

MAHARASHTRASTATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

<u>MODEL ANSWER</u> WINTER– 18 EXAMINATION

Subject Title: Digital Techniques

Subject Code:

22320

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.N.	Answer	Marking Scheme			
Q.1						
	a)	Write the radix of binary,octal,decimal and hexadecimal number system.	2M			
	Ans:	Radix of: Binary – 2 Octal - 8 Decimal - 10	½ M each			
		Hexadecimal -16				
	b)	Draw the circuit diagram for AND and OR gates using diodes.	2M			
	Ans:	Diode AND gate :Diode OR gate :	1 M each			

c)	Write simple example of Boolean expression for SOP and POS.	2M	
Ans:	$\frac{SOP \text{ form:}}{Y = AB + BC + A\overline{C}}$	1 M each (any proper example car	
	POS form:	be considered)	
	$Y = (A + B) (B + C) (A + \overline{C})$		
d)	State the necessity of multiplexer.	2M	
Ans:	Necessity of Multiplexer:		
	It reduces the number of wires required to pass data from source to destination.	2 M(any two proper points)	
	For minimizing the hardware circuit.		
	For simplifying logic design.		
	• In most digital circuits, many signals or channels are to be transmitted, and then it becomes necessary to send the data on a single line simultaneously.		
	 Reduces the cost as sending many signals separately is expensive and requires more wires to send. 		
e)	Draw logic diagram of T flip-flop and give its truth table.	2M	
Ans:	Note: Diagram Using logic gates with proper connection also can be consider. Logic Diagram:	1M (any on diagram)	
	Pr		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	\bar{Q}	1 M	
	OR OR		
	SI CON		

		Input T _n	Output Q _{n+1}	Operation Performed				
		0	Qn	No change				
		1	$\overline{\overline{Q}}_n$	Toggle				
f)		modulus of a	counter. Write the n	umbers of flip flops required for	2M			
Ans:		countes.		mber of states/clock the counter	Definition: 1 M No. of FF-			
	•	The numbers	of flip flops required f	or Mod-6 counter is 3.	1M			
g)	State fu	ınction of pr	eset and clear in flip f	lop.	2M			
	 Hence, the function of preset is to set a flip flop i.e. Q = 1 and the function of clear is to clear a flip flop i.e. Q = 0. 							
		Inputs Output Operation performed						
		- 15 102		Operation performed				
	CK 1	Cr P	e Q	(2) B				
	CK 1 0	- 15 102	e Q	Normal FLIP-FLOP Clear				
	1	Cr P	Q $Q_{a+1}(\text{Table 7.1})$ 0	Normal FLIP-FLOP				
	1 0	Cr P	Q $Q_{a+1}(\text{Table 7.1})$ 0	Normal FLIP-FLOP Clear				

MAHARASHTRASTATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

1		43.6
b)	Convert – (2): (2):	4M
	$(255)_{10} = (?)_{16} = (?)_{8}$ $(157)_{10} = (?)_{BCD} = (?)_{Excess3}$	
Aı		
	$(255)_{10} = (FF)_{16}$	1 M
	16 L 255 F (15) 1	
	16 255 F (15) 15 F	
	15 F	
	$(255)_{10} = (377)_8$	
	8 255 7 8 31 7 3 3	1 M
	8 31 7	
	3 3	
	(**) (177) (00010101111) (010010001010)	
	(ii) $(157)_{10} = (000101010111)_{BCD} = (010010001010)_{Excess3}$	
	$(157)_{10} = (000101010111)_{BCD}$	
	1 5 <u>7</u> 0001 0101 0111	1 M
	0001010111	
	$(000101010111)_{BCD} = (010010001010)_{Excess3}$	
	11 111 111	1 M
	0001 0101 0111	1 1/1
	+ 0011 0011 0011	
	0100 1000 1010	
		43.5
(c)	Draw the symbol, truth table and logic expression of any one universal	4M
Aı	logic gate. Write reason why it is called universal gate. (Note: Any one universal gate has to be considered.)	
	Universal Gates: NAND or NORSymbol:	
		1 M
	Truth table:	
		436
	A B Y A B Y	1 M
	Logic expression:	
	$Y = \overline{A \cdot B}$ $Y = (\overline{A + B})$	1 M
	· · · · · · · · · · · · · · · · · · ·	
	NAND and NOR gates are called as "Universal Gate" as it is possible to	1 M
	implement any Boolean expression using these gates.	1 171
L	l .	

MAHARASHTRASTATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 – 2013 Certified)

Q. 3		Attempt any THREE:			12-Total
	a)	Compare TTL and CM (i) Propagation (ii) Power Dissi (iii) Fan-out (iv) Basic gate	•	pasis of following:	Marks 4M
_	Ans:	<u>NOTE :- (Rel</u>	levant points of comparison- 1	M for each point)	1 Marks
		Parameter	CMOS	TTL	each point
		Propagation delay	70-105 nsec/more than TTL	10 nsec/Less than CMOS	
		Power Dissipation	Less 0.1 mW/Less than TTL	More 10 mW/ More than CMOS	
		Fan-out	50/More than TTL	10/Less than CMOS	
		Basic gate	NAND/NOR	NAND	
=	b)	Describe the function simplification and logi	of full Adder Circuit using	its truth table, K-Map	4M
		Block diagram : FULL ADDER	bits A and B, and carry C for Cour	tom the previous oit.	1M
					1M

MAHARASHTRASTATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 – 2013 Certified)

Truth Table:

	Input		Out	put
Α	В	Cin	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

1M

1M

K-Map :-

For Carry (Cout)

For Sum

 $C_{out} = AB+A C_{in}+B C_{in}$ Sum = $\overline{A} \overline{B} C_{in}+\overline{A} \overline{B} \overline{C}_{in}+A \overline{B} \overline{C}_{in}+AB C_{in}$

Logic Diagram:

(Note: Logic Diagram using basic or universal gate also can be consider)

c)	Realize the basic logic gates, NOT, OR and AND gates using NOR gates only.	4M					
Ans:	(NOT GATE USING NOR GATE:1 M)						
	where, $X = A$ NOR A $x = \overline{A}$						
	(AND GATE USING NOR GATE: 1.5 MARKS)						
		1.5M					
	$\overline{Q} = \overline{A} + \overline{B} = \overline{A} + \overline{B}$						
	$= \overline{\mathbf{A}}.\mathbf{B}$ $= \mathbf{A}.\mathbf{B}$						
	(OR GATE USING NOR GATE: 1.5 MARKS)						
	AQ	1.5 M					
	$ Q = \overline{A + B} \\ = A + B $						
d)	Describe the working of JK flip-flop with its truth table and logic diagram.	4M					
Ans:	(Diagram-2 M, Working-1M, Truth table-1M)						
	Truth Table :-	1M					
	Truth Table J K CLK Q						
	0 0 † Q ₀ (no change)						
	$\begin{bmatrix} 0 & 1 & \dagger & 0 \\ 1 & 1 & \dagger & \overline{Q}_0 \text{ (toggles)} \end{bmatrix}$						

MAHARASHTRASTATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Diagram:-

2M

Working:-

The **JK flip flop** is basically a gated SR flip-flop with the addition of a clock input circuitry that prevents the illegal or invalid output condition that can occur when both inputs S and R are equal to logic level "1". Due to this additional clocked input, a JK flip-flop has four possible input combinations, "logic 1", "logic 0", "no change" and "toggle".

1M

Both the S and the R inputs of the previous SR bistable have now been replaced by two inputs called the J and K inputs, respectively after its inventor Jack Kilby. Then this equates to: J = S and K = R.

The two 2-input AND gates of the gated SR bistable have now been replaced by two 3-input NAND gates with the third input of each gate connected to the outputs at Q and Q. This cross coupling of the SR flip-flop allows the previously invalid condition of S = "1" and R = "1" state to be used to produce a "toggle action" as the two inputs are now interlocked.

If the circuit is now "SET" the J input is inhibited by the "0" status of Q through the lower NAND gate. If the circuit is "RESET" the K input is inhibited by the "0" status of Q through the upper NAND gate. As Q and Q are always different we can use them to control the input. When both inputs J and K are equal to logic "1", the JK flip flop toggles

Q. 4	A)	Attempt any THREE of the following:	12-Total
	a)	Draw and explain working of 4 bit serial Input parallel Output shift	Marks 4M
	Ange	register. (Diagram:2M,Explaination:2M)	
	Ans:	(Diagram: 2Wi,Explamation: 2Wi)	
		Diagram :-	21/4
		4-bit Parallel Data Output	2M
		Q_A Q_B Q_C Q_D	
		Serial D Q D Q D Q	
		Data in FFA FFB FFC FFD	
		CLK CLR CLR CLR	
		Clear	
		Clock	
		Explaination :-	
		If a logic "1" is connected to the DATA input pin of FFA then on the first	
		clock pulse the output of FFA and therefore the resulting Q _A will be set HIGH	2M
		to logic "1" with all the other outputs still remaining LOW at logic "0". Assume now that the DATA input pin of FFA has returned LOW again to logic	2141
		"0" giving us one data pulse or 0-1-0.	
		The second clock pulse will change the output of FFA to logic "0" and the	
		output of FFBand Q _B HIGH to logic "1" as its input D has the logic "1" level on it from Q _A . The logic "1" has now moved or been "shifted" one place along	
		the register to the right as it is now at QA.	
		When the third clock pulse arrives this logic "1" value moves to the output	
		of FFC (Q_C) and so on until the arrival of the fifth clock pulse which sets all the outputs Q_A to Q_D back again to logic level "0" because the input	
		to FFA has remained constant at logic level "0".	
		The effect of each clock pulse is to shift the data contents of each stage one	
		place to the right, and this is shown in the following table until the complete data value of 0-0-0-1 is stored in the register. This data value can now be read	
		directly from the outputs of Q _A to Q _D .	
		Then the data has been converted from a serial data input signal to a parallel	
		data output. The truth table and following waveforms show the propagation of the logic "1" through the register from left to right as follows.	
		5	
		Basic Data Movement Through A Shift Register	
		Basic Data Movement Through A Shift Register	

	Clock Pulse No	QA	QB	QC	QD		
	0	0	0	0	0		
	1	1	0	0	0		
	2	0	1	0	0		
	3	0	0	1	0		
	4	0	0	0	1		
	5	0	0	0	0		
		<u> </u>	1	1	1	ı	
b) Draw 16:1 MU	JX tree using 4:1	MUX.					4M
10	4X1 MUX S1 S0 4X1 MUX S1 S0 4X1 MUX S1 S0			4X1 MUX S3 S2		Output (f)	4M

c)	Calculate analog output of 4 bit DAC for digital input 1101. Assume $V_{\rm FS} = 5V$.	4M			
Ans:	(Formula- 1M, Correct problem solving- 3M)				
	Formula :-	1M			
	$V_R = V_{FS}$				
	$V_o = V_R [d_1 2^{-1} + d_2 2^{-2} + + d_n 2^{-n}]$				
	$= 5(1x2^{-1} + 1x2^{-2} + 0x2^{-3} + 1x2^{-4})$ $= 5(0.5 + 0.25 + 0 + 0.0625)$ $= 4.0625 \text{ Volts}$				
	OR				
	$V_{FS} = V_R \cdot \left(\frac{b3}{2} + \frac{b2}{4} + \frac{b1}{8} + \frac{b0}{16} \right)$				
	Note – (Since V_R is not given find V_R)	2 Marks for V _R and 2			
	Full Scale o/p mean	marks for V _o			
	b3 b2 b1 b0 = 1111				
	$V_{FS} = 5V$				
	$5 = V_R \cdot \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16}\right)$				
	$V_R = 5.33$				
	For digital i/p b3 b2 b1 b0 = 1101				
	$V_0 = 5.33 \left(\frac{1}{2} + \frac{1}{4} + \frac{0}{8} + \frac{1}{16} \right)$				
	$\mathbf{V}_0 = \mathbf{4.33V}$				
d)	State De Morgan's theorem and prove any one.	4M			
Ans:	(Each State and proof using table- 2M each)				
		2M			

MAHARASHTRASTATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

i) $\overline{AB} = \overline{A} + \overline{B}$

It states that compliment of product is equal to sum of their compliments.

1	2	3	4	5	6
A	В	\overline{AB}	\overline{A}	\overline{B}	$\overline{A} + \overline{B}$
0	0	1	1	1	1
0	1	1	1	0	1
1	0	1	0	1	1
1	1	0	0	0	0

Column 03 = column 06

i.e. $\overline{AB} = \overline{A} + \overline{B}$

Hence proved

OR

ii) $\overline{A+B} = \overline{A} \cdot \overline{B}$

It states that complement of sum is equal to product of their complements.

			1 1		
1	2	3	4	5	6
A	В	$\overline{A+B}$	\overline{A}	\overline{B}	$\overline{A} \cdot \overline{B}$
0	0	1	1	1	1
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	0

Column 03 = column 06

Design one digit BCD Adder using IC 7483

$$\therefore \overline{A+B} = \overline{A} \cdot \overline{B}$$

Hence proved.

Ans:	(Diagram:4M)	

(Note: Labeled combinational circuit can be drawn using universal gate also)

4M

2M

MAHARASHTRASTATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 – 2013 Certified)

				1110:)1111										
		1				y is ge	nerate	d so a	nswer	is in p	ositive	e form	, so will	
	discar			y gen	nerate	ed				•				
	There	fore	final	ansv	ver w	vill be	(0111	$10)_2 =$	$(30)_2$					
b)				syncl	aron	ous co	unter	and c	lraw i	ts logi	c diag	ram.		6M
Ans:	State				2607						1: 0			
				nt stat		D+		state	_ <u> </u>	8 30		p inpu		
		D 0	C 0	В	A	D+ 0	C+ 0	B+ 0	A ⁺	T _D	T _C	T _B	TA	
İ	2	0	0	0	0	0	0	1	0	0	0	1	1	
		0	0	1	0	0	0	1	1	0	0	0	1	2M-Sta
		0	0	1	1	0	1	0	0	0	1	1	1	table
		0	1	0	0	0	1	0	1	0	0	0	1	
		0	1	0	1	0	1	1	0	0	0	1	1	
	9	0	1	1	0	0	1	1	1	0	0	0	1	
		0	1	1	1	1	0	0	0	1	1	1	1	
		1	0	0	0	1	0	0	1	0	0	0	1	
		1	0	0	1	1	0	1	0	0	0	1	1	
		1	0	1	0	1	0	1	1	0	0	0	1	
		1	0	1	1	1	1	0	0	0	1	1	1	
		1	1	0	0	1	1	0	1	0	0	0	1	
	1	1	1	0	1	1	1	1	0	0	0	1	1	
		1	1	1	0	1	1	1	1	0	0	0	1	
		1	1	1	1	0	0	0	0	1	1	1	1	

MAHARASHTRASTATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 – 2013 Certified)

Ans:	Resolution and conversion time associate with ADC. Circuit Diagram: Voltage Comparator Voltage Comparator Voltage Comparator Voltage Comparator Voltage Comparator Output buffer register	2 Marks Diagram
Allo.	Voltage comparator Voltage Comparator Control circuit End VDAC 8 bit DAC Output buffer Output buffer	2 Marks Diagram
	When the start signal goes low the successive approximation register SAR is cleared and output voltage of DAC will be 0V. When start goes high the conversion starts.	2 Marks Explanation
	After starts, during first clock pulse the control circuit set MSB bit so	
	SAR output will be 1000 0000. This is connected as input to DAC so output of	
	DAC is (analog output) compared with V_{in} input voltage. If V_{DAC} is more than	
	V_{in} the comparator output $-V_{sat}$, if V_{DAC} is less than V_{in} , the comparator output	
	is $+V_{sat}$. If output of DAC i.e. V_{DAC} is $+V_{sat}$ (i.e unknown analog input voltage $V_{in} > V_{DAC}$) then MSB bit is kept set, otherwise it is reset.	1 Marks Each
	Consider MSB is set so SAR will contain 1000 0000.	
	The next clock pulse will set next bit i.e D ₆ a digital output of 1100 0000. The	
	output voltage of DAC i.e V _{DAC} is compared with V _{in} , if it is + V _{sat} the D ₆ bit is	
	kept as it is, but if it is $-V_{sat}$ the D_6 bit reset. The process of checking and taking decision to keep bit set or to reset is	
	continued upto D_0 .	
	Then the DAC input will be digital data equal to analog input.	
	When the conversation if finished the control circuits sends out an end	
	of conversion signal and data is locked in buffer register	

(ISO/IEC - 27001 - 2013 Certified)

Resolution: The voltage input change necessary for a one bit change in the output is called resolution.

Conversion Time: The conversion time is the time required for conversion from an analog input voltage to the stable digital output

OR

Circuit Diagram:

2 Marks Diagram

Explanation:

DAC= Digital to Analog converter

EOC= End of conversion

SAR =Succesive approximation register

S/H= Sample and hold circuit

Vin= input voltage

Vref= reference voltage

The successive approximation Analog to Digital converter circuit typically consisting of four sub circuits-

- 1. A sample and hold circuit to acquire the input voltage Vin.
- 2. An analog voltage comparator that compares Vin to the output of internal DAC and outputs the result of comparison to successive approximation register(SAR).
- 3. SAR sub circuits designed to supply an approximate digital code of Vin to the internal DAC.
- 4. An internal reference DAC that supplies the comparator with an analog voltage equivalent of digital code output of SAR for comparison with Vin.

The successive approximation register is initialized so that most significant bit (MSB) is equal to digital 1. This code is fed into DAC which the supplies the analog equivalent of this digital code Vref/2 into the comparator circuit for the comparison with sampled input voltage. If this analog voltage exceeds Vin the comparator causes the SAR to reset the bit, otherwise a bit is left as 1. Then the

2 Marks Explanation

MAHARASHTRASTATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 – 2013 Certified)

next bit is set to 1 and the same test is done continuing this binary search until every bit in the SAR has been tested. The resulting code is the digital approximation of the sampled input voltage and is finally output by DAC at end of the conversion (EOC).

Resolution and conversion time associate with ADC-

Resolution:

It is the maximum number of digital output codes.

Resolution= 2^n

(OR)

It is defined as the ratio of change in the value of input analog voltage required to change the digital output by 1 LSB.

$$\therefore \text{ Resolution } = \frac{V_{FS}}{2^n - 1}$$

Conversion time:

The time difference between two instants i.e. 'to' where SOC signal is given as input to the ADC and 't1' where EOC signal we get as output from ADC. it should be small as possible.

1 Marks each

Q.6		Attempt	t any	TWO of	the followin	ng:				Total Marks 12
	a)	Design 4	4 bit	Binary to	Gray code	conv	erter.			6M
	Ans:	Truth Ta			inary to Gra	y code				2M for truth table
				inary Inp				y output		
		I	B ₂	B 1	Bo	G ₃	G ₂	G ₁	Go	1/2m for
			0	0	0	0	0	0	0	each output
		I	0	0	1	0	0	0	1	equation 2M for
			0	1 1	1	0	0	1	0	realization
			1	0	0	0	1	1	0	using gates
			1	0	1	0	1	1	1	1-2-1-g g
			1	1	0	0	1	0	1	
			1	1	1	0	1	0	0	
			0	0	0	1	1	0	0	
			0	0	1	1	1	0	1	
			0	1	0	1	1	1	1	
		1	0	1	1	1	1	1	0	
		1	1	0	0	1	0	1	0	
			1	0	1	1	0	1	1	
			1	1	0	1	0	0	1	
			1	1	1	1	0	0	0	
		K-MAP	FOR	2 G3:						
			31BC) 00	01		11	10		
		/	•	00	01		1 1	10		
		6 3B2	, \ <u> </u>				Т			
				_			_	_		
				0	0		0	0		
		0	1				_	_		
				0	0		0	0		
			-					<u> </u>	_	
		1	4	1	1		1	1		
		1	'	'				'		
								1		
		11	n l	1	1		1	1 1		
			<u> </u>					+		
			L				<u>l</u>	_1		
		G3=B3								

B1B0 B3B2	⁾ oo	0 1	11	10	
00	0	0	0	0	
01	1	1	1	1	
11	0	0	0	0	
10	1	1	1	1	
K-MAP FOR B3 B2+ = B3 XOR B K-MAP FOR	- B2 B3 32				
B1E	80 00	01	11	10	
B3B2 00	0	0	1	1	
01	1	1	0	0	
11	1	1	0	0	
10	0	0	1	1	

MAHARASHTRASTATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

 $G1=\overline{B2}B1+B2\overline{B1}$

= B1 XOR B2

K-MAP FOR G0:

B1E B3B2	80 ₀₀	01	11	10	
00	0	1	0	1	
01	0	1	0	1	
11	0	1	0	1	
10	0	1	0	1	

G0=B1B0 + B1B0 = B1 XOR B0

Diagram for 4 bit Binary to Gray code converter:

Note: Realization of output equations can be done using Basic or Universal gates

Ans:									
	Parameter	Volatile memory	Non-Volatile memory]					
	definition	Memory required electrical power to keep information stored is called volatile memory	Memory that will keep storing its information without the need of electrical power is called nonvolatile memory.	Any 3points (each 1 mark)					
	classification	All RAMs	ROMs, EPROM, magnetic memories						
	Effect of power	Stored information is retained only as long as power is on.	No effect of power on stored information						
	applications	For temporary storage	For permanent storage of information						
	Parameter Circuit configuration	SRAM Each SRAM cell is	DRAM Each cell is one						
	Circuit configuration	Each SRAM cell is	Each cell is one						
	Bits stored	a flip flop In the form of voltage	MOSFET & a capacitor In the form of charges						
	No of components per cell	More	Less						
	Storage capacity	Less	More						
	Refreshing	It does not require refreshing	It require refreshing.						
	Cost	It is expensive	It is cheaper						
	Speed	It is faster	It is slower comparatively						

Ans:	using this		natic of d	lecade cou	inter IC	7490. Desig	n Moa-7 coul	nter 6	6 M
			ematic of	decade co	ounter IC	C 7490-			2M block schemati
	Therefore Design res Output of	ans states we have set logic: reset circ	MOD - 2 Output s are from to reset couit should	o,1,2,3,4,5, unter IC 74	3 Flip-flops MOD - 5 Out 6,6,0 90 when	R _{B(2)} + gating counter Q _D ,Q _C ,Q _B ,Q _A O(1) and RO(2	GND =0111	h inputs.	
	Output s Truth tal			for states '	7 onward	ls.			
	Truth tal	ble & K	-map:			ls. 1			
				for states '	7 onward	ls.			
	Truth ta	ble & K	-map:	Q.	Y	ls.			Гruth Гаble-1W
	Truth tal	Qe 0	-map:	Q. 0	Y 0	ls.		T H	Гable-1М Kmap-1N
	Truth tal	Qe 0	-map:	Q. 0	Y 0	ls.		I I	Гаble-1М Ктар-1М Logical D
	Truth tal	Qc 0	-map: Q= 0 0 1	Qx 0 1 0	Y 0 0 0	ls.		I I	Гable-1М Kmap-1N
	Truth tal	Qc 0	-map: Q _a	Q ₄ 0 1 0 1	Y 0 0 0 0	ls.		I I	Гаble-1М Ктар-1М Logical D
	Truth tal	Qc 0 0 0 0 1	-map: Qa 0 0 1 1	Q _A 0 1 0 1 0 0	0 0 0 0	ls.		I I	Гаble-1М Ктар-1М Logical D
	Truth tal	Qc 0 0 0 1 1 1	-map: Q= 0 0 1 1 0 0	Q ₄ 0 1 0 1 0 1 1	Y 0 0 0 0 0 0 0 0	ls.		I I	Гаble-1М Ктар-1М Logical D
	Truth tal	Qc 0 0 0 1 1 1 1	-map: Qa 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1	Q. 0 1 0 1 0 1 0 0	Y 0 0 0 0 0 0 0 0	ls.	State	I I	Γable-1M Kmap-1N Logical D

MAHARASHTRASTATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 – 2013 Certified)

SUMMER-19 EXAMINATION Model Answer

Subject Code:

22320

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.		Aı	nswers		Marking Scheme			
1	(A)	Attempt any FIVE of the	following:			10- Total Marks			
	(a)	List the binary,octal and hexadecimal numbers for decimal no. 0 to 15							
	Ans:					2M			
		DECIMAL	BINARY	OCTAL	HEXADECIMAL				
		0	0000	0	0				
		1	0001	1	1				
		2	0010	2	2				
		3	0011	3	3				
		4	0100	4	4				
		5	0101	5	5				
		6	0110	6	6				
		7	0111	7	7				
		8	1000	10	8				

SUMMER-19 EXAMINATION Model Answer

_Subject Code:

	ı u	1001	11	9	l
	9				
	10	1010	12	A	
	11	1011	13	В	
	12	1100	14	С	
	13	1101	15	D	
	14	1110	16	E	
	15	1111	17	F	
(b)	Define fan-in and fan-or	ut of a gate.			2M
	some have more than tw	efines the maximun	n number of digital ir	nputs that the output	10
	single logic gate can fee	d. Most transistor-t	ransistor logic (TTL)	gates can reed up to .	[⊥] ∪ 1M
	single logic gate can feed other digital gates.	d. Most transistor-t	ransistor logic (TTL)	gates can reed up to .	10 1M
(c)					1M 2M
	other digital gates.				1141
(c)	other digital gates.				1141
	other digital gates. Compare between sync	hronous and asynd	chronous counter (ar	ny two points).	1141
	Compare between sync	hronous and asyno	Asynchrono	ny two points). us Counter	2M Any
	Synchronous (All flip flops are	hronous and asyno	Asynchrono Different cloc	us Counter k is applied to	2M Any 1M for e
	Compare between sync	hronous and asyno	Asynchrono	us Counter k is applied to	2M Any
	Synchronous C All flip flops are with same clock	counter triggered	Asynchrono Different cloc different flip	us Counter k is applied to	2M Any 1M for e
	Synchronous (All flip flops are with same clock It is faster.	Counter triggered	Asynchrono Different cloc different flip	us Counter k is applied to flops.	2M Any 1M for e
	Synchronous C All flip flops are with same clock It is faster. Design is comple Decoding errors	Counter triggered ex. not present.	Asynchrono Different cloc different flip It is lower I Design is re Decoding erro	us Counter k is applied to flops. latively easy.	2M Any 1M for e
	Synchronous C All flip flops are with same clock It is faster. Design is comple	Counter triggered ex. not present.	Asynchrono Different cloc different flip It is lower I Design is re Decoding erro	us Counter k is applied to flops.	2M Any 1M for e
	Synchronous C All flip flops are with same clock It is faster. Design is compl Decoding errors Any required se	Counter triggered ex. not present.	Asynchrono Different cloc different flip It is lower I Design is re Decoding erro Only fixed sec	us Counter k is applied to flops. latively easy.	2M Any 1M for e
	Synchronous C All flip flops are with same clock It is faster. Design is compl Decoding errors Any required se	Counter triggered ex. not present.	Asynchrono Different cloc different flip It is lower I Design is re Decoding erro Only fixed sec	us Counter k is applied to flops. latively easy.	2M Any 1M for e
	Synchronous C All flip flops are with same clock It is faster. Design is compl Decoding errors Any required se	Counter triggered ex. not present.	Asynchrono Different cloc different flip It is lower I Design is re Decoding erro Only fixed sec	us Counter k is applied to flops. latively easy.	2M Any 1M for e

SUMMER-19 EXAMINATION Model Answer

Subject Code:

(d)	State two specification of DAC.	2M
Ans:	1.Resolution:	Any
	Resolution is defined as the ratio of change in analog output voltage resulting from a change of 1 LSB at the digital input VFS is defined as the full scale analog output	two,
	voltage i.e. the analog output voltage when all the digital input with all digits 1. Resolution = VFS /(2n −1)	each
	2. Accuracy: Accuracy indicates how close the analog output voltage is to its theoretical value. It indicates the deviation of actual output from the theoretical value. Accuracy depends on the accuracy of the resistors used in the ladder, and the precision of the reference voltage used. Accuracy is always specified in terms of percentage of the full scale output that means maximum output voltage	
	3. Linearity: The relation between the digital input and analog output should be linear. However practically it is not so due to the error in the values of resistors used for the resistive networks.	
	4. Temperature sensitivity:	
	The analog output voltage of D to A converter should not change due to changes in temperature.	
	But practically the output is a function of temperature. It is so because the resistance values and OPAMP parameters change with changes in temperature.	
	5. Settling time: The time required to settle the analog output within the final value, after the change in digital input is called as settling time.	
	The settling time should be as short as possible. 6. Long term drift	
	Long term drift are mainly due to resistor and semiconductor aging and can affect all the characteristics.	
	Characteristics mainly affected are linearity, speed etc. 7. Supply rejection	
	Supply rejection indicates the ability of DAC to maintain scale, linearity and other important characteristics when the supply voltage is varied.	
	Supply rejection is usually specified as percentage of full scale change at or near full scale voltage at 250e	
	8. Speed: It is defined as the time needed to perform a conversion from digital to analog. It is also	

SUMMER-19 EXAMINATION Model Answer

Subject Code:

Q.	Sub	Answers	Marking
No.	Q. N.		Scheme
2		Attempt any THREE of the following:	12- Total
			Marks

SUMMER-19 EXAMINATION

Subject Name: Digital technique <u>Model Answer</u>

Subject Code:

a)	Convert:	4M			
	(i) $(AD92.BCA)_{16} = (?)_{10} = (?)_8 = (?)_2$				
Ans:	(AD92.BCA) ₁₆	1.51			
	= $(10 \times 16^3) + (13 \times 16^2) + (9 \times 16^1) + (2 \times 16^0) + (11 \times 16^{-1}) + (12 \times 16^{-2}) + (10 \times 16^{-3})$				
	= 40960 + 3328 + 144 + 2 + 0.6857 + 0.046875 + 0.00244				
	= (44434.7368) ₁₀	1M			
		1.51			
	(AD92.BCA) ₁₆ =(1010 1101 1001 0010.1011 1100 1010) ₂				
	(AD92.BCA) ₁₆ = (1010 1101 1001 0010.1011 1100 1010) ₂				
	=(001 010 110 110 010 010.101 111 001 010) ₂				
	=(126622.5712) ₈				
	Note: any other method can be considered.				
b)	Simplify the following and realize it				
	$Y = A + \overline{A}\overline{B}C + \overline{A}\overline{B}\overline{C} + ABC + \overline{A}\overline{B}$				
Ans:	$Y = A + \overline{A}\overline{B}C + \overline{A}\overline{B}\overline{C} + ABC + \overline{A}\overline{B}$	4M			

SUMMER-19 EXAMINATION Model Answer

Subject Code:

Ans:	Noise margin indicates the amount to noise voltage circuit can tolerate at its input for both logic 1 and logic0. Power Dissipation: It is the amount of power dissipated in an IC.	
с)	 (i) Noise margin (ii) Power dissipation (iii) Figure of merit (iv) Speed of operation 	4M
	$A \bigcirc \overline{B}$ $B \bigcirc \overline{B}$ $Y = A + \overline{B}$	
	$=(A+\overline{B})$	
	$= A + \overline{A} \overline{B}$ $= (A + \overline{A}) \cdot (A + \overline{B})$	
	$= A + \overline{A} \overline{B} + \overline{A} \overline{B}$	
	Y= A+ABC+ABC+AB = A(1+BC)+ABC+AB = A(1+BC)+AB(+Z)+AB	

SUMMER-19 EXAMINATION Model Answer

Subject Code:

	the gate.	
	Speed of Operation: Speed of a logic circuit is determined by the time between the application of input and change in the output of the circuit.	
d)	Draw logic diagram of half adder circuit	4M
Ans:	A B Sum Carry	4M
	OR	
	A B Sum	
	Note: logic diagram using NAND/NOR also can be considered.	

Q.	Sub	Answers	Marking
No.	Q. N.		Scheme
3		Attempt any THREE of the following :	12- Total
			Marks

SUMMER-19 EXAMINATION Model Answer

_Subject Code:

constantly compared with voltage Vi, using a comparator. The output produced by comparator (Vo) is applied to an electronic Programmer. If Va=Vi, then Vo=0 & then no conversion is required. The programmer displays the value of Vi in the form of digital O/P.				
constantly compared with voltage Vi, using a comparator. The output produced by comparator (Vo) is applied to an electronic Programmer. If Va=Vi, then Vo=0 & then no conversion is required. The programmer displays the value of Vi in the form of digital O/P.				
The successive approximation A/D converter is as shown in fig. An analog voltage (Va) is constantly compared with voltage Vi, using a comparator. The output produced by comparator (Vo) is applied to an electronic Programmer. If Va=Vi, then Vo=0 & then no conversion is required. The programmer displays the value of Vi in the form of digital O/P. But if Va Vi, then the O/P is changed by the programmer. If Va> Vi, then value of Vi is increased by 50% of earlier value. But if Va< Vi, then value of Vi is decreased by 50% of earlier value. This new value is converted into analog form, by D/A converter so as to compare it with Va again. This procedure is repeated till we get Va=Vi. As the value of Vi is changed successively, this method is called as successive-approximation A/D converter.				
Describe the operation of R-S flip flop using NAND gates only .				
a t				

SUMMER-19 EXAMINATION Model Answer

Subject Code:

22320

Logical Diagram 2M

Description/explanation-

When clock = 0, the outputs of NAND gates 3 and 4 will be forced to be 1 irrespective of the values of S and R. That means R' = S' = 1. Hence the outputs of basic SR/F/F i.e. Q n+1 and $\overline{Qn+1}$ will not change. Thus if clock = 0, then there is no change in the output of the clocked SR flip-flop.

Case I: S = R = 0, clock = 1: No change

If S=R=0 then outputs of NAND gate 3 and 4 are forced to become 1.

Hence R' and S' both will be equal to 1. Since R' and S' are the inputs of the basic S - R flipflop using NAND gates. There will be no change in the state of outputs.

Case II : S = 1, R = 0, clock = 1: Set

Now S=0, R=1 and a positive going edge is applied to the clock Output of NAND 3 i.e. R' = 0 and output of NAND 4 i.e. S' = 1.

Hence output of SR flip-flop is Q n+1 = 1 and $\overline{On+1}$ = 0.

This is the set condition.

Case III : S = 0, R = 1, clock = 1: Reset

Now S=0, R=1 and a positive edge is applied to the clock input.

Since S=0, output of NAND -3 i.e. R'= 1. And as R' = 1 and clock = 1 the output of NAND-4 i.e. S' = 0. Hence output of SR flip-flop is Q n+1 = 0 and $\overline{Qn+1}$ = 1.

This is the reset condition.

Case IV : S = 1, R = 1, clock = 1: Undefined/ forbidden

As S=1, R=1 and clock = 1, the outputs of NAND gates 3 and 4 both are 0 i.e. S' = R'=0. So both the outputs Q n+1 = 1 and $\overline{Qn+1}$ Hence output is Undefined/ forbidden.

Explanat ion 2M

Explanat ion without clock pulse must also be consider ed

SUMMER-19 EXAMINATION

Model Answer

_Subject Code:

	CLK	INPUTS		OU	TPUTS	REMARK	
		S	R	Qn+1	$\overline{Qn+1}$		
	0	X	Х	Qn	Qn	No change	
	1	0	0	Qn	Qn	No change	
	1	0	1	0	1	Reset	
	1	1	0	1	0	Set	
	1	1	1	?	?	Forbidden	
c)	Give classif	fication of mer	mory and compa	are RAM and RON	Л (any four poin	ts)	4M
Ans:	PRIMARY PRIMARY SECONDARY -HDD -FDD -FDD -DVD -DVD -PROM -EPROM -EPROM -EPROM SRAM DRAM						Classif ation 2M Considered in Second ry memory is not writte
	Comparison between RAM and ROM RAM RAM						
	1. Temporary Storage.			1.Permane	1.Permanent Storage.		
	2 .Sto	2 .Store data in MBs.			2.Store data in GBs.		
	3 1/0	3. Volatile . 3.Non-Volatile					1

SUMMER-19 EXAMINATION Model Answer

Subject Code:

	4. Writing data is Faster.	4. Writing data is Slower.					
			Comp son 2				
d)	State the applications of shift register	r.	4M				
Ans:	_	serial converter, which converts the parallel dat tter section after Analog to Digital Converter (Al					
	2] Shift register is used as Serial to parallel converter , which converts the serial data into parallel data. It is utilized at the receiver section before Digital to Analog Converter (DAC) block.						
	3] Shift register along with some additional gate(s) generate the sequence of zeros and ones. Hence, it is used as sequence generator .						
	4] Shift registers are also used as counters . There are two types of counters based on the type of output from right most D flip-flop is connected to the serial input. Those are Ring counter and Johnson Ring counter.						

Q. No.	Sub Q. N.	Answers	Marking Scheme			
4		Attempt any THREE of the following :	12- Total Marks			
	(a)	Subtract the given number using 2's compliment method: $ (i) \qquad (11011)_2 - (11100)_2 \\ (ii) \qquad (1010)_2 \ - \ (101)_2 $	4M			
	Ans: i) Subtract (11011) ₂ – (11100) ₂ using 2's complement binary arithmetic. Solution:					
		$(11011)_2 - (11100)_2$ Now, 2's complement of $(11100)_2$ = 1's complement of $(11100)_2$ +1 1's complement of $(11100)_2$ = $(00011)_2$	2's comple			

SUMMER-19 EXAMINATION Model Answer

_Subject Code:

	2's complement = 00	0011+1 =	0010	00					1M
	Therefore,		1	1	0	1	1		
	+		0	0	1	0	0		
			1	1	1	1	1		
	There is no carry it is	ndicates	that r	esult	ts is	nega	itive and	d in 2's complement form i.e.(11111)2.
	Therefore, for gettir	ng true va	lue i.	e.(+1	l) ta	ke 2	's comp	plement of (11111) is	
	1's complement + 1								Fina
	= 00000 + 1								Ansv
	Ans= (00001) ₂								1M
	Ans: (11011) ₂ – (111	.00) ₂ = 2's	s com	plen	nent	of (2	11111)2	$_{2} = (-1)_{10}$	
	ii) Subtract	(1010)2	- (10	1) ₂ us	sing	2's c	omplen	ment binary arithmetic.	
	2's complement of (0101)2 =	1's co	mpl	eme	nt of	f (0101)) ₂ +1	
	1's complement of (0101)2 =	(101	0)2					
	2's complement = 10	010+1 = 1	L011						2's
	Therefore,	1	0	1	0				com
		+		_					ment
		1	0	1	1				
		1							
		1 0	1	0	1				
	There is carry ignore	e it, which	ı indi	cates	tha	t res	ults is p	positive i.e.(+5)	
	= (0101) ₂								
	Ans: (1010) ₂ - (101)) ₂ = (0101	.) ₂ = (+	+5) ₁₀					Final Answ 1M
(b)	Stare De-Morgan's	theorem	and	nrov	o an	v on			4M

SUMMER-19 EXAMINATION Subject Name: Digital technique

Subject Code:

22320

Ans:

Model Answer

De Morgan's 1st Theorem: It states that the compliment of sum is equal to the product of the compliment of individual variables.

Stateme nts-1M each

$$(\overline{A+B}) = \overline{A} \ \overline{B}$$

Anyone proof -2M

Proof:

A	В	\overline{A}	\overline{B}	A+B	$(\overline{A} + \overline{B})$	\overline{A} \overline{B}
0	0	1	1	0	1	1
0	1	1	0	1	0	0
1	0	0	1	1	0	0
1	1	0	0	1	0	0

De Morgan's 2nd Theorem:

It states that the compliment of product is equal to the sum of the compliments of individual variables.

$$(\overline{A}\overline{B}) = \overline{A} + \overline{B}$$

Proof:

А	В	\overline{A}	\overline{B}	A.B	(\overline{AB})	$\overline{A} + \overline{B}$
0	0	1	1	0	1	1
0	1	1	0	0	1	1
1	0	0	1	0	1	1
1	1	0	0	1	0	0

(c)

Compare between PLA and PAL.

4M

SUMMER-19 EXAMINATION Model Answer

Subject Code:

Ans:	PLA PAL	Any four	
	1) Both AND and OR arrays are programmable 1) OR array is fixed and AND array is programmable.	4 points- 1M each	
	Costliest and complex than PAL Cheaper and simpler		
	3) AND array can be programmed to get desired minterms. 3) AND array can be programmed to get desired minterm.		
	4) Large number of functions can be implemented. 4) Provides the limited number of functions.		
	5) Provides more programming 5) Offers less flexibility, but more likely used.		
(d)	Reduce the following expression using K-map and implement it $F(A,B,C,D) = \Pi M (1,3,5,7,8,10,14)$	4M	
Ans:	CD AB 00 01 11 10	Kmap-	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pairs- 1.5M	
	0 0 1 3 2	Final Ans-	
	0 1 4 0 5 0 7 6	1.5M	
	1 1 12 13 15 $\sqrt{\overline{A}+\overline{C}+D}$		
	10 8 9 11 0 10		
	(A+B+D)		
	$F(A,B,C,D)=(A+\overline{D}) (\overline{A}+\overline{C}+D) (\overline{A}+B+D)$		

SUMMER-19 EXAMINATION Model Answer

Subject Code:

SUMMER-19 EXAMINATION Model Answer

Subject Code:

22320

If CLK= 1 and J=K=O then the output Q and \bar{Q} will not change their state.

If J=0 and K= 1 then JK flip flop will reset and Q= 0 & \bar{Q} =1

If J=1 and K=0 then output will be set and Q=1 & \bar{Q} =0

If J= K=1 then Q & \bar{Q} outputs are inverted and FF will toggle

Race Around condition:

Race around condition occurs in J K Flip-flop only when J=K=1 and clock/enable is high (logic 1) as shown below-

In JK Flip-flop when J=K=1 and when clock goes high, output should toggle (change to opposite state), but due to multiple feedback, output changes/toggles many times till the clock/enable is high.

Thus toggling takes place more than once, called as racing or race around condition.

Q. No.	Sub Q. N.	Answers	Marking Scheme
5.		Attempt any TWO of the following:	12- Total Marks
	a)	Design BCD to seven segment decoder using IC 7447 with its truth table.	6M

Ans:

SUMMER-19 EXAMINATION Model Answer

Subject Code:

22320

Note: Any one type of display shall be considered

1. BCD to 7 segment decoder is a combinational circuit that accepts 4 bit BCD input and generates appropriate 7 segment output.

- 2. In order to produce the required numbers from 0 to 9 on the display the correct combination of LED segments need to be illuminated.
- 3. A standard 7 segment LED display generally has 8 input connections, one from each LED segment & one that acts as a common terminal or connection for all the internal segments
- 4. Therefore there are 2 types of display 1. Common Anode Display 2. Common Cathode Display:

Circuit Diagram 2M

Explaina

tion 2M

Common Anode Display

Truth **Table** 2M

SUMMER-19 EXAMINATION Model Answer

Subject Code:

SUMMER-19 EXAMINATION Model Answer

Subject Code:

22320

Circuit Diagram 3M

Working 3M

Fig:4 bit universal shift register

Working:

- 1. **PARALLEL LOAD**: When mode control (M) is connected to logic 1, AND gates 2, 4, 6, 8 will be enables and AND gates 1, 3,5,7, will be disabled . The 4-bit binary data will be loaded parallel. The clock-2 input will be applied to the flip-flops , since M=1, AND gates -10 is enabled and gate-9 is disabled. Input will transfer parallel data to QA to QD outputs.
- 2. **SHIFT RIGHT**: When mode control (M) is connected to logic 0, AND gates 1,3,5,7 will be enabled and gates 2, 4,,6, 8,will be disabled. The data will be shifted serially. The clock -1, input will be applied to the flip-flops, Since M = 0, AND gates 9 is enabled, and gates -10 is disabled. The data is shifted serially to right from QA to QD.
- 3. **SHIFT LEFT:** When mode control (M) is connected to logic 1, AND gates 2,4,6,8 will be enabled. This mode permits parallel loading of the resister and shift -left operation. The shift -left operation can be accomplished by connecting the output of each flip flop to the parallel input of the previous flip- flop and serial input is applied at the input.
- c) Design basic logic gates using NAND and NOR gate.

6M

SUMMER-19 EXAMINATION Model Answer

Subject Code:

SUMMER-19 EXAMINATION

Model Answer

Subject Code:

22320

AND gate using NOR gate:

Expression for AND gate is Y = $\overline{A} + \overline{B} = \overline{A}.\overline{B} = A.B$ (Applying De Morgan"s theorem)

NOT gate using NOR Y= $\overline{A+A}$ = \overline{A}

Q. No.	Sub Q. N.	Answers	Marking Scheme
6.		Attempt any TWO of the following :	12- Total Marks
	a)	Design a mod-6 Asynchronous counter with truth-table and logic.	6M
	Ans:	MOD 6 asynchronous counter will require 3 flip flops and will count from 000 to 101. Rest of the states are invalid. To design the combinational circuit of valid states, following truth table and K-map is drawn:	
			Truth Table 2M

SUMMER-19 EXAMINATION Model Answer

Subject Code:

22320

Qc	Q _B	Q _A	Reset Logic
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

From the above truth table, we draw the K-maps and get the expression for the MOD 6 asynchronous counter.

Logic Diagram 2M

Fig: K-map for above truth table

Thus reset logic is OR of complemented forms of QC and QB. This will be given to the reset inputs of the counter so that as soon as count 110 reaches, the counter will reset. Thus the counter will count from 000 to 101. The implementation of the designed MOD 6 asynchronous counter is shown below:

Circuit Diagram 2M

SUMMER-19 EXAMINATION Model Answer

Subject Code:

SUMMER-19 EXAMINATION Model Answer

Subject Code:

22320

Truth

Table

3M

Fig:1:8 Demultiplexer using 1:4 demultiplexer

Data Input	Select Inputs Outputs										
D	S ₂	S ₁	50	Υ,	Y _G	Y,	Υ4	Υ ₃	Y ₂	Yı	Yo
D	0	0	0	0	0	0	0	0	0	0	D
D	0	0	1	0	0	0	0	0	0	D	0
D	0	1	0	0	0	0	0	0	D	0	0
D	0	1	1	0	0	0	0	D	0	0	0
D	1	0	0	0	0	0	D	0	0	0	0
D	1	0	1	0	0	D	0	0	0	0	0
D	1	1	0	0	D	0	0	0	0	0	0
D	1	1	1	D	0	0	0	0	0	0	0

Fig: Truth Table of 1:8 Demultiplexer.

c)	Draw the circuit diagram of 4 bit R-2R ladder DAC and obtain its output voltage expression	6M
Ans:		

SUMMER-19 EXAMINATION Model Answer

Subject Code:

22320

2M

2M

Fig 1: 4 bit R-2R ladder DAC

Fig 2:Simplified circuit diagram of Fig 1

Therefore output analog voltage Vo is given by,

SUMMER-19 EXAMINATION

Model Answer

_Subject Code:

$$V_{0} = -\left(\frac{Rf}{3R} \cdot \frac{VR}{2^{4}} + \frac{VR}{3R} \cdot \frac{VR}{2^{3}} + \frac{Rf}{3R} \cdot \frac{VR}{2^{3}} + \frac{Rf}{3R} \cdot \frac{VR}{2^{4}} + \frac{Rf}{3R$$

WINTER - 19EXAMINATIONS

Subject Name: Digital Techniques Model Answer Subject Code: 22320

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answer	Marking Scheme
Q.1		Attempt any <u>FIVE</u> of the following:	10-Total Marks
	a)	Convert (D8F) 16into binary and octal.	2M
	Ans:	Step 1 D & F 1101 1000 1111 \rightarrow Binary $(D8F) = (110110001111) 2$ Step 2 1101 10,00 1,111 6 6 1 7 \rightarrow Octob $(D8F)_{16} = (6617)_{8}$	1M 1M
	b)	Draw symbol, Truth table and logic equation of Ex-OR gate.	2M
	Ans:	EX-OR gate Symbol A DD Y Logic Equation = ARIAR ORA GOB	¹ / ₂ M
		Logic Equation = $A\bar{B} + \bar{A}B$ OR $A \oplus B$ Truth Table: $ \begin{array}{c cccc} Inputs & Output \\ \hline A & B & Y \\ \hline 0 & 0 & 0 \end{array} $	1M

	0 1 1	
	1 0 1	
	1 1 0	
c)	State the DeMorgan's Theorems.	2M
Ans:	De Morgan's 1 st Theorem complement of sum is equal to product of their individual complements. OR $\overline{A+B} = \overline{A} \bullet \overline{B}$ De Morgan's 2 nd theorem Complement of product is equal to sum of their individual complements. OR $\overline{A \bullet B} = \overline{A} + \overline{B}$	1 st -1M 2 nd -1M
d)	Convert the following expression into standard SOP form. $Y = AB + A\overline{C} + BC$	2M
Ans:	Y = AB+ A \overline{C} + BC Total variable ABC 1 st Product term = AB (C is missing) 2 nd Product term = A \overline{C} (B is missing) 3 rd Product term = BC (A is missing) Y = AB•1 + A \overline{C} •1 + BC•1 Y = AB(C+ \overline{C}) A \overline{C} (B+ \overline{B}) + BC(A+ \overline{A}) Y = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} Standard SOP Form	2M
e)	Draw symbol and write truth table of D and T Flip Flop.	2M
Ans:	(Note: Symbol with other triggering method also can be consider) e) D Flip Flop (Symbol D P Qnn (V2M) Tolk P Qnn Clock PF Qnn Clock P	1M Symbol 1M Truth table
f)	0 0 0	2M

2) R –2R ladder network DAC

tified)

	$2^{n} = m$	
	n = no.of flip flops requried	
	m= no.of states	
	$2^{n} = 16$	
	n=4	
	4 flip flops are required to count 16 clock pulse.	
g)	List the types of DAC	2M
Ans:	1) Binary weighted DAC	1M each

	Attempt any <u>THREE</u> of the following:	12-Total Marks
a)	Perform the subtraction using 2'S Complement methods. (52) ₁₀ – (65) ₁₀	4M
Ans	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Conversion-1M eac
	1000001 C 0 1 1 0 1 1 1 0 1 1	Complim nt-1M
	The To get final answel take 20 of Result 1110011 $\frac{10}{11}$ 0001100 $\frac{10}{11}$ 10	Final answer- 1M
b)	Simplify the following Boolean Expressionand Implement using logic gate. $AB\overline{C}\overline{D} + AB\overline{C}D + ABC\overline{D} + ABCD$	4M

Ans:	ABOD + ABOD + ABOD (2MN)	2M
	$= ABC(\bar{D}+D) + ABC(\bar{D}+D) \qquad (:A+\bar{A}=L)$	
	$= ABC \cdot 1 + ABC \cdot 1$	
	= ABT + ABC .: (A - 1 - A)	
	= NB(Z+C)	
	= AD . 1	
	= AB	
	Implementatation (2 mks)	2M
	A - Y = AB	
	8	
-)	nimize the four variable logic function using K map. $A,B,C,D) = \sum m(0,1,2,3,5,7,8,9,11,14)$	4M
Ans:		Kmap
	f(A,B,C,D) = Zm(0,1,2,3,5,7,8,9,11,14)	with pla value-1
	150 200 01 11 100 (2)	Pair-1M
	00 /1	Answer
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2M
	10 LA GENABOD	
	= = = = = = = = = = = = = = = = = = = =	
	plement the following function using demultiplexer. $= \sum_{i=1}^{n} (0.2.4.6)$	4M
$\mathbf{d)} \qquad \mathbf{f_1} =$	plement the following function using demultiplexer. $= \sum m(0,2,4,6)$ $= \sum m(1,3,5)$	4M

SO/IEC - 2700	Milled)	
Ans:	$F_{1} = \sum_{m} (0, 2, 4, 6)$ $f_{2} = \sum_{m} (1, 3, 5)$ 1 logic 2 logic 4 masks 4 logic 4	4M
Q.3	Attempt any <u>THREE</u> of the following:	12-Total Marks
	Realize the following logic expression using only NAND gates.	
a)	(i) OR (ii) AND (iii) NOT	4M
Ans:	(i)OR	1½ M
	OR gate from NAND gates	
	INPUT A OUTPUT	
	(ii)AND	
	AND gate	
	Input B NAND gate NOT gate Output	1½ M
	(ii)NOT	
	A OLL DOOR	1M
	(out put A bar)	

b)	Draw binar	y to gray o	converter an	d write its 1	truth tab	le.			4M
Ans:	Truth Table for 4 bit Binary to Gray code converter								
		Binar	y Input			Gray	Output		table
	В3	B2	B1	В0	G3	G2	G1	G0	
	0	0	0	0	0	0	0	0	
	0	0	0	1	0	0	0	1	
	0	0	1	0	0	0	1	1	
	0	0	1	1	0	0	1	0	
	0	1	0	0	0	1	1	0	
	0	1	0	1	0	1	1	1	Note:
	0	1	1	0	0	1	0	1	
	0	1	1	1	0	1	0	0	Kmap i
	1	0	0	0	1	1	0	0	optiona
	1	0	0	1	1	1	0	1	
	1	0	1	0	1	1	1	1	
	1	0	1	1	1	1	1	0	
	1	1	0	0	1	0	1	0	
	1	1	0	1	1	0	1	1	
	1	1	1	0	1	0	0	1	
			00 0 01 0 11 1	0	1	0 1 1			2M Logical diagrar
	G3=B3 K-MAP FOI	R G2	B1B0 oc	01	11	10			
			00 0	D	0	0			
			D1 1	1	1	1			
			11 0		O	0			
I			10 1	1	1				

	Truth Table	
	J K CLK Q	1M
	0 0 † Q ₀ (no change)	
	1 1 \uparrow \overline{Q}_0 (toggles)	
	Working:	
	The JK flip flop is basically a gated SR flip-flop with the addition of a clock input circuitry	2M
	that prevents the illegal or invalid output condition that can occur when both inputs S and R	
	are equal to logic level "1". Due to this additional clocked input, a JK flip-flop has four	
	possible input combinations, "logic 1", "logic 0", "no change" and "toggle".	
	Both the S and the R inputs of the previous SR bistable have now been replaced by two	
	inputs called the J and K inputs, respectively after its inventor Jack Kilby. Then this equates to: $J = S$ and $K = R$.	
	The two 2-input AND gates of the gated SR bistable have now been replaced by two 3-	
	input NAND gates with the third input of each gate connected to the outputs at Q and Q.	
	This cross coupling of the SR flip-flop allows the previously invalid condition of $S = "1"$	
	and $R = "1"$ state to be used to produce a "toggle action" as the two inputs are now	
	interlocked.	
İ	If the circuit is now "SET" the J input is inhibited by the "0" status	
	Of Q through the lower NAND gate. If the circuit is "RESET" the K input is inhibited by	
	the "0" status of Q through the upper NAND gate. As Q and Q are always different we can use them to control the input. When both	
	inputs J and K are equal to logic "1", the JK flip flop toggles	
d)	Describe the working of 4 bit SISO (serial in serial out) shift register with diagram	4M
u)	and waveform if input is 01101.	4111
Ans:	Diagram:(use SR or JK or D type flip flop)	1M
	1 1	
	0 0 0 Serial 0 0 1 0 0 1 0	
	Data in D Q D Q D Q Q Q	
	FFA FFB FFC FFD Serial Data out	
	CLK CLK CLK	
	Clock	
	Working:	
	The DATA leaves the shift register one bit at a time in a serial pattern, hence the	1½ M
	name Serial-in to Serial-Out Shift Register or SISO.	
	The SISO shift register is one of the simplest of the four configurations as it has only three	
	connections, the serial input (SI) which determines what enters the left hand flip-flop, the serial output (SO) which is taken from the output of the right hand flip-flop and the	
	sequencing clock signal (Clk). The logic circuit diagram below shows a generalized serial-	
	in serial-out shift register, Output of FFA is Q ₄ ,FFB Q ₃ ,FFC Q ₂ and FFD is Q ₁	

BOARD OF TECHNICAL EDUCATION

tified)

	Effect of power	Stored information is	retained only as	No effect of power on stored	
		long as power is on.		information	
	applications	For temporary storag	ge	For permanent storage of	
				information	
	ii)EPROM with EI	PROM			1M(Any
	Parameter	EPROM		EEPROM.	two point
	Stands for		Programable Read-	Electrically Erasable	each)
		Only Me	_	Programmable Read-Only Memory.	•
	Basic		et Light is used to content of	EEPROM contents are erased using electrical signal.	
	Appearance	EPROM	has a transparent ystal window at the	EEPROM are totally encased in an opaque plastic	
	Technology	top. EPROM of PROM	is modern version	case. EEPROM is the modern version of EPROM.	
e)	Describe the work	ing principal of succ		1	4M
Ans:	Note: Other releva	nt diagram and explar	nation also can be co	onsidered.	
	Anvolta		tor Programmer	→ MSB Table To MS	2M
	constantly compare comparator (Vo) is conversion is requi But if Va Vi, then	d with voltage Vi, usi applied to an electron red. The programmer the O/P is changed by	ng a comparator. The ic Programmer. If V displays the value of the programmer. If	ig. An analog voltage (Va) is e output produced by Va=Vi, then Vo=0 & then no Vi in the form of digital O/P. Va> Vi, then value of Vi is of Vi is decreased by 50% of	
	earlier value. This new value is a again. This proced		form, by D/A converget Va=Vi. As the va	ter so as to compare it with Va	2M

Ans:	Binary to Gray Code	1M each
	(11001101)2 = (10101011) Gray code	conversio
	10101011	
	Binary to Excess-3 Code	
	Step 1: Binasy to Decimal	
	$(11001101)_2$ to Decimal	
	$(11001101)_2 = 1 \times 2^7 + 1 \times 2^6 + 0 + 0 + 1 \times 2^3 + 1 \times 2^6 + 0 + 1 \times 2^6$	
	= 128 + 64 + 8 + 4 + 1 = (205)10	
	Step 2 : Decimal to BCD	
	2 0 5 1	
	0010 0000 0101	
	Add 3 + 0011 0011 0011 0101 0011 1000 -> Excess 3	
	code	
	(ii)Perform the BCD Addition.	2M
Ans:	$\frac{(17)_{10} + (57)_{10}}{(17)_{10} 0001 0111}$	
	$(57)_{10} + 0101 0111 (1/2 \text{ M})$	
	0110 1110	
	Valid Invalid BCD BCD(1/2 M)	
	ADD 0110 TO Invalid BCD	
	1 11	½ Each
	1 11 0110 1110	step
	+ 0000 0110	
	<u>01110100</u> (1/2 M) 7 4	
	$= (74)_{10}$ (1/2 M)	
	(iii)Perform the binary addition.	2M
	$(10110 \bullet 110)_2 + (1001 \bullet 10)_2$	
Ans:	$10110.110)_2 - (1001.10)_2 = (100000.010)_2$	2M
	11111	
	10110.110	
	$\frac{+ 1001.10}{1000000000000000000000000000000$	
(b)	100000.010 Design a 4bit ripple counter using JK flip flop, with truth table and waveforms.	6M
	Design a 40th ripple counter using the mp nop, with truth table and wavefullis.	
1 .		2M
Ans:	Circuit Diagram:	

tified)

	Ans:	 (Note: Labeled combinational of the combinational of the combinational of the combinational of the combination and the combination an	require: dition ater than 9 110201102 in t	he sum if sum is g	reater than 9 or car	
	(b)	Design a BCD adder using IC				6M
		Speed Power Product	100	0.7	100	
		Noise Immunity	0.2V	5V	0.25V	
		Power Dissipation	10mW	1.01mW	40-55mW	
		Fan out	10	50	25	
		Propagation delay	10	70-105	2	
		Basic gates	NAND	NOR/NAND	OR/NOR	
	Ans:	Parameter	TTL	CMOS	ECL	1M Each parameter
	A	(iv)Power Dissipation(v) Noise immunity(vi)Speed power product				
	(a)	Compare TTL, CMOS and EC (i) Basic Gates (ii) Propogation dealy (iii)Fan out	L logic family	on the following	points.	6M
Q.6		Attempt any <u>TWO</u> of the follow	ving:			12-Total Marks
		$= -5 (1*1/2 + 1*1/8 + $ $= -5 (0.5 + 0.125 + 0.$ $Vo = 3.4375 V$ 2. 1001 $Vo = -VR (B1.2^{-1} + B2.2^{-1} + B2.2$	$0625) = 3.4373$ $-^{2} + B3.2^{-3} + B^{2}$ $+ 1 *1/2^{4})$ $+ 1 *1/16)$			
		= - 5 (1*1/2 + 0 + 1*1	· · · · · · · · · · · · · · · · · · ·			

Boolean expression of given truth Table.

	Output						
S3	S ₂		S ₁	1	S ₀	Y	
0	0		0		0	0	
0	0		0		1	0	
0	0		1		0	0	
0	0		1		1	0	
0	1		0		0	0	
0	1		0		.1	0	
0	1		t		0	0	
0	1	\perp	1		1	0	
1	0		0		0	0	
1	0		0		1	0	
1	0		1		0	1	
1	0		1		1	1	
1	1	311	0		0	1	
1	1		0		1	1	
1	1		1		0	1	
1	1		1	1	1	0/1	
9	S ₃ S ₂	S ₀	01	11	10		
	00	0	0	0	0		
S3.S2	01	0	0	0	0		
	11	1	1	1		S3.S1	
	10	0	0	100			

Truth
Table: 2M

K-Map: **1M**

- 3) Y=1 indicates sum is greater than 9. We can put one more term, C_out in the above expression to check whether carry is one.
- 4) If any one condition is satisfied we add 6(0110) in the sum.
- 5) With this design information we can draw the block diagram of BCD adder, as shown in figure below.

Circuit
Diagram:
3M

(c)

Output State	e Transitions			
Present	Present Next state			
State	0.0.1.00			
	Q2 Q1 Q0	Fl	ip-flop in	puts
Q2 Q1 Q0				
		J2 K2	J1 K1	J0 K0
0 0 0	0 0 1	0 X	0 X	1 X
0 0 1	010	0 X	1 X	X 1
010	0 1 1	0 X	X 0	1 X
0 1 1	100	1 X	X 1	X 1
100	1 0 1	X 0	0 X	1 X
101	110	X 0	1 X	X 1
110	111	X 0	X 0	1 X
111	000	X 1	X 1	X 1
te Table and C	Corresponding	Excitation	on Table ((d=don't c

21222

3 Hours / 70 Marks	Seat No.
15 minutes extra for each hour	

Instructions - (1) All Questions are Compulsory.

- (2) Answer each next main Question on a new page.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the right indicate full marks.
- (5) Assume suitable data, if necessary.
- (6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any <u>FIVE</u> of the following:

a) Convert
$$(1101011)_2 = ()_{16}$$
 and $(1111011)_2 = ()_8$

- b) List triggering methods used for triggering flip flops.
- c) Define Minterm and Maxterm w.r.t. K-map.
- d) Define shift register and list its types.
- e) List any two specifications of IC-DAC 0808.
- f) Draw logical circuit diagram of half adder circuit.
- g) Write truth table of D type flip-flop.

12

2. Attempt any THREE of the following:

ionowing.

a) Convert $(43)_{10} = (BCD)$

$$(34)_{10} = (Excess-3)$$

 $(110111)_2 = (Gray)$
 $(11101)_2 = (2$'s complement)

- b) Draw logical diagram of full adder using K-map simplification and write truth table.
- c) Draw the block diagram of programmable logic Array with proper labels.
- d) Draw the circuit diagram of BCD to 7 segment decoder and write truth table.

3. Attempt any THREE of the following:

12

- a) State and prove two De-Morgan's Theorems.
- b) Draw basic gates AND, OR and NOT using NAND gate only.
- c) Draw 4 bit ring counter with truth table and its waveform.
- d) Compare the following: (Any two points each)
 - (i) Volatile Non volatile memory
 - (ii) SRAM DRAM memory

4. Attempt any THREE of the following:

12

a) Realize given boolean expression using basic gates and simplify same.

$$y = AB + BC (B+C)$$

- b) Design 4 bit binary to gray code converter. Using truth table.
- c) Realize given expression using K-map

$$f(A, B, C, D = \Sigma m(3, 5, 7, 8, 10, 11, 12, 13)$$

- d) Draw JK master slave flip flop and explain its operations.
- e) Calculate analog o/p of 4 bit DAC for digital input is 1100. Assume $V_{\rm FS} = 5\,{\rm V}$

22320	[3]
	LJ

			Marks
5.		Attempt any TWO of the following:	12
	a)	Draw and explain operation 4 bit universal shift register. Draw necessary waveforms.	
	b)	Draw block diagram of Dual slope ADC and explain its working.	
	c)	Subtract following using Two's complement method.	
		$(15)_{10} - (32)_{10}$	
6.		Attempt any <u>TWO</u> of the following:	12
	a)	Design MOD-12 ripple counter. Write its truth table with waveform.	
	b)	Design 16:1 MUX using 4:1 MUX.	
	c)	Compare TTL and CMOS with following points.	
		(i) Fan IN	
		(ii) FAN OUT	
		(iii) Propogation delay	
		(iv) Power dissipation	

12223

3 Hours / 70 Marks

Seat No.				

- Instructions (1) All Questions are Compulsory.
 - (2) Answer each next main Question on a new page.
 - (3) Illustrate your answers with neat sketches wherever necessary.
 - (4) Figures to the right indicate full marks.
 - (5) Assume suitable data, if necessary.
 - (6) Use of Non-programmable Electronic Pocket Calculator is permissible.
 - (7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any FIVE of the following:

- a) Write radix of binary, octal, hexadecimal number system.
- b) State necessity of demultiplexer.
- c) Draw symbol and write the truthtable for T-flipflop.
- d) Compare between synchronous and asynchronous counter.
- e) Write gray code to given number $(11111)_2 = (?)_{Grav}$
- State two features of ADC IC0809. f)
- g) Draw four variable K-map.

		N	Aarks
2.		Attempt any THREE of the following:	12
	a)	Sketch the given Boolean expression; use one AND gate one OR gate only $Y = AB + AC$.	
	b)	Draw circuit diagram of BCD to seven segment decoder and write its truth table.	
	c)	Draw the block diagram of programmable array logic.	
	d)	Minimize following expression using K-map.	
		$f(A,B,C,D) = \Sigma m (1,5,6,7,11,12,13,15)$	
3.		Attempt any THREE of the following:	12
	a)	Realize the following logic operation using only NOR gates : AND, OR, NOT.	
	b)	Describe the operation of 4 bit serial in serial out shift register	er.
	c)	Calculate the analog output of 4 bit DAC if the digital input is 1101. Assume $V_{FS} = 5V$	
	d)	Describe the working of SR flipflop with its truth table and logic diagram.	
4.		Attempt any THREE of the following:	12
	a)	Draw symbol, truth table and logical output equation of OR and EX-OR gate.	
	b)	Describe function of full adder circuit with its truth table and logical diagram.	
	c)	Design 16:1 multiplexer using 4:1 multiplexer.	
	d)	Describe working of Master-slave JK flipflop with truth table and logic diagram.	
	e)	Compare between R-2R ladder DAC and weighted resistor DAC (Four points).	

2232	20		[3]	
				Marks
5.		Atte	mpt any <u>TWO</u> of the following:	12
	a)	Expla	ain 3 bit asynchronous counter with output waveforms.	
	b)	Com	pare following (Any three points)	
		i)	RAM with ROM memory.	
		ii)	EPROM with EEPROM memory.	
	c)	Conv	vert the following.	
		i)	$(6AC)_{16} = (?)_{10}$	
		ii)	$(2003)_{10} = (?)_{16}$	

6. Attempt any TWO of the following:

iii) $(228)_{10} = (?)_{BCD}$

- a) Give the block schematic of decade counter IC 7490. Design mod-7 counter using IC.
- b) Design a four bit BCD adder using IC-7483 and NAND gate only.
- c) Draw the circuit and explain the principle of TTL gate with totempole output

22223 3 Hours / 70 Marks

Seat No.				

Instructions –

- (1) All Questions are Compulsory.
- (2) Answer each next main Question on a new page.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the right indicate full marks.
- (5) Assume suitable data, if necessary.
- (6) Use of Non-programmable Electronic Pocket Calculator is permissible.
- (7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.
- (8) Preferably, write the answers in sequential order.

Marks

1. Attempt any <u>FIVE</u> of the following:

- State the base of following number system:
 Decimal, binary, octal, hexadecimal
- b) Define counter.
- c) Give any two applications of comparator.
- d) Draw the symbol of D flipflop and write its truth table.
- e) Name the types of RAM.
- f) Define and draw logic symbol of demultiplexer.
- g) List the basic types of shift register.

22320 [2]

		Ma	rks
2.		Attempt any THREE of the following:	12
	a)	Convert the given binary into decimal, octal, hexadecimal and gray code:	
		$(10110101)_2$	
	b)	Draw the block diagram of BCD to 7 segment decoder using IC 7447. Write truth table of it.	
	c)	Define PLA. Draw its block diagram.	
	d)	Implement full adder using two half adder.	
3.		Attempt any THREE of the following:	12
	a)	Draw the OR gate and NOR gate using NAND gate only.	
	b)	Compare TTL, ECL and CMOS logic families. (any four points)	
	c)	Draw 4 bit twisted ring counter and explain working with truth table and waveforms.	
	d)	A combinational circuit is defined as $F_1 = \sum m(3, 5, 7)$ and $F_2 = \sum m(4, 5, 7)$. Implement the circuit with a PLA having 3 inputs, 3 product terms and 2 outputs.	
4.		Attempt any THREE of the following:	12
	a)	Define following terms:	
		i) Fan-in	
		ii) Fan-out	
		iii) Power dissipation	
		iv) Noise margin	
	b)	Draw the block diagram of digital comparator IC 7485 and explain with the help of truth table.	
	c)	Design 32: 1 multiplexer using 8: 1 multiplexer.	
	d)	Explain the working of master salve JK flipflop with truth table and logic diagram.	
	e)	Write applications of ADC and DAC.	

22320 [3]

			Marks
5.		Attempt any TWO of the following:	12
	a)	Design nod-6 counter using IC 7490 and explain its design with working.	
	b)	Explain classification of memories. What is flash memory?	
	c)	i) State the rules of BCD addition.	(2)
		ii) Perform BCD addition of:	(4)
		$(972)_{10} + (348)_{10}$	
6.		Attempt any <u>TWO</u> of the following:	12
	a)	Design synchronous decade counter using D' flipflop.	
	b)	i) Minimize the following expression using K-map.	(4)
		$Y = \sum m(0, 2, 5, 7, 8, 10, 13, 15)$	
		ii) Realize the minimized expression using basic gates.	(2)
	c)	Reduce following boolean expressions using boolean laws.	
		i) $Y = A\overline{B} + \overline{A}B + AB + \overline{A}\overline{B}$	(2)
		ii) $Y = A\overline{B}C + \overline{A}BC + ABC$	(2)
		iii) $Y = ABC + \overline{A}BC + ABC$	(2)

23124

3 Hours / 70 Marks

Seat No.

Instructions –

- (1) All Questions are Compulsory.
- (2) Answer each next main Question on a new page.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the right indicate full marks.
- (5) Assume suitable data, if necessary.
- (6) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any FIVE of the following:

- a) List the octal and hexadecimal numbers for decimal number 0 to 15.
- b) Convert $(159)_{10} = (?)_8$ Convert $(380)_{10} = (?)_{16}$
- c) Draw symbol, truth table of NAND gate.
- d) Define min-term and max-term with respect to K-map.
- e) List the types of DAC.
- f) State two features of ADC IC0809.
- g) List the types of semiconductor memories.

[2]

M	ar	ks

2. Attempt any THREE of the following:

12

a) Perform the subtraction using 2's complement methods.

$$(10110)_2 - (11010)_2$$

- b) Explain the following characteristics with respect to logic families
 - i) Power dissipation
 - ii) Fan-in and fan-out
 - iii) Noise margin
 - iv) Speed of operation
- c) Draw logic diagram of half adder using K-map simplification and write truth table.
- d) Describe the working of J-K flip-flop and state the race around condition.
- e) Give classification of memory and compare RAM and ROM. (Any four points)

3. Attempt any FOUR of the following:

- a) Convert $(53)_{10} = (BCD)$ $(34)_{10} = (Excess-3)$ $(100111)_2 = (Gray)$ $(11010)_2 = (2$'s complement)
- b) State and explain De-Morgan's theorems.
- c) Draw 16:1 mux tree using 4:1 mux.
- d) Describe the operation of R-S flip-flop using NAND gate.
- e) Describe the operation of 4 bit serial in serial out shift register.
- f) Draw and explain the block diagram of Programmable Logic Array (PLA).

22320	[3]
-------	-----

Attempt any \underline{TWO} of the following:

4.

	a)	Design 1:8 demultiplexer using 1:4 demultiplexer. Also write truth table.	
	b)	Explain the role of counters in digital circuits and design Mod-> counter using IC 7490.	
	c)	Draw and explain the block diagram of dual slope ADC. Also write it's specifications.	
5.		Attempt any <u>TWO</u> of the following:	16
5.	a)		16
5.		• • —	16
5.		Design basic logic gates using NAND and NOR gate.	16

c) Draw and explain 4-bit universal shift register. Also explain

the necessity of register in digital circuits.

Marks