

Обзор операционной системы lot: Contiki Os и ее коммуникационные модели

Паял Малик, Мальвика Гупта

Аннотация: Виртуально зависимые устройства, такие как интернет и компьютеры, зависят от человека в плане получения информации, которая фиксируется в виде набора текста, нажатия кнопки, цифрового изображения или сканирования штрих-кода с неравномерным объемом в 1024 терабайта и доступна в интернете. В этой статье автор описал операционную систему CONTIKI OS, основанную на IоT, которая используется для передачи данных от одного узла к другому с достоверностью. Интерфейс CONTIKI OS основан на JAVA, который является эффективным и безопасным благодаря множеству уровней безопасности. Protothread, системный цикл и micro ip - это функции, которые поддерживает CONTIKI OS, а также поддерживает сетевые протоколы, такие как TCP/IP и IPv6 от cisco. Автор также рассказал о коммуникационных моделях, которые помогают передавать данные по сети с безопасным соединением. Таким образом, можно сделать вывод, что CONTIKI OS обеспечивает безопасность при передаче данных от одного узла к другому, используя коммуникационные модели.

Ключевые слова: IoT, операционная система IoT, Contiki OS, модели IoT.

1. ВВЕДЕНИЕ

Взаимосвязь объектов, которая углубляется в настоящее время, и объекты не только собирают информацию с датчиков с взаимодействием физического мира при предоставлении услуг по передаче информации и приложений [1]. Инновационная технология с открытым исходным кодом Contiki OS, которая делает реализацию эффективной с

элементарного протопотока. памятью Модель многопоточности сравнивается с моделью стека, в которой для параллельных процессов требуется меньше вычислений и памяти. Протопоток также поддерживается Contiki OS, где для написания кодов программ используется событийноориентированный и явный способ, который трудно Модель поддерживать. выполнения определяется смешиванием бесстадийного потока с линейным событием. Симулятор Сооја используется под операционной системой Contiki OS, которая работает на интерфейсе JAVA. Преимуществом Contiki OS является профилирование энергопотребления и маломощная радиосеть для сетевых датчиков с эффективной оптимизацией. Она ориентирована на протоколы ТСР, ІСМР и ІР [38] с минимальной абсолютной характеристикой при наличии полного стека ТСР/ІР и ограниченных ресурсов устройств TCP/IP и узлов датчиков. Модели IoT предполагают объединение в сеть интеллектуальных объектов (RFC), использующих методы передачи данных/информации по сети. Коммуникационные модели для IoT такие. как Device-to-device, в которых небольшой пакет данных используется для передачи информации устройствами с низкой скоростью требования в этой модели в основном такие, как системы домашней автоматизации. Device-to-cloud позволяет расширить потребности конечного пользователя расширения возможностей связи между устройствами. Device-to-gateway, в которой связь устанавливается между устройствами и прикладным уровнем, и это осуществлять транзакции устройствами и облачными сервисами. Бэкэнд-обмен данными, который состоит из гибридизации двух вышеупомянутых моделей "устройство-шлюз" и "устройство-облако", что помогает быстро и эффективно передавать данные.

2. ОПЕРАЦИОННАЯ СИСТЕМА

Теоретические исследования в области WSN, таких как сети датчиков, которые моделировали время жизни в реальных приложениях, которые были проведены

- Паял Малик 1, Мальвика Гупта 2
- 1 Инженерный колледж ABES, Газиабад, ЮП, Индия
- 2 Инженерный колледж ABES, Газиабад, УП, Индия

-Шедомі институт компьютерных наук", и в его разработке участвует SICS (Адам Данкелс), в настоящее время генеральный директор Thinksquare (фокус на идеях IoT и инновациях через взаимосвязь устройств), в основном работающий над Contiki OS, которая является легкой и средой. портативной ограниченной TCP/IP вытесняющая многопоточность - это пересекающиеся функции, которые поддерживаются Contiki OS с реализацией на стеке IPv6 от Cisco и Atmel [31]. Инновационная технология с открытым исходным кодом Contiki OS делает реализацию эффективной с памятью элементарного протопотока. Модель выполнения основана на смешении бесстадийного потока с линейным событием [32], а преимуществом Contiki OS профилирование мощности явпяется [33] маломощная радиосеть для сетевых датчиков с эффективной оптимизацией. В основном, она состоит из двух частей: -

- Ядро
- Загруженные программы

Разделение в основном работает на время компиляции при развертывании, ядро состоит из ядра Contiki, а язык времени выполнения с библиотеками состоит из загружаемых программ, которые помогают взаимодействовать драйверу устройства с оборудованием.

Puc.1. Разметка операционной системы Contiki

Язык интерфейса бэкенда Contiki OS - JAVA, а в инструменте симулятора Сооја используется язык С, что позволяет легко переключать различные платформы, а с 2003 года было выпущено около 20 платформ[[34].

2.1. Различные функции Contiki OS в IoT:

Ядро, основанное на событиях

Выполнение или реализация кода осуществляется обработчиком событий, что означает, что код полностью зависит от события и никогда не прерывается одним блоком кода. Модель многопоточности сравнивается с моделью стека, в которой для параллельных процессов требуется меньше вычислений и памяти [35].

Protothread

в ОС Contiki Помимо вытесняющего потока. поддерживается протопоток, где для написания сложных для понимания и сопровождения кодов или программ используется событийно-ориентированный и способ. Это сохраняет высокоуровневую явный абстракцией функций реализацию С программирования и без накладных потоков выполняет условную блокировку. Для одного протопотока в Contiki OS требуется 2 байта оперативной памяти [34] [35].

Системный контур

Для инициализации нескольких процессов при запуске Contiki OS многократно используется функция process_run () [35]. Эта функция регистрируется обработчиком опроса, где процессы по событию из системы очереди событий после этого функция вызывается обратно обработчиком, который все еще находится в очереди. Если очередь событий освобождается, то для пробуждения функцией process_run () с новым событием обработчика требуется внешнее прерывание.

```
Int
Main(void)
{
Beep();
While(1)
{
While(process_run()>0)
/*watchdog_reset();*/
Lpm_sleep();
}
Boзврат ();
}
```

Приведенный выше исходный код взят из Contiki и рассказывает об общей демонстрации использования process_run () [37] и аппаратной платформы. Всякий раз, когда узел снова просыпается, вызывается Lpm_sleep(), поэтому мы используем внешнее пробуждение Lpm awake().

Микро IP (uIP)

Он ориентирован на протоколы TCP, ICMP и IP [34] с минимальной абсолютной характеристикой при наличии полного стека TCP/IP и ограниченных ресурсов устройств TCP/IP и узлов датчиков. Содержать один максимальный размер пакета в одном глобальном буфере, достаточно большом, чтобы вместить пакет. Уведомлять приложение uIP об анализе пакета данных и сетевые устройства, когда новый uIP вызывается для

обработки данных. Данные, которые должны быть перезаписаны в пакете другим входящим пакетом, чтобы избежать, мы используем приложение uIP, потому что оно имеет только один буфер.

Puc.2. Глобальное использование буфера в uIP

Текущий размер данных хранится в целочисленной переменной uip_len, а для глобального буфера используется uip_buf [33]. Функции, назначаемые для драйверов устройств, следующие: -

- Uip_input(): Пакет, полученный драйвером устройства и сохраненный в глобальном буфере, пока он проверяется драйвером устройства на отсутствие исходящего пакета.
- Uip_periodic(): Для любой ретрансляции необходимо периодически выполнять эту функцию через драйвер устройства. Симулятор Сооја используется под Contiki OS, которая работает на интерфейсе JAVA, а в инструменте Сооја мы используем язык С в качестве бэкенда для программирования. Вместо Contiki OS используются различные OC:
- mbed OS: Для разработки IoT-приложений и их запуска на базе меньшей емкости, памяти, хранения и обработки данных используется фреймворк C++ [32].
- TinyOS: Некоммерческая OC, разработанная для беспроводных сенсорных сетей и работающих в условиях ограниченных ресурсов, с функцией управления сетью и повсеместными вычислениями [33].
- MicroC OS: Разработана для ОС реального времени и встраиваемых устройств для микроконтроллера с низким энергопотреблением [34].
- RIOT OS: использует фреймворк C++ с эффективной высокой степенью программирования, что позволяет оптимально использовать микроконтроллер и основывается на микроядрах [34].
- Brillo OS: Новая ОС для устройств с низким энергопотреблением, представленная Google в 2015 году, например, платформы android (android-смартфон) [35].

os	ContikiOS	TinyOS	RIOT OS
Минима льная операти вная память	Менее 2 кб	Менее 1 кб	Прибл изител ьно 1,5 кб
Минима льное ПЗУ	Менее 30 кб	Менее 4 кб	Прибл изител ьно 5

			кб
С	Дробный	Нет	Да
C++	Нет	Нет	Да
Многонито чные	Дробный	Дробный	Да
В режиме реального времени	Дробный	Нет	Да
Модульнос ть	Дробный	Нет	Да

Таблица. 1. Требования к операционной системе

3. МОДЕЛЬ КОММУНИКАЦИИ В ІОТ

Сеть интеллектуальных объектов (RFC) [22], руководство было выпущено в марте 2015 года Архитектурным советом Интернета. К четырем основам коммуникационной модели относятся: -

Связь между устройствами

Прямое соединение устанавливается между двумя или более устройствами и взаимодействует друг с другом, а не требует немедленного использования сервера приложений. Для связи используется несколько сетей с несколькими протоколами, такими как Bluetooth [23], Zwave [24] или ZigBee [25], которые устанавливаются для прямой связи между устройствами. Небольшой пакет данных используется для передачи информации между устройствами с низкой скоростью, требуемой в данной основном, ДЛЯ систем домашней автоматизации. В соответствии со статьей в журнале ІЕТГ, многие подходы, связанные с проблемой совместимости, подтверждены коммуникацией между устройствами: "Прямые отношения часто возникают устройствами, встроенные механизмы конфиденциальности и доверия, которые они обычно имеют, но режимы данных обычно используют специфические для конкретного устройства, что требует избыточных усилий по разработке" [26]. Реализуется данных, специфичный для конкретного устройства, а не открытый подход, использующий стандартный формат.

Puc.3. Связь между устройствами

Связь между устройствами и облаком

Между устройствами устанавливается прямое соединение с облаком Интернета, которое помогает в обмене информацией и управлении трафиком. Соединение устанавливается между IoT-устройствами с ІР-сетью, которая ведет к облачным сервисам, что делается или используется с помощью традиционной проводной или беспроводной сети. Умый телевизор" [27] самый популярный пример ІоТ-устройства, использующего интернет-соединение для передачи информации для просмотра И интерактивного распознавания речи. Эта модель расширяется в соответствии с требованиями конечного пользователя по мере расширения возможностей продукта.

Рис.4. Связь устройства с облаком

Модель "устройство - шлюз

Связь устанавливается между устройствами и прикладным уровнем, и это помогает проводить транзакции между устройствами и облачными сервисами. Облачные сервисы не могут получить доступ напрямую, поэтому для доступа к ним требуется носитель, например, Fitbit нуждается в носителе для отправки или получения данных.

из облака, поэтому для подключения облачного сервиса используется смартфон [21].

Puc.5. Связь между устройствами и шлюзом

Модель совместного использования данных на задней стороне

Комбинация данных и других объектов из облака экспортируется и анализируется пользователями в этой коммуникационной архитектуре.

Puc.6. Модель совместного использования данных на задней стороне

Данные датчиков могут быть загружены третьей стороной, и эта модель позволяет осуществлять связь между одним устройством и устройством.

4. ЗАКЛЮЧЕНИЕ И ДАЛЬНЕЙШАЯ РАБОТА

Интернет вещей - это защита информации при обмене с малым бизнесом, который сталкивается с такими проблемами, как хранение огромного количества данных и т.д. CONTIKI OS работает под платформой IoT, а интерфейс основан на JAVA для обеспечения Коммуникационные подлинности. поддерживают CONTIKI OS для передачи данных по каналу связи от одного к другому. В будущем автор может сосредоточиться на архитектуре IoT с уровнем безопасности промежуточного программного обеспечения и архитектуре рисков в ІоТ. Эти архитектуры помогают предотвратить различные атаки при передаче информации от одного узла к другому.

ССЫЛКА

[1] Shen, guicheng and bing wu liu, The vision, technologies, application and security issues of IoTII, E- Business and E-Government, International conference on IEEE 2011.

[2] L. atzori, A. lera, G. morabito , -litent of Things: Обзор компьютерных сетей", № 54(15) (2010) 2787-2805.

- [3] Серф, Винт и Морин Олхаузен, "Иперит вещей", семинар ФТК по ІоТ, Вашингтон, округ Колумбия, 19 ноября 2013 г.
- [4] IoT обзор с сайт ссылка: https://www.internetsociety.org/sites/default/files/ISOC -IoT-Overview-20151014_0.pdf.
- [5] Скотт Брейв, Хироши Исии и Эндрю Дали , √оженый интерфейс для удаленного сотрудничества и общения", медиалаборатория МІТ с группой Tangible media.
- [6] Ала-аль-фукаха, Мохсен Гизани, Мехди Мохаммади, мд. Aledhari , Moussa ayyash him of Things: A survey on empowering technologies, protocols and application , IEEE communication survey and tutorial, vol-17, no. 4, четвертый квартал 2015 года.
- [7] Krushang sonar, Hardik Upadhyay, -A survey of security privacy issues of internet of things.
- [8] C. buckl, S. sommer, A, scholz, A. kvoll, A. kemper, J. heveret al, эміж to the field: Подход для сенсорной сети с ограниченными ресурсами", семинар по передовым информационным сетям и приложениям, представленный на Международной конференции IEEE 2009, стр. 968-975.
- [9] M U Farooq, Md. Waseem, Sadia mazhar, Anfum khairi, Kamal, -A review of IoTII, International journal of computer application (0975-8887) vol. 11, no.-3, 1, march,2015.
- [10] Tschofenig, H., et. al., Inlend Architecture Board: Architectural Considerations in Smart Object Networkingli, Tech. no. RFC 7452., Mar. 2015.
- [11] Тухин Боргохайн, Удай Кумар и Сугата Саньял., - Испервание вопросов безопасности конфиденциальности Интернета вещей".
- [12] Презентация с сайта bluetooth.com для определения и подробного ознакомления с ним.
- [13] Презентация Z-wave.com для определения и подробного ознакомления с ним.
- [14] Презентация zigbee.com для определения и подробного ознакомления с ним.
- [15] Даффи Марсан, Кэролин , Ш выпускает руководство для разработчиков Интернета вещей", журнал IETF, 11.1, июль 2015 г., веб. Ссылка: https://www.internetsociety.org/sites/default/files/Journal 11.1.pdf
- [16] Samsung Privacy Policy-Smart TV Supplement.II , Samsung corp.web, 29Sept2015, веб-ссылка: www.samsung.com/sg/info/privacy/smart tv.
- [17] -Инициатива глобальных стандартов инфива вещей", МСЭ, 26 июня 2015 г.
- [18] Медирорый союз электросвязи: Обзор Интернета вещей", ITU-Т Y.2060, июнь 2012 г.
- [19] Реж, २ Ап In-depth Look at Expert Responses", Исследовательский центр Интернета, науки и технологий в 14 мая 2014 года и получено 26 июня 2015 года.
- [20] Mathilde Durvy, Julien Abeillé, Patrick Wetterwald, Colin O'Flynn, Blake Leverett, Eric Gnoske, Michael Vidales, Geoff Mulligan, Nicolas Tsiftes, Niclas Finne, and Adam Dunkels, Making Sensor Networks IPv6 Readyll, ACM 6th Proceedings conference on Embedded network sensor systems, USA, 2008, pp. 421-422.

- [21] А. Дункельс, О. Шмидт, Т. Фойгт, А. Мунеб, Problems: Simplifying event-driven programming of memory constrained embedded systems , ACM 4th Proceedings Conference on Embedded Networked Sensor Systems, Colorado, USA, 2006. Web link: http://dunkels.com/adam/dunkels06 protothreads.ppt. [Accessed:02-Mar-2014].
- [22] A. Dunkels , பில்: Bringing IP to Sensor NetworksII , ERCIM News, № 76, pp. 59-60, Jan- 2009. Вебссылка: http://ercimnews.ercim.eu/images/stories/EN76/EN76-web.pdf.
- [23] А. Дункельс, "Операционная система "мим", ссылка на страницу: http://www.sics.se/~adam/ Contiki/доступ получен 22 января 2006 года.
- [24] A. Dunkels, B. Grönvall, and T. Voigt, Стий: Облегченная и расширяемая операционная система для миниатюрных сетевых датчиков", 1st Труды IEEE на семинаре по встроенным сетевым датчикам, Тампа, Флорида, США, ноябрь 2004 года.
- [25] A. Dunkels, O. Schmidt, and T. Voigt , Real world wireless sensor networks: Использование Protothreads для программирования сенсорных узлов", Материалы семинара REALWSN, Стокгольм, Швеция, июнь 2005 года.
- [26] Онлайн-документация "Операционная системаContiki 2.х" была предоставлена А. Дункельсом со ссылкой на веб-страницу: http://contiki.sourceforge.net/html, доступ получен 22 января 2006 года.
- [27] A. Dunkels , Fill TCP/IP for 8 Bit Architectures II ,1st Proceedings of ACM/Usenix, Applications and Services (MobiSys), International Conference on Mobile Systems, San Francisco, May 2003.
- [28] Тимоти Малче, Прити Махешвари , Review: Harnessing the Internet of Things (IoT)II, август 2015, Международный журнал передовых исследований в области компьютерных наук и программной инженерии, ISSN: 2277 128X, том 5, выпуск 8, стр.320-323.
- [29] Веб-ссылка: http://www.tinyos.net/ для детального ознакомления с Tiny OS, [Accessed: 13- May- 2016].
- [30] Ядра реально времени: µC/OS-II и µC/OS-III" с подробными знаниями в веб-ссылке: https://www.micrium.com/rtos/kernels/, [Accessed: 13-Май 2016].
- [31] Подробные знания о РИОТ в интернете по ссылке: https://www.riot-os.org/, [Accessed: 13- May- 2016].
- [32] Подробные сведения о Brillo в веб-ссылке: https://developers.google.com/brillo/, [Accessed: 13-May-2016].
- [33] А.М. Виламовска, Э. Хатциандреу, Р. Шиндлер, К. Ван Оранье, Х. Де Врис, Дж. Крапельсе, Применение RFID в здравоохранении оценка и определение областей для внедрения RFID в здравоохранении", RAND Europe, февраль 2009 года.
- [34] Е. Уэлборн, Л. Бэттл, Г. Коул, К. Гоулд, К. Ректор, S. Raymer, M. Balazinska, G. Borriello, Judiqinternet of things using RFID: the RFID ecosystem experiencell, IEEE Internet Computing 13, 2009, 48-55.
- [35] Сайт веб ссылка: http://www.sensei-project.eu/

Проект 7РП ﴿ΕΝΘΕΙ" со сценарием портфеля, требованиями пользователя и контекста, результат.