W2. Segmentation (Clustering)

December 18, 2018

0.1 Market Segmentation

Li Liu 12/17/2018

Case: Data of attribute importance on cars from 72 students (24 MBAs+49 undergrads)

```
In [33]: install.packages('gmodels', repos='http://cran.us.r-project.org')
         install.packages('mclust', repos='http://cran.us.r-project.org')
         install.packages('NbClust', repos='http://cran.us.r-project.org')
         install.packages('tidyverse', repos='http://cran.us.r-project.org')
         install.packages('factoextra', repos='http://cran.us.r-project.org')
         library(factoextra)
         library(tidyverse)
         library(NbClust)
         library(gmodels)
         library(mclust)
package 'gmodels' successfully unpacked and MD5 sums checked
The downloaded binary packages are in
        C:\Users\LI LIU\AppData\Local\Temp\RtmpWoPRG1\downloaded_packages
package 'mclust' successfully unpacked and MD5 sums checked
The downloaded binary packages are in
        C:\Users\LI LIU\AppData\Local\Temp\RtmpWoPRG1\downloaded packages
Warning message:
"package 'NbClust' is in use and will not be installed "Package 'mclust' version 5.4.2
Type 'citation("mclust")' for citing this R package in publications.
```

0.1.1 Hierarchial Clustering

Hierarchical cluster analysis on a set of dissimilarities and methods for analyzing it.

```
In [90]: df<-read.csv("SegmentationData.csv",row.names=1)</pre>
         head(df)
         attach(df)
                                Sportiness Performance Comfort MBA Choice
    Trendy
            Styling
                    Reliability
        10
            20
                     35
                                5
                                           20
                                                         10
                                                                   MBA
                                                                         Lexus
        25
            5
                     25
                                5
                                           25
                                                         15
                                                                         BMW
                                                                   MBA
        10
           20
                     30
                                10
                                           10
                                                         20
                                                                   MBA Lexus
        10
           15
                     30
                                10
                                           20
                                                         15
                                                                   MBA
                                                                         BMW
        20
           10
                                                                   MBA Mercedes
                     40
                                1
                                           14
                                                         15
        20 | 30
                    10
                                20
                                           10
                                                         10
                                                                   MBA Lexus
In [102]: #Standarize raw data
          stddf<-scale(df[,c("Trendy", "Styling",</pre>
                              "Reliability", "Sportiness", "Performance", "Comfort")])
          #Calculate Euclidean Distance
          dist<-dist(stddf,method="euclidean")</pre>
In [7]: #Distance Matrix
        as.matrix(dist)[1:10,1:5]
                                               5
        0.000000
                 3.730216
                                     1.775616
     1
                           2.802191
                                               2.746615
     2
       3.730216 0.000000 4.218662
                                     3.017462
                                               2.984534
       2.802191 4.218662 0.000000 1.974683
                                               3.331082
     4 | 1.775616 | 3.017462 | 1.974683
                                     0.000000
                                               2.924141
     5
       2.746615 2.984534 3.331082
                                     2.924141
                                               0.000000
       5.280741 5.984364 4.536636
                                     4.783331
                                               6.598513
     6
       3.589287 3.493220 3.339530
                                     2.128324
                                              4.765912
       2.376538 3.128561 4.238938
                                     2.526470
                                               3.312364
     9
        4.458554 4.494805 4.619433
                                     3.806746
                                               5.084776
    10 | 2.547435
                 3.213949
                           3.411743
                                     2.175899
                                               4.228049
In [103]: #4-cluster
          clust<-hclust(dist,method="ward.D2")</pre>
          plot(clust)
          #Cut trees
          h_clust<-cutree(clust,4)
          rect.hclust(clust,k=4,border='red')
          table(h_clust)
          hclust_summary <- aggregate(stddf[,c("Trendy", "Styling",</pre>
                                                 "Reliability", "Sportiness",
                                                 "Performance", "Comfort")],
                                                  by=list(h_clust),FUN=mean)
          hclust_summary
```

h_clust 1 2 3 4 18 29 17 9

Group.1	Trendy	Styling	Reliability	Sportiness	Performance	Comfort
_				-0.94569654		0.08642535
2	-0.01577854	-0.4249072	-0.28158545	0.50052114	-0.0989237	0.58621035
3	1.14725137	0.8552172	-0.65660558	0.16346240	-0.9192806	-0.69794311
4	-1.10904387	1.1211667	-0.05194561	-0.03015957	0.7455682	-0.74341374

Cluster Dendrogram

dist hclust (*, "ward.D2")

h_clust 1 2 3 27 29 17

	Group.1	Trendy	Styling	Reliability	Sportiness	Performance	Comfort
_	1	-0.70539614	-0.08208834	0.7158620	-0.6405175	0.6850577	-0.1901877
	2	-0.01577854	-0.42490717	-0.2815854	0.5005211	-0.0989237	0.5862104
	3	1.14725137	0.85521724	-0.6566056	0.1634624	-0.9192806	-0.6979431

Cluster Dendrogram

dist hclust (*, "ward.D2")

NcCluster(): use 26 criteria to determine the number of clusters

***: The Hubert index is a graphical method of determining the number of clusters.

In the plot of Hubert index, we seek a significant knee that corresponds to a significant increase of the value of the measure i.e the significant peak in Hi index second differences plot.

***: The D index is a graphical method of determining the number of clusters.

In the plot of D index, we seek a significant knee (the significant peak in Dissecond differences plot) that corresponds to a significant increase of the value the measure.

- * Among all indices:
- * 8 proposed 2 as the best number of clusters
- * 10 proposed 3 as the best number of clusters
- * 1 proposed 5 as the best number of clusters
- * 1 proposed 7 as the best number of clusters
- \ast 3 proposed 9 as the best number of clusters
- st 1 proposed 10 as the best number of clusters

***** Conclusion *****

* According to the majority rule, the best number of clusters is 3

		KL	CH	Hartiga	n CCC	Scott	Marriot	TrCovW	TraceW	Friedma	
	2	1.0799	19.4423	15.2666	-3.4128	63.8586	564035051	5038.8631	282.6111	3.1512	
	3	4.2356	19.1708	9.1557	-3.8247	125.3102	546888028	3415.0147	232.5975	5.4783	
	4	0.3189	17.2540	8.3534	-5.0953	159.1836	611300402	2593.8512	205.6938	7.0207	
¢	. 5	0.5079	16.3550	8.9849	-6.0343	202.7795	525669059	2134.0463	183.4809	8.8405	
\$All.index	6	1.2239	16.3655	7.4554	-5.4291	240.3721	452300734	1641.4307	162.0669	10.4134	
	7	0.9987	16.1533	6.8924	-5.0795	272.0101	399115542	1309.7081	145.8389	11.7806	
	8	0.8637	16.0296	7.0554	-4.7518	305.5157	329419867	1063.7346	132.0490	13.4009	
	9	1.0446	16.1775	6.6456	-4.2941	344.2663	245198975	894.1088	119.1193	15.5956	
	10	0.9691	16.3520	6.6364	-3.8667	376.7922	193878168	720.2895	107.9138	17.7061	
		ı	C :037.1	D 1	C :07.1	D 1 TO	r 1 n	1			
				ue_Duda		_PseudoT2	Fvalue_Be	eale			
		2	0.6251		32.3838		0.3822				
		3	0.4234		20.4305		0.2745				
		4	0.4864		22.1752		0.4062				
\$All.Critic	1371.	5	0.2868		19.8896		0.0573				
\$An.Critic	ai vait	ies 6	0.2552		20.4342 19.7832		0.0034	0.0034			
		7	0.3776				0.1668	0.1668			
		8	0.5502		25.3445		0.5019				
		9	0.5399		24.7090		0.3493				
		10	0.1164		30.3727		0.0422				
			1								
_			KL		Hartig		Scott	Marriot	TrCovW	TraceW	
\$Best.nc	Numl	er_clus		000 2.000	0 3.0000	2.0000	3.0000	3	3.000	3.0000	
	7	/alue_In	dex 4.2	356 19.44	23 6.1109	-3.4128	3 61.4516	81559398	1623.848	23.1098	
\$Best.partition 112131425163728291102111122132143151162173182193203											
21 1 22 2 23 1 24 1 25 3 26 3 27 2 28 3 29 2 30 2 31 3 32 3 33 2 34 3 35 3 36 2 37 1 38 2 39 2 40 1											
41 4	41 2 42 1 43 2 44 1 45 3 46 2 47 2 48 2 49 1 50 2 51 1 52 3 53 2 54 2 55 2 56 2 57 3 58 2 59 2 60 3										

61 3 **62** 3 **63** 2 **64** 3 **65** 3 **66** 2 **67** 2 **68** 3 **69** 2 **70** 3 **71** 2 **72** 3 **73** 1

Cross Tabulation With Tests For Factor Independence link: https://www.rdocumentation.org/packages/gmodels/versions/2.18.1/topics/CrossTable CrossTable(x, y, digits=3, max.width = 5, expected=FALSE, prop.r=TRUE, prop.c=TRUE, prop.t=TRUE, prop.chisq=TRUE, chisq = FALSE, fisher=FALSE, mcnemar=FALSE, resid=FALSE, sresid=FALSE, asresid=FALSE, missing.include=FALSE, format=c("SAS", "SPSS"), dnn = NULL, ...)

Cell Contents

					-
1				N	
1	N	/	Row	Total	-
1	N	/	Col	Total	-
					-

Total Observations in Table: 73

	h_clust			
df\$MBA	1	2	3	Row Total
MBA	14	6	4	24
	0.583	0.250	0.167	0.329
	0.519	0.207	0.235	l I
Undergrad	13	23	13	49
	0.265	0.469	0.265	0.671
	0.481	0.793	0.765	l I
Column Total	27	29	17	73
	0.370	0.397	0.233	l I

Statistics for All Table Factors

0.1.2 K-means clustering

kmeans(x, centers, iter.max = 10, nstart = 1, algorithm = c("Hartigan-Wong", "Lloyd", "Forgy", "MacQueen"), trace=FALSE)

K-Means algorithm (from slides): 1. Start by randomly assigning each subject to a cluster, s=1,...,S 2. Compute the centroid of each cluster and the distance of each subject to each of the clusters centroids 3. Reassign each subject to the cluster with closest centroid 4. Repeat steps 2 and 3 until no further reassignment is possible (i.e., when the within-cluster variance is minimized)

K-means clustering with 3 clusters of sizes 18, 32, 23

Cluster means:

Trendy Styling Reliability Sportiness Performance Comfort
1 -0.637247817 -0.6837159 1.1781135 -1.0328905 0.7785740 0.08642535
2 -0.003271873 -0.3788069 -0.3496669 0.4977728 -0.0445069 0.53615835
3 0.503267855 1.0621176 -0.4355087 0.1157956 -0.5473961 -0.81359668

Clustering vector:

Within cluster sum of squares by cluster:

[1] 81.39207 83.90060 111.49649 (between_SS / total_SS = 35.9 %)

Available components:

- [1] "cluster" "centers" "totss" "withinss" "tot.withinss" [6] "betweenss" "size" "iter" "ifault"
- In [27]: NbClust(data=stddf[,1:5],min.nc=3,max.nc=6,index='all', method="kmeans")
- ***: The Hubert index is a graphical method of determining the number of clusters.

 In the plot of Hubert index, we seek a significant knee that corresponds to a significant increase of the value of the measure i.e the significant peak in Hi index second differences plot.

*** : The D index is a graphical method of determining the number of clusters.

In the plot of D index, we seek a significant knee (the significant peak in Dissecond differences plot) that corresponds to a significant increase of the value the measure.

- * Among all indices:
- * 9 proposed 3 as the best number of clusters
- * 8 proposed 4 as the best number of clusters
- * 1 proposed 5 as the best number of clusters
- \ast 5 proposed 6 as the best number of clusters

**** Conclusion ****

* According to the majority rule, the best number of clusters is 3

		KL		CH	Hartigan	CCC	Scott	Marriot	TrCovW	TraceW	Friedman
	3	2.66	15	23.0027	9.9985	-2.3384	161.6503	332431565	3142.612	217.2313	6.9183
\$All.index	4	2.62	11	20.5604	5.9101	-3.4050	206.2171	320952678	2494.735	190.0809	8.7864
	5	0.30	90	17.9546	3.5125	-5.0208	211.9276	463754305	1884.086	175.0844	9.3054
	6	0.16	67	15.5757	15.2717	-5.9661	250.0332	396233308	1841.278	166.4846	11.9435
		'		1							
				∣ CritValı	ıe_Duda (CritValue_	_PseudoT2	Fvalue_Bea	ale		
			3	0.4864	2	23.2312		0.4623			
\$All.Critical	alVa	lues	4	0.2552	4	13.7876		1.0000			
			5	0.1725	4	17.9798		1.0000			
			6	0.4234	2	20.4305		1.0000			
				ı							
				KL	CH	Harti	gan CCC	Scott	Marriot	TrCovW	TraceW
¢Daat aa	N T	a la 014	21	.t	000 2 000) (000	2 000	0 4.0000	1	4.0000	4.0000

\$Best.partition 1 2 2 2 3 1 4 2 5 2 6 1 7 3 8 2 9 2 10 3 11 2 12 3 13 3 14 1 15 2 16 3 17 1 18 3 19 3 20 1 21 2 22 3 23 2 24 2 25 3 26 1 27 3 28 1 29 2 30 3 31 1 32 1 33 2 34 1 35 1 36 3 37 2 38 3 39 3 40 3 41 3 42 2 43 3 44 2 45 1 46 2 47 3 48 3 49 1 50 3 51 3 52 1 53 3 54 3 55 3 56 3 57 1 58 3 59 3 60 1 61 1 62 1 63 3 64 1 65 1 66 3 67 3 68 1 69 3 70 1 71 3 72 1 73 2

Concordance between kmeans() and hclust() cluster memberships

Warning message in chisq.test(t, correct = FALSE, ...):
"Chi-squared approximation may be incorrect"

Total Observations in Table: 73

I	Kclu\$cluster						
h_clust	1	2	3	Row Total			
1	17	3	7	27			
I	0.630	0.111	0.259	0.370			
I	0.944	0.094	0.304				
I	0.233	0.041	0.096	l I			
2	1	27	1	29			
I	0.034	0.931	0.034	0.397			
I	0.056	0.844	0.043	l I			
I	0.014	0.370	0.014	l I			
3	0	2	15	17			
I	0.000	0.118	0.882	0.233			
I	0.000	0.062	0.652	l I			
I	0.000	0.027	0.205	l I			
Column Total	18	32	23	73			
I	0.247	0.438	0.315	l I			

Statistics for All Table Factors

Visualize K-means cluster "If there are more than two dimensions (variables) fviz_cluster will perform principal component analysis (PCA) and plot the data points according to the first two principal components that explain the majority of the variance."

link: https://uc-r.github.io/kmeans_clustering

In [63]: fviz_cluster(Kclu, data = stddf)

Disadv of K-means: 1. require to specify the clusters number 2. sensitive to outliers 3. data ordering change results

```
In [76]: #Add clustering results as new column

df<-data.frame(stddf)
 df$cluster <- Kclu$cluster
 head(df)</pre>
```

Trendy	Styling	Reliability	Sportiness	Performance	Comfort	cluster
-0.6844274	0.4957124	1.7657213	-1.1636815	0.08545324	-1.10717882	1
1.4386548	-1.9167545	0.3554625	-1.1636815	0.82808260	-0.08408953	1
-0.6844274	0.4957124	1.0605919	-0.1827491	-1.39980547	0.93899976	2
-0.6844274	-0.3084433	1.0605919	-0.1827491	0.08545324	-0.08408953	1
0.7309607	-1.1125989	2.4708507	-1.9484275	-0.80570199	-0.08408953	1
0.7309607	2.1040236	-1.7599257	1.7791159	-1.39980547	-1.10717882	3

0.1.3 Latent Class Analysis

From slides:

Uses a statistical model (vs. numerical algorithm) to form clusters

Assumes that data follow a finite mixture of normal distributions

Estimates a family of models and selects the best based on the Bayesian Information Criterion(BIC)

Outputs cluster means and cluster membership for each subject Requires a large sample size

Gaussian finite mixture model fitted by EM algorithm

Mclust VEE (ellipsoidal, equal shape and orientation) model with 2 components:

```
log.likelihood n df BIC ICL -431.8862 73 27 -979.6149 -990.9626
```

Clustering table:

1 2

47 26

#G1: Styling/Reliability #G2: Spoortiness/Comfort

Group.1	Trendy	Styling	Reliability	Sportiness	Performance	Comfort
1	0.02627812	0.2424889	0.1364223	-0.2787552	-0.04411188	-0.1929288
2	-0.04750275	-0.4383453	-0.2466095	0.5039037	0.07974071	0.3487559

Cell Contents

				-
			N	١
N	/	Row	Total	
N	/	Col	Total	١
				-

Total Observations in Table: 73

	lca\$classification						
df\$MBA	1	2	Row Total				
MBA	20	4	24				
	0.833	0.167	0.329				
	0.426	0.154	l I				
Undergrad	27	22	49				
	0.551	0.449	0.671				
	0.574	0.846					
Column Total	47	26	73				
	0.644	0.356	l I				

Statistics for All Table Factors

```
Pearson's Chi-squared test
```

 $Chi^2 = 5.599129$ d.f. = 1 p = 0.01796941

Pearson's Chi-squared test with Yates' continuity correction

 $Chi^2 = 4.435671$ d.f. = 1 p = 0.03519539

In [100]: #The segments are meaningful:

 ${\it \#BMV} \ \ and \ \ Lexus \ \ are \ \ associated \ \ with \ \ cluster \ 1; \ \ Mercedes \ \ half-half.$

CrossTable(lca\$classification,df\$Choice,prop.chisq = FALSE,

prop.r = T, prop.c = T,prop.t = F,chisq = T)

Cell Contents |------| | N | | N / Row Total | | N / Col Total |

Total Observations in Table: 73

	df\$Choice			
lca\$classification	l BMW	Lexus	Mercedes	Row Total
1	21	17	9	47
	0.447	0.362	0.191	0.644
	0.656	0.773	0.474	
2	11	5	10	26
	0.423	0.192	0.385	0.356
	0.344	0.227	0.526	
Column Total	32	22	19	73
	0.438	0.301	0.260	

Statistics for All Table Factors