FYS5429, FEB 1, 2023

Basics	
of nus	Anchitecture (Model)
	- # hiddenilagar - # modes/nearons/units - # activation function
	- # modes/nearons/units
	- # activation Tunction
	cost junction, optimization + regularization
	ne bulanza tion
	- Cost American
	Reacessian MSB = 1 11(+-4)11
	Will - I m A
	- Cost function Regression $MSE = \frac{1}{ (t-y) _e}$ $ X _2 = \sqrt{\sum x_n^2}$ $tanget$ $model cutput$
	tout
	- Congress /
	model ca opin
	14 - 14 (0 126) 2114 11-14
	$y = y(\Theta; x)$ our Model
	- doto
	x = mpat data t = f(x)
	a un karrina na ametica
	= uni rimotore pranama us
	8 = un known parameter of our mode
	cost junction C(€)
	G = angmin Clb)
	G = ang min C (G) B G IR
	- Optimization
	- Gradient descent (GD)
	- Gradient descent (GD) - GD with momentum

$$\hat{C} = arg min C(\hat{G})$$

$$\hat{C}(\hat{G}) = \frac{1}{2} (t - a(x; \hat{G}_{l}))^{2}$$

$$= \frac{1}{2} (f - g(x; \hat{G}_{l}))^{2} (MSE)$$

$$= \frac{1}{2} (f - g(x; \hat{G}_{l}))^{2} (MSE)$$

$$Back propagation algo;$$

$$\frac{\partial C(\hat{G})}{\partial G_{l}} = 0 =$$

$$-(t - g(x; \hat{G}_{l})) \frac{\partial g}{\partial G_{l}}$$

$$= -(t - a_{l}G; \hat{G}_{l}) \frac{\partial g}{\partial G_{l}}$$

$$Simple example$$

$$G_{l}(x; w_{l}) \qquad G_{l}(x; w_{l})$$

$$Simple example$$

$$G_{l}(x; w_{l}) \qquad G_{l}(x; w_{l}) \qquad G_{l}(x; w_{l})$$

$$= g_{l} = G_{l}(x; w_{l}) =$$

$$g_{l} = g_{l}(x; w_{l}) =$$

$$\frac{\partial C}{\partial w_{2}} = -(6-5) w_{1} \times \\
w_{1}^{(k+1)} \leftarrow w_{1}^{(k)} - q \frac{\partial C}{\partial w_{1}} |_{w_{1}=w_{1}^{(k)}}$$

$$w_{2}^{(k+1)} \leftarrow w_{2}^{(k)} - q \frac{\partial C}{\partial w_{2}} |_{w_{2}=w_{2}^{(k)}}$$

$$\frac{\partial C}{\partial G_{2}} = \frac{\partial}{\partial G_{2}} \left(C \left(t, a_{2}(G_{2}; x) \right) \right)$$

$$\frac{\partial C}{\partial G_{2}} = \frac{\partial}{\partial G_{2}} \left(C \left(t, a_{2}(G_{2}; x) \right) \right)$$

$$\frac{\partial C}{\partial G_{2}} = \frac{\partial}{\partial G_{2}} \left(C \left(t, a_{2}(G_{2}; x) \right) \right)$$

$$\frac{\partial C}{\partial G_{2}} = \frac{\partial}{\partial G_{2}} \left(C \left(t, a_{2}(G_{2}; x) \right) \right)$$

$$\frac{\partial C}{\partial G_{2}} = \frac{\partial}{\partial G_{2}} \left(C \left(t, a_{2}(G_{2}; x) \right) \right)$$

$$\frac{\partial C}{\partial G_{2}} = \frac{\partial}{\partial G_{2}} \left(C \left(t, a_{2}(G_{2}; x) \right) \right)$$

$$\frac{\partial C}{\partial G_{2}} = \frac{\partial}{\partial G_{2}} \left(C \left(t, a_{2}(G_{2}; x) \right) \right)$$

$$\frac{\partial C}{\partial G_{2}} = \frac{\partial}{\partial G_{2}} \left(C \left(t, a_{2}(G_{2}; x) \right) \right)$$

$$\frac{\partial C}{\partial G_{2}} = \frac{\partial}{\partial G_{2}} \left(C \left(t, a_{2}(G_{2}; x) \right) \right)$$

$$\frac{\partial C}{\partial G_{2}} = \frac{\partial}{\partial G_{2}} \left(C \left(t, a_{2}(G_{2}; x) \right) \right)$$

$$\frac{\partial C}{\partial G_{2}} = \frac{\partial}{\partial G_{2}} \left(C \left(t, a_{2}(G_{2}; x) \right) \right)$$

$$\frac{\partial C}{\partial G_{2}} = \frac{\partial}{\partial G_{2}} \left(C \left(t, a_{2}(G_{2}; x) \right) \right)$$

$$\frac{\partial C}{\partial G_{2}} = \frac{\partial}{\partial G_{2}} \left(C \left(t, a_{2}(G_{2}; x) \right) \right)$$

$$\frac{\partial C}{\partial G_{2}} = \frac{\partial}{\partial G_{2}} \left(C \left(t, a_{2}(G_{2}; x) \right) \right)$$

$$\frac{\partial C}{\partial G_{2}} = \frac{\partial}{\partial G_{2}} \left(C \left(t, a_{2}(G_{2}; x) \right) \right)$$

$$\frac{\partial C}{\partial G_{2}} = \frac{\partial}{\partial G_{2}} \left(C \left(t, a_{2}(G_{2}; x) \right) \right)$$

$$\frac{\partial C}{\partial G_{2}} = \frac{\partial}{\partial G_{2}} \left(C \left(t, a_{2}(G_{2}; x) \right) \right)$$

$$\frac{\partial C}{\partial G_{2}} = \frac{\partial}{\partial G_{2}} \left(C \left(t, a_{2}(G_{2}; x) \right) \right)$$

$$\frac{\partial C}{\partial G_{2}} = \frac{\partial}{\partial G_{2}} \left(C \left(t, a_{2}(G_{2}; x) \right) \right)$$

$$\frac{\partial C}{\partial G_{2}} = \frac{\partial}{\partial G_{2}} \left(C \left(t, a_{2}(G_{2}; x) \right) \right)$$

$$\frac{\partial C}{\partial G_{2}} = \frac{\partial}{\partial G_{2}} \left(C \left(t, a_{2}(G_{2}; x) \right) \right)$$

$$\frac{\partial C}{\partial G_{2}} = \frac{\partial}{\partial G_{2}} \left(C \left(t, a_{2}(G_{2}; x) \right) \right)$$

$$\frac{\partial C}{\partial G_{2}} = \frac{\partial}{\partial G_{2}} \left(C \left(t, a_{2}(G_{2}; x) \right) \right)$$

$$\frac{\partial C}{\partial G_{2}} = \frac{\partial}{\partial G_{2}} \left(C \left(t, a_{2}(G_{2}; x) \right) \right)$$

$$\frac{\partial C}{\partial G_{2}} = \frac{\partial}{\partial G_{2}} \left(C \left(t, a_{2}(G_{2}; x) \right) \right)$$

$$\frac{\partial C}{\partial G_{2}} = \frac{\partial}{\partial G_{2}} \left(C \left(t, a_{2}(G_{2}; x) \right) \right)$$

$$\frac{\partial C}{\partial G_{2}} = \frac{\partial}{\partial G_{2}} \left(C \left(t, a_{2}(G_{2}; x) \right) \right)$$

Auto in pythan import autograd matic Di11 $f(x) = \sqrt{x^2 + \exp(x^2)}$ $\frac{df}{dx} = \times (1 + \exp(x^2))$ $\sqrt{x^2 + exp(x^2)}$ f(x) in a liute force way $x^{2} = x \cdot x = 1 Flop$ $exp(x^{2}) = exp(x \cdot x) = 2 Flop = x^{2} + exp(x^{1}) = 1 Flop$ cont = -1SGIT SFLOP. $a = x^2 exp(q) = >$ 4 FLOD. Derivative, Numerator: 4 FLCp5 Dansmugten: 5 FLOPT + DIVISION ; 1 FLOP 10 Flops 2 f(x+sx)-f(x)