5. МОДЕЛИРОВАНИЕ ХИМИЧЕСКИХ РЕАКТОРОВ

5.1. Лабораторная работа №8 Моделирование гомогенных химических реакторов

Цель работы

- 1. Составить математическую модель химического реактора.
- 2. Разработать алгоритм решения системы дифференциальных уравнений и программу расчёта основных параметров процесса.
- 3. Рассчитать изменения концентраций реагирующих веществ на выходе из реактора и профиль температур.
- 4. Исследовать влияние времени контакта на выход продуктов реакций.
- 5. Сравнить протекание химических реакций в реакторах идеального вытеснения и идеального перемешивания.

Классификация реакторов

Одним из основных элементов любой химико-технологической системы (XTC) является химический реактор. *Химическим реактором* называется аппарат, в котором осуществляются химические процессы, сочетающие химические реакции с массо- и теплопереносом, с целью получения определённого вещества. *Типичные реакторы* — это контактные аппараты, реакторы с механическим, пневматическим и струйным перемешиванием, промышленные печи и т. д. От правильности выбора реактора и его совершенства зависит эффективность всего технологического процесса.

В химической технологии применяют всевозможные типы реакторов, имеющие существенные различия [4, 9]. Тем не менее реакторы можно классифицировать по некоторым признакам:

- 1. В зависимости от фазового состояния реагирующих веществ реакторы могут быть гомогенными или гетерогенными.
- 2. По характеру операций загрузки и выгрузки различают реакторы периодического, непрерывного и полупериодического действия.
- 3. По режиму движения реакционной среды или по структуре потоков вещества:
 - реакторы идеального перемешивания;
 - реакторы идеального вытеснения;
 - реакторы с продольным перемешиванием;
 - реакторы с продольным и радиальным перемешиванием;

- реакторы с комбинированной структурой потока.
- 4. По тепловому режиму реакторы разделяются на изотермические, адиабатические и политропические. Изотермические реакторы имеют одну постоянную температуру во всех точках реакционного пространства. Адиабатический реактор не имеет теплообмена с окружающей средой. Это достигается хорошей тепловой изоляцией. В политропическом реакторе происходит теплообмен с окружающей средой.
- 5. По конструктивным признакам: ёмкостные, трубчатые, комбинрованные.

Приведённая классификация свидетельствует о том, что реальные химические реакторы характеризуются большим числом свойств, поэтому при построении математической модели химического реактора необходимо выделить и учесть наиболее важные свойства, так как учесть одновременно все свойства невозможно.

Математическая модель реактора идеального перемешивания

Математическое описание реактора идеального смешения (рис. 5.1) характеризует изменение концентраций в реакционной среде во времени, которое обусловлено движением потока (гидродинамический фактор) и химическим превращением (кинетический фактор). Поэтому модель реактора идеального перемешивания можно построить на основании типовой модели идеального перемешивания с учётом скорости химической реакции [3,4].

Рис. 5.1. Схема реактора идеального перемешивания

Модель идеального перемешивания представляет идеализированный поток и является теоретической моделью. Согласно этой модели принимается, что поступающий в аппарат поток мгновенно распределяется по всему объёму вследствие полного (идеального) перемешивания

частиц среды. При этом концентрация распределённого вещества во всех точках аппарата и в потоке на выходе из него одинакова:

$$C_{\text{BX}} \rightarrow C = C_{\text{BbIX}}$$
.

Дифференциальное уравнение модели идеального перемешивания будет иметь вид

$$\frac{dc}{dt} = \frac{v}{V} \cdot (C_{\text{BX}} - C), \tag{5.1}$$

где $\tau = \frac{V}{\upsilon}$ — время контакта, характеризующее среднее время пребывания частиц в реакторе, с;

V – объём реактора, м³;

 υ – объёмный расход вещества, м³/ч.

Уравнение (5.1) описывает изменение концентраций вещества в зоне идеального перемешивания за счет движения потока.

Тогда, с учётом кинетического фактора, динамическая модель изотермического реактора идеального перемешивания непрерывного действия будет иметь вид

$$\frac{dC_i}{dt} = \frac{1}{\tau} \cdot \left(C_{\text{BX}} - C_{\text{BMX}} \right) \pm w_i. \tag{5.2}$$

Такое уравнение записывается по каждому из компонентов, участвующих в реакции. Тогда

 C_i – концентрация i-го вещества, кмоль/м³;

 w_i – скорость реакций по i-му веществу, кмоль/м³.

Система приведённых уравнений является математической моделью реактора идеального перемешивания с учётом изменения концентрации во времени (динамическая модель).

Например, для реакции $A \xrightarrow{k} B$ уравнение (5.2) можно записать:

$$C_{\text{BX}} = C_{A0}; \quad C_{\text{BMX}} = C_{A}; \quad w_{A} = -k \cdot C_{A};$$

$$\frac{dC_A}{dt} = \frac{1}{\tau_0} \cdot (C_{A0} - C_A) - w_A. \tag{5.3}$$

В установившемся (стационарном) режиме работы реактора $\frac{dC_i}{dt} = 0$, тогда уравнение (5.3) можно записать:

$$\frac{1}{\tau} \cdot (C_{A0} - C_A) = w_A;$$

$$\tau = \frac{C_{A0} - C_A}{w_A};$$

$$x_A = \frac{C_{A0} - C_A}{C_{A0}}.$$
(5.4)

Используя выражения (5.3), (5.4), можно найти основные параметры, характеризующие работу аппарата:

- 1) τ время пребывания исходного вещества в реакторе, от величины которого зависит объём аппарата (чем меньше τ , тем меньше V);
- 2) изменение концентрации реагирующих веществ как функция $f(\tau)$, а, следовательно, рассчитать степень превращения и селективность процесса.

Аналогично уравнению материального баланса реактора идеального перемешивания (5.2) записывается уравнение теплового баланса. Так, для адиабатического реактора получим

$$C_{\rm p}^{\rm cm} \frac{dT}{dt} = \frac{C_{\rm p}^{\rm cm}}{\tau} \cdot (T_{\rm BX} - T) + \sum_{j=1}^{N} (-\Delta H_j) \cdot W_j , \qquad (5.5)$$

где W_j – скорость j-й химической реакции, 1/c;

- ΔH_j — тепловой эффект j-й химической реакции, Дж/моль;

 $C_{\mathrm{p}}^{\mathrm{cm}}$ – теплоёмкость реакционной смеси, Дж/моль·К;

 $T_{\rm BX}$ – температура на входе в реактор, К;

T — текущее значение температуры, К.

Теплоёмкость i-го вещества как функция температуры описывается следующим уравнением:

$$C_{p_i} = (a_i + b_i \cdot T + c_i \cdot T^2 + d_i \cdot T^3) \cdot 4{,}1887.$$
 (5.6)

Теплоёмкость смеси вычисляется по правилу аддитивности:

$$C_{\rm p}^{\rm cm} = \sum_{i=1}^{N} C_{pi} \cdot C_i , \qquad (5.7)$$

где C_i – концентрация i-го вещества смеси, мольн. доли.

При этом зависимость константы скорости химической реакции от температуры выражается уравнением Аррениуса

$$k_i = k_{i,0} \cdot e^{E_i/RT},$$
 (5.8)

где k_i – константа скорости i-й химической реакции (для реакции первого порядка, c^{-1});

 $k_{i,0}$ – предэкспоненциальный множитель, с⁻¹;

 E_i – энергия активации *i*-й реакции, Дж/моль;

R — универсальная газовая постоянная, $R = 8,314 \, \text{Дж/моль·К}$.

Для того чтобы исследовать динамический режим работы реактора идеального перемешивания, т. е. проследить изменение концентрации реагирующих веществ и температуры во времени на выходе из реактора, необходимо решить систему дифференциальных уравнений материального баланса по каждому из компонентов и уравнение теплового баланса.

Математическая модель реактора идеального вытеснения

Математические модели химических реакторов строятся на основе блочного принципа с использованием типовых гидродинамических моделей, учитывающих движение потоков вещества.

В соответствии с моделью идеального вытеснения принимается поршневое течение без перемешивания вдоль потока при равномерном распределении концентрации вещества в направлении, перпендикулярном движению (рис. 5.2).

Рис. 5.2. Схема потока идеального вытеснения

Дифференциальное уравнение модели идеального вытеснения имеет следующий вид:

$$\frac{\partial C_i}{\partial t} = -u \cdot \frac{\partial C_i}{\partial l}, \tag{5.9}$$

где C – концентрация вещества, моль/л;

t – время, с;

u — линейная скорость потока, м/с;

l – координата (длина аппарата), м.

Математическая модель идеального вытеснения представляет собой дифференциальное уравнение в частных производных, так как концентрация изменяется во времени и пространстве. Такая модель называется моделью с распределёнными параметрами.

Модели идеального вытеснения в первом приближении соответствуют процессы, происходящие в трубчатых аппаратах, для которых отношение длины трубы к диаметру превышает 20 либо диффузионный критерий Пекле принимает значение ≈ 100 .

Если вместо линейной скорости потока u в уравнение (5.9) подставить значение u = v/S, то получим

$$S\frac{dC_i}{dt} = -\upsilon \frac{dC_i}{dl},\tag{5.10}$$

где S – сечение зоны идеального вытеснения, M^2 ;

 υ – объёмная скорость (расход) вещества, м³/с.

Если в математической модели идеального вытеснения учесть источник изменения концентрации за счёт химический реакции W_i , то материальный баланс реактора идеального вытеснения можно записать в виде —

$$\frac{\partial C_i}{\partial t} = -u \frac{\partial C_i}{\partial l} \pm W_i, \tag{5.11}$$

где C_i – концентрация соответствующего i-го вещества;

 W_i – скорость реакции по i-му веществу.

Уравнение теплового баланса адиабатического реактора идеального вытеснения

$$\rho^{\text{cm}} \cdot C_{\text{p}}^{\text{cm}} \cdot \frac{\partial T}{\partial t} = -U \cdot \rho^{\text{cm}} \cdot C_{\text{p}}^{\text{cm}} \cdot \frac{\partial T}{\partial l} + \sum_{j=1}^{N} \left(\pm \Delta H_{j} \right) \cdot W_{j}. \tag{5.12}$$

Следовательно, математическое описание реактора идеального вытеснения характеризует изменение концентрации и температуры в реакционной среде во времени и пространстве, обусловленное движением потока (гидродинамический фактор) и химическим превращением (кинетический фактор).

Уравнение (5.11) записывается по каждому из компонентов, участвующих в реакции. Например, для реакции $A \xrightarrow{k} B$, протекающей в изотермическом реакторе идеального вытеснения, математическая модель (динамический режим) будет иметь вид

$$\frac{\partial C_A}{\partial t} = -u \cdot \frac{\partial C_A}{\partial l} - k \cdot C_A; \tag{5.13}$$

$$\frac{\partial C_B}{\partial t} = -u \cdot \frac{\partial C_B}{\partial l} + k \cdot C_A.$$

В установившемся (стационарном) режиме работы реактора

$$\frac{\partial C_A}{\partial t} = 0; \quad \frac{\partial C_B}{\partial t} = 0, \tag{5.14}$$

тогда

$$u\frac{dC_A}{dl} = -k \cdot C_A;$$

$$u\frac{dC_e}{dl} = k \cdot C_A.$$
(5.15)

Так как $\frac{l}{u} = \tau$, то уравнения (5.15) примут вид

$$\frac{dC_A}{d\tau} = -k \cdot C_A;$$

$$\frac{dC_B}{d\tau} = k \cdot C_A,$$
(5.16)

где τ – время пребывания реагентов в зоне реактора (время контакта), с.

Для того чтобы исследовать изменение концентрации реагирующих веществ и температуры в химическом реакторе, необходимо решить систему дифференциальных уравнений (5.11, 5.12).

Исследование химического процесса, протекающего в гомогенном реакторе идеального смешения

Пусть в реакторе идеального смешения протекает химическая реакция н-октана в и-октан и в продукты крекинга:

$$H - C_8 H_{18} \xrightarrow{-\Delta H_1} \text{изо} - C_8 H_{18} \xrightarrow{+\Delta H_2} C_4 H_{10} + C_4 H_8,$$

где $-\Delta H_1$ =-7,03 Дж/моль при (700 К) – экзотермическая реакция; $+\Delta H_2$ = +85,89 Дж/моль – эндотермическая реакция

или

$$A \xrightarrow{k_1} B \xrightarrow{k_2} C + D$$
.

Математическая модель процесса, представленного реакциями (5.1), с учетом уравнения (5.2), может быть записана в виде следующей системы уравнений материального и теплового балансов:

$$\frac{dC_{A}}{dt} = \frac{1}{\tau} \cdot \left(C_{A_{0}} - C_{A} \right) - k_{1} \cdot C_{A};$$

$$\frac{dC_{B}}{dt} = \frac{1}{\tau} \left(C_{B_{0}} - C_{B} \right) + k_{1} \cdot C_{A} - k_{2} \cdot C_{B};$$

$$\frac{dC_{C}}{dt} = \frac{1}{\tau} \left(C_{C_{0}} - C_{C} \right) + k_{2} \cdot C_{B}, \qquad Q_{j} = -\Delta H_{j};$$

$$\frac{dC_{D}}{dt} = \frac{1}{\tau} \left(C_{D_{0}} - C_{D} \right) + K_{2} \cdot C_{B};$$

$$\frac{dT}{dt} = \frac{1}{\tau} \left(T_{0} - T \right) + \frac{\left(Q_{1} \cdot k_{1} \cdot C_{A} + Q_{2} \cdot k_{2} \cdot C_{B} \right) \cdot R' \cdot T/p}{C_{D}}$$

с начальными условиями: при t = 0 $C_A(0) = C_{A,0}$, $C_B(0) = C_C(0) = C_D(0) = 0$, где P — давление в реакторе, Мпа;

$$R'$$
 – универсальная газовая постоянная, R' = 0,00845 $\frac{M^3 \cdot M \Pi a}{K M O \Pi b \cdot K}$.

Так как тепловой эффект реакции (Q_i) равен величине энтальпии i-й реакции (ΔH_i) с обратным знаком:

$$Q_i = -\Delta H_i$$
,

тогда $Q_1 = 7,03$ Дж/моль, $Q_2 = -85,89$ Дж/моль.

Для решения системы дифференциальных уравнений (5.17) был использован метод Эйлера.

Пример расчёта программ реакторов идеального перемешивания и идеального вытеснения приведён в Приложении Е. Программы использованы для расчёта текущих значений концентраций на выходе из реакторов, а также для исследования влияния времени контакта на выход продуктов реакций.

Данные для расчета тепловых эффектов реакций приведены в табл. 1, Приложение Ж. Расчет тепловых эффектов проводится на основании закона Гесса.

Результаты исследования динамического режима работы реактора идеального перемешивания приведены на рис. 5.3–5.4.

Рис. 5.3. Зависимость концентраций реагирующих веществ от времени:

— н-С8Н18, время контакта 6с.
 — н-С8Н18, время контакта 3с.
 — и-С8Н18, время контакта 3с.
 — и-С8Н18, время контакта 3с.

Рис. 5.4. Зависимость изменения температуры от времени:

время контакта 3с
 время контакта 6с

На основании полученных результатов можно судить об изменении концентрации веществ и температуры в реакторе идеального смешения, рассчитать степень превращения компонентов.

Результаты расчётов необходимо представить в графическом виде.

Исследование химического процесса, протекающего в реакторе идеального вытеснения в стационарном режиме

Исследование закономерностей протекания химической реакции в реакторе идеального вытеснения методом математического моделирования заключается в определении концентраций реагирующих веществ на выходе из реактора и температуры потока в зависимости от времени контакта.

Пусть в реакторе идеального вытеснения (РИВ) протекает химическая реакция

$$A \xrightarrow{k_1} B \xrightarrow{k_2} C + D. \tag{5.18}$$

Так как в реакторе вытеснения состав реагентов и температура потока изменяются по длине (или времени контакта) аппарата, процесс в нём описывается системой дифференциальных уравнений (5.11, 5.12).

Тогда математическая модель химического процесса может быть записана в виде следующей системы уравнений материального и теплового балансов (режим работы реактора — стационарный):

$$\frac{dC_A}{d\tau} = -k_1 \cdot C_A;$$

$$\frac{dC_B}{d\tau} = k_1 \cdot C_A - k_2 \cdot C_B;$$

$$\frac{dC_C}{d\tau} = k_2 \cdot C_B;$$

$$\frac{dC_D}{d\tau} = k_2 \cdot C_B;$$

$$\frac{dT}{d\tau} = \frac{(Q_1 \cdot k \cdot C_A - Q_2 \cdot k_2 \cdot C_B) \cdot R' \cdot T/p}{C_p},$$
(5.19)

где k_1, k_2 – константы скоростей реакций;

 C_A , C_B , C_C , C_D – концентрации компонентов, кмоль/м³.

Значения тепловых эффектов реакций и теплоёмкость смеси рассчитываем с использованием справочных данных [8].

Систему дифференциальных уравнений (5.19) решим с использованием метода Эйлера.

C, мольн.доли

Рис. 5.5. Изменение концентрации компонентов в реакторе идеального вытеснения от времени контакта:

Рис. 5.6. Зависимость изменения температуры в реакторе идеального вытеснения от времени контакта

Варианты заданий

Таблица 5.1

№ п/п	Тип реакции	Исходная концентрация, кмоль/м ³	Констан- ты ско- рости	Энергии активации, кДж/моль	Температура, К
1	k_1 k_2	$C_{C8H18} = 0.0388$	$k_1 = 0.12;$	$E_1 = 94,2;$	610
	$C_8H_{18} \longrightarrow i-C_8H_{18} \longrightarrow$		$k_2 = 0.80$	$E_2 = 81,2$	
	k_2				
	$\longrightarrow C_4H_{10} + C_4H_8$				
2	k_1	$C_{\text{H-C7H1}} = 0.0343$	$k_1 = 0.18;$	E_1 =95,11;	690
	$H - C_7 H_{16} \longrightarrow C_3 H_6 + C_4 H_{10}$		$k_2=0,29$	$E_2=122,76$	
	$k_2 \downarrow$				
	$i-C_4^{v}H_{10}$				
3	k_1	$C_{C2H4} = 0.0296$	$k_1=0,38;$	E_1 =59,48;	800
	$2C_2H_4 \longrightarrow C_4H_8$			$E_2=162,57;$	
	$k_2 \downarrow \uparrow k_3$		$k_3=0,11$	$E_3=157,12$	
	$i-C_4H_8$				
4	k_1	$C_{C2H6} = 0.0175;$	$k_1=0,54;$	E_1 =96,14;	810
	$C_2H_6+C_4H_{10}$ $2C_3H_8$	$C_{C4H10} = 0.0117$	$k_2=0,12$	$E_2 = 83,60$	
	k_2				

Продолжение табл. 5.1

	<u> </u>	Прооолжение таол. Э.1			
5	$C_5H_{10} + H_2 \xrightarrow{k_1} C_5H_{12}$ $k_2 \downarrow$ $i - C_5H_{12}$	C _{C5H10} =0,0166; C _{H2} =0,0166	$k_1 = 0.5;$ $k_2 = 0.2$	E_1 =101,21; E_2 =115,05	710
6	$C_6H_{14} \xrightarrow{k_1} 2$ -метилпентан $k_2 \downarrow$ 2,3-диметилбутан	С _{С6Н14} =0,0338	$k_1=0,4;$ $k_2=0,2$	E_1 =75,13; E_2 =94,18	700
7	k_1 C_6H_{14} k_2 $2,3$ -диметилбутан	С _{С6Н14} =0,0394	$k_1 = 0.2;$ $k_2 = 0.4$	E_1 =95,31; E_2 =76,17	600
8	$C_6H_{14} \longrightarrow 2$ -метилпентан $k_2 \downarrow k_3$ 2,3-диметилбутан	С _{С6Н14} =0,0328	$k_1=0,3;$ $k_2=0,2;$ $k_3=0,1$	$E_1=79,64;$ $E_2=83,23;$ $E_3=107,11$	720
9	$C_6H_{14} \xrightarrow{k_1} 2$ -метилпентан $k_3 \xrightarrow{k_2} 2$,3-диметилбутан	С _{С6Н14} =0,0358	$k_1=0,25;$ $k_2=0,10;$ $k_3=0,25$	E_1 =87,23; E_2 =104,75; E_3 =78,61	660
10	$C_8H_{18} \xrightarrow{k_1} i - C_8H_{18} \xrightarrow{k_2}$ $k_2 \longrightarrow C_4H_{10} + C_4H_8$	$C_{C8H18} = 0,036$	$k_1 = 0.12;$ $k_2 = 0.80$	$E_1 = 94,2;$ $E_2 = 81,2$	620
11	$H-C_7H_{16} \xrightarrow{k_1} C_3H_6 + C_4H_{10}$ $k_2 \downarrow$ $i-C_4H_{10}$	C _{C7H16} =0,028	$k_1 = 0.18;$ $k_2 = 0.29$	E_1 =95,11; E_2 =122,76	650
12	$2C_{2}H_{4} \xrightarrow{k_{1}} C_{4}H_{8}$ $k_{2} \downarrow \uparrow k_{3}$ $i-C_{4}H_{8}$	$C_{C2H4} = 0,0316$	k_1 =0,38; k_2 =0,14; k_3 =0,11		760
13	$C_2H_6+C_4H_{10} \xrightarrow{k_1} 2C_3H_8$	C _{C2H6} =0,016; C _{C4H10} =0,016	$k_1 = 0.54;$ $k_2 = 0.12$	E_1 =96,14; E_2 =83,60	790

Окончание табл. 5.1

14	$C_5H_{10} + H_2 \xrightarrow{k_1} C_5H_{12}$ $k_2 \downarrow$ $i - C_5H_{12}$	C _{C5H10} =0,017; C _{H2} =0,014	$k_1=0,5;$ $k_2=0,2$	$E_1=101,21;$ $E_2=115,05$	710
15	C6H14 2-метилпентан k2 2,3-диметилбутан	С _{С6Н14} =0,0286	k1=0,4; k2=0,2	E1=75,13; E2=94,18	680
16	2-метилпентан k1 C6H14 k2 2,3-диметилбутан	С _{С6Н14} =0,0283	k1=0,2; k2=0,4	E1=95,31; E2=76,17	580

Коэффициенты a_i , b_i , c_i , d_i для расчета теплоемкостей компонентов и термодинамические функции индивидуальных углеводородов приведены в табл. 4, Приложение Ж.

Порядок выполнения работы

- 1. В соответствии с заданием составить математическое описание химического реактора.
 - 2. Разработать алгоритм и программу расчёта.
- 3. Провести расчёты изменения концентраций веществ, температуры, степени превращения от времени и времени контакта.
 - 4. Полученные результаты оформить в виде таблиц и графиков.
 - 5. Составить отчёт о проделанной работе.

Содержание отчета

- 1. Представить математическую модель реактора со всеми параметрами, алгоритм и описание программы.
- 2. Обосновать выбор численного метода решения математической модели.
- 3. Представить таблицы и графики, обсуждение результатов, сделать выводы по проделанной работе.

Контрольные вопросы и задания

- 1. Какие основные типы химических реакторов вы знаете?
- 2. Поясните причины многообразия классификаций химических реакторов.

- 3. Какие математические модели химических реакторов вы можете назвать?
- 4. Какие составляющие входят в математическую модель гомогенного химического реактора?
- 5. В чем отличие уравнений теплового баланса адиабатического и политропического реакторов?
- 6. Дайте определение времени контакта и напишите расчетную формулу.
- 7. Что такое стационарный и динамический режимы работы химического реактора?
- 8. Какие параметры влияют на продолжительность выхода реактора на стационарный режим?
- 9. Какие численные методы можно применить, если математическая модель химического реактора представляет собой систему дифференциальных уравнений первого порядка?
- 10. Приведите примеры гомогенных химических промышленных процессов.