

Machine Learning

异常检测

Anomaly detection

Problem motivation

Anomaly detection example 异常检测

Aircraft engine features:

- $\rightarrow x_1$ = heat generated
- $\Rightarrow x_2$ = vibration intensity

...

Dataset: $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$

New engine: x_{test}

Density estimation

- \rightarrow Dataset: $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$
- \rightarrow Is x_{test} anomalous?

Anomaly detection example

- Fraud detection:
 - $\rightarrow x^{(i)}$ = features of user *i* 's activities
 - \rightarrow Model p(x) from data.
 - ightharpoonup Identify unusual users by checking which have $p(x) < \varepsilon$
 - if there are too many Anomaly detected but actually not so, we should try to decrease epsilon.

x,

72

X4

p(x)

- Manufacturing
- Monitoring computers in a data center.
 - $\rightarrow x^{(i)}$ = features of machine i
 - x_1 = memory use, x_2 = number of disk accesses/sec,
 - x_3 = CPU load, x_4 = CPU load/network traffic.

Machine Learning

Gaussian distribution

Gaussian (Normal) distribution

two parameter

Say $\underline{x} \in \mathbb{R}$. If x is a distributed Gaussian with $\underline{\text{mean } \mu}$, $\underline{\text{variance}}$ $\underline{\sigma}^2$.

 $\times \sim \mathcal{N}(\mu, \epsilon^2)$ $\sim \mathcal{N}(\mu, \epsilon^2)$

5 standard deviation

Gaussian distribution example

Parameter estimation

o Dataset: $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ $\underline{x^{(i)}} \in \mathbb{R}$

Machine Learning

Anomaly detection

Algorithm

Density estimation

 \rightarrow Training set: $\{x^{(1)}, \dots, x^{(m)}\}$ Each example is $x \in \mathbb{R}^n$

> assume each feature apply to Gaussian Distribution also assume all features are independent

$$\times_{1} \sim \mathcal{N}(\mu_{1}, \epsilon_{3}^{2})$$

 $\times_{2} \sim \mathcal{N}(\mu_{2}, \epsilon_{3}^{2})$
 $\times_{3} \sim \mathcal{N}(\mu_{3}, \epsilon_{3}^{2})$

= 1+2+3+ ... + n

$$= \left[P(x_1, \mu_1, \epsilon_1^2) P(x_2, \mu_2, \epsilon_2^2) P(x_3, \mu_3, \epsilon_2^2) \cdots P(x_n, \mu_n, \epsilon_n^2) \right]$$

$$= \left[P(x_1, \mu_1, \epsilon_1^2) P(x_2, \mu_2, \epsilon_2^2) P(x_3, \mu_3, \epsilon_2^2) \cdots P(x_n, \mu_n, \epsilon_n^2) \right]$$

$$= \left[P(x_1, \mu_1, \epsilon_1^2) P(x_2, \mu_2, \epsilon_2^2) P(x_3, \mu_3, \epsilon_2^2) \cdots P(x_n, \mu_n, \epsilon_n^2) \right]$$

$$= \left[P(x_1, \mu_1, \epsilon_1^2) P(x_2, \mu_2, \epsilon_2^2) P(x_3, \mu_3, \epsilon_2^2) \cdots P(x_n, \mu_n, \epsilon_n^2) \right]$$

$$= \left[P(x_1, \mu_1, \epsilon_1^2) P(x_2, \mu_2, \epsilon_2^2) P(x_3, \mu_3, \epsilon_2^2) \cdots P(x_n, \mu_n, \epsilon_n^2) \right]$$

$$= \left[P(x_1, \mu_1, \epsilon_1^2) P(x_2, \mu_2, \epsilon_2^2) P(x_3, \mu_3, \epsilon_2^2) \cdots P(x_n, \mu_n, \epsilon_n^2) \right]$$

$$= \left[P(x_1, \mu_1, \epsilon_1^2) P(x_2, \mu_2, \epsilon_2^2) P(x_3, \mu_3, \epsilon_2^2) \cdots P(x_n, \mu_n, \epsilon_n^2) \right]$$

$$= \left[P(x_1, \mu_1, \epsilon_1^2) P(x_2, \mu_2, \epsilon_2^2) P(x_3, \mu_3, \epsilon_2^2) \cdots P(x_n, \mu_n, \epsilon_n^2) \right]$$

$$= \left[P(x_1, \mu_1, \epsilon_1^2) P(x_2, \mu_2, \epsilon_2^2) P(x_3, \mu_3, \epsilon_2^2) \cdots P(x_n, \mu_n, \epsilon_n^2) \right]$$

$$= \left[P(x_1, \mu_1, \epsilon_1^2) P(x_2, \mu_2, \epsilon_2^2) P(x_3, \mu_2, \epsilon_2^2) \cdots P(x_n, \mu_n, \epsilon_n^2) \right]$$

$$= \left[P(x_1, \mu_1, \epsilon_1^2) P(x_2, \mu_2, \epsilon_2^2) P(x_3, \mu_2, \epsilon_2^2) \cdots P(x_n, \mu_n, \epsilon_n^2) \right]$$

$$= \left[P(x_1, \mu_1, \epsilon_1^2) P(x_2, \mu_2, \epsilon_2^2) P(x_3, \mu_2, \epsilon_2^2) P(x_3, \mu_2, \epsilon_2^2) \cdots P(x_n, \mu_n, \epsilon_n^2) \right]$$

$$= \left[P(x_1, \mu_1, \epsilon_1^2) P(x_2, \mu_2, \epsilon_2^2) P(x_3, \mu_2, \epsilon_2^2) P(x_3, \mu_2, \epsilon_2^2) \cdots P(x_n, \mu_n, \epsilon_n^2) \right]$$

$$= \left[P(x_1, \mu_1, \epsilon_1^2) P(x_2, \mu_2, \epsilon_2^2) P(x_3, \mu_2, \epsilon_2^2) \cdots P(x_n, \mu_n, \epsilon_n^2) P(x_1, \mu_2, \epsilon_2^2) P(x_1, \mu_2, \epsilon_2^2)$$

Anomaly detection algorithm

- \rightarrow 1. Choose features x_i that you think might be indicative of anomalous examples. {x(1) ... x(*)]
- \rightarrow 2. Fit parameters $\mu_1, \ldots, \mu_n, \sigma_1^2, \ldots, \sigma_n^2$

 \rightarrow 3. Given new example x, compute $\underline{p}(x)$:

$$p(x) = \prod_{j=1}^{n} p(x_j; \mu_j, \sigma_j^2) = \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi}\sigma_j} \exp\left(-\frac{(x_j - \mu_j)^2}{2\sigma_j^2}\right)$$

Anomaly if $p(x) < \varepsilon$

Machine Learning

Developing and evaluating an anomaly detection system

The importance of real-number evaluation

When developing a learning algorithm (choosing features, etc.), making decisions is much easier if we have a way of evaluating our learning algorithm.

- -> Assume we have some labeled data, of anomalous and nonanomalous examples. y = 0 if normal, y = 1 if anomalous).
- \rightarrow Training set: $x^{(1)}, x^{(2)}, \dots, x^{(m)}$ (assume normal examples/not anomalous)

Aircraft engines motivating example

- → 10000 good (normal) engines
- flawed engines (anomalous) 2-50
- Training set: 6000 good engines (y=0) $p(x)=p(x,\mu,\epsilon^2,\dots,\mu_n,\epsilon^2)$ CV: 2000 good engines (y=0), 10 anomalous (y=1) Test: 2000 good engines (y=0), 10 anomalous (y=1)

Alternative:

Training set: 6000 good engines

- ightharpoonup CV: 4000 good engines (y=0), 10 anomalous (y=1)
- \rightarrow Test: 4000 good engines (y=0) 10 anomalous (y=1)

Algorithm evaluation

- \rightarrow Fit model $\underline{p(x)}$ on training set $\{\underline{x^{(1)},\ldots,x^{(m)}}\}$
- \rightarrow On a cross validation/test example x , predict

$$y = \begin{cases} \frac{1}{0} & \text{if } p(x) < \varepsilon \text{ (anomaly)} \\ \hline 0 & \text{if } p(x) \ge \varepsilon \text{ (normal)} \end{cases} \qquad \mathbf{y} = \mathbf{0}$$

Possible evaluation metrics:

- -> True positive, false positive, false negative, true negative
- Precision/Recall
- → F₁-score ←

Can also use cross validation set to choose parameter ε

Machine Learning

Anomaly detection vs. supervised learning

- Very small number of positive examples (y = 1). (0-20 is common).
- \rightarrow Large number of negative (y = 0) examples.
- Many different "types" of anomalies. Hard for any algorithm to learn from positive examples what the anomalies look like;
- → future anomalies may look nothing like any of the anomalous examples we've seen so far.

vs. Supervised learning

Large number of positive and negative examples.

Enough positive examples for algorithm to get a sense of what positive examples are like, future positive examples likely to be similar to ones in training set.

VS.

Supervised learning

Fraud detection

Email spam classification

Manufacturing (e.g. aircraft engines)

Weather prediction (susiny/ rainy/etc).

Monitoring machines in a data center

Cancer classification

Machine Learning

Choosing what features to use

Error analysis for anomaly detection

Want p(x) large for normal examples x. p(x) small for anomalous examples x.

Most common problem:

p(x) is comparable (say, both large) for normal and anomalous examples see the anomaly that alogrithm fail to detect and see if that inspires when the aircraft engine and about the aircraft engine and

Monitoring computers in a data center

- Choose features that might take on unusually large or small values in the event of an anomaly.
 - \rightarrow x_1 = memory use of computer
 - $\rightarrow x_2$ = number of disk accesses/sec
 - $\rightarrow x_3 = CPU load <$
 - $\rightarrow x_4$ = network traffic \leftarrow

可以更好的捕捉到CPU和network之间的悬殊来定位异常

assume the anomaly situation is that computer get stuck into some infinite loop that CPU load is large but network does not grow very huge.

Machine Learning

Multivariate
Gaussian distribution

Motivating example: Monitoring machines in a data center

Multivariate Gaussian (Normal) distribution

 $\Rightarrow x \in \mathbb{R}^n$. Don't model $p(x_1), p(x_2), \ldots$, etc. separately.

Model p(x) all in one go.

Parameters: $\mu \in \mathbb{R}^n, \Sigma \in \mathbb{R}^{n \times n}$ (covariance matrix)

$$P(x;\mu,\Xi) = \frac{1}{(2\pi)^{n/2}(15)^{3}} \exp(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu))$$

$$|\Sigma| = \det(Signa)$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$x_2$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 0.6 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 0.6 \end{bmatrix} \qquad \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$x_2$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix} \qquad \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0.8 \\ 0.8 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0.8 \\ 0.8 & 1 \end{bmatrix}$$

Andrew Ng

Machine Learning

Anomaly detection using the multivariate
Gaussian distribution

Multivariate Gaussian (Normal) distribution

Parameters μ, Σ

$$p(x;\mu,\Sigma) = \frac{1}{(2\pi)^{\frac{n}{2}}|\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

Parameter fitting:

Given training set
$$\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$$

$$\boxed{\mu} = \frac{1}{m} \sum_{i=1}^{m} x^{(i)} \quad \boxed{\Sigma} = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu)(x^{(i)} - \mu)^{T}$$

Anomaly detection with the multivariate Gaussian

1. Fit model
$$p(x)$$
 by setting
$$\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}$$

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu)(x^{(i)} - \mu)^T$$

X1 (CPU Load)

2. Given a new example x, compute

$$p(x) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

Flag an anomaly if $p(x) < \varepsilon$

Relationship to original model

Original model:
$$p(x) = p(x_1; \mu_1(\sigma_1^2) \times p(x_2; \mu_2, \sigma_2^2) \times \cdots \times p(x_n; \mu_n, \sigma_n^2)$$

Corresponds to multivariate Gaussian

$$\Rightarrow p(x; \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

where

Original model

$$p(x_1; \mu_1, \sigma_1^2) \times \cdots \times p(x_n; \mu_n, \sigma_n^2)$$

Manually create features to capture anomalies where x_1, x_2 take unusual combinations of values.

Computationally cheaper (alternatively, scales better to lærge n=10,000, h=100,000)
OK even if m (training set size) is

small

vs. Multivariate Gaussian

$$p(x; \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^{T} (\Sigma^{-1}(x-\mu))\right)$$

Automatically captures
 correlations between features

Computationally more expensive

Andrew Ng