_26.20.30.000____

код ОКПД2

Утверждён ЮКСУ.421457.002-01РЭ-УД

> ПЛК «БАГЕТ-ПЛК1-01» Руководство по эксплуатации ЮКСУ.421457.002-01РЭ

Настоящее руководство по эксплуатации предназначено для ознакомления с принципом действия и техническими характеристиками программируемого логического контроллера ПЛК «Багет-ПЛК1-01» ЮКСУ.421457.002-01 (далее – ПЛК1-01 или изделие).

Программируемый логический контроллер ПЛК1-01 разработан и изготавливается в России. Основой его аппаратной части является отечественная микросхема микроконтроллера К5500ВК018.

ПЛК1-01 не предназначен для эксплуатации на промышленных объектах.

Пользователь может всегда получить консультацию у разработчиков по использованию отечественной аппаратно-программной платформы Багет, обратившись к информационным ресурсам:

сайт: www.niisi.ru

Настоящее руководство предназначено для инженеров-проектировщиков АСУ ТП.

В тексте руководства используются следующие сокращения:

пользовательское ПЗУ

ППЗУ

АСУ — автоматизированная система управления
АСУ ТП — автоматизированная система управления технологическим процессом
ОЗУ — оперативное запоминающее устройство
ПЗУ — программируемое запоминающее устройство
ПЛК — программируемый логический контроллер

Содержание

1 Описание и работа ПЛК1-01	5
1.1 Назначение ПЛК1-01	
1.2 Технические характеристики ПЛК1-01	5
1.3 Описание конструкции ПЛК1-01	
1.4 Средства измерения, инструмент и принадлежности	
1.5 Маркировка	15
1.6 Упаковка	15
2 Использование по назначению	16
2.1 Эксплуатационные ограничения	16
2.2 Подготовка ПЛК1-01 к использованию	16
2.2.1 Меры безопасности при подготовке изделия к использованию	16
2.2.2 Порядок внешнего осмотра и проверки готовности ПЛК1-01 к использованию	16
2.3 Использование изделия	17
2.3.1 Указания по монтажу ПЛК1-01	17
2.3.2 Порядок работы с ПЛК1-01	17
2.3.3 Меры безопасности при использовании изделия по назначению	18
2.4 Указания о проведении технического обслуживания и ремонта	18
2.5 Действия в экстремальных условиях	
3 Хранение	19
4 Транспортирование	
5 Утилизация	21

1 Описание и работа ПЛК1-01

1.1 Назначение ПЛК1-01

ПЛК1-01 предназначен для ознакомления с основными принципами, на которых построена работа программируемых логических контроллеров семейства Багет, а также для разработки и отладки программ пользователя.

1.2 Технические характеристики ПЛК1-01

1.2.1 Основные технические характеристики ПЛК1-01 приведены в таблице 1.

Таблица 1 – Основные технические характеристики ПЛК1-01

Наименование параметра	Значение параметра
1 Тип микроконтроллера	К5500ВК018
2 Объем ОЗУ DDR3, Мбайт, не менее	512
3 Объем системного ППЗУ, Мбайт, не менее	4
4 Объем пользовательского ППЗУ, Мбайт, не менее	4
5 Карта памяти:	
- ТИП	microSDHC
- объем, Гбайт	8
6 Тип батарейки автономного питания	CR2032 +3 B
7 Номинальное напряжение питания контроллера, В	5
8 Потребляемая мощность без подключенных	3
внешних устройств, Вт, не более	2.1
9 Питание внешних подключаемых устройств по шине 5 В:	
- напряжение, В	4.8
- напряжение, в - выходной ток, мА	100
10 Питание внешних устройств по шине 3,3 В:	
- напряжение, В	3.2
- выходной ток, мА	100
11 Габаритные размеры контроллера, мм, не более	110x90
12 Масса, кг, не более	0,3

- 1.2.2 ПЛК1-01 обеспечивает обмен по следующим внешним интерфейсам:
- технологический интерфейс USB 2.0 для управления и питания платы;
- интерфейс USB 2.0;
- интерфейс Ethernet 100 Base-TX;
- интерфейс для подключения карт памяти microSDHC;
- интерфейс для подключения плат расширения для ARDUINO UNO R3;
- интерфейс для подключения плат расширения для Raspberry Pi;
- интерфейсы GPIO, UART.

1.3 Описание конструкции ПЛК1-01

1.3.1 ПЛК1-01 выполнен в виде печатной платы без корпуса, на которой расположены соединители для подключения первичного электропитания и внешних устройств, органы управления (пользовательские кнопки SW1, SW2), светодиодные индикаторы (VD1 – VD5), перемычки для управления режимами работы ПЛК1-01 (SA4, SA5, SA6, SA7, SA9).

Для организации питания часов реального времени (RTC) микроконтроллера K5500BK018 при отсутствии основного питания предусмотрен соединитель для установки автономного элемента питания — батарейки типа CR2032 +3 B. Автономный элемент питания устанавливается заводом-изготовителем.

Расположение соединителей, органов управления и индикаторов ПЛК1-01 приведено на рисунке 1.

Рисунок 1 – Расположение соединителей, органов управления и индикаторов ПЛК1-01

Назначение выводов соединителей J1-J5, SA1, SA2 и назначение перемычек SA4-SA7, SA9 представлено на рисунке 2. Детальное описание всех соединителей и перемычек приведено в п. 1.3.2, а кнопок и индикаторов – в п. 1.3.3.

Рисунок 2 — Назначение выводов соединителей J1-J5, SA1, SA2 и назначение перемычек SA4-SA7, SA9.

1.3.2 Назначение соединителей и перемычек ПЛК1-01

1.3.2.1 Технологический интерфейс USB 2.0 (X1)

Соединитель X1 предназначен для подключения технологического интерфейса USB 2.0 для управления, ввода-вывода данных через контроллер UART3 микроконтроллера и питания платы. Тип соединителя: USB-C. Нумерация контактов соединителя X1 приведена на рисунке 3, назначение контактов соединителя X1 представлено в таблице 2.

Рисунок 3 – Нумерация контактов соединителя X1

Таблица 2 – Назначение контактов соединителя X1

Номер вывода	Наименование сигнала
A1, A12, B1, B12	земля
A2, A3, A5, A8, A10, A11, B2, B3, B5, B8, B10, B11	Не подсоединен
A4, A9, B4, B9	$ m V_{BUS}$
A6, B6	Data+
A7, B7	Data-

1.3.2.2 Интерфейс USB 2.0 (X2)

Соединитель X2 предназначен для подключения интерфейса USB 2.0 микроконтроллера. Тип соединителя: USB-A. Нумерация контактов соединителя X2 приведена на рисунке 4, назначение контактов соединителя X2 представлено в таблице 3.

Рисунок 4 – Нумерация контактов соединителя X2

Таблица 3 – Назначение контактов соединителя X2

Номер вывода	Наименование сигнала
1	$ m V_{BUS}$
2	Data-
3	Data+
4	земля

1.3.2.3 Интерфейс Ethernet 100 Base-TX (X3)

Соединитель X3 предназначен для подключения интерфейса Ethernet 100 Base-TX контроллера 1 в составе микроконтроллера. Тип соединителя: RJ-45. Назначение контактов соединителя X3 представлено в таблице 4.

Таблица 4 – Назначение контактов соединителя ХЗ

Номер вывода	Наименование сигнала
1	TX+
2	TX-
3	RX+
4, 5, 7, 8	Не подсоединен
6	RX-

Рисунок 5 – Нумерация контактов соединителя Х3

1.3.2.4 Интерфейс для подключения карт памяти microSDHC (X4)

Слот X4 предназначен для подключения карт памяти microSDHC. Тип слота: 500901-0801 Molex. Внешний вид и нумерация контактов слота X4 приведены на рисунке 6, назначение контактов слота X4 представлено в таблице 5.

Рисунок 6 – Внешний вид и нумерация контактов слота Х4

Таблица 5 – Назначение контактов слота X4

Номер вывода	Наименование сигнала
1	GP_C0 (DAT2)
2	GP_C1 (CD/DAT3)
3	GP_B5 (CMD)
4	Цепь питания +3.3B
5	GP_B4 (SCLK)
6	земля
7	GP_B6 (DAT0)
8	GP_B7 (DAT1)

Примечание – Перед подключением карты памяти microSDHC перемычка SA9 на плате ПЛК1-01 должна быть установлена в положение «разомкнуто».

1.3.2.5 Интерфейс для подключения батарейки (Х5)

Соединитель X5 предназначен для подключения элемента автономного питания, обеспечивающего организацию питания часов реального времени (RTC) микроконтроллера K5500BK018 при отсутствии основного питания. В качестве элемента автономного питания ПЛК1-01 используется батарейка типа CR2032 +3 B.

1.3.2.6 Интерфейс GPIO для подключения плат расширения ARDUINO UNO R3 (J1 - J4)

Соединители J1-J4 предназначены для подключения плат расширения для ARDUINO UNO R3. Тип соединителей: J1, J4 — BL1-008-S842-55; J2 — BL1-006-S842-55; J3 — BL1-010-S842-55 (линейка гнезд с шагом $2.54\,$ мм). Назначение контактов соединителей J1- J4 представлено в таблицах 6-9.

Таблица 6 – Назначение контактов соединителя Ј1

Номер вывода	Наименование сигнала
1, 2, 8	Не подсоединен
3	RESET_N (сигнал сброса, активный уровень – низкий)
4	Цепь питания +3.3B для внешних подключаемых
	устройств
5	Цепь питания +5.0B для внешних подключаемых
	устройств
6, 7	земля

Таблица 7 – Назначение контактов соединителя J2

Номер вывода	Наименование сигнала
1	GPIO_C2 (порт GPIOC, разряд 2 микроконтроллера)
2	GPIO_C3 (порт GPIOC, разряд 3 микроконтроллера)

3	GPIO_C4 (порт GPIOC, разряд 4 микроконтроллера)
4	GPIO_C5 (порт GPIOC, разряд 5 микроконтроллера)
5	GPIO_C1 (порт GPIOC, разряд 1 микроконтроллера)
6	GPIO_C0 (порт GPIOC, разряд 0 микроконтроллера)

Таблица 8 – Назначение контактов соединителя ЈЗ

Номер вывода	Наименование сигнала
1	GPIO_C0 (порт GPIOC, разряд 0 микроконтроллера)
2	GPIO_C1 (порт GPIOC, разряд 1 микроконтроллера)
3	Не подсоединен
4	земля
5	GPIO_A3 (порт GPIOA, разряд 3 микроконтроллера)
6	GPIO_A5 (порт GPIOA, разряд 5 микроконтроллера)
7	GPIO_A6 (порт GPIOA, разряд 6 микроконтроллера)
8	GPIO_A4 (порт GPIOA, разряд 4 микроконтроллера)
9	GPIO_B1 (порт GPIOB, разряд 1 микроконтроллера)
10	GPIO_B0 (порт GPIOB, разряд 0 микроконтроллера)

Таблица 9 – Назначение контактов соединителя Ј4

Номер вывода	Наименование сигнала
1	GPIO_C7 (порт GPIOC, разряд 7 микроконтроллера)
2	GPIO_A7 (порт GPIOA, разряд 7 микроконтроллера)
3	GPIO_C6 (порт GPIOC, разряд 6 микроконтроллера)
4	GPIO_B3 (порт GPIOB, разряд 3 микроконтроллера)
5	GPIO_B2 (порт GPIOB, разряд 2 микроконтроллера)
6	GPIO_A2 (порт GPIOA, разряд 2 микроконтроллера)
7	GPIO_A1 (порт GPIOA, разряд 1 микроконтроллера)
8	GPIO_A0 (порт GPIOA, разряд 0 микроконтроллера)

Примечание – При работе в режиме с картой памяти microSDHC (перемычка SA9 установлена в положение «разомкнуто») сигналы GPIO_C0, GPIO_C1, выведенные на соединители J2, J3, не подключены к портам микроконтроллера.

1.3.2.7 Интерфейс GPIO для подключения плат расширения Raspberry Pi (J5)

Соединитель J5 предназначен для подключения плат расширения для Raspberry Pi. Тип соединителя: SL2-040-S116/01-11 (двухрядная линейка контактов, шаг 2.54 мм). Нумерация контактов соединителя J5 приведена на рисунке 7, назначение контактов соединителя J5 представлено в таблице 10.

Рисунок 7 — Нумерация контактов соединителя J5

Таблица 10 – Назначение контактов соединителя Ј5

Номер вывода	Наименование сигнала
1, 17	Цепь питания +3.3B для внешних подключаемых
	устройств
2, 4	Цепь питания +5B для внешних подключаемых
	устройств
3	GPIO_C0 (порт GPIOC, разряд 0 микроконтроллера)
5	GPIO_C1 (порт GPIOC, разряд 1 микроконтроллера)
6, 9, 14, 20, 25, 30,	земля
34, 39	
7	GPIO_B0 (порт GPIOB, разряд 0 микроконтроллера)
8	GPIO_A0 (порт GPIOA, разряд 0 микроконтроллера)
10	GPIO_A1 (порт GPIOA, разряд 1 микроконтроллера)
11	GPIO_C2 (порт GPIOC, разряд 2 микроконтроллера)
12	GPIO_D1 (порт GPIOD, разряд 1 микроконтроллера)
13	GPIO_C3 (порт GPIOC, разряд 3 микроконтроллера)
15	GPIO_C4 (порт GPIOC, разряд 4 микроконтроллера)
16	GPIO_C5 (порт GPIOC, разряд 5 микроконтроллера)
18	GPIO_B1 (порт GPIOB, разряд 1 микроконтроллера)
19	GPIO_A6 (порт GPIOA, разряд 6 микроконтроллера)
21	GPIO_A5 (порт GPIOA, разряд 5 микроконтроллера)
22	GPIO_C7 (порт GPIOC, разряд 7 микроконтроллера)
23	GPIO_A3 (порт GPIOA, разряд 3 микроконтроллера)
24	GPIO_A4 (порт GPIOA, разряд 4 микроконтроллера)
26	GPIO_A7 (порт GPIOA, разряд 7 микроконтроллера)
27	GPIO_B7 (порт GPIOB, разряд 7 микроконтроллера)
28	GPIO_B6 (порт GPIOB, разряд 6 микроконтроллера)
29	GPIO_A2 (порт GPIOA, разряд 2 микроконтроллера)
31	GPIO_B2 (порт GPIOB, разряд 2 микроконтроллера)
32	GPIO_D2 (порт GPIOD, разряд 2 микроконтроллера)
33	GPIO_D3 (порт GPIOD, разряд 3 микроконтроллера)
35	GPIO_B5 (порт GPIOB, разряд 5 микроконтроллера)
36	GPIO_D0 (порт GPIOD, разряд 0 микроконтроллера)
37	GPIO_C6 (порт GPIOC, разряд 6 микроконтроллера)
38	GPIO_B3 (порт GPIOB, разряд 3 микроконтроллера)

40	GPIO_B4 (порт GPIOB, разряд 4 микроконтроллера)
----	---

Примечание — При работе в режиме с картой памяти microSDHC (перемычка SA9 установлена в положение «разомкнуто») сигналы GPIO_B4, GPIO_B5, GPIO_B6, GPIO_B7, GPIO_C0, GPIO_C1, выведенные на соединитель J5, не подключены к портам микроконтроллера.

1.3.2.8 Интерфейсы GPIO, UART (SA1, SA2)

Соединители SA1, SA2 предназначены для подключения интерфейсов GPIO и UART. Тип соединителей: SA1 - SL2-020-S116/01-11; SA2 - CHП346-8ВП21-2. Нумерация контактов соединителей SA1, SA2 приведена на рисунках 8-9, назначение контактов соединителей SA1, SA2 представлено в таблицах 11-12.

Рисунок 8 – Нумерация контактов соединителя SA1

Рисунок 9 – Нумерация контактов соединителя SA2

Таблица 11 – Назначение выводов соединителя SA1

Номер вывода	Наименование сигнала
1	GPIO_F0 (порт GPIOF, разряд 0 микроконтроллера)
2	GPIO_E0 (порт GPIOE, разряд 0 микроконтроллера)
3	GPIO_F1 (порт GPIOF, разряд 1 микроконтроллера)
4	GPIO_E1 (порт GPIOE, разряд 1 микроконтроллера)
5	GPIO_F2 (порт GPIOF, разряд 2 микроконтроллера)
6	GPIO_E2 (порт GPIOE, разряд 2 микроконтроллера)
7	GPIO_F3 (порт GPIOF, разряд 3 микроконтроллера)
8	GPIO_E3 (порт GPIOE, разряд 3 микроконтроллера)
9	GPIO_F4 (порт GPIOF, разряд 4 микроконтроллера)
10	GPIO_E4 (порт GPIOE, разряд 4 микроконтроллера)
11	GPIO_F5 (порт GPIOF, разряд 5 микроконтроллера)
12	GPIO_E5 (порт GPIOE, разряд 5 микроконтроллера)
13	GPIO_F6 (порт GPIOF, разряд 6 микроконтроллера)
14	GPIO_E6 (порт GPIOE, разряд 6 микроконтроллера)
15	GPIO_F7 (порт GPIOF, разряд 7 микроконтроллера)
16	GPIO_E7 (порт GPIOE, разряд 7 микроконтроллера)

17, 19	Цепь питания +3.3В для внешних подключаемых устройств
18, 20	земля

Таблица 12 – Назначение выводов соединителя SA2

Номер вывода	Наименование сигнала
1	земля
2	GPIO_D4 (порт GPIOD, разряд 4 микроконтроллера)
3	UART1_RTS_N (сигнал RTS порта UART1)
4	GPIO_D5 (порт GPIOD, разряд 5 микроконтроллера)
5	UART1_RXD (прием данных, порт UART1
	микроконтроллера)
6	GPIO_D6 (порт GPIOD, разряд 6 микроконтроллера)
7	UART1_TXD (передача данных, порт UART1
	микроконтроллера)
8	GPIO_D7 (порт GPIOD, разряд 7 микроконтроллера)

1.3.2.9 Перемычки (SA4, SA5, SA6, SA7, SA9)

Перемычка SA4 предназначена для выбора режима работы микроконтроллера с встроенным или внешним ОЗУ. Положение 1 (замкнуты 1 и 2 контакты) – работа с внешним ОЗУ, положение 2 (замкнуты 2 и 3 контакты) – работа со встроенным ОЗУ.

Перемычка SA5 предназначена для выбора режима работы микроконтроллера "little endian" или "big endian". Положение 1 (замкнуты 1 и 2 контакты) – режим "little endian", положение 2 (замкнуты 2 и 3 контакты) – режим "big endian".

Перемычка SA6 предназначена для выбора режима работы с Ethernet. Положение 1 (замкнуты 1 и 2 контакты) – режим работы с Ethernet, положение 2 (замкнуты 2 и 3 контакты) – зарезервировано.

Перемычка SA7 предназначена для выбора режима работы с встроенным ППЗУ. Перемычка должна быть установлена в положение 2 (замкнуты 2 и 3 контакты) – работа с встроенным ППЗУ.

Примечание - Для выбора режима работы перемычки SA4 – SA7 должны быть установлены перед включением питания отладочной платы.

Перемычка SA9 предназначена для выбора режима работы с картой памяти microSDHC или без нее. Положение «разомкнуто» – работа с картой памяти microSDHC, положение «замкнуто» – работа без карты памяти microSDHC.

Примечание - В режиме работы с картой памяти microSDHC сигналы GPIO_B4, GPIO_B5, GPIO_B6, GPIO_B7, GPIO_C0, GPIO_C1 не подключены к портам микроконтроллера.

1.3.3 Кнопки и индикаторы

1.3.3.1 Кнопки (SW1, SW2)

Кнопка SW1 предназначена для сброса микроконтроллера.

Кнопка SW2 является пользовательской. При нажатии она коммутирует сигнал GPIO_D6 порта GPIOD микроконтроллера на шину земли (GNDD).

1.3.3.2 Светодиодные индикаторы (VD1 – VD5)

Светодиод красного цвета VD1 предназначен для индикации наличия вторичного питания (+3.3 В) ПЛК1-01.

Светодиод зеленого цвета VD2 предназначен для индикации состояния сигнала GPIO_D4 порта GPIOD микроконтроллера. Светодиод включается при низком уровне сигнала GPIO_D4.

Светодиоды зеленого цвета VD3, VD4 предназначены для индикации активности обмена информацией по технологическому интерфейсу USB 2.0 для управления и питания ПЛК1-01. Светодиод VD3 отображает активность линии TXD, а светодиод VD4 – линии RXD.

Светодиод желтого цвета VD5 предназначен для индикации состояния сигнала GPIO_D5 порта GPIOD микроконтроллера. Светодиод включается при низком уровне сигнала GPIO_D5.

1.4 Средства измерения, инструмент и принадлежности

Средства измерения при эксплуатации ПЛК1-01 не используются.

1.5 Маркировка

На печатной плате изделия нанесена информация о предприятии-разработчике и предприятии-изготовителе (наименование, логотип), серийный номер ПЛК1-01, маркировка средств индикации, органов управления и электрических соединителей (клемм).

1.6 Упаковка

ПЛК1-01 вместе с эксплуатационной документацией и паспортом упаковывается в отдельную картонную тару, обеспечивающую транспортирование изделия в соответствии с требованиями, приведенными в разделе 4 настоящего руководства.

На потребительской таре нанесены следующие данные:

- условное обозначение изделия;
- наименование и товарный знак изготовителя;
- маркировочные знаки «Верх» и «Беречь от влаги» по ГОСТ 14192-96.

Упаковка ПЛК1-01 обеспечивает защиту изделия от климатических и механических повреждений при транспортировании, погрузочно-разгрузочных работах и хранении.

2 Использование по назначению

2.1 Эксплуатационные ограничения

- 2.1.1 ПЛК1-01 должен эксплуатироваться при следующих условиях:
- закрытые взрывобезопасные помещения без агрессивных паров и газов;
- температура окружающего воздуха от 15 до 35 °C;
- верхний предел относительной влажности воздуха: 80 % при 25 °C;
- атмосферное давление от 84 до 106,7 кПа.
- 2.1.2 ПЛК1-01 не предназначен для эксплуатации на промышленных объектах.

2.2 Полготовка ПЛК1-01 к использованию

2.2.1 Меры безопасности при подготовке изделия к использованию

Опасное для жизни напряжение в цепях изделия отсутствует. При работе избегать контакта проводящих предметов с электрическими соединителями изделия.

Не допускается попадание влаги на контакты электрических соединителей и внутренние электрорадиоэлементы изделия.

ПЛК1-01 запрещено использовать в агрессивных средах с содержанием в атмосфере агрессивных паров и газов, кислот, щелочей, масел.

Подготовку ПЛК1-01 к использованию по назначению должны проводить специалисты, имеющие опыт работы с изделиями вычислительной техники и изучившие эксплуатационную документацию на ПЛК1-01.

При подготовке ПЛК1-01 к использованию необходимо выполнять следующие правила безопасности:

- все подготовительные работы с изделием необходимо проводить при отключенном электропитании изделия от сети;
- при извлечении изделия из упаковки следует оберегать его от повреждений (падения, ударов и т.д.).
 - 2.2.2 Порядок внешнего осмотра и проверки готовности ПЛК1-01 к использованию

Порядок внешнего осмотра и проверки готовности ПЛК1-01 к использованию включает следующие этапы:

- а) распаковывание;
- б) внешний осмотр, проверка наличия записей в паспорте.

Если ПЛК1-01 подвергался воздействию температуры ниже минус 10 °C, то перед подготовкой к вводу контроллера в эксплуатацию его необходимо выдержать в таре завода-изготовителя при температуре 25 °C в течение 6 ч.

Распаковывание изделия производится непосредственно перед вводом его в эксплуатацию.

Упаковку необходимо сохранить на случай упаковки изделия при постановке на хранение.

При проведении внешнего осмотра изделия выполнить следующие операции:

- провести осмотр изделия на отсутствие механических повреждений и нарушений покрытий;
- проверить наличие записей в разделах паспорта, заполняемых предприятиемизготовителем.

2.3 Использование изделия

2.3.1 Указания по монтажу ПЛК1-01

Внешние устройства подключаются к ПЛК1-01 через соединители J1-J4 для платшильдов ARDUINO UNO R3; через соединитель J5 для плат шильдов Raspberry; через соединитель X2 для device-устройств USB 2.0, через соединитель X3 и стандартный патчкорд с соединителем RJ45; через соединитель X4 — карта памяти формат microSD. Питание на контроллер подается через кабель USB-C для технологического интерфейса (соединитель X1).

Рекомендация по балансу мощности контроллера: при работе с контроллером под управлением ОС Linux, либо при подключенных внешних устройствах, потребляющих значительную мощность (ограниченную в п.1.2.1 настоящего руководства) необходимо подключать технологический кабель в порт USB 3.0 инструментальной ЭВМ. В этом случае, полная потребляемая мощность контроллера и внешних подключенных устройств (включая USB 2.0 и карту памяти) не должна превышать 4 Вт.

Перед подачей питания на изделие необходимо произвести установку перемычек SA4, SA5, SA6, SA7, SA9 в соответствии с выбранным режимом работы ПЛК1-01 (см. 1.3.2.9 настоящего руководства).

2.3.2 Порядок работы с ПЛК1-01

В загрузочном ПЗУ ПЛК хранится программа-загрузчик barebox, которая обеспечивает запуск ОС типа Debian Linux с накопителя microSD (далее microSD-карта).

Перед началом работы с ПЛК необходимо записать на microSD-карту образ ОС.

Сделать это можно на инструментальной ЭВМ под управлением ОС Debian Linux следующим образом:

- 1) загрузить на инструментальную ЭВМ образ ОС (например, plc1-debian-20210901.img);
- 2) установить в карт-ридер инструментальной ЭВМ microSD-карту, которая станет доступна как устройство с примерным именем /dev/sdX;
- 3) записать образ ОС на microSD-карту, для этого на инструментальной ЭВМ выполнить команду:
 - sudo dd if=plc1-debian-20210901.img of=/dev/sdX bs=8M
 conv=fsync status=progress
- 4) дождаться окончания записи;

5) извлечь microSD-карту из карт-ридера инструментальной ЭВМ.

Для начала работы с ПЛК необходимо выполнить следующие действия:

- 1) установить microSD-карту с образом ОС Debian Linux в слот X4 ПЛК1-01;
- 2) соединить разъем X1 ПЛК кабелем USB-C, который находится в комплекте поставки, с USB портом инструментальной ЭВМ;
- 3) открыть терминальную программу, установленную на ИЭВМ (например: minicom) на назначенном ОС порту устройства /dev/ttyUSBx, установить параметры последовательного порта: 115200/8-N-1;
- 4) в окне терминала наблюдать сообщения от программы-загрузчика barebox и ОС;
- 5) дождаться появления в окне терминала приглашения 'login:'.

ПЛК1-01 готов к работе!

Для регистрации в ОС в качестве суперпользователя следует использовать имя 'root' и пароль 'pcuser'.

2.3.3 Меры безопасности при использовании изделия по назначению

Эксплуатация изделия должна проводиться только специалистами, прошедшими специальную подготовку.

Изделие не содержит в своем составе опасных или ядовитых веществ, способных нанести вред здоровью человека или окружающей среде, и не представляет опасность для жизни, здоровья людей и окружающей среды при использовании по назначению.

2.4 Указания о проведении технического обслуживания и ремонта

Техническое обслуживание изделия не предусмотрено.

Ремонт ПЛК1-01 производится только на предприятии-изготовителе.

2.5 Действия в экстремальных условиях

При пожаре, при экстренной эвакуации обслуживающего персонала необходимо отключить напряжение первичного электропитания изделия.

3 Хранение

- $3.1~\Pi$ ЛК1-01 должен храниться в упаковке завода-изготовителя в закрытых отапливаемых помещениях при температуре воздуха от 5 до 40 °C и относительной влажности от 80 до 60 %.
- В помещениях не должно быть паров кислот, щелочей и других химически активных веществ.
 - 3.2 Срок хранения ПЛК1-01 составляет три года.

4 Транспортирование

- 4.1 ПЛК1-01 следует транспортировать в упаковке завода-изготовителя автомобильным, железнодорожным, водным и авиационным видами транспорта на любое расстояние в средних условиях по ГОСТ 23216-78 в соответствии с правилами, действующими на соответствующем виде транспорта.
- 4.2 При погрузке, автономном транспортировании и выгрузке изделия необходимо строго следовать требованиям манипуляционных знаков, нанесенных на тарную упаковку.
- 4.3 Размещение и крепление транспортной тары с упакованными изделиями в транспортных средствах должны обеспечивать устойчивое положение транспортной тары и отсутствие ее перемещения во время транспортирования.
- 4.4 Погрузо-разгрузочные работы следует проводить без резких рывков, ударов, с предосторожностями, исключающими возможность механического повреждения изделия.

5 Утилизация

Изделие не содержит в своем составе опасных или ядовитых веществ, способных нанести вред здоровью человека или окружающей среде, и не представляет опасность для жизни, здоровья людей и окружающей среды по окончании срока службы.

Изделие должно подлежать утилизации после окончания срока службы по технологии, принятой в эксплуатирующей организации.