Stochastic Logic Programs

Johannes Lerch

Seminar aus maschinellem Lernen

Agenda

- Motivation
- Definition
- Wahrscheinlichkeitsverteilungen
- Anwendungsbeispiele
- Parameter Estimation

Kontextfreie Sprachen

- Ausdruck:
 aⁿbⁿ
- Grammatik:

$$\mathsf{S}\to \mathsf{Ø}$$

$$S \rightarrow aSb$$

Transformation zu Prolog

Grammatik G:

```
S \rightarrow \emptyset
S \rightarrow aSb
```

Prolog:

```
s([]).
s(S):-a(A), append(A,X,S), b(B), append(S1,B,X), s(S1).
a([a]).
b([b]).
```

Stochastisch kontextfreie Grammatik

Grammatik G:

$$0.5: S \rightarrow \emptyset$$

$$0.5$$
: S \rightarrow aSb

$$P(\emptyset|G) = 0.5$$

$$P(ab|G) = 0.25$$

$$P(aabb|G) = 0.125$$

Stochastisch Logische Programme

 Modellierung einer Münze: coin(head).
 coin(tail).

Eigentlich gemeint:

0.5: coin(head).

0.5: coin(tail).

Stochastisch Logische Programme

- Definition von SLP:
 - Eindeutig definiertes logisches Programm
 - Klauseln mit positiven Zahlen parametrisiert
- Pure SLP:
 - Alle Klauseln parametrisiert
- Impure SLP:
 - Nicht alle Klauseln parametrisiert
- Normalised SLP:
 - Parameter aller Klauseln mit gleichem Head summieren zu 1
 - → Parameter entsprechen Wahrscheinlichkeiten

Beispiele für SLP


```
0.5: coin(head).
```

0.5: coin(tail).

```
1/6: roll_dice(1).
```

1/6: roll_dice(2).

1/6: roll_dice(3).

1/6: roll_dice(4).

1/6: roll_dice(5).

1/6: roll_dice(6).

Wahrscheinlichkeitsverteilung auf Ableitungen

- $S = \{l_1:C_1,...,l_n:C_n\}$
- $\lambda = (\ln l_1, ..., \ln l_n)$
- $D(G) = \{x: x \text{ Ableitung, die bei G beginnt}\}$
- $v_i(x)$ Anzahl Anwendungen C_i in x

$$\forall x \in D(G): \quad \psi_{(\lambda, S, G)}(x) = \prod_{i=1}^{n} l_i^{v_i(x)} = e^{\lambda v(x)}$$

Wahrscheinlichkeitsverteilung auf Ableitungen

 $\psi_{(\lambda,S,\cdot-s(X))}(C_2C_5)=0.6*0.2=0.12$

Wahrscheinlichkeitsverteilung auf Beweisen

- $S = \{l_1:C_1,...,l_n:C_n\}$
- $\lambda = (\ln l_1, ..., \ln l_n)$
- $R(G) = \{x: x \text{ Beweis mit Anfang } G\}$
- $v_i(x)$ Anzahl Anwendungen C_i in x

$$\psi_{(\lambda,S,G)}(x) = \prod_{i=1}^{n} l_i^{v_i(x)} = e^{\lambda v(x)}$$

$$Z_{(\lambda,S,G)} = \sum_{x \in R(G)} \psi_{(\lambda,S,G)}(x)$$

$$\forall r \in R(G): \quad f_{(\lambda, S, G)}(r) = \frac{1}{Z_{(\lambda, S, G)}} \psi_{(\lambda, S, G)}(r)$$

Wahrscheinlichkeitsverteilung auf Beweisen

Anwendungsbeispiel: Bayes Netz

Anwendungsbeispiel: Markov Netz

Parameter Estimation

- Umkehrung des Problems:
 - Klauseln bekannt
 - Fakten bekannt durch Beobachtung von Daten
 - Parameter unbekannt
 - Schätze λ:

•
$$S = \{l_1:C_1,...,l_n:C_n\}$$

•
$$\lambda = (\ln l_1, ..., \ln l_n)$$

Parameter Estimation Vereinfachte Problemstellung

- Zunächst Vereinfachung:
 - Annahme: Jeder Fakt hat nur eine Herleitung

Bekannte Klauseln:

```
C_1 l_1: s(X,p):- p(X),p(X).

C_2 l_2: s(X,q):- q(X).

C_3 l_3: p(a).

C_4 l_4: p(b).

C_5 l_5: q(a).

C_6 l_6: q(b).
```

Parameter Estimation Vereinfachte Problemstellung

Beobachtung in den Daten

C_{1}	l_1 : s(X,p) :- p(X),p(X).
C_{2}	l_2 : $s(X,q)$:- $q(X)$.
C_3	l_3 : p(a).
C_{4}	l_4 : p(b).
C_{5}	l_5 : q(a).
C_{6}	l_6 : q(b).

Fakt	\tilde{f}	Ableitung	f_{λ}
s(a,p)	1/3	$C_1C_3C_3$	$Z_{\lambda}^{-1} l_1 l_3^2$
s(b,p)	1/6	$C_1^{}C_4^{}C_4^{}$	$Z_{\lambda}^{-1} l_1 l_4^2$
s(a,q)	1/4	$C_2^{}$	$Z_{\lambda}^{-1} l_{2} l_{5}$
s(b,q)	1/4	$C_{2}C_{6}$	$Z_{\lambda}^{-1} l_{2} l_{6}$

$$Z_{\lambda} = l_1 l_3^2 + l_1 l_4^2 + l_2 l_5 + l_2 l_6$$

= $l_1 (l_3^2 + l_4^2) + l_2 (l_5 + l_6)$

Parameter Estimation Vereinfachte Problemstellung

Fakt	$\stackrel{\sim}{f}$	Ableitung	f_{λ}		Klausel	$\tilde{f}[v_i]$	$f_{\lambda}[v_i]$
s(a,p)	1/3	$C_1C_3C_3$	$Z_{\lambda}^{-1} l_1 l_3^2$		C_{1}	1/2	$Z_{\lambda}^{-1} l_{1} (l_{3}^{2} + l_{4}^{2})$
s(b,p)	1/6	$C_1^{}C_4^{}C_4^{}$	$Z_{\lambda}^{-1} l_1 l_4^2$	_	C_2	1/2	$Z_{\lambda}^{-1} l_{2} (l_{5} + l_{6})$
s(a,q)	1/4	$C_{2}C_{5}$	$Z_{\lambda}^{-1} l_2 l_5$		C_3	2/3	$Z_{\lambda}^{-1} 2 (l_1 l_3^2)$
s(b,q)	1/4	$C_{2}C_{6}$	$Z_{\lambda}^{-1} l_2 l_6$		C_4	1/3	$Z_{\lambda}^{-1} 2 (l_1 l_4^2)$
					$C_{_{5}}$	1/4	$Z_{\lambda}^{-1} l_{2} l_{5}$
					$C_{_6}$	1/4	$Z_{\lambda}^{-1} l_{2} l_{6}$
							7

Löse Gleichungssystem nach l₁,...,l_n auf

Improved Iterative Scaling

- Initialisiere $\lambda^{(0)}$ beliebig
- 1.) Bestimme für jede Klausel C_i den Wert $\gamma_i^{(h)} \in [-\infty, \infty]$ für:

$$f_{\lambda^{(h)}}[v_i e^{Y_i^{(h)}v_\#}] = f[v_i]$$

- 2.) Setze $\lambda^{(h+1)} = \gamma^{(h)} + \lambda^{(h)}$
- 3.) Setze $h \leftarrow h+1$ und mache weiter mit 1. bis $f_{\lambda^{(h)}}$ konvergiert

$$v_{\scriptscriptstyle\#}(r) = \sum_{i} v_{i}(r)$$

Parameter Estimation Verallgemeinerung

:-s(X).

- Nun ohne Vereinfachung:
 - Fakt kann mehrere Ableitungen haben

Parameter Estimation Verallgemeinerung

Beobachtung in den Daten:

	s(a)	s(b)
Anzahl	7	5
$\stackrel{^{\sim}}{p}$	7/12	5/12

У	r	$f_{\lambda}(r y)$	$f_{\lambda}(r)$	
s(a)	$C_1^{}C_3^{}C_3^{}$	$\frac{7}{12} \frac{l_1 l_3^2}{l_1 l_3^2 + l_2 l_5}$	$Z_{\lambda}^{-1} l_1 l_3^2$	
s(a)	$C_{2}C_{5}$	$\frac{7}{12} \frac{l_2 l_5}{l_1 l_3^2 + l_2 l_5}$	$Z_{\lambda}^{-1} l_2 l_5$	
s(b)	$C_1^{}C_4^{}C_4^{}$	$\frac{5}{12} \frac{l_1 l_4^2}{l_1 l_4^2 + l_2 l_6}$	$Z_{\lambda}^{-1} l_{I} l_{4}^{2}$	$Z_{\lambda} = l_1 l_3^2 + l_1 l_4^2 + l_2 l_5 + l_2 l_6$
s(b)	$C_{2}C_{6}$	$\frac{5}{12} \frac{l_2 l_6}{l_1 l_4^2 + l_2 l_6}$	$Z_{\lambda}^{-1} l_2 l_6$	$= l_1(l_3^2 + l_4^2) + l_2(l_5 + l_6)$

Parameter Estimation Verallgemeinerung

			Klausel	$f_{\lambda}[v_i y]$	$f_{\lambda}[v_i]$
			C ₁	$\frac{7}{12} \frac{l_1 l_3^2}{l_1 l_3^2 + l_2 l_5} + \frac{5}{12} \frac{l_1 l_4^2}{l_1 l_4^2 + l_2 l_6}$	$Z_{\lambda}^{-1} l_{1} (l_{3}^{2} + l_{4}^{2})$
r	$f_{\lambda}(r y)$	$f_{\lambda}(r)$			
$C_1C_3C_3$	$\frac{7}{12} \frac{l_1 l_3^2}{l_1 l_3^2 + l_2 l_5}$	$Z_{\lambda}^{-1} l_1 l_3^2$	C_2	$\frac{7}{12} \frac{l_2 l_5}{l_1 l_3^2 + l_2 l_5} + \frac{5}{12} \frac{l_2 l_6}{l_1 l_4^2 + l_2 l_6}$	$Z_{\lambda}^{-1} l_2 (l_5 + l_6)$
$C_{2}C_{5}$	$\frac{7}{12} \frac{l_2 l_5}{l_1 l_3^2 + l_2 l_5}$	$Z_{\lambda}^{-1} l_2 l_5$	C ₃	$2\frac{7}{12}\frac{l_1 l_3^2}{l_1 l_3^2 + l_2 l_5}$	$Z_{\lambda}^{-1} 2 (l_1 l_3^2)$
$C_1^{}C_4^{}C_4^{}$	$\frac{5}{12} \frac{l_1 l_4^2}{l_1 l_4^2 + l_2 l_6}$	$Z_{\lambda}^{-1} l_{I} l_{4}^{2}$	C ₄	$2\frac{5}{12}\frac{l_1 l_4^2}{l_1 l_4^2 + l_2 l_6}$	$Z_{\lambda}^{-1} 2 (l_1 l_4^2)$
C ₂ C ₆	$\frac{5}{12} \frac{l_2 l_6}{l_1 l_4^2 + l_2 l_6}$	$Z_{\lambda}^{-1} l_2 l_6$	C ₅	$\frac{7}{12} \frac{l_2 l_5}{l_1 l_3^2 + l_2 l_5}$	$Z_{\lambda}^{-1} l_2 l_5$
			C ₆	$\frac{5}{12} \frac{l_2 l_6}{l_1 l_4^2 + l_2 l_6}$	$Z_{\lambda}^{-1} l_2 l_6$

Anpassung: Improved Iterative Scaling

- Initialisiere $\lambda^{(0)}$ beliebig
- 1.) Bestimme für jede Klausel C_i den Wert $y_i^{(h)} \in [-\infty, \infty]$ für: $f_{\lambda^{(h)}}[v_i e^{y_i^{(h)}v_\#}] = f_{\lambda^{(h)}}[v_i | y]$
- 2.) Setze $\lambda^{(h+1)} = \gamma^{(h)} + \lambda^{(h)}$
- 3.) Setze $h \leftarrow h+1$ und mache weiter mit 1. bis $f_{\lambda^{(h)}}$ konvergiert

$$v_{\scriptscriptstyle\#}(r) = \sum_{i} v_{i}(r)$$

Zusammenfassung

- Verallgemeinerung von stochastisch kontextfreien Grammatiken und Bayesschen Netzen
- Ausdrucksstarke, jedoch einfache Erweiterung logischer Programme
- Beschreibung & Lernen von Wahrscheinlichkeitsverteilungen

SLP Implementierungen

- Progol
 - Regellerner
 - Erzeugt intern SLP
 - Hier definierte Syntax nicht erlaubt
 - http://www.doc.ic.ac.uk/~shm/progol.html

Literatur

- Chen, J., Kelley, L., Muggleton, S.: Protein Fold Discovery
 Using Stochastic Logic Programs
- Muggleton, S., Pahlavi, N.: Stochastic Logic Programs: A Tutorial
- Muggleton, S.: Stochastic Logic Programs
- Muggleton, S.: Learning Stochastic Logic Programs
- Cussens, J.: Parameter Estimation in Stochastic Logic Programs