

Tehnici de programare

Stiva

ovidiu.banias@upt.ro

Stiva

Forma poloneză

Calculul unei expresii matematice

Stiva ca structură de date

Definiție: structură de date abstractă, având prorietatea că operațiile de adăugare și extragere se realizază numai din vârful stivei. (LIFO – Last In First Out)

Stiva. Aplicabilitate

- Se folosesc vectori pt. simularea stivei
- Stă la baza recursivității

Funcția Manna Pnueli

Funcția Ackermann

$$f(x) = \begin{cases} x - 1, \text{dacă } x \ge 12\\ f(f(x+2)), \text{ altfel} \end{cases}$$

$$f(x,y) = \begin{cases} x+1 & \text{dacă } x = 0 \\ ac(x-1,1) & \text{dacă } y = 0 \\ ac(x-1,ac(x,y-1)) & \text{altfel} \end{cases}$$

Stiva. Manna Pnueli

Funcția Manna Pnueli

$$f(x) = \begin{cases} x - 1, \text{dacă } x \ge 12\\ f(f(x+2)), \text{ altfel} \end{cases}$$

$$f(12) = 11$$
, $f(13) = 12$, $f(14) = 13$,...

$$f(6) = f(f(8)) = f(f(f(10))) = f(f(f(f(12)))) = f(f(f(11))) = f(f(f(13))) = f(f(f(12))) = f(f(f(12))) = f(f(f(13))) = f(f(f(13))) = f(f(12)) = f(f(13)) = f(f(13)) = f(11) = f(f(13)) = f(11) = f(11$$

Implementare in C?

- > se folosește o structură de date de tip stiva st
- se adaugă în stivă valoarea lui x
- pentru x<12, la apelul funției f se pune(PUSH) în stivă rezultatul x+2
- > pentru x≥12, se scoate din stivă (POP) şi se modifică nou vârf al stivei cu x-1
- > algoritmul se încheie când nu mai sunt elemente în stivă

Stiva. Manna Pnueli (cont)

$$f(6) = ?$$

$$f(x) = \begin{cases} x - 1, \text{dacă } x \ge 12\\ f(f(x+2)), \text{ altfel} \end{cases}$$

Stiva. Ackermann

Funcția Ackermann
$$f(x,y) = \begin{cases} y+1 & \text{daca } x = 0 \\ f(x-1,1) & \text{daca } y = 0 \\ f(x-1,f(x,y-1)) & \text{altfel} \end{cases}$$

$$f(2,1) = f(1, f(2,0)) = f(1, f(1,1)) = f(1, f(0, f(1,0))) =$$

$$= f(1, f(0, f(0,1))) = f(1, f(0,2)) = f(1,3) = f(0, f(1,2)) =$$

$$= f(0, f(0, f(1,1))) = f(0, f(0, f(0, f(1,0)))) =$$

$$f(0, f(0, f(0, f(0,1)))) = f(0, f(0, f(0,2))) = f(0, f(0,3)) = f(0,4) = 5$$

Implementare in C?

- > se folosește o structură de date de tip stiva cu 2 elemente st
- se adaugă în stivă valoarile x şi y
- Pentru x şi y ≠0, la apelul funției f se pune în stivă (x,y-1)
- pentru y=0, se modifică vârful stivei cu valorile (x-1,1)
- pentru x=0, se scoate din stivă (x',y') şi se modifică nou vârf al stivei cu (x-1,y')

Stiva. Ackermann (cont)

$$f(2,1) = ?$$

$$f(x,y) = \begin{cases} y+1 & \text{daca } x = 0\\ f(x-1,1) & \text{daca } y = 0\\ f(x-1, f(x, y-1)) & \text{altfel} \end{cases}$$

Forma poloneză postfixată

Definiție: FP postfixată este o notație matematică prin care orice operator urmează operanzii săi.

Fie
$$E_1, E_2$$
 expr. aritmetice și @ un operator = $\{*,/,+,-\}$.

$$E_1 @ E_2 \xrightarrow{FP} E_1 E_2 @$$

$$a+b$$
 forma normală

$$(a+b)*(c-d)$$
 forma normală

$$ab + cd - *$$

$$a*(b-c)+d/(e+f*h)-i$$
 forma normală $abc-*defh*+/i-+$ forma postfixată

Forma poloneză postfixată. Exemplificare

Problemă: Se dă o expresie aritmetică în formă normală. Să se afișeze expresia în formă poloneză postfixată.

Observații:

- > se ține cont de ordinea efectuării operațiilor, vor fi setate priorități
- > pentru operatorii care nu pot fi folosiți la un moment dat (datorită ordinii efectuării operațiilor), se va folosi stiva

Input
$$(a*(b-c)+d/(e+f*h)-i)$$

Output
$$abc-*defh*+/i-+$$

Forma poloneză postfixată. Rezolvare

1. Se definesc prioritățile operatorilor

```
'(',')' - prioritate 0

'*','/' - prioritate 1

'+','-' - prioritate 2
```

- 2. Expresia matematică se citeşte caracter cu caracter și este de forma (E)
- 3. Operanzii se introduc în vectorul **fp**
- 4. Operatorii se introduc in stiva **st**, apoi se transferă în **fp** cu excepția '(',')'
- 5. În funcție de valoarea și prioritatea operatorului din vârful stivei se fac următoarle operații:
- dacă (prioritate(op)==1), nu se face nici o operație suplimentară
- dacă (prioritate(op)==2), se scoate temporar operatorul op din vârful stivei, se transferă din stivă în fp toți operatorii cu prioritate 1, apoi se reintroduce in stivă operatorul op
- dacă (op==')'), se scot din stivă toți operatorii până când (op=='(') şi se adaugă in fp. Cu siguranță în acest moment, operatorii dintre paranteze vor avea aceeași prioritate!

Forma poloneză postfixată. Exemplu

Exemplu: (a*(b-c)+d/(e+f*h)-i)

st	(
fp	

st	(
fp	a

st	(*
fp	a

st	(* (
fp	a

st	(+/(
fp	abc-*de

st	(+/(+
fp	abc-*de

st	(+/(+
fp	abc-*def

st	(+/
fp	abc-*defh*+

st	(+/-
fp	abc-*defh*+

st	(+-)
fp	abc-*defh*+i

st	
fp	abc-*defh*+/i-+

Forma poloneză postfixată. Exemplu

Exemplu: (8/4*2)

st	(
fp	

st	(
fp	8

st	(/
fp	84

st	(*)
fp	84/2

st	()
fp	84/2*

st	(
fp	

st	(
fp	8

st	(/
fp	84

st	(/*)
fp	842

st	()
fp	842*/

incorect

Calculul unei expresii aritmetice

Problemă: Se dă o expresie aritmetică în formă normală și valorile fiecărui operand al expresiei. Să se calculeze rezultatul expresiei aritmetice.

Observație:

Pornind de la forma poloneză postfixată se pot calcula uşor subexpresii de forma:

$$r_i = op_i op_{i+1} @, \text{ unde } @ = \{*,/,+,-\}, i = \overline{1,n-1}$$

$$(a*(b+c))$$
2
Input 3 Output 8

cu semnificația a=2, b=3, c=1

Calculul unei expresii aritmetice. Rezolvare

- 1. Se transformă expresia aritmetică din formă normală în formă poloneză postfixată
- 2. Se parcurge **fp** de la stânga la dreapta
- 3. Dacă **fp[k]** este operand atunci se introduce în stiva **st**
- 4. Dacă **fp[k]** este operator atunci se scot din stiva **st** ultimii doi operanzi și se introduce în stivă rezultatul expresiei

 $op_i @ op_{i+1}$, unde @ - operator; op_i, op_{i+1} - operanzi

Calculul unei expresii aritmetice. Exemplu

$$(a*(b-c)+d/(e+f*g)-h)$$
2
3
30
6
4
1
$$g=1 h=6$$

$$(a*(b-c)+d/(e+f*g)-h) \to abc-*defg*+/h-+$$

st	abc
op	-
r1	b-c=0

st	a0
ор	*
r2	a*0=0

st	0defg
op	*
r3	4*1=4

st	0de4
op	+
r4	6+4=10

st	0d10
ор	/
r5	30/10=3

st	03h
op	1
r6	3-6=-3

st	0-3
op	+
r 7	0+(-3)=-3

$$= -3$$