Università degli Studi della Basilicata

Corso di Laurea in Scienze e Tecnologie Informatiche

Sistemi Operativi - A.A. 2019/2020

Esame del 25/02/2020 – VERSIONE A

Tempo a disposizione: 2 ore e 30 minuti

Domanda 1 (max 5 punti)

Descrivere il meccanismo di context switch, avvalendosi di opportune illustrazioni grafiche.

Domanda 2 (max 5 punti)

Illustrare il meccanismo dei lock mutex nei sistemi operativi. Utilizzare opportuni esempi per integrare la spiegazione.

Domanda 3 (max 5 punti)

Spiegare quali sono le principali differenze tra i dischi di memoria (hard disk) e i dispositivi NVM, evidenziando anche le migliori applicazioni per essi.

Esercizio 1 (max 7,5 punti)

Sia data la seguente tabella che descrive il comportamento di un insieme di processi.

Processo	Tempo di CPU	Istante di arrivo
P1	5	0
P2	3	1
P3	5	2
P4	2	3
P5	3	4

Ipotizzando che i processi:

- arrivino nella ready queue negli istanti mostrati in tabella
- richiedano i tempi di CPU indicati in tabella

qual è il tempo di attesa medio generato dall'algoritmo di scheduling shortest remaining time first (SJF con prelazione)? Motivare la risposta.

Esercizio 2 (max 7,5 punti)

Sia data la seguente successione di riferimenti alle pagine di memoria:

Si assuma

- di avere una tabella delle pagine di 4 elementi, gestita con politica FIFO
- che T_{ma} e T_{pf} siano rispettivamente i tempi di accesso in memoria e di gestione del page fault
- 1. Quale è il tempo di accesso effettivo in memoria per la situazione descritta?
- 2. Quale è la probabilità di avere un page fault?