Chapter 8

8.1 - Hypotheses and Test Procedures

Statistical Hypothesis

(i) Definition

A claim about a single population parameter, about values of several population parameters, or about the form of a probability distribution

Test Procedure

(i) Definition

A rule, based on sample data, for deciding whether H_0 should be rejected

: Example

. . .

A hypothesis test consists of

- Stating the hypothesis
- Choosing a test statistic
- Finding a *P-value*
- Drawing the final conclusion

Test Hypotheses

(i) Definition

States two contradictory statements known as the null hypothesis (denoted by H_0) an the alternative hypothesis (denoted by H_a)

- The null hypothesis is the claim that is initially assumed to be true
- The alternative hypothesis is the claim that is contradictory to the null hypothesis

Test Statistic

Many options

Right-tailed (Upper-tailed) Test

$$egin{aligned} H_0: \mu = \mu_0 \ H_a: \mu > \mu_0 \ Z = rac{\overline{X} - \mu_0}{rac{S}{\sqrt{n}}} \sim approx \ N(0,1) \end{aligned}$$

Left-tailed (Lower-tailed) Test

$$egin{aligned} H_0: \mu = \mu_0 \ H_a: \mu < \mu_0 \ Z = rac{\overline{X} - \mu_0}{rac{S}{\sqrt{\pi}}} \sim approx \ N(0,1) \end{aligned}$$

Two-tailed Test

$$egin{aligned} H_0: \mu &= \mu_0 \ H_a: \mu &\neq \mu_0 \ Z &= rac{\overline{X} - \mu_0}{rac{S}{\sqrt{2a}}} \sim approx \ N(0,1) \end{aligned}$$

The P-value is twice the area in the tail beyond the test statistic value

P-value

(i) Definition

The probability, calculated assuming H_0 is true, of obtaining a value of the test statistic at least as contradictory to H_0 as the value calculated from the available sample data

Errors in Hypothesis Testing

Type I Error

(i) Definition

Rejecting the null hypothesis when it is true

- α (significance level) is used to represent the probability of a type I error
- $\alpha = P(reject \ H_0|H_0 \ is \ true)$
- Common values of α
 - 0.05

- 0.01
- 0.10

Type II Error

Failing to reject the null hypothesis when it is false

- β is used to represent the probability of a type II error
- $\beta = P(fail\ to\ reject\ H_0|H_0\ is\ false)$
- Power of the test
 - $1 \beta = P(reject H_0|H_0 is false)$

Which Error is More Important to Control?

- H₀: the person accused of a crime is innocent
- H_a: the person accused of a crime is guilty

Type I Error

Type II Error

Sample Size, Significant Level, and the Power of Test

& Tip

If the size of a sample is fixed, then decrease of α leads to increase in β and, as a result, the power of the test decreases

ပ Tip

. . .

Decision Criterion

Reject H_0 if $P ext{-}value \leq lpha$ Fail to reject H_0 if $P ext{-}value > lpha$

8.2 - z Tests for Hypotheses about a Population Mean

Case 1 - Normal Population

(i) Assumptions

- X_1, X_2, \ldots, X_n are $iid\ rvs$
- ullet $X\sim N(\mu,\sigma^2)$
- μ is unknown, σ is provided

Test Statistic (TS)

$$Z = rac{\overline{X} - \mu_0}{\sigma} * \sqrt{n}$$

where $H_0: \mu = \mu_0$

Upper-tailed Test

 H_0 contains the inequality >

Lower-tailed Test

 H_0 contains the inequality <

Two-tailed Test

 H_0 contains the inequality eq

:≡ Example 18

Given

- $H_0: \mu = 75$
- $H_a: \mu < 75$
- $\sigma = 9$
- Normal distribution
- n = 25
- $\overline{x} = 72.3$
- $\alpha = .002$

Find conclusion

- 1. $H_0: \mu = 75, \ H_a: \mu < 75$ (left tailed test)
- 2. TS value $z=rac{\overline{x}-75}{9}*5=-1.5$
- 3. P-value = $\phi(-1.5) = P(Z \le -1.5) = .0668$
- 4. Since $.0668 > \alpha = .002 \Rightarrow$ fail to reject H_0

5. There is not enough evidence that the true average drying time of the paint with the additive is less than 75 minutes

Sample Size Calculations

Given

- $H_0: \mu = \mu_0$
- $H_a : mu < \mu_0$
- α
- β
- $\mu = \mu^1 \neq \mu_0$

Find n

- $\bullet \ \ \beta(\mu^1=1-\phi(\tfrac{\mu_0-\mu^1}{\sigma}*\sqrt{n}-Z_a))\Rightarrow 1-\beta=\phi(\tfrac{\mu_0-\mu^1}{\sigma}*\sqrt{n}-Z_a))\Rightarrow\phi(Z_\beta)$
- $ullet rac{\mu_0-\mu^1}{\sigma}*\sqrt{n}-Z_lpha=Z_eta$
- $ullet n=(\sqrt{n})^2=(rac{(Z_eta+Z_lpha)\sigma}{\mu_0-\mu^1})$

≔ Example 18

Given

- $\alpha = .002$
- $\beta(70) = .01$
- $\mu^1 = 70$
- $\mu_0 = 75$

Find n

- 1. $Z_{\alpha} = 2.88$
- 2. $Z_{\beta} = Z_{.01} = 2.33$
- 3. $n = \ldots = 87.95 \Rightarrow n = 88$

Case 2 - A Large Sample (n>30)

From unknown distribution (σ is unknown)

Test Statistic (TS)

$$Z=rac{\overline{X}-\mu_0}{S}*\sqrt{n},\ H_0:\mu=\mu_0$$

If H_0 is true, $Z \sim approx\ N(0,1)$

:≡ Example 24

- 1. Hypothesis
 - $\bullet \ \ H_0: \mu = 153, H_a: \mu > 150$
 - Right tailed test
- 2. TS value
 - $z = \frac{\overline{x} \mu_0}{S} * \sqrt{n} = \frac{191 153}{89}$
 - zpprox 3.25

.