Сведения из теории графов. Алгоритм локального голосования. Консенсус в динамических сетях

Олег Николаевич Граничин

Санкт-Петербургский государственный университет, математико-механический факультет

31 октября 2012

Топология динамической сети

Рассмотрим сетевую систему, состоящую из набора динамических подсистем (агентов) $N=\{1,2,\ldots,n\}$ с входами u_t^i , выходами $y_t^{i,i}$ и состояниями x_t^i , взаимодействующих в соответствии с ориентированным графом (N,E), где E — множество дуг.

Топология динамической сети

Рассмотрим сетевую систему, состоящую из набора динамических подсистем (агентов) $N=\{1,2,\ldots,n\}$ с входами u_t^i , выходами $y_t^{i,i}$ и состояниями x_t^i , взаимодействующих в соответствии с ориентированным графом (N,E), где E — множество дуг.

- ullet Множеством соседей узла i называется $N^i = \{j: (j,i) \in E\}.$
- Структура связей динамической сети описывается с помощью последовательности орграфов $\{(N,E_t)\}_{t\geq 0}$, где $E_t\subseteq E$ меняется во времени.

Основные сведения из теории графов

- Сопоставим каждой дуге $(j,i) \in E$ вес $a^{i,j} > 0$ и определим матрицу смежности (или связности) $A = [a^{i,j}]$ графа $\mathscr{G}_A = (N,E)$.
- Определим взвешенную полустепень захода вершины i как сумму i-й строки матрицы A: $d^i = \sum_{i=1}^n a^{i,j}$;
- $d_{\max}(A)$ максимальная полустепень захода графа \mathscr{G}_A ;
- $D(A) = \operatorname{diag}\{d^i(A)\};$
- $\mathscr{L}(A) = D(A) A$ лапласиан графа.
- Направленный путь из узла i_1 в узел i_s состоит из последовательности узлов $i_1,\ldots,i_s,\ s\geq 2$ таких, что $(i_k,i_{k+1})\in E, k\in\{1,2,\ldots,s-1\}.$
- Граф называется **связным**, если для всех пар различных узлов (i,j) есть направленный путь из i в j.
- Связный граф, в котором число дуг на одну меньше числа вершин, называется **деревом**. Дерево, являющееся частичным графом связного графа, называется **остовным деревом**.

Лемма об остовном дереве

ullet Лапласиан $\mathcal{L}(A)$ графа \mathcal{G}_A имеет ранг равный n-1 тогда и только тогда, когда граф \mathcal{G}_A имеет остовное дерево.

Отметим важное следствие:

ullet Если граф \mathscr{G}_A сильно связный, то его лапласиан $\mathscr{L}(A)$ имеет ранг равный n-1.

Критерий Гершгорина

Обозначим $d_{\max}(A)$ максимальную полустепень захода графа \mathscr{G}_A .

• все собственные числа матрицы $\mathscr{L}(A)$ имеют неотрицательную вещественную часть и лежат в круге с центром на вещественной оси в точке $d_{\max}(A)$ и радиусом $d_{\max}(A)$.

Число Фидлера

Обозначим $\lambda_1, \dots, \lambda_n$ — собственные числа матрицы $\mathscr{L}(A)$, упорядочив их по возрастанию модулей вещественных частей: $0 \leq |Re(\lambda_1)| \leq |Re(\lambda_2)| \leq \dots \leq |Re(\lambda_n)|$. Если у графа есть остовное дерево, тогда $\lambda_1 = 0$ — простое собственное число, а все остальные собственные значения \mathscr{L} находятся в открытой правой половине комплексной плоскости. Второе собственное число λ_2 матрицы \mathscr{L} играет важную роль во многих приложениях. Его часто называют "числом Фидлера (Fiedler)". Для неориентированного графа:

$$Re(\lambda_2) \leq \frac{n}{n-1} \min_{i \in N} d^i(A),$$

а для связного неориентированного графа G_A

$$Re(\lambda_2) \geq \frac{1}{\operatorname{diam} G_A \cdot \operatorname{vol} G_A},$$

где $\operatorname{diam} G_A$ — наибольшее расстояние между двумя узлами, и $\operatorname{vol} G_A = \sum_{i \in N} d^i(A)$.

Задача консенсуса на графах

- Узлы i и j называются **согласованными** в сети в момент времени t тогда и только тогда, когда $x_t^i = x_t^j$.
- Задача о достижении консенсуса в момент времени t это согласование всех узлов между собой в момент времени t.
- n узлов достигают *асимптотического консенсуса*, если существует величина x^* : $x^* = \lim_{t \to \infty} x_t^i$ для всех $i \in \mathbb{N}$.

Консенсусное управление — управление, обеспечивающее достижение консенсуса.

Линейные ОУ первого порядка

Рассмотрим частный случай: $f^i(x_t^i,u_t^i)=u_t^i$, и все наблюдения производятся без помех и задержек: $y_t^{i,j}=x_t^j,\,j\in N_t^i$. Обозначив $\bar{x}_t=[x_t^1;\ldots;x_t^n]$ и $\bar{u}_t=[u_t^1;\ldots;u_t^n]$ — соответствующие вектор-столбцы, полученные вертикальным соединением n чисел, протокол локального голосования можно переписать в матричном виде:

$$\bar{u}_t = (\alpha_t B_t - D(\alpha_t B_t))\bar{x}_t = -\mathcal{L}(\alpha_t B_t)\bar{x}_t \tag{1}$$

и уравнение динамики в дискретном времени:

$$\bar{x}_{t+1} = \bar{x}_t + \bar{u}_t, \ t = 0, 1, 2, \dots, T,$$
 (2)

а также и в непрерывном

$$\dot{\bar{x}}_t = \bar{u}_t, \ t \in [0, T]. \tag{3}$$

Динамика замкнутой системы в матричной форме

В дискретном времени:

$$\bar{\mathbf{x}}_{t+1} = (I - \mathcal{L}(\alpha_t B_t))\bar{\mathbf{x}}_t, \ t = 0, 1, 2, \dots, T, \tag{4}$$

где I — матрица размерности $n \times n$ из нулей и единиц на диагонали. В непрерывном времени:

$$\dot{\bar{x}}_t = -\mathcal{L}(\alpha_t B_t) \bar{x}_t, \ t \in [0, T]. \tag{5}$$

Достижение консенсуса

Покажем, что протокол локального голосования с $\alpha_t = \alpha$ и $B_t = A$ асимптотически обеспечивает консенсус как для дискретной, так и для непрерывной модели.

• Если граф \mathscr{G}_A имеет остовное дерево и в протоколе управления $(\ref{eq:constraint})$ выбраны $B_t = A$ и $\alpha_t = \alpha$ так, что выполнено условие $(\ref{eq:constraint})$, то протокол управления $(\ref{eq:constraint})$ обеспечивает асимптотический консенсус для дискретной системы $(\ref{eq:constraint})$ и его значение x^* определяется формулой $(\ref{eq:constraint})$.

Доказательство 1

Действительно, в дискретном случае уравнение (4) превращается в

$$\bar{x}_{t+1} = (I - \mathcal{L}(\alpha A))\bar{x}_t \equiv P\bar{x}_t,$$
 (6)

где матрица Перрона $P = I - \mathscr{L}(\alpha A)$ имеет одно простое собственное значение равное единице, а все остальные — внутри единичного круга, если

$$\alpha < \frac{1}{d_{\mathsf{max}}}.\tag{7}$$

Доказательство 2

Так как сумма элементов строк матрицы лапласиана $\mathscr L$ равна нулю, то сумма элементов строк матрицы P равна единице, т. е. вектор 1, составленный из единиц, является правым собственным вектором матрицы P, соответствующим единичному собственному значению, которое является простым, если у графа есть остовное дерево. Все остальные собственные значения лежат внутри единичного круга. Следовательно, если у графа есть остовное дерево, то, обозначив $\bar{z}_1 = [z^1, \dots, z^n]$ левый собственный вектор матрицы P, ортогональный 1, в пределе при $t \to \infty$ получаем

$$\bar{\mathbf{x}}_t \to \underline{\mathbf{1}}(\bar{\mathbf{z}}_1^{\mathrm{T}} \bar{\mathbf{x}}_0),$$
 (8)

т. е. достигается асимптотический консенсус. Значение консенсуса x^* равно

$$x^* = \frac{\bar{z}_1^{\mathrm{T}} \bar{x}_0}{\bar{z}_1^{\mathrm{T}} \underline{1}} = \frac{\sum_{i=1}^n z^i x_0^i}{\sum_{i=1}^n z^i}.$$
 (9)

Это значение зависит от топологии графа и, следовательно, от того, как узлы связаны между собой.

Сбалансированный граф

Если граф сбалансированный, тогда суммы по строкам лапласиана $\mathscr L$ равны суммам по соответствующим столбцам, и это свойство передается матрице P. Тогда $\bar z_1=c\underline 1$ и значение консенсуса равно среднему значению начальных значений

$$x^{\star} = \frac{1}{n} \sum_{i=1}^{n} x_0^i$$

и не зависит от топологии графа.

Непрерывный случай

В непрерывном случае имеем

$$\dot{\bar{\mathbf{x}}} = -\mathcal{L}\bar{\mathbf{x}}.\tag{10}$$

Пусть $\bar{z}_1, \bar{z}_2, \dots, \bar{z}_n$ и $\bar{r}_1 = \frac{1}{\sqrt{n}} \underline{1}, \bar{r}_2, \dots, \bar{r}_n$ соответствующие им левые и правые ортонормированные собственные вектора матрицы \mathscr{L} . Если у графа есть остовное дерево, тогда $\lambda_1 = 0$ — простое собственное число, а все остальные собственные значения \mathscr{L} находятся в открытой правой половине комплексной плоскости, т. е. система (10) частично устойчива с одним полюсом в начале координат и остальными в открытой левой полуплоскости.

Для первого левого собственного вектора $ar{z}_1 = [ar{z}^1, \dots, ar{z}^n]$ матрицы $\mathscr L$ несложно вывести

$$\frac{d}{dt}(\bar{z}_1^{\mathrm{T}}\bar{x}_t) = \bar{z}_1^{\mathrm{T}}\dot{\bar{x}}_t = -\bar{z}_1^{\mathrm{T}}\mathscr{L}\bar{x}_t = 0,$$

т. е. величина $\tilde{x}\equiv \bar{z}_1^T\bar{x}_t=\sum_{i=1}^n z_1^ix_t^i$ — инвариант — постоянна и не зависит от состояний узлов. Таким образом, $\sum_{i=1}^n \bar{z}_1^ix_0^i=\sum_{i=1}^n \bar{z}_1^ix_t^i$ $\forall t_{t,t}$

Лемма

• Если граф \mathscr{G}_A имеет остовное дерево, то протокол локального голосования с $\alpha_t = \alpha$ и $B_t = A$ обеспечивает асимптотический консенсус для непрерывной системы (3) и его значение x^* определяется формулой

$$x^* = \frac{1}{\sqrt{n}} \sum_{i=1}^n \bar{z}_1^i x_0^i \tag{11}$$

по $ar{x}_0$ и ортонормированному первому левому с. в. матрицы \mathscr{L} .

Применяя модальное разложение можно записать вектор состояний через собственные числа и собственные вектора матрицы \mathscr{L} . Если все собственные значения матрицы \mathscr{L} простые (фактически важно только то условие, что λ_1 — простое), то

$$\bar{\mathbf{x}}_t = e^{-\mathcal{L}t}\bar{\mathbf{x}}_0 = \sum_{j=1}^n \bar{\mathbf{r}}_j e^{-\lambda_j t} \bar{\mathbf{z}}_j^{\mathrm{T}} \bar{\mathbf{x}}_0 = \sum_{j=2}^n (\bar{\mathbf{z}}_j^{\mathrm{T}} \bar{\mathbf{x}}_0) e^{-\lambda_j t} \bar{\mathbf{r}}_j + \frac{\tilde{\mathbf{x}}}{\sqrt{n}} \underline{\mathbf{1}}. \tag{12}$$

В пределе при $t \to \infty$ получаем $x_t \to \frac{\tilde{x}}{\sqrt{n}} \underline{1}$ или $x_t^i \to x^\star = \frac{\tilde{x}}{\sqrt{n}}, \ \forall i \in N$, т. е. достигается асимптотический консенсус.

Время до консенсуса

• $T(\varepsilon)$ будем называть временем достижения ε -консенсуса, если для всех $t \geq T(\varepsilon)$ все n узлов достигают ε -консенсуса.

Из формулы (12), оценив квадрат нормы первого слагаемого

$$||\bar{x}_t - x^*\underline{1}||^2 = ||\sum_{j=2}^n (\bar{z}_j^{\mathrm{T}}\bar{x}_0)e^{-\lambda_j t}\bar{r}_j||^2 =$$

$$=||\sum_{j=2}^{n}(\bar{z}_{j}^{\mathrm{T}}(\bar{x}_{0}-x^{\star}))e^{-\lambda_{j}t}\bar{r}_{j}||^{2}\leq (n-1)e^{-2Re(\lambda_{2})t}||\bar{x}_{0}-x^{\star}\underline{1}||^{2},$$

можно получить выражение для временем достижения ε -консенсуса в системе (10)

$$T(\varepsilon) = \frac{1}{2Re(\lambda_2)} \ln\left(\frac{(n-1)||x_0 - x^*\underline{1}||^2}{\varepsilon}\right). \tag{13}$$