"In the name of God"

Tutorial of ECE 340 Course

Instructor: Professor Karim

Assignment Project Exam Help https://powcoder.com Add WeChat powcoder

Seyyed Mojtaba Pourjaafari

Winter 2020

5.1 The amplifier shown in Figure 1 has $R_{sig} = R_L = R_C = 1k\Omega$, $R_B = 47k\Omega$, $\beta = 100$, $C_{\mu} = 0.8 \ pF$, and $f_T = 600 \ MHz$. Assume the coupling capacitors to be very large.

- (a) Find the dc collector current of the transistor.
- (b) Find g_m and r_{π} .
- (c) Neglecting r_o , find the midband voltage gain from base to collector
- (d) Use the gain obtained in (c) to find the component of R_{in} that arises as a result of R_B . Hence find R_{in} .
- (e) Find the overall gain at midband.
- (f) Find C_{in} .
- (g) Find f_H .

5.2 First consider the CS amplifier of Figure 2(a) show that $A_M = -g_m r_o$, $\tau_H = C_{gs} R_{sig} + C_{gd} [R_{sig}(1+g_m r_o) + r_o] + C_L r_o$

Where C_L is the total capacitance between the output node and ground. Calculate the value of A_M , f_H and the gain-bandwidth product for the case $g_m = 1 \frac{mA}{V}$, $r_o = 20 \ k\Omega$, $R_{sig} = 20 \ k\Omega$, $C_{gs} = 20 \ fF$, $C_{gd} = 5 fF$, and $C_L = 10 \ fF$.

(b) For the CD-CS amplifier in Figure 2(b), show that $A_M = -\frac{r_{o1}}{\frac{1}{g_{m1}} + r_{o1}} (g_{m2} r_{o2})$

$$\tau_{H} = C_{gd1}R_{sig} + C_{gs1}\frac{R_{sig} + r_{o1}}{1 + g_{m1}r_{o1}} + C_{gs2}(\frac{1}{g_{m1}}||r_{o1}) + C_{gd2}[\left(\frac{1}{g_{m1}}||r_{o1})(1 + g_{m2}r_{o2}) + r_{o2}\right] + C_{L}r_{o2}$$

Calculate the values of A_M , f_H , and the gain-bandwidth product for the same parameter values used in (a).

https://powcoder.com

Add WeChat powcoder