over if R is an HOF domain thun so is R[x]. tioned before that an atom in an HCF domain is a prime. More-Proof. Since a URD is an HCF domain, and we have men-

Now consider an arbitrary non zero non unit

 $y = \sum_{i=1}^{n} r_i x^{i}$; $r_i \in \mathbb{R}$.

Let d be the highest common factor of \mathbf{r}_0 , \mathbf{r}_1 , \mathbf{r}_2 , ... \mathbf{r}_n then

has only a finite number of factors. I.e. Z r'x is a expression in braces is of degree greater than zero in x, it tive polynomial in x, and since every non unit factor of the $y = d(\sum_{i=0}^{n} r_i^t x^i)$; the expression in braces is a primi-

mutually co-prime packets. is a packet; I r'x is a product of a finite number of product of atoms and hence of primes and since a prime power

since d is in R (and so is a product of mutually co-prime Finally it can be verified that (d, x r' x^{1}) = 1. And

 $y = d(\sum r_i^t x^{i}) = \sum_{0}^{n} r_i x^{i}$ is a product of a finite packets if it is a non unit)

number of mutually co-prime packets. Since y is arbitrary

Since a prime power is a rigid element we can state the the result follows.

Further let R be a URD, S a multiplicative and satuindeterminate over R, then R[x] is a Semirigid domain. Corollary 3. If R is a Semirigid domain and x is an

ut = utvs, us = utvand x = utus where utous e R and $x = (u_1/v_1)(u_2/v_3)$ implies that $v_2|u_1$ and $v_1|u_2i.e.$ an HOF domain we can take $(u_i, v_i) = 1, i = 1,2$, then $(x_1, x_2) = 1$ in R_S . Now if $x_1 = u_1/v_1$, $x_2 = u_2/v_2$; (since R is if not let $x = x_1x_2$; where x_i are non units in R_S such that that if x is not a unit in R_S then it is a packet in R_S . For rated set of R and let x be a packet in R then we claim