Calculating the Singular Value Decomposition

Suppose we have a matrix A of dimension $m \times n$ where m > n and A has rank r. We can find the singular value decomposition (SVD)

$$A = U\Sigma V^* = \sum_{i=1}^n \sigma_i \vec{u}_i \vec{v}_i^*$$

with the following steps.

- (1) Find the eigenvalues λ_i of A^*A and order them such that $\lambda_1 \ge \cdots \ge \lambda_r > 0$ and $\lambda_{r+1} = \cdots = \lambda_n = 0$.
- (2) Find the orthonormal eigenvectors of A^*A , so that

$$A^*A\vec{v}_i = \lambda_i\vec{v}_i, \quad i = 1, \dots, r$$

Note that the vectors must be orthonormal, that is $\langle \vec{v}_i, \vec{v}_i \rangle = 1$ and $\langle \vec{v}_i, v_j \rangle = 0$ for $i \neq j$.

(3) Let $\sigma_i = \sqrt{\lambda_i}$ and set

$$\vec{u}_i = \frac{A\vec{v}_i}{\sigma_i}, \quad i = 1, \dots, r$$

(4) If r < n then we complete the U and V matrices by adding vectors $\vec{u}_{r+1}, \ldots, \vec{v}_m$ and $\vec{v}_{r+1}, \ldots, \vec{v}_n$ to create an orthonormal bases for \mathbb{R}^m and \mathbb{R}^n .

1 SVD and Fundamental Subspaces

Define the matrix

$$A = \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix}.$$

a) Find the SVD of *A*.

Answer

First, compute $A^*A = \begin{bmatrix} 9 & -9 \\ -9 & 9 \end{bmatrix}$. The eigenvalues of A^*A are 18 and 0, with corresponding unit eigenvectors

$$\vec{v}_1 = \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}.$$

Therefore, A is rank 1 and has one singular vector $\sqrt{18} = 3\sqrt{2}$ We obtain

$$\vec{u}_1 = \frac{1}{\sigma_1} A \vec{v}_1 = \frac{1}{3\sqrt{2}} \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 1/3 \\ -2/3 \\ 2/3 \end{bmatrix}$$

and A can be decomposed as

$$A = 3\sqrt{2} \begin{bmatrix} 1/3 \\ -2/3 \\ 2/3 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$$

b) Find the rank of *A*.

Answer

A has 1 nonzero singular value. So *A* has rank 1.

c) Find a basis for the kernel (or nullspace) of *A*.

Answer

$$\ker(A) = \operatorname{span} \left\{ \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \right\}$$

d) Find a basis for the range (or columnspace) of *A*.

Answer

range(A) = span{
$$\vec{u}_1$$
} = span $\left\{ \begin{bmatrix} 1/3 \\ -2/3 \\ 2/3 \end{bmatrix} \right\}$

e) Repeat parts (a) - (d), but instead, create the SVD of $B = A^*$. What are the relationships between the answers for A and the answers for $B = A^*$?

Answer

$$B = A^* = \begin{bmatrix} 1 & -2 & 2 \\ -1 & 2 & -2 \end{bmatrix} \implies B^*B = AA^* = \begin{bmatrix} 2 & -4 & 4 \\ -4 & 8 & -8 \\ 4 & -8 & 8 \end{bmatrix}$$
$$\lambda = 18, 0, 0 \implies \operatorname{Rank}(A^*) = 1$$
$$\vec{v}_1 = \begin{bmatrix} 1/3 \\ -2/3 \\ 2/3 \end{bmatrix}$$

Then we compute \vec{u}_1

$$\vec{u}_1 = \frac{B\vec{v}_1}{\sigma_1} = \frac{1}{3\sqrt{2}} \begin{bmatrix} 1 & -2 & 2\\ -1 & 2 & -2 \end{bmatrix} \begin{bmatrix} 1/3\\ -2/3\\ 2/3 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2}\\ -1/\sqrt{2} \end{bmatrix}$$

At this point, we already know the rank is 1. The column space is also formed by the \vec{u} vector

$$\operatorname{range}(A^*) = \operatorname{span} \left\{ \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix} \right\}$$

Notice how the Range of A^* is in fact orthogonal to the Nul (A).

Two vectors that create a basis for the nullspace of A^* are

$$\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}$$

Notice how the basis vectors for the nullspace of A^* are also orthogonal to the basis vectors of Col (A). If wanted to create an orthonormal basis for the nullspace of A^* , we could perform Gram-Schmidt to get

$$\vec{v}_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} 2\\1\\0 \end{bmatrix} \quad \vec{v}_3 = \frac{1}{\sqrt{45}} \begin{bmatrix} 2\\-4\\-5 \end{bmatrix}$$

Note, if we had just noticed

$$A^* = (U\Sigma V^*)^* = V\Sigma^* U^*$$

We could've skipped many steps for SVD calculation.

2 Understanding the SVD

We can compute the SVD for a wide matrix A with dimension m x n where n > m using A^*A with the method described above. However, when doing so you may realize that A^*A is much larger than AA^* for such wide matrices. This makes it more efficient to find the eigenvalues for AA^* . In this question we will explore how to compute the SVD using AA^* instead of A^*A .

a) What are the dimensions of AA^* and A^*A .

Answer

$$dim(AA^*) = m \times m$$
$$dim(A^*A) = n \times n$$

b) Given that the $A = U\Sigma V^*$, find a symbolic expression for AA^* .

Answer

$$AA^* = U\Sigma V^* V\Sigma^* U^*$$

$$V^* V = I$$

$$AA^* = U\Sigma \Sigma^* U^*$$

c) Using the solution to the previous part explain how to find U and Σ from AA^* .

Answer

Knowing that AA^* is a symmetric matrix, we know that its normalized eigenvectors will be orthonormal.

From the properties of the SVD we know that U is an orthonormal matrix of dimension m x m and $\Sigma\Sigma^*$ is an m x m diagonal matrix with the entries on the diagonal being σ_i^2 .

Using the above information we can see that we can calculate U by diagonalizing the symmetric matrix AA^* . By the spectral theorem for real symmetric matrices, we will get an orthonormal basis of eigenvectors. The square root of the corresponding eigenvalues of AA^* will give us the singular values σ_i (You can construct Σ by putting these on the diagonal of a zero matrix with the same dimensions as A) and the corresponding eigenvectors will form the U matrix.

d) Now that we have found the singular values σ_i and the corresponding vectors \vec{u}_i in the matrix U, devise a way to find the corresponding vectors \vec{v}_i in matrix V.

Answer

$$\vec{v}_i = \frac{V\Sigma^*U^*\vec{u}_i}{\sigma_i} = \frac{A^*\vec{u}_i}{\sigma_i}$$

e) Now we have a way to find the vectors \vec{v}_i in matrix V, verify that they are orthonormal.

Answer

To verify that \vec{v}_i in matrix V are orthonormal we show that:

- a) \vec{v}_i are orthogonal to one another
- b) each \vec{v}_i has norm 1.

Orthogonality:

To show orthogonality we must show that any two vectors $\vec{v}_i = \frac{A^*\vec{u}_i}{\sigma_i}$ and $\vec{v}_j = \frac{A^*\vec{u}_j}{\sigma_j}$ with $i \neq j$ have an inner product of zero.

$$\langle \vec{v}_i, \vec{v}_j \rangle = \langle \frac{A^* \vec{u}_i}{\sigma_i}, \frac{A^* \vec{u}_j}{\sigma_j} \rangle \tag{1}$$

$$= \frac{1}{\sigma_i \sigma_j} \langle A A^* \vec{u}_i, \vec{u}_j \rangle \tag{2}$$

$$= \frac{1}{\sigma_i \sigma_j} \langle \sigma_i^2 \vec{u}_i, \vec{u}_j \rangle \tag{3}$$

$$=\frac{\sigma_i^2}{\sigma_i \sigma_j} \langle \vec{u}_i, \vec{u}_j \rangle \tag{4}$$

$$=0 (5)$$

This is because we know that $\vec{u_i}$ and $\vec{u_j}$ are orthonormal as they are eigenvectors of a symmetric matrix AA^* .

Thus for all $i \neq j$

$$\langle \vec{v}_i, \vec{v}_j \rangle = 0$$

Norm of 1: Follow the steps above with i = j to see

$$\langle \vec{v}_i, \vec{v}_i \rangle = \langle \frac{A^* \vec{u}_i}{\sigma_i}, \frac{A^* \vec{u}_i}{\sigma_i} \rangle \tag{6}$$

$$=\frac{1}{\sigma_i^2}\langle AA^*\vec{u}_i, \vec{u}_i\rangle \tag{7}$$

$$=\frac{1}{\sigma_i^2}\langle \sigma_i^2 \vec{u}_i, \vec{u}_i \rangle \tag{8}$$

$$=\langle \vec{u}_i, \vec{u}_i \rangle \tag{9}$$

$$=1 \tag{10}$$

f) Now that we have found \vec{v}_i you may notice that we only have m < n vectors of dimension n. This is not enough for a basis. How would you complete the m vectors to form an orthonormal basis?

Answer

Gram Schmidt.

Just add in the standard basis for n-dimensional space, and orthonormalize. We know that this collection of n+m vectors spans the whole space, and so after orthonormalization, we will have a collection of orthonormal vectors that spans the whole space. Along the way, some vectors will be found to be linearly dependent on those that came before — that is fine, discard these. At the end, we will have n orthonormal vectors, the first set of which are the original \vec{v}_i .

g) Using the previous parts of this question and what you learned from lecture write out a procedure on how to find the SVD for any matrix.

Answer

We calculate the SVD of matrix A as follows.

- a) Pick A^*A or AA^* whichever one is smaller.
- b) (i) If using A^*A , find the eigenvalues λ_i of A^*A and order them, so that $\lambda_1 \ge \cdots \ge \lambda_r > 0$ and $\lambda_{r+1} = \cdots = \lambda_n = 0$.

If using AA^* , find its eigenvalues $\lambda_1, \ldots, \lambda_m$ and order them the same way.

(ii) If using A^*A , find orthonormal eigenvectors \vec{v}_i such that

$$A^*A\vec{v}_i = \lambda_i\vec{v}_i, \quad i = 1, \dots, r$$

If using AA^* , find orthonormal eigenvectors \vec{u}_i such that

$$AA^*\vec{u}_i = \lambda_i\vec{u}_i, \quad i = 1, \dots, r$$

(iii) Set $\sigma_i = \sqrt{\lambda_i}$.

If using A^*A , obtain \vec{u}_i from $\vec{u}_i = \frac{1}{\sigma_i} A \vec{v}_i$, i = 1, ..., r.

If using AA^* , obtain \vec{v}_i from $\vec{v}_i = \frac{1}{\sigma_i} A^* \vec{u}_i$, i = 1, ..., r.

c) If you want to completely construct the *U* or *V* matrix, complete the basis (or columns of the appropriate matrix) using Gram-Schmidt to get a full orthonormal matrix.

The full matrix form of SVD is taken to better understand the matrix A in terms of the 3 nice matrices U, Σ , V. Often in practice, we do not completely construct the U and V matrices. After all, in many applications, we don't need all the vectors.