Hexaflexagones Construction et propriétés

Raphaël Wormser

February 11, 2017

Plan

- 1 Introduction
 - (bref) Historique
 - Démonstration/Mise en évidence
 - Objectifs
- 2 Préliminaire
 - Représentations
 - Patrons
 - Graphes
 - Dénombrement
- 3 En machine

Plan

- 1 Introduction
 - (bref) Historique
 - Démonstration/Mise en évidence
 - Objectifs
- 2 Préliminaire
 - Représentations
 - Patrons
 - Graphes
 - Dénombrement
- 3 En machine

Un bref historique

1939. Découverte par Arthur Stone1956. Colonne de Martin Gardner dans Scientific AmericanPolulaire mais pas de succèes commercial

(Démonstration)

(Démonstration)

(Démonstration)

(Démonstration)

(Démonstration)

Ajout de faces

IL FAUT MONTRER QU'ON PEUT AJOUTER DES FACES ET QUE C'EST COOL!!

Objectifs '

Programmer un logiciel donnant les patrons d'hexaflexagones

Plan

- 1 Introduction
 - (bref) Historique
 - Démonstration/Mise en évidence
 - Objectifs
- 2 Préliminaire
 - Représentations
 - Patrons
 - Graphes
 - Dénombrement
- 3 En machine

Patrons

Problèmes

PRATIQUE NI POUR LA THEORIE NI A REPRESENTER EN MACHINE A PRIORI

C'est pourtant ce qu'on cherche à construire.

Tuckerman Traverse

Figure: Tuckerman Traverse du 4-hexaflexagon

Triangulations

TRIANGULATIONS ICI C GENIAL

Nombres de Catalan

METTRE UN IMAGE POUR JUSTIFIER LES NOMBRES DE CATALAN SUR LES TRIANGULATIONS DE POLYGONES ET PUIS VOILÀ

Groupe diédral

GROUPE DIÉDRAL POUR LES TRIANGULATIONS

Action de groupe

Definition

Pour un ensemble X, un groupe G défini naturellement la relation d'équivalence sur X par

$$\forall x, y \in x, x \equiv y \Leftrightarrow \exists g \in G, x = g.y$$

On étudie T_n sous l'action de D_n .

Lemme de Burnside

Theorem

<u>Lemme de Burnside</u> (dû à Cauchy puis Frobenius) G un groupe, X un ensemble fini, alors

$$\mid X/G \mid = \sum_{g \in G} \mid Fix(g) \mid$$

où $\mid X/G \mid$ est le quotient de X sous l'action de G et $sFix(g) = \{x \in X, g.x = x\}$ est l'ensemble des éléments de X invariants par g.

Application au dénombrement

MONTRER ASSEZ VITE COMMENT LES ROTATIONS FONCTIONNENT (CENTRE DU POLYGONE) ET PASSER SUR LES SYMÉTRIES (SANS DOUTE TROP LONG)

Finalement

On a compté nos flexagones

$$|F_n| = \frac{1}{n}C_{n-2} + \frac{1}{2}C_{\frac{n}{2}-1} + \frac{2}{3}C_{\frac{n}{3}-1}$$

Plan

- 1 Introduction
 - (bref) Historique
 - Démonstration/Mise en évidence
 - Objectifs
- 2 Préliminaire
 - Représentations
 - Patrons
 - Graphes
 - Dénombrement
- 3 En machine

blablabla