### **Case Study 4: Collaborative Filtering**

### **Probabilistic Matrix Factorization**

Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox May 19<sup>th</sup>, 2015

©Emily Fox 2015

Matrix Completion Problem

X<sub>ij</sub> known for black cells
X<sub>ij</sub> unknown for white cells
Rows index users
Columns index movies

Filling missing data?

K

R

Soln for pred 0:
learn low-din user and movie vectors

Filled movie vectors

Sparse

N·M params

©Emily Fox 2015

### Coordinate Descent for Matrix Factorization: **Alternating Least-Squares**

$$\underset{L,R}{\text{min}} \sum_{(u,v): r_{uv} \neq ?} (L_u \cdot R_v - r_{uv})^2 + \lambda_u \| L \| + \lambda_v \| R \|$$

- Fix movie factors, optimize for user factors
  - $\min_{L_u} \sum_{v \in V} \left( L_u \cdot R_v r_{uv} \right)^2 + \lambda_{u} \| \mathcal{L} \|$ Independent least-squares over users
- Fix user factors, optimize for movie factors
  - Independent least-squares over movies

$$\min_{R_v} \sum_{u \in U_v} (L_u \cdot R_v - r_{uv})^2 + \lambda_v \| \mathbf{r} \|$$

- use regularization System may be underdetermined:
- Converges to local optima

©Emily Fox 2015

Probabilistic Matrix Factorization (PMF)

- A generative process:
  - = Pick user u factors  $Lu \cdot Lu_1, Lu_2, \dots, Lu_k$   $Lu_1 \stackrel{\text{ind}}{\sim} N(0, \sigma_u^2)$
  - Pick movie v factors  $R_v$ :  $R_{v_1, \dots}$ ,  $R_{v_k}$   $R_{v_k} \stackrel{\text{iid}}{\sim} N(0, \sigma_v^2)$
- For each (user,movie) pair observed:
   Pick rating as L<sub>u</sub>. R<sub>v</sub> + noise

  Cu | Lu, R<sub>v</sub> ~ N(Lu-R<sub>v</sub>, 5,²)
- Joint probability:

$$P(L,R,X) = P(L)P(R)P(X|L,R)$$

©Emily Fox 2015





### MAP versus Regularized Least-Squares for Matrix Completion

• MAP under Gaussian Model:

$$\max_{L,R} \log P(L, R \mid X) = -\frac{1}{2\sigma_u^2} \sum_{u} \sum_{i} L_{u_i}^2 - \frac{1}{2\sigma_v^2} \sum_{v} \sum_{i} R_{v_i}^2 - \frac{1}{2\sigma_r^2} \sum_{r_{uv}} (L_u \cdot R_v - r_{uv})^2 + \text{const}$$

• Least-squares matrix completion with L<sub>2</sub> regularization:

$$\min_{L,R} \frac{1}{2} \sum_{r_{uv}} (L_u \cdot R_v - r_{uv})^2 + \frac{\lambda_u}{2} ||L||_F^2 + \frac{\lambda_v}{2} ||R||_F^2$$

• Understanding as a probabilistic model is very useful! E.g.,



©Emily Fox 2015

### What you need to know...

- · Probabilistic model for collaborative filtering
  - Models, choice of priors
  - MAP equivalent to optimization for matrix completion

©Emily Fox 2015

### **Case Study 4: Collaborative Filtering**

### Gibbs Sampling for Bayesian Inference

Machine Learning for Big Data CSE547/STAT548, University of Washington

Emily Fox

May 19<sup>th</sup>, 2015

©Emily Fox 2015

9

### **Posterior Computations**

MAP estimation focuses on point estimation:

$$\hat{\theta}^{MAP} = \arg\max_{\theta} p(\theta \mid x)$$

- What if we want a full characterization of the posterior?
  - Maintain a measure of uncertainty
  - ☐ Estimators other than posterior mode (different loss functions)
  - □ Predictive distributions for future observations posterior



Contrast with

Often no closed-form characterization (e.g., mixture models, PMF, etc.)

©Emily Fox 2015

### Bayesian PMF Example

Latent user and movie factors:

Lu ~ W(Mu, Zu) kxk u=1,...,n Rv~ W(Mv, Zv) v=1,...,m

- Hyperparameters:

 $\phi = \{ M_u, \geq u , M_v, \geq v , \sigma_r^2 \}$   $\downarrow u = 1, ..., n$   $\downarrow v \qquad \downarrow v \qquad \downarrow v \qquad \downarrow u = 1, ..., n$   $\downarrow v \qquad \downarrow v \qquad \downarrow$ 

Want to predict new movie rating:



 $P(r_{uv}^* | X, \phi) = \int P(r_{uv}^* | Lu, Rv,) P(L, R | X, \phi) dldR$ 

©Emily Fox 2015

11

### Bayesian PMF vs. MAP PMF

$$p(r_{uv}^* \mid X, \phi) = \int p(r_{uv}^* \mid L_u, R_v) p(L, R \mid X, \phi) dL dR$$

Relationship to MAP plug-in estimator:

of L,R 1 X, \$ ) = 8 2000 mas



 $P(r_{uv}^* \mid X, \phi) = P(r_{uv}^* \mid L, R, \phi)$ 



(eq. to plug-in est. pred.)

©Emily Fox 2015

### Bayesian PMF Example

$$p(r_{uv}^* \mid X, \phi) = \int p(r_{uv}^* \mid L_u, R_v) p(L, R \mid X, \phi) dL dR$$

$$= \text{Monte Carlo methods:}$$

$$= \text{P(r_{uv}^* \mid X, \phi)} \approx \frac{1}{M} \sum_{k=1}^M p(r_{uv}^* \mid L_u, R_v^{(\ell)}) \sum_{\substack{k \in I \\ \text{posterior} \\ \text{how?}}} p(r_{uv}^* \mid X, \phi) \approx \frac{1}{M} \sum_{k=1}^M p(r_{uv}^* \mid L_u, R_v^{(\ell)}) \sum_{\substack{k \in I \\ \text{posterior} \\ \text{how?}}} p(L, R \mid X, \phi) = \inf_{\substack{k \in I \\ \text{posterior} \\ \text{posterior}}} p(L, R \mid X, \phi) = \inf_{\substack{k \in I \\ \text{posterior} \\ \text{posterior}}} p(L, R \mid X, \phi) = \inf_{\substack{k \in I \\ \text{posterior} \\ \text{posterior}}} p(L, R \mid X, \phi) = \inf_{\substack{k \in I \\ \text{posterior} \\ \text{posterior}}} p(L, R \mid X, \phi) = \inf_{\substack{k \in I \\ \text{posterior} \\ \text{posterior}}} p(L, R \mid X, \phi) = \inf_{\substack{k \in I \\ \text{posterior} \\ \text{posterior}}} p(L, R \mid X, \phi) = \inf_{\substack{k \in I \\ \text{posterior} \\ \text{posterior}}} p(L, R \mid X, \phi) = \inf_{\substack{k \in I \\ \text{posterior} \\ \text{posterior}}} p(L, R \mid X, \phi) = \inf_{\substack{k \in I \\ \text{posterior} \\ \text{posterior}}} p(L, R \mid X, \phi) = \inf_{\substack{k \in I \\ \text{posterior} \\ \text{posterior}}} p(L, R \mid X, \phi) = \inf_{\substack{k \in I \\ \text{posterior} \\ \text{posterior}}} p(L, R \mid X, \phi) = \inf_{\substack{k \in I \\ \text{posterior} \\ \text{posterior}}} p(L, R \mid X, \phi) = \inf_{\substack{k \in I \\ \text{posterior} \\ \text{posterior}}} p(L, R \mid X, \phi) = \inf_{\substack{k \in I \\ \text{posterior} \\ \text{posterior}}} p(L, R \mid X, \phi) = \inf_{\substack{k \in I \\ \text{posterior}}} p(L, R \mid X, \phi) = \inf_{\substack{k \in I \\ \text{posterior}}} p(L, R \mid X, \phi) = \inf_{\substack{k \in I \\ \text{posterior}}} p(L, R \mid X, \phi) = \inf_{\substack{k \in I \\ \text{posterior}}} p(L, R \mid X, \phi) = \inf_{\substack{k \in I \\ \text{posterior}}} p(L, R \mid X, \phi) = \inf_{\substack{k \in I \\ \text{posterior}}} p(L, R \mid X, \phi) = \inf_{\substack{k \in I \\ \text{posterior}}} p(L, R \mid X, \phi) = \inf_{\substack{k \in I \\ \text{posterior}}} p(L, R \mid X, \phi) = \inf_{\substack{k \in I \\ \text{posterior}}} p(L, R \mid X, \phi) = \inf_{\substack{k \in I \\ \text{posterior}}} p(L, R \mid X, \phi) = \inf_{\substack{k \in I \\ \text{posterior}}} p(L, R \mid X, \phi) = \inf_{\substack{k \in I \\ \text{posterior}}} p(L, R \mid X, \phi) = \inf_{\substack{k \in I \\ \text{posterior}}} p(L, R \mid X, \phi) = \inf_{\substack{k \in I \\ \text{posterior}}} p(L, R \mid X, \phi) = \inf_{\substack{k \in I \\ \text{posterior}}} p(L, R \mid X, \phi) = \inf_{\substack{k \in I \\ \text{posterior}}} p(L, R \mid X, \phi) = \inf_{\substack{k \in I \\ \text{posterior}}} p(L, R \mid X, \phi) = \inf_{\substack{k \in I \\ \text{posterior}}} p(L, R \mid X, \phi) = \inf_{\substack{k \in I \\ \text{posterior}}} p(L, R \mid X, \phi) = \inf_{\substack{k \in I \\ \text{pos$$

### Bayesian PMF Example

- $\qquad \qquad \text{Want posterior samples} \quad (L^{(\cancel{k})}, R^{(\cancel{k})}) \sim p(L, R \mid X, \phi)$
- What can we sample from?

### Bayesian PMF Example

- Symmetrically for  $R_{\nu}$  conditioned on L (breaks down over movies)
- Luckily, we can use this to get our desired posterior samples

05 1 5 2045

15

### Gibb Sampling Want draws: (generically for a params ( $\theta$ , , , $\theta$ ) = $\theta$ ) ( $\theta$ , , $\theta$ ) ~ $\pi$ ( $\theta$ ) ( $\theta$ , , $\theta$ ) ~ $\pi$ ( $\theta$ ) Construct Markov chain whose steady state distribution is $\pi$ Then, asymptotically correct ... eventually we get (dependent) samples from desired $\pi$ Simplest case: (6ibbs) For $\kappa = 1$ , , Niter can use a random order for $\kappa = 1$ , , Niter can use a random order ( $\kappa = 1$ , , $\kappa = 1$ ) ( $\kappa = 1$ ) (

### Bayesian PMF Gibbs Sampler

- Outline of Bayesian PMF sampler
  - 1. Unit L(1), R(1)
  - 2. For kil, ..., Niter

Very similar to ALS (systematically)

©Emily Fox 2015

17

### **Bayesian PMF Results**

From Salakhutdinov and Mnih, ICML 2008

- Netflix data with:
  - □ Training set = 100,480,507 ratings from 480,189 users on 17,770 movie titles
  - □ Validation set = 1,408,395 ratings.
  - □ Test set = 2,817,131 user/movie pairs with the ratings withheld.



togistic

Figure 2. Left panel: Performance of SVD, PMF, logistic PMF, and Bayesian PMF using 30D feature vectors, on the Netflix validation data. The y-axis displays RMSE (root mean squared error), and the x-axis shows the number of epochs, or passes, through the entire training set. Right panel: RMSE for the Bayesian PMF models on the validation set as a function of the number of samples generated. The two curves are for the models with 30D and 60D feature vectors.

©Emily Fox 2015

### **Bayesian PMF Results**

From Salakhutdinov and Mnih, ICML 2008

 Bayesian model better controls for overfitting by averaging over possible parameters (instead of committing to one)

dim of user/movie Factors

| D   | Valid. RMSE |        | %    | Test RMSE |        | %    |
|-----|-------------|--------|------|-----------|--------|------|
|     | PMF         | BPMF   | Inc. | PMF       | BPMF   | Inc. |
| 30  | 0.9154      | 0.8994 | 1.74 | 0.9188    | 0.9029 | 1.73 |
| 40  | 0.9135      | 0.8968 | 1.83 | 0.9170    | 0.9002 | 1.83 |
| 60  | 0.9150      | 0.8954 | 2.14 | 0.9185    | 0.8989 | 2.13 |
| 150 | 0.9178      | 0.8931 | 2.69 | 0.9211    | 0.8965 | 2.67 |
| 300 | 0.9231      | 0.8920 | 3.37 | 0.9265    | 0.8954 | 3.36 |

Bayes vnodel improves

 $Table\ 1.$  Performance of Bayesian PMF (BPMF) and linear PMF on Netflix validation and test sets.

Note: Each sampling step of BPMF requires O(D)

operation, so not for free

©Emily Fox 2015





### Coordinate Descent for Matrix Factorization: **Alternating Least-Squares**

$$\min_{L,R} \sum_{(u,v):r_{uv}\neq ?} (L_u \cdot R_v - r_{uv})^2 + \lambda_u \| L \| + \lambda_v \| R \|$$

- Fix movie factors, optimize for user factors
  - Independent least-squares over users
- $\min_{L_u} \sum_{v \in V_u} (L_u \cdot R_v r_{uv})^2 + \lambda_u \| L \|$ actors of (movies rated by wer u) Fix user factors optimize for movie factors
- - Independent least-squares over movies
- System may be underdetermined:
- Converges to local optima

©Emily Fox 2015



### Bayesian PMF Gibbs Sampler

- Outline of Bayesian PMF sampler
  - 1. Initialize  $L^{(1)}, R^{(1)}$
  - 2. For  $k = 1, \ldots, N_{iter}$ 
    - (i) Sample hyperparams  $\phi^{(k)}$
    - (ii) For each user  $u=1\ldots,n$  sample (in parallel)  $L_u^{(k+1)} \sim N(\tilde{\mu}_u,\tilde{\Sigma}_u)$  (iii) For each move  $v=1,\ldots,m$  sample (in parallel)

$$\begin{split} \text{where} & \tilde{\Sigma}_u^{-1} = \tilde{\Sigma}_u^{-1} + \sigma_r^{-2} \sum_{v \in V_u} R_v R_v^T \\ \text{where} & \tilde{\Gamma}_u^{-1} = \tilde{\Sigma}_u \left( \sigma_r^{-2} \sum_{v \in V_u} r_{uv} R_v + \tilde{\Sigma}_u^{-1} \mu_u \right) \end{split}$$



### What you need to know...

- Idea of full posterior inference vs. MAP estimation
- Gibbs sampling as an MCMC approach
- Example of inference in Bayesian probabilistic matrix factorization model
- Implementation of vanilla sampler in GraphLab

©Emily Fox 2015

### **Case Study 4: Collaborative Filtering**

### Matrix Factorization and Probabilistic LFMs for Network Modeling

Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox May 19<sup>th</sup>, 2015

©Emily Fox 2015

27

# Network Data Structure of network data white square edge between edge between edge between edges no des in network w/ undirected edges Adjacency matrix

## Properties of Data Source Similarities to Netflix data: Matrix ~ valued data (edj. matrix) High-dimensional many nodes Sparse few links between nodes leg. ppl in a social network Square — same indices for rows+ columns Binary Jes/no for link (ether ext. possible ... multiple) If undirected, then matrix is symmetric

### Matrix Factorization for Network Data

Vanilla matrix factorization approach:

What to return for link prediction?

Slightly fancier:

©Emily Fox 2015

### **Probabilistic Latent Space Models**

- Assume features (covariates) of the user or relationship
- Each user has a "position" in a k-dimensional latent space
- Probability of link:



©Emily Fox 2015

31

### **Probabilistic Latent Space Models**

Probability of link:

log odds 
$$p(r_{uv} = 1 \mid L_u, L_v, x_{uv}, \beta) = \beta_0 + \beta^T x_{uv} - |L_u - L_v|$$

log odds 
$$p(r_{uv} = 1 | L_u, L_v, x_{uv}, \beta) = \beta_0 + \beta^T x_{uv} + |L_u^T L_v|$$

- Bayesian approach:
  - □ Place prior on user factors and regression coefficients
  - □ Place hyperprior on user factor hyperparameters
- Many other options and extensions (e.g., can use GMM for  $L_u \rightarrow$  clustering of users in the latent space)

©Emily Fox 2015

### What you need to know...

- Representation of network data as a matrix
  - Adjacency matrix
- Similarities and differences between adjacency matrices and general matrix-valued data
- Matrix factorization approaches for network data
  - Just use standard MF and threshold output
  - Introduce link functions to constrain predicted values
- Probabilistic latent space models
  - Model link probabilities using distance between latent factors

©Emily Fox 2015