INTRODUCTION À L'AÉRONAUTIQUE AER600

EXERCICES

Module 03 AÉROTHERMODYNAMIQUE DES ÉCOULEMENTS ENTRANT ET SORTANT DU MOTEUR

DIFFUSEURS

- 3.1 On considère la prise d'air d'un moteur d'avion. Les conditions de pression et température ambiantes à l'altitude de vol sont Pa = 9.57 kPa et Ta = 222 K, avec γ = 1.4, R = 287.0 J/kg·K et φ = 1 005 J/kg·K. L'avion vole à un nombre de Mach de Maa = 0.9. On sait de plus que le diffuseur à une efficacité de ηD = 0.95 et que le nombre de Mach à l'entrée du compresseur est de Ma2 = 0.4. Si on fait une hypothèse de chaleurs spécifiques constantes, on demande alors d'évaluer à l'entrée du compresseur :
 - a) La température de stagnation T_{02} ;
 - b) La pression de stagnation P_{02} ;
 - c) La température statique T_2 ;
 - d) La pression statique P_2 ;
 - e) Le ratio des pressions de stagnation $r_d = P_{02}/P_{0a}$.

Rép.: a) $T_{02} = 258.0 \text{ K}$ b) $P_{02} = 15.78 \text{ kPa}$ c) $T_2 = 250.0 \text{ K}$ d) $P_2 = 14.14 \text{ kPa}$ e) $r_d = 0.98$

TUYERES

- 3.2 Le gaz chaud (R = 287.0 J/kg·K, $\gamma = 1.33 \text{ et } c_p = 1.148 \text{ J/kg·K}$) sort de la turbine et entre dans la tuyère avec $T_{06} = 800 \text{ K}$ et $P_{06} = 50 \text{ kPa}$. Si le nombre de Mach à la sortie de la tuyère est de Ma₇ = 0.95, on demande alors, en supposant que les chaleurs spécifiques demeurent constantes, de déterminer :
 - a) La température statique de sortie T_7 ;
 - b) La vitesse de sortie du jet V_7 ;
 - c) Le rendement de la tuyère η_N si la pression statique en sortie est de $P_7 = 27.9$ kPa.

Rép.: a) **696 K** b) **490 m/s** c) **0.96**