Max Wisniewski, Alexander Steen

Tutor: David Müßig

Aufgabe 1 (Untergruppen von Primzahlindex)

Geben Sie für jede Primzahl p > 2 endliche Gruppen G und H an, so dass #(G/H) = p und H kein Normalteiler von G ist.

Lösung:

Es sei $G = S_p$ und damit $\#G = \#S_p = p!$. Sei nun H die Gruppe der Permutationen, die alle Elemente bis auf das erste Permutiert, also $H = \{\sigma \in G \mid \sigma = 1\}$.

H erfüllt die Gruppenaxiome:

Abgeschlossenheit:

Seien
$$a, b \in H$$
, dann ist auch $a \cdot b \in H$, da $(a \cdot b)(1) = a(b(1)) \stackrel{b \in H}{=} a(1) = 1$

Inverses Element:

Sei $a \in H$, dann ist auch $a^{-1} \in H$, da

$$a^{-1}(1) = 1$$

$$\Leftrightarrow a \cdot a^{-1}(1) = a(1)$$

$$\Leftrightarrow id(1) = a(1)$$

$$\Leftrightarrow 1 = 1$$

Neutrales Element:

$$id(1) = 1 \Rightarrow id \in H.$$

 $H \cong S_{p-1}$, da wir bis auf ein Element alle Elemente permutieren.

Nun gilt nach dem Satz von Lagrange: $\#G = \#H \cdot \#(G/H)$. Das #(G/H) = p. Wir haben also eine Linksunterklasse gebildet, die genau p Elemente enthält.

$$H \triangleleft G \Leftrightarrow \forall g \in G \forall h \in H : ghg^{-1} \in H.$$

Sei nun $g = g^{-1} = (1 \ 2) \in G \text{ und } h = (2 \ 3) \in H.$

$$ghg^{-1}(1) = gh(2) = g(3) = 3 \not\in H.$$

Damit kann H nicht Normalteiler von G sein.

Aufgabe 2 (Die orthogonale Gruppe)

a) Zeigen Sie, dass die orthogonale Gruppe O(2) von Spiegelungen erzeugt wird.

Lösung:

Drehungen um den Winkel φ in O(2) haben die Form

$$\rho_{\varphi} = \begin{pmatrix} \cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{pmatrix} \text{ und Spiegelungen an der Geraden } \varphi/2$$

$$\sigma_{\varphi/2} = \begin{pmatrix} \cos(\varphi) & \sin(\varphi) \\ \sin(\varphi) & -\cos(\varphi) \end{pmatrix}$$

b) Es sei $N \triangleleft O(2)$ eine normale Untergruppe, die eine Spiegelung enthält. Beweisen Sie N = O(2).

Lösung:

tbd

c) Es seien $r \in O(2)$ eine Drehung und $G = \langle r \rangle$. Weise Sie nach, dass N eine normale Untergruppe ist.

Lösung:

tbd

d) Wann ist die Untergruppe G aus Teil c) endlich?

Lösung:

tbd

Aufgabe 3 (Die Kommutatorenuntergruppe von S_n)

Satz: Für n > 2 gilt:

$$[S_n, S_n] = A_n.$$

Bew.:

Es gilt:
$$A_n = \{ \sigma \in S_n \mid \text{Sign}(\sigma) = 1 \}, [S_n, S_n] = \{ aba^{-1}b^{-1} \mid a, b \in S_n \}.$$

Es gilt $\operatorname{Sign}(a) \cdot \operatorname{Sign}(a^{-1}) = 1$, da Sign Gruppenhomomorphismus ist und $1 = \operatorname{Sign}(e) = \operatorname{Sign}(aa^{-1}) = \operatorname{Sign}(a) \cdot \operatorname{Sign}(a^{-1}) \text{ gilt. (*)}$

Seien $a, b \in S_n$, dann gilt

$$\operatorname{Sign}(aba^{-1}b^{-1}) \stackrel{\operatorname{Sign}Hom}{=} \operatorname{Sign}(a) \cdot \operatorname{Sign}(b) \cdot \operatorname{Sign}(a^{-1}) \cdot \operatorname{Sign}(b^{-1}) \stackrel{*}{=} 1$$

$$\Rightarrow aba^{-1}b^{-1} \in A_n.$$

Da nun $K(G) \subset A_n$ ist, muss $\langle K(G) \rangle \subseteq A_n$ sein. Da wir um die Gruppe zu bilden nur fehlende Elemente durch Verknüpfung dazunehmen (neutrales Element und inverses Element sind nach Überlegung im Tutorium schon drin). Da die Kombination von 2 Elementen mit positivem Vorzeichen das positive Vorzeichen bebehält, gilt die Behauptung.

⊇:

Die alternierende Gruppe von Zykeln des Types (1 i_1 i_2) erzeugt. Liegen alle Erzeuger in $[S_n, S_n]$, so muss auch die gesammte erzeugte Gruppe in $[S_n, S_n]$ liegen, da Gruppen abgeschlossen sind.

Seien $1 < i_2 \le n \text{ und } 1 < i_1 \le n, i_1 \ne i_2.$

Aufgabe 4 (Die alternierende Gruppe A_4)

a) Zeigen Sie, dass e zusammen mit den Permutationen vom Zykeltyp (2,2) eine normale Untergruppe $H \triangleleft A_4$ bildet.

Lösung:

Sei $g \in A_4$ und $h \in H$, dabei besteht h aus 2 disjunkten Zykeln $h = p_1 p_2$.

Nun hat gHg^{-1} die Ordnung 2, da $ghg^{-1}ghg^{-1} = gp_1p_2g^{-1}gp_1p_2g^{-1} = gp_1p_2p_1p_2g^{-1}$.

Auf dem 7. Zettel haben wir bewiesen, dass disjunkte Zykel (um die es sich handelt) kommutativ sind.

$$\Rightarrow ghg^{-1}ghg^{-1} = gp_1p_1p_2p_2g^{-1} = geeg^{-1} = gg^{-1} = e.$$

Die einzige Permutation mit Ordnung 2 ist die Transposition, diese hat aber ein negatives Vorzeichen. Da in A_4 aber nur positive Permutationen sind, kann eine Untergruppe auch nur positive Permutationen enthalten. Damit gibt es entweder keine Transposition (e) oder es gibt 2 (Typ (2,2)). Mehr kann es nicht geben, da es nr 4 Elemente gibt.

b) Geben Sie einen Homomorphismus $\varphi: A_4 \to \mathbb{Z}_3$ mit $Ker(\varphi) = H$ an, H die Untergruppe aus Teil a).

Lösung:

tbd