等强度梁应变测定实验 桥路变换接线实验

张慊 1600011001

一、实验目的

- 1. 了解电阻应变片测量应变的原理;
- 2. 掌握电阻应变仪的使用;
- 3. 测定等强度梁上已粘贴应变片处的应变,验证等强度梁各截面上应变(应力相等);
- 4. 掌握应变片在测量电桥中的各种接线方法。

二、实验仪器和设备

- 1. YJ-4501A 静态数字电阻应变仪一台;
- 2. DQ-1 等强度梁实验装置一台:
- 3. 温度补偿块一块。

三、实验原理和方法

等强度梁实验装置如右图所示,图中1为等强度梁座体,2为等强度梁,3为等强度梁上下表面粘贴的四片应变片,4为加载砝码,5为水平调节螺钉,6为水平仪,7为磁性表座和百分表。等强度梁的变形由砝码加载产生。

等强度梁的材料为高强度铝合金,其弹性模量 E=70GPa,等强度梁尺寸见下图。

依据电桥测量方法,若在四个桥臂上接入规格相同的电阻应变片,它们的电阻值为 R,灵敏系数为 K。当构件变形后,各桥臂电阻的变化分别为 \triangle R1、 \triangle R2、 \triangle R3、 \triangle R4 它们所感受的应变相应为 ε_1 、 ε_2 、 ε_3 、 ε_4 ,则 BD 端的输出电压 U_{BD} 为

$$\begin{split} U_{BD} &= \frac{U_{AC}}{4} \left(\frac{\triangle \, \text{R1}}{R} - \frac{\triangle \, \text{R2}}{R} - \frac{\triangle \, \text{R3}}{R} + \frac{\triangle \, \text{R4}}{R} \right) = \frac{U_{AC}K}{4} (\varepsilon_1 - \varepsilon_2 - \varepsilon_3 + \varepsilon_4) = \frac{U_{AC}K}{4} \varepsilon_d \\ \text{由此可得应变仪的读数应为:} \ \ \varepsilon_d &= \varepsilon_1 - \varepsilon_2 - \varepsilon_3 + \varepsilon_4 \ \ \circ \end{split}$$

四. 实验步骤

- 1. 单臂(多点)半桥测量
- a) 采用半桥接线法,将等强度梁上四个应变片分别接在应变仪背面 1-4 通道的接线柱 A、B上,补偿块上的应变片接在接线柱 B、C上(见图 3)。
- b) 载荷为零时,按顺序将应变仪每个通道的初始显示应变置零,然后按每级 200 克逐级加载至 1000 克,记录各级载荷作用下的读数应变(见表一)。

图 3

2. 双臂半桥

采用半桥接线法。选择等强度梁上下表面各一个应变片,在应变仪上选一通道,按图 4(a)接至接线柱 A、B 和 B、C 上,然后进行实验,实验步骤同 1(b)(实验数据参见表一)

3. 相对两臂全桥测量

采用全桥接线法。选择等强度梁上表面或下表面的两片应变片,在应变仪上选一通道,按图 4(b)接至应变仪的接线柱 A、B 和 C、D 上,再把两个补偿片接到 B、C 和 A、D 上,然后进行实验,实验步骤同 1(b)(实验数据参见表一)

4. 四臂全桥测量

采用全桥接线法。取等强度梁上的四个应变片,在应变仪上选一通道,按图 4(c)接至应变仪的接线柱 A、B、C、D上,然后进行实验,实验步骤同 1(b)(实验数据参见表一)

5. 串联双臂半桥测量

采用半桥接线法,取等强度梁上的四个应变片,在应变仪上选一通道,按图 4(d)串联后接至接线柱 A、B 和 B、C 上,然后进行实验,实验步骤同 1(b)(实验数据参见表一)

6. 并联双臂半桥测量

采用半桥接线法,取等强度梁上的四个应变片,在应变仪上选一通道,按图 4(e)并联后接至接线柱 A、B 和 B、C 上,然后进行实验,实验步骤同 1(b)(实验数据参见表一)

图 4

五、实验数据与结果处理

表一:实验数据

单臂多点半桥(第一组)											
		R1		R2		R3		R4			
P(g)	ΔP(g)	ε(με)	Δε(με)	ε(με)	Δε(με)	ε(με)	Δε(με)	ε(με)	Δε(με)		
)	0		0		0		1			
	200		59		-58		-59		59		
20)	59		-58		-59		60			
	200		58		-58.5		-59		59.5		
40)	117		-116.5		-118		119.5			
	200		59		-59.5		-59		59		
60)	176		-176		-177		178.5			
	200		59.5		-58.5		-59		59		
80)	235.5		-234.5		-236		237.5			
	200		58.5		-58.5		-59		58.5		
100)	294		-293		-295		296			
Δε均(με)			58.8		-58.6		-59		59		

出 辟夕上业托/竺一加)												
单臂多点半桥(第二组)												
		R	1	R	2	R	:3	R	4			
P(g)	ΔP(g)	ε(με)	Δε(με)	ε(με)	Δε(με)	ε(με)	Δε(με)	ε(με)	Δε(με)			
0		0		0		0		0				
	200		59		-58.5		-59		59			
200		59		-58.5		-59		59				
	200		58		-59		-59		59			
400		117		-117.5		-118		118				
	200		59		-59		-59		59.5			
600		176		-176.5		-177		177.5				
	200		59.5		-58		-59		58.5			
800		235.5		-234.5		-236		236				
	200		58.5		-58.5		-59		60			
1000		294		-293		-295		296				
Δε均(με)			58.8		-58.6		-59		59.2			

其它测量方式(第一组)											
双臂半桥			对臂全桥				串联双臂半桥		并联双臂半桥		
P(g)	ΔP(g)		Δε(με)	ε(με)	Δε(με)		Δε(με)			ε(με)	Δε(με)
0		0		0		0		0		1	
	200		117.5		117		235.5		118		118
200		117.5		117		235.5		118		119	
	200		117.5		117		235.5		118		117.5
400		235		234		471		236		236.5	
	200		117.5		119		237		118		117.5
600		352.5		353		708		354		354	
	200		117.5		117		236		118		117.5
800		470		470		944		472		471.5	
	200		118		118		236		119		118.5
1000		588		588		1180		591		590	
Δε _{τ/3} (με)			117.6		117.6		236		118.2		117.8

其它测量方式(第二组)												
双臂半桥				对臂全桥			串联双臂半桥		并联双臂半桥			
P(g)		ΔP(g)	ε(με)	Δε(με)	ε(με)	Δε(με)	ε(με)	Δε(με)	ε(με)	Δε(με)	ε(με)	Δε(με)
	0		0.5		0		0		0		0	
		200		117.5		117		235		118		117.5
	200		118		117		235		118		117.5	
		200		117		117		236		118		117.5
	400		235		234		471		236		235	
		200		117.5		119		237		118		118
	600		352.5		353		708		354		353	
		200		117.5		117.5		235		118		117.5
	800		470		470.5		943		472		470.5	
		200		118.5		118		236.5		119		118.5
	1000		588.5		588.5		1179.5		591		589	
Δε均(μ	JE)			117.6		117.7		235.9		118.2		117.8

理论应变值

理论应变值为

$$\epsilon = \frac{My}{EI} = \frac{Gl\frac{h}{2}}{E\frac{bh^3}{12}}$$

其中h = 4.8mm, $G = 0.2 \times 9.8 = 0.392N$, E = 70GPa

对
$$R3, R4, b = \frac{30}{250} \times 100 = 12$$
mm, $l = 100$ mm

则 $\epsilon_{12} = \epsilon_{34} = 60.76 \mu \epsilon$

接下来与实验数据进行对比:

单臂半桥实验应变值用四个应变片的平均值

$$\frac{58.85 - 60.76}{60.76} = -3.14\%$$

双臂半桥测量应变值应除以2

$$\frac{58.8 - 60.76}{60.76} = -3.23\%$$

对臂全桥测量应变值应除以2

$$\frac{58.8 - 60.76}{60.76} = -3.14\%$$

四臂全桥测量应变值应除以4

$$\frac{58.975 - 60.76}{60.76} = -2.94\%$$

串联双臂半桥测量应变值应除以2

$$\frac{59.1 - 60.76}{60.76} = -2.73\%$$

并联双臂半桥测量应变值应除以2

$$\frac{59.1 - 60.76}{60.76} = -3.06\%$$

表二:测量结果比较

测量方法	理论应变	实验应变值	相对误差	读数应变值	测量灵敏度
	值				
单臂半桥测量		58.85	-3.14%	58. 85	1
双臂半桥测量		58.8	-3. 23%	117.6	1/2
对臂全桥测量		58.8	-3. 14%	117.6	1/2
四臂半桥测量	60.76	58. 975	-2.94%	236	1/4
串联双臂半桥测量		59. 1	-2.73%	118. 2	1/2
并联双臂半桥测 量		58. 9	-3.06%	117.8	1/2

从理论上来看,测量方法的灵敏度越小,误差也越小;从实验结果来看,误差最小的是串联双臂半桥测量,灵敏度为1/2,较为符合这一结论。

再观察表一中单臂多点测量的实验值,我们可以发现各应变片应变几乎相等,波动范围在千分之七以下,因此可以认为等强度梁的性能是达标的

六、误差分析:

- 1. 实验本身所处的环境振动较大,使用灵敏度较小的测量方法时,背景干扰可能影响到了实验的效果,如果在较为平稳的环境做实验,小灵敏度的测量方法的精度应该能得到保障
- 2. 实验中在加载后往往伴随有砝码的晃动,虽然可以利用障碍物(或用手)减小其震荡,但是在读数时可能由于震荡产生的额外外载使得应力读数偏大
- 3. 然而在数据分析时可以发现数据整体仍然偏小,这可能是因为砝码有质量损失,或是应变测量仪存在系统误差,或是等强度梁已经不再保持完全水平,自身已经有所下弯所致

七、思考题

- 1. 分析各种测量方法中温度补偿的实现方法。
 - 单臂多点半桥测量:通过接入补偿片,利用补偿片抵消了温度造成的误差 双臂半桥测量、串联双臂半桥测量、并联双臂半桥测量:由于温度对两臂影响等同,应 变值为两臂应变值的差,因此相减后相消
 - 对臂全桥、四臂全桥测量:由于温度对相对的臂影响相同,类似上面的情况,可知测得 应变值是两组相对的臂应变值之差,因而相消
- 2. 采用串联或并联测量方法能否提高灵敏度。

$$U_{BD} = \frac{U_{AC}}{4} \left(\frac{\triangle R1}{R} - \frac{\triangle R2}{R} - \frac{\triangle R3}{R} + \frac{\triangle R4}{R} \right) = \frac{U_{AC}K}{4} (\varepsilon_1 - \varepsilon_2 - \varepsilon_3 + \varepsilon_4) = \frac{U_{AC}K}{4} \varepsilon_d$$

由上述公式可知,使用串联和并联两种测量测应变时,只要电阻的变化比例相等,则节点电势差的结果还是一样的,并不能提高灵敏度。

- 3. 为什么要设计等强度梁来进行电桥的测试?有何意义?
 - 因为等强度梁两截面的最大应力都相等,其截面尺寸分布呈线性,故根据应力应变关系 其应变变化也呈线性,从而我们可以计算出理论应变值,通过与实验应变值的比较得出 结论。用等强度梁来进行实验会使得计算更简便且结果更具有规律性。