Data Structures

CDT Tea

Outline

- Abstract Data Types
- Sorting
- o Tree

Data Structures

- A container of stuff (data).
- Some things that you can do:
 - Add stuff to it
 - Remove stuff from it
 - Find specific stuff
 - Empty it

Container

Data

List

- A collection of items in which the items have a position.
- o Can access any item by its index.
- Ex: array
 - Insertion/deletion is expensive.
 - Allows random access.

Linked List

- Random access is not allowed.
- Extra memory space.
- Ease of insertion/deletion.
- Variants: sorted, doubly-linked, circular

Stack

- Access is restricted to the most recently inserted item.
- Operations take a constant amount of time.

Queue

- Access is restricted to the least recently inserted item.
- Operations also take a constant amount of time.

Priority Queue

Highest priority

Maps

Sorting

Sorting Algorithm

- Bubble sort, Insertion sort, Selection sort
 - Have worst case of O(n²)
 - Exchanges adjacent items
 - Best worst case $\Omega(n^2)$ lower bound!
- Merge sort & Quick sort
 - Divide & Conquer approach
 - Merge sort: O(n log n)
 - Quick sort: O(n log n), O(n²)

Merge Sort

split

Merge Sort

Merge Sort

Tree

AVL Tree

Terminology

- A is the root node
- B is the parent of D and E
- C is the sibling of B
- D and E are the children of B
- D, E, F, G, I are external nodes, or leaves
- A, B, C, H are internal nodes
- The depth, level, or path length of E is 2
- The height of the tree is 3
- The degree of node B is 2

Property: |edges/ = |nodes/ - 1

A sub-tree is also a tree

Binary Search Tree

- Elements have keys (no duplicates allowed).
- For every node X in the tree, the values of all the keys in the left subtree are smaller than the key in X and the values of all the keys in the right subtree are larger than the key in X.
- The keys must be comparable.

Binary Search Tree

- Running time for:
 - Insert
 - Find min
 - Remove
 - Find
- Average case: O(log n) equally balanced
- Worst case: O(n) the height of the tree equals the number of nodes

AVL Trees

- AVL (Adelson-Velskii & Landis) trees maintain balance.
- For each node in tree, height of left subtree and height of right subtree differ by a maximum of 1.

AVL Trees

Insertion

- To ensure balance condition for AVL-tree, after insertion of a new node, we back up the path from the inserted node to root and check the balance condition for each node.
- If after insertion, the balance condition does not hold in a certain node, we do one of the following rotations:
 - Single rotation
 - Double rotation

Insertion

- An insertion into the subtree:
 - P (outside) case 1
 - Q (inside) case 2

- An insertion into the subtree:
 - Q (inside) case 3
 - R (outside) case 4

Single Rotation (case 1)

$$H_A = H_B + 1$$

 $H_B = H_C$

Single Rotation (case 4)

$$H_A = H_B$$

 $H_C = H_B + 1$

Problem

Single rotation does not work for case 2 and 3 (inside case)

Double Rotation

$$H_A = H_B = H_C = H_D$$

Double Rotation

Example

• Insert 3 into the AVL tree

Example

• Insert 5 into the AVL tree

Deletion

- Removing a node from an AVL Tree is the same as removing from a binary search tree. However, it may unbalance the tree.
- Similar to insertion, starting from the removed node we check all the nodes in the path up to the root for the first unbalance node.
- Use the appropriate single or double rotation to balance the tree.
- May need to continue searching for unbalanced nodes all the way to the root.

Deletion

- Deletion:
 - Case 1: if X is a leaf, delete X
 - Case 2: if X has 1 child, use it to replace X
 - Case 3: if X has 2 children, replace X with its inorder predecessor (and recursively delete it)
- Rebalancing

Delete 55 (case 1)

Delete 55 (case 1)

Delete 50 (case 2)

Delete 50 (case 2)

Delete 60 (case 3)

Delete 60 (case 3)

Delete 40 (case 3)

Delete 40: Rebalancing

Delete 40: after rebalancing

Single rotation is preferred!

Analysis

- The depth of AVL Trees is at most logarithmic.
- So, all of the operations on AVL trees are also logarithmic.
- Find element, insert element, and remove element operations all have complexity O(log n) for worst case

Thank you