Base-two primitive permutation groups and their Saxl graphs

Hong Yi Huang

43rd Australasian Combinatorics Conference

13 December 2021

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group.

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. Denote by

$$G_{\alpha} = \{ g \in G \mid \alpha^{g} = \alpha \}$$

the stabiliser of α in G.

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. Denote by

$$G_{\alpha} = \{ g \in G \mid \alpha^{g} = \alpha \}$$

the stabiliser of α in G. Then

$$\bigcap_{\alpha\in\Omega}\mathsf{G}_{\alpha}=1.$$

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a permutation group. Denote by

$$G_{\alpha} = \{ g \in G \mid \alpha^{g} = \alpha \}$$

the stabiliser of α in G. Then

$$\bigcap_{\alpha\in\Omega} G_{\alpha}=1.$$

Question: For a subset $\Delta \subseteq \Omega$, when do we have

$$G_{(\Delta)} := \bigcap_{\alpha \in \Delta} G_{\alpha} = 1?$$

Let $G \leqslant \operatorname{\mathsf{Sym}}(\Omega)$ be a permutation group. Denote by

$$G_{\alpha} = \{ g \in G \mid \alpha^{g} = \alpha \}$$

the stabiliser of α in G. Then

$$\bigcap_{\alpha\in\Omega}G_{\alpha}=1.$$

Question: For a subset $\Delta \subseteq \Omega$, when do we have

$$G_{(\Delta)} := \bigcap_{\alpha \in \Delta} G_{\alpha} = 1?$$

•
$$G = S_n$$
, $\Omega = \{1, \dots, n\}$ and $\Delta = \{1, \dots, n-1\}$.

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a permutation group. Denote by

$$G_{\alpha} = \{ g \in G \mid \alpha^{g} = \alpha \}$$

the stabiliser of α in G. Then

$$\bigcap_{\alpha\in\Omega}G_{\alpha}=1.$$

Question: For a subset $\Delta \subseteq \Omega$, when do we have

$$G_{(\Delta)} := \bigcap_{\alpha \in \Delta} G_{\alpha} = 1?$$

- $G = S_n$, $\Omega = \{1, ..., n\}$ and $\Delta = \{1, ..., n-1\}$.
- G = GL(V), $\Omega = V$ and Δ contains a basis of V.

Definition

A base for $G \leqslant \operatorname{Sym}(\Omega)$ is a subset Δ of Ω such that $G_{(\Delta)} = 1$.

Definition

A base for $G \leqslant \operatorname{Sym}(\Omega)$ is a subset Δ of Ω such that $G_{(\Delta)} = 1$.

From now on, we will assume Ω is finite.

Base size b(G): the minimal size of a base for G.

Definition

A base for $G \leqslant \operatorname{Sym}(\Omega)$ is a subset Δ of Ω such that $G_{(\Delta)} = 1$.

From now on, we will assume Ω is finite.

Base size b(G): the minimal size of a base for G.

•
$$G = S_n$$
, $\Omega = \{1, \ldots, n\}$: $b(G) = n - 1$.

Definition

A base for $G \leqslant \operatorname{Sym}(\Omega)$ is a subset Δ of Ω such that $G_{(\Delta)} = 1$.

From now on, we will assume Ω is finite.

Base size b(G): the minimal size of a base for G.

- $G = S_n$, $\Omega = \{1, \ldots, n\}$: b(G) = n 1.
- G = GL(V), $\Omega = V$: b(G) = dim(V).

Observations: If G is transitive, then

• $b(G) = 1 \iff G$ is regular;

Observations: If *G* is transitive, then

- $b(G) = 1 \iff G$ is regular;
- $b(G) = 2 \iff G_{\alpha} \neq 1$ has a regular orbit.

Observations: If *G* is transitive, then

- $b(G) = 1 \iff G$ is regular;
- $b(G) = 2 \iff G_{\alpha} \neq 1$ has a regular orbit.

Question: Can we classify the finite transitive groups G with b(G) = 2?

Observations: If G is transitive, then

- $b(G) = 1 \iff G$ is regular;
- $b(G) = 2 \iff G_{\alpha} \neq 1$ has a regular orbit.

Question: Can we classify the finite transitive groups G with b(G) = 2?

Primitive group: G_{α} is a maximal subgroup of G.

Observations: If *G* is transitive, then

- $b(G) = 1 \iff G$ is regular;
- $b(G) = 2 \iff G_{\alpha} \neq 1$ has a regular orbit.

Question: Can we classify the finite transitive groups G with b(G) = 2?

Primitive group: G_{α} is a maximal subgroup of G.

Problem. Classify the finite primitive groups G with b(G) = 2.

Observations: If *G* is transitive, then

- $b(G) = 1 \iff G$ is regular;
- $b(G) = 2 \iff G_{\alpha} \neq 1$ has a regular orbit.

Question: Can we classify the finite transitive groups G with b(G) = 2?

Primitive group: G_{α} is a maximal subgroup of G.

Problem. Classify the finite primitive groups G with b(G) = 2.

Example

Consider the action of $G = D_{2n}$ on $\{1, \ldots, n\}$. Then

• $\{1,2\}$ is a base, so b(G) = 2;

Observations: If *G* is transitive, then

- $b(G) = 1 \iff G$ is regular;
- $b(G) = 2 \iff G_{\alpha} \neq 1$ has a regular orbit.

Question: Can we classify the finite transitive groups G with b(G) = 2?

Primitive group: G_{α} is a maximal subgroup of G.

Problem. Classify the finite primitive groups G with b(G) = 2.

Example

Consider the action of $G = D_{2n}$ on $\{1, \ldots, n\}$. Then

- $\{1,2\}$ is a base, so b(G) = 2;
- \bullet *G* is primitive iff *n* is a prime.

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types.

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.

Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible.

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types.

Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible.

Problem

Determine the pairs (H, V), where H is a finite group, V is a faithful irreducible $\mathbb{F}_p H$ -module and H has a regular orbit on V.

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types.

Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible.

Problem

Determine the pairs (H, V), where H is a finite group, V is a faithful irreducible \mathbb{F}_pH -module and H has a regular orbit on V.

• Partial results (e.g. H/Z(H) is simple).

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types.

Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible.

Problem

Determine the pairs (H, V), where H is a finite group, V is a faithful irreducible \mathbb{F}_pH -module and H has a regular orbit on V.

• Partial results (e.g. H/Z(H) is simple).

Almost simple: $Inn(T) \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types.

Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible.

Problem

Determine the pairs (H, V), where H is a finite group, V is a faithful irreducible $\mathbb{F}_p H$ -module and H has a regular orbit on V.

• Partial results (e.g. H/Z(H) is simple).

Almost simple: $Inn(T) \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

Question: Let H be a maximal subgroup of G. When is $H \cap H^g = 1$?

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types.

Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible.

Problem

Determine the pairs (H, V), where H is a finite group, V is a faithful irreducible $\mathbb{F}_p H$ -module and H has a regular orbit on V.

• Partial results (e.g. H/Z(H) is simple).

Almost simple: $Inn(T) \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

Question: Let H be a maximal subgroup of G. When is $H \cap H^g = 1$?

• CFSG is used. Partial results (Burness et al.)

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types.

Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible.

Problem

Determine the pairs (H, V), where H is a finite group, V is a faithful irreducible $\mathbb{F}_p H$ -module and H has a regular orbit on V.

• Partial results (e.g. H/Z(H) is simple).

Almost simple: $Inn(T) \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

Question: Let H be a maximal subgroup of G. When is $H \cap H^g = 1$?

CFSG is used. Partial results (Burness et al.)

Diagonal and twisted wreath types: Partial results (Fawcett, 2013/21)

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types.

Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible.

Problem

Determine the pairs (H, V), where H is a finite group, V is a faithful irreducible \mathbb{F}_pH -module and H has a regular orbit on V.

• Partial results (e.g. H/Z(H) is simple).

Almost simple: $Inn(T) \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

Question: Let H be a maximal subgroup of G. When is $H \cap H^g = 1$?

• CFSG is used. Partial results (Burness et al.)

Diagonal and twisted wreath types: Partial results (Fawcett, 2013/21)

Product type: In progress

Definition (Burness & Giudici, 2020)

Let $G \leqslant \operatorname{Sym}(\Omega)$. Then the Saxl graph $\Sigma(G)$ is a graph with

- vertex set Ω;
- α and β are adjacent $\iff \{\alpha, \beta\}$ is a base for G.

Definition (Burness & Giudici, 2020)

Let $G \leq \operatorname{Sym}(\Omega)$. Then the Saxl graph $\Sigma(G)$ is a graph with

- vertex set Ω;
- α and β are adjacent $\iff \{\alpha, \beta\}$ is a base for G.

•
$$G = D_8 = \langle (1234), (24) \rangle, \Omega = \{1, 2, 3, 4\}$$
:

Definition (Burness & Giudici, 2020)

Let $G \leqslant \operatorname{Sym}(\Omega)$. Then the Saxl graph $\Sigma(G)$ is a graph with

- vertex set Ω;
- α and β are adjacent $\iff \{\alpha, \beta\}$ is a base for G.

•
$$G = D_8 = \langle (1234), (24) \rangle, \ \Omega = \{1, 2, 3, 4\} : \ \Sigma(G) = \Box$$

Definition (Burness & Giudici, 2020)

Let $G \leqslant \operatorname{Sym}(\Omega)$. Then the Saxl graph $\Sigma(G)$ is a graph with

- vertex set Ω;
- α and β are adjacent $\iff \{\alpha, \beta\}$ is a base for G.

•
$$G = D_8 = \langle (1234), (24) \rangle, \ \Omega = \{1, 2, 3, 4\} : \ \Sigma(G) =$$

•
$$G = C_4 = \langle (1234) \rangle$$
, $\Omega = \{1, 2, 3, 4\}$:

Definition (Burness & Giudici, 2020)

Let $G \leqslant \operatorname{Sym}(\Omega)$. Then the Saxl graph $\Sigma(G)$ is a graph with

- vertex set Ω;
- α and β are adjacent $\iff \{\alpha, \beta\}$ is a base for G.

•
$$G = D_8 = \langle (1234), (24) \rangle, \ \Omega = \{1, 2, 3, 4\} : \Sigma(G) =$$

•
$$G = C_4 = \langle (1234) \rangle, \ \Omega = \{1, 2, 3, 4\}: \ \Sigma(G) = \sum_{i=1}^{n} (1234)^{i}$$

Definition (Burness & Giudici, 2020)

Let $G \leqslant \operatorname{Sym}(\Omega)$. Then the Saxl graph $\Sigma(G)$ is a graph with

- vertex set Ω;
- α and β are adjacent $\iff \{\alpha, \beta\}$ is a base for G.

•
$$G = D_8 = \langle (1234), (24) \rangle, \ \Omega = \{1, 2, 3, 4\} : \Sigma(G) =$$

•
$$G = C_4 = \langle (1234) \rangle, \ \Omega = \{1, 2, 3, 4\}: \ \Sigma(G) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n}$$

•
$$G = D_{10} = \langle (12345), (25)(34) \rangle$$
, $\Omega = \{1, 2, 3, 4, 5\}$:

Definition (Burness & Giudici, 2020)

Let $G \leqslant \operatorname{Sym}(\Omega)$. Then the Saxl graph $\Sigma(G)$ is a graph with

- vertex set Ω;
- α and β are adjacent $\iff \{\alpha, \beta\}$ is a base for G.

•
$$G = D_8 = \langle (1234), (24) \rangle, \ \Omega = \{1, 2, 3, 4\} : \Sigma(G) =$$

•
$$G = C_4 = \langle (1234) \rangle, \ \Omega = \{1, 2, 3, 4\}: \ \Sigma(G) = \sum_{i=1}^{n} (1234)^{i}$$

•
$$G = D_{10} = \langle (12345), (25)(34) \rangle, \ \Omega = \{1, 2, 3, 4, 5\} : \Sigma(G) = \langle (12345), (25)(34) \rangle$$

Another example

Let $G=\mathsf{PGL}_2(q)$ and Ω be the set of distinct pairs of 1-spaces in \mathbb{F}_q^2 .

- $G_{\alpha} = D_{2(q-1)}$;
- \bullet α and β form a base iff they share a common 1-space.

Another example

Let $G = \mathsf{PGL}_2(q)$ and Ω be the set of distinct pairs of 1-spaces in \mathbb{F}_q^2 .

- $G_{\alpha} = D_{2(q-1)}$;
- ullet α and β form a base iff they share a common 1-space.

Hence, $\Sigma(G)\cong J(q+1,2)$ is a Johnson graph: vertices 2-subsets of $\{1,\ldots,q+1\}$ and two vertices are adjacent if they are not disjoint.

Another example

Let $G = \mathsf{PGL}_2(q)$ and Ω be the set of distinct pairs of 1-spaces in \mathbb{F}_q^2 .

- $G_{\alpha} = D_{2(q-1)}$;
- ullet α and β form a base iff they share a common 1-space.

Hence, $\Sigma(G)\cong J(q+1,2)$ is a Johnson graph: vertices 2-subsets of $\{1,\ldots,q+1\}$ and two vertices are adjacent if they are not disjoint.

For example, when q=4 we have the complement of the Petersen graph.

From now on, we will assume b(G) = 2 and G is transitive. Then

• $\Sigma(G)$ is G-vertex-transitive;

- $\Sigma(G)$ is G-vertex-transitive;
- $K < G \implies \Sigma(G)$ is a subgraph of $\Sigma(K)$;

- $\Sigma(G)$ is G-vertex-transitive;
- $K < G \implies \Sigma(G)$ is a subgraph of $\Sigma(K)$;
- $\Sigma(G)$ has valency $r|G_{\alpha}|$, where r is the number of regular G_{α} -orbits;

- $\Sigma(G)$ is G-vertex-transitive;
- $K < G \implies \Sigma(G)$ is a subgraph of $\Sigma(K)$;
- $\Sigma(G)$ has valency $r|G_{\alpha}|$, where r is the number of regular G_{α} -orbits;
- $\Sigma(G)$ is the union of the regular orbital graphs of G;

- $\Sigma(G)$ is G-vertex-transitive;
- $K < G \implies \Sigma(G)$ is a subgraph of $\Sigma(K)$;
- $\Sigma(G)$ has valency $r|G_{\alpha}|$, where r is the number of regular G_{α} -orbits;
- $\Sigma(G)$ is the union of the regular orbital graphs of G;
- G is primitive $\Longrightarrow \Sigma(G)$ is connected.

From now on, we will assume b(G) = 2 and G is transitive. Then

- $\Sigma(G)$ is G-vertex-transitive;
- $K < G \implies \Sigma(G)$ is a subgraph of $\Sigma(K)$;
- $\Sigma(G)$ has valency $r|G_{\alpha}|$, where r is the number of regular G_{α} -orbits;
- $\Sigma(G)$ is the union of the regular orbital graphs of G;
- G is primitive $\Longrightarrow \Sigma(G)$ is connected.

Question: What is the diameter of $\Sigma(G)$ if G is primitive?

Conjecture (Burness & Giudici, 2020)

G primitive \implies any two vertices in $\Sigma(G)$ have a common neighbour.

Conjecture (Burness & Giudici, 2020)

G primitive \implies any two vertices in $\Sigma(G)$ have a common neighbour.

Example

If $G = \operatorname{PGL}_2(q)$ and $G_\alpha = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property.

Conjecture (Burness & Giudici, 2020)

G primitive \implies any two vertices in $\Sigma(G)$ have a common neighbour.

Example

If $G = \operatorname{PGL}_2(q)$ and $G_\alpha = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property.

Evidence:

ullet All primitive groups of degree up to 4095 \checkmark

Conjecture (Burness & Giudici, 2020)

G primitive \implies any two vertices in $\Sigma(G)$ have a common neighbour.

Example

If $G = \operatorname{PGL}_2(q)$ and $G_\alpha = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property.

- All primitive groups of degree up to 4095 √
- "Most" almost simple groups with alternating or sporadic socles

Conjecture (Burness & Giudici, 2020)

G primitive \implies any two vertices in $\Sigma(G)$ have a common neighbour.

Example

If $G = \operatorname{PGL}_2(q)$ and $G_\alpha = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property.

- All primitive groups of degree up to 4095 √
- "Most" almost simple groups with alternating or sporadic socles
- Chen & Du, 2021; Burness & H, 2021: $soc(G) = L_2(q)$

Conjecture (Burness & Giudici, 2020)

G primitive \implies any two vertices in $\Sigma(G)$ have a common neighbour.

Example

If $G = \operatorname{PGL}_2(q)$ and $G_\alpha = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property.

- All primitive groups of degree up to 4095 √
- "Most" almost simple groups with alternating or sporadic socles
- Chen & Du, 2021; Burness & H, 2021: $soc(G) = L_2(q)$ \checkmark
- Burness & H, 2021: almost simple groups with soluble stabilisers ✓

Conjecture (Burness & Giudici, 2020)

G primitive \implies any two vertices in $\Sigma(G)$ have a common neighbour.

Example

If $G = \operatorname{PGL}_2(q)$ and $G_\alpha = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property.

- All primitive groups of degree up to 4095 √
- "Most" almost simple groups with alternating or sporadic socles
- Chen & Du, 2021; Burness & H, 2021: $soc(G) = L_2(q)$ \checkmark
- Burness & H, 2021: almost simple groups with soluble stabilisers ✓
- Lee & Popiel, 2021: some affine groups

 $S := \{ almost simple primitive groups with soluble stabilisers \}$

```
\mathcal{S} := \{ \text{almost simple primitive groups with soluble stabilisers} \}
```

 \bullet Li & Zhang, 2011: ${\cal S}$ is completely known \checkmark

- $\mathcal{S} := \{ \text{almost simple primitive groups with soluble stabilisers} \}$
 - Li & Zhang, 2011: S is completely known \checkmark

$$\mathcal{B} := \{ G \in \mathcal{S} \mid b(G) = 2 \}$$

- $\mathcal{S} := \{ \text{almost simple primitive groups with soluble stabilisers} \}$
 - Li & Zhang, 2011: S is completely known \checkmark

$$\mathcal{B} := \{ G \in \mathcal{S} \mid b(G) = 2 \}$$

Burness, 2021: B is completely known √

- $S := \{ almost simple primitive groups with soluble stabilisers \}$
 - Li & Zhang, 2011: S is completely known \checkmark

$$\mathcal{B} := \{ G \in \mathcal{S} \mid b(G) = 2 \}$$

- Burness, 2021: B is completely known √
- Burness & H, 2021: The common neighbour property for \mathcal{B}

- $S := \{ \text{almost simple primitive groups with soluble stabilisers} \}$
 - Li & Zhang, 2011: S is completely known \checkmark
- $\mathcal{B} := \{ G \in \mathcal{S} \mid b(G) = 2 \}$
 - Burness, 2021: \mathcal{B} is completely known \checkmark
 - Burness & H, 2021: The common neighbour property for \mathcal{B}

Clique number: maximal size $\omega(G)$ of a complete subgraph of $\Sigma(G)$.

- $S := \{ almost simple primitive groups with soluble stabilisers \}$
 - Li & Zhang, 2011: S is completely known ✓
- $\mathcal{B} := \{ G \in \mathcal{S} \mid b(G) = 2 \}$
 - Burness, 2021: \mathcal{B} is completely known \checkmark
 - Burness & H, 2021: The common neighbour property for \mathcal{B}

Clique number: maximal size $\omega(G)$ of a complete subgraph of $\Sigma(G)$.

Independence number: clique number $\alpha(G)$ of the complement of $\Sigma(G)$.

- $\mathcal{S} := \{ \text{almost simple primitive groups with soluble stabilisers} \}$
 - Li & Zhang, 2011: S is completely known \checkmark
- $\mathcal{B} := \{ G \in \mathcal{S} \mid b(G) = 2 \}$
 - Burness, 2021: B is completely known √
 - Burness & H, 2021: The common neighbour property for \mathcal{B}
- Clique number: maximal size $\omega(G)$ of a complete subgraph of $\Sigma(G)$.
- Independence number: clique number $\alpha(G)$ of the complement of $\Sigma(G)$.

Example:
$$(G, G_{\alpha}) = (A_5, S_3) \implies \Sigma(G) = J(5, 2), \ \omega(G) = 4, \ \alpha(G) = 2.$$

- $\mathcal{S} := \{ \text{almost simple primitive groups with soluble stabilisers} \}$
 - Li & Zhang, 2011: S is completely known ✓

$$\mathcal{B} := \{ G \in \mathcal{S} \mid b(G) = 2 \}$$

- Burness, 2021: \mathcal{B} is completely known \checkmark
- Burness & H, 2021: The common neighbour property for \mathcal{B} \checkmark

Clique number: maximal size $\omega(G)$ of a complete subgraph of $\Sigma(G)$.

Independence number: clique number $\alpha(G)$ of the complement of $\Sigma(G)$.

Example:
$$(G, G_{\alpha}) = (A_5, S_3) \implies \Sigma(G) = J(5, 2), \ \omega(G) = 4, \ \alpha(G) = 2.$$

Theorem (Burness & H, 2021)

• $G \in \mathcal{B}$ is simple $\implies \omega(G) \geqslant 5$ or $(G, G_{\alpha}) = (A_5, S_3)$;

- $\mathcal{S} := \{ \text{almost simple primitive groups with soluble stabilisers} \}$
 - Li & Zhang, 2011: S is completely known ✓
- $\mathcal{B} := \{ G \in \mathcal{S} \mid b(G) = 2 \}$
 - Burness, 2021: B is completely known √
 - Burness & H, 2021: The common neighbour property for \mathcal{B} \checkmark
- Clique number: maximal size $\omega(G)$ of a complete subgraph of $\Sigma(G)$.
- Independence number: clique number $\alpha(G)$ of the complement of $\Sigma(G)$.
- **Example:** $(G, G_{\alpha}) = (A_5, S_3) \implies \Sigma(G) = J(5, 2), \ \omega(G) = 4, \ \alpha(G) = 2.$

Theorem (Burness & H, 2021)

- $G \in \mathcal{B}$ is simple $\implies \omega(G) \geqslant 5$ or $(G, G_{\alpha}) = (A_5, S_3)$;
- $G \in \mathcal{B} \implies \alpha(G) \geqslant 4 \text{ or } (G, G_{\alpha}) = (A_5, S_3).$

Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group of degree n and let v(G) be the valency of $\Sigma(G)$.

Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group of degree n and let v(G) be the valency of $\Sigma(G)$. Then

$$Q(G) := \frac{|\{(\alpha, \beta) \in \Omega^2 : G_{\alpha\beta} \neq 1\}|}{n^2} = 1 - \frac{v(G)}{n}$$

is the probability that a random pair in Ω is not a base for G.

Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group of degree n and let $\nu(G)$ be the valency of $\Sigma(G)$. Then

$$Q(G) := \frac{|\{(\alpha, \beta) \in \Omega^2 : G_{\alpha\beta} \neq 1\}|}{n^2} = 1 - \frac{v(G)}{n}$$

is the probability that a random pair in Ω is not a base for G.

Notes:

•
$$Q(G) < 1 \iff b(G) \leqslant 2$$
.

Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group of degree n and let $\nu(G)$ be the valency of $\Sigma(G)$. Then

$$Q(G) := \frac{|\{(\alpha, \beta) \in \Omega^2 : G_{\alpha\beta} \neq 1\}|}{n^2} = 1 - \frac{v(G)}{n}$$

is the probability that a random pair in Ω is not a base for G.

Notes:

- $Q(G) < 1 \iff b(G) \leqslant 2$.
- $Q(G) < 1/2 \implies \Sigma(G)$ has the common neighbour property.

Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group of degree n and let $\nu(G)$ be the valency of $\Sigma(G)$. Then

$$Q(G) := \frac{|\{(\alpha, \beta) \in \Omega^2 : G_{\alpha\beta} \neq 1\}|}{n^2} = 1 - \frac{v(G)}{n}$$

is the probability that a random pair in Ω is not a base for G.

Notes:

- $Q(G) < 1 \iff b(G) \leqslant 2$.
- $Q(G) < 1/2 \implies \Sigma(G)$ has the common neighbour property.
- $Q(G) < 1/t \implies \omega(G) \geqslant t+1$.

Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group of degree n and let $\nu(G)$ be the valency of $\Sigma(G)$. Then

$$Q(G) := \frac{|\{(\alpha, \beta) \in \Omega^2 : G_{\alpha\beta} \neq 1\}|}{n^2} = 1 - \frac{v(G)}{n}$$

is the probability that a random pair in Ω is not a base for G.

Notes:

- $Q(G) < 1 \iff b(G) \leqslant 2$.
- $Q(G) < 1/2 \implies \Sigma(G)$ has the common neighbour property.
- $Q(G) < 1/t \implies \omega(G) \geqslant t+1$.

Example

If $G=\mathsf{PGL}_2(q)$ and $G_\alpha=D_{2(q-1)}$, then $Q(G)\to 1$ as $q\to\infty$. But $\Sigma(G)=J(q+1,2)$ still has the common neighbour property.

Valency: Study the number r(G) of regular G_{α} -orbits.

Valency: Study the number r(G) of regular G_{α} -orbits.

• Chen & H, 2021: some general methods

Valency: Study the number r(G) of regular G_{α} -orbits.

- Chen & H, 2021: some general methods
- Probabilistic methods: lower bounds for r(G)

Valency: Study the number r(G) of regular G_{α} -orbits.

- Chen & H, 2021: some general methods
- Probabilistic methods: lower bounds for r(G)

Problem. Classify the primitive groups G with r(G) = 1.

Valency: Study the number r(G) of regular G_{α} -orbits.

- Chen & H, 2021: some general methods
- Probabilistic methods: lower bounds for r(G)

Problem. Classify the primitive groups G with r(G) = 1.

Burness & H, 2021: $G \in \mathcal{B}$ and r(G) = 1 \checkmark

Valency: Study the number r(G) of regular G_{α} -orbits.

- Chen & H, 2021: some general methods
- Probabilistic methods: lower bounds for r(G)

Problem. Classify the primitive groups G with r(G) = 1.

Burness & H, 2021: $G \in \mathcal{B}$ and r(G) = 1 \checkmark

e.g.
$$G = PGL_2(q)$$
 and $G_\alpha = D_{2(q-1)}$.

Valency: Study the number r(G) of regular G_{α} -orbits.

- Chen & H, 2021: some general methods
- Probabilistic methods: lower bounds for r(G)

Problem. Classify the primitive groups G with r(G) = 1.

Burness & H, 2021: $G \in \mathcal{B}$ and r(G) = 1 \checkmark

e.g. $G = PGL_2(q)$ and $G_\alpha = D_{2(q-1)}$.

Product-type primitive groups: $G \leq L \wr P$ with its product action on $\Omega = \Gamma^k$.

Valency: Study the number r(G) of regular G_{α} -orbits.

- Chen & H, 2021: some general methods
- Probabilistic methods: lower bounds for r(G)

Problem. Classify the primitive groups G with r(G) = 1.

Burness & H, 2021: $G \in \mathcal{B}$ and r(G) = 1 \checkmark

e.g. $G = PGL_2(q)$ and $G_\alpha = D_{2(q-1)}$.

Product-type primitive groups: $G \leq L \wr P$ with its product action on $\Omega = \Gamma^k$.

Theorem (Bailey & Cameron, 2013)

 $b(L \wr P) = 2 \iff r(L) \geqslant \text{the distinguishing number of } P.$

Valency: Study the number r(G) of regular G_{α} -orbits.

- Chen & H, 2021: some general methods
- Probabilistic methods: lower bounds for r(G)

Problem. Classify the primitive groups G with r(G) = 1.

Burness & H, 2021: $G \in \mathcal{B}$ and r(G) = 1 \checkmark

e.g. $G = PGL_2(q)$ and $G_\alpha = D_{2(q-1)}$.

Product-type primitive groups: $G \leq L \wr P$ with its product action on $\Omega = \Gamma^k$.

Theorem (Bailey & Cameron, 2013)

 $b(L \wr P) = 2 \iff r(L) \geqslant \text{the distinguishing number of } P.$

Questions:

• Properties of the Saxl graph $\Sigma(G)$ when $G = L \wr P$?

Valency: Study the number r(G) of regular G_{α} -orbits.

- Chen & H, 2021: some general methods
- Probabilistic methods: lower bounds for r(G)

Problem. Classify the primitive groups G with r(G) = 1.

Burness & H, 2021:
$$G \in \mathcal{B}$$
 and $r(G) = 1$ \checkmark

e.g.
$$G = PGL_2(q)$$
 and $G_{\alpha} = D_{2(q-1)}$.

Product-type primitive groups: $G \leq L \wr P$ with its product action on $\Omega = \Gamma^k$.

Theorem (Bailey & Cameron, 2013)

$$b(L \wr P) = 2 \iff r(L) \geqslant \text{the distinguishing number of } P.$$

Questions:

- Properties of the Saxl graph $\Sigma(G)$ when $G = L \wr P$?
- If $G < L \wr P$ is primitive, then when do we have b(G) = 2?

Thank you!