

Semester S1 Foundations of electromagnetic wave propagation

TUTORIAL 2

TRANSIENT STATE PROPAGATION COMPUTATION

E(rasmus) Mundus on Innovative Microwave Electronics and Optics Master

A lossless transmission line (propagation constant β , characteristic impedance Zc, length 1) is loaded at its input by a generator (internal impedance Z_g , EMF E_g) and at its output on the load Z_L .

We consider:

- $Z_g = Z_c = 50 \Omega$
- Z_L is the impedance of an open circuit
- E_g(p) is the Laplace transform of the Heaviside function

Applying the formula given in the lesson, compute the voltage v(z,t) and the current i(z,t).

Draw these voltage and current at the z_1 point.