Proof Complexity and Solving LAB

2-SAT

Dr. Joshua Blinkhorn

Friedrich-Schiller-Universität Jena https://github.com/JoshuaBlinkhorn/SAT-LAB

Goals

- Implemenatation of SAT solving algorithms
 - (a) 2-SAT (polynomial time)
 - (b) DPLL (decision tree)
 - (c) CDCL
 - clause learning
 - watched literals
 - decision heuristics
 - restart strategy
 - (d) QBF expansion..
- Practical programming experience
 - use your favourite language (Python, C, C++, Java, ..)
 - recommended: Python

Restrictions

$$(\neg x_1 \lor x_2) \land (x_1 \lor \neg x_2) \land (x_2 \lor \neg x_3) \land (x_3 \lor \neg x_4)$$

- a restriction is the application of an assignment to a formula
- two operations in CNF:
 - a literal may be deleted from a clause
 - a clause may be deleted from the formula
- e.g. $x_1 \mapsto 0, x_2 \mapsto 0$

$$(\neg x_3) \wedge (x_3 \vee \neg x_4)$$

Unit Propagation

$$(\neg x_1) \land (x_1 \lor \neg x_2) \land (x_2 \lor \neg x_3) \land (x_3 \lor \neg x_4) \land (x_4 \lor \neg x_5)$$

- a unit clause has just one literal: $(\neg x_1)$
- a unit assignment satisfies a unit clause: $x_1 \mapsto 0$
- unit propagation is the successive and exhaustive application of unit assignments
- unit propagation on F yields
 - the assignment $\alpha: x_1 \mapsto 0, x_2 \mapsto 0, \dots, x_5 \mapsto 0$
 - the formula $F[\alpha] = \top$

A Feature of 2-SAT

- let $F[x \mapsto b]$ denote the application of $x \mapsto b$ plus unit propagation on F
- a decision plus unit propagation preserves satisfiability if it does not yield the empty clause:

$$\emptyset \notin F[x \mapsto b] \qquad \Longrightarrow \qquad F \equiv_{\mathsf{sat}} F[x \mapsto b]$$

- so if:
 - F is satisfiable, and
 - $F[x \mapsto b]$ does not contain the empty clause,

then

- $F[x \mapsto b]$ is satisfiable
- gives rise to a non-backtracking algorithm

2-SAT Algorithm

2-SAT Task

- implement the 2-SAT algorithm
- include a README
- test your solver on random 2-SAT formulas
- print some statistics, e.g.
 - solving time
 - memory consumption
 - number of decisions
 - number of unit propagations
 - ..?
- at this point: don't try to make your code reusable for later projects (DPLL, CDCL, ..)