Formalisms Every Computer Scientist Should Know

License: This work is marked with CC0 1.0. To view a copy of this license, visit http://creativecommons.org/publicdomain/zero/1.0

Contents

Class 1		
Class 2 0.1	Lattices and Fixpoints	E,
Class 3		,

2 CONTENTS

Class 1

CLASS 1

Class 2

Goal	Knowledge	Outermost symbol
Show for all x , $G(x)$. Consider arbitrary \hat{x} . Show $G(\hat{x})$	We know for all x , $K(x)$ In particular we know $K(\hat{t})$ for constant \hat{t}	A
Show: exists x s.t. $G(x)$. We show $G(\hat{t})$	We know exists x s.t. $K(x)$ Let \hat{x} be s.t. $K(x)$	3
Show G_1 iff G_2 1. Show if G_1 then G_2 2. Show if G_2 then G_1	We know K_1 iff K_2 In particular we know if K_1 then K_2 and if K_2 then K_1	\iff
Show if G_1 then G_2 Assume G_1 Show G_2	We know if K_1 then K_2 1. To show K_2 it suffices to show K_2 2. Know K_1 , Also know K_2	\Rightarrow
Show G_1 and G_2 1. Show G_1 2. Show G_2	Know K_1 and K_2 1. Also Know K_1 2. Also Know K_2	٨
Show G_1 or G_2 1. Assume $\neg G_1$, show G_2 2. Assume $\neg G_2$, show G_1	We know K_1 or K_2 . Show G . 1. Assume K_1 , Show G 2. Assume K_2 , Show G Case split \uparrow	V
Move Negat		

0.1 Lattices and Fixpoints

We begin by defining relations and their properties.

Definition 1. A binary relation R on a set A is a subset $R \subset A \times A$.

The relation R is reflexive if for all x in A, we have R(x,x).

The relation R is Antisymmetric if for all x and y in A, if R(x,y) and R(y,x) then x=y.

The relation R is transitive if for all x, y and z in A, if R(x, y) and R(y, z) then R(x, z).

The relation R is a partial order if R is reflexive, antisymmetric and transitive.

A Poset (A, \sqsubseteq) is a set A and a partial order \sqsubseteq on A.

Example 1. The pair (\mathbb{N}, \leq) where \mathbb{N} is the set of natural numbers, is a poset. For every set B, we have $(\mathscr{P}(B), \subseteq)$ where $\mathscr{P}(B)$ is the powerset of B, is a poset.

Definition 2. • Let (A, \sqsubseteq) be a poset. A function F from A to A is monotone (order-preserving, homomorphism) if for all x and y in A, if $x \sqsubseteq y$, then $F(x) \sqsubseteq F(y)$.

• F has a fixpoint x in A if there exists x in A such that F(x) = x.

6 CLASS 2

• x in A is a pre-fixpoint of F if $x \sqsubseteq F(x)$ and is a post-fixpoint of F, if $F(x) \sqsubseteq x$.

Definition 3. Let (A, \sqsubseteq) be a poset.

- x in A is an upper bound(lower bound) on a subset B of A if for all y in B, it holds that $y \sqsubseteq x$ $(x \sqsubseteq y)$.
- x is the least upper bound of B if (i) x is an upper bound of B and (ii) for all upper bounds y of B, we have $x \sqsubseteq y$. We denote such x by $\bigcup B$.
- x is the greatest lower bound of B if (i) x is a lower bound of B and (ii) for all lower bounds y of B, we have $y \sqsubseteq x$. We denote such x by $\bigcap B$.

Example 2. • Consider the poset (\mathbb{N}, \leq) . Then for any $B \subseteq \mathbb{N}$, if B is finite, $\bigcup B$ is well-defined and equal to $\max B$. If B is infinite, then $\bigcup B$ does not exist.

- Consider the poset $(\mathbb{N} \cup \{\infty\}, \leq)$ where for all x in \mathbb{N} , it holds that $x \leq \infty$. Then for all $B \subseteq \mathbb{N}$, the least upper bound $\bigcup B$ is well-define.
- Let A be any set and consider the poset $(\mathscr{P}(A),\subseteq)$. For any subset B of $\mathscr{P}(A)$, it holds that $\bigcup B = \bigcup B$ and $\bigcap B = \bigcap B$.

Definition 4. Poset (A, \sqsubseteq) is a complete-lattice if for all $B \subseteq A$, both $\bigcap B$ and $\bigcup B$ exist.

Example 3. Let (A,\sqsubseteq) be a complete-lattice.

- $\bigsqcup A = \top$
- $\prod A = \bot$
- □∅ = ⊥
- $\square \varnothing = \top$

Theorem 1 (Knaster-Tarski). For every complete lattice (A, \sqsubseteq) and monotone function F on A, it holds that

- 1. $\bigsqcup\{x \in A | x \sqsubseteq F(x)\}\$ is the unique greatest fixpoint of F.
- 2. $\prod \{x \in A | F(x) \subseteq x\}$ is the unique least fixpoint of F.

Homework 1. Prove the Knaster Tarski Theorem.

Class 3

Definition 5 (Prefixpoint). Consider a lattice (A, \sqsubseteq) and a function $f: A \to A$. The set of prefixes is

$$\{x \in A : x \sqsubseteq f(x)\}.$$

Definition 6 (Postfix point). Consider a lattice (A, \sqsubseteq) and a function $f: A \to A$. The set of postfixes is

$$\{x \in A : f(x) \sqsubseteq x\}$$
.

Definition 7 (gfp and lfp). Consider a complete lattice (A, \sqsubseteq) and a function $f: A \to A$. Then,

$$gfpf := \bigsqcup \{x \in A : x \sqsubseteq f(x)\}$$
$$lfpf := \bigcap \{x \in A : f(x) \sqsubseteq x\}.$$

Theorem 2 (Fixpoints). Consider a complete lattice (A, \sqsubseteq) and a monotonic function $f: A \to A$. Then, gfpf and lfpf are fixpoints of f and, for all fixpoints x of f, we have lfp $f \sqsubseteq x \sqsubseteq gfpf$.

Definition 8 (\sqcup -continuous). Consider a complete lattice (A, \sqsubseteq) . A function $f: A \to A$ is \sqcup -continuous if, for all increasing sequences $x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq x_2 \sqsubseteq \ldots$, we have

$$f\left(\bigsqcup\{x_n:n\in\mathbb{N}\}\right)=\bigsqcup\{f(x_n):n\in\mathbb{N}\}.$$

Definition 9 (\square -continuous). Consider a complete lattice (A, \sqsubseteq) . A function $f: A \to A$ is \square -continuous if, for all increasing sequences $x_0 \supseteq x_1 \supseteq x_2 \supseteq \dots$, we have

$$f\left(\bigcap\{x_n:n\in\mathbb{N}\}\right)=\bigcap\{f(x_n):n\in\mathbb{N}\}.$$

Lemma 1. ∐-continuous implies monotonicity and ∏-continuous implies monotonicity.

Theorem 3 (Constructive fixpoints). Consider a complete lattice (A, \sqsubseteq) and a monotonic function $f: A \to A$. Then,

$$lfpf = \bigsqcup \{ f^n(\bot) : n \in \mathbb{N} \}$$
$$gfpf = \prod \{ f^n(\top) : n \in \mathbb{N} \}.$$

Homework 2. Prove this theorem.

Definition 10 (\mathbb{N}). Define \mathbb{N} as the smallest set X such that

1. $0 \in X$

8 CLASS 3

2. if $n \in X$, then $Sn \in X$

In the definition of \mathbb{N} , we consider a universal set U sufficiently big, the complete lattice $(2^U, \subseteq)$ and the function on sets given by $f(Y) := \{0\} \cup \{Sn : n \in Y\}$. Then, $lfpf = \mathbb{N}$.

Definition 11 (Set of words). Consider a finite alphabet Σ . Define Σ^* as the smallest set X such that

- 1. $\varepsilon \in X$
- 2. for all $a \in \Sigma$, we have $aX \subseteq X$.

A few remarks are in place.

- Inductively defined sets are countable and consists of finite elements.
- Inductively defined sets can be written as rules $x \Rightarrow f(x)$ meaning that, if $x \in X$, then $f(x) \in X$.
- Inductively defined sets allow proof by induction. Consider prove that for all $x \in X$ we have G(x). This can be proven by showing
 - 1. $G(\perp)$
 - 2. For all $x \in X$, if G(x), then G(f(x))

Definition 12 (Balanced binary sequences). Define the set S as the largest set X such that

1. $X \subseteq 01X \cup 10X$.

In the definition of balanced binary sequences, we consider the complete lattice $(\Sigma^{\omega}, \subseteq)$ and the function on sets given by $f(X) := 01X \cup 10X$. Then, balanced binary sequences corresponds to gfp f.

Definition 13 (Interval [0,1]). Define the set S as the largest set X such that

1. $X \subseteq 0X \cup 1X \cup \ldots \cup 9X$.

A few remarks are in place.

- Coinductively defined sets are uncountable and consists of infinite elements.
- Coinductively defined sets can be written as rules $x \leftarrow f(x)$ meaning that, for all $y \in X$, there exists x such that y = f(x) and $x \in X$.
- Coinductively defined sets allow proof by induction. Consider prove that for all $x \in X$ we have G(x). This can be proven by showing
 - 1. For all x and i, if $G(f_i(x))$, then G(x)

where $\{f_1, \ldots, f_n\}$ is the set of rules that define the set X.

Homework 3 (Prove balanced binary sequences). Consider S generated by the rules $X \Leftarrow 01X$ and $X \Leftarrow 10X$. Prove that, for all binary words x, we have that x in S if and only iff every finite prefix of even length of x has the same number of 0s and 1s.

Hints.

- 1. The direction \Leftarrow can be proven by coinduction.
- 2. The direction \Rightarrow can be proven by induction on the length of the prefix.