

Fizyka 2 - laboratorium 3

Fale podłużne w ciałach stałych

Ćwiczenie nr 29 15 października 2024

Aleksander Jóźwik Adrian Krawczyk

Wydział WI	Imię i nazwisko 1. Aleksander Jóź 2. Adrian Krawcz		Rok II	Grupa 3	Zespół 3
PRACOWNIA FIZYCZNA WFiIS AGH	Temat: Fa	Nr ćwiczenia 29			
Data wykonania 15.10.2024	Data oddania 21.10.2024	Zwrot do popr.	Data oddania	Data zaliczenia	Ocena

1. Wprowadzenie

1.1. Cel ćwiczenia

Wyznaczenie modułu Younga dla różnych materiałów na podstawie pomiaru prędkości rozchodzenia się fali dźwiękowej w pręcie.

1.2. Wstęp teoretyczny

Fala podłużna w pręcie jest zjawiskiem, które zachodzi, gdy część pręta zostaje chwilowo wytrącona ze stanu równowagi. To zaburzenie wywołuje serię drgań, które dzięki elastycznym właściwościom materiału, mogą być propagowane wzdłuż całej długości pręta. Proces ten umożliwia rozprzestrzenianie się fali w całym ośrodku. Prędkość, z jaką fala przemieszcza się w pręcie, jest determinowana przez dwa kluczowe czynniki charakteryzujące materiał: jego bezwładność oraz sprężystość. Te właściwości fizyczne ośrodka, w którym fala się rozprzestrzenia, mają bezpośredni wpływ na szybkość jej propagacji. Rozważając m.in. mały wycinek jednorodnego pręta oraz biorąc pod uwagę prawo Hooke'a:

$$\sigma = \varepsilon E$$

gdzie:

 σ - naprężenie

 ε - odkształcenie względne

E - moduł Younga,

otrzymujemy związek pomiędzy modułem Younga a prędkością rozchodzenia się fali:

$$v = \sqrt{\frac{E}{\rho}}$$

gdzie ρ to gęstość materiału, z którego wykonany jest pręt.

Z czego wynika, że moduł Younga jest równy:

$$E = \rho v^2$$

W pręcie powstaje fala stojąca poprzez interferencję fal padającej i odbitej. Odległość między węzłami fali stojącej wyraża się wzorem:

$$l = \frac{1}{2}\lambda \Rightarrow \lambda = 2l$$

Znając długość fali λ oraz jej czestotliwość f można obliczyć prędkość fali:

$$v = 2lf$$

Podstawiając powyższe równanie do poprzedniego wzoru na moduł Younga, otrzymujemy ostateczny wzór:

$$E = 4\rho l^2 f^2$$

Fala dźwiękowa w pręcie może zostać przybliżona jako złożenie drgań harmonicznych sinusoidalnych. Aplikacja szybkiej transformaty Fouriera umożliwia analizę pakietu sinusoid, pozwalając określić odpowiadające im wartości częstotliwości. Częstotliwość podstawowa, odpowiadająca najniższemu tonowi, jest bazą szeregu częstotliwości harmonicznych. Częstotliwości harmoniczne stanowią całkowite wielokrotności częstotliwości podstawowej, co wyraża się zależnością:

$$f_k = f_0 \cdot k$$

gdzie k = 2, 3, ...

2. Układ pomiarowy

1. Komputer stacjonarny

- System Windows 10
- Mikrofon
- Oprogramowanie Zelscope

2. Zestaw czterech prętów

- Aluminiowy
- Miedziany
- Stalowy
- Mosiężny

3. Przyrządy pomiarowe

- Suwmiarka (dokładność: 0.05 mm)
- Miarka w rolce (dokładność: 1 mm)
- Waga elektroniczna (dokładność: 1 g)

4. Akcesoria

• Młotek (do wzbudzania fal podłużnych)

Rysunek 1: Ogólny widok układu pomiarowego z komputerem i oprogramowaniem Zelscope [1].

3. Przebieg ćwiczenia

Ćwiczenie rozpoczęto od dokonania pomiarów długości, średnicy przekroju oraz masy próbek. Następnie zmierzono długości prętów. Włączono komputer i skonfigurowano oprogramowanie Zelscope. Pręty kolejno poddawano uderzeniom młotkiem, w celu wytworzenia fali podłużnej, oraz rejestrowano częstotliwości kolejnych harmonicznych dla każdego materiału (dokładność odczytu częstotliwości wynosiła 20 Hz). Wyniki zapisano w tabeli.

4. Analiza danych pomiarowych

4.1. Wyniki pomiarów dla próbek

		Próbka 1		Próbka 2		Próbka 3		Próbka 4	
Materiał		Aluminium		Mosiądz		Miedź		Stal	
$oxed{m [\mathrm{g}]}$	$\boxed{ u_B(m) \; [\mathrm{g}] }$	69	1	114	1	120	1	107	1
$\boxed{ h \; [\mathrm{cm}] }$	$\boxed{u_B(h) \; [\text{cm}]}$	12	0.1	12	0.1	12	0.1	12	0.1
$\boxed{d~[\text{cm}]}$	$\boxed{u_B(d) \; [\text{cm}]}$	1.63	0.005	1.2	0.005	1.2	0.005	1.2	0.005
$l~[{ m cm}]$	$\boxed{u_B(l) \; [\mathrm{cm}]}$	196.7	0.1	198.8	0.1	197.8	0.1	196.8	0.1
$oxed{V[ext{cm}^3]}$	$\boxed{u_C(V)[\text{cm}^3]}$	25.0407	0.26	13.5717	0.16	13.5717	0.16	13.5717	0.16
$\left[ho \left[rac{g}{{ m cm}^3} ight]$	$\boxed{u_C(\rho)\big[\frac{g}{\text{cm}^3}\big]}$	2.7555	0.050	8.3998	0.13	8.8419	0.13	7.8841	0.12

Tabela 1: Wyniki pomiarów masy m, długości h i średnicy d próbek prętów, a także długości prętów l, z wyznaczoną objętością $V=\pi\left(\frac{d}{2}\right)^2h$ i gęstością $\rho=\frac{m}{V}$, wraz z niepewnościami.

Do obliczenia niepewności złożonych skorzystano z prawa przenoszenia niepewności:

$$V = \pi \bigg(\frac{d}{2}\bigg)^2 h = \frac{1}{4}\pi d^2 h$$

$$u_c(V) = \sqrt{\bigg(\frac{\partial V}{\partial d} \cdot u_B(d)\bigg)^2 + \bigg(\frac{\partial V}{\partial h} \cdot u_B(h)\bigg)^2} = \sqrt{\bigg(\frac{1}{2}\pi dh \cdot u_B(d)\bigg)^2 + \bigg(\frac{1}{4}\pi d^2 \cdot u_B(h)\bigg)^2}$$

$$\rho = \frac{m}{V}$$

$$u_C(\rho) = \sqrt{\left(\frac{\partial \rho}{\partial m} \cdot u_B(m)\right)^2 + \left(\frac{\partial \rho}{\partial V} \cdot u_C(V)\right)^2} = \sqrt{\left(\frac{1}{V} \cdot u_B(m)\right)^2 + \left(\frac{-m}{V^2} \cdot u_C(V)\right)^2}$$

Odpowiednio zaokrąglone wyznaczone wartości:

$$\begin{split} V_{\rm Al} &\approx 25.04 \text{ cm}^3 & V_{\rm CuZn} \approx 13.57 \text{ cm}^3 & V_{\rm Cu} \approx 13.57 \text{ cm}^3 & V_{\rm FeC} \approx 13.57 \text{ cm}^3 \\ u_C(V_{\rm Al}) &= 0.26 \text{ cm}^3 & u_C(V_{\rm CuZn}) = 0.16 \text{ cm}^3 & u_C(V_{\rm Cu}) = 0.16 \text{ cm}^3 & u_C(V_{\rm FeC}) = 0.16 \text{ cm}^3 \\ \\ \rho_{\rm Al} &\approx 2.756 \frac{g}{\text{cm}^3} & \rho_{\rm CuZn} \approx 8.40 \frac{g}{\text{cm}^3} & \rho_{\rm Cu} \approx 8.84 \frac{g}{\text{cm}^3} & \rho_{\rm FeC} \approx 7.88 \frac{g}{\text{cm}^3} \\ u_C(\rho_{\rm Al}) &= 0.050 \frac{g}{\text{cm}^3} & u_C(\rho_{\rm CuZn}) = 0.13 \frac{g}{\text{cm}^3} & u_C(\rho_{\rm Cu}) = 0.13 \frac{g}{\text{cm}^3} & u_C(\rho_{\rm FeC}) = 0.12 \frac{g}{\text{cm}^3} \end{split}$$

4.2. Wyniki pomiarów dla poszczególnych prętów

Materiał	k	$\boxed{f_k \ [\mathrm{Hz}]}$	$\boxed{ \ \ \lambda_k \; [\mathrm{m}] \ \ }$	$\boxed{u_c(\lambda_k) \ [\mathrm{m}]}$	$\boxed{v_k \big[\frac{m}{s}\big]}$	$\boxed{u_c(v_k)\big[\frac{m}{s}\big]}$
	1	1264.71	3.9340	0.0020	4975.3691	79
	2	2647.06	1.9670	0.0010	5206.7670	40
Aluminium	3	3911.76	1.3113	0.00067	5129.6213	27
Alummum	4	5264.71	0.9835	0.00050	5177.8423	20
	5	6558.82	0.7868	0.00040	5160.4796	16
	6	7911.76	0.6557	0.00034	5187.4773	14
	1	882.35	3.9760	0.0020	3508.2236	80
	2	1764.71	1.9880	0.0010	3508.2435	40
Masiada	3	2670.59	1.3253	0.00067	3539.4219	27
Mosiądz	4	3588.24	0.9940	0.00050	3566.7106	20
	5	4494.12	0.7952	0.00040	3573.7242	16
	6	5376.47	0.6627	0.00034	3562.8075	14
	1	964.71	3.9560	0.0020	3816.3928	80
	2	1917.65	1.9780	0.0010	3793.1117	40
Miedź	3	2882.35	1.3187	0.00067	3800.8589	27
lvnedz	4	3858.82	0.9890	0.00050	3816.3730	20
	5	4811.76	0.7912	0.00040	3807.0645	16
	6	5776.47	0.6593	0.00034	3808.6192	14
	1	1258.82	3.9360	0.0020	4954.7155	79
	2	2494.12	1.9680	0.0010	4908.4282	40
Stal	3	3764.71	1.3120	0.00067	4939.2995	27
	4	5035.29	0.9840	0.00050	4954.7254	20
	5	6305.88	0.7872	0.00040	4963.9887	16
	6	7529.41	0.6560	0.00034	4939.2930	14

Tabela 2: Częstotliwości składowych harmonicznych k zarejestrowane dla poszczególnych prętów oraz wyliczone długości fali $\lambda_k = \frac{2l}{k}$ (gdzie l jest długością pręta), prędkość fali dźwiękowej $v_k = \lambda_k f_k$ oraz niepewności złożone $u_c(\lambda_k)$ i $u_c(v_k)$.

Przyjęto niepewność typu B dla odczytu częstotliwości:

$$u_B(f) = 20 \text{ Hz}$$

Niepewności w tabeli wyznaczono wg poniższych wzorów:

$$\lambda_k = \frac{2l}{k}$$

$$u_C(\lambda_k) = \sqrt{\left(\frac{\partial \lambda_k}{\partial l} \cdot u_B(l)\right)^2} = \left|\frac{2}{k} \cdot u_B(l)\right| = \frac{2}{k} \cdot u_B(l)$$

$$v_k = \lambda_k f_k$$

$$u_C(v_k) = \sqrt{\left(\frac{\partial v_k}{\partial \lambda_k} \cdot u_C(\lambda_k)\right)^2 + \left(\frac{\partial v_k}{\partial f_k} \cdot u_B(f)\right)^2} = \sqrt{\left(f_k \cdot u_C(\lambda_k)\right)^2 + \left(\lambda_k \cdot u_B(f)\right)^2}$$

4.3. Obliczenie średniej prędkości dźwięku w danym materiale wraz z niepewnością

Na podstawie danych z powyższej tabeli, można wyznaczyć średnią prędkość dźwięku dla każdego z metali:

$$v_{\rm \acute{e}r} = \frac{1}{N} \sum_{k=1}^{N} v_k = \frac{1}{6} \sum_{k=1}^{6} v_k$$

Oraz niepewność:

$$u(v_{\operatorname{\acute{s}r}}) = \sqrt{\sum_{k=1}^{n} \left(\frac{u(v_k)}{n}\right)^2} = \sqrt{\sum_{k=1}^{6} \left(\frac{u(v_k)}{6}\right)^2} = \frac{1}{36} \sqrt{\sum_{k=1}^{6} \left(u(v_k)\right)^2}$$

4.3.1. Aluminium

$$u\left(v_{\text{\'er}_{\text{Al}}}\right) = 16.13 \; \frac{m}{s} \approx 17 \; \frac{m}{s}$$
 $v_{\text{\'er}_{\text{Al}}} = 5139.5928 \; \frac{m}{s} \approx 5140 \; \frac{m}{s}$

4.3.2. Mosiądz

$$\begin{split} u\!\left(v_{\text{\'sr}_{\text{CuZn}}}\right) &= 16.22 \; \frac{m}{s} \approx 17 \; \frac{m}{s} \\ v_{\text{\'sr}_{\text{CuZn}}} &= 3543.1885 \; \frac{m}{s} \approx 3543 \; \frac{m}{s} \end{split}$$

4.3.3. Miedź

$$u\left(v_{
m \acute{s}r_{Cu}}\right) = 16.11 \; rac{m}{s} pprox 17 \; rac{m}{s}$$

$$v_{\rm \acute{e}r_{Cu}} = 3807,07 \ \frac{m}{s} \approx 3807 \ \frac{m}{s}$$

4.3.4. Stal

$$u\!\left(v_{\mathrm{\acute{s}r_{FeC}}}\right) = 16.14 \ \frac{m}{s} \approx 17 \ \frac{m}{s}$$

$$v_{\text{\'er}_{\text{FeC}}} = 4943,4084 \; \frac{m}{s} \approx 4943 \; \frac{m}{s}$$

4.4. Obliczenie modułu Younga dla poszczególnych materiałów

Podczas obliczeń zostanie wykorzystany poniższy wzór:

$$E = \rho v_{\rm \acute{s}r}^2$$

Z prawa przenoszenia niepewności:

$$u_C(E) = \sqrt{\left(\frac{\partial E}{\partial \rho} \cdot u_C(\rho)\right)^2 + \left(\frac{\partial E}{\partial v_{\text{\'{s}r}}} \cdot u(v_{\text{\'{s}r}})\right)^2} = \sqrt{\left(v_{\text{\'{s}r}}^2 \cdot u_C(\rho)\right)^2 + \left(2\rho v_{\text{\'{s}r}} \cdot u(v_{\text{\'{s}r}})\right)^2}$$

Dla niepewności rozszerzonych przyjęto k = 2.

4.4.1. Aluminium

$$E_{\rm Al} = 2.756 \; \frac{\mathrm{kg} \cdot 10^{-3}}{\left(m \cdot 10^{-2}\right)^3} \cdot \left(5140 \; \frac{m}{s}\right)^2 = 7.281 \cdot 10^{10} \; \frac{\mathrm{kg}}{m \cdot s^2} = 72.81 \; \; \mathrm{GPa}$$

$$\begin{split} u_C(E_{\rm Al}) &= \sqrt{\left(\left(5140\,\frac{m}{s}\right)^2 \cdot 0.050\,\frac{\mathrm{kg} \cdot 10^{-3}}{\left(m \cdot 10^{-2}\right)^3}\right)^2 + \left(2 \cdot 2.756\,\frac{\mathrm{kg} \cdot 10^{-3}}{\left(m \cdot 10^{-2}\right)^3} \cdot 5140\,\frac{m}{s} \cdot 17\,\frac{m}{s}\right)^2} = \\ &= \sqrt{1.745 \cdot 10^{18}\frac{\mathrm{kg}^2}{m^2 \cdot s^4} + 2.3198 \cdot 10^{17}\frac{\mathrm{kg}^2}{m^2 \cdot s^4}} = 1.41 \cdot 10^9 \; \mathrm{Pa} \end{split}$$

$$u_C(E_{\rm Al}) \approx 1.5~{\rm GPa}$$

$$U(E_{\mathrm{Al}}) = k \cdot u_C(E_{\mathrm{Al}}) = 3.0 \; \mathrm{GPa}$$

Odpowiednio zaokrąglamy wartość:

$$E_{\Lambda 1} \approx 72.8 \text{ GPa}$$

$$E_{\rm Al} = (72.8 \pm 3.0) \; \; {
m GPa}$$

4.4.2. Mosiądz

$$E_{\rm CuZn} = 8.40 \ \frac{{\rm kg} \cdot 10^{-3}}{\left(m \cdot 10^{-2}\right)^3} \cdot \left(3543 \ \frac{m}{s}\right)^2 = 1.0544 \cdot 10^{11} \ \frac{{\rm kg}}{m \cdot s^2} = 105.44 \ {\rm GPa}$$

$$\begin{split} u_C(E_{\text{CuZn}}) &= \sqrt{\left(\left(3543\ \frac{m}{s}\right)^2 \cdot 0.13\ \frac{\text{kg} \cdot 10^{-3}}{\left(m \cdot 10^{-2}\right)^3}\right)^2 + \left(2 \cdot 8.40\ \frac{\text{kg} \cdot 10^{-3}}{\left(m \cdot 10^{-2}\right)^3} \cdot 3543\ \frac{m}{s} \cdot 17\ \frac{m}{s}\right)^2} = \\ &= \sqrt{2.663 \cdot 10^{18} \frac{\text{kg}^2}{m^2 \cdot s^4} + 1.024 \cdot 10^{18} \frac{\text{kg}^2}{m^2 \cdot s^4}} = 1.92 \cdot 10^9 \text{ Pa} \end{split}$$

$$u_C(E_{\mathrm{CuZn}}) \approx 2.0 \; \mathrm{GPa}$$

$$U(E_{\mathrm{CuZn}}) = k \cdot u_C(E_{\mathrm{CuZn}}) = 4.0 \text{ GPa}$$

Odpowiednio zaokrąglamy wartość:

$$E_{\rm CuZn} \approx 105.4~{\rm GPa}$$

$$E_{\rm CuZn} = (105.4 \pm 4.0) \; \; {
m GPa}$$

4.4.3. Miedź

$$E_{\rm Cu} = 8.84 \ \frac{{\rm kg} \cdot 10^{-3}}{\left(m \cdot 10^{-2}\right)^3} \cdot \left(3807 \ \frac{m}{s}\right)^2 = 1.2812 \cdot 10^{11} \ \frac{{\rm kg}}{m \cdot s^2} = 128.12 \ {\rm GPa}$$

$$\begin{split} u_C(E_{\mathrm{Cu}}) &= \sqrt{\left(\left(3807\ \frac{m}{s}\right)^2 \cdot 0.13\ \frac{\mathrm{kg} \cdot 10^{-3}}{(m \cdot 10^{-2})^3}\right)^2 + \left(2 \cdot 8.84\ \frac{\mathrm{kg} \cdot 10^{-3}}{(m \cdot 10^{-2})^3} \cdot 3807\ \frac{m}{s} \cdot 17\ \frac{m}{s}\right)^2} = \\ &= \sqrt{3.55 \cdot 10^{18} \frac{\mathrm{kg}^2}{m^2 \cdot s^4} + 1.309 \cdot 10^{18} \frac{\mathrm{kg}^2}{m^2 \cdot s^4}} = 2.204 \cdot 10^9\ \mathrm{Pa} \end{split}$$

$$u_C(E_{\mathrm{Cu}}) \approx 2.3 \; \mathrm{GPa}$$

$$U(E_{\mathrm{Cu}}) = k \cdot u_C(E_{\mathrm{Cu}}) = 4.6 \; \; \mathrm{GPa}$$

Odpowiednio zaokrąglamy wartość:

$$E_{\rm Cu} \approx 128.1~{\rm GPa}$$

$$E_{\rm Cu} = (128.1 \pm 4.6) \; \; {
m GPa}$$

4.4.4. Stal

$$E_{\rm FeC} = 7.88 \; \frac{\mathrm{kg} \cdot 10^{-3}}{\left(m \cdot 10^{-2}\right)^3} \cdot \left(4943 \; \frac{m}{s}\right)^2 = 1.9253 \cdot 10^{11} \; \frac{\mathrm{kg}}{m \cdot s^2} = 192.534 \; \; \mathrm{GPa}$$

$$\begin{split} u_C(E_{\rm FeC}) &= \sqrt{\left(\left(4943\ \frac{m}{s}\right)^2\cdot 0.12\ \frac{\mathrm{kg}\cdot 10^{-3}}{\left(m\cdot 10^{-2}\right)^3}\right)^2 + \left(2\cdot 7.88\ \frac{\mathrm{kg}\cdot 10^{-3}}{\left(m\cdot 10^{-2}\right)^3}\cdot 4943\ \frac{m}{s}\cdot 17\ \frac{m}{s}\right)^2} = \\ &= \sqrt{8.597\cdot 10^{18}\frac{\mathrm{kg}^2}{m^2\cdot s^4} + 1.754\cdot 10^{18}\frac{\mathrm{kg}^2}{m^2\cdot s^4}} = 3.217\cdot 10^9\ \mathrm{Pa} \end{split}$$

$$u_C(E_{\rm FeC}) \approx 3.3~{\rm GPa}$$

$$U(E_{\text{FeC}}) = k \cdot u_C(E_{\text{FeC}}) = 6.6 \text{ GPa}$$

Odpowiednio zaokrąglamy wartość:

$$E_{\rm FeC} \approx 192.5~{
m GPa}$$

$$E_{
m FeC} = (192.5 \pm 6.6) \ {
m GPa}$$

5. Porównanie wyznaczonych wartości modułu Younga z wartościami tabelarycznymi

Materiał	E wyznaczone [GPa]	E_0 tablicowe [GPa]	$ E-E_0 $ [GPa]
Aluminium	72.8	70	$2.8 < U(E_{\rm Al})$
Mosiądz	105.4	103-124	0
Miedź	128.1	110-135	0
Stal	192.5	190-210	0

Tabela 3: Porównanie wyznaczonych wartości modułu Younga z wartościami tabelarycznymi [2], [3].

6. Wnioski

W trakcie ćwiczenia otrzymano wartości modułu Younga, dla poszczególnych metali, które wynoszą:

$$E_{\rm Al} = (72.8 \pm 3.0) \; \; {
m GPa}$$

$$E_{\rm CuZn} = (105.4 \pm 4.0) \; \; {
m GPa}$$

$$E_{\rm Cu} = (128.1 \pm 4.6) \; \; {
m GPa}$$

$$E_{
m FeC} = (192.5 \pm 6.6) \; \; {
m GPa}$$

Otrzymane wyniki są zgodne z wartościami tabelarycznymi w granicach niepewności.

Niepewności dla niektórych materiałów są większe od pozostałych, na co wpływ mogły mieć:

- Interferencja z innych równolegle prowadzonych eksperymentów, w szczególności urządzeń generujących fale,
- Hałas akustyczny pochodzący z rozmów innych uczestników laboratorium.

Bibliografia

AGH WFiIS, "Strona internetowa PF AGH z opisem ćwiczenia nr 29 ". Dostęp: 20 październik 2024. [Online]. Dostępne na: https://pf.agh.edu.pl/cwiczenia/29-fale-podluzne-

- [1] -w-cialach-stalych
 - "Wikipedia Moduł Younga". Dostęp: 20 październik 2024. [Online]. Dostępne na: https://
- $[2] \hspace{0.1in} pl.wikipedia.org/wiki/Modu\%C5\%82_Younga$
 - AGH WFiIS, "Opis ćwiczenia nr 11: Moduł Younga". Dostęp: 20 październik 2024. [Online].
- $[3] \ \ Dostępne\ na:\ https://pf.agh.edu.pl/home/wfiis/pracfiz/Opisy_cwiczen/11_opis.pdf$