MS-E2122 - Nonlinear Optimization Lecture 4

Fabricio Oliveira

Systems Analysis Laboratory Department of Mathematics and Systems Analysis

> Aalto University School of Science

October 7, 2021

Outline of this lecture

Recognising optimality

Minima and maxima in optimisation

Optimality conditions

First- and second-order conditions

Fabricio Oliveira 1/16

Outline of this lecture

Recognising optimality

Minima and maxima in optimisation

Optimality conditions

First- and second-order conditions

Let $f: \mathbb{R}^n \to \mathbb{R}$. Consider the problem $(P): \min \{f(x): x \in S\}$. Some important terminology:

▶ feasible solution: $\overline{x} \in S$;

Let $f:\mathbb{R}^n \to \mathbb{R}$. Consider the problem $(P):\min$ $\{f(x):x\in S\}$. Some important terminology:

- ▶ feasible solution: $\overline{x} \in S$;
- local optimal solution: $\overline{x} \in S$ has a neighbourhood $N_{\epsilon}(\overline{x}) = \{x : ||x \overline{x}|| \le \epsilon\}$ for some $\epsilon > 0$ such that $f(\overline{x}) \le f(x)$ for each $x \in S \cap N_{\epsilon}(\overline{x})$.

Let $f: \mathbb{R}^n \to \mathbb{R}$. Consider the problem $(P): \min \{f(x): x \in S\}$. Some important terminology:

- feasible solution: $\overline{x} \in S$:
- local optimal solution: $\overline{x} \in S$ has a neighbourhood $N_{\epsilon}(\overline{x}) = \{x : ||x - \overline{x}|| \le \epsilon\}$ for some $\epsilon > 0$ such that $f(\overline{x}) \leq f(x)$ for each $x \in S \cap N_{\epsilon}(\overline{x})$.
- ▶ global optimal solution: $\overline{x} \in S$ with $f(\overline{x}) \leq f(x)$ for all $x \in S$.

Fabricio Oliveira

Recognising optimality

An unconstrained optimisation problem

Fabricio Oliveira Recognising optimality 3/16

Fabricio Oliveira Recognising optimality

The importance of convexity

The following is the most fundamental result in optimisation:

Theorem 1 (global optimality of convex problems)

Let $S \subseteq \mathbb{R}^n$ be a nonempty convex set and $f: S \to \mathbb{R}$ convex on S. Consider the problem $(P): \min. \{f(x): x \in S\}$. Suppose \overline{x} is a local optimal solution to P. Then \overline{x} is a global optimal solution.

The importance of convexity

The following is the most fundamental result in optimisation:

Theorem 1 (global optimality of convex problems)

Let $S\subseteq \mathbb{R}^n$ be a nonempty convex set and $f:S\to \mathbb{R}$ convex on S. Consider the problem (P): min. $\{f(x):x\in S\}$. Suppose \overline{x} is a local optimal solution to P. Then \overline{x} is a global optimal solution.

Proof.

Since \overline{x} is a local optimal solution, there exists $N_{\epsilon}(\overline{x})$ such that, for each $x \in S \cap N_{\epsilon}(\overline{x})$, $f(\overline{x}) \leq f(x)$. By contradiction, suppose \overline{x} is not a global optimal solution. Then, there exists a solution $\hat{x} \in S$ so that $f(\hat{x}) < f(\overline{x})$. Now, for any $\lambda \in [0,1]$, the convexity of f implies:

$$f(\lambda \hat{x} + (1 - \lambda)\overline{x}) \leq \lambda f(\hat{x}) + (1 - \lambda)f(\overline{x}) < \lambda f(\overline{x}) + (1 - \lambda)f(\overline{x}) = f(\overline{x})$$

However, for $\lambda > 0$ sufficiently small, $\lambda \hat{x} + (1 - \lambda)\overline{x} \in S \cap N_{\epsilon}(\overline{x})$, which contradicts the local optimality of \overline{x} . Thus, \overline{x} is a global optimum.

Theorem 2 gives a certificate for global optimal solutions for convex optimisation problems.

Theorem 2 (optimality condition)

Let $S \subseteq \mathbb{R}^n$ be a nonempty convex set and $f: S \to \mathbb{R}$ convex on S. Consider the problem (P): min. $\{f(x): x \in S\}$. Then, $\overline{x} \in S$ is an optimal solution to P if and only if f has a subgradient ξ at \overline{x} such that $\xi^\top(x-\overline{x}) \geq 0$ for all $x \in S$.

Theorem 2 gives a certificate for global optimal solutions for convex optimisation problems.

Theorem 2 (optimality condition)

Let $S\subseteq \mathbb{R}^n$ be a nonempty convex set and $f:S\to \mathbb{R}$ convex on S. Consider the problem (P): min. $\{f(x):x\in S\}$. Then, $\overline{x}\in S$ is an optimal solution to P if and only if f has a subgradient ξ at \overline{x} such that $\xi^{\top}(x-\overline{x})\geq 0$ for all $x\in S$.

Proof.

Suppose that $\xi^{\top}(x-\overline{x}) \geq 0$ for all $x \in S$, where ξ is a subgradient of f at \overline{x} . By convexity of f, we have, for all $x \in S$

$$f(x) \geq f(\overline{x}) + \xi^{\top}(x - \overline{x}) \geq f(\overline{x}) \sim 7 \text{ Sub gradian}$$

and hence \overline{x} is optimal.

Proof (cont.)

Conversely, suppose that \overline{x} is optimal for P. Construct the sets:

$$\Lambda_1 = \{(x - \overline{x}, y) : x \in \mathbb{R}^n, y > \widehat{f(x) - f(\overline{x})}\}$$

$$\zeta'(x - \overline{x}) \supseteq \Lambda_2 = \{(x - \overline{x}, y) : x \in S, y \leq 0\}$$

Proof (cont.)

Conversely, suppose that \overline{x} is optimal for P. Construct the sets:

$$\Lambda_1 = \{ (x - \overline{x}, y) : x \in \mathbb{R}^n, y > f(x) - f(\overline{x}) \}$$

$$\Lambda_2 = \{ \underbrace{(x - \overline{x}, y)}_{\overline{x}} : x \in S, y \le 0 \}$$

Note that Λ_1 and Λ_2 are convex. By optimality of \overline{x} , $\Lambda_1 \cap \Lambda_2 = \emptyset$. Using the separation theorem, there exists a hyperplane defined by $(\xi_0,\mu)\neq 0$ and α that separates Λ_1 and Λ_2 :

$$\xi_0^{\top}(x - \overline{x}) + \mu y \le \alpha, \ \forall x \in \mathbb{R}^n, \ y > f(x) - f(\overline{x})$$
 (1)

$$\xi_0^{\top}(x - \overline{x}) + \mu y \le \alpha, \ \forall x \in \mathbb{R}^n, \ y > f(x) - f(\overline{x})$$

$$\xi_0^{\top}(x - \overline{x}) + \mu y \ge \alpha, \ \forall x \in S, \ y \le 0.$$

$$(2)$$

Proof (cont.)

Conversely, suppose that \overline{x} is optimal for P. Construct the sets:

$$\Lambda_1 = \{(x - \overline{x}, y) : x \in \mathbb{R}^n, y > f(x) - f(\overline{x})\}$$

$$\Lambda_2 = \{(x - \overline{x}, y) : x \in S, y \le 0\}$$

Note that Λ_1 and Λ_2 are convex. By optimality of \overline{x} , $\Lambda_1 \cap \Lambda_2 = \emptyset$. Using the separation theorem, there exists a hyperplane defined by $(\xi_0,\mu) \neq 0$ and α that separates Λ_1 and Λ_2 :

$$\xi_0^{\top}(x - \overline{x}) + \mu y \le \alpha, \ \forall x \in \mathbb{R}^n, \ y > f(x) - f(\overline{x})$$
 (1)

$$\xi_0^{\top}(x - \overline{x}) + \mu y \ge \alpha, \ \forall x \in S, \ y \le 0.$$
 (2)

Letting $x=\overline{x}$ and y=0 in (2), we get $\alpha \leq 0$. Next, letting $x=\overline{x}$ and $y=\epsilon>0$ in (1), we obtain $\alpha \geq \mu\epsilon$. As this holds for any $\epsilon>0$, we must have $\mu\leq 0$ and $\alpha\geq 0$, the latter implying $\alpha=0$.

Proof (cont.)

If $\mu=0$, we get from (1) that $\xi_0^\top(x-\overline{x})\leq 0$ for all $x\in\mathbb{R}^n$. Now, by letting $x=\overline{x}+\xi_0$, it follows that $\xi_0^\top(x-\overline{x})=||\xi_0||^2\leq 0$, and thus $\xi_0=0$. Since $(\xi_0,\mu)\neq 0$, we must have $\mu<0$.

Dividing (1) and (2) by $-\mu$ and denoting $\xi = \frac{-\xi_0}{\mu}$, we obtain:

$$\xi^{\top}(x - \overline{x}) \le y, \ \forall x \in \mathbb{R}^n, \ y > f(x) - f(\overline{x})$$
 (3)

$$\xi^{\top}(x - \overline{x}) \ge y, \ \forall x \in S, \ y \le 0$$
 (4)

Proof (cont.)

If $\mu=0$, we get from (1) that $\xi_0^\top(x-\overline{x})\leq 0$ for all $x\in\mathbb{R}^n$. Now, by letting $x=\overline{x}+\xi_0$, it follows that $\xi_0^\top(x-\overline{x})=||\xi_0||^2\leq 0$, and thus $\xi_0=0$. Since $(\xi_0,\mu)\neq 0$, we must have $\mu<0$.

Dividing (1) and (2) by $-\mu$ and denoting $\xi = \frac{-\xi_0}{\mu}$, we obtain:

$$\xi^{\top}(x - \overline{x}) \le y, \ \forall x \in \mathbb{R}^n, \ y > f(x) - f(\overline{x})$$

$$\xi^{\top}(x - \overline{x}) \ge y, \ \forall x \in S, \quad y \le 0$$

$$(3) \quad \forall \ \neg f(x) - f(\overline{x})$$

$$(4) \quad \forall \ \neg f(x) - f(\overline{x})$$

$$(4) \quad \forall \ \neg f(x) - f(\overline{x})$$

Letting y=0 in (4), we get $\xi^{\top}(x-\overline{x})\geq 0$ for all $x\in S$. From (3), we can see that $y>f(x)-f(\overline{x})$ and $y\geq \xi^{\top}(x-\overline{x})$. Thus, $f(x)-f(\overline{x})\geq \xi^{\top}(x-\overline{x})$, which is the subgradient inequality.

Thus ξ is a subgradient at \overline{x} with $\xi^{\top}(x-\overline{x}) \geq 0$ for all $x \in S$.

$$f(x) - f(\bar{x}) \ge f(x - \bar{x})$$

$$f(x) \ge f(\bar{x}) + f(x - \bar{x})$$

$$8/16$$

Theorem 2 leads to two important corollaries:

Corollary 3 (optimality in open sets)

Under the conditions of Theorem 2, if S is open, \overline{x} is an optimal solution to P if and only if $0 \in \partial f(\overline{x})$.

Theorem 2 leads to two important corollaries:

Corollary 3 (optimality in open sets)

Under the conditions of Theorem 2, if S is open, \overline{x} is an optimal solution to P if and only if $0 \in \partial f(\overline{x})$.

Proof.

From Theorem 2, \overline{x} is optimal if and only if ξ is a subgradient at \overline{x} with $\xi^{\top}(x-\overline{x})\geq 0$ for all $x\in S$. Since S is open, $x=\overline{x}-\lambda\xi\in S$ for some $\lambda>0$, and thus $-\lambda||\xi||^2\geq 0$, which implies $\xi=0$.

Theorem 2 leads to two important corollaries:

Corollary 3 (optimality in open sets)

Under the conditions of Theorem 2, if S is open, \overline{x} is an optimal solution to P if and only if $0 \in \partial f(\overline{x})$.

Proof.

From Theorem 2, \overline{x} is optimal if and only if ξ is a subgradient at \overline{x} with $\xi^{\top}(x-\overline{x})\geq 0$ for all $x\in S$. Since S is open, $x=\overline{x}-\lambda\xi\in S$ for some $\lambda>0$, and thus $-\lambda||\xi||^2\geq 0$, which implies $\xi=0$.

Corollary 4 (optimality for differentiable functions)

Suppose that $S\subseteq \mathbb{R}^n$ is a nonempty convex set and $f:S\to \mathbb{R}$ a differentiable convex function on S. Then $\overline{x}\in S$ is optimal if and only if $\nabla f(\overline{x})^\top(x-\overline{x})\geq 0$ for all $x\in S$. Moreover, if S is open, then \overline{x} is optimal if and only if $\nabla f(\overline{x})=0$.

Example 1:

min.
$$\left(x_1-\frac{3}{2}\right)^2+(x_2-5)^2$$
 subject to:
$$-x_1+x_2\leq 2$$

$$2x_1+3x_2\leq 11$$

$$x_1\geq 0$$

$$x_2\geq 0$$

$$\nabla f(x)^{\top} (x - \bar{x}) \ge 0$$

$$\times \epsilon S.$$

Fabricio Oliveira Recognising optimality 10/16

Example 2:

$$\begin{aligned} & \text{min. } & (x_1-3)^2 + (x_2-2)^2 \\ & \text{subject to: } & x_1+x_2 \leq 3 \\ & x_1^2 + x_2^2 \leq 5 \\ & x_1 \geq 0 \\ & x_2 \geq 0 \end{aligned}$$

We can derive necessary first- and second-order optimality conditions for unconstrained problems assuming differentiability.

Theorem 5 (descent direction)

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at \overline{x} . If there is d such that $\nabla f(\overline{x})^\top d < 0$, there exists $\delta > 0$ such that $f(\overline{x} + \lambda d) < f(\overline{x})$ for each $\lambda \in (0,\delta)$, so that d is a descent direction of f at \overline{x} .

We can derive necessary first- and second-order optimality conditions for unconstrained problems assuming differentiability.

Theorem 5 (descent direction)

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at \overline{x} . If there is d such that $\nabla f(\overline{x})^\top d < 0$, there exists $\delta > 0$ such that $f(\overline{x} + \lambda d) < f(\overline{x})$ for each $\lambda \in (0, \delta)$, so that d is a descent direction of f at \overline{x} .

Proof.

By differentiability of f at \overline{x} , we have that

$$\frac{f(\overline{x} + \lambda d) - f(\overline{x})}{\lambda} = \underbrace{\nabla f(\overline{x})^{\top} d}_{4 \cdot \Omega} + ||d||\alpha(\overline{x}; \lambda d).$$

Since $\nabla f(\overline{x})^{\top}d < 0$ and $\alpha(\overline{x}; \lambda d) \to 0$ when $\lambda \to 0$ for some $\lambda \in (0, \delta)$, we must have $f(\overline{x} + \lambda d) - f(\overline{x}) < 0$.

The first-order necessary condition follows from Theorem 5.

Corollary 6 (first-order necessary condition)

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at \overline{x} . If \overline{x} is a local minimum,

then $\nabla f(\overline{x}) = 0$.

The first-order necessary condition follows from Theorem 5.

Corollary 6 (first-order necessary condition)

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at \overline{x} . If \overline{x} is a local minimum, then $\nabla f(\overline{x}) = 0$.

Proof.

By contradiction, suppose that \overline{x} is a local minimum with $\nabla f(\overline{x}) \neq 0$. Then, $\nabla f(\overline{x})^{\top} d = -||\nabla f(\overline{x})||^2 < 0$ for $d = -\nabla f(\overline{x})$. By Theorem 5, there exists a $\delta > 0$ such that $f(\overline{x} + \lambda d) < f(\overline{x})$ for all $\lambda \in (0, \delta)$, thus contradicting the optimality of \overline{x} .

Remark: Theorem 5 and Corollary 6 can be combined to design a rudimentary optimisation algorithm.

The second-order necessary condition is based on semi-definiteness of the Hessian of f, $H(\overline{x})$, at \overline{x} .

Theorem 7 (second-order necessary condition)

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is twice differentiable at \overline{x} . If \overline{x} is a local minimum, then $H(\overline{x})$ is positive semidefinite.

The second-order necessary condition is based on semi-definiteness of the Hessian of f, $H(\overline{x})$, at \overline{x} .

Theorem 7 (second-order necessary condition)

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is twice differentiable at \overline{x} . If \overline{x} is a local minimum, then $H(\overline{x})$ is positive semidefinite.

Proof.

Take an arbitrary direction d. As f is twice differentiable, we have:

$$f(\overline{x} + \lambda d) = f(\overline{x}) + \lambda \nabla f(\overline{x})^{\top} d + \frac{1}{2} \lambda^2 d^{\top} H(\overline{x}) d + \lambda^2 ||d||^2 \alpha(\overline{x}; \lambda d)$$

since \overline{x} is a local minimum, Corollary 6 implies that $\nabla f(\overline{x}) = 0$ and $f(\overline{x} + \lambda d) \geq f(\overline{x})$.

Proof (Cont.)

Rearranging terms and dividing by $\lambda^2 > 0$ we obtain

$$\frac{f(\overline{x} + \lambda d) - f(\overline{x})}{\lambda^2} = \frac{1}{2} d^{\top} H(\overline{x}) d + ||d||^2 \alpha(\overline{x}; \lambda d).$$

Since
$$\alpha(\overline{x}; \lambda d) \to 0$$
 as $\lambda \to 0$, we have that $d^{\top}H(\overline{x})d \ge 0$.

Proof (Cont.)

Rearranging terms and dividing by $\lambda^2 > 0$ we obtain

$$\frac{f(\overline{x} + \lambda d) - f(\overline{x})}{\lambda^2} = \frac{1}{2} d^{\top} H(\overline{x}) d + ||d||^2 \alpha(\overline{x}; \lambda d).$$

Since
$$\alpha(\overline{x}; \lambda d) \to 0$$
 as $\lambda \to 0$, we have that $d^{\top}H(\overline{x})d \geq 0$.

These conditions are also sufficient in the following cases:

- 1. If $H(\overline{x})$ is positive definite, the second-order condition becomes sufficient for local optimality.
- 2. If f is convex, the first-order condition becomes necessary and sufficient for global optimality.

The convexity of f implies that the first-order conditions are necessary and sufficient for global optimality.

Theorem 8

Let $f:\mathbb{R}^n\mapsto\mathbb{R}$ be convex. Then \overline{x} is a global minimum if and only if $\nabla f(\overline{x})=0$.

The convexity of f implies that the first-order conditions are necessary and sufficient for global optimality.

Theorem 8

Let $f:\mathbb{R}^n\mapsto\mathbb{R}$ be convex. Then \overline{x} is a global minimum if and only if $\nabla f(\overline{x})=0$.

Proof.

From Corollary 6, if \overline{x} is a global minimum, then $\nabla f(\overline{x})=0$. Now, since f is convex, we have that

$$f(x) \ge f(\overline{x}) + \nabla f(\overline{x})^{\top} (x - \overline{x})$$

Suppose that $\nabla f(\overline{x}) = 0$. This implies that $\nabla f(\overline{x})^{\top}(x - \overline{x}) = 0$ for each $x \in \mathbb{R}^n$, thus implying that $f(\overline{x}) \leq f(x)$ for all $x \in \mathbb{R}^n$.