3. Übung zur Einführung in die Algebra

Abgabe online in WueCampus bis zum 13.11.2023, 12 Uhr

Aufgabe 3.1 (4 Punkte)

Wir ändern die Gruppendefinition aus Definition 2.3 ab, indem wir für eine Menge G mit einer zweistelligen Verknüpfung , ' und einem Element $e \in G$ fordern:

- (a) Es gilt $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ für alle $a, b, c \in G$.
- (b) Es gilt $a \cdot e = a$ für alle $a \in G$.
- (c') Zu jedem $a \in G$ gibt es ein Element $b \in G$ mit $b \cdot a = e$.

Ist dann *G* stets eine Gruppe?

Aufgabe 3.2 (Diedergruppen; je 1 Punkt; sieht schlimmer aus, als es ist)

Sei $n \in \mathbb{N}$ mit $n \ge 3$ fixiert. Wir setzen $\alpha := \exp\left(\frac{2\pi i}{n}\right) \in \mathbb{C}$ und definieren die folgenden zwei Abbildungen:

$$s: \mathbb{C} \to \mathbb{C}, \quad z \mapsto \overline{z}$$
 sowie $r: \mathbb{C} \to \mathbb{C}, \quad z \mapsto \alpha \cdot z.$

Das neutrale Element der Gruppe $\operatorname{Sym}(\mathbb{C})$ bezeichnen wir mit e und mit ,·' die Verkettung von Funktionen.

- (a) Zeigen Sie, dass $s^2 = e$ und $r \cdot s \cdot r = s$ gelten.
- (b) Zeigen Sie, dass für $k \in \mathbb{N}$ genau dann $r^k = e$ gilt, wenn $n \mid k$ ist.
- (c) Zeigen Sie, dass r und s Elemente der symmetrischen Gruppe Sym(\mathbb{C}) sind.
- (d) Zeigen Sie, dass $s \cdot r^k = r^{-k} \cdot s$ für alle $k \in \mathbb{N}$ gilt.
- (e) Zeigen Sie, dass zu jedem $k \in \mathbb{N}$ ein $t \in \mathbb{N}$ mit $r^{-k} = r^t$ existiert.
- (f) Beschreiben Sie das Abbildungsverhalten von *r* und *s* geometrisch.
- (g) Folgern Sie aus (a)–(e), dass $\{r^x \cdot s^y \mid x, y \in \mathbb{Z}\} = \{r^a \cdot s^b \mid 0 \le a < n \text{ und } 0 \le b < 2\}$ gilt.
- (h) Zeigen Sie, dass $D_n := \{r^a \cdot s^b \mid 0 \le a < n \text{ und } 0 \le b < 2\}$ eine Gruppe ist.
- (i) Beweisen Sie, dass $|D_n| = 2n$ gilt.
- (j) Zeigen Sie, dass D_n nicht abelsch ist.

Bemerkung: Die Gruppen D_n heißen Diedergruppen. Sie zeigen, dass es zu jeder geraden Zahl $g \ge 6$ eine nicht-abelsche Gruppe mit Ordnung g gibt. Man spricht das Wort "Diedergruppe" wie "Die-Eder-Gruppe" aus.

Weitere Informationen zur Veranstaltung finden sich online im zugehörigen WueCampus-Kurs.