

planetmath.org

Math for the people, by the people.

spectrum is a non-empty compact set

 ${\bf Canonical\ name} \quad {\bf Spectrum Is A Nonempty Compact Set}$

Date of creation 2013-03-22 17:25:05 Last modified on 2013-03-22 17:25:05 Owner asteroid (17536) Last modified by asteroid (17536)

Numerical id 10

Author asteroid (17536)

Entry type Theorem Classification msc 46H05

Theorem - Let \mathcal{A} be a complex Banach algebra with identity element. The spectrum of each $a \in \mathcal{A}$ is a non-empty compact set in \mathbb{C} .

Remark: For Banach algebras over \mathbb{R} the spectrum of an element is also a compact set, although it can be empty. To assure that it is not the empty set, proofs usually involve http://planetmath.org/LiouvillesTheorem2Liouville's theorem for of a complex with values in a Banach algebra.

Proof: Let e be the identity element of A. Let $\sigma(a)$ denote the spectrum of the element $a \in A$.

• - For each $\lambda \in \mathbb{C}$ such that $|\lambda| > ||a||$ one has $||\lambda^{-1}a|| < 1$, and so, by the http://planetmath.org/NeumannSeriesInBanachAlgebrasNeumann series, $e - \lambda^{-1}a$ is invertible. Since

$$a - \lambda e = -\lambda (e - \lambda^{-1} a)$$

we see that $a - \lambda e$ is also invertible.

We conclude that $\sigma(a)$ is contained in a disk of radius ||a||, and therefore it is bounded.

Let $\phi: \mathbb{C} \longrightarrow \mathcal{A}$ be the function defined by

$$\phi(\lambda) = a - \lambda e$$

It is known that the set \mathcal{G} of the invertible elements of \mathcal{A} is open (see http://planetmath.org/InvertibleElementsInABanachAlgebraFormAnOpenSetthis entry).

Since $\phi^{-1}(\mathcal{G}) = \mathbb{C} - \sigma(a)$ and ϕ is a continuous function we see that that $\sigma(a)$ is a closed set in \mathbb{C} .

As $\sigma(a)$ is a bounded closed subset of \mathbb{C} , it is compact.

• Non-emptiness - Suppose that $\sigma(a)$ was empty. Then the resolvent R_a is defined in \mathbb{C} .

We can see that R_a is bounded since it is continuous in the closed disk $|\lambda| < ||a||$ and, for $\lambda > ||a||$, we have (again, by the http://planetmath.org/NeumannSeriesI

series)

$$||R_{a}(\lambda)|| = ||(a - \lambda e)^{-1}||$$

$$= ||\lambda^{-1}(e - \lambda^{-1}a)^{-1}||$$

$$\leq \frac{|\lambda|^{-1}}{1 - |\lambda|^{-1}||a||}$$

$$= \frac{1}{|\lambda| - ||a||}$$

and therefore $\lim_{|\lambda|\to\infty} R_a(\lambda) = 0$, which shows that R_a is bounded.

The resolvent function, R_a , is http://planetmath.org/BanachSpaceValuedAnalyticFunctionSee http://planetmath.org/ResolventFunctionIsAnalyticthis entry). As it is defined in \mathbb{C} , it is a bounded entire function. Applying http://planetmath.org/LiouvillesTheorem2Liouville's theorem we conclude that it must be constant (see this http://planetmath.org/BanachSpaceValuedAnaentry for an idea of how holds for Banach space valued functions).

Since $R_a(\lambda)$ converges to 0 as $|\lambda| \to \infty$ we see that R_a must be identically zero.

Thus, we have arrived to a contradiction since 0 is not invertible.

Therefore $\sigma(a)$ is non-empty.