

# U.S. Environmental Protection Agency Region 8 Technical and Management Services

Laboratory Services Program

Certificate of Analysis

Ref: 8TMS-L

#### **MEMORANDUM**

Date: 08/10/15

Subject: Analytical Results--- Upper Animas\_Surface Water 2\_AUG 2015\_A096

From: Don Goodrich; EPA Region8 Analytical Chemistry WAM

To: <ClientManager>

Superfund

1595 Wynkoop Street

Received Sample Set(s), [Work Order: Date Received]:

[ C150802 : 08/09/2015 ]

Attached are the analytical results for the samples received from the Upper AnimasSurface Water 2\_AUG 2015\_A096 sampling event, according to TDF [none]. All analyses were performed within their method specified holding times unless otherwise noted in the following narrative.

These samples were prepared, analyzed, and verified by the Environmental Services Assistance Team Laboratory (ESAT) according to the requirements of the Technical Direction Form(TDF).

Note: The laboratory herewith transmits this deliverable to the program/project partner for determination of "final data usability" which may include data validation and data quality assessment per and in accordance with EPA QAG-8, *Guidance on Environmental Data Verification and Data Validation*, November 2002, EPA/240/R-02/004. Laboratory data qualifiers are applied based on the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004, referred to as "NFGI".

Laboratory policy is to dispose of any remaining sample 60 days after data analysis packages are delivered to EPA. If you would like the laboratory to retain the samples for a period longer than 60 days, please contact Don Goodrich within the 60 day period at (303) 312-6687.

TDF#: [none]

#### Case Narrative

#### C150802

**Project Name:** 

Quality Assessment Unless indicated by exception, the QA/QC associated with this sample set produced data within the TDF-specified criteria.

Holding Times: All samples were analyzed within their method-specified technical holding

time(s).

1. Initial and Continuing calibration blanks (ICBs and CCBs).

Exceptions: None.

2. Preparation (PB) / Method blanks (MB)

Exceptions: None.

3. Interference Checks (ICSA / ICSAB) for ICP-MS and ICP-OE analyses only.

Exceptions: None.

4. Initial and Continuing calibration verification analyses (ICVs, SCVs and CCVs).

Exceptions: None.

5. Laboratory Control Sample (LCS) or second source analysis or SRM.

Exceptions: None.

 Laboratory Fortified blank (LFB) / Blank spike (BS), same source as used for the matrix spikes. PBS performed with analyses/methods requiring preparation or digestion prior to analysis. Exceptions: None.

- Contract Reporting Detection Limit Standard, labeled as CRA, CRDL or CRL.
   Exceptions: In ICP-MS sequence 1508051, cadmium recovered low in the CRL. As a result, associated samples were qualified "J" as estimated for cadmium.
- 8. Laboratory Duplicate (DUP). "Source" identifies field sample duplicated in the laboratory. If either the "source" or the duplicate result is <5X the reporting limit, the %D limit of 20% does not apply. Exceptions: In ICP-MS batch 1508043, lead recovered high in the DUP. As a result, the source sample was qualified "J" as estimated for lead.
- Laboratory Matrix Spike (MS) and spike duplicate (MSD). "Source" defines original field sample fortified prior to analysis. Percent recovery (%R) limits do not apply when sample concentration(s) exceed the corresponding analyte spike level by a factor of 4 or greater.
   Exceptions: In mercury batch 1508045, MS1 recovery was low, as a result, associated sample was "J" flagged as estimated.
- 10. Serial Dilution sample analysis (SRD). "Source" is parent field sample diluted 1:5 in the laboratory. Performed for ICP-OE and ICP-MS metals analyses. Percent difference (%D) limits do not apply when analyte concentration(s) are below 50x the source samples MDL (or 10x it's PQL). Exceptions: None.
- 11. Internal standards, criteria specified for ICP-MS analyses only, monitored at the instrument. Exceptions: None.
- 12. Any calibration using more than two-points produced a correlation coefficient equal to or greater than 0.995

Exceptions: None.

TDF#: [none]

#### Acronyms and Definitions:

Project Name:

- ESAT Environmental Services Assistance Team
  - J Data Estimated qualifier (also applied to all data less than PQL, greater than or equal to MDL)
- MDL Method Detection Limit
- PQL Practical Quantitation Limit, also known as reporting limit.
- RPD Relative Percent Difference (difference divided by the mean)
- %D Percent difference, serial dilution criteria unit, difference divided by the original result
- %R Percent recovery, analyzed (less sample contribution) divided by true value
- < Analyte NOT DETECTED at or above the Method Detection Limit(MDL)</p>
- mg/L Parts per million (millligrams per liter). Solids equivalent = mg/Kg.
- ug/L Parts per billion (micrograms per liter). Solids equivalent = ug/Kg.
- NR No Recovery (matrix spike) Often seen for calcium/magnesium when their concentration exceeds the spike level by > 4x.
- NFGI USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data ReviewOctober 2004
- RE Sample Re-analysis. Usually seen on raw data and sequences for required sample dilutions due to over-range analytes.
- U Analyte not detected at or above MDL qualifier
- D Diluted value qualifier.

#### M ethod(s) Summary

As defined in the Technical Direction Form (TDF), some or all of the m ethods listed below were used for the determination of the reported target analytes.

From EPA's Methods for the Determination of Metals in Environmental Samples, Supplement I, May 1994, dissolved, total, and/or total recoverable metals were determined by:

- M ethod 200.7 / 6010B using a PE Optima ICP -OE (ICP)
- M ethod 200.8 / 6020 using a Perkin
   -Elmer Elan 6000 ICP
   -MS
- M ethod 200.2 for total recoverable metals (only) dige stion.
- M ethod 245.1 using a Perkin -Elmer FIM S CV AA (aqueous mercury only).

From Standard M ethods for the Examination of Water and Wastewater , 18 <sup>th</sup> Edition, 1992, M ethod 2340B was used for the calculated hardness determ ination. Hardness is reported as mg (milligram) equivalent CaCO <sub>3</sub> per liter (L) determined as follows:

Calculated hardness = 2.497 \* (Calcium, mg/L) + 4.118 \* (Magnesium, mg/L).

From EPA's Test Methods for Evaluating Solid Waste, Physical/Chemical M ethods, SW -846,

- M ethod 3015A was used for microwave assisted total metals digestion.
- M ethod 747 3 w as used for mercury in solids

From EPA's Determ ination of Inorganic Anions by Ion Chromatography , Revision 2.1, 1993, Method 300.0 was used to determ ine the anions.

From EPA's Methods for C hem ical Analysis of W ater and Wastes , M arch 1983:

- M ethod 310.1 was followed for the alkalinity determination.
- M ethod 160.1 was followed for gravimetric total dissolved solids (TDS) determination.
- M ethod 160.2 was used for gravim etric total suspended sol ids (TSS) determination.
- M ethod 415.3 was used for total organic carbon (TOC) determination using either an Apollo 9000 or Phoenix 8000
   Non -D ispersive IR (N DIR) system. Also known as dissolved organic carbon (D OC) when performed on the dissolved sample fr action.

The quality control procedures listed in the TDF request were utilized by ESAT to verify accuracy of the results and to evaluate any matrix interferences.

Page 3 of 130

TDF#: [none]

### Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: AMIMAS-ROTARY PARK-0000 Date / Time Sampled: 08/07/15 00:00 Workorder: C150802

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | < 50.0  | U         | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Calcium    | 61100   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Iron       | < 250   | U         | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Magnesium  | 7820    |           | ug/L  | 100   | 1                  | 08/10/2015 | sv | 1508038 |
| 200.7  | Manganese  | 464     |           | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Potassium  | 1990    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Sodium     | 10200   |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Zinc       | 53.8    |           | ug/L  | 10.0  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.8  | Antimony   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Arsenic    | < 2.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Barium     | 22.1    |           | ug/L  | 5.00  | 1                  | 08/10/2015 | sv | 1508039 |
| 200.8  | Cadmium    | 0.490   | J         | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Chromium   | 1.27    | J         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Cobalt     | 0.994   |           | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Copper     | 3.87    |           | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Lead       | 0.289   |           | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Molybdenum | < 1.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Nickel     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Selenium   | < 2.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | sv | 1508039 |
| 200.8  | Silver     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Thallium   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Vanadium   | < 3.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 2340B  | Hardness   | 185     |           | mg/L  | 2     | 1                  | 08/10/2015 | SV | 1508038 |

[none]

### Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: AMIMAS-ROTARY PARK-0030 EPA Tag No:

Date / Time Sampled: Matrix: Surface Water

08/07/15 00:30

Workorder: C

C150802

Lab Number:

C150802-05 A

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | < 50.0  | U         | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Calcium    | 62700   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Iron       | < 250   | U         | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Magnesium  | 7930    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Manganese  | 676     |           | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Potassium  | 2020    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Sodium     | 10100   |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Zinc       | 84.8    |           | ug/L  | 10.0  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.8  | Antimony   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Arsenic    | < 2.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Barium     | 25.1    |           | ug/L  | 5.00  | 1                  | 08/10/2015 | sv | 1508039 |
| 200.8  | Cadmium    | 0.699   | J         | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Chromium   | < 2.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Cobalt     | 1.66    |           | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Copper     | 4.32    |           | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Lead       | 0.230   |           | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Molybdenum | < 1.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Nickel     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Selenium   | < 2.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Silver     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Thallium   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Vanadium   | < 3.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 2340B  | Hardness   | 189     |           | mg/L  | 2     | 1                  | 08/10/2015 | SV | 1508038 |

TDF#: [none]

# Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: AMIMAS-ROTARY PARK-1000 Date / Time Sampled: 08/07/15 10:00 Workorder:

C150802 EPA Tag No: Matrix: Surface Water Lab Number: C150802-08 A

| Method | Parameter  | Results | Qualifier | Units        | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|--------------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 20.6    | J         | ug/L         | 20.0  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L         | 2.00  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Calcium    | 52100   |           | ug/L         | 100   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Iron       | < 250   | U         | ug/L         | 100   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Magnesium  | 7140    |           | ug/L         | 100   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Manganese  | 131     |           | ug/L         | 2.00  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Potassium  | 1830    |           | ug/L         | 250   | 1                  | 08/10/2015 | sv | 1508038 |
| 200.7  | Sodium     | 9920    |           | ug/L         | 250   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Zinc       | 24.0    |           | ug/L         | 10.0  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.8  | Antimony   | < 1.00  | U         | ug/L         | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Arsenic    | < 2.00  | U         | ug/L         | 0.500 | 1                  | 08/10/2015 | sv | 1508039 |
| 200.8  | Barium     | 46.0    |           | ug/L         | 5.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Cadmium    | 0.190   | J         | ug/L         | 0.100 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Chromium   | 1.77    | J         | ug/L         | 1.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Cobalt     | 0.276   |           | ug/L         | 0.100 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Copper     | 3.58    |           | ug/L         | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Lead       | 0.824   |           | ug/L         | 0.100 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Molybdenum | < 1.00  | U         | ug/L         | 1.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Nickel     | < 1.00  | U         | ug/L         | 0.500 | 1                  | 08/10/2015 | sv | 1508039 |
| 200.8  | Selenium   | < 2.00  | U         | ug/L         | 1.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Silver     | < 1.00  | U         | ug/L         | 0.500 | 1                  | 08/10/2015 | sv | 1508039 |
| 200.8  | Thallium   | < 1.00  | U         | ug/L         | 0.500 | 1                  | 08/10/2015 | sv | 1508039 |
| 200.8  | Vanadium   | < 3.00  | U         | ug/∟<br>ug/L | 2.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 2340B  | Hardness   | 159     | -         | mg/L         | 2     | 1                  | 08/10/2015 | SV | 1508038 |

[none]

# Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: AMIMAS-ROTARY PARK-2005 EPA Tag No:

Date / Time Sampled: Matrix: Surface Water

08/06/15 20:05

Workorder:

C150802

Lab Number:

C150802-11

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 59.4    |           | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Calcium    | 51200   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Iron       | < 250   | U         | ug/L  | 100   | 1                  | 08/10/2015 | sv | 1508038 |
| 200.7  | Magnesium  | 7020    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Manganese  | 75.3    |           | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Potassium  | 1830    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Sodium     | 10200   |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Zinc       | 57.0    |           | ug/L  | 10.0  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.8  | Antimony   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Arsenic    | 0.643   | J         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Barium     | 50.6    |           | ug/L  | 5.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Cadmium    | 0.139   | J         | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Chromium   | 2.12    |           | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Cobalt     | 0.261   |           | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Copper     | 4.09    |           | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Lead       | 3.26    |           | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Molybdenum | < 1.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Nickel     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Selenium   | < 2.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Silver     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Thallium   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Vanadium   | < 3.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 2340B  | Hardness   | 157     |           | mg/L  | 2     | 1                  | 08/10/2015 | SV | 1508038 |

TDF#:

[none]

### Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: AMIMAS-ROTARY PARK-2108 EPA Tag No:

Date / Time Sampled: Matrix: Surface Water

08/06/15 21:08

Workorder:

C150802

Lab Number:

C150802-14 A

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 61.1    |           | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Calcium    | 51700   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Iron       | < 250   | U         | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Magnesium  | 7090    |           | ug/L  | 100   | 1                  | 08/10/2015 | sv | 1508038 |
| 200.7  | Manganese  | 77.2    |           | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Potassium  | 1880    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Sodium     | 10300   |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Zinc       | 61.4    |           | ug/L  | 10.0  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.8  | Antimony   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Arsenic    | < 2.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Barium     | 47.6    |           | ug/L  | 5.00  | 1                  | 08/10/2015 | sv | 1508039 |
| 200.8  | Cadmium    | 0.134   | J         | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Chromium   | 2.31    |           | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Cobalt     | 0.364   |           | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Copper     | 2.55    |           | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Lead       | 0.209   |           | ug/L  | 0.100 | 1                  | 08/10/2015 | sv | 1508039 |
| 200.8  | Molybdenum | < 1.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Nickel     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Selenium   | < 2.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Silver     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | sv | 1508039 |
| 200.8  | Thallium   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Vanadium   | < 3.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 2340B  | Hardness   | 158     |           | mg/L  | 2     | 1                  | 08/10/2015 | SV | 1508038 |

TDF#: [none]

# Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: AMIMAS-ROTARY PARK-2200 Date / Time Sampled: 08/06/15 22:00 Workorder: C150802

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 47.5    | J         | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Calcium    | 52200   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Iron       | < 250   | U         | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Magnesium  | 7140    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Manganese  | 81.0    |           | ug/L  | 2.00  | 1                  | 08/10/2015 | sv | 1508038 |
| 200.7  | Potassium  | 1900    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Sodium     | 10400   |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Zinc       | 47.0    |           | ug/L  | 10.0  | 1                  | 08/10/2015 | sv | 1508038 |
| 200.8  | Antimony   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Arsenic    | < 2.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Barium     | 47.7    |           | ug/L  | 5.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Cadmium    | < 0.200 | J,        | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Chromium   | 1.98    | J         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Cobalt     | 0.295   |           | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Copper     | 3.50    |           | ug/L  | 0.500 | 1                  | 08/10/2015 | sv | 1508039 |
| 200.8  | Lead       | 0.161   | J         | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Molybdenum | < 1.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Nickel     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Selenium   | < 2.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Silver     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Thallium   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Vanadium   | < 3.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 2340B  | Hardness   | 160     |           | mg/L  | 2     | 1                  | 08/10/2015 | SV | 1508038 |

TDF #: [none]

### Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: AMIMAS-ROTARY PARK-2300 Date / Time Sampled: 08/06/15 23:00 Workorder: C150802

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | < 50.0  | U         | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Calcium    | 54800   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Iron       | < 250   | U         | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Magnesium  | 7390    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Manganese  | 158     |           | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Potassium  | 1900    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Sodium     | 10400   |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Zinc       | 21.6    |           | ug/L  | 10.0  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.8  | Antimony   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Arsenic    | < 2.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | sv | 1508039 |
| 200.8  | Barium     | 34.2    |           | ug/L  | 5.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Cadmium    | 0.105   | J         | ug/L  | 0.100 | 1                  | 08/10/2015 | sv | 1508039 |
| 200.8  | Chromium   | 1.93    | J         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Cobalt     | 0.366   |           | ug/L  | 0.100 | 1                  | 08/10/2015 | sv | 1508039 |
| 200.8  | Copper     | 3.68    |           | ug/L  | 0.500 | 1                  | 08/10/2015 | sv | 1508039 |
| 200.8  | Lead       | 0.119   | J         | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Molybdenum | < 1.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Nickel     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | sv | 1508039 |
| 200.8  | Selenium   | < 2.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Silver     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Thallium   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Vanadium   | < 3.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 2340B  | Hardness   | 167     |           | mg/L  | 2     | 1                  | 08/10/2015 | SV | 1508038 |

TDF#: [none]

### Metals (Dissolved) by EPA 200/7000 Series Methods

 Station ID:
 GKMSW01-080815
 Date / Time Sampled:
 08/08/15 10:05
 Workorder:
 C150802

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 42.7    | J         | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Calcium    | 53300   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Iron       | < 250   | U         | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Magnesium  | 7500    |           | ug/L  | 100   | 1                  | 08/10/2015 | sv | 1508038 |
| 200.7  | Manganese  | 102     |           | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Potassium  | 1870    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Sodium     | 10500   |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Zinc       | 22.8    |           | ug/L  | 10.0  | 1                  | 08/10/2015 | sv | 1508038 |
| 200.8  | Antimony   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Arsenic    | < 2.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Barium     | 41.4    |           | ug/L  | 5.00  | 1                  | 08/10/2015 | sv | 1508039 |
| 200.8  | Cadmium    | < 0.200 | J,        | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Chromium   | 1.55    | J         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Cobalt     | 0.653   |           | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Copper     | 1.73    |           | ug/L  | 0.500 | 1                  | 08/10/2015 | sv | 1508039 |
| 200.8  | Lead       | < 0.200 | U         | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Molybdenum | < 1.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Nickel     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | sv | 1508039 |
| 200.8  | Selenium   | < 2.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | sv | 1508039 |
| 200.8  | Silver     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Thallium   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Vanadium   | < 3.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | sv | 1508039 |
| 2340B  | Hardness   | 164     |           | mg/L  | 2     | 1                  | 08/10/2015 | SV | 1508038 |

[none]

### Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: GKMSW01-080915 EPA Tag No: Date / Time Sampled: Matrix: Surface Water Workorder:

08/09/15 12:00

C150802

Lab Number:

C150802-26

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 75.6    |           | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Calcium    | 50700   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Iron       | < 250   | U         | ug/L  | 100   | 1                  | 08/10/2015 | sv | 1508038 |
| 200.7  | Magnesium  | 7270    |           | ug/L  | 100   | 1                  | 08/10/2015 | sv | 1508038 |
| 200.7  | Manganese  | 81.8    |           | ug/L  | 2.00  | 1                  | 08/10/2015 | sv | 1508038 |
| 200.7  | Potassium  | 1770    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Sodium     | 9760    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Zinc       | < 20.0  | U         | ug/L  | 10.0  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.8  | Antimony   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Arsenic    | 0.512   | J         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Barium     | 39.4    |           | ug/L  | 5.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Cadmium    | < 0.200 | J,        | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Chromium   | 3.62    |           | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Cobalt     | 0.872   |           | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Copper     | 2.09    |           | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Lead       | < 0.200 | U         | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Molybdenum | < 1.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Nickel     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Selenium   | < 2.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Silver     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Thallium   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Vanadium   | < 3.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 2340B  | Hardness   | 156     |           | mg/L  | 2     | 1                  | 08/10/2015 | SV | 1508038 |

TDF#: [none]

### Metals (Dissolved) by EPA 200/7000 Series Methods

 Station ID:
 GKMSW02-080815
 Date / Time Sampled:
 08/08/15 12:30
 Workorder:
 C150802

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 46.3    | J         | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Calcium    | 35100   |           | ug/L  | 100   | 1                  | 08/10/2015 | sv | 1508038 |
| 200.7  | Iron       | < 250   | U         | ug/L  | 100   | 1                  | 08/10/2015 | sv | 1508038 |
| 200.7  | Magnesium  | 4390    |           | ug/L  | 100   | 1                  | 08/10/2015 | sv | 1508038 |
| 200.7  | Manganese  | 443     |           | ug/L  | 2.00  | 1                  | 08/10/2015 | sv | 1508038 |
| 200.7  | Potassium  | 700     | J         | ug/L  | 250   | 1                  | 08/10/2015 | sv | 1508038 |
| 200.7  | Sodium     | 2170    |           | ug/L  | 250   | 1                  | 08/10/2015 | sv | 1508038 |
| 200.7  | Zinc       | 62.4    |           | ug/L  | 10.0  | 1                  | 08/10/2015 | sv | 1508038 |
| 200.8  | Antimony   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Arsenic    | < 2.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | sv | 1508039 |
| 200.8  | Barium     | 28.1    |           | ug/L  | 5.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Cadmium    | 0.282   | J         | ug/L  | 0.100 | 1                  | 08/10/2015 | sv | 1508039 |
| 200.8  | Chromium   | < 2.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Cobalt     | 1.39    |           | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Copper     | 2.31    |           | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Lead       | < 0.200 | U         | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Molybdenum | < 1.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Nickel     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Selenium   | < 2.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | sv | 1508039 |
| 200.8  | Silver     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Thallium   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Vanadium   | < 3.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | sv | 1508039 |
| 2340B  | Hardness   | 106     |           | mg/L  | 2     | 1                  | 08/10/2015 | sv | 1508038 |

TDF#: [none]

### Metals (Dissolved) by EPA 200/7000 Series Methods

 Station ID:
 GKMSW02-080915
 Date / Time Sampled:
 08/09/15 11:37
 Workorder:
 C150802

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 46.8    | J         | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Calcium    | 35400   |           | ug/L  | 100   | 1                  | 08/10/2015 | sv | 1508038 |
| 200.7  | Iron       | < 250   | U         | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Magnesium  | 4370    |           | ug/L  | 100   | 1                  | 08/10/2015 | sv | 1508038 |
| 200.7  | Manganese  | 403     |           | ug/L  | 2.00  | 1                  | 08/10/2015 | sv | 1508038 |
| 200.7  | Potassium  | 785     | J         | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Sodium     | 2220    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Zinc       | 96.8    |           | ug/L  | 10.0  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.8  | Antimony   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | sv | 1508039 |
| 200.8  | Arsenic    | < 2.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | sv | 1508039 |
| 200.8  | Barium     | 29.6    |           | ug/L  | 5.00  | 1                  | 08/10/2015 | sv | 1508039 |
| 200.8  | Cadmium    | 0.551   | J         | ug/L  | 0.100 | 1                  | 08/10/2015 | sv | 1508039 |
| 200.8  | Chromium   | 1.10    | J         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Cobalt     | 1.84    |           | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Copper     | 3.90    |           | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Lead       | < 0.200 | U         | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Molybdenum | < 1.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Nickel     | 0.507   | J         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Selenium   | < 2.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Silver     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Thallium   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Vanadium   | < 3.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 2340B  | Hardness   | 106     |           | mg/L  | 2     | 1                  | 08/10/2015 | sv | 1508038 |

[none]

### Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: GKMSW03-080815 EPA Tag No: Date / Time Sampled: Matrix: Surface Water 08/08/15 14:35

Workorder: C

C150802

Lab Number:

C150802-35

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 28.3    | J         | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Calcium    | 50800   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Iron       | 1140    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Magnesium  | 3910    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Manganese  | 1070    |           | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Potassium  | 626     | J         | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Sodium     | 2300    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Zinc       | 493     |           | ug/L  | 10.0  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.8  | Antimony   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Arsenic    | < 2.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Barium     | 21.7    |           | ug/L  | 5.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Cadmium    | 1.56    | J         | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Chromium   | < 2.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Cobalt     | 4.52    |           | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Copper     | 10.6    |           | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Lead       | < 0.200 | U         | ug/L  | 0.100 | 1                  | 08/10/2015 | sv | 1508039 |
| 200.8  | Molybdenum | < 1.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Nickel     | 1.60    |           | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Selenium   | < 2.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Silver     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | sv | 1508039 |
| 200.8  | Thallium   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | sv | 1508039 |
| 200.8  | Vanadium   | < 3.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 2340B  | Hardness   | 143     |           | mg/L  | 2     | 1                  | 08/10/2015 | sv | 1508038 |

TDF#: [none]

### Metals (Dissolved) by EPA 200/7000 Series Methods

 Station ID:
 GKMSW03-080915
 Date / Time Sampled:
 08/09/15 13:27
 Workorder:
 C150802

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 23.1    | J         | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Calcium    | 53300   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Iron       | 1330    |           | ug/L  | 100   | 1                  | 08/10/2015 | sv | 1508038 |
| 200.7  | Magnesium  | 4070    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Manganese  | 1110    |           | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Potassium  | 761     | J         | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Sodium     | 2470    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508038 |
| 200.7  | Zinc       | 529     |           | ug/L  | 10.0  | 1                  | 08/10/2015 | SV | 1508038 |
| 200.8  | Antimony   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Arsenic    | < 2.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Barium     | 21.1    |           | ug/L  | 5.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Cadmium    | 1.69    | J         | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Chromium   | < 2.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Cobalt     | 4.94    |           | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Copper     | 16.8    |           | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Lead       | < 0.200 | U         | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Molybdenum | < 1.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Nickel     | 1.62    |           | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Selenium   | < 2.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Silver     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Thallium   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508039 |
| 200.8  | Vanadium   | < 3.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508039 |
| 2340B  | Hardness   | 150     |           | mg/L  | 2     | 1                  | 08/10/2015 | SV | 1508038 |

Α

TDF#:

[none]

#### Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: Date / Time Sampled: 08/08/15 11:10 GKMSW04-080815

Workorder: C150802 **EPA Tag No:** Matrix: Surface Water Lab Number: C150802-41

Dilution MDL Method Parameter Analyzed Ву Batch Results Qualifier Units **Factor** 200.7 Aluminum 1 08/10/2015 SV 1508041 < 50.0 U ug/L 20.0 200.7 Beryllium 1 08/10/2015 SV 1508041 < 5.00 U ug/L 2.00 100 200.7 Calcium 52000 ug/L 1 08/10/2015 SV 1508041 200.7 Iron 1 08/10/2015 SV 1508041 U 100 < 250 ug/L 200.7 Magnesium 6990 ug/L 100 1 08/10/2015 SV 1508041 200.7 2.00 Manganese 146 ug/L 1 08/10/2015 SV 1508041 200.7 Potassium 1800 ug/L 250 1 08/10/2015 SV 1508041 200.7 Sodium 10000 ug/L 250 08/10/2015 1508041 1 SV 200.7 Zinc 66.0 10.0 1 08/10/2015 SV 1508041 ug/L 200.8 Antimony 1 08/10/2015 SV 1508042 < 1.00 U ug/L 0.500 200.8 Arsenic 1 08/10/2015 SV 1508042 < 2.00 U 0.500 ug/L 40.5 5.00 200.8 **Barium** ug/L 1 08/10/2015 SV 1508042 200.8 Cadmium 0.232 J ug/L 0.100 1 08/10/2015 SV 1508042 J 200.8 Chromium 1.57 ug/L 1.00 1 08/10/2015 SV 1508042 200.8 Cobalt 1508042 1.58 ug/L 0.100 1 08/10/2015 SV 200.8 Copper 1.93 ug/L 0.500 1 08/10/2015 SV 1508042 200.8 Lead 1 08/10/2015 SV 1508042 < 0.200 U ug/L 0.100 200.8 1508042 Molybdenum 1 08/10/2015 SV < 1.00 U ug/L 1.00 200.8 Nickel 1 08/10/2015 SV 1508042 0.500 < 1.00 U ug/L 200.8 Selenium 1 08/10/2015 SV 1508042 ug/L < 2.00 U 1.00 200.8 Silver 1 08/10/2015 SV 1508042 < 1.00 U ug/L 0.500 200.8 Thallium 08/10/2015 SV 1508042 1 U 0.500 < 1.00 ug/L 08/10/2015 1508042 200.8 Vanadium 1 SV U 2.00 < 3.00 ug/L

mg/L

2

1

08/10/2015

SV

1508041

2340B

Hardness

159

TDF#: [none]

### Metals (Dissolved) by EPA 200/7000 Series Methods

 Station ID:
 GKMSW04-080915
 Date / Time Sampled:
 08/09/15 12:45
 Workorder:
 C150802

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 27.1    | J         | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Calcium    | 49100   |           | ug/L  | 100   | 1                  | 08/10/2015 | sv | 1508041 |
| 200.7  | Iron       | < 250   | U         | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Magnesium  | 6810    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Manganese  | 141     |           | ug/L  | 2.00  | 1                  | 08/10/2015 | sv | 1508041 |
| 200.7  | Potassium  | 1730    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Sodium     | 9460    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Zinc       | 51.7    |           | ug/L  | 10.0  | 1                  | 08/10/2015 | sv | 1508041 |
| 200.8  | Antimony   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Arsenic    | < 2.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Barium     | 39.6    |           | ug/L  | 5.00  | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Cadmium    | 0.261   | J         | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Chromium   | 2.87    |           | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Cobalt     | 0.945   |           | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Copper     | 1.99    |           | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Lead       | < 0.200 | U         | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Molybdenum | < 1.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Nickel     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Selenium   | < 2.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | sv | 1508042 |
| 200.8  | Silver     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Thallium   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Vanadium   | < 3.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508042 |
| 2340B  | Hardness   | 151     |           | mg/L  | 2     | 1                  | 08/10/2015 | sv | 1508041 |

TDF#: [none]

### Metals (Dissolved) by EPA 200/7000 Series Methods

**Station ID:** GKMSW05-080815 **Date / Time Sampled:** 08/08/15 11:50 **Workorder:** C150802

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 30.7    | J         | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Calcium    | 52300   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Iron       | < 250   | U         | ug/L  | 100   | 1                  | 08/10/2015 | sv | 1508041 |
| 200.7  | Magnesium  | 7220    |           | ug/L  | 100   | 1                  | 08/10/2015 | sv | 1508041 |
| 200.7  | Manganese  | 128     |           | ug/L  | 2.00  | 1                  | 08/10/2015 | sv | 1508041 |
| 200.7  | Potassium  | 1840    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Sodium     | 10100   |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Zinc       | 39.7    |           | ug/L  | 10.0  | 1                  | 08/10/2015 | sv | 1508041 |
| 200.8  | Antimony   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Arsenic    | < 2.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Barium     | 41.4    |           | ug/L  | 5.00  | 1                  | 08/10/2015 | sv | 1508042 |
| 200.8  | Cadmium    | 0.153   | J         | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Chromium   | 1.68    | J         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Cobalt     | 0.581   |           | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Copper     | 1.81    |           | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Lead       | < 0.200 | U         | ug/L  | 0.100 | 1                  | 08/10/2015 | sv | 1508042 |
| 200.8  | Molybdenum | < 1.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Nickel     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Selenium   | < 2.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | sv | 1508042 |
| 200.8  | Silver     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Thallium   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | sv | 1508042 |
| 200.8  | Vanadium   | < 3.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508042 |
| 2340B  | Hardness   | 160     | -         | mg/L  | 2     | 1                  | 08/10/2015 | SV | 1508041 |

TDF#: [none]

### Metals (Dissolved) by EPA 200/7000 Series Methods

 Station ID:
 GKMSW05-080915
 Date / Time Sampled:
 08/09/15 12:25
 Workorder:
 C150802

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 41.6    | J         | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Calcium    | 50000   |           | ug/L  | 100   | 1                  | 08/10/2015 | sv | 1508041 |
| 200.7  | Iron       | < 250   | U         | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Magnesium  | 6940    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Manganese  | 119     |           | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Potassium  | 1710    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Sodium     | 9440    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Zinc       | 25.6    |           | ug/L  | 10.0  | 1                  | 08/10/2015 | SV | 1508041 |
| 200.8  | Antimony   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Arsenic    | < 2.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Barium     | 39.8    |           | ug/L  | 5.00  | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Cadmium    | 0.116   | J         | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Chromium   | 2.69    |           | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Cobalt     | 0.819   |           | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Copper     | 1.97    |           | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Lead       | < 0.200 | U         | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Molybdenum | < 1.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Nickel     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | sv | 1508042 |
| 200.8  | Selenium   | < 2.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Silver     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Thallium   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Vanadium   | < 3.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508042 |
| 2340B  | Hardness   | 153     |           | mg/L  | 2     | 1                  | 08/10/2015 | SV | 1508041 |

TDF#: [none]

### Metals (Dissolved) by EPA 200/7000 Series Methods

 Station ID:
 GKMSW06-080815
 Date / Time Sampled:
 08/08/15 00:00
 Workorder:
 C150802

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 45.0    | J         | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Calcium    | 35200   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Iron       | < 250   | U         | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Magnesium  | 4380    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Manganese  | 444     |           | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Potassium  | 687     | J         | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Sodium     | 2170    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Zinc       | 61.5    |           | ug/L  | 10.0  | 1                  | 08/10/2015 | SV | 1508041 |
| 200.8  | Antimony   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Arsenic    | < 2.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Barium     | 28.3    |           | ug/L  | 5.00  | 1                  | 08/10/2015 | sv | 1508042 |
| 200.8  | Cadmium    | 0.344   | J         | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Chromium   | < 2.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Cobalt     | 1.73    |           | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Copper     | 2.44    |           | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Lead       | < 0.200 | U         | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Molybdenum | < 1.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Nickel     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Selenium   | < 2.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Silver     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Thallium   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Vanadium   | < 3.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508042 |
| 2340B  | Hardness   | 106     |           | mg/L  | 2     | 1                  | 08/10/2015 | sv | 1508041 |

[none]

### Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: EPA Tag No:

GKMSW07-080815

Date / Time Sampled: Matrix: Surface Water

08/08/15 13:50

Workorder:

C150802

Lab Number:

C150802-56

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 6940    |           | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Calcium    | 139000  |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Iron       | 14700   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Magnesium  | 9440    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Manganese  | 5460    |           | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Potassium  | 1340    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Sodium     | 3620    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Zinc       | 3370    |           | ug/L  | 10.0  | 1                  | 08/10/2015 | SV | 1508041 |
| 200.8  | Antimony   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Arsenic    | < 10.0  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Barium     | < 50.0  | U         | ug/L  | 25.0  | 5                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Cadmium    | 10.7    | J         | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Chromium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Cobalt     | 24.2    |           | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Copper     | 437     |           | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Lead       | 27.6    |           | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Molybdenum | < 5.00  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Nickel     | 11.7    |           | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Selenium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Silver     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Thallium   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Vanadium   | < 15.0  | U         | ug/L  | 10.0  | 5                  | 08/10/2015 | SV | 1508042 |
| 2340B  | Hardness   | 386     |           | mg/L  | 2     | 1                  | 08/10/2015 | SV | 1508041 |

TDF#: [none]

### Metals (Dissolved) by EPA 200/7000 Series Methods

 Station ID:
 GKMSW08-080815
 Date / Time Sampled:
 08/08/15 14:10
 Workorder:
 C150802

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 67.1    |           | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Calcium    | 37800   |           | ug/L  | 100   | 1                  | 08/10/2015 | sv | 1508041 |
| 200.7  | Iron       | < 250   | U         | ug/L  | 100   | 1                  | 08/10/2015 | sv | 1508041 |
| 200.7  | Magnesium  | 2590    |           | ug/L  | 100   | 1                  | 08/10/2015 | sv | 1508041 |
| 200.7  | Manganese  | 816     |           | ug/L  | 2.00  | 1                  | 08/10/2015 | sv | 1508041 |
| 200.7  | Potassium  | 530     | J         | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Sodium     | 1720    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Zinc       | 224     |           | ug/L  | 10.0  | 1                  | 08/10/2015 | sv | 1508041 |
| 200.8  | Antimony   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Arsenic    | < 2.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | sv | 1508042 |
| 200.8  | Barium     | 20.3    |           | ug/L  | 5.00  | 1                  | 08/10/2015 | sv | 1508042 |
| 200.8  | Cadmium    | 0.708   | J         | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Chromium   | < 2.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Cobalt     | 0.775   |           | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Copper     | 3.12    |           | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Lead       | < 0.200 | U         | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Molybdenum | 1.52    |           | ug/L  | 1.00  | 1                  | 08/10/2015 | sv | 1508042 |
| 200.8  | Nickel     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | sv | 1508042 |
| 200.8  | Selenium   | < 2.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Silver     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Thallium   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Vanadium   | < 3.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508042 |
| 2340B  | Hardness   | 105     |           | mg/L  | 2     | 1                  | 08/10/2015 | sv | 1508041 |

TDF#: [none]

### Metals (Dissolved) by EPA 200/7000 Series Methods

**Station ID:** GKMSW08-080915 **Date / Time Sampled:** 08/09/15 13:00 **Workorder:** C150802

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 57.7    |           | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Calcium    | 39300   |           | ug/L  | 100   | 1                  | 08/10/2015 | sv | 1508041 |
| 200.7  | Iron       | < 250   | U         | ug/L  | 100   | 1                  | 08/10/2015 | sv | 1508041 |
| 200.7  | Magnesium  | 2680    |           | ug/L  | 100   | 1                  | 08/10/2015 | sv | 1508041 |
| 200.7  | Manganese  | 784     |           | ug/L  | 2.00  | 1                  | 08/10/2015 | sv | 1508041 |
| 200.7  | Potassium  | 525     | J         | ug/L  | 250   | 1                  | 08/10/2015 | sv | 1508041 |
| 200.7  | Sodium     | 1770    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Zinc       | 225     |           | ug/L  | 10.0  | 1                  | 08/10/2015 | sv | 1508041 |
| 200.8  | Antimony   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Arsenic    | < 2.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | sv | 1508042 |
| 200.8  | Barium     | 20.7    |           | ug/L  | 5.00  | 1                  | 08/10/2015 | sv | 1508042 |
| 200.8  | Cadmium    | 0.881   | J         | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Chromium   | < 2.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | sv | 1508042 |
| 200.8  | Cobalt     | 0.761   |           | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Copper     | 3.20    |           | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Lead       | < 0.200 | U         | ug/L  | 0.100 | 1                  | 08/10/2015 | sv | 1508042 |
| 200.8  | Molybdenum | 1.52    |           | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Nickel     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Selenium   | < 2.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Silver     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Thallium   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Vanadium   | < 3.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508042 |
| 2340B  | Hardness   | 109     |           | mg/L  | 2     | 1                  | 08/10/2015 | sv | 1508041 |

TDF#:

[none]

### Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: GKMSW12-080915 EPA Tag No: Date / Time Sampled: 08/0 Matrix: Surface Water

08/09/15 14:00

Workorder: C150802

Lab Number:

C150802-65 A

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 32.9    | J         | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Calcium    | 50100   |           | ug/L  | 100   | 1                  | 08/10/2015 | sv | 1508041 |
| 200.7  | Iron       | < 250   | U         | ug/L  | 100   | 1                  | 08/10/2015 | sv | 1508041 |
| 200.7  | Magnesium  | 6930    |           | ug/L  | 100   | 1                  | 08/10/2015 | sv | 1508041 |
| 200.7  | Manganese  | 144     |           | ug/L  | 2.00  | 1                  | 08/10/2015 | sv | 1508041 |
| 200.7  | Potassium  | 1750    |           | ug/L  | 250   | 1                  | 08/10/2015 | sv | 1508041 |
| 200.7  | Sodium     | 9670    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Zinc       | 49.7    |           | ug/L  | 10.0  | 1                  | 08/10/2015 | SV | 1508041 |
| 200.8  | Antimony   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | sv | 1508042 |
| 200.8  | Arsenic    | < 2.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Barium     | 40.8    |           | ug/L  | 5.00  | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Cadmium    | 0.208   | J         | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Chromium   | 2.20    |           | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Cobalt     | 0.896   |           | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Copper     | 1.96    |           | ug/L  | 0.500 | 1                  | 08/10/2015 | sv | 1508042 |
| 200.8  | Lead       | < 0.200 | U         | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Molybdenum | < 1.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Nickel     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | sv | 1508042 |
| 200.8  | Selenium   | < 2.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | sv | 1508042 |
| 200.8  | Silver     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Thallium   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Vanadium   | < 3.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508042 |
| 2340B  | Hardness   | 154     |           | mg/L  | 2     | 1                  | 08/10/2015 | sv | 1508041 |

[none]

### Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: GKMTB01-080815 EPA Tag No:

Date / Time Sampled: 08
Matrix: Surface Water

08/08/15 00:00

Workorder:

C150802

Lab Number:

C150802-68 A

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | < 50.0  | U         | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Calcium    | < 250   | U         | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Iron       | < 250   | U         | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Magnesium  | < 250   | U         | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Manganese  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Potassium  | < 1000  | U         | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Sodium     | < 1000  | U         | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508041 |
| 200.7  | Zinc       | 14.0    | J         | ug/L  | 10.0  | 1                  | 08/10/2015 | SV | 1508041 |
| 200.8  | Antimony   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Arsenic    | < 2.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Barium     | < 10.0  | U         | ug/L  | 5.00  | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Cadmium    | < 0.200 | J,        | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Chromium   | < 2.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Cobalt     | < 0.200 | U         | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Copper     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Lead       | < 0.200 | U         | ug/L  | 0.100 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Molybdenum | < 1.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Nickel     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Selenium   | < 2.00  | U         | ug/L  | 1.00  | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Silver     | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Thallium   | < 1.00  | U         | ug/L  | 0.500 | 1                  | 08/10/2015 | SV | 1508042 |
| 200.8  | Vanadium   | < 3.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508042 |
| 2340B  | Hardness   | < 2     |           | mg/L  | 2     | 1                  | 08/10/2015 | SV | 1508041 |

<sup>&</sup>quot;J" Qualifier indicates an estimated value

TDF #: [none]

# Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: AMIMAS-ROTARY PARK-0000 Date / Time Sampled: 08/07/15 00:00 Workorder: C150802

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 9210    |           | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Calcium    | 65300   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Iron       | 93500   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Magnesium  | 10400   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Manganese  | 998     |           | ug/L  | 2.00  | 1                  | 08/10/2015 | sv | 1508043 |
| 200.7  | Potassium  | 4740    |           | ug/L  | 250   | 1                  | 08/10/2015 | sv | 1508043 |
| 200.7  | Sodium     | 10900   |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Zinc       | 750     |           | ug/L  | 10.0  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Antimony   | 10.9    |           | ug/L  | 2.50  | 5                  | 08/10/2015 | sv | 1508043 |
| 200.8  | Arsenic    | 72.2    |           | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Barium     | 208     |           | ug/L  | 25.0  | 5                  | 08/10/2015 | sv | 1508043 |
| 200.8  | Cadmium    | 2.35    |           | ug/L  | 0.500 | 5                  | 08/10/2015 | sv | 1508043 |
| 200.8  | Chromium   | 6.76    | J         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Cobalt     | 3.70    |           | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Copper     | 278     |           | ug/L  | 2.50  | 5                  | 08/10/2015 | sv | 1508043 |
| 200.8  | Lead       | 2000    |           | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Molybdenum | 20.2    |           | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Nickel     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | sv | 1508043 |
| 200.8  | Selenium   | 6.91    | J         | ug/L  | 5.00  | 5                  | 08/10/2015 | sv | 1508043 |
| 200.8  | Silver     | 13.6    |           | ug/L  | 2.50  | 5                  | 08/10/2015 | sv | 1508043 |
| 200.8  | Thallium   | 11.6    |           | ug/L  | 2.50  | 5                  | 08/10/2015 | sv | 1508043 |
| 200.8  | Vanadium   | 52.2    |           | ug/L  | 10.0  | 5                  | 08/10/2015 | SV | 1508043 |

[none]

# Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: AMIMAS-ROTARY PARK-0030 EPA Tag No:

Date / Time Sampled: Matrix: Surface Water

08/07/15 00:30

Workorder: C150802

Lab Number:

C150802-04

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 12300   |           | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Calcium    | 66600   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Iron       | 121000  |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Magnesium  | 11100   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Manganese  | 1330    |           | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Potassium  | 5410    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Sodium     | 10600   |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Zinc       | 980     |           | ug/L  | 10.0  | 1                  | 08/10/2015 | sv | 1508043 |
| 200.8  | Antimony   | 10.3    |           | ug/L  | 2.50  | 5                  | 08/10/2015 | sv | 1508043 |
| 200.8  | Arsenic    | 87.5    |           | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Barium     | 207     |           | ug/L  | 25.0  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Cadmium    | 2.85    |           | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Chromium   | 7.85    | J         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Cobalt     | 5.12    |           | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Copper     | 395     |           | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Lead       | 2620    |           | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Molybdenum | 25.8    |           | ug/L  | 5.00  | 5                  | 08/10/2015 | sv | 1508043 |
| 200.8  | Nickel     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | sv | 1508043 |
| 200.8  | Selenium   | 6.67    | J         | ug/L  | 5.00  | 5                  | 08/10/2015 | sv | 1508043 |
| 200.8  | Silver     | 16.3    |           | ug/L  | 2.50  | 5                  | 08/10/2015 | sv | 1508043 |
| 200.8  | Thallium   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Vanadium   | 60.8    |           | ug/L  | 10.0  | 5                  | 08/10/2015 | SV | 1508043 |

[none]

# Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: AMIMAS-ROTARY PARK-1000 EPA Tag No:

Date / Time Sampled: Matrix: Surface Water 08/07/15 10:00

Workorder: C15

C150802

Lab Number:

C150802-07

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 3000    |           | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Calcium    | 53500   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Iron       | 14300   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Magnesium  | 7590    |           | ug/L  | 100   | 1                  | 08/10/2015 | sv | 1508043 |
| 200.7  | Manganese  | 245     |           | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Potassium  | 2760    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Sodium     | 10100   |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Zinc       | 226     |           | ug/L  | 10.0  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Antimony   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Arsenic    | 12.6    |           | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Barium     | 60.7    |           | ug/L  | 25.0  | 5                  | 08/10/2015 | sv | 1508043 |
| 200.8  | Cadmium    | 1.12    |           | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Chromium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Cobalt     | 0.868   | J         | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Copper     | 57.0    |           | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Lead       | 192     |           | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Molybdenum | < 5.00  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Nickel     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Selenium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | sv | 1508043 |
| 200.8  | Silver     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Thallium   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Vanadium   | < 15.0  | U         | ug/L  | 10.0  | 5                  | 08/10/2015 | SV | 1508043 |

7210

90.1

1920

10600

Certificate of Analysis

08/10/2015

08/10/2015

08/10/2015

SV

SV

SV

SV

1508043

1508043

1508043

C150802

Workorder:

1

1

1

TDF#: [none]

Magnesium

Manganese

Potassium

Sodium

200.7

200.7

200.7

200.7

200.7

200.8

200.8

200.8

200.8

200.8

200.8

200.8

200.8

200.8

200.8

200.8

200.8

200.8

200.8

#### Metals (Total Recov) by EPA 200/7000 Series Methods

Date / Time Sampled: Station ID: AMIMAS-ROTARY PARK-2005

**EPA Tag No:** Matrix: Surface Water

Lab Number: C150802-10 Α Dilution MDL Method **Parameter** Analyzed Ву Batch Results Qualifier Units **Factor** 200.7 **Aluminum** 122 ug/L 20.0 1 08/10/2015 SV 1508043 1 200.7 Beryllium 1508043 08/10/2015 SV < 5.00 U ug/L 2.00 100 08/10/2015 200.7 Calcium 53100 ug/L 1 SV 1508043 100 200.7 Iron 152 J ug/L 1 08/10/2015 SV 1508043

ug/L

ug/L

ug/L

08/06/15 20:05

100

2.00

250

TDF#: [none]

# Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: AMIMAS-ROTARY PARK-2108 EPA Tag No:

Date / Time Sampled: Matrix: Surface Water

08/06/15 21:08

Workorder: C150802

Lab Number:

C150802-13 A

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 119     |           | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Calcium    | 52900   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Iron       | 163     | J         | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Magnesium  | 7170    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Manganese  | 92.4    |           | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Potassium  | 1910    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Sodium     | 10500   |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Zinc       | 61.2    |           | ug/L  | 10.0  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Antimony   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Arsenic    | < 10.0  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Barium     | 45.1    | J         | ug/L  | 25.0  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Cadmium    | < 1.00  | U         | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Chromium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Cobalt     | < 1.00  | U         | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Copper     | 2.57    | J         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Lead       | 1.41    |           | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Molybdenum | < 5.00  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Nickel     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Selenium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Silver     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Thallium   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Vanadium   | < 15.0  | U         | ug/L  | 10.0  | 5                  | 08/10/2015 | sv | 1508043 |

TDF #: [none]

# Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: AMIMAS-ROTARY PARK-2200 EPA Tag No:

Date / Time Sampled: Matrix: Surface Water

08/06/15 22:00

Workorder: C150802

Lab Number:

C150802-16 A

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 227     |           | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Calcium    | 54100   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Iron       | 670     |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Magnesium  | 7310    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Manganese  | 108     |           | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Potassium  | 1970    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Sodium     | 10600   |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Zinc       | 66.8    |           | ug/L  | 10.0  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Antimony   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Arsenic    | < 10.0  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Barium     | 46.0    | J         | ug/L  | 25.0  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Cadmium    | < 1.00  | U         | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Chromium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Cobalt     | < 1.00  | U         | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Copper     | 3.65    | J         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Lead       | 10.1    |           | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Molybdenum | < 5.00  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Nickel     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Selenium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Silver     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Thallium   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Vanadium   | < 15.0  | U         | ug/L  | 10.0  | 5                  | 08/10/2015 | SV | 1508043 |

TDF #: [none]

# Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: AMIMAS-ROTARY PARK-2300 Date / Time Sampled: 08/06/15 23:00 Workorder: C150802

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 5530    |           | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Calcium    | 57300   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Iron       | 23200   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Magnesium  | 8250    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Manganese  | 341     |           | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Potassium  | 4150    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Sodium     | 10600   |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Zinc       | 244     |           | ug/L  | 10.0  | 1                  | 08/10/2015 | sv | 1508043 |
| 200.8  | Antimony   | 3.07    | J         | ug/L  | 2.50  | 5                  | 08/10/2015 | sv | 1508043 |
| 200.8  | Arsenic    | 14.7    |           | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Barium     | 92.5    |           | ug/L  | 25.0  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Cadmium    | 0.603   | J         | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Chromium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Cobalt     | 1.05    |           | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Copper     | 69.5    |           | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Lead       | 470     |           | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Molybdenum | 5.14    |           | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Nickel     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Selenium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Silver     | 3.06    | J         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Thallium   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Vanadium   | 14.6    | J         | ug/L  | 10.0  | 5                  | 08/10/2015 | SV | 1508043 |

[none]

# Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: GKMSW01-080815 EPA Tag No:

Date / Time Sampled: Matrix: Surface Water

08/08/15 10:05

Workorder: C150802

Lab N

| ļ | u | n | n | Ľ | K | • | r |  |  |  |  | L | , | ľ | С | H | J | Č | 5 | U | J, | _ | È | 2 | 4 | 2 |  |  | 1 | 4 | ١ |  |
|---|---|---|---|---|---|---|---|--|--|--|--|---|---|---|---|---|---|---|---|---|----|---|---|---|---|---|--|--|---|---|---|--|
|   |   |   |   |   |   |   |   |  |  |  |  |   |   |   |   |   |   |   |   |   |    |   |   |   |   |   |  |  |   |   |   |  |
|   |   |   |   |   |   |   |   |  |  |  |  |   |   |   |   |   |   |   |   |   |    |   |   |   |   |   |  |  |   |   |   |  |
|   |   |   |   |   |   |   |   |  |  |  |  |   |   |   |   |   |   |   |   |   |    |   |   |   |   |   |  |  |   |   |   |  |
|   |   |   |   |   |   |   |   |  |  |  |  |   |   |   |   |   |   |   |   |   |    |   |   |   |   |   |  |  |   |   |   |  |

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 811     |           | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Calcium    | 55200   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Iron       | 2930    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Magnesium  | 7940    |           | ug/L  | 100   | 1                  | 08/10/2015 | sv | 1508043 |
| 200.7  | Manganese  | 151     |           | ug/L  | 2.00  | 1                  | 08/10/2015 | sv | 1508043 |
| 200.7  | Potassium  | 2260    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Sodium     | 10900   |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Zinc       | 91.5    |           | ug/L  | 10.0  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Antimony   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Arsenic    | < 10.0  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | sv | 1508043 |
| 200.8  | Barium     | 47.9    | J         | ug/L  | 25.0  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Cadmium    | < 1.00  | U         | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Chromium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Cobalt     | < 1.00  | U         | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Copper     | 13.8    |           | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Lead       | 34.1    | J         | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Molybdenum | < 5.00  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Nickel     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Selenium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | sv | 1508043 |
| 200.8  | Silver     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Thallium   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Vanadium   | < 15.0  | U         | ug/L  | 10.0  | 5                  | 08/10/2015 | SV | 1508043 |

TDF #: [none]

### Metals (Total Recov) by EPA 200/7000 Series Methods

 Station ID:
 GKMSW01-080915
 Date / Time Sampled:
 08/09/15 12:00
 Workorder:
 C150802

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 497     |           | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Calcium    | 51600   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Iron       | 1410    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Magnesium  | 7360    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Manganese  | 121     |           | ug/L  | 2.00  | 1                  | 08/10/2015 | sv | 1508043 |
| 200.7  | Potassium  | 1940    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Sodium     | 9930    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Zinc       | 66.8    |           | ug/L  | 10.0  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Antimony   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Arsenic    | 2.68    | J         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Barium     | 43.3    | J         | ug/L  | 25.0  | 5                  | 08/10/2015 | sv | 1508043 |
| 200.8  | Cadmium    | < 1.00  | U         | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Chromium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Cobalt     | < 1.00  | U         | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Copper     | 9.13    |           | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Lead       | 19.7    |           | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Molybdenum | < 5.00  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | sv | 1508043 |
| 200.8  | Nickel     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Selenium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Silver     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Thallium   | 11.9    |           | ug/L  | 2.50  | 5                  | 08/10/2015 | sv | 1508043 |
| 200.8  | Vanadium   | < 15.0  | U         | ug/L  | 10.0  | 5                  | 08/10/2015 | SV | 1508043 |

TDF#: [none]

### Metals (Total Recov) by EPA 200/7000 Series Methods

 Station ID:
 GKMSW02-080815
 Date / Time Sampled:
 08/08/15 12:30
 Workorder:
 C150802

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 1580    |           | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Calcium    | 35800   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Iron       | 5370    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Magnesium  | 4560    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Manganese  | 502     |           | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Potassium  | 1080    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Sodium     | 2200    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Zinc       | 251     |           | ug/L  | 10.0  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Antimony   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Arsenic    | 5.99    | J         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Barium     | 34.6    | J         | ug/L  | 25.0  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Cadmium    | 0.897   | J         | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Chromium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Cobalt     | 1.88    |           | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Copper     | 32.4    |           | ug/L  | 2.50  | 5                  | 08/10/2015 | sv | 1508043 |
| 200.8  | Lead       | 61.2    |           | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Molybdenum | < 5.00  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Nickel     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Selenium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Silver     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Thallium   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Vanadium   | < 15.0  | U         | ug/L  | 10.0  | 5                  | 08/10/2015 | SV | 1508043 |

TDF#: [none]

### Metals (Total Recov) by EPA 200/7000 Series Methods

 Station ID:
 GKMSW02-080915
 Date / Time Sampled:
 08/09/15 11:37
 Workorder:
 C150802

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 696     |           | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Calcium    | 36800   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Iron       | 1770    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Magnesium  | 4500    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Manganese  | 426     |           | ug/L  | 2.00  | 1                  | 08/10/2015 | sv | 1508043 |
| 200.7  | Potassium  | 870     | J         | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Sodium     | 2240    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Zinc       | 205     |           | ug/L  | 10.0  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Antimony   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Arsenic    | < 10.0  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Barium     | 32.5    | J         | ug/L  | 25.0  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Cadmium    | 0.618   | J         | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Chromium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | sv | 1508043 |
| 200.8  | Cobalt     | 1.57    |           | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Copper     | 21.9    |           | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Lead       | 12.0    |           | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Molybdenum | < 5.00  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Nickel     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Selenium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Silver     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Thallium   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Vanadium   | < 15.0  | U         | ug/L  | 10.0  | 5                  | 08/10/2015 | SV | 1508043 |

TDF #: [none]

#### Metals (Total Recov) by EPA 200/7000 Series Methods

 Station ID:
 GKMSW03-080815
 Date / Time Sampled:
 08/08/15 14:35
 Workorder:
 C150802

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 1520    |           | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Calcium    | 52200   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Iron       | 3550    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Magnesium  | 3980    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Manganese  | 1100    |           | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Potassium  | 719     | J         | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Sodium     | 2310    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Zinc       | 531     |           | ug/L  | 10.0  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Antimony   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Arsenic    | < 10.0  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Barium     | < 50.0  | U         | ug/L  | 25.0  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Cadmium    | 1.61    |           | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Chromium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Cobalt     | 4.18    |           | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Copper     | 54.8    |           | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Lead       | 18.7    |           | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Molybdenum | < 5.00  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Nickel     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Selenium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Silver     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Thallium   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Vanadium   | < 15.0  | U         | ug/L  | 10.0  | 5                  | 08/10/2015 | SV | 1508043 |

TDF#: [none]

### Metals (Total Recov) by EPA 200/7000 Series Methods

 Station ID:
 GKMSW03-080915
 Date / Time Sampled:
 08/09/15 13:27
 Workorder:
 C150802

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 1580    |           | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Calcium    | 54200   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Iron       | 3340    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Magnesium  | 4120    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Manganese  | 1120    |           | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Potassium  | 811     | J         | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Sodium     | 2470    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508043 |
| 200.7  | Zinc       | 571     |           | ug/L  | 10.0  | 1                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Antimony   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Arsenic    | < 10.0  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Barium     | < 50.0  | U         | ug/L  | 25.0  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Cadmium    | 1.61    |           | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Chromium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | sv | 1508043 |
| 200.8  | Cobalt     | 4.45    |           | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Copper     | 57.2    |           | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Lead       | 11.6    |           | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Molybdenum | < 5.00  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Nickel     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Selenium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Silver     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Thallium   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508043 |
| 200.8  | Vanadium   | < 15.0  | U         | ug/L  | 10.0  | 5                  | 08/10/2015 | SV | 1508043 |

TDF#: [none]

#### Metals (Total Recov) by EPA 200/7000 Series Methods

 Station ID:
 GKMSW04-080815
 Date / Time Sampled:
 08/08/15 11:10
 Workorder:
 C150802

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 803     |           | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Calcium    | 50100   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Iron       | 2920    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Magnesium  | 6950    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Manganese  | 186     |           | ug/L  | 2.00  | 1                  | 08/10/2015 | sv | 1508046 |
| 200.7  | Potassium  | 1990    |           | ug/L  | 250   | 1                  | 08/10/2015 | sv | 1508046 |
| 200.7  | Sodium     | 9690    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Zinc       | 124     |           | ug/L  | 10.0  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Antimony   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Arsenic    | < 10.0  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | sv | 1508046 |
| 200.8  | Barium     | 44.1    | J         | ug/L  | 25.0  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Cadmium    | < 1.00  | U         | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Chromium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | sv | 1508046 |
| 200.8  | Cobalt     | 0.607   | J         | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Copper     | 15.8    |           | ug/L  | 2.50  | 5                  | 08/10/2015 | sv | 1508046 |
| 200.8  | Lead       | 37.6    |           | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Molybdenum | < 5.00  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Nickel     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Selenium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | sv | 1508046 |
| 200.8  | Silver     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Thallium   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Vanadium   | < 15.0  | U         | ug/L  | 10.0  | 5                  | 08/10/2015 | SV | 1508046 |

TDF#: [none]

#### Metals (Total Recov) by EPA 200/7000 Series Methods

**Station ID:** GKMSW04-080915 **Date / Time Sampled:** 08/09/15 12:45 **Workorder:** C150802

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 603     |           | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Calcium    | 50400   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Iron       | 1810    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Magnesium  | 7140    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Manganese  | 164     |           | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Potassium  | 1930    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Sodium     | 9810    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Zinc       | 99.9    |           | ug/L  | 10.0  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Antimony   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Arsenic    | < 10.0  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Barium     | 41.8    | J         | ug/L  | 25.0  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Cadmium    | < 1.00  | U         | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Chromium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Cobalt     | 0.528   | J         | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Copper     | 11.7    |           | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Lead       | 22.3    |           | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Molybdenum | < 5.00  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Nickel     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Selenium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Silver     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Thallium   | 14.9    |           | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Vanadium   | < 15.0  | U         | ug/L  | 10.0  | 5                  | 08/10/2015 | SV | 1508046 |

TDF#: [none]

### Metals (Total Recov) by EPA 200/7000 Series Methods

**Station ID:** GKMSW05-080815 **Date / Time Sampled:** 08/08/15 11:50 **Workorder:** C150802

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 688     |           | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Calcium    | 52600   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Iron       | 2640    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Magnesium  | 7350    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Manganese  | 162     |           | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Potassium  | 2010    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Sodium     | 10300   |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Zinc       | 99.0    |           | ug/L  | 10.0  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Antimony   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Arsenic    | 2.65    | J         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Barium     | 44.5    | J         | ug/L  | 25.0  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Cadmium    | < 1.00  | U         | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Chromium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Cobalt     | 0.520   | J         | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Copper     | 14.4    |           | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Lead       | 30.7    |           | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Molybdenum | < 5.00  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Nickel     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Selenium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Silver     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Thallium   | 3.51    | J         | ug/L  | 2.50  | 5                  | 08/10/2015 | sv | 1508046 |
| 200.8  | Vanadium   | < 15.0  | U         | ug/L  | 10.0  | 5                  | 08/10/2015 | SV | 1508046 |

TDF#: [none]

#### Metals (Total Recov) by EPA 200/7000 Series Methods

 Station ID:
 GKMSW05-080915
 Date / Time Sampled:
 08/09/15 12:25
 Workorder:
 C150802

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 526     |           | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Calcium    | 49700   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Iron       | 1540    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Magnesium  | 7150    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Manganese  | 140     |           | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Potassium  | 1900    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Sodium     | 9700    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Zinc       | 78.2    |           | ug/L  | 10.0  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Antimony   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Arsenic    | < 10.0  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Barium     | 42.4    | J         | ug/L  | 25.0  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Cadmium    | < 1.00  | U         | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Chromium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Cobalt     | < 1.00  | U         | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Copper     | 9.54    |           | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Lead       | 20.4    |           | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Molybdenum | < 5.00  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Nickel     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Selenium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Silver     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Thallium   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Vanadium   | < 15.0  | U         | ug/L  | 10.0  | 5                  | 08/10/2015 | SV | 1508046 |

[none]

### Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: GKMSW06-080815 EPA Tag No: Date / Time Sampled: Matrix: Surface Water

08/08/15 00:00

Workorder: C1

C150802

Lab Number:

C150802-52 A

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 1600    |           | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Calcium    | 35200   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Iron       | 5540    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Magnesium  | 4650    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Manganese  | 494     |           | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Potassium  | 1070    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Sodium     | 2240    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Zinc       | 244     |           | ug/L  | 10.0  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Antimony   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Arsenic    | < 10.0  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Barium     | 40.0    | J         | ug/L  | 25.0  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Cadmium    | 0.704   | J         | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Chromium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Cobalt     | 1.78    |           | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Copper     | 33.9    |           | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Lead       | 62.6    |           | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Molybdenum | < 5.00  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Nickel     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | sv | 1508046 |
| 200.8  | Selenium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Silver     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Thallium   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Vanadium   | < 15.0  | U         | ug/L  | 10.0  | 5                  | 08/10/2015 | SV | 1508046 |

[none]

### Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: GKMSW07-080815 EPA Tag No:

Date / Time Sampled: Matrix: Surface Water

08/08/15 13:50

Workorder: C

C150802

Lab Number:

C150802-55 A

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 8370    |           | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Calcium    | 139000  |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Iron       | 24900   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Magnesium  | 9910    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Manganese  | 5450    |           | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Potassium  | 1790    |           | ug/L  | 250   | 1                  | 08/10/2015 | sv | 1508046 |
| 200.7  | Sodium     | 3680    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Zinc       | 3350    |           | ug/L  | 10.0  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Antimony   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Arsenic    | 11.0    |           | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Barium     | 28.8    | J         | ug/L  | 25.0  | 5                  | 08/10/2015 | sv | 1508046 |
| 200.8  | Cadmium    | 9.50    |           | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Chromium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Cobalt     | 23.3    |           | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Copper     | 438     |           | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Lead       | 121     |           | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Molybdenum | < 5.00  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Nickel     | 8.61    |           | ug/L  | 2.50  | 5                  | 08/10/2015 | sv | 1508046 |
| 200.8  | Selenium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Silver     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Thallium   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Vanadium   | < 15.0  | U         | ug/L  | 10.0  | 5                  | 08/10/2015 | SV | 1508046 |

TDF#: [none]

#### Metals (Total Recov) by EPA 200/7000 Series Methods

 Station ID:
 GKMSW08-080815
 Date / Time Sampled:
 08/08/15 14:10
 Workorder:
 C150802

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 141     |           | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Calcium    | 37100   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Iron       | 155     | J         | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Magnesium  | 2610    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Manganese  | 808     |           | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Potassium  | 548     | J         | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Sodium     | 1710    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Zinc       | 233     |           | ug/L  | 10.0  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Antimony   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Arsenic    | < 10.0  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Barium     | < 50.0  | U         | ug/L  | 25.0  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Cadmium    | 0.707   | J         | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Chromium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Cobalt     | < 1.00  | U         | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Copper     | 6.32    |           | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Lead       | 2.81    |           | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Molybdenum | < 5.00  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Nickel     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Selenium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Silver     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Thallium   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Vanadium   | < 15.0  | U         | ug/L  | 10.0  | 5                  | 08/10/2015 | SV | 1508046 |

TDF#: [none]

### Metals (Total Recov) by EPA 200/7000 Series Methods

**Station ID:** GKMSW08-080915 **Date / Time Sampled:** 08/09/15 13:00 **Workorder:** C150802

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 108     |           | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Calcium    | 38600   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Iron       | 125     | J         | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Magnesium  | 2660    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Manganese  | 777     |           | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Potassium  | 556     | J         | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Sodium     | 1740    |           | ug/L  | 250   | 1                  | 08/10/2015 | sv | 1508046 |
| 200.7  | Zinc       | 237     |           | ug/L  | 10.0  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Antimony   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Arsenic    | < 10.0  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Barium     | < 50.0  | U         | ug/L  | 25.0  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Cadmium    | 0.799   | J         | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Chromium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Cobalt     | < 1.00  | U         | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Copper     | 4.88    | J         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Lead       | 1.68    |           | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Molybdenum | < 5.00  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Nickel     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Selenium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Silver     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Thallium   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Vanadium   | < 15.0  | U         | ug/L  | 10.0  | 5                  | 08/10/2015 | SV | 1508046 |

TDF#: [none]

#### Metals (Total Recov) by EPA 200/7000 Series Methods

 Station ID:
 GKMSW12-080915
 Date / Time Sampled:
 08/09/15 14:00
 Workorder:
 C150802

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | 469     |           | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Calcium    | 50200   |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Iron       | 1420    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Magnesium  | 7160    |           | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Manganese  | 162     |           | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Potassium  | 1900    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Sodium     | 9880    |           | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Zinc       | 89.3    |           | ug/L  | 10.0  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Antimony   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Arsenic    | < 10.0  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Barium     | 41.2    | J         | ug/L  | 25.0  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Cadmium    | < 1.00  | U         | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Chromium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Cobalt     | < 1.00  | U         | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Copper     | 9.42    |           | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Lead       | 17.5    |           | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Molybdenum | < 5.00  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Nickel     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Selenium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Silver     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Thallium   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Vanadium   | < 15.0  | U         | ug/L  | 10.0  | 5                  | 08/10/2015 | SV | 1508046 |

TDF#: [none]

#### Metals (Total Recov) by EPA 200/7000 Series Methods

**Station ID:** GKMTB01-080815 **Date / Time Sampled:** 08/08/15 00:00 **Workorder:** C150802

| Method | Parameter  | Results | Qualifier | Units | MDL   | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|------------|---------|-----------|-------|-------|--------------------|------------|----|---------|
| 200.7  | Aluminum   | < 50.0  | U         | ug/L  | 20.0  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Beryllium  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Calcium    | < 250   | U         | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Iron       | < 250   | U         | ug/L  | 100   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Magnesium  | < 250   | U         | ug/L  | 100   | 1                  | 08/10/2015 | sv | 1508046 |
| 200.7  | Manganese  | < 5.00  | U         | ug/L  | 2.00  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Potassium  | < 1000  | U         | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Sodium     | < 1000  | U         | ug/L  | 250   | 1                  | 08/10/2015 | SV | 1508046 |
| 200.7  | Zinc       | 10.4    | J         | ug/L  | 10.0  | 1                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Antimony   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Arsenic    | < 10.0  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | sv | 1508046 |
| 200.8  | Barium     | < 50.0  | U         | ug/L  | 25.0  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Cadmium    | < 1.00  | U         | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Chromium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Cobalt     | < 1.00  | U         | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Copper     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Lead       | < 1.00  | U         | ug/L  | 0.500 | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Molybdenum | < 5.00  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Nickel     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Selenium   | < 10.0  | U         | ug/L  | 5.00  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Silver     | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Thallium   | < 5.00  | U         | ug/L  | 2.50  | 5                  | 08/10/2015 | SV | 1508046 |
| 200.8  | Vanadium   | < 15.0  | U         | ug/L  | 10.0  | 5                  | 08/10/2015 | SV | 1508046 |

<sup>&</sup>quot;J" Qualifier indicates an estimated value

TDF#: [none]

Mercury only (Total) by EPA 245.1 / 7470A Method

AMIMAS-ROTARY PARK-0000 Station ID:

**EPA Tag No:** 

EPA Tag No:

**EPA Tag No:** 

Date / Time Sampled: 08/07/15 00:00

Matrix: Surface Water Workorder:

C150802

Certificate of Analysis

Lab Number: C150802-01

Α

Dilution MDL Method Parameter Analyzed Ву Batch Results Qualifier Units **Factor** 245.1 Mercury 0.149 J uq/L 0.0500 08/10/2015 NP 1508045

Mercury only (Total) by EPA 245.1 / 7470A Method

Station ID: AMIMAS-ROTARY PARK-0030 Date / Time Sampled:

Matrix:

08/07/15 00:30

Workorder: C150802

Lab Number:

C150802-04

MDL Dilution Method Parameter Analyzed By Batch Results Qualifier Units **Factor** 245.1 0.255 0.0500 1 08/10/2015 NΡ 1508045 Mercury ug/L

Surface Water

Mercury only (Total) by EPA 245.1 / 7470A Method

Station ID: AMIMAS-ROTARY PARK-1000

Date / Time Sampled: Matrix: Surface Water

08/07/15 10:00

Workorder: C150802

Lab Number:

C150802-07

Dilution MDL Method Parameter Analyzed By Batch Results Qualifier Units **Factor** 245.1 Mercury 08/10/2015 NΡ 1508045 < 0.100 U ug/L 0.0500

Mercury only (Total) by EPA 245.1 / 7470A Method

Station ID: AMIMAS-ROTARY PARK-2005

**EPA Tag No:** 

Date / Time Sampled:

Matrix:

08/06/15 20:05

Workorder: Lab Number: C150802

C150802-10

Dilution MDL Method Parameter Analyzed Ву Batch Results Qualifier Units **Factor** 245.1 Mercury 1 08/10/2015 NP 1508045 < 0.100 U ug/L 0.0500

Surface Water

TDF#: [none]

Mercury only (Total) by EPA 245.1 / 7470A Method

Station ID: **EPA Tag No:** 

AMIMAS-ROTARY PARK-2108

Date / Time Sampled: Matrix: Surface Water

08/06/15 21:08

Workorder: Lab Number:

C150802

Certificate of Analysis

C150802-13

| Method | Parameter | Results | Qualifier | Units | MDL    | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|-----------|---------|-----------|-------|--------|--------------------|------------|----|---------|
| 245.1  | Mercury   | < 0.100 | U         | ug/L  | 0.0500 | 1                  | 08/10/2015 | NP | 1508045 |

Mercury only (Total) by EPA 245.1 / 7470A Method

Station ID: **EPA Tag No:** 

AMIMAS-ROTARY PARK-2200

Date / Time Sampled: Matrix: Surface Water

08/06/15 22:00

C150802 Workorder:

Lab Number:

C150802-16

Dilution MDL Method **Batch** Parameter Analyzed By Results Qualifier Units Factor 245.1 Mercury 08/10/2015 NP 1508045 < 0.100 U ug/L 0.0500

Mercury only (Total) by EPA 245.1 / 7470A Method

Station ID: **EPA Tag No:** 

AMIMAS-ROTARY PARK-2300

Date / Time Sampled: Matrix: Surface Water

08/06/15 23:00

Workorder: Lab Number:

C150802

C150802-19

Dilution MDL Method Parameter Analyzed Ву Batch Results Qualifier Units **Factor** 245.1 Mercury 0.0880 J ug/L 0.0500 08/10/2015 NP 1508045

Mercury only (Total) by EPA 245.1 / 7470A Method

Station ID: EPA Tag No: GKMSW01-080815

Date / Time Sampled: Matrix: Surface Water

08/08/15 10:05

Lab Number:

Workorder:

C150802

C150802-22

Dilution MDL Method **Parameter** Analyzed By Batch Results Qualifier Units **Factor** 245.1 Mercury 1 1508045 08/10/2015 NP < 0.100 U ug/L 0.0500

TDF#: [none]

Mercury only (Total) by EPA 245.1 / 7470A Method

Station ID: GKMSW01-080915 Date / Time Sampled:

**EPA Tag No:** Matrix: Surface Water Workorder: C150802

Certificate of Analysis

Lab Number: C150802-25

Dilution MDL Method Parameter Analyzed Ву Batch Results Qualifier Units **Factor** 245.1 Mercury 08/10/2015 NP 1508045 < 0.100 Ú ug/L 0.0500

Mercury only (Total) by EPA 245.1 / 7470A Method

GKMSW02-080815 Station ID: **EPA Tag No:** 

Date / Time Sampled: Surface Water

Matrix:

08/08/15 12:30

08/09/15 12:00

C150802 Workorder:

Lab Number:

C150802-28

Dilution MDL Method Parameter Analyzed By Batch Results Qualifier Units Factor 245.1 Mercury 08/10/2015 NΡ 1508045 < 0.100 U ug/L 0.0500

Mercury only (Total) by EPA 245.1 / 7470A Method

Station ID: GKMSW02-080915 Date / Time Sampled: Matrix: Surface Water

08/09/15 11:37

Workorder: C150802

Lab Number:

C150802-31

Dilution MDL Method Parameter Analyzed Ву Batch Results Qualifier Units **Factor** 245.1 Mercury 08/10/2015 NP 1508045 U 0.0500 < 0.100 ug/L

Mercury only (Total) by EPA 245.1 / 7470A Method

Station ID: GKMSW03-080815

**EPA Tag No:** 

**EPA Tag No:** 

Date / Time Sampled:

Matrix: Surface Water

08/08/15 14:35

Workorder:

C150802

Lab Number:

C150802-34

Dilution MDL Method Parameter Analyzed Ву Batch Qualifier Units Results Factor 245.1 08/10/2015 NP 1508045 Mercury 1 U < 0.100 ug/L 0.0500

**Project Name:** Upper Animas\_Surface Water 2\_AUG 2015\_A096

TDF#: [none]

Mercury only (Total) by EPA 245.1 / 7470A Method

Station ID:

**EPA Tag No:** 

GKMSW03-080915

Date / Time Sampled: Matrix: Surface Water

08/09/15 13:27

Workorder:

C150802

Lab Number:

Certificate of Analysis

C150802-37

| Method | Parameter | Results | Qualifier | Units | MDL    | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|-----------|---------|-----------|-------|--------|--------------------|------------|----|---------|
| 245.1  | Mercury   | < 0.100 | U         | ug/L  | 0.0500 | 1                  | 08/10/2015 | NP | 1508045 |

Mercury only (Total) by EPA 245.1 / 7470A Method

Station ID: EPA Tag No:

GKMSW04-080815

Date / Time Sampled: Matrix: Surface Water

08/08/15 11:10

Workorder:

C150802

Lab Number:

C150802-40

| Method | Parameter | Results | Qualifier | Units | MDL    | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|-----------|---------|-----------|-------|--------|--------------------|------------|----|---------|
| 245.1  | Mercury   | < 0.100 | U         | ua/L  | 0.0500 | 1                  | 08/10/2015 | NP | 1508045 |

Mercury only (Total) by EPA 245.1 / 7470A Method

Station ID: **EPA Tag No:** 

GKMSW04-080915

Date / Time Sampled: Matrix: Surface Water

08/09/15 12:45

Workorder:

C150802

Lab Number: C150802-43

| Method | Parameter | Results | Qualifier | Units | MDL    | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|-----------|---------|-----------|-------|--------|--------------------|------------|----|---------|
| 245.1  | Mercury   | < 0.100 | U         | ug/L  | 0.0500 | 1                  | 08/10/2015 | NP | 1508045 |

Mercury only (Total) by EPA 245.1 / 7470A Method

Station ID:

GKMSW05-080815

**EPA Tag No:** 

Date / Time Sampled:

Matrix: Surface Water

08/08/15 11:50

Workorder: Lab Number:

C150802

C150802-46

| Method | Parameter | Results | Qualifier | Units | MDL    | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|-----------|---------|-----------|-------|--------|--------------------|------------|----|---------|
| 245.1  | Mercury   | < 0.100 | U         | ua/L  | 0.0500 | 1                  | 08/10/2015 | NP | 1508045 |

TDF#: [none]

GKMSW05-080915

Mercury only (Total) by EPA 245.1 / 7470A Method

Station ID: **EPA Tag No:**  Date / Time Sampled:

Matrix: Surface Water

08/09/15 12:25

Workorder:

C150802

Lab Number: C150802-49

Certificate of Analysis

| Method | Parameter | Results | Qualifier | Units | MDL    | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|-----------|---------|-----------|-------|--------|--------------------|------------|----|---------|
| 245.1  | Mercury   | < 0.100 | U         | ug/L  | 0.0500 | 1                  | 08/10/2015 | NP | 1508045 |

#### Mercury only (Total) by EPA 245.1 / 7470A Method

Station ID: EPA Tag No:

GKMSW06-080815

Date / Time Sampled: Matrix: Surface Water

08/08/15 00:00

Workorder: Lab Number: C150802

C150802-52

Dilution MDL Method Parameter Analyzed By Batch Results Qualifier Units Factor 245.1 1508045 Mercury 08/10/2015 NP < 0.100 U ug/L 0.0500

#### Mercury only (Total) by EPA 245.1 / 7470A Method

Station ID: **EPA Tag No:** 

GKMSW07-080815

Date / Time Sampled:

08/08/15 13:50 Matrix: Surface Water

Workorder: Lab Number:

C150802

C150802-55

| Method | Parameter | Results | Qualifier | Units | MDL    | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|-----------|---------|-----------|-------|--------|--------------------|------------|----|---------|
| 245.1  | Mercury   | < 0.100 | U         | ug/L  | 0.0500 | 1                  | 08/10/2015 | NP | 1508045 |

#### Mercury only (Total) by EPA 245.1 / 7470A Method

Station ID: **EPA Tag No:**  GKMSW08-080815

Date / Time Sampled:

Matrix: Surface Water

08/08/15 14:10

Workorder: Lab Number:

C150802

C150802-58

| Method | Parameter | Results | Qualifier | Units | MDL    | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|-----------|---------|-----------|-------|--------|--------------------|------------|----|---------|
| 245.1  | Mercury   | < 0.100 | U         | ua/L  | 0.0500 | 1                  | 08/10/2015 | NP | 1508045 |

**Project Name:** Upper Animas\_Surface Water 2\_AUG 2015\_A096

TDF#: [none]

Mercury only (Total) by EPA 245.1 / 7470A Method

Station ID: GKMSW08-080915

**EPA Tag No:** 

Date / Time Sampled: 08/09/15 13:00 Matrix: Surface Water

Workorder: Lab Number:

C150802

Certificate of Analysis

C150802-61

| Method | Parameter | Results | Qualifier | Units | MDL    | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|-----------|---------|-----------|-------|--------|--------------------|------------|----|---------|
| 245.1  | Mercury   | < 0.100 | U         | ua/L  | 0.0500 | 1                  | 08/10/2015 | NP | 1508045 |

Mercury only (Total) by EPA 245.1 / 7470A Method

Station ID: EPA Tag No:

GKMSW12-080915

Date / Time Sampled: Matrix: Surface Water

08/09/15 14:00

Workorder: Lab Number:

C150802

C150802-64

| Method | Parameter | Results | Qualifier | Units | MDL    | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|-----------|---------|-----------|-------|--------|--------------------|------------|----|---------|
| 245.1  | Mercury   | < 0.100 | U         | ua/l  | 0.0500 | 1                  | 08/10/2015 | NP | 1508045 |

Mercury only (Total) by EPA 245.1 / 7470A Method

Station ID: **EPA Tag No:** 

GKMTB01-080815

Date / Time Sampled: Matrix: Surface Water

08/08/15 00:00

Workorder: Lab Number: C150802

C150802-67

| Method | Parameter | Results | Qualifier | Units | MDL    | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|-----------|---------|-----------|-------|--------|--------------------|------------|----|---------|
| 245.1  | Mercury   | < 0.100 | U         | ug/L  | 0.0500 | 1                  | 08/10/2015 | NP | 1508045 |

<sup>&</sup>quot;J" Qualifier indicates an estimated value

TDF#: [none]

Classical Chemistry by EPA/ASTM/APHA Methods

AMIMAS-ROTARY PARK-0000 Station ID:

**EPA Tag No:** 

Date / Time Sampled: Matrix: Surface Water

08/07/15 00:00

Workorder:

C150802

Lab Number:

Certificate of Analysis

C150802-03

| Method | Parameter | Results | Qualifier | Units    | MDL | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|-----------|---------|-----------|----------|-----|--------------------|------------|----|---------|
| 150.1  | pН        | 5.84    |           | pH Units |     | 1                  | 08/10/2015 | SW | 1508052 |

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: AMIMAS-ROTARY PARK-0030

EPA Tag No:

**EPA Tag No:** 

Date / Time Sampled:

Matrix:

08/07/15 00:30

Workorder: C150802

Lab Number:

C150802-06

| Method | Parameter | Results | Qualifier | Units    | MDL | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|--------|-----------|---------|-----------|----------|-----|--------------------|------------|----|---------|
| 150.1  | pН        | 5.98    |           | pH Units |     | 1                  | 08/10/2015 | SW | 1508052 |

Surface Water

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: AMIMAS-ROTARY PARK-1000 **EPA Tag No:** 

Date / Time Sampled: Matrix: Surface Water

08/07/15 10:00

Workorder: Lab Number: C150802

C150802-09

Dilution MDL Method Parameter Analyzed By Batch Results Qualifier Units Factor 150.1 Ηα 6.68 pH Units 08/10/2015 SW 1508052

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: AMIMAS-ROTARY PARK-2005

Date / Time Sampled: Matrix: Surface Water

08/06/15 20:05

Workorder: Lab Number: C150802

C150802-12

MDL Dilution Method Parameter Analyzed By Batch Qualifier Results Units Factor 150.1 7.09 pH Units 08/10/2015 SW 1508052 рΗ 1

TDF#: [none]

Classical Chemistry by EPA/ASTM/APHA Methods

AMIMAS-ROTARY PARK-2108

**EPA Tag No:** 

Station ID:

Date / Time Sampled:

Matrix: Surface Water Workorder: Lab Number:

C150802

Certificate of Analysis

C150802-15 Α

Dilution MDL Method Parameter Analyzed Ву Batch Results Qualifier Units **Factor** 150.1 рН 7.12 pH Units 08/10/2015 SW 1508052

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: EPA Tag No:

AMIMAS-ROTARY PARK-2200

Date / Time Sampled:

Matrix:

08/06/15 22:00

08/06/15 21:08

Workorder: C150802

Lab Number:

C150802-18

MDL Dilution Method Parameter Analyzed By Batch Results Qualifier Units **Factor** 150.1 рΗ 7.14 pH Units 1 08/10/2015 SW 1508052

Surface Water

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: **EPA Tag No:** 

AMIMAS-ROTARY PARK-2300

Date / Time Sampled: Matrix: Surface Water

08/06/15 23:00

Workorder: Lab Number: C150802

C150802-21

Dilution MDL Method Parameter Analyzed By Batch Results Qualifier Units Factor 150.1 Ηα 7.10 pH Units 08/10/2015 SW 1508052

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: EPA Tag No: GKMSW01-080915

Date / Time Sampled: Matrix: Surface Water

08/09/15 12:00

Workorder: Lab Number: C150802

C150802-27

MDL Dilution Method Parameter Analyzed By Batch Qualifier Results Units Factor 76.6 mg CaCO3 / L 5.00 SW 1508047 EPA 310.1 **Total Alkalinity** 08/10/2015 1

Project Name: Upper Animas\_Surface Water 2\_AUG 2015\_A096

TDF#: [none]

Classical Chemistry by EPA/ASTM/APHA Methods

 Station ID:
 GKMSW02-080915
 Date / Time Sampled:
 08/09/15 11:37
 Workorder:
 C150802

EPA Tag No: Matrix: Surface Water Lab Number: C150802-33

Method Parameter Results Qualifier Units MDL Dilution Analyzed By Batch

EPA 310.1 **Total Alkalinity 35.7** mg CaCO3 / L 5.00 1 08/10/2015 SW 1508047

Classical Chemistry by EPA/ASTM/APHA Methods

**Station ID:** GKMSW03-080915 **Date / Time Sampled:** 08/09/15 13:27 **Workorder:** C150802

EPA Tag No: Matrix: Surface Water Lab Number: C150802-39 A

MDL Dilution Method Parameter Analyzed By Batch Results Qualifier Units **Factor** 08/10/2015 EPA 310.1 **Total Alkalinity** 11.2 mg CaCO3 / L 5.00 1 SW 1508047

Classical Chemistry by EPA/ASTM/APHA Methods

**Station ID:** GKMSW04-080915 **Date / Time Sampled:** 08/09/15 12:45 **Workorder:** C150802

EPA Tag No: Matrix: Surface Water Lab Number: C150802-45 A

Dilution MDL Method Parameter Analyzed By Batch Results Qualifier Units Factor EPA 310.1 **Total Alkalinity** 76.3 mg CaCO3 / L 5.00 08/10/2015 SW 1508047

Classical Chemistry by EPA/ASTM/APHA Methods

EPA Tag No: Matrix: Surface Water Lab Number: C150802-51 A

MDL Dilution Method Parameter Analyzed By Batch Qualifier Results Units Factor mg CaCO3 / L 5.00 08/10/2015 SW 1508047 EPA 310.1 **Total Alkalinity** 77.2 1

Certificate of Analysis

Α

Project Name: Upper Animas\_Surface Water 2\_AUG 2015\_A096

TDF#: [none]

Classical Chemistry by EPA/ASTM/APHA Methods

 Station ID:
 GKMSW08-080915
 Date / Time Sampled:
 08/09/15 13:00
 Workorder:
 C150802

EPA Tag No: Matrix: Surface Water Lab Number: C150802-63

Method Parameter Results Qualifier Units MDL Dilution Factor Analyzed By Batch

EPA 310.1 Total Alkalinity 32.7 mg CaCO3 / L 5.00 1 08/10/2015 SW 1508047

#### Classical Chemistry by EPA/ASTM/APHA Methods

**Station ID:** GKMSW12-080915 **Date / Time Sampled:** 08/09/15 14:00 **Workorder:** C150802

EPA Tag No: Matrix: Surface Water Lab Number: C150802-66 A

| Method    | Parameter        | Results | Qualifier | Units        | MDL  | Dilution<br>Factor | Analyzed   | Ву | Batch   |
|-----------|------------------|---------|-----------|--------------|------|--------------------|------------|----|---------|
| EPA 310.1 | Total Alkalinity | 76.7    |           | mg CaCO3 / L | 5.00 | 1                  | 08/10/2015 | SW | 1508047 |

<sup>&</sup>quot;J" Qualifier indicates an estimated value

Certificate of Analysis

Α

[none]

| Analyte             | Result        | Det. Limit       | Units     | Spike<br>Level | Source<br>Result | %R     | %R<br>Limits | %Dor<br>RPD   | %D or<br>RPD Limit |
|---------------------|---------------|------------------|-----------|----------------|------------------|--------|--------------|---------------|--------------------|
| ICPMS-PE DRC-I      |               |                  |           |                |                  |        |              |               |                    |
| Batch 1508039 - No  | Lab Prep Reqd |                  | Water     |                |                  |        |              | ICP           | MS-PE DRC-I        |
| Method Blank (1508) | 039-BLK1)     | Dilution Factor: | 1         |                |                  | Prepar | ed & Analyz  | red: 08/10/15 |                    |
| Vanadium            | < 2.00        | 3.00             | ug/L      |                |                  |        |              |               |                    |
| Chromium            | < 1.00        | 2.00             | я         |                |                  |        |              |               |                    |
| Cobalt              | < 0.100       | 0.200            | я         |                |                  |        |              |               |                    |
| Nickel              | < 0.500       | 1.00             | Ħ         |                |                  |        |              |               |                    |
| Copper              | < 0.500       | 1.00             | Ħ         |                |                  |        |              |               |                    |
| Arsenic             | < 0.500       | 2.00             | н         |                |                  |        |              |               |                    |
| Selenium            | < 1.00        | 2.00             | н         |                |                  |        |              |               |                    |
| Molybdenum          | < 1.00        | 1.00             | п         |                |                  |        |              |               |                    |
| Silver              | < 0.500       | 1.00             | н         |                |                  |        |              |               |                    |
| Cadmium             | < 0.100       | 0.200            | Ħ         |                |                  |        |              |               |                    |
| Antimony            | < 0.500       | 1.00             | Ħ         |                |                  |        |              |               |                    |
| Barium              | < 5.00        | 10.0             | я         |                |                  |        |              |               |                    |
| Thallium            | < 0.500       | 1.00             | я         |                |                  |        |              |               |                    |
| Lead                | < 0.100       | 0.200            | п         |                |                  |        |              |               |                    |
| Method Blank Spike  | (1508039-BS1) | Dilution Factor: | 1         |                |                  | Prepar | ed & Analyz  | red: 08/10/15 |                    |
| Vanadium            | 93.0          | 3.00             | ug/L      | 100            |                  | 93     | 85-115       |               |                    |
| Chromium            | 91.8          | 2.00             | fl        | 100            |                  | 92     | 85-115       |               |                    |
| Cobalt              | 92.7          | 0.200            | н         | 100            |                  | 93     | 85-115       |               |                    |
| Nickel              | 92.2          | 1.00             | я         | 100            |                  | 92     | 85-115       |               |                    |
| Copper              | 91.8          | 1.00             | н         | 100            |                  | 92     | 85-115       |               |                    |
| Arsenic             | 94.6          | 2.00             | n         | 100            |                  | 95     | 85-115       |               |                    |
| Selenium            | 482           | 2.00             | я         | 500            |                  | 96     | 85-115       |               |                    |
| Molybdenum          | 96.3          | 1.00             | я         | 100            |                  | 96     | 85-115       |               |                    |
| Silver              | 94.7          | 1.00             | я         | 100            |                  | 95     | 85-115       |               |                    |
| Cadmium             | 96.4          | 0.200            | я         | 100            |                  | 96     | 85-115       |               |                    |
| Antimony            | 98.2          | 1.00             | <b>51</b> | 100            |                  | 98     | 85-115       |               |                    |
| Barium              | 94.4          | 10.0             | **        | 100            |                  | 94     | 85-115       |               |                    |
|                     | 0.4.0         | 4.00             |           |                |                  |        |              |               |                    |
| Thallium            | 94.8<br>95.2  | 1.00             | н         | 100            |                  | 95     | 85-115       |               |                    |

[none]

| Analyte              | Result          | Det. Limit         | Units              | Spike<br>Level | Source<br>Result | %R           | %R<br>Limits | % D or<br>RPD | %D or<br>RPD Limit |
|----------------------|-----------------|--------------------|--------------------|----------------|------------------|--------------|--------------|---------------|--------------------|
| Batch 1508039 - No   | o Lab Prep Reqd | ν                  | Vater              |                |                  |              |              | ICPN          | IS-PE DRC-II       |
| Duplicate (1508039-I | OUP1)           | Dilution Factor: 1 | Source             | : C150802-2    | 23               | Prepai       | red & Analyz | ed: 08/10/15  |                    |
| Vanadium             | < 2.00          | 3.00               | ug/L               |                | < 2.00           |              |              |               | 20                 |
| Chromium             | 1.59            | 2.00               | я                  |                | 1.55             |              |              | 3             | 20                 |
| Cobalt               | 0.606           | 0.200              | #                  |                | 0.653            |              |              | 8             | 20                 |
| Nickel               | < 0.500         | 1.00               | #                  |                | < 0.500          |              |              |               | 20                 |
| Copper               | 1.81            | 1.00               | **                 |                | 1.73             |              |              | 4             | 20                 |
| Arsenic              | < 0.500         | 2.00               | я                  |                | < 0.500          |              |              |               | 20                 |
| Selenium             | < 1.00          | 2.00               | я                  |                | < 1.00           |              |              |               | 20                 |
| Molybdenum           | < 1.00          | 1.00               | п                  |                | < 1.00           |              |              |               | 20                 |
| Silver               | < 0.500         | 1.00               | п                  |                | < 0.500          |              |              |               | 20                 |
| Cadmium              | < 0.100         | 0.200              | п                  |                | < 0.100          |              |              |               | 20                 |
| Antimony             | < 0.500         | 1.00               | Ħ                  |                | < 0.500          |              |              |               | 20                 |
| Barium               | 40.9            | 10.0               | я                  |                | 41.4             |              |              | 1             | 20                 |
| Thallium             | < 0.500         | 1.00               | 11                 |                | < 0.500          |              |              |               | 20                 |
| Lead                 | < 0.100         | 0.200              | п                  |                | < 0.100          |              |              |               | 20                 |
| Matrix Spike (15080  | 39-MS1)         | Dilution Factor: 1 | Source: C150802-23 |                | Prepai           | red & Analyz | ed: 08/10/15 |               |                    |
| Vanadium             | 90.3            | 3.00               | ug/L               | 100            | < 2.00           | 90           | 70-130       |               |                    |
| Chromium             | 89.3            | 2.00               | g/                 | 100            | 1.55             | 88           | 70-130       |               |                    |
| Cobalt               | 88.6            | 0.200              | #                  | 100            | 0.653            | 88           | 70-130       |               |                    |
| Nickel               | 86.4            | 1.00               | **                 | 100            | < 0.500          | 86           | 70-130       |               |                    |
| Copper               | 87.4            | 1.00               | "                  | 100            | 1.73             | 86           | 70-130       |               |                    |
| Arsenic              | 94.1            | 2.00               | ,,                 | 100            | < 0.500          | 94           | 70-130       |               |                    |
| Selenium             | 496             | 2.00               | я                  | 500            | < 1.00           | 99           | 70-130       |               |                    |
| Molybdenum           | 100             | 1.00               | я                  | 100            | < 1.00           | 100          | 70-130       |               |                    |
| Silver               | 93.3            | 1.00               | я                  | 100            | < 0.500          | 93           | 70-130       |               |                    |
| Cadmium              | 97.4            | 0.200              | я                  | 100            | < 0.100          | 97           | 70-130       |               |                    |
| Antimony             | 100             | 1.00               | я                  | 100            | < 0.500          | 100          | 70-130       |               |                    |
| Barium               | 136             | 10.0               | я                  | 100            | 41.4             | 94           | 70-130       |               |                    |
| Thallium             | 94.3            | 1.00               | я                  | 100            | < 0.500          | 94           | 70-130       |               |                    |
| Lead                 | 94.4            | 0.200              | я                  | 100            | < 0.100          | 94           | 70-130       |               |                    |

[none]

| Analyte             | Result          | Det. Limit         | Units  | Spike<br>Level | Source<br>Result | %R    | %R<br>Limits | %Dor<br>RPD   | %D or<br>RPD Limit |
|---------------------|-----------------|--------------------|--------|----------------|------------------|-------|--------------|---------------|--------------------|
| Batch 1508039 - No  | Lab Prep Reqd   | V                  | Vater  |                |                  |       |              | ICPI          | MS-PE DRC-I        |
| Matrix Spike (15080 | 39-MS2)         | Dilution Factor: 1 | Source | : C150802-2    | 26               | Prepa | red & Analyz | red: 08/10/15 |                    |
| Vanadium            | 88.9            | 3.00               | ug/L   | 100            | < 2.00           | 89    | 70-130       |               |                    |
| Chromium            | 89.5            | 2.00               | я      | 100            | 3.62             | 86    | 70-130       |               |                    |
| Cobalt              | 87.2            | 0.200              | я      | 100            | 0.872            | 86    | 70-130       |               |                    |
| Nickel              | 84.2            | 1.00               | я      | 100            | < 0.500          | 84    | 70-130       |               |                    |
| Copper              | 85.6            | 1.00               | **     | 100            | 2.09             | 84    | 70-130       |               |                    |
| Arsenic             | 101             | 2.00               | **     | 100            | 0.512            | 100   | 70-130       |               |                    |
| Selenium            | 509             | 2.00               | н      | 500            | < 1.00           | 102   | 70-130       |               |                    |
| Molybdenum          | 98.5            | 1.00               | н      | 100            | < 1.00           | 98    | 70-130       |               |                    |
| Silver              | 93.3            | 1.00               | п      | 100            | < 0.500          | 93    | 70-130       |               |                    |
| Cadmium             | 95.0            | 0.200              | "      | 100            | < 0.100          | 95    | 70-130       |               |                    |
| Antimony            | 98.8            | 1.00               | п      | 100            | < 0.500          | 99    | 70-130       |               |                    |
| Barium              | 134             | 10.0               | п      | 100            | 39.4             | 95    | 70-130       |               |                    |
| Thallium            | 93.8            | 1.00               | п      | 100            | < 0.500          | 94    | 70-130       |               |                    |
| Lead                | 92.2            | 0.200              | н      | 100            | < 0.100          | 92    | 70-130       |               |                    |
| Batch 1508042 - No  | o Lab Prep Reqd | V                  |        |                |                  |       | ICPI         | MS-PE DRC-I   |                    |
| Method Blank (1508) | 042-BLK1)       | Dilution Factor: 1 |        |                |                  | Prepa | red & Analyz | red: 08/10/15 |                    |
| Vanadium            | < 2.00          | 3.00               | ug/L   |                |                  |       |              |               |                    |
| Chromium            | < 1.00          | 2.00               | " "    |                |                  |       |              |               |                    |
| Cobalt              | < 0.100         | 0.200              | "      |                |                  |       |              |               |                    |
| Nickel              | < 0.500         | 1.00               | п      |                |                  |       |              |               |                    |
| Copper              | < 0.500         | 1.00               | я      |                |                  |       |              |               |                    |
| Arsenic             | < 0.500         | 2.00               | я      |                |                  |       |              |               |                    |
| Selenium            | < 1.00          | 2.00               | я      |                |                  |       |              |               |                    |
| Molybdenum          | < 1.00          | 1.00               | н      |                |                  |       |              |               |                    |
| Silver              | < 0.500         | 1.00               | н      |                |                  |       |              |               |                    |
| Cadmium             | < 0.100         | 0.200              | н      |                |                  |       |              |               |                    |
| Antimony            | < 0.500         | 1.00               | я      |                |                  |       |              |               |                    |
| Barium              | < 5.00          | 10.0               | #1     |                |                  |       |              |               |                    |
| Thallium            | < 0.500         | 1.00               | я      |                |                  |       |              |               |                    |
|                     |                 |                    |        |                |                  |       |              |               |                    |

[none]

TDF#:

### ${\it Metals (Dissolved) by EPA 200/7000 Series \ Methods - Quality \ Control}$

TechLaw, Inc. - ESAT Region 8

| Analyte              | Result        | Det. Limit         | Units                                 | Spike<br>Level | Source<br>Result | %R           | %R<br>Limits | % D or<br>RPD | %D or<br>RPD Limit |
|----------------------|---------------|--------------------|---------------------------------------|----------------|------------------|--------------|--------------|---------------|--------------------|
| Batch 1508042 - No   | Lab Prep Reqd | ı                  | Nater                                 |                |                  |              |              | ICPI          | MS-PE DRC-II       |
| Method Blank Spike   | (1508042-BS1) | Dilution Factor: 1 |                                       |                |                  | Prepa        | red & Analyz | ed: 08/10/15  |                    |
| Vanadium             | 92.9          | 3.00               | ug/L                                  | 100            |                  | 93           | 85-115       |               |                    |
| Chromium             | 91.0          | 2.00               | Ħ                                     | 100            |                  | 91           | 85-115       |               |                    |
| Cobalt               | 93.8          | 0.200              | я                                     | 100            |                  | 94           | 85-115       |               |                    |
| Nickel               | 91.9          | 1.00               | я                                     | 100            |                  | 92           | 85-115       |               |                    |
| Copper               | 90.4          | 1.00               | я                                     | 100            |                  | 90           | 85-115       |               |                    |
| Arsenic              | 91.1          | 2.00               | #                                     | 100            |                  | 91           | 85-115       |               |                    |
| Selenium             | 466           | 2.00               | #1                                    | 500            |                  | 93           | 85-115       |               |                    |
| Molybdenum           | 95.5          | 1.00               | п                                     | 100            |                  | 95           | 85-115       |               |                    |
| Silver               | 94.0          | 1.00               | п                                     | 100            |                  | 94           | 85-115       |               |                    |
| Cadmium              | 97.1          | 0.200              | п                                     | 100            |                  | 97           | 85-115       |               |                    |
| Antimony             | 97.7          | 1.00               | я                                     | 100            |                  | 98           | 85-115       |               |                    |
| Barium               | 97.1          | 10.0               | 11                                    | 100            |                  | 97           | 85-115       |               |                    |
| Thallium             | 94.6          | 1.00               | н                                     | 100            |                  | 95           | 85-115       |               |                    |
| Lead                 | 93.8          | 0.200              | "                                     | 100            |                  | 94           | 85-115       |               |                    |
| Duplicate (1508042-D | OUP1)         | Dilution Factor: 1 | Dilution Factor: 1 Source: C150802-41 |                | Prepa            | red & Analyz | ed: 08/10/15 |               |                    |
| Vanadium             | < 2.00        | 3.00               | ug/L                                  |                | < 2.00           |              |              |               | 20                 |
| Chromium             | 1.70          | 2.00               | "                                     |                | 1.57             |              |              | 8             | 20                 |
| Cobalt               | 1.47          | 0.200              | я                                     |                | 1.58             |              |              | 7             | 20                 |
| Nickel               | < 0.500       | 1.00               | я                                     |                | < 0.500          |              |              |               | 20                 |
| Copper               | 2.01          | 1.00               | п                                     |                | 1.93             |              |              | 4             | 20                 |
| Arsenic              | < 0.500       | 2.00               | я                                     |                | < 0.500          |              |              |               | 20                 |
| Selenium             | < 1.00        | 2.00               | я                                     |                | < 1.00           |              |              |               | 20                 |
| Molybdenum           | < 1.00        | 1.00               | <b>11</b>                             |                | < 1.00           |              |              |               | 20                 |
| Silver               | < 0.500       | 1.00               | #1                                    |                | < 0.500          |              |              |               | 20                 |
| Cadmium              | 0.210         | 0.200              | <b>51</b>                             |                | 0.232            |              |              | 10            | 20                 |
| Antimony             | < 0.500       | 1.00               | Ħ                                     |                | < 0.500          |              |              |               | 20                 |
| Barium               | 39.6          | 10.0               | я                                     |                | 40.5             |              |              | 2             | 20                 |
| Thallium             | < 0.500       | 1.00               | я                                     |                | < 0.500          |              |              | -             | 20                 |
| Lead                 | < 0.100       | 0.200              |                                       |                | < 0.100          |              |              |               | 20                 |

TDF#: [none]

Metals (Dissolved) by EPA 200/7000 Series Methods - Quality Control TechLaw, Inc. - ESAT Region 8

| Analyte                                   | Result          | Det. Limit         | Units  | Spike<br>Level | Source<br>Result         | %R    | %R<br>Limits | % D or<br>RPD | %D or<br>RPD Limit |
|-------------------------------------------|-----------------|--------------------|--------|----------------|--------------------------|-------|--------------|---------------|--------------------|
| Batch 1508042 - No                        | o Lab Prep Reqd | V                  | Vater  |                |                          |       |              | ICPM          | IS-PE DRC-II       |
| Matrix Spike (15080                       | 42-MS1)         | Dilution Factor: 1 | Source | : C150802-4    | 11                       | Prepa | red & Analyz | ed: 08/10/15  |                    |
| Vanadium                                  | 87.5            | 3.00               | ug/L   | 100            | < 2.00                   | 87    | 70-130       |               |                    |
| Chromium                                  | 88.9            | 2.00               | 51     | 100            | 1.57                     | 87    | 70-130       |               |                    |
| Cobalt                                    | 88.0            | 0.200              | 51     | 100            | 1.58                     | 86    | 70-130       |               |                    |
| Nickel                                    | 84.7            | 1.00               | 51     | 100            | < 0.500                  | 85    | 70-130       |               |                    |
| Copper                                    | 85.9            | 1.00               | 51     | 100            | 1.93                     | 84    | 70-130       |               |                    |
| Arsenic                                   | 99.9            | 2.00               | п      | 100            | < 0.500                  | 100   | 70-130       |               |                    |
| Selenium                                  | 501             | 2.00               | п      | 500            | < 1.00                   | 100   | 70-130       |               |                    |
| Molybdenum                                | 96.3            | 1.00               | п      | 100            | < 1.00                   | 96    | 70-130       |               |                    |
| Silver                                    | 89.5            | 1.00               | п      | 100            | < 0.500                  | 89    | 70-130       |               |                    |
| Cadmium                                   | 96.8            | 0.200              | n      | 100            | 0.232                    | 97    | 70-130       |               |                    |
| Antimony                                  | 98.0            | 1.00               | н      | 100            | < 0.500                  | 98    | 70-130       |               |                    |
| Barium                                    | 133             | 10.0               | н      | 100            | 40.5                     | 92    | 70-130       |               |                    |
| Thallium                                  | 89.8            | 1.00               | н      | 100            | < 0.500                  | 90    | 70-130       |               |                    |
| Lead                                      | 90.4            | 0.200              | н      | 100            | < 0.100                  | 90    | 70-130       |               |                    |
| Batch 1508051 - 15                        | 508042          | Water              |        |                |                          |       | ICPM         | IS-PE DRC-II  |                    |
| Serial Dilution (1508                     | 051-SRD1)       | Dilution Factor: 5 | Source | : C150802-2    | 23                       | Prepa | red & Analyz | ed: 08/10/15  |                    |
| Vanadium                                  | < 10.0          | 15.0               | ug/L   |                | < 2.00                   |       |              |               | 10                 |
| Chromium                                  | < 5.00          | 10.0               |        |                | 1.55                     |       |              |               | 10                 |
| Cobalt                                    | 0.646           | 1.00               | n      |                | 0.653                    |       |              | 1             | 10                 |
| Nickel                                    | < 2.50          | 5.00               | п      |                | < 0.50                   |       |              |               | 10                 |
| Copper                                    | < 2.50          | 5.00               | п      |                | 1.73                     |       |              |               | 10                 |
| Arsenic                                   | < 2.50          | 10.0               | я      |                | < 0.50                   |       |              |               | 10                 |
| Selenium                                  | < 5.00          | 10.0               | я      |                | < 1.00                   |       |              |               | 10                 |
| Molybdenum                                | < 5.00          | 5.00               | я      |                | < 1.00                   |       |              |               | 10                 |
| Silver                                    | < 2.50          | 5.00               | н      |                | < 0.50                   |       |              |               | 10                 |
|                                           | < 0.500         | 1.00               | н      |                | < 0.10                   |       |              |               | 10                 |
| Cadmium                                   |                 |                    |        |                |                          |       |              |               | 10                 |
|                                           | < 2.50          | 5.00               | și și  |                | < 0.50                   |       |              |               |                    |
| Antimony                                  | < 2.50<br>41.5  | 5.00<br>50.0       | я      |                | < 0.50<br>41.4           |       |              | 0.1           | 10                 |
| Cadmium<br>Antimony<br>Barium<br>Thallium |                 |                    |        |                | < 0.50<br>41.4<br>< 0.50 |       |              | 0.1           |                    |

[none]

### ${\it Metals (Dissolved) by EPA 200/7000 Series \ Methods - Quality \ Control}$

TechLaw, Inc. - ESAT Region 8

| Analyte                | Result        | Det. Limit         | Units  | Spike<br>Level | Source<br>Result | %R     | %R<br>Limits | %D or<br>RPD  | %D or<br>RPD Limit |
|------------------------|---------------|--------------------|--------|----------------|------------------|--------|--------------|---------------|--------------------|
| Batch 1508051 - 150    | 08042         | V                  | Vater  |                |                  |        |              | ICPM          | IS-PE DRC-II       |
| Serial Dilution (15080 | 51-SRD2)      | Dilution Factor: 5 | Source | : C150802-4    | 1                | Prepai | red & Analyz | zed: 08/10/15 |                    |
| Vanadium               | < 10.0        | 15.0               | ug/L   |                | < 2.00           |        |              |               | 10                 |
| Chromium               | < 5.00        | 10.0               | я      |                | 1.57             |        |              |               | 10                 |
| Cobalt                 | 1.63          | 1.00               | я      |                | 1.58             |        |              | 3             | 10                 |
| Nickel                 | < 2.50        | 5.00               | я      |                | < 0.50           |        |              |               | 10                 |
| Copper                 | < 2.50        | 5.00               | я      |                | 1.93             |        |              |               | 10                 |
| Arsenic                | < 2.50        | 10.0               | я      |                | < 0.50           |        |              |               | 10                 |
| Selenium               | < 5.00        | 10.0               | н      |                | < 1.00           |        |              |               | 10                 |
| Molybdenum             | < 5.00        | 5.00               | п      |                | < 1.00           |        |              |               | 10                 |
| Silver                 | < 2.50        | 5.00               | п      |                | < 0.50           |        |              |               | 10                 |
| Cadmium                | < 0.500       | 1.00               | n      |                | 0.232            |        |              |               | 10                 |
| Antimony               | < 2.50        | 5.00               | **     |                | < 0.50           |        |              |               | 10                 |
| Barium                 | 40.4          | 50.0               |        |                | 40.5             |        |              | 0.4           | 10                 |
| Thallium               | < 2.50        | 5.00               | н      |                | < 0.50           |        |              |               | 10                 |
| Lead                   | < 0.500       | 1.00               | Ħ      |                | < 0.10           |        |              |               | 10                 |
| ICPOE - PE Optima      | a             |                    |        |                |                  |        |              |               |                    |
| Batch 1508038 - No     | Lab Prep Read | V                  | Vater  |                |                  |        |              | ICPO          | E - PE Optima      |

| Batch 1508038 - N  | lo Lab Prep Reqd |                 | Water | ICPOE - PE Optima                     |
|--------------------|------------------|-----------------|-------|---------------------------------------|
| Method Blank (1508 | 8038-BLK1)       | Dilution Factor | : 1   | Prepared: 08/09/15 Analyzed: 08/10/15 |
| Aluminum           | < 20.0           | 50.0            | ug/L  |                                       |
| Beryllium          | < 2.00           | 5.00            | н     |                                       |
| Calcium            | < 100            | 250             | н     |                                       |
| Iron               | < 100            | 250             | п     |                                       |
| Potassium          | < 250            | 1000            | я     |                                       |
| Magnesium          | < 100            | 250             | н     |                                       |
| Manganese          | < 2.00           | 5.00            | н     |                                       |
| Sodium             | < 250            | 1000            | н     |                                       |
| Zinc               | < 10.0           | 20.0            | п     |                                       |

[none]

| Analyte                        | Result          | Det. Limit         | Units                                 | Spike<br>Level | Source<br>Result | %R    | %R<br>Limits  | % D or<br>RPD | %D or<br>RPD Limit |
|--------------------------------|-----------------|--------------------|---------------------------------------|----------------|------------------|-------|---------------|---------------|--------------------|
| Batch 1508038 - No             | o Lab Prep Reqd | V                  | Vater                                 |                |                  |       |               | ICPO          | E - PE Optima      |
| Method Blank Spike             | (1508038-BS1)   | Dilution Factor: 1 | · · · · · · · · · · · · · · · · · · · |                |                  | Prepa | red: 08/09/15 | Analyzed: 08/ | 10/15              |
| Aluminum                       | 9985            | 50.0               | ug/L                                  | 10100          |                  | 99    | 85-115        |               |                    |
| Beryllium                      | 98.66           | 5.00               | я                                     | 100            |                  | 99    | 85-115        |               |                    |
| Calcium                        | 10080           | 250                | я                                     | 10100          |                  | 100   | 85-115        |               |                    |
| Iron                           | 10070           | 250                | я                                     | 10100          |                  | 100   | 85-115        |               |                    |
| Potassium                      | 10190           | 1000               | <b>51</b>                             | 10100          |                  | 101   | 85-115        |               |                    |
| Magnesium                      | 10050           | 250                | н                                     | 10100          |                  | 99    | 85-115        |               |                    |
| Manganese                      | 98.15           | 5.00               | п                                     | 100            |                  | 98    | 85-115        |               |                    |
| Sodium                         | 10050           | 1000               | п                                     | 10100          |                  | 100   | 85-115        |               |                    |
| Zinc                           | 100.6           | 20.0               | п                                     | 100            |                  | 101   | 85-115        |               |                    |
| Duplicate (1508038-DUP1) Dilut |                 | Dilution Factor: 1 | 1 Source: C150802-23                  |                |                  | Prepa | red: 08/09/15 | Analyzed: 08/ | 10/15              |
| Aluminum                       | 35.17           | 50.0               | ug/L                                  |                | 42.68            |       |               | 19            | 20                 |
| Beryllium                      | < 2.00          | 5.00               | п                                     |                | < 2.00           |       |               |               | 20                 |
| Calcium                        | 53430           | 250                | "                                     |                | 53310            |       |               | 0.2           | 20                 |
| Iron                           | < 100           | 250                | "                                     |                | < 100            |       |               |               | 20                 |
| Potassium                      | 1904            | 1000               | п                                     |                | 1867             |       |               | 2             | 20                 |
| Magnesium                      | 7577            | 250                | я                                     |                | 7497             |       |               | 1             | 20                 |
| Manganese                      | 102.6           | 5.00               | я                                     |                | 101.5            |       |               | 1             | 20                 |
| Sodium                         | 10520           | 1000               | я                                     |                | 10520            |       |               | 0.04          | 20                 |
| Zinc                           | 20.46           | 20.0               | н                                     |                | 22.81            |       |               | 11            | 20                 |
| Matrix Spike (15080            | 38-MS1)         | Dilution Factor: 1 | Source                                | : C150802-2    | 3                | Prepa | red: 08/09/15 | Analyzed: 08/ | 10/15              |
| Aluminum                       | 10280           | 50.0               | ug/L                                  | 10100          | 42.68            | 101   | 70-130        |               |                    |
| Beryllium                      | 99.60           | 5.00               | п                                     | 100            | < 2.00           | 100   | 70-130        |               |                    |
| Calcium                        | 62190           | 250                | я                                     | 10100          | 53310            | 88    | 70-130        |               |                    |
| Iron                           | 10270           | 250                | я                                     | 10100          | < 100            | 102   | 70-130        |               |                    |
| Potassium                      | 12370           | 1000               | я                                     | 10100          | 1867             | 104   | 70-130        |               |                    |
| Magnesium                      | 17530           | 250                | я                                     | 10100          | 7497             | 99    | 70-130        |               |                    |
| Manganese                      | 199.0           | 5.00               | я                                     | 100            | 101.5            | 97    | 70-130        |               |                    |
| Sodium                         | 20620           | 1000               | н                                     | 10100          | 10520            | 100   | 70-130        |               |                    |
| Zinc                           | 118.6           | 20.0               | я                                     | 100            | 22.81            | 96    | 70-130        |               |                    |

[none]

| Analyte             | Result        | Det. Limit         | Units              | Spike<br>Level | Source<br>Result | %R    | %R<br>Limits                          | %D or<br>RPD  | %D or<br>RPD Limit |  |  |
|---------------------|---------------|--------------------|--------------------|----------------|------------------|-------|---------------------------------------|---------------|--------------------|--|--|
| Batch 1508038 - No  | Lab Prep Reqd | ı                  | Water              |                |                  |       |                                       | ICPO          | E - PE Optima      |  |  |
| Matrix Spike (15080 | 38-MS2)       | Dilution Factor: 1 | Source             | : C150802-2    | C150802-26       |       | Prepared: 08/09/15 Analyzed: 08/10/15 |               |                    |  |  |
| Aluminum            | 10120         | 50.0               | ug/L               | 10100          | 75.60            | 99    | 70-130                                |               |                    |  |  |
| Beryllium           | 99.33         | 5.00               | 11                 | 100            | < 2.00           | 99    | 70-130                                |               |                    |  |  |
| Calcium             | 58900         | 250                | я                  | 10100          | 50670            | 81    | 70-130                                |               |                    |  |  |
| Iron                | 10080         | 250                | н                  | 10100          | < 100            | 100   | 70-130                                |               |                    |  |  |
| Potassium           | 12040         | 1000               | н                  | 10100          | 1774             | 102   | 70-130                                |               |                    |  |  |
| Magnesium           | 17020         | 250                | н                  | 10100          | 7266             | 97    | 70-130                                |               |                    |  |  |
| Manganese           | 179.0         | 5.00               | я                  | 100            | 81.85            | 97    | 70-130                                |               |                    |  |  |
| Sodium              | 19610         | 1000               | н                  | 10100          | 9758             | 98    | 70-130                                |               |                    |  |  |
| Zinc                | 105.9         | 20.0               | н                  | 100            | < 10.0           | 106   | 70-130                                |               |                    |  |  |
| Batch 1508041 - No  | Lab Prep Reqd | I                  | Water              |                |                  |       |                                       | ICPO          | E - PE Optima      |  |  |
| Method Blank (1508) | 041-BLK1)     | Dilution Factor: 1 | Dilution Factor: 1 |                |                  |       | red & Analyz                          | ed: 08/10/15  |                    |  |  |
| Aluminum            | < 20.0        | 50.0               | ug/L               |                |                  |       |                                       |               |                    |  |  |
| Beryllium           | < 2.00        | 5.00               | ug/L               |                |                  |       |                                       |               |                    |  |  |
| Calcium             | < 100         | 250                | н                  |                |                  |       |                                       |               |                    |  |  |
| ron                 | < 100         | 250                | н                  |                |                  |       |                                       |               |                    |  |  |
| Potassium           | < 250         | 1000               | я                  |                |                  |       |                                       |               |                    |  |  |
| Magnesium           | < 100         | 250                | я                  |                |                  |       |                                       |               |                    |  |  |
| Manganese           | < 2.00        | 5.00               | я                  |                |                  |       |                                       |               |                    |  |  |
| Sodium              | < 250         | 1000               | н                  |                |                  |       |                                       |               |                    |  |  |
| Zinc                | < 10.0        | 20.0               | н                  |                |                  |       |                                       |               |                    |  |  |
| Method Blank Spike  | (1508041-BS1) | Dilution Factor: 1 |                    |                |                  | Prepa | red & Analyz                          | red: 08/10/15 |                    |  |  |
| Aluminum            | 9997          | 50.0               | ug/L               | 10100          |                  | 99    | 85-115                                |               |                    |  |  |
| Beryllium           | 98.43         | 5.00               | ", "               | 100            |                  | 98    | 85-115                                |               |                    |  |  |
| Calcium             | 10070         | 250                | я                  | 10100          |                  | 100   | 85-115                                |               |                    |  |  |
| ron                 | 10040         | 250                | я                  | 10100          |                  | 99    | 85-115                                |               |                    |  |  |
| Potassium           | 10210         | 1000               | я                  | 10100          |                  | 101   | 85-115                                |               |                    |  |  |
| Magnesium           | 10030         | 250                | я                  | 10100          |                  | 99    | 85-115                                |               |                    |  |  |
| Vlanganese          | 97.34         | 5.00               | я                  | 100            |                  | 97    | 85-115                                |               |                    |  |  |
| Sodium              | 10080         | 1000               | я                  | 10100          |                  | 100   | 85-115                                |               |                    |  |  |
| •                   | 99.87         | 20.0               | п                  | 100            |                  | 100   | 85-115                                |               |                    |  |  |

TDF#: [none]

|                                  |            |                    | Spike              | Spike              | Source   |                               | %R                                    | %D or        | %D or        |  |  |
|----------------------------------|------------|--------------------|--------------------|--------------------|----------|-------------------------------|---------------------------------------|--------------|--------------|--|--|
| Analyte                          | Result     | Det. Limit         | Units              | Level              | Result   | %R                            | Limits                                | RPD          | RPD Lim      |  |  |
| Batch 1508041 - No Lab Prep Reqd |            | ν                  | Vater              |                    |          |                               |                                       | ICPO         | E - PE Optin |  |  |
| Duplicate (1508041-DUP1)         |            | Dilution Factor: 1 | Source: C150802-41 |                    |          | Prepared & Analyzed: 08/10/15 |                                       |              |              |  |  |
| Aluminum                         | 24.39      | 50.0               | ug/L               |                    | < 20.0   |                               |                                       |              | 20           |  |  |
| Beryllium                        | < 2.00     | 5.00               | ,,                 |                    | < 2.00   |                               |                                       |              | 20           |  |  |
| Calcium                          | 51610      | 250                | **                 |                    | 52020    |                               |                                       | 0.8          | 20           |  |  |
| Iron                             | < 100      | 250                | **                 |                    | < 100    |                               |                                       |              | 20           |  |  |
| Potassium                        | 1813       | 1000               | **                 |                    | 1799     |                               |                                       | 0.8          | 20           |  |  |
| Magnesium                        | 7039       | 250                | **                 |                    | 6986     |                               |                                       | 0.8          | 20           |  |  |
| Manganese                        | 145.2      | 5.00               | "                  |                    | 145.6    |                               |                                       | 0.3          | 20           |  |  |
| Sodium                           | 9948       | 1000               | п                  |                    | 10010    |                               |                                       | 0.6          | 20           |  |  |
| Zinc                             | 66.15      | 20.0               | н                  |                    | 65.97    |                               |                                       | 0.3          | 20           |  |  |
| Matrix Spike (1508041-MS1)       |            | Dilution Factor: 1 | Source: C150802-41 |                    |          | Prepared & Analyzed: 08/10/15 |                                       |              |              |  |  |
| Aluminum                         | 10060      | 50.0               | ug/L               | 10100              | < 20.0   | 100                           | 70-130                                |              |              |  |  |
| Beryllium                        | 98.70      | 5.00               | "                  | 100                | < 2.00   | 99                            | 70-130                                |              |              |  |  |
| Calcium                          | 60530      | 250                | "                  | 10100              | 52020    | 84                            | 70-130                                |              |              |  |  |
| ron                              | 10090      | 250                | "                  | 10100              | < 100    | 100                           | 70-130                                |              |              |  |  |
| Potassium                        | 12100      | 1000               | "                  | 10100              | 1799     | 102                           | 70-130                                |              |              |  |  |
| Magnesium                        | 16880      | 250                | "                  | 10100              | 6986     | 98                            | 70-130                                |              |              |  |  |
| Manganese                        | 241.9      | 5.00               | я                  | 100                | 145.6    | 96                            | 70-130                                |              |              |  |  |
| Sodium                           | 19620      | 1000               | я                  | 10100              | 10010    | 95                            | 70-130                                |              |              |  |  |
| Zinc                             | 161.5      | 20.0               | я                  | 100                | 65.97    | 96                            | 70-130                                |              |              |  |  |
| Batch 1508049 - 15               | 508041     | Water              |                    |                    |          |                               | ICPO                                  | E - PE Optin |              |  |  |
| Serial Dilution (1508            | 8049-SRD1) | Dilution Factor: 5 | Source             | Source: C150802-23 |          |                               | Prepared: 08/09/15 Analyzed: 08/10/15 |              |              |  |  |
| Aluminum                         | < 100      | 250                | ug/L               |                    | 42.68    |                               |                                       |              | 10           |  |  |
| Beryllium                        | < 10.0     | 25.0               | "                  |                    | < 2.00   |                               |                                       |              | 10           |  |  |
| Calcium                          | 52210      | 1250               | я                  |                    | 53310    |                               |                                       | 2            | 10           |  |  |
| ron                              | < 500      | 1250               | я                  |                    | < 100.00 |                               |                                       |              | 10           |  |  |
| Potassium                        | 1987       | 5000               | #                  |                    | 1867     |                               |                                       | 6            | 10           |  |  |
| Magnesium                        | 7501       | 1250               | я                  |                    | 7497     |                               |                                       | 0.06         | 10           |  |  |
| Manganese                        | 101.2      | 25.0               | я                  |                    | 101.5    |                               |                                       | 0.3          | 10           |  |  |
| Sodium                           | 10410      | 5000               | я                  |                    | 10520    |                               |                                       | 1            | 10           |  |  |
| Zinc                             | < 50.0     | 100                | н                  |                    | 22.81    |                               |                                       |              | 10           |  |  |

[none]

#### Metals (Dissolved) by EPA 200/7000 Series Methods - Quality Control

#### TechLaw, Inc. - ESAT Region 8

| Analyte                        | Result                  | Det. Limit         | Units     | Spike<br>Level | Source<br>Result | %R                         | %R<br>Limits | %Dor<br>RPD | %Dor<br>RPD Limit |
|--------------------------------|-------------------------|--------------------|-----------|----------------|------------------|----------------------------|--------------|-------------|-------------------|
| Batch 1508049 - 15             | Batch 1508049 - 1508041 |                    | Water     |                |                  |                            |              | ICPO        | E - PE Optima     |
| Serial Dilution (1508049-SRD2) |                         | Dilution Factor: 5 | Source    | : C150802-4    | 11               | Prepared & Analyzed: 08/10 |              |             |                   |
| Aluminum                       | < 100                   | 250                | ug/L      |                | < 20.00          |                            |              |             | 10                |
| Beryllium                      | < 10.0                  | 25.0               | <b>51</b> |                | < 2.00           |                            |              |             | 10                |
| Calcium                        | 50680                   | 1250               | <b>51</b> |                | 52020            |                            |              | 3           | 10                |
| Iron                           | < 500                   | 1250               | п         |                | < 100.00         |                            |              |             | 10                |
| Potassium                      | 1781                    | 5000               | п         |                | 1799             |                            |              | 1           | 10                |
| Magnesium                      | 6947                    | 1250               | п         |                | 6986             |                            |              | 0.6         | 10                |
| Manganese                      | 144.9                   | 25.0               | н         |                | 145.6            |                            |              | 0.5         | 10                |
| Sodium                         | 9829                    | 5000               | п         |                | 10010            |                            |              | 2           | 10                |
| Zinc                           | 65.34                   | 100                | п         |                | 65.97            |                            |              | 1           | 10                |

NOTE:

RPD = Relative Percent Difference, %D = % Difference, DL = Detection Limit for QC sample

<sup>%</sup>R = % Recovery, %R limits do not apply when sample levels exceed 4x the spike level.

[none]

TDF#:

| Analyte                           | Result   | Det. Limit                    | Units | Spike<br>Level | Source<br>Result | %R     | %R<br>Limits                  | %Dor<br>RPD   | %D or<br>RPD Limit |
|-----------------------------------|----------|-------------------------------|-------|----------------|------------------|--------|-------------------------------|---------------|--------------------|
| ICPMS-PE DRC-II                   |          |                               |       |                |                  |        |                               |               |                    |
| Batch 1508043 - 200.2 - TR Metals |          | v                             | Vater |                |                  |        |                               | ICPN          | IS-PE DRC-II       |
| Method Blank (15080               | 43-BLK2) | Dilution Factor: 5            |       |                |                  | Prepar | ed & Analyz                   | zed: 08/10/15 |                    |
| √anadium                          | < 10.0   | 15.0                          | ug/L  |                |                  |        |                               |               |                    |
| Chromium                          | < 5.00   | 10.0                          | п     |                |                  |        |                               |               |                    |
| Cobalt                            | < 0.500  | 1.00                          | я     |                |                  |        |                               |               |                    |
| Nickel                            | < 2.50   | 5.00                          | #1    |                |                  |        |                               |               |                    |
| Copper                            | < 2.50   | 5.00                          | я     |                |                  |        |                               |               |                    |
| Arsenic                           | < 2.50   | 10.0                          | я     |                |                  |        |                               |               |                    |
| Selenium                          | < 5.00   | 10.0                          | я     |                |                  |        |                               |               |                    |
| Molybdenum                        | < 5.00   | 5.00                          | н     |                |                  |        |                               |               |                    |
| Silver                            | < 2.50   | 5.00                          | н     |                |                  |        |                               |               |                    |
| Cadmium                           | < 0.500  | 1.00                          | п     |                |                  |        |                               |               |                    |
| Antimony                          | < 2.50   | 5.00                          | п     |                |                  |        |                               |               |                    |
| Barium                            | < 25.0   | 50.0                          | н     |                |                  |        |                               |               |                    |
| Thallium                          | < 2.50   | 5.00                          | я     |                |                  |        |                               |               |                    |
| Lead                              | < 0.500  | 1.00                          | я     |                |                  |        |                               |               |                    |
| Duplicate (1508043-D              | UP2)     | Dilution Factor: 5 Source: C1 |       | C150802-2      | C150802-22       |        | Prepared & Analyzed: 08/10/15 |               |                    |
| √anadium                          | < 10.0   | 15.0                          | ug/L  |                | < 10.0           |        |                               |               | 20                 |
| Chromium                          | < 5.00   | 10.0                          | "     |                | < 5.00           |        |                               |               | 20                 |
| Cobalt                            | < 0.500  | 1.00                          | я     |                | < 0.500          |        |                               |               | 20                 |
| Nickel                            | < 2.50   | 5.00                          | я     |                | < 2.50           |        |                               |               | 20                 |
| Copper                            | 14.81    | 5.00                          | я     |                | 13.84            |        |                               | 7             | 20                 |
| Arsenic                           | 2.770    | 10.0                          | п     |                | < 2.50           |        |                               | ·             | 20                 |
| Selenium                          | < 5.00   | 10.0                          | п     |                | < 5.00           |        |                               |               | 20                 |
| Molybdenum                        | < 5.00   | 5.00                          | н     |                | < 5.00           |        |                               |               | 20                 |
| Silver                            | < 2.50   | 5.00                          | н     |                | < 2.50           |        |                               |               | 20                 |
| Cadmium                           | < 0.500  | 1.00                          | н     |                | < 0.500          |        |                               |               | 20                 |
| Antimony                          | < 2.50   | 5.00                          | я     |                | < 2.50           |        |                               |               | 20                 |
| Barium                            | 48.24    | 50.0                          | я     |                | 47.93            |        |                               | 0.6           | 20                 |
| Darraiti                          |          | 5.00                          | я     |                |                  |        |                               | 0.0           |                    |
| Thallium                          | < 2.50   | 5.00                          | **    |                | < 2.50           |        |                               |               | 20                 |

[none]

| Analyte                           | Result  | Det. Limit         | Units  | Spike<br>Level    | Source<br>Result | %R    | %R<br>Limits                  | %Dor<br>RPD   | %D or<br>RPD Limit |
|-----------------------------------|---------|--------------------|--------|-------------------|------------------|-------|-------------------------------|---------------|--------------------|
| Batch 1508043 - 200.2 - TR Metals |         | ν                  | Water  |                   |                  |       |                               | ICPI          | VIS-PE DRC-II      |
| Matrix Spike (1508043-MS2)        |         | Dilution Factor: 5 | Source | ource: C150802-22 |                  |       | Prepared & Analyzed: 08/10/15 |               |                    |
| Vanadium                          | 276.7   | 15.0               | ug/L   | 300               | < 10.0           | 92    | 70-130                        |               |                    |
| Chromium                          | 367.0   | 10.0               | #1     | 400               | < 5.00           | 92    | 70-130                        |               |                    |
| Cobalt                            | 186.1   | 1.00               | #      | 200               | < 0.500          | 93    | 70-130                        |               |                    |
| Nickel                            | 455.9   | 5.00               | #      | 500               | < 2.50           | 91    | 70-130                        |               |                    |
| Copper                            | 285.6   | 5.00               | #1     | 300               | 13.84            | 91    | 70-130                        |               |                    |
| Arsenic                           | 765.2   | 10.0               | я      | 800               | < 2.50           | 96    | 70-130                        |               |                    |
| Selenium                          | 1926    | 10.0               | н      | 2000              | < 5.00           | 96    | 70-130                        |               |                    |
| Molybdenum                        | 394.3   | 5.00               | н      | 400               | < 5.00           | 99    | 70-130                        |               |                    |
| Silver                            | 72.21   | 5.00               | п      | 75.0              | < 2.50           | 96    | 70-130                        |               |                    |
| Cadmium                           | 197.2   | 1.00               | n      | 200               | < 0.500          | 99    | 70-130                        |               |                    |
| Antimony                          | 774.7   | 5.00               | н      | 800               | < 2.50           | 97    | 70-130                        |               |                    |
| Barium                            | 231.1   | 50.0               | н      | 200               | 47.93            | 92    | 70-130                        |               |                    |
| Thallium                          | 1904    | 5.00               | н      | 2000              | < 2.50           | 95    | 70-130                        |               |                    |
| Lead                              | 1016    | 1.00               | п      | 1000              | 34.14            | 98    | 70-130                        |               |                    |
| Matrix Spike (150804              | 13-MS4) | Dilution Factor: 5 | Source | : C150802-2       | 25               | Prepa | red & Analyz                  | red: 08/10/15 |                    |
| Vanadium                          | 272.8   | 15.0               | ug/L   | 300               | < 10.0           | 91    | 70-130                        |               |                    |
| Chromium                          | 353.2   | 10.0               | "      | 400               | < 5.00           | 88    | 70-130                        |               |                    |
| Cobalt                            | 179.5   | 1.00               | я      | 200               | < 0.500          | 90    | 70-130                        |               |                    |
| Nickel                            | 443.2   | 5.00               | я      | 500               | < 2.50           | 89    | 70-130                        |               |                    |
| Copper                            | 281.2   | 5.00               | н      | 300               | 9.126            | 91    | 70-130                        |               |                    |
| Arsenic                           | 747.4   | 10.0               | н      | 800               | 2.678            | 93    | 70-130                        |               |                    |
| Selenium                          | 1901    | 10.0               | я      | 2000              | < 5.00           | 95    | 70-130                        |               |                    |
| Molybdenum                        | 381.1   | 5.00               | я      | 400               | < 5.00           | 95    | 70-130                        |               |                    |
| Silver                            | 69.01   | 5.00               | я      | 75.0              | < 2.50           | 92    | 70-130                        |               |                    |
| Cadmium                           | 190.0   | 1.00               | н      | 200               | < 0.500          | 95    | 70-130                        |               |                    |
| Antimony                          | 760.2   | 5.00               | #      | 800               | < 2.50           | 95    | 70-130                        |               |                    |
| Barium                            | 225.0   | 50.0               | н      | 200               | 43.27            | 91    | 70-130                        |               |                    |
| Thallium                          | 1831    | 5.00               | н      | 2000              | 11.93            | 91    | 70-130                        |               |                    |
|                                   |         |                    |        | _000              | 11.00            | J :   | 100                           |               |                    |

[none]

| Analyte              | Result          | Det. Limit       | Units | Spike<br>Level | Source<br>Result | %R    | %R<br>Limits | % D or<br>RPD | %D or<br>RPD Limit |
|----------------------|-----------------|------------------|-------|----------------|------------------|-------|--------------|---------------|--------------------|
| Batch 1508043 - 200  | 0.2 - TR Metals |                  | Water |                |                  |       |              | ICPI          | /IS-PE DRC-II      |
| Reference (1508043-S | SRM2)           | Dilution Factor: | 2     |                |                  | Prepa | red & Analyz | ed: 08/10/15  |                    |
| Vanadium             | 914.3           | 60.0             | ug/L  | 1000           |                  | 91    | 85-115       |               |                    |
| Chromium             | 919.2           | 40.0             | я     | 1000           |                  | 92    | 85-115       |               |                    |
| Cobalt               | 940.3           | 4.00             | я     | 1000           |                  | 94    | 85-115       |               |                    |
| Nickel               | 916.7           | 20.0             | я     | 1000           |                  | 92    | 85-115       |               |                    |
| Copper               | 941.9           | 20.0             | н     | 1000           |                  | 94    | 85-115       |               |                    |
| Arsenic              | 1942            | 40.0             | н     | 2000           |                  | 97    | 85-115       |               |                    |
| Selenium             | 897.2           | 40.0             | н     | 1000           |                  | 90    | 85-115       |               |                    |
| Molybdenum           | 958.8           | 20.0             | п     | 1000           |                  | 96    | 85-115       |               |                    |
| Silver               | 235.5           | 20.0             | п     | 250            |                  | 94    | 85-115       |               |                    |
| Cadmium              | 991.7           | 4.00             | п     | 1000           |                  | 99    | 85-115       |               |                    |
| Antimony             | 1923            | 20.0             | Ħ     | 2000           |                  | 96    | 85-115       |               |                    |
| Barium               | 923.2           | 200              | п     | 1000           |                  | 92    | 85-115       |               |                    |
| Thallium             | 4646            | 20.0             | п     | 5000           |                  | 93    | 85-115       |               |                    |
| Lead                 | 1889            | 4.00             | п     | 2000           |                  | 94    | 85-115       |               |                    |
| Batch 1508046 - 200  | 0.2 - TR Metals |                  | Water |                |                  |       |              | ICPI          | /IS-PE DRC-II      |
| Method Blank (15080  | 46-BLK2)        | Dilution Factor: | 5     |                |                  | Prepa | red & Analyz | ed: 08/10/15  |                    |
| Vanadium             | < 10.0          | 15.0             | ug/L  |                |                  |       |              |               |                    |
| Chromium             | < 5.00          | 10.0             | 49/L  |                |                  |       |              |               |                    |
| Cobalt               | < 0.500         | 1.00             | п     |                |                  |       |              |               |                    |
| Nickel               | < 2.50          | 5.00             | н     |                |                  |       |              |               |                    |
| Copper               | < 2.50          | 5.00             | н     |                |                  |       |              |               |                    |
| Arsenic              | < 2.50          | 10.0             | я     |                |                  |       |              |               |                    |
| Selenium             | < 5.00          | 10.0             | я     |                |                  |       |              |               |                    |
| Molybdenum           | < 5.00          | 5.00             | н     |                |                  |       |              |               |                    |
| Silver               | < 2.50          | 5.00             | Ħ     |                |                  |       |              |               |                    |
| Cadmium              | < 0.500         | 1.00             | н     |                |                  |       |              |               |                    |
| Antimony             | < 2.50          | 5.00             | я     |                |                  |       |              |               |                    |
| Barium               | < 25.0          | 50.0             | п     |                |                  |       |              |               |                    |
| Thallium             | < 2.50          | 5.00             | я     |                |                  |       |              |               |                    |
| T CONTINUES          | < 0.500         | 1.00             |       |                |                  |       |              |               |                    |

[none]

| Analyte             | Result          | Det. Limit         | Units  | Spike<br>Level     | Source<br>Result | %R    | %R<br>Limits | %Dor<br>RPD   | %D or<br>RPD Limit |
|---------------------|-----------------|--------------------|--------|--------------------|------------------|-------|--------------|---------------|--------------------|
| 3atch 1508046 - 20  | 0.2 - TR Metals | ν                  | Vater  |                    |                  |       |              | ICPN          | IS-PE DRC-II       |
| Duplicate (1508046- | OUP2)           | Dilution Factor: 5 | Source | : C150802-4        | 10               | Prepa | red & Analyz | red: 08/10/15 |                    |
| Vanadium            | < 10.0          | 15.0               | ug/L   |                    | < 10.0           |       |              |               | 20                 |
| Chromium            | < 5.00          | 10.0               | я      |                    | < 5.00           |       |              |               | 20                 |
| Cobalt              | 0.5506          | 1.00               | я      |                    | 0.6074           |       |              | 10            | 20                 |
| Vickel              | < 2.50          | 5.00               | Ħ      |                    | < 2.50           |       |              |               | 20                 |
| Copper              | 16.22           | 5.00               | și.    |                    | 15.81            |       |              | 3             | 20                 |
| Arsenic             | 3.860           | 10.0               | я      |                    | < 2.50           |       |              |               | 20                 |
| Selenium            | < 5.00          | 10.0               | н      |                    | < 5.00           |       |              |               | 20                 |
| Molybdenum          | < 5.00          | 5.00               | п      |                    | < 5.00           |       |              |               | 20                 |
| Silver              | < 2.50          | 5.00               | п      |                    | < 2.50           |       |              |               | 20                 |
| Cadmium             | < 0.500         | 1.00               | n      |                    | < 0.500          |       |              |               | 20                 |
| Antimony            | < 2.50          | 5.00               | 81     |                    | < 2.50           |       |              |               | 20                 |
| Barium              | 45.27           | 50.0               | н      |                    | 44.12            |       |              | 3             | 20                 |
| Thallium            | < 2.50          | 5.00               | п      |                    | < 2.50           |       |              |               | 20                 |
| Lead                | 38.59           | 1.00               | н      |                    | 37.64            |       |              | 2             | 20                 |
| Matrix Spike (15080 | 46-MS2)         | Dilution Factor: 5 | Source | Source: C150802-40 |                  | Prepa | red & Analyz | zed: 08/10/15 |                    |
| √anadium            | 282.0           | 15.0               | ug/L   | 300                | < 10.0           | 94    | 70-130       |               |                    |
| Chromium            | 361.1           | 10.0               | "      | 400                | < 5.00           | 90    | 70-130       |               |                    |
| Cobalt              | 187.7           | 1.00               | я      | 200                | 0.6074           | 94    | 70-130       |               |                    |
| Vickel              | 455.1           | 5.00               | я      | 500                | < 2.50           | 91    | 70-130       |               |                    |
| Copper              | 294.6           | 5.00               | п      | 300                | 15.81            | 93    | 70-130       |               |                    |
| Arsenic             | 756.4           | 10.0               | п      | 800                | < 2.50           | 95    | 70-130       |               |                    |
| Selenium            | 1915            | 10.0               | п      | 2000               | < 5.00           | 96    | 70-130       |               |                    |
| Molybdenum          | 385.1           | 5.00               | я      | 400                | < 5.00           | 96    | 70-130       |               |                    |
| Silver              | 70.32           | 5.00               | я      | 75.0               | < 2.50           | 94    | 70-130       |               |                    |
| Cadmium             | 194.4           | 1.00               | я      | 200                | < 0.500          | 97    | 70-130       |               |                    |
| Antimony            | 760.6           | 5.00               | я      | 800                | < 2.50           | 95    | 70-130       |               |                    |
| Barium              | 220.8           | 50.0               | я      | 200                | 44.12            | 88    | 70-130       |               |                    |
| Thallium            | 1810            | 5.00               | я      | 2000               | < 2.50           | 90    | 70-130       |               |                    |
|                     | 973.2           | 1.00               |        |                    |                  | ••    |              |               |                    |

[none]

TDF#:

### Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control TechLaw, Inc. - ESAT Region 8

| Analyte                                                                                           | Result                                                                                                    | Det. Limit                                                                           | Units                                  | Spike<br>Level | Source<br>Result                                                                                | %R    | %R<br>Limits | %D or<br>RPD  | %D or<br>RPD Limi                             |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------|----------------|-------------------------------------------------------------------------------------------------|-------|--------------|---------------|-----------------------------------------------|
| 3atch 1508046 - 20                                                                                | 0.2 - TR Metals                                                                                           | W                                                                                    | 'ater                                  |                |                                                                                                 |       |              | ICPN          | MS-PE DRC-                                    |
| Reference (1508046-                                                                               | SRM2)                                                                                                     | Dilution Factor: 2                                                                   |                                        |                |                                                                                                 | Prepa | red & Analyz | red: 08/10/15 |                                               |
| Vanadium                                                                                          | 931.2                                                                                                     | 60.0                                                                                 | ug/L                                   | 1000           |                                                                                                 | 93    | 85-115       |               |                                               |
| Chromium                                                                                          | 916.3                                                                                                     | 40.0                                                                                 | я                                      | 1000           |                                                                                                 | 92    | 85-115       |               |                                               |
| Cobalt                                                                                            | 950.9                                                                                                     | 4.00                                                                                 | я                                      | 1000           |                                                                                                 | 95    | 85-115       |               |                                               |
| Vickel                                                                                            | 930.5                                                                                                     | 20.0                                                                                 | я                                      | 1000           |                                                                                                 | 93    | 85-115       |               |                                               |
| Copper                                                                                            | 934.2                                                                                                     | 20.0                                                                                 | și.                                    | 1000           |                                                                                                 | 93    | 85-115       |               |                                               |
| Arsenic                                                                                           | 1941                                                                                                      | 40.0                                                                                 | 81                                     | 2000           |                                                                                                 | 97    | 85-115       |               |                                               |
| Selenium                                                                                          | 961.8                                                                                                     | 40.0                                                                                 | п                                      | 1000           |                                                                                                 | 96    | 85-115       |               |                                               |
| Molybdenum                                                                                        | 953.9                                                                                                     | 20.0                                                                                 | п                                      | 1000           |                                                                                                 | 95    | 85-115       |               |                                               |
| Silver                                                                                            | 237.3                                                                                                     | 20.0                                                                                 | п                                      | 250            |                                                                                                 | 95    | 85-115       |               |                                               |
| Cadmium                                                                                           | 963.7                                                                                                     | 4.00                                                                                 | n                                      | 1000           |                                                                                                 | 96    | 85-115       |               |                                               |
| Antimony                                                                                          | 1901                                                                                                      | 20.0                                                                                 | я                                      | 2000           |                                                                                                 | 95    | 85-115       |               |                                               |
| Barium                                                                                            | 916.4                                                                                                     | 200                                                                                  | н                                      | 1000           |                                                                                                 | 92    | 85-115       |               |                                               |
| Thallium                                                                                          | 4568                                                                                                      | 20.0                                                                                 | п                                      | 5000           |                                                                                                 | 91    | 85-115       |               |                                               |
| Lead                                                                                              | 1880                                                                                                      | 4.00                                                                                 | п                                      | 2000           |                                                                                                 | 94    | 85-115       |               |                                               |
| Batch 1508057 - 15                                                                                | 08046                                                                                                     | Water                                                                                |                                        |                |                                                                                                 |       | ICPN         | MS-PE DRC-    |                                               |
| Serial Dilution (1508                                                                             | 057 CDD4\                                                                                                 | Dilution Factor: 2                                                                   |                                        |                | e: C150802-22                                                                                   |       | red & Analyz | red: 08/10/15 |                                               |
| ,                                                                                                 | 007-SKD1)                                                                                                 |                                                                                      |                                        |                |                                                                                                 |       |              |               |                                               |
| ,                                                                                                 | < 50.0                                                                                                    | 75.0                                                                                 | ua/L                                   |                | < 10.00                                                                                         |       |              |               | 10                                            |
| √anadium                                                                                          | •                                                                                                         |                                                                                      | ug/L                                   |                | < 10.00<br>< 5.00                                                                               |       |              |               | 10<br>10                                      |
| Vanadium<br>Chromium                                                                              | < 50.0                                                                                                    | 75.0                                                                                 |                                        |                | < 5.00                                                                                          |       |              |               |                                               |
| Vanadium<br>Chromium<br>Cobalt                                                                    | < 50.0<br>< 25.0                                                                                          | 75.0<br>50.0                                                                         | я                                      |                | < 5.00<br>< 0.50                                                                                |       |              |               | 10                                            |
| Vanadium<br>Chromium<br>Cobalt<br>Nickel                                                          | < 50.0<br>< 25.0<br>< 2.50                                                                                | 75.0<br>50.0<br>5.00                                                                 | я                                      |                | < 5.00<br>< 0.50<br>< 2.50                                                                      |       |              | 9             | 10<br>10                                      |
| Vanadium<br>Chromium<br>Cobalt<br>Nickel<br>Copper                                                | < 50.0<br>< 25.0<br>< 2.50<br>< 12.5                                                                      | 75.0<br>50.0<br>5.00<br>25.0                                                         | 11<br>11                               |                | < 5.00<br>< 0.50                                                                                |       |              | 9             | 10<br>10<br>10                                |
| Vanadium<br>Chromium<br>Cobalt<br>Nickel<br>Copper<br>Arsenic                                     | < 50.0<br>< 25.0<br>< 2.50<br>< 12.5<br>12.68                                                             | 75.0<br>50.0<br>5.00<br>25.0<br>25.0                                                 | 11<br>11<br>11                         |                | < 5.00<br>< 0.50<br>< 2.50<br>13.84<br>< 2.50                                                   |       |              | 9             | 10<br>10<br>10<br>10                          |
| Vanadium<br>Chromium<br>Cobalt<br>Nickel<br>Copper<br>Arsenic<br>Selenium                         | < 50.0<br>< 25.0<br>< 2.50<br>< 12.5<br>12.68<br>< 12.5                                                   | 75.0<br>50.0<br>5.00<br>25.0<br>25.0<br>50.0                                         | n<br>n<br>n                            |                | < 5.00<br>< 0.50<br>< 2.50<br>13.84<br>< 2.50<br>< 5.00                                         |       |              | 9             | 10<br>10<br>10<br>10<br>10                    |
| Vanadium Chromium Cobalt Nickel Copper Arsenic Selenium Molybdenum                                | < 50.0<br>< 25.0<br>< 2.50<br>< 12.5<br>12.68<br>< 12.5<br>< 25.0                                         | 75.0<br>50.0<br>5.00<br>25.0<br>25.0<br>50.0                                         | n<br>n<br>n                            |                | < 5.00<br>< 0.50<br>< 2.50<br>13.84<br>< 2.50<br>< 5.00                                         |       |              | 9             | 10<br>10<br>10<br>10<br>10                    |
| Vanadium Chromium Cobalt Nickel Copper Arsenic Selenium Molybdenum Silver                         | < 50.0<br>< 25.0<br>< 2.50<br>< 12.5<br>12.68<br>< 12.5<br>< 25.0<br>< 25.0                               | 75.0<br>50.0<br>5.00<br>25.0<br>25.0<br>50.0<br>50.0                                 | n<br>n<br>n                            |                | < 5.00<br>< 0.50<br>< 2.50<br>13.84<br>< 2.50<br>< 5.00<br>< 5.00<br>< 2.50                     |       |              | 9             | 10<br>10<br>10<br>10<br>10<br>10<br>200       |
| Vanadium Chromium Cobalt Nickel Copper Arsenic Selenium Molybdenum Silver Cadmium                 | < 50.0<br>< 25.0<br>< 2.50<br>< 12.5<br>12.68<br>< 12.5<br>< 25.0<br>< 25.0<br>< 12.5                     | 75.0<br>50.0<br>5.00<br>25.0<br>25.0<br>50.0<br>50.0<br>25.0                         | 11 11 11 11 11 11 11 11 11 11 11 11 11 |                | < 5.00<br>< 0.50<br>< 2.50<br>13.84<br>< 2.50<br>< 5.00<br>< 5.00<br>< 2.50<br>< 0.50           |       |              | 9             | 10<br>10<br>10<br>10<br>10<br>10<br>200       |
| Vanadium Chromium Cobalt Nickel Copper Arsenic Selenium Molybdenum Silver Cadmium Antimony        | < 50.0<br>< 25.0<br>< 2.50<br>< 12.5<br>12.68<br>< 12.5<br>< 25.0<br>< 25.0<br>< 12.5<br>< 2.50           | 75.0<br>50.0<br>5.00<br>25.0<br>25.0<br>50.0<br>50.0<br>25.0<br>25                   | 11 11 11 11 11 11 11 11 11 11 11 11 11 |                | < 5.00<br>< 0.50<br>< 2.50<br>13.84<br>< 2.50<br>< 5.00<br>< 5.00<br>< 2.50<br>< 0.50<br>< 2.50 |       |              | 9             | 10<br>10<br>10<br>10<br>10<br>10<br>200<br>10 |
| Vanadium Chromium Cobalt Nickel Copper Arsenic Selenium Molybdenum Silver Cadmium Antimony Barium | < 50.0<br>< 25.0<br>< 2.50<br>< 12.5<br>12.68<br>< 12.5<br>< 25.0<br>< 25.0<br>< 12.5<br>< 2.50<br>< 12.5 | 75.0<br>50.0<br>5.00<br>25.0<br>25.0<br>50.0<br>50.0<br>25.0<br>25.0<br>5.00<br>25.0 |                                        |                | < 5.00<br>< 0.50<br>< 2.50<br>13.84<br>< 2.50<br>< 5.00<br>< 5.00<br>< 2.50<br>< 0.50           |       |              | 9             | 10<br>10<br>10<br>10<br>10<br>10<br>200<br>10 |

[none]

| Analyte                | Result          | Det. Limit         | Units  | Spike<br>Level | Source<br>Result | %R     | %R<br>Limits | % D or<br>RPD | %D or<br>RPD Limit |
|------------------------|-----------------|--------------------|--------|----------------|------------------|--------|--------------|---------------|--------------------|
| Batch 1508057 - 150    | 08046           | V                  | Vater  |                |                  |        |              | ICPN          | IS-PE DRC-I        |
| Serial Dilution (15080 | 57-SRD2)        | Dilution Factor: 2 | Source | : C150802-4    | 0                | Prepai | red & Analyz | ed: 08/10/15  |                    |
| Vanadium               | < 50.0          | 75.0               | ug/L   |                | < 10.00          |        |              |               | 10                 |
| Chromium               | < 25.0          | 50.0               | #      |                | < 5.00           |        |              |               | 10                 |
| Cobalt                 | < 2.50          | 5.00               | я      |                | 0.6074           |        |              |               | 10                 |
| Nickel                 | < 12.5          | 25.0               | н      |                | < 2.50           |        |              |               | 10                 |
| Copper                 | 18.52           | 25.0               | н      |                | 15.81            |        |              | 16            | 10                 |
| Arsenic                | < 12.5          | 50.0               | я      |                | < 2.50           |        |              |               | 10                 |
| Selenium               | < 25.0          | 50.0               | "      |                | < 5.00           |        |              |               | 10                 |
| Molybdenum             | < 25.0          | 25.0               | "      |                | < 5.00           |        |              |               | 200                |
| Silver                 | < 12.5          | 25.0               | "      |                | < 2.50           |        |              |               | 10                 |
| Cadmium                | < 2.50          | 5.00               | "      |                | < 0.50           |        |              |               | 10                 |
| Antimony               | < 12.5          | 25.0               | я      |                | < 2.50           |        |              |               | 10                 |
| Barium                 | < 125           | 250                | н      |                | 44.12            |        |              |               | 10                 |
| Thallium               | < 12.5          | 25.0               | "      |                | < 2.50           |        |              |               | 10                 |
| Lead                   | 35.25           | 5.00               | н      |                | 37.64            |        |              | 7             | 10                 |
| ICPOE - PE Optima      | a               |                    |        |                |                  |        |              |               |                    |
| Batch 1508043 - 200    | 0.2 - TR Metals | V                  | Vater  |                |                  |        |              | ICPO          | E - PE Optima      |
| Method Blank (15080    | 43-BLK1)        | Dilution Factor: 1 |        |                |                  | Prepai | red & Analyz | ed: 08/10/15  |                    |
| Aluminum               | < 20.0          | 50.0               | ug/L   |                |                  |        |              |               |                    |
| Beryllium              | < 2.00          | 5.00               | "      |                |                  |        |              |               |                    |
| Calcium                | < 100           | 250                | н      |                |                  |        |              |               |                    |
| Iron                   | < 100           | 250                | п      |                |                  |        |              |               |                    |
| Potassium              | < 250           | 1000               | #      |                |                  |        |              |               |                    |
| Magnesium              | < 100           | 250                | я      |                |                  |        |              |               |                    |
| Manganese              | < 2.00          | 5.00               | **     |                |                  |        |              |               |                    |
| Sodium                 | < 250           | 1000               | **     |                |                  |        |              |               |                    |
| Zinc                   | < 10.0          | 20.0               | н      |                |                  |        |              |               |                    |

[none]

| Analyte                    | Result           | Det. Limit         | Units              | Spike<br>Level | Source<br>Result | %R           | %R<br>Limits  | %Dor<br>RPD   | %D or<br>RPD Limit |
|----------------------------|------------------|--------------------|--------------------|----------------|------------------|--------------|---------------|---------------|--------------------|
| Batch 1508043 - 20         | 00.2 - TR Metals | V                  | Vater              |                |                  |              |               | ICPO          | E - PE Optim       |
| Duplicate (1508043-I       | DUP1)            | Dilution Factor: 1 | Source             | : C150802-2    | 22               | Prepa        | red & Analyz  | zed: 08/10/15 |                    |
| Aluminum                   | 888.5            | 50.0               | ug/L               |                | 810.6            |              |               | 9             | 20                 |
| Beryllium                  | < 2.00           | 5.00               | "                  |                | < 2.00           |              |               |               | 20                 |
| Calcium                    | 54460            | 250                | я                  |                | 55210            |              |               | 1             | 20                 |
| Iron                       | 3096             | 250                | я                  |                | 2925             |              |               | 6             | 20                 |
| Potassium                  | 2217             | 1000               | **                 |                | 2255             |              |               | 2             | 20                 |
| Magnesium                  | 7739             | 250                | **                 |                | 7940             |              |               | 3             | 20                 |
| Manganese                  | 163.9            | 5.00               | п                  |                | 150.6            |              |               | 8             | 20                 |
| Sodium                     | 10760            | 1000               | n                  |                | 10870            |              |               | 0.9           | 20                 |
| Zinc                       | 94.79            | 20.0               | п                  |                | 91.53            |              |               | 3             | 20                 |
| Matrix Spike (1508043-MS1) |                  | Dilution Factor: 1 | Source: C150802-22 |                | Prepa            | red & Analyz | zed: 08/10/15 |               |                    |
| Aluminum                   | 2967             | 50.0               | ug/L               | 2000           | 810.6            | 108          | 70-130        |               |                    |
| Beryllium                  | 203.4            | 5.00               | н                  | 200            | < 2.00           | 102          | 70-130        |               |                    |
| Calcium                    | 55820            | 250                | н                  | 1000           | 55210            | 61           | 70-130        |               |                    |
| Iron                       | 6180             | 250                | н                  | 3000           | 2925             | 108          | 70-130        |               |                    |
| Potassium                  | 12240            | 1000               | "                  | 10000          | 2255             | 100          | 70-130        |               |                    |
| Magnesium                  | 9855             | 250                | н                  | 2000           | 7940             | 96           | 70-130        |               |                    |
| Manganese                  | 359.2            | 5.00               | я                  | 200            | 150.6            | 104          | 70-130        |               |                    |
| Sodium                     | 13720            | 1000               | я                  | 3000           | 10870            | 95           | 70-130        |               |                    |
| Zinc                       | 294.0            | 20.0               | я                  | 200            | 91.53            | 101          | 70-130        |               |                    |
| Matrix Spike (15080        | 43-MS3)          | Dilution Factor: 1 | Source             | : C150802-2    | 25               | Prepa        | red & Analyz  | zed: 08/10/15 |                    |
| Aluminum                   | 2507             | 50.0               | ug/L               | 2000           | 496.7            | 101          | 70-130        |               |                    |
| Beryllium                  | 202.2            | 5.00               | я                  | 200            | < 2.00           | 101          | 70-130        |               |                    |
| Calcium                    | 52110            | 250                | я                  | 1000           | 51600            | 51           | 70-130        |               |                    |
| Iron                       | 4508             | 250                | я                  | 3000           | 1409             | 103          | 70-130        |               |                    |
| Potassium                  | 11740            | 1000               | я                  | 10000          | 1938             | 98           | 70-130        |               |                    |
| Magnesium                  | 9330             | 250                | **                 | 2000           | 7363             | 98           | 70-130        |               |                    |
| Manganese                  | 321.0            | 5.00               | **                 | 200            | 120.8            | 100          | 70-130        |               |                    |
| Sodium                     | 12750            | 1000               | **                 | 3000           | 9933             | 94           | 70-130        |               |                    |
| Zinc                       | 267.6            | 20.0               | н                  | 200            | 66.75            | 100          | 70-130        |               |                    |

[none]

| Analyte                           | Result           | Det. Limit         | Units  | Spike<br>Level | Source<br>Result | %R    | %R<br>Limits | %Dor<br>RPD   | %Dor<br>RPD Limi |
|-----------------------------------|------------------|--------------------|--------|----------------|------------------|-------|--------------|---------------|------------------|
| Batch 1508043 - 20                | 00.2 - TR Metals | И                  | /ater  |                |                  |       |              | ICPOI         | E - PE Optim     |
| Reference (1508043-               | SRM1)            | Dilution Factor: 1 |        |                |                  | Prepa | red & Analyz | red: 08/10/15 |                  |
| Aluminum                          | 1027             | 50.0               | ug/L   | 1000           |                  | 103   | 85-115       |               |                  |
| Beryllium                         | 1007             | 5.00               | я      | 1000           |                  | 101   | 85-115       |               |                  |
| Calcium                           | 1002             | 250                | я      | 1000           |                  | 100   | 85-115       |               |                  |
| Iron                              | 1009             | 250                | я      | 1000           |                  | 101   | 85-115       |               |                  |
| Potassium                         | 5097             | 1000               | я      | 5000           |                  | 102   | 85-115       |               |                  |
| Magnesium                         | 1007             | 250                | н      | 1000           |                  | 101   | 85-115       |               |                  |
| Manganese                         | 1030             | 5.00               | н      | 1000           |                  | 103   | 85-115       |               |                  |
| Sodium                            | 1039             | 1000               | н      | 1000           |                  | 104   | 85-115       |               |                  |
| Zinc                              | 1032             | 20.0               | п      | 1000           |                  | 103   | 85-115       |               |                  |
| Batch 1508046 - 200.2 - TR Metals |                  | Water              |        |                |                  |       |              | ICPOI         | E - PE Optim     |
| Method Blank (1508046-BLK1)       |                  | Dilution Factor: 1 |        |                |                  | Prepa | red & Analyz | red: 08/10/15 |                  |
| Aluminum                          | < 20.0           | 50.0               | ug/L   |                |                  |       |              |               |                  |
| Beryllium                         | < 2.00           | 5.00               | ug/L   |                |                  |       |              |               |                  |
| Calcium                           | < 100            | 250                | н      |                |                  |       |              |               |                  |
| Iron                              | < 100            | 250                | н      |                |                  |       |              |               |                  |
| Potassium                         | < 250            | 1000               | н      |                |                  |       |              |               |                  |
| Magnesium                         | < 100            | 250                | я      |                |                  |       |              |               |                  |
| Manganese                         | < 2.00           | 5.00               | я      |                |                  |       |              |               |                  |
| Sodium                            | < 250            | 1000               | п      |                |                  |       |              |               |                  |
| Zinc                              | < 10.0           | 20.0               | я      |                |                  |       |              |               |                  |
| Duplicate (1508046-               | DUP1)            | Dilution Factor: 1 | Source | : C150802-4    | 0                | Prepa | red & Analyz | red: 08/10/15 |                  |
| Aluminum                          | 876.7            | 50.0               | ug/L   |                | 803.4            |       |              | 9             | 20               |
| Beryllium                         | < 2.00           | 5.00               | "      |                | < 2.00           |       |              |               | 20               |
| ,<br>Calcium                      | 52100            | 250                | я      |                | 50060            |       |              | 4             | 20               |
| Iron                              | 3024             | 250                | я      |                | 2916             |       |              | 4             | 20               |
| Potassium                         | 2097             | 1000               | я      |                | 1989             |       |              | 5             | 20               |
| Magnesium                         | 7278             | 250                | я      |                | 6954             |       |              | 5             | 20               |
| Manganese                         | 183.6            | 5.00               | я      |                | 186.1            |       |              | 1             | 20               |
| Sodium                            | 10190            | 1000               | я      |                | 9693             |       |              | 5             | 20               |
| Zinc                              | 120.6            | 20.0               | я      |                | 124.4            |       |              | 3             | 20               |

Certificate of Analysis

TDF#: [none]

| Analyte               | Result          | Det. Limit         | Units     | Spike<br>Level | Source<br>Result | %R    | %R<br>Limits | % D or<br>RPD | %D or<br>RPD Limit |
|-----------------------|-----------------|--------------------|-----------|----------------|------------------|-------|--------------|---------------|--------------------|
| Batch 1508046 - 20    | 0.2 - TR Metals | ν                  | Vater     |                |                  |       |              | ICPOI         | E - PE Optima      |
| Matrix Spike (15080   | 46-MS1)         | Dilution Factor: 1 | Source    | : C150802-4    | 0                | Prepa | red & Analyz | ed: 08/10/15  |                    |
| Aluminum              | 2957            | 50.0               | ug/L      | 2000           | 803.4            | 108   | 70-130       |               |                    |
| Beryllium             | 197.0           | 5.00               | я         | 200            | < 2.00           | 99    | 70-130       |               |                    |
| Calcium               | 53820           | 250                | я         | 1000           | 50060            | 377   | 70-130       |               |                    |
| ron                   | 6181            | 250                | я         | 3000           | 2916             | 109   | 70-130       |               |                    |
| Potassium             | 12130           | 1000               | <b>51</b> | 10000          | 1989             | 101   | 70-130       |               |                    |
| /Jagnesium            | 9486            | 250                | я         | 2000           | 6954             | 127   | 70-130       |               |                    |
| Vianganese            | 382.6           | 5.00               | н         | 200            | 186.1            | 98    | 70-130       |               |                    |
| Sodium                | 13320           | 1000               | п         | 3000           | 9693             | 121   | 70-130       |               |                    |
| Zinc                  | 313.2           | 20.0               | н         | 200            | 124.4            | 94    | 70-130       |               |                    |
| Reference (1508046-   | SRM1)           | Dilution Factor: 1 |           |                |                  | Prepa | red & Analyz | ed: 08/10/15  |                    |
| Aluminum              | 1004            | 50.0               | ug/L      | 1000           |                  | 100   | 85-115       |               |                    |
| Beryllium             | 987.6           | 5.00               | "         | 1000           |                  | 99    | 85-115       |               |                    |
| Calcium               | 976.9           | 250                | п         | 1000           |                  | 98    | 85-115       |               |                    |
| ron                   | 987.5           | 250                | п         | 1000           |                  | 99    | 85-115       |               |                    |
| Potassium             | 4914            | 1000               | п         | 5000           |                  | 98    | 85-115       |               |                    |
| /lagnesium            | 982.9           | 250                | н         | 1000           |                  | 98    | 85-115       |               |                    |
| Vanganese             | 1015            | 5.00               | я         | 1000           |                  | 101   | 85-115       |               |                    |
| Sodium                | 995.4           | 1000               | я         | 1000           |                  | 100   | 85-115       |               |                    |
| Zinc                  | 1016            | 20.0               | <b>51</b> | 1000           |                  | 102   | 85-115       |               |                    |
| Batch 1508056 - 15    | 608046          | ν                  | Vater     |                |                  |       |              | ICPOI         | E - PE Optima      |
| Serial Dilution (1508 | 056-SRD1)       | Dilution Factor: 5 | Source    | : C150802-2    | 2                | Prepa | red & Analyz | ed: 08/10/15  |                    |
| Aluminum              | 849.0           | 250                | ug/L      |                | 810.6            |       |              | 5             | 10                 |
| Beryllium             | < 10.0          | 25.0               | "         |                | < 2.00           |       |              |               | 10                 |
| Calcium               | 53600           | 1250               | п         |                | 55210            |       |              | 3             | 10                 |
| ron                   | 2852            | 1250               | п         |                | 2925             |       |              | 3             | 10                 |
| Potassium             | 2501            | 5000               | н         |                | 2255             |       |              | 10            | 10                 |
| /lagnesium            | 7741            | 1250               | н         |                | 7940             |       |              | 3             | 10                 |
| /Janganese            | 155.0           | 25.0               | н         |                | 150.6            |       |              | 3             | 10                 |
| Sodium                | 10630           | 5000               | н         |                | 10870            |       |              | 2             | 10                 |
| Zinc                  | 99.46           | 100                | п         |                | 91.53            |       |              | 8             | 10                 |

[none]

## Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control TechLaw, Inc. - ESAT Region 8

| Analyte                        | Result | Det. Limit         | Units                                 | Spike<br>Level | Source<br>Result | %R | %R<br>Limits | %D or<br>RPD  | %Dor<br>RPD Limit |
|--------------------------------|--------|--------------------|---------------------------------------|----------------|------------------|----|--------------|---------------|-------------------|
| Batch 1508056 - 15             | 508046 | И                  | /ater                                 |                |                  |    |              | ICPO          | E - PE Optima     |
| Serial Dilution (1508056-SRD2) |        | Dilution Factor: 5 | Dilution Factor: 5 Source: C150802-40 |                |                  |    | red & Analyz | red: 08/10/15 |                   |
| Aluminum                       | 836.9  | 250                | ug/L                                  |                | 803.4            |    |              | 4             | 10                |
| Beryllium                      | < 10.0 | 25.0               | <b>51</b>                             |                | < 2.00           |    |              |               | 10                |
| Calcium                        | 51120  | 1250               | <b>51</b>                             |                | 50060            |    |              | 2             | 10                |
| Iron                           | 3069   | 1250               | п                                     |                | 2916             |    |              | 5             | 10                |
| Potassium                      | 2268   | 5000               | н                                     |                | 1989             |    |              | 13            | 10                |
| Magnesium                      | 7174   | 1250               | н                                     |                | 6954             |    |              | 3             | 10                |
| Manganese                      | 182.0  | 25.0               | н                                     |                | 186.1            |    |              | 2             | 10                |
| Sodium                         | 10040  | 5000               | н                                     |                | 9693             |    |              | 4             | 10                |
| Zinc                           | 130.0  | 100                | п                                     |                | 124.4            |    |              | 4             | 10                |

NOTE:

RPD = Relative Percent Difference %D = % Difference DL = Detection Limit for QC sample

<sup>%</sup>R = % Recovery, %R limits do not apply when sample levels exceed 4x the spike level.

[none]

### Mercury only (Total) by EPA 245.1 / 7470A Method - Quality Control TechLaw, Inc. - ESAT Region 8

| Analyte                  | Result               | Det. Limit         | Units  | Spike<br>Level | Source<br>Result | %R    | %R<br>Limits | %Dor<br>RPD   | %Dor<br>RPD Limit |
|--------------------------|----------------------|--------------------|--------|----------------|------------------|-------|--------------|---------------|-------------------|
| CVAA FIMS - P            | E                    |                    |        |                |                  |       |              |               |                   |
| Batch 1508045 -          | EPA 245.1/245.2 Prep | V                  | Vater  |                |                  |       |              | С             | VAA FIMS - PE     |
| Method Blank (150        | 08045-BLK1)          | Dilution Factor: 1 |        |                |                  | Prepa | red & Analyz | zed: 08/10/15 |                   |
| Mercury                  | < 0.0500             | 0.100              | ug/L   |                |                  |       |              |               |                   |
| Method Blank (150        | 08045-BLK2)          | Dilution Factor: 1 |        |                |                  | Prepa | red & Analyz | zed: 08/10/15 |                   |
| Mercury                  | < 0.0500             | 0.100              | ug/L   |                |                  |       |              |               |                   |
| Method Blank Spil        | ke (1508045-BS1)     | Dilution Factor: 1 |        |                |                  | Prepa | red & Analyz | zed: 08/10/15 |                   |
| Mercury                  | 7.36                 | 0.100              | ug/L   | 7.50           |                  | 98    | 85-115       |               |                   |
| Method Blank Spil        | ke (1508045-BS2)     | Dilution Factor: 1 |        |                |                  | Prepa | red & Analyz | zed: 08/10/15 |                   |
| Mercury                  | 7.55                 | 0.100              | ug/L   | 7.50           |                  | 101   | 85-115       |               |                   |
| Ouplicate (1508045-DUP1) |                      | Dilution Factor: 1 | Source | : C150802-0    | 01               | Prepa | red & Analyz | zed: 08/10/15 |                   |
| Mercury                  | 0.157                | 0.100              | ug/L   |                | 0.149            |       |              | 5             | 20                |
| Duplicate (150804        | 5-DUP2)              | Dilution Factor: 1 | Source | : C150802-6    | 31               | Prepa | red & Analyz | zed: 08/10/15 |                   |
| Mercury                  | < 0.0500             | 0.100              | ug/L   |                | < 0.0500         |       |              |               | 20                |
| Matrix Spike (150        | 8045-MS1)            | Dilution Factor: 1 | Source | : C150802-0    | 01               | Prepa | red & Analyz | zed: 08/10/15 |                   |
| Mercury                  | 2.78                 | 0.100              | ug/L   | 7.50           | 0.149            | 35    | 75-125       |               |                   |
| Matrix Spike (150        | 8045-MS2)            | Dilution Factor: 1 | Source | : C150802-3    | 31               | Prepa | red & Analyz | zed: 08/10/15 |                   |
| Mercury                  | 7.44                 | 0.100              | ug/L   | 7.50           | < 0.0500         | 99    | 75-125       |               |                   |
| Matrix Spike (150        | 8045-MS3)            | Dilution Factor: 1 | Source | : C150802-6    | 31               | Prepa | red & Analyz | zed: 08/10/15 |                   |
| Mercury                  | 7.90                 | 0.100              | ug/L   | 7.50           | < 0.0500         | 105   | 75-125       |               |                   |
| Batch 1508050 -          | 1508045              |                    | Vater  |                |                  |       |              | С             | VAA FIMS - PE     |
| Instrument Blank         | (1508050-IBL1)       | Dilution Factor: 1 |        |                |                  | Prepa | red & Analyz | zed: 08/10/15 |                   |
| Mercury                  | < 0.0500             | 0.100              | ug/L   |                |                  |       |              |               |                   |

NOTE:

%R = % Recovery, %R limits do not apply when sample levels exceed 4x the spike level. RPD = Relative Percent Difference, %D = % Difference, DL = Detection Limit for QC sample

[none]

#### Classical Chemistry by EPA/ASTM/APHA Methods - Quality Control

#### TechLaw, Inc. - ESAT Region 8

| Analyte               | Result   | Det. Limit         | Units           | Spike<br>Level | Source<br>Result | %R    | %R<br>Limits | % D or<br>RPD | %D or<br>RPD Limit |
|-----------------------|----------|--------------------|-----------------|----------------|------------------|-------|--------------|---------------|--------------------|
| Mettler AT            |          |                    |                 |                |                  |       |              |               |                    |
| Batch 1508047 - No    | Prep Req | :                  | Water           |                |                  |       |              |               | Mettler AT         |
| Method Blank (150804  | 17-BLK1) | Dilution Factor: 1 |                 |                |                  | Prepa | red & Analyz | red: 08/10/15 |                    |
| Total Alkalinity      | < 5.00   | 10.0               | mg CaCO3 /<br>L |                |                  |       |              |               |                    |
| Duplicate (1508047-DI | UP1)     | Dilution Factor: 1 | Source:         | C150802-6      | 66               | Prepa | red & Analyz | zed: 08/10/15 |                    |
| Total Alkalinity      | 76.9     | 10.0               | mg CaCO3 /<br>L |                | 76.7             |       |              | 0.2           | 20                 |
| Reference (1508047-SI | RM1)     | Dilution Factor: 1 |                 |                |                  | Prepa | red & Analyz | red: 08/10/15 |                    |
| Total Alkalinity      | 76.9     | 10.0               | mg CaCO3 /      | 78.1           |                  | 99    | 69.3-86.9    |               |                    |

NOTE:

%R = % Recovery, %R limits do not apply when sample levels exceed 4x the spike level. RPD = Relative Percent Difference, %D = % Difference, DL = Detection Limit for QC sample

TechLaw Inc., ESAT Region 8
INORGANIC ANALYSES DATA SHEET
Intial and Continuing Calibration Blanks

Analytical Method: <u>EPA 310.1</u> Analysis Name: <u>WC - Alkalinity</u>

Instrument: Mettler AT Work Order. Nu C150802

Analytical Sequence: Total Concentration Units: mg CaCO3 / L

| Analyte          | Initial<br>Calibration<br>Blank (1 & 2) | C    | Continuing Cal | ibration Blank | ks | Metho<br>Blan<br>(Batch | PQL |       |
|------------------|-----------------------------------------|------|----------------|----------------|----|-------------------------|-----|-------|
|                  |                                         | 1    | 2              | 3              | 4  | 1508047-BLK1            | NA  |       |
|                  |                                         | 0.19 |                |                |    |                         |     | 40.00 |
| Total Alkalinity |                                         | 5    | 6              | 7              | 8  | 0.00                    | NA  | 10.00 |
|                  |                                         |      |                |                |    |                         |     |       |

Certificate of Analysis

TDF#: [none]

# TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.7 Analysis Name: ICPOE Diss. Metals

Instrument: ICPOE - PE Optima Work Order: Nu C150802

Analytical Sequence: 1508049 **Dissolved** Concentration Units: <u>ug/L</u>

| Analyte   | Initial<br>Calibration<br>Blank (1 & 2) | (     | Continuing Cali | bration Blank | s        | Method<br>Blank<br>(Batch II |       | PQL          |
|-----------|-----------------------------------------|-------|-----------------|---------------|----------|------------------------------|-------|--------------|
|           |                                         | 1     | 2               | 3             | 4        | 1508041-BLK1                 | NA    |              |
|           | 2.95                                    | -1.25 | 2.33            | 2.73          | 0.59     |                              |       | ]            |
| Aluminum  |                                         | 5     | 6               | 7             | 8        | -1.91                        | NA    | 50.00        |
|           |                                         |       |                 |               |          |                              |       |              |
|           | 2.95                                    | 1     | 2               | 3             | 4        | 1508038-BLK1                 | NA    | <del> </del> |
|           | 2.00                                    | -1.25 | 2.33            | 2.73          | 0.59     | 5.04                         | NA    | 50.00        |
|           |                                         | 5     | 6               | 7             | 8        | • 0.04                       |       | 00.00        |
|           |                                         | 1     | 2               | 3             | 4        | 1508038-BLK1                 | NA    |              |
|           | 0.11                                    | 0.08  | 0.05            | 0.07          | 0.09     |                              |       | 1            |
| Beryllium |                                         | 5     | 6               | 7             | 8        | 0.00                         | NA    | 5.00         |
|           |                                         |       |                 |               |          |                              |       |              |
|           | 2.11                                    | 1     | 2               | 3             | 4        | 1508041-BLK1                 | NA    |              |
|           | 0.11                                    | 0.08  | 0.05            | 0.07          | 0.09     |                              |       | Ī            |
|           |                                         | 5     | 6               | 7             | 8        | -0.02                        | NA    | 5.00         |
|           |                                         |       |                 |               |          |                              |       |              |
|           | 0.12                                    | 1     | 2               | 3             | 4        | 1508041-BLK1                 | NA    | <u>↓</u>     |
| 0.1.      | 0.12                                    | 1.47  | 1.53            | -0.35         | -1.12    |                              | NA    | 250.00       |
| Calcium   |                                         | 5     | 6               | 7             | 8        | -6.96                        | NA    | 250.00       |
|           |                                         | 1     | 2               | 3             | 4        | 1508038-BLK1                 | NA    |              |
|           | 0.12                                    | 1.47  | 1.53            | -0.35         | -1.12    |                              |       | †            |
|           |                                         | 5     | 6               | 7             | 8        | 8.39                         | NA    | 250.00       |
|           |                                         |       |                 | ·             | •        | <b>†</b>                     |       |              |
|           |                                         | 1     | 2               | 3             | 4        | 1508041-BLK1                 | NA    |              |
|           | -4.48                                   | 44.06 | 19.75           | 30.69         | 25.15    | ]                            | A.I.A | 050.00       |
| Iron      |                                         | 5     | 6               | 7             | 8        | 6.04                         | NA    | 250.00       |
|           |                                         | 1     | 2               | 3             | 4        | 1508038-BLK1                 | NA    |              |
|           | -4.48                                   | 44.06 | 19.75           | 30.69         | 25.15    | 15                           |       | †            |
|           |                                         | 5     | 6               | 7             | 8        |                              | NA    | 250.00       |
|           |                                         | -     |                 | ·             | <u>*</u> | 1                            |       |              |

Certificate of Analysis

TDF#: [none]

# TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.7 Analysis Name: ICPOE Diss. Metals

Instrument: ICPOE - PE Optima Work Order: Nu C150802

Analytical Sequence: 1508049 **Dissolved** Concentration Units: <u>ug/L</u>

| Analyte        | Initial<br>Calibration<br>Blank (1 & 2) | (     | Continuing Cali | bration Blank | s     | Method<br>Blank<br>(Batch ID |       | PQL      |
|----------------|-----------------------------------------|-------|-----------------|---------------|-------|------------------------------|-------|----------|
|                |                                         | 1     | 2               | 3             | 4     | 1508038-BLK1                 | NA    |          |
|                | 36.93                                   | 39.32 | 31.56           | 50.93         | 42.84 |                              |       | 7        |
| Potassium      |                                         | 5     | 6               | 7             | 8     | 38.79                        | NA    | 1,000.00 |
|                |                                         |       |                 |               |       |                              |       |          |
|                | 20.02                                   | 1     | 2               | 3             | 4     | 1508041-BLK1                 | NA    | _        |
|                | 36.93                                   | 39.32 | 31.56           | 50.93         | 42.84 |                              | A 1 A | 4 000 00 |
|                |                                         | 5     | 6               | 7             | 8     | 22.84                        | NA    | 1,000.00 |
|                |                                         |       |                 |               |       |                              |       |          |
|                | 0.85                                    | 1     | 2               | 3             | 4     | 1508041-BLK1                 | NA    | 4        |
| Magnesium      | 0.00                                    | 3.21  | 2.69            | 2.56          | 1.94  | -0.55                        | NA    | 250.00   |
| iviagi esturri |                                         | 5     | 6               | 7             | 8     | -0.55                        | 19/5  | 250.00   |
|                |                                         | 1     | 2               | 3             |       | 1508038-BLK1                 | NA    |          |
|                | 0.85                                    |       |                 |               | 4     | 7.91                         | NA    | +        |
|                |                                         | 3.21  | 2.69            | 2.56          | 1.94  |                              |       | 250.00   |
|                |                                         | 5     | 6               | 7             | 8     |                              |       |          |
|                |                                         | 1     | 2               | 3             | 4     | 1508038-BLK1                 | NA    |          |
|                | 0.11                                    | 0.14  | 0.11            | 0.10          | 0.12  |                              |       | 7        |
| Manganese      |                                         | 5     | 6               | 7             | 8     | -0.05                        | NA    | 5.00     |
|                |                                         |       |                 |               |       |                              |       |          |
|                | 0.11                                    | 1     | 2               | 3             | 4     | 1508041-BLK1                 | NA    | 4        |
|                | 0.11                                    | 0.14  | 0.11            | 0.10          | 0.12  | -0.04                        | NA    | 5.00     |
|                |                                         | 5     | 6               | 7             | 8     | -0.04                        | IVA   | 3.00     |
|                |                                         | 1     | 2               | 3             | 4     | 1508041-BLK1                 | NA    | +        |
|                | 4.73                                    | 5.60  | 6.85            | 7.81          | 6.52  |                              |       | †        |
| Sodium         |                                         | 5.00  | 6               | 7             | 8     | 4.00                         | NA    | 1,000.00 |
|                |                                         |       |                 |               |       |                              |       |          |
|                |                                         | 1     | 2               | 3             | 4     |                              | NA    |          |
|                | 4.73                                    | 5.60  | 6.85            | 7.81          | 6.52  |                              |       | ] ,      |
|                |                                         | 5     | 6               | 7             | 8     |                              | NA    | 1,000.00 |
|                |                                         |       |                 |               |       |                              |       |          |

TechLaw Inc., ESAT Region 8
INORGANIC ANALYSES DATA SHEET
Intial and Continuing Calibration Blanks

Analytical Method: 200.7 Analysis Name: ICPOE Diss. Metals

Instrument: ICPOE - PE Optima Work Order: Nu C150802

Analytical Sequence: 1508049 **Dissolved** Concentration Units: <u>ug/L</u>

| Analyte | Initial<br>Calibration<br>Blank (1 & 2) | Method Continuing Calibration Blanks (Batch ID) |      |      |      |              | PQL |       |
|---------|-----------------------------------------|-------------------------------------------------|------|------|------|--------------|-----|-------|
|         |                                         | 1                                               | 2    | 3    | 4    | 1508041-BLK1 | NA  |       |
|         | 1.35                                    | 0.53                                            | 0.52 | 1.96 | 1.98 |              |     |       |
| Zinc    |                                         | 5                                               | 6    | 7    | 8    | 0.62         | NA  | 20.00 |
|         |                                         |                                                 |      |      |      |              |     |       |
|         | 4.05                                    | 1                                               | 2    | 3    | 4    | 1508038-BLK1 | NA  |       |
|         | 1.35                                    | 0.53                                            | 0.52 | 1.96 | 1.98 |              |     | 00.00 |
|         |                                         | 5                                               | 6    | 7    | 8    | -0.47        | NA  | 20.00 |
|         |                                         |                                                 |      |      |      |              |     |       |

TechLaw Inc., ESAT Region 8
INORGANIC ANALYSES DATA SHEET
Intial and Continuing Calibration Blanks

Analytical Method: 245.1 Analysis Name: TM Mercury 245.1

Instrument: CVAA FIMS - PE Work Order: Nu C150802

Analytical Sequence: 1508050 **Total** Concentration Units: <u>ug/L</u>

| Analyte | Initial<br>Calibration<br>Blank (1 & 2) | Continuing Calibration Blanks  Method Blank (Batch ID) |      |      |      |              | PQL          |      |
|---------|-----------------------------------------|--------------------------------------------------------|------|------|------|--------------|--------------|------|
|         |                                         | 1                                                      | 2    | 3    | 4    | 1508045-BLK1 | NA           |      |
|         | 0.00                                    | 0.00                                                   | 0.00 | 0.01 | 0.01 |              | NA           | 0.40 |
| Mercury |                                         | 5                                                      | 6    | 7    | 8    | 0.00         |              | 0.10 |
|         |                                         | 1                                                      | 2    | 3    | 4    | NA           | 1508045-BLK2 |      |
|         | 0.00                                    | 0.00                                                   | 0.00 | 0.01 | 0.01 |              | 0.00         | 0.40 |
|         |                                         | 5                                                      | 6    | 7    | 8    | NA           | 0.00         | 0.10 |
|         |                                         |                                                        |      |      |      |              |              |      |

# TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.8 Analysis Name: ICPMS Diss. Metals

Instrument: ICPMS-PE DRC-II Work Order. Nu C150802

Analytical Sequence: 1508051 **Dissolved** Concentration Units: <u>ug/L</u>

| Analyte       | Initial<br>Calibration<br>Blank (1 & 2) | (                | Continuing Cal   | ibration Blank   | s         | Method<br>Blank<br>(Batch II |                            | PQL      |
|---------------|-----------------------------------------|------------------|------------------|------------------|-----------|------------------------------|----------------------------|----------|
|               |                                         | 1                | 2                | 3                | 4         | 1508042-BLK1                 | NA                         |          |
|               | -0.18                                   | -0.08            | 0.01             | -0.05            | 0.01      |                              |                            | T        |
| Vanadium      |                                         | 5                | 6                | 7                | 8         | -0.17                        | NA                         | 3.00     |
|               |                                         |                  |                  |                  |           |                              |                            |          |
|               | -0.18                                   | 1                | 2                | 3                | 4         | 1508039-BLK1                 | NA                         | <u> </u> |
|               | -0.16                                   | -0.08            | 0.01             | -0.05            | 0.01      | 0.07                         | NΙΛ                        | 3.00     |
|               |                                         | 5                | 6                | 7                | 8         | -0.07                        | IVA                        | 3.00     |
|               |                                         | 1                | 2                | 3                |           | 1508042-BLK1                 | NIA                        |          |
|               | -0.20                                   |                  |                  |                  | 4         | 1506042-BEN 1                | INA                        | +        |
| Chromium      |                                         | -0.12            | -0.18            | -0.19            | -0.19     | -0.16                        | NA                         | 2.00     |
|               |                                         | 5                | 6                | 7                | 8         | †                            |                            |          |
|               |                                         | 1                | 2                | 3                | 4         | 1508039-BLK1                 | NA                         |          |
|               | -0.20                                   | -0.12            | -0.18            | -0.19            | -0.19     |                              |                            |          |
|               |                                         | 5                | 6                | 7                | 8         | -0.23                        | NA                         | 2.00     |
|               |                                         |                  |                  |                  |           |                              | NA<br>NA<br>NA             |          |
|               | 0.00                                    | 1                | 2                | 3                | 4         | 1508039-BLK1                 | NA                         | _        |
| <b>0</b> 1 11 | 0.03                                    | 0.02             | 0.03             | 0.03             | 0.02      | ]                            | N I A                      | 0.20     |
| Cobalt        |                                         | 5                | 6                | 7                | 8         | -0.01                        | NA NA NA NA NA NA NA NA NA | 0.20     |
|               |                                         | 1                | 2                | 3                | 4         | 1508042-BLK1                 | NΔ                         |          |
|               | 0.03                                    |                  |                  |                  |           | 1000012 22111                | .,,                        | †        |
|               |                                         | 0.02<br><b>5</b> | 0.03<br><b>6</b> | 0.03<br><b>7</b> | 0.02<br>8 | -0.02                        | NA                         | 0.20     |
|               |                                         | J                |                  | ,                | 0         | <b>†</b>                     |                            |          |
|               |                                         | 1                | 2                | 3                | 4         | 1508042-BLK1                 | NA                         |          |
|               | 0.06                                    | 0.04             | 0.04             | 0.03             | 0.03      |                              |                            |          |
| Nickel        |                                         | 5                | 6                | 7                | 8         | -0.03                        | NA                         | 1.00     |
|               | +                                       |                  |                  |                  |           | 4500000 PLV4                 |                            |          |
|               | 0.06                                    | 1                | 2                | 3                | 4         | 1508039-BLK1                 | NA                         | +        |
|               |                                         | 0.04             | 0.04             | 0.03             | 0.03      | -0.03                        | NA                         | 1.00     |
|               |                                         | 5                | 6                | 7                | 8         | <b>d</b>                     |                            |          |

Certificate of Analysis

TDF#: [none]

# TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.8 Analysis Name: ICPMS Diss. Metals

Instrument: ICPMS-PE DRC-II Work Order: Nu C150802

Analytical Sequence: 1508051 **Dissolved** Concentration Units: <u>ug/L</u>

| Analyte    | Initial<br>Calibration<br>Blank (1 & 2) | (                 | Continuing Cal   | ibration Blank    | s                | Method<br>Blank<br>(Batch II |          | PQL      |      |
|------------|-----------------------------------------|-------------------|------------------|-------------------|------------------|------------------------------|----------|----------|------|
|            |                                         | 1                 | 2                | 3                 | 4                | 1508039-BLK1                 | NA       |          |      |
|            | 0.00                                    | 0.06              | 0.02             | 0.04              | -0.03            |                              |          | Ī        |      |
| Copper     |                                         | 5                 | 6                | 7                 | 8                | -0.13                        | NA       | 1.00     |      |
|            |                                         |                   |                  |                   |                  |                              |          |          |      |
|            | 0.00                                    | 1                 | 2                | 3                 | 4                | 1508042-BLK1                 | NA       | <u> </u> |      |
|            | 0.00                                    | 0.06              | 0.02             | 0.04              | -0.03            | -0.12                        | NA       | 1.00     |      |
|            |                                         | 5                 | 6                | 7                 | 8                | -0.12                        | INA      | 1.00     |      |
|            | _                                       | 1                 | 2                | 3                 | _                | 1508039-BLK1                 | NA       |          |      |
|            | -0.08                                   |                   |                  |                   | 4                | 1000000 BERT                 |          | †        |      |
| Arsenic    |                                         | -0.01<br><b>5</b> | 0.07<br><b>6</b> | -0.05<br><b>7</b> | 0.14<br><b>8</b> | 0.04                         | NA       | 2.00     |      |
|            |                                         | 9                 |                  | ,                 | 0                | †                            |          |          |      |
|            |                                         | 1                 | 2                | 3                 | 4                | 1508042-BLK1                 | NA       |          |      |
|            | -0.08                                   | -0.01             | 0.07             | -0.05             | 0.14             |                              |          | Ī        |      |
|            |                                         | 5                 | 6                | 7                 | 8                | -0.08                        | NA<br>NA | NA       | 2.00 |
|            |                                         |                   |                  |                   |                  |                              |          |          |      |
|            | -0.25                                   | 1                 | 2                | 3                 | 4                | 1508039-BLK1                 | NA       |          |      |
| Calaniana  | -0.25                                   | -0.02             | 0.00             | -0.17             | -0.01            | -0.31                        | NA       | 2.00     |      |
| Selenium   |                                         | 5                 | 6                | 7                 | 8                | -0.31                        | INA      | 2.00     |      |
|            |                                         | 1                 | 2                | 3                 | 4                | 1508042-BLK1                 | NA       |          |      |
|            | -0.25                                   | -0.02             | 0.00             | -0.17             | -0.01            |                              |          | †        |      |
|            |                                         | 5                 | 6                | 7                 | 8                | -0.02                        | NA       | 2.00     |      |
|            |                                         |                   |                  |                   |                  |                              |          |          |      |
|            |                                         | 1                 | 2                | 3                 | 4                | 1508039-BLK1                 | NA       |          |      |
|            | 0.05                                    | 0.05              | 0.04             | 0.05              | 0.05             |                              |          |          |      |
| Molybdenum |                                         | 5                 | 6                | 7                 | 8                | 0.08                         | NA       | 1.00     |      |
|            |                                         | 1                 | 2                | 3                 | 4                | 1508042-BLK1                 | NA       |          |      |
|            | 0.05                                    | 0.05              | 0.04             | 0.05              | 0.05             | .3333.                       |          | †        |      |
|            |                                         | 5<br>5            | 6                | 7                 | 8                | -0.01                        | NA       | 1.00     |      |
|            |                                         | ·                 | İ                | ·                 | ·                | 1                            |          |          |      |

# TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.8 Analysis Name: ICPMS Diss. Metals

Instrument: ICPMS-PE DRC-II Work Order: Nu C150802

Analytical Sequence: 1508051 **Dissolved** Concentration Units: <u>ug/L</u>

| Initial<br>Calibration<br>Blank (1 & 2) | (                                                         | Continuing Cali                                                                                                                                                                                                                                                                                                                                                                              | bration Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Method<br>Blank<br>(Batch ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PQL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | 1                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1508042-BLK1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.02                                    | 0.02                                                      | 0.02                                                                                                                                                                                                                                                                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                         | 5                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         |                                                           |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.02                                    | 1                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1508039-BLK1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.02                                    | 0.02                                                      | 0.02                                                                                                                                                                                                                                                                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         | 5                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         | 1                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1508042-BLK1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -0.01                                   | -0.01                                                     | 0.03                                                                                                                                                                                                                                                                                                                                                                                         | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NΙΛ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                         | 5                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         |                                                           |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.04                                    | 1                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1508039-BLK1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -0.01                                   | -0.01                                                     | 0.03                                                                                                                                                                                                                                                                                                                                                                                         | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NI A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         | 5                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         | 1                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1508042-BLK1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.10                                    | 0.21                                                      | 0.20                                                                                                                                                                                                                                                                                                                                                                                         | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                         | 5                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         |                                                           |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.40                                    | 1                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1508039-BLK1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.10                                    | 0.21                                                      | 0.20                                                                                                                                                                                                                                                                                                                                                                                         | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NΙΛ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         | 5                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | INA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         | 1                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1508039-BLK1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.02                                    | 0.06                                                      | 0.06                                                                                                                                                                                                                                                                                                                                                                                         | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                         | 5                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                         |                                                           |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.02                                    | 1                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1508042-BLK1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>↓</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.02                                    | 0.06                                                      | 0.06                                                                                                                                                                                                                                                                                                                                                                                         | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ] ,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NΙΛ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                         | 5                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                         | Calibration Blank (1 & 2)  0.02  -0.01  -0.01  0.10  0.02 | Calibration Blank (1 & 2)     1       0.02     1       0.02     5       0.02     5       -0.01     1       -0.01     5       -0.01     5       0.10     1       0.10     0.21       5     1       0.02     5       0.10     0.21       5     1       0.02     1       0.06     5       1     0.06       0.02     1       0.03     1       0.04     0.06       0.05     1       0.06     0.06 | Calibration Blank (1 & 2)         Continuing California (1 & 2)           0.02         0.02         0.02           5         6           0.02         0.02         0.02           5         6           -0.01         0.03         5           6         6           -0.01         0.03         5           6         6           -0.01         0.03         5           6         6         6           0.10         0.21         0.20           5         6         6           0.10         0.21         0.20           5         6         6           0.10         0.21         0.20           5         6         6           0.02         0.06         0.06           5         6         6 | Calibration Blank (1 & 2)         Continuing Calibration Blank (1 & 2)           0.02         0.02         0.01           5         6         7           0.02         0.02         0.01           5         6         7           0.02         0.02         0.01           5         6         7           -0.01         0.03         0.02           5         6         7           -0.01         0.03         0.02           5         6         7           0.10         0.21         0.20         0.20           5         6         7           0.10         0.21         0.20         0.20           5         6         7           0.10         0.21         0.20         0.20           5         6         7           0.02         5         6         7           0.02         5         6         7           0.02         0.20         0.20         0.20           5         6         7           0.02         0.06         0.06         0.04           5         6         7 | Calibration Blank (1 & 2)         Continuing Calibration Blanks           0.02         1         2         3         4           0.02         0.02         0.01         0.02         5         6         7         8           0.02         0.02         0.02         0.01         0.02         0.02         0.01         0.02         0.02         0.01         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.03         0.02         0.02         0.02         0.02         0.03         0.02         0.02         0.02         0.02         0.03         0.02         0.02         0.03         0.02         0.03         0.02         0.02         0.03         0.02         0.03         0.02         0.02 <td>Calibration Blank (1 &amp; 2)         Continuing Calibration Blanks         Blank (1 &amp; 2)           0.02         1         2         3         4         1508042-BLK1           0.02         0.02         0.01         0.02         -0.01           0.02         0.02         0.01         0.02         -0.01           0.02         0.02         0.01         0.02         0.00           5         6         7         8         0.00           1         2         3         4         1508042-BLK1           -0.01         0.03         0.02         0.02         -0.03           5         6         7         8         -0.03           -0.01         0.03         0.02         0.02         -0.03           -0.01         0.03         0.02         0.02         -0.03           -0.01         0.03         0.02         0.02         -0.03           -0.01         0.03         0.02         0.02         -0.02           -0.01         0.03         0.02         0.02         -0.02           -0.01         0.21         0.20         0.20         0.18         0.06           -0.02         0.21         0.20</td> <td>Calibration Blank (1 &amp; 2)         Continuing Calibration Blanks         Blank (gatch ID)           0.02         1         2         3         4         1508042-BLK1         NA           0.02         0.02         0.01         0.02         -0.01         NA           0.02         1         2         3         4         1508039-BLK1         NA           0.02         0.02         0.01         0.02         0.00         NA           -0.01         0.02         0.01         0.02         0.00         NA           -0.01         0.03         0.02         0.02         -0.03         NA           -0.01         0.03         0.02         0.02         -0.03         NA           -0.01         0.03         0.02         0.02         -0.03         NA           -0.01         0.03         0.02         0.02         NA           -0.0</td> | Calibration Blank (1 & 2)         Continuing Calibration Blanks         Blank (1 & 2)           0.02         1         2         3         4         1508042-BLK1           0.02         0.02         0.01         0.02         -0.01           0.02         0.02         0.01         0.02         -0.01           0.02         0.02         0.01         0.02         0.00           5         6         7         8         0.00           1         2         3         4         1508042-BLK1           -0.01         0.03         0.02         0.02         -0.03           5         6         7         8         -0.03           -0.01         0.03         0.02         0.02         -0.03           -0.01         0.03         0.02         0.02         -0.03           -0.01         0.03         0.02         0.02         -0.03           -0.01         0.03         0.02         0.02         -0.02           -0.01         0.03         0.02         0.02         -0.02           -0.01         0.21         0.20         0.20         0.18         0.06           -0.02         0.21         0.20 | Calibration Blank (1 & 2)         Continuing Calibration Blanks         Blank (gatch ID)           0.02         1         2         3         4         1508042-BLK1         NA           0.02         0.02         0.01         0.02         -0.01         NA           0.02         1         2         3         4         1508039-BLK1         NA           0.02         0.02         0.01         0.02         0.00         NA           -0.01         0.02         0.01         0.02         0.00         NA           -0.01         0.03         0.02         0.02         -0.03         NA           -0.01         0.03         0.02         0.02         -0.03         NA           -0.01         0.03         0.02         0.02         -0.03         NA           -0.01         0.03         0.02         0.02         NA           -0.0 |

# TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.8 Analysis Name: ICPMS Diss. Metals

Instrument: ICPMS-PE DRC-II Work Order: Nu C150802

Analytical Sequence: 1508051 **Dissolved** Concentration Units: <u>ug/L</u>

| Analyte  | Initial<br>Calibration<br>Blank (1 & 2) | (     | Continuing Cal | ibration Blank | ss    | Metho<br>Blani<br>(Batch | <b>(</b> | PQL  |
|----------|-----------------------------------------|-------|----------------|----------------|-------|--------------------------|----------|------|
|          |                                         | 1     | 2              | 3              | 4     | 1508039-BLK1             | NA       |      |
|          | 0.02                                    | 0.01  | 0.01           | -0.01          | -0.02 |                          |          |      |
| Thallium |                                         | 5     | 6              | 7              | 8     | -0.05                    | NA       | 1.00 |
|          |                                         |       |                |                |       |                          |          |      |
|          | 0.00                                    | 1     | 2              | 3              | 4     | 1508042-BLK1             | NA       | 1.00 |
|          | 0.02                                    | 0.01  | 0.01           | -0.01          | -0.02 |                          | NA       |      |
|          |                                         | 5     | 6              | 7              | 8     | -0.07                    |          |      |
|          |                                         |       |                |                |       |                          |          |      |
|          |                                         | 1     | 2              | 3              | 4     | 1508042-BLK1             | NA       |      |
|          | 0.00                                    | -0.01 | -0.01          | -0.02          | -0.02 |                          |          |      |
| Lead     |                                         | 5     | 6              | 7              | 8     | -0.05                    | NA       | 0.20 |
|          |                                         |       |                |                |       |                          |          |      |
| _        |                                         | 1     | 2              | 3              | 4     | 1508039-BLK1             | NA       |      |
|          | 0.00                                    | -0.01 | -0.01          | -0.02          | -0.02 |                          |          |      |
|          |                                         | 5     | 6              | 7              | 8     | -0.03                    | NA       | 0.20 |
|          |                                         |       |                |                |       |                          |          |      |

# TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.7 Analysis Name: ICPOE Tot. Rec. Metals

Instrument: ICPOE - PE Optima Work Order: Nu C150802

Analytical Sequence: 1508056 **Total Recoverable** Concentration Units: <u>ug/L</u>

| Analyte    | Initial<br>Calibration<br>Blank (1 & 2) | C                | Continuing Cal   | bration Blank     | s          | Method<br>Blank<br>(Batch II |                                          | PQL      |
|------------|-----------------------------------------|------------------|------------------|-------------------|------------|------------------------------|------------------------------------------|----------|
|            |                                         | 1                | 2                | 3                 | 4          | 1508046-BLK1                 | NA                                       |          |
|            | 4.24                                    | 3.98             | 1.11             | -0.96             | 3.56       |                              |                                          |          |
| Aluminum   |                                         | 5                | 6                | 7                 | 8          | -1.35                        | NA                                       | 50.00    |
|            |                                         |                  |                  |                   |            |                              |                                          |          |
|            | 4.04                                    | 1                | 2                | 3                 | 4          | 1508043-BLK1                 | NA                                       |          |
|            | 4.24                                    | 3.98             | 1.11             | -0.96             | 3.56       |                              | <b>A</b> ! A                             | 50.00    |
|            |                                         | 5                | 6                | 7                 | 8          | -4.16                        | NA                                       | 50.00    |
|            |                                         |                  |                  |                   |            |                              |                                          |          |
|            | 0.09                                    | 1                | 2                | 3                 | 4          | 1508043-BLK1                 | NA                                       | 4        |
| Dom dlives | 0.09                                    | 80.0             | 0.02             | 0.04              | 0.06       | -0.08                        | NΙΛ                                      | 5.00     |
| Beryllium  |                                         | 5                | 6                | 7                 | 8          | -0.08                        | NA<br>NA                                 | 3.00     |
|            |                                         |                  |                  |                   |            |                              |                                          |          |
|            | 0.09                                    | 1                | 2                | 3                 | 4          | 1508046-BLK1                 | NA NA                                    | 4        |
|            | 0.00                                    | 0.08             | 0.02             | 0.04              | 0.06       | -0.03                        | NΔ                                       | 5.00     |
|            | -                                       | 5                | 6                | 7                 | 8          | -0.00                        | (*)(                                     | 0.00     |
|            |                                         | 1                | 2                | 3                 |            | 1508043-BLK1                 | NΙΛ                                      |          |
|            | 1.61                                    |                  |                  |                   | 4          | 1500045-BERT                 | INA                                      | +        |
| Calcium    |                                         | 2.27<br><b>5</b> | 2.47<br><b>6</b> | -0.14<br><b>7</b> | -1.07<br>8 | 13.24                        | NA                                       | 250.00   |
|            | <b> </b>                                | 5                |                  | - /               | 0          | 1                            | NA N |          |
|            |                                         | 1                | 2                | 3                 | 4          | 1508046-BLK1                 | NA                                       |          |
|            | 1.61                                    | 2.27             | 2.47             | -0.14             | -1.07      |                              |                                          | 7        |
|            |                                         | 5                | 6                | 7                 | 8          | 3.53                         | NA                                       | 250.00   |
|            |                                         |                  |                  |                   |            |                              |                                          |          |
|            |                                         | 1                | 2                | 3                 | 4          | 1508043-BLK1                 | NA                                       |          |
|            | -13.06                                  | 5.49             | -8.25            | -7.04             | 7.90       |                              |                                          |          |
| Iron       |                                         | 5                | 6                | 7                 | 8          | -2.54                        | NA                                       | 250.00   |
|            |                                         |                  |                  |                   | ·          |                              |                                          |          |
|            | 12.00                                   | 1                | 2                | 3                 | 4          | 1508046-BLK1                 | NA                                       | <b>↓</b> |
|            | -13.06                                  | 5.49             | -8.25            | -7.04             | 7.90       | J T                          | A.I.A.                                   | 050.00   |
|            |                                         | 5                | 6                | 7                 | 8          | -13.03                       | NA                                       | 250.00   |

Certificate of Analysis

TDF #: [none]

# TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.7 Analysis Name: ICPOE Tot. Rec. Metals

Instrument: ICPOE - PE Optima Work Order: Nu C150802

Analytical Sequence: 1508056 **Total Recoverable** Concentration Units: <u>ug/L</u>

| Analyte   | Initial<br>Calibration<br>Blank (1 & 2) | C     | Continuing Cali | bration Blank | s     | Method<br>Blank<br>(Batch II |                | PQL      |
|-----------|-----------------------------------------|-------|-----------------|---------------|-------|------------------------------|----------------|----------|
|           |                                         | 1     | 2               | 3             | 4     | 1508046-BLK1                 | NA             |          |
|           | 56.93                                   | 89.06 | 80.67           | 76.96         | 65.41 |                              |                | Ī        |
| Potassium |                                         | 5     | 6               | 7             | 8     | 66.24                        | NA             | 1,000.00 |
|           |                                         | 1     | 2               | 3             | 4     | 1508043-BLK1                 | NA             |          |
|           | 56.93                                   | 89.06 | 80.67           | 76.96         | 65.41 |                              |                | T        |
|           |                                         | 5     | 6               | 7             | 8     | 121.00                       | NA             | 1,000.00 |
|           |                                         | 1     | 2               | 3             | 4     | 1508043-BLK1                 | NA             |          |
|           | 0.68                                    | 2.53  | 1.51            | 1.86          | 1.23  |                              |                | Ī        |
| Magnesium |                                         | 5     | 6               | 7             | 8     | 2.26                         | NA             | 250.00   |
|           |                                         | 1     | 2               | 3             | 4     | 1508046-BLK1                 | NA<br>NA<br>NA | <u> </u> |
|           | 0.68                                    | 2.53  | 1.51            | 1.86          | 1.23  |                              |                | 7        |
|           |                                         | 5     | 6               | 7             | 8     | -4.85                        |                | 250.00   |
|           |                                         | 1     | 2               | 3             | 4     | 1508043-BLK1                 | NA             |          |
|           | 0.10                                    | 0.06  | 0.07            | -0.03         | -0.06 |                              |                | T        |
| Manganese |                                         | 5     | 6               | 7             | 8     | -0.09                        | NA NA NA NA NA | 5.00     |
|           |                                         | 1     | 2               | 3             | 4     | 1508046-BLK1                 | NA             |          |
|           | 0.10                                    | 0.06  | 0.07            | -0.03         | -0.06 |                              |                | Ī        |
|           |                                         | 5     | 6               | 7             | 8     | -0.04                        | NA             | 5.00     |
|           |                                         | 1     | 2               | 3             | 4     | 1508046-BLK1                 | NA             |          |
|           | 1.40                                    | 6.38  | 3.89            | 8.77          | 12.23 |                              |                | 7        |
| Sodium    |                                         | 5     | 6               | 7             | 8     | 20.15                        | NA             | 1,000.00 |
|           |                                         | 1     | 2               | 3             | 4     | 1508043-BLK1                 | NA             |          |
|           | 1.40                                    | 6.38  | 3.89            | 8.77          | 12.23 |                              |                | 7        |
|           |                                         | 5     | 6               | 7             | 8     | 31.94                        | NA             | 1,000.00 |

TechLaw Inc., ESAT Region 8
INORGANIC ANALYSES DATA SHEET
Intial and Continuing Calibration Blanks

Analytical Method: 200.7 Analysis Name: ICPOE Tot. Rec. Metals

Instrument: ICPOE - PE Optima Work Order. Nu C150802

Analytical Sequence: 1508056 **Total Recoverable** Concentration Units: <u>ug/L</u>

| Analyte | Initial<br>Calibration<br>Blank (1 & 2) | Method Continuing Calibration Blanks (Batch ID) |      |      |      |              | k         | PQL   |
|---------|-----------------------------------------|-------------------------------------------------|------|------|------|--------------|-----------|-------|
|         |                                         | 1                                               | 2    | 3    | 4    | 1508046-BLK1 | NA        |       |
|         | 0.25                                    | 1.35                                            | 1.08 | 0.66 | 1.28 |              |           | 20.00 |
| Zinc    |                                         | 5                                               | 6    | 7    | 8    | 2.42         | nk<br>ID) |       |
|         |                                         |                                                 |      |      |      |              |           |       |
|         | 0.05                                    | 1                                               | 2    | 3    | 4    | 1508043-BLK1 | NA        |       |
|         | 0.25                                    | 1.35                                            | 1.08 | 0.66 | 1.28 |              |           | 00.00 |
|         |                                         | 5                                               | 6    | 7    | 8    | 2.30         | NA NA     | 20.00 |
|         |                                         |                                                 |      |      |      |              |           |       |

# TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.8 Analysis Name: ICPMS Tot. Rec. Metals

Instrument: ICPMS-PE DRC-II Work Order: Nu C150802

Analytical Sequence: 1508057 **Total Recoverable** Concentration Units: <u>ug/L</u>

| Analyte  | Initial<br>Calibration<br>Blank (1 & 2) | (     | Continuing Cal | ibration Blank   | s     | В        | ethod<br>lank<br>ch ID)                               | PQL  |
|----------|-----------------------------------------|-------|----------------|------------------|-------|----------|-------------------------------------------------------|------|
|          |                                         | 1     | 2              | 3                | 4     | NA       | 1508046-BLK2                                          |      |
|          | 0.06                                    | 0.04  | 0.00           | 0.04             | 0.01  |          |                                                       |      |
| Vanadium |                                         | 5     | 6              | 7                | 8     | NA       | 0.31                                                  | 3.00 |
|          |                                         |       |                |                  |       |          |                                                       |      |
|          | 0.06                                    | 1     | 2              | 3                | 4     | NA       | 1508043-BLK2                                          |      |
|          | 0.00                                    | 0.04  | 0.00           | 0.04             | 0.01  | NA       | 0.12                                                  | 3.00 |
|          |                                         | 5     | 6              | 7                | 8     | INA      | 0.12                                                  | 5.00 |
|          |                                         | 1     | 2              | 3                | 4     | NA       | 1508043-BLK2                                          |      |
|          | -0.17                                   | -0.27 | -0.27          | -0.22            | -0.22 |          |                                                       |      |
| Chromium |                                         | 5     | 6              | 7                | 8     | NA       | 0.01                                                  | 2.00 |
|          |                                         |       |                |                  |       |          |                                                       |      |
|          | 2.1-                                    | 1     | 2              | 3                | 4     | NA       | 1508046-BLK2                                          |      |
|          | -0.17                                   | -0.27 | -0.27          | -0.22            | -0.22 |          | 0.04                                                  | 0.00 |
|          |                                         | 5     | 6              | 7                | 8     | NA       | -0.01                                                 | 2.00 |
|          |                                         |       |                |                  |       | ***      | 4500040 51440                                         |      |
|          | 0.01                                    | 1     | 2              | 3                | 4     | NA       | 1508043-BLK2                                          |      |
| Cobalt   |                                         | 0.01  | 0.01           | 0.02             | 0.03  | NA       | 0.02                                                  | 0.20 |
|          |                                         | 5     | 6              | 7                | 8     |          | 0.31 1508043-BLK2 0.12 1508043-BLK2 0.01 1508046-BLK2 |      |
|          |                                         | 1     | 2              | 3                | 4     | NA       | 1508046-BLK2                                          |      |
|          | 0.01                                    | 0.01  | 0.01           | 0.02             | 0.03  |          | 0.04                                                  | 2.00 |
|          |                                         | 5     | 6              | 7                | 8     | NA       | -0.01                                                 | 0.20 |
|          |                                         | 4     |                |                  |       | NI A     | 4500042 DL KO                                         |      |
|          | 0.01                                    | 1     | 2              | 3                | 4     | NA       | 1508043-BLK2                                          |      |
| Nickel   |                                         | -0.01 | 0.01           | 0.04<br><b>7</b> | 0.06  | NA       | 0.03                                                  | 1.00 |
|          |                                         | 5     | 6              | /                | 8     |          |                                                       |      |
|          | 0.04                                    | 1     | 2              | 3                | 4     | NA       | 1508046-BLK2                                          |      |
|          | 0.01                                    | -0.01 | 0.01           | 0.04             | 0.06  | <b>.</b> | 0.01                                                  | 1.00 |
|          |                                         | 5     | 6              | 7                | 8     | NA       | -0.01                                                 | 1.00 |
|          |                                         |       |                |                  |       |          |                                                       |      |

Certificate of Analysis

TDF#: [none]

# TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.8 Analysis Name: ICPMS Tot. Rec. Metals

Instrument: ICPMS-PE DRC-II Work Order: Nu C150802

Analytical Sequence: 1508057 **Total Recoverable** Concentration Units: <u>ug/L</u>

| Analyte     | Initial<br>Calibration<br>Blank (1 & 2) | (    | Continuing Cal | ibration Blank | s     | В             | ethod<br>lank<br>ch ID) | PQL  |
|-------------|-----------------------------------------|------|----------------|----------------|-------|---------------|-------------------------|------|
|             |                                         | 1    | 2              | 3              | 4     | NA            | 1508046-BLK2            |      |
|             | 0.01                                    | 0.02 | 0.02           | 0.02           | 0.01  |               |                         |      |
| Copper      |                                         | 5    | 6              | 7              | 8     | NA            | 0.02                    | 1.00 |
|             |                                         |      |                |                |       |               |                         |      |
|             | 0.01                                    | 1    | 2              | 3              | 4     | NA            | 1508043-BLK2            |      |
|             | 0.01                                    | 0.02 | 0.02           | 0.02           | 0.01  | <b>3.1.</b> A | 0.07                    | 1.00 |
|             |                                         | 5    | 6              | 7              | 8     | NA            | 0.07                    | 1.00 |
|             |                                         |      |                |                |       |               |                         |      |
|             | -0.01                                   | 1    | 2              | 3              | 4     | NA            | 1508043-BLK2            |      |
| Arsenic     | -0.01                                   | 0.04 | -0.12          | -0.12          | -0.19 | NA            | -0.08<br>1508046-BLK2   | 2.00 |
| Alselic     |                                         | 5    | 6              | 7              | 8     | IVA           |                         | 2.00 |
|             | +                                       | 1    | 2              | 3              |       | NA            | 1508046 BLK2            |      |
|             | -0.01                                   |      |                |                | 4     | IVA           | 1300040-BERZ            |      |
|             |                                         | 0.04 | -0.12          | -0.12          | -0.19 | NA            | -0.14                   | 2.00 |
|             |                                         | 5    | 6              | 7              | 8     |               | -0.14<br>1508046-BLK2   |      |
|             |                                         | 1    | 2              | 3              | 4     | NA            | 1508046-BLK2            |      |
|             | 0.11                                    | 0.03 | -0.02          | 0.01           | 0.08  |               |                         |      |
| Selenium    |                                         | 5    | 6              | 7              | 8     | NA            | -0.20                   | 2.00 |
|             |                                         |      |                |                |       |               |                         |      |
|             | 0.44                                    | 1    | 2              | 3              | 4     | NA            | 1508043-BLK2            |      |
|             | 0.11                                    | 0.03 | -0.02          | 0.01           | 0.08  |               | 0.49                    | 2.00 |
|             |                                         | 5    | 6              | 7              | 8     | NA            | 0.18                    | 2.00 |
|             |                                         |      |                |                |       |               |                         |      |
|             | 0.04                                    | 1    | 2              | 3              | 4     | NA            | 1508043-BLK2            |      |
| Molybdenum  | 0.04                                    | 0.03 | 0.04           | 0.05           | 0.05  | NA            | 0.23                    | 1.00 |
| Morybaeriam |                                         | 5    | 6              | 7              | 8     | IVA           | 0.20                    | 1.00 |
|             |                                         | 1    | 2              | 3              | 4     | NA            | 1508046-BLK2            |      |
|             | 0.04                                    | 0.03 | 0.04           | 0.05           | 0.05  |               |                         |      |
|             |                                         | 5    | 6              | 7              | 8     | NA            | 0.00                    | 1.00 |
|             |                                         |      |                |                |       |               |                         |      |

# TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.8 Analysis Name: ICPMS Tot. Rec. Metals

Instrument: ICPMS-PE DRC-II Work Order: Nu C150802

Analytical Sequence: 1508057 **Total Recoverable** Concentration Units: <u>ug/L</u>

| Analyte        | Initial<br>Calibration<br>Blank (1 & 2) | C                | Continuing Cali  | bration Blank    | s         | В     | ethod<br>lank<br>ch ID) | PQL   |
|----------------|-----------------------------------------|------------------|------------------|------------------|-----------|-------|-------------------------|-------|
|                |                                         | 1                | 2                | 3                | 4         | NA    | 1508046-BLK2            |       |
|                | 0.03                                    | 0.03             | 0.02             | 0.02             | 0.04      |       |                         |       |
| Silver         |                                         | 5                | 6                | 7                | 8         | NA    | 0.00                    | 1.00  |
|                |                                         |                  |                  |                  |           |       |                         |       |
|                | 0.00                                    | 1                | 2                | 3                | 4         | NA    | 1508043-BLK2            |       |
|                | 0.03                                    | 0.03             | 0.02             | 0.02             | 0.04      |       | 0.00                    | 4.00  |
|                |                                         | 5                | 6                | 7                | 8         | NA    | 0.02                    | 1.00  |
|                |                                         |                  |                  |                  |           |       |                         |       |
|                | 0.02                                    | 1                | 2                | 3                | 4         | NA    | 1508043-BLK2            |       |
| O a directions | 0.02                                    | 0.02             | 0.02             | 0.03             | 0.05      | A I A | 0.01                    | 0.20  |
| Cadmium        |                                         | 5                | 6                | 7                | 8         | NA    | 1508046-BLK2<br>0.00    | 0.20  |
|                |                                         |                  |                  |                  |           |       |                         |       |
|                | 0.02                                    | 1                | 2                | 3                | 4         | NA    | 1508046-BLK2            |       |
|                | 0.02                                    | 0.02             | 0.02             | 0.03             | 0.05      | NA    | 0.01                    | 0.20  |
|                |                                         | 5                | 6                | 7                | 8         | IVA   |                         | 0.20  |
|                |                                         |                  |                  | _                |           | ***   | 4500040 51440           |       |
|                | 0.10                                    | 1                | 2                | 3                | 4         | NA    | 1508043-BLK2            |       |
| Antimony       | 0.10                                    | 0.20             | 0.19             | 0.18             | 0.21      | NA    | -0.01                   | 1.00  |
| 7 didirioriy   |                                         | 5                | 6                | 7                | 8         | 101   |                         |       |
|                |                                         | 1                | 2                | 3                |           | NA    | 15080/16_BL K2          |       |
|                | 0.10                                    |                  |                  |                  | 4         | 14/1  | 1000040-82112           |       |
|                |                                         | 0.20<br><b>5</b> | 0.19<br><b>6</b> | 0.18<br><b>7</b> | 0.21<br>8 | NA    | 0.01                    | 1.00  |
|                |                                         | 5                | 8                | - 1              | 8         |       |                         |       |
|                |                                         | 1                | 2                | 3                | 4         | NA    | 1508043-BLK2            |       |
|                | 0.02                                    | 0.04             | 0.03             | 0.02             | 0.01      |       |                         |       |
| Barium         |                                         | 5                | 6                | 7                | 8         | NA    | 0.28                    | 10.00 |
|                |                                         | -                |                  | ·                | -         |       |                         |       |
|                |                                         | 1                | 2                | 3                | 4         | NA    | 1508046-BLK2            |       |
|                | 0.02                                    | 0.04             | 0.03             | 0.02             | 0.01      |       |                         | İ     |
|                |                                         | 5                | 6                | 7                | 8         | NA    | 0.00                    | 10.00 |
|                |                                         |                  |                  |                  |           |       |                         |       |

# TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.8 Analysis Name: ICPMS Tot. Rec. Metals

Instrument: ICPMS-PE DRC-II Work Order: Nu C150802

Analytical Sequence: 1508057 **Total Recoverable** Concentration Units: <u>ug/L</u>

|          | Calibration<br>Blank (1 & 2) | c    | Continuing Cali | bration Blank | 5    | Bla | thod<br>ank<br>ch ID) | PQL  |
|----------|------------------------------|------|-----------------|---------------|------|-----|-----------------------|------|
|          |                              | 1    | 2               | 3             | 4    | NA  | 1508046-BLK2          |      |
|          | 0.02                         | 0.21 | 0.05            | 0.21          | 0.09 |     | 0.04                  | 4.00 |
| Thallium |                              | 5    | 6               | 7             | 8    | NA  | 0.01                  | 1.00 |
|          |                              | 1    | 2               | 3             | 4    | NA  | 1508043-BLK2          |      |
|          | 0.02                         | 0.21 | 0.05            | 0.21          | 0.09 |     |                       |      |
|          |                              | 5    | 6               | 7             | 8    | NA  | 0.00                  | 1.00 |
|          |                              | 1    | 2               | 3             | 4    | NA  | 1508043-BLK2          |      |
|          | 0.01                         | 0.03 | 0.02            | 0.03          | 0.03 |     |                       | 0.00 |
| Lead     | -                            | 5    | 6               | 7             | 8    | NA  | 0.01                  | 0.20 |
|          |                              | 1    | 2               | 3             | 4    | NA  | 1508046-BLK2          |      |
|          | 0.01                         | 0.03 | 0.02            | 0.03          | 0.03 |     |                       |      |
|          |                              | 5    | 6               | 7             | 8    | NA  | 0.00                  | 0.20 |

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

Mettler AT Method: EPA 310.1 Analysis Name: WC - Alkalinity

Sequence: 1508048 Work Order. C150802 Units: mg CaCO3 / L

| Total            | Initi | ial (ICV1, I | CV2) |      | Cont  | inuing C | alibration | Verification | on Stand | lards(CC | Vs)   |    |
|------------------|-------|--------------|------|------|-------|----------|------------|--------------|----------|----------|-------|----|
| Analyte          | True  | Found        | %R   | True | Found | %R       | True       | Found        | %R       | True     | Found | %R |
|                  |       |              |      |      | 1     |          |            | 2            |          |          | 3     |    |
|                  |       |              |      | 100  | 98.7  | 98.7     |            |              |          |          |       |    |
| Total Alkalinity |       |              |      |      | 4     |          |            | 5            |          |          | 6     |    |
| rotal / maining  |       |              |      |      |       |          |            |              |          |          |       |    |
|                  |       |              |      |      | 7     |          |            | 8            |          |          | 9     |    |
|                  |       |              |      |      |       |          |            |              |          |          |       |    |

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

### TechLaw, Inc. - ESAT Region 8

#### Initial and Continuing Calibration Verification Results

ICPOE - PE Optima Method: 200.7 Analysis Name: ICPOE Diss. Metals

Sequence: 1508049 Work Order: C150802 Units: ug/L

| Dissolved  |       | al (ICV1, I | ICV2) | l     |       | inuina C: |       | Verificati | on Stand | lards (CC | Ve)   |       |
|------------|-------|-------------|-------|-------|-------|-----------|-------|------------|----------|-----------|-------|-------|
| Analyte    | True  | Found       | %R    | True  | Found | %R        | True  | Found      | %R       | True      | Found | 0/ D  |
| -          | itue  | round       | 70 K  | True  | 1     | 70 K      | True  | 2          | 70 K     | True      | 3     | %R    |
|            |       |             |       | 12500 | 12400 | 99.2      | 12500 | 12440      | 99.5     | 12500     | 12160 | 97.3  |
|            | 12500 | 12500       | 100.0 |       | 4     |           |       | 5          |          |           | 6     |       |
| Aluminum   |       |             |       | 12500 | 12240 | 97.9      |       |            |          |           |       |       |
|            |       |             |       |       | 7     |           |       | 8          |          |           | 9     |       |
|            |       |             |       |       |       |           |       |            |          |           |       |       |
|            |       |             |       |       | 1     |           |       | 2          |          |           | 3     |       |
|            | 500   | 509.0       | 101.8 | 500   | 503.4 | 100.7     | 500   | 504.7      | 100.9    | 500       | 508.3 | 101.7 |
| Beryllium  | 500   | 509.0       | 101.0 |       | 4     |           |       | 5          |          |           | 6     |       |
| <b>,</b>   |       |             |       | 500   | 508.9 | 101.8     |       |            |          |           |       |       |
|            |       |             |       |       | 7     |           |       | 8          |          |           | 9     |       |
|            |       |             |       |       |       |           |       |            |          |           |       |       |
|            |       |             |       |       | 1     |           |       | 2          |          |           | 3     |       |
|            | 12500 | 12850       | 102.8 | 12500 | 12610 | 100.9     | 12500 | 12640      | 101.1    | 12500     | 12410 | 99.3  |
| Calcium    | 12000 |             | .02.0 |       | 4     |           |       | 5          |          |           | 6     |       |
| Salorani   |       |             |       | 12500 | 12590 | 100.7     |       |            |          |           |       |       |
|            |       |             |       |       | 7     |           |       | 8          |          |           | 9     |       |
|            |       |             |       |       |       |           |       |            |          |           |       |       |
|            |       |             |       | 40500 | 10400 | 00.0      | 40500 | 2          | 100.0    | 40500     | 3     |       |
|            | 12500 | 12700       | 101.6 | 12500 | 12490 | 99.9      | 12500 | 12500      | 100.0    | 12500     | 12390 | 99.1  |
| Iron       |       |             |       | 40500 | 40570 | 400.0     |       | 5          |          |           | 6     |       |
|            |       |             |       | 12500 | 12570 | 100.6     |       |            |          |           |       |       |
|            |       |             |       |       | 7     |           |       | 8          |          |           | 9     |       |
|            |       |             |       |       | 1     |           |       | 2          |          |           | 3     |       |
|            | 10500 | 10000       | 101.0 | 12500 | 12570 | 100.6     | 12500 | 12590      | 100.7    | 12500     | 12320 | 98.6  |
| Magnesium  | 12500 | 12620       | 101.0 |       | 4     |           |       | 5          |          |           | 6     |       |
| Magnesiani |       |             |       | 12500 | 12400 | 99.2      |       |            |          |           |       |       |
|            |       |             |       |       | 7     |           |       | 8          |          |           | 9     |       |
|            |       |             |       |       |       |           |       |            |          |           |       |       |
|            |       |             |       |       | 1     |           |       | 2          |          |           | 3     |       |
|            | 1000  | 1026        | 102.6 | 1000  | 1016  | 101.6     | 1000  | 1016       | 101.6    | 1000      | 1027  | 102.7 |
| Manganese  | 1000  | 1020        | 102.0 |       | 4     |           |       | 5          |          |           | 6     |       |
| -          |       |             |       | 1000  | 1022  | 102.2     |       |            |          |           |       |       |
|            |       |             |       |       | 7     |           |       | 8          |          |           | 9     |       |
|            |       |             |       |       |       |           |       |            |          |           |       |       |

#### TechLaw, Inc. - ESAT Region 8

#### Initial and Continuing Calibration Verification Results

ICPOE - PE Optima Method: 200.7 Analysis Name: ICPOE Diss. Metals

Sequence: 1508049 Work Order. C150802 Units: ug/L

| Dissolved  | Initi | al (ICV1, | ICV2) |       | Conti | nuing Ca | alibration | Verification | on Stand | lards (CC | Vs)   |       |
|------------|-------|-----------|-------|-------|-------|----------|------------|--------------|----------|-----------|-------|-------|
| Analyte    | True  | Found     | %R    | True  | Found | %R       | True       | Found        | %R       | True      | Found | %R    |
| _          |       |           |       |       | 1     |          |            | 2            |          |           | 3     |       |
|            | 05000 | 05000     | 100.0 | 25000 | 24860 | 99.4     | 25000      | 24930        | 99.7     | 25000     | 24450 | 97.8  |
| Potæsium   | 25000 | 25000     | 100.0 |       | 4     |          |            | 5            |          |           | 6     |       |
| Olasiani   |       |           |       | 25000 | 24570 | 98.3     |            |              |          |           |       |       |
|            |       |           |       |       | 7     |          |            | 8            |          |           | 9     |       |
|            |       |           |       |       |       |          |            |              |          |           |       |       |
|            |       |           |       |       | 1     |          |            | 2            |          |           | 3     |       |
|            | 40500 | 40500     | 100.0 | 12500 | 12440 | 99.5     | 12500      | 12490        | 99.9     | 12500     | 12220 | 97.8  |
| Sodium 129 | 12500 | 12500     | 100.0 |       | 4     |          |            | 5            |          |           | 6     |       |
| Cociain    |       |           |       | 12500 | 12290 | 98.3     |            |              |          |           |       |       |
|            |       |           |       |       | 7     |          |            | 8            |          |           | 9     |       |
|            |       |           |       |       |       |          |            |              |          |           |       |       |
|            |       |           |       |       | 1     |          |            | 2            |          |           | 3     |       |
|            | 0500  | 0505      | 100.0 | 2500  | 2497  | 99.9     | 2500       | 2511         | 100.4    | 2500      | 2544  | 101.8 |
| Zinc       | 2500  | 2565      | 102.6 |       | 4     |          |            | 5            |          |           | 6     |       |
| 2110       |       |           |       | 2500  | 2556  | 102.2    |            |              |          |           |       |       |
|            |       |           |       |       | 7     |          |            | 8            |          |           | 9     |       |
|            |       |           |       |       |       |          |            |              |          |           |       |       |

Metals - ICV & CCV % R Criteria = 90 - 110%, Classical Chemistry % R Criteria - ICV = 90 - 110% R, CCV = 80 - 120% R.

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

CVAA FIMS - PE Method: 245.1 Analysis Name: TM\_Mercury 245.1

Sequence: 1508050 Work Order. C150802 Units: ug/L

| Total    | Init | ial (ICV1, I | ICV2) |      | Cont  | inuing Ca | alibration | Verification | on Stand | lards(CC | Vs)   |       |
|----------|------|--------------|-------|------|-------|-----------|------------|--------------|----------|----------|-------|-------|
| Analyte  | True | Found        | %R    | True | Found | %R        | True       | Found        | %R       | True     | Found | %R    |
|          |      |              |       |      | 1     |           |            | 2            |          |          | 3     |       |
|          |      | 5.05         | 101.0 | 5.00 | 4.95  | 99.0      | 5.00       | 4.92         | 98.4     | 5.00     | 5.13  | 102.6 |
| Mercury  | 5.00 | 5.05         | 101.0 |      | 4     |           |            | 5            |          |          | 6     |       |
| Wichdary |      |              |       | 5.00 | 5.17  | 103.4     |            |              |          |          |       |       |
|          |      |              |       |      | 7     |           |            | 8            |          |          | 9     |       |
|          |      |              |       |      |       |           |            |              |          |          |       |       |

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

### TechLaw, Inc. - ESAT Region 8

#### Initial and Continuing Calibration Verification Results

ICPMS-PE DRC-II Method: 200.8 Analysis Name: ICPMS Diss. Metals

Sequence: 1508051 Work Order. C150802 Units: ug/L

| Dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Initi | ial (ICV1, I | ICV2) |      | Cont  | inuing Ca | alibration | Verificati | on Stand | ards(CC | Vs)   |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|-------|------|-------|-----------|------------|------------|----------|---------|-------|-------|
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | True  | Found        | %R    | True | Found | %R        | True       | Found      | %R       | True    | Found | %R    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              |       |      | 1     |           |            | 2          |          |         | 3     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50.0  | E0 0         | 101.6 | 50.0 | 48.7  | 97.4      | 50.0       | 49.5       | 99.0     | 50.0    | 50.5  | 101.0 |
| Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50.0  | 50.8         | 101.6 |      | 4     |           |            | 5          |          |         | 6     |       |
| , and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of |       |              |       | 50.0 | 49.8  | 99.6      |            |            |          |         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              |       |      | 7     |           |            | 8          |          |         | 9     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              |       |      |       |           |            |            |          |         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              |       |      | 1     |           |            | 2          |          |         | 3     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50.0  | 50.0         | 400.4 | 50.0 | 49.4  | 98.8      | 50.0       | 49.7       | 99.4     | 50.0    | 50.8  | 101.6 |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.0  | 50.2         | 100.4 |      | 4     |           |            | 5          |          |         | 6     |       |
| Alscino                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |              |       | 50.0 | 49.3  | 98.6      |            |            |          |         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              |       |      | 7     |           |            | 8          |          |         | 9     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              |       |      |       |           |            |            |          |         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              |       |      | 1     |           |            | 2          |          |         | 3     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50.0  | 50.4         | 100.0 | 50.0 | 50.5  | 101.0     | 50.0       | 50.7       | 101.4    | 50.0    | 50.5  | 101.0 |
| Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50.0  | 50.1         | 100.2 |      | 4     |           |            | 5          |          |         | 6     |       |
| Danum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |              |       | 50.0 | 51.3  | 102.6     |            |            |          |         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              |       |      | 7     |           |            | 8          |          |         | 9     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              |       |      |       |           |            |            |          |         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              |       |      | 1     |           |            | 2          |          |         | 3     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              |       | 50.0 | 49.5  | 99.0      | 50.0       | 50.3       | 100.6    | 50.0    | 51.1  | 102.2 |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.0  | 48.8         | 97.6  |      | 4     |           |            | 5          |          |         | 6     |       |
| Caumum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              |       | 50.0 | 50.6  | 101.2     |            |            |          |         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              |       |      | 7     |           |            | 8          |          |         | 9     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              |       |      |       |           |            |            |          |         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              |       |      | 1     |           |            | 2          |          |         | 3     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 40.0         |       | 50.0 | 49.4  | 98.8      | 50.0       | 48.2       | 96.4     | 50.0    | 49.1  | 98.2  |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50.0  | 48.9         | 97.8  |      | 4     |           |            | 5          |          |         | 6     |       |
| Onoman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              |       | 50.0 | 47.3  | 94.6      |            |            |          |         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              |       |      | 7     |           |            | 8          |          |         | 9     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              |       |      |       |           |            |            |          |         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              |       |      | 1     |           |            | 2          |          |         | 3     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50.0  | 49.2         | 98.4  | 50.0 | 50.0  | 100.0     | 50.0       | 49.6       | 99.2     | 50.0    | 49.4  | 98.8  |
| Cobalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50.0  | 49.2         | 90.4  |      | 4     |           |            | 5          |          |         | 6     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              |       | 50.0 | 48.4  | 96.8      |            |            |          |         |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              |       |      | 7     |           |            | 8          |          |         | 9     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              |       |      |       |           |            |            |          |         |       |       |

### TechLaw, Inc. - ESAT Region 8

#### Initial and Continuing Calibration Verification Results

ICPMS-PE DRC-II Method: 200.8 Analysis Name: ICPMS Diss. Metals

Sequence: 1508051 Work Order. C150802 Units: ug/L

| Dissolved       |          | ial (ICV1, I | CV2)  | 1    |        | inuina Ca |      | Verificati | on Stand | lards (CC | Vs)   |       |
|-----------------|----------|--------------|-------|------|--------|-----------|------|------------|----------|-----------|-------|-------|
| Analyte         | True     | Found        | %R    | True | Found  | %R        | True | Found      | %R       | True      | Found | %R    |
|                 | 1,40     | , carra      | 70.1  | 1140 | 1      | 7011      | 1100 | 2          | 70.1     | rrac      | 3     | 7011  |
|                 |          |              |       | 50.0 | 50.1   | 100.2     | 50.0 | 48.4       | 96.8     | 50.0      | 49.1  | 98.2  |
| 0               | 50.0     | 49.5         | 99.0  |      | 4      |           |      | 5          |          |           | 6     |       |
| Copper          |          |              |       | 50.0 | 48.7   | 97.4      |      |            |          |           |       |       |
|                 |          |              |       |      | 7      |           |      | 8          |          |           | 9     |       |
|                 |          |              |       |      |        |           |      |            |          |           |       |       |
|                 |          |              |       |      | 1      |           |      | 2          |          |           | 3     |       |
|                 | F0.0     | F0.0         | 400.4 | 50.0 | 49.4   | 98.8      | 50.0 | 49.7       | 99.4     | 50.0      | 50.2  | 100.4 |
| Lead            | 50.0     | 50.2         | 100.4 |      | 4      |           |      | 5          |          |           | 6     |       |
| 2000            |          |              |       | 50.0 | 49.4   | 98.8      |      |            |          |           |       |       |
|                 |          |              |       |      | 7      |           |      | 8          |          |           | 9     |       |
|                 |          |              |       |      |        |           |      |            |          |           |       |       |
|                 |          |              |       |      | 1      |           |      | 2          |          |           | 3     |       |
|                 | 50.0     | 40.0         | 00.6  | 50.0 | 51.6   | 103.2     | 50.0 | 51.7       | 103.4    | 50.0      | 52.3  | 104.6 |
| Molybdenum      | 50.0     | 49.8         | 99.6  |      | 4      |           |      | 5          |          |           | 6     |       |
| ery 2 de l'all. |          |              |       | 50.0 | 51.0   | 102.0     |      |            |          |           |       |       |
|                 |          |              |       |      | 7      |           |      | 8          |          |           | 9     |       |
|                 |          |              |       |      |        |           |      |            |          |           |       |       |
|                 |          |              |       |      | 1      |           |      | 2          |          |           | 3     |       |
|                 | 50.0     | 50.1         | 100.2 | 50.0 | 49.7   | 99.4      | 50.0 | 48.2       | 96.4     | 50.0      | 49.6  | 99.2  |
| Nickel          | 30.0     | 50.1         | 100.2 |      | 4      |           |      | 5          |          |           | 6     |       |
|                 |          |              |       | 50.0 | 47.8   | 95.6      |      |            |          |           |       |       |
|                 |          |              |       |      | 7      |           |      | 8          |          |           | 9     |       |
|                 |          |              |       |      |        |           |      |            |          |           |       |       |
|                 |          |              |       |      | 1      |           |      | 2          |          |           | 3     |       |
|                 | 50.0     | 50.8         | 101.6 | 50.0 | 50.2   | 100.4     | 50.0 | 49.1       | 98.2     | 50.0      | 50.1  | 100.2 |
| Selenium        | 00.0     |              | 101.0 |      | 4      |           |      | 5          |          |           | 6     |       |
|                 |          |              |       | 50.0 | 49.5   | 99.0      |      |            |          |           |       |       |
|                 |          |              |       |      | 7      |           |      | 8          |          |           | 9     |       |
|                 |          |              |       |      |        |           |      |            |          |           |       |       |
|                 |          |              |       |      | 1 10.5 | 00.0      | 50.0 | 2          | 400.0    | F0.0      | 3     | 404.0 |
|                 | 50.0     | 49.5         | 99.0  | 50.0 | 49.5   | 99.0      | 50.0 | 50.4       | 100.8    | 50.0      | 50.9  | 101.8 |
| Silver          | <u> </u> |              |       | 50.0 | 4 50.0 | 464.6     |      | 5          |          |           | 6     |       |
|                 |          |              |       | 50.0 | 50.6   | 101.2     |      |            |          |           |       |       |
|                 |          |              |       |      | 7      |           |      | 8          |          |           | 9     |       |
|                 |          |              |       |      |        |           |      |            |          |           |       |       |

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPMS-PE DRC-II Method: 200.8 Analysis Name: ICPMS Diss. Metals

Sequence: 1508051 Work Order. C150802 Units: ug/L

| Dissolved | Initi | ial (ICV1, I | CV2) |      | Cont  | inuing Ca | alibration | Verification | on Stanc | lards(CC | Vs)   |      |
|-----------|-------|--------------|------|------|-------|-----------|------------|--------------|----------|----------|-------|------|
| Analyte   | True  | Found        | %R   | True | Found | %R        | True       | Found        | %R       | True     | Found | %R   |
|           |       |              |      |      | 1     |           |            | 2            |          |          | 3     |      |
|           | 50.0  | 40.7         | 00.4 | 50.0 | 49.3  | 98.6      | 50.0       | 49.2         | 98.4     | 50.0     | 49.8  | 99.6 |
| Thallium  | 50.0  | 49.7         | 99.4 |      | 4     |           |            | 5            |          |          | 6     |      |
| mamam     |       |              |      | 50.0 | 49.4  | 98.8      |            |              |          |          |       |      |
|           |       |              |      |      | 7     |           |            | 8            |          |          | 9     |      |
|           |       |              |      |      |       |           |            |              |          |          |       |      |
|           |       |              |      |      | 1     |           |            | 2            |          |          | 3     |      |
|           | 50.0  | 40.7         | 07.4 | 50.0 | 49.3  | 98.6      | 50.0       | 48.8         | 97.6     | 50.0     | 48.6  | 97.2 |
| Vanadium  | 50.0  | 48.7         | 97.4 |      | 4     |           |            | 5            |          |          | 6     |      |
| Variation |       |              |      | 50.0 | 48.9  | 97.8      |            |              |          |          |       |      |
|           |       |              |      |      | 7     |           |            | 8            |          |          | 9     |      |
|           |       |              |      |      |       |           |            |              |          |          |       |      |

Metals - ICV & CCV % R Criteria = 90 - 110%, Classical Chemistry % R Criteria - ICV = 90 - 110% R, CCV = 80 - 120% R.

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

**pH Meter** Method: 150.1 Analysis Name: WC-pH

Sequence: 1508053 Work Order. C150802 Units: pH Units

| WET     | Initi | al (ICV1, I | CV2) |      | Conti | nuing C | alibration | Verification | on Stand | lards(CC | Vs)   |    |
|---------|-------|-------------|------|------|-------|---------|------------|--------------|----------|----------|-------|----|
| Analyte | True  | Found       | %R   | True | Found | %R      | True       | Found        | %R       | True     | Found | %R |
|         |       |             |      |      | 1     |         |            | 2            |          |          | 3     |    |
|         |       |             |      |      |       |         |            |              |          |          |       |    |
| pН      |       |             |      |      | 4     |         |            | 5            |          |          | 6     |    |
| pi i    |       |             |      |      |       |         |            |              |          |          |       |    |
|         |       |             |      |      | 7     |         |            | 8            |          |          | 9     |    |
|         |       |             |      |      |       |         |            |              |          |          |       |    |

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

### TechLaw, Inc. - ESAT Region 8

#### Initial and Continuing Calibration Verification Results

ICPOE - PE Optima Method: 200.7 Analysis Name: ICPOE Tot. Rec. Metals

Sequence: 1508056 Work Order. C150802 Units: ug/L

| Sequence. 1000000 |       | V VOIR OI   | uei. Cit | J000Z |       | JIIIS. uy | / L        |            |          |           |       |       |
|-------------------|-------|-------------|----------|-------|-------|-----------|------------|------------|----------|-----------|-------|-------|
| Total Recoverable | Initi | al (ICV1, I | CV2)     |       | Cont  | nuing Ca  | alibration | Verificati | on Stand | lards (CC | Vs)   |       |
| Analyte           | True  | Found       | %R       | True  | Found | %R        | True       | Found      | %R       | True      | Found | %R    |
|                   |       |             |          |       | 1     |           |            | 2          |          |           | 3     |       |
|                   | 40500 | 40450       | 00.0     | 12500 | 12300 | 98.4      | 12500      | 12340      | 98.7     | 12500     | 12550 | 100.4 |
| Aluminum          | 12500 | 12450       | 99.6     |       | 4     |           |            | 5          |          |           | 6     |       |
| Adminan           |       |             |          | 12500 | 12400 | 99.2      |            |            |          |           |       |       |
|                   |       |             |          |       | 7     |           |            | 8          |          |           | 9     |       |
|                   |       |             |          |       |       |           |            |            |          |           |       |       |
|                   |       |             |          |       | 1     |           |            | 2          |          |           | 3     |       |
|                   | F00   | F04 0       | 400.4    | 500   | 507.8 | 101.6     | 500        | 511.4      | 102.3    | 500       | 492.2 | 98.4  |
| Beryllium         | 500   | 501.9       | 100.4    |       | 4     |           |            | 5          |          |           | 6     |       |
| Beryman           |       |             |          | 500   | 490.3 | 98.1      |            |            |          |           |       |       |
|                   |       |             |          |       | 7     |           |            | 8          |          |           | 9     |       |
|                   |       |             |          |       |       |           |            |            |          |           |       |       |
|                   |       |             |          |       | 1     |           |            | 2          |          |           | 3     |       |
|                   | 40500 | 40400       | 00.7     | 12500 | 12520 | 100.2     | 12500      | 12650      | 101.2    | 12500     | 12280 | 98.2  |
| Calcium           | 12500 | 12460       | 99.7     |       | 4     |           |            | 5          |          |           | 6     |       |
| Carcian           |       |             |          | 12500 | 12140 | 97.1      |            |            |          |           |       |       |
|                   |       |             |          |       | 7     |           |            | 8          |          |           | 9     |       |
|                   |       |             |          |       |       |           |            |            |          |           |       |       |
|                   |       |             |          |       | 1     |           |            | 2          |          |           | 3     |       |
|                   | 10500 | 10500       | 400.0    | 12500 | 12540 | 100.3     | 12500      | 12630      | 101.0    | 12500     | 12500 | 100.0 |
| Iron              | 12500 | 12580       | 100.6    |       | 4     |           |            | 5          |          |           | 6     |       |
| 11011             |       |             |          | 12500 | 12590 | 100.7     |            |            |          |           |       |       |
|                   |       |             |          |       | 7     |           |            | 8          |          |           | 9     |       |
|                   |       |             |          |       |       |           |            |            |          |           |       |       |
|                   |       |             |          |       | 1     |           |            | 2          |          |           | 3     |       |
|                   | 10500 | 40500       | 400.0    | 12500 | 12430 | 99.4      | 12500      | 12490      | 99.9     | 12500     | 12600 | 100.8 |
| Magnesium         | 12500 | 12530       | 100.2    |       | 4     |           |            | 5          |          |           | 6     |       |
|                   |       |             |          | 12500 | 12490 | 99.9      |            |            |          |           |       |       |
|                   |       |             |          |       | 7     |           |            | 8          |          |           | 9     |       |
|                   |       |             |          |       |       |           |            |            |          |           |       |       |
|                   |       |             |          |       | 1     |           |            | 2          |          |           | 3     |       |
|                   | 1000  | 1010        | 404.0    | 1000  | 1023  | 102.3     | 1000       | 1029       | 102.9    | 1000      | 991.3 | 99.1  |
| Manganese         | 1000  | 1010        | 101.0    |       | 4     |           |            | 5          |          |           | 6     |       |
| wangan co         |       |             |          | 1000  | 987.8 | 98.8      |            |            |          |           |       |       |
|                   |       |             |          |       | 7     |           |            | 8          |          |           | 9     |       |
|                   |       |             |          |       |       |           |            |            |          |           |       |       |
|                   |       |             |          |       |       |           |            |            |          | 1         |       |       |

#### TechLaw, Inc. - ESAT Region 8

#### Initial and Continuing Calibration Verification Results

ICPOE - PE Optima Method: 200.7 Analysis Name: ICPOE Tot. Rec. Metals

Sequence: 1508056 Work Order. C150802 Units: ug/L

| Total Recoverable | Initi | al (ICV1, I | CV2)  |       | Cont  | inuing C | alibration | Verification | on Stand | lards (CC | Vs)   |       |
|-------------------|-------|-------------|-------|-------|-------|----------|------------|--------------|----------|-----------|-------|-------|
| Analyte           | True  | Found       | %R    | True  | Found | %R       | True       | Found        | %R       | True      | Found | %R    |
|                   |       |             |       |       | 1     |          |            | 2            |          |           | 3     |       |
|                   | 05000 | 0.4050      | 00.4  | 25000 | 24550 | 98.2     | 25000      | 24600        | 98.4     | 25000     | 24860 | 99.4  |
| Potassium         | 25000 | 24850       | 99.4  |       | 4     |          |            | 5            |          |           | 6     |       |
| rotassiam         |       |             |       | 25000 | 24590 | 98.4     |            |              |          |           |       |       |
|                   |       |             |       |       | 7     |          |            | 8            |          |           | 9     |       |
|                   |       |             |       |       |       |          |            |              |          |           |       |       |
|                   |       |             |       |       | 1     |          |            | 2            |          |           | 3     |       |
|                   | 40500 | 10100       | 00.0  | 12500 | 12320 | 98.6     | 12500      | 12370        | 99.0     | 12500     | 12500 | 100.0 |
| Sodium            | 12500 | 12400       | 99.2  |       | 4     |          |            | 5            |          |           | 6     |       |
| Socialii          |       |             |       | 12500 | 12340 | 98.7     |            |              |          |           |       |       |
|                   |       |             |       |       | 7     |          |            | 8            |          |           | 9     |       |
|                   |       |             |       |       |       |          |            |              |          |           |       |       |
|                   |       |             |       |       | 1     |          |            | 2            |          |           | 3     |       |
|                   | 0500  | 0550        | 400.0 | 2500  | 2599  | 104.0    | 2500       | 2633         | 105.3    | 2500      | 2499  | 100.0 |
| Zinc              | 2500  | 2558        | 102.3 |       | 4     |          |            | 5            |          |           | 6     |       |
| 2110              |       |             |       | 2500  | 2494  | 99.8     |            |              |          |           |       |       |
|                   |       |             |       |       | 7     |          |            | 8            |          |           | 9     |       |
|                   |       |             |       |       |       |          |            |              |          |           |       |       |

Metals - ICV & CCV % R Criteria = 90 - 110%, Classical Chemistry % R Criteria - ICV = 90 - 110% R, CCV = 80 - 120% R.

### TechLaw, Inc. - ESAT Region 8

#### Initial and Continuing Calibration Verification Results

ICPMS-PE DRC-II Method: 200.8 Analysis Name: ICPMS Tot. Rec. Metals

Sequence: 1508057 Work Order. C150802 Units: ug/L

| Sequence. 1506057 |       | 770111 01    | uei. Cit |      |       | Jilis. ug | , _        |              |          |          |       |      |
|-------------------|-------|--------------|----------|------|-------|-----------|------------|--------------|----------|----------|-------|------|
| Total Recoverable | Initi | ial (ICV1, I | CV2)     |      | Cont  | inuing Ca | alibration | Verification | on Stand | lards(CC | Vs)   |      |
| Analyte           | True  | Found        | %R       | True | Found | %R        | True       | Found        | %R       | True     | Found | %R   |
|                   |       |              |          |      | 1     |           |            | 2            |          |          | 3     |      |
|                   |       |              |          | 50.0 | 47.50 | 95.0      | 50.0       | 46.88        | 93.8     | 50.0     | 47.33 | 94.7 |
| Antimony          | 50.0  | 50.77        | 101.5    |      | 4     |           |            | 5            |          |          | 6     |      |
| Antimony          |       |              |          | 50.0 | 46.97 | 93.9      |            |              |          |          |       |      |
|                   |       |              |          |      | 7     |           |            | 8            |          |          | 9     |      |
|                   |       |              |          |      |       |           |            |              |          |          |       |      |
|                   |       |              |          |      | 1     |           |            | 2            |          |          | 3     |      |
|                   | F0.0  | 40.00        | 00.0     | 50.0 | 49.64 | 99.3      | 50.0       | 47.04        | 94.1     | 50.0     | 48.27 | 96.5 |
| Arsenic           | 50.0  | 49.62        | 99.2     |      | 4     |           |            | 5            |          |          | 6     |      |
| Alsenic           |       |              |          | 50.0 | 46.78 | 93.6      |            |              |          |          |       |      |
|                   |       |              |          |      | 7     |           |            | 8            |          |          | 9     |      |
|                   |       |              |          |      |       |           |            |              |          |          |       |      |
|                   |       |              |          |      | 1     |           |            | 2            |          |          | 3     |      |
|                   |       |              |          | 50.0 | 50.04 | 100.1     | 50.0       | 47.69        | 95.4     | 50.0     | 47.62 | 95.2 |
| Barium            | 50.0  | 49.48        | 99.0     |      | 4     |           |            | 5            |          |          | 6     |      |
| aarium .          |       |              |          | 50.0 | 46.28 | 92.6      |            |              |          |          |       |      |
|                   |       |              |          |      | 7     |           |            | 8            |          |          | 9     |      |
|                   |       |              |          |      |       |           |            |              |          |          |       |      |
|                   |       |              |          |      | 1     |           |            | 2            |          |          | 3     |      |
|                   | F0.0  | FO 44        | 400.0    | 50.0 | 49.61 | 99.2      | 50.0       | 49.91        | 99.8     | 50.0     | 49.90 | 99.8 |
| Cadmium           | 50.0  | 50.44        | 100.9    |      | 4     |           |            | 5            |          |          | 6     |      |
| Caarriarri        |       |              |          | 50.0 | 49.44 | 98.9      |            |              |          |          |       |      |
|                   |       |              |          |      | 7     |           |            | 8            |          |          | 9     |      |
|                   |       |              |          |      |       |           |            |              |          |          |       |      |
|                   |       |              |          |      | 1     |           |            | 2            |          |          | 3     |      |
|                   | F0.0  | FO 40        | 400.0    | 50.0 | 48.57 | 97.1      | 50.0       | 46.44        | 92.9     | 50.0     | 46.71 | 93.4 |
| Chromium          | 50.0  | 50.16        | 100.3    |      | 4     |           |            | 5            |          |          | 6     |      |
| Ontornan          |       |              |          | 50.0 | 47.34 | 94.7      |            |              |          |          |       |      |
|                   |       |              |          |      | 7     |           |            | 8            |          |          | 9     |      |
|                   |       |              |          |      |       |           |            |              |          |          |       |      |
|                   |       |              |          |      | 1     |           |            | 2            |          |          | 3     |      |
|                   | E0.0  | E0.70        | 404.4    | 50.0 | 47.69 | 95.4      | 50.0       | 47.76        | 95.5     | 50.0     | 47.67 | 95.3 |
| Cobalt            | 50.0  | 50.72        | 101.4    |      | 4     |           |            | 5            |          |          | 6     |      |
| CODAIL            |       |              |          | 50.0 | 48.08 | 96.2      |            |              |          |          |       |      |
|                   |       |              |          |      | 7     |           |            | 8            |          |          | 9     |      |
|                   |       |              |          |      |       |           |            |              |          |          |       |      |

#### TechLaw, Inc. - ESAT Region 8

#### Initial and Continuing Calibration Verification Results

ICPMS-PE DRC-II Method: 200.8 Analysis Name: ICPMS Tot. Rec. Metals

Sequence: 1508057 Work Order. C150802 Units: ug/L

| 3equence. 1300037 |            |              | uei. Cit    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |       | Jilis. ug |            |            |          |         |       |       |
|-------------------|------------|--------------|-------------|----------------------------------------|-------|-----------|------------|------------|----------|---------|-------|-------|
| Total Recoverable | Initi      | ial (ICV1, I | CV2)        |                                        | Conti | inuing Ca | alibration | Verificati | on Stand | ards(CC | Vs)   |       |
| Analyte           | True       | Found        | %R          | True                                   | Found | %R        | True       | Found      | %R       | True    | Found | %R    |
|                   |            |              |             |                                        | 1     |           |            | 2          |          |         | 3     |       |
|                   | 50.0       | 54.04        | 102.0       | 50.0                                   | 48.74 | 97.5      | 50.0       | 46.86      | 93.7     | 50.0    | 46.72 | 93.4  |
| Copper            | 50.0       | 51.01        |             |                                        | 4     |           |            | 5          |          |         | 6     |       |
| Сорреі            |            |              |             | 50.0                                   | 48.07 | 96.1      |            |            |          |         |       |       |
|                   |            |              |             |                                        | 7     |           |            | 8          |          |         | 9     |       |
|                   |            |              |             |                                        |       |           |            |            |          |         |       |       |
|                   |            |              |             |                                        | 1     |           |            | 2          |          |         | 3     |       |
|                   | 50.0       | 40.50        | 00.0        | 50.0                                   | 49.42 | 98.8      | 50.0       | 48.07      | 96.1     | 50.0    | 48.33 | 96.7  |
| Lead              | 50.0 49.59 | 99.2         |             | 4                                      |       |           | 5          |            |          | 6       |       |       |
| LCCC              |            |              |             | 50.0                                   | 47.80 | 95.6      |            |            |          |         |       |       |
|                   |            |              |             |                                        | 7     |           |            | 8          |          |         | 9     |       |
|                   |            |              |             |                                        |       |           |            |            |          |         |       |       |
|                   |            |              |             |                                        | 1     |           |            | 2          |          |         | 3     |       |
|                   | 50.0       | E0 EE        | 50.55 101.1 | 50.0                                   | 50.21 | 100.4     | 50.0       | 50.79      | 101.6    | 50.0    | 50.53 | 101.1 |
| Molybdenum        |            | 50.55        |             |                                        | 4     |           |            | 5          |          |         | 6     |       |
| Worybacham        |            |              |             | 50.0                                   | 50.93 | 101.9     |            |            |          |         |       |       |
|                   |            |              |             |                                        | 7     |           |            | 8          |          |         | 9     |       |
|                   |            |              |             |                                        |       |           |            |            |          |         |       |       |
|                   |            |              |             |                                        | 1     |           |            | 2          |          |         | 3     |       |
|                   | 50.0       |              | 50.0        | 47.95                                  | 95.9  | 50.0      | 47.19      | 94.4       | 50.0     | 46.18   | 92.4  |       |
| Nickel            | 50.0       | 49.81        | 49.81 99.6  |                                        | 4     |           |            | 5          |          |         | 6     |       |
| NICKEI            |            |              |             | 50.0                                   | 47.97 | 95.9      |            |            |          |         |       |       |
|                   |            |              |             |                                        | 7     |           |            | 8          |          |         | 9     |       |
|                   |            |              |             |                                        |       |           |            |            |          |         |       |       |
|                   |            |              |             |                                        | 1     |           |            | 2          |          |         | 3     |       |
|                   | E0.0       | 40.24        | 00.0        | 50.0                                   | 49.87 | 99.7      | 50.0       | 46.00      | 92.0     | 50.0    | 47.43 | 94.9  |
| Selenium          | 50.0       | 48.31        | 96.6        |                                        | 4     |           |            | 5          |          |         | 6     |       |
| Coloritari        |            |              |             | 50.0                                   | 45.95 | 91.9      |            |            |          |         |       |       |
|                   |            |              |             |                                        | 7     |           |            | 8          |          |         | 9     |       |
|                   |            |              |             |                                        |       |           |            |            |          |         |       |       |
|                   |            |              |             |                                        | 1     |           |            | 2          |          |         | 3     |       |
|                   | E0.0       | EO 20        | 400.4       | 50.0                                   | 48.01 | 96.0      | 50.0       | 49.09      | 98.2     | 50.0    | 48.89 | 97.8  |
| Silver            | 50.0       | 50.20        | 100.4       |                                        | 4     |           |            | 5          |          |         | 6     |       |
| 5.7701            |            |              |             | 50.0                                   | 48.13 | 96.3      |            |            |          |         |       |       |
|                   |            |              |             |                                        | 7     |           |            | 8          |          |         | 9     |       |
|                   |            |              |             |                                        |       |           |            |            |          |         |       |       |
|                   |            |              |             |                                        |       |           |            |            |          |         |       |       |

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPMS-PE DRC-II Method: 200.8 Analysis Name: ICPMS Tot. Rec. Metals

Sequence: 1508057 Work Order. C150802 Units: ug/L

| Total Recoverable | Initial (ICV1, ICV2) |            |           | Continuing Calibration Verification Standards (CCVs) |       |      |      |       |      |      |       |      |
|-------------------|----------------------|------------|-----------|------------------------------------------------------|-------|------|------|-------|------|------|-------|------|
| Analyte           | True                 | Found      | %R        | True                                                 | Found | %R   | True | Found | %R   | True | Found | %R   |
|                   |                      |            |           |                                                      | 1     |      |      | 2     |      |      | 3     |      |
|                   | 50.0                 | EO O 40 00 | 8.88 97.8 | 50.0                                                 | 48.98 | 98.0 | 50.0 | 47.58 | 95.2 | 50.0 | 48.24 | 96.5 |
| Thallium          | 50.0                 | 48.88      |           |                                                      | 4     |      |      | 5     |      |      | 6     |      |
| mamam             |                      |            | 50.0      | 47.12                                                | 94.2  |      |      |       |      |      |       |      |
|                   |                      |            |           |                                                      | 7     |      |      | 8     |      |      | 9     |      |
|                   |                      |            |           |                                                      |       |      |      |       |      |      |       |      |
|                   |                      |            |           |                                                      | 1     |      |      | 2     |      |      | 3     |      |
|                   | 50.0                 | 50.00      | 404.0     | 50.0                                                 | 49.25 | 98.5 | 50.0 | 47.98 | 96.0 | 50.0 | 47.80 | 95.6 |
| Vanadium          | 50.0                 | 50.66      | 101.3     |                                                      | 4     |      |      | 5     |      |      | 6     |      |
| Validatati        |                      |            |           | 50.0                                                 | 47.13 | 94.3 |      |       |      |      |       |      |
|                   |                      |            |           |                                                      | 7     |      |      | 8     |      |      | 9     |      |
|                   |                      |            |           |                                                      |       |      |      |       |      |      |       |      |

Metals - ICV & CCV % R Criteria = 90 - 110%, Classical Chemistry % R Criteria - ICV = 90 - 110% R, CCV = 80 - 120% R.

[none]

# TechLaw, Inc. - ESAT Region 8 ICP Interference Check Sample ICPMS-PE DRC-II

| Analyte Sequence: 150805 | <u>Check Sample</u><br>31 Analysis: ICPMS Diss. Meta | Result* | <u>Units</u> | <u>True</u> | <u>%R</u> | <u>PQL</u> |
|--------------------------|------------------------------------------------------|---------|--------------|-------------|-----------|------------|
| Antimony                 | IFA1                                                 | 0.0     | ug/L         |             |           | 1.00       |
|                          | IFB1                                                 | 0.0     | ug/L         |             |           | 1.00       |
| Arsenic                  | IFA1                                                 | -0.1    | ug/L         |             |           | 2.00       |
|                          | IFB1                                                 | 20.0    | ug/L         | 20          | 100       | 2.00       |
| Barium                   | IFA1                                                 | 0.0     | ug/L         |             |           | 10.0       |
|                          | IFB1                                                 | 0.2     | ug/L         |             |           | 10.0       |
| Cadmium                  | IFA1                                                 | 0.0     | ug/L         |             |           | 0.200      |
|                          | IFB1                                                 | 20.4    | ug/L         | 20          | 102       | 0.200      |
| Chromium                 | IFA1                                                 | 0.0     | ug/L         |             |           | 2.00       |
|                          | IFB1                                                 | 19.3    | ug/L         | 20          | 97        | 2.00       |
| Cobalt                   | IFA1                                                 | 0.0     | ug/L         |             |           | 0.200      |
|                          | IFB1                                                 | 19.4    | ug/L         | 20          | 97        | 0.200      |
| Copper                   | IFA1                                                 | 0.6     | ug/L         |             |           | 1.00       |
|                          | IFB1                                                 | 20.2    | ug/L         | 20          | 101       | 1.00       |
| Lead                     | IFA1                                                 | 0.0     | ug/L         |             |           | 0.200      |
|                          | IFB1                                                 | 0.0     | ug/L         |             |           | 0.200      |
| Molybdenum               | IFA1                                                 | 198.1   | ug/L         | 200         | 99        | 1.00       |
|                          | IFB1                                                 | 203.5   | ug/L         | 200         | 102       | 1.00       |
| Nickel                   | IFA1                                                 | -0.2    | ug/L         |             |           | 1.00       |
|                          | IFB1                                                 | 19.6    | ug/L         | 20          | 98        | 1.00       |
| Selenium                 | IFA1                                                 | -0.4    | ug/L         |             |           | 2.00       |
|                          | IFB1                                                 | -0.5    | ug/L         |             |           | 2.00       |
| Silver                   | IFA1                                                 | 0.0     | ug/L         |             |           | 1.00       |
|                          | IFB1                                                 | 19.4    | ug/L         | 20          | 97        | 1.00       |
| Thallium                 | IFA1                                                 | -0.1    | ug/L         |             |           | 1.00       |
|                          | IFB1                                                 | -0.1    | ug/L         |             |           | 1.00       |
| Vanadium                 | IFA1                                                 | -0.2    | ug/L         |             |           | 3.00       |
|                          | IFB1                                                 | -0.6    | ug/L         |             |           | 3.00       |

<sup>\*</sup>Criteria = 80-120%R of True Value or+/- PQL

[none]

# TechLaw, Inc. - ESAT Region 8 ICP Interference Check Sample ICPMS-PE DRC-II

| <u>Analyte</u> |         |           | heck Sample    | Result* | <u>Units</u> | <u>True</u> | <u>%R</u> | <u>PQL</u> |
|----------------|---------|-----------|----------------|---------|--------------|-------------|-----------|------------|
| Sequence:      | 1508057 | Analysis: | ICPMS Tot. Rec |         |              |             |           |            |
| Antimony       |         |           | IFA1           | 0.0     | ug/L         |             |           | 1.00       |
|                |         |           | IFB1           | 0.0     | ug/L         |             |           | 1.00       |
| Arsenic        |         |           | IFA1           | 0.1     | ug/L         |             |           | 2.00       |
|                |         |           | IFB1           | 20.3    | ug/L         | 20          | 102       | 2.00       |
| Barium         |         |           | IFA1           | 0.0     | ug/L         |             |           | 10.0       |
|                |         |           | IFB1           | 0.2     | ug/L         |             |           | 10.0       |
| Cadmium        |         |           | IFA1           | 0.1     | ug/L         |             |           | 0.200      |
|                |         |           | IFB1           | 20.2    | ug/L         | 20          | 101       | 0.200      |
| Chromium       |         |           | IFA1           | 0.1     | ug/L         |             |           | 2.00       |
|                |         |           | IFB1           | 20.2    | ug/L         | 20          | 101       | 2.00       |
| Cobalt         |         |           | IFA1           | 0.0     | ug/L         |             |           | 0.200      |
|                |         |           | IFB1           | 20.1    | ug/L         | 20          | 100       | 0.200      |
| Copper         |         |           | IFA1           | 0.6     | ug/L         |             |           | 1.00       |
|                |         |           | IFB1           | 20.8    | ug/L         | 20          | 104       | 1.00       |
| Lead           |         |           | IFA1           | 0.0     | ug/L         |             |           | 0.200      |
|                |         |           | IFB1           | 0.1     | ug/L         |             |           | 0.200      |
| Molybdenun     | n       |           | IFA1           | 203.6   | ug/L         | 200         | 102       | 1.00       |
|                |         |           | IFB1           | 205.6   | ug/L         | 200         | 103       | 1.00       |
| Nickel         |         |           | IFA1           | -0.3    | ug/L         |             |           | 1.00       |
|                |         |           | IFB1           | 19.2    | ug/L         | 20          | 96        | 1.00       |
| Selenium       |         |           | IFA1           | -0.3    | ug/L         |             |           | 2.00       |
|                |         |           | IFB1           | -0.4    | ug/L         |             |           | 2.00       |
| Silver         |         |           | IFA1           | 0.0     | ug/L         |             |           | 1.00       |
|                |         |           | IFB1           | 19.7    | ug/L         | 20          | 99        | 1.00       |
| <br>Thallium   |         |           | IFA1           | 0.0     | ug/L         |             |           | 1.00       |
|                |         |           | IFB1           | 0.0     | ug/L         |             |           | 1.00       |
| <br>Vanadium   |         |           | IFA1           | 0.3     | ug/L         |             |           | 3.00       |
|                |         |           | IFB1           | -0.1    | ug/L         |             |           | 3.00       |

<sup>\*</sup>Criteria = 80-120%R of True Value or+/- PQL

[none]

# TechLaw, Inc. - ESAT Region 8 ICP Interference Check Sample ICPOE - PE Optima

| Analyte Sequence: 1508049 | <u>Check Sample</u><br>Analysis: ICPOE Diss. Metals | Result*   | <u>Units</u> | <u>True</u> | <u>%R</u> | <u>PQL</u> |
|---------------------------|-----------------------------------------------------|-----------|--------------|-------------|-----------|------------|
| Aluminum                  | IFA1                                                | 60,692.9  | ug/L         | 60,000      | 101       | 50.0       |
|                           | IFB1                                                | 59,888.5  | ug/L         | 60,000      | 100       | 50.0       |
| Beryllium                 | IFA1                                                | -0.5      | ug/L         |             |           | 5.00       |
|                           | IFB1                                                | 99.4      | ug/L         | 100         | 99        | 5.00       |
| Calcium                   | IFA1                                                | 289,975.8 | ug/L         | 300,000     | 97        | 250        |
|                           | IFB1                                                | 288,132.4 | ug/L         | 300,000     | 96        | 250        |
| Iron                      | IFA1                                                | 236,081.1 | ug/L         | 250,000     | 94        | 250        |
|                           | IFB1                                                | 234,753.8 | ug/L         | 250,000     | 94        | 250        |
| Magnesium                 | IFA1                                                | 143,118.4 | ug/L         | 150,000     | 95        | 250        |
|                           | IFB1                                                | 141,998.2 | ug/L         | 150,000     | 95        | 250        |
| Manganese                 | IFA1                                                | 1.2       | ug/L         |             |           | 5.00       |
|                           | IFB1                                                | 196.0     | ug/L         | 200         | 98        | 5.00       |
| Potassium                 | IFA1                                                | -306.8    | ug/L         |             |           | 1000       |
|                           | IFB1                                                | 20,897.7  | ug/L         | 20,000      | 104       | 1000       |
| Sodium                    | IFA1                                                | 52,053.5  | ug/L         | 50,000      | 104       | 1000       |
|                           | IFB1                                                | 51,132.6  | ug/L         | 50,000      | 102       | 1000       |
| Zinc                      | IFA1                                                | 1.2       | ug/L         |             |           | 20.0       |
|                           | IFB1                                                | 287.9     | ug/L         | 300         | 96        | 20.0       |

<sup>\*</sup>Criteria = 80-120%R of True Value or+/- PQL

[none]

# TechLaw, Inc. - ESAT Region 8 ICP Interference Check Sample ICPOE - PE Optima

| <u>Analyte</u>    | Check Sample                   | Result*         | <u>Units</u> | True    | <u>%R</u> | <u>PQL</u> |
|-------------------|--------------------------------|-----------------|--------------|---------|-----------|------------|
| Sequence: 1508056 | Analysis: ICPOE Tot. Rec. IFA1 | Metals 60,462.8 | ug/L         | 60,000  | 101       | 50.0       |
| Aluminum          |                                | ·               |              | 60,000  | 101       |            |
| -                 | IFB1                           | 59,581.8        | ug/L         | 60,000  | 99        | 50.0       |
| Beryllium         | IFA1                           | -0.5            | ug/L         |         |           | 5.00       |
|                   | IFB1                           | 100.1           | ug/L         | 100     | 100       | 5.00       |
| Calcium           | IFA1                           | 290,448.4       | ug/L         | 300,000 | 97        | 250        |
|                   | IFB1                           | 286,874.7       | ug/L         | 300,000 | 96        | 250        |
| Iron              | IFA1                           | 236,531.9       | ug/L         | 250,000 | 95        | 250        |
|                   | IFB1                           | 234,587.7       | ug/L         | 250,000 | 94        | 250        |
| Magnesium         | IFA1                           | 143,175.3       | ug/L         | 150,000 | 95        | 250        |
|                   | IFB1                           | 141,656.1       | ug/L         | 150,000 | 94        | 250        |
| Manganese         | IFA1                           | 1.0             | ug/L         |         |           | 5.00       |
|                   | IFB1                           | 197.1           | ug/L         | 200     | 99        | 5.00       |
| Potassium         | IFA1                           | -324.6          | ug/L         |         |           | 1000       |
|                   | IFB1                           | 20,624.6        | ug/L         | 20,000  | 103       | 1000       |
| Sodium            | IFA1                           | 51,721.2        | ug/L         | 50,000  | 103       | 1000       |
|                   | IFB1                           | 50,847.3        | ug/L         | 50,000  | 102       | 1000       |
| Zinc              | IFA1                           | 0.3             | ug/L         |         |           | 20.0       |
|                   | IFB1                           | 293.8           | ug/L         | 300     | 98        | 20.0       |

<sup>\*</sup>Criteria = 80-120%R of True Value or+/- PQL

[none]

## TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard ICPMS-PE DRC-II

Metals (Dissolved) by EPA 200/7000 Series Methods

Sequence: 1508051

| <u>Analyte</u> | <u>True</u> | <u>Found</u> | <u>%R</u> | <u>Units</u> |
|----------------|-------------|--------------|-----------|--------------|
| Antimony       | 1.00        | 1.02         | 102       | ug/L         |
| Arsenic        | 2.00        | 2.29         | 114       | ug/L         |
| Barium         | 10.0        | 9.79         | 98        | ug/L         |
| Cadmium        | 0.200       | 0.119        | 60        | ug/L         |
| Chromium       | 2.00        | 1.67         | 84        | ug/L         |
| Cobalt         | 0.200       | 0.188        | 94        | ug/L         |
| Copper         | 1.00        | 0.942        | 94        | ug/L         |
| Lead           | 0.200       | 0.161        | 81        | ug/L         |
| Molybdenum     | 1.00        | 0.954        | 95        | ug/L         |
| Nickel         | 1.00        | 1.17         | 117       | ug/L         |
| Selenium       | 2.00        | 2.39         | 120       | ug/L         |
| Silver         | 1.00        | 0.978        | 98        | ug/L         |
| Thallium       | 1.00        | 0.882        | 88        | ug/L         |
| Vanadium       | 2.00        | 1.76         | 88        | ug/L         |

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

Project Name:

[none]

# TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard ICPOE - PE Optima

Metals (Dissolved) by EPA 200/7000 Series Methods

Sequence: 1508049

| <u>Analyte</u> | True | <u>Found</u> | <u>%R</u> | <u>Units</u> |
|----------------|------|--------------|-----------|--------------|
| Aluminum       | 100  | 98.62        | 99        | ug/L         |
| Beryllium      | 5.00 | 5.060        | 101       | ug/L         |
| Calcium        | 250  | 251.6        | 101       | ug/L         |
| Iron           | 100  | 94.73        | 95        | ug/L         |
| Magnesium      | 1000 | 1030         | 103       | ug/L         |
| Manganese      | 10.0 | 10.47        | 105       | ug/L         |
| Potassium      | 1000 | 1044         | 104       | ug/L         |
| Sodium         | 1000 | 1031         | 103       | ug/L         |
| Zinc           | 50.0 | 53.16        | 106       | ug/L         |

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

Project Name:

[none]

# TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard ICPMS-PE DRC-II

Metals (Total Recov) by EPA 200/7000 Series Methods

Sequence: 1508057

| _     |                                                                  |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                     |
|-------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| True  | <u>Found</u>                                                     | <u>%R</u>                                                                                                                                                                                                                                                                           | <u>Units</u>                                                                                                                                                                                                                                                                                                                                                                        |
| 1.00  | 1.057                                                            | 106                                                                                                                                                                                                                                                                                 | ug/L                                                                                                                                                                                                                                                                                                                                                                                |
| 2.00  | 1.918                                                            | 96                                                                                                                                                                                                                                                                                  | ug/L                                                                                                                                                                                                                                                                                                                                                                                |
| 10.0  | 9.494                                                            | 95                                                                                                                                                                                                                                                                                  | ug/L                                                                                                                                                                                                                                                                                                                                                                                |
| 0.200 | 0.1921                                                           | 96                                                                                                                                                                                                                                                                                  | ug/L                                                                                                                                                                                                                                                                                                                                                                                |
| 2.00  | 1.682                                                            | 84                                                                                                                                                                                                                                                                                  | ug/L                                                                                                                                                                                                                                                                                                                                                                                |
| 0.200 | 0.1965                                                           | 98                                                                                                                                                                                                                                                                                  | ug/L                                                                                                                                                                                                                                                                                                                                                                                |
| 1.00  | 1.027                                                            | 103                                                                                                                                                                                                                                                                                 | ug/L                                                                                                                                                                                                                                                                                                                                                                                |
| 0.200 | 0.2049                                                           | 102                                                                                                                                                                                                                                                                                 | ug/L                                                                                                                                                                                                                                                                                                                                                                                |
| 1.00  | 1.025                                                            | 102                                                                                                                                                                                                                                                                                 | ug/L                                                                                                                                                                                                                                                                                                                                                                                |
| 1.00  | 0.9616                                                           | 96                                                                                                                                                                                                                                                                                  | ug/L                                                                                                                                                                                                                                                                                                                                                                                |
| 2.00  | 2.079                                                            | 104                                                                                                                                                                                                                                                                                 | ug/L                                                                                                                                                                                                                                                                                                                                                                                |
| 1.00  | 0.9362                                                           | 94                                                                                                                                                                                                                                                                                  | ug/L                                                                                                                                                                                                                                                                                                                                                                                |
| 1.00  | 0.9511                                                           | 95                                                                                                                                                                                                                                                                                  | ug/L                                                                                                                                                                                                                                                                                                                                                                                |
| 2.00  | 1.981                                                            | 99                                                                                                                                                                                                                                                                                  | ug/L                                                                                                                                                                                                                                                                                                                                                                                |
|       | 2.00 10.0 0.200 2.00 0.200 1.00 0.200 1.00 2.00 1.00 2.00 1.00 1 | 1.00     1.057       2.00     1.918       10.0     9.494       0.200     0.1921       2.00     1.682       0.200     0.1965       1.00     1.027       0.200     0.2049       1.00     1.025       1.00     0.9616       2.00     2.079       1.00     0.9362       1.00     0.9511 | 1.00     1.057     106       2.00     1.918     96       10.0     9.494     95       0.200     0.1921     96       2.00     1.682     84       0.200     0.1965     98       1.00     1.027     103       0.200     0.2049     102       1.00     1.025     102       1.00     0.9616     96       2.00     2.079     104       1.00     0.9362     94       1.00     0.9511     95 |

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%.No limits for Al, Ca, Fe, K, Mg & Na.

Project Name:

[none]

# TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard ICPOE - PE Optima

Metals (Total Recov) by EPA 200/7000 Series Methods

Sequence: 1508056

| <u>Analyte</u> | True | <u>Found</u> | <u>%R</u> | <u>Units</u> |
|----------------|------|--------------|-----------|--------------|
| Aluminum       | 100  | 110.5        | 111       | ug/L         |
| Beryllium      | 5.00 | 5.101        | 102       | ug/L         |
| Calcium        | 250  | 249.2        | 100       | ug/L         |
| Iron           | 100  | 85.92        | 86        | ug/L         |
| Magnesium      | 1000 | 1013         | 101       | ug/L         |
| Manganese      | 10.0 | 10.40        | 104       | ug/L         |
| Potassium      | 1000 | 1063         | 106       | ug/L         |
| Sodium         | 1000 | 1021         | 102       | ug/L         |
| Zinc           | 50.0 | 52.73        | 105       | ug/L         |

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

Project Name:

### TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: EPA 310.1 Total Sequence ID#: 1508048

| Instrument ID#: Mettler A | λT                | Water         |               |  |
|---------------------------|-------------------|---------------|---------------|--|
| Analysis ID               | Sample Name       | Analysis Date | Analysis Time |  |
| 1508047-SRM1              | Reference         | 08/10/15      | 02:36         |  |
| 1508047-BLK1              | Blank             | 08/10/15      | 02:36         |  |
| C150802-66                | GKMSW12-080915    | 08/10/15      | 02:36         |  |
| 1508047-DUP1              | Duplicate         | 08/10/15      | 02:36         |  |
| C150802-27                | GKMSW01-080915    | 08/10/15      | 02:36         |  |
| C150802-33                | GKMSW02-080915    | 08/10/15      | 02:36         |  |
| C150802-39                | GKMSW03-080915    | 08/10/15      | 02:36         |  |
| C150802-45                | GKMSW04-080915    | 08/10/15      | 02:36         |  |
| C150802-51                | GKMSW05-080915    | 08/10/15      | 02:36         |  |
| C150802-63                | GKMSW08-080915    | 08/10/15      | 02:36         |  |
| 1508048-CCV1              | Calibration Check | 08/10/15      | 02:36         |  |
| 1508048-CCB1              | Calibration Blank | 08/10/15      | 02:36         |  |

### TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.7 Dissolved Sequence ID#: 1508049

| nstrument ID#: ICPO | E - PE Optima Wate    | r             | LSR #:        |  |  |
|---------------------|-----------------------|---------------|---------------|--|--|
| Analysis ID         | Sample Name           | Analysis Date | Analysis Time |  |  |
| 1508049-ICV1        | Initial Cal Check     | 08/10/15      | 00:51         |  |  |
| 1508049-SCV1        | Secondary Cal Check   | 08/10/15      | 00:55         |  |  |
| 1508049-ICB1        | Initial Cal Blank     | 08/10/15      | 00:58         |  |  |
| 1508049-CRL1        | Instrument RL Check   | 08/10/15      | 01:01         |  |  |
| 1508049-IFA1        | Interference Check A  | 08/10/15      | 01:04         |  |  |
| 1508049-IFB1        | Interference Check B  | 08/10/15      | 01:07         |  |  |
| 1508038-BLK1        | Blank                 | 08/10/15      | 01:12         |  |  |
| 1508038-BS1         | Blank Spike           | 08/10/15      | 01:15         |  |  |
| C150802-23          | GKMSW01-080815        | 08/10/15      | 01:18         |  |  |
| 1508038-DUP1        | Duplicate             | 08/10/15      | 01:21         |  |  |
| 1508049-SRD1        | Serial Dilution       | 08/10/15      | 01:24         |  |  |
| 1508038-MS1         | Matrix Spike          | 08/10/15      | 01:27         |  |  |
| C150802-26          | GKMSW01-080915        | 08/10/15      | 01:30         |  |  |
| 1508038-MS2         | Matrix Spike          | 08/10/15      | 01:34         |  |  |
| C150802-02          | AMIMAS-ROTARY PARK-00 | 08/10/15      | 01:37         |  |  |
| C150802-05          | AMIMAS-ROTARY PARK-00 | 08/10/15      | 01:40         |  |  |
| 1508049-CCV1        | Calibration Check     | 08/10/15      | 01:43         |  |  |
| 1508049-CCB1        | Calibration Blank     | 08/10/15      | 01:46         |  |  |
| C150802-08          | AMIMAS-ROTARY PARK-10 | 08/10/15      | 01:49         |  |  |
| C150802-11          | AMIMAS-ROTARY PARK-20 | 08/10/15      | 01:53         |  |  |
| C150802-14          | AMIMAS-ROTARY PARK-21 | 08/10/15      | 01:56         |  |  |
| C150802-17          | AMIMAS-ROTARY PARK-22 | 08/10/15      | 01:59         |  |  |
| C150802-20          | AMIMAS-ROTARY PARK-23 | 08/10/15      | 02:02         |  |  |
| C150802-29          | GKMSW02-080815        | 08/10/15      | 02:05         |  |  |
| C150802-32          | GKMSW02-080915        | 08/10/15      | 02:08         |  |  |
| C150802-35          | GKMSW03-080815        | 08/10/15      | 02:11         |  |  |
| C150802-38          | GKMSW03-080915        | 08/10/15      | 02:15         |  |  |
| 1508049-CCV2        | Calibration Check     | 08/10/15      | 02:21         |  |  |
| 1508049-CCB2        | Calibration Blank     | 08/10/15      | 02:24         |  |  |
| 1508041-BLK1        | Blank                 | 08/10/15      | 02:29         |  |  |
| 1508041-BS1         | Blank Spike           | 08/10/15      | 02:32         |  |  |
| C150802-41          | GKMSW04-080815        | 08/10/15      | 02:35         |  |  |
| 1508041-DUP1        | Duplicate             | 08/10/15      | 02:38         |  |  |
| 1508049-SRD2        | Serial Dilution       | 08/10/15      | 02:42         |  |  |
| 1508041-MS1         | Matrix Spike          | 08/10/15      | 02:45         |  |  |
| C150802-44          | GKMSW04-080915        | 08/10/15      | 02:48         |  |  |
| C150802-47          | GKMSW05-080815        | 08/10/15      | 02:51         |  |  |
| C150802-50          | GKMSW05-080915        | 08/10/15      | 02:54         |  |  |

Project Name:

### TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.7 Dissolved Sequence ID#: 1508049

| Instrument ID#: ICPOE - | PE Optima         | Water         | LSR#:         |  |
|-------------------------|-------------------|---------------|---------------|--|
| Analysis ID             | Sample Name       | Analysis Date | Analysis Time |  |
| 1508049-CCV3            | Calibration Check | 08/10/15      | 03:00         |  |
| 1508049-CCB3            | Calibration Blank | 08/10/15      | 03:04         |  |
| C150802-53              | GKMSW06-080815    | 08/10/15      | 03:07         |  |
| C150802-56              | GKMSW07-080815    | 08/10/15      | 03:10         |  |
| C150802-59              | GKMSW08-080815    | 08/10/15      | 03:13         |  |
| C150802-62              | GKMSW08-080915    | 08/10/15      | 03:16         |  |
| C150802-65              | GKMSW12-080915    | 08/10/15      | 03:19         |  |
| C150802-68              | GKMTB01-080815    | 08/10/15      | 03:22         |  |
| 1508049-CCV4            | Calibration Check | 08/10/15      | 03:28         |  |
| 1508049-CCB4            | Calibration Blank | 08/10/15      | 03:32         |  |

### TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 245.1 Total Sequence ID#: 1508050

| Instrument ID#: CVA | A FIMS - PE Wate      | r             | LSR#:         |
|---------------------|-----------------------|---------------|---------------|
| Analysis ID         | Sample Name           | Analysis Date | Analysis Time |
| 1508050-ICV1        | Initial Cal Check     | 08/10/15      | 06:17         |
| 1508050-ICB1        | Initial Cal Blank     | 08/10/15      | 06:17         |
| 1508050-SCV1        | Secondary Cal Check   | 08/10/15      | 06:17         |
| 1508050-IBL1        | Instrument Blank      | 08/10/15      | 06:17         |
| 1508045-BS1         | Blank Spike           | 08/10/15      | 06:17         |
| 1508045-BLK1        | Blank                 | 08/10/15      | 06:17         |
| 1508045-DUP1        | Duplicate             | 08/10/15      | 06:17         |
| C150802-01          | AMIMAS-ROTARY PARK-00 | 08/10/15      | 06:17         |
| 1508045-MS1         | Matrix Spike          | 08/10/15      | 06:17         |
| C150802-04          | AMIMAS-ROTARY PARK-00 | 08/10/15      | 06:17         |
| C150802-07          | AMIMAS-ROTARY PARK-10 | 08/10/15      | 06:17         |
| C150802-10          | AMIMAS-ROTARY PARK-20 | 08/10/15      | 06:17         |
| C150802-13          | AMIMAS-ROTARY PARK-21 | 08/10/15      | 06:17         |
| C150802-16          | AMIMAS-ROTARY PARK-22 | 08/10/15      | 06:17         |
| 1508050-CCV1        | Calibration Check     | 08/10/15      | 06:17         |
| 1508050-CCB1        | Calibration Blank     | 08/10/15      | 06:17         |
| C150802-19          | AMIMAS-ROTARY PARK-23 | 08/10/15      | 06:17         |
| C150802-22          | GKMSW01-080815        | 08/10/15      | 06:17         |
| C150802-25          | GKMSW01-080915        | 08/10/15      | 06:17         |
| C150802-28          | GKMSW02-080815        | 08/10/15      | 06:17         |
| C150802-31          | GKMSW02-080915        | 08/10/15      | 06:17         |
| 1508045-MS2         | Matrix Spike          | 08/10/15      | 06:17         |
| C150802-34          | GKMSW03-080815        | 08/10/15      | 06:17         |
| C150802-37          | GKMSW03-080915        | 08/10/15      | 06:17         |
| C150802-40          | GKMSW04-080815        | 08/10/15      | 06:17         |
| C150802-43          | GKMSW04-080915        | 08/10/15      | 06:17         |
| 1508050-CCV2        | Calibration Check     | 08/10/15      | 06:17         |
| 1508050-CCB2        | Calibration Blank     | 08/10/15      | 06:17         |
| C150802-46          | GKMSW05-080815        | 08/10/15      | 06:17         |
| C150802-49          | GKMSW05-080915        | 08/10/15      | 06:17         |
| C150802-52          | GKMSW06-080815        | 08/10/15      | 06:17         |
| C150802-55          | GKMSW07-080815        | 08/10/15      | 06:17         |
| C150802-58          | GKMSW08-080815        | 08/10/15      | 06:17         |
| C150802-61          | GKMSW08-080915        | 08/10/15      | 06:17         |
| 1508045-BS2         | Blank Spike           | 08/10/15      | 06:17         |
| 1508045-BLK2        | Blank                 | 08/10/15      | 06:17         |
| 1508045-DUP2        | Duplicate             | 08/10/15      | 06:17         |
| 1508045-MS3         | Matrix Spike          | 08/10/15      | 06:17         |

Project Name:

### TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 245.1 Total Sequence ID#: 1508050

| Instrument ID#: CVAA FI | MS-PE Wa          | ater          | LSR #:        |
|-------------------------|-------------------|---------------|---------------|
| Analysis ID             | Sample Name       | Analysis Date | Analysis Time |
| 1508050-CCV3            | Calibration Check | 08/10/15      | 06:17         |
| 1508050-CCB3            | Calibration Blank | 08/10/15      | 06:17         |
| C150802-64              | GKMSW12-080915    | 08/10/15      | 06:17         |
| C150802-67              | GKMTB01-080815    | 08/10/15      | 06:17         |
| 1508050-CCV4            | Calibration Check | 08/10/15      | 06:17         |
| 1508050-CCB4            | Calibration Blank | 08/10/15      | 06:17         |

### TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.8 Dissolved Sequence ID#: 1508051

| Instrument ID#: ICPM | S-PE DRC-II Wate      | r             | LSR#:         |  |
|----------------------|-----------------------|---------------|---------------|--|
| Analysis ID          | Sample Name           | Analysis Date | Analysis Time |  |
| 1508051-ICV1         | Initial Cal Check     | 08/10/15      | 01:12         |  |
| 1508051-SCV1         | Secondary Cal Check   | 08/10/15      | 01:15         |  |
| 1508051-ICB1         | Initial Cal Blank     | 08/10/15      | 01:19         |  |
| 1508051-CRL1         | Instrument RL Check   | 08/10/15      | 01:22         |  |
| 1508051-IFA1         | Interference Check A  | 08/10/15      | 01:25         |  |
| 1508051-IFB1         | Interference Check B  | 08/10/15      | 01:29         |  |
| 1508039-BLK1         | Blank                 | 08/10/15      | 01:32         |  |
| 1508039-BS1          | Blank Spike           | 08/10/15      | 01:35         |  |
| C150802-23           | GKMSW01-080815        | 08/10/15      | 01:38         |  |
| 1508039-DUP1         | Duplicate             | 08/10/15      | 01:41         |  |
| 1508051-SRD1         | Serial Dilution       | 08/10/15      | 01:44         |  |
| 1508039-MS1          | Matrix Spike          | 08/10/15      | 01:47         |  |
| C150802-26           | GKMSW01-080915        | 08/10/15      | 01:50         |  |
| 1508039-MS2          | Matrix Spike          | 08/10/15      | 01:54         |  |
| C150802-02           | AMIMAS-ROTARY PARK-00 | 08/10/15      | 01:57         |  |
| C150802-05           | AMIMAS-ROTARY PARK-00 | 08/10/15      | 02:00         |  |
| 1508051-CCV1         | Calibration Check     | 08/10/15      | 02:03         |  |
| 1508051-CCB1         | Calibration Blank     | 08/10/15      | 02:06         |  |
| C150802-08           | AMIMAS-ROTARY PARK-10 | 08/10/15      | 02:09         |  |
| C150802-11           | AMIMAS-ROTARY PARK-20 | 08/10/15      | 02:13         |  |
| C150802-14           | AMIMAS-ROTARY PARK-21 | 08/10/15      | 02:16         |  |
| C150802-17           | AMIMAS-ROTARY PARK-22 | 08/10/15      | 02:19         |  |
| C150802-20           | AMIMAS-ROTARY PARK-23 | 08/10/15      | 02:22         |  |
| C150802-29           | GKMSW02-080815        | 08/10/15      | 02:25         |  |
| C150802-32           | GKMSW02-080915        | 08/10/15      | 02:28         |  |
| C150802-35           | GKMSW03-080815        | 08/10/15      | 02:31         |  |
| C150802-38           | GKMSW03-080915        | 08/10/15      | 02:34         |  |
| 1508051-CCV2         | Calibration Check     | 08/10/15      | 02:40         |  |
| 1508051-CCB2         | Calibration Blank     | 08/10/15      | 02:44         |  |
| 1508042-BLK1         | Blank                 | 08/10/15      | 02:49         |  |
| 1508042-BS1          | Blank Spike           | 08/10/15      | 02:52         |  |
| C150802-41           | GKMSW04-080815        | 08/10/15      | 02:55         |  |
| 1508042-DUP1         | Duplicate             | 08/10/15      | 02:58         |  |
| 1508051-SRD2         | Serial Dilution       | 08/10/15      | 03:01         |  |
| 1508042-MS1          | Matrix Spike          | 08/10/15      | 03:04         |  |
| C150802-44           | GKMSW04-080915        | 08/10/15      | 03:07         |  |
| C150802-47           | GKMSW05-080815        | 08/10/15      | 03:10         |  |
| C150802-50           | GKMSW05-080915        | 08/10/15      | 03:13         |  |

Project Name:

### TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.8 Dissolved Sequence ID#: 1508051

| Instrument ID#: ICPMS-PI | E DRC-II          | Water         | LSR #:        |
|--------------------------|-------------------|---------------|---------------|
| Analysis ID              | Sample Name       | Analysis Date | Analysis Time |
| 1508051-CCV3             | Calibration Check | 08/10/15      | 03:20         |
| 1508051-CCB3             | Calibration Blank | 08/10/15      | 03:23         |
| C150802-53               | GKMSW06-080815    | 08/10/15      | 03:26         |
| C150802-56               | GKMSW07-080815    | 08/10/15      | 03:29         |
| C150802-59               | GKMSW08-080815    | 08/10/15      | 03:32         |
| C150802-62               | GKMSW08-080915    | 08/10/15      | 03:36         |
| C150802-65               | GKMSW12-080915    | 08/10/15      | 03:39         |
| C150802-68               | GKMTB01-080815    | 08/10/15      | 03:42         |
| 1508051-CCV4             | Calibration Check | 08/10/15      | 03:48         |
| 1508051-CCB4             | Calibration Blank | 08/10/15      | 03:51         |

### TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 150.1 WET Sequence ID#: 1508053

| Instrument ID #: pH Meter | Wat                   | er            | LSR #:        |
|---------------------------|-----------------------|---------------|---------------|
| Analysis ID               | Sample Name           | Analysis Date | Analysis Time |
| C150802-03                | AMIMAS-ROTARY PARK-00 | 08/10/15      | 04:16         |
| C150802-06                | AMIMAS-ROTARY PARK-00 | 08/10/15      | 04:16         |
| C150802-09                | AMIMAS-ROTARY PARK-10 | 08/10/15      | 04:16         |
| C150802-12                | AMIMAS-ROTARY PARK-20 | 08/10/15      | 04:16         |
| C150802-15                | AMIMAS-ROTARY PARK-21 | 08/10/15      | 04:16         |
| C150802-18                | AMIMAS-ROTARY PARK-22 | 08/10/15      | 04:16         |
| C150802-21                | AMIMAS-ROTARY PARK-23 | 08/10/15      | 04:16         |

### TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.7 Total Recoverable Sequence ID#: 1508056

| Instrument ID#: ICPO | E - PE Optima Wate    | r             | LSR #:        |
|----------------------|-----------------------|---------------|---------------|
| Analysis ID          | Sample Name           | Analysis Date | Analysis Time |
| 1508056-ICV1         | Initial Cal Check     | 08/10/15      | 06:06         |
| 1508056-SCV1         | Secondary Cal Check   | 08/10/15      | 06:10         |
| 1508056-ICB1         | Initial Cal Blank     | 08/10/15      | 06:13         |
| 1508056-CRL1         | Instrument RL Check   | 08/10/15      | 06:16         |
| 1508056-IFA1         | Interference Check A  | 08/10/15      | 06:19         |
| 1508056-IFB1         | Interference Check B  | 08/10/15      | 06:23         |
| 1508043-BLK1         | Blank                 | 08/10/15      | 06:27         |
| 1508043-SRM1         | Reference             | 08/10/15      | 06:30         |
| C150802-22           | GKMSW01-080815        | 08/10/15      | 06:33         |
| 1508043-DUP1         | Duplicate             | 08/10/15      | 06:36         |
| 1508056-SRD1         | Serial Dilution       | 08/10/15      | 06:39         |
| 1508043-MS1          | Matrix Spike          | 08/10/15      | 06:43         |
| C150802-25           | GKMSW01-080915        | 08/10/15      | 06:46         |
| 1508043-MS3          | Matrix Spike          | 08/10/15      | 06:49         |
| C150802-01           | AMIMAS-ROTARY PARK-00 | 08/10/15      | 06:52         |
| 1508056-CCV1         | Calibration Check     | 08/10/15      | 06:58         |
| 1508056-CCB1         | Calibration Blank     | 08/10/15      | 07:01         |
| C150802-04           | AMIMAS-ROTARY PARK-00 | 08/10/15      | 07:04         |
| C150802-07           | AMIMAS-ROTARY PARK-10 | 08/10/15      | 07:07         |
| C150802-10           | AMIMAS-ROTARY PARK-20 | 08/10/15      | 07:10         |
| C150802-13           | AMIMAS-ROTARY PARK-21 | 08/10/15      | 07:14         |
| C150802-16           | AMIMAS-ROTARY PARK-22 | 08/10/15      | 07:17         |
| C150802-19           | AMIMAS-ROTARY PARK-23 | 08/10/15      | 07:20         |
| C150802-28           | GKMSW02-080815        | 08/10/15      | 07:23         |
| C150802-31           | GKMSW02-080915        | 08/10/15      | 07:26         |
| C150802-34           | GKMSW03-080815        | 08/10/15      | 07:29         |
| C150802-37           | GKMSW03-080915        | 08/10/15      | 07:33         |
| 1508056-CCV2         | Calibration Check     | 08/10/15      | 07:36         |
| 1508056-CCB2         | Calibration Blank     | 08/10/15      | 07:39         |
| 1508046-BLK1         | Blank                 | 08/10/15      | 07:44         |
| 1508046-SRM1         | Reference             | 08/10/15      | 07:47         |
| C150802-40           | GKMSW04-080815        | 08/10/15      | 07:50         |
| 1508046-DUP1         | Duplicate             | 08/10/15      | 07:53         |
| 1508056-SRD2         | Serial Dilution       | 08/10/15      | 07:57         |
| 1508046-MS1          | Matrix Spike          | 08/10/15      | 08:00         |
| C150802-43           | GKMSW04-080915        | 08/10/15      | 08:03         |
| C150802-46           | GKMSW05-080815        | 08/10/15      | 08:06         |
| C150802-49           | GKMSW05-080915        | 08/10/15      | 08:09         |

Project Name: Upper Animas\_Surface Water 2\_AUG 2015\_A096

TDF#: [none]

### TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.7 Total Recoverable Sequence ID#: 1508056

| Instrument ID#: ICPOE - | PE Optima         | Water         | LSR#:         |  |
|-------------------------|-------------------|---------------|---------------|--|
| Analysis ID             | Sample Name       | Analysis Date | Analysis Time |  |
| 1508056-CCV3            | Calibration Check | 08/10/15      | 08:15         |  |
| 1508056-CCB3            | Calibration Blank | 08/10/15      | 08:19         |  |
| C150802-52              | GKMSW06-080815    | 08/10/15      | 08:22         |  |
| C150802-55              | GKMSW07-080815    | 08/10/15      | 08:25         |  |
| C150802-58              | GKMSW08-080815    | 08/10/15      | 08:28         |  |
| C150802-61              | GKMSW08-080915    | 08/10/15      | 08:31         |  |
| C150802-64              | GKMSW12-080915    | 08/10/15      | 08:34         |  |
| C150802-67              | GKMTB01-080815    | 08/10/15      | 08:37         |  |
| 1508056-CCV4            | Calibration Check | 08/10/15      | 08:44         |  |
| 1508056-CCB4            | Calibration Blank | 08/10/15      | 08:47         |  |

### TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.8 Total Recoverable Sequence ID#: 1508057

| Instrument ID#: ICPM | S-PE DRC-II Wate      | r             | LSR #:        |  |
|----------------------|-----------------------|---------------|---------------|--|
| Analysis ID          | Sample Name           | Analysis Date | Analysis Time |  |
| 1508057-ICV1         | Initial Cal Check     | 08/10/15      | 07:45         |  |
| 1508057-SCV1         | Secondary Cal Check   | 08/10/15      | 07:48         |  |
| 1508057-ICB1         | Initial Cal Blank     | 08/10/15      | 07:51         |  |
| 1508057-CRL1         | Instrument RL Check   | 08/10/15      | 07:55         |  |
| 1508057-IFA1         | Interference Check A  | 08/10/15      | 07:58         |  |
| 1508057-IFB1         | Interference Check B  | 08/10/15      | 08:01         |  |
| 1508043-BLK2         | Blank                 | 08/10/15      | 08:05         |  |
| C150802-22           | GKMSW01-080815        | 08/10/15      | 08:08         |  |
| 1508043-DUP2         | Duplicate             | 08/10/15      | 08:11         |  |
| 1508057-SRD1         | Serial Dilution       | 08/10/15      | 08:14         |  |
| 1508043-SRM2         | Reference             | 08/10/15      | 08:17         |  |
| 1508043-MS2          | Matrix Spike          | 08/10/15      | 08:20         |  |
| C150802-25           | GKMSW01-080915        | 08/10/15      | 08:23         |  |
| 1508043-MS4          | Matrix Spike          | 08/10/15      | 08:26         |  |
| C150802-01           | AMIMAS-ROTARY PARK-00 | 08/10/15      | 08:29         |  |
| 1508057-CCV1         | Calibration Check     | 08/10/15      | 08:35         |  |
| 1508057-CCB1         | Calibration Blank     | 08/10/15      | 08:39         |  |
| C150802-04           | AMIMAS-ROTARY PARK-00 | 08/10/15      | 08:42         |  |
| C150802-07           | AMIMAS-ROTARY PARK-10 | 08/10/15      | 08:45         |  |
| C150802-10           | AMIMAS-ROTARY PARK-20 | 08/10/15      | 08:48         |  |
| C150802-13           | AMIMAS-ROTARY PARK-21 | 08/10/15      | 08:51         |  |
| C150802-16           | AMIMAS-ROTARY PARK-22 | 08/10/15      | 08:54         |  |
| C150802-19           | AMIMAS-ROTARY PARK-23 | 08/10/15      | 08:57         |  |
| C150802-28           | GKMSW02-080815        | 08/10/15      | 09:01         |  |
| C150802-31           | GKMSW02-080915        | 08/10/15      | 09:04         |  |
| C150802-34           | GKMSW03-080815        | 08/10/15      | 09:07         |  |
| C150802-37           | GKMSW03-080915        | 08/10/15      | 09:10         |  |
| 1508057-CCV2         | Calibration Check     | 08/10/15      | 09:13         |  |
| 1508057-CCB2         | Calibration Blank     | 08/10/15      | 09:16         |  |
| 1508046-BLK2         | Blank                 | 08/10/15      | 09:21         |  |
| C150802-40           | GKMSW04-080815        | 08/10/15      | 09:24         |  |
| 1508046-DUP2         | Duplicate             | 08/10/15      | 09:27         |  |
| 1508057-SRD2         | Serial Dilution       | 08/10/15      | 09:30         |  |
| 1508046-SRM2         | Reference             | 08/10/15      | 09:33         |  |
| 1508046-MS2          | Matrix Spike          | 08/10/15      | 09:36         |  |
| C150802-43           | GKMSW04-080915        | 08/10/15      | 09:39         |  |
| C150802-46           | GKMSW05-080815        | 08/10/15      | 09:42         |  |
| C150802-49           | GKMSW05-080915        | 08/10/15      | 09:45         |  |

Project Name: Upper Animas\_Surface Water 2\_AUG 2015\_A096

TDF#: [none]

### TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.8 Total Recoverable Sequence ID#: 1508057

| Instrument ID #: ICPMS-I | PE DRC-II         | Water         | LSR #:        |  |
|--------------------------|-------------------|---------------|---------------|--|
| Analysis ID              | Sample Name       | Analysis Date | Analysis Time |  |
| 1508057-CCV3             | Calibration Check | 08/10/15      | 09:51         |  |
| 1508057-CCB3             | Calibration Blank | 08/10/15      | 09:55         |  |
| C150802-52               | GKMSW06-080815    | 08/10/15      | 09:58         |  |
| C150802-55               | GKMSW07-080815    | 08/10/15      | 10:01         |  |
| C150802-58               | GKMSW08-080815    | 08/10/15      | 10:04         |  |
| C150802-61               | GKMSW08-080915    | 08/10/15      | 10:07         |  |
| C150802-64               | GKMSW12-080915    | 08/10/15      | 10:10         |  |
| C150802-67               | GKMTB01-080815    | 08/10/15      | 10:14         |  |
| 1508057-CCV4             | Calibration Check | 08/10/15      | 10:20         |  |
| 1508057-CCB4             | Calibration Blank | 08/10/15      | 10:23         |  |