Ankstyvieji interneto metai

- 1960-tieji. Pirmieji kompiuterių tinklai buvo kuriami eksperimentiniais tikslais. Dažniausiai jie būdavo izoliuoti ir nebuvo skirti plačiajam naudojimui.
- □ **ARPANET (1969).** JAV Gynybos ministerijos projektas, skirtas sujungti kelis kompiuterius. Tai laikoma interneto pradžia.
- Plėtra 1980-aisiais. Išpopuliarėjo lokalūs tinklai (LAN) ir didesni tinklai (MAN, WAN). Įmonės pradėjo naudoti kompiuterių tinklus veiklai modernizuoti.
- □ TCP/IP (1983). Sukurtas protokolų (taisyklių) rinkinys, kuris padėjo standartizuoti duomenų perdavimą tarp skirtingų kompiuterių sistemų.

Interneto aukso amžius

- World Wide Web (1991). Tim Berners-Lee sukuria World Wide Web (hipertekstą). Tai palengvina informacijos pasiekiamumą ir naudojimą naudojant internetą.
- Naršyklės. Sukurtos programos (tokios kaip Netscape Navigator ir vėliau Internet Explorer) leido naudotojams paprasčiau ir greičiau naršyti internete.
- Socialiniai tinklai ir mobilus internetas (2004). Įsteigtas Facebook. Socialiniai tinklai (Facebook, Twitter, LinkedIn ir kt.) keičia komunikacijos internete būdą ir patobulina keitimąsi informacija bei jos platinimą.
- Mobilus internetas. Su išmaniaisiais telefonais ir 3G, 4G bei 5G technologijomis, internetas tampa vis labiau prieinamas ne tik namuose ar darbe, bet ir kelyje, viešose vietose, gamtoje.

Dabartis ir ateitis

- □ Daiktų internetas (Internet of Things IoT). Dabartinė tendencija yra prie interneto jungti ne tik kompiuterius, bet ir kitus prietaisus. Tai gali būti šaldytuvai, kiti būtiniai prietaisai, automobiliai, ir netgi išmanūs namai.
- Debesų technologijos. Duomenys ir programinė įranga vis dažniau laikomi "debesyje". Visa tai pasiekiama iš bet kurios vietos, kur yra interneto prieiga.

Kompiuterių tinklai ir toliau intensyviai vystosi, didėja informacijos perdavimo greičiai, didėja paslaugų įvairovė.

Užduotis "Trumpa kompiuterių tinklų istorija" (diskusijos grupėse)

- Mokytojo padedami pasiskirstykite į 5 grupeles po 2–3 mokinius.
- Diskutuodami mažose grupėse, aptarkite vieną iš temų, pateiktų kitoje skaidrėje (visi kartu susitarkite, kokią temą kuri grupė aptars, arba, pavyzdžiui, išsitraukite lapelius su temų numeriais).
- Sugrįžę į bendrą grupę, kiekvieną maža grupė pristatykite savo temos aptarimą, surastus atsakymus, visi bendrai aptarkite visas temas.

Temos diskusijai – kitoje ska<u>i</u>drėje

Temos diskusijai "Trumpa kompiuterių tinklų istorija"

- 1. Kodėl yra naudinga žinoti, kaip vystėsi kompiuterių tinklų technologijos, kaip jos keitėsi per pastaruosius dešimtmečius ir tapo tokiomis, kokios jos yra šiandien? Kaip technologijos ir jų kaita keičia visuomenę, verslą, kasdienybę?
- 2. Kokiomis technologijomis (ar jų tąsa), paminėtomis trumpoje kompiuterių tinklų istorijoje, naudojatės jūs ar jūsų šeimos nariai (trumpai jas apibūdinkite)? Kodėl svarbu kritiškiau vertinti technologijų poveikį visuomenei ir būti sąmoningiems technologijų naudotojams?
- 3. Kokios istorinės sąvokos, technologijos jums ne visai aiškios, o kokios, jūsų manymu, pakankamai gerai žinomos? Kaip manote, kodėl vienos technologijos žinomos, o kitos nelabai? Gal galite paminėti ir apibūdinti kokias nors jums žinomas kompiuterių tinklų svarbias technologijas, kurios nebuvo paminėtos ankstesnėse skaidrėse?
- 4. Kodėl svarbu ne tik mokėti naudotis kai kuriomis tinklų technologijomis, bet ir žinoti jų istoriją, suprasti, kaip jos veikia? Kaip internetas ir socialiniai tinklai keičia kultūrą ir visuomeninę sąveiką?
- 5. Kodėl kyla tam tikros saugumo ir privatumo problemos internete? Ką reikėtų daryti, siekiant sumažinti šias problemas? Kuo siūlytumėte papildyti tinklo etiketą?

Kompiuterių tinklų samprata

- Kompiuterių tinklas yra sistemų rinkinys, kuriame kompiuteriai yra susieti tarpusavyje tam, kad galėtų dalintis resursais, informacija ir paslaugomis. Tinkluose gali būti jungiami ne tik stacionarūs ar nešiojami kompiuteriai, bet ir kiti įrenginiai, tokie kaip spausdintuvai, mobilieji telefonai, serveriai ir kt.
- Pagal mastą kompiuterių tinklai skirstomi į:
 - PAN (Personal Area Network) asmeniniai tinklai.
 - LAN (Local Area Network) vietiniai tinklai, dažniausiai naudojami poliuruose ar namuose.
 - CAN (Campus Area Network) universitetų, didelių mokyklų ar įmonių tinklai
 - MAN (Metropolitan Area Network) miesto, regiono masto tinklai.
 - WAN (Wide Area Network) kompiuterių tinklai, apimantys didesnes teritorijas ar net visas šalis.

Kompiuterių tinklų nauda

- □ **Dalinimasis duomenimis.** Tinklai leidžia naudotojams dalintis informacija ir failais greitai ir efektyviai.
- **Bendrieji resursai.** Kompiuteriuose, prijungtuose prie tinklo, gali būti naudojami bendrieji resursai, pvz., spausdintuvai ar interneto ryšys, serverių resursai.
- □ **Komunikacija**. Elektroninio pašto, pranešimų ir kitų komunikacijos priemonių naudojimas yra lengvas ir patogus būdas susisiekti su žmonėmis visame pasaulyje.
- □ **Nuotolinis darbas.** Tinklai leidžia dirbti nuotoliniu būdu, prieiti prie darbo vietos iš bet kurios pasaulio vietos.
- Informacijos paieška. Internetas suteikia galimybę greitai rasti reikiamą informaciją.
- Programinės įrangos ir atnaujinimų diegimas. Tinklai leidžia centriniam serveriui ar kitiems tinklo kompiuteriams ir įrenginiams diegti programinės įrangos atnaujinimus.
- □ **Saugumas:** Nors tinklai gali kelti saugumo grėsmes, tačiau taip pat suteikia priemones duomenims saugoti ir atstatyti, efektyviai naudoti duomenų, informacijos, virtualių kompiuterių kopijas.

Svarbu

Naudojant kompiuterių tinklus, svarbu suprasti ne tik techninę, bet ir socialinę, ekonominę ir kultūrinę kompiuterių tinklų reikšmę šiuolaikinėje visuomenėje.

Kompiuterių tinklų modeliai

Kompiuterių tinklų modeliai gali būti įvairūs. Jie atspindi skirtingus būdus kaip kompiuteriai gali bendrauti tarpusavyje.

Čia apžvelgsime keletą pagrindinių modelių.

Kompiuterių tinklų modeliai (1)

- □ Klientas–Serveris. Šiame modelyje vienas ar keli kompiuteriai (klientai) jungiasi prie centrinio kompiuterio (serverio) tam, kad pasiektų resursus ar paslaugas.
- Peer-to-Peer (P2P). Kiekvienas kompiuteris gali veikti kaip klientas irkaip serveris. Tai reiškia, kad visi kompiuteriai gali tiesiogiai bendrauti tarpusavyje, be centrinio serverio.
- N-Tier (Daugiasluoksnis). Šiame modelyje skirtingi sluoksniai ar lygiai yra atsakingi už skirtingas funkcijas. Pavyzdžiui, pristatymo sluoksnis gali būti atsakingas už vartotojo sąsają, logikos sluoksnis už verslo taisykles, o duomenų sluoksnis už duomenų saugojimą.
- Mašina-Mašina (M2M). Čia įrenginiai ar sensoriai komunikuoja tarpusavyje be žmogaus įsikišimo.

Kompiuterių tinklų modeliai (2)

- **Klasteriai**. Tai grupė kompiuterių, dirbančių kartu, kad atliktų didelio masto užduotis.
- □ **Įtinklinta kompiuterija (Grid Computing).** Skirtingi kompiuteriai iš įvairių geografinių vietų gali būti sujungti, kad atliktų tam tikras užduotis. Kiekvienas kompiuteris gali atlikti dalį darbo ir pateikti rezultatus.
- Kraštinė kompiuterija (Edge Computing). Informacijos apdorojimas atliekamas arti duomenų šaltinio, pavyzdžiui, sensorių ar kitų įrenginių, o ne centrinėje duomenų saugykloje ar debesyje.

Kompiuterių tinklų modeliai (3)

- □ **Rūko kompiuterija (Fog Computing).** Tai yra tarpinis modelis (tarp *Edge Computing* ir centralizuoto duomenų apdorojimo), kuriame apdorojimas gali būti atliekamas arčiau duomenų šaltinio, bet taip pat ir naudojant resursus iš debesies.
- Saltinis-Tinklas (Content Delivery Network, CDN). Šis modelis leidžia efektyviau pristatyti turinį vartotojams, pasitelkiant keletą serverių, esančių įvairiose geografinėse vietose.
- □ **Hibridiniai modeliai.** Atsižvelgiant į konkretų scenarijų ar poreikius įvairūs tinklo modeliai gali būti derinami tarpusavyje siekiant optimalaus rezultato.

Kiekvienas iš šių modelių turi savo privalumus ir trūkumus, ir pasirinkimas priklauso nuo specifinių reikalavimų ir konteksto.

Lokalieji ir išoriniai kompiuterių tinklai

Siekiant palyginti kompiuterių tinklus juos sąlyginai suskirstysime į dvi grupes (tipus):

- ✓ vietinius (lokalius) kompiuterių tinklus (LAN, angl. Local Area Network) ir
 - ✓ išorinius kompiuterių tinklus (angl. External Network).

Prie **vietinių (lokalių)** tinklų sąlyginai priskirkime anksčiau apibrėžtus PAN, LAN, CAN tinklus, o prie **išorinių** – MAN, WAN ir visą internetą.

Taip sąlyginai suskirstę kompiuterių tinklus į du tipus, besiskiriančius pagal dydį, paskirtį, technologiją ir infrastruktūrą, **apžvelgsime pagrindinius jų skirtumus**.

Lokalieji ir išoriniai kompiuterių tinklai: pagrindiniai skirtumai (1)

Vietovė

- Lokalus kompiuterių tinklas (LAN). Paprastai apima mažą vietovę butą, namą, biurą arba įstaigą ar pan.
- **Išoriniai kompiuterių tinklai.** Tai tinklai, kurių mastas yra daug didesnis ir gali apimti visą šalį ar net visą pasaulį, pvz., internetas.

Prieigos kontrolė

- Lokalus kompiuterių tinklas (LAN). Dažniausiai valdomas vieno žmogaus ar organizacijos ir tik jie gali kontroliuoti tinklo resursus, jo nustatymus, teises.
- **Išoriniai kompiuterių tinklai.** Paprastai yra vieši ir prie jų gali prisijungti daug skirtingų organizacijų ir asmenų.

Lokalieji ir išoriniai kompiuterių tinklai: pagrindiniai skirtumai (2)

Duomenų perdavimo greitis

- Lokalus kompiuterių tinklas (LAN). Paprastai siūlo aukštesnį duomenų perdavimo greitį.
- Išoriniai tinklai. Dažniausiai turi mažesnį duomenų perdavimo greitį (palyginti su LAN), kuris dažnai ribojamas dideliu naudotojų skaičiumi.

Saugumas

- Lokalus kompiuterių tinklas (LAN). Saugumas dažniausiai yra lengviau kontroliuojamas, nes visi įrenginiai yra vienoje vietoje, vietovėje.
- Išoriniai tinklai. Dažniausiai jie yra mažiau saugūs dėl didesnio įrenginių ir naudotojų skaičiaus.

Lokalieji ir išoriniai kompiuterių tinklai: pagrindiniai skirtumai (3)

Komponentai

- LAN. Paprastai apima Ethernet* (vytos poros ir kt.) kabelius, Wi-Fi, komutatorius, maršrutizatorius, kompiuterius ir kitus vietos įrenginius.
- **Išoriniai tinklai.** Naudoja įvairesnes technologijas, įskaitant palydovinius ryšius, magistralinius (tranzito) tinklus, serverius, saugyklas ir daug kitų.

□ Protokolai(taisyklės, technologijos)

- LAN. Dažniausiai naudoja Ethernet, lokalius TCP/IP protokolus (šiuos protokolus plačiau apžvelgsime kitose skaidrėse).
- **Išoriniai tinklai.** Naudoja daugybę įvairių protokolų, įskaitant visa spektrą išorinių TCP/IP, HTTP, HTTPS, FTP, SMTP ir kt.

^{*}Ethernet yra tradicinė technologija, skirta prijungti įrenginius prie tinklo (LAN) arba plačiajuosčio tinklo (WAN). Ši technologija leidžia įrenginiams bendrauti tarpusavyje naudojant Ethernet protokolą (taisyklių rinkinį). Ethernet technologiją atitinką IEEE 802.3 serijos standartai, kurie ir išplėsti ir patikslinti atitinkamais interneto RFC (Request for Comments) dokumentais.

Lokalieji ir išoriniai kompiuterių tinklai: pagrindiniai skirtumai (4)

Panaudojimas

- Lokalus kompiuterių tinklas (LAN). Paprastai naudojamas resursams bendrinti: failai, spausdintuvai, interneto ryšys ir kt.
- **Išoriniai tinklai.** Dažniausiai naudojami prieigai prie plačiųjų paslaugų, tokių kaip el. paštas, interneto svetainės, debesų saugyklos ir kt.

Apibendrinimas. Lokalus kompiuterių tinklas dažniausiai yra skirtas vidiniam naudojimui su aukštesniu greičiu ir saugumu, o išoriniai tinklai skirti plačiajai komunikacijai tarp daugybės įrenginių ir tinklų, teikiant lokaliems tinklams įvairias globalias paslaugas.

Lokalaus (vietinio) tinklo (LAN) topologija

Lokalaus (vietinio) tinklo (LAN) topologija (schema) nurodo, kaip įvairūs tinklo mazgai, įrenginiai ir ryšiai yra fiziškai arba logiškai išdėstyti (prijungti) vienas kito atžvilgiu – pavaizduojama, kaip signalai ir duomenys yra perduodami tarp tinklo mazgų (pavyzdžiui, kompiuteriu, maršrutizatoriu, komutatoriu).

Paveikslėliuose pateiktos septynios dažniausiai naudojamus tinklo topologijos (schemos)

Kompiuterių tinklo architektūra

- □ **Kompiuterių tinklo architektūra** yra platesnis terminas negu tinklo topologija. Šis terminas apibrėžia visą tinklo koncepciją, įskaitant topologiją, protokolus, techninę ir tinklo valdymo programinę įrangą.
- □ Tinklo architektūra apima:
 - Protokolus taisykles ir standartus, kurie nurodo, kaip duomenys yra koduojami ir perduodami tinklu.
 - Topologiją fizinę arba loginę tinklo struktūrą (žr. skaidrę "Lokalaus (vietinio) tinklo (LAN) topologija")
 - Techninę įrangą fizines priemones, tokias kaip kompiuteriai, spausdintuvai, maršrutizatoriai, komutatoriai, laidai ir t.t.
 - Programinę įrangą įskaitant operacinę sistemą, tinklo valdymo ir prieigos kontrolės programinę įrangą ir pan.

Kompiuterių tinklo architektūra (santrauka)

- □ TINKLO TOPOLOGIJA yra tinklo architektūros dalis ir yra susijusi su fiziškai ar logiškai sujungta įranga.
- □ TINKLO ARCHITEKTŪRA yra platesnė koncepcija, kuri apima topologiją, taip pat protokolus, techninę ir programinę įrangą.

Tinklo topologija suprantama kaip tinklo planas ar žemėlapis, o tinklo architektūra apima visus aspektus, reikalingus tinklo kūrimui ir valdymui.

Pagrindiniai tinklų architektūros modeliai (1)

TCP/IP (Transmission Control Protocol/Internet Protocol). Tai yra *de facto* standartas internete ir daugumoje įstaigų tinklų. TCP/IP modelis turi keturis sluoksnius: pristatymo, tarpininkavimo, perdavimo ir sąsajos.

Lygiarangis (P2P). Šiame modelyje visi kompiuteriai yra lygūs ir gali veikti kaip klientai ir kaip serveriai. Tai yra efektyvu mažiems tinklams, kai nėra reikalo centralizuotai tvarkyti resursus.

Pagrindiniai tinklų architektūros modeliai (2)

Klientas-serveris (Client-Server). Tai yra vienas iš labiausiai paplitusių modelių. Klientų kompiuteriai (vartotojai) pasiekia resursus, esančius serveriuose. Šis modelis yra tinkamas dideliems ir vidutiniams tinklams.

Hibridinis (Hybrid). Šis modelis yra kombinacija kliento-serverio ir P2P modelių. Tai leidžia pasinaudoti abiejų sistemų privalumais ir dažnai yra naudojamas dideliuose ir sudėtinguose tinkluose.

Pagrindiniai tinklų architektūros modeliai (3)

Debesijos. Šioje architektūroje duomenų centrai ir resursai yra virtualizuoti ir prieinami per internetą, leidžiant vartotojams lengvai prieiti prie resursų ir paslaugų.

Daiktų internetas – IoT (Internet of Things). IoT tinklai jungia daugybę įrenginių, nuo sensorių iki mobiliojo įrenginių, į vieną tinklą. Architektūra gali būti labai įvairi ir priklausyti nuo taikymo srities. Naudoja 5G tinklus.

Fog Computing / Edge Computing (lietuviškų terminų nerasta). Šie modeliai yra skirti apdoroti duomenis arti duomenų šaltinio vietoje, kad būtų sumažintas vėlinimas (latencija) ir tinklo apkrova. Naudoja 5G tinklus.

Pagrindiniai tinklų architektūros modeliai (4)

- Tinklo architektūra pasirenkama pagal vartotojų skaičių, programų reikalavimus, techninės priežiūros kaštus, saugos, patikimumo reikalavimus, tinklo geografiją ir t.t.
- Tinklo architektūra nusako tinklo įrenginių roles, atsakomybes ir funkcijas tinkle.
- Kadangi šiuo metu patys populiariausi ir labiausiai paplitę yra TCP/IP (Transmission Control Protocol/Internet Protocol), lygiarangiai (P2P) ir klientas-serveris (Client-Server) architektūros tinklai, jiems skirsime daugiausiai dėmesio.
- Šie modeliai yra labai svarbūs studijuojant ir projektuojant kompiuterių tinklus.

Kliento / serverio architektūros žvaigždės topologijos vietinio tinklo (LAN) pavyzdys

Kliento/serverio architektūros žvaigždės topologijos tinkle visi tinklo mazgai, pvz., serveriai, klientų kompiuteriai, spausdintuvai, maršrutizatoriai (angl. router), yra prijungti prie centrinio taško (komutatoriaus, angl. switch). Šis centrinis taškas gali būti ir maršrutizatorius arba tinklo šakotuvas (hub'as).

Serveris

Maršrutizatorius

Klientas_1

Klientas_2

Komutatorius

Klientas_3

Pagai: https://image.snuesharecum.com/serveroperatingsystem-200426085246/75/server-operating-system-13-2048.jpg?cb=1666628400

Tačiau kiekvienas iš šių centrinės stotelės tipų turi skirtingas savybes:

- Tinklo šakotuvas (Hub). Tai paprasčiausias centrinis taškas, kuris tiesiog perduoda gautus duomenis visiems prijungtiems mazgams. Jis nesiekia efektyvumo ar saugumo.
- Komutatorius (Switch). Šis įrenginys yra "išmanesnis" už tinklo šakotuvą (hub'ą). Jis įsimena, koks mazgas yra prijungtas prie kurios jungties, ir perduoda duomenis tik tam mazgui, kuriam jie yra skirti, o ne visiems mazgams, kaip tai daro hub'as. Tai padidina efektyvumą ir saugumą.
- Maršrutizatorius (Router). Tai dar "išmanesnis" įrenginys, kuris gali atlikti daug funkcijų, įskaitant duomenų perdavimą tarp skirtingų tinklų, informacijos filtravimą, kibernetinės saugos ir kt.

Nors žvaigždės tipo topologijoje galima naudoti bet kurį iš šių centrinio taško tipų, **komutatorius** yra dažniausiai naudojamas variantas dėl jo efektyvumo ir saugumo pranašumų. Jis yra ypač naudingas didesniuose tinkluose, kur svarbu užtikrinti duomenų perdavimo efektyvumą ir saugumą.

TCP/IP yra hierarchinis protokolas

- Pagrindinis tinklų ir Interneto protokolas TCP/IP sudarytas iš sąveikaujančių modulių, kurių kiekvienas turi savo funkcijų rinkinį.
- Hierarchinis reiškia, kad kiekvienas viršutinio sluoksnio protokolas yra paremtas dviem ar daugiau žemesnio sluoksnio protokolų.
- Duomenų skaidymas į sluoksnius persiuntimo metu dažnai vadinamas dekompozicijos principu.

Pagal https://edukedar.com/tcp-ip-model/ (2023-09-20)

Kiekvienas sluoksnis dirba su savo "kaimynais" ir perduoda informaciją aukštyn arba žemyn. Tai lyg **grandinė**, kur kiekvienas grandinės segmentas turi savo funkciją, bet visi dirba kartu.

Kitoje skaidrėje aptariamas duomenų persiuntimui naudojamas dekompozicijos principas.

Duomenų persiuntimui naudojamas dekompozicijos principas (1)

Dekompozicijos principas yra labai svarbus duomenų perdavimo tinkle. Dideli duomenų kiekiai yra suskirstyti į mažesnius segmentus arba "paketus", kurie yra atskirai siunčiami per tinklą. Šis procesas vyksta keliais etapais.

Duomenų pakavimas

Kai vartotojas, pavyzdžiui, nori atsiųsti didelį failą arba peržiūrėti vaizdo įrašą internete, duomenys yra "supakuojami" į mažesnius segmentus. Kiekvienas segmentas turi savo antraštę, kuri nurodo informaciją apie segmentą, ir duomenų dalį.

Duomenų siuntimas

Kiekvienas segmentas yra atskirai siunčiamas per tinklą. Tai leidžia efektyviau naudoti tinklo resursus, nes segmentai gali būti siunčiami per skirtingus maršrutus ir tuo pačiu metu gali būti siunčiami kiti duomenys.

Duomenų persiuntimui naudojamas dekompozicijos principas (2)

Duomenų priėmimas

Gautieji segmentai yra "išpakuojami", ir duomenys sujungiami atgal į pradinį formatą. Tai gali apimti ir duomenų tikrinimą, kad būtų užtikrintas duomenų vientisumas ir kad nebūtų prarastas joks segmentas.

Duomenų kontrolės priemonių taikymas

Dekompozicija leidžia taikyti įvairias kontrolės priemones, tokias kaip klaidų ieškojimas, klaidų taisymas, duomenų srauto, spūsčių valdymas, duomenų integralumas.

Dekompozicijos principas yra itin svarbus, nes jis leidžia tinklams veikti efektyviau, padeda išvengti spūsčių ir užtikrina, kad duomenys būtų perduoti tikslingai ir efektyviai. Tai yra pagrindinė priežastis, kodėl tinklai (tokie kaip internetas) gali veikti su dideliais duomenų kiekiais ir daugybe įrenginių.

Kaip visi sluoksniai dirba kartu?

Taikymo sluoksnis

Atsakingas už komunikaciją tarp vartotojo programų ir tinklo.

Pavyzdžiai. HTTP (tinklalapiai), FTP (failų perdavimas), SMTP (el. paštas).

Paprastai kalbant. Čia yra programos, kurias naudojate naršyti internete, siųsti el. paštą ir pan.

Transporto sluoksnis

Atsakingas už duomenų perdavimą tarp kompiuterių.

Pavyzdžiai. TCP (patikimas duomenų perdavimas), UDP (greitas, bet mažiau patikimas).

Paprastai kalbant. Tai kaip paštininkas, kuris pristato jūsų laiškus ir paketus.

Interneto sluoksnis

Atsakingas už duomenų paketų siuntimą per tinklą.

Pavyzdžiai. IP (Interneto protokolas).

Paprastai kalbant. Tai panašiai kaip GPS, kuris nurodo, kaip nuvykti iš taško A į tašką B.

Prieigos tinklo sluoksnis

Atsakingas už duomenų perdavimą tarp artimiausių tinklo įrenginių.

Pavyzdžiai. Ethernet (kabelinis ryšys), Wi-Fi (belaidis ryšys).

Paprastai kalbant. Tai panašu į kelią ar taką, kuriuo einate ar važiuojate.

Plačiau apie duomenų perdavimo sluoksnius, protokolus (1)

- Kompiuterių tinklų ir interneto sistemos yra standartizuotos, dokumentuotos. Kaupiamos gerosios patirties rekomendacijos. Visa tai yra perteikta RFC (Request for Comments) dokumentų (taisyklių, protokolų) sistemoje. RFC dokumentai yra oficialus būdas standartizuoti interneto technologijas ir yra reguliuojami organizacijos, pavadintos Internet Engineering Task Force (IETF). RFC dokumentai gali būti kuriami bei leidžiami ir kitų organizacijų.
- RFC (Request for Comments) dokumentai yra standartizacijos sprendimai ir techniniai aprašymai, skirti naudoti visuomenės, industrijos ir akademinių institucijų atstovams. Yra apie 9500 (žr. 2023-09-20) RFC dokumentų, ir ne visi jie yra susiję su protokolais; kai kurie aprašo gaires, patarimus arba istorines perspektyvas.
- Geriausias būdas išsamiai ir patikimai nagrinėti tinklus bei internetą remtis RFC sistema (rfc-editor.org, https://www.rfc-editor.org/).

Užduotis "Susipažinkite su tinklo etiketu"

(diskusijos grupėse)

- □ **Įdomu.** Skaitmeninės kompetencijos apraše (https://rb.gy/7cjbb, 46 psl.), Informatikos bendrojoje programoje ir bendravimo internete problemų aptarimo straipsniuose minimas tinklo etiketas yra ne kas kita, o vienas iš RFC dokumentų, kuris patvirtintas (pateiktas) IEFT organizacijai 1995 m. spalj RFC 1855.
- □ Pažintį su neprivalomais studijuoti RFC dokumentus rekomenduojama pradėti nuo šito legendinio dokumento:
 - Netiquette Guidelines. https://www.rfc-editor.org/rfc/rfc1855.html (žr. 2023-06-20)
 - **Lietuviškas vertimas.** http://www.elektronika.lt/teorija/kompiuterija/502/rfc-1855-netiketo-taisykles/ (lietuviškas vertimas: Tomas Straupis; žr. 2023-09-20)
- Susipažinę su tinklo etiketu, visi kartu su mokytoju padiskutuokite, ar visų pateiktų taisyklių / patarimų jums pavyksta laikytis? Jei ne, ką reikėtų daryti, kad tinklų etiketo taisyklių būtų laikomasi?

Plačiau apie duomenų perdavimo sluoksnius, protokolus (2)

- TCP/IP protokolo (taisyklės) buvo aprašytos 1981 m. rugsėjo mėn. RFC 791 dokumente, kuris mažai pasikeitė: RFC 791: Internet Protocol (rfc-editor.org), https://www.rfc-editor.org/rfc/rfc791.html (2023-09-20)
- □ Paveikslėlyje pateiktas ankstesnėje skaidrėje ("TCP/IP yra hierarchinis protokolas") pavaizduoto TCP/IP hierarchinio modelio pradinis 1981 m. variantas.

- rfc1166.txt.pdf (rfc-editor.org) (https://www.rfc-editor.org/rfc/pdfrfc/rfc1166.txt.pdf) laikomas RFC 791 taisyklių tęsiniu (1990 m. liepa), kuriame detalizuota IPv4 versijos tinklo įrenginių (mazgų) adresacija:
 - **IPv4 adresui skiriami 4 baitai** (32 bitai). Pradėta kiekvieną adresacijos baitą užrašyti dešimtainiais skaičiais nuo o iki 255 atskirtais tašku, pavyzdžiui, užrašas 192.168.14.17 identifikuoja tinklo įrenginį, jei jam toks adresas suteiktas (elektroniniu būdu).
 - Yra paskaičiuota, kad naudojant IPV4 adresaciją, galima panaudoti apie 4,3 milijardo unikalių adresų. Atrodytų, kad tai daug, bet su sparčiu technologijų plitimu šie adresai tapo deficito preke. Siekiant išspręsti šią problemą, buvo sukurtas IPv6. Naudojamas 128 bitų(16 baitų) adresas, kuris suteikia milžinišką kiekį unikalių adresų apie 3.4×10³⁸ adresų, be to pagerintas saugumas, efektyvesnis panaudojimas kompiuterių tinkluose.

Plačiau apie duomenų perdavimo sluoksnius, protokolus (3)

1. Tinklo sąsajos sluoksnis (Link Layer)

Ethernet (vytos poros kabelis, šviesolaidis ir kt.).

Dažniausiai naudojamas vietinėse (lokaliuose) tinkluose.

Wi-Fi. Bevielis Ethernet variantas.

ARP (Address Resolution Protocol): Nustato sąsają tarp IP ir MAC adresų. Kitose skaidrėse bus pateikta tinklo įrenginių MAC adresacija ir jos ryšys su IP adresacija.

2. Tinklo sluoksnis (Internet Layer)

IP (Internet Protocol). Standartinis įrenginių adresacijos ir duomenų paketų perdavimo protokolas.

Plačiau apie duomenų perdavimo sluoksnius, protokolus (4)

3. Transporto sluoksnis (Transport Layer)

TCP (Transmission Control Protocol). Patikimas.

UDP (User Datagram Protocol). Mažiau patikimas, bet greitesnis.

SCTP (Stream Control Transmission Protocol). Patikimas ir su lankstesnėmis duomenų srauto galimybėmis.

4. Taikymo (programų) sluoksnis (Application Layer)

HTTP/HTTPS (HyperText Transfer Protocol/Secure) – interneto svetainėms.

FTP (File Transfer Protocol) – failų perdavimui.

SMTP (Simple Mail Transfer Protocol) – elektroninių laiškų siuntimui.

POP3 (Post Office Protocol 3) ir IMAP (Internet Message Access Protocol) – elektroninių laiškų gavimui.

DNS (Domain Name System) – domenų vardų ir IP adresų sąsaja.

SNMP (Simple Network Management Protocol) – tinklo įrenginių valdymui ir stebėjimui.

Šis sąrašas nėra išsamus, bet jis pateikia geresnį ir išsamesnį vaizdą apie protokolus, veikiančius kiekviename TCP/IP modelio sluoksnyje.

Kompiuterių vardai (adresai)

Modelis TCP/IP (Transmission Control Protocol/Internet Protocol) yra tinklo protokolų rinkinys, kuris yra interneto ir tinklų veikimo pagrindas. Jis apima keletą protokolų, kurie leidžia kompiuteriams komunikuoti tarpusavyje ir perduoti duomenis per tinklus. Kaip matėme ankstesnėse skaidrėse, modelis turi 4 sluoksnius. Trijuose iš jų, išskyrus transporto sluoksnį, kompiuteriai turi ir veikia kitu, tik tame sluoksnyje naudojamu vardu (adresu):

DNS vardas – taikymo sluoksnis (Application Layer)

(Naudojami portai, o ne vardai) — transporto sluoksnis (Transport Layer)

IP adresas – tinklo interneto) sluoksnis (Internet Layer)

MAC adresas – tinklo sąsajos (prieigos) sluoksnis (Link Layer)

DNS (1)

- DNS (Domain Name System) yra hierarchinė sistema, kuri išverčia žmogui suprantamus domeno vardus į IP adresus suprantamus kompiuteriui.
- Pavyzdžiai:
 - www.linma.org vardas yra išverčiamas į 193.219.61.9
 - www.nsa.lt yra išverčiamas į 79.98.25.1
 - www.google.com yra išverčiamas į 142.250.203.196
- DNS sistema padeda vartotojams lengviau naudotis internetu, nes nereikia atsiminti sudėtingų IP adresų.

DNS(2)

Kaip nustatyti, koks IP adresas atitinka konkretų DNS vardą (adresą, domeną)? Yra nemažai būdų tai padaryti – čia pateiksime kelis pavyzdžius.

1 būdas

Address: 193.219.137.110

DNS (3)

Kaip nustatyti, koks IP adresas atitinka konkretų DNS vardą (adresą, domeną)?

2 būdas

Komandų eilutėje vykdome komandą: ping domeno.vardas.

Pavyzdžiui:

ping nsa.lt

Rezultatas:

```
Pinging nsa.lt [79.98.25.1] with 32 bytes of data:
Reply from 79.98.25.1: bytes=32 time=8ms TTL=250
Reply from 79.98.25.1: bytes=32 time=29ms TTL=250
Reply from 79.98.25.1: bytes=32 time=9ms TTL=250
Reply from 79.98.25.1: bytes=32 time=10ms TTL=250

Ping statistics for 79.98.25.1:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 8ms, Maximum = 29ms, Average = 14ms
```

Ši komanda pateikia ne tik IP adresą, bet ir parodo, ar tiriamas kompiuteris įjungtas (jei jame neuždraustas atsakas į ping kreipinius) ir kokia yra ryšio kokybė, duomenų perdavimo greitis.

DNS (4)

Kaip nustatyti, koks IP adresas atitinka konkretų DNS vardą (adresą, domeną)?

3 būdas

Yra ir interneto svetainių, kuriose galima nustatyti koks IP adresas atitinka konkretų DNS vardą (adresą, domeną), taip pat pateikia daug naudingos informacijos apie nagrinėjamą domeną, pavyzdžiui, koks patikimumas, kokias paslaugas teikia ir kt. Viena iš tokių svetainių, nustatančių, koks IP adresas atitinka konkretų DNS vardą (adresą, domeną), yra https://mxtoolbox.com/.

DNS (5)

Pavyzdžiui, nagrinėjant domeną www.silute.lt, svetainėje https://mxtoolbox.com/ tarp kitos labai svarbios informacijos gauname ir informaciją apie IP adresą:

- □ Naudodami ankstesnėse skaidrėse nurodytas priemones nustatykite interneto svetainių, kuriose dažnai lankotės, IP adresus.
- □ Savarankiškai (prireikus pasitardami su mokytoju) išsiaiškinkite, kokią papildomą informaciją apie nustatytą IP adresą pateikia jūsų naudojamos IP adreso nustatymo priemonės.

- □ Sužinokite daugiau apie tiriamą domeną bei nustatytą IP, pavyzdžiui, IP organizaciją, įstaigos vietovę, vietą žemėlapyje, kontaktus, kada aktyvuotas domenas, IP ir kt. Naudokite papildomus interneto įrankius, pavyzdžiui:
 - https://www.whois.com/whois
 - IP Address Lookup | Geolocation (iplocation.net)
 - https://www.geodatatool.com/
 - https://www.iv.lt/domenai/ (čia galima ieškoti laisvų domenų, įsigyti domeną, tikrinti, kam ir iki kada priklauso konkretūs domenai, kontaktai ir kt.)
 - https://whatismyipaddress.com/ (jūsų IP adresas, vietovės žemėlapis)
- □ Pasidalinkite rasta informacija su grupės draugais.
- Aptarkite, kuo papildoma informacija apie IP adresą ir domeną yra svarbi.

- □ Naudodami lietuviškas interneto svetaines, pavyzdžiui:
 - https://www.iv.lt/domenai/
 - https://www.hostinger.lt/domenai
 - https://www.domenai.lt/
 - https://www.owexxhosting.lt/
 - https://www.names.lt/lt-domenai_domenu_registracija.html
 - ar kitas, raskite jose atsakymus į kitoje skaidrėje pateiktus klausimus (svetainėse ieškokite DUK skyrelio).
- Visi kartu su mokytoju aptarkite naujai sužinotus dalykus. Kuo ši informacija jums gali būti svarbi?

Klausimai, į kuriuos ieškosite atsakymų, pateikti kitoje skaidrėje

Klausimai (užduočiai Nr. 5)

- Kas yra domenas?
- Kaip išsirinkti tinkamą domeną?
- Kam yra reikalingas domenas?
- Kuo domenas skiriasi nuo svetainės talpinimo?
- Kaip patikrinti, ar pasirinktas domenas laisvas?
- Koks skirtumas tarp .com, .lt, .eu?
- Kas yra TLD, ccTLD, gTLD?
- Kaip greitai yra registruojamas domenas?
- Kaip greitai yra aktyvuojamas domenas?
- Ar galiu nusipirkti domeną visam laikui?
- Ar galiu perkelti domeną pas kitą paslaugų teikėją?

- Ar galiu rezervuoti domeno vardą?
- Ar užregistravus domeną, vėliau galima pakeisti jo vardą?
- Kaip pratęsti domeno galiojimą?
- Kas nutinka el. paštui pasibaigus domeno galiojimo laikui?
- Po kurio laiko nuo domeno galiojimo pabaigos galiu ji nusipirkti?
- Kas yra domeno WHOIS informacija?
- Ar domenui yra taikoma 30 dienų pinigų grąžinimo garantija?
- Kuo naudingas "Google Ads" įrankis?
- Kuo naudingas SEO įrankis ir kaip jį gauti?

□ Interneto svetainėje

https://www.names.lt/lt-domenai_domenu_registracija.html
(ar kitoje iš anksčiau išvardintų) išsiaiškinkite, ar yra laisvas koks nors domenas, kuriame panaudota jūsų pavardė ar vardas.

Lietuvoje galima registruoti domenus, kuriuose yra panaudotos specialios lietuviškos raidės, kurių nėra lotyniškoje abėcėlėje (ą, č, ė, į, š, ų, ū, ž), bet siekiant nesudaryti problemų užsieniečiams, šios raidės domenuose naudojamos retai. Egzistuojantys tokių domenų pavyzdžiai: voveraitė.lt, ilgasūsas.lt, šilutė.lt.

Pavyzdžiai domenų su vardais ir pavardėmis: kazlauskas.lt, Jurgis.lt, ona.lt. 46

URL (1)

- □ Su domeno terminu glaudžiai yra siejama URL (angl. Uniform Resource Locator, liet. Universalusis adresas) samprata standartinė schema, pagal kurią identifikuojami interneto resursai.
- □ URL nurodo, kaip pasiekti resursą internete ir ką daryti su juo.
- Pavyzdžiui, kai naršome internete, dažnai matome URL adresus panašius į https://linma.org/apie/istorija/

Lietuvos informatikos mokytojų asociacijos svetainės tinklalapio fragmentas; šį svetainės tinklalapį nurodo URL https://linma.org/apie/istorija/

URL(2)

- □ Šiuolaikinis URL standartas aprašomas RFC 3986 dokumente https://www.rfc-editor.org/rfc/rfc3986.html, pateiktas 2005 m. sausį.
- □ Tai yra RFC standartinis dokumentas, kuris aprašo URI (Uniform Resource Identifier) sintaksę (URL).
- RFC 3986 pakeitė ankstesnį RFC 1738 dokumentą, ir yra plačiai naudojamas kaip URL sintaksės standartas.

Pilnos URL sintaksės pavyzdys:

https://vartotojas:slaptažodis@pavyzdys.lt:8080/kelias/iki/šaltinis?param1=dydis¶m2=dydis2#sekcija

Neprivaloma dalis

Neprivaloma dalis

Vietiniai (lokalieji) kompiuterių tinklai

Dažniausiai kiekvienas kompiuterio naudotojas dirba vietiniame (lokaliame) kompiuterių tinkle ir naudojasi jo resursais (informacija, įrenginiais, programomis ir kt.).

Čia išsamiau aptarsime vietinio tinklo paslaugas.

Lokalieji (vietiniai) tinklai, MAC adresas – tinklo sąsajos (prieigos) sluoksnis (Link Layer) (1)

Lokalus kompiuterių tinklas (LAN) paprastai apima mažą vietovę, tokia kaip butą, namą, įstaigą.

Kompiuterių tinklo (namo) schema (įrenginiai, sujungimo būdai, priskirti lokalūs IP adresai, "išėjimas" į internetą

Panagrinėkime, koks galėtų būti scenarijus, kai LAN kompiuteris schemoje **A** su **IP 192.168.0.4** turi susisiekti su kompiuteriu **B**, kurio **IP 192.168.0.3**. Abu kompiuteriai yra prijungti prie **bendro tinklo šakotuvo**.

Lokaliame tinklo sąsajos (prieigos) sluoksnyje kompiuteriai (įrenginiai) bendrauja naudodami savo MAC adresus. MAC adresai kartais vadinami kompiuterių fiziniais adresais.

MAC (Media Access Control) adresas yra unikalus šešių baitų (48 bitų) adresas, kurį įrenginiui priskiria gamintojas ir iš esmes yra nekintantis lokaliuose (LAN) tinkluose (Ethernet, Wi-Fi). Pavyzdys: 1c-61-b8-b2-68-bd arba 1c:61:b8:b2:68:bd. Pirmieji trys baitai MAC adrese nurodo gamintoją, likusieji trys baitai – tai gamintojo suteiktas numeris.

Lokalieji (vietiniai) tinklai, MAC adresas – tinklo sąsajos (prieigos) sluoksnis (Link Layer) (2)

Yra svetainių, pvz., https://macvendors.com/, kur įvedę įrenginio MAC adresą, galima sužinoti jo gamintoją.

Kompiuterių tinklo (namo) schema (įrenginiai, sujungimo būdai, priskirti lokalūs IP adresai, "išėjimas" į internetą Pavyzdžiui, įrenginį, kurio MAC 1c-61-b4-b7-67-ad, pagamino TP-Link Corporation Limited.

Sakykime, kad kompiuteris **A** iki šiol "nebendravo" su **B**. O tai reiškia, kad jis nežino **B** MAC adreso. Kadangi **A** ir **B** įrenginių IP adresai yra toje pačioje IP adresų zonoje (grupėje, klasėje), kompiuteris **A** siunčia į visus lokalaus tinklo įrenginius per tinklo šakotuvą **ARP** (*Address Resolution Protocol*) užklausą ir nustato sąsają tarp IP ir MAC adresų. Užklausos prasmė maždaug tokia: "Kas turite IP adresą 192.168.0.3 – atsiųskite savo MAC adresą".

Kompiuteris **B** gauna ARP užklausą ir atsako (maždaug taip): "Aš turiu IP adresą 192.168.0.3, o mano MAC adresas yra 84-a4-66-ead7-08". Kompiuteris **A** gauna šį atsakymą ir įsirašo kompiuterio **B** MAC adresą į savo ARP adresų lentelę (būsimiems ryšiams su **B**).

ARP lentelėje saugomos IP ir MAC adresų poros.

Visa tai aprašyta **RFC826** dokumente (https://www.rfc-editor.org/rfc/rfc826).

Lokalieji (vietiniai) tinklai, MAC adresas – tinklo sąsajos (prieigos) sluoksnis (Link Layer) (3)

Kompiuterių operacinėse sistemose yra nemažai komandų darbui su MAC adresais ir ARP tarnyba.

Dauguma jų vykdomos kompiuterio komandų eilutėje (pasiekiama

Pavyzdžiui, **ARP komanda** parodo kompiuterio turėtus ryšius su vietinio tinklo kompiuteriais, leidžia peržiūrėti ir redaguoti ARP lentelę:

```
Interface: 192.168.68.223 --- 0x12
Internet Address Physical Address Type
192.168.68.1 1c-61-b4-b2-58-ad dynamic
192.168.68.142 84-a4-66-ea-d7-08 dynamic
192.168.68.144 b4-e2-65-0c-4e-08 dynamic
```

Naudodami **ipconfig/all**, galite peržiūrėti išsamesnę informaciją, įskaitant (Physical – fizinj) MAC:

```
Description . . . . . . . : Realtek PCIe GbE Family Controller
Physical Address . . . . : 00-2B-67-B7-31-6C

DHCP Enabled . . . : No
Autoconfiguration Enabled . . : Yes
Link-local IPv6 Address . . . : fe80::c8a4:1389:2418:71b1%18(Preferred)

IPv4 Address . . . . : 192.168.68.223(Preferred)

Subnet Mask . . . . . : 255.255.255.0

Default Gateway . . . : fe80::le61:b4ff:feb2:58ad%18

192.168.68.1
```


Užduotis: lokalieji tinklai, MAC adresas

Naudodami anksčiau pateiktas MAC adresų ar ARP lentelių peržiūros ir tvarkymo komandas savarankiškai arba grupėse atlikite tyrinėjimus.

- Sužinokite savo kompiuterio (tinklo plokštės, mazgo) MAC adresą.
- Naudodami surastą MAC adresą:
 - sužinokite gamintojo pavadinimą,
 - apsilankykite gamintojo internetiniame puslapyje,
 - paskaitykite gamintojo naujienas apie gaminamus analogiškus tinklo įrenginius.
- Tyrinėjimų pabaigoje mokytojo nurodytu būdu kartu aptarkite darbo rezultatus.

Galite naudoti ir komandą **Getmac**, skirta parodyti kompiuterio MAC adresą ir kitą informaciją, susijusią su šiuo adresu, pavyzdžiui:

Lokalieji (vietiniai, vidiniai) tinklai, jų prieiga prie interneto (1)

- Lokaliesiems tinklams prieigą prie interneto už tam tikrą mokestį suteikia Interneto Paslaugų Tiekėjai (IPT). Jų sąrašas skelbiamas Lietuvos ryšių reguliavimo tarnybos interneto svetainėje https://www.rrt.lt (Viešųjų elektroninių ryšių tinklų ir (arba) viešųjų elektroninių ryšių paslaugų teikėjų sąrašas).
- □ Priklausomai nuo vietovės ir techninių sąlygų vietinis tinklas prie interneto (tinklų tinklo, angl. internet pasaulinio kompiuterių tinklo, jungiančio visuotinius ir vietinius kompiuterių tinklus) jungiamas šviesolaidžiu, vytos poros, bevieliu (WI-FI ar kitu) būdu.

Lokalieji (vietiniai, vidiniai) tinklai, jų prieiga prie interneto (2)

Tipiškas vietinio kompiuterių tinklo jungimo prie interneto sprendimas:

- 1. IPT registruoja paslaugos gavėją (vartotoją). Pasirašius interneto tiekimo vienu iš anksčiau nurodytų būdų sutartį, internetas tiekiamas į paslaugos gavėjo tinklo įrenginį maršrutizatorių. Dauguma IPT šį įrenginį nuomoja klientui už tam tikrą mokestį (žr. paveiksle "Maršrutizatorius").
- 2. IPT suteikia bent vieną išorinį pasauliniu mastu unikalų IP adresą (paveiksle tai IP: 5.20.0.11). Šį adresą "žino" maršrutizatorius.
- **3.** Maršrutizatoriuje yra nurodoma (konfigūruojama) vietinių tinklo IP adresų aibė (pavyzdžiui, 192.168.0.0–192.168.0.255).
- **4.** Vietiniams tinklo įrenginiams suteikiami vietiniai IP adresai iš maršrutizatoriaus vietinių adresų aibės (unikalūs vietinio tinklo lygmenyje žr. tinklo schemą).

IP adresai suteikiami dviem būdais:

- dinaminiu, jei įrenginio tinklo plokštė nustatyta dinaminiams adresams ir maršrutizatoriuje nurodyta dinaminių adresų aibė,
- statiniu būdu, jei įrenginyje numatytas toks IP adreso suteikimo būdas.

IPv4 adresai. Klasifikacija ir įvairovė (1)

- □ IPv4 (Internet Protocol version 4) adresai yra 32 bitų ilgio ir dažniausiai pateikiami kaip keturi 8 bitų skaičiai (4 baitai), atskirti taškais (pvz., 192.168.16.29). Šis protokolas aprašytas 1981 m. rugsėjį RFC 791 dokumente, kuris mažai pasikeitė: https://www.rfc-editor.org/rfc/rfc791.html (žr. 2023-09-20)
- □ IPv4 adresai klasifikuojami į keletą klasių (A, B, C, D, E), kurios nustato, kiek baitų skiriama tinklo ir kompiuterio identifikavimui.
- Pastaba. Ši klasifikacija dabar yra šiek tiek pasenusi patvirtinus 1993 m. rugsėjo mėn. CIDR (Classless Inter-Domain Routing) protokolą https://datatracker.ietf.org/doc/html/rfc1519 (žr. 2023-09), kuris leidžia efektyviau naudoti IP adresų erdvę lyginant su adresų klasių sistema. Nepaisant to, vis dar populiari IP adresų erdvės skirstymo į klases sistema. Ją trumpai pristatysime. Pagal CIDR, pavyzdžiui, A klasė gali būti užrašyta: 0.0.0.0/8

IPv4 adresų klasių lentelė

IP klasė	Pirmas oktetas (intervalas) 10-ainis sk.	Pirmas oktetas (intervalas) 2-ainis sk.	IP adresai (intervalas)	Potinklio kaukė	Maksimakus tinklo įrenginių sk.	Maksimalus tinklų sk.
A klasė	0 — 127	OXXXXXXX	0.0.0.0-127.255.255.255	255.0.0.0	2 ²⁴ -2	27
B klasė	128 — 191	10XXXXXX	128.0.0.0-191.255.255.255	255.255.0.0	216-2	214
C klasė	192-223	110XXXXX	192.0.0.0-223.255.255.255	255.255.255.0	2 ⁸ -2	2 ²¹
D klasė (eksperimentinė)	224-239	1110XXXX	224.0.0.0-239.255.255.255			
E klasė (grupinis siuntimas)	240-255	1111XXXX	240.0.0.0-255.255.255.255			

 $Pagal\ https://medium.com/networks-security/tricks-to-remember-five-classes-of-ipv4-484c191678fb\ (\"{z}r.\ 2023-02-20)$

IPv4 adresai. Klasifikacija ir įvairovė (2)

Visų IP adresų aibėje yra išskiriamos ypatingos, skirtos tik tam tikroms reikmėms adresų grupės.

- Vietiniai (privatūs) IP adresai (apibrėžti RFC 1918 standartu: https://www.rfc-editor.org/info/rfc1918):
 - **10.0.0.0** iki **10.255.255.255** (10.0.0.0/8), iš viso adresų: 16 777 216 (2²⁴)
 - **172.16.0.0** iki **172.31.255.255** (172.16.0.0/12), iš viso adresų: 1 048 576 (2²⁰)
 - **192.168.0.0** iki **192.168.255.255** (192.168.0.0/16), iš viso adresų: 65 536 (2¹⁶)
- □ Vietiniai arba privatūs IP adresai yra IP adresai, kurie skirti naudoti tik vietiniuose LAN tinkluose ir nėra pasiekiami tiesiogiai iš viešojo interneto. Šie adresai leidžia daugybei įrenginių (pvz., kompiuterių, telefonų, spausdintuvų ir kitų tinklo įrenginių) turėti unikalius IP adresus lokalaus tinklo kontekste.

sandaros paaiškinimai pateikti kitoje skaidrėje

IPv4 adresai. Klasifikacija ir įvairovė (3)

Lentelėje pateikti vietinių (lokalių) IP_ adresų sandaros paaiškinimai

Vietinių adresų pateikimas, nurodant, kiek bitų sudaro tinklo adresas, gali būti CIDR IPv4 adresų aibės skaidymo į tinklus ir potinklius pavyzdys: IP adreso pavyzdyje 203.0.113.0/24 3 baitai skirti tinklų adresavimui.

CIDR adresavimas	Reikšmė	Dvejetainėje skaičiavimo sistemoje	Šešioliktainėje skaičiavimo sistemoje	Dešimtainėje skaičiavimo sistemoje
10.0.0.0/8	reiškia adresų grupę, kurioje pirmieji 8 iš 32 bitų yra fiksuoti (žymi tinklą – paryškinta)	00001010 .000000000.00000000.00000000	0A .00.00.00	10 .000.000.000
		Kiti bitai kinta ir gali įgauti maksimalią reikšmė:		
		00001010.111111111.11111111111111111	OA.FF. FF. FF	10 .255.255.255
172.16.0.0/12	reiškia adresų grupę, kurioje pirmieji 12 iš 32 bitų yra fiksuoti (žymi tinklą – paryškinta)	10101100.0001 0000. 00000000.00000000	AC.1 0.00.00	172 . <u>1</u> 6.0.0*
		Kiti bitai kinta ir gali įgauti maksimalią reikšmė:		
		10101100.0001 1111.111111111.11111111	AC.1F. FF. FF	172 . <u>3</u> 1.255.255
192.168.0.0/16	reiškia adresų grupę, kurioje pirmieji 16 iš 32 bitų yra fiksuoti (žymi tinklą – paryškinta)	11000000.10101000. 00000000.000000000	C0.10. 00.00	192.168 .0.0
	• •	Kiti bitai kinta ir gali įgauti maksimalią reikšmė:		
		11000000.10101000 .111111111.1111111	CO. A8.FF.FF	192.168. 255.255

 $^{^*}$ Dešimtainėje sistemoje nejmanoma pažymėti konkretaus baito keturių bitų reikšmės.

IPv4 adresai. Klasifikacija ir įvairovė (4)

- □ **Grįžtamojo ryšio (Loopback)** adresai: 127.0.0.0/8 (pvz., 127.0.0.1, 127.0.0.2, ... 127.255.255.255) tai adresai, skirti kompiuteriui komunikuoti su pačiu savimi (kai įvairios informacinės sistemos veikia viename kompiuteryje) bei testavimui. Dažniausiai naudojamas **loopback** adresas yra 127.0.0.1.
- □ **Vietos ryšio adresai (Link-Local) adresai:** 169.254.0.0/16 automatiškai priskiriami tam tikriems įrenginiams, kai DHCP serveris (tarnyba) nesuteikia įrenginiui dinaminio IP adreso.
- □ Kiti, pavyzdžiui, pirmasis adresas, pateiktas pagal adresacijos schemą, yra tinklo adresas, o paskutinis siuntimo visiems (broadcast) adresas tiesiogiai nenaudojami.

IPv4 adresai. Klasifikacija ir įvairovė (5)

- Dokumentacijai ir mokymams naudojamos IP adresų grupės yra:
 - 192.0.2.0/24 tai yra "TEST-NET-1" adreso diapazonas, dažnai naudojamas dokumentuojant pavyzdžius.
 - 198.51.100.0/24 tai yra "TEST-NET-2" adreso diapazonas.
 - 203.0.113.0/24 tai yra "TEST-NET-3" adreso diapazonas.
- Šie adresai dažnai pasitaiko įvairiose techninėse dokumentacijose, interneto standartuose (RFC dokumentuose) ir techniniuose vadovuose, kad nenurodytų tikrų tinklo adresų ir išvengtų netyčinių konfliktų su realiais interneto adresais.

Kompiuterių tinklo maršrutizatorius

Kompiuterių tinkluose labai svarbus įrenginys yra maršrutizatorius. Maršrutizatorius (angl. router) yra įrenginys, kuris naudojamas duomenų perdavimui tarp skirtingų kompiuterinių tinklų ir atlieka daug svarbių funkcijų.

Kiekvienas maršrutizatorius gali turėti unikalių funkcijų, kurios priklauso nuo modelio ir gamintojo.

Čia pateiksime pagrindines maršrutizatoriaus funkcijas.

Kompiuterių tinklo maršrutizatorius (1)

- Maršrutizavimas. Pagrindinė maršrutizatoriaus funkcija yra nustatyti geriausią kelią, kuriuo duomenys (TCP/IP paketai*) turėtų keliauti, pavyzdžiui, iš namų LAN tinklo į internetą.
- □ **DHCP serveris.** Dauguma maršrutizatorių turi DHCP (*Dynamic Host Configuration Protocol*) serverio funkciją. DHCP suteikia galimybė automatiškai priskirti IP adresus kompiuteriams ir kitiems įrenginiams tinklo viduje.
- □ **Užkarda (ugniasienė; angl. Firewall)**. Maršrutizatorius gali apsaugoti tinklą nuo kenkėjiškų išorės atakų, naudodamas užkardos funkcijas. Tai leidžia filtruoti įeinančius ir išeinančius duomenų paketus

pagal nustatytus taisyklių rinkinius.

^{*} Išsamiau apie TCP/PI paketus paaiškinta kitoje skaidrėje.

Kompiuterių tinklo maršrutizatorius (1.1) TCP/IP paketai

Paketo dydis negali būti didesnis nei 65535 baitai.

Antraštė (20–60 baitų)

Antraštės pagrindiniai laukai:

Duomenys

- IP versiją (IPv4 atveju tai yra "4"),
- antraštės ilgis,
- viso paketo ilgis,
- paketo gyvavimo trukmė,
- protokolas (pvz., TCP, UDP),
- antraštės kontrolinė suma (padeda gavėjui patikrinti antraštės vientisumą),
- šaltinio IP adresas (IP adresas, iš kurio siunčiamas paketas),
- paskirties IP adresas (IP adresas, kuriam skirtas paketas),
- ir kt.

TCP/IP paketas

Pakete duomenys gali užimti ne daugiau kaip 65515 baitų (65535–20), jei antraštė yra mažiausio dydžio (20 baitų), arba 65475 baitai (65535–60), jei antraštė yra didžiausio dydžio (60 baitų).

Reikia paminėti, kad nors protokolas leidžia tokius didelius paketus, praktiškai standartinių Ethernet kadrų (paketų) maksimalus perdavimo dydis MTU (Maximum Transmission Unit) yra 1500 baitų.

Kompiuterių tinklo maršrutizatorius (2)

- **Belaidis tinklas (Wi-Fi).** Dauguma šiuolaikinių maršrutizatorių turi belaidžio tinklo galimybes. Tai leidžia kompiuteriams, telefonams ir kitiems įrenginiams prisijungti prie tinklo be laidų.
- Portų persiuntimas. Tai leidžia nukreipti ryšius iš išorės (pvz., iš interneto) į konkretų kompiuterį arba tarnybą jūsų lokaliame tinkle, pvz., šios funkcijos dėka, gali būti pasiekiama interneto svetainė, veikianti lokaliame tinkle.
- QoS (Quality of Service). Ši funkcija leidžia prioretizuoti tam tikrus duomenų srautus, pavyzdžiui, jei norite užtikrinti aukštesnę kokybę VoIP (garsas per internetą) pokalbiams ar žaidimams.

Kompiuterių tinklo maršrutizatorius (3)

- □ Virtualaus privataus tinklo (VPT) serveris. Kai kurie maršrutizatoriai gali veikti kaip VPT serveriai, leisdami jums saugiai prisijungti prie savo lokalaus tinklo (šifruotu kanalu) nuotoliniu būdu.
- □ **Tinklo izoliacija ir svečio tinklai.** Kai kurie maršrutizatoriai, siekiant išlaikyti pagrindinio tinklo saugumą, leidžia sukurti atskirus tinklus svečiams.
- □ **Tinklo monitoringas (stebėjimas).** Daugelis maršrutizatorių turi įrankius, kurie leidžia stebėti, kas vyksta tinklo viduje kokie įrenginiai prisijungę, kiek duomenų jie siunčia bei gauna ir kt.
- Atnaujinimai. Siekiant užtikrinti tinkamą veiklą, saugumą ir naujų funkcijų įdiegimą, maršrutizatoriai turi galimybę atnaujinti savo programinę įrangą.

Užduotis "Kompiuterių tinklo maršrutizatorius"

Dirbama grupelėse po 2–3 mokinius. Kiekvienai grupei mokytojas pateikia po vieną maršrutizatoriaus pavadinimą (arba pavadinimai paskirstomi burtų keliu).

Užduotis mokinių grupelėms

- □ Naudodamiesi interneto informacija (pavyzdžiui, pardavėjų, gamintojų svetainėse) raskite jums paskirto maršrutizatoriaus aprašą.
- □ Pagal aprašą nustatykite, kokias funkcijas geba atlikti šis maršrutizatorius.
- ☐ Savo tyrinėjimus pristatykite kitų grupių nariams.
- ☐ Atsakykite į mokytojo ir bendraklasių klausimus.

Kompiuterių tinklo maršrutizatorius (4)

- Maršrutizavimas (išsamiau). Pagrindinė maršrutizatoriaus funkcija yra nustatyti geriausią kelią, kuriuo duomenys turėtų keliauti, pavyzdžiui, iš namų LAN tinklo į internetą. Maršrutizavimo lentelė (route table) yra saugoma operacinės sistemos branduolyje. Ją galima pamatyti kompiuterio komandų eilutėje (cmd) įvykdžius komandą route print -4 (lentelės pavyzdys pateiktas kitoje skaidrėje).
- Lentelės pirmoji eilutė yra svarbiausia. Jos esmė yra tokia jei siunčiamas informacijos paketo IP adresas neatitinka nė vienos maršrutizavimo eilutės lentelėje, tai jis siunčiamas į Tinklo vartus (Gateway). Dažniausiai tai yra "išėjimas" į internetą.

Kompiuterių tinklo maršrutizatorius (5)

Network Destination Netmask Gateway Interface Metric 0.0.0.0 0.0.0.0 192.168.68.1 192.168.68.123 281

Maršrutizavimo lentelės (route table) pirmosios eilutės pavyzdys

ctive Routes:				
etwork Destination	n Netmask	Gateway	Interface	Metri
0.0.0.0	0.0.0.0	192.168.68.1	192.168.68.123	28
127.0.0.0	255.0.0.0	On-link	127.0.0.1	33
127.0.0.1	255.255.255.255	On-link	127.0.0.1	33
127.255.255.255	255.255.255.255	On-link	127.0.0.1	33
192.168.68.0	255.255.255.0	On-link	192.168.68.123	28
192.168.68.123	255.255.255.255	On-link	192.168.68.123	28
192.168.68.255	255.255.255.255	On-link	192.168.68.123	28
224.0.0.0	240.0.0.0	On-link	127.0.0.1	33
224.0.0.0	240.0.0.0	On-link	192.168.68.123	28
255.255.255.255	255.255.255.255	On-link	127.0.0.1	33
255.255.255.255	255.255.255.255	On-link	192.168.68.123	28

Maršrutizavimo lentelės (route table) pavyzdys

Kitos eilutės lentelėje nurodo kitus galimus kelius, pavyzdžiui, tai gali būti vidinio tinklo įrenginiai, kompiuterio komunikacija su pačiu savimi (127.0.0.1).

Maršrutizatoriuose yra įdiegta NAT (Network Address Translation) funkcija. Ši funkcija leidžia vidiniams įrenginiams naudoti tą patį viešąjį IP adresą internete, todėl ji suteikia papildomą saugumą ir leidžia efektyviau naudoti ribotą IPv4 adresų erdvę.

Kompiuterio tinklo adresų parametrai

Kompiuterio tinklo adresavimo parametrai yra esminė dalis, leidžianti kompiuteriams bendrauti tarpusavyje ir su išoriniais resursais. **Pagrindiniai parametrai yra:**

IP adresas. Tai unikalus numeris, priskirtas kiekvienam kompiuteriui arba įrenginiui tinklo viduje. Šis numeris gali būti IPv4 (pvz., 192.168.1.100) ar IPv6 (pvz., 2001:0db8:85a3:0000:0000:8a2e:0370:7334) formato.

Tinklo kaukė (Netmask). Nurodo, kurie IP adreso bitai atstovauja tinklui, o kurie – kompiuteriui tame tinkle. Pvz., 255.255.255.0 yra dažnai naudojama potinklio kaukė, reiškianti, kad pirmieji trys oktetai (baitai) nurodo tinklo adresą, o paskutinysis oktetas nurodo konkretų kompiuterį tinkle.

Tinklo vartai (*Gateway***).** Tai yra įrenginys, kuris leidžia komunikuoti vietinio tinklo kompiuteriams su kitais tinklais, internetu. Dažniausiai tai yra maršrutizatorius.

DNS (Domain Name System) serveriai. Tai serveriai, kurie išverčia domeno vardus į IP adresus. Pvz., kai naršyklėje įvedama **www.nsa.lt**, DNS serveris nustato, kurį IP adresui atitinka šis domeno vardas.

DHCP (*Dynamic Host Configuration Protocol*). Tai protokolas, leidžiantis automatiškai priskirti IP adresus ir kitus tinklo parametrus kompiuteriams. Jei jūsų kompiuteris yra nustatytas gauti IP adresą automatiškai, jis tikėtinai naudojasi DHCP.

Kompiuterio tinklo adresų parametrai

Pasiekiama: Valdymo skydas → Tinklo bendrinimo centras → Ethernetas → IPv4 → Ypatybės

Kompiuterių tinklų prievadai (portai)

Čia aptarsime pagrindinius dalykus, kuriuos reikia žinoti apie prievadus (portus).

Kompiuterių tinklų prievadai (portai) (1)

- Kompiuterių pasaulyje terminas "prievadas" turi dvi skirtingas reikšmes. Tai gali reikšti įprastus šiuolaikinių kompiuterių prievadus, pavyzdžiui, USB, Ethernet, DisplayPort, ir kt. Bet gali reikšti ir interneto prievado numerį.
- □ Visi internetu perduodami duomenys siunčiami ir gaunami naudojant tam tikrą komandų taisyklių rinkinį, dar vadinamą protokolu. Kiekvienam protokolui priskiriamas konkretus prievado numeris. Pavyzdžiui, visi svetainės duomenys, perduodami per HTTP naudoja 80 prievadą. Duomenys, siunčiami per HTTPS naudoja 443 prievadą.

Kompiuterių tinklų prievadai (portai) (2)

- Kiti įprasti prievadai:
 - 20 prievadas FTP (failų perdavimo protokolas),
 - 22 prievadas SFTP (saugus failų perdavimo protokolas),
 - 25 prievadas SMTP (siunčiamas el. laiškas),
 - 465 prievadas SMTP(siunčiamas šifruotas el. laiškas),
 - 143 prievadas IMAP (gaunamas el. laiškas),
 - 993 prievadas IMAP (gaunamas šifruotas el. laiškas).
- Prievadų numeriai yra panašūs į belaidžius tinklų kanalus, nes jie atskiria skirtingų protokolų srautus. Prievadai (portai) yra paprastas būdas įdiegti tinklo saugumo priemones, nes galima leisti arba blokuoti konkrečius protokolus.

Kompiuterių tinklų prievadai (portai) (3)

 Pagrindinis dokumentas (RFC), kuris valdo interneto portų (prievadų) numerių ir paslaugų pavadinimų priskyrimą, tai yra: RFC 6335: (https://www.rfc-editor.org/info/rfc6335)

Portų tipai:

- **Fizinis portas.** Tai fizinių įrenginių, tokie kaip kompiuteris, maršrutizatorius ar komutatorius, jungtys, į kurias jungiami tinklo kabeliai. Pavyzdžiui, Ethernet (tinklo kabelio) jungtis ar USB portas.
- Loginis portas. Tai virtualus ryšys tarp tinklo paslaugų ar programų. Jie nurodo, kur siunčiami tinklo informacijos paketai. Pavyzdžiui, HTTP paslauga dažniausiai naudoja 80 TCP portą, HTTPS – 443 portą.

Kompiuterių tinklų prievadai (portai) (4)

- □ Portų numeravimas. Kompiuteryje gali būti panaudoti portai nuo o iki 65535. Jie suskirstyti į tris kategorijas:
 - Gerai žinomi portai (0-1023). Šie portai yra skirti populiarioms paslaugoms.
 Pavyzdžiui, 80 portas skirtas HTTP, o 443 HTTPS.
 - Registruoti portai (1024-49151). Šie portai yra skirti mažiau populiarioms, bet vis dar oficialiai registruotoms paslaugoms.
 - Privatūs ar dinaminiai portai (49152-65535). Šie portai yra skirti laikinai, automatiškai priskiriamoms operacijoms.
- Portų skenavimas. Tai priemonė, kuri naudojama siekiant nustatyti, kurie portai yra atidaryti konkrečiame įrenginyje. Tai gali būti naudojama siekiant aptikti galimas saugumo spragas.

Kompiuterių tinklų prievadai (portai) (5)

- Užkarda (firewall) ir portai. Užkarda yra saugumo įrenginys (įrenginiai) ir (arba) programinė įranga, skirti valdyti tinklo srautą. Ji gali blokuoti arba leisti komunikavimą per tam tikrus portus siekiant apsaugoti sistemą.
- Portų peradresavimas (port forwarding). Tai yra būdai, kuriuos naudodamas maršrutizatorius ar kompiuteryje veikianti užkarda nukreipia tinklo srautą iš vieno porto į kitą. Ji dažniausiai naudojama, kai reikia pasiekti išorinius įrenginius iš vidaus tinklo arba atvirkščiai.
- □ Portai yra esminė dalis bet kokio tinklo, nes jie leidžia kompiuteriams ir kitiems tinklo įrenginiams komunikuoti tarpusavyje. Žinios apie portus yra svarbios tiek tinklo administratoriams, tiek vartotojams, siekiantiems geriau suprasti ir valdyti savo tinklą.

75

Kompiuterių tinklų prievadai (portai) (6)

Siekiant patikrinti konkretaus kompiuterio ryšius su kitais įrenginiais, išsiaiškinti, kaip jis bendrauja pats su savimi (su savo įrenginiais), kokius tinklo portus (jie rašomi po ":") naudoja (ESTABLISHED), kurie portai yra atidaryti (LISTENING), kurie laikinai uždaryti ir kt. informaciją, komandų eilutėje (cmd) galima parašyti komandą: netstat –an

Proto	Local Address	Foreign Address	State
TCP	127.0.0.1:1543	127.0.0.1:5354	ESTABLISHED
TCP	127.0.0.1:1544	127.0.0.1:5354	ESTABLISHED
TCP	127.0.0.1:5354	0.0.0.0:0	LISTENING
TCP	127.0.0.1:5354	127.0.0.1:1543	ESTABLISHED
TCP	127.0.0.1:5354	127.0.0.1:1544	ESTABLISHED
TCP	127.0.0.1:9395	127.0.0.1:39478	ESTABLISHED
TCP	127.0.0.1:11200	0.0.0.0:0	LISTENING
TCP	127.0.0.1:11300	0.0.0.0:0	LISTENING
TCP	127.0.0.1:27015	0.0.0.0:0	LISTENING
TCP	127.0.0.1:39478	127.0.0.1:9395	ESTABLISHED
TCP	127.0.0.1:50911	0.0.0.0:0	LISTENING
TCP	127.0.0.1:50912	0.0.0.0:0	LISTENING
TCP	192.168.68.123:139	0.0.0.0:0	LISTENING
TCP	192.168.68.123:2398	152.199.20.140:80	CLOSE_WAIT
TCP	192.168.68.123:11059	20.199.120.151:443	ESTABLISHED
TCP	192.168.68.123:19167	192.168.68.144:8008	TIME_WAIT
TCP	192.168.68.123:19168	192.168.68.1:1900	TIME_WAIT
TCP	192.168.68.123:19169	192.168.68.144:8008	TIME_WAIT
TCP	192.168.68.123:19170	192.168.68.1:1900	TIME_WAIT
TCP	192.168.68.123:19171	192.168.68.1:1900	TIME_WAIT
TCP	192.168.68.123:19172	192.168.68.144:8008	TIME_WAIT
TCP	192.168.68.123:22401	64.15.159.225:443	CLOSE_WAIT
TCP	192.168.68.123:30945	74.125.131.188:443	ESTABLISHED
TCP	192.168.68.123:32986	5.20.0.10:53	ESTABLISHED
TCP	192.168.68.123:39497	192.168.68.144:8009	ESTABLISHED
TCP	192.168.68.123:39498	64.233.164.188:5228	ESTABLISHED
TCP	192.168.68.123:40214	192.168.68.144:8009	ESTABLISHED

Komandos netstat -an darbo rezultato fragmentas

Užduotis "Kompiuterių tinklų portai"

- Įvykdykite savo kompiuterio komandų eilutėje (cmd) komandą:
 netstat –an
- □ Nustatykite, su kokiais IP adresais jūsų kompiuteris yra užmezgęs ryšį (ESTABLISHED).
- □ Pasinaudokite, pvz., svetainės https://whatismyipaddress.com/ip-lookup ar kitų svetainių paslaugomis ir nustatykite, kokioms bendrovėms priklauso šie adresai.
- □ Padedami mokytojo ar savarankiškai išsiaiškinkite, kodėl jūsų kompiuteris palaiko ryšį su šia bendrove.

Užduotis "Kompiuterių tinklų portai"

- Prisijunkite prie jums gerai žinomos svetainės, pavyzdžiui, www.emokykla.lt.
- Komandų eilutėje (cmd) įvykdę komandą ping www.emokykla.lt, nustatykite svetainės IP adresą.
- □ Panaudoję komandų eilutės komandą **netstat** –**an**, raskite pasirinktos svetainės eilutę.
 - Į kokį portą jūsų kompiuteris priima šios svetainės duomenis?
 - Per kokį portą pasirinkta svetainė siunčia duomenis?
- □ Padedami mokytojo ar savarankiškai išsiaiškinkite, kodėl šie portai skiriasi.

Kompiuterių tinklų ir interneto vystymo žymiausi mokslininkai, inžinieriai (1)

- Kompiuterių tinklų ir interneto technologijų vystymusi reikšmingos įtakos turėjo daugelio žmonių darbai.
- Kitoje skaidrėje pateikiamas sąrašas mokslininkų, inžinierių, kurie padarė svarbius žingsnius kompiuterių tinklų istorijoje.

Vint Cerf ir Robert E. Kahn kartu sukūrė TCP/IP protokolą, kuris yra pagrindinis komponentas, leidžiantis skirtingiems kompiuterių tinklams bendrauti tarpusavyje, todėl šie mokslininkai dažnai vadinami "Interneto tėvais".

2023 m. rugsėjo 20 d. Vint Cerf ir Robert "Bob" Kahn dalyvavo iškilmingame TCP/IP – pagrindinių interneto protokolų 50-ųjų metinių minėjime.

https://isoc.live/

Kompiuterių tinklų ir interneto vystymo žymiausi mokslininkai, inžinieriai (2)

- a) J. C. R. Licklider
- b) Paul Baran
- c) Donald Davies
- d) Vint Cerf
- e) Robert E. Kahn
- f) Sir Tim Berners-Lee (jam buvo suteiktas Sir (riterio) titulas už ypatingą indėlį į kompiuterių mokslą ir kompiuterinių tinklų vystymą)
- g) Robert Cailliau
- h) Robert Metcalfe
- i) David Boggs
- j) Radia Perlman

- k) Grace Hopper
- I) Anita Borg
- m) Elizabeth Feinler
- n) Claude Shannon
- o) Leonard Kleinrock
- p) Larry Roberts
- r) Ray Tomlinson
- s) Marc Andreessen
- t) Jon Postel
- u) Peter Kirstein
- v) Louis Pouzin
- z) Adolfas Laimutis Telksnys

https://media.geeksforgeeks.org/wp-content/uploads/20230406152358/CN-(1).jpg

Šie asmenys kartu su daugybe kitų mokslininkų veiksmingai prisidėjo vystant kompiuterių tinklus, internetą. Jų darbai padarė reikšmingą įtaką šių technologijų vystymuisi. Nors tai tik nedidelė dalis svarbių asmenų, prisidėjusių prie kompiuterių tinklų vystymosi, jų veikla atspindi darbų įvairiapusiškumą ir įvairumą šioje srityje.

Užduotis "Kompiuterių tinklų ir interneto vystymo žymiausi mokslininkai, inžinieriai"

Dirbama grupelėse po 2–3 mokinius.

Užduotis mokinių grupelėms

- Mokytojo nurodytu būdu, pavyzdžiui, burtais, pasiskirstykite ankstesnėje skaidrėje pateiktų žymiausių kompiuterių tinklų, interneto kūrėjų mokslininkų, inžinierių sąrašą, stengiantis nepalikti nė vienos nepaskirstytos pavardės.
- □ Internete ar kituose šaltiniuose raskite informacijos apie jų nuopelnus ir darbų svarbą vystant kompiuterių tinklus, internetą.
- Mokytojo nurodytu būdu pristatykite rastą informaciją bendraklasiams, o gal net kokiame nors specialiame renginyje. Pristatymo metu panaudokite rastą įdomią informaciją apie šių iškilių žmonių veiklą, gyvenimo faktus.