Mixtures of Prior Distributions

Hoff Chapter 9, Liang et al 2007, Hoeting et al (1999), Clyde & George (2004)

October 29, 2014

Jeffreys Scale of Evidence

- Bayes Factor = ratio of marginal likelihoods
- ▶ Posterior odds = Bayes Factor × Prior odds

$$B=BF[\mathbf{M}_0:\mathbf{M}_\gamma]$$
 and $1/B=BF[\mathbf{M}_\gamma:\mathbf{M}_0]$

$\begin{array}{ c c c c }\hline Bayes Factor & Interpretation \\ \hline B \geq 1 & H_0 \text{ supported} \\ \hline 1 > B \geq 10^{-\frac{1}{2}} & \text{minimal evidence against } H_0 \\ \hline 10^{-\frac{1}{2}} > B \geq 10^{-1} & \text{substantial evidence against } H_0 \\ \hline 10^{-1} > B \geq 10^{-2} & \text{strong evidence against } H_0 \\ \hline \end{array}$
$1>B\geq 10^{-\frac{1}{2}}$ minimal evidence against H_0 substantial evidence against H_0 $10^{-\frac{1}{2}}>B\geq 10^{-1}$ strong evidence against H_0
$egin{array}{ c c c c c c c c c c c c c c c c c c c$
$10^{-1} > B \ge 10^{-2}$ strong evidence against H_0
$10^{-2} > B$ decisive evidence against H_0

in context

of testing one hypothesis with equal prior odds

Posterior Distribution with BB(1,p) Prior on Model Space image(poll-bb.bma)

Coefficients

beta = coef(poll.bma)
par(mfrow=c(2,3)); plot(beta, subset=2:7,ask=F)

temp

log(mfgfirms)

log(popn)

Bartlett's Paradox

The Bayes factor for comparing \mathfrak{M}_{γ} to the null model:

$$BF(\mathcal{M}_{\gamma}: \mathcal{M}_0) = (1+g)^{(n-1-\rho_{\gamma})/2} (1+g(1-R_{\gamma}^2))^{-(n-1)/2}$$

For $g \to \infty$, the $BF \to 0$ for fixed n and R^2_γ

Information Paradox

The Bayes factor for comparing \mathcal{M}_{γ} to the null model:

$$BF(\mathcal{M}_{\gamma}: \mathcal{M}_0) = (1+g)^{(n-1-p_{\gamma})/2} (1+g(1-R^2))^{-(n-1)/2}$$

- Let g be a fixed constant and take n fixed.
- $\blacktriangleright \text{ Let } F = \frac{R_{\gamma}^2/p_{\gamma}}{(1-R_{\gamma}^2)/(n-1-p_{\gamma})}$
- As $R_{\gamma}^2 \to 1$, $F \to \infty$ LR test would reject \mathfrak{M}_0 where F is the usual F statistic for comparing model \mathfrak{M}_{γ} to \mathfrak{M}_0
- ▶ BF converges to a fixed constant $(1+g)^{-p_{\gamma}/2}$ (does not go to infinity

"Information Inconsistency" see Liang et al JASA 2008

Mixtures of g priors & Information consistency

Need $BF o \infty$ if $\mathsf{R}^2 o 1 \Leftrightarrow \mathsf{E}_g[(1+g)^{-p_\gamma/2}]$ diverges (proof in Liang et al)

- Zellner-Siow Cauchy prior
- hyper-g prior (Liang et al JASA 2008)

$$p(g) = \frac{a-2}{2}(1+g)^{-a/2}$$

or
$$g/(1+g) \sim Beta(1, a/2)$$
 need $2 < a \le 3$

robust prior (Bayarrri et al Annals of Statistics 2012

All have tails that behave like a Cauchy distribution

Mortality & Pollution

- Data from Statistical Sleuth 12.17
- ▶ 60 cities
- response Mortality
- measures of HC, NOX, SO2
- Is pollution associated with mortality after adjusting for other socio-economic and meteorological factors?
- ▶ 15 predictor variables implies $2^{15} = 32,768$ possible models
- ▶ Use Zellner-Siow Cauchy prior $1/g \sim G(1/2, n/2)$

Posterior Distributions

Posterior Probabilities

- What is the probability that there is no pollution effect?
- Sum posterior model probabilities over all models that include no pollution variables

```
> which.mat = list2matrix.which(mort.bma,1:(2^15))
> poll.in = (which.mat[, 14:16] %*% rep(1, 3)) > 0
```

- > sum(poll.in * mort.bma\$postprob)
 [1] 0.9889641
- ▶ Posterior probability is 0.011
- ▶ Odds that there is an effect (1 .011)/(.011) = 89.
- Prior Odds $7 = (1 .5^3)/.5^3$
- ▶ Bayes Factor for a pollution effect 89.9/7 = 12.8
- ▶ Bayes Factor for NOX based on marginal inclusion probability 0.917/(1-0.917) = 11.0
- ► Marginal inclusion probability for logHC = 0.427144
- ► Marginal inclusion probability for logSO2 = 0.218978

Bayes Factors are not additive! Better to work with probabilities...

Model Space

Coefficients

Coefficients

Effect Estimation

- Coefficients in each model are adjusted for other variables in the model
- ► OLS: leave out a predictor with a non-zero coefficient then estimates are biased!
- Model Selection in the presence of high correlation, may leave out "redundant" variables;
- improved MSE for prediction (Bias-variance tradeoff)
- Bayes is biased anyway so should we care?
- ▶ What is meaning of $\sum_{\gamma} \beta_{j\gamma} \gamma_j P(\mathcal{M}_{\gamma} \mid \mathbf{Y})$

Problem with confounding! Need to change prior?

Other Problems

- ightharpoonup Computational if p > 35 enumeration is difficult
 - lacktriangleright Gibbs sampler or Random-Walk algorithm on γ
 - poor convergence/mixing with high correlations
 - Metropolis Hastings algorithms more flexibility
 - "Stochastic Search" (no guarantee samples represent posterior)
 - ▶ in BMA all variables are included, but coefficients are shrunk to 0; alternative is to use Shrinkage methods
- ightharpoonup Prior Choice: Choice of prior distributions on eta and on γ

Model averaging versus Model Selection - what are objectives?