9장. 센티널

장애 상황을 대비하기 위한 레디스 자체 고가용성 기능인 센티널 에 대해 알아봅시다.

센티널은 .

센티널 자체의 SP0F를 방지하기 위해 최소 3대 이상일 때 정상 동작하도록 설계됨 클라이언트는 센티널에 먼저 연결해 마스터의 정보를 받고 마스터로 직접 연결하여 통신함

- 모니터링 : 마스터, 복제본 인스턴스의 상태를 실시간으로 확인
- 자동 페일오버 : 마스터 장애 시 복제본 중 하나를 마스터로 승격시킴
 - 。 레디스가 SPOF가 되는 것을 방지하기 위함
- 인스턴스 구성 정보 안내 : 클라이언트에게 현재 마스터 정보를 알려줌

쿼럼

마스터가 비정상 동작을 한다는 것에 동의해야 하는 센티널의 수

- 쿼럼을 만족하면 페일오버를 시작
- 일반적으로 센티널 인스턴스가 3이면 쿼럼은 2로 설정
- 쿼럼을 이용한 과반수 선출 개념을 사용하기 때문에 센티널 인스턴스를 3대 이상의 홀수로 구성하는 것을 권장

센티널 인스턴스

배치하기

물리적으로 서로 영향받지 않는 서버에서 실행되는 것을 권장

복제본이 2대까지 필요하지 않다면 1대 서버는 센티널 프로세스만 실행시키도록 배 치 가능

이 때 센티널 프로세스만 실행하는 서버는 최저 사양의 스펙으로 구성해도 Å

실행하기

1. 마스터 - 복제본 간 복제 연결이 된 상태로 만들기

REPLICAOF 192.168.0.11 6379

2. sentinel.conf 구성 파일 설정하기

```
# sentinal.conf
port 26379
# 모니터링 할 마스터 지정
# sentinel monitor (마스터 이름) (마스터 주소) (마스터 포트) (쿼럼)
sentinel monitor master-test 192.168.0.11 6379 2
```

- 센티널 인스턴스를 실행시킬 모든 서버에서 해당 파일을 작성해야 한다.
- 3. 센티널 인스턴스 시작하기

```
# redis-sentinel 이용
redis-sentinel /path/to/sentinel.conf

# redis-server 이용
redis-server /path/to/sentinel.conf --sentinel
```

2개 방법 모두 sentinel.conf 파일을 이용해 동일하게 동작하며 센티널 인스턴스를 시작시킨다.

지정된 위치에 파일이 없거나, 해당 경로에 데이터를 쓸 수 없으면 시작되지 않는다.

접근하기

```
# 센티널 인스턴스 직접 접근
$ redis-cli -p 26379
```

센티널 인스턴스에 접근하여 확인할 수 있는 정보

- 센티널이 모니터링하고 있는 마스터의 정보
- 센티널이 모니터링하고 있는 복제본의 정보

- 복제본을 함께 모니터링하고 있는 다른 센티널 인스턴스에 대한 정보
- → 레디스 인스턴스가 가진 데이터는 확인할 수 없어요 ...

마스터 정보 얻기

SENTINEL master (마스터 이름)

센티널이 정상적으로 구성됐는지 알아볼 수 있다.

- num-other-sentinel: 마스터를 모니터링하고 있는 다른 센티널의 수
- flags: 마스터 상태 (master:정상/s_down:주관적 다운/o_down:객관적 다운)
- num-slaves: 마스터에 연결된 복제본 개수

복제본 정보 얻기

```
# 마스터에 연결된 복제본 정보 얻기
sentinel> SENTINEL replicas master-test
```

```
# 마스터에 연결된 센티널 정보 얻기
sentinel> SENTINEL sentinels master-test
```

마스터에 연결된 센티널 인스턴스가 설정한 쿼럼 값보다 큰지 확인 sentinel> SENTINEL ckquorum master-test # 정상

 $\mbox{OK 3 usable Sentinels.}$ Quorum and failover authorization can # 비정상

(error) NOQUORUN 1 usable Sentinels. Not enough available Senthe specified quorum for this master. Not enough available Se reach the majority and authorize a failover

정상 센티널 수 < 설정 쿼럼 값 이면 비정상으로 판단. 자동 페일오버가 불가능하다.

• 장애가 발생해도 쿼럼 수 이상의 센티널 인스턴스에게 동의를 받을 수 없기 때문

페일오버 테스트

실제 레디스를 운영 서비스에 투입하기 전 테스트를 해보자

커맨드를 이용한 수동 페일오버 발생

```
# SENTINEL FAILOVER (마스터 이름)
SENTINEL FAILOVER master-test
```

다른 센티널의 동의를 구하지 않고 바로 페일오버 발생

확인 가능한 정보

- 센티널 복제본 노드 간 네트워크 단절 등의 이슈로 페일오버가 실패하는지
- 센티널에 연결된 애플리케이션의 커넥션이 정상적으로 승격된 마스터에 연결되는 지

마스터 동작을 중지시켜 자동 페일오버 발생

직접 마스터 노드에 장애를 발생시켜 페일오버가 발생하는지 확인

```
# redis-cli -h (마스터 주소) -p (마스터 포트) shutdown
$ redis-cli -h 192.168.0.11 -p 6379 shutdown
```

센티널이 주기적으로 마스터 노드에 ping을 보내 응답 확인

• sentinel.conf 에 설정한 down-after-milliseconds (기본값:30000, 30초) 동안 응답이 오지 않으면 페일오버 트리거

센티널 운영하기

패스워드 인증

장애 상황에 센티널이 자동으로 페일오버를 시키기 때문에 복제 구성 내 모든 레디스 노드는 잠재적 마스터 노드다. (복제 파트에서 패스워드를 모두 같은 걸로 설정하는 이유인듯!)

패스워드가 걸린 레디스를 모니터링할 경우 sentinel.conf에 패스워드 지정이 필요하다.

```
# sentinel.conf
# sentinel auth-pass (마스터 이름) (패스워드)
```

복제본 우선순위

replica-priority (기본값 100)

페일오버 진행 시 각 복제본 노드의 우선순위를 확인하여 **가장 작은 노드를 마스터 로 선출**한다.

값이 0인 복제본은 절대 마스터로 선출되지 않는다.

운영 중 센티널 구성 정보 변경

운영 중 모니터링할 마스터를 추가/제거/변경 할 수 있다.

센티널이 여러 대라면 각각의 센티널에 적용해야 한다. (변경한 설정이 다른 센티널 로 전파되지 않음)

```
# 새로운 마스터 모니터링 추가
# SENTINEL MONITOR (마스터 이름) (마스터 주소) (마스터 포트) (쿼럼)
이
# 마스터 모니터링 삭제
# SENTINEL REMOVE (마스터 이름)
이
# 특정 마스터에 대한 파라미터 변경
# SENTINEL SET (마스터 이름) [(파라미터명) (파라미터값) ...]
sentinel> SENTINEL SET master-test down-after-milliseconds 10 OK
sentinel> SENTINEL SET master-test quorum 1
OK
# 마스터에 종속되지 않는 센티널의 고유 설정값 변경 (레디스 6.2 ~)
# SENTINEL CONFIG SET (설정명) (설정값)
# SENTINEL CONFIG GET (설정명)
```

센티널 초기화

접근할 수 없는 복제본 노드도 계속 모니터링한다. 다시 돌아올지도 몰라 ...

모니터링 중단
SENTINEL REMOVE (마스터 이름)
센티널 초기화 (마스터에 대한 모니터링)
SENTINEL RESET (패턴)

- 센티널 인스턴스 상태 정보 초기화
- 센티널이 모니터링하는 마스터, 복제본, 다른 센티널 인스턴스 정보 새로고침
- 전체 마스터 정보 초기화(*)도 가능

센티널 노드 추가/제거

- 1. 마스터를 모니터링하도록 설정하기
- 2. 센티널 인스턴스 실행하기
- 3. 자동으로 다른 센티널에 known-list 에 추가 (with 자동 검색 메커니즘)

주의사항

• 여러 대 센티널을 한 번에 추가해야 한다면 **천천히 추가**하는 것이 오류 발생 가 능성을 줄인다.

왜?

새로운 센티널 노드 추가 시 네트워크 부하가 발생할 수 있기 때문

• 센티널 노드 끼리는 오랜 시간동안 응답이 없어도 센티널의 known-list 에서 지우 지 않는다.

왜?

일시적 네트워크 통신 문제로 인해 노드 간 연결이 잠깐 끊어 진 경우에도 클러스터 전체의 안정성을 유지하기 위해

자동 페일오버

센티널 노드들은 레디스 인스턴스를 함께 감지하여 오탐을 줄인다.

마스터 장애 상황 감지

- 1. down-after-milliseconds 값 만큼 마스터에 보낸 ping에 응답 받지 못하면 마스터가 다운됐다고 판단.
- 2. 마스터가 다운됐다고 판단한 센티널 노드는 마스터를 sdown (주관적 다운)으로 플래그 변경
- 3. 다른 센티널 노드들에게 장애 사실 전파
- 4. 다른 노드에서 장애 인지 여부를 응답함
 - 자신을 포함해 쿼럼 값 이상의 노드가 장애를 인지했다면 odown (객관적 다운)으로 플래그 변경
 - 마스터를 제외한 노드에 대해서는 sdown만 함 (페일오버 진행 시 sdown 상태 복제본은 승격되지 않게 하기 위해서)
- 5. 처음으로 odown 을 인지한 노드가 **페일오버 시작**
 - **에포크** 값 증가
 - 다른 센티널 노드에게 센티널 리더를 선출하기 위한 증가시킨 에포크 와 투표 메시지를 보냄
 - 전달받은 노드들은
 - 자신의 에포크 < 전달받은 에포크 면 자신의 에포크를 증가시키고 리더에게 투표하 겠다는 응답을 보냄
 - 자신의 에포크 = 전달받은 에포크 면 이미 리더로 선출한 센티널 id를 응답함
 - 하나의 에포크에서 센티널은 하나의 센티널에 투표할 수 있음 (변경 불가)
 - <u>과반수 이상의 센티널이 페일오버에 동의하면</u> 리더 센티널이 마스터로 승격 시킬 복제본을 선정함

🕵 자격 요건

- redis.conf 파일에 설정된 replica-priority 가 낮은 복제본
- ◦마스터로부터 더 많은 데이터를 수신(master-repl)한 복제본
- runID 가 사전 순으로 작은 복제본 (특별한 의미 없음, 하나의 노드를 고르기 위해)

- runID : 모든 레디스 인스턴스가 가지는 실행의 식별자
- 6. 선정한 복제본에 기존 마스터로부터의 복제를 끊음 (slaveof no one) 커맨드 수행)
- 7. 기존 복제본들을 새로 승격된 마스터의 복제본이 될 수 있도록 복제 연결 변경
- 8. 복제 그룹의 모든 센티널 노드에서도 레디스 구성 정보 변경
- 9. 센티널은 새로운 마스터를 모니터링함

에포크

각 마스터에서 발생한 **페일오버의 버전**을 관리

에포크 값을 이용해 페일오버 과정 진행동안 **모든 센티널 노드가 같은 작업을 시도** 하고 있다는 것을 보장

센티널 리더 선출

- 페일오버를 실제로 시도하기 전 센티널 리더 선출을 위해 실제 센티널 개수 중 과반수 이상의 센티널의 동의를 얻어야 함
- 즉 쿼럼 값보다 많은 센티널이 동의해도 과반수보다 작다면 페일오버는 발생하지 않음
- 및 페일오버를 수행하는 센티널 ≠ 센티널 리더

스플릿 브레인

네트워크 파티션 이슈로 인해 분산 환경의 데이터 저장소가 끊어지고 **끊긴 두 부분** 이 각각을 정상적인 서비스라고 인식하는 현상

예시

마스터와 센티널 A 그리고 복제본과 센티널 B, C 노드 간 네트워크 단절이 일어난 경우

- 센티널 B, C는 마스터 노드로의 접근이 비정상임을 감지
- 복제본 노드를 마스터로 승격시킴
 - 과반수 이상의 센티널이 같은 네트워크 파티션에 존재하기 때문
- 하나의 복제본에 2개 마스터가 생김 (!) → **스플릿 브레인**

문제점

- 스플릿 브레인 현상이 발생하면 이전에 연결된 클라이언트는 기존 마스터 인스턴 스에 데이터를 입력
- 이후에 연결된 클라이언트는 새롭게 승격된 마스터 인스턴스에 데이터를 입력
- 네트워크 단절이 복구되면 기존 마스터가 새롭게 승격된 마스터의 복제본으로 연 결

• 기존 마스터가 네트워크 단절 동안 처리한 모든 데이터가 사라짐 (!)