Genetski algoritmi

Osnovni koncepti

Osnovni pojmovi vezani za genetske algoritme (GA)

- Spada u grupu stohastičkih **optimizacionih metoda** koje ne koriste derivacije izvode funkcija.
- Bazirani su na konceptu prirodne selekcije i evolucije.
- Karakteristike:
 - GA predstavljaju proceduru paralelnog pretraživanja pogodnu za primenu u sistemima paralelenog procesiranja (obrade) podataka – značajno ubrzavanje rada;
 - GA su podjednako primenljivi u rešavanju kontinualnih i diskretnih (kombinatornih) optimizacionih problema;
 - GA predstavljaju stohastičke metode, manje podložne zapadanju u lokalni minimum (čime su, inače, opterećeni mnogi praktični optimizacioni problemi);
 - GA poseduju veoma veliki stepen prilagodljivosti čime se olakšava njihova primena u okviru problema strukturne i parametarske identifikacije složenih modela kao što su neuronske mreže i/ili fuzzy sistemi zaključivanja.

- GA svaku tačku parametarskog ili prostora rešenja predstavljaju preko binarnog niza (stringa) koji se zove hromozom.
- Binarni niz se vrlo često u modernijim primenama posmatra kodirano na višem nivou kao niz drugačijih elemenata npr. realnih brojeva, stringova (u suštini bilo čega)
- Svakom hromozomu je pridružena određena "vrednost podobnosti (stepen prilagođenosti)".
- Umesto jedne izolovane tačke GA često koriste set (niz, skup) tačaka koji se naziva **populacija**, i koji evoluira u pravcu što boljeg zadovoljenja kriterijumske funkcije.
- U svakoj generaciji GA primenom genetskih operatora proizvodi novu populaciju.

- Osnovni genetski operatori su selekcija, ukrštanje i mutacija.
- Članovi populacije koji u većoj meri zadovoljavaju kriterijumsku funkciju imaju veću šansu da prežive i da učestvuju u budućim ukrštanjima.
- Nakon većeg broja generacija, populacija sadrži članove sa boljim (većim) stepenom prilagođenja (zadovoljenja kriterijumske funkcije) – što je analogno sa Darvinovim modelom evolucije preko slučajne mutacije i prirodne selekcije.
- GA se često navode kao primer optimizacije bazirane na populaciji, gde se popravljaju performanse cele populacije a ne samo određenih jedinki.

Osnovne komponente GA

- Osnovni elementi genetskih algoritama su:
 - Kodiranje;
 - Prilagođenost (procena pogodnosti);
 - Selekcija (odabir roditelja);
 - Ukrštanje;
 - Mutacija;
 - Elitizam.

<u>Kodiranje</u>

□Ovom transformacijom se tačke parametarskog prostora predstavljaju uglavnom nizovima (stringovima) binarnih oznaka.
□Uobičajeni postupci kodiranja binarnim nizovima su binarno i sivo (Gray) kodiranje.
☐Moguće je kodirati pozitivne realne brojeve, ali i brojeve zapisane u formatu pomičnog zareza, negativne brojeve, diskretne vrednosti, i dr.
□Šema kodiranja predstavlja način transformacije specifičnog znanja vezanog za određeni problem u okvire genetskog algoritma, što ujedno predstavlja i korak koji će direktno (ključno) uticati na uspešnost genetskog algoritma.
□Generalna preporuka je da se i genetski operatori ukrštanja i mutacije projektuju zajedno sa šemom kodiranja kako bi što bolje odgovorili zahtevima

pojedinačnih (specifičnih) aplikacija (problema).

Prikazivanje (opisivanje) hromozoma

- Klasičan način predstavljanja hromozoma u okviru GA jeste binarni vektor fiksne dužine.
- U slučaju *N-dimenzionalnog* prostora pretraživanja (parametarski prostor) svaka jedinka (hromozom) se sastoji od *N* promenljivih vrednosti (koordinata) od kojih je svaka kodirana binarnim stringom.

Binarno kodiranje

- Svaka koordinata parametarskog prostora se predstavlja binarnim stringom dužine D (D-dimenzionalni binarni vektor).
- Ako se promenljiva z sa kontinualnog intervala [z_{min}, z_{max}] želi konvertovati u D-bitni string može se primeniti sledeći obrazac:

$$(2^{D}-1)\frac{z-z_{min}}{z_{max}-z_{min}}$$

Primer: tačka (2,3,7) trodimenzionalnog parametarskog prostora može biti predstavljena sledećim binarnim stringom:

Svaka koordinata je kodirana kao gen sastavljen od tri binarna bita.

Posmatra se interval [0, 7] i neka promenljiva z može poprimati celobrojne vrednosti sa tog intervala. Binarno kodiranje datih vrednosti promenljive z se može predstaviti sledećom tabelom:

Koordinata	0	1	2	3	4	5	6	7
Binarno kodiranje	000	001	010	011	100	101	110	111

lako se binarno kodiranje veoma često koristi ono sa sobom nosi i značajan problem – **Hamming-ove litice**.

Hamming-ova litica se formira u slučaju kada dve numerički **bliske vrednosti** imaju veoma **udaljene kodne oznake**, kao što su npr. 3 i 4 iz gornje tabele. Neka je 3 optimalno rešenje problema, a 4 tekuće rešenje. Da bi se kodna oznaka promenila i postiglo optimalno rešenje potrebno je promeniti vrednost svih bitova kodne oznake (u ovom slučaju tri bita). Problem Hamming-ovih litica se može ilustrovati sledećim grafikom:

Problem Hamming-ovih litica se može rešiti uvođenjem **sivog (Grey) kodiranja**.

Grejevo (Sivo) kodiranje (Frank Gray, 1947)

- Nakon primene sivog kodiranja Hamming-ovo rastojanje između numerički susednih podataka poprima vrednost 1.
- Primena sivog kodiranja se može ilustrovati na prethodnom primeru sledećom tabelom:

Koordinata	0	1	2	3	4	5	6	7
Binarno kodiranje	000	001	010	011	100	101	110	111
Sivo kodiranje	000	001	011	010	110	111	101	100

Binarno kodirane oznake se mogu jednostavno transformisati u sivo kodirane primenom sledeće transformacije

$$g_1=b_1$$

 $g_k=b_{k-1}b_k^*+b_{k-1}^*b_k$

gde je: b_k k-ti bit binarnog broja $b_1b_2...b_K$; b_1 najstariji bit; b_k^* je neb_k , + znači logičko "ili"; množenje logičko "i".

Na sledećem grafikonu su prikazane uporedne vrednosti Hamming-ovih rastojanja za binarno i sivo kodiranje.

Prilagođenost (procena pogodnosti)

- Prvi korak nakon formiranja generacije jeste izračunavanje stepena prilagođenosti svakog člana populacije.
- Za probleme maksimizacije stepen pogodnosti f_i, i-tog člana populacije je najčešće vrednost kriterijumske funkcije izračunata za tog člana (u toj tački).
- Uobičajeno je da stepen prilagođenosti bude pozitivna vrednost, tako da bi u slučaju kada kriterijumska funkcija nema samo pozitivne vrednosti valjalo primeniti postupak skaliranja i/ili translacije.
- Drugi postupak je upotreba ranga članova populacije kao stepena prilagođenosti. U ovom slučaju nije potrebno precizno izračunavanje vrednosti kriterijumske funkcije, sve dok postoji korektna informacija o rangu članova populacije.

<u>Selekcija</u>

- Nakon procene stepena pogodnosti (prilagođenosti) potrebno je formirati novu populaciju na osnovu postojeće (trenutne) generacije.
- Selekcijom se određuju roditelji koji će učestvovati u produkciji naredne generacije, i taj postupak je analogan prirodnom "opstanku najprilagođenijih".
- Uobičajeno je da se članovi biraju sa verovatnoćom koja je proporcionalna vrednosti njihovog stepena prilagođenosti. Jedan od načina određivanja navedene verovatnoće je dat sledećim izrazom (n je veličina populacije)

$$f_i / \sum_{k=1}^{n} f_k$$

Efekat ovakvog načina selekcije jeste da se dopusti članovima sa natprosečnim stepenom pogodnosti da se reprodukuju i zauzmu mesto članova sa ispodprosečnim stepenom prilagođenosti.

<u>Ukrštanje</u>

- Da bi se iskoristio genetski potencijal postojeće populacije koristi se operator ukrštanja u cilju generisanja novih hromozoma (nove generacije). Nova generacija bi trebalo da očuva dobre osobine prethodne generacije.
- Svaka grupa roditelja neće obavezno proizvesti potomstvo. Ukrštanje se primenjuje na odabrane parove roditelja čija je verovatnoća jednaka stepenu ukrštanja $p_c \in [0,1]$.
- Algoritam ukrštanja između hromozoma C

 prikazati sledećim pseudokodom:
 - 1. Na slučajan način odrediti broj $\xi \in [0,1]$;
 - 2. Ako je ξ>p_c, tada nema ukrštanja; u suprotnom se prelazi na korak 3;
 - 3. $\vec{\alpha} = \vec{C}_{n1}$; $\vec{\beta} = \vec{C}_{n2}$
 - 4. Izračunati maskum
 - 5. Za i=1,...,N ako je mi=1 izvršiti zamenu genetskog materijala:
 - I. $\alpha_i = C_{n2,i}$
 - II. $\beta_i = C_{n1,i}$
 - 6. Vratiti potomke α i β .

- U prethodno opisanoj proceduri ukrštanja maska m određuje koji biti roditelja će zameniti mesta i generisati potomke.
- Postoji više operatora ukrštanja koji na različite načine generišu masku:
 - Uniformno ukrštanje;
 - Ukrštanje u jednoj tački;
 - Ukrštanje u dve tačke.
- Generalno moguće je generisati ukrštanje u Ntačaka, ukrštanje u jednoj i dve tačke su samo najčešće susretani slučajevi.

<u>Uniformno ukrštanje</u>

- Na slučajan način se kreira maska dužine N za svaki par jedinki izabranih za reprodukciju.
- Bit maske sa vrednošću 1 znači da se na tom mestu vrši zamena bitova roditelja.
- Algoritam generisanja maske je opisan sledećim pseudokodom:
 - 1. $m_i=0$ za svako i=1,...,N;
 - 2. za svako i=1,...,N:
 - a) odrediti slučajnu vrednost $\xi \in [0,1]$;
 - b) ako je ξ≤p_x, tada je m_i=1;
 - 3. rezultat je vektor maske m.
- p_x je verovatnoća ukrštanja na svakoj poziciji u hromozomu. Ako je p_x=0.5, svaki bit hromozoma ima podjednaku šansu da uzme ili ne uzme učešće u ukrštanju.

Na slici je grafički prikazan princip uniformnog ukrštanja.

Ukrštanje u jednoj tački

- Na slučajan način se bira pozicija jednog bita.
- Substring nakon izabranog bita se razmenjuje između hromozoma.
- Algoritam generisanja maske je opisan sledećim pseudokodom:
 - određuje se slučajna veličina ξ∈(1,N-1)
 - 2. $m_i=0$ za svako i=1,...,N;
 - 3. za svako $i=\xi+1,...,N$ je $m_i=1$;
 - 4. rezultat je vektor maske m.

Na slici je grafički prikazan princip ukrštanja u jednoj tački.

Ukrštanje u dve tačke

- Na slučajan način se bira pozicija dva bita.
- Substring između dva izabrana bita se razmenjuje između hromozoma.
- Algoritam generisanja maske je opisan sledećim pseudokodom:
 - 1. određuju se dve slučajne veličine $\xi_1, \xi_2 \in (1, \mathbb{N})$
 - 2. $m_i=0$ za svako i=1,...,N;
 - 3. za svako $i=\xi_1,...,\xi_2$ je $m_i=1$;
 - 4. rezultat je vektor maske m.

Na slici je grafički prikazan princip ukrštanja u dve tačke.

<u>Mutacija</u>

- Vrši se u cilju unošenja novog genetskog materijala u već postojeće jedinke (hromozome).
- Primenjuje se kada populacija ne sadrži kodirane sve informacije neophodne za rešavanje konkretnog problema.
- Mutacija se vrši sa određenom verovatnoćom p_m koja se naziva stepen mutacije.
- Operator mutacije može da spreči populaciju da konvergira ka i završi u lokalnom minimumu.
- Stepen mutacije se obično drži na niskom nivou da se dobri hromozomi dobijeni ukrštanjem ne bi izgubili.
- Ako se stepen mutacije drži na visokom nivou, karakteristike GA se približavaju algoritmu slučajnog pretraživanja.
- Često primenjivani algoritmi mutacije su:
 - slučajna mutacija;
 - uređena mutacija.

Slučajna mutacija

- pozicija bita koji se mutira se bira na slučajni način, nakon čega se vrši operacija negacije nad vrednošću tog bita.
- Algoritam slučajne mutacije je prikazan sledećim pseudokodom:
 - 1. za svako i=1,...,N:
 - a) odrediti slučajnu veličinu ξ∈(0,1)
 - b) ako je $\xi \le p_m$ tada je $C_{n,i} = \overline{C}_{n,i}$, gde je $\overline{C}_{n,i}$ komplement od $C_{n,i}$

Na slici je grafički prikazan princip slučajne mutacije.

Uređena mutacija

- Na slučajni način se bira pozicija dva bita.
- Nakon toga se vrši mutacija samo onih bitova koji se nalaze između prethodno određenih granica.
- Algoritam uređene mutacije je prikazan sledećim pseudokodom:
 - 1. odrediti dve slučajne veličine $\xi_1, \xi_2 \in (1, \mathbb{N})$
 - 2. za svako $i=\xi_1,...,\xi_2$:
 - a) odrediti slučajnu veličinu $\xi \in (0,1)$
 - b) ako je ξ≤p_m tada je C_{n,i} = C̄_{n,i}

Na slici je grafički prikazan princip uređene mutacije.

<u>Elitizam</u>

- Pošto je GA ipak veštački i komandovani sistem "evolucije" jedne populacije, u njegovom okviru je moguće izvršiti izbor određenog broja "najboljih" jedinki, i direktno ih preneti u narednu generaciju.
- Ovakav postupak se naziva elitizam, i grafički je prikazan na sledećoj slici:

KRAJ