

算法设计与分析

作业(一)

姓	名	熊恪峥
学	号	22920202204622
日	期	2022年2月24日
学	院	信息学院
课程名称		算法设计与分析

作业 (一)

_	_
_	\.L
_	

1	题1.2	3
2	题1.5	3
3	题1.6	3
4	题1.7	4
5	题1.8	4
6	题1.9	4
7	题1.10	4
8	题1.11	4
21	⊞	1

1 题1.2

2 题1.5

FindMax(A)算法每一行执行的次数如表1

表格 1: 执行一行的次数

次数
1
n-1
$\sum_{j=2}^{n} t_j$
1

其中 t_j 为

$$t_j = \begin{cases} 1 \text{ 当for循环的第j轮中if条件成立} \\ 0 \text{ 当for循环的第j轮中if条件不成立} \end{cases}$$

则算法运行所需要的时间为

$$T(n) = c_1 + c_3 \times (n-1) + c_4 \times \sum_{j=2}^{n} t_j + c_5$$
(1)

当A中的最大值的位置在末尾时,(1)中 t_i 满足

$$t_2 = \dots = t_n = 1$$

此时T(n)最大,最大值为

$$T(n) = c_1 + c_3 \times (n-1) + c_4 \times (n-2) + c_5$$
$$= c_1 - c_3 - 2 \times c_4 + c_5 + (c_3 + c_4) \times n$$

则FindMax(A)的时间复杂度为

O(n)

3 题1.6

FindMax(A)有循环不变量 L_j

 L_i : 在for循环的第j个迭代执行前,max中有A[1...j-1]中的最大值

初始步: 在循环开始前, max = A[1]是A中的最大值, L_1 为真;

归纳步: 如果在循环的第k个迭代前 L_{k-1} 为真,则 \max 有A[1 ... j-1]中的最大值,当执行迭代j=k时,若A[k]>max则令max=A[k]。此时max有A[1 ... j]中的最大值。在下一迭代开始前, L_k 为真;

终止步: 此时j=n+1, 由第二步的保证, L_n 为真, 则max有A[1...n]中的最大值。对于任意输入A,

此FindMax(A)都有一个正确的输出。因此FindMax(A)是正确的。

4 题1.7

Algorithm 1 查找最大值,返回下标

- 1: **procedure** FINDMAX(A) 2: $max \leftarrow 1$ 3: **for** $j \leftarrow 2$ to n **do**
- 4: **if** A[j] > A[max] **then**
- 5: $max \leftarrow j$ return max
- 5 题1.8
- 6 题1.9
- 7 题1.10

若前者比后者快,则有

 $100n^2 \le 2^n$

解得

 $n \ge 14.324727836998200633849297216651$

则从n=15前者比后者快.

8 题1.11

若插入排序的效率高于归并排序,则有

 $8n^2 \le 64n \log n$

解得

 $n \leq 6.5070996729820298949891210615877$

则当n取1,2,3,4,5,6时插入排序的效率高于归并排序.

References

[1] P. Y. Pawar and S. H. Gawande, "A Comparative Study on Different Types of Approaches to Text Categorization," *International Journal of Machine Learning and Computing*, vol. 2, no. 4, pp. 423-426, 2012.