Kodumuz başlangıç düzeyindeki fonksiyonların türevini alıp değerini almaya yarar. C++'nin işlem yeteneğinden yararlanıp, uçuk ve hesaplanamayacak derecedeki değerleri hesaplamaya yarar.

Kodumuz ve fonksiyonları şu şekilde çalışır

Turev fonksiyonu

Kullanıcıdan alınan değerleri bir array içine alıp bildiğimiz üstü eksiltip katsayıyla çarpar

```
void turev(double katsayi[], double ustsayi[], int terimsayisi) { //tur
        double katsayi_[terimsayisi];
        int ustsayi_[terimsayisi];
        for (int i = 0; i < terimsayisi; i++) {
                katsayi_[i] = katsayi[i] * ustsayi[i]; //Turevi alir ka
                ustsayi_[i] = ustsayi[i] - 1; //Turevi alinan sayinin
        cout << "f'(x)="; //Turevi alir yazdirir
        for (int i = 0; i < terimsayisi; i++) {
                if(ustsayi[i]==0){
                        cout << "+(0)";
                }else{
                        cout << "+(" << katsayi_[i] << "x^" << ustsayi
                }
        }
        for (int i = 0; i < terimsayisi; i++) {
                katsayi[i] = katsayi_[i]; //Kullanicidan aldigi katsay:
                ustsayi[i] = ustsayi_[i];
        }
}
```

polinomTurevi fonksiyonu

Kullanıcıdan daha önce hesapladığımız türevi alıp içine okuduğumuz X değerini girer. Daha sonra bu değeri tüm array elemanlarının katsayıları ile çarpar.

Float kullanılıyor çünkü kesirli sayılar kullanırken işimize yarıyor

```
double polinomTurevi(float x, double KATSY[], double USTSY[],int terimsayisi) { //Egimi bulur
        double sonuc = 0;
        double p = x;
        float araplatform = 1;//değerini bulurken ust negatif ise lazım için float 1/2=0.5 yapıyor
        for (int i = 0; i < terimsayisi; i++) {</pre>
                if(USTSY[i]>0){    //Eger ustun derecesi pozitifse bu islemi yapar
                        for (int j = 0; j < USTSY[i]; j++) {</pre>
                                 araplatform *= p; //p x degerine esit oldugu icin
                        x = araplatform;
                        sonuc += KATSY[i] * x;
                        araplatform = 1;
                }else{ //Eger ustun derecesi negatifse bu islemi yapar
                        for (int j = 0; j > USTSY[i]; j--) {
                                 araplatform /= p;
                        x = araplatform;
                        sonuc += KATSY[i] * x;
                        araplatform = 1;
                }
        }
        return sonuc;
}
```

Polinom fonksiyonu

Aslında en zor fonksiyonumuz, kullanıcıdan x değeri okur, kullanıcıdan fonksiyonun üst ve katsayılarını ister.

Daha sonra bunları bir array'e işleyerek yazdırır.

```
void polinom(){//polinomu kullanicidan alir
       float degisken;//değerini bulurken ust negatif ise lazım için
       cout << "\n Turevini istediginiz x noktasini giriniz: ";</pre>
       cin >> degisken;
       int terimsayisi; //Kullanicidan terim sayisi alir
       cout << " Terim sayisini giriniz: ";</pre>
       cin >> terimsayisi;
       double ustsayi[terimsayisi];
        double katsayi[terimsayisi];
        for (int i = 0; i < terimsayisi; i++) {
               ustsayi[i] = 0;
               katsayi[i] = 0;
        for (int i = 0; i < terimsayisi; i++) { //Kullanicidan katsayi ve us ister
               cout << " " << (i + 1) << ". katsayiyi giriniz: ";</pre>
               cin >> katsayi[i];
               cout << " " << (i + 1) << ". us sayiyi giriniz: ";
               cin >> ustsayi[i];
        cout << "f(x)="; //F(x) i yazdirir
        for (int i = 0; i < terimsayisi; i++) {
               cout << "+(" << katsayi[i] << "x^*" << ustsayi[i] << ")";
       cout << endl;
        turev(katsayi, ustsayi, terimsayisi); //DİZİLERDE FONKSIYONLARDA KULLANIRKEN [] B
        cout << " " << endl; //Fonksiyonu yazdirir
        cout << "-----
                                                        -\n";
        cout << "| f'(" << degisken << ") = "<< polinomTurevi(degisken, katsayi, ustsayi,</pre>
                                                        -" << endl;
       cout << "-----
       bitis();
```

Logaritmik fonksiyonu

Kullanıcıdan fonksiyonu okur, türevini kurallara göre alır ve hesaplar yazdırır.

```
}void logaritmik(){
       cout << "aLogb(Cx)"<< endl;</pre>
       cout << "Turevini almak istediginiz noktayi seciniz, E=2.71 girebilirsiniz." <<endl;
       float x;
       cout << "X:" <<endl; //Kullanicinin istedigi X noktasini bulur</pre>
       cout << "aLogbx olacak sekilde A, B ve C degerlerini giriniz"<< endl;</pre>
       float logkatsayi,xkatsayi,taban;
       cout << "a=:" << endl;
       cin >> logkatsayi; //Degerleri kullanicidan okur
       cout << "b=:" << endl;
       cin >> taban;
       cout << "c:" << endl;
       cin >> xkatsayi;
       float deger = logkatsayi*(1/x*log(taban));
       cout << "f( \times ) = " << logkatsayi << "Log" << taban << "(" << xkatsayi << "x)" << endl;
       cout << "------
                                                     -\n";
       cout << "f'(x) =" << "1/" << xkatsayi << "*1/ln" << taban << endl; //Fonksiyonun turevini ve kend
       cout << "----- -- -
                                                     -\n";
       cout << "f'( " << x << ") = " << deger << endl;
       cout << "----- - - - -
                                                     -\n";
       bitis();
```

Trigonometrik fonksiyon

4 adet trigonometrik fonksiyon olduğu için önce bunlardan bir tanesini seçmemizi ister

Daha sonra istediğimiz bu seçiciden sinüs olanı gösterecek olursak bunun değerini türev kurallarına göre hesaplar.

```
if(trigodeger==1) {
       cout << " aSinbx\n";
       int katsayi,xkatsayi;
       cout << " a degeri: "; //Sin degerini alir
       cin >> katsayi;
       cout << " b degeri: \n";
       cin >> xkatsayi;
       cout << "f(x)="<< katsayi<<"sin"<<xkatsayi<<"x"<<endl;
       cout << "------
       cout << "f'(x)="<< (xkatsayi*katsayi)<<"cos"<<xkatsayi<<"x"<<endl
       if(xderece==90 || xderece==270){
             cout << "----- -- - -
             cout <<" | f'("<< " x " <<") = " << 0 <<endl;
             cout << "------
                                                        -" << en
       }else{
             float x;
             x = xkatsayi*xderece*3.14159/180; //Double'i Aciya ceviri
             float deger =(xkatsayi*katsayi)*(cos(x));
             cout << "------
                                                        -\n";
             cout <<" | f'("<< " x " <<") = " << deger <<endl;
             cout << "------
                                                        -" << en
       }
}
```