Marek Funtowicz

Embedded (C/C++) Software / FPGA Engineer (VHDL)		
Personal Details		Education
Phone:	+48 724 235 978	2014 – 2017 The University of Sheffield Electronics and Communication Engineering
E-mail:	ice.marek@yahoo.com	Master of Engineering
Git:	github.com/IceDefcon	2012 – 2014 Central College Nottingham
Web:	icedefcon.github.io	Electrical and Electronic Engineering Higher National Diploma
Skill		Personal Research and Development (C, C++, VHDL)
FPGA:	Intel, Xilinx	CPU & FPGA Embedded Computing Platform with GPU Acceleration
CPU:	x86, ARM, PowerPC	 x86 → Master controller and main system coordinator LNX → ARM Cortex-A57 running Ubuntu OS platform
RTL:	VHDL, Verilog	 FPGA → Cyclone IV chip for high-speed parallel tasks Xilinx → Integration with ZynqTM UltraScale+TM MPSoC
Code:	ASM, C, C++, Python	 ❖ GPU → NVIDIA Maxwell architecture with 128 CUDA cores
OS:	FreeRTOS, VxWorks, Linux, Autosar OS	AI Drone System Specification → Project Repository * x86 → Kernel-level secured network stack implementation
Build:	Makefile, Yocto(basic) Clang, Ninja, Cmake	 x86 → Reffiel-level sectifed fietwork stack implementation x86 → Handles network protocols ICMP, ARP/NDP and TCP/UDP x86 → AES-128 TCP/UDP encryption and decryption x86 → Video receiver for drone camera monitoring
Debug:	J-Link (Ozone), gdb	 LNX → USB/CSI camera stream transmitter unit LNX → Qt5 GUI for drone system debugging/control
Com:	UART, SPI, I2C, JTAG, GPIO, CAN, ASK, FSK, TCP/UDP, ARP/NDP, ETH, ICMP, Wi-Fi, USB, CSI	 LNX → Char device driver for user/kernel IO link LNX → Block RAM interface to configure FPGA peripherals LNX → SPI DMA driver for FPGA data exchange LNX → GPIO signals for FPGA/kernel ISR handling LNX → Kernel work queues, tasklet and threaded design techniques LNX → Spinlock and mutex for synchronization of Kernel space
Crypto:	AES-128	 LNX → FPGA controlled scheduler for Kernel space RTOS operations LNX → Memory allocation monitor in Kernel space
Circuit:	Mentor graphics, Altium, Multisim	 FPGA → Interrupt vector handler for Kernel commands FPGA → Watchdog interface for Kernel/FPGA synchronization FPGA → SPI link for data (de)serialization ops
Test:	Oscilloscope, Multimeter,	 FPGA → SPI link for data (de)serialization ops FPGA → Linux data exchange via FIFO for real-time processing

♦ FPGA → Offload controller and packet switch for FIFO data flow

FPGA → PWM controller for the motor throttle control

Xilinx → Port FPGA Driver into Xilinx Linux Kernel

❖ GPU → Accelerated camera signal video drivers :: **Pending**

♦ FPGA → I2C and SPI Gyro/Accel devices for measurements

FPGA → Parameteric I2C and SPI controllers driven from LNX Kernel

♦ FPGA → UART assembler and transmission controller for logs capture

FPGA → 133MHz SDRAM controller for captured measurements

FPGA → SDRAM Measurement storage controller :: **Development**

FPGA → Accelerated PID Controller for DC motor feedback :: **Pending** Xilinx → Petalinux based @ HW description to link with FPGA logic

Xilinx → Convert the link between CPU and FPGA form SPI into DMA ◆ GPU → Accelerated processing of measurements from FPGA :: **Pending**

Logic Analyzer

Matrix: Matlab, Octave

HTML, PHP, CSS, Web:

Java script

DB: MySQL

CI/CD: GIT, Bitbucket,

Gerrit, Jenkins

**

Mgmt: JIRA, JAZZ

Software Engineer

Prototyping of the new generation wireless charging systems in the automotive industry (ASM, C)

- ❖ Read and analyze prototype PCB schematics for debugging purposes
- Customer defect analysis, computation and testing solutions
- Develop interrupt monitor to monitor latency of ISR
- ❖ Investigate communication problems between the charger and the receiver using ASK and FSK protocols
- ❖ Adaptation of existing versions of the protocol into newer stack
- ❖ Process various number of ADC measurements: voltage, current and temperatures signals
- Diagnostics system control with respect to collected measurements
- Integration with the Autosar OS (Davinci code generator)
- ❖ Integration with RTD from NXP (Tresos)
- Integration with Qi-Library from NXP
- Code reviews

Tronel

October 2019 \rightarrow June 2023

Software Engineer

Complex CPU & FPGA system to emulate the behavior of cellular network (C, C++, VHDL)

- x86 HTML interface to control FPGA and CPU binaries required for specific configuration of cellular network
- ❖ x86 Applications to configure parameters of LTE/5G cells
- ❖ Store and process cell parameters from x86 Applications by the processor boards using instances of C++ classes
- ❖ Configure LTE/5G cells inside FPGA using cell parameters form the instances of C++ classes
- Communication interface between FPGA and CPU over SRIO
- ❖ Process internal and customer issues using JIRA management system
- ❖ Issues varying from invalid configurations of LTE/5G cells in Applications with respect to LTE/5G specifications
- ❖ Up to the low level PHY problems like: Thread crashes, code disassembly and investigation of instruction code to find the bug

Turbo Power Systems

August 2019 \rightarrow October 2019

Embedded Systems Engineer

Design Firmware and RTL for Power Electronic Device using AURIX 32-bit Tri-Core Microcontroller and ARTIX 7 Xilinx FPGA

- ❖ Integration of the LWIP stack drivers with the current CPU stack
- ❖ Investigation of ASCLIN UART drivers for loging and communication
- Research Microblaze firmware in ARTIX 7 FPGA
- Investigate and analyze circuit schematics and PCB layout

Junior Hardware Engineer

Design computer hardware for capturing, processing and streaming live video using Intel Altera FPGA technology and firmware control

- Design FPGA hardware modules in VHDL
- Design QSYS networks for Nios II processing
- On-chip memory management for Nios II processing
- ❖ Test RTL modules with Modelsim
- ❖ Test and debug RTL modules with signal tap and live PCB
- ❖ Nios II firmware for communication with FPGA over Avalon bus
- ❖ Debug Nios II firmware on live targets
- ❖ Integrate BSP and Intel HAL drivers
- Investigate booting codes for embedded Intel Nios II processor
- ❖ FPGA Pin and Chip planning → IO Banks, Voltages, Transceivers
- Investigate and analyze circuit schematics and PCB layout
- ❖ Integrate FPGA hardware code and CPU firmware with the circuit schematic and PCB Layout

Prototyping embedded graphical processing system using Xilinx FPGA technology and Linux firmware control

- ❖ Develop booting sequence for Zynq Ultrascale MPSoC in QSPI → hand over FPGA control to Linux kernel via U-Boot
- ❖ Research and modify U-boot source → Configure MAC addressing
- ❖ Research XEN Hypervisor → Register XEN watchdog
- ❖ Develop UART communication for Zynq Ultrascale MPSoC → register UARTLITE driver in Linux to communicate with external chip for TMDS processing and HDCP control
- ❖ Research kernel → Version control
- **♦** Research device tree → Petalinux overlay
- ❖ Research root file system → Network configuration
- ♦ Customize Petalinux → Kernel, Root file system and device tree
- ◆ Debug kernel in OS awareness mode → Eclipse environment