Accelerating Antimicrobial Peptide Discovery with Latent Sequence-Structure Model

Danqing Wang, Zeyu Wen, Fei Ye, Hao Zhou, Lei Li

What is Antimicrobial Peptide?

❖ Peptide: short protein

How can AMP kill bacteria?

So, we now know that

- ❖ Peptide is short protein (< 50 amino acid)</p>
- ❖ Antimicrobial Peptide: kill bacteria
 - > for example, insert into the bacteria membrane and destroy it
- ❖ The main challenge:
 - > The unknow mechanism
 - > The cost to discover new AMP

Currently, the AMP discovery is usually

Can we ignore the structure?

Structure plays an important role in biological functionality

From <u>Sequence-then-Structure</u> to <u>Sequence-Structure</u> Latent Sequence-Structure Model for AMP (LSSAMP)

Attribute
Filter

Structural
Modeling

Activity
Predictor

Sequence-level

Structure-level

Synthesize

Existing Generative Models

Secondary Structure

- ❖ 3D structure is complex: relationship between residue
 - relative distance, direction, dihedral angle, ...
- Divide into local segments
 - > annotate each residue with a label
 - > indicate the structural element it locates

Secondary structure

The problem is ...

- How to generate ideal peptide sequences with ideal secondary structures simultaneously
 - > sequence: amino acid / residue, 20 vocabulary size
 - > secondary structure: labels, 8 category
- ❖ A distribution for sequence
- ❖ A distribution for secondary structure

LSSAMP: overview

LSSAMP: latent variable per position

- fine-grained control
 - > model the residue & ss distribution on this position
- intractable to sum over the whole sequence
 - > use VQ-VAE instead of VAE
 - \triangleright a continuous z -> look up a discrete representation z_q from the codebook

LSSAMP: multi-scale features

- Sequence and structure have various feature scale
 - > sequence pattern: relative short, e.g. 1~4
 - > structure motif: much longer, e.g. at least 4 for alpha-helix
- Different feature selectors
 - > with different codebooks

Codebook	PPL ↓	Loss ↓	AA Acc.↑	SS Acc.↑
[1]	19.04 ± 2.84	2.94 ± 0.14	65.49 ± 3.49	83.41 ± 2.34
[1, 2]	3.84 ± 0.09	1.35 ± 0.02	99.40 ± 0.45	85.39 ± 0.26
[1, 2, 4]			100.00 ± 0.00	
[1, 2, 4, 8]	3.24 ± 0.16	1.17 ± 0.05	99.79 ± 0.20	87.20 ± 0.62

LSSAMP: training phase

- Main challenge: no enough AMP data
 - ➤ only 3k+ known AMPs!
 - > structure data is very limited!
- ❖ AMP -> special peptide -> short protein
 - > from protein database (Uniprot): limit length to 100
 - ✓ D_r : 57k -> pretrain for sequence reconstruction
 - > from alphafold: predict secondary structure from protein sequence
 - ✓ D_S : 46k -> further pretrain for structure labeling
 - from AMP dataset (APD):
 - ✓ *D_{AMP}*: 3222 (positive)
 - ✓ Decoy: 2021 (negative)

How to evaluate the generated peptide?

- Computational metric
 - >charge, hydrophobicity, hydrophobic moment (amphipath)
- Public classifiers
 - > score the probability of AMP
- Wet laboratory experiment
 - minimal inhibitory concentration (MIC)

Performance: outperform on combination of three attributes

	Uniq	C	Н	uН	Combination
APD	3222	68.75%	27.96%	4.72%	6.15%
Decoy	2020	21.83%	8.81%	1.98%	0.10%
Random $p = 0.1$	4978	$65.86\% \pm 0.19\%$	$26.80\% \pm 0.23\%$	$23.10\% \pm 0.58\%$	$4.38\% \pm 0.16\%$
Random $p = 0.2$	5000	$62.13\% \pm 0.39\%$	$24.87\% \pm 0.29\%$	$20.79\% \pm 0.76\%$	$2.47\% \pm 0.17\%$
VAE	4988	$38.00\% \pm 0.36\%$	$21.07\% \pm 0.58\%$	$12.43\% \pm 0.66\%$	$0.34\% \pm 0.11\%$
AMP-GAN	4976	87.66 % \pm 0.45%	$17.31\% \pm 0.74\%$	$23.45\% \pm 0.73\%$	$1.92\% \pm 0.05\%$
PepCVAE	1346	$15.61\% \pm 0.06\%$	$14.54\% \pm 0.55\%$	$11.65\% \pm 0.23\%$	$2.75\% \pm 0.25\%$
MLPeptide	4486	$77.95\% \pm 0.72\%$	$8.11\% \pm 0.27\%$	$32.91\% \pm 0.60\%$	$2.90\% \pm 0.16\%$
LSSAMP	4876	$81.88\% \pm 0.31\%$	$25.06\% \pm 0.45\%$	$37.10\% \pm 0.33\%$	$6.26\% \pm 0.07\%$
LSSAMP w/o cond	4903	$82.04\% \pm 0.42\%$	$21.32\% \pm 0.34\%$	$30.51\% \pm 0.51\%$	$4.46\% \pm 0.20\%$

Performance: generation has the similar distribution of existing AMP

Performance: outperform on the average score of 7 classifiers

	SVM	RF	DA	Scanner	AMPMIC	IAMPE	amPEP	Average
APD	87.78%	91.24%	86.24%	94.66%	98.42%	97.83%	91.50%	92.52%
Decoy	17.43%	13.71%	16.04%	0.25%	18.07%	23.53%	52.92%	20.28%
Random $p = 0.1$	86.06%	86.12%	84.01%	93.23%	79.14%	95.60%	91.74%	87.99%
Random $p = 0.2$	76.66%	76.64%	74.83%	86.95%	68.57%	91.14%	87.89%	80.38%
VAE (Dean and Walper 2020)	24.90%	15.30%	13.83%	15.12%	15.25%	40.31%	24.30%	21.29%
AMP-GAN (Van Oort et al. 2021)	78.62%	87.29%	83.82%	82.17%	89.58%	93.88%	80.52%	85.13%
PepCVAE (Das et al. 2018)	82.84%	85.96%	93.33%	85.44%	98.44 %	98.14 %	80.77%	89.27%
MLPeptide (Capecchi et al. 2021)	90.43%	92.55%	93.08%	93.72%	96.34%	97.05%	91.37%	93.51%
LSSAMP	92.03%	92.60%	93.45%	91.52%	95.84%	96.64%	93.23%	93.62%
LSSAMP w/o cond	78.98%	80.24%	80.01%	86.73%	83.81%	93.80%	85.32%	84.13%

Performance: real AMPs found!

❖ 2/21 have been verified with high antimicrobic activity (<128)

No	Sequence	Activi A. Baumannii	ty (ug/mL)↓ P. aeruginose	E. coli	Sequence identity \	Hemolysis/Toxicity ↓
	NFLKNVAKKAGIYLLSIAQCKLFGTP	16-32	/	32-64	83.30%	Low
	FKLAKKIIPSLFQTKTE	8	32	/	75.00%	Low

Our generated peptides have ideal alpha-helix structures

Sum up

- AMP is promising treatment to replace antibiotic
 - > challenge: unknown mechanism & costly discovery process
- ❖ Accelerate the discovery by creating more effective candidates
 - > current generative works only focus on sequence-level
 - > still need to check the structure
- ❖ Model the sequence-structure distribution
 - ➤ fine-grained control on position
 - > multi-scale features
- Evaluate from different aspects to verify effectiveness