SUITES - BAC S POLYNÉSIE 2014

On considère la suite (u_n) définie par $u_0 = 0$ et, pour tout entier naturel n, $u_{n+1} = u_n + 2n + 2$.

- 1) $u_1 = 2$ et $u_2 = 6$
- 2) C'est l'algorithme N°2 qui affiche u_n . Le N°1 affiche u_{n+1} .
- 3)
 - On le démontre en calculant que $u_{n+1} u_n = 2n + 2 > 0$ pour tout $n \in \mathbb{N}$.
 - 3.b) On conjecture que $u_n = an^2 + bn + c$.

Puisque $u_0 = 0$, il est immédiat que c = 0. On a alors $u_n = an^2 + bn = n(an + b)$. En prenant n = 1 et n = 2, on obtient le système d'équations suivant où a et b sont les inconnues :

3.a) D'après le tableau et la figure, on conjecture que (u_n) est monotone croissante.

$$u_1 = 2 \Rightarrow a + b = 1$$
 et
 $u_2 = 6 \Rightarrow 2a + b = 3$.

On le résout aisément pour trouver a = b = 1. On conjecture donc que $u_n = n^2 + n = n(n+1)$.

- 4) On considère la suite (v_n) définie pour tout entier naturel n par $v_n = u_{n+1} u_n$.
 - 4.a) $v_n = u_n + 2n + 2 u_n = 2n + 2$. C'est une suite arithmétique de raison 2 et de premier terme $v_0 = 2$.
 - 4.b) On définit pour tout $n \in \mathbb{N}$, $S_n = \sum_{k=0}^n v_k = v_0 + v_1 ... + v_n$. C'est la somme des (n+1) premiers nombres pairs plus grands que 0. Cette somme est égale à $v_0 + v_1 ... + v_n = 2 + 2n + 2$
 - $S_n = (n+1)\frac{v_0 + v_n}{2} = (n+1)\frac{2+2n+2}{2} = (n+1)(n+2).$
 - 4.c) D'après la définition de (v_n) , on peut écrire :

$$S_n = \sum_{k=0}^{n} (u_{k+1} - u_k) = \sum_{k=0}^{n} u_{k+1} - \sum_{k=0}^{n} u_k = (u_1 + u_2 + \dots + u_{n+1}) - (u_0 + u_1 + \dots + u_n) = u_{n+1} - u_0.$$

Comme $u_0 = 0$, on en tire $S_n = u_{n+1}$, c'est à dire :

$$(n+1)(n+2) = u_n + 2n + 2$$
, d'où l'on calcule facilement que : $u_n = n(n+1)$,

ce qui démontre la conjecture faite en 3.b).