# Analytic couple modeling introducing device design factor, fin factor, thermal diffusivity factor, and inductance factor

#### Jon Mackey

Mechanical Engineering, University of Akron

#### Alp Sehirlioglu

Materials Science and Engineering, Case Western Reserve University

#### **Fred Dynys**

NASA Glenn Research Center

NASA Cooperative Agreement: NNX08AB43A

NASA/USRA Contract: 04555-004







### Classic Model

#### **Classic Parameters**



 $T_C$ ,  $\varphi_{C_{AB}}$ 

Thermal-

**Electrical-**

### **Objectives**

- Investigate couple configurations analytically:
  - Rectangular
  - Cylindrical
- Investigate additional physics from classic case:
  - Thermal resistance of shoe material
  - Lateral heat transfer
  - Variable material properties
  - Transient operation
- Establish a set of simple design guidelines, for lab couple demonstration purposes
  - Applicable to automotive, power, electronic, and other industries

## ution

 $A_A L_B$ 

$$(V_{opt}) - \frac{1}{2}\eta_o$$

#### System-

$$\left(\sqrt{\frac{k_A}{\sigma_A}} + \sqrt{\frac{k_B}{\sigma_B}}\right)^2$$

## B.C. Fin Variable Transient

#### **Classic Model**



Thermal-

$$\frac{d}{dx} \left[ -k_{A,B} \frac{dT_{A,B}}{dx} \right] + \frac{I_{A,B} \tau_{A,B}}{A_{A,B}} \frac{dT_{A,B}}{dx} - \frac{I_{A,B}^2}{A_{A,B}^2} \sigma_{A,B} = 0$$

**Electrical-**

$$\frac{d\varphi_{A,B}}{dx} = -S_{A,B}\frac{dT_{A,B}}{dx} - \frac{I_{A,B}}{A_{A,B}\sigma_{A,B}}$$

System-

$$\varphi_B(L_B) - \varphi_A(L_A) = IR$$

#### **Classic Parameters**

**Geometric-**

$$X = \frac{A_B L_A}{A_A L_B}$$

Load-

$$Y = \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

Materials- 
$$Z(X) = \frac{(S_B - S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X}\right)(k_A + k_B X)}$$

$$\eta_{opt} = \frac{\eta_{c} Y_{opt}}{\frac{\left(1 + Y_{opt}\right)^{2}}{T_{h} Z(X_{opt})} + \left(1 + Y_{opt}\right) - \frac{1}{2} \eta_{c}}$$

$$X_{\text{opt}} = \sqrt{\frac{k_A \sigma_A}{k_B \sigma_B}}$$

$$Y_{\text{opt}} = \sqrt{1 + Z(X_{\text{opt}})T_{\text{avg}}}$$

$$Z(X_{\text{opt}}) = \frac{(S_{\text{B}} - S_{\text{A}})^2}{\left(\sqrt{\frac{k_{\text{A}}}{\sigma_{\text{A}}}} + \sqrt{\frac{k_{\text{B}}}{\sigma_{\text{B}}}}\right)^2}$$

## B.C. Fin Variable Transient

### **Classic Model**



Thermal-

$$\frac{d}{dx} \left[ -k_{A,B} \frac{dT_{A,B}}{dx} \right] + \frac{I_{A,B} \tau_{A,B}}{A_{A,B}} \frac{dT_{A,B}}{dx} - \frac{I_{A,B}^{2}}{A_{A,B}^{2} \sigma_{A,B}} = 0$$

**Electrical-**

$$\frac{d\varphi_{A,B}}{dx} = -S_{A,B}\frac{dT_{A,B}}{dx} - \frac{I_{A,B}}{A_{A,B}\sigma_{A,B}}$$

System-

$$\varphi_B(L_B) - \varphi_A(L_A) = IR$$

#### **Classic Parameters**

**Geometric-**

$$X = \frac{A_B L_A}{A_A L_B}$$

Load-

$$Y = \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

Materials- 
$$Z(X) = \frac{(S_B - S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X}\right)(k_A + k_B X)}$$

$$\eta_{opt} = \frac{\eta_{c} Y_{opt}}{\frac{\left(1 + Y_{opt}\right)^{2}}{T_{h} Z(X_{opt})} + \left(1 + Y_{opt}\right) - \frac{1}{2} \eta_{c}}$$

$$X_{\text{opt}} = \sqrt{\frac{k_A \sigma_A}{k_B \sigma_B}}$$

$$Y_{\text{opt}} = \sqrt{1 + Z(X_{\text{opt}})T_{\text{avg}}}$$

$$Z(X_{\text{opt}}) = \frac{(S_{\text{B}} - S_{\text{A}})^2}{\left(\sqrt{\frac{k_{\text{A}}}{\sigma_{\text{A}}}} + \sqrt{\frac{k_{\text{B}}}{\sigma_{\text{B}}}}\right)^2}$$

### **Classic Model**



Thermal-

$$\left[ \frac{d}{dx} \left[ -k_{A,B} \frac{dT_{A,B}}{dx} \right] + \frac{I_{A,B} \tau_{A,B}}{A_{A,B}} \frac{dT_{A,B}}{dx} - \frac{I_{A,B}^{2}}{A_{A,B}^{2} \sigma_{A,B}} = 0 \right]$$

**Electrical-**

$$\frac{d\varphi_{A,B}}{dx} = -S_{A,B}\frac{dT_{A,B}}{dx} - \frac{I_{A,B}}{A_{A,B}\sigma_{A,B}}$$

System-

$$\varphi_B(L_B) - \varphi_A(L_A) = IR$$

### **Classic Parameters**

**Geometric-**

$$X = \frac{A_B L_A}{A_A L_B}$$

Load-

$$Y = \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

Materials- 
$$Z(X) = \frac{(S_B - S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X}\right)(k_A + k_B X)}$$

$$\eta_{opt} = \frac{\eta_{c} Y_{opt}}{\frac{\left(1 + Y_{opt}\right)^{2}}{T_{h} Z(X_{opt})} + \left(1 + Y_{opt}\right) - \frac{1}{2} \eta_{c}}$$

$$X_{\text{opt}} = \sqrt{\frac{k_A \sigma_A}{k_B \sigma_B}}$$

$$Y_{\text{opt}} = \sqrt{1 + Z(X_{\text{opt}})T_{\text{avg}}}$$

$$Z(X_{\text{opt}}) = \frac{(S_{\text{B}} - S_{\text{A}})^2}{\left(\sqrt{\frac{k_{\text{A}}}{\sigma_{\text{A}}}} + \sqrt{\frac{k_{\text{B}}}{\sigma_{\text{B}}}}\right)^2}$$

### **Classic Model**



Thermal-

$$\frac{d}{dx} \left[ -k_{A,B} \frac{dT_{A,B}}{dx} \right] + \frac{I_{A,B} \tau_{A,B}}{A_{A,B}} \frac{dT_{A,B}}{dx} - \frac{I_{A,B}^{2}}{A_{A,B}^{2} \sigma_{A,B}} = 0$$

**Electrical-**

$$\frac{d\varphi_{A,B}}{dx} = -S_{A,B}\frac{dT_{A,B}}{dx} - \frac{I_{A,B}}{A_{A,B}\sigma_{A,B}}$$

System-

$$\varphi_B(L_B) - \varphi_A(L_A) = IR$$

#### **Classic Parameters**

**Geometric-**

$$X = \frac{A_B L_A}{A_A L_B}$$

Load-

$$Y = \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

Materials- 
$$Z(X) = \frac{(S_B - S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X}\right)(k_A + k_B X)}$$

$$\eta_{opt} = \frac{\eta_{c} Y_{opt}}{\frac{\left(1 + Y_{opt}\right)^{2}}{T_{h} Z(X_{opt})} + \left(1 + Y_{opt}\right) - \frac{1}{2} \eta_{c}}$$

$$X_{opt} = \sqrt{\frac{k_A \sigma_A}{k_B \sigma_B}}$$

$$Y_{\text{opt}} = \sqrt{1 + Z(X_{\text{opt}})T_{\text{avg}}}$$

$$Z(X_{\text{opt}}) = \frac{(S_{\text{B}} - S_{\text{A}})^2}{\left(\sqrt{\frac{k_{\text{A}}}{\sigma_{\text{A}}}} + \sqrt{\frac{k_{\text{B}}}{\sigma_{\text{B}}}}\right)^2}$$

B.C. Fin Variable Transient

### **Classic Model**



Thermal-

$$\frac{d}{dx} \left[ -k_{A,B} \frac{dT_{A,B}}{dx} \right] + \frac{I_{A,B} \tau_{A,B}}{A_{A,B}} \frac{dT_{A,B}}{dx} - \frac{I_{A,B}^{2}}{A_{A,B}^{2} \sigma_{A,B}} = 0$$

**Electrical-**

$$\frac{d\varphi_{A,B}}{dx} = -S_{A,B}\frac{dT_{A,B}}{dx} - \frac{I_{A,B}}{A_{A,B}\sigma_{A,B}}$$

System-

$$\varphi_B(L_B) - \varphi_A(L_A) = IR$$

### **Classic Parameters**

**Geometric-**

$$X = \frac{A_B L_A}{A_A L_B}$$

Load-

$$Y = \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

Materials- 
$$Z(X) = \frac{(S_B - S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X}\right)(k_A + k_B X)}$$

$$\eta_{opt} = \frac{\eta_c Y_{opt}}{\frac{\left(1 + Y_{opt}\right)^2}{T_h Z\left(X_{opt}\right)} + \left(1 + Y_{opt}\right) - \frac{1}{2}\eta_c}$$

$$X_{\text{opt}} = \sqrt{\frac{k_A \sigma_A}{k_B \sigma_B}}$$

$$Y_{\text{opt}} = \sqrt{1 + Z(X_{\text{opt}})T_{\text{avg}}}$$

$$Z(X_{\text{opt}}) = \frac{(S_B - S_A)^2}{\left(\sqrt{\frac{k_A}{\sigma_A}} + \sqrt{\frac{k_B}{\sigma_B}}\right)^2}$$

### **Classic Model**



Thermal-

$$\frac{d}{dx} \left[ -k_{A,B} \frac{dT_{A,B}}{dx} \right] + \frac{I_{A,B} \tau_{A,B}}{A_{A,B}} \frac{dT_{A,B}}{dx} - \frac{I_{A,B}^{2}}{A_{A,B}^{2}} \sigma_{A,B} = 0$$

**Electrical-**

$$\frac{d\varphi_{A,B}}{dx} = -S_{A,B} \frac{dT_{A,B}}{dx} - \frac{I_{A,B}}{A_{A,B}\sigma_{A,B}}$$

System-

$$\varphi_B(L_B) - \varphi_A(L_A) = IR$$

#### **Classic Parameters**

**Geometric-**

$$X = \frac{A_B L_A}{A_A L_B}$$

Load-

$$Y = \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

Materials- 
$$Z(X) = \frac{(S_B - S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X}\right)(k_A + k_B X)}$$

$$\eta_{opt} = \frac{\eta_{c} Y_{opt}}{\frac{\left(1 + Y_{opt}\right)^{2}}{T_{h} Z(X_{opt})} + \left(1 + Y_{opt}\right) - \frac{1}{2} \eta_{c}}$$

$$X_{\text{opt}} = \sqrt{\frac{k_A \sigma_A}{k_B \sigma_B}}$$

$$Y_{\text{opt}} = \sqrt{1 + Z(X_{\text{opt}})T_{\text{avg}}}$$

$$Z(X_{\text{opt}}) = \frac{(S_{\text{B}} - S_{\text{A}})^2}{\left(\sqrt{\frac{k_{\text{A}}}{\sigma_{\text{A}}}} + \sqrt{\frac{k_{\text{B}}}{\sigma_{\text{B}}}}\right)^2}$$

### **Classic Model**



Thermal-

$$\frac{d}{dx} \left[ -k_{A,B} \frac{dT_{A,B}}{dx} \right] + \frac{I_{A,B} \tau_{A,B}}{A_{A,B}} \frac{dT_{A,B}}{dx} - \frac{I_{A,B}^2}{A_{A,B}^2} \sigma_{A,B} = 0$$

**Electrical-**

$$\frac{d\varphi_{A,B}}{dx} = -S_{A,B} \frac{dT_{A,B}}{dx} - \frac{I_{A,B}}{A_{A,B}\sigma_{A,B}}$$

System-

$$\varphi_B(L_B) - \varphi_A(L_A) = IR$$

### **Classic Parameters**

**Geometric-**

$$X = \frac{A_B L_A}{A_A L_B}$$

Load-

$$Y = \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

Materials- 
$$Z(X) = \frac{(S_B - S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X}\right)(k_A + k_B X)}$$

$$\eta_{opt} = \frac{\eta_{c} Y_{opt}}{\frac{\left(1 + Y_{opt}\right)^{2}}{T_{h} Z(X_{opt})} + \left(1 + Y_{opt}\right) - \frac{1}{2} \eta_{c}}$$

$$X_{opt} = \sqrt{\frac{k_A \sigma_A}{k_B \sigma_B}}$$

$$Y_{\text{opt}} = \sqrt{1 + Z(X_{\text{opt}})T_{\text{avg}}}$$

$$Z(X_{\text{opt}}) = \frac{(S_{\text{B}} - S_{\text{A}})^2}{\left(\sqrt{\frac{k_{\text{A}}}{\sigma_{\text{A}}}} + \sqrt{\frac{k_{\text{B}}}{\sigma_{\text{B}}}}\right)^2}$$

B.C. Fin Variable Transient

### **Classic Model**



Thermal-

$$\frac{d}{dx} \left[ -k_{A,B} \frac{dT_{A,B}}{dx} \right] + \frac{I_{A,B} \tau_{A,B}}{A_{A,B}} \frac{dT_{A,B}}{dx} - \frac{I_{A,B}^{2}}{A_{A,B}^{2} \sigma_{A,B}} = 0$$

**Electrical-**

$$\frac{d\varphi_{A,B}}{dx} = -S_{A,B} \frac{dT_{A,B}}{dx} - \frac{I_{A,B}}{A_{A,B}\sigma_{A,B}}$$

System-

$$\varphi_B(L_B) - \varphi_A(L_A) = IR$$

#### **Classic Parameters**

**Geometric-**

$$X = \frac{A_B L_A}{A_A L_B}$$

Load-

$$Y = \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

Materials- 
$$Z(X) = \frac{(S_B - S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X}\right)(k_A + k_B X)}$$

$$\eta_{opt} = \frac{\eta_{c} Y_{opt}}{\frac{\left(1 + Y_{opt}\right)^{2}}{T_{h} Z(X_{opt})} + \left(1 + Y_{opt}\right) - \frac{1}{2} \eta_{c}}$$

$$X_{\text{opt}} = \sqrt{\frac{k_A \sigma_A}{k_B \sigma_B}}$$

$$Y_{\text{opt}} = \sqrt{1 + Z(X_{\text{opt}})T_{\text{avg}}}$$

$$Z(X_{\text{opt}}) = \frac{(S_{\text{B}} - S_{\text{A}})^2}{\left(\sqrt{\frac{k_{\text{A}}}{\sigma_{\text{A}}}} + \sqrt{\frac{k_{\text{B}}}{\sigma_{\text{B}}}}\right)^2}$$

### **Classic Model**



Thermal-

$$\frac{d}{dx} \left[ -k_{A,B} \frac{dT_{A,B}}{dx} \right] + \frac{I_{A,B} \tau_{A,B}}{A_{A,B}} \frac{dT_{A,B}}{dx} - \frac{I_{A,B}^2}{A_{A,B}^2 \sigma_{A,B}} = 0$$

**Electrical-**

$$\frac{d\varphi_{A,B}}{dx} = -S_{A,B} \frac{dT_{A,B}}{dx} - \frac{I_{A,B}}{A_{A,B}\sigma_{A,B}}$$

System-

$$\varphi_B(L_B) - \varphi_A(L_A) = IR$$

#### **Classic Parameters**

**Geometric-**

$$X = \frac{A_B L_A}{A_A L_B}$$

Load-

$$Y = \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

Materials- 
$$Z(X) = \frac{(S_B - S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X}\right)(k_A + k_B X)}$$

$$\eta_{opt} = \frac{\eta_{c} Y_{opt}}{\frac{\left(1 + Y_{opt}\right)^{2}}{T_{h} Z(X_{opt})} + \left(1 + Y_{opt}\right) - \frac{1}{2} \eta_{c}}$$

$$X_{opt} = \sqrt{\frac{k_A \sigma_A}{k_B \sigma_B}}$$

$$Y_{\text{opt}} = \sqrt{1 + Z(X_{\text{opt}})T_{\text{avg}}}$$

$$Z(X_{\text{opt}}) = \frac{(S_{\text{B}} - S_{\text{A}})^2}{\left(\sqrt{\frac{k_{\text{A}}}{\sigma_{\text{A}}}} + \sqrt{\frac{k_{\text{B}}}{\sigma_{\text{B}}}}\right)^2}$$

B.C. Fin Variable Transient

### **Classic Model**



Thermal-

$$\frac{d}{dx} \left[ -k_{A,B} \frac{dT_{A,B}}{dx} \right] + \frac{I_{A,B} \tau_{A,B}}{A_{A,B}} \frac{dT_{A,B}}{dx} - \frac{I_{A,B}^{2}}{A_{A,B}^{2} \sigma_{A,B}} = 0$$

**Electrical-**

$$\frac{d\varphi_{A,B}}{dx} = -S_{A,B}\frac{dT_{A,B}}{dx} - \frac{I_{A,B}}{A_{A,B}\sigma_{A,B}}$$

System-

$$\varphi_B(L_B) - \varphi_A(L_A) = IR$$

#### **Classic Parameters**

**Geometric-**

$$X = \frac{A_B L_A}{A_A L_B}$$

Load-

$$Y = \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

Materials- 
$$Z(X) = \frac{(S_B - S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X}\right)(k_A + k_B X)}$$

$$\eta_{opt} = \frac{\eta_{c} Y_{opt}}{\frac{\left(1 + Y_{opt}\right)^{2}}{T_{h} Z(X_{opt})} + \left(1 + Y_{opt}\right) - \frac{1}{2} \eta_{c}}$$

$$X_{\text{opt}} = \sqrt{\frac{k_A \sigma_A}{k_B \sigma_B}}$$

$$Y_{\text{opt}} = \sqrt{1 + Z(X_{\text{opt}})T_{\text{avg}}}$$

$$Z(X_{\text{opt}}) = \frac{(S_{\text{B}} - S_{\text{A}})^2}{\left(\sqrt{\frac{k_{\text{A}}}{\sigma_{\text{A}}}} + \sqrt{\frac{k_{\text{B}}}{\sigma_{\text{B}}}}\right)^2}$$

## B.C. Fin Variable Transient

## Cylindrical Model



**Thermal-**  $\frac{d}{dr} \left[ -k_{A,B} r \frac{dT_{A,B}}{dr} \right] + \frac{I_{A,B} \tau_{A,B}}{2\pi w_{A,B}} \frac{dT_{A,B}}{dr} - \frac{I_{A,B}^2}{4\pi^2 w_{A,B}^2 r \sigma_{A,B}} = 0$ 

**Electrical-**

$$\frac{d\varphi_{A,B}}{dr} = -S_{A,B} \frac{dT_{A,B}}{dr} - \frac{I_{A,B}}{2\pi w_{A,B} r \sigma_{A,B}}$$

System-

$$\varphi_B(L_B) - \varphi_A(L_A) = IR$$

### **Cylindrical Parameters**

**Geometric-** 
$$X = \frac{w_B \ln \left(\frac{r_{o,A}}{r_i}\right)}{w_A \ln \left(\frac{r_{o,B}}{r_i}\right)}$$

Load-
$$Y = \frac{R}{\frac{\ln(r_{0,B}/r_i)}{2\pi\sigma_B w_B} + \frac{\ln(r_{0,A}/r_i)}{2\pi\sigma_A w_A}}$$

Materials- 
$$Z(X) = \frac{(S_B - S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X}\right)(k_A + k_B X)}$$

$$\eta_{opt} = \frac{\eta_c Y_{opt}}{\frac{\left(1 + Y_{opt}\right)^2}{T_h Z\left(X_{opt}\right)} + \left(1 + Y_{opt}\right) - \frac{1}{2}\eta_c}$$

$$X_{\text{opt}} = \sqrt{\frac{k_A \sigma_A}{k_B \sigma_B}}$$

$$Y_{\text{opt}} = \sqrt{1 + Z(X_{\text{opt}})T_{\text{avg}}}$$

$$Z(X_{\text{opt}}) = \frac{(S_{\text{B}} - S_{\text{A}})^2}{\left(\sqrt{\frac{k_{\text{A}}}{\sigma_{\text{A}}}} + \sqrt{\frac{k_{\text{B}}}{\sigma_{\text{B}}}}\right)^2}$$

B.C.

Fim

Variable Transient

#### **B.C.** Model



#### **Boundary Conditions (B.C.)-**

$$-k_{A,B}\frac{dT_{A,B}(0)}{dx} + \frac{I_{A,B}S_{A,B}}{A_{A,B}}T_{A,B}(0) = h_h \left(T_{\infty h} - T_{a,b}(0)\right)$$
$$-k_{A,B}\frac{dT_{A,B}(L_{A,B})}{dx} + \frac{I_{A,B}S_{A,B}}{A_{A,B}}T_{A,B}(L_{A,B}) = h_c \left(T_{A,B}(L_{A,B}) - T_{\infty c}\right)$$
$$h_{h/c}^{-1} = h^{-1} + \sum_{j} \frac{L_j}{k_j} + \frac{1}{\varepsilon\sigma(T_S + T_\infty)(T_S^2 + T_\infty^2)}$$

#### **B.C.** Parameters

**Device Design-** 
$$D_{A,B} = \frac{1}{1 + \frac{k_{A,B}(h_h + h_c)}{L_{A,B}h_hh_c}}$$

**Geometric-** 
$$X = \frac{A_B L_A}{A_A L_B}$$

**Load-** 
$$Y = \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

Materials- 
$$Z(X) = \frac{(D_B S_B - D_A S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X}\right)(D_A k_A + D_B k_B X)}$$

$$X_{opt} = \sqrt{\frac{k_A \sigma_A D_A}{k_B \sigma_B D_B}}$$

$$Y_{opt} = \sqrt{1 + Z(X_{opt}) \left[ T_{\infty_H} \frac{S_B - S_A}{D_B S_B - D_A S_A} \left( 1 - D_{avg} \right) - \frac{\Delta T_{\infty}}{2} \right]}$$

$$Z(X_{\text{opt}}, D_A, D_B) = \frac{(D_B S_B - D_A S_A)^2}{\left(\sqrt{\frac{k_A D_A}{\sigma_A}} + \sqrt{\frac{k_B D_B}{\sigma_B}}\right)^2}$$

B.C.

Fim

Variable Transient

#### **B.C.** Model



#### **Boundary Conditions (B.C.)-**

$$-k_{A,B}\frac{dT_{A,B}(0)}{dx} + \frac{I_{A,B}S_{A,B}}{A_{A,B}}T_{A,B}(0) = h_h \left(T_{\infty h} - T_{a,b}(0)\right)$$
$$-k_{A,B}\frac{dT_{A,B}(L_{A,B})}{dx} + \frac{I_{A,B}S_{A,B}}{A_{A,B}}T_{A,B}(L_{A,B}) = h_c \left(T_{A,B}(L_{A,B}) - T_{\infty c}\right)$$
$$h_{h/c}^{-1} = h^{-1} + \sum_{j} \frac{L_j}{k_j} + \frac{1}{\varepsilon\sigma(T_s + T_{\infty})(T_s^2 + T_{\infty}^2)}$$

#### **B.C.** Parameters

**Device Design-** 
$$D_{A,B} = \frac{1}{1 + \frac{k_{A,B}(h_h + h_c)}{L_{A,B}h_hh_c}}$$

**Geometric-** 
$$X = \frac{A_B L_A}{A_A L_B}$$

**Load-** 
$$Y = \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

Materials- 
$$Z(X) = \frac{(D_B S_B - D_A S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X}\right)(D_A k_A + D_B k_B X)}$$

$$X_{opt} = \sqrt{\frac{k_A \sigma_A D_A}{k_B \sigma_B D_B}}$$

$$Y_{opt} = \sqrt{1 + Z(X_{opt}) \left[ T_{\infty_H} \frac{S_B - S_A}{D_B S_B - D_A S_A} \left( 1 - D_{avg} \right) - \frac{\Delta T_{\infty}}{2} \right]}$$

$$Z(X_{\text{opt}}, D_A, D_B) = \frac{(D_B S_B - D_A S_A)^2}{\left(\sqrt{\frac{k_A D_A}{\sigma_A}} + \sqrt{\frac{k_B D_B}{\sigma_B}}\right)^2}$$

## **B.C.** Fim

## Variable Transient



#### **Classic Parameters**

**Geometric-**

$$X = \frac{A_B L_A}{A_A L_B}$$

Load-

$$Y = \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

Materials- 
$$Z(X) = \frac{(S_B - S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X}\right)(k_A + k_B X)}$$



#### **Boundary Conditions (B.C.)-**

$$-k_{A,B}\frac{dT_{A,B}(0)}{dx} + \frac{I_{A,B}S_{A,B}}{A_{A,B}}T_{A,B}(0) = h_h \left(T_{\infty h} - T_{a,b}(0)\right)$$
$$-k_{A,B}\frac{dT_{A,B}(L_{A,B})}{dx} + \frac{I_{A,B}S_{A,B}}{A_{A,B}}T_{A,B}(L_{A,B}) = h_c \left(T_{A,B}(L_{A,B}) - T_{\infty c}\right)$$
$$h_{h/c}^{-1} = h^{-1} + \sum_{j} \frac{L_j}{k_j} + \frac{1}{\varepsilon \sigma(T_S + T_\infty)(T_S^2 + T_\infty^2)}$$

#### **B.C. Parameters**

**Device Design-**  $D_{A,B} = \frac{1}{1 + \frac{k_{A,B}(h_h + h_c)}{I + h_c h_c}}$ 

**Geometric-**

$$X = \frac{A_B L_A}{A_A L_B}$$

Load-

$$Y = \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

Materials-  $Z(X) = \frac{(D_B S_B - D_A S_A)^2}{\left(\frac{1}{\sigma_c} + \frac{1}{\sigma_c X}\right)(D_A k_A + D_B k_B X)}$ 

$$X_{opt} = \sqrt{\frac{k_A \sigma_A D_A}{k_B \sigma_B D_B}}$$

$$Y_{opt} = \sqrt{1 + Z(X_{opt}) \left[ T_{\infty_H} \frac{S_B - S_A}{D_B S_B - D_A S_A} \left( 1 - D_{avg} \right) - \frac{\Delta T_{\infty}}{2} \right]}$$

$$Z(X_{\text{opt}}, D_A, D_B) = \frac{(D_B S_B - D_A S_A)^2}{\left(\sqrt{\frac{k_A D_A}{\sigma_A}} + \sqrt{\frac{k_B D_B}{\sigma_B}}\right)^2}$$

## **B.C.** Fin Variable Transient



#### **Classic Parameters**

**Geometric-**

$$X = \frac{A_B L_A}{A_A L_B}$$

Load-

$$Y = \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

**Materials-**

$$Z(X) = \frac{(S_B - S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X}\right)(k_A + k_B X)}$$



#### **B.C. Parameters**

**Device Design-**  $D_{A,B} = \frac{1}{1 + \frac{k_{A,B}(h_h + h_c)}{l_{A,B}h_h h_c}}$ 

**Geometric-**

$$X = \frac{A_B L_A}{A_A L_B}$$

Load-

$$Y = \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

Materials-  $Z(X) = \frac{(D_B S_B - D_A S_A)^2}{\left(\frac{1}{\sigma_c} + \frac{1}{\sigma_D X}\right)(D_A k_A + D_B k_B X)}$ 

$$X_{opt} = \sqrt{\frac{k_A \sigma_A D_A}{k_B \sigma_B D_B}}$$

$$Y_{opt} = \sqrt{1 + Z(X_{opt}) \left[ T_{\infty_H} \frac{S_B - S_A}{D_B S_B - D_A S_A} \left( 1 - D_{avg} \right) - \frac{\Delta T_{\infty}}{2} \right]}$$

$$Z(X_{\text{opt}}, D_A, D_B) = \frac{(D_B S_B - D_A S_A)^2}{\left(\sqrt{\frac{k_A D_A}{\sigma_A}} + \sqrt{\frac{k_B D_B}{\sigma_B}}\right)^2}$$

## **B.C.** Fin Variable Transient

#### B.C. Model



#### **B.C.** Parameters

**Device Design-** 
$$D_{A,B} = \frac{1}{1 + \frac{k_{A,B}(h_h + h_c)}{L_{A,B}h_hh_c}}$$

$$X = \frac{A_B L_A}{A_A L_B}$$

$$Y = \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

### **Classic Solution**

$$\eta_{opt} = \frac{\eta_c Y_{opt}}{\frac{\left(1 + Y_{opt}\right)^2}{T_h Z\left(X_{opt}\right)} + \left(1 + Y_{opt}\right) - \frac{1}{2}\eta_c}$$

$$X_{opt} = \sqrt{\frac{k_A \sigma_A}{k_B \sigma_B}}$$

$$Y_{\text{opt}} = \sqrt{1 + Z(X_{\text{opt}})T_{\text{avg}}}$$

$$Z(X_{\text{opt}}) = \frac{(S_{\text{B}} - S_{\text{A}})^2}{\left(\sqrt{\frac{k_{\text{A}}}{\sigma_{\text{A}}}} + \sqrt{\frac{k_{\text{B}}}{\sigma_{\text{B}}}}\right)^2}$$

$$\eta = \frac{\eta_{c\infty}Y_{opt}}{\frac{\left(1 + Y_{opt}\right)^2}{T_{\infty_H}Z(X_{opt}, D_B, D_A)} + \frac{\left(1 + Y_{opt}\right)(S_B - S_A)}{(D_BS_B - D_AS_A)} \left[1 - \frac{\eta_{c\infty}}{2} \left\{1 - D_{avg}\right\}\right] - \frac{1}{2}\eta_{c\infty}}$$

$$X_{opt} = \sqrt{\frac{k_A \sigma_A D_A}{k_B \sigma_B D_B}}$$

$$Y_{\text{opt}} = \sqrt{1 + Z(X_{\text{opt}}) \left[ T_{\infty_{\text{H}}} \frac{S_{\text{B}} - S_{\text{A}}}{D_{\text{B}}S_{\text{B}} - D_{\text{A}}S_{\text{A}}} \left( 1 - D_{\text{avg}} \right) - \frac{\Delta T_{\infty}}{2} \right]}$$

$$Z(X_{\text{opt}}, D_A, D_B) = \frac{(D_B S_B - D_A S_A)^2}{\left(\sqrt{\frac{k_A D_A}{\sigma_A}} + \sqrt{\frac{k_B D_B}{\sigma_B}}\right)^2}$$

**B.C.** Fin Variable Transient



| $L_A$ |  |
|-------|--|
|       |  |

| Convection<br>(W/m-K) | Design<br>Factor | Max Efficiency<br>(%) | Max Power<br>Density (W/m²) |
|-----------------------|------------------|-----------------------|-----------------------------|
| ∞                     | 1.00             | 6.15                  | 17,733                      |
| 50,000                | 0.98             | 6.05                  | 17,118                      |
| 500                   | 0.38             | 2.28                  | 2,300                       |

#### meters

$$\frac{1}{1 + \frac{k_{A,B}(h_h + h_c)}{L_{A,B}h_hh_c}}$$

$$X = \frac{A_B L_A}{A_A L_B}$$

$$= \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

$$\eta_{opt} = \frac{\eta_c Y_{opt}}{\frac{\left(1 + Y_{opt}\right)^2}{T_h Z(X_{opt})} + \left(1 + Y_{opt}\right) - \frac{1}{2}\eta_c}$$

$$X_{opt} = \sqrt{\frac{k_A \sigma_A}{k_B \sigma_B}}$$

$$Y_{opt} = \sqrt{1 + Z(X_{opt})T_{avg}}$$

$$Z(X_{opt}) = \frac{(S_B - S_A)^2}{\left(\sqrt{\frac{k_A}{\sigma_A}} + \sqrt{\frac{k_B}{\sigma_B}}\right)^2}$$

B.C. Solution 
$$\eta_{c\infty}Y_{ont}$$

$$\eta = \frac{\eta_{c\infty} Y_{opt}}{\frac{\left(1 + Y_{opt}\right)^2}{T_{\infty_H} Z(X_{opt}, D_B, D_A)} + \frac{\left(1 + Y_{opt}\right)(S_B - S_A)}{(D_B S_B - D_A S_A)} \left[1 - \frac{\eta_{c\infty}}{2} \left\{1 - D_{avg}\right\}\right] - \frac{1}{2} \eta_{c\infty}}$$

$$X_{opt} = \sqrt{\frac{k_A \sigma_A D_A}{k_B \sigma_B D_B}}$$

$$Y_{\text{opt}} = \sqrt{1 + Z(X_{\text{opt}}) \left[ T_{\infty_{\text{H}}} \frac{S_{\text{B}} - S_{\text{A}}}{D_{\text{B}}S_{\text{B}} - D_{\text{A}}S_{\text{A}}} \left( 1 - D_{\text{avg}} \right) - \frac{\Delta T_{\infty}}{2} \right]}$$

$$Z(X_{\text{opt}}, D_A, D_B) = \frac{(D_B S_B - D_A S_A)^2}{\left(\sqrt{\frac{k_A D_A}{\sigma_A}} + \sqrt{\frac{k_B D_B}{\sigma_B}}\right)^2}$$

**B.C.** Fin Variable Transient

#### B.C. Mgda

### **Design Guideline**

$$L_D \ge \frac{D(h_H + h_C)k}{(1 - D)h_H h_C}$$

$$L_{99\%} = \frac{99(h_H + h_C)k}{h_H h_C}$$

#### **B.C.** Parameters

**Design-** 
$$D_{A,B} = \frac{1}{1 + \frac{k_{A,B}(h_h + h_c)}{L_{A,B}h_hh_c}}$$

$$X = \frac{A_B L_A}{A_A L_B}$$

$$Y = \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

### **Classic Solution**

 $S_A, k_A$ 

$$\eta_{opt} = \frac{\eta_{c} Y_{opt}}{\frac{\left(1 + Y_{opt}\right)^{2}}{T_{h} Z(X_{opt})} + \left(1 + Y_{opt}\right) - \frac{1}{2} \eta_{c}}$$

$$X_{opt} = \sqrt{\frac{k_A \sigma_A}{k_B \sigma_B}}$$

$$Y_{\text{opt}} = \sqrt{1 + Z(X_{\text{opt}})T_{\text{avg}}}$$

$$Z(X_{\text{opt}}) = \frac{(S_{\text{B}} - S_{\text{A}})^2}{\left(\sqrt{\frac{k_{\text{A}}}{\sigma_{\text{A}}}} + \sqrt{\frac{k_{\text{B}}}{\sigma_{\text{B}}}}\right)^2}$$

$$\eta = \frac{\eta_{c\infty} Y_{opt}}{\frac{\left(1 + Y_{opt}\right)^2}{T_{cov} Z(X_{cort}, D_B, D_A)} + \frac{\left(1 + Y_{opt}\right)(S_B - S_A)}{(D_B S_B - D_A S_A)} \left[1 - \frac{\eta_{c\infty}}{2} \left\{1 - D_{avg}\right\}\right] - \frac{1}{2} \eta_{c\infty}}$$

$$X_{opt} = \sqrt{\frac{k_A \sigma_A D_A}{k_B \sigma_B D_B}}$$

$$Y_{\text{opt}} = \sqrt{1 + Z(X_{\text{opt}}) \left[ T_{\infty_{\text{H}}} \frac{S_{\text{B}} - S_{\text{A}}}{D_{\text{B}}S_{\text{B}} - D_{\text{A}}S_{\text{A}}} \left( 1 - D_{\text{avg}} \right) - \frac{\Delta T_{\infty}}{2} \right]}$$

$$Z(X_{\text{opt}}, D_A, D_B) = \frac{(D_B S_B - D_A S_A)^2}{\left(\sqrt{\frac{k_A D_A}{\sigma_A}} + \sqrt{\frac{k_B D_B}{\sigma_B}}\right)^2}$$





#### **Thermal Governing Equation-**

$$\frac{d}{dx} \left[ -k_{A,B} \frac{d\theta_{A,B}}{dx} \right] + \frac{I_{A,B} \tau_{A,B}}{A_{A,B}} \frac{d\theta_{A,B}}{dx} + \frac{P_{A,B} h_{A,B}}{A_{A,B}} \theta_{A,B} - \frac{I_{A,B}^2}{A_{A,B}^2} \sigma_{A,B} = 0$$

$$\theta_{A,B} = T_{A,B} - T_{\infty}$$

#### Fin Parameters

Fin Factor- 
$$F_{A,B} = L_{A,B} \sqrt{\frac{P_{A,B}h_{A,B}}{k_{A,B}A_{A,B}}}$$

**Geometric Fin-** 
$$G = \sqrt{\frac{P_B A_B h_B k_A}{P_A A_A h_A k_B}} \frac{\tanh(F_A)}{\tanh(F_B)}$$

$$Y = \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

**Materials-** 
$$Z(X,G) = \frac{(S_B - S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X}\right)(k_A + k_B G)}$$

$$G_{opt} = \sqrt{\frac{\mathbf{k}_{A} \sigma_{A}}{\mathbf{k}_{B} \sigma_{B}}}$$

$$Y_{\text{opt}} = \sqrt{1 + Z(X_{\text{opt}}, G)T_{\text{avg}}}$$

$$Z(X_{\text{opt}},G) = \frac{(S_B - S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X_{opt}}\right)(k_A + k_B G)}$$





#### **Thermal Governing Equation-**

$$\frac{d}{dx} \left[ -k_{A,B} \frac{d\theta_{A,B}}{dx} \right] + \frac{I_{A,B} \tau_{A,B}}{A_{A,B}} \frac{d\theta_{A,B}}{dx} + \frac{P_{A,B} h_{A,B}}{A_{A,B}} \theta_{A,B} - \frac{I_{A,B}^2}{A_{A,B}^2} \sigma_{A,B} = 0$$

$$\theta_{A,B} = T_{A,B} - T_{\infty}$$

#### Fin Parameters

Fin Factor- 
$$F_{A,B} = L_{A,B} \sqrt{\frac{P_{A,B}h_{A,B}}{k_{A,B}A_{A,B}}}$$

**Geometric Fin-** 
$$G = \sqrt{\frac{P_B A_B h_B k_A}{P_A A_A h_A k_B}} \frac{\tanh(F_A)}{\tanh(F_B)}$$

$$Y = \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

Materials- 
$$Z(X,G) = \frac{(S_B - S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X}\right)(k_A + k_B G)}$$

$$G_{opt} = \sqrt{\frac{\mathbf{k}_{A}\sigma_{A}}{\mathbf{k}_{B}\sigma_{B}}}$$

$$Y_{\text{opt}} = \sqrt{1 + Z(X_{\text{opt}}, G)T_{\text{avg}}}$$

$$Z(X_{\text{opt}},G) = \frac{(S_B - S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X_{opt}}\right)(k_A + k_B G)}$$

## Introduction B.C. Fin

## Wariable Transient



#### **Classic Parameters**

**Geometric-**

$$X = \frac{A_B L_A}{A_A L_B}$$

Load-

$$Y = \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

Materials- 
$$Z(X) = \frac{(S_B - S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X}\right)(k_A + k_B X)}$$



#### **Thermal Governing Equation-**

$$\frac{d}{dx} \left[ -k_{A,B} \frac{d\theta_{A,B}}{dx} \right] + \frac{I_{A,B} \tau_{A,B}}{A_{A,B}} \frac{d\theta_{A,B}}{dx} + \frac{P_{A,B} h_{A,B}}{A_{A,B}} \theta_{A,B} - \frac{I_{A,B}^2}{A_{A,B}^2 \sigma_{A,B}} = 0$$

$$\theta_{A,B} = T_{A,B} - T_{\infty}$$

#### Fin Parameters

Fin Factor- 
$$F_{A,B} = L_{A,B} \sqrt{\frac{P_{A,B}h_{A,B}}{k_{A,B}A_{A,B}}}$$

**Geometric Fin-** 
$$G = \sqrt{\frac{P_B A_B h_B k_A}{P_A A_A h_A k_B}} \frac{\tanh(F_A)}{\tanh(F_B)}$$

Load-

$$Y = \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

**Materials-** 
$$Z(X,G) = \frac{(S_B - S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X}\right)(k_A + k_B G)}$$

$$G_{opt} = \sqrt{\frac{\mathbf{k}_{A}\sigma_{A}}{\mathbf{k}_{B}\sigma_{B}}}$$

$$Y_{\text{opt}} = \sqrt{1 + Z(X_{\text{opt}}, G)T_{\text{avg}}}$$

$$Z(X_{\text{opt}}, G) = \frac{(S_B - S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X_{opt}}\right)(k_A + k_B G)}$$

## Introduction B.C. Fin

## Variable Transient



#### **Classic Parameters**

**Geometric-**

$$X = \frac{A_B L_A}{A_A L_B}$$

Load-

$$Y = \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

**Materials-**

$$Z(X) = \frac{(S_B - S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X}\right)(k_A + k_B X)}$$



#### Fin Parameters

Fin Factor- 
$$F_{A,B} = L_{A,B} \sqrt{\frac{P_{A,B}h_{A,B}}{k_{A,B}A_{A,B}}}$$

**Geometric Fin-** 
$$G = \sqrt{\frac{P_B A_B h_B k_A}{P_A A_A h_A k_B}} \frac{\tanh(F_A)}{\tanh(F_B)}$$

Load-

$$Y = \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

**Materials-**

$$Z(X,G) = \frac{(S_B - S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X}\right)(k_A + k_B G)}$$

$$G_{opt} = \sqrt{\frac{\mathbf{k}_{\mathrm{A}} \sigma_{\mathrm{A}}}{\mathbf{k}_{\mathrm{B}} \sigma_{\mathrm{B}}}}$$

$$Y_{\text{opt}} = \sqrt{1 + Z(X_{\text{opt}}, G)T_{\text{avg}}}$$

$$Z(X_{\text{opt}}, G) = \frac{(S_B - S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X_{opt}}\right)(k_A + k_B G)}$$

## Introduction B.C. Fin

Variable Transient





#### Fin Parameters

Fin Factor- 
$$F_{A,B} = L_{A,B} \sqrt{\frac{P_{A,B}h_{A,B}}{k_{A,B}A_{A,B}}}$$

**Geometric Fin-** 
$$G = \sqrt{\frac{P_B A_B h_B k_A}{P_A A_A h_A k_B}} \frac{\tanh(F_A)}{\tanh(F_B)}$$

$$Y = \frac{R}{\frac{L_B}{\sigma_R A_R} + \frac{L_A}{\sigma_A A_A}}$$

### **Classic Solution**

$$\eta_{opt} = \frac{\eta_c Y_{opt}}{\frac{\left(1 + Y_{opt}\right)^2}{T_h Z\left(X_{opt}\right)} + \left(1 + Y_{opt}\right) - \frac{1}{2}\eta_c}$$

$$X_{opt} \, = \sqrt{\frac{k_A \sigma_A}{k_B \sigma_B}}$$

$$Y_{\text{opt}} = \sqrt{1 + Z(X_{\text{opt}})T_{\text{avg}}}$$

$$Z(X_{opt}) = \frac{(S_B - S_A)^2}{\left(\sqrt{\frac{k_A}{\sigma_A}} + \sqrt{\frac{k_B}{\sigma_B}}\right)^2}$$

$$\eta_{opt} = \frac{\eta_c Y_{opt}}{\frac{F_A \left(1 + Y_{opt}\right)^2}{\tanh(F_A) T_H Z(X_{opt}, G)} + \left(1 + Y_{opt}\right) - \eta_c \frac{\tanh\left(\frac{F_A}{2}\right) \left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B G(F/2)}\right)}{F_A \left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X}\right)}}$$

$$G_{opt} = \sqrt{\frac{\mathbf{k}_{A}\sigma_{A}}{\mathbf{k}_{B}\sigma_{B}}}$$

$$Y_{\text{opt}} = \sqrt{1 + Z(X_{\text{opt}}, G)T_{\text{avg}}}$$

$$Z(X_{\text{opt}},G) = \frac{(S_B - S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X_{opt}}\right)(k_A + k_B G)}$$

B.C. Fin

Variable Transient

#### **Example Calculation**

| Convection<br>(W/m-K) | Fin<br>Factor | Max Efficiency<br>(%) | Max Power<br>Density (W/m²) |
|-----------------------|---------------|-----------------------|-----------------------------|
| 0                     | 0.00          | 6.15                  | 17,733                      |
| 5                     | 0.32          | 6.05                  | 17,733                      |
| 500                   | 0.38          | 2.70                  | 17,733                      |

#### neters

$$_{3}=L_{A,B}\sqrt{\frac{P_{A,B}h_{A,B}}{k_{A,B}A_{A,B}}}$$

$$\frac{P_B A_B h_B k_A}{P_A A_A h_A k_B} \frac{\tanh(F_A)}{\tanh(F_B)}$$

$$= \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

### **Classic Solution**

$$\eta_{opt} = \frac{\eta_c Y_{opt}}{\frac{\left(1 + Y_{opt}\right)^2}{T_h Z\left(X_{opt}\right)} + \left(1 + Y_{opt}\right) - \frac{1}{2}\eta_c}$$

$$X_{opt} = \sqrt{\frac{k_A \sigma_A}{k_B \sigma_B}}$$

$$Y_{\text{opt}} = \sqrt{1 + Z(X_{\text{opt}})T_{\text{avg}}}$$

$$Z(X_{opt}) = \frac{(S_B - S_A)^2}{\left(\sqrt{\frac{k_A}{\sigma_A}} + \sqrt{\frac{k_B}{\sigma_B}}\right)^2}$$

$$\eta_{opt} = \frac{\eta_c Y_{opt}}{\frac{F_A \left(1 + Y_{opt}\right)^2}{\tanh(F_A) T_H Z(X_{opt}, G)} + \left(1 + Y_{opt}\right) - \eta_c \frac{\tanh\left(\frac{F_A}{2}\right) \left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B G(F/2)}\right)}{F_A \left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X}\right)}$$

$$G_{opt} = \sqrt{\frac{\mathbf{k}_{\mathrm{A}} \sigma_{\mathrm{A}}}{\mathbf{k}_{\mathrm{B}} \sigma_{\mathrm{B}}}}$$

$$Y_{\text{opt}} = \sqrt{1 + Z(X_{\text{opt}}, G)T_{\text{avg}}}$$

$$Z(X_{\text{opt}}, G) = \frac{(S_B - S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X_{opt}}\right)(k_A + k_B G)}$$

## B.C. Fin

## Variable Transient

### Fin Mort

### **Design Guideline**

$$\left(\frac{P}{A}\right)_F \le \frac{F^2 k}{L^2 h}$$

$$\left(\frac{P}{A}\right)_{5\%} = \frac{0.05^2 k}{L_{99\%}^2 h}$$

#### Fin Parameters

$$F_{A,B} = L_{A,B} \sqrt{\frac{P_{A,B} h_{A,B}}{k_{A,B} A_{A,B}}}$$

etric Fin- 
$$G = \sqrt{\frac{P_B A_B h_B k_A}{P_A A_A h_A k_B}} \frac{\tanh(F_A)}{\tanh(F_B)}$$

$$Y = \frac{R}{\frac{L_B}{\sigma_B A_B} + \frac{L_A}{\sigma_A A_A}}$$

## **Classic Solution**

 $A_A, P_A,$ 

 $\sigma_A, S_A,$ 

$$\eta_{opt} = \frac{\eta_{c} Y_{opt}}{\frac{\left(1 + Y_{opt}\right)^{2}}{T_{h} Z(X_{opt})} + \left(1 + Y_{opt}\right) - \frac{1}{2} \eta_{c}}$$

$$X_{opt} = \sqrt{\frac{k_A \sigma_A}{k_B \sigma_B}}$$

$$Y_{\text{opt}} = \sqrt{1 + Z(X_{\text{opt}})T_{\text{avg}}}$$

$$Z(X_{opt}) = \frac{(S_B - S_A)^2}{\left(\sqrt{\frac{k_A}{\sigma_A}} + \sqrt{\frac{k_B}{\sigma_B}}\right)^2}$$

$$\eta_{opt} = \frac{\eta_c Y_{opt}}{\frac{F_A \left(1 + Y_{opt}\right)^2}{\tanh(F_A) T_H Z(X_{opt}, G)} + \left(1 + Y_{opt}\right) - \eta_c \frac{\tanh\left(\frac{F_A}{2}\right) \left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B G(F/2)}\right)}{F_A \left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X}\right)}}$$

$$G_{opt} = \sqrt{\frac{\mathbf{k}_{\mathrm{A}} \sigma_{\mathrm{A}}}{\mathbf{k}_{\mathrm{B}} \sigma_{\mathrm{B}}}}$$

$$Y_{\text{opt}} = \sqrt{1 + Z(X_{\text{opt}}, G)T_{\text{avg}}}$$

$$Z(X_{\text{opt}},G) = \frac{(S_B - S_A)^2}{\left(\frac{1}{\sigma_A} + \frac{1}{\sigma_B X_{opt}}\right)(k_A + k_B G)}$$

### Variable Model



#### **Material Properties by Asymptotic Expansion-**

$$\sigma(T) = \tilde{\sigma} \frac{\sigma(T)}{\tilde{\sigma}} = \tilde{\sigma}(\sigma_0 + \epsilon \sigma_1 T)$$

$$S(T) = \tilde{S} \frac{S(T)}{\tilde{S}} = \tilde{S}(S_0 + \epsilon S_1 T)$$

$$k(T) = \tilde{k} \frac{k(T)}{\tilde{k}} = \tilde{k}(k_0 + \epsilon k_1 T)$$

#### **Asymptotic Expansion**

$$\widehat{T} = \frac{T}{\Delta T}$$

$$\hat{T} = \frac{T}{\Delta T}$$
  $\hat{\varphi} = \frac{\varphi}{\Delta S \Delta T}$   $\hat{I} = \frac{IR}{\Delta S \Delta T}$ 

$$\hat{I} = \frac{IR}{\Delta S \Delta T}$$

$$\hat{T} = T_0 + \epsilon T_1$$

$$\hat{\varphi} = \varphi_0 + \epsilon \varphi_1$$

### **Variable Solution**



### Variable Model



#### **Material Properties by Asymptotic Expansion-**

$$\sigma(T) = \tilde{\sigma} \frac{\sigma(T)}{\tilde{\sigma}} = \tilde{\sigma}(\sigma_0 + \epsilon \sigma_1 T)$$

$$S(T) = \tilde{S}\frac{S(T)}{\tilde{S}} = \tilde{S}(S_0 + \epsilon S_1 T)$$

$$k(T) = \tilde{k} \frac{k(T)}{\tilde{k}} = \tilde{k}(k_0 + \epsilon k_1 T)$$

### **Asymptotic Expansion**

$$\widehat{T} = \frac{T}{\Delta T}$$

$$\hat{T} = \frac{T}{\Delta T}$$
  $\hat{\varphi} = \frac{\varphi}{\Delta S \Delta T}$   $\hat{I} = \frac{IR}{\Delta S \Delta T}$ 

$$\hat{I} = \frac{IR}{\Delta S \Delta T}$$

$$\hat{T} = T_0 + \epsilon T_1$$

$$\hat{\varphi} = \varphi_0 + \epsilon \varphi_1$$

### **Variable Solution**







### **Variable Solution**



#### **Transient Model**



**Thermal-** 
$$\frac{\partial}{\partial x} \left[ -k_{A,B} \frac{\partial T_{A,B}}{\partial x} \right] + \frac{I_{A,B} \tau_{A,B}}{A_{A,B}} \frac{\partial T_{A,B}}{\partial x} - \frac{I_{A,B}^2}{A_{A,B}^2 \sigma_{A,B}} = \rho_{A,B} c_{p_{A,B}} \frac{\partial T_{A,B}}{\partial t}$$

**Electrical**- 
$$\frac{\partial \varphi_{A,B}}{\partial x} = -S_{A,B} \frac{\partial T_{A,B}}{\partial x} - \frac{I_{A,B}}{A_{A,B} \sigma_{A,B}}$$

**System-** 
$$\varphi_B(L_B) - \varphi_A(L_A) = IR + H \frac{dI}{dt}$$

### **Green's Function Solution**



#### **Transient Parameters**

Thermal diffusivity factor-

$$\Gamma_{A,B} = rac{lpha_{avg} L_{A,B}^2}{lpha_{A,B} L_{avg}^2}$$

Inductance factor-  $\beta = \frac{H\alpha_{avg}}{RL_{avg}^2}$ 

$$\beta = \frac{H\alpha_{avg}}{RL_{avg}^2}$$

#### **Transient Model**



Thermal- 
$$\frac{\partial}{\partial x} \left[ -k_{A,B} \frac{\partial T_{A,B}}{\partial x} \right] + \frac{I_{A,B} \tau_{A,B}}{A_{A,B}} \frac{\partial T_{A,B}}{\partial x} - \frac{I_{A,B}^2}{A_{A,B}^2 \sigma_{A,B}} = \rho_{A,B} c_{p_{A,B}} \frac{\partial T_{A,B}}{\partial t}$$

**Electrical-**

$$\frac{\partial \varphi_{A,B}}{\partial x} = -S_{A,B} \frac{\partial T_{A,B}}{\partial x} - \frac{I_{A,B}}{A_{A,B} \sigma_{A,B}}$$

System-

$$\varphi_B(L_B) - \varphi_A(L_A) = IR + H \frac{dI}{dt}$$

### **Green's Function Solution**



#### **Transient Parameters**

Thermal diffusivity factor-

$$\Gamma_{A,B} = rac{lpha_{avg} L_{A,B}^2}{lpha_{A,B} L_{avg}^2}$$

Inductance factor-

$$\beta = \frac{H\alpha_{avg}}{RL_{avg}^2}$$

6.1

6.0-

The

Ele

 $T_H(t), \varphi_H$ 







### **Design Guideline**

$$\frac{L_A}{L_B} = \frac{\sqrt{2a} + 1}{2a - 1}$$

$$a = 1 + \frac{\alpha_B}{\alpha_A}$$



on Solution



$$u(x) = \int G(x,\xi)f(\xi)d\xi$$

#### **Transient Parameters**

**Thermal diffusivity** factor-

$$\Gamma_{A,B} = rac{lpha_{avg} L_{A,B}^2}{lpha_{A,B} L_{avg}^2}$$

**Inductance factor-**

$$\beta = \frac{H\alpha_{avg}}{RL_{avg}^2}$$

 $= \rho_{A,B} c_{p_{A,B}} \frac{\partial T_{A,B}}{\partial t}$ 

### Conclusion

- Several new design factors can have a large influence on couple behavior
  - Device Design Factor
  - Fin Factor
  - Thermal Diffusivity Factor
  - Inductance Factor
- The introduced design guidelines must be considered in couple design

### **Acknowledgements**

Tom Sabo, Ray Babuder, Ben Kowalski, Clayton Cross NASA Glenn Research Center

Dr. Sabah Bux, Dr. Jean-Pierre **Fleurial** JPL

NASA Cooperative Agreement: NNX08AB43A

NASA/USRA Contract: 04555-004







# Appendix





600-500

0.05-

0.04

0.02-

0.01-

0.2





### **Green's Function Solution**





$$u(x) = \int G(x,\xi)f(\xi)d\xi$$

#### **Therr**

Electr

**Syste** 



8.0

1.0

100

Time (sec)

0.6

β (Dimensionless)

## $ho_{A,B}c_{p_{A,B}}rac{\partial T_{A,B}}{\partial t}$

### **Transient Parameters**

**Thermal diffusivity** factor-

$$\Gamma_{A,B} = \frac{\alpha_{avg} L_{A,B}^2}{\alpha_{A,B} L_{avg}^2}$$

**Inductance factor-**

$$\beta = \frac{H\alpha_{avg}}{RL_{avg}^2}$$