Algorithm: Lab1 (By Sujiv Shrestha ID:610145)

Problem 1. Which of the following functions are increasing? eventually nondecreasing? If you remember techniques from calculus, you can make use of those.

a.
$$f(x) = -x^2$$

Answer: The function is increasing for the range $-\infty < x < 0$ and decreasing for the range $0 < x < \infty$

$$df/dx = -2x$$

Hence,

For x < 0, df/dx > 0, Increasing

For x>0, df/dx<0, decreasing

b.
$$f(x) = x^2 + 2x + 1$$

Answer: The function is increasing from the points x=-1 and onwards.

$$df/dx = 2x+2$$

Hence,

For x<-1, df/dx <0, decreasing

For x>-1, df/dx>0, increasing

c.
$$f(x) = x^3 + x$$

Answer: The function is increasing because the function gives higher value for all higher values of x.

$$df/dx = 3x^2 + 1$$

Hence for any value of x, df/dx>0 So the function is increasing

Problem 2. Use the limit definitions of complexity classes given in class to decide whether each of the following is true or false, and in each case, prove your answer.

a.
$$4n^3 + n$$
 is $\Theta(n^3)$

a.
$$4n^3+n$$
 is $\theta(n^3)$

Here,

 $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{4n^3+n}{n^3}$
 $= \lim_{n\to\infty} \frac{4+\ln 2}{n^2}$
 $= 4 + \lim_{n\to\infty} \frac{1}{n^2}$
 $= 4 + \lim_{n\to\infty} \frac{1}{n^2}$

Hence. $4n^3+n$ is $\theta(n^3) = true$.

Note: polynomials have same order of 3.

b. $\log n$ is o(n)

be logn is
$$O(n)$$

Here,

 $\lambda im f(n) = \lambda im logn$
 $n \to \infty g(n) = n \to \infty n$

Applying L'Hopital's Rule, $\lambda im f'(n)$
 $= \lambda im f loge$
 $n \to \infty n$

Hence, $log n$ is $O(n)$ " holds true.

c. 2^n is $\omega(n^2)$

C. 2h is
$$\omega(n^2)$$
.

Here, $\dim g(n) = \dim n^2$
 $n \to \infty \int (n) = n \to \infty \int 2n$

Applying L' Hopital's Rule, $\dim g'(n)$
 $= \dim 2n$
 $= \dim 2n$
 $= n \to \infty \int 2n \ln 2$

Applying L'Hopital's Rule again,

 $= \dim 2$
 $= n \to \infty \int 2n \ln 2 \cdot \ln 2$
 $= \lim_{n \to \infty} \frac{1}{2^n} \cdot \frac{2}{(\ln 2n)^2}$

Therefore, 2^n is $\omega(n^2)$ holds true i.e 2^n grows much faster than n^2 .

d. 2^n is $o(3^n)$

d.
$$2^n$$
 is $o(3^n)$.

Here, $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{2^n}{3^n}$
 $\lim_{n\to\infty} \frac{1}{(3^n)^n}$
 $\lim_{n\to\infty} \frac{1}{(3^n)^n}$

we know, $\frac{3}{2} > 1$. So $\lim_{n\to\infty} \frac{1}{(3^n)^n} = 0$.

Hence, 2^n is $o(3^n)$ holds true.

Problem 3. Show that for all n > 4, 2n < n!. Hint: Use induction.

```
Problem 3. Show that for all n>4, 2^2/n!.

Hint: Use Induction.

Proof by Induction:

Basic Step: $\P(S) => 2^5 < 5!

$\Rightarrow$ 32 < 120 (thue).

Induction Step: Assume $\P(n) => 2^n < n! is thue.

Lets Prove, $\P(n+1) => 2^{n+1} < (n+1)! is also there

or, $2.2^n < (n+1) n!

Cince, $n > 4, (n+1) is always greater than 2,

and we know from previous assumption that

2^n < n!, hence, $2.2^n < (n+1) n! is also true.

on $2^{n+1} < (n+1)!

Therefore, we proved for all $n > 4, 2^n < n! using induction.
```

Problem 4. GCD Problem: Given two positive integers m, n, is there a positive integer d that is a factor of both m and n and that is bigger than or equal to every integer d' that is also a factor of m and n?

Write a Java method int gcd(int m, int n) which accepts positive integer inputs m; n and outputs the greatest common divisor of m and n.

Examples

- If m = 12 and n = 42, return 6
- If m = 7 and n = 9, return 1

Solution=>

```
public static int GCD(int m, int n) {
    return (n==0)?m:GCD(n, m%n);
}
```

Problem 5. Implement the following Java method.

```
public static int secondSmallest(int[] arr) {
    if(arr==null || arr.length < 2) {
        throw new IllegalArgumentException("Input array too small");
    }
//implement
}</pre>
```

This method returns the second smallest element of the input array.

Examples

- If input is [1, 4, 2, 3], return 2.
- If input is [3, 3, 4, 7], return 3. (Smallest is 3, and second smallest is 3.)
- If input is [9], your program will throw an exception.

Solution=>

Problem 6. SubsetSum Problem: given a set $S = \{s_0, s_1, s_2, ..., s_{n-1}\}$ of positive integers and a non-negative integer k, is there a subset T of S so that the sum of the integers in T equals k?

Formulate your own procedure for solving the SubsetSum. Think of it as a Java method subsetsum that accepts input S and k, and outputs a subset T of S with the property that the sum of the elements in T is k if such a T exists, or null if no such T can be found.

Examples

- If S is [1, 3, 9, 4, 8, 5] and k = 21, return [9,4,8] (since 9 + 4 + 8 = 21)
- If S is [1, 3, 9] and k = 5, return null (since no such subset can be found)
- If S is [1, 3, 9, 4, 8, 5] and k = 0, return [] (since the sum of the empty set is 0)

```
public static int[] subSetSum2(int[] arr, int sum) {
             if(sum==0)
                    return new int[0];
             long size = (long) Math.pow(2, arr.length);
              int[] arr2=new int[arr.length];
             for(int i=0;i<size;i++) {</pre>
                    int sum2=0;
                    String array="";
                    int count = 0;
                    for(int j=0;j<arr.length;j++) {</pre>
                            if((i&(1<<j))>0) {
                                  sum2+=arr[j];
                                   array=array+"+"+arr[j];
                                  arr2[count] = arr[j];
                                   count++;
                                   if(sum2==sum) {
                                         array=array.substring(1);
                                         System.out.println(array+"="+sum);
                                         int[] ans = new int[count];
                                         for(int k=0;k<count;k++) {</pre>
                                                ans[k] = arr2[k];
                                         }
                                         return ans;
                                  }
                           }
                    }
             return null;
      }
```