Linear functions: Which functions can be expressed as a matrix-vector product?

In each example, we *assumed* the function could be expressed as a matrix-vector product.

How can we verify that assumption?

We'll state two algebraic properties.

- ▶ If a function can be expressed as a matrix-vector product $\mathbf{x} \mapsto M * \mathbf{x}$, it has these properties.
- ▶ If the function from \mathbb{F}^C to \mathbb{F}^R has these properties, it can be expressed as a matrix-vector product.

Linear functions: Which functions can be expressed as a matrix-vector product?

Let $\mathcal V$ and $\mathcal W$ be vector spaces over a field $\mathbb F.$

Suppose a function $f: \mathcal{V} \longrightarrow \mathcal{W}$ satisfies two properties:

Property L1: For every vector \mathbf{v} in $\mathcal V$ and every scalar α in $\mathbb F$,

$$f(\alpha \mathbf{v}) = \alpha f(\mathbf{v})$$

Property L2: For every two vectors \mathbf{u} and \mathbf{v} in \mathcal{V} ,

$$f(\mathbf{u} + \mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v})$$

We then call f a linear function.

Proposition: Let M be an $R \times C$ matrix, and suppose $f : \mathbb{F}^C \mapsto \mathbb{F}^R$ is defined by $f(\mathbf{x}) = M * \mathbf{x}$. Then f is a linear function.

Proof: Certainly \mathbb{F}^C and \mathbb{F}^R are vector spaces.

We showed that $M * (\alpha \mathbf{v}) = \alpha M * \mathbf{v}$. This proves that f satisfies Property L1.

We showed that $M*(\mathbf{u}+\mathbf{v})=M*\mathbf{u}+M*\mathbf{v}$. This proves that f satisfies Property L2.

QED

Define s([x, y]) =stretching by two in horizontal direction

Define s([x, y]) = stretching by two in horizontal direction

Property L1:
$$s(\mathbf{v}_1 + \mathbf{v}_2) = s(\mathbf{v}_1) + s(\mathbf{v}_2)$$

Define s([x, y]) = stretching by two in horizontal direction

Property L1:
$$s(\mathbf{v}_1 + \mathbf{v}_2) = s(\mathbf{v}_1) + s(\mathbf{v}_2)$$

Define s([x, y]) = stretching by two in horizontal direction

Property L1:
$$s(\mathbf{v}_1 + \mathbf{v}_2) = s(\mathbf{v}_1) + s(\mathbf{v}_2)$$

Define s([x, y]) =stretching by two in horizontal direction

Property L1:
$$s(\mathbf{v}_1 + \mathbf{v}_2) = s(\mathbf{v}_1) + s(\mathbf{v}_2)$$

Property L2:
$$s(\alpha \mathbf{v}) = \alpha s(\mathbf{v})$$

L2, it is a linear function. Similarly can show rotation by θ degrees is a linear

Since the function $s(\cdot)$ satisfies Properties L1 and

function.

What about translation?

t([x, y]) = [x, y] + [1, 2]This function violates Property L1. For example: t([4, 5] + [2, -1]) = t([6, 4]) = [7, 6]

but t([4,5]) + t([2,-1]) = [5,7] + [3,1] = [8,8]

Since $t(\cdot)$ violates Property L1 for at least one input, it is **not** a linear function.

Can similarly show that $t(\cdot)$ does not satisfy Property L2.

A linear function maps zero vector to zero vector

Lemma: If $f: \mathcal{U} \longrightarrow \mathcal{V}$ is a linear function then f maps the zero vector of \mathcal{U} to the zero vector of \mathcal{V} .

Proof: Let $\mathbf{0}$ denote the zero vector of \mathcal{U} , and let $\mathbf{0}_{\mathcal{V}}$ denote the zero vector of \mathcal{V} .

$$f(\mathbf{0}) = f(\mathbf{0} + \mathbf{0}) = f(\mathbf{0}) + f(\mathbf{0})$$

Subtracting $f(\mathbf{0})$ from both sides, we obtain

$$\mathbf{0}_{\mathcal{V}} = f(\mathbf{0})$$

QED

Linear functions: Pushing linear combinations through the function

Defining properties of linear functions:

Property L1: $f(\alpha \mathbf{v}) = \alpha f(\mathbf{v})$

Property L2: $f(\mathbf{u} + \mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v})$

Proposition: For a linear function f,

for any vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ in the domain of f and any scalars $\alpha_1, \dots, \alpha_n$,

$$f(\alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n) = \alpha_1 f(\mathbf{v}_1) + \cdots + \alpha_n f(\mathbf{v}_n)$$

Proof: Consider the case of n = 2.

$$f(\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2) = f(\alpha_1 \mathbf{v}_1) + f(\alpha_2 \mathbf{v}_2)$$
 by Property L2
= $\alpha_1 f(\mathbf{v}_1) + \alpha_2 f(\mathbf{v}_2)$ by Property L1

Proof for general n is similar.

Linear functions: Pushing linear combinations through the function

Proposition: For a linear function
$$f$$
, $f(\alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n) = \alpha_1 f(\mathbf{v}_1) + \cdots + \alpha_n f(\mathbf{v}_n)$

Example:
$$f(\mathbf{x}) = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} * \mathbf{x}$$

Verify that f(10[1,-1]+20[1,0])=10f([1,-1])+20f([1,0])

$$\begin{bmatrix} 1 & 2 \end{bmatrix} \begin{pmatrix} 10 & [1 & -1] + 20 & [1 & 0] \end{pmatrix}$$

$$\begin{bmatrix} 2 \\ 4 \end{bmatrix} \left(10 [1, -1] + 20 [1, 0] \right)$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \left(10 [1, -1] + 20 [1, 0] \right)$$

$$\begin{array}{c|c} 2 \\ 4 \end{array} \bigg] \left(10 \left[1, -1 \right] + 20 \left[1, 0 \right] \right)$$

$$\begin{bmatrix} 2 \\ 4 \end{bmatrix} \begin{bmatrix} 10[1,-1] + 20[1,0] \\ \end{bmatrix}$$

$$\begin{bmatrix} 2 \\ 4 \end{bmatrix} \left(10 [1, -1] + 20 [1, 0] \right)$$

$$= \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} [30, -10]$$
$$= 30[1, 3] - 10[2, 4]$$

= [30, 90] - [20, 40]

= [10, 50]

$$= \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \left([10, -10] + [20, 0] \right)$$

$$[10, -10] + [2]$$

$$10\left(\left[\begin{array}{cc}1&2\\3&4\end{array}\right]*[1,-1]\right)+20\left(\left[\begin{array}{cc}1&2\\3&4\end{array}\right]*[1,0]\right)$$

= [10, 50]

$$0\left(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} * [1, -1]\right) + 20\left(\begin{bmatrix} 1 \\ 3 \end{bmatrix}\right)$$

$$= 10([1, 3] - [2, 4]) + 20(1[1, 3])$$

= 10[-1, -1] + 20[1, 3]= [-10, -10] + [20, 60]

$$\bigg] * [1,$$

From function to matrix, revisited

We saw a method to derive a matrix from a function:

Given a function $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$, we want a matrix M such that $f(\mathbf{x}) = M * \mathbf{x}$

- Plug in the standard generators $\mathbf{e}_1 = [1, 0, \dots, 0, 0], \dots, \mathbf{e}_n = [0, \dots, 0, 1]$ Column i of M is $f(\mathbf{e}_i)$.
- This works correctly whenever such a matrix M really exists:

Proof: If there is such a matrix then f is linear:

- **Proof:** If there is such a matrix then T is line
 - ► (Property L1) $f(\alpha \mathbf{v}) = \alpha f(\mathbf{v})$ and ► (Property L2) $f(\mathbf{u} + \mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v})$

Let $\mathbf{v} = [\alpha_1, \dots, \alpha_n]$ be any vector in \mathbb{R}^n .

We can write **v** in terms of the standard generators.

$$\mathbf{v} = \alpha_1 \, \mathbf{e}_1 + \dots + \alpha_n \, \mathbf{e}_n$$
so
$$f(\mathbf{v}) = f(\alpha_1 \, \mathbf{e}_1 + \dots + \alpha_n \, \mathbf{e}_n)$$

$$= \alpha_1 \, f(\mathbf{e}_1) + \dots + \alpha_n \, f(\mathbf{e}_n)$$

$$= \alpha_1 r(c_1) + \cdots + \alpha_n r(c_n)$$

$$= \alpha_1 (\text{column 1 of } M) + \cdots + \alpha_n (\text{column } n \text{ of } M)$$

$$= M * \mathbf{v}QED$$

Linear functions and zero vectors: Kernel

Definition: Kernel of a linear function f is $\{\mathbf{v} : f(\mathbf{v}) = \mathbf{0}\}$

Written Ker f

For a function $f(\mathbf{x}) = M * \mathbf{x}$,

Ker f = Null M

Kernel and one-to-one

One-to-One Lemma: A linear function is one-to-one if and only if its kernel is a trivial vector space.

Proof: Let $f: \mathcal{U} \longrightarrow \mathcal{V}$ be a linear function. We prove two directions.

- Suppose Ker f contains some nonzero vector \mathbf{u} , so $f(\mathbf{u}) = \mathbf{0}_{\mathcal{V}}$. Because a linear function maps zero to zero, $f(\mathbf{0}) = \mathbf{0}_{\mathcal{V}}$ as well, so f is not one-to-one.
- Suppose Ker $f = \{\mathbf{0}\}$. Let $\mathbf{v}_1, \mathbf{v}_2$ be any vectors such that $f(\mathbf{v}_1) = f(\mathbf{v}_2)$. Then $f(\mathbf{v}_1) - f(\mathbf{v}_2) = \mathbf{0}_{\mathcal{V}}$ so, by linearity, $f(\mathbf{v}_1 - \mathbf{v}_2) = \mathbf{0}_{\mathcal{V}}$, so $\mathbf{v}_1 - \mathbf{v}_2 \in \text{Ker } f$. Since Ker f consists solely of $\mathbf{0}$, it follows that $\mathbf{v}_1 - \mathbf{v}_2 = \mathbf{0}$, so $\mathbf{v}_1 = \mathbf{v}_2$.

Kernel and one-to-one

One-to-One Lemma A linear function is one-to-one if and only if its kernel is a trivial vector space.

Define the function $f(\mathbf{x}) = A * \mathbf{x}$.

If Ker f is trivial (i.e. if Null A is trivial)

then a vector \mathbf{b} is the image under f of at most one vector.

That is, at most one vector \mathbf{u} such that $A * \mathbf{u} = \mathbf{b}$

That is, the solution set of $A * \mathbf{x} = \mathbf{b}$ has at most one vector.

Linear functions that are onto?

Question: How can we tell if a linear function is onto?

Recall: for a function $f: \mathcal{V} \longrightarrow \mathcal{W}$, the *image* of f is the set of all images of elements of the domain:

$$\{f(\mathbf{v}) : \mathbf{v} \in \mathcal{V}\}$$

(You might know it as the "range" but we avoid that word here.)

The image of function f is written $\operatorname{Im} f$

"Is function
$$f$$
 is onto?" same as "is Im $f = \text{co-domain of } f$?"

Example: Lights Out

Define
$$f([\alpha_1, \alpha_2, \alpha_3, \alpha_4]) = \begin{bmatrix} \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & \bullet \end{bmatrix} * [\alpha_1, \alpha_2, \alpha_3, \alpha_4]$$

Im f is set of configurations for which 2×2 Lights Out can be solved, so "f is onto" means " 2×2 Lights Out can be solved for every configuration"

Can 2×2 *Lights Out* be solved for every configuration? What about 5×5 ? Each of these questions amounts to asking whether a certain function is onto.

Linear functions that are onto?

"Is function f is onto?" same as "is Im f = co-domain of f?"

First step in understanding how to tell if a linear function f is onto:

► study the image of *f*

Proposition: The image of a linear function $f: \mathcal{V} \longrightarrow \mathcal{W}$ is a vector space