ABSTRACT AND CONCRETE CATEGORJES The Joy of Cats

Jií Adámek & Horst Herrlich & George E. Strecker April 15, 2020

Contents

1	Categories, Functors, and Natural Transformations	3
	1.1 Categories and Functors	3
	1.2 The Dual Principle	4
2	Index	4

1 Categories, Functors, and Natural Transformations

1.1 Categories and Functors

1.1.1 Categories

Definition 1.1. A category is a quadruple $\mathbf{A} = (\mathcal{O}, \text{hom}, id, \circ)$ consisting

- 1. a class \mathcal{O} , whose members are called **A-objects**
- 2. for each pair (A,B) of **A**-objects, a set hom(A,B) whose members are called **A-morphisms from** A **to** B

Example 1.1. 1. The following **constructs**; i.e., categories of structured sets and structure-preserving functions between them

(a) $\mathbf{Alg}(\Omega)$ with objects all Ω -algebras and morphisms all Ω -homomorphisms between them. Here $\Omega=(n_i)_{i\in I}$ is a family of natural numbers n_i , indexed by a set I. An Ω -algebra is a pair $X, (\omega_i)_{i\in I}$ consisting of a set X and a family of functions $\omega_i: X^{n_i} \to X$, called n_i -ary operations on X. An Ω -homomorphism $f: (X, (\omega_i)_{i\in I} \to (\widehat{X}, (\widehat{\omega_i})_{i\in I})$ is a function $f: X \to \widehat{X}$ for which the diagram

$$\begin{array}{ccc}
X^{n_i} & \xrightarrow{f^{n_i}} & \widehat{X}^{n_i} \\
\omega_i \downarrow & & \downarrow \widehat{\omega}_i \\
X & \xrightarrow{f} & \widehat{X}
\end{array}$$

commutes for each $i \in I$.

(b) Σ -Seq with objects all (deterministic, sequential) Σ -acceptor, where Σ is a finite set of input symbols. Objects are quadruples (Q, δ, q_0, F) where Q is a finite set of states, $\delta : \Sigma \times Q \to Q$ is a transition map, $q_0 \in Q$ is the initial state, and $F \subseteq Q$ is the set of final states.

A morphism $f:(Q,\delta,q_0,F)\to (Q',\delta',q_0',F')$ (called a **simulation**) is a function $f:Q\to Q'$ that preserves

- i. transitions, i.e., $\delta'(\sigma, f(q)) = f(\delta(\sigma, q))$
- ii. the initial state, i.e., $f(q_0) = q'_0$
- iii. the final states, i.e., $f[F] \subseteq F'$
- 2. The following categories where the objects and morphisms are *not* constructed sets and structure-preserving functions:

3

(a) Mat with objects all natural numbers, and for which $\hom(m,n)$ is the set of all real $m\times n$ matrices, $id_n:n\to n$ is the unit diagonal matrix, and composition is defined by $A\circ B=BA$

- (b) **Aut** with objects all (deterministic, sequential, Moore) **automata**. Objects are sectuples $(Q, \Sigma, Y, \delta, q_0, y)$, where Q is the set of states, Σ and Y are the sets of input symbols and output symbols, respectively, $\delta: \Sigma \times Q \to Q$ is the transition map, $q_0 \in Q$ is the initial state, and $y: Q \to Y$ is the output map. Morphisms from an automaton $(Q, \Sigma, Y, \delta, q_0, y)$ to an automaton $(Q', \Sigma', Y', \delta', q'_0, y')$ are triples (f_Q, f_Σ, f_Y) of functions satisfying the following conditions
 - i. preservation of transitions: $\delta'(f_{\Sigma}(\sigma), f_{Q}(q)) = f_{Q}(\delta(\sigma, q))$
 - ii. preservation of outputs: $f_Y(y(q)) = y'(f_Q(q))$
 - iii. preservation of initial state: $f_Q(q_0) = q'_0$

1.2 The Dual Principle

Definition 1.2. For any category $\mathbf{A} = (\mathcal{O}, \hom_{\mathbf{A}}, id, \circ)$ the **dual** (or **opposite**) **category of A** is the category $\mathbf{A}^{\mathrm{op}} = (\mathcal{O}, \hom_{\mathbf{A}^{\mathrm{op}}}, id, \circ^{\mathrm{op}})$, where $\hom_{\mathbf{A}^{\mathrm{op}}}(A, B) = \hom_{\mathbf{A}}(B, A)$ and $f \circ^{\mathrm{op}} g = g \circ f$

Consider the property of objects *X* in **A**:

 $\mathcal{P}_{\mathbf{A}}(X) \equiv \text{ For any } \mathbf{A} \text{ -object } A \text{ there exists exactly one } \mathbf{A} \text{ -morphism } f: A \to X$

Step1: In $\mathcal{P}_{\mathbf{A}}(X)$ replace all occurrences of \mathbf{A} by \mathbf{A}^{op} , thus obtaining the property

 $\mathcal{P}_{\mathbf{A}^{\mathrm{op}}}(X) \equiv \text{ For any } \mathbf{A}^{\mathrm{op}} \text{ -object } A \text{ there exists exactly one } \mathbf{A}^{\mathrm{op}} \text{ -morphism } f: A \to X$

Step2: Translate $\mathcal{P}_{\mathbf{A}^{\mathrm{op}}}(X)$ into the logically equivalent statement

 $\mathcal{P}_{\mathbf{A}}^{\mathrm{op}}(X) \equiv \text{ For any } \mathbf{A} \text{-object } A \text{ there exists exactly one } \mathbf{A} \text{-morphism } f: X \to A$

The **Duality Principle for Categories** states

Whenever a property \mathcal{P} holds for all categories, then the property \mathcal{P}^{op} holds for all categories.

2 Index