

Universidad Nacional del Litoral

Facultad de Ingeniería y Ciencias Hídricas

Estadística

Ingeniería en Informática

Mg. Susana Vanlesberg: Profesor Titular Dr. Mario Silber: Profesor Adjunto Dra. Andrea Bergesio: Jefe de Trabajos Prácticos A.I.A. Juan Pablo Taulamet: Auxiliar de Primera

:: GUÍA 7 ::

REGRESIÓN Y CORRELACIÓN

:: RESPUESTAS :: :: 2014 ::

(a)

Existe una relación lineal con tendencia decreciente.

(b) Llamamos X = categoría, Y = ausencias.

Modelo planteado para las observaciones: $Y_i = \alpha + \beta X_i + \varepsilon_i$ con ε_i independiente de X_i , $E(\varepsilon_i) = 0$ y $V(\varepsilon_i) = \sigma^2$, $i = 1, \ldots, n$. Este modelo implica $E(Y_i|X_i = x_i) = \alpha + \beta x_i$, $i = 1, \ldots, n$.

Modelo estimado: $\hat{Y} = 47.348 - 2.9274x$

- (c) Coeficiente de determinación: $r^2=0.789$ indica que casi el $80\,\%$ de la variabilidad de Y es explicada por el modelo propuesto.
- (d) $\hat{Y}_{x=10}=47.348-2.927*10=18.074$. Este valor sirve tanto para estimar E(Y|x=10) como para pronosticar Y cuando x=10. En este último caso, el error estándar asociado **estimado** es

$$\hat{\sigma}\sqrt{1+\frac{1}{n}+\frac{(\overline{x}-10)^2}{\sum_{i=1}^{n}(x_i-\overline{x})^2}},$$

donde $\hat{\sigma}=\sqrt{\frac{\sum_{i=1}^n(Y_i-\hat{Y}_i)^2}{n-2}}$. En este caso $\hat{\sigma}=4.368$. Luego el error estándar estimado asociado al valor pronosticado resulta

$$4.368\sqrt{1 + \frac{1}{16} + \frac{(10 - 7.25)^2}{117}} = 4.637.$$

Como hay relación lineal creciente entre las variables estudiadas, el incremento en las ventas por cada punto en la prueba aumenta $\hat{\beta}=41.681$ unidades en la ventas.

Ejercicio 3

(a) y (b) Llamamos X = cantidad de interrupciones, e Y = resultado en la prueba.

Modelo estimado: $\hat{Y} = 70.5 - 2.8x$.

- (c) $\hat{Y} = 70.5 2.8 * 22 = 8.9$. Es decir, se se lo interrumpe 22 veces, su hostilidad es tan alta como 8.9.
- (d) $\hat{Y} = 70.5 2.8 * 35 < 0$, lo que resulta un valor imposible para la prueba. Luego para esta cantidad de interrupciones el modelo propuesto no es apropiado.

(a) A partir de la observación del gráfico de dispersión, proponer una relación lineal no parece la mejor elección. Se propone una transformación para la variable B. El modelo que estimamos

es $Y=\alpha+\beta X^2+\varepsilon$ donde ε independiente de $X,E(\varepsilon)=0$, o equivalentemente, $E(Y/X=x)=\alpha+\beta x^2$, donde elegimos Y=A y X=B.

Modelo estimado: $\hat{Y} = -884.5 + 0.00064x^2$.

Observación: Con este modelo, $r^2=0.667$. Mientras que si no se realiza una transformación, se consigue $r^2=0.634$.

- (b) El número esperado de visitas para el sitio A se estima en $\hat{Y} = -884.5 + 0.000618 * 2500^2 = 2978.62$ cuando el número de visitas para el sitio B es 2500.
- (c) Para la medida del item anterior el error estándar estimado asociado resulta

$$\widehat{\sigma}\sqrt{\frac{1}{n} + \frac{(\overline{z} - 2500^2)^2}{\sum_{i=1}^n (z_i - \overline{z})^2}},$$

donde $z_i=x_i^2$ y $\widehat{\sigma}=\sqrt{\frac{\sum_{i=1}^n(Y_i-\widehat{Y}_i)^2}{n-2}}$. En este caso $\widehat{\sigma}=537.1$. Luego el error estándar estimado correspondinte a la estimación del parámetro $E(Y/X=2500)=\alpha+\beta2500^2$ resulta

$$537.1\sqrt{\frac{1}{10} + 0.419} = 387.05.$$

Gráfico de dispersión y recta estimada

En base al diagrama de dispersión para los datos disponibles se propone el modelo

$$E(Y_i|X_i = x_i) = \alpha + \beta x_i, i = 1, \dots, 75,$$

donde Y_i es el i-ésimo tiempo medido para la cantidad de páginas X_i .

El modelo estimado resulta $\hat{Y}=13.345+8.102x$, es decir por cada página que se manda a imprimir se estima que el tiempo de impresión aumentará 8.102 unidades. Además es $\hat{\sigma}=10.31$.

El coeficiente de correlación r=0.914 lo que indica que la relación lineal es creciente y adecuada. Además $r^2=0.835$, esdecir el 83 % aproximadamente de la variablidad observada en los tiempos de impresión es explicada por la relación propuesta con el número de páginas a imprimir.