Lecture15: Amplifier

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

NMOSFET

- In the NMOSFET, electrons are mobile carriers.
 - When V_{GS} is lower than V_{TH} , holes are depleted from the Si/SiO₂ interface.
 - When V_{GS} is larger than V_{TH} , electrons are collected at the Si/SiO₂ interface. (Electron inversion)
- Imagine its "dual" device with a negative V_{TH} .
 - When V_{GS} is larger than V_{TH} ($|V_{GS}| > |V_{TH}|$), electrons are depleted from the Si/SiO₂ interface.
 - When V_{GS} is smaller than V_{TH} ($|V_{GS}| < |V_{TH}|$), holes are collected at the Si/SiO₂ interface. (Hole inversion)
 - Is there such a device? Yes.

PMOSFET

The PMOSFET

- Example) $V_{TH,P} = -1.5$ V. Assume that V_S is 3 V. The gate voltage of 2 V does not turn on the transistor. 1 V turns on the transistor.
- The drain voltage is lower than the source voltage. In the usual operation condition, the drain current is negative.

How to fabricate it

- We need an n-type substrate.
 - Also two highly doped p-type regions are required.

Layout example

- Taken from Wikipedia
 - Draw its circuit schematic.

GIST Lecture on April 24, 2019 (Internal use only)

Biasing of PMOS devices

- Express the source current as a function of the drain voltage.
 - The absolute value of "gate overdrive" is 1.2 V.
 - It is not 0.6 V.

Do the same job with the gate voltage of 1.8 V.

Why amplifiers?

- Signal amplification
 - Usually, signals are "weak." (in the μ V or mV range)
 - It is too small for reliable processing.
 - If the signal magnitude is made larger, processing is much easier.

Voltage gain

Voltage gain

- For example, a voltage amplifier amplifies the input voltage signal.
 Its output is also a voltage.
- When $V_{in}(t) = V_{DC,in} + v_{in}(t)$, ideally,we want to have $V_{out}(t) = V_{DC,out} + A_v v_{in}(t)$.
- A_v is the voltage gain. (Of course, it is a unitless quantity.)
- How can we have a voltage-voltage relation?
 - Combining a transistor and a resistor!

Transistor turned off

- Note that $V_{out} = V_{DD} I_D R$.
 - But, the transistor is not turned on. $(I_D \approx 0)$
 - The transconductance(g_m) is zero.
 - A small increase in V_G does not change I_D .
 - The circuit generates no output signal.

This is a solution.

- The following circuit shows a revised circuit.
 - Assume that $V_{G,DC} > V_{TH}$.
 - It has a meaningful value of g_m .
 - Then, how can we generate $V_{G,DC}$, for example? Use of a separate battery can be a way. $V_{G,DC}$ + •-small-signal

Simple biasing (1/3)

- A better way to provide the gate voltage
 - The gate bias voltage is

$$V_{GS} = \frac{R_2}{R_1 + R_2} V_{DD}$$
 (Razavi 17.10)

The drain current is

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left(\frac{R_2}{R_1 + R_2} V_{DD} - V_{TH} \right)^2$$
 (Razavi 17.12)

Simple biasing (2/3)

How to apply the small-signal input

Simple biasing (3/3)

