KDD Cup 2017

M10515031 黄佳郁 M10515036 謝奇元 M10515104 羅煜賢

指導教授:李漢銘 教授

Problem Description

TASK 1:

Travel Time Prediction

For every 20-minute time window, estimate the average travel time of each route.

- A. Intersection A Tollgates 2 & 3
- B. Intersection B Tollgates 1 & 3
- C. Intersection C Tollgates 1 & 3

TASK 2:

Traffic Volume Prediction

For every 20-minute time window, predict the entry and exit traffic volumes at tollgates 1, 2 and 3.

Competition website: KDD Cup 2017

Volume Prediction 261 / 0.2539

Volume Prediction	1		
	MAPE	当天排名	
	0.2539 🕇	73	
•	0.3923 🕇	86	
		84	
		无②	
	Volume Prediction	0.2539 ↑ 0.3923 ↑ 5.5468	MAPE 当天排名 0.2539 ↑ 73 0.3923 ↑ 86 5.5468 84

Linear Regression

Task 1

- What day?
- Start point time
- Spending time of each link of this route
- Total travel time

Field	Type	Description
intersection_id	string	intersection ID
tollgate_id	string	tollgate ID
vehicle id	string	vehicle ID
starting_time	datetime	time point when the vehicle enters the route
travel_seq	string	trajectory in the form of a sequence of link traces separated by ";", each trace consists of link id, enter time, and travel time in seconds, separated by "#"
travel_time	float	the total time (in seconds) that the vehicle takes to travel from the intersection to the tollgate

Table 5

st	arting_time	travel_seq	travel_time
	2016/7/19 00:14	105#2016-	70.85
	2016/7/19 00:35	105#2016-	148.79
	2016/7/19 00:37	105#2016-	79.76
	2016/7/19 00:37	110#2016-	58.05
	2016/7/19 00:56	105#2016-	137.98
	2016/7/19 00:56	115#2016-	113.54
	2016/7/19 01:26	105#2016-	176.7
1	2016/7/19 01:36	110#2016-	74.47
	2016/7/19 01:36	110#2016-	94.57
	2016/7/19 01:36	115#2016-	214.87
			- XX

- 1 Get six files which belongs to six routes(A-2, A-3, B-1, B-3, C-1, C-3)
- 2 Address data type(travel_seq, starting_time)
- 3 For i in six files:
- 4 Ignore the files without enough info
- 5 Label starting_time
- 6 Regress with Linear Regression
- 7 Fit the model
- 8 Predict travel time

Problem - Travel Time

A-2		A-3		B-1	
mean	70.123898	mean	123.824527	mean	128.078528
std	45.561928	std	83.335008	std	57.578811
min	9.260000	min	19.790000	min	19.460000
25%	44.980000	25%	88.860000	25%	96.290000
50%	58.660000	50%	107.710000	50%	117.850000
75%	82.715000	75%	137.210000	75%	144.510000
max	1569.640000	max	6711.110000	max	1627.380000
B-3		C-1		C-3	

		-			
mean	113.412535	mean	184.307117	mean	187.242564
std	53.858812	std	73.699985	std	72.014020
min	11.740000	min	38.500000	min	32.040000
25%	78.700000	25%	142.140000	25%	142.830000
50%	106.315000	50%	171.455000	50%	176.200000
75%	137.942500	75%	210.382500	75%	217.170000
max	1498.970000	max	2489.570000	max	1260.760000

Linear Regression

Task 2

- What day?
- Time range
 - One unit / 20 min
 - 8-10, 17-19
- Volume of two previous time range
 - o if 8:00-8:20 => 7:20-7:40, 7:40-8:00
- Average volume of the same time range(8-10 or 17-19) of that day

Field	Type	Description
time	datetime	the time when a vehicle passes the tollgate
ioligaie id	string	ID of the tollgate
direction	string	0: entry, 1: exit
vehicle_model	int	this number ranges from 0 to 7, which indicates the capacity of the vehicle (bigger the higher)
has_etc	string	does the vehicle use ETC (Electronic Toll Collection) device? 0: No, 1: Yes
vehicle_type	string	vehicle type: 0-passenger vehicle, 1-cargo vehicle

Table 6					
time					
2016/9/19 23:09					
2016/9/19 23:11					
2016/9/19 23:13					
2016/9/19 23:17					
2016/9/19 23:16					
2016/9/19 23:18					
2016/9/19 23:18					
2016/9/19 23:19					
2016/9/19 23:19					

Day	startTime	x1	x2	h	y
1	1	71	103	127	118
1	7	90	115	90	86
1	2	103	118	127	168
1	8	115	86	90	85
1	3	118	168	127	161
1	9	86	85	90	91
1	4	168	161	127	145

- 1 Label date with 1-7 which means Mon. to Sun.
- 2 Label time with 1-12(1: 8:00-8:20; 7: 17:00-17:20)
- 3 Use sqlQuery to count volume of each time range(every 20 mins)
- 4 Get average volume of 8-10 and 17-19 of each day
- 5 Create training data with day label, time, volumes of two previous time
- range, average volume of the same time range it belongs to(8-10 or 17-19)
- 6 Regress with Linear Regression
- 7 Fit the model
- 8 Predict volume

Tools

VM

OS: Ubuntu

RAM: 3GB

iPython Notebook

sklearn

Future Work

- Address noise data
- Try to give weight to each feature
- Predict with more features, e.g. temperature, humidity, width of each link
- Try to train and predict with xgboost
 - In some competition, this was used by first place participant
- Test deep learning module, e.g. Keras
- To improve the efficiency, we expect to use cloud
 computing technique

