Control Theory Tutorial - Car-Like Mobile Robot

Introduction 1

The goal of this tutorial is to teach the usage of Python as a tool for developing and simulating control systems.

Model of a car-like mobile robot $\mathbf{2}$

Figure 1: Car-like mobile robot

Given is a nonlinear kinematic model of a car-like mobile robot, with the following system variables: position (y_1, y_2) and orientation θ in the plane, the steering angle ϕ and the robots lateral velocity v.

$$\dot{y_1} = v\cos(\theta) \tag{1a}$$

$$\dot{y_1} = v \cos(\theta)$$
 (1a)
 $\dot{y_2} = v \sin(\theta)$ (1b)

$$\tan(\phi) = \frac{l\dot{\theta}}{v} \tag{1c}$$

To simulate this system of 1st order ordinary differential equations (ODEs), we define a state

vector $\mathbf{x} = (x_1, x_2, x_3)^{\mathrm{T}}$ and a control vector $\mathbf{u} = (u_1, u_2)^{\mathrm{T}}$:

$$\begin{aligned} x_1 &= y_1 & u_1 &= v \\ x_2 &= y_2 & u_2 &= \phi \\ x_3 &= \theta & \end{aligned}$$

Now we can express (1) in a general form $\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u})$:

$$\underbrace{\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{pmatrix}}_{\dot{\mathbf{x}}} = \underbrace{\begin{pmatrix} u_1 \cos(x_3) \\ u_1 \sin(x_3) \\ \frac{1}{l} u_1 \tan(u_2) \end{pmatrix}}_{f(\mathbf{x}, \mathbf{u})} \tag{2}$$

3 Storing parameters

We store the parameters of our system in a class Parameters().

```
class Parameters(object):
    pass
```

We therefore create an entity of Parameters() and assign attributes.

```
prmtrs = Parameters() # entity of class Parameters
prmtrs.l = 0.3 # define car length
prmtrs.w = prmtrs.l*0.3 # define car width
```

4 Simulation with SciPy's integrate package

To simulate (2) we need to implement the ODE system as a function in Python.

```
def ode(x, t, prmtrs):
    """ Function of the robots kinematics
    Args:
       x: state
        t: time
        prmtrs(object): parameter container class
    Returns:
       dxdt: state derivative
    x1, x2, x3 = x \# state vector
   u1, u2 = control(x, t) # control vector
   \# dxdt = f(x, u)
    dxdt = np.array([u1 * cos(x3),
                     u1 * sin(x3),
                     1 / prmtrs.l * u1 * tan(u2)])
   # return state derivative
   return dxdt
```

In order to use $\cos(\cdot), \sin(\cdot)$ and $\tan(\cdot)$ we need to import these functions at the beginning of our code.

```
import numpy as np
from numpy import cos, sin, tan
```

The control law is also implemented as function.

As a first simple heuristic, we set (u_1, u_2) equal to constant values. Later we can implement an arbitrary function, for expample a feedback law $\mathbf{u} = k(\mathbf{x})$.

4.1 Solution of the initial value problem (IVP) using SciPy

To simulate (2) we need to solve an IVP. In *Python* we can use the library *SciPy* and its subpackage *integrate*, which delivers different solvers for IVPs.

```
from scipy.integrate import odeint
```

We then define the simulation time and the initial state value.

```
\begin{array}{l} t0 = 0 \;\#\; start\\ tend = 10 \;\#\; end\\ dt = 0.01 \;\#\; stepsize\; (not\; of\; the\; solver\;,\; just\; evaluation\; points)\\ tt = np.\, arange(t0\;,\; tend\;,\; dt) \;\#\; simulation\; interval\\ \\ x0 = \left[0\;,\; 0\;,\; 0\right] \;\#\; initial\; state\; value \end{array}
```

Now we can parse these parameters and our ODE function to the solver.

```
x_traj = odeint(ode, x0, tt, args=(prmtrs, )) # solution of the IVP
```

The output is an array of size $length(tt) \times lenght(\mathbf{x})$.

5 Plotting using Matplotlib

For plotting the output of our simulation, we use the library Matplotlib and its sub-package pyplot, which delivers a user experience similar to MATLAB.

```
import matplotlib.pyplot as plt
```

We encase our plotting instructions in a function. This way, we can define parameters of our plot, which we would like to change easily, for example figure width, or if the figure should be saved on the hard drive.

```
def plot_data(fig_width, fig_height, save=False):
    ""Plotting function of simulated state and actions
    Args:
        fig_width: figure width in cm
        fig_height: figure height in cm
        save (bool) : save figure (default: False)
    Returns: None
   # creating a figure with 2 subplots, that share the x-axis
    fig1, (ax1, ax2) = plt.subplots(2, sharex=True)
   # set figure size to desired values
    fig1.set\_size\_inches (fig\_width \ / \ 2.54 \,, \ fig\_height \ / \ 2.54)
   # plot y_1 in subplot 1
    ax1.plot(tt, x_traj[:, 0], label='$y_1(t)$', lw=1, color='r')
   # plot y_2 in subplot 1
    ax1.plot(tt, x_traj[:, 1], label='$y_2(t)$', lw=1, color='b')
   # plot theta in subplot 2
    ax2.plot(tt, x_traj[:, 2], label=r'$\theta(t), lw=1, color=g')
    ax1.grid(True)
    ax2.grid(True)
   # set the labels on the x and y axis in subplot 1
    ax1.set_ylabel(r'm')
    ax1.set_xlabel(r't in s')
    ax2.set_ylabel(r'rad')
    ax2.set_xlabel(r't in s')
   # put a legend in the plot
   ax1.legend()
    ax2.legend()
   #automatically adjusts subplot to fit in figure window
    plt.tight_layout()
   # save the figure in the working directory
    if save:
        \verb|plt.savefig('state\_trajectory.pdf')| \# save output as pdf|
        plt.savefig('state_trajectory.pgf') # for easy export to LaTex
    return None
```

Finally, we have to execute

```
plt.show()
```

to display the results. If your not satisfied with the result, you can change other properties of the plot, like linewidth or -color and many others easily. Just look up the documentation of Matplotlib: https://matplotlib.org/index.html

Figure 2: State trajectory plot created with ${\it Matplotlib}$