Chapter 55

Ridge Regression, Lasso, Elastic Net

In this chapter we discuss linear regression. This problem can be cast as a learning problem. We observe a sequence of (distinct) pairs $((x_1, y_1), \ldots, (x_m, y_m))$ called a set of training data (or predictors), where $x_i \in \mathbb{R}^n$ and $y_i \in \mathbb{R}$, viewed as input-output pairs of some unknown function f that we are trying to infer. The simplest kind of function is a linear function $f(x) = x^{\top}w$, where $w \in \mathbb{R}^n$ is a vector of coefficients usually called a weight vector. Since the problem is overdetermined and since our observations may be subject to errors, we can't solve for w exactly as the solution of the system Xw = y, where X is the $m \times n$ matrix

$$X = \begin{pmatrix} x_1^\top \\ \vdots \\ x_m^\top \end{pmatrix},$$

where the row vectors x_i^{\top} are the rows of X, and thus the $x_i \in \mathbb{R}^n$ are column vectors. So instead we solve the least-squares problem of minimizing $\|Xw - y\|_2^2$. In general there are still infinitely many solutions so we add a regularizing term. If we add the term $K \|w\|_2^2$ to the objective function $J(w) = \|Xw - y\|_2^2$, then we have ridge regression. This problem is discussed in Section 55.1 where we derive the dual program. The dual has a unique solution which yields a solution of the primal. However, the solution of the dual is given in terms of the matrix XX^{\top} (whereas the solution of the primal is given in terms of $X^{\top}X$), and since our data points x_i are represented by the rows of the matrix X, we see that this solution only involves inner products of the x_i . This observation is the core of the idea of kernel functions, which were discussed in Chapter 53. We also explain how to solve the problem of learning an affine function $f(x) = x^{\top}w + b$.

In general the vectors w produced by ridge regression have few zero entries. In practice it is highly desirable to obtain sparse solutions, that is vectors w with many components equal to zero. This can be achieved by replacing the regularizing term $K \|w\|_2^2$ by the regularizing term $K \|w\|_1$; that is, to use the ℓ^1 -norm instead of the ℓ^2 -norm; see Section 55.4. This method has the exotic name of lasso regression. This time there is no closed-form solution, but this is a convex optimization problem and there are efficient iterative methods to solve