Assignment 3

Author: Isaac Archer

Due Date: July 21, 2015 13:00

Part 1

```
Description: MULTIPLE-ELEMENT HEAP (MEH) EXTRACTION Problem Description:
```

Brute Force Algorithm Provided

```
def brute_force
    a ← m
    for i ← 1..|m|
        (a[i], H) ← extract-best(H)
        ↑ a, H
```

Algorithm: Multiple Element Heap Extraction

input: Priority Heap H of n Elements. An extraction count $m \le n$ output: An array containing the best m elements extracted from H, and modified H.

```
def extract_best_m ← H, m
    a ← []
    if m > |H| then ↑ a, H
    for i ← 1..m
        R ← H.root
    remove H.root
```

http://slhck.info/markdown/

```
H.root ← rightmost bottom element of H

downheap ← H.root

// append R to a
append R → a

↑ a, H
```

input: Root Node in a Priority Heap output: None, it does an in place re-ordering

```
def downheap ← R

if is_leaf ← R then ↑

if R ⊑ R.left and R ⊑ R.right then ↑

R.good ← better_of ← R.left, R.right

swap ← R, R.good

downheap ← R.good
```

input: Node in a Priority Heap output: True if the input is a leaf and False if it is not

```
def is_leaf ← R
    if not R.left and not R.right then ↑ true
    ↑ false
```

input: Two Nodes in a Priority Heap output: The better option of the Two Nodes

```
def better_of ← a, b
    if a ⊑ b then ↑ a
    if b ⊑ a then ↑ b
    ↑ a
```

Correctness

Returning the Correct Value

The algorithm pulls the topmost element, or best, from H and then reorders H each time. So it cannot re-organize H incorrectly as downheap always pushes elements back down into the correct sorted location, however it does suffer a performance drop which can be solved by grabbing the best m elements and then re-ordering H. however re-ordering becomes more complicated.

Halting

downheap is the only function that is recursive that has to meet some requirement to return up and it has a termination condition that will always check when there is no more of H to shuffle down assuming a worst case for relocating R. if H is finite and $m \le n$ then the number of times this can be run is finite, ans since each version will always halt because H is finite, the algorithm will halt.

Complexity

Since my algorithm does not attempt to pull multiple elements and then reorder it will perform the same as the brute force algorithm and that complexity is covered below.

Show Worst Case of BRUTE-FORCE MEH is O(m lg n)

since the number of iterations is m; and the worst case for extract-best is $\lg n$ due to it being a binary tree implementation of a Heap assuming |H| = n; we get m iterations of $\lg n$ or $O(m \lg n)$.

Part 2

Worst Case for Merge Sort is

```
T[0] = 1
T[1] = 1
T[n] = T[n/2] + T[n/2] + O(n)
```

Master Theorem with this Recurrence

http://slhck.info/markdown/