Jianlin "Herman" Li

Ph.D. in **Computer Science** specialized in **programming languages** & **compilers**

jianlin.li@uwaterloo.ca | jianlin-herman-li.github.io Google Scholar | linkedin.com/in/jianlin-herman-li

Waterloo, Ontario, Canada

Objective

I am looking for an industrial position. I care about software safety and efficiency across the entire life cycle: from design (model checking), to program (program analysis, and formal verification via automatic and interactive theorem proving), to compilation (type checking, optimization, and compiler correctness).

Education

University of Waterloo, Ph.D. in Computer ScienceSep 2021 – presentSupervisors: Yizhou Zhang, Ondřej LhotákCumulative GPA: 96.2/100Institute of Software, Chinese Academy of Sciences, M.Sc. in Computer ScienceSep 2018 – Aug 2021Nanjing University of Aeronautics and Astronautics, B.Sc. in Computer ScienceSep 2013 – Jun 2018

Experience

Research Assistant(Probabilistic Programming / Compiler Projects), University of Waterloo

Sep 2021 – Present

- I design **probabilistic programming languages** (**PPLs**), develop their **semantics**, and implement **compilers** with novel compilation strategies tailored to different inference methods (e.g., variational Bayesian inference, variable elimination) and **compilation artifacts**, enabling efficient, reliable, and certified probabilistic programming:
 - GENI (PLDI 2025): A compiler implemented in Rust that compiles functional programming—style probabilistic
 programs into generating functions, a compact and exact compilation target representing measures. Gave the first
 design and formalization of GF compilation for a functional PPL; implemented a live-variable analysis
 optimization; and demonstrated scalability competitive with binary-decision-diagram-based inference.
 - MAPPL(PLDI 2024): A compiler implemented in OCaml that enables scalable inference by factorizing recursive probabilistic programs via continuation-passing style (CPS) compilation and information-flow typing (with a denotational, logical-relations model). Compilation artifacts recover expert-designed polynomial-time algorithms (e.g., forward algorithm for HMM) without human intervention, whereas baselines require exponential time.
 - FIDELIO(POPL 2023): A compiler embodies symbolic methods, e.g., a type system and program analysis, that aid neural-network—based inference. Consistently improved training/inference over mean-field and LSTM guide baselines across benchmarks. (Pyro PPL, PyTorch, LSTM, Deep Amortized Inference).
- Implement maximum entropy **reinforcement learning** via variational inference in **Pyro**, a universal probabilistic programming language (PPL) written in Python and supported by **PyTorch** on the backend.

Teaching Assistant (taught tutorials, held office hours, etc.), University of Waterloo

Jan 2022 - Aug 2025

• Computer Architecture, Compiler Construction, Logic and Computation, Foundations of Sequential Programs,

Visiting Researcher, Universität des Saarlandes, Saarbrücken, Germany

Sep 2019 - Aug 2020

- Worked on automated safety verification of programs invoking neural networks (published at CAV 2021):
 - Trained a heterogeneous controller combining neural networks and handcrafted components (C programs) via **reinforcement learning** in an **OpenAI** Minigrid–style environment, enabling autonomous decision-making.
 - Integrated **CLAM**, a state-of-the-art **LLVM** bitcode static analyzer, with **DEEPSYMBOL**(my neural network verifier), enabling a precise neuro-aware verification pipeline (impossible to verify without our approach).
- Generalized Minsky machine halting problem $\leq_m 2$ counter machine halting problem in **Coq**.

Research Assistant (Formal Verification), Institute of Software, Chinese Academy of Sciences Sep 2018 – Aug 2021

- Developed DEEPSYMBOL (SAS2019), a verification tool for the robustness of deep neural networks (DNNs).
 - Propose a novel **symbolic propagation** method improving **abstract interpretation** for **DNN analysis**.
 - Resolved issues in open-source projects, e.g., memory leak in **Zonotope** of **APRON** numerical abstract domain library that prevented scaling, caused by an ABI mismatch leading to memory layout and calling convention errors.
 - Bring benefits of up to **549**% speedup (9.16h \rightarrow 1.41h) to a state-of-the-art **SMT**-based **verifier**.

Technologies

Languages/Frameworks: Rust, OCaml, C++, LLVM, Python, Java, PyTorch, JAX, Coq, Lean 4, Agda. **Skills:** Compiler Construction, Formal Methods, Formal Verification, Theorem Proving, Program Analysis.

Publications (Probabilistic Programming Languages · Semantics · Compilers · Type Systems)

[1] Jianlin Li and Yizhou Zhang.

Compiling with Generating Functions.

Proc. ACM Program. Lang., 9(ICFP 2025, Singapore).

[2] Jianlin Li, Eric Wang, and Yizhou Zhang.

Compiling Probabilistic Programs for Variable Elimination with InformationFlow.

Proc. ACM Program. Lang., 8(PLDI 2024, Copenhagen, Denmark).

[3] Jianlin Li, Leni Ven, Pengyuan Shi, and Yizhou Zhang.

Type-Preserving, Dependence-Aware Guide Generation for Sound, Effective Amortized Probabilistic Inference. *Proc. ACM Program. Lang.*, 7(**POPL 2023**, Boston, United States).

Publications (Formal Verification · AI Safety · Adversarial Machine Learning · Model Checking)

[4] Maria Christakis, Hasan Ferit Eniser, Holger Hermanns, Jörg Hoffmann, Yugesh Kothari, **Jianlin Li**, Jorge A. Navas, and Valentin Wüstholz.

Automated safety verification of programs invoking neural networks.

Computer Aided Verification - 33rd International Conference, CAV 2021.

[5] Pengfei Yang, Renjue Li, **Jianlin Li**, Cheng-Chao Huang, Jingyi Wang, Jun Sun, Bai Xue, and Lijun Zhang. Improving neural network verification through spurious region guided refinement.

Tools and Algorithms for the Construction and Analysis of Systems - 27th International Conference, **TACAS 2021**, as Part of **ETAPS 2021**, Luxembourg.

[6] Renjue Li, **Jianlin Li**, Cheng-Chao Huang, Pengfei Yang, Xiaowei Huang, Lijun Zhang, Bai Xue, and Holger Hermanns.

PRODeep: A Platform for Robustness Verification of Deep Neural Networks.

ESEC/FSE 2020: 28th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, USA.

[7] **Jianlin Li**, Jiangchao Liu, Pengfei Yang, Liqian Chen, Xiaowei Huang, and Lijun Zhang. Analyzing Deep Neural Networks with Symbolic Propagation: Towards Higher Precision and Faster Verification. **SAS 2019**: 26th Static Analysis Symposium, Porto, Portugal.

[8] Hongfei Fu, Yi Li, and Jianlin Li.

Verifying Probabilistic Timed Automata Against Omega-Regular Dense-Time Properties.

QEST 2018: 15th International Conference on Quantitative Evaluation of SysTems, China.

Awards

- Competitive programming:
 - 2015: Silver Medal, ACM-ICPC Shanghai Metropolitan Programming Contest
 - 2014: Silver Medal, ACM-ICPC Asia Regional Contest, Anshan Site
- Scholarships:
 - 2023: David R. Cheriton Graduate Scholarship (awarded to **5 recipients**)
 - 2021: University of Waterloo Entrance Scholarship
 - 2020: China National Scholarship (**Top 0.2**%)
 - 2020/2019: Institute of Software, CAS First-Class Academic Scholarships (Top 10%)
 - 2014: China National Scholarship (**Top 0.2**%)

Services

- Sub-Reviewer: LICS 2018, TASE 2019, FM 2019, FMAC 2019, TACAS 2021, PLDI 2024, OOPSLA 2024.
- Student Volunteer: CONCUR 2018, SSFM 2018, SSFM 2019, LICS 2020.