ПРОДВИНУТЫЙ МАТАНАЛИЗ ДЛЯ НАЧИНАЮЩИХ НА ПЕРВОМ КУРСЕ ФОПФ

- (1) Метрические пространства и их топология.
- (2) Компактность в метрических пространствах.
- (3) Топологические пространства и компактность в них.
- (4) Равномерная непрерывность функций.
- (5) Разрывные и полунепрерывные функции.
- (6) Кривые, линейная связность и связность.
- (7) Длина кривой в метрическом пространстве.
- (8) Приближение функций и теорема Стоуна-Вейерштрасса.
- (9) Продолжение непрерывных функций.

Список задач для самостоятельного решения

Вспомните определения: метрическое пространство, отношение эквивалентности.

 $3a\partial a$ ча 0.1. Пусть на множестве M есть $nonypaccmoshue <math>\rho: M \times M \to \mathbb{R}^+$, имеющее все свойства метрики, кроме свойства невырожденности, заменённого на более слабое свойство $\rho(x,x)\equiv 0$. Докажите, что отношение, определённое как

$$x \sim y \Leftrightarrow \rho(x, y) = 0,$$

является отношением эквивалентности, а на множестве M/\sim функция ρ корректно задаёт невырожденную метрику.

Вспомните определения: евклидово пространство, топология в метрическом пространстве.

3adaчa 0.2. Проверьте, что стандартная метрика евклидова пространства и метрика $\rho(x,y) = \|x-y\|_1$ (сумма модулей координат разности векторов) определяют одну и ту же топологию \mathbb{R}^n .

Вспомните определения: фундаментальная последовательность, полное метрическое пространство.

Задача 0.3. * Приведите пример полного метрического пространства, в котором последовательность вложенных замкнутых шаров не имеет общей точки.

Вспомните определения: компактность, секвенциальная компактность.

3adaчa 0.4. Точка p метрического пространства M является $npedeльной точкой последовательности точек <math>(p_n)$ в M, есть p является пределом некоторой подпоследовательности (p_{n_k}) . Точка p метрического пространства M является moчкой сгущения последовательности точек (p_n) в M, есть в любой окрестности p лежит бесконечное количество членов последовательности (p_n) . Докажите, что понятия предельной точки и точки сгущения в метрическом пространстве совпадают.

 $3a\partial a$ ча 0.5. * Докажите, что из секвенциальной компактности метрического пространства X следует его компактность (см. определения в [1]).

 $3a\partial a$ ча 0.6. Докажите, что если компактное метрическое пространство X покрыто открытыми множествами $\{U_{\alpha}\}$, то найдётся $\delta>0$, такое, что всякое подмножество $Y\subseteq X$ диаметра не более δ содержится в каком-то одном из множеств U_{α} полностью.

Вспомните определения: топологическое пространство, отделимость, компактность.

Задача 0.7. Докажите, что если в топологическом пространстве у любых двух точек найдутся непересекающиеся окрестности, то компактные множества в этом пространстве будут замкнутыми. $3a\partial a$ ча 0.8. * Приведите пример топологического пространства, в котором не все компактные множества замкнуты.

Вспомните определения: топология произведения.

 $3a\partial a ua$ 0.9. Докажите, что для всякого метрического пространства M его функция расстояния $\rho: M \times M \to \mathbb{R}^+$ непрерывна в топологии произведения на $M \times M$.

 $3a\partial a$ иа 0.10. Докажите, что произведение двух компактных топологических пространств компактно.

Вспомните определения: кривая.

 $3a\partial a$ ча 0.11. Придумайте кривую $\gamma:[0,1]\to\mathbb{R}^2$, образ которой равен квадрату $[0,1]^2$.

Вспомните определения: длина кривой, спрямляемая кривая.

 $3a\partial a$ ча 0.12. Докажите, что спрямляемая $\gamma:[0,1]\to\mathbb{R}^2$ кривая не может заполнить весь квадрат $[0,1]^2.$

Вспомните определения: индуцированная топология, связное множество, линейно связное множество.

 $3a\partial a$ ча 0.13. Приведите пример связного множества на плоскости, которое не является линейно связным.

Вспомните определения: равномерная непрерывность.

 $3a\partial a$ ча 0.14. Докажите, что если непрерывная функция $f: \mathbb{R} \to \mathbb{R}$ имеет конечные пределы при $x \to +\infty$ и $x \to -\infty$, то она равномерно непрерывна.

 $3a\partial a$ ча 0.15. Докажите, что если функция $f: X \to \mathbb{R}, X \subseteq \mathbb{R}^2$, равномерно непрерывна, то она продолжается до непрерывной функции на замыкании множества X.

Вспомните определения: полунепрерывная снизу функция.

Задача 0.16. Приведите пример полунепрерывной снизу функции на отрезке, не имеющей максимального значения.

Вспомните определения: колебание функции/отображения в точке, полунепрерывная сверху функция.

 $3a\partial a$ ча 0.17. Докажите, что для любого отображения $f:M\to N$ между метрическими пространствами функция колебания в точке $\omega(f,x)$ является полунепрерывной сверху.

Вспомните теорему Бэра для замкнутых множеств.

 $3a\partial a$ ча 0.18. * Докажите, что не существует функции $f: \mathbb{R} \to \mathbb{R}$, непрерывной в рациональных точках, и разрывной в иррациональных точках.

Вспомните определения: ∂ лина кривой в метрическом пространстве, внутренняя метрика.

Задача 0.19. * Докажите, что в метрическом пространстве с компактными шарами минимум в определении внутренней метрики (минимальной длины кривой, соединяющей две заданные точки), если он конечный, достигается на некоторой (возможно не единственной) кривой, называемой кратчайшей.

Вспомните определения: равномерная сходимость последовательности функций.

 $3a\partial a$ ча 0.20. Докажите, что если функция $f: \mathbb{R} \to \mathbb{R}$ непрерывна и имеет компактный носитель (равна нулю за пределами некоторого отрезка), а $t_n \to 0$ при $n \to \infty$, то последовательность функций

$$f_n(x) = f(x - t_n)$$

равномерно стремится к f.

Вспомните определение и свойства ряда Тейлора.

 $3a\partial a va$ 0.21. Докажите, что функцию \sqrt{x} можно сколь угодно близко равномерно приблизить многочленами на любом фиксированном отрезке [0, a].

3adaча 0.22. Докажите, что функцию |x| можно сколь угодно близко равномерно приблизить многочленами на любом отрезке [-a,a].

Вспомните определение кусочно-линейной функции.

 $3a\partial a$ ча 0.23. Докажите, что всякая кусочно-линейная непрерывная на отрезке функция является линейной комбинацией функций вида $a|x-x_0|$ и константы.

Вспомните определения: разбиение единицы.

 $3a\partial a$ ча 0.24. Докажите, что для всякого компактного множества $K \subset \mathbb{R}^2$ найдётся непрерывная функция $f: \mathbb{R}^2 \to [0,1]$, которая равна единице на K и равна нулю за пределами наперёд заданной окрестности $U_{\varepsilon}(K)$.

Вспомните определения: метрическая проекция.

 $3a\partial a$ ча 0.25. * Докажите, что непрерывную на компакте $K \subset \mathbb{R}^2$ функцию можно продолжить непрерывно на всю плоскость \mathbb{R}^2 так, что она будет равна нулю за пределами наперёд заданной окрестности $U_{\varepsilon}(K)$.

Вспомните определения: липшицево отображение, математическая индукция.

 $3a\partial a$ ча 0.26. * Пусть $X\subseteq \mathbb{R}^2$ и отображение $f:X\to \mathbb{R}^2$ является 1-липшицевым ($|f(x)-f(y)|\leqslant |x-y|$ для любых двух точек $x,y\in X$). Докажите, что f можно продолжить до 1-липшицевого отображения $\bar{f}:\mathbb{R}^2\to \mathbb{R}^2$.

Вспомните определение: мера Лебега, счётная аддитивность.

 $3a\partial a \vee a$ 0.27. Пусть функция $f: \mathbb{R} \to \mathbb{R}$ измерима по Лебегу, а множество

$$S = \{ M \in \mathbb{R} \mid f(x) \leqslant M$$
 почти всюду $\}$

непусто. Докажите, что M имеет минимальный элемент.

Вспомните определение: измеримая по Лебегу функция.

Задача 0.28. Приведите пример, показывающий, что композиция измеримых по Лебегу функций одной переменной не обязательно измерима по Лебегу.

Вспомните определение: интеграл Римана, интеграл Лебега.

 $3a\partial a$ ча 0.29. * Докажите, что $f:[a,b]\to\mathbb{R}$ интегрируема по Риману тогда и только тогда, когда она ограничена и множество её точек разрыва имеет меру Лебега нуль.

Задача 0.30. Приведите пример непрерывной и непостоянной на отрезке функции, у которой производная почти всюду (по мере Лебега) существует и почти всюду равна нулю.

Определения и пояснения смотрите в конспекте

[1] Р.Н. Карасёв. Отдельные темы математического анализа. rkarasev.ru/common/upload/an explanations.pdf.