Case 1: One Variable (Population)

Assumptions	σ is known	σ is unknown	$n(p_0) > 5$ and $n(1 - p_0) > 5$	Data comes from Normal Population
Parameter of interest:	Mean, μ	Mean, μ	Proportion, p	Variance, σ^2
Confidence Interval Formula:	$\bar{x} \pm z(\alpha/2) \frac{\sigma}{\sqrt{n}}$	$ar{x} \pm t(df, lpha/2) rac{s}{\sqrt{n}}$ with $df = n - 1$	$p' \pm z(\alpha/2) \sqrt{\frac{p'q'}{n}}$	$\frac{(n-1)s^2}{\chi^2(df,\alpha/2)} < \sigma^2 < \frac{(n-1)s^2}{\chi^2(df,1-\alpha/2)}$ with $df = n-1$
Name of Hypothesis	One sample z -test,	One sample t -test,	One sample test of	One sample test for Variance H_0 : $\sigma^2 = \sigma_0^2$
Test, H_0	H_0 : $\mu = \mu_0$	H_0 : $\mu = \mu_0$	$proportion H_0 \colon p = p_0$	
Test Statistic Formula:	$z^* = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$	$t^* = rac{ar{x} - \mu_0}{{}^S \! / \! \sqrt{n}}$ with $df = n-1$	$z^* = \frac{p' - p_0}{\sqrt{\frac{p_0 q_0}{n}}}$	$\chi^{2*} = \frac{(n-1)s^2}{\sigma_0^2}$
		W		with $df = n - 1$
p-value:	H_a : $\mu > \mu_0$, p-value= $P(z \ge z^*)$ H_a : $\mu < \mu_0$, p-value= $P(z \le z^*)$ H_a : $\mu \ne \mu_0$, p-value= $2 \times P(z \ge z^*)$	$H_a: \mu > \mu_0$, p-value= $P(t(df) \ge t^*)$ $H_a: \mu < \mu_0$, p-value= $P(t(df) \le t^*)$ $H_a: \mu \ne \mu_0$, p-value= $2 \times P(t(df) \ge t^*)$	H_a : $p > p_0$, p-value= $P(z \ge z^*)$ H_a : $p < p_0$, p-value= $P(z \le z^*)$ H_a : $p \ne p_0$, p-value= $2 \times P(z \ge z^*)$	$\begin{aligned} &H_a:\sigma^2>\sigma_0^2, \text{p-value}=P(\chi^2(df)\geq\chi^{2*})\\ &H_a:\sigma^2<\sigma_0^2, \text{p-value}=P(\chi^2(df)\leq\chi^{2*})\\ &H_a:\sigma^2\neq\sigma_0^2, \text{p-value}=2\times P(\chi^2(df)\geq \chi^{2*}) \end{aligned}$

Case 2: Two Numerical Variables (Populations)

Assumption	Dependent Samples (Paired Samples)	Independent Samples		Two Normal Populations Independent Samples
Parameter of interest:	Mean Difference, $\mu_d=\mu_1-\mu_2$	Mean Difference, $\mu_1-\mu_2$	Proportion Difference, p_1-p_2	Ratio of variances, $rac{\sigma_n^2}{\sigma_d^2}$
Confidence Interval Formula:	$ar{d}\pm t(df,lpha/2)rac{s_d}{\sqrt{n}}$ with $df=n-1$ where $d=x_1-x_2$	$(ar{x}_1 - ar{x}_2)$ $\pm t(df, \alpha/2) \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ with $df = \min(n_1 - 1, n_2 - 1)$	$(p'_1 - p'_2) \pm z(\alpha/2) \sqrt{\frac{p'_1 q'_1}{n_1} + \frac{p'_2 q'_2}{n_2}}$	$\frac{1}{F(df_n, df_d, \alpha/2)} \frac{s_n^2}{s_m^2} < \frac{\sigma_n^2}{\sigma_d^2}$ $< F(df_d, df_n, \alpha/2) \frac{s_n^2}{s_m^2}$
Name of Hypothesis Test, H_0	Paired samples t -test, H_0 : $\mu_1 = \mu_2$	Two independent samples t -test, H_0 : $\mu_1 = \mu_2$	Two sample test of $proportion H_0$: $p_1 = p_2$	Two sample test for ${\sf variance} H_0$: $\sigma_n^2 = \sigma_d^2$
Test Statistic Formula:	$t^* = rac{ar{d}}{{}^{\!$	$t^* = rac{ar{x_1} - ar{x_2}}{\sqrt{rac{S_1^2}{n_1} + rac{S_2^2}{n_2}}}$ with $df = \min(n_1 - 1, n_2 - 1)$	$z^* = \frac{p_1' - p_2'}{\sqrt{p_p' q_p' \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$ where $p_p' = \frac{x_1 + x_2}{n_1 + n_2}$ and $q_p' = 1 - p_p'$	$F^* = \frac{s_n^2}{s_m^2}$ with $df_n = n_{num} - 1$ and $df_d = n_{den} - 1$
p-value:	$\begin{split} &H_a\colon \mu_1>\mu_2\text{, p-value}=P(t(df)\geq t^*)\\ &H_a\colon \mu_1<\mu_2\text{, p-value}=P(t(df)\leq t^*)\\ &H_a\colon \mu_1\neq \mu_2\text{, p-value}=2\times P(t(df)\geq t^*) \end{split}$		$\begin{split} &H_a \colon p_1 > p_2 \text{, p-value} = P(z \geq z^*) \\ &H_a \colon p_1 < p_2 \text{, p-value} = P(z \leq z^*) \\ &H_a \colon p_1 \neq p_2 \text{, p-value} = 2 \times P(z \geq z^*) \end{split}$	H_a : $\sigma_n^2 > \sigma_d^2$, p-value= $P(F(df_n, df_d) \ge F^*)$ H_a : $\sigma_n^2 \ne \sigma_d^2$, p-value= $2 \times P(F(df_n, df_d) \ge F^*)$

Case 3: More than Two Populations (Multinomial Experiment, Contingency Table, Test of Homogeneity - ANOVA)

	Multinomial Experiment, Contingency Table, Homogeneity		Analysis of Variance (ANOVA)
Parameter of interest:	Probability: p_1, p_2, \cdots, p_k	Probability	Mean: $\mu_1, \mu_2, \cdots, \mu_c$
H_{0}	$H_0: p_1 = p_{10}, \cdots, p_k = p_{k0}$	H_0 : Independency (Homogeneity)	$H_0: \mu_1 = \mu_2 = \dots = \mu_c$
Test Statistic Formula:	$\chi^{2*} = \sum_{\text{all cells}} \frac{(O-E)^2}{E}$		$F^* = \frac{\text{MS(factor)}}{\text{MS(error)}} = \frac{\text{SS(factor)/df(factor)}}{\text{SS(error)/df(error)}}$
df and other items	$df = k - 1$ $E_i = n \times p_{i0}$	$df = (r - 1)(c - 1)$ $E_{ij} = \frac{R_i \times C_j}{n}$	$df(factor) = c - 1, df(error) = n - c$ $SS(factor) = \left(\frac{C_1^2}{k_1} + \frac{C_2^2}{k_2} + \dots + \frac{C_c^2}{k_c}\right) - \frac{(\sum x)^2}{n}$ $SS(error) = \sum (x^2) - \left(\frac{C_1^2}{k_1} + \frac{C_2^2}{k_2} + \dots + \frac{C_c^2}{k_c}\right)$
p-value:	p-value= $P(\chi^2(df) \ge \chi^{2*})$		p-value= $P(F(df_n, df_d) \ge F^*)$