PAINTING NHL ARENAS

OPERATION Q Divide fractions using models and symbols

Sample 3

Similarly, this student used a common denominator of tenths and multiplies the amount of paint for each arena by 6 to determine if he has enough. He realizes that $\frac{25}{10}$ is $\frac{1}{10}$ more than $\frac{24}{10}$. It would be interesting to ask this student what his solution of $\frac{1}{10}$ represents to ensure that they understand that it is $\frac{1}{10}$ of a can rather than of the total paint.

Your Paint
$$\frac{(25)}{(10)}$$

2 to Paint blue lines

 $\frac{1 \times 5 = 5}{2 \times 5} = \frac{20 + 5}{10} = \frac{25}{10}$
 $\frac{2 \times 2 = 4}{5 \times 2}$
 $\frac{2}{10}$

2 All rink blue lines

 $\frac{1}{5} \times \frac{20}{10}$

All rink blue lines

 $\frac{1}{5} \times \frac{20}{10}$
 $\frac{2}{5} \times \frac{20}{10}$

All rink blue lines

 $\frac{1}{5} \times \frac{20}{10}$

All rink blue lines

 $\frac{2}{5} \times \frac{20}{10}$

Point needed for all blue lines.

A you have $\frac{25}{10}$ it takes $\frac{24}{10}$ to Paint

 $\frac{25}{10} - \frac{24}{10} = \frac{1}{10}$

Repair left over

S Yes, you have enough Paint to Paint left.

Finks blue lines, you built have $\frac{1}{10}$ Paint left.

Sample 4

This student solved the problem using an algorithm and went on to correctly determine what the remainder meant (i.e., $\frac{1}{4}$ of an arena multiplied by $\frac{2}{5}$ of a can equals $\frac{1}{10}$ of a can). However, many students would think the $\frac{1}{4}$ represented the amount of paint left in the can, in which case the use of a model aids in understanding the proper unit for the remainder.