Introduction to VLSI Design

SRAM and DRAM Cells

Material primarily form textbook and lecture slides for Rabaey et. al. Digital Integrated Circuits, 2nd Edition (2002) and other online resources

Read-Write Memories (RAM)

☐ STATIC (SRAM)

Data stored as long as supply is applied

Large (6 transistors/cell)

Fast

Differential

☐ DYNAMIC (DRAM)

Periodic refresh required

Small (1-3 transistors/cell)

Slower

Single Ended

SRAM Evolution with technology nodes

FIGURE 12.16 SRAM scaling (© 2000–2008 IEEE.)

FIGURE 12.17 SRAM cell size vs. feature size

14 nm Process

.0588 um²

CMOS SRAM Analysis (Read - 1)

CMOS SRAM Analysis (Read)

Introduction to VLSI Design

SRAM Read Operation

(Memory has Q = 0&Q_b = 1) this should be reflected in bit and bit_b respectively which are pre-charged initially

Sense Amp Operation

CMOS SRAM Analysis (Write-0)

6T-SRAM — Layout

Introduction to VLSI Design

6T SR Latch

3-Transistor DRAM Cell

DRAM: Dynamic RAM

- Store their contents as charge on a capacitor rather than in a feedback loop.
- □ 1T dynamic RAM cell has a transistor and a capacitor

1-Transistor DRAM Cell

