ZK LOWER BOUNDS and LIMITATIONS

ALON ROSEN

IDC HERZLIYA

The Goal

Goal: understand the limitations of ZK

- The role of interaction
- The role of randomness
- Black-Box simulation
- Public-coin vs private coin
- Parallel/concurrent composition

Deterministic/ non-interactive ZK

Recall: a proof that is <u>not</u> ZK

$$x \in QR_N: \qquad \xrightarrow{\pi = w} \qquad \qquad X \stackrel{?}{=} w^2 \bmod N$$

- Proof is non-interactive
- V is deterministic
- P is deterministic

Can we build "error-free" ZK for $L \notin BPP$?

Note: ZK for $L \in BPP$ is considered "trivial"

Triviality of error-free ZK

- Unidirectional proof: a single message from P to V
- Example: NP proofs

<u>Theorem</u>: Suppose that L has a unidirectional ZK proof. Then $L \in BPP$

<u>Theorem</u>: Suppose that L has a ZK proof in which the verifier V is deterministic. Then $L \in BPP$

<u>Theorem</u>: Suppose that L has an auxiliary-input ZK proof in which the prover P is deterministic. Then $L \in BPP$

Triviality of unidirectional ZK

<u>Theorem</u>: Suppose that L has a unidirectional ZK proof. Then $L \in BPP$

- Let (w, r) = S(x) be the simulator's output on input x
- To decide L, pick random independent s and run V(w, s)

Claim: If
$$x \in L$$
 then $Pr_S[V(w,s) = ACCEPT] \ge 2/3$
Otherwise, can distinguish $S(x) = (w,r)$ from $(P,V)(x)$

Claim: If $x \notin L$ then $Pr_s[V(w,s) = ACCEPT] \le 1/3$ Otherwise, P^* that sends simulator's w violates soundness

Triviality of ZK with deterministic V

<u>Theorem</u>: Suppose that L has a ZK proof in which the verifier V is deterministic. Then $L \in BPP$

- If V is deterministic then P can fully determine all of V's future messages
- So P can precompute the transcript and send it over to V
- The new proof system inherits completeness, soundness and zero-knowledge properties from the original proof
- The new proof system is unidirectional and so $L \in BPP$

<u>Theorem</u>: Suppose that L has an auxiliary-input ZK proof in which the prover P is deterministic. Then $L \in BPP$

Triviality of 2-round ZK

<u>Theorem</u>: Suppose that L has a 2-round auxiliary-input ZK proof. Then $L \in BPP$

- Recall: 2-round proof for $\overline{QR_N}$ is not auxiliary-input ZK
- [BLV'02]: even without aux input (complexity assumptions)

- Let S(x) be the simulator's output on input x
- Consider a verifier $V^*(x, z = \alpha)$ that on auxiliary input z sends $z = \alpha$ as its first message

Triviality of 2-round ZK

- To decide if $x \in L$
 - pick random r and compute $\alpha = V(x, r)$
 - Run $S(x,\alpha)$ with $V^*(x,\alpha)$ and accept if and only if S outputs an accepting view for V^*
- Note: all we did is substitute the simulator for the prover as a means of generating β
- $x \in L$ is accepted because of completeness of (P, V)
- $x \notin L$ is rejected because of soundness of (P, V)

Black-Box ZK

Sequential vs Parallel Repetition

- Negligible soundness
- High round complexity
- ZK

- Negligible soundness
- Low round complexity
- ZK?

Constant-round ZK for NP

- Problem: V^* 's challenge is a string $b \in_R \{0,1\}^k$
- Simulator's expected number of guessing attempts is 2^k
- Solution: Let verifier commit to b in advance
- Yields 5 round proof (assuming OWF, 4-round argument)
- Question: can V be public-coin?
- Question: do 3-round protocols exist?

Public-coin and Black-Box ZK

<u>Public-coin</u>: V's messages are contiguous chunks of its random tape (cannot use, e.g., hiding commitments)

Black-box simulator: uses V^* 's code as a black-box

- So far, all simulators were black box $(\exists S \forall V^* \text{ vs } \forall V^* \exists S)$
- Hard to envision how to use V^* 's code in any other way
- Reverse engineering is hard (later: code obfuscation)

Triviality of Black-Box ZK

<u>Triviality of BB</u> ZK: only $L \in BPP$ have (negligible error)

- constant-round <u>public-coin</u> BB ZK proofs/arguments
- 3-round BB ZK proofs/arguments
- parallel repetition of HAM and QR_N protocols are public-coin
- applies to <u>any</u> constant number of rounds
- if HAM, $QR_N \notin BPP$, even private coins do not help for BB ZK

Triviality of const.-round public-coin BB ZK

<u>Theorem</u> [GK'91]: Suppose that L has a constant-round, negligible error, public-coin ZK proof. Then $L \in BPP$

Proof idea:

- Consider a PPT BB simulator S
- Define a $PPT\ V^*$ that on input m_1, \dots, m_{i-1} returns

$$m_i = f_k(m_1, ..., m_{i-1}),$$

where f_k is a <u>pseudorandom function</u>

• To decide if $x \in L$, run $S^{V^*}(x)$ and accept if and only if the resulting transcript is accepting

Pseudorandom Functions

<u>Definition</u>: $\{f_k\}$ is <u>pseudorandom</u> if f_k is not efficiently distinguishable from a random function R, given access to adaptively chosen $(x_i, f_k(x_i))$

$\int_{f_k}^{x_i} f_k$

Candidate PRFs:

• AES:

• Degree t polynomial: (against $\leq t$ queries)

$$AES_k(x)$$

$$G_{\chi_n}\left(\dots G_{\chi_2}\left(G_{\chi_1}(k)\right)\right)$$

$$a_0 + a_1 x + a_2 x^2 + \dots + a_t x^t$$

Triviality of const.-round public-coin BB ZK

Claim: If
$$x \in L$$
 then
$$Pr[S^{V^*}(x) = ACCEPT] \ge 1 - neg(|x|)$$

Exercise: otherwise can distinguish the output of $S^{V^*}(x)$ from a real interaction $(P, V^*)(x)$

Claim: If
$$x \notin L$$
 then
$$Pr[S^{V^*}(x) = ACCEPT] \le neg(|x|)$$

- Otherwise build a cheating prover P^*
- P^* convinces V that $x \in L$ with probability 1/poly(|x|)

The Cheating prover

- P^* invokes S, answering S's queries as if he were V
- Occasionally (once for each round), P^* forwards the message to the real "outside" V
- P^* hopes that the message m_i that he chose to forward to the outside V is the one that will appear in S's output
- If P^* correctly guesses in all of the k=O(1) rounds then he succeeds in making the outside V accept
- If the total number of queries made by S is t then

$$Pr[P^* \text{ correctly guesses in all } k \text{ rounds}] \ge 1/t^{O(k)}$$

= $1/poly(|x|)$

The Cheating prover

Program Obfuscation

Could be used to turn V^* into a black box

Obfuscation

- VBB obfuscation impossible in general
- In particular for "pseudo entropic" functions such as PRF
- [BP'12] negative results for obfuscation can be turned into positive results for ZK

Parallel/concurrent Composition of ZK

Failure of Parallel Composition of ZK

Theorem [F'90]: There exists a ZK protocol that does not retain its ZK properties when run twice in parallel

- There exist two provers P_1 , P_2 such that each is ZK, but the prover that runs both in parallel yields knowledge
- Specifically, a cheating V^* can extract a solution for a problem that is not solvable in polynomial time
- P_1 sends "knowledge" if and only if V can solve a computationally hard challenge generated by P_1
- Solutions are pseudorandom but can be verified by P_1 (which is unbounded)
- P_2 solves such pseudorandom challenges

Failure of Parallel Composition of ZK

- Both P_1, P_2 are ZK
- P_1 because a $PPT V^*$ is unable to solve the challenge and so P_1 will not send "knowledge"
- P_2 because the solution cannot be verified in poly time

• Can be made to work for poly time P_1 , P_2 using statistically-binding commitments and ZKPOKs

Concurrent Composition [F'90,DNS'97]

- No restrictions on synchronization of messages
- Adversary verifier determines the schedule
- Sequential and Parallel composition are special cases

In the concurrent setting

- Should simulate polynomially many sessions.
- Simulator cannot proceed beyond end of a session without being able to convince verifier
- Thus, simulator must rewind every session
- Simulation work done for one session may be lost due to rewinding of other sessions

An Interleaved Scheduling [DNS]

4-message protocols are "hard" to simulate concurrently

Messages may depend on history of interaction

Why Simulation is Hard

$$W(n) = 2 \cdot W(n-1) = 2^{n-1}$$

The round-complexity of cZK

<u>Theorem</u> [DNS'98]: Every languages in NP has a constant-round concurrent ZK protocol in the "timing model"

<u>Theorem</u> [D'00]: Every languages in NP has a constant-round concurrent ZK protocol with trusted setup

Theorem [KPR'98,CKPR'01]: Only languages in BPP have BB concurrent ZK protocols with $o(\log n/\log\log n)$ rounds

Theorem [KP'01,PRS'02]: Every languages in NP has a concurrent ZK protocol with $\omega(\log n)$ rounds

Summary

Saw triviality ($L \in BPP$) of:

- Unidirectional/2-round ZK
- ZK with deterministic V, P
- Constant-round public-coin BB ZK
- failure of parallel composition

Mentioned:

- 3-round BB ZK
- Difficulties in concurrent composition

History

Hugo Krawczyk

Yair Oren

Joe Kilian

Cynthia Dwork

Ran Canetti

Erez Petrank

Questions?