

Universidade Federal da Paraíba Centro de Ciências Humanas, Letras e Artes Programa de Pós-Graduação em Neurociência Cognitiva e Comportamento

Modelo computacional sobre a dinâmica temporal da neurogênese no giro denteado e seu impacto nas funções de memória do CA3

Marlon Valmórbida Cendron

Marlon Valmórbida Cendron

Modelo computacional sobre a dinâmica temporal da neurogênese no giro denteado e seu impacto nas funções de memória do CA3

Projeto a ser apresentado no Centro de Ciências Humanas, Letras e Artes da Universidade Federal da Paraíba, sob a orientação de Flávio Freitas Barbosa e coorientação de Wilfredo Blanco Figuerola, no mês de Agosto de 2025.

Orientador: Flávio Freitas Barbosa

Coorientador: Wilfredo Blanco Figuerola

Marlon Valmórbida Cendron

Modelo computacional sobre a dinâmica temporal da neurogênese no giro denteado e seu impacto nas funções de memória do CA3

Projeto a ser apresentado no Centro de Ciências Humanas, Letras e Artes da Universidade Federal da Paraíba, sob a orientação de Flávio Freitas Barbosa e coorientação de Wilfredo Blanco Figuerola, no mês de Agosto de 2025.

João Pessoa - PB, 20 de Agosto de 2025:

Flávio Freitas Barbosa Orientador

Wilfredo Blanco Figuerola

Coorientador

João Pessoa - PB 2025

Resumo

Resumo

Palavras-chave: Palavra1. Palavra2. Palavra3. Palavra4. Palavra5.

Abstract

Abstract

Keywords: Word1. Word2. Word3. Word4. Word5.

Lista de tabelas

Tabela 1 –	Izhikevich Neuron Model Parameters	13
Tabela 2 –	Cronograma	16
Tabela 3 –	Análise de robustez	18
Tabela 4 –	Análise descritiva adicional	10

Lista de ilustrações

Figura 1 – Arquitetura da rede	 14
rigula i – Aiquitetula da rede	 17

Sumário

1	INTRODUÇÃO	9
2	JUSTIFICATIVA	10
3	OBJETIVOS	11
3.1	Objetivo geral	11
3.2	Objetivos específicos	11
4	HIPÓTESES	12
5	MATERIAIS E MÉTODOS	13
5.1	Modelo da rede neural DG-CA3	13
5.2	Modelo de neurônio	13
6	RESULTADOS ESPERADOS	15
7	CRONOGRAMA	16
	REFERÊNCIAS	17
	APÊNDICE A – ANÁLISE DE ROBUSTEZ	18
	APÊNDICE B – ESTATÍSTICAS DESCRITIVAS	19

1 Introdução

2 Justificativa

Justificativa

3 Objetivos

3.1 Objetivo geral

Desenvolver um modelo de condutância do circuito GD-CA3 do hipocampo para analisar os impactos da neurogênese adulta na capacidade de armazenamento de memória e separação de padrões.

3.2 Objetivos específicos

- •
- •
- •

4 Hipóteses

Hipóteses

5 Materiais e Métodos

5.1 Modelo da rede neural DG-CA3

5.2 Modelo de neurônio

Os neurônios foram modelados de acordo com o modelo de neurônio de Izhikevich de 9 parâmetros (IZHIKEVICH, 2006, cap. 8).

Neuron	k (nS/mV)	a (ms ⁻¹)	b (nS)	d (pA)	C _m (pF)	\mathbf{V}_r (mV)	\mathbf{V}_t (mV)	\mathbf{V}_{min} (mV)	V _{peak} (mV)
DG mature Granule	0.45	0.003	24.48	50	38	-77.4	-44.9	-66.47	15.49
DG immature Granule	0.139	0.002	-1.877	12.149	24.6	-63.66	-38.41	-48.2	83.5
DG Mossy	1.5	0.004	-20.84	117	258	-63.67	-37.11	-47.98	28.29
DG HIPP	0.01	0.004	-2	40.52	58.7	-70	-50	-75	90
DG Basket	0.81	0.097	1.89	553	208	-61.02	-37.84	-36.23	14.08
CA3 Pyramidal	0.79	0.008	-42.55	588	366	-63.2	-33.6	-38.87	35.86
CA3 Interneuron	0.81	0.097	1.89	553	208	-61.02	-37.84	-36.23	14.08

Tabela 1 – Izhikevich Neuron Model Parameters.

Figura 1 – Arquitetura da rede

6 Resultados esperados

Resultados esperados

7 Cronograma

Tabela 2 – Cronograma

Variável	Estatísticas
A	V1
В	V2
C	V3
D	V4

Referências

IZHIKEVICH, E. M. *Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting.* [S.l.]: The MIT Press, 2006. ISBN 978-0-262-27607-8. 13

APÊNDICE A - Análise de Robustez

Tabela 3 – Análise de robustez

Variável	Estatísticas
A	V1
В	V2
C	V3
D	V4

APÊNDICE B - Estatísticas descritivas

Tabela 4 – Análise descritiva adicional

Variável	Estatísticas
A	V1
В	V2
C	V3
D	V4