04/11/2016

Unsupervised Learning

- We have sample points, but no labels!
- No classes, no y-values nothing to predict.
- Goal: Discover structure in the data.
- Example:
 - Clustering: partition data into groups of similar/nearby points.
 - Dimensionality reduction: data often lies near a low-dimensional subspace (or manifold) in feature space;
 matrices have low-rank approximations.
 - Density estimation: fit a continues distribution do discrete data.

Principal Component Analysis (PCA)

• Goal: Given sample points in \mathbb{R}^d , find k directions that capture the variation (dimensionality reduction).

- Why?
 - Find a small basis for representing variations in complex things.
 - Reducing number of dimensions make some computational cheaper, e.g. regression.
 - Remove irrelevant dimensions to reduce overfitting in learning algorithms. Like subset selection, but we can choose features that aren't axis-aligned.
- Let X be and $n \times d$ design matrix.
- From now on assume X is centered: mean X_i is zero.
- \bullet Let w be a unit vector.
- The orthogonal projection of point x onto vector w is $\tilde{X} = (X \cdot w)w$.
- If w not unit, $\tilde{x} = \frac{x \cdot w}{||w||^2} w$.
- Given orthonormal directions v_1, \ldots, v_k $\tilde{x} = \sum_{i=1}^k (x \cdot v_i) v_i$. $x \cdot v_i$ are the coordinates in principal components space.

- X^TX is square, symmetric, positive semidefinite, dxd matrix.
- Let $0 \le \lambda_1 \le \lambda_2 \le \cdots \le \lambda_d$ be its eigenvalues.
- Let v_1, v_2, \dots, v_d be corresponding orthogonal unit eigenvectors.
- PCA Alg:
 - Center X.
 - Optional: Normalize X. Units of measurement different?
 - * Yes: Normalize.* No: Usually don't.

- Compute unit eigenvectors/values of X^TX .
- Optional: choose k based on the eigenvalue size.

- For the best k-dimensional subspace, pick directions v_{d-k+1}, \dots, v_d .
- Compute the coordinates of training/test data in principal components space.

• PCA Derivations:

1. Fit a Gaussian to data with maximum likelihood estimation. Choose k Gaussian axes of greatest variance.

Recall that MLE estimates a covariance matrix $\hat{\Sigma} = \frac{1}{n} X^T X$

2. Find direction w that maximizes variance of projected data.

$$\operatorname{Var}(\{\tilde{x_1}, \tilde{x_2}, \dots, \tilde{x_n}\}) = \frac{1}{n} \sum_{i=1}^{n} \left(X_i \cdot \frac{w}{|w|} \right)^2$$
$$= \frac{1}{n} \frac{|Xw|^2}{|w|^2}$$
$$= \frac{1}{n} \frac{w^T X^T X w}{w^T w}$$

If w is an eigenvector v_i , Rayleigh quotient $= \lambda_i \to \text{of all eigenvector}$, v_d achieves maximum variance $\frac{\lambda_d}{n}$. One can show v_d beats every other vector too. Then pick v_{d-1} , then v_{d-2}, \ldots

3. Find direction w that minimizes "projection error."

$$\sum_{i=1}^{n} |X_i - \tilde{X}_i|^2 = \sum_{i=1}^{n} |X_i - \frac{x_i \cdot w}{|w|^2}|^2 = \sum_{i=1}^{n} (|X_i|^2 - (X_i \cdot \frac{w}{|w|})^2)$$

$$= \text{constant} - n(\text{variance from derivation } 2).$$

Minimizing projection error \Leftrightarrow maximizing variance.

Eigenfaces

- X contains n images of faces, d pixels each.
- Face recognition: Given a query face, compare it to all training faces; find nearest neighbor in \mathbb{R}^d .
- Problem: Each query takes $\Theta(nd)$ time.
- Solution: Run PCA on faces. Reduce to much smaller dimension d'. Now nearest neighbor takes $\mathcal{O}(nd')$ time.