

Universidade Federal da Paraíba

Coordenação do Curso de Ciência de Dados e Inteligência Artificial

Compromisso Viés-Variância e Overfitting

Prof. Gilberto Farias

Roteiro

- Tipos de erro
 - Como eliminar ruído da amostra?
 - Como eliminar viés da amostra?
- Compromisso Viés-Variância
- Overfitting
 - Definição
 - Regularização
 - Prática 1 : Heurística Weight Decay

$erro = vi\acute{e}s + ru\acute{i}do$

boa precisão

ruído

viés e ruído

Como identificar os erros no julgamento humano??

Ruído é identificado pela variância dos dados

Viés precisa do alvo para ser identificado

Como computar o viés de uma previsão/julgamento?

Previsão da alta na bolsa de valores no ano de 2022 por especialistas

Distribuição dos erros nas previsões dos especialistas

Como eliminar viés da amostra?

Uma amostra de classificações/julgamentos não representa o alvo.

Não tem como eliminar o viés da amostra

E os erros no julgamento das funções inferidas dos dados??

julgador

Como eliminar ruído no Aprendizado Supervisionado?

Compromisso Viés-Variância

Compromisso de aproximação - generalização

- Queremos E_{out} pequeno \rightarrow boa aproximação de f fora da amostra;
- H complexo \rightarrow melhor chance de aproximar de f;
- H mais complexo → maior chance de generalizar fora da amostra;

Mais fácil ganhar na loteria!

• Ideal $H = \{f\}$

Quantificando o compromisso

 A análise VC apresenta um limite de generalização de aprendizado:

$$E_{out} \leq E_{in} + \Omega$$

• Um conjunto H simples pode falhar na aproximação a função alvo f

 $E_{in} \uparrow$

 Um conjunto H complexo pode falhar na generalização devido a seus termos complexos (aprender ruído)

 $E_{out} \uparrow$

Viés - Variância

- A análise viés-variância decompõe o E_{out} em:
 - Quão bem H pode se aproximar de f
 - Quão bem podemos encontrar um bom $h \in H$
- Para a análise viés variância tanto o conjunto de H como o algoritmo de aprendizagem A importam:
 - $g^{(D)}$ da regressão linear é diferente da $g^{(D)}$ da regressão logística
- Análise viés-variância não pode ser implementada pois depende de f. É uma ferramenta conceitual utilizada na regularização

Desmembrando E_{out}

$$E_{out} = \mathbb{E}_{\mathbf{x}} \left[\left(g^{(D)}(\mathbf{x}) - f(\mathbf{x}) \right)^2 \right]$$

$$vies(\mathbf{x}) = \mathbb{E}_{\mathbf{x}}[(\bar{g}(\mathbf{x}) - f(\mathbf{x}))^2]$$

$$var(\mathbf{x}) = \mathbb{E}_{\mathbf{x}}[(g^{(D)}(\mathbf{x}) - \bar{g}(\mathbf{x}))^2]$$

 $\bar{g}(x)$: é a função média entre todos os possíveis conjuntos de dados $D_1 ... D_k$

Desmembrando E_{out}

$$E_{out} = \mathbb{E}_{\mathbf{x}} \left[\left(g^{(D)}(\mathbf{x}) - f(\mathbf{x}) \right)^2 \right]$$

$$vies(\mathbf{x}) = \mathbb{E}_{\mathbf{x}}[(\bar{g}(\mathbf{x}) - f(\mathbf{x}))^2]$$

$$var(\mathbf{x}) = \mathbb{E}_{\mathbf{x}} \left[\left(g^{(D)}(\mathbf{x}) - \bar{g}(\mathbf{x}) \right)^2 \right]$$

$$g^{(D)}(\mathbf{x}) = \bar{g}(\mathbf{x})$$

$$var(\mathbf{x}) = 0$$

vies(x) grande

$$\bar{g}(\mathbf{x})$$
 próximo de f

$$vies(\mathbf{x}) \approx 0$$

var(x) grande

Exemplo: função alvo sin(x)

$$f: [-1, +1] \to \mathbb{R}$$
 $f(x) = \sin(\pi x)$

Duas amostras apenas! N=2

Modelos de Aprendizagem utilizados:

$$H_0$$
: $h(x) = b$

$$H_1$$
: $h(x) = ax + b$

Quem é o melhor H_0 ou H_1 ?

Aproximação - $H_0 \times H_1$

Aprendizado - $H_0 \times H_1$

Viés e Variância — H_0

Viés e Variância — H_1

$H_0 \times H_1$

$$vi\acute{e}s = 0.50$$

$$var = 0.25$$

$$vi\acute{e}s = 0.21$$

$$var = 1.69$$

Lição sobre aprendizagem

Escolha a complexidade do modelo

com os recursos dos dados, não com a complexidade da função alvo

Overfitting: "Aprender os dados mais que o esperado"

Ocorre quando o E_{in} é pequeno e o E_{out} é grande

 E_{in} sozinho não é um bom guia para a aprendizagem

"Underfitting"

"Overfitting"

Estudo de caso

Função alvo de 10^ª ordem + ruído nos dados

Função alvo de 50ª ordem

Ajustes para os alvos

Com ruído – Alvo 10ª ordem

	2ª ordem	10ª ordem
E_{in}	0,05	0,0034
E_{out}	0,127	9,00

Sem ruído – Alvo 50ª ordem

	2ª ordem	10ª ordem
E_{in}	0,029	10^{-5}
E_{out}	0,120	7680

Curva de Aprendizado

Regularização

$$altura = 0.9 + 0.75 \cdot peso$$
$$g(x) = w_0 + w_1 \cdot peso$$

$altura = 0,4 + 1,3 \cdot peso$

$altura = 0.4 + 1.3 \cdot peso$

Regularização

Ideia:

- Aumentar um pouco o viés
- Diminuir a Variância

Regularização - Penalidade L_2

$$E_{aug}(w) = E_{in}(w) + \lambda w^T w$$
Penalidade L_2

Gradiente Descendente:

Total Derivada =
$$\nabla E_{in}(w(t)) + 2 \lambda w(t)$$

Heurística Weight Decay

