CapECL1

Exercice 1 (6 points)

La suite de Fibonacci est définie par :

$$u_0 = 0$$
, $u_1 = 1$, et $\forall n \in \mathbb{N}$, $u_{n+2} = u_{n+1} + u_n$.

- 1. Montrer que, pour tout entier naturel non nul n, $u_{n+2} u_{n+1} \ge 1$.
- 2. Soit $n \in \mathbb{N}$, $n \geq 3$. Simplifier l'expression de

$$S_n = \sum_{k=1}^{n-2} (u_{k+2} - u_{k+1}).$$

3. En déduire que, pour tout $n \in \mathbb{N}$, $u_n \ge n - 1$.

Exercice 2 (3 points)

Soit $f: \mathbb{N} \to \mathbb{N}$. On suppose que f est injective et vérifie

$$f(n) \le n$$
 pour tout $n \in \mathbb{N}$.

Montrer que $f = Id_{\mathbb{N}}$ (on pourra utiliser une récurrence forte).

Exercice 3 (6 points)

Le but de cet exercice est de déterminer toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ vérifiant la propriété :

$$(P), \quad \forall x \in \mathbb{R}, \quad \sqrt{f(x)^2 + 3x^2} = f(x) + f(1).$$

1. Résoudre dans \mathbb{R} , en raisonnant par analyse-synthèse, l'équation

$$2a = \sqrt{a^2 + 3}.$$

- 2. Soit $f: \mathbb{R} \to \mathbb{R}$.
 - (a) On suppose que f vérifie (P). Calculer f(1).
 - (b) Déterminer alors soigneusement toutes les fonctions vérifiant (P).

Exercice 4 (15 points)

Le plan est rapporté à un repère orthonormé direct (O, \vec{i}, \vec{j}) . On considère l'application

$$f: \mathbb{C} \to \mathbb{C}, \quad z \mapsto z(1-z).$$

(On identifiera dans l'exercice un point du plan et son affixe complexe z.)

- 1. Déterminer les antécédents de $\frac{1+i}{4}$. Qu'en déduit-on pour la fonction f?
- 2. Soient z_1, z_2 deux complexes distincts.
 - (a) Déterminer une condition nécessaire et suffisante simple pour que $f(z_1) = f(z_2)$.
 - (b) En donner une interprétation géométrique faisant intervenir un milieu.
- 3. Justifier que f est surjective. Y a-t-il des complexes admettant un seul antécédent par f? Si oui, le(s)quel(s)?
- 4. Déterminer $f^{-1}(\mathbb{R})$. Quelle est la nature géométrique de cet ensemble?
- 5. (a) Calculer, pour $\theta \in \mathbb{R}$, $f(\frac{1}{2} + e^{i\theta})$.
 - (b) En déduire que $f(\Gamma) = \Gamma'$, où Γ est le cercle de centre d'affixe $\frac{1}{2}$ et de rayon 1, et Γ' est un cercle que l'on caractérisera.

15/10/2024 Durée : 2h00