Sampling Oscilloscope

Ralph J. Pasquinelli Fermilab

Sampling Scope Front End

Ralph J. Pasquinelli Fermilab

Time Domain Reflectometer (TDR)

Once the incident and reflected voltages are measured on the oscilloscope, the reflection coefficient and impedance of the mismatch may be calculated.

$$\rho = E_r/E_r^* = (Z_{\rm L} - Z_{\rm o})/(Z_{\rm L} + Z_{\rm o})$$

Ralph J. Pasquinelli Fermilab

TDR Displays for Resistive Loads

(A) OPEN CIRCUIT TERMINATION (ZL = +)

(A) $E_r = E_1$ THEREFORE $\frac{Z_L - Z_0}{Z_L + Z_0}$

(B) SHORT CIRCUIT TERMINATION(ZL = 0)

THEREFORE $\frac{Z_L - Z_0}{Z_L + Z_0} = -1$

(C) LINE TERMINATED IN ZL = 2Z0

(C)
$$E_r = \pm \frac{1}{3}E_1$$
 THEREFORE $\frac{Z_L - Z_0}{Z_L + Z_0} = \pm \frac{1}{3}$

AND $Z_L = 2Z_0$

$$\underbrace{-\frac{1}{3}\epsilon_{i}}_{\epsilon_{i}} z_{i} \underbrace{z_{i}}_{\epsilon_{i}} z_{c}$$

(D) LINE TERMINATED IN $Z_L = \frac{1}{2}Z_0$

(D)
$$E_r = -\frac{1}{3}E_{\bar{1}}$$
 THEREFORE $\frac{Z_{\bar{L}} - Z_{\bar{0}}}{Z_{\bar{L}} + Z_{\bar{0}}} = -\frac{1}{3}$
AND $Z_{\bar{L}} = -\frac{1}{2}Z_{\bar{0}}$

TDR Displays for Complex Loads

Ralph J. Pasquinelli Fermilab

TDR Measurement of Time Constants

TDR Displays with Limited Bandwidth

References

TDR Fundamentals, Hewlett Packard App. Note 62

HP teaching tools WWW page, http://www.tmo.hp.com/tmo/iia/edcorner

High Bandwidth Oscilloscope Sampling Architectures, HP product note 54120-3, August 1989