现有一个卷积神经网络,网络各层设置如下表第一列所示。

请写出每层对应的输出数据维度以及各层参数量。

数据维度请按 $H \times W \times C$ 格式填写,其中 H,W,C 分别为数据的高、宽、通道数。

如无特别说明, CONV 和 FC 层均有 bias。

符号说明:

- CONV k-N 表示卷积核大小为 $k \times k$,卷积核个数为N的卷积层,padding 为 1,stride 为 1:
- POOL-n 表示 $n \times n$ 的 max-pooling 层,stride 为 n,padding 为 0;
- FC-N 表示全连接层,输出维度为N。

网络层	数据维度	参数量
		包括 weights 和 biases
输入	28 × 28 × 3	0
CONV3-16	$28 \times 28 \times 16$	$3 \times 3 \times 3 \times 16 + 16 = 448$
Leaky ReLU	$28 \times 28 \times 16$	0
POOL-2	$14 \times 14 \times 16$	0
CONV3-32	$14 \times 14 \times 32$	$3 \times 3 \times 16 \times 32 + 32 = 4640$
Leaky ReLU	14 × 14 × 32	0
POOL-2	$7 \times 7 \times 32$	0
FLATTEN	1568(7×7×32)(一维)	0
FC-10	$1 \times 1 \times 10$	$1568 \times 10 + 10 = 15690$

计算过程:

Conv3-16:

数据维度:

Stride = 1, Padding = 1, N = 16。因为步长为 1, 且进行了 padding, 故不改变原有的 H 和 W.卷积核数量为 16, 故输出通道为 16.因此输出的数据维度为 $28 \times 28 \times 16$.

参数量:

 $3 \times 3 \times 3 \times 16 + 16 = 448$

3×3(卷积核)×3(输入通道)×16(输出通道)+16(每个输出通道有个bia)=448

Leaky ReLu:

数据维度:

激活函数不改变数据维度, 仍然是 28×28×16

参数量:

激活函数没有训练参数, 所以是 0

POOL-2:

数据维度:

Stride = 2, Padding = 0。步长为 2, 未进行 padding, 28/2 = 14, 最大池化操作不改 变输出通道数, 故输出的数据维度为 $14 \times 14 \times 16$

参数量:

最大池化操作没有训练参数,所以为0

Conv3-16:

数据维度:

Stride = 1, Padding = 1, N = 32。因为步长为 1, 且进行了 padding, 故不改变原有的 H 和 W.卷积核数量为 32, 故输出通道为 32, 因此输出的数据维度为 $14 \times 14 \times 32$

参数量:

 $3 \times 3 \times 16 \times 32 + 32 = 4640$

3×3(卷积核)×16(输入通道)×32(输出通道)+32(每个输出通道有 bia) = 4640

Leaky ReLu:

数据维度:

激活函数不改变数据维度,所以仍然是 14×14×32

参数量:

激活函数没有训练参数, 所以为0

POOL-2:

数据维度:

Stride = 2, Padding = 0。步长为 2, 未进行 padding, 14/2 = 7, 最大池化操作不改 变输出通道数, 故输出的数据维度为 $7 \times 7 \times 32$

参数量:

最大池化操作没有训练参数,所以为0

FLATTEN

数据维度:

将输入数据展开后有 $7 \times 7 \times 32 = 1568$ 个数据, 故数据维度为 1568(一维)

参数量:

Flatten 操作无训练参数。所以为 0

FC-10:

数据维度:

全连接神经网络,输出维度为10,故数据维度为1×1×10

参数量:

输入单元数量 $N_{in}=1568$,输出维度 $N_{out}=10$,每个输出维度有个 bia,故参数量为 $1568\times 10+10=15690$