Fast Deep Coherence Holography (FDCH) for 3D Object Reconstruction

Quang Trieu and George Nehmetallah

Departments of Electrical Engineering and Computer Science, The Catholic University of America, 620 Michigan Avenue N.E., Washington, D.C. 20064

trieu@cua.edu,nehmetallah@cua.edu

Principle of coherence holography

The principle of coherence holography has been described in detail in [4,29]. An off-axis 3D object $g(x, y, z) = |g(x, y, z)| \exp[i\phi(x, y, z)]$ located before the front focal plane of the Fourier Transform (FT) lens generates an object wave at the hologram plane which interferences with the reference wave from a coherent source. The complex amplitude of the object wave at the hologram plane is given by

$$G(\hat{x},\hat{y}) = |G(\hat{x},\hat{y})| e^{[i\Phi(\hat{x},\hat{y})]} \propto \iint g_{ASP}(x,y,z=0) e^{\left[-i\frac{2\pi}{\lambda f}(x\hat{x}+y\hat{y})\right]} dxdy = F\{g_{ASP}(x,y,z=0)\}|_{k_x = \frac{2\pi}{\lambda f}\hat{x},k_y = \frac{2\pi}{\lambda f}\hat{y}}, \ (1)$$

Figure 1. Generation of a Fourier transform coherence hologram.

where λ is the wavelength of light, f is the focal length of the lens, the spatial frequencies are represented by the coordinates \hat{x} and \hat{y} . $F\{\cdot\}$ and $F^{-1}\{\cdot\}$ denote forward and inverse 2D Fourier transform operations, respectively, $g_{ASP}(x,y,z=0) = |g_{ASP}(x,y,z=0)| \exp(i\phi_{ASP}(x,y,z=0)) = \int_{z\to0}^{ASP} \{g(x,y,z)\} dz$ is the field at the front focal plane that results from propagating the object to this plane, $\sum_{z\to0}^{ASP} \{\cdot\} = F^{-1}\{F\{g(x,y,z)\}\} e^{[-ik_z(\hat{x},\hat{y})z]}\}$ denotes the angular spectrum propagation operator. The $\exp[-ik_z(\hat{x},\hat{y})z]$ term accounts for defocusing, and propagating the angular spectrum of the field by a distance z with $k_z(\hat{x},\hat{y}) = \frac{2\pi}{\lambda} \sqrt{1 - \left(\frac{\hat{x}}{f}\right)^2 - \left(\frac{\hat{y}}{f}\right)^2}$.

The computer-generated hologram (CGH) of the coherence holography method is slightly different from the one of conventional holography. The term $|G(\hat{x}, \hat{y})|^2$ was removed from the interference fringe intensity to avoid unwanted autocorrelation image, and the intensity (rather than amplitude) transmittance of the hologram is made proportional to the interference fringe pattern [14]. In addition, the term $|G(\hat{x}, \hat{y})|$ is added to make the hologram positive, which allows it to be displayed as an intensity image. The equation of the CGH is then given by

$$H(\hat{x}, \hat{y}) \propto |G(\hat{x}, \hat{y})| + 0.5[G(\hat{x}, \hat{y}) + G^*(\hat{x}, \hat{y})] = |G(\hat{x}, \hat{y})|\{1 + \cos[\Phi(\hat{x}, \hat{y})]\}. \tag{2}$$

The experiment setup for capturing the interferogram used for reconstruction is shown in Figure 2. In this setup, a projector representing for a spatially incoherent light source which is modeled as an optical field with unit amplitude and instantaneous random phase $\Phi_{\rm r}(\hat{x},\hat{y})$ in the hologram plane located at the back

focal plane of the FT lens L_2 is used to display the CGH. The instantaneous field right at the rear focal plane of the FT lens L2 is

$$u(x,y,z) = \iint \sqrt{H(\hat{x},\hat{y})} \exp\left[i \Phi_{\mathbf{r}}(\hat{x},\hat{y})\right] \exp\left[ik_z(\hat{x},\hat{y})z\right] \exp\left[i(2\pi/\lambda f)(x\hat{x}+y\hat{y})\right] d\hat{x}d\hat{y}. \quad (3)$$

This field by itself does not reconstruct the object wave since the phase has been scrambled. To eliminate the effect of the incoherence, the mutual intensity between a pair of points or the coherence function, $\Gamma(\Delta x, \Delta y, \Delta z)$, is detected by directing this incoherent illuminated field to the Sagnac radial shearing interferometer. The field intensity at the output of the Sagnac interferometer is

$$I(\Delta x, \Delta y, \Delta z) = 2\Gamma(0,0,0) + 2\text{Re}[\Gamma(\Delta x, \Delta y, \Delta z)], \tag{4}$$

where $\Delta x = x_2 - x_1$, $\Delta y = y_2 - y_1$, $\Delta z = z_2 - z_1$ are the difference of the coordinates and

$$\Gamma(\Delta x, \Delta y, \Delta z) = \iint H(\hat{x}, \hat{y}) e^{[ik_z(\hat{x}, \hat{y})\Delta z]} e^{[i(\frac{2\pi}{\lambda f})(\hat{x}\Delta x + \hat{y}\Delta y)]} d\hat{x}d\hat{y}$$

$$\propto \tilde{g}(\Delta x, \Delta y, \Delta z) + \frac{1}{2} \left[g_{ASP}(\Delta x, \Delta y, \Delta z) + g_{ASP}^*(-\Delta x, -\Delta y, -\Delta z) \right],$$
(5)

where $\tilde{g}(\Delta x, \Delta y, \Delta z)$ is an unwanted distribution with peak at the center, $g_{ASP}(\Delta x, \Delta y, \Delta z)$ is the complex object field at Δz . They are given by

$$g_{ASP}(\Delta x, \Delta y, \Delta z) = {}_{0 \to \Delta z}^{ASP} \{g_{ASP}(\Delta x, \Delta y, \Delta z = 0)\} = F^{-1} \{ \int F \{g_{ASP}(\Delta x, \Delta y, \Delta z = 0)\} e^{[ik_z(\hat{x}, \hat{y})\Delta z]} \}.$$
 (6)

$$\tilde{g}(\Delta x, \Delta y, \Delta z) \propto \iint |G(\hat{x}, \hat{y})| e^{[ik_z(\hat{x}, \hat{y})\Delta z]} e^{[i\frac{2\pi}{\lambda f}(\hat{x}\Delta x + \hat{y}\Delta y)]} d\hat{x}d\hat{y}. \tag{7}$$

By substituting Eqs. (5, 6, 7) into Eq. (4), the captured image at Δz is

$$I(\Delta x, \Delta y, \Delta z) \propto 2\Gamma(0,0,0) + 2Re\{\tilde{g}(\Delta x, \Delta y, \Delta z)\} + |g_{ASP}(\Delta x, \Delta y, \Delta z)|\cos(\phi_{ASP}(\Delta x, \Delta y, \Delta z)) + |g_{ASP}^*(-\Delta x, -\Delta y, -\Delta z)|\cos(\phi_{ASP}(-\Delta x, -\Delta y, -\Delta z)).$$
(8)

Figure 2. Experimental setup for recording the interferogram used for reconstruction [14]. The CGH is numerically generated. An interference filter T with a bandwidth of $\Delta\lambda = 3nm$ at $\lambda = 632.8$ nm is used to mitigate chromatic aberrations on the recorded interferogram due to the optical elements. The values of the focal lengths f_3 , f_4 dictates α and the lateral and axial magnifications for the reconstructed image are (m_x, m_y) and m_z , respectively.

From the properties of the Sagnac interferometer which is described in detail in [14], $\Delta x = -(\alpha - \alpha^{-1})\tilde{x}$, $\Delta y = -(\alpha - \alpha^{-1})\tilde{y}$, and $\Delta z = (\alpha^2 - \alpha^{-2})\tilde{z}$, where \tilde{x} , \tilde{y} , \tilde{z} are the coordinates of the output plane of the interferometer, and $\alpha = f_3/f_4$. This means that the reconstructed image is magnified in lateral and axial directions by factors $-(\alpha - \alpha^{-1})^{-1}$ and $(\alpha^2 - \alpha^{-2})^{-1}$, respectively. We should note that the lateral magnification must be chosen such that the reconstructed image size fits the CCD aperture.