

<u>Unit 2 Nonlinear Classification,</u> <u>Linear regression, Collaborative</u>

Course > Filtering (2 weeks)

> Homework 3 > 4. Kernels-II

4. Kernels-II

In this question, we will practice some specific kernel methods.

4. (a)

2/2 points (graded)

In the figure below, a set of points in 2-D is shown on the left. On the right, the same points are shown mapped to a 3-D space via some transform $\phi(x)$, where x denotes a point in the 2-D space. Notice that $\phi(x)_1 = x_1$ and $\phi(x)_2 = x_2$, or in other words, the first and second coordinates are unchanged by the transformation.

Which of the following functions could have been used to compute the value of the 3rd coordinate, $\phi(x)_3$ for each point?

$$\circ \phi(x)_3 = x_1 + x_2$$

$$ullet \phi(x)_3 = x_1^2 + x_2^2 \, ullet$$

$$\circ \phi(x)_3 = x_1x_2$$

$$\phi(x)_3 = x_1^2 - x_2^2$$

Think about how a linear decision boundary in the 3 dimensional space ($\{\phi \in \mathbb{R}^3 : \theta \cdot \phi + \theta_0 = 0\}$) might appear in the original 2 dimensional space.

For example, suppose the decision boundary in the 3 dimensional space is z=4.

Provide an equation $f(x_1, x_2) = 0$ in the 2 dimensional space such that all the points (x_1, x_2) with $f(x_1, x_2) > 0$ correspond to z > 4 in the 3 dimensional space.

Solution:

- ullet With $x=[x_1;x_2]$, one mapping which could satisfy the mapping is $\phi(x)_3=x_1^2+x_2^2$. The decision boundary is shown below.
- ullet As a result, the decision boundary at z=4 corresponds to $x_1^2+x_2^2=4$

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

4. (b)

5/5 points (graded)

Consider fitting a kernelized SVM to a dataset $(x^{(i)}, y^{(i)})$ where $x^{(i)} \in \mathbb{R}^2$ and $y^{(i)} \in \{1, -1\}$ for all $i = 1, \dots, n$. To fit the parameters of this model, one computes θ and θ_0 to minimize the following objective:

$$L\left(heta, heta_0
ight) = rac{1}{n} \sum_{i=1}^n \operatorname{Loss}_h\left(y^{(i)}\left(heta \cdot \phi\left(x^{(i)}
ight) + heta_0
ight)
ight) + rac{\lambda}{2} \left\| heta
ight\|^2$$

where ϕ is the feature vector associated with the kernel function. Note that, in a kernel method, the optimization problem for training would be typically expressed solely in terms of the kernel function K(x,x') (dual) rather than using the associated feature vectors $\phi(x)$ (primal). We use the primal only to highlight the classification problem solved.

The plots below show 4 different kernelized SVM models estimated from the same 11 data points. We used a different kernel to obtain each plot but got confused about which plot corresponds to which kernel. Help us out by assigning each plot to one of the following models: linear kernel, quadratic kernel, order 3 kernel, and RBF kernel.

Which kernel is used in the above model?

linear kernel

o quadratic kernel	
order 3 kernel	
RBF kernel	
hich kernel is used in the a	above model?
men kerneris useu III tile i	
linear kernel	
 linear kernel quadratic kernel order 3 kernel 	
linear kernelquadratic kernel	
 linear kernel quadratic kernel order 3 kernel ✓ RBF kernel ow would you describe quodel would be better fit on training date 	Talitatively how the resulting classifiers vary with the value of λ ? If the value of λ is increased, the fitting of ata (sharper decision boundary)
 linear kernel quadratic kernel order 3 kernel ✓ RBF kernel ow would you describe quodel would be better fit on training date 	ata (sharper decision boundary)

• 3rd plot corresponds to the linear kernel.

• 1st plot corresponds to the quadratic kernel.

4th plot corresponds to the 3rd-order kernel.
2nd plot corresponds to the Gaussian RBF kernel.
Large λ penalty on θ results in flatter/ less "squiggly" lines.
Submit You have used 2 of 2 attempts
Answers are displayed within the problem
Discussion

Topic: Unit 2 Nonlinear Classification, Linear regression, Collaborative Filtering (2 weeks):Homework 3 / 4. Kernels-II

© All Rights Reserved