

主讲人: 李全龙

本讲主题

安全套接字层(SSL)(3)

SSL握手过程(1)

- 1. 客户发送其支持的算法列表,以及客户一次随机数(nonce)
- 2. 服务器从算法列表中选择算法,并发回给客户: 选择+证书+服务器一次随机数
- 3. 客户验证证书,提取服务器公钥,生成预主密钥 (pre_master_secret),并利用服务器的公钥加密 预主密钥,发送给服务器
- 4. 客户与服务器基于预主密钥和一次随机数分别独立计算加密密钥和MAC密钥
- 5. 客户发送一个针对所有握手消息的MAC
- 6. 服务器发送一个针对所有握手消息的MAC

SSL握手过程(2)

最后2步的意义:保护握手过程免遭篡改

- ❖客户提供的算法,安全性有强、有弱
 - 明文传输
- ❖中间人攻击可以从列表中删除安全性强的算法
- ❖最后2步可以预防这种情况发生
 - 最后两步传输的消息是加密的

SSL握手过程(3)

- ❖为什么使用两个一次随机数?
- ❖假设Trudy嗅探Alice与Bob之间的所有报文
- ❖第二天,Trudy与Bob建立TCP连接,发送完全相同的记录序列
 - Bob(如Amazon)认为Alice对同一产品下发两个分离的订单
 - 解决方案: Bob为每次连接发送完全不同的一次随机数
 - 确保两天的加密密钥不同
 - Trudy的报文将无法通过Bob的完整性检验

SSL握手协议

*SSL握手消息及参数

消息类型	参数
hello_request	Null
client_hello	版本,随机数,会话ID,
server_hello	密码参数,压缩方法
certificate	X.509v3证书
server_key_exchange	参数,签名
certificate_request	类型,CA
server_done	Null
certificate_verify	签名
client_key_exchange	参数,签名
Finished	Hash值

SSL握手协议工作过程

SSL记录协议

- ❖SSL记录协议的操作步骤:
 - 将数据分段成可操作的数据块
 - 对分块数据进行数据压缩
 - 计算MAC值
 - 对压缩数据及MAC值加密
 - 加入SSL记录头
 - 在TCP中传输

SSL记录协议

记录头(record header): 内容类型(ContentType); 版本; 长度

MAC:包括序列号,MAC密钥 Mx

片段(fragment): 每个SSL片段为2¹⁴字节 (~16KB)

SSL记录格式

数据和MAC是加密的(对称密钥加密算法)

实际的SSL连接

handshake: ClientHello

handshake: ServerHello

handshake: Certificate

handshake: ServerHelloDone

ChangeCipherSpec

handshake: Finished

application data

application_data

Alert: warning, close_notify

此后所有内容均加密

计算机网络 之 危机四伏

密钥派生

- ❖客户一次数、服务器一次数和预主密钥输入伪随机数发生器
 - 产生主密钥MS
- ❖主密钥和新一次随机数输入另一个随机数发生器: "密钥块(key block)"

主讲人: 李全龙

- ❖密钥块"切片":
 - 客户MAC密钥
 - 服务器MAC密钥
 - 客户加密秘钥
 - 服务器加密秘钥
 - 客户初始向量(IV)
 - 服务器初始向量(IV)

