STATS 710 – Seq. Dec. Making with mHealth Applications

Sep 22, 2016

Scribe: Young Jung

Lecture 6: Proof of The Upper Bound for

Thompson Sampling with Beta Priors and Bernoulli Rewards

Instructors: Susan Murphy and Ambuj Tewari

1 Thompson Sampling with Beta Priors and Bernoulli Rewards

1.1 Algorithm Description And Theorem Statement

Recall from last lecture:

Algorithm 1 Thompson Sampling for Bernoulli Bandits

- 1: Using beta distribution as prior.
- 2: For each arm $a \in A$, $S_a = F_a = 0$.
- 3: **for** $t=1,2, \dots, do$
- 4: For each $a \in A$, sample $\theta_{a,t} \sim Beta(S_a + 1, F_a + 1)$.
- 5: Play arm $A_t = \operatorname{argmax}_{a \in \mathcal{A}} \theta_{a,t}$ and collect reward R_t .
- 6: If $R_t = 1$, $S_{A_t} = S_{A_t} + 1$. Else if $R_t = 0$, $F_{A_t} = F_{A_t} + 1$.
- 7: end for

This algorithm dates back to 1933 [Tho33], but the first finite time regret analysis appeared only in 2012 [AG12]. Our presentation of TS and its proof will follow a later paper [AG13].

Theorem 1. Assume Bernoulli reward distributions for the K arms with means μ_0, \dots, μ_{K-1} , where $\mu_0 > \max_{a \ge 1} \mu_a$. Then for any ε ,

$$R_T(TS \text{ with } Beta, (\mathcal{D}_a)_{a \in \mathcal{A}}) \le (1+\varepsilon) \sum_{a=1}^{K-1} \frac{\log T}{d(\mu_a, \mu_0)} \Delta_a + O(\frac{K}{\varepsilon^2})$$

where $d(\mu_a, \mu_0) := \mu_a \log \frac{\mu_a}{\mu_0} + (1 - \mu_a) \log \frac{1 - \mu_a}{1 - \mu_0}$.

Note: By Pinsker's inequality, $d(\mu_a, \mu_0) \ge 2(\mu_a - \mu_0)^2 = 2\Delta_a^2$. The upper bound for UCB is worse than that of TS due to this inequality.

1.2 Notation and comments

- $\theta_{a,t}$: draw from arm a's posterior at time t.
- $S_{a,t}$: the number of successes (i.e., ones) of arm a up to and including time t.
- $F_{a,t}$: the number of failures (i.e., zeroes) of arm a up to and including time t.
- Note that $S_{a,t} + F_{a,t} = N_t(a)$, which is the number of times that arm a is selected up to and including time t.

•
$$\hat{\mu}_{a,t-1} = \frac{\sum_{i=1,A_i=a}^{t-1} R_i^a}{N_{t-1}(a)+1} = \frac{S_{a,t-1}}{N_{t-1}(a)+1}$$

- Note that 1 is added to the denominator on purpose to prevent division by zero.
- For each a and any $\varepsilon > 0$, we will introduce thresholds x_a, y_a satisfying following conditions.

$$- \mu_a < x_a < y_a < \mu_0$$

$$- d(x_a, \mu_0) = \frac{d(\mu_a, \mu_0)}{1+\varepsilon}$$

$$- d(x_a, y_a) = \frac{d(x_a, \mu_0)}{1+\varepsilon} = \frac{d(\mu_a, \mu_0)}{(1+\varepsilon)^2}$$

- Note that we can always choose such thresholds due to the continuity of KL-divergence.
- $\mathcal{H}_t = \{A_1, R_1, \dots, A_{t-1}, R_{t-1}\}$ history of actions and rewards before time t.
 - For consistency, we use t for the subscript instead of t-1.
- We introduce two events.

$$- E_{a,t}^{\mu} = \{\hat{\mu}_{a,t-1} \le x_a\}$$

$$-E_{a,t}^{\theta} = \{\theta_{a,t} \le y_a\}$$

- The idea is that these two events are more likely to happen as time progresses.
- Note that given \mathcal{H}_t , $E_{a,t}^{\mu}$ is determined to be either true of false and $E_{a,t}^{\theta}$ is still random, but the probability that it happens can be exactly calculated.
- $p_{a,t} := \mathbb{P}(\theta_{0,t} > y_a | \mathcal{H}_t)$

1.3 Key Lemma

Lemma 2. For all t and $a \neq 0$,

$$\mathbb{P}(A_t = a, E_{a,t}^{\mu}, E_{a,t}^{\theta} | \mathcal{H}_t) \le \frac{1 - p_{a,t}}{p_{a,t}} \mathbb{P}(A_t = 0, E_{a,t}^{\mu}, E_{a,t}^{\theta} | \mathcal{H}_t)$$

Note: We expect $\frac{1-p_{a,t}}{p_{a,t}}$ to be very small.

Proof. Note that $E_{a,t}^{\mu}$ is fixed given \mathcal{H}_t and there is nothing to prove when it does not happen. From now on, we will assume this event happened. Using Bayes rule, we get:

LHS =
$$\mathbb{P}(A_t = a, E_{a,t}^{\theta} | \mathcal{H}_t)$$

= $\mathbb{P}(A_t = a | E_{a,t}^{\theta}, \mathcal{H}_t) \mathbb{P}(E_{a,t}^{\theta} | \mathcal{H}_t)$
RHS = $\frac{1 - p_{a,t}}{p_{a,t}} \mathbb{P}(A_t = 0 | E_{a,t}^{\theta}, \mathcal{H}_t) \mathbb{P}(E_{a,t}^{\theta} | \mathcal{H}_t).$

Thus it suffices to prove that $\mathbb{P}(A_t = a | E_{a,t}^{\theta}, \mathcal{H}_t) \leq \frac{1-p_{a,t}}{p_{a,t}} \mathbb{P}(A_t = 0 | E_{a,t}^{\theta}, \mathcal{H}_t)$. Given $E_{a,t}^{\theta}$, $\{A_t = a\}$ implies that $\theta_{\tilde{a},t} \leq y_a$ for any $\tilde{a} \in \mathcal{A}$. Therefore,

LHS
$$\leq \mathbb{P}(\forall \tilde{a} \in \mathcal{A}, \theta_{\tilde{a},t} \leq y_a | E_{a,t}^{\theta}, \mathcal{H}_t)$$

 $= \mathbb{P}(\theta_{0,t} \leq y_a | E_{a,t}^{\theta}, \mathcal{H}_t) \mathbb{P}(\forall \tilde{a} \neq 0, \theta_{\tilde{a},t} \leq y_a | E_{a,t}^{\theta}, \mathcal{H}_t)$
 $= (1 - p_{a,t}) \mathbb{P}(\forall \tilde{a} \neq 0, \theta_{\tilde{a},t} \leq y_a | E_{a,t}^{\theta}, \mathcal{H}_t)$

The last equality holds because the event $\{\theta_{a,t} \leq y_a\}$ is independent of $E_{a,t}^{\theta}$. Similarly, given $E_{a,t}^{\theta}$, $\{A_t = 0\}$ happens whenever $\theta_{0,t} > y_a$ and $\theta_{\tilde{a},t} \leq y_a$ for any $\tilde{a} \neq 0$. This gives us

RHS
$$\geq \frac{1 - p_{a,t}}{p_{a,t}} \mathbb{P}(\theta_{0,t} > y_a, \theta_{\tilde{a},t} \leq y_a \forall \tilde{a} \neq 0 | E_{a,t}^{\theta}, \mathcal{H}_t)$$

= $(1 - p_{a,t}) \mathbb{P}(\forall \tilde{a} \neq 0, \theta_{\tilde{a},t} \leq y_a | E_{a,t}^{\theta}, \mathcal{H}_t)$

The above two inequalities complete the proof of the key lemma.

1.4 (Incomplete) Proof of Theorem

We will start by rewriting $N_T(a)$ as the sum of indicator variables and taking expectation.

$$\mathbb{E}N_{T}(a) = \sum_{t=1}^{T} \mathbb{P}(A_{t} = a)$$

$$= \sum_{t=1}^{T} [\mathbb{P}(A_{t} = a, E_{a,t}^{\mu}, E_{a,t}^{\theta}) + \mathbb{P}(A_{t} = a, E_{a,t}^{\mu}, \overline{E_{a,t}^{\theta}}) + \mathbb{P}(A_{t} = a, \overline{E_{a,t}^{\mu}})]$$

$$= S_{1} + S_{2} + S_{3}$$

In this (incomplete) proof, we will focus on S_1 only. We will control S_2 and S_2 in the next lecture. To impose an upper bound, we will use the tower property of expectation several times.

$$\mathbb{P}(A_t = a, E_{a,t}^{\mu}, E_{a,t}^{\theta}) = \mathbb{E}[\mathbb{P}(A_t = a, E_{a,t}^{\mu}, E_{a,t}^{\theta} | \mathcal{H}_t)](\because \text{tower property})$$

$$\leq \mathbb{E}[\frac{1 - p_{a,t}}{p_{a,t}} \mathbb{P}(A_t = 0, E_{a,t}^{\mu}, E_{a,t}^{\theta} | \mathcal{H}_t)](\because \text{key lemma})$$

$$= \mathbb{E}[\mathbb{E}[\frac{1 - p_{a,t}}{p_{a,t}} \mathbb{I}(A_t = 0, E_{a,t}^{\mu}, E_{a,t}^{\theta} | \mathcal{H}_t)]](\because p_{a,t} \text{ is a function of } \mathcal{H}_t)$$

$$= \mathbb{E}[\frac{1 - p_{a,t}}{p_{a,t}} \mathbb{I}(A_t = 0, E_{a,t}^{\mu}, E_{a,t}^{\theta})](\because \text{tower property})$$

$$\leq \mathbb{E}[\frac{1 - p_{a,t}}{p_{a,t}} \mathbb{I}(A_t = 0)]$$

Let τ_k be the time at which action 0 is taken for the k^{th} time with $\tau_0 := 0$. The key idea is that $p_{a,t}$ is updated only when $\{A_t = 0\}$ happens.

$$\begin{split} S_1 &\leq \sum_{t=1}^T \mathbb{E}[\frac{1 - p_{a,t}}{p_{a,t}} \mathbb{I}(A_t = 0)] \\ &\leq \mathbb{E}[\sum_{k=0}^{T-1} \frac{1 - p_{a,\tau_k+1}}{p_{a,\tau_k+1}} \sum_{t=\tau_k+1}^{\tau_{k+1}} \mathbb{I}[A_t = 0]] \\ &= \mathbb{E}[\sum_{k=0}^{T-1} \frac{1 - p_{a,\tau_k+1}}{p_{a,\tau_k+1}}] \end{split}$$

The second inequality might not be equality because k can be strictly less than T-1. The last equality holds because the second summation from the second line is exactly 1 by definition of τ_k .

The lecture ended by stating the following lemma without proof. The proof requires extensive calculations involving Beta and Binomial distributions. See the appendix of [AG13] for details.

Lemma 3.

$$\mathbb{E}\left[\frac{1 - p_{a,\tau_k + 1}}{p_{a,\tau_k + 1}}\right] \le \begin{cases} \frac{3}{\Delta_a'} & \text{if } k < \frac{8}{\Delta_a'} \\ \Theta(e^{-k\Delta_a'^2/2} + \frac{1}{(k+1)\Delta_a'^2}e^{-kD_a} + \frac{1}{e^{k\Delta_a'^2/4} - 1}) & \text{otherwise} \end{cases}$$

where $\Delta'_a = \mu_0 - y_a$ and $D_a = d(y_a, \mu_0)$.

References

- [AG12] Shipra Agrawal and Navin Goyal. Analysis of Thompson sampling for the multi-armed bandit problem. In *COLT*, pages 39–1, 2012.
- [AG13] Shipra Agrawal and Navin Goyal. Further optimal regret bounds for Thompson sampling. In *AISTATS*, pages 99–107, 2013.
- [Tho33] William R Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. *Biometrika*, 25(3/4):285–294, 1933.