Outline

# Introduction 204213 Theory of Computation

Jittat Fakcharoenphol

Kasetsart University

June 29, 2021

#### Outline

- 1 Why, why, why?
- 2 Three major topics
- 3 Administrative information
- Mathematical background
- Types of proof
- 6 Practice

• What is a theory course?

- What is a theory course?
  - Okay, I'll tell you later.

- What is a theory course?
  - Okay, I'll tell you later.
- But why I should be interested in this course? (you ask)

- What is a theory course?
  - Okay, I'll tell you later.
- But why I should be interested in this course? (you ask)
  - Let's see... umm...

#### Elctronics devices

- People counters
- Expressway gates



<sup>&</sup>lt;sup>1</sup>source: from amazon product page.

#### Elctronics devices

Outline

- People counters
- Expressway gates
- Floor cleaner robots



1



<sup>&</sup>lt;sup>1</sup>source: from amazon product page.

## Regular expressions

Outline

2

```
html = "This is a simple html with <title>Ruby Regex</title> Handling."
/<title>(.*?)<\/title>/.match(html);
print $1,"\n"; ## Print the first match from html string
```

<sup>&</sup>lt;sup>2</sup>Taken from http://icfun.blogspot.com/2008/04/ 4 D > 4 B > 4 B > 4 B > 9 Q P

# Programming languages

Outline

```
def add5(x):
   return x+5
def dotwrite(ast):
   nodename = getNodename()
   label=symbol.sym_name.get(int(ast[0]),ast[0])
   print ' %s [label="%s' % (nodename, label),
   if isinstance(ast[1], str):
      if ast[1].strip():
         print '= %s"];' % ast[1]
         print ""1"
   else:
      print '"];'
      children = []
      for n, child in enumerate(ast[1:]):
         children.append(dotwrite(child))
      print ' %s -> {' % nodename,
      for name in children:
         print '%s' % name,
```

# Programming languages

Outline

```
def add5(x):
   return x+5
def dotwrite(ast):
   nodename = getNodename()
   label=symbol.sym_name.get(int(ast[0]),ast[0])
   print ' %s [label="%s' % (nodename, label).
   if isinstance(ast[1], str):
      if ast[1].strip():
         print '= %s"];' % ast[1]
      else:
         print ""1"
   else:
       print '"];'
      children = []
      for n, child in enumerate(ast[1:]):
          children.append(dotwrite(child))
      print ' %s -> {' % nodename,
      for name in children:
          print '%s' % name,
```

```
Parse tree (pruned)
 Python add5() function
                                   NEWLINE
                                               ENDMARKER
NAME = def NAME = add5 parameters
                                    COLON =
                                                      suite
                    vararoslist
                               RPAR = )
                                         NEWLINE
                                                     INDENT
                                                                       END
                                                                   NEWLINE
                     NAME = >
                                                        small stmt
                                                NAME = return
                                                              testlist
            Tokenization
                                                             PLUS = +
       NAME-def NAME-add5 OP=( NAME-x OP=) OP=:
                                                    NAME = :
```

<sup>&</sup>lt;sup>3</sup>source: wikipedia, article "Programming languages" → ⟨♂ → ⟨ ② → ⟨ ② → ⟨ ② → ⟨ ② → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○ → ⟨ ○

# Natural languages





<sup>&</sup>lt;sup>4</sup>source: wikipedia article "Parse tree".

## Machine learning





### Other areas 1



## Other areas 2



# Main question

What are the fundamental capabilities and limitations of computers?

## Main question

What are the fundamental capabilities and limitations of computers?

How are we going to study that BIG question?

## This huge bridge

Outline



How did it get designed?

<sup>&</sup>lt;sup>6</sup>source: wikipedia, article "Golden Gate Bridge"; idea taken from S.A.

## From this simpler model!

Outline







#### Our turn

So, instead of this



• We'll study something much, much simpler.



<sup>&</sup>lt;sup>8</sup>source: wikipedia, article "Computer".

This is a theory course; that means...

This is a theory course; that means...

• We'll study something from the mathematical point of view.

This is a theory course; that means...

- We'll study something from the mathematical point of view.
- We'll be interested in asserting properties that are definitely true (under a clearly-stated assumption).

This is a theory course; that means...

- We'll study something from the mathematical point of view.
- We'll be interested in asserting properties that are definitely true (under a clearly-stated assumption).
- And, we'll **prove** lots of theorems.

## Three major topics

- Complexity theory
- Computability theory
- Automata theory

# Complexity theory

- What makes some problems computationally hard and others easy?
- **Goal:** Distinguishing between hard problems (but maybe solvable) and easy problems

• What can computers do?

- What can computers do?
  - A lot.

- What can computers do?
  - A lot.
- But there are basic problems that cannot be solved by computers.
  - Oh...

- What can computers do?
  - A lot.
- But there are basic problems that cannot be solved by computers.
  - Oh...
- **Goal:** Distinguishing between problems that can be solved by computers and those that cannot be solved.

## Automata theory



<sup>9</sup>source: wikipedia Image:TeaAutomatAndMechanism.jpg > < \( \) > \( \) \( \) \( \) \( \) \( \)

## Automata theory

- Studies definitions and properties of mathematical models of computation.
- Basic models:
  - Finite automata used in text processing, compilers, hardware design
  - Context-free grammar used in compilers, natural language processing.

#### Course information

- Homepage: https://theory.cpe.ku.ac.th/wiki/index.php/01204213
- Other sites: google classroom, discord
- Grading: 35% midterm, 35% final, 30% homework

#### Notes on the course slides

You've seen that the slides are very sketchy and extremely incomplete. It only provides a guideline for me to proceed, and a rough idea on what's going on in the class for you.

They are not a **substitute** for class attendance.

## Mathematical background

Outline

Since this is a theory course, everything we conclude will be precise. Every statement we accept must be true, i.e., the argument supporting it must be solid—beyond **any** doubt.

## Mathematical background

Since this is a theory course, everything we conclude will be precise. Every statement we accept must be true, i.e., the argument supporting it must be solid—beyond **any** doubt.

• Okay, we'll **prove** lots of theorems.

#### Basic notions and terminology

Sets

- Sequences and tuples
- Functions and relations
- Graphs
- Strings and languages
- Boolean logic

• elements, members

- elements, members
- subset:  $A \subseteq B$  iff for each element  $x \in A$ ,  $x \in B$ .

- elements, members
- subset:  $A \subseteq B$  iff for each element  $x \in A$ ,  $x \in B$ .
- proper subset:  $A \subsetneq B$  if  $A \subseteq B$  and  $A \neq B$

- elements, members
- subset:  $A \subseteq B$  iff for each element  $x \in A$ ,  $x \in B$ .
- proper subset:  $A \subsetneq B$  if  $A \subseteq B$  and  $A \neq B$
- multiset

- elements, members
- subset:  $A \subseteq B$  iff for each element  $x \in A$ ,  $x \in B$ .
- proper subset:  $A \subsetneq B$  if  $A \subseteq B$  and  $A \neq B$
- multiset
- empty set (∅)

### Sets (2)

• infinite sets: natural numbers  $(\mathcal{N})$ , integers  $(\mathcal{Z})$ , reals  $(\mathcal{R})$ 

### Sets (2)

- infinite sets: natural numbers  $(\mathcal{N})$ , integers  $(\mathcal{Z})$ , reals  $(\mathcal{R})$
- set operations: union, intersection, complement

### Sets (2)

- infinite sets: natural numbers  $(\mathcal{N})$ , integers  $(\mathcal{Z})$ , reals  $(\mathcal{R})$
- set operations: union, intersection, complement
- Venn diagram

- A sequence is an ordered list of objects.
  - 1, 2, 3, 4, 5, . . .
  - 3, 4, 2, 6
  - Sometimes we put them in parentheses, e.g., (3,4,2,6).

- A sequence is an ordered list of objects.
  - 1, 2, 3, 4, 5, . . .
  - 3, 4, 2, 6
  - Sometimes we put them in parentheses, e.g., (3, 4, 2, 6).
- A tuple is a finite sequence. A *k*-tuple is a sequence of *k* elements. A 2-tuple is called a pair.

- A sequence is an ordered list of objects.
  - 1, 2, 3, 4, 5, . . .
  - 3, 4, 2, 6
  - Sometimes we put them in parentheses, e.g., (3, 4, 2, 6).
- A tuple is a finite sequence. A k-tuple is a sequence of k elements. A 2-tuple is called a pair.
- A power set of set A is a set of all subsets of A.
  - $\{\emptyset, \{a\}, \{b\}, \{a, b\}\}\$  is a power set of  $\{a, b\}$ .

- A sequence is an ordered list of objects.
  - 1, 2, 3, 4, 5, . . .
  - 3, 4, 2, 6
  - Sometimes we put them in parentheses, e.g., (3, 4, 2, 6).
- A tuple is a finite sequence. A k-tuple is a sequence of k elements. A 2-tuple is called a pair.
- A power set of set A is a set of all subsets of A.
  - $\{\emptyset, \{a\}, \{b\}, \{a, b\}\}\$  is a power set of  $\{a, b\}$ .
- A Cartesian product of two subsets A and B is a set of all pairs whose first element is a member of A and second element is a member of B.

#### Functions and relations

- function, mapping
- domain, range
- function arguments
- k-ary functions, binary functions, unary functions
- predicate
- relations
- equivalence relations

- Strings are basic objects of our study.
- Many "kinds" of strings:
  - DNA sequence: CGTAGACGATAGACCGGAAG
  - English sentence: "Hello, I am a student."
  - Binary string: 101011101001000111010101

 When we want to talk about particular set of strings, we have to specify the set of possible symbols in the strings.

- When we want to talk about particular set of strings, we have to specify the set of possible symbols in the strings.
- An alphabet is a nonempty finite set. Each member of the alphabet is called the symbol of the alphabet.
  - DNA sequence:  $\Sigma_1 = \{A, C, G, T\}$
  - English sentence:  $\Sigma_2 = \{a, \dots, z, A, \dots, Z, space, comma\}$
  - Binary string:  $\Sigma_3 = \{0, 1\}$

- When we want to talk about particular set of strings, we have to specify the set of possible symbols in the strings.
- An alphabet is a nonempty finite set. Each member of the alphabet is called the symbol of the alphabet.
  - DNA sequence: Σ<sub>1</sub> = {A, C, G, T}
    English sentence: Σ<sub>2</sub> = {a,..., z, A,..., Z, space, comma}
    Binary string: Σ<sub>3</sub> = {0,1}
- A string over an alphabet is a finite sequence of symbols from the alphabet. (usually written with no commas).

- When we want to talk about particular set of strings, we have to specify the set of possible symbols in the strings.
- An alphabet is a nonempty finite set. Each member of the alphabet is called the symbol of the alphabet.
  - DNA sequence: Σ<sub>1</sub> = {A, C, G, T}
    English sentence: Σ<sub>2</sub> = {a,..., z, A,..., Z, space, comma}
  - Binary string:  $\Sigma_3 = \{0, 1\}$
- A string over an alphabet is a finite sequence of symbols from the alphabet. (usually written with no commas).
- The length of string w is the number of symbols in w. The length of w is denoted by |w|.

- When we want to talk about particular set of strings, we have to specify the set of possible symbols in the strings.
- An alphabet is a nonempty finite set. Each member of the alphabet is called the symbol of the alphabet.
  - DNA sequence:  $\Sigma_1 = \{A, C, G, T\}$
  - English sentence:  $\Sigma_2 = \{a, \dots, z, A, \dots, Z, space, comma\}$
  - Binary string:  $\Sigma_3 = \{0, 1\}$
- A string over an alphabet is a finite sequence of symbols from the alphabet. (usually written with no commas).
- The length of string w is the number of symbols in w. The length of w is denoted by |w|.
- A string of length zero is called the empty string, denoted by  $\epsilon$ .

Outline

• For a string w of length n, we write  $w = w_1 w_2 \cdots w_n$  where each  $w_i$  is a symbol.

- For a string w of length n, we write  $w = w_1 w_2 \cdots w_n$  where each  $w_i$  is a symbol.
- If  $x = x_1 x_2 \cdots x_m$  and  $y = y_1 y_2 \cdots y_m$ , the concatenation of x and y, denoted by xy is the string  $x_1 x_2 \cdots x_n y_1 y_2 \cdots y_m$ .

- For a string w of length n, we write  $w = w_1 w_2 \cdots w_n$  where each  $w_i$  is a symbol.
- If  $x = x_1 x_2 \cdots x_m$  and  $y = y_1 y_2 \cdots y_m$ , the concatenation of x and y, denoted by xy is the string  $x_1 x_2 \cdots x_n y_1 y_2 \cdots y_m$ .
- Also, x<sup>k</sup> is the string obtained by concatinating x with itself for k times.
  - If x is abc,  $x^3$  is abcabcabc

- For a string w of length n, we write  $w = w_1 w_2 \cdots w_n$  where each  $w_i$  is a symbol.
- If  $x = x_1 x_2 \cdots x_m$  and  $y = y_1 y_2 \cdots y_m$ , the concatenation of x and y, denoted by xy is the string  $x_1 x_2 \cdots x_n y_1 y_2 \cdots y_m$ .
- Also, x<sup>k</sup> is the string obtained by concatinating x with itself for k times.
  - If x is abc,  $x^3$  is abcabcabc
- A language is a set of strings.

### Boolean logic

- boolean operations: negation (NOT), conjuction (AND), and disjunction (OR)
- propositions, predicates

### Definitions, theorems, and proofs (1)

- Definitions
- Mathematical statements

### Definitions, theorems, and proofs (2)

- **Proofs** are solid logical arguments. We need proofs beyond any doubt.
- Theorems are mathematical statements supported by proofs.
- Lemmas are "smaller" mathematical statements used to prove theorems. (But sometimes lemmas get more popular.)
- Corollaries are statements that follow easily from some theorem or lemma.

You should be familiar with these concepts from the discrete math class.

Read carefully.

- Read carefully.
- Identify parts.

- Read carefully.
- Identify parts.
  - $P \Leftrightarrow Q \equiv (P \Rightarrow Q) \land (P \Leftarrow Q)$
  - For two sets A and B,  $A = B \equiv (A \subseteq B) \land (B \subseteq A)$

- Read carefully.
- Identify parts.

• 
$$P \Leftrightarrow Q \equiv (P \Rightarrow Q) \land (P \Leftarrow Q)$$

- For two sets A and B,  $A = B \equiv (A \subseteq B) \land (B \subseteq A)$
- Try with examples

- Read carefully.
- Identify parts.

• 
$$P \Leftrightarrow Q \equiv (P \Rightarrow Q) \land (P \Leftarrow Q)$$

• For two sets A and B, 
$$A = B \equiv (A \subseteq B) \land (B \subseteq A)$$

- Try with examples
  - Try to find counter examples.

### Finding proofs: tips

- Be patient.
- Come back to it.
- Be neat.
- Be concise.

### Types of proof

There are many. Here are a few of them...

- Proof by construction
- Proof by contradiction
- Proof by induction

Let's review what they are and see some examples.

#### Proof by construction

You want to know if something exists?

#### Proof by construction

You want to know if something exists? Okay, I'll construct it for you.

### Proof by contradiction

You want to know if something is true?

### Proof by contradiction

You want to know if something is true? Okay, let's see what happens if it is not true.

### Proof by contradiction

You want to know if something is true? Okay, let's see what happens if it is not true.

• If that leads to impossibility, you should then believe me that it is true.

## Proof by induction (1)

This one is hard...

## Proof by induction (1)

This one is hard... Examples might help.

# Proof by induction (2)

• Want to prove that a statement P(i) is true for every  $i \in \mathcal{N}$ .

# Proof by induction (2)

- Want to prove that a statement P(i) is true for every  $i \in \mathcal{N}$ .
- There are two steps: basis and induction step.
  - Basis proves that P(1) is true.
  - **Induction step** proves that for each  $i \ge 1$ , if P(i) is true, then P(i+1) is true.

# Proof by induction (2)

Outline

- Want to prove that a statement P(i) is true for every  $i \in \mathcal{N}$ .
- There are two steps: basis and induction step.
  - Basis proves that P(1) is true.
  - **Induction step** proves that for each  $i \ge 1$ , if P(i) is true, then P(i+1) is true.
- When proving the induction step, the assumption that P(i) is true is called induction hypothesis.

Outline

There are 10 students in a class. The average score of one exam is 10, and none of the students gets less than 0 in this exam. Prove that the number of students who get the scores of at least 20 from this exam is at most 5.

by contandiction
$$\chi_1 + \chi_2 + ... + \chi_{10}$$

$$\chi_1 + \chi_2 + ... + \chi_{10}$$

$$\chi_2 + \chi_2 + ... + \chi_{10}$$

$$\chi_3 + \chi_4 + ... + \chi_{10}$$

$$\chi_4 + \chi_4 + ... + \chi_{10}$$

Prove that for any natural number  $n \ge 1$ ,

$$1+2+\cdots+n=\frac{(n)(n+1)}{2}.$$

Prove that

$$\sum_{i=1}^{n} i \cdot 2^{i} = (n-1) \cdot 2^{n+1} + 2.$$

Suppose that we draw n lines on the plane in such a way that no two are parallel and no three intersect in a common point. Prove that the plane is divided into exactly n(n+1)/2+1 parts by the lines.