Where We Are

- Motivation
- History
- Parallelism Overview
- Data parallelism
- Model parallelism
 - Inter-op parallelism
 - o Intra-op parallelism
- Auto-parallelization

Recap

- Gray area (indicates devices being idle (a.k.a. Pipeline bubbles).
- Only 1 device activated at a time.
- Pipeline bubble percentage = (D 1) / D, assuming D devices.

Recap

Time

Recap: Chimera

Idea: Store bi-directional stages and combine bidirectional pipeline to further reduce pipeline bubbles.

5

Synchronous Pipeline Schedule Summary

✓ Pros:

 Keep the convergence semantics. The training process is exactly the same as training the neural network on a single device.

X Cons:

- Pipeline bubbles.
- Reducing pipeline bubbles typically requires splitting inputs into smaller components, but too small input to the neural network will reduce the hardware efficiency.

Asynchronous Pipeline Schedules

Idea: Start next round of forward pass before backward pass finishes.

✓ Pros:

No Pipeline bubbles.

X Cons:

- Break the synchronous training semantics. Now the training will involve stalled gradient.
- Algorithms may store multiple versions of model weights for consistency.

AMPNet

Idea: Fully asynchronous. Each device performs forward pass whenever free and updates the weights after every backward pass.

Convergence: Achieve similar accuracy on small datasets (MNIST 97%), hard to

Pipedream

Idea: Enforce the same version of weight for a single input batch by storing multiple weight versions.

Convergence: Similar accuracy on ImageNet with a 5x speedup compared to data parallel.

Con: No memory saving compared to single device case.

Nara yanan, De epak, e t al. "Pipe Dream: gener alized pipeline parallelism f or DNN training." SOSP2 019.

9

Pipedream-2BW

Idea: Reduce Pipedream's memory usage (only store 2 copies) by updating weights less frequently. Weights always stalled by 1 update.

Convergence: Similar training accuracy on language models (BERT/GPT)

10

Nans yanan. De epak, et al. "Mem ony-efficient pipeline-parallele dron taining" (CML 2021.

Imbalanced Pipeline Stages

Pipeline schedules works best with balanced stages:

Frontier: Automatic Stage Partitioning

Goal: Minimize maximum stage latency & maximize parallelization

Reinforcement Learning Based (mainly for device placement):

- 1. Mirhoseini, Azalia, et al. "Device placement optimization with reinforcement learning." *ICML 2017.*
- 2. Gao, Yuanxiang, et al. "Spotlight: Optimizing device placement for training deep neural networks." *ICML 2018*.
- 3. Mirhoseini, Azalia, et al. "A hierarchical model for device placement." *ICLR 2018.*
- Addanki, Ravichandra, et al. "Placeto: Learning generalizable device placement algorithms for distributed machine learning." NeurIPS 2019.
- 5. Zhou, Yanqi, et al. "Gdp: Generalized device placement for dataflow graphs." *Arxiv* 2019.
- 6. Paliwal, Aditya, et al. "Reinforced genetic algorithm learning for optimizing computation graphs." *ICLR 2020.*
- 7. ..

Optimization (Dynamic Programming/Linear Programming) Based:

- 1. Narayanan, Deepak, et al. "PipeDream: generalized pipeline parallelism for DNN training." *SOSP 2019.*
- 2. Tarnawski, Jakub M., et al. "Efficient algorithms for device placement of dnn graph operators." *NeurIPS 2020.*
- 3. Fan, Shiqing, et al. "DAPPLE: A pipelined data parallel approach for training large models." *PPoPP 2021.*
- 4. Tarnawski, Jakub M., Deepak Narayanan, and Amar Phanishayee. "Piper: Multidimensional planner for dnn parallelization." *NeurIPS 2021.*
- 5. Zheng, Lianmin, et al. "Alpa: Automating Inter-and Intra-Operator Parallelism for Distributed Deep Learning." *OSDI* 2022.
- 6. ...

RL-Based Partitioning Algorithm

State: Device assignment plan for a computational graph.

Action: Modify the device assignment of a node.

Reward: Latency difference between the new and old placements.

Trained with **policy gradient** algorithm.

Inter-operator Parallelism Summary

Idea: Assign different operators of the computational graph to different devices and executed in a pipelined fashion.

Method	General computational graph	No pipeline bubbles	Same convergence as single device
Device Placement	×	×	✓
Synchronous Schedule	✓	×	~
Asynchronous Schedule	✓	~	×

Stage Partitioning: Imbalance stage → More pipeline bubble

RL-Based / Optimization-Based Automatic Stage Partitioning

Where We Are

- Motivation
- History
- Parallelism Overview
- Data parallelism
- Model parallelism
 - o Inter-op parallelism
 - Intra-op parallelism
- Auto-parallelization

Recap: Intra-op and Inter-op

Strategy 1: Inter-operator Parallelism

Strategy 2: Intra-operator Parallelism

This section:

- 1. How to parallelize an **operator**?
- 2. How to parallelize a graph?

Element-wise operators

Parallelize loop n

Parallelize both loop n and loop d

a lot of other variants

18

$$i \oint C = A \times B$$

$$\begin{bmatrix} C_1 \\ C_2 \\ C_3 \\ C_4 \end{bmatrix} = \begin{bmatrix} A_1 \\ A_2 \\ A_3 \\ A_4 \end{bmatrix} \times B$$

J A: partially tiled
Device 1 and 2 hold a replicated tile

Device 3 and 4 hold a replicated tile

Matrix multiplication No dependency on the two spatial for-loops. Can arbitrarily split the for-loops on different devices. for i in range(0, N): for j in range(0, M): Accumulation on this reduction loop. for k in range(0, K):← Have to accumulate partial results if we split $C[i,j] = C[i,j] + A[i,k] \times B[k,j]$ this for-loop device 1 device 2 device 3 device 4 Parallelize loop i and j Parallelize loop i and k a lot of other variants Χ

C: got by all-reduce

2D Convolution

Simple case: Parallelize loop n, co, ci, then the parallelization strategies are almost the same as matmul's.

Complicated case: Parallelize loop h and w

Data Parallelism as A Case of Intra-op Parallelism

Replicated Row-partitioned Column-partitioned

Matmul Parallelization Type 1

communication cost = 0

Matmul Parallelization Type 2

communication cost = all-reduce(c)

Re-partition Communication Cost

Different operators' parallelization strategies require different partition format of the same tensor

24

Re-partition Communication Cost

Different operators' parallelization strategies require different partition format of the same tensor

Parallelize All Operators in a Graph

Problem

Minimize Node costs (computation + communication) + Edge costs (re-partition communication)

Solution

Manual design
Randomized search
Dynamic programming
Integer linear programming

Important Projects

Model-specific Intra-op Parallel Strategies

- AlexNet
- Megatron-LM
- GShard MoE

Systems for Intra-op Parallelism

- ZeRO
- Mesh-Tensorflow
- GSPMD
- Tofu
- FlexFlow

AlexNet

Result: increase top-1 accuracy by 1.7%

Assign a group convolution layer to 2 GPUs

Megaton-LM

Result: a large language model with 8.3B parameters that outperforms SOTA results

Figure 3 from the paper : How to partition the MLP in the transformer.

Illustrated with the notations in this tutorial

GShard MoE

Result: a multi-language translation model with 600B parameters that outperforms SOTA

Illustrated with the notations in this class Row-partitioned Replicated Expert-partitioned MoE Normal Layers layers batch matmul matmul all-to-all re-partition communication

ZeRO Optimizer

Problem

Data parallelism replicates gradients, optimizer states and model weights on all devices.

Idea

Partition gradients, optimizer states and model weights.

M is the number of parameters, N is the number of devices.

	Optimizer States (12M)	Gradients (2M)	Model Weights (2M)	Memory Cost	Communication Cost
Data Parallelism	Replicated	Replicated	Replicated	16 <i>M</i>	all-reduce(2M)
ZeRO Stage 1	Partitioned	Replicated	Replicated	$4M + \frac{12M}{N}$	all-reduce(2M)
ZeRO Stage 2	Partitioned	Partitioned	Replicated	$2M + \frac{14M}{N}$	all-reduce(2M)
ZeRO Stage 3	Partitioned	Partitioned	Partitioned	16M N	1.5 all-reduce(2M)

ZeRO Stage 2

Key Idea: all-reduce = reduce-scatter + all-gather

Same communication cost but save memory by partitioning more tensors

ZeRO Stage 3

Mesh-Tensorflow

Map tensor dimension to mesh dimension for parallelism

```
Tensor dimension
batch = mtf.Dimension("batch", b) ←
io = mtf.Dimension("io", d_io)
hidden = mtf.Dimension("hidden", d_h)
# x.shape == [batch, io]
w = mtf.get_variable("w", shape=[io, hidden])
bias = mtf.get_variable("bias", shape=[hidden])
v = mtf.get_variable("v", shape=[hidden, io])
h = mtf.relu(mtf.einsum(x, w, output_shape=[batch, hidden]) + bias)
y = mtf.einsum(h, v, output_shape=[batch, io])
. . .
                                                                          Mesh dimension
mesh_shape = [("rows", r), ("cols", c)]
                                                                          Mapping
computation_layout = [("batch", "rows"), ("hidden", "cols")]
```

GSPMD

- Use annotations to specify partition strategy
- Propagate the annotations to whole graph
- Use compiler to generate SPMD (Single Program Multiple Data) parallel executables

```
# Partition inputs along group (G) dim.

# inputs = split(inputs, 0, D)

# Replicate the gating weights

# wg = replicate(wg)

gates = softmax(einsum("GSM,ME->GSE", inputs, wg))

combine_weights, dispatch_mask = Top2Gating(gating_logits)

dispatched_expert_inputs = einsum(
    "GSEC,GSM->EGCM", dispatch_mask, reshaped_inputs)

# Partition dispatched inputs along expert (E) dim.

# dispatched_expert_inputs = split(dispatched_expert_inputs, 0, D)

h = einsum("EGCM,EMH->EGCH", dispatched_expert_inputs, wi)

...
```

Combine Intra-op Parallelism and Inter-op Parallelism

Narayanan, Deepak, et al. "Efficient large-scale language model training on gpu clusters using megatron-lm." SC 2021 Zheng, Lianmin, et al. "Alpa: Automating Inter-and Intra-Operator Parallelism for Distributed Deep Learning." OSDI 2022

Intra-operator Parallelism Summary

- We can parallelize a single operator by exploiting its internal parallelism
- To do this for a whole computational graph, we need to choose strategies for all nodes in the graph to minimize the communication cost
- Intra-op and inter-op can be combined

Other Techniques for Training Large Models

System-level Memory Optimizations

- Rematerialization/Gradient Checkpointing
- Swapping

ML-level Optimizations

- Quantization
- Sparsification
- Low-rank approximation

Where We Are

- Motivation
- History
- Parallelism Overview
- Data parallelism
- Model parallelism
 - Inter-op parallelism
 - Intra-op parallelism
- Auto-parallelization

Auto-parallelization: Motivation

Auto-parallelization: Problem

max strategy Performance(Model, Cluster)

s.t. strategy \in Inter-op \cup Intra-op

Auto-parallelization: Problem

The Search Space is Huge

#ops in a real model (nodes to color)

#op types (type of nodes) #devices on a cluster (available colors)

100 - 10K 80 - 200+ 10s - 1000s

Automatic Parallelization Methods

Search-based methods

- MCMC:
 - → [Jia et al., 2018]
 - → [Jia et al., 2019]
- Heuristics
 - → [Fan et al., 2021]

The complete list of references is available on the tutorial website

Learning-based methods

- Reinforcement Learning:
 - → [Mirhoseini et al., 2017]
 - → [Mirhoseini et al., 2018]
 - → [Addanki, et al., 2019]
- ML-based cost model:
 - → [Chen et al., 2018],
 - → [Zhou et al., 2020],
 - → [Zhang, 2020]
- Bayesian optimization:
 - → [Sergeev et al., 2018],
 - → [Peng et al., 2019]

Optimization-based methods

- Dynamic programming
 - → [Wang, et al., 2018]
 - → [Narayanan, et al., 2019]
 - → [Li, et al., 2021]
 - → [Narayanan, et al., 2012]
 - → [Tarnawski, et al., 2020]
 - → [Tarnawski, et al., 2021]
- Integer linear programming
 - → [Tarnawski, et al., 2020]
- Hierarchical Optimization
 - → [Zheng, et al., 2022]

General Recipe

Automatic Parallelization Methods

Search-based methods

- MCMC:
 - → [Jia et al., 2018]
 - → [Jia et al., 2019]
- Heuristics
 - → [Fan et al., 2021]

The complete list of references is available on the tutorial website

Learning-based methods

- Reinforcement Learning:
 - → [Mirhoseini et al., 2017]
 - → [Mirhoseini et al., 2018]
 - → [Addanki, et al., 2019]
- ML-based cost model:
 - → [Chen et al., 2018]
 - → [Zhou et al., 2020]
 - → [Zhang, 2020]
- Bayesian optimization:
 - → [Sergeev et al., 2018],
 - → [Peng et al., 2019]

Optimization-based methods

- Dynamic programming
 - → [Wang, et al., 2018]
 - → [Narayanan, et al., 2019]
 - → [Li, et al., 2021]
 - → [Narayanan, et al., 2012]
 - → [Tarnawski, et al., 2020]
 - → [Tarnawski, et al., 2021]
- Integer linear programming
 - → [Tarnawski, et al., 2020]
- Hierarchical optimization
 - → [Zheng, et al., 2022]

ColocRL (a.k.a. Device Placement Optimization)

ColocRL: Model

Figure from [Mirhoseini et al., ICML 2017]

ColocRL: Training

$$\mathbb{E}_{\mathcal{P} \sim \pi(\mathcal{P} \,|\, \mathcal{G};\, heta)}[R(\mathcal{P})||\, \mathcal{G}]$$

 \mathcal{G} : computational graph

 $\mathcal{R}(\mathcal{P})$: Real runtime of a placement

 $\pi(\cdot)$: output distributed of the RNN

ColocRL: Other Improvement

Results Discussion

Tasks	Single-CPU	Single-GPU	#GPUs	Scotch	MinCut	Expert	RL-based	Speedup
RNNLM (batch 64)	6.89	1.57	2 4	13.43 11.52	11.94 10.44	3.81 4.46	1.57 1.57	0.0% 0.0%
NMT (batch 64)	10.72	OOM	2 4	14.19 11.23	11.54 11.78	4.99 4.73	4.04 3.92	23.5% 20.6%
Inception-V3 (batch 32)	26.21	4.60	2 4	25.24 23.41	22.88 24.52	11.22 10.65	4.60 3.85	0.0% 19.0%

Automatic Parallelization Methods

Search-based methods

- MCMC:
 - → [Jia et al., 2018]
 - → [Jia et al., 2019]
- Heuristics
 - → [Fan et al., 2021]

The complete list of references is available on the tutorial website

Learning-based methods

- Reinforcement Learning:
 - → [Mirhoseini et al., 2017
 - → [Mirhoseini et al., 2018]
 - → [Addanki, et al., 2019]
- ML-based cost model:
 - → [Chen et al., 2018]
 - → [Zhou et al., 2020]
 - → [Zhang, 2020]
- Bayesian optimization:
 - → [Sergeev et al., 2018],
 - → [Peng et al., 2019]

Optimization-based methods

- Dynamic programming
 - → [Wang, et al., 2018]
 - → [Narayanan, et al., 2019]
 - → [Li, et al., 2021]
 - → [Narayanan, et al., 2012]
 - → [Tarnawski, et al., 2020]
 - → [Tarnawski, et al., 2021]
- Integer linear programming
 - → [Tarnawski, et al., 2020]
- Hierarchical optimization
 - → Alpa [Zheng, et al., 2022]

Optimization-based Method: Alpa

Inter-op parallelism

Trade-off

	Inter-operator Parallelism	Intra-operator Parallelism
Communication	Less	More
Device Idle Time	More	Less

Intra-op parallelism

Alpa Rationale

Search Space

Computational Graph

Whole Search Space

Alpa Hierarchical Space

Alpa Compiler: Hierarchical Optimization

Computational Graph

. . .

Partitioned Computational Graph

Partitioned Computational Graph

Cluster (2D Device Mesh)

Stage with intra-operator parallelization

Integer Linear Programming Formulation

Decision vector

Minimize Computation cost + Communication cost

Evaluation: Comparing with Previous Works

Outperform the manual baseline by up to 8x.

Generalize to models without manual plans.

Automatic Parallelization Methods

Search-based methods

- Easy to extend the search space
- No training cost
- X High inference cost
- X Not explainable
- X No optimality guarantee

Learning-based methods

- Easy to extend the search space
- X High training cost
- Low inference cost
- X Not explainable
- X No optimality guarantee

Optimization-based methods

- X Non-trivial to extend the search space
- ✓ No training cost
- Medium inference cost
- Explainable
- Some optimality guarantee

Summary: How to Choose Parallelism

- 1. Use automatic compiler if not transformer
- 2. Manual parallelism search for transformers:
- Factors to consider
 - #GPUs you have
 - Model size
 - JCT (Job completion time)
 - Communication bandwidth
 - o etc.

Hao's Ultimate Guide

