Processamento Digital de Imagens Trabalho Final

Eddy René Cáceres Huacarpuma 8 de Junho de 2018

1 Metodologia

• Converter a Imagem a escala de cinza. Só uma camada.

Figura 1: Imagem original (esquerda) , Transformação a escala de cinza (direita)

• Converter a binário (1) para a região da semente (0) para o fondo.

Figura 2: Representação da Transformação a binário

 \bullet Obter os puntos da borde, utilizando a função follow

Figura 3: Gráfico dos pontos obtidos pela execução da função follow

• Finalmente se calculo a área e diâmetro:

Lentilhas			Melancia		
ID	Área	Diâmetro	ID	Área	Diâmetro
1	1458	44.045431	1	1568	56.885851
2	1369	42.296572	2	1661	56.293872
3	1256	41.436699	3	1591	56.859476
4	1318	41.677332	4	1409	53.150729
5	1103	38.327536	5	1565	54.589376
6	1179	40.261644	6	1461	52.497619
7	1301	41.593269	7	1615	57.384667
8	1404	43.737855	8	1573	55.803226
9	1132	38.327536	9	1450	53.235327
10	1310	41.303753	10	1520	54.203321
11	1267	40.853396	11	1519	54.918121
12	1352	42.755117	12	1558	56.462377
13	1229	41.400483	13	1489	54.129474
14	1144	39.849718	14	1478	53.488316
15	1155	39.204592	15	1368	49.365980
16	1198	39.560081	16	1552	57.428216
17	1495	44.922155	17	1428	52.630789
18	1492	44.553339	18	1348	51.264022
19	1106	38.275318	19	1553	57.314920
20	1136	39.000000	20	1369	51.312766
21	1435	42.953463	21	1329	52.952809
22	1212	39.623226	22	1435	53.160135
23	1297	41.593269	23	1450	55.000000
24	1196	39.698866	24	1338	50.009999
25	1253	40.447497	25	1405	50.921508
26	1320	41.593269	26	1524	54.561891
27	1174	40.607881	27	1527	54.405882
28	1226	40.162171	28	1475	54.230987
29	1375	43.266615	29	1514	55.578773
30	1467	44.777226	30	1556	54.037024

Tabela 1: resultados obtidos sobre as 30 imagens da lentilhas e melancia.

• Representação dos dados.

Figura 4: Distribuição inicial da data: treinamento e teste

 \bullet Normalização. Se observou que para obter melhores resultados era necessário realizar uma normalização entre [0,1].

$$X_{changed} = rac{X - X_{min}}{X_{max} - X_{min}}$$

Figura 5: Distribuição inicial da data: treinamento e teste

• A acurácia se calculou utilizando a função de Erro quadrático médio.

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (\hat{Y}_i - Y_i)^2$$

Para a execução de k=8, se obteve 100% de acurácia. Se mideu a acurácia utilizando a função de erro quadrático médio

Figura 6: Execução do algoritmo kNN, com k=8

 $\bullet\,$ Se realizou um teste com todos os possíveis para k.

Figura 7: Gráfico do erro do modelo quando k toma valores de 1 até 40

2 Conclusão

Neste trabalho se realizou a classificação de dois tipos de semilhas, se tomou dois descritores: diâmetro e área. Se normalizou a data obtida e se separou em data de treinamento e teste. Se implementou o algoritmo KNN para realizar a classificação. De 40 execuções testadas para k=[1:40]. 85% obtiveram 100% de acurácia, o 12,5% obtiveram 95% de acurácia e apenas 2,5% e 50% de acurácia, sendo este caso quando k=40.