F18 EECS 551 Homework 2 Solutions 1

Pr. 1. (sol/hs010)

If λ is an eigenvalue of A, then there exists a vector x such that $Ax = \lambda x$.

Thus $Bx = (A - 10I)x = Ax - 10x = \lambda x - 10x = (\lambda - 10)x$.

Thus $\lambda - 10$ is an eigenvalue of **B** with the same eigenvector x.

Conversely, if z is an eigenvalue of \boldsymbol{B} with eigenvector \boldsymbol{y} , then using $\boldsymbol{A} = \boldsymbol{B} + 10\boldsymbol{I}$ the same logic shows that \boldsymbol{y} is also an eigenvector of \boldsymbol{A} with eigenvalue z + 10.

In summary, **A** and **B** have the same eigenvectors and $\lambda_B = \lambda_A - 10$.

The problem statement did not specify that A is symmetric, therefore A may not have an eigendecomposition. What follows here is an answer that applies when A is diagonalizable. Student answers that match the following earn partial but not full credit because the problem did not state that A is diagonalizable.

Let $A = Q\Lambda Q'$ be an eigendecomposition of A. Then we may write

$$B = A - 10I = Q\Lambda Q' - 10QQ'$$
 $(I = QQ' \text{ since } Q \text{ is unitary})$
= $Q(\Lambda - 10I)Q'$. (1)

Notice that $\mathbf{\Lambda} - 10\mathbf{I}$ is a diagonal matrix, and since \mathbf{Q} is unitary, the right hand side of (1) gives us the eigendecomposition of \mathbf{B} . So we conclude that the eigenvectors of \mathbf{B} are identical to the eigenvectors of \mathbf{A} . Further, if λ_B is an eigenvalue of \mathbf{B} , and λ_A is an eigenvalue of \mathbf{A} , then $\lambda_B = \lambda_A - 10$.

Pr. 2. (sol/hs013)

Only if:

We are given that v_1, v_2, \ldots, v_n are orthonormal and that $Av_i, i = 1, \ldots, n$ are orthonormal. We want to show A is an orthogonal matrix. By assumption, the matrix $A[v_1, v_2, \ldots, v_n] := AV$ is orthogonal. Thus

$$I = (AV)^T (AV) = V^T A^T AV$$

 $\implies VIV' = VV'A^T AVV' \implies I = A^T A,$

using the orthogonality of V. Using similar steps, we can show that $AA^T = I$, and conclude that A is orthogonal. If:

We are given that v_1, v_2, \ldots, v_n are orthonormal and that A is orthogonal. Then

$$(\boldsymbol{A}\boldsymbol{v}_i)^T(\boldsymbol{A}\boldsymbol{v}_j) = \boldsymbol{v}_i^T \underbrace{\boldsymbol{A}^T \boldsymbol{A}}_{=\boldsymbol{I}} v_j = \boldsymbol{v}_i^T \boldsymbol{v}_j = \begin{cases} 1, & i=j \\ 0, & i \neq j \end{cases}$$
 (since \boldsymbol{v}_i are orthonormal).

Thus $\{Av_i\}$ are also orthonormal.

Pr. 3. (sol/hs117)

If $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$ and \mathbf{A} has full rank then $\mathbf{A}^{-1} = \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^T$ since $\mathbf{U} \mathbf{\Sigma} \mathbf{V}^T \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^T = \mathbf{I}$.

Pr. 4. (sol/hs016)

Here T is an invertible (square) matrix and $B = T^{-1}AT$. Let λ be an eigenvalue of B associated with the eigenvector v. By definition:

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Letting $u \triangleq Tv$, we have $Au = \lambda u$, so $u/\|u\|$ is a unit-norm eigenvector of A associated with the eigenvalue λ . Because this is true for *every* eigenvector v of B associated with *every* eigenvalue λ , this implies that the eigenvalues of A and B are identical.

Thus for i = 1, ..., n, the unit-norm eigenvector \mathbf{v}_i of \mathbf{B} associated with the eigenvalue λ_i is related to the unit-norm eigenvector \mathbf{u}_i of \mathbf{A} associated with the same λ_i by :

$$m{v}_i = rac{m{T}^{-1}m{u}_i}{||m{T}^{-1}m{u}_i||_2}.$$

When speaking of the set of eigenvectors associated with a particular eigenvalue it is important to normalize the eigenvectors to have unit-norm. If we did not normalize v_i as above then we would have to multiply the ith eigenvalue of \boldsymbol{B} by $||\boldsymbol{T}^{-1}\boldsymbol{u}_i||_2^2$ so that $\boldsymbol{B} = \sum_{i=1}^n \lambda_i \boldsymbol{v}_i \boldsymbol{v}_i^T$ as needed.

F18 EECS 551 Homework 2 Solutions 2

Pr. 5. (sol/hs018)

This is a straight-forward application of the properties of the SVD. Let $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$. Then $\mathbf{X}^T \mathbf{X} = \mathbf{V} \mathbf{\Sigma}^T \mathbf{\Sigma} \mathbf{V}^T = 0 \Rightarrow \mathbf{\Sigma}^T \mathbf{\Sigma} = 0$. Since the singular values of \mathbf{X} are non-negative numbers, the matrix $\mathbf{\Sigma}^T \mathbf{\Sigma}$ is a diagonal matrix with non-negative numbers equal to the singular values squared along the diagonal. Thus $\mathbf{\Sigma}^T \mathbf{\Sigma} = 0 \Rightarrow \mathbf{\Sigma} = 0 \Rightarrow \mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = 0$.

Pr. 6.
$$(sol/hs022)$$

Here
$$\mathbf{A} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ & \ddots & \\ a_{m1} & \dots & a_{mn} \end{bmatrix}$$
, so $\mathbf{A}'\mathbf{A} = \begin{bmatrix} \sum_{i=1}^{m} |a_{i1}|^2 & \text{off diagonal elements} \\ & \ddots & \\ \text{off diagonal elements} & \sum_{i=1}^{m} |a_{in}|^2 \end{bmatrix}$.

$$\implies \operatorname{Tr}(\mathbf{A}'\mathbf{A}) = \sum_{j=1}^{n} \sum_{i=1}^{m} |a_{ij}|^2 = \sum_{(i,j)} |a_{ij}|^2 = ||\mathbf{A}||_{F}^2.$$

Thus

$$\begin{split} \|\boldsymbol{A}\|_{\mathrm{F}} &= \sqrt{\mathrm{Tr}(\boldsymbol{A}'\boldsymbol{A})} = \sqrt{\mathrm{Tr}(\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{\Sigma}'\boldsymbol{U}')} & \text{(using the SVD } \boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}') \\ &= \sqrt{\mathrm{Tr}(\boldsymbol{U}'\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{\Sigma}')} & \text{(because } \mathrm{Tr}(\boldsymbol{A}\boldsymbol{B}) = \mathrm{Tr}(\boldsymbol{B}\boldsymbol{A}) \text{ as shown in HW 1)} \\ &= \sqrt{\mathrm{Tr}(\boldsymbol{\Sigma}\boldsymbol{\Sigma}')} = \sqrt{\sum_{i=1}^r \sigma_i^2}, \end{split}$$

where r is the rank of the matrix A.

Pr. 7. (sol/hs028)

In a previous problem we showed that

$$\|\boldsymbol{A}\|_{\mathrm{F}} = \sqrt{\sum_{i=1}^{r} \sigma_i^2 \geq \sigma_1},$$

where $\sigma_1 \geq \sigma_2 \geq \dots \sigma_r > 0$ are the singular values of A, and r is the rank of A. We also know that

 $r = \text{row rank of } \mathbf{A} = \# \text{ linearly independent rows of } \mathbf{A} \leq m$ = column rank of $\mathbf{A} = \# \text{ independent rows of } \mathbf{A} \leq n$ $\leq \min(m, n).$

Finally

$$||A||_{\mathrm{F}} = \sqrt{\sum_{i=1}^{r} \sigma_i^2} \le \sqrt{\sum_{i=1}^{r} \sigma_1^2} \le \sqrt{\frac{\min(m,n)}{\sum_{i=1}^{r} \sigma_1^2}} \le \sqrt{\min(m,n)} \, \sigma_1.$$

Optional: The upper bound is tight; consider $\mathbf{A} = \mathbf{I}_n$ for which $\sigma_1 = 1$ and $\|\mathbf{A}\|_{\mathrm{F}} = \sqrt{n}$.

Pr. 8. (sol/hs033)

(a) Let $A = U\Sigma V'$. Then $WAQ = \underbrace{WU}_{=\widetilde{U}}\Sigma\underbrace{V'Q}_{=\widetilde{V}'} = \widetilde{U}\Sigma\widetilde{V}'$, where \widetilde{U} and \widetilde{V} are unitary because they are the

products of unitary matrices. In other words, $\widetilde{U}\Sigma\widetilde{V}'$ is an SVD of WAQ. The diagonal matrix containing the singular values, Σ is the same for both A and WAQ, implying they have the same singular values and thus the same rank.

(b) We first show that rank(WA) = rank(A) when W is invertible.

Let $r = \operatorname{rank}(\mathbf{A}) = \dim(\operatorname{span}(\mathbf{A}))$. Then by definition of $\dim(\cdot)$ there exists a $M \times r$ basis matrix \mathbf{B} such that $\mathbf{y} \in \operatorname{span}(\mathbf{A}) \implies \mathbf{y} = \mathbf{B}\boldsymbol{\alpha}$ for some $\boldsymbol{\alpha} \in \mathbb{F}^r$.

Now we show that WB is a basis matrix for $\operatorname{span}(WA)$. First, if $z \in \operatorname{span}(WA)$, then z = WAx for some $x \in \mathbb{F}^N$ so $Ax = B\alpha$ for some $\alpha \in \mathbb{F}^r$ because B is a basis matrix for the column space of A. Thus $z = WB\alpha \in \operatorname{span}(WB)$.

We also need to show that WB has linearly independent columns: $WB\alpha = 0 \implies B\alpha = W^{-1}0 = 0 \implies \alpha = 0$ because B is a basis matrix and thus had linearly independent columns. So WB spans WA and has r linearly independent columns so rank(WA) = dim(span(WA)) = r = rank(A).

A similar argument shows that if Q is invertible, then rank(AQ) = rank(A).

Combining yields rank(WAQ) = rank(A) when both W and Q are invertible.

(c) Here is a simple example that shows that singular values of WAQ and A need not be the same. Take A = I, W = 2I and Q = I. Singular values of WAQ equal 2 while those of A equal 1.

Pr. 9. (sol/hs035)

- (a) $\mathcal{N}(\mathbf{A}) = \{ \mathbf{v} : \mathbf{A}\mathbf{v} = \mathbf{0} \} \implies \mathcal{N}(\mathbf{A})$ is the space spanned by the basis vector $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$. $\mathcal{R}(\mathbf{A}) = \{ \mathbf{A}\mathbf{x} : \mathbf{x} \in \mathbb{F}^2 \} \implies \mathcal{R}(\mathbf{A})$ is the space spanned by the basis vector $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$
- (b) Here $\mathcal{N}(\mathbf{A}) \neq \mathcal{R}(\mathbf{A})$ and in general they are not equal. In fact they do not have even have the same dimension when \mathbf{A} is rectangular!

However, there are some matrices for which $\mathcal{N}(\mathbf{A})$ and $\mathcal{R}(\mathbf{A})$ are equal, in the sense that they are the span of the same vector(s), such as $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, where $\mathcal{N}(\mathbf{A}) = \mathcal{R}(\mathbf{A}) = \mathrm{span}(\begin{bmatrix} 1 \\ 0 \end{bmatrix})$.

Pr. 10. (sol/hs074)We are given that

$$\begin{aligned} \text{FXY} &= \begin{bmatrix} f(x_1, y_1) & \dots & f(x_1, y_n) \\ \vdots & \dots & \vdots \\ f(x_m, y_1) & \dots & f(x_m, y_n) \end{bmatrix} \\ \text{DFDX} &= \begin{bmatrix} f(x_2, y_1) - f(x_1, y_1) & \dots & f(x_2, y_n) - f(x_1, y_n) \\ f(x_3, y_1) - f(x_2, y_1) & \dots & f(x_3, y_n) - f(x_2, y_n) \\ \vdots & & \dots & \vdots \\ f(x_m, y_1) - f(x_{m-1}, y_1) & \dots & f(x_m, y_n) - f(x_{m-1}, y_n) \\ f(x_1, y_1) - f(x_m, y_1) & \dots & f(x_1, y_n) - f(x_m, y_n) \end{bmatrix} \\ \text{DFDY} &= \begin{bmatrix} f(x_1, y_2) - f(x_1, y_1) & \dots & f(x_1, y_n) - f(x_1, y_{n-1}) & f(x_1, y_1) - f(x_1, y_n) \\ \vdots & & \dots & \vdots & & \vdots \\ f(x_m, y_2) - f(x_m, y_1) & \dots & f(x_m, y_n) - f(x_m, y_{n-1}) & f(x_m, y_1) - f(x_m, y_n) \end{bmatrix}. \end{aligned}$$

The $\text{vec}(\cdot)$ versions are:

$$\mathtt{fxy} = \begin{bmatrix} f(x_1, y_1) \\ \vdots \\ f(x_{m-1}, y_1) \\ f(x_m, y_1) \\ \vdots \\ f(x_{m}, y_1) \\ \vdots \\ f(x_{m-1}, y_n) \\ \vdots \\ f(x_{m-1}, y_n) \\ f(x_m, y_n) \end{bmatrix}, \quad \mathtt{dfdx} = \begin{bmatrix} f(x_2, y_1) - f(x_1, y_1) \\ \vdots \\ f(x_m, y_1) - f(x_{m-1}, y_1) \\ f(x_1, y_1) - f(x_m, y_1) \\ \vdots \\ f(x_m, y_n) - f(x_1, y_n) \\ \vdots \\ f(x_m, y_n) - f(x_m, y_n) \end{bmatrix}, \quad \mathtt{dfdy} = \begin{bmatrix} f(x_1, y_2) - f(x_1, y_1) \\ \vdots \\ f(x_m, y_2) - f(x_m, y_1) \\ \vdots \\ f(x_m, y_1) - f(x_1, y_1) \\ \vdots \\ f(x_m, y_n) - f(x_1, y_n) \\ \vdots \\ f(x_m, y_n) - f(x_1, y_n) \end{bmatrix}$$

Thus:

$$\begin{bmatrix} \text{dfdx} \\ \vdots \\ f(x_1,y_1) - f(x_m,y_1) \\ \vdots \\ \vdots \\ f(x_1,y_1) - f(x_m,y_1) \\ \vdots \\ \vdots \\ f(x_1,y_n) - f(x_m,y_n) \\ \vdots \\ f(x_1,y_n) - f(x_m,y_n) \\ \vdots \\ f(x_1,y_2) - f(x_1,y_1) \\ \vdots \\ f(x_m,y_2) - f(x_m,y_1) \\ \vdots \\ f(x_m,y_2) - f(x_m,y_1) \\ \vdots \\ f(x_m,y_n) \end{bmatrix} = \boldsymbol{A} \begin{bmatrix} f(x_1,y_1) \\ \vdots \\ f(x_m,y_1) \\ \vdots \\ \vdots \\ f(x_n,y_n) \end{bmatrix}$$

where

Using the definition of D_n given in the problem statement and Kronecker product, we write this as

$$m{A} = egin{bmatrix} m{I}_n \otimes m{D}_m \ m{D}_n \otimes m{I}_m \end{bmatrix}.$$

A possible Julia implementation is

```
using LinearAlgebra: I
using SparseArrays: sparse, spdiagm
function first_diffs_2d_matrix(m, n)
# Syntax:
              A = first_diffs_2d_matrix(m, n)
# Inputs:
              m and n are positive integers
# Outputs:
               A is a 2mn x mn sparse matrix such that A \star X[:] computes the
               first differences down the columns (along x direction)
               and across the (along y direction) of the m {\bf x} n matrix {\bf X}
#
return D
end
function D(n)
# Syntax:
               Dn = D(n)
# Inputs:
               n is a positive integer
# Outputs:
               Dn is an n \mathbf{x} n sparse circulant first differences matrix
Dn = spdiagm(0 \Rightarrow -ones(n), 1 \Rightarrow ones(n-1), 1-n \Rightarrow [1])
return Dn
end
```