OPERATING SYSTEMS									
CSE 223	Credits: 3								
Instruction: 3 Periods & 1 Tut/Week	Sessional Marks : 40								
End Exam: 3 Hours	End Exam Marks : 60								

Prerequisites: Basic programming language and Computer Organization.

Course Objectives:

- 1. To understand the main components of operating system and their functions.
- 2. To understand the basic concept of shell programming.
- 3. To learn the mechanism of an operating system as process manager, memory manager, device manager and file manager.
- 4. To understand the concept of protection related to operating system.

Course Outcomes:

- 1. Illustrate the structure of OS, Functionality and services provided by the OS. Analyse the concept of shell programming, process state and state transitions.
- 2. Implement the CPU Scheduling algorithms (Pre-emptive and Non Pre-emptive). Demonstrate the concept of Process synchronization.
- 3. Demonstrate the concept of resource allocation. Apply and analyze the various memory management mechanisms for contiguous and non contiguous memory.
- 4. Demonstrate the structure and organization of file systems and analyze the implementation of file systems.
- 5. Analyse the secondary storage structure, protection of the system.

Mapping of Course Outcomes with Program Outcomes:

Mapping		РО										PSO			
		1	2	3	4	5	6	7	8	9	10	11	12	1	2
СО	1	1	1	1		2				1	1		2		
	2	2	2	2	2	2	2	2		2	1	2	2	1	1
	3	2	2	2	2	2	2	2		2	1	2	2	1	1
	4	2	2	2	1	2	1	1		2	1	1	2	1	1
	5	2	2	2	1	2	1	1		2	1	1	2	1	1

COURSE CONTENTS

UNIT I (12 Periods)

Introduction to OS: Operating system Definition, Operating system Functionalities, Types of Operating system, operating system structures, system calls, system programs.-

Introduction to Shell Programming: Commands and Shell script.

Processes: Process concept, Process scheduling, Operations on processes, Inter process communication, Communication in client-server systems.

Threads: Overview, Multithreading models.

Learning outcomes: At the end of this Unit, Students are able to

- 1. Define the responsibilities of an operating system and implement the basic shell programs.
- 2. Demonstrate the different modes of communication among processes and multi threading models.

UNIT II (12 Periods)

CPU Scheduling: Scheduling criteria, Scheduling algorithms, Algorithm Evaluation.

Process Synchronization: The critical-section problem, Peterson's solution, Synchronization hardware, Mutex Locks, Semaphores, Classic problems of synchronization, Monitors.

Case Study: Linux operating system: Process Management.

Learning outcomes: At the end of this Unit, Students are able to

- 1. Analyze the CPU scheduling algorithms and their performance evaluation.
- 2. Implement the different solutions for process synchronization.

UNIT III (12 Periods)

Deadlock: System model, Deadlock characterization, Methods for handling deadlocks, Deadlock prevention, Deadlock avoidance, Deadlock detection, Recovery from deadlock.

Memory Management: Background, Swapping, Contiguous memory allocation, Segmentation, Paging, Structure of the page table.

Virtual Memory: Background, Demand paging, Page replacement, Allocation of frames, Thrashing.

Case Study: Linux operating system: Memory Management.

Learning outcomes: At the end of this Unit, Students are able to

- 1. Define the concept of deadlock and Identify the different ways to handle deadlock like prevention, detection, avoiding and recovery.
- 2. Distinguish between contiguous and non-contiguous memory allocation methods in memory management.

UNIT IV (12 Periods)

File Systems Interface: File concept, Access methods, Directory structure, File system mounting, File Sharing, Protection.

Implementing File-Systems: File system structure, File system implementation, Directory implementation, Allocation methods, Free-space management, Efficiency and performance, Recovery.

Learning outcomes: At the end of this unit, students are able to

- 1. Demonstrate the concept of file system, various file access methods and Protection in files.
- 2. Identify and implement the file system and recovery.

UNIT V (12 Periods)

Secondary Storage Structure: Mass storage structures, Disk structure, Disk attachment, Disk scheduling, Disk management, Swap space management.

Protection: Goals of protection, Principles of protection, Domain of protection, Access matrix, Implementation of access matrix, Access control, Revocation of access rights.

Learning outcomes: At the end of this unit, students are able to

- 1. Demonstrate the concept of mass storage structures and Analyze the various disk scheduling algorithms
- 2. State the goal and principles of protection and implement the access matrix.

TEXT BOOKS

- 1. Silberschatz, Galvin and Gagne, "Operating System Principles", 9th Edition, Wiley India Pvt Ltd, 2015.
- 2. Sumitabha Das, "Unix Concepts and Applications", 4th Edition. TMH, 2006.
- 3. Yashwanth Kanitkar, "Unix Shell programming", 1st Edition, BPB Publisher, 2010.

REFERENCES

- 1. Andrew S. Tanenbaum, "Modern Operating Systems", 4th Edition, Pearson Education, 2015.
- 2. William Stalling, "Operating Systems: Internals and Design Principles", 9th edition, PHI, 2018.
- 3. Harvey M. Deitel, "Operating Systems", 3rd Edition, Pearson Education, 2004.
- 4. M.G.Venkateshmurthy, "Introduction to Unix and Shell Programming", 5th Edition, Pearson Education India, 2009.
- 5. N.B Venkateswarlu, "Advanced Unix programming", 2nd Edition, BS Publications, 2010.

WEB REFERENCES:

- 1. https://opensource.com/resources/linux
- 2. https://nptel.ac.in/courses/106/106/106106144/
- 3. http://openbookproject.net/courses/intro2ict/system/os_intro.html
- 4. https://en.wikipedia.org/wiki/Xv6.
- 5. https://nptel.ac.in/content/storage2/courses/106108101/pdf/PPTs/Mod_13.pdf

Prepared By: Dr.K.S.Deepthi, Mr.K.Chandra Sekhar