New Horizon College of Engineering, Bangalore Autonomous College affiliated to VTU, Accredited by NAAC with 'A' Grade& NBA

Makeup Examination May 2022

FUNDAMENTALS OF DATA SCIENCE

Max. Marks: 100 Duration: 3 hrs

Answer five full questions choosing one complete question from each module.

	Module 1			
1 a)	Describe the interdisciplinary interplay involved in data science through a Venn diagram.	10	L1	CO1
b)	Illustrate how educational data science could empower the educators?	5	L3	CO1
c)	"Facebook has become a hub of innovation where it has been using advanced techniques in data science to study user behavior and gain insights to improve their product."	5	L3	CO1
	Draw any ONE of infographic, which you like the most in Facebook and also justify how it			
	quantizes the particular information in data science perspectives.			
	OR			
2 a)	List the essential elements of SIX - steps of data science life cycle. Also identify and	10	L1	CO1
	annotate the steps for"Uber case study which uses the data to make rides better".			
b)	How to use the Predictive and prescriptive analytics in data science?	5	L3	CO1
c)	Compute the levels of measurement of below mentioned data:	5	L3	CO1
	i. Commuting times to work			
	ii. Ages (in years) of FDS class students			
	iii. Ice cream flavor preference iv			
	IV. I cars of important motorion			
	v. Instructors classified as: Easy, Difficult or Impossible			
	Module 2			
3 a)	Predict the use of NumPy's vectorized functions for performing optimized numerical	10	L2	CO2
	computations on arrays. Also compare the performance of a simple non-vectorized			
	computation to a vectorized one.			
b)	Derive a Numpy code to calculate the determinants, traces, rank and nullity of a matrix.	5	L4	CO2
c)	Examine the inner product of two real arrays <s,s> and check whether it is a positive</s,s>	5	L4	CO2
	definite or not. $S = \begin{bmatrix} 2i & 3+3i & -i \end{bmatrix}$			

0	T
	IK.
•	

- 4 Predict the Euclidean Distance, Manhattan Distance and Minkowski distances between the 10 L2 CO2 data points P (1, 2, 3) and Q (4, 5, 6) with the help of Numpy code.
- b) Identify how the hyperplane works as a decision boundary to help in classifying data point's 5 L4 CO2 in data science. Also Find an equation for the plane passing through the points Q (-1, 1, 2), R (-4, 2, 2) and S (-2, 1, 5).
- c) "Decomposing a matrix in terms of its eigenvalues and its eigenvectors gives valuable 5 L4 CO2 insights into the properties of the matrix". Investigate on this vector and scalar value by using the python code.

Module 3

5 a) Draw the usage of Posterior Probability. Also compute the solution for the given problem 10 L3 CO3 using the Bayes' theorem.

The Medical Test involves a genetic test:

1% of people have a certain genetic defect.

90% of tests for the gene detect the defect (true positives).

9.6% of the tests are false positives.

If a person gets a positive test result, What are the odds they actually have the genetic defect?

b) Compute using Poisson Discrete Random Variable distributions:

Some vehicles pass through a junction on a busy road at an average rate of 300 per hour.

- i. Find out the probability that none passes in a given minute.
- ii. What is the expected number of passing in two minutes?
- iii. Find the probability that this expected number found above actually pass through in a given two-minute period.

OR

- 6 a) I. Illustrate whether the statement describes inferential statistics or descriptive statistics: 10 L3
 - i. The average age of the students in a statistics class is 21 years.
 - ii. The chances of winning the Manipur Lottery are one chance in twenty-two million.
 - iii. There is a relationship between smoking cigarettes and getting emphysema.
 - iv. From past figures, it is predicted that 39% of the registered voters in Karnataka will vote in the June primary.
 - II. For the studies described, compute the population, sample, population parameters, and sample statistics: "In a USA Today Internet poll, readers responded voluntarily to the question "Do you consume at least one caffeinated beverage every day?"

10 L3

CO₄

CO₃

b)	ANOVA: Suppose the Benz wants to examine		Compact cars	Midsize cars	Full-size cars	10	L3	CO4
	the safety of compact cars, midsize cars, and	1	643	469	484			
	full-size cars. It collects a sample of three for		655	427	456			
	each of the treatments (cars types). Using the		702	525	402			
	hypothetical data provided aside, Compute wheth	er	the mean	pressure a	applied to the	2		
	driver's head during a crash test is equal for each typ	pes	of car. Use	$\alpha = 5\%$.				

Module 4

- 7a) Derive the python code for the dataset having Average_Pulse and Calorie_Burnage values 10 L4 CO5 using a Linear Regression Using One Explanatory Variable.
- b) Characterize the important trade-offs between K-NN and SVM algorithms. Also 10 L4 CO5 investigate the case study using KNN for predicting results:

There is a Car manufacturer company that has manufactured a new SUV car. The company wants to give the ads to the users who are interested in buying that SUV. So for this problem, we have a dataset that contains multiple users' information through the social network. The dataset contains lots of information but the **Estimated Salary** and **Age** we will consider for the independent variable and the **Purchased variable** is for the dependent variable.

Below is the dataset:

User ID	Gender	Age	EstimatedSalary	Purchased
15624510	Male	19	19000	0
15810944	Male	35	20000	0
15668575	Female	26	43000	0
15603246	Female	27	57000	0
15804002	Male	19	76000	0
15728773	Male	27	58000	0
15598044	Female	27	84000	0
15694829	Female	32	150000	1
15600575	Male	25	33000	0
15727311	Female	35	65000	0
15570769	Female	26	80000	0
15606274	Female	26	52000	0
15746139	Male	20	86000	0
15704987	Male	32	18000	0
15628972	Male	18	82000	0
15697686	Male	29	80000	0
15733883	Male	47	25000	1
15617482	Male	45	26000	1
15704583	Male	46	28000	1
15621083	Female	48	29000	1
15649487	Male	45	22000	1
15736760	Female	47	49000	1

OR

8 a) Derive K-means clustering procedure to divide the data into 2-clusters. The datasets are as 10 L4 CO5 follows.

Dataset	A	1	2	2	3	4	5
	В	1	1	3	2	3	5

b) Examine the PCA procedure to reduce the number of variables in a data set, while 10 L4 CO5 preserving as much information as possible.

Module 5

- 9 a) Evaluate the components of Tableau architecture & server in detail. 10 L5 CO6
- b) Interpret about the data connectors to provide an interface to connect external data sources 10 L5 CO6 to Tableau Data Server.

OR

- 10a) Recommend the order of operations in which the filters are executed to perform the actions 10 L5 CO6 on view in Tableau.
- b) How to decide choosing the charts to analyze data using Tableau? Evaluate the steps to 10 L5 CO6 build charts automatically with ask data as well as customized fields in the data pane.

USN						
						ı

New Horizon College of Engineering, Bangalore Autonomous College affiliated to VTU, Accredited by NAAC with 'A' Grade& NBA

Makeup Examination May 2022

Cyber Security, Forensics and Law

Duration	: 3 hrs	Max	k. Marks:	100
	Answer five full questions choosing one complete question from			
	Module 1			
1 a) b)	Define cybercrime. How do we classify cybercrimes? Identify the phases involved in planning a cybercrime by an attacker.	10 10	L1 L1	CO1
	OR			
2 a) b)	Define cyber terrorism. Who are the different types of cyber criminals? Describe Cyber stalking in detail	10 10	L1 L1	CO1
	Module 2		70.0	
3 a)	Explain SQL Injection attack	10	L2	CO2
b)	Discuss key loggers and their different types	10	L2	CO2
	OR			
4 a) b)	Explain Steganography and discuss how it is different from Cryptography Compare the levels of DoS Attacks with an illustration.	10 10	L2 L2	CO2 CO2
	Module 3			
5 a) b)	Discuss the challenges to Indian law and Cybercrime scenario in India Illustrate the positive aspects of the ITA 2000	10 10	L2 L3	CO3
	OR			
6 a)	Explain the need for cyber laws in India.	10	L2	CO3
b)	Illustrate the weak areas in Indian IT Act 2000.	10	L3	CO3
	Module 4			
7a)	Illustrate the challenges in computer forensics.	10	L3	CO4
b)	Derive some of the best practices in handling digital evidence.	10	L4	CO5
	OR			
8 a)	Illustrate the phases in computer forensics.	10	L3	CO4
b)	Examine the relevance of OSI 7-layer model to computer forensics.	10	L4	CO5
	Module 5			
9 a)	Derive the two ways in which PDA forensics tools acquire data.	10	L4	CO6
b)	Identify the key organizational guidelines on cell phone forensics.	10	L4	CO6
4121.5	OR			
10a)	Examine the role of digital forensics in litigations.	10	L4	CO6
b)	Identify some of the techno-legal challenges involved in collecting the evidence from hand held devices.	10	L4	CO6

USN					

New Horizon College of Engineering, Bangalore Autonomous College affiliated to VTU, Accredited by NAAC with 'A' Grade & NBA

Makeup Examination May 2022

DEEP LEARNING

D	uration:	3 hrs		M	ax. Ma	rks: 100
		Answer five full question	ons choosing one complete question from each	mod	ule.	
			Module 1			
	1 a)	Explain the Feed Forward Neural N works?	etwork? How does a Feed Forward Neural Network	10	L2	CO1
	b)	Illustrate the following Hyper Paran i) Number of Hidden Layers iii) Momentum	neters with an example. ii) Learning Rate iv) Activation Functions OR	10	L3	CO1
	2 a)	Distinguish between i) Neural Networks and Deep Learn ii) Activation Functions and Loss Fu	ing	10	L2	CO1
	b)	Illustrate the Perception Learning A		10	L3	CO1
	3 a) b)	Discuss the Deep Learning uses in a Characterize the Core Components of Network.	of Common Architectural Principles of Deep	10 10	L2 L4	CO2 CO2
	4 a) b)	List and Explain the Applications of Examine the types of Auto encoders	OR Deep Learning in Artificial Intelligence. Module 3	10 10	L2 L4	CO2 CO2
	- 1					
	5 a) b)	Characterize the Technique of LSTN Interpret the architecture of Convolu	M in Recurrent Neural Networks. Ition Neural Network with an illustration. OR	10 10	L4 L5	CO3 CO4
	6 a) b)	Characterize the Recurrent Neural N Justify the following Fundamental E i) Unsupervised Pre-Trained Networii) Recursive Neural Network	letwork in detail. Deep Learning Architectures with example	10 10	L4 L5	CO3 CO4
			Module 4			
	7a) b)	Explain different Weight Initialization How do you fine tune a Deep Learning	on Technique? ing Model, Justify?	10 10	L2 L5	CO5 C05
	8 a)	Explain the following terms i) Output Layer iii) Parameter Count	ii) Working with Layer Count iv) Memory	10	L2	CO5
	b)		number of layers and nodes in a Neural Network?	10	L5	CO5
			Module 5			
	9 a) b)	Explain Computer Vision and Speec Classify the deep learning application	h Recognition in Deep Learning? ns used in healthcare for diagnosing the diseases? OR	10 10	L2 L3	CO6 CO6
	10a) b)	Explain the Recommender Systems in Classify the Large-Scale Deep Learn		10 10	L2 L3	CO6 CO6

Max. Marks: 100

Duration: 3 hrs

New Horizon College of Engineering, Bangalore

Autonomous College affiliated to VTU, Accredited by NAAC with 'A' Grade& NBA

Makeup Examination May 2022

ROBOTICS

Answer five full questions choosing one complete question from each module. Module 1 Describe Robot and three laws of Robotics. 1 a) 7 L1 CO₁ 7 Discuss three Robot Manipulator joints with diagrams. L2 b) CO₁ c) Classify the Robots based on physical configuration and explain each one. L3 CO₁ OR 2 a) Draw Robot Anatomy and explain its parts. 7 L1 CO₁ Discuss Roll, Yaw and pitch with diagram. 7 L2 CO₁ b) Classify the Robots based on Control and explain each one. c) L3 CO₁ Module 2 Classify the three Robotic Drive system and explain. 7 3 a) L3 CO₂ b) Illustrate the working of DC Servo Motor with diagram. 7 L3 CO₂ c) Define and draw two-finger mechanical gripper and explain its working 6 L1 CO₂ OR Classify the End effectors and explain. 4 a) L3 CO₂ Illustrate how the magnetic fields produced by two windings of AC motor keep b) 7 L3 CO₂ continuous motion of rotation. Define permanent magnet stepper motor and explain its working with a neat L1 c) CO₂ diagram. Module 3 5 a) Describe the different features of the Sensors. 1.1 CO₃ Categorize the Robotic applications of Machine Vision. b) L3 CO₃ Organize an absolute encoder for finding shaft angle and explain its working c) L4 CO₃ with a diagram. OR Describe the working principle of LVDT with a diagram. 6 a) L1 CO₃ b) Consider a vision system using a videocon tube. An analog video signal is L3 CO₃ generated for each line of the 512 line comprising the faceplate. The Sampling capability of A/D converter is 100ns. This is the cycle time required to complete the A/D conversion process for one pixel. Using the American standard of 33.33ms to scan the entire faceplate consisting of 512 lines, Compute the Sampling rate and the number of pixels that can be processed per line. c) Identify a proximity sensor to detect metallic and non metallic objects and L4 CO3 explain its working with a diagram.

	Module 4			
7a)	Explain composite matrix in Cylindrical Coordinate system.	6	L2	CO4
b)	Identify DH parameters to prove ${}^{i-1}{}_iT$ =ROT(Z, Θ_i) TRANS(Z, d_i) ROT(X, α_i) TRANS(X, a_i)	6	L3	CO4
c)	Organize the robot programming language commands to direct the robot for pick and place an objects.	8	L4	CO6
	OR			
8 a)	Explain composite matrix in Spherical Coordinate system.	6	L2	CO4
b)	Compute forward kinematics for the given figure	6	L3	CO4

c)	Analyze the different robotic programming languages and its features.	8	L4	CO6	
	Module 5				
9 a)	Explain Automated Guided Vehicles.	7	L2	CO5	
b)	Classify the different economic analysis of Robots in detail.	7	L3	CO5	
c)	Identify the different direct costs associated with robot project.	6	L4	CO5	
	OR				
10a	Explain Rail Guided Vehicles.	7	L2	CO5	
b)	Classify the different Safety sensors and safety monitoring of Robots in detail.	7	L3	CO5	
c)	Identify the different in-direct costs associated with robot project.	6	L4	CO5	

New Horizon College of Engineering, Bangalore Autonomous College affiliated to VTU, Accredited by NAAC with 'A' Grade& NBA

Makeup Examination May 2022

DATA ANALYTICS

Dura	tion: 3 hrs			400	
Dura	Answer five full questions choosing one complete question from each mod	Max. N	1arks:	100	
	Module 1	uie.			
1 a)	Write short notes on dimensional modeling	10	LI	COI	
b)	Explain in detail about fact constellation schema	10	L2	COI	
	OR				
2 a)	Describe aggregate fact tables	10	L1	CO1	
b)	Discuss about different phases in data analytics	10	L2	CO1	
	Module 2				
3 a)	Illustrate the use aggregate function in SQL with a suitable example	10	L3	CO2	
b)	Draw a neat diagram and explain high availability feature of Vertica	10	L3	CO2	
1 -1	OR Classic UCC ACCUMULATION OR				
4 a)	Classify different features of Vertica analytics platform	10	L3	CO2	
b)	Illustrate the uses of encoding and compression mechanism	10	L3	CO2	
- \	Module 3				
5 a)	Describe replication and segmentation	10	LI	CO3	
b)	Explain in detail about the role of data base designer in design process	10	L2	CO4	
6 a)	Write short notes on WOS and ROS	10		603	
b)		10	L1	CO3	
0)	Summarize the working of COPY command with a neat diagram	10	L2	CO4	
7a)	Module 4				
	Analyze different Google analytics tools with suitable examples	10	L4	CO5	
b)	Evaluate the different steps of closed loop model with a suitable diagram	10	L5	CO5	
0 0)	OR				
8 a)	Examine web analytics process in detail with a neat diagram	10	L4	CO5	
b)	Interpret the different reports generated on Google analytics	10	L5	CO5	
	Module 5				
9 a)	Examine different methods of marketing analytics	10	L4	CO6	
b)	Evaluate need based segmentation with an example	10	L5	CO6	
10a)	OR		1400	1202077	
	Analyze the different stages in target marketing strategy development	10	L4	CO6	
b)	Evaluate different steps to be followed in marketing analytics with suitable example:	3 10	L5	CO6	