Problem

Show that the set of incompressible strings contains no infinite subset that is Turing-recognizable.

Step-by-step solution

Step 1 of 2

Incompressible strings:

Let w_i be a string. If w_i doesn't have any description shorter than itself then w_i is incompressible.

Now we have to show that set of incompressible strings contains no infinite subset that is Turing recognizable.

Let A be the set of incompressible strings and assume the contradiction A contains infinite subset and Turing recognizable.

We construct an enumeration function $f: N \to A$, A is recognized by machine M.

Enumeration: $f: N \to A$ such that f(1) = w1, f(2) = w2, f(3) = w3... where first, second, and third enumerated strings are respectively w1, w2, w3, etc.

Since A reaches infinite there is a string $w_i \in A$.

Comment

Step 2 of 2

Turing machine N which computes an incompressible string of length at least n.

N = "On input n (an integer in binary notation)

1. Call \emph{M} to enumerate incompressible strings $^{\emph{W}_{\emph{i}}}$.

2. If
$$|w_i| >= n$$
, output w_i and halt"

Now the length of $\langle N \rangle n$ is

$$|\langle N \rangle n| = |\langle N \rangle| + \log(n)$$

$$= \log(n) + c$$
 where c is a constant

Now
$$|w_i| = n$$

 $n > \log n + c$ for large value of n.

$$n > |\langle N \rangle n|$$
 $\left[As |\langle N \rangle| n = \log n + c \right]$

Therefore
$$|w_i| > n$$

This contradicts the incompressibility of string w_i , therefore our assumption that M enumerates an infinite subset of incompressible strings w_i is wrong. Hence set of incompressible strings contains no infinite subset is Turing – recognizable.

Comment