Definitions

- 1.) Given two points x and x' in a topological space X, a continuous path in X from x to x' is a continuous function $\gamma:[0,1]\to X$ where $\gamma(0)=x$ and $\gamma(1)=x'$. ‡ú
- 2.) A topological space X is path-connected if for all $x, x' \in X$, there exists a continuous path between them.
- 3.) Define the equivalence relation \sim on a topological space X as follows:

$$x \sim x' \iff x \text{ and } x' \text{ are path-connected}$$
.

We define $\pi_0(X)$ as the quotient space X/\sim .

- 4.) The invariance of domain theorem states that $\mathbb{R}^m \cong \mathbb{R}^n \iff m = n$.
- 5.) A topological space X is *connected* if for any set in X that is both open and closed, that set is either X or \emptyset .

Proof

We know that $\mathbb{R}^n \cup \{*\}$ is compact. In addition, since \mathbb{R}^{n+1} is Hausdorff and $S^n \subset \mathbb{R}^{n+1}$, we know that S^n is Hausdorff. We also know that the stereographic projection $p: S^n \setminus \{0, \dots, 0, 1\} \to \mathbb{R}^n$ is bijective, so consider its inverse p^{-1} , and define a function $f: \mathbb{R}^n \cup \{*\} \to S^n$ as follows:

$$f(x) = \begin{cases} (0, \dots, 0, 1) \in S^n & x = * \\ p^{-1}(x) & \text{otherwise} \end{cases}$$

We can readily see that f is bijective. Let U be an open set in S^n , thus $U = S^n \cap V$ where V is open in \mathbb{R}^n , thus $f^{-1}(U) = f^{-1}(S^n \cap V) = f^{-1}(S^n) \cap f^{-1}(V)$. Since $V \subseteq \mathbb{R}^n$, we know that $* \notin V$, so $f^{-1}(V) = p(V)$, and since p is a homeomorphism, we know that V' = p(V) is open in \mathbb{R}^n , thus $f^{-1}(S^n) \cap f^{-1}(V) = (\mathbb{R}^n \cup \{*\}) \cap V' = (\mathbb{R}^n \cap V') \cup (V' \cap \{*\}) = \mathbb{R}^n \cap V' = V'$, which is open in \mathbb{R}^n , thus f is continuous, and thus by theorem 15.5.1, a homeomorphism.