We induct over the structure of typing derivations of $\Gamma \vdash t : \tau$, assuming $\omega : \Gamma' \triangleright \Gamma$ holds. In each case, we construct the new derivation Δ' from the derivation Δ giving $\Gamma \vdash t : \tau$ and show that $\Delta \circ \llbracket \omega : \Gamma' \triangleright \Gamma \rrbracket_M = \Delta'$

0.0.1 Variable Terms

Case Var and Weaken We case split on the weakening ω .

If $\omega = \iota$ Then $\Gamma' = \Gamma$, and so $\Gamma' \vdash x$: A holds and the derivation Δ' is the same as Δ

$$\Delta' = \Delta = \Delta \circ \operatorname{Id}_{\Gamma} = \Delta \circ \llbracket \iota : \Gamma \triangleright \Gamma \rrbracket_{M} \tag{1}$$

If $\omega = \omega' \pi$ Then $\Gamma' = (\Gamma'', x' : A')$ and $\omega' : \Gamma'' \triangleright \Gamma$. So by induction, there is a tree, Δ_1 deriving $\Gamma'' \vdash x : A$, such that

$$\Delta_1 = \Delta \circ \llbracket \omega' : \Gamma'' \triangleright \Gamma \rrbracket_M \quad \text{By Induction}$$
 (2)

, and hence by the weaken rule, we have

$$(\text{Weaken}) \frac{\Gamma'' \vdash x : A}{\Gamma'', x' : A' \vdash x : A}$$

$$(3)$$

This preserves denotations:

$$\Delta' = \Delta_1 \circ \pi_1$$
 By Definition (4)

$$= \Delta \circ \llbracket \omega' : \Gamma'' \triangleright \Gamma \rrbracket_M \circ \pi_1 \quad \text{By induction}$$
 (5)

$$= \Delta \circ \llbracket \omega' \pi_1 : \Gamma' \triangleright \Gamma \rrbracket_M \quad \text{By denotation of weakening} \tag{6}$$

If $\omega = \omega' \times$ Then

$$\Gamma' = \Gamma''', x' : B \tag{7}$$

$$\Gamma = \Gamma'', x' : A' \tag{8}$$

$$B <: A$$
 (9)

If x = x' Then A = A'.

Then we derive the new derivation, Δ' as so:

$$(Sub-type) \frac{(var)_{\overline{\Gamma''',x:B\vdash x:B}} \quad B \le: A}{\Gamma' \vdash x: A}$$
(10)

This preserves denotations:

$$\Delta' = [B \le A]_M \circ \pi_2$$
 By Definition (11)

$$=\pi_2\circ (\llbracket\omega':\Gamma'''\rhd\Gamma''\rrbracket_M\times \llbracket B\leq:A\rrbracket_M)\quad \text{By the properties of binary products} \tag{12}$$

$$= \Delta \circ \llbracket \omega : \Gamma' \triangleright \Gamma \rrbracket_M \quad \text{By Definition} \tag{13}$$

Case $x \neq x'$ Then

$$\Delta = (\text{Weaken}) \frac{()\frac{\Delta_1}{\Gamma'' \vdash x : A}}{\Gamma \vdash x : A}$$
(14)

By induction with $\omega : \Gamma''' \triangleright \Gamma''$, we have a derivation Δ_1 of $\Gamma''' \vdash x : A$

We have the weakened derivation:

$$\Delta' = (\text{Weaken}) \frac{\left(\right) \frac{\Delta_1'}{\Gamma'' \vdash x : A}}{\Gamma' \vdash x : A} \tag{15}$$

This preserves denotations:

By induction, we have

$$\Delta_1' = \Delta_1 \circ \llbracket \omega : \Gamma''' \triangleright \Gamma'' \rrbracket_M \tag{16}$$

So we have:

$$\Delta' = \Delta'_1 \circ \pi_1$$
 By denotation definition (17)

$$= \Delta_1 \circ \llbracket \omega' : \Gamma''' \triangleright \Gamma'' \rrbracket_M \quad \text{By induction} \circ \pi_1$$
 (18)

$$= \Delta_1 \circ \pi_1 \circ (\llbracket \omega' : \Gamma''' \triangleright \Gamma'' \rrbracket_M \times \llbracket A' \leq :B \rrbracket_M) \quad \text{By product properties}$$
 (19)

$$=\Delta\circ \llbracket\omega:\Gamma'\rhd\Gamma\rrbracket_M\quad\text{By definition} \tag{20}$$

0.0.2 Value Terms

From this point onwards, since we no-longer case split over the weakening relations, we write the denotation $[\![\omega:\Gamma'\triangleright\Gamma']\!]_M$, simply as ω .

Case Constant The constant typing rules, (), true, false, C^A , all proceed by the same logic. Hence I shall only prove the theorems for the case C^A .

$$(Const) \frac{\Gamma 0k}{\Gamma \vdash C^A : A}$$
 (21)

By inversion, we have ΓOk , so we have $\Gamma' Ok$.

Hence

$$(Const) \frac{\Gamma'0k}{\Gamma' \vdash C^A: A}$$
 (22)

Holds.

This preserves denotations:

$$\Delta' = [\![\mathbf{C}^A]\!]_M \circ \langle \rangle_{\Gamma'} \quad \text{By definition}$$
 (23)

$$= [\![\mathtt{C}^A]\!]_M \circ \langle \rangle_{\Gamma} \circ \omega \quad \text{By the terminal property} \qquad \qquad (24)$$

$$=\Delta$$
 By Definition (25)

(26)

Case Lambda By inversion, we have a derivation Δ_1 giving

$$\Delta = (\operatorname{Fn}) \frac{\left(\right) \frac{\Delta_1}{\Gamma, x: A \vdash C: M_{\epsilon} B}}{\Gamma \vdash \lambda x : A.C: A \to M_{\epsilon} B}$$
(27)

Since $\omega : \Gamma' \triangleright \Gamma$, we have:

$$\omega \times : (\Gamma, x : A) \triangleright (\Gamma, x : A) \tag{28}$$

Hence, by induction, using $\omega \times : (\Gamma, x : A) \triangleright (\Gamma, x : A)$, we derive Δ'_1 :

$$\Delta' = (\operatorname{Fn}) \frac{\left(\right) \frac{\Delta_1'}{\Gamma', x : A \vdash C : M_{\epsilon} B}}{\Gamma', x : A \vdash \lambda x : A . C : A \to M_{\epsilon} B}$$
(29)

This preserves denotations:

$$\Delta' = \operatorname{cur}(\Delta_1')$$
 By Definition (30)

$$= \operatorname{cur}(\Delta_1 \circ (\omega \times \operatorname{Id}_{\Gamma})) \quad \text{By the denotation of } \omega \times \tag{31}$$

$$= \operatorname{cur}(\Delta_1) \circ \omega$$
 By the exponential property (32)

$$= \Delta \circ \omega$$
 By Definition (33)

Case Sub-typing

$$(\text{Sub-type}) \frac{\Gamma \vdash v : A \ A \leq : B}{\Gamma \vdash v : B}$$
 (34)

by inversion, we have a derivation Δ_1

$$()\frac{\Delta_1}{\Gamma \vdash v: A} \tag{35}$$

So by induction, we have a derivation Δ'_1 such that:

$$(Sub-type) \frac{\left(\right) \frac{\Delta'_1}{\Gamma' \vdash v:a} \quad A \le : B}{\Gamma' \vdash v:B}$$
(36)

This preserves denotations:

$$\Delta' = [A \le B]_M \circ \Delta'_1 \quad \text{By Definition}$$
 (37)

$$= [\![A \leq :B]\!]_M \circ \Delta_1 \circ \omega \quad \text{By induction}$$
 (38)

$$= \Delta \circ \omega$$
 By Definition (39)

(40)

0.0.3 Computation Terms

Case Return We have the sub-derivation Δ_1 such that

$$\Delta = (\text{Return}) \frac{()\frac{\Delta_1}{\Gamma \vdash v : A}}{\Gamma \vdash \text{return} v : M_1 A}$$
(41)

Hence, by induction, with $\omega : \Gamma' \triangleright \Gamma$, we find the derivation Δ'_1 such that:

$$\Delta' = (\text{Return}) \frac{\left(\right) \frac{\Delta'_1}{\Gamma' \vdash v : A}}{\Gamma' \vdash \text{return} v : M_1 A}$$
(42)

This preserves denotations:

$$\Delta' = \eta_A \circ \Delta'_1$$
 By definition (43)

$$= \eta_A \circ \Delta_1 \circ \omega \quad \text{By induction of } \Delta_1, \Delta_1' \tag{44}$$

$$= \Delta \circ \omega$$
 By Definition (45)

Case Apply By inversion, we have derivations Δ_1 , Δ_2 such that

$$\Delta = (\text{Apply}) \frac{\left(\right) \frac{\Delta_1}{\Gamma \vdash v_1 : A \to M_{\epsilon}B} \right) \left(\right) \frac{\Delta_2}{\Gamma \vdash v_2 : A}}{\Gamma \vdash v_1 \ v_2 : M_{\epsilon}B}$$

$$(46)$$

By induction, this gives us the respective derivations: Δ_1', Δ_2' such that

$$\Delta' = (\text{Apply}) \frac{\left(\left(\frac{\Delta'_1}{\Gamma' \vdash v_1 : A \to M_{\epsilon}B}\right) \left(\left(\frac{\Delta'_2}{\Gamma' \vdash v_2 : A}\right)\right)}{\Gamma' \vdash v_1 \ v_2 : M_{\epsilon}B}$$

$$(47)$$

This preserves denotations:

$$\Delta' = \operatorname{app} \circ \langle \Delta_1', \Delta_2' \rangle \quad \text{By Definition}$$
 (48)

$$= \operatorname{app} \circ \langle \Delta_1 \circ \omega, \Delta_2 \circ \omega \rangle \quad \text{By induction on } \Delta_1, \Delta_2$$
 (49)

$$= \operatorname{app} \circ \langle \Delta_1, \Delta_2 \rangle \circ \omega \tag{50}$$

$$= \Delta \circ \omega$$
 By Definition (51)

Case If By inversion, we have the sub-derivations $\Delta_1, \Delta_2, \Delta_3$, such that:

$$\Delta = (\mathrm{If}) \frac{\left(\right) \frac{\Delta_1}{\Gamma \vdash v : \mathsf{Bool}} \quad \left(\right) \frac{\Delta_2}{\Gamma \vdash C_1 : \mathsf{M}_{\epsilon} A} \quad \left(\right) \frac{\Delta_3}{\Gamma \vdash C_2 : \mathsf{M}_{\epsilon} A}}{\Gamma \vdash \mathsf{if}_{\epsilon, A} \ v \ \mathsf{then} \ C_1 \ \mathsf{else} \ C_2 : \mathsf{M}_{\epsilon} A}$$
 (52)

By induction, this gives us the sub-derivations $\Delta'_1, \Delta'_2, \Delta'_3$ such that

$$\Delta' = (\mathrm{If}) \frac{()\frac{\Delta'_1}{\Gamma' \vdash \nu : \mathsf{Bool}} \quad ()\frac{\Delta'_2}{\Gamma' \vdash C_1 : \mathsf{M}_{\epsilon} A} \quad ()\frac{\Delta'_3}{\Gamma' \vdash C_2 : \mathsf{M}_{\epsilon} A}}{\Gamma' \vdash \mathsf{if}_{\epsilon, A} \quad v \; \mathsf{then} \; C_1 \; \mathsf{else} \; C_2 : \mathsf{M}_{\epsilon} A}$$
 (53)

And

$$\Delta_1' = \Delta_1 \circ \omega \tag{54}$$

$$\Delta_3' = \Delta_2 \circ \omega \tag{55}$$

$$\Delta_3' = \Delta_3 \circ \omega \tag{56}$$

This preserves denotations. Since $\omega: \Gamma' \to \Gamma$, Let $(T_{\epsilon}A)^{\omega}: T_{\epsilon}A^{\Gamma} \to T_{\epsilon}A^{\Gamma'}$ be as defined in ExSh 3 (1) That is:

 $^{^{1}} https://www.cl.cam.ac.uk/teaching/1819/L108/exercises/L108-exercise-sheet-3.pdf$

$$(T_{\epsilon}A)^{\omega} = \operatorname{cur}(\operatorname{app} \circ (\operatorname{Id}_{T_{\epsilon}A} \times w)) \tag{57}$$

. And hence, we have:

$$\operatorname{cur}(f \circ (\operatorname{Id} \times \omega)) = (T_{\epsilon}A)^{\omega} \circ \operatorname{cur}(f) \tag{58}$$

$$\begin{split} \Delta' &= \operatorname{app} \circ (([\operatorname{cur}(\Delta_2' \circ \pi_2), \operatorname{cur}(\Delta_3' \circ \pi_2)] \circ \Delta_1') \times \operatorname{Id}_{\Gamma'}) \circ \delta_{\Gamma'} \quad \operatorname{By Definition} \\ &= \operatorname{app} \circ (([\operatorname{cur}(\Delta_2 \circ \omega \circ \pi_2), \operatorname{cur}(\Delta_3 \circ \omega \circ \pi_2)] \circ \Delta_1') \times \operatorname{Id}_{\Gamma'}) \circ \delta_{\Gamma'} \quad \operatorname{By Induction} \\ &= \operatorname{app} \circ (([\operatorname{cur}(\Delta_2 \circ \pi_2 \circ (\operatorname{Id}_1 \times \omega)), \operatorname{cur}(\Delta_3 \circ \pi_2 \circ (\operatorname{Id}_1 \times \omega))] \circ \Delta_1 \circ \omega) \times \operatorname{Id}_{\Gamma'}) \circ \delta_{\Gamma'} \quad \operatorname{By product property} \\ &= \operatorname{app} \circ (([(T_\epsilon A)^\omega \circ \operatorname{cur}(\Delta_2 \circ \pi_2), (T_\epsilon A)^\omega \circ \operatorname{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1 \circ \omega) \times \operatorname{Id}_{\Gamma'}) \circ \delta_{\Gamma'} \quad \operatorname{By} (T_\epsilon A)^\omega \operatorname{property} \\ &= \operatorname{app} \circ (((T_\epsilon A)^\omega \circ [\operatorname{cur}(\Delta_2 \circ \pi_2), \operatorname{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1 \circ \omega) \times \operatorname{Id}_{\Gamma'}) \circ \delta_{\Gamma'} \quad \operatorname{By} (T_\epsilon A)^\omega \operatorname{property} \\ &= \operatorname{app} \circ (((T_\epsilon A)^\omega \times \operatorname{Id}_{\Gamma'}) \circ (([\operatorname{cur}(\Delta_2 \circ \pi_2), \operatorname{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1) \times \operatorname{Id}_{\Gamma'}) \circ (\omega \times \operatorname{Id}_{\Gamma'}) \circ \delta_{\Gamma'} \quad \operatorname{Factor out transformation} \\ &= \operatorname{app} \circ ((T_\epsilon A)^\omega \times \operatorname{Id}_{\Gamma'}) \circ (([\operatorname{cur}(\Delta_2 \circ \pi_2), \operatorname{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1) \times \operatorname{Id}_{\Gamma'}) \circ (\omega \times \operatorname{Id}_{\Gamma'}) \circ \delta_{\Gamma'} \quad \operatorname{Factor out Identity pairs} \\ &= \operatorname{app} \circ (([\operatorname{cur}(\Delta_2 \circ \pi_2), \operatorname{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1) \times \operatorname{Id}_{\Gamma'}) \circ (\omega \times \operatorname{Id}_{\Gamma'}) \circ \delta_{\Gamma'} \quad \operatorname{By defintion of app}, (T_\epsilon A)^\omega \\ &= \operatorname{app} \circ (([\operatorname{cur}(\Delta_2 \circ \pi_2), \operatorname{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1) \times \operatorname{Id}_{\Gamma}) \circ (\omega \times \omega) \circ \delta_{\Gamma'} \quad \operatorname{Push through pairs} \\ &= \operatorname{app} \circ (([\operatorname{cur}(\Delta_2 \circ \pi_2), \operatorname{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1) \times \operatorname{Id}_{\Gamma}) \circ \delta_{\Gamma'} \quad \operatorname{Push through pairs} \\ &= \operatorname{app} \circ (([\operatorname{cur}(\Delta_2 \circ \pi_2), \operatorname{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1) \times \operatorname{Id}_{\Gamma}) \circ \delta_{\Gamma'} \quad \operatorname{Push through pairs} \\ &= \operatorname{app} \circ (([\operatorname{cur}(\Delta_2 \circ \pi_2), \operatorname{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1) \times \operatorname{Id}_{\Gamma}) \circ \delta_{\Gamma'} \quad \operatorname{Push through pairs} \\ &= \operatorname{app} \circ (([\operatorname{cur}(\Delta_2 \circ \pi_2), \operatorname{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1) \times \operatorname{Id}_{\Gamma}) \circ \delta_{\Gamma'} \quad \operatorname{Push through pairs} \\ &= \operatorname{app} \circ (([\operatorname{cur}(\Delta_2 \circ \pi_2), \operatorname{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1) \times \operatorname{Id}_{\Gamma}) \circ \delta_{\Gamma'} \quad \operatorname{Push through pairs} \\ &= \operatorname{app} \circ (([\operatorname{cur}(\Delta_2 \circ \pi_2), \operatorname{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1) \times \operatorname{Id}_{\Gamma}) \circ \delta_{\Gamma'} \quad \operatorname{Push through pairs} \\ &= \operatorname{app} \circ (([\operatorname{cur}(\Delta_2 \circ \pi_2), \operatorname{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1) \times \operatorname{Id}_{\Gamma'}) \circ \delta_{\Gamma'} \quad \operatorname{Push through pairs} \\ &= \operatorname{app} \circ (([\operatorname{cur}(\Delta_2 \circ \pi_2), \operatorname{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1)$$

Case Bind By inversion, we have derivations Δ_1, Δ_2 such that:

$$\Delta = (\text{Bind}) \frac{\left(\right) \frac{\Delta_1}{\Gamma \vdash C_1 : M_{\mathbb{E}_1} A} \cdot \left(\right) \frac{\Delta_2}{\Gamma, x : A \vdash C_2 : M_{\epsilon_2} B}}{\Gamma \vdash \text{do } x \leftarrow C_1 \text{ in } C_2 : M_{\epsilon_1, \epsilon_2} B}$$

$$(69)$$

(68)

If $\omega : \Gamma' \triangleright \Gamma$ then $\omega \times : \Gamma', x : A \triangleright \Gamma, x : A$, so by induction, we can derive Δ'_1, Δ'_2 such that:

$$\Delta' = (\text{Bind}) \frac{\left(\left(\frac{\Delta'_1}{\Gamma' \vdash C_1 : M_{\mathbb{E}_1} A}\right) \left(\left(\frac{\Delta'_2}{\Gamma', x : A \vdash C_2 : M_{\epsilon_2} B}\right)\right)}{\Gamma' \vdash \text{do } x \leftarrow C_1 \text{ in } C_2 : M_{\epsilon_1 \cdot \epsilon_2} B}$$

$$(70)$$

This preserves denotations:

 $=\Delta\circ\omega$

$$\Delta' = \mu_{\epsilon_1, \epsilon_2, B} \circ T_{\epsilon_1} \Delta_2' \circ \mathbf{t}_{\epsilon_1, \Gamma', A} \circ \langle \mathrm{Id}_{G'}, \Delta_1' \rangle \quad \text{By definition}$$
 (71)

$$=\mu_{\epsilon_1,\epsilon_2,B}\circ T_{\epsilon_1}(\Delta_2\circ(\omega\times\operatorname{Id}_A))\circ\operatorname{t}_{\epsilon_1,\Gamma',A}\circ\langle\operatorname{Id}_{G'},\Delta_1\circ\omega\rangle\quad\text{By induction on }\Delta_1',\Delta_2' \qquad (72)$$

$$= \mu_{\epsilon_1, \epsilon_2, B} \circ T_{\epsilon_1} \Delta_2 \circ \mathsf{t}_{\epsilon_1, \Gamma, A} \circ \langle \omega, \Delta_1 \circ \omega \rangle \quad \text{By tensor strength}$$
 (73)

$$= \mu_{\epsilon_1, \epsilon_2, B} \circ T_{\epsilon_1} \Delta_2 \circ \mathsf{t}_{\epsilon_1, \Gamma, A} \circ \langle \mathsf{Id}_{\Gamma}, \Delta_1 \rangle \circ \omega \quad \text{By product property}$$
 (74)

$$=\Delta$$
 By definition (75)

Case Sub-effect

$$(\text{Sub-effect}) \frac{\Gamma \vdash C : M_{\epsilon_1} A \ A \leq : B \ \epsilon_1 \leq \epsilon_2}{\Gamma \vdash C : M_{\epsilon_2} B}$$

$$(76)$$

by inversion, we have a derivation Δ_1

$$()\frac{\Delta_1}{\Gamma \vdash C: \mathsf{M}_{\epsilon_1} A} \tag{77}$$

So by induction, we have a derivation Δ'_1 such that:

$$(\text{Sub-effect}) \frac{()\frac{\Delta_1'}{\Gamma' \vdash C: M_{\epsilon_1} A} \quad A \leq : B \quad \epsilon_1 \leq \epsilon_2}{\Gamma' \vdash C: M_{\epsilon_2} B}$$

$$(78)$$

This preserves denotations:

Let

$$g = [\![A \leq :B]\!]_M : A \to B \tag{79}$$

$$h = [\![\epsilon_1 \le \epsilon_2]\!]_M : T_{\epsilon_1} \to T_{\epsilon_2} \tag{80}$$

Then

$$\Delta' = h_B \circ T_{\epsilon_1} g \circ \Delta'_1$$
 By Definition (81)

$$= h_B \circ T_{\epsilon_1} g \circ \Delta_1 \circ \omega \quad \text{By Induction}$$
 (82)

$$= \Delta \circ \omega$$
 By Definition (83)