A Kernel-based Consensual Aggregation for Regression

Sothea HAS

LPSM, Sorbonne Université (Paris 6) sothea.has@lpsm.paris

23 février 2022

Overview

A. Some studies

- B. Regression configuration
 - 1. Setting
 - 2. Theoretical performance
- C. Application
 - 1. Kernels and basic estimators
 - 2. Simulated datasets
 - 3. Real datasets

- [Mojirsheibani, 1999] : binary classification. Example :
 - **C** = (C_1, C_2, C_3, C_4) : 4 classifiers.
 - A new point x with predictions C(x) = (1, 1, 0, 1).

ID	C_1	C_2	C_3	C_4	у
1	1	1	0	1	1
2	0	0	0	1	0
3	1	1	0	1	0
4	1	1	0	0	1
5	1	1	0	1	1
6	0	1	1	0	1
X	1	1	0	1	ŷ

Table – Table of predictions.

- [Mojirsheibani, 1999] : binary classification. Example :
 - **C** = (C_1, C_2, C_3, C_4) : 4 classifiers.
 - A new point x with predictions C(x) = (1, 1, 0, 1).

ID	C_1	C_2	C_3	C_4	у
1	1	1	0	1	1
2	0	0	0	1	0
3	1	1	0	1	0
4	1	1	0	0	1
5	1	1	0	1	1
6	0	1	1	0	1
X	1	1	0	1	ŷ

Table – Table of predictions.

■ Thus $\hat{y} = 1$.

- [Mojirsheibani, 2000] : exponential kernel-based version. Example :
 - **C** = (C_1, C_2, C_3, C_4) : 4 classifiers.
 - A new point x with predictions $\mathbf{C}(x) = (1, 1, 0, 1)$.

ID	C_1	C_2	C_3	C_4	у
1	1	1	0	1	1
2	0	0	0	1	0
3	1	1	0	1	0
4	1	1	0	0	1
5	1	1	0	1	1
6	0	1	1	0	0
Χ	1	1	0	1	ŷ

Table – Table of predictions.

- [Mojirsheibani, 2000] : exponential kernel-based version. Example :
 - **C** = (C_1, C_2, C_3, C_4) : 4 classifiers.
 - A new point x with predictions C(x) = (1, 1, 0, 1).

ID	C_1	C_2	C_3	C_4	у
1	1	1	0	1	1
2	0	0	0	1	0
3	1	1	0	1	0
4	1	1	0	0	1
5	1	1	0	1	1
6	0	1	1	0	0
X	1	1	0	1	ŷ

Table – Table of predictions.

■ Strongly agree, larger exponential kernel-based weight.

Regression configuration

Setting:

- $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$: input-out data.
- $\mathcal{D}_n = \{(X_i, Y_i)_{i=1}^n\}$: training data of *iid* copies of (X, Y).
- $\mathcal{D}_k = \{ (X_i^{(k)}, Y_i^{(k)})_{i=1}^k \}, \mathcal{D}_\ell = \{ (X_i^{(\ell)}, Y_i^{(\ell)})_{i=1}^\ell \} \subset \mathcal{D}_n \text{ such that } \mathcal{D}_k \cup \mathcal{D}_\ell = \mathcal{D}_n \text{ and } \mathcal{D}_k \cap \mathcal{D}_\ell = \emptyset.$
- $\mathbf{r}_k = (r_{k,1}, ..., r_{k,M})$: M regression estimators constructed using \mathcal{D}_k .
- $g^*(X) = \mathbb{E}[Y|X]$: the regression function over X.
- lacksquare $g^*(\mathbf{r}_k(X)) = \mathbb{E}[Y|\mathbf{r}_k(X)]$: the regression function over $\mathbf{r}_k(X)$.

Quadratic Risk:

$$\mathcal{R}_X(f) = \mathbb{E}[(f(X) - g^*(X))^2].$$

COBRA method

- [Biau et al., 2016] : regression configuration of [Mojirsheibani, 1999].
- The combination :

$$g_n(\mathbf{r}_k(x)) = \sum_{i=1}^{\ell} W_{n,i}(x) Y_i^{(\ell)}$$

where the weight is defined by,

$$W_{n,i}(x) = \frac{\prod_{m=1}^{M} \mathbb{1}_{\{|r_{k,m}(X_i^{(\ell)}) - r_{k,m}(x)| < \varepsilon\}}}{\sum_{j=1}^{\ell} \prod_{m=1}^{M} \mathbb{1}_{\{|r_{k,m}(X_j^{(\ell)}) - r_{k,m}(x)| < \varepsilon\}}}, i = 1, 2, ..., n.$$

for some smoothing parameter $\varepsilon > 0$.

Motivation of the present method

■ [Has et al., 2021] : "KFC : A clusterwise supervised learning procedure based one aggregation of distances".

Motivation of the present method

- [Has et al., 2021]: "KFC: A clusterwise supervised learning procedure based one aggregation of distances".
- \blacksquare K/F/C = K-means/Fitting/Consensual Aggregation.

Motivation of the present method

- [Has et al., 2021] : "KFC : A clusterwise supervised learning procedure based one aggregation of distances".
- \blacksquare K/F/C = K-means/Fitting/Consensual Aggregation.
- Preprint: https://hal.archives-ouvertes.fr/hal-02884333v5.

The present method

■ $K : \mathbb{R}^M \to \mathbb{R}$, a regular kernel satisfying :

$$\exists b, \kappa_0, \rho > 0 \text{ s.t} \begin{cases} \forall x \in \mathbb{R}^M : b \mathbb{1}_{B_M(0,\rho)}(x) \leq K(x) \leq 1 \\ \int_{\mathbb{R}^M} \sup_{u \in B_M(x,\rho)} K(u) dx = \kappa_0 < +\infty \end{cases}$$

where $B_M(x,r) = \{z \in \mathbb{R}^M : \|x - z\|_2 < r\}$, open ball of \mathbb{R}^M .

The present method

■ $K : \mathbb{R}^M \to \mathbb{R}$, a regular kernel satisfying :

$$\exists b, \kappa_0, \rho > 0 \text{ s.t} \begin{cases} \forall x \in \mathbb{R}^M : b \mathbb{1}_{B_M(0,\rho)}(x) \leq K(x) \leq 1 \\ \int_{\mathbb{R}^M} \sup_{u \in B_M(x,\rho)} K(u) dx = \kappa_0 < +\infty \end{cases}$$

where $B_M(x,r) = \{z \in \mathbb{R}^M : ||x-z||_2 < r\}$, open ball of \mathbb{R}^M .

■ We propose the following weight :

$$W_{n,i}(x) = \frac{K_h(\mathbf{r}_k(X_i^{(\ell)}) - \mathbf{r}_k(x))}{\sum_{j=1}^{\ell} K_h(\mathbf{r}_k(X_j^{(\ell)}) - \mathbf{r}_k(x))}, i = 1, 2, ..., \ell,$$

where $K_h(x) = K(x/h)$ for some h > 0 with 0/0 = 0.

The present method

• $K : \mathbb{R}^M \to \mathbb{R}$, a regular kernel satisfying :

$$\exists b, \kappa_0, \rho > 0 \text{ s.t} \begin{cases} \forall x \in \mathbb{R}^M : b \mathbb{1}_{B_M(0,\rho)}(x) \leq K(x) \leq 1 \\ \int_{\mathbb{R}^M} \sup_{u \in B_M(x,\rho)} K(u) dx = \kappa_0 < +\infty \end{cases}$$

where $B_M(x,r) = \{z \in \mathbb{R}^M : ||x-z||_2 < r\}$, open ball of \mathbb{R}^M .

■ We propose the following weight :

$$W_{n,i}(x) = \frac{K_h(\mathbf{r}_k(X_i^{(\ell)}) - \mathbf{r}_k(x))}{\sum_{j=1}^{\ell} K_h(\mathbf{r}_k(X_j^{(\ell)}) - \mathbf{r}_k(x))}, i = 1, 2, ..., \ell,$$

where $K_h(x) = K(x/h)$ for some h > 0 with 0/0 = 0.

Again, the combination is :

$$g_n(\mathbf{r}_k(x)) = \sum_{i=1}^{\ell} W_{n,i}(x) Y_i^{(\ell)}$$

Proposition.1

Let $\mathbf{r}_k = (r_{k,1}, r_{k,2}, ..., r_{k,M})$ be the collection of all basic estimators and $g_n(\mathbf{r}_k(x))$ be the combined estimator computed at point $x \in \mathbb{R}^d$. Then, for all distributions of (X, Y) with $\mathbb{E}[|Y|^2] < +\infty$,

$$\mathbb{E}\left[|g_n(\mathbf{r}_k(X)) - g^*(X)|^2\right] \le \inf_{f \in \mathcal{G}} \mathbb{E}\left[|f(\mathbf{r}_k(X)) - g^*(X)|^2\right] + \mathbb{E}\left[|g_n(\mathbf{r}_k(X)) - g^*(\mathbf{r}_k(X))|^2\right],$$

where $\mathcal{G} = \{f : \mathbb{R}^M \to \mathbb{R}, \text{s.t } \mathbb{E}[|f(\mathbf{r}_k(X))|^2] < +\infty\}$. In particular,

$$\mathbb{E}\Big[|g_{n}(\mathbf{r}_{k}(X)) - g^{*}(X)|^{2}\Big] \leq \min_{1 \leq m \leq M} \mathbb{E}\Big[|r_{k,m}(X) - g^{*}(X)|^{2}\Big] + \mathbb{E}\Big[|g_{n}(\mathbf{r}_{k}(X)) - g^{*}(\mathbf{r}_{k}(X))|^{2}\Big].$$

Proposition.2

Assume that $r_{k,m}$ is bounded for all m=1,2,..,M. Let $h\to 0$ and $\ell\to +\infty$ such that $h^M\ell\to +\infty$. Then

$$\mathbb{E} \Big[|g_n(\mathbf{r}_k(X)) - g^*(\mathbf{r}_k(X))|^2 \Big] \to 0 \text{ as } \ell \to +\infty$$

for all distribution of (X, Y) s.t $\mathbb{E}[|Y|^2] < +\infty$. Thus,

$$\limsup_{\ell \to +\infty} \mathbb{E} \Big[|g_n(\mathbf{r}_k(X)) - g^*(X)|^2 \Big] \leq \inf_{f \in \mathcal{G}} \mathbb{E} \Big[|f(\mathbf{r}_k(X)) - g^*(X)|^2 \Big].$$

And in particular,

$$\limsup_{\ell \to +\infty} \mathbb{E} \Big[|g_n(\mathbf{r}_k(X)) - g^*(X)|^2 \Big] \leq \min_{1 \leq m \leq M} \mathbb{E} \Big[|r_{k,m}(X) - g^*(X)|^2 \Big].$$

$\mathsf{Theorem}$

Assume that

- Y and all the basic machines $r_{k,m}$, m = 1, 2, ..., M, are bounded by R.
- $\blacksquare \exists L > 0, \forall k \geq 1$:

$$|g^*(\mathbf{r}_k(x)) - g^*(\mathbf{r}_k(y))| \le L ||\mathbf{r}_k(x) - \mathbf{r}_k(y)||, \forall x, y \in \mathbb{R}^d.$$

 $\exists R_K, C_k > 0 : K(z) \|z\|^2 \leq \frac{C_K}{1 + \|z\|^M}, \forall z \in \mathbb{R}^M \text{ such that } \|z\| \geq R_K.$

Then, with the choice of $h \propto \ell^{-\frac{M+2}{M^2+2M+4}}$, there exists C > 0 such that

$$\mathbb{E}[|g_n(\mathbf{r}_k(X)) - g^*(X)|^2] \le \min_{1 \le m \le M} \mathbb{E}[|r_{k,m}(X) - g^*(X)|^2] + C\ell^{-\frac{4}{M^2 + 2M + 4}}.$$

$\mathsf{Theorem}$

Assume that

- Y and all the basic machines $r_{k,m}$, m = 1, 2, ..., M, are bounded by R.
- $\blacksquare \exists L > 0, \forall k \geq 1$:

$$|g^*(\mathbf{r}_k(x)) - g^*(\mathbf{r}_k(y))| \le L ||\mathbf{r}_k(x) - \mathbf{r}_k(y)||, \forall x, y \in \mathbb{R}^d.$$

 $\exists R_K, C_k > 0 : K(z) \|z\|^2 \leq \frac{C_K}{1 + \|z\|^M}, \forall z \in \mathbb{R}^M \text{ such that } \|z\| \geq R_K.$

Then, with the choice of $h \propto \ell^{-\frac{M+2}{M^2+2M+4}}$, there exists C > 0 such that

$$\mathbb{E}[|g_n(\mathbf{r}_k(X)) - g^*(X)|^2] \le \min_{1 \le m \le M} \mathbb{E}[|r_{k,m}(X) - g^*(X)|^2] + C\ell^{-\frac{4}{M^2 + 2M + 4}}.$$

* Remark : rate in [Biau et al., 2016] is of order $O(\ell^{-2/(M+2)})$. We can get as close as we want to this rate with exponential bound on the kernels.

Optimization : Gradient descent

■ Motivation : convex-like curve of risk.

Optimization: Gradient descent

- Motivation : convex-like curve of risk.
- Objective function : κ -fold cross validation error,

$$\varphi^{\kappa}(h) = \frac{1}{\kappa} \sum_{p=1}^{\kappa} \sum_{(X_j, Y_j) \in F_p} [g_n(\mathbf{r}_k(X_j)) - Y_j]^2,$$

where
$$g_n(\mathbf{r}_k(X_j)) = \sum_{(X_i,Y_i) \in \mathcal{D}_\ell \setminus F_p} W_{n,i}(X_j) Y_i$$
.

Optimization: Gradient descent

- Motivation : convex-like curve of risk.
- lacksquare Objective function : κ -fold cross validation error,

$$\varphi^{\kappa}(h) = \frac{1}{\kappa} \sum_{p=1}^{\kappa} \sum_{(X_j, Y_j) \in F_p} [g_n(\mathbf{r}_k(X_j)) - Y_j]^2,$$

where $g_n(\mathbf{r}_k(X_j)) = \sum_{(X_i,Y_i) \in \mathcal{D}_\ell \setminus F_p} W_{n,i}(X_j) Y_i$.

■ Algorithm:

Gradient descent for estimating h^*

- **1** Initialization : h_0 , a learning rate $\lambda > 0$, threshold $\delta > 0$ and the maximum number of iteration N.
- 2 For k=1,2,...,N, while $\left|\frac{d}{dh}\varphi^{\kappa}(h_{k-1})\right|>\delta$ do :

$$h_k \leftarrow h_{k-1} - \lambda \frac{d}{dh} \varphi^{\kappa}(h_{k-1})$$

3 return h_k violating the **while** condition or h_N to be the estimation of h^* .

Kernels and basic estimators

■ Kernels :

Kernel	Formula
Naive ¹	$K(x) = \prod_{i=1}^{d} \mathbb{1}_{\{ x_i \le 1\}}$
Epanechnikov	$K(x) = (1 - x ^2) \mathbb{1}_{\{ x \le 1\}}$
Bi-weight	$K(x) = (1 - x ^2)^2 \mathbb{1}_{\{ x \le 1\}}$
Tri-weight	$K(x) = (1 - x ^2)^3 \mathbb{1}_{\{ x \le 1\}}$
Compact-support Gaussian	$K(x) = \exp\{-\ x\ ^2/(2\sigma^2)\} \hat{\mathbb{1}}_{\{\ x\ \le \rho_1\}}, \sigma, \rho_1 > 0$
Gaussian	$K(x) = \exp\{-\ x\ ^2/(2\sigma^2)\}, \sigma > 0$
4-exponential	$K(x) = \exp\{-\ x\ ^4/(2\sigma^4)\}, \sigma > 0$

Table - Kernel functions used.

■ Basic estimators : Ridge, Lasso, kNN, Pruned Tree and RF.

^{1.} The naive kernel corresponds to the method by [Biau et al., 2016].

Uncorrelated case

- $X \sim \mathcal{U}[-1,1]^d$ iid, $d \in \{30, 50, 100, 300\}$ and $n \in \{500, 600, 700, 800\}$.
- Model 9 and 10 are high-dimensional cases where d = 1000 and d = 1500.
- Average MSEs and SDs over 100 runs are reported.

Mod	Las	Rid	kNN	Tr	RF	COBRA	Epan	Bi-wgt	Tri-wgt	C-Gaus	Gauss	Exp4
1.	0.156 (0.016)	0.134 (0.013)	0.144 (0.014)	0.027 (0.004)	0.033 (0.004)	0.022 (0.004)	0.020 (0.003)	0.019 (0.003)	0.019 (0.003)	0.019 (0.003)	0.018 (0.002)	0.019 (0.003)
2.	1.301	0.784	0.873	1.124	0.707	0.722	0.718	0.712	0.715	0.712	0.709	0.710
	(0.216)	(0.110)	(0.123)	(0.165)	(0.097)	(0.065)	(0.079)	(0.080)	(0.079)	(0.079)	(0.078)	(0.079)
3.	0.664	0.669	1.477	0.797	0.629	0.554	0.482	0.478	0.476	0.479	0.475	0.483
	(0.107)	(0.255)	(0.192)	(0.135)	(0.091)	(0.069)	(0.062)	(0.060)	(0.060)	(0.063)	(0.060)	(0.060)
4.	7.783	6.550	10.238	3.796	3.774	3.608	3.231	3.185	3.153	3.189	2.996	3.186
	(1.121)	(1.115)	(1.398)	(0.840)	(0.523)	(0.526)	(0.383)	(0.382)	(0.384)	(0.371)	(0.384)	(0.464)
5.	0.508	0.518	0.699	0.575	0.436	0.429	0.389	0.387	0.386	0.387	0.383	0.387
	(0.051)	(0.073)	(0.084)	(0.081)	(0.051)	(0.035)	(0.031)	(0.030)	(0.030)	(0.030)	(0.030)	(0.028)
6.	2.693	1.958	2.675	3.065	1.826	1.574	1.274	1.259	1.254	1.270	1.273	1.286
	(0.537)	(0.292)	(0.349)	(0.475)	(0.262)	(0.270)	(0.129)	(0.130)	(0.130)	(0.125)	(0.130)	(0.130)
7.	1.971	0.796	1.074	0.737	0.515	0.506	0.472	0.468	0.467	0.469	0.451	0.477
	(0.410)	(0.132)	(0.152)	(0.109)	(0.073)	(0.063)	(0.049)	(0.048)	(0.049)	(0.049)	(0.049)	(0.067)
8.	0.134	0.131	0.200	0.174	0.127	0.104	0.092	0.091	0.091	0.091	0.091	0.094
	(0.016)	(0.020)	(0.020)	(0.034)	(0.013)	(0.013)	(0.013)	(0.013)	(0.013)	(0.013)	(0.011)	(0.016)
9.	1.592	2.948	3.489	1.830	1.488	1.130	0.929	0.918	0.914	0.918	0.895	0.993
	(0.219)	(0.436)	(0.516)	(0.373)	(0.267)	(0.151)	(0.128)	(0.127)	(0.130)	(0.124)	(0.126)	(0.186)
10.	2012.660	1485.065	1778.955	3058.381	1618.977	1511.283	1462.509	1458.306	1459.558	1452.523	1400.365	1414.316
	(284.391)	(210.816)	(261.396)	(486.504)	(231.555)	(129.796)	(143.976)	(142.988)	(142.602)	(141.168)	(143.330)	(144.929)

Correlated case

- $X \sim \mathcal{N}(0, \Sigma)$ with $\Sigma_{ij} = 2^{-|i-j|}$ for $1 \leq i, j \leq d$.
- Model $10:1 \text{ unit} = 10^8$.

Mod	Las	Rid	kNN	Tr	RF	COBRA	Epan	Bi-wgt	Tri-wgt	C-Gaus	Gauss	Exp4
1.	2.294	1.947	1.941	0.320	0.542	0.307	0.304	0.301	0.288	0.297	0.269	0.291
1.	(0.544	(0.507)	(0.487)	(0.145)	(0.231)	(0.129)	(0.105)	(0.111)	(0.103)	(0.104)	(0.092)	(0.098)
2.	14.273	8.442	8.572	6.796	5.135	5.345	4.582	4.529	4.491	4.541	4.377	4.910
2.	(2.593)	(1.912)	(1.751)	(1.548)	(1.372)	(1.194)	(0.941)	(0.934)	(0.922)	(0.896)	(0.905)	(1.181)
3.	7.996	6.266	8.704	4.110	3.722	3.327	2.598	2.536	2.444	2.554	2.168	2.357
٥.	(3.393)	(3.296)	(3.523)	(2.894)	(2.956)	(1.006)	(0.912)	(0.944)	(0.840)	(0.907)	(0.680)	(0.756)
4	61.474	42.351	46.934	8.855	13.381	9.599	10.511	9.963	9.682	10.085	9.056	9.713
4.	(13.986)	(11.622)	(12.543)	(3.480)	(5.549)	(4.125)	(2.961)	(3.101)	(2.860)	(2.904)	(2.407)	(2.695)
4	6.805	7.479	10.342	4.000	4.880	3.225	2.640	2.401	2.235	2.412	1.792	2.194
4.	(3.685)	(5.336)	(5.425)	(3.144)	(3.787)	(2.088)	(1.455)	(1.387)	(1.250)	(1.355)	(0.913)	(1.242)
6.	4.221	2.087	4.461	3.408	1.701	1.493	1.271	1.238	1.217	1.248	1.097	1.270
0.	(0.848)	(0.485)	(0.599)	(0.636)	(0.288)	(0.326)	(0.149)	(0.146)	(0.143)	(0.148)	(0.145)	(0.386)
7	17.875	4.695	5.591	4.132	3.081	3.304	2.819	2.779	2.736	2.788	2.640	2.979
1.	(5.632)	(1.318)	(1.418)	(1.360)	(1.091)	(0.799	(0.636)	(0.614)	(0.605)	(0.623)	(0.590)	(0.764)
8	0.139	0.133	0.201	0.159	0.121	0.102	0.100	0.100	0.100	0.100	0.092	0.092
0.	(0.016)	(0.020)	(0.019)	(0.035)	(0.013)	(0.021)	(0.020)	(0.021)	(0.020)	(0.020)	(0.021)	(0.018)
9.	43.445	37.827	43.991	15.258	16.957	13.505	11.303	11.007	11.067	11.206	10.303	12.346
9.	(12.210)	(12.201)	(12.920)	(8.119)	(8.774)	(4.822)	(3.891)	(3.815)	(3.949)	(3.960)	(3.634)	(5.014)
10.	7235.062	5244.843	7636.811	13014.596	7092.741	5147.950	4717.225	4669.516	4663.430	4697.019	4660.043	5073.591
10.	(1100.579)	(996.181)	(1159.445)	(2020.133)	(1030.249)	(835.384)	(703.049)	(696.027)	(687.474)	(681.370)	(764.363)	(1022.894)

Real datasets

Average RMSEs and SDs over 100 runs are reported.

■ **House** (\$10⁴) : [Kaggle, 2016].

■ Wine: [Dua and Graff, 2017b, Cortez et al., 2009].

■ **Abalone** : [Dua and Graff, 2017a].

■ Air compressor : [Cadet et al., 2005].

■ Wind turbine : [Fischer et al., 2017].

Model	Las	Rid	kNN	Tr	RF	COBRA	Gauss
House	241083.959	241072.974	245153.608	254099.652	205943.768	223596.317	209955.276
	(8883.107)	(8906.332)	(23548.367)	(9350.885)	(7496.766)	(13299.934)	(7815.623)
Wine	0.0.660	0.685	0.767	0.711	0.623	0.650	0.617
	(0.029)	(0.053)	(0.031)	(0.030)	(0.028)	(0.026)	(0.020)
Abalone	2.204	2.215	2.175	2.397	2.153	2.171	2.128
	(0.071)	(0.075)	(0.062)	(0.072)	(0.060)	(0.081)	(0.057)
Air	163.099	164.230	241.657	351.317	174.836	172.858	163.253
	(3.694)	(3.746)	(5.867)	(31.876)	(6.554)	(7.644)	(3.333)
Turbine	70.051	68.987	44.516	81.714	38.894	38.927	37.135
	(4.986)	(3.413)	(1.671)	(4.976)	(1.506)	(1.561)	(1.555)

Running times on some datasets

Running times over 100 runs are reported.

Thank you

Question?

■ We extend the theoretical result of [Biau et al., 2016] to a more general kernel-based framework.

- We extend the theoretical result of [Biau et al., 2016] to a more general kernel-based framework.
- In practical point of view :

- We extend the theoretical result of [Biau et al., 2016] to a more general kernel-based framework.
- In practical point of view :
 - The performance of the method is improved with the introduction of more smooth kernel functions.

- We extend the theoretical result of [Biau et al., 2016] to a more general kernel-based framework.
- In practical point of view :
 - The performance of the method is improved with the introduction of more smooth kernel functions.
 - The computational time is improved with gradient descent algorithm.

Thank you

Question?

References I

Biau, G., Fischer, A., Guedj, B., and Malley, J. D. (2016).

COBRA: a combined regression strategy. *Journal of Multivariate Analysis*, 146:18–28.

6-1-1 0 H---- 6 --- M (2005)

Cadet, O., Harper, C., and Mougeot, M. (2005).

Monitoring energy performance of compressors with an innovative auto-adaptive approach. In *Instrumentation System and Automation -ISA- Chicago*.

Modeling wine preferences by data mining from physicochemical properties.

Decision Support Systems, Elsevier, 47:547-553.

Devroye, L., Györfi, L., and Lugosi, G. (1997).

A Probabilistic Theory of Pattern Recognition.

Dua, D. and Graff, C. (2017a).

UCI machine learning repository : Abalone data set.

Dua, D. and Graff, C. (2017b).

UCI machine learning repository : Wine quality data set.

Fischer, A., Montuelle, L., Mougeot, M., and Picard, D. (2017).

Statistical learning for wind power : A modeling and stability study towards forecasting. Wiley Online Library, 20(12):2037–2047.

References II

Fischer, A. and Mougeot, M. (2019).

Aggregation using input-output trade-off.

Journal of Statistical Planning and Inference, 200:1-19.

Györfi, L., Kohler, M., Krzyżak, A., and Walk, H. (2002).

A Distribution-Free Theory of Nonparametric Regression. Springer.

Has, S., Fischer, A., and Mougeot, M. (2021).

Kfc: A clusterwise supervised learning procedure based on aggregation of distances.

Journal of Statistical Computation and Simulation, 0(0):1-21.

Kaggle (2016).

House sales in king county, usa.

Mojirsheibani, M. (1999).

Combined classifiers via disretization.

Journal of the American Statistical Association, 94(446):600-609.

Mojirsheibani, M. (2000).

A kernel-based combined classification rule.

Journal of Statistics and Probability Letters, 48(4):411-419.

Mojirsheibani, M. and Kong, J. (2016).

An asymptotically optimal kernel combined classifier.

Journal of Statistics and Probability Letters, 119:91–100.

