TD 2: Matrice de Déformations

Objectif: Calculer la matrice

- 1 Exercice 1
- 2 Exercice 2
- 3 Exercice 3

Soit le vecteur déplacement $\underline{U} = (u, v, w)^{\top}$ en tout point du solide de dimension caractéristique L, dans le repère cartésien :

$$\underline{U}(x,y,z) = \begin{pmatrix} \frac{x^2}{L} + 2y \\ \frac{xy}{2L} \\ -4z \end{pmatrix}$$
 (1)

1. Calculer la matrice de déformation $\underline{\underline{E}}$ associé au vecteur de déformation.

3.1 Solution

3.1.1 Calculer la Matrice de Déformations

Le lien mathémathique entre déplacement et déformation est:

$$\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial U_i}{\partial X_j} + \frac{\partial U_j}{\partial X_i} \right) \tag{2}$$

Donc, matrice est définie comme:

$$\underline{\underline{E}}(M) = \begin{pmatrix} \varepsilon_{xy} & \varepsilon_{xy} & \varepsilon_{xz} \\ \varepsilon_{yx} & \varepsilon_{yy} & \varepsilon_{yz} \\ \varepsilon_{xz} & \varepsilon_{zy} & \varepsilon_{zz} \end{pmatrix}$$
(3)

Donc, on peut exprimer cette tenseur comme suit:

$$\underline{\underline{E}}(M) = \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{1}{2} (\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}) & \frac{1}{2} (\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}) \\ \dots & \frac{\partial v}{\partial y} & \frac{1}{2} (\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z}) \\ \dots & \dots & \frac{\partial w}{\partial y} \end{pmatrix}$$
(4)

Donc, on peut faire les differents dérives pour le vecteur U

$$\underline{\underline{E}}(M) = \begin{pmatrix} \frac{2x}{L} & \frac{1}{2}(\frac{y}{2L} + 2) & 0\\ \frac{1}{2}(\frac{y}{2L} + 2) & \frac{x}{2L} & 0\\ 0 & 0 & -4 \end{pmatrix}$$
 (5)

Voilà la matrice de déformation pour cette exercice.

4 Exercice 4

Soit la matrice des déformation $\underline{\underline{E}}$, dans le repère x,y,z connue en tout point d'un solide:

$$\underline{\underline{E}}(M) = \begin{pmatrix} 2x + 1 & 8 & 0 \\ 8 & 0 & 0 \\ 0 & 0 & z \end{pmatrix} \times 10^{-5} \tag{6}$$

- 1. Vérifier les équations de compatibilité
- 2. Calculer le vecteur déplacement $\underline{U}(M)$

4.1 Solution

4.1.1 Equations de compatibilité

Il y a 6 équation de compatibilité. Elles concernent les dérivés secondes de composants de la matrice de déformation. Les composants de la matrice de déformation sont des fonctiones lineaires d'ordre.

4.1.2 Calculer le vecteur déplacement U(M)

Les composants **normales** de la matrice :

$$\begin{split} \varepsilon_{xx} &= \frac{\partial u}{\partial x} = 2x + 1 \xrightarrow{\int} u(x,y,z) = x^2 + x + C_1(y,z) \\ \varepsilon_{yy} &= \frac{\partial v}{\partial y} = 0 \xrightarrow{\int} v(x,y,z) = C_2(x,z) \\ \varepsilon_{zz} &= \frac{\partial w}{\partial z} = z \xrightarrow{\int} w(x,y,z) = \frac{z^2}{2} + C_3(x,y) \end{split}$$

Les composants tangentielles de la matrice :

$$\begin{split} \varepsilon_{xy} &= \frac{1}{2} \left[\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right] = 8 \\ \varepsilon_{xy} &= \frac{1}{2} \left[\frac{\partial}{\partial x} \left(C_2(x,z) \right) + \frac{\partial}{\partial y} \left(C_1(y,z) \right) \right] = 8 \end{split}$$

On mets la constante $C_1(y,z)$ en fonctions de $C_2(x,z)$:

$$\frac{\partial C_1(y,z)}{\partial y} = 16 - \frac{\partial C_2(x,z)}{\partial x} \Longrightarrow A \tag{7}$$

A est une constante même si en toute rigeur cette dernière devrait dépendre de z:A(z). On va supposer ici pour simplifier les calculs que A(z) est une constante.

Pour calculer ε_{xz} , considerons

$$C_1(y,z) = Ay + C_{11}(z) (8)$$

$$C_2(x,z) = (16 - A)x + C_{22}(z) \tag{9}$$

Donc, nous avons pour ε_{xz} :

$$\varepsilon_{xz} = \frac{1}{2} \left[\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right] = 0 \tag{10}$$

$$\varepsilon_{xz} = \frac{1}{2} \left[\frac{\partial}{\partial z} \left(\cancel{x}^{2} + \cancel{x} + C_{1}(y, z) \right) + \frac{\partial}{\partial x} \left(\frac{\cancel{z}^{2}}{\cancel{2}} + C_{3}(x, y) \right) \right] = 0 \qquad (11)$$

$$\frac{\partial}{\partial z}\left(C_3(x,y)\right) = -\frac{\partial}{\partial z}\left(C_1(y,z)\right) \tag{12}$$

$$\frac{\partial}{\partial z}\left(C_{3}(x,y)\right)=-\frac{\partial}{\partial z}\left(\cancel{A}\cancel{y}+C_{11}(z)\right) \tag{13}$$

Donc, nous avons pour ε_{yz} , considerons

$$C_3(x,y) = \beta x + C_{33}(y) \tag{14}$$

$$C_{11}(x,z) = -\beta z + \alpha \tag{15}$$

Donc,

$$\varepsilon_{yz} = \frac{1}{2} \left[\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right] = 0 \tag{16}$$

$$\varepsilon_{yz} = \frac{1}{2} \left[\frac{\partial}{\partial z} \left(C_{22}(z) \right) + \frac{\partial}{\partial x} \left(C_{33}(y) \right) \right] = 0 \tag{17}$$

$$\frac{\partial}{\partial z}\left(C_{22}(z)\right) = -\frac{\partial}{\partial y}\left(C_{33}(y)\right) \tag{18}$$

On peut en deduire:

$$C_{22}(z) = Cz + \beta \tag{19}$$

$$C_{33}(y) = -Cy + \gamma \tag{20}$$

Au final,

$$\begin{split} u(x,y,z) &= x^2 + x + Ay + -\beta z + \alpha \\ v(x,y,z) &= (16-A)x + Cz + \beta \\ w(x,y,z) &= \frac{z^2}{2} + \beta x + -Cy + \gamma \end{split}$$

5 Exercice 5

Soit une rosette delta en forme de triangle équilateral, permettant de mesurer les dilatations logitudinales selon les trois directions parallèles aux trois côtés du triangle.

Ces dernières sont disposées à la surface d'un matériau homogène et isotrope para rapport à un repère 0, x, y.

1. Determiner les tenseur des déformations planes si les valeurs mesurés sont: $\varepsilon_a=-0.4; \varepsilon_b=0.5; \varepsilon_c=0.2$

5.1 Solution

5.1.1 Determination de la matrice des déformations

$$\underline{\underline{E}}(M) = \begin{pmatrix} \varepsilon_{xx} & \varepsilon_{xy} \\ \varepsilon_{yx} & \varepsilon_{yy} \end{pmatrix} \tag{21}$$

Le vecteur de déformation est donne par:

$$d(M,i) = \underline{E}(M) \cdot i$$

On va calculer le vecteur de deformation:

$$\varepsilon = \underline{n}^\top \cdot \underline{E}(M) \cdot \underline{n}$$

5.1.2 Deformation dans le ε_a

$$\underline{n_a} = \begin{pmatrix} \cos(0) \\ \cos(0) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \equiv \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \tag{22}$$

$$\underline{n_a}^{\top} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

Donc,

$$\varepsilon_a = \begin{bmatrix} 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \begin{pmatrix} \varepsilon_{xx} & \varepsilon_{xy} \\ \varepsilon_{yx} & \varepsilon_{yy} \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{bmatrix}$$
 (23)

$$\varepsilon_a = \begin{bmatrix} 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yx} \end{bmatrix} \tag{24}$$

Donc,

$$\varepsilon_a = \varepsilon_{xx}$$

5.1.3 Deformation dans le ε_b

$$\varepsilon_b = \begin{pmatrix} \cos(60) \\ \cos(60) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \equiv \begin{pmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
 (25)

$$\underline{n_b}^\top = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$

Donc,

$$\varepsilon_b = \frac{1}{2} \cdot \begin{bmatrix} 1 & \sqrt{3} \end{bmatrix} \cdot \begin{bmatrix} \varepsilon_{xx} & \varepsilon_{xy} \\ \varepsilon_{yx} & \varepsilon_{yy} \end{bmatrix} \cdot \frac{1}{2} \cdot \begin{pmatrix} 1 \\ \sqrt{3} \end{pmatrix}$$
 (26)

$$\varepsilon_b = \frac{1}{4} \cdot \begin{bmatrix} 1 & \sqrt{3} \end{bmatrix} \cdot \begin{bmatrix} \varepsilon_{xx} & \varepsilon_{xy} \\ \varepsilon_{yx} & \varepsilon_{yy} \end{bmatrix} \cdot \begin{pmatrix} 1 \\ \sqrt{3} \end{pmatrix}$$
 (27)

$$\varepsilon_b = \frac{1}{4} \cdot \begin{bmatrix} 1 & \sqrt{3} \end{bmatrix} \cdot \begin{bmatrix} \varepsilon_{xx} + \sqrt{3}\varepsilon_{xy} \\ \varepsilon_{yx} + \sqrt{3}\varepsilon_{yy} \end{bmatrix}$$
 (28)

$$\varepsilon_b = \frac{1}{4} \cdot \left[\varepsilon_{xx} + \sqrt{3}\varepsilon_{xy} + \sqrt{3}\left(\varepsilon_{yx} + \sqrt{3}\varepsilon_{yy}\right) \right] \tag{29}$$

$$\varepsilon_b = \frac{1}{4} \cdot \left[\varepsilon_{xx} + \sqrt{3}\varepsilon_{xy} + \sqrt{3}\varepsilon_{yx} + 3\varepsilon_{yy} \right] \tag{30}$$

$$\varepsilon_b = \frac{1}{4} \cdot \left[\varepsilon_{xx} + 2\sqrt{3}\varepsilon_{xy} + 3\varepsilon_{yy} \right] \tag{31}$$

5.1.4 Deformation dans le ε_c

Directement

$$\varepsilon_c = \frac{1}{2} \cdot \begin{bmatrix} -1 & \sqrt{3} \end{bmatrix} \cdot \begin{bmatrix} \varepsilon_{xx} & \varepsilon_{xy} \\ \varepsilon_{yx} & \varepsilon_{yy} \end{bmatrix} \cdot \frac{1}{2} \cdot \begin{pmatrix} -1 \\ \sqrt{3} \end{pmatrix}$$
 (32)

$$\varepsilon_c = \frac{1}{4} \cdot \begin{bmatrix} -1 & \sqrt{3} \end{bmatrix} \cdot \begin{bmatrix} -\varepsilon_{xx} & \sqrt{3}\varepsilon_{xy} \\ -\varepsilon_{yx} & \sqrt{3}\varepsilon_{yy} \end{bmatrix}$$
 (33)

$$\varepsilon_c = \frac{1}{4} \cdot \left[\varepsilon_{xx} - \sqrt{3}\varepsilon_{xy} - \sqrt{3}\varepsilon_{yx} + 3\varepsilon_{yy} \right] \cdot \tag{34}$$

$$\varepsilon_c = \frac{1}{4} \cdot \left[\varepsilon_{xx} - 2\sqrt{3}\varepsilon_{xy} + 3\varepsilon_{yy} \right] \tag{35}$$

Finalement, un système de 2 equations avec 2 incognites :

$$4\varepsilon_c - \varepsilon_{xx} = -2\sqrt{3}\varepsilon_{xy} + 3\varepsilon_{yy} \tag{36}$$

$$4\varepsilon_b - \varepsilon_{xx} = 2\sqrt{3}\varepsilon_{xy} + 3\varepsilon_{yy} \tag{37}$$

Pour résoudre,

- 1. Trouver le determinant de la matrice
- 2. Trouver les cofacteurs.
- 3. Determiner la matrice inverse.