

ALERT Software Meeting

AHDC reconstruction wfType study

Felix Touchte Codjo

felix.touchte-codjo@ijclab.in2p3.fr

Outline

- wfType study
 - Purpose
 - New classification
 - Obvious cuts
 - Practical cuts
 - Results
- Conclusion

wfType study

Purpose

- In the current state of the AHDC reconstruction (coatjava 13.3.0), we select "good" waveforms using : wfType <= 1
- Looking at the last cooked data, we notice a drop of the number of reconstructed track.
- Example: Looking at some runs cooked with a previous version of coatjava (13.0.1) and after selecting elastics protons and re-running the wfType algorithm, we notice that we loosed low ADC waveforms.

*The missing waveforms were found to be of type 3 or 5 while we could clearly define a time.

wfType study

New classification

- wfType 6 ⇒ too small (nsamples <= 10)</p>
- wfType 5 ⇒ decreasing baseline (or leadingEdgeTime fails)
- ♠ wfType 4 \Rightarrow bad ToT (300 < ToT < 750)
- wfType 3 ⇒ pileUp
- ◆ wfType 2 ⇒ bad trailingEdgeTime
- wfType 1 ⇒ saturing
- wfType $0 \Rightarrow OK$

These cuts have been justified.

Obvious cuts – Study run 23003 on D2

New classification : raw vs elastics {proton, deuteron}

bleu – rawrouge - protonvert - deuteron

⇒ Evident cuts: nsamples > 10 && 300 < ToT < 750

Practical cuts – Study run 23003 on D2

Other cuts at the reconstruction level

bleu – raw rouge - proton vert - deuteron

⇒ New cuts: 0 =< time <= 300 && 120 <= ped <= 350

wfType study

Results - run 23003.0000[0-5]

Efficiency comparison over coatjava version

	ALL	rawCuts 13.0.1	wfTye <= 1 coat 13.3.0	wfTye <= 2	wfTye <= 2 & cuts coat dev	wfType <= 2 & cuts (strong) coat dev
		time >= 200 time <= 500			time >= 0 time <= 340 *t0 substractred	time >= 0 time <= 340
		tot >= 350 tot <= 650			tot >= 300 tot <= 750	tot >= 340 tot <= 620
		ped >= 180 ped <= 360			ped >= 120 ped <= 350	ped >= 120 ped <= 350
					samples > 10	samples > 14
Occupancy on the 1st layer	40 %	6 %	4 %	15 %	8 %	5.5 %
elastics protons deuterons	-	9472 2485 3662	5725 921 3020	-	17882 4394 6757	12650 2343 5502

*The efficiency drops compared to the previous version (13.0.1)

*globally \Rightarrow 60 % (#13.3.0 / #13.0.1)

*protons ⇒ 37 %

*deuterons ⇒ 82 %

*protons ⇒ 37 % is the effect of the low ADC cut

*From this study, it appears that the best solution is, with the new classification: wfType <= 2 and some additional cuts

*Improvement

*globally \Rightarrow 188 % (#dev / #13.0.1)

*protons ⇒ 176 %

*deuterons ⇒ 184 %

Conclusion and Perspectives

Conclusion

- wfType is a good approach
- ♣ In its first implementation, some hard cuts were not enough justified and resulted in a drop of the detection efficiency
- The new study shows an increase of the detection efficiency

Perspectives

- ◆ Detect the wfType 3 PileUp
- They are sometimes classified as type 2 (bad trailingEdgeTime) or type 5 (decreasing signals)

Backup slides

coat-dev

Backup slides

Run 23003.0000[0-5]

 $3.4 < W^2 < 3.9$ $|\Delta \phi$ - peak| < 45

"peak":

-210 and 150

Backup slides

Old classification

```
wfType = 6 \Rightarrow invalid WF (i.e numbe of samples < 5: we cannot define a baseline) wfType = 5 \Rightarrow adcMax < 200 (flateness) ?? wfType = 4 \Rightarrow binMax < 5 or the signal cannot cross the threshold before the peak or cannot define a leadingEdgeTime or s4 - s0 < -200?? wfType = 3 \Rightarrow the signal cannot cross the threshold after the peak or cannot define a trailingEdgeTime wfType = 2 \Rightarrow s4 - s0 > 200?? wfType = 1 \Rightarrow if more than 3 points are above (ADC_LIMIT - baseline); a bad baseline could false the classification wfType = 0 \Rightarrow None of the above classification
```

bug:

https://github.com/ftouchte/coatjava/blob/8786f75ba3cf9e23eff1dceaa0c631271c6c6fc2/common-tools/clas-detector/src/main/java/org/jlab/detector/pulse/ModeAHDC.java#L141 \Rightarrow type 6