

High-Performance Graph Analysis

Semyon Grigorev

Saint Petersburg State University

March 22, 2024

Research Landscape

- Formal language constrained path querying^a
 - Regular path querying (RPQ): partially supported in OpenCypher, part of GQL
 - Context-free path querying (CFPQ, CFL-r): proposal to OpenCypher
- Linear algebra based graph analysis
 - Specialized libraries for linear algebra (including GPGPU)
 - Specialized optimizations
 - ▶ New linear algebra based algorithms

^aFor given language \mathcal{L} and edge-labelled graph \mathcal{G} find $R = \{\pi \mid \pi - \text{path in } \mathcal{G}, \omega(\pi) \in \mathcal{L}\},\$ $\omega(v_0 \xrightarrow{b} v_1 \xrightarrow{h} v_2 \dots) = hh \dots$

Context-Free Path Querying (CFPQ)

- Multiple source CFPQ for RedisGraph
 - ► The **first full-stack CFPQ support**: OpenCypher and execution plan extension, evaluation algorithm
- CFPQ for Neo4j
 - GLL-based (non-matrix) CFPQ algorithm
 - ▶ Computes all paths, not reachability facts only
- Generic CFPQ solver
 - Optimization of the Context-Free Language Reachability Matrix-Based Algorithm
 - Outperforms state-of-the-art generic CFPQ solvers and some specialized solutions

- Linear algebra based multiple source RPQ
- Work in progress

Spla¹

Generalized sparse linear algebra library with vendor-agnostic GPUs accelerated computations

¹https://github.com/SparseLinearAlgebra/spla

Research Directions

- Graph analysis algorithms research and development
 - ► CFPQ and RPQ algorithms evaluation, optimization, etc.
 - ▶ Dataset collection (for CFPQ, RPQ)
 - New graph algorithms development
- Specialized software and hardware for high-performance linear algebra
 - ► Generic sparse linear algebra library with GPGPU support (Spla)
 - ► High-level optimizations for linear algebra (kernel fusion)
 - Specialized hardware for linear algebra: lambda-processors