Planche nº 19. Suites

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice nº 1 (***IT)

Soient $(u_n)_{n\in\mathbb{N}}$ une suite réelle ou complexe et $(v_n)_{n\in\mathbb{N}}$ la suite définie par :

$$\forall n \in \mathbb{N}, \ \nu_n = \frac{u_0 + u_1 + ... + u_n}{n+1}.$$

- 1) Montrer que si la suite $(u_n)_{n\in\mathbb{N}}$ converge vers un réel ℓ , la suite $(v_n)_{n\in\mathbb{N}}$ converge et a pour limite ℓ . Réciproque ? (Quand la suite $(v_n)_{n\in\mathbb{N}}$ converge, on dit que la suite $(u_n)_{n\in\mathbb{N}}$ converge au sens de CÉSARO.)
- 2) Montrer que si la suite $(u_n)_{n\in\mathbb{N}}$ est bornée, la suite $(v_n)_{n\in\mathbb{N}}$ est bornée. Réciproque?
- 3) On suppose de plus que $(\mathfrak{u}_n)_{n\in\mathbb{N}}$ est réelle. Montrer que si la suite $(\mathfrak{u}_n)_{n\in\mathbb{N}}$ est croissante alors la suite $(\mathfrak{v}_n)_{n\in\mathbb{N}}$ l'est aussi.

Exercice nº 2 (***)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. Montrer que si la suite $(u_n)_{n\in\mathbb{N}}$ converge au sens de Césaro et est monotone, alors la suite $(u_n)_{n\in\mathbb{N}}$ converge.

Exercice nº 3 (**IT)

Pour $\mathfrak n$ entier naturel non nul, on pose $H_{\mathfrak n} = \sum_{k=1}^{\mathfrak n} \frac{1}{k}$ (série harmonique).

- 1) Montrer que : $\forall n \in \mathbb{N}^*$, $\ln(n+1) < H_n < 1 + \ln(n)$ et en déduire $\lim_{n \to +\infty} H_n$.
- 2) Pour n entier naturel non nul, on pose $u_n = H_n \ln(n)$ et $v_n = H_n \ln(n+1)$. Montrer que les suites (u_n) et (v_n) convergent vers un réel $\gamma \in \left[\frac{1}{2},1\right]$ (γ est appelée la constante d'Euler). Donner une valeur approchée de γ à 10^{-2} près.

Exercice no 4 (**)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique ne s'annulant pas. Montrer que pour tout entier naturel n, on a

$$\sum_{k=0}^{n} \frac{1}{u_k u_{k+1}} = \frac{n+1}{u_0 u_{n+1}}.$$

Exercice no 5 (***)

Calculer $\lim_{n\to +\infty} \sum_{k=1}^n \frac{1}{1^2+2^2+...+k^2}$ (on sera amené à déterminer trois réels a, b et c tels que pour tout entier naturel non nul k, $\frac{6}{k(k+1)(2k+1)}$ et on utilisera l'exercice n° 3: il existe une suite (ϵ_n) tendant vers 0 telle que $\sum_{k=1}^n \frac{1}{k} = \ln n + \gamma + \epsilon_n$).

Exercice nº 6 (**I) (moyenne arithmético-géométrique)

Soient a et b deux réels tels que 0 < a < b. On pose $u_0 = a$ et $v_0 = b$ puis, pour tout entier naturel n,

$$u_{n+1} = \sqrt{u_n v_n} \text{ et } v_{n+1} = \frac{u_n + v_n}{2}.$$

Montrer que les suites (u_n) et (v_n) convergent vers une limite commune que l'on ne cherchera pas à calculer (cette limite s'appelle la moyenne arithmético-géométrique des nombres a et b).

Exercice no 7 (***)

Soient a et b deux réels tels que 0 < a < b. On pose $u_0 = a$ et $v_0 = b$ puis, pour tout entier naturel n,

$$u_{n+1}=\frac{u_n+\nu_n}{2}\,\,\mathrm{et}\,\,\nu_{n+1}=\sqrt{u_{n+1}\nu_n}.$$

1

 $\text{Montrer que les suites } (u_n) \text{ et } (v_n) \text{ sont adjacentes et que leur limite commune est égale à } \frac{b \sin \left(\operatorname{Arccos} \left(\frac{a}{b} \right) \right)}{\operatorname{Arccos} \left(\frac{a}{b} \right)}.$

Exercice nº 8 (**I)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle ne s'annulant pas. Montrer que si $\left|\frac{u_{n+1}}{u_n}\right|$ tend vers un réel ℓ élément de [0,1[quand n tend vers $+\infty$, alors u_n tend vers 0 quand n tend vers $+\infty$.

Exercice nº 9 (**)

Limite quand n tend vers $+\infty$ de

$$1) \; \frac{\sin n}{n} \quad 2) \; \left(1 + \frac{1}{n}\right)^n \quad 3) \; \frac{n!}{n^n} \quad 4) \; \frac{E\left(\left(n + \frac{1}{2}\right)^2\right)}{E\left(\left(n - \frac{1}{2}\right)^2\right)} \quad 5) \; \sqrt[n]{n^2} \quad 6) \; \sqrt{n+1} - \sqrt{n} \quad 7) \; \frac{\displaystyle\sum_{k=1}^n k^2}{n^3} \quad 8) \; \prod_{k=1}^n 2^{k/2^{2^k}}.$$

Pour 3), utiliser le n° 8.

Exercice no 10 (**)

Etudier la suite (u_n) définie par : $\forall n \in \mathbb{N}, \sqrt{n+1} - \sqrt{n} = \frac{1}{2\sqrt{n+u_n}}$

Exercice nº 11 (***) (Récurrences homographiques).

Dans cet exercice, on ne se pose aucune question d'existence des différentes suites considérées.

- 1) Soit $(a,b,c,d) \in \mathbb{C}^4$ tel que $c \neq 0$ et $ad-bc \neq 0$. On considère (u_n) la suite définie par la donnée de son premier terme u_0 et $\forall n \in \mathbb{N}, \ u_{n+1} = \frac{au_n + b}{cu_n + d}$.
 - $\mathbf{a)} \text{ Montrer que si l'équation } \mathbf{x} = \frac{a\mathbf{x} + \mathbf{b}}{c\mathbf{x} + \mathbf{d}} \text{ a deux solutions distinctes } \boldsymbol{\alpha} \text{ et } \boldsymbol{\beta}, \text{ la suite } \left(\frac{\mathbf{u_n} \boldsymbol{\alpha}}{\mathbf{u_n} \boldsymbol{\beta}}\right)_{\mathbf{n} \in \mathbb{N}} \text{ est géométrique.}$
 - $\mathbf{b)} \text{ Montrer que si l'équation } \mathbf{x} = \frac{a\mathbf{x} + \mathbf{b}}{c\mathbf{x} + \mathbf{d}} \text{ a une solution et une seule } \alpha, \text{ la suite } \left(\frac{1}{\mathbf{u}_n \alpha}\right)_{n \in \mathbb{N}} \text{ est arithmétique.}$
- 2) Déterminer u_n en fonction de n quand la suite u vérifie :

a)
$$\forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n}{3 - 2u_n}$$
 b) $\forall n \in \mathbb{N}, \ u_{n+1} = \frac{4(u_n - 1)}{u_n}$

(ne pas se poser de questions d'existence).

Exercice nº 12 (**)

Soient (u_n) et (v_n) les suites définies par la donnée de u_0 et v_0 et les relations de récurrence

$$u_{n+1} = \frac{2u_n + v_n}{3}$$
 et $v_{n+1} = \frac{u_n + 2v_n}{3}$

Etudier les suites $\mathfrak u$ et ν puis déterminer $\mathfrak u_n$ et ν_n en fonction de $\mathfrak n$ en recherchant des combinaisons linéaires intéressantes de $\mathfrak u$ et ν . En déduire $\lim_{n\to +\infty}\mathfrak u_n$ et $\lim_{n\to +\infty}\nu_n$.

Exercice nº 13 (**)

Même exercice avec
$$u_{n+1} = \frac{v_n + w_n}{2}$$
 et $v_{n+1} = \frac{u_n + w_n}{2}$ et $w_{n+1} = \frac{u_n + v_n}{2}$.

Exercice no 14 (***)

Soit $\mathfrak u$ une suite complexe et ν la suite définie par $\nu_n = |\mathfrak u_n|$.

On suppose que la suite $(\sqrt[n]{\nu_n})$ converge vers un réel positif ℓ .

Montrer que si $0 \le \ell < 1$, la suite (u_n) converge vers 0 et si $\ell > 1$, la suite (v_n) tend vers $+\infty$.

Montrer que si $\ell = 1$, tout est possible.

Exercice no 15 (***I)

1) Soit u une suite de réels strictement positifs. Montrer que si la suite $\left(\frac{u_{n+1}}{u_n}\right)$ converge vers un réel ℓ , alors $\left(\sqrt[n]{u_n}\right)$ converge et a même limite.

2) Etudier la réciproque.

$$\textbf{3)} \ \ \mathrm{Application: limites \ de \ a)} \ \ \sqrt[n]{C_{2n}^n} \ \ \mathrm{b)} \ \ \frac{n}{\sqrt[n]{n!}} \ \ \mathrm{c)} \ \frac{1}{n^2} \ \sqrt[n]{\frac{(3n)!}{n!}}.$$

Exercice nº 16 (*)

Soient u et v deux suites de réels de [0,1] telles que $\lim_{n\to +\infty} u_n v_n = 1$. Montrer que (u_n) et (v_n) convergent vers 1.

Exercice nº 17 (**)

Montrer que si les suites (u_n^2) et (u_n^3) convergent alors (u_n) converge.

Exercice nº 18 (***T)

$$\mathrm{Etudier}\ \mathrm{les}\ \mathrm{deux}\ \mathrm{suites}\ u_n = \left(1 + \frac{1}{n}\right)^n\ \mathrm{et}\ \nu_n = \left(1 + \frac{1}{n}\right)^{n+1}.$$

Exercice no 19 (**T)

$$\text{Même exercice avec } u_n = \sum_{k=0}^n \frac{1}{k!} \text{ et } \nu_n = u_n + \frac{1}{n \times n!}.$$

Exercice nº 20 (**T)

$$\mathrm{M\^{e}me\ exercice\ avec}\ u_n = \left(\sum_{k=1}^n \frac{1}{\sqrt{k}}\right) - 2\sqrt{n+1}\ \mathrm{et}\ \nu_n = \left(\sum_{k=1}^n \frac{1}{\sqrt{k}}\right) - 2\sqrt{n}.$$

Exercice nº 21 (**T)

Déterminer u_n en fonction de n et de ses premiers termes dans chacun des cas suivants :

- 1) $\forall n \in \mathbb{N}, 4u_{n+2} = 4u_{n+1} + 3u_n$.
- 2) $\forall n \in \mathbb{N}, 4u_{n+2} = u_n$.
- 3) $\forall n \in \mathbb{N}, 4u_{n+2} = 4u_{n+1} + 3u_n + 12.$

4)
$$\forall n \in \mathbb{N}, \ \frac{2}{u_{n+2}} = \frac{1}{u_{n+1}} - \frac{1}{u_n}.$$

5)
$$\forall n \ge 2$$
, $u_n = 3u_{n-1} - 2u_{n-2} + 2^n$.

Exercice nº 22 (***)

Montrer que, pour $n \ge 2$,

$$\cos\left(\frac{\pi}{2^n}\right) = \frac{1}{2}\sqrt{2+\sqrt{2+\ldots+\sqrt{2}}}\;(n-1\;\mathrm{radicaux})\;\mathrm{et}\;\sin\left(\frac{\pi}{2^n}\right) = \frac{1}{2}\sqrt{2-\sqrt{2+\ldots+\sqrt{2}}}\;(n-1\;\mathrm{radicaux}).$$

En déduire $\lim_{n\to+\infty} 2^n \sqrt{2-\sqrt{2+...}+\sqrt{2}}$ (n radicaux).

Exercice nº 23 (***I)

1) Montrer que pour x réel strictement positif, on a : $\ln(1+x) < x < (1+x)\ln(1+x)$.

$$\textbf{2)} \ \text{Montrer que} \ \prod_{k=1}^n \left(1+\frac{1}{k}\right)^k < e^n < \prod_{k=1}^n \left(1+\frac{1}{k}\right)^{k+1} \ \text{et en déduire la limite quand n tend vers $+\infty$ de $\frac{\sqrt[n]{n!}}{n!}$.}$$

Exercice nº 24 (****)

Soit $(u_n) = \left(\frac{p_n}{q_n}\right)$ avec $p_n \in \mathbb{Z}$ et $q_n \in \mathbb{N}^*$, une suite de rationnels convergeant vers un irrationnel x. Montrer que les suites $(|p_n|)$ et (q_n) tendent vers $+\infty$ quand n tend vers $+\infty$.

Exercice nº 25 (**)

Trouver un exemple de suite (u_n) divergente, telle que $\forall k \in \mathbb{N}^* \setminus \{1\}$, la suite (u_{kn}) converge.

Exercice nº 26 (***I)

Soit f une application injective de \mathbb{N} dans \mathbb{N} . Montrer que $\lim_{n \to +\infty} f(n) = +\infty$.

Exercice nº 27 (***I)

Pour $n \geqslant 1$, soit \mathfrak{u}_n l'unique racine positive de l'équation $x^n + x - 1 = 0$. Etudier la suite $(\mathfrak{u}_n)_{n \geqslant 1}$.

Exercice nº 28 (***)

Etude des suites $(u_n) = (\cos na)$ et $(v_n) = (\sin na)$ où a est un réel donné.

- 1) Montrer que si $\frac{\alpha}{2\pi}$ est rationnel, les suites $\mathfrak u$ et ν sont périodiques et montrer dans ce cas que $(\mathfrak u_n)$ et $(\mathfrak v_n)$ convergent si et seulement si $\mathfrak a\in 2\pi\mathbb Z$.
- 2) On suppose dans cette question que $\frac{a}{2\pi}$ est irrationnel.
 - a) Montrer que (u_n) converge si et seulement si (v_n) converge.
 - b) En utilisant différentes formules de trigonométrie fournissant des relations entre u_n et v_n , montrer par l'absurde que (u_n) et (v_n) divergent.

Exercice nº 29 (***)

Calculer $\inf_{\alpha \in]0,\pi[}(\sup_{n \in \mathbb{N}}(|\sin(n\alpha)|)).$

Exercice nº 30 (**I)

Soit (u_n) une suite réelle non majorée. Montrer qu'il existe une suite extraite de (u_n) tendant vers $+\infty$.

Exercice nº 31 (***)

Soit (u_n) une suite de réels éléments de]0,1[telle que $\forall n \in \mathbb{N}, (1-u_n)u_{n+1} > \frac{1}{4}$. Montrer que (u_n) converge vers $\frac{1}{2}$.