Category O

D. Zack Garza

Sunday $3^{\rm rd}$ May, 2020

Contents

1	Definitions	1
2	List of Notation	2
3	Useful Facts	3
4	SL2 Theory	3
5	SL3	5
Li	st of Definitions	
	4.0.1 Definition	3
Li	ist of Theorems	
1	Definitions	
	 Indecomposable: doesn't decompose as A ⊕ B. Weaker than irreducible. Irreducible: simple, i.e. no nontrivial proper submodules. Implies indecomposable. Completely reducible: Direct sum of irreducibles. Solvable: Derived series terminates. Borel: maximal solvable subalgebra. Radical: Largest solvable ideal. Semisimple: Direct sum of simple modules. – Acts in a diagonalizable way. Reductive: Radical equals center. Artinian: Descending chain condition on submodules. Antidominant weight: ⟨λ + ρ, α[∨]⟩ ∉ Z̄^{>0}, equivalently M(λ) = L(λ). Dominant weight: ⟨λ + ρ, α[∨]⟩ ∉ Z̄^{<0}. Regular weight: λ is regular iff the isotropy/stabilizer group Stab_W(λ) := {w ∈ W wλ = w 1, equivalently Wλ = W so ⟨λ + ρ, α[∨]⟩ ≠ 0 for all α ∈ Φ. 	} =

- Singular weight: Not regular.
- Linked: $\mu \sim \lambda \iff \mu \in W \cdot \lambda$, the orbit of λ under W, a.k.a. the linkage class of λ .
- Socle: Direct sum of all simple submodules.
- Radical: Intersection of all maximal submodules, smallest submodule such that quotient is semisimple.
- Head: $M/\mathrm{rad}(M)$.

2 List of Notation

- $M(\lambda)$: Verma Modules
- $L(\lambda)$: Unique simple quotient of $M(\lambda)$.
- $N(\lambda)$ the maximal submodule of $M(\lambda)$
- The root system

$$\Phi = \left\{ \alpha \in \mathfrak{h}^{\vee} \mid [hx] = \alpha(h)x \ \forall h \in \mathfrak{h} \right\}$$

containing roots α

- Abstractly: spans a Euclidean space, $\lambda \alpha \in \phi \implies \lambda = \pm 1$, and closed under reflections about orthogonal hyperplanes.
- Φ^+ the corresponding positive system (choose a hyperplane not containing any root), $\Phi := \Phi^+ \coprod \Phi^-$.

•

$$s_{\alpha}(\cdot) \coloneqq (\cdot) - 2\langle \cdot, \alpha \rangle \frac{\alpha}{\|\alpha\|^2}$$

the corresponding reflection about the hyperplane H_{α}

- $\mathfrak{g}_{\alpha} := \{x \in \mathfrak{g} \mid [hx] = \alpha(h)x \ \forall h \in \mathfrak{h} \}$ the corresponding root space
- The triangular decomposition

$$\mathfrak{g} = \bigoplus_{\alpha \in \Phi^+} \mathfrak{g}_{\alpha} \oplus \mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi^-} \mathfrak{g}_{-\alpha} \coloneqq \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$$

- Δ the corresponding simple system of size ℓ , i.e $\alpha = \sum_{\delta_k \in \Delta} c_\delta \delta_k$ with $c_\delta \in \mathbb{Z}^{\geq 0}$.
- $\Lambda = \left\{ \lambda \in E \mid \langle \lambda, \ \alpha^{\vee} \rangle \in \mathbb{Z} \ \forall \alpha \in \Phi \right\}$ the integral weight lattice
- $\Lambda^+ = \mathbb{Z}^+\Omega$ the dominant integral weights
 - $-\Omega := \{\bar{\omega}_1, \cdots, \bar{\omega}_\ell\}$ the fundamental weights
- [A:B] the composition factor multiplicity of B in a composition series for A.
- (A:B) the composition factor multiplicity of B in a standard filtration for A.
- $\phi_{[\lambda]}$ the integral root system of λ

- $\Delta_{[\lambda]}$ the corresponding simple system
- $W_{[\lambda]}$ the integral Weyl group of λ
- $\mu \uparrow \lambda$: strong linkage of weights
- $\mathcal{O}_{\chi_{\lambda}}$: the block corresponding to λ .

3 Useful Facts

- λ dominant integral $\implies w\lambda \leq \lambda$ for all W.
- The dot action is given by $w \cdot \lambda = w(\lambda + \rho) \rho$.

4 SL2 Theory

Definition 4.0.1.

The group and the algebra:

$$\begin{split} \mathfrak{sl}(n,\mathbb{C}) &= \Big\{ M \in \mathrm{GL}(n,\mathbb{C}) \ \Big| \ \det(M) = 1 \Big\} \\ \mathfrak{sl}(n,\mathbb{C}) &= \Big\{ M \in \mathrm{GL}(n,\mathbb{C}) \ \Big| \ \mathrm{Tr}(M) = 0 \Big\} \,. \end{split}$$

- The usual representation on \mathbb{C}^2 : h has eigenvalues ± 1 , yields L(1).
- The adjoint representation on \mathbb{C}^3 : ad h = diag(2,0,-2) with eigenvalues $0,\pm 2$, yields L(2).

Generated by

$$x = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad h = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad y = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

with relations

$$[hx] = 2x$$
$$[hy] = -2y$$
$$[xy] = h$$

Some identifications:

$$\begin{split} \Phi &= A_1 \\ \dim \mathfrak{h} &= 1 \\ \Lambda &\cong \mathbb{Z} \\ \Lambda_r &\cong \mathbb{Z}/2\mathbb{Z} \\ W &= \{1, s_0\} \quad \lambda - 2i \iff -(\lambda - 2i) \\ \chi_{\lambda} &= \chi_{\mu} \iff \mu = \lambda, -\lambda - 2 \quad \text{(linked)} \\ \Pi(M(\lambda)) &= \{\lambda, \lambda - 2, \cdots\} \, . \end{split}$$

For λ dominant integral

$$\begin{split} N(\lambda) &\cong L(-\lambda - 2) \\ \dim L(\lambda) &= \lambda + 1 \\ \Pi(L(\lambda)) &= \{\lambda, \lambda - 2, \cdots, -\lambda\} \\ \dim (L(\lambda))_{\mu} &= 1 \qquad \forall \mu = \lambda - 2i. \end{split}$$

• Simple modules are parameterized by dominant integral weights:

$$M(\lambda)$$
 is simple $\iff \lambda \notin \mathbb{Z}^{\geq 0} = \Lambda^+ \iff \dim L(\lambda) = \infty$

Figure 2.2. The action of x and y on the eigenspaces of an irreducible \mathfrak{sl}_2 -module.

Finite-dimensional irreducible representations (i.e. simple modules) of $\mathfrak{sl}(2,\mathbb{C})$ are in bijection with dominant integral weights $n \in \Lambda$, i.e. $n \in \mathbb{Z}^{\geq 0}$, are denoted M(n), and each admits a basis $\left\{\mathbf{v}_i \mid 0 \leq i \leq n\right\}$ where

$$h \cdot v_i = (n - 2i)v_i$$

 $x \cdot v_i = (n - i + 1)v_{i-1}$
 $y \cdot v_i = (i + 1)v_{i+1}$,

setting $v_{-1} = v_{n+1} = 0$ and letting v_0 be the unique vector in L(n) annihilated by x.

- rad $M(\lambda) = N(\lambda)$
- hd $M(\lambda) = L(\lambda)$.
- $M(\lambda)$ for $\lambda > 0$ not integral is simple, however $-\lambda 2 \notin W \cdot \lambda$.
- $\lambda \geq 0 \implies \operatorname{char} L(\lambda) = \operatorname{char} M(\lambda) \operatorname{char} M(s_{\alpha} \cdot \lambda) \text{ where } s_{\alpha} \cdot \lambda = -\lambda 2.$
- For $\lambda \geq 0$, dim $L(\lambda) = \lambda + 1$ and so char $L(\lambda) = e^{\lambda} + e^{\lambda 2} + \dots + e^{-\lambda} = \frac{e^{\lambda + 1} e^{\lambda 1}}{e^1 e^{-1}}$.
- For $\lambda \neq \rho \in \mathbb{Z}$, the composition factors of $M(\lambda)$ are $M(\lambda), L(-\lambda 2)$.
- There are exact sequences

$$\begin{array}{c} 0 \longrightarrow N(\lambda) \longrightarrow M(\lambda) \longrightarrow L(\lambda) \longrightarrow 0 \\ 0 \longrightarrow L(-\lambda-2) \longrightarrow M(\lambda) \longrightarrow L(\lambda) \longrightarrow 0. \\ \\ 0 \longrightarrow N(\lambda) \longrightarrow M(\lambda) \longrightarrow L(\lambda) \longrightarrow 0 \\ \\ \parallel \\ 0 \longrightarrow L(-\lambda-2) \longrightarrow M(\lambda) \longrightarrow L(\lambda) \longrightarrow 0 \end{array}$$

5 SL3

 $\mathfrak{sl}(3,\mathbb{C})$ has root system A_2 :

5 SL3 5

$$\Delta = \{\alpha, \beta\}$$

$$W = \{1, s_{\alpha}, s_{\beta}, s_{\alpha}s_{\beta}, s_{\beta}s_{\alpha}, w_{0}\}.$$

For λ regular, integral, and antidominant:

- $M(\lambda) = L(\lambda)$
- No $M(w \cdot \lambda)$ is simple, all have $L(\lambda) = M(\lambda)$ as unique simple submodule.
- $[M(w \cdot \lambda) : L(\lambda)] = [M(w \cdot \lambda) : L(w \cdot \lambda)] = 1$ for all w.
- char $L(s_{\alpha} \cdot \lambda) = \text{char } M(s_{\alpha} \cdot \lambda) \text{char } M(\lambda).$
- char $M(s_{\alpha} \cdot \lambda) = \text{char } L(s_{\alpha} \cdot \lambda) + \text{char } L(\lambda)$.

5 SL3 6

• The Jantzen filtration when $w \in \{s_{\alpha\beta}, s_{\beta\alpha}, w_0\}$ is given by

$$M(w \cdot \lambda)^0 = M(w \cdot \lambda)$$

$$M(w \cdot \lambda)^1 = ?$$

$$M(w \cdot \lambda)^2 = L(\lambda)$$

$$M(w \cdot \lambda)^{\geq 3} = 0.$$

5 SL3 7