

HOME TOP CONTESTS GYM PROBLEMSET GROUPS RATING API HELP CALENDAR

PROBLEMS SUBMIT CODE MY SUBMISSIONS STATUS HACKS ROOM STANDINGS CUSTOM INVOCATION

G. The Awesomest Vertex

time limit per test: 5 seconds memory limit per test: 256 megabytes input: standard input output: standard output

You are given a rooted tree on n vertices. The vertices are numbered from 1 to n; the root is the vertex number 1.

Each vertex has two integers associated with it: a_i and b_i . We denote the set of all ancestors of v (including v itself) by R(v). The awesomeness of a vertex v is defined as

$$\left| \sum_{w \in R(v)} a_w
ight| \cdot \left| \sum_{w \in R(v)} b_w
ight|,$$

where |x| denotes the absolute value of x.

Process *q* gueries of one of the following forms:

- 1 v x increase a_v by a positive integer x.
- 2 v report the maximum *awesomeness* in the subtree of vertex v.

Input

The first line contains two integers n and q ($1 \le n \le 2 \cdot 10^5$, $1 \le q \le 10^5$) — the number of vertices in the tree and the number of queries, respectively.

The second line contains n-1 integers p_2, p_3, \ldots, p_n ($1 \le p_i < i$), where p_i means that there is an edge between vertices i and p_i .

The third line contains n integers a_1, a_2, \ldots, a_n ($-5000 \le a_i \le 5000$), the initial values of a_i for each vertex.

The fourth line contains n integers b_1, b_2, \ldots, b_n ($-5000 \le b_i \le 5000$), the values of b_i for each vertex.

Each of the next q lines describes a query. It has one of the following forms:

- 1 \forall \times $(1 \le v \le n, 1 \le x \le 5000)$.
- 2 \forall $(1 \le v \le n)$.

Output

For each query of the second type, print a single line with the maximum *awesomeness* in the respective subtree.

Example

input	Сору
5 6	
1 1 2 2	
10 -3 -7 -3 -10	
10 3 9 3 6	
2 1	
2 2	
1 2 6	
2 1	
1 2 5	
2 1	

Contest is running 00:44:05 Contestant

→ Score table		
	Score	
<u>Problem A</u>	332	
<u>Problem B</u>	498	
<u>Problem C</u>	830	
<u>Problem D</u>	1162	
<u>Problem E</u>	1328	
Problem F1	996	
Problem F2	996	
<u>Problem G</u>	2158	
<u>Problem H</u>	2656	
Successful hack	100	
Unsuccessful hack	-50	
Unsuccessful submission	-50	
Resubmission	-50	
* If you solve problem on 01:45 from the	first attemnt	

^{*} If you solve problem on 01:45 from the first attempt

output	Сору
100 91 169 240	
91	
169	
240	

Note

The initial awesomeness of the vertices is [100, 91, 57, 64, 57]. The most awesome vertex in the subtree of vertex 1 (the first query) is 1, and the most awesome vertex in the subtree of vertex 2 (the second query) is 2.

After the first update (the third query), the *awesomeness* changes to [100, 169, 57, 160, 57] and thus the most *awesome* vertex in the whole tree (the fourth query) is now 2.

After the second update (the fifth query), the *awesomeness* becomes [100, 221, 57, 240, 152], hence the most *awesome* vertex (the sixth query) is now 4.

Codeforces (c) Copyright 2010-2019 Mike Mirzayanov The only programming contests Web 2.0 platform Server time: Jul/20/2019 22:50:53^{UTC+5.5} (e1).

Desktop version, switch to mobile version.

Privacy Policy

Supported by

