Goal: 1. Vector norms

2. Matrix norms

1. Vector norms.

• A norm is a function $||\cdot||: \mathbb{C}^m \longrightarrow \mathbb{R}$ satisfying

(1) $\|\vec{x}\| \ge 0$, and $\|\vec{x}\| = 0$ only if $\vec{x} = \vec{0}$

(2) $\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$ (triangle inequality)

eg. The Euclidean length $\|\vec{x}\|_2 = \sqrt{x^* x}$ is a norm.

• The p-norms: $\|\vec{\lambda}\|_p = \left(\sum_{i=1}^m |x_i|^p\right)^{p}$, $1 \le p < \infty$

special cases: $|-norm: ||\vec{\lambda}||_1 = \sum_{i=1}^{m} |x_i|$

z-norm: $\|\vec{\lambda}\|_{2} = \left(\sum_{i=1}^{m} |x_{i}|^{2}\right)^{1/2} = \sqrt{\vec{x}^{*}\vec{\lambda}}$

infinity-norm: ||x|| = max |xi|

eg. $\vec{\chi} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$ \Rightarrow $||\chi||_{1} = 1+2+3=6$ $||\chi||_{2} = (1+4+9)^{\frac{1}{2}} = \sqrt{14}$ $||\chi||_{10} = \max\{1,2,3\} = 3$

· The weighted norm:

Given any norm $\|\cdot\|$ and a diagonal matrix $W = \begin{pmatrix} w_1 & w_2 \\ \vdots & w_m \end{pmatrix}$ with all $w_1 \neq 0$, a weighted norm can be defined as $\|\vec{x}\|_W := \|W\vec{x}\|_{\infty} = \|\frac{w_1 x_1}{y_1 + y_2}\|_{\infty}$

2. Matrix norm

· Per: A matrix norm ||·||: C mxn → IR must sastisfy:

(2)
$$||A+B|| \leq ||A|| + ||B||$$
 (triangle inequality)

(3)
$$\|AA\| = |A| \cdot \|A\|$$

Example:
$$\|A\|_{1} = \max_{1 \le j \le n} \|A(i,j)\|_{1} = \max_{1 \le j \le n} \frac{\sum_{i=1}^{m} |a_{ij}|}{|a_{ij}|}$$
 (max. column sum) $\|A\|_{\infty} = \max_{1 \le i \le m} \|A(i,i)\|_{1} = \max_{1 \le i \le m} \frac{\sum_{1 \le i \le m} |a_{ij}|}{|a_{ij}|}$ (max. row sum) $\|A\|_{F} = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^{2}\right)^{\frac{1}{2}}$ (The Frobenius norm)

In general, ||AB|| \(||A|| \cdot ||B||

• For a matrix $A \in \mathbb{C}^{m \times n}$, the induced matrix norm is $\|A\|_{(m,n)} = \sup_{\vec{x} \in \mathbb{C}^n} \frac{\|A\vec{x}\|_{(m)}}{\|\vec{x}\|_{(n)}} = \sup_{\vec{x} \in \mathbb{C}^n} \|A\vec{x}\|_{(m)}$ $\vec{x} \neq 0$ $\|\vec{x}\| = 1$

where ||.||(m) and ||.||(n) are given rector norms

||A||(m,n) is the maximum factor by which A can "stretch" a vector.

* ×
)