Análisis del límite:

 $\lim_{x\to 0} x^2 \cdot e^{\frac{1}{x}}$

Analicemos la función:

$$f: \mathbb{R} - \{0\} \to \mathbb{R}/f(x) = x^2 \cdot e^{\frac{1}{x}}$$

¿Qué nos dicen estas tablas?

X	Y
0,8	2,23381949
0,5	1,84726402
0,2	5,93652636
0,1	220,264658
0,08	1717,35863
0,05	1212912,99
0,02	2,0739E+18
0,01	2,6881E+39

X	Y
-0,8	0,18336307
-0,5	0,03383382
-0,2	0,00026952
-0,1	4,54E-07
-0,08	2,3851E-08
-0,05	5,1529E-12
-0,02	7,715E-26
-0,01	3,7201E-48

Veamos su gráfica... ¡¡¿¿a quién le creemos??!!

¿Qué podemos concluir?

•
$$\lim_{x \to 0^{-}} x^2 \cdot e^{\frac{1}{x}} = 0$$

$$\lim_{x \to 0^+} x^2 \cdot e^{\frac{1}{x}} = +\infty$$

• $\lim_{x\to 0} x^2 \cdot e^{\frac{1}{x}}$ jino existe!!

Así que, jimucho OJO!!

Si aplicamos propiedades, obtenemos:

- $\lim_{x\to 0} x^2 \cdot e^{\frac{1}{x}} = \lim_{x\to 0} x^2 \cdot \lim_{x\to 0} e^{\frac{1}{x}}$ pero ¡¡OJO!! porque $\lim_{x\to 0} x^2$ ¡es un límite, NO es un número!
- Es verdad que cuando x se va acercando a cero por derecha y por izquierda, x^2 se acerca a cero también, pero ese acercamiento está siendo

afectado por el $\lim_{x\to 0} e^{\frac{1}{x}}$, es decir, sería un **error** aislar el

resultado del $\lim_{x\to 0} x^2$ y decir que es $\lim_{x\to 0} 0.e^{\frac{1}{x}}$ ó $0.\lim_{x\to 0} e^{\frac{1}{x}}$

Entonces, ¿son iguales?

$$\lim_{x\to 0} x^2 \cdot e^{\frac{1}{x}}$$

$$\lim_{x\to 0} 0.e^{\frac{1}{x}}$$

iiiCLARO QUE NO!!!