RealWaste

Computer Vision Material Classification

Holden Gill, Jerry Gonzalez, Hans Hernandez, Angie Jaimes

Problem

- The percentage of recycling that actually gets recycled is both surprising and disconcerting (35%).
- Traditional methods like visual inspection and manual sorting have limitations such as subjectivity and high labor requirements.

Goal

- To develop a computer vision based classification tool to:
 - a. Remove, or at least minimize need of human intervention to sort waste
 - b. Improve speed of which waste can be sorted

Dataset (RealWaste 2023 Image Set)

- 4,752 images, 9 material classes
 - Single item per image
 - 525 x 524 x 3 (RGB)

Histogram of Label Counts 800 600 400 200 Food Organics Paper Metal Plastic Vegetation Labels

Process

- Relabel images into: trash, recyclable, compost
 - Glass, Cardboard, Paper, Metal, Plastic = recyclable
 - Food Organics, Vegetation = compostable
 - Textile Trash, Miscellaneous Trash = trash
- Remove Background (RemBG tool) which 0's out backgrounds
- Split into Train/Test
- Investigate/Pick Features
- Classify (optimize)

Features - Color Distributions

Count of values within each channel of the image (1-255) for both RGB and HSV channels

Features - Color Distributions

RGB combined (765 features)

- R 255 counts + G 255 counts + B 255 counts
- PCA to 100 components (99.5% Variance explained)

Features - Color Distributions

HSV combined (689 features)

- H 179 counts + S 255 counts + V 255 counts
- PCA to 100 components (99.5% Variance explained)

Features - Corner Counts

- Grayscale image -> bilateral filter blur > harris corner detection -> count number of corners >0.01*max(corner)
- 1 Feature per image

Features - Embeddings from pretrained model VGG16

Features before PCA: 25088 PCA to 1898 components

classes

Features - Embeddings from pretrained model VGG16

Accuracy: 85%

PCA reduced Confusion Matrix

PCA reduced ROC Curves

Features - Embeddings from pre-trained model EfficientNet

Features before PCA: 62720

Features after PCA: 2329

Features - Embeddings from pretrained model EfficientNet

Accuracy: 89.7% F1 Score: 90%

Unused Features

- Canny Edge Detector
 - Too many features for below average accuracy results
- Histogram of Gradients
 - Not useful on object detection, more useful for human face detection
- Orb
 - Overall low accuracy results
- RESNET50
 - EfficientNet and VGG16 provided better results

Model 1 - Logistic RegressionFeature Set Selection

Corners	RGB Colors	HSV Colors	VGG	EfficientNet	Val. Acc.	
yes	yes	no	yes	no	87	
yes	yes	no	no	yes	87.8	
yes	no	no	yes	yes	85.1	
yes	yes	no	yes	yes	82	
yes	yes	yes	yes	yes	89	

Model 1 - Hyperparameter Tuning

Best parameters found: {'C': 0.3593813663804626,

'penalty': 'I1', 'solver': 'liblinear'}

Misclassifications

True Label: Trash / Predicted Label = Recyclable

True Label: Compost / Predicted Label = Recyclable

True Label: Trash / Predicted Label = Recyclable

Model 2 - Support Vector Machine

- Hyperparameter Optimization
 - Optimized on full feature set
 Corners, RGB, HSV, VGG, EfficientNet
 - 5-fold cross validation
 - C (regularization parameter): [0.1,50]
- Kernel: linear, polynomial, rbf, sigmoid
- Gamma (kernel coefficient): [.00001,1]
- Weighting: {trash: 0.4, rec: 0.2, comp: 0.4}
 Vs. Downsampling (equal # images)
- Best parameters
 - Weighting: C=1, kernel=linear, gamma=0.1
 - O Downsampling: C=4, kernel=rbf, gamma=0.00005

Model 2 - Support Vector Machine Feature Set Selection

Corners	RGB Colors	HSV Colors	VGG	EfficientNet	Val. Acc.
yes	yes	no	yes	no	72.59
yes	yes	no	no	yes	68.79
yes	no	no	yes	yes	72.07
yes	yes	no	yes	yes	76.21
yes	yes	yes	yes	yes	79.48

Model 2 - Support Vector Machine

Final Validation Results

- All Features
 - Corners, RGB, HSV, VGG, Efficientnet
- Accuracy .795
- F1 Score .795

Model limitations

- Small dataset (~5k images)
- Grouped Classes Flawed
 - E.g. Plastic can be both trash and recyclable (nearly impossible to differentiate visually)
 - Greatly unbalanced dataset
- Remove background not perfect
- High variability within class objects and orientations
- Explore additional classification models
 - Eg. Random Forest, K-NN
- Limited computational resources

Conclusion

 Top features: Harris Corner Detection method, RGB and HSV color distributions, VGG-16, and EfficientNet

- Key Findings:
 - Deep learning embeddings with traditional image features provided a robust feature set.
 - Promising results that could significantly impact recycling rates and environmental sustainability
- Future Work
 - Refine our models and explore additional computational techniques to overcome current limitations

Q&A

