Informative Projections (2)

MGTF 495

Class Outline

- Representation Learning
 - k-means
 - EM
 - Agglomerative hierarchical clustering
 - Hands-On
- Informative Projections
 - PCA
 - SVD
 - Latent semantic indexing (LSI)
 - Hands-On

Singular value decomposition (SVD)

For **symmetric** matrices, such as covariance matrices, we have seen:

- Results about existence of eigenvalues and eigenvectors
- The fact that the eigenvectors form an alternative basis
- The resulting spectral decomposition, which is used in PCA

But what about arbitrary matrices $M \in \mathbb{R}^{p \times q}$?

Any $p \times q$ matrix (say $p \leq q$) has a singular value decomposition:

$$M = \underbrace{\begin{pmatrix} \uparrow & & \uparrow \\ u_1 & \cdots & u_p \\ \downarrow & & \downarrow \end{pmatrix}}_{p \times p \text{ matrix } U} \underbrace{\begin{pmatrix} \sigma_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_p \end{pmatrix}}_{p \times p \text{ matrix } \Lambda} \underbrace{\begin{pmatrix} \leftarrow & v_1 & \longrightarrow \\ \vdots & & \ddots & \vdots \\ & & & \downarrow \\ p \times q \text{ matrix } V^T$$

- u_1, \ldots, u_p are orthonormal vectors in \mathbb{R}^p
- v_1, \ldots, v_p are orthonormal vectors in \mathbb{R}^q
- $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_p$ are singular values

Matrix approximation

We can **factor** any $p \times q$ matrix as $M = UW^T$:

$$M = \begin{pmatrix} \uparrow & & \uparrow \\ u_1 & \cdots & u_p \\ \downarrow & & \downarrow \end{pmatrix} \begin{pmatrix} \sigma_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_p \end{pmatrix} \begin{pmatrix} \longleftarrow & v_1 & \longrightarrow \\ \vdots & & \ddots & \vdots \\ \longleftarrow & v_p & \longrightarrow \end{pmatrix}$$

$$= \begin{pmatrix} \uparrow & & \uparrow \\ u_1 & \cdots & u_p \\ \downarrow & & \downarrow \end{pmatrix} \begin{pmatrix} \longleftarrow & \sigma_1 v_1 & \longrightarrow \\ \vdots & & \ddots & \vdots \\ \longleftarrow & \sigma_p v_p & \longrightarrow \end{pmatrix}$$

$$p \times p \text{ matrix } U$$

$$p \times q \text{ matrix } W^T$$

A concise approximation to M: just take the first k columns of U and the first k rows of W^T , for k < p:

$$\widehat{M} = \underbrace{\begin{pmatrix} \uparrow & \uparrow \\ u_1 & \cdots & u_k \\ \downarrow & \downarrow \end{pmatrix}}_{p \times k} \underbrace{\begin{pmatrix} \longleftarrow & \sigma_1 v_1 & \longrightarrow \\ \vdots & & \\ \longleftarrow & \sigma_k v_k & \longrightarrow \end{pmatrix}}_{k \times q}$$

Example: topic modeling

Blei (2012):

Class Outline

- Representation Learning
 - k-means
 - EM
 - Agglomerative hierarchical clustering
 - Hands-On
- Informative Projections
 - PCA
 - SVD
 - Latent semantic indexing (LSI)
 - Hands-On

Latent semantic indexing (LSI)

Given a large corpus of *n* documents:

- Fix a vocabulary, say of V words.
- Bag-of-words representation for documents: each document becomes a vector of length V, with one coordinate per word.
- The corpus is an $n \times V$ matrix, one row per document.

	1es	800	house	2009	Sard	<i>u</i> ₂
Doc 1	4	1	1	0	2	
Doc 2	0	0	3	1	0	
Doc 3	0	1	3	0	0	
		:				

Let's find a concise approximation to this matrix *M*.

Latent semantic indexing, cont'd

Use SVD to get an approximation to M: for small k,

$$\begin{pmatrix}
\leftarrow & \operatorname{doc} 1 \longrightarrow \\
\leftarrow & \operatorname{doc} 2 \longrightarrow \\
\leftarrow & \operatorname{doc} 3 \longrightarrow \\
\vdots \\
\leftarrow & \operatorname{doc} n \longrightarrow
\end{pmatrix}
\approx
\begin{pmatrix}
\leftarrow & \theta_1 \longrightarrow \\
\leftarrow & \theta_2 \longrightarrow \\
\leftarrow & \theta_3 \longrightarrow \\
\vdots \\
\leftarrow & \theta_n \longrightarrow
\end{pmatrix}
\begin{pmatrix}
\leftarrow & \Psi_1 \longrightarrow \\
\vdots \\
\leftarrow & \Psi_k \longrightarrow
\end{pmatrix}$$

$$\xrightarrow{k \times V \text{ matrix } \Psi}$$

Think of this as a *topic model* with *k* topics.

- Ψ_j is a vector of length V describing topic j: coefficient Ψ_{jw} is large if word w appears often in that topic.
- Each document is a combination of topics: θ_{ij} is the weight of topic j in document i.

Document *i* originally represented by *i*th row of M, a vector in \mathbb{R}^V . Can instead use $\theta_i \in \mathbb{R}^k$, a more concise "semantic" representation.

The rank of a matrix

Suppose we want to approximate a matrix M by a simpler matrix \widehat{M} . What is a suitable notion of "simple"?

- Let's say M and \widehat{M} are $p \times q$, where $p \leq q$.
- Treat each row of \widehat{M} as a data point in \mathbb{R}^q .
- We can think of the data as "simple" if it actually lies in a low-dimensional subspace.
- If the rows lie in k-dimensional subspace, we say that \widehat{M} has rank k.

The rank of a matrix is the number of linearly independent rows.

Low-rank approximation: given $M \in \mathbb{R}^{p \times q}$ and an integer k, find the matrix $\widehat{M} \in \mathbb{R}^{p \times q}$ that is the best rank-k approximation to M.

That is, find \widehat{M} so that

- \widehat{M} has rank $\leq k$
- The approximation error $\sum_{i,j} (M_{ij} \widehat{M}_{ij})^2$ is minimized.

We can get \widehat{M} directly from the singular value decomposition of M.

Low-rank approximation

Recall: Singular value decomposition of $p \times q$ matrix M (with $p \leq q$):

$$M = \begin{pmatrix} \uparrow & & \uparrow \\ u_1 & \cdots & u_p \\ \downarrow & & \downarrow \end{pmatrix} \begin{pmatrix} \sigma_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_p \end{pmatrix} \begin{pmatrix} \longleftarrow & v_1 & \longrightarrow \\ \vdots & & \ddots & \vdots \\ \longleftarrow & v_p & \longrightarrow \end{pmatrix}$$

- u_1, \ldots, u_p is an orthonormal basis of \mathbb{R}^p
- v_1, \ldots, v_q is an orthonormal basis of \mathbb{R}^q
- $\sigma_1 \ge \cdots \ge \sigma_p$ are singular values

The **best rank**-k approximation to M, for any $k \leq p$, is then

$$\widehat{M} = \underbrace{\begin{pmatrix} \uparrow & \uparrow \\ u_1 & \cdots & u_k \\ \downarrow & \downarrow \end{pmatrix}}_{p \times k} \underbrace{\begin{pmatrix} \sigma_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_k \end{pmatrix}}_{k \times k} \underbrace{\begin{pmatrix} \longleftarrow & v_1 & \longrightarrow \\ \vdots & & \vdots \\ \downarrow & & \downarrow & \downarrow \end{pmatrix}}_{k \times q}$$

Example: Collaborative filtering

Details and images from Koren, Bell, Volinksy (2009).

Recommender systems: matching customers with products.

- Given: data on prior purchases/interests of users
- Recommend: further products of interest

Prototypical example: Netflix.

A successful approach: collaborative filtering.

- Model dependencies between different products, and between different users.
- Can give reasonable recommendations to a relatively new user.

Two strategies for collaborative filtering:

- Neighborhood methods
- Latent factor methods

Neighborhood methods

Latent factor methods

The matrix factorization approach

User ratings are assembled in a large matrix *M*:

	Star Wars Matrix Gablanca Gamelot Godfather								
	Stay	Mat	the Seal	Sugar	3000				
User 1	5	5	2	0	0				
User 2	0	0	3	4	5				
User 3	0	0	5	0	0				
		:							

- Not rated = 0, otherwise scores 1-5.
- For *n* users and *p* movies, this has size $n \times p$.
- Most of the entries are unavailable, and we'd like to predict these

Idea: Find the best low-rank approximation of *M*, and use it to fill in the missing entries.

User and movie factors

Best rank-k approximation is of the form $M \approx UW^T$:

$$\begin{pmatrix}
\longleftarrow \text{ user } 1 \longrightarrow \\
\longleftarrow \text{ user } 2 \longrightarrow \\
\longleftarrow \text{ user } 3 \longrightarrow \\
\vdots \\
\longleftarrow \text{ user } n \longrightarrow
\end{pmatrix}
\approx
\begin{pmatrix}
\longleftarrow u_1 \longrightarrow \\
\longleftarrow u_2 \longrightarrow \\
\longleftarrow u_3 \longrightarrow \\
\vdots \\
\longleftarrow u_n \longrightarrow
\end{pmatrix}
\begin{pmatrix}
\uparrow & \uparrow & \uparrow \\
w_1 & w_2 & \cdots & w_p \\
\downarrow & \downarrow & \downarrow \\
k \times p \text{ matrix } W^T$$

Thus user i's rating of movie j is approximated as

$$M_{ij} \approx u_i \cdot w_j$$

This "latent" representation embeds users and movies within the same *k*-dimensional space:

- Represent *i*th user by $u_i \in \mathbb{R}^k$
- Represent jth movie by $w_i \in \mathbb{R}^k$

Top two Netflix factors

