STUDI KASUS PRAKTIKUM STATISTIKA REGRESI BAGIAN 3 – PENANGANAN PELANGGARAN ASUMSI PADA REGRESI LINIER BERGANDA

Disusun oleh:

Chelsea Ayu Adhigiadany 21083010028 Statistika Regresi – B

Dosen Pengampu:

Trimono Pujiarto, S.Si, M.Si.

PROGRAM STUDI SAINS DATA FAKULTAS ILMU KOMPUTER UNIVERSITAS PEMBANGUNAN NASIONAL "VETERAN" JAWA TIMUR

Daftar Isi

BAB 2	1. PENDAHULUAN	3
1.1.	. Tujuan Praktikum	3
1	1.1.1. Tujuan Instruksional Umum (TIU)	3
1	1.1.2. Tujuan Instruksional Khusus (TIK)	3
1.2.	. Permasalahan	3
BAB 2	2. TINJAUAN PUSTAKA	4
2.1.	. Pelanggaran asumsi model regresi dan penanganannya	4
1.	Transformasi untuk kasus hubungan nonlinier	4
2.	Tranformasi pada variabel Y: Metode BOX-COX	5
3.	Tansformasi untuk kehomogenan varian	6
BAB 3	3. ANALISIS DAN PEMBAHASAN	8
BAB 4	4. KESIMPULAN	13
DAFT	ΓAR PUSTAKA	14
LAM	PIRAN	15
1.	Langkah-langkah analisis	15
2.	Output Analisis pada SPSS	16

BAB 1. PENDAHULUAN

1.1.Tujuan Praktikum

1.1.1. Tujuan Instruksional Umum (TIU)

Setelah mengikuti seluruh kegiatan praktikum ini, mahasiswa diharapkan dapat melakukan pengolahan, analisis dan membuat model regresi dari data atau informasi hasil pengamatan serta dapat melakukan prediksi berdasarkan model yang dibangun dan dianalisis dengan menggunakan paket program SPSS for Windows.

1.1.2. Tujuan Instruksional Khusus (TIK)

Setelah mengikuti praktikum ini mahasiswa diharakan mampu mengestimasi koefisien regresi linier serta menganalisis berbagai nilai statistik yang berkaitan dengan koefisien regresi linear yang diperoleh dari hasil pengolahan data pengamatan dengan menggunakan paket program SPSS for Windows.

1.2.Permasalahan

Buatlah estimasi model regresi untuk variabel Y dan X menggunakan model linier, dan kuandratik. Selanjutnya lakukan analisis dan perbandingan dua model regresi tersebut. Data untuk variabel Y dan X disajikan pada tabel berikut :

Y	X	Y	X
15.42	90.83	16.23	94.18
18.41	88.39	10.35	82.09
18.81	85.94	13.66	88.56
20.8	87.76	10.24	69.52
15.99	91.27	11.32	83.08
19.72	87.82	11.95	90.73
15.15	88.28	10.89	87.83
12.41	92.64	11.96	88.16
14.85	95.19	18.03	85.12
10.45	97.14	11.8	86.12
12.18	90.7	18.28	84.52
12.31	94.76	11.83	96.63
15.37	93.89	10.71	103.11
15.22	89.66	7.11	105.19
14.49	87.49	5.26	105.6
18	88.66	7.67	97.2
13.49	90.27	9.25	95.09

BAB 2. TINJAUAN PUSTAKA

2.1.Pelanggaran asumsi model regresi dan penanganannya

Jika model regresi yang diperoleh ternyata kurang sesuai untuk data yang ada atau terdapat asumsi yang dilanggar, maka solusinya adalah mencari model lain yang lebih sesuai atau melakukan transformasi data. Beberapa model transformasi data yang dapat digunakan antara lain:

1. Transformasi untuk kasus hubungan nonlinier

Model transformasi pertama yang akan dikaji adalah model transformasi untuk kasus saat hubungan antara *X* dan *Y* bersifat nonlinier. Beberapa fungsi linierisasi akan disajikan pada gambar 3.1, yang kemudian model tranformasi yang cocok dengan fungsi linierisasinya diberikan pada tabel 3.1.

Gambar 3.1. Fungsi linierisasi

Tabel 3.1. Fungsi linierisasi dan bentuk linier yang sesuai

Gambar	Fungsi yang ditranformasi	Bentuk transformasi	Model linier
a,b	$\hat{Y} = \beta_{0} X^{\beta_{1}}$	$Y' = \log Y, X' = \log X$	$Y' = \log \beta_0 + \beta_1 X'$
c,d	$Y = p_0 e_{\beta}^{-1}$	$Y' = \ln Y$	$Y' = \ln \beta_0 + \beta_1 X$
e,f	$\hat{Y} = \beta_0 + \beta_1 \log X$	$X' = \log X$	$Y = \beta_0 + \beta_1 X'$
g,h	$Y' = \frac{X}{\beta_0 X - \beta_1}$	$Y' = \frac{1}{Y}; X' = \frac{1}{X}$	$Y' = \beta_0 - \beta_1 X'$

2. Tranformasi pada variabel Y: Metode BOX-COX

Pada model regresi linier sederhana, telah diketahui bahwa salah satu asumsi yang harus dipenuhi adalah asumsi normalitas dan kehomogenan variansi. Apabila salah satu atau kedua asumsi tersebut tidak dapat terpenuhi, maka alternatif perbaikan yang dapat dilakukan adalah dengan melakukan transformasi pada variabel *Y*.

Misalkan kita ingin mentransformasi Y untuk mengoreksi ketidaknormalan dan/atau varian yang tidak konstan. Transformasi yang bermanfaat adalah transformasi Y^{λ} , dengan λ adalah parameter yang nilainya tertentu yang dapat diperoleh dengan menggunakan metode $Maximum\ Likelihood$. Beberapa kriteria pemilihan nilai λ adalah:

- 1. Menghasilkan JKS yang paling kecil
- 2. Mudah ditafsirkan
- 3. Mudah dihitung hasil Transformasinya.

Beberapa model transformasi terhadapa Y untuk beberapa nilai λ disajikan pada tabel berikut:

Tabel 3.2. Bentuk transformasi terhadap variabel *Y*

Nilai λ	Bentuk Transformasi
2.0	$Y' = Y^2$
0.5	$Y^{'}=\sqrt{Y}$
0.0	$Y' = \ln(Y)$
-0.5	$Y' = \frac{1}{\sqrt{2}}$
-1.0	$Y' = \frac{\sqrt{Y}}{Y}$

Berikut adalah contoh pemilihan nilai λ berdasarkan nilai JKS yang diperoleh dari pemodelan regresi antara W dan X:

Tabel 3.3. Contoh pemilihan nilai λ

λ	JKS	λ	JKS
-1.000	986.042	0.375	100.256
-0.500	291.083	0.500	96.949
0.000	134.094	0.625	97.288
0.125	118.198	0.750	101.686
0.250	107.205		

Berdasarkan tabel 3.5, nilai λ yang dipilih adalah $\lambda = 0.5$ karena memberikan nilai JKS terkecil, sehingga transformasinya adalah $Y' = \sqrt{Y}$

3. Tansformasi untuk kehomogenan varian

Jika anggapan kehomogenan varian tidak terpenuhi, maka diperlukan transformasi untuk menstabilkannya. Bentuk transformasi yang digunakan dapat mengaju pada diagram pencar antara Y terhadap X, galat terhadap \hat{Y} , dan galat terhadap X. Transformasi ini juga membuat asumsi kenormalan dapat terpenuhi dengan baik. Bentuk transformasi terhadap Y disajikan pada tabel berikut :

Tabel 3.4. Bentuk transformasi berdasarkan kondisi $Var(\varepsilon_i)$

Kondisi Var (ε_i)	Bentuk Transformasi
var (e _i) sevanding dengan x ₂	$Y' = \frac{Y}{X}$; $X' = \frac{1}{X}$
$Var(\varepsilon_i)$ sebanding dengan $E(Y_i)$	$Y' = \sqrt{Y}$
$\operatorname{Var}(\varepsilon_i)$ sebanding dengan $[E(Y_i)]^2$	$Y' = \ln(Y) ; Y' = \log(Y)$

$Var(\varepsilon_i)$ sebanding dengan $[E(Y_i)]^3$	$Y' = \sqrt{Y}$
$Var(\varepsilon_i)$ sebanding dengan $[E(Y_i)]^4$	Y' = 1/Y

bentuk transformasi yang umum dipakai adalah $Y' = \log(Y)$. Alasannya adalah karena bentuk transformasi ini sering menolong untuk Y yang memiliki rentangan besar tetapi nilai Y besar agak jarang sedangkan yang bernilai kecil amat berdekatan. Fungsi $Y' = \log(Y)$ akan mendekatkan nilai Y yang besar dan merenggangjan nilai-nilai Y yang kecil.

BAB 3. ANALISIS DAN PEMBAHASAN

3.1.Model linier

3.1.1 Model awal

Coefficients

	Unstandardize	d Coefficients	Standardized Coefficients		
	В	Std. Error	Beta	t	Sig.
X_028	218	.089	399	-2.463	.019
(Constant)	33.323	8.063		4.133	.000

Berdasarkan tabel di atas, dapat diketahui bahwa:

$$\beta_0 = 33,323$$

$$\beta_1 = -0.218$$

Maka dapat disimpulkan bahwa persamaan regresinya adalah $Y = 33,323 - 0,218X_1$

3.1.2 Uji hipotesis

Pada uji hipotesis dilakukan 2 macam uji yaitu untuk menguji kecocokan model dan juga menguji pengaruh variabel

3.2.1. Uji f (uji kecocokan model)

a. Menentukan hipotesis

$$H_0$$
: $\beta_0 = \beta_1 = \beta_2 = \beta_3 = 0$ (model regresi tidak sesuai)

$$H_1: \beta_1 \neq 0$$
; 1, 2, 3 (model regresi sesuai)

b. Taraf signifikansi

$$\alpha = 5\% = 0.05$$

c. Uji statistik

ANOVA

	Sum of Squares	df	Mean Square	F	Sig.
Regression	73.639	1	73.639	6.067	.019
Residual	388.379	32	12.137		
Total	462.018	33			

The independent variable is X_028.

Berdasarkan tabel anova dapat diketahui bahwa F = 6,067 dengan Sig = 0,019

d. Daerah kritis

Tolak H_0 jika nilai Sig $< \alpha$

e. Keputusan

Tolak H_0 karena nilai $Sig < \alpha (0.019 < 0.05)$

f. Kesimpulan

 H_0 ditolak karena nilai $Sig < \alpha$, yang berarti model regresi sesuai

3.2.2. Uji t (uji signifikansi)

a. Menentukan hipotesis

$$H_0$$
: $\beta_i = 0$, $j = 1$ (koefisien regresi tidak signifikan)

$$H_1: \beta_i \neq 0, j = 1$$
 (koefisien regresi signifikan)

b. Taraf signifikansi

$$\alpha = 5\% = 0.05$$

c. Uji statistik

Coefficients

	Unstandardize B	d Coefficients Std. Error	Standardized Coefficients Beta	t	Sig.
X_028	218	.089	399	-2.463	.019
(Constant)	33.323	8.063		4.133	.000

Berdasarkan tabel coefficient, diketahui bahwa nilai $t_{hitung} = -2,463$ dengan Sig = 0,019

d. Daerah kritis

Tolak H_0 jika nilai Sig $< \alpha$

e. Keputusan

Tolak H_0 karena nilai $Sig < \alpha (0.019 < 0.05)$

f. Kesimpulan

 H_0 ditolak karena nilai $Sig < \alpha$, yang berarti koefisien regresi β_i signifikan terhadap Y

3.1.3 Koefisien determinasi

Model Summary

R	Adjusted R R Square Square		Std. Error of the Estimate
.399	.159	.133	3.484

The independent variable is X_028.

Dari tabel summary diperoleh nilai $R^2 = 0.159 = 15.9\%$, artinya sebesar 15.9% variabel Y dipengaruhi oleh variabel X, sisanya sebesar 84.1% Y dipengaruhi oleh faktor lain.

3.1.4 Mean square error

ANOVA

	Sum of Squares	df	Mean Square	F	Sig.
Regression	73.639	1	73.639	6.067	.019
Residual	388.379	32	12.137		
Total	462.018	33			

The independent variable is X_028.

Berdasarkan tabel ANOVA diperolah nilai MSE = 12,137 artinya rata-rata kuadrat perbedaan nilai asli dan prediksi adalah 12,137

3.1.5 Model akhir

Berdasarkan uji F, model regresi yang terbentuk cocok digunakan, sehingga dapat dilanjutkan dengan uji t. Berdasarkan uji t, dapat disimpulkan bahwa koefisien regresi signifikan, maka model akhir sama dengan model awal yaitu: $Y = 33,323 - 0,218X_1$

3.2. Model kuadratik

3.2.1. Model awal

Coefficients

	Unstandardized Coefficients		Standardized Coefficients		
	В	Std. Error	Beta	t	Sig.
X_028	3.725	1.020	6.810	3.651	.001
X_028 ** 2	022	.006	-7.228	-3.875	.001
(Constant)	-143.221	46.053		-3.110	.004

Berdasarkan tabel coefficient diketahui:

$$\beta$$
0 = -143,221

$$\beta_1 = 3,725$$

$$\beta_2 = -0.022$$

Sehingga model kuadratiknya adalah $Y = 143,221 + 3,725X_1 - 0,022X_1^2$

3.2.2. Uji kecocokan model (uji f)

a. Menentukan hipotesis

$$H_0$$
: $\beta_0 = \beta_1 = \beta_2 = \beta_3 = 0$ (model regresi tidak sesuai)

$$H_1: \beta_1 \neq 0$$
; 1, 2, 3 (model regresi sesuai)

b. Taraf signifikansi

$$\alpha = 5\% = 0.05$$

c. Uji statistik

ANOVA

	Sum of Squares	df	Mean Square	F	Sig.
Regression	200.375	2	100.188	11.870	.000
Residual	261.643	31	8.440		
Total	462.018	33			

The independent variable is X_028.

Berdasarkan tabel anova dapat diketahui bahwa F = 11,870 dengan Sig = 0,000

d. Daerah kritis

Tolak H_0 jika nilai Sig $< \alpha$

e. Keputusan

Tolak H_0 karena nilai $Sig < \alpha \ (0.000 < 0.05)$

f. Kesimpulan

 H_0 ditolak karena nilai $Sig < \alpha$, yang berarti model regresi sesuai

- 3.2.3. Uji signifikansi parameter
 - a. Menentukan hipotesis

 H_0 : $\beta_i = 0$, j = 1 (koefisien regresi tidak signifikan)

$$H_1: \beta_i \neq 0, j = 1$$
 (koefisien regresi signifikan)

b. Taraf signifikansi

$$\alpha = 5\% = 0.05$$

c. Uji statistik

Coefficients

	Unstandardized Coefficients		Standardized Coefficients		
	В	Std. Error	Beta	t	Sig.
X_028	3.725	1.020	6.810	3.651	.001
X_028 ** 2	022	.006	-7.228	-3.875	.001
(Constant)	-143.221	46.053		-3.110	.004

Berdasarkan tabel coefficient, diketahui bahwa nilai $t_{hitung} = -3,875$ dengan

$$Sig = 0.001$$

d. Daerah kritis

Tolak H_0 jika nilai Sig $< \alpha$

e. Keputusan

Tolak H_0 karena nilai $Sig < \alpha \ (0.001 < 0.05)$

f. Kesimpulan

 H_0 ditolak karena nilai $Sig < \alpha$, yang berarti koefisien regresi β_i signifikan terhadap Y

3.2.4. Koefisien determinasi

Model Summary

R	R Square	Adjusted R Square	Std. Error of the Estimate
.659	.434	.397	2.905

The independent variable is X_028.

Dari tabel summary diperoleh nilai $R^2 = 0.434 = 43.4\%$, artinya sebesar 43,4% variabel Y dipengaruhi oleh variabel X, sisanya sebesar 56,6% Y dipengaruhi oleh faktor lain.

3.2.5. Mean square error (MSE)

ANOVA

	Sum of Squares	df	Mean Square	F	Sig.
Regression	200.375	2	100.188	11.870	.000
Residual	261.643	31	8.440		
Total	462.018	33			

The independent variable is X_028.

Berdasarkan tabel ANOVA diperolah nilai MSE = 8,440 artinya rata-rata kuadrat perbedaan nilai asli dan prediksi adalah 8,440

3.2.6. Model akhir

Berdasarkan uji F, model regresi yang terbentuk cocok digunakan, sehingga dapat dilanjutkan dengan uji t. Berdasarkan uji t, dapat disimpulkan bahwa koefisien regresi signifikan, maka model akhir sama dengan model awal yaitu: $Y = 143,221 + 3,725X_1 - 0,022X_1^2$

Pemilihan model terbaik

Tabel perbanadingan model linier dan kuadratik:

Model	Uji F	Uji-t	MSE	R
Linier	Model Cocok	β_1 signifikan	12,137	15,9%
Kuadratik	Model Cocok	β ₁ signifikan	8,440	43,4%
		β ₂ signifikan		

Berdasarkan tabel di atas, model terbaiknya adalah kuadratik karena model cocok dari uji F, signifikan dari uji t, nilai MSE paling kecil dibandingkan model lain yaitu 8,440, dan nilai R2 sebesar 43,4%. Maka model terakhirnya adalah $Y = 143,221 + 3,725X_1 - 0,022X_1^2$

Curve estimation

Secara visual data observasi tersebar acak mendekati atau di sekitar garis kuadratik, sehingga secara visual model terbaik adalah model kuadratik.

BAB 4. KESIMPULAN

Dari permasalahan yang terdapat pada bab 3, ditemukan hasil dari model regresi, uji hipotesis, uji asumsi, koefisien korelasi, dan juga model akhir dari sebuah model liniear dan kuadratik dengan bantuan SPSS dalam perhitungan adalah sebagai berikut :

- 1 Model regresi:
 - a. Linear $= Y = 33,323 0,218X_1$
 - b. Kuadratik = $Y = 143,221 + 3,725X_1 0,022X_1^2$
- 2 Dilakukan 2 uji pada tahapan uji hipotesis yaitu uji f dan uji t dengan hasil menolak H_0 karena nilai $Sig < \alpha$, yang berarti model regresi sesuai dan variabel X berpengaruh terhadap variabel Y
- 3 Dari perbandingan untuk mencari model terbaik, diperoleh model kuadratiklah yang menjadi model terbaik
- 4 Berdasarkan kurva estimasi juga diperolah bahwa model terbaik adalah model kuadratik karena model observasi tersebar acak mendekati model kuadratik

DAFTAR PUSTAKA

- Arya, D., Rochmawati, L., & Sonhaji, I. (2020). Koefisien Korelasi (R) Dan Koefisien Determinasi (R2). *Jurnal Penelitian*, 5(4), 289-296.
- Janie, D. N. A. (2012). Statistik deskriptif & regresi linier berganda dengan SPSS. Jurnal, April.
- Mardiatmoko, G. (2020). PENTINGNYA UJI ASUMSI KLASIK PADA ANALISIS REGRESI LINIER BERGANDA.
- Meiryani. "MEMAHAMI ASUMSI KLASIK DALAM PENELITIAN ILMIAH", https://accounting.binus.ac.id/2021/08/06/memahami-uji-asumsi-klasik-dalam-penelitian-ilmiah/, diakses pada 20 Februari 2022 pukul 12.00
- Tupen, S. N., & Budiantara, I. N. (2011, May). Uji Hipotesis dalam Regresi Nonparametrik Spline. In *Prosiding Seminar Nasional Statistika Universitas Diponegoro 2011* (pp. 184-199). Program Studi Statistika FMIPA Undip.

LAMPIRAN

- 1. Langkah-langkah analisis
 - a. Buat file data. Sebelum memasukan data pada Data View, definisikan terlebih dahulu variabel respon Y dan variabel X pada Variabel View

b. Isikan data yang tersedia pada sel-sel yang sesuai pada Data View.

c. Klik tombol Analyze – Regresion – Curve estimation pada menu utama SPSS pada Data View

d. Isilah kotak Dependent dengan variabel Y (respon) dan kotak Independent dengan variabel X (predictor)

2. Output Analisis pada SPSS

GET
FILE='D:\statieg\pelanggaran.sav'.
DATASET NAME DataSet1 WINDOW=FRONT.
* Curve Estimation.
TSET NEWVAR-NONE.
CUNVEFIT
/VARIABLES=Y_028 WITH X_028
/CONSTANT
/MODEL-LINEAR LOGARITHMIC QUADRATIC
/FRINT ANOVA
/PLOT FIT.

Curve Fit

[DataSetl] D:\statreg\pelanggaran.sav

Model Name		MOD_1	
Dependent Variable	1	Y_028	
Equation	1	Linear	
	2	Logarithmic	
	3	Quadratic	
Independent Variable		X_028	
Constant		Included	
Variable Whose Values	Label Observations in Plots	Unspecified	
Tolerance for Entering 1	Terms in Equations	notes Control Stock Control	.0001

Y_028

Linear

Model Summary

R	R Square	Adjusted R Square	Std. Error of the Estimate
.399	.159	.133	3.484

The independent variable is X_028.

ANOVA

	Sum of Squares	df	Mean Square	F	Sig.
Regression	73.639	1	73.639	6.067	.019
Residual	388.379	32	12.137		
Total	462 018	33			

The independent variable is X_028.

Coefficients

	Unstandardize B	d Coefficients Std. Error	Standardized Coefficients Beta	t	Sig.
X_028	218	.089	399	-2.463	.019
(Constant)	33.323	8.063		4.133	.000

Case Processing Summary

	N
Total Cases	34
Excluded Cases ^a	0
Forecasted Cases	0
Newly Created Cases	0

Cases with a missing value in any variable are excluded from the analysis.

Variable Processing Summary

			ables
		Dependent	Independent
		Y_028	X_028
Number of Positive Values		34	34
Number of Zeros		0	0
Number of Negative Values		0	0
Number of Missing	User-Missing	0	0
Values	System-Missing	0	0

Logarithmic

Model Summary

R	R Square	Adjusted R Square	Std. Error of the Estimate
.358	.128	.101	3.548

The independent variable is X_028.

ANOVA

	Sum of Squares	df	Mean Square	F	Sig.
Regression	59.130	1	59.130	4.696	.038
Residual	402.888	32	12.590		
Total	462.018	33			

The independent variable is X_028.

Coefficients

	Unstandardized Coefficients		Standardized Coefficients		
	В	Std. Error	Beta	t	Sig.
In(X_028)	-17.403	8.031	358	-2.167	.038
(Constant)	91.913	36.180		2.540	.016

Quadratic

Madel Cummon

R	R Square	Adjusted R Square	Std. Error of the Estimate
.659	.434	.397	2.905

The independent variable is X_028.

MOVA

		Sum of Squares	df	Mean Square	F	Sig.
Regressi	on	200.375	2	100.188	11.870	.000
Residual		261.643	31	8.440		
Total		462.018	33			

The independent variable is X_028.

oofficient

	Unstandardized Coefficients		Standardized Coefficients		
	В	Std. Error	Beta	t	Sig.
X_028	3.725	1.020	6.810	3.651	.001
X_028 ** 2	022	.006	-7.228	-3.875	.001
(Constant)	-143.221	46.053		-3.110	.004

