ANONYMIZATION METHODS AS TOOLS FOR FAIRNESS

Salvatore Ruggieri

KDD Lab

Department of Computer Science
University of Pisa, Italy

2 Message of the talk

Motivation: risks in data publishing (and in learning from data)

- □ Privacy risks
 - re-identification or attribute inference
- Discrimination risks?
 - discriminatory decisions
 - An employer may notice from public census data that the race or sex of workers act as proxy of the workers' productivity.
 - The employer may then use those visible traits for hiring decisions.
 - A machine learning model to profile applicants to a bank loan may learn from past application records some patterns of traditional prejudices
 - The model may predict not to loan to a minority group.
- Solutions?
 - dataset sanitization for discrimination prevention

Reductions of problems

Problem X reduces to problem Y if an algorithm that solves Y can be used to solve X

 \square sol_X(I) = f(sol_Y(g(I)))

- Widely used concept in
 - Computability
 - Computational complexity
 - Programming
 - • •

- Assume that g() and f() are «simple»
 - X is ('easier or equal than') than Y
 - If Y reduces to X also then X and Y are "equivalent"

Reductions of problems

Problem X reduces to problem Y if an algorithm that solves Y can be used to solve X

 \square sol_x(I) = f(sol_y(g(I)))

- \blacksquare X = sanitize a dataset for discrimination prevention wrt α -protection
- Y = sanitize a dataset for privacy protection wrt t-closeness
- Message of the talk: X and Y are «equivalent» (in a weak sense)
 - □ Main reference: S. Ruggieri. Using t-closeness anonymity to control for non-discrimination. Transactions on Data Privacy 7 (4): 301-325, 2014.

Discrimination measures

Discrimination measures

- What is the degree of discrimination suffered?
 - Legal principle of proportional representation

city=NYC		benefit granted	total
women	6	4	10
men	1	4	5
total	7	8	15

 p_1 = proportion of benefit denied to women = 6/10 = 60% p_2 = proportion of benefit denied to men = 1/5 = 20%

Risk ratio (RR) is $p_1 / p_2 = 3$

 \square Odds ratio (OR) is RR / RC = 6

Discrimination measures

- What is the degree of discrimination suffered?
 - Legal principle of proportional representation

city=NYC	benefit denied	benefit granted	total
women	6	4 (b)	10
men	1	4	5
total	7	8 (m ₂)	15

 p_0 = proportion of women in the overall population = 10/15 = 67%p = proportion of women in the «benefit granted» population = 4/8 = 50%

- Example: jury selection
- □ Castaneda rule in the U.S. (1977): $p_0 m_2 b \le 3\sigma$
 - Binomial distribution $\sigma = \sqrt{m_2 p_0 (1 p_0)}$

Extensions to account for:

- Lack of comparison term
 - occurs when there are no men (or women) in the context

ZIP=100	benefit denied	benefit granted	total
women	6	4	10
men	0	0	0
total	6	4	10

 p_1 = proportion of benefit denied to women = 6/10 = 60% p_2 = undefined = p_1 = proportion of benefit denied to women in the whole dataset

All discrimination measures extends smoothly

Extensions to account for:

- Random effects rather than explicit discrimination:
 - Confidence intervals for discrimination measures [Pedreschi et al. 2009]
- Causality in discrimination conclusions:
 - Do women from NYC have the same characteristics of men they are compared with? Or do they differ as per skills or other admissible reasons?
 - Propensity score weighting [Ridgeway2006]

city=NYC	benefit denied	benefit granted	total
women	6	4	10
men	1	4	5
total	7	8	15

Weighted risk difference (wRD) is $p_1 - p_w = 40\%$

$$p_{w} = \sum_{x \in men \cap denied} w(x) / \sum_{x \in men} w(x)$$

• Pr(x|women) = w(x) Pr(x|man)

Propensity score weights

• $w(x) = \Pr(woman|x)/(1 - \Pr(woman|x))$

Discrimination in a dataset

α -protection

PND attributes

city=NYC birth=1965	benefit denied	benefit granted	total
women	1	0	1
men	0	1	1
total	1	1	2

City	Birth date	Sex	Benefit
NYC	1973	M	No
NYC	1965	F	No
NYC	1965	M	Yes
LA	1973	M	No
•••		•••	•••

RD = 100% - 0% = 100%

 $\,\square\,$ A non-empty 4-fold contingency table is $\alpha\text{-protective}$ if the discrimination measure is lower or equal than a threshold α

PD attribute

- $\hfill\Box$ A dataset if a-protective if all of its non-empty 4-fold contingency tables are $\alpha\text{-protective}$
 - for any subset (or conjunction) of PND items

Local approaches [RPT2010@TKDD]

□ Extract classification rules:

- with **B** providing a context of discrimination
 - E.g., $\mathbf{B} \equiv \text{city} = \text{NYC}$
- \square with measure $> \alpha$
- Notice
 - cover(B) is the context of analysis
 - B can be a closed itemset (all distinct covers!)

city=NYC	benefit denied	benefit granted	total
women	6	4	10
men	1	4	5
total	7	8	15

A Java library: dd

```
DDTable tb = new DDTable();
tb.loadFromArff("credit");
tb.setDiscMetaData("personal status=female div or dep or mar,
                     foreign worker=yes", "class=bad", 20);
tb.closedItemset = true;
tb.extractItemsets();
tb.initScan();
double largest = -1;
ContingencyTable ct = null;
while( (ct = tb.nextCT()) != null) {
        double diff = ct.rd();
        if( diff > largest )
                largest = diff;
tb.endScan();
```

- Download it from
 - http://www.di.unipi.it/~ruggieri/software.html

Level curves of top-k tables [PRT@SAC2012]

Privacy in a dataset

k-anonimity

A partition-based measure of risk in data disclosure

•		QI attributes				
	ZIP	Birth date	Sex	Desease		
q-block	100	1965	F	Yes		
q-block size = 3	100	1965	F	No		
	100	1965	F	No		
	101	1973	M	No		
	0.0.0	•••	•••	•••		

- Q-block = rows with same values for all Qls
- A q-block is k-anonimous if its size is at least k
- A dataset is k-anonimous if every q-block is k-anonimous
 - Any individual cannot is indistinguishable from k-1 others

t-closeness

A partition-based measure of attribute inference risk in data disclosure

		<u> </u>	sensitive attribute		
	ZIP	Birth date	Sex	Desease	
q-block	100	1965	F	Yes	
size = 3	100	1965	F	No	
p = 33.3%	100	1965	F	No	
	101	1973	M	No	
	•••	•••	• • •	•••	

- A q-block is t-close if it maintains the proportion of sensitive values
 - $p = proportion of Yes in the q-block <math>p^* = proportion of Yes in the whole dataset$
 - Condition: $|p-p^*| < t$
- A dataset is t-close if every q-block is t-close

Differences between t-close and a-protect

- Distributions
 - □ t-closeness, single: |p-p*| < t for every q-block
 </p>
 - \square α -protection wrt RD, **joint**: $p_1 p_2$ for every 4-fold c.t.
- Monotonicity property
 - t-closeness fixes all values of QI attributes
 - $lue{\alpha}$ -protection fixes **some** values of QI attributes
 - If the rows s.t. city=NYC, birth=X are α -protective, for all X, then the rows s.t. city=NYC may be not α -protective
 - Sympson's paradox
- $lue{}$ t-closeness and lpha-protection are not equivalent models

Sympson's paradox

$$RD = p_1 - p_2$$

dept	sex	admitted
A	female	no
A	female	yes
A	female	yes
A	female	yes
A	male	no
A	male	yes
A	male	yes

dept	sex	admitted
В	female	no
В	female	yes
В	male	no
В	male	no
В	male	yes

PND itemset
$$dept=A$$

 $RD = 4/7 - 1/3 = 0.238$

PND itemset
$$dept=B$$

 $RD = 1/2 - 2/8 = 0.25$

PND itemset empty
(both departments)
$$RD = 5/9 - 3/11 = 0.283$$

t-closeness reduces to α -protection

Reductions of problems

- \square X = sanitize a dataset for privacy protection wrt t-closeness
- $lue{}$ Y \equiv sanitize a dataset for discrimination prevention wrt lpha-protection

g(I) = I+2 new attributes D1,D2 with PND = QI PD = $\{D1, D2\}$

	QI attributes sensitive attribute		!	PND		PD decision attribute				
ZIP	Birth date	Sex	Desease		ZIP	Birth	Sex	D1	D2	Desease
100	1965	F	Yes		100	date	-	-	F .	V
100	1965	F	No		100	1965	F	True	False	Yes
100	1965	F	No	\longrightarrow	100	1965	F	True	False	No
		·			100	1965	F	True	False	No
101	1973	M	No		101	1973	М	True	False	No
•••	•••	•••	•••		•••		•••			•••

Reductions of problems

- \square X = sanitize a dataset for privacy protection wrt t-closeness
- \square Y = sanitize a dataset for discrimination prevention wrt α -protection

- g(I) = I+2 new attributes D1,D2 with PND = QI PD = $\{D1, D2\}$
- contingency tables have no comparison term!
 - Use p_{\cdot} = proportion of Yes in the whole dataset = p^*
- □ Fix Qls (eg., ZIP=100, Birth=1965, Sex = F)
 - RD = $p_1 p_2 < \alpha$ for D1=True
 - RD = $p_1 p_1 < \alpha$ for D2=True
 - Thus, $|p_1 p_2| = |p p^*| < \alpha$
- $f \alpha$ -protection implies t-closeness, for t = lpha

QI=	desease =Yes	desease =No	total
D1=True	1	2	3
D1=False	0	0	0
total	1	2	3

α -protection reduces to t-closeness

Reductions of problems

- X = sanitize a dataset for privacy protection wrt t-closeness
- \square Y = sanitize a dataset for discrimination prevention wrt α -protection

city=NYC	benefit denied	benefit granted	total
women	6	4	10
men	1	4	5
total	7	8	15

$$p_1$$
 = proportion of benefit denied to women = $6/10 = 60\%$
 p_2 = proportion of benefit denied to men = $1/5 = 20\%$
Risk difference (RD) is $p_1 - p_2 = 40\%$

Triangle inequality

□
$$RD = p1 - p2 \le |p1 - p^*| + |p2 - p^*|$$

- □ If the dataset is t-close ...
 - where
 - Ql attributes = PND attributes + PD attribute
 - Sensitive attribute = decision attribute

$$\square$$
 RD = p1 - p2 \leq |p1 - p*| + |p2 - p*| \leq 2t

□ ... then it is 2t-protective

Formal results

Theorem 10. Fix as QIs the set of PND attributes plus the PD attribute, and as sensitive attribute the decision attribute. If the table is t-close then it is $bd_f(t)$ -protective w.r.t. $f \in \{ED, RD\}$, where $bd_{RD}(t) = bd_{ED}(t) = min\{2t, t + \hat{p}_-, 1\}$ and $\hat{p}_- = min\{p_-, 1 - p_-\}$.

A dataset does not contain discrimination (more than $bd_f(t)$) if an attacker cannot be confident (more than a threshold t) on the decision assigned to an individual by exploiting the differences in the fraction of positive and negative decisions between the protected and the unprotected groups.

□ The role of an ``attacker" here is played by the anti-discrimination analyst, whose objective is to unveil from data a context where negative decisions are biased against the protected group.

Formal results

Corollary 14. Fix as QIs the set of PND attributes plus the PD attribute, and as sensitive attribute the decision attribute. If the table is t-close then every PND itemset, possibly with disjunctive items, is $bd_f(t)$ -protective w.r.t. $f \in \{ED, RD\}$ and $bf_f(t)$ as in Thm. 10.

Disjunctive items $A=v_1 \lor ... A=v_n$

□ Ex., age in [25,30] is a disjunctive item

Stronger conclusion than α -protection: context with conjunctions of possibly disjunctive items are covered!!

Patterns used in decision trees, association rule classifiers!!

city=NYC, age in [25,30]	benefit denied	benefit granted	total
women	6	4	10
men	1	4	5
total	7	8	15

Reductions of problems

- \blacksquare X = sanitize a dataset for discrimination prevention wrt α -protection
- Y= sanitize a dataset for privacy protection wrt t-closeness

The reduction show ONE way to sanitize X using Y. Can all sanitized versions of I be obtained through reduction?

Sympson's paradox

$$RD = p_1 - p_2$$
 $p^* = 0.4$

$$p = 0.57$$

$$p = 0.33$$

dept	sex	admitted
A	female	no
A	female	yes
A	female	yes
A	female	yes
A	male	no
A	male	yes
A	male	yes

PND itemset
$$dept=A$$

 $RD = 4/7 - 1/3 = 0.238$

p = 0.5

p = 0.25

PND itemset
$$dept = B$$

$$RD = 1/2 - 2/8 = 0.25$$

PND itemset empty (both departments) RD = 5/9 - 3/11 = 0.283

The dataset is 0.17-close

Reductions of problems

- \blacksquare X = sanitize a dataset for discrimination prevention wrt α -protection
- Y= sanitize a dataset for privacy protection wrt t-closeness

- The reduction show ONE way to sanitize X using Y. Can all sanitized versions of I be obtained through such a reduction?
- Assume the answer is positive:
 - Let I be the Sympon's paradox dataset and $\alpha = 0.283$ (I is already α -protective)
 - There exists a ((empty)) sanitization Y of I s.t. $2t \le 0.283$, i.e. $t \le 0.141$
 - Impossible because I is only 0.17-close
- Message of the talk: X and Y are «equivalent» (in a weak sense)

Main results and application

- t-closeness implies bd(t)-protection
 - where bd() is a function dependent on the discrimination measure (RD,RR,OR, ...)
 - the bound bd(t) can be reached in limit cases

- Application:
 - data anonymization methods can be applied to sanitization
 wrt non-discrimination

Multidimensional recoding: dMondrian

Algorithm 1 dMondrian.Anonymize(P, t)

- 1: **if** no d-allowable cut for \mathcal{P} **then**
- 2: **return** PND_ranges(\mathcal{P})
- 3: else
- 4: $A \leftarrow \text{choose_PND_dimension}(\mathcal{P})$
- 5: $v \leftarrow \text{find_median}(\mathcal{P}, A)$
- 6: $\mathcal{P}_1 \leftarrow \{ \sigma \in \mathcal{P} \mid \sigma[A] \leq v \}$
- 7: $\mathcal{P}_2 \leftarrow \{ \sigma \in \mathcal{P} \mid \sigma[A] > v \}$
- 8: **return** Anonymize(\mathcal{P}_1 , t) \cup Anonymize(\mathcal{P}_2 , t)
- 9: end if

Definition 5.1: Let p_- be the fraction of the negative decision in a relational table. A cut $V \leq v$ is d-allowable if the 4-fold contingency tables of \mathcal{P}_1 and \mathcal{P}_2 satisfy both $|p_1 - p_-| \leq t$ and $|p_2 - p_-| \leq t$.

Example

Sample dataset

Sample aataset				
ID	purpose	emp	sex	decision
1	housing	no	female	-
2	housing	no	female	-
3	housing	no	female	+
4	housing	no	male	-
5	housing	no	male	+
6	housing	yes	female	-
7	housing	yes	female	+
8	housing	yes	female	+
9	housing	yes	male	-
10	housing	yes	male	-
11	housing	yes	male	+
12	housing	yes	male	+
13	car	no	female	+
14	car	no	male	-
15	car	no	male	+
16	car	yes	female	-
17	car	yes	male	+

Output of dMondrian

ΙĎ	purpose	emp	sex	decision
1	housing-car	no	female	-
2	housing-car	no	female	-
3	housing-car	no	female	+
13	housing-car	no	female	+
4	housing-car	no	male	-
14	housing-car	no	male	-
5	housing-car	no	male	+
15	housing-car	no	male	+
6	housing-car	yes	female	-
16	housing-car	yes	female	-
7	housing-car	yes	female	+
8	housing-car	yes	female	+
9	housing-car	yes	male	-
10	housing-car	yes	male	-
11	housing-car	yes	male	+
12	housing-car	yes	male	+
17	housing-car	yes	male	+

етр=по	decision		_
sex	-	+	
female	2	2	4
male	2	2	4
	4	4	8

emp=yes	decision		_
sex	-	+	
female	2	2	4
male	2	3	5
	4	5	9

Bucketization & redistrib.: dSabre

Output of dSabre

ID	purpose	етр	sex	decision
1	housing	no-yes	female	-
3	housing	no-yes	female	+
4	housing	no-yes	male	-
5	housing	no-yes	male	+
11	housing	no-yes	male	+
6	housing	yes	female	-
7	housing	yes	female	+
9	housing	yes	male	-
12	housing	yes	male	+
2	housing-car	no	female	-
13	housing-car	no	female	+
14	car	no	male	-
15	car	no	male	+
16	housing-car	yes	female	-
8	housing-car	yes	female	+
10	housing-car	yes	male	-
17	housing-car	yes	male	+

Effective to reduce discrimination

Figure 7: German credit dataset. Distributions of RD and RR values.

dSabre is better

also regarding information loss

$$\mathrm{LM} = \sum_{\mathbf{QI \ itemset \ Q}} supp(\mathbf{Q}) \ L(\mathbf{Q}) \qquad L(\mathbf{Q}) = \sum_{i=1,\dots,N-1} \frac{range(v_i) - 1}{|dom(A_i)| - 1}$$

$$L(\mathbf{Q}) = \sum_{i=1,\dots,N-1} \frac{range(v_i) - 1}{|dom(A_i)| - 1}$$

Quality: median relative error

Count queries are basic elements in classifier construction, e.g.,
 in decision tree or association rule classifiers

```
SELECT COUNT(*) FROM dataset WHERE A_{\pi_1} in [v_1,\ w_1] AND \dots AND A_{\pi_n} in [v_n,\ w_n] AND A_N in [v_{n+1},\ w_{n+1}]
```

- lacktriangle Relative error of a count query is |est prec |/prec
 - prec = count over original dataset
 - est = count over sanitized dataset (uniform distribution of values)
- Median relative error is
 - the median error on 10K randomly generated count queries

but more sensitive to high dim/card

Related work

- Incognito-like search for k-anonymous & a-protective sanitization
 - [Haijan & al. @ DAMI 2014]
- Impact of k-anonimity sanitization on a-protection
 - [Haijan & Domingo-Ferrer @ DPADM 2012]
- Techniques for achieving both k-anonimity and a-protection in knowledge disclosure
 - [Haijan et al. @ DPADM 2012]
- Non-discriminatory (fair) classification as a generalization of differential privacy
 - [Dwork et al. @ ITCS 2012], [Zemel et al. @ ICML 2013]

Thanks, questions?