兰州大学 2021~2022 学年第二学期

概率论与数理统计期中考试试卷

学院:	物理科学与技术学院 专业:	物理类 年级:	
姓名:		校园卡号:	

一、选择题(每题4分,共24分)

- 1. 设A,B为随机事件,且P(B) > 0,P(A|B) = 1,则必有_____
 - (A) $P(A \cup B) > P(A)$
- (B) $P(A \cup B) > P(B)$
- (C) $P(A \cup B) = P(A)$

- (D) $P(A \cup B) = P(B)$
- 2. 以 A 表示事件"甲种产品畅销,乙种产品滞销",则其对立事件 \overline{A} 为:
 - (A)"甲种产品滞销,乙种产品畅销"。
 - (B)"甲、乙两种产品均畅销"。
 - (C)"甲种产品滞销"。
 - (D)"甲种产品滞销或乙种产品畅销"。
- 3. 设随机变量 X 服从正态分布 N(0,1) , 对给定的 $\alpha \in (0,1)$, 数 u_α 满足 $P\{X > u_\alpha\} = \alpha$, 若 $P\{|X| < x\} = \alpha$, 则 X 等于 。
 - (A) $u_{\frac{\alpha}{2}}$. (B) $u_{1-\frac{\alpha}{2}}$. (C) $u_{1-\frac{\alpha}{2}}$. (D) $u_{1-\alpha}$.
- 4. 设随机变量 $X \sim N(\mu, \sigma^2)$,则随着 σ 的增大,概率 $P(|X-\mu| < \sigma)$ 。
 - (A) 单调增大。

(B) 单调减小。

(C) 保持不变。

- (D) 增减不定。
- 5. 设随机变量 X、Y 相互独立且同分布, $P(X=-1) = P(Y=-1) = \frac{1}{2}$, $P(X=1) = P(Y=1) = \frac{1}{2}$,则下列各式成立的是
 - $(A) P(X=Y) = \frac{1}{2}$

(B) P(X = Y) = 1

(C) $P(X+Y=0) = \frac{1}{4}$

- (D) $P(XY = 1) = \frac{1}{4}$
- 6. 设两个相互独立的随机变量 X和 Y分别服从正态分布 N(0, 1) 和 N(1, 1),则____。
 - (A) $P{X + Y \le 0} = \frac{1}{2}$

(B) $P{X + Y \le 1} = \frac{1}{2}$

(C) $P{X-Y \le 0} = \frac{1}{2}$

(D) $P{X-Y \le 1} = \frac{1}{2}$

二、填空题(每空5分,共25分)

- 1. 在区间(0, 1) 中随机地取两个数,则事件"两数之和小于 $\frac{6}{5}$ "的概率为_____。
- 2. 设三次独立试验中,事件 A 出现的概率相等,若已知 A 至少出现一次的概率等于 $\frac{19}{27}$,则事件 A 在一次试验中出现的概率为
- 3. 设随机变量 ξ 在区间(1,6)上服从均匀分布,则方程 $x^2 + \xi x + 1 = 0$ 有实根的概率是__
- 4. 设 X和 Y为两个随机变量,且 $P\{X \ge 0, Y \ge 0\} = \frac{3}{7}, P\{X \ge 0\} = P\{Y \ge 0\} = \frac{4}{7}$,则 $P\{\max(X,Y) \ge 0\} = \underline{\hspace{1cm}}$ 。
- 5. 设随机变量 X 的方差为 2,则根据切比雪夫不等式估计 $P\{|X E(X)| \ge 2\} \le _____$ 。

三、解答题(4道题,共51分)

- 1. (13 分)设随机变量 X 的绝对值不大于 1, $P\{X=-1\}=\frac{1}{8}$, $p\{X=1\}=\frac{1}{4}$,在事件 $\{-1 < X < 1\}$ 出现
- 的条件下, X在(-1,1)内的任一子区间上取值的条件概率与该子区间的长度成正比。试求:
 - (1) X的分布函数 $F(x) = p\{X \le x\};$
 - (2) X取负值的概率。
- 2. (12 分)设二维随机变量(X,Y)的概率密度为

$$f(x,y) = \begin{cases} 2e^{-(x+2y)} & x > 0, y > 0 \\ 0, & \text{ 其他} \end{cases}$$

求随机变量 Z=X+2Y 的分布函数。

- 3. (15 分)设随机变量 X的概率密度为 $f(x) = \frac{1}{2}e^{-|x|}, -\infty < x < +\infty$
 - (1) 求 EX 和 DX;
 - (2) 求 X与|X|的协方差,并问 X与|X|是否不相关?
 - (3) 问 X与 | X | 是否相互独立?为什么?
- 4. (11 分)一生产线生产的产品成箱包装,每箱的重量是随机的。假设每箱平均重 50 千克,标准差为 5 千克。若用最大载重量为 5 吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于 0.977。(Φ (2)=0.977,其中 Φ (x) 是标准正态分布函数。)