Method of Moments (6.4)

Bias and Variance of an Estimate

Bias

The **bias** of an estimator, $\hat{\theta}$ is defined as:

$$Bias = E[\widehat{\theta}] - \theta$$

If the bias of an estimator equals 0, then it is unbiased.

i.e. if
$$E[\hat{\theta}] = \theta$$
 or $E[\hat{p}] = p$ they are unbiased!

Unbiased Estimation

If $E[u(X_1, X_2, \dots, X_n)] = \theta$,

Then $u(X_1, X_2, ..., X_n)$ is an **unbiased estimator** of θ .

Otherwise, $u(X_1, X_2, ..., X_n)$ is biased

Example of an Estimator that is Unbiased

MLE of p from a Bernoulli sample of size n:

$$\hat{p} = \frac{1}{n} \sum_{i} X_{i}$$

If an estimator is unbiased, $E[u(X_1, X_2, ... X_n)] = \theta$.

Here,
$$u(X_1, X_2, ..., X_n)$$
 is \hat{p} . $(\theta \text{ is } p)$

If
$$X \sim Bern(p)$$
, $E[X] = E[\overline{X}] =$

$$E[\hat{p}] = E[\frac{1}{n}\sum X_{i}] = \frac{1}{n}E[\sum X_{i}]$$

$$= \frac{1}{n}E[X_{1} + X_{2} + ... + X_{n}]$$

$$= \frac{1}{n}(E[X_{1}] + E[X_{2}] + ... + E[X_{n}])$$

$$= \frac{1}{n}(p + p + ... + p) = p$$
Unbiased

This MLE is unbiased

A Simple Example of a Biased Estimator

Take random Bernoulli samples:

 $X_1, X_2, ..., X_n \sim Bern(p)$, where p is unknown.

Instead of using \bar{X} as my **estimator** for p, what if I don't care about likelihood and decide to blindly use $\hat{p} = \frac{1}{2}$ as my estimate? (Is that a good idea?)

What is the bias of this estimate?

Let $X_1, X_2, ..., X_n \sim Bern(p)$, where p is unknown.

What if we use $\hat{p} = X_1$ instead?

$$\mathsf{E}[\hat{p}] =$$

$$Var[\hat{p}] =$$

Bias

In previous example, if $\hat{p} = \frac{1}{2}$

Bias =
$$E[\hat{p}] - p$$

= $\frac{1}{2} - p \neq 0$

it "could" equal O if we get lucky, but it's not always O. biased!

Moments Review

If I have a distribution, f(x):

 $E[X^k]$ is its k^{th} raw moment.

e.g.
$$E[X] = \mu$$

Also known as the "moment about the origin", or just "moment".

 $E[(X-\mu)^k]$ is its k^{th} central moment.

e.g. Var[x]

Also known as "moment about the mean."

Sample Moment

The kth sample moment is defined:

$$\frac{1}{n} \sum_{i=1}^{n} X_i^{k}$$

E.g.
$$\frac{1}{n}\sum_{i=1}^{n}X_{i}=\overline{X}$$
 is the 1st sample moment.

Method of Moments

- One of the oldest methods to obtaining a parameter estimate (point estimate)
- Usually generates unbiased estimates!

Method of Moments

- 1. Set the first sample moment equal to the first theoretical moment: $\frac{1}{n} \sum_{i=1}^{n} X_i \stackrel{\text{set}}{=} E[X]$
- 2. Set the second sample moment equal to the second theoretical moment: $\frac{1}{k} \sum_{k} \chi^{2} = E[\chi^{2}]$
- 3. Continue setting the third, fourth, etc. sample moments equal to the theoretical moments until # of equations equals # of parameters.
- 4. Solve for the parameters

MOM Steps

- Step 1: Find E[X], the population mean.
 - This will be a function of θ . We will call it $g(\theta)$
- Step 2: Set the population mean equal to the sample mean. $g(\theta) = \overline{X}$.
- Step 3: Solve for θ.
- Step 4: Put a tilde over θ to signify that it is an estimator!

Mom estimator: Ö

Example

2. Let $X_1, X_2, ..., X_n$ be a random sample from the distribution with probability density function

$$f(x) = \frac{2(\theta - x)}{\theta^2} \qquad 0 < x < \theta \qquad \theta > 0.$$

- a) Obtain the method of moments estimator of θ , $\widetilde{\theta}$.
- b) Is $\widetilde{\theta}$ an unbiased estimator for θ ?

c) Find $Var(\widetilde{\theta})$.

 $X_1, X_2, \dots X_n \stackrel{iid}{\sim} f(x) = \frac{2(\theta - x)}{\theta^2}$ $O \subset X \subset \Theta$, O > 0.

