	ADHS4 ABP4TW	ABP4TN ABP4BW	
170	SPE4	25	15	400	125		400 2150	1500 3150	
	LIST S	PE4							
	PHI4 - COH4 -			Soil ang Soil coh	esive stre t weight :	ernal fri ength, ps	ction in f.	degrees.	
	PHIS4			Angle of	sliding : in degree	friction	between	soil and	
	ADHS4						soil and	concrete.	
	ABP4TN			Allowabl	e gross be	earing pr e at the	essure u	nder a PE4, psi.	
	ABP4BN			Allowable	e gross be	earing pr	essure u		
				Allowable	e gross be	earing pr e at the	essure u	inder a PE4. psf.	
	ABP4BW			Allowabl	e gross be	earing pr	essure u	nder a f SPE4, psf.	
	Descri	be the	final	soil aft	er the wa	ll is con	structed	۱,	
	Final	Soil S	urface						
180	SSHC SSHC		ESHW 35	HS3 100					
	LIST S	SHC							
	LC			Load case number for remainder of items in list. O for all load cases.					
	ESHW -			Elevation of backfill earth cover over the heel where it passes directly underneath the basic working point.					
	HS3			Slope of	backfill	earth co	ver over ntal, Le	the toe vel = 100.0.	
190		LC E		SST 100					
	LIST S	ST							
	LC ESTW -			list. 0 Elevatio	e number for all n of back e it pass	load case fill eart	s. h cover	over the	
	SST			Slope of	c working backfill ical to S	earth co	ver over ntal. Le	the toe. evel = 100.0	

Backfill Soil Over the Heel.

SPH1	LC	PHI1	COH1	GAMAS1	RKA1	DELTA1	RKAEI	HCMIN
200 SPH1	0	20	600	125	С	0	0	0

LIST SPH1

LC	Load case number for remainder of items in
	list. O for all load cases.
PHI1	Angle of internal friction in degrees.
COH1	Cohesive strength in psf.
GAMAS1	Unit weight of soil including weight of
	water if submerged in psf.
RKA1	Active earth pressure coefficient. Will be
	ignored if IFWOC = 1.0.
DELTA1	Wall friction angle for pressures on face
	of stem.
RKAE1	Monobe-Okabe earthquake active pressure factor.
HCMIN	Minimum allowable earth cover over the heel,
	measured vertically in feet. Default value
	follows EM 1110-2-2501.

Backfill Soil Over the Toe.

SPT7 LC PHI7 COH7 GAMAS7 210 SPT7 0 20 600 125

LIST SPT7

LC	Load case number for remainder of items in
	list. O for all load cases.
PHI7	Angle of internal friction in degrees.
COH?	Cohesive strength in psf.
GAMAS7	Unit weight of soil including weight of
	water if submerged in psf.

The next two data lines describe the water elevations and design seepage conditions to be used for the two design loading conditions.

	SEEP	LC	ELWT	ELWH	HGSW	ISLC	ISFT	KRACK
220	SEEP	1	35	60	0	1	1	1
230	SEED	2	3.5	5.7	Λ	1	•	1

LIST SEEP

LC	Load case number for remainder of items in
	list. O for all load cases.
ELWT	Elevation of water over the toe.
ELWH	Elevation of water over the heel.
HGSW	Soils weight change due to hydraulic gradient.

ISLC	1 if each load case is to determine its own
	seepage pressure; 2 if first load case number
	in list CASE is to determine seepage pressure
	for all cases.
ISFT	1 for line of creep calculations as described
	in EM 1110-2-2501. 2 4, see user reference
	manual for description.
KRACK	1 is to have a vertical crack in the earth
	cover over the heel. 2 is to have no crack
	over the heel.

No data lists are needed for concrete design parameters if default values specified in program are to be used. See user reference manual for default values and for lists to input values different from default values.

The next data line is optional and it will update the update file (FWUEX3) after the data is read from the command data file (FWIEX2). This is desirable so that the program may be restarted from the update file.

240 UPDATE

The next data list will return control to the time-share-terminal keyboard after the data is read from the command data file (FWIEX3).

250 KEY

End of data preparation.

```
HITTER WITH THE THUMAR
                                                      E 1 02 90 15.015
 UMOGRAM TRIPA 213 F3 R0 027
                    T MOLE DESERVANALYSIS
                                              Tati 1.0 AUG 80
  SPESSORS WITH PEROPEANY BELOW
 THIER DEDOLED HE MAN (2 CHAR MAX)
   et symptom
F(B)/K_{\rm s}/F(B)/F(F(F))
THEF HAME TO BE USED ON REPORT FILE IDENT CARD, 12 CHAR. MAX. (98.4\,\,\mathrm{COM})^{1/2}
 THILK YOUR MACON ACCOUNT NUMBER
  - 三字架 | | | | | |
THIR NAME OF COMMANDS DATA FILE OR
 THEF A CAPRIAGE RETURN IF COMMANDS ARE TO BE ENTERED INTERACTIVELY
  21.53(0.016)
 PROCESSING DATA FILE ...
  TOUTDAIN, LILL RESET
 compatiti
  3 R L 190 SEC
  1 to GIV notion 1 Fire
  861
 TIT TROOFFOM WAS UNABEL TO DESIGN WALL WITHIN
  8 B B
                                      THE DESIGN LIMITS SPECIFIED
  101
  THE AC ADALYSIS OF THE LAST TRY AT A DESIGN
  ### TOTTHEN THE SPECIFIC ELMITS FOLLOWS:
 ...
 BAC! THE AT HITTONS
                      tiona contract town and contract town contract town contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town and contract town 
                                                                                                                                                          THE BLUE BELLET
                                                                                                                                                                1 (164)
                                                                                                                                                                                                                                             01/1/1/12
                                                                                                                                                                                                                                                                                                                                                                                                    THE SCHOOL FOR
                     1411 10.00
19 10.00
P 0 1.700
1015 10.00
                                                                                                                                                                 20.00 (0.00 ) (1119 ) OF COLON OF FOLLOW (2000) (0.00) with with the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the colon of the c
                                                                                                                                                                                                                                                                                                                     - most while the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the sound of the s
                                                                                                                                                                 75.00 40.00
0.18700 0.18700
                                                                                                                                                                                                                                           G. Oak
                                                                                                                                                                                                                                                                                                                     The 1989 HU BLOOM OGE
                                                                                                                                                                                      5.00
```

```
0.2624% FUR FUAU CASE 1
THE 13 SULTANT RATEO
THE MIGURIANI RATTO \sim 0.3523, FOR LOAD CASE 2
FINAL FACTOR OF SAFETY AGAINST SETDING . 1.84. FOR LOAD CASE 1
DY OFFUNABLE STRENGTH METHOD

1 TASTO TANDELS FANCHES
Final factor of safety against sulding 2.31 \times \text{FOR} \pm 0 \text{AD} case -2
BY ALLOWARD STRUNGTH METHOD
 L CZESERC TANDEL TANDELZES
III ALLOWARD BASE PRESSURE IS LESS THAN THE ACTUAL FOR LOAD CASE 1
FOR THE TASE COORDINATES X =14.94 Y= 20.00. THE ARSOLUTE VALUE OF: THE ALTOMATE TEARING PRESSURE = 3182.63 (LRS/SQ.FT)
THE ACTUAL REARING PRESSURE = 3404.56 (LRS/SQ.FT)
THE ACTUAL REARING LIBESSURE
                                292.50 (CU FT / LE), FOR LOAD CASE I
TOTAL CORER H. VOLUME.
TOTAL COMPRETE VOLUME 292.50 (CU FT / LF), FOR LOAD CASE 2
### WITH UPDATE FILL NOT RESET.
# OPOSTE FILE RESET
4 CHRIGHT DOTA PHASE ENTERED
ារបស់ក្រោស។
COMMITTER
SPORT LD
for GIV MODERN TRE
TOURIGHTON CHARLETY DESIGN SUMMARY
the arminimitem:
                   DEFINITE MAINTE
  TOTAL TOURS
                      1.0001.67
   757041
         934-01
                                 UPTER
                                                       IN SERENT FOR
                      10,00 30.00 1149, OF BUTTON OF FOR FRU
20,00 40,00 1644 UTION
0,1,00 0,00 0,00 164 (FURTH CITY OF THE FRUIT)
```

```
# BEGIN MODULE FA
THE RESULTANT RATIO = 0.3430, FOR LOAD CASE 1
THE RESULTANT RATIO = -
                             0.3880, FOR LOAD CASE 2
FINAL FACTOR OF SAFETY AGAINST SLIDING =
BY ALLOWABLE STRENGTH METHOD
C'-C/FS+2C' TANFHI'=TANFHI/FS
                                               1.50, FOR LOAD CASE 1
FINAL FACTOR OF SAFETY AGAINST SLIDING =
                                                 1.91, FOR LOAD CASE 2
BY ALLOWABLE STRENGTH METHOD
C'=C/FS+2C' TANPHI'=TAN
                   TANPHI'=TANPHI/FS
TOTAL CONCRETE VOLUME =
                                  261.34 (CU FT / LF), FOR LOAD CASE 1
TOTAL CONCRETE VOLUME =
                                  261.34 (CU FT / LF), FOR LOAD CASE 2
ENTER 1 TO SEE PLOTS OF THE DATA AND ANALYSES (MAKE HARD COPY BEFORE CARRIAGE RETURN)
         (NOTE: DO NOT ENTER 1 IF YOU ARE GOING TO RUN MODULE WD.)
   OR O TO OMIT THE PLOTS
# UPDATE FILE RESET
■ COMMAND-DATA PHASE ENTERED
COMMAND
PRUN WO
# BEGIN DATA CHECK FOR MODULE WD
COMPLETE THE TRIAL WALL DESCRIPTION:
TO GET DEFAULT VALUE FOR "IFEM", ANSWER NEXT QUESTION WITH A CARRIAGE RETURN:
111 IFEM IS NOT DEFINED, SO YOU MUST
    ENTER O TO USE LOAD CASES AS-IS
           1 TO ALSO USE EM ALTERNATE SPECIAL LOADINGS
             (A CARRIAGE RETURN WILL INSERT THIS DEFAULT
             VALUE OF 1)
    0R
           ? FOR MORE INFORMATION
    OR
           C TO CONTINUE DATA CHECK WITHOUT COMPUTATIONS
    0k
           * TO ABORT THE MODULE
DEFAULT VALUE OF
                             1 USED.
```

```
ENTER THE LOAD CASE NUMBER YOU WANT TO DESIGN FOR
  OR A ZERO FOR ALL LOAD CASES IN DATA LIST "CASE"
   UR A * TO ABORT THE MODULE
# 14 SIGN SUMMARY
       ETS
                       TW2
                                      STR
                                                     HEELW
WLA
                                   0.3331511
                                                   23.55008
                    14,15892
     60.00000
                                                     BASER (LIST=WLBR)
                       BS
WLAR
       Fr₩
     42.50000
                   0.1670000
                                   HEELT1
WEAH HEELTS
                     HEELW
                                    45.92278
     18.00000
                    23.55008
WLAK KELAG
                       DKEY
                                      WKEY
                                                     BKTF
                    5.000000
                                    18.00000
                                                   28.15253
       0
                       TSB
                                     TSTR
                                                     HSTPH
                                                                    HSTPB
WLAS
       TSII
                   0.5000000
                                    57.49196
                                                   20,18084
                                                                 ٥.
     18,00000
      HSBFB
     1.462572
                      TOEHT
                                     TS2
                                                    TW1
                                                                     TS1
       BTE1
WLAT
                                                                  100.0000
     24.00000
                    18,00000
                                   100.0000
---- THINB
                      TMINS
     18.00000
                    18.00000
  UPDATE FILE RESET
  COMMAND-DATA PHASE ENTERED
COMMAND
PEND.
ENTER 5 TO SEND REPORT TO ADEC TERMINAL
   DR 0 TO SAVE IT AS A PERMANENT FILE
   OR 1 TO DETACH (DESTROY) IT--
ENTER YOUR ADP CENTER TERMINAL MACON STATION CODE
7R0
SNUMB # 3131B
your undate file for future restart is named EXAUPD
      OK (release unneeded files)
```


NOTES TO EXPLAIN SPECIAL PRINTOUT THAT MIGHT BE IN THIS FILE ...

THE VALUE ".. 1234E+31" IS USED TO DENOTE AN UNDEFINED ITEM; THE VALUE ".. 1432E+31" MEANS THAT THE DEFAULT VALUE WAS REQUESTED.

A "MEMORY FAULT AT ..." MESSAGE PROBABLY MEANS THAT NEEDED DATA IS UNDEFINED.

END OF NOTES.

COMMAND ENTEREDS

#- ALL DATA RESET FOR FRESH START -#

COMMAND ENTEREDS

COMMAND ENTEREDS

15: 6123 ON 12/ 2/80

WALL DECLARED TO BE A HYDRAULIC FLOOD WALL

COMMAND ENTEREDS (DESIGN/COMPLEX WALL)

COMMAND ENTEREDS WED 60 C .33 C C 18

COMMAND ENTERED:

COMMAND ENTERED: WLDB 25 40 .167 .167

COMMAND ENTEREDS HLDT 20 30 0 0

COMMAND ENTEREDS WLDK 0 D 5 5

COMMAND ENTERED: 55EE D D 100 35 0 35 35 0 100

COMMAND ENTEREDS SPES 20 600 120 20 600 2150 5150 3150 6150 0

COMMAND ENTERED: SPE4 25 15 400 125 15 400 1500 2500 2150 3150

COMMAND ENTERED: SSHC 0 35 100 COMMAND ENTEREDS 887 0 35 100

COMMAND ENTERED: 3PH1 0 20 600 125 C 0 0 D

COMMAND ENTERED; SPT7 0 20 600 125

COMMAND ENTERED: SEEP 1 35 60 0 1 1 1

COMMAND ENTERED : SEEP 2 35 57 0 1 1 1

COMMAND ENTERED: UPDATE

HPDATE FILE PESET

COMMAND ENTEREDS

COMMAND ENTERED; RUN FO

FLOGOWALL EXAMPLE (PESTGN/COMPLEX WALL) 15: 8:25 ON 12/ 2/80

REGIN HASTE STABILITY DATA CHECK

DEFAULT VALUE	n F	62.50000	USED	FOR	GAMAN	([040	CASE	1)
DEFAULT VALUE	OF	150.0000	HISFO	FOR	GAMAC	(LOAD	CASE	1)
DEFAULT VALUE	OF	1.00000	USED	FOR	E 5 8	(LOAD	CASE	1)
DEFAULT VALUE	() F	2.000000	usen	FOR	Exw	(LOAD	CASE	1)
DEFAULT VALUE	OF	0.	USED	FOR	OCEXS3	(LOAD	CASE	1)
DEFAULT VALUE	() F	0.	USED	FOR	UCEXS4	(LOAD	CASE	1)
DEFAULT VALUE	r) F	0.	USED	FOR	UCEX85	CLOAD	CASE	1)

DEFAULT VALUE OF	0.	USED FOR UCBES!	FLOAD CASE	1)
DEFAULT VALUE OF	n.	USED FOR UCHES2	(LOAD CASE	1)
DEFAMILT VALUE OF	0.	USED FOR UCBEFZ	CI, DAD CASE	1)
DEFAULT VALUE OF	0.	USED FOR UCBEST	CLOAD CASE	1)
DEFAULT VALUE OF	0.	USED FOR UCBES6	CLOAD CASE	1)
DEFAULT VALUE OF	1.000000	USED FOR UCWS	CLOAD CASE	1)
DEFAULT VALUE OF	1.000000	USED FOR UCHB	CLOAD CASE	1)
DEFAULT VALUE OF	1.000000	HSED FOR UCHK	CLOAD CASE	1)
DEFAULT VALUE OF	5	USED FOR IFWOC	(LOAD CASE	1)
DEFAULT VALUE OF	1	USED FOR IFSOM	ILDAD CASE	1)
DEFAULT VALUE OF	1.000000	USED FOR CEMA	(LNAD CASE	1)
NO DEFAULT VALUE	FOR BRMIN	SO SET TO UNDEFINED	ILOAD CASE	13
DEFAULT VALUE OF	1.500000	USED FOR ESMIN	TERAD CASE	1)
DEFAULT VALUE OF	5	USED FOR HISLIDE	CLOAD CASE	1)
DEFAULT VALUE OF	5	USED FOR IFHOC	TENAD CASE	2)
DEFAULT VALUE OF	1	USED FOR IFSOM	(LOAD CASE	5)
DEFAULT VALUE OF	1.000000	USED FOR CEMA	(LOAD CASE	2)
NO DEFAULT VALUE	FOR RRMIN	SO SET TO UNDEFINED	TERAD CASE	21
DEFAULT VALUE OF	1.500000	HSED FOR FSMIN	CLOAD CASE	5)
DEFAULT VALUE OF	5	USED FOR NELIDE	TI DAD CASE	21

FLOODHALL EXAMPLE (DESTGN/COMPLEX WALL) 15: 8:25 ON 12/ 2/80

REGIN MODULE FD

SURR FO, WARNING, VARIABLE ELSPT UNDEFINED.
CREEP RATIO WILL BE CALCULATED WITHOUT SHEET PILE CUTOFF.
SURR FD, WARNING, VARIABLE CRMIN UNDEFINED.
SHEET PILE TIP FLEVATION WILL NOT BE CALCULATED.

###
PROGRAM WAS UNABLE TO DESIGN WALL WITHIN
REMN THER DESIGN ALIMITS SPECIFIED
###
###
###
AN ANALYSIS OF THE LAST TRY AT A DESIGN
###
####
####
WITHIN THE SPECIFIED LIMITS FOLLOWS:

BASE DESCRIPTIONS LOWEST DATA BETWEEN THE LIMITS TTEM NAME VALUE LOWER UPPER ------------BTEL 20.00 25.00 0.16700 30,00 50,00 40,00 H W 85 0.16700 DKEY 5.00 5.00 5.00

DESCRIPTION

ELEV, OF BOTTOM OF TOE END
BASE WIDTH
BASE SLOPE, X VERT. TO 1 HORIZ.

KEY LENGTH BELOW BASE

REGIN MODULE FA

FLOCOWALL EXAMPLE (DESTRINICOMPLEX WALL)
15:21:44 UN 12/ 2/50

BEGIN PART 2 OF STABILITY DATA CHECK

FLOODWALL EXAMPLE (DESIGN/COMPLEX WALL)
15:21148 ON 12/ 2/80

HEGIN MODULE FA

VARIABLE TWO CALCULATED # 13,33 (BW+STR)
VARIABLE HEFLW CALCULATED 19.72 (HW+TW2-TSTB)
VARIABLE HEFLTI UNDEF, NO DEFAULT REQUESTED,
VARIABLE HEFLTI ASSIGNED DEFAULT TO PRECLUDE ABORT,

COORDINATES OF CORNERS OF WALL CROSS-SECTION

x-coordinates are + toward HEEL from Basic working point (BWP) Y-coordinates are elevations

PT.	x	Y	DESCRIPTION OF POINT
	,		
1	0.	60,0000	RASIC WORKING POINT & TOEWSIDE OF STEM TOP
2	-1.6042	21,5000	BOTTOM OF TOE-SIDE FACE OF STEM (AT TS1)
3	-1.6042	21,5000	RETWEEN TSI AND TSZ, ON TOP FACE OF TOE
ш	-14.9375	21,5000	TOP OF TOEHT & AT DUTER END OF TW2
5	=14,9375	20,0000	THE END OF BASE . AT RTE1
6	21.7092	13.8800	TOP OF TOE-SIDE PACE OF KEY
7	23.5625	8.3200	BOTTOM OF TOE SIDE FACE OF KEY
A	25,0625	8.3200	BOTTOM OF HEEL-SIDE FACE OF KEY
9	25.0625	13,3200	TOP OF HEEL-SIDE FACE OF KEY
10	25.0625	13.3200	HEEL END OF BASE
11	25,0625	14.8200	TOP OF HEELTS = TOP OF OUTER END OF HEEL
12	5.3453	20.6128	BOTTOM OF HEEL+SIDE FACE OF STEM
13	1.5000	42,0000	BOTTOM OF HEEL-SIDE TOP PANEL OF STEM
14	1.5000	60,0000	TOP OF HEEL-SIDE FACE OF STEM
15-	1234F 31	8.3200	ROTTOM OF CUTOFF WALL UNDER KEY

MMM NOTE MMM T-WALLS OVER 28.0 FEET HIGH MAY BE UNFCONDMICAL WITH CANTILEVER STEMS.

HORTZONTAL NON-SEEPAGE PRESSURES ARE ZERO

RECAUSE YOUR PRACE VALUE OF 1 CANCELS ACTIVE EARTH

AND BECAUSE PRESSURES #3 AND/OR #4 (DATA LIST SCHM)

ARE UNDEFINED, ZERO, OR MEGATIVE.

THE FOLLOWING TARLE INCLUDES WALL AND SOTL+WATER MASS ABOVE BASE, AND THE FORCES ACTING ON IT, EXCEPT THAT HORIZONTAL SEFPAGE AND UPLIFT ARE NOT INCLUDED HERE. "ACTIVE EARTH" INCLUDES THE W3-WU WATER PRESSURE IF A CHACK IS ASSUMED IN THE FARTH COVER OVER THE END OF THE HEEL.

	Luan CASI	• t	
	7 A 7 F W 4 V	HCRTZONTAL FUHCE	MOMENT
	THIST TOP	LRISLICE	LB=FT/SLICE
- å (<u>L</u>	43874,75	n,	816349,17
ACTION FARTH	٠.	^ •	0.
5 TL + TATER	1 12111.69	r •	2496563,63
S- B(HARGES	٠.	Ð .	ο
DIRECT CARG	^.	٠.	o •
*1.5	^ ·	0.	0.
FARTHY : AMP	٠.	۰.	0.
TOTAL	1459AR.42	0.	3312912.78

- # HONTZONTAL NON-SHEPAGE PRESSURES ARE ZERO
 # HECAUSE YOUR KRACH VALUE OF E CANCELS ACTIVE EARTH
 # AND RECAUSE PRESSURES AS AND/OR HA (DATA LIST SCHM)
 # ARE UNDEFINED, ZERO, OR NEGATIVE.

THE FOLLOWING TABLE INCLUDES HALL AND SOIL+WATER MASS ABOVE BASE, AND THE FORCES ACTING ON IT, EXCEPT THAT HORIZONTAL SEEPAGE AND UPLIFT ARE NOT INCLUDED HERE. "ACTIVE FARTH" INCLUDES THE W3-W4 WATER PRESSURE IF A CRACK IS ASSUMED IN THE FARTH COVER OVER THE END OF THE HEEL.

	LOAD CAS	E 2	
	VERTICAL	HORIZONTAL	MOMENT
	FORCE	FORCE	
	LAISLICE	LB/SLICE	LB-FT/SLICE
» Δ {	43874.73	0.	816349,17
ACTIVE FARTH	n,	0	0.
SOIL+HATER	97695.73	ο.	2371894,06
SURCHARGES	ο.	0.	0.
DIRECT LOADS	0 .	0.	0.
*IND	0.	0.	σ.
EARTHQUAKE	n ,	0.	0.
TOTAL	141570.46	0.	3188243,22

FLOODWALL EXAMPLE (DESIGN/COMPLEX WALL) 15:21:51 ON 12/ 2/80

* REGIN THE INVERTURNING COMPUTATION

LOAD CASE 1

RESULTANT IS OUTSIDE THE KERN ON THE TOE SIDE

EFFECTIVE BASE # 31.49 (FT), COMPDINATES OF ZERO PRESSURE ON THE BASE: XZ # 16.55 AND YZ # 14.74

CREEP PATH DESCRIPTION FOR LOAD CASE 1

X-COUNDINATES	Y=COORDINATES	HYDROSTATIC PRESSURE
25,06	60,00	0.
25.06	8.32	3230,00
25,04	8.32	3230.00
23,56	8.32	3230,00
21,71	13,88	2882,50
16.55	14.74	2828,67
-14.94	50.00	1436.96
•14.94	35,00	0.

OVERTURNING HYDRAULIC GRADIENT # 0.5328

> VALUE OF APPRILE) FOUND # 1 IN S/R CHEKIT (LOAD CASE 1)

PASSIVE FARTH PRESSURES FOR LOAD CASE 1

NPPD	a 1	
FLEVATION OF THE OF SOIL	s 35,149	(FT)
PRESSURE AT TOP OF SOIL	= 0.	(LAS/SO.FT)
ELEVATION AT BOTTOM OF THE	20,000	(FT)
PRESSURE AT BOTTOM OF THE	= -21A2.2	(L95/30,FT)
ELEVATION OF LOWEST POINT ON WALL	# 8.3200	(FT)
PRESSURE AT LOWEST POINT ON WALL	5,5A15. =	(LBS/SD.FT)
PASSIVE FARTH FORCE	= -42018.	(LAS/SLICE)
PASSIVE FARTH MOLELT	= 465 SP1	(FT=1 ng/gl TCF)

```
DISTANCE FROM THE TOE TO THE RESULTANT # 10.49 (FT)
VERTICAL FORCE DUE TO UPLIFT PHESSURE DN HASE # 49384.68 (LBS/SLICE)
MORENT DUE TO UPLIFT AND HYDROSTATIC PRESSURES # 42021.48 (LBS/SLICE)
MOMENT DUE TO UPLIFT AND HYDROSTATIC PRESSURES # 2685008.63 (FT=LB8/SLICE)
```

THE RESULTANT RATIO . 0.2624, FOR LOAD CASE 1

LOAD CASE 2

RESULTANT IS WITHIN THE KERN

CREEP PATH DESCRIPTION FOR LOAD CASE 2

X-COURDINATES	Y+COORDINATES	HYDROSTATIC PRESSURE
25.06	57,00	0.
25.06	8.32	3042.50
23.56	8.32	3007.84
21.71	13.88	2524.94
-14.94	20.00	1284.05
-14,94	35.00	0.00

DVERTURNING HYDRAULIC GRADIENT # 0,3697

> VALUE OF APPO(LC) FOUND # 1 IN S/R CHEKIT (LOAD CASE 2)

PASSIVE EARTH PRESSURES FOR LOAD CASE 2

```
ELEVATION OF TOP OF SOIL
                                                       (FT)
                                          35,149
                                        20,000
PRESSURE AT THE OF SHIL
                                                       (LBS/SQ.FT)
ELEVATION AT BOTTOM OF THE
                                                       (FT)
PRESSURF AT HOTTOM OF TOP
                                     # #1941.7
                                                       (LRS/SQ.FT)
FLEVATION OF LOWEST POINT ON WALL # 8,3200 PRESSURE AT LOWEST POINT ON WALL # -1941.7
                                                       (FT)
                                                       (LBS/50,FT)
                                     # +373A7,
PASSIVE FARTH FORCE
                                                       (LHS/SLICE)
PASSIVE FARTH MOMENT
                                      s -58175.
                                                       (FT-LAS/SLICE)
```

DISTANCE FROM THE TOF TO THE RESULTANT

VERTICAL FORCE DUE TO UPLIFT PRESSURE ON BASE

MORIZONTAL FORCE DUE TO HYDROSTATIC PRESSURES

MOMENT DUE TO UPLIFT AND HYDROSTATIC PRESSURES

= 254838.50 (FT=LB3/SLICE)

THE RESULTANT RATIO W 0.3523, FOR LOAD CASE 2

FLOODWALL EXAMPLE (DESIGN/COMPLEX WALL) 15:21:52 ON 12/ 2/60

REGIN SLIDING COMPUTATION FACTOR OF SAFETY FOR MIN. DMEGA (LEVEL) = 1.84 SUM OF DRIVING FORCES = 52874,750 (L88/SLICE)
SUM OF RESISTING FORCES = 52929,433 (L88/SLICE) PASSIVE EARTH FORCE = 27409,14 (LBS/SLICE) ACTIVE FARTH FORCE UPLIFT FORCE # 0. (LBS/SLICE) #=110453.75 (LBS/SLICE) SUMMATION OF HORIZONTAL WATER FORCES # 52878,75 (LRS/SLICE) FAILURE PATH COORDINATES UNDER THE NEUTRAL BLOCK X -14.94 A.32 23,56 8.32 FACTOR OF SAFETY FOR MAX. OMEGA (TOE TO KEY) . SUM OF DRIVING FORCES = 44807,377 (LRS/SLICE) SUM OF RESISTING FORCES # 44819.056 (LBS/SLICE) PASSIVE EARTH FORCE # 20629.65 (LBS/SLICE) ACTIVE FARTH FORCE
UPLIFT FORCE # 0, (LBS/SLICE)
-92195.72 (LBS/SLICE) SUMMATION OF HORIZONTAL WATER FORCES # 46823,98 (LBS/SLICE) FAILURE PATH COORDINATES UNDER THE NEUTRAL BLOCK × -14.94 20,00 FINAL FACTOR OF SAFETY AGAINST SLIDING # 1.84, FOR LOAD CASE ! BY ALLOWABLE STRENGTH METHOD C'#C/FS+2C' TANPHI "ETANPHI /FS SUM OF DRIVING FORCES = 52878,750 (LBS/SLICE)

SUM OF RESISTING FORCES # 52929,433 (LHS/SLICE)

PASSIVE FARTH FORCE

ACTIVE FARTH FORCE

= 27409.14 (185/SLICE)

O. CHS/SETCE)

```
##110455.75 (! HS/SEICE)
    UPLIFT FURCE
    SUMMATION OF HORTZONTAL WATER FORCES # 52878,75 (LBS/SLICE)
     FATLURE PATH COORDINATES UNDER THE NEUTRAL BLOCK
       -14,94
                     8,32
        23,56
                     8.32
    FACTOR OF SAFETY FOR MIN. OMEGA (LEVEL) = 2.39
    SUM OF BRIVING FORCES # 44470,800 (LHS/SLICE)
    SIM OF RESISTING FORCES . 44499, 361 (LBS/SLICE)
    PASSIVE EARTH FORCE
                                            = 24227.51 (LBS/SLICE)
    ACTIVE FARTH FORCE
                                           = 0. (LMS/SLICE)
==105203.30 (LMS/SLICE)
    UPLIFT FORCE
    SHMMATION OF HORIZONTAL WATER FORCES # 44470.80 (LBS/SLICE)
     FAILURE PATH COORDINATES UNDER THE NEUTRAL BLOCK
         X
       -14.94
                     8.32
        23,56
                     A.32
    FACTOR OF SAFETY FOR MAX, OMEGA (TOE TO KEY) =
    SUM OF DRIVING FORCES # 37456,819 (LBS/SLICE)
    SUM OF RESISTING FORCES # 37471.564 (LBS/SLICE)
    PASSIVE EARTH FORCE
                                            # 17888.63 (L88/SLICE)
    ACTIVE FARTH FORCE UPLIFT FORCE
                                           # 0. (LBS/SLICE)
# #87449.93 (LBS/SLICE)
    SUMMATION OF HORIZONTAL WATER FORCES # 39142.60 (LAS/SLICE)
     FAILURE PATH COORDINATES UNDER THE NEUTRAL BLOCK
         X
       -14.94
                    20,00
FINAL FACTOR OF SAFETY AGAINST SLIDING # 2.31, FOR LOAD CASE 2
BY ALLOWARLE STRENGTH METHOD

C'RC/FS+20' TANPHI'STAN
                 TANPHI*ETANPHI/FS
    SHM OF DRIVING FORCES # 37456,819 (LAS/SLICE)
    SUM OF RESISTING FORCES # 37471.564 (LHS/SLICE)
    PASSIVE FARTH FORCE
                                           # 17888.63 (LRS/SLICE)
    ACTIVE BARTH FORCE
                                           # 0. (LRS/SLICE)
# #7449.93 (LRS/SLICE)
    SUMMATION OF HORIZONTAL WATER FORCES # 39142.60 (LAS/SLICE)
     FAILUME PATH COORDINATES UNDER THE NEUTRAL BLOCK
       -14.94
                    50.00
        23,56
                     A.32
```

TO TAKE PROTEST OF THE TOTAL PARTY STATES AND STATES AN

REGIO ALLOWARLE REARING CAPACITY COMPUTATIONS

THE MASE LIES IN SCIL 3

FOR LEAD CASE 1.

FIR THE HASE COORDINATES XX=14,94 YX 20,00, THE ARBOLUTE VALUE OF:
THE ALLOWARDE REARING PRESSURE \$ 3182.63 (LBS/SO,FT)
THE ACT AL HEARING PRESSURE \$ 3404.56 (LBS/SO,FT)

FOR THE HASS CLOROTHATES XM-14,94 YM 20,00, THE ABSOLUTE VALUE OF:
THE ALLOWARD HEARING PRESSURE # 3182,63 (LBS/SO,FT)
THE ACT AL HEARING PRESSURE # 5404,56 (LBS/SO,FT)

THE ALL -- ABOVE BASE PRESSURE 19 LESS THAN THE ACTUAL FOR LOAD CASE 1

FIR THE HASE CONTROLATES X# 21.71 V# 13.88, THE ABSOLUTE VALUE OF E
THE A CHARLE HEARING PRESSURE # 3917.02 (LBS/SQ.FT)
THE ACT AL HEARING PRESSURE # 0. (LBS/SQ.FT)

FIRST THE HASE COORDINATES X# 23.56 Y# 8.32, THE ABSOLUTE VALUE OF 1
THE ALLOWARD REARING PRESSURE # 4584.22 (LBS/SO.FT)
THE ACTUAL REARING PRESSURE # 0. (LBS/SO.FT)

FIR THE BASE COORDINATES X# 25.06 YM 8.32, THE ABSOLUTE VALUE OF:
THE ALLOWARD BEARING PRESSURE # 4884.22 (LBS/SQ.FT)
THE ACTUAL BEARING PRESSURE # 0. (LBS/SQ.FT)

THE REARING CAPACITY OF THE SOIL IS SATISFACTORY FOR LOAD CASE, I

FOR LOAD CASE 2.

FOR THE HASE COGNOINATES X==14,94 YM 20,00, THE ARSOLUTE VALUE OF:
THE ALLOWARLE REARING PRESSURE # 3750.00 (LBS/SQ.FT)
THE ACTUAL REARING PRESSURE # 2929.11 (LBS/SQ.FT)

FOR THE MASE COORDINATES XX 21.71 YX 13.88, THE ABSOLUTE VALUE OF THE ALLOWABLE BEARING PRESSURE # 4484,40 (LBS/SC.FT)
THE ACTUAL BEARING PRESSURE # 407.26 (LBS/SG.FT)

FOR THE BASE COORDINATES X# 23.56 Y# 8.32, THE ABSOLUTE VALUE OF1
THE ALLOWARLE REARING PRESSURE # 5151.60 (LBS/SG.FT)
THE ACTUAL REARING PRESSURE # 279.72 (LBS/SG.FT)

FOR THE HASE COOPDINATES X# 25.06 YE 8.32, THE ARBOLUTE VALUE OF E
THE ACTUAL BEARING PRESSURE # 176.50 (LBS/80.FT)

THE REARING CAPACITY OF THE SUIL IS SATISFACTORY FOR LOAD CASE. 2

THE ACTUAL REARING PRESSURE # 5151.40 (LHS/SQ.FT)

THE REARING CAPACITY OF THE SOIL IS SATISFACTORY FOR LOAD CASE. 2

```
# REGIN COST ANALYSIS
```

	OST & VOLUME OF	EXCAVATED MATERIAL	
SOIL LAYER	(CU.FT/L.FT)	0,	TOTAL CUST (DOLLARS/L.FT)
5	1154,47	0.	0.
	COST & VOLUME	OF BACKFILL MATERIAL,	
SOIL LAYER	VOLUME	UNIT COST	TOTAL CUST
	(CU,FT/L,FT)		(DOLLARS/L.FT)
•	619,40	0.	0
5	٥.	0.	0
FILTER ZONE	σ,	0.	0.
7	315,12	0 .	0
6	0.	0.	0.
*****	COST & VOLU	ME OF CONCRETE	· · · · · · · · · · · · · · · · · · ·
SECTION	VOLUME	UNIT COST	TOTAL COST
GC(, / 1 · · · ·	(CU.FT/L.FT)		(DULLARS/L.FT)
STEH	164.03	1.00	164.03
HASE	115.91	1.00	115.91
KEY	12,55	1.00	12,55

TOTAL CONCRETE VOLUME # 292,50 (CU FT / LF), FOR LOAD CASE 1

¢0	ST & VOLUME OF	EXCAVATED MATERIAL	
		UNIT COST (DOLLARS/CU.FT)	
4 5	1154,47	0.	0. 0.

COST & VOLUME OF BACKFILL MATERIAL.

SOIL LAYER	VN _UMF (CU.FT/L.FT)	UNIT COST (DOLLARS/CU.FT)	TOTAL CUST (DOLLARS/L.FT)
1	619.40	0.	0.
7	n .	n ,	0 .
FILTER ZONE	0.	0	n.
7	315,12	ο,	ο,
6	ο.	Λ.	0.

COST & VOLUME OF CONCRETE

SECTION	VULIIME	UNIT COST	TOTAL CUST
	(CU,FT/L,FT)	(NULLARS/CU.FT)	(DOLLARS/L.FT)
STFY	164.03	1.00	164.03
HASF	115.91	1.00	115.91
KEY	12.55	1.00	12.55

TOTAL CONCRETE VOLUME # 292,50 (CH FT / LF), FOR LOAD CASE 2

REGIN HOLL CONTROL CALCULATIONS FOR LOAD CASE 1

THE COMPUTED CREEP RATIO FOR A TIP FLEY. OF 8.32 18 2.1267

REGIN ROIL CONTROL CALCULATIONS FOR LOAD CASE 2

THE COMPUTED CREEP RATIO FOR A TIP FLEY. OF 8,32 18 2.4166

FLOUDHALE EXAMPLE (DESIGN/COMPLEX HALL) 15:23:35 DN 12/ 2/80

REGIN DATA CHECK FOR ACTIVE EARTH PRESSIRES COMPUTATION

COLOMARS COFFERICIENTS OF ACTIVE FARTH PRESSURES FOR:

HACKET, LAYER HA VALUE

O,5600

HIM!! NIS NOTTHE FAMIN PURSS WES FOR LOAD CASE ! F = 0 ENSIGN (ON) ONH) ANALMS! IN SP (FACE OF STEM)

THE TOP APPLYS HE, FHE, AND THE TH MODULE SP FOR CLASSIC ANALYSIS.

TATE OF THE PORT

FOR THE AROVE LOAD CASE THE RESULTANT FORCES ARE:

RESULTANT HORIZONTAL STATTC ACTIVE FORCE # 0. LBS/HURIZ FT ACTING AT ELEVATION 0.

RESULTANT HORIZONTAL ACTIVE FORCE (IN EXCESS OF STATIC) DUE TO EARTHQUAKE α 0. LASZHORIZ FT ACTING AT FLEVATION 0.

FLOWDRALL FXAMPLE COESTO VOOMPLEX WALLS 15123135 ON 127 2780

* REGIN DATA CHECK FOR ACTIVE EARTH PRESSURES COMPUTATION

COM OMB'S COFFETCIENTS OF ACTIVE FARTH PRESSURES FOR:

RACKFILL LAYER HA VALUE

10.5609

HORITONTAL ACTIVE FARTH PRESSURES FOR LOAD CASE 2 FOR CLASSIC (COULOMB) ANALYSIS IN SP (FACE OF STEM)

OUTPUT OF ARRAYS HS, EHS, AND YVS IN MODULE SP FOR CLASSIC ANALYSIS.

FLEVATION	INCREMENTAL HORIZONTAL STATIC FORCE	INCREMENTAL HORIZONTAL EARTHQUAKE FORCE
(FT)	(LAS/FT)	(LHS/FT)
35.000	0.	0.
34,000	0.	n į
33.000	n .	0 [
32,000	0	
31.000	n .	0,
30,000	0	0.
50,000	o .	n .
2A 000	o .	•
27.00A	ñ .	<u>^</u> ,
26,300	0	Ç.
25,000	n .	0.
24.000	0.	· .
23,000	0.	<u></u>
55.000		<u>0</u> p
	ე•	0.
51.000	0.	<u>0</u>
20.613	0 •	0.

FOR THE ARRIVE LOAD CASE THE RESULTANT FORCES ARE:

RESULTANT HORIZONTAL STATIC ACTIVE FORCS π . Chechoryz ft acting at elevation . σ_{\star}

RESULTANT HORIZONTAL ACTIVE FORCE (IN EXCESS OF STATIC) DUE TO FARTHQUAKE # 0. LRS/HORIZ ET ACTING AT ELEVATION 0.

EXIT MODULE FA

CREEP PATTO CALCULATED WITHOUT SHEET PILE CUTOFF # 2.42

UPDATE FILE RESET

COMMAND ENTEREDS

COMMAND ENTERED :

FLOODWALL EXAMPLE (DESIGN/COMPLEX WALL)
16:14:34 ON 12/ 2/80

REGIN MODULE FO

SURR FD, WARNING, VARTABLE ELSPT UNDEFINED.
CREEP RATIO WILL BE CAPCULATED WITHOUT SHEET PILE CUTOFF.
SURR FD, WARNING, VARIABLE CRMIN UNDEFINED.
SHEET PILE TIP ELEVATION WILL NOT BE CALCULATED.

FOUNDATION STABILITY DESIGN SUMMARY ==

HASE DESC	RIPTIONS			
DATA	LOFFST	BETWEEN TI	HE LIMITS	
ITEM	cnst	*******	*****	
NAME	VALUE	FUMER	UPPER	DESCRIPTION
				p
ATE 1	24.00	20.00	30,00	ELEV. OF BOTTOM OF TOE END
R₩	42.50	25.00	4A.00	BASE WIDTH
R S	0.16700	0.16700	0.16700	BASE SLOPE, x VERT. TO 1 HORIZ.
DKFY	5.00	5.00	5.00	KEY LENGTH BELOW BASE

HEGIN MODULE FA

FLOODWALL EXAMPLE (DESIGN/COMPLEX WALL)
17:31: 2 ON 12/ 2/80

HEGIN PART 2 OF STABILITY DATA CHECK

FLOOD WALL EXAMPLE (DESIGN/COMPLEX WALL) 17:31: 2 ON 12/ 2/80

REGIN MODULE FA

VARIABLE THE CALCULATED = 14.17 (BW+STR) VARIABLE HEFLW CALCULATED 22.32 (BW-TW2-TSTB)
VARIABLE HEFLT1 UNDEF, NO DEFAULT REQUESTED,
VARIABLE HEFLT1 ASSIGNED DEFAULT TO PRECLUDE ABORT, VARIABLE HERPR CALCULATED OR DEFAULTED TO CLOSE COORDINATES, HSRPR # 2.075234 IN/FT.

COORDINATES OF CORNERS OF WALL CROSS-SECTION

X-COORDINATES ARE + TOWARD MEEL FROM RASIC WORKING POINT (8MP) Y-COORDINATES ARE ELEVATIONS

PT.	x	Y	DESCRIPTION OF POINT

1	n,	60,0000	BASIC WORKING POINT . TOE-SIDE OF STEM TOP
5	-1.4375	25,5000	ANTIOM OF THE SIDE FACE OF STEM (AT 191)
2	-1.4375	25.5000	BETWEEN TSI AND TSZ, ON TOP FACE OF TOE
4	-15.6042	25,5000	TOP OF TOEHT # AT OHTER END OF THE
5	-15.6042	24,0000	TOE END OF BASE # AT BTE1
6	23,5425	17.4625	TOP OF TOE-SIDE FACE OF KEY
7	25,395A	11,9025	BOTTOM OF TOE-SIDE FACE OF KEY
8	26,8958	11,9025	ROTTOM OF MEEL-SIDE FACE OF KEY
9	26,8958	16,9025	TOP OF MEEL-SIDE FACE OF KEY
10	26.8958	16,9025	HEEL END OF BASE
11	26.8958	18,4025	TOP OF HEELT2 = TOP OF OUTER END OF HEEL
15	4.5730	24,2304	ROTTOM OF HEEL-SIDE FACE OF STEM
13	1.5000	42,0000	ROTTOM OF HEEL-SIDE TOP PANEL OF STEM
14	1.5000	60,0000	TOP OF HEEL-SIDE FACE OF STEM
15	24.5625	11,9025	BOTTOM OF CUTOFF WALL UNDER KEY

NOTE ### T-WALLS OVER 28.0 FEFT HIGH MAY BE UNECONOMICAL WITH CANTILEVER STEMS.

- # HURIZONTAL NON-SEEPAGE PRESSURES ARE ZERO
- # RECAUSE YOUR KRACK VALUE OF 1 CANCELS ACTIVE EARTH # AND RECAUSE PRESSURES #3 AND/OR #4 (DATA LIST SCWH)
- # ARE UNDEFINED, ZERO, OR NEGATIVE.

THE FOLLOWING TABLE INCLUDES WALL AND SOIL+WATER MASS ABOVE RASE, AND THE FORCES ACTING ON IT, EXCEPT THAT HORIZONTAL SEPPAGE AND UPLIFT ARE NOT INCLUDED HERE. MACTIVE EARTHM INCLUDES THE WAWMA WATER PRESSURE

IF A CHACK IS ASSUMED IN THE FAMTH COVER OVER THE END OF THE HEEL.

	LOAD CAS	E 1	
	VERTICAL	HORIZONTAL	MOMENT
	FORCE	FORCE	
	LAISLICE	LAISLICE	LB-FT/SLICE
w & i i	59201.32	(),	768254.99
ACTIVE EARTH	0.	0.	0.
SOIL+WATER	94656.05	n .	2527281.47
SURCHARGES	0.	0	0 .
DIRECT LOADS	ο.	g .	0.
MIND	0.	3 .	Ο.
EARTHOUAKE	0 •	0.	0 ,
TOTAL	133857,38	0,	3295536,47

- # MORIZONTAL MON-SEEPAGE PRESSURES ARE ZERO
 # RECAUSE YOUR KRACK VALUE OF 1 CANCELS ACTIVE EARTH
 # AND RECAUSE PRESSURES W3 AND/OR W4 (DATA LIST SCWM)
 # ARE UNDEFINED, ZERO, OR NEGATIVE.

THE FOLLOWING TABLE INCLUDES HALL AND SOIL+MATER MASS ABOVE BASE, AND THE FORCES ACTING ON IT, EXCEPT THAT HORIZONTAL SEEPAGE AND UPLIFT ARE NOT INCLUDED HERE. "ACTIVE EARTH" INCLUDES THE W3-M4 WATER PRESSURE IF A CRACK IS ASSUMED IN THE FARTH COVER OVER THE END OF THE HEEL,

	LOAD CAS	€ 2	
	VERTICAL	HORIZONTAL	MOMENT
	FORCE	FORCE	
	LAVALICE	L8/SLICE	LB-FT/SLICE
WALL	39201.32	0,	768254.99
ACTIVE EARTH	0.	0.	0.
SOIL+WATER	89894.33	0 .	2385372.34
SURCHARGES	0.	0.	0
DIRECT LOADS	0.	0	0,
#IND	0,	0.	0,
EARTHQUAKE	0,	0.	0.
TOTAL	129095,66	0,	3153627,34

```
FLOCOMALL EXAMPLE
                      (DESIGN/COMPLEX WALL)
            17:31: 7 NN 12/ 2/80
# REGIN THE OVERTURNING COMPUTATION
     LOAD CASE 1
RESULTANT IS WITHIN THE KERN
CREEP PATH DESCRIPTION FOR LOAD CASE 1
                     Y-COORDINATES
X-COORDINATES
                                           HYDROSTATIC PRESSURE
                                                       3006,09
   26.90
                         60.00
   26,90
                         11.90
   25,40
                         11.90
                                                       2965,72
                         17,46
24,00
35,00
   23,54
                                                       2460,47
  -15.60
                                                        983,58
  -15,60
                                                          0.00
 OVERTURNING HYDRAULIC GRADIENT = 0.4307
                                                       IN SIR CHEKIT (LOAD CASE 1)
 > VALUE OF NPPO(LC)
                         FOUND =
                                                1
PASSIVE EARTH PRESSURES FOR LOAD CASE 1
 NPPD
ELEVATION OF TOP OF SOIL PRESSURE AT TOP OF SOIL
                                                             (FT)
                                               35,156
                                             24.000
                                                             (LBS/SQ.FT)
 FLEVATION AT BOTTOM OF TOE
                                                             (FT)
PRESSURE AT HOTTOM OF THE = -2293,6
FLEVATION OF LOWEST POINT ON WALL = 11,902
                                                             (LAS/SO.FT)
                                                             (FT)
PRESSURE AT LOWEST POINT ON WALL = -2293.6 (LMS/SO.FT)

PASSIVE FARTH FUNCE = -40541. (LMS/SOLICE)

PASSIVE EARTH MOMENT = -0.12026E 06 (FT-LMS/SCICE)
```

```
DISTANCE FROM THE TOE TO THE RESULTANT # 14.58 (FT)
VERTICAL FORCE DUE TO UPLIFT PRESSURE ON HASE # -76918.65 (LBS/SLICE)
HORIZONTAL FORCE DUE TO HYDROSTATIC PRESSURES # 40540.55 (LBS/SLICE)
MOMENT DUE TO UPLIFT AND HYDROSTATIC PRESSURES # -2345267.31 (FT-LBS/SLICE)
```

THE RESULTANT RATIO = 0.3430, FOR LOAD CASE 1

LOAD CASE 2

RESULTANT IS WITHIN THE KERN

CREEP PATH DESCRIPTION FOR LOAD CASE 2

X-COUNDINATES	Y-COORDINATES	HYDROSTATIC PRESSURF
26.90	57.00	٥.
56.40	11,90	2818,59
25.40	11,90	2783.06
23,54	17,46	2296,74
-15.60	24.00	948,05
~15.60	35.00	a ,

OVEPTURNING HYDRAULIC GRADIENT # 0.3790

> VALUE OF NPPO (LC) FOUND # 1 IN SIR CHEKIT (LOAD CASE 2)

PASSIVE EARTH PRESSURES FOR LOAD CASE 2

```
NPPD
ELEVATION OF TOP OF SOIL PRESSURE AT TOP OF SOIL ELEVATION AT BOTTOM OF TOE
                                                       35,156
                                                                         (FT)
                                                                         (LHS/90.FT)
                                                  .
                                                        24.000
                                                                         (FT)
PRESSURE AT BOTTOM OF TOF
                                                                         (LAS/SO.FT)
                                                  # -1901.7
FLEVATION OF LOWEST POINT ON WALL # 11,902
PRESSURE AT LOWEST POINT ON WALL # -1901,7
                                                                         (FT)
                                                                         (LAS/SO.FT)
PASSIVE EARTH FORCE
PASSIVE EARTH MOMENT
                                                  . -33613,
                                                                         (LRS/S( ICE )
                                                                         (FT+I RS/SLICE)
```

```
DISTANCE FROM THE TOE TO THE RESULTANT # 16.49 (FT)
VERTICAL FORCE DUE TO UPLIFT PHESSURE ON BASE # -72419.98 (LBS/SLICE)
HORIZONTAL FORCE DUE TO HYDROSTATIC PRESSURES # 33613.19 (LBS/SLICE)
MOMENT DUE TO UPLIFT AND HYDROSTATIC PRESSURES # -2119273.22 (FT-LBS/SLICE)
```

THE RESULTANT PATTO : 0. SRRO, FOR LOAD CASE 2

FLOODWALL EXAMPLE (DESIGN/COMPLEX WALL) 17:31: 7 DN 12/ 2/MO

REGIN SLIDING COMPUTATION

FACTOR OF SAFETY FOR MIN. OMEGA (LEVEL) # 1.50

SUM OF ORIVING FORCES # 49267,307 (LBS/SLICE)
SUM OF RESISTING FORCES # 49315,160 (LBS/SLICE)

PASSIVE EARTH FORCE # 19007.50 (LBS/SLICE)
ACTIVE FARTH FORCE # 0. (LBS/SLICE)
UPLIFT FORCE # 106246.99 (LBS/SLICE)
SUMMATION OF HORIZONTAL WATER FORCES # 49267.31 (LBS/SLICE)

FAILURE PATH COORDINATES UNDER THE NEUTRAL BLOCK

x y = 15.60 11.90 25.40 11.90

FACTOR OF SAFETY FOR MAX. DMEGA (TOE TO MEY) # 1.66

SUM OF ORIVING FORCES # 41082,679 (LRS/SLICE)
SUM OF RESISTING FORCES # 41106,996 (LRS/SLICE)

PASSIVE EARTH FORCE # 14171.99 (LB9/SLICE)
ACTIVE EARTH FORCE # 0. (LB9/SLICE)
UPLIFT FORCE # #5703.88 (LB9/SLICE)
SUMMATION OF HORIZONTAL WATER FORCES # 42833.71 (LB9/SLICE)

FATLURE PATH COORDINATES UNDER THE NEUTRAL BLOCK

-15.60 24.00 25.40 11.90

FINAL FACTOR OF SAFETY AGAINST SLIDING * 1.50, FOR LOAD CASE 1
BY ALLOWARLE STRENGTH METHOD
C"EC/FS+2C" TANPHI" #TANPHI/FS

SUM OF DRIVING FORCES # 49267.307 (LHS/SLICE)
SUM OF RESISTING FORCES # 49315.160 (LHS/SLICE)

PASSIVE FARTH FORCE = 19007.50 (LHS/SLICE) ACTIVE FARTH FORCE = 0. (LHS/SLICE)

```
==105246.99 ([HS/SLICE)
     UPLIFT FUNCE
     SUMMATION OF MORIZONTAL WATER FORCES # 49267.51 (LBS/SLICE)
      FAILURE PATH COORDINATES UNDER THE NEUTRAL BLOCK
                        11.90
         -15.6¢
          25,40
                        11.90
     FACTOR OF SAFETY FOR MIN. OMEGA (LEVEL) # 1.91
     SUM OF ORIVING FORCES # 41292,729 (LHS/SLICE)
     SUM OF RESISTING FORCES = 41308,793 (LBS/SLICE)
     PASSIVE EARTH FORCE = 16587.77 (LRS/SLICE)
ACTIVE EARTH FORCE = 0. (LRS/SLICE)
UPLIFT FORCE = 100859.68 (LBS/SLICE)
SUMMATION OF HORIZONTAL WATER FORCES = 41292.73 (LRS/SLICE)
      FAILURE PATH COORDINATES UNDER THE NEUTRAL BLOCK
         X
-15,60
                         11.90
                        11.90
          25.40
     FACTOR OF SAFETY FOR MAX. OMEGA (TOE TO KEY) 4 2.96
     SUM OF DRIVING FORCES # 34174,571 (LBS/SLICE)
     SUM OF RESISTING FORCES = 34199.275 (LBS/SLICE)
     PASSIVE EARTH FORCE # 12172.59 (£85/SLICE)
ACTIVE FARTH FORCF # 0. (£65/SLICE)
UPLIFT FORCE # #60921.75 (£85/SLICE)
SUMMATION OF MORIZONTAL WATER FORCES # 35631.17 (£85/SLICE)
      FAILURE PATH COORDINATES UNDER THE NEUTRAL BLOCK
         -15.60
                         24.00
          25.40
                         11.90
FINAL FACTOR OF SAFETY AGAINST SLIDING . 1.91, FOR LOAD CASE 2
BY ALLOWARLE STRENGTH METHOD
C'=C/FS+2c' TANPHI'=TANPHI/FS
     SUM OF DRIVING FORCES # 41292,729 (LRS/SLICE)
SUM OF RESISTING FORCES # 41304,793 (LBS/SLICE)
                                                      * 16587,77 (L95/SLICE)

* 0, (L85/SLICE)

*•100859,68 (L85/SLICE)
     PASSIVE EARTH FORCE
     ACTIVE EARTH FORCE UPLIFT FORCE
     SUMMATION OF MORIZONTAL WATER FORCES = 41292,73 (LBS/SLICE)
      FAILURE PATH COORDINATES HINDER THE NEUTRAL BLOCK
         -15.60
                        11,90
```

25.40

11,90

FLOODWALL EXAMPLE (DESIGN/COMPLEX WALL) 17:32:22 ON 12/ 2/AO

BEGIN ALLOWABLE REARING CAPACITY COMPUTATIONS

THE BASE LIES IN SOIL 3

FOR LOAD CASE 1,

FOR THE BASE COORDINATES X==15.60 YE 24.00, THE ARSOLUTE VALUE OF 1
THE ALLOWARLE REARING PRESSURE = 3030.87 (LRS/SQ.FT)
THE ACTUAL BEARING PRESSURE = 2601.81 (LRS/SQ.FT)

FOR THE BASE COORDINATES X= 23.54 Y= 17.46, THE ABSOLUTE VALUE OF:
THE ALLOWARLE BEARING PRESSURE = 3815.37 (L85/80.FT)
THE ACTUAL REARING PRESSURE = 276.82 (L85/80.FT)

FOR THE BASE CORRDINATES X= 25.40 Y= 11.90, THE ABSOLUTE VALUE OF:
THE ALLOWARLE BEARING PRESSURE = 4482.57 (LBS/SQ.FT)
THE ACTUAL BEARING PRESSURE = 166.75 (LBS/SQ.FT)

FOR THE BASE COORDINATES Xm 26,90 Ym 11,90, THE ABSOLUTE VALUE OF1
THE ALLOWARLE REARING PRESSURE # 4482,57 (LBS/SQ.FT)
THE ACTUAL BEARING PRESSURE # 77.66 (LBS/SQ.FT)

THE BEARING CAPACITY OF THE SOIL IS SATISFACTORY FOR LOAD CASE, 1

FOR LOAD CASE 2.

FOR THE BASE COORDINATES X==15.60 YM 24.00, THE ARSOLUTE VALUE OF I THE ALLOWARLE REARING PRESSURE = 3030.87 (LBS/SD.FT) THE ACTUAL BEARING PRESSURE = 2229.48 (LBS/SD.FT)

FOR THE BASE COORDINATES X= 23.54 Y= 17.46, THE ABSOLUTE VALUE OF THE ALLOWARD REARING PRESSURE = 3815.37 (LBS/SO.FT)

THE ACTUAL BEARING PRESSURE = 579.00 (LBS/SO.FT)

FOR THE BASE COORDINATES X= 25.40 Y= 11.90, THE LUTE VALUE OF:
THE ALLOWARLE BEARING PRESSURE = 4482.57 (LBS/SD.FT)
THE ACTUAL REARING PRESSURE = 500.86 (LBS/SD.FT)

FOR THE BASE COORDINATES X 26.90 Y 11.90, THE ARSOLUTE VALUE OF 1
THE ALLOWARLE BEARING PRESSURE # 4482.57 (LBS/SQ.FT)
THE ACTUAL BEARING PRESSURE # 437.61 (LBS/SQ.FT)

THE REARING CAPACITY OF THE SOIL IS SATISFACTORY FOR LOAD CASE. ?

FLOUDWALL EXAMPLE (DESIGN/COMPLEX WALL) 17:32:22 ON 12/ 2/80

N HEGIN COST ANALYSIS

(OST & VOLUME OF	EXCAVATED MATERIAL	
Soil LAVE	VOLUME	UNIT COST	TOTAL COST
	(CU.FT/L.FT)		(DOLLARS/L.FT)
u	900.78	0.	0.
5	900,78	0.	0.
	COST & VOLUME	OF BACKFILL MATERIAL	<u> </u>
		**************************************	TOTAL CUST
SOIL LAYER	VOLUME	UNIT COST	
	(CU.FT/L.FT)		(DOLLARS/L.FT)
1	505,61	0.	0.
	o •	0.	0.
FILTER ZONE	0.	0.	0.
7	210.77	6.	0.
6	0.	0.	0.
v	COST & VOLU	ME OF CONCRETE	
SECTION	VOLUME	UNIT COST	TOTAL COST
256 1104	(CU_FT/L_FT)	(DOLLARS/CU.FT)	(DOLLARS/L.FT)
STEM		- · · · · · · · · · · · · · · · · · · ·	131.42
• •	131.42	1.00	
RASE	117.37	1.00	117.37
KEY	12.55	1.00	12,55

TOTAL CONCRETE VOLUME # 261,34 (CU FT / LF), FOR LOAD CASE 1

SOIL LAYER VOLUME OF EXCAVATED MATERIAL

SOIL LAYER VOLUME UNIT COST TOTAL CUST

(CU.FT/L.FT) (DOLLARS/CU.FT) (DDLLARS/L.FT)

4 900.7A 0. 0.

5 900.7A 0.

COST & VOLUME OF BACKFILL MATERIAL.

SOIL LAYER	VOLUME	UNIT COST	TOTAL CUST
	(CH.FT/L.FT)	(DOLLARS/CU.FT)	(DOLLARS/L.FT)
1	505.61	0.	0.
2	0.	0.	ο.
FILTER ZONE	٠.	0 •	ο,
7	210.77	n ,	0.
6	0.	n •	0 •

COST & VOLUME OF CONCRETE

SECTION VOLUME UNIT COST TOTAL COST

(CU.FT/L.FT) (DOLLARS/CU.FT) (DOLLARS/L.FT)

STEM 131,42 1.00 131.42

RASF 117.37 1.00 117.37

KEY 12.55 1.00 12.55

TOTAL CONCRETE VOLUME = 261.34 (CU FT / LF), FOR LOAD CASE 2

REGIN HOLL CONTROL CALCULATIONS FOR LOAD CASE 1

THE COMPUTED CREEP RATIO FOR A TIP FLEY, OF 11.90 18 2.1373

BEGIN HOLL CONTROL CALCULATIONS FOR LOAD CASE 2

THE COMPUTED CREEP RATIO FOR A TIP ELEV. OF 11.90 IS 2.4287

FLOODWALL EXAMPLE (DESIGN/COMPLEX WALL) 17:32:24 ON 12/ 2/80

REGIN DATA CHECK FOR ACTIVE EARTH PRESSURES COMPUTATION

COULDMR'S COEFFICIENTS OF ACTIVE FARTH PRESSURES FOR:

BACKFILL LAYER XA VALUE
1 10,5579

HORIZONTAL ACTIVE EARTH PRESSURES FOR LOAD CASE 1 FOR CLASSIC (COULOMB) ANALYSIS IN SP (FACE OF STEM)

DUTPUT OF ARRAYS HS, EHS, AND YVS IN MODULE SP FOR CLASSIC ANALYSIS.

ELEVATION	INCREMENTAL HORIZONTAL STATIC FORCE	INCREMENTAL HORIZONTAL EARTHQUAKE FORCE
(FT)	(LRS/FT)	(LBS/FT)

35,000	0.	0 🚡
34.000	0.	n 🛴
33,000	0.	o [
32,000	0.	0 ,
31.000	o.	ñ.
30.000	n .	0,
29.000	n .	o.
24,000	0	0
27,000	n .	Ö.
26.000	0	n .
25,000	0	0
24.230	0.	0.

FOR THE ARDVE LOAD CASE THE RESULTANT FORCES ARE:

RESULTANT MORIZONTAL STATTC ACTIVE FORCE = 0. LBS/MURIZ FT ACTING AT ELEVATION 0.

RESULTANT HORIZONTAL ACTIVE FORCE (IN EXCESS OF STATIC)
DUE TO FARTHQUAKE # 0, LBS/HORIZ FT
ACTING AT ELEVATION 0,

FLOODWALL FXAMPLE (DESTRIN/COMPLEX WALL) 17:32:24 ON 12/ 2/80

REGIN DATA CHECK FOR ACTIVE EARTH PRESSURES COMPUTATION

COULDMH'S COEFFICIENTS OF ACTIVE FARTH PRESSURES FOR:

#ACKFILL LAYER KA VALUE

1 0.5579

HORIZONTAL ACTIVE FARTH PRESSURES FOR LOAD CASE 2 FOR CLASSIC (COULOMB) ANALYSIS IN SP (FACE OF STEM)

OUTPUT OF ARRAYS HS, EHS, AND YVS IN MODULE SP FOR CLASSIC ANALYSIS.

ELEVATION	INCREMENTAL HORIZONTAL	
(FT)	STATIC FORCE (LBS/FT)	EARTHQUAKE FORCE (LBS/FT)

35,000	n <u>.</u>	n'.
34.000	0.	0,
33,000	0.	ο.
32,000	0.	0.
31,000	0 .	0,
30,000	0.	0.
29,000	0	a,
28,000	0.	0,
27.000	n,	0,
26,000	0.	0 ,
25.000	0.	0.
24.230	0 .	0.

FOR THE AROVE LOAD CASE THE RESULTANT FORCES ARE:

RESULTANT HORIZONTAL STATIC ACTIVE FORCE = 0. LBS/MORIZ FT ACTING AT ELEVATION 0.

RESULTANT MURIZONTAL ACTIVE FORCE (IN EXCESS OF STATIC) DUE TO EARTHQUAKE # 0. LRS/HORIZ FT ACTING AT FLEVATION 0.

EXIT MODULE FA

CREEP RATIO CALCULATED WITHOUT SHEET PILE CUTOFF # 2.43

UPDATE FILE PESET

COMMAND ENTEREDS

FLUNDKALL EXAMPLE (DESIGN/COMPLEX WALL) 17:35:11 ON 12/ 2/80

REGIN DATA CHECK FOR MODULE ND COMPLETE THE TRIAL WALL DESCRIPTION: DEFAULT VALUE OF USED FOR BASER (LOAD CASE 1) WER NOTE HAR T-WALLS OVER 28.0 FEFT HIGH MAY BE UNECONOMICAL WITH CANTILEVER STEMS. DEFAULT VALUE OF 18,00000 USED FOR TSTT (LOAD CASE 1) DEFAULT VALUE OF 18,00000 USED FOR TOPHT (LOAD CASE 1) DEFAULT VALUE OF 100,0000 USED FOR TS2 (LOAD CASE 1) DEFAULT VALUE OF 18,00000 USED FOR HEELTZ (LOAD CASE 1) DEFAULT VALUE OF 16,00000 LISED FOR WKEY (LOAD CASE 1) DEFAULT VALUE OF 3,000000 HISED FOR BETF (LOAD CASE 1) CALCHLATED TO BE 14,167 (LOAD CASE 1) DEFAULT VALUE OF 0 USED FOR IBSAME WITH BASE RADIUS ("BASER", 0.0 FOR RECTANGULAR) . 0. FEET, THE END OF MASE UNIT WIDTH # 1.0000 FT. AND HEEL END OF MASE UNIT WIDTH # 1.0000 FT. (HASIC WORKING POINT IS 1.0 FT. WIDE), LOWEST CONCRETE . 11.90 FT., AT BOTTOM OF KEY DEFAULT VALUE OF 11 USED FOR MAXBAR (LOAD CASE 1) SPAMIN CALCULATED TO BE 3.6600 MAXIMUM STEFL AREA PER FOOT, CALCULATED FROM WO. 11 BARS (MAXBAR) AT 3.66 INCHES (SPAMIN), 19 5.115 80. IN. / FT. ------ PRESSURE DATA VERIFICATION FOR LOAD CASE 1 -----FH TOP CALCULATED TO BE 60.000 FOR LOAD CASE 1

> NPPD 15

DEFAULT VALUE OF 1.000000 USED FOR AOSF(LC) (LOAD CASE 1)

----- PRESSIRE DATA VERIFICATION FOR LOAD CASE 2 -----

FH TOP CALCULATED TO BE 57,000 FOR LOAD CASE 2

> NPPD 18 DEFAULT VALUE OF 1.000000 USED FOR ADSFILE) (LOAD CASE 2) ----- END OF PRESSURE DATA VERIFICATION -----DEFAULT VALUE OF 3000,000 USED FOR FPCON (LOAD CASE 1) DEFAULT VALUE OF 0.2900000E OR USEN FOR ESTL (LOAD CASE 1) PEFAULT VALUE OF 9.190000 USED FOR FLDAD CASE 1) RATION

PT,	Y	Y	DESCRIPTION OF POINT

1	0.	60.0000	HASIC HORKING POINT & TOE-SIDE OF STEM TOP
2	-1.4375	25 5000	BOTTOM OF TOE-SIDE FACE OF STEM (AT TS1)
3	-1.4375	25,5000	RETHEEN TOL AND TOO, ON TOP FACE OF THE
4	-15.6042	29,5000	TOP OF TOEMT & AT OUTER END OF THE
5	-14.4042	24,0000	THE END OF BASE & AT HTES
6	23.5425	17.4625	TOP OF THE-SIDE FACE OF KEY
5	24.395A	11,9025	AUTTOM OF TOE-SIDE FACE OF KEY
А	26.8958	11,9025	ROTTOM OF HEEL-SIDE FACE OF KEY
4	26,8958	16,9025	TOP OF HEEL-SIDE FACE OF KEY
10	26.8956	16,9025	HEFL END OF BASE
11	26.8058	18,4025	TOP OF HEELTS . TOP OF OUTER END OF HEEL
12	3.9007	22.2421	ROTTOM OF HEEL-SIDE PACE OF STEM
13	1.5000	60,0000	BOTTOM OF HEEL-SIDE TOP PANEL OF STEM
14	1.5000	60,0000	TOP OF HEEL-SIDE FACE OF STEM
15	26.1458	11,9025	ROTTOM OF CUTOFF WALL UNDER KEY
			or and the second secon
DEFAULT V	VALUE OF	0.3500000	USED FOR RATIOF (LOAD CASE 1)
DEFAULT V	ALUE OF	20000.00	USED FOR FSTLMX (LOAD CASE 1)
DEFAULT V	ALUE OF	n	USED FOR IFOR (LOAD CASE 1)
DEFAULT V	ALLIE OF	3.500000	USED FOR COVHS (LOAD CASE 1)
DEFAULT V	ALUE OF	3.500000	USED FOR COVIS (LOAD CASE 1)
DEFAULT V	ALIE OF	5,500000	USED FOR COVID (LOAD CASE 1)
OFFAULT V	ALUE OF	4.500000	USED FOR COVER (LOAD CASE 1)
DEFAULT V	ALUF OF	2,375000	USED FOR SPARL (LOAD CASE 1)
COMMINED	PASSIVE P	RESSURE VALUE	OF -2291,599 USED FOR LOAD CASE 1
COMMINED	PASSIVE P	RESSURE VALUE	OF -1901,680 USED FOR LOAD CASE 2

FLOODVALL EXAMPLE (DESIGN/COMPLEX WALL)
17:35:45 (N 12/ 2/80

REGIN ALTERNATE METHOD (WSD) DESTON

THE ABOVE TABLE OF X- AND Y-COORDINATES AND THE FOLLOWING TABLE OF DATA LISTS DESCRIBE THE WALL ASSUMED FOR THE DESIGN ANALYSIS FREE BODIES, IF THE FINAL DIMENSIONS TURN OUT TO BE SUBSTANTIALLY DIFFERENT, YOU MAY WANT TO RUN MODULE WD AGAIN.

4 ∟∆	FTS 60.00000	T#2 14,16667	STR 0.3333333	HFFLW 22,99518	
WLAR	42.500nn	AS 0.1670000		BASER (LI	ST##LBR)
WLAH	HEELT2 18.00000	MEELW 22,99518	HFELT1 18.00000		
WLAK	KFL 4G O	DKEY 5.000000	#KEY 18.00000	8KTF 5.000000	
MLAS	TSTT 18.00000 HSRPH 2.075234	T\$P 0.500000	TSTH · 64.05789	HSTPH ≠0.1234000E 3	н з трв 1 0.
WLAT	BTE1 24,00000	TOEHT 18.00000	TS2 100.0000	T W 1	TS1 -0.1234000E 31
	TMINR 18.00000	TMINS 18,00000			

REGIN THE DESIGN

PUT REINE, IN AND INCREASE THICKNESS AS NEEDED FOR SHEAR

REGIN STEM DESIGN

PUT REINF. IN AND INCREASE THICKNESS AS NEEDED FOR SHEAR

REGIN KEY DESIGN

PUT REINF, IN AND INCREASE THICKNESS AS NEEDED FOR SHEAR

KEY DATA WEEY, HKTE ARE 18,00000 AND 28,15253 WITH DKEY & 5,000000

HEEL OFSIGN

PIT REINF. IN AND INCREASE THICKNESS AS NEEDED FOR SHEAR

DESIGN SUMMARY

F T 9 97R 0.3331511 TWP HFFLH 14,15892 60.00000 23,55008 BASER (LISTENLER) WLAH BW A S 42.50000 0.1670000 WIAH HEELTP HEFLA HEELTI 18,00000 23,5500A 45.92278 WLAK KFLAG DKEY MKEY RKTF 5.000000 18.00000 28,15253 HSTPH 20.18084 MLAS TSTT 1518 HSTPB ٥. 18.00000 0.5000000 57.49196 HSHPH 1.462572 MLAT RTE1 THENT 132 131 24.00000 18.00000 100,0000 100.0000 TMINR 18,0000 THINS 18,00000

COORDINATES OF CORNERS OF WALL CROSS-SECTION

x=COORDINATES ARE + TOWARD HEEL FROM BASIC WORKING POINT (BMP) Y=COORDINATES ARE FLEVATIONS

PT.	×	¥	DESCRIPTION OF POINT

1	ο,	60,0000	BASIC WORKING POINT & TOE-SIDE OF STEM TOP
!	-1.4452	25,3142	ROTTOM OF THE STOE FACE OF STEM (AT TS1)
3	-1.0454	25.3142	HETHEEN TSI AND TSE, ON TOP FACE OF TOE
u	-15.6042	25,5000	TOP OF TOEHT & AT DUTER END OF TWE
5	-15.6042	24,0000	TOF END OF BASE & AT ATE!
ь	25.2082		TOP OF THE SIDE FACE OF KEY
7	25.395A	11.9025	BOTTOM OF TUE-SIDE FACE OF KEY
А	26.8954	11,9025	BOTTOM OF HEEL-SIDE FACE OF KEY
9	24.4958	16.9025	TOP OF HEEL-SIDE FACE OF KEY
10	BPPA AS	16.9025	HEFL END OF BASE
1.1	26.8958	18,4025	TOP OF HEELTS . TOP OF OUTER END OF HEEL
12	3.345A	24,6753	BOTTOM OF HEEL-SIDE FACE OF STEM
13	1.5000	39.4192	HOTTOM OF HEEL-SIDE TOP PANEL OF STEM
14	5000	60.0000	TOP OF HEEL-SIDE PACE OF STEM
15	26.1458	11,9025	ROTTOM OF CUTOFF HALL UNDER KEY

THE HEINFUHCING IN THE FULLIATIVE TABLE SATISFIES STREET, IN AND EM 1110-2-2103 MINIMIM REQUIREMENTS (.125 PERCENT OF AREA IN EACH FACE).

```
TABLE OF STEEL VALUES IN STEM, SO. IN. / FT.
    ELEV.
            ASTLST(M) ASTLSH(M,1) ASTLSH(M,2) ASTLSH(M,3)
               0.277
                           0.277
     hn.0n
                                       *****
     59.00
               0.277
                            0.277
                                       *****
                                                    ****
     58.00
               0.285
                           0,285
                                       *****
                                                    *****
     57.00
               105.0
                            0,293
                                       *****
                                                    *****
     56,00
               0.500
                            0,300
                                       *****
                                                    .....
     55,00
               0.308
                           0.308
                                       *****
                                                    ****
     54.00
               0.315
                            0.315
                                       *****
                                                    *****
     53.00
               0,323
                            0.323
                                       *****
                                                    *****
     52.00
               0,330
                            0,330
                                       *****
                                                    *****
     51.00
 10
               0.337
                            0,337
                                       .....
                                                    *****
     50.00
 1 1
               0.345
                            0.345
                                       *****
                                                    ****
    49.00
 12
               0.352
                           0,362
                                       *****
                                                    *****
    48.00
 13
               0.360
                           0.476
                                       ****
                                                    *****
    47.00
 14
               0.367
                            0.608
                                       *****
                                                    *****
    46.00
 15
               0,375
                            0.761
                                       *****
                                                    .....
    45.00
 10
               0.383
                            0.933
                                       *****
                                                   ****
 17
    44.00
               0,390
                           1.128
                                       *****
                                                   *****
    43.00
 18
               0.398
                           1.344
                                       *****
                                                   *****
 19
    42.00
               0.405
                            1.584
                                       ****
                                                   *****
    41.00
 20
               0.413
                            1.848
                                       *****
                                                   ****
    40.00
39.00
               0.420
                           2,136
                                       *****
                                                   *****
               0.440
                           2.31A
                                       .....
                                                   *****
     38.00
               0.440
                           2,482
                                       ****
                                                   .....
     17.00
 24
               0.440
                           2,653
                                       ****
                                                   *****
    36.00
35.00
               0.440
                           2.833
                                       ****
                                                   *****
               0.440
                            3,023
                                       *****
                                                   *****
    34.00
 27
               0.440
                           3,221
                                       *****
                                                   *****
    33,00
               0.440
                           3,41A
                                       *****
                                                   *****
 29
     32.00
               0.440
                           3.612
3.798
                                       *****
                                                   *****
    31,00
               0.440
                                       *****
                                                   *****
    30.00
               0.440
                           3,975
 31
                                       .....
                                                   ****
               0.440
                           4.13A
                                       *****
                                                   *****
    28.00
27.00
               0.440
33
                           4,288
                                       ****
                                                   *****
               0.440
                           4.422
                                       *****
                                                   *****
    26,00
               0.440
                           4.540
                                       *****
                                                   ****
TABLE OF STEEL VALUES IN BASE, SQ. IN, / FT.
(M m 1 AT END OF TOE)
    DIRT. ASTURT (M,1) ASTURT (M,2) ASTUBB (M,1) ASTURR (M,2) ASTUBB (M,3)
               0.300
                          *****
                                       0.300
                                                  *****
     1,00
               0.300
                          *****
                                       0.300
                                                   ****
                                                               .....
               0.330
                          .....
                                       0.330
                                                   *****
                                                               *****
 11
      3,00
               0.360
                          *****
                                       0.360
                                                   ****
                                                               .....
     4.00
               0.390
                          .....
                                       0.499
                                                   *****
                                                               .....
     5.00
               0.420
                          .....
                                       0.714
                                                   *****
                                                               ....
     6.00
               0.440
                          .....
                                       0.947
                                                   *****
                                                               .....
     7.00
               0.440
                                       1,192
                          .....
                                                   *****
                                                               .....
 a
     A, no
               0.440
                          .....
                                       1.447
                                                   *****
                                                               .....
10
     9.00
               0.440
                                       1.708
                          *****
                                                   *****
                                                               .....
    10.00
               0.440
                          .....
                                       1.974
                                                   .....
                                                               .....
12
    11,00
               0.440
                          *****
                                       2,243
                                                   .....
                                                               .....
13
    12,00
               0.440
                          *****
                                       2,514
                                                   .....
                                                               .....
1 4
    15,00
               0.440
                          *****
                                       2.785
                                                   .....
                                                               .....
    14,00
15
               0.440
                                       1,200
                          .....
                                                   .....
                                                               .....
    15,00
15,00
17,00
16
              *****
                          *****
                                      .....
                                                   .....
                                                               .....
17
              .....
                          .....
                                      .....
                                                   .....
                                                               .....
18
```

.....

.....

.....

1

.....

.....

19 18.00 ***** ***** 20 00 00 ***** ***** ***** ***** 2.283 0.440 ***** ***** ***** 2.13A 1.9AM 1.A34 0.440 21.00 ***** ***** 23 22,00 0.440 24 21.00 0.440 ***** 1,676 1,515 1,350 25 24,00 0.440 ***** 25.00 ***** 0.440 ***** 27 24.00 0.440 1,183 28 27.00 0,440 ***** 0,440 29 00.45 1,015 ***** 10 29,00 0.440 ***** 0,440 ***** 0.000 11 30,00 0.440 ***** **** ***** 0,440 31.00 0.440 **** 0.440 33 32,00 ***** 0.440 0.440 30 33.00 0.883 1.089 35 34,00 ***** ***** 36 35,00 0.423 **** ***** 1,217 1,384 1,547 1,705 30.00 37.00 37 0.405 ***** 34 0,3A7 ***** ***** 30 3H.00 0.369 ***** ***** 40 39.00 0.351 ***** ***** 1,852 1,986 1,986 41 40.00 0.333 ***** 42 41.00 0.316 ***** 43 42.00 0.316 *****

437LK = 1.098 SQ IN / FT

***** # HUNDEFINED#

NOTE: PARAGRAPH S-21A(3) OF EM 1110-2-2501 CAN BE INTERPRETED TO MEAN THAT THE TOP OF MEEL AT THE KEY MUST HAVE AT LEAST AS MUCH REINFORCEMENT AS THE TOE-SIDE FACE OF THE KEY, THIS REQUIREMENT HAS NOT CONSIDERED WHEN DETERMINING THE REINFORCING SHOWN IN THE TABLE AROVE FOR ASTURY (LOC, LNA) WHERE LOC IS THE LOCATION AND LNA IS THE LAYER NUMBER.

UPDATE FILE PESET

COMMAND ENTEREDS

14-3 EXAMPLE C: STABILITY ANALYSIS AND STRUCTURAL DESIGN OF EXHIBIT H WALL:

Take the wall shown in the sliding exhibits to the Crievia Specifications Document and perform a stanisty applies in the wall, then do a structural design for the pressures resulting from the stability analysis. Set up 3 large cases the boy flood wall rules; #2 by retaining wall; and #3 by the hybria (trapezous passine pressure danam, no crack into believem), to show the differences. Use IFOR and Iran = 0 to get the structural Scient exactly for the large sciences.

Soils Preparation Doto:
Remark Doto Lists = SOLI, SOLS, SOLT
Option Times Lite: not used

Firster Ende Dare: 50,00 25 example #/

For P_{opt} Provides $\frac{\text{Lordense}}{\text{FW}}$ $\frac{\text{NPRO}}{\text{D=1}}$ $\frac{\text{ERACK}}{\text{D=1}}$ $\frac{\text{RN}}{\text{C}}$ $\frac{\text{2}}{\text{NPS}}$ $\frac{\text{D=2}}{\text{NPS}}$ $\frac{\text{NPS}}{\text{D=2}}$ $\frac{\text{NPS}}{\text{NPS}}$ $\frac{\text{NPS}}{\text{D=3}}$ $\frac{\text{D=2}}{\text{D=3}}$

Stricture: All detroit values an except use IFEM = IFFE = 3

CHO D D D D , CHID D D D I O (IB. 1951)

Densistance Commons in the date the RUHPA, Rushing, 200: 110te Use of REM Commond to orpore the not the There likes will not be exerced one one solely to more the sole file more readable to the User.

```
*OFTCE SCUOTA
*0.15T
1000 INIT
1010 3
1020 1
1030 II
1040 NAME EXAMPLE 2 -- ANALYZE EXHIBIT M WALL, THEN DESIGN WITH MODULE \Psi
1045 REM
1050 RFM BASIC DENERAL WALL EXAMPLE -- STABILITY ANALYSIS, STRESS DESIGN
1100 KFM
FITO REM
           TINE 1020 (ANSWER F) SET ALL LOAD CASES FOR FLOOD WALL ACTION.
11.00 REM USE DATA LIST TYPE TO RESET LOAD CASE 2 FOR RETAINING WALL ACT
1130 TYPE
1140 RIM
          TINE 1030 (ANSWER H) SET ALL LOAD CASES FOR HYDRAULIC OFTIONS)
1150 Rt M
1160 RFM
           THIS IS NOT CHANGEABLE
1170 REM
2000 SPH1 0 20 700 125 C 0 C 0
2010 REM. DATA LIST SPIZ WILL BE COPIED AUTOMATICALLY FROM DATA LIST SPE3
2015 REM
2020 SSHC 0 86.5 100.0
2030 SST
           0 87.5 100.0
2035 REM
2040 SPE3 20 700 125 20 700 8000 8000 8000 8000 50 2100 SNLE 2 1 100.0 87.5 0 87.0 86.5 0 100.0
2110 REM
2200 SEEP
           0 87.5 97.0 0 0 1 1
2300 REM
3000 WIA 100.0 5.6 C C 3010 WIAR 16.3 10.0 20.0 0.0
3020 WIAH 18.0 C 18.0
3030 WIAK 0 5.7 18.0 8.142857
3040 WIAS 18.0 0.193548382 24.0 0.0 0.0 C 3000 WIAT 83.0 18.0 100.0 0.0 C
3060 REM
3020 RUM. NOTE USE OF.REM COMMAND TO ANNOTE DATA FILE (NOT EXECUTED)
3080 RFM
          (THERE ARE ACTUALLY ONLY 10 LINES OFFIATA FOR 3 LOAD CASES)
4000 REM
4100 UPDATE
```

```
*RUN TWOOTE
```

12/03/80 11.689

:

FROGRAM INDA - 213-F3-F0 027 I-WALL DESIGN/ANALYSIS REL 1.0 AUG 80

(RESPOND WITH ? FOR ANY HELP)

ENTER DEDATE ETLE NAME (7 CHAR MAX) TEXCUEN

FOR REPORT FILE.

ENTER NAME TO BE USED ON REPORT FILE IDENT CARD, 12 CHAR. MAX.

?M.L. WALTES

ENTER YOUR MACON ACCOUNT NUMBER

?BORDED

FNTER NAME OF COMMAND-DATA FILE OR FNTER A CARRIAGE RETURN IF COMMANDS ARE TO BE ENTERED INTERACTIVELY PEXCHATA PROCESSING DATA FILE...

1 UPDATE FILE RESET

DATA FILE PROCESSING DONE
RETURN TO INTERACTIVE INPUT

COMMAND TRUN FA

THE RESULTANT HATTO " 0.3214, FOR LOAD CASE 1

THE RESULTANT RATIO # 0.2175, FOR LOAD CASE 2

THE RESULTANT RATIO . 0.3214, FOR LOAD CASE 3

FINAL FACTOR OF SAFETY AGAINST SLIDING . 3.99. FOR LOAD CASE 1 RY ALLOWARLE STRENGTH METHOD C'CZESE2C' TANCHI' TANCHIZES

FINAL FACTOR OF SAFETY AGAINST SUIDING $$6.18\star$ for LOAD EASE -2 By shear ericiton method

FINAL FACTOR OF SAFFTY AGAINST SELDENG 3.99+ FOR FUAL CASE 3
BY ALLOWARLE STRENGTH METHOD
C1 CZCS42C1 TANISHT: TANISHTZES

```
62.12 (CU FT / LF), FOR LOAD CASE 1
TOTAL CONCRETE VOLUME *
TOTAL CONCRETE VOLUME :
                                62.12 (CU FT / LF), FOR LOAD CASE 2
                                62.12 (CU FT / LF)+ FOR LOAD CASE 3
TOTAL CONCRETE VOLUME ==
ENTER 1 TO SEE PLOTS OF THE DATA AND ANALYSES
        (MAKE HARD COPY BEFORE CARRIAGE RETURN)
        (NOTE: DO NOT ENTER 1 IF YOU ARE GOING TO RUN MODULE WD.)
  OR O TO OHIT THE PLOTS
★ UPDATE FILE RESET
₱ COMMAND-DATA PHASE ENTERED
COMMAND
PRUN WD
# BEGIN DATA CHECK FOR MODULE WD
COMPLETE THE TRIAL WALL DESCRIPTION:
TO GET DEFAULT VALUE FOR "IFEM", ANSWER NEXT QUESTION WITH A CARRIAGE RETURN:
### IFFM IS NOT DEFINED, SO YOU MUST
    ENTER 0 TO USE LOAD CASES AS-IS
          1 TO ALSO USE EM ALTERNATE SPECIAL LOADINGS
            (A CARRIAGE RETURN WILL INSERT THIS DEFAULT
          VALUE OF 1)
2 FOR MORE INFORMATION
   OR
          C TO CONTINUE DATA CHECK WITHOUT COMPUTATIONS
    ΠE
    OR
          * TO ABORT THE MODULE
70
# BEGIN ALTERNATE METHOD (WSD) DESIGN
ENTER THE LOAD CASE NUMBER YOU WANT TO DESIGN FOR
   DR A ZERO FOR ALL LOAD CASES IN DATA LIST "CASE"
  OR A * TO AFORT THE MODULE
# DESTON SUMMARY
```

```
FTS
WLA
                      TW2
                                     STR
                                                   HEELW
     100.0000
                   5.600000
                                 0.3435583
                                                 8.950000
WLAB
      HW
                       HS
                                                   RASER (LIST WLBR)
     16.30000
WLAH HEELT?
                    HEELW
                                  HEELT1
     18.00000
                   8.950000
                                  18.00000
WLAK KELAG
                      DKEY
                                    WKEY
                                                   BKTF
                    5.700000
                                  18.00000
                                                 8.142857
WLAS ISTE
                       TSB
                                    TSTE
                                                   HSTPH
                                                                  HSIPR
    18.00000
                   0.1935484
                                  21.00000
     HSBFB
WLAT BIET
                                                   TW1
                     TOEHT
                                    TS2
                                                                   TSt
    83.00000
                   18.00000
                                  100.0000
                                                0.
                                                                100.0000
---- TMINE
                     TMINS
     18.00000
                    18.00000
# UPDATE FILE RESET
■ COMMAND DATA PHASE ENTERED
COMMAND
?E NII
ENTER 5 TO SEND REPORT TO ADEC TERMINAL
  UR O TO SAVE IT AS A PERMANENT FILE
  OR 1 TO DETACH (DESTROY) 1T--
ENTER YOUR ADE CENTER TERMINAL MACON STATION CODE
7R0
SNUMB # 72150
wour undate file for future restart is named EXCUPD
stor
     OK (release unmonded files)
```


NOTES TO EXPLAIN SPECIAL PRINTOUT THAT MIGHT BE IN THIS FILE -
THE VALUE "-.12346+31" IS USED TO DENOTE AN UNDEFINED ITEM:
THE VALUE "-.14328+31" MEANS THAT THE DEFAULT VALUE WAS REQUESTED.

A "MEMORY FAULT AT ..." MESSAGE PROBABLY MEANS THAT NEEDED DATA IS UNDEFINED.

END OF NOTES.

COMMAND ENTEREDS
INIT

B- ALL DATA RESET FOR FRESH START --COMMAND ENTEREDS
F

11142142 ON 12/ 3/AO

WALL DECLARED TO BE A HYDRAULIC FLOOD WALL

COMMAND ENTEREDS NAME EXAMPLE 2 -- ANALYZE EXHIBIT M WALL, THEN DESIGN WITH MODULE W

COMMAND ENTERED:

COMMAND ENTEREDS

COMMAND ENTERED!

REM RASIC GENERAL WALL FXAMPLE -- STABILITY ANALYSIS, STRESS DESIGN

COMMAND ENTEREDS

COMMAND ENTEREDS

PEM LINE 1020 (ANSWER F) SET ALL LOAD CASES FOR FLOOD WALL ACTION,

COMMAND ENTEREDS

REM. USE DATA LIST TYPE TO RESET LOAD CASE 2 FOR RETAINING WALL ACT.

COMMAND ENTEREDS

COMMAND ENTERED !

COMMAND ENTERED:
REM LINE 1030 (ANSWER H) SET ALL LOAD CASES FOR HYDRAULIC OPTIONS)

COMMAND ENTERED: REM THIS IS NOT CHANGEABLE

COMMAND ENTERED:

```
COMMAND ENTERED:
SPH1 0 20 700 125 C 0 C 0
COMMAND ENTEREDS
REM DATA LIST SPT7 WILL BE COPIED AUTOMATICALLY FROM DATA LIST SPE3
COMMAND ENTEREDS
COMMAND ENTEREDE
SSHC 0 86.5 100.0
COMMAND ENTEREDE
SST 0 87.5 100.0
COMMAND ENTEREDS
CHEMAND ENTEREDS
SPER 20 700 125 20 700 8000 8000 8000 80
COMMAND ENTERFOR
SOLE 2 1 100,0 87,5 0 87.0 86,5 0 100,0
COMMAND ENTERED:
COMMAND ENTERFOI
SEEP 0 87.5 97.0 0 0 1 1
COMMAND ENTEREDS
RFM
COMMAND ENTEREDS
WLA 100.0 5.6 C C
COMMAND ENTERFOR WLAB 16.3 10.0 20.0 0.0
COMMAND ENTEREDS
 WLAH 18.0 C 18.0
COMMAND ENTEREDS
WLAK 0 5.7 18.0 8.142857
COMMAND ENTEREDS
 WLAS 18.0 0.193548387 24.0 0.0 0.0 C
COMMAND ENTEREDT
WLAT 83.0 18.0 100.0 0.0 C
 COMMAND ENTEREDS
 BÉM
 COMMAND ENTEREDS
 REM NOTE USE OF REM COMMAND TO ANNOTE DATA FILE (NOT EXECUTED)
 COMMAND ENTEREDS
 REM (THERE ARE ACTUALLY ONLY 10 LINES OFDATA FOR 3 LOAD CASES)
 COMMAND ENTEREDS
 RE 4
 COMMAND ENTEREDS
 UPDATE
 # HPDATE FILE PESET
```

COMMAND ENTEREDS

COMMAND ENTEREDS

EXAMPLE 2 -- ANALYZE EXHIBIT W HALL, THEN DESIGN WITH MODULE 11:53:25 ON 12/ 3/80

REGIN BASIC STABILITY DATA CHECK

DEFAULT	VALUE	nF	62.50000	USED FOR	GAMAN	ILOAD CASE	17
DEFAULT	VALUE	0#	150,0000	USED FOR	GAMAC	ILOAD CASE	1)
DEFAULT	VALUE	DF	0.	USED FOR	UCE XS3	CLOAD CASE	1)
DEFAULT	VALUE	OF	0.	USED FOR	UCEXSO	ILOAD CASE	1)
DEFAULT	VALUE	Ű.	0.	USED FOR	UCE×55	(I DAD CASE	1)
DEFAULT	VALUE	U#	0.	USED FOR	UCBF51	(LOAD CASE	1)
DEFAULT	VALIJE	0.e	o •	USED FOR	UCAFS2	ELDAD CASE	1)
DEFAULT	VALUE	OF	0.	USED FOR	UCBFFZ	ILOAD CASE	1)
DEFAULT	VALUE	UF	0.	USED FOR	UCRF 57	(LOAD CASE	1)
DEFAULT	VALUE	DF	0.	USED FOR	UCBF56	CLOAD CASE	1)
DEFAULT	VALUE	OF	1,000000	USED FOR	UCMS	(LNAD CASE	1)
REFAULT	VALUE	ŊF	1,000000	USED FOR	UC#R	(LOAD CASE	1)
PEFAHLT	VALUE	nF	1.000000	USED FOR	UCWK	ILDAD CASE	1 3
DEFAULT	VALUE	OF	5	USED FOR	IF NOC	(LOAD CASE	1)
DEFAULT	VALUE	OF	1	USED FOR	1F 50m	(LOAD CASE	13
DEFAULT	VALUF	OF	1,000000	USED FOR	CFMA	(LOAD CASE	1)
NO DEFA	ULT VAL	υĘ	FOR BEMIN	SO SET TO	HINDEFINED	(I,OAD CASE	13
DEFAULT	VALUE	ŋF	1.500000	USED FOR	FSMIN	ILDAD CASE	1)
DEFAULT	VALUE	ÜE	5	USED FOR	NSLIDE	(LOAD CASE	1)
DEFAULT	VALUE	ÜE	5	USED FOR	IFWOC	CLOAD CASE	2)
DEFAULT	VALUE	OF	t	USED FOR	1420=	(LOAD CASE	2)
DEFAULT	VALIJE	pF	1.00000	USED FOR	CFMA	ILOAD CASE	5)
DEFAULT	VALUE	٥F	0.3333333	USED FOR	BBFIN	(LOAD CASE	2)
DEFAULT	VALUE	OF	2.00000	USED FOR	FSMIN	(LOAD CASE	5)
DEFAULT	VALUE	40	1	USED FOR	NSLIDE	TLOAD CASE	2)
DEFAULT	VALUE	OF	>	USED FOR	15+00	CLOAD CASE	31

DEFAULT VALLE OF	1	USED FOR	IFSO-	(LOAD CASE	3)
DEFAULT VALUE OF	1.000000	USED FOR	CFMA	(LOAD CASE	3)
NO DEFAULT VALUE	FOR PRMIN	sn set to	UNDEFINED	(LOAD CASE	3)
DEFAULT VALUE OF	1.500000	USED FOR	FSMIN	ILOAD CASE	3)
DEFAULT VALUE OF	5	USED FOR	NSLIDE	TERAD CASE	3)

EXAMPLE 2 -- ANALYZE EXHIRIT M WALL, THEN DESIGN WITH MODULE 11:53:26 ON 12/ 3/AO

REGIN PART 2 OF STABILITY DATA CHECK

EXAMPLE 2 -- ANALYZE EXHIBIT M WALL, THEN DESIGN WITH MODULE 11:53:26 $\,\rm{GN}$ 12/ 3/80

REGIN MODULE FA

VARIABLE HEFLW CALCULATED 8.70 (BW=TW2=TSTB)
VARIABLE HSAPE CALCULATED OR DEFAULTED TO CLOSE COORDINATES. HSRPR = 0.193548 IN/FT.

COOPDINATES OF CORNERS OF WALL CROSS-SECTION

x=(CORDINATES ARE + TOWARD HEEL FROM HASIC WORKING POINT (BMP) Y-COURDINATES ARE ELEVATIONS

PŤ.	x	Y	DESCRIPTION OF POINT
• •			******************************
1	0.	100,0000	HASIC WORKING POINT . TOE-SIDE OF STEM TOP
5	-n.2500	A4.5000	HOTTOM OF THE-SIDE FACE OF STEM (AT 181)
3	-0.2500	84.5000	AFTWEEN 131 AND 132, ON TOP FACE OF TOE
4	-5.8500	84.5000	TOP OF TOPHT . AT OUTER END OF THE
5	-5.A500		THE END OF BASE # AT ATES
6	8.2500	A3,0000	TOP OF TOE-SIDE FACE OF KEY
7	A.9500	77.3000	BUTTOM OF THE-SIDE FACE OF KEY
A	10.4500	77.3000	ROTTOM OF MEEL-SIDE FACE OF KEY
9	10.4500	83,0000	TOP OF HEEL+SIDE FACE OF KEY
10	10.4500	83,0000	HEFL END OF BASE
11	10.4500	84.5000	THE OF HEELTS . TOP OF OUTER END OF HEEL
12	1.7500	•	ANTTOM OF MEEL-SIDE FACE OF STEM
13	5000	100,0000	BOTTOM OF HEEL-SIDE TOP PANEL OF STEM
14	1.5000	100,0000	TOP OF HEEL-SIDE FACE OF STEM

- # HORIZONTAL NON-SEFPAGE PRESSURES ARE ZERD # RECAUSE YOUR KRACK VALUE OF 1 CANCELS ACTIVE EARTH # AND RECAUSE PRESSURES #3 AND/OR #4 (DATA LIST SCHM) # ARE UNDEFINED, ZERO, OR NEGATIVE.

THE FOLLOWING TABLE INCLUDES WALL AND SOIL+WATER MASS ABOVE BASE, AND THE FORCES ACTING ON IT, EXCEPT THAT HORIZONTAL SEEPAGE AND UPLIFT ARE NOT INCLUDED HERE. "ACTIVE EARTH" INCLUDES THE W3-W4 WATER PRESSURE IF A CRACK IS ASSUMED IN THE EARTH COVER OVER THE END OF THE HEEL.

	I DAD CAS	E 1	
	VERTICAL FORCE LH/SLICE	HORIZONTAL FORCE	MOMENT LB-FT/9L1CF
		LAVSLICE	
n A L L	9318,00	0,	81045.82
ACTIVE EARTH	0.	0.	0.
SHIL+WATER	10069,06	ο,	100719,42
SURCHARGES	0.	0	0.
DIRECT LOADS	o 📜	0.	0.
WIND	0	0 .	0.
FARTHQUAKE	n ,	٥.	0.
TOTAL	19387.06	n	181745.24

- # MORIZONTAL NON-SFEPAGE PRESSURES ARE ZERO
 # RECAUSE YOUR KRACK VALUE OF 1 CANCELS ACTIVE EARTH
 # AND RECAUSE PRESSURES W3 AND/OR W4 (DATA LIST SCWH)
- # ARE UNDEFINED, ZERO, OR NEGATIVE.

THE FOLLOWING TABLE INCLUDES WALL AND SOIL+WATER MASS ABOVE BASE, AND THE FORCES ACTING ON IT, EXCEPT THAT HORIZONTAL SEEPAGE AND UPLIFT ARE NOT INCLUDED HERE. "ACTIVE EARTH" INCLUDES THE W3-W4 WATER PRESSURE IF A CRACK 15 ASSUMED IN THE EARTH COVER OVER THE END OF THE MEEL.

	LUAD CAS	E >	
	VERTICAL FORCE	HURIZONTAL Force	MOMENT
	LAZSLICE	LHISLICE	LB#FT/SLICE
# A [{	9318.00	0.	81045.82
ACTIVE EARTH	0	o,	0,
SOIL+WATER	10069,06	0.	100719.42
SURCHARGES	0.	0.	0.
DIRECT LOADS	0.	0.	0.
MIND	0.	0.	0.
EARTHQUAKE	0.	0,	0,
TOTAL	19387.06	0,	181765,24

- # MORIZONTAL NON-SEEPAGE PRESSURES ARE ZERO
 # RECAUSE YOUR KRACK VALUE OF 1 CANCELS ACTIVE EARTH
 # AND BECAUSE PRESSURES W3 AND/OR W4 (DATA LIST SCWM)
 # ARE UNDEFINED, ZERO, OR NEGATIVE,

THE FOLLOWING TABLE INCLUDES WALL AND SOIL+WATER MASS ABOVE BASE, AND THE FORCES ACTING ON IT, EXCEPT THAT MORIZONTAL SEEPAGE AND UPLIFT ARE NOT INCLUDED HERE. MACTIVE EARTHM INCLUDES THE W3-W4 WATER PRESSURE IF A CRACK IS ASSUMED IN THE EARTH COVER OVER THE END OF THE HEEL.

	LOAD CAS	ŧ 3	
	VERTICAL	HORIZONTAL	MOMENT
	FORCE	FORCE	
	LB/SLICE	LB/SLICE	LR+FT/SLICE
WALL	0118 00	^	81045.82
ACTIVE EARTH	9318.00	2.	
	V •	0.	0,
SOIL+MATER	10069.06	0.	100719.42
SURCHARGES	0	0.	0.
DIRECT LOADS	0.	0 .	0.
WIND	0.	0.	0.
EARTHQUAKE	0.	0.	0.
TOTAL	19387.06	0.	181765.24

EXAMPLE 2 -- ANALYZE EXHIBIT M WALL, THEN DESIGN WITH MODULE 11:53:30 ON 12/ 3/80

REGIN THE OVERTURNING COMPUTATION

LOAD CASE 1

DEFAULT VALUE OF 1 USED FOR NPPD(LC) (LOAD CASE 1)

RESULTANT IS OUTSIDE THE KERN ON THE TOE SIDE

SEFFECTIVE RASE # 15.73 (FT), CORROTNATES OF ZERO PRESSURE ON THE BASE: XZ # 9.88 AND YZ # 77.30

CREEP PATH DESCRIPTION FOR LOAD CASE 1

X-COORDINATES	Y-COURDINATES	HYDROSTATIC PRESSURE
10.45	97.00	0.
10.45	77.30	1231,25
10.45	77.30	1231,25
9.88	77.30	1231,25
A 95	77.30	1209,45
A.25	83.00	718,27
- 5,85	83,00	386,98
•5 AS	87.50	0.

OVERTURNING HYDRAULIC GRADIENT = 0.3759

> VALUE OF APPOLLC) FOUND # 1 IN SIR CHEKIT (LOAD CASE 1)

PASSIVE EARTH PRESSURES FOR LOAD CASE 1

NPPD 87,559 (FT) FIEVATION OF TOP OF SOIL m 0. m 83.000 PRESSURE AT TOP OF SOIL (LHS/SQ.FT) FLEVATION AT HOTTOM OF TOP (FT) ELEVATION OF LOWEST POINT ON WALL # 7723,26
PRESSURE AT LOWEST POINT ON WALL # 4723,26
PASSIVE FARTH FORCE # 5743 4 (LAS/SQ.FT) (FT) (L88/S9.FT) (LBS/SLICE) PASSIVE EARTH MOMENT s =9231.7 (FT-LAS/SLICE)

DISTANCE FROM THE TOF TO THE RESULTANT # 5.24 (FT)

VERTICAL FORCE DUE TO UPLIFT PRESSURE ON BASE # -10302.76 (LBS/SLICE)

HORIZONTAL FORCE DUE TO HYDROSTATIC PRESSURES # 5763.58 (LBS/SLICE)

MOMENT DUE TO UPLIFT AND HYDROSTATIC PRESSURES # -124942.20 (FT-LB8/SLICE)

THE RESULTANT RATIO = 0.3214, FOR LOAD CASE 1

LOAD CASE 2

DEFAULT VALUE OF 3 USED FOR NPPD(LC) (LOAD CASE 2)

RESULTANT IS OUTSIDE THE KEPN ON THE TOE SIDE

EFFECTIVE BASE = 6.48 (FT), COORDINATES OF ZERO PRESSURE ON THE HASE: xz = 1.03 AND yz = 83.00

CREEP PATH DESCRIPTION FOR LOAD CASE 2

X-COORDINATES	Y=COORDINATES	HYDROSTATIC PRESSURE
10.45	97.00	0.
10.45	77.30	1231,25
10.45	77.30	1231,25
A 95	77,30	1231,25
A.25	83.00	875.00
1.03	83.00	875,00
•5.A5	83.00	516,12
•5.A5	A7.50	0.

DVERTURNING HYDRAULIC GRADIENT # 0.8351

> VALUE OF NPPO (LC) FORING # 3 IN SAR CHEKIT (LOAD CASE 2)

PASSIVE EARTH PRESSURES FOR LOAD CASE 2

NPPO
ELEVATION OF TOP OF SOIL # 87,559 (FT)

PRESSURE AT TOP OF SOIL # 87,559 (LBS/SQ.FT)

ELEVATION OF LOWEST POINT ON WALL # 77,300 (FT)

PRESSURE AT LOWEST POINT ON WALL # -967.73 (LBS/SQ.FT)

PASSIVE EARTH FORCE # 4963.7 (LBS/SLICE)

PASSIVE EARTH MOMENT # -11320. (FT-LBS/SLICE)

DISTANCE FROM THE TOE TO THE RESULTANT # 3.54 (FT)

VERTICAL FORCE OUE TO UPLIFT PRESSURE ON BASE # =13898.36 (L88/SLICE)

HORIZONTAL FORCE DUE TO HYDROSTATIC PRESSURES # 4920.84 (L88/SLICE)

MOMENT DUE TO UPLIFT AND HYDROSTATIC PRESSURES # =151088.37 (FT=L85/SLICE)

THE RESULTANT RATIO = 0.2175, FOR LOAD CASE 2

LOAD CASE 3

DEFAULT VALUE OF 1 USED FOR NPPD (LC) (LOAD CASE 3)

RESULTANT IS OUTSIDE THE KENN ON THE TOE SIDE

EFFECTIVE BASE # 15,73 (FT),
COORDINATES OF ZERO PRESSURE ON THE BASE:
xZ = 9.88 AND yZ # 77,30

CREEP PATH DESCRIPTION FOR LOAD CASE 3

X-COORDINATES	Y-COURDINATES	HYDROSTATIC PRESSURE
10.45	97.00	0.
10.45	77,30	1231,25
10,45	77.30	1231,25
9,88	77,30	1231,25
A, 95	77.30	1209.45
A.25	83.00	718,27
~5.85	83,00	386,98
•5.85	A7.50	0.

OVERTURNING HYDRAULIC GRADIENT # 0.3759

> VALUE OF NPPD (LC) FOUND # 1 IN SZR CHEKIT (LOAD CASE 3)

PASSIVE FARTH PRESSURES FOR LOAD CASE 3

NPPD	. 1	
FLEVATION OF TOP OF SOIL	87,559	(FT)
PRESSURE AT TOP OF SOIL	. 0	(LH3/90,FT)
ELEVATION AT HOTTOM OF THE	83,000	(FT)
PRESSURE AT BOTTOM OF THE	•722.26	(LBS/50.FT)
ELEVATION OF LOWEST POINT ON WALL I	77.300	(FT)
PRESSURE AT LOWEST POINT ON WALL	•722,26	(L88/90.FT)
PASSIVE EARTH FORCE	-5763.1	(LBS/SLICE)
PASSIVE FARTH MOMENT	•9231.7	(FT-LAS/SLICE)

```
DISTANCE FROM THE TOE TO THE RESULTANT # 5,24 (FT)
VEHTICAL FORCE OUF TO UPLIFT PRESSURE # +10302.76 (LBS/SLICE)
HORIZONTAL FORCE DUE TO HYDROSTATIC PRESSURES # 5763.98 (LBS/SLICE)
                                                                             5763.98 (LRS/SLICE)
 MOMENT DUE TO UPLIFT AND HYDROSTATIC PRESSURES # #124942.20 (FT-LHS/SLICE)
                                   0.3214, FOR LOAD CASE 3
THE RESULTANT RATTO #
 # REGIN SLIDING COMPUTATION
       FACTOR OF SAFFTY FOR MIN. OMEGA (LEVEL) . 7.43
       SUM OF DRIVING FURCES = 7711,020 (LBS/SLICE)
SUM OF RESISTING FORCES = 7715,337 (LBS/SLICE)
       PASSIVE FARTH FORCE
                                                                 5579.80 (LRS/SLICE)
       ACTIVE FARTH FORCE = 0. (LMS/SLICE)
UPLIFT FORCE = *17092.89 (LMS/SLICE)
SUMMATION OF HORIZONTAL WATER FORCES = 7711.02 (LMS/SLICE)
        FAILURE PATH COORDINATES UNDER THE NEUTRAL BLOCK
             -5.85
                            77.30
              A 95
                            77.30
       FACTOR OF SAFETY FOR MAX. OMEGA (TOE TO KEY) # 3.99
       SUM OF PRIVING FORCES = 6230,984 (L8S/SLICE)
SUM OF RESISTING FORCES = 6234,935 (L8S/SLICE)
       PASSIVE FARTH FORCE
                                                            # 2417.22 (LAS/SLICE)
       ACTIVE FARTH FORCE # 0. (L85/SLICE)
UPLIFT FORCE # +13611.81 (L85/SLICE)
SUMMATION OF HOPIZONTAL WATER FORCES # 6677.13 (L85/SLICE)
         FAILURE PATH COORDINATES UNDER THE NEUTRAL BLOCK
             ¥
•5,45
                            83.00
              8,95
                            77.30
 FINAL FACTOR OF SAFFTY AGAINST SLIDING # 3.99, FOR LOAD CASE &
 BY ALLOWARLE STRENGTH METHOD
C'OC/FS+PC' TANPHI'STANE
                       TANPHI *#TANPHI/FS
       SUM OF PRIVING FORCES = 6230,984 (LRS/SLICE)
SUM OF RESISTING FORCES = 6230,935 (LRS/SLICE)
       PASSIVE EARTH FORCE
                                                                 2417.22 (LBS/SLICE)
       ACTIVE FARTH FORCE UPLIFT FORCE
       ACTIVE FARTH FORCE # 0. (LRS/SLICE)
UPLIFT FORCF # #13611.41 (LRS/SLICE)
SUMMATION OF HORIZONTAL WATER FORCES # 6677.13 (LHS/SLICE)
         FAILURE PATH COORDINATES UNDER THE REUTRAL BLOCK
             -5.AS
                             A3.00
```

A. 95

77.30

```
FACTOR OF SAFETY FOR MIN. OMEGA (LEVEL) # 5,58
     SUM OF DRIVING FORCES # 7711.020 (LRS/SLICE)
     SUM OF RESISTING FORCES # 43010,358 (LBS/SLICE)
    PASSIVE FARTH FORCE
                                                  # 27018.05 (LRS/SLICE)
     ACTIVE FARTH FORCE # 0. (LBS/SLICE)

UPLIFT FORCE # =17092.89 (LBS/SLICE)

SUMMATION OF MORIZONTAL WATER FORCES # 7711.02 (LBS/SLICE)
    ACTIVE FARTH FORCE UPLIFT FORCE
      FAILURE PATH COURDINATES UNDER THE NEUTRAL BLOCK
          -5.A5
                       77.30
           A.95
                       77.30
     FACTOR OF SAFETY FOR MAX. OMEGA (TOE TO KEY) #
     SHM OF DRIVING FORCES . 6677,129 (LBS/SLICE)
     SUM OF RESISTING FORCES # 34579,668 (LBS/SLICE)
    PASSIVE EARTH FORCE
                                                  # 10285,56 (LRS/SLICE)
    ACTIVE FARTH FORCE UPLIFT FORCE
                                                  0, (LHS/SLICE)
= -13611.61 (LBS/SLICE)
     SUMMATION OF HORIZONTAL WATER FORCES . 6677.13 (LBS/SLICE)
      FAILURE PATH COORDINATES UNDER THE NEUTRAL BLOCK
          -5.A5
                       83,00
           8.95
                       77.30
                                                      5.18, FOR LOAD CASE 2
FINAL FACTOR OF SAFETY AGAINST SLIDING .
BY SHEAR FRICTION METHOD
    SUM OF DRIVING FORCES = 6765.836 (LBS/SLICE)
SUM OF RESISTING FORCES = 35014.312 (LBS/SLICE)
     PASSIVE EARTH FORCE
                                                  # 11772,51 (LRS/SLICE)
    ACTIVE FARTH FORCE UPLIFT FORCE
     ACTIVE FARTH FORCE # 0. (LBS/SLICE)
UPLIFT FORCE # =13978.44 (LBS/SLICE)
SUMMATION OF HORIZONTAL WATER FORCES # 6765.84 (LBS/SLICE)
      FAILURE PATH COURDINATES UNDER THE NEUTRAL BLOCK
          x
```

-5.A5

A, 95

H2.43

77.30

```
FACTOR OF SAFETY FOR MIN. OMEGA (LEVEL) = 7.43
     SHM OF DRIVING FORCES = 7711.020 (LAS/SLICE)
     SUM OF RESISTING FORCES # 7715.337 (LBS/SLICE)
                                                         = 5579,80 (LBS/SLICE)
     PASSIVE EARTH FURCE
     ACTIVE FARTH FORCE # 0. (LHS/SLICE)
UPLIFT FORCE # =(7092.89 (LHS/SLICE)
SUMMATION OF HORIZONTAL WATER FORCES # 7711.02 (LHS/SLICE)
       FAILURE PATH COURDINATES UNDER THE NEUTRAL BLOCK
           -5.A5
                          77.30
            A.95
                          77.30
     FACTOR OF SAFETY FOR MAX, OMEGA (THE TH KEY) = 3.99
     SUM OF ORIVING FORCES = 6230,984 (LBS/SLICE)
SUM OF RESISTING FORCES = 6234,935 (LBS/SLICE)
     PASSIVE EARTH FORCE
                                                         # 2417.22 (LBS/SLICE)
     ACTIVE FARTH FONCE
     ACTIVE FARTH FORCE # 0. (LRS/SLICE)

UPLIFT FORCE # +13611.81 (LRS/SLICE)

SUMMATION OF HORIZONTAL WATER FORCES # 6677.13 (LBS/SLICE)
       FAILURE PATH COORDINATES UNDER THE NEUTRAL BLOCK
           -5,85
                          83,00
            A. 95
                          77.30
FINAL FACTOR OF SAFETY AGAINST SLIDING #
BY ALLOWARLE STRENGTH METHOD
C**C/FS+2C* TANPHI/#TANPHI/FS
                                                            3.99, FOR LOAD CASE 3
     SUM OF DRIVING FORCES # 6230,984 (LBS/SLICE)
SUM OF RESISTING FORCES # 6234,935 (LBS/SLICE)
     PASSIVE EARTH FORCE
                                                         = 2417,22 (LRS/SLICE)
     ACTIVE FARTH FORCE # 0. (LRS/SLICE)
UPLIFT FURCE # +13611.81 (LBS/SLICE)
SUMMATION OF HORIZONTAL WATER FORCES # 6577.13 (LBS/SLICE)
       FAILURE PATH COORDINATES UNDER THE NEUTRAL BLOCK
           -5.A5
                          A3.00
                          77.30
            A. 95
```

EXAMPLE 2 == ANALYZE EXHIBIT M WALL, THEN DESIGN WITH MODULE 12: 0:50 ON 12/ 3/80

F HEGTH ALLOWABLE REARING CAPACITY COMPUTATIONS

THE MARE LIES IN SOIL 3

FOR LOAD CASE 1.

FOR THE BASE COORDINATES Xm =5.85 Ym 83.00, THE ABSOLUTE VALUE OF:
THE ALLOWARLE REARING PRESSURE = 8000.00 (LBS/SQ.FT)
THE ACTUAL HEARING PRESSURE = 1155.18 (LBS/SQ.FT)

FOR THE MASE COORDINATES XM 8.25 YM 83.00, THE ABSOLUTE VALUE OF ETHE ALLOWARLE BEARING PRESSURE M 8000.00 (LBS/SQ.FT)

THE ACTUAL BEARING PRESSURE M 119.57 (LBS/SQ.FT)

FOR THE BASE COOPDINATES XX 8,95 YX 77.30, THE ABSOLUTE VALUE OF:
THE ALLOWARLE BEARING PRESSURE XX 8000.00 (LBS/SC.FT)
THE ACTUAL BEARING PRESSURE XX 68.16 (LBS/SC.FT)

FOR THE BASE COORDINATES Xm 10.45 Ym 77.30, THE ABSOLUTE VALUE OF:
THE ALLOWABLE BEARING PRESSURE m 6000.00 (LBS/SQ.FT)
THE ACTUAL BEARING PRESSURE m 0. (LBS/SQ.FT)

THE REARING CAPACITY OF THE SOIL IS SATISFACTORY FOR LOAD CASE, 1

FOR LOAD CASE 2.

THE EFFECTIVE HASE WIDTH IS LESS THAN BWI (DATA LIST MLAR).

SO A LINEAR EXTHAPOLATION AT A CONTSTANT ELEVATION WAS MADE ON THE
REARING CAPACITY (ARPSTN, ARPSTW, ARPUTN, ETC) TO FIT THE RANGE

FOR THE BASE COORDINATES X= +5.85 Y= 83.00, THE ABSOLUTE VALUE OF 8
THE ALLOWARLE BEARING PRESSURE = 8000.00 (LBS/SQ.FT)
THE ACTUAL BEARING PRESSURE = 1596.47 (LBS/SQ.FT)

FOR THE BASE COOPDINATES X= 8.25 Y= 83.00, THE ABSOLUTE VALUE OF E
THE ALLOWARLE BEARING PRESSURE = 8000.00 (LBS/SQ.FT)
THE ACTUAL BEARING PRESSURE = 0. (LBS/SQ.FT)

FOR THE BASE CHORDINATES XM 8.95 YM 77.30, THE ABSOLUTE VALUE OF BITHE ALLOWARLE REARING PRESSURE M 8000.00 (LBS/SQ.FT) THE ACTUAL BEARING PRESSURE M 0. (LBS/SQ.FT)

FOR THE HASE COORDINATES XM 10.05 YM 77.30. THE ARSOLUTE VALUE OF 1
THE ALLOWARDER REARING PRESSURE M ROCO.00 (LRS/SQ.FT)
THE ACTUAL BEARING PRESSURE M 0. (LBS/SQ.FT)

THE REARING CAPACITY OF THE SOIL IS SATISFACTORY FOR LOAD CASE, 2

FOR LUAD CASE 3,

FOR THE BASE COORDINATES XX =5.85 YX 83.00, THE ABSOLUTE VALUE OF:
THE ALLOWARLE REARING PRESSURE # 8000.00 (LBS/SD.FT)
THE ACTUAL REARING PRESSURE # 1155.18 (LBS/SD.FT)

FOR THE HASE COORDINATES X# 8,25 Y# 83,00, THE ABSOLUTE VALUE OF:
THE ALLOWARLE REARING PRESSURE # 8000,00 (LBS/SO,FT)
THE ACTUAL REARING PRESSURE # 119,57 (LBS/SO,FT)

FOR THE MASE COORDINATES XE 8.95 YE 77.30, THE ABSOLUTE VALUE OF 1
THE ALLOWARLE REARING PRESSURE B 80.00.00 (LBS/SQ.FT)
THE ACTUAL REARING PRESSURE B 68.16 (LBS/SQ.FT)

FOR THE BASE COORDINATES XW 10.05 YW 77.30, THE ABSOLUTE VALUE OF 1
THE ALLOWARLE REARING PRESSURE # 8000.00 (LBS/SQ.FT)
THE ACTUAL BEARING PRESSURE # 0. (LBS/SQ.FT)

THE BEARING CAPACITY OF THE SOIL IS SATISFACTORY FOR LOAD CASE, 3

EXAMPLE 2 -- ANALYZE EXHIBIT M HALL, THEN DESIGN WITH MODULE 12: 0:50 ON 12/ 3/80

REGIN COST ANALYSIS

COST & VOLUME DE EXCAVATED MATERIAL

SOFT LAYER VOLUME UNIT COST TOTAL COST

(CU.FT/L.FT) (DOLLARS/CU.FT) (DOLLARS/L.FT)

3 0. 0.

COST & VOLUME OF BACKFILL MATERIAL.

SOIL LAYER VOLUME UNIT COST TOTAL COST (CU.FT/L.FT) (DOLLARS/CU.FT) (DOLLARS/L,FT) 1 30.59 0. ٥. 0. 0. 0. FILTER ZONE ο, 0. ٥, 32.64 n. 0. 6 0. 0.

```
COST & VOLUME OF CONCRETE
        SECTION VOLUME UNIT COST TOTAL CUST
                   (CU.FT/L.FT)
                                  (DOLLARS/CU,FT)
                                                       (DOLLARS/L,FT)
          STEM
                       27,13
                                1.00
                                                        27,13
                        24.45
          RASE
                                     1.00
                                                          24,45
                                     1.00
          KEY
                                                          10.54
TOTAL CONCRETE VOLUME = 62.12 (CU FT / LF), FOR LOAD CASE 1
        COST & VOLUME OF EXCAVATED MATERIAL
         SOIL LAYER VOLUME UNIT COST TOTAL COST

(CU.FT/L.FT) (DOLLARS/CU.FT) (DOLLARS/L.
                    VOLUME UNIT CUST

(CU.FT/L.FT) (DOLLARS/CU.FT)
                                                       (DOLLARS/L.FT)
                        95.15
                                  0.
                   COST & VOLUME OF BACKFILL MATERIAL.
        VOLUME UNIT COST TOTAL CUST
(CU.FT/L.FT) (DOLLARS/CU.FT) (DOLLARS/L.FT)
30.59 0. 0. 0.
0. 0. 0. 0.
37.64 0. 0.
0. 0.
        SOIL LAYER
                                                       (DOLLARS/L,FT)
      FILTER ZONE
           7
        COST & VOLUME OF CONCRETE
              N VOLUME UNIT COST TOTAL CUST (CU.FT/L.FT) (DOLLARS/CU.FT) (DOLLARS/L.FT)
                   (CU.FT/L.FT)
                                                       (DOLLARS/L.FT)
          9 T F M
                                                        27,13
24,45
                       27.13 1.00
          RASE
                        24.45
                                     1.00
          KEY
                        10.54
                                     1.00
                                                          10.54
TOTAL CONCRETE VOLUME # 62.12 (CU FT / LF), FOR LOAD CASE 2
        COST & VOLUME OF EXCAVATED MATERIAL
                  VOLUME UNIT COST TOTAL CUST
(CU.FT/L.FT) (DOLLARS/CU.FT) (DOLLARS/L.FT)
        SOIL LAYER
                        95,15
                                   0.
                                                        0.
                   COST & VOLUME OF BACKFILL MATERIAL,
                   TOTAL COST
        SOIL LAYER
                                                       (DOLLARS/L.FT)
            1
                         0.
0.
32.64
0.
      FILTER ZONE
                                                          0.
                                                          ٥.
        SECTION VOLUME OF CONCRETE

SECTION VOLUME UNIT COST TOTAL COST

(CU.FT/L.FT) (DOLLARS/CU.FT) (DOLLARS/L.FT)
                                                       (DOLLARS/L.FT)
                       27,13 1.00
24,45 1.00
          STEM
                                                        27,13
                                     1.00
                        24.45
10.54
          HASF
                                                          24.45
                                     1.00
                                                          10,54
          KEY
```

TOTAL CONCHETE VOLUME # 62,12 (CU FT / LF), FOR LOAD CASE 3

REGIN HOLL CONTROL CALCULATIONS FOR LOAD CASE 1

THE COMPHTED PREEP HATTO FOR A TIP ELEV. OF 77.30 IS 2.6323

HEGIN BUIL CONTROL CALCULATIONS FOR LOAD CASE 2

THE COMPUTED CREEP RATIO FOR A TIP FLEV. OF 77.30 IS 2.6323

HEGIN HOLL CONTHOL CALCULATIONS FOR LOAD CASE 3

EXAMPLE 2 -- ANALYZE EXHIBIT M WALL, THEN DESIGN WITH MODULE 12: 0153 ON 12/ 3/80

REGIN DATA CHECK FOR ACTIVE FARTH PRESSURES COMPUTATION

COULOMR'S COEFFICIENTS OF ACTIVE EARTH PRESSURES FOR:

HACKFILL LAYER KA VALUE

1 0,4961

HORIZONTAL ACTIVE EARTH PRESSURES FOR LOAD CASE 1 FOR CLASSIC (COULOMB) ANALYSIS IN SP (FACE OF STEM)

NUTPUT OF ARRAYS HS, EHS, AND YVS IN MODULE SP FOR CLASSIC ANALYSIS.

FLEVATION INCREMENTAL HORIZONTAL INCREMENTAL HORIZONTAL STATIC FORCE (LBS/FT)

A6.500 0. 0,

A4.500 0. 0.

FOR THE AROVE LOAD CASE THE RESULTANT FORCES ARE

RESULTANT HORIZONTAL STATE ACTIVE FORCE # 0. LBS/HURIZ FT ACTING AT ELEVATION 0.

REGULTANT HORIZONTAL ACTIVE FORCE (IN EXCESS OF STATIC) DUE TO FARTHQUAKE a 0. LBS/HORIZ FT acting at elevation 0.

EXAMPLE 2 -- ANALYZE EXHIBIT M WALL, THEN DESIGN WITH MODULE 12: 0:53 ON 12/ 3/80

BEGIN DATA CHECK FOR ACTIVE EARTH PRESSURES COMPUTATION

COULDMR'S COFFFICIENTS OF ACTIVE FARTH PRESSURES FOR A MACKFILL LAYER KA VALUE 0,4961

HURIZONTAL ACTIVE EARTH PRESSURES FOR LOAD CASE 2 FOR CLASSIC (COULOMB) ANALYSIS IN SP (FACE OF STEM)

OUTPUT OF ARRAYS HS, EHS, AND YVS IN MODULE SP FOR CLASSIC ANALYSIS.

FLEVATION	INCREMENTAL HORIZONTAL	INCREMENTAL HORIZONTAL
	STATIC FORCE	EARTHQUAKE FURCE
(FT)	(LBS/FT)	(LBS/FT)
	*********	**************
86.500	0.	ο΄.
85.500	0 .	0 .
84.500	0.	0 ີ

FOR THE ABOVE LOAD CASE THE RESULTANT FORCES ARE:

RESULTANT HORIZONTAL STATIC ACTIVE FORCE α . LBS/HURIZ FT acting at elevation α_{\star}

RESULTANT HORIZONTAL ACTIVE FORCE (IN EXCESS OF STATIC) DUE TO EARTHQUAKE = 0. LRS/HORIZ FT ACTING AT ELEVATION 0.

EXAMPLE 2 -- ANALYZE EXHIBIT M HALL, THEN DESIGN WITH MODULE 12: 0:54 (N 12.7 S/80)

* BEGIN DATA CHECK FOR ACTIVE EARTH PRESSURES COMPUTATION

COULDMR'S COFFFICIENTS OF ACTIVE FARTH PRESSURES FOR:

HACKFILL LAYER KA VALUE

1 0.4961

HORIZONTAL ACTIVE EARTH PRESSURES FOR LOAD CASE 3 FOR CLASSIC (COULOMB) ANALYSIS IN SP (FACE OF STEM)

DUITPIT OF ARRAYS HS. EHS. AND YVS IN MODULE SP FOR CLASSIC ANALYSIS.

ELEVATION	INCREMENTAL HORIZONTAL	INCREMENTAL HORIZONTAL
-	STATIC FORCE	EARTHQUAKE FORCE
(FT)	(LBS/FT)	(LRS/FT)
	**************	**************
86,500	0.	0.
85.500	0.	0
84.500	0.	0.

FOR THE AROVE LOAD CASE THE RESULTANT FORCES ARE:

RESULTANT HORIZONTAL STATIC ACTIVE FORCE # 0. LHS/HORIZ FT ACTING AT ELEVATION 0.

RESULTANT MORIZONTAL ACTIVE FORCE (IN EXCESS OF STATIC)
DUE TO EARTHQUAKE = 0. LBS/MDRIZ FT
ACTING AT ELEVATION 0.

EXIT MODILE FA

UPDATE FILE RESET

COMMAND ENTEREDS

121 2121 ON 127 3780

MEGIN DATA CHECK FOR MODULE WO COMPLETE THE TRIAL WALL DESCRIPTIONS DEFAULT VALUE OF 0. USED FOR BASER (LOAD CASE 1) STR CALCULATED TO BE 0.34356 DEFAULT VALUE OF USED FOR IBSAME 0 (LOAD CASE 1) WITH PASE RADIUS ("RASER", 0.0 FOR RECTANGULAR) . O. FEET, TOE END OF HASE UNIT WIDTH # 1.0000 FT. AND MEEL END OF BASE UNIT WIDTH # 1.0000 FT. (RASIC WORKING POINT IS 1.0 FT, WIDE). LOWEST CONCRETE . 77.30 FT., AT BOTTOM OF KEY DEFAULT VALUE OF 11 USED FOR MAXBAR (LOAD CASE 1) SPAMIN CALCHLATED TO BE 3,6600 MAXIMUM STEFL AREA PER FOOT, CALCULATED FROM NO. 11 HARS (MAXHAR) AT 3.66 INCHES (SPAMIN), IS 5.115 Sq. IN. / FT. ------ PRESSURE DATA VERIFICATION FOR LOAD CASE 1 ------FH TUP CALCULATED TO BE 97.000 FOR LOAD CASE 1 > NPPD 13 1 USED FOR ACSFILE) (LOAD CASE 1) DEFAULT VALUE OF 1.000000 ------ PRESSURE DATA VERIFICATION FOR LOAD CASE FH TOP CALCULATED TO BE 97,000 FOR LOAD CASE 2 > NPPD 18 DEFAULT VALUE OF 1.000000 USED FOR AOSF(LC) (LOAD CASE 2) ----- PRESSURE DATA VERIFICATION FOR LOAD CASE 3 ******** FH TOP CALCHLATED TO BE 97,000 FOR LUAD CASE 3 > NPPD 15 DEFAULT VALUE OF 1,000000 HISED FOR ANSFILE) (LOAD CASE 3) ----- END OF PHESSIRE DATA VERIFICATION -----

DEFAULT VALLE OF	3000,000	USED FOR	FPCON	CLOAD CASE	1)
MERABLE VALUE OF	0.3900000€ 0	A USED FOR	ESIL	IL DAD CASE	13
DEFAULT VALUE OF	9.190000	HISED FOR	RATION	CLOAD CASE	1 7

COORDINATES OF CORNERS OF WALL CROSS-SECTION

X=FOORDINATES ARE + TOWARD MEEL FROM BASIC WORKING POINT (BMP) Y=FOORDINATES ARE FLEVATIONS

PT.	x	•	DESCRIPTION OF POINT

١	ρ·	100,0000	RASIC WORKING POINT & TOE#SIDE OF STEM TOP
5	₩0.250 0		AUTTOM OF THE-SIDE FACE OF STEM (AT 181)
3	- 0,2501		AFTWEEN TS1 AND TS2, ON TOP FACE OF TOE
14	=5, R500		TOP OF THEHT = AT BUTER END OF TWE
5	-5.8500		THE END OF HASE # AT BTE1
6	A,2500		TOP OF THE SIDE FACE OF KEY
7	A 4500		ROTTOM OF TOE-SIDE FACE OF KEY
8	10.4500		BOTTOM OF MEEL-SIDE FACE OF KEY
9	10.4500		TOP OF HEEL-SIDE FACE OF KEY
10	10.4500		REEL END OF BASE
11	10.4500		TOP OF MEELTE * TOP OF DUTER END OF MEEL
12	1.7500		ROTTOM OF MEEL SIDE FACE OF STEM
13	1.5000		ROTTOM OF MEEL-SIDE TOP PANEL OF STEM
14	1.5000		TOP OF HEEL+SIDE FACE OF STEM BOTTOM OF CUTOFF WALL UNDER KEY
1.5	9,7000	77,3000	BULLOW OF COLDER HALL UNDER HET
DEFAULT	VALUE OF	0.3500000	USED FOR RATIOF (LOAD CASE 1)
DEFAULT	VALUE OF	20000.00	USED FOR FSTLMX (LOAD CASE 1)
DEFAULT	VALUE OF	n	USED FOR 1FDR (LOAD CASE 1)
DEFAULT	VALUE OF	3,500000	USED FOR COVHS (LOAD CASE 1)
DEFAULT	VALUE OF	3.500000	USED FOR COVIS (LOAD CASE 1)
DEFAULT	VALUE OF	3,500000	USED FOR COVIN (LOAD CASE 1)
DEFAULT	VALUE OF	4.500000	USED FOR COVER (LOAD CASE 1)
DEFAULT	VALUE OF	2.375000	USED FOR SPABL (LOAD CASE 1)
CUMBINED	PASSIVE	PRESSURE VALUE	OF -722.2640 USED FOR LOAD CASE 1
		PRESSURE VALUE	
COMBINED	PASSIVE	PRESSURE VALUE	OF +722,7640 USED FOR LOAD CASE 3

EXAMPLE 2 -- ANALYZE EXHIBIT M WALL, THEN DESIGN WITH MODULE 12: 2:50 ON 12/ 3/80

HEGIN ALTERNATE METHOD (WSD) DESIGN

THE ABOVE TABLE OF X= AND Y=COURDINATES AND THE FOLLOWING TABLE OF DATA LISTS DESCRIBE THE MALL ASSUMED FOR THE DESIGN ANALYSIS FREE BODIES. IF THE FINAL DIMENSIONS TURN OUT TO BE SUBSTANTIALLY DIFFERENT, YOU MAY WANT TO BUN MODULE WD AGAIN.

WLA ETS inc.nonn	T#2 5,600000	STR 0.3435583	HEFL# 8.700000	
NEAH HW 16.30000	45 0.		RASER (L	[ST#WLBR)
WLAH HEELTZ	MEFL % 8.700000	HEELT1 18.00000		
WLAK KFLAG	DKEY 5.700000	#KEY 18.00000	8.142857	
ML49 TSTT 18,00000 MSHPH 0,1935484	TSR 0.1935484	1918 24.00000	н 9 тРН 0.	н 3 трв
WLAT BTE1 #3.00000	TOEHT 18.00000	T82 100,0000	T in 1	TS1 +0,1234000E 31
TMINE 15,000n0	TMINS 18.00000			

BEGIN TOF DESIGN

PUT REINF, IN AND INCREASE THICKNESS AS NEEDED FOR SHEAR

HEGIN STEM DESIGN

PUT REINF, IN AND INCREASE THICKNESS AS NEEDED FOR SHEAR

HEGIN KEY DESTON

PUT REINE, IN AND INCHEASE THICKNESS AS NEEDED FOR SHEAR

REV CATA WREY, BRITE AME 18,000000 AND 8,142857 WITH DREV # 5,700000

HEEL DESTAN

PUT HEINE, IN AND INCREASE THICKNESS AS NEEDED FOR SHEAR

* DESTON SHMMARY

4 LA	£ T S 100 . 0000	1%2 5,600000	9TR 0.3435583	HFELW 8,950000	
WLAR	8 ₩ 1 6 , 3 0 0 0 0	98 0.		BASER (L'	IST#W(RR)
WLAM	MEFLTP 18.00000	HFFL W 8,950000	HEELT1 18.00000	·	
WL AX	*FL&G	DKEY 5.700000	WKF Y 18.00000	#KTF 8,142857	
WLAS	TSTT 15,00000 ₩SAPB	TSA 0.19354A4	RTET 00000	н етр н О.	н81 РВ 0.
(0.				
WL≜T	BTE1 83,00000	TOEHT 18,00000	132 100,000	7 . 1	T\$1 100.0000
	TMINH 18,00000	TMINS 18,00000			

COORDINATES OF CORNERS OF WALL CROSS-SECTION

K-COORDINATES ARE + TOWARD MEEL FROM BASIC WORKING POINT (RMP) V-COORDINATES ARE ELEVATIONS

PT.	×	•	DESCRIPTION OF POINT
• •	******		
1	0.	100,0000	PASIC WORKING POINT & TOE-SIDE OF STEM TOP
2	-0.2500	84.5000	ROTTOM OF TOE-SIDE FACE OF STEM (AT 151)
5	*n,2500	A4.5000	HETHEEN 151 AND 152, ON TOP FACE OF THE
4	-5. R500	84.5000	THE DE TOPHT & AT HITER END DE THE
5	-5. A500	83,0000	TOF END OF MASE = AT MIET
6	é.2500	83.0000	THE OF THE STOE FACE OF KEY
7	A. 9500	77.3000	ANTIOM OF THE STOP PACE OF MEY
Ŗ	10.4500	77.3000	ANTTOM OF HEEL-SIDE FACE OF KEY
9	10,4500	A 3 . 0 0 0 0	TOP OF HEEL+SIDE FACE OF KEY
10	10,4500	83,0000	HEFL END OF BASE
11	10.4500	84.5000	THE OF HEELTS & TOP OF DUTER END OF HEEL
12	1.5000	84.5000	ANTIOM OF MEEL SIDE FACE OF STEM
13	1.5000	100,0000	ROTTOM OF HEEL-SIDE TOP PANEL OF STEM
14	1.5000	100,0000	TOP OF HEEL STOE FACE OF STEM
15	9.7000	77,3000	ROTTOM OF CUTOFF WALL HADER KEY

THE REINFORCING IN THE FOLLOWING TABLE SATISFIES STRENGTH AND FM 1110-2-2103 MINIMUM REQUIREMENTS 1,125 PERCENT OF AREA IN EACH FACE).

```
TAMEF OF STEEL VALUES IN STEM, SQ. IN. / FT.

M. FLEV. ASTLST(M) ASTLSH(M,1) ASTLSH(M,2) ASTLSH(M,3)
  1 100.00
              0.273
                           0.273
                                    *****
     99.00
               0.273
                           0.273
                                       .....
     98.00
               0.276
                           0.276
                                       .....
                                                   *****
     97.nn
               0.279
                           0.279
                                       *****
                                                   *****
     96.00
               0.282
                           0.282
                                       *****
                                                   *****
     95.00
               0.285
                           0.285
                                      .....
                                                   *****
     94.00
              0.287
                           0.2A7
                                      *****
                                                   *****
    95.00
              0.240
                           0.290
                                      .....
                                                   .....
 q
    92.00
              0.293
                           0.291
                                      .....
                                                   *****
 1 0
    91.00
               0.296
                           0.296
                                      .....
                                                   *****
                           0.500
    90.00
               0.299
                                      *****
                                                   .....
12
                           0.302
    89,00
               0.302
                                      .....
                                                   *****
   88.00
               0.305
                           0.305
                                      *****
                                                   ****
14 87,00
              0.308
                           0.308
                                      *****
                                                   *****
   86.00
15
              0.311
                           0.410
                                      *****
                                                   *****
    85.00
15
               0.314
                           0.532
                                                   .....
TABLE OF STEEL VALUES IN HASE, SO. IN. / FT.
(M = 1 AT END OF TOF)
    DIST. ASTLAT (M,1) ASTLAT (M,2) ASTLAR (M,1) ASTLAH (M,2) ASTLAB (M,3)
     0.
                                       0,270
              0.275
                         *****
                                                 ****
               0.270
     1.00
                          *****
                                       0.270
                                                   *****
                                                               .....
              0.270
     5.00
                         .....
                                       0.270
                                                   *****
                                                               .....
     3.00
               0.270
                         *****
                                       0.270
                                                   .....
                                                               .....
     4.00
              0.270
                          .....
                                       0,428
                                                   *****
                                                               .....
     5.00
              0.270
                          *****
                                       0,795
                                                  *****
                                                               .....
     6.00
             .....
                          .....
                                      *****
                                                  .....
     7.00
              .....
                          *****
                                      *****
                                                  .....
                                                               .....
     A.or
                                       0,270
              0.392
                          .....
                                                  .....
                                                               .....
     9.00
              0.270
                          *****
                                       0.270
                                                  .....
                                                               .....
    10.00
                                       0.270
: 1
               0.270
                          *****
                                                   *****
                                                               .....
12
               0.270
                          .....
                                       0.513
                                                   *****
                                                               .....
    15.00
               0.270
                         *****
                                       0.419
                                                   *****
                                                               .....
1 4
    15.00
               0.270
                          .....
                                       0.536
                                                   • • • • •
15
    14.00
               0.270
                                       0.632
                          .....
                                                  ••••
                                                               .....
16
    15.00
              0.270
                          .....
                                       0.632
                                                  *****
                                                               .....
    14.00
              0.270
                          .....
                                       0,632
                                                  .....
                                                               .....
```

451L# # 1,196 50 TK / FT

TOTEL DANAGHADM S-PIACS) IF FM 1310-2-2501 CAN BE INTERPRETED TO MEAN THAT THE TOE OF HERE AT THE REV MUST MAVE AT LEAST AS MICH HEIDERFORE FACE OF THE KEY, THIS REQUIREMENT HAS NOT CONGINERED WHEN OFTERMINING THE PRIMEDICING SHOWN IN THE TABLE AND EDW ACTUALIST, NAI WHERE LOGIS THE LOCATION AND LOS IS THE LAVER NOW ACTUALIST.

I POATE ETI E DESET

COMMAND FUTFHERS

In accordance with letter from DANN-RDC, DAEN-ASI dated 22 July 1977, Subject: Faccimile Catalog Cards for Laboratory Technical Publications, a facsimile catalog card in Library of Congress MARC format is reproduced below.

Country notherwise manual—en maintern programs from the low and annealyzate of inverted—enterining was considered.

Friends, Country of the matter of the William of the Country of the Country of the Walliam and the Country of the Country of the Country of the Manual of the Manual of the Manual of the Country of the Coun

and the control of th

The property of the control of the c

WATERWAYS EXPERIMENT STATION REPORTS
PUBLISHED UNDER THE COMPUTER AIDE!
STRUCTURAL ENGINEERING (CASE, PROJECT

ATELMED

MICROCOPY RESOLUTION TEST CHART
NAT NATIONAL HORSE CHART

SUPPLEMENTARY

INFORMATION

DEPARTMENT OF THE ARMY WATERWAYS EXPERIMENT STATION, CORPS OF ENGINEERS P. O. BOX 631

VICKSBURG, MISSISSIPPI 39180

ATTENTION OF

WESKD

24 January 1983

SUBJECT:

Replacement Sheets for WES Instruction Report K-80-7, User's Reference Manual: Computer Program for Design and Analysis of

Inverted-T Retaining Walls and Floodwalls (TWDA)

TO: All Corps Elements with Civil Works Responsibilities

1. Those sheets containing pages, iv, 1-1, 1-5, 3-3, 3-7, 3-8, 3-10, 3-12, 3-28.1, 3-29, 3-37, 3-38, 8-5, 11-6, and 12-28 should be replaced with the attached sheets containing identically numbered revised pages.

2. We hope that a set of these changes will be replaced into every copy of the original documents in your office. Additional copies of these changes or of the basic documents can be obtained through informal request to Mrs. Rosemary Peck, Engineering Computer Programs Library, FTS: 542-2581.

HOW TO USE THIS BOOK

Instructions for the preparation of data are presented in four ways. The user is urged to make himself aware of all four presentations and select the one that best meets his particular needs:

- 1. For the beginning user: Paragraph 12-3, Data Preparation Checklist. See especially paragraph 12-3-12.
- 2. Data arrangement reminder: Paragraph 12-2-10. This and the list of commands in paragraph 2-3-1 are available while the program is running by typing a question mark (?) as a command.
- 3. List of data lists and the variable names in them: Paragraph 12-2 and Figures 3-1 through 3-5. This is intended for use as a checklist for the experienced user.
- 4. Detailed data definitions, arranged by data list: Chapters 2 and 3, plus the first part of each of Chapters 4 through 8.

A pull-out summary of all data lists is given at the end of Chapter 12.

MAJOR CONTENTS

Chapter	Title
1	INTRODUCTION
2	EXECUTIVE COMMAND/DATA ENTRY PHASE
3	DATA FOR ALL MODULES
4	MODULES SA AND SPACTIVE EARTH PRESSURES
5	MODULE FAFOUNDATION STABILITY ANALYSIS
6	MODULE FDFOUNDATION STABILITY DESIGN
7	MODULE WA(WORKING) STRESS ANALYSIS
8	MODULE WD(WORKING) STRESS DESIGN
9	MODULE UA(ULTIMATE) STRENGTH ANALYSIS
10	MODULE UD(ULTIMATE) STRENGTH DESIGN
11	LINKAGE BETWEEN FA/FD STABILITY AND WA/WD/UA/UD STRESS ANALYSIS/DESIGN MCDULES
12	DATA LISTS AND OTHER TABULATIONS
13	GRAPHICS DISPLAY OF DATA AND RESULTS
14	EXAMPLES

CONTENTS

PREFACE			Page Page
CONVERSION FACTORS, INCH-POUND TO METRIC (SI) UNITS OF MEASUREMENT		PREFACE .	
UNITS OF MEASUREMENT		HOW TO USE	THIS BOOK iii
UNITS OF MEASUREMENT		CONVERSION	FACTORS, INCH-POUND TO METRIC (SI)
1-1 Purpose of Program TWDA and This Manual 1-1 1-2 Organization and Summary Description of Program 1-1 1-2-1 Structure			
1-2 Organization and Summary Description of Program 1-1		CHAPTER 1:	INTRODUCTION
1-2-1 Structure 1-1 1-1 1-2-2 Brief Description of Data Entry 1-1 1-2-3 Data Review 1-2 1-2-4 Restart Capability 1-3 1-2-5 Volume of Printout 1-3 1-2-6 Calculation Modules 1-3 1-2-6 Calculation Modules 1-3 1-3 Data 1-4 1-3-1 General Description 1-4 1-3-2 Basic General Description Data 1-4 1-3-3 Load Case Data 1-4 1-3-3 Load Case Data 1-4 1-4 1-4 The Stability Design/Analysis Phase 1-5 1-4-1 The Stability Design/Analysis Phase 1-5 1-4-2 The Structural Design/Analysis Phase 1-6 1-5 Accessing the Program 1-7 CHAPTER 2: EXECUTIVE COMMAND/DATA ENTRY PHASE 2-1 2-1 Function 2-1 2-2 Command Options 2-1 2-3-1 Table of Commands 2-1 2-3-2 Special Notes on UPDATE, RESTart, and SAVE Commands 2-4 2-3-3 Command Error Recovery 2-5 2-4-1 Starting Sequence, Part 1 2-5 2-4-2 Starting Sequence, Part 2 2-6 2-5 Data File Input 2-7 2-5-1 Data File Format 2-8 2-5-2 Required Information 2-8 2-5-3 Data Error Recovery 2-5 3 5 5 5 5 5 5 5 5		1-1	Purpose of Program TWDA and This Manual 1-1
1-2-2 Brief Description of Data Entry 1-1 1-2-3 Data Review 1-2 1-2-4 Restart Capability 1-3 1-2-5 Volume of Printout 1-3 1-2-6 Calculation Modules 1-3 1-3 Data 1-4 1-3-1 General Description 1-4 1-3-2 Basic General Description Data 1-4 1-3-3 Load Case Data 1-4 1-4 Highlights of TWDA Design 1-5 1-4-1 The Stability Design/Analysis Phase 1-5 1-4-2 The Structural Design/Analysis Phase 1-6 1-5 Accessing the Program 1-7 CHAPTER 2: EXECUTIVE COMMAND/DATA ENTRY PHASE 2-1 2-1 Function 2-1 2-2 Command Format 2-1 2-3-2 Command Options 2-1 2-3-3 Command Service on UPDATE, RESTart, and SAVE Commands 2-4 2-3-3 Command Error Recovery 2-5 2-4-1 Starting Sequence, Part 1 2-5 2-4-2 Starting Sequence, Part 2 2-6 2-5 Data File Input 2-7 2-5-3 Data Error Recovery 2-8 2-5-3 Data Error Recovery 2-8 2-5-5 Supplemental Question and Answer Sequences 2-9 2-5-5 Supplemental Question and Answer Sequences 2-9 2-5-4 Supplemental Question and Answer Sequences 2-9 2-5-4 Supplemental Question and Answer Sequences 2-9 2-5-5 Supplemental Question and Answer Sequences 2-9 2-5-6 2-9 Supplemental Question and Answer Sequences 2-9 2-5-6 2-9 Supplemental Question and Answer Sequences 2-9 2-5-6 2-9 2-9 2-9 2-5-7 2-5-8 3-9 2-9 2-5-7 2-5-8 3-9 2-9 2-5-7 2-5-8 3-9 2-9 2-5-7 2-5-8 3-9 2-9 2-5-7 2-5-8 3-9 2-9 2-5-7 2-5-8 3-9 2-9 2-5-8 3-9 2-9 2-5-9 3-9 2-9 2-5-9 3-9 2-9 2-5-9 3-9 2-9 2-5-9 3-9 2-9 2-5-9 3-9 2-9 2-5-9 3-9 2-9 2-5-9 3-9 2-9 2-5-9 3-9 2-9 2-5-9 3-9 2-9 2-5-9 3-9 2-9 2-5-9 3-9 2-9 2-5-9 3-9 2-9 2-5-9 3-9 2-9 2-5-9 3-9 2-9 2-5-9 3-9 2-9 2-5-9 3-9 2-9 2-5-9 3-9 2-9 2-5-9 3-9 2-9		1-2	Organization and Summary Description of Program 1-1
1-2-2 Brief Description of Data Entry 1-1 1-2-3 Data Review 1-2 1-2 Restart Capability 1-3 1-2-5 Volume of Printout 1-3 1-2-6 Calculation Modules 1-3 1-2-6 Calculation Modules 1-3 1-3 Data 1-4 1-3-1 General Description 1-4 1-3-2 Basic General Description Data 1-4 1-3-3 Load Case Data 1-4 1-4 1-3-3 Load Case Data 1-4 1-4 Highlights of TWDA Design 1-5 1-4-1 The Stability Design/Analysis Phase 1-5 1-4-2 The Structural Design/Analysis Phase 1-6 1-5 Accessing the Program 1-7 CHAPTER 2: EXECUTIVE COMMAND/DATA ENTRY PHASE 2-1 2-1 Function 2-1 2-2 Command Options 2-1 2-3-2 Special Notes on UPDATE, RESTart, and SAVE Commands 2-4 2-3-3 Command Error Recovery 2-5 2-4-1 Starting Sequence, Part 1 2-5 2-4-2 Starting Sequence, Part 2 2-6 2-5 Data File Input 2-7 2-5-3 Data Error Recovery 2-8 2-5-3 Data Error Recovery 2-8 2-5-4 Supplemental Question and Answer Sequences 2-9 2-5-4 Supplemental Question and Answer Sequences 2-9 2-5-4 Supplemental Question and Answer Sequences 2-9 2-5 2-5-4 Supplemental Question and Answer Sequences 2-9 2-5-4 Supplemental Question and Answer Sequences 2-9 2-5-4 2-5-2 Supplemental Question and Answer Sequences 2-9 2-5-4 2-5-5 Supplemental Question and Answer Sequences 2-9 2-5-4 2-5 3 3 3 3 3 3 3 3 3			1-2-1 Structure
1-2-3			
1-2-5 Volume of Printout 1-3 1-2-6 Calculation Modules 1-3 1-3 1-3 Data			
1-2-6 Calculation Modules 1-3 1-3 1-3 Data			
1-3 Data			
1-3-1 General Description 1-4 1-3-2 Basic General Description Data 1-4 1-3-3 Load Case Data 1-4 1-4 1-3-3 Load Case Data 1-5 1-4 Highlights of TWDA Design 1-5 1-4-1 The Stability Design/Analysis Phase 1-5 1-4-2 The Structural Design/Analysis Phase 1-6 1-5 Accessing the Program 1-7 1-			1-2-6 Calculation Modules 1-3
1-3-2 Basic General Description Data 1-4 1-3-3 Load Case Data 1-4 1-4 Highlights of TWDA Design 1-5 1-4-1 The Stability Design/Analysis Phase 1-5 1-4-2 The Structural Design/Analysis Phase 1-6 1-5 Accessing the Program 1-7 CHAPTER 2: EXECUTIVE COMMAND/DATA ENTRY PHASE 2-1 2-1 Function 2-1 2-2 Command Format 2-1 2-3 Command Options 2-1 2-3-1 Table of Commands 2-1 2-3-2 Special Notes on UPDATE, RESTart, and SAVE Commands 2-4 2-3-3 Command Error Recovery 2-5 2-4 Starting a Program Run 2-5 2-4-2 Starting Sequence, Part 1 2-5 2-6 2-5 Data File Input 2-7 2-5-1 Data File Format 2-8 2-5-2 Required Information 2-8 2-5-3 Data Error Recovery 2-8 2-5-4 Supplemental Question and Answer Sequences 2-9 2-9 2-5-4 Supplemental Question and Answer Sequences 2-9 2-9 2-5-4 Supplemental Question and Answer Sequences 2-9		1-3	Data
1-3-3 Load Case Data			1-3-1 General Description
1-4 Highlights of TWDA Design			
1-4-1 The Stability Design/Analysis Phase			1-3-3 Load Case Data
1-4-2 The Structural Design/Analysis Phase		1-4	Highlights of TWDA Design 1-5
1-5 Accessing the Program			1-4-1 The Stability Design/Analysis Phase 1-5
CHAPTER 2: EXECUTIVE COMMAND/DATA ENTRY PHASE 2-1 2-1 Function 2-1 2-2 Command Format 2-1 2-3 Command Options 2-1 2-3+1 Table of Commands 2-1 2-3+2 Special Notes on UPDATE, RESTart, and SAVE Commands 2-4 2-3-3 Command Error Recovery 2-5 2-4 Starting a Program Run 2-5 2-4-1 Starting Sequence, Part 1 2-5 2-4-2 Starting Sequence, Part 2 2-6 2-5 2-4-2 Starting Sequence, Part 2 2-6 2-5 2-4-2 Starting Sequence, Part 2 2-7 2-5-1 Data File Input 2-7 2-5-2 Required Information 2-8 2-5-3 Data Error Recovery 2-8 2-5-4 Supplemental Question and Answer Sequences 2-9			1-4-2 The Structural Design/Analysis Phase 1-6
2-1 Function 2-1 2-2 Command Format 2-1 2-3 Command Options 2-1 2-3-1 Table of Commands 2-1 2-3-2 Special Notes on UPDATE, RESTart, and SAVE 2-4 2-3-3 Commands 2-4 2-3-3 Command Error Recovery 2-5 2-4 Starting a Program Run 2-5 2-4-1 Starting Sequence, Part 1 2-5 2-4-2 Starting Sequence, Part 2 2-6 2-5 Data File Input 2-7 2-5-1 Data File Format 2-8 2-5-2 Required Information 2-8 2-5-3 Data Error Recovery 2-8 2-5-4 Supplemental Question and Answer Sequences 2-9		1-5	Accessing the Program 1-7
2-2 Command Format 2-1 2-3 Command Options 2-1 2-3-1 Table of Commands 2-1 2-3-2 Special Notes on UPDATE, RESTart, and SAVE 2-4 2-3-3 Commands 2-4 2-3-3 Command Error Recovery 2-5 2-4 Starting a Program Run 2-5 2-4-1 Starting Sequence, Part 1 2-5 2-4-2 Starting Sequence, Part 2 2-6 2-5 Data File Input 2-7 2-5-1 Data File Format 2-8 2-5-2 Required Information 2-8 2-5-3 Data Error Recovery 2-8 2-5-4 Supplemental Question and Answer Sequences 2-9	(CHAPTER 2:	EXECUTIVE COMMAND/DATA ENTRY PHASE 2-1
2-3 Command Options 2-1 2-3-1 Table of Commands 2-1 2-3-2 Special Notes on UPDATE, RESTart, and SAVE Commands 2-4 2-3-3 Command Error Recovery 2-5 2-4 Starting a Program Run 2-5 2-4-1 Starting Sequence, Part 1 2-5 2-4-2 Starting Sequence, Part 2 2-6 2-5 2-5-1 Data File Input 2-7 2-5-2 Required Information 2-8 2-5-3 Data Error Recovery 2-8 2-5-4 Supplemental Question and Answer Sequences 2-9		2-1	Function
2-3-1 Table of Commands		2-2	Command Format
2-3-2 Special Notes on UPDATE, RESTart, and SAVE Commands		2-3	Command Options
Commands			2-3-1 Table of Commands
Commands			2-3-2 Special Notes on UPDATE, RESTart, and SAVE
2-4 Starting a Program Run			· · · · · · · · · · · · · · · · · · ·
2-4-1 Starting Sequence, Part 1			2-3-3 Command Error Recovery 2-5
2-4-2 Starting Sequence, Part 2		2-4	Starting a Program Run 2-5
2-4-2 Starting Sequence, Part 2			2-4-1 Starting Sequence, Part 1
2-5 Data File Input			
2-5-1 Data File Format		2-5	
2-5-2 Required Information			
2-5-3 Data Error Recovery			
2-5-4 Supplemental Question and Answer Sequences 2-9			
L-J-J ENG OF Data File			2-5-5 End of Data File

USER'S REFERENCE MANUAL: COMPUTER PROGRAM

FOR DESIGN AND ANALYSIS OF INVERTED-T RETAINING WALLS AND FLOODWALLS (CTWDA)

CORPS X0053

CHAPTER 1: INTRODUCTION

PURPOSE OF PROGRAM TWDA AND THIS MANUAL. CTWDA is a computer-aided structural design system for analysis and/or design of inverted-T cantilever walls founded on earth or rock. Multiple load cases allow the wall to act as a floodwall or a retaining wall. This manual is intended for use by structural engineers. The program does not attempt to establish any soil design criteria; such data must be entered by the user after consultation with a soil design engineer. There are no default values for soil criteria parameters, except as provided in Corps engineering standards for structural design.

1-2 ORGANIZATION AND SUMMARY DESCRIPTION OF PROGRAM

- 1-2-1 Structure. CTWDA is a series of design/analysis modules,* each performing one specific step in the design or analysis process. These modules are callable, in any logical sequence, from an executive command phase.** While in this executive phase, the user may call various procedures for data entry, data review, saving the current design status, restoring from an old status save, etc. This organization is illustrated in Figure 1-1.
- 1-2-2 <u>Brief Description of Data Entry.</u> The data entry procedure is similar to that for program TGDA, + except that the data phase is combined with the command phase instead of being separate as in TGDA. Features include:
 - a. Data are entered by naming the group and listing the values in that group, all on one line.
 - b. Default values are requested by entering the letter D for the desired data item(s), instead of a numerical value.
 - c. Values to be left undefined or changed to the undefined state are identified to the program by typing the letter C instead

^{*} A module is a subprogram that is controlled as one unit and that performs one complete aspect of the purpose of the entire program.

^{**} The executive phase of this program is the central core of the user's flow of control. The user may enter data or start a module while in the executive phase.

[†] TGDA (three-girder tainter gate design/analysis) is a computer program (713-F3-R0-022) developed for the Lower Mississippi Valley Division's Computer-Aided Structural Design (CASD) Committee in 1976.

Figure 1-1. Basic program flowchart

of entering a value for the particular item(s).

- d. A value to be left unchanged from its previous state is identified to the program by typing the letter S for the particular item, instead of repeating the earlier value.
- e. The program looks for illogical and inconsistent data and identifies such items to the user for correction or use anyway.
- f. The current status of items of inpuc data or of all data values can be reviewed.
- g. Multiple-level prompting is provided, with more detailed information when the user answers with a question mark.

Thus the program will accept several sets of input data, where the following sets contain only the changes to the data comprising the preceding sets. Repetitive data will remain unchanged.

- 1-2-3 Data Review. Two methods of data reveiw are available:
 - a. Input data may be reviewed with the LOOK command.
 - b. Default value review is available at selected points in the interaction as described else where in this manual. Unless reviewed with this option, default values are set automatically by the user's selection of:
 - (1) Floodwall or retaining wall criteria.
 - (2) Hydraulic or nonhydraulic structure criteria.

Making the review of default values optional is expected to enable the experienced user to simplify and expedite his preliminary designs. In any case, the values are printed out in the report file. The combination of a nonhydraulic floodwall, being illogical, will be rejected. Default values are taken from Corps engineering publications; nonstandard values set by the user are printed in the report file.

- (b) Up to five vertical concentrated line loads parallel to the wall (P_{vl} through P_{v5} in Figure 3-3) plus the force P_{v5} centered on the top of the stem and P_{v8} anywhere on the base.
- (5) Wind direction and magnitude (Figure 3-1).
- (6) Earthquake effect acceleration factors or effective K values.

(7) Design criteria

- (a) Load factors for reinforced concrete strength design and overstress factors for working stress design.
- (b) Allowable bearing capacity, interpolated values over ranges of allowable toe base elevations and base widths (see paragraph 3-2-2), for each layer of existing earth.
- (c) Minimum factor of safety against shear friction sliding.
- (d) Minimum safety factor for cohesion and $\tan \phi$ data values used in the sliding determination by allowable strength equilibrium methods.
- (e) Limiting value of the overturning stability resultant ratio.
- (f) Reinforced concrete design parameters.
- (g) Specification of "hydraulic" or "nonhydraulic" structure.
- (h) Heel earth cover crack control.
- b. Typical Application of Load Cases. Any load case may have any or all of the effects described above.

1-4 HIGHLIGHTS OF CTWDA DESIGN

1-4-1 The Stability Design/Analysis Phase.

- a. This place finds the least-cost combination of values inside user-defined ranges of base width, bottom of tow elevation, base slope, and key length, for a given stem ratio or toe width, that satisfies stability requirements for up to 10 load cases. Cost factors include:
 - (1) Structural excavation, with separate unit prices in each existing soils layer and for the key.
 - (2) Concrete, with separate unit prices for the stem, base slab, and key.
 - (3) Structural backfill, with separate unit prices for each backfill layer.

- b. Earth pressures for design are calculated by using either Coulomb's equations for earth pressure and Boussinesq's equations for surcharge pressures or by an incremental wedge technique. Earthquake effects are based on the Mononobe-Okabe method of equivalent Ka for earth pressure and Westergaard theory for dynamic water pressure. Earth pressures for analysis can be either as just described for design or as read in by the user.
- c. Hydrostatic pressures are calculated by the line of creep or design and by either the line of creep or as defined by the user for analysis. Control options include:
 - (1) Crack over heel or not.
 - (2) Each load case calculates its own pressures or all load cases use the value determined for one selected load case.
 - (3) Choice of:
 - (a) Creep.
 - (b) Hydrostatic over heel and toe; linear variation between heel and toe (as for dams).
 - (c) User-defined vertical and horizontal pressures.
 - (d) Water over toe sets the weight on the toe; water over heel sets the weight on the heel and the uplift under the base (as for the wall of a lock with an impervious floor).

1-4-2 The Structural Design/Analysis Phase.

- a. This phase uses the working stress (ACI alternate) method and provides for future addition of strength design. Design is for minimum slab thickness within the controls selected by the user in the input data. Default is to a simple, basic wall that the user may elaborate on by adding additional input data as desired. After the concrete dimensions have been set for moment, axial force, shear, and architectural considerations, reinforcing steel requirements at critical and selected locations are calculated directly for the actual thickness, moment, axial force, and shear at each location. The need for multiple layers of steel is checked based on maximum bar size and minimum spacing as selected by the user. Multiple layers are used if needed, including adjustment of slab thickness. The 1977 edition of ACI 318 is used.
- b. Maximum wall height from top of stem to bottom of key is 68.0 ft*; maximum base width is 48.0 ft. These maximum dimensions may be increased later.

^{*} A table of factors for converting inch-pound units of measurement to metric (S1) units is presented on page x.

a random relationship between existing soil layers 3-4-5 and backfill soil layers FZ-1-2-6-7 as the wall and its backfill move up and down.

Data List	Page	Mandatory Where Used?	Used in SA-SP	Used in FA-FD	Used in WA-WD-UA-UD	See Figure
BOIL	3-4	no		ves		
ONEA	3-5	no		vės		
RRD	3-6	no		FD		
SEEP	3-6	(5)	~=		(1)	3-1
SLID	3-9	no		ves		
SPHF	3-9	(4)	yes	yes	ves	3-1
SPH1	3-10	(6)	ves	yes	yes	3-1
SPH2	3-10	(4)	yes	yes	ves	3-1
SPE3	3-11	yes	yes	yes		3-1
SPE4	3-12	no	ves	yes		3-1
SPE5	3-12	no	ves	yes		3-1
SPT6	3-13	(3)		yes		3-1
SPT7	3-13	(6)		yes	yes	3-1
SSEE	3-13	(7)	yes	yes	- <u>-</u>	3-2,3-3
SOLP	3-14	no	yes	yes	(2)	
SST	3-17	yes		yes	yes	3-1
SSHW	3-17)	-		-	-	
or	}	yes	yes	yes	yes	3-1
SSHC	3-18	•	•	-		
WGHT	3-18	no	yes	yes	yes	

- NOTES: (1) ELWT, ELWH, ISLC are optional; KRACK has a default value; HGSW and ISFT are not used in these modules.
 - (2) NPPD, RKH, RKV, CFMA have default values; IFWOC, NODE, and IFSOM are not used.
 - (3) SPT7 data will be assumed to be also for SPT6 if SPT6 is not entered. SPT7, in turn, will be copied from SPE3 if SPT7 is omitted.
 - (4) Soil layer 1 is assumed over all of the heel unless SPHF or SPH2 is entered for soil below or above soil type 1.
 - (5) SEEP is mandatory only if water exists.
 - (6) Soil properties from SPE3 are used for layer 1 (SPH1) if data list SPH1 is omitted. Similarly, SPE3 values are used for SPT7 if SPT7 is omitted. This is true only if modules FA and FD have <u>not</u> been run. If PHI and COH are changed in List SPE3 after modules FA or FD have been run, then lists SPT7 and SPH1 may be needed to change backfill soil properties.
 - (7) List SSEE is needed only for design (module FD).

3-3-2 Soils and Seepage Data Item Definitions:

List Name	Variable Name	Units	Default Value	Definition
BOIL				Boil control data, optional
	ELSPT	ft	0.0	Elevation of tip of impervious sheet pile cutoff wall below center of key. In module FA (and FD), the presence of this data item variable will cause the program to calculate and print out the average creep ratio to the report file
	CRMIN	ratio		Minimum allowable creep ratio. In module FA (and FD), the presence of this data item will cause the program to calculate and print out to the report file the highest ELSPT that will satisfy the CRMIN limit
	IPATH	1 or 2	1	Controls the location of the creep path portion between the bottom of effective length of sheet pile and the end of the toe:

I to select the path that includes a line along the toe-side face of the sheet pile, key, and bottom of the base:

3-3-2 Soils and Seepage Data Item Definitions (Continued):

List Name	Variable Name	Units	Default Value	Definition
SEEP	ISFT	1-4	1	Option 1: The line of creep calcu-

lations are as described in EM 1110-2-2501 and as illustrated and discussed in detail in Exhibit H for sliding and Exhibit K for overturning of the Program Criteria Specifications Document. This is the default option for this control. Its action combines with the heel earth crack control (KRACK) to determine how the pressures are determined. When point "a" (shown on page 11-6 for IRUT = -1) is toward the toe from point o (shown in Figure 3-5 on page 3-39), only the effective portion of the base width (between points 5 and Z) is included in the creep path and in sliding adhesion strength. In this case, the toe-side face of the key will not be included either if ISFT = 1. To have this face of the key included in the creep path, use a value of -1 for ISFT.

Option 2: Perched water table. Any load case(s) will use the water elevation over the toe for weight and horizontal pressure above the toe only. Uplift will be hydrostatic, based on the water elevation over the heel. This would be selected by the user for a channel with an impervious floor:

3-3-2 Soils and Seepage Data Item Definitions (Continued):

List Name	Variable Name	Units	Default Value	Definition
SEEP	ISFT			Oction of Pressures will be those caused by the weight of water over the heel and toe. Uplift will be a linear variation between the heel and toe hydrostatic pressure. The user might select this option for a wall

on rock

Option 4: Water weight and horizontal pressures above the base will be hydrostatic pressures calculated from the input water elevations. Uplift pressures will be input data for analysis only; will be used as zero for design

3-3-2 Soils and Seepage Data Item Definitions (Continued):

List	Variable		Default		
Name	Name	Units	Value	Definition	
SEEP	ISFT				

Values as inputted by user for analysis. May be zero as described in paragraph S-15e of EM 1110-2-2501. Will be taken as zero during design. Use array FV in data list HSPV to input these pressures; to cancel these pressures, use this data list entry:

KRACK 1 or 2 (1)*

Option 1 (default for floodwalls) is to have a vertical crack in the earth cover over the heel (see page S-9 and paragraph S-15a on page S-18 of EM 1110-2-2501). This eliminates any active earth pressure at the heel (module SA) and enables the use of W3-W4 surcharge pressures

^{*} This and other reference numbers given in parentheses in this table refer to notes listed on page 3-20.

3-3-2 Soils and Seepage Data Item Definitions (Continued):

List Name	Variable Name	Units	Default Value	Definition
SEEP	KRACK			option 2 (default for retaining walls) is to have no rack over the heel. This enables active earth pressure and disables any WS-W4 surcharge pressures
SLID	LC	0, 1-10		Load case number (see paragraph, 2-6-6)
	NSLIDE	1-4	(1)	I to use FTL IIIC-2-1-4 Shear Friction Method (default for retaining walls). See Exhibit B of the Program Criteria Specifications Document)
				2 to use the Allowable Strength Equilibrium Method with c' = c/(FS+2c'), according to Exhibit I of the Program Criteria Specifications Document (default for floodwalls)
				It cause the Allewable Strength is allibrium Method with c' = c/FS, according to Exhibit 1 of the Program Criteria Specifications Document. This conforms to the sense of ETL 1110-2-256, June 1981
				. is not implemented associal ragraph () 2~3)
	FSMIN	ratio	1.5 for flood- walls; 2.0 for retaining walls	Minimum allowable factor of safety against sliding [force ratio for NSLIDE = 1 (or NPPD = 5 in data list SOLP); allowable strength ratio FS for NSLIDE = 2 or 3]. (see paragraph 3-2-3)
SPHF				See notes (10), (11), (12), and (13)
	LC	0, 1-10		Load case number (see paragraph 2-6-6)
	FZTAH	ft	0.0	Thickness of filter zone at end of heel, measured vertically up from base of slab (top of key if key is at end of heel)

3-3-2 Soils and Seepage Data Item Definitions (Continued):

List	Variable		Default	
Name	Name	Units	Value	Definition
SPHF	PHIFZ	deg	0.0	Angle of internal friction (2)
	COHFZ	psf	0.0	Cohesive strength of filter zone (2)
	CAMASF	pcf	0.0	Unit weight of filter (including weight of water if submerged) (2)
	RKAFZ	factor	С	Active earth pressure coefficient for filter. Will be calculated from PHIFZ if not defined and if IFWOC = 2. Will be ignored if IFWOC = 1
	DELTAF	deg	0.0	Wall friction angle for pressures on face of stem
	RKAEFZ	factor	С	Mononobe-Okable earthquake active pressure factor. See Chapter 8 of the Program Criteria Specifications Document. Dynamic Ka needs RKH and RKV from data list SOLP if it is to be calculated. Will be ignored if IFWOC = 1
SPH1				See note (10) and note (6) the table in paragraph 3-3-1
	LC	0, 1-10		Load case number (see paragraph 2-5-6)
	PHI1	deg	0.0	Angle of internal friction (9)
	COH1	psf	0.0	Cohesive strength (9)
	GAMAS1	pcf	0.0	Unit weight of soil (including weight of water if submerged)
	(The lis	t may be t	erminated	here if defaults below are OK.)
SPH1	RKA1	factor	С	Active earth pressure coefficient. Will be calculated from PHII if not defined and if IFWOC = 2. Will be ignored if IFWOC = 1
	DELTA1	deg	0.0	Wall friction angle for pressures on face of stem
	RKAE1	factor	С	Mononobe-Okabe earthquake active earth pressure factor. See
			(Cor	otinued)

3-3-2 Soils and Seepage Data Item Definitions (Continued):

List Name	Variable Name	Units	Default Value	Definition
SPH1	RKAE1			Chapter 8 of the Program Criteria Specifications Document. RKAEl needs RKH and RKV from data list SOLP if it is to be calculated. Will be ignored if IFWOC = 1
	HCMIN	ft	*	Minimum allowable earth cover over the end of the heel, measured vertically. This is used as a constraint in module FD and is compared in module FA. It is ignored in modules SA, SP, WA, WD, UA, and UD
SPH2				See note (10)
	LC	0, 1-10		Load case number
	ELTS1	ft	-	Elevation of top of soil layer 1. Soil layer 2 need not be included if it is the same as soil layer 1
	PHI2	deg	0.0	Angle of internal friction
	сон2	psf	0.0	Cohesive strength
	GAMAS2	pcf	0.0	Unit weight of soil (including weight of water if submerged)
	(The lis	t may be	terminated	here if defaults below are OK.)
	RKA2	factor	С	Active earth pressure coefficient. Will be calculated from PHI2 if not defined and if IFWOC = 2. Will be ignored if IFWOC = 1
	DELTA2	deg	0.0	Wall friction angle for pressures on face of stem
	RKAE2	factor	С	Mononobe-Okabe earthquake active earth pressure factor. See Chap- ter 8 of the Program Criteria Speci- fication Document. RKAE2 needs RKH
			(Con	tinued)

^{*} The default calculation for HCMIN is $(3 + 0.1(\text{ETS-ESHW}) \ge 5.0$ and is calculated separately for each load case if the default is requested and the wall is a floodwall. The default value for retaining walls is zero. If a value is inputted in the data list, it will be used for all load cases.

- f. All situations with OMEGA greater than zero also include the resisting force of the parallel component of the weight of the neutral block, along the inclined failure surface.
- g. Users should consider the impact of ETL 1110-2-256, 24 June 1981, "Sliding Stability for Concrete Structures", when selecting their values of NSLIDE in optional data list SLID.

NSLIDE = 1 is the default action for retaining walls. Its action is described in para 2-5-1 of the Basic User's Guide, page 3-10 of the User's Reference Manual, and Exhibit H of the Program Criteria Specifications Document. It is based on ETL 1110-2-184 and uses a limit state force ratio.

NSLIDE = 2 is the default action for flood walls. Its action is described in para 2-5-2 of the Basic User's Guide, page 3-10 of the User's Reference Manual, and Exhibit I of the Program Criteria Specifications Document. It is based on EM 1110-2-2501 and uses allowable soil strengths in force equilibrium.

NSLIDE = 3 is available in the program through use of data list SLID, to conform to the sense of ETL 1110-2-256. See Exhibit J of the Program Criteria Specifications Document for a description of the action when NSLIDE = 3. Data list SLID is described below:

SLID LC NSLIDE FSMIN

where

SLID = name of data list

LC = load case number (1-10, or 0 for all cases)

NSLIDE = 3

FSMIN = minimum factor of safety on material properties, for design, using:

$$C_{allow} = \frac{C_{ultimate}}{FS}$$

$$\tan(\phi_{\text{allow}}) = \frac{\tan(\phi_{\text{test}})}{FS}$$

See para 9, page 20, of ETL 1110-2-256 for suitable values for FSMIN when NSLIDE = 3.

3-4 SURCHARGE DATA

3-4-1 All Surcharge Data Lists Are Optional:

- a. All surcharge data lists may be used in modules SA, SP, FA, and FD.
- b. Surcharge data lists SCFD, SCFH, and SCWH may be used in modules WA, WD, UA, and UD.
- c. Surcharge data lists ${\tt SCFV}$ and ${\tt SCWV}$ are not used in modules WA, WD, UA, and UD.

3-4-2 Surcharge Data Item Definitions (See Figure 3-4):

List Name	Variable Name	Units	Default Value	Definition (See Note 1)
SCFD				Vertical forces on concrete
	LC	0, 1-10		Load case number (see paragraph 2-6-6)
	PVS	lb/ft	0.0	Line load centered on top of stem
	PVB	lb/ft	0.0	Line load on base slab at X coordinate value DVB from vertical line through the basic working point
	DVB	ft	0.0	X coordinate from basic working point to PVB. Negative if PVB is on toe
SCFH				Horizontal forces on concrete
	LC	0, 1-10		Load case number (see paragraph 2-6-6)
	PH1	lb/ft	0.0	Line load at elevation ELPH1. Must be negative if on toe
	ELPH1	ft		Elevation of force PH1. May be at any elevation on or above bottom of toe
	PH2	lb/ft	0.0	Line load at elevation ELPH2
	ELPH2	ft		Elevation of force PH2. Must be above base, on stem only
SCFV				Vertical line loads on soil surface
	LC	0, 1-10		Load case number (see paragraph 2-6-6)
	PV1	lb/ft	0.0	Line surcharge at X coordinate DV1
	DV1	ft	0.0	X coordinate at line load PVI. See note (2)

3-4-2 Surcharge Data Item Definitions (Continued):

List Name	Variable Name	Units	Default Value	Definition (See Note 1)
SCFV	PV2	lb/ft	0.0	Line surcharge at X coordinate DV2
	DV2	ft	0.0	X coordinate at line load PV2
	PV3	lb/ft	0.0	Line surcharge at X coordinate DV3
	DV3	ft	0.0	X coordinate at line load PV3
	PV4	lb/ft	0.0	Line surcharge at X coordinate DV4
	DV4	ft	0.0	X coordinate at line load PV4
	PV5	lb/ft	0.0	Line surcharge at X coordinate DV5
	DV5	ft	0.0	X coordinate at line load PV5
SCWH				Horizontal pressures
	LC	0, 1-10		Load case number (see paragraph 2-6-6)
	W1	psf	0.0	Pressure on any portion of stem above finished grade
	ELW1T	ft		Elevation of top of Wl. Must be between the top of stem and ELW1B
	ELW1B	ft		Elevation of bottom of Wl. Must be below FLWIT
	W3	psf	0.0	Pressure at finished grade elevation over end of heel. See note (2)
	W 4	psf	0.0	Pressure at bottom of key if key is at end of heel (KFLAG = 0) or at bottom of end of heel if no key or if key is under the stem (KFLAG = positive)
SCWV				Vertical surcharge pressures on soil surface
	LC	0, 1-10		Load case number (see paragraph 2-6-6)
	WT	psf	0.0	Area surcharge, over a portion of toe only
	TWW	ft	0.0	Width of WT
	DWT	ft	0.0	Horizontal distance from basic working point to stem-side edge of area covered by WT. Always entered positive, over toe only

3-6-4 Wall Geometry Data Item Definitions (Continued):

Variable		Default	Dofinition
Name_	Units	Value	Definition
BW2	ft	(1)	Maxinum value for BW in module FD. Also needed for allowable bearing pressure interpolation in modules FA and FD. Must be larger than BWI
BS	ratio	0.0	Base bottom-side slope, BS vertical to 1.0 horizontal, 0.0 = level
BS1	ratio	0.0	Minimum value for BS in module FD
BS2	ratio	0.3333	Maximum value for BS in module FD
BASER	ft	0.0	Base horizontal radius defining trapezoidal plan, measured from basic working point, positive over heel. Base is always 1.0 ft wide under the basic working point. 0.0 = rectangular (infinite radius)
TMINB	in.	(3)	Minimum allowable base slab t . See paragraph
			Key Description
KFLAG	0 or 1	1	0 if key is at end of heel;
			1 if key is under stem
DKEY	ft	0.0	Key length, measured vertically along heel side
DKEY1	ft	0.0	Minimum value for DKEY in module FD
DKEY2	ft	(7)	Maximum value for DKEY in module FD
BKTF	ratio	3.0	Toe-side face batter, 1.0 horizontal to BKTF vertical
WKEY	in.	TMINB	Width (thickness) at bottom of key. See note (12)
			Heel Description
HEELT1	in.	(8)	Thickness at stem. See note (12)
HEELT2	in.	TMINB	Thickness at end, not including any key. May not be greater than HEELT1
HEELW	ft	(9)	Width (horizontal projection). See note (10)

3-6-4 Wall Geometry Data Item Definitions (Concluded):

- NOTES: (1) Required data item with no default value or default calculation procedure.
 - (2) Will be calculated to be as large as possible. See Figure 3-6.
 - (3) Calculated by program.
 - (4) See paragraph 3-6-2a(1).
 - (5) Note (1); must be below top of soil layer 7 as defined by data list SOLT.
 - (6) Three fifths of ETS BTE1 or, as determined by module FD, between BW1 and BW2.
 - (7) Default value for a floodwall is 0.8 of ETS-BTEl if KFLAG is defined or 0.0 if KFLAG is not defined.
 - (8) Default values:
 - a. TMINB.
 - b. Top of heel must not slope down toward the stem.
 - c. Set at top of toe at stem if IBSAME = 1 and if it is strong enough.
 - (9) See paragraph 3-6-2a(3).
 - (10) Program verifies consistency of following equations, within 0.01 ft, or calculates values to complete the equations:

$$BW = TW2/STR = TW2 + (TSTB/12.0) + HEELW$$

- (11) May not be less than TMINS.
- (12) May not be less than TMINB.
- (13) When a single batter is desired on the heel-side face of the stem, use HSTPH = 0 and HSTPB = anything and use HSBPB for the single batter.

8-2-3 Concrete Data Item Definitions (Concluded):

Data	Variable		Defaul	t Value	
List	Name	Units	Hydraulic	Nonhydraulic	Definition
STLD	MAXBAR	ASTM size number	11	11	Maximum bar size allowed by user (3-11, 14, or 18 only)
	SPAMIN	in.	MAXBAR's diameter × 2 or MAXBAR's diameter + 2.25, which- ever is larger		Minimum acceptable clear spacing for bar size entered for MAXBAR
WGHT	GAMAC	pcf	150.0	150.0	Unit weight of concrete
	GAMAW	pcf	62.5	62.5	Unit weight of water

- NOTES: (1) E_c is calculated from the expression in paragraph 8.5.1 of ACI code 318-77: $E_c = (GAMAC-5.0)^{1.5}$ 33.0 \sqrt{FPCON} .
 - (2) FSTLMX is taken at one half of FYSTL for nonhydraulic structures.
 - (3) IBSAME generally defaults to zero but will be used as one for analysis of a level base of default thickness.
- 8-3 OUTPUT. Output information is placed in data lists WLA, WLAB, WLAH, WLAK, WLAS, WLAT, STLB, STLK, and STLS.
- 8-3-1 <u>Data Check.</u> The data check procedures at the beginning of module WD perform a variety of checks to make sure that enough data items have been defined to enable the program to:
 - a. Establish the concrete dimensions with enough accuracy for the program to be able to compute the total forces from loads in the form of pressure diagrams.
 - b. Describe the outlines of the various pressure diagrams (seepage, passive pressure, vertical earth and surcharge pressures, ets).

The questions and printout statements possible during the data check are numerous and varied. Care has been taken to make them self-explanatory and to allow interactive recovery where feasible. Where it is not feasible, the module aborts with a message telling the user what to do in the executive phase before trying again to run the module.

- 8-3-2 Wall Geometry. The wall geometry established by module WD is reported in two ways:
 - a. A table of analysis geometry data lists is printed in the format shown below. The wall is the one described in Exhibits K-L of the Program Criteria Specifications Document. The table is printed to the time-sharing terminal and the report file:

# # DESIGN #	SUMMARY				
WLA	ETS 100.0000	TW2 5.600000	STR 0.4000000	HEELW 8.700000	
WLAB	BW 16.30000	BS O.		BASER (LI	(ST=WLBR)
WLAH	HEELT2, 18.00000	HEELW 8.700000	HEELT1 18.00000		
WLAK	KFLAG O	DKEY 5.700000	WKEY 18.00000	BKTF 8.142857	
WLAS	TSTT 18.00000 HSBPB 0.1935484	TSB 0.1935484	TSTB 24.00000	HSTPH 0.	HSTP B 0.
WLAT	BTE1 83.00000	TOEHT 18.00000	TS2 100.0000	TW1 0.	TS1 100.0000
	TMINB 18.00000	TMINS 18.00000			

A value of -.1234E30 means that that item is not defined.

- b. A table of wall corner coordinates is printed to the report file. This table is illustrated in paragraph 7-4-2d(2) and is also available with the LOOK XY command.
- 8-3-3 Reinforcement data are printed in the report file in tabular form as shown in paragraph 7-4-2d(3) for module WA. This is also available with the LOOK command for data lists STLB, STLK, and STLS. Reed paragraph 7-2-2a(5) about editing the reinforcing steel description produced by module WD before running module WA to analyze that description.

11-3-2 ACPS:

ACPS LC LOC HS(LC,LOC) EHS(LC,LOC) YVS(LC,LOC)

LC = load case subscript (0 or 1-10)

LOC = location subscript (1-68 maximum)

EHS(LC,n) = dynamic horizontal <u>lumped</u> additional <u>force</u> on stem, at YVS(LC,n), lb/horizontal ft

YVS(LC,n) = elevation of HS(LC,n) and EHS(LC,n)

1	rvs(LC,1) HS(LC,1)	EHS(LC,1)
YVS(I	LC,2) HS(LC,2)	EHS(LC,2)
YVS()	HS(LC,3) NOTES:	EHS(LC,3)
		sfer of intermediate answers:
	b. One intermedia last - 1) at a in data list (LOC = 1) is at grade on wall. ate element (LOC = 2 through each node (see NODE and IFWOC SOLP in paragraph 3-3-2. t (LOC = last) is at base of
	2. User-defined input	: :
	tions, but the	ment not used must have
	12	

 See note 2c for data list ACPH (paragraph 11-3-1) for a warning about use of data list ACPS.

Data List ACPS--Arrays HS, EHS, YVS from Modules SF, FA

11-3-3 BPH and BPV:

BPH LC N IRLT(LC) EPBW(LC) WB(LC,N) HB(LC,N) EHB(LC,N) FHB(LC,N) BPV LC N IRLT(LC) EPBW(LC) DB(LC.N) VB(LC,N) EVB(LC.N) FVB(LC,N)

1.0 = 10ad case subscript (0, 1-10)

X = base end code subscript (1 or 2)

IRLT(LC) = resultant location code (-1, 0, or +1)

EPBW(LC) = effective portion of base width, ft

See paragraph 11--12. Array VB(LC,N) contains the total bearing pressures calculated by module FA.

Values are illustrated with negative direction (the usual one)

- Value () = WB () for wind load
- = HB () for earth horizontal + surcharge horizontal (psf)
 - = EHB () for horizontal earthquake additional pressures
 - = FHB () for horizontal net hydrostatic
 - = DB () for weight of concrete
 - = VB () for applied forces vertical (see array V)
 - = EVB () for vertical earthquake additional pressures
 - = FVB () for uplift

Data Lists 3PH and BPV--General Description.

The coordinates of point Z (XZ and YZ) are shown in the report file from the overturning computations in Module FA.

12-5 SUMMARY OF DATA LIST CONTENTS (Continued):

Data	Data		
List	Item	Units	Definition
SEEF			Water elevations and seemade options
	L.C	EACH	LOAD CASE NUMBER (1 10 OR O FOR ALL LOAD CASES)
	ELWT	FOOT	ELEV OF WATER LEVEL OVER TOE
	ELWH	FOOT	ELLY OF WATER LEVEL OVER THEEL CHAVE STILL WATERS
	HGS₩		SOILS WEIGHT CHANGE DUE TO HEDRAUD OF GRADIENT ONLY
	130.0	τ-2	1 - EACH LOAD CASE SLIBRATE CHILDS IN F ALL AS NO 1
	ISFT	1234	1, 2, 3, OR 4 FOR TYPE OF SELFAGE FLOW, 1 CHULL
	KRACK	1.2	1 FOR CRACK (+ W3, W4) OVER HELL 2 FOR ALTERE SOIL
St. ID			Stiding control data - see also ONLO
	1 C	FACH	LOAD CASE NUMBER (L-10 DR O FOR ALL LOAD CASES)
	NSL IDE	1234	1, 2, 3, OR 4 FOR SECUENCE CALCULATION OFF OFFICE
	FSMIN	RAT 10	MINIMUM FACTOR OF SAFETY AGAINST SELECTIONS
SOLE			Soils design manameters
	LC	EACH	LOAD CASE NUMBER (1-10 OR O FOR ALL LUAD LASIS)
	TEMOC:	10R2	1 FOR INCREMENTAL WEIGH METHOD OR 1 FOR COULDMY
	NODE	EACH	NUMBER OF NODES TO USE WHEN ITWOCK IS ITSOM - /
	TESOM	1082	1 FOR SINGLE WEDGE TRIAL SURFACE, IT FOR MULTIPLE
	NEFTI	1 -5	OVERTURNING PASSIVE PRESSURE SHAFF CODE. 10 : STRUT
	KKH	KATIO	HORIZ. EARTHOUAKE ACCELLRATION FACTOR
	RKU	RATIO	VERT EARTHQUAKE ACCELERATION FACTOR
	CEMA	DITAR	ACTIVE PRESSURE MOMENT ARM FACTOR FOR ARCHING CASE
SPE 3			Soil properties, exist soil lawer 3 (basic)
	PHT3	DEG.	ANGLE OF INTERNAL FRICTION, SOIL LAYER 5
	COH3	FSF	COHESIVE STRENGTH OF SOIL LAYER 3
	GAMAS3	LBZCF	UNIT WEIGHT OF SOIL LAYER 3, SATURATED IF RELOW WT
	PHIS3	DEG	MAX ANGLE OF SLIDING FRICTION ON SOIL LAYER 4
	ABHS3	PSF	SLIDING ADHESIVE STRENGTH FOR SOIL LAYER +
	ABE 3TN	F/3F	ALLOW BRNG PRESSURE, TOP OF LAYER & MARLOW HASH
	AHESTAN	FCF	ALLOW BRNG PRESSURE WITT IN LAYER 3. NOMEON BAS
	ARESTW.	FSF	ALLOW BRNG PRESSURE TOP OF LAYER 3. WITE BASE
	AHE 31W	ESF	ALLOW BRNG PRESSURE BUTT OF LAYER 3. WILL BASE
	E29 III	FOOT	ELEVATION CORRESPONDING TO AREARN AND ADDITION
SPF 4			Soil properties, existing soil top of 4
	F1, 79,5	Egot	CLEV OF THE BESOIL LAYER ?
	PHI4	DEG	ANGLE OF INTERNAL ERRETION COLL CAS R A
	COH4	F-SF	COMESIVE STRENGTH OF SOIL LAYER 4
	GAMAG4	FBACE	UNIT WEIGHT OF SOIL LAWR AS SATORATED DESCRIPTION
	FHIS4	DL G	MAX ANGLE OF SETUING ERICTION ON SHEET ASSESS.
	A0HS4	USF	SILIDING ADHESIVE STRENCTH FOR SOIL LAYER A
	AREATN	PSF	ALLOW TIENG PRESSURT TOP OF LAYER 4. MARKOW BASE
	ARE 4BN	F'SF	ALLOW BRNG PRESSURE BOTT OF LAYER 4. MARKOW RASE
	ORIF 4TW	PSF	ALLOW BRNG PRISSURE FOR BUILDING S. WITH HAVE
	ABP46W	FSF	ALLOW, BRNG PRESSURE BOTT OF LAYER A. WED. MAGE
CEATE			Cont. I represent the reserve to the second second
SPES	FL 194	FOOT	Soil properties, existing soil lawer's
			FILEV OF TOP OF SOIL LAYER 4
	PHTS COUR	DE.G	ANGUE OF INTERNAL FRUITION, SOID 1500 R.S.
	COHS	PSF Loczer	CONESTAL STRENGTH OF SOME LAYERS
	GAMAS®	LRZCE race	UNIT WEIGHT OF SOTE LAYER S. SATURATED IT BELOW UT
	111155	Dt. G	MAX. ANOLE OF SETUING FRICTION ON COLUMN STATE
	ADHSS	PSF	SLIGING ACEL SIDE STRENGTH FOR SOLE AND RES
	ABPSTN	PSF	ALLOW THING PRESCURE THE OF LAYER . NAMED W GASE
	ABP SEN	FSF	ALLOW FRAG FRESSING BOTT OF LAYER 5. NARROW RAG
	ABPSTW	PSF	ALLOW BRNO PRESCURE TOP OF LAYER 5. WITH RASE
	ABPSEW	PSI	ALLOW BRNG TREASURE ROTE OF LAYER SO WICH BASE.

12-5 SUMMARY OF DATA LIST CONTENTS (Continued):

Data List	Data Item	Units	Definition
SHI			coul properties, heel bartfile cases t
	ιc	FACH	LOAD CASE NUMBER (1 10 DR 0 FOR ALL THAT CASES
	PHI1	TH 6	ANGLE OF INTERNAL PROCESSION SOLE AYER I
	C0H1	F-SI	COMESTUR STRENGTH OF COLO . AYE .
	GAMAGI	LECTE	UNIT WEIGHT OF SHIP LAYER SO SATURATION OF TRIBING WE
	RNAT	FAT ID	ACTIVE FARTH PRESIDENCE CONDITIONS FOR SUB-LIAYER !
	DELIAL	DEG	WALL TRUSTION AND I FOR CHILLIAM ALLEY ERESCHIE
	RKAFT	FATIO	LARTHQUAKE ACTION FABRE PROGRAMM STORE TO HENT
	HCMIN	t, Out	MINIMUM END OF HEEL EARTH COVER CHECK VALUE
SHHE			Soil properties, head had full love ?
	1.42	LACH	FOATE CASE NUMBER OF TO OR A LOR ALL FOATE CASES
	FLIST	+ 001	FIEV OF TOP OF SOME FAYER 1
	19412	11E1 -	ANGLE OF INTERNAL ERPOTIONS NO SECTION
	170384	1.54F	COURSIVE STRUNGTH OF SOIL CAYER 2
	GAMACC	1-16-20-1	CONTRACTOR OF SOFT AREA CONTRACTOR OF BELOW WI
	BKA2	RATIO	ACTIVE FARTH PRIZE ORF COLL LOTENT FOR SOIL FAYER A
	ひをしていい	I# G	WALL FRIETION ANGEL FOR COULDMR ACTIVE PRESSURE
	RKAEC	RATIO	EARTHQUAKE ACTIVE CARTH PRESSURE COEFFICIENT
GEHIE			Goal properties: Cilter zone over heed
	LC.	FACH	LOAD CASE NUMBER OF TO OR OFFICE ALL LUAD CASES
	LZTAH	1.001	I DITTER ZONE THICKNESS AT LADI OF HILL
	PHIEZ	orte	ANGLE OF INTERNAL PRICETION, THE THE ZONE
	COHEZ	1.31	COHESIVE STRENGTH OF TILITY ZONE
	CAMASE	4. ROTT	UNIT WEIGHT OF FILLIER ZONE. SATURATED IF BELOW WIT
	RKAFZ	RATIO	ACTIVE PRESSURE COLFFICTINT FOR THETER ZONE
	DELIAF	TIEC	WALL FRICTION ANGEL FOR COMEDME ACTIVE, LILTER ZON
	RNAEFZ	RATIO	EARTHQUAKE ACTIVE PRESSURE COEFF FOR FILTER ZONE
01:16			
	l.C	EACH	Goil properties, the backfull lurer &
			LOAD CASE NUMBER (1-10 DR 0 FOR ALL LOAD CASES)
	F'HI6	DE G	ANGLE OF INTERNAL FRICTION, SOIL LAYER &
	COH9	FSF	COHESIVE STRENGTH OF SOIL LAYER &
	PAMASA	I. B.ZCF	UNIT WEIGHT OF SOUL LAYER AS SATURATED BELOW WY
CF1 ?			Soil properties, too backfill larger ?
	1, 0	EACH	LOAD CASE NUMBER OF 10 OR O FOR ALL LUAD CASES)
	TH (7	Df, G	ANGLE OF INTERNAL FRICTION SOLL LAYER ?
	COH	CH:	COHESTVE STENGTH OF SOTH LAYER ?
	GAMAS?	LEZCE	UNIT WEIGHT OF SOH, LAYER 3. SATURATED IT HELOW W!
CHLE			Soil surface, Existing grade & Excavation
	E×ω	FOOT	CXCAVATION ROTTOM EXTRA WIDTH EACH CIDE OF RASE
	ES3	1∪ XH	EXCAVATION SIDE GLOSE
	HS35-1	TO XII	EXIST GROUND SIDE SLOPE BEYOND DEISSE CTOE STUD
	HI, TSST	וחחז	TXIST GRADE, 01851 FT FROM HITSUL CIDE SIDES
	() T S' > T	t. Ou t	HORTZ, DISTANCE FROM ELTISM TO ELISM (TOE SIDE)
	ELIS5#	EOOT	EXIST GRADE DERECTLY UNDER RASHI WORKING POINT
	EL TOTAL	1.001	EXIST ORANG TOSSEDT FROM LETTON CHEEL SIDE)
	0.TS5H	FOOT	HORYZ INTSTANCE FROM TETSSW TO LETSSH CREEK SIDE Y
	HSS5H	tv xH	EXIST GROUND SIDE SLOPE BEYOND FLISSH CHEEL STOLY

