In general, since an SVD of X is not unique, the principal directions u_1, \ldots, u_d are not unique. This can happen when a data set has some rotational symmetries, and in such a case, PCA is not a very good method for analyzing the data set.

23.5 Best Affine Approximation

A problem very close to PCA (and based on least squares) is to best approximate a data set of n points X_1, \ldots, X_n , with $X_i \in \mathbb{R}^d$, by a p-dimensional affine subspace A of \mathbb{R}^d , with $1 \le p \le d-1$ (the terminology rank d-p is also used).

First consider p = d - 1. Then $A = A_1$ is an affine hyperplane (in \mathbb{R}^d), and it is given by an equation of the form

$$a_1x_1 + \dots + a_dx_d + c = 0.$$

By best approximation, we mean that (a_1, \ldots, a_d, c) solves the homogeneous linear system

$$\begin{pmatrix} x_{11} & \cdots & x_{1d} & 1 \\ \vdots & \vdots & \vdots & \vdots \\ x_{n1} & \cdots & x_{nd} & 1 \end{pmatrix} \begin{pmatrix} a_1 \\ \vdots \\ a_d \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}$$

in the least squares sense, subject to the condition that $a = (a_1, \ldots, a_d)$ is a unit vector, that is, $a^{\top}a = 1$, where $X_i = (x_{i1}, \cdots, x_{id})$.

If we form the symmetric matrix

$$\begin{pmatrix} x_{11} & \cdots & x_{1d} & 1 \\ \vdots & \vdots & \vdots & \vdots \\ x_{n1} & \cdots & x_{nd} & 1 \end{pmatrix}^{\top} \begin{pmatrix} x_{11} & \cdots & x_{1d} & 1 \\ \vdots & \vdots & \vdots & \vdots \\ x_{n1} & \cdots & x_{nd} & 1 \end{pmatrix}$$

involved in the normal equations, we see that the bottom row (and last column) of that matrix is

$$n\mu_1 \quad \cdots \quad n\mu_d \quad n,$$

where $n\mu_j = \sum_{i=1}^n x_{ij}$ is n times the mean of the column C_j of X.

Therefore, if (a_1, \ldots, a_d, c) is a least squares solution, that is, a solution of the normal equations, we must have

$$n\mu_1 a_1 + \cdots + n\mu_d a_d + nc = 0$$
,

that is,

$$a_1\mu_1 + \cdots + a_d\mu_d + c = 0,$$

which means that the hyperplane A_1 must pass through the centroid μ of the data points X_1, \ldots, X_n . Then we can rewrite the original system with respect to the centered data $X_i - \mu$, find that the variable c drops out, get the system

$$(X - \mu)a = 0,$$