Introduction to Diagnostic x-ray Imaging (Part II)

Yulei Jiang

Department of Radiology, The University of Chicago

Outline

- Brief historical survey
- Linear-system model
- Focal spot and magnification
- Scatter
- Image detector

Importance of Image Detectors

- An important part of the imaging chain
- A field of its own

Image Detectors

- Ideal detectors
- Analog detectors
- Digital detectors

Ideal Imaging Detector

- Detect every photon incident upon it
- Provide error-free information on location, energy, and time of arrival of incident photons
- Accurate to arbitrarily fast photon arrival

Harmful Effect of x-ray: the Need to Optimize its Use in Imaging

- Tradeoff between the harmful effect of radiation dose and the benefit of a potential diagnosis
- Minimize dose for an expected diagnostic benefit
- Dose increase may be justified for greater expected diagnostic benefit

Important Concepts for Image Detector

- Quantum efficiency (QE)
 - The fraction of photons that contribute to the image
- "Detector noise"
 - Additional statistical fluctuations originated within the detector, which degrade the image
- Detective quantum efficiency (DQE)
- Noise equivalent quanta (NEQ)

Detective Quantum Efficiency (DQE)

- The fraction of incident photons that would have to be detected without additional noise to yield the same signal-to-noise ratio as is actually observed by the detector
 - Barrett & Swindell, P194

Detective Quantum Efficiency (DQE)

 The fraction of incident photons that would have to be detected without additional noise to yield the same signal-to-noise ratio as is actually observed by the detector

$$DQE = \left[\frac{SNR(out)}{SNR(in)} \right]^{2}$$

Noise equivalent quanta (NEQ)

- The equivalent number of input quanta per unit area required by an ideal imaging system to give the same SNR achieved by an actual system
 - Barrett & Myers, P866

Noise equivalent quanta (NEQ)

 The equivalent number of input quanta per unit area required by an ideal imaging system to give the same SNR achieved by an actual system

Signal-to-Noise Ratio (SNR)

- Signal:
 - contrast of low-contrast object
- Noise:
 - from finite number of x-ray photons

DQE and **NEQ**

$$DQE = \left[\frac{SNR(out)}{SNR(in)} \right]^{2} \qquad DQE = \frac{NEQ}{\Phi}$$

Expressed in spatial frequency domain

Use of DQE and NEQ

- DQE is a relative quantity
 - x-ray fluence is not part of the expression
- DQE ≤ QE ≤ 1
- NEQ can be used for comparison of different detectors (absolute quantity)

Image Detectors

- Ideal detectors
- Analog detectors
- Digital detectors

Analog Image Detectors

- Film
- Screen-film combination
- Intensifying screen/TV (fluoroscopy)
- Paper (Xerox)

Film Structure

FIGURE 6-13. Scanning electron micrographs (SEM) are shown. **A:** A top-down SEM image of the emulsion layer of T grain emulsion is shown. **B:** A cross section of the T grain emulsion film is illustrated, showing the grains in the gelatin layer, supported by the polymer film base below. **C:** Cubic grain film emulsion is shown in a top-down SEM view. **D:** A cross sectional SEM image of the cubic grain film is illustrated. SEM photographs courtesy of Drs. Bernard Apple and John Sabol.

Optical Density

$$D = -\log\left(\frac{I}{I_o}\right)$$

Film Density—Logarithmic Transformation

D	I/I_{\circ}
0.11	0.78
1	0.1
2	0.01
3	0.001
4	0.0001

Film Density—Logarithmic Transformation

- Film is not linear
- Problem for linear-system theory
- Linear system approximately valid for low contrast

H&D Curve

H&D Curve

Important Properties of Film

- Speed
- Gamma
- Latitude
- Reciprocity failure

Reciprocity Failure

- Over a range of normal exposure, optical density proportional to exposure (the product of exposure rate and time)
- Analogous to the quantity of x-ray output expressed in mAs
- Reciprocity fails at low (and high) exposure rates
- Failure occurs in film exposed to optical light but not in film exposed to x-ray

H&D Curve of Film Exposed to x-ray

Intensifying Screen

- Absorbs x-ray
 - Much more efficiently than film
- Converts energy to light photons
 - More gain than film

Intensifying Screen

- Benefits
 - Reduce patient exposure
 - Reduce tube loading
 - Reduce effect of patient motion
- Cost
 - Degradation to MTF from light scattering

Light Scatter in Screen

DQE of Film or Screen-Film

$$DQE = \left[\frac{SNR_{out}}{SNR_{in}} \right]^{2}$$

$$DQE = \frac{\left(0.434\gamma\right)^2}{\Phi A \sigma_D^2}$$

$$S_{in} = \Delta \Phi A = (\Phi_2 - \Phi_1) A$$

$$S_{\text{out}} = \Delta D = \left(D_2 - D_1\right)$$

$$N_{in} = \sqrt{\Phi A}$$

$$N_{\text{out}} = \sigma_D$$

MTF for Film or Screen-Film

 Consider low contrast for linear-system theory to work

Derivation of MTF for Film or Screen-Film

$$E(x) = \overline{E} + \Delta E \cos(2\pi \xi x)$$

$$\Delta E > 0$$

$$T(x) = \overline{T} - \Delta T \cos(2\pi \xi x)$$

$$\Delta T > 0$$

$$D(x) = \overline{D} + \Delta D \cos(2\pi \xi x)$$

$$\Delta D > 0$$

Modulation of Low-Contrast Signal

$$M_{in}^{E} = \frac{\left[E(x)\right]_{max} - \left[E(x)\right]_{min}}{\left[E(x)\right]_{max} + \left[E(x)\right]_{min}} = \frac{\Delta E}{\bar{E}}$$

$$M_{out}^{T} = \frac{\Delta T}{\overline{T}}$$

$$M_{out}^{D} = [D(x)]_{max} - [D(x)]_{min} = \Delta D$$

Normalization of MTF

$$M_{out}^{T}(\xi \rightarrow 0) = \gamma \frac{\Delta E}{\overline{E}} = \gamma M_{in}^{E}$$

$$M_{out}^{D}(\xi \rightarrow 0) = 0.434 \gamma \frac{\Delta E}{\overline{E}} = 0.434 \gamma M_{in}^{E}$$

$$\mathsf{MTF}^{\mathsf{T}}\left(\xi\right) = \frac{1}{\gamma} \left| \frac{M_{out}^{\mathsf{T}}}{M_{in}^{\mathsf{E}}} \right|$$

$$\mathsf{MTF}^{D}\left(\xi\right) = \frac{1}{0.434\gamma} \left| \frac{M_{out}^{D}}{M_{in}^{E}} \right|$$

MTF of Film or Screen-Film

$$\mathsf{MTF}^{\mathsf{T}}(\xi) = \frac{M_{out}^{\mathsf{T}}(\xi)}{M_{in}^{\mathsf{E}}(\xi)}$$

$$\mathsf{MTF}^{\mathsf{D}}(\xi) = \frac{M_{out}^{\mathsf{D}}(\xi)}{M_{in}^{\mathsf{E}}(\xi)}$$

$$\mathsf{MTF}^{\mathsf{T}}(\xi) = \mathsf{MTF}^{\mathsf{D}}(\xi)$$

$$\mathsf{MTF}^{\mathsf{T}}(\xi) = \mathsf{MTF}^{\mathsf{D}}(\xi)$$

$$\mathsf{MTF}(\xi) = \frac{1}{\nu} \frac{\Delta T}{\overline{T}} / \frac{\Delta E}{\overline{F}} = \frac{\Delta D}{0.434\nu} / \frac{\Delta E}{\overline{F}}$$

MTF of Film or Screen-Film

- One can measure the MTF in term of film density
- The MTF can be applied to light transmission without modification
- Remarkable given the logarithmic transformation of film

Physics Model of Film Viewing

$$\frac{dI}{I} = -n\sigma_{view} dx$$

$$\frac{I_d}{I_o} = e^{-n\sigma_{view}d}$$

$$D = -log\left(\frac{I_d}{I_o}\right) = 0.434 \ n\sigma_{view}d$$

$$D_{max} = -log\left(\frac{I_d}{I_o}\right) = 0.434 \ N\sigma_{view}d$$

Physics Model of Ag Grain Density

$$\frac{dn_{j}(t)}{dt} = \sigma_{\text{exposure}} \frac{\Phi}{\tau} [n_{j-1}(t) - n_{j}(t)]$$

$$D(\sigma_{exposure}\Phi) = D\left(\frac{\Phi}{\Phi_o}\right) = D_{max}\left[1 - e^{-\frac{\Phi}{\Phi_o}} \sum_{j=0}^{m-1} \frac{\left(\frac{\Phi}{\Phi_o}\right)^j}{j!}\right]$$

Physics Model of Film

- Explains the H&D curve behavior
- Shows that important properties of film or screen-film can be explained from physics first principles

Conversion Efficiency of Intensifying Screen

$$\propto \eta_1 \left(\frac{m \epsilon_o}{\epsilon_{_{_{\scriptscriptstyle X}}}} \right) lpha$$

- Efficiency of x-ray photon absorption
- Efficiency of x-ray photon to light photon conversion
- Efficiency of light photon absorbtion

Geometry of Screen for PSF Calculation

Model of Intensifying Screen PSF

$$dN = \Phi_x(x', y') e^{-\mu z} m\mu dx'dy'dz$$

$$d\Phi_o(x, y) = \frac{dN \cos\theta}{4\pi I^2}$$

$$\Phi_o(x, y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Phi_x(x', y') dx' dy' \int_0^d \frac{m\mu e^{-\mu z} \cos\theta}{4\pi I^2} dz$$

Model of Intensifying Screen PSF

$$\Phi_{x}(x', y') = \delta(x')\delta(y')$$

$$psf(x, y) = \frac{m\mu}{4\pi} \int_0^d \frac{e^{-\mu z} \cos\theta}{I^2} dz$$

$$\Phi_{x}(y') = \delta(y') \qquad \Rightarrow \qquad lsf(y)$$

MTF of Screen-Film

- Can be modeled from first principle (physics and geometry)
- Measured experimentally in practice
- Rotational symmetry assumed

$$\mathsf{MTF}ig(\etaig)$$

Image Detectors

- Ideal detectors
- Analog detectors
- Digital detectors

Digital Image Detectors

- Indirect-conversion digital image detectors
 - Csl coupled with CCD or TFT
- Direct-conversion digital image detectors
 - a-Se
- Photon-counting digital image detectors
- Computed radiography (CR)

Csl

FIGURE 9-4. A scanning electron micrograph illustrates the needle-like structure of a CsI input phosphor.

CR Reader

Summary

- Fundamentals of image detector
- Basic properties of film and screen-film
- Applicability of linear-system analysis
- First-principle modeling of film and screen properties
- Introduction to various types of digital detectors

Physics - Jing 3/30

SNR: = Sin = JAA Prome

 $SNR_{out} = \frac{Sout}{Now} = \frac{AD}{So}$ $\Delta D = \chi(log_{o}e) \cdot \Delta(log) = \chi(log_{o}e) \frac{\Delta \Phi}{\Phi} \quad \forall expan$

 $\overline{DQE} = \left[\frac{\gamma (\log_{10} c) \frac{\Delta \Phi}{\overline{\Phi}}}{\sigma_{\overline{D}}} \right]^{2} \frac{\overline{\Phi} A}{(\Delta \Phi A)^{2}} = \frac{\gamma^{2} (\log_{10} c)^{2}}{\overline{\Phi} A \sigma_{\overline{D}}^{2}}$