This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

硼酸ランタン系ガラスの屈折率と Abbé 数

今 岡 稔・山 崎 敏 子 (東京大学生産技術研究所)

Refractive Index and Abbe's Number of Glass of
Lanthanum Borate System

Βv

Minoru IMAOKA and Toshiko YAMAZAKI
(Inst. of Industrial Science, Tokyo University, Chiba City)

Abstract

On the basis of previous studies of the glass formation range of borate systems and the relation of composition, refractive index and Abbe's number of borate glass, optical region of lanthanum borate glasses on n_D - ν diagram and its possible limit of high-refractive and low dispersive side were investigated. These lanthanum borate glasses contained oxides of Ti, Zr, Th, Nb, Ta, W, Ba, and Al, and their glass formation range of 4- or 5-component systems were studied. Then the refractive index and Abbe's number of lanthanum borate glasses were measured and from their data and following equations the component factors were calculated.

 $n_D = 1.445 + \sum_i a_i + \sum_i b_i x_i^2$ $v = (n_D - 1)/(0.521 + \sum_i k_i x_i) n_D$

 a_i , b_i , k_i and x_i are component factors and molar fraction of $M_{in}O_m$.

As a result, it has been proved that caluculated values show good agreement with experimental values. On the basis of this result, then, optical region was researched on $n_D - \nu$ diagram. And the resulted limiting line of high refractive and low dispersive side passes every point of $n_D = 1.70$, $\nu = 55$; $n_D = 1.80$, $\nu = 50$; $n_D = 1.90$, $\nu = 40$ and $n_D = 2.00$, $\nu = 35$.

Received August 29, 1961

I. はしがき

II. ガラス化範囲。

まず硼酸、酸化ランタン以外の成分としては、この系統のガラスに従来から使われていたチタン、ジルコン、トリウム、ニオブ、タンタル、タングステンなどのa族高原子価元素の酸化物を対象とした。もちろんこれ以外

の成分も考えられるわけで、アルミニウムやバリウムを 含む系についても若干調べた。しかしその他の a 族酸化 物は屈折率を高める効果に乏しく、また b 族元素もカド ミウムなど使われている例もあるが、組成と屈折率の関係も a 族酸化物を対象に調べて来た関係もあり、いずれ もこの際は除外した。

そこでガラス化範囲を知らねばならないが、これら硼酸塩3成分系のガラス化範囲はすでに調べてあるのでり、それを基礎にして4成分系および5成分系のガラス化範囲を求めてみた。実験方法も従来同様り1/80 mol. スケール(約1~2g)で、白金ーロッウム(20%)坩堝で熔融した。もちろん6成分系以上の多成分系も調べられるのであるが、そうした場合表現が困難になることや、多成分系になることによる新しいものはほとんど現れず、かえって各成分の特長が平均化される効果が大きいなど、実際上の価値が少いと判断してやらなかった。ただガラス化という点だけからみれば、多成分系の方が安定化しやすい。

きて、硼酸と La₂O₃ を含む 4 成分系は、TiO₂ 以下 6 成分中より 2 つをとる組合せとなり、15 の 4 成分系ガラス化範囲がつくられる。しかしてこには高屈折低分散

系の ZrO2, ThO2, Ta2O3 を含む系3つ (図-1~3を 照) だけ掲げることにする、また5成分系は前記の6成 分中から3つをとる組合せとなり、20 の 5 成分系ガラ ス化範囲がつくられる。しかしてれも紙面節約の意味で B_2O_3 - La_2O_3 - ZrO_2 - ThO_2 - Ta_2O_3 系だけを掲げることに した (図-4 参照).

図-1~3 の 4 成分系ガラス化範囲では、図の重心が 正4面体の頂点で B₂O₃ 100% の点となり,太い実線は この頂点と各底辺とからなる3成分系(図中では2等辺 3角形) 上のガラス化範囲,また細い実線と破線は B₂O₂ 一定としたガラス化範囲で、10 mol% おきに実線、そ の中間を破線で示している. 次に 5 成分系ガラス化範 囲では上のような立体的表現でも足りないので、さらに La₂O₃ 一定とした際の 4 成分系ガラス化範囲の幾つかに よって表した. La,O, を一定にとったのはこれが共通成

分であることと、ガラス組成中の La₂O₃ の mol% がほ ぼ 10~30 と一定しているためである. なお 4 成分系の ガラス化範囲を作るためには、相当量の熔融実験がなさ れたが、5成分系の場合は主として作図的に作られた。

Fig. 3. Glass formation range of B₂O₂-La₂O₃-ThO₂-Ta₂O₃ system.

Fig. 1. Glass formation range of B2O4-La2O4-ZrO4-ThO2 system.

Fig. 2. Glass formation range of B₁O₂-La₂O₂-ZrO₂-Ta₁O₃ system;

以上硼酸ランタン系の 4~5 成分系ガラス 化範囲を調べていえることは,まず多成分系 になるほど B.O. の少ない側までガラス化範 囲が拡がる傾向のあることで、例えば TiO, WO, 系では 3 成分系の場合 B,O, 30 mol% 程度が限度であったのが、4成分系では20 mol% 附近, 5成分系では 15 mol% 以下に まで達しているもようである. 同様な傾向は 高ピスマス-鉛ガラス"にもみられたが、多成 分系の熔融体の融点についてもいえることで ある、一般に一定組成の結晶化合物を作らな い限り、その中の各成分より低融点の部分が 出来る. すなわち多成分系の方が結晶しにく い、あるいは熔融した際のエントロピーの増 加が大きいといえるだろう.

次に従来考えて来たような、ガラス化範囲 をガラス化条件から 予測してゆく問題"が, 3成分系からさらに多成分系に進んだ場合, どのような形ですすめられてゆくかというこ とである. 4成分系の例として B₂O₃-La₂O₃-TiO,-ZrO, 及び B,O,-La,O,-TiO,-ThO,系 をあげた、前者ではランタンが修飾イオン、 残りの2つが網状構造ィオンであるから,3 成分系の際と同様な作図がなされ 図―5とな る. (b) は La₂O₂-O 線に対して横からみた 図であり、いずれも予定ガラス化範囲の中に 実測結果がうまく入っているのがよく解る.

Fig. 4. Glass formation ThO2-Ta2Os sys

Fig. 5. Cor B₂C

組成中の La₂O₂ の mol % がほ るためである. なお4成分系の には、相当量の熔融実験がなさ は主として作図的に作られた.

Oz-LazOz-ThOz-TazOz system. ンタン系の 4~5 成分系ガラス ていえることは, まず多成分系 ₂O, の少ない側までガラス化範 句のあることで、例えば TiO2、 3成分系の場合 B.O. 30 mol % ちったのが、4 成分系では 20 5成分系では 15 mol % 以下に るもようである. 同様な傾向は ガラス"にもみられたが、多成 り融点についてもいえることで 一定組成の結晶化合物を作らな 中の各成分より低融点の部分が つち多成分系の方が結晶しにく **谷融した際のエントロピーの増** いえるだろう.

して来たような, ガラス化範囲 ‡から 予測してゆく問題がが、 :らに多成分系に進んだ場合, こすすめられてゆくかというこ で分系の例として B,O,-La,O,-び B.O.-La.O.-TiO.-ThO.系 fではランタンが修飾ィオン, 耿構造イオンであるから、3 ∄様な作図がなされ 図─5とな ¿O,-O 線に対して横からみた ずれも予定ガラス化範囲の中に 、く入っているのがよく解る.

Fig. 4. Glass formation range of BrOs-LarOs-ZrOs-ThO2-Ta2O2 system.

ガラス化部分の一番底 (B₂O₄の最も少い所) の位置は、3成分系における底の深さの比で 決まるようである. 一方後者ではランタンと トリウムが修飾イオン,チクンが網状構造イ オンとみなせるが,従来 B₂O₃-TiO₂-ThO₃ 3 成分系ではトリウムとデタンを対等に取扱っ ているので、チクンの性格が部分的に違って 来る. それは共存イオンによってその役割が 変わりうるとする従来の考えと矛盾しないて とであるが、実際の作図が困難であるので、 B,O,-La,O,-TiO。 系もトリウムーチタンの 場合同様ランタンーチタンを対等と仮定して 作図した. それが図一6で前者同様実測ガラ ス化範囲は予定線の中にうまく入っている。 以上のようにガラス化条件からガラス化範囲 を予測する問題は4成分系の場合もほぼ3成 分系同様に取扱えることが明らかにされた. したがって5成分以上の多成分系も同様に取 扱えるわけであるが、作図が非常に面倒にな るので実用性に乏しくなるうらみがあり、こ こでは敢えて取上げなかった。

ガラス化範囲としては、この他にバリウム とアルミニウムを含む系を若干調べた、バリ ウムはランタンに次いで高屈折率を与える修 飾ィオンであり、a族高原子価元素の酸化物 とのガラス化範囲も,しばしばランタンより 広い点で注目される。しかし結果的には、う ンタンをパリウムで置換することによって網 状構造成分はそれほど増さず、かえって修飾

Fig. 5. Comparison between theoritical and experimental glass formation range in B₂O₃-La₂O₃-TiO₂-ZrO₂ system.

tion range in

Fig. 9. Glass formation range of B₁O₁-Al₂O₁-ThO₁-Ta₂O₅ system.

Fig. 10. Glass formation range of $B_{0}O_{s}-L\alpha_{1}O_{s}-Al_{2}O_{s}-ThO_{t}-T\alpha_{2}O_{s}$ system:

成分は2 La+Baで計算すると減少しており、期待に反するものであった。一方アルミニウムの方は、光学的性質に関してはほとんど影響なく、むしろ修飾イオンをとってガラスに入るので修飾成分の増加が期待された。ただその際 Al₂O₃ が多くなると熔融しにくく、結晶しやすくなる欠点がある。 Al₂O₃、ThO₂、Ta₂O₃ を含む硼酸ランタン系の4および5成分系ガラス化範囲を図ー7~10 に示した。

III. 実験結果と屈折率, Abbe 数に関する成分因子

測定試料は別報りと間様頂角 60° のプリズムに作り、ナトリウムランプと水素放電管を光源とし、分光計を使って n_D, n_C, n_F を測定し、また Abbe 数を計算した。ガラスは各成分系について $2\sim5$ 個、全体で 100 個の測定試料を作った。その中にはやや著色が著しく n_F の測定が出来なかったものもあり、それらについては ν の値を欠いている。これらの測定結果については 表-1 に示した。

さて、組成と屈折率ならびに Abbe 数との 関係は別報[®]に述べたように

 $n_D = 1.455 + \sum_i a_i x_i + \sum_i b_i x_i^2 \cdots (1)$

 $\nu = (n_D - 1)/(0.521 + \sum_i k_i x_i) \cdot n_D$ (2)

ただし ai, bi, ki および xi は MinOm 成分 の成分因子および mol. 分率, で与えられる. なおこの a, b, k の値も別報"にすでに与え られているが, タンタル, ニオブ, トリウムな どを含むランタン系では、上の式で計算した 値よりやや小さい屈折率を示す傾向がある。 これはタンタルなど加えられた成分のmol.百 分率だけでなく、La,O,のmol.百分率にも関 係すると思われるが、多成分系で余り複雑な 式では使えないので、成分因子の値を多少変 更するだけで間に合わせた。すなわち La,O, 20~30 mol % 附近の平均値をとり、従来の 成分因子にかえてランタン系の成分因子とし た、屈折率の成分因子の変化にともなって Abbe 数の方も変わるわけで、これらの値は 表-2 にかかげた、なおアルミニウムも本来 共存修飾イオンによっていろいろ影響をうけ るが、ランクン系では屈折率、Abbe 数とも アルミニウムの成分因子をゼロと置いた。

次に実測値と前記 (1) と (2) の式から, 表の成分因子によって計算した値とを比較し てみると,表一1 にみるように非常によいと

La2O2-Al2O3-Ta2O3 system.

Composition (mol%)

Table 1. Calculated and experimental value of n_D and ν of glasses.

	ompos	ition	(mol	%)	n _D			ν	
\mathbf{B}_{2}	D ₃ La ₂	O, T	:O ₂ Z	rO ₂ C	al. E	×p. Di	f. Ca		p. Dif.
47.	9 21,	7 8			851 1.8				- Dit.
	0 25.		.0 15	5.0 1.9	921 1.9	135 0.0	07 31	.0 32,	
40.				.2 1.9	908 1.8	982 0.0	10 31	.7 31.	
35.			.0 15		950 1.9	443 0.0	06 27	.0 -	
B₂C 60.			iO ₂ T						
50.		0, 10 0 20		.0 1.8		183 0.0	07 40	0 41.	5 -1.5
50,				1.0 1.8	48 1.8	556 -0.0			
40.			.0 10		74 1.8		00 30.		
	La ₂ C). Ti	O. N	.0 1.9 b.O	40 1.9	489 -0.0	09 26.	4 27.0	0.6
38.	0 23.8	19	.1 19	.0 20	36 20	167 0.0	10 04	0 05 4	
39	1 21.7					109 -0.0	19 24. 04 25.		2 -1.0
30,6	25.0	20.		.0 2.1	,	796 0.0			0.7
	La _z e	O, Ti		a ₂ O ₅			21.	.5	_
36,4		31.			98 1.98	391 0.0	09 25.	2 –	
40.0			0.10	.0 1.9		707 0.00			
	La ₂ O		O₂ W(O ₂					
40.0				0 1.9		61 -0.00	05 31.	3 _	_
40.0			0 10.		36 1.94	02 -0.00	6 28.	3	
40.8			1 27.			52 0.00	5 31.	4 31.9	=0.5
32.6 B ₂ O		31.	1 15.	5 1.9	70 1.97	31 -0.00	3 25.	2 25.8	-0.6
45.0			O ₂ Th						
40.0			0 25. 0 30.	0 1.8		78 -0.00		1 43.8	-0.7
47.8					1.04	39 0.00 88 -0.00			
	La ₂ O	, ZrC	Nh.	2O ₅	1.04	00.00	9 42.	5 41.9	0.6
45.5	27.3	13.	6 13.	a ⊂ 3 6 1.93	3i 1.92	15 0.00	9 31.0		
45.4	27.3	18.	29.	1 1.90		78 -0.00			_
B ₂ O ₃	La ₂ O	ZrO	2 Ta,	Ο,		0.00	~ 04.1	, 33.5	-1.0
50.0	25.0	15.0	0 10.	0 1.87	3 1.87	20 0.00	1 38.8	3 .39 .4	-0.6
40.0		25.0	0 10.6	0 1.91					
B ₂ O ₃), W(
40.0					4 1.86		5 36.6	36.4	0.2
35.0 33.3					5 1.889			33.4	
	23.8 La ₂ O,			6 1.89	9 1.89	60 Q.OC	1 33.9	34.0	-0.1
40.0	15.0	שמו ו	12 N D2	Os					
45.0			15.0	1.80	7 1.971	0 -0.004	31.3	31.2	
46.4				1.95	9 . 1.940 8 1 041	6 0.008 4 0.005	31.8	32.5	
42.1				1.936	1.501	0.007	33.0		1.1
B_2O_3	La ₂ O ₃	ThO	Ta,	O ₆	1.540	· -0.007	30.8	31.0	-0.2
60.0	20.0	10.0	10.0	1.82	1.817	2 0.006	41.5	40.8	0.7
50.0	25.0	10.0	15.0	1.902	1.890				0.7
66.7	16.6			1.772		7 -0.008	46.2	45.2	1.0
50.0	20.0			1.890	1.889	1 0.001	40.0	40.7	-0.7
36.3 60.0	18.2			1.985	1.972	3 0.013	34.4	35,6	-1.2
50.0	20.0 25.0	15.0		1.821	1.801	2 0.009	45.1	45.7	
	20.0	15.0 15.0				9 0.009		41.1	-0.1
	La ₂ O ₃			1.903	1.897	9 0.005	37.4	37.7	-0.3
40.0	20.0	10.0	30.0	'3 1876	1 075	5 0.000	•		
30.0	20,0		30.0	1.933	1 931	0.002	35.4	34.8	
40.0	15.0		25.0			-0.002 5 -0.005	34.2	33.9	0.3
B_2O_3	La ₂ O ₃	Nb ₂ O ₅	Ta ₂ (O₅			00.0	55.0	0.2
45.0	30.0		15.0		1.9594	0.022	29.7		_
50.0	30.0	10.0		1.939	1.9253	0.014	31.6		_
B ⁵ O ⁷	La ₂ O ₃			,2	*				
30.0	25.0	15.0	30.0	2.004			26.0	27.0	-1.0
40.0	25.0	15.0			1.9555				-0.5
30.0 B.O	25.0	20.0	25.0	2.023	2,0019	0.021	24.8		-0.4
40.0.	La ₂ O ₃								
42.8	28.6	10.0		1.918		-0.006	32.5	33.2	-0.7
	28.6		14.3 25.5		1.9289	0.000	33.2	. —	-
	La ₂ O ₃ ?	ThO.	Al-O	1.300	1.9441	-0.008	32.0	-	-
55.0	15.0	20.0	10.0	1.762	1.7600	-0.008	EA -	ro -	
55.0	20.0	15.0						50.6	0.0
						0.000	50.8	51.1 -	-0.3

```
60.0 15.0 20.0 5.0 1.762 1.7665 -0.005 50.6 51.8 -0.2
    55.0 10.0 25.0 10.0 1.750 1.7542 -0.004 49.2 49.9 -0.7
      Composition (mol %)
   B2O, La2O, TiO, ZrO, Th2O Cal. Exp. Dif. Cal. Exp. Dif.
   30.0 20.0 30.0 10.0 10.0 1.987 1.9921 -0.005 27.0 26.7 0.3
   33.2 19.1 19.1 14.3 14.3 1.949 1.9560 -0.007 30.9
   B2O1 La2O1 TiO2 ZrO2 Nb2O5
   30.0 20.0 30.0 15.0 5.0 1.999 1.9904 0.009 33.5
   30.0 20.0 30.0 5.0 15.0 2.058 2.0574 0.001 22.0 —
   30.0 30.0 10.0 10.0 20.0 2.060 2.0315 0.028 24.5 26.6 -2.1
   B2O, La2O, TIO, ZrO, Ta2O,
   35.0 25.0 10.0 15.0 15.0 1.981 1.9596 0.021 29.5 31.5 -2.0
   30.0 30.0 20.0 5.0 15.0 2.033 1.9989 0.034 26.7 28.3 -1.6
   35.0 20.0 25.0 15.0 5.0 1.959 1.9533 0.006 27.4
  B<sub>2</sub>O<sub>3</sub> La<sub>2</sub>O<sub>3</sub> TiO<sub>2</sub> ZrO<sub>2</sub> WO<sub>3</sub>
   30.0 20.0 25.0 10.0 15.0 1.960 1.9527 0.007 26.5
  30.0 30.0 5.0 10.0 25.0 1.935 1.9233 0.012 31.9 33.0 -1.1
  B2O2 La2O2 TiO2 ThO2 Nb2O5
  36.4 18.2 9.0 18.2 18.2 2.020 2.0150 0.005 26.4 --
  33.4 19.0 19.0 14.3 14.3 2.032 2.0216 0.010 25.1 24.9 0.2
  35.4 19.0 28.6 9.5 9.5 2.020 2.0222 -0.002 24.3 24.1 0.2
  33.3 22.2 16.7 5.6 22.2 2.070 2.0447 0.025 23.0 25.8 -2.8
  B2O2 La2O3 TiO2 ThO2 Ta2O5
  30.0 10.0 20.0 30.0 10.0 2.026 2.0240 0.002 26.7 27.3 -0.6
  36.3 18.2 27.3 9.1 9.1 1.988 1.9835 0.004 26.5 26.4 0.1
  33.3 19.1 9.5 23.8 14.3 2.003 1.9968 0.006 31.2 -- --
  27.3 18.2 18.2 22.7 13.6 2.040 2.0369 0.003 28.1
  B<sub>2</sub>O<sub>3</sub> La<sub>2</sub>O<sub>2</sub> TiO<sub>2</sub> ThO<sub>3</sub> WO<sub>3</sub>
  26.4 21.0 31.6 10.5 10.5 2.012 2.0089 0.003 25.4
  25.4 21.0 15.8 15.8 21.0 1.982 1.9802 0.002 28.8 29.5 -0.7
  30.0 20.0 10.0 20.0 20.0 1.967 1.9650 0.002 31.4 31.3 0.1
  B2O1 La2O2 TiO2 Nb2O5 Ta2O
  34.3 18.8 28.2 14.1 4.6 2.047 2.0377 0.009 21.6
  36.4 27.3 22.7 4.5 9.1 2.012 2.0078 0.004 25.9 26.3 -0.4
  36.4 27.3 13.6 18.2 4.5 2.049 2.0290 0.020 24.2 26.9 -2.7
 B<sub>2</sub>O<sub>4</sub> La<sub>2</sub>O<sub>3</sub> T<sub>1</sub>O<sub>2</sub> Nb<sub>2</sub>O<sub>5</sub> WO<sub>3</sub>
 30.0 20.0 20.0 20.0 10.0 2.063 2.0632 0.000 22.7
  27,3 27.3 9.0 18.2 18.2 2.061 2.0390 0.022 23.7 — —
  33.3 28.6 14.3 14.3 9.5 2.025 2.0175 0.007 24.7 25.9 -1.2
 33.3 19.1 28.6 9.5 9.5 2.007 2.0072 0.000 23.2 23.2 0.0
 B,O, La,O, TiO, Ta,O, WO,
 28.6 28.6 9.5 14.3 19.0 2.011 2.0067 0.004 25.0
 34.8 26.1 17.4 13.0 8.7 1.996 1.9883 0.008 27.4 — —
 33.2 19.1 23.8 4.8 19.1 1.961 1.9647 0.004 25.8 26.4 -0.6
 B<sub>2</sub>O<sub>3</sub> La<sub>2</sub>O<sub>3</sub> ZrO<sub>2</sub> ThO<sub>2</sub> Nb<sub>2</sub>O<sub>5</sub>
 39.1 17.4 21.7 17.4 4.4 1.900 1.8954 0.005 38.8
 36.4 18.2 13.6 22.7 9.1 1.951 1.9431 0.008 34.2 35.2 -1.0
 30.0 10.0 15.0 35.0 10.0 1.950 1.9499 0.000 32.5 32.9 -0.4
 B<sub>2</sub>O<sub>3</sub> La<sub>2</sub>O<sub>3</sub> ZrO<sub>3</sub> ThO<sub>2</sub> Ta<sub>2</sub>O<sub>3</sub>
 39.1 26.1 13.0 4.4 17.4 1.958 1.9470 0.011 31.9
 33.5 19.0 19.0 19.0 9.5 1.948 1.9441 0.004 36.5 38.0 -1.5
 30.5 17.4 13.0 26.1 13.0 1.980 1.9720 0.008 35.0 35.5 -0.5
 36.4 18.2 9.1 22.7 13.6 1.956 1.9517 0.004 35.8 36.2 -0.4
 33.3 9.5 14.4 33.3 9.5 1.913 1.9187 -0.006 37.1 37.5 -0.4
 B2O3 La2O3 ZrO2 ThO2 WO2
 31.8 18.2 13.6 18.2 18.2 1.912 1.9165 -0.005 36.2 38.0 -1.8
30.0 10.0 20.0 30.0 10.0 1.886 1.8833 0.003 37.4 38.3 -0.9
 30.0 10.0 5.0 25.0 30.0 1.882 1.8900 -0.008 39.2 - -
B<sub>2</sub>O<sub>2</sub> La<sub>2</sub>O<sub>2</sub> ZrO<sub>2</sub> Nb<sub>2</sub>O<sub>5</sub> Ta<sub>2</sub>O<sub>5</sub>
36.4 27.3 9.1 13.6 13.6 2.026 1.9991 0.027 27.4 28.1 -0.7
26.1 26.1 17.4 8.7 8.7 1.965 1.9665 -0.002 31.2 32.1 -0.9
B2O, La2O, ZrO, Nb2O, WO,
20.0 30.0 10.0 15.0 25.0 2.050 2.0396 0.010 25.7 26.2 -0.5
B<sub>2</sub>O<sub>1</sub> La<sub>2</sub>O<sub>1</sub> ZrO<sub>2</sub> Ta<sub>2</sub>O<sub>4</sub> WO<sub>3</sub>
23.8 28.6 14.3 14.3 19.0 2.006 1.9963 0.010 30.6 30.1 0.5
36.1 27.2 9.1 18.2 9.1 1.968 1.9571 0.011 31.8 - -
27.3 27.2 13.6 13.6 18.2 1.987 1.9813 0.006 30.7 30.7 0.0
B<sub>2</sub>O<sub>3</sub> La<sub>2</sub>O<sub>3</sub> ThO<sub>2</sub> Nb<sub>2</sub>O<sub>5</sub> Ta<sub>2</sub>O<sub>6</sub>
30.0 10.0 35.0 15.0 10.0 2.024 2.0040 0.020 27.6 27.6 0.0
33.3 19.0 28.6 4.8 14.3 2.014 2.0029 0.011 32.4 —
```

B2O, La2O, ThO, Nb2O, WO

30.0 10.0 30.0 15.0 15.0 1.975 1.9854 -0.010 27.9 28.4 -0.5

```
65 窯協 70 [5] 1962
28.6 19.0 19.0 4.5 28.6 1.960 1.
28.6 19.0 23.8 14.3 14.3 2.022 2.
B<sub>2</sub>O<sub>3</sub> La<sub>2</sub>O<sub>3</sub> ThO<sub>2</sub> Ta<sub>2</sub>O<sub>5</sub> WO<sub>3</sub>
27.3 18.2 27.3 13.6 13.6 2.003 1
B2O3 La2O1 Nb2O5 Ta2O5 WO
39.2 26.1 8.7 13.0 13.0 1.986 1
30.0 30.0 10.0 5.0 25.0 2.003 1
BrO, LagO, TiO, ThO, AlgO,
50.0 15.0 10.0 20.0 5.0 1.828 1
B2O3 La2O3 ZrO2 Ta2O5 Al2O3
30.0 25.0 15.0 10.0 20.0 1.873 1
40.0 25.0 15.0 10.0 10.0 1.373 1.
B2O3 La2O3 ThO2 Ta2O5 Al2O2
30.0 20.0 15.0 15.0 20.0 1.904 1
33.3 23.8 9.5 14.3 19.1 1.895 1
     Table 2. Component factors
              glasses.
     La<sub>2</sub>O<sub>3</sub>
                    1.562
       TiO2
                    0.655
       ZrO<sub>2</sub>
                    0.400
       ThO.
                    0.570
      Nb<sub>2</sub>O<sub>5</sub>
                    0 987
       Ta_2O_5
                    0.833
       wo,
                    0.420
                    0.000
      Al<sub>2</sub>O<sub>3</sub>
    Table 3. Comparison between
              by Izumitani and o
   ·· · Composition (wt. %)
       B2O1 La2O1 Ta2O5 ZrO2 (
  (2) 20 50 25 5
53.1 28.4 10.9 7.6
  (3) 20 45 25 10
50.9 24.4 10.4 14.3
  (4) 25 45 25
60.1 23.1 9.9
                         6.9
  (5) 30 50 15
65.2 23.1 5.5
                         6.9
       B<sub>2</sub>O<sub>3</sub> La<sub>2</sub>O<sub>3</sub> Ta<sub>2</sub>O<sub>5</sub> ThO<sub>2</sub>
  (7) 20 35 15 30
53.0 20.9 6.3 19.8
  (8) 20 40 20
54.0 23.2 8.5
  (10) 18 45 30 7
52.2 27.9 14.4 5.5
  はいえないが、 20 に関しては
 しては1以下の値で両者は一致
 ように成分因子を簡単化するた
たので、その影響があると思わ
系で、とくにそれらの台計が2
 ど,その差はやや目立っている
精度のよいものにしてゆくため
 を除きあるいは研磨の精度を上
 ど、全面的に精度の向上をはか
ためとの計算を他の文献中でデ
みた. しかし従来のものは特許
組成と屈折率との相対関係が一
```

って、信頼度の低いことが明られ

```
1.7665 -0.005 50.6 51.8 -0.2
   1.7542 -0.004 49.2 49.9 -0.7
   n_D
     Exp. Dif.
                  Cal. Exp. Dif.
  37 1.9921 -0.005 27.0 26.7 0.3
 19 1.9560 -0.007 30.9
  19 1.9904 0.009 33:5
    2.0574 0.001 22.0
  10 2.0315 0.028 24.5 26.6 -2.1
  1 1.9596 0.021 29.5 31.5 -2.0
  3 1.9989 0.034 26.7 28.3 -1.6
  9 1.9533 0.006 27.4
 0 1.9527 0.007 26.5
 5 1.9233 0.012 31.9 33.0 -1.1
  0 2.0150 0.005 26.4
 2 2.0216 0.010 25.1 24.9 0.2
 0 2.0222 -0.002 24.3 24.1 0.2
  0 2.0447 0.025 23.0 25.8 -2.8
   2.0240 0.002 26.7 27.3 -0.6
 8 1.9835 0.004 26.5 26.4 0.1
 3 1.9968 0.006 31.2
 0 2.0369 0.003 28.1
 2 2.0089 0.003 25.4
 2 1.9802 0.002 28.8 29.5 -0.7
 7 1.9650 0.002 31.4 31.3 0.1
 7 2.0377 0.009 21.6
 2 2.0078 0.004 25.9 26.3 -0.4
 9 2.0290 0.020 24.2 26.9 -2.7
 3 2.0632 0.000 22.7
 1 2.0390 0.022 23.7
 5 2.0175 0.007 24.7 25.9 -1.2
 7 2.0072 0.000 23.2 23.2 0.0
 l 2.0067 0.004 25.0
 3 1.9883 0.008 27.4
 l 1.9647 0.004 25.8 26.4 -0.6
 1.8954 0.005 38.8
   1.9431 0.008 34.2 35.2 -1.0
  1.9499 0.000 32.5 32.9 -0.4
 1.9470 0.011 31.9
· : 1.9441 0.004 36.5 38.0 -1.5
 1 1.9720 0.008 35.0 35.5 -0.5
 1.9517 0.004 35.8 36.2 -0.4
 : 1.9187 -0.006 37.1 37.5 -0.4
 : 1.9165 -0.005 36.2 38.0 -1.8
   1.8833 0.003 37.4 38.3 -0.9
   1.8900 -0.008 39.2
   1.9991 0.027 27.4 28.1 -0.7
   1.9665 -0.002 31.2 32.1 -0.9
   2.0396 0.010 25.7 26.2 -0.5
   1.9963 0.010 30.6 30.1 0.5
   1.9571 0.011 31.8
   1.9813 0.006 30.7 30.7 0.0
   2.0040 0.020 27.6 27.6 0.0
   2.0029 0.011 32.4
  1.9854 -0.010 27.9 28.4 -0.5
```

28.6 19.0 19.0 4.5 28.6 1.960 1.9598 0.000 31.2 31.9 -0.7 28.6 19.0 23.8 14.3 14.3 2.022 2.0168 0.005 28.5 28.6 -0.1 B₂O₃ La₂O₃ ThO₂ Ta₂O₅ WO₃ 27.3 18.2 27.3 13.6 13.6 2.003 1.9958 0.007 32.4 31.7 0.7 B2O, La2O, Nb2O, Ta2O, WO, 39.2 26.1 8.7 13.0 13.0 1.986 1.9684 0.018 28.7 30.2 -1.5 30.0 30.0 10.0 5.0 25.0 2.003 1.9963 0.007 27.4 B₂O₃ La₂O₃ TiO₂ ThO₃ Al₂O₃ 50.0 15.0 10.0 20.0 5.0 1.828 1.8247 0.003 39.0 B2O, La2O, ZrO, Ta2O, Al2O, 30.0 25.0 15.0 10.0 20.0 1.873 1.8653 0.008 38.8 40.1 -1.3 40.0 25.0 15.0 10.0 10.0 1.873 1.8688 0.004 38.8 39.3 -0.5 B2O1 La2O1 ThO2 Ta2O5 Al2O1 30.0 20.0 15.0 15.0 20.0 1.904 1.8971 0.007 37.4 37.2 0.2 33.3 23.8 9.5 14.3 19.1 1.895 1.8933 0.002 37.6 38.5 -0.9

65 窯協 70 [5] 1962

Table 2. Component factors of La₂O₃ contained glasses.

	a ,	ь	k
La ₂ O ₃	1.562	0.185	0.107
TiO;	0.655		0.306
ZrO ₂	0.400	_	0.100
ThO:	0.570	-	0.086
Nb ₂ O ₅	0.987	_	0.421
Ta ₂ O ₅	0.833	_	0.269
wo,	0.420	_	0.168
Al ₂ O ₃	0.000		0.000

Table 3. Comparison between experimental data by Izumitani and our calculations.

• . •	Con	npositio	n (Wt.	%) %)	*D	Dif.	V	Dif.
•	B ₂ O ₃	La ₂ O ₃	Ta ₂ O ₅	ZrO2	$\begin{pmatrix} Exp. \\ Cal. \end{pmatrix}$		(Exp.)	
(1)	20 53.\$	45 25.7	30 13.2	5 7.G	1.8760 1.873	0.003	39.4 37.8	1.6
(2)	20 59.1	50 28.4	25 10.9	5 7.6	1.8737 1.869	0.005	40.7 38.9	1.8
(3)	20 50.9	45 24 . 4	25 10.4	10 14.3	1.8767 1.868	0.009		
(4)	25 60.1	45 23.1	25 9.9	5 6.9	1.8349 1.825	0.010	41.6 41.0	0.6
(5)	30 65.2	50 23.1	15 5.5	5 6.9	1.7997 1.786	0.014	45.7 44.9	0.8
	B_2O_3	La ₂ O ₈	Ta ₂ O ₃	ThO2				
(6)	20 56.5	40 24.3	35 15.5	5 3.7	1.8699 1.876	-0.006	38.0	
(1)	20 53.0	35 20.9	15 6.3	30 19.8	1.8631 1.871	-0.008	43.0	
(8)	20 54.0	40 23.2	20 8.5	20 14.3	1.8637 1.870	-0.006	42.2 41.5	0.7
(9)	19	46	25	10	1.8744	-0.007	41.4 39.4	2.0
	53.4	27.7	11.5	7.5	1.8815		39.4	
(10)	53.4 18 52.2	27.7 45 27.9	11.5 30 14.4	7.5 7 5.5	1.8862 1.8965	-0.010	33.4	

はいえないが、no に関してはほぼ 0.01 以下, v に関 しては1以下の値で両者は一致している. しかし上述の ように成分因子を簡単化するためェの2乗の項を省略し たので、その影響があると思われるタンタルやニオブの 系で,とくにそれらの合計が 20 mol% を超えた場合な ど、その差はやや目立っている。これらの点をもう少し 精度のよいものにしてゆくためには、試料ガラスの脈理 を除きあるいは研磨の精度を上げ、組成の分析を行うな ど、全面的に精度の向上をはかる必要がある. なお念の ためこの計算を他の文献中でデータ いいて当って みた、しかし従来のものは特許のデータであるためか、 組成と屈折率との相対関係が一見しておかしいものもあ って、信頼度の低いことが明らかになったので、研究論 文として発表されている泉谷の データ いによって検討し た、その結果は 表一3 にかかげたが、ほぼ一定の傾向を もってかなりよく一致している、これは泉谷の組成が調 合組成である点を考慮すれば、十分な裏付けを与えたも のと解してよいのではなかろうか・

IV. 硼酸ランタン系ガラスの光学的領域

以上の検討の結果, 実測値と計算値はほぼ一致するこ とが明らかになったので、前記の組成と屈折率ならびに Abbe 数との間の関係式 (1) および (2) は 表一2 の成 分因子の値を使って広範囲にわたるこの系のガラスにつ いて、その組成から光学的性質を算出しうるものと考え られ、初めにあげたガラス化範囲の結果と合せて、パロール

Fig. 11. Optical region of B₂O₄-La₂O₄-ZrO₂-ThO₂

Fig. 12. Optical region of B₂O₄-La₂O₄-ZrO₂-Ta₂O₅ system.

Fig. 13. Optical region of B₂O₄-La₂O₄-ThO₂-Ta₂O₄ system.

Fig. 14. Optical region of B₂O₂-La₂O₃-ZrO₂-ThO₂-To₂O₃ system.

図表中における研酸ランタン系ガラス の光学的領域を求めてみた.

その結果ガラス化範囲の 場合 と同 様, 4 成分系について 15, 5 成分系 について 20 の no-v 図が得られるが, とこにはただ ZrO2, ThO2, Ta2Os を 含む4および5成分系の結果を掲げる にとどめる (図-11~14 参照). 一例 として B₂O₃-La₂O₃-ZrO₂-ThO₂ 系 (図-11) についてみると, まず細い実 線は La₂O₃ または ZrO₂ の量のみを 変化させていった場合のnpcvcの 関係で,図中の Zr 10, 20, 30,と いう点は、La₂O₃ 5 mol%, ZrO₂ 10, 20, 30,……mol% (残りは B₂O₃) の組 成のガラスの no と v とを示す. した がってこれは形がゆがんでいるが3形 座標を n_D - ν 図表中に写したもので (B,O, 一定の線だけ書いてない), こ の中にガラス化範囲を書込んでゆけば 求める系の光学的領域が画かれる。す なわち太い実線の ThO がそれであ る. ととでまず得られたのは B₂O₃-La₂O₃-ZrO₂ 3 成分系である. 次に ThO, 10 mol % 入った系を考え、同 様な手続きで求めてゆくと Th 10 の 太い実線が得られる。 同様にして Th 20, Th 30 を求め、最後にそれら全体

Abbe's number

① ZrO₂-TiO₂ system ② Ta₁O₃-TiO₂ system ③ WO₃-TiO₂ system ④ ThO₃
ZrO₂ system ⑥ Nb₁O₆-ZrO₂ system ⑥ WO₃-ZrO₂ system ⑥ TiO₂-ThO₃ system ⑥ Ta₁O₄-ThO₁ system ⑥ TiO₂-ThO₁ system ⑥ ThO₁-Nb₁O₄ system ⑥ ThO₂-Nb₂O₅ system ⑥ ThO₂-Ta₂O₃ system ⑥ Ta₂O₄-WO₃ system ⑥ ZrO₂-ThO₂-ThO₂-Ta₂O₃ system

Fig. 15. Optical region of all tetracomponent systems.

を包括すると(破線でつなぐ)] 4成分系の光学的領域が出来上 ラスの no と v の値は, すべ 域に入ってしまう、次に5成分 も全く同様である。 ただ以上の 分系 (B,O,-La,O,-ZrO,-ThO, 記のものは TaO) を, さらに とし同じ手続きで作り、それを るから,手数は2乗されてくる 違い、B₂O₃-La₂O₃-ZrO₂-Ta₂O₅ しかし図中の点線は B₂O₃-La₄(るが、4 成分から 5 成分系にな んど拡がっていないことが解る 系の光学的領域を全部一つにま ってとの系のガラスの光学的限 折・低分散側の限界線は, ほぼ 1.80, $\nu = 50$; $n_D = 1.90$, $\nu = 40$; 点をつないだ線で示され、およ に来る. 以上はガラス化範囲か 融量の問題もあるので、実用的 に内側に入ることは当然で, い スの可能な限界線というべきで

なおこの議論が4成分だけ あるいはそれ以上の多成分系を は、前述のように4成分系と5 領域に大差ないからで(5成分 ThO₂-Ta₂O₄ 系は最も高屈折促 る)、さらに多成分系にもってい Zr.などの特長が、alkの小さい

Fig. 16. Glass formation of Al₂O₂-ThO₂-Ta₂O

of B₂O₂-L₂O₂-ZrO₂-ThO₂-

WO₃-TiO₂ system ① ThO₂-: system ① TiO₂-ThO₂ system ② ThO₂-Nb₂O₃ system v₂O₃-Ta₂O₅ system . ② ThO₃-Ta₂O₅ system . ② ThO₃-Ta₂O₅ system

を包括すると(破線でつなぐ)B₂O₃-La₂O₃-ZrO₂-ThO₂ 4成分系の光学的領域が出来上る。すなわちこの系のガ ラスの n_D と ν の値は, すべて n_D-ν 図表上のこの領 域に入ってしまう.次に5成分系の場合であるが,これ も全く同様である。ただ以上のようにして得られる4成 分系 (B₂O₃-La₂O₃-ZrO₂-ThO₂-Ta₂O₃ 系であれば、上 記のものは TaO) を, さらに Ta₂O, 10 mol, 20 mol% とし同じ手続きで作り、それを1つに包括するわけであ るから, 手数は2乗されてくる(図-14は作図の順序が 違い, B₂O₃-La₂O₃-ZrO₂-Ta₂O₃ 系から出発している). しかし図中の点線は B₂O₃-La₂O₃-ThO₂-Ta₂O₅ 系であ るが、4 成分から 5 成分系になっても光学的領域はほと んど拡がっていないことが解る. なお 図-15 は4成分 系の光学的領域を全部一つにまとめたもので、これによ ってこの系のガラスの光学的限界が明らかになる、高屈 折・低分散側の限界線は、ほぼ np=1.70, v=55; np= 1.80, $\nu=50$; $n_D=1.90$, $\nu=40$; $n_D=2.00$, $\nu=35$ の各 点をつないだ線で示され、およそ np=1.70~2.00 の間 に来る. 以上はガラス化範囲から求めたものであり、烙 融量の問題もあるので、実用的意味ではこの線よりさら に内側に入ることは当然で,いわば硼酸ランタン系ガラ スの可能な限界線というべきであろう。

なおての 議論が 4 成分だけを 基礎として、5 成分系 あるいはそれ以上の多成分系を無視している点については、前述のように 4 成分系と 5 成分系とではその光学的領域に大差ないからで(5 成分系中 B_2O_3 - La_2O_3 - ZrO_2 - ThO_2 - Ta_2O_3 - XrO_3 -

Fig. 16. Glass formation range of B₂O₄-La₂O₄-Al₄O₄-Ta₂O₅ system.

る効果が大きい,とみられる点を考慮した結果である.最後に,アルミニウムの系について一言ふれて置きたい. Al_2O_3 を加えることにより修飾イオンの入る量がふえ,ガラス化範囲の拡がることは前述の通りで,3成分系、4成分系(図 $-7\sim10$)でもその効果はあった.そこでさらに $B_2O_2-La_2O_3-Al_2O_3-ThO_2-Ta_2O_5$ の 5 成分系を調べてみたが,図-16 にみるように Al_2O_3 と共に Ta_2O_5 , ThO_2 側のガラス化範囲は拡がるが, Ta_2O_5 の少い側のガラス化範囲ははかるが, Ta_2O_5 の少い側の関界で決まるので,ないことを示している.したがってアルミナを含む系は4成分系で打切った.

v. む す び

以上 TiO, ZrO, ThO, Nb,O, Ta,O, WO, なども 種の a 族高原子価酸化物を含む、 4 および 5 成分の硼酸 ランタン系ならびに BaO, Al₂O, を含む若干の系につい て、ガラス化範囲と各系のガラスの屈折率および Abbe 数の測定を行い、 別報"の計算式で各成分因子を求め、 np および v に関して計算値と実測値とが一致すること を確めた. その結果上記計算式と成分因子を使って, 各 組成のガラスの屈折率と Abbe がほぼ正確に計算出来る ことが解ったので、ガラス化範囲の結果を利用し、no-v 図表上に以上の各系の光学的領域を求めてみた、硼酸ラ ンタン系ガラスの高屈折·低分散側の限界は、ほぼ np= 1.70, $\nu = 55$; $n_D = 1.80$, $\nu = 50$; $n_D = 1.90$, $\nu = 40$; $n_D =$ 2.00, v=35 の各点をつないだ線で示され、およそ no= 1.70~2.00 の間にあることが解った。また4成分以上の 多成分系についても、3成分系の場合同様にガラス化範 囲がガラス化条件から求められることも確められた(実 際には4成分系までで、それ以上は取扱いが非常に複雑 になる):

終りにガラス研磨にお世話になった千代田光学の金子昌能氏, 実験ならびに測定された 佐竹一謙, 杉本一次, 中島正江 の諸君 に謝意を表す。

引用文献

- W.G. Morey. Brit. Pat. 462,304 (1937); U.S. Pat. 2,150,694 (1939)
- L.W. Eberlin. U.S. Pat. 2,206,081 (1940); 2.214,249 (1941)
- 3) K.H. Sun. U.S. Pat. 2,430,540; 2,434,147~50 (1947); Glass Ind., 28, 637 (1947); 29, 83 (1948)
- 4) K.H. Sun, T.E. Callear. U.S. Pat. 2,466,510 (1948)
- 5) 今岡 捻、窯協、67、364 (1959)
- 6) 今岡 谂, 窯協, **69**, 282 (1961); 生研報告, **6** [4] 127 (1957)
- 7) 今岡 稔. 工化, 64, 871 (1961)
- 8) 今岡 稔. 山崎敏子. 窯協. 70 [4] 89 (1962)
- 9) 泉谷做郎. 大工試報告, No. 311 (1958)

(8/29/61 受付)

THIS PAGE BLANK (USPTO)

Melting in platinum crucible.

Measurements of refractive index by Pulfrich refractometer.

Reference:

Imaoka M. and Yamazaki T., J.Ceram.Assoc.Jpn, 1962, vol. 70, No. 5, p. 115.

Mol.% by batch

GNo	B ₂ O ₃	La ₂ O ₃	TiO ₂	ZrO ₂	ThO ₂	Nb ₂ O ₅	Ta ₂ O ₅	WO ₃	Al ₂ O ₃	n _D	ν
146372	24.21	51.33	5.05	19.41	-	-	-	-	-	1.851	-
146373	19.37	56.66	11.11	12.86	-	-	-	_	_	1.9135	32
146374	20.34	53.19	10.41	16.06	-	-	-	_	-	1.8982	31.5
146375	18.46	49.37	18.16	14.01	-	-	-	-	-	1.9443	-
146376	28.93	56.4	5.53	-	9.14	-	-	-	-	1.8183	41.5
146377	25.56	23.93	11.73	-	38.78	-	-	_	-	1.8556	34.4
146378	26.77	37.58	15.35	-	20.3	-	-	-	-	1.8737	30.1
146379	21.24	37.28	21.33	-	20.14	-	-	_	-	1.9489	27
146380	15.58	45.68	8.99	-	-	29.75	-	_	-	2.0167	25.2
146381	17.72	46.03	13.57	-	-	22.67	-	_	-	2.0109	24.3
146382	11.3	44.08	8.65	-	-	35.97	-	, -	-	2.0796	-
146383	15.37	44.85	15.4	-	-	-	24.38	_	-	1.9891	· -
146384	16.05	46.96	11.51	-	-	-	25.48	_	-	1.9707	-
146385	15.89	46.48	4.56	_	_	-	_	33.07	, -	1.9061	-
146386	18.27	53.43	13.1	-	-	-	-	15.21	-	1.9402	-
146387	16.4	42.88	4.2	-	-	-	_	36.53	-	1.8852	31.9
146388	15.02	44.62	16.44	-	-	-	-	23.93	-	1.9731	25.8
146389	20.27	21.08	-	15.94	42.71	-	-	-	-	1.8178	43.8
146390	16.95	19.83	-	15.	48.22	-	-	-	-	1.8439	41.2
146391	20.02	28.03	-	14.16	37.8	-	-	-	-	1.8488	41.9
146392	18.25	51.26	-	9.66	-	20.83	-	-	-	1.9215	-
146393	18.91	53.21	-	13.42	-	14.47	-	_	-	1.9078	35.3
146394	19.45	45.52	-	10.33	-	-	24.7	-	-	1.872	39.4
146395	15.11	44.2	-	16.72	-	-	23.98	-	-	1.9082	37.3
146396	15.99	46.77	-	10.61	-	-	-	26.63	-	1.8694	36.4
146397	13.37	44.69	-	10.14	-	-	-	31.8	-	1.8898	33.4
146398	15.73	52.61	7.75	23.91	-	-	-	-	-	1.895	34
146399	14.22	24.96	-	_	40.45	20.36	-	-	-	1.971	31.2
146400	16.56	34.45	-	-	27.92	21.08	-	-	-	1.9466	32.5
146401	17.2	38.68	_	-	25.16	18.96	-	-	-	1.9414	34.1
146402	15.51	18.1	_	-	44.16	22.23	-	-	-	1.943	31
146403	23.53	36.71	-	-	14.87	-	24.89	-	-	1.8172	40.8
146404	16.66	38.98	-	-	12.64	-	31.72	-	-	1.8905	38.7
146405	30.04	34.99	-	<u>-</u>	18.96	-	16.01	-	-	1.7797	45.2
146406	17.67	33.08	-	-	26.81	-	22.43	-	-	1.8891	40.7
146407	10.66	25.01	_	-	30.4	_	33.92	-	-	1.9723	35.6
146408	24.77	38.64	-	-	23.49	-	13.1	-	-	1.8012	45.7
146409	17.4	40.71	-	-	19.8	-	22.09	_	-	1.8889	41.1
146410	16.91	31.65	-	-	19.24	-	32.2	_	_	1.8979	37.7
146411	14.74	34.48	-	-	13.97	-	-	36.81	-	1.8755	34.8
146412	10.02	31.27	-	-	25.34	-	_	33.37	-	1.9314	33.9
146413	14.85	26.07	-	-	28.17	-	-	30.91	-	1.8905	35.6

THIS PAGE BLANK (USPTO)

GNo	B_2O_3	La ₂ O ₃	TiO ₂	ZrO ₂	ThO₂	Nb ₂ O ₅	Ta ₂ O ₅	WO ₃	Al ₂ O ₃	n _D	ν
146414	14.12	44.04	-	-	-	11.98	29.87	_	-	1.9594	-
146415	17.12	48.07	-	-	_	13.07	21.73	-	-	1.9253	-
146416	9.86	38.46	-	_	-	18.83	· -	32.85	-	1.9976	27
146417	14.24	41.65	_	-	-	20.39	_	23.71	-	1.9555	28.5
146418	9.78	38.16	-	-	_	24.9	-	27.15	-	2.0019	25.2
146419	13.17	38.52	-	_	_	-	20.9	27.41	_	1.9241	33.2
146420	13.59	42.49	_	_	-	-	28.81	15.12	-	1.9289	-
146421	11.54	42.43	_	-	-	-	19.11	26.92	-	1.9441	-
146422	25.5	32.54	-	_	35.17	-	-	-	6.79	1.7698	50.6
146423	24.99	42.52	-	. -	25.84	-	-	-	6.65	1.776	51.1
146424	28.12	32.9	-	-	35.55	-	-	-	3.43	1.7665	51.8
146425	26.03	22.15	-	_	44.88	-	-	-	6.93	1.7542	49.9
146426	14.04	43.81	16.11	8.28	17.75	-	-	-	-	1.9921	26.7
146427	14.82	39.9	9.78	11.3	24.21	-	-	-	-	1.956	-
146428	14.73	45.96	16.9	13.04	-	9.37	-	_	-	1.9904	-
146429	13.38	41.76	15.36	3.95	-	25.55	_	-	-	2.0574	-
146430	10.87	50.88	4.16	6.41	-	27.67	-	-	-	2.0315	26.6
146431	12.27	41.02	4.02	9.31	-	-	33.38	-	-	1.9596	31.5
146432	10.09	47.21	7.72	2.98	-	-	32.01	-	-	1.9989	28.3
146433	16.24	43.42	13.31	12.32	-	-	14.72	-	-	1.9533	-
146434	13.64	42.56	13.04	8.05	-	-	-	22.71	-	1.9527	-
146435	10.83	50.67	2.07	6.39	-	-	-	30.05	-	1.9233	33
146436	13.46	31.5	3.82	-	25.53	25,7	-	-	-	2.015	-
146437	13.2	35.15	8.62	-	21.44	21.58	-	-	-	2.0216	24.9
146438	14.69	39.1	14.43	-	15.84	15.95	-	-	-	2.0222	24.1
146439	12.69	39.6	7.3	-	8.1	32.31	-	-	-	2.0447	25.8
146440	10.83	16.9	8.28	-	41.08	-	22.91	-	-	2.024	27.3
146441	14.81	34.75	12.78	-	14.08	-	23.57	-	-	1.9835	26.4
146442	10.58	28.41	3.46	-	28.69	_	28.85	-	-	1.9968	-
146443	8.93	27.86	6.83	-	28.16	-	28.23	_	-	2.0369	-
146444	11.2	41.69	15.38	- '	16.89	-	-	14.83	-	2.0089	-
146445	9.68	36.04	6.65	-	21.98	-	-	25.65	-	1.9802	29.5
146446	10.81	33.73	4.13	-	27.33	-	-	24.	-	1.965	31.3
146447	14.43	37.02	13.61	-	-	22.65	12.28	-	-	2.0377	-
146448	13.73	48.18	9.82	-	-	6.48	21.78	-	-	2.0078	26.3
146449	13.1	45.99	5.62	-	-	25.01	10.28	-	-	2.029	26.9
146450	11.71	36.53	8.96	-	-	29.8	-	13.	_	2.0632	-
146451	9.24	43.24	3.49	-	-	23.52	-	20.51	-	2.039	-
146452	12.34	49.61	6.08	-	-	20.24	-	11.73	-	2.0175	25.9
146453	14.91	40.01	14.69	-	-	16.24	-	14.16	-	2.0072	23.2
146454	8.74	40.88	3.33	-	-	-	27.72	19.33	-	2.0067	-
146455	12.07	42.35	6.92	-	-	-	28.61	10.05	-	1.9883	-
146456	13.61	36.64	11.19	-	-	-	12.49	26.07	-	1.9647	26.4
146457	16.18	33.69	-	15.89	27.3	6.95	-	-	-	1.8954	-
146458	13.66	31.96	-	9.03	32.31	13.04	-	-	-	1.9431	35.2
146459	10.94	17.06	-	9.68	48.4	13.92	-	-	-	1.9499	32.9
146460	12.56	39.23	-	7.39	5.36	-	35.47	-	-	1.947	

GNo	B ₂ O ₃	La ₂ O ₃	TiO ₂	ZrO ₂	ThO ₂	Nb ₂ O ₅	Ta ₂ O ₅	WO ₃	Al ₂ O ₃	n _D	ν
146461	11.62	30.83	-	11.66	24.99	-	20.91	-	-	1.9441	38
146462	9.64	25.73	_	7.27	31.28	-	26.08	-	-	1.972	35.5
146463	11.74	27.47	-	5.19	27.76	-	27.84	-	-	1.9517	36.2
146464	11.49	15.34	-	8.79	43.57	-	20.8	-	-	1.9187	37.5
146465	11.75	31.47	-	8.89	25.5	-		22.39	-	1.9165	38
146466	11.57	18.05	_	13.65	43.88	-	-	12.84	-	1.8833	38.3
146467	10.7	16.69	_	3.16	33.82	-	-	35.63	-	1.89	-
146468	11.43	40.11	-	5.06	-	16.3	27.1	-	-	1.9991	28.1
146469	9.76	45.66	-	11.51	-	12.42	20.64	-	-	1.9665	32.1
146470	6.28	44.06	-	5.56	-	17.97	· -	26.13	-	2.0396	26.2
146471	7.06	39.72	-	7.51	-	_	26.93	18.78	_	1.9963	30.1
146472	11.1	39.13	-	4.95	-	-	35.51	9.32	· -	1.9571	-
146473	8.38	39.1	-	7.39	· _	-	26.51	18.62	_	1.9813	30.7
146474	9.08	14.17	-	-	40.19	17.34	19.22	-	-	2.004	27.6
146475	9.8	26.17	-	-	31.92	5.39	26.71	-	-	2.0029	-
146476	10.07	15.71	-	-	38.21	19.23	-	16.77	_	1.9854	28.4
146477	9.47	29.44	-	-	23.86	5.69	-	31.54	-	1.9598	31.9
146478	9.23	28.68	-	-	29.12	17.61	_	15.36	-	2.0168	28.6
146479	7.85	24.5	-	-	29.78	-	24.83	13.03	-	1.9958	31.7
146480	12.24	38.13	-	-	-	10.37	25.76	13.51	_	1.9684	30.2
146481	9.27	43.39	-	-	-	11.8	9.81	25.73	-	1.9963	-
146482	23.27	32.67	5.34	-	35.3	-	-	-	3.41	1.8247	-
146483	11.27	43.93	-	9.97	-	-	23.83	-	11.	1.8653	40.1
146484	15.29	44.71	-	10.15	-	-	24.26	-	5.6	1.8688	39.3
146485	9.84	30.69	-	-	18.65	-	31.22	-	9.6	1.8971	37.2
146486	11.12	37.2	-	-	12.03	_	30.31	-	9.34	1.8933	38.5

.

PAGE BLANK (USPTO)