

CS 383 – Machine Learning

Classification – Intro

Slides adapted from material created by E. Alpaydin Prof. Mordohai, Prof. Greenstadt, Pattern Classification (2nd Ed.), Pattern Recognition and Machine Learning

Objectives

- Classification Intro
- Evaluating a Classifier

Classification

- Ok so in the course we want to:
 - Look at and manipulate data
 - Be able to find patterns in unlabeled data (clustering)
 - Build a system that, given some data, can predict a values (regression)
 - This system will be built using prior labeled data
 - Build a system that, given some data, can predict a label for that data (classification)
 - This system will be built using prior labeled data

Example: Photograph or Not?

Example: Character Recognition

Example: Speech Understanding

Basic Example

An Example

Classify fish according to species using optical sensing

Training

- Set up a camera and take some sample images
 - Label these images by hand

sea bass

salmon

sea bass

sea bass

- Extract features
 - Length
 - Lightness
 - Width
 - Number and shape of fins
 - Position of the mouth
 - Etc...
- Test whether this set of features is useful for a classifier.

Preprocessing

- Use a segmentation operation to isolate fish from one another and from the background
- Information from a single fish is sent to a feature extractor whose purpose is to reduce the data by measuring certain quantities
- Features are passed to a classifier

Classification

 Select the length of the fish as a possible feature for discrimination

Preliminary Results

- Length alone looks to be a poor feature!
 - About 20% misclassification rate at best threshold choice
- Select lightness as a possible feature

New Classifier

- Use the lightness and add the width of the fish
- Fish
 - $X_{:i} = [X_{:1}, X_{:2}]$
 - Where $X_{:1}$ is the lightness and $X_{:2}$ is the width

Last Revision: Matt Burlick 2016, Drexel University

Keep Going...?

- We can add other features that are not correlated with the ones we already have
- Intuitively, the best decision boundary should be the one which provides an optimal performance

Last Revision: Matt Burlick 2016, Drexel University

Generalization

- However, the primary goal of designing a classifier is to correctly classify novel input (new instances)
- This is the issue of generalization
- Maybe this generalizes better

University

The Design Cycle

- Data collection
 - How do we know when we have enough data for testing and training?
- Feature extraction/choice
 - What features are good?
 - Depends on the problem domain
 - Ideally simple to extract, invariant to irrelevant transformations, insensitive to noise
- Model choice
 - What type of classifier to use?

The Design Cycle

- Training
 - Change/learn parameters of classifier so that the model fits the collected data well
- Evaluating
 - Measure system performance
 - Avoid overfitting
- Computational complexity
 - What is the trade-off between computational ease and performance?
 - How does the choices made scale?

Evaluating a Classification Algorithm

Evaluation

- How can we tell if our ML algorithm is doing well?
- For estimating values (like in linear regression) we can just compute statistics on the error
- How about with classifiers?
 - We can count how often we predict the correct class
- What if the classifier returns a likelihood instead of a discrete class ID?
 - Choose a threshold
 - Anything below that threshold is class 0, anything above it is class 1

Spam Example

- Let's imagine creating a classifier that detects spam
- It's easy to catch 100% of spam
 - Throw out ALL the mail
 - Set "threshold" to 0 (or 1)
- It's easy to make no mistakes on good mail
 - Keep ALL the mail
- Perhaps a good starting point is to choose 50% threshold
 - Anything above this is a "positive hit"
 - Anything below this is a "negative rejection"

Error Types

- True positive = Hit
- True negative = Correct rejection
- False positive = False Alarm (Type 1 error)
- False negative = Miss (Type 2 error)

	Predicted positive	Predicted negative	
Positive	True positives	False negatives	
examples			
Negative	False positives	True negatives	
examples			

Evaluating your Classifier

- There are several different things we can measure to evaluate the quality of a classifier
 - Depending on the application one may be more important than another
- Precision percentage of things that were classified as positive and actually were positive
 - Precision = $\frac{TP}{TP+FP}$
- Recall the percentage of true positives (sensitivity) correctly identified
 - $Recall = \frac{TP}{TP+FN}$
- f-measure The weighted harmonic mean of precision and recall
 - $F_1 = \frac{2*precision*recall}{precision+recall}$

Precision/Recall Tradeoff

- We can vary it by adjusting thresholds
- Plotting precision and recall as a function of the threshold creates something called a *precision-recall* curve (PR)

Precision/Recall Curve

Evaluating your Classifier

- Precision, Recall, and the f-measure are primarily concerned the detection of a particular class (the "positive" label)
- Often we're more interested in getting both classes of a binary classifier correct
 - True positive and true negative

Evaluating your Classifier

Accuracy

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

- Related to this, we sometimes will look at the true positive rate vs the false positive rate
 - The true positive rate is

$$TPR = Recall = \frac{TP}{TP + FN}$$

The false positive rate is

$$FPR = \frac{FP}{FP + TN}$$

ROC Curves

- Likewise we can plot TPR vs FPR
 - This is often called a receiver operating characteristic (ROC) curve
- Like with PR-Curves, this can be created by varying the parameters that decides positive vs negative classification
- Dominant curves (above and to the left)

Example ROC Curves

Good separation, convex

Last Revision: Matt Burlick 2016, Drexel University

Example ROC Curves

Poor separation

Random

PR and ROC Graphs

Precision Recall Graph (blue) and Mirrored ROC Curve (violet)

Precision/Recall or ROC?

- So which should you use?
 - Depends
- Precision- Recall

• Precision =
$$\frac{TP}{TP+FP} = P(Y=1|\hat{Y}=1)$$

• Recall =
$$\frac{TP}{TP+FN} = P(\hat{Y} = 1|Y=1)$$

- Conditioned on both the true label, Y and the estimated label \hat{Y} .
- As a result the probability of Y = 1, P(Y = 1) will effect results.
 - So use if your specifically care about "this" population/label distribution.
- Typically use if the "positive" class is more interesting than the "negative" class.
- ROC

•
$$TPR = Recall = \frac{TP}{TP + FN} = P(\hat{Y} = 1 | Y = 1)$$

•
$$FPR = \frac{FP}{FP + TN} = P(\hat{Y} = 0 | Y = 0)$$

- Conditioned only on the actual/true labels
 - So independent of what P(Y = 1) actually is
- So use if you want a more general view independent of label distribution.