We claim:

	1.	An Emergency Lighting Battery System, comprising:
		a Battery;
5		a Processing Circuit;
		a Multi-Voltage Power Circuit; and
		an Occupation Awareness Sensor.
	2.	The Emergency Lighting Battery System of claim 1, further comprising:
10		a Current Sensor; and
		a Voltage Sensor.
	3.	The Emergency Lighting Battery System of claim 2, further comprising:
		a Lighted Push-Button Test Switch.
15	•	
	4:	The Emergency Lighting Battery System of claim 3, further comprising an
	Invert	er Frequency Sensor.
, ·		
	5.	The Emergency Lighting Battery System of claim 3, wherein said Processing
20	Circui	t comprises:
		a Processing Device, and
		a Watch-Dog Timer.

- 6. The Emergency Lighting Battery System of claim 5, wherein said Processing Circuit further comprises:
 - a Volatile Memory; and
- 5 a Non-Volatile Memory.
 - 7. The Emergency Lighting Battery System of claim 6, wherein said Processing Circuit further comprises an Optional Real-Time Clock.
- 10 8. The Emergency Lighting Battery System of claim 6, wherein said Processing Device comprises:
 - at least one Flag Register; and
 - a Pseudo Real-Time Clock.
- 15 9. The Emergency Lighting Battery System of claim 5, wherein said ProcessingDevice comprises:
 - at least one Flag Register;
 - a Pseudo Real-Time Clock;
 - an Optional Volatile Memory; and
- an Optional Non-Volatile Memory.

- The Emergency Lighting Battery System of claim 6, wherein said Non-Volatile
 Memory stores Processor Configuration Data.
- 11. The Emergency Lighting Battery System of claim 10, wherein said Processor
- 5 Configuration Data comprises:
 - a Random Days Variable; and
 - a Random Test Number.
 - 12. The Emergency Lighting Battery System of claim 10, wherein said Non-Volatile Memory stores Variables, Flags, and Machine State.
 - 13. The Emergency Lighting Battery System of claim 9, wherein said Optional Non-Volatile Memory stores Processor Configuration Data.
- 15 14. The Emergency Lighting Battery System of claim 13, wherein said ProcessorConfiguration Data comprises:
 - a Random Days Variable; and
 - a Random Test Number.

20

10

15. The Emergency Lighting Battery System of claim 13, wherein said Optional Non-Volatile Memory stores Variables, Flags, and Machine State.

- 16. The Emergency Lighting Battery System of claim 5, wherein said Processing

 Device runs a State Machine.
- 5 17. The Emergency Lighting Battery System of claim 16, wherein said State Machine comprises:
 - a Sleep State;
 - an Initialization State;
 - a Start-Up State;
- 10 a Charge State;
 - a Test State; and
 - an Emergency State.
 - 18. The Emergency Lighting Battery System of claim 16, wherein said Variables,
- 15 Flags, and Machine State are written to said Non-Volatile Memory on a periodic basis.
 - 19. The Emergency Lighting Battery System of claim 18, wherein said Processing Device runs a State Machine.
- 20 20. The Emergency Lighting Battery System of claim 19, wherein said Variables, Flags, and Machine State are written to said Non-Volatile Memory prior to said State Machine entering a Test State.

21. The Emergency Lighting Battery System of claim 19, wherein said Variables, Flags, and Machine State are written to said Non-Volatile Memory prior to said State Machine entering an Emergency State.

5

- 22. The Emergency Lighting Battery System of claim 5, wherein said Processing Device performs a self-test on a periodic basis.
- 23. The Emergency Lighting Battery System of claim 22, wherein Data is transmittedfrom said Processing Device to said Lighted Push-Button Switch.
 - 24. The Emergency Lighting Battery System of claim 23, wherein said transmitted Data includes status information.
- 15 25. The Emergency Lighting Battery System of claim 24, wherein said status information is transmitted on a periodic basis.
 - 26. The Emergency Lighting Battery System of claim 25, wherein said periodic status information includes error information.
- 27. The Emergency Lighting Battery System of claim 25, wherein said periodic status information is transmitted at a rate beyond human perception.

- 28. The Emergency Lighting Battery System of claim 27, wherein said transmitted periodic status information appears to human observers as a periodic heart beat.
- The Emergency Lighting Battery System of claim 2, further comprising:
 a Switch; and
 an External Data Transmission System.

10

- 30. The Emergency Lighting Battery System of claim 29, wherein said External Data
 Transmission System comprises a radio transmitter.
- 31. The Emergency Lighting Battery System of claim 29, wherein said External Data Transmission System comprises a powerline data interface.
- 32. The Emergency Lighting Battery System of claim 29, wherein said External Data
 Transmission System transmits data to a Central Data Collection point.