NUMERICAL METHODS ECSE 543 - ASSIGNMENT 1

MIDO ASSRAN - 260505216

QUESTION 1

Part a. The Choleski implementation is provided in Listing 2.

Code structure. To maintain portability and modularity of the code, object oriented principles were used for the software architecture. The choleski implementation is included in the CholeskiDecomposition() class. The solve(A, b) method solves the linear system of equations shown in equation (1) by performing choleski elimination.

$$(1) Ax = b$$

The method accepts the matrix A, and the vector b (both of which will eventually be overwritten by the algorithm in order to conserve memory resources), and returns the vector x corresponding to the solution of equation (1). The algorithm works in two stages. The first stage performs a choleski factorization of A into LL^T (overwriting the lower triangular part of A by L), while simultaneously solving lower triangular system Ly = b using forward substitution (overwriting b with the solution y). At the end of this stage, the program state now contains L in the lower triangular half of the matrix A, and the solution to Ly = b in the vector b. In the second stage the program solves the system $L^Tx = y$ using backwards substitution (overwriting y again with the solution x), where y is the solution to the system solved in the first stage. The program subsequently returns the vector x, which is the solution to equation (1).

Part b. For testing purposes, it was necessary to create a symmetric positive definite matrix. Such a matrix was created using the generate_positive_semidef(order, seed) method contained in the utils file in Listing 1. Given an order (the dimension of the desired matrix), and an integer valued seed (used to seed the random number generator with a standard normal distribution), the function creates a random matrix, multiplies it by its transpose, and returns the result. The mathematical proof for why such a matrix is symmetric positive definite is well established. Whether or not the matrix is singular in this semidefinite method is important, and this is being checked by comparing the rank of the matrix to its order. If the rank of the matrix is not equal to the order of the matrix, then the matrix is singular and a warning is printed to the console. Note that this check still does not prevent the matrix from having a poor condition number.

Date: October 17, 2016.

Part c. The testing of the choleski implementation was conducted using the code provided under the main() method in Listing 2 lines 90-111. The vector x^* , corresponding to the variable x in equation (1), is randomly generated with a standard normal distribution, and subsequently multiplied by the matrix A in order to generate a third vector b (i.e $b = A \cdot x^*$). The matrix A and the vector b are subsequently supplied to the solver, and the result is compared with the vector x^* that was originally used to create b. A sample of the console output is provided in Figure 1 - the matrix A is of order 10 in this example. The error in the produced result is quantified using the 2-norm:

$$error = ||solve(A, b) - x^*||_2$$

As is seen in the console output, the error is only $2 \cdot 10^{-13}$, indeed the algorithm is producing the correct result. A possible reason for such a value of the error could be the roundoff error related to the condition of the randomly generated matrices.

Figure 1. Choleski Elimination Testing

Part d. A program used to solved tor the node voltages in a linear resistive network is provided in **Listing 3**. The *LinearResistiveNetworkSolver()* class is initialized with a filename from which to read the circuit description. The program, in the intializer, reads

a list of network branches (J_k, R_k, E_k) and a reduced incidence matrix from a CSV file. The format of the file is as follows: a set of rows (corresponding to each branch in the network), containing the comma separated branch current, resistance, and voltage in that respective order. Then a period is printed on a new line, to signify the end of the network data. The subsequent comma separated rows denote the incidence matrix, where each row corresponds to a node, and each column to a branch. An entry of -1 is used to indicate current entering a branch, 1 is used to indicate current leaving a branch, and 0 is used to indicate that the branch does not interact directly with the given node. The program reads the data in the file sequentially (i.e first the rows of the branch data are read, and then the rows of the incidence matrix are read). Once the data is read, the program subsequently generates a linear system of equations using the aforementioned data, and solves the system via choleski elimination.

Test Circuits. Test circuit CSV descriptions (used to test the program), and their equivalent circuit diagrams and corresponding console outputs are shown below. In each case, the console output was consistent with the analytical results obtained by hand.

$Test\ Circuit\ 1$

```
test_c1.csv
0, 10, 10
0, 10, 0
.
-1, +1
```

```
test_c2.csv
-10, 10, 0
0, 10, 0
.
-1, 1
```



```
midoassran@Midos-MacBook-Pro:~/documents/McGill/U(4)/ECSE 543/Assignment_1$ python lrn_solver.py

# ------ TEST ------ #
# ------ Manual CSV Data ------ #
# ------ Manual CSV Data ------ #
# ------ #
Cxecution time:
4.49499930255115e-05

Voltages:
Node 0: 50.0 Volts

midoassran@Midos-MacBook-Pro:~/documents/McGill/U(4)/ECSE 543/Assignment_1$ __
```

$Test\ Circuit\ \mathcal{3}$

test_c3.csv 0, 10, 10 -10, 10, 0 . -1, -1


```
midoassran@Midos-MacBook-Pro:~/documents/McGill/U(4)/ECSE 543/Assignment_1$ python lrn_solver.py

# ------ TEST ------ #
# ------ Manual CSV Data ------ #
# ------ Manual CSV Data ------ #
# ------ Mover.py

Execution time:
2.130295615643263e-05

Voltages:
Node 0: 55.0 Volts

midoassran@Midos-MacBook-Pro:~/documents/McGill/U(4)/ECSE 543/Assignment_1$ __
```

Test Circuit 4


```
midoassran@Midos-MacBook-Pro:~/documents/McGill/U(4)/ECSE 543/Assignment_1$ python lrn_solver.py

# ------ TEST ----- #
# ------ Linear Resistive Network Solver ----- #
# ------ Manual CSV Data ----- #
# ------ #
Execution time:
    2.855702769011259e-05

Voltages:
    Node 0: 20.0 Volts
    Node 1: 35.0 Volts

midoassran@Midos-MacBook-Pro:~/documents/McGill/U(4)/ECSE 543/Assignment_1$ []
```

$Test\ Circuit\ 5$

20 Ω 0 $test_c5.csv$ 0, 20, 10 10 Ω 10 Ω 10 V 0, 10, 00, 10, 0 0, 30, 0 30 Ω 0, 30, 00, 30, 0 -1, +1, +1, 0, 0, 030 Ω 0, -1, 0, +1, +1, 00, 0, -1, -1, 0, +130 Ω

QUESTION 2

Part a. To find the resistance across two diagonally opposing corners of a linear resistive N by N finite different mesh, the linear resistive network solver, provided in Listing 3, was used. This is the same program that was used in Question 1. The static method $create_lrn_mesh_data(N, fname)$ accepts an integer, N, denoting the size of the mesh, and a filename, to which a CSV description of the created mesh should be saved. It should be noted that this method also includes in the circuit description a test source placed across the diagonal of the mesh. This test source has a voltage of 1V, and an output resistance of 1Ω . The main() method in Listing 3 - lines 166-177 - calls the appropriate methods to create the resistive finite difference mesh, and subsequently solve for all the node voltages. Once all the node voltages are known, the voltage difference between the two corners of the mesh is used to construct a simple voltage division equation that is used to solver for the equivalent resistance of the mesh.

Results. The resistances of the N by N finite difference resistive meshes are provided in Table 1.

Table 1. Mesh Size - Resistance

N	$Resistance(\Omega)$
2	1500.0
3	1857.14285714
4	2136.36363636
5	2365.65656566
6	2560.14434643
7	2728.97676317
8	2878.11737377
9	3011.6695649
10	3132.57698056
11	3243.02258446
12	3344.66972582
13	3438.81477166
14	3526.48756597
15	3608.51973873

Part b. The running time of the choleski elimination is dominated by the $O(n^3)$ flops required to carry out the choleski decomposition. Therefore, since the matrix A of equation (1) scales with dimension N^2 by N^2 , the number of flops for a mesh of size N by N is $(N^2)^3$ flops or equivalently N^6 flops. This is consistent with the observations presented in Table 2, and Figure 2, which show the relationship between mesh size and running time. In addition, Figure 3 explicitly shows the $O(N^6)$ behaviour, where the plot shows the running time versus mesh size scaled down by N^6 . When the mesh size grows large, the running

time becomes less influenced by the second order effects, and the curve asymptotes to an N^6 shape. This is readily shown in the red part of the highlighted curved as the running time, when divided by N^6 , gives a static proportionality constant; thereby substantiating our theoretical predictions.

Table 2. Mesh Size - Solution Time

\mathbf{N}	Time(seconds)
2	0.00018005201127380133
3	0.0005776920006610453
4	0.0020256309653632343
5	0.005016789014916867
6	0.014686884998809546
7	0.03706111200153828
8	0.05973530700430274
9	0.10937813099008054
10	0.17966456298017874
11	0.27908271801425144
12	0.42865376197732985
13	0.7425739160389639
14	1.115041796991136
15	1.5176349109970033

Part c. In order to take advantage of the sparse nature of the matrix A in equation (1), the lookahead modification in the choleski decomposition is not performed if the computed entry of the matrix A is equal to zero. In addition, the banded nature of the matrix is exploited by only performing computations up to a certain column index (based on the matrix bandwidth). The half bandwidth is equal to N + 2. In theory, the computational time taken to solve this problem should increase with N as $O(N^4)$ since the number of flops is equal to $O(b^2n)$, where b^2 is the mean square of the half bandwidth; the number of flops simplifies to $O((N+2)^2(N^2))$, which is simply $O(N^4)$. Indeed this this is consistent with the observations presented in Table 3, and Figure 4, which show the relationship between mesh size and running time with the modified code. Figure 4 actually shows the optimized algorithm and the unoptimized algorithm plotted on top of one another. Figure 5 explicitly

FIGURE 2. Choleski Elimination Timing vs Mesh Size (No Sparsity Optimization)

shows the $O(N^2)$ behaviour, where the plot shows the running time versus mesh size scaled down by N^2 . When the mesh size grows large, the running time becomes less influenced by the second order effects, and the curve asymptotes to an N^2 shape. This is readily shown in the red part of the highlighted curved as the running time, when divided by N^2 , gives a static proportionality constant; thereby substantiating our theoretical predictions. It is interesting to note that the algorithm actually performs better than predictions until it asymptotes, this is likely due to the sparse optimization where look ahead modifications are not performed if the computed choleski factor is equal to zero.

Part d. The resistance versus mesh size is shown in Figure 6. It appears to be that the log natural function is a good approximation to the observations, Figure 7 shows just how well the log natural function, when shifted up to the same base point, hugs the observed measurements.

 ${\tt Figure}$ 3. Choleski Elimination Normalized Timing vs Mesh Size (No Sparsity Optimization)

Table 3. Mesh Size - Solution Time (With Banding & Sparsity Optimization)

\mathbf{N}	Time(seconds)
2	0.0001465399982407689
3	0.00036833900958299637
4	0.0007581170066259801
5	0.0013425120268948376
6	0.0024208099930547178
7	0.004157565999776125
8	0.006417336990125477
9	0.009185826987959445
10	0.013197112013585865
11	0.018369574972894043
12	0.03381888900185004
13	0.04017931898124516
14	0.0488723770249635
15	0.05613993701990694

Figure 4. Choleski Elimination Timing vs Mesh Size (With Banding & Sparsity Optimization)

FIGURE 5. Choleski Elimination Normalized Timing vs Mesh Size (With Optimization)

FIGURE 6. Resistance vs Mesh Size

QUESTION 3

Part a. A program used to find the potentials at the nodes of a regular mesh in the air between conductors by the method of finite differences is provided in Listing 5. The class

FIGURE 7. Curve Fitting of Resistance vs Mesh Size

FiniteDifferencePotentialSolver() is instantiated with a floating point value, h used to denote inter-mesh spacing in a uniform fashion. The initializer creates the potentials matrix, as well as four other matrices describing the relative node spacings at every single point in the mesh. The values in these matrices scale the standard node spacing h, therefore if these spacings matrices are initialized to 1, then all the nodes will have the standard node spacing h. The solve_sor(max_residual, omega) method solves for the potentials at every node in the mesh using the five point difference method, and the successive over relaxation iterative method. The program terminates when the residual drops to an acceptable level, namely below the passed in max_residual parameter. It should also be noted that the description of the physical problem is included in **Listing 4**, this information is used by the FiniteDifferencePotentialSolver() class to determine the appropriate boundary conditions for specific indices in the mesh. It is also important to note that the program actually leverages all the major axes of symmetry in the given problem: one translational and two planar. That is the program only uses the resources required to solve for one corner of the cross-section of the material, applying both Dirichlet and Neumann boundary conditions appropriately. Figure 8 shows the console output solution for one corner of the structure. The matrix of values shows the potentials at different points in space relative to the conductor at the centre, and the grounded outer plan.

Part b. A plot of the number of iterations vs omega for h=0.02 is shown in Figure 9. In addition the results are tabulated in Table 4.

FIGURE 8. Console Output of Finite Difference Potential Solver (h=0.01, ω =1.5)

● ● ■ Assignment_1 — -bash — 159×21										
midoasrangMidos-MacBook-Pro:~/documents/McGill/U(4)/ECSE 543/Assignment_1\$ python fdp_solver.py num_itr: 614										
potentials:										
[[0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.]
[0.	1.71459259	3.4535801	5.23525608	7.06369505	8.91699146	10.73209196	12.39206002	13.7324912	14.59074434	14.88391612]
[0.	3.40479027	6.86447171	10.42374918	14.10253266	17.87217881	21.61931638	25.10365691	27.94716044	29.74657003	30.3541758]
[0.	5.04009678	10.1757673	15.49273628	21.05050758	26.84987477	32.76933783	38.45609081	43.2059236	46.09419956	47.03964701]
[0.	6.57982956	13.30576444	20.32092105	27.75688662	35.70747484	44.15206937	52.74544488	60.32624361	64.38465759	65.61601313]
[0.	7.97345702	16.14653984	24.72829686	33.94864301	44.0710686	55.38601992	68.04737575	80.96894836	85.50217406	86.65509031]
[0.	9.16745868	18.57864105	28.49708354	39.23831995	51.24213664	65.27356596	83.08908984	110.	110.	110.
[0.	10.11773666	20.50348212	31.44307631	43.26541663	56.38559204	71.37701745	89.03541765	110.	110.	110.
[0.	10.80000582	21.87447448	33.50632293	45.9946782	59.65779746	74.81349416	91.6755633	110.	110.	110.
[0.	11.20781216	22.68808704	34.71306275	47.54917577	61.43742543	76.54359842	92.8533414	110.	110.	110. J
ſ 0.	11.34315577	22.95699878	35.10866525	48.05153671	61.99913007	77.07013269	93.19420387	110.	110.	110.]]
midoassran@Midos-MacBook-Pro:~/documents/McGill/U(4)/ECSE 543/Assignment_15_										

Table 4. SOR: Finite Difference Mesh with h=0.02

ω	Iterations	(0.06,0.04)
1.0	45	40.5264910956
1.1	36	40.5264943747
1.2	27	40.526494893
1.3	17	40.5265022454
1.4	20	40.5265016154
1.5	26	40.5265040922
1.6	34	40.5265046461
1.7	47	40.5264989369
1.8	75	40.5265052427
1.9	159	40.5265027188

Part c. The values of the potential at the point $(0.06,\,0.04)$ versus 1/h are shown in Table 5 and Figure 11. The number of iterations plotted versus 1/h are also shown in Table 5 and Figure 10. It is anticipated that the potential at $(0.06,\,0.04)$ is actually equal to 38.5V based on the asymptotic behaviour of Figure 11. It is in fact interesting to note the asymptotic behaviour of the potential as we decrease the mesh spacing, and consequently increase the number of nodes. It is also interesting to note that faster-than-linear increase in the number of iterations versus 1/h. This actually indicates that the number of iterations scales proportionally to the number of mesh points used.

Part d. The values of the potential at the point (0.06, 0.04) versus 1/h are shown in Table 6 and Figure 13 for the Jacobi method. The number of iterations plotted versus

FIGURE 9. SOR: Number of iterations vs ω (h=0.02)

Table 5. SOR: Finite Difference Mesh with $\omega = 1.3$

\mathbf{h}	Iterations	(0.06,0.04)
0.02	17	40.5265022454
0.01	18	39.2382703774
0.005	328	38.7881974828
0.0025	1171	38.6172698335

1/h are also shown in Table 6 and Figure 12. It is anticipated that the potential at (0.06, 0.04) is actually equal to 38.5V based on the asymptotic behaviour of Figure 13. It is in fact interesting to note the asymptotic behaviour of the potential as we decrease the mesh spacing, and consequently increase the number of nodes. It is also interesting to note that faster-than-linear increase in the number of iterations versus 1/h. This actually indicates that the number of iterations scales proportionally to the number of mesh points used. The properties of the Jacobi plots are identical to those of the SOR method with the exception that the Jacobi method actually underperforms the SOR method in terms of the magnitude of iterations required to achieve an acceptable residual.

FIGURE 10. SOR: Number of iterations vs 1/h ($\omega=1.3$)

FIGURE 11. SOR: (0.06,0.04) vs 1/h ($\omega=1.3$)

Part e. The uneven node spacing is accomplished by creating a matrix of right node spacings, left node spacings, top node spacings, and bottom node spacings, which contains

Table 6. Jacobi Method Finite Difference Mesh with $\omega=1.3$

	h	Iterations	(0.06,0.04)
			_
0	.02	88	40.5264917649
0	.01	337	39.2382738646
0.	005	1226	138.7882251067
0.0	0025	4365	38.6173665171

Figure 12. Jacobi Number of iterations vs 1/h

information regarding the inter-node separation at each point in the mesh. When producing these spacings matrices, the program ensures that the physical width of each row and each column is still consistent with the physical dimensions of the system. These matrices are used with the modified algorithm to produce the results depicted below.

FIGURE 13. Jacobi (0.06,0.04) vs $1/h\,$


```
1 #
                                                #
  # Utils
3 # -
  # Author: Mido Assran
5 # Date: 5, October, 2016
  # Description: Utils provides a cornucopia of useful matrix
7 # and vector helper functions.
9 import random
  import numpy as np
11
  def matrix_transpose(A):
13
      :type A: np.array([float])
      :rtype: np.array([floats])
15
17
      # Initialize A_T(ranspose)
      A_T = np.empty([A.shape[1], A.shape[0]])
19
      # Set the rows of A to be the columns of A_T
21
      for i, row in enumerate(A):
          A_T[:, i] = row
23
25
      return A<sub>-</sub>T
  def matrix_dot_matrix(A, B):
29
      :type A: np.array([float])
      :type B: np.array([float])
31
      :rtype: np.array([float])
33
      # If matrix shapes are not compatible return None
      if (A. shape [1] != B. shape [0]):
           return None
37
```

```
A_{dot_B} = np.empty([A.shape[0], B.shape[1]])
39
      A_{-}dot_{-}B[:] = 0 # Initialize entries of the new matrix to zero
41
      B_T = matrix\_transpose(B)
43
      for i, row_A in enumerate(A):
           for j, column_B in enumerate(B_T):
45
               for k, v in enumerate(row_A):
                   A_{dot_B}[i, j] += v * column_B[k]
47
      return A_dot_B
49
51
  def matrix_dot_vector(A, b):
53
      :type A: np.array([float])
      :type b: np.array([float])
55
      :rtype: np.array([float])
57
59
      # If matrix shapes are not compatible return None
       if (A. shape [1] != b. shape [0]):
           return None
61
      A_{dot_b} = np.empty([A.shape[0]])
63
      A_{-}dot_{-}b[:] = 0 # Initialize entries of the new vector to zero
65
      for i, row_A in enumerate(A):
           for j, val_b in enumerate(b):
67
               A_dot_b[i] += row_A[j] * val_b
69
      return A_dot_b
71
73 def vector_to_diag(b):
      :type b: np.array([float])
75
      :rtype: np.array([float])
77
```

```
diag_b = np.empty([b.shape[0], b.shape[0]])
79
       \operatorname{diag_b}[:] = 0
                       # Initialize the entries to zero
81
       for i, val in enumerate(b):
           diag_b[i, i] = val
83
       return diag_b
85
87 def generate_positive_semidef(order, seed=0):
       :type order: int
89
       :type seed: int
       :rtype: np.array([float])
91
93
       np.random.seed(seed)
       A = np.random.randn(order, order)
       A = matrix_dot_matrix(A, matrix_transpose(A))
97
       # TODO: Replace matrix_rank with a custom function
       from numpy.linalg import matrix_rank
99
       if matrix_rank(A) != order:
           print("WARNING: Matrix is singular!", end="\n\n")
101
103
       return A
        Listing 1. utils.py
```

```
# Choleski Decomposition
  # Author: Mido Assran
5 # Date: 30, September, 2016
  # Description: CholeskiDecomposition solves the linear system of equations:
7 # Ax = b by decomposing matrix A using Choleski factorization and using
  # forward and backward substitution to determine x. Matrix A must
9 # be symmetric, real, and positive definite.
11 import random
  import timeit
13 import numpy as np
  from utils import matrix_transpose
  DEBUG = True
17
  class CholeskiDecomposition (object):
19
      def __init__(self):
           if DEBUG:
21
              np.core.arrayprint._line_width = 200
23
      def solve (self, A, b, band=None):
25
           :type A: np.array([float])
          :type b: np.array([float])
27
          :type band: int
           :rtype: np.array([float])
29
31
           start_time = timeit.default_timer()
33
          # If the matrix, A, is banded, leverage that!
           if band is not None:
35
               self._band = band
37
          # If the matrix, A, is not square, exit
```

```
39
           if A. shape [0] != A. shape [1]:
               return None
41
          n = A. shape [1]
43
45
          # Simultaneous Choleski factorization of A and chol-elimination
47
          # Choleski factorization & forward substitution
          for j in range(n):
49
51
              # If the matrix A is not positive definite, exit
              if A[j,j] <= 0:
                  return None
53
              A[j,j] = A[j,j] ** 0.5
                                         # Compute the j, j entry of chol(A)
55
              b[j] /= A[j,j]
                                         # Compute the j entry of forward-sub
57
               for i in range (j+1, n-1):
59
                   if i == self._band:
                                         # Banded matrix optimization
                       self.\_band += 1
61
                       break
63
                   A[i,j] /= A[j,j]
                                      # Compute the i, j entry of chol(A)
                  b[i] -= A[i,j] * b[j] # Look ahead modification of b
65
                   if A[i,j] == 0:
                                         # Optimization for matrix sparsity
67
                       continue
69
                   # Look ahead moidification of A
                   for k in range (i+1, i+1):
71
                      A[i,k] = A[i,j] * A[k,j]
73
              # Perform computation for the test source
75
              if (j != n-1):
                  A[n-1,j] /= A[j,j]
                                           # Compute source entry of chol(A)
                  b[n-1] = A[n-1,j] * b[j] # Look ahead modification of b
77
```

```
# Look ahead moidification of A
                      for k in range (j+1, n):
79
                          A[n-1,k] -= A[n-1,j] * A[k,j]
81
83
            # Now solve the upper traingular system
85
            # Transpose(A) is the upper-tiangular matrix of chol(A)
87
            A[:] = matrix\_transpose(A)
89
            # Backward substitution
            for j in range (n - 1, -1, -1):
91
                b[j] /= A[j,j]
93
                 for i in range(i):
                     b[i] -= A[i,j] * b[j]
95
97
             elapsed_time = timeit.default_timer() - start_time
99
             if DEBUG:
                 print("Execution time:\n", elapsed_time, end="\n\n")
101
            # The solution was overwritten in the vector b
             return b
   if __name__ == "__main__":
107
        from utils import generate_positive_semidef, matrix_dot_vector
        order = 10
109
        seed = 5
111
        print("\n", end="\n")
       print ("# ______ TEST _____ #", end="\n")
print ("# _____ Choleski Decomposition _____ #", end="\n")
print ("# _____ #", end="\n\n")
113
115
        chol_d = CholeskiDecomposition()
```

```
# Create a symmetric, real, positive definite matrix.
117
       A = generate_positive_semidef(order=order, seed=seed)
119
       x = np.random.randn(order)
       b = matrix_dot_vector(A=A, b=x)
       print("A: \n", A, end="\n\n")
121
       print("x:\n", x, end="\n\n")
       print("b (=Ax): \n", b, end="\n\n")
123
       v = chol_d.solve(A=A, b=b)
125
       print("result = solve(A, b): \n", v, end="\n\n")
       print ("2-norm error:\n", np.linalg.norm(v - x), end="\n\n")
                                                   --- #", end="\n\n")
127
       print("# -----
```

Listing 2. choleski.py

```
# Linear Resistive Network Solver
  # Author: Mido Assran
5 # Date: 30, September, 2016
  # Description: LinearResistiveNetworkSolver reads a CSV description of
7 # a linear resistive network, and determines all the node voltages
  # of the circuit by constructing a linear system of equations,
9 # and solving the system using Choleski Decomposition.
11 import random
  import csv
13 import numpy as np
  from choleski import Choleski Decomposition
15 from utils import matrix_transpose, matrix_dot_matrix, matrix_dot_vector, vector_to_diag
17 DEBUG = False
19 class LinearResistiveNetworkSolver(object):
      #-----#
21
      \# A \rightarrow The matrix 'A' in the system of equations Ax = b
      \# _b \rightarrow The vector 'b' in the system of equations Ax = \_b
23
      def __init__(self, fname):
25
          :type fname: String
27
          :rtype: void
          " " "
29
          if DEBUG:
              np.core.arrayprint._line_width = 200
31
          #-----#
33
          # Program first reads branch data, then swtiches to reading the
          # incidence matrix. Flag goes high when the the program
35
          # swtiches to reading the incidence matrix.
37
          flag = False
          network_branches = []
```

```
ECSE 543 - ASSIGNMENT 1
```

```
39
           incidence\_matrix = []
           reader = csv.reader(open(fname, 'r'))
           for row in reader:
41
               if len(row) = 1 and row[0] = ".":
                   flag = True
43
                   continue
               elif len(row) == 0:
45
                   continue
               if not flag:
47
                   network_branches += [list(row)]
49
               else:
                   incidence_matrix += [list(row)]
           network_branches = np.array(network_branches, dtype=np.float64)
51
           incidence_matrix = np.array(incidence_matrix, dtype=np.float64)
          J = network_branches[:, 0]
53
          Y = vector_to_diag(1 / network_branches[:, 1])
          E = network_branches [:, 2]
55
          A = matrix_dot_matrix (A=matrix_dot_matrix (A=incidence_matrix, B=Y),
                                 B=matrix_transpose(incidence_matrix))
57
          b = matrix_dot_vector(A=incidence_matrix,
                                 b=(J - matrix_dot_vector(A=Y, b=E)))
59
           self.A = A
           self._b = b
61
           if DEBUG:
63
               temp = self.A[:] * 1e3
               print(temp.astype(int))
65
      def solve (self, band=None):
67
          :rtype: numpy.array([float64])
69
          chol_decomp = CholeskiDecomposition()
71
          # Choleski decomposition will overwrite A, and b
           return choldecomp.solve(A=self._A, b=self._b, band=band)
73
75
      @staticmethod
      def create_lrn_mesh_data(N, fname):
77
```

```
,, ,, ,,
            :type N: int
79
            :type fname: String
            :rtype: void
81
            num\_nodes = (N + 1) ** 2
83
            num_branches = 2 * (N ** 2) + 2 * N + 1
            incidence_matrix = np.empty([num_nodes, num_branches])
85
            network_branches = np.empty([num_branches, 3])
            incidence_matrix[:] = 0
87
            network_branches[:] = 0
89
            for i, row in enumerate (network_branches):
                if i = (num\_branches - 1):
91
                    network\_branches[i, :] = np.array([0, 1, 1])
93
                else:
                    network\_branches[i, :] = np.array([0, 1e3, 0])
95
            node_num = 0
97
           # Iterate through node rows of mesh
99
            for level in range (N + 1):
                # Iterate through node columns of mesh
101
                for column in range (N + 1):
                    # If the node has a left branch
                    if (\text{node_num }\% (N + 1) != 0):
105
                         left\_branch = node\_num + (level * N) - 1
                         incidence\_matrix[node\_num, left\_branch] = -1
107
                         if DEBUG:
                             print("L:", node_num, left_branch, end="\t")
109
                    # If the node has a right branch
111
                    if ((node_num + 1) \% (N + 1) != 0):
113
                         right_branch = node_num + (level * N)
                         incidence_matrix[node_num, right_branch] = 1
                         if DEBUG:
115
                             print("R:", node_num, right_branch, end="\t")
```

```
117
                    # If the node has a top branch
                    if (node_num < (num_nodes - (N + 1))):
119
                        top\_branch = node\_num + ((level + 1) * N)
121
                         incidence_matrix[node_num, top_branch] = 1
                         if DEBUG:
                             print("T:", node_num, top_branch, end="\t")
123
                    # If the node has a botom branch
125
                    if (node_num > N):
127
                        bottom\_branch = (node\_num - 1) + ((level - 1) * N)
                        incidence\_matrix[node\_num, bottom\_branch] = -1
129
                         if DEBUG:
                             print("B:", node_num, bottom_branch, end="\t")
131
                    if DEBUG:
                         print("\n")
133
                    node_num += 1
135
137
           # Add the branch of the test source
            incidence_matrix[0, -1] = -1
            incidence_matrix[-1, -1] = 1
139
           # Write data to file fname.csv
141
            fwriter = csv.writer(open(fname, 'w'))
            for i, row in enumerate (network_branches):
143
                fwriter.writerow(row)
145
           # Write a period to separate network_branches from
           # the incidence_matrix
147
            fwriter.writerow(".")
149
            for i, row in enumerate(incidence_matrix):
                fwriter.writerow(row)
151
153
   if -name_{-} = "-main_{-}":
       print("\n", end="\n")
155
```

```
      print ("# — _______ TEST — _______ #", end="\n")

      print ("# — ______ Linear Resistive Network Solver — #", end="\n")

      print ("# — ______ Manual CSV Data — #", end="\n")

      print ("# — ______ #", end="\n")

157
159
           lrn = LinearResistiveNetworkSolver("data/test_c1.csv")
            voltages = lrn.solve()
161
            print("Voltages:", end="\n")
            for i, v in enumerate (voltages):
163
                  print(" Node", i, end=": ")
                  print(v, "Volts", end="\n")
165
            print("\n", end="\n")
167

      print ("# — ______ TEST — _____ #", end="\n")

      print ("# — _____ Linear Resistive Network Solver — #", end="\n")

      print ("# — _____ Finite Difference Mesh — #", end="\n")

      print ("# — _____ #", end="\n\n")

      new_fname = "data/test_save.csv"

169
171
173
           print ("Mesh size:\n", N, "x", N, end="\n")
           LinearResistiveNetworkSolver.create_lrn_mesh_data(N=N, fname=new_fname)
           lrn = LinearResistiveNetworkSolver(new_fname)
            voltages = lrn.solve(band=N+2)
177
           r_eq = (voltages[0] - voltages[-1])/(1 - (voltages[0] - voltages[-1]))
            print("Resistance:\n", r_eq, "Ohms", end="\n\n")
179
```

Listing 3. lrn_solver.py

INNER_COORDINATES = (0.06, 0.08)INNER_HALF_DIMENSIONS = (0.04, 0.02)CONDUCTOR_POTENTIAL = 1.1e2

Listing 4. conductor_description.py

```
# Finite Difference Potential Solver
  # Author: Mido Assran
5 # Date: Oct. 8, 2016
  # Description: FiniteDifferencePotentialSolver determines the electric
7 # potential at all points in a finite difference mesh of a coax using
  # one of two methods (SOR or Jacobi).
  import random
11 import numpy as np
  from conductor_description import *
13
  DEBUG = False
15
  class FiniteDifferencePotentialSolver(object):
17
      :-----Instance Variables ----:
19
      :type _h: float -> The inter-mesh node spacing
21
      :type _num_x_points: float -> Number of mesh points in the x direction
      :type _num_y_points: float -> Number of mesh points in the y direction
      :type _potentials: np.array([float]) -> Electric potential at nodes
23
25
      def __init__(self, h):
27
          :type h: float
          :rtype: void
29
31
          np.core.arrayprint._line_width = 200
33
          self._h = h
35
          x_midpoint = INNER_COORDINATES[0] + INNER_HALF_DIMENSIONS[0]
          y_midpoint = INNER_COORDINATES[1] + INNER_HALF_DIMENSIONS[1]
37
           self.\_num\_x\_points = int(x\_midpoint / h + 1)
```

```
self.\_num\_v\_points = int(v\_midpoint / h + 1)
39
          # Matrices used to store unequal node spacing descriptions
41
           self._right_spacing_matrix = np.empty((self._num_x_points - 1, self._num_y_points))
           self._left_spacing_matrix = np.empty((self._num_x_points - 1, self._num_v_points))
43
           self._bottom_spacing_matrix = np.empty((self._num_x_points, self._num_y_points - 1))
           self._top_spacing_matrix = np.empty((self._num_x_points, self._num_y_points - 1))
45
                                                                                                              NUMERICAL METHODS
          # Create equal node spacings
47
           self._right_spacing_matrix[:] = 1
49
           self._left_spacing_matrix[:] = 1
           self._top_spacing_matrix[:] = 1
           self._bottom_spacing_matrix[:] = 1
          ## Create unequal row spacings
          \# normalizer_x = self._num_x_points - 0; normalizer_y = self._num_y_points - 3.5
          # self.create_unequal_node_spacing_matrix_row(self._right_spacing_matrix, x_midpoint, normal|zer_x)
55
          # self._left_spacing_matrix[:] = self._right_spacing_matrix[:]
          ## Create unequal column spacings
          # self.create_unequal_node_spacing_matrix_column(self._bottom_spacing_matrix, y_midpoint, not malizer_y)
          # self._top_spacing_matrix[:] = self._bottom_spacing_matrix[:]
59
                                                                                                              ECSE
          # Create boundaries for unequal spacing matrices
61
          z = np.emptv((1, self.-num-v-points))
                                                                                                              543 -
63
          z[:] = self.\_right\_spacing\_matrix[-1, 0]
           self._right_spacing_matrix = np.append(self._right_spacing_matrix, z, axis=0)
           self._left_spacing_matrix = np.append(z, self._left_spacing_matrix, axis=0)
65
                                                                                                             ASSIGNMENT
          z = np.empty((self._num_x_points, 1))
          z[:] = self.\_top\_spacing\_matrix[0, -1]
67
           self._top_spacing_matrix = np.append(self._top_spacing_matrix, z, axis=1)
           self._bottom_spacing_matrix = np.append(z, self._bottom_spacing_matrix, axis=1)
69
          # Initialize potentials matrix according to the boundary conditions
71
           potentials = np.empty((self._num_x_points, self._num_y_points))
           potentials [:] = 0
73
          for i in range(self._num_x_points):
75
               for j in range (self._num_y_points):
                   coordinates = self.map_indices_to_coordinates((i,j))
                                                                                                             35
                   # If in conductor set potential to conductor potential
77
```

```
if ((coordinates [0] >= INNER_COORDINATES [0])
                    and (coordinates [1] >= INNER_COORDINATES [1])):
79
                        potentials[i, j] = CONDUCTOR_POTENTIAL
            self._potentials = potentials
81
            if DEBUG:
83
                print(self._right_spacing_matrix)
               # for i in range(self._num_x_points):
85
                      for j in range(self._num_y_points):
               #
                          print(self.map_indices_to_coordinates((i,j)))
 87
89
       def create_unequal_node_spacing_matrix_column(self, fill_in_matrix,
91
                                                        edge_length, normalizer):
            ""
93
            :type fill_in_matrix: np.array([float])
            :rtype: void
 95
            for i in range (fill_in_matrix.shape [1]):
97
                column = fill_in_matrix[:, i]
99
                normalizer = normalizer
                sum_sub_column = (((len(column) * (len(column) + 1)) / 2) - len(column)) / normalizer
101
                column[:] = np.array([i / normalizer for i in range(len(column), 0, -1)])
               # Rebalance the first element in the row to make sure node
               # spacing still spans the physical size of the structure
                column[0] = (edge\_length - sum\_sub\_column * self.\_h) / self.\_h
107
       def create_unequal_node_spacing_matrix_row(self, fill_in_matrix,
109
                                                     edge_length, normalizer):
            ,, ,, ,,
111
            :type fill_in_matrix: np.array([float])
113
            :rtype: void
            for i, row in enumerate (fill_in_matrix):
115
                normalizer = normalizer
```

```
117
                sum_sub_row = (((len(row) * (len(row) + 1)) / 2) - len(row)) / normalizer
               # Create smaller mesh spacing towards the end of the row, and
119
               # larger towards the beginning
               row[:] = np.array([i / normalizer for i in range(len(row), 0, -1)])
121
               # Rebalance the first element in the row to make sure node
123
               # spacing still spans the physical size of the structure
               row[0] = (edge\_length - sum\_sub\_row * self._h) / self._h
125
127
       # Helper function converts node indices to locations in the mesh
       def map_indices_to_coordinates(self, indices):
129
           :type indices: (int, int)
131
           :rtype: (float, float)
133
           x, y = 0, 0
           for i in range (indices [0]):
135
               x += self._right_spacing_matrix[0, i]
           x *= self._h
137
           for i in range (indices [1]):
139
               y += self.\_top\_spacing\_matrix[i, 0]
141
           y = self.h
           coordinates = (x, y)
143
           return coordinates
145
       # Helper function that converts node locations in the mesh to indices
147
       def map_coordinates_to_indices (self, coordinates):
149
           :type coordinates: (float, float)
           :rtype: (int, int)
151
153
           i, j = 0, 0
           x, y = 0, 0
155
```

```
while (coordinates [0] - x) > (0.5 * self._h * self._right_spacing_matrix [i, 0]):
             x += self._right_spacing_matrix[i, 0] * self._h
157
             i += 1
159
          while (coordinates [1] - y) > (0.5 * self.h * self.top_spacing_matrix [i, 0]):
             y \leftarrow self.top_spacing_matrix[0, j] * self.h
161
             i += 1
163
         indices = (i, j)
         return indices
165
167
      # Solve for potentials using Successive Over Relaxation
      def solve_sor(self, max_residual, omega=1.5):
169
171
         :type max_residual: float
         :type omega: float
         :rtype: (int, np.array([float]))
173
175
         if DEBUG:
             177
             print ("# Using Successive Over Relaxation Method:", end="\n")
             179
             if omega == 1:
181
                                             ------ #", end ="\n")
                print ("# -
                print("# Warning, method reduced to Gauss-Seidl", end="\n")
183
                185
         residual = np.empty((self._num_x_points, self._num_y_points))
          condition = True
187
         itr = 0
189
         while condition:
191
             itr += 1
193
            # Update the potentials
```

```
for j in range(self._num_y_points):
197
                                                         # If at a defined point (held at a fixed potential),
                                                         # skip updating this node.
199
                                                          coordinates = self.map_indices_to_coordinates((i,j))
                                                          if ((i = 0) \text{ or } (j = 0))
201
                                                          or ((coordinates [0] >= INNER_COORDINATES [0])
                                                         and (coordinates [1] >= INNER_COORDINATES [1]))):
203
                                                                   continue
205
                                                         # Determine adjacent node values: if at boundary
                                                         # apply boundary conditions, else just get
207
                                                        # adjacent node values
                                                         top, bottom, left, right = 0, 0, 0, 0
209
                                                          if (j + 1) >= self.\_num\_y\_points:
                                                                   top = self._potentials[i, j - 1]
211
                                                          else:
                                                                   top = self._potentials[i, j + 1]
213
                                                          if (i + 1) >= self.\_num\_x\_points:
                                                                   right = self.potentials[i - 1, j]
215
                                                          else:
                                                                   right = self._potentials[i + 1, j]
217
                                                          if (i - 1) < 0:
                                                                   left = 0
219
                                                          else:
                                                                   left = self._potentials[i - 1, j]
221
                                                          if (j - 1) < 0:
                                                                   bottom = 0
223
                                                          else:
                                                                   bottom = self.potentials[i, j - 1]
225
                                                        # Determine the constants induced by unequal node
227
                                                         # spacings (will cancel out if spacings are equal).
                                                         # << Dervied from the formula discussed in class >>
229
                                                         c_{top}, c_{tot}, c_{tot},
231
                                                          sp_t = self._top_spacing_matrix[i, j]
                                                          sp_b = self._bottom_spacing_matrix[i, j]
                                                          sp_l = self._left_spacing_matrix[i, j]
233
```

for i in range (self._num_x_points):

195

```
sp_r = self._right_spacing_matrix[i, j]
                          c_center = \
235
                          1 + (sp_l / sp_r) \setminus
                         + ((sp_l * (sp_l + sp_r)) \setminus
237
                          / (sp_t * (sp_t + sp_b))) \setminus
                         + ((sp_l * (sp_l + sp_r)) \setminus
239
                          / (sp_b * (sp_t + sp_b)))
                          c_left = 1
241
                          c_right = (sp_l / sp_r)
                          c\_bottom = \
243
                          ((sp_l * (sp_l + sp_r)) \setminus
                          / (sp_t * (sp_t + sp_b)))
245
                          c\_top = \
                          ((sp_l * (sp_l + sp_r)) \setminus
247
                          / (sp_b * (sp_t + sp_b)))
249
                         # Perform update of potential
                          gauss_seidl = \
251
                          (1.0 / c_center) \setminus
                          * (c_top * top \
253
                         + c_bottom * bottom \
255
                         + c_left * left \
                         + c_right * right)
                          self._potentials[i, j] = \
257
                          (1 - omega) * self._potentials[i, j] \
                         + omega * gauss_seidl
259
261
                # Update the residual
                 for i in range (self._num_x_points):
263
                     for j in range (self._num_y_points):
265
                         # If at a defined point (held at a fixed potential),
                         # skip computing this residual and fix at zero
267
                          coordinates = self.map_indices_to_coordinates((i,j))
269
                          if ((i = 0) \text{ or } (j = 0))
                          or ((coordinates[0] >= INNER\_COORDINATES[0])
                          and (coordinates [1] >= INNER_COORDINATES [1]))):
271
                              residual[i, j] = 0
```

```
# Determine adjacent node values: if at boundary apply
275
                                                            # boundary conditions, else just get adjacent
                                                            # node values.
277
                                                             top, bottom, left, right = 0, 0, 0
                                                             if (i + 1) >= self.\_num\_v\_points:
279
                                                                        top = self.potentials[i, j - 1]
                                                             else:
281
                                                                        top = self._potentials[i, j + 1]
                                                             if (i + 1) >= self.\_num\_x\_points:
283
                                                                        right = self._potentials[i - 1, j]
285
                                                             else:
                                                                        right = self._potentials[i + 1, j]
                                                             if (i - 1) < 0:
287
                                                                        left = 0
                                                             else:
289
                                                                        left = self.potentials[i - 1, j]
                                                             if (j - 1) < 0:
291
                                                                        bottom = 0
                                                             else:
293
                                                                        bottom = self._potentials[i, j - 1]
295
                                                            # Determine the constants induced by unequal node
                                                            # spacings (will cancel out if spacings are equal)
297
                                                             c_{top}, c_{top},
                                                             sp_t = self._top_spacing_matrix[i, j]
299
                                                             sp_b = self._bottom_spacing_matrix[i, j]
                                                             sp_l = self._left_spacing_matrix[i, j]
301
                                                             sp_r = self._right_spacing_matrix[i, j]
                                                             c_center = \
303
                                                             1 + (sp_l / sp_r)
                                                            + ((sp_l * (sp_l + sp_r)) \setminus
305
                                                             / (sp_t * (sp_t + sp_b))) \setminus
                                                            + ((sp_l * (sp_l + sp_r)) \setminus
307
                                                             / (sp_b * (sp_t + sp_b)))
309
                                                             c_left = 1
                                                             c_right = (sp_l / sp_r)
                                                             c_bottom = \
311
```

continue

273

```
((sp_l * (sp_l + sp_r)) \setminus
                        / (sp_t * (sp_t + sp_b))
313
                        c_top = 
                         ((sp_l * (sp_l + sp_r)) \setminus
315
                        / (sp_b * (sp_t + sp_b)))
317
                        # Perform update of residual
                        residual[i, j] = \
319
                        c_top * top \
                        + c_bottom * bottom \
321
                        + c_left * left \
                        + c_right * right \
323
                        - c_center * self._potentials[i, j]
325
                if DEBUG:
327
                    print (self._potentials.astype(int), end="\n")
329
                # Whether or not the residual has become small enough to stop the process
                condition = not(np. all(residual \le max_residual))
331
333
            return (itr, self._potentials)
335
       # Solve for potentials using Jacobi method
       def solve_jacobi(self, max_residual):
337
            :type max_residual: float
339
            :rtype: (int, np.array([float]))
341
            if DEBUG:
343
                                                #", end ="\n")
                print ("# —
                print("# Solving using Jacobi Method:", end="\n")
print("# _______ #", end ="\n\n")
345
347
            temp = np.empty((self._num_x_points, self._num_y_points))
            residual = np.empty((self._num_x_points, self._num_y_points))
349
            condition = True
```

```
while condition:
353
                itr += 1
355
                # Update the potentials
357
                for i in range (self._num_x_points):
                    for j in range (self._num_y_points):
359
                        # If at a defined point (held at a fixed potential),
361
                        # skip updating this node
363
                         coordinates = self.map_indices_to_coordinates((i,j))
                         if ((i = 0) \text{ or } (j = 0))
                         or ((coordinates [0] >= INNER_COORDINATES [0])
365
                         and (coordinates [1] >= INNER_COORDINATES [1]))):
                             temp[i, j] = self._potentials[i, j]
367
                             continue
369
                        # Determine adjacent node values: if at boundary apply
                        # boundary conditions, else just get adjacent
371
                        # node values
                         top, bottom, left, right = 0, 0, 0
373
                         if (j + 1) >= self.\_num\_y\_points:
                             top = self.potentials[i, j-1]
375
                         else:
                             top = self._potentials[i, j + 1]
377
                         if (i + 1) >= self.\_num\_x\_points:
                             right = self.potentials[i - 1, j]
379
                         else:
                             right = self._potentials[i + 1, j]
381
                         if (i - 1) < 0:
                             left = 0
383
                         else:
                             left = self._potentials[i - 1, j]
385
                         if (j - 1) < 0:
387
                             bottom = 0
                         else:
                             bottom = self.potentials[i, j - 1]
389
```

itr = 0

351

```
# Determine the constants induced by unequal node
391
                                                              # spacings (will cancel out if spacings are equal)
                                                               c_{top}, c_{top},
393
                                                               sp_t = self.top_spacing_matrix[i, j]
                                                               sp_b = self._bottom_spacing_matrix[i, j]
395
                                                               sp_l = self._left_spacing_matrix[i, j]
                                                               sp_r = self._right_spacing_matrix[i, j]
397
                                                               c\_center = \
                                                               1 + (sp_l / sp_r) \setminus
399
                                                              + ((sp_l * (sp_l + sp_r)) \setminus
                                                               / (sp_t * (sp_t + sp_b))) \setminus
 401
                                                              + ((sp_l * (sp_l + sp_r)) \setminus
                                                               / (sp_b * (sp_t + sp_b)))
 403
                                                               c_left = 1
                                                               c_right = (sp_l / sp_r)
 405
                                                               c\_bottom = \
                                                               ((sp_l * (sp_l + sp_r)) \setminus
 407
                                                               / (sp_t * (sp_t + sp_b)))
                                                               c_top = 
 409
                                                               ((sp_l * (sp_l + sp_r)) \setminus
411
                                                               / (sp_b * (sp_t + sp_b)))
                                                              # Perform update of potentials
413
                                                               temp[i, j] = \setminus
                                                               (1.0 / c_center) \setminus
415
                                                               * (c_top * top \
                                                              + c_bottom * bottom \
417
                                                              + c_left * left \
                                                              + c_right * right)
419
                                        # Only update global potentials here to ensure that the updates
 421
                                        # are performed using values at the same iteration
                                         self._potentials[:] = temp[:]
 423
                                        # Update the residual
 425
                                         for i in range (self._num_x_points):
                                                    for j in range (self._num_y_points):
 427
```

```
ECSE 543 - ASSIGNMENT 1
```

```
429
                                                       # If at a defined point (held at a fixed potential),
                                                        # skip computing this residual and fix at zero
                                                        coordinates = self.map_indices_to_coordinates((i,j))
431
                                                        if ((i = 0) \text{ or } (j = 0))
                                                        or ((coordinates [0] >= INNER_COORDINATES [0])
433
                                                        and (coordinates[1] >= INNER_COORDINATES[1])):
                                                                  residual[i, j] = 0
435
                                                                  continue
437
                                                        # Determine adjacent node values: if at boundary apply
                                                        # boundary conditions, else just get adjacent node
439
                                                        # values.
                                                        top, bottom, left, right = 0, 0, 0
441
                                                        if (i + 1) >= self._num_y_points:
                                                                  top = self._potentials[i, j-1]
443
                                                        else:
                                                                  top = self._potentials[i, j + 1]
445
                                                        if (i + 1) >= self._num_x_points:
                                                                  right = self._potentials[i - 1, j]
447
                                                        else:
                                                                  right = self._potentials[i + 1, j]
449
                                                        if (i - 1) < 0:
                                                                  left = 0
451
                                                        else:
                                                                  left = self.potentials[i - 1, j]
453
                                                        if (j - 1) < 0:
                                                                  bottom = 0
455
                                                        else:
                                                                  bottom = self.potentials[i, j - 1]
457
                                                        # Determine the constants induced by unequal node
459
                                                        # spacings (will cancel out if spacings are equal)
                                                        c_{top}, c_{top},
461
                                                        sp_t = self._top_spacing_matrix[i, j]
                                                        sp_b = self._bottom_spacing_matrix[i, j]
463
                                                        sp_l = self._left_spacing_matrix[i, j]
465
                                                        sp_r = self._right_spacing_matrix[i, j]
                                                        c\_center = \
                                                        1 + (sp_l / sp_r) \setminus
467
```

```
+ ((sp_l * (sp_l + sp_r)) \setminus
                         / (sp_t * (sp_t + sp_b))) \setminus
469
                         + ((sp_l * (sp_l + sp_r)) \setminus
                         / (sp_b * (sp_t + sp_b)))
471
                         c_left = 1
                         c_right = (sp_l / sp_r)
473
                         c_bottom = \
                         ((sp_l * (sp_l + sp_r)) \setminus
475
                         / (sp_t * (sp_t + sp_b)))
                         c_{top} = \
477
                         ((sp_l * (sp_l + sp_r)) \setminus
                         / (sp_b * (sp_t + sp_b)))
479
481
                         # Perform update of residual
                         residual[i, j] = \
483
                         c_top * top \
                         + c_bottom * bottom \
485
                         + c_left * left \
                         + c_right * right \
487
                         - c_center * self._potentials[i, j]
489
                if DEBUG:
491
                     print (self._potentials.astype(int), end="\n")
493
                # Whether or not the residual has become small enough to stop
                condition = not(np. all(residual \le max_residual))
495
497
            return (itr, self._potentials)
499 if __name__ == "__main__":
        fndps = FiniteDifferencePotentialSolver(h=0.0025)
       num_itr, potentials = fndps.solve_jacobi(max_residual=1e-5)
       # num_itr, potentials = fndps.solve_sor(max_residual=1e-5, omega=1.3)
503
       indices = fndps.map\_coordinates\_to\_indices((0.06, 0.04))
       p = potentials [indices]
        print("num_itr:\n", num_itr, end="\n\n")
505
        print(fndps.map_indices_to_coordinates(indices), p)
```

507

ECSE 543 - ASSIGNMENT 1