



| Doc. Number:                |
|-----------------------------|
| ☐ Tentative Specification   |
| ■ Preliminary Specification |
| Approval Specification      |

# MODEL NO.: N070ICE SUFFIX: GB1

| Customer:                                                |                      |
|----------------------------------------------------------|----------------------|
| APPROVED BY                                              | SIGNATURE            |
| Name / Title  Note : Only for reference                  |                      |
| Please return 1 copy for your corsignature and comments. | nfirmation with your |

| Approved By | Checked By | Prepared By |
|-------------|------------|-------------|
|             |            |             |
|             |            |             |
|             |            |             |

Version 1.0 7 January 2013 1 / 24



## **CONTENTS**

| 1. | GENERAL DESCRIPTION                                       | 4           |
|----|-----------------------------------------------------------|-------------|
|    | 1.1 OVERVIEW                                              | 4           |
|    | 1.2 GENERAL SPECIFICATIONS                                | 4           |
| 2. | MECHANICAL SPECIFICATIONS                                 | 4           |
|    | 2.1 CONNECTOR TYPE                                        | 4           |
| 3. | ABSOLUTE MAXIMUM RATINGS                                  | 4           |
|    | 3.1 ABSOLUTE RATINGS OF ENVIRONMENT                       | 5           |
|    | 3.2 ELECTRICAL ABSOLUTE RATINGS                           | 5           |
|    | 3.2.1 TFT LCD MODULE                                      | 5           |
| 4. | ELECTRICAL SPECIFICATIONS                                 | 6           |
|    | 4.1 FUNCTION BLOCK DIAGRAM                                | 6           |
|    | 4.2. INTERFACE CONNECTIONS                                | 6           |
|    | 4.3 ELECTRICAL CHARACTERISTICS                            | 8           |
|    | 4.3.1 LCD ELETRONICS SPECIFICATION                        | 8           |
|    | 4.3.2 LED CONVERTER SPECIFICATION                         | 9           |
|    | 4.3.3 BACKLIGHT UNIT                                      | 9           |
|    | 4.4 MIPI DSI INPUT SIGNAL TIMING SPECIFICATIONS           | 10          |
|    | 4.4.1 DC ELECTRICAL CHARACTERISTIC                        | 10          |
|    | 4.4.2AC ELECTRICAL CHARACTERISTIC                         | 13          |
|    | 4.4.3 LP TRANSMISSION                                     |             |
|    | 4.5 MIPI INTERFACE (MOBILE INDUSTRY PROCESSING INTERFACE) |             |
|    | 4.6 POWER ON/OFF SEQUENCE                                 | 14          |
| 5. | OPTICAL CHARACTERISTICS                                   | 105         |
|    | 5.1 TEST CONDITIONS                                       | 155         |
|    | 5.2 OPTICAL SPECIFICATIONS                                | 15 <u>5</u> |
| 6. | RELIABILITY TEST ITEM                                     | 19          |
| 7. | PACKING                                                   | 20          |
|    | 7.1 MODULE LABEL                                          | 20          |
|    | 7.2 CARTON                                                | 21          |
|    | 7.3 PALLET                                                | 22          |
| 8. | PRECAUTIONS                                               | 23          |
|    | 8.1 HANDLING PRECAUTIONS                                  | 23          |
|    | 8.2 STORAGE PRECAUTIONS                                   | 23          |
|    | 8.3 OPERATION PRECAUTIONS                                 | 23          |
|    | Appendix. EDID DATA STRUCTURE                             | 24          |
|    | Appendix. OUTLINE DRAWING                                 |             |
|    |                                                           |             |



#### **REVISION HISTORY**

| Version | Date          | Page | Description                    |
|---------|---------------|------|--------------------------------|
| 0.0     | Oct, 29, 2012 | All  | Spec Ver.0.0 was first issued. |
| 1.0     | Jan, 02, 2013 | All  | Spec Ver.1.0 was first issued. |
|         |               |      |                                |
|         |               |      |                                |
|         |               |      |                                |
|         |               |      |                                |
|         |               |      |                                |

Version 1.0 7 January 2013 3 / 24



#### 1. GENERAL DESCRIPTION

#### 1.1 OVERVIEW

N070ICE-GB1 is a 7" (7" diagonal) TFT Liquid Crystal Display module with LED Backlight unit and **36 pins MIPI DSI** interface. This module supports 800 x 1280 WXGA mode.

#### 1.2 GENERAL SPECIFICATIONS

| Item              | Specification                        | Unit  | Note |
|-------------------|--------------------------------------|-------|------|
| Screen Size       | 7" diagonal                          |       |      |
| Driver Element    | a-si TFT active matrix               | -     | -    |
| Pixel Number      | 800 x R.G.B. x 1280                  | pixel | -    |
| Pixel Pitch       | 0.11775 (H) x 0.11775 (V)            | mm    | -    |
| Pixel Arrangement | RGB vertical stripe                  | -     | -    |
| Display Colors    | 16,777,216 (8bit color depth)        | color | -    |
| Transmissive Mode | Normally black                       | -     | -    |
| Surface Treatment | Hard coating (3H), Glare             | -     | -    |
| Luminance, White  | 300                                  | Cd/m2 |      |
| Power Consumption | Total 492 W (Max.), BL 1.13 W (Max.) |       | (1)  |

Note (1) The specified power consumption (with converter efficiency) is under the conditions at VDD = 3.3 V, VCC = 1.8V, fv = 60 Hz, Brightness = 300nits,  $I_{F\_LED}$  = 19mA and Ta = 25 ± 2 °C, whereas Mosaic pattern is displayed.

#### 2. MECHANICAL SPECIFICATIONS

| Item           |                | Min.   | Тур.   | Max.                             | Unit | Note |
|----------------|----------------|--------|--------|----------------------------------|------|------|
|                | Horizontal (H) | 105.42 | 105.62 | 105.82                           | mm   |      |
| Module Size    | Vertical (V)   | 163.07 | 163.27 | 163.47                           | mm   | (1)  |
| Wioddie Gize   | Thickness (T)  |        |        | 2.4 (w/o PCBA)<br>3.95 (w/ PCBA) | mm   | (1)  |
| Bezel Area     | Horizontal     | 97.15  | 97.35  | 97.55                            | mm   |      |
| (CF Polarizer) | Vertical       | 153.62 | 153.82 | 154.02                           | mm   |      |
| Active Area    | Horizontal     |        | 94.2   |                                  | mm   |      |
|                | Vertical       |        | 150.72 |                                  | mm   |      |
| Weight         |                | -      | -      | 90                               | g    |      |

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

#### 2.1 CONNECTOR TYPE



Please refer Appendix Outline Drawing for detail design.

Connector Part No.: Panasonic AXT636124



#### 3. ABSOLUTE MAXIMUM RATINGS

#### 3.1 ABSOLUTE RATINGS OF ENVIRONMENT

| Item                          | Symbol          | Va     | lue  | Unit  | Note     |  |
|-------------------------------|-----------------|--------|------|-------|----------|--|
| item                          | Symbol          | Min.   | Max. | Offit | Note     |  |
| Storage Temperature           | T <sub>ST</sub> | -20    | +70  | ∘C    | (1)      |  |
| Operating Ambient Temperature | T <sub>OP</sub> | -10    | +60  | ºC    | (1), (2) |  |
| Anode for Light bar           | Anode           | (-2.4) | (32) | V     | (1)      |  |
| Cathode for Light bar         | Cathode         | (-2.4) | (32) | V     | (1)      |  |

Note (1) (a) 90 %RH Max. ( $Ta \le 40 \, {}^{\circ}C$ ).

(b) Wet-bulb temperature should be 39  $^{\circ}$ C Max. (Ta > 40  $^{\circ}$ C).

(c) No condensation.

Note (2) The temperature of panel surface should be -10 °C min. and 70 °C max.



#### 3.2 ELECTRICAL ABSOLUTE RATINGS

#### 3.2.1 TFT LCD MODULE

| Item                 | Symbol | Va   | ue   | Unit  | Note |  |
|----------------------|--------|------|------|-------|------|--|
| item                 | Cymbol | Min. | Max. | Orint | Note |  |
| Power Supply Voltage | VDD    | -0.3 | +5.0 | V     | (1)  |  |
| Tower Supply voltage | VCC    | -0.3 | +2.0 | ٧     | (1)  |  |

Note (1) Stresses beyond those listed in above "ELECTRICAL ABSOLUTE RATINGS" may cause permanent damage to the device. Normal operation should be restricted to the conditions described in "ELECTRICAL CHARACTERISTICS".

Version 1.0 7 January 2013 5 / 24



#### 4. ELECTRICAL SPECIFICATIONS

#### **4.1 FUNCTION BLOCK DIAGRAM**



#### 4.2. INTERFACE CONNECTIONS

PIN ASSIGNMENT

| Pin No | Symbol     | I/O | Function                                        | Remark |
|--------|------------|-----|-------------------------------------------------|--------|
| 1      | GND        | Р   | Grounding for digital circuit                   |        |
| 2      | VDD (3.3V) | Р   | Power supply for digital circuit                |        |
| 3      | D0N        | ı   | MIPI lane0 negative                             |        |
| 4      | VDD (3.3V) | Р   | Power supply for digital circuit                |        |
| 5      | D0P        | ı   | MIPI lane0 positive                             |        |
| 6      | VDD (3.3V) | Ρ   | Power supply for digital circuit                |        |
| 7      | GND        | Р   | Grounding for digital circuit                   |        |
| 8      | GND        | Р   | Grounding for digital circuit                   |        |
| 9      | D1N        | ı   | MIPI lane1 negative                             |        |
| 10     | VCC (1.8V) | Р   | VCC LDO output for internal digital circuit use |        |
| 11     | D1P        | ı   | MIPI lane1 positive                             |        |
| 12     | VCC (1.8V) | Р   | VCC LDO output for internal digital circuit use |        |
| 13     | GND        | Р   | Grounding for digital circuit                   |        |
| 14     | GND        | Р   | Grounding for digital circuit                   |        |
| 15     | CLKN       | ı   | MIPI CLK input negative                         |        |
| 16     | ANODE      | Р   | Power for LED BL anode                          |        |
| 17     | CLKP       | I   | MIPI CLK input positive                         |        |
| 18     | ANODE      | Р   | Power for LED BL anode                          |        |
| 19     | GND        | Р   | Grounding for digital circuit                   |        |
| 20     | NC         | Ι   | BIST pattern                                    | Note2  |
| 21     | D2N        | ı   | MIPI lane2 negative                             |        |
| 22     | CATHODE1   | Р   | LED string 1 cathode                            |        |
| 23     | D2P        | I   | MIPI lane2 positive                             |        |
| 24     | CATHODE2   | Р   | LED string 2 cathode                            |        |
| 25     | GND        | Р   | Grounding for digital circuit                   |        |
| 26     | CATHODE3   | Р   | LED string 3 cathode                            |        |

Version 1.0 7 January 2013 6 / 24



| 27 | D3N      | I | MIPI lane3 negative                                                                   |  |
|----|----------|---|---------------------------------------------------------------------------------------|--|
| 28 | CATHODE4 | Ρ | LED string 4 cathode                                                                  |  |
| 29 | D3P      | ı | MIPI lane3 positive                                                                   |  |
| 30 | CATHODE5 | Ρ | LED string 5 cathode                                                                  |  |
| 31 | GND      | Ք | Grounding for digital circuit                                                         |  |
| 32 | CATHODE6 | Ρ | LED string 6 cathode                                                                  |  |
| 33 | LED_EN   | I | LEDON / LEDPWM signal on/off control.                                                 |  |
| 34 | GND      |   | Grounding for digital circuit                                                         |  |
| 35 | LED_PWN  | 0 | PWM type control signal for brightness of the LED backlight.                          |  |
| 36 | LED_ON   | О | It is a LED driver control signal which is used for turning on/off the LED backlight. |  |

Note (1) The first pixel is odd as shown in the following figure.

Note (2) Normal operation/BIST pattern selection. (Pull UP/ down : R<  $10K\Omega$ )

BIST\_EN=L, BIST(Clock input is not needed)

BIST\_EN=H, Normal operation.



Version 1.0 7 January 2013 7 / 24

#### 4.3 ELECTRICAL CHARACTERISTICS

#### 4.3.1 LCD ELETRONICS SPECIFICATION

| ltem                        |        | Symbol                |         | Values | Unit    | Remark |         |
|-----------------------------|--------|-----------------------|---------|--------|---------|--------|---------|
|                             |        | Symbol                | Min.    | Тур.   | Max.    | Ullit  | nemark  |
| Power cumply ye             | Itago  | VDD                   | 3.0     | 3.3    | 3.6     | V      |         |
| Power supply voltage        |        | VCC                   | 1.7     | 1.8    | 1.9     | V      |         |
| MIPI supply volt            | age    | lvcc_if               | 1.7     | 1.8    | 1.9     | V      |         |
| VCC High level i voltage    | nput   | V <sub>IH2</sub>      | 0.7 VCC | -      | VCC     | V      | For I/O |
| VCC Low level input voltage |        | V <sub>IL2</sub>      | 0       | -      | 0.3 VCC | V      | circuit |
| Power Supply                | White  | I <sub>DD</sub>       |         | 132    |         | mA     |         |
| Current                     | vville | I <sub>Core_VDD</sub> |         | 35     |         | mA     |         |

Note (1) The ambient temperature is  $Ta = 25 \pm 2$   $^{\circ}C$ .

Note (2) The specified power supply current is under the conditions at VDD = 3.3 V, VCC = 1.8 V, Ta =  $25 \pm 2$   $^{\circ}$ C, DC Current and f<sub>v</sub> = 60 Hz, whereas a power dissipation check pattern below is displayed.

#### a. Mosaic Pattern



Active Area

#### b. White Pattern



Active Area



#### 4.3.2 LED CONVERTER SPECIFICATION

#### N/A

#### 4.3.3 BACKLIGHT UNIT

 $Ta = 25 \pm 2 \,{}^{\circ}C$ 

| Parameter                             | Cumbal |       | Value | Unit | Note |                   |
|---------------------------------------|--------|-------|-------|------|------|-------------------|
|                                       | Symbol | Min.  | Тур.  | Max. | Unit | Note              |
| LED Light Bar Power<br>Supply Voltage | VL     | 8.4   | 9     | 9.9  | V    | (1)(2)(Duty1009() |
| LED Light Bar Power Supply Current    | lL     | -     | 114   | -    | mA   | (1)(2)(Duty100%)  |
| Power Consumption                     | PL     | -     | 1.03  | 1.13 | W    | (3)               |
| LED Life Time                         | $L_BL$ | 12000 | -     | -    | Hrs  | (4)               |

Note (1) LED current is measured by utilizing a high frequency current meter as shown below :



Note (2) For better LED light bar driving quality, it is recommended to utilize the adaptive boost converter with current balancing function to drive LED light-bar.

Note (3)  $P_L = I_L \times V_L$  (Without LED converter transfer efficiency)

Note (4) The lifetime of LED is defined as the time when it continues to operate under the conditions at Ta =  $25 \pm 2$  °C and I<sub>L</sub> = 20 mA(Per EA) until the brightness becomes  $\leq 50\%$  of its original value.



#### 4.4 MIPI DSI INPUT SIGNAL TIMING SPECIFICATIONS



4.4.1 DC Electrical Characteristic

| Davamatav                                                          | Cumbal              |      | Values | I I mit | Domonte |        |  |  |  |
|--------------------------------------------------------------------|---------------------|------|--------|---------|---------|--------|--|--|--|
| Parameter                                                          | Symbol              | Min. | Тур.   | Max.    | Unit    | Remark |  |  |  |
| MIPI Characteristics for High Speed Receiver                       |                     |      |        |         |         |        |  |  |  |
| Single-endedl input low voltage                                    | V <sub>ILHS</sub>   | -40  | -      | -       | mV      |        |  |  |  |
| Single-endedl input high voltage                                   | V <sub>IHHS</sub>   | -    | -      | 460     | mV      |        |  |  |  |
| Common-mode voltage                                                | V <sub>CMRXDC</sub> | 155  | 200    | 330     | mV      |        |  |  |  |
| Differential input impedance                                       | $Z_{ID}$            | 85   | 100    | 115     | ohm     |        |  |  |  |
| HS transmit differential voltage( $V_{OD}$ = $V_{DP}$ - $V_{DN}$ ) | V <sub>OD</sub>     | 85   | 200    | 250     | mV      |        |  |  |  |
| MIPI Characteristics for Low Powe                                  | r Mode              |      |        |         |         |        |  |  |  |
| Pad signal voltage range                                           | Vı                  | -50  | -      | 1350    | mV      |        |  |  |  |
| Ground shift                                                       | $V_{GNDSH}$         | -50  | -      | 50      | mV      |        |  |  |  |
| Logic 0 input threshold                                            | V <sub>IL</sub>     | 0    | -      | 500     | mV      |        |  |  |  |
| Logic 1 input threshold                                            | V <sub>IH</sub>     | 1000 | -      | 1350    | mV      |        |  |  |  |



#### 4.4.2 AC Electrical Characteristics

#### **HS** Transmission

| Parameter                                       | Symbol                          | Min  | Тур | Max  | Units  | Notes |
|-------------------------------------------------|---------------------------------|------|-----|------|--------|-------|
| UI instantaneous                                | UI <sub>INST</sub>              | 2    | -   | 5.56 | ns     | 1,2   |
| Data to Clock Skew [measured at tansmitter]     | T <sub>SKEW[TX]</sub>           | -0.1 | -   | 0.1  | ns     | 3     |
| Data to Clock Setup Time [measured at receiver] | T <sub>SETUP[RX]</sub>          | 0.55 | -   | _    | ns     | 4     |
| Data to Clock Hold Time [measured at reciever]  | T HOLD[RX]                      | 0.55 |     | =    | ns     | 4     |
| 20% - 80% rise time and fall time               | + /+                            | 150  | -   | -    | ps     |       |
| 20 % - 00 % rise time and fall time             | t <sub>R</sub> / t <sub>F</sub> | -    | -   | 0.3  | UIINST |       |



Data to Clock Timing Definitions

Version 1.0 7 January 2013 11 / 24



#### 4.4.3 LP Transmission

| Parameter                                | Symbol                              | Values |      |      | Unit  | Remark |  |
|------------------------------------------|-------------------------------------|--------|------|------|-------|--------|--|
| raiametei                                | Syllibol                            | Min.   | Тур. | Max. | Oilit | Hemark |  |
| 15%-85% rise time and fall time          | T <sub>RLP</sub> / T <sub>FLP</sub> | -      | -    | 35   | ns    |        |  |
| 30%-85% rise time(from HS to LP)         | T <sub>REOT</sub>                   | -      | -    | 35   | ns    |        |  |
| Pulse width of the LP exclusive-OR clock | t <sub>LP-PULSE-TX</sub>            | 50     | 65   | -    | ns    |        |  |
| Period of the LP exclusive-OR clock      | t <sub>LP-PRE-TX</sub>              | 100    | 130  | -    | ns    |        |  |







#### 4.5 MIPI interface (Mobile Industry Processing Interface)

The Display Serial Interface standard defines protocols between a host processor and peripheral devices that adhere to MIPI Alliance standards for mobile device interfaces. The DSI standard builds on existing standards by adopting pixel formats and command set defined in MIPI Alliance standards.

DSI-compliant peripherals support either of two basic modes of operation: Command Mode and Video Mode.

Note: The product only supports Video Mode operation.

Video Mode refers to operation in which transfers from the host processor to the peripheral take the form of a real-time pixel stream. In normal operation, the display module relies on the host processor to provide image data at sufficient bandwidth to avoid flicker or other visible artifacts in the displayed image. Video information should only be transmitted using High Speed Mode. To reduce complexity and cost, systems that only operate in Video Mode may use a unidirectional data path.

#### 4.5.1 MIPI Lane Configuration

|                | MCU (Master) Display Module (Slave) |  |  |  |  |
|----------------|-------------------------------------|--|--|--|--|
|                | Unidirectional Lane                 |  |  |  |  |
| Clock Lane+/-  | ■ Clock Only                        |  |  |  |  |
|                | ■ Escape Mode(ULPS Only)            |  |  |  |  |
|                | Bi-directional Lane                 |  |  |  |  |
| Data Lane0+/-  | ■ Forward High-Speed                |  |  |  |  |
| Data Laneu+/-  | ■ Bi-directional Escape Mode        |  |  |  |  |
|                | ■ Bi-directional LPDT               |  |  |  |  |
| Data Lane1+/-  | Unidirectional                      |  |  |  |  |
| Data Lane 1+/- | ■ Forward High speed                |  |  |  |  |
| Data Lane2+/-  | Unidirectional                      |  |  |  |  |
| Dala Lanez+/-  | ■ Forward High speed                |  |  |  |  |
| Data Lane3+/-  | Unidirectional                      |  |  |  |  |
| Dala Lanes+/-  | ■ Forward High speed                |  |  |  |  |

The connection between host device and display module is as reference.

#### 4.6 POWER ON/OFF SEQUENCE

The power sequence specifications are shown as the following table and diagram.

#### a. Power on:



#### b. Power off:





#### 5. OPTICAL CHARACTERISTICS

#### **5.1 TEST CONDITIONS**

| Item                        | Symbol                                                        | Value | Unit |  |  |  |
|-----------------------------|---------------------------------------------------------------|-------|------|--|--|--|
| Ambient Temperature         | Ta                                                            | 25±2  | °C   |  |  |  |
| Ambient Humidity            | Ha                                                            | 50±10 | %RH  |  |  |  |
| Supply Voltage              | V <sub>CC</sub>                                               | 3.3   | V    |  |  |  |
| Input Signal                | According to typical value in "3. ELECTRICAL CHARACTERISTICS" |       |      |  |  |  |
| LED Light Bar Input Current | Ι <sub>L</sub>                                                | 114   | mA   |  |  |  |

The measurement methods of optical characteristics are shown in Section 5.2. The following items should be measured under the test conditions described in Section 5.1 and stable environment shown in Note (5).

#### **5.2 OPTICAL SPECIFICATIONS**

| Ite                         | m            | Symbol           | Condition                              | Min.          | Тур.  | Max.       | Unit              | Note             |
|-----------------------------|--------------|------------------|----------------------------------------|---------------|-------|------------|-------------------|------------------|
| Contrast Ratio              |              | CR               |                                        | 700           | 1000  | -          | -                 | (2),<br>(5) ,(7) |
| Response Time               |              | $T_R$            |                                        | -             | 14    | 17         | ms                |                  |
| nesponse rime               | <del>;</del> | T <sub>F</sub>   |                                        | -             | 11    | 14         | ms                | (3) ,(7)         |
| CP Luminance of White       |              | L <sub>CP</sub>  |                                        | 250           | 300   | -          | cd/m <sup>2</sup> | (4),<br>(6) ,(7) |
|                             | Red          | Rx               | $\theta_x=0^\circ,  \theta_Y=0^\circ$  |               | TBD   |            | -                 | (1),(7)          |
|                             | neu          | Ry               | Viewing Normal Angle                   |               | TBD   | Typ + 0.03 | -                 |                  |
|                             | Green        | Gx               |                                        | Typ –<br>0.03 | TBD   |            | -                 |                  |
| Color                       |              | Gy               |                                        |               | TBD   |            | -                 |                  |
| Chromaticity                | Blue         | Bx               |                                        |               | TBD   |            | -                 |                  |
|                             |              | Ву               |                                        |               | TBD   |            | -                 |                  |
|                             | White        | Wx               |                                        |               | 0.31  |            | -                 |                  |
|                             |              | Wy               |                                        |               | 0.347 |            | -                 |                  |
|                             | Horizontal   | $\theta_{x}$ +   |                                        | 85            | 89    |            |                   |                  |
| Viewing Angle               | Horizontal   | $\theta_{x}$ -   | CR≥10                                  | 85            | 89    | -          | Dog               | (1),(5),         |
| viewing Angle               | \/owtical    | $\theta_{Y}$ +   |                                        | 85            | 89    | Deg.       | (7)               |                  |
|                             | Vertical     | θ <sub>Y</sub> - |                                        | 85            | 89    | -          |                   |                  |
| White Variation of 9 Points |              | δW <sub>9p</sub> | $\theta_x=0^\circ, \ \theta_Y=0^\circ$ | 70            | -     | -          | %                 | (5),(6) ,<br>(7) |



Note (1) Definition of Viewing Angle ( $\theta x$ ,  $\theta y$ ).



Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L63 / L0

L63: Luminance of gray level 63

L 0: Luminance of gray level 0

CR = CR(1)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

#### Note (3) Definition of Response Time (T<sub>R</sub>, T<sub>F</sub>):



Note (4) Definition of Center Point Luminance of White ( $L_{CP}$ ):



Measure the luminance of gray level 63 at center point

 $L_{CP} = L(5)$ 

L(x) is corresponding to the luminance of the point X at Figure in Note (6)



#### Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.



#### Note (6) Definition of White Variation ( $\delta W$ ):

Measure the luminance of gray level 63 at 9 points

 $\delta W_{9p} = \left\{ \text{Minimum [L (1)} \sim \text{L (9)]} \, / \, \text{Maximum [L (1)} \sim \text{L (9)]} \right\}^* 100\%$ 



Note (7) The listed optical specifications refer to the initial value of manufacture, but the condition of the specifications after long-term operation will not be warranted.

Version 1.0 7 January 2013 18 / 24



#### 6. RELIABILITY TEST ITEM

| Test Item                                       | Test Condition                                                                                          | Note    |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------|
| High Temperature Storage Test                   | 70°C, 240 hours                                                                                         |         |
| Low Temperature Storage Test                    | -20°C, 240 hours                                                                                        |         |
| Thermal Shock Storage Test                      | -20°C, 0.5hour ←→70°C, 0.5hour; 100cycles, 1hour/cycle                                                  |         |
| High Temperature Operation Test                 | 60ºC, 240 hours                                                                                         | (1) (2) |
| Low Temperature Operation Test                  | -10ºC, 240 hours                                                                                        |         |
| High Temperature & High Humidity Operation Test | 60ºC, RH 90%, 240hours                                                                                  |         |
| ESD Test (Operation)                            | 150pF, 330 Ω, 1sec/cycle<br>Condition 1 : Contact Discharge, ±8KV<br>Condition 2 : Air Discharge, ±15KV | (1)     |
| Shock (Non-Operating)                           | 220G, 2ms, half sine wave,1 time for each direction of ±X,±Y,±Z                                         | (1)(3)  |
| Vibration (Non-Operating)                       | 1.5G / 10-500 Hz, Sine wave, 30 min/cycle, 1cycle for each X, Y, Z                                      | (1)(3)  |

- Note (1) criteria: Normal display image with no obvious non-uniformity and no line defect.
- Note (2) Evaluation should be tested after storage at room temperature for more than two hour
- Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

#### 7. PACKING

#### 7.1 MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.



- (a) Model Name: N070ICE GB1
- (b) Revision: Rev. XX, for example: C1, C2 ...etc.



Serial ID includes the information as below:

(a) Manufactured Date: Year: 0~9, for 2010~2019

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I, O and U

- (b) Revision Code: cover all the change
- (c) Serial No.: Manufacturing sequence of product
- (d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.



#### 7.2 CARTON

(1)Box Dimensions : 435(L)\*350(W)\*275(H) (2)60 Modules/Carton



Figure. 7-2 Packing



#### 7.3 PALLET



Figure. 7-3 Packing



#### 8. PRECAUTIONS

#### 8.1 HANDLING PRECAUTIONS

- (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module.
- (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the module.
- (10) Do not pull or fold the LED wire.
- (11) Pins of I/F connector should not be touched directly with bare hands.

#### **8.2 STORAGE PRECAUTIONS**

- (1) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (2) It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (3) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of LED will be higher than the room temperature.

#### **8.3 OPERATION PRECAUTIONS**

- (1) Do not pull the I/F connector in or out while the module is operating.
- (2) Always follow the correct power on/off sequence when LCD module is connecting and operating. This can prevent the CMOS LSI chips from damage during latch-up.
- (3) The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with converter. Do not disassemble the module or insert anything into the Backlight unit.



## Appendix. EDID DATA STRUCTURE N/A

#### **Appendix. OUTLINE DRAWING**

