§ 35. Приведение матрицы оператора к жордановой нормальной форме

Б.М.Верников

Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики

Основной результат

Основным результатом данного параграфа является следующая теорема, для доказательства которой нам придется проделать большую предварительную работу.

Теорема о приведении матрицы оператора к жордановой форме

Пусть \mathcal{A} — линейный оператор в векторном пространстве V над полем F. Если характеристический многочлен оператора \mathcal{A} разложим над полем F на линейные множители, то существует базис пространства V, в котором матрица этого оператора имеет жорданову нормальную форму.

Учитывая следствие о разложении многочленов над $\mathbb C$ (см. § 20), имеем

Следствие о жордановой форме в пространствах над $\mathbb C$

Если V — векторное пространство над полем \mathbb{C} , то для любого линейного оператора в V существует базис, в котором матрица этого оператора имеет жорданову нормальную форму.

<u>Цепочки ядер</u> и образов степеней линейного оператора (1)

Зафиксируем линейный оператор \mathcal{A} в векторном пространстве Vразмерности n над полем F. Очевидно, что $\operatorname{Ker} \mathcal{A}^k \subset \operatorname{Ker} \mathcal{A}^{k+1}$ и $\operatorname{Im} A^k \supset \operatorname{Im} A^{k+1}$ для всякого натурального k.

Лемма о цепочках ядер и образов

Если $Ker \mathcal{A} \neq \{\mathbf{0}\}$, то существует такое натуральное s, что

$$\{\mathbf{0}\} \subset \operatorname{Ker} \mathcal{A} \subset \operatorname{Ker} \mathcal{A}^2 \subset \cdots \subset \operatorname{Ker} \mathcal{A}^s = \operatorname{Ker} \mathcal{A}^{s+1} = \cdots = \operatorname{Ker} \mathcal{A}^{s+k} = \cdots$$

$$V \supset \operatorname{Im} \mathcal{A} \supset \operatorname{Im} \mathcal{A}^2 \supset \cdots \supset \operatorname{Im} \mathcal{A}^s = \operatorname{Im} \mathcal{A}^{s+1} = \cdots = \operatorname{Im} \mathcal{A}^{s+k} = \cdots .$$

Доказательство. Включение $\{0\}$ ⊂ Ker \mathcal{A} выполнено по условию. Далее, ясно, что dim Ker $\mathcal{A}^m \leq \dim \operatorname{Ker} \mathcal{A}^{m+1} \leq n$ для всякого натурального m. Следовательно, существует натуральное s такое, что

$$\{\mathbf{0}\}\subset\operatorname{\mathsf{Ker}}\mathcal{A}\subset\operatorname{\mathsf{Ker}}\mathcal{A}^2\subset\cdots\subset\operatorname{\mathsf{Ker}}\mathcal{A}^s=\operatorname{\mathsf{Ker}}\mathcal{A}^{s+1}.$$

Проверим, что $\operatorname{Ker} A^s = \operatorname{Ker} A^{s+k}$ для всякого натурального k. Предположим, напротив, что

$$\operatorname{\mathsf{Ker}} \mathcal{A}^{s} = \operatorname{\mathsf{Ker}} \mathcal{A}^{s+1} = \dots = \operatorname{\mathsf{Ker}} \mathcal{A}^{s+k-1} \subset \operatorname{\mathsf{Ker}} \mathcal{A}^{s+k}$$

для некоторого k. Отметим, что k > 1, так как

$$\operatorname{\mathsf{Ker}} \mathcal{A}^s = \operatorname{\mathsf{Ker}} \mathcal{A}^{s+1}.$$

Цепочки ядер и образов степеней линейного оператора (2)

Из включения $\operatorname{Ker} \mathcal{A}^{s+k-1} \subset \operatorname{Ker} \mathcal{A}^{s+k}$ вытекает, что существует вектор х такой, что $\mathbf{x} \in \operatorname{Ker} \mathcal{A}^{s+k}$, но $\mathbf{x} \notin \operatorname{Ker} \mathcal{A}^{s+k-1}$. В частности, $\mathcal{A}^{s+k}(\mathbf{x}) = \mathbf{0}$. Положим $\mathbf{y} = \mathcal{A}^{k-1}(\mathbf{x})$. Тогда $\mathcal{A}^{s+1}(\mathbf{y}) = \mathcal{A}^{s+k}(\mathbf{x}) = \mathbf{0}$. Из равенства (1) вытекает, что $\mathcal{A}^s(\mathbf{y}) = \mathbf{0}$. Но $\mathcal{A}^s(\mathbf{y}) = \mathcal{A}^{s+k-1}(\mathbf{x}) \neq \mathbf{0}$. Полученное противоречие доказывает вторую из цепочек включений и равенств, указанных в формулировке леммы. Поскольку, в силу теоремы о ранге и дефекте (см. § 30), dim Im $\mathcal{A}^m + \dim \operatorname{Ker} \mathcal{A}^m = n$ для любого натурального m, из второй цепочки автоматически вытекает первая.

 Всюду далее в этом параграфе буква s имеет тот же смысл, что и в формулировке леммы о цепочках ядер и образов. Положим $N_{\mathcal{A}}=\operatorname{Ker}\mathcal{A}^{s}$, $U_{\mathcal{A}}=\operatorname{Im}\mathcal{A}^{s}$, $\mathcal{N}=\mathcal{A}|_{N_{\mathcal{A}}}$ и $\mathcal{U}=\mathcal{A}|_{U_{\mathcal{A}}}$.

Теорема о разложении Фиттинга

Если Ker $\mathcal{A} \neq \{\mathbf{0}\}$, то подпространства $N_{\mathcal{A}}$ и $U_{\mathcal{A}}$ инвариантны относительно \mathcal{A} , $V=N_{\mathcal{A}}\oplus U_{\mathcal{A}}$, \mathcal{N} — нильпотентный оператор, а \mathcal{U} — изоморфизм.

Доказательство. Инвариантность подпространств $N_{\mathcal{A}}$ и $U_{\mathcal{A}}$ относительно \mathcal{A} гарантируется 1-м замечанием об инвариантных подпространствах (см. § 32). Из определения подпространства $N_{\mathcal{A}}$ вытекает, что $\mathcal{N}^s = \mathcal{O}$, и потому оператор \mathcal{N} нильпотентен. Далее,

$$A(U_A) = A(\operatorname{Im} A^s) = \operatorname{Im} A^{s+1} = \operatorname{Im} A^s = U_A.$$

Поэтому из критерия изоморфности на языке линейных операторов (см. § 30) вытекает, что оператор $\mathcal{U}=\mathcal{A}|_{\mathcal{U}_{\mathcal{A}}}$ является изоморфизмом.

Докажем, что $N_{\mathcal{A}} \cap U_{\mathcal{A}} = \{\mathbf{0}\}$. Пусть $\mathbf{x} \in N_{\mathcal{A}} \cap U_{\mathcal{A}}$. Из того, что $\mathbf{x} \in N_{\mathcal{A}}$, вытекает, что $\mathcal{A}^s(\mathbf{x}) = \mathbf{0}$, а из того, что $\mathbf{x} \in U_{\mathcal{A}}$, следует, что $\mathbf{x} = \mathcal{A}^s(\mathbf{y})$ для некоторого вектора \mathbf{y} . Следовательно, $\mathcal{A}^{2s}(\mathbf{y}) = \mathcal{A}^s(\mathcal{A}^s(\mathbf{x})) = \mathcal{A}^s(\mathbf{0}) = \mathbf{0}$. Таким образом, $\mathbf{y} \in \operatorname{Ker} \mathcal{A}^{2s} = \operatorname{Ker} \mathcal{A}^s$, и значит $\mathbf{x} = \mathcal{A}^s(\mathbf{y}) = \mathbf{0}$.

Разложение Фиттинга (2)

Чтобы доказать равенство $V=N_{\mathcal{A}}\oplus U_{\mathcal{A}}$ (и тем самым завершить доказательство теоремы), осталось проверить, что $V=N_{\mathcal{A}}+U_{\mathcal{A}}$. Для этого, в свою очередь, достаточно убедиться в том, что $\dim V=\dim(N_{\mathcal{A}}+U_{\mathcal{A}})$. Используя теорему о размерности суммы и пересечения подпространств (см. § 24), теорему о ранге и дефекте (см. § 30) и доказанное только что равенство $N_{\mathcal{A}}\cap U_{\mathcal{A}}=\{\mathbf{0}\}$, имеем

$$\dim(N_{\mathcal{A}} + U_{\mathcal{A}}) = \dim N_{\mathcal{A}} + \dim U_{\mathcal{A}} - \dim(N_{\mathcal{A}} \cap U_{\mathcal{A}}) =$$

$$= \dim N_{\mathcal{A}} + \dim U_{\mathcal{A}} = d(\mathcal{A}^{s}) + r(\mathcal{A}^{s}) = \dim V.$$

Теорема доказана.

Равенство $V=N_{\mathcal{A}}\oplus U_{\mathcal{A}}$ называется *разложением Фиттинга* пространства V относительно линейного оператора $\mathcal{A}.$

Корневые подпространства (1)

Начиная с этого места будем считать, что многочлен $\chi_{\mathcal{A}}$ разложим над полем F на линейные множители. А именно,

$$\chi_{A} = (-1)^{n} (x - \lambda_{1})^{k_{1}} (x - \lambda_{2})^{k_{2}} \cdots (x - \lambda_{m})^{k_{m}}, \tag{2}$$

где $\lambda_1,\lambda_2,\ldots,\lambda_m\in F$ — попарно различные корни характеристического многочлена (т. е. собственные значения оператора \mathcal{A}), а k_i — кратность корня λ_i ($i=1,2,\ldots,m$).

! Всюду далее в этом параграфе параметр m, скаляры $\lambda_1, \lambda_2, \ldots, \lambda_m$ и числа k_1, k_2, \ldots, k_m имеют тот же смысл, что и в формуле (2).

Ясно, что $k_1+k_2+\cdots+k_m=n$. Для всякого $i=1,2,\ldots,m$ положим $\mathcal{A}_i=\mathcal{A}-\lambda_i\mathcal{E}$. Если \mathbf{x} — собственный вектор оператора \mathcal{A} , относящийся к собственному значению λ_i , то $\mathbf{x}\neq\mathbf{0}$ и

$$A_i(\mathbf{x}) = (A - \lambda_i \mathcal{E})(\mathbf{x}) = A(\mathbf{x}) - \lambda_i \mathcal{E}(\mathbf{x}) = \lambda_i \mathbf{x} - \lambda_i \mathbf{x} = \mathbf{0}.$$

Мы видим, что $\mathbf{x} \in \operatorname{Ker} \mathcal{A}_i$, и потому $\operatorname{Ker} \mathcal{A}_i \neq \{\mathbf{0}\}$. Согласно лемме о цепочках ядер и образов, для всякого $i=1,2,\ldots,m$ существует число s_i такое, что

$$\{\mathbf{0}\}\subset\operatorname{Ker}\mathcal{A}_{i}\subset\operatorname{Ker}\mathcal{A}_{i}^{2}\subset\cdots\subset\operatorname{Ker}\mathcal{A}_{i}^{s_{i}}=\operatorname{Ker}\mathcal{A}_{i}^{s_{i}+1}=\cdots=\operatorname{Ker}\mathcal{A}_{i}^{s_{i}+k}=\cdots$$

$$V\supset\operatorname{Im}\mathcal{A}_{i}\supset\operatorname{Im}\mathcal{A}_{i}^{2}\supset\cdots\supset\operatorname{Im}\mathcal{A}_{i}^{s_{i}}=\operatorname{Im}\mathcal{A}_{i}^{s_{i}+1}=\cdots=\operatorname{Im}\mathcal{A}_{i}^{s_{i}+k}=\cdots.$$

Корневые подпространства (2)

Положим $N_i = \operatorname{Ker} \mathcal{A}_i^{s_i}$ и $U_i = \operatorname{Im} \mathcal{A}_i^{s_i}$. Ограничения оператора \mathcal{A}_i на подпространства N_i и U_i будем обозначать через \mathcal{N}_i и \mathcal{U}_i соответственно.

Определение

Подпространство N_i называется *корневым подпространством* пространства V, соответствующим собственному значению λ_i , а число s_i — *глубиной* этого подпространства.

Из теоремы о разложении Фиттинга вытекает, что для всякого $i=1,2,\ldots,m$ справедливы следующие утверждения, которые далее будут использоваться без дополнительных оговорок:

- ullet подпространства N_i и U_i инвариантны относительно \mathcal{A}_i ;
- $V = N_i \oplus U_i$;
- \mathcal{N}_i нильпотентный оператор;
- *U_i* − изоморфизм.

Лемма о размерности корневого подпространства

Лемма о размерности корневого подпространства

Пусть $i \in \{1,2,\ldots,m\}$. Тогда $\dim N_i = k_i$.

Доказательство. Положим $d_i=\dim N_i$. Пусть A — матрица оператора $\mathcal A$ в некотором базисе. Тогда оператор $\mathcal A_i$ имеет в том же базисе матрицу $A-\lambda_i E$. Поскольку подпространства N_i и U_i инвариантны относительно $\mathcal A_i$ и $V=N_i\oplus U_i$, из теоремы о прямой сумме инвариантных подпространств (см. § 32) вытекает, что $\chi_{\mathcal A_i}(x)=\chi_{\mathcal N_i}(x)\cdot\chi_{\mathcal U_i}(x)$. В силу предложения о характеристическом многочлене нильпотентного оператора (см. § 34), $\chi_{\mathcal N_i}(x)=(-1)^{d_i}x^{d_i}$. Объединяя сказанное, получаем, что

$$\chi_{\mathcal{A}}(x) = |A - xE| = \left| (A - \lambda_i E) - (x - \lambda_i) E \right| = \chi_{\mathcal{A}_i}(x - \lambda_i) =$$

$$= \chi_{\mathcal{N}_i}(x - \lambda_i) \cdot \chi_{\mathcal{U}_i}(x - \lambda_i) = (-1)^{d_i}(x - \lambda_i)^{d_i} \cdot \chi_{\mathcal{U}_i}(x - \lambda_i).$$

Оператор \mathcal{U}_i является изоморфизмом. Поэтому из следствия об изоморфизме и матрице линейного оператора (см. § 30) вытекает, что его матрица в любом базисе невырожденна. Определитель этой матрицы равен свободному члену многочлена $\chi_{\mathcal{U}_i}$, т. е. скаляру $\chi_{\mathcal{U}_i}(0)$. Следовательно, $\chi_{\mathcal{U}_i}(0) \neq 0$, и потому λ_i не является корнем многочлена $\chi_{\mathcal{U}_i}(x-\lambda_i)$. Это означает, что скаляр λ_i является корнем кратности d_i многочлена $\chi_{\mathcal{A}}(x)$. Иными словами, $d_i=k_i$.

Теорема о корневом разложении (1)

Решающую роль в доказательстве теоремы о приведении матрицы оператора к жордановой форме играет следующая

Теорема о корневом разложении

$$V = N_1 \oplus N_2 \oplus \cdots \oplus N_m$$
.

Равенство из формулировки этой теоремы называется корневым разложением пространства V относительно линейного оператора \mathcal{A} .

 \mathcal{L} оказательство. В силу равенства $V=\mathcal{N}_1\oplus U_1$, достаточно убедиться в том, что

$$U_1 = N_2 \oplus \cdots \oplus N_m. \tag{3}$$

Проверим сначала, что если $i,j\in\{1,2,\ldots,m\}$ и $i\neq j$, то $N_i\subseteq U_j$. Пространство N_i инвариантно относительно \mathcal{A}_i . Заметим, что

$$A_j = A - \lambda_j \mathcal{E} = A - \lambda_i \mathcal{E} + \lambda_i \mathcal{E} - \lambda_j \mathcal{E} = A_i + (\lambda_i - \lambda_j) \mathcal{E}.$$

В силу 2-го замечания об инвариантных подпространствах (см. § 32), получаем, что N_i инвариантно и относительно \mathcal{A}_j . Следовательно, ограничение оператора \mathcal{A}_j на подпространство N_i можно рассматривать как линейный оператор в N_i . Обозначим этот оператор через \mathcal{A}_{ji} .

Проверим, что $\operatorname{Ker} \mathcal{A}_{ji} = \{\mathbf{0}\}$. В самом деле, пусть $\mathbf{v} \in \operatorname{Ker} \mathcal{A}_{ji}$. Это означает, что $\mathbf{v} \in \operatorname{Ker} \mathcal{A}_{i}$ и $\mathbf{v} \in \mathcal{N}_{i}$.

Теорема о корневом разложении (2)

Используя первое из этих двух включений, имеем

$$\mathbf{0} = \mathcal{A}_j(\mathbf{v}) = (\mathcal{A} - \lambda_j \mathcal{E})(\mathbf{v}) = \mathcal{A}(\mathbf{v}) - \lambda_j \mathbf{v},$$

откуда $\mathcal{A}(\mathbf{v}) = \lambda_j \mathbf{v}$. Следовательно,

$$A_i(\mathbf{v}) = (A - \lambda_i \mathcal{E})(\mathbf{v}) = A(\mathbf{v}) - \lambda_i \mathbf{v} = \lambda_j \mathbf{v} - \lambda_i \mathbf{v} = (\lambda_j - \lambda_i) \mathbf{v}.$$

Отсюда вытекает, что $\mathcal{A}_{i}^{s_{i}}(\mathbf{v})=(\lambda_{j}-\lambda_{i})^{s_{i}}\mathbf{v}$. Учитывая, что $\mathbf{v}\in N_{i}=Ker\mathcal{A}_{i}^{s_{i}}$, имеем $(\lambda_{j}-\lambda_{i})^{s_{i}}\mathbf{v}=\mathbf{0}$. Поскольку $\lambda_{j}\neq\lambda_{i}$, заключаем, что $(\lambda_{j}-\lambda_{i})^{s_{i}}\neq0$, и потому $\mathbf{v}=\mathbf{0}$. Мы доказали, что $\ker\mathcal{A}_{ji}=\{\mathbf{0}\}$.

В силу теоремы о ранге и дефекте (см. § 30), получаем, что Im $\mathcal{A}_{ji}=N_i$. Из этого равенства и инвариантности подпространства N_i относительно оператора \mathcal{A}_j вытекает, что $\mathcal{A}_j(N_i)=N_i$. Но тогда

$$N_i = \mathcal{A}_j(N_i) = \mathcal{A}_j\big(\mathcal{A}_j(N_i)\big) = \mathcal{A}_j^2(N_i) = \dots = \mathcal{A}_j^{s_j}(N_i) \subseteq \mathcal{A}_j^{s_j}(V) = \operatorname{Im} \mathcal{A}_j^{s_j} = U_j.$$

Мы доказали, что если $i,j\in\{1,2,\ldots,m\}$ и i
eq j, то $N_i\subseteq U_j$.

Перейдем к непосредственной проверке равенства (3). Пусть $2 < k \le m$. Учитывая, что $N_k, N_{k+1}, \dots, N_m \subseteq U_{k-1}$, мы получаем, что $N_k + N_{k+1} + \dots + N_m \subseteq U_{k-1}$. Поскольку $N_{k-1} \cap U_{k-1} = \{\mathbf{0}\}$, имеем

$$N_{k-1} \cap (N_k + N_{k+1} + \cdots + N_m) = \{0\}.$$

Теорема о корневом разложении (3)

Применяя это равенство последовательно при $k=3,4,\dots,m$, имеем

$$\begin{aligned} N_2 + N_3 + \cdots + N_m &= N_2 \oplus (N_3 + N_4 + \cdots + N_m) = \\ &= N_2 \oplus N_3 \oplus (N_4 + \cdots + N_m) = \\ &= \cdots = N_2 \oplus N_3 \oplus \cdots \oplus N_m. \end{aligned}$$

Осталось доказать, что $U_1=N_2+N_3+\cdots+N_m$. Поскольку $N_2+N_3+\cdots+N_m\subseteq U_1$, для этого достаточно установить, что dim $U_1=\dim(N_2+N_3+\cdots+N_m)$. Учитывая равенства $V=N_1\oplus U_1$ и $N_2+N_3+\cdots+N_m=N_2\oplus N_3\oplus\cdots\oplus N_m$, теорему о прямой сумме подпространств (см. § 24) и лемму о размерности корневого подпространства, получаем, что, с одной стороны,

$$n = \dim N_1 + \dim U_1 = k_1 + \dim U_1,$$

откуда dim $U_1=n-k_1$, а с другой,

$$\dim(N_2 + N_3 + \cdots + N_m) = \dim N_2 + \dim N_3 + \cdots + \dim N_m =$$

= $k_2 + k_3 + \cdots + k_m = n - k_1$.

Следовательно, $\dim U_1 = \dim(N_2 + N_3 + \cdots + N_m)$. Это завершает доказательство теоремы.

Доказательство теоремы о приведении матрицы оператора к жордановой форме

Доказательство теоремы о приведении матрицы оператора к жордановой форме. Пусть $i \in \{1,2,\ldots,m\}$. В силу основной теоремы о нильпотентных операторах (см. § 34), в пространстве N_i существует базис G_i , в котором матрица оператора \mathcal{N}_i имеет жорданову нормальную форму. Обозначим эту матрицу через A_i . Оператор \mathcal{N}_i является ограничением на пространство N_i оператора $A_i = A - \lambda_i \mathcal{E}$. Обозначим матрицу оператора $A_{|N_i}$ в базисе G_i через $A^{(i)}$. Тогда $A_i = A^{(i)} - \lambda_i E$, откуда $A^{(i)} = A_i + \lambda_i E$. Ясно, что матрица $A^{(i)}$ имеет жорданову нормальную форму. Отметим, что на главных диагоналях всех клеток Жордана в матрице A_i стоит 0, а в матрице $A^{(i)} -$ скаляр λ_i .

Пусть G — базис пространства V, являющийся объединением базисов G_1, G_2, \ldots, G_m , а A — матрица оператора $\mathcal A$ в базисе G. Из теоремы о корневом разложении и теоремы о прямой сумме инвариантных подпространств (см. § 32) вытекает, что

$$A = \begin{pmatrix} A^{(1)} & O & \dots & O \\ O & A^{(2)} & \dots & O \\ \dots & \dots & \dots & \dots \\ O & O & \dots & A^{(m)} \end{pmatrix}.$$

Ясно, что матрица A имеет жорданову нормальную форму.

Замечание о жордановой нормальной форме матрицы оператора

Из доказательства теоремы о приведении матрицы оператора к жордановой форме вытекает следущий факт.

Замечание о жордановой нормальной форме матрицы оператора

Если A — матрица линейного оператора \mathcal{A} , имеющая жорданову нормальную форму, то на главных диагоналях клеток Жордана матрицы A стоят собственные значения оператора \mathcal{A} . При этом каждое собственное значение λ_i появляется на главной диагонали матрицы A в общей сложности k_i раз.

Жорданов базис

Определение

Базис векторного пространства, в котором матрица линейного оператора $\mathcal A$ имеет жорданову нормальную форму, называается жордановым базисом относительно оператора $\mathcal A$.

Теорему о приведении матрицы оператора к жордановой форме можно переформулировать следующим образом:

• если характеристический многочлен оператора A разлагается на линейные множители над полем F, то в пространстве V существует жорданов базис относительно A.

Алгоритм приведения матрицы оператора к жордановой нормальной форме

Рассматривается линейный оператор $\mathcal A$ в n-мерном векторном пространстве V над полем F, характеристический многочлен которого разлагается над F на линейные множители. Предполагаются известными матрица A этого оператора в некотором базисе и разложение (2) многочлена $\chi_{\mathcal A}$ на линейные множители. Требуется найти жорданов базис относительно этого оператора и матрицу оператора в этом базисе. Задача распадается на три шага:

- 1) нахождение базисов корневых подпространств;
- 2) для каждого корневого подпространства нахождение жорданова базиса этого подпространства относительно ограничения оператора ${\cal A}$ на это подпространство;
- 3) выписывание матрицы оператора ${\mathcal A}$ в жордановом базисе.

Ограничение линейного оператора на корневое подпространство является нильпотентным оператором. Поэтому шаг 2) осуществляется по алгоритму нахождения жорданова базиса относительно нильпотентного оператора (см. § 34). Из замечания о жордановой нормальной форме матрицы оператора видно, как осуществляется шаг 3). Осталось понять, как осуществляется шаг 1). Этому посвящены следующие два слайда.

Алгоритм нахождения базисов корневых подпространств (1)

Алгоритм нахождения базисов корневых подпространств (начало)

1) Если оператор \mathcal{A} имеет единственное собственное значение λ_1 , т. е. разложение (2) имеет вид $\chi_A(x) = (-1)^n (x - \lambda_1)^n$, то, в силу теоремы Гамильтона–Кэли, $(A - \lambda_1 \mathcal{E})^n = \mathcal{O}$. Это значит, что оператор $A - \lambda_1 \mathcal{E}$ нильпотентен. В этом случае применяем алгоритм нахождения жорданова базиса относительно нильпотентного оператора из § 34. Пусть теперь ${\mathcal A}$ имеет более одного собственного значения. Выберем собственное значение λ_1 и запишем матрицу $(E \mid A_1^\top)$, где $A_1 = A - \lambda_1 E$. С помощью элементарных преобразований всей матрицы приведем ее к виду $(E^{(1)} \mid A_1^{(1)})$, где $A_1^{(1)}$ — ступенчатая матрица. Затем запишем матрицу $(E^{(1)} \mid A_1^{(1)} \mid A_1^{(1)} A_1^{\top})$ и с помощью элементарных преобразований всей матрицы приведем ее к виду ($E^{(2)} \mid A_1^{(2)} \mid A_1^{(3)}$), где $A_1^{(3)}$ — ступенчатая матрица. Продолжаем этот процесс до тех пор, пока для некоторого s_1 не окажется, что либо ранги матриц $A_1^{(s_1)}$ и $A_1^{(s_1+1)}$ совпадают, либо число нулевых строк матрицы $A_1^{(s_1)}$ равно k_1 , т. е. кратности λ_1 как корня многочлена $\chi_{A}(x)$. После завершения этого процесса базис корневого подпространства N_1 образуют векторы из самой левой части последней полученной матрицы, имеющие нулевые продолжения в самой правой части этой матрицы.

Алгоритм нахождения базисов корневых подпространств (2)

Алгоритм нахождения базисов корневых подпространств (окончание)

- 2) Обозначим крайне правую часть последней полученной матрицы через B. Возьмем собственное значение λ_2 линейного оператора \mathcal{A} , отличное от λ_1 . Пусть $A_2 = A \lambda_2 E$. Запишем матрицу $(B \mid B_1)$, где $B_1 = BA_2^{\top}$. С помощью элементарных преобразований всей матрицы приведем ее к виду $(B^{(1)} \mid B_1^{(1)})$, где $B_1^{(1)}$ ступенчатая матрица. Далее повторяем действия, описанные на предыдущем слайде. Прерываем процесс в случае наступления либо равенства $r(B_1^{(s_2)}) = r(B_1^{(s_2+1)})$, либо равенства числа нулевых строк матрицы $B_1^{(s_2)}$ кратности λ_2 как корня многочлена $\chi_{\mathcal{A}}(x)$. Базис корневого подпространства N_2 образуют векторы из самой левой части последней полученной матрицы, имеющие нулевые продолжения в самой правой части этой матрицы.
- 3) Проделываем описанные действия с собственными значениями $\lambda_3,\dots,\lambda_{m-1}$ оператора \mathcal{A} , и тем самым находим базисы корневых подпространств N_3,\dots,N_{m-1} . Наконец, базис корневого подпространства N_m образуют ненулевые строки самой правой (ступенчатой) части последней матрицы, полученной для собственного значения λ_{m-1} .

Обоснование алгоритма нахождения базисов корневых подпространств (1)

Обоснование алгоритма основывается на:

- алгоритме Чуркина нахождения базисов образа и ядра линейного оператора и обосновании этого алгоритма (см. § 30);
- алгоритме нахождения жорданова базиса относительно нильпотентного оператора (см. § 34);
- теореме о корневом разложении;
- ullet следствии о строении пространства U_i .

Осуществляя п. 1) алгоритма, мы находим сначала базис подространства $\operatorname{Im} \mathcal{A}_1 = \operatorname{Im}(\mathcal{A} - \lambda_1 \mathcal{E})$, затем базис подпространства $\operatorname{Im} \mathcal{A}_1^2$, и т. д., до тех пор, пока не не будет выполнено одно из условий $r(\mathcal{A}_1^{s_1}) = r(\mathcal{A}_1^{s_1+1})$ или $d(\mathcal{A}_1^{s_1}) = k_1$. В обоих случаях s_1 — это глубина корневого подпространства N_1 (если $r(\mathcal{A}_1^{s_1}) = r(\mathcal{A}_1^{s_1+1})$, то это непосредственно вытекает из определения глубины корневого подпространства, а если $d(\mathcal{A}_1^{s_1}) = k_1$, то надо сослаться на лемму о размерности корневого подпространства). Отсюда и из алгоритма Чуркина вытекает сказанное в конце п. 1) алгоритма о базисе подпространства N_1 . Согласно тому же алгоритму Чуркина, ненулевые строки матрицы $A_1^{(s_1)}$ образуют базис подпространства U_1 . Все дальнейшие действия происходят с векторами, лежащими в этом подпространстве, которое, в силу равенства (3), совпадает с $\overset{m}{\oplus} N_i$.

Обоснование алгоритма нахождения базисов корневых подпространств (2)

Умножая в начале п. 2) алгоритма матрицу $B = A_1^{(s_1)}$ на A_2^{\top} , мы находим образы базисных векторов подпространства U_1 при операторе $A_2 = A - \lambda_2 \mathcal{E}$. После этого мы, по сути дела, вновь применяем алгоритм Чуркина, но в модифицированном виде. Как и в «классическом» варианте алгоритма Чуркина, мы приписываем к координатам базисных векторов координаты их образов и приводим правую часть матрицы к ступенчатому виду. Правда, здесь координаты базисных векторов и их образов записываются не в том базисе, который эти базисные векторы образуют, а в каком-то другом. Но из обоснования алгоритма Чуркина (см. § 30) легко усмотреть, что это ничего не меняет. Поэтому выполняя действия, описанные в п. 2) алгоритма для собственного значения λ_2 , мы находим базис подпространства N_2 , после чего оказываемся внутри пространства $\overset{m}{\oplus}$ N_i . Продолжая перебирать собствненные значения, мы каждый раз, для очередного j, находим базис подпространства N_i и попадаем внутрь подпространства $\bigoplus_{i=i+1}^m N_i$. В конце концов, дойдя до последнего собственного значения λ_m , мы окажемся внутри подпространства N_m и найдем его базис так, как это предписывает алгоритм Чуркина. Этим объясняется сказанное в п. 3) алгоритма.

Вычисление степеней матрицы (1)

Приведем пример задачи, решение которой значительно облегчается теоремой о приведении матрицы оператора к жордановой форме. Пусть $\mathcal A$ — линейный оператор в некотором векторном пространстве. Во многих приложениях надо знать поведение оператора $\mathcal A^k$ при $k\to\infty$. Если A — матрица оператора $\mathcal A$ в некотором базисе, то вопрос сводится к строению матрицы $\mathcal A^k$ при $k\to\infty$. В общем случае вопрос о вычислении матрицы $\mathcal A^k$ для произвольного k весьма сложен и трудоемок. Предположим теперь, что матрица $\mathcal A$ подобна некоторой матрице $\mathcal B$, степень которой вычисляется просто. Тогда $\mathcal A = \mathcal T^{-1}\mathcal B\mathcal T$ для некоторой невырожденной квадратной матрицы $\mathcal T$, и потому $\mathcal A^k = \mathcal T^{-1}\mathcal B^k\mathcal T$ (см. замечание о степенях подобных матриц в § 31). Поэтому если матрица $\mathcal T$ известна, то вычисление матрицы $\mathcal A^k$ становится несложной задачей.

Вернемся к рассмотрению линейных операторов. Если мы знаем матрицу A нашего оператора в некотором базисе P и сможем найти базис Q, в котором матрица оператора устроена просто (в том смысле, что ее степени вычисляются легко), то найдя матрицу T_{PQ} мы, в силу сказанного в предыдущем абзаце, легко вычислим степени матрицы A. Покажем, что у матриц, имеющих жорданову нормальную форму, степени вычисляются легко — тем самым станет ясна роль, которую в рассматриваемом вопросе играет теорема о приведении матрицы оператора к жордановой форме.

Вычисление степеней матрицы (2)

Совсем просто вычисляются степени диагональных матриц: легко проверяется, что если A — диагональная матрица с элементами a_1 , a_2 , ..., a_n на главной диагонали, то, для всякого натурального k, A^k — диагональная матрица с элементами a_1^k , a_2^k , ..., a_n^k на главной диагонали. Диагональная матрица — это простейший частный случай блочно-диагональной матрицы. У последней вычисление степени сводится к вычислению степеней ее диагональных клеток: легко понять, что если

$$A = \begin{pmatrix} A_1 & O & \dots & O \\ O & A_2 & \dots & O \\ \dots & \dots & \dots & \dots \\ O & O & \dots & A_m \end{pmatrix},$$

то

$$A^k = \begin{pmatrix} A_1^k & O & \dots & O \\ O & A_2^k & \dots & O \\ \dots & \dots & \dots & \dots \\ O & O & \dots & A_m^k \end{pmatrix}.$$

В частности, вычисление степеней матрицы, имеющей жорданову нормальную форму, сводится к вычислению степеней ее клеток Жордана.

Степень клетки Жордана

Приведем без доказательства результат о том, как выглядит произвольная степень клетки Жордана. Для этого нам понадобится следующее равенство (см. биномиальную формулу Ньютона, т. е. формулу (1) в § 3):

$$(\lambda + 1)^k = \lambda^k + C_k^1 \lambda^{k-1} + C_k^2 \lambda^{k-2} + \dots + C_k^{k-1} \lambda + 1.$$
 (4)

Пусть $J_{\lambda,n}$ — клетка Жордана порядка n>1 со скаляром λ на главной диагонали, а k — натуральное число. Все элементы матрицы $J_{\lambda,n}^k$, расположенные выше главной диагонали, равны 0. В каждом ее столбце начиная с элемента на главной диагонали сверху вниз последовательно идут слагаемые из правой части равенства (4). При этом, если в указанной части столбца «хватает места» для всех слагаемых и столбец остается незаполненным, то оставшиеся места в нижней части столбца заполняются нулями. Если же места не хватает, то там стоят столько первых слагаемых из правой части равенства (4), сколько «помещаются» в столбце. Например,

$$J_{\lambda,3}^{5} = \begin{pmatrix} \lambda^{5} & 0 & 0 \\ 5\lambda^{4} & \lambda^{5} & 0 \\ 10\lambda^{3} & 5\lambda^{4} & \lambda^{5} \end{pmatrix}, \text{ a } J_{\lambda,7}^{4} = \begin{pmatrix} \lambda^{4} & 0 & 0 & 0 & 0 & 0 & 0 \\ 4\lambda^{3} & \lambda^{4} & 0 & 0 & 0 & 0 & 0 & 0 \\ 6\lambda^{2} & 4\lambda^{3} & \lambda^{4} & 0 & 0 & 0 & 0 & 0 \\ 4\lambda & 6\lambda^{2} & 4\lambda^{3} & \lambda^{4} & 0 & 0 & 0 & 0 \\ 1 & 4\lambda & 6\lambda^{2} & 4\lambda^{3} & \lambda^{4} & 0 & 0 & 0 \\ 0 & 1 & 4\lambda & 6\lambda^{2} & 4\lambda^{3} & \lambda^{4} & 0 & 0 \\ 0 & 0 & 1 & 4\lambda & 6\lambda^{2} & 4\lambda^{3} & \lambda^{4} \end{pmatrix}_{5}.$$