# IE6200: Engineering Probability and Statistics

Assignment: Lab 03

Prof. Mohammad Dehghani



#### Lab Assignment Guidelines

- 1. Students need to complete the Lab assignment individually.
- 2. All the Lab assignments are required to be done in RStudio.
- 3. Provide necessary comments using '#' for better understanding of your script.
- 4. The lab report needs to include the following sections:
  - **Problem statement:** A brief about your understanding on the assignment questions (maximum 3 lines)
  - Output: What were your finding after creating the code and running it in R. This section may include:
    - Graphs / charts / plots
    - Final data frame for your result
    - Results obtained
  - Conclusion: What were the statistical inferences and observations from the results obtained. 
    √Students are not required to include codes in reports.
- 5. If you take help from any external source, please mention that in reference. Violating academic integrity policies may include zero credit on the work.

#### Deliverables:

- 1. Please submit a \*.zip file including the following items
  - i. R script (just 1 file including all your codes)
  - ii. Lab Report: Report with a maximum length of 10 pages including all appendices, tables, and graphs.
- 2. All of the above mentioned files have to be labeled as: 'Lab # IE 6200 Sec # <Student Name>'
- 3. Submit your Lab deliverables via Canvas.

### Task 1

Import the Health dataset provided on Blackboard in R and save it as a data frame.

## Task 2 (30 points)

a) Find the frequency of people in each of the BMI categories depicted in the image below.

| Category    | BMI               |
|-------------|-------------------|
| Underweight | BMI < 18.5        |
| Normal      | 18.5 < = BMI < 25 |
| Overweight  | 25 < = BMI < 30   |
| Obese       | BMI >= 30         |

b) Find the number of people under the normal and overweight category who suffered from *Hypertnsion* (Hypertension == TRUE) and compare their results. Use barplot to illustrate your answer. What can you interpret from the barplot?

Hint: Use geombar() to get the barplot

- c) Calculate the following statistics for Normal BMI.
  - Mean
  - Median
  - Range
  - Interquartile Range
  - Variance
  - Standard Deviation

# Task 3 (20 points)

a) Find the percentage of people when each of following conditions are met,

| Stroke | Hypertension |
|--------|--------------|
| TRUE   | TRUE         |
| TRUE   | FALSE        |
| FALSE  | TRUE         |
| FALSE  | FALSE        |

Obtain a table as shown below.

| Stroke | Hypertension | Percentage |
|--------|--------------|------------|
| TRUE   | TRUE         | %          |
| TRUE   | FALSE        | %          |
| FALSE  | TRUE         | %          |
| FALSE  | FALSE        | %          |

## Task 4(30 points)

- a) Calculate the following for the Avg\_Glucose\_Level
  - Coefficient of Variation
  - Skewness
  - Kurtosis
- b) Plot a histogram of Avg\_Glucose\_level.
- c) Compare the histogram and the results obtained in part (a) and interpret the results.

## Task 5 (10 points)

- a) Plot a scatterplot for Age and Avg\_Glucose\_Level for people who suffered from Heart\_diseases (Heart\_diseases = TRUE) and those who did not (Heart\_diseases = FALSE) geomyline() and geomhline() functions so data can be categorised in the following age groups
  - Age < 30
  - 30 < Age < 60
  - Age > 60

What can you infer from the scatterplot?

### Task 6 (10 points)

a) Analyze the data and discover any interesting facts (atmost 2) about the dataset and relationship between variables.

Note: The analysis should be unique and not exceed more than one page.