INTERNATIONAL STANDARD

ISO 28591

First edition 2017-10

Sequential sampling plans for inspection by attributes

Plans d'échantillonnage progressif pour le contrôle par attributs

ISO 28591:2017(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO 2017, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org

Co	ontents	Pag
Fore	oreword	i
Intr	ntroduction	v
1	Scope	1
2	Normative references	
3	Terms and definitions	
4	Symbols and abbreviated terms	
_		
5	Principles of sequential sampling plans for in	
6	Selection of a sampling plan	
		point
	CIN CIN	
		and g
7	Operation of a sequential sampling plan	
		methods
		able
		AUIC (
		10
	1	hart10
8	Numerical example	12
9	Tables	12
Ann	nnex A (informative) Statistical properties of the sec	
	for inspection by attributes	30
Rihl	ihliogranhy	30

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 69, *Applications of statistical methods*, Subcommittee SC 5, *Acceptance sampling*.

This first edition of ISO 28591 cancels and replaces ISO 8422:2006, of which it constitutes a minor revision to change the reference number from 8422 to 28591.

With the view to achieve a more consistent portfolio, TC 69/SC 5 has simultaneously renumbered the following standards, by means of minor revisions:

Old reference	New reference	Title
ISO 2859-10:2006	ISO 28590:2017	Sampling procedures for inspection by attributes — Introduction to the ISO 2859 series of standards for sampling for inspection by attributes
ISO 8422:2006	ISO 28591:2017	Sequential sampling plans for inspection by attributes
ISO 28801:2011	ISO 28592:2017	Double sampling plans by attributes with minimal sample sizes, indexed by producer's risk quality (PRQ) and consumer's risk quality (CRQ)
ISO 18414:2006	ISO 28593:2017	Acceptance sampling procedures by attributes — Accept-zero sampling system based on credit principle for controlling outgoing quality
ISO 21247:2005	ISO 28594:2017	Combined accept-zero sampling systems and process control procedures for product acceptance
ISO 14560:2004	ISO 28597:2017	Acceptance sampling procedures by attributes — Specified quality levels in nonconforming items per million
ISO 13448-1:2005	ISO 28598-1:2017	Acceptance sampling procedures based on the allocation of priorities principle (APP) — Part 1: Guidelines for the APP approach
ISO 13448-2:2004	ISO 28598-2:2017	Acceptance sampling procedures based on the allocation of priorities principle (APP) — Part 2: Coordinated single sampling plans for acceptance sampling by attributes

Cross references between the above listed documents have been corrected in the minor revisions.

A list of all documents in the new ISO 28590 - ISO 28599 series of International Standards can be found on the ISO website.

Introduction

In contemporary production processes, quality is often expected to reach such high levels that the number of nonconforming items is reported in parts per million (10^{-6}) . Under such circumstances, popular acceptance sampling plans, such as those presented in ISO 2859-1, require prohibitively large sample sizes. To overcome this problem, users apply acceptance sampling plans with higher probabilities of wrong decisions or, in extreme situations, abandon the use of acceptance sampling procedures altogether. However, in many situations there is still a need to accept products of high quality using standardized statistical methods. In such cases, there is a need to apply statistical procedures that require the smallest possible sample sizes. Sequential sampling plans are the only statistical procedures that satisfy that need as, among all possible sampling plans having similar statistical properties, the sequential sampling plan has the smallest average sample size.

The principal advantage of sequential sampling plans is the reduction in the average sample size. The average sample size is the weighted average of all the sample sizes that may occur under a sampling plan for a given lot or process quality level. Like double and multiple sampling plans, the use of sequential sampling plans leads to a smaller average sample size than single sampling plans having the equivalent operating characteristic. However, the average savings are even greater when using a sequential sampling plan than when a double or multiple sampling plan is used. For lots of very good quality, the maximum savings for sequential sampling plans may reach 85 %, as compared to 37 % for double sampling plans and 75 % for multiple sampling plans. On the other hand, when using a double, multiple or sequential sampling plan, the actual number of items inspected for a particular lot may exceed the sample size, n_0 , of the corresponding single sampling plan. For double and multiple sampling plans, there is an upper limit of 1,25 n_0 to the actual number of items to be inspected. For classical sequential sampling plans, there is no such limit, and the actual number of inspected items may exceed the corresponding single sample size, n_0 , or be even as large as the lot size, N. For the sequential sampling plans in this International Standard, a curtailment rule has been introduced involving an upper limit n_t on the actual number of items to be inspected.

Other factors that should be taken into account include:

a) Simplicity

The rules of a sequential sampling plan are more easily misunderstood by inspectors than the simple rules for a single sampling plan.

b) Variability in the amount of inspection

As the actual number of items inspected for a particular lot is not known in advance, the use of sequential sampling plans brings about various organisational difficulties. For example, scheduling of inspection operations may be difficult.

c) Ease of drawing sample items

If drawing sample items at different times is expensive, the reduction in the average sample size by sequential sampling plans may be cancelled out by the increased sampling cost.

d) Duration of test

If the test of a single item is of long duration and a number of items can be tested simultaneously, sequential sampling plans are much more time-consuming than the corresponding single sampling plans.

e) Variability of quality within the lot

If the lot consists of two or more sublots from different sources and if there is likely to be a substantial difference between the qualities of the sublots, drawing of a representative sample under a sequential sampling plan is far more awkward than under the corresponding single sampling plan.

The advantages and disadvantages of double and multiple sampling plans always lie between those of single and sequential sampling plans. The balance between the advantage of a smaller average sample

size and the above disadvantages leads to the conclusion that sequential sampling plans are suitable only when inspection of individual items is costly in comparison with inspection overheads.

The choice between single, double, multiple and sequential sampling plans shall be made before the inspection of a lot is started. During inspection of a lot, it is not permitted to switch from one type to another, because the operating characteristics of the plan may be drastically changed if the actual inspection results influence the choice of acceptability criteria.

Although use of sequential sampling plans is on average much more economical than the use of corresponding single sampling plans, acceptance or non-acceptance may occur at a very late stage due to the cumulative count of nonconforming items (or nonconformities) remaining between the acceptance number and the rejection number for a long time. When using the graphical method, this corresponds to the random progress of the step curve remaining in the indecision zone. Such a situation is most likely to occur when the lot or process quality level (in terms of percent nonconforming or in nonconformities per 100 items) is close to (100g), where g is the parameter giving the slope of the acceptance and rejection lines.

To improve upon this situation, the sample size curtailment value is set before the inspection of a lot is begins. If the cumulative sample size reaches the curtailment value $n_{\rm t}$ without determination of lot acceptability, inspection terminates and the acceptance and non-acceptance of the lot is then determined using the curtailment values of the acceptance and rejection numbers.

For sequential sampling plans in common use, curtailment usually represents a deviation from their intended usage, leading to a distortion of their operating characteristics. In this International Standard, however, the operating characteristics of the sequential sampling plans have been determined with curtailment taken into account, so curtailment is an integral component of the provided plans.

Sequential sampling plans for inspection by attributes are also provided in ISO 2859-5. However, the design principle of those plans is fundamentally different from that of this International Standard. The sampling plans in ISO 2859-5 are designed to supplement the ISO 2859-1 acceptance sampling system for inspection by attributes. Thus, they should be used for the inspection of a continuing series of lots, that is, a series long enough to permit the switching rules of the ISO 2859 system to function. The application of the switching rules is the only means of providing enhanced protection to the consumer (by means of tightened sampling inspection criteria or discontinuation of sampling inspection) when the sequential sampling plans from ISO 2859-5 are used. However, in certain circumstances, there is a strong need to have both the producer's and the consumer's risks under strict control. Such circumstances occur, for example, when sampling is performed for regulatory reasons, to demonstrate the quality of the production processes or to test hypotheses. In such cases, individual sampling plans selected from the ISO 2859-5 sampling scheme may be inappropriate. The sampling plans from this International Standard have been designed in order to meet these specific requirements.

Sequential sampling plans for inspection by attributes

1 Scope

This International Standard specifies sequential sampling plans and procedures for inspection by attributes of discrete items.

The plans are indexed in terms of the producer's risk point and the consumer's risk point. Therefore, they can be used not only for the purposes of acceptance sampling, but for a more general purpose of the verification of simple statistical hypotheses for proportions.

The purpose of this International Standard is to provide procedures for sequential assessment of inspection results that may be used to induce the supplier, through the economic and psychological pressure of non-acceptance of lots of inferior quality, to supply lots of a quality having a high probability of acceptance. At the same time, the consumer is protected by a prescribed upper limit to the probability of accepting lots of poor quality.

This International Standard provides sampling plans that are applicable, but not limited, to inspection in different fields, such as:

- end items,
- components and raw materials,
- operations,
- materials in process,
- supplies in storage,
- maintenance operations,
- data or records, and
- administrative procedures.

This International Standard contains sampling plans for inspection by attributes of discrete items. The sampling plans may be used when the extent of nonconformity is expressed either in terms of proportion (or percent) nonconforming items or in terms of nonconformities per item (per 100 items).

The sampling plans are based on the assumption that nonconformities occur randomly and with statistical independence. There may be good reasons to suspect that one nonconformity in an item could be caused by a condition also likely to cause others. If so, it would be better to consider the items just as conforming or not, and ignore multiple nonconformities.

The sampling plans from this International Standard should primarily be used for the analysis of samples taken from processes. For example, they may be used for the acceptance sampling of lots taken from a process that is under statistical control. However, they may also be used for the acceptance sampling of an isolated lot when its size is large, and the expected fraction nonconforming is small (significantly smaller than 10 %).

In the case of the acceptance sampling of continuing series of lots, the system of sequential sampling plans indexed by acceptance quality limit (AQL) for lot-by-lot inspection published in ISO 2859-5 should be applied.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 3534-1, Statistics — Vocabulary and symbols — Part 1: General statistical terms and terms used in probability

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 3534-1 and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at http://www.iso.org/obp
- IEC Electropedia: available at http://www.electropedia.org/

3.1

inspection

conformity evaluation by observation and judgement accompanied as appropriate by measurement, testing or gauging

[SOURCE: ISO 3534-2:2006, 4.1.2]

3.2

inspection by attributes

inspection (3.1) by noting the presence, or absence, of one or more particular characteristic(s) in each of the items in the group under consideration, and counting how many items do, or do not, possess the characteristic(s), or how many such events occur in the item, group or opportunity space

Note 1 to entry: When inspection is performed by simply noting whether the item is nonconforming or not, the inspection is termed inspection for nonconforming items. When inspection is performed by noting the number of nonconformities on each unit, the inspection is termed inspection for number of nonconformities.

[SOURCE: ISO 3534-2:2006, 4.1.3]

3.3

item

entity

anything that can be described and considered separately

EXAMPLE A discrete physical item; a defined amount of bulk material; a service, activity, person, system or some combination thereof.

[SOURCE: ISO 3534-2:2006, 1.2.11]

3.4

nonconformity

non-fulfilment of a requirement

[SOURCE: ISO 3534-2:2006, 3.1.11]

Note 1 to entry: See notes to 3.5.

3.5

defect

non-fulfilment of a requirement related to an intended or specified use

Note 1 to entry: The distinction between the concepts defect and *nonconformity* (3.4) is important as it has legal connotations, particularly those associated with product liability issues. Consequently the term "defect" should be used with extreme caution.

Note 2 to entry: The intended use by the customer can be affected by the nature of information, such as operating or maintenance instructions, provided by the customer.

[SOURCE: ISO 3534-2:2006, 3.1.12]

3.6

nonconforming item

item (3.3) with one or more nonconformities (3.4)

[SOURCE: ISO 3534-2:2006, 1.2.12]

3.7

percent nonconforming

(in a sample) one hundred times the number of *nonconforming items* (3.6) in the *sample* (3.13) divided by the *sample size* (3.14), viz:

$$100 \times \frac{d}{n}$$

where

d is the number of nonconforming items in the sample;

n is the sample size

[SOURCE: ISO 2859-1:1999, 3.1.8]

3.8

percent nonconforming

(in a population or lot) one hundred times the number of *nonconforming items* (3.6) in the population or *lot* (3.11) divided by the population or *lot size* (3.12), viz:

$$100 \times p_{\rm ni} = 100 \times \frac{D_{\rm ni}}{N}$$

where

 $p_{\rm ni}$ is the proportion of nonconforming items;

 D_{ni} is the number of nonconforming items in the population or lot;

N is the population or lot size

Note 1 to entry: Adapted from ISO 2859-1:1999, 3.1.9.

Note 2 to entry: In this International Standard, the terms *percent nonconforming* (3.7 and $\frac{3.8}{10}$) or *nonconformities per 100 items* (3.9 and $\frac{3.10}{10}$) are mainly used in place of the theoretical terms "proportion of nonconforming items" and "nonconformities per item" because the former terms are the most widely used.

ISO 28591:2017(E)

3.9

nonconformities per 100 items

(in a sample) one hundred times the number of *nonconformities* (3.4) in the *sample* (3.13) divided by the *sample size* (3.14), viz:

$$100 \times \frac{d}{n}$$

where

d is the number of nonconformities in the sample;

n is the sample size

[SOURCE: ISO 2859-1:1999, 3.1.10]

3.10

nonconformities per 100 items

(in a population or lot) 100 times the number of *nonconformities* (3.4) in the population or *lot* (3.11) divided by the population or *lot size* (3.12), viz:

$$100 \times p_{\rm nt} = 100 \times \frac{D_{\rm nt}}{N}$$

where

 $p_{\rm nt}$ is the number of nonconformities per item;

 $D_{\rm nt}$ is the number of nonconformities in the population or lot;

N is the population or lot size

Note 1 to entry: Adapted from ISO 2859-1:1999, 3.1.11.

Note 2 to entry: An item may contain one or more nonconformities.

3.11

lot

definite part of a population constituted under essentially the same conditions as the population with respect to the sampling purpose

Note 1 to entry: The sampling purpose can, for example, be to determine lot acceptability, or to estimate the mean value of a particular characteristic.

[SOURCE: ISO 3534-2:2006, 1.2.4]

3.12

lot size

number of items (3.3) in a lot (3.11)

[SOURCE: ISO 2859-1:1999, 3.1.14]

3.13

sample

subset of a population made up of one or more sampling units

[SOURCE: ISO 3534-2:2006, 1.2.17]

3.14

sample size

number of sampling units in a *sample* (3.13)

[SOURCE: ISO 3534-2:2006, 1.2.26]

3.15

acceptance sampling plan

plan which states the *sample size*(s) (3.14) to be used and the associated criteria for lot acceptance

[SOURCE: ISO 3534-2:2006, 4.3.3]

3.16

consumer's risk quality

 $Q_{\rm CR}$

(acceptance sampling) quality level of a *lot* (3.11) or process which, in the *acceptance sampling plan* (3.15), corresponds to a specified consumer's risk

[SOURCE: ISO 3534-2:2006, 4.6.9]

Note 1 to entry: The specified consumer's risk is usually 10 %.

3.17

producer's risk quality

 Q_{PR}

(acceptance sampling) quality level of a *lot* (3.11) or process which, in the *acceptance sampling plan* (3.15), corresponds to a specified producer's risk

[SOURCE: ISO 3534-2:2006, 4.6.10]

Note 1 to entry: The specified producer's risk is usually 5 %.

3.18

count

when inspection by attributes is performed, the result of the inspection of each sample item

Note 1 to entry: In the case of the inspection for nonconforming items, the count is set to 1 if the sample item is nonconforming. In the case of the inspection for nonconformities, the count is set to the number of nonconformities found in the sample item.

3.19

cumulative count

when a sequential sampling plan is used, the sum of the counts during inspection, counting from the start of the inspection of the lot up to, and including, the sample item last inspected

3.20

cumulative sample size

when a sequential sampling plan is used, the total number of sample items during inspection, counting from the start of the inspection of the lot up to, and including, the sample item last inspected

3.21

acceptance value

(for sequential sampling) value used in the graphical method for determination of acceptance of the lot, that is derived from the specified parameters of the sampling plan and the cumulative sample size

3.22

acceptance number

(for sequential sampling) number used in the numerical method for determination of acceptance of the lot, that is obtained by rounding the acceptance value down to the nearest integer

3.23

rejection value

(for sequential sampling) value used in the graphical method for determination of non-acceptance of the lot, that is derived from the specified parameters of the sampling plan and the cumulative sample size

3.24

rejection number

(for sequential sampling) number used in the numerical method for determination of non-acceptance of the lot, that is obtained by rounding the rejection value up to the nearest integer

3.25

acceptability table

table used for the lot acceptability determination in the numerical method

3.26

acceptability chart

chart used for the lot acceptability determination in the graphical method, consisting of the following three zones:

- acceptance zone;
- rejection zone;
- indecision zone;

the borders being acceptance, rejection and curtailment lines

4 Symbols and abbreviated terms

The symbols and abbreviations used in this International Standard are as follows:

\boldsymbol{A}	acceptance value (for sequential sampling plan)
Ac	acceptance number
Ac_0	acceptance number for a corresponding single sampling plan
Ac_{t}	acceptance number at curtailment (curtailment value)
d	count
D	cumulative count
g	parameter giving the slope of the acceptance and rejection lines
h_{A}	parameter giving the intercept of the acceptance line
$h_{ m R}$	parameter giving the intercept of the rejection line
n_0	sample size for a corresponding single sampling plan
$n_{\rm cum}$	cumulative sample size
n_{t}	cumulative sample size at curtailment (curtailment value)
– P	process average
p_X	quality level for which the probability of acceptance is <i>x</i> , where <i>x</i> is a fraction

probability of acceptance (in percent)

 $P_{\rm a}$

 Q_{CR} consumer's risk quality (in percent nonconforming items or in nonconformities per hun-

dred items)

 $Q_{\rm PR}$ producer's risk quality (in percent nonconforming items or in nonconformities per hun-

dred items)

R rejection value (for sequential sampling plan)

Re rejection number

Re₀ rejection number for a corresponding single sampling plan

Ret rejection number at curtailment (curtailment value)

NOTE $Re_t = Ac_t + 1$

α producer's risk

β consumer's risk

5 Principles of sequential sampling plans for inspection by attributes

Under a sequential sampling plan by attributes, sample items are drawn at random and inspected one by one, and the cumulative count (the total number of nonconforming items or nonconformities) is obtained. After the inspection of each item, the cumulative count is compared with the acceptability criteria in order to assess whether there is sufficient information to decide about the lot at that stage of the inspection.

If, at a given stage, the cumulative count is such that the risk of accepting a lot of unsatisfactory quality level is sufficiently low, the lot is considered acceptable and the inspection is terminated.

If, on the other hand, the cumulative count is such that the risk of non-acceptance of a lot of satisfactory quality level is sufficiently low, the lot is considered not acceptable and the inspection is terminated.

If the cumulative count does not allow either of the above decisions to be taken, then an additional item is sampled and inspected. The process is continued until sufficient sample information has been accumulated to warrant a decision that the lot is acceptable or not acceptable.

6 Selection of a sampling plan

6.1 Producer's risk point and consumer's risk point

The general method described in 6.1 and 6.2 is used when the requirements of the sequential sampling plan are specified in terms of two points on the operating characteristic curve of the plan. The point corresponding to the higher probability of acceptance shall be designated the *producer's risk point*; the other shall be designated the *consumer's risk point*.

The first step when designing a sequential sampling plan is to choose these two points, if they have not already been dictated by circumstances. For this purpose, the following combination is often used:

- a producer's risk of $\alpha \le 0.05$ and the corresponding producer's risk quality (Q_{PR}), and
- a consumer's risk of $\beta \le 0.10$ and the corresponding consumer's risk quality (Q_{CR}).

When the desired sequential sampling plan is required to have approximately the same operating characteristic curve as an existing single, double or multiple sampling plan, the producer's risk point and the consumer's risk point may be read off from a graph or a table of the operating characteristic of that plan. When no such plan exists, the producer's and the consumer's risk points have to be determined from direct consideration of the conditions under which the sampling plan operates.

6.2 Preferred values of Q_{PR} and Q_{CR}

Tables 1 and 2 give 28 preferred values of Q_{PR} (producer's risk quality) ranging from 0,020 % to 10,0 %, and 23 preferred values of Q_{CR} (consumer's risk quality) ranging from 0,200 % to 31,5 %. This International Standard is applicable only when a combination of the preferred values of Q_{PR} and Q_{CR} is chosen under the constraints $\alpha \le 0,05$ and $\beta \le 0,10$.

6.3 Pre-operation preparations

6.3.1 Obtaining the parameters h_A , h_R and g

The criteria for acceptance and non-acceptance of a lot that are invoked at each stage of inspection are determined from the parameters h_A , h_R , and g.

Tables 1 and 2 give the values of these parameters corresponding to a combination of preferred values of Q_{PR} and Q_{CR} together with a producer's risk of $\alpha \le 0.05$ and a consumer's risk of $\beta \le 0.10$. Table 1 is for percent nonconforming inspection, and Table 2 is for nonconformities per 100 items inspection.

6.3.2 Obtaining the curtailment values

The curtailment value, n_t , of the cumulative sample size of the sequential sampling plan is given in Tables 1 and 2 together with the parameters h_A , h_R , and g.

7 Operation of a sequential sampling plan

7.1 Specification of the plan

Before operation of a sequential sampling plan, the inspector shall record on the sampling document the specified values of the parameters, h_A , h_R and g, and the curtailment values, n_t and Ac_t .

7.2 Drawing a sample item

The individual sample items shall be drawn at random from the lot and inspected one by one in the order in which they are drawn.

7.3 Count and cumulative count

7.3.1 Count

For inspection for percent nonconforming, if the sample item is nonconforming, the count, d, for the sample item is 1; otherwise, the count, d, is zero.

For inspection for nonconformities per 100 items, the count, d, for the sample item is the number of nonconformities found in the sample item.

7.3.2 Cumulative count

The cumulative count, D, is the cumulative sum of the count d from the first sample item up to the most recent (i.e. the n_{cum}) sample item inspected so far.

7.4 Choice between numerical and graphical methods

This International Standard provides two methods of operating a sequential sampling plan: a numerical method and a graphical method, either one of which may be chosen.

The numerical method uses an acceptability table for operating, and has the advantage of being accurate, thereby avoiding disputes about acceptance or non-acceptance in marginal cases. An acceptability table can also be used as an inspection record sheet, after inscribing the inspection results.

The graphical method uses an acceptability chart for operating, and has the advantage of displaying the increase in the information on the lot quality as additional items are inspected, information being represented by the step curve within the indecision zone, until the line reaches, or crosses, one of the boundaries of that zone. On the other hand, the method is less accurate, due to the inaccuracy inherent in plotting points and in drawing lines.

The numerical method is the standard method so far as acceptance or non-acceptance is concerned (see the caution in <u>7.6.2</u>). When the numerical method is applied, it is recommended that the calculation and preparation of an acceptability table be done using appropriate software.

7.5 Numerical method

7.5.1 Preparation of the acceptability table

When the numerical method is used, the following calculations shall be carried out and an acceptability table shall be prepared.

For each value, n_{cum} , of the cumulative sample size that is less than the curtailment value of the sample size, the acceptance value, A, is given by Equation (1):

$$A = \left(g \times n_{\text{cum}}\right) - h_{\text{A}} \tag{1}$$

and the acceptance number, Ac, is obtained by rounding the acceptance value, A, down to the nearest integer.

For each value of n_{cum} , the rejection value, R, is given by the Equation (2):

$$R = (g \times n_{\text{cum}}) + h_{\text{R}} \tag{2}$$

and the rejection number, Re, is obtained by rounding the rejection value, *R*, up to the nearest integer.

Whenever the value of A is negative, the cumulative sample size is too small to permit acceptance of the lot. Conversely, whenever the value of Equation (2) is larger than the cumulative sample size, the cumulative sample size is too small to permit non-acceptance of the lot under inspection for percent nonconforming.

Whenever the rejection number, Re, is larger than the curtailment value, Re_t, the former should be replaced by the latter, because no chance of acceptance remains when the cumulative count, D, exceeds the curtailment value, Re_t.

The values, A and R, given by Equations (1) and (2) shall have the same number of digits after the decimal point as g.

The smallest cumulative sample size permitting acceptance of the lot is obtained by rounding the value, $h_{\rm A}/g$, up to the nearest integer. The smallest cumulative sample size permitting non-acceptance of the lot under inspection for percent nonconforming is obtained by rounding the value, $h_{\rm R}/(1-g)$, up to the nearest integer. Finally, an acceptability table is established by inscribing the necessary data.

7.5.2 Making decisions

Enter the count and the cumulative count into the acceptability table prepared in accordance with 7.5.1, after the inspection of each item.

a) If the cumulative count, D, is less than or equal to the acceptance number, Ac, for the cumulative sample size, n_{cum} , the lot shall be considered acceptable and the inspection shall be terminated.

ISO 28591:2017(E)

- b) If the cumulative count, D, is greater than or equal to the rejection number, Re, for the cumulative sample size, n_{cum} , the lot shall be considered not acceptable and the inspection shall be terminated.
- c) If neither a) nor b) is satisfied, another item shall be sampled and inspected.

When the cumulative sample size reaches the curtailment value n_t , the rules in a) and b) apply with the curtailment values of the acceptance number, Ac_t , and the rejection number, Re_t (= $Ac_t + 1$).

7.6 Graphical method

7.6.1 Preparation of the acceptability chart

When the graphical method is used, an acceptability chart shall be prepared in accordance with the following procedures. Prepare a graph with the cumulative sample n_{cum} as the horizontal axis, and the cumulative count, D, as the vertical axis. Draw two straight lines with the same slope, g, corresponding to the acceptance and rejection values, A and R, given by Equations (1) and (2). The lower line with the intercept of $-h_{\text{A}}$ is designated the acceptance line, and the upper line with the intercept of h_{R} is designated the rejection line. Add a vertical line, the curtailment line, at $n_{\text{cum}} = n_{\text{t}}$. A horizontal line, the truncation line, should be added at $D = \text{Re}_{\text{t}}$.

The lines define three zones on the chart.

- The acceptance zone is the zone below (and including) the acceptance line together with that part of the curtailment line that is below and includes the point (n_t , Ac_t).
- The rejection zone is the zone above (and including) the rejection line together with that part of the curtailment line that is above and includes the point (n_t , Re_t).
- The indecision zone is the strip between acceptance and rejection lines that is to the left of the curtailment line.

When the truncation line is added, the triangle at the top of the indecision zone bordered by the rejection line, the curtailment line and the truncation line (including each side) should be considered as a part of the rejection zone. In this International Standard, points on the chart representing the cumulative count will never lie on the acceptance or rejection lines. An example of the prepared graph is given as Figure 1.

Key

- 1 rejection zone
- 2 indecision zone
- 3 acceptance zone
- 4 inspection terminates

Figure 1 — Acceptability chart

7.6.2 Making decisions

When the graphical method is used, the following procedures shall be followed.

Plot the point (n_{cum}, D) on the acceptability chart prepared in accordance with <u>7.6.1</u>, after the inspection of each item.

- a) If the point lies in the acceptance zone, the lot shall be considered acceptable and the inspection of that lot shall be terminated.
- b) If the point lies in the rejection zone, the lot shall be considered not acceptable and the inspection of that lot shall be terminated.
- c) If the point lies in the indecision zone, another item from that lot shall be sampled and inspected.

The successive points on the acceptability chart shall be connected by a step curve to show up any trend in the inspection results.

CAUTION — If the point is close to the acceptance or rejection lines, the numerical method shall be used to make the decision.

8 Numerical example

The following example illustrates how to use sequential sampling plans in this International Standard.

EXAMPLE

An organization representing consumers is interested in the evaluation of the quality of a certain product. Its producer claims that at least 99 % of its products are free of nonconformities. However, signals from the market have revealed that this claim might not be true. Therefore, it has been decided to verify this claim against the alternative that the real fraction nonconforming is 10 %. In order to minimise the sampling costs, it has been decided to apply a sequential sampling plan with $Q_{\rm PR} = 1$ %, and $Q_{\rm CR} = 10$ %.

The parameters of the plan (h_A , h_R and g) and the curtailment values (n_t and Ac_t) of the sequential sampling plan are found in Table 1.

The parameters are as follows: $h_A = 0.931$, $h_R = 0.922$ and g = 0.039 4. The curtailment values are as follows; $n_t = 65$ and $Ac_t = 2$. Therefore, rejection and acceptance values (R and A) are given by the following equations:

$$R = (g \times n_{\text{cum}}) + h_{\text{R}} = (0,039 \ 4 \times n_{\text{cum}}) + 0,922$$

and

$$A = (g \times n_{\text{cum}}) - h_{\text{A}} = (0,039 \ 4 \times n_{\text{cum}}) - 0,931$$

When the numerical method is to be used, rejection and acceptance values (R and A) can be calculated for $n_{\text{cum}} = 1$ to $n_{\text{t}} - 1$ (equal to 64), and then rounded to acceptance and rejection numbers (Ac and Re), respectively. When the rejection number (Re) is larger than the curtailment value (Re_t = 3), each Re should be replaced by 3.

Suppose now that consecutive items randomly selected from the products available on the market are submitted for inspection. The results of the inspection are as follows:

$n_{\rm cum}$	D
1	0
_	_
14	0
15	1
_	_
50	1

For $n_{\text{cum}} = 50$ we have D = 1, and this value is smaller than the calculated acceptance value A = 1,039. Hence, the inspection is terminated, and the producer's claim has not been rejected. The acceptability chart for this example is presented as Figure 1.

9 Tables

Table 1 — Parameters for sequential sampling plans for percent nonconforming. (Master table for $\alpha \le 0.05$ and $\beta \le 0.10$)

Table 2 — Parameters for sequential sampling plans for nonconformities per 100 items. (Master table for $\alpha \le 0.05$ and $\beta \le 0.10$)

NOTE The values of h_R steadily decrease along rows and steadily increase down columns except for the values placed along one diagonal. The values along this diagonal are correct.

Table 1 — Parameters for sequential sampling plans for percent nonconforming (Master table for $\alpha \le 0.05$ and $\beta \le 0.010$)

QPR	Para-						QCR (in]	QCR (in percent nonconforming)	onconfori	ming)						
(%)	meter	0,200	0,250	0,315	0,400	0,500	0,630	0,800	1,00	1,25	1,60	2,00	2,50	3,15	4,00	2,00
	h_{A}	1,014	0,878	0,835	0,788	0,741	0,694	0,616								
00200	h_{R}	0,944	0,991	0,856	0,745	959'0	0,564	0,465	*							
0,0200	В	0,000775	0,000899	0,00107	0,00126	0,00148	0,00176 0,00210	0,00210								
	$n_{\rm t}{ m Ac_t}$	30542	20791	15601	1127 1	853 1	6301	5031	230 0							
	h_{A}	1,085	1,016	0,883	0,831	662'0	0,741	089'0	0,616							
0.0250	$h_{\rm R}$	1,280	0,943	0,985	0,847	0,741	0,651	0,559	0,464	*						
0,0430	В	0,0000837	0,000971	0,00114	0,00135	0,00159	0,00187 0,00222 0,00263	0,00222	0,00263							
	nt Act	34732	24442	16491	12181	8921	6771	5071	4011	1840						
	h_{A}		1,091	1,014	0,884	0,829	0,783	0,734	0,681	0,616						
71000	$h_{ m R}$		1,302	0,944	086'0	0,852	0,745	0,649	0,560	0,468	*					
0,0313	В		0,00105	0,00122	0,00145	0,00169	0,00198	0,00236 0,00279	0,00279	0,00329						
	$n_{\rm t}{ m Ac}_{ m t}$		27642	1936 2	1297 1	9841	7191	5331	4081	321 1	1430					
	h_{A}		1,244	1,086	1,013	888'0	0,823	0,784	0,737	0,683	0,611					
00400	$h_{ m R}$		1,410	1,355	0,943	066'0	958'0	0,743	0,653	0,567	0,462	*				
0,040,0	В		0,00114	0,00132	0,00155	0,00182	0,00212	0,00212 0,00252 0,00297 0,00350 0,00421	0,00297	0,00350	0,00421					
	nt Act		32823	2217 2	1525 2	1038 1	7841	5641	429 1	3281	2551	1140				
	h_{A}			1,237	1,081	1,013	0,887	0,830	0,785	0,743	0,672	0,611				
00200	$h_{ m R}$			1,388	1,275	0,942	0,982	0,845	0,742	0,652	0,556	0,464	*			
0,000	9			0,00143	0,00167	0,00195		0,00229 0,00270 0,00315	0,00315	0,00371 0,00445		0,00526				
	n _t Act			25903	1730 2	12382	8191	6051	4481	3361	2571	199 1	910			
See the r	notes at th	See the notes at the bottom of the table.	f the table.													

Table 1 (continued)

QPR	Para-						QCR (in	QCR (in percent nonconforming)	onconfor	ming)						
(%)	meter	0,200	0,250	0,315	0,400	0,500	0,630	0,800	1,00	1,25	1,60	2,00	2,50	3,15	4,00	2,00
	h_{A}			1,412	1,233	1,081	1,020	0,876	0,835	0,797	0,755	0,700	0,625			
1 0000	$h_{ m R}$			1,684	1,365	1,312	0,942	086'0	0,850	0,745	0,645	0,560	0,465	*		
0,000,0	g			0,00156	0,00181	0,00209	0,00246 0,00289 0,00340 0,00398 0,00477 0,00563	0,00289	0,00340	0,00398	0,00477		0,00848			
	n _t Ac _t			31104	20243	13902	968 2	6501	392 1	3541	2541	254 1 192 1	1541	720		
	hA				1,410	1,242	1,087	1,010	0,879	0,835	0,795	0,731	0,673	609'0		
00000	$h_{ m R}$				1,682	1,407	1,346	0,942	986'0	0,855	0,740	0,650	0,567	0,467	*	
0,000,0	g				0,00198	0,00228	0,00265	0,00265 0,00310 0,00362 0,00427 0,00509 0,00594	0,00362	0,00427	0,00509	0,00594	0,00700	0,00834		
	n _t Ac _t				24484	16403	16403 11092	762 2	5201	3921	2751	213 1	1651	1261	57 0	
	hA				1,642	1,406	1,246	1,078	1,018	0,885	0,813	0,764	0,721	0,663	0,610	
0 100	$h_{ m R}$				1,879	1,682	1,378	1,270	0,941	0,985	0,844	0,742	0,651	0,559	0,450	*
0,100	g				0,00214	0,00247	0,00247 0,00288		0,00391	0,00456	0,00538	0,00631	0,00334 0,00391 0,00456 0,00538 0,00631 0,00743 0,00883	0,00883	0,0107	
	n _t Ac _t				30356	19544	1954 4 1293 3	865 2	609 2	411 1	3091	2341	609 2 411 1 309 1 234 1 174 1 134 1		941	450
See the r	notes at th	See the notes at the bottom of the table.	f the table.													

 Table 1 — (continued)

Орв	Dava								QCR (in percent nonconforming)	rcent noi	nconform	ing)	-	-					-	
(in %)		0,500	0,630	0,800	1,00	1,25	1,60	2,00	2,50	3,15	4,00	2,00	6,30	8,00	10,00	12,5	16,0	20,0	25,0	31,5
	hA	1,655	1,392	1,239	1,098	1,013	0,880	0,830	0,767	0,711	0,661	0,617								
0.125	$h_{ m R}$	1,869	1,658	1,331	1,250	0,939	0,970	0,840	0,740	0,645	0,553	0,451	*							
0,143	В	0,00269	0,00269 0,00309		0,00425	0,00364 0,00425 0,00489 0,00		0,00679	1580 0,00679 0,00790 0,00935	0,00935	0,0112	0,0134								
	n _t Act	24266	15414	10043	692 2	490 2	3201	238 1	1841	1401	102 1	75 1	360							
	hA	1,990	1,653	1,401	1,242	1,095	1,006	0,881	0,830	0,771	0,715	069'0	0,613							
0.160	$h_{ m R}$	2,422	1,935	1,681	1,396	1,355	0,938	986'0	0,850	0,741	0,644	0,550	0,457	*						
0,100	д	0,00296	0,00296 0,00340	0,00395	0,00458	0,00458 0,00530	0,00621	0,00729 0,00855	0,00855	0,0100	0,0119	0,0142	0,0170							
	n _t Ac _t	32569	19546	12254	8203	5542	3812	2591	192 1	1441	107 1	77 1	591	28 0						
	hA		1,987	1,650	1,400	1,232	1,078	066'0	0,880	0,840	0,750	902'0	0,663	0,611						
000	$h_{ m R}$		2,361	1,865	1,678	1,400	1,243	0,938	086'0	0,840	0,734	0,641	0,553	0,434	*					
0,200	д		0,00372	0,00430	0,00494	0,00494 0,00569	0,00670 0,00777		0,00915	0,0108	0,0127	0,0150	0,0179	0,0218						
	$n_{\rm t}{ m Ac}_{ m t}$		25559	1513 6	977 4	6533	429 2	3132	2041	1501	1181	88 1	631	461	22 0					
	hA		2,430	1,920	1,648	1,406	1,240	1,090	6,993	0,880	0,797	0,748	0,719	0,662	0,597					
0 20	hR		3,088	2,355	1,860	1,666	1,320	1,230	0,941	0,970	0,840	0,730	0,641	0,545	0,431	*				
0,430	g		0,00407		0,00538	0,00469 0,00538 0,00620 0,00731	0,00731	0,00850 0,00972	0,00972	0,0115	0,0135	0,0159	0,0189	0,0228	0,0271					
	nt Act		3595 14	2100 9	1210 6	780 4	4993	343 2	2452	1601	1231	93 1	651	481	37 1	180				
	hA			2,405	1,952	1,631	1,385	1,245	1,082	1,020	0,870	0,800	0,780	0,740	0,661	0,587				
27.5				3,036	2,342	1,916	1,617	1,330	1,248	0,930	0,970	0,831	0,730	0,620	0,541	0,414	*			
0,010				0,0051	0,00588	0,00674 0,00785 0,00922	0,00785	0,00922	0,0106	0,0124	0,0146	0,0170	0,0202	0,0242	0,0287	0,0345				
	"t Act			62852 14	1627 9	1002 6	6004	4023	2732	1872	1271	97 1	681	49 1	38 1	291	140			
See the	notes a	See the notes at the bottom of the table.	tom of the	e table.													$\left \ \ \right $			

Table 1 (continued)

Opp									Ocr (in p	$Q_{ m CR}$ (in percent nonconforming)	nconforn	ning)								
(in %)	(in %) meter	0,500	0,630	0,800	1,00	1,25	1,60	2,00	2,50	3,15	4,00	2,00	6,30	8,00	10,00	12,5	16,0	20,0	25,0	31,5
	$h_{\rm A}$				2,434	1,981	1,634	1,405	1,225	1,075	1,005	0,870 0,820	0,820	0,743	0,695	099'0	0,574			
0010	h_{R}				3,180	2,401	1,871	1,646	1,380	1,300	0,930	0,970 0,840	0,840	0,719	0,638	0,550	0,427	*		
0,400	В				0,00649	0,00649 0,00740 0,00866 0,00996	99800'0	96600'0	0,0114	0,0133	0,0157	0,0184 0,0217		0,0256	0,0302	0,0363	0,0441			
	$n_{\rm t}{ m Ac}_{ m t}$				228914	228914 12979	9 082	483 4	3233	219 2	1472	1001	76 1	55 1	41 1	291	23 1	110		
	h_{A}				3,197	2,431	1,899	1,647	1,390	1,245	1,065	0,961	098'0	0,820	0,750	989'0	0,601	0,559		
1 1	$h_{\rm R}$				4,372	3,166	2,359	1,839	1,645	1,330	1,172	0,923	096'0	0,820	0,730	0,620	0,492	0,441	*	
0,000	g				0,00715	0,00715 0,00811 0,00938	0,00938	0,0108	0,0124	0,0146	0,0169	0,0196	0,0232	0,0169 0,0196 0,0232 0,0275 0,0324 0,0381 0,0462 0,0558	0,0324	0,0381	0,0462	0,0558		
	$n_{\rm t}{ m Ac}_{ m t}$				3636 25	3636 25 1827 14 1062	10629	6016	387 4	2543	167 2	1272	781	57 1	43 1	32 1	24 1	181	0 6	
	h_{A}					3,228	2,379	1,939	1,605	1,386	1,221	1,061 0,952	0,952	0,853	962'0	0,735	0,638 0,586		0,600	
0690	h_{R}					4,476	3,034	2,322	1,934	1,642	1,305	1,174 0,926	0,926	0,942	0,828	0,715	0,609 0,533		0,400	*
0,000	g					0,00896 0,0103	0,0103	0,0118	0,0135	0,0156	0,0183	0,0212	0,0247	0,0294	0,0346 0,0408 0,0490 0,0585 0,0715	0,0408	0,0490	0,0585	0,0715	
	$n_{\rm t}{ m Ac}_{ m t}$					2892 25	1424 14	8189	517 6	3074	1983	1332	1042	63 1	45 1	341	27 1	20 1	14 1	7 0
See th	e notes a	at the bot	See the notes at the bottom of the table	e table.																

Table 1 − (continued)

VPR	Para-								VCR	(in perce	Q_{CR} (in percent nonconforming)	ontormi	ng)				-			
(in %)	(in %) meter 0,500 0,630 0,800 1,00 1,25 1,60	0,500	0,630	0,800	1,00	1,25	1,60	2,00	2,50	3,15	4,00	2,00	6,30 8,00	8,00	10,00	12,5	10,00 12,5 16,0 20,0 25,0	20,0		31,5
	h_{A}						3,155	2,465	1,925	1,630	1,375 1,235	1,235	1,050 0,947	0,947	0,880	0,787	0,787 0,678 0,621 0,650	0,621		0,550
0000	$h_{ m R}$						4,349	3,085	2,451	1,917	1,917 1,625 1,324 1,200 0,906	1,324	1,200	906'0	0,950	0,826	0,950 0,826 0,688 0,629 0,500	0,629	0,500	0,450
0,000	В						0,0114	0,0131	0,0148	0,0172	0,0148 0,0172 0,0198 0,0233 0,0269 0,0314 0,0371 0,0437 0,0521 0,0620 0,0751 0,0916	0,0233	0,0269	0,0314	0,0371	0,0437	0,0521	0,0620	0,0751	0,0916
	$n_{\rm t}{ m Ac}_{ m t}$						226525	1137 14 674 9	6749	4046	4046 2404 1583 1072 762	1583	107 2		461	36 1	291	21 1 14 1		1111
	h_{A}							3,181	2,434	1,871	2,434 1,871 1,581 1,389 1,181 1,058	1,389	1,181	1,058	0,931	0,850	0,931 0,850 0,721 0,659 0,700	0,659	0,700	0,580
1 00	$h_{ m R}$							4,255	3,077	2,430	1,851	1,591	1,309 1,046	1,046	0,922	0,940	0,779	0,672 0,650	0,650	0,500
1,00	д							0,0143	0,0163	0,0184	0,0163 0,0184 0,0215 0,0251 0,0288 0,0341 0,0394 0,0466 0,0554 0,0658 0,0794 0,0965	0,0251	0,0288	0,0341	0,0394	0,0466	0,0554	0,0658	0,0794	3,0965
	n _t Act							1801 25 906 14 536 9 311 6 189 4 127 3 77 2	906 14	5369	3116	189 4	1273	77 2	652	37 1	37 1 30 1 22 1 15 1	22 1	_	111
See the	See the notes at the bottom of the table.	the bottc	m of the	table.																

Table 1 — (continued)

QPR	Para-						QCR (in percent nonconforming	cent nonco	nforming)					
(in %)	meter	2,00	2,50	3,15	4,00	2,00	6,30	8,00	10,00	12,5	16,0	20,0	25,0	31,5
	h_{A}		3,177	2,367	1,873	1,578	1,380	1,190	1,025	0,949	0,792	0,700	069'0	0,650
100	$h_{ m R}$		4,219	3,023	2,290	1,835	1,550	1,230	1,061	0,901	0,941	0,791	069'0	0,650
1,43	g		0,0179	0,0204	0,0235	0,0271	0,0316	0,0367	0,0427	0,0499	0,0597	6690'0	0,0841	0,1018
	nt Act		1440 25	723 14	419 9	2516	1494	96 3	64.2	452	31 1	231	161	1111
	hA			3,222	2,383	1,921	1,567	1,350	1,166	1,050	0,892	0,759	0,750	0,700
160	h_{R}			4,506	3,057	2,322	1,880	1,565	1,255	1,050	0,873	0,925	0,800	0,700
1,00	g			0,0227	0,0260	0,0298	0,0342	0,0398	0,0466	0,0540	0,0637	0,0758	6680'0	0,1084
	$n_{\mathrm{t}}\mathrm{Ac}_{\mathrm{t}}$			1145 25	567 14	3269	202 6	117 4	793	492	362	241	161	121
	hA				3,156	2,363	1,882	1,532	1,346	1,212	1,000	006'0	0,800	0,700
00.0	h_{R}				4,119	3,018	2,270	1,783	1,504	1,196	1,000	006'0	0,910	0,800
7,00	g				0,0287	0,0325	0,0374	0,0436	0,0499	0,0582	0690'0	0,0810	0,0958	0,1150
	$n_{\mathrm{t}}\mathrm{Ac}_{\mathrm{t}}$				897 25	452 14	259 9	1606	914	583	402	272	171	131
	hA					3,106	2,305	1,830	1,529	1,330	1,120	086'0	0,930	0,800
7 50	$h_{ m R}$					4,094	2,921	2,175	1,742	1,485	1,150	0,950	0,880	0,880
7,30	g					0,0358	0,0408	0,0471	0,0546	0,0630	0,0743	6980'0	0,1023	0,1223
	$n_{\rm t}{ m Ac}_{ m t}$					717 25	358 14	2029	121 6	71 4	463	292	202	131
	$h_{\rm A}$						3,060	2,271	1,808	1,521	1,300	1,125	086'0	0,816
2 1 1	$h_{ m R}$						4,040	2,811	2,186	1,720	1,400	1,065	006'0	0,871
0,10	g						0,0451	0,0517	0,0596	0,0691	0,0805	0,0937	0,1099	0,1294
	$n_{\rm t}{ m Ac}_{ m t}$						569 25	280 14	1679	9 2 6	53 4	343	232	171
	$h_{\rm A}$							3,023	2,289	1,789	1,439	1,230	1,069	0,844
7 00	$h_{ m R}$							3,936	2,826	2,170	1,652	1,800	1,051	0,860
7,00	g							0,0573	0,0655	0,0745	0,0871	0,1018	0,1187	0,1406
	nt Act							445 25	224 14	127 9	75 6	383	27.3	18 2
See the notes at the bottom of the table	s at the boti	tom of the ta	able.											

Table 1 — (continued)

QPR	Para-						QCR (in	percent no	QCR (in percent nonconforming)	3)				
(in %)		2,00	2,50	3,15	4,00	5,00	6,30	8,00	10,00	12,5	16,0	20,0	25,0	31,5
	hA								2,995	2,221	1,773	1,403	1,160	1,000
ъ	h_{R}								3,816	2,757	1,978	1,598	1,750	1,600
00,6	В								0,0719	0,0816	0,0962	0,1092	0,1281	0,1509
	$n_{\rm t}{ m Ac}_{ m t}$								35425	177 14	6 46	29 6	313	19 2
	hA									2,947	2,097	1,682	1,380	1,080
06.7	h_{R}									3,810	2,681	1,920	1,700	1,690
06,00	g									0,0901	0,1040	0,1201	0,1390	0,1599
	$n_{\rm t}{ m Ac}_{ m t}$									283 25	132 13	779	42 5	253
	h_{A}										2,889	2,088	1,613	1,303
000	h_{R}										3,549	2,630	1,937	1,938
00,00	g										0,1160	0,1310	0,1505	0,1771
	$n_{\rm t}{ m Ac}_{ m t}$										211 24	103 13	67 9	274
	h_{A}											2,675	1,960	1,474
10.0	h_{R}											3,549	2,521	1,859
10,01	g											0,1438	0,1644	0,1903
	n _t Ac _t											164 23	82 13	468
n _t (lef	(left hand side of the cell) is the curtailment sample size	of the cell)	is the curtai	ilment samp	le size.									

 Act (right hand side of the cell) is the acceptance number at curtailment.

A blank cell denotes that there is no recommendable sequential sampling plan. Select another combination of Q_{PR} and Q_{CR} .

Use the curtailed single sampling plan given below in this cell.

Table 2 — Parameters for sequential sampling plans for nonconformities per 100 items (Master table for $\alpha \le 0$, 05 and $\beta \le 0$, 010)

QPR							$ ho_{ m CR}$ (in nonconformities per 100 items)	conformit	ies per 10	00 items)						
(in non- confor- mities per 100 items)	Para- meter	0,200	0,250	0,315	0,400	0,500	0,630	0,800	1,00	1,25	1,60	2,00	2,50	3,15	4,00	2,00
	h_{A}	1,016	0,883	0,836	0,800	0,762	602'0	0,625								
00200	$h_{ m R}$	0,944	0,991	0,856	0,743	0,654	0,562	0,464	*							
0,0200	g	0,000776	0,000903	0,00107	0,00127	0,00149	0,00177	0,00211								
	$n_{\rm t}{ m Ac}_{ m t}$	3060 2	2083 1	15641	11191	825 1	6161	486 1	2310							
	h_{A}	1,082	1,016	0,875	0,832	0,800	0,759	0,702	0,627							
0100	$h_{\rm R}$	1,286	0,944	0,987	0,848	0,743	0,651	0,555	0,463	*						
0,0250	В	0,000834	0,000970	0,00113	0,00135	0,00159	0,00187	0,00224	0,00264							
	$n_{\rm t}{ m Ac}_{ m t}$	34742	24482	16591	1222 1	895 1	6541	487 1	385 1	1850						
	$h_{\rm A}$		1,091	1,014	988'0	0,832	662'0	092'0	0,705	0,630						
71000	$h_{\rm R}$		1,315	0,944	086'0	0,852	0,743	0,646	0,560	0,465	*					
0,0313	g		0,00105	0,00122	0,00145	0,00169	0,00200	0,00238	0,00280 0,00331	0,00331						
	$n_{\rm t}{ m Ac}_{ m t}$		27832	19412	1295 1	982 1	711 1	5141	389 1	3071	144 0					
	h_{A}		1,247	1,088	1,022	0,895	0,835	0,800	0,760	0,714	0,630					
00400	$h_{\rm R}$		1,413	1,358	0,943	066'0	0,855	0,742	0,654	0,564	0,460	*				
0,0400	g		0,00114	0,00132	0,00156	0,00183	0,00214	0,00254	0,00298	0,00298 0,00352 0,00423	0,00423					
	$n_{\rm t}{ m Ac}_{ m t}$		32873	22172	15282	10361	782 1	560 1	413 1	3101	2381	1160				
	$h_{\rm A}$			1,240	1,083	1,022	0,884	0,835	962'0	0,763	0,700	0,625				
00200	$h_{ m R}$			1,390	1,286	0,942	0,988	0,848	0,745	0,650	0,555	0,465	*			
00000	g			0,00143	0,00167	0,00195	0,00228	0,00271	0,00317	0,00317 0,00373 0,00447	0,00447	0,00529				
	$n_{\rm t}{ m Ac}_{ m t}$			25903	17382	1222 2	8551	609 1	4481	3301	2441	1941	93 0			
See the not	es at the k	See the notes at the bottom of the table.	table.													

Table 2 (continued)

QPR							QCR (in noi	$ ho_{ m CR}$ (in nonconformities per 100 items)	ies per 1	00 items)				•		
(in non- confor- mities per 100 items)	Para- meter	0,200	0,250	0,315	0,400	0,500	0,630	0,800	1,00	1,25	1,60	2,00	2,50	3,15	4,00	5,00
	$h_{\rm A}$			1,415	1,236	1,083	1,017	0,885	0,835	008'0	0,757	0,705	0,630			
06900	$h_{ m R}$			1,687	1,372	1,329	0,943	0,980	0,854	0,747	0,645	0,560	0,465	*		
0,000,0	g			0,00156	0,00156 0,00181	0,00209	0,00245	0,00290 0,00339 0,00397 0,00475 0,00560	0,00339	0,00397	0,00475	0,00560	0,00663			
	n _t Ac _t			31114	20323	1399 2	9722	6481	489 1	3581	257 1	1951	1511	74 0		
	hA				1,415	1,239	1,101	1,021	068'0	0,835	0,800	0,760	0,715	0,630		
00000	$h_{ m R}$				1,688	1,417	1,352	0,941	066'0	0,860	0,745	0,650	0,570	0,470	*	
0,000,0	g				0,00198	0,00227	0,00267	0,00312	0,00364	0,00364 0,00426 0,00507	0,00507	0,00596	0,00703	98800'0		
	n _t Ac _t				24494	16443	11122	7642	5181	3961	279 1	207 1	1541	1231	580	
	h_{A}				1,646	1,410	1,245	1,096	1,033	0,891	0,838	0,795	0,765	0,710	0,635	
0 100	$h_{ m R}$				1,884	1,692	1,389	1,280	0,940	066'0	0,847	0,745	0,650	0,560	0,460	*
0,100	g				0,00214	0,0024719	0,00287	0,00338 0,00394 0,00455 0,00541 0,00634	0,00394	0,00455	0,00541	0,00634	0,00746	0,00884	0,0106	
	nt Act				30396	65 4	12983	8712	6112	4151	302 1	224 1	1641	1231	951	47 0
See the not	tes at the bo	See the notes at the bottom of the table.	table.													

Table 2 — (continued)

QPR								OCR (i	in noncon	QCR (in nonconformities per 100 items)	s per 100) items)	-	-	-	-	-	-	-
(in non- confor- mities per 100 items)	Para- meter	0,500	0,630	0,800	1,00	1,25	1,60	2,00	2,50	3,15	4,00	5,00	6,30	8,00	10,00	12,5	16,0	20,0	25,0 31,5
	h_{A}	1,659	1,403	1,240	1,091	1,030	0,885	0,835	0,800	0,765	0,700	0,630							
, , ,	h_{R}	1,877	1,663	1,344	1,280	0,940	0,975	0,850	0,740	0,650	0,650 0,560 0,465	0,465	*						
0,143	В	0,00269		0,00363	0,00310 0,00363 0,00421 0,00491 0,	0,00491	0,00582	0,00676	0,00793	0,00676 0,00793 0,00937 0,0112 0,0132	0,0112	0,0132							
	nt Act	2435 6	15484	10103	6962	4902	332 1	242 1	1791	1291	981	76 1	370						
	hA	1,995	1,659	1,413	1,235	1,100	1,025	868'0	0,840	0,795	0,755 0,710		0,680						
0770	$h_{ m R}$	2,438	1,947	1,690	1,415	1,405	0,940	066'0	0,860	0,755	0,755 0,650 0,570		0,450	*					
00,100	В	0,00296		0,00396	0,00340 0,00396 0,00454 0,00530 0,00627	0,00530	0,00627	0,00736	0,00851	0,00736 0,00851 0,01000 0,0119 0,0141 0,0176	0,0119	0,0141	0,0176						
	nt Act	32709	1963 6	12294	8233	5632	383 2	2681	1961	143 1	1041	781	57 1	29 0					
	h_{A}		1,993	1,656	1,416	1,243	1,100	1,035	068'0	0,840	0,840 0,800 0,770 0,720	0,770	0,720	0,620					
0020	h_{R}		2,377	1,876	1,683	1,408	1,260	0,940	1,080	0,850	0,850 0,740 0,650	0,650	0,570	0,460	*				
0,700	В		0,00372	0,00430	0,00372 0,00430 0,00496 0,00570 0,00679 0,00789 0,00911	0,00570	6/900'0	0,00789	0,00911	0,0107 0,0127 0,0149 0,0177 0,0211	0,0127	0,0149	0,0177	0,0211					
	nt Act		25669	15206	9814	6563	432	304	213	1531	1121	81	60 1	481	24 0				
	hA		2,438	1,941	1,648	1,400	1,237	1,090	1,030	0,880	0)830 0)800	0,800	0,760	0,700	0,620				
0.250	$h_{\rm R}$		3,115	2,579	1,880	1,693	1,345	1,270	0,941	086'0	0,850	0,850 0,740 0,660		0,570	0,460	*			
0,430	g		0,00407	0,00469	0,00407 0,00469 0,00536 0,00615 0,	0,00615	0,00726	,00726 0,00842 0,00981	0,00981	0,0114 0,0135 0,0159 0,0187 0,0224	0,0135	0,0159	0,0187		0,0264				
	nt Act		3609 14	19118	1217 6	786 4	5063	347 2	245 2	1631	1211	88 1	65 1	481	38 1	190			
See the notes at the bottom of the table	tes at the	bottom	of the tabl	e.															

Table 2 (continued)

QPR					_	-	-	QCR ($Q_{ m CR}$ (in nonconformities per 100 items)	formities	s per 10() items)	-	-	-	-	-	-	-	
(in non- confor- mities per 100 items)	Para- meter	0,500	0,630	0,800	1,00	1,25	1,60	2,00	2,50	3,15	4,00	2,00	6,30	8,00	10,00	12,5	16,0	20,0	25,0 31,5	1,5
	h_{A}			2,410		1,652	1,408	1,245	1,085		0,875 0,840	0,840	062'0		0,720	0,610				
0,315	$h_{ m R}$			3,280	3,280 2,646 1,912 0.005 5 0.00589 0.00672	1,912	1,629	1,360	1,325	0,945 0,980 0,840 0,750 0,650 0,0124 0,0144 0,0169 0,0200 0,0238	0,980	0,980 0,840 0,750 0,650 0,0144 0.0169 0.0200 0.0238	0,750		0,560	0,450	*			
	nt Act			270713	2707 13 1528 8	9826	6064	4053		193 2	1311	951	72.1			32.1	15 0			
	h_{A}				2,447	2,003	1,655	1,419	1,265	1,100	0880 0560		0,850	0,800	0,760	0,705	0,610			
0070	$h_{ m R}$				3,236	2,428	1,873	1,682	1,395	1,340	0,950	066'0	0,860	0,740	0,650	0,550	0,470	*		
0,400	g				0,00649 0,00742	0,00742	0,00861	0,00994	0,0116	0,0134	0,0147	0,0147 0,0182 0,0214 0,0254	0,0214		0,0298	0,0352	0,0423			
	n _t Act				2305 14 1308 9	13089	761 6	4924	3293	2202	153 2	1041	75 1	55 1	41 1	32 1	25 1	12 0		
	h_{A}				3,214	2,447	1,940	1,640	1,395	1,245	1,080 1,020	1,020	0,880	0,830	0,810	0,760 0,690 0,610	069'0	0,610		
0 2 0	h_{R}				4,424	3,235	2,580	1,882	1,694	1,385	1,280 0,940		086'0	0,850	0,740	0,650	0,570	0,450	*	
0000	g				0,00714	0,00714 0,00811	0,00939	0,0107	0,0123	0,0144	0,0168 0,0195 0,0229	0,0195	0,0229	0,0271	0,0319	0,0373	0,0447 0,0529	0,0529		
	n _t Act				3634 25 1843 14	1843 14	957 8	9 609	3944	2603	1752	1202	821	611	43 1	32 1	25 1	19 1	10 0	
See the notes at the bottom of the table.	tes at the	bottom	of the tabi	le.																

 Table 2 — (continued)

QPR		-	-	-		-	-		OCR (1	QCR (in nonconformities per 100 items)	nformi	ties per	100 iter	ns)	-	-		-	-	
(in non- confor- mities per 100 items)	Para- meter	0,500 0,630 0,800 1,00	0,630	008'0		1,25	1,60	2,00	2,50	3,15	4,00	2,00	6,30	8,00	10,00	12,5	16,0	20,0	25,0	31,5
	h_{A}					3,272	2,430	1,966	1,660	1,435	1,238	1,090	1,010	088′0	0,830	0,810	0,740	0,700	0,630	
0890	$h_{ m R}$					4,368	3,182	2,617	1,906	1,670	1,350	1,310	0,940 0,980		0,840	0,750	0,640	0,580	0,430	*
0,000	g				0	0,00897	0,0103	0,0118	0,0135	0,0158	0,0182 0,0211	0,0211	0,0246 0,0290 0,0339 0,0397	0,0290	0,0339	0,0397	0,0475	0)0200	0,0667	
	n _t Ac _t				2	2987 26 1329 13	132913	8 092	491 6	312 4	2013	1392	96 2	63 1	481	341	26 1	201	151	8.0
	h_{A}						3,233	2,517	1,988	1,684	1,415	1,240	1,100	1,050	0,880	0,830	0,780	0,750	0,704	0,630
0000	$h_{ m R}$						4,307	3,110	2,432	1,918	1,665	1,400	1,300 0,935		0/6′0	0,850	0,720	0,670	0,540	0,450
0,000	g						0,0114	0,0131	0,0148	$0.0148 \begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	0,0199	0,0229	0,0267	0,0324	0,0364	0,0426	0,0507	0,0596	0,0703	0,0836
	$n_{\rm t}{ m Ac}_{ m t}$					- 1	2232 25	1129 14	6246	392 6	2434	1643	1062	77 2	501	39 1	28 1	211	151	12 1
	h_{A}							3,228	2,473	1,985	1,650	1,417	1,417 1,240 1,110		0,955	006'0	0,840	062'0	0,747	099'0
7	$h_{ m R}$							4,384	3,186	3,186 2,370 2.340 1,680 1,360 1,220	2.340	1,680	1,360	1,220	0,930	086'0	0,860	0,720	0,650	0,600
1,00	g							0,0143	$0,0163 \ 0,0186 \ 0,0216 \ 0,0249 \ 0,0288 \ 0,0346 \ 0,0368 \ 0,0455$	0,0186	0,0216	0,0249	0,0288	0,0346	0,0368	0,0455	0,0541	0,0634	0,0746	0,0884
	$n_{\rm t} { m Ac}_{ m t}$							181225	917 14	514 9	276 5	197 4 127 3	127 3	86 2	622	401	29 1	22 1	16 1	141
See the notes at the bottom of the table.	tes at the	bottom	of the ta	ıble.																

Table 2 — (continued)

Onn					-			QCR (ii	$Q_{ m CR}$ (in nonconformities per 100 items)	formities	; per 100) items)	-	-	-	-	-	-	-	
(in non- confor- mities per 100 items)	Para- meter	0,500	0,630	0,800	1,00	1,25	1,60	2,00	2,50	3,15	4,00	2,00	6,30	8,00	10,00	12,5	16,0	20,0	25,0	31,5
	hA	1,659	1,403	1,240	1,091	1,030	0,885	0,835	0,800	0,765	0,700	0,630								
101	$h_{ m R}$	1,877	1,663	1,344	1,280	0,940	0,975	0,850	0,740	0,650	0,560	0,465	*							
0,123	g	0,00269	0,00310	0,00269 0,00310 0,00363 0,00421		0,00491	0,00582	0,00676 0,00793 0,00937 0,0112	0,00793	0,00937	0,0112	0,0132								
	$n_{\rm t} {\rm Ac}_{\rm t}$	2435 6	15484	1548 4 1010 3	696 2	490 2	332 1	242 1	1791	1291	981	761	370							
	h_{A}	1,995	1,659	1,413	1,235	1,100	1,025	868'0	0,840	0,795	0,755	0,710	089'0							
0.160	$h_{ m R}$	2,438	1,947	1,690	1,415	1,405	0,940	066'0	0,860	0,755	0,650	0,570	0,450	*						
0,100	g	0,00296	0,00340	96800'0	0,00296 0,00340 0,00396 0,00454 0,00530	0,00530	0,00627	0,00736 0,00851	0,00851	0,01000 0,0119 0,0141 0,0176	0,0119),0141 (0,0176							
	$n_{\rm t} {\rm Ac_t}$	32709	19636	1229 4	823 3	563 2	3832	2681	1961	143 1	1041	78 1	57 1	29 0						
	h_{A}		1,993	1,656	1,416	1,243	1,100	1,035	068'0	0,840	0,800	0,770	0,720	0,620						
0000	$h_{ m R}$		2,377	1,876	1,683	1,408	1,260	0,940	1,080	0,850	0,740	0,650	0,570	0,460	*					
0,700	g		0,00372		0,00430 0,00496 0,00570	0,00570	0,00679	0,00789	0,00911	0,0107	0,0127 0,0149 0,0177),0149 (0,0211						
	$n_{\rm t} {\rm Ac_t}$		25669	15206	981 4	6563	432	304	213	1531	112 1	81	60 1	481	24 0					
	h_{A}		2,438	1,941	1,648	1,400	1,237	1,090	1,030	0,880	0,830	0,800	0,760	0,700	0,620					
0.250	$h_{ m R}$		3,115	2,579	1,880	1,693	1,345	1,270	0,941	086'0	0,850	0,740	0,740 0,660 0,570		0,460	*				
0,430	g		0,00407	0,00469	0,00407 0,00469 0,00536 0,00615	0,00615	0,00726	0,00842 0,00981		0,0114	0,0135 0,0159 0,0187 0,0224 0,0264	0,0159),0187),0224 (),0264					
	$n_{\rm t} A c_{\rm t}$		360914	1911 8	1217 6	786 4	5063	347 2	2452	1631	121 1	88 1	65 1	481	38 1	19 0				
	h_{A}			2,410	1,959	1,652	1,408	1,245	1,085	1,030	0,875	0,840	062'0	0,750	0,720	0,610				
0.215	$h_{ m R}$			3,280	2,646	1,912	1,629	1,360	1,325	0,945	086'0	0,840	0,750	0,650	0,560	0,450	*			
0,015	g			0,00515	0,00515 0,00589 0,00672	0,00672	0,00000	0,00912	0,0105	0,0124	0,0144 0,0169 0,0200 0,0238 0,0280 0,0331	0,0169	ر0020) (),0238 (),0280 (,0331				
	$n_{\rm t} {\rm Ac_t}$			270713	15288	985 6	6064	4053	2792	193 2	1311	95 1	72 1	52 1	38 1	32 1	150			
See the notes at the bottom of the table.	es at the	bottom c	of the tabl	e.									ļ							

Table 2 (continued)

0.50			•		-			QCR (i	n noncon	$Q_{ m CR}$ (in nonconformities per 100 items)	s per 100) items)	-	-		-	-	-		
(in non- confor- mities per 100 items)	Para- meter	0,500	0,630	0,800	1,00	1,25	1,60	2,00	2,50	3,15	4,00	5,00	6,30	8,00	10,00	12,5	16,0	20,0	25,0	31,5
0,400	hA hR g nt Act				2,447 2,003 3,236 2,428 0,00649 0,00742 230514 13089	2,003 2,428 0,00742 1308 9	1,655 1,419 1,265 1,873 1,682 1,395 0,00861 0,00994 0,0116 761 6 492 4 329 3	1,419 1,682 0,00994 492 4	1,265 1,395 0,0116 3293	1,100 0,950 0,880 0,850 0,800 0,760 0,705 0,610 1,340 0,950 0,990 0,860 0,740 0,650 0,550 0,470 0,0134 0,0147 0,0182 0,0214 0,0254 0,0298 0,0352 0,0423 2202 1532 1041 751 551 411 321 251	0,950 0,880 0,950 0,990 0,0147 0,0182 153 2 104 1	0,880 0,990 0,0182 1041	0,850 0,800 0,760 0,860 0,740 0,650 0,0214 0,0254 0,0298 751 551 411	0,800 0,740 0,0254 55 1	0,760 0,650 0,0298 41.1	0,705 0,550 0,0352 32 1	0,610 0,470 0,0423 25 1	* * 120		
0,500	hA hR g nt Act				3,214 2,447 4,424 3,235 0,00714 0,00811 363425 184314	2,447 3,235 0,00811 1843 14	1,940 2,580 0,00939 957 8	1,640 1,882 0,0107 609 6	1,395 1,694 0,0123 394 4	1,245 1,080 1,020 0,880 0,830 0,810 0,760 0,690 0,610 1,385 1,280 0,940 0,980 0,850 0,740 0,650 0,570 0,450 0,0144 0,0168 0,0195 0,0271 0,0319 0,0373 0,0447 0,0529 260 3 175 2 120 2 82 1 61 1 43 1 32 1 25 1 19 1	1,245 1,080 1,020 0,880 0,830 0,810 0,760 1,385 1,280 0,940 0,980 0,850 0,740 0,650 0,0144 0,0168 0,0195 0,0229 0,0271 0,0319 0,0373 260 3 175 2 120 2 82 1 61 1 43 1 32 1	1,020 0,940 0,0195 1202	0,880 0,830 0,810 0,980 0,850 0,740 0,0229 0,0271 0,0319 82 1 61 1 43 1	0,830 0,850 0,850 0,0271 (C	0,810 0,740),0319 (0,760 0,650 0,0373 (0,690 0,570 0,0447 25 1	0,610 0,450 0,0529 191	* * 10 0	
0,630	h _A h _R g n _t Ac _t					3,272 4,368 0,00897 2987 26	2,430 3,182 0,0103 1329 13	1,966 2,617 0,0118 7608	1,660 1,906 0,0135 4916	1,435 1,238 1,090 1,010 0,880 0,830 0,810 0,740 0,700 0,630 1,670 1,350 1,310 0,940 0,980 0,840 0,750 0,640 0,580 0,430 0,0158 0,0182 0,0290 0,0339 0,0397 0,0475 0,0560 0,0667 3124 2013 1392 962 631 481 341 261 201 151	1,435 1,238 1,090 1,010 0,880 0,830 1,670 1,350 1,310 0,940 0,980 0,840 0,0158 0,0182 0,0211 0,0246 0,0290 0,0339 3124 2013 1392 962 631 481	1,090 1,310 0,0211 1392	1,010 0,940 3,0246 96.2	0,880 0,980 0,0290 631	0,830 0,840),0339 (0,810 0,750 0,0397	0,740 0,700 0,640 0,580 0,0475 0,0560 261 201	0,700 0,580 0,0560 201	0,630 0,430 0,0667 151	* 08
See the notes at the bottom of the table.	tes at the	bottom	f the tabl	e.																

Table 2 — (continued)

QPR					-	-	-	-	QCR.	(in nonc	onform	QCR (in nonconformities per 100 items)	100 items	عن ا		-	-	-	-	
(in non- confor- mities per 100 items)		0,500	0,630	0,800	Para-meter 0,500 0,630 0,800 1,00 1,25	,25	1,60	2,00	2,50	3,15	4,00	2,00	6,30	8,00	10,00	8,00 10,00 12,5 16,0		20,0	25,0	31,5
	h_{A}					(,,	3,233	2,517	1,988		1,684 1,415	1,240	1,100	1,050	0,880	1,050 0,880 0,830 0,780 0,750 0,704 0,630	0,780	0,750	0,704	0,630
0000	$h_{ m R}$					4	4,307	3,110	2,432	1,918	2,432 1,918 1,665 1,400	1,400	1,300	0,935	0,970	1,300 0,935 0,970 0,850 0,720 0,670 0,540 0,450	0,720	0,670	0,540	0,450
0,000	g					0	,0114	0,0131	0,0148	0,0172	0,0199	0,0114 0,0131 0,0148 0,0172 0,0199 0,0229	0,0267 0,0324 0,0364 0,0426 0,0507 0,0596 0,0703 0,0836	0,0324	0,0364	0,0426	0,0507	9650'0	0,0703	0,0836
	$n_{\rm t}{ m Ac}_{ m t}$					2.7	2232 25	1129 14	624 9	392 6	2914 6549 3926 2434 1643	1643	1062	77 2	50 1	1062 772 501 391 281 211 151 121	28 1	21 1	151	12 1
	h_{A}							3,228	2,473	1,985	1,985 1,650	1,417	1,240	1,110	0,955	1,110 0,955 0,900 0,840 0,790 0,747 0,660	0,840	0,790	0,747	0,660
1 00	$h_{ m R}$							4,384	3,186	3,186 2,370 2.340	2.340	1,680	1,360	1,220	0,930	1,360 1,220 0,930 0,980 0,860 0,720 0,650 0,600	0,860	0,720	0,650	0,600
т,оо	g							0,0143	0,0163	0,0186	0,0216	0,0143 0,0163 0,0186 0,0216 0,0249 0,0288 0,0346 0,0368 0,0455 0,0541 0,0634 0,0746 0,0884 0	0,0288	0,0346	0,0368	0,0455	0,0541	0,0634	0,0746	0,0884
	$A_{\rm t}$							1812 25	917 14	514 9	2765	181225 917 14 514 9 276 5 197 4 127 3	1273		62 2	862 622 401 291 221 161 141	29 1	22 1	161	141
See the notes at the bottom of the table.	tes at the	bottom	of the t	table.																

 Table 2 — (continued)

QPR					-	00	R (in nonc	Qck (in nonconformities per 100 items)	per 100 ite	ms)		_		
(in non- confor- mities per 100 items)	Para- meter	2,00	2,50	3,15	4,00	2,00	6,30	8,00	10,00	12,50	16,00	20,00	25,00	31,50
	h_{A}	4,840	3,248	2,447	1,920	1,660	1,410	1,230	1,085	1,020	006'0	0,850	0,794	0,700
1 2 5	$h_{ m R}$	6,415	4,330	3,105	2,600	1,860	1,625	1,350	1,285	0,920	0,950	0,830	0,700	0,670
1,23	В	0,0159	0,0179	0,0204	0,0234	0,0271	0,0313	0,0362	0,0421	0,0489	0,0579	9/90'0	0,0793	0,0937
	$n_{\rm t}{ m Ac_t}$	3567 56	1442 25	723 14	3848	244 6	1544	102 3	70 2	492	30 1	231	171	14 1
	h_{A}		4,964	3,336	2,447	2,005	1,675	1,407	1,225	1,100	1,070	006'0	008'0	0,750
160	$h_{ m R}$		7,036	4,397	3,207	2,405	1,910	1,640	1,410	1,365	0,930	0,930	0,870	0,750
1,00	g		0,0200	0,0227	0,0260	0,0298	0,0343	0,0401	0,0454	0,0530	0,0668	0,0729	0,0851	0,1003
	$n_{\rm t}{ m Ac_t}$		3144 62	1171 26	575 14	3279	1966	123 4	83 3	552	38 2	24 1	201	151
	h_{A}			4,874	3,257	2,460	2,030	1,630	1,405	1,230	1,150	266'0	006'0	0,800
000	$h_{ m R}$			6,894	4,312	3,190	2,325	2,405	1,648	1,370	1,135	0,925	0,910	0,840
7,00	g			0,0251	0,0287	0,0326	0,0377	0,0431	0,0501	0,0573	0,0717	99/0'0	8060'0	0,1070
	$n_{\rm t}{ m Ac_t}$			2426 60	902 25	460 14	257 9	1395	97 4	663	412	312	201	161
	h_{A}				4,682	3,255	2,454	1,945	1,640	1,388	1,210	1,085	1,000	006'0
2 50	$h_{ m R}$				6,695	4,330	3,075	2,510	1,845	1,680	1,340	1,315	0,930	0,885
7,30	В				0,0316	0,0359	0,0410	0,0473	0,0539	0,0627	0,0727	0,0842	0,0971	0,1151
	nt Act				1801 56	72425	362 14	1908	1226	794	513	35 2	242	161
	h_{A}					4,797	3,250	2,389	2,010	1,630	1,410	1,187	1,115	1,000
۶ ۲	$h_{ m R}$					6,713	4,295	3,244	2,270	1,865	1,600	1,360	1,220	0,890
0,1,0	g					0,0397	0,0452	0,0515	0,0598	0,0679	0,0791	0,0912	0,11114	0,1231
	$n_{\rm t}{ m Ac_t}$					1480 58	572 25	270 13	1619	9 66	59 4	413	262	182
See the no	ites at the	See the notes at the bottom of the table.	the table.											

Table 2 — (continued)

QPR					-	00	gR (in nonc	QCR (in nonconformities per 100 items)	s per 100 ite	ms)			-	
(in non- confor- mities per 100 items)	Para- meter	2,00	2,50	3,15	4,00	2,00	6,30	8,00	10,00	12,50	16,00	20,00	25,00	31,50
	h_{A}						4,854	3,225	2,440	2,010	1,640	1,350	1,200	1,145
7.00	$h_{ m R}$						6,914	4,332	3,185	2,370	1,840	1,700	1,350	1,140
4,00	g						0,0502	0,0573	0,0651	0,0751	9980'0	9960'0	0,1146	0,1431
	nt Act						1215 60	452 25	230 14	1319	9 //	464	333	202
	hA							4,670	3,208	2,445	1,900	1,625	1,381	1,155
00	$h_{ m R}$							6,792	4,431	3,175	2,565	1,800	1,620	1,350
00,6	g							0,0632	0,0714	0,0815	0,0937	0,1082	0,1255	0,1440
	n _t Act							886 55	36425	184 14	8 96	29 6	394	263
	hA								4,754	3,225	2,390	1,900	1,640	1,350
06.9	$h_{ m R}$								6,721	4,365	2,970	2,295	1,815	1,600
06,0	g								0,0793	0,0897	0,1033	0,1176	0,1365	0,1566
	n _t Ac _t								740 58	300 26	141 14	819	47 6	314
	$h_{\rm A}$									4,885	3,210	2,400	1,952	1,650
00 8	h_{R}									7,019	4,300	3,150	2,360	1,800
00,00	g									8660'0	0,1147	0,1301	0,1501	0,1766
	nt Act									628 62	226 25	115 14	6 99	396
	h_{A}										4,664	3,190	2,405	1,878
10.0	h_{R}										6,607	4,265	3,140	2,300
70,0	g										0,1266	0,1436	0,1630	0,1876
	n _t Ac _t										450 56	181 25	92 14	529
n. (left)	hand side o	fthe cell)	ic the curtail	(left hand side of the cell) is the curtailment sample size	ciza									

 n_{t} (left hand side of the cell) is the curtailment sample size.

A blank cell denotes that there is no recommendable sequential sampling plan. Select another combination of Q_{PR} and Q_{CR} . Ac_{t} (right hand side of the cell) is the acceptance number at curtailment.

Use the curtailed single sampling plan given below in this cell.

Annex A

(informative)

Statistical properties of the sequential sampling plan for inspection by attributes

A.1 Values of the average sample size

The principal advantage of sequential sampling plans is the reduction in the average sample size. However, there exist disadvantages of sequential sampling (see Introduction). To evaluate possible profits from having small average sample sizes, we need to know their values for particular sequential sampling plans. Unfortunately, there is no closed mathematical formula for the calculation of the average sample size in the case of sequential sampling. Thus, the average sample size for the given sequential sampling plan and the given quality level (in percent nonconforming or in nonconformities per 100 items) can be only found using numerical procedures. Approximate values of the average sample size (ASSI) for the sequential sampling plans from this International Standard are given in Tables A.1 and A.2 for the following key quality levels:

- a) zero (perfect quality level without any nonconforming item);
- b) Q_{PR} (of the corresponding single plan with 95 % of probability of acceptance);
- c) 100g (giving a large average sample number close to the maximum, where g is the parameter of the sequential sampling plan);
- d) Q_{CR} (of the corresponding single plan with 10% of probability of acceptance).

<u>Table A.1</u> gives the values for percent nonconforming inspection, and <u>Table A.2</u> is for nonconformities per 100 items inspection.

EXAMPLE

An organization representing consumers is interested in the evaluation of the quality of a certain product. Its producer claims that at least 99 % of its products are free of nonconformities. However, signals from the market have revealed that this claim might not be true. Therefore, it has been decided to verify this claim against the alternative that the real fraction nonconforming is 10 %. Hence, the chosen characteristics of the sampling plan are the following: $Q_{\rm PR} = 1$ %, and $Q_{\rm CR} = 10$ %. While considering different possibilities to verify the producer's claim, quality inspectors analysed expected costs of sampling. For the sequential sampling plan with $Q_{\rm PR} = 1$ %, and $Q_{\rm CR} = 10$ % from Table A.1 (for $Q_{\rm PR} = 1$ %, and $Q_{\rm CR}/Q_{\rm PR} = 10$) they found that the average sample size when the true fraction nonconforming is $Q_{\rm PR} = 1$ % equals 29,5. When the true fraction nonconforming is $Q_{\rm CR} = 10$ % they found that the average sample size equals 18,6. In the worst case, when the true fraction nonconforming is 100g = 3,94 %, they found that the average sample size equals 30,7.

For the chosen sequential sampling plan (see 7.2) the curtailment value n_t equals 65. Thus, the sample size of the equivalent single sampling plan (see Note in Table A.1) equals 0,667 n_t = 44 (the equivalent single sampling plan is given by n = 44, and Ac = 1). Therefore, by applying the sequential sampling plan we may decrease average sampling cost by at least 30 %.

Note, however, that in the case of a particular inspection the number of inspected items may randomly be larger than the sample size of the equivalent single sampling plan. Such a situation takes place in the case considered in 7.2, when the inspection has been terminated after the evaluation of 50 items.

 ${\it Table A.1-Average sample sizes for sequential sampling plans for percent nonconforming}$

					Nom	inal valu	e of Q _{CR} /	Q _{PR} (for)	percent	nonconfo	rming),			
Q_{PR}	P			and	Ac ₀ (acc	eptance i	number	for the ed	quivalen	t single s	ampling	plan) a		
(%)	(%)	2,00	2,50	3,15	4,00	5,00	6,30	8,00	10,0	12,5	16,0	20,0	25,0	31,5
		18	10	6	4	3	2	(1,4)	1	(0,7)	(0,5)	(0,3)	(0,2)	(0,1)
	0								1309	977	781	629	510	399
0,0200	Q_{PR}								1537	1127	840	643	507	392
0,0200	100g								1565	1141	812	584	437	321
	$Q_{\rm CR}$								921	716	467	316	227	163
	0							1297	1047	775	616	503	405	313
0,0250	Q_{PR}							1640	1229	892	659	514	402	307
0,0_0	100g							1765	1251	900	635	467	345	251
	$Q_{\rm CR}$							1110	736	563	363	253	179	128
	0							1040	832	610	492	399	319	251
0,0315	Q_{PR}							1317	977	700	528	408	317	246
0,0000	100g							1419	995	706	509	371	271	202
	$Q_{\rm CR}$							896	585	441	292	201	141	103
	0						1092	823	654	488	390	314	255	201
0.0400	Q_{PR}						1479	1048	768	563	420	321	254	197
•	100g						1647	1139	782	569	406	292	218	162
	$Q_{\rm CR}$						1035	723	460	358	233	158	113	82,7
	0						866	648	524	387	308	251	204	156
0,0500	Q_{PR}						1169	819	614	445	329	256	203	153
	100g						1298	881	623	450	317	233	174	125
	$Q_{\rm CR}$						812	554	368	282	181	126	90,7	63,9
	0					906	682	518	415	304	246	201	159	125
0,0630	Q_{PR}					1343	917	657	487	350	264	205	158	123
	100g					1566	1014	711	496	353	254	187	135	101
	$Q_{\rm CR}$					1023	632	449	292	221	146	101	70,4	51,3
	0					713	545	411	326	243	196	157	127	100
0,0800	Q_{PR}					1057	738	523	383	280	211	160	126	98,2
	100g					1232	822	568	390	284	204	145	109	81,0
	$Q_{\rm CR}$					805	517	361	230	178	118	78,7	56,7	41,4
	0				768	570	433	323	261	195	154	125	102	79
0,100	Q_{PR}				1261	845	583	408	306	224	164	128	101	77,6
	100g				1509	985	647	440	311	226	158	116	87,1	63,8
	QCR				985	643	405	276	184	142	90,8	63,3	45,5	32,7
	0				616	451	341	259	209	152	123	100	80	62
0,125	$Q_{\rm PR}$				1008	667	456	326	245	173	131	102	79,5	60,9
	100g				1205	776	502	350	249	174	126	93,1	68,5	49,8
	QCR				788	503	312	221	147	109	72,3	50,6	35,8	25,6
	0			673	487	355	272	207	163	121	98	79	63	49
0,160	Q _{PR}			1286	808	527	368	264	191	140	105	80,8	62,6	48,1
	100g			1619	974	615	410	286	195	142	101	73,9	54,0	39,7
	$Q_{\rm CR}$			1100	643	402	258	183	115	89,7	58,7	40,3	28,3	20,5

 $[\]label{eq:Ac0} Ac_0 \ (the \ acceptance \ number \ of \ the \ corresponding \ single \ sampling \ plan) \ is \ shown \ for \ reference.$

 $[\]it n_0$ (the sample size of the corresponding single sampling plan) is given by 0,667 $\it n_t$.

Fractional values of Ac_0 have no corresponding single sampling plans.

Table A.1 (continued)

					Nom	inal valu	e of Q _{CR} /	Q _{PR} (for p	ercent	nonconfo	rming),			
Q_{PR}	$\frac{1}{P}$			and	Ac ₀ (acc	eptance r	number	for the ec	luivale n	t single s	ampling	plan) ^a		
(%)	(%)	2,00	2,50	3,15	4,00	5,00	6,30	8,00	10,0	12,5	16,0	20,0	25,0	31,5
		18	10	6	4	3	2	(1,4)	1	(0,7)	(0,5)	(0,3)	(0,2)	(0,1)
	0			535	384	284	217	161	130	97	78	62	50	39
0.200	Q_{PR}			1013	629	421	294	203	153	111	83,3	63,3	49,7	38,3
0,200	100g			1267	752	491	328	219	156	112	80,0	57,9	43,0	31,6
	$Q_{\rm CR}$			853	492	321	206	138	92,2	70,6	46,3	31,6	22,6	16,4
	0		598	412	307	227	170	129	104	77	61	50	40	30
0.250	Q_{PR}		1361	781	502	336	227	162	122	87,9	65,1	50,9	39,8	29,5
0,250	100g		1785	995	601	392	249	174	124	88,6	62,9	46,2	34,3	24,5
	$Q_{\rm CR}$		1249	699	393	256	155	110	73,5	55,7	36,4	25,3	18,1	12,8
	0		466	330	244	177	136	103	83	60	49	39	31	24
0.215	Q_{PR}		1058	630	406	260	182	130	96,8	68,5	52,0	39,7	30,7	23,6
0,315	100g		1404	806	500	301	200	140	98,1	69,2	50,0	36,2	26,3	19,6
	$Q_{\rm CR}$		1011	572	359	194	125	88,7	58,1	43,4	29,0	19,8	13,9	10,3
	0		376	268	189	141	108	81	65	48	38	31	25	19
0.400	Q_{PR}		864	512	313	209	146	103	75,8	54,9	40,8	31,5	24,9	18,7
0,400	100g		1144	644	387	244	162	112	76,9	55,6	39,6	28,6	21,6	15,4
	$Q_{\rm CR}$		810	437	277	159	102	71,2	45,6	35,3	23,0	15,7	11,4	8,18

 $^{^{}a} \hspace{0.5cm} \text{Ac}_{0} \hspace{0.1cm} \text{(the acceptance number of the corresponding single sampling plan) is shown for reference.} \\$

Fractional values of Ac_0 have no corresponding single sampling plans.

 $[\]it n_0$ (the sample size of the corresponding single sampling plan) is given by 0,667 $\it n_t$.

Table A.1 — (continued)

Q_{PR}	${P}$			- a	nd Ac ₀	Nomina (accept	l value o ance nu	of Q _{CR} /Q mber fo	PR (for pe	rcent nor ivalent si	nconforr ngle sar	ning), npling pla	n) a		
(%)	_	1,60	2,00	2,50	3,15	4,00	5,00	6,30	8,00	10,0	12,5	16,0	20,0	25,0	31,5
	(%)	38	18	10	6	4	3	2	(1,4)	1	(0,7)	(0,5)	(0,3)	(0,2)	(0,1)
	0		448	300	204	150	113	86	64	52	38	30	24	20	15
0,500	Q_{PR}		1315	690	388	250	167	115	80,2	60,7	43,2	31,8	24,5	19,8	14,7
0,500	100g		1821	913	495	311	194	127	85,8	61,7	43,8	30,6	22,6	17,0	12,0
	$Q_{\rm CR}$		1335	646	348	224	127	80,0	54,2	36,7	27,8	17,8	12,5	9,07	6,30
	0		361	232	165	121	89	67	51	40	29	24	19	15	12
0,630	Q_{PR}		1072	526	313	201	132	89,8	63,9	47,3	33,5	25,6	19,5	14,9	11,8
0,630	100g		1483	695	398	248	154	99,3	68,6	48,9	34,4	24,9	18,1	13,0	9,77
	$Q_{\rm CR}$		1097	498	281	178	101	62,2	43,5	29,0	21,6	14,8	10,2	7,03	5,22
	0		277	189	132	96	70	54	40	32	24	19	15	12	9
0,800	Q_{PR}		818	429	254	160	103	72,0	50,4	37,3	26,8	20,3	15,2	12,0	8,85
0,000	100g		1131	565	328	198	121	79,5	54,3	37,9	27,0	20,0	13,9	10,6	7,37
	$Q_{\rm CR}$		827	400	236	144	78,7	50,3	34,6	22,7	17,2	11,9	7,80	5,83	4,04
	0		223	150	104	75	56	42	32	25	19	15	12	9	7
1,00	Q_{PR}		653	342	199	123	82,1	56,5	39,3	29,5	21,2	15,7	12,1	9,01	6,88
1,00	100g		898	450	254	150	95,4	62,8	41,2	30,7	21,4	15,0	11,0	8,11	5,69
	$Q_{\rm CR}$		654	317	181	106	62,4	39,6	26,2	18,6	13,6	8,89	6,22	4,58	3,16
	0	298	178	117	81	60	44	33	25	20	14	12	9	7	
1 25	Q_{PR}	1232	520	267	152	97,8	64,2	43,7	30,9	23,4	16,2	12,6	9,19	7,00	
1,25	100g	1765	715	356	194	119	74,4	48,0	32,8	24,1	17,1	12,1	8,63	6,31	
	$Q_{\rm CR}$	1329	520	258	136	84,0	48,4	30,1	21,0	14,7	11,3	7,37	5,01	3,65	
	0	244	142	92	65	47	34	26	20	15	11	9	7		
1,60	Q_{PR}	1073	425	212	125	78,1	50,4	34,9	24,7	17,5	12,7	9,41	7,17		
1,60	100g	1544	588	283	160	96,9	58,8	38,8	26,2	18,1	13,5	9,10	6,88		
	$Q_{\rm CR}$	1168	430	206	114	69,9	38,3	24,6	16,8	11,1	9,08	5,56	4,14		
	0	189	110	73	51	36	27	21	15	12	9	7			
2,00	Q_{PR}	821	321	168	96,8	59,7	39,8	28,0	18,5	13,9	10,1	7,48			
2,00	100g	1188	444	224	124	73,9	46,7	30,9	19,9	14,4	10,6	7,61			
	$Q_{\rm CR}$	906	328	162	88,4	52,2	30,6	19,7	12,8	8,85	7,31	4,84			
	0	143	87	57	39	29	22	16	12	10	7				
2,50	Q_{PR}	605	255	130	73,9	47,0	31,5	20,9	14,6	11,4	7,83				
2,50	100g	875	353	173	94,0	57,4	36,3	23,0	15,5	11,5	8,33				
	$Q_{\rm CR}$	666	261	124	65,3	40,3	23,6	14,6	10,1	7,01	5,83				
	0	116	68	44	31	23	17	13	9	7					
3,15	Q_{PR}	494	200	99,8	58,6	37,0	24,1	16,8	11,2	8,40					
3,13	100g	712	277	132	75,1	45,3	27,6	18,2	12,0	9,26					
	$Q_{\rm CR}$	538	204	93,6	52,6	31,9	17,9	11,6	7,93	6,12					
	0	92	53	35	25	17	13	10	7						
4,00	Q_{PR}	399	155	80,3	46,8	28,0	18,6	12,7	8,58						
4,00	100g	578	214	107	60,2	34,4	22,2	14,0	9,25						
	$Q_{\rm CR}$	441	156	77,5	42,7	24,1	16,5	9,32	6,26						

 $^{^{\}rm a}$ $\,$ $\,$ Ac0 (the acceptance number of the corresponding single sampling plan) is shown for reference.

 $[\]it n_0$ (the sample size of the corresponding single sampling plan) is given by 0,667 $\it n_t$.

Fractional values of Ac_0 have no corresponding single sampling plans.

Table A.1 (continued)

Q_{PR}	$\frac{1}{P}$			·					P _{PR} (for pe or the equ			ning), npling pla	ı n) a		
(%)		1,60	2,00	2,50	3,15	4,00	5,00	6,30	8,00	10,0	12,5	16,0	20,0	25,0	31,5
	(%)	38	18	10	6	4	3	2	(1,4)	1	(0,7)	(0,5)	(0,3)	(0,2)	(0,1)
	0	70	42	28	19	13	10	7							
F 00	Q_{PR}	292	122	62,9	34,7	21,7	14,3	9,42							
5,00	100g	418	169	83,9	43,8	26,9	17,4	11,1							
	$Q_{\rm CR}$	315	126	60,3	30,2	18,8	13,1	8,40							
	0	55	33	21	15	10	7								
(20	Q_{PR}	236	97,2	46,6	27,2	16,7	10,7								
6,30	100g	342	136	62,5	34,7	20,8	13,3								
	$Q_{\rm CR}$	262	102	45,6	25,3	14,6	10,0								
	0	45	25	16	11	8									
0.00	Q_{PR}	195	72,1	36,9	21,2	13,0									
8,00	100g	284	101	49,8	27,7	16,0									
	$Q_{\rm CR}$	217	75,4	36,6	20,4	12,0									
	0	32	19	12	9										
10.0	Q_{PR}	135	55,6	28,2	15,9										
10,0	100g	196	78,3	38,3	20,0										
	$Q_{\rm CR}$	151	59,1	28,9	14,4										

 $^{^{}a} \hspace{0.5cm} \text{Ac}_{0} \hspace{0.1cm} \text{(the acceptance number of the corresponding single sampling plan) is shown for reference.} \\$

 n_0 (the sample size of the corresponding single sampling plan) is given by 0,667 $n_{\rm t}$.

Fractional values of Ac_0 have no corresponding single sampling plans.

Table A.2 — Average sample sizes for sequential sampling plans for nonconformities per 100 items

QPR (in non-conformities per 100 items)	— P (%)			Nomi	nal value	e of Q _{CR} /(⊋ _{PR} and A	.c ₀ (for no	onconfor	mities po	er 100 ite	ems) ^a		
		2,00	2,50	3,15	4,00	5,00	6,30	8,00	10,0	12,5	16,0	20,0	25,0	31,5
		18	10	6	4	3	2	(1,4)	1	(0,7)	(0,5)	(0,3)	(0,2)	(0,1)
	0								1310	978	782	630	512	401
0,0200	Q_{PR}								1538	1129	842	644	509	394
0,0200	100g								1565	1143	813	586	439	323
	$Q_{\rm CR}$								922	717	467	317	228	164
	0							1298	1048	775	617	504	406	314
0,0250	Q_{PR}							1642	1231	894	661	515	404	308
0,0200	100g							1769	1253	905	637	469	347	252
	$Q_{\rm CR}$							1112	738	565	364	254	180	128
	0							1040	832	612	493	400	320	252
0,0315	Q_{PR}							1319	977	702	529	409	318	247
0,0313	100g							1424	995	707	511	372	273	203
	$Q_{\rm CR}$							900	586	441	293	201	142	103
	0						1094	825	656	490	391	315	256	203
0,0400	Q_{PR}						1483	1051	770	565	421	322	255	199
0,0400	100g						1650	1141	783	570	407	293	219	164
	$Q_{\rm CR}$						1037	725	462	358	234	159	114	83,3
	0						868	649	525	388	309	252	205	157
0,0500	Q_{PR}						1172	821	616	447	331	258	204	154
0,0300	100g						1300	885	626	452	318	235	176	126
	$Q_{\rm CR}$						813	556	369	283	182	127	91,3	64,5
	0					908	683	519	416	306	247	202	160	126
0,0630	Q_{PR}					1346	920	659	488	351	265	207	159	124
0,0030	100g					1569	1018	714	497	354	256	189	137	102
	$Q_{\rm CR}$					1025	635	452	293	221	147	102	71,0	51,9
	0					715	546	413	328	245	197	158	128	102
0,0800	Q_{PR}					1060	741	525	385	282	213	161	127	100
0,0000	100g					1236	826	570	391	286	206	147	110	82,3
	$Q_{\rm CR}$					808	519	363	231	180	119	79,8	57,3	42,0
	0				770	571	434	325	263	196	155	126	103	81
0,100	Q_{PR}				1265	848	586	411	308	226	166	129	102	79,5
0,100	100g				1513	989	650	442	312	228	159	118	88,3	65,3
	$Q_{\rm CR}$				988	647	408	279	185	144	91,4	63,9	46,1	33,4
	0				617	453	342	260	210	153	124	101	82	63
0,125	Q_{PR}				1011	669	458	328	246	175	133	103	81,4	61,9
0,123	100g				1210	778	505	353	250	176	128	94,2	70,0	51,0
	$Q_{\rm CR}$				791	506	314	223	148	110	73,5	51,2	36,5	26,2

 $[\]label{eq:Acomp} Ac_0 \ (\text{the acceptance number of the corresponding single sampling plan}) \ is \ shown \ for \ reference.$

 n_0 (the sample size of the corresponding single sampling plan) is given approximately by 0,67 n_t .

Fractional values of Ac_0 have no corresponding single sampling plans.

Table A.2 (continued)

Q _{PR}	_													
non- confor- mities per 100	P (%)			Nomi	nal value	e of Q _{CR} /(Q _{PR} and A	c ₀ (for no	onconfor	mities po	er 100 ite	ems) ^a		
items)		2,00	2,50	3,15	4,00	5,00	6,30	8,00	10,0	12,5	16,0	20,0	25,0	31,5
		18	10	6	4	3	2	(1,4)	1	(0,7)	(0,5)	(0,3)	(0,2)	(0,1)
	0			674	488	357	273	208	164	123	99	80	64	51
	Q_{PR}			1290	811	530	370	266	192	142	107	82,1	63,7	50,1
0,160	100g			1626	979	618	413	290	196	143	103	75,6	55,1	41,5
	$Q_{\rm CR}$			1106	647	405	260	186	116	90,2	59,9	41,4	28,9	21,4
	0			536	386	286	219	163	132	98	79	63	52	41
0.000	Q_{PR}			1017	632	424	296	205	155	113	84,7	64,4	51,7	40,2
0,200	100g			1273	756	494	330	220	157	115	81,9	58,9	44,4	33,1
	$Q_{\rm CR}$			859	495	323	208	139	93,2	73,0	47,5	32,2	23,3	17,0
	0		600	414	308	228	171	130	105	78	62	51	41	32
0,250	Q_{PR}		1366	786	506	339	229	164	123	89,5	66,4	52,0	40,8	31,4
0,230	100g		1795	1000	605	396	253	177	125	90,6	64,0	47,3	35,4	26,0
	$Q_{\rm CR}$		1258	703	396	259	157	111	74,2	57,1	37,0	25,9	18,7	13,5
	0		468	333	246	179	137	104	84	61	50	40	32	26
0,315	Q_{PR}		1066	635	407	262	184	132	98,6	70,3	53,3	41,1	31,9	25,5
0,313	100g		1413	811	489	304	203	143	100	71,3	51,1	38,0	27,9	21,1
	$Q_{\rm CR}$		1018	576	322	197	127	90,8	59,8	44,8	29,6	20,9	14,8	11,0
	0		378	270	193	143	110	83	65	49	40	32	26	21
0,400	Q_{PR}		870	516	316	212	148	105	77,0	56,7	42,8	32,6	25,9	20,7
0,100	100g		1156	650	378	247	165	114	79,3	57,7	41,5	29,7	22,6	17,2
	$Q_{\rm CR}$		822	443	248	162	104	72,8	46,6	36,7	24,3	16,4	12,1	8,92

 $^{^{}a} \hspace{0.5cm} \text{Ac}_{0} \hspace{0.1cm} \text{(the acceptance number of the corresponding single sampling plan) is shown for reference.} \\$

Fractional values of Ac_0 have no corresponding single sampling plans.

 n_0 (the sample size of the corresponding single sampling plan) is given approximately by 0,67 $n_{\rm t}$.

Table A.2 — (continued)

Q_{PR}				Noi	ninal va	lue of Q	_{CR} /Q _{PR} aı	nd Ac ₀ (f	or nonce	onformi	ties per :	100 item	ıs) a		
(in non- confor- mities per 100 items)	— P (%)	1,60	2,00	2,50	3,15	4,00	5,00	6,30	8,00	10,0	12,5	16,0	20,0	25,0	31,5
		38	18	10	6	4	3	2	(1,4)	1	(0,7)	(0,5)	(0,3)	(0,2)	(0,1)
	0		451	302	207	154	114	87	65	53	39	31	26	21	16
0,500	Q_{PR}		1327	696	393	253	170	117	82,2	62,0	45,0	33,4	26,4	20,9	15,8
0,500	100g		1835	925	501	303	198	130	88,8	63,0	45,8	32,5	23,9	18,0	13,4
	$Q_{\rm CR}$		1347	658	352	198	130	82,1	56,3	37,3	29,3	19,0	13,2	9,68	7,10
	0		365	236	167	123	91	69	52	42	31	25	21	16	13
0,630	Q_{PR}		1081	535	318	203	135	92,3	66,1	49,3	35,5	26,8	21,4	16,0	12,8
0,000	100g		1488	699	405	245	157	102	71,6	50,3	36,1	26,1	19,5	14,0	10,9
	$Q_{\rm CR}$		1082	498	287	161	103	63,8	45,6	30,0	23,2	15,3	10,9	7,64	5,84
	0		284	193	135	98	72	55	42	33	25	20	16	13	11
0,800	Q_{PR}		833	437	258	162	106	74,2	52,8	38,6	28,6	21,6	16,4	13,1	10,8
,,,,,,	100g		1135	572	325	195	123	82,6	56,7	39,4	29,0	21,1	15,1	11,7	8,89
	$Q_{\rm CR}$		823	404	222	130	80,9	52,3	36,2	23,7	18,6	12,5	8,43	6,44	4,73
	0		226	152	107	77	57	44	33	26	20	16	13	11	8
1,00	Q_{PR}		664	348	203	127	84,8	58,9	41,2	31,0	22,9	17,1	13,3	11,0	8,00
-,	100g		915	461	255	156	99,2	65,0	44,0	32,1	23,2	16,8	12,2	9,63	7,14
	$Q_{\rm CR}$		671	327	172	112	65,3	40,9	28,1	19,0	15,0	10,1	6,85	5,30	3,99
	0	305	182	120	83	62	46	34	26	21	16	13	11	8	
1,25	Q_{PR}	1256	531	274	157	101	67,2	45,9	33,0	24,8	18,0	13,8	11,2	8,11	
, -	100g	1787	730	360	201	121	78,0	51,2	36,0	25,4	18,3	13,3	10,1	7,50	
-	$Q_{\rm CR}$	1335	533	253	142	79,7	51,0	32,3	23,0	15,3	11,9	7,96	5,73	4,30	
	0	249	147	95	68	49	36	27	21	17	13	10	8		
1,60	Q_{PR}	1096	439	218	129	81,2	53,0	37,1	26,8	19,6	14,6	11,0	8,35		
	100g	1581	600	289	163	97,9	61,8	41,8	29,4	19,8	14,8	11,1	8,07		
	$Q_{\rm CR}$	1197	438	205	111	65,1	40,8	26,6	19,2	12,1	9,60	6,85	4,76		
	0	195	114	76	54	38	29	22	17	13	10	8			
2,00	Q_{PR}	844	332	174	102	63,6	42,6	29,7	20,8	15,8	11,4	8,74			
	100g	1215	456	231	127	78,9	49,6	33,2	21,7	16,6	11,7	8,76			
	QCR	920	333	164	86,4	57,1	32,7	21,3	14,0	10,3	7,73	5,39			
	0	149	91	60	42	31	23	17	13	11	8				
2,50	Q_{PR}	627	265	137	78,7	50,6	34,0	22,9	16,5	13,1	9,16				
	100g	902	366	180	99,8	60,7	39,8	25,6	18,1	13,6	9,42				
	QCR	682	268	127	70,3	40,1	26,4	16,2	11,7	8,46	6,24				
	0	121	72	47	34	25	18	14	11	9					
3,15	Q_{PR}	517	211	107	63,6	40,7	26,6	18,5	13,4	10,6					
	100g	741	290	141	79,4	49,0	30,8	20,7	14,2	10,9					
	$Q_{\rm CR}$	558	212	102	53,7	32,7	20,0	13,3	9,35	6,79					

 $^{^{\}rm a}$ $\,$ $\,$ Ac $_{\rm 0}$ (the acceptance number of the corresponding single sampling plan) is shown for reference.

 n_0 (the sample size of the corresponding single sampling plan) is given approximately by $0.67n_{\rm t}$.

Fractional values of Ac_0 have no corresponding single sampling plans.

Table A.2 (continued)

Q_{PR}				Nor	ninal va	lue of Q	c _R /Q _{PR} aı	nd Ac ₀ (f	or nonce	onformi	ies per î	100 item	ıs) a		
(in non- confor- mities per 100 items)	P (%)	1,60	2,00	2,50	3,15	4,00	5,00	6,30	8,00	10,0	12,5	16,0	20,0	25,0	31,5
		38	18	10	6	4	3	2	(1,4)	1	(0,7)	(0,5)	(0,3)	(0,2)	(0,1)
	0	97	57	38	27	19	14	11	9						
4,00	Q_{PR}	422	166	87,1	51,6	31,6	21,3	15,0	10,8						
4,00	100g	609	229	116	65,2	38,2	25,3	16,8	11,2						
	$Q_{\rm CR}$	462	168	82,5	44,7	25,4	16,7	10,9	7,42						
	0	74	45	30	21	16	12	9							
5.00	Q_{PR}	314	133	69,7	39,4	25,7	17,2	11,8							
5,00	100g	453	184	92,6	50,5	30,4	20,1	13,3							
	$Q_{\rm CR}$	346	136	66,1	35,9	20,1	13,4	8,72							
	0	60	36	24	17	13	9								
6.20	Q_{PR}	258	108	53,3	31,8	20,8	13,6								
6,30	100g	371	149	69,6	39,8	24,6	16,1								
	$Q_{\rm CR}$	279	109	48,7	27,1	16,5	10,8								
	0	49	28	19	14	10									
0.00	Q_{PR}	220	83,0	43,6	25,9	16,3									
8,00	100g	316	115	57,9	32,9	19,6									
	$Q_{\rm CR}$	239	84,1	41,4	22,9	13,4									
	0	37	23	15	11										
100	Q_{PR}	157	66,4	34,9	20,3										
10,0	100g	226	91,6	46,5	25,6										
	$Q_{\rm CR}$	171	67,5	33,4	17,7										

 $^{^{}a} \hspace{0.5cm} \text{Ac}_{0} \hspace{0.1cm} \text{(the acceptance number of the corresponding single sampling plan) is shown for reference.}$

Fractional values of Ac_0 have no corresponding single sampling plans.

 n_0 (the sample size of the corresponding single sampling plan) is given approximately by $0.67n_{\rm t}$.

Bibliography

- [1] ISO 2859-1:1999, Sampling procedures for inspection by attributes Part 1: Sampling schemes indexed by acceptance quality limit (AQL) for lot-by-lot inspection
- [2] ISO 2859-5:2005, Sampling procedures for inspection by attributes Part 5: System of sequential sampling plans indexed by acceptance quality limit (AQL) for lot-by-lot inspection
- [3] ISO 28590, Sampling procedures for inspection by attributes Introduction to the ISO 2859 series of standards for sampling for inspection by attributes
- [4] ISO 3534-2:2006, Statistics Vocabulary and symbols Part 2: Applied statistics
- [5] ISO 8423:2008, Sequential sampling plans for inspection by variables for percent nonconforming (known standard deviation)
- [6] ISO/TR 8550:2007, Guidance on the selection and usage of acceptance sampling systems for inspection of discrete items in lots (all Parts)
- [7] ENKAWA T., & MORI M. Exact expressions for OC and ASN functions of Poisson sequential probability test, *Rep. Stat. Appl. Res.* JUSE. 1985, **32** (3) pp. 1–16
- [8] GHOSH B.K. Sequential Tests of Statistical Hypothesis. Addison-Wesley, New York, 1970
- [9] JOHNSON N.L. Sequential analysis A survey. J. R. Stat. Soc. [Ser A]. 1961, A124 pp. 372-411
- [10] WALD A. Sequential Analysis. Wiley, New York, 1947

