第二章 三角函數的基本概念

§2-1 銳角三角函數

(甲)銳角三角函數

 $\overline{(1)}$ 銳角三角函數的定義:設 ΔABC 為直角三角形,其中 $\angle C$ 為直角三角形,

 \overline{AB} 爲斜邊,兩股 \overline{BC} 與 \overline{AC} 分別是 $\angle B$ 的鄰邊與對邊。

設 $\overline{BC}=a$, $\overline{AC}=b$, $\overline{AB}=c$, 則我們定義∠A的三角函數如下:

$$\angle$$
A的**餘孩**=cosA= $\frac{$ 鄰邊} $= \frac{AC}{AB} = \frac{b}{c}$

$$\angle$$
A的**餘切**=cotA= $\frac{$ 類邊 $}{$ 對邊 $}=\frac{AC}{BC}=\frac{b}{a}$

$$\angle A$$
的**亚割**=secA= $\frac{AB}{m}$ = $\frac{AB}{AC}$ = $\frac{c}{b}$

$$\angle$$
A的**餘割**=cscA= $\frac{$ 斜邊 $}{$ 對邊 $} = \frac{AB}{BC} = \frac{c}{a}$

例如:直角三角形ABC各邊為c=13, a=12, b=5

依據定義:
$$\sin B = \frac{5}{13}$$
 , $\cos B = \frac{12}{13}$, $\tan B = \frac{5}{12}$

$$cotB = \frac{12}{5}$$
 , $secB = \frac{13}{12}$, $cscB = \frac{13}{5}$

c (斜邊)

[討論]:給定一銳角∠A(即θ)它的六個三角函數值亦隨之確定了。

直角
$$\triangle AB_1C_1$$
~ $\triangle AB_2C_2$ ~ $\triangle AB_3C_3$ ~......,

$$\boxtimes sin\theta = \frac{B_1C_1}{AB_1} = \frac{B_2C_2}{AB_2} = \frac{B_3C_3}{AB_3}...$$

故知 $\angle A(\mathbb{D}\theta)$ 的六個三角函數值只受 $\angle A(\mathbb{D}\theta)$ 的大小影響,而不在平三角形的大小。

(2)特殊角的三角函數值:

θ	sinθ	cosθ	tanθ	cotθ	secθ	cscθ
30°						
45°						
60°						

[**例題**1] 一直角三角形 ABC 中,設 \overline{AC} =41, \overline{AB} =40, \overline{BC} =9,令 $\angle BAC$ = θ , 求 θ 的六個三角函數值。

[例題2] 試求下列各式之值:

$$(1)2\sin^2 30^\circ + 3\cot^2 45^\circ + \cos^2 60^\circ$$

Ans:
$$(1)\frac{15}{4}$$
 $(2)2\sqrt{2}+\sqrt{3}$

$$(2)\csc^345^\circ + \sec^330^\circ + \cot^360^\circ$$

[**例題3**] 設一直角三角形 ABC 中, \angle A= θ ,已知 $\cot\theta$ =2,試求其他五個三角函數值。

(練習1) 在下列各三角形,分別計算 sinA, cosA, tanA 之值。

- (練習2) 設 θ 馬銳角且 $\tan\theta=\sqrt{2}$,則 $\sin\theta=$ _____,而 $\sec\theta=$ ____。
 Ans: $\frac{\sqrt{6}}{3}$; $\sqrt{3}$
- (練習3) 設 θ 爲一銳角, $\frac{1+\tan\theta}{1-\tan\theta}=3+2\sqrt{2}$,求 $\sin\theta=$ ____。Ans: $\sin\theta=\frac{1}{\sqrt{3}}$
- [**例題4**] 如圖,有一等腰三角形 ABC,其中 $\overline{AB} = \overline{AC} = 6$, $\overline{BC} = 4$ 請問 tanB = ? sinB = ? Ans $: sinB = \frac{2\sqrt{2}}{3}$, $tanB = 2\sqrt{2}$

[**例題5**] 設 θ 爲銳角,且 $\sin\theta = \frac{3}{5}$,試求 $\sin\frac{\theta}{2} \cdot \cos\frac{\theta}{2}$ 。

Ans :
$$\sin\frac{\theta}{2} = \frac{1}{\sqrt{10}}$$
, $\cos\frac{\theta}{2} = \frac{3}{\sqrt{10}}$

(練習4) 於ΔABC 中, \angle A 爲直角, $\overline{AB} = \overline{AC}$,D 是 \overline{AC} 的中點令 $\angle DBC = \theta$,則 cot $\theta = \underline{\hspace{1cm}}$ 。 Ans: 3

(練習5) 設ĀC⊥BC , ∠ABC=30°, ĀB =BD , 页 如右圖所示 , 試利用右圖 求sin15°, cos15°, tan15°之值。

Ans:
$$\frac{\sqrt{6}-\sqrt{2}}{4}, \frac{\sqrt{6}+\sqrt{2}}{4}, 2-\sqrt{3}$$

(練習6) 如圖, \overline{AB} 爲直徑且 \overline{AB} =10,已知 $\sin\theta = \frac{4}{5}$,求 PA=? Ans:PA=6

(練習7)
$$\triangle ABC$$
中, \overline{AD} 垂直 \overline{BC} 於 D ,已知 $\overline{AB}=25$, $\sin B=\frac{3}{5}$, $\sin C=\frac{15}{17}$,

則下列敘述何者正確?(A) \overline{AD} = 15 (B) \overline{DC} = 8 (C) \overline{AC} = 17 (D) \overline{BC} = 28 (E) $\sin A = \frac{15}{17}$ \circ Ans : (A)(B)(C)(D)

(練習8) 直角 \triangle ABC中, \angle C=90°, \overline{AC} =4, \overline{BC} =3,

自 C 作 CD 垂直 AB 於 D,作 DE 垂直 AC 於 E,

則 $\overline{\text{DE}}$ 的長為 $\underline{\hspace{1cm}}$ Ans: $\frac{48}{25}$

(乙)三角函數的基本關係

 $\overline{(1)}$ 由上一節知,若三角形 $\triangle ABC$ 中, $\angle C=90^{\circ}$,

 $\angle A$ 的度數爲 θ ,以a,b與c分別表示三邊 \overline{BC} , \overline{CA} 與 \overline{AB} 之長,則可發現這六個三角函數並非毫不相干,而是具有某些關聯的。

(a)預備公式

銳角三角函數的定義

 $\sin\theta = \cos\theta = \tan\theta = \cot\theta = \sec\theta = \csc\theta =$

(b)倒數關係:

- ①sinθ ×cscθ=____⇒即cscθ =____
- ② $\cos\theta \times \sec\theta =$ $\Rightarrow \exists \exists \sec\theta =$
- ③tanθ ×cotθ=____⇒Πtanθ =____

(c)商數關係:

(d)平方關係(利用畢式定理可得)

 $\sin^2 A + \cos^2 A = (\frac{a}{c})^2 + (\frac{b}{c})^2 = \frac{c^2}{c^2} = 1 \implies \sin^2 A + \cos^2 A = 1$

上式兩邊同除以 $\cos^2 A$,則可得 $\frac{\sin^2 A}{\cos^2 A}$ +1= $\frac{1}{\cos^2 A}$ = $\sec^2 A$ $\Rightarrow \tan^2 A + 1 = \sec^2 A$ 若將 $\sin^2 A + \cos^2 A = 1$ 的兩邊除以 $\sin^2 A$,則可得 $1 + \cot^2 A = \csc^2 A$

注意: $\sin^2\theta = (\sin\theta)^2 \cos^2\theta = (\cos\theta)^2$

(e)餘角關係:直角三角形的兩銳角互爲餘角關係

$$\sin(90^{\circ}-\theta) = \cos(90^{\circ}-\theta) =$$

上述的直角三角形ABC中, $\angle C=90^{\circ}$, $\angle A+\angle B=90^{\circ}$,我們可以觀察 $\angle A$ 的對 邊剛好爲∠B的鄰邊,∠A的鄰邊剛好是∠B的對邊,由正弦和餘弦函數的

定義可知:
$$sinB = \frac{\angle B$$
的對邊 $= \frac{\angle A}{A}$ 的鄰邊 $= cosA$ 。

- (f)銳角三角函數範圍: 若 $0^{\circ}<\theta<90^{\circ}$,則 ① $0 < \sin \theta < 1 \Rightarrow$ 倒數 $\cos \theta > 1$ ② $0 < \cos \theta < 1 \Rightarrow$ 倒數 $\sec \theta > 1$ ③ $\tan \theta \in R \Rightarrow \cot \theta \in R$
- (g)上述各種關係對於任意銳角θ都成立,根據這些關係,我們若知道 $\sin\theta$, $\cos\theta$, $\tan\theta$, $\cot\theta$, $\sec\theta$, $\csc\theta$ 六個三角函數值中之一個, 就可推得 他五個的值。

[**例題6**] 已知 θ 爲銳角且 $\tan\theta = \frac{5}{6}$,試求 $\sin\theta$, $\cos\theta$, $\tan\theta$, $\cot\theta$, $\sec\theta$, $\csc\theta$ 之值。 Ans: $\sin\theta = \frac{5}{\sqrt{61}}$, $\cos\theta = \frac{6}{\sqrt{61}}$, $\tan\theta = \frac{5}{6}$, $\cot\theta = \frac{6}{5}$, $\sec\theta = \frac{\sqrt{61}}{6}$, $\csc\theta = \frac{\sqrt{61}}{5}$

[**例題7**] 設θ爲銳角,且 $2 \sin\theta + \cos\theta = 2$,求 $\sin\theta$ 與 $\cos\theta$ 。

Ans : $\sin\theta = \frac{3}{5}$, $\cos\theta = \frac{4}{5}$

[**例題8**] 設 θ 爲銳角,且 $\sin\theta + \cos\theta = \frac{4}{3}$,求下列各小題的值:

 $(1)\sin\theta\cdot\cos\theta$ $(2)\sin\theta-\cos\theta$ $(3)\sin^3\theta+\cos^3\theta$ $(4)\tan\theta+\cot\theta$ \circ

Ans: $(1)\frac{7}{18}$ $(2)\frac{\pm\sqrt{2}}{3}$ $(3)\frac{22}{27}$ $(4)\frac{18}{7}$

(練習9) 求下列二小題的值:

(a) $\sin 61^{\circ} \cdot \sec 29^{\circ} + \sec^2 37^{\circ} - \tan^2 37^{\circ} = ?$

(b) $\cos 42^{\circ} \cdot \csc 48^{\circ} - \csc^2 47^{\circ} + \tan 43^{\circ} = ?$

Ans: (a)2 (b)0

(練習10) 設θ爲銳角,且令 tanθ=k,請用 k 表示下列各三角函數的值:

(1) $\sec\theta$ (2) $\cos\theta$ (3) $\sin\theta$ Ans : (1) $\sqrt{1+k^2}$ (2) $\frac{1}{\sqrt{1+k^2}}$ (3) $\frac{k}{\sqrt{1+k^2}}$

(練習11) 設θ爲銳角,且 $tan\theta + sec\theta = \frac{3}{2}$,試求 $tan\theta = ?$ Ans: $\frac{5}{12}$

(練習12) 設θ爲銳角, $sinθ-cosθ=\frac{1}{2}$,請計算下列各小題的值:

 $(1)\sin\theta \cdot \cos\theta$ $(2)\sin\theta + \cos\theta$ $(3)\tan\theta + \cot\theta$

Ans: $(1)\frac{3}{8}$ $(2)\frac{\sqrt{7}}{2}$ $(3)\frac{8}{3}$

(練習13) 設x爲銳角且 $\tan x + \cot x = \frac{5}{2}$,求下列各式之值:(1) $\sin x + \cos x$ (2) $\sin^3 x + \cos^3 x$ Ans:(1) $\frac{3\sqrt{5}}{5}$ (2) $\frac{9\sqrt{5}}{25}$

(練習14) 假設 $\cos\theta+3\sin\theta=2$,且 $0<\theta<90^\circ$,求 $\cos\theta+\sin\theta$ 之值。Ans: $\frac{4+\sqrt{6}}{5}$

恆等式的證明

三角函數的關係式還可以幫助我們將涉及 $\sin\theta$, $\cos\theta$, $\tan\theta$, $\cot\theta$, $\sec\theta$ 或 $\csc\theta$ 的式子,轉化成其他形式的式子。也就是三角恆等式:不論銳角的度數是多少,涉及三角函數的式子都成立。要證明這些恆等式成立,三角函數的關係式大致上可以依下列方法使用:

(a)三角函數的種類要統一

看到有 $tan\theta$, $cot\theta$, $sec\theta$, $csc\theta$, 利用倒數與商數關係化爲 $sin\theta$, $cos\theta$

$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$
, $\cot\theta = \frac{\cos\theta}{\sin\theta}$, $\sec\theta = \frac{1}{\cos\theta}$, $\csc\theta = \frac{1}{\sin\theta}$

(b)看到 1

 $1 = \sin^2\theta + \cos^2\theta = \sec^2\theta - \tan^2\theta = \csc^2\theta - \cot^2\theta$

- (c)看到 $\sin\theta$, $\cos\theta$ 一定要隨時平方,其目的有二:
 - ①全化爲 $\sin\theta$ (或 $\cos\theta$),可將函數種類統一
 - ② π II π sin² θ +cos²=1 \Rightarrow sin² θ =1-cos² θ
 - ③將高次降爲低次

例: $\sin^4\theta - \cos^4\theta = (\sin^2\theta + \cos^2\theta)(\sin^2\theta - \cos^2\theta) = (\sin^2\theta - \cos^2\theta)$ $(\sin\theta + \cos\theta)^2 = \sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta = 1 + 2\sin\theta\cos\theta$ $(\sin\theta - \cos\theta)^2 = \sin^2\theta + \cos^2\theta - 2\sin\theta\cos\theta = 1 - 2\sin\theta\cos\theta$

另外常常見到 $tan\theta+cot\theta=\frac{sin\theta}{cos\theta}+\frac{cos\theta}{sin\theta}=\frac{1}{sin\theta cos\theta}$

【證明三角恆等式的原則】

- 1.由繁化簡:通常恆等式都是左式較繁,右式較簡,由左式出發逐步化成較簡 單的式子。
- 2.相減爲零:不太容易掌握方向,可以左右兩式相減導出結果爲零,由此推論 兩式相等。
- 3.化爲同一式:當左右兩式複雜程度相近時,可以分別化成同一簡單式,使兩 式相等。
- 4.單純化:將三角函數之種類單純化,例如一律化爲sinθ與cosθ表示,再配合 兩者的平方關係即可。

「例題9] $(1)\sin^4\theta + \cos^4\theta = 1 - 2\sin^2\theta \cos^2\theta$ $(2)\sin^6\theta + \cos^6\theta = 1 - 3\sin^2\theta \cos^2\theta$

[例題10] 求證下列三角恆等式

$$(1)\frac{1+\sin\theta}{\cos\theta} + \frac{\cos\theta}{1+\sin\theta} = 2\sec\theta \ (2)\cot^4\theta + \cot^2\theta = \csc^4\theta - \csc^2\theta$$

[**例題**11] 求證下列恆等式
$$\frac{\tan\theta + \sec\theta - 1}{\tan\theta - \sec\theta + 1} = \sec\theta + \tan\theta = \frac{1 + \sin\theta}{\cos\theta}$$

(練習15) 試證
$$\frac{1-\cos\theta}{\sin\theta} = \frac{\sin\theta}{1+\cos\theta}$$
 \circ

(練習16)
$$\frac{1+2\sin\theta\cos\theta}{\cos^2\theta-\sin^2\theta} = \frac{1+\tan\theta}{1-\tan\theta}$$

(練習17) 設f(n)= $\cos^n \theta + \sin^n \theta$,試證明:3f(4) - 2f(6) = 1。

(練習18) 試化簡下列各式:

$$(1)\frac{1}{1+\sin^{2}\theta} + \frac{1}{1+\csc^{2}\theta} = _{----} \circ$$

$$(2)(1+\tan\theta + \sec\theta)(1+\cot\theta - \csc\theta) = _{----} \circ Ans : (1)1 (2)2$$

(練習19) 設cosA=cosX·sinC,cosB=sinX·sinC,試求sin²A+sin²B+sin²C的值。 Ans: 2

綜合練習

- (1) 試求下列各式的值:
 - (a) $2\cos^2 30^\circ 1$ (b) $2\sin 30^\circ \cos 30^\circ$ (c) $\frac{2\tan 30^\circ}{1-\tan^2 30^\circ}$ (d) $\sin 60^\circ \cos 60^\circ \tan 60^\circ \cot 60^\circ \sec 60^\circ$ (e) $\tan 45^\circ + \sqrt{3}\tan 60^\circ \sin^2 30^\circ$ (f) $1+\sin^2 45^\circ \tan 30^\circ \cot 60^\circ$
- (2) 設 $0^{\circ} < \theta < 90^{\circ}$, $\tan \theta = k$,則下列敘述何者正確?

 (A) $\sec \theta = \sqrt{k^2 + 1}$ (B) $\csc \theta = k^2 + 1$ (C) $\cot \theta = \frac{1}{k}$ (D) $\sin \theta = \frac{k}{\sqrt{k^2 + 1}}$ (E) $\cos \theta = \frac{1}{\sqrt{k^2 + 1}}$ \circ
- (3) 設 的 馬 銳 角,且 $\tan\theta = \frac{3}{4}$,求 $\frac{\sin\theta}{1-\cot\theta} + \frac{\cos\theta}{1-\tan\theta} = ?$
- (4) 如左下圖,若 $\sin\theta = \frac{21}{29}$,求 $\cot\frac{\theta}{2}$ 的值。

- (5) 求一個半徑r的圓內接正n邊形與圓外切正n邊形的周長。
- (6) 如圖, $\angle B = 90^{\circ}$, $3\overline{CD} = 2\overline{BD}$, $\overline{AB} = \overline{BD}$, 則 $\tan \angle CAD$ 之值爲_____。
- (7) 如下圖所示:扇形OAB中, $\overline{OA} = \overline{OB} = a$, $\angle AOB = 2\theta$,已知扇形的內切圓半徑爲r,若以a及 θ 表內切圓半徑r,則 $r = ______$;又若 $\theta = 30^\circ$,則比值 $\frac{a}{r} = ______$ 。

- (8) 設 $\tan\theta = 3$,求 (a) $\frac{2\sin\theta + 3\cos\theta}{\sin\theta - 2\cos\theta}$ (b) $\frac{2\sin^2\theta + \sin\theta\cos\theta - \cos^2\theta}{\sin^2\theta + \sin\theta\cos\theta - 2\cos^2\theta}$ o
- (9) 設θ為銳角且 $7 \sin\theta \cos\theta = 5$,求 $\sin\theta = ?$

- (10) 設 θ 爲銳角,若 $\cos\theta = \tan\theta$,求 $\sin\theta = ?$
- (11) 設 x^2 -(tanθ+cotθ)x+1=0 有一根爲 2+ $\sqrt{3}$,試求sinθcosθ的値。
- (12) 已知 $\sin\theta$ - $\cos\theta$ = $\frac{1}{\sqrt{3}}$,且 $\sin\theta$ 及 $\cos\theta$ 為 $2x^2+px+q=0$ 的兩個根, 則判別式p²-8q=___。
- (13) 設 $\sin\theta$ + $\cos\theta$ = $\frac{1}{\sqrt{2}}$,則求下列各小題的値:

 - (a) $\sin\theta \cdot \cos\theta =$ ___ \circ (b) $\sin\theta \cos\theta =$ __ \circ (c) $\sin^3\theta + \cos^3\theta =$ __ \circ (d) $\sin^6\theta + \cos^6\theta =$ __ \circ
- (14) θ為銳角,求證下列三角恆等式:

$$(a)\frac{1+\cos\theta}{1-\cos\theta} - \frac{1-\cos\theta}{1+\cos\theta} = 4\cot\theta\csc\theta$$

(b) $\cos^6\theta + \sin^6\theta = 1 - 3\cos^2\theta + 3\cos^4\theta$

$$(c)\frac{1-\tan^4\theta}{\sec^2\theta} + 2\tan^2\theta = \sec^2\theta$$

$$(d)\frac{csc\theta\text{-}cot\theta}{sec\theta\text{-}tan\theta} = \frac{sec\theta\text{+}tan\theta}{csc\theta\text{+}cot\theta}$$

$$(e)\frac{2\sin\theta(\sin\theta+1)}{1+\sin\theta+\cos\theta} = 1+\sin\theta-\cos\theta$$

- (15) 試求 $\frac{1}{1+\sin 7^{\circ}} + \frac{1}{1+\cos^{2} 5^{\circ}} + \frac{1}{1+\sec^{2} 5^{\circ}} + \frac{1}{1+\csc 7^{\circ}} = \underline{\hspace{1cm}}$
- (16) 設ΔABC 中, $\cos \angle ABC = \frac{4}{5}$, $\cos \angle ACB = \frac{1}{\sqrt{5}}$, \overline{BC} 之中點 M, 而 $\overline{AH} \perp \overline{BC}$ 於 H,若 $\overline{MH} = 5$,求 $\overline{BC} = ?$
- (17) △ABC 是一個頂角為 36°的等腰三角形, \overline{AM} 與 \overline{BD} 分別是 $\angle A$ 與 $\angle B$ 的分角線, 如右上圖所示。試利用〈BCD~〈ABC,求 sin18°之值。

進階問題

- (18) 銳角 \triangle ABC之三邊長爲a,b,c,其所對應的高爲 h_a , h_b , h_c ,已知 \tan A=1, \tan B=2, $\tan C=3$, $\iint \frac{abc}{h_a h_b h_a} = ?$
- (19) 有二同心圓,外圓之一直徑 AD,被內圓三等份於 $B \cdot C \cdot (如圖)$, 在外圓上任取異於 A,D 之一點爲 P, 設∠APB=α,∠DPC=β,試求 tanα·tanβ之值。

- (20) 設 $\tan\alpha$ 、 $\tan\beta$ 爲 $x^2-ax+b=0$ 之二根,試以a,b表示 $\cos^2\alpha-\sin^2\beta$ 之值。
- (21) 設 $x\cos\theta + y\sin\theta = 4$, $x\sin\theta y\cos\theta = 3$, 試求 x 與 y 的關係。

(22) 如右圖,∠BDC=90°,∠ADB=30°,A、B、C共線, 且ĀB=CD=1,求BC的長。

綜合練習解答

(1)
$$(a)\frac{1}{2} (b)\frac{\sqrt{3}}{2} (c)\sqrt{3} (d)\frac{\sqrt{3}}{2} (e)\frac{15}{4} (f)\frac{7}{6}$$

- (2) (A)(C)(D)(E)
- (3) $\frac{7}{5}$
- (4) $\frac{7}{3}$
- (5) $2nr\sin\frac{180^{\circ}}{n}$, $2nr\tan\frac{180^{\circ}}{n}$
- (6) $\frac{1}{4}$
- (7) $r = \frac{a\sin\theta}{1+\sin\theta}$; 3
- (8) (a)9 (b)2 [Hint:(a)分子、分母同除以 $\cos^2\theta$ (b) 分子、分母同除以 $\cos^2\theta$]
- (9) $\frac{4}{5}$ [Hint: $\cos\theta = 7\sin\theta 5$,兩邊平方,再利用 $\sin^2\theta + \cos^2\theta = 1$,化成 $\sin\theta$ 的二次方程式,再解出 $\sin\theta$]
- **(10)** $\frac{\sqrt{5}-1}{2}$
- (11) $\frac{1}{4}$
- **(12)** $\frac{4}{\sqrt{3}}$
- (13) (a) $-\frac{1}{4}$ (b) $\pm \frac{\sqrt{6}}{2}$ (c) $\frac{5 \cdot \sqrt{2}}{8}$ (d) $\frac{3}{4}$
- (14) 略
- **(15)** 2
- $(16) \quad \overline{BC} = 22$

- (17) $\sin 18^\circ = \frac{\sqrt{5}-1}{4}$
- (18) $\frac{5}{3}$ (Hint: 考慮 $\frac{c}{h_a}$, $\frac{b}{h_c}$, $\frac{a}{h_b}$ 的値)
- **(19)** $\frac{1}{4}$
- $(20) \quad \frac{1-b^2}{a^2+(1-b)^2}$
- **(21)** $x^2 + y^2 = 25$
- **(22)** $\sqrt[3]{2}$