

Carbon Nanotube Field-Effect Transistors (CNT FETs)

Carbon Nanotube Field-Effect Transistors (CNT FETs)

Scaling of silicon-based CMOS FETs → rapid development of microelectronic technology;
 However: physical limit (shrink devices), cost and power consumption.

 \longrightarrow thinner semiconductor materials with higher μ for smaller and higher-performance transistors

► Carbon nanotubes (CNTs) → great potential to replace silicon

Keep up with Moore's Law

• high performance, low power dissipation, high carrier mobility, higher gain;

CNT FETs as building blocks for energy-efficient computing technology - emerging smart sensors,

IoT and cloud technologies;

• recently, 5nm gate length (≈quantum limit of binary switch).

Carbon Nanotube Field-Effect Transistors (CNT FETs)

► Soft and flexible devices

(CNT IC-based universal interface system of wireless sensors)

epidermal sensors (temperature, sweat, motion...) \rightarrow revolutionize prognosis (fast, cheap and noninvasive).

 However, susceptible to mechanical/structural damage → lower durability and reduced performance.

introduce self-healing capability

- ► **SWCNTs** (single-walled) suitable for flexible/wearable devices (low-power dissipation, excellent mechanical properties strain);
 - <u>Challenges</u>: limited speed, working frequency
- ► CNTs for **highly-sensitive sensors** due to high **surface/volume ratio** (physical accessibility of each atom).

(CNT FETs for biosensor applications)

CNT FET sensors

www.small-iournal.com

COMMUNICATION

Field-Effect Transistors

A Freestanding Stretchable and Multifunctional Transistor with Intrinsic Self-Healing Properties of all Device Components

Muhammad Khatib, Tan-Phat Huynh, Yunfeng Deng, Yehu David Horev, Walaa Saliba, Weiwei Wu, and Hossam Haick*

- ► This paper reports on carbon nanotubes that empower flexible and stretchable FETs which retain self-healing properties of all FET components. The device:
 - has repeatable intrinsic and autonomic **self-healing** ability, enabling the restoration of its electrical and mechanical properties, both after microscale damage or complete cut of the device;
 - can be repeatedly stretched without a significant loss in its electrical properties;
 - is applicable in the form of a $\approx 3\mu m$ thick skin tattoo and has multifunctional sensing properties, such as detection of **temperature** and **humidity**.

Fabrication process and device performance

PUU [poly(ureaurethane)] → two monomers; dynamic **hydrogen and disulfide bonds** can break and recover under room conditions without additional energy (**very efficient self-healing material**).

 Top-contact bottom-gate transistors by transfer printing (convenient with self-healing polymers, allows fabrication on human skin).

- Typical output curves of transistor;
- high on-current $I_{on} \approx 30 \mu A$, high hole mobility $\mu_h \approx 10 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$, average on/off ratio $\approx 10^3$.

Self-healing ability of the transistor

 Gate damage prevented further increase in I_D, but recovered after 1h. Gate electrode could heal several cuts with negligible change in performance;

 Fast initial increase in **conductivity** (recovery of the elastic polymer) followed by slower recovery;

Source/drain damage - increase after cut, but lower values than originally after 1h. Several cut cycles could be recovered, but differences are more apparent.

Self-healing ability of the transistor

- Difference in self-healing of gate and SD electrodes:
 - ▶ gate → polarize dielectric layer, conductivity less important to the performance of the device;
 - ightharpoonup conductivity of **SD** electrodes directly affects I_D , increase in resistance decreases I_D .

- Efficiency of self-healing evaluated using 4 characteristic parameters:
- \triangleright on-current (I_{on});
- ▶ hole mobility (μ_h) ;
- ightharpoonup off-current (I_{off});
- ightharpoonup threshold voltage (V_{th}).
- Similar damages in the **channel** very destructive (lower self-healing ability of thinner layers).

 More severe damage (whole device completely cut). After reconnection, transistor-like behavior recovered after ≈24h (light intensity changed gradually).

Strain-dependent properties of the self-healing device

► Device performance tested under uniaxial strain, parallel to charge transport direction.

- Transfer characteristics for initial **(a)** and later **(b)** stretching cycles of strain up to 50%, applied along the channel length direction;
- negligible change with increasing number of cycles after conditioning process (1st cycle).

- Normalized electrical characteristics for stretched devices:
- \rightarrow I_{off}, I_{on} and μ_h decreased by up to ≈60%;
- \rightarrow V_{th} slightly shifted to more negative values as strain increased.
- ▶ V_{th} maintained **some sensitivity** to strain (decrease in capacitance with increasing strains). **Strain-dependent** <u>and</u> **strain-independent** parameters is desirable \rightarrow multifunctional devices to detect different stimuli (e.g., **strain**, **temperature**, **humidity**) without complicated data processing to separate the responses to each type of stimulus.

Transistor-based self-healing applications

► Responses of the FET to <u>temperatures</u> from 0 to 60 °C:

- I_{on} and I_{off} biggest changes in lower temperatures (limit polymer mobility/softness and decrease gate modulation ability);
- higher temperatures → lower
 V_{th} values;
- sensing ability conserved after healing of structural damage.

▶ Potential to sense <u>humidity</u> values or <u>hydration levels</u> of the skin:

- Elasticity and capacitance of PUU12 (polymer) highly affected by humidity;
- humidity values from 0% to $100\% \rightarrow$ devices showed lower V_{th} and higher I_{on} under higher humidity values.

Transistor-based self-healing applications

Self-healing FET as epidermal skin for humidity detection

 Transfer curves obtained at different times after skin humidification;

- V_{th} and I_{on} decrease after humidification and approach original values;
- same behavior after self--healing of the sensor.

- Performance tested under different skin strains;
- stable, with very negligible changes in different hand positions.

Conclusion

- ► First autonomic **self-healing** and **stretchable** FET using self-healing PUU as a host matrix filled with CNTs
 - ✓ recovers from varying mechanical damage;
 - \checkmark can be stretched for >200 cycles of up to 50% **strain** without significant loss in electrical properties;
 - ✓ self-healing and high stretchability improve its **lifetime**;
 - ✓ multifunctional sensor that detects temperature and humidity;
 - ✓ **ultrathin tattoo** \rightarrow *in situ* analysis of skin environments for personalized and continuous investigations.
- Raises expectations that **flexible and stretchable devices** might become fully autonomic, thus increasing their lifetime and reliability in several applications, such as e-skin and wearable electronics. The integration of self-healing will increase sustainability of electronic systems, leading to more **environmentally friendly** applications.

References

- ✓ Khatib M.; Huynh T.; Deng Y.; Horev Y. D.; Saliba W.; Wu W.; Haick H., A Freestanding Stretchable and Multifunctional Transistor with Intrinsic Self-Healing Properties of all Device Components, *Small*, **2019**, *15*, 1803939. *DOI*: 10.1002/*smll*.201803939;
- ✓ Liu L.; Ding L.; Zhong D.; Han J.; Wang S.; Meng Q.; Qiu C.; Zhang X.; Peng L.; Zhang Z., Carbon Nanotube Complementary Gigahertz Integrated Circuits and Their Applications on Wireless Sensor Interface Systems, *ACS Nano*, **2019**, *13*, 2526-2535. *DOI*: 10.1021/acsnano.8b09488;
- ✓ Lan Y.; Yang Y.; Wang Y.; Wu Y.; Cao Z.; Huo S.; Jiang L.; Guo Y.; Wu Y.; Yan B.; Xu R.; Chen Y.; Li Y.; Lal S.; Ma Z.; Xu Y., High-Temperature-Annealed Flexible Carbon Nanotube Network Transistors for High-Frequency Wearable Wireless Electronics, ACS Applied Materials & Interfaces, 2020, 12, 26145-26152. DOI: 10.1021/acsami.0c03810;
- ✓ Xie Y.; Zhang Z., Carbon nanotube-based CMOS transistors and integrated circuits, *Science China Information Sciences*, **2021**, *64*, 201402. *DOI: 10.1007/s11432-021-3271-8*.