Série 2017 PQ selon OFPi 2006 Procédures de qualification Installatrice-électricienne CFC Installateur-électricien CFC

Connaissances professionnelles écrites

Pos. 4.2 Technique des systèmes électriques

Dossier des expertes et experts

Temps: 70 minutes pour 16 exercices sur 10 pages

Auxiliaires: Règle, équerre, chablon, recueil de formules sans exemple de calcul et

calculatrice de poche, indépendante du réseau (Tablettes, Smartphones

etc. ne sont pas autorisés).

Cotation: - Le nombre de points maximum est donné pour chaque exercice.

- Pour obtenir le maximum de points, les formules et les calculs doivent figurer dans la solution ainsi que les résultats avec leur unité soulignés

deux fois.

- Le cheminement de la solution doit être clair et son contrôle doit être aisé.

- Si dans un exercice on demande plusieurs réponses, vous êtes tenu de répondre à chacune d'elles. Les réponses sont évaluées dans l'ordre où elles sont données. Les réponses données en plus ne sont pas évaluées.
- S'il manque de la place, la solution peut être écrite au dos de la feuille et vous devez le mentionner sur l'exercice.
- Les mauvaises réponses induites par une précédente erreur dans le problème doivent être prises en compte lors de la correction.

40.0

1.0

Barème:

		p.		,.
38,0	-	40,0	Points = Note	6,0
34,0	-	37,5	Points = Note	5,5
30,0	-	33,5	Points = Note	5,0
26,0	-	29,5	Points = Note	4,5
22,0	-	25,5	Points = Note	4,0
18,0	-	21,5	Points = Note	3,5
14,0	-	17,5	Points = Note	3,0
10,0	-	13,5	Points = Note	2,5
6,0	-	9,5	Points = Note	2,0
2,0	-	5,5	Points = Note	1,5

Nombres de points maximum:

0.0 - 1.5 Points = Note

Les solutions ne sont pas données pour des raisons didactiques

(Décision de la commission des tâches d'examens du 09.09.2008)

Délai d'attente: Cette épreuve d'examen ne peut pas être utilisée librement comme

exercice avant le 1^{er} septembre 2018.

Créé par: Groupe de travail EFA de l'USIE pour la profession

d'installatrice-électricienne CFC / installateur-électricien CFC

Editeur: CSFO, département procédures de qualification, Berne

Exe	cices	Nombre maximal	de points obtenus
1.	5.1.7 Pourquoi le secondaire d'un transformateur moyenne tension / basse tension 3 x 400 V est couplé en étoile ? (une réponse) - 2 tensions possibles 230 V et 400 V - Connexion du conducteur PEN	1	
2.	5.1.3 Citez deux avantages des matériaux d'installation fabriqués sans halogène.	2	
	 Les matériaux d'installation sans halogène ne dégagent pas de gaz toxiques et corrosifs en cas d'incendie. Le développement de fumée est beaucoup plus faible en cas d'incendie. Augmentation de la sécurité pour les personnes surprises par un incendie. Intervention simplifiée pour les pompiers. Diminution des dégâts. Elimination des câbles respectueuse de l'environnement. 	(chacun 1)	
3.	5.1.6 Sur la plaquette signalétique d'un transformateur, on trouve les informations suivantes : Tension au primaire = 230 V, tension au secondaire = 12 V, η = 90 %, cos ϕ = 0,88 Le transformateur est chargé avec 280 W (purement ohmique).	3	
	Calculez : a) le courant côté secondaire. $I_S = \frac{P_s}{U_s} = \frac{280 \text{ W}}{12 \text{ V}} = \underline{\frac{23,3 \text{ A}}{12 \text{ V}}}$	1	
	b) le courant dans la ligne d'alimentation du transformateur. $I_P = \frac{P_s}{U_P \cdot cos \ \phi + \eta} = \frac{280 \ W}{230 \ V \cdot 0,88 \cdot 0,9} = \underline{\frac{1,54 \ A}{1000 \ M_{\odot}}}$	2	

Exer	cices	Nombre of maximal	de points obtenus
4.	5.2.9 Comment nomme-t-on les symboles de relais suivants 2	3	
4.	a)	3	
	Relais temporisé, retardé à la chute (minuterie)	1	
	b)		
	Relais pas à pas, télérupteur	1	
	Relais temporisé, retardé à l'attraction	1	
5.	5.2.1 Calculez l'efficacité lumineuse de l'ampoule fluo compact (ampoule économique).	2	
	Caractéristiques nominales : - Puissance nominale : - Tension nominale : - Flux lumineux : - Durée de vie : - Température de couleur : 11 W 230 V 1200 lm 10'000 h 4000 K		
	$K = \frac{\Phi}{P} = \frac{1200 \text{ lm}}{11 \text{ W}} = \underline{\frac{109, 1 \frac{\text{lm}}{\text{W}}}{\text{m}}}$		

xercices	Nombre maximal	de points obtenus
5.3.4 6. Sur un réseau triphasé 3 x 400 V/ 230 V, on relie :	4	
- un chauffe-eau triphasé U = 3 x 400 V, 12 A	–	
- l'éclairage d'une halle U = 230 V réparti sur les trois phases :		
$I_{L1} = 8,2 \text{ A, } \cos \phi_1 = 0,7 \text{ ; } I_{L2} = 7,6 \text{ A, } \cos \phi_2 = 0,85$ $I_{L3} = 9,4 \text{ A, } \cos \phi_3 = 0,9$		
Calculez:		
a) la puissance du chauffe-eau.	1	
$P_{Chauffe-eau.} = U \cdot I \cdot \sqrt{3} = 400 V \cdot 12 A \cdot \sqrt{3} = \underline{8314 W}$		
b) la puissance active totale de l'éclairage.	2	
$P_{L1} = U_{R\acute{e}seau} \cdot I_{L1} \cdot cos\phi_1 = 230 \ V \cdot 8, 2 \ A \cdot 0, 7 = \underline{1320, 2 \ W}$	(0,5)	
$P_{L2} = U_{R\acute{e}seau} \cdot I_{L2} \cdot cos\phi_2 = 230 V \cdot 7, 6 A \cdot 0, 85 = \underline{1485, 8 W}$	(0,5)	
$P_{L3} = U_{R\grave{a}seau} \cdot I_{L3} \cdot cos\phi_3 = 230 V \cdot 9, 4 A \cdot 0, 9 = \underline{\underline{1945, 8 W}}$	(0,5)	
$P_{tot/\acute{e}clairage} = P_{L1} + P_{L2} + P_{L3} = 1320, 2 \text{ W} + 1485, 8 \text{ W} + 1945, 8 \text{ W}$ $= \underbrace{4751, 5 \text{ W}}_{}$	(0,5)	
c) la puissance active totale de tous les récepteurs.	1	
$P_{Tot} = P_{Chauffe-eau} + P_{Eclairage} = 8314 \text{ W} + 4751, 5 \text{ W} = 13065, 5 \text{ W}$		
5.2.9 Quelle est la tension U_2 , sachant que R_1 = 100 Ω et que R_2 est une diode Zener de 7,2 V ?	2	
$+ \circ \qquad R_1 \qquad \circ +$		
\downarrow U_1 R_2 \downarrow U_2		
- 0 -		
a) U ₁ = 6 V	1	
$U_2 = \underline{\underline{6 \ V}}$		
b) U ₁ = 9 V	1	
$U_2 = \underline{\underline{7,2\ V}}$		

Exer	cices	Nombre maximal	de points obtenus
8.	$\begin{array}{l} 5.1.4 \\ \text{R\'eglage d'un relais thermique pour la protection de moteur.} \\ \text{Sur la plaquette signal\'etique du moteur, on trouve les informations suivantes:} \\ P = 6500 \text{ W, } \cos \phi = 0.87, \ \eta = 0.82, \ U = 3 \times 400 \text{ V, } \text{ raccordement en \'etoile.} \\ \text{A quel courant doit-on r\'egler le relais thermique pour prot\'eger le moteur des surcharges?} \\ \text{R\`egle professionnelle: 2 x la puissance utile = au courant de ligne.} \\ I = 2 \cdot 6, 5 \text{ kW} => \underbrace{13 \text{ A}}_{} \\ \text{ou} \\ I = \frac{P}{\sqrt{3} \cdot \text{U} \cdot \cos\phi \cdot \eta} = \frac{6500 \text{ W}}{\sqrt{3} \cdot 400 \text{ V} \cdot 0,87 \cdot 0,82} = \underbrace{13.15 \text{A}}_{} \\ \end{array}$	2	Obtenus
9.	5.3.1 Une lampe de contrôle 230 V / 5 W / 50 Hz est raccordée en série avec un condensateur, sur le réseau 400 V / 50 Hz. Calculez: a) l'intensité du courant dans ce circuit série. $I = \frac{P}{U} = \frac{5 \text{ W}}{230 \text{ V}} = \underline{21,74 \text{ mA}}$	1	
	b) la tension aux bornes du condensateur. $U_{bc}=\sqrt{U^2-{U_w}^2}=\sqrt{(400~V)^2-(230~V)^2}=\underline{327,3~V}$	1	
	c) la capacité du condensateur. (réponse donnée en nF) U _{bc} 327,3 V	2	
	$X_{c} = \frac{U_{bc}}{I} = \frac{327, 3 \text{ V}}{21,74 \text{ mA}} = \underline{15,05 \text{ k}\Omega}$ $C = \frac{1}{\omega \cdot X_{c}} = \frac{1}{2\pi \cdot 50 \text{ Hz} \cdot 15,05 \text{ k}\Omega} = \underline{\underline{212 \text{ nF}}}$	(1)	

xercices				de points
5.2.6			maximal	obtenus
0. Deux résistances, 20 Ω et 60 Ω , sont connectées en parallè une batterie. La tension aux bornes de la batterie est de 6 V		ntées par	2	
l = ? +				
A				
$\begin{bmatrix} -0.4 \ 0 \end{bmatrix}$ $\begin{bmatrix} -0.4 \ 0 \end{bmatrix}$ $\begin{bmatrix} -1 \ 0.4 \ 0 \end{bmatrix}$ $\begin{bmatrix} -1 \ 0.4 \ 0 \end{bmatrix}$ $\begin{bmatrix} -1 \ 0.4 \ 0.4 \ 0.4 \end{bmatrix}$				
Calculez :				
a) le courant l'traversant l'ampèremètre.			1	
$I = \frac{U}{R_L} = \frac{6 \text{ V}}{15 \Omega} = \underbrace{0.4 \text{ A}}_{=======}$			(0,5)	
$\mathbf{R_L} = \frac{\mathbf{R_1} \cdot \mathbf{R_2}}{\mathbf{R_1} + \mathbf{R_2}} = \frac{20 \ \Omega \cdot 60 \ \Omega}{20 \ \Omega + 60 \ \Omega} = \underline{15 \ \Omega}$			(0,5)	
b) la tension à vide Uo de la batterie.			1	
$\mathbf{U_o} = \mathbf{I} \cdot \mathbf{R_{Equ}} = 0, 4 \mathbf{A} \cdot 15, 4 \Omega = \underline{\underline{6, 16 V}}$			(0,5)	
$\mathbf{R}_{\mathrm{Equ}} = \mathbf{R}_{\mathrm{L}} + \mathbf{R}_{\mathrm{i}} = 15 \Omega + 0, 4 \Omega = \underline{15, 4 \Omega}$			(0,5)	
5.5.1 1. Système KNX			2	
a) Cochez pour indiquer si l'affirmation suivante est juste ou	fausse.			
Affirmation Le système KNX est un système de bus décentralisé	Juste	Faux		
avec intelligence distribuée dans les dispositifs connectés.			1	
	a um auatà		4	
b) Comment nomme-t-on les deux différentes adresses dan	s un syste	me KINA ?	1	
Adresse de groupe			(0,5)	
Adresse physique			(0,5)	
·				

Exer	cices					Nombre of maximal	de points obtenus
12.	5.2.6 Pour chacune des affirmations suivantes, cochez afin d'indiquer si elle est juste ou fausse.					2	
	Affirmations Juste Faux						
	-	NiCd – Accus sont ecologique					
	La force électromotrice (F plomb est de 2 V	EM) d'un accumul	ateur au	\boxtimes		0,5	
	taille égale, 10 fois plus d accumulateurs NiCd	Les accumulateurs Nickel-Métal-Hydrure NiMH ont, à taille égale, 10 fois plus de capacité que les					
	Lithium-Ionen-Accus ont to ca. 3,6 V	une force électrom	otrice de	\boxtimes		0,5	
13.	5.1.4/ 5.1.5 Cochez dans le tableau, qu différents moyens de prote		ntervient(-ienne	ent) dans I	es	2	
			Composant				
	Moyen de protection	Dispositif magnétique	Dispositif thermique	Dispos couran différe	nt		
	Relais de protection pour moteur					0,5	
	DDR (RCD)				\boxtimes	0,5	
	Disjoncteur de canalisation					0,5	
	Disjoncteur de moteur		\boxtimes			0,5	

rcices				Nombre of maximal	de points obtenus		
5.3.4 Consommateurs sur un réseau triphasé 3 >	400 V / 50	Hz		2			
a) Calculez les courants de ligne (I _{L1} , I _{L2} , I _{L3})).			1,5			
Tous les consommateurs ont une charge p	urement rés	istive.					
L ₁							
L ₂ — L ₃ —							
N — — — — — — — — — — — — — — — — — — —	PE						
$R_1 = 27 \Omega$ $P_2 = 1000 W$ $R_3 = 54 \Omega$							
U 230 V				()			
a) $I_{L1} = \frac{U}{R_1} = \frac{230 \text{ V}}{27 \Omega} = \underline{\frac{8,52 \text{ A}}{}}$				(0,5)			
$I_{L2} = \frac{P_2}{U} = \frac{1000 \text{ W}}{230 \text{ V}} = \underline{4,35 \text{ A}}$				(0,5)			
				(0,0)			
$I_{L3} = \frac{U}{R_3} = \frac{230 \text{ V}}{54 \Omega} = \frac{4,26 \text{ A}}{}$				(0,5)			
b) Que devient le courant du neutre, si l'on en étoile de 4kW ?	ajoute un ré	ecepteur équil	ibré couplé	0,5			
N — — — — — — — — — — — — — — — — — — —							
$R_1 = 27 \Omega$ $P_2 = 1000 W$ $R_3 = 54 \Omega$		R ₄ R ₄ R ₄	P ₄ = 4 kW				
	Ţ						
Cochez l'affirmation correcte.							
Cooliez rummation concess.	Doots Is						
Affirmation	Reste le même	Augmente	Diminue				
Le courant dans le conducteur de neutre	\boxtimes						

Exercices	Nombre maximal	de points obtenus
15. $I_{L2} = 3.8 \text{ A}$ et $I_{L3} = 2.6 \text{ A}$? (solution graphique) 3 x 400 V / 50 Hz	2	5500,100
L ₁ L ₂ L ₃ N N I _{L1} = 4,6 A I _{L2} = 3,8 A I _{L3} = 2,6 A I _{L3} = 2		
1 A = 10 mm		
Solution : I _{N =} 1,7 A (Correcte de 1,5 A à 1,9 A)	(2)	

Exercices	Nombre maximal	de points obtenus
 5.3.2 Vous avez mesuré les valeurs suivantes avec les différents appareils de mesure pour un moteur à courant alternatif monophasé. 	5	
NH 09 / N 087 = 0 1 = 5,9 A		
Calculez : a) la puissance apparente S. $S = U \cdot I = 230 \ V \cdot 5,9 \ A = \underline{1357 \ VA}$	1	
b) le cos φ . $\cos \varphi = \frac{P}{S} = \frac{923 \text{ W}}{1357 \text{ VA}} = \underline{0,68}$	1	
c) la puissance réactive Q. $Q = \sqrt{(S)^2 - (P)^2} = \sqrt{(1357 \text{ VA})^2 - (923 \text{ W})^2} = \underline{994,7 \text{ var}}$	1	
d) le courant l lorsque le cos ϕ passe à 0,9. $I_{Comp.} = \frac{P}{U \cdot \cos \phi_{C.}} = \frac{923 \text{ W}}{230 \text{ V} \cdot 0,9} = \frac{4,46 \text{ A}}{230 \text{ W}}$	1	
e) la capacité du condensateur, raccordé en parallèle avec le moteur, afin d'améliorer le cos φ à 0,9. (Capacité du condensateur en μF)	1	
$Q_{c} = P (\tan \varphi_{1} - \tan \varphi_{2}) = 923 W \cdot (1,078 - 0,484) = \underline{548,2 \text{ var}}$ $X_{c} = \frac{(U)^{2}}{Q_{c}} = \frac{(230 \text{ V})^{2}}{548,2 \text{ var}} = \underline{96,5 \Omega}$	(0,5)	
$C = \frac{1}{2 \pi \cdot f \cdot X_c} = \frac{1}{2 \pi \cdot 50 \text{ Hz} \cdot 96, 5 \Omega} = \frac{33 \mu F}{2 \pi \cdot 50 \text{ Hz} \cdot 96, 5 \Omega}$	(0,5)	
Total	40	