Random Walk

Prof. Renzo Flores-Ortiz

- Random Walk (ou caminhada aleatória) é um modelo estocástico de série temporal em que cada valor da série é obtido a partir do valor imediatamente anterior, somado a um termo de erro aleatório.
- · Fórmula do modelo:

$$X_t = X_{t-1} + \varepsilon_t$$

- X_t : valor da série no tempo t
- X_{t-1} : valor da série no tempo anterior, t-1
- ε_t : termo de erro aleatório (assumido como ruído branco), com:
 - $E[\varepsilon_t] = 0$,
 - $Var[\varepsilon_t] = \sigma^2$
 - $Cov[\varepsilon_t, \varepsilon_{t-h}] = 0$ para todo $h \neq 0$
- Características importantes:
 - Imprevisibilidade: as variações nos valores da série são imprevisíveis e não sistemáticas.
 - Ausência de memória: o comportamento passado não ajuda a prever o futuro.
 - Sob esse modelo, a variância de X_t cresce linearmente com o tempo, caracterizando o Random Walk como um processo estocástico não estacionário isto é, suas propriedades estatísticas, como a variância, mudam ao longo do tempo.

Erro aleatório do tipo ruído branco

• Erro aleatório:

- É a componente estocástica de um modelo estatístico, caracterizada como a diferença entre o valor observado e o valor esperado segundo a parte determinística do modelo.
- É a fonte de incerteza e aleatoriedade na evolução de uma série temporal.
- Notação comum: ε_t ou ω_t
- Ruído branco: É um processo estocástico caracterizado por:
 - Média zero: $E[\varepsilon_t] = 0$

O erro não tende a aumentar nem a diminuir a série sistematicamente.

• Variância constante: $Var[\varepsilon_t] = \sigma^2$

O erro mantém a mesma variabilidade ao longo do tempo.

• Sem autocorrelação: Não há correlação linear entre os erros.

$$Cov[\varepsilon_t, \varepsilon_{t-h}] = 0 \ para \ todo \ h \neq 0$$

.

Aplicações do modelo Random Walk

O modelo Random Walk pode ser utilizado para descrever fenômenos cuja evolução ao longo do tempo
é imprevisível e acumulativa, como, por exemplo, o comportamento de preços de ações ou o
deslocamento aleatório de partículas suspensas em um fluido (movimento browniano).

Uma série que se comporta como o modelo Random Walk é estacionária?

• Modelo Random Walk:
$$X_t = X_{t-1} + \varepsilon_t$$

$$\operatorname{\mathsf{Com}} E[\varepsilon_t] = 0, \operatorname{\mathit{Var}}[\varepsilon_t] = \sigma^2 \operatorname{e} \operatorname{\mathit{Cov}}[\varepsilon_t, \varepsilon_{t-h}] = 0 \ \operatorname{\mathit{para}} \operatorname{\mathit{todo}} h \neq 0$$

• Expressando X_t em função de X_0 :

Se
$$X_t = X_3$$
 temos que: $X_3 = X_2 + \varepsilon_3 = X_1 + \varepsilon_2 + \varepsilon_3 = X_0 + \varepsilon_1 + \varepsilon_2 + \varepsilon_3 = X_0 + \sum_{i=1}^{3} \varepsilon_i$

Generalizando para
$$X_t$$
: $X_t = X_0 + \sum_{i=1}^{t} \varepsilon_i$

• X_t em função de X_0 :

$$X_t = X_0 + \sum_{i=1}^t \varepsilon_i$$

• Cálculo da **média** de X_t :

$$E[X_t] = E\left[X_0 + \sum_{i=1}^t \varepsilon_i\right] = E[X_0] + E\left[\sum_{i=1}^t \varepsilon_i\right] = E[X_0] + \sum_{i=1}^t E[\varepsilon_i] = X_0 + \sum_{i=1}^t E[\varepsilon_i] = X_0$$

• A média de X_t permanece constante ao longo do tempo e igual ao valor inicial X_0 .

Uma série que se comporta como o modelo Random Walk é estacionária?

• X_t em função de X_0 :

$$X_t = X_0 + \sum_{i=1}^t \varepsilon_i$$

• Cálculo da **variância** de X_t :

$$Var[X_t] = Var\left[X_0 + \sum_{i=1}^t \varepsilon_i\right] = Var[X_0] + Var\left[\sum_{i=1}^t \varepsilon_i\right] = 0 + \sum_{i=1}^t Var[\varepsilon_i] = t\sigma^2$$

• A variância de X_t cresce linearmente com o tempo \rightarrow quanto maior t, maior a incerteza.

_

Uma série que se comporta como o modelo Random Walk é estacionária?

Propriedade	Comportamento no Random Walk
Média	Constante: $E[X_t] = X_0$
Variância	Cresce indefinidamente: $Var[X_t] = t\sigma^2$

- A série é não estacionária \rightarrow variância depende do tempo.
- A trajetória se afasta do valor inicial ao longo do tempo com uma incerteza crescente.
- O processo é acumulativo: cada novo valor da série é obtido somando o valor anterior e mais um erro.
- A maioria dos modelos clássicos de séries temporais (como ARMA) só funciona com séries estacionárias. Como a Random Walk não é estacionária, não podemos aplicar esses modelos diretamente.
- Como tornar uma série que se comporta como Random Walk em estacionária?

Diferenciação

0

• A diferenciação consiste em transformar uma série X_t na série das diferenças entre os valores consecutivos:

$$\Delta X_t = X_t - X_{t-1}$$

• É utilizado principalmente para remover tendências e tornar uma série estacionária.

11

Diferenciação numa série que se comporta como Random Walk

- O modelo do Random Walk: $X_t = X_{t-1} + \varepsilon_t$
- Reescrevendo: $X_t X_{t-1} = \varepsilon_t \Longrightarrow \Delta X_t = \varepsilon_t$
- Ou seja:
 - A primeira diferença de um Random Walk é o próprio erro aleatório.
 - Esse erro, ε_t , é usualmente modelado como ruído branco, que é estacionário: tem média, variância constantes e ausência de autocorrelação.