Раздел 6. Делимость целых чисел

Пусть a и b целые числа. Говорят, что целое число a **делимся** на целое число b, отличное от нуля, если существует целое число q, такое, что $a=b\cdot q$. Символически записывают $a\ \vdots\ b$. При этом a называют **крамным** числа b, а b-**делимелем** числа a.

В теории целых чисел большую роль играет **теорема о делении с остатком:** для любых целых чисел a u b>0 существует единственная пара целых чисел q u z, удовлетворяющая условиям: $a=b\cdot q+z$. Число q называют неполным частным, число z - остатком при делении a на b.

Большое применение имеют следующие свойства делимости:

- 1. Если a : b и c : b, то $(a \pm c) : b$.
- 2. Если a : b и b : c, то a : c.
- 3. Если (a + b) : c и b : c, то a : c.

Пусть даны целые числа a_1, a_2, \ldots, a_n .

Целое число $\delta \neq 0$ называют общим делителем этих чисел, если каждое из них делится на δ .

Наибольшим общим делителем целых чисел a_1, a_2, \ldots, a_n называют такой их положительный общий делитель, который делителя на любой другой их общий делитель. Символически наибольший общий делитель чисел a_1, a_2, \ldots, a_n обозначают $d = D(a_1, a_2, \ldots, a_n)$.

Для отыскания наибольшего общего делителя двух целых чисел применяется алгоритм Евклида, который состоит в следующем.

Последний, отличный от нуля, остаток r_n и является наибольшим общим делителем чисел а и b. Справедливо утверждение: ЕСЛИ d - НАИБОЛЬШИЙ ОБЩИЙ ДЕЛИТЕЛЬ ЧИСЕЛ а И b ТО СУЩЕСТВУЮТ ТАКИЕ ЦЕЛЫЕ ЧИСЛА x И y, ЧТО ax+by=d.

При нахождении наибольшего общего делителя нескольких чисел a_1, a_2, \ldots, a_n с помощью алгоритма Евклида сначала находится наи \neg больший общий делитель d1, чисел a1 и a2, т.е. $d_1 = D(a_1, a_2)$, затем $d_2 = D(d_1, a_3)$, $d_3 = D(d_2, a_4), \ldots, d_{n-1} = D(d_{n-2}, a_n)$, тогда $d_{n-1} = D(a_1, a_2, \ldots, a_n)$.

Если $D(a_1, a_2, \ldots, a_n)=1$, то числа a_1, a_2, \ldots, a_n называют взаимно простыми.

Справедливы следующие свойства взаимно простых чисел:

- 1. Если $a \cdot b : c$ и D(a,c)=1, то $D(a,b\cdot c)=1$.
- 2. Если D(a,b)=1 и D(a,c)=1, то $D(a,b\cdot c)=1$.
- 3. Если a : b , a : с и D(b,c)=1 , то a : b · c

Пусть a_1, a_2, \ldots, a_n - целые числа, отличные от нуля. Целое число M называют общим кратным этих чисел, если оно делится на каждое из данных чисел.

Целое число m называют наименьшие общим кратным чисел a_1, a_2, \ldots, a_n , если оно является их общим кратным, и если любое общее кратное этих чисел делится на m. Символически наименьшее общее кратное чисел a_1, a_2, \ldots, a_n обозначается $m = K(a_1, a_2, \ldots, a_n)$.

Наибольший общий делитель и наименьшее общее кратное двух целых чисел связаны соотношением:

```
m = \frac{a \cdot b}{d}, где m = K(a,b), а d=D(a,b).
```

При нахождении наименьшего общего кратного нескольких чисел a_1, a_2, \ldots, a_n сначала находят наименьшее общее кратное m_1 чисел a_1 и a_2 . Т.е. m_1 =К (a_1, a_2) . Затем m_2 = К (m_1, a_3) , m_3 = К (m_2, a_4) , \ldots , m_{n-1} = К (m_{n-2}, a_n) , тогда m_{n-1} = К (a_1, a_2, \ldots, a_n) .

Натуральное число а, большее 1, называют простым, если оно имеет только два различных натуральных делителя (единицу и само р).

Натуральное число a, большее 1, называют составным, если оно имеет более двух различных натуральных делителей.

Число 1 имеет только один натуральный делитель - единицу, поэтому оно и не простое и не составное. Справедливы следующие утверждения:

1. Наименьший натуральный делитель составного числа а , отличный от 1 , есть число простое и не превосходит. Это позволяет при отыскании простых делителей числа а испытывать только числа, не превосходящие.

- 2. Если а натуральное число, а р простое число, то либо а делится на р , либо а и р взаимно просты.
- 3. Если произведение двух или нескольких натуральных чисел делится на простое число p , то хотя бы один из сомножителей делится на p .
- 4. Всякое натуральное число a>1 либо простое, либо может быть представлено, и притом единственным образом, с точностью до порядка следования сомножителей в виде произведения простых чисел: $A=p_1\cdot p_2\cdot p_3\cdot \dots \cdot p_n$ (основная теорема арифметики)
- 5. Некоторые сомножители могут повторяться. Пусть, например, p_1 встречается α_1 раз, $p_2 \alpha_2$ раз, ... p_k α_k раз, тогда разложение числа α на простые множители можно записать следующим образом:

 $\grave{a} = \delta_1^{\alpha_1} \cdot \delta_2^{\alpha_2} \cdot \delta_3^{\alpha_3} \cdot ... \cdot \delta_7^{\alpha_7}$. Множители обычно располагают в порядке возрастания. Представление натурального числа а в указанном виде называют **каноническим**.

Задача: Найти наибольший общий делитель и наименьшее общее кратное для следующих трёх чисел: 6732, 2380, 2210

Решение: Первый способ. Найдём наибольший общий делитель первых двух чисел 6732 и 3280, используя алгоритм Евклида.

Последний, отличный от нуля, остаток равен 68, следовательно, D(6723,3280)=68

D(2210,68)=34

Таким образом D(6732, 2380, 2210)=34

Найдём K(6732, 2380, 2210) используя формулу K(a,b) = $\frac{a \cdot b}{D(a,b)}$, найдём K(6732, 2380)

$$K(6732, 2380) = \frac{6732 \cdot 2380}{68} = 235620$$

$$K(6732, 2380, 2210) = K(235620, 2210) = \frac{235620.2210}{D(235620, 2210)}$$

Найдем D(235620, 2210)

$$D(235620, 2210) = 170$$

$$K(6732, 2380, 2210) = \frac{235620 \cdot 2210}{170} = 3063060$$

Второй способ: Разложим данные числа на простые множители:

Цепные дроби

Выражение вида

$$q_0 + \frac{1}{q_1 + \frac{1}{q_2 + \frac{1}{q_3 + \dots + \frac{1}{q_{n-1} + \frac{1}{\alpha n}}}}}$$

где q_0 -любое целое число, $q_1,q_2,...q_n$ -натуральные числа и $q_n > 1$, называют конечной цепной дробью. Справедливы утверждения.

Всякая цепная дробь является разложением рационального числа.

Всякое рациональное число разлагается в конечную цепную дробь, т. е.

$$a/b=q_0++\frac{1}{q_1+\frac{1}{q_2+\frac{1}{q_3+\cdots+\frac{1}{q_{n-1}+\frac{1}{q_n}}}}}$$

Символически записывают так $a/b=[q_0;q_1;q_2;...,q_n]$.

При этом n-называют длиной цепной дроби, а число $q_0;q_1;q_2;...,q_n$ -неполным частным. Неполные

частные
$$q_0;q_1;q_2;...,q_n$$
 находятся из алгоритма Евклида, применённого к числам а и b.
Дроби $P_0/Q_0=q_0/1$, $P_1/Q_1=q_0+\frac{1}{q_1}$, $P_2/Q_2=q_0+\frac{1}{q_1+\frac{1}{q_2}}$, ..., $P_n/Q_n=q_0+\frac{1}{q_1+\frac{1}{q_2+\cdots+\frac{1}{q_n}}}$

Называются подходящими дробями конечной цепной дроби соответственно нулевого, первого, второго,...,n-го порядков, причём $P_n/Q_n=a/b$.

Для вычисления числителей и знаменателей подходящих дробей применяются следующие рекуррентные формулы:

$$P_{-1}=1, P_0=q_0,$$

$$P_k = q_k P_k + P_{k-2}, Q_k = q_k Q_{k-1} + Q_{k-2}$$

Используя эти формулы, все подходящие дроби удобно находить по следующей схеме:

			1 1 /	71 71 1	7 1 7 7 7	7 1	, 19 1
q_k			\mathbf{q}_0	q_1	q_2		q_n
P_k	0	1	$P_0 = q_0$	$P_1 = q_1 q_0 + 1$	$P_2 = q_2 P_1 + P_0$		$P_n = q_n P_{n-1} + P_{n-2}$
Qk	1	0	$Q_0=1$	$Q_1=q_1$	$Q_2=q_2Q_1+Q_0$		$Q_n = q_n Q_{n-1} + Q_{n-2}$

Числителем и знаменателем двух соседних подходящих дробей связаны соотношением: $P_{k-1}Q_k$ - Q_{k-1} =(- $1)^{k}$.

Подходящие дроби P_k/Q_k несократимы, т. е. $D(P_k,Q_k)=1$.

Задача №1

Представить следующие обыкновенные дроби в виде конечных цепных дробей: а) 134/51, б) 691/1811, в) -37/145

Решение: а) Используя алгоритм Евклида, получим:

n=5, 134/51=2 +
$$\frac{1}{1+\frac{1}{1+\frac{1}{2+\frac{1}{2}}}}$$

т.е. 134/51=[2;1,1,1,2,6] б) 691<1811, поэтому $691=1811\cdot 0+691$ т.е. $q_0=0$.

Задача№2

Преобразовать в обыкновенную дробь конечную цепную дробь [2;5,3,2,1,4,2,3] и найти её подходящие дроби.

Решение: Составим таблицу для нахождения подходящих дробей.

q_k			2	5	3	2	1	4	2	3
P_k	0	1	2	11	35	81	116	545	1206	4163
Q_k	1	0	1	5	16	37	53	249	551	1902

 $\begin{array}{l} \text{Итак, } [2;5,3,,2,1,4,2,3,] = & 4163/1902. \\ \frac{P0}{Q0} = \frac{2}{1} ; \frac{P1}{Q1} = \frac{11}{5} ; \frac{P2}{Q2} = \frac{35}{16} ; \quad \frac{P3}{Q3} = \frac{81}{37} ; \quad \frac{P4}{Q4} = \frac{116}{53} ; \quad \frac{P5}{Q5} = \frac{545}{249} ; \frac{P6}{Q6} = \frac{1206}{551} ; \frac{P7}{Q7} = \frac{4163}{1902} ; \frac{P7}{Q7} = \frac{4163}{190$