## Introdução à Computação

#### **Aulas 1.2:**

Conceitos Básicos
 Visão Geral do Computador
 Hardware e Software

Prof. Carlos Antônio Campos Jorge



#### Conceitos básicos

- Dado: representação de uma idéia, evento. Fatos ou objetos não processados;
- Informação: dado com significado;



## Introdução

Dado: representação de uma idéia,
 evento. Fatos ou objetos não processados;

• Informação: dado com significado;





# Introdução

 Dado: representação de uma idéia, evento. Fatos ou objetos não processados;

Informação: dado com significado;

Altura média: 1,23m





#### Processamento de Dados

- •Série de **operações** que se aplica a um conjunto de dados (**entrada**) para obter informações ou resultados (**saída**).
- Elementos Básicos:
  - -Dados iniciais informações iniciais sujeitas a certas transformações.



#### Processamento de Dados

- -**Transformações** (Processamento) modificações efetuadas no conteúdo ou na forma dos dados iniciais.
- -Resultados **finais** produto dos dados iniciais após as transformações.
- Exemplos:
- -Dado Inicial: Leite, Abacate e Açúcar.
- -Transformação: Mistura dos 3 ingredientes no liquidificador.
- -Resultado Final: Vitamina de abacate!



## Processamento Eletrônico de Dados

• Processamento de dados com a utilização do computador.

COMPUTADOR

PROCESSAMENTO ELETRÔNICO DE DADOS

lê dados processa dados fornece resultados









#### O que é um Computador?









## O que é um Computador?

- •Digital: dados codificados no sistema binário;
- •Computador: aceita dados e os processa eletronicamente.



## O que é um Computador?

- •É uma máquina constituída por uma série de componentes e circuitos eletrônicos, capaz de receber, armazenar, processar e transmitir informações.
- •Máquina programável, capaz de realizar uma grande variedade de tarefas, seguindo uma sequência de comandos, de acordo com o que for especificado.
- "Computadores são estúpidos, eles somente respondem perguntas." Pablo Picasso



## Processamento Eletrônico de Dados

#### Vantagens:

- -Processa grande volume de dados com rapidez;
- -Trata grandes quantidades de informações com segurança;
- Realiza cálculos com exatidão;
- Oferece grande disponibilidade de acesso às informações armazenadas;
- Pode ser programado;



## Benefícios dos Computadores

#### Produtividade

- Funcionários usam seus computadores para executar suas tarefas mais rápido e melhor;
- Muitos processos podem ser controlados mais eficientemente por meio dos computadores.

#### Tomada de decisões

 Ajuda os tomadores de decisões a identificar fatores financeiros, geográficos e logísticos.

#### Redução de custos

 Ajuda a reduzir os custos com mão-de-obra, energia e papelada.



De que é formado um computador?





## Computador

- •O computador é um recurso formado por duas partes:
  - Parte física
  - Parte lógica
- •A parte **física** é a que podemos ver e tocar e o **nome técnico** que se dá à essa parte é **HARDWARE**. Na parte lógica, não se pode tocar e ela é conhecida como **SOFTWARE**.
- COMPUTADOR = HARDWARE (física) + SOFTWARE (lógica).

# Hardware – Modelo Simplificado de um Computador





## Dispositivos de Entrada

•Seu objetivo é obter dados que serão colocados na memória para que sejam posteriormente usados pelo processador em cálculos aritméticos ou lógicos.





## Dispositivos de Saída

•Seu objetivo é obter dados da memória do computador e mostrá-los ou passá-los ao usuário.





## Memória

• Dados e informações são fornecidos como entrada e podem ser obtidos como saída.

• Mas também podem ser guardados (armazenados).

• Memória é onde são armazenados os dados.



## Memória RAM

- RAM (Random Access Memory)
  - -Memória temporária;
  - -Utilizada para desenvolver e executar programas;
  - -É volátil: Uso restringe-se ao período em que o equipamento está em funcionamento;
    - Armazenar programas e dados;
    - Guardar resultados intermediários do processamento.



#### Memória ROM

- ROM (Read Only Memory)
  - Tipicamente menor que a RAM;
  - Não depende de energia para manter o seu conteúdo;
  - Memória permanente;
  - Informações não podem ser apagadas (casos especiais):
  - Geralmente vem gravada do fabricante;
  - Apenas de leitura;
  - Rotina de inicialização do computador, reconhecimento do hardware, identificação do sistema operacional, contagem de memória;
- •Orienta o computador nas 1<sup>a</sup>s operações.

# Dispositivos de Armazenamento Externo















# Dispositivos de Armazenamento Interno – HD/SSD

•O disco rígido ou HDD (Hard Disk) e estado sólido ou SSD (Solid State Disk) são usados para guardar não só seus arquivos como também todos os dados do seu sistema operacional, sem o qual você não conseguiria utilizar o computador.











HDD

SSD



## Hierarquia de memória



#### Armazenamento

- •Nos computadores, os dados são armazenados na forma binária, isto é, como zeros e uns. Portanto, a memória é uma sequência de zeros e uns.
- BIT (Binary digIT): 0 ou 1.
- •Esses bits estão divididos em grupos de 8, denominados bytes.
- •Os bytes são divididos em grupos de 1, 2, 3, 4, ..., denominados de palavras. O tamanho da palavra depende, particularmente, do computador.
- •Existem computadores com palavras de 8 bits, 16 bits, 24 bits, 32 bits, e 64 bits de palavra.
- –8 ou 16 bits: computadores para propósitos específicos.

## Codificação

- Representar números
- -Converter da base 10 para a base 2 (binário).





## Unidade de Armazenamento

| Bit (b*)       | 1 unidade |   |
|----------------|-----------|---|
| Byte (B*)      | 8 bits    |   |
| Kilobyte (KB)  | 1024 Byte | 1 |
| Megabyte (MB)  | 1024KB    |   |
| Gigabyte (GB)  | 1024 MB   |   |
| Terabyte (TB)  | 1024 GB   |   |
| Petabyte (PB)  | 1024 TB   |   |
| Exabyte (EB)   | 1024 PB   |   |
| Zettabyte (ZB) | 1024 EB   |   |
| Yotabyte (YB)  | 1024 ZB   |   |



#### Unidade Central de Processamento

•CPU (Central Processing Unit) ou Processador é responsável pela execução de cálculos, decisões lógicas e instruções que resultam em todas as tarefas que um computador pode fazer;

• Realiza o processamento;



Cérebro do computador.



## Computador





## De onde vem o programa?



Mágica???



## De onde vem o programa?





## De onde vem o programa?



Pessoas



**Programadores** 



## Como programas são feitos?

A linguagem de um computador é baseado em impulsos elétricos (0 = desligado, 1 = ligado);



## Como programas são feitos?

#### Linguagem de Máquina

- 01010101
- 000101111101100
- 100000111100010011110100
- 100010010100010111111100
- 0011001111001101
- 100010010100010111111100
- 110001110100010111110000100000
- 10000011010001011111010000001010
- 11111111101000101111111000
- 10000011011111011111100000000110
- 0111010111110011
- 1000101111100101
- 01011101
- 11000011



## Como programas são feitos?

Linguagem de Montagem

```
LOOP:
         AR1
 LARP
         AR1, apontador
LRLK
         TAMANHO CONSTANTE
ADRK
ADRK
         fimcon \overline{r}x
TAC
B7
         NAOPASSARAM1 OMS:
ZAC
 SACL
 LARP
         AR1
         AR1, apontador+CONSTANTE A
LRLK
         controle
ADRK
 TAC
 BZ
         LOOP; NAO DECORRIDO TEMPO: FICA NO LOOP
 NAOPASSĄRAM10MS:
SACL
 LARP
         AR1
 BLOOP
```



#### Dificuldade

- •Um programa era difícil, longo e principalmente caro de o construir;
- Era também difícil de ser entendido por outros programadores;
- •Essa complexidade levou à necessidade de desenvolver novas técnicas e ferramentas.



## Linguagens de Alto Nível

Exemplo em C:

```
#include <stdio.h>
int main()
{
  int a = 3, b = 7;
  printf("a + b = %d\n", a+b);
  return 0;
}
```

## Linguagens de Alto Nível





## Linguagens de Alto Nível

2.PAK **20-GATE** 473I Query 51forth **A+** A++ A# .NET A# (Axiom) A-0 **ABAP** ABC Actors ADA **ADVPL ALGOL** APL **Assembly** Autocoder ABLE **ABSET ABSYS** ACC Accent Action! ACS **ActionScript** ADS/Online AdvPL Afnix **AIMMS** 

**AppleScript Argos** ARS++ **AspectJ ATLAS** Atlas Autocode ATOLL Aubit-4GL Autocoder **Autolt AutoLISP Averest AWK Axiom** Axiom-XL В **BACI BASIC** Bash BC **BCPL BeanShell BETA Bigwig Bistro** BLISS **Blitz Basic BALM** Blue Boo Bourne shell Boxx **BPEL** 

**Brainfuck** 

**BUGSYS** 

Сω Caché Caml Clarion Clean ColdFusion Clipper CLOS COBOL Common Lisp CPL **CPython** C shell D Datalog Dataflex dBase Delphi DisCo Dynamic C Eiffel Euphoria **Fortran Forth FoxPro** Flow-Matic **GAP G-Portugol** Graforth Groove Haskell Haskell.NET ou H# IAL Icon

Informix-4GL

J# **JavaScript** JCL Joiner Jovial Just BASIC Kid's Limbo Lingo Lisp Logic Basic Logo Lotusscript Lua Lua.NET Matlab Meta4 Miranda mIRC Scripting ML Modula Modula-2 **MonoBASIC** Mortran Mumps Nemerle **Object Pascal** 02 Oberon Objective-C Ook#.NET **Pascal** 

Perl

**PerlSharp** 

**Phalanger** 

**PostScript** Powerbuilder Prolog Python Python.NET POV-Ray QUEL QT R (estatística) RealBasic **RPG** RPL Ruby Ruby/.NET Bridge Sasl Scheme Scriptol sh Simula Smalltalk Snobol 4 SQL Т **TACL TACPOL TADS Transaction** Tcl Transact SQL teco **TELCOMP** Telon Tempo Titanium

TI-Basic

**Tutorial D** TXL Ubercode Ultra 32 Unicon Uniface UnrealScript Visual Basic **VBScript** Visual Basic for Applications Visual Basic .NET Visual Objects Visual Smalltalk Water **WATFIV** Whitespace Winbatch WinDev Windows PowerShell WML X10 **XBL** xbScript xHarbour XL **XOTcl XPL** XPL0 **XQuery XSLT YAFL** 

Yellowra Ada

**TTCN** 

Turing

TUTOR

Alan

Aldor

Alef

Algae

## Tarefa menos fácil do que parece!



**Facebook**: 12 meses, mais de 400.000 linhas de código, uma equipe de mais de 60 pessoas.



Microsoft Office: +1.000.000 linhas de código.



Windows: 6 anos, US\$ 16 bilhões e 50 milhões de linhas de código.



#### Software

•De nada adianta a existência do hardware sem o software. É como se fosse um automóvel sem combustível apropriado.

• O que faz com que seja possível operacionalizar o hardware é o software.

•Um software é um programa que possui sequências de atitudes lógicas (passos) a serem tomadas em cada situação previamente determinada.



## Software Básico

- •Exerce o papel de tomar o primeiro contato com o hardware, além de realizar o elo entre a máquina e os demais softwares.
- •Realiza a administração/controle básico do funcionamento do equipamento. Exemplo: Sistema Operacional.



#### Software de Desenvolvimento

- •São softwares utilizados pelos profissionais de computação para desenvolver programas.
  - -Compilador: Tradução de linguagem de alto nível para linguagem de máquina antes do programa começar a executar;
  - **–Interpretador:** Tradução de linguagem de alto nível para linguagem de máquina durante execução do programa.



#### Software de Desenvolvimento





## Softwares Aplicativos

•São softwares voltados para um objetivo previamente definido, ou seja, voltados para atender determinado tipo de necessidade do usuário de informática. Exemplos: processadores de texto (Microsoft Word, BrOffice Writer, Latex), planilhas eletrônicas (Microsoft Excel, BrOffice Calc), editores de gráficos (Inkscape, Gimp, Paint).











## Softwares Aplicativos Específicos

•São uma especificidade dos softwares aplicativos. São softwares moldados às necessidades específicas de determinada clientela, ramo ou atividade. Exemplos: desenho de plantas, matemática computacional, edição de imagens, etc.









## Referências

FORBELLONE, A. L. V. e EBERSPACHER, H. F. Lógica de Programação – A Construção de Algoritmos e Estrutura de Dados. 3ª Edição. Prentice Hall, 2005.



