Homework 5 CSE 321 1) We can use divide and - conquer approach for finding closest distance of two dianes. The main idea is to divide the set of drops into two halves, reassively find the morning distance in each half, and then merge the results by considering the minimum distance accross the two halves and within a "strp" around the middle line -If the number of drones are 3 or less , uses brute force - sort the droves based on their x-coordinates and split then two haves - recursively find the minimum distance in each half - find the number distance between points on the left and right halves. - create styp - sort the stro based on y-coordinates and cheale for the minimum distance within in strip. - return the global minimum distance considering the result from the holiver and the strip. Time Complexity Analysis: Sorthy Stop O (aloga), Reauson O(a), Stop Cheek O(k logk) where is the number of points in the strip Dominat term is O(nloga) so the time complexing of the alpointing is O(nloga) 2) We can use divide - and - caquet approach for idea of secusively potenting the sorsor locations and making 0 decisions at each step to minimize the number of sensors needed to secure the perinder. The algorithm on be designed to efficiently determine the minimum number of sonsocs required while excurre overage of critical exploration 1 areas. - sort the sensors based on their x - coordinales - divide the sorsors into two holives and apply recupively. - more the right and left - when the red of sonsous cotours only one or two sousors, collecte and return the million number of sonsous needed to cover the critical exploration areas. - for each runge sup, ensure that the critical explatation areas are covered by selecting souscis straggally. Time Complexity Analysis: Sorry sensors rakes Ochlaph), doc step Ochlaph). Therefore, the abrall time complex my of the proposed algorithm is Olin Pogn). 3 We use dynamic programming algorithm to store the operations at cook step this can be admissed by buying trace of the previous operation that led to the current state. The operations include insertion, addison and substitution -The congressing Analysis: The time complexity of the dynamic programming part is O(min) where made are the leights of the two DNA sequences. The backfrothing skip adds a linear factor, so the avealthine compexity is sold O(non). Therefore, original time complexity is O(non)

	stores united	+ Main idea	15 to but	d adyra	we prograv	my toble	whose a	odn entry	represents	the man
		escount for a					- relation i	will be e)	
								<u> </u>	ماد عام	number
	stores. Algor	upbring Analys	through t	ne stores	ence, and a	of each sk	ep, it pe	forms con	stort time	opedio
5) Man los	c is to always	s choose th	e onlewaa	Hot covers	the rightmo	ost point	and does i	not interse	ct with
	awally ad	hirded onlenas	. This ens	ives that	we cover th	e maximum	n area u	hile out	order was	ference -
	- so+ 1	the onleans b	pred on the	er right m	out coverage	e point-				
	- 3404	with the f	wst alenn	a in the	sorted lust	and active	de it. Thu	s ontena c	e activete	glodenost.
		to the next of		ir daesn't	WHEIZECH WIT	a the carron	J. OCHO		3 0	
,	- continue	e this proces	s which	culenas a	ne considered	•				
	Time Con	plexity Aralys	sis: Sorth	e the onle	mas initially	+ tokes O(1	laga) time.	Greedy o	lgorillum ilero	des Hurany
	the sorted ex	ist once, check	ing for int	etsections	and activating	anternas. T	كنو صافعا	thre co	upleasity is s	donnetty
	by soring.	sleps, resulting	8 m 0(1	logn).						