

Yr 12 METHODS TEST 1 2018

DIFFERENTIATION, APPLICATIONS AND EXPONENTIALS

Time: 30 minutes

Total: 28 marks

Student Name: Solutions.

Teacher:

Instructions: Show all working clearly.

Sufficient detail must be shown for marks to be awarded for reasoning.
NO CALCULATOR AND NO PERSONAL NOTES ALLOWED

Question 1. (9 marks)

Determine the tangent of the graph of $y = 2(3x^2 + 2)^3$ at the point (1,250) a) [4]

$$y' = 6(3x^2 + 2)^2(6x)$$

Determine the coordinates of any stationary points on the function $y = \frac{x+7}{x-2} + x$ b) [5]

$$y' = (x-2)(1) - (x+2)(1)$$

$$= (x-2)^{2}$$

$$0 = -9$$
 ... $(5, 9)$

$$-(x-2)^{2} = -9$$

$$(x-2)^{2} = 9$$

$$x-2 = 23$$

$$x = 5 \text{ if } -1$$

Question 2. (6 marks)

Given that $\log_9 5 = a$ and $\log_9 6 = b$, write the following in terms of a and b.

a) $\log_9 25$

[1]

- b) log₉ 180
- [2]

2a.

26 + a.

c) log₉ 18

[3]

$$\log_{9}(6\times3) = \log_{9}6 + \log_{9}3$$

Question 3. (4 marks)

A sphere is has an initial volume of $\frac{32\pi}{3}$ cm³.

Use the incremental formula to determine the change in radius if the volume of the sphere is increased by 3cm³.

$$\Delta V = \mu \pi r^{2}$$

$$\Delta V = \mu \pi r^{2} \times \Delta r$$

$$3 = 4\pi (2)^{2} \times \Delta R$$

$$3 = 4\pi (2)^{2} \times \Delta R$$

$$\frac{32\pi}{3} = \frac{4}{3}\pi r^{3}$$

$$8\pi = \pi r^{3}$$

Question 4. (8 marks)

Consider the graph below of $f(x) = -x^2 + 30$ $0 \le x \le \sqrt{30}$

Rectangles can be created by drawing a vertical line up from any x value until that line hits the curve and then horizontally until it hits the y axis.

Draw in two such rectangles. One using an x value of 1 and the other using an x value a) of 4. [1]

[2]

Calculate the area of each of these two rectangles. b)

$$1 \times 29 = 29 u^2$$

$$1 \times 29 = 29 u^2$$

 $4 \times 14 = 56 u^2$

Question 4 (continued)

c) Use calculus to show determine the exact x value would give the rectangle with the greatest area. [4]

$$A = x(-x^{2} + 30)$$

$$= -x^{3} + 30x$$

$$A' = -3x^{2} + 30$$

$$Bx^{2} = 30$$

$$x^{2} = \pm \sqrt{10}$$

$$x = -10$$

d) State the exact maximum area of this rectangle.

$$A = -(\sqrt{10})^3 + 30\sqrt{10}$$

$$= -10\sqrt{10} + 30\sqrt{10}$$

$$= 20\sqrt{10} \text{ units}^2$$

[1]

Yr 12 METHODS TEST 1 2018

DIFFERENTIATION, APPLICATIONS AND EXPONENTIALS

Time: 25 minutes

Total: 25 marks

Student Name: Solutions

Teacher:

Instructions: Show all working clearly.

Sufficient detail must be shown for marks to be awarded for reasoning. CALCULATOR AND 1 PAGE OF PERSONAL NOTES ALLOWED

Question 4. (9 marks)

A small body is moving in a straight line with velocity $v(t) = 2t^2 - 19t + 30$ m/s, where t is the time in seconds, since the body first passed through the origin.

a) Determine an expression for x(t), the displacement of the body at time t. [2]

$$\chi(\xi) = \frac{2\xi^3}{3} - \frac{19\xi^2}{2} + 30\xi$$

b) Show that the body is stationary twice and find the change in displacement of the body between these two moments.

$$0 = 2t^{2} - 19t + 30$$

$$0 = (2t - 15)(t - 2)$$

$$t = 1.5 \text{ i. change } \frac{1331}{24} \text{ m.}$$

$$55.46 \text{ m.}$$

[4]

[3]

c) Determine the position of the body when it's velocity is a minimum.

Question 5. (8 marks)

A cylindrical oil drum, or radius r m and height h m, has circular ends constructed from material costing \$75 per square metre and sides constructed from material costing \$40 per square metre.

a) Determine an expression for the cost of construction C, in dollars.

 $\lceil 1 \rceil$

b) If the oil drum must be constructed for \$250, show that the volume of the oil drum is given by, $V = \frac{25r - 15\pi r^3}{8}$ [3]

given by,
$$V = \frac{1}{8}$$
 $V = \pi r^2 h$.

 $V = \pi r^2 h$.

c) Use calculus methods to determine the dimensions that maximise the volume of the oil drum, and state this maximum volume. [4]

$$V' = \frac{25}{8} - \frac{45}{8}\pi r^{2}$$

$$0 = \frac{25}{8} - \frac{45}{8}\pi r^{2}$$

$$0 = \frac{25}{8} - \frac{45}{8}\pi r^{2}$$

$$V' = \frac{25}{8} - \frac{45}{8}\pi r^{2}$$

$$V = \frac{25}{8} - \frac{45}{8}\pi r^{2}$$

Question 6. (8 marks)

A polynomial function $f(x) = ax^4 + bx^2 + c$, where a, b and c are real constants, has the following features:

- f(x) = 0 only for x = -2 and x = 2
- f'(x) = 0 only for x = -1, x = 0 and x = 1
- f'(x) > 0 only for -1 < x < 0 and x > 1
- f''(0) < 0
- a) At the point where the curve intersects the y axis, is the graph concave up or concave down? Explain your answer. [2]

b) Is c positive or negative? Explain your answer.

produent negative at x=-2. (xind : below) x axis doesn't get to x axis again until x=2.

[2]

[4]

c) Sketch a possible graph of the function on the axes below.