Junliang "Julian" Tao

PhD, Associate Professor

Curriculum Vitae

August 2024

School of Sustainable Engineering and the Built Environment, Arizona State University, AZ, 85286

juliantao.github.io/big/

juliantao

G U5L3d1cAAAAJ

0000-0002-3772-3099

Education

PhDCivil EngineeringCase Western Reserve UniversityCleveland, US2013MSCivil EngineeringTongji UniversityShanghai, China2009BSCivil EngineeringChina University of GeosciencesWuhan, China2006

Experiences

2018- Associate Professor, School of Sustainable Engineering and the Built Environment,

Arizona State University

2013–2018 Assistant Professor, Department of Civil Engineering, University of Akron

Selected awards and honours

2017 CAREER Award, National Science Foundation

2017 Young Engineer of the Year Award, American Society of Civil Engineers, Akron Section

Professional Membership and Service

Chair of Organizing Committee International Conference on Biomediated and Bioinspired Geotechnics

2025

Chair of Technical Committee GeoShanghai International Conference 2024

Member American Society of Civil Engineers (ASCE) Geo-Institute

I have participated in organizing or chairing **20** technical conferences or sessions, served on **12** technical committees, and reviewed for **32** journals, **3** funding agencies. I also volunteered in **15** outreach activities.

Patents, Publications, and Invited Talks

Since 2009, I have authored **116** research publications, including **45** journal papers, **66** conference papers, and **5** technical reports, co-edited **3** books, and filed **2** patents. I also have delivered **34** invited talks to universities, local, national and international conferences. As of August 8, 2024, my h-index is **18** and i10-index is **34**, with total citations of **1,576**. (**Bold**: PhD student, *: undergrad student, *: corresponding)

- 1. **X Li**, L van Paassen, and J Tao*. Effects of Sediment Densification and Strengthening on Scour around Monopiles Using Mangrove-Inspired Skirt Piles. *Acta Geotechnica* (2024). DOI: 10.1007/s11440-023-02182-y.
- 2. **Y Tang**, **Y Zhong**, and J Tao*. Bio-Inspired Rotational Penetration and Horizontal Self-Burrowing Soft Robot. *Acta Geotechnica* (2024). DOI: 10.1007/s11440-023-02173-z.
- 3. **Y Zhong**, S Huang[×], and J Tao^{*}. Minimalistic Horizontal Burrowing Robots. *Journal of Geotechnical and Geoenvironmental Engineering* **149**(4) (2023), 02823001. DOI: 10.1061/JGGEFK.GTENG-11468.
- 4. **Y Tang** and J Tao*. Multiscale Analysis of Rotational Penetration in Shallow Dry Sand and Implications for Self-Burrowing Robot Design. *Acta Geotechnica* **17** (2022), 4233–4252. DOI: 10.1007/s11440-022-01492-x.
- 5. **Y Zhong** and J Tao*. Bio-Inspired Vibrational Wireless Underground Communication System. *Journal of Rock Mechanics and Geotechnical Engineering* **14** (2022). DOI: 10.1016/j.jrmge.2022.06.005.
- 6. J Tao. Burrowing Soft Robots Break New Ground. *Science Robotics* **6**(55) (2021). DOI: 10.1126/scirobotics. abj3615.
- 7. **S Huang**, **Y Tang**, H Bagheri, D Li, A Ardente[#], D Aukes, H Marvi, and J Tao^{*}. Effects of Friction Anisotropy on Upward Burrowing Behavior of Soft Robots in Granular Materials. *Advanced Intelligent Systems* **2**(6) (2020), 1900183. DOI: 10.1002/aisy.201900183.
- 8. J Tao*, **S Huang**, and **Y Tang**. SBOR: A Minimalistic Soft Self-Burrowing-out Robot Inspired by Razor Clams. *Bioinspiration & Biomimetics* **15**(5) (2020), 055003. DOI: 10.1088/1748-3190/ab8754.
- 9. J Tao*, **S Huang**, and **Y Tang**. Bioinspired Self-Burrowing-Out Robot in Dry Sand. *Journal of Geotechnical and Geoenvironmental Engineering* **145**(12) (2019), 02819002. DOI: 10.1061/(ASCE)GT.1943-5606.0002177.