Database Design Tutorial

HOW TO CREATE AN E-R Diagram

Task

- Create a data repository (database) for:
 - Western
 - Track what courses are offered by which departments.
 - Track which faculty is each department in.
 - Track what courses the students are enrolled in
 - Track which professors teach which courses

Use a database to accomplish this task.

Completed E-R Diagram: (tool to create DB)

E-R Symbols

Entities - rectangles

ENTITY NAME

- Entity Attribute 1
- Entity Attribute 2
- Entity Attribute 3

Relationships

- A relationship:
 - Association between two or more entities
 - Captures how the entities are related to one another

Relationships

- A relationship:
 - Association between two or more entities
 - Captures how the entities are related to one another

- A relationship:
 - Association between two or more entities
 - Captures how the entities are related to one another

[COURSES offered by DEPARTMENTS]
[DEPARTMENTS offer COURSES]

- A relationship:
 - Association between two or more entities
 - Captures how the entities are related to one another

- A relationship:
 - Association between two or more entities
 - Captures how the entities are related to one another

Relationships

- A relationship:
 - Association between two or more entities
 - Captures how the entities are related to one another

[STUDENT takes (enrolls in) COURSE]
[COURSE taken by STUDENT]

Relationships

- A relationship:
 - Association between two or more entities
 - Captures how the entities are related to one another

Relationships

- A relationship:
 - Association between two or more entities
 - Captures how the entities are related to one another

Attributes

- All Entities have attributes
- Describe properties of the entity

Example:

Student Attributes:

Student number,

Name,

Address,

Phone number,

Date of birth

Course Attributes:

Department,

Faculty,

Course Number,

Section

Primary Keys - (Key Attributes)

- Necessary to uniquely identify the instance of each entity
- Examples:
 - SIN
 - student numbers
 - employee numbers

Attributes

- Relationships also can have attributes
- Describe properties of the relationship
 - these properties are not associable to either Entity

Attributes

Instances

- Database contains instances of the entities
 - an instance is the actual data entered in the attributes of an Entity
- Just as Attributes describe the entity
 - an instance is one set of attributes filled in
- Example: an instance of the student entity

```
- 250078563 (student ID)
```

- Isma Braneful (name)
- 65-927 Richmond Street (address)
- 519-555-4562 (phone)
- 05/11/1998 (date of birth)

Relationships have two descriptive facets

Participation Level ([optional] -or- [mandatory]):

Relationships

One and ONLY One Zero or One

(Only One Instance BUT Mandatory) (Only One Instance BUT Optional)

One or Many

Zero or Many

(One or More Instance BUT Mandatory)

(One or More Instance BUT Optional)

Cardinality

 Indicates the number of instances of the entities that are involved in the relationship

Cardinality

- 1:1 relationships
 - Single entity instance to single entity instance
- 1:N (N:1) relationships
 - One to many
 - Single entity instance to many entity instances
- N:M relationships
 - Many to many
 - Many entity instances to many entity instances

1:1 Relationship

- Relationship exist:
 - Professor is the chair of a Department
- Relationship is:
 - A PROFESSOR can be chair of only one DEPARTMENT
 - Each DEPARTMENT can have only one chair
- Relationship is 1:1 (cardinality)

1:N Relationship

- Relationship exists:
 - Student registered in a Faculty
- Relationship is:
 - STUDENT is only registered in one FACULTY
 - FACULTY can have many STUDENTS registered
 - The many students is indicated by N
- Therefore this is a 1: N relationship (CARDINALITY)

N:M Relationship

- Relationship exists:
 - Students taking courses
- Relationship is:
 - STUDENT can take many courses, N
 - COURSE can be taken by many students, M
- Relationship is N:M (CARDINALITY)

Quick Question

Read as:

An student is registered in _____ faculty(s)

(Fill in the blank with 1 or M)

A faculty has _____ student(s) registered in it

(Fill in the blank with 1 or M)

Participation (a.k.a. Modality -or- Multiplicity)

 The participation of an entity in a relationship indicates whether all or only some of the instances of the entity are involved in the relationship

Participation

- "Mandatory" participation:
 - All of the instances are involved in the relationship
- "Optional" participation:
 - If NOT all of the instances are involved in the relationship

E-R Symbols

Participation - EXAMPLE ONE (1)

- Relationship: PROFESSOR chairs DEPARTMENT
 - Not all Professors are Department Chairs
 - Participation of Professor: Optional
 - All Departments must have as chair a Professor
 - Participation of Department: Mandatory

Relationship - EXAMPLE ONE (1)

- HOW TO READ A CROW'S FOOT DIAGRAM.
 - a PROFESSOR can (optionally) be a chair of one and only one DEPARTMENT

ENTITY - PARTICIPATION - RELATIONSHIP - CARDINALITY - ENTITY

Relationship - EXAMPLE ONE (1)

- Relationship: PROFESSOR chairs DEPARTMENT
 - Not all Professors are Department Chairs
 - Participation of Professor: Optional
 - All Departments must have as chair a Professor
 - Participation of Department: Mandatory

- so: a DEPARTMENT <u>must have</u> as its chair <u>one</u> PROFESSOR and One Professor <u>ONLY</u>!

Relationship: PROFESSOR chairs DEPARTMENT

SO:

IF a new member 'Zima' is entered as an instance of PROFESSOR THEN there does NOT have to be an instance in DEPARTMENT associated.

i.e. [PROFESSOR] **Zima** can be entered into the database without the need to add a 'connection' to [DEPARTMENT]

Relationship: PROFESSOR chairs DEPARTMENT

BUT:

IF a new department 'Science' is entered as an instance of DEPARTMENT THEN there **must** be an instance in PROFESSOR associated with it.

i.e. [DEPARTMENT] **Science** associated (related) to [PROFESSOR] **Maggs**- a 'connection' **MUST** be established.

Participation - EXAMPLE TWO (2)

- Relationship: STUDENT registered in FACULTY
 - Not all Faculties must have students
 - Participation of Faculty: Optional
 - All students must be registered in a Faculty
 - Participation of Student: Mandatory

Relationship: STUDENT registered in FACULTY

A STUDENT must be (mandatory) registered in one and only one FACULTY

a FACULTY can have (optional) registered in it zero or one or many STUDENTS

Relationship: STUDENT registered in FACULTY

SO:

IF a new student 'Fred' is entered as an instance of STUDENT THEN there must be an instance in FACULTY associated with it.

i.e. [STUDENT] Fred associated (related) to [FACULTY] Science

Relationship: STUDENT registered in FACULTY

BUT:

IF a new FACULTY 'Modernity' is entered as an instance of FACULTY THEN it is possible that no instance in STUDENT associated with it.

i.e. [FACULTY] Modernity has NO associated (related) [STUDENT]

Participation - EXAMPLE THREE (3)

- Relationship is: STUDENT takes COURSE
 - All Students must take courses
 - Participation of Student: Mandatory
 - Courses do not have to have students registered in them
 - Participation of Course: Optional

Relationship: STUDENT takes COURSE

A STUDENT must take one or more COURSES

a COURSE can have enrolled (taking) zero or more STUDENTS

Completing the E-R Model/Diagram

Attributes and Relationship Connectors

Entities - rectangles
Attributes - properties
Primary Key - identifier

Completing the E-R Model/Diagram

Attributes and Relationship Connectors

Entities - rectangles
Attributes - properties
Primary Key - identifier

- Create the relationship

Primary Key - Foreign Key Match up.

Completing the E-R Model/Diagram

Attributes and Relationship Connectors

Entities - rectangles
Attributes - properties
Primary Key - identifier

- Create the relationship ???

Primary Key - Foreign Key Match up.

Completing the E-R Model/Diagram

Attributes and Relationship Connectors

```
Entities - rectangles
Attributes - properties
Primary Key - identifier
```

How to identify which is Primary and which is Foreign?

Which entity gets the Foreign Key? (where to put it?)

What to name the Foreign Key?

Completing the E-R Model/Diagram

Attributes and Relationship Connectors

Relationship is 1:1 (then check Participation)

if both sides are Mandatory

-or-

both sides are Optional

Completing the E-R Model/Diagram

Attributes and Relationship Connectors

Relationship is 1:1

if both sides are Mandatory -or- Optional

(then it does not matter which entity receives the foreign key)

Completing the E-R Model/Diagram

Attributes and Relationship Connectors

Relationship is 1:1 [BUT!]

if only one side is Mandatory - and -

the other side is Optional

ENTITY TWO

E2 Primary Key

°E2 Att 2

El Primary Key

Completing the E-R Model/Diagram

Attributes and Relationship Connectors

Relationship is 1:1

if only one side is Mandatory - and -

the other side is Optional

(then the MANDATORY entity must receive the foreign key

ENTITY ONE

•El Primary Key

El Att 2

(CAUTION: remember which is the mandatory entity ...)

relationship

Completing the E-R Model/Diagram

Attributes and Relationship Connectors

Relationship is 1:1

if only one side is Mandatory - and -

the other side is Optional

The professor id is the primary key and the foreign key to the department.

It is important to make sure the foreign key

Completing the E-R Model/Diagram

Attributes and Relationship Connectors

Relationship is 1:1

if only one side's Mandatory - and -

the other side is Optional

(then the MANDATORY entity must receive the foreign key)

Completing the E-R Model/Diagram

Attributes and Relationship Connectors

Relationship is 1:N

if only one side's Many - and -

the other side is One

(then the ONE entity <u>must</u> receive the foreign key)

Completing the E-R Model/Diagram

Attributes and Relationship Connectors

Relationship is 1:N

if only one side's Many - and -

the other side is One

(then the ONE entity must receive the foreign key)

Completing the E-R Model/Diagram

(then the ONE entity must receive the foreign key)

Attributes and Relationship Connectors

e.g students must have a faculty and a faculty can have many student

Relationship is 1:N

if only one side's Many - and -

the other side is One

the professor create many courses the course is created by one professor

Completing the E-R Model/Diagram

Attributes and Relationship Connectors

Relationship is N:M

if both sides are Many this is a **SPECIAL** case!

a new (connector) ENTITY must be created

Completing the E-R Model/Diagram

Attributes and Relationship Connectors

Relationship is N:M

if both sides are Many

- named after the RELATIONSHIP

Completing the E-R Model/Diagram

Attributes and Relationship Connectors

Relationship is N:M

if both sides are Many

- Connect this by using two

1:N connections

Completing the E-R Model/Diagram

Attributes and Relationship Connectors

- Connect this by using two

1:N connections

Completing the E-R Model/Diagram

Attributes and Relationship Connectors

Relationship is N:M

NOTE: Participation

2.) must **match** (be copied from) the original relationship

if both sides are Many

Completing the E-R Model/Diagram

Attributes and Relationship Connectors

Relationship is N:M

if both sides are Many this is a SPECIAL case!

a new (connector) ENTITY must be created

- named after the RELATIONSHIP

Completing the E-R Model/Diagram

Attributes and Relationship Connectors

Completing the E-R Model/Diagram

Attributes and Relationship Connectors

Relationship is N:M

NOTE: Participation

2.) must **match** (be copied from) the original relationship

if both sides are Many

Completing the E-R Model/Diagram

Attributes and Relationship Connectors

Relationship is N:M

if both sides are Many

Completing the E-R Model/Diagram

Attributes OF Relationship Connectors

- Relationships also can have attributes
- Describe properties of the relationship

Example:

- STUDENT registered in FACULTY:
 - Registration date for the student is a detail that describes the relationship
 - Registration date does <u>not</u> describe the student or the faculty

Completing the E-R Model/Diagram

Attributes OF Relationship Connectors

relation attribute always follows the foreign key.

Completing the E-R Model/Diagram

Attributes OF Relationship Connectors

- This is a **1:N** connection : so **Primary** from MANY entity becomes **Foreign** in the ONE entity

Completing the E-R Model/Diagram

Attributes OF Relationship Connectors

- Relationships also can have attributes
- Describe properties of the relationship

Example:

- STUDENT Takes COURSE:
 - Enrollment date for the person is a detail that describes the relationship
 - Student's <u>final grade</u> in the course
 - Enrollment date and grade does <u>not</u> describe the student or the course

Completing the E-R Model/Diagram

Attributes OF Relationship Connectors

Completing the E-R Model/Diagram

Attributes OF Relationship Connectors

Relation attribute always follows the foreign key

- This is a **M:N** connection: so **Primary** from both entities becomes **Foreign** keys in the new **takes** relationship entity

Completing the E-R Model/Diagram

Attributes OF Relationship Connectors

- This is a **M:N** connection: so **Primary** from both entities becomes **Foreign** keys in the new **takes** relationship entity

Completing the E-R Model/Diagram

