# Министерство науки и высшего образования Российской Федерации Московский физико-технический институт (национальный исследовательский университет) Заочная физико-техническая школа

### МАТЕМАТИКА

Планиметрия (часть II)

Задание №5 для 9-х классов

(2021 - 2022 учебный год)



г. Долгопрудный, 2022

Составитель: Т.С. Пиголкина, доцент кафедры высшей математики МФТИ.

Математика: задание №5 для 9-х классов (2021 – 2022 учебный год), 2022, 25 с.

Дата отправки заданий по математике 06 марта 2022 г.

### Составитель:

### Пиголкина Татьяна Сергеевна

Подписано 03.02.22. Формат 60×90 1/16. Бумага типографская. Печать офсетная. Усл. печ. л. 1,56. Уч.-изд. л. 1,38.

Заочная физико-техническая школа Московского физико-технического института (национального исследовательского университета)

Институтский пер., 9, г. Долгопрудный, Москов. обл., 141700. ЗФТШ, тел. (495) 408-51-45 — **заочное отделение**, тел. (498) 744-63-51 — **очно-заочное отделение**, тел. (499) 744-65-83 — **очное отделение**.

e-mail: zftsh@mail.mipt.ru

**Haш caйт:** <u>https://zftsh.online/</u>

© МФТИ, ЗФТШ, 2022

Все права защищены. Воспроизведение учебно-методических материалов и материалов сайта ЗФТШ в любом виде, полностью или частично, допускается только с письменного разрешения правообладателей.

### Содержание:

- § 1. Свойства касательных, хорд и секущих.
  - 1. Две касательные из одной точки.
  - 2. Угол между касательной и хордой с общей точкой на окружности.
  - 3. Свойства хорд.
  - 4. Две касающиеся окружности.
- § 2. Площадь треугольника (5 основных формул). Сравнение площадей треугольников.
- § 3. Площадь четырёхугольника.

Площадь трапеции. Характерные задачи.

Контрольные вопросы.

Задачи.

### § 1. Свойства касательных, хорд и секущих

### 1. Две касательные из одной точки

Пусть к окружности с центром в точке O проведены две касательные AM и AN, точки M и N лежат на окружности (рис. 1).

По определению касательной  $OM \perp AM$  и  $ON \perp AN$ . В прямоугольных треугольниках AOM и AON гипотенуза AO общая, катеты OM и ON равны, значит,  $\Delta AOM = \Delta AON$ . Из равенства этих треугольников следует AM = AN и



Рис. 1

 $\angle MAO = \angle NAO$ . Таким образом, если из точки к окружности проведены две касательные, то:

- 1.1°. отрезки касательных от этой точки до точек касания равны;
- $1.2^{\circ}$ . прямая, проходящая через центр окружности и заданную точку, делит угол между касательными пополам.

Используя свойство  $1.1^{\circ}$ , легко решим следующие две задачи. (В решении используется тот факт, что в каждый треугольник можно вписать окружность).

**Задача 1.** На основании AC равнобедренного треугольника ABC расположена точка D, при этом DA = a, DC = b (рис. 2). Окружности, вписанные в треугольники ABD и DBC, касаются прямой BD в точках M и N соответственно. Найти отрезок MN.

 $\Delta$  Пусть a > b. Обозначим x = MN, y = ND, z = BM.



По свойству касательных DE=y, KD=x+y, AK=AP=a-(x+y), CE=CF=b-y, BP=z и BF=z+x. Выразим боковые стороны (рис. 2a): AB=z+a-x-y, BC=z+x+b-y. По условию AB=BC, поэтому z+a-x-y=z+x+b-y. Отсюда находим x=(a-b)/2, т. е.

$$MN = (a-b)/2$$
. Если  $a < b$ , то  $MN = (b-a)/2$ . Итак,  $MN = \frac{1}{2}|a-b|$ .  $\blacktriangle$ 

**Ответ:**  $\frac{|a-b|}{2}$ .

**Задача 2.** Доказать, что в прямоугольном треугольнике сумма катетов равна удвоенной сумме радиусов вписанной и описанной окружностей, т. е. a + b = 2R + 2r.

 $\Delta$  Пусть M, N и K – точки касания окружностью сторон прямоугольного треугольника ABC (рис. 3), AC = b, BC = a, r – радиус вписанной окружности, R – радиус описанной окружности. Вспомним, что гипотенуза есть диаметр описанной окружности: AB = 2R. Далее,  $OM \perp AC$ ,  $BC \perp AC$ , значит,



Рис. 3

 $OM \| BC$ , аналогично  $ON \perp BC$ ,  $AC \perp BC$ , значит,  $ON \| AC$ . Четырёхугольник MONC по определению есть квадрат, все его стороны равны r, поэтому AM = b - r и BN = a - r.

По свойству касательных AK=AM и BK=BN, поэтому AB=AK+KB=a+b-2r, а т. к. AB=2R, то получаем a+b=2R+2r.  $\blacktriangle$ 

Свойство 1.2° сформулируем по-другому: центр окружности, вписанной в угол, лежит на биссектрисе этого угла.

**Задача 3.** Около окружности с центром в точке O описана трапеция ABCD с основаниями AD и BC (рис. 4a).

- а) Доказать, что  $\angle AOB = \angle COD = 90^{\circ}$ .
- б) Найти радиус окружности, если  $BO = \sqrt{5}$  и  $AO = 2\sqrt{5}$ . (рис. 46)



 $\triangle$ а) Окружность вписана в угол BAD, по свойству  $1.2^{\circ}~AO-$  биссектриса угла A,  $\angle 1=\angle 2=\frac{1}{2}\angle A$ ; BO- биссектриса угла B ,

 $\angle 3 = \angle 4 = \frac{1}{2} \angle B$ . Из параллельности прямых AD и BC следует, что  $\angle A + \angle B = 180^{\circ}$ , поэтому в треугольнике AOB из  $\angle 1 + \angle 3 = \frac{1}{2} (\angle A + \angle B) = 90^{\circ}$  следует  $\angle AOB = 90^{\circ}$ .

Аналогично *CO* и *DO* биссектрисы углов *C* и *D* трапеции,  $\angle COD = 180^{\circ} - \frac{1}{2} (\angle C + \angle D) = 90^{\circ}$ .

б) Треугольник AOB прямоугольный с катетами  $AO = 2\sqrt{5}$  и  $BO = \sqrt{5}$ . Находим гипотенузу  $AB = \sqrt{20+5} = 5$ . Если окружность касается стороны AB в точке K, то  $OK \perp AB$  и OK — радиус окружности. По свойству прямоугольного треугольника  $AB \cdot OK = AO \cdot BO$ , от-

куда 
$$OK = \frac{2\sqrt{5} \cdot \sqrt{5}}{5} = 2$$
.  $\blacktriangle$ 

Ответ: 2.

# 2. Угол между касательной и хордой с общей точкой на окружности

Напомним, что градусная мера вписанного угла равна половине градусной меры дуги, на которую он опирается.

Теорема 1. Мера угла между касательной и хордой, имеющими общую точку на окружности, равна половине градусной меры дуги, заключённой между его сторонами.

 $\square$  Пусть O- центр окружности, AN- касательная (рис. 5). Угол между касательной AN и хордой AB обозна- M A N

чим  $\alpha$ . Соединим точки A и B с центром окружности. Так как  $OA \perp AN$ , OA = OB, то  $\angle OAB = \angle OBA = 90^{\circ} - \alpha$ . Сумма углов треугольника равна  $180^{\circ}$ , поэтому  $\angle AOB = 2\alpha$ .

Таким образом, градусная мера угла между касательной и хордой равна половине градусной меры дуги AnB, которая заключена между его сторонами, и, значит, угол BAN равен любому вписанному углу, опирающемуся на дугу AnB. (Аналогичные рассуждения можно провести и для угла MAB).



Рис. 5

**Задача 4.** В окружность вписан треугольник ABC. Расстояния от точек A и C до касательной, проходящей через точку B, соответственно равны m и n. Найти высоту треугольника ABC, проведённую через вершину B.

 $\Delta$  Опустим перпендикуляры AM и CN на касательную, проходящую через точку B, AM = m, CN = n. Угол ABM между касательной BM и хордой BA равен вписанному углу ACB. Следовательно, прямоугольные треугольники BHC и AMB подобные и  $\frac{BH}{4M} = \frac{BC}{4B}$ , откуда

$$BH = \frac{AM \cdot BC}{AB}$$
. Аналогично из подобия тре-



Рис. 6

угольников ABH и BCN имеем  $\frac{BH}{CN} = \frac{AB}{BC}$  и  $BH = \frac{CN \cdot AB}{BC}$ . Перемножим выражения для BH, получим  $BH^2 = AM \cdot CN = m \cdot n$ ,  $BH = \sqrt{m \cdot n}$ .  $\blacktriangle$ 

**Otbet:**  $\sqrt{m \cdot n}$ .

Теорема 2. Если из одной точки M к окружности проведены касательная MA и секущая MB, пересекающая окружность в точке C (рис. 7), то справедливо равенство  $MA^2 = MB \cdot MC$ , т. е. если из точки M к окружности проведены касательная и секущая, то квадрат отрезка касательной от точки M до точки касания равен произведению длин отрезков секущей от точки M до точек её пересечения с окружностью.

□ Проведём хорды AC и AB. Угол MAC между касательной и хордой равен вписанному углу ABC, оба измеряются половиной градусной меры дуги AnC. В треугольниках MAC и MBA равны углы MAC и MBA, а угол при вершине M общий. Эти треугольники подобны, из подобия имеем MA/MB = MC/MA, откуда следует  $MA^2 = MB \cdot MC$ .



**Задача 5.** Радиус окружности равен R. Из точки M проведены касательная MA и секущая MB, проходящая через центр O окружности (рис. 8). Найти расстояние между точкой M и центром окружности, если MB = 2MA.

 $\Delta$  Обозначим искомое расстояние x: x = MO, тогда MB = x + R, MC = x - R и по условию MA = MB/2 = (x + R)/2. По теореме о касательной и секущей  $(x + R)^2/4 = (x + R)(x - R)$ , откуда, сокращая на (x + R), получаем (x + R)/4 = (x - R). Легко находим  $x = \frac{5}{3}R$ .

**Ответ:**  $\frac{5}{3}$  *R*.

### 3. Свойство хорд окружности

Полезно доказать эти свойства самостоятельно (лучше закрепляется), можете разобрать доказательства по учебнику.

- 1.3°. Диаметр, перпендикулярный хорде, делит её пополам. Обратно: диаметр, проходящей через середину хорды (не являющуюся диаметром) перпендикулярен ей.
- $1.4^{\circ}$ . Равные хорды окружности находятся на равном расстоянии от центра окружности. Обратно: на равном расстоянии от центра окружности находятся равные хорды.
- 1.5°. Дуги окружности, заключённые между параллельными хордами, равны (рис. 9 подскажет путь доказательства).



 $1.6^{\circ}$ . Если две хорды AB и CD пересекаются в точке M, то  $AM \cdot MB = CM \cdot MD$ , т. е. произведение длин отрезков одной хорды равно произведению длин отрезков другой хорды (на рис. 10  $\Delta AMC \sim \Delta DMB$ ).

Следующее утверждение докажем.

- $1.7^{\circ}$ . Если в окружности радиуса R вписанный угол, опирающийся на хорду длины a, равен  $\alpha$ , то  $a = 2R\sin\alpha$ .
- Пусть в окружности радиуса R хорда BC = a, вписанный угол BAC опирается на хорду a,  $\angle BAC = \alpha$  (рис. 11 а,б).

Проведём диаметр BA' и рассмотрим прямоугольный треугольник BA'C ( $\angle BCA' = 90^{\circ}$ , опирается на диаметр).



Если угол A острый (рис. 11a), то центр O и вершина A лежат по одну сторону от прямой BC,  $\angle A' = \angle A$  и  $BC = BA' \cdot \sin A'$ , т. е.  $a = 2R \sin A$ .

Если угол A тупой, центр O и вершина A лежат по разные стороны от прямой BC (рис. 11б), тогда  $\angle A' = 180^{\circ} - \angle A$  и BC = BA'  $\cdot \sin A'$ , T. e.  $a = 2R \sin(180^{\circ} - A) = 2R \sin A$ .

Если  $\alpha = 90^{\circ}$ , то BC - диаметр,  $BC = 2R = 2R \sin 90^{\circ}$ .

Во всех случаях справедливо равенство  $a = 2R \sin \alpha$ .

Итак, 
$$a = 2R \sin \alpha$$
 или  $R = \frac{a}{2 \sin \alpha}$ . (\*)

Задача 6. Найти радиус окружности, описанной около треугольника ABC, в котором  $AB = 3\sqrt{3}$ , BC = 2 и угол  $ABC = 150^\circ$ .

Δ В описанной около треугольника ABC окружности известен угол B, опирающийся на хорду AC. Из доказанной формулы следует  $R = \frac{AC}{2\sin R}$ .



Применим теорему косинусов к треугольнику АВС (рис. 12) при этом учтём, что

$$\cos 150^\circ = \cos \left(180^\circ - 30^\circ\right) = -\cos 30^\circ = -\frac{\sqrt{3}}{2}$$
, получим 
$$AC^2 = 27 + 4 + 2 \cdot 3\sqrt{3} \cdot 2 \cdot \frac{\sqrt{3}}{2} = 49, \ AC = 7.$$

Находим 
$$R = \frac{AC}{2\sin 150^{\circ}} = \frac{7}{2\sin 30^{\circ}} = 7$$
.

Ответ: 7.

Используем свойство пересекающихся хорд для доказательства следующей теоремы.

**Теорема 3.** Пусть <u>AD</u> - биссектриса треугольника <u>ABC</u>, тогда  $\underline{AD^2 = AB \cdot AC - BD \cdot CD}$ , т. е. если AB = c, AC = b, BD = x, DC = y, то  $AD^2 = bc - xy$  (рис. 13a).



□ Опишем около треугольника ABC окружность (рис. 13б) и точку пересечения продолжения биссектрисы AD с окружностью обозначим  $B_1$ . Обозначим AD = l и  $DB_1 = z$ . Вписанные углы ABC и  $AB_1C$  равны, AD - биссектриса угла A, поэтому  $\Delta ABD \sim \Delta AB_1C$  (по двум углам). Из подобия имеем  $\frac{AD}{AC} = \frac{AB}{AB_1}$ , т. е.  $\frac{l}{b} = \frac{c}{l+z}$ , откуда  $l^2 = bc - lz$ . По свойству пересекающихся хорд  $BD \cdot DC = AD \cdot DB_1$ , т. е. xy = lz, поэтому получаем  $l^2 = bc - xy$ . ■

### 4. Две касающиеся окружности

В заключение параграфа рассмотрим задачи с двумя касающимися окружностями. Две окружности, имеющие общую точку и общую касательную в этой точке, называются касающимися. Если окружности

расположены по одну сторону от общей касательной, они называются касающимися внутренне (рис. 14a), а если расположены по разные стороны от касательной, то они называются касающимися внешне (рис. 146).



Если  $O_1$  и  $O_2$  – центры окружностей, то по определению касательной  $AO_1 \perp l$ ,  $AO_2 \perp l$ , следовательно, в обоих случаях *общая точка касания лежит на линии центров*.

**Задача 7.** Две окружности радиусов  $R_1$  и  $R_2$  ( $R_1 > R_2$ ) внутренне касаются в точке A. Через точку B, лежащую на большей окружности, проведена прямая, касающаяся меньшей окружности в точке C (рис. 15). Найти AB, если BC = a.

 $\Delta$  Пусть  $O_1$  и  $O_2$  – центры большей и меньшей окружностей, D – точка пересечения хорды AB с меньшей окружностью. Если  $O_1N \perp AB$  и  $O_2M \perp AB$ , то AN = AB/2 и AM = AD/2 (т. к. радиус, перпендикулярный хорде, делит её пополам). Из подобия треугольников  $AO_2M$  и

 $A \overbrace{O_2 O_1 C}^{MN}$ 

Рис. 15

следует

 $AO_1N$ 

 $AN:AM=AO_1:AO_2$  и, значит,  $AB:AD=R_1:R_2$ .

По теореме о касательной и секущей имеем:

$$BC^{2} = AB \cdot BD = AB(AB - AD) = AB^{2} \left( 1 - \frac{AD}{AB} \right),$$

$$\text{T. e.} \quad a^{2} = AB^{2} \left( 1 - \frac{R_{2}}{R_{1}} \right).$$

Итак, 
$$AB = a\sqrt{\frac{R_1}{R_1 - R_2}}$$
.  $\blacktriangle$ 

Задача 8. Две окружности радиусов  $R_1$  и  $R_2$  внешне касаются в точке A (рис. 16). Их общая внешняя касательная касается большей окружности в точке B и меньшей – в точке C. Найти радиус окружности, описанной около треугольника ABC.

 $\Delta$  Соединим центры  $O_1$  и  $O_2$  с точками B и C . По определению касательной,  $O_1B \perp BC$  и  $O_2C \perp BC$  . Следова-



Рис. 16

тельно,  $O_1B\|O_2C$  и  $\angle BO_1O_2 + \angle CO_2O_1 = 180^\circ$ . Так как  $\angle ABC = \frac{1}{2}\angle BO_1A$  и  $\angle ACB = \frac{1}{2}\angle CO_2A$ , то  $\angle ABC + \angle ACB = 90^\circ$ . Отсюда следует, что  $\underline{\angle BAC = 90^\circ}$ , и поэтому радиус окружности, описанной около прямоугольного треугольника ABC, равен половине гипотенузы BC.

Найдём BC . Пусть  $O_2K \perp O_1B$ , тогда  $KO_2=BC$ ,  $O_1K=R_1-R_2$ ,  $O_1O_2=R_1+R_2$  . По теореме Пифагора находим

$$KO_2 = \sqrt{O_1O_2^2 - O_1K^2} = 2\sqrt{R_1R_2}, \quad BC = 2\sqrt{R_1R_2}.$$

Итак, радиус окружности, описанной около треугольника ABC равен  $\sqrt{R_1R_2}$  . В решении  $R_1>R_2$ , при  $R_1< R_2$  ответ такой же.  $\blacktriangle$ 

**Ответ:**  $\sqrt{R_1 R_2}$ .

### § 2. Площадь треугольника

В школьном курсе геометрии доказано несколько формул площади треугольника. Напомним их.

Пусть A, B и C-углы треугольника ABC; a, b и c-противолежащие этим углам стороны;  $h_a, h_b$  и  $h_c$ -высоты к этим сторонам; r-радиус вписанной окружности; R-радиус описанной окружности; 2p = (a+b+c)- периметр треугольника; S-площадь треугольника.

$$S = \frac{1}{2}ah_a = \frac{1}{2}bh_b = \frac{1}{2}ch_c,$$
 (1)

$$S = \frac{1}{2}ab\sin C = \frac{1}{2}ac\sin B = \frac{1}{2}bc\sin A,$$
 (2)

$$S = pr, (3)$$

$$S = \sqrt{p(p-a)(p-b)(p-c)} - \text{формула Герона}, \tag{4}$$

$$S = \frac{abc}{4R}. (5)$$

При вычислении площади из этих формул следует выбрать ту, которая в условиях конкретной задачи приводит к более простому решению.

В некоторых задачах полезно использовать две различные формулы площади одной фигуры.

**Задача 9.** Найти радиус окружности, вписанной в треугольник ABC, в котором AC = 7, BC = 5 и  $\angle ABC = 120^{\circ}$  (рис. 17).

 $\triangle$  Обозначим сторону AB = x и применим теорему косинусов к треугольнику ABC  $\left(\cos 120^{\circ} = -\frac{1}{2}\right)$ :

$$AC^{2} = AB^{2} + BC^{2} - 2AB \cdot BC \cdot \cos 120^{\circ} \Leftrightarrow 49 = x^{2} + 25 + 2 \cdot \frac{1}{2} \cdot x \cdot 5 \Leftrightarrow$$
$$\Leftrightarrow x^{2} + 5x - 24 = 0 \Leftrightarrow (x+8)(x-3) = 0 \Leftrightarrow x = 3.$$

По формуле пощади (2) 
$$S_{ABC} = \frac{1}{2} AB \cdot BC \cdot \sin 120^\circ = \frac{15\sqrt{3}}{4}$$

Радиус вписанной окружности  $r = \frac{S_{ABC}}{p}$  формула (3).

Находим 
$$p = \frac{1}{2}(3+5+7) = \frac{15}{2}$$
 и  $r = \frac{\sqrt{3}}{2}$ .

Otbet:  $\frac{\sqrt{3}}{2}$ .



**Задача 10.** Около окружности радиуса 5 описан треугольник. Найти его площадь, если одна из его сторон точкой касания делится на отрезки 12 и 7,5.

 $\Delta$  Пусть  $AP=12,\ PC=7,5$  (рис. 18) и пусть BM=x. По свойству касательных  $AM=AP,\ CN=CP$  и BN=BM, поэтому стороны треугольника таковы:  $AC=19,5,\ AB=12+x,\ BC=7,5+x,$  тогда p=19,5+x. (Заметим, что p=AC+BM). По формулам площади (3) и (4) имеем:  $S=pr=\left(19,5+x\right)\cdot 5;\ S=\sqrt{\left(19,5+x\right)x\cdot 7,5\cdot 12}.$  Приравниваем правые части, возводим в квадрат, приводим подобные члены, получаем x=7,5. Вычисляем площадь треугольника:

$$S = pr = (19, 5+7, 5) \cdot 5 = 135.$$

Ответ: 135.

<u>Сравнение площадей треугольников</u> обычно опирается на одно из следующих утверждений:

 $2.1^{\circ}$ . <u>Площадь треугольников с одинаковой</u> высотой <u>относятся как длины соответствующих оснований</u>. В частности, если точ-ка D лежит на основании AC (рис. 19), то  $\frac{S_{DBC}}{S_{ABC}} = \frac{DC}{AC}$ .





Рис. 19

Рис. 20

2.2°. Площади треугольников с общим углом относятся как произведения сторон, заключающих этот угол (рис. 20):

$$\frac{S_{KBL}}{S_{ABC}} = \frac{BK \cdot BL}{BA \cdot BC}.$$

2.3°. Площади подобных треугольников относятся как квадраты их сходственных сторон, т. е. если  $\Delta ABC \sim \Delta A_1B_1C_1$ , то

$$\frac{S_{A_1B_1C_1}}{S_{ABC}} = \left(\frac{A_1B_1}{AB}\right)^2.$$



Все эти утверждения легко доказываются с использованием соответственно формул площади (1) и (2).

Обратите внимание на важное свойство медиан треугольника.

Теорема 4. (о медианах). Три медианы треугольника разбивают его на 6 треугольников с общей вершиной и равными площадями.

 $\Box$  Известно, что <u>три медианы треугольника пересекаются в одной точке и делятся в отношении 2:1, считая от вершины.</u> Пусть O — точка пересечения медиан треугольника  $\Delta ABC$  площади S (рис. 21a). Надо доказать, что площади всех шести треугольников с вершиной в точке O, составляющих треугольник ABC, равны между собой, т. е. рав-

ны 
$$\frac{1}{6}S$$
 . Докажем, например, для треугольника  $BOM$  , что  $S_{BOM}=\frac{1}{6}S_{ABC}$  .

Точка M — середина стороны BC (рис. 21б), по утверждению  $2.1^{\circ}$  о сравнении площадей  $S_{ABM}=\frac{1}{2}S$ . Медиана BN, пересекая медиану AM в точке O (рис. 21в), делит её в отношении AO:OM=2:1, т. е.  $OM=\frac{1}{3}AM$ . По тому же утверждению  $2.1^{\circ}$  площадь треугольника BOM составляет 1/3 площади треугольника ABM, т. е.

$$S_{BOM} = \frac{1}{3} \left( \frac{1}{2} S \right) = \frac{1}{6} S. \blacksquare$$

**Задача 11.** Найти площадь треугольника, две стороны которого равны 3 и 7, а медиана к третьей стороне равна 4 (рис. 22).

 $\Delta$  Пусть AB=3, BC=7, AM=MC и BM=4. Достроим треугольник ABC до параллелограмма, для этого на прямой BM отложим отрезок MD=BM и соединим точки: A с D и C с D. Противоположные стороны параллелограмма равны: DC=AB. Равны и площади треугольников ABC и DBC (общее основание BC и рав-



Рис. 22

ные высоты из вершин A и D). В треугольнике DBC известны все три стороны: BC = 7, DC = 3, BD = 2BM = 8. Находим его площадь по формуле Герона: p = 9,  $S_{DBC} = 6\sqrt{3}$ .

Значит и 
$$S_{ABC} = 6\sqrt{3}$$
. **Ответ:**  $6\sqrt{3}$ .

В решении этой задачи дополнительным построение получен треугольник, площадь которого равна площади заданного и легко вычисляется по данным задачи. Приведём ещё одну задачу, где сначала вычисляется площадь дополнительно построенной фигуры, а затем легко находится искомая площадь.

**Задача 12.** Найти площадь треугольника, если его медианы равны 3, 4 и 5.

 $\Delta$  Пусть O- точка пересечения медиан треугольника ABC (рис. 23) и пусть  $m_a=AM=3, \ m_b=BN=4$  и  $m_c=CP=5$ .

По свойству медиан  $AO=\frac{2}{3}m_a$ ,  $CO=\frac{2}{3}m_c$  и  $ON=\frac{1}{3}m_b$ . В треугольнике AOC известны две стороны AO и CO и медиана третьей стороны ON. Площадь этого треугольника найдём как в предыдущей задаче. Достроим треугольник AOC до параллелограмма AOCD,  $S_{AOC}=S_{DOC}$ , в треугольнике DOC известны три стороны:

$$DC = AO = \frac{2}{3}m_a$$
,  $DO = 2ON = \frac{2}{3}m_b$ ,  $OC = \frac{2}{3}m_c$ .

Площадь треугольника DOC вычисляем по формуле Герона  $S_1=S_{AOC}=S_{DOC}=\frac{8}{3}$ . Сравним теперь площадь треугольника ABC (обозначим её S) с площадью треугольника AOC. Из теоремы 2 о медианах и площадях следует  $S_{AOC}=S_{AON}+S_{NOC}=2\cdot\frac{1}{6}S=\frac{1}{3}S$ .

Итак,  $S = 3S_1 = 8$ . **Ответ:** 8.

Докажем теорему об отношении площади треугольника к площади другого треугольника, построенного из медиан первого. Её доказательство опирается на рассуждения задачи 12.

Теорема 5. Площадь треугольника составленного из медиан данного треугольника, составляет  $\frac{3}{4}$  его площади, т. е.  $S_{m_a m_b m_c} = \frac{3}{4} S_{abc}$ .

 $\Box$  Рассмотрим рис. 23. В построенном треугольнике OCD стороны таковы:  $OC=\frac{2}{3}\,m_c,~OD=\frac{2}{3}\,m_b,~CD=\frac{2}{3}\,m_a.$  Очевидно, что треугольник со сторонами  $m_a,m_b,m_c$  подобен (по третьему признаку) треугольнику со сторонами  $\frac{2}{3}\,m_a,\frac{2}{3}\,m_b,\frac{2}{3}\,m_c.$ 

Из решения предыдущей задачи следует, что  $S_{OCD} = S_1 = \frac{1}{3}S$  (здесь S – площадь треугольника ABC). Кроме того, <u>площади подобных треугольников относятся как квадраты сходственных сторон</u>, поэтому

$$\frac{S_1}{S_0} = \left(\frac{2}{3}\right)^2$$
. Таким образом, имеем

$$S_0 = \frac{9}{4}S_1 = \frac{3}{4}S$$
, T. e.  $S_{m_a m_b m_c} = \frac{3}{4}S_{abc}$ .

Замечание. Из приведённых выше рассуждений в решении задачи 12 следует, что всегда существует треугольник со сторонами, равными медианам данного треугольника, поскольку всегда существует подобный ему треугольник

со сторонами 
$$\frac{2}{3}m_a, \frac{2}{3}m_b, \frac{2}{3}m_c$$
. Кроме того,

A N D C

Рис. 23

становится ясным план построения треугольников по трём отрезкам, равным его медианам: сначала строится треугольник *OCD* (см. рис. 23)

со сторонами  $\frac{2}{3}m_a, \frac{2}{3}m_b, \frac{2}{3}m_c$ , затем точка N – середина отрезка OD, потом точка A (из AN=NC) и точка B (из OB=OD). Это построение осуществимо, если существует треугольник OCD, т. е. если существует треугольник со сторонами  $m_a, m_b, m_c$ . Итак, вывод: mpu отрезка могут быть медианами некоторого треугольника тогда и только тогда, когда из них можно составить треугольник.

### § 3. Площадь четырёхугольника

**1.** В школьном учебнике выведены следующие формулы площади параллелограмма:

$$S = a \cdot h_a = b \cdot h_b, \tag{6}$$

$$S = a \cdot b \sin \varphi, \tag{7}$$

где a и b – стороны параллелограмма,  $h_a$  и  $h_b$  – высоты к ним,  $\varphi$  – величина угла между сторонами параллелограмма.

Докажем теорему о площади четырёхугольника.

Теорема 6. Площадь выпуклого четырёхугольника равна половине произведения диагоналей на синус угла между ними, т. е.

$$S = \frac{1}{2} d_1 d_2 \sin \alpha, \tag{8}$$

где  $d_{\scriptscriptstyle 1}$  и  $d_{\scriptscriptstyle 2}$  – диагонали четырёхугольника,  $\alpha$  – величина угла между ними.

 $\ \square$  ABCD – выпуклый четырёхугольник, диагонали которого AC и BD пересекаются в точке O под углом  $\alpha$  (рис. 24). Через вершины A

и C проведём прямые, параллельные диагонали BD, а через вершины B и D проведём прямые, параллельные диагонали AC. Проведённые прямые в пересечении образуют параллелограмм со сторонами, равными диагоналям BD и AC, и углом  $\alpha$ . Площадь параллелограмма равна  $AC \cdot BD \cdot \sin \alpha$ , а площадь четырёхугольника ABCD равна, как легко видеть, половине его площади, т. е.



Рис. 24

$$S_{ABCD} = \frac{1}{2} AC \cdot BD \cdot \sin \alpha. \blacksquare$$

Следствие. Площадь ромба равна половине произведения его диагоналей. Это сразу следует из доказанной формулы, т. к. диагонали ромба перпендикулярны.

**Задача 13.** Дан параллелограмм ABCD площадью S и тупым углом B. Из вершины B и D опущены перпендикуляры BH и DK на диагональ AC. Доказать, что BHDK – параллелограмм и найти его

площадь, если 
$$AH = \frac{1}{5}AC$$
.

 $\Delta 1$ . По свойству параллелограмма AB = CD и по теореме 6

$$S = S_{ABCD} = \frac{1}{2} AC \cdot BD \cdot \sin \alpha$$
 (рис. 25).



Рис. 25

Из  $AB \parallel CD$  следует  $\angle 1 = \angle 2$ , прямоугольные треугольники ABH и CDK равны (по гипотенузе и острому углу), поэтому BH = DK и AH = CK. Далее,  $BH \perp AC$ ,  $DK \perp AC \Rightarrow BH \parallel KD$ .

В четырёхугольнике BHDK противолежащие стороны BH и DK – равны и параллельны, по теореме BHDK – параллелограмм.

2. 
$$S_1 = S_{BHDK} = \frac{1}{2}HK \cdot BD \cdot \sin \alpha$$
, поэтому  $\frac{S_1}{S} = \frac{HK}{AC}$ . По условию  $AH = \frac{1}{5}AC$ ,  $AH = CK$  (доказано), следовательно  $HK = AC - \frac{2}{5}AC = \frac{3}{5}AC$  и  $\frac{S_1}{S} = \frac{3}{5}$ . **Ответ:**  $\frac{3}{5}S$ .

**2.** Рассмотрим несколько задач, где определяется или используется площадь трапеции. Напомним, что площадь трапеции равна произведению полусуммы оснований на её высоту, т. е.

$$S = \frac{a+b}{2}h. (9)$$

**Задача 14.** Найти площадь трапеции, если её основания равны 16 и 44, а боковые стороны равны 17 и 25.

 $\triangle$  Через вершину C проведём  $CK \parallel BA$  (рис. 26). ABCK – параллелограмм, его противоположные стороны равны, поэтому в тре-угольнике KCD определены все стороны:



Рис. 26

угольнике KCD определены все стороны: KC = AB = 25, CD = 17, KD = AD - BC = 28. По формуле Герона вычисляем площадь этого тре-

угольника: 
$$p = 35$$
,  $S_{KCD} = 210$ . С другой стороны,  $S_{KCD} = \frac{1}{2}KD \cdot CF$ ,

если  $CF \perp AD$  . Отсюда находим  $CF = \frac{2S_{KCD}}{KD} = 15$  и вычисляем пло-

щадь трапеции  $S_{ABCD} = \frac{1}{2} (BC + AD) CF = 450$ .

**Задача 15.** Отрезок длины m, параллельный основаниям трапеции, разбивает её на две трапеции (рис. 27). Найти отношение площадей этих трапеций, если основания трапеции равны a и b (b < a).

 $\Delta$  Пусть BC = b, AD = a и MN = m, и  $MN \parallel AD$ . Проведём  $CE \parallel BA$  и  $NF \parallel BA$ , а так же  $CK \perp MN$  и  $NP \perp AD$ . Обозначим  $CK = h_1$ ,  $NP = h_2$ . Далее, т. к.  $CE \parallel NF$ , то  $\angle ECN = \angle FND$ , а из  $MN \parallel AD$  следует  $\angle ENC = \angle FDN$ . Следовательно, треугольники ECN и END имеют по два равных угла, они подобны. Из подобия имеем  $EN \equiv \frac{CN}{ND}$ . Пря-



Рис. 27

моугольные треугольники KCN и PND также подобны и  $\frac{CK}{NP} = \frac{CN}{ND}$ ,

поэтому  $\frac{EN}{FD} = \frac{CK}{NP}$ , т. е.  $\frac{m-b}{a-m} = \frac{h_1}{h_2}$ . Если  $S_1$  и  $S_2$  – площади трапеций MBCN и AMND, то

$$S_1 = \frac{1}{2}(b+m)h_1$$
,  $S_2 = \frac{1}{2}(a+m)h_2$  и  $\frac{S_1}{S_2} = \frac{(m+b)h_1}{(a+m)h_2} = \frac{m^2-b^2}{a^2-m^2}$ .

В задании 1 для 9 класса были доказаны некоторые свойства трапеции. Полезно их повторить, а мы добавим ещё некоторые свойства (докажите их самостоятельно).

- 3.1°. Диагонали трапеции разбивают её на 4 треугольника с общей вершиной. Треугольники, прилежащие к основанию подобны; треугольники, прилежащие к боковым сторонам, имеют равные площади (рис. 28).
- А Рис. 28

 $3.2^{\circ}$ . Если трапеция ABCD с основаниями AD и BC описана около окружности с центром в точке O (рис. 29), то

- **1.**  $\angle AOB = \angle COD = 90^{\circ}$  (доказано в задаче 3 §1 этого задания);
- **2.** сумма длин оснований равна сумме длин боковых сторон;
- **3.** площадь трапеции равна произведению суммы оснований на радиус окружности.



Рис. 29

**Задача 16.** Диагонали трапеции ABCD, пересекаясь, разбивают её на четыре треугольника с общей вершиной O (рис. 30). Найти площадь трапеции, если площади треугольников, прилежащих к основаниям равны  $S_1$  и  $S_2$ .

 $\Delta$  По свойству 3.1°  $S_{ABO} = S_{CDO}$ , обозначим эту площадь  $S_0$  (действительно,  $S_{ABD} = S_{ACD}$ , т. к. у них общие основания и равные высоты, т. е.  $S_{AOB} + S_{AOD} = S_{COD} + S_{AOD}$ , откуда следует  $S_{AOB} = S_{COD}$ ). Так как  $S_{ABC} = S_0 + S_1 = \frac{1}{2}bh$  и  $S_{ACD} = S_0 + S_2 = \frac{1}{2}ah$ , то  $\frac{S_0 + S_1}{S_2 + S_2} = \frac{b}{a}$ .

Далее, треугольники  $\stackrel{\circ}{BOC}$  и DOA подобны, площади подобных треугольников относятся как квадраты соответствующих сторон, зна-

чит, 
$$\frac{S_1}{S_2} = \left(\frac{b}{a}\right)^2$$
. Таким образом,  $\frac{S_0 + S_1}{S_0 + S_2} = \sqrt{\frac{S_1}{S_2}}$ . Отсюда находим  $S_0 = \sqrt{S_1S_2}$ , и поэтому площадь трапеции будет равна  $S_1 + S_2 + 2S_0 = \left(\sqrt{S_1} + \sqrt{S_2}\right)^2$ . **Ответ:**  $S = \left(\sqrt{S_1} + \sqrt{S_2}\right)^2$ .

**Задача 17.** Около окружности описана равнобокая трапеция с основаниями AD = a и BC = b (рис. 31). Найти:

- 1) радиус окружности r;
- 2) косинус угла при большем основании.

 $\Delta$  Трапеция описана около окружности, следовательно (свойство 3.2  $^{\circ}$  , 2)

$$AB + CD = BC + AD$$
.

Трапеция равнобокая,  $AB = CD = \frac{a+b}{2}$ .

Пусть  $BK \perp AD$ , по свойству  $5^{\circ}$  из зада-



Рис. 31

ния 1  $AK = \frac{a-b}{2}$ . Из прямоугольного треугольника ABK следует

$$BK=2r=\sqrt{\left(rac{a+b}{2}
ight)^2-\left(rac{a-b}{2}
ight)^2}=\sqrt{ab}\,,$$
 откуда  $r=rac{1}{2}\sqrt{ab}$  . Кроме того  $\cos A=rac{a-b}{a+b}$ .  $lacktriangle$ 

**Other:**  $r = \frac{1}{2}\sqrt{ab}$ ,  $\cos A = \frac{a-b}{a+b}$ .

**Задача 18.** Около трапеции ABCD описана окружность. Основание AD образует со стороной AB угол  $45^{\circ}$  (рис. 32). Найти радиус окружности, если AD = 8, BC = 6.

$$\triangle$$
 Трапеция вписана в окружность :  $\angle B + \angle D = 180^\circ$ ,  $\Rightarrow \angle A = \angle D \Rightarrow BC \parallel AD$  :  $\angle B + \angle A = 180^\circ$ ,

 $\Rightarrow$  трапеция равнобока,  $\angle A = \angle D = 45^{\circ}$ .

Если  $CH \perp AD$ , то  $HD = \frac{AD - BC}{2} = 1$ . Треугольник CHD – прямо-

угольный равнобедренный CH = HD = 1.

На хорду AC опирается вписанный угол ADC, по формуле (\*) §1 (на стр. 9)

$$R = \frac{AC}{2\sin 45^{\circ}}$$
. Хорду  $AC$  найдём из прямо-  
угольного треугольника  $ACH: AC = \sqrt{\left(AD - HD\right)^2 + CH^2} = \sqrt{7^2 + 1} = 5\sqrt{2}$ ,

тогда 
$$R = \frac{5\sqrt{2}}{2 \cdot 1/\sqrt{2}} = 5$$
. **А Ответ:** 5.



Рис. 32

## Контрольные вопросы

- **1(2). a)** Чему равен угол ABC, если  $\angle BAE = 27^{\circ}$  и  $\angle AMC = 104^{\circ}$  (рис. 1).
- **б)** В правильном восьмиугольнике  $A_1 A_2 A_3 \dots A_8$  найти величину угла  $A_3 A_1 A_4$ .
- **2(5). a)** Около окружности описан шестиугольник, пять последовательных сторон которого равны соответственно 1, 3, 4, 2, 5. Чему равна шестая сторона?



Рис. 1

- **б)** Окружность, вписанная в треугольник ABC, касается стороны AC в точке M (рис. 2). Доказать, что x = AM = p BC, где p –полупериметр.
- в) Дан параллелограмм ABCD, в котором AB=2, BC=5 и  $\angle ABC=108^{\circ}$  (рис. 3). В треугольник ABC вписана окружность с центром  $O_1$ , касающаяся диагонали AC в точке M, а в треугольник ACD

вписана окружность с центром  $O_2$ , касающаяся диагонали AC в точке K. Чему равны длина отрезка MK и величина угла  $O_1AO_2$ ?



Рис. 2



Рис. 3

- **3(4). а)** Когда около 4-х угольника можно описать окружность?
- **б)** Около трапеции описана окружность. Доказать, что она равнобокая.
- в) Около 4-х угольника ABCD описана окружность, прямые AB и CD пересекаются в точке K, а прямые AD и BC в точке M (рис 4). Известно, что угол AKD в два раза больше угла AMB ( $\angle AMB = \alpha$ ). При каком значении  $\alpha$  угол KAM равен  $60^{\circ}$ ?

Рис. 4

- **4(6).** а) Доказать формулу  $a = 2R\sin\alpha$ , где R радиус окружности, a = BC хорда этой окружности, на которую опирается вписанный угол  $BAC = \alpha$ .
- **б)** Дан треугольник ABC, AB=6,  $\angle A=45^{\circ}$ ,  $\angle B=75^{\circ}$  (рис. 5). Найти радиус описанной около него окружности и длину хорды BC.
- в) Хорды AC и BD окружности радиуса R пересекаются в точке M под прямым углом (рис. 6). Доказать, что  $AB^2 + CD^2 = 4R^2$ .



Рис. 5



Рис. 6

- **5(6). a)** Чему равен угол между касательной и хордой с общей точкой на окружности?
- **б)** Около треугольника ABC со сторонами  $AB = BC = \sqrt{5}$  и AC = 2 описана окружность (рис.7). Найти расстояние от вершины C до касательной, проходящей через вершину A.
  - в) Сформулировать теорему о касательной и секущей и доказать её.
  - г) Могут ли отрезки секущих быть такими, как на рис. 8?



- 6(3). Однозначно ли определен треугольник, если даны:
- **а)** S его площадь, a и b стороны?
- **б)** R радиус описанной окружности, a и b стороны?
- **7(6). a)** В прямоугольном треугольнике с гипотенузой c радиус вписанной окружности равен r (рис 9). Доказать, что его площадь S = r(r+c).
- **б)** Точка D лежит на медиане BM треугольника ABC, BD:DM = 2:5.

Найти отношение площадей треугольников *ABD* и *ABC*.

- в) Точка M лежит на стороне BC треугольника ABC площади S. Через точку M проведены прямые параллельно сторонам AB и AC (рис. 10). Площади возникших треугольников равны 4 и 9. Найти S.
- **8(2).** а) Диагонали 4-х угольника *ABCD* делят его на 4 треугольника, площади которых даны на рис. 11. Найти площадь четырёхугольника.



Рис. 10



Рис. 11

**б)** Дан выпуклый 4-х угольник *ABCD*. Доказать, что при последовательном соединении середин его сторон образуется параллелограмм (рис. 12). Найти отношение их площадей.



Рис. 12



Рис. 13

- **9(4).** а) Точка M середина боковой стороны AB трапеции ABCD площади S (рис. 13). Доказать, что площадь  $S_1$  равна половине S.
- **б)** Около окружности описана равнобокая трапеция (рис. 14). Через конец меньшего основания и центр окружности проведена прямая, она отсекает от трапеции треугольник *КСD*. Найти отношение его площади к площади трапеции.
- 10(4). Две окружности радиусов R и r (R > r) внешне касаются в точке K. Точки A и



Рис. 14

C лежат на большей окружности, точки B и D — на меньшей. Прямые AB и CD — внешние касательные к этим окружностям. Через точку K проведена общая внутренняя касательная, пересекающая прямую AB в точке M, а прямую CD в точке N.

Найти: **a)** угол AKB; **б)** угол  $O_1MO_2$  (  $O_1$  и  $O_2$  – центры окружностей); **в)** длину отрезка AB; **г)** Доказать параллельность прямых AC, DB и MN.

#### Задачи

- **1(4).** Окружность с центром в точке O, вписанная в треугольник ABC, касается стороны AB в точке D, стороны AC в точке E и стороны BC в точке M. Прямая OD пересекает сторону AC в точке H, HC = 2, а прямая OE пересекает сторону AB в точке K, KB = 1. Найти отношение BM: MC, если BC = 11.
- **2(4).** В треугольнике ABC угол ABC равен  $45^{\circ}$ . Окружность радиуса 5 проходит через точки A и C, пересекает сторону AB в её середине, а

сторону BC в точке K такой, что KC = 3BK. Найти стороны треугольника ABC.

- **3(4).** Через середину катета AC (точку M) проведена прямая, пересекающая гипотенузу AB в точке D и продолжение катета BC (за точку C) в точке K. Известно, что около четырехугольника CMDB можно описать окружность и KM = 3, DM = 2. Найти площадь треугольника ABC.
- **4(5).** Около окружности описан треугольник ABC. Прямая, параллельная AB и касающаяся окружности, пересекает сторону AC в точке  $A_1$ , а сторону BC в точке  $B_1$ . Найти длину стороны AB, если известно, что периметр треугольника ABC равен 40 и  $A_1B_1=3,2$ .
- **5(6).** В окружность радиуса 10 вписаны трапеция ABCD с основаниями BC и AD и прямоугольник  $A_1B_1C_1D_1$  таким образом, что  $AC \parallel B_1D_1$ ,  $BD \parallel A_1C_1$ . Найти отношение площадей трапеции и прямоугольника, если BC = 12 и AD = 16.
- **6(5).** Дана трапеция ABCD с основаниями BC и AD. Окружность проходит через точки B, C, D и касается прямой AB. Известно, что BC = 5, AD = 15,  $AB = 5\sqrt{3}$ . Найти: а) радиус окружности; б) площадь трапеции.
- **7(6).** В треугольнике ABC точка D лежит на стороне BC, точка K на стороне AC. Отрезки AD и BK пересекаются в точке O. Площади треугольников OAK, OAB и OBD соответственно равны 8, 10 и 5. Найти площадь четырехугольника OKCD.
- **8(6).** Две окружности  $\Omega$  и  $\omega$  касаются внешним образом в точке A, радиус окружности  $\omega$  равен 4. Окружности касаются прямой в точках B и C (точка B на окружности  $\omega$ ). Общая внутренняя касательная пересекает отрезок BC в точке M, при этом AM = 6. Через точки A и B проведена прямая, пересекающая окружность  $\Omega$  в точке D. Найти радиус окружности  $\Omega$  и длину отрезка BD.
- **9(6).** Две взаимно перпендикулярные хорды окружности AB и CD пересекаются в точке M. Известно, что AD = 6, BC = 8 и центр окружности отстоит от точки M на расстоянии 1.

Найти: а) радиус окружности; б) длины хорд AB и CD.

**10(7).** Точки A, B, C, D, E последовательно расположены на прямой b, причём CD=1 и AB=BC=DE=2. Окружности  $\Omega$  и  $\omega$ , касающиеся друг друга, таковы, что  $\Omega$  проходит через точки D и E, а  $\omega$ — через точки B и C. Найти радиусы этих окружностей, если известно, что их центры и точка A лежат на одной прямой.