An Undecidable Algebra Problem

Jared Holshouser

September 5, 2013

W-groups

Note that all groups in this presentation are Abelian groups.

Definition

A surjective homomorphism $\varphi: H \to G$ is said to split iff there is a homomorphism $\psi: G \to H$ s.t. $\varphi \circ \psi = id_G$.

Definition

G is a W-group iff whenever $\varphi: H \to G$ is a surjective homomorphism and $\ker(\varphi) \cong \mathbb{Z}$, φ splits.

Countable W-groups are free.

We will see later that free groups are W-groups.

Countable W-groups are free.

We will see later that free groups are W-groups.

The Whitehead problem: Is G a free group iff G is a W-group?

Countable W-groups are free.

We will see later that free groups are W-groups. The Whitehead problem: Is G a free group iff G is a W-group?

Theorem

- ▶ ZFC+V=L implies that every W-group of cardinality ω_1 is free.
- ▶ $ZFC+MA+2^{\omega} > \omega_1$ implies that there is a W-group of cardinality ω_1 that is not free.

- ► A subgroup of a free group is free.
- ► A finitely generated torsion free group is free.

- ► A subgroup of a free group is free.
- ► A finitely generated torsion free group is free.

Theorem

A group G is free iff every homomorphism onto G splits.

- ► A subgroup of a free group is free.
- ► A finitely generated torsion free group is free.

Theorem

A group G is free iff every homomorphism onto G splits.

Corollary

Every free group is a W-group.

The Whitehead Problem $\hspace{-0.5cm}$ Properties of Free Groups $\hspace{-0.5cm}$ Properties of W-Groups $\hspace{-0.5cm}$ Topology $\hspace{-0.5cm}$ $\hspace{-0.5cm}$ V $\hspace{-0.5cm}=\hspace{-0.5cm}$ L $\hspace{-0.5cm}$ MA

Theorem

- ▶ A subgroup of a free group is free.
- ► A finitely generated torsion free group is free.

Theorem

A group G is free iff every homomorphism onto G splits.

Corollary

Every free group is a W-group.

Corollary

Suppose H is a subgroup of G such that H and G/H are both free. Then G is free. Moreover, any basis of H extends to a basis of G.

Chains

Definition

A smooth chain of groups is an ascending chain

$$G_0 \subseteq G_1 \subseteq \cdots \subseteq G_\alpha \subseteq \cdots$$

for $\alpha < \lambda$ such that G_{α} is a subgroup of $G_{\alpha+1}$ and $G_{\alpha} = \bigcup_{\beta < \alpha} G_{\beta}$ for limit α .

Chains

Definition

A smooth chain of groups is an ascending chain

$$G_0 \subseteq G_1 \subseteq \cdots \subseteq G_\alpha \subseteq \cdots$$

for $\alpha < \lambda$ such that G_{α} is a subgroup of $G_{\alpha+1}$ and $G_{\alpha} = \bigcup_{\beta < \alpha} G_{\beta}$ for limit α .

Theorem

Let G be the union of a smooth chain of groups $\{G_{\alpha} : \alpha < \lambda\}$ such that G_0 is free and for all $\alpha < \lambda$, $G_{\alpha+1}/G_{\alpha}$ is free. Then G is free. Moreover, G/G_{α} is free for all $\alpha < \lambda$.

A subgroup of W-group is a W-group.

Theorem

Every W-group is torsion free.

Theorem

If H is a subgroup of G such that G is a W-group but G/H is not a W-group, then there is a homomorphism $\varphi: H \to \mathbb{Z}$ which does not extend to a homomorphism from G to \mathbb{Z} .

Chase's Condition

Definition

A group G is ω_1 -free iff every countable subgroup is free. If G is a ω_1 -free, H a subgroup of G is ω_1 -pure iff G/H is ω_1 -free.

Corollary

Every W-group is ω_1 -free.

Chase's Condition

Definition

A group G is ω_1 -free iff every countable subgroup is free. If G is a ω_1 -free, H a subgroup of G is ω_1 -pure iff G/H is ω_1 -free.

Corollary

Every W-group is ω_1 -free.

Definition

G satisfies Chase's condition iff G is an ω_1 -free group such that every countable subgroup of G is contained in a countable ω_1 -pure subgroup of G.

Lemma

If G is a group of cardinality ω_1 , G satisfies Chase's condition iff G is the union of a smooth chain of countable free groups

$$G_0 \subseteq \cdots \subseteq G_\alpha \subseteq \cdots$$

for $\alpha < \omega_1$ so that $G_0 = \{0\}$ and for all $\alpha < \omega_1$, $G_{\alpha+1}$ is ω_1 -pure in G.

Topology

We endow ω_1 with the order topology.

Definition

 $C\subseteq \omega_1$ is club iff C is closed and unbounded. $E\subseteq \omega_1$ is stationary iff E meets every club set C.

Definition

 $f: \omega_1 \to \omega_1$ is normal iff f is continuous and increasing.

Definition

 $C\subseteq \omega_1$ is club iff C is closed and unbounded. $E\subseteq \omega_1$ is stationary iff E meets every club set C.

Definition

 $f: \omega_1 \to \omega_1$ is normal iff f is continuous and increasing.

Theorem

 $C \subseteq \omega_1$ is club iff there is a normal function $f : \omega_1 \to \omega_1$ so that $C = f [\omega_1]$.

Suppose that G is the union of the smooth chain of countable free groups $\{G_{\alpha}: \alpha < \omega_1\}$. Set

$$E = \{ \alpha < \omega_1 : \alpha \text{ is a limit and } G_\alpha \text{ is not } \omega_1 - \mathsf{pure} \}$$

Suppose that G is the union of the smooth chain of countable free groups $\{G_{\alpha}: \alpha < \omega_1\}$. Set

$$E = \{ \alpha < \omega_1 : \alpha \text{ is a limit and } G_{\alpha} \text{ is not } \omega_1 - \mathsf{pure} \}$$

Theorem

G is free iff E is not stationary.

Topology

Theorem (V=L)

Let C be a set which is the union of a strictly increasing smooth chain of countable sets $\{C_{\alpha} : \alpha < \omega_1\}$, and E be a stationary subset of ω_1 . Then there is a sequence $\{S_\alpha : \alpha < \omega_1\}$ such that $S_{\alpha} \subseteq C_{\alpha}$ for all $\alpha \in E$ and such that for any $X \subseteq C$, $\{\alpha \in E : X \cap C_{\alpha} = S_{\alpha}\}$ is stationary in ω_1 .

Let C be a set which is the union of a strictly increasing smooth chain of countable sets $\{C_{\alpha} : \alpha < \omega_1\}$, and E be a stationary subset of ω_1 . Then there is a sequence $\{S_\alpha : \alpha < \omega_1\}$ such that $S_{\alpha} \subseteq C_{\alpha}$ for all $\alpha \in E$ and such that for any $X \subseteq C$, $\{\alpha \in E : X \cap C_{\alpha} = S_{\alpha}\}\$ is stationary in ω_1 .

Theorem (V=L)

Let G be the union of a strictly increasing smooth chain $\{G_{\alpha}: \alpha < \omega_1\}$ of countable free groups such that $E' = \{ \alpha < \omega_1 : G_{\alpha+1}/G_{\alpha} \text{ is not free} \}$ is stationary in ω_1 . Then Gis not a W-group.

Theorem (V=L)

The Whitehead Problem

Let C be a set which is the union of a strictly increasing smooth chain of countable sets $\{C_{\alpha}: \alpha < \omega_1\}$, and E be a stationary subset of ω_1 . Then there is a sequence $\{S_\alpha : \alpha < \omega_1\}$ such that $S_{\alpha} \subseteq C_{\alpha}$ for all $\alpha \in E$ and such that for any $X \subseteq C$, $\{\alpha \in E : X \cap C_{\alpha} = S_{\alpha}\}\$ is stationary in ω_1 .

Theorem (V=L)

Let G be the union of a strictly increasing smooth chain $\{G_{\alpha}: \alpha < \omega_1\}$ of countable free groups such that $E' = \{ \alpha < \omega_1 : G_{\alpha+1}/G_{\alpha} \text{ is not free} \}$ is stationary in ω_1 . Then Gis not a W-group.

Theorem

ZFC+V=L implies that every W-group of cardinality ω_1 is free.

Topology

Theorem (MA+ $2^{\omega} > \omega_1$)

Let A and B be sets of cardinality $< 2^{\omega}$, and let P be a family of functions with the following properties:

- Every f ∈ P is a function from a subset of A into B.
- ▶ For all $a \in A$ and $f \in P$ there is a $g \in P$ so that $f \subseteq g$ and $a \in dom(g)$.
- ▶ For every uncountable $P' \subseteq P$ there are $f_1, f_2 \in P'$ and $f_3 \in P$ so that $f_1 \neq f_2$ and f_3 extends both f_1 and f_2 .

Then there is a function $g:A\to B$ so that for all finite $F\subset A$ there is an $f \in P$ with $F \subseteq dom(f)$ and $g \upharpoonright_F = f \upharpoonright_F$.

Let A and B be sets of cardinality $< 2^{\omega}$, and let P be a family of functions with the following properties:

- ▶ Every $f \in P$ is a function from a subset of A into B.
- ▶ For all $a \in A$ and $f \in P$ there is a $g \in P$ so that $f \subseteq g$ and $a \in dom(g)$.
- ▶ For every uncountable $P' \subseteq P$ there are $f_1, f_2 \in P'$ and $f_3 \in P$ so that $f_1 \neq f_2$ and f_3 extends both f_1 and f_2 .

Then there is a function $g:A\to B$ so that for all finite $F\subset A$ there is an $f \in P$ with $F \subseteq dom(f)$ and $g \upharpoonright_F = f \upharpoonright_F$.

Theorem (MA+ $2^{\omega} > \omega_1$)

Let G be a group of cardinality ω_1 which satisfies Chase's condition. Then G is a W-group.

There is a group G of cardinality ω_1 which satisfies Chase's condition but is not free.

There is a group G of cardinality ω_1 which satisfies Chase's condition but is not free.

Theorem

 $ZFC+MA+2^{\omega} > \omega_1$ implies that there is a W-group of cardinality ω_1 that is not free.

References

Eklof, Paul C. "Whitehead's Problem is Undecidable." The American Mathematical Monthly 83.10: 775-778. Print.