UIUC IE510 Applied Nonlinear Programming

Lecture 12: Duality

Ruoyu Sun

Review Question for Lecture 11b

 Question 1: Judge: For (smooth) inequality constrained problems, at a local-min the gradient of the objective and gradients of all constraints are always linearly dependent.

• Question 2: Judge: For (smooth) inequality constrained (assume of μ problems, at a local-min the Hessian of $L(x, \mu^*)$ is positive semi-definite on the null space defined by the gradients of all constraints ∇x .

constraints
$$\nabla g_j$$
's.

If "autive constraints": TRUE

If just "constraints": also TRUE.

If $g_{n}^2 L$ is psD in $\{y: y \perp \nabla g_1\}$

then $g_{n}^2 L$ is also psD in $\{y: y \perp \nabla g_1, y \perp \nabla g_2\}$.

• Question'3: What is complementary slackness?

$$\mu_i g_i(x) = 0$$
, $\forall i$.

Summary of Last Lecture

- Optimality condition for $\min_x f(x)$, s.t. $h_i(x) = 0$, $i = 1, \ldots, m$; $g_j(x) \leq 0$, $j = 1, \ldots, r$. where f and h_i 's, g_j 's are cts-differentiable.
- Lagrangian function $L(x; \lambda, \mu) = \int_{\mathcal{C}} (x) + \sum_{i} \lambda_{i} h_{i}(x) + \sum_{j} \mu_{j} g_{j}(x)$.
- **KKT conditions:** at a "regular" local-min x^* (gradients of active constraints are linearly independent), we have
 - The gradient of the Lagrangian function is zero $\forall f(x^*)$ lies in span $\{\nabla h_i(x^*), \forall i : \nabla g_i(x^*), i \in \mathcal{F}\}$
 - $\forall \forall f(x') \text{ lies in span}\{\forall h_i(x'), \forall i, \forall g_j(x'), j \in \mathcal{A}(x')\}$ with coefficients λ_i^* 's, μ_j^* 's
 - $h_i(x^*) = 0, \forall i; g_j(x^*) = 0, \forall j \in \mathcal{A}(x^*)$
 - Complementary slackness:
 - $\nabla^2_{xx}L$ is positive semidefinite in the nullspace defined by the gradients of all active constraints
- If $\nabla^2_{xx}L$ is PD in that nullspace, and strict complentarity holds, then sufficient condition.

Summary of Last Lecture

- Optimality condition for $\min_x f(x)$, s.t. $h_i(x) = 0, i = 1, \ldots, m; g_j(x) \leq 0, j = 1, \ldots, r.$ where f and h_i 's, g_j 's are cts-differentiable.
- Lagrangian function $L(x; \lambda, \mu) =$
- **KKT conditions:** at a "regular" local-min x^* (gradients of active constraints are linearly independent), we have
 - The gradient of the Lagrangian function is zero
 - $\diamond \ \nabla f(x^*)$ lies in span $\{\nabla h_i(x^*), \forall i; \nabla g_j(x^*), j \in \mathcal{A}(x^*)\}$, with coefficients λ_i^* 's, μ_j^* 's
 - $\diamond h_i(x^*) = 0, \forall i; g_i(x^*) = 0, \forall j \in \mathcal{A}(x^*)$
 - Complementary slackness:
 - $\nabla^2_{xx}L$ is positive semidefinite in the nullspace defined by the gradients of all active constraints
- If $\nabla_{xx}^2 L$ is PD in that nullspace, and strict complentarity holds, then sufficient condition.

This Lecture

- Today: duality
- After the lecture, you should be able to
 - Write down sufficient condition for a convex problem
 - Construct a dual problem of SVM
 - Distinguish "weak duality" and "strong duality"
- Advanced goals: derive the duality theory

Outline

Sufficient Condition for Convex Problems (4 slides)

Duality (8 slides)

Example: SVM (3 slides)

Convex Case?

Motivation: We learned that for convex function, $\nabla f(x) = 0$ is sufficient for global optimality.

Question: Theory for convex constrained problems?

Consider the problem

minimize
$$f(x)$$
 subject to $x \in X$, $g_i(x) \le 0$, $i = 1, ..., r$. (1) In Section 1, $X = \mathbb{R}^n$: In Section 1, $X = 0$ can be any set, or polyhedral.

For simplicity, we focus on inequality constraints in this lecture.

Convex Case: Sufficiency and Necessary Condition

Prop 12.1 (1st order condition is enough for convex problem) Consider (1); suppose f and $g'_i s$ are convex and $X = \mathbb{R}^n$.

Assuming x^* is regular. The following statements are equivalent:

- (i) x^* is a global minimum of (1).
- (ii) There exists μ^* such that

|st order condition |
$$\nabla_x L(x^*, \mu^*) = 0,$$
 | (2a) | $\mu_j^* \ge 0 \perp g_j(x^*) \le 0, \quad j = 1, \dots, r,$ | (2b)

• (iii) There exists μ^* such that

$$x^* = \operatorname{argmin}_{x \in \mathbb{R}^n} L(x, \mu^*), \tag{3a}$$

$$\mu_j^* \ge 0 \perp g_j(x^*) \le 0, \quad j = 1, \dots, r,$$
 (3b)

Proof:

- (i) \Rightarrow (ii): KKT condition.
- (ii) ⇒ (iii): L=f+∑µifr, µi≥0, ⇒ L is convex. RL=0 ⇒ x*=org min
- (iii) ⇒ (i): Next few slides. (no need of convoring)

A General Sufficiency Condition

Proposition 12.2: Consider the problem (1). Define

$$L(x,\mu)=f(x)+\sum_{j=1}^r\mu_jg_j(x),\ x\in X.$$
 uch that

If there exists μ^* such that

$$x^* = \operatorname{argmin}_{x \in X} L(x, \mu^*), \tag{4a}$$

$$\mu_j^* \ge 0 \perp g_j(x^*) \le 0, \quad j = 1, \dots, r,$$
 (4b)

then x^* is a global minimum of the problem (1).

Proof of Sufficiency Condition

- **Proof strategy:** See how far you get from conditions.
- First condition $x^* = \operatorname{argmin}_{x \in X} L(x, \mu^*)$ implies

$$f(\mathbf{x}) + \underbrace{\langle \mathbf{p}^*, \mathbf{q}(\mathbf{x}) \rangle}_{\text{(I)}} = L(x^*, \mu^*) \leq L(x, \mu^*) = f(\mathbf{x}) + \underbrace{\langle \mathbf{p}^*, \mathbf{q}(\mathbf{x}) \rangle}_{\text{(I)}}, \quad \forall \ x. \quad \text{(I)}$$

• Suppose $g(x) = (g_1(x); \dots; g_r(x)) \in \mathbb{R}^{r \times 1}$.

Second condition $\mu_i^* \ge 0 \perp g_i(x^*) \le 0, \forall j$ implies

$$\langle \mu_{\star}^{*},g(x^{*})\rangle=0 \underset{\text{Since }\mu^{*}\geqslant 0.}{\underbrace{\langle \mu_{\star}^{*},g(x)\rangle}}, \forall \underset{\text{meaning }f(x)\leqslant 0}{\text{feasible }x,} \text{ 2}$$

 • Combine both, get

By
$$\mathbb{O}: f(x^n) + (I) \leq f(x) + (I)$$
 $\Rightarrow f(x^n) \leq f(x)$. If feetble x . By $\mathbb{O}: (I) \geqslant (I)$

Proof (standard presentation) (reading)

Proof of Prop 12.2: We have

$$\begin{split} f(x^*) &= f(x^*) + \langle \mu^*, g(x^*) \rangle = \min_{x \in X} \{ f(x) + \langle \mu^*, g(x^*) \rangle \} \\ &\leq \min_{x \in X, g(x) \leq 0} \{ f(x) + \langle \mu^*, g(x^*) \rangle \} \\ &\leq \min_{x \in X, g(x) \leq 0} f(x), \end{split}$$

where the first equality follows from the hypothesis, which implies that $(\mu^*)'g(x^*)=0$, and the last inequality follows from the nonnegativity of μ^* . **Q.E.D.**

Outline

Sufficient Condition for Convex Problems (4 slides)

Duality (8 slides)

Example: SVM (3 slides)

Duality

- What is one magical word that proves you are "optimization expert"?
 - Candidate: "dual"
- Two things are "dual" if their roles can be switched
- Duality theory is central to linear programming 1541.
- Duality theory also important for nonlinear constrained optimization
- It constructs dual problems, that
 - are easier to solve see this in sum example
 - provide lower bound see the in "weak duality"
 - help design algorithms see the in sum example

The Dual Problem

Consider a problem

$$\min_{x \in X, g_i(x) \leq 0, i=1, \dots, r} f(x)$$

• Define the dual function $q:\mathbb{R}^r\mapsto [-\infty,\infty)$ fx \mathcal{M} solve inf $L(x,\mu)$ \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M}

$$\begin{split} q(\mu) &= \inf_{x \in X} L(x, \mu) = \inf_{x \in X} \{f(x) + \sum_{j=1}^r \mu_j g_j(x)\}. \\ \text{dual problem} \\ &\underset{\mu \geq 0}{\max} \quad q(\mu), \quad \text{i.e.,} \quad \underset{\mu \geq 0}{\max} \underbrace{ \{f(x) + \sum_{j=1}^r \mu_j g_j(x)\}.} \end{split}$$

and the dual problem

$$\max_{\mu>0} q(\mu)$$
, i.e., $\max_{\mu\geq0} \left[\inf_{x\in X} L(x,\mu)\right]$

• If X is bounded, the dual function takes real values. In general, $q(\mu)$ can take the value $-\infty$. The effective constraint set of the dual is

$$Q = \{ \mu \mid \mu \ge 0, q(\mu) > -\infty \}$$

Min-max and Max-min

Primal = min-max, dual = max-min.

Consider the min-max problem

$$\min_{x \in X} \max_{\mu \ge 0} L(x, \mu).$$
(5)

Claim: The original problem is equivalent to (5).

Proof: For simplicity, consider 1-constraint case.

(P1) min
$$f(x)$$
, s.t. $g(x) \leq 0$, \rightarrow Constrained
 $L(x, \mu) = f(x) + \mu g(x)$, $\mu \geq 0$.

$$(p2) \underset{x \in \mathbb{R}^{n}}{\text{min}} \underset{p \geq 0}{\text{mex}} f(x) + \mu g(x) . \iff (p1). \rightarrow \text{Unconstrated}.$$

$$(p2) \underset{x \in \mathbb{R}^{n}}{\text{min}} \underset{p \geq 0}{\text{mex}} f(x) + \mu g(x) . \iff (p1). \rightarrow \text{Unconstrated}.$$

$$(p2) \underset{p \geq 0}{\text{min}} f(x). \underset{p \geq 0}{\text{consider}} \underset{p \geq 0}{\text{mex}} f(x) + \mu g(x) . \iff (p1). \rightarrow \text{Unconstrated}.$$

$$(p2) \underset{p \geq 0}{\text{min}} f(x), \underset{p \geq 0}{\text{consider}} \underset{p \geq 0}{\text{min}} f(x), \underset{p \geq 0}{\text{consider}} \underset{p \geq 0}{\text{min}} f(x) = 0.$$

$$(p2) \underset{p \geq 0}{\text{min}} f(x), \underset{p \geq 0}{\text{consider}} \underset{p \geq 0}{\text{min}} f(x) = 0.$$

Weak Duality

What is the relation of the dual problem and the primal problem?

Prop 12.2 (Weak Duality) For any $\mu \ge 0$ and primal feasible x_F , we

$$q(\mu) \leq f(x_F).$$

Inf " $L(x_F)$ "

This implies

$$q^* = \sup_{\mu > 0} q(\mu) \le \inf_{x_F \text{ is primal feasible}} f(x_F) = f^*.$$

Proof (2-line):
$$\int_{\mu \geqslant 0}^{k_{\pm}} \sup_{x} \inf_{x} L(x, \mu) \leq \sup_{\mu \geqslant 0} L(x_{\pm}, \mu) = \sup_{\mu \geqslant 0} f(x_{\pm}) + \underbrace{\langle \mu, q(x_{\pm}) \rangle}_{\text{for proof few}}$$

Implication: $min-max \ge max-min$.

⇒ 9* ≤ f*.

When Does Strong Duality Hold?

Rewrite the proof: suppose x^* is a global-min, and $\mu \geq 0$, then

$$q(\mu) = \inf_{x \in X} L(x,\mu) \leq f(x^*) + \langle \mu, g(x^*) \rangle \leq f(x^*).$$

- Second inequality: $\exists \mu^*$ s.t. $\langle \mu^*, g(x^*) \rangle = 0$.
- First inequality: when f,g are convex and $X=\mathbb{R}^n$, and x^* is regular, then $x^*=\operatorname{argmin}_{x\in\mathbb{R}^n}L(x,\mu^*)$ holds.
 - Note: When f,g are non-convex, x^* is not necessarily the minimizer of $L(x,\mu^*)$

When Does Strong Duality Hold?

Rewrite the proof: suppose x^* is a global-min, and $\mu \geq 0$, then

$$q(\mu) = \inf_{x \in X} L(x, \mu) \leq f(x^*) + \langle \mu, \underline{g(x^*)} \rangle \leq f(x^*).$$

$$\chi^* = \arg\min_{x \in L(x, \mu^*)} L(x, \mu^*)$$

- Second inequality: $\exists \mu^* \text{ s.t. } \langle \mu^*, g(x^*) \rangle = 0.$
- First inequality: when f,g are convex and $X=\mathbb{R}^n$, and x^* is regular, then $x^*=\operatorname{argmin}_{x\in\mathbb{R}^n}L(x,\mu^*)$ holds.
 - Note: When f,g are non-convex, x^* is not necessarily the minimizer of $L(x,\mu^*)$

Duality Gap and Strong Duality

- **Duality gap**: the difference $f^* q^*$.
- We say that strong duality holds for (1) if $f^* = q^*$.
- When does strong duality hold?
 - $f, g'_j s$ are convex and $X = \mathbb{R}^n$ and there exists regular global-min
 - f convex, $g'_j s$ are linear, X is polyhedral (defined by linear equalities/inequalities)
 - Convex + (weak) Slater condition: $f, g'_i s$ are convex, but X may not be \mathbb{R}^n .
 - \diamond Here, Slater condition means that there is a strict feasible point \bar{x} , i.e., $g_j(\bar{x}) < 0$ for all j and $\bar{x} \in X$.
 - "Weak" Slater condition removes the inequality requirement for affine constraints.

Duality Theorem

Prop 12.3 (Duality Theorem, for linearly constrained problems) Suppose f is convex cts-differentiable and $X \subseteq \mathbb{R}^n$ is a polyhedral. Consider the problem

$$\min_{x} \quad f(x)$$
 subject to $x \in X, \quad a_{i}^{T}x \leq b_{i}, \ i=1,...,r.$ (6)

- (a) (strong duality) If the primal problem has an optimal solution, the dual problem also has an optimal solution and the optimal values are equal. $\uparrow^* = \uparrow^*$
- (b) $x^* \in X$ is primal-optimal and μ^* is dual-optimal if and only if

$$\mu_j^* \geq 0 \perp a_j^T x^* - b_j \leq 0, \forall j;$$

$$x^* = \underset{x \in X}{\operatorname{argmin}}_{x \in X} L(x, \mu^*).$$

Linear Equality Constraints

 Linear equality constraints are treated similar to inequality constraints, except that the sign of the Lagrange multipliers is unrestricted:

$$\mathsf{Primal}: \min_{x \in X, e_i' x = d_i, i = 1, \dots, m, a_j' x \leq b_j, j = 1, \dots, r} f(x)$$

Outline

Sufficient Condition for Convex Problems (4 slides)

Duality (8 slides)

Example: SVM (3 slides)

Example: Support Vector Machine

- Training data set: two classes $\{x_i, y_i\}_{i=1}^{\mathbf{A}}$, $x_i \in \mathbb{R}^d$, $y_i \in \{-1, 1\}$.
- Suppose the training data are linearly separable
- Objective: find a hyperplane to separate the data points, i.e., find w such that $x_i^T w \ge 1, \forall i$.
- Formulation:

$$\min_{w} \frac{1}{2} \frac{\|\boldsymbol{w}\|^2}{\|\boldsymbol{w}\|^2}, \quad \text{s.t. } \underbrace{y_i w^T x_i}_{\text{(h2orly)}} \ge 1, i = 1, \dots, n.$$

 Issue: Can we use <u>SGD</u> to solve it? Pick one sample/constraint, and then what?

SVM: Derive Dual

Write dual problem:

 \diamond First, let $f(w) = \frac{1}{2} ||w||^2$, $g_i(w) = 1 - y_i x_i^T w$, and

$$L(w) = \frac{1}{2} ||\omega||^2 + \sum_{i} \mu_i (1 - y_i \chi_i^{\mathsf{T}} \omega),$$

$$\omega > 0,$$

$$\omega = \omega + \sum_{i} \mu_i \cdot (-y_i \chi_i) = 0,$$

$$\omega = \sum_{i} \mu_i \chi_i y_i.$$

Second, write the dual problem

$$q(\mu) = \inf_{w} L(w,\mu)$$
. = inf $L(w,\mu)$. quadrate in w .

Solve the optimal $w^*(\mu) = \int_{i = 1}^{4} \mu_i \chi_i \psi_i$

- Representer theorem in ML separates at linear combination of %'s
- \diamond Third, plugging in the expression of $w^*(\mu)$ into q, and

$$\max_{u \geq 0} q(\mu) = -\frac{1}{2} \left\| \sum_{i} \mu_{i} \mathcal{K}_{i} \mathcal{Y}_{i} \right\|^{2} + \sum_{i} \mu_{i} ,$$

SVM: Solve Dual Problem

Dual problem of SVM

$$\max_{\mu \ge 0} \sum_{i} \mu_{i} - \frac{1}{2} \| \sum_{i} \mu_{i} x_{i} y_{i} \|^{2}.$$

What is the nature of this problem?

How to solve it?

- Gradient projection
- (Dual) coordinate ascent: method of choice in libsym
- Dual CD uses one sample at a time! (like SGD)
- Side remark: in ML, people use Kernal trick, i.e., write $\|\sum_i \mu_i x_i y_i\|^2$ as $\sum_i \mu_i \mu_j y_i y_i \langle x_i, x_j \rangle$

SVM: Solve Dual Problem

Dual problem of SVM

$$\max_{\mu \ge 0} \sum_{i} \mu_{i} - \frac{1}{2} \| \sum_{i} \mu_{i} x_{i} y_{i} \|^{2}.$$

What is the nature of this problem?

How to solve it?

- Gradient projection
- (Dual) coordinate ascent: method of choice in libsym
- Dual CD uses one sample at a time! (like SGD)
- Side remark: in ML, people use Kernal trick, i.e., write $\|\sum_i \mu_i x_i y_i\|^2$ as $\sum_{i,j} \mu_i \mu_j y_i y_j \langle x_i, x_j \rangle$

SVM: Solve Dual Problem

Dual problem of SVM

$$\max_{\mu \ge 0} \sum_{i} \mu_{i} - \frac{1}{2} \| \sum_{i} \mu_{i} x_{i} y_{i} \|^{2}.$$

What is the nature of this problem?

How to solve it?

- · Gradient projection
- (Dual) coordinate ascent: method of choice in libsym
- Dual CD uses one sample at a time! (like SGD)
- Side remark: in ML, people use Kernal trick, i.e., write $\|\sum_i \mu_i x_i y_i\|^2$ as $\sum_{i,j} \mu_i \mu_j y_i y_j \langle x_i, x_j \rangle$

Summary

In this lecture, we learned the following (think yourself before reading):

- Sufficient and necessary conditions for convex constrained problems
- Duality: dual problem, weak/strong duality
- Application of duality theory to solve SVM

Summary

In this lecture, we learned the following (think yourself before reading):

- Sufficient and necessary conditions for convex constrained problems
- Duality: dual problem, weak/strong duality
- Application of duality theory to solve SVM