

Two-body Motion Scenario

Basics of 2-Body Formulation

Consider the **two-body** system given below.

As **centre of mass** has no **acceleration**, it can be treated as the **inertial** frame origin and all position and velocity **vectors** can be defined as **relative** quantities, as above.

Basics of 2-Body Formulation

Basic equations for a 2-body system are as given below.

$$\begin{split} & m_1 \ddot{\vec{R}}_1 = -\frac{G m_1 m_2 \left(\vec{R}_2 - \vec{R}_1\right)}{\left|\left(\vec{R}_2 - \vec{R}_1\right)\right|^3}, \quad m_2 \ddot{\vec{R}}_2 = +\frac{G m_1 m_2 \left(\vec{R}_2 - \vec{R}_1\right)}{\left|\left(\vec{R}_2 - \vec{R}_1\right)\right|^3} \\ & \vec{R}_c = \frac{m_1 \vec{R}_1 + m_2 \vec{R}_2}{M}; \quad \vec{r} = \vec{R}_2 - \vec{R}_1; \quad M = m_1 + m_2 \\ & \vec{R}_1 = \vec{R}_C + \frac{m_2}{M} \vec{r}; \quad \vec{R}_2 = \vec{r} + \vec{R}_1 = \vec{R}_C + \left(1 - \frac{m_2}{M}\right) \vec{r} \\ & m_1 \vec{R}_1 \times \dot{\vec{R}}_1 + m_2 \vec{R}_2 \times \dot{\vec{R}}_2 = \vec{H}_0, \quad \frac{1}{2} m_1 \dot{R}_1^2 + \frac{1}{2} m_2 \dot{R}_2^2 - \frac{G m_1 m_2}{\left|\vec{r}\right|} = E_0 \end{split}$$

This system has 12 unknowns.

2 – Body Simplification

2-body system can be solved if we **drop** 6 variables. An **acceptable** approximation is to assume that **one** body is much **larger**, leading to following **simplification**.

$$M = m_1 + m_2 \approx m_1; \quad \binom{m_2}{m_1} \approx 0$$

$$\vec{R}_c = \frac{m_1 \vec{R}_1 + m_2 \vec{R}_2}{m_1 + m_2} = \frac{\vec{R}_1 + \binom{m_2}{m_1} \vec{R}_2}{1 + \binom{m_2}{m_1}} \approx \vec{R}_1$$

Further, if **origin** is at the **centre of mass**, then we get $R_1 = 0$, and $(R_2 - R_1) = r$.

1 – Body Problem Definition

2-body simplification leads to the **case** that centre of mass of the **system** is at the **centre** of larger body.

Without loss of **generality** we can assume **larger** body to be **stationary**, so that its **centre** is a point fixed in **space**.

1 – Body Problem Definition

This is the case of **attractive** central force, where **smaller** body moves around a **fixed** point such that **force** is directed **along** the line joining centre and **fixed point**.

This results in what is commonly called **1-body** problem or **central** force motion.

Central Force Motion Formulation

Central Force Formulation

Assuming that $(\mathbf{m_1} + \mathbf{m}) \approx \mathbf{m_1}$, we get the following.

$$m\ddot{\vec{r}} = -G\frac{m_1m}{\vec{r}^3}\vec{r}; \quad \ddot{\vec{r}} = -Gm_1\frac{\vec{r}}{\vec{r}^3} \rightarrow \text{Acceration of small body}$$

Further, we drop equation involving acceleration of large body,

which is small, as follws.
$$m_1 \vec{r} = G \frac{m m_1}{\vec{r}^3} \vec{r} \rightarrow \ddot{\vec{r}} = G m \frac{\vec{r}}{\vec{r}^3} \approx 0$$

Thus, we now have one vector equation in one variable, \vec{r} for a spacecraft moving in Earth's gravitational field.

$$\ddot{r} + \frac{\mu}{r^3} \vec{r} = 0; \quad \mu = Gm_1; \quad G = 6.670 \times 10^{-11} Nm^2 / kg^2$$

$$M_{Earth} = 5.977 \times 10^{24} kg; \quad \mu_E = GM_E = 3.986 \times 10^{14} m^3 / s^2$$

$$M_{Earth} = 5.977 \times 10^{24} kg;$$
 $\mu_E = GM_E = 3.986 \times 10^{14} m^3 / s^2$

Central Force Model Features

We see that we have **one** 2nd order vector differential **equation** in one variable **'r'**, so that we have **6 unknowns** and **6 initial conditions** on the smaller body.

These 6 initial conditions are nothing but the solution at the end of the ascent mission, in terms of position and velocity vectors of the spacecraft.

Central Force Solution Basics

There are **many** ways in which the **central** force motion equation **can** be solved.

One way is to obtain the closed form time solution by integrating the corresponding scalar differential equations in (x, y, z), for specified initial conditions.

Central Force Solution Basics

Another way is to numerically integrate the scalar differential equations to generate time histories.

We can also use **vector** & scalar **products** (see earlier solutions) to **integrate** equations in terms of momentum & **energy**.

Summary

Two-body simplification is an **important** step in understanding the **nature** of motion any spacecraft.

It is to be **noted** that while, the proposed **model** is not exact, the **error** for most cases is quite **negligible**.