

## VARISCITE LTD.

## DART-SD410 v1.01 Datasheet Snapdragon™ 410- based System-on-Module



## VARISCITE LTD.

## **DART-SD410** Datasheet

#### © 2015 Variscite Ltd.

All Rights Reserved. No part of this document may be photocopied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means whether, electronic, mechanical, or otherwise without the prior written permission of Variscite Ltd.

No warranty of accuracy is given concerning the contents of the information contained in this publication. To the extent permitted by law no liability (including liability to any person by reason of negligence) will be accepted by Variscite Ltd., its subsidiaries or employees for any direct or indirect loss or damage caused by omissions from or inaccuracies in this document.

Variscite Ltd. reserves the right to change details in this publication without notice. Product and company names herein may be the trademarks of their respective owners.

Variscite Ltd. 4 Hamelacha Street Lod, 71520 ISRAEL

Tel: +972 (9) 9562910 Fax: +972 (9) 9589477

## **Document Revision History**

| Revision | Date       | Notes                                                |
|----------|------------|------------------------------------------------------|
| 1.0      | 13/01/2016 | Initial                                              |
| 1.1      | 04/06/2017 | Power consumption data added                         |
|          |            | Heat spreading section added                         |
| 1.2      | 05/06/2017 | Suspend current added                                |
| 1.3      | 27/09/2017 | Mounting holes dimensions added                      |
| 1.4      | 25/07/2018 | Updated section 9, added Reliability Prediction data |
| 1.5      | 28/08/2018 | Board thickness information added                    |
|          |            | Dissipation pad dimensions added                     |

| Do  | ocument Revision History                                                                                                                                                                                                                                                           | 3        |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1.  | . Overview                                                                                                                                                                                                                                                                         | 5        |
|     | 1.1. General Information                                                                                                                                                                                                                                                           | 6        |
| 2.  | . Main Hardware Components                                                                                                                                                                                                                                                         | 8        |
|     | 2.1. APQ8016         2.2. Memory         2.3. PMIC + Audio Codec         2.4. Wi-Fi + BT + FM         2.5. GPS                                                                                                                                                                     | 13<br>13 |
| 3.  | . External Connectors                                                                                                                                                                                                                                                              | 14       |
|     | 3.1. DART-SD410 Connector Pin-out                                                                                                                                                                                                                                                  |          |
| 4.  | . SOM's interfaces                                                                                                                                                                                                                                                                 | 24       |
|     | 4.1. Display Interfaces 4.2. Camera Interfaces 4.3. Wi-Fi, Bluetooth, FM Radio 4.4. USB 2.0 OTG 4.5. SD/MMC 4.6. Audio 4.7. BAM-enabled low-speed peripheral (BLSP) 4.8. UIM 4.9. Sensors and keypad 4.10. JTAG 4.11. General Purpose IOS 4.12. General System Control 4.13. Power |          |
| 5.  | . Absolute Maximum Characteristics                                                                                                                                                                                                                                                 | 34       |
| 6.  | . Operational Characteristics                                                                                                                                                                                                                                                      | 34       |
|     | 6.1. Power supplies                                                                                                                                                                                                                                                                |          |
| 7.  | . Heat spread                                                                                                                                                                                                                                                                      | 34       |
| 8.  | . DC Electrical Characteristics                                                                                                                                                                                                                                                    | 35       |
| 9.  | . Environmental Specifications                                                                                                                                                                                                                                                     | 38       |
| 10. | 0. Mechanical Drawings                                                                                                                                                                                                                                                             | 38       |
| 11. | 1. Legal Notice                                                                                                                                                                                                                                                                    | 40       |
| 12. | 2. Warranty Terms                                                                                                                                                                                                                                                                  | 41       |
| 13. | 3. Contact Information                                                                                                                                                                                                                                                             | 42       |

## 1. Overview

## 1.1. General Information

The DART-SD410 is a high performance System-on-Module. It provides an ideal building block that easily integrates with a wide range of target markets requiring rich multimedia functionality, powerful graphics and video capabilities, as well as high-processing power. Compact, cost effective and with low power consumption, the DART-SD410 is in ideal choice for a high end products.

## Supporting products:

- VAR-SD410CustomBoard evaluation board
  - ✓ Carrier-Board, compatible with DART-SD410
  - ✓ Schematics
- Dual CSI Camera extension board
- O.S support
  - ✓ Linux BSP
  - ✓ Android
  - ✓ Windows 10 (coming soon)

Contact Variscite support services for further information: mailto:support@variscite.com.

## 1.2. Feature Summary

- Qualcomm Snapdragon 410 Quad Core ARM® Cortex™-A53, 64 bit, 1.2 GHz
- Memory: up to 16GB eMMC and 2GB LPDDR3 (32-bit up to 533MHz)
- Display: 1 x MIPI-DSI 4-lane HD (1280 x 720) 60 fps; 16/18/24 bpp RGB
- Camera: 2 x MIPI-CSI, 4-lane up to 13MP and 2-lane up to 8MP
- Wi-Fi/BT/FM Connectivity IC with single band 2.4GHz 802.11 b/g/n,
   Bluetooth 4.0/BLE and backward BT2.1+EDR / BT3.0, Worldwide FM radio
- GNSS receiver for GPS, BeiDou and GLONASS or Galileo operation
- 1 x USB2.0 Host/Device
- 1 x SD/MMC
- Serial interfaces (SPI, I2C, UART, I2S, UIM)
- JTAG
- 2 x Microphone In, Stereo headphones out, Speaker Out
- Digital microphone
- Single 3.7V-4.5V power supply
- 2 x 90 pin Board to Board Connectors
- Small size: 25mm x 43mm x 4mm

## 1.3. Block Diagram



## 2. Main Hardware Components

This section summarizes the main hardware building blocks of the DART-SD410

## 2.1. APQ8016

#### 2.1.1. Overview

Embedded computing devices continue to integrate more and increasingly complex functions, and support more functionality while maintaining performance, board space, and cost.

These demands are met by the APQ8016 (Figure 1-1) – with its ARM Cortex-A53 application Processors – which further expand mass-market chipset capabilities by making rich multimedia features accessible to more consumers worldwide.

The APQ8016 has a high level of integration that reduces the bill-of-material (BOM), which Delivers board-area savings. The cost and time-to-market advantages of this IC will help drive adoption in mass markets around the world.

Wireless products based on the APQ8016 chipset may include:

- Music player-enabled devices and applications
- Cameras
- Devices with gaming, streaming video, and video conferencing features
- GPS, GLONASS, and BeiDou for global location-based service.
- Wireless connectivity—Bluetooth, WLAN, and FM receiver (with WCN3620)

The APQ8016 benefits are applied to each of these product types and include:

- Higher integration to reduce PCB surface area, time-to-market, and BOM costs while adding capabilities and processing power
- Integrated application processors and hardware cores to eliminate multimedia coprocessors, and to provide superior image quality and resolution for devices while extending application times
  - Higher computing power for high-end applications, and DC power savings for longer run times
- Position location and navigation systems supported through the WGR7640 global navigation satellite system (GNSS) receiver
  - The APQ8016 Chipset supports Gen 8C operation
  - Standalone GPS, GLONASS, and COMPASS
  - 1 Hz tracking
  - Small, power- and thermal-efficient WGR7640 packaging
- A single platform providing dedicated support for all market-leading codecs and other multimedia formats to support deployments around the world
- DC power reduction using innovative techniques
- Support for the latest, most popular operating systems

#### 2.1.2. APQ8016 Functional Block Diagram

The APQ8016 chipset and system software solution supports the Convergence Platform for Applications by leveraging the years of systems expertise and field experience with GNSS Technologies. Since the APQ8016 includes so many diverse functions, its operation is more easily understood by considering major functional blocks individually. Therefore, the APQ8016 document set is organized according to the following block partitioning:

- · Architecture and baseband processors
- Memory support
- Air interfaces
- Multimedia
- Connectivity
- Internal functions
- Interfaces to other functions (including the other ICs within the chipset)
- Configurable general-purpose input/output (GPIO) ports



Figure 1-1 APQ8016 functional block diagram and example application

The APQ8016 features are summarized in the following table:

| Feature                                                                                                                         | APQ8016 capability                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Processors                                                                                                                      |                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                 | ARM Cortex-A53 microprocessor cores up to 1.2 GHz  64-bit processor  Quad core, 512 kB L2 cache  Primary boot processor                                                                                                                                                                                  |
| RPM system                                                                                                                      | <ul> <li>Cortex M3: Modem power manager (MPM)</li> <li>MPM coordinates shutdown/wakeup, clock rates, and VDDs</li> </ul>                                                                                                                                                                                 |
| Memory support                                                                                                                  |                                                                                                                                                                                                                                                                                                          |
| System memory via EBI                                                                                                           | Non PoP LPDDR2, LPDDR3 SDRAM; 32-bit wide; up to 533 MHz                                                                                                                                                                                                                                                 |
| Graphics internal memory                                                                                                        | 128 kB unified SRAM pool on-chip memory (GMEM)                                                                                                                                                                                                                                                           |
| External memory via SDC1                                                                                                        | eMMC v4.5/SD flash devices                                                                                                                                                                                                                                                                               |
| RF Support                                                                                                                      |                                                                                                                                                                                                                                                                                                          |
| Air interfaces  WLAN/BT/FM                                                                                                      | Yes – all (with WCN3620)                                                                                                                                                                                                                                                                                 |
| GNSS – Qualcomm IZat™<br>location engine                                                                                        | Gen 8C: Support for 3 bands concurrently: GPS, BeiDou, and Glonass or GPS, BeiDou, and Galileo                                                                                                                                                                                                           |
| Multimedia                                                                                                                      |                                                                                                                                                                                                                                                                                                          |
| Display interfaces  MIPI_DSI  General display features                                                                          | <ul> <li>HD (1280 x 720) 60 fps; 16/18/24 bpp RGB</li> <li>MIPI DSI 4-lane</li> <li>Wi-Fi display – 720p 30/1080p 30</li> <li>FHD + 720p external wireless display</li> </ul>                                                                                                                            |
| Camera interfaces  Number of CSIs                                                                                               | <ul><li>Qcamera</li><li>Two; 1.5 Gbps per lane</li></ul>                                                                                                                                                                                                                                                 |
| <ul> <li>Primary (CSI0)</li> <li>Secondary (CSI1)</li> <li>Configurations supported</li> <li>General camera features</li> </ul> | <ul> <li>4-lane; supports CMOS and CCD sensors</li> <li>Up to 13 MP sensors</li> <li>2-lane MIPI CSI – webcam support up to 8 MP sensors</li> <li>Pixel manipulations, camera modes, image effects, and post-processing techniques, including defective pixel correction</li> <li>I2C control</li> </ul> |
| Mobile display processor                                                                                                        | MDP for display processing                                                                                                                                                                                                                                                                               |
| Video applications performance • Encode • Decode                                                                                | <ul> <li>720p 30 fps (H.264 Baseline/MPEG-4)</li> <li>30 fps 1080p (MPEG-4/H.264/VP8/H.263)</li> <li>WFD 720p @ 30 fps</li> <li>30 fps 1080p<br/>(MPEG-4/H.264/H.263/DivX/MPEG2/VC1/Soreson/VP8)</li> </ul>                                                                                              |
|                                                                                                                                 | ■ WFD 1080p @ 30 fps                                                                                                                                                                                                                                                                                     |
| Graphics                                                                                                                        | Adreno 306; up to 400 MHz 3D graphics accelerator                                                                                                                                                                                                                                                        |
| Audio                                                                                                                           |                                                                                                                                                                                                                                                                                                          |

| <ul><li>Low-power audio</li></ul>       | Low power audio for mp3 and AAC playback; surround sound;                                                                     |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Voice codec support</li> </ul> | <ul> <li>Versatile – many audio playback and voice modes; encoders for</li> </ul>                                             |
|                                         | audio and FM                                                                                                                  |
| <ul> <li>Audio codec support</li> </ul> | recording; many concurrency modes                                                                                             |
| - Eulanaad audia                        | • G711; Raw PCM; QCELP; EVRC, -B, -WB; AMR-NB, -WB; GSMEFR,                                                                   |
| ■ Enhanced audio                        | FR, -HR                                                                                                                       |
| <ul><li>Synthesizer</li></ul>           | <ul> <li>MP3; AAC, +, eAAC; AMR-NB, -WB, G.711, WMA 9/10 Pro</li> <li>Dolby Digital Plus and DTS-HD surround sound</li> </ul> |
|                                         | ■ Fluence™ Noise Cancellation                                                                                                 |
|                                         | <ul> <li>QAudioFX/Qconcert/QEnsemble</li> </ul>                                                                               |
|                                         | 128-voice polyphony wavetable                                                                                                 |
| Web technologies                        | <ul> <li>V8 JavaScript Engine optimizations</li> </ul>                                                                        |
| Tres teaminologies                      | Webkit browser JPEG hardware decode acceleration                                                                              |
|                                         | <ul> <li>Networking Stack IP and HTTP tuning</li> </ul>                                                                       |
|                                         | <ul> <li>Flash 10.x and video processor decode optimization</li> </ul>                                                        |
| Connectivity                            | ·                                                                                                                             |
| BLSP ports                              | 6, 4-bits each; multiplexed serial interface functions                                                                        |
| ■ UART                                  | <ul><li>Yes – up to 4 Mbps</li></ul>                                                                                          |
| ■ I2C                                   | <ul><li>Yes – cameras, sensors, SMB, etc.</li></ul>                                                                           |
| <ul><li>SPI (master only)</li></ul>     | <ul><li>Yes – cameras, sensors, etc.</li></ul>                                                                                |
| UIM                                     | Three ports – dual voltage (1.8 V/2.85 V)                                                                                     |
| USB                                     | One USB 2.0 high-speed                                                                                                        |
| Secure digital interfaces               | <ul> <li>Up to two ports, both dual-voltage</li> </ul>                                                                        |
|                                         | One 8-bit and one 4-bit                                                                                                       |
|                                         | ■ SD 3.0; SD/MMC card; eMMC v4.5                                                                                              |
| Wireless connectivity                   | ■ With WCN3620                                                                                                                |
| ■ WLAN                                  | ■ 802.11 a/b/g/n                                                                                                              |
| <ul><li>Bluetooth</li></ul>             | ■ BT 4.0 LE and earlier                                                                                                       |
| FM radio                                | ■ Rx                                                                                                                          |
| Touch screen support                    | Capacitive panels via external IC (I2C, SPI, and interrupts)                                                                  |
| Audio interfaces                        |                                                                                                                               |
| ■ DMIC                                  | <ul> <li>One port for digital microphone application</li> </ul>                                                               |
| ■ MI2S                                  | <ul> <li>Up to two ports (primary and secondary ports)</li> </ul>                                                             |
| CDC PDM port                            | <ul> <li>Interface between PM8916 and APQ8016 for audio application</li> </ul>                                                |
| Configurable GPIOs                      |                                                                                                                               |
| Number of GPIO ports                    | 122 GPIOs – GPIO_0 to GPIO_121                                                                                                |
| Input configurations                    | Pull-up, pull-down, keeper, or no pull                                                                                        |
| Output configurations                   | Programmable drive current                                                                                                    |
| Top-level mode multiplexer              | The logic block used for configuring different IOs and interfaces for the desired functionality and pad attributes            |
| Internal functions                      |                                                                                                                               |
| PLLs and clocks                         | <ul> <li>Multiple clock regimes; watchdog and sleep timers</li> </ul>                                                         |
|                                         | ■ 19.2 MHz CXO master clock input                                                                                             |
|                                         | <ul> <li>General-purpose outputs: M/N counter, PDM</li> </ul>                                                                 |
| Resource and power                      | Fundamental to power management                                                                                               |
| manager                                 | <ul> <li>Key blocks: RPM core, Cortex M3, security controller, MPM</li> </ul>                                                 |
|                                         | Improved efficiency via clock control, split-rail power collapse                                                              |
|                                         | and voltage scaling; several low-power sleep modes                                                                            |
|                                         | 11                                                                                                                            |

| Debug                                       | JTAG, QDSS                                                                          |  |  |
|---------------------------------------------|-------------------------------------------------------------------------------------|--|--|
| Others                                      | Thermal sensors; modes and resets; peripheral subsystem                             |  |  |
| Chipset and RF front-end (R                 | PFFE) interface features                                                            |  |  |
| RFICs                                       | ■ WGR7640                                                                           |  |  |
| <ul> <li>GNSS baseband data</li> </ul>      | <ul><li>Rx analog interface</li></ul>                                               |  |  |
| <ul><li>Status and control</li></ul>        | <ul> <li>SSBIs and discrete signals as needed via GPIOs</li> </ul>                  |  |  |
| Power management                            | ■ PM8916                                                                            |  |  |
|                                             | <ul><li>2-line SPMI; dedicated clock and reset lines; plus other GPIOs as</li></ul> |  |  |
|                                             | needed                                                                              |  |  |
| WCN wireless connectivity                   | WCN3620                                                                             |  |  |
| <ul> <li>WLAN baseband data</li> </ul>      | <ul> <li>Multiplexed Rx/Tx analog interface</li> </ul>                              |  |  |
| <ul> <li>WLAN status and control</li> </ul> | <ul> <li>Proprietary 5-line interface</li> </ul>                                    |  |  |
| <ul><li>Bluetooth</li></ul>                 | <ul> <li>2-line data interface plus SSBI</li> </ul>                                 |  |  |
| ■ FM radio                                  | ■ 1-line data interface plus SSBI                                                   |  |  |
| QCA near field communicator                 | I2C plus other GPIOs as needed                                                      |  |  |

## 2.2. Memory

#### 2.2.1. RAM

The DART-SD410 is available with 1GB and 2GB of LPDDR3 memory.

#### 2.2.2. Non-volatile Storage Memory

The DART-SD410 is available with 8GB and 16GB eMMC storage.

## 2.3. PMIC + Audio Codec

Qualcomm's PM8916 device is a Power Management Integrated circuit (PMIC) with an integrated Audio Codec, designed specifically for use with Qualcomm's MSM8x16 application processors. The PM8916 regulates all power rails required on SOM from a single 3.7 V-4.5V power supply.

The PM8916 device includes many diverse functions, and can be organized by the device functionality as follows:

- Input power management
- Output power management
- General housekeeping
- User interfaces
- IC interfaces
- Configurable pins either multipurpose pins (MPPs) or general-purpose input/output. (GPIOs) – that can be configured to function within some of the other categories

## 2.4. Wi-Fi + BT + FM

The DART-SD410 contains Qualcomm's The WCN3620 IC which integrates three different connectivity technologies into a single device:

- Wireless local area network (WLAN) compliant with the IEEE 802.11b/g/n specification
- Bluetooth (BT) compliant with the BT specification version 4.0 (BR/EDR+BLE)
- Worldwide FM radio, with Rx modes supporting the Radio Data System (RDS) for Europe and the Radio Broadcast Data System (RBDS) for the USA

## 2.5. GPS

The DART-SD410 contains Qualcomm's WGR7640 a GNSS receiver for GPS, GLONASS, and COMPASS operation.

## 3. External Connectors

The DART-SD410 exposes two 90 pin Board to Board low profile connectors. The recommended mating connectors for Custom board interfacing are:

DF40C-90DS-0.4V(51)

## Pin#:

Pin number on the connector

## Pin Name:

Default DART-SD410 pin name

## Type:

Pin type & direction:

- I − In
- 0 Out
- DS Differential Signal
- A Analog
- Power Power Pin

#### Pin Group:

Pin functionality group

## APQ8016 Ball:

Ball number

## Mode (Tables 3.2 & 3.4):

Pin mux mode option

## 3.1. DART-SD410 Connector Pin-out

| J1    | J1                |       |                                                 |      |                           |  |
|-------|-------------------|-------|-------------------------------------------------|------|---------------------------|--|
| Pin#  | Pin Name          | Туре  | Description                                     | GPIO | Ball                      |  |
| J1.1  | VPH_PWR           | POWER | Main power supply, 3.7V-4.5V DC-IN              |      |                           |  |
| J1.2  | VPH_PWR           | POWER | Main power supply, 3.7V-4.5V DC-IN              |      |                           |  |
| J1.3  | VPH_PWR           | POWER | Main power supply, 3.7V-4.5V DC-IN              |      |                           |  |
| J1.4  | VPH_PWR           | POWER | Main power supply, 3.7V-4.5V DC-IN              |      |                           |  |
| J1.5  | VPH_PWR           | POWER | Main power supply, 3.7V-4.5V DC-IN              |      |                           |  |
| J1.6  | VPH_PWR           | POWER | Main power supply, 3.7V-4.5V DC-IN              |      |                           |  |
| J1.7  | VPH_PWR           | POWER | Main power supply, 3.7V-4.5V DC-IN              |      |                           |  |
| J1.8  | VPH_PWR           | POWER | Main power supply, 3.7V-4.5V DC-IN              |      |                           |  |
| J1.9  | CDC_VDD_SPKDRV    | POWER | +3.7/+5V class-D speaker amplifier supply input |      | PM8916.G14                |  |
| J1.10 | DGND              | POWER | Digital GND                                     |      |                           |  |
| J1.11 | CDC_VDD_SPKDRV    | POWER | +3.7/+5V class-D speaker amplifier supply input |      | PM8916.G14                |  |
| J1.12 | MIPI_DSI0_DATA3_M | DS    | MIPI DSI interface 0 lane 3 negative            |      | AL2                       |  |
| J1.13 | SPKR_OUT_P        | AO    | Class-D speaker amp + output                    |      | PM8916.F14                |  |
| J1.14 | MIPI_DSI0_DATA3_P | DS    | MIPI DSI interface 0 lane 3 positive            |      | AK1                       |  |
| J1.15 | SPKR_OUT_P        | AO    | Class-D speaker amp + output                    |      | PM8916.F14                |  |
| J1.16 | MIPI_DSI0_DATA2_M | DS    | MIPI DSI interface 0 lane 2 negative            |      | AH3                       |  |
| J1.17 | SPKR_OUT_M        | AO    | Class-D speaker amp – output                    |      | PM8916.E12,<br>PM8916.E13 |  |
| J1.18 | MIPI_DSI0_DATA2_P | DS    | MIPI DSI interface 0 lane 2 positive            |      | AG4                       |  |
| J1.19 | SPKR_OUT_M        | AO    | Class-D speaker amp - output                    |      | PM8916.E12,<br>PM8916.E13 |  |
| J1.20 | MIPI_DSIO_DATA1_M | DS    | MIPI DSI interface 0 lane 1 negative            |      | AF3                       |  |
| J1.21 | USB_VBUS          | POWER | USB VBUS for OTG                                |      |                           |  |
| J1.22 | MIPI_DSIO_DATA1_P | DS    | MIPI DSI interface 0 lane 1 positive            |      | AE4                       |  |
| J1.23 | CDC_HPH_L         | AO    | Headphone left channel output                   |      | PM8916.F12                |  |
| J1.24 | MIPI_DSI0_CLK_M   | DS    | MIPI DSI interface 0 clock negative             |      | AH1                       |  |
| J1.25 | CDC_HPH_R         | AO    | Headphone right channel output                  |      | PM8916.G12                |  |
| J1.26 | MIPI_DSIO_CLK_P   | DS    | MIPI DSI interface 0 clock positive             |      | AG2                       |  |
| J1.27 | CDC_HPH_REF       | Al    | Headphone ground sensing                        |      | PM8916.G11                |  |
| J1.28 | MIPI_DSI0_DATA0_M | DS    | MIPI DSI interface 0 lane 0 negative            |      | AF1                       |  |
| J1.29 | CDC_HS_DET        | Al    | Headset detection                               |      | PM8916.K14                |  |
| J1.30 | MIPI_DSI0_DATA0_P | DS    | MIPI DSI interface 0 lane 0 positive            |      | AE2                       |  |
| J1.31 | DGND              | POWER | Digital GND                                     |      |                           |  |
| J1.32 | DGND              | POWER | Digital GND                                     |      |                           |  |
| J1.33 | CDC_MIC_BIAS2     | AO    | Microphone #2 bias                              |      | PM8916.J11                |  |
| J1.34 | MIPI_CSI1_CLK_M   | DS    | MIPI CSI interface 1 clock negative             |      | AB5                       |  |
| J1.35 | CDC_MIC_BIAS1     | AO    | Microphone #1 bias                              |      | PM8916.L12                |  |

| J1    | J1                |       |                                      |         |            |  |
|-------|-------------------|-------|--------------------------------------|---------|------------|--|
| Pin#  | Pin Name          | Туре  | Description                          | GPIO    | Ball       |  |
| J1.36 | MIPI_CSI1_CLK_P   | DS    | MIPI CSI interface 1 clock positive  |         | AB3        |  |
| J1.37 | DGND              | POWER | Digital GND                          |         |            |  |
| J1.38 | MIPI_CSI1_DATA1_M | DS    | MIPI CSI interface 1 lane 1 negative |         | AC2        |  |
| J1.39 | CDC_MIC1_P        | Al    | Main microphone                      |         | PM8916.K13 |  |
| J1.40 | MIPI_CSI1_DATA1_P | DS    | MIPI CSI interface 1 lane 1 positive |         | AB1        |  |
| J1.41 | GND_CFILT         | POWER | Ground reference for PMIC bias       |         | PM8916.J13 |  |
| J1.42 | MIPI_CSI1_DATA0_M | DS    | MIPI CSI interface 1 lane 0 negative |         | AA2        |  |
| J1.43 | CDC_MIC2_P        | Al    | Headset microphone                   |         | PM8916.K11 |  |
| J1.44 | MIPI_CSI1_DATA0_P | DS    | MIPI CSI interface 1 lane 0 positive |         | Y1         |  |
| J1.45 | GND_CFILT         | POWER | Ground reference for PMIC bias       |         | PM8916.J13 |  |
| J1.46 | DGND              | POWER | Digital GND                          |         |            |  |
| J1.47 | DGND              | POWER | Digital GND                          |         |            |  |
| J1.48 | MIPI_CSI0_DATA2_M | DS    | MIPI CSI interface 0 lane 2 negative |         | W2         |  |
| J1.49 | SDC2_DATA_3       | 10    | External SD card Data 3 line         |         | P7         |  |
| J1.50 | MIPI_CSI0_DATA2_P | DS    | MIPI CSI interface 0 lane 2 positive |         | V1         |  |
| J1.51 | SDC2_DATA_2       | 10    | External SD card Data 2 line         |         | Т7         |  |
| J1.52 | MIPI_CSI0_DATA3_M | DS    | MIPI CSI interface 0 lane 3 negative |         | AA6        |  |
| J1.53 | SDC2_DATA_0       | 10    | External SD card Data 0 line         |         | P3         |  |
| J1.54 | MIPI_CSI0_DATA3_P | DS    | MIPI CSI interface 0 lane 3 positive |         | Y5         |  |
| J1.55 | SDC2_DATA_1       | 10    | External SD card Data 1 line         |         | R6         |  |
| J1.56 | MIPI_CSI0_CLK_M   | DS    | MIPI CSI interface 0 clock negative  |         | W6         |  |
| J1.57 | SDC2_CMD          | 10    | External SD card Command line        |         | N6         |  |
| J1.58 | MIPI_CSIO_CLK_P   | DS    | MIPI CSI interface 0 clock positive  |         | V5         |  |
| J1.59 | SDC2_CLK          | 0     | External SD card Clock output        |         | R4         |  |
| J1.60 | MIPI_CSI0_DATA1_M | DS    | MIPI CSI interface 0 lane 1 negative |         | U2         |  |
| J1.61 | DGND              | POWER | Digital GND                          |         |            |  |
| J1.62 | MIPI_CSIO_DATA1_P | DS    | MIPI CSI interface 0 lane 1 positive |         | T1         |  |
| J1.63 | SPIO_CLK          | 10    | SPIO clock (BLSP5_0)                 | GPIO_19 | J4         |  |
| J1.64 | MIPI_CSI0_DATA0_M | DS    | MIPI CSI interface 0 lane 0 negative |         | U4         |  |
| J1.65 | SPI0_MOSI         | 10    | SPIO MOSI (BLSP5_3)                  | GPIO_16 | K7         |  |
| J1.66 | MIPI_CSIO_DATAO_P | DS    | MIPI CSI interface 0 lane 0 positive |         | U6         |  |
| J1.67 | SPIO_CS_N         | Ю     | SPIO Chip Select (BLSP5_1)           | GPIO_18 | J6         |  |
| J1.68 | DGND              | POWER | Digital GND                          |         |            |  |
| J1.69 | SPI0_MISO         | 10    | SPIO MISO (BLSP5_2)                  | GPIO_17 | G6         |  |
| J1.70 | SPI1_CS_N         | Ю     | SPI1 Chip Select (BLSP3_1)           | GPIO_10 | H1         |  |
| J1.71 | DGND              | POWER | Digital GND                          |         |            |  |
| J1.72 | SPI1_MISO         | Ю     | SPI1 MISO (BLSP3_2 )                 | GPIO_9  | G2         |  |
| J1.73 | I2C1_SCL          | 10    | I2C1 Clock (BLSP6_3)                 | GPIO_23 | BA2        |  |

| J1    |                 |       |                                    |         |      |
|-------|-----------------|-------|------------------------------------|---------|------|
| Pin # | Pin Name        | Туре  | Description                        | GPIO    | Ball |
| J1.74 | SPI1_CLK        | 10    | SPI1 Clock (BLSP3_0)               | GPIO_11 | E2   |
| J1.75 | I2C1_SDA        | 10    | I2C1 Data (BLSP6_3)                | GPIO_22 | AV7  |
| J1.76 | SPI1_MOSI       | 10    | SPI1 MOSI (BLSP3_3)                | GPIO_8  | H5   |
| J1.77 | I2C0_SDA        | 10    | I2CO Data (BLSP2_1)                | GPIO_6  | AY3  |
| J1.78 | DGND            | POWER | Digital GND                        |         |      |
| J1.79 | I2C0_SCL        | 10    | I2CO Clock (BLSP2_0)               | GPIO_7  | AV3  |
| J1.80 | CSI1_MCLK       | 10    | Camera master clock 1              | GPIO_27 | C2   |
| J1.81 | DGND            | POWER | Digital GND                        |         |      |
| J1.82 | GPIO_28         | 10    | General purpose IO                 | GPIO_28 | F1   |
| J1.83 | UART1_TX        | 10    | UART1 Transmit (BLSP2_3)           | GPIO_4  | AT9  |
| J1.84 | CSI0_MCLK       | 10    | Camera master clock 0              | GPIO_26 | H3   |
| J1.85 | UART1_RX        | 10    | UART1 Receive (BLSP2_2)            | GPIO_5  | AY1  |
| J1.86 | DGND            | POWER | Digital GND                        |         |      |
| J1.87 | FORCED_USB_BOOT | 10    | Force USB boot control             | GPIO_37 | E4   |
| J1.88 | I2C2_SCL        | 10    | Camera control interface I2C Clock | GPIO_30 | F3   |
| J1.89 | APQ_RESIN_N     | T     | System Reset                       |         |      |
| J1.90 | I2C2_SDA        | Ю     | Camera control interface I2C Data  | GPIO_29 | B3   |

| J2    |              |       |                                                   |                  |            |  |
|-------|--------------|-------|---------------------------------------------------|------------------|------------|--|
| Pin # | Pin Name     | Туре  | Description                                       | GPIO             | Ball       |  |
| J2.1  | VREG_L11_SDC | POWER | 2.95V power supply output for<br>External SD Card |                  | PM8916.G3  |  |
| J2.2  | PM_MPP3      | Ю     | PM8916 Multipurpose pin 3                         | PM8916<br>MPP_3  | PM8916.J4  |  |
| J2.3  | VREG_L11_SDC | POWER | 2.95V power supply output for<br>External SD Card |                  | PM8916.G3  |  |
| J2.4  | PM_GPIO2     | 10    | PM8916 GPIO_2                                     | PM8916<br>GPIO_2 | PM8916.H6  |  |
| J2.5  | DGND         | POWER | Digital GND                                       |                  |            |  |
| J2.6  | PM_MPP4      | Ю     | PMIC Configurable MPP_4                           | PM8916<br>MPP_4  | PM8916.J5  |  |
| J2.7  | PM_RESIN_N   | I     | Reset In signal/<br>Volume, Zoom DOWN key         |                  | PM8916.C3  |  |
| J2.8  | PM_MPP2      | 10    | PM8916 Multipurpose pin 2                         | PM8916<br>MPP_2  | PM8916.K4  |  |
| J2.9  | PHONE_ON_N   | I     | Power ON/OFF Signal                               |                  | PM8916.K10 |  |
| J2.10 | PM_GPIO1     | 10    | PM8916 GPIO_1                                     | PM8916<br>GPIO_1 | PM8916.J7  |  |
| J2.11 | DGND         | POWER | Digital GND                                       |                  |            |  |
| J2.12 | GPIO_21      | 10    | General purpose IO                                | GPIO_21          | AW6        |  |
| J2.13 | VREG_L12_SDC | POWER | 2.95V power supply output for<br>External SD Card |                  | PM8916.B3  |  |
| J2.14 | GPIO_120     | 10    | General purpose IO                                | GPIO_120         | F39        |  |

| J2    | J2            |       |                                  |                  |            |  |
|-------|---------------|-------|----------------------------------|------------------|------------|--|
| Pin#  | Pin Name      | Туре  | Description                      | GPIO             | Ball       |  |
| J2.15 | DGND          | POWER | Digital GND                      |                  |            |  |
| J2.16 | PM_GPIO3      | 10    | PM8916<br>GPIO_3                 | PM8916<br>GPIO_3 | PM8916.N11 |  |
| J2.17 | GPIO_112      | 10    | General purpose IO               | GPIO_112         | AW36       |  |
| J2.18 | PM_GPIO4      | Ю     | PM8916<br>GPIO_4                 | PM8916<br>GPIO_4 | PM8916.L8  |  |
| J2.19 | GPIO_96       | 10    | General purpose IO               | GPIO_96          | BC32       |  |
| J2.20 | FM_RX_ANT     | Al    | WCN3620 FM antenna signal        |                  | WCN3620.50 |  |
| J2.21 | DGND          | POWER | Digital GND                      |                  |            |  |
| J2.22 | BOOT_CONFIG_1 | 10    | Boot configuration control bit 1 | GPIO_81          | BD7        |  |
| J2.23 | UARTO_TX      | 10    | UARTO Transmit (BLSP1_3)         | GPIO_0           | BA38       |  |
| J2.24 | BOOT_CONFIG_0 | 10    | Boot configuration control bit 0 | GPIO_80          | BD5        |  |
| J2.25 | UARTO_RTS_N   | 10    | UARTO RTS (BLSP1_0)              | GPIO_3           | AY37       |  |
| J2.26 | BOOT_CONFIG_3 | Ю     | Boot configuration control bit 3 | GPIO_83          | BC40       |  |
| J2.27 | UARTO_RX      | 10    | UARTO Receive (BLSP1_2)          | GPIO_1           | BB39       |  |
| J2.28 | GPIO_20       | 10    | General purpose IO               | GPIO_20          | AY7        |  |
| J2.29 | UARTO_CTS_N   | 10    | UARTO CTS (BLSP1_1)              | GPIO_2           | AV35       |  |
| J2.30 | DGND          | POWER | Digital GND                      |                  |            |  |
| J2.31 | DGND          | POWER | Digital GND                      |                  |            |  |
| J2.32 | USB_HS_D_M    | DS    | USB HS data minus                |                  | AC40       |  |
| J2.33 | BOOT_CONFIG_2 | 10    | Boot configuration control bit 2 | GPIO_82          | BC38       |  |
| J2.34 | USB_HS_D_P    | DS    | USB HS data plus                 |                  | AB39       |  |
| J2.35 | BOOT_CONFIG_5 | 10    | Boot configuration control bit 5 | GPIO_86          | BD39       |  |
| J2.36 | DGND          | POWER | Digital GND                      |                  |            |  |
| J2.37 | DGND          | POWER | Digital GND                      |                  |            |  |
| J2.38 | GPIO_25       | 10    | General purpose IO               | GPIO_25          | AU4        |  |
| J2.39 | GPIO_106      | 10    | General purpose IO               | GPIO_106         | AY39       |  |
| J2.40 | GPIO_24       | 10    | General purpose IO               | GPIO_24          | AT5        |  |
| J2.41 | GPIO_116      | 10    | General purpose IO               | GPIO_116         | AW38       |  |
| J2.42 | DGND          | POWER | Digital GND                      |                  |            |  |
| J2.43 | GPIO_114      | 10    | General purpose IO               | GPIO_114         | E40        |  |
| J2.44 | GPIO_52       | 10    | General purpose IO               | GPIO_52          | AA38       |  |
| J2.45 | GPIO_105      | 10    | General purpose IO               | GPIO_105         | AU36       |  |
| J2.46 | GPIO_49       | Ю     | General purpose IO               | GPIO_49          | Y37        |  |
| J2.47 | GPIO_113      | 10    | General purpose IO               | GPIO_113         | D39        |  |
| J2.48 | GPIO_50       | Ю     | General purpose IO               | GPIO_50          | AA34       |  |
| J2.49 | DGND          | POWER | Digital GND                      |                  |            |  |
| J2.50 | GPIO_51       | IO    | General purpose IO               | GPIO_51          | Y35        |  |
| J2.51 | GPIO_110      | 10    | General purpose IO               | GPIO_110         | B39        |  |

| J2    | 12           |       |                                      |          |           |  |
|-------|--------------|-------|--------------------------------------|----------|-----------|--|
| Pin # | Pin Name     | Туре  | Description                          | GPIO     | Ball      |  |
| J2.52 | GPIO_69      | 10    | General purpose IO                   | GPIO_69  | L36       |  |
| J2.53 | GPIO_98      | 10    | General purpose IO                   | GPIO_98  | A38       |  |
| J2.54 | GPIO_108     | Ю     | General purpose IO                   | GPIO_108 | K35       |  |
| J2.55 | GPIO_38      | 10    | General purpose IO                   | GPIO_38  | B37       |  |
| J2.56 | DGND         | POWER | Digital GND                          |          |           |  |
| J2.57 | EEPROM_WP    | 1     | EEPROM Write protect                 |          |           |  |
| J2.58 | GPIO_109     | 10    | General purpose IO                   | GPIO_109 | J34       |  |
| J2.59 | MI2S_DATA0   | 10    | MI2S interface #2 Data0 signal       | GPIO_119 | BA40      |  |
| J2.60 | GPIO_62      | 10    | General purpose IO                   | GPIO_62  | G34       |  |
| J2.61 | MI2S_WS      | 10    | MI2S interface #2 Word Select signal | GPIO_117 | AV37      |  |
| J2.62 | KEY_VOLP_N   | Ю     | Volume, Zoom UP key                  | GPIO_107 | H33       |  |
| J2.63 | MI2S_SCK     | Ю     | MI2S interface #2 SCLK signal        | GPIO_118 | AR36      |  |
| J2.64 | USB_HS_ID    | Ю     | USB ID pin for host mode detection   | GPIO_121 | G38       |  |
| J2.65 | DGND         | POWER | Digital GND                          |          |           |  |
| J2.66 | DGND         | POWER | Digital GND                          |          |           |  |
| J2.67 | I2C3_SCL     | 10    | I2C3 Clock (BLSP4_0)                 | GPIO_15  | AN36      |  |
| J2.68 | JTAG_SRST_N  | T.    | JTAG reset for debug                 |          | K1        |  |
| J2.69 | I2C3_SDA     | Ю     | I2C3 Data (BLSP4_1)                  | GPIO_14  | AN40      |  |
| J2.70 | JTAG_TMS     | T.    | JTAG mode-select input               |          | L2        |  |
| J2.71 | BBCLK2       | 0     | Baseband low power XO output 2       |          | PM8916.F3 |  |
| J2.72 | JTAG_TCK     | T.    | JTAG clock input                     |          | M1        |  |
| J2.73 | GPIO_12      | 10    | General purpose IO                   | GPIO_12  | AM39      |  |
| J2.74 | JTAG_TDI     | T.    | JTAG data input                      |          | M3        |  |
| J2.75 | GPIO_13      | 10    | General purpose IO                   | GPIO_13  | AM35      |  |
| J2.76 | JTAG_TRST_N  | l I   | JTAG reset                           |          | К3        |  |
| J2.77 | DGND         | POWER | Digital GND                          |          |           |  |
| J2.78 | JTAG_TDO     | 0     | JTAG data output                     |          | J2        |  |
| J2.79 | GPIO_115     | 10    | General purpose IO                   | GPIO_115 | E38       |  |
| J2.80 | JTAG_PS_HOLD | I     | PMIC Power supply hold control input |          | PM8916.G5 |  |
| J2.81 | GPIO_97      | 10    | General purpose IO                   | GPIO_97  | C38       |  |
| J2.82 | DGND         | POWER | Digital GND                          |          |           |  |
| J2.83 | GPIO_35      | 10    | General purpose IO                   | GPIO_35  | A4        |  |
| J2.84 | GPIO_33      | Ю     | General purpose IO                   | GPIO_33  | G4        |  |
| J2.85 | GPIO_31      | 10    | General purpose IO                   | GPIO_31  | D3        |  |
| J2.86 | GPIO_34      | Ю     | General purpose IO                   | GPIO_34  | F5        |  |
| J2.87 | GPIO_32      | 10    | General purpose IO                   | GPIO_32  | D1        |  |
| J2.88 | GPIO_36      | Ю     | General purpose IO                   | GPIO_36  | C4        |  |
| J2.89 | DGND         | POWER | Digital GND                          |          |           |  |

| J2    |          |       |             |      |      |
|-------|----------|-------|-------------|------|------|
| Pin # | Pin Name | Туре  | Description | GPIO | Ball |
| J2.90 | DGND     | POWER | Digital GND |      |      |

## 3.2. Pin Mux

The table below summarizes the additional available functionality for each pin in the two board to board connectors.

| J1    | J1   |           |                                    |                                                                                   |  |  |  |
|-------|------|-----------|------------------------------------|-----------------------------------------------------------------------------------|--|--|--|
| Pin#  | Ball | Ball name | Configurable function              | Functional description                                                            |  |  |  |
| J1.63 | J4   | GPIO_19   | BLSP5_0                            | Configurable I/O<br>BLSP #5, bit 0; SPI, or I2C                                   |  |  |  |
| J1.65 | K7   | GPIO_16   | BLSP5_3<br>BLSP1_SPI_CS2_N         | Configurable I/O<br>BLSP #5, bit 3; SPI, or I2C<br>Chip select 2 for SPI on BLSP1 |  |  |  |
| J1.67 | J6   | GPIO_18   | BLSP5_1                            | Configurable I/O<br>BLSP #5, bit 1; SPI, or I2C                                   |  |  |  |
| J1.69 | G6   | GPIO_17   | BLSP5_2<br>BLSP2_SPI_CS2_N         | Configurable I/O<br>BLSP #5, bit 2; SPI, or I2C<br>Chip select 2 for SPI on BLSP1 |  |  |  |
| J1.70 | H1   | GPIO_10   | BLSP3_1                            | Configurable I/O<br>BLSP #3, bit 1; SPI, or I2C                                   |  |  |  |
| J1.72 | G2   | GPIO_9    | BLSP3_2                            | Configurable I/O<br>BLSP #3, bit 2; SPI or I2C                                    |  |  |  |
| J1.73 | BA2  | GPIO_23   | BLSP6_0                            | Configurable I/O<br>BLSP #6, bit 0; SPI, or I2C                                   |  |  |  |
| J1.74 | E2   | GPIO_11   | BLSP3_0                            | Configurable I/O<br>BLSP #3, bit 0; SPI, or I2C                                   |  |  |  |
| J1.75 | AV7  | GPIO_22   | BLSP6_1                            | Configurable I/O<br>BLSP #6, bit 1; SPI, or I2C                                   |  |  |  |
| J1.76 | H5   | GPIO_8    | BLSP3_3                            | Configurable I/O<br>BLSP #3, bit 3; SPI or I2C                                    |  |  |  |
| J1.77 | AY3  | GPIO_6    | BLSP2_1                            | Configurable I/O<br>BLSP #2, bit 1; UART, SPI, or I2C                             |  |  |  |
| J1.79 | AV3  | GPIO_7    | BLSP2_0                            | Configurable I/O<br>BLSP #2, bit 0; UART, SPI, or I2C                             |  |  |  |
| J1.80 | C2   | GPIO_27   | CAM_MCLK1                          | Configurable I/O Camera master clock 1                                            |  |  |  |
| J1.82 | F1   | GPIO_28   | CAM1_RST_N                         | Configurable I/O<br>Camera 1 reset                                                |  |  |  |
| J1.83 | AT9  | GPIO_4    | BLSP2_3<br>BLSP1_SPI_CS3_N         | Configurable I/O BLSP #2, bit 3; UART or SPI Chip select 3 for SPI on BLSP1       |  |  |  |
| J1.84 | H3   | GPIO_26   | CAM_MCLK0                          | Configurable I/O Camera master clock 0                                            |  |  |  |
| J1.85 | AY1  | GPIO_5    | BLSP2_2<br>BLSP2_SPI_CS3_N         | Configurable I/O BLSP #2, bit 2; UART or SPI Chip select 3 for SPI on BLSP2       |  |  |  |
| J1.87 | E4   | GPIO_37   | BLSP3_SPI_CS2_N<br>FORCED_USB_BOOT | Configurable I/O Chip select 2 for SPI on BLSP3 Force USB boot control            |  |  |  |
| J1.88 | F3   | GPIO_30   | CAM_I2C_SCL                        | Configurable I/O Camera control interface I2C 0 serial Clock                      |  |  |  |
| J1.90 | B3   | GPIO_29   |                                    | Configurable I/O                                                                  |  |  |  |

| J1    |      |           |                       |                                            |
|-------|------|-----------|-----------------------|--------------------------------------------|
| Pin # | Ball | Ball name | Configurable function | Functional description                     |
|       |      |           | CAM_I2C_SDA           | Camera control interface I2C 0 serial data |

| J2    | J2         |           |                                             |                                                                                                                                   |  |  |  |
|-------|------------|-----------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Pin # | Ball       | Ball name | Configurable function                       | Functional description                                                                                                            |  |  |  |
| J2.2  | PM8916.J4  | MPP_3     | VREF_DAC Digital I/O (optional)             | Configurable MPP (AO) Reference for modem IC DAC (AO) Digital input/output usage (optional) (IO)                                  |  |  |  |
| J2.4  | PM8916.H6  | GPIO_2    | NFC_CLK_REQ                                 | Configurable GPIO  NFC control signal to request clock                                                                            |  |  |  |
| J2.6  | PM8916.J5  | MPP_4     | WLED_PWM Digital I/O (optional)             | Configurable MPP (AO) PWM control for external WLED driver (AO) Digital input/output usage (optional) (IO)                        |  |  |  |
| J2.8  | PM8916.K4  | MPP_2     | SKIN_TEMP HR_LED_SNK Digital I/O (optional) | Configurable MPP (AO) Skin temperature measurement (AI) Home row LED current sink (AI) Digital input/output usage (optional) (IO) |  |  |  |
| J2.10 | PM8916.J7  | GPIO_1    | UIM_BATT_ALM                                | Configurable GPIO  Battery removal alarm for UIM and UIM battery alarm input to the MSM                                           |  |  |  |
| J2.12 | AW6        | GPIO_21   | BLSP6_2<br>GP_PDM_1B                        | Configurable I/O BLSP #6, bit 2; SPI, or I2C General-purpose PDM output 1B, 12-bit, XO/4 clock                                    |  |  |  |
| J2.14 | F39        | GPIO_120  | BLSP3_SPI_CS1_N                             | Configurable I/O Chip select 1 for SPI on BLSP3                                                                                   |  |  |  |
| J2.16 | PM8916.N11 | GPIO_3    | WTR_LDO_EN                                  | Configurable GPIO Enable signal to power WTR with external LDO                                                                    |  |  |  |
| J2.17 | AW36       | GPIO_112  | MI2S_2_D1                                   | Configurable I/O<br>MI2S #2 serial data channel 1                                                                                 |  |  |  |
| J2.18 | PM8916.L8  | GPIO_4    |                                             | Configurable GPIO                                                                                                                 |  |  |  |
| J2.19 | BC32       | GPIO_96   | EXT_GNSS_LNA_EN                             | Configurable I/O<br>External GNSS LNA enable                                                                                      |  |  |  |
| J2.22 | BD7        | GPIO_81   | BOOT_CONFIG_1                               | Configurable I/O Boot configuration control bit 1                                                                                 |  |  |  |
| J2.23 | BA38       | GPIO_0    | BLSP1_3<br>DMICO_CLK                        | Configurable I/O<br>BLSP #1, bit 3; UART or SPI<br>Digital MICO clock                                                             |  |  |  |
| J2.24 | BD5        | GPIO_80   | BOOT_CONFIG_0<br>(WDOG_DISABLE)             | Configurable I/O Boot configuration control bit 0                                                                                 |  |  |  |
| J2.25 | AY37       | GPIO_3    | BLSP1_0                                     | Configurable I/O<br>BLSP #1, bit 0; UART, SPI or I2C                                                                              |  |  |  |
| J2.26 | BC40       | GPIO_83   | BOOT_CONFIG_3                               | Configurable I/O Boot configuration control bit 3                                                                                 |  |  |  |
| J2.27 | BB39       | GPIO_1    | BLSP1_2<br>DMICO_DATA                       | Configurable I/O BLSP #1, bit 2; UART or SPI Digital MICO data                                                                    |  |  |  |
| J2.28 | AY7        | GPIO_20   | BLSP6 3                                     | Configurable I/O<br>BLSP #6, bit 3; SPI, or I2C                                                                                   |  |  |  |

| J2    | J2   |           |                                       |                                                                                                                |  |  |  |
|-------|------|-----------|---------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|
| Pin#  | Ball | Ball name | Configurable function                 | Functional description                                                                                         |  |  |  |
|       |      |           | GP_PDM_0A                             | General-purpose PDM output 0A,<br>12-bit, XO/4 clock                                                           |  |  |  |
| J2.29 | AV35 | GPIO_2    | BLSP1_1                               | Configurable I/O<br>BLSP #1, bit 1; UART, SPI or I2C                                                           |  |  |  |
| J2.33 | BC38 | GPIO_82   | BOOT_CONFIG_2                         | Configurable I/O Boot configuration control bit 2                                                              |  |  |  |
| J2.35 | BD39 | GPIO_86   | BOOT_CONFIG_5                         | Configurable I/O<br>Boot configuration control bit 5                                                           |  |  |  |
| J2.38 | AU4  | GPIO_25   | DSI_RST_N<br>GP_PDM_0B                | Configurable I/O Display reset General-purpose PDM output 0B, 12-bit, XO/4 clock                               |  |  |  |
| J2.39 | AY39 | GPIO_106  | SSBI_WTR1_TX                          | Configurable I/O<br>SSBI 2 for RFIC 1                                                                          |  |  |  |
| J2.40 | AT5  | GPIO_24   | MDP_VSYNC_P                           | Configurable I/O MDP vertical sync – primary                                                                   |  |  |  |
| J2.41 | AW38 | GPIO_116  | MI2S_1_MCLK                           | Configurable I/O<br>MI2S #1 master clock                                                                       |  |  |  |
| J2.43 | E40  | GPIO_114  | MI2S_1_D0                             | Configurable I/O<br>MI2S #1 serial data channel 0                                                              |  |  |  |
| J2.44 | AA38 | GPIO_52   | UIM3_PRESENT<br>GP_PDM_1A             | Configurable I/O UIM3 removal detection General-purpose PDM output 1A, 12-bit, XO/4 clock                      |  |  |  |
| J2.45 | AU36 | GPIO_105  | SSBI_WTR1_RX                          | Configurable I/O<br>SSBI 1 for RFIC 1                                                                          |  |  |  |
| J2.46 | Y37  | GPIO_49   | BT_DATA                               | Configurable I/O Bluetooth dual function: data and strobe                                                      |  |  |  |
| J2.47 | D39  | GPIO_113  | MI2S_1_SCLK<br>GP_PDM_2B              | Configurable I/O<br>MI2S #1 bit clock<br>General-purpose PDM 2B output                                         |  |  |  |
| J2.48 | AA34 | GPIO_50   | UIM3_CLK<br>GP_CLK_2A                 | Configurable I/O<br>UIM3 clock<br>General-purpose clock output 2A                                              |  |  |  |
| J2.50 | Y35  | GPIO_51   | UIM3_RST<br>GP_CLK_3A                 | Configurable I/O UIM3 reset General-purpose clock output 3A                                                    |  |  |  |
| J2.51 | B39  | GPIO_110  | BLSP1_SPI_CS1_N<br>MI2S_1_WS<br>GP_MN | Configurable I/O Chip select 1 for SPI on BLSP1 MI2S #1 word select (L/R) General-purpose M/N:D counter output |  |  |  |
| J2.52 | L36  | GPIO_69   | MAG_INT<br>BLSP3_SPI_CS3_N            | Configurable I/O Magnometer interrupt Chip select 3 for SPI on BLSP3                                           |  |  |  |
| J2.53 | A38  | GPIO_98   | LCD_BL_EN<br>GP_PDM_2A                | Configurable I/O<br>Display backlight enable<br>General-purpose PDM 2A output                                  |  |  |  |
| J2.54 | K35  | GPIO_108  | KYPD_SNS1                             | Configurable I/O Keypad sense bit 1                                                                            |  |  |  |
| J2.55 | B37  | GPIO_38   | SD_CARD_DET_N<br>CCI_TIMER2           | Configurable I/O Secure digital card detection Camera control interface timer 2                                |  |  |  |
| J2.58 | J34  | GPIO_109  | KYPD_SNS2                             | Configurable I/O Keypad sense bit 2                                                                            |  |  |  |
| J2.59 | BA40 | GPIO_119  |                                       | Configurable I/O                                                                                               |  |  |  |

| J2    | J2   |           |                                                   |                                                                                                                       |  |  |  |
|-------|------|-----------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|
| Pin # | Ball | Ball name | Configurable function                             | Functional description                                                                                                |  |  |  |
|       |      |           | MI2S_2_D0                                         | MI2S #2 serial data channel 0                                                                                         |  |  |  |
| J2.60 | G34  | GPIO_62   | SMB_INT                                           | Configurable I/O<br>SMB interrupt                                                                                     |  |  |  |
| J2.61 | AV37 | GPIO_117  | MI2S_2_WS                                         | Configurable I/O<br>MI2S #2 word select (L/R)                                                                         |  |  |  |
| J2.62 | H33  | GPIO_107  | KYPD_SNS0                                         | Configurable I/O<br>Keypad sense bit 0                                                                                |  |  |  |
| J2.63 | AR36 | GPIO_118  | MI2S_2_SCLK                                       | Configurable I/O<br>MI2S #2 bit clock                                                                                 |  |  |  |
| J2.64 | G38  | GPIO_121  | BLSP2_SPI_CS1_N<br>USB_HS_ID<br>SD_WRITE_PROTECT1 | Configurable I/O Chip select 2 for SPI on BLSP2 USB ID pin for host mode detection SD write protection                |  |  |  |
| J2.67 | AN36 | GPIO_15   | BLSP4_0                                           | Configurable I/O<br>BLSP #4, bit 0; SPI, or I2C                                                                       |  |  |  |
| J2.69 | AN40 | GPIO_14   | BLSP4_1                                           | Configurable I/O<br>BLSP #4, bit 1; SPI, or I2C                                                                       |  |  |  |
| J2.73 | AM39 | GPIO_12   | BLSP4_3<br>GP_CLK_2B                              | Configurable I/O BLSP #4, bit 3; SPI, or I2C General-purpose clock output 2B                                          |  |  |  |
| J2.75 | AM35 | GPIO_13   | BLSP4_2<br>GP_CLK_3B                              | Configurable I/O BLSP #4, bit 2; SPI, or I2C General-purpose clock output 3B                                          |  |  |  |
| J2.79 | E38  | GPIO_115  | GYRO_ACCEL_INT_N<br>MI2S 1 D1                     | Configurable I/O<br>Gyro interrupt<br>MI2S #1 serial data channel 1                                                   |  |  |  |
| J2.81 | C38  | GPIO_97   | LCD_DRIVER_5V_EN GP_CLK_1B BOOT_CONFIG_14         | Configurable I/O<br>5 V display driver enable<br>General-purpose clock output 1B<br>Boot configuration control bit 14 |  |  |  |
| J2.83 | A4   | GPIO_35   | CAM0_RST_N                                        | Configurable I/O<br>Camera 0 reset                                                                                    |  |  |  |
| J2.84 | G4   | GPIO_33   | CCI_ASYNC0                                        | Configurable I/O Camera control interface async 0                                                                     |  |  |  |
| J2.85 | D3   | GPIO_31   | CCI_TIMERO<br>GP_CLKO                             | Configurable I/O Camera control interface timer 0 General-purpose clock 0                                             |  |  |  |
| J2.86 | F5   | GPIO_34   | CAMO_STANDBY_N                                    | Configurable I/O<br>Camera 0 (rear camera) standby                                                                    |  |  |  |
| J2.87 | D1   | GPIO_32   | CCI_TIMER1 GP_CLK1                                | Configurable I/O<br>Camera control interface timer 1<br>General-purpose clock 1                                       |  |  |  |
| J2.88 | C4   | GPIO_36   | FLASH_LED_RESET                                   | Configurable I/O<br>LED Flash reset                                                                                   |  |  |  |

## Notes:

PM8196 MPP/GPIOs:

- [1] All MPPs default to their high-Z state at power-up and must be configured after power up for their intended purposes.
  - All GPIOs default to 10  $\mu$ A pull down at power up and must be configured after power-up for their intended purposes.
- [2] Configure unused MPPs as 0 mA current sinks (high-Z) and GPIOs as digital inputs With their internal pull-downs enabled.
- [3] Only even MPPs can be configured as current sink and only odd MPPs can be configured as analog output.

## 4. SOM's interfaces

## 4.1. Display Interfaces

The DART-SD410 consists the following display interfaces:

- One MIPI DSI 4-lane HD (1280 x 720) 60 fps; 16/18/24 bpp RGB
- Wifi display 720p 30/1080p 30
- FHD + 720p external wireless display

#### 4.1.1. MIPI DSI

## MIPI DSI signals:

| Signal            | Pin#  | Туре | Description                          |
|-------------------|-------|------|--------------------------------------|
| MIPI_DSI0_DATA3_M | J1.12 | ODS  | MIPI DSI interface 0 lane 3 negative |
| MIPI_DSI0_DATA3_P | J1.14 | ODS  | MIPI DSI interface 0 lane 3 positive |
| MIPI_DSI0_DATA2_M | J1.16 | ODS  | MIPI DSI interface 0 lane 2 negative |
| MIPI_DSI0_DATA2_P | J1.18 | ODS  | MIPI DSI interface 0 lane 2 positive |
| MIPI_DSI0_DATA1_M | J1.20 | ODS  | MIPI DSI interface 0 lane 1 negative |
| MIPI_DSI0_DATA1_P | J1.22 | ODS  | MIPI DSI interface 0 lane 1 positive |
| MIPI_DSI0_CLK_M   | J1.24 | ODS  | MIPI DSI interface 0 clock negative  |
| MIPI_DSI0_CLK_P   | J1.26 | ODS  | MIPI DSI interface 0 clock positive  |
| MIPI_DSI0_DATA0_M | J1.28 | ODS  | MIPI DSI interface 0 lane 0 negative |
| MIPI_DSI0_DATA0_P | J1.30 | ODS  | MIPI DSI interface 0 lane 0 positive |

## 4.2. Camera Interfaces

The DART-SD410 exports 2 MIPI CSI camera interface ports with the following capabilities:

- 4-lane ;1.5 Gbps per lane; supporting up to 13 MP sensors
- 2-lane; 1.5 Gbps per lane; supporting up to 8 MP sensors
- Pixel manipulations, camera modes, image effects, and post-processing techniques, including defective pixel correction.
- I2C controls

#### 4.2.1. MIPI CSI0

## MIPI CSIO signals:

| Signal            | Pin#  | Туре | Description                          |
|-------------------|-------|------|--------------------------------------|
| MIPI_CSIO_DATA2_M | J1.48 | IDS  | MIPI CSI interface 0 lane 2 negative |
| MIPI_CSIO_DATA2_P | J1.50 | IDS  | MIPI CSI interface 0 lane 2 positive |
| MIPI_CSIO_DATA3_M | J1.52 | IDS  | MIPI CSI interface 0 lane 3 negative |
| MIPI_CSIO_DATA3_P | J1.54 | IDS  | MIPI CSI interface 0 lane 3 positive |
| MIPI_CSIO_CLK_M   | J1.56 | IDS  | MIPI CSI interface 0 clock negative  |
| MIPI_CSIO_CLK_P   | J1.58 | IDS  | MIPI CSI interface 0 clock positive  |
| MIPI_CSI0_DATA1_M | J1.60 | IDS  | MIPI CSI interface 0 lane 1 negative |
| MIPI_CSI0_DATA1_P | J1.62 | IDS  | MIPI CSI interface 0 lane 1 positive |

| MIPI_CSIO_DATAO_M | J1.64 | IDS | MIPI CSI interface 0 lane 0 negative |
|-------------------|-------|-----|--------------------------------------|
| MIPI_CSIO_DATAO_P | J1.66 | IDS | MIPI CSI interface 0 lane 0 positive |

#### 4.2.2. MIPI CSI1

#### MIPI CSI1 Signals:

| Signal            | Pin#  | Туре | Description                          |
|-------------------|-------|------|--------------------------------------|
| MIPI_CSI1_CLK_M   | J1.34 | IDS  | MIPI CSI interface 1 clock negative  |
| MIPI_CSI1_CLK_P   | J1.36 | IDS  | MIPI CSI interface 1 clock positive  |
| MIPI_CSI1_DATA1_M | J1.38 | IDS  | MIPI CSI interface 1 lane 1 negative |
| MIPI_CSI1_DATA1_P | J1.40 | IDS  | MIPI CSI interface 1 lane 1 positive |
| MIPI_CSI1_DATA0_M | J1.42 | IDS  | MIPI CSI interface 1 lane 0 negative |
| MIPI_CSI1_DATA0_P | J1.44 | IDS  | MIPI CSI interface 1 lane 0 positive |

## 4.2.3. Camera Control signals:

In addition to the signal lines the SOM exposes a dedicated I2C channel and Supplementing signals for camera control:

## Camera Control signals:

| Signal         | Pin#  | Туре | Description                      |
|----------------|-------|------|----------------------------------|
| CAM_MCLK0      | J1.84 | 0    | Camera master clock 0            |
| CAM_MCLK1      | J1.80 | 0    | Camera master clock 1            |
| CCI_TIMER0     | J2.85 | 0    | Camera control interface timer 0 |
| CCI_TIMER1     | J2.87 | 0    | Camera control interface timer 1 |
| CCI_TIMER2     | J2.55 | 0    | Camera control interface timer 2 |
| CCI_ASYNC0     | J2.84 | I    | Camera control interface async 0 |
| CAM0_RST_N     | J2.83 | 0    | Camera 0 reset                   |
| CAM1_RST_N     | J1.82 | 0    | Camera 1 reset                   |
| CAM0_STANDBY_N | J2.86 | 0    | Camera 0 standby                 |

## 4.3. Wi-Fi, Bluetooth, FM Radio

The DART-SD410 contains Qualcomm's The WCN3620 IC which integrates three different connectivity technologies into a single device:

- Wireless local area network (WLAN) compliant with the IEEE 802.11b/g/n specification
- Bluetooth (BT) compliant with the BT specification version 4.0 (BR/EDR+BLE)
- Worldwide FM radio, with Rx modes supporting the Radio Data System (RDS) for Europe and the Radio Broadcast Data System (RBDS) for the USA

## 4.4. USB 2.0 OTG

The DART-SD410 exports one USB 2.0 High-speed interface.

The USB port can be set to Host mode or Device mode.

#### **USB Signals:**

| Signal     | Pin#  | Туре | Description                        |
|------------|-------|------|------------------------------------|
| USB_VBUS   | J1.21 | 1    | USB VBUS for OTG                   |
| USB_HS_D_M | J2.32 | DS   | USB HS data minus                  |
| USB_HS_D_P | J2.34 | DS   | USB HS data plus                   |
| USB_HS_ID  | J2.64 | 1    | USB ID pin for Host mode detection |
|            |       |      | Low: Host mode                     |
|            |       |      | High: Device mode                  |

## 4.5. SD/MMC

The DART-SD410 MMC features a 4-bit SD/MMC card interface for connecting external memory or a Micro SD card slot.

## SDC2 Signals:

| Signal      | Pin#  | Туре | Description          |  |  |
|-------------|-------|------|----------------------|--|--|
| SDC2_DATA_3 | J1.49 | 10   | SD card Data 3 line  |  |  |
| SDC2_DATA_2 | J1.51 | 10   | SD card Data 2 line  |  |  |
| SDC2_DATA_0 | J1.53 | 10   | SD card Data 0 line  |  |  |
| SDC2_DATA_1 | J1.55 | 10   | SD card Data 1 line  |  |  |
| SDC2_CMD    | J1.57 | 10   | SD card Command line |  |  |
| SDC2_CLK    | J1.59 | 0    | SD card Clock output |  |  |

## 4.6. Audio

The DART-SD410 features the following audio interfaces:

- PM8196's integrated audio codec interfaces:
  - 1. Analog inputs:
    - 2 biased single ended microphones: 1 primary, 1 headset With Programmable input gain of: 0, 6, 12, 18, 21, and 24 dB
  - 2. Analog outputs:
    - 1 stereo headset with Up to five button MBHC headset support + input for headset jack detection; 1 Vrms output
    - Class-D mono speaker
    - Over current protection on HPH and speaker outputs

Multiple input/output audio support sample rates of: 8, 16, 32, and 48 kHz

- APQ8016's integrated audio interfaces:
  - 1. Digital microphone input
  - 2. 2x MI2S Digital audio interface

## PM8196 Audio interface Signals:

| Signal         | Pin # | Туре  | Description                                |
|----------------|-------|-------|--------------------------------------------|
| CDC_VDD_SPKDRV | J1.9  | POWER | +5V class-D speaker amplifier supply input |
| CDC_VDD_SPKDRV | J1.11 | POWER | +5V class-D speaker amplifier supply input |
| SPKR_OUT_P     | J1.13 | AO    | Class-D speaker amp + output               |
| SPKR_OUT_M     | J1.17 | AO    | Class-D speaker amp – output               |
| CDC_HPH_L      | J1.23 | AO    | Headphone left channel output              |
| CDC_HPH_R      | J1.25 | AO    | Headphone right channel output             |
| CDC_HPH_REF    | J1.27 | Al    | Headphone ground sensing                   |
| CDC_HS_DET     | J1.29 | Al    | Headset detection                          |
| CDC_MIC_BIAS2  | J1.33 | AO    | Microphone #2 bias                         |
| CDC_MIC_BIAS1  | J1.35 | AO    | Microphone #1 bias                         |
| CDC_MIC1_P     | J1.39 | Al    | Main microphone                            |
| GND_CFILT      | J1.41 | POWER | Ground reference for PMIC bias             |
| CDC_MIC2_P     | J1.43 | Al    | Headset microphone                         |
| GND_CFILT      | J1.45 | POWER | Ground reference for PMIC bias             |

## APQ8016 Digital Microphone Signals:

| ľ | Signal     | Pin#  | Туре | Description        |
|---|------------|-------|------|--------------------|
|   | DMICO_CLK  | J2.23 | 0    | Digital MICO clock |
| ſ | DMICO DATA | J2.27 | 10   | Digital MICO data  |

#### APQ8016 Digital Audio interface Signals:

| Signal      | Pin # | Туре | Description                          |
|-------------|-------|------|--------------------------------------|
| MI2S_2 _D1  | J2.17 | 10   | MI2S interface #2 Data1 signal       |
| MI2S_2 _D0  | J2.59 | 10   | MI2S interface #2 Data0 signal       |
| MI2S_2 _WS  | J2.61 | 10   | MI2S interface #2 Word Select signal |
| MI2S_2 _SCK | J2.63 | 10   | MI2S interface #2 SCLK signal        |
| MI2S_1_D0   | J2.43 | 10   | MI2S interface #1 Data0 signal       |
| MI2S_1_SCLK | J2.47 | 10   | MI2S interface #1 SCLK signal        |
| MI2S_1 _WS  | J2.51 | 10   | MI2S interface #1 Word Select signal |
| MI2S_1_D1   | J2.79 | 10   | MI2S interface #1 Data1 signal       |

## 4.7. BAM-enabled low-speed peripheral (BLSP)

The BLSP supports the following serial protocols:

- UART\_DM
  - Up to 4 Mbps UART
  - Supports all baud rates from 75 to 115200 bps and 4 Mbps
  - 5-8 bits character size, 0.5-2 bits stop bit, no/even/odd/space parity
  - Optional HW flow control based on CTS/RFR (HW or SW based)
  - Other: RX-break, hunt char, sticky error status, overflow detection, FIFO watermarking, FIFO resizing, HW data timeout, HW inactivity timeout
- I2C
  - Up to 3.4 MHz clock rate
- SPI
  - Up to 50 MHz operation on all six possible ports

The SOM exposes 6 BLSP ports each 4 bit wide. Each can be configured to one of the following options:

## BLSP1 interface Signals:

| bit | Pin   |                                         |                                     | configuration                       |                                           |                            |
|-----|-------|-----------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------------|----------------------------|
|     |       | 4-pin UART I2C + GPIOs                  |                                     | I2C + 2-pin UART                    | 4-pin SPI                                 | 4 GPIOs                    |
| 3   | J2.23 | BLSP1_UART_TX UART transmit data        | GPIO_0<br>Configurable I/O          | BLSP1_UART_TX UART transmit data    | BLSP1_SPI_MOSI<br>SPI master out/slave in | GPIO_0<br>Configurable I/O |
| 2   | J2.27 | BLSP1_UART_RX UART receive data         | GPIO_1 Configurable I/O             | BLSP1_UART_RX UART receive data     | BLSP1_SPI_MISO<br>SPI master in/slave out | GPIO_1<br>Configurable I/O |
| 1   | J2.29 | BLSP1_UART_CTS_N UART clear-to-send     | BLSP1_I2C_SDA_A<br>I2C serial data  | BLSP1_I2C_SDA_A<br>I2C serial data  | BLSP1_SPI_CS_N<br>SPI chip select         | GPIO_2<br>Configurable I/O |
| 0   | J2.25 | BLSP1_UART_RFR_N UART ready-for-receive | BLSP1_I2C_SCL_A<br>I2C serial clock | BLSP1_I2C_SCL_A<br>I2C serial clock | BLSP1_SPI_CLK<br>SPI clock                | GPIO_3<br>Configurable I/O |

## **BLSP2** interface Signals:

| bit | Pin   | configuration                           |                                     |                                     |                                           |                            |  |  |
|-----|-------|-----------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------------|----------------------------|--|--|
|     |       | 4-pin UART I2C + GPIOs                  |                                     | I2C + 2-pin UART                    | 4-pin SPI                                 | 4 GPIOs                    |  |  |
| 3   | J1.83 | BLSP2_UART_TX UART transmit data        | GPIO_4 Configurable I/O             | BLSP2_UART_TX UART transmit data    | BLSP2_SPI_MOSI<br>SPI master out/slave in | GPIO_4<br>Configurable I/O |  |  |
| 2   | J1.85 | BLSP2_UART_RX UART receive data         | GPIO_5<br>Configurable I/O          | BLSP2_UART_RX UART receive data     | BLSP2_SPI_MISO<br>SPI master in/slave out | GPIO_5<br>Configurable I/O |  |  |
| 1   | J1.77 | BLSP2_UART_CTS_N UART clear-to-send     | BLSP2_I2C_SDA_A<br>I2C serial data  | BLSP2_I2C_SDA_A<br>I2C serial data  | BLSP2_SPI_CS_N<br>SPI chip select         | GPIO_6<br>Configurable I/O |  |  |
| 0   | J1.79 | BLSP2_UART_RFR_N UART ready-for-receive | BLSP2_I2C_SCL_A<br>I2C serial clock | BLSP2_I2C_SCL_A<br>I2C serial clock | BLSP2_SPI_CLK<br>SPI clock                | GPIO_7<br>Configurable I/O |  |  |

## **BLSP3** interface Signals:

| bit | Pin   | configuration          |                                     |                  |                                           |                             |
|-----|-------|------------------------|-------------------------------------|------------------|-------------------------------------------|-----------------------------|
|     |       | 4-pin UART I2C + GPIOs |                                     | I2C + 2-pin UART | 4-pin SPI                                 | 4 GPIOs                     |
| 3   | J1.76 | N/A                    | GPIO_8 Configurable I/O             | N/A              | BLSP3_SPI_MOSI<br>SPI master out/slave in | GPIO_8 Configurable I/O     |
| 2   | J1.72 | N/A                    | GPIO_9<br>Configurable I/O          | N/A              | BLSP3_SPI_MISO<br>SPI master in/slave out | GPIO_9<br>Configurable I/O  |
| 1   | J1.70 | N/A                    | BLSP3_I2C_SDA_A<br>I2C serial data  | N/A              | BLSP3_SPI_CS_N<br>SPI chip select         | GPIO_10<br>Configurable I/O |
| 0   | J1.74 | N/A                    | BLSP2_I2C_SCL_A<br>I2C serial clock | N/A              | BLSP3_SPI_CLK<br>SPI clock                | GPIO_11<br>Configurable I/O |

## BLSP4 interface Signals:

| bit | Pin   | configuration |                                     |                  |                                           |                             |
|-----|-------|---------------|-------------------------------------|------------------|-------------------------------------------|-----------------------------|
|     |       | 4-pin UART    | I2C + GPIOs                         | I2C + 2-pin UART | 4-pin SPI                                 | 4 GPIOs                     |
| 3   | J2.73 | N/A           | GPIO_12<br>Configurable I/O         | N/A              | BLSP4_SPI_MOSI<br>SPI master out/slave in | GPIO_12<br>Configurable I/O |
| 2   | J2.75 | N/A           | GPIO_13<br>Configurable I/O         | N/A              | BLSP4_SPI_MISO<br>SPI master in/slave out | GPIO_13<br>Configurable I/O |
| 1   | J2.69 | N/A           | BLSP4_I2C_SDA_A N/A                 |                  | BLSP4_SPI_CS_N<br>SPI chip select         | GPIO_14<br>Configurable I/O |
| 0   | J2.67 | N/A           | BLSP4_I2C_SCL_A<br>I2C serial clock | N/A              | BLSP4_SPI_CLK<br>SPI clock                | GPIO_15<br>Configurable I/O |

## BLSP5 interface Signals:

| bit | Pin   | configuration          |                                     |                  |                                           |                             |
|-----|-------|------------------------|-------------------------------------|------------------|-------------------------------------------|-----------------------------|
|     |       | 4-pin UART I2C + GPIOs |                                     | I2C + 2-pin UART | 4-pin SPI                                 | 4 GPIOs                     |
| 3   | J1.65 | N/A                    | GPIO_16 Configurable I/O            | N/A              | BLSP5_SPI_MOSI<br>SPI master out/slave in | GPIO_16<br>Configurable I/O |
| 2   | J1.69 | N/A                    | GPIO_17<br>Configurable I/O         | N/A              | BLSP5_SPI_MISO<br>SPI master in/slave out | GPIO_17<br>Configurable I/O |
| 1   | J1.67 | N/A                    | BLSP5_I2C_SDA_B                     | N/A              | BLSP5_SPI_CS_N<br>SPI chip select         | GPIO_18 Configurable I/O    |
| 0   | J1.63 | N/A                    | BLSP5_I2C_SCL_B<br>I2C serial clock | N/A              | BLSP5_SPI_CLK<br>SPI clock                | GPIO_19<br>Configurable I/O |

## **BLSP6** interface Signals:

| bit | Pin   | configuration          |                             |                  |                                           |                             |
|-----|-------|------------------------|-----------------------------|------------------|-------------------------------------------|-----------------------------|
|     |       | 4-pin UART I2C + GPIOs |                             | I2C + 2-pin UART | 4-pin SPI                                 | 4 GPIOs                     |
| 3   | J2.28 | N/A                    | GPIO_20<br>Configurable I/O | N/A              | BLSP6_SPI_MOSI<br>SPI master out/slave in | GPIO_20<br>Configurable I/O |
| 2   | J2.12 | N/A                    | GPIO_21<br>Configurable I/O | N/A              | BLSP6_SPI_MISO<br>SPI master in/slave out | GPIO_21<br>Configurable I/O |
| 1   | J1.75 | N/A                    | BLSP6_I2C_SDA_A             | N/A              | BLSP6_SPI_CS_N<br>SPI chip select         | GPIO_22<br>Configurable I/O |
| 0   | J1.73 | N/A                    | BLSP6_I2C_SCL_A             | N/A              | BLSP6_SPI_CLK<br>SPI clock                | GPIO_23<br>Configurable I/O |

## Extra chip selects SPI for BLSP ports configured as SPI:

| Signal          | Pin # | Туре | Description          |
|-----------------|-------|------|----------------------|
| BLSP1_SPI_CS3_N | J1.83 | 10   | BLSP 1 Chip select 3 |
| BLSP2_SPI_CS3_N | J1.85 | 10   | BLSP 2Chip select 3  |
| BLSP1_SPI_CS2_N | J1.65 | 10   | BLSP 1 Chip select 2 |
| BLSP2_SPI_CS2_N | J1.69 | 10   | BLSP 2 Chip select 2 |
| BLSP3_SPI_CS2_N | J1.87 | 10   | BLSP 3 Chip select 2 |
| BLSP3_SPI_CS3_N | J2.52 | 10   | BLSP 3 Chip select 3 |
| BLSP1_SPI_CS1_N | J2.51 | 10   | BLSP 1 Chip select 1 |
| BLSP3_SPI_CS1_N | J2.14 | 10   | BLSP 3 Chip select 1 |
| BLSP2_SPI_CS1_N | J2.64 | 10   | BLSP 2 Chip select 1 |

## 4.8. UIM

The SOM exposes one User identification module (UIM):

## **UIM Signals:**

| Signal       | Pin # | Туре | Description            |
|--------------|-------|------|------------------------|
| UIM3_DATA    | J2.46 | 10   | UIM3 data              |
| UIM3_CLK     | J2.48 | 0    | UIM3 clock             |
| UIM3_RESET   | J2.50 | 0    | UIM3 reset             |
| UIM3_PRESENT | J2.44 | I    | UIM3 removal detection |

## 4.9. Sensors and keypad

The SOM exposes several signals for Sensors and keypad buttons connection:

Sensors and keypad Signals:

| Signal           | Pin#  | Туре | Description          |
|------------------|-------|------|----------------------|
| SMB_INT          | J2.60 | 1    | SMB interrupt        |
| MAG_INT          | J2.52 | I    | Magnometer interrupt |
| GYRO_ACCEL_INT_N | J2.79 | 1    | Gyro interrupt       |
| KYPD_SNS0        | J2.62 | I    | Keypad sense bit 0   |
| KYPD_SNS1        | J2.54 | 1    | Keypad sense bit 1   |
| KYPD_SNS2        | J2.58 | T    | Keypad sense bit 2   |

## 4.10. JTAG

The SOM exports a JTAG interface for debug and test control

## JTAG signals:

| Signal       | Pin#  | Туре | Description                     |
|--------------|-------|------|---------------------------------|
| JTAG_SRST_N  | J2.68 | 1    | JTAG reset for debug            |
| JTAG_TMS     | J2.70 | 1    | TAG mode-select input           |
| JTAG_TCK     | J2.72 | 1    | JTAG clock input                |
| JTAG_TDI     | J2.74 | T    | JTAG data input                 |
| JTAG_TRST_N  | J2.76 | T    | JTAG reset                      |
| JTAG_TDO     | J2.78 | 0    | JTAG data output                |
| JTAG_PS_HOLD | J2.80 | T    | Power-supply hold control input |

## 4.11. General Purpose IOs

Many of the APQ8016 pins can be used as GPIOs. In addition, the PM8196 exports 3 multipurpose pins (MPPs) & 4 GPIOs.

PM8196 MPPs can be configured as:

- 1) Digital in/out
- 2) Uni-directional level-translating I/Os
- 3) Analog multiplexer inputs
- 4) Current sinks
- 5) VREF buffer outputs

PM8196 GPIOs are configurable as digital inputs or outputs or level-translating I/Os, and are faster than MPPs

See Chapter 3, Tables 3.1 and 3.2 for complete SOM connectors signal list and GPIO multiplexing.

## 4.12. General System Control

## 4.12.1. Boot Options

Boot Configuration pins [14:0] control various secure boot, debugging, and boot device options (Refer to section 3.2 for complete signal list and multiplexing).

Many of these options are hard-wired on shipped devices via qFUSE settings.

The following boot configuration pins and GPIOs are of interest:

| Pin Name        | Pin Number |
|-----------------|------------|
| BOOT_CONFIG_0   | J2.24      |
| BOOT_CONFIG_1   | J2.22      |
| BOOT_CONFIG_2   | J2.33      |
| BOOT_CONFIG_3   | J2.26      |
| BOOT_CONFIG_5   | J2.35      |
| FORCED_USB_BOOT | J1.87      |

## 1) BOOT\_CONFIG[3:1]

These pins determine the SOM boot sequence according to the following truth table:

| BOOT_CONFIG[3:1] | BOOT OPTIONS       |
|------------------|--------------------|
| 000              | SDC1> SDC2> USB2.0 |
| 001              | SDC2> SDC1> USB2.0 |
| 010              | SDC1> USB2.0       |
| 011              | USB2.0             |

#### Note:

The Default Boot option is 000, which is the On-SOM eMMC connected to SDC1 interface.

## 2) BOOT\_CONFIG[0]

| Pin Name      | Pin Number |
|---------------|------------|
| BOOT_CONFIG_0 | J2.24      |

When high '1' Watch Dog is disabled

## 3) BOOT\_CONFIG[5]

| Pin Name      | Pin Number |
|---------------|------------|
| BOOT CONFIG 5 | J2.35      |

Requires an External 10K ohm pull up for Apps Boot from eMMC

## 4) FORCED\_USB\_BOOT

| Pin Name        | Pin Number |
|-----------------|------------|
| FORCED_USB_BOOT | J1.87      |

An option for forced USB Boot is available through this pin.

When High '1' the boot source will be from USB regardless of the BOOT\_CONFIG pins' state.

#### 4.12.2. Power

| Pin Name   | Pin Number |
|------------|------------|
| PHONE_ON_N | J2.9       |

Upon applying power the board, the boot process will start. Once the board is running: A board shut-down will occur when this signal is logic '0' for more than 8 seconds If the board in sleep mode setting this signal to logic '0' low for more than 3 sec will wake up the board.

#### 4.12.3. Reset

| Pin Name    | Pin Number |
|-------------|------------|
| APQ_RESIN_N | J1.89      |

A logic '0' will reset the board.

| Pin Name   | Pin Number |
|------------|------------|
| PM_RESIN_N | J2.7       |

A logic '0' lasting less more 10 seconds Reset.

#### 4.12.4. General purpose clocks, PDM, and additional RFIC interface signals

The APQ8016 IC has several general purpose clock outputs, as well as general purpose pulse Density modulated (PDM) outputs:

- GP\_PDM a configurable pulse-density output (12-bit value configurable), with the base frequency set at 4.8 MHz.
  - The APQ8016 supports three different instances of this configurable PDM output
  - GP\_PDM0, 1, and 2 can each be used independently. If there is an A or B option in the IO name, it means only one or the other can be used.
- G GP\_CLK A general purpose clock output that lets the user configure a desired clock output by first selecting a clock source (GPLLO or 19.2 MHz) and then programming a desired
  - The APQ8016 supports four different instances of this clock output
  - GP\_CLKO, 1, 2, and 3 can be used independently. If there is an A or B option in the IO name, it means only one or the other can be used.
  - Different division ratios may result in differing jitter, with integer divisors producing the cleanest outputs.
- GP\_MN Similar to GP\_CLK, except the source clock is always 4.8 MHz. It is only Available behind GPIO110.

## General purpose clocks, PDM:

| Signal    | Pin#  | Туре | Description                                       |
|-----------|-------|------|---------------------------------------------------|
| GP_PDM_1A | J2.44 | 0    | General-purpose PDM output 1A, 12-bit, XO/4 clock |
| GP_PDM_0B | J2.38 | 0    | General-purpose PDM output 0B, 12-bit, XO/4 clock |
| GP_PDM_1B | J2.12 | 0    | General-purpose PDM output 1B, 12-bit, XO/4 clock |
| GP_PDM_2A | J2.53 | 0    | General-purpose PDM output 2A, 12-bit, XO/4 clock |
| GP_PDM_2B | J2.47 | 0    | General-purpose PDM output 2B, 12-bit, XO/4 clock |
| GP_CLK0   | J2.85 | 0    | General-purpose clock 0                           |

| GP_CLK1   | J2.87 | 0 | General-purpose clock 1              |
|-----------|-------|---|--------------------------------------|
| GP_CLK_1A | J2.46 | 0 | General-purpose clock 1A             |
| GP_CLK_2A | J2.48 | 0 | General-purpose clock 2A             |
| GP_CLK_3A | J2.50 | 0 | General-purpose clock 3A             |
| GP_CLK_1B | J2.81 | 0 | General-purpose clock 1B             |
| GP_CLK_2B | J2.73 | 0 | General-purpose clock 2B             |
| GP_CLK_3B | J2.75 | 0 | General-purpose clock 3B             |
| GP_MN     | J2.51 | 0 | General-purpose M/N:D counter output |

## Additional RFIC interface signals:

| Signal       | Pin#  | Туре | Description                                          |
|--------------|-------|------|------------------------------------------------------|
| SSBI_WTR1_RX | J2.45 | Ю    | SSBI (single-wire serial bus Interface) 1 for RFIC 1 |
| SSBI_WTR1_TX | J2.39 | Ю    | SSBI (single-wire serial bus Interface) 2 for RFIC 1 |

## 4.13. Power

## 4.13.1. Power Supply

| Signal         | Pin#      | Туре  | Description                                    |  |  |
|----------------|-----------|-------|------------------------------------------------|--|--|
| VPH_PWR        | J1.1-J1.8 | Power | DART-SD410 Single DC-IN Supply voltage.        |  |  |
|                |           | In    | Voltage range: 3.7V -4.5V                      |  |  |
| CDC VDD SPKDRV | J1.9,     | Power | 5V class-D speaker amplifier supply input      |  |  |
| CDC_VDD_3PKDKV | J1.11     | In    | 3V class-D speaker amplifier supply input      |  |  |
| VREG L11 SDC   | J2.1,     | Power | 2.0EV nower cumply output for External SD Card |  |  |
| AKEQ_LII_3DC   | J2.3      | Out   | 2.95V power supply output for External SD Card |  |  |
| VDEC 113 CDC   |           | Power | 2.05V nower supply output for External CD Cord |  |  |
| VREG_L12_SDC   | J2.13     | Out   | 2.95V power supply output for External SD Card |  |  |

## 4.13.2. Ground

| Signal    | Pin#                                                                                                                                                                                                     | Туре  | Description                    |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------|
| DGND      | J1.10, J1.31, J1.32, J1.37, J1.46, J1.47, J1.61, J1.68, J1.71, J1.78, J1.81, J1.86, J2.5, J2.11, J2.15, J2.21, J2.30, J2.31, J2.36, J2.37, J2.42, J2.49, J2.56, J2.65, J2.66, J2.77, J2.82, J2.89, J2.90 | Power | Digital ground                 |
| GND_CFILT | J1.41, J1.45                                                                                                                                                                                             | Power | Ground reference for PMIC bias |

## 5. Absolute Maximum Characteristics

| Power Supply                                           | Min  | Max | Unit |
|--------------------------------------------------------|------|-----|------|
| Main Power Supply, DC-IN                               | -0.5 | 6   | V    |
| Class-D speaker amplifier supply input, CDC_VDD_SPKDRV | -0.5 | 6   | V    |

## 6. Operational Characteristics

## 6.1. Power supplies

|                          | Min | Typical | Max | Unit |
|--------------------------|-----|---------|-----|------|
| Main Power Supply, DC-IN | 3.7 | 3.7     | 4.5 | V    |
| CDC_VDD_SPKDRV           | 3.0 | 3.7/5.0 | 5.5 | V    |

## 6.2. Power Consumption

## CPU usage:

| SOM VBAT current draw in ma @3.7v |
|-----------------------------------|
| Less than 5 mA                    |
| 60 mA                             |
| 200 mA                            |
| 450 mA                            |
| 850 mA                            |
| 2000 mA                           |
|                                   |

<sup>\*</sup>Note: Suspend mode supported only in Android.

#### Additional peripherals:

| Task              | SOM VBAT current draw in ma @3.7v |
|-------------------|-----------------------------------|
| WLAN transmission | 200 mA                            |
| GPS               | 120 mA                            |

#### Power supplies Output rating:

| Power Rail   | Max allowed current draw in ma |
|--------------|--------------------------------|
| VREG_L11_SDC | 600mA                          |
| VREG_L12_SDC | 50mA                           |

For more information please visit out Wiki Page at address:

http://variwiki.com/index.php?title=DART-SD410 Android Comparison

## 7. Heat spread

There are solder mask free copper islands on the bottom of the SOM.

The copper islands are connected to ground and should be used to guide heat away from the SOM to the base board. They can be left unconnected if heat guidance is not needed.

## 8. DC Electrical Characteristics

<u>APQ8016 Digital 1.8V:</u> Camera Control, DMIC, MI2S, BLSP, UIM, Sensor, Keypad, JTAG, General System Control, GPIOs.

| P                 | arameter                   | Comments                      | Min  | Max  | Unit |
|-------------------|----------------------------|-------------------------------|------|------|------|
| V <sub>IH</sub>   | High-level input voltage   | CMOS/Schmitt                  | 1.17 | -    | V    |
| V <sub>IL</sub>   | Low-level input voltage    | CMOS/Schmitt                  | -    | 0.63 | V    |
| VOH               | High-level output voltage  | CMOS, at rated drive strength | 1.35 |      | V    |
| VOL               | Low-level output voltage   | CMOS, at rated drive strength | -    | 0.45 | V    |
| RP                | Pull resistance            | Pull-up and pull-down         | 55   | 390  | kΩ   |
| RK                | Keeper resistance          |                               | 30   | 150  | kΩ   |
| lін               | Input high leakage current | No pull-down                  | -    | 1    | μΑ   |
| IL                | Input low leakage current  | No pull-up                    | -1   | -    | μΑ   |
| V <sub>SHYS</sub> | Schmitt hysteresis voltage |                               | 100  |      | mV   |
| C <sub>I/O</sub>  | I/O capacitance            |                               | -    | 5    | pF   |

## APQ8016 Digital 1.8V: UIM

| Pa                | arameter                   | Comments                      | Min  | Max  | Unit |
|-------------------|----------------------------|-------------------------------|------|------|------|
| VIH               | High-level input voltage   | CMOS/Schmitt                  | 1.26 | 2.1  | V    |
| V <sub>IL</sub>   | Low-level input voltage    | CMOS/Schmitt                  | -0.3 | 0.36 | V    |
| VOH               | High-level output voltage  | CMOS, at rated drive strength | 1.44 | 1.8  | V    |
| V <sub>OL</sub>   | Low-level output voltage   | CMOS, at rated drive strength | 0    | 0.4  | V    |
| RP                | Pull resistance            | Pull-up and pull-down         | 10   | 100  | kΩ   |
| RK                | Keeper resistance          |                               | 10   | 100  | kΩ   |
| lін               | Input high leakage current | No pull-down                  | -    | 2    | μΑ   |
| ΙΙΓ               | Input low leakage current  | No pull-up                    | -2   | -    | μΑ   |
| V <sub>SHYS</sub> | Schmitt hysteresis voltage |                               | 100  | -    | mV   |
| c <sub>I/O</sub>  | I/O capacitance            |                               | -    | 5    | pF   |

## APQ8016 Digital 2.95V: SD/MMC

|                 | Parameter                 | Comments                      | Min   | Max   | Unit |
|-----------------|---------------------------|-------------------------------|-------|-------|------|
| V <sub>IH</sub> | High-level input voltage  | CMOS/Schmitt                  | 1.125 | 2.1   | V    |
| V <sub>IL</sub> | Low-level input voltage   | CMOS/Schmitt                  | -0.3  | 0.45  | V    |
| V <sub>OH</sub> | High-level output voltage | CMOS, at rated drive strength | 1.35  | 1.8   | V    |
| V <sub>OL</sub> | Low-level output voltage  | CMOS, at rated drive strength | 0     | 0.225 | V    |
| RP              | Pull resistance           | Pull-up and pull-down         | 10    | 100   | kΩ   |

|                   | Parameter                  | Comments     | Min | Max | Unit |
|-------------------|----------------------------|--------------|-----|-----|------|
| RK                | Keeper resistance          |              | 10  | 100 | kΩ   |
| IH                | Input high leakage current | No pull-down | -   | 10  | μΑ   |
| ΙΙL               | Input low leakage current  | No pull-up   | -10 | -   | μΑ   |
| V <sub>SHYS</sub> | Schmitt hysteresis voltage |              | 100 | -   | mV   |
| c <sub>I/O</sub>  | I/O capacitance            |              | -   | 5   | pF   |

## PM8196 GPIOs:

|                   | Parameter                            | Comments                           | Min                       | Тур | Max                      | Unit |
|-------------------|--------------------------------------|------------------------------------|---------------------------|-----|--------------------------|------|
| V <sub>IH</sub>   | High-level input voltage             |                                    | 0.65 x V_G <sup>[1]</sup> | -   | V_G <sup>[1]</sup> +0.3  | V    |
| V <sub>IL</sub>   | Low-level input voltage              |                                    | -0.3                      | -   | 0.35 xV_G <sup>[1]</sup> | V    |
| V <sub>SHYS</sub> | Schmitt hysteresis voltage           |                                    | 15                        | -   | -                        | mV   |
| ΙL                | Input leakage current <sup>[2]</sup> | V_G = max, VIN= 0 V to V_G         | -200                      | -   | +200                     | nA   |
| VOH               | High-level output voltage            | I <sub>OUT</sub> = I <sub>OH</sub> | V_G <sup>[1]</sup> – 0.5  | -   | V_G <sup>[1]</sup>       | V    |
| V <sub>OL</sub>   | Low-level output voltage             | OUT = OL                           | 0                         | -   | 0.45                     | V    |
| ІОН               | High-level output current            | V <sub>OUT=</sub> V <sub>OH</sub>  | 3                         | -   | -                        | mA   |
| lOL               | Low-level output current             | V <sub>OUT=</sub> V <sub>OL</sub>  | -                         | -   | -3                       | mA   |
| C <sub>IN</sub>   | Input capacitance                    |                                    | -                         | -   | 5                        | pF   |

## Notes:

- [1] V\_G supply options: VPH\_PWR, 1.2V, 1.8V. (GPIO\_1 and GPIO\_2 do not support VPH\_PWR domain).
- [2] GPIO pins comply with the input leakage specification only when configured as digital inputs, or set to their tri-state mode.

## PM8196 MPPs:

| Parameter                                                             | Comments                   | Min                       | Тур | Max                       | Unit |  |
|-----------------------------------------------------------------------|----------------------------|---------------------------|-----|---------------------------|------|--|
| MPP configured as digital input $^{[1]}$                              |                            |                           |     |                           |      |  |
| Logic high input voltage                                              |                            | 0.65 * V_M <sup>[3]</sup> | -   | -                         | V    |  |
| Logic low input voltage                                               |                            | -                         | -   | 0.35 * V_M <sup>[3]</sup> | V    |  |
| MPP configured as digital outp                                        | ut <sup>[1]</sup>          |                           |     |                           |      |  |
| Logic high output voltage                                             | Iout= IOH                  | V_M <sup>[3]</sup> - 0.45 | -   | V_M <sup>[3]</sup>        | V    |  |
| Logic low output voltage                                              | lout = IOL                 | 0                         | -   | 0.45                      | V    |  |
| MPP configured as analog input                                        | (analog multiplexer input) |                           |     |                           |      |  |
| Input current                                                         |                            | -                         | -   | 100                       | nA   |  |
| Input capacitance                                                     |                            | -                         | -   | 10                        | pF   |  |
| MPP configured as analog output (buffered VREF output) <sup>[2]</sup> |                            |                           |     |                           |      |  |
| Output voltage error                                                  | -50 μA to +50 μA           | -                         | -   | 12.5                      | mV   |  |
| Temperature variation                                                 | Due to buffer only         | -0.03                     | -   | 0.03                      | %    |  |

| Parameter                                      | Comments | Min | Тур  | Max | Unit |
|------------------------------------------------|----------|-----|------|-----|------|
| MPP configured as digital input <sup>[1]</sup> |          |     |      |     |      |
| Load capacitance                               |          | -   | -    | 25  | pF   |
| Power-supply current                           |          | -   | 0.17 | 0.2 | mA   |

| MPP configured as current sink <sup>[2]</sup> |                                |     |     |     |     |
|-----------------------------------------------|--------------------------------|-----|-----|-----|-----|
| Power supply voltage                          |                                | -   | VDD | -   | V   |
| Sink current                                  | Programmable in 5 mA increment | 0   |     | 40  | Ma  |
| Sink current accuracy                         | VOUT= 0.7 V to (VDD- 1 V)      | -20 |     | +20 | %   |
| Power-supply current                          |                                |     | 105 | 115 | μΑ  |
| MPP configured as level translator            |                                |     |     |     |     |
| Maximum frequency                             |                                | 4   | -   | -   | MHz |

## Notes:

- [1] Input and output stages can use different power supplies, thereby implementing a level translator. See V\_M supply options note [3].
- [2] Only even MPPs (MPP\_2 and MPP\_4) can be configured as current sink and only odd MPPs (MPP\_1 and MPP\_3) can be configured as analog output.
- [3] V\_M supply options: VPH\_PWR, 1.2V, 1.8V

## 9. Environmental Specifications

| Min         | Max                                  |
|-------------|--------------------------------------|
| -30 °C      | +85 °C                               |
|             |                                      |
|             |                                      |
| 2075 Khrs > |                                      |
| 4852 Khrs > |                                      |
| 9275 Khrs > |                                      |
|             | -30 °C<br>2075 Khrs ><br>4852 Khrs > |

<u>Note:</u> Extended and Industrial Temperature is only based on the operating temperature grade of the SoM components. Customer should consider specific thermal design for the final product based upon the specific environmental and operational conditions.

## 10. Mechanical Drawings

## **Top View**



Drill diameter: 59mils = 1.4986mm

Ground pad diameter: 118mils = 2.9972mm

## **Heat Dissipation plates view**



## Note:

PCB Thickness is 1.2mm.

CAD files are available for download at <a href="http://www.variscite.com/">http://www.variscite.com/</a>

## 11. Legal Notice

Variscite Ltd. ("Variscite") products and services are sold subject to Variscite terms and conditions of sale, delivery and payment supplied at the time of order acknowledgement.

Variscite warrants performance of its products to the specifications in effect at the date of shipment. Variscite reserves the right to make changes to its products and specifications or to discontinue any product or service without notice. Customers should therefore obtain the latest version of relevant product information from Variscite to verify that their reference is current.

Testing and other quality control techniques are utilized to the extent that Variscite deems necessary to support its warranty.

Specific testing of all parameters of each device is not necessarily performed unless required by law or regulation.

In order to minimize risks associated with customer applications, the customer must use adequate design and operating safeguards to minimize inherent or procedural hazards. Variscite is not liable for applications assistance or customer product design. The customer is solely responsible for its selection and use of Variscite products. Variscite is not liable for such selection or use or for use of any circuitry other than circuitry entirely embodied in a Variscite product.

Variscite products are not intended for use in life support systems, appliances, nuclear systems or systems where malfunction can reasonably be expected to result in personal injury, death or severe property or environmental damage. Any use of products by the customer for such purposes is at the customer's own risk.

Variscite does not grant any license (express or implied) under any patent right, copyright, mask work right or other intellectual property right of Variscite covering or relating to any combination, machine, or process in which its products or services might be or are used. Any provision or publication of any third party's products or services does not constitute Variscite's approval, license, warranty or endorsement thereof. Any third party trademarks contained in this document belong to the respective third party owner.

Reproduction of information from Variscite datasheets is permissible only if reproduction is without alteration and is accompanied by all associated copyright, proprietary and other notices (including this notice) and conditions. Variscite is not liable for any un-authorized alteration of such information or for any reliance placed thereon.

Any representations made, warranties given, and/or liabilities accepted by any person which differ from those contained in this datasheet or in Variscite's standard terms and conditions of sale, delivery and payment are made, given and/or accepted at that person's own risk. Variscite is not liable for any such representations, warranties or liabilities or for any reliance placed thereon by any person.

## 12. Warranty Terms

Variscite guarantees hardware products against defects in workmanship and material for a period of one (1) year from the date of shipment. Your sole remedy and Variscite's sole liability shall be for Variscite, at its sole discretion, to either repair or replace the defective hardware product at no charge or to refund the purchase price. Shipment costs in both directions are the responsibility of the customer. This warranty is void if the hardware product has been altered or damaged by accident, misuse or abuse.

#### **Disclaimer of Warranty**

THIS WARRANTY IS MADE IN LIEU OF ANY OTHER WARRANTY, WHETHER EXPRESSED, OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A SPECIFIC PURPOSE, NON-INFRINGEMENT OR THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION, EXCEPT THE WARRANTY EXPRESSLY STATED HEREIN. THE REMEDIES SET FORTH HEREIN SHALL BE THE SOLE AND EXCLUSIVE REMEDIES OF ANY PURCHASER WITH RESPECT TO ANY DEFECTIVE PRODUCT.

#### **Limitation on Liability**

UNDER NO CIRCUMSTANCES SHALL VARISCITE BE LIABLE FOR ANY LOSS, DAMAGE OR EXPENSE SUFFERED OR INCURRED WITH RESPECT TO ANY DEFECTIVE PRODUCT. IN NO EVENT SHALL VARISCITE BE LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES THAT YOU MAY SUFFER DIRECTLY OR INDIRECTLY FROM USE OF ANY PRODUCT. BY ORDERING THE SOM, THE CUSTOMER APPROVES THAT THE VARISCITE SOM, HARDWARE AND SOFTWARE, WAS THOROUGHLY TESTED AND HAS MET THE CUSTOMER'S REQUIREMETS AND SPECIFICATIONS.

## 13. Contact Information

# Headquarters: **Variscite Ltd.**

4 Hamelacha Street Lod, 71520 ISRAEL

Tel: +972 (9) 9562910 Fax: +972 (9) 9589477

Sales: <a href="mailto:sales@variscite.com">sales@variscite.com</a>

Technical Support: <a href="mailto:support@variscite.com">support@variscite.com</a>

Corporate Website: <a href="www.variscite.com">www.variscite.com</a>

