Algebra (UNLP)

Roberth Marcano

17 de agosto de 2023

Índice general

1.	Logica			
	1.1.	Escribir en el lenguaje simbólico – Tablas de verdad	5	
	1.2.	Esquemas lógicos - Cuantificadores	10	

Capítulo 1

Logica

1.1. Escribir en el lenguaje simbólico – Tablas de verdad

El propósito de los siguientes ejercicios es familiarizarnos con la notación simbólica del cálculo proposicional y con el uso de esquemas y cuantificadores. Además, es importante que ejerciten el hacer tablas de verdad para poder establecer después el valor de verdad de proposiciones compuestas a partir del valor de las proposiciones atómicas que las integran.

Ejercicio 1. Determinar si los siguientes enunciados son proposiciones. Escribir en lenguaje simbólico aquellos que sean proposición e indicar su valor de verdad. Y si algún enunciado no es proposición, explicar porqué.

1. 8 es par y 6 es impar.

Son proposiciones, llamando a las proposiciones como p=8 es par y q=6 es impar. Construimos la tabla de verdad para la preposición. **Recordamos** \wedge es la **conjunción** o ε ".

p	q	$p \wedge q$
V	V	V
V	F	F
F	V	F
$\mid F$	F	F

Encontramos que la proposición es inequívocamente falsa, debido a los valores de $p \neq q$.

2. 8 es par o 6 es impar.

Es una proposición. Llamando p=8 es par y q=6 es impar, a su vez **recordando** a la **disyunción** u .ºçomo \vee , tenemos:

Así, encontramos que la proposición es verdadera y se cumple cuando p es verdadera o q es falsa.

3. 4 es par y 2 no divide a 5.

Es proposición. Llamando p=4 es par y q=2 no divide a 5. Se trata de una conjunción, por lo tanto,

$$\begin{array}{c|cccc} p & q & p \wedge q \\ \hline V & V & V \\ V & F & F \\ F & V & F \\ F & F & F \end{array}$$

Y la proposición será verdadera siempre y cuando ambas afirmaciones sean correctas.

4. x < 2.

No es una proposición, esto se debe a que no es posible determinar el valor de verdad de la expresión sin antes fijar un valor a la variable x.

5. Si 8 es par y 6 impar, o bien 4 es par o 2 divide a 8.

Es una proposición. Nombramos a las proposiciones como:

$$p=8$$
 es par $q=6$ es impar $r=4$ es par $s=2$ divide a 8

La proposición tendrá la forma: $(p \wedge q) \rightarrow (r \vee s)$ y la tabla de verdad es:

1.1. ESCRIBIR EN EL LENGUAJE SIMBÓLICO – TABLAS DE VERDAD7

p	$\mid q \mid$	r	s	$p \wedge q$	$r \vee s$	$(p \land q) \to (r \lor s)$
V	V	V	V	V	V	V
V	V	V	F	V	V	V
V	V	F	V	V	V	V
V	V	F	F	V	F	F
V	F	V	V	F	V	V
V	F	V	F	F	V	V
V	F	F	V	F	V	V
V	F	F	F	F	F	V
F	V	V	V	F	V	V
F	V	V	F	F	V	V
F	V	F	V	F	V	V
F	V	F	F	F	F	V
F	F	V	V	F	V	V
F	F	V	F	F	V	V
F	F	F	V	F	V	V
F	F	F	F	F	F	V

Para la misma se utilizo la definición de tabla de verdad del **condicional** \to que tiene la forma:

$$\begin{array}{c|cccc} p & q & p \rightarrow q \\ \hline V & V & V \\ V & F & F \\ F & V & V \\ F & F & V \\ \end{array}$$

Y por lo tanto, concluimos que la proposición será siempre verdadera cuando q sea falsa.

6. Hace frío.

No es una proposición, se trata de una opinión subjetiva, implicando que no puede cuantificarse su valor de verdad.

7. 10 es múltiplo de 5 pero no de 3.

Es una proposición. Llamando las proposiciones p=10 es múltiplo de 5 y $\neg q=10$ es multiplo de 3. Construimos la tabla de verdad

p	$\neg q$	$p \land \neg q$
V	F	F
V	V	V
F	F	F
F	V	F

Encontramos que es verdad siempre que p sea verdad y q falso.

Ejercicio 2. Dadas la siguientes proposiciones, reescribirlas utilizando "necesario" y "suficiente".

1. Si un número es múltiplo de 3 entonces su cuadrado es múltiplo de 9.

Reescribiendo como condicional y recordando que, la estructura es: p es *suficiente* para q, o, q es *necesaria* para p. Así, llamando p = un número es múltiplo de 3 y q = su cuadrado es múltiplo de 9. Las dos formas son:

- Un número múltiplo de 3 es *suficiente* para que su cuadrado sea múltiplo de 9.
- Si el cuadrado de un número es múltiplo de 9 es *necesario* que el número sea múltiplo de 3
- 2. Un número es múltiplo de 4 sólo si es divisible por 2.

Llamando p = número es múltiplo de 4 y q = divisible por 2. Entonces,

- Si un número es múltiplo de 4 es *suficiente* para que sea divisible por 2.
- Si un número es divisible por 2 es necesario que el múltiplo del número sea 4
- 3. Un número es múltiplo de 7 si es múltiplo de 21.

Llamando q = número es múltiplo de 7 y p = número múltiplo de 21, utilizando la estructura detallada previamente, las oraciones son

- Si un número es múltiplo de 21 es suficiente para que sea múltiplo de 7
- Un número es múltiplo de 7 es necesario que sea múltiplo de 21.

1.1. ESCRIBIR EN EL LENGUAJE SIMBÓLICO – TABLAS DE VERDAD9

4. Enunciar el recíproco, el contrarrecíproco y el contrario del enunciado en b).

Recordando que el **recíproco** es $q \to p$ si $p \to q$, el **contrarrecíproco** es $\neg q \to \neg p$ y el **contrario** es $\neg p \to \neg q$. De esta manera, tenemos que las expresiones son:

- Recíproco: Un número es divisible por 2 si es múltiplo de 4.
- Contrarrecíproco: Si un número no es divisible por 2 entonces no es múltiplo de 4.
- Contrario: Un número no es múltiplo de 4 si no es divisible por 2.

Ejercicio 3. Construir las tablas de verdad de las siguientes fórmulas y clasificarlas en tautologías ,contradicciones y contingencias.

1.
$$\neg p \rightarrow (q \vee \neg p)$$

La tabla de verdad correspondiente es

$ \neg p $	q	$q \vee \neg p$	$ \neg p \to (q \lor \neg p) $
F	V	V	F
F	F	F	V
V	V	V	V
V	F	V	V

Debido a que su veracidad depende los valores de las proposiciones, concluimos que es una **contingencia**.

$$2. \ ((p \land q) \to p) \to q$$

Repitiendo el procedimiento previo,

p	q	$q \wedge p$	$(p \land q) \to p$	$((p \land q) \to p) \to q$
V	V	V	V	V
V	F	F	V	F
F	V	F	V	F
$\mid F \mid$	F	F	V	F

Se trata de una contingencia.

3.
$$(\neg p \to q) \to (\neg q \to p)$$

Construimos la tabla de verdad

p	q	$\neg p$	$\neg q$	$\neg p \rightarrow q$	$\neg q \rightarrow p$	$ \mid (\neg p \to q) \to (\neg q \to p) $
V	V	F	F	V	V	V
V	F	F	V	V	V	V
F	V	V	F	V	V	V
F	F	V	V	F	F	V

Debido que en todos los casos siempre se llega al mismo resultado de verdad y que el mismo es Verdad, concluimos que se trata de una tautología.

4.
$$((p \land q) \lor (r \land \neg q)) \leftrightarrow ((\neg p \land \neg q) \lor (\neg r \land \neg q))$$

Llamando $P = ((p \land q) \lor (r \land \neg q)) \leftrightarrow ((\neg p \land \neg q) \lor (\neg r \land \neg q))$, construimos la tabla.

p	q	r	$p \wedge q$	$r \land \neg q$	$\neg p \land \neg q$	$ \neg r \land \neg q $	$(p \land q) \lor (r \land \neg q)$	$(\neg p \land \neg q) \lor (\neg r \land \neg q)$	P
V	V	V	V	F	F	F	V	F	F
V	V	F	V	F	F	F	V	F	F
V	F	V	F	V	F	F	V	F	F
V	F	F	F	F	F	V	F	V	F
F	V	V	F	F	F	F	F	F	V
F	V	F	F	F	F	F	F	F	V
F	F	V	F	V	V	F	V	V	V
F	F	F	F	F	V	V	F	V	F

Encontramos que se trata de una contingencia.

1.2. Esquemas lógicos - Cuantificadores

Ejercicio 4. Simbolizar utilizando universo, esquemas, cuantificadores y conectivos lógicos:

1. Todos los números son enteros.

Definiendo un universo con todos los números enteros N, entonces:

$$(\forall n)(P(n))$$
 : $P(n) = n$ pertence a \mathbb{Z}

2. Existen números impares o no todos los números son pares.

11

Definiendo los números $n \in \mathbb{Z}$ y $m \in \mathbb{Z}$. Llamando a las proposiciones p=n impar y q=m par, construimos la proposición

$$p \vee \neg q$$

De esta manera, la expresión simbólica es

$$(\exists n)(\forall m)(p \vee \neg q)$$