

Chimica Organica Magistrale

Docente
Paolo Melchiorre

Appunti di lezione

Redattore:

Alessandro Suprani alessandro.suprani@studio.unibo.it

Indice

I	Statistica	2
1	Le basi della statistica 1.1 Popolazione e campione, normalità	2 2 2
II	Elettrochimica	3
1	Prima Sezione Elettrochimica	3
II	I Spettroscopia	4
1	Prima Sezione Spettroscopia	4

Parte I

Statistica

1 Le basi della statistica

1.1 Popolazione e campione, normalità

Quando si parla di popolazione e di campione si fa riferimento a due ben distinte entità:

- Popolazione: insieme di tutte le possibili misure effettuabili
- Campione: porzione di popolazione scelta per effettuare analisi

Una volta selezionato il campione bisogna verificarne la normalità (ovvero se i dati seguono una distribuzione normale, la campana di Gauss) Se i dati sono normalizzati si può eseguire direttamente i test statistici, se non sono normalizzati si può utilizzare il teorema di limite centrale per assumerla normale.

1.2 Media, Deviazione Standard

La media (\overline{x} o μ) è utilizzabile per variabili di intervalli (con 0 arbitrario, come la T in °C) e variabili di rapporto (0 definito in modo assoluto come la T in K). Per la natura aleatoria dei dati, è possibile che basi di dati diverse forniscano medie uguali: la media **NON** è sufficiente per descrivere in maniera accurata un campione. Prendiamo quindi lo scarto tra il singolo valore e la media, ($x_i - \overline{x}$). Dato che la serie di dati è normale, la sommatoria di questa dati darebbe 0. Quindi facciamo la somma dei quadrati e dividiamo questa sommatoria per la dimensione della popolazione, ottenendo così la **Varianza della POPOLAZIONE**(indicata con σ

$$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$$

Per riportare l'unità di misura allo stato originale mettiamo tutto sotto radice quadra, e otteniamo la **Deviazione Standard della POPOLAZIONE(indicata con** σ .

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

Varianza e Deviazione Standard del Campione sono invece identificati con la lettera s, ma hanno le stesse formule e ragionamenti.

$$s^{2} = \frac{\sum_{i=1}^{N} (x_{i} - \mu)^{2}}{N}$$

$$s = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_{i} - \mu)^{2}}$$

Varianza del Campione

Deviazione Standard del Campione

1.3 La distribuzione di Laplace-Gauss

Quando molti fattori indipendenti influenzano allo stesso modo una osservazione il risultato segue una distribuzione normale chiamata **Campana di Gauss**, la cui distribuzione delle misure del campione è osservabile dalla larghezza della stessa.

Parte II

Elettrochimica

1 Prima Sezione Elettrochimica

Placeholder per quando inizieremo Elettrochimica.

Parte III

Spettroscopia

1 Prima Sezione Spettroscopia

Placeholder per quando inizieremo spettroscopia.