Università di Camerino - Formazione Insegnanti STEM 20/21

Matematica

Logica nella scuola secondaria di primo grado

Laboratorio: raccolta di rompicapi

I rompicapi raccolti qui e le relative soluzioni sono tratti, a volte con modifiche minori, da *Qual è il titolo di questo libro?* di Raymond Smullyan (Zanichelli 1981)

Indice

L'isola di Smullyan	2
Soluzioni per l'insegnante	
Gli scrigni di Porzia	
Soluzioni per l'insegnante	8
Se allora	
Soluzioni per l'insegnante	11

L'isola di Smullyan

Lo scenario: l'isola dei cavalieri e dei furfanti

Sull'isola di Raymond Smullyan convivono

- cavalieri, che dicono sempre la verità
- furfanti, che mentono sempre.

Ogni abitante dell'isola è o un cavaliere o un furfante. Non vi è modo di distinguere i cavalieri dai furfanti se non, eventualmente, parlando con loro.

Un viaggiatore arriva sull'isola e incontra alcuni dei suoi abitanti, A, B, C, ... e cerca di stabilire se siano cavalieri o furfanti.

Rompicapo 1

Il viaggiatore incontra l'abitante A, che afferma "Sono un cavaliere".

Che cos'è A, un cavaliere o un furfante?

Rompicapo 2

Il viaggiatore stavolta incontra due abitanti dell'isola, A e B, ed A afferma "Almeno uno tra noi due è un furfante".

Che cosa sono A e B, cavalieri o furfanti?

Rompicapo 3

Il viaggiatore incontra di nuovo due abitanti, A e B, e A afferma "Io e B siamo entrambi furfanti".

Che cosa sono A e B?

Rompicapo 4

Il viaggiatore incontra tre persone, A, B e \underline{C} , ciascuna delle quali è un cavaliere o un furfante. A e B fanno le seguenti affermazioni:

A: "Siamo tutti furfanti".

B: "Solo uno di noi è un cavaliere".

Che cosa sono A, B e C?

Rompicapo 5

Supponiamo invece che \mathcal{A} e \mathcal{B} facciano le seguenti affermazioni:

A: "Siamo tutti furfanti".

B: "Solo uno di noi è un furfante".

Si può determinare cos'è B? Si può determinare cos'è C?

Soluzioni per l'insegnante

Rompicapo 1

Esaminiamo i casi possibili:

- A è un cavaliere. Allora dice la verità e dunque afferma di essere un cavaliere.
- A è un furfante. Allora mente, e quindi afferma di essere il contrario di ciò che è, ossia afferma di essere un cavaliere.

La conclusione è che A dice di essere un cavaliere in ogni caso, quindi non è possibile stabilire se sia un cavaliere o un furfante.

Rompicapo 2

A afferma "O io sono un furfante, o lo è B, oppure lo siamo entrambi". L'affermazione dunque esclude che entrambi A e B siano cavalieri.

Esaminiamo i casi possibili per A.

- \mathcal{A} è un cavaliere. Allora la sua affermazione è vera e quindi, non essendo lui un furfante, B è un furfante.
- A è un furfante: allora mente, mentre, affermando che tra A e B c'è almeno un furfante, direbbe la verità. Questo caso è quindi impossibile.

Ne consegue che l'unico caso possibile è il primo, dunque A è un cavaliere e B un furfante.

Rompicapo 3

A afferma "Io sono un furfante, e B è un furfante".

Se A fosse un cavaliere, entrambe le parti della sua affermazione dovrebbero essere vere, dunque A dovrebbe essere un furfante - impossibile.

Dunque A è un furfante, e la sua dichiarazione deve essere falsa. Poiché è vero che A è un furfante, deve essere falso che lo è B. Dunque B è un cavaliere.

Ne consegue che l'unico caso possibile è che A è un furfante e B un cavaliere.

Rompicapo 4

Se A fosse un cavaliere, A, B e C dovrebbero essere tutti furfanti, il che contraddice che A sia un cavaliere. Dunque A deve essere un furfante e l'affermazione di A è falsa, ossia almeno uno fra A, B e C deve essere un cavaliere.

Se *B* fosse un furfante, allora *A* e *B* sarebbero entrambi furfanti, per cui *C* dovrebbe essere un cavaliere (poiché fra di loro c'è almeno un cavaliere). Ma in questo caso l'affermazione di *B* sarebbe vera, il che contraddice l'ipotesi che *B* sia un furfante.

Dunque B deve essere un cavaliere, e la sua affermazione è vera. Questo implica che C deve essere un furfante.

Dunque A e C sono furfanti e B è un cavaliere.

Rompicapo 5

Come nel problema precedente, A deve essere un furfante e la sua affermazione è falsa, ossia almeno uno fra A, B e C deve essere un cavaliere.

Se B è un cavaliere, allora è vero che esattamente uno fra A, B e C è un furfante, e quindi C deve essere un cavaliere.

Se B è un furfante, allora C deve essere un cavaliere, altrimenti sarebbe vera l'affermazione di A.

Dunque sappiamo che A deve essere un furfante, C deve essere un cavaliere, ma non è possibilie determinare cosa sia B.

Gli scrigni di Porzia

Lo scenario

Nel Mercante di Venezia di Shakespeare, Porzia aveva tre scrigni, uno d'oro, uno d'argento e uno di piombo, e in uno degli scrigni c'era il suo ritratto. Porzia metteva alla prova i suoi pretendenti facendo scegliere loro uno scrigno. Se il pretendente fosse stato tanto fortunato, o tanto saggio, da scegliere quello con il ritratto avrebbe avuto diritto alla mano di Porzia.

Sul coperchio di ogni scrigno c'era un'iscrizione, che aveva lo scopo di aiutare il pretendente a scegliere correttamente.

Porzia spiegò a un pretendente che delle tre affermazioni incise, al massimo una era vera.

Quale scrigno avrebbe dovuto scegliere il pretendente?

Secondo rompicapo di Porzia

Porzia fece preparare altri tre scrigni con le seguenti iscrizioni.

Il ritratto non è nello scrigno d'argento

Il ritratto non è in questo scrigno

Il ritratto è in questo scrigno

Oro

Argento

Piombo

Questa volta, Porzia spiegò al pretendente, delle tre affermazioni incise, almeno una era vera e almeno una era falsa.

Quale scrigno avrebbe dovuto scegliere il pretendente?

Terzo rompicapo di Porzia

Porzia fece di nuovo preparare altri tre scrigni con le seguenti iscrizioni.

Il ritratto è in questo scrigno

Il ritratto non è in questo scrigno

Il ritratto è nello scrigno d'argento

Oro

Argento

Piombo

Questa volta, Porzia spiegò al pretendente, delle tre affermazioni incise, **almeno** due erano vere.

Quale scrigno avrebbe dovuto scegliere il pretendente?

Soluzioni per l'insegnante

Primo rompicapo

Se il ritratto fosse nello scrigno d'oro, ci sarebbero due iscrizioni vere (quella sullo scrigno d'oro e quella sullo scrigno di piombo), il che contraddice i dati del problema.

Se il ritratto fose nello scrigno di piombo, di nuovo due delle iscrizioni sarebbero vere (quella sullo scrigno di piombo e quella sullo scrigno d'argento).

Quindi il ritratto deve essere nello scrigno d'argento, e l'unica iscrizione vera è quella sullo scrigno di piombo.

Secondo rompicapo

Se il ritratto fosse nello scrigno di piombo, tutte e tre le iscrizioni sarebbero vere, il che contraddice i dati del problema.

Se il ritratto fose nello scrigno d'argento, tutte e tre le iscrizioni sarebbero false, il che contraddice di nuovo i dati del problema.

Quindi il ritratto deve essere nello scrigno d'oro, e le prime due iscrizioni sono vere, mentre la terza è falsa.

Terzo rompicapo

Se il ritratto fosse nello scrigno d'argento, l'unica iscrizione vera sarebbe quella sullo scrigno di piombo, il che contraddice i dati del problema.

Se il ritratto fosse nello scrigno di piombo, l'unica iscrizione vera sarebbe quella sullo scrigno d'argento, il che è di nuovo contrario ai dati del problema.

Quindi il ritratto deve essere nello scrigno d'oro, e le prime due iscrizioni sono vere, mentre la terza è falsa.

Se... allora...

Primo rompicapo

Sull'isola dei cavalieri e dei furfanti, il viaggiatore incontra gli abitanti A e B, e A afferma

"Se io sono un cavaliere, allora lo è anche B".

Che cosa sono A e B?

Secondo rompicapo

Un uomo viene processato per furto. Il pubblico ministero e l'avvocato difensore fanno le seguenti affermazioni:

Pubblico Ministero: Se l'imputato è colpevole, allora ebbe un complice"

Avvocato difensore: "Non è vero"!

Perché questa era la cosa peggiore che l'avvocato può dire?

Terzo rompicapo

Un secondo caso giudiziario riguarda il processo di tre persone, A, B e C, per partecipazione a un furto.

In questo caso, l'Ispettore Craig di Scotland Yard accerta i seguenti fatti:

- Se \mathcal{A} è innocente o \mathcal{B} è colpevole, allora \mathcal{C} è colpevole
- Se A è innocente, allora C è innocente.

Si può stabilire se A sia colpevole o innocente?

Quarto rompicapo

Il terzo caso riguarda di nuovo tre persone, A, B e C, per partecipazione a un furto. L'ispettore Craig accerta i seguenti fatti:

- Almeno uno dei tre indagati è colpevole
- Se A è colpevole e B è innocente, allora C è colpevole.

Queste prove sono insufficienti per condannare uno qualsiasi degli imputati, ma indicano due tra gli imputati tra cui si trova sicuramente un colpevole. Chi sono questi due?

Soluzioni per l'insegnante

Primo rompicapo

Supponiamo che A sia un cavaliere. Allora la proposizione "Se io sono un cavaliere, lo è anche B" deve essere vera. Così A è un cavaliere, e lo è anche B.

Se invece A fosse un furfante, la sua dichiarazione sarebbe falsa. Questo succederebbe solo nel caso in cui A fosse un cavaliere e B un furfante – quindi la dichiarazione non può essere falsa, dato che per esserlo A dovrebbe essere un furfante. Quindi A deve essere un cavaliere!

Secondo rompicapo

Il Pubblico Ministero afferma, di fatto, che l'imputato non ha commesso il crimine da solo. L'avvocato difensore nega la verità di questa affermazione, il che equivale a dire che l'imputato ha effettivamente commesso il crimine da solo.

Terzo rompicapo

Per la prima affermazione, se A è innocente allora C è colpevole, indipendentemente dalla colpevolezza di B (se A è innocente, allora l'affermazione "A è innocente o B è colpevole" è vera). Per la seconda affermazione, se A è innocente allora C è innocente. Quindi, se A fosse innocente allora C sarebbe sia colpevole sia innocente, il che è impossibile. Quindi A deve essere colpevole.

Quarto rompicapo

Se A è innocente, allora B o C devono essere colpevoli per la prima affermazione.

D'altra parte, supponiamo che A sia colpevole. Se B è colpevole, allora certamente uno fra B e C è colpevole. Se invece B è innocente, allora per la seconda affermazione C deve essere colpevole. Quindi, di nuovo, uno fra B e C è colpevole.

Quindi i due sono *B* e *C*.