2.1 Book summary 2.1 - 2.4 • Rules of logic validate arguments
Rules of logic validate arguments
If he then of establishing this we validate arguments the same format
· Preposition - (statement or asertion) is a sentence that
is either true or false but not both.
owe can sur not statements into statements by adding conditions
o cannot decide truth of the verify it.
A proposition can only have the possibility of being true or false, even if we don't know now to prove it if we know it is true or false, it is a proposition.
· Pigir used or prepositional variables, (truth tables vary)
o negation of p for example, por por p
$p = True \bar{p} = False$
Notations to facilitate discussion N = Natural numpers (positive intigers) Sets
$Z = intigers$ $b \in B$ a,b,c,s,t
R= Real numbers b belongs to B elements of sets
Q = Rational numbers B b b B contains b

· Superscript notation

Notation as multiples

KS = means in a set S obtained by multiplying K to every number in S.

2.2

ounary operators =
$$-(x)$$

o compound statements = joined statements using operands

o Conjunctions and
conjunction
AND
OR

HOV

True if Fake ist
poth are poth fake
true offer
wise

* Don't use logical operators in moth

short circuit evaluation = only asses the first to know the result and skip the second operator

2.3 Implications

o condition statements are also called implications

"P => implies q" o if P is True and q fak it is false

otherwise it is true

oup" is considered a hypothesis, premise, antecedent and

"q" is the conclusion or onsequence

the consequence must be true as well, this is when is met conditional statement.

otakes the form "if P _____, then _____."

condition that prevents p from happening.

converse $q \Rightarrow P$ Inverse $p \Rightarrow \overline{q}$

contrapositive q=p

\	0	P=> q	a=1P
17	α	1999	T
T	+	7	1-70
tr	F	F	
F	T	T	1-1-
=	F	T	
<u> </u>		+	

given " X > Z	= x ⁷ > 4"
t-lonverse	$\Rightarrow x^{2} \rightarrow 4''$ $\begin{bmatrix} x^{2} \rightarrow 4 \Rightarrow x \rightarrow 2 \end{bmatrix}$
Honverst	$\left[x \leq z \Rightarrow x^2 \leq 4 \right]$

La Contra positivé x2 4 => x ≤ Z

FF	TI	
- 1	E	
FI	T	
TT	T	

of an implication

$$(P\Rightarrow q)\neq (q\Rightarrow P)$$

l' is a sufficient condition for 9.

9 is a necessarry condition for p.

· for g to be true, it's enough to say that P is towe

· for p to be true it's necessary for q to be true as well.

OPF ? = what implies, pg. 22

2.4

Bilantiforal Statements, "p if and only if q"

$$T T = T$$
 $T F = F$
 $F F = T$

TT = T palse a compound statement

TF = F poth are true or false simultaneously

FT = F $(P=>q) \land (q=>p)$ The "exclusive or"

· Order of operations

na+	Highest
and	1
l or	1:
implies	1 . 1
Bi conditional	Lowest