

Automating variable selection in distributional regression

Kevin Burke | University of Limerick

Smooth information criterion (SIC)

Statistics and Computing (2023) 33:71 https://doi.org/10.1007/s11222-023-10204-8

ORIGINAL PAPER

Variable selection using a smooth information criterion for distributional regression models

Meadhbh O'Neill¹ · Kevin Burke¹

Does X cause Y?

Does X cause Y? relate to

Does X cause Y?
relate to
linearly

the mean of Does X cause Y? relate to linearly

Mean regression (obsession?)

Mean regression (obsession?)

•
$$Y = X^{\mathsf{T}}\beta + \sigma\varepsilon$$
, $\varepsilon \sim N(0,1)$

$$\rightarrow Y \sim N(X^{\mathsf{T}}\beta, \sigma^2)$$

• Why should σ^2 be constant?

Mean regression (obsession?)

•
$$Y = X^{\mathsf{T}}\beta + \sigma\varepsilon$$
, $\varepsilon \sim N(0,1)$

$$\rightarrow Y \sim N(X^{\mathsf{T}}\beta, \sigma^2)$$

• Why should σ^2 be constant?

Distributional regression

 Any/all distributional parameters could depend on X

Distributional regression

 Any/all distributional parameters could depend on X

•
$$Y = \mu + \sigma \varepsilon$$
, $\varepsilon \sim N(0,1)$

$$\rightarrow Y \sim N(X^{\mathsf{T}}\beta, \exp(X^{\mathsf{T}}\alpha))$$

Distributional regression

 Any/all distributional parameters could depend on X

•
$$Y = \mu + \sigma \varepsilon$$
, $\varepsilon \sim N(0,1)$

•
$$\mu = X^{\mathsf{T}}\beta$$
, $\log \sigma^2 = X^{\mathsf{T}}\alpha$

- $\rightarrow Y \sim N(X^{\mathsf{T}}\beta, \exp(X^{\mathsf{T}}\alpha))$
- Also known as "multi-parameter regression"

• Consider $X = (X_1, X_2, X_3)$

$\mu(X)$
Ø
X_1
X_2
X_3
X_1, X_2
X_1, X_3
X_2, X_3
X_1, X_2, X_3

• Consider $X = (X_1, X_2, X_3)$

$\mu(X)$
Ø
X_1
X_2
X_3
X_1, X_2
X_1, X_3
X_2, X_3
X_1, X_2, X_3

Mean regression

• Consider $X = (X_1, X_2, X_3)$

$\mu(X)$	$\sigma(X)$
Ø	Ø
X_1	X_1
X_2	X_2
X_3	X_3
X_1, X_2	X_1, X_2
X_1, X_3	X_1, X_3
X_2, X_3	X_2, X_3
X_1, X_2, X_3	X_1, X_2, X_3

Mean regression

• Consider $X = (X_1, X_2, X_3)$

$\mu(X)$	$\sigma(X)$
Ø	Ø
X_1	X_1
X_2	X_2
X_3	X_3
X_1, X_2	X_1, X_2
X_1, X_3	X_1, X_3
X_2, X_3	X_2, X_3
X_1, X_2, X_3	X_1, X_2, X_3

Models

$$-2^3 \times 2^3 = 2^{2 \times 3}$$

In general

$$-2^{d\times p}$$

- d distributional parameters
- p covariates

Mean regression

• BIC = $-2\ell + (\log n)(\|\beta\|_0 + \|\alpha\|_0)$

• BIC = $-2\ell + (\log n)(\|\beta\|_0 + \|\alpha\|_0)$

•
$$\ell_{\text{BIC}} = -\text{BIC}/2 = \ell - \{(\log n)/2\} (\|\beta\|_0 + \|\alpha\|_0)$$

• BIC = $-2\ell + (\log n)(\|\beta\|_0 + \|\alpha\|_0)$

•
$$\ell_{\text{BIC}} = -\text{BIC}/2 = \ell - \{(\log n)/2\} (\|\beta\|_0 + \|\alpha\|_0)$$

$$(\hat{\beta}, \hat{\alpha}) = \max_{\beta, \alpha} \ell_{BIC}$$

• BIC = $-2\ell + (\log n)(\|\beta\|_0 + \|\alpha\|_0)$

•
$$\ell_{\text{BIC}} = -\text{BIC}/2 = \ell - \{(\log n)/2\} (\|\beta\|_0 + \|\alpha\|_0)$$

$$(\hat{\beta}, \hat{\alpha}) = \max_{\beta, \alpha} \ell_{BIC}$$

Discrete optimisation: fit all models

- BIC = $-2\ell + (\log n)(\|\beta\|_0 + \|\alpha\|_0)$
- $\ell_{\text{BIC}} = -\text{BIC}/2 = \ell \{(\log n)/2\} (\|\beta\|_0 + \|\alpha\|_0)$

- $(\hat{\beta}, \hat{\alpha}) = \max_{\beta, \alpha} \ell_{BIC}$
- Discrete optimisation: fit all models
- Heuristic: stepwise search

• Problem: $\ell_{BIC} = \ell - \{(\log n)/2\} (\|\beta\|_0 + \|\alpha\|_0)$

- Problem: $\ell_{BIC} = \ell \{(\log n)/2\} (\|\beta\|_0 + \|\alpha\|_0)$
- Related: $\ell_{\text{LASSO}} = \ell \lambda(\|\beta\|_1 + \|\alpha\|_1)$

- Problem: $\ell_{BIC} = \ell \{(\log n)/2\} (\|\beta\|_0 + \|\alpha\|_0)$
- Related: $\ell_{\text{LASSO}} = \ell \lambda(\|\beta\|_1 + \|\alpha\|_1)$
- What about λ?
 - □ Given λ , obtain $(\hat{\beta}_{LASSO}, \hat{\alpha}_{LASSO}) = \max \ell_{LASSO}$
 - Select λ using ℓ_{BIC}
 - Thus, $\max \ell_{\mathrm{BIC}}$ subject to solutions of the form $(\hat{\beta}_{\mathrm{LASSO}}, \hat{\alpha}_{\mathrm{LASSO}})$

- Problem: $\ell_{BIC} = \ell \{(\log n)/2\} (\|\beta\|_0 + \|\alpha\|_0)$
- Related: $\ell_{\text{LASSO}} = \ell \lambda(\|\beta\|_1 + \|\alpha\|_1)$
- What about λ?
 - □ Given λ , obtain $(\hat{\beta}_{LASSO}, \hat{\alpha}_{LASSO}) = \max \ell_{LASSO}$
 - Select λ using ℓ_{BIC}
 - Thus, $\max \ell_{\mathrm{BIC}}$ subject to solutions of the form $(\hat{\beta}_{\mathrm{LASSO}}, \hat{\alpha}_{\mathrm{LASSO}})$
- Note that $||x||_1$ is not differentiable

• Maximise $\ell_{BIC} = \ell - \{(\log n)/2\} (\|\beta\|_0 + \|\alpha\|_0)$

- Maximise $\ell_{BIC} = \ell \{(\log n)/2\} (\|\beta\|_0 + \|\alpha\|_0)$
- Discrete optimisation challenging

- Maximise $\ell_{BIC} = \ell \{(\log n)/2\} (\|\beta\|_0 + \|\alpha\|_0)$
- Discrete optimisation challenging
- Solve "related" LASSO-type problem

- Maximise $\ell_{BIC} = \ell \{(\log n)/2\} (\|\beta\|_0 + \|\alpha\|_0)$
- Discrete optimisation challenging
- Solve "related" LASSO-type problem
- Not fully satisfying ...
 - λ tuning required
 - $-(\hat{\beta}, \hat{\alpha})$ not solution to original problem

"Brilliant"

- "Brilliant"
- "Ingenious"

- "Brilliant"
- "Ingenious"
- "Remarkable"

- "Brilliant"
- "Ingenious" "Remarkable"

- a. LO and Lp Loss Functions in Model-Robust Estimation of Structural **Equation Models**
- b. Implementation aspects in regularized structural equation models
- c. Implementation Aspects in Invariance

- "Brilliant"
- "Ingenious" "Remarkable"

- a. LO and Lp Loss Functions in Model-Robust Estimation of Structural **Equation Models**
- b. Implementation aspects in regularized structural equation models
- c. Implementation Aspects in Invariance

•
$$\ell_{BIC} = \ell - \{(\log n)/2\} (\|\beta\|_0 + \|\alpha\|_0)$$

- "Brilliant"
- "Ingenious""Remarkable"

- a. LO and Lp Loss Functions in Model-Robust Estimation of Structural **Equation Models**
- b. Implementation aspects in regularized structural equation models
- c. Implementation Aspects in Invariance

•
$$\ell_{\text{BIC}} = \ell - \{(\log n)/2\} (\|\beta\|_0 + \|\alpha\|_0)$$

= $\ell - \{(\log n)/2\} (\sum_j |\beta_j|^0 + \sum_j |\alpha_j|^0)$

- "Brilliant"
- "Ingenious""Remarkable"

- a. LO and Lp Loss Functions in Model-Robust Estimation of Structural **Equation Models**
- b. Implementation aspects in regularized structural equation models
- c. Implementation Aspects in Invariance

•
$$\ell_{\text{BIC}} = \ell - \{(\log n)/2\} (\|\beta\|_0 + \|\alpha\|_0)$$

= $\ell - \{(\log n)/2\} (\sum_j |\beta_j|^0 + \sum_j |\alpha_j|^0)$

•
$$\ell_{\text{SIC}} = \ell - \{(\log n)/2\} \left(\sum_{j} \phi_{\epsilon}(\beta_{j}) + \sum_{j} \phi_{\epsilon}(\alpha_{j})\right)$$

Smooth L_0 norm

Smooth L_0 norm

$$\phi_{\epsilon}(x) = \frac{x^2}{x^2 + \epsilon^2}$$

- Differentiable for $\epsilon > 0$
- $\lim_{\epsilon \to 0} \phi_{\epsilon}(x) = |x|^0$

- $\lim_{\epsilon \to 0} \ell_{\rm SIC} = \ell_{\rm BIC}$
- Maximising $\ell_{\rm SIC}$ equivalent to $\ell_{\rm BIC}$ for $\epsilon \approx 0$

- $\lim_{\epsilon \to 0} \ell_{\rm SIC} = \ell_{\rm BIC}$
- Maximising $\ell_{\rm SIC}$ equivalent to $\ell_{\rm BIC}$ for $\epsilon \approx 0$

- $\lim_{\epsilon \to 0} \ell_{\rm SIC} = \ell_{\rm BIC}$
- Maximising $\ell_{\rm SIC}$ equivalent to $\ell_{\rm BIC}$ for $\epsilon \approx 0$

			true	true
			zero	nonzero
Optimization more stable	Warm Starts	ϵ	$\beta_1 = 0$	$\beta_2 = 1$
		10^{-1}	-0.0249883798	1.008
		10^{-2}	-0.0005789613	1.009
Closer to the discontinuity		10^{-3}	-0.0000058339	1.009
		10^{-4}	-0.000000006	1.009

Prostate data example

- Level of prostate-specific antigen (PSA)
- p = 8, various clinical measures
- n = 97

smoothic

Prostate data example

- Level of prostate-specific antigen (PSA)
- p = 8, various clinical measures
- n = 97

ϵ -telescope

plot_paths()

ϵ-telescope

Conditional Density Curves

smoothic

plot_effects()

Conditional Density Curves

log(PSA)

Neural network selection

• Developing $\ell_{\rm SIC}$ in neural networks

Penalty types

Hidden neurons

Traditional stepwise procedures

selectnn package

```
selectnn
```

```
Number of input nodes: 3
Number of hidden nodes: 1
Value: 235.005
Inputs:
Covariate Selected Delta.BIC
          Yes 33.685
   lcavol
  lweight Yes
                   10.325
      svi Yes 6.794
             No
      age
     lbph
          No
      lcp
            No
  gleason
            No
    pgg45
              No
```

... also see interpretnn

Summary

- Distributional regression more flexible than standard mean regression
- Variable selection more challenging but the smooth information criterion is efficient
- Developing extensions to neural networks
- O'Neill & Burke (2023) Variable selection using a smooth information criterion for distributional regression models. Stats & Computing.
- Also see: kevinburke.ie and arxiv.org/a/burke_k_1

39th IWSM Limerick, Ireland 13th – 18th, July 2025

Brendan Murphy | Ireland Ruth King | UK Sonja Greven | Germany

Daniele Durante | Italy Cynthia Rudin | US

MATHEMATICS APPLICATIONS CONSORTIUM FOR SCIENCE & INDUSTRY

O'Neill & Burke (2023). Variable selection using a smooth information criterion for distributional regression models.

Further details

Separate tuning parameters

$$\ell_{\text{SAL}} = \ell - \left(\frac{\lambda_{\beta}}{\lambda_{\beta}} \sum_{j} w_{\beta_{j}} a_{\epsilon}(\beta_{j}) + \frac{\lambda_{\alpha}}{\lambda_{\alpha}} \sum_{j} w_{\alpha_{j}} a_{\epsilon}(\alpha_{j}) \right)$$

Standard errors

$$cov(\hat{\theta})$$

$$= \{ -\nabla_{\theta} \nabla_{\theta}^{\top} \ell_{SAL}(\widehat{\boldsymbol{\theta}}) \}^{-1} \{ -\nabla_{\theta} \nabla_{\theta}^{\top} \ell(\widehat{\boldsymbol{\theta}}) \} \{ -\nabla_{\theta} \nabla_{\theta}^{\top} \ell_{SAL}(\widehat{\boldsymbol{\theta}}) \}^{-1}$$

Effective degrees of freedom

$$\ell_{\text{BIC}} = \ell - \{(\log n)/2\} (edf)$$

$$edf = \text{trace} \left[\{ -\nabla_{\theta} \nabla_{\theta}^{\top} \ell_{\text{SAL}}(\widehat{\boldsymbol{\theta}}) \}^{-1} \{ -\nabla_{\theta} \nabla_{\theta}^{\top} \ell(\widehat{\boldsymbol{\theta}}) \} \right]$$