

CSE211 - Formal Languages and Automata Theory

U2L8_Problems in Equivalence of PDA and CFL

Dr. P. Saravanan
School of Computing
SASTRA Deemed University

- Equivalences to be proved:
 - 1) CFL's defined by CFG's
 - 2) Languages accepted by final state by some PDA
 - 3) Languages accepted by empty stack by some PDA

Equivalence of 2) and 3) above have been proved.

- From Grammars to PDA's
 - Given a CFG G = (V, T, Q, S), construct a PDA P that accepts L(G) by empty stack in the following way:
 - − $P = (\{q\}, T, V \cup T, \delta, q, S)$ where the transition function δ is defined by:
 - for each nonterminal A,
 - $\square \delta(q, \varepsilon, A) = \{(q, \beta) \mid A \rightarrow \beta \text{ is a production of } G\};$
 - for each terminal a,
 - $\square \delta(q, a, a) = \{(q, \varepsilon)\}.$

- From Grammars to PDA's
 - Theorem 6.13

If PDA P is constructed from CFG G by the construction above, then N(P) = L(G).

- From Grammars to PDA's
 - Example 6.12 Construct a PDA from the expression grammar

$$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1;$$

 $E \rightarrow I \mid E^*E \mid E+E \mid (E).$

The transition function for the PDA is as follows:

a)
$$\delta(q, \varepsilon, I) = \{(q, a), (q, b), (q, Ia), (q, Ib), (q, I0), (q, I1)\}$$

b)
$$\delta(q, \varepsilon, E) = \{(q, 1), (q, E+E), (q, E*E), (q, (E))\}$$

c)
$$\delta(q, d, d) = \{(q, \varepsilon)\}$$
 where d may any of the terminals $a, b, 0, 1, (,), +, *$.

- From PDA's to Grammars
 - Theorem 6.14

Let $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$ be a PDA. Then there is a context-free grammar G such that L(G) = N(P).

Proof. Construct G = (V, T, P, S) where the set of nonterminals consists of:

- the special symbol S as the start symbol;
- ullet all symbols of the form [pXq] where p and q are states in Q and X is a stack symbol in Γ .

The productions of *G* are as follows.

- (a) For all states p, G has the production $S \rightarrow [q_0 Z_0 p]$.
- (b) Let $\delta(q, a, X)$ contain the pair $(r, Y_1Y_2 ... Y_k)$, where
 - -a is either a symbol in Σ or $a = \varepsilon$;
 - k can be any number, including 0, in which case the pair is (r, ε) .

Then for all lists of states $r_1, r_2, ..., r_k$, G has the production

$$[qXr_k] \rightarrow a[rY_1r_1][r_1Y_2r_2]...[r_{k-1}Y_kr_k].$$

i, Z/ZZ

Start

■ From PDA's to Grammars: Example --- Convert the following PDA to a grammar.

Nonterminals include only two symbols, S and [qZq].

Productions:

1.
$$S \rightarrow [qZq]$$
 (for the start symbol S);

2.
$$[qZq] \rightarrow i[qZq][qZq]$$
 (from $\delta_N(q, i, Z) \vdash (q, ZZ)$)

3.
$$[qZq] \rightarrow e$$
 (from $\delta_N(q, e, Z) \vdash (q, \varepsilon)$)

Example: Grammar to PDA

Convert the grammar to PDA

$$S \rightarrow 0S1 \mid A$$

 $A \rightarrow 1A0 \mid S \mid \epsilon$

- for each nonterminal A,
 - $\square \delta(q, \varepsilon, A) = \{(q, \beta) \mid A \rightarrow \beta \text{ is a production of } G\};$
- for each terminal a,
 - $\square \delta(q, a, a) = \{(q, \varepsilon)\}.$
- We add the following transitions for our variables.

•
$$\delta(q, \epsilon, S) = \{(q, 0S1), (q, A)\}$$

•
$$\delta(q, \epsilon A) = \{(q, 1A0), (q, S)\}$$

$$,(q,\varepsilon)\}$$

we add a transition for each terminal.

•
$$\delta(q, 0, 0) = \{(q, \epsilon)\}$$

•
$$\delta(q, 1, 1) = \{q, \epsilon\}$$

Example: Grammar to PDA

- Convert the grammar to PDA
 - $-S \rightarrow aAA$
 - $-A \rightarrow aS|bS|a$

- for each nonterminal A,
 - $\square \delta(q, \varepsilon, A) = \{(q, \beta) \mid A \rightarrow \beta \text{ is a production of } G\};$
- for each terminal a,
 - $\square \delta(q, a, a) = \{(q, \varepsilon)\}.$

```
The PDA P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F) is defined as Q=\{\mathbf{q}\} \Sigma=\{a,b\} \Gamma=\{a,b,S,A\} q_0=q Z_0=S F=\{\} And the transition function is defined as: \delta(q,\epsilon,S)=\{(q,aAA)\} \delta(q,\epsilon,I)=\{(q,aS),(q,bS),(q,a)\} \delta(q,a,a)=\{(q,\epsilon)\} \delta(q,b,b)=\{(q,\epsilon)\}
```


• Convert the PDA $P = (\{p,q\}, \{0,1\}, \{X,Z_0\}, \delta, q, Z_0)$ to a CFG

1.
$$\delta(q, 1, Z_0) = \{(q, X Z_0)\}.$$

5.
$$\delta(p, 1, X) = \{(p, \epsilon)\}.$$

6.
$$\delta(p, 0, Z_0) = \{(q, Z_0)\}.$$

The productions of G are as follows.

- (a) For all states p, G has the production $S \rightarrow [q_0 Z_0 p]$.
- (b) Let $\delta(q, a, X)$ contain the pair $(r, Y_1Y_2 \dots Y_k)$, where
 - -a is either a symbol in Σ or $a = \varepsilon$;
 - -k can be any number, including 0, in which case the pair is (r, ε) .

Then for all lists of states r_1 , r_2 , ..., $\underline{r_k}$, G has the production $[qXr_k] \rightarrow a[rY_1r_1][r_1Y_2r_2]...[r_{k-1}Y_kr_k].$

For start Symbol

1.
$$S \to [qZ_0q] \mid [qZ_0p]$$

■ Convert the PDA $P = (\{p,q\}, \{0,1\}, \{X,Z_0\}, \delta, q, Z_0)$ to a CFG

1.
$$\delta(q, 1, Z_0) = \{(q, XZ_0)\}.$$

5.
$$\delta(p, 1, X) = \{(p, \epsilon)\}.$$

6.
$$\delta(p, 0, Z_0) = \{(q, Z_0)\}.$$

The productions of G are as follows.

- (a) For all states p, G has the production $S \rightarrow [q_0 Z_0 p]$.
- (b) Let $\delta(q, a, X)$ contain the pair $(r, Y_1Y_2 \dots Y_k)$, where
 - -a is either a symbol in Σ or $a = \varepsilon$;
 - -k can be any number, including 0, in which case the pair is (r, ε) .

Then for all lists of states $r_1, r_2, ..., \underline{r_k}, G$ has the production $[qXr_k] \rightarrow a[rY_1r_1][r_1Y_2r_2]...[r_{k-1}Y_kr_k].$

From Rule (1)

2.
$$[qZ_0q] -> 1[qXq][qZ_0q]$$

3.
$$[qZ_0q] -> 1[qXp][pZ_0q]$$

4.
$$[qZ_0p] -> 1[qXq][qZ_0p]$$

5.
$$[qZ_0p] -> 1[qXp][pZ_0p]$$

• Convert the PDA $P = (\{p,q\}, \{0,1\}, \{X,Z_0\}, \delta, q, Z_0)$ to a CFG

1.
$$\delta(q, 1, Z_0) = \{(q, X Z_0)\}.$$

5.
$$\delta(p, 1, X) = \{(p, \epsilon)\}.$$

The productions of G are as follows.

- (a) For all states p, G has the production $S \rightarrow [q_0 Z_0 p]$.
- (b) Let $\delta(q, a, X)$ contain the pair $(r, Y_1Y_2 \dots Y_k)$, where
 - -a is either a symbol in Σ or $a = \varepsilon$;
 - -k can be any number, including 0, in which case the pair is (r, ε) .

Then for all lists of states $r_1, r_2, ..., \underline{r_k}, G$ has the production $[qXr_k] \rightarrow a[rY_1r_1][r_1Y_2r_2]...[r_{k-1}Y_kr_k].$

From Rule (2)

6.
$$[qXq] -> 1[qXq][qXq]$$

7.
$$\lceil qXq \rceil -> 1 \lceil qXp \rceil \lceil pXq \rceil$$

8.
$$[qXp] -> 1[qXq][qXp]$$

9.
$$[qXp] -> 1[qXp][pXp]$$

Convert the PDA $P = (\{p, q\}, \{0, 1\}, \{X, Z_0\}, \delta, q, Z_0)$ to a CFG

1.
$$\delta(q, 1, Z_0) = \{(q, X Z_0)\}$$

2.
$$\delta(q, 1, X) = \{(q, XX)\}$$

5.
$$\delta(p, 1, X) = \{(p, \epsilon)\}.$$

6.
$$\delta(p, 0, Z_0) = \{(q, Z_0)\}$$

The productions of G are as follows.

- (a) For all states p, G has the production $S \rightarrow [q_0 Z_0 p]$.
- (b) Let $\delta(q, a, X)$ contain the pair $(r, Y_1Y_2 \dots Y_k)$, where
 - -a is either a symbol in Σ or $a = \varepsilon$;
 - -k can be any number, including 0, in which case the pair is (r, ε) .

Then for all lists of states r_1 , r_2 , ..., \underline{r}_k , G has the production $[qXr_k] \rightarrow a[rY_1r_1][r_1Y_2r_2]...[r_{k-1}Y_kr_k].$

From Rule (3)

6.
$$\delta(p,0,Z_0) = \{(q,Z_0)\}.$$
 10. $[qXq] \rightarrow 0[pXq]$

11.
$$[qXp] -> 0[pXp]$$

From Rule (4)

12.
$$[qXq] \rightarrow \mathcal{E}$$

■ Convert the PDA $P = (\{p,q\}, \{0,1\}, \{X,Z_0\}, \delta, q, Z_0)$ to a CFG

1.
$$\delta(q, 1, Z_0) = \{(q, X Z_0)\}.$$

5.
$$\delta(p, 1, X) = \{(p, \epsilon)\}.$$

6.
$$\delta(p, 0, Z_0) = \{(q, Z_0)\}.$$

The productions of G are as follows.

- (a) For all states p, G has the production $S \rightarrow [q_0 Z_0 p]$.
- (b) Let $\delta(q, a, X)$ contain the pair $(r, Y_1Y_2 \dots Y_k)$, where
 - -a is either a symbol in Σ or $a = \varepsilon$;
 - -k can be any number, including 0, in which case the pair is (r, ε) .

Then for all lists of states $r_1, r_2, ..., \underline{r}_k$ G has the production $[qXr_k] \rightarrow a[rY_1r_1][r_1Y_2r_2]...[r_{k-1}Y_kr_k].$

From Rule (5)

13.
$$[pXp] -> 1$$

From Rule (6)

14.
$$[pZ_0q] -> 0[qZ_0q]$$

15.
$$[pZ_0p] -> 0[qZ_0p]$$

Try this...

Exercise 6.1.1: Suppose the PDA $P = (\{q, p\}, \{0, 1\}, \{Z_0, X\}, \delta, q, Z_0, \{p\})$ has the following transition function:

- 1. $\delta(q, 0, Z_0) = \{(q, XZ_0)\}.$
- 2. $\delta(q, 0, X) = \{(q, XX)\}.$
- δ(q, 1, X) = {(q, X)}.
- 4. $\delta(q, \epsilon, X) = \{(p, \epsilon)\}.$
- 5. $\delta(p, \epsilon, X) = \{(p, \epsilon)\}.$
- 6. $\delta(p, 1, X) = \{(p, XX)\}.$
- 7. $\delta(p, 1, Z_0) = \{(p, \epsilon)\}.$

References

- John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman, Introduction to Automata Theory, Languages, and Computation, Pearson, 3rd Edition, 2011.
- Peter Linz, An Introduction to Formal Languages and Automata, Jones and Bartle Learning International, United Kingdom, 6th Edition, 2016.

Next Class:

Deterministic PDA THANK YOU.