EE538_Wi2021_Assignment3

January 29, 2021

Instructor: Jason Silver Assignment #3 (10 points) Due Sunday, January 31 (Submit on Canvas as a PDF)

Please show your work

Problem 1: Cascode amplifier small-signal analysis

Figure 1. Cascode amplifier

For the following, be sure to consider the body effect where applicable.

- a) Derive the small-signal output resistance R_o of the cascode amplifier in terms of small signal parameters g_m , g_{mb} , and r_o of $M_1 M_4$. How does this compare with the MOS output resistance r_o ?
- **b)** Derive the small-signal transconductance G_m of the cascode amplifier in terms of small-signal parameters g_m , g_{mb} , and r_0 of $M_1 M_4$. How does this compare with the transconductance of M_1 , g_{m1} ?

Problem 2: Cascode amplifier design

Figure 2. Cascode amplifier schematic

For the following, use the Level 1 SPICE model in Razavi Chapter 2.

In the above schematic, E1 is used to stabilize the DC value of the output voltage at 1.5V using negative feedback. Note that this results in a gain of 1 between the source V2 and V_{out} , which is the "closed-loop" gain. For our design, we are interested in the "open-loop" gain, that between nodes V_{in} and V_{out} .

You are to design a cascode amplifier with an NMOS gain device (M_1). Use $L = 1\mu m$ for all devices and increments of 100nm for W.

- a) Size M_5 , M_6 , M_7 , and M_8 for overdrive voltages of approximately 200mV. Note that the threshold voltages of M_5 and M_7 will be affected by the body effect. Use the full long-channel expression for drain current (including λ) to size your devices.
- **b)** Size M_2 , M_3 , and M_4 for drain currents of $100\mu A$ (widths should be integer multiples of those of M_8 , M_5 , and M_6).
- c) Size M1 for a transconductance of $2m\Omega^{-1}$. What is the corresponding overdrive voltage V_{OV1} ?
- **d)** Calculate the minimum and maximum values of V_{out} that ensure M_1 , M_2 , M_3 , and M_4 remain in saturation.
- e) Verify your design using a DC operating point simulation. Annotate your schematic (Results \rightarrow Annotate \rightarrow DC operating point, DC node voltages) to display all relevant node voltages and branch currents. Determine the small-signal transconductance g_m , bulk transconductance g_{mb} ,

and output resistance r_0 for $M_1 - M_4$ (to do this, you can use Results \rightarrow Print \rightarrow DC operating point, and select the device of interest in the schematic). Recall that $r_0 = 1/g_{ds}$.

f) Use AC analysis to compute the small signal gain v_{out}/v_{in} . Use the expressions for G_m and R_o derived in Problem 1 and the small signal parameters computed in Part e to compare your simulation results with the small signal model.