# Problem Set 3

# Math228B Numerical solutions to differential equations

Håkon Olav Torvik ${\it UC~Berkeley}$ 

(Dated: March 5, 2022)

### Problem 1

### Problem 2

#### Part a

For this part, I simply plug in the equation for the linear transfinite interpolation in the lecture slides, and use  $x(\xi) = \xi$  to transform the unit-square into  $\Omega$  with a linear mesh. The resulting mesh is shown in Figure 1.



Figure 1: Linear transfinite interpolation of domain  $\Omega$ .

#### Part b

Using cubic Hermite interpolation gives more degrees of freedom, which can be used to specify the normal vector of the grid at the boundaries. Here  $\partial R = T\hat{n}$  will be used at all the boundaries, where  $\hat{n}$  is the unit normal vector in the positive  $\xi$  and  $\eta$  directions, and T is a parameter. For  $\xi = 0 \land \xi = 1$ , the boundary is straight, so  $\hat{n}_{lr} = [1, 0]$ .

The normal vector at the bottom I find by rotating the tangential vector by  $\pi/2$ , like so:

$$n_{bottom}(x) = \begin{pmatrix} -dy_{bottom}(x) \\ dx \end{pmatrix} = \begin{pmatrix} -\partial_x(1 + Ax^3(6x^2 - 15x + 10)) \\ \partial_x x \end{pmatrix} = \begin{pmatrix} 64 \cdot 3Ax^2(1 - x)^2(2x - 1) \\ 1 \end{pmatrix}.$$

Equivalently, at the top, it is

$$n_{top}(x) = \begin{pmatrix} -\partial_x y_{top}(x) \\ \partial_x x \end{pmatrix} = \begin{pmatrix} -3Ax^2(6x^2 - 15x + 10) - A * x^3(12x - 15) \\ 1 \end{pmatrix}.$$

x is no longer linear in  $\xi$ , so I use the Hermite polynomial to transform it, as

$$x(\xi) = H_0(\xi) + T\tilde{H}_0(\xi) + T\tilde{H}_1(\xi).$$

Now every thing is ready to be put together, and the grid is given by

$$\hat{R}(\xi,\eta) = H_0(\eta)E(\xi,0) + H_1(\eta)R(\xi,1) + \tilde{H}_0(\eta)R_\eta(\xi,0) + \tilde{H}_1(\eta)R_\eta(\xi,1)$$

The resulting transform from the unit square is shown in Figure 2.

# Problem 3

The complex-valued function

$$\omega(z) = \frac{2e^z - 3}{3e^z - 2} \tag{1}$$

is a conformal transformation from one grid to another. For  $0 \leq \mathbf{Re}(z) = x \leq 1$ ,  $0 \leq \mathbf{Im}(z) = y \leq 2\pi$ , it maps the rectangle to a grid between two circles, centered at the real axis. This is shown in Figure 3. I will later show that the outer circle is the unit-circle  $(r = 1, (x_0, y_0) = (0, 0))$ , while the inner circle has radius  $r = \frac{5e}{9e^2 - 4} \approx 0.22$ , and is centered at  $(c, 0), c = \frac{6(e^2 - 1)}{9e^2 - 4} \approx 0.61$ .



Figure 2: cubic Hermite transfinite interpolation of domain  $\Omega$  with orthogonal boundaries.



Figure 3: conformal mapping from  $0 \le x \le 1, 0 \le y \le 2\pi$  by function  $\omega(z)$  in (1)

It is known that a line constant in  $\xi$  will map to a circle. Further,  $(\xi, \eta = 0)$  is the points on the real axis to the left of the centres, while  $(\xi, \eta = \pi)$  is the real points to the right of the centres. The centre is then the average of these.

$$\begin{split} c(\xi) = & \frac{\omega(\xi,0) + \omega(\xi,\pi)}{2} \\ 2c(\xi) = & \frac{2e^{\xi}e^{0} - 3}{3e^{\xi}e^{0} - 2} + \frac{2e^{\xi}e^{i\pi} - 3}{3e^{\xi}e^{i\pi} - 2} = \frac{2e^{\xi} - 3}{3e^{\xi} - 2} + \frac{2e^{\xi} + 3}{3e^{\xi} + 2} \\ = & \frac{(2e^{\xi} - 3)(3e^{\xi} + 2) + (2e^{\xi} + 3)(3e^{\xi} - 2)}{(3e^{\xi} - 2)(3e^{\xi} + 2)} \\ = & \frac{12(e^{2\xi} - 1)}{9e^{2\xi} - 4} \\ c(\xi) = & \frac{6(e^{2\xi} - 1)}{9e^{2\xi} - 4} \end{split}$$

The radius of the circles can be found in a similar way.

$$\begin{split} r(\xi) = & \omega(\xi, \pi) - c(\xi) \\ = & \frac{2e^{xi} + 3}{3e^{\xi} + 2} - \frac{6(e^{2\xi} - 1)}{9e^{2\xi} - 4} \\ = & \frac{5e^{\xi}}{9e^{2\xi} - 4} \end{split}$$

With these functions, the top point as a function of the centre of the circle can be added to the plot in Figure 3. This is done in Figure 4, for  $0 \le \xi \le 2\pi$ , and  $\pm r(\xi)$ .

#### Problem 4

Following the step-by-step instructions, I wrote a mesh-generator which used Delaunay to triangulate any polygon.

b

The boundary points are added by linear interpolation between each corner.

 $\mathbf{d}$ 

To determine if a triangle is outside the polygon, I make a test-point inside each triangle abc by  $p_{test} = a + 0.5ab + 0.25bc$ , and then the inpolygon-function.



Figure 4: The conformal mapping of  $\omega(z)$ , along with the top-point of the circles, as function of the centre.

 $\mathbf{e}$ 

The area and circumcentre are calculated with formula from Wikipedia. This is repeated until no triangle is too large

 $\mathbf{h}$ 

The triangulation is refined by adding the centre point of each edge.

The final triangulated mesh for the parameters specified is shown in Figure 5. It shares a great resembelance to the one in Figure (h) in the problem description.



Figure 5: The triangulated mesh with specified parameters.