Partitioning Theorems for Sets of Semi-Pfaffian Sets, with Applications

Abhiram Natarajan

Collaborators: Prof. Martin Lotz (Univ. of Warwick), Prof. Nicolai Vorobjov (Univ. of Bath)

▶ Real Algebraic Set: The set of real zeros of a polynomial P $- Z(P) := \{x \in \mathbb{R}^n \mid P(x) = 0\}$

► Real Algebraic Set: The set of real zeros of a polynomial P

$${\color{red} {\sf Z}(P) := \{ {\sf x} \in \mathbb{R}^n \, | \, P({\sf x}) = 0 \}}$$

$$Z(x^2 + y^2 - 1)$$
 $Z(y - x^2)$

► Real Algebraic Set: The set of real zeros of a polynomial P

$$Z(P) := \{ x \in \mathbb{R}^n \mid P(x) = 0 \}$$

$$Z(x^2 + y^2 - 1) \qquad Z(y - x^2)$$

► Incidence combinatorics studies combinatorial aspects of the intersections of geometric objects

► Real Algebraic Set: The set of real zeros of a polynomial P

$$Z(P) := \{ x \in \mathbb{R}^{n} \mid P(x) = 0 \}$$

$$Z(x^{2} + y^{2} - 1) \qquad Z(y - x^{2})$$

- ► Incidence combinatorics studies combinatorial aspects of the intersections of geometric objects
- ► Algebro-geometric techniques have been very effective

► Real Algebraic Set: The set of real zeros of a polynomial P

$$Z(P) := \{x \in \mathbb{R}^n \mid P(x) = 0\}$$

$$Z(x^2 + y^2 - 1) \qquad Z(y - x^2)$$

- ► Incidence combinatorics studies combinatorial aspects of the intersections of geometric objects
- ► Algebro-geometric techniques have been very effective
- ► Technique called polynomial partitioning has helped solve several open problems in incidence geometry and other areas

Theorem (Guth and Katz [2015], Guth [2015])

Let Γ be a set of k-dimensional real algebraic sets in \mathbb{R}^n . For any $D\geqslant 1$, there is a polynomial P of degree $\leqslant D$, such that each cell induced by P intersects at most $\sim \frac{|\Gamma|}{D^{n-k}}$ elements of Γ .

Theorem (Guth and Katz [2015], Guth [2015])

Let Γ be a set of k-dimensional real algebraic sets in \mathbb{R}^n . For any $D\geqslant 1$, there is a polynomial P of degree $\leqslant D$, such that each cell induced by P intersects at most $\sim \frac{|\Gamma|}{D^{n-k}}$ elements of Γ .

a set Γ of 10 curves in \mathbb{R}^2

Theorem (Guth and Katz [2015], Guth [2015])

Let Γ be a set of k-dimensional real algebraic sets in \mathbb{R}^n . For any $D\geqslant 1$, there is a polynomial P of degree $\leqslant D$, such that each cell induced by P intersects at most $\sim \frac{|\Gamma|}{D^{n-k}}$ elements of Γ .

a set Γ of 10

a set Γ of 10 curves in \mathbb{R}^2

CC₁ CC₃ CC₃ CC₃

partitioning polynomial induces 5 cells

Theorem (Guth and Katz [2015], Guth [2015])

Let Γ be a set of k-dimensional real algebraic sets in \mathbb{R}^n . For any $D\geqslant 1$, there is a polynomial P of degree $\leqslant D$, such that each cell induced by P intersects at most $\sim \frac{|\Gamma|}{D^{n-k}}$ elements of Γ .

a set Γ of 10

a set Γ of 10 curves in \mathbb{R}^2

cc₂ cc₃

partitioning polynomial induces 5 cells 4 3 2 4 0

each cell intersects only few curves from

ightharpoonup m points and n lines in \mathbb{R}^2 ; $\mathfrak{O}(\mathfrak{m}^{2/3}\mathfrak{n}^{2/3}+\mathfrak{m}+\mathfrak{n})$ incidences

- ▶ m points and n lines in \mathbb{R}^2 ; $\mathbb{O}(m^{2/3}n^{2/3} + m + n)$ incidences Proof:
 - ightharpoonup (weak bound) incidences at most $\min\{m+n^2, n+m^2\}$

- ▶ m points and n lines in \mathbb{R}^2 ; $\mathbb{O}(m^{2/3}n^{2/3} + m + n)$ incidences Proof:
 - \blacktriangleright (weak bound) incidences at most min $\{m + n^2, n + m^2\}$
 - ► Partition using polynomial P of degree D
 - ▶ D^2 cells each containing $\frac{m}{D^2}$ points, weak bound: $nD + \frac{m^2}{D^2}$

- ▶ m points and n lines in \mathbb{R}^2 ; $\mathbb{O}(m^{2/3}n^{2/3} + m + n)$ incidences Proof:
 - \blacktriangleright (weak bound) incidences at most min $\{m + n^2, n + m^2\}$
 - ► Partition using polynomial P of degree D
 - ▶ D^2 cells each containing $\frac{m}{D^2}$ points, weak bound: $nD + \frac{m^2}{D^2}$
 - ightharpoonup each line intersects Z(P) in < D points: nD

- ▶ m points and n lines in \mathbb{R}^2 ; $\mathbb{O}(m^{2/3}n^{2/3} + m + n)$ incidences Proof:
 - \blacktriangleright (weak bound) incidences at most min $\{m + n^2, n + m^2\}$
 - ► Partition using polynomial P of degree D
 - ▶ D^2 cells each containing $\frac{m}{D^2}$ points, weak bound: $nD + \frac{m^2}{D^2}$
 - ightharpoonup each line intersects Z(P) in < D points: nD
 - ► Z(P) can contain only D lines, weak bound: $m + D^2$

- ▶ m points and n lines in \mathbb{R}^2 ; $\mathbb{O}(m^{2/3}n^{2/3} + m + n)$ incidences Proof:
 - ightharpoonup (weak bound) incidences at most $\min\{m+n^2, n+m^2\}$
 - ► Partition using polynomial P of degree D
 - ▶ D^2 cells each containing $\frac{m}{D^2}$ points, weak bound: $nD + \frac{m^2}{D^2}$
 - ightharpoonup each line intersects Z(P) in < D points: nD
 - ▶ Z(P) can contain only D lines, weak bound: $m + D^2$
 - ightharpoonup Set $D=rac{m^{2/3}}{n^{1/3}}$ and sum up \blacksquare

- ▶ m points and n lines in \mathbb{R}^2 ; $\mathfrak{O}(\mathfrak{m}^{2/3}\mathfrak{n}^{2/3} + \mathfrak{m} + \mathfrak{n})$ incidences Proof:
 - (weak bound) incidences at most $\min\{m + n^2, n + m^2\}$
 - ► Partition using polynomial P of degree D
 - ▶ D^2 cells each containing $\frac{m}{D^2}$ points, weak bound: $nD + \frac{m^2}{D^2}$
 - ightharpoonup each line intersects Z(P) in < D points: nD
 - ► Z(P) can contain only D lines, weak bound: $m + D^2$
 - ightharpoonup Set $D=rac{m^{2/3}}{n^{1/3}}$ and sum up \blacksquare

Takeaway

Polynomial partitioning and basic arguments worked!

Generalize Real Algebraic Geometry

 Real algebraic sets possess tameness properties such as stratifiability, triangulability, etc.

Generalize Real Algebraic Geometry

- ► Real algebraic sets possess tameness properties such as stratifiability, triangulability, etc.
- ...investigate classes of sets with the tame topological properties of real algebraic sets... - Grothendieck, Esquisse d'un Programme

Generalize Real Algebraic Geometry

- ► Real algebraic sets possess tameness properties such as stratifiability, triangulability, etc.
- ...investigate classes of sets with the tame topological properties of real algebraic sets... - Grothendieck, Esquisse d'un Programme
- ► O-minimal geometry (geometry of definable sets) is an axiomatic generalization of real algebraic geometry

lacktriangle Real algebraic sets in \mathbb{R}^n are included an o-minimal structure

- ightharpoonup Real algebraic sets in \mathbb{R}^n are included an o-minimal structure
- lacktriangle Other examples $\mathbb R$ with exp function (e.g. $x^3+\mathrm{e}^{x+2y}=0$), Pfaffian functions (e.g. $x^{2.31}-e^{e^y}=0$)

- ightharpoonup Real algebraic sets in \mathbb{R}^n are included an o-minimal structure
- ▶ Other examples $\mathbb R$ with exp function (e.g. $x^3 + \mathrm{e}^{x+2y} = 0$), Pfaffian functions (e.g. $x^{2.31} e^{e^y} = 0$)
- ► O-minimal incidence combinatorics is lagging behind algebraic incidence combinatorics

- ightharpoonup Real algebraic sets in \mathbb{R}^n are included an o-minimal structure
- ▶ Other examples $\mathbb R$ with exp function (e.g. $x^3 + \mathrm{e}^{x+2y} = 0$), Pfaffian functions (e.g. $x^{2.31} e^{e^y} = 0$)
- ► O-minimal incidence combinatorics is lagging behind algebraic incidence combinatorics

Question

Can we generalize polynomial partitioning to the o-minimal setting?

- ightharpoonup Real algebraic sets in \mathbb{R}^n are included an o-minimal structure
- ▶ Other examples $\mathbb R$ with exp function (e.g. $x^3 + \mathrm{e}^{x+2y} = 0$), Pfaffian functions (e.g. $x^{2.31} e^{e^y} = 0$)
- ► O-minimal incidence combinatorics is lagging behind algebraic incidence combinatorics

Question

Can we generalize polynomial partitioning to the o-minimal setting? ... we make progress...

Pfaffian Functions

 $ightharpoonup ec{f} = (f_1, \dots, f_r)$ is a Pfaffian chain if there exist polynomials $P_{i,j}$ verifying

$$\frac{\partial f_i}{\partial x_j} = P_{i,j}(x, f_1(x), \dots, f_i(x))$$

Pfaffian Functions

 $\blacktriangleright \ \vec{f} = (f_1, \dots, f_r)$ is a Pfaffian chain if there exist polynomials $P_{i,j}$ verifying

$$\frac{\partial f_i}{\partial x_j} = P_{i,j}(x, f_1(x), \dots, f_i(x))$$

 $ightarrow g:\mathbb{R}^n o\mathbb{R}$ is a Pfaffian function w.r.t. $ec{f}$ if there exists polynomial Q_g such that

$$g(x) = Q_g(x, f_1(x), \dots, f_r(x))$$

Pfaffian Functions

 $\blacktriangleright \ \vec{f} = (f_1, \dots, f_r)$ is a Pfaffian chain if there exist polynomials $P_{i,j}$ verifying

$$\frac{\partial f_i}{\partial x_i} = P_{i,j}(x, f_1(x), \dots, f_i(x))$$

▶ $g: \mathbb{R}^n \to \mathbb{R}$ is a Pfaffian function w.r.t. \vec{f} if there exists polynomial Q_g such that

$$g(x) = Q_g(x, f_1(x), \dots, f_r(x))$$

ightharpoonup deg (Q_g) is degree of g, r is order of g

Pfaffian Functions

 $\blacktriangleright \ \vec{f} = (f_1, \dots, f_r)$ is a Pfaffian chain if there exist polynomials $P_{i,j}$ verifying

$$\frac{\partial f_i}{\partial x_j} = P_{i,j}(x, f_1(x), \dots, f_i(x))$$

 $ightharpoonup g: \mathbb{R}^n o \mathbb{R}$ is a Pfaffian function w.r.t. $ec{f}$ if there exists polynomial Q_g such that

$$g(x) = Q_g(x, f_1(x), \ldots, f_r(x))$$

- ightharpoonup deg (Q_g) is degree of g, r is order of g
- ➤ Zero of g is called a Pfaffian set; such sets are included in an o-minimal structure

Pfaffian Functions

 $\blacktriangleright \ \vec{f} = (f_1, \dots, f_r)$ is a Pfaffian chain if there exist polynomials $P_{i,j}$ verifying

$$\frac{\partial f_i}{\partial x_i} = P_{i,j}(x, f_1(x), \dots, f_i(x))$$

▶ $g: \mathbb{R}^n \to \mathbb{R}$ is a Pfaffian function w.r.t. \vec{f} if there exists polynomial Q_g such that

$$g(x) = Q_g(x, f_1(x), \dots, f_r(x))$$

- $ightharpoonup deg(Q_g)$ is degree of g, r is order of g
- ➤ Zero of g is called a Pfaffian set; such sets are included in an o-minimal structure
- ightharpoonup e.g. e^x , e^{e^x} , ..., $\tan x$, $\ln x$, x^{π}

Main Theorem

Theorem (Partitioning Pfaffian sets [Lotz-N-Vorobjov, 2024]) Let Γ be a collection of Pfaffian sets in \mathbb{R}^n of dimension k, where each $\gamma \in \Gamma$ has order r.

1. For any $D\geqslant 1$, there is $P\in\mathbb{R}[X_1,\ldots,X_n]$ of degree D, such that each cell induced by P intersects at most $\frac{|\Gamma|}{D^{n-k-r}}$ elements of Γ .

Main Theorem

Theorem (Partitioning Pfaffian sets [Lotz-N-Vorobjov, 2024]) Let Γ be a collection of Pfaffian sets in \mathbb{R}^n of dimension k, where each $\gamma \in \Gamma$ has order r.

- 1. For any $D \geqslant 1$, there is $P \in \mathbb{R}[X_1, \ldots, X_n]$ of degree D, such that each cell induced by P intersects at most $\frac{|\Gamma|}{D^{n-k-r}}$ elements of Γ .
- 2. For any $D\geqslant 1$, there is a Pfaffian function P' of degree D such that each cell induced by P intersects at most $\frac{|\Gamma|}{D^{n-k}}$ elements of Γ .

Main Theorem

Theorem (Partitioning Pfaffian sets [Lotz-N-Vorobjov, 2024]) Let Γ be a collection of Pfaffian sets in \mathbb{R}^n of dimension k, where each $\gamma \in \Gamma$ has order r.

- 1. For any $D\geqslant 1$, there is $P\in\mathbb{R}[X_1,\ldots,X_n]$ of degree D, such that each cell induced by P intersects at most $\frac{|\Gamma|}{D^{n-k-r}}$ elements of Γ .
- 2. For any $D\geqslant 1$, there is a Pfaffian function P' of degree D such that each cell induced by P intersects at most $\frac{|\Gamma|}{D^{n-k}}$ elements of Γ .

Takeaway

- 1. Generalization of Polynomial Partitioning to Pfaffians
- 2. New technique of Pfaffian Partitioning

Proof - Main Technical Step

the line intersects three cells induced by P

Proof - Main Technical Step

the line intersects three cells induced by P

 \triangleright Poly. P of deg. D in n variables induces at most \mathbb{D}^n cells

Proof - Main Technical Step

the line intersects three cells induced by P

- \triangleright Poly. P of deg. D in n variables induces at most D^n cells
- We show for a k-dimensional Pfaffian set γ of order r γ intersects at most D^{k+r} cells induced by P

▶ (Pfaffian Szemerédi-Trotter) m points and n Pfaffian curves in \mathbb{R}^2 : $\mathbb{O}(m^{\frac{2r+2}{2r+3}+\epsilon}n^{\frac{(r+2)}{2r+3}}+m+n)$ incidences

- ▶ (Pfaffian Szemerédi-Trotter) m points and n Pfaffian curves in \mathbb{R}^2 : $\mathbb{O}(m^{\frac{2r+2}{2r+3}+\varepsilon}n^{\frac{(r+2)}{2r+3}}+m+n)$ incidences
- We also count joints between Pfaffian curves

- ▶ (Pfaffian Szemerédi-Trotter) \mathfrak{m} points and \mathfrak{n} Pfaffian curves in \mathbb{R}^2 : $\mathfrak{O}(\mathfrak{m}^{\frac{2r+2}{2r+3}+\epsilon}\mathfrak{n}^{\frac{(r+2)}{2r+3}}+\mathfrak{m}+\mathfrak{n})$ incidences
- ► We also count joints between Pfaffian curves
- More applications possible

- ▶ (Pfaffian Szemerédi-Trotter) \mathfrak{m} points and \mathfrak{n} Pfaffian curves in \mathbb{R}^2 : $\mathfrak{O}(\mathfrak{m}^{\frac{2r+2}{2r+3}} + \epsilon \mathfrak{n}^{\frac{(r+2)}{2r+3}} + \mathfrak{m} + \mathfrak{n})$ incidences
- ➤ We also count joints between Pfaffian curves
- ► More applications possible
- ➤ Our technique lends itself to generalizing to other o-minimal structures (caveat [Basu-Lerario-N, 2019])

References

- S. Basu, A. Lerario, and A. Natarajan. Zeroes of polynomials on definable hypersurfaces: pathologies exist, but they are rare. *The Quarterly Journal of Mathematics*, 70(4):1397–1409, 2019.
- L. Guth. Polynomial partitioning for a set of varieties. In *Mathematical Proceedings of the Cambridge Philosophical Society*, volume 159, pages 459–469. Cambridge University Press, 2015.
- L. Guth and N. H. Katz. On the erdős distinct distances problem in the plane. *Annals of Mathematics*, pages 155–190, 2015.
- M. Lotz, A. Natarajan, and N. Vorobjov. Partitioning theorems for sets of semi-pfaffian sets, with applications, 2024. URL https://arxiv.org/abs/2412.02961.