Characterization of Heat Exchangers

April 1, 2025

Group TR9

Taihar Tsengel, Alexander Tam, Vincent Kwok, and Matthew Lokhonia

Heat Exchangers Paramount In Industry

Industrial Applications:1

- Boilers & Condensers
- Car radiators
- Refrigerators
- Heat Pumps
- Server rooms

Objectives:

- Characterize overall heat exchanger coefficients
 (U) and effectiveness (ε) for each heat exchanger
- Compare experiment tubular heat transfer coefficients (h) with theory
- Obtain experimental and theoretical tubular temperature profiles

Heat Exchangers have varying performance

(2)

(3)

(4)

Types Of Heat Exchangers (HX):

- 1. Plate HX
- 2. Shell & Tube HX
- 3. Finned Cross-Flow HX
- 4. Tubular HX

Identical Conditions:

- Co-current Flow
- Cold Stream: 350 L/h
- Hot Stream: 300 L/h

Varied Conditions for Tubular:

- Counter-current Flow
- Cold Stream (Outer): 350 L/h
- Hot Stream (Inner): 200, 300, and 400 L/h

Overall Heat Transfer Coefficient (U) and Effectiveness (ε)

$$U = \frac{\dot{Q}_M}{A_M \Delta T_{\rm LM}}$$

$$\varepsilon = \frac{Q_{\text{actual}}}{\dot{Q}_{\text{max}}} = \frac{Q_M}{C_{\text{min}}(T_{h_i} - T_{c_i})}.$$

 Q_{M} = Mean Exchanged Heat Flow

 $A_{M} = Mean Area$

 $\Delta T_{IM} = \text{Log Mean Temperature}$

Difference

C = Heat Capacity Rate

- U represents how well each square meter of the heat exchanger is at heat transfer
- ε represents the proportion of heat that leaves the hot stream that actually enters the cold stream (as opposed to being lost to the surroundings)

Tubular Heat Exchanger had the Greatest U and Plate Heat Exchanger had the Greatest ϵ

Heat Exchanger	ΔT _{LM} (°K)	Q _M (W)	A _M (m ²)	U (W/m² K)	ε (%)
Tubular	11.1 ± 1.7	3740 ± 180	0.070	4800 ± 800	45 ± 2
Plate	7.4 ± 0.3	3740 ± 40	1.254	403 ± 16	50.2 ± 0.6
Shell and Tube	18.5 ± 0.4	2910 ±40	0.15	1050 ± 30	30.6 ± 0.4
Finned Cross-Flow	14.5 ± 0.3	2050 ± 30	2.77	51.0 ± 1.4	32.2 ± 0.5

Tubular Heat Exchanger Methods

Theoretical h and U:1,2

$$Nu = 0.023 Re^{0.8} Pr^{0.4}$$

Expected Scaling: $h_i, h_o \ \alpha \ v^{0.8}$

Dittus-Boelter Equation¹

$$U_{\text{exp}} = \frac{Q_M}{A_M \, \Delta T_{\text{LM}}} \qquad U_{\text{theo}} = \frac{1}{\frac{1}{h_i} + \frac{s}{k_{\text{copper}}} + \frac{1}{h_o}}$$

Theoretical temperature profiles:

$$\frac{dT_c}{dV_c} = -\frac{h_c a_c}{\dot{m}_c c_p} (T_c - T_h)$$

$$\frac{dT_h}{dV_h} = \pm \frac{h_h a_h}{\dot{m}_h c_p} (T_c - T_h)$$

T = temperature (K)
m = mass flow rate (kg/s)
h = heat transfer coefficient (W/m^2/K)
C_p heat capacity of water (J/kg/K)
a = heat exchange area/volume (1/m)
V = volume (m^3)

Inner Tube Heat Transfer Coefficient Scales with h ∝ v^{0.79 ±} 0.02

 U_{exp} and U_{theo} both **increase** with inner tube flow rate.

$$h_{\text{theo}} = \left(\frac{0.023 \, k_{\text{water}}}{D_{t,i}}\right) \left(\frac{\rho V D_{t,i}}{\mu}\right)^{0.8} \text{Pr}^{0.4}$$

$$h_{\rm exp} = \frac{1}{\frac{1}{U_{\rm exp}} - \frac{s}{k_{\rm copper}} - \frac{1}{h_o}}$$

Experimental Scaling:

Relative error is ~1%, experiment strongly validates theoretical model.

Difference could be due to assumptions (smooth tube surface, constant Pr and μ).

Inner Flow Rate (L/hr)	U _{exp} (W/m ² /K)	U _{theo} (W/m²/K)
200	4521.88 ± 160.98	5754.68 ± 364.69
300	5631.17 ± 161.18	6922.79 ± 357.97
400	6386.14 ± 167.32	7768.90 ± 347.78

Counter-Current Heat Exchanger has Greater Heat Transfer

нх	U (W/m² K)	ε (%)
Co-Current	4800 ± 800	45 ± 2
Counter Current	6100 ± 1200	48 ± 2

Experimental Results Align with Theoretical Model

Theoretical data overestimates heat exchange by ignoring loss due to insulation and exposed surfaces

Conclusions

- 1. **Tubular** Heat exchanger transfers the most **heat per area**.
- 2. **Plate** Heat Exchanger is the most **efficient**.
- 3. Experimental scaling of $h \propto v^{0.79 \pm 0.02}$ aligns with theoretical scaling of $h \propto v^{0.8}$.
- 4. **Counter-current** configuration is preferred for both heat transfer and efficiency for the **tubular heat exchanger**.
- Theoretical temperature profile overestimates heat transfer due to overall adiabatic conditions.

Appendix A: Error Analysis

Derived from:

$$\delta y = \sqrt{\sum_{i=1}^{N} \left(\frac{\partial f}{\partial x_i}\right)^2 \left(\delta x_i\right)^2}$$

$$\Delta U = U \sqrt{\left(\frac{\Delta Q_M}{Q_M}\right)^2 + \left(\frac{\Delta (\Delta T_{LM})}{(\Delta T_{LM})}\right)^2}$$

$$\Delta Q_{M} = \frac{1}{2} \sqrt{(\Delta Q_{C})^{2} + (\Delta Q_{H})^{2}}$$

$$\Delta Q_{H} = Q_{H} \sqrt{\left(\frac{\Delta m_{h}}{m_{h}}\right)^{2} + \left(\frac{\Delta(\Delta T_{h})}{(\Delta T_{h})}\right)^{2}}$$

$$\Delta(\Delta T_h) = \sqrt{(\Delta T_{h,i})^2 + (\Delta T_{h,o})^2}$$

Appendix B: Equations

$$\dot{Q}_M = \frac{|\dot{Q}_C| + |\dot{Q}_H|}{2}$$

$$\dot{Q}_H = \dot{m}_h \cdot c_{p,h} \cdot (\Delta T)_h$$

$$\dot{Q}_C = \dot{m}_c \cdot c_{p,c} \cdot (\Delta T)_c$$

$$\Delta T_{\rm LM} = \frac{(T_{1i} - T_{2i}) - (T_{1o} - T_{2o})}{\ln\left(\frac{T_{1i} - T_{2i}}{T_{1o} - T_{2o}}\right)}$$

$$A_{M} = \frac{A_{outer} - A_{inner}}{ln(\frac{A_{outer}}{A_{inner}})} = \frac{\pi L(D_{t,o} - D_{t,i})}{ln(\frac{D_{t,o}}{D_{t,i}})}$$

$$C_{\min} = \min(C_h, C_c)$$

$$C_c = \dot{m}_c c_{p,c}$$

$$C_h = \dot{m}_h c_{p,h}$$

Appendix C: Apparatus - Process Flow Diagram

Measur- ing point	Tubular hx	Finned cross- flow hx	Plate hx	100	hell & be hx	Jacketed vessel heating coil
T1	HW in	HW in	HW in	HW	' in	HW in jacket
T2	HW out	HW out	HW out	HW	out	HW out jacket
T3	CW in	Air in	CW in	CW	' in	HW in coil
T4	CW out	Air out	CW out	CW	out	HW out coil
T5, T6	HW 800mm CW 800mm	Key off / on:	Outlet / inlet	F:	Flow m	eter
T7, T8	HW 1600mm CW 1600mm	CW / HW:	Cold water / hot water	P:	Pressui nection	re measuring con-
T9, T10	HW 2400mm CW 2400mm	hx: T: dP:	Heat exchanger Temperature Differential pressure sensor			

HOT WATER Path

- T1(0mm -> T5(800mm) -> T7(1600mm) -> T9(2400mm -> T2(3200mm)

COLD WATER Path

- T3(0mm) -> T6(800mm) -> T8(1600mm) -> T10(2400mm) -> T4(3200mm)

Appendix D: Heat Exchanger Instrument Data

<u>Tubular</u>

Material Cu Inner tube diameter 6 mm Annulus diameter 13 mm

Total length 3200 mm

Segment length 800 mm

Area, total 0.0698 m^2

Shell and Tube

Heat exchanger Surf. Area 0.15 m² Thermal output power 14071 W

Jacket side

Medium	Water
Throughput	$0.35 \text{ m}^3/\text{h}$
Inlet temperature	80.00 °C
Outlet temperature	46.66 °C
Flow speed	0.29 m/s
Pressure loss	0.03 baı

Tube side

Medium	Water
Throughput	$0.77 \text{ m}^3/\text{h}$
Inlet temperature	15.00 °C
Outlet temperature	29.93 °C
Flow speed	0.42 m/s
Pressure loss	0 00 bar

Appendix D: Heat Exchanger Instrument Data (cont.d)

<u>Plate</u>

Type	GC-008 PI
Width	180 mm
Height	774 mm
Plate material	1.4401
Number of plates	10
Volume, side 1	0.5 L
Volume, side 2	0.7 L
Max. operating temperatu	re 100 °C
Max. operating pressure	10 bar

Finned Cross-Flow

Power output 0.25 kW

Max. differential pressure 430 Pa

Max. volumetric flow 13 m³/min

Differential pressure sensor

Measuring range 0 - 1000 mbar

Appendix E: Material Properties

Variables	Value	Description
ρ	997 kg/m ³	Density of water
μ	8.9 x 10 ⁻⁴ Pa*s	Dynamic viscosity of water
C _p	4180 J/kg/K	Heat capacity of water
Pr	6.20	Prandtl number of water
k _{water}	0.6 W/m/K	Thermal conductivity of water
k _{copper}	401 W/m/K	Thermal conductivity of copper

Appendix F: Theoretical Temperature Profile Derivation

Hot Fluid:

$$\begin{split} \frac{dU_{\text{sys}}}{dt} &= \dot{Q} - \dot{W}_s + \sum \dot{m}_{j0} H_j \Big|_{V} - \sum \dot{m}_j H_j \Big|_{V+dV} \\ h_h a_h (T_h - T_c) &= \dot{m}_h H_h \Big|_{V} - \dot{m}_h H_h \Big|_{V+dV} \\ \frac{dT_h}{dV_h} &= \frac{h_h a_h (T_h - T_c)}{\dot{m}_h c_p} \\ \frac{dT_h}{dV_h} &= \pm \frac{h_h a_h}{\dot{m}_h c_p} (T_c - T_h) \\ \frac{dT_h}{dz} &= -\frac{h_h a_h (T_c - T_h) A_h}{\dot{m}_h c_p} \qquad \text{(Co-current)} \\ \frac{dT_h}{dz} &= \frac{h_h a_h (T_c - T_h) A_h}{\dot{m}_h c_p} \qquad \text{(Counter-current)} \end{split}$$

$$a_h = \frac{2\pi r_1 L}{\pi r_1^2 L} = \frac{2}{r_1}$$
 $a_c = \frac{2\pi r_2 L}{\pi (r_3^2 - r_2^2) L} = \frac{2r_2}{(r_3^2 - r_2^2)}$

Cold Fluid:

$$\begin{split} \frac{dU_{\text{sys}}}{dt} &= \dot{Q} - \dot{W}_s + \sum \dot{m}_{j0} H_j \bigg|_{V} - \sum \dot{m}_j H_j \bigg|_{V+dV} \\ h_c a_c (T_h - T_c) &= \dot{m}_c H_c \bigg|_{V} - \dot{m}_c H_c \bigg|_{V+dV} \\ \frac{dT_c}{dV_c} &= \frac{h_c a_c (T_h - T_c)}{\dot{m}_c c_p} \\ \frac{dT_c}{dV_c} &= -\frac{h_c a_c}{\dot{m}_c c_p} (T_c - T_h) \\ \frac{dT_c}{dz} &= -\frac{h_c a_c (T_c - T_h) A_c}{\dot{m}_c c_p} \end{split} \tag{Co/Counter Current)$$

Appendix G: Derivation of U_{exp} and U_{theo}

Theoretical Correlation

Dittus-Boelter Equation: $Nu = 0.023 Re^{0.8} Pr^{0.4}$.

Assumptions:

- Turbulent flow regime (Re>10000)
- Constant fluid properties at given temperature range (c_n, μ, k_{water}, ρ)

Characteristic Lengths and Flow Rates:

- For inner tube, h_i we use $D_{t,i} = \underline{0.006m}$ and $V = \underline{200}$, $\underline{300}$, $\underline{400L/hr}$ For annular region, h_0 we use
- For annular region, h_o we use $D_{annular} D_{t,o} = 0.005m$ and V = 350L/hr

Theoretical Scaling: $h_i \propto v^{0.8}$, $h_o \propto v^{0.8}$.

Overall Heat Transfer Coefficient Formulas

$$U_{\text{exp}} = \frac{Q_M}{A_M \Delta T_{\text{LM}}}$$

$$-Q_M = \frac{\dot{m} c_p ((T_2 - T_1) + (T_4 - T_3))}{2}$$

$$(2) \quad -\Delta T_{\text{LM}} = \frac{(T_1 - T_4) - (T_2 - T_3)}{\ln \left(\frac{T_1 - T_4}{T_2 - T_3}\right)}$$

$$-A_M = \frac{\pi L (D_{t,o} - D_{t,i})}{\ln \left(\frac{D_{t,o}}{D_{t,i}}\right)}$$

$$U_{\text{theo}} = \frac{1}{\frac{1}{h_i} + \frac{s}{k_{\text{corner}}} + \frac{1}{h_s}}$$