SH-ToF: Micro Resolution Time-of-flight Imaging with Super-heterodyne Interferometry

Fengqiang Li¹, Florian Willomizter¹, Prasanna Rangarajan², Mohit Gupta³, Andreas Velten³, Oliver Cossairt¹ ¹Northwestern University, ²Southern Methodist University, ³University of Wisconsin-Madison fengqiang.li@u.northwestern.edu

MOTIVATION

Why ToF cameras for 3D imaging?

- ☐ Large baseline for comparable depth resolution (Triangulation based 3D imaging e.g. structure light camera)
- ☐ ToF camera's compact size

Problem with current ToF cameras

Our motivation

☐ Build a depth camera with micro resolution

BACKGROUND & PROPOSED

ToF camera

Tens MHz Modulation frequency (f_t)

☐ Meters image range but centimeters depth resolution

Michelson Interferometry (MI)

- ☐ Micro depth resolution but micro image range
- □ **Not** able to image optical rough surface (laser speckle)

SH-ToF (Our propose)

- ☐ Micro depth resolution but tunable image range (micro to meters)
- ☐ **Able** to image optical rough surface (laser speckle)

COMPARISON & CONTRIBUTIONS

Our Contributions

- Micro resolution
- ☐ Tunability between depth resolution and depth range
- ☐ 3D scanning on rough surface

PROTOTYPE

 $\delta z [\text{mm}]$ 0.070 0.093 0.221 0.274 0.437

QUANTITATIVE EVALUATION

6.25 GHz

-0.2 -0.1 0 0.1

Scan Angle (rad)

-0.2 -0.1 0 0.1 0.2

3D SCANNING

Folded cardboard

Plaster bust

Regular ToF camera scan SH-ToF scan

ACKNOWLEDGEMENT

