

PSYC214: Statistics Lecture 2 – One factor between-participants ANOVA – Part I

Michaelmas Term, Dr Richard Philpot r.philpot@lancaster.ac.uk

1

1

One factor between-participants ANOVA

Agenda/Content for Lecture 2

- Introduction to analysis of variance (ANOVA)
- Introduction to one factor betweenparticipants design
- Sources of variability in data
- Calculating within-group and betweengroup variances
- Degrees of Freedom
- Producing the F-statistic

2

2

Introduction to analysis of variance

Why conduct an analysis of variance?

- Compares means and variance
- Allows analysis of group differences for more than two groups
- Several means without inflating Type I error rate

Introduction to analysis of	variance	Lancaster 😂 University
What do you need for a one factor between participants ANOVA? At least one categorical independent variable (i.e., one factor) One continuous dependent variable (outcome measure)	In the	whole scheme of things, are we really so different? Source: Questionpro

Sources of variability in data 1. Treatment effects 2. Individual differences 3. Random (residual) errors Within-group variability?

Sources of variability in data	Lancaster University
 Treatment effects Individual differences Random (residual) errors 	
	6

Treatment effects

- The effects of the independent variable
- This is what we want!
- We want people who are treated differently because of our intervention to behave differently

7

7

Sources of variability in data

- 1. Treatment effects
- 2. Individual differences
- 3. Random (residual) errors

8

8

Individual differences

- Some individuals may be more proficient in memory recall
- Maybe some individuals have experience of similar tasks
- Some may have ignored instructions or had lower attention spans / motivation
- A control group can employ their own strategy, increasing the variability

	-			4	-	
	Y	â			1	
2	*				LE	
		48				
	M	1.0			-	
45	47	fui		DAME O		Name of the last
	-	-1-011	-		H	

Sources of variability in data

- 1. Treatment effects
- 2. Individual differences
- 3. Random (residual) errors

10

10

Random (residual) errors

- Ideally a participant would have a 'true level' at which they perform, which can always be measured accurately
- Varying external conditions –
 e.g., temperature, time of day
- 2. State of participant (e.g. tired?)
- 3. Experimenter's ability to measure accurately...

11

11

...Experimenter effects

- Experimenters need to minimise these, so not to obscure the treatment effect
- Spread data away from the true means – i.e., increase variability and standard errors
- Reduce confidence in our estimates and a randomly plucked sample

12

Lancaster Muliversity

$\overline{}$	

Within- and between- group variability

Lancaster Muliversity

Within-group variability
 The extent to which participants within a single group or population differ, despite receiving the same treatment

Between-group variability

The extent to which overall groups differ from one another (hopefully because of our treatment)

13

Within- and between- group variability

High between-group variability - no within group-variability Group A Group B Group C No between-group variability -high within-group variability

Moderate between-group variability - moderate within-group variability

	Group A	Group B	Group C
	10	15	5
	25	20	25
	30	30	25
	35	40	45
	50	45	50
Mean	30	30	30
s	14.6	12.8	18.0

	Group A	Group B	Group C
	10	10	20
	10	20	20
	10	20	30
	20	20	30
	20	30	30
Mean	14	20	26
5	5.5	7.1	5.5

Tables adapted from Roberts and Russo (1999)

14

14

PSYC214: Statistics

Lecture 2 – One factor between-participants

ANOVA - Part II

Michaelmas Term Dr Richard Philpot r.philpot@lancaster.ac.uk

23

Testing for differences

- Under H0, the samples come from the same population
- $\mu_1 = \mu_2 = \mu_3$ [No difference in the population means]
- Experimental effect = 0
- All differences are due to individual differences + random (residual) errors
- H1 the Experimental Hypothesis
- Under H1, the samples come from the <u>different</u> populations.
- $\mu_1 \neq \mu_2 \neq \mu_3$ [Population means are different]
- Experimental effect ≠ 0
- All differences are due to individual differences, random (residual) errors AND the experimental effect

59

Review of lecture 2 What is Analysis of Variance What is a one-factor between-participants design Sources of variability in data Calculated within-group and between-group variances Degrees of Freedom Produced the F-statistic

