Instructor Name: Siddhartha Nath Email: s.nath@northeastern.edu

Program Structure and Algorithms (INFO 6205) Homework #1 - 100 points

Student NAME: Xijing Zhang

Student ID: 002205911

Notes:

• Please submit two files.

- The first file MUST be a PDF that contains your solutions to all questions except the coding question.
- The second file is your solution to the coding question with either .py or .cpp or .java extension.

Question 1 (25 points). Please prove the following with regards to asymptotic growth of functions.

(a) (5 points) Show that $f(x) = x^2 + 4x$ is $O(x^2)$.

Proof:

A function f(x) is O(g(x)) if and only if there exist positive real numbers c and x_0 such that:

$$0 \le f(x) \le c \cdot g(x)$$
 for every $x \ge x_0$

Consider c=2 and $x_0=4$. For any $x \geq x_0$, note that $4x \leq x^2$. Adding x^2 to both sides, we have:

$$x^2 + 4x \le x^2 + x^2 = 2x^2$$
.

Since $x \ge x_0 = 4$, it follows that:

$$0 \le x^2 + 4x \le 2x^2 = c \cdot x^2.$$

Thus, $f(x) = x^2 + 4x$ satisfies the definition of Big-O with c = 2 and $x_0 = 4$. Therefore:

$$f(x) = O(x^2).$$

(b) (5 points) Show that $f(x) = x^2$ is NOT $O(\sqrt{x})$.

Proof:

By the definition of Big-O, $f(x) = x^2$ would be $O(\sqrt{x})$ if there exist constants c > 0 and $x_0 > 0$ such that:

$$0 \le f(x) \le c \cdot \sqrt{x}$$
 for all $x \ge x_0$.

Substituting $f(x) = x^2$ into the inequality, this implies:

$$x^2 \le c \cdot \sqrt{x}$$
.

Dividing through by \sqrt{x} (valid for x > 0) gives:

$$x^{3/2} < c$$
.

As $x \to \infty$, $x^{3/2} \to \infty$, which means the inequality cannot hold for any constant c > 0. Therefore, there are no constants c > 0 and $x_0 > 0$ that satisfy the definition of Big-O.

Hence, $f(x) = x^2$ is **not** $O(\sqrt{x})$.

(c) (5 points) Show that f(x) = x is $\Omega(\log x)$.

Proof:

For a given function g(n), we denote by $\Omega(g(n))$ (pronounced "big-Omega of g(n)") the set of functions:

 $\Omega(g(x)) = \left\{ f(x) : \text{there exist positive constants c and x_0 such that $0 \le c \cdot g(x) \le f(x)$ for all $x \ge x_0$} \right\}.$

Consider c = 1 and $x_0 = 2$. Then, for any $x \ge x_0$, we need to show that:

$$x \ge c \cdot \log x$$
.

For c = 1, this reduces to:

$$x > \log x$$
 for all $x > 2$.

Since x grows faster than $\log x$ asymptotically as $x \to \infty$, this inequality holds true. In fact, for any $x \ge 2$, we can confirm that:

$$x > \log x$$
.

Therefore, for c = 1 and $x_0 = 2$, we have:

$$x \ge \log x$$
 for all $x \ge 2$.

Thus, f(x) = x satisfies the definition of $\Omega(\log x)$.

(d) (10 points) Show that
$$f(x) = (2x^2 - 3)/((3x^4 + x^3 - 2x^2 - 1))$$
 is $\Theta(x^{-2})$.

Proof:

To prove that $f(x) = \Theta(x^{-2})$, we need to show that there exist positive constants c_1 , c_2 , and c_3 such that:

$$c_1 x^{-2} \le f(x) \le c_2 x^{-2}, \quad \forall x \ge x_0.$$

For large x, the highest-order terms dominate. Thus:

$$f(x) = \frac{2x^2 - 3}{3x^4 + x^3 - 2x^2 - 1} \approx \frac{2x^2}{3x^4}.$$

Simplifying the dominant terms, we have:

$$\frac{2x^2}{3x^4} = \frac{2}{3x^2}.$$

This shows that f(x) asymptotically behaves like $\frac{2}{3x^2}$, which suggests that $f(x) \in \Theta(x^{-2})$. Now, we formalize the bounds.

Derive upper and lower bounds, we start with the expression:

$$f(x) = \frac{2x^2 - 3}{3x^4 + x^3 - 2x^2 - 1}.$$

For sufficiently large x, we observe that:

$$2x^2 - 3 \ge x^2$$
, and $3x^4 + x^3 - 2x^2 - 1 \le 4x^4$.

Thus:

$$f(x) \ge \frac{x^2}{4x^4} = \frac{1}{4x^2}.$$

For sufficiently large x, we observe that:

$$2x^2 - 3 \le 2x^2$$
, and $3x^4 + x^3 - 2x^2 - 1 \ge 3x^4$.

Thus:

$$f(x) \le \frac{2x^2}{3x^4} = \frac{2}{3x^2}.$$

From the above, for sufficiently large x, we have:

$$\frac{1}{4x^2} \le f(x) \le \frac{2}{3x^2}.$$

This satisfies the definition of $\Theta(x^{-2})$, where $c_1 = \frac{1}{4}$, $c_2 = \frac{2}{3}$, and x_0 is sufficiently large. We have shown that:

$$f(x) = \frac{2x^2 - 3}{3x^4 + x^3 - 2x^2 - 1} \in \Theta(x^{-2}).$$

Question 2 (15 points). Please rank the following functions based on their $O(\cdot)$ complexity of running time. The function that has the least complexity should be ranked 1. Please explain your answer to get full credit.

 $f_1(x) = x \log_2 x$

 $f_2(x) = 3^x$

 $f_3(x) = \sqrt{x}$

 $f_4(x) = x!$

 $f_5(x) = 2^x$

Solution:

We rank the functions based on their growth rates (smaller growth rate = higher rank):

- 1. $f_3(x) = \sqrt{x}$: $O(\sqrt{x})$ (slowest growth rate)
- 2. $f_1(x) = x \log_2 x$: $O(x \log x)$ (quasilinear)
- 3. $f_5(x) = 2^x$: $O(2^x)$ (exponential with base 2)
- 4. $f_2(x) = 3^x$: $O(3^x)$ (exponential with base 3)
- 5. $f_4(x) = x!$: O(x!) (super-exponential, fastest growth rate)

Explanation:

1. $f_1(x) = x \log_2 x$: This function grows faster than x (linear growth) but slower than polynomial functions like x^2 . It is classified as **quasilinear**.

$$O(f_1(x)) = O(x \log x)$$

2. $f_2(x) = 3^x$: This function is **exponential** with base 3. It grows faster than polynomial functions and 2^x .

$$O(f_2(x)) = O(3^x)$$

3. $f_3(x) = \sqrt{x}$: This function is **sublinear** (grows slower than linear functions x).

$$O(f_3(x)) = O(\sqrt{x})$$

4. $f_4(x) = x!$: The factorial function grows faster than any exponential function. It is **super-exponential**.

$$O(f_4(x)) = O(x!)$$

5. $f_5(x) = 2^x$: This function is **exponential** with base 2. It grows slower than 3^x but faster than polynomial or quasilinear functions.

$$O(f_5(x)) = O(2^x)$$

Question 3 (60 points). Suppose you are given a string consisting of alphanumeric and parenthesis characters as input. Your goal is to determine if all the open-parenthesis have a corresponding close-parenthesis when you reach the end of the string. If yes, then your algorithm should return True, else False.

For example, if the input is "I { love [the $\{rains\}()$]}", then the output is True. Whereas, if the input is "I { love [the $\{rains\}()$ ", then the output is False.

- (a) (15 points) Please describe an efficient algorithm in English using a data structure such as array / linked list / stack / queue to solve this problem.
- (b) (5 points) What is the asymptotic upper bound of complexity of running time for your algorithm?
- (c) (40 points) Please write a program in either Python / Java / C++ that realizes your algorithm in (a). To receive full credit, please structure your code, write comments and show the output for the above two examples.

(a)

- 1. Initialize an empty stack.
- 2. Traverse each character in the input string.
- a. If it is an opening parenthesis ('(', ", or '['), push it onto the stack.
- b. If it is a closing parenthesis (')', ", or ']'):
- i. Check if the stack is empty. If it is, return False.
- ii. If the stack is not empty, pop the top element and check if it matches the corresponding opening parenthesis.
- 3. After processing all characters, if the stack is empty, return True. Otherwise, return False.
- (b)

The algorithm processes each character in the input string exactly once, and each stack operation (push and pop) takes constant time O(1). Therefore, the time complexity is:

O(n)

where n is the length of the input string.

(c)

HW1.py