SMB (SERVER MESSAGE BLOCK)

Administración de sistemas y redes 5AO 2025

Federico Greco, Ignacio Comin, Rocío Penalva

¿Qué es SMB?

Protocolo de red de nivel de aplicación.

Permite compartir archivos, impresoras y otros recursos

Opera en modo cliente-servidor

Usado en redes locales (hogar y empresas)

Funcionamiento

Modelo cliente-servidor

Opera sobre TCP/IP (puerto 445) o NetBIOS (p 137-139)

Utiliza comandos para gestionar archivos y sesiones

Autenticación de usuarios y control de acceso

Historia

Creado por IBM en 1983

Adoptado por Microsoft en sistemas Windows

Evolución desde SMB 1.0 hasta SMB 3.0

Mejora en seguridad, rendimiento y compatibilidad

HISTORIA

SMB 1.0 (CIFS)

Versión original

Usado en redes Windows antiguas

Comunicación sobre NetBIOS

+100 comandos (archivos, impresoras, mailslots)

Seguridad débil → obsoleto y vulnerable

SMB 2.0 (Vista/Server 2008)

Menos comandos, mayor escalabilidad, mejor rendimiento en redes modernas

Encabezado fijo (64 bytes)

TCP 445 directo (sin NetBIOS)

Compounding: varias operaciones en un solo paquete

Durable handles: reconexión tras cortés

Firma con HMAC-SHA256

SMB 2.1 (Windows 7/Server 2008 R2)

Mejoras de rendimiento

Soporte avanzado para BranchCache (oficinas remotas)

Optimización de MTU (ajuste de tamaños para red)

Más estabilidad en entornos distribuidos

Mecanismos de bloqueo

SMB 3.0 (Windows 8/Server 2012)

Alto rendimiento y resiliencia

SMB Multichannel: múltiples rutas de red \rightarrow +ancho de banda y tolerancia a fallos

SMB Direct (RDMA): baja latencia y menor uso de CPU

Failover transparente: reconexión automática en clústeres

Directory leasing: reduce latencia en directorios

SMB 3.0 (Seguridad)

Cifrado nativo y protección avanzada

Cifrado de extremo a extremo (AES-CCM) sin usar IPSec

Negociación segura de dialectos: detecta ataques downgrade

Firmas mejoradas y contadores de rendimiento

Integración con PowerShell para gestión avanzada

SMB 3.02 y 3.1.1

SMB 3.02 (Windows 8.1)

- Optimiza balanceo de carga
- Optimización de copia remota (archivos WAN)
- Mejorar operaciones I/O

SMB 3.1.1 (Windows 10)

- Integridad previa a la autenticación (contra ataques MitM)
- Nuevas suites de cifrado y firma
- Máxima seguridad del protocolo hasta hoy

¿CÓMO FUNCIONA?

Comunicación Cliente-Servidor

SMB permite que un cliente acceda a recursos compartidos en otros dispositivos de la red.

- Cliente y servidor deben tener implementaciones compatibles.
- El cliente envía solicitudes; el servidor las procesa con un servicio SMB activo.

Antes de transferir datos:

- Se establece una conexión lógica.
- Se negocia la versión de SMB y se realiza la autenticación.

Conexión y transmisión

SMB viaja sobre **TCP/IP**, puerto **445**.

Se establece conexión con three-way handshake (SYN \rightarrow SYN-ACK \rightarrow ACK).

Una vez conectados:

- SMB gestiona el intercambio de mensajes estructurados.
- Se asegura fiabilidad, control de flujo y corrección de errores gracias a TCP.

¿DÓNDE SE IMPLEMENTA?

Implementaciones más conocidas

Samba: implementación libre de SMB para Linux/Unix. Permite interoperabilidad con sistemas Windows.

ConnectedNAS: app para Android que actúa como cliente y servidor SMB (desde la versión 2 por seguridad).

Hyper-V + SMB 3.0: permite guardar archivos de máquinas virtuales (VHD, config, snapshots) en recursos compartidos.

SQL Server + SMB: soporta guardar bases de datos en recursos SMB. Desde SQL Server 2008 R2 y versiones posteriores.

PROBLEMAS DE SEGURIDAD

Vulnerabilidades

EternalBlue: Falla en SMBv1 filtrada por *Shadow Brokers* en 2017. Permite ejecución remota de código sin intervención del usuario.

EternalRomance: También por *Shadow Brokers*. Afecta sistemas sin parches y permite control remoto total con paquetes maliciosos.

SMBGhost y SMBleed: Vulnerabilidades en SMBv3. Permiten ejecución remota de codigo y exfiltración de memoria del núcleo, comprometiendo el sistema.

Incidentes

WannaCry (2017): Usó la vulnerabilidad EternalBlue en SMBv1 para cifrar archivos y pedir rescate en bitcoin; afectó 200,000 equipos en 150 países.

Petya (2016): Inicialmente por phishing, luego usó EternalBlue para cifrar archivos y propagarse lateralmente en redes.

NotPetya (2017): Diseñado para destruir datos, cifrando y dañando archivos sin intención de solicitar nada para el rescate.

SMB es objetivo de ataques que permiten acceso no autorizado, movimiento lateral y robo de datos en redes.

Ataques

Fuerza bruta: Múltiples combinaciones de usuarios y contraseñas para acceder y robar o modificar datos.

Ataques Man-in-the-Middle (MitM): Interceptan y manipulan la comunicación cliente-servidor, robando credenciales o datos.

Ataques DDoS: Saturan el servicio SMB con solicitudes falsas, causando interrupciones y posibles distracciones para otros ataques.

¿ES SEGURO?

Recomendado a partir de SMB 3.0 (3.1.1)

SMB 1.0: Sin cifrado nativo. Se usaba **IPSec** para confidencialidad. Muy vulnerable y debe desactivarse si no es estrictamente necesario.

SMB 2.x: Mejora la seguridad, aún **sin cifrado**, pero con **firma obligatoria** en entornos de dominio.

SMB 3.0 / 3.02: Introduce **SMB Encryption** con **AES**. Cifrado por recurso o global. Mejora la integridad.

SMB 3.1.1: Agrega **Preauthentication Integrity** (protege desde el inicio de sesión). Recomendado por Microsoft para enlaces críticos.

Pasamos a la (increíble) implementación

MUCHAS GRACIAS