Podstawowe typy rozkładów jednowymiarowych zmiennych losowych

Rozkład jednostajny (prostokątny): $X \sim U(a, b)$

- parametry: $a, b \in \mathbb{R} \land a < b$
- funkcja gęstości:

$$f(x) = I_{[a,b]}(x) \frac{1}{b-a}$$

przy czym / jest funkcją charakterystyczną

$$I_{[a,b]}(x) = \begin{cases} 0 & \text{gdy } x \notin [a,b] \\ 1 & \text{gdy } x \in [a,b] \end{cases}$$

dystrybuanta:

$$F(x) = I_{[a,b)}(x) \frac{x-a}{b-a} + I_{[b,+\infty)}(x)$$

 wykresy funkcji gęstości i dystrybuanty rozkładu jednostajnego:

Rozkład normalny $X \sim N(\mu, \sigma)$

- parametry: $\mu \in \mathbb{R}$ wartość oczekiwana, $\sigma \in \mathbb{R}_+$ odchylenie standardowe
- funkcja gęstości:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

dystrybuanta:

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} \exp\left\{-\frac{(t-\mu)^2}{2\sigma^2}\right\} dt$$

• wykresy funkcji gęstości i dystrybuanty rozkładu normalnego:

Generowanie liczb pseudolosowych dla rozkładu jednostajnego z parametrami (0,1) – *Linear Congruential Generator* (LCG)

Niech $a,b,p\in\mathbb{N}_0$ - ustalone parametry oraz $x_0\in\mathbb{N}_0$ - ustalona wartość początkowa ciągu nazywana ziarnem (seed)

Dla odpowiednio dobranych parametrów a,b,p,x_0 , wykorzystując wartości rekurencyjnie zadanego ciągu $x_{i+1}=(ax_i+b)\mod p$, można wyznaczyć liczby $u_i=\frac{x_i}{p}$, mające zbliżone własności do tych wylosowanych z rozkładu jednostajnego U(0,1).

Przy czym mod jest funkcją modulo przyporządkowującą resztę z dzielenia liczby $ax_i + b$ przez p, np. 15 mod 4 = 3.

Liczby pseudolosowe są generowane w sposób deterministyczny, a nie losowy (stąd też ich określenie). Tym samym ustalając takie same wartości parametrów generatora uzyskuje się za każdym razem identyczne wartości pseudolosowe.

Przyjmuje się, iż w celu zredukowania zjawiska cykliczności parametr *p* powinien być bardzo dużą liczbą, tak samo jak *a*, które powinno być względnie liczbą pierwszą z *p*. Wybór wartości parametru *b* nie jest tak istotny i często przyjmuje się dla niego wartość 0.

Przykładowy wybór parametrów generatora liczb pseudolosowych: $a=427419669081,\ p=9999999999999,\ b=0.$

Natomiast zazwyczaj parametrem generatora liczb pseudolosowych modyfikowanym przez analityka jest wartość ziarna x_0 , przy pozostałych parametrach niezmienionych :

- w celu uzyskania w kolejnych próbach identycznych ciągów liczb pseudolosowych, zakłada się w każdej z prób taką samą wartość ziarna,
- jeżeli w kolejnych próbach chce się uzyskać odmienne postaci ciągów liczb pseudolosowych, można w kolejnych próbach przypisać wartość ziarna równą ilości czasu zużytego przez procesor od rozpoczęcia aktualnej sesji.

Generowanie liczb pseudolosowych dla innych rozkładów jednowymiarowych – inversion sampling

Dystrybuanta F jest funkcją opisującą prawdopdobieństwo zdarzenia, że dana zmienna losowa X, o określonym rozkładzie, przyjmie wartości mniejsze od $x \in \mathcal{X}$: $F(x) = P\{X \leqslant x\}$. Funkcja dystryburanty F może przyjmować wartości z przedziału [0,1], tzn. $F: \mathcal{X} \to [0,1]$.

Funkcja odwrotna do dystrybuanty $F^{-1}:[0,1]\to\mathcal{X}$ umożliwia odczytanie wartości zmiennej, dla której dystrybuanta przyjmuje wartość z przedziału [0,1], opisującą prawdopodobieństwo.

Tak więc do generowania liczb pseudolosowych dla rozkladów innych niz jednostajny można, wykorzystując definicję funkcji odwrotnej do dystrybuanty zakładanego rozkładu, skorzystać z generatora liczb pseudolosowych z rozkładu U(0,1): $x_i = F^{-1}(u_i)$, gdzie u_i - liczba pseudolosowa z generatora dla U(0,1), x_i - liczba pseudolosowa z zakładanego rozkładu (np. normalnego).