H.Ü. MA'	MAT 123-01-10-14 Midterm Exam 02.12.2019	
Surname : Name :	ID : Instructor :	Signature
5 questions, 2 pages	Duration : 90 min	100 points

Q1. [20 pts] Show that the funtion $f(x) = \begin{cases} x \cos\left(\frac{1}{x^3}\right), & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$ is continuous but not differentiable at x = 0.

Since $-1 \le \cos(\frac{1}{x^3}) \le 1$, $-x \le x\cos(\frac{1}{x^3}) \le x$ if x > 0 and $x \le x\cos(\frac{1}{x^3}) \le -x$ if x < 0. Since $\lim_{x \to 0} x = \lim_{x \to 0} -x = 0$, by the Sandwich Theorem, we have $\lim_{x\to 0} x\cos(\frac{1}{x^3}) = 0 = f(0)$; thus f is continuous at x=0. $f(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x \cos(1/x^2)}{x} = \lim_{x \to 0} \cos(1/x^2) \text{ does not}$ $= x \text{ ist because } \cos(1/x^3) = 1 \text{ for } x = \sqrt{1/2k\pi} \text{ ($k = 1, 2, ...)} \text{ and}$ $\cos(1/\chi_3) = -1$ for $x = \sqrt[3]{1/(2k+1)\pi}$ (k=1,2,...), i.e., $\cos(1/\chi_3)$ takes on the values 1 and -1 infinitely many times as x approaches 0. Q2. [15 pts] Find the tangent line to the curve $\ln(x^2 + y^2) = \arcsin(\sqrt{x^3})$ at the point (0,1).

Differentiating both sides with respect to x gives

$$\frac{2x + 2y \frac{dy}{dx}}{x^2 + y^2} = \frac{3}{2} x^{1/2} \frac{1}{\sqrt{1 - x^3}}$$
 Substitution gives

 $2.0 + 2.1. \frac{dy}{dx}|_{(0,1)} = \frac{3}{2}.0^{1/2}\frac{1}{\sqrt{1-0^3}}$, and so $\frac{dy}{dx}|_{(0,1)} = 0$.

Thus the tangent line is the line y=1.

Q3. [20 pts] All dimensions of a right circular cylinder are changing. When the voulme is 150 cm3, it is increasing at the rate of 5cm³/min and at the same moment, the radius is 5cm and is increasing at the rate of 3cm/min. At what rate the height of the cylinder is changing at the moment when the volume of the cyclinder is 150 cm³? Is it increasing or decreasing?

cylinder is changing at the moment when the volume of the cyclinder is 150 cm? Is it increasing?

$$\frac{dV}{dt}\Big|_{V=150} = 5 \text{ cm}^3/\text{min} \qquad \frac{dh}{dt}\Big|_{V=150} = ?$$

$$\frac{dr}{dt}\Big|_{V=150} = 3 \text{ cm}/\text{min}$$
When $V=150$, $r=5$ and so $h=\frac{V}{\pi r^2}=\frac{150}{\pi \cdot 25}=\frac{6}{\pi}$ cm.

Differentiating, we get $\frac{dV}{dt}=\pi\left(\frac{2rh}{dt}+\frac{r^2}{dt}\right)$. Then
$$5 = \pi\left(\frac{180}{\pi} + 25 \frac{dh}{dt}\Big|_{V=150}\right) \Rightarrow -175 = 25\pi \frac{dh}{dt}\Big|_{V=150} \Rightarrow \frac{dh}{dt}\Big|_{V=150} \Rightarrow \frac{dh}{dt}\Big|_{V=150} = \frac{-7}{\pi} \text{ cm/min}$$
. So the height is

decreasing!

Q4. [25 pts] Let $f(x) = \frac{4-x^3}{x^2}$. (a) Find the domain of f. [2pts] (b) Determine the horizontal, vertical and oblique asymptotes of f. [5 pts] (c) Find the critical points of f and determine the intervals on which f is increasing and decreasing. Find the local minimum and maximum values. [8 pts] (d) Determine the intervals on which f is concave upward and concave downward, and find the inflection points of f. [5 pts] (e) Sketch the graph of f.

(a)
$$D(f) = |R - 10|$$
 (2pts)
(b) $\lim_{x \to \pm \infty} \frac{4-x^3}{x^2} = \pm \infty$ (2pts)
no horizontal asymptotes.
 $\lim_{x \to \infty} \frac{4-x^3}{x^2} = \infty$ (1pt)

x=0 is the only vertical . asymptote.

$$\lim_{x \to \pm \infty} f(x) + x = \lim_{x \to \pm \infty} \frac{4}{x^2} = 0$$

y = -x is an oblique asymptote. (c) $f(x) = \frac{-3 \times 4 \cdot 2 \times (4 - x^3)}{\times 4} = \frac{-3 \times 4 \cdot 8 \times + 2 \times 4}{\times 4}$ $= -\frac{x^3 + 8}{\times^3} (3 \text{ pts})$

$$f'$$
 $f(-2)=3$ is a local min. value.

 $y=4x$
 $f(-2)=3$ is a local min. value.

 f'
 $f(-2)=3$ is a local min. value.

Since
$$f'(x) > 0$$
 for all x in the domain of $f \cdot f$ is always

domain of f. f is always concave upward and there are no inflection points (2pts)

(e)
$$\frac{1}{-2}$$

$$\frac{1}{3\sqrt{4}}$$

$$\frac{1}{9} = f(x)$$
(5pts)

Q5. (a) [10 pts] Evaluate the limit
$$\lim_{x \to \infty} \left(\frac{x}{x-1}\right)^{2x}$$
.

$$\lim_{x \to \infty} \ln \left(\frac{x}{x-1}\right)^{2x} = \lim_{x \to \infty} \frac{2x \ln \left(\frac{x}{x-1}\right)}{\frac{1}{x}} = \lim_{x \to \infty} \frac{2\ln \left(\frac{x}{x-1}\right)}{\frac{1}{x}} = \lim_{x \to \infty} \frac{2 \cdot \left(\frac{x-1-x}{x-1}\right)}{\frac{1}{x}} = \lim_{x \to \infty} \frac{2 \cdot \left(\frac{x-1-x}{x-1}\right)}{\frac{1}{x^2}} = \lim_{x \to \infty} \frac{2 \cdot \frac{1}{(x-1)^2}}{\frac{1}{x^2}} = \lim_{x \to \infty} \frac{2 \cdot \frac{1}{(x-1)^2}}{\frac{1}{x^2}} = \lim_{x \to \infty} \frac{2 \cdot \frac{1}{(x-1)^2}}{\frac{1}{x^2}} = \lim_{x \to \infty} \frac{2 \cdot \frac{1}{x^2}}{\frac{1}{x^2}} = \lim_{x \to \infty} \frac{2 \cdot \frac{1}{x^2}}{\frac{1}{$$

(b) [10 pts] If a > 0 show that the equation $x^3 + ax - 1 = 0$ has EXACTLY ONE real solution. Let $f(x) = x^3 + ax - 1$. Since f(0) = -1 < 0 and f(1) = a > 0, there exists a solution of f(x) = 0 between 0 and 1 by the IVT. If there are two different real solutions c_1 and c_2 of the equation f(x) = 0, then by Rolle's Theorem, there exists a real number c between c_1 and c_2 such that f'(c) = 0. But $f'(c) = 3c^2 + a$ is a positive number and cannot be tero, which is a contradiction. It, follows that the equation f(x) = 0 has exactly one real solution.