Input parameters for the cluster 3D code

$The \ Erlangen-Toulouse \ collaboratopm$

Started 26. February 2019

Contents

1	Input files	2
\mathbf{A}	On the initialization of the electronic wavefunctions	11

1 Input files

The cluster 3D code has the following input files:

for 005 defines the qualifier < name > for the other for 005... files

for005.<name> general input for settings, static and dynamics

for005ion.<name> ionic configuration of cluster

for005surf.<name> atomic configuration of substrate (optional)

The input for for005. <name> is sorted into namelists. They contain:

<u> </u>	Namelist GLOBAL in for005. <name></name>		
	choice of system		
kxbox	$\mathbf{nr.}$ of grid points in x direction		
kybox	$\mathbf{nr.}$ of grid points in y direction		
kzbox nr. of grid points in z direction			
	box sizes must fulfill kxbox≥kybox≥ kzbox		
numspin	number of spin components (2=full spin treatment)		
	(1=spin averaged, possible problem for ADSIC)		
kstate	maximum nr. of s.p. states which is possible (greater than nclust)		
nclust	number of QM electrons - if set to 0 or a negative value (charge) this		
	will be automatically calculated		
	$nclust = \sum_{i=1}^{nion} Z_{ion} = charge$, where Z_{ion} is charge of each ion		
nion	number of cluster ions		
nspdw	number of spin down electrons		
nion2	selects type of ionic background		
	$0 \rightarrow \text{jellium background}$		
	$1 \rightarrow \text{background from ionic pseudo-potentials}$		
	$2 \rightarrow \text{background read in from potion.dat}$		
radjel	Wigner-Seitz radius of jellium background		
surjel	surface thickness of jellium background		
bbeta	quadrupole deformation of jellium background		
gamma	triaxiality of jellium background		
dx,dy,dz,	grid spacing (in Bohr) for the 3D numerical grid - if negative this will		
	be set to an optimal value and a value will be suggested for KXBOX		
	in file NX - the code stops and has to be restarted		
	the grid size is defined before compilation in params. F90		
	it has to be correlant with pseudopotentails		
	corresponds to ecut in solid state		
imob	global switch to allow ionic motion (if set to 1)		
isurf switch for Ar or MgO surface (isurf=1 activates surface)			
iDielec	switch to dielectic support		
xDielec	x below which dielectric zone is activated		
epsDi	dielectric constant in the dielectric zone		
rotclustx,y,z	vector fo angle of initial rotation of ions		
temp	electronic temperature in static iteration		

	Namelist GLOBAL	in for005. <name></name>		
	initialization of wave functions	III 101000. \IIalile>		
b2occ deformation for initial harmonic oscillator wf's				
gamocc triaxiality for initial harmonic oscillator wf's				
osfac	factor on initial oscillator radius			
deocc	nr. of states above Fermi energy (determines nr. of sta	ates)		
shiftWFx	shift of initial wavefunctions in x direction	accs)		
ishiftCMtoOrigin	switch to shift center of mass of cluster to origin			
ispinsep	initialize wavefunction with some spin asymmetry			
init_lcao	choice of basis for wavefunction initialization			
11110_1040	$=0 \Longrightarrow harmonic oscillator functions (center can be m$	noved by shiftWFx)		
	$=1 \implies$ atomic orbitals = WFs centered at ionic sites	loved by billiowing		
itback	nr. of iterations for jellium background			
IUDACK	convergence issues			
e0dmp	damping parameter for static solution of Kohn-Sham of	nauntions		
eodiip	(typically about the energy of the lowest bound state)	-		
epswf step size for static solution of Kohn-Shahm equations (of order of 0.5)				
· ·				
epsoro required variance to terminate static iteration (order of 10^{-5}) occmix mixing factor: new (thermal) occupation to old				
endcon	requires precision variance, termination criterion			
		_		
	Namelist GLOBAL in for005. <name></name>	_		
	yet unsorted	_		
tcoulfalr	switch to FALR Coulomb solver (else exact solver)			
dpolx	add stationary dipole field in x-direction			
dpoly	add stationary dipole field in y-direction			
dpolz	add stationary dipole field in z-direction			
scaleclustx	scaling of cluster configuration along x-axis			
scaleclusty	scaling of cluster configuration along y-axis			
scaleclustz	scaling of cluster configuration along z-axis			
scaleclust	lust if \neq 1: scaling of cluster configuration along x-y-z			
shiftclustx	shift of cluster configuration along x-axis			
shiftclusty shift of cluster configuration along y-axis				
shiftclustz shioft of cluster configuration along z-axis				
${\tt iswitch_interpol}$	switch to interpolated grid for PsP			
iplotorbitals	switch to print plot-file ${\tt pOrbitals}$ for all static states			
nproj_states nr. of electronic states in projectile				
	$QMMM\ substrate$	_		
		_		

switch to dielectric background

distance of dielectric background to lowest GSM layer

dielectric constant of dielectric background

switch to activate dielectric background

idielec xdielec

epsdi isurf

	Namelist DYNAMIC	in for005. <name></name>
nume	rical and physical parameters for st	
time step for propagating electronic wavefunctions, $\frac{\Delta t}{\Delta x^2} \leq 1$		
ismax maximum number of static iterations		
idyniter switch to s.p. energy as E0DMP for 'iter>idyniter'		
ifhamdiag diagonalization of m.f. Hamiltonian in static step		
	(presently limited to fully occupied	ed configurations)
isitmax	nr. of imaginary-time steps to im	aprove static solution
itmax	number of time steps for electron	ic propagation
ifexpevol	exponential evolution 4. order ins	stead of TV splitting
iffastpropag	accelerated time step in TV split	_
	(for pure electron dynamics, inter-	- ,
irest	switch to restart dynamics from t	
istat	switch to read wavefunctions from	
	it continues static iteration for	
	it starts dynamics from these v	
idenfunc	choice of density functional for L	
	$1 \rightarrow \text{Perdew & Wang 1992 (defau}$	alt setting)
	$2 \rightarrow Gunnarson \& Lundquist$	
	$3 \rightarrow \text{only exchange in LDA}$	
isave	saves results after every 'isave' st	-
	on file 'rsave' in and after static i	
	on file 'save' in dynamic propaga	
ipseudo	switch for using pseudo-densities	to represent substrate
	atoms	2. 1. (. 0)
ipsptype	type of pseudopotentials: $0 = sof$, , ,
	1 = full Goedecker; 2 = local Go	
	3 = read from file goed.asci (no r	2 0 7 7
	4 = semicore read from file goed.	
directenergy	.true. = direct computation of	energy
	(only for LDA, Slater, KLI)	, -
ifsicp	selects type of self-interaction con	
	0 = pure LDA, 1 = SIC-GAM, 2	
	4 = SIC-KLI; 5 = exact exchange	
	7 = localized SIC; 8 = full SIC (· · · · · · · · · · · · · · · · · · ·
	IFSICP=7 or 8 requires switch to	
] +	Option IFSICP=7 needs yet testi	_
icooltyp	type of cooling (0=none, 1=pseud	
: £ J	2=steepest descent, 3=Monte Ca	<i>'</i>
ifredmas	switch to use reduced mass for io	· ·
ionmdtyp	ionic propagation (0=none, 1=lea	- 0, ,
ntref	nr. time step after which absorbi	_
nabsorb	number of absorbing points on be	,
powabso	power of absorbing boundary con	
ispherabso	switch to spherical mask in absor	Toing bounds

	Namelist DYNAMIC in for005.	. <name< th=""></name<>
	way of excitation	
centfx	initial boost of electronic wavefunctions in x-direct	ion
centfy initial boost of electronic wavefunctions in y-direction		ion
centfz	initial boost of electronic wavefunctions in z-direct	ion
shiftinix	initial x-shift of electronic wavefunctions	
shiftiniy	initial y-shift of electronic wavefunctions	
shiftiniz	initial z-shift of electronic wavefunctions	
tempion	initial temperature of cluster ions	
ekmat	initial kinetic energy of substrate atom (boost in x)	, in eV
itft	choice of shape of laser pulse	
	1 = ramp laser pulse, sine switching on/off	
	2 = gaussian laser pulse	
	$3 = \cos^2 \text{ pulse}$	
tnode	time (in fs) at which pulse computation starts	
deltat	length of ramp pulse (itft = 1), in fs	
tpeak	time (in fs, relative to tnode) at which peak is reached	
	(for itft = 1 and 2, pulse length becomes 2*tpeak)	
omega	laser frequency (in Ry)	
e0	laser field strength in Ry/Bohr	
e1x,e1y,e1z	orientation of pulse	
e0_2	field strength of second laser pulse (only itft=3)	
phase2	phase of second pulse	
omega2	frequency of second pulse	
tstart2	initial ime of second pulse	
tpeak2	peak time of 2. pulse (pulse length is 2*tpeak2)	
iexcit	modus of excitation (0=shifts, 1=rotation)	
iangmo	switch to compute angular momentum	
irotat	axis of rotation for excitation (x=1,y=2,z=2,xyz=4	1
phirot	angle of rotation for excitation (in units of degree)	
phangle	angle of "rotation" into a 1ph state	
phphase	phase of "rotation" into a $1ph$ state	
nhstate,npstate	nr. of hole and particle state for $1ph$ excitation	
	this 1ph option can only be run from istat=1	

	Namelist DYNAMIC in for00	5. <name></name>	
flags for observables			
iemomsRel calculates multipole momentes of electron density			
relative to origin (0) or c.m. of cluster (1)			
istinf	modulus for printing information in static iteration		
ifspemoms	switch to compute and print spatial s.p. moments		
iftransme	switch to compute and print transition m.elements		
$irhoint_time$	modulus for printing slices of integrated densities		
jstinf	modulus for printing information in dynamic		
jinfo	modulus for printing dynamical information on infosp. <na< td=""><td>me></td></na<>	me>	
jdip	modulus for printing dipole moments on pdip. <name></name>		
jquad	modulus for printing quadrupole moments on pquad. <name></name>	>	
jesc	modulus for printing ionization pescel. <name></name>		
jdiporb	modulus for printing dipoles for s.p. states on pdiporb.xyz		
jenergy	modulus for printing energy information on penergies. < na	me>	
jener	modulus for printing ionic energies		
iflocaliz	activates computation of Becke's localization		
jelf	modulus for analyzing and printing electron localization in o	dynamics	
	various files are written of the form pelf*. <name></name>		
iflocaliz	•		
jstinf	· · · · · · · · · · · · · · · · · · ·		
jpos	modulus for printing ionic positions on pposion. <name></name>		
jvel	modulus for printing ionic velocities on pvelion. <name></name>		
jstateoverlap	switch to compute overlap of static state with		
	the state directly after dynamical initialization		
jforce	modulus for printing ionic forces		
jgeomion	modulus for printing global measures of ionic configuration		
jang	modulus for printing electronic angular momentum		
jangabso	modulus for printing angular distribution of emitted electron	ns	
jspdp			
jposcm			
ipasinf modulus for printing information on general observables			
igeomel modulus for printing global measures of electronic geometry			
elf modulus for evaluating an printing electron localization			
mp modulus for storing information for PES			
jnorms modulus for printing s.p. norms and ionization probabilities			
charges modulus for printing radially averaged charge distribution			
radial distance for scanning radially averaged charge distribution		ution	
plotdensitydiff modulus for printing $\rho(t) - \rho(0)$ along x-axis			
jplotdensitydiff2d			
jplotdensity2d	modulus for printing 2D cuts of density		
jstboostinv	modulus for evaluating boost-invariant s.p. energy and varia	ance ???	
idenspl	modulus for printing 2D cuts of density in MTV format ????		
i3dz	print z-integrated 2D density, following idenspl???		
i3dx	print x-integrated 2D density, following idenspl???		
i3dstate	print x- and z-integrated density per state, following idens;	1 ???	

	Namelist DYNAMIC	in for005. <name></name>		
	$yet\ unsorted$			
phi phase of laser pulse, inactive for electrons, strange for ions???				
projcharge	charge of ionic projectile			
projvelx	x-velocity of ionic point-charge projectile			
projvely	y-velocity of ionic point-charge projectile			
projvelz	z-velocity of ionic point-charge projectile			
projinix	initial x-coordinate of ionic point-charge projectile			
projiniy	initial y-coordinate of ionic point-charge projectile			
projiniz	initial z-coordinate of ionic point-charge projectile			
${\tt modionstep}$	modulus for ion step (nr. of electron steps per ion step)			
ispidi	=1 switches to initialization by spin-dipole boost			
mxforce	=1 zeroes forces in x-direction for nonlocal PsP???			
myforce	=1 zeroes forces in y-direction for nonlocal PsP???			
mzforce	=1 zeroes forces in z-direction for nonlocal PsP???			
izforcecorr	=1 enforce zero-force condition, =0 tests condition, =-1 disable	es all		
dinmargin	margin defining inner box in connection with Gaussian pseudo	-densities check default		
iangabso	option for origin for angular distribution (1=box, 2=c.m.)			
ipes	activates preparation of measuring points for PES			
nangtheta	number of PAD angular cones in θ direction			
nangphi	number of PAD angular cones in ϕ direction			
delomega	space angle of angular cones in PES check			
angthetal	lower angle θ for PES evaluation			
angthetah	upper angle θ for PES evaluation			
angphil	lower angle ϕ for PES evaluation			
angphih	upper angle ϕ for PES evaluation			
ifreezekspot	=1 freezes KS potential at stage of time=0			
ifixcmion	switch to fix c.m. during ionic motion			
ekin0pp	kinetic energy for initial boost of electrons and ions			
vxn0	boost velocity x-direction relative to ekin0pp			
vyn0	boost velocity y-direction relative to ekin0pp			
vzn0	boost velocity z-direction relative to ekin0pp			
nmptheta	number of PES measuring points in θ direction			
1 .	1 f DEC			

number of PES measuring points in ϕ direction

nmpphi

rtamu μ parameter for quadratic term on ρ -constraint rtamuj μ_j parameter for quadratic term on \mathbf{j} -constraint	
rtamuj μ_j parameter for quadratic term on j -constraint	
. , -	
rtasumvar2max criterion for maximal variance of s.p. energies	
rtaeps step size in DCMF iteration	
rtaeOdmp damping energy in DCMF iteration	
rtatempinit initial temperature in RTA step	
rtaforcetemperature is that really used?	
rtasigee effective electron-electron cross section in RTA	
rtars effective Wigner-Seitz radius for estimating damping	

Naı	melist EXTENSIONS in for005. <nam< th=""></nam<>	
extended options (not to appear in public version)		
trequest variable checking CPU time to trigger save oper		
timefrac	variable checking CPU time to trigger save operations	
iscatterelectron	switch to scattering with electron wavepacket	
jattach	modulus to compute attachement probability	
scatterelectronenergy	kinetic energy of impinging electron wavepacket	
scatterelectronvxn	x-velocity of electron wavepacket (relative to energy)	
scatterelectronvyn	y-velocity of electron wavepacket (relative to energy)	
scatterelectronvzn	z-velocity of electron wavepacket (relative to energy)	
scatterelectronx	initial x-coordinate of impinging electron	
scatterelectrony	initial y-coordinate of impinging electron	
scatterelectronz	initial z-coordinate of impinging electron	
scatterelectronw	initial width of impinging electron	
jescmask	modulus for detailed print of lost electrons	
jescmaskorb	modulus for state-wise detailed print of lost electrons	
eproj	energy of incoming projectile (= last ion in the list)	
vpx,vpy,vpz	direction of the incoming projectile	
taccel	time span over which the projectile is accelerated to epr	
	for taccel=0 one has to use init_lcao=1	
nproj	element number of atomic projectile	
nproj_states	nr. of eletronic states in atomic projectile	

	Namelist SURFACE	in for005. <name< th=""></name<>
ne	Number of fixed shells in substrate	
nc	number of O cores in $MgO(001)$	
nk	number of Mg cations in MgO(001)	
ivdw	handling of Van-der-Waals with sub	strate atoms
	$0 \Longrightarrow \text{no VdW}$	
	$1 \Longrightarrow$ enables full computation of V	dW
	$2 \Longrightarrow \text{enables effective VdW throug}$	h PsP parameters
ifadiadip	switch to adiabatic treatment of sub	_
shiftx	global shift in x for all substrate ato	
shifty,shiftz	as shiftx for y and z direction	
mion	mass of surface anion (16 for O in M	MgO(001)
mkat	mass of surface kation (24.3 for Mg	
me	mass of valence shell	0 - (/ /)
cspr	spring constant for interaction between	een core and valence shel
chgc0	charge of (anion) core	
chge0	charge of valence shell	
chgk0	charge of cation	
sigmak	gauss width of cation	
sigmac	gauss width of core	
sigmav	gauss width of valence shell	
iUseCell	switch for reading/building lattice o	f substrate atoms
10200011	$0 \Longrightarrow \text{lattice atoms are read in from}$	
	$1 \Longrightarrow \text{lattice is built from replicatin}$	_
	lattice parameters rlattvec	_
iPotFixed	switch for Madelung summation of s	
II OUI IAGU	read/write electrostatic potential fro	
	so that their run-time calculation ca	-
	$0 \Longrightarrow \text{do not read}$; calculate full pot	* *
	$1 \Longrightarrow \text{read in potFixedIon()}$ from pr	
	$-1 \Longrightarrow \text{calculate potFixedIon() write}$	0 1 1
	be later read in by option 1, sto	
	$2 \Longrightarrow \text{calculate potFixedIon()}$ at the	_
ifmdshort	- 0	0 0,
	includes short range interaction elec	
<pre>isrtyp(i,j)</pre>	type of interaction between the difference of the chart range interaction	erent kinds of particles
	$0 \rightarrow \text{no short range interaction}$ $1 \rightarrow \text{GSM core}$	
		n Marran tropa
	$2 \rightarrow \text{GSM}$ valence shell $=1 \Longrightarrow \text{Bor}$	· · ·
	$3 \to \text{GSM kation} = 2 \Longrightarrow \text{Argon cas}$	e
	$4 \rightarrow \text{Na core}$	
C: CI I ID I	$5 \rightarrow \text{DFT electron}$	
unfixCLateralRadx	radius of cylinder with mobile cores	1
unfixELateralRadx	radius of cylinder with mobile valen	
fixCBelowx	fixes cores which lay below given x v	value

Namelist PERIO in for005. <n< th=""></n<>		
ch	effective charge of ion	
amu	mass of ion in units of hydrogen ma	ass
dr1,dr2	radii of soft local PsP	
prho1,prho2	strenghts of soft local PsP	
crloc	radius for local part of Goedecker F	PsP
cc1,cc2	strengths for local part of Goedecke	er PsP
r0g,r1g,r2g	radii for non-local parts of Goedeck	er PsP
h0_11g,h0_22g,h0_33g	strenghts for non-local parts of Goe	edecker PsP
h1_11g,h1_22g,h2_11g	strenghts for non-local parts of Goe	edecker PsP
radiong	carrier radius for projecteor in non-	local Goedecker PsP
Namelist FSIC in for005. <name></name>		05. <name></name>

Namelist FSIC in for005. <na< th=""></na<>		
step step size in iteration of localizing or symmetry cond		symmetry condition
precis precision in iteration of localizing or symmetry con		symmetry condition
SymUtBegin nr. iteration where symmetry condition		tion starts
for pure localizing step set SymUtBegin >		gin > ismax
radmaxsym	limiting value in radius division for a	actucal step

	Ionic structure and e^- -initialization in for005ion. <name></name>
	This initialization does not use NAMELIST but reads input in fixed order.
	Each line stands for one ion. Each column has a definite meaning.
Col. 1	x-coordinate
Col. 2	y-coordinate
Col. 3	z-coordinate
Col. 4	number of element in periodic system (e.g.: Na↔11)
Col. 5	only init_lcao=1: ordering of nodes in repeated initialization at this ion
Col. 6	only init_lcao=1: radius of initial Gaussian at this ion
Col. 7	only init_lcao=1: starting spin for initalization at this ion

The handling of the initialization of electronic wavefunctions is rather involved. A more detailed explanation is given in appendix A.

A On the initialization of the electronic wavefunctions

The basic switch is init_lcao. The case init_lcao=0 is the simpler option. This initializes harmonic oscillator wavefunctions about one common center. This center is usually the origin of the coordinte-space grid. It can be moved deliberately by shiftWFx, shiftWFy, and shiftWFz. The initial oscillator may be deformed. Its deformation is given by the dimensionless quadrupole b2occ and triaxiality gamocc (in degree). The oscillator states are filled in order of increasing oscillator energies. A spin asymmtry can be enforced with ispinsep=1. This option is useful when dealing with odd electron number. The upper end of initialization is determined by deocc. A deocc \approx 0 typically initializes just as many states as are occupied. If more is required, enhance deocc.

The case init_lcao=1 initializes wavefunctions which are localized at the ions. This option is richer and a bit hard to handle. In a first step, the total number of wavefunctions is estimated and it is computed how many wavefunctions have to be initialized then for each ion. At one given ion, initialization starts with the 1s oscillator state. The first choice of spin is taken from column 7 of for005ion. <name> which initializes the entry of the actual ion in the the ipol array. The value ipol=+1 sets a spin up (i.e. ispin=1 in the code) as the first choice, while ipol=-1 sets a spin down (i.e. ispin=2). If more than one state is to be occupied, the next is then the 1s state with opposite spin. Next comes the $1p_i$ state with first spin where i is the direction given as first entry in column 5. For example if column 5 selects 'yzx', the $1p_y$ comes here. Occupation continues in order given by column 5 and 7 until the wanted number of orbitals at this ion site is reached. Column 6 sets the oscillator radius for the initialization at this ion (which allows to deal efficiently with systems consisting of very different ions). Column 7 becomes important for ions associated with an odd number of electrons as, e.g., hydrogen. One ought to distribute an equal collection of spins up and down over the whole system to avoid unnaturally polarized molecules.