Time Response Analysis, Design Specifications and Performance Indices

Time Response of First Order System

Time response: The time solution to differential equation.

Time response consists of: 1.Natural response 2.Forced response

Natural response is caused by the system itself. Also called **transient response** or homogenous solution

Forced response is caused by the input to the control system. Also called **steady-state response** or particular solution.

How to obtain time response?

How to obtain time response?

Why use Transfer Function?
1. Solution by inspection
2. Qualitative solution

How to obtain time response from transfer function?

Given:
$$R(s) = \frac{1}{s} C(s)$$

$$\frac{s+2}{s+5} C(s)$$

How to obtain the time response?

First, we need to understand the concept of **poles** and **zeros**

How to obtain time response from transfer function?

What are poles?

First rule:

The values of Laplace transform variable, s, that cause the transfer function to become infinite.

Second rule:

Any roots of the denominator of the transfer function that are common to the roots of numerator

How to obtain time response from transfer function?

Transfer Function

$$G(s) = \frac{(s+3)}{(s+5)(s+2)(s+3)}$$

First rule:

 $G(s) = \frac{(s+3)}{(s+5)(s+2)(s+3)}$ When s = -3, or s = 23. G(s)=infinity! Therefore, the poles of the transfer function G(s) are -5, -2 and -3.

$$G(s) = \frac{(s+3)}{(s+5)(s+2)(s+3)}$$
 Second rule:
Although the term (s+3) can be cancelled out, the value -3 is still

Second rule:

the poles of the transfer function G(s).

How to obtain time response from transfer function?

What are zeros?

First rule:

The values of Laplace transform variable, s, that cause the transfer function to become zero.

Second rule:

Any roots of the numerator of the transfer function that are common to roots of the denominator

How to obtain time response from transfer function?

Transfer Function

$$G(s) = \frac{(s+3)}{(s+5)(s+2)(s+3)}$$

First rule:

 $G(s) = \frac{(s+3)}{(s+5)(s+2)(s+3)}$ When s = -3, then, G(s) = 0. Therefore, the zero of the transfer function G(s) is -3.

$$G(s) = \frac{(s+3)}{(s+5)(s+2)(s+3)}$$
 Second rule:
Although the term (s+3) can be cancelled out, the value -3 is still

Second rule:

the zero of the transfer function G(s).

How to obtain time response from transfer function?

Transfer Function

$$G(s) = \frac{(s+7)}{(s+1)(s+3)}$$

Zero =
$$-7$$

Poles = -1 , -1 and -3

$$G(s) = \frac{(s+13)(s+3)}{(s+11)(s+2)(s+9)}$$

How to obtain time response from transfer function?

Given:
$$R(s) = \frac{1}{s} C(s)$$

$$\frac{S+2}{S+5} C(s)$$

How to obtain the time response?

- 1. Find C(s)
- 2. Expand the transfer function using partial fraction expansion technique
- 3. Perform inverse Laplace transform

How to obtain time response from transfer function? –Find C(s)

Given:
$$R(s) = \frac{1}{s} C(s)$$

$$\frac{S+2}{s+5} C(s)$$

$$G(s) = \frac{Output}{Input} = \frac{C(s)}{R(s)}$$

$$C(s) = G(s)R(s)$$

How to obtain time response from transfer function? –Find C(s)

What is R(s)?

Step input:
$$r(t) = A$$
 Laplace Transform $R(s) = \frac{A}{S}$

Ramp input:
$$r(t) = At$$
 Laplace Transform $R(s) = \frac{A}{S^2}$

Sine input:
$$r(t) = \sin(\omega t)$$
 Laplace Transform $R(s) = \frac{A}{S^2 + \omega^2}$

How to obtain time response from transfer function? –Find C(s)

Given: $R(s) = \frac{1}{s} \begin{bmatrix} G(s) \\ \frac{s+2}{s+5} \end{bmatrix} C(s)$

R(s) unit step input implies A = 1

$$C(s) = G(s)R(s)$$

$$C(s) = \frac{1}{s} \frac{(s+2)}{(s+5)}$$

How to obtain time response from transfer function? – Expand C(s)

Expand C(s) using Partial Fraction Expansion Technique

$$C(s) = \frac{1}{s} \frac{(s+2)}{(s+5)}$$

$$C(s) = \frac{A}{s} + \frac{B}{s+5} = \frac{(s+2)}{s(s+5)}$$

How to obtain time response from transfer function? – Expand C(s)

$$C(s) = \frac{A}{s} + \frac{B}{s+5} = \frac{(s+2)}{s(s+5)}$$
 How to find A and B?

$$A = \frac{(s+2)}{(s+5)}\Big|_{s\to 0} = \frac{2}{5}$$

$$B = \frac{(s+2)}{(s)} \bigg|_{s \to -5} = \frac{3}{5}$$

$$C(s) = \frac{\frac{2}{5}}{s} + \frac{\frac{3}{5}}{s+5}$$

How to obtain time response from transfer function? – Inverse Laplace Transform

$$R(s) = \frac{1}{s} \qquad C(s)$$

$$\frac{s+2}{s+5} \qquad C(s)$$

$$\frac{2/5}{5}$$
 Inverse Laplace $\frac{2}{5}$ Transform $\frac{2}{5}$

$$\frac{\frac{3}{5}}{\frac{5}{s+5}} \quad \text{Inverse Laplace } \frac{3}{5}e^{-5t}$$

$$C(s) = \frac{\frac{2}{5}}{s} + \frac{\frac{3}{5}}{s+5}$$

$$c(t) = \frac{2}{5} + \frac{3}{5}e^{-5t}$$

Time response

Input pole generates force response

System pole generates natural response

System pole generates natural response in the form of e^{-at}.

Both zero and pole generates the amplitude of time response

$$R(s) = \frac{1}{s}$$

$$(s+3)$$

$$(s+2)(s+4)(s+5)$$

What are poles and zeros?
Poles = -2, -4 and -5
Zero = -3

By inspection:
$$C(s) = \frac{K_1}{s} + \frac{K_2}{(s+2)} + \frac{K_3}{(s+4)} + \frac{K_4}{(s+5)}$$
Influence of poles on time response

Force response

Natural response

$$R(s) = \frac{1}{s}$$

$$(s+3)$$

$$(s+2)(s+4)(s+5)$$

$$C(s) \equiv \frac{K_1}{s} + \frac{K_2}{(s+2)} + \frac{K_3}{(s+4)} + \frac{K_4}{(s+5)}$$

$$c(t) \equiv K_1 + K_2 e^{-2t} + K_3 e^{-4t} + K_4 e^{-5t}$$

Time response – solution to differential equation

$$C(s) = \frac{K_1}{s} + \frac{K_2}{(s+2)} + \frac{K_3}{(s+4)} + \frac{K_4}{(s+5)}$$
$$c(t) = K_1 + K_2 e^{-2t} + K_3 e^{-4t} + K_4 e^{-5t}$$

How to evaluate K1, K2, K3 and K4?

$$C(s) = \frac{(s+3)}{s(s+2)(s+4)(s+5)}$$

$$sC(s) = K_1 = \frac{s(s+3)}{s(s+2)(s+4)(s+5)} \Big|_{s\to 0} = \frac{(s+3)}{(s+2)(s+4)(s+5)} \Big|_{s\to 0} = \frac{3}{11}$$

$$sC(s) = K_1 = \frac{s(s+3)}{s(s+2)(s+4)(s+5)} \bigg|_{s \to 0} = \frac{(s+3)}{(s+2)(s+4)(s+5)} \bigg|_{s \to 0} = \frac{0+3}{(0+2)(0+4)(0+5)} = \frac{3}{40}$$

$$(s+2)C(s) = K_2 = \frac{(s+2)(s+3)}{s(s+2)(s+4)(s+5)} \bigg|_{s \to -2} = \frac{(s+3)}{s(s+4)(s+5)} \bigg|_{s \to -2} = \frac{(-2+3)}{-2(-2+4)(-2+5)} = \frac{1}{-12}$$

$$(s+4)C(s) = K_1 = \frac{(s+4)(s+3)}{s(s+2)(s+4)(s+5)} \bigg|_{s \to -4} = \frac{(s+3)}{s(s+2)(s+5)} \bigg|_{s \to -4} = \frac{(-4+3)}{(-4)(-4+2)(-4+5)} = \frac{-1}{8}$$

$$(s+5)C(s) = K_1 = \frac{(s+5)(s+3)}{s(s+2)(s+4)(s+5)} \bigg|_{s \to -5} = \frac{(s+3)}{s(s+2)(s+4)} \bigg|_{s \to -5} = \frac{(-5+3)}{-5(-5+2)(-5+4)} = \frac{-2}{-15}$$

$$c(t) \equiv K_1 + K_2 e^{-2t} + K_3 e^{-4t} + K_4 e^{-5t}$$

$$c(t) \equiv \frac{3}{40} - \frac{1}{12}e^{-2t} - \frac{1}{8_3}e^{-4t} + \frac{2}{15}e^{-5t}$$

What is the order of a control system?

The highest order of differential equations

The number of poles

What is the order of a control system?

First Order System

What is the first order of a control system?

Solution Using Inspection

$$C(s) = \frac{a}{s(s+a)} \qquad K_1 = sC(s) = \frac{sa}{s(s+a)} \Big|_{s\to 0} = \frac{a}{(s+a)} \Big|_{s\to 0} = \frac{a}{a} = 1$$

$$C(s) = \frac{K_1}{s} + \frac{K_2}{(s+a)}$$

$$C(t) = K_1 + K_2 e^{-at}$$

$$K_2 = (s+a)C(s) = \frac{(s+a)a}{s(s+a)} \Big|_{s\to -a} = \frac{a}{s} \Big|_{s\to -a} = -1$$

What is the first order of a control system?

Transfer Function

Pole Location

Time response

$$c(t) = 1 - e^{-at}$$

Time Response Plot

What is the first order of a control system? – Performance Parameters

What is the first order of a control system? – Performance Parameters

Rise Time Time to rise from 0.1 to 0.9 of final value

$$T_r = T_{90\%} - T_{10\%}$$

$$T_r = \frac{2.31}{a} - \frac{0.11}{a}$$

$$T_r = \frac{2.2}{a}$$

What is the first order of a control system? – Performance Parameters

Settling Time

Time to reach 2% of final value

$$T_s = \frac{4}{a}$$

What is the first order of a control system? – **Performance Parameters**

Time constant

63% of Final value

$$T_c = \frac{1}{a}$$

Rise Time

Time to rise from 0.1 to 0.9 of final $T_r = \frac{2.2}{1.00}$ value

$$T_r = \frac{2.2}{a}$$

Settling Time

Time to reach 2% of final value

$$T_s = \frac{4}{a}$$

$$G(s) = \frac{50}{s+50} \quad R(s) = \frac{1}{s}$$

First Order because one pole: pole = a = -50

By inspection the solution of unit step input is:

$$c(t) = 1 - e^{-50t}$$

Time constant

$$T_c = \frac{1}{a} = \frac{1}{50} \sec$$

Rise Time

$$T_r = \frac{2.2}{a} = \frac{2.2}{50} \sec$$

Settling Time

$$T_s = \frac{4}{a} = \frac{4}{50} \sec$$

$$G(s) = \frac{200}{s+50}$$
 $R(s) = \frac{1}{s}$

But the numerator (200) is not equal to "a" (50).

$$G(s) = 4\frac{50}{s+50}$$

By inspection the solution of unit step input is:

$$c(t) = 4(1 - e^{-50t})$$

In general:

$$G(s) = \frac{K}{s+a} \qquad c(t) = \frac{K}{a} (1 - e^{-at})$$

Notice that time constant, rise time and settling time are still the same. The performances only depend on the pole.

$$T_c = \frac{1}{a} \qquad T_s = \frac{4}{a} \qquad T_r = \frac{2.2}{a}$$

$$G(s) = \frac{20}{s+5}$$

What are the time constant, rise time, settling time and steady-state value?

General Response of Second Order System

Second Order System System with two poles

Over-damped Time Response

$$\sigma_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$\sigma_{1,2} = \frac{-9 \pm \sqrt{9^2 - 4(1)(9)}}{2(1)} = \frac{-9 \pm \sqrt{45}}{2}$$

$$\sigma_1 = -7.854$$

$$\sigma_2 = -1.146$$

General solution

$$C(s) = \frac{9}{s(s+\sigma_1)(s+\sigma_2)} = \frac{K_1}{s} + \frac{K_2}{s+\sigma_1} + \frac{K_3}{s+\sigma_2}$$

$$c(t) = K_1 - K_2 e^{-\sigma_1 t} - K_3 e^{-\sigma_2 t}$$

Under-damped Time Response

$$\sigma_{1,2} = \frac{-2 \pm \sqrt{2^2 - 4(1)(9)}}{2(1)} = \frac{-2 \pm j\sqrt{32}}{2}$$

$$\sigma_1 = -1 + j\sqrt{8} \qquad \sigma_{1,2} = -1 \pm j\sqrt{8}$$

$$\sigma_2 = -1 - j\sqrt{8} \qquad \sigma_{1,2} = -\sigma_d \pm j\omega_n$$

General solution

$$c(c(t) = Ae^{-\sigma_d t} \cos(\omega_d - \phi))$$
Check this!

Under-damped Time Response

$$c(t) = Ae^{-\sigma_d t} \cos(\omega_d - \phi)$$

Un-damped Time Response

$$\sigma_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$\sigma_1 = +j3$$

$$\sigma_2 = -j3$$

General solution

$$c(t) = A\cos(\omega - \phi)$$

Check this!

Critically-damped Time Response

$$\sigma_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$\sigma_{1,2} = \frac{-6 \pm \sqrt{6^2 - 4(1)(9)}}{2(1)} = \frac{-6}{2}$$

$$\sigma_{1,2} = -3$$

General solution

$$c(t) = K_1 e^{-\sigma_1 t} + K_2 t e^{-\sigma_1 t}$$

Check this!

Time response of second order control system? - Summary

Over-damped

Under-damped

Poles are real and imaginary

Un-damped

Critically-damped

Time response of second order control system? - Summary

Time response of second order control system? - Example

Check this!

$$\sigma_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$\sigma_{1,2} = \frac{-10 \pm \sqrt{10^2 - 4(1)(200)}}{2(1)}$$

$$\sigma_{1,2} = \frac{-10 \pm j\sqrt{4(175)}}{2}$$

$$\sigma_1$$
,2 = -5 ± *j*13.23

The poles are real and imaginary. Therefore UNDER-DAMPED.

General $c(t) = Ae^{-\sigma_d t}\cos(\omega_d - \phi)$ solution of under-damped $c(t) = Ae^{-5t}\cos(13.23 - \phi)$.

$$c(t) = Ae^{-\sigma_d t} \cos(\omega_d - \phi)$$

$$c(t) = Ae^{-5t}\cos(13.23 - \phi).$$

Time Response of Second Order System using Damping Ratio and Natural Frequency

Time response of second order control system? - Summary

Time response of second order control system? - Summary

Over-damped

Under-damped

Un-damped

Critically-damped

So far, we based on the poles of the second order system

We are going to learn two quantities that will help us analyze second order system

Natural Frequency

 ω_n

Damping Ratio

5

Time response of second order control system? Natural Frequency

Natural Frequency

 ω_n

Natural frequency of a second order system is the frequency of oscillation of the system without damping

Time response of second order control system? Natural frequency

$$G(s) = \frac{b}{s^2 + as + b}$$

 $G(s) = \frac{b}{s^2 + as + b}$ Natural frequency of a second order system is the frequency of oscillation of the system without damping

$$G(s) = \frac{b}{s^2 + as + b}$$

$$G(s) = \frac{b}{s^2 + b}$$

Poles:
$$s^2 + b = 0$$

 $s = \pm \sqrt{-b}$

$$s = \pm \sqrt{-b}$$

$$s = \pm j\sqrt{b}$$

$$s = \pm j\omega_n$$

Therefore,

$$\omega_n = \sqrt{b}$$

$$b = \omega_n^2$$

Time response of second order control system? Damping Ratio

Damping $\xi = \frac{\text{Exponential Decay Frequency}}{\text{Natural Frequency (rad/sec)}}$

Time response of second order control system? Damping Ratio

$$G(s) = \frac{b}{s^2 + as + b}$$

Damping Ratio

$$\xi = \frac{a}{2\omega_n}$$

General Form

$$G(s) = \frac{b}{s^2 + as + b} \qquad G(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

$$G(s) = \frac{36}{s^2 + 4.2s + 36}$$

Find damping ratio and the natural frequency?

Natural Frequency

$$\omega_n^2 = 36$$
$$\omega_n = 6$$

$$\omega_n = 6$$

Damping Ratio

$$2\xi\omega_n = 4.2$$

$$\xi = \frac{4.2}{2(6)} = 0.35$$

$$G(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

Find poles in general form?

$$s_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$s_{1,2} = \frac{-2\xi\omega_n \pm \sqrt{(2\xi\omega_n)^2 - 4\omega_n^2}}{2}$$
$$s_{1,2} = -\xi\omega_n \pm \omega_n \sqrt{\xi^2 - 1}$$

$$s_{1,2} = -\xi \omega_n \pm \omega_n \sqrt{\xi^2 - 1}$$
 Case 1: $\xi = 0$ $s_{1,2} = \pm j\omega_n$

$$s_{1,2} = \pm j\omega_n$$

Poles

Step response

$$s_{1,2} = -\xi \omega_n \pm \omega_n \sqrt{\xi^2 - 1}$$
 Case 2: $0 < \xi < 1$

Case 2:
$$0 < \xi < 1$$

$$s_{1,2} = -\xi \omega_n \pm j\omega_n \sqrt{1 - \xi^2}$$

$$s_{1,2} = -\xi \omega_n \pm \omega_n \sqrt{\xi^2 - 1}$$
 Case 3: $\xi = 1$ $s_{1,2} = -\xi \omega_n$

$$s_{1,2} = -\xi \omega_n$$

$$s_{1,2} = -\xi \omega_n \pm \omega_n \sqrt{\xi^2 - 1}$$

ase 4:
$$\xi > 1$$
 $s_{1,2} = -\xi \epsilon$

$$s_{1,2} = -\xi \omega_n \pm \omega_n \sqrt{\xi^2 - 1}$$
 Case 4: $\xi > 1$ $s_{1,2} = -\xi \omega_n \pm \omega_n \sqrt{\xi^2 - 1}$

THE POINT IS...IF WE KNOW WE KNOW THE TYPE OF RESPONSE

$$\xi > 1$$

OVERDAMPED

$$\xi = 1$$

CRITICALLY DAMPED

$$0 < \xi < 1$$

 $0 < \xi < 1$ UNDER DAMPED

$$\xi = 0$$

UNDAMPED

WHERE DO WE GET

$$G(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

$$G(s) = \frac{400}{s^2 + 12s + 400}$$

$$\omega_n = \sqrt{400} = 20$$

$$\xi = \frac{12}{2(20)} = 0.3$$

$$\omega_n = \sqrt{400} = 20$$

UNDERDAMPED

$$G(s) = \frac{900}{s^2 + 90s + 900}$$

$$\omega_n = \sqrt{900} = 30$$

$$\xi = \frac{90}{2(30)} = 1.5$$

OVER-DAMPED

$$G(s) = \frac{225}{s^2 + 30s + 225}$$

$$\omega_n = \sqrt{225} = 15$$

$$\xi = \frac{30}{2(15)} = 1$$

$$\omega_n = \sqrt{225} = 15$$

$$\xi = \frac{30}{2(15)} = 1$$

CRITICALLY-DAMPED

$$G(s) = \frac{625}{s^2 + 625}$$

$$\omega_n = \sqrt{625} = 25$$

$$\xi = \frac{0}{2(25)} = 0$$

UN-DAMPED

Time response of second order control system? Special Case: Performance of under-damped System

Under-damped:

$$0 < \xi < 1$$

Four performance parameters:

- 1.Rise time
- 2.Peak time
- 3.Percent overshoot
- 4.Settling time

Rise Time

The time required for the waveform to go from 0.1 of the final value to 0.9 of the final value for overdamped system and 0 to 1 of the final value for underdamped system

Peak Time

The time required to reach the first maximum peak

$$T_p = \frac{\pi}{\omega_n \sqrt{1 - \xi^2}}$$

Percent Overshoot

The amount that the waveform overshoots the steady-state

$$\% OS = 100e^{\left(\frac{-\xi\pi}{\sqrt{1-\xi^2}}\right)}$$

Settling Time

The time required for the transient damped oscillations to reach and stay within 2% of the steady-state value

$$T_{s} = \frac{4}{\xi \omega_{n}}$$

$$G(s) = \frac{361}{s^2 + 16s + 361}$$

Find: $\omega_n, \xi, T_s, T_p, T_r, \% OS$

$$\omega_n = \sqrt{361} = 19$$

$$\xi = \frac{16}{2(19)} = 0.421$$

$$T_s = \frac{4}{\xi \omega_n} = \frac{4}{0.421(19)} = 0.5$$

$$T_p = \frac{\pi}{\omega_n \sqrt{1 - \xi^2}} = \frac{\pi}{19\sqrt{1 - 0.421^2}} = 0.182$$

$$T_{s} = \frac{4}{\xi \omega_{n}} = \frac{4}{0.421(19)} = 0.5$$

$$\% OS = 100e^{\left(\frac{-\xi \pi}{\sqrt{1 - \xi^{2}}}\right)} = 100e^{\left(\frac{-0.421\pi}{\sqrt{1 - 0.421^{2}}}\right)} = 23.3\%$$

$$G(s) = \frac{361}{s^2 + 16s + 361}$$

Find:
$$T_r$$

$$\omega_n = 19$$

$$\xi = 0.421$$

$$T_r \omega_n = 1.501$$

$$T_r = \frac{1.501}{19} = 0.079$$

What lessons?

$$\xi > 1$$
 OVERDAMPED

$$\xi = 1$$
 CRITICALLY DAMPED

$$0 < \xi < 1$$
 UNDER DAMPED

$$\xi = 0$$
 UNDAMPED

WHERE DO WE GET ξ

$$G(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

Performances of second order under-damped control system are determined by two quantities called natural frequency and damping ratio

Four performance parameters:
$$T_r = \frac{f(\xi)}{\omega_n}$$
 $T_p = \frac{\pi}{\omega_n \sqrt{1-\xi^2}}$

- 2.Peak time
- 3.Percent overshoot
- 4.Settling time

$$\frac{-\pi\xi}{\sqrt{1-\xi^2}} \qquad T_s = \frac{4}{\xi\omega_n}$$

$$G(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

$$\sigma_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

For under-damped system

$$s_{1,2} = -\xi \omega_n \pm j\omega_n \sqrt{1 - \xi^2}$$

$$s_{1,2} = -\sigma_d \pm j\omega_d$$

Constant Settling Time

Time response of second order control system? – Lessons

Constant Peak Time

Time response of second order control system? – Lessons

Constant Percent Overshoot

Time response of second order control system? – Lessons

