Game Theory and Applications (博弈论及其应用)

Chapter 15: Extensive Game with Imperfect Information-III

南京大学

高尉

Recap on Previous chapter

- Extensive game with imperfect information $G = \{N, H, P, I, \{u_i\}\}$
- Pure strategies $A(I_{i1}) \times A(I_{i2}) \times A(I_{im})$
- Mixed strategies
- Behavior strategies
- Subgame Perfect Nash Equilibrium

How to solve SPNE?

Beliefs

- A belief μ is a function that assigns to every information set a probability measure on the set of histories in the information set
- The probability is 1 for the information set of size 1

Behavioral Strategies

• A behavior strategy β a collection of independent probability measure over the actions after information set

Beliefs and Optimal Behavior Strategies

- Beliefs affect optimal strategies: For 2, a is the best strategies iff 2 assigns a belief $\mu(M) \le 1/2$
- Strategies affect reasonable beliefs: If 1 assigns to action (L,M,R) prob. (0.1,0.3,0.6), then Bayes rule requires the belief (1/3,2/3) of 2
- What are reasonable beliefs if 1 select L with prob. 1

Two Requirements to Beliefs

Bayes consistency: beliefs are determined by Bayes' law in information sets of positive probability; otherwise, beliefs are allowed to be arbitrary for 0 probability.

Consistency: beliefs are determined as a limit of case

- 1: (L,M,R) with probability $(1 \epsilon, 3\epsilon/4, \epsilon/4)$.
- 2: belief is well-defined for $\epsilon > 0$, as well as $\epsilon = 0$

Assessment (评估)

- An assessment is a pair (β, μ)
 - β is an outcome of behavioral strategies
 - μ is a belief system
- Assessment (β, μ) is:
 - Bayesian consistent if beliefs in information sets reached with positive probability are determined by Bayes' law:

$$\mu_{h,a}(h,a) = \beta_{h,a}(h,a) / \sum_{a} \beta_{h,a}(h,a)$$

for every information set.

- Consistent if there is a sequence of Bayesian consistent $(\beta^n, \mu^n) \to (\beta, \mu)$ as $n \to \infty$
- (β, μ) is consistent $\rightarrow (\beta, \mu)$ Bayesian consistent

Example

- The payoffs are omitted since they are irrelevant
- Find all Bayesian consistent assessments
- Find all consistent assessments

Bayesian consistency

An assessment (β, μ) by a 4-tuple $(\beta_1, \beta_2, \mu_1, \mu_2) \in [0,1]^4$

- β_1 is the probability that 1 chooses In
- β_2 is the probability that 2 chooses In
- μ_1 is the belief assigns to the left node in 1's info set
- μ_2 is the belief assigns to the left node in 2's info set

Two cases:

- i) If $\beta_1 \in (0,1]$, 2's information set is reached with positive probability. Bayes' Law dictates that $\mu_1 = \mu_2 = 1/2$. $(\beta_1, \beta_2, \mu_1, \mu_2) = (0,1] \times [0,1] \times \{1/2\} \times \{1/2\}$
 - are Bayesian consistent
- ii) If $\beta_1 = 0$, then 2's information set is reached with zero probability and $\mu_2 \in [0,1]$

$$(\beta_1, \beta_2, \mu_1, \mu_2) = \{0\} \times [0,1] \times \{1/2\} \times [0,1]$$

are Bayesian consistent

Consistency

- Every complete outcome of behavioral strategies leads to $\mu_1 = \mu_2 = 1/2$.
- 2's information set, both nodes are reached with equal probability.
- Conclusion:

$$(\beta_1, \beta_2, \mu_1, \mu_2) = [0,1] \times [0,1] \times \{1/2\} \times \{1/2\}$$

are consistent

Expected Payoffs in Information Sets

Fix assessment (β, μ) and information set I_{ij} of player i. We consider the expected payoff of player i on I_{ij} as

- Given I_{ij} , the belief μ assigns probability over I_{ij} with $\mu(h)$ for $h \in I_{ij}$
- For $h \in I_{ij}$, let $P(e|h,\beta)$ the probability from h to e under the behavioral strategy β , and the payoff is $u_i(e)$

The expected payoff for player i in the information I_{ij} w.r.t. (β, μ) , is

$$u_i(\beta_i, \beta_{-i}|I_{ij}, \mu) = \sum_{h \in I_{ij}} \mu(h) (\sum_e P(e|h, \beta) u_i(e))$$

Assessment (β, μ) is **sequentially rational** if for each information set I_{ij} , player i makes a best response w.r.t. belief μ , that is,

$$u_i(\beta_i, \beta_{-i}|I_{ij}, \mu) \ge u_i(\beta_i', \beta_{-i}|I_{ij}, \mu)$$

for all other behavior strategies β'_i of player i

- Consistency: beliefs have to make sense w.r.t strategies, without requirements on strategies
- Sequential rationality: strategies have to make sense w.r.t. beliefs, without requirements on beliefs

Sequential Equilibrium

An assessment (β, μ) is a **sequential equilibrium** if it is both consistent and sequentially rational.

Theorem

- a) Each finite extensive form game with perfect recall has a sequential equilibrium.
- b) If assessment (β, μ) is a sequential equilibrium, then β is a subgame perfect equilibrium.

How to calculate the sequential equilibrium?

Example (Consistency)

Behavioral strategies $\beta = (\beta_1, \beta_2) = (p, r; q)$, where

- p: probability that 1 chooses A;
- q: probability that 2 chooses C;
- r: probability that 1 chooses E;

Belief μ can be summarized by one probability α

- α : probability assigns to history AC in inform. set {AC,AD}
- If $p, q, r \in (0,1)$, then Bayes' law gives

$$\alpha = \frac{pq}{pq + p(1 - q)} = q$$

For each consistent (β, μ) , we have $\alpha = q$

Example (Rationality)

- If q = 0, then $\alpha = 0$ and r = 0 is player 1's unique best reply in the final info set. But if r = 0, then q = 0 is not a best reply in 2's info set. Contradiction.
- If q = 1, then $\alpha = 1$ and r = 1 is player 1's unique best reply in the final info set. But if r = 1, then q = 1 is not a best reply in 2's info set. Contradiction.
- If $q \in (0,1)$
 - rationality of 2 dictates that both C and D must be optimal and equal, i.e., 16(1-r) = 16r, this gives r = 1/2
 - In info set (AC,AD), the expected payoff of player 1 is $\alpha 16r + (1 \alpha)16(1 r) = 16 16q + 16r(1 2q)$
 - r = 0 if q > 1/2; r = 1 if q < 1/2; and $r \in [0,1]$ if q = 1/2
- r = 1/2 if and only if q = 1/2. Finally p = 1

Exercise

Exercise

