Міністерство освіти і науки України

Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"

Факультет інформатики та обчислювальної техніки

Катедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 3 з дисципліни

«Основи програмування 1.

Базові конструкції»

«Організація циклічних процесів. Ітераційні цикли»

Варіант 18

Виконав студент ІП-11 Лесів Владислав Ігорович

Перевірив Вітковська Ірина Іванівна

Лабораторна робота 3

Організація циклічних процесів. Ітераційні цикли

Мета – вивчити особливості організації ітераційних циклів.

Варіант №18.

18. Задане дійсне число x. Послідовність $a_1, a_2, ..., a_n$ утворена за законом $a_n = x^n / (2n)!$, n = 1, 2, ...

Отримати суму $a_1 + a_2 + ... + a_k$, де k - найменше ціле число, що задовольняє двом умовам: k > 10, $|a_k| < 10^{-5}$.

Постановка задачі. Результатом розв'язку ϵ сума елементів заданої законом послідовности за виконання необхідним умов задачі, та число-умова виконання критеріїв. Для визначення результату повинне бути задане дійсне число х. Інших початкових даних для розв'язку не потрібно.

Побудова математичної моделі. Складемо таблицю імен змінних.

Змінна	Тип	Ім'я	Призначення
Задане дійсне число х	Дійсний	X	Початкове дане
Елемент послідовности	Дійсний	a	Проміжне
			значення
Значення факторіалу числа	Цілий	fac	Проміжне
			значення
Сума елементів послідовности	Дійсний	S	Результат
Число, яке задовільняє умови	Цілий	k	Результат
задачі			

Математичне формулювання задачі зводиться до перевірки виконання заданих умов. Якщо модуль значення елемента послідовности на кроці k більший або рівний за 10^{-5} , тобто $|a| < 10^{-5}$, а саме число k > 10, отримуємо виконання умов, що спричинить завершення перевірки. У іншому випадку одна з умов не

виконується, тому додаємо елемент до суми елементів та продовжуємо перевірку в циклі.

Програмні специфікації запишемо у графічній формі у вигляді блок-схеми.

Блок-схема

Виконання мовою Python.

Код програми:

```
х=float(input("Введіть число х:\n")) #Вводимо задане число s=x/2 #Оголошуємо змінну суми, у якій уже присутній перший елемент a1=((x**1)/(2*1)!)=x/2 a=x/2 #Оголошуємо змінну елемента послідовности, яка спершу дорівнює першому члену k=1 #Оголошуємо змінну для рахунку елементів послідовности while (abs(a)>=10**(-5) \text{ or } k<=10): #Цикл, що виконуватиметься, допоки задані в задачі умови не будуть досягнуті k+1 #Додаємо одиницю для лічильника fact=1 #Змінна для вирахунку факторіалу числа for i in range(1,2*k+1): #Шукаємо (2k)! fact*=i a=(x**k)/fact #Рахуємо елементи послідовности s+a #Додаємо вирахувані елементи до суми print("Сума елементів послідовности =",s,"при k=",k)
```

Випробування алгоритму.

```
х=float(input("Введіть число х:\n")) #Вводимо задане число

s=x/2 #Оголошуємо змінну суми, у якій уже присутній перший елемент a1=((x**1)/(2*1)!)=x/2

a=x/2 #Оголошуємо змінну елемента послідовности, яка спершу дорівнює першому члену

k=1 #Оголошуємо змінну для рахунку елемє

while (abs(a)>=10**(-5) or k<=10): #Цикл

k+=1 #Додаємо одиницю для лічильника
Введіть число х:

fac=1 #Змінна для вирахунку факторіа

for і in range(1,2*k+1): #Шукаємо (2)

ress any key to continue . . .

a=(x**k)/fac #Рахуємо елементи послі

s+=а #Додаємо вирахувані елементи до

print("Сума елементів послідовности =",s
```

Висновок. Отже, у цій роботі я вивчив особливості організації ітераційних циклів. У результаті лабораторної роботи було розроблено математичну модель, що відповідає постановці задачі, та блок-схему, яка пояснює логіку алгоритму. Використовуючи ітераційний цикл while, перевіряючи задані умови, отримуємо коректний результат.