Laplace Transforms and Convolutions

Bernd Schröder

Double Check

Everything Remains As It Was

Time Domain (t)

Time Domain (t)

Transforms and New Formulas

Original DE & IVP

Time Domain (t)

No matter what functions arise, the idea for solving differential equations with Laplace transforms stays the same.

Time Domain (t)

1. Solving initial value problems ay'' + by' + cy = f with Laplace transforms leads to a transform $Y = F \cdot R(s) + \cdots$.

- 1. Solving initial value problems ay'' + by' + cy = f with Laplace transforms leads to a transform $Y = F \cdot R(s) + \cdots$.
- 2. If the Laplace transform *F* of *f* is not easily computed or if the inverse transform of the product is hard, it would be nice to have a direct formula for the inverse transform of a product.

- 1. Solving initial value problems ay'' + by' + cy = f with Laplace transforms leads to a transform $Y = F \cdot R(s) + \cdots$.
- 2. If the Laplace transform *F* of *f* is not easily computed or if the inverse transform of the product is hard, it would be nice to have a direct formula for the inverse transform of a product. Maybe that way the transformation of *f* can be avoided.

The Inverse Laplace Transform of a Product

1. Solving initial value problems ay'' + by' + cy = f with Laplace transforms leads to a transform $Y = F \cdot R(s) + \cdots$

An Example

- 2. If the Laplace transform F of f is not easily computed or if the inverse transform of the product is hard, it would be nice to have a direct formula for the inverse transform of a product. Maybe that way the transformation of f can be avoided.
- 3. The convolution of the functions f(t) and g(t) is $f * g(t) = \int_0^t f(\tau)g(t-\tau) d\tau$

Double Check

- 1. Solving initial value problems ay'' + by' + cy = f with Laplace transforms leads to a transform $Y = F \cdot R(s) + \cdots$.
- 2. If the Laplace transform *F* of *f* is not easily computed or if the inverse transform of the product is hard, it would be nice to have a direct formula for the inverse transform of a product. Maybe that way the transformation of *f* can be avoided.
- 3. The convolution of the functions f(t) and g(t) is $f * g(t) = \int_0^t f(\tau)g(t-\tau) d\tau$ and $\mathcal{L}(f * g) = FG$.

The Inverse Laplace Transform of a Product

1. Solving initial value problems ay'' + by' + cy = f with Laplace transforms leads to a transform $Y = F \cdot R(s) + \cdots$

An Example

- 2. If the Laplace transform F of f is not easily computed or if the inverse transform of the product is hard, it would be nice to have a direct formula for the inverse transform of a product. Maybe that way the transformation of f can be avoided.
- 3. The convolution of the functions f(t) and g(t) is $f * g(t) = \int_{0}^{t} f(\tau)g(t-\tau) d\tau$ and $\mathcal{L}(f * g) = FG$.
- 4. So it is possible to avoid transforming the forcing term, but the price we pay is that the solution is represented as an integral.

The Convolution Can Be Useful When Larger Systems are Analyzed

The Convolution Can Be Useful When Larger Systems are Analyzed

$$3y' + 2y = |\sin(t)|, y(0) = 0$$

$$3y' + 2y = |\sin(t)|, y(0) = 0$$

$$3y' + 2y = |\sin(t)|, \quad y(0) = 0$$

$$3y' + 2y = |\sin(t)|, y(0) = 0$$

$$3y' + 2y = |\sin(t)|, \quad y(0) = 0$$

 $3y' + 2y = p(t), \quad y(0) = 0$

$$3y' + 2y = |\sin(t)|, y(0) = 0$$

$$3y' + 2y = |\sin(t)|, \quad y(0) = 0$$

 $3y' + 2y = p(t), \quad y(0) = 0$
 $3sY + 2Y = P$

$$3y' + 2y = |\sin(t)|, y(0) = 0$$

$$3y' + 2y = |\sin(t)|, \quad y(0) = 0$$

$$3y' + 2y = p(t), \quad y(0) = 0$$

$$3sY + 2Y = P$$

$$Y = P\frac{1}{3s+2}$$

$$3y' + 2y = |\sin(t)|, y(0) = 0$$

$$3y' + 2y = |\sin(t)|, \quad y(0) = 0$$

$$3y' + 2y = p(t), \quad y(0) = 0$$

$$3sY + 2Y = P$$

$$Y = P\frac{1}{3s+2} = P\frac{1}{3}\frac{1}{s+\frac{2}{3}}$$

$$3y' + 2y = |\sin(t)|, y(0) = 0$$

$$3y' + 2y = |\sin(t)|, \quad y(0) = 0$$

$$3y' + 2y = p(t), \quad y(0) = 0$$

$$3sY + 2Y = P$$

$$Y = P\frac{1}{3s+2} = P\frac{1}{3}\frac{1}{s+\frac{2}{3}}$$

$$y(t) = p(t) * \frac{1}{3}e^{-\frac{2}{3}t}$$

$$3y' + 2y = |\sin(t)|, y(0) = 0$$

$$3y' + 2y = |\sin(t)|, \quad y(0) = 0$$

$$3y' + 2y = p(t), \quad y(0) = 0$$

$$3sY + 2Y = P$$

$$Y = P\frac{1}{3s + 2} = P\frac{1}{3}\frac{1}{s + \frac{2}{3}}$$

$$y(t) = p(t) * \frac{1}{3}e^{-\frac{2}{3}t} = \frac{1}{3}\int_{0}^{t} |\sin(\tau)|e^{-\frac{2}{3}(t-\tau)} d\tau$$

$$3y' + 2y = |\sin(t)|, y(0) = 0$$
?

$$3y' + 2y = |\sin(t)|, y(0) = 0$$
?

Initial value

Transforms and New Formulas

$$3y' + 2y = |\sin(t)|, y(0) = 0$$
?

Does $y = \frac{1}{3} \int_0^t |\sin(\tau)| e^{-\frac{2}{3}(t-\tau)} d\tau$ Really Solve the Initial Value Problem

$$3y' + 2y = |\sin(t)|, y(0) = 0$$
?

Transforms and New Formulas

Initial value: Look at y!

y'

$$3y' + 2y = |\sin(t)|, y(0) = 0$$
?

$$y' = \frac{d}{dt} \frac{1}{3} \int_0^t \left| \sin(\tau) \right| e^{-\frac{2}{3}(t-\tau)} d\tau$$

An Example

Does $y = \frac{1}{3} \int_{0}^{t} |\sin(\tau)| e^{-\frac{2}{3}(t-\tau)} d\tau$ Really Solve the Initial Value Problem

$$3y' + 2y = |\sin(t)|, y(0) = 0$$
?

Transforms and New Formulas

$$y' = \frac{d}{dt} \frac{1}{3} \int_0^t |\sin(\tau)| e^{-\frac{2}{3}(t-\tau)} d\tau$$
$$= \frac{1}{3} |\sin(t)| e^{-\frac{2}{3}(t-t)}$$

$$3y' + 2y = |\sin(t)|, y(0) = 0$$
?

$$y' = \frac{d}{dt} \frac{1}{3} \int_0^t |\sin(\tau)| e^{-\frac{2}{3}(t-\tau)} d\tau$$
$$= \frac{1}{3} |\sin(t)| e^{-\frac{2}{3}(t-t)} + \frac{1}{3} \int_0^t |\sin(\tau)| \frac{\partial}{\partial t} e^{-\frac{2}{3}(t-\tau)} d\tau$$

Does $y = \frac{1}{3} \int_{0}^{\tau} |\sin(\tau)| e^{-\frac{2}{3}(t-\tau)} d\tau$ Really Solve the Initial Value Problem

$$3y' + 2y = |\sin(t)|, y(0) = 0$$
?

Initial value: Look at y!

$$y' = \frac{d}{dt} \frac{1}{3} \int_0^t |\sin(\tau)| e^{-\frac{2}{3}(t-\tau)} d\tau$$

$$= \frac{1}{3} |\sin(t)| e^{-\frac{2}{3}(t-t)} + \frac{1}{3} \int_0^t |\sin(\tau)| \frac{\partial}{\partial t} e^{-\frac{2}{3}(t-\tau)} d\tau$$

$$= \frac{1}{3} |\sin(t)|$$

An Example

An Example

Does $y = \frac{1}{3} \int_{1}^{\tau} |\sin(\tau)| e^{-\frac{2}{3}(t-\tau)} d\tau$ Really Solve the Initial Value Problem

$$3y' + 2y = |\sin(t)|, y(0) = 0$$
?

Transforms and New Formulas

$$y' = \frac{d}{dt} \frac{1}{3} \int_0^t |\sin(\tau)| e^{-\frac{2}{3}(t-\tau)} d\tau$$

$$= \frac{1}{3} |\sin(t)| e^{-\frac{2}{3}(t-t)} + \frac{1}{3} \int_0^t |\sin(\tau)| \frac{\partial}{\partial t} e^{-\frac{2}{3}(t-\tau)} d\tau$$

$$= \frac{1}{3} |\sin(t)| + \left(-\frac{2}{3}\right) \frac{1}{3} \int_0^t |\sin(\tau)| e^{-\frac{2}{3}(t-\tau)} d\tau$$

Does $y = \frac{1}{2} \int_{0}^{t} |\sin(\tau)| e^{-\frac{2}{3}(t-\tau)} d\tau$ Really Solve the Initial Value Problem

$$3y' + 2y = |\sin(t)|, y(0) = 0$$
?

Transforms and New Formulas

Initial value: Look at y!

$$y' = \frac{d}{dt} \frac{1}{3} \int_0^t |\sin(\tau)| e^{-\frac{2}{3}(t-\tau)} d\tau$$

$$= \frac{1}{3} |\sin(t)| e^{-\frac{2}{3}(t-t)} + \frac{1}{3} \int_0^t |\sin(\tau)| \frac{\partial}{\partial t} e^{-\frac{2}{3}(t-\tau)} d\tau$$

$$= \frac{1}{3} |\sin(t)| + \left(-\frac{2}{3}\right) \frac{1}{3} \int_0^t |\sin(\tau)| e^{-\frac{2}{3}(t-\tau)} d\tau$$

$$= \frac{1}{3} |\sin(t)| - \frac{2}{3} y$$

An Example

Does $y = \frac{1}{2} \int_{0}^{t} |\sin(\tau)| e^{-\frac{2}{3}(t-\tau)} d\tau$ Really Solve the Initial Value Problem

An Example

$$3y' + 2y = |\sin(t)|, y(0) = 0$$
?

Transforms and New Formulas

$$y' = \frac{d}{dt} \frac{1}{3} \int_0^t |\sin(\tau)| e^{-\frac{2}{3}(t-\tau)} d\tau$$

$$= \frac{1}{3} |\sin(t)| e^{-\frac{2}{3}(t-t)} + \frac{1}{3} \int_0^t |\sin(\tau)| \frac{\partial}{\partial t} e^{-\frac{2}{3}(t-\tau)} d\tau$$

$$= \frac{1}{3} |\sin(t)| + \left(-\frac{2}{3}\right) \frac{1}{3} \int_0^t |\sin(\tau)| e^{-\frac{2}{3}(t-\tau)} d\tau$$

$$= \frac{1}{3} |\sin(t)| - \frac{2}{3} y$$

$$3y' + 2y$$

Does $y = \frac{1}{3} \int_{0}^{t} |\sin(\tau)| e^{-\frac{2}{3}(t-\tau)} d\tau$ Really Solve the Initial Value Problem

An Example

$$3y' + 2y = |\sin(t)|, y(0) = 0$$
?

Transforms and New Formulas

$$y' = \frac{d}{dt} \frac{1}{3} \int_0^t |\sin(\tau)| e^{-\frac{2}{3}(t-\tau)} d\tau$$

$$= \frac{1}{3} |\sin(t)| e^{-\frac{2}{3}(t-t)} + \frac{1}{3} \int_0^t |\sin(\tau)| \frac{\partial}{\partial t} e^{-\frac{2}{3}(t-\tau)} d\tau$$

$$= \frac{1}{3} |\sin(t)| + \left(-\frac{2}{3}\right) \frac{1}{3} \int_0^t |\sin(\tau)| e^{-\frac{2}{3}(t-\tau)} d\tau$$

$$= \frac{1}{3} |\sin(t)| - \frac{2}{3} y$$

$$3y' + 2y = 3\left(\frac{1}{3} |\sin(t)| - \frac{2}{3} y\right) + 2y$$

Does $y = \frac{1}{3} \int_{0}^{t} |\sin(\tau)| e^{-\frac{2}{3}(t-\tau)} d\tau$ Really Solve the Initial Value Problem

An Example

$$3y' + 2y = |\sin(t)|, y(0) = 0$$
?

Transforms and New Formulas

$$y' = \frac{d}{dt} \frac{1}{3} \int_0^t |\sin(\tau)| e^{-\frac{2}{3}(t-\tau)} d\tau$$

$$= \frac{1}{3} |\sin(t)| e^{-\frac{2}{3}(t-t)} + \frac{1}{3} \int_0^t |\sin(\tau)| \frac{\partial}{\partial t} e^{-\frac{2}{3}(t-\tau)} d\tau$$

$$= \frac{1}{3} |\sin(t)| + \left(-\frac{2}{3}\right) \frac{1}{3} \int_0^t |\sin(\tau)| e^{-\frac{2}{3}(t-\tau)} d\tau$$

$$= \frac{1}{3} |\sin(t)| - \frac{2}{3} y$$

$$3y' + 2y = 3\left(\frac{1}{3} |\sin(t)| - \frac{2}{3} y\right) + 2y = |\sin(t)|$$

Does $y = \frac{1}{3} \int_{0}^{t} |\sin(\tau)| e^{-\frac{2}{3}(t-\tau)} d\tau$ Really Solve the Initial Value Problem

An Example

$$3y' + 2y = |\sin(t)|, y(0) = 0$$
?

Transforms and New Formulas

$$y' = \frac{d}{dt} \frac{1}{3} \int_0^t |\sin(\tau)| e^{-\frac{2}{3}(t-\tau)} d\tau$$

$$= \frac{1}{3} |\sin(t)| e^{-\frac{2}{3}(t-t)} + \frac{1}{3} \int_0^t |\sin(\tau)| \frac{\partial}{\partial t} e^{-\frac{2}{3}(t-\tau)} d\tau$$

$$= \frac{1}{3} |\sin(t)| + \left(-\frac{2}{3}\right) \frac{1}{3} \int_0^t |\sin(\tau)| e^{-\frac{2}{3}(t-\tau)} d\tau$$

$$= \frac{1}{3} |\sin(t)| - \frac{2}{3} y$$

$$3y' + 2y = 3\left(\frac{1}{3} |\sin(t)| - \frac{2}{3} y\right) + 2y = |\sin(t)| \qquad \checkmark$$

Comparing Output to Input

