Module 1 Digital Logics

Lec 1.5 Review of Logic families

Review of CMOS & TTL logic families

INTRODUCTION

- In Digital Electronics, a logic family refers to digital integrated circuit devices which are constructed with a combination of electronic gates.
- ☐ There are different families of logic gates. Each family has its own characteristics, limitations and advantages.
- □ Some families also have common characteristics. Also within each family, there is a range of voltages which may be high level or low level.

BFCF102 L Digital System Design

INTRODUCTION

- ☐ These families are listed below:
 - Diode Logic (DL)
 - Resistor-Transistor Logic (RTL)
 - Diode-Transistor Logic (DTL)
 - Emitter Coupled Logic (ECL)
 - ➤ Transistor-Transistor Logic (TTL) √
 - ➤ Complementary Metal Oxide Semiconductor Logic (CMOS) √

CMOS LOGIC

- CMOS is known for its low power consumption and high fan-out. It is also considered to be one of the most reliable logic family today.
- ☐ The transistors inside the CMOS are made from an NMOS transistor and PMOS transistor.
- □ To realize the logical functions, both P-type and N-type transistors are used. It is currently being used in microprocessor technology and Application Specific Integrated Circuits (ASIC).

BFCF102 L Digital System Design

CMOS LOGIC

- ☐ The gate of a MOS transistor controls the flow of the current between the drain and the source
- The MOS transistor can be viewed as a simple ON/OFF switch

CMOS LOGIC - inverter

- □ CMOS gates are built around the technology of the basic CMOS inverter
- Two Transistors are enhancement mode MOSFETs and Transistors come in complementary pairs
- □ N-Channel with its source grounded & P-Channel with its source connected to +V
- Input: gates connected together & Output: drains connected

CMOS LOGIC - inverter

in	p1	n1	out	
0	ON	OFF	1	
1	OFF	ON	0	

CMOS LOGIC - NAND

а	b	р1	p2	n1	n2	out
0	0	ON	ON	OFF	OFF	1
0	1	ON	OFF	OFF	ON	1
1	0	OFF	ON	ON	OFF	1
1	1	OFF	OFF	ON	ON	0

RECE102 | Digital System Design

CMOS LOGIC - NOR

а	b	р1	p2	n1	n2	out
0	0	ON	ON	OFF	OFF	1
0	1	ON	OFF	OFF	ON	0
1	0	OFF	ON	ON	OFF	0
1	1	OFF	OFF	ON	ON	0

CMOS LOGIC - EXAMPLES

BECE102 L Digital System Design

CMOS LOGIC - AND

CMOS LOGIC - OR

BECE102 | Digital System Design

CMOS LOGIC - EXAMPLES

$$Y = \overline{(A+B+C) \cdot D}$$

CMOS LOGIC - EXAMPLES

How to implement

$$F = ab + bc + ca$$
?

•
$$F = ab + bc + ca$$

BFCF102 | Digital System Design

EXERCISE PROBLEMS

Realize following logical expressions using CMOS logic:

1.
$$Y = (AB+C)'$$

2.
$$Y = AB' + A'B$$

$$3. Y = B'C + ABC'$$

4.
$$Y = (A(BC+D))^{\circ}$$

5.
$$Y = (AB + A(C + D))^{\circ}$$

6.
$$Y = (ABC+DE+F)$$

TRANSISTOR-TRANSISTOR LOGIC (TTL)

- ☐ TTL has become the standard logic circuit in many application for a number of years.
- □ TTL greatly decreases the manufacturing costs because multiple emitters can be added in the input so no extra space is needed and a multiple input gate can be constructed easily.
- □ A commercial IC package of TTL includes three three-input gates, four two-input gates, or two four-input gates. The structure of the IC always remains the same.

TRANSISTOR-TRANSISTOR LOGIC (TTL)

- ☐ In transistor-transistor logic, the logic gates are constructed around the transistors.
- □ TTL uses bipolar transistors to construct its integrated circuits.
- ☐ There have been different versions of TTL:
 - ➤ Standard TTL.
 - ➤ High speed TTL.
 - >Low power TTL.
 - >Schcottky TTL.

TTL- Transistor Transistor Logic

CASE 1:

- INPUT :LOW
 - corresponding base-emitter junction is forward biased and the base-collector junction is reverse biased.
 - transistor Q2 is cut off and also transistor Q4 is cut off
 - Transistor Q3 goes to saturation and diode D2 starts conducting and output is connected to Vcc and goes to logic high
- INPUT:high

TRANSISTOR-TRANSISTOR LOGIC (TTL)

TTL NAND Gate

LOW = 0V

HIGH = 5V

\mathbf{V}_1	V ₂	State of Q1	State of Q2	State of Q3	$ m V_{out}$
LOW	LOW	ON	OFF	OFF	HIGH
LOW	HIGH	ON	OFF	OFF	HIGH
HIGH	LOW	ON	OFF	OFF	HIGH
HIGH	HIGH	OFF	ON	ON	LOW

Case 1:

Any i/p is logic 0

Q1: BE-Forward Bias BC- Reverse Bias

So Q2 and Q3 are off

Vout = Vcc - lcRc logic 1

Case 2:

Any i/p is are 1

Q1: BE-Reverse Bias BC- Forward Bias

So Q2 and Q3 are ON

Vout = Vcc -lcRc 0.2 volts Logic 0

SUMMARY

Logic Parameters	RTL	DTL	TTL	ECL	CMOS
Basic gates with +ve logic	NOR	NAND	NAND	OR/NOR	NAND/NOR
Maximum fan-in	5	10.	8	5	8
Fan out	5	8	10	25	>50
Power dissipation/ gate (in mW)	12	10	10	50	0.01 static at
					1 MHz
Propagation delay per gate (nano sec)	20	30	12	4	70
Noise Immunity	Nominal	Good	Very good	Good	Very good
Number of functions	High	Fairly high	Very high	High	Good
Clock rate, MHz	5	12	15	300	5 .

BECE102 L Digital System Design

END