Unit 063 Complext vectors - an introduction

Slide 01: In this unit, we will see a brief recap on complex numbers and introduce vectors with complex numbers as its components. Some of concepts discussed earlier for vectors in \mathbb{R}^n will now be extended to vectors in \mathbb{C}^n .

(#)

Slide 02: You probably recall that a complex number z is normally written as a+bi. Now

(#)

a is known as the real part of z while b is the imaginary part.

(#)

The modulus or absolute value of z is defined to be the square root of the sum $a^2 + b^2$.

The complex number z = a + bi has its complex conjugate \bar{z} which is a - bi.

(#)

A simple algebraic simplification will reveal that the product of z with its conjugate will give us the square of the modulus of z.

Slide 03: When we represent the complex number z = a + bi like in the figure shown here, the angle θ is known as the argument of z. You can also think of this as decomposing z into its real part and imaginary part.

(#)

From the figure it is easy to see that the real part of z is the modulus of z multiplied by $\cos(\theta)$ while the imaginary part of z is the modulus of z multiplied by $\sin(\theta)$.

(#)

Lastly, you may be familiar with the polar form of a complex number as shown here.

Slide 04: In all the previous units, we have discussed vectors in \mathbb{R}^n , where the components of a vector are all real numbers.

(#)

For example, the vector \boldsymbol{u} is a vector in \mathbb{R}^3 since each of its 3 components are real numbers.

(#)

Since complex numbers can be represented as a + bi, where i is the square root of -1,

(#)

it is a natural extension to define the set \mathbb{C}^n to be the set of all vectors \boldsymbol{v} with n components and each component is a complex number.

Slide 05: For example, the vector \boldsymbol{v} shown here is a vector in \mathbb{C}^3 . Note that the second component of \boldsymbol{v} is 3, which is real, but which can also be considered as a complex number with no imaginary part.

Slide 06: As seen previously, we can split a vector in \mathbb{C}^n into real and imaginary parts. More precisely,

(#)

if v is the vector in \mathbb{C}^n shown here,

(#)

we can rewrite v as the vector with components a_1, a_2 and so on plus i times the vector with components b_1, b_2 and so on.

(#)

The first vector with components a_1, a_2 and so on is called the real part of \boldsymbol{v} while the second vector with components b_1, b_2 and so on is called the imaginary part of \boldsymbol{v} . So we have rewritten \boldsymbol{v} as $\text{Re}(\boldsymbol{v})$ plus i times $\text{Im}(\boldsymbol{v})$.

(#)

By definition of conjugates, the conjugate of \boldsymbol{v} would be the following vector

(#)

which can also be splitted into the real and imaginary parts.

(#)

Thus the conjugate of v is Re(v) minus i times Im(v).

Slide 07: Let us see some algebraic properties of complex conjugates. Suppose \boldsymbol{u} and \boldsymbol{v} are vectors in \mathbb{C}^n and k is a scalar. Then

(#)

it is clear that the conjugate of u conjugate is just u itself.

(#)

The conjugate of the vector $k\mathbf{u}$ is the conjugate of k times the conjugate of \mathbf{u} .

(#)

The conjugate of the sum u + v is the sum of the two conjugate vectors.

(#)

And similarly, the conjugate of the difference u-v is the difference of the two conjugate vectors.

Slide 08: Analogous to the dot product between vectors in \mathbb{R}^n , we also have the complex dot product between vectors in \mathbb{C}^n . Let \boldsymbol{u} and \boldsymbol{v} be vectors in \mathbb{C}^n with components as shown.

(#)

The complex dot product of \boldsymbol{u} with \boldsymbol{v} is defined as follows, where we multiply each component of \boldsymbol{u} with the conjugate of its corresponding component of \boldsymbol{v} and then sum up the n terms.

(#)

The Euclidean norm of a vector v in \mathbb{C}^n is similarly defined like its real vector counterparts. More precisely, it is the square root of the vector v dot with itself.

(#)

A unit vector is a vector with norm equals to 1

(#)

and two vectors \boldsymbol{u} and \boldsymbol{v} in \mathbb{C}^n are orthogonal if their complex dot product is 0.

Slide 09: Let us consider an example. Here we have two vectors \boldsymbol{u} and \boldsymbol{v} in \mathbb{C}^3 . (#)

First, the complex dot product of \boldsymbol{u} with \boldsymbol{v} can be computed as follows. Recall that we multiply each component of \boldsymbol{u} with the conjugate of its corresponding component of \boldsymbol{v} and then sum up the three terms.

(#)
A little simplification
(#)
reveals the answer to be -2 - 10i.
(#)
The complex dot product of \boldsymbol{v} with \boldsymbol{u} can be computed similarly.
(#)
Again upon simplifying,
(#)
we have the answer as -2 + 10i(#)

Notice that the two answers are in fact complex conjugates of each other. We will soon learn that this is by no means a coincidence.

Slide 10: The norm of u is the square root of u dot u

(#)

which gives us

(#)

 $\sqrt{13}$ as the norm of \boldsymbol{u} .

(#)

Similarly, we can now compute the norm of \boldsymbol{v}

(#)

which gives us $\sqrt{22}$ as the norm of \boldsymbol{v} .

Slide 11: The following theorem gives us some fundamental results involving complex dot products. Let u, v and w be vectors in \mathbb{C}^n and let k be a scalar. Now

(#)

The complex dot product of \boldsymbol{u} with \boldsymbol{v} is the complex conjugate of the complex dot product of \boldsymbol{v} with \boldsymbol{u} . This is known as the antisymmetry property of complex dot product. Recall that if \boldsymbol{u} and \boldsymbol{v} are vectors in \mathbb{R}^n , then $\boldsymbol{u} \cdot \boldsymbol{v}$ will always be equals to $\boldsymbol{v} \cdot \boldsymbol{u}$. This is obviously not the case for complex dot products.

(#)

Similar to real vectors dot products, we also have the distributive property as shown here.

(#)

The scalar k can be multiplied to the result $u \cdot v$ or multiplied to u first then compute the dot product with v. The two numerical results will be the same.

(#)

The complex dot product of \boldsymbol{u} with $k\boldsymbol{v}$ is the conjugate of k multiplied with the complex dot product of \boldsymbol{u} with \boldsymbol{v} .

(#)

Lastly, we have the analogous result from real vectors dot product in the sense that even if the vector \boldsymbol{v} is in \mathbb{C}^n , the dot product of \boldsymbol{v} with itself is still non negative. In fact, the only time where $\boldsymbol{v} \cdot \boldsymbol{v}$ is zero is when \boldsymbol{v} is the zero vector.

Slide 12: Let us turn our attention to a recent topic of eigenvalues and eigenvectors of a square matrix. This theorem states that if A is a square matrix of order n where all

its entries are real numbers, then whenever λ is an eigenvalue of \boldsymbol{A} , the conjugate of λ will also be an eigenvalue of \boldsymbol{A} . Furthermore, if \boldsymbol{x} is an eigenvector of \boldsymbol{A} associated with λ , then the conjugate of \boldsymbol{x} will also be an eigenvector of \boldsymbol{A} associated with the conjugate of λ .

Slide 13: To best understand this result, we will look at an example. In this example, we would like to show that A is diagonalizable by finding an invertible matrix P with complex entries that will diagonalize A.

(#)

We start off in the same way as before, which is to compute the characteristic polynomial of A.

(#)

This simplifies to $\lambda^2 - 4\lambda + 5$.

(#)

The roots of the characteristic equation, in this case

(#)

are the conjugate pair 2 + i and 2 - i. Thus **A** has two eigenvalues 2 + i and 2 - i which are conjugates of each other.

Slide 14: Let λ_1 be the eigenvalue 2+i. We will proceed to investigate the eigenspace E_{λ_1} by solving the homogeneous linear system as shown.

(#)

While we perform elementary row operations, note that we are able to take a complex scalar multiple of one row to add to another row, as shown here.

(#)

We arrive at the row-echelon form of the augmented matrix as shown here

(#)

and this allows us to write a general solution for the system

(#)

which leads us to the conclusion that the eigenspace E_{λ_1} is spanned by a single vector in \mathbb{C}^2 , namely the vector $\begin{pmatrix} 1-i\\2 \end{pmatrix}$.

Slide 15: Consider the second eigenspace E_{λ_2} . We will again solve the homogeneous linear system as shown

(#)

and by performing the elementary row operation as shown, we have

(#)

the following row-echelon form of the augmented matrix.

(#)

This allows us to write down a general solution for the system

(#)

which leads us to the conclusion that the eigenspace E_{λ_2} is spanned by a single vector in \mathbb{C}^2 , namely the vector $\binom{1+i}{2}$.

Slide 16: We now see the results of the previous theorem.

(#)

The two eigenvalues of A are indeed complex conjugates of each other.

(#)

While their corresponding eigenvectors $\binom{1-i}{2}$ and $\binom{1+i}{2}$ are also complex conjugates of each other.

(#)

If we let P be the matrix as shown, where the columns of P are once again the linearly independent eigenvectors of A, we see that A can now be written as PDP^{-1}

(#)

where the diagonal matrix D would contain the two eigenvalues along the diagonal.

Slide 17: Let us summarise the main points in this unit.

(#)

We started off with a quick review of complex numbers, giving definitions for terms like modulus and conjugate.

(#)

We extended the defintion of \mathbb{R}^n to \mathbb{C}^n . Remember that a vector in \mathbb{C}^n is one that has n components, each of which is a complex number.

(#)

We also introdued complex dot product and saw some of its properties. Notice the difference between real vectors dot product and complex dot products.

(#)

Lastly, we presented a theorem that states that complex eigenvalues always happen in pairs. In fact, so do their corresponding eigenvectors of A.