CS2102 Database Systems

Semester 1 2019/2020 Tutorial 07 (Selected Answers)

Quiz

Questions 1-6 uses the following schema R(A, B, C, D) with set of FDs $F = \{AB \rightarrow C, B \rightarrow A, C \rightarrow D\}$

- 1. Which of the following FDs are *logically implied* by *F*?
 - a) $A \rightarrow D$
 - b) $AB \rightarrow D$
 - c) $B \rightarrow C$
 - d) $B \rightarrow D$
 - e) $B \rightarrow CD$
 - f) $C \rightarrow A$
- 2. Which of the following set of FDs are equivalent to F?
 - a) $G_1 = \{B \rightarrow A, B \rightarrow D, C \rightarrow D\}$
 - b) $G_2 = \{B \rightarrow A, C \rightarrow D, B \rightarrow D, B \rightarrow C\}$
 - c) $G_3 = \{B \rightarrow AC, C \rightarrow D\}$
- 3. Compute the attribute closure of *B* w.r.t. *F*
- 4. What is/are the key(s) of R w.r.t. F?
- 5. What are the prime attributes of *R* w.r.t. *F*?
- 6. Compute one minimal cover of *F*

Tutorial Questions

[Discussion: 7(a), 7(b), 8(a), 8(b), 9(ab), 10, 11]

- 7. The more *extended* set of Armstrong's axioms has union and decomposition. Proof them only using Armstrong's axioms.
 - a) Union if $a \to b$ and $a \to c$, then $a \to bc$
 - b) Decomposition if $a \to bc$, then $a \to b$

Solution: [the proof-assisted version]

a) Proof

b) Proof

- 8. The more *extended* set of Armstrong's axioms has two more rules in addition to union and decomposition. For each of the rules below, proof them using only Armstrong's axiom.
 - a) Pseudo-transitivity if $a \rightarrow b$ and $bc \rightarrow d$, then $ac \rightarrow d$
 - b) Composition if $a \to b$ and $c \to d$, then $ac \to bd$

Solution: [the proof-assisted version]

a) Proof

School of Computing, National University of Singapore

```
AC->BC [Augmentation (1) with C]
AC->D [Transitivity (3) and (2)]
```

b) Proof

```
A->B [Given]
C->D [Given]
AC->BC [Augmentation (1) with C]
BC->BD [Augmentation (2) with B]
AC->BD [Transitivity (3) and (4)]
```

- 9. Consider R(A, B, C, D, E, G) with FDs $F = \{ABC \rightarrow E, BD \rightarrow A, CG \rightarrow B\}$.
 - a) Use extended Armstrong's axioms to show that $F \models CDG \rightarrow E$
 - b) Compute CDG+
 - c) Find all the keys of R

Solution: [the proof-assisted version is given in the appendix]

a) Proof

```
ABC->E [Given]
BD->A [Given]
CG->B [Given]
CDG->BD [Augmentation (3) with D]
CDG->A [Transitivity (4) and (2)]
CDG->CG [Reflexivity]
CDG->B [Transitivity (6) and (3)]
CDG->BC [Augmentation (7) with C]
CDG->ABC [Union (5,8)]
CDG->E [Transitivity (9) and (1)]
```

- b) $CDG^+ = ABCDEG = R$
- c) From (b), we know that CDG is a superkey of R. Since $DG^+ = DG$; $CG^+ = CGB$; and $CD^+ = CD$, we can conclude that CDG is a key of R.

Since each of C, D, or G does not appear on the RHS of any FD in F, it follows that $C \notin (R-C)^+$; $D \notin (R-D)^+$; and $G \notin (R-G)^+$.

Therefore, any key of R must be a superset of CDG. Since CDG is already a key of R, CDG is the only key of R.

10. Consider the schema R(A,B,C,D,E) with FDs $F = \{AB \to CDE,AC \to BDE,B \to C,C \to B,C \to B$ $D, B \rightarrow E$. Find all the prime attributes of R. Show your working.

Solution:

Observe that attribute A does not appear in any RHS of any FDs in F. Therefore, A must appear in every key. By process of enumeration of all subset of *R* containing *A*, starting from the simplest:

•
$$A^{+} = A$$
 A is NOT a superkey
• $AB^{+} = ABCDE$ AB is a superkey
• $AC^{+} = ABCDE$ B is NOT a superkey $\Rightarrow AB$ is a key
• $AC^{+} = ABCDE$ AC is a superkey
• $C^{+} = BCDE$ C is NOT a superkey AC is a key

• $AD^+ = AD$ AD is NOT a superkey • $AE^+ = AE$ AE is NOT a superkey • $ADE^+ = ADE$ ADE is NOT a superkey

The two keys of R are AB and AC. Hence, the prime attributes are A, B, and C.

11. Consider the schema R(A, B, C, D, E) with FDs $F = \{AB \rightarrow CDE, AC \rightarrow BDE, B \rightarrow C, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$. Find one minimal cover of F. Show your working.

Solution:

Start with
$$G = F = \{AB \rightarrow CDE, AC \rightarrow BDE, B \rightarrow C, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$$

In this example, we don't start working from $a \to A$ to simplify the notation. $a \to A$ can always be obtained by decomposition rule of extended Armstrong's axioms.

Remove redundant attributes:

- Consider $AB \rightarrow CDE$
 - o $A^+ = A$ So B is not a redundant attribute in FD
 - \circ $B^+ = BCDE$ So A is a redundant attribute in FD
 - Let $G = \{B \rightarrow CDE, AC \rightarrow BDE, B \rightarrow C, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$
- Consider $AC \rightarrow BDE$
 - o $A^+ = A$ So C is not a redundant attribute in FD
 - \circ $C^+ = BCDE$ So A is a redundant attribute in FD
 - Let $G = \{B \rightarrow CDE, C \rightarrow BDE, B \rightarrow C, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$
- No other FD need to be considered since all LHS are a single attribute now

Remove redundant FDs

- Let $G = \{B \rightarrow C, B \rightarrow D, B \rightarrow E, C \rightarrow B, C \rightarrow D, C \rightarrow E\}$
 - o after applying decomposition rule and removing duplicates
- Consider $B \rightarrow C$
 - \circ $B^+ = BDE$ w.r.t. $\{B \to D, B \to E, C \to B, C \to D, C \to E\}$
 - $B \rightarrow C$ is not redundant
 - $\circ \quad \mathsf{Thus}, \, G = \{B \to C, \, B \to D, \, B \to E, \, C \to B, \, C \to D, \, C \to E\}$
- Consider $B \to D$
 - \circ B⁺ = BCDE w.r.t. {B \rightarrow C, B \rightarrow E, C \rightarrow B, C \rightarrow D, C \rightarrow E}
 - $B \rightarrow D$ is redundant
 - o Thus, $G = \{B \rightarrow C, B \rightarrow E, C \rightarrow B, C \rightarrow D, C \rightarrow E\}$
- Consider $B \rightarrow E$
 - O $B^+ = BCDE$ w.r.t. $\{B \to C, C \to B, C \to D, C \to E\}$
 - \blacksquare $B \to E$ is redundant
 - $\circ \quad \mathsf{Thus}, \, G = \{B \to C, \, C \to B, \, C \to D, \, C \to E\}$
- Consider $C \to B$
 - \circ $C^+ = CDE$ w.r.t. $\{B \to C, C \to D, C \to E\}$
 - $C \rightarrow B$ is not redundant
 - o Thus, $G = \{B \rightarrow C, C \rightarrow B, C \rightarrow D, C \rightarrow E\}$
- Consider $C \to D$
 - $\circ \quad C^+ = BCE \text{ w.r.t. } \{B \to C, \ C \to B, \ C \to E\}$
 - $C \rightarrow D$ is not redundant
 - \circ Thus, $G = \{B \rightarrow C, C \rightarrow B, C \rightarrow D, C \rightarrow E\}$
- Consider $C \to E$

Thus, $G = \{B \to C, C \to B, C \to D, C \to E\}$ is a minimal cover of F