Álgebra De Boole

y

Puertas Lógicas

Álgebra De Boole

SUMA

$$0+0=0$$
 1 + 1 = 1

$$0+1=1$$
 $1+0=1$

MULTIPLICACIÓN

$$0 \ o0 = 0$$

$$0 \text{ o1} = 0$$

COMPLEMENTACION

0

= 1

1

= 0

Ejemplo con otros signos:

$$\overline{A} + \overline{A} = \overline{A}$$

$$A + A = A$$

$$A + 0 = A$$

$$\overline{A} + 0 = \overline{A}$$

$$A + 1 = 1$$

$$\overline{A}$$
 +1 =1

$$A + \overline{A} = 1$$

$$A \circ A = A$$

$$\overline{A} \circ \overline{A} = \overline{A}$$

$$A \circ 0 = 0$$

$$\overline{A}$$
 o0 = 0

$$A \circ 1 = A$$

$$\overline{A}$$
 o1 = \overline{A}

$$A \circ \overline{A} = \frac{A_0 = 0 \text{ ol } = 0}{A_1 = 1 \text{ ol } = 0}$$

TEOREMA DE MORGAN

$$\overline{A+B+C} = \overline{A}\overline{B}\overline{C}$$

$$\overline{ABC} = \overline{A} + \overline{B} + \overline{C}$$

Ejemplo:

•
$$A + BC + D = \overline{A}\overline{BCD} = \overline{A}(\overline{B} + \overline{C})\overline{D} = \overline{A}\overline{DB} + \overline{A}\overline{DC}$$

•
$$A + AB = A(1 + B) = A$$

Factor Común

Ejercicios:

•
$$\mathbf{A} + \overline{\mathbf{A}} \mathbf{B} = \overline{\overline{A} + \overline{A} \overline{B}} = \overline{\overline{A} \overline{A} \overline{B}} = \overline{\overline{A} (A + \overline{B})} = \overline{\overline{A} \overline{B}} = \overline{\overline{A} + \overline{B}} = \underline{\mathbf{A} + \mathbf{B}}$$

•
$$A(A + B) = AA + AB = A(1 + B) = A \cdot 01 = A$$

•
$$(A + B)(A + C) = AA + AC + BA + BC = A(1 + C) + B(A + C) = A + BA + BC =$$

= $A(B+1) + BC = A + BC$

•
$$\overline{A} + \overline{B} + \overline{C} + \overline{ABC} = \overline{A} + \overline{B} + \overline{C} + \overline{\overline{A} + \overline{B} + \overline{C}} = \overline{A} + \overline{B} + \overline{C} = \overline{ABC}$$

•
$$(A + B)(\overline{A} + C) = AC + \overline{A}B + BC = AC + \overline{A}B + BC(A + \overline{A}) = \overline{AC} + \overline{A}B + ABC + \overline{A}BC =$$

= $AC(1 + B) + \overline{A}B(1 + C) = AC + \overline{A}B$

•
$$\overline{A} + \overline{B} + \overline{C} + ABC = \overline{ABC} + ABC = 1$$

•
$$(Z + \overline{XY})(\overline{Y + W}) = (Z + \overline{XY}) + (Y + W) = \overline{Z} \circ \overline{XY} + (Y + W) = (\overline{Z + X}) \circ Y + Y + W = Y((\overline{Z + X}) + 1) + W = \underline{Y + W}$$

$$\overbrace{(\overline{X}\overline{X}\overline{Y})(\overline{Y}\overline{X}\overline{Y})} = (X\overline{X}\overline{Y})(Y\overline{X}\overline{Y}) = \overline{X}\overline{Y}(X+Y) = (\overline{X}+\overline{Y})(X+Y) = \overline{X}X+\overline{X}Y+\overline{Y}X+\overline{Y}Y = \overline{X}X+\overline{Y}Y+\overline{Y}X+\overline{Y}Y = \overline{X}Y+\overline{Y}X=X \quad Y$$

•
$$\overline{XYZ} + \overline{Y}(\overline{XZ} + X\overline{Z}) = \overline{X} + \overline{Y} + \overline{Z} + \overline{Y}(\overline{XZ} + X\overline{Z}) = \overline{Y}((\overline{XZ} + X\overline{Z}) + 1) + \overline{X} + \overline{Z} = \overline{Y} + \overline{X} + \overline{Z} = \overline{YXZ}$$

•
$$\overline{X} + \overline{XY} + \overline{\overline{YZ}} + \overline{ZW} = \overline{X} + \overline{XY} + Y + \overline{Z} + \overline{Z} + \overline{W} = \overline{X} + \overline{X} + \overline{Y} + Y + \overline{Z} + \overline{Z} + \overline{W} =$$

$$= \overline{X} + 1 + \overline{Z} + \overline{W} = 1 + \overline{Z} + \overline{W} = 1 + \overline{W} = 1$$
• $\overline{ABCD} + \overline{ABCD} + \overline{BCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{BCD}(A + \overline{A}) +$

$$+ ABC(D + \overline{D}) + A\overline{BCD} = \overline{ABCD} + A\overline{BCD} + \overline{ABCD} + \overline{BCDA} + ABC\overline{D} + ABC\overline{D} + ABC\overline{D} + ABC\overline{D} =$$

$$= \overline{ABC}(\overline{D} + D) + A\overline{BD}(\overline{C} + C) + AC\overline{D}(\overline{B} + \overline{B} + ABCD = \overline{ABC} + A\overline{BD} + AC\overline{D}(B + \overline{B}) + ABC\overline{D} =$$

$$= AD(\overline{B} + BC) + AC\overline{D} + \overline{ABC} = AD\overline{BC} + AC\overline{D} + \overline{ABC} = AC(D\overline{B} + \overline{D}) \overline{ABC} =$$

$$= \underline{AC(D + B)} + \overline{ABC}$$

Puertas Lógicas

PUERTA NOT O INVERSORA

Se trata de una operación que solo maneja una variable de entrada y otra de salida. La salida toma el estado opuesto o inverso del que tiene la entrada.

Tabla De La Verdad De La Puerta Inversora NOT

VALOR EN LA	VALOR EN LA
ENTRADA	SALIDA
0	1
1	0

PUERTA OR O SUMADORA

Cuando distintas variables lógicas se combinan mediante la función OR, el resultado toma el estado alto, verdadero o 1 si alguna de ellas tiene dicho estado. La ecuación que representa la función OR de dos variables de entrada es la siguiente:

$$X = A + B$$

COMPUERTA OR

Tabla De La Verdad De La Puerta Sumadora OR

VALOR EN LA PARTE A	VALOR EN LA PARTE B	VALOR OBTENIDO EN LA SALIDA
0	0	0
0	1	1
1	0	1
1	1	1

PUERTA NOR O SUMADORA INVERSORA

Esta puerta produce la función inversa de la puerta OR, es decir, la negación de la suma lógica de las variables de entrada. Su comportamiento es equivalente a la de la puerta OR seguida de una NOT.

Tabla De La Verdad De La Puerta Sumadora Inversora NOR

VALOR EN LA PARTE A	VALOR EN LA PARTE B	VALOR OBTENIDO EN LA SALIDA
0	0	1
0	1	0
1	0	0
1	1	0

PUERTA AND O MULTIPLICADORA

Cuando varias variables lógicas, de tipo binario, se combinan mediante la operación lógica AND, producen una variable de salida, que solo toma el nivel lógico 1, estado alto o verdadero, si todas ellas tienen dicho nivel o estado. La ecuación lógica de la función AND para dos variables de entrada es la siguiente:

Tabla De La Verdad De La Puerta Multiplicadora AND

VALOR EN LA	VALOR EN LA	VALOR OBTENIDO

PARTE A	PARTE B	EN LA
		SALIDA
0	0	0
0	1	0
1	0	0
1	1	1

PUERTA NAND O MULTIPLICADORA INVERSORA

La puerta NAND produce la función inversa de la AND, o sea, la negación del producto lógico de las variables de entrada. Actúa como una puerta AND seguida de una NOT.

Tabla De La Verdad De La Puerta Multiplicadora Inversora NAND

VALOR EN LA PARTE A	VALOR EN LA PARTE B	VALOR OBTENIDO EN LA SALIDA
0	0	0
0	1	0
1	0	0
1	1	1

PUERTA OR EXCLUSIVA (OREX)

La salida de esta compuerta es 1, estado alto o verdadero si cada entrada es 1 pero excluye la combinación cuando las dos entradas son 1. La función OR exclusiva tiene su propio símbolo gráfico o puede expresarse en términos de operaciones complementarias AND, OR.

Tabla De La Verdad De La Puerta OR Exclusiva (OREX)

VALOR EN LA PARTE A	VALOR EN LA PARTE B	VALOR OBTENIDO EN LA
		SALIDA
0	0	0
0	1	1
1	0	1
1	1	0

PUERTA NOR EXCLUSIVA (NOREX)

Tabla De La Verdad De La Puerta NOR Exclusiva (NOREX)

VALOR EN LA PARTE A	VALOR EN LA PARTE B	VALOR OBTENIDO EN LA
		SALIDA
0	0	1
0	1	0
1	0	0
1	1	1

Ejercicios:

• Implementar solo con NAND las puertas: NOT, OR, NOR y AND.

NOT OR

NOR AND

• Implementar solo con NOR las puertas: NOT, OR, NAND y AND

NOT OR

NAND AND

• Implementar solo con NAND la puerta OREX.

• Implementar solo con NOR la puerta OREX

• Implementar solo con NAND la puerta NOREX

• Implementar solo con NOR la puerta NOREX

• Implementar Y+W con NAND Implementar Y+W con NOR

• Implementar $\overline{\textbf{YXZ}}$

con AND

• Implementar **YXZ** con NOR

Ejercicios Hoja1:

- Obtener simplificada la señal de salida.
- Implementar con puertas la salida ya simplificada.

Esquema 1

Implementar con NOR Implementar con NAND

Implementar con las menos puertas posibles

Esquema 2

*
$$(\overline{A}B + \overline{A}\overline{B})(AB) + (\overline{A}B + \overline{A}B)(\overline{A}B) = (A + \overline{B})(\overline{A} + B)(AB) + (\overline{A}B + A\overline{B})(\overline{A} + \overline{B}) =$$

$$= (AB + \overline{B}\overline{A})AB + (\overline{A}B + A\overline{B})(\overline{A} + \overline{B}) = AB + (\overline{A}B\overline{A} + \overline{A}B\overline{B} + AB\overline{A} + AB\overline{B}) = AB + (\overline{A}B + AB\overline{B}) = \overline{A}(A + \overline{B}) = \overline{A}B = \overline{A}(B + B)$$

$$* * (\overline{A} + B)(\overline{A} + \overline{B}) = \overline{AA} + \overline{AB} + BA + BB = \overline{A} + \overline{AB} + BA = \overline{A}(B + \overline{B}) + \overline{A} = \overline{A} + \overline{A} = \overline{A}$$

Implementar con las menos puertas posibles

Esquema 3

Implementar con NOR Implementar con NAND

Esquema 4

*
$$\overline{BAC} + A\overline{CB} = \overline{\overline{BAC} + A\overline{CB}} = \overline{(B+A+\overline{C})} \circ (\overline{A} + C + B) = B\overline{A} + BC + B + AC + AB + \overline{A}\overline{C} + \overline{C}B = B(1 + \overline{A} + C + A + \overline{C}) + A(C + \overline{C}) = \overline{\underline{A} + B}$$

* *
$$\overline{\overline{A + B} + \overline{ABC}} = \overline{(A + B)(ABC)} = \overline{ABC} \circ \overline{ABC} = \overline{\underline{ABC}}$$

Implementar solo con NOR Implementar solo con NAND

Implementar con las menos puertas posibles

Esquema 5

*
$$\overline{(\overline{A} + B)(A + \overline{B})} = \overline{A\overline{A} + \overline{A}\overline{B} + BA + B\overline{B}} = \overline{\overline{A}\overline{B} + BA} = (A + B)(\overline{B} + \overline{A}) = A\overline{B} + \overline{A}B = A$$
 B

Esquema 6

Esquema 7

$$X = \overline{A + B}$$

$$X = \overline{A \circ B}$$

COMPUERTA OREX

A

В

$$X = A$$
 $B = A\overline{B} + \overline{A}B$

COMPUERTA NOREX

$$X = A$$
 $B = AB + \overline{A}\overline{B}$

MASA (0)

PILA (1)

AL AIRE (1)

$$\overline{A \circ A} = \overline{A}$$

$$\overline{A \circ B} = A + B$$

A

В

В

A

A + B

AB

A + B

$$\overline{A + A} = \overline{A}$$

A o **B**

A B

В

A

 $\overline{A} + \overline{B}$

A o **B**

A + B

 $\overline{A + B}$

A

B

A o **B**

A

В

 $A + \overline{B}$

 $\overline{A} + B$

 $\overline{A}B + A\overline{B} = A B$

B

A o **B**

A

В

A o **B**

A + B

 $AB + \overline{AB} = A \quad B$

A

В

 $\overline{A + B}$

A o **B**

 $\overline{A}B + \overline{B}A$

 $AB + \overline{AB} = A \quad B$

7

W

Y + W

Y + W

 $\overline{Y + W}$

Y

YΧ

X

YX

YXZ

Z

 $\overline{Y} + \overline{X}$

YXZ

A

A o **B**

* A + B

 $\overline{B+1}=0$

В

A

A ∘ B

 $\overline{A} + B$

В

 $\overline{A} + B$

A

 $\overline{A} + B$

 $\overline{A}B + \overline{B}A$

A o **B**

 $A + \overline{B}$

1

A

0

 $\overline{B \circ 0} = 1$

A

1

B+1=1

A

 $\overline{A} + \overline{B}$

 $\overline{A}B + \overline{B}A$

A o **B**

* A + B

* *A B

A

В

A + B

A o **B**

A B

A

В

A o **B**

В

ABC

A C

AB

 $\overline{A} + B$

A

В

A o **B**

A B

A

В

 $\overline{A} + B$

A B

A

B

A o **B**

C

ABC

A o **B**

A o **B**

В

A

A o **B**

A B

A B

A ∘ B

В

A

A B

 $\overline{A} + B$

A

В

A

В

A o B

В

A

A + B

В

A B

A o **B**

A

1 o1 =1

1 o 0 = 0

ENTRADA/INPUT

SALIDA/OUTPUT

X = A o B