

1.1.1

Plan d'instrumentation

LABORATOIRE D'ESSAI

ETABLISSEMENT DE REICHSHOFFEN 6, route de Strasbourg, 67110 REICHSHOFFEN, FRANCE ALSTOM © se réserve le droit sur ce document et toutes les informations contenues. L'utilisation, la reproduction à un tiers sans autorisation est formellement interdite.

ALSTOM © reserves all rights in this document and in the information contained therein. Use, reproduction or disclosure to third parties without express authority is strictly forbidden.

С	Tableau des points de mesure	15/06/15
В	Modification suite visite toiture	27/03/15
Α	Création	07/01/15
N° de notification de révision		Date

9 8 7 6 5 4		Diagnostic énergétique en service commercial CITADIS 302 REIMS						
3		Docume	Document Original Page					
1			Date	Nom / Signature				
0		Exécuté 07/01/15 JF PHEULPIN		JF PHEULPIN		1		
	Version	Vérifié	/ /15	Olivier TEISSIER	DID0003039187	1		
	Administrative	Approuvé	/ /15	M. PEYRAT		28		

	Archivage : Serveur Interne						
Document			Mots Clés				
Туре	DBS Code	PBS Code	Plan	Instrumentation	Train		

REVISION DE CE DOCUMENT

REVISION	AUTEUR	DATE (JJ/MM/AAAA)	Pages	OBJET DE LA REVISION
Α	JF PHEULPIN	07/01/2015	Toutes	Création
В	P PHILIPPS/ JFP	27/03/2015	Toute	Modification suite à visite toiture
С	Patrice PHILIPPS	29/07/2015	6	Tableau des points de mesure
D				
Е				
F				
G				

VALIDATION DU DOCUMENT

ALSTOM TRANSPORT					
REDACTION	VERIFICATION	Validation			
Fonction / Nom	Fonction / Nom	Fonction / Nom			
Responsable technique laboratoire					
JF PHEULPIN					
Date	Date	Date			
07/01/2015					
Signature	Signature	Signature			

SOMMAIRE

1. ODULI	4	ł
2. DEFINITIONS ET ABREVIATIONS		
3. NORMES ET DOCUMENT DE REFERENCE		
4. DESCRIPTION DU PRODUIT		
5. LISTE DES ESSAIS		1
6. PROCEDURE		5
6.1 Essai 1: Consommation d'énergie en service con	nmercial5	5
6.2 Détail de l'essai	6	3
7. ANNEXES	28	3

2. OBJET

L'objet de ce document est de décrire l'instrumentation qui sera mise en place sur deux tramways Alstom de la gamme Citadis 302 de la ville de Reims. Cette instrumentation a pour but d'effectuer un diagnostic énergétique en service commercial pour la société Transdev, exploitant du réseau.

3. DEFINITIONS ET ABREVIATIONS

Abréviations	Définitions	
СЕМ	Compatibilité électromagnétique	
CVS	Convertisseur statique	
HVAC	Chauffage et air conditionnée	
NA	Non applicable	
NF	Normalement fermé	
ОС	Organe de contrôle	
TCU	Electronique de contrôle de la traction	

4. NORMES ET DOCUMENT DE REFERENCE

Identifiant	Reference	Révision / Date	Titre
[A1]	DID0003039186	B / 24/03/2015	DID0003039186_Carnet de sécurité – Diagnostique énergétique Citadis 302 Reims
[A2]	DID0003039186	Ed1	DID0003039188_Schéma instrumentation - Diagnostique énergétique Citadis 302 Reims

5. DESCRIPTION DU PRODUIT

Il s'agit d'un tramway produit par Alstom, de la gamme Citadis 302 qui a été conçu pour la ville de Reims. Il est unilatéral (donc un seul pantographe) et il est composé de 5 véhicules. Il possède 3 bogies dont les 3 sont motorisés. L'air conditionné est gérée par deux groupes de climatisation.

6. LISTE DES ESSAIS

Numéro de l'essai	Désignation	Référence	Type de validation	Site d'essai	Date d'essai
Essai n°1	Consommation d'énergie en service commercial	NA	NA	Reims	S18 2015

Note: Les dates prévues dans ce tableau, peuvent ne pas correspondre aux dates définitives lorsque les essais seront effectués. Les dates définitives seront transmises aux participants officiels (client) lors de l'invitation pour 'assister aux essais.

La modification éventuelle des dates d'essais n'entraînera pas obligatoirement le changement d'indice de révision du document.

7. PROCEDURE

7.1 ESSAI 1: CONSOMMATION D'ENERGIE EN SERVICE COMMERCIAL

7.1.1 Objectif de l'essai

Mesurer la consommation d'énergie d'un tramway Citadis 302 en service commercial pour:

- le système de traction (mesure sur deux TCU en M1 et M2)
- le système HVAC (mesure sur les deux HVAC)
- les rhéostats
- le CVS
- la consommation totale

7.1.2 Exigences de l'essai

7.1.2.1 Site où sera réalisé les essais

Les essais seront réalisés sur la ligne 1 du tramway de Reims

7.1.2.2 Conditions d'essai

Le tramway doit être utilisé uniquement lors du service commercial et dans le trafic (freinage régénératif à considérer). Les conditions météorologiques ne devront pas avoir d'impact sur le bon fonctionnement de l'instrumentation, dans les limites de fonctionnement des équipements qui la compose.

7.1.2.3 Configuration de l'équipement ou d'un véhicule

Deux tramways Citadis 302 en configuration nominale et dans des conditions de travail. Les versions logicielles des TCU, CVS et HVAC seront notées.

7.1.2.4 Autres exigences

Aucune.

7.2 DETAIL DE L'ESSAI

7.2.1 Instrumentation

Aucune instrumentation n'est autorisée à l'intérieur du tramway car il sera exploité avec des passagers, mis à part les sondes de température intérieure et de taux de CO².

Toute l'instrumentation doit démarrer et enregistrer sans intervention manuelle lorsque le tramway est préparé.

Les références des capteurs sont données à titre indicatif, et pourront évoluer en fonction de leurs disponibilités le jour de l'installation

Grandeur	Signal	Dénomination	Туре	Câble	Localisation	N° OC Rame xxx	N° OC Rame xxx
Tension caténaire	U_CAT	CA(U)CAT	LV100-750/SP4	10786	Coffre CCP Toiture NP	7470	7473
Courant caténaire	I_CAT	CA(I)CAT	LTC1000- SFC/SP2	10791	Coffre CCP Toiture NP	5198	5199
Etat contacteur CTPP	U_CTPP	CA(U)CTPP	Contact NF	NA	Coffre CPP Toiture NP	NA	NA
Courant CVS	I_CVS	CA(I)AUX	LTC500/SFC-SP2	10702	Coffre HVAC Toiture C2	6915	6916
Courant traction 1	I_TCU1	CA(I)TCU1	HTR 400-SB	10701_1	Boite de bout Toiture NP	7484	7486
Courant traction 2	I_TCU2	CA(I)TCU2	HTR 400-SB	10701_2	Boite de bout Toiture C2	7485	7487
Courant rhéostatique 1 caisson 1	I_RHEO_11	CA(I)RH1C1	HTR 400-SB	10706_1	Rhéostat Toiture C1	7476	7480
Courant rhéostatique 1 caisson 2	I_RHEO_12	CA(I)RH2C1	HTR 400-SB	10708_1	Rhéostat Toiture C1	7477	7481
Courant rhéostatique 2 caisson 1	I_RHEO_21	CA(I)RH1C2	HTR 400-SB	10706_2	Rhéostat Toiture C2	7478	7482
Courant rhéostatique 2 caisson 2	I_RHEO_22	CA(I)RH2C2	HTR 400-SB	10708_2	Rhéostat Toiture C2	7479	7483
Tension 400 VAC VAC1&2	U_HVAC_AC*	CA(U)HVAC400	LV25	21231/21232	Coffre CVS*	7490	7491
Courant 400 V _{AC} VAC1	I_HVAC_AC1	CA(I)HVAC400_1	DHR100 C420	21231_1	Coffre CVS	7424	7425
Courant 400 V _{AC} VAC2	I_HVAC_AC2	CA(I)HVAC400_2	DHR100 C420	21231_2	Coffre CVS	7423	7428
Température intérieure salle	T°int	CA(T)SAL	Pt100	N/A	Sous voussoir	7406	7407
Niveau de CO² en ppm	Taux CO2	CA(CO2)SAL	CO ²	N/A	salle NP	7426	7427
Température extérieure	T°ext	CA(T)EXT	Pt100	N/A	Extérieur	6934	6959

^{*} la chute de tension sera évaluée pour corriger la tension d'entrée 440 VAC sur chaque coffre

- Les capteurs seront localisés en toiture dans les coffres ou à proximité des équipements de puissance à surveiller.
- Seules les mesures environnementales seront localisées en salles (t° ambiante et CO²).

• Le n° OC correspond au numéro d'inventaire des instruments et capteurs gérés en configuration et suivi métrologique au sein du Laboratoire d'essai de REICHSHOFFEN.

7.2.2 Synoptique de l'instrumentation

7.2.3 Intégration de l'instrumentation en toiture

Le boitier avec la station d'acquisition sera placée sous le couvercle de toit (à l'extérieur, pas la zone étance à l'eau), sur le véhicule C1. Il sera fixé par l'intermédiaire du rail existant.

Alimentation disponible : 24V de la batterie de tramway (20 à 29V DC).

Emplacement du boitier d'acquisition

Une attention particulière sera accordée sur l'étanchéité de l'instrumentation :

- Le boitier d'acquisition sera IP66
- ➤ Les connectiques de type Lumberg seront IP68
- Les capteurs exposés aux intempéries seront placés dans un boitier de protection

Les capteurs répondant à la norme EN 5015 seront privilégiés, cette norme est applicable pour tous les équipements électroniques embarqués sur un véhicule ferroviaire et couvre les aspects températures, humidité choc, vibration, etc...

Les câbles de mesure seront de type multiconducteur blindé, afin d'éviter les problèmes lié à la CEM et respecteront la norme IEC 60332-1 qui limite la propagation de flammes. Le coffret d'acquisition est également en fibre de verre qui confère une bonne résistance au feu.

Eléments qui seront rajoutés sur le tramway :

- > 1 boite regroupant la station d'acquisition et les interfaces électroniques avec son support de fixation
- > 15 capteurs (courant, tension, température et CO²)
- Câbles de raccordements

L'ensemble est estimé à un poids d'environ 13Kg.

7.2.3.1 Capteur de tension caténaire DC => U_CAT

La mesure de la tension caténaire est possible sur la connexion du pantographe.

Grandeur :	Tension caténaire
Signal :	U_CAT
Dénomination :	CA(U)CAT
Type de capteur :	LEM AV100-750/SP4
	EN 50155
Norme du capteur :	EN 50124-1
	NFF 16101/2
Identifiant du câble à	P3 / UFILTR+
mesurer :	C-0V / UFILTR-
Diamètre du câble :	NA
Localisation :	Coffre CPP en toiture NP
Numéro OC du capteur :	7470 pour la rame 107 / 7473 pour la rame 113
Plage de mesure du capteur :	100 à 750 V DC
Plage de mesure du tramway :	500 à 800 V DC

7.2.3.2 Capteur de courant caténaire DC => I_CAT

Grandeur :	Courant caténaire
Signal :	I_CAT
Dénomination :	CA(I)CAT
Type de capteur :	LTC1000-SFC/SP2
Norme du capteur :	EN 50155 : 2007 UL 508 : 2010
ldentifiant du câble à mesurer :	10791
Diamètre du câble :	Barre de 40mm
Localisation :	Coffre CPP en toiture NP
Numéro OC du capteur :	5198 pour la rame 107 / 5199 pour la rame 113
Plage de mesure du capteur :	-1000 à 1000 A
Plage de mesure du tramway :	
 	

7.2.3.3 Etat contacteur CTPP

Grandeur :	Etat contacteur CTPP
Signal :	U_CTPP
Dénomination :	MA(CTPP)
Type de capteur :	Relecture contact auxiliaire
Norme du capteur :	NA
ldentifiant du câble à mesurer :	NA
Diamètre du câble :	NA
Localisation :	Coffre CPP en toiture NP (bornes 6 et 7 contact NF)
Numéro OC du capteur :	NA
Plage de mesure du capteur :	NA
Plage de mesure du tramway :	NA

7.2.3.4 Capteur de courant CVS => I_CVS

Grandeur :	Courant CVS
Signal :	I_CVS
Dénomination :	CA(I)AUX
Type de capteur :	LEM LTC500/SFC-SP2
Norme du	EN 50155 : 2007
capteur :	IEC 50121-3-2 : 2006
ldentifiant du câble à mesurer :	10702
Diamètre du câble :	
Localisation :	Coffre CVS en toiture C2
Numéro OC du capteur :	6915 pour la rame 107 / 6916 pour la rame 113
Plage de mesure du capteur :	-500 à 500 V
Plage de mesure du tramway :	

7.2.3.5 Capteur de courant traction $1 \Rightarrow I_TCU1$

Grandeur :	Courant traction 1
Signal :	I_TCU1
Dénomination :	CA(I)TCU1
Type de capteur :	LEM HTR 400-SB
Norme du capteur :	EN 50178
ldentifiant du câble à mesurer :	10701_1
Diamètre du câble :	21 mm
Localisation :	Boite de bout nacelle NP1 cotée M1
Numéro OC du capteur :	7584 pour la rame 107 / 7486 pour la rame 113
Plage de mesure du capteur :	-800 à 800 A
Plage de mesure du tramway :	0 à 500 A

7.2.3.6 Capteur de courant traction 2 => I_TCU2

Grandeur :	Courant traction 2
Signal :	I_TCU2
Dénomination :	CA(I)TCU2
Type de capteur :	LEM HTR 400-SB
Norme du capteur :	EN 50178
ldentifiant du câble à mesurer :	10701_2
Diamètre du câble :	21 mm
Localisation :	Boite de bout véhicule C2
Numéro OC du capteur :	7484 pour la rame 107 / 7487 pour la rame 113
Plage de mesure du capteur :	-800 à 800 A
Plage de mesure du tramway :	0 à 500 A

7.2.3.7 Capteur de courant rhéostatique 1 caisson 1 => I_RHEO_11

Grandeur :	Courant rhéostatique 1 caisson 1
Signal :	I_RHEO_11
Dénomination :	CA(I)RH1C1
Type de capteur :	LEM HTR 400-SB
Norme du capteur :	EN 50178
ldentifiant du câble à mesurer :	10706_1
Diamètre du câble :	
Localisation :	RH1
Numéro OC du capteur :	7476 pour la rame 107 / 7480 pour la rame 113
Plage de mesure du capteur :	-800 à 800A
Plage de mesure du tramway :	0-500 A _{RMS}

7.2.3.8 Capteur de courant rhéostatique 1 caisson 2 => I_RHEO_12

Grandeur :	Courant rhéostatique 1 caisson 2
Signal :	I_RHEO_12
Dénomination :	CA(I)RH2C1
Type de capteur :	LEM HTR 400-SB
Norme du capteur :	EN 50178
ldentifiant du câble à mesurer :	10708_1
Diamètre du câble :	
Localisation :	RH1
Numéro OC du capteur :	7477 pour la rame 107 / 7481 pour la rame 113
Plage de mesure du capteur :	-800 à 800A
Plage de mesure du tramway ::	0-500 A _{RMS}

7.2.3.9 Capteur de courant rhéostatique 2 caisson 1 => I_RHEO_21

Grandeur :	Courant rhéostatique 2 caisson 1
Signal :	I_RHEO_21
Dénomination :	CA(I)RH1C2
Type de capteur :	LEM HTR 400-SB
Norme du capteur :	EN 50178
Identifiant du câble à mesurer :	10706_2
Diamètre du câble :	
Localisation :	RH2
Numéro OC du capteur :	7478 pour la rame 107 / 7482 pour la rame 113
Plage de mesure du capteur :	-800 à 800A
Plage de mesure du tramway :	0-500 A _{RMS}

7.2.3.10 Capteur de courant rhéostatique 2 caisson 2 => I_RHEO_22

Grandeur :	Courant rhéostatique 2 caisson 2
Signal :	I_RHEO_22
Dénomination :	CA(I)RH2C2
Type de capteur :	LEM HTR 400-SB
Norme du capteur :	EN 50178
Identifiant du câble à mesurer :	10708_2
Diamètre du câble :	
Localisation :	RH2
Numéro OC du capteur :	7479 pour la rame 107 / 7483 pour la rame 113
Plage de mesure du capteur :	-800 à 800A
Plage de mesure du tramway :	0-500 A _{RMS}

7.2.3.11 Capteur de tension 400V AC VAC1&2 => U_HVAC_AC

Grandeur :	Tension 400V AC VAC1&2
Signal :	U_HVAC_AC
Dénomination :	CA(U)HVAC400
Type de capteur :	LEM LV25-P
Norme du capteur :	EN 50155
ldentifiant du câble à mesurer :	21231/21232
Diamètre du câble :	
Localisation :	21G2
Numéro OC du capteur :	7490 pour la rame 107 / 7491 pour la rame 113
Plage de mesure du capteur :	10 à 500 V
Plage de mesure du tramway :	0 à 400V

7.2.3.12 Capteur de courant 400V AC VAC1 => I_HVAC_AC1

Grandeur :	Courant 400V AC VAC1
Signal :	I_HVAC_AC1
Dénomination :	CA(I)HVAC400_1
Type de capteur :	LEM DHR100 C420
Norme du capteur :	1
ldentifiant du câble à mesurer :	21231_1
Diamètre du câble :	
Localisation :	21G2
Numéro OC du capteur :	7424 pour la rame 107 / 7425 pour la rame 113
Plage de mesure du capteur :	-100 à 100 A
Plage de mesure du tramway :	

7.2.3.13 Capteur de courant 400V AC VAC2 => I_HVAC_AC2

Grandeur :	Courant 400V AC VAC2
Signal :	I_HVAC_AC2
Dénomination :	CA(I)HVAC400_2
Type de capteur :	LEM DHR100 C420
Norme du capteur :	1
ldentifiant du câble à mesurer :	21231_2
Diamètre du câble :	
Localisation :	21G2
Numéro OC du capteur :	7423 pour la rame 107 / 7428 pour la rame 113
Plage de mesure du capteur :	-100 à 100 A
Plage de mesure du tramway :	

7.2.3.14 Capteur de température intérieur salle => T°int

Grandeur :	Température intérieure salle
Signal :	T°int
Dénomination :	CA(T)SAL
Type de capteur :	T/C K ou Pt100
Norme du capteur :	1
ldentifiant du câble à mesurer :	NA
Diamètre du câble :	NA
Localisation :	Sous voussoir salle NP
Numéro OC du capteur :	7406 pour la rame 107 / 7407 pour la rame 113
Plage de mesure du capteur :	-50 à 200°C
Plage de mesure du tramway :	

7.2.3.15 Capteur de niveau $CO^2 = > Taux CO2$

Grandeur :	Niveau de CO ² en ppm
Signal :	Taux CO2
Dénomination :	CA(CO2)SAL
Type de capteur :	GE Mesurement & CONTROL T8100-E
Norme du capteur :	I
ldentifiant du câble à mesurer :	NA
Diamètre du câble :	NA
Localisation :	Sous voussoir salle NP
Numéro OC du capteur :	7426 pour la rame 107 / 7427 pour la rame 113
Plage de mesure du capteur :	0 à 2000 ppm
Plage de mesure du tramway :	

7.2.3.16 Capteur de température extérieur => T°ext

Grandeur :	Tompérature extérieure
	Température extérieure
Signal : Dénomination :	T°ext
Type de capteur :	CA(T)EXT
	Pt100
Norme du capteur : Identifiant du câble à	
mesurer:	NA
Diamètre du câble :	NA
Localisation :	Intercaisse C1-NP
Numéro OC du capteur :	6934 pour la rame 107 / 6959 pour la rame 113
Plage de mesure du capteur :	-50 à 200°C
Plage de mesure du tramway :	Température extérieure
Photo :	

7.2.3.17 Méthodologie

L'instrumentation sera mise en place dans le dépôt au début de la période d'essai. Elle sera testée en statique et lors d'essais dynamiques.

Au cours de la période de d'essai, le personnel sera en charge de vérifier régulièrement que le système fonctionne, mais il n'est pas autorisé à collecter les données ou à modifier les paramètres, sauf s'il a été formé et autorisé.

Le tramway sera exploité en service commercial en fonction des besoins / possibilités de l'opérateur. Les données sont automatiquement enregistrées lorsque le tramway est démarré.

A la fin de la période d'essai les données seront recueillies et l'instrumentation sera enlevée.

7.2.3.18 Consignes de sécurité particulière

Pour l'instrumentation, le réglage et l'enlèvement, des travaux en hauteur sont à prévoir. La caténaire devra être mise à terre ainsi que la rame, et le pantographe devra être isolé manuellement.

Comme prévu il n'y aura pas de présence durant le service commerciale.

L'analyse sécuritaire est décrite dans le carnet de sécurité [A1].

7.2.3.19 Procédure d'évaluation des résultats d'essais

Consommation d'énergie de traction (pour un tramway donc 2 TCU) :

L'énergie ou le courant est considéré comme positif lorsque le tramway consomme de l'énergie (typiquement en traction). L'énergie ou le courant est considéré comme négatif lorsque le tramway régénère du courant à la caténaire (freinage par récupération seulement).

Consommation d'énergie rhéostatique :

Consommation d'énergie apparente HVAC (en chauffage et climatisation)

Consommation d'énergie du CVS :

Consommation totale d'énergie :

7.2.3.20 Critère de réussite / d'échec

Aucun.

7.2.3.21 Feuille de résultats

Un rapport d'essai n'est pas prévu, seule une feuille de résultat des mesures sera fournie démontrant :

- Si possible pour chaque jour (en fonction de l'instrumentation):
 - La consommation quotidienne totale d'énergie
 - La consommation d'énergie quotidienne de traction
 - La consommation d'énergie quotidienne HVAC
 - La consommation d'énergie quotidienne du CVS
 - La consommation d'énergie quotidienne rhéostatique
- A la fin de la période d'essai :
 - La consommation globale totale d'énergie
 - La consommation globale totale d'énergie en traction
 - La consommation globale totale d'énergie HVAC
 - La consommation globale totale d'énergie du CVS
 - La consommation globale totale d'énergie rhéostatique

Les versions de logiciels de l'unité de traction, convertisseurs auxiliaires et l'unité berline de CVC sont à noter.

Il est de la responsabilité de l'opérateur de fournir le tracé détaillé du tramway pendant la période d'essai. Cette information peut être jointe à la feuille de résultats finale, si elle est disponible.

8. ANNEXES

Aucune.