

Inference on Proportions

September 12, 2017

Variables

Inference on Proportions

Our data now is of the form X_1, X_2, \ldots, X_n which are iid from a Bernoulli distribution, that is: X_i is either a 0 (failure) or 1 (success). The probability of a success is $P(X_i = 1) = p$ where p is the population parameter that is unknown. The probability distribution function for X is given by

$$f_X(x) = P(X = x) = p^x (1 - p)^{1-x}$$
 $x = 0, 1$

Here the X's are coded as 0 and 1 based on responses:

- Democrat or Republican
- Control or Treatment
- Male or Female

Number of successes

Inference on Proportions

Let Y be the sum of the X's, $Y = \sum_{i=1}^{n} X_i$. We can show that Y has a binomial distribution with parameters n and p, i.e.

$$f_Y(y) = P(Y = y) = \binom{n}{y} p^y (1-p)^{n-y} \quad y = 0, 1, \dots, n$$

Y is the number of successes in the *n* trials. E(Y) = np and Var(Y) = np(1-p).

Estimating p

Inference on Proportions

The estimator $\hat{p} = \frac{Y}{n}$ is an unbiased estimator of p. $E(\hat{p}) = p$ and $Var(\hat{p}) = \frac{p(1-p)}{n}$. For large n we have

$$\hat{
ho} o {\sf N}\left(
ho, rac{p(1-p)}{n}
ight)$$

We can estimate the variance of \hat{p} as $\hat{Var}(\hat{p}) = \frac{\hat{p}(1-\hat{p})}{n}$.

Confidence Interval

Inference on Proportions

A $100(1-\alpha)\%$ confidence interval for p is

$$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Hypothesis Testing

Inference on Proportions

> To test $H_0: p = p_0$ (or $H_0: p \le p_0$ or $H_0: p \ge p_0$) Test Statistic

$$T = \frac{\hat{p} - p_0}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}}$$

Under H_0 for large $n, T \to N(0,1)$

Hypothesis Testing

Inference on Proportions

Alternative Hypothesis $H_1: p < p_0 \mid H_1: p > p_0 \mid H_1: p \neq p_0$ $p ext{-value}$ $P(Z < t_{obs}) \mid P(Z > t_{obs}) \mid 2*P(Z > |t_{obs}|)$

Comparing two proportions

Inference on Proportions

$$X_1, X_2, \ldots, X_n$$
 iid Bernoulli (p_x)

$$Y_1, Y_2, \dots, Y_m$$
 iid Bernoulli (p_y)

Interest is in whether $p_x = p_y$.

Null Hypotheses

- Difference $H_0: p_x p_y = 0$
- Relative risk $H_0: p_x/p_y=1$
- Odds ratio $H_0: \frac{p_x/(1-p_x)}{p_y/(1-p_y)} = 1.$

Difference

For large n and m and

$$\hat{p}_x = \frac{X}{n} \quad \hat{p}_y = \frac{Y}{m}$$

where X is the number of successes in the X's and Y is the number of successes in the Y's.

$$\hat{
ho}_{\scriptscriptstyle X} - \hat{
ho}_{\scriptscriptstyle Y} pprox N\left(p_{\scriptscriptstyle X} - p_{\scriptscriptstyle Y}, rac{p_{\scriptscriptstyle X}(1-p_{\scriptscriptstyle X})}{n} + rac{p_{\scriptscriptstyle Y}(1-p_{\scriptscriptstyle Y})}{m}
ight)$$

Difference Confidence Interval

Inference on Proportions

A $100(1-\alpha)\%$ confidence interval for $p_x - p_y$ is

$$\hat{
ho}_{\mathsf{x}} - \hat{
ho}_{\mathsf{y}} \pm z_{lpha/2} \sqrt{rac{\hat{
ho}_{\mathsf{x}}(1-\hat{
ho}_{\mathsf{x}})}{n} + rac{\hat{
ho}_{\mathsf{y}}(1-\hat{
ho}_{\mathsf{y}})}{m}}$$

Difference Hypothesis Test

To test $H_0: p_x = p_y$, under the null hypothesis we can get a pooled estimate of \hat{p} as

$$\hat{p} = \frac{n\hat{p}_x + m\hat{p}_y}{n+m}$$

We can then use test statistic

$$T = rac{\hat{
ho}_{\mathsf{X}} - \hat{
ho}_{\mathsf{y}}}{\sqrt{\hat{
ho}\hat{q}\left(rac{1}{n} + rac{1}{m}
ight)}}$$

for $\hat{q} = 1 - \hat{p}$. Under H_0 , $T \approx N(0, 1)$ when n, m are large.

Difference Hypothesis Test

Inference on Proportions

- For alternative $H_1: p_x < p_y$ reject H_0 if T is too small
- For alternative $H_1: p_x > p_y$ reject H_0 if T is too big
- For alternative $H_1: p_x \neq p_y$ reject H_0 if T is too big or too small

Difference

Hypothesis Test n, m small

Inference on Proportions

For two small samples, let N = n + m be the total number of trials in both samples. Let V = X + Y be the total number of successes in both samples.

	Success	Failure	Total
Sample 1	Χ	n-X	n
Sample 2	Y	m-Y	m
	V	N-V	N

The test statistic is X = number of success from Sample 1.

When $H_0: p_x = p_y$ is true, the successes are equally likely from the 2 samples. We have

$$P(X = i|X + Y = V) = \frac{\binom{n}{i}\binom{m}{V-i}}{\binom{N}{V}}$$

Upper p-value (for alternative $H_1: p_{\times} > p_{\vee}$):

$$P(X \ge x | X + Y = V)$$

for observed x number of successes in the 1st sample.

Example

Inference on Proportions The data in the table below are from an age discrimination case.

Age Group	Number Fired	Number Kept	
Young	1	24	25
Old	10	17	27
total	11	41	52

The question is whether the proportion of young people fired is less than the proportion of old people fired. $H_0: p_y = p_o$ versus $H_1: p_y < p_o$. The observed test statistic is X=1. The p-value is thus

$$P(X \le 1|X + Y = 11) =$$

$$P(X = 0|X + Y = 11) + P(X = 1|X + Y = 11)$$

$$= \frac{\binom{25}{0}\binom{27}{11}}{\binom{52}{11}} + \frac{\binom{25}{1}\binom{27}{10}}{\binom{52}{11}} \approx 0.005$$