Agenda for Module 2

Part 1:

- Introduction to Algorithms
- Data Structures

Part 2:

- Search Algorithms
- Time Complexity

Part 3:

Sorting Algorithms

Part 4:

- Graph Algorithms
- Algorithmic Techniques

Ack: Some slides materials are based on *Introduction to Algorithms* by Cormen et al. and *Algorithms*, *4th Edition* by Robert Sedgewick and Kevin Wayne Resources: https://algs4.cs.princeton.edu/home/

Graph Basics

- Set of :
 - Nodes/ Vertices contains values and links to its neighbors
 - edges connecting the nodes
- Edges can be
 - Undirected: no distinction between the 2 nodes
 - Directed: has a source and a destination
 - Weighted

Applications - Navigation

Google Maps - determining the fastest route

Graph applications

graph	vertex	edge
communication	telephone, computer	fiber optic cable
circuit	gate, register, processor	wire
mechanical	joint	rod, beam, spring
financial	stock, currency	transactions
transportation	intersection	street
internet	class C network	connection
game	board position	legal move
social relationship	person	friendship
neural network	neuron	synapse
protein network	protein	protein-protein interaction
molecule	atom	bond

Computer Representation of Graph

Adjacent Table/Matrix: Pros/ Cons?

Maintain a two-dimensional V-by-V boolean array; for each edge v-w in graph: adj[v][w] = adj[w][v] = true.

Computer Representation of Graph

Adjacent List: Pros/ Cons?

Graph representations

In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices adjacent to v.
- Real-world graphs tend to be sparse.

huge number of vertices, small average vertex degree

Two graphs (V = 50)

Depth-first search

Goal. Systematically traverse a graph.

Idea. Mimic maze exploration. — function-call stack acts as ball of string

DFS (to visit a vertex v)

Mark v as visited.

Recursively visit all unmarked vertices w adjacent to v.

Typical applications.

- Find all vertices connected to a given source vertex.
- Find a path between two vertices.

Design challenge. How to implement?

Algorithms

4.1 DEPTH-FIRST SEARCH DEMO

Algorithms

4.1 BREADTH-FIRST SEARCH DEMO

BFS & DFS Exercises

- Depth First Search exercise:
 - Find the depth of a binary tree (a tree is also a graph!)
 - https://leetcode.com/problems/maximum-depth-of-binary-tree/
- Breadth First Search exercise:
 - Find cousins in a binary tree.
 - Cousins have the same depth (level of the tree), but different parents.
 - https://leetcode.com/problems/cousins-in-binary-tree/

Other Classical Problems in Graph: Example

- Topology Sort
 DFS + Reverse Post Order
- Minimum Spanning Tree
 Greedy / Kruskal / Prim
- Shortest Path
 Dijkstra / Acyclic / Bellman-Ford

Algorithmic Techniques

- Brute-force algorithms
 - Take the most direct or obvious solution approach
 - Enumerate all possible candidate solutions
- Divide-and-conquer algorithms
 - break problem down into sub-problems that similar to the original problem, but smaller in size
 - Typically leads to recursive algorithms
 - E.g., MERGESORT
- Greedy algorithms
 - Often applied to optimization problems involving a sequence of choices
 - At each step, the locally optimal choice is made
- Dynamic programming algorithms
 - Break problem down into sub-problems
 - Use the solutions to these sub-problems to solve larger sub-problems (reusing results)

Greedy Algorithm: Change Making

Given coins of denominations 1,5,10,25 cents; find out a way to give a customer an amount with the fewest number of coins.

Example: 147 cents

Greedy Algorithm Exercise:

https://leetcode.com/problems/largest-perimetertriangle/

Dynamic programming: Fibonacci Sequence

The Fibonacci Sequence is the series of numbers:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

The next number is found by adding up the two numbers before it:

the 2 is found by adding the two numbers before it (1+1), the 3 is found by adding the two numbers before it (1+2), the 5 is (2+3),

and so on!

You can try it

yourself: https://leetcode.com/problems/fibonacci-number/

Exercise / Q&A

ADDITIONAL MATERIAL

https://leetcode.com/problems/linked-list-cycle/

Tortoise and Rabbits

Breadth-first search properties

- Q. In which order does BFS examine vertices?
- A. Increasing distance (number of edges) from s.

queue always consists of ≥ 0 vertices of distance k from s, followed by ≥ 0 vertices of distance k+1

Proposition. In any connected graph G, BFS computes shortest paths from s to all other vertices in time proportional to E + V.

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

graph G

Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints, in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constraint.

- 0. Algorithms
- 1. Complexity Theory
- 2. Artificial Intelligence
- 3. Intro to CS
- 4. Cryptography
- 5. Scientific Computing
- 6. Advanced Programming

precedence constraint graph

tasks

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point upwards.

Solution. DFS. What else?

feasible schedule

Minimum spanning tree

Def. A spanning tree of G is a subgraph T that is:

- Connected.
- Acyclic.
- Includes all of the vertices.

Given. Undirected graph G with positive edge weights (connected). Goal. Find a min weight spanning tree.

minimum spanning tree T (cost =
$$50 = 4 + 6 + 8 + 5 + 11 + 9 + 7$$
)

Shortest-Path Problem

Google Maps - determining the fastest route

Shortest-Path Problem

Google Maps - determining the fastest route

Class Activity: Shortest Path Algorithm

- Can you come up with an algorithm that solves the shortest path problem?
- Work in groups
- •What is the shortest path from s to t?

Find shortest path from s to t.

Example and Animation are from *National University of Singapore*

```
S = { }
PQ = \{ s, 2, 3, 4, 5, 6, 7, t \}
B = { }
```



```
S = { }
PQ = { s, 2, 3, 4, 5, 6, 7, † }
B = { }
```



```
S = { s }
PQ = { 2, 3, 4, 5, 6, 7, † }
B = { s }
```



```
S = { s, 2 }
PQ = { 3, 4, 5, 6, 7, † }
B = { s, 2 }
```



```
S = { s, 2 }
PQ = { 3, 4, 5, 6, 7, † }
B = { s, 2 }
```



```
S = { s, 2, 6 }
PQ = { 3, 4, 5, 7, † }
B = { s, 6 }
```



```
S = { s, 2, 6 }
PQ = { 3, 4, 5, 7, † }
B = { s, 6 }
```



```
S = { s, 2, 6, 7 }
PQ = { 3, 4, 5, † }
B = { s, 7 }
```


Example and Animation are from National University of Singapore

```
S = { s, 2, 3, 5, 6, 7 }
PQ = { 4, † }
B = { s, 6, 3, 5 }
```



```
S = { s, 2, 3, 5, 6, 7 }
PQ = { 4, † }
B = { s, 6, 3, 5 }
```



```
S = { s, 2, 3, 4, 5, 6, 7 }
PQ = { t }
B = { s, 6, 3, 5, 4 }
```


30

50 **54 59** ×

32

45 ★

dmin

```
S = { s, 2, 3, 4, 5, 6, 7, † }
PQ = { }
B = { s, 6, 3, 5, † }
```



```
S = { s, 2, 3, 4, 5, 6, 7, † }
PQ = { }
B = { s, 6, 3, 5, † }
```



```
function Dijkstra(Graph, source):
                                             // Distance from source to source
    dist[source] \leftarrow 0
    prev[source] ← undefined
                                              // Previous node in optimal path initialization
    for each vertex v in Graph: // Initialization
                              // Where v has not yet been removed from Q (unvisited nodes)
        if v \neq source:
            dist[v] \leftarrow infinity
                                              // Unknown distance function from source to v
            prev[v] \leftarrow undefined
                                              // Previous node in optimal path from source
        end if
        add v to 0
                                       // All nodes initially in Q (unvisited nodes)
    end for
   while Q is not empty:
        u \leftarrow \text{vertex in } Q \text{ with min dist[u]} // Source node in first case}
        remove u from Q
                                     // where v is still in Q.
        for each neighbor v of u:
            alt \leftarrow dist[u] + length(u, v)
            if alt < dist[v]:</pre>
                                             // A shorter path to v has been found
                dist[v] \leftarrow alt
                prev[v] \leftarrow u
            end if
        end for
    end while
    return dist[], prev[]
end function
```

Importance of Efficiency

- Computers have finite speed, finite memory.
- Need to minimize amount of computation that the machines needs to make.

Algorithm X executes in $10n^2 + n / 3.7 + 22$ steps Algorithm Y executes in $100n \log n + 14n + 22$ steps

Which algorithm is better?

Greedy Algorithm

Activity Selection Problem

- Given: A set of proposed activities that wish to use a resource, which can only be used by one activity at a time
- Problem: Find maximum-size set of activities that do not have a time conflict

Greedy Algorithm

- Greedy choice: Pick the remaining compatible activity that has the earliest finish time
- Can you write an algorithm that does this?

Algorithm for Activity Selection Problem

```
ActivitySelector(s[n], f[n])

1 A \leftarrow 1; j \leftarrow 1

2 \underline{\text{for }} i \leftarrow 2 \underline{\text{to }} n \underline{\text{do}}

3 \underline{\text{if }} s_i \geq f_j \underline{\text{then}} \triangleright greedy choice

4 A \leftarrow A \cup \{i\}

5 j \leftarrow i

6 \underline{\text{return }} A
```

What is the running time for this algorithm?

Nearest Neighbor Algorithm

- 1.Start at a vertex
- 2. Find the lightest edge connecting the current vertex and an unvisited vertex V
- 3.Set current vertex to V
- 4. Mark V as visited
- 5. Terminate when all the vertices have been visited
- 6.Repeat from step 2

- Example: Starts from Vertex A and returns
- to starting point at the end
 - •Path: A D E C B A

Deficiencies of Nearest Neighbor

- Worst case: algorithm can result in a path much longer than the optimal path
- Won't work in case of incomplete graph
 - When some cities are not connected
- Any ideas for a better algorithm?

