

2. szám - 2014. NOVEMBER

TARTALOM:

Üvegezés	naptényezője és a g érték
Négyszög	keresztmetszetű kémény szakaszok szigetelése
Νέσνιτῆσ	keresztmetszetű kémény szakaszok szigetelése II. AGROS2D
neg/320g	Refesztifietszetű kellietty szakaszok szigetelese II. Autoszo
Energetika	ai tanúsítványoknál elkövetett leggyakoribb hibák II

ÜVEGEZÉS NAPTÉNYEZŐJE ÉS A G ÉRTÉK

A WinWatt32 7.20-as verziójával egy régi adósságot rendezünk, de mondhatjuk, hogy egy hibát javítottunk ki.

AZ EREDET

Kezdetben a nyári hőterhelés számítás során jelent meg az üvegezett szerkezetek jellemzőjeként az üvegezés naptényezője. Definíció szerint ez az érték azt adja meg, hogy egy normál egyrétegű üvegezéshez képest, a sugárzásnak hányad részét engedi át az adott üvegezés. Az MSZ-04-140/4-78 szabványban lévő táblázat került a programba, az érték megadáshoz segítségképpen.

Aztán az energetikai számítás 7/2006 TNM rendelettel megjelenő változatában az üvegezett szerkezeteken a fűtött térbe jutó napsugárzási energia számításánál egy funkciójában hasonló jellemző jelent meg, a g érték. Hasonló, de nem ugyanaz. Ez a jellemző is azt fejezi ki, hogy a sugárzás hányad része jut a szerkezeten keresztül a fűtött térbe, de nem egy relatív értékként, mint az üvegezés naptényezője, hanem abszolút értékként. Tehát az egyrétegű normál síküvegnek is I-nél kisebb a g értéke.

Elkövettük azt a hibát, hogy a kettőt összemostuk a programban, mégpedig akképpen, hogy az üvegezés naptényezőjeként megadott értéket az energetikai számításban egyszerűen úgy vettük, mintha g érték lenne. Ezzel nagyobb sugárzási hozamokat számolt az, aki valóban naptényezőt adott meg, például azzal, hogy a nyári hőterhelés számítás szabvány táblázata alapján választotta meg az üvegezés naptényezőjét. Voltak, akik felismerték ezt a problémát, ezért a g értéket adták meg helyette, így az energetikai számításuk korrekt lett. Viszonylag kevesen számoltak nyári hőterhelést is, így ezzel a megoldással nem követték el az ellenkező hibát, hogy a g érték megadással a nyári hőterhelésre számolt érték lett hibás.

A MEGOLDÁS

A 7.20-as verzióval ezt a problémát próbáljuk orvosolni azzal, hogy megválaszthatjuk, hogy melyik értéket adjuk meg, a másik érték pedig abból számítódik. Az átszámításnál azt feltételezzük, hogy az egyrétegű normál üvegezés g értéke a korábban legelterjedtebb 3 mm-es normál síküvegnek megfelelő 0,87 érték, és az alkalmazott összefüggés: g = Nü * 0,87. Ebben a kérdésben dr Csomor Ritával váltottam pár levelet, így jutottunk a fenti érték és képlet alkalmazására, köszönjük neki a segítséget.

Ha a g értéket adjuk meg, és az elméletileg 0,87-nél nagyobb érték is lehetne, mert létezik olyan egyrétegű üveg (például vastalanított), aminél magasabb az érték, úgy I-nél magasabbra adódna az Nü érték, amit a nyári hőterhelés számításnál nem engedünk meg, de ritka manapság, hogy ilyen üveget egyrétegű üvegezésként alkalmaznának.

Ha egy korábban létrehozott projektet nyitunk meg az új verzióval, a program először új projektformátumra konvertálja a munkát, és a konverzió előtt meg kell válaszolnunk, hogy a korábbi üvegezés naptényezőnek megadott érték valóban naptényező volt, vagy pedig g érték. Ha a nyári hőterhelés számítás szabvány táblázata alapján választottuk meg az értékeket, akkor azok naptényezők voltak. Ilyen esetben az energetikai számítás eredménye különbözni fog a korábbitól, mert a korábbi számításban felül lett becsülve a napsugárzás. Az épülettől függően ez kisebb-nagyobb eltérést eredményez. Ha korábban is g értéket adtunk meg, akkor az energetikai számítás eredménye nem fog változni.

Szeretnénk a korábbi segédtáblázatot is megújítani, bár a sokféle üveg és kombinációik ezt megnehezítik, de már most is a korábbi táblázat annyival kiegészült, hogy az üvegezés naptényező mellett a g érték is megjelenik.

NÉGYSZÖG KERESZTMETSZETŰ KÉMÉNY SZAKASZOK SZIGETELÉSE

A CHM-BAU32 Kéményméretező programban, a négyszög keresztmetszetű szakaszoknál, a program a négyszög keresztmetszetű réteget nem tudja többrétegűként kezelni. Lehet azonban egyféle közelítéssel élni, ha egy ilyen szakaszt szeretnénk leszigetelni és a számításokban ennek a hatását figyelembe venni.

A programban a négyszög keresztmetszetű részt a következő adatok jellemzik. Belső élhosszak, falvastagság, hővezetési tényező. Például egy 14*14-es falazott kéménynél ezek az adatok a következők:

belső élhosszak = 0,14*0,14 m

falvastagság = 0,12 m

hővezetési tényező = 0,88 W/mK

Ezt a kéményt körbe szeretnénk szigetelni 5 cm vastagságú 0,04 W/mK hővezetési tényezőjű szigeteléssel. Közelítésként, a sarkok hatásával nem foglalkozva mondhatjuk, hogy ez a kétrétegű szerkezet helyettesíthető egyetlen, a két réteg vastagságának összegével megegyező vastagságú, azonos hővezetési ellenállással rendelkező réteggel. Ehhez határozzuk meg, hogy ennek a helyettesítő rétegnek mekkora lesz a λ_e eredő hővezetési tényezője. A képlet, amiből kiindulunk a következő:

$$\frac{\sum_{i=1}^{2} d_i}{\lambda_e} = \sum_{i=1}^{2} \frac{d_i}{\lambda_i}$$

Átrendezve az egyenletet és behelyettesítve a példa szerinti értékekkel a következő eredményt kapjuk:

$$\lambda_e = \frac{\sum_{i=1}^2 d_i}{\sum_{i=1}^2 \frac{d_i}{\lambda_i}} = \frac{0.12 + 0.05}{\frac{0.12}{0.88} + \frac{0.05}{0.04}} = 0.123 \, W/mK$$

A közelítés miatt célszerű magasabb értékkel számolni, a biztonság kedvéért. A szigetelés után így a falvastagságunk 0,17 m-re, a hővezetési tényező pedig legalább 0,123 W/mK értékre módosítandó.

Vigyázzunk! Ha a szigetelés vastagságán változtatunk, újra és újra meg kell határozni az eredő hővezetési tényező értékét! Ha a szigetelésre vakolat is kerül, a fenti képlet ugyanúgy használható több réteg esetében is.

Ha a kéményünk falba épített, nem tudjuk körben a szigetelést elhelyezni, ilyenkor szintén magasabb (lényegesen magasabb) értéket célszerű felvenni, illetve a szigetelést szélesebben elhelyezni, nem csak a kéményt, hanem a falnak egy részét is szigetelve. Pontosabb értéket a síkbeli modellen például végeselem módszerrel lehetne meghatározni.

Szintén ügyeljünk a szigeteléssel kapcsolatban, a magasabb hőmérsékletek miatt. Egyrészt a szigetelésnek ezt a magasabb hőmérsékletet tartósan el kell viselnie, másrészt magasabb hőmérsékleten a hővezetési tényezője a szigeteléseknek nagyobb érték szokott lenni, mint 20 °C mellett.

NÉGYSZÖG KERESZTMETSZETŰ KÉMÉNY SZAKASZOK SZIGETELÉSE II. AGROS2D

Az előző cikk megírása után kíváncsiságból körbenéztem az interneten, hogy milyen ingyenes végeselem programok érhetők el. Néhány próbálkozás után ráakadtam az ARGOS2D programra (http://www.agros2d.org/). A nap végére már sikerült is a feladatot ebben a programban is körbejárni.

SZÁMÍTÁS AZ ARGOSZD PROGRAMMAL

A modell kialakításánál, a szimmetriákat kihasználva, az eredeti geometria negyedével adtam meg a feladatot, azóta rájöttem, hogy a nyolcada is elég lett volna. Az eredmények megjelenítéséhez a hőmérséklet eloszlást ábrázoltam, illetve a számítás összehasonlításához az egyik külső felülethez tartozó élre a hőáram jelleggörbét. Az első ábra a szigeteletlen, a második az 5 cm-es szigeteléssel ellátott kéményt mutatja.

EREDMÉNYEK ÖSSZEVETÉSE A CHM-BAU32 PROGRAMMAL

A hőáram jelleggörbét exportálni is lehet a programból, így Excelben integrálva megkaphatjuk egy adott felületen a teljesítményt.

Létrehoztam a CHM-BAU32 programban egy projektet, ahol a kéménynél egy 0,1 m-es szakaszra, azonos peremfeltételek (külső és belső hőmérséklet és hőátadási tényező) mellett, elvégeztem a számítást. Fontos, hogy a számítási variációknál az SH, nem állandósult hőmérsékletek miatti módosító tényező értékét 1-re vegyük ebben az esetben.

A számítások összehasonlítását a következő táblázat tartalmazza.

	λ	V	ro	ср	tbe	tki	dt	q=c*m*dt	argos2d	q=pszi*A
szigeteletlen	0,88	1,518	0,924	1080	100	98,905	1,095	32,51	40,54	32,43
szigetelve	0,123	1,52	0,923	1080	100	99,753	0,247	7,34	12,52	10,01
szigetelve	0,179	1,519	0,923	1080	100	99,66	0,34	10,09	12,52	10,01

Az első esetben kevesebb mint 1 % az eltérés a kétféle számítás között. Ez elég megnyugtató eredmény. A második sorban az előző cikkben kiszámolt eredő hővezetési tényezővel számoltam a szigetelt állapotot, itt már lényegesen nagyobb az eltérés. Az eltérést minimalizálni magasabb, 0,179 W/mK átlagos hővezetési tényező mellett sikerült. Mivel kis keresztmetszetű kéményről van szó, ezért a saroknak láthatólag jelentős a hatása. Vélhetőleg nagyobb keresztmetszetek esetén nagyobb az egyszerű közelítés pontossága is.

Az is látható, hogy a szigetelt állapotban sokkal egyenletesebb a felület hőeloszlása illetve a hőáram. A számításkor a füstgáz hőmérséklete 100 °C volt, a környezeti hőmérséklet pedig -15 °C. A belső felületi hőmérséklet a szigetelt esetben 84 °C-ra, a tégla és a szigetelés határán legmagasabb értékként 68 °C adódott.

AZ ARGOS2D PROGRAM TOVÁBBI ALKALMAZÁSI LEHETŐSÉGEI

Az ARGOS2D végeselem program nem csak hővezetési problémákra alkalmazható, hanem számos más területen is. Maradva a hőtechnikai alkalmazásoknál, használható például hőhidak vonalmenti értékének meghatározására, vagy felületfűtések hőleadásának, felületi hőmérsékletének számítására is. Ajánlom azoknak, akik szeretik a kihívásokat.

Energetikai tanúsítványoknál elkövetett leggyakoribb hibák II.

A tanúsítványok készítésekor vannak tipikus hibák, amik igen gyakran fordulnak elő. Az előző számban már ismertettünk párat ezek közül, néhány további típushiba.

HIBÁS A KIVÁLASZTOTT RENDELETI ÁLLAPOT

A számítás nem a tanúsítvány kiállításakor érvényes rendeleti állapotnak megfelelően lett számítva. Vannak, akik nem frissítik a programot, így a rendeleti változásokat sem tudják alkalmazni. A program frissítése sem elegendő, hogy a megfelelő állapot szerint történjen a számítás. Hogy az adott projekt milyen rendeleti állapot szerint számítódjon, azt a projekt beállítások energetikai számítás lapján lehet kiválasztani. Ugyancsak megadható a rendelet a program beállítások viselkedés lapján, de ez nem az aktuális projektre vonatkozik, hanem egy új projekt létrehozásakor ez lesz az új projektre beállított érték.

AZ ENERGIAHORDOZÓ PRIMERENERGIA ÁTALAKÍTÁSI TÉNYEZŐJE ROSSZ ÉRTÉKKEL SZEREPEL

Elsősorban a távfűtéses épületeknél kell erre odafigyelni, mert az eddigi két változtatás, ami a tanúsítás számítás részét érintette, a távfűtésre vonatkozó értékeket mindkétszer módosította.

A SZERKEZETEKEN BELÜLI HŐHIDAK KIMARADNAK

A réteges szerkezetekre számított rétegtervi értéknél a geometriai hőhidakon kívül, a szerkezeten belül jelentkező hőhidak miatti növekménnyel is kell számolnunk. Ilyenek a hőszigeteléseket rögzítő dűbelek, a szerkezeten belül a szigetelést megszakító pillérek, gerendák, szarufák, házgyári betonelemek külső kérget tartó vasalatai, bordák, stb.

TALAJJAL ÉRINTKEZŐ SZERKEZETEK VONALMENTI HŐÁTBOCSÁTÁSI TÉNYEZŐJÉNEK SZÁMÍTÁSA, ALKALMAZÁSA

A talajon lévő padló és a talajjal érintkező fal esetén a rétegrend alapján számítunk egy felületi hőátbocsátási tényezőt. Ebből, illetve a talajszinthez viszonyított magasság értékből kapjuk a vonalmenti értéket. Ehhez viszont meg kell adnunk a talajszint értékét is, erről gyakran megfeledkeznek. Talajon lévő padló esetén ez a padló felső szintje és a talajszint különbsége, pozitív, ha a padló magasabban helyezkedik el, mint a külső talajszint, negatív, ha alatta helyezkedik el. A talajjal érintkező fal esetén ennek a falnak az alsó élének távolsága a talajszinttől a megadandó érték, ami mindig negatív szám.

Az ilyen szerkezeteknek a helyiségeknél való felvételénél a vonalmenti hossz értékét is gyakran hibásan adják meg. Talajon lévő padló esetén a padlónak a külső fal mentén mért hossza adandó meg. Talajjal érintkező falnál a fal hosszát kell megadnunk.