Congratulations! You passed!

Grade received 100% To pass 80% or higher

Go to next item

1.	What is the purpose of having a validation set for a model?	1/1 point
	O To test the model by seeing how it performs on some "hard cases" in the dataset.	
	O To provide some extra data that can be used to train the model.	
	O To check the performance of the model and remove the need for a test set.	
	To evaluate the generalisation performance of the model, check for overfitting, and allow for hyperparameter tuning.	
2.	Which of these is NOT an example of regularisation?	1/1 point
	O Weight decay	
	O Early stopping	
	Backpropagation	
	O Data augmentation	
	 ✓ Correct Correct, well done! Backpropagation is an efficient algorithm to calculate gradients 	
3.	How can using early stopping improve the performance of a model?	1/1 point
	O It trains the model more quickly, allowing more complex models to be used with little added training time.	
	It can prevent overfitting on the training set, and therefore improve performance on the test set.	
	O It can stop the weights and biases varying much from their initial values, so the model has a memory of its starting state.	
	O It allows the model to skip over hidden layers that have caused the model to perform poorly during training.	
	✓ Correct Correct, well done!	
4.	A popular method used to reduce overfitting in neural networks is the inclusion of (Bernoulli) dropout layers. Given a dropout rate of 0.3 on a layer with n neurons, what is the probability that only one of the neurons is dropped out?	1/1 point
	O 0.7	
	$\bigcap n(0.7)(0.3)^{n-1}$	
	O 0.3	
	\bigcirc $n(0.3)(0.7)^{n-1}$	
	Correct Correct, well done!	