Minimum Spanning Trees

Chapter: 23 of your textbook

Consider the following problem

- A town has set of houses and set of roads
- Any road connects two and only two houses
- A road connecting houses u and v has repair cost w(u,v)
- Goal: Repair necessary number of roads and no more roads such that
 - Everyone stays connected i.e., can reach every houses from all other houses
 - Total repair cost is minimum

Consider the another problem

- Electronic circuit designs often need to make the pins of several components electrically equivalent by writing them together
- Wires are typically costly
- Goal: We need just the right amount of wire such that
 - Every pin stays connected i.e., can reach every pin from all other pins
 - Total length of the wires required is minimum

How do we attack such problem?

- Model the problem as a graph
 - Undirected graph G=(V,E)
 - Weight w(u,v) on each edge (u,v)∈ E
 - Find T as a subset of E such that
 - T connects all vertices (T is a spanning tree)
 - Total weight $w(T) = \sum_{(u,v) \in T} w(u,v)$ is minimized
 - A spanning tree whose weight is minimum over all spanning trees is called minimum spanning tree (MST)

Minimum Spanning Tree

 Problem: given a connected, undirected, weighted graph:

Minimum Spanning Tree

 Problem: given a connected, undirected, weighted graph, find a spanning tree using edges that minimize the total weight

- A spanning tree is a tree that connects all vertices (no cycles)
- Number of edges = ?
- A spanning tree has no designated root.

How to find MST?

- Connect every city to the closest city?
 - Does not guarantee a spanning tree
 - Not necessarily

MST

- Some properties
 - It has |V|-1 edges
 - It has no cycle
 - It might not be unique
- Finding a solution
 - We will build a set A of edges
 - Initially A has no edges (empty set)
 - We add edges to A by maintaining the loop invariant: A is a subset of some MST
 - Add only those edges that maintain this loop invariant
 - If A is a subset of some MST and edge (u,v) is safe for A if and only if A ∪{(u,v)} is also subset of some MST

Generic MST

Generic MST code is as follows

```
GENERIC-MST(G, w)

1 A = \emptyset

2 while A does not form a spanning tree

3 find an edge (u, v) that is safe for A

4 A = A \cup \{(u, v)\}

5 return A
```

How do we find safe edges?

Generic MST

Generic MST code is as follows

```
GENERIC-MST(G, w)

1 A = \emptyset

2 while A does not form a spanning tree

3 find an edge (u, v) that is safe for A

4 A = A \cup \{(u, v)\}

5 return A
```

How do we find safe edges?

Finding safe edge

- Let's look at an example
 - Edge (h,g) has the lowest weight of any edge in the graph. Is it safe for A={}?

We will first introduce some definitions

Finding safe edge

- Some definitions first
 - Let S be a subset of vertices V and A be subset of edges E
 - A cut(S,V-S) is a partition of vertices into disjoint sets S and V-S
 - An edge (u,v)∈E crosses cut (S,V-S) if one end point of the edge is in V and the other is in V-S
 - A cut respects A if and only if no edge in A crosses the cut
 - An edge is a light edge crossing a cut if and only if its weight is minimum over all edges crossing the cut
 - For a given cut there may be more than one light edge

Main theorem for identifying safe edge

Theorem

 Let A be a subset of some MST, (S,V-S) be a cut that respects A, and (u,v) be a light edge crossing (S,V-S).
 Then (u,v) is safe for A

Proof:

- read from the book
- We will do it in class
- Note that that safe edge selection is "greedy"
 - Out of all edges crossing the cut the we choose the one with minimum weight

MST growing strategy

In Generic-MST

- A is a forest containing connected components, initially each component is a single vertex
- Any safe edge merges two of the components into one, and each component is a tree
- Since MST has exactly |V|-1 edges, the for loop iterates |V|-1 time, in other words, after adding |V|-1 edges we are down to just one component

Two strategies for growing

- Grow a single tree until it covers all vertices (Prim's algorithm)
- Grow multiple trees and combine them until it becomes a single tree that encompasses all vertices (Kruskal's algorithm)

Minimum Spanning Tree

- MSTs satisfy the optimal substructure property: an optimal tree is composed of optimal subtrees
 - Let T be an MST of G with an edge (u,v) in the middle
 - Removing (u,v) partitions T into two trees T₁ and T₂
 - $w(T) = w(u,v) + w(T_1) + w(T_2)$
- Claim 1: T_1 is an MST of $G_1 = (V_1, E_1)$, and T_2 is an MST of $G_2 = (V_2, E_2)$

Proof by contradiction:

- if T_I is not optimal, we can replace T_I with a better spanning tree, T_I
- T₁', T₂ and (u, v) form a new spanning tree T'
- W(T') < W(T). Contradiction.

Minimum Spanning Tree

- MSTs satisfy the optimal substructure property: an optimal tree is composed of optimal subtrees
 - Let T be an MST of G with an edge (u,v) in the middle
 - Removing (u,v) partitions T into two trees T₁ and T₂
 - $w(T) = w(u,v) + w(T_1) + w(T_2)$
 - A light edge (u,v) between two trees T_1 and T_1 (where there is no overlap between T_1 and T_2) is an edge such that u belongs to V_1 and v belongs to V_2
- Claim 2: (u, v) is the light (minimum weight edge among all edges crossing a cut) edge connecting $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$

Proof by contradiction:

- if (u, v) is not the lightest edge, we can remove it, and reconnect T_1 and T_2 with a lighter edge (x, y)
- T₁, T₂ and (x, y) form a new spanning tree T'
- W(T') < W(T). Contradiction.

Algorithms

- Generic idea:
 - Compute MSTs for sub-graphs
 - Connect two MSTs for sub-graphs with the lightest edge
- Two of the most well-known algorithms
 - Prim's algorithm
 - Kruskal's algorithm
 - Let's first talk about the ideas behind the algorithms without worrying about the implementation and analysis

Prim's algorithm

- · Basic idea:
 - Start from an arbitrary single node
 - A MST for a single node has no edge
 - Gradually build up a single larger and larger
 MST

Prim's algorithm

- Basic idea:
 - Start from an arbitrary single node
 - A MST for a single node has no edge
 - Gradually build up a single larger and larger
 MST

Prim's algorithm

- Basic idea:
 - Start from an arbitrary single node
 - A MST for a single node has no edge
 - Gradually build up a single larger and larger
 MST

Prim's algorithm in words

- Randomly pick a vertex as the initial tree T
- Gradually expand into a MST:
 - For each vertex that is not in T but directly connected to some nodes in T
 - Compute its minimum distance to any vertex in T
 - Select the vertex that is closest to T
 - Add it to T

Total weight = 3 + 8 + 6 + 5 + 7 + 9 + 15 = 53

Kruskal's algorithm

- Basic idea:
 - Grow many small trees
 - Find two trees that are closest (i.e., connected with the lightest edge), join them with the lightest edge
 - Terminate when a single tree forms

Claim

- If edge (u, v) is the lightest among all edges, (u, v) is in a MST
- Proof by contradiction:
 - Suppose that (u, v) is not in any MST
 - Given a MST T, if we connect (u, v), we create a cycle
 - Remove an edge in the cycle, have a new tree T'
 - $-W(T') \leq W(T)$

By the same argument, the second, third, ..., lightest edges, if they do not create a cycle, must be in MST

Kruskal's algorithm in words

- Procedure:
 - Sort all edges into non-decreasing order
 - Initially each node is in its own tree
 - For each edge in the sorted list
 - If the edge connects two separate trees, then
 - join the two trees together with that edge

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

Back to Prim's algorithm

- Randomly pick a vertex as the initial tree T
- Gradually expand into a MST:
 - For each vertex that is not in T but directly connected to some nodes in T
 - Compute its minimum distance to any vertex in T
 - Select the vertex that is closest to T
 - Add it to T

Pseudocode for Prim's algorithm

```
Given G = (V, E). Output: a MST T.
Randomly select a vertex v
S = \{v\}; A = V \setminus S; T = \{\}.
While (A is not empty)
find a vertex u \in A that connects to vertex v \in S such that w(u, v) \le w(x, y), for any x \in A and y \in S
S = S \cup \{u\}; A = A \setminus \{u\}; T = T \cup (u, v).
End
Return T
```

Time complexity

```
Given G = (V, E), |V| = n, |E| = m. Output: a MST T.
Randomly select a vertex v
S = \{v\}; A = V \setminus S; T = \{\}.
                                    n vertices
While (A is not empty)
  find a vertex u \in A that connects to vertex v \in S such
  that w(u, v) \le w(x, y), for any x \in A and y \in S
  S = S \cup \{u\}; A = A \setminus \{u\}; T = T \cup \{u, v\}.
End
Return T
```

Time complexity: n * (time spent on red line per vertex)

- Naïve: test all edges => $\Theta(n * m)$ which can be $\Theta(n^3)$ for dense graph
- Improve: keep the list of candidates in an array => Θ(n²)
- Better: with priority queue => Θ(m log n)

Idea 1: naive

find a vertex $u \in A$ that connects to vertex $v \in S$ such that $w(u, v) \le w(x, y)$, for any $x \in A$ and $y \in S$


```
\begin{split} & \text{min\_weight} = \text{infinity.} \\ & \text{For each edge } (x, y) \in E \\ & \text{if } x \in A, \, y \in S, \, \text{and } w(x, \, y) < \text{min\_weight} \\ & u = x; \, v = y; \, \text{min\_weight} = w(x, \, y); \end{split}
```

time spent per vertex: Θ(m)

Total time complexity: $\Theta(n^*m)$

Idea 2: distance array

```
// For each vertex v, d[v] is the min distance from v to any node already in S
// p[v] is the parent node of v in the spanning tree
For each v \in V
        d[v] = infinity; p[v] = null;
Randomly select a v, d[v] = 1; // d[v] = 1 just to ensure proper start
S = \{\}; A = V; T = \{\}.
While (A is not empty)
        Search d to find the smallest d[u] > 0.
        S = S \cup \{u\}; A = A \setminus \{u\}; T = T \cup \{u, p[u]\};
        d[u] = 0.
        For each v in adj[u]
                  if d[v] > w(u, v)
                           d[v] = w(u, v);
                           p[v] = u;
```

End

	a	b	c	d	e	f	g	h
d	8	8	1	∞	8	∞	8	8
p	/	/	/	/	/	/	/	/

	a	b	c	d	e	f	g	h
d	8	8	0	∞	∞	∞	8	8
p	/	/	/	/	/	/	/	/

	a	b	c	d	e	f	g	h
d	∞	14	0	3	∞	∞	∞	∞
p	/	C	/	C	/	/	/	/

	a	b	c	d	e	f	g	h
d	∞	14	0	0	∞	∞	8	8
p	/	С	/	С	/	/	/	/

	a	b	c	d	e	f	g	h
d	8	8	0	0	10	∞	∞	8
p	/	d	/	С	d	/	/	/

	a	b	c	d	e	f	g	h
d	8	0	0	0	10	∞	8	8
p	/	d	/	c	d	/	/	/

	a	b	c	d	e	f	g	h
d	6	0	0	0	10	5	8	8
p	b	d	/	С	d	b	/	/

	a	b	c	d	e	f	g	h
d	6	0	0	0	10	0	8	8
p	b	d	/	С	d	b	/	/

	a	b	c	d	e	f	g	h
d	6	0	0	0	7	0	9	8
p	b	d	/	С	f	b	f	/

	a	b	c	d	e	f	g	h
d	0	0	0	0	7	0	9	8
p	b	d	/	С	f	b	f	/

	a	b	c	d	e	f	g	h
d	0	0	0	0	0	0	9	8
p	b	d	/	С	f	b	f	/

	a	b	C	d	e	f	g	h
d	0	0	0	0	0	0	9	15
p	b	d	/	С	f	b	f	e

	a	b	c	d	e	f	g	h
d	0	0	0	0	0	0	0	15
p	b	d	/	c	f	b	f	e

	a	b	c	d	e	f	g	h
d	0	0	0	0	0	0	0	0
p	b	d	/	С	f	b	f	e

Time complexity?

```
// For each vertex v, d[v] is the min distance from v to any node already in S
// p[v] is the parent node of v in the spanning tree
For each v \in V
        d[v] = infinity; p[v] = null;
Randomly select a v, d[v] = 1; // d[v]=1 just to ensure proper start
S = \{\}. T = \{\}. A = V.
                                       n vertices
While (A is not empty)
                                                                 Θ(n) per vertex
        Search d to find the smallest d[u] > 0.
        S = S \cup \{u\}; A = A \setminus \{u\}; T = T \cup \{u, p[u]\};
        d[u] = 0.
                                             O(n) per vertex if using adj list
        For each v in adj[u]
                                            \Theta(n) per vertex if using adj matrix
                 if d[v] > w(u, v)
                           d[v] = w(u, v);
                           p[v] = u;
End
```

Overall complexity: Θ (n²)

Idea 3: priority queue (min-heap)

Observation

- In idea 2, we need to search the distance array n times, each time we only look for the minimum element.
- Distance array size = n
- $n x n = n^2$

Can we do better?

- Priority queue (heap) enables fast retrieval of min (or max) elements
- log (n) for most operations

Complete Prim's Algorithm

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                           Overall running time: \Theta(m \log n)
         key[u] = \infty;
         p[u] = null;
                                                        Cost per
                                                        ChangeKey
    key[r] = 0;
                                    n vertices
    while (Q not empty)←
         u = ExtractMin(Q); \leftarrow \Theta(\log n) \text{ times}
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   ChangeKey(v, w(u,v));
                                                    Θ(m) times
         How often is ExtractMin() called?
                                                    (with adj list)
         How often is ChangeKey() called?
```


а	b	С	d	е	f	g	h
∞	∞	∞	∞	∞	∞	8	8

ChangeKey

С	b	а	d	е	f	g	h
0	∞	∞	∞	∞	∞	∞	8

ExctractMin

h	b	а	d	е	f	g
∞						

 ∞

 ∞

 ∞

d

14

 ∞

 ∞

ExctractMin

b	g	а	h	е	f
14	∞	∞	∞	∞	∞

 ∞

 ∞

 ∞

 ∞

ExtractMin

е	f	а	h	g
10	∞	∞	∞	8

Changekey

а	е	g	h
6	7	9	∞

9

 ∞

Complete Prim's Algorithm

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
                           Overall running time: \Theta(m \log n)
         key[u] = \infty;
         p[u] = null;
                                                        Cost per
                                                        ChangeKey
    key[r] = 0;
                                    n vertices
    while (Q not empty)←
         u = ExtractMin(Q); \leftarrow \Theta(\log n) \text{ times}
         for each v \in Adj[u]
              if (v \in Q \text{ and } w(u,v) < \text{key}[v])
                   p[v] = u;
                   ChangeKey(v, w(u,v));
                                                    Θ(m) times
         How often is ExtractMin() called?
                                                    (with adj list)
         How often is ChangeKey() called?
```

Kruskal's algorithm in words

- Procedure:
 - Sort all edges into non-decreasing order
 - Initially each node is in its own tree
 - For each edge in the sorted list
 - If the edge connects two separate trees, then
 - join the two trees together with that edge

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

Time complexity

- Depend on implementation
- Pseudocode

```
sort all edges according to weights.
                                                          \Theta(m \log m)
     T = \{\}. tree(v) = v for all v.
                                                          = \Theta(m \log n)
     for each edge (u, v) in sorted order
         Lif tree(u) != tree(v)
                 T = T U (u, v);
m times
                  union (tree(u), tree(v)),
         Overall time complexity: m \log n + m t + n u
                                                    tree union
             Naïve: \Theta(nm)
                                               tree finding
```

Better implementation: $\Theta(m \log n)$

Disjoint Set Union

- Use a linked list to represent tree elements, with pointers back to root:
 - Each tree has one representative point,- its root
 - If two trees has same root they are identical otherwise they are different

- tree[u] != tree[v]: O(1)
- Union(tree[u],tree[v]): "Copy" elements of A into set B by adjusting elements of A to point to B
- Each union may take O(n) time
- Precisely n-1 unions
- O(n²)? (can be done better)

Disjoint Set Union

- Better strategy and analysis
 - Always copy smaller list into larger list
 - Size of combined list is at least twice the size of smaller list
 - Each vertex copied at most logn times before a single tree emerges
 - Total number of copy operations for n vertex is therefore O(n log n)
- Overall time complexity: m log n + m t + n u
 - t: time for finding tree root is constant
 - u: time for n union operations is at most nlog (n)
 - $m \log n + m t + n u = \Theta (m \log n + m + n \log n) = \Theta (m \log n)$
- Conclusion
 - Kruskal's algorithm runs in $\Theta(m \log n)$ for both dense and sparse graph

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3

b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3 b-f: 5 a12 b-a: 6 f-e: bb-d: f-g: 9 e C d-e: 10 d12 a-f: 14 b-c: e-h: 15

c-d: 3 b-f: 5 a12 6 b-a: 6 f-e: bb-d: f-g: 9 e Cd-e: 10 d12 a-f: 14 b-c: e-h: 15

c-d: 3 b-f: 5 a12 b-a: 6 f-e: bb-d: f-g: 9 e Cd-e: 10 d12 a-f: b-c: 14 e-h: 15

c-d: 3
b-f: 5

b-a: 6

f-e: 7

b-d: 8

f-g: 9

d-e: 10

a-f: 12

b-c: 14

c-d: 3 b-f: 5 a12 b-a: 6

f-e:

b-d:

f-g: 9

d-e: 10

12 a-f:

14 b-c:

c-d: 3 b-f: 5 a12 6 b-a: 6 f-e: bb-d: f-g: 9 e d-e: 10 d12 a-f: 14 b-c: e-h: 15

Disjoint Set Union

- Better strategy and analysis
 - Always copy smaller list into larger list
 - Size of combined list is at least twice the size of smaller list
 - Each vertex copied at most logn times before a single tree emerges
 - Total number of copy operations for n vertex is therefore $O(n \log n)$
- Overall time complexity: m log n + m t + n u
 - t: time for finding tree root is constant
 - u: time for n union operations is at most nlog (n)
 - $m \log n + m t + n u = \Theta (m \log n + m + n \log n) = \Theta (m \log n)$
- Conclusion
 - Kruskal's algorithm runs in $\Theta(m \log n)$ for both dense and sparse graph
- How about using counting sort?
 - $-\Theta(m+n\log n)$

Summary

- Kruskal's algorithm
 - $-\Theta(m \log n)$
 - Possibly $\Theta(m + n \log n)$ with counting sort
- Prim's algorithm
 - With priority queue : Θ(m log n)
 - Assume graph represented by adj list
 - With distance array : Θ(n^2)
 - Adj list or adj matrix
 - For sparse graphs priority queue wins
 - For dense graphs distance array may be better