

3.1.2 Metal Nitride CVD – Conductive Diffusion Barriers

- Introduction Challenges
- Comparison of diffusion barrier deposition techniques status
- Metal and metal nitride CVD precursors
- CVD of TiN
- CVD of WN

Application of (transition) metal nitride films:

- Gate electrode work function adjustment
- Barrier/liner for W-CVD
- Barrier/liner for Cu damascene interconnects (may also act as CMP stop layer depending on material)

Thin CVD films in copper Damascene metallization

Conducting barriers (PVD, CVD, ALD): (Ta, TaN/Ta, TiN, WN)

- Diffusion barrier against Cu diffusion and drift
- Liner for Cu deposition (adhesion, low interface diffusion EM)

CMP stop for Cu CMP

Barrier resistivity and thickness impact on via and line resistance

- Impact of barrier thickness significant
- 1/5 of barrier thickness → decreases line resistance by half
- Thickness impact increases with further scaling (not shown here)
- Resistivity of barrier negligible

100

Barrier Resistivity [µOhm cm]

50

- Impact of barrier resistivity and thickness significant for both technology nodes
- Impact increases with further scaling

Node	via diameter	via height	via height barrier side	
130	170	255	8	16
65	93	135	4	9

150

200

250

Requirements for conducting CVD barriers in copper interconnects

Diffusion Barriers:

- <u>Ultrathin</u>, but nevertheless <u>very stable</u>
 - High density / no or stuffed diffusion paths
 - Low defect level
 - Thermodynamically stable
- Good adhesion to underground and Cu
- Low stress
- Low resistivity:
 e.g. < (1000... 300) μΩcm
- Conformal (may cause CMP re-work: if stop on barrier is used)

1. 1. SEM image of copper interconnects on Intel's 90 nm process generation. The liner film consumes ~15% of the interconnect crosssectional area. (Source: Intel)

Deposition techniques for barriers

PVD CVD		ALD	Electroless	
Physical vapour deposition	Chemical vapour deposition	Atomic layer deposition	Catalytic plating	
 Industrial standard: Ta and TaN for Cu metallization 	Industrial standard: TiN (e.g. for W-CVD)	Research focus: different materials (TiN, WCN; TaN and others)	Cu cap layer: CoWP for better interface Cu/cap electromigration lifetime	
	Advar	ntages		
Low deposition T Good control of barrier composition	Good process control High step coverage	Potential of 100% step coverage Very thin closed layers	Selective = Self aligned → no patterning step	
	Disadva	antages		
Reduced step coverage	Partly high deposition temperature Partly use of toxic reactants Risk of particle formation using NH ₃	Nucleation strongly depends on surface state	Cleaning step of the Cu and ILD surface Activation step of Cu surface to improve catalytic nature	

Precursors for barrier CVD

Metal organic compounds

Halide chemistry

 Carbonyls, alkenes, alkynes, arenes, cyclopentadienyls, β-diketonates • MeF_x, MeCl_x, MeBr_x Mel_x

Big diversity of compounds and properties
 Big effort in design of new precursors

Available commercially

- Often not available commercially
- High C and O contaminations in the film
- Vapour pressure of at least 13 Pa essential
 - → for a sufficiently high deposition rate
 - → excludes many potential precursors because thermal decomposition before reaching a sufficiently high vapour pressure
- Mostly solids → low volatility
- Generally no thermal decomposition below 500°C
- Halogen-contaminated films
- Corrosive products \rightarrow e.g. HF (addition of reducing agents H_2 or SiH_4)
- Toxic

Titanium nitride CVD

- Application and integration aspects
- Precursors and reactions
- Example:

MOCVD of TiN using TDMAT precursor

TiN CVD: Application and integration aspects

TiN: A multi functional material in semiconductor industry

Deposition techniques: PVD (reactive sputtering), ALD and CVD (Variety of processes commercially available for different applications)

Fields of application:

- Improving electromigration performance of Al interconnects as base and cap layer
- Glue layer / liner for metal deposition (e.g. for W on dielectric = adhesion promoter)
- Lithography: Anti reflective coating (ARC)
 Hard mask (HM) material in adv. patterning schemes
- Barrier layer to prevent undesired material interactions, e.g. between:
 - Cu and dielectrics: on-chip interconnects and through silicon vias (TSVs)
 - WF₆ or HF in W-CVD and other materials (Si, Ti silicide, Al) protect contact from aggressive fluorine chemistry during W-CVD
- High aspect ratio contacts, combination of TiSi₂ and TiN liner for tungsten plugs CVD: use of TiCl₄ precursor
- Metallization of Ta₂O₅-capacitors (DRAM) − CVD: use of TiCl₄ or metal organic precursor
- Barrier layer in Cu or Al metallization schemes, favourable for damascene architectures CVD: use of metal organic precursors TDMAT or TDEAT

TiN CVD: Application and integration aspects

Why CVD?

Good step coverage in case of high aspect ratios (W contacts, vias)

Important for ultra thin barrier films in high aspect ratio patterns

Technical requirements for use:

- State of the art single wafer cluster tool with CVD-chamber (e.g. Applied Materials Centura 5500 with TxZTM-chamber, Novellus PRISMTM)
- Delivery system for liquid precursor
 - bubbler or liquid inject for TDMAT and TDEAT
 - vapour MFC for TiCl₄

Thermal budget:

TiCl₄: < 5 min & 550°C ... 630°C
 MOCVD: < 5 min & 300°C ... 400°C

TiN CVD: Precursors and reactions

Inorganic $TiCl_4 + NH_3 + \frac{1}{2}H_2$	reduction of metal halide	TiN + 4HCl	reaction I
Organic			
D NI NID	transaminiation		

R ... alkyl group

R = CH₃ tetrakis dimethyl amino titanium; is the favourite for reaction III

 $R = C_2H_5$ tetrakis diethyl amino titanium; is the favourite for reaction II

R determines vapour pressure and reactivity of the precursor

Processes commercially available for all of the three reactions (e.g. Novellus, AMAT)

additional organic precursors

 $Ti(OC_2H_5)_4$, $Ti(Bu^tN=CHCH=NBu^t)_2$, $Ti(acetylacetonat)_3$

TiN CVD: Precursors and reactions

Comparison of TiCl ₄ and TDMAT process				
	TiCl ₄	TDMAT		
Precursor				
vapour pressure	40 Torr @ 50°C	0.6 Torr @ 50°C		
precursor delivery	vapour MFC	bubbler, direct liquid inject		
commercially available	yes	yes		
Process characteristics	Process characteristics			
temperature range	500°C 800°C	350°C 400°C		
additional source gases	NH_3, H_2	Ar, N_2 or He as carrier gas		
byproducts	corrosive	non corrosive, toxic amins		
particle behaviour	NH ₄ Cl salt formation	o.k.		
application of plasma	to reduce Cl at lower	as post deposition treatment		
	deposition temperatures	to reduce impurities		
Film properties				
resistivity (lowest	100 μΩcm with plasma	170 μΩcm with plasma		
reported values)	treatment	treatment		
conformality	near 100%	near 100%		
impurity	chlorine, hydrogen	carbon, hydrogen; oxygen		
		uptake if exposed to air		

CVD of Copper diffusion barriers: TiN by CVD

Precursor options

inorganic route: $TiCl_4 + NH_3$

→ T>600°C, and formation of HCl

metalorganic route:

TDMAT

 $R = CH_3$

- higher vapour pressure
- · more reactive

R → affects vapour pressure and reactivity

TDEAT

 $R = _2HC-CH_2$

- lower vapour pressure
- · less reactive

Pyrolysis

favoured reaction

reaction with NH₃ or plasma activated with H₂/N₂

lower contamination level

higher step coverage

Multistep process for high quality TiN

Method was introduced by M. Danek and coworkers (Applied Materials), 1995

CVD of Copper diffusion barriers: TiN by MOCVD

Deposition process with TDMAT

plasma parameters determine the film properties \rightarrow resistivity and its change within 24 h

- long plasma treatment → higher stability
 - → higher density
 - → lower resistivity
 - → lower impurity level
- drawback: plasma treatment 6 times longer than deposition step
- H₂/N₂ plasma → replacement of C → volatile CH₄
 N₂ essential for a stable film → introduction of additional N

Film properties

	without plasma treatment	multi step process with plasma treatment
Spec. el. resistivity	≈ 8000 μΩcm	170 μΩcm
Stability of resistivity if exposed to air	increase ≈ 200%	increase < 2%
Density (bulk value = 5.2 g/cm³)	2.2 g/cm³	4.8 g/cm³
Film stress (all compressive)	- 300 MPa (as dep.) - 500 MPa (after air exp.)	- 1400 MPa (as dep.), no change after air exp.
Microstructure	amorphous like	polycrystalline
Impurities	≈ 25 at.% C, ≈ 25 at.% O if exposed to air	6 at.% C, 5 at.% O if exposed to air
Barrier stability against copper diffusion (electrically tested with pn-diodes)	fails already at 350°C	stable up to 450°C

Film Properties

TEM bright field images of left side wall of an oxide trench

film stack:

CVD-TiN / CVD-Cu

- At sidewall lower density / single layers visible
- On top and at bottom completely densified

Film Properties

Micro structure of MOCVD TiN

without plasma treatment

- XRD amorphous
- small regions (3 nm) with ordered structure visible in high resolution TEM, embedded in amorphous material

multi step process with plasma treatment

- polycrystalline (one get (1/11) and (200) TiN peak in XRD)
- wide grain size distribution
 - grains reaching through the entire film
 - 。small grains

Step coverage

CVD-TiN in a 0.3 µm oxide trench with an aspect ratio of 3.5

Without plasma treatment

Multi step process with plasma treatment

CVD of Copper diffusion barriers: WN by CVD and PECVD

W based Barriers

 $WF_6 \rightarrow$ Gas at room temperature with high vapour pressure of 133 kPa @25°C

- Also use of WCl₆ (solid)
- Metalorganic W precursors mostly solid

WN_x Deposition

- Thermal CVD with WF₆ and NH₃
- Thermal CVD with metalorganic precursor
- PECVD with WF₆/NH₃/H₂
- PECVD with WF₆/N₂/H₂

- → salt formation NH₄F
- → high deposition temperature > 500°C
- → salt formation NH₄F, reduced step coverage
- → low deposition temperatures, reduced step coverage, amorphous or crystalline films

CVD of Copper diffusion barriers: WN by PECVD

PECVD process for amorphous ultrathin WN_x films

Steps of the process

H₂ + N₂ plasma treatment of substrate before deposition step uniform smooth film

Deposition parameters:

T = 380-400°C rf power = 50 W $H_2/WF_6 = 50-80$ $N_2/WF_6 = 80-110$ p = 340-430 Pa

H₂ plasma treatment of the film after deposition

reduction of F level

PRECISION 5000TM configuration

Chemistry: $WF_6(Ar)/N_2/H_2$

RMS: 0.378 nm R_a: 0.296 nm R_{max}: 1.945 nm

CVD of Copper diffusion barriers: WN by PECVD

Influence of process conditions on the deposition rate

RF power

- Deposition mainly driven by plasma
- Decrease of deposition rate by 50 % between 200 - 50 W
- · Slight increase of electrical resistivity
- → low RF power for low deposition rates

WF₆ partial pressure

- Low p_{WF6} results in low deposition rate
- Low p_{WF6} with rf power of 55 W leads to further decrease of the deposition rate

$$(T = 400$$
°C, p = 670 Pa, $p_{H2} = 530$ Pa, $p_{N2} = 125$ Pa)

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

CVD of Copper diffusion barriers: WN by PECVD

Microstructural investigations

- Amorphous microstructure in the as-deposited state
- Remain of amorphous microstructure after heat treatment in vacuum at 400°C/100h
- Composition of WN_x: $x=0.25 \rightarrow W_{80}N_{20}$
- Commencing crystallization at 600°C/1h in vacuum and progressive with longer exposure time
 - → high amorphous amount

GI-XRD of Si/100 nm $SiO_2/10$ nm $W_{80}N_{20}/50$ nm Cu

CVD of Copper diffusion barriers: WN by PECVD

Impact of spacing on step coverage: WN_x in 0.4 μ m wide trenches (AR \sim 2.5) after deposition at different spacings between shower head and wafer surface

250 mils

400 mils

600 mils

	film	conformality	film	conformality	film	conformality
	thickness		thickness		thickness	
	[nm]	[%]	[nm]	[%]	[nm]	[%]
top	138	100	128	100	181	100
wall at the half	59	43	45	36	54	30
trench height	37	10			<i>5</i> .	
wall near the	50	36	36	28	45	25
bottom	30	30	30	40	73	23
bottom	67	49	53	42	67	37

K. Richter et al. (TU Chemnitz), AMC 2000, MRS Conf. Proc. ULSI XVI, MRS Warrendale, PA, 2001, p. 301-306.

CVD of Copper diffusion barriers: WN by PECVD

SEM of a contact structure with 0.35 µm opening and 5:1 aspect ratio

- ⇒ up to 60 % step coverage at optimal process conditions
 - Applied Materials Centura[™] WxZ
 chamber
 - reactive gases: WF₆, N₂, H₂ and Ar as diluent

Source: Kevin K. Lai (Applied Materials) et al., Thin Solid Films, 332 (1998) 329-334