Gerarchia di Memoria e Cache

Andrea Bartolini – a.<u>bartolini@unibo.it</u>

Dov'è la memoria?

Memoria (Vista del programmatore)

Ideal Memory

- Tempo di accesso nullo (latenza)
- Capacità infinita
- Costo nullo
- Larghezza di banda infinita (per supportare più accessi in parallelo)

Come immagazziniamo bits?

Flip-Flops (o Latches)

Richiamo circuiti digitali

BL

- Accesso parallelo, molto veloce
- Molto costosi (un bit costa decine di transistor)
- Static RAM SRAM
 - Relativamente veloce, solo una parola di dati alla volta
 - Costoso (un bit costa 6 transistor)
- Dynamic RAM DRAM
 - Più lento, una parola di dati alla volta, la lettura distrugge il contenuto (refresh), ha bisogno di un processo di fabbricazione speciale
 - □ Economico (un bit costa solo un transistor più un condensatore) → 🕏 WL
- Altre tecnologie di archiviazione (flash, disco rigido, nastro)
 - Molto più lento, l'accesso richiede molto tempo, non-volatile
 - Molto economico (nessun transistor direttamente coinvolto)

The Problem

- Bigger is slower
 - SRAM, 512 Bytes, sub-nanosec
 - □ SRAM, KByte~MByte, ~nanosec
 - □ DRAM, Gigabyte, ~50 nanosec
 - □ Hard Disk, Terabyte, ~10 millisec
- Faster is more expensive (dollars and chip area)
 - SRAM, < 10\$ per Megabyte
 - DRAM, < 1\$ per Megabyte
 - Hard Disk < 1\$ per Gigabyte
 - □ These sample values (circa ~2011) scale with time
- Other technologies have their place as well
 - Flash memory (mature), PC-RAM, MRAM, RRAM (not mature yet)

Problema

- I requisiti della memoria ideale si contraddicono
- Più grande è più lento
 - Grande => più tempo per indirizzamento
- Più veloce è più costoso
 - Memory technology: SRAM vs. DRAM vs. Disk vs. Tape
- Una larghezza di banda più elevata è più costosa
 - Servono più banchi, più porte, maggiore frequenza o una tecnologia più veloce

Latency !	50-70ns
-----------	---------

Features	DDR4	DDR5	DDR5 Advantages
Speed	1.6 to 3.2 GT/s	4.8 to 8.4 GT/s	Higher bandwidth
	0.8 to 1.6 GHz clock	1.6 to 4.2 GHz clock	
IO Voltage	1.2 V	1.1 V	Lower power
Power Management	On motherboard	On DIMM PMIC	Better power efficiency Better scalability
Channel Architecture	72-bit data channel (64 data + 8 ECC)	40-bit data channel (32 data + 8 ECC)	Higher memory efficiency
	1 channel per DIMM	2 channels per DIMM	Lower latency
Burst Length	BC4, BL8	BC8, BL16	Higher memory efficiency
Max. Die Density	16Gb	64Gb	Higher capacity DIMMs
More Intelligence	SPD (I ² C)	SPD Hub & Temperature Sensors (I ^a C)	Enhanced system management Greater telemetry for thermal management

Latency	50-7	0ns
---------	------	-----

Features	DDR4	DDR5	DDR5 Advantages	
Speed	1.6 to 3.2 GT/s	4.8 to 8.4 GT/s	Higher bandwidth	
speed	0.8 to 1.6 GHz clock	1.6 to 4.2 GHz clock	nigher bandwidth	
IO Voltage	1.2 V	1.1 V	Lower power	
Power Management	On motherboard	On DIMM PMIC	Better power efficiency Better scalability	
Channel Architecture	72-bit data channel (64 data + 8 ECC)	a + 8 ECC) 40-bit data channel (32 data + 8 ECC) Higher memory effic	Higher memory efficiency	
Chamiel Architecture	1 channel per DIMM	2 channels per DIMM	Lower latency	
Burst Length	BC4, BL8	BC8, BL16	Higher memory efficiency	
Max. Die Density	16Gb	64Gb	Higher capacity DIMMs	
More Intelligence	SPD (I ² C)	SPD Hub & Temperature Sensors (I ^a C)	Enhanced system management Greater telemetry for thermal management	

→ 64b data width & 1ch x DIMM → Peak MT/s

DDR4 DIMM: SKU CMW16GX4M2D3200C18

DDR4

BC4, BL8

SPD (I2C)

16Gb

Features

Burst Length

Max. Die Density

More Intelligence

	Speed	1.6 to 3.2 GT/s 0.8 to 1.6 GHz clock	4.8 to 8.4 GT/s 1.6 to 4.2 GHz clock	Higher bandwidth
	IO Voltage	1.2 V	1.1 V	Lower power
	Power Management	On motherboard	On DIMM PMIC	Better power efficiency Better scalability
	Channel Architecture	72-bit data channel (64 data + 8 ECC)	40-bit data channel (32 data + 8 ECC)	Higher memory efficiency
		1 channel per DIMM	2 channels per DIMM	Lower latency

BC8, BL16

64Gb

DDR5

Latency 50-70ns

→ 64b data width & 1ch x DIMM → Peak MT/s

SPD Hub & Temperature Sensors (IaC)

DDR4 DIMM: SKU CMW16GX4M2D3200C18

=> Bandwidth = 1ch * 3200 MT/s * 64b/T = 3.2 GT/s * 8B/T = 25.6GB/s

Higher memory efficiency

Higher capacity DIMMs

management

Enhanced system management

Greater telemetry for thermal

Features	DDR4	DDR5	DDR5 Advantages
Speed	1.6 to 3.2 GT/s	4.8 to 8.4 GT/s	Higher bandwidth
	0.8 to 1.6 GHz clock	1.6 to 4.2 GHz clock	
IO Voltage	1.2 V	1.1 V	Lower power
Power Management	On motherboard	On DIMM PMIC	Better power efficiency Better scalability
Channel Architecture	72-bit data channel (64 data + 8 ECC)	40-bit data channel (32 data + 8 ECC)	Higher memory efficiency
	1 channel per DIMM	2 channels per DIMM	Lower latency
Burst Length	BC4, BL8	BC8, BL16	Higher memory efficiency
Max. Die Density	16Gb	64Gb	Higher capacity DIMMs
More Intelligence	SPD (I ² C)	SPD Hub & Temperature Sensors (I ^a C)	Enhanced system management Greater telemetry for thermal management

Latency 50-70ns

→ 64b data width & 1ch x DIMM → Peak MT/s

DDR4 DIMM : SKU CMW**16G**X4M2D**3200**C18

=> Bandwidth = 1ch * 3200 MT/s * 64b/T = 3.2 GT/s * 8B/T = 25.6GB/s

→ 32b data width & 2ch x DIMM Peak MT/s

DDR5 DIMM: SKU CMK32GX5M2B5200C40

DDR4

SPD (I2C)

More Intelligence

reduces			DDNO Advantages
Speed	1.6 to 3.2 GT/s	4.8 to 8.4 GT/s	Higher bandwidth
Specia	0.8 to 1.6 GHz clock	1.6 to 4.2 GHz clock	The same wheat
IO Voltage	1.2 V	1.1 V	Lower power
Power Management	On motherboard	On DIMM PMIC	Better power efficiency Better scalability
Channel Architecture	72-bit data channel (64 data + 8 ECC)	data channel (64 data + 8 ECC) 40-bit data channel (32 data + 8 ECC) Higher me	Higher memory efficiency
Channel Architecture	1 channel per DIMM	2 channels per DIMM	Lower latency
Burst Length	BC4, BL8	BC8, BL16	Higher memory efficiency
Max. Die Density	16Gb	64Gb	Higher capacity DIMMs
			Enhanced system management

DDR5

Latency 50-70ns

→ 64b data width & 1ch x DIMM → Peak MT/s

SPD Hub & Temperature Sensors (IaC)

DDR4 DIMM : SKU CMW**16G**X4M2D**3200**C18

=> Bandwidth = 1ch * 3200 MT/s * 64b/T = 3.2 GT/s * 8B/T = 25.6GB/s

→ 32b data width & 2ch x DIMM Peak MT/s

DDR5 DIMM : SKU CMK**32G**X5M2B**5200**C40

=> Bandwidth = 2ch * 5200 MT/s * 32b/T = 5.2 GT/s * 8B/T = 41.6GB/s

DDR5 Advantages

Greater telemetry for thermal

DRAM Packaging, Apple M1

Two DRAM chips on same package as system SoC

- 128b databus, running at 4.2Gb/s
- •68GB/s bandwidth

HBM – High Bandwidth Memory

HBM – High Bandwidth Memory

- 4 stacked DDR die each with 2ch x 128bit
- HBM2 up to 3.2GT/s
- HBM3 up to 6.4GT/s

FUJITSU AA64FX 4x8GB HBM2

NVIDIA GH100 6x12GB HBM3

HBM – High Bandwidth Memory

HBM – High Bandwidth Memory

- 4 stacked DDR die each with 2ch x 128bit
- HBM2 up to 3.2GT/s
- HBM3 up to 6.4GT/s

FUJITSU AA64FX 4x8GB HBM2

- 1xHBM => 2GT/s x 1024b/T = 256GB/s
- 4xHBM => 4x 256GB/s = 1TB/s

NVIDIA GH100 6x12GB HBM3

HBM – High Bandwidth Memory

HBM – High Bandwidth Memory

- 4 stacked DDR die each with 2ch x 128bit
- HBM2 up to 3.2GT/s
- HBM3 up to 6.4GT/s

FUJITSU AA64FX 4x8GB HBM2

- 1xHBM => 2GT/s x 1024b/T = 256GB/s
- 4xHBM => 4x 256GB/s = 1TB/s

NVIDIA GH100 6x12GB HBM3

- 1xHBM => 4GT/s x 1024b/T = 412GB/s
- 6xHBM => 6x 512GB/s = 3TB/s

Memory in a Modern System

Why Memory Hierarchy?

- Vogliamo la memoria sia veloce che grande
- Ma non possiamo ottenere entrambi con un unico livello di memoria
- Idea: Avere più livelli di storage (progressivamente più grandi e più lenti all'allontanarsi dal processore) e che garantiscano che la maggior parte dei dati di cui il processore ha bisogno sia mantenuta nel (nei) livello(i) vicini

The Memory Hierarchy

Memory Hierarchy

- Compromesso fondamentale
 - Memoria veloce: piccola
 - Memoria di grandi dimensioni: lenta
 - Idea: Memory hierarchy

Latency, cost, size, bandwidth Main Memory (DRAM) Hard Disk

Typical Memory Reference Patterns

Località / Locality

- Il passato recente è un ottimo predittore/stima del prossimo futuro.
- Località temporale (Temporal Locality): Se hai appena fatto qualcosa, è molto probabile che la rifarai presto
 - dal momento che siete qui oggi, c'è una buona probabilità che sarete qui ancora e ancora regolarmente
- Località Spaziale (Spatial Locality): Se hai fatto qualcosa, è molto probabile che rifarai qualcosa di simile / correlato (nello spazio)
 - ogni volta che ti trovo in questa stanza, probabilmente sei seduto vicino alle stesse persone

Memory Locality

- Un programma "tipico" ha un sacco di località nei riferimenti di memoria
 - i programmi tipici sono composti da "loop«
- Temporale: Un programma tende ad indirizzare la stessa locazione di memoria molte volte e tutte in un breve intervallo di tempo
- Spaziale: Un programma tende ad indirizzare posizioni di memoria consecutive
 - esempi rilevanti:
 - 1. accessi alla memoria delle istruzioni
 - 2. accesso a campi di strutture di matrici/dati

Memory Reference Patterns

Donald J. Hatfield, Jeanette Gerald: Program

Restructuring for Virtual Memory. IBM Systems Journal
10(3): 168-192 (1971)

Caching Basics: Exploit Temporal Locality

- Idea: Immagazzinare i dati utilizzati di recente in una memoria veloce gestita automaticamente (denominata cache)
- Anticipazione: i dati saranno acceduti nuovamente in un breve intervallo
- Principio di Località Temporale
- I dati a cui si è acceduto di recente saranno nuovamente acceduti nel prossimo futuro
- Concetto introdotto da Maurice Wilkes in:
 - Wilkes, "Slave Memories and Dynamic Storage Allocation," IEEE Trans. On Electronic Computers, 1965.
 - "The use is discussed of a fast core memory of, say 32000 words as a slave to a slower core memory of, say, one million words in such a way that in practical cases the effective access time is nearer that of the fast memory than that of the slow memory."

Caching Basics: Exploit Spatial Locality

- Idea: Memorizzare i dati presenti agli indirizzi adiacenti a quello a cui si è acceduto di recente nella memoria veloce gestita automaticamente
 - Dividere logicamente la memoria in blocchi di uguale dimensione
 - Recuperare per memorizzare interamente nella cache il blocco a cui sta accedendo
 - Anticipazione: i dati nelle vicinanze saranno acceduti in un breve intervallo
- Principio di Località Spaziale
 - I dati vicini saranno acceduti nel prossimo futuro
 - E.s., accesso sequenziale alle istruzioni, scorrimento array
 - Realizzato già nell' IBM 360/85
 - 16 Kbyte cache with 64 byte blocks
 - Liptay, "Structural aspects of the System/360 Model 85 II: the cache," IBM Systems Journal, 1968.

The Bookshelf Analogy

- Book in your hand
- Desk
- Bookshelf
- Boxes at home
- Boxes in storage
- Recently-used books tend to stay on desk
 - Comp Arch books, books for classes you are currently taking
 - Until the desk gets full
- Adjacent books in the shelf needed around the same time
 - If I have organized/categorized my books well in the shelf

Caching in a Pipelined Design

- La cache deve essere strettamente integrata nella pipeline
 - Idealmente, con accesso in 1 ciclo in modo che le operazioni dipendenti dalla load non si blocchino
- Pipeline ad alta frequenza -> impossibile rendere grande la cache
 - Ma, vogliamo una cache grande ed una pipeline veloce
- Idea: Cache hierarchy

A Note on Manual vs. Automatic Management

- Manuale: Il programmatore gestisce lo spostamento dei dati tra i livelli
 - -- troppo doloroso per i programmatori su programmi complessi
 - usata in domain specific architectures / digital signal processor
 - ancora usata in processori embedded (si usa un on-chip scratch pad SRAM al posto di una cache) e GPU (chiamata «shared memory»)
- Automatico: L'hardware gestisce lo spostamento dei dati tra i livelli, in modo trasparente al programmatore
- ++ rende più facile la vita del programmatore
 - □ il programmatore medio non ha bisogno di conoscerne l'esistenza
 - Non c'è bisogno di conoscere quanto è grande la cache e come funziona per scrivere un programma "corretto"! (Se si desidera un programma "veloce"?)

A Modern Memory Hierarchy

Hierarchical Latency Analysis

- Per un determinato livello di gerarchia di memoria i con un tempo di accesso tecnologico-intrinseco di t_i. Il tempo di accesso percepito T_i è più lungo di t_i
- Fatta eccezione per la gerarchia più esterna, se si cerca un determinato indirizzo c'è
 - una probabilità (hit-rate hi) di "hit" e access time di ti
 - una probabilità (miss-rate m_i) di "miss" e access time di t_i +T_{i+1}
 - $h_i + m_i = 1$
- Perciò

$$T_i = h_i \cdot t_i + m_i \cdot (t_i + T_{i+1})$$

 $T_i = t_i + m_i \cdot T_{i+1}$

h_i e m_i sono definiti per essere la hit-rate e miss-rate dei soli accessi che non hanno mancato il livello L_{i-1}

Hierarchy Design Considerations

Equazione della latenza ricorsiva

$$T_i = t_i + m_i \cdot T_{i+1}$$

- L'obiettivo: raggiungere il T₁ desiderato nel costo permesso
- si vorrebbe T_i ≈ t_i due strade percorribili:
- Tenere m_i basso
 - Aumentare la capacità C_i riducendo m_i, ma attenzione ad aumentare t_i
 - Ridurre m_i con una gestione più intelligente della cache (replacement::anticipate what you don't need, prefetching::anticipate what you will need)
- Tenere T_{i+1} basso
 - Velocizzando gli ultimi livelli, ma attenzione ai costi
 - introducendo come compromesso gerarchie intermedie

Intel Pentium 4 Example

- 90nm P4, 3.6 GHz
- L1 D-cache
 - $C_1 = 16K$
 - $= t_1 = 4$ cyc int / 9 cycle fp
- L2 D-cache
 - \Box C₂ = 1024 KB
 - = $t_2 = 18$ cyc int / 18 cyc fp
- Main memory
 - = $t_3 = \sim 50$ ns or 180 cyc
- Notice
 - best case latency is not 1
 - worst case access latencies are into 500+ cycles

if
$$m_1=0.1$$
, $m_2=0.1$
 $T_1=7.6$, $T_2=36$

if
$$m_1=0.01$$
, $m_2=0.01$
 $T_1=4.2$, $T_2=19.8$

if
$$m_1=0.05$$
, $m_2=0.01$
 $T_1=5.00$, $T_2=19.8$

if
$$m_1=0.01$$
, $m_2=0.50$
 $T_1=5.08$, $T_2=108$