機械学習を用いた変形AR マーカの位置姿勢推定

2021/2/12 機械知能研究室 ER17013榎元洋平 ER17076安井理

研究背景

- ・2次元コードが普及し様々な場所で活用されている
 - ・大きさを定義することで3次元位置・姿勢の推定を行える
 - 特殊なパターンによりどの角度からでも検出可能

問題点

- ・2次元コードに歪みが生じた場合検出精度が著しく低下
- ・機械学習により変形したマーカを検出する方法は提案されているが姿勢推定までは至ってない

歪みにより認識不可

- ・2次元コードに歪みが生じた場合検出精度が著しく落ちる
- 機械学習により変形したマーカを検出する方法は提案されているが姿勢推定までは至ってない

認識可能なマーカ

歪みにより認識不可

・変形の加わったARマーカをカラー画像から 「検出・平面状ARマーカへの復元・姿勢推定」を行う

アプローチ

- SSD(Single Shot MultiBox Detector)によってARマーカを検出しID・座標を検出
- ・変化の加わったARマーカをAAE(Augumented Autoencoder)での平面化を行い、取得した潜在変数より姿勢推定を行う
- •SSDによるARマーカの検出法を提案

アプローチ

- SSD(Single Shot MultiBox Detector)によってARマーカを検出しID・座標を検出
- •変化の加わったARマーカをAAE(Augumented Autoencoder) により平面化を行い,取得した潜在変数より姿勢推定を行う
- •SSDによるARマーカの検出法を提案

- SSD(Single Shot MultiBox Detector)によってARマーカを検出しID・座標を検出
- ・変化の加わったARマーカをAAE(Augumented Autoencoder)での平面化を行い、取得した潜在変数より姿勢推定を行う
- •SSDによるARマーカの検出法を提案

SSD(Single Shot MultiBox Detector)

- 物体検出アルゴリズム
- •バウンディングボックスで囲み位置とクラスを推定

Liu, Wei, et al. "Ssd: Single shot multibox detector." European conference on computer vision. Springer, Cham, 2016.

サイズの異なる畳み込み層により様々な大きさの物体の特徴抽出

Vgg16 4層まで

Vgg16の全結合層 を畳み込み層に変更 畳み込み層を追加

• 各特徴マップ毎にクラス特徴量と位置特徴量を算出

• 各畳み込み層で物体検出を行う

• 複数の検出結果から正しい位置との一致度が高いものを選択

IoU(重なり度合い)が高いものを選択

• クラス誤差, 位置誤差の損失関数から正解データとの誤差を計算

学習と評価に使用したARマーカー

- ROSパッケージのar_tlack_alvarのARマーカを用いた
- •ARマーカの大きさ:縦横50mm
- ARマーカの種類: 10種類 (ID:0~9)
- 半径20,25,30,35,40,45,50mmの円柱に張り付ける

- •SSDには大量の学習データが必要
- GazeboによってARマーカを自動生成
- Gazeboで図のように赤い板を設置した環境で撮影
- 背景が均一した赤色になるように撮影

データセットの作成(合成)

- gazeboで撮影した画像を透過
- •背景画像と合成しデータセットを作成
- →実環境でも検出できるよう学習データを作成

赤い部分だけ透過

撮影した画像

背景画像

合成した画像

評価実験1

- •距離の違いによるmAP・IoUの比較
 - カメラとARマーカの距離の違いによって検出精度の違い
- ・テスト画像
 - カメラとARマーカの距離の違いによって検出精度の違い
 - テスト画像1200枚, 学習データ6250枚
 - カメラとの距離0.4~0.5m, 0.5~0.6m,0.6~0.7m,0.7~0.8mの画像を各300枚

- •変形度合いによるmAP・IoUの比較
 - ARマーカの変形度合いの違いによって検出精度の違い
- ・テスト画像
 - テスト画像300枚, 学習データ6250枚
 - ARマーカが貼付された半径20,30,40の円柱の画像を各100枚用意

- カメラとの距離が0.4~0.7までは検出精度は変わらない
- •0.7以降は精度が下がった

カメラとの距離[m]	mAP	IoU
$0.4 \sim 0.5$	0.81	0.71
0.5~0.6	0.83	0.73
$0.6 \sim 0.7$	0.81	0.70
$0.7 \sim 0.8$	0.79	0.67

•変形度合いが大きいほど検出精度は下がった

変形度(円柱の半径[mm])	mAP	IoU
40	0.85	0.73
30	0.83	0.71
20	0.79	0.68

検出結果

•検出例

ID:1

ID:2

- •変形ARマーカの検出法を提案
 - ・距離,変形度による精度を比較
- 今後の課題
 - ・リアルタイム, 実環境での検出

- SSD(Single Shot MultiBox Detector)によってARマーカを検出しID・座標を検出
- ・変化の加わったARマーカをAAE(Augumented Autoencoder)での平面化を行い、取得した潜在変数より姿勢推定を行う
- AAEを用いた復元・姿勢推定の提案

Augumented Autoencoder (AAE)

- •変化の加わったARマーカを平面状ARマーカへ復元
 - ・背景画像や光,遮蔽物など環境ノイズを加え学習を行い ノイズによらない本質的な潜在表現を取得できるよう学習
 - ・エンコーダーにより128次元まで圧縮されたマーカの姿勢情報を 潜在変数zとして取得

Augumented Autoencoder (AAE)

- ・変化の加わったARマーカを平面状ARマーカへ復元
 - ・背景画像や光,遮蔽物など環境ノイズを加え学習を行い ノイズによらない本質的な潜在表現を取得できるよう学習
 - ・エンコーダーにより128次元まで圧縮されたマーカの姿勢情報を 潜在変数zとして取得

Augumented Autoencoder (AAE)

- 入力(b):教師データ(a)と姿勢が対応する背景付きの変形ARマーカ画像
- ・出力(c):教師データ(a)との損失関数が小さくなるように学習
- ・学習により歪みのないARマーカが復元可能

- ・学習済みのエンコーダーによって得られる潜在変数zを使用し類 似度計算を行い姿勢を推定
- ・推定対象画像とデータベース(DB)画像の2つを使用

推定対象画像

DB画像

- •各姿勢の変形ARマーカの画像をあらかじめAAEに入力
 - ・各姿勢画像(n枚)それぞれの潜在変数(zn)をDBとして保存

各姿勢の画像 (n枚)

- 推定対象画像をエンコーダーに入力し潜在変数を取得
- •取得した潜在変数とDBの類似度を計算
 - 最も近いDBの姿勢を推定姿勢として決定
 - 推定姿勢[roll,pitch,yaw]は度数法で標記

- ARマーカのサイズは縦横50mm
- 半径20,30,40mmの円柱に貼り付けたモデルを使用
- 学習モデルの種類
 - 「訓練データモデル・教師データモデル」2種類それぞれ ID0~9×半径3種類の合計60種類のモデルを使用

使用モデルの例 (ID=0, 半径=20)

- •センサシミュレーションにより学習用画像を作成
 - ・学習画像は1種類あたりランダム姿勢1500枚撮影
 - 「訓練データ・教師データ」の60種類, 合計90,000枚用意
 - ・画像生成後,変形ARマーカの背景にはテクスチャを付け現実環境を仮定

センサシミュレーションで撮影

教師データ

- 平均絶対誤差(MAE)を用いて推定精度を評価
 - 推定姿勢[roll, pitch, yaw]の誤差を算出
- ・姿勢推定で使用するDB
 - モデル姿勢範囲: roll:0~360°pitch:-35~35°yaw:-15~15°
 - ・分解能3度となるよう36,000枚の姿勢画像をDBに使用

- •評価データ
 - 画像: 20, 30, 40の各半径100枚
 - ・モデル姿勢: ARマーカが半分以上見える範囲内からランダム

評価データ

評価データの正解画像

- AAEによる評価データの復元画像
 - 変化を取り除き平面化を行えていることを確認

評価データ

正解画像

復元画像

提案手法における姿勢推定精度 MAE

円柱半径[mm]	roll	pitch	yaw	姿勢平均
20	5.30	3.64	3.42	4.12
30	5.78	4.49	3.71	4.66
40	6.52	4.51	3.73	4.91

- ・姿勢推定のMAEは、4~5前後となりズレはあるが姿勢推定は可能
- 半径が小さいモデルほど推定精度が高い
- ⇒半径が小さいモデルほど姿勢ごとの画像特徴が明確になる為

提案手法における姿勢推定精度 MAE

円柱半径[mm]	roll	pitch	yaw	姿勢平均
20	5.30	3.64	3.42	4.12
30	5.78	4.49	3.71	4.66
40	6.52	4.51	3.73	4.91

- ・姿勢推定のMAEは、4~5前後となりズレはあるが姿勢推定は可能
- 半径が小さいモデルほど推定精度が高い
- →半径が小さいモデルほど姿勢ごとの画像特徴が明確になる為 提案手法における姿勢推定精度 MAE

円柱半径[mm]	roll	pitch	yaw	姿勢平均
20	5.30	3.64	3.42	4.12
30	5.78	4.49	3.71	4.66
40	6.52	4.51	3.73	4.91

- •機械学習による姿勢推定を提案
 - AAEを用いて変形ARマーカの平面化
 - 潜在変数を用いた姿勢推定が可能であることを確認

- 今後の課題
 - 推定精度を上げるため
 - DBの分解能を1度で用意
 - 学習データのバリエーションを増やし潜在変数を明確に表現
 - ・実環境下での姿勢推定