

Volume Rendering

Fundamentals

Scientific Visualization Professor Eric Shaffer

Scalar Field Visualization

Tools we have for investigating 3D volumes are limited...

How can we better understand internal structure?

- 2D slices with pseudo-color
- Adjusting isosurface values

Scalar volume: $f: D \subset I\!\!R^3 \to I\!\!R$ $(x,y,z) \mapsto f(x,y,z)$

The Problem With Isosurfaces

- Delineate hard boundaries which may not accurately represent data
 - Possibly transitions between values are much smoother
- Using multiple isosurface values to investigate the volume problematic
 - Time consuming
 - Can't see everything all at once
 - Sampling may miss important features

Volume Rendering

Voxel = volume element...like a grid cell

• "Every voxel contributes to image" Marc Levoy, 1988 "Display of Surfaces from Volume Data"

What is Volume Rendering

Any rendering process which maps from volume data to an image without introducing binary distinctions / intermediate geometry - Xavier Tricoche

