Receiver-Operator Characteristic Workshop

Norman Juchler

Introduction

Machine learning terminology in 1 minute

Supervised learning: Find optimal parameters θ^* given the training data x_t, y_t **Testing/validation**: Compare predictions $y_p = f(x_v | \theta^*)$ with true response y_v

Training and validation scheme

AneuX morphology database (n=750)

 x_i : Shape features (aneurysm size, non-sphericity,...)

y_i: Rupture status0: unruptured1: ruptured

Training and validation scheme: The benchmark

 x_i : Shape features

 y_i : Rupture status (binary)

Metrics of diagnostic/predictive accuracy

Accuracy

$$\frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{TP} + \mathrm{FP} + \mathrm{FN} + \mathrm{TN}} = \frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{P} + \mathrm{N}}$$

Sensitivity (true positive rate, TPR, recall)

$$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}} = \frac{\mathrm{TP}}{\mathrm{P}}$$

Specificity (true negative rate, TNR)

$$\frac{TN}{TN + FP} = \frac{TN}{N}$$

Precision (positive predictive value, PPV)

$$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}}$$

		True condition()			
	Total population	P Condition positive	N Condition negative		
Prediction(∵)	Predicted condition positive	TP True positive	FP False positive Type I error		
	Predicted condition negative	FN False negative Type II error	TN True negative		

Contingency table (aka confusion matrix)

Metrics of diagnostic/predictive accuracy

Accuracy

$$\frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{TP} + \mathrm{FP} + \mathrm{FN} + \mathrm{TN}} = \frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{P} + \mathrm{N}}$$

Sensitivity (true positive rate, TPR, recall)

$$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}} = \frac{\mathrm{TP}}{\mathrm{P}}$$

Specificity (true negative rate, TNR)

$$\frac{TN}{TN + FP} = \frac{TN}{N}$$

Precision (positive predictive value, PPV)

$$\frac{\text{TP}}{\text{TP} + \text{FP}}$$

How to handle data imbalance?

- Imbalance: strong difference in class sizes
- Example:
 - Number of healthy patients: 105'056
 - Number of sick patients:
- Pitfalls:
 - Misguiding the training objective
 - Optimistic reporting of the diagnostic ability of a model

Solution:

- Use metrics that are more robust to imbalanced data
- Use more than one metric

Examples:

- ROC-AUC (Area under ROC curve)
- PR-AUC (Area under the Precision-Recall curve)
- Half-class accuracy
- Cohen's Kappa

Dummy/degenerate classifier:

Assign all samples to large class.

- Accuracy: 0.999
- Sensitivity: 1.0
- Specificity: 0.0

Half-class accuracy: $\frac{1}{2}\left(\frac{TP}{P} + \frac{TN}{N}\right)$ Average of sensitivity and specificity

Receiver-Operating Characteristics (ROC) analysis

- Method to assess the diagnostic/discriminative ability of a binary classifier $\hat{y} = f(X|\theta)$
- Idea: Compute specificity and sensitivity for varying θ ROC curve is parametrized by θ

Area under ROC curve (AUC)

- Measures how well a model discriminates between two classes
- AUC=1.0: perfect classifier
 AUC=0.5: random classifier
- Alternative interpretation: Probability that a classifier will rank a randomly chosen positive instance higher than a randomly chosen negative one $P\left(X_{|y=1}>X_{|y=0}\right)$
- Proof: not too complicated. See for example <u>here</u>.

Receiver-Operating Characteristics (ROC) analysis

- Method to assess the diagnostic/discriminative ability of a binary classifier $\hat{y} = f(X|\theta)$
- Idea: compute specificity and sensitivity for varying θ
- Example: Threshold classifier $\hat{y} = \begin{cases} 0, & \text{if } x < \theta \\ 1, & \text{if } x \geq \theta \end{cases}$

$$\hat{y}|_{\theta=0}$$
: 1 1 1 1 1 1 1 1 1 1 1 A
 $\hat{y}|_{\theta=5}$: 0 0 0 0 0 1 1 1 1 1 B
 $\hat{y}|_{\theta=10}$: 0 0 0 0 0 0 0 0 0 0

Example: Random classifier

ROC-AUC is not perfectly robust to data imbalance

Accuracy

$$\frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{TP} + \mathrm{FP} + \mathrm{FN} + \mathrm{TN}} = \frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{P} + \mathrm{N}}$$

Sensitivity (true positive rate, TPR, recall)

$$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}} = \frac{\mathrm{TP}}{\mathrm{P}}$$

Reporting guidelines help to write a sound paper

- Resources
 - https://www.equator-network.org/
 - Stuff by Douglas G. Altman
- Relevant in the context of diagnostic tools:
 - STARD: Standards for Reporting Diagnostic Accuracy
 - TRIPOD: Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis

Randomised trials	CONSORT	Extensions	
Observational studies	STROBE	Extensions	
Systematic reviews	<u>PRISMA</u>	Extensions	
Study protocols	<u>SPIRIT</u>	PRISMA-P	
Diagnostic/prognostic	STARD	TRIPOD	
studies			
Case reports	CARE	Extensions	
Clinical practice	<u>AGREE</u>	<u>RIGHT</u>	
<u>guidelines</u>			
Qualitative research	<u>SRQR</u>	COREQ	
Animal pre-clinical	<u>ARRIVE</u>		
studies			
Quality improvement	SQUIRE		
studies			
Economic evaluations	CHEERS		

Complete reporting is crucial!

Univariate models (internal validation, cut dome)										
Category	Predictor	AUC	Accuracy	Sensitivity	Specificity	Precision	Карра			
Shape	NSI, non-sphericity	0.80±0.05	0.73±0.04	0.75±0.08	0.72±0.05	0.50±0.05	0.41±0.08			
ZMI	norm. energy $Z_6^{ m surf}$	0.80±0.05	0.74±0.04	0.75±0.08	0.74±0.06	0.52±0.06	0.43±0.09			
ZMI	norm. energy $Z_3^{ m surf}$	0.78±0.04	0.73±0.04	0.61±0.09	0.78±0.05	0.51±0.06	0.36±0.09			
Writhe	$\overline{W}_{mean}^{L_1}$	0.78±0.04	0.72±0.04	0.71±0.09	0.72±0.05	0.49±0.05	0.37±0.07			
Shape	UI, undulation	0.77±0.05	0.74±0.04	0.61±0.10	0.79±0.05	0.52±0.06	0.38±0.09			
Curvature	GLN	0.75±0.05	0.71±0.04	0.59±0.08	0.76±0.05	0.48±0.06	0.32±0.08			
Curvature	MLN	0.75±0.05	0.69±0.04	0.63±0.08	0.71±0.05	0.45±0.05	0.31±0.08			
Shape	AR, aspect ratio	0.75±0.05	0.70±0.04	0.61±0.11	0.74±0.05	0.46±0.05	0.32±0.09			
ZMI	$ZMI_{3,1}^{ m surf}$	0.74±0.05	0.66±0.04	0.71±0.09	0.64±0.06	0.42±0.04	0.29±0.07			
ZMI	$ZMI_{5,1}^{ m surf}$	0.72±0.05	0.66±0.05	0.68±0.09	0.66±0.06	0.43±0.05	0.28±0.09			
Writhe	$W_{ m mean}^{L_2}$	0.72±0.05	0.70±0.04	0.58±0.10	0.74±0.05	0.46±0.06	0.30±0.09			
Size	aSz	0.64±0.05	0.65±0.04	0.46±0.10	0.72±0.06	0.38±0.06	0.16±0.09			

Accuracy

$$\frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{TP} + \mathrm{FP} + \mathrm{FN} + \mathrm{TN}} = \frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{P} + \mathrm{N}}$$

Sensitivity (true positive rate, TPR)

$$\frac{TP}{TP + FN} = \frac{TP}{P}$$

Specificity (true negative rate, TNR)

$$\frac{TN}{TN + FP} = \frac{TN}{N}$$

Precision (positive predictive value, PPV)

$$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}}$$

