

Operations Research

Vorlesung 4

Technische

Lineare Programmierung: Sensitivitätsanalyse

Wiederholung

- Die drei Schritte im Operations Research
 - Problem, Modell, Lösung
- Typische Problemszenarien
 - z.B. Transportproblem, Energieflussproblem, Auswahlproblem
- Simplex-Algorithmus zum Lösen von Linearen Problemen
- Sonderfälle

Heutige Fragestellungen

- Was passiert, wenn man die Rahmenbedingungen vom Problem (leicht) ändert?
- Bleibt die allgemeine Struktur der Lösung gleich?
- Wie kann man Engpässe von Nebenbedingungen erkennen?
- Welche ökonomischen Auswirkungen gibt es?

Überblick

- 1. Ökonomische Interpretation
- 2. Sensitivitätsanalyse

Überblick

- 1. Ökonomische Interpretation
- 2. Sensitivitätsanalyse

Ökonomische Interpretationen

- 1. Kann die Lösungsqualität durch Hinzugabe einer Einheit einer Ressource verbessert werden?
- 2. Wie viel lohnt es sich für eine weitere Einheit einer Ressource zu bezahlen?

Standardproblem der linearen Optimierung

Max
$$z = c_1 x_1 + \dots + c_n x_n$$

$$u.d.N.$$

$$a_{11}x_1 + \dots + a_{1n}x_n \le b_1$$

$$\vdots$$

$$a_{m1}x_1 + \dots + a_{mn}x_n \le b_m$$

$$x_1, \dots, x_n \ge 0$$

$$\begin{array}{ll} \text{Max} & z = c^T x \\ \text{u.d.N.} & Ax \leq b \\ x \geq 0 \end{array}$$

Beispiel Produktionsprogrammplanung:

Max
$$z = 3x_1 + 4x_2 + 0x_3 + 0x_4 + 0x_5$$

u.d.N.
$$3x_1 + 2x_2 + x_3 = 1200$$
 (1)

$$5x_1 + 10x_2 + x_4 = 3000 (2)$$

$$0.5x_2 + x_5 = 125$$
 (3)

$$x_1 \ge 0$$
, $x_2 \ge 0$, $x_3 \ge 0$, $x_4 \ge 0$, $x_5 \ge 0$

Beispiel Produktionsprogrammplanung

Starttableau:

Endtableau:

	x_1	x_2	x_3	x_4	x_5	RS
-z	3	4	0	0	0	0
x_3	3	2	1	0	0	1200
x_4	5	10	0	1	0	3000
<i>x</i> ₅	0	0.5	0	0	1	125

	x_1	x_2	x_3	x_4	x_5	RS
-z	0	0	-1/2	-3/10	0	-1500
x_5	0	0	1/8	-3/40	1	50
x_1	1	0	1/2	-1/10	0	300
x_2	0	1	-1/4	3/20	0	150

Ökonomische Interpretation der Schlupfvariablen

$$x_5^* = 50$$

⇒ zugehörig zu Nebenbedingung (3)

$$0.5x_2 + x_5 = 125$$

$$0.5 \cdot 150 + 50 = 125 \checkmark$$

d.h. NB (3) ist mit Schlupf 50 erfüllt.

⇒ kein Engpass

$$x_3^* = x_4^* = 0$$

- ⇒ Nebenbedingungen (1) und (2) sind ohne Schlupf erfüllt. Ihr Schnittpunkt definiert die zugehörige (optimale) Ecke.
- ⇒ Engpass

Beispiel Produktionsprogrammplanung

Beispiel Produktionsprogrammplanung

Endtableau:

	x_1	x_2	x_3	x_4	x_5	RS
-z	0	0	-1/2	-3/10	0	-1500
x_5	0	0	1/8	-3/40	1	50
x_1	1	0	1/2	-1/10	0	300
x_2	0	1	-1/4	3/20	0	150

Ökonomische Interpretationen

Welche ZF-Verbesserung ließe sich durch Beseitigung der beiden Engpässe erzielen?

Zielfunktionszeile im Endtableau:

$$p_3 = 1/2$$
 $p_4 = 3/10$
 $p_5 = 0$

"Schattenpreise" oder "Opportunitätskosten"

Um diesen Betrag würde der Zielfunktionswert steigen, wenn von dem entsprechenden Engpass eine Mengeneinheit mehr verfügbar wäre.

Insbesondere gilt für Nichtengpassfaktoren eine maximale Zahlungsbereitschaft von 0 für eine zusätzliche Mengeneinheit (da bereits gewisse Mengen ungenutzt sind)

Opportunitätskosten / Schattenpreise

max
$$3x_1 + 4x_2$$
 Lösung: u.d.N. $3x_1 + 2x_2 + x_3 = 1200$ (I) $x_1^* = 300$, $5x_1 + 10x_2 + x_4 = 3000$ (II) $c_1^* = c_2^* = 0$, $0.5x_2 + x_5 = 125$ (III) $z_1^* = 1500$ $z_2^* = 1500$

Lösung:

u.d.N.
$$3x_1 + 2x_2 + x_3 = 1200$$
 (I) $x_1^* = 300, x_2^* = 150, x_3^* = 0, x_4^* = 0, x_5^* = 50$ $5x_1 + 10x_2 + x_4 = 3000$ (II) $c_1^* = c_2^* = 0, |c_3^*| = 0.5, |c_4^*| = 0.3, |c_5^*| = 0$ $0.5x_2 + x_5 = 125$ (III) $z^* = 1500$

Änd	erung	x_1	x_2	x_3	x_4	x_5	ZF
(I)	$3x_1 + 2x_2 + x_3 = 1201$	300,5	149,75	0	0	50,125	1500,5
(I)	$3x_1 + 2x_2 + x_3 = 1199$	299,5	150,25	0	0	49,875	1499,5
(II)	$5x_1 + 10x_2 + x_4 = 3001$	299,9	150,15	0	0	49,925	1500,3
(II)	$5x_1 + 10x_2 + x_4 = 2999$	300,1	149,85	0	0	50,075	1499,7
(III)	$0.5x_2 + x_5 = 126$	300	150	0	0	51	1500
(III)	$0.5x_2 + x_5 = 124$	300	150	0	0	49	1500

Struktur-, Schlupf-, Basis- und Nichtbasisvariablen

Schlupfvariable ist Nichtbasisvariable: Die zugehörige Nebenbedingung stellt einen Engpass dar (die Restriktion bindet). Der Zielfunktionskoeffizient gibt als Schattenpreis den Zielfunktionsbeitrag einer zusätzlichen Einheit der rechten Seite an.

Schlupfvariable ist Basisvariable:

Die zugehörige Nebenbedingung bindet nicht, der Betrag der nicht genutzten rechten Seite ist Wert der Variablen.

Strukturvariable ist Basisvariable:

Der Wert der Variablen kann in der rechten Seite abgelesen werden.

Strukturvariable ist Nichtbasisvariable:

Die Variable trägt den Wert 0. (Nicht im Beispiel vorhanden)

	+	+	
	x_4	x_3	RS
-z	-3/10	-1/2	-1500
x_5	-3/40	1/8	50
x_1	-1/10	1/2	300
x_2	3/20	-1/4	150
'			

Ökonomische Interpretation

- Ressource 3 steht ausreichend zur Verfügung
 - \Rightarrow Schattenpreis = 0
- Ressourcen 1 und 2 sind knapp
 - ⇒ Schattenpreise = maximale Zielfunktionserhöhung
- Jedoch: Marginale Betrachtung
 - ⇒ Sensitivitätsanalyse

Überblick

- 1. Ökonomische Interpretation
- 2. Sensitivitätsanalyse

Berücksichtigung unsicherer Erwartungen

Bislang deterministische Erwartungen bezüglich

- Preise, Kosten → Deckungsbeiträge
- Absatzmengen
- Ressourcenverfügbarkeit

Möglichkeiten zur Berücksichtigung von Unsicherheiten:

Szenarioanalyse

Untersuchung möglicher Entscheidungen / Entwicklungen unter alternativen Rahmenbedingungen

- Parametrische Optimierung
 - Untersuchung von Veränderungen der Eingangsdaten proportional zu einem reell-wertigen Parameter, wobei sich die optimale Lösung ändern kann
- Sensitivitätsanalyse
 Untersuchung, in welchen Bereichen sich die optimale Lösung nicht ändert

Sensitivitätsanalyse

Testen der optimalen Lösung eines linearen Optimierungsproblems auf Reaktionen gegenüber (kleinen) Veränderungen der Ausgangsdaten

Zwei Fragestellungen:

- 1. Verhalten der Optimallösung auf Variation eines Koeffizienten des Restriktionenvektors (Vektor b)
- 2. Verhalten der Optimallösung auf Variation eines Koeffizienten der Zielfunktion (Vektor c)

Sensitivitätsanalyse – Restriktionen

1. Fragestellung:

In welchem Bereich $[b_k - \underline{\lambda}_k, b_k + \overline{\lambda}_k]$ kann eine Beschränkung b_k $(1 \le k \le m)$ bei Konstanz aller übrigen Parameter variiert werden, ohne dass die aktuelle optimale Basislösung die Optimalitätseigenschaften verliert, d.h. ohne dass ein Basistausch erforderlich wird?

Antwort:

Die Variation der rechten Seite beeinflusst die Schlupfvariable der k-ten Nebenbedingung, x_{n+k} . Ist sie Basisvariable (1. Fall), so könnte sie durch Variation von b_k diese Eigenschaft verlieren, ist sie Nichtbasisvariable (2. Fall), so könnte sie dadurch Basisvariable werden.

Verminderung / Erhöhung einer Restriktion

- \triangleright Zu veränderte Variable x_{n+k}^* ist Basisvariable
 - Basisvariable ist durch einen Einheitsvektor gekennzeichnet.
 - Der dazugehörige Wert b_{n+k}^* auf der RS hat einen nicht-negativen Wert.
 - Vermindern wir diesen Wert, darf dieser nicht negativ werden, um die Zulässigkeit der Lösung zu behalten.
 - Erhöhen wir diesen Wert, bleibt die Zulässigkeit erhalten.

	x_1	x_2	x_3	x_4	x_5	RS
-z	0	0	-1/2	-3/10	0	-1500
x_5	0	0	1/8	-3/40	1	50
x_1	1	0	1/2	-1/10	0	300
x_2	0	1	1/4	3/20	0	150

- \triangleright Zu verändernde Variable x_{n+k}^* ist Nichtbasisvariable
 - Nichtbasisvariable stellt einen Engpass dar und hat den Wert 0.
 - Veränderung des ursprünglichen Wertes b_{n+k} hat somit direkten Einfluss auf die Werte der Basisvariablen.
 - Die Werte in der Spalte der Nichtbasisvariable geben den Einfluss auf die Basisvariablen bei einer Veränderung pro 1 Mengeneinheit an.
 - Über den Quotienten aus b_i^* und $a_{i(n+k)}^*$ bestimmen wir die maximale Verminderung / Erhöhung von b_{n+k} , damit weiterhin $x_i^* \ge 0$ gilt.

1. Fall: x_{n+k}^* ist Basisvariable

Es gilt:

$$\underline{\lambda}_k = x_{n+k}^* \text{ und } \overline{\lambda}_k = \infty$$

Begründung:

Das Senken von b_{n+k} um $\underline{\lambda}_k$ ist Gleichzusetzen mit der Forderung x_{n+k}^* um diesen Wert zu senken. Dies ist ohne Basistausch nur bis zu dem Wert $x_{n+k}^* = 0$ möglich.

Das Erhöhen von b_{n+k} um $\overline{\lambda}_k$ ist Gleichzusetzen mit der Forderung x_{n+k}^* um diesen Wert zu erhöhen. Dies führt niemals zu einem Basistausch.

1. Fall: x_{n+k}^* ist BV – Ökonomische Interpretation

→ k ist keine bindende Restriktion (keine Engpassrestriktion)

Wir die Kapazität von *k* erhöht, so passiert nichts: *k* ist auch weiterhin kein Engpass.

Restriktion k wird zum Engpass, sobald b_k um mehr als $\underline{\lambda}_k$ gesenkt wird. Dann tritt (mindestens eine) der folgenden Situationen ein:

- eine der bisherigen Engpassrestriktionen ist nicht mehr bindend
- ein bisher produziertes Produkt wird nicht mehr hergestellt

1. Fall: x_{n+k}^* ist BV – Graphische Veranschaulichung

Beispiel für den 1. Fall: x_5^* ist Basisvariable

Merke:

Wenn eine Schlupfvariable x_{n+k}^* in der optimalen Lösung Basisvariable ist, so bedeutet es, dass die Restriktion k nicht bindend ist. Das heißt, dass sie keinen Engpass darstellt.

2. Fall: x_{n+k}^* ist Nichtbasisvariable

 a_{ij}^* und b_i^* sind die aktuellen Koeffizienten im Optimaltableau.

Es gilt:

$$\underline{\lambda}_k = \left\{ \begin{array}{ll} \infty & \text{falls alle } a^*_{i(n+k)} \leq 0 \\ \min\{\frac{b^*_i}{a^*_{i(n+k)}} | \ i=1,\ldots,m \quad \text{mit} \ \ a^*_{i(n+k)} > 0 \} & \text{sonst} \end{array} \right.$$

Begründung:

Soll b_{n+k} um Δ gesenkt werden, verändern sich die Werte der bisherigen Basisvariablen, um den Wert $\left|a_{i(n+k)}^* \cdot \Delta\right|$, bei positivem $a_{i(n+k)}^*$ wird der Wert kleiner, bei negativem $a_{i(n+k)}^*$ größer. Damit die aktuelle Basislösung zulässig und somit optimal bleibt, müssen alles Basisvariablen größer oder gleich 0 bleiben. Somit muss $b_i^* - \left|a_{i(n+k)}^* \cdot \Delta\right| \geq 0$ für alle i mit $a_{i(n+k)}^* > 0$ gelten und folglich $b_i^*/a_{i(n+k)}^* \geq \Delta$. Die Basisvariable mit minimalem $b_i^*/a_{i(n+k)}^*$ bestimmt also den Wert von $\underline{\lambda}_k$.

Sind alle $a_{i(n+k)}^* \leq 0$, so bleibt die Lösung bei beliebiger Reduktion von b_k zulässig.

2. Fall: x_{n+k}^* ist Nichtbasisvariable (Fortsetzung)

 a_{ij}^* und b_i^* sind die aktuellen Koeffizienten im Optimaltableau.

Es gilt:

$$\overline{\lambda}_k = \left\{ \begin{array}{ll} \infty & \text{falls alle } a_{i(n+k)}^* \geq 0 \\ \min\{-\frac{b_i^*}{a_{i(n+k)}^*} \mid i=1,\ldots,m \quad \text{mit } \ a_{i(n+k)}^* < 0\} & \text{sonst} \end{array} \right.$$

Begründung:

Soll b_{n+k} um Δ erhöht werden, verändern sich die Werte der bisherigen Basisvariablen, um den Wert $\left|a_{i(n+k)}^*\cdot\Delta\right|$, bei positivem $a_{i(n+k)}^*$ wird der Wert größer, bei negativem $a_{i(n+k)}^*$ kleiner. Damit die aktuelle Basislösung zulässig und somit optimal bleibt, müssen alles Basisvariablen größer oder gleich 0 bleiben. Somit muss $b_i^*+\left|a_{i(n+k)}^*\cdot\Delta\right|\geq 0$ für alle i mit $a_{i(n+k)}^*<0$ gelten und folglich $-b_i^*/a_{i(n+k)}^*\geq \Delta$. Die Basisvariable mit minimalem $-b_i^*/a_{i(n+k)}^*$ bestimmt also den Wert von $\overline{\lambda}_k$.

Sind alle $a_{i(n+k)}^* \ge 0$, so bleibt die Lösung bei beliebiger Erhöhung von b_k zulässig.

2. Fall: x_{n+k}^* ist NBV – Ökonomische Interpretation

 \rightarrow k ist eine bindende Restriktion (Engpassrestriktion)

 $\overline{\lambda}_k$ ist der Wert, um den die Kapazität maximal erhöht werden kann, damit k Engpassrestriktion und die Kombination von überhaupt hergestellten Produkten gleich bleibt. Steigt die Kapazität weiter, so tritt (mindestens eine) der folgenden Situationen ein:

- *k* ist keine Engpassrestriktion mehr
- die Kombination von überhaupt produzierten Produkten ändert sich

 $\underline{\lambda}_k$ ist der Wert, um den Kapazität maximal gesenkt werden kann, damit die bisher bindenden Restriktionen und die Kombination von überhaupt hergestellten Produkten gleich bleiben. Sinkt die Kapazität weiter, bleibt zwar k eine Engpassrestriktion, aber (mindestens eine) der folgenden Situationen tritt ein:

- eine bisher bindende Restriktion (außer k) wird von einer anderen abgelöst
- die Kombination von überhaupt hergestellten Produkten ändert sich

2. Fall: x_{n+k}^* ist NBV – Graphische Veranschaulichung

Beispiel für den 2. Fall: x_3^* ist Nichtbasisvariable

Merke:

Wenn eine Schlupfvariable x_{n+k}^* in der optimalen Lösung Nichtbasisvariable ist, so bedeutet es, dass die Restriktion k bindend ist. Das heißt, dass sie einen Engpass darstellt.

Restriktionen – Zusammenfassung

 a_{ij}^* und b_i^* sind die aktuellen Koeffizienten im Optimaltableau.

1. Fall: x_{n+k}^* ist Basisvariable

$$\underline{\lambda}_k = x_{n+k}^* \text{ und } \overline{\lambda}_k = \infty$$

2. Fall: x_{n+k}^* ist Nichtbasisvariable

$$\underline{\lambda}_k = \left\{ \begin{array}{ll} \infty & \text{falls alle } a^*_{i(n+k)} \leq 0 \\ \min\{ \frac{b^*_i}{a^*_{i(n+k)}} \mid i=1,\ldots,m \quad \text{mit } \ a^*_{i(n+k)} > 0 \} & \text{sonst} \end{array} \right.$$

$$\overline{\lambda}_k = \left\{ \begin{array}{ll} \infty & \text{falls alle } a^*_{i(n+k)} \geq 0 \\ \min\{-\frac{b^*_i}{a^*_{i(n+k)}} \mid i=1,\ldots,m \quad \text{mit } \ a^*_{i(n+k)} < 0\} & \text{sonst} \end{array} \right.$$

Endtableau:

		x_1	x_2	x_3	x_4	x_5	RS
-	-z	0	0	-1/2	-3/10	0	-1500
	x_5	0	0	1/8	-3/40	1	50
	x_1	1	0	1/2	-1/10	0	300
	x_2	0	1	-1/4	3/20	0	150

Sensitivität bzgl. Restriktion 1: x_3^* ist Nichtbasisvariable

$$\underline{\lambda}_1 = \min \left\{ \frac{50}{1/8}; \frac{300}{1/2} \right\} = \min \left\{ 400; 600 \right\} = 400; \quad \bar{\lambda}_1 = 150 \cdot 4 = 600$$

Sensitivität bzgl. Restriktion 2: x_4^* ist Nichtbasisvariable

$$\underline{\lambda}_2 = 150 \cdot \frac{20}{3} = 1000; \quad \bar{\lambda}_2 = \min \left\{ \frac{50}{\frac{3}{40}}; \frac{300}{\frac{1}{10}} \right\} = \min \left\{ 666,67; 3000 \right\} = 666,67$$

Sensitivität bzgl. Restriktion 3: x_5^* ist Basisvariable

$$\underline{\lambda}_3 = 50; \quad \bar{\lambda}_3 = \infty$$

Ergebnis der Sensitivitätsanalyse bzgl. der Restriktionen

	Untere Grenze	Ausgangswert	Obere Grenze
b_1	800	1200	1800
x_1^*	100	300	600
x_2^*	250	150	0
Z^*	1300	1500	1800
b_2	2000	3000	3666.67
x_1^*	400	300	233.33
x_2^*	0	150	250
Z^*	1200	1500	1700
b_3	75	125	∞
x_1^*	300	300	300
x_2^*	150	150	150
z^*	1500	1500	1500

Ergebnis der Sensitivitätsanalyse bzgl. der Restriktion 1

Ergebnis der Sensitivitätsanalyse bzgl. der Restriktionen

	Untere Grenze	Ausgangswert	Obere Grenze
b_1	800	1200	1800
x_1^*	100	300	600
x_2^*	250	150	0
Z^*	1300	1500	1800
b_2	2000	3000	3666.67
x_1^*	400	300	233.33
x_2^*	0	150	250
Z^*	1200	1500	1700
b_3	75	125	∞
x_1^*	300	300	300
x_2^*	150	150	150
z^*	1500	1500	1500

Ergebnis der Sensitivitätsanalyse bzgl. der Restriktion 2

Ergebnis der Sensitivitätsanalyse bzgl. der Restriktionen

	Untere Grenze	Ausgangswert	Obere Grenze
b_1	800	1200	1800
x_1^*	100	300	600
x_2^*	250	150	0
Z^*	1300	1500	1800
b_2	2000	3000	3666.67
x_1^*	400	300	233.33
x_2^*	0	150	250
Z^*	1200	1500	1700
b_3	75	125	∞
x_1^*	300	300	300
x_2^*	150	150	150
z^*	1500	1500	1500

Ergebnis der Sensitivitätsanalyse bzgl. der Restriktion 3

Sensitivitätsanalyse – Zielfunktionskoeffizienten

2. Fragestellung:

In welchem Bereich $[c_h - \underline{\mu}_h, c_h + \overline{\mu}_h]$ kann ein Zielfunktionskoeffizient einer Strukturvariablen $c_h \ (1 \le h \le n)$ bei Konstanz aller übrigen Parameter variiert werden, ohne dass die aktuelle optimale Basislösung die Optimalitätseigenschaften verliert?

Antwort:

Die Variation eines Zielfunktionskoeffizienten c_h hat analog zu den Aussagen bei Fall 1 Auswirkung auf die Eigenschaft der Variablen x_h . Auch hier lassen sich die beiden oben genannten Fälle unterscheiden.

Verminderung / Erhöhung eines Zielfunktionskoffizienten

\triangleright Zu veränderte Variable x_h^* ist Basisvariable

- Basisvariable ist durch einen Einheitsvektor gekennzeichnet.
- Sie hat im Tableau einen Zielfunktionskoeffizenten $c_h = 0$.
- Vermindern / erhöhen wir c_h um $\underline{\mu}_h$ bzw. $\overline{\mu}_h$ Einheiten, so erhalten wir einen Wert $c_h^* \neq \overline{0}$.
- Es muss die 0 im Zielfunktionskoeffizienten c_h^* wieder hergestellt werden.

	2	x_1	x_2	x_3	x_4	x_5	RS
-z		0	0 _	1/2	-3/10	0	-1500
x_5		0	0	1/8	-3/40	1	50
x_1	7	1/		1/2	-1/10	0	300
x_2		0	1	-1/4	3/20	0	150

- Wir addieren / subtrahieren dazu das Vielfache der Zeile, die eine 1 in der Spalte h aufweist.
- Kein c_i^* einer Nichtbasisvariablen j darf einen positiven Wert annehmen, sonst Basistausch!
- Über den Quotienten aus c_i^* und a_{ij}^* bestimmen wir die maximale Verminderung / Erhöhung von c_h .

\triangleright Zu verändernde Variable x_h^* ist Nichtbasisvariable

- Das dazu gehörige c_h^* hat einen nicht-positiven Wert.
- Vermindern wir diesen, bleibt sie Nichtbasisvariable.
- Erhöhen wir den Wert, darf c_h^* nicht positiv werden um einen Basistausch zu vermeiden.

1. Fall: x_h^* ist Basisvariable

 a_{ij}^* und c_j^* sind die aktuellen Koeffizienten im Optimaltableau, $a_{\sigma(h)}^T$ bezeichnet den Zeilenvektor, in der die Basisvariable x_h^* steht.

Es gilt:

$$\underline{\mu}_h = \left\{ \begin{array}{ll} \infty & \text{falls alle } a^*_{\sigma(h),j} \leq 0 \text{ mit } j \neq h \\ \min \ \{-\frac{c^*_j}{a^*_{\sigma(h),j}} | \text{ alle Spalten } j \neq h \text{ mit } a^*_{\sigma(h),j} > 0\} & \text{sonst} \end{array} \right.$$

Begründung:

Soll der Zielfunktionskoeffizient einer Basisvariablen x_h^* um Δ gesenkt werden, so entspricht dies einer Eintragung von $-\Delta$ für x_h^* in der ZF-Zeile des Optimaltableaus. Wenn x_h^* Basisvariable bleiben und ein neues Optimaltableau erzeugt werden soll, so muss durch Addition des Δ -fachen der Zeile $\sigma(h)$ zu der ZF-Zeile wieder der Eintrag 0 hergestellt werden. Dabei dürfen die ZF-Koeffizienten der Nichtbasisvariablen nicht positiv werden, d.h. es muss $c_j^* + a_{\sigma(h),j}^* \cdot \Delta \le 0$ für alle $j=1,\dots,n$ gelten. Für negative $a_{\sigma(h),j}^*$ ist diese Ungleichung stets erfüllt. Daher bleibt zu fordern: $\Delta \le -c_j^*/a_{\sigma(h),j}^*$ für alle $j=1,\dots,n$ mit $a_{\sigma(h),j}^*>0$.

1. Fall: x_h^* ist Basisvariable (Fortsetzung)

 a_{ij}^* und c_j^* sind die aktuellen Koeffizienten im Optimaltableau, $a_{\sigma(h)}^T$ bezeichnet den Zeilenvektor, in der die Basisvariable x_h^* steht.

Es gilt:

$$\overline{\mu}_h = \left\{ \begin{array}{ll} \infty & \text{falls alle } a^*_{\sigma(h),j} \geq 0 \text{ mit } j \neq h \\ \min \ \left\{ \frac{c^*_j}{a^*_{\sigma(h),j}} \right| \text{ alle Spalten } j \neq h \text{ mit } a^*_{\sigma(h),j} < 0 \right\} & \text{sonst} \end{array} \right.$$

Begründung:

Soll der Zielfunktionskoeffizient einer Basisvariablen x_h^* um Δ erhöht werden, so entspricht dies einer Eintragung von Δ für x_h^* in der ZF-Zeile des Optimaltableaus. Wenn x_h^* Basisvariable bleiben und ein neues Optimaltableau erzeugt werden soll, so muss durch Subtraktion des Δ -fachen der Zeile $\sigma(h)$ zu der ZF-Zeile wieder der Eintrag 0 hergestellt werden. Dabei dürfen die ZF-Koeffizienten der Nichtbasisvariablen nicht positiv werden, d.h. es muss $c_j^* - a_{\sigma(h),j}^* \cdot \Delta \leq 0$ für alle $j=1,\dots,n$ gelten. Für positive $a_{\sigma(h),j}^*$ ist diese Ungleichung stets erfüllt. Daher bleibt zu fordern: $\Delta \leq c_j^*/a_{\sigma(h),j}^*$ für alle $j=1,\dots,n$ mit $a_{\sigma(h),j}^*>0$

1. Fall: x_h^* ist BV – Ökonomische Interpretation

→ Produkt *h* wird in der Optimallösung produziert

Steigt der Zielfunktionskoeffizient um mehr als $\overline{\mu}_h$, so kommt es zu einem Basiswechsel. Dabei kann man zwei Situationen unterscheiden (können auch gleichzeitig auftreten):

- es wird so viel von Produkt h produziert, dass ein anderes Produkt komplett verdrängt wird und eine bisher bindende Restriktion keinen Engpass mehr bildet
- durch die Mehrproduktion von Produkt h (und die geringer Produktion eines anderen Produktes) ändert sich die Kombination der bindenden Restriktionen, d.h. der Engpassressourcen

Sinkt der Zielfunktionskoeffizient um mehr als $\underline{\mu}_h$, so kommt es zu einem Basiswechsel. Dabei kann man zwei Situationen unterscheiden:

- h wird gar nicht mehr produziert und eine bisher bindende Restriktion bildet keinen Engpass mehr
- es wird weniger von Produkt *h* produziert, dadurch (und durch die Mehrproduktion eines anderen Produktes) ändert sich die Kombination der bindenden Restriktionen

2. Fall: x_h^* ist Nichtbasisvariable

 c_i^* sind die zugehörigen aktuellen ZF-Koeffizienten im Endtableau.

Es gilt:

$$\underline{\mu}_h = \infty \text{ und } \overline{\mu}_h = -c_j^*$$

Begründung:

 $\underline{\mu}_h$ über alle Grenzen wachsen zu lassen bedeutet, die Variable x_h^* in dem hier betrachteten Maximierungsproblem mit einer betragsmäßig beliebig großen, negativen Zahl zu bewerten. Damit bleibt die Variable natürlich stets Nichtbasisvariable.

Eine Vergrößerung von $\overline{\mu}_h$ über $-c_j^*$ hinaus würde zur "Nichtoptimalität" des Endtableaus (ZF-Koeffizient größer 0) an dieser Stelle führen und damit zu einem unerwünschten Basiswechsel.

2. Fall: x_h^* ist NBV – Ökonomische Interpretation

→ Produkt *h* wird nicht in der Optimallösung produziert

Sinkt der Deckungsbeitrag eines Produktes, welches ohnehin nicht produziert wird, so wird es auch weiterhin nicht produziert.

Eine Steigerung des Deckungsbeitrags um mehr als $\overline{\mu}_h$ hat zur Folge, dass das Produkt h, welches bisher nicht produziert wurde, anschließend produziert wird. Weiterhin tritt mindestens eine der folgenden Situationen ein:

- ein bisher produziertes Produkt wird nicht mehr produziert
- zu den bisherigen Engpassressourcen kommt eine weitere hinzu

Zusammenfassung – Zielfunktionskoeffizienten

 a_{ij}^* und c_j^* sind die aktuellen Koeffizienten im Optimaltableau, $a_{\sigma(h)}^T$ bezeichnet den Zeilenvektor, in der die Basisvariable x_h^* steht.

1. Fall: x_h^* ist Basisvariable

$$\underline{\mu}_h = \left\{ \begin{array}{l} \infty \\ \min \left\{ -\frac{c_j^*}{a_{\sigma(h),j}^*} \right| \text{ alle Spalten } j \neq h \text{ mit } a_{\sigma(h),j}^* > 0 \right\} \end{array} \right.$$

$$\overline{\mu}_h = \left\{ \begin{array}{l} \infty \\ \min \ \left\{ \frac{c_j^*}{a_{\sigma(h),j}^*} \right| \text{ alle Spalten } j \neq h \text{ mit } a_{\sigma(h),j}^* < 0 \right\} \end{array} \right.$$

falls alle $a^*_{\sigma(h),j} \leq 0$ mit $j \neq h$

sonst

falls alle $a^*_{\sigma(h),j} \ge 0$ mit $j \ne h$

sonst

2. Fall: x_h^* ist Nichtbasisvariable

$$\underline{\mu}_h = \infty \text{ und } \overline{\mu}_h = -c_j^*$$

Endtableau

	x_1	x_2	x_3	x_4	x_5	RS
-z	0	0	-1/2	-3/10	0	-1500
x_5	0	0	1/8	-3/40	1	50
x_1	1	0	1/2	-1/10	0	300
x_2	0	1	-1/4	3/20	0	150

Sensitivität bzgl. Zielfunktionskoeffizient 1: x_1^* ist Basisvariable

$$\underline{\mu}_1 = -\frac{-1/2}{1/2} = 1$$
; $\overline{\mu}_1 = \frac{-3/10}{-1/10} = 3$

Sensitivität bzgl. Zielfunktionskoeffizient 2: x_2^* ist Basisvariable

$$\underline{\mu}_2 = -\frac{-3/10}{3/20} = 2$$
; $\overline{\mu}_2 = \frac{-1/2}{-1/4} = 2$

Ergebnis der Sensitivitätsanalyse bzgl. der Zielfunktionskoeffizienten

	Untere Grenze	Ausgangswert	Obere Grenze
c_1	2	3	6
x_1^*	300	300	300
x_2^*	150	150	150
Z^*	1200	1500	2400
c_2	2	4	6
x_1^*	300	300	300
x_2^*	150	150	150
Z^*	1200	1500	1800

Ergebnis der Sensitivitätsanalyse bzgl. Zielfunktionskoeffizient 1

Ergebnis der Sensitivitätsanalyse bzgl. der Zielfunktionskoeffizienten

	Untere Grenze	Ausgangswert	Obere Grenze
c_1	2	3	6
x_1^*	300	300	300
x_2^*	150	150	150
z^*	1200	1500	2400
c_2	2	4	6
x_1^*	300	300	300
x_2^*	150	150	150
Z^*	1200	1500	1800

Ergebnis der Sensitivitätsanalyse bzgl. Zielfunktionskoeffizient 2

Zusammenfassung

- Ökonomische Interpretation der Lösung
 - Engpässe
 - Schattenpreise
- Sensitivitätsanalyse
 - Marginale Betrachtung von Änderungen
 - Veränderung einer Variable mit gleichzeitigem Gleichhalten aller anderen Variablen
 - Variation des Restriktionsvektors möglich
 - Variation des Zielfunktionsvektors möglich
 - Abhängig davon, ob Variable BV oder NBV ist

