

Foundations of Certified Programming Language and Compiler Design

Dr.-Ing. Sebastian Ertel

Composable Operating Systems Group, Barkhausen Institute

Outline

Lecture	Logic Cog/Lean	Formalisms	PL Haskell
1	Propositional and first-order logic		
2			Functional programming
3		Syntax and Semantics	
4			The untyped lambda calculus
5		Types	
6			The typed lambda calculus
7			Polymorphism
8		Curry-Howard	
9			Higher-order types
10			Dependent types

Goals

Let's enter a more powerful logic system that allows us to express

- (in-)equalities and
- arithmetics.

Motivating examples

Natural numbers with addition:

$$0 + 1 = 1$$

Generalization:

$$0 + x = x$$

• And even tougher ones:

$$x + 0 = x$$
, $x + y = y + x$

- Verification of the correctness of a compiler transformation \mathtt{trans} for a program p:

$$\mathtt{exec}(\mathtt{trans}\;p)=\mathtt{exec}\;p$$

From Propositional to First-Order Logic

Examples: Propositional Logic
$$X_1 \lor X_2 \Rightarrow X_3$$

From Propositional to First-Order Logic


```
Syntax A ::=
                                            formulas/propositions:
                  P(t_1,\ldots,t_n)
                                            predicates on terms
                  A \Rightarrow A
                                            implication
                 A \wedge A
                                            conjunction
                                            truth
                  A \vee A
                                            disjunction
                                            falsity
                                            negation
                  \neg A
                  \forall x.A
                                            universally quantified term variables
                  \exists x.A
                                            existentially quantified term variables
```

Examples:	Propositional Logic	First-Order Logic
	$X_1 \vee X_2 \Rightarrow X_3$	$\forall x. \exists y. (x \times y = 1 \land y \times x = 1)$

Predicates

- . . . with $a::\mathcal{P}\to\mathbb{N}$ defining the arity of predicates.
- Let $\mathcal{P} = \mathcal{X}$ where \mathcal{X} is the set of propositional variables such that $\forall X \in \mathcal{X}.a(X) = 0$,
- then

Propositional formula
$$X \vee \neg Y$$

 $First-order \ formula \\ X() \vee \neg Y()$

Terms

- ... with an associated arity: $a:: \Sigma \to \mathbb{N}$
- and \mathcal{T} as the smallest set of terms.

Bound and Free Variables

- We say: "Term variable x is bound in formula A.
- A variable that is not bound is free.
- A formula A is closed when it does not contain free variables, i.e., $FV(A) = \emptyset$.

Free Variables Definitions and Notation

• . . . of a formula A:

$$FV_A :: A \to \{x | x \in X\}$$

$$FV_A(P(t_1, \dots, t_n)) = FV_t(t_1) \cup \dots \cup FV_t(t_n)$$

$$FV_A(A_1 \Rightarrow A_2) = FV_A(A_1 \lor A_2) = FV_A(A_1 \land A_2) = FV_A(A_1) \cup FV_A(A_2)$$

$$FV_A(\top) = FV_A(\bot) = \emptyset$$

$$FV_A(\neg A_1) = FV_A(A_1)$$

$$FV_A(\forall x.A_1) = FV_A(\exists x.A_1) = FV_A(A_1) \setminus \{x\}$$

• . . . of a term t:

$$FV_t :: t \to \{x|x \in X\}$$

$$FV_t(x) = \{x\}$$

$$FV_t(f(t_1, \dots, t_n)) = FV_t(t_1) \cup \dots \cup FV_t(t_n)$$

• . . . of a context Γ :

$$\begin{array}{rcl} FV_{\Gamma} & :: & \Gamma \rightarrow \{x | x \in X\} \\ FV_{\Gamma}(x:A_1,\ldots,x:A_n) & = & FV_A(A_1) \cup \ldots \cup FV_A(A_n) \end{array}$$

• Notation: $A(x_1, \ldots, x_n)$ where x_1, \ldots, x_n are free variable of A

Substitution

Definition (Substitution)

A substitution is a function $\sigma :: \mathcal{X} \to \mathcal{T}$ such that the set $\{x \in \mathcal{X} | \sigma(x) \neq x\}$ is finite.

- We write $t[\sigma(x)]$ for the term where every occurrence of x in t is replaced by $\sigma(x)$.
- The replacement function is trivial:

$$x[\sigma] = \sigma(x)$$

$$f(t_1, \dots, t_n)[\sigma] = f(t_1[\sigma], \dots, t_n[\sigma])$$

Notation:

$$A(t_1, \ldots t_n)$$
 instead of $A[t_1/x_1, \ldots, t_n/x_n]$

Natural Deduction Rules

• We extend the natural deduction rules of propositional logic with the following rules:

$$\frac{\Gamma \vdash \forall x.A}{\Gamma \vdash A[t/x]} \ (\forall_E) \\ \frac{\Gamma \vdash A}{\Gamma \vdash A_2} \ (\exists_E) \text{ if } x \not\in FV_\Gamma(\Gamma) \\ \frac{\Gamma \vdash A}{\Gamma \vdash A_2} \ (\exists_E) \text{ if } x \not\in FV_\Gamma(\Gamma) \cup FV_A(A_2) \\ \frac{\Gamma \vdash A[t/x]}{\Gamma \vdash \exists x.A} \ (\exists_I)$$

Theories

Definition (First-order Theory)

A first-order theory $\Theta(\mathcal{P}, \Sigma)$ on a set of predicates \mathcal{P} and a signature of terms Σ is a (possibly infinite) set of closed formulas also called *axioms*.

Definition (Provability)

A formula A is *provable* if there is $\Gamma \subseteq \Theta$ such that $\Gamma \vdash A$ is provable.

Properties:

consistent when \bot is not provable in the theory complete when for every formula A, **either** A **or** $\neg A$ is provable in the theory decidable when there is an algorithm that decides whether a given formula is provable or not

The decidable theory of equality with uninterpreted functions

$$\Theta:=(\mathcal{P},\Sigma)$$
 where $\mathcal{P}=\{=:2\}$
$$\Sigma=\{f:n\mid f\in \mathsf{Strings}, n\in\mathbb{N}\}$$

Axioms:

$$\boxed{t=t'} \qquad \qquad \frac{t_2=t_1}{t_1=t_2} \; \text{Symmetry} \qquad \qquad \frac{t_1=t_{12} \quad t_{12}=t_2}{t_1=t_2} \; \text{Transitivity}$$

$$\frac{f=f' \quad t_1=t_1' \quad \dots \quad t_n=t_n'}{f(t_1,\dots,t_n)=f'(t_1',\dots,t_n')} \; \text{Function Congruence}$$

$$\frac{P(A_1,\dots,A_m) \quad A_1=A_1' \quad \dots \quad A_m=A_m'}{P(A_1',\dots,A_m')} \; \text{Predicate Congruence}$$

Presburger Arithmetic

- Axiomatizes the addition over natural numbers.
- Theory of equality over the signature $\Sigma = \{0 : 0, S : 1, + : 2\}$
- with the following axioms:

$$\frac{0=S(x)}{\perp} \ (\operatorname{ax}_{=_{\perp}}) \qquad \frac{S(x)=S(y)}{x=y} \ (S_{\operatorname{inj}}) \qquad \overline{0+x=x} \ (\operatorname{ax}_{+_1}) \qquad \overline{S(x)+y=S(x+y)} \ (\operatorname{ax}_{+_2})$$

$$rac{\pi_0}{orall x.x+0=x}$$
 (cases)

$$\frac{x=0 \vdash x+0=x \quad x=S(y) \vdash S(y)+0=S(y)}{x+0=x} \text{ (cases)}$$


```
\pi_S := \pi_0 := \pi_{\mathsf{Left | Identity}} := \frac{\pi_0 - \pi_S}{\forall x. x + 0 = x} \text{ (cases)} fn \ \mathsf{pi\_left\_identity(x:Nat) \{ \} }
```


$$\pi_S$$
 :=
$$\pi_0$$
 := $0+0=0$ =: $(x+0=x)[0/x]$
$$\pi_{\text{Left Identity}}$$
 :=
$$\frac{\pi_0}{\forall x.x+0=x}$$
 (cases)

$$\frac{\overline{S=S} \text{ } (\mathsf{ax}_{S-\mathsf{cong}}) \quad \frac{\overline{\forall x.f(x)}}{\overline{\forall x.x+0=x}} \text{ } (\mathsf{fun\,cong})}{\overline{\forall x.S(x)+0=S(x)}} = \frac{\overline{S=S} \text{ } (\mathsf{ax}_{S-\mathsf{cong}}) \quad \frac{\overline{\forall x.f(x)}}{\overline{\forall x.x+0=x}} \text{ } (\mathsf{fun\,cong})}{\overline{\forall x.S(x)+0=S(x)}} = \frac{\overline{\forall x.S(x)+0=S(x)}}{S(x)+0=S(x)} \text{ } (\forall E)$$

$$\pi_{S} := \frac{\overline{\forall x.S(x)+0=S(x)}}{S(x)+0=S(x)} \text{ } (\forall E)$$

$$\frac{\overline{S=S}}{\forall x.S(x)+0=S(x+0)} \text{ (ax$_{+2}$)} \qquad \frac{\overline{S=S}}{\forall x.S(x+0)} \frac{\forall x.f(x)}{\forall x.x+0=x} \text{ (fun cong)}$$

$$\frac{\forall x.S(x)+0=S(x)}{\forall x.S(x)+0=S(x)} \text{ (=transitivity)}$$

$$\pi_S := \qquad \frac{\forall x.S(x)+0=S(x)}{S(x)+0=S(x)} \text{ ($\forall E$)}$$

$$\pi_0 := \overline{0+0=0} \text{ (ax$_{+1}$)} \qquad f(n) := \begin{cases} \pi_0 & \text{if n is 0} \\ \pi_S[y/x] & \text{if n is $S(y)$} \end{cases}$$

$$\pi_{\text{Left Identity}} := \frac{\pi_0 & \pi_S}{\forall x.x+0=x} \text{ (cases)} \text{ (cases)} \text{ (ax$_{+2}$)} \text{ (ax$_{+2}$)$$

Induction Principle

$$\frac{\overline{S=S} \text{ } \left(\operatorname{ax}_{S-\operatorname{cong}}\right)}{S(x)+0=S(x+0)} \text{ } \left(\operatorname{ax}_{+2}\right) \frac{\overline{S=S} \text{ } \left(\operatorname{ax}_{S-\operatorname{cong}}\right)}{x+0=x\vdash x+0=x} \text{ } \left(\operatorname{fun\,cong}\right)}{x+0=x\vdash S(x+0)=S(x)} \text{ } \left(\operatorname{tyn\,cong}\right)$$

$$\frac{x+0=x\vdash S(x)+0=S(x)}{x+0=x\Rightarrow S(x)+0=S(x)} \text{ } \left(\Rightarrow_{I}\right)$$

$$\pi_{0} := \overline{0+0=0} \text{ } \left(\operatorname{ax}_{+0}\right)$$

$$\pi_{\text{Left Identity}} := \frac{\pi_{0}}{\forall x.x+0=x} \text{ } \left(\operatorname{Ind}\right) \qquad \qquad \frac{A(0)}{\forall x.A(x)\Rightarrow A(S(x))} \text{ } \left(\operatorname{Ind}\right)}{\forall x.A(x)} \text{ } \left(\operatorname{Ind}\right)$$

Induction Principle

$$\frac{S(x) + 0 = S(x + 0)}{S(x) + 0 = S(x + 0)} \xrightarrow{\text{(ax}_{S-cong})} \frac{\overline{x + 0} = x \vdash x + 0 = x}{x + 0 = x \vdash S(x + 0) = S(x)} \xrightarrow{\text{(fun cong)}} \frac{x + 0 = x \vdash S(x) + 0 = S(x)}{x + 0 = x \Rightarrow S(x) + 0 = S(x)} \xrightarrow{\text{(\Rightarrowi$)}} \frac{x + 0 = x \vdash S(x) + 0 = S(x)}{x + 0 = x \Rightarrow S(x) + 0 = S(x)} \xrightarrow{\text{(\Rightarrowi$)}} \frac{x + 0 = x \vdash S(x) + 0 = S(x)}{x + 0 = x \Rightarrow S(x) + 0 = S(x)} \xrightarrow{\text{(\Rightarrowi$)}} \frac{x + 0 = x \vdash x + 0 = x}{(x + 0)} \xrightarrow{\text{(\Rightarrowi$)}} \frac{x + 0 = x \vdash x + 0 = x}{(x + 0) = S(x)} \xrightarrow{\text{(\Rightarrowi$)}} \frac{x + 0 = x \vdash S(x) + 0 = S(x)}{(x + 0) = S(x)} \xrightarrow{\text{(\Rightarrowi$)}} \frac{x + 0 = x \vdash S(x) + 0 = S(x)}{(x + 0) = S(x)} \xrightarrow{\text{(\Rightarrowi$)}} \frac{x + 0 = x \vdash S(x) + 0 = S(x)}{(x + 0) = S(x)} \xrightarrow{\text{(\Rightarrowi$)}} \frac{x + 0 = x \vdash S(x) + 0 = S(x)}{(x + 0) = S(x)} \xrightarrow{\text{(\Rightarrowi$)}} \frac{x + 0 = x \vdash S(x) + 0 = S(x)}{(x + 0) = S(x)} \xrightarrow{\text{(\Rightarrowi$)}} \frac{x + 0 = x \vdash S(x) + 0 = S(x)}{(x + 0) = S(x)} \xrightarrow{\text{(\Rightarrowi$)}} \frac{x + 0 = x \vdash S(x) + 0 = S(x)}{(x + 0) = S(x)} \xrightarrow{\text{(\Rightarrowi$)}} \frac{x + 0 = x \vdash S(x) + 0 = S(x)}{(x + 0) = S(x)} \xrightarrow{\text{(\Rightarrowi$)}} \frac{x + 0 = x \vdash S(x) + 0 = S(x)}{(x + 0) = S(x)} \xrightarrow{\text{(\Rightarrowi$)}} \frac{x + 0 = x \vdash S(x) + 0 = S(x)}{(x + 0) = S(x)} \xrightarrow{\text{(\Rightarrowi$)}} \frac{x + 0 = x \vdash S(x) + 0 = S(x)}{(x + 0) = S(x)} \xrightarrow{\text{(\Rightarrowi$)}} \frac{x + 0 = x \vdash S(x) + 0 = S(x)}{(x + 0) = S(x)} \xrightarrow{\text{(\Rightarrowi$)}} \frac{x + 0 = x \vdash S(x) + 0 = S(x)}{(x + 0) = S(x)} \xrightarrow{\text{(\Rightarrowi$)}} \frac{x + 0 = x \vdash S(x)}{(x + 0) = S(x)} \xrightarrow{\text{(\Rightarrowi$)}} \frac{x + 0 = x \vdash S(x)}{(x + 0) = S(x)} \xrightarrow{\text{(\Rightarrowi$)}} \frac{x + 0 = x \vdash S(x)}{(x + 0) = S(x)} \xrightarrow{\text{(\Rightarrowi$)}} \frac{x + 0 = x \vdash S(x)}{(x + 0) = S(x)} \xrightarrow{\text{(\Rightarrowi$)}} \frac{x + 0 = x \vdash S(x)}{(x + 0) = S(x)} \xrightarrow{\text{(\Rightarrowi$)}} \frac{x + 0 = x \vdash S(x)}{(x + 0) = S(x)} \xrightarrow{\text{(\Rightarrowi$)}} \frac{x + 0 = x \vdash S(x)}{(x + 0) = S(x)} \xrightarrow{\text{(\Rightarrowi$)}} \frac{x + 0 = x \vdash S(x)}{(x + 0) = S(x)} \xrightarrow{\text{(\Rightarrowi$)}} \frac{x + 0 = x \vdash S(x)}{(x + 0) = S(x)} \xrightarrow{\text{(\Rightarrowi$)}} \frac{x + 0 = x \vdash S(x)}{(x + 0) = S(x)} \xrightarrow{\text{(\Rightarrowi$)}} \frac{x + 0 = x \vdash S(x)}{(x + 0) = S(x)} \xrightarrow{\text{(\Rightarrowi$)}} \frac{x + 0 = x \vdash S(x)}{(x + 0) = S(x)} \xrightarrow{\text{(\Rightarrowi$)}} \frac{x + 0 = x \vdash S(x)}{(x + 0) = S(x)} \xrightarrow{\text{(\Rightarrowi$)}} \frac{x + 0 = x \vdash S(x)}{(x + 0) = S(x)} \xrightarrow{\text{(\Rightarrowi$)}} \frac{x + 0 = x \vdash S(x)}{(x + 0) = S(x)} \xrightarrow{\text{(\Rightarrowi$)}} \frac{x + 0 = x \vdash S(x)}{(x + 0) = S(x)} \xrightarrow{$$

Induction Principle

 π_S

Induction Hypothesis

$$\frac{1}{S(x)+0=S(x+0)} \xrightarrow{(\mathsf{ax}_{+2})} \frac{\overline{S=S} \xrightarrow{(\mathsf{ax}_{S-\mathsf{cong}})} \xrightarrow{x+0=x\vdash x+0=x} \xrightarrow{(\mathsf{ax})} \xrightarrow{(\mathsf{fun \, cong})} x+0=x\vdash S(x+0)=S(x)}{x+0=x\vdash S(x)+0=S(x)} \xrightarrow{(=\mathsf{transitivity})} \pi_S := \frac{x+0=x\vdash S(x)+0=S(x)}{x+0=x\Rightarrow S(x)+0=S(x)} \xrightarrow{(\Rightarrow_I)} \pi_S := \overline{0+0=0} \xrightarrow{(\mathsf{ax}_{+0})} (\mathsf{ax}_{+0})$$

$$\pi_{\text{Left Identity}} \quad := \quad \frac{\pi_0 \quad \pi_S}{\forall x.x+0=x} \ \ \text{(Ind)}$$

$$\frac{A(0) \qquad (\forall x. A(x) \Rightarrow A(S(x))}{\forall x. A \ x} \ (\operatorname{Ind})$$

Induction vs. Cases

$$\frac{x = 0 \vdash A(x) \qquad (\forall x. A(x) \ \Rightarrow \ A(S(x))}{\forall x. A \ x} \ (\mathrm{Ind}) \qquad \frac{x = 0 \vdash A(x) \quad x = S(y) \vdash A(S(y))}{\forall x. A(x)} \ (\mathrm{cases})$$

- Important point to remember:
 - Cases does not provide a induction hypothesis, i.e.,
 - it does not cover recursion!

Induction vs. Recurrence

$$\frac{A(0) \qquad (\forall x. A(x) \Rightarrow A(S(x))}{\forall x. A \; x} \; \; (\operatorname{Ind}) \qquad \qquad \frac{A(0) \qquad (\forall x. A(x) \rightarrow A(S(x))}{\forall x. A \; x} \; \; (\operatorname{Rec})$$

- Look what just happened:
 - We used a proof just like a function!
 - There seems to be a deeper connection between implication and a function (type)?
- Let's explore this connection in this lecture!