

SRM Institute of Science and Technology College of Engineering and Technology

SET-A

DEPARTMENT OF ECE

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamil Nadu

Academic Year: 2022-23 (Odd)

Test: CLAT-1 Date: 07/09/2022
Course Code & Title: 18ECC205J–Analog and Digital Communication Duration: 60 Minutes
Year & Sem: III / V Max. Marks: 25

	18ECC205J - ANALOG AND DIGITAL COMMUNICATION						Prog	ram (Outco	mes ((POs)					
		Graduate Attributes							PSO							
COs	Course Outcomes (COs)	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1 :	Distinguish between various analog modulation and demodulation techniques	3	3	1	1	-	-	-	1	1	-	1	1	2	-	-
CO-2:	Demonstrate a good understanding in the working of analog radio transmitters and receivers.	3	2	-	-	-	-	-	-	-	-	-	-	2	-	-
CO-3:	Analyze the performance of PCM, DPCM and DM in a digital communication system	3	-	-	3	-	-	-	-	-	-	-	-	-	-	3
CO-4:	Compute Bit Error Rate performance of pass band data transmission under different shift keying techniques	3	-	-	2	-	-	-	-	-	-	-	1	-	2	-
CO-5 :	Interpret the features of various spread spectrum and error coding techniques	3	2	-	-	-	-	-	-	-	-	-	-	3	-	-
CO-6 :	Evaluate the operation of analog and digital communication systems and take measurement of various communication systems to compare experimental results in the laboratory with theoretical analysis	-	-	3	-	2	-	-	-	-	-	-	-	-	-	3

	Part – A								
	$(1 \times 5 = 5 \text{ Marks})$								
Instructions: Answer ALL Questions.									
Q.	Question	Marks	BL	CO	PO				
No									
1	The modulation technique that uses the minimum channel bandwidth and	1	1	1	1				
	transmitted power is								
	Ans: SSB								
2	The modulating frequency in frequency modulation is increased from 10 kHz	1	2	1	2				
	to 20 kHz. The bandwidth is								
	(a) doubled (b) halved								
	(c) increased by 20 kHz (d) decreased by 20 kHz								
	Ans: (c) increased by 20 kHz								
3	Amplitude limiter in FM receivers are used to	1	2	1	1				
	(a) remove amplitude variations due to noise (b) filtration								
	(c) demodulation (d) amplification								
	Ans: (a) remove amplitude variations due to noise								
4	A 3 GHz carrier is DSB SC modulated by a signal with maximum frequency of	1	3	1	2				
	2 MHz. The minimum sampling frequency required for the signal so that the								
	signal is ideally sampled is								
	(a) 4 MHz (b) 6 MHz								
	(c) 6 GHz (d) 6.004 GHz								
	Ans: (d) 6.004 GHz								
5	The process of recovering information signal from received carrier is known as	1	1	1	1				
	Ans: detection								
	Part – B	l.	l		l .				
	$(10 \times 2 = 20 \text{ Marks})$								
Inst	ructions: Answer any TWO Questions.								
6	What is amplitude modulation? With the help of a message signal and a carrier		1	1	1				
	signal derive the DSB-FC signal expression and phasor diagram. Also calculate								

the total power and efficiency of the DSB-FC signal.

Sol.:

A modulation process in which amplitude of the carrier signal is varied in accordance with instantaneous value of the modulating signal is known as amplitude modulation.

1+4+1 +2+2

Representation of amplitude modulated signal:

Carrier signal is mathematically denoted as $e(t) = E_c \cos \omega_c t$

 E_c = Amplitude of the carrier signal, ω_c = angular frequency of the carrier signal Modulating signal is mathematically denoted as $f(t) = E_m cos \omega_m t$

 E_m = Amplitude of the carrier signal, ω_m = angular frequency of the carrier signal (rad/sec)

After AM, Amplitude of the carrier signal, $E_c = E_c + f(t)$

$$e_{AM}(t) = [E_c + f(t)] \cos \omega_c t$$
, $eAM(t) = E_c \cos \omega_c t + f(t) \cos \omega_c t$

Substitute $f(t) = E_m \cos \omega_m t$

$$e_{AM}(t) = E_{c}cos\omega_{c}t + E_{m}cos\omega_{m}t cos\omega_{c}t$$
$$= E_{c}cos\omega_{c}t(1 + E_{m}/E_{c}cos\omega_{m}t)$$

Modulation index, $E_m/E_c = m_a$ (Ratio of modulating voltage to carrier voltage)

$$e_{AM}(t) = E_c \cos \omega_c t (1 + m_a \cos \omega_m t)$$

 $e_{AM}(t) = E_c cos \omega_c t + m_a E_c cos \omega_c t cos \omega_m t$, Apply cos A cos B formula, Then,

$$e_{AM}(t) = E_c cos \omega_c t + m_a E_c / 2 \left[cos(\omega_c + \omega_m)t + cos(\omega_c - \omega_m)t \right]$$
Carrier signal USB LSB

 $e_{AM}(t)$ = Amplitude modulated signal

Phasor diagram:

	Carrier power (Pc):				
	$P_C = \frac{1}{(A \cos \omega_c t)^2} = A^2/2$ = Mean square value of the carrier signal				
	Side band power (P_S) $P_s = \frac{1}{[f(t)\cos\omega_c t]^2} = \frac{1}{2\pi} \int_0^{2\pi} f^2(t)\cos^2\omega_c t d(\omega t)$				
	$= \frac{1}{2\pi} \int_{-\pi}^{2\pi} \frac{1}{2} f^{2}(t) [1 + \cos 2\omega_{c} t] d(\omega t)$				
	$\frac{2\pi}{0} \int_{0}^{2\pi} \frac{1}{2} \int_{0}^{2\pi} \frac{1}{2} \int_{0}^{2\pi} f^{2}(t) d(\omega t) + \frac{1}{2\pi} \int_{0}^{2\pi} \frac{1}{2} \int_{0}^{2\pi} f^{2}(t) \cos 2\omega_{e} t d(\omega t)$				
	$= \frac{2\pi}{2\pi} \int_{0}^{\pi} \frac{1}{2} \int_{0}^{\pi} \frac{1}{2\pi} \int_{0}^{\pi} \frac{1}{2} \int_{0}^{\pi} \frac{1}{2\pi} \int$				
	The second integral is filtered out by BPF centered around ω_c				
	$P_S = \frac{1}{2} \frac{1}{f^2(t)} = \frac{1}{2} \frac{1}{(E_m \cos \omega_m t)^2} = \frac{E_m^2}{4}$, $f^2(t) =$ Mean square value of modulating signal $P_S = P_{LSR} + P_{LSR} = Em^2/4$				
	Total Radiated Power: $P = P_C + P_S E_m / E_c = m_a$				
	$E_{m} = m_{\alpha}A$				
	Side band power $P_S = m_a^2 A^2 / 4$				
	Total power $P = P_c + P_S$				
	$P = P_c + m_a^2 P_c/2$				
	$=P_{c}[1+(m_{a}^{2}/2)]$				
	$P=1.5P_c$ $m_a=1$ for critical modulation				
	Efficiency: The amount of useful message power <i>Ps</i> present in AM is expressed by a term				
	called transmission efficiency denoted by Eff. It is defined as percentage of total				
	power contributed by the sidebands. $\frac{1}{f^2(t)} = \frac{1}{f^2(t)}$				
	$Eff = \frac{\overline{f^2(t)}}{A^2 + \overline{f^2(t)}} \times 100 (Eff)_{AM} = \frac{P_s}{P} \times 100 = \frac{\frac{1}{2} \overline{f^2(t)}}{\frac{1}{2} A^2 + \frac{1}{2} \overline{f^2(t)}} \times 100 = \frac{100 \overline{f^2(t)}}{A^2 + \overline{f^2(t)}}$				
	$Efficiency = \frac{\frac{Em^2}{2}}{\frac{A^2 + \frac{Em^2}{2}}{2}} \times 100$				
	Dividing numerator and denominator by $A^2/2$, we get				
	Eff. = $m_a^2/(2 + m_a^2)$ As we know, $Em/A = m_a$ $m_a = 1$, 100% modulation or critical modulation				
	$m_a = 1,100\%$ includation of critical modulation $Eff. = (1/3) \times 100 = 33.3\%$				
7	(a) An AM modulated signal is given by $10\cos(2\pi \times 10^6 t) + 5\cos(2\pi \times 10^6 t)\cos(2\pi \times 10^3 t)$ V. Find the various components present (corrier		2	1	2
	$5\cos(2\pi \times 10^6 t)\cos(2\pi \times 10^3 t)$ V. Find the various components present (carrier frequency, upper sideband and lower sideband) and modulation index. Draw				
	the frequency spectra and find the bandwidth.				
	Sol: $s(t) = 10[1+5/10\cos(2\pi \times 10^3 t)]\cos(2\pi \times 10^6 t)$				
	$s(t) = 10[1 + 0.5\cos(2\pi \times 10^3 t)]\cos(2\pi \times 10^6 t)$				
	Here, $E_c = 10$				
	$\omega_1 = 2\pi \times 10^3$	1+1+1			
	$\omega_c = 2\pi \times 10^6$	+1+1+ 1			
	(i) $f_c = \omega_c/2\pi = 10^6 \text{ Hz} = 1 \text{ MHz}$				
	(ii) $\omega_c + \omega_1 = (f_c + f_1)/2\pi = (2\pi \times 10^6 + 2\pi \times 10^3)/2\pi$ = $(10^6 + 10^3) = 1.001 \text{ MHz}$				
	(iii) $\omega_c - \omega_1 = (f_c - f_1)/2\pi = (2\pi \times 10^6 - 2\pi \times 10^3)/2\pi$ = $(10^6 - 10^3) = 0.999 \text{ MHz}$				
	(iv) $m_a = 0.5$				
					I

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

Evaluation Sheet

Name of the Student:

Register No.:

	Part - A $(1 \times 5 = 5 \text{ Marks})$						
Q. No.	со	РО	Max. Marks	Marks Obtained	Total		
1	1	1	1				
2	1	2	1				
3	1	1	1				
4	1	2	1				
5	1	1	1				
		Part	$-\mathbf{B} (10 \times 2 = 20)$	0 Marks)			
6	1	1	10				
7(a)	1	2	6				
7(b)	1	1	4				
8(a)	1	2	5				
8(b)	1	2	5				

Consolidated Marks:

СО	Max. Marks	Marks Obtained
CO1	35	
Total	35	

PO	Max. Marks	Marks Obtained
PO1	17	
PO2	18	

Total	35	
-------	----	--

Signature of the Course Teacher