Networks 2: Shortest Paths and Road Networks

- Great circle distances are not accurate
 - Over shorter (< 50 mi) distances
 - In areas with waterways that restrict road travel
- Actual distance using road network more accurate
- Usually want to find the shortest travel time path
 - Not the shortest distance path

Graph Representations

- Complete bipartite directed (or digraph):
 - Suppliers to multiple DCs, single mode of transport

Weighted adjacency matrix

Graph Representations

- Bipartite:
 - One- or two-way connections between nodes in two groups

Graph Representations

- Multigraph:
 - Multiple connections, multiple modes of transport
 - Simple graph does not have multiple connections

IJC = 1	-4	6		
1	-4	18		
1	5	10		
2	4	0		
2 2 3 3	5	13		
3	5	16		
3	5	3		
$no_W =$				
	0	0	24	10
0	0	0	NaN	13
0	0	>><	0	19
24	-0	0	0	0
-0	0	0	0	0
		Ĭ		

Dijkstra Shortest Path Procedure

Path: $1 \leftarrow 3 \leftarrow 2 \leftarrow 4 \leftarrow 5 \leftarrow 6$: 13

Dijkstra Shortest Path Procedure

```
procedure dijkstra(\mathbf{W}, n, s)
S \leftarrow \{\}, \overline{S} \leftarrow \{1,...,n\}
for i \in \overline{S}, d(i) \leftarrow \infty, endfor
d(s) \leftarrow 0, pred(s) \leftarrow 0
while |S| < n
       i \leftarrow \arg\min \left\{ d(j) : j \in \overline{S} \right\}
       S \leftarrow S \cup i, \quad \overline{S} \leftarrow \overline{S} \setminus i
      for j \in \arg\{W_{i(j)}: W_{ij} \neq 0\}
            if d(j) > d(i) + W_{ij}
                    d(j) \leftarrow d(i) + W_{ij}
                    pred(j) \leftarrow i
             endif
      endfor
endwhile
return d, pred
```

Procedure	Problem	Time Complexity
Simplex	LP	$O(2^m)$
Ellipsoid	LP	$O(m^4)$
Hungarian	Transportation	$O(m^3)$
Floyd-Warshall	Shortest Path with Cycles	$O(m^3)$
Dijkstra (linear min)	Shortest Path without Cycles	$O(m^2)$
Dijkstra (Fibonocci heap)	Shortest Path without Cycles	$O(n \log m)$
Number of nodes		m
Number of arcs		n

Other Shortest Path Procedures

- Dijkstra requires that all arcs have positive or negative lengths
 - It is a "label setting" algorithm since step to final solution made as each node labeled
 - Can find longest path (used, e.g., in CPM) by negating all arc lengths
- Networks with only some negative arcs require slower "label correcting" procedures that repeatedly check for optimality at all nodes or detect a negative cycle
 - Requires $O(n^3)$ via Floyd-Warshall algorithm (cf., $O(n^2)$ Dijkstra)
 - Negative arcs used in project scheduling to represent maximum lags between activities
- A* algorithm adds to Dijkstra an heuristic LB estimate of each node's remaining distance to destination
 - Used in AI search for all types of applications (tic-tac-toe, chess)
 - In path planning applications, great circle distance from each node to destination could be used as LB estimate of remaining distance

A* Path Planning Example 1

 $d_{A^*}(\text{Raleigh, Dallas}) = d_{dijk}(\text{Raleigh}, i) + d_{GC}(i, \text{Dallas}), \text{ for each node } i$

A* Path Planning Example 2

- 3-D (x,y,t) A* used for planning path of each container in a DC
- Each container assigned unique priority that determines planning sequence
 - Paths of higher-priority containers become obstacles for subsequent containers

A* Path Planning Example 2

1. Thin

- Remove all degree-2 nodes from network
- Add cost of both arcs incident to each degree-2 node
- If results in multiple arcs between pair of nodes, keep minimum cost

Thinned I-40 Around Raleigh

2. Prune and Reindex

 Extract portion of graph with only those nodes and/or arcs that satisfy some condition

3. Add connector

 Given new nodes, add arcs that connect the new nodes to the existing nodes in a graph and to each other

- Distance of connector
 arcs = GC distance x
 circuity factor (1.3)
- New node connected to 3 closest existing nodes, except if
 - Ratio of closest to 2nd and 3rd closest < threshold (0.1)
 - Distance shorter
 using other connector
 and graph

Computational Geometry

- Design and analysis of algorithms for solving geometric problems
 - Modern studystarted with MichaelShamos in 1975
- Facility location:
 - geometric data
 structures used to
 "simplify" solution
 procedures

Convex Hull

- Find the points that enclose all points
 - Most important data structure
 - Calculated, via Graham's scan in $O(n \log n)$, n points

Delaunay Triangulation

- Find the triangulation of points that maximizes the minimum angle of any triangle
 - Captures proximity relationships
 - Used in 3-D animation
 - Calculated, via divide and conquer, in $O(n \log n)$, n points

3-D Delaunay Triangulation

- Used in computer graphics to render synthetic images
 - Orientation of each triangle face used to determine reflection and shading relative to light sources and other objects

Voronoi Diagram

- Each region defines area closest to a point
 - Open face regions indicate points in convex hull

Delaunay-Voronoi

- Delaunay triangulation is straight-line dual of Voronoi diagram
 - Can easily convert from one to another

