(Duração: 2h 30')

- 1. a) Considere os seguintes potenciais electromagnéticos $\varphi(\vec{r},t)=0$ e $\vec{A}(\vec{r},t)=-\frac{1}{4\pi\epsilon_0}\frac{Qt}{r^2}\vec{r}$. Obtenha os campos eléctrico e magnético correspondentes, bem como uma distribuíção de cargas e correntes que os possam originar.
 - b) Use a função de Gauge $\lambda(\vec{r},t)=-\frac{1}{4\pi\epsilon_0}\frac{Qt}{r}$ para obter novos potenciais e comente o resultado.

(Observação: pode eventualmente ser-lhe útil saber que $\nabla \cdot \left(\frac{\vec{r}}{r^2}\right) = 4\pi \delta(\vec{r})$) (4,5 valores)

- 2. Uma corrente constante I_0 é abruptamente injectada num fio rectilíneo de comprimento infinito (orientado segundo zz') no instante t=0 (isto é: $I=I_0$ se t>0 e I=0 se $t\leq 0$). O fio permanece electricamente neutro.
 - Mostre que o potencial vector magnético retardado sentido num ponto a uma distância s do fio é:

$$\vec{A}(s,t) = \frac{\mu_0 I_0}{2\pi} \hat{z} \cdot ln \left[\frac{ct + \sqrt{(ct)^2 - s^2}}{s} \right]$$

Explique convenientemente o seu raciocínio.

(Nota:
$$\int \frac{dz}{\sqrt{s^2+z^2}} = ln[z + \sqrt{s^2+z^2}] + C$$
).

b) Obtenha o campo eléctrico correspondente. Por que razão um fio electricamente neutro produz um campo eléctrico? Qual o valor deste campo no limite em que t → ∞?

(5 valores)

- 3. a) Um condensador plano carregado (as armaduras possuem uma densidade superficial de carga $|\sigma_0|$ e estão orientadas perpendicularmente a y) está em repouso no referencial de laboratório S_0 . Explique por que razão espera que o campo eléctrico medido nesse condensador mas num referencial S_1 que se mova relativamente a S_0 com uma velocidade uniforme $v\hat{x}$, esteja também orientado segundo \hat{y} mas tenha uma magnitude $E_1 = \gamma E_0$ (sendo E_0 o campo no condensador medido em S_0).
 - b) Como pôde verificar, as componentes dos campos eléctrico e magnético alteram-se sob a transformação de Lorentz usual como:

$$\begin{bmatrix} E'_x \\ E'_y \\ E'_z \\ B'_x \\ B'_y \\ B'_z \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \gamma & 0 & 0 & 0 & -\nu\gamma \\ 0 & 0 & \gamma & 0 & +\nu\gamma & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & \gamma & \frac{\nu}{c^2} & 0 & \gamma & 0 \\ 0 & 0 & \gamma & \frac{\nu}{c^2} & 0 & \gamma & 0 \\ 0 & -\gamma & \frac{\nu}{c^2} & 0 & 0 & \gamma & \gamma \end{bmatrix} \times \begin{bmatrix} E_x \\ E_y \\ E_z \\ B_x \\ B_y \\ B_z \end{bmatrix}$$

onde $\gamma=\frac{1}{\sqrt{1-\frac{p^2}{c^2}}}$. Usando este resultado calcule os campos eléctrico e magnético gerados por uma

carga pontual em movimento uniforme.

(6,5 valores)

Responda apenas a uma das seguintes duas perguntas (4 valores)

- 4. Num certo referencial, a força de Lorentz $\{\vec{F}=q[\vec{E}+\vec{v}\times\vec{B}]$ é um exemplo de uma 3-força ordinária local. Em geral, podemos definir um 4-vector força (força de Minkowski) como $K^{\mu}=\frac{dp^{\mu}}{d\tau}$, onde p^{μ} é o 4-vector momento e τ o tempo próprio.
 - a) Obtenha, com generalidade a relação entre \vec{F} e as componentes espaciais da força de Minkowski K^i . Explique convenientemente.
 - b) Calcule explicitamente K⁰. Qual o seu significado físico?
- 4'. No referencial de laboratório, um fio rectilíneo infinito transporta uma corrente eléctrica constituída por uma fila de cargas positivas que se movem para a direita com velocidade ν e uma fila de cargas negativas que se movem para a esquerda com velocidade $-\nu$. Admita que as filas de cargas podem ser tratadas como uma distribuição contínua de densidades $\pm \lambda$, de tal forma que o fio permaneça electricamente neutro.

Considere agora que uma carga de prova se move para a direita com velocidade u < v. Analise o problema no referencial próprio desta carga e mostre que, neste referencial, o fio tem uma carga efectiva correspondente a uma densidade linear $\lambda^* = -\frac{2\lambda uv}{c^2\sqrt{1-\frac{u^2}{c^2u}}}$ e, consequentemente, a carga sentirá uma força eléctrica atractiva. Qual é a expressão dessa força no referencial de laboratório?