CS103 Problem Set 6 (Written)

Matthew Phonchay Vilaysack, Maria Shan Wang

TOTAL POINTS

22 / 23

QUESTION 1

- 1\$\$\wp(\Sigma^\star)\$\$ 1/2
 - + 2 pts Correct
 - √ + 1 pts Mostly Correct
 - + 0 pts Incorrect
 - 1 set of string = language

QUESTION 2

Much Ado About Nothing, Part II 6 pts

- 2.1 \$\$\varepsilon \in L\$\$? 1/1
 - √ + 1 pts Correct
 - + 0 pts Incorrect/missing
- 2.2 \$\$\varepsilon \not\in L\$\$? 1/1
 - √ + 1 pts Correct
 - + 0 pts Incorrect/missing
- 2.3 \$\$\varepsilon \subseteq L\$\$? 1/1
 - √ + 1 pts Correct
 - + 0 pts Incorrect/missing
- 2.4 \$\$\varepsilon \not\subseteq L\$\$? 1/1
 - √ + 1 pts Correct
 - + 0 pts Incorrect/missing
- 2.5 \$\$\phi = \varepsilon\$\$? 1/1
 - √ + 1 pts Correct
 - + 0 pts Incorrect/missing
- 2.6 \$\$\phi \neq \varepsilon\$\$? 1/1
 - √ + 1 pts Correct
 - + 0 pts Incorrect/missing

QUESTION 3

3 Hard Resets 5/5

- √ + 5 pts all correct
 - + 0 pts missing

Automata

- + 3 pts Correct
- + 2 pts Mostly correct
- + 1 pts Partially correct
- + 0 pts Incorrect

Reset string

- + 2 pts Correct
- + 1 pts Partially correct
- + 0 pts Incorrect

QUESTION 4

Concatenation, Kleene Stars, and Complements 10 pts

4.1 Cardinalities of Powers 5 / 5

Intuition Scale

- √ + 2 pts Correct
 - + 1 pts Partially correct intuition
 - + 0 pts Incorrect

Execution Scale

- √ + 3 pts Correct
 - + 2 pts Minor execution error
 - + 1 pts Major execution error
 - + 0 pts Incorrect

4.2 Stars and Stripes 5/5

√ + 5 pts Fully correct

Intuition Scale

- + 2 pts Correct
- + 1 pts Partially correct intuition
- + 0 pts Incorrect

Execution Scale

- + 3 pts Correct
- + 2 pts Minor execution error
- + 1 pts Major execution error
- + **0 pts** Incorrect
- + **0 pts** Incorrect

QUESTION 5

5 Optional Fun Problem: Why Finite? o / o

- + **0 pts** Correct! Congratulations!!
- √ + 0 pts Incorrect / Not attempted

Problem Three: $\wp(\Sigma^*)$

$1 $\sup(\Sigma^{\ }) $1/2$

- + 2 pts Correct
- √ + 1 pts Mostly Correct
 - + **0 pts** Incorrect
- 1 set of string = language

i.

Yes, for example: $L = \{w \in \{a\}^* | w \text{ contains less than five } a$'s}

ii.

Yes, for example: $L = \{w \in \{a\}^* | w \text{ contains } aa \text{ as a substring } \}$

iii.

No. ε is a transition that does not consume any input but is part of a language L. It represents the empty string. It is not a set and therefore, it cannot be a subset of L.

iv.

Yes, for example: $L = \{w \in \{a, b\}^* | w \text{ contains } ab \text{ as a substring } \}$

v.

No. ε is not a set and therefore cannot be the empty set.

vi.

2.1 \$\$\varepsilon \in L\$\$? 1/1

- √ + 1 pts Correct
 - + 0 pts Incorrect/missing

i.

Yes, for example: $L = \{w \in \{a\}^* | w \text{ contains less than five } a$'s}

ii.

Yes, for example: $L = \{w \in \{a\}^* | w \text{ contains } aa \text{ as a substring } \}$

iii.

No. ε is a transition that does not consume any input but is part of a language L. It represents the empty string. It is not a set and therefore, it cannot be a subset of L.

iv.

Yes, for example: $L = \{w \in \{a, b\}^* | w \text{ contains } ab \text{ as a substring } \}$

v.

No. ε is not a set and therefore cannot be the empty set.

vi.

2.2 $\$ \varepsilon \not\in L\$\$? 1/1

- √ + 1 pts Correct
 - + 0 pts Incorrect/missing

i.

Yes, for example: $L = \{w \in \{a\}^* | w \text{ contains less than five } a$'s}

ii.

Yes, for example: $L = \{w \in \{a\}^* | w \text{ contains } aa \text{ as a substring } \}$

iii.

No. ε is a transition that does not consume any input but is part of a language L. It represents the empty string. It is not a set and therefore, it cannot be a subset of L.

iv.

Yes, for example: $L = \{w \in \{a, b\}^* | w \text{ contains } ab \text{ as a substring } \}$

v.

No. ε is not a set and therefore cannot be the empty set.

vi.

2.3 $\$ varepsilon \subseteq L\$\$? 1/1

- √ + 1 pts Correct
 - + 0 pts Incorrect/missing

i.

Yes, for example: $L = \{w \in \{a\}^* | w \text{ contains less than five } a$'s}

ii.

Yes, for example: $L = \{w \in \{a\}^* | w \text{ contains } aa \text{ as a substring } \}$

iii.

No. ε is a transition that does not consume any input but is part of a language L. It represents the empty string. It is not a set and therefore, it cannot be a subset of L.

iv.

Yes, for example: $L = \{w \in \{a, b\}^* | w \text{ contains } ab \text{ as a substring } \}$

v.

No. ε is not a set and therefore cannot be the empty set.

vi.

2.4 \$\$\varepsilon \not\subseteq L\$\$? 1/1

- √ + 1 pts Correct
 - + 0 pts Incorrect/missing

i.

Yes, for example: $L = \{w \in \{a\}^* | w \text{ contains less than five } a$'s}

ii.

Yes, for example: $L = \{w \in \{a\}^* | w \text{ contains } aa \text{ as a substring } \}$

iii.

No. ε is a transition that does not consume any input but is part of a language L. It represents the empty string. It is not a set and therefore, it cannot be a subset of L.

iv.

Yes, for example: $L = \{w \in \{a, b\}^* | w \text{ contains } ab \text{ as a substring } \}$

v.

No. ε is not a set and therefore cannot be the empty set.

vi.

2.5 \$\$\phi = \varepsilon\$\$? 1/1

- √ + 1 pts Correct
 - + 0 pts Incorrect/missing

i.

Yes, for example: $L = \{w \in \{a\}^* | w \text{ contains less than five } a$'s}

ii.

Yes, for example: $L = \{w \in \{a\}^* | w \text{ contains } aa \text{ as a substring } \}$

iii.

No. ε is a transition that does not consume any input but is part of a language L. It represents the empty string. It is not a set and therefore, it cannot be a subset of L.

iv.

Yes, for example: $L = \{w \in \{a, b\}^* | w \text{ contains } ab \text{ as a substring } \}$

v.

No. ε is not a set and therefore cannot be the empty set.

vi.

2.6 $\$ \neq \varepsilon \? 1/1

- √ + 1 pts Correct
 - + 0 pts Incorrect/missing

Problem Five: Hard Resets

Fill in the table and blank to Problem Five below.

state	а	b
$\{q_s,q_0,q_1,q_2\}$	$\{q_1,q_2\}$	$\{q_0,q_1,q_2\}$
$\{q_1,q_2\}$	$\{q_1,q_2\}$	$\{q_0,q_2\}$
$\{q_0,q_1,q_2\}$	$\{q_1,q_2\}$	$\{q_0,q_1,q_2\}$
$\{q_0,q_2\}$	$\{q_1,q_2\}$	$\{q_0,q_1\}$
$\{q_0,q_1\}$	$\{q_1\}$	$\{q_1,q_2\}$
$\{q_1\}$	$\{q_1\}$	$\{q_2\}$
$\{q_2\}$	$\{q_2\}$	$\{q_0\}$
$\{q_0\}$	$\{q_1\}$	$\{q_1\}$

Sample hard reset string: "abbabb".

3 Hard Resets 5/5

- √ + 5 pts all correct
 - + **0 pts** missing

Automata

- + 3 pts Correct
- + 2 pts Mostly correct
- + 1 pts Partially correct
- + **0 pts** Incorrect

Reset string

- + 2 pts Correct
- + 1 pts Partially correct
- + **0 pts** Incorrect

Problem Seven: Concatenation, Kleene Stars, and Complements

i.

Claim: If L is a nonempty, finite language and k is a positive natural number, then $|L|^k = |L^k|$. Disproof: We will prove the negation of this claim, specifically: there exists a nonempty, finite language L and a positive natural number k such that $|L|^k \neq |L^k|$. To see this, let $L = \{a, aa\}$ where $|L| = 2\}$ and let k = 2. We see that |L| = 2 and $|L|^2 = 4$. However $L^2 = \{aa, aaa, aaaa\}$ and $|L^2| = 3$. We have found a nonempty, finite language L and a positive natural number k such that $|L|^k \neq |L^k|$, as required.

ii.

Claim: There is a language L where $\overline{(L^*)} = (\overline{L})^*$ Disproof: We will prove the negation of this claim, specifically: for any language L, $\overline{(L^*)} \neq (\overline{L})^*$ To see this, pick any language L. We know that $\varepsilon \in L^*$ by definition of the Kleene Closure. Therefore $\varepsilon \notin \overline{(L^*)}$ by definition of the complement of a language. However the Kleene Closure of \overline{L} will contain ε by definition of the Kleene Closure, that is, $\varepsilon \in (\overline{L})^*$. We have found an element, namely ε , where $\varepsilon \notin \overline{(L^*)}$ and $\varepsilon \in (\overline{L})^*$, therefore $\overline{(L^*)} \neq (\overline{L})^*$, as required.

4.1 Cardinalities of Powers 5 / 5

Intuition Scale

- √ + 2 pts Correct
 - + 1 pts Partially correct intuition
 - + **0 pts** Incorrect

Execution Scale

- √ + 3 pts Correct
 - + 2 pts Minor execution error
 - + 1 pts Major execution error
 - + **0 pts** Incorrect

Problem Seven: Concatenation, Kleene Stars, and Complements

i.

Claim: If L is a nonempty, finite language and k is a positive natural number, then $|L|^k = |L^k|$. Disproof: We will prove the negation of this claim, specifically: there exists a nonempty, finite language L and a positive natural number k such that $|L|^k \neq |L^k|$. To see this, let $L = \{a, aa\}$ where $|L| = 2\}$ and let k = 2. We see that |L| = 2 and $|L|^2 = 4$. However $L^2 = \{aa, aaa, aaaa\}$ and $|L^2| = 3$. We have found a nonempty, finite language L and a positive natural number k such that $|L|^k \neq |L^k|$, as required.

ii.

Claim: There is a language L where $\overline{(L^*)} = (\overline{L})^*$ Disproof: We will prove the negation of this claim, specifically: for any language L, $\overline{(L^*)} \neq (\overline{L})^*$ To see this, pick any language L. We know that $\varepsilon \in L^*$ by definition of the Kleene Closure. Therefore $\varepsilon \notin \overline{(L^*)}$ by definition of the complement of a language. However the Kleene Closure of \overline{L} will contain ε by definition of the Kleene Closure, that is, $\varepsilon \in (\overline{L})^*$. We have found an element, namely ε , where $\varepsilon \notin \overline{(L^*)}$ and $\varepsilon \in (\overline{L})^*$, therefore $\overline{(L^*)} \neq (\overline{L})^*$, as required.

4.2 Stars and Stripes 5 / 5

√ + 5 pts Fully correct

Intuition Scale

- + 2 pts Correct
- + 1 pts Partially correct intuition
- + **0 pts** Incorrect

Execution Scale

- + 3 pts Correct
- + 2 pts Minor execution error
- + 1 pts Major execution error
- + **0 pts** Incorrect
- + **0 pts** Incorrect

5 Optional Fun Problem: Why Finite? o / o

+ O pts Correct! Congratulations!!

√ + 0 pts Incorrect / Not attempted

CS 103: Mathematical Foundations of Computing Problem Set #6

Maria Wang and Matthew Vilaysack

May 13, 2022

Due Friday, November 5 at 2:30 pm Pacific

Do not put your answers to Problems 1, 2, and 7 in this file. You'll submit those separately on Gradescope. Here's a quick reference of symbols you may want to use in this problem set.

- Alphabets are written as Σ .
- The set of all strings over Σ is denoted Σ^*
- The empty string is written as ε . The "var" here refers to a "variant" of the letter epsilon; that's the one we use in this class.
- Subscripts are done as is q_{137} ; superscripts are done as a^{137} .
- You can make text render like a typewriter in text mode or in math mode.
- The Greek letter ρ appears in Q6.
- The Greek letter δ appears in Q7.