Lineare Algebra

Krzysztof Lukasik

1 Orthogonality, Projections and Least squares

1.1 Projection

Problem description

subspace $S \subset \mathbb{R}^m$ and $b \in \mathbb{R}^m$ and $b \notin S$

the closest point $p \in S$ to b is orthogonally beneath b

$$b-p\perp S$$

 $S = span(a_1, ..., a_n)$

let A be:

$$A = \begin{bmatrix} | & & | \\ a_1 & \dots & a_n \\ | & & | \end{bmatrix}$$

Note: columns of A are linearly independent

Normal equation

since
$$b - p \perp S \Rightarrow a_k \perp b - p$$

 $\Rightarrow A^T(b - p) = 0$
 $\Leftrightarrow A^T A \hat{x} = A^T b \mid p = A \hat{x}$

This is called the Normal equation.

Invertibility of A^TA

Note A has independent columns
$$\Rightarrow N(A) = \{0\}$$
 | $(Ax = a_1x_1 + a_2x_2 + ... + a_nx_n)$ Hence if $N(A^TA) = N(A)$ $\Rightarrow A^TA$ has full rank $\Rightarrow A^TA$ is invertible

Proof that
$$A^TA$$
 is invertible, i.e. $N(A^TA) = N(A)$:
$$N(A) \subset N(A^TA)$$
:
$$x \in N(A) \Rightarrow Ax = 0 \Rightarrow A^T(Ax) = A^T0 = 0$$

$$N(A^TA) \subset N(A)$$
:
$$x \in N(A^TA) \Rightarrow A^TAx = 0$$

$$\Rightarrow x^TA^TAx = 0$$

$$\Leftrightarrow (Ax)^TAx = 0$$

$$\Leftrightarrow ||Ax||^2 = 0$$

$$\Leftrightarrow ||b||^2 = 0 \quad ||Ax = b|$$

$$\Leftrightarrow b_1^2 + \dots + b_k^2 = 0$$

$$\Rightarrow 0 + \dots + 0 = 0$$

$$\Rightarrow b = 0$$

$$\Leftrightarrow Ax = 0$$

Hence A^TA is invertible

Final Solution

$$\begin{split} \hat{x} &= (A^T A)^{-1} A^T b \\ \Rightarrow \quad p &= A \hat{x} = A (A^T A)^{-1} A^T b \end{split}$$

 $\Rightarrow x \in N(A)$

Hence our projection matrix is $A(A^TA)^{-1}A^Tb$