DELAR Emmanoe

Compte rendu TD3 Analyse, classification et indexation des données: Classifieur bayésien

Exercice 1. Vérité terrain

Illustration 1: histogrammes des longueurs des poissons

L'histogramme représentant la taille des saumons est plus précis que celui concernant les bars car la vérité terrain représentative de la taille des saumons est plus conséquente.

Exercice 2. Boucle d'évaluation d'un classifieur

Dans le programme fournit, nous pouvons retrouver les grandes lignes fonctionnelles d'un système d'apprentissage :

extraction de l'ensemble d'entraînement :

TrainSaumonIndice = randperm(sizeVTSaumon, sizeTrain); TrainBarIndice = randperm(sizeVTBar,sizeTrain);

entraînement:

TrainSaumon = VTSaumon(TrainSaumonIndice);
TrainBar = VTBar(TrainBarIndice);

test:

TestBar = VTBar; TestSaumon = VTSaumon;

récupération des erreurs :

nbBarErreur = size(ResBar,1)-sum(ResBar)
nbSaumonErreur = sum(ResSaumon)

Les informations utilisées ici pour classifier un échantillon (paramètres du classifieur) sont:

- Test
- mu (Saumon, Bar)
- sigma (Saumon, Bar)

Exercice vérité terrain Alzheimer:

Illustration 2: Représentation de la VTAlzheimers groupe CN

Illustration 3: Représentation de la VTAlzheimers groupe AD

Remplacez les portions de code correspondantes par des appels de fonction. La fonction de classification correspondra au maximum de vraisemblance (Maximum Likelihood).

Illustration 3: Fonction maximum de vraisemblance (Maximum Likelihood)

Exercice 3.

- Classification Maximum A Posteriori

- Classification bayésienne :

On voit ici que le seuil de décision optimise les résultats par rapport au classifieur basé sur le Maximum A Posteriori. Ainsi les résultats sont plus précis et ont un variation moins importante que la classification Maximum A Posteriori.