OSNOVNI LOGIČKI SKLOPOVI

I (AND)

 $C=A \cdot B$

tablica stanja

Α	В	С
0	0	0
0	1	0
1	0	0
1	1	1

ILI (OR)

C=A+B

tablica stanja

Α	В	С
0	0	0
0	1	1
1	0	1
1	1	1

NEGACIJA, KOMPLEMENT (NOT)

tablica stanja

А	Ā
1	0
0	1

EKSKLUZIVNO ILI (XOR)

 $C=A \oplus B$

tablica stanja

Α	В	С
0	0	0
0	1	1
1	0	1
1	1	0

Primjer 3.1.

Na slici je prikazan logički sklop ostvaren upotrebom logičkih sklopova I i ILI. Koju logičku funkciju sklop ostvaruje ?

Rješenje:

Označimo sa i1 i i2 međurezultate:

$$f=i2 \cdot d = (i1 + c) \cdot d = (a \cdot b + c) \cdot d$$

Primjer 3.2.

Napišite tablicu logičkih stanja za sklop iz prethodnog primjera.

i	а	b	i1	С	i2	d	f
0	0	0	0	0	0	0	0
1	0	0	0	0	0	1	0
2	0	0	0	1	1	0	0
3	0	0	0	1	1	1	1
4	0	1	0	0	0	0	0
5	0	1	0	0	0	1	0
6	0	1	0	1	1	0	0
7	0	1	0	1	1	1	1
8	1	0	0	0	0	0	0
9	1	0	0	0	0	1	0
10	1	0	0	1	1	0	0
11	1	0	0	1	1	1	1
12	1	1	1	0	1	0	0
13	1	1	1	0	1	1	1
14	1	1	1	1	1	0	0
15	1	1	1	1	1	1	1

Zadatak 3.1.

Prikažite grafički funkciju:

$$f = A \overline{B} + ABC + A \overline{B} C$$

Rješenje:

Zadatak 3.2.

Zadana je funkcija:

$$f= (AB+C) (B+D) + E$$

Prikaži funkciju grafički.

Rješenje:

BOOLEOVA ALGEBRA

Aksiomi Booleove algebre:

A.1. Neutralni element

- a) A+0 = A
- b) $A \cdot 0 = 0$

A.2. Komplement

- a) $A + \bar{A} = 1$
- b) $A \cdot \bar{A} = 0$

A.3. Komutativnost

- a) A+B=B+A
- b) $A \cdot B = B \cdot A$

A.4. Distributivnost

- a) $A \cdot (B+C) = A \cdot B + A \cdot C$
- b) $A + B \cdot C = (A+B) \cdot (A+C)$

Primjer 3.3.

Korištenjem aksioma Booleove algebre pokažite da vrijedi:

$$A \cdot A = A$$

Rješenje:

$$A \cdot A = A \cdot A + 0$$

$$= A \cdot A + A \cdot \overline{A}$$

$$= A \cdot (A + \overline{A})$$

$$= A \cdot 1$$

$$= A$$

Zadatak 3.3.

Koristeći aksiome Booleove algebre izračunajte logički izraz:

$$A \cdot (\bar{A} + A \cdot B)$$

Rješenje:

$$A \cdot (\bar{A} + A \cdot B) = A \cdot \bar{A} + A \cdot A \cdot B$$
$$= 0 + A \cdot B$$
$$= A \cdot B$$

Zadatak 3.4.

Koristeći aksiome Booleove algebre izračunajte logički izraz:

$$\overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} C + A \overline{B} C + ABC$$

Rješenje:

$$\overline{A} \ \overline{B} \ \overline{C} + \overline{A} \ \overline{B} \ C + A \ \overline{B} \ C + ABC = \overline{A} \ \overline{B} (\overline{C} + C) + A \ C (\overline{B} + B)$$

$$= \overline{A} \ \overline{B} + A \ C$$

Primjer 3.4.

Booleove funkcije možemo prikazivati i tablicama kombinacija. Zadana je funkcija $f(A,B,C)=A\ \overline{B}+ABC+A\ \overline{B}\ C$. Prikažite funkciju tablicom kombinacija.

Rješenje:

$$f1 = A \overline{B}$$

$$f2 = ABC$$

$$f3 = A \overline{B} C$$

Tablica kombinacija:

i	A	В	C	\overline{A}	\overline{B}	\overline{C}	f1	f2	f3	f
0	0	0	0	1	1	1	0	0	0	0
1	0	0	1	1	1	0	0	0	0	0
2	0	1	0	1	0	1	0	0	0	0
3	0	1	1	1	0	0	0	0	0	0
4	1	0	0	0	1	1	1	0	0	1
5	1	0	1	0	1	0	1	0	1	1
6	1	1	0	0	0	1	0	0	0	0
7	1	1	1	0	0	0	0	1	0	1

Ako imamo zadanu tablicu kombinacija za logičku funkciju tada je možemo prikazati kao:

- a) sumu standardnih produkata (mintermi)
- b) umnožak standardnih suma (makstermi)

Primjer 3.5.

Prikaži funkciju iz primjera 3.4. kao sumu mintermi

Rješenje:

U tablici kombinacija promatramo minterme za koje logička funkcija daje vrijednost 1.

A	B	\boldsymbol{C}	f	mintermi
0	0	0	0	m o
0	0	1	0	m_I
0	1	0	0	m_2
0	1	1	0	m 3
1	0	0	1	m 4
1	0	1	1	m 5
1	1	0	0	m 6
1	1	1	1	m 7

To su minterme m_4 , m_5 , m_7 , pa je f = $m_4 + m_5 + m_7$

U retku koji pripada mintermu m₄ , vrijednosti varijabli su slijedeće: A=1,B=0,C=0. Budući da minterm odgovara umnošku varijabli, a u tom retku funkcija mora poprimiti vrijednost 1, slijedi da umnožak mora biti 1, tj. m4=1= $1\cdot1\cdot1=A$ \overline{B} \overline{C} .

Sličnim razmatranjem se dobije za:

$$m_5 = A \overline{B} C$$

 $m_7 = ABC$

Tražena funkcija tada glasi:

$$f(A,B,C) = A \overline{B} \overline{C} + A \overline{B} C + ABC$$

Primjer 3.6.

Prikaži funkciju iz primjera 3.4. kao produkt makstermi

Rješenje:

A	B	C	f	Makstermi
0	0	0	0	Mo
0	0	1	0	M_I
0	1	0	0	M 2
0	1	1	0	Мз
1	0	0	1	M_4
1	0	1	1	M 5
1	1	0	0	M 6
1	1	1	1	M 7

U tablici kombinacija promatramo retke za koje logička funkcija daje vrijednost 0.

To su makstermi : M_0 , M_1 , M_2 , M_3 , M_6 .

U retku koji pripada makstermu M₀, vrijednosti varijabli su slijedeće: A=0, B=0, C=0.

Budući maksterm odgovara zbroju varijabli, a tom retku funkcija mora poprimiti vrijednost 0, slijedi da suma mora biti 0, tj. $M_0 = 0+0+0 = A+B+C$.

Sličnim razmatranjem dobije se:

$$M_1 = A + B + \overline{C}$$

$$M_2 = A + \overline{B} + C$$

$$M_3 = A + \overline{B} + \overline{C}$$

$$M_6 = \overline{A} + \overline{B} + C$$

Tražena funkcija tada glasi:

$$f = M_0 \cdot M_1 \cdot M_2 \cdot M_3 \cdot M_6$$

$$f = (A + B + C) (A + \overline{B} + C) (A + B + \overline{C}) (A + \overline{B} + \overline{C}) (\overline{A} + \overline{B} + C)$$

Zadatak 3.5.

Fukcija je zadana tablično:

A	B	C	f	mintermi	Makstermi
0	0	0	1	m_0	Mo
0	0	1	0	m_1	M_I
0	1	0	0	m_2	M_2
0	1	1	1	<i>m</i> 3	M 3
1	0	0	1	m4	M_4
1	0	1	0	<i>m</i> 5	M 5
1	1	0	1	m 6	M_6
1	1	1	0	<i>m</i> 7	M_7

- a) Napišite funkciju kao sumu mintermi
- b) Napišite funkciju kao produkt makstermi

Rješenje:

a)
$$m_0 = \overline{A} \overline{B} \overline{C}$$

 $m_3 = \overline{A} B C$
 $m_4 = A \overline{B} \overline{C}$
 $m_6 = A B \overline{C}$
 $f = \overline{A} \overline{B} \overline{C} + \overline{A} B C + A \overline{B} \overline{C} + A B \overline{C} = \sum (0,3,4,6)$

b)
$$M_1 = A + B + \overline{C}$$

 $M_2 = A + \overline{B} + C$
 $M_5 = \overline{A} + B + \overline{C}$
 $M_7 = \overline{A} + \overline{B} + \overline{C}$
 $f = (A + B + \overline{C}) (A + \overline{B} + C) (\overline{A} + B + \overline{C}) (\overline{A} + \overline{B} + \overline{C}) = \Pi(1, 2, 5, 7)$

Zadatak 3.6.

Zadana je funkcija:

$$f = A \overline{C} + B D + \overline{C} D$$

- a) Prikažite funkciju tablično
- b) Prikažite ovu funkciju kao produkt makstermi
- c) Prikažite ovu funkciju kao sumu mintermi

Rješenje:

i	\boldsymbol{A}	В	C	D	$A \overline{C}$	B D	\overline{C} D	f
0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	1	1
2	0	0	1	0	0	0	0	0
3	0	0	1	1	0	0	0	0
4	0	1	0	0	0	0	0	0
5	0	1	0	1	0	1	1	1
6	0	1	1	0	0	0	0	0
7 8 9	0	1	1	1	0	1	0	1
8	1	0	0	0	1	0	0	1
	1	0	0	1	1	0	1	1
10	1	0	1	0	0	0	0	0
11	1	0	1	1	0	0	0	0
12	1	1	0	0	1	0	0 1	1
13	1	1	0	1	1	1	1	1
14	1	1	1	0	0	0	0	0
15	1	1	1	1	0	1	0	1

b) Na temelju vrijednosti iz tablice:

$$f = \sum (1,5,7,8,9,12,13,15)$$

c) Na temelju vrijednosti iz tablice:

$$f = \Pi(0,2,3,4,6,10,11,14)$$