Année Universitaire 2023-2024

Université de Montpellier Faculté des Sciences Mathématiques et Mécanique

TD 1

- 1. Ecrire le problème de Cauchy y' = f(t, y) avec y(0) = 1 sous la forme d'une problème de point fixe $y = F(y(\cdot))$. Dans le cas particulier f(t, y) = y, appliquer la méthode des approximations successives $y_{k+1} = F(y_k)$, $y_0 \equiv 1$ et calculez les trois premières itérations. Qu'obtenez vous?
- 2. On considère l'équation différentielle du pendule $\ddot{\theta} = -\sin\theta$ avec les données initiales $\theta(0) = \pi/6$ et $\dot{\theta}(0) = 0$. Mettre l'équation sous forme d'un système du premier ordre. Appliquer ensuite la méthode d'Euler avec un pas de temps h = 0.1 pendant 2 pas de temps pour calculer une approximation numérique θ_2 de $\theta(0.2)$. Comparer avec la solution de l'équation différentielle obtenue en linéarisant autour de $\theta = 0$, $\sin\theta \approx \theta$. Estimer l'ordre de grandeur de l'erreur $\theta_2 \theta(0.2)$ en fonction de h.
- 3. Le problème de Cauchy:

$$y'(t) = \sqrt{y(t)}, \quad y(0) = 0$$

a la solution non triviale $y(t) = (\frac{t}{2})^2 \cdot \mathbf{1}_{(t>0)}$. Que donnerait l'application de la méthode d'Euler, avec un pas h > 0 constant. Expliquer le paradoxe.

4. Pour t = nh où $h \in \mathbb{R}$, h > 0 et $n \in \mathbb{N}$, soit $\eta(t; h) = y_n$ la solution approchée fournie par le schéma d'Euler de pas de temps h pour le problème de Cauchy :

$$y' = y, \ y(0) = 1.$$

- **a)** Montrer que $\eta(t; h) = (1 + h)^{t/h}$.
- b) Montrer que $h \mapsto \eta(t; h)$ admet le développement en série entière :

$$\eta(t;h) = \sum_{i=0}^{\infty} \tau_i(t)h^i \text{ avec } \tau_0(t) = e^t,$$

qui converge pour |h| < 1.

- c) Déterminer $\tau_1(t)$. Retrouver ainsi l'ordre du schéma d'Euler.
- 5. Établir que le schéma de Runge appliqué à $\mathbf{y}(t) = \mathbf{f}(t, \mathbf{y}(t)), \ \mathbf{y}(0) = \mathbf{y}_0$, aussi appelé méthode des trapèzes explicites, défini par :

$$\mathbf{k}_1 = \mathbf{f}(t, \mathbf{y})$$

$$\mathbf{k}_2 = \mathbf{f}(t + h, \mathbf{y} + h\mathbf{k}_1)$$

$$\mathbf{y}_1 = \mathbf{y} + \frac{h}{2}(\mathbf{k}_1 + \mathbf{k}_2)$$

est un schéma à un pas d'ordre 2.

Indication : il faut montrer que pour la solution exacte $t \mapsto \mathbf{y} = \mathbf{y}(t)$ on a $\mathbf{y}(t+h) - \mathbf{y}_1 = O(h^3)$, en supposant $t \to \mathbf{y}(t)$ régulière.