

A Voltaic Cell

Standard Hydrogen Electrode (SHE)

TABLE 19.1 Standard Electrode Potentials at 25 °C				
Reduction Half-Reaction			E°(V)	
Stronger oxidizing agent	F ₂ (g) + 2 e ⁻	2 F⁻(aq)	2.87	Weaker reducing agent
	$H_2O_2(aq) + 2 H^+(aq) + 2 e^-$	2 H ₂ O(I)	1.78	
	$PbO_2(s) + 4 H^+(aq) + SO_4^{2-}(aq) + 2 e^-$	\longrightarrow PbSO ₄ (s) + 2 H ₂ O(I)	1.69	
	MnO ₄ ⁻ (aq) + 4 H ⁺ (aq) + 3 e ⁻	\longrightarrow MnO ₂ (s) + 2 H ₂ O(I)	1.68	
	MnO ₄ ⁻ (aq) + 8 H ⁺ (aq) + 5 e ⁻	\longrightarrow Mn ²⁺ (aq) + 4 H ₂ O(I)	1.51	
	Au ³⁺ (aq) + 3 e ⁻	→ Au(s)	1.50	
	$PbO_2(s) + 4 H^+(aq) + 2 e^-$	$\longrightarrow Pb^{2+}(aq) + 2 H_2O(l)$	1.46	
	Cl ₂ (g) + 2 e ⁻		1.36	
	$Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6 e^-$	\longrightarrow 2 Cr ³⁺ (aq) + 7 H ₂ O(I)	1.33	
	$O_2(g) + 4 H^+(aq) + 4 e^-$	2 H ₂ O(<i>l</i>)	1.23	
	$MnO_2(s) + 4 H^+(aq) + 2 e^-$	\longrightarrow Mn ²⁺ (aq) + 2 H ₂ O(I)	1.21	
	$IO_3^-(aq) + 6 H^+(aq) + 5 e^-$	$\longrightarrow \frac{1}{2}I_2(aq) + 3 H_2O(l)$	1.20	
	Br ₂ (I) + 2 e ⁻		1.09	
	VO ₂ ⁺ (aq) + 2 H ⁺ (aq) + e ⁻	\longrightarrow VO ²⁺ (aq) + H ₂ O(I)	1.00	
	$NO_3^-(aq) + 4 H^+(aq) + 3 e^-$	\longrightarrow NO(g) + 2 H ₂ O(I)	0.96	
	$CIO_2(g) + e^-$	—→ CIO ₂ [−] (aq)	0.95	
	$Ag^{+}(aq) + e^{-}$	→ Ag(s)	0.80	_
	$Fe^{3+}(aq) + e^{-}$	\longrightarrow Fe ²⁺ (aq)	0.77	
	$O_2(g) + 2 H^+(aq) + 2 e^-$	\longrightarrow H ₂ O ₂ (aq)	0.70	
	MnO ₄ ⁻ (aq) + e ⁻	—→ MnO ₄ ^{2−} (aq)	0.56	
	I ₂ (s) + 2 e ⁻	2 I⁻(aq)	0.54	
	$Cu^+(aq) + e^-$	→ Cu(s)	0.52	
	$O_2(g) + 2 H_2O(I) + 4 e^-$	—→ 4 OH⁻(aq)	0.40	
	Cu ²⁺ (aq) + 2 e ⁻	→ Cu(s)	0.34	
	$SO_4^{\ 2^-}(aq) + 4 H^+(aq) + 2 e^-$	$\longrightarrow H_2SO_3(aq) + H_2O(I)$	0.20	
	$Cu^{2+}(aq) + e^{-}$	—→ Cu ⁺ (aq)	0.16	
	Sn ⁴⁺ (aq) + 2 e ⁻	\longrightarrow Sn ²⁺ (aq)	0.15	
	2 H ⁺ (aq) + 2 e ⁻	$\longrightarrow H_2(g)$	0	
	Fe ³⁺ (aq) + 3 e ⁻	→ Fe(s)	-0.036	

 \longrightarrow Pb(s)

 \longrightarrow Sn(s)

→ Ni(s)

 \longrightarrow Cd(s)

---- Fe(s)

 \longrightarrow Cr(s)

 \longrightarrow Zn(s)

 \longrightarrow Mn(s)

 \longrightarrow Al(s)

 \longrightarrow Mg(s)

→ Na(s)

---- Ca(s)

→ Ba(s)

→ K(s)

→ Li(s)

 \longrightarrow $Cr^{2+}(aq)$

 \longrightarrow H₂(g) + 2 OH⁻(aq)

 $Mg^{2+}(aq) + 2 e^{-}$ $Na^{+}(aq) + e^{-}$ $Ca^{2+}(aq) + 2 e^{-}$

 $Pb^{2+}(aq) + 2 e^{-}$

Sn2+(aq) + 2 e-

Ni²⁺(aq) + 2 e⁻

 $Cd^{2+}(aq) + 2 e^{-}$

 $Fe^{2+}(aq) + 2e^{-}$

 $Cr^{3+}(aq) + e^{-}$

Cr3+(aq) + 3 e-

 $Zn^{2+}(aq) + 2e^{-}$

2 H₂0(I) + 2 e⁻

 $Mn^{2+}(aq) + 2 e^{-}$

 $Al^{3+}(aq) + 3e^{-}$

 $Ba^{2+}(aq) + 2 e^{-}$

Weaker oxidizing agent $K^{+}(aq) + e^{-}$ $Li^{+}(aq) + e^{-}$

Stronger reducing agent

-0.13

-0.14

-0.23

-0.40 -0.45

-0.50

-0.73 -0.76

-0.83

-1.18

-1.66

-2.37

-2.71

-2.76

-2.90

-2.92

-3.04

Ex: what will be the sport run +
$$E_{coel}$$
 + cell diagram

given:

$$Ag^{+}(ag) + e^{-} \longrightarrow Ag(s) \quad E^{-} = +0.80V$$

$$Au^{3+}(ag) + 3e^{-} \longrightarrow Au(s) \quad E^{\circ} = +1.50V \times \text{more twe}$$

$$1 \times \left(Au^{3+}(ag) + 3e^{-} \longrightarrow Au(s)\right); \quad E^{\circ} = +1.50V \times \text{more twe}$$

$$3 \times \left(Ag(s) \longrightarrow Ag^{+}(ag) + e^{-} \right) \quad E^{\circ} = +0.80V \times \text{nore twe}$$

$$Au^{3+}(ag) + 3Ag(s) \longrightarrow Ag^{+}(ag) + e^{-} \times \text{end}$$

$$E^{\circ}_{coel} = E^{\circ}_{coel} + au(s) + 3Ag^{+}_{coel}$$

$$E^{\circ}_{coel} = E^{\circ}_{coel} + e^{-} \times \text{end}$$

$$E^{\circ}_{coel} = E^{\circ}_{coel} + e^{-} \times \text{end}$$

$$E^{\circ}_{coel} = +1.50V - 0.80V = +0.70V$$

$$Ag(s) Ag^{+}_{coel} = +1.50V - 0.80V = +0.70V$$

$$Au(s) Ag^{+}_{coel} = +1.50V - 0.80V = +0.70V$$

$$E^{\circ}, \Delta G^{\circ}, K$$

$$\Delta G^{\circ} = -RT M K \qquad (K >> 1, \Delta G^{\circ} < 0)$$

Physics: Electrical free energy = charge x pot-diff.

(J) (C) (V)

(coulombs (volt (unit of charge) (IV=1 1/c) Michael Faraday measured | charge on I mol ein 1800's 1 F = 96,500 C/mol (faraday) => AG = charge * voltage. es are / | charge per AG = -nFE / AG = -nFEccel DG°=-RTJnK