Part 1: Import the Libraries and Data

```
import numpy as np
import pandas as pd
```

import matplotlib.pyplot as plt

training = "/content/titanic_train.csv"

tF = pd.read_csv(training)

tF.head()

∃	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/02. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

tF.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype					
0	PassengerId	891 non-null	int64					
1	Survived	891 non-null	int64					
2	Pclass	891 non-null	int64					
3	Name	891 non-null	object					
4	Sex	891 non-null	object					
5	Age	714 non-null	float64					
6	SibSp	891 non-null	int64					
7	Parch	891 non-null	int64					
8	Ticket	891 non-null	object					
9	Fare	891 non-null	float64					
10	Cabin	204 non-null	object					
11	Embarked	889 non-null	object					
<pre>dtypes: float64(2), int64(5), object(5)</pre>								
memory usage: 83.7+ KB								

tF.describe()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

Part 2: Plot The Data

```
# Cell 4
# Plotting data (for example, Age vs. Fare with color based on Survived)
plt.scatter(tF['Age'], tF['Fare'], c=tF['Survived'], cmap='viridis', alpha=0.5)
plt.xlabel('Age')
plt.ylabel('Fare')
plt.title('Scatter Plot of Age vs. Fare (Colored by Survived)')
plt.colorbar(label='Survived')
plt.show()
```


Part 3: Perform Simple Linear Regression on the "Survived" feature column

```
# Cell 5
# Importing necessary libraries for logistic regression
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from \ sklearn.metrics \ import \ accuracy\_score, \ confusion\_matrix
\label{lem:constraint} \mbox{from sklearn.impute import SimpleImputer}
# Prepare the data
X = tF[['Age', 'Fare']]
y = tF['Survived']
# Handle missing values
imputer = SimpleImputer(strategy='mean')
X_imputed = imputer.fit_transform(X)
\ensuremath{\text{\#}} Split the data into training and testing sets
 \textbf{X\_train, X\_test, y\_train, y\_test = train\_test\_split(X\_imputed, y, test\_size=0.2, random\_state=42) } 
# Create a logistic regression model
model = LogisticRegression()
# Fit the model to the training data
{\tt model.fit(X\_train,\ y\_train)}
      ▼ LogisticRegression
      LogisticRegression()
# Cell 6
# Make predictions on the test set
y_pred = model.predict(X_test)
\# Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)
print(f'Accuracy: {accuracy}')
print('Confusion Matrix:')
{\tt print}({\tt conf\_matrix})
      Accuracy: 0.6480446927374302
Confusion Matrix:
```