In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as matplot
import seaborn as sns
%matplotlib inline

df = pd.DataFrame.from_csv('HR_comma_sep.csv', index_col=None)
df.isnull().any()
df.head()
```

/Users/thanakornpasangthien/anaconda3/lib/python3.6/site-packages/ip ykernel_launcher.py:8: FutureWarning: from_csv is deprecated. Please use read_csv(...) instead. Note that some of the default arguments a re different, so please refer to the documentation for from_csv when changing your function calls

Out[1]:

	satisfaction_level	last_evaluation	number_project	average_montly_hours	time_sp
0	0.38	0.53	2	157	3
1	0.80	0.86	5	262	6
2	0.11	0.88	7	272	4
3	0.72	0.87	5	223	5
4	0.37	0.52	2	159	3

In [2]:

```
df = df.rename(columns={'satisfaction_level': 'satisfaction',
    'last_evaluation': 'evaluation',
    'number_project': 'projectCount',
    'average_montly_hours': 'averageMonthlyHours',
    'time_spend_company': 'yearsAtCompany',
    'Work_accident': 'workAccident',
    'promotion_last_5years': 'promotion',
    'sales': 'department',
    'left': 'turnover'
})
```

In [3]:

```
front = df['turnover']
df.drop(labels=['turnover'], axis=1,inplace = True)
df.insert(0, 'turnover', front)
df.head()
```

Out[3]:

	turnover	satisfaction	evaluation	projectCount	averageMonthlyHours	yearsAtCom
0	1	0.38	0.53	2	157	3
1	1	0.80	0.86	5	262	6
2	1	0.11	0.88	7	272	4
3	1	0.72	0.87	5	223	5
4	1	0.37	0.52	2	159	3

In [4]:

```
df.shape
df.dtypes
df.describe()
```

Out[4]:

	turnover	satisfaction	evaluation	projectCount	averageMonthlyHou
count	14999.000000	14999.000000	14999.000000	14999.000000	14999.000000
mean	0.238083	0.612834	0.716102	3.803054	201.050337
std	0.425924	0.248631	0.171169	1.232592	49.943099
min	0.000000	0.090000	0.360000	2.000000	96.000000
25%	0.000000	0.440000	0.560000	3.000000	156.000000
50%	0.000000	0.640000	0.720000	4.000000	200.000000
75%	0.000000	0.820000	0.870000	5.000000	245.000000
max	1.000000	1.000000	1.000000	7.000000	310.000000

In [5]:

```
turnover_rate = df.turnover.value_counts() / len(df)
print(turnover_rate)
```

```
0 0.761917
1 0.238083
```

Name: turnover, dtype: float64

In [6]:

```
turnover_Summary = df.groupby('turnover')
turnover_Summary.mean()
```

Out[6]:

	satisfaction	evaluation	projectCount	averageMonthlyHours	yearsAtCompa
turnover					
0	0.666810	0.715473	3.786664	199.060203	3.380032
1	0.440098	0.718113	3.855503	207.419210	3.876505

In [7]:

```
corr = df.corr()
corr = (corr)
sns.heatmap(corr,
xticklabels=corr.columns.values,
yticklabels=corr.columns.values)
print(corr)
```

	turnover	satisfactio	on evaluation	projectCoun
t \ turnover 7	1.000000	-0.3883	75 0.006567	0.02378
satisfaction	-0.388375	1.00000	0.105021	-0.14297
evaluation 3	0.006567	0.10502	1.000000	0.34933
projectCount 0	0.023787	-0.14297	0.349333	1.00000
averageMonthlyHours 1	0.071287	-0.02004	18 0.339742	0.41721
yearsAtCompany 6	0.144822	-0.10086	0.131591	0.19678
workAccident 1	-0.154622	0.05869	97 -0.007104	-0.00474
promotion 4	-0.061788	0.02560	05 -0.008684	-0.00606
	averageMo	nthlyHours	yearsAtCompany	workAccide
nt \ turnover		0.071287	0.144822	-0.1546
22 satisfaction 97		-0.020048	-0.100866	0.0586
evaluation 04		0.339742	0.131591	-0.0071
projectCount 41		0.417211	0.196786	-0.0047
averageMonthlyHours		1.000000	0.127755	-0.0101
yearsAtCompany 20		0.127755	1.000000	0.0021
workAccident		-0.010143	0.002120	1.0000
promotion 45		-0.003544	0.067433	0.0392
turnover satisfaction evaluation projectCount averageMonthlyHours yearsAtCompany workAccident promotion	promotion -0.061788 0.025605 -0.008684 -0.006064 -0.003544 0.067433 0.039245 1.000000			

In [8]:

f, ax = plt.subplots(figsize=(15, 4))
sns.countplot(y="salary", hue='turnover', data=df).set_title('Employee Salary Tu
rnover Distribution');

In [9]:

f, ax = plt.subplots(figsize=(15, 5))
sns.countplot(y="department", hue='turnover', data=df).set_title('Employee Department Turnover Distribution');

In [10]:

```
ax = sns.barplot(x="projectCount", y="projectCount", hue='turnover', data=df, es
timator=lambda x: len(x) / len(df) *
100)
ax.set(ylabel="Percent")
```

Out[10]:

[Text(0, 0.5, 'Percent')]

In [11]:

```
fig = plt.figure(figsize=(15,4),)
ax=sns.kdeplot(df.loc[(df['turnover'] == 0),'evaluation'],
color='b',shade=True,label='no turnover')
ax=sns.kdeplot(df.loc[(df['turnover'] == 1),'evaluation'],
color='r',shade=True, label='turnover')
ax.set(xlabel='Employee Evaluation', ylabel='Frequency')
plt.title('Employee Evaluation Distribution - Turnover V.S. No Turnover')
```

Out[11]:

Text(0.5, 1.0, 'Employee Evaluation Distribution - Turnover V.S. No Turnover')

In [12]:

```
fig = plt.figure(figsize=(15,4))
ax=sns.kdeplot(df.loc[(df['turnover'] == 0), 'averageMonthlyHours'] , color='b',s
hade=True, label='no turnover')
ax=sns.kdeplot(df.loc[(df['turnover'] == 1), 'averageMonthlyHours'] , color='r',s
hade=True, label='turnover')
ax.set(xlabel='Employee Average Monthly Hours', ylabel='Frequency')
plt.title('Employee AverageMonthly Hours Distribution -Turnover V.S. No Turnove
r')
```

Out[12]:

Text(0.5, 1.0, 'Employee AverageMonthly Hours Distribution -Turnover V.S. No Turnover')

In [13]:

```
fig = plt.figure(figsize=(15,4))
ax=sns.kdeplot(df.loc[(df['turnover'] == 0), 'satisfaction'] ,
color='b',shade=True, label='no turnover')
ax=sns.kdeplot(df.loc[(df['turnover'] == 1), 'satisfaction'] ,
color='r',shade=True, label='turnover')
plt.title('Employee Satisfaction Distribution - Turnover V.S.No Turnover')
```

Out[13]:

Text(0.5, 1.0, 'Employee Satisfaction Distribution - Turnover V.S.No Turnover')

In [14]:

sns.lmplot(x='satisfaction', y='evaluation', data=df, fit_reg=
False, hue='turnover')

Out[14]:

<seaborn.axisgrid.FacetGrid at 0x11799e208>

In [38]:

```
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=3,random_state=2)
kmeans.fit(df[df.turnover==1][["projectCount","averageMonthlyHours"]])
kmeans_colors = ['green' if c == 0 else 'blue' if c == 2 else 'red' for c in kme
ans.labels_]
fig = plt.figure(figsize=(10, 6))
plt.scatter(x="projectCount",y="averageMonthlyHours", data=df[df.
turnover==1], alpha=0.25,color = kmeans_colors)

plt.xlabel("projectCount")
plt.ylabel("averageMonthlyHours")
plt.scatter(x=kmeans.cluster_centers_[:,0],y=kmeans.
cluster_centers_[:,1],color="black",marker="X",s=100)
plt.title("Clusters of Employee Turnover")
plt.show()
```


In [59]:

```
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
from sklearn.model selection import train test split
plt.style.use('fivethirtyeight')
plt.rcParams['figure.figsize'] = (12,6)
# you can skip this part, if you already changed the column
df = df.rename(columns={'satisfaction level': 'satisfaction', 'last evaluation':
 'evaluation', 'number project': 'projectCount', 'average montly hours': 'averag
eMonthlyHours'
, 'time spend company': 'yearsAtCompany', 'Work accident': 'workAccident', 'prom
otion last 5years': 'promotion', 'sales'
: 'department', 'left' : 'turnover'
})
# Convert these variables into categorical variables
df["department"] = df["department"].astype('category').cat.codes
df["salary"] = df["salary"].astype('category').cat.codes
# Create train and test splits
target name = 'turnover'
X = df.drop('turnover', axis=1)
y=df[target name]
X train, X test, y train, y test = train test split(X,y,
test size=0.15, random state=123, stratify=y)
dtree = tree.DecisionTreeClassifier(max depth=3, class weight="balanced", min we
ight fraction leaf=0.01)
dtree = dtree.fit(X train,y train)
```

In [60]:

```
from sklearn.externals.six import StringIO
from IPython.display import Image
from sklearn.tree import export_graphviz
import graphviz
import pydotplus
dot_data = StringIO()
export_graphviz(dtree,out_file=dot_data,filled=True, rounded=True,special_characters=True)
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
dotfile = open("dtree2.dot",'w')
tree.export_graphviz(dtree, out_file = dotfile, feature_names = X.columns)
dotfile.close()
```

In [61]:

```
dtree = tree.DecisionTreeClassifier(max_depth=3, class_weight="balanced", min_we
ight_fraction_leaf=0.01)
```