

Conception de réseaux

CERMICS, ENPC Diapositives : F. Meunier, Intervenant : A. Parmentier 13 décembre 2017

Préliminaire sur les arbres

Un arbre est un graphe connexe sans cycle.

Propriété : si un arbre a n sommets, il a alors n-1 arêtes.

Propriété: Soit *G* un graphe connexe. S'il a au moins autant d'arêtes que de sommets, alors il a un cycle.

Une forêt est un graphe sans cycle (et une réunion d'arbres disjoints)

Sommaire de la partie

- 1. Arbre couvrant de poids minimum
- 2. Arbre de Steiner de poids minimum
- 3. Exercices

Un problème de réseau

n villages distances entre village i et village j

	A	В	C	D	E	F	G
Α	0	3	8	9	10	5	5
В	3	0	9	9	12	5	4
C	8	9	0	2	10	9	9
D	9	9	2	0	11	9	8
E	10	12	10	11	0	11	11
F	5	5	9	9	11	0	1
G	5	4	9	8	11	1	0

Trouver le réseau routier de distance totale minimale qui relie tous les villages, sachant qu'un tronçon relie toujours deux villages (pas d'embranchement sur les routes).

Modélisation

Comment modéliser ce problème?

Modélisation

Comment modéliser ce problème?

- Graphe complet $K_n = (V, E)$.
- Fonction de poids $w : E \to \mathbb{R}_+$.
- ► Chercher $F \subseteq E$ tel que $\sum_{e \in F} w(e)$ soit minimum et tel que le graphe (V, F) soit connexe.

On peut supposer que T := (V, F) est un arbre. (car les poids sont ≥ 0 .)

Arbre couvrant

Arbre couvrant de G = (V, E): c'est un arbre T = (V, F) avec $F \subseteq E$ et $\delta_F(V) > 1$ pour tout V.

Problème

PROBLÈME DE L'ARBRE COUVRANT DE POIDS MINIMAL

Données. Graphe G = (V, E), fonction de poids $w : E \to \mathbb{R}$.

Tâche. Trouver un arbre couvrant de plus petit poids.

Polynomialité

Théorème

Il existe un algorithme polynomial qui résout le problème de l'arbre couvrant de poids minimal.

Donner un algorithme simple (glouton) pour résoudre ce problème.

Algorithme de Kruskal

Algorithme de Kruskal résout simplement ce problème.

- ightharpoonup Trier les arêtes par poids croissant : e_1, \ldots, e_m .
- Poser F := {e₁}, i := 1.
- Répéter

Faire i := i + 1. Si $F \cup \{e_i\}$ ne contient pas de cycle, faire $F := F \cup \{e_i\}$.

Preuve de l'optimalité

Forêt $\mathcal{F} = (V, F)$ est bonne s'il existe un arbre couvrant T = (V, F') de poids minimal avec $F \subseteq F'$.

Théorème

Soit $\mathcal{F} = (V, F)$ une bonne forêt, soit une coupe $\delta(X)$ (avec $X \subseteq V$) disjointe de F et soit e une arête de poids minimal dans $\delta(X)$. Alors $(V, F \cup \{e\})$ est encore une bonne forêt.

Algorithme de Kruskal ajoute à chaque itération l'arête de plus petit poids dans la coupe $\delta(K)$, où K est l'une des deux composantes connexes de $\mathcal{F} = (V, F)$ incidentes à e_i .

Pourquoi le théorème est il vrai?

Illustration

Soit T un arbre couvrant pour la bonne forêt. Ajouter une arête de $\delta(X)$ crée au plus un cycle (sinon T ne serait pas un arbre), qui contient nécessairement un arc de $\delta(X)$, que l'on peut enlever.

Algorithme glouton

Un tel algorithme est glouton.

A chaque étape : meilleur choix local.

Ici, cela donne l'optimum.

C'est un résultat remarquable : pour la plupart des problèmes, l'algorithme glouton ne donne pas l'optimum.

Exercice : forêt de poids maximum

PROBLÈME DE LA FORÊT DE POIDS MAXIMUM

Données. Graphe G = (V, E), fonction de poids $w : E \to \mathbb{R}$.

Tâche. Trouver une forêt de poids maximum.

Montrer que ce problème peut être résolu en temps polynomial.

Sommaire de la partie

- 1. Arbre couvrant de poids minimum
- 2. Arbre de Steiner de poids minimum
- 3. Exercices

Problème

PROBLÈME DE L'ARBRE DE STEINER DE POIDS MINIMUM

Données. Graphe G = (V, E), fonction de poids $w : E \to \mathbb{R}_+$ et ensemble de sommets $S \subseteq V$, appelés terminaux.

Tâche. Trouver un arbre de plus petit poids couvrant S.

Arbre couvrant **S**: arbre T = (V', F), avec $S \subseteq V' \subseteq V$ et $F \subseteq E$.

Applications

Les applications de ce problème sont nombreuses :

- conception de réseau gazier,
- conception de réseau routier,
- conception de réseau informatique.

Exercice: Points de Steiner

Soit T = (V(T), E(T)) un arbre de Steiner pour (G, w, S). Un point de Steiner est un sommet dans $V(T) \setminus S$.

Soit (G, w, S) une instance du problème d'arbre de Steiner telle que G est complet et w satisfait l'inégalité triangulaire :

$$w(v_1, v_1) \leq w(v_1, v_3) + w(v_3, v_2).$$

alors il existe un arbre de Steiner optimal avec au plus |T| - 2 points de Steiner.

Donner un exemple de graphe à 4 sommets et à 10 sommets où l'on a égalité.

Correction

Correction

Complexité

Théorème

Le problème de l'arbre de Steiner est **NP**-difficile, même si tous les poids sont égaux à 1.

Donner un programme linéaire en nombres entiers pour ce problème.

Formulation linéaire

Proposition

Soit r un sommet arbitraire, $r \in S$. Résoudre le problème de l'arbre de Steiner de coût minimum, c'est résoudre

$$\min \ \sum_{e \in E} w(e) x_e$$

s.c.
$$\sum_{e \in \delta(X)} x_e \ge 1$$
 $\forall X \subseteq V \setminus \{r\} \text{ tel que } X \cap S \ne \emptyset$ (P)

$$x_e \in \{0,1\}$$
 $\forall e \in E$

Formulation linéaire

Proposition

Soit r un sommet arbitraire, $r \in S$. Résoudre le problème de l'arbre de Steiner de coût minimum, c'est résoudre

$$\min \ \sum_{e \in E} w(e) x_e$$

s.c.
$$\sum_{e \in \delta(X)} x_e \ge 1$$
 $\forall X \subseteq V \setminus \{r\} \text{ tel que } X \cap S \neq \emptyset$ (P)

$$x_e \in \{0,1\} \quad \forall e \in E$$

Par quel algorithme peut-on on résoudre

- ▶ le PLNE?
- son relâché linéaire?

Le problème précédent a deux caractéristiques qui le rende difficile à résoudre.

- il est en nombres entiers.
- il a un nombre exponentiel de contraintes.

Adaptation du branch-and-bound pour gérer un nombre exponentiel de contraintes : branch-and-cut.

Branch-and-cut

On note

$$\mathcal{C} = \{ \mathbf{X} \subseteq \mathbf{V} \setminus \{\mathbf{r}\} \colon \mathbf{X} \cap \mathbf{S} \neq \emptyset \},$$

Branch-and-bound avec génération de ligne pour la relaxation linéaire : On choisit $\mathcal{C}' \subset \mathcal{C}$.

On résout

$$\begin{array}{ll} \text{min} & \sum_{e \in E} w(e) x_e \\ \text{s.c.} & \sum_{e \in \delta(X)} x_e \geq 1 \quad X \in \mathcal{C}' \\ & 0 \leq x_e \leq 1 \qquad e \in E \end{array}$$

Cela donne une solution \bar{x} .

- 2. On résout le problème de séparation pour \bar{x}
 - Si pas de contrainte violée, alors on continue le branch-and-bound (on a résolu la relaxation linéaire de (P)).
 - ▶ Si non, on retourne en 1. en ajoutant la contrainte violée X' à C'.

Quel est le problème de séparation ?

Problème de séparation

SEPARATION DES CONTRAINTES POUR ARBRE DE STEINER

Données. Vecteur $\mathbf{x} \in \mathbb{R}_+^{\mathbf{\textit{E}}}$.

Tâche. Renvoie 'oui' si ${\it x}$ satisfait toutes les contraintes $\sum_{e \in \delta({\it X})} {\it x}_e \geq {\it 1}$ pour ${\it X} \in {\it C}$. Si non, renvoie ${\it X}' \in {\it C}$ tel que $\sum_{e \in \delta({\it X}')} {\it x}_e < {\it 1}$.

Donner un algorithme polynomial qui résout ce problème

Séparation pour l'arbre de Steiner

L'algorithme ${\cal A}$ de séparation des contraintes pour l'arbre de Steiner existe :

Mettre \bar{x}_e comme capacité de e, pour $e \in E$.

A r fixé : calculer pour tout s dans $S \setminus \{r\}$ une r-s coupe de capacité minimum.

Si l'une de ces coupes $\delta(\textbf{\textit{X}}')$ a une capacité < 1, alors

$$extbf{X}' \in \mathcal{C} ext{ et } \sum_{e \in \delta(extbf{X}')} ar{ extbf{X}}_e < extbf{1}.$$

Recherche locale

Proposer une heuristique à voisinage pour l'arbre de Steiner.

- ► Comment une solution est elle encodée ?
- ► Donner un voisinage

Recherche locale

Proposer une heuristique à voisinage pour l'arbre de Steiner.

- ► Comment une solution est elle encodée ?
- ► Donner un voisinage

Recherche locale classique pour le problème de l'arbre de Steiner :

Pour tout $V' \subseteq V$ tel que $S \subseteq V'$, on calcule par Kruskal l'arbre couvrant V' de poids minimum n'utilisant que les sommets de V': donne le coût de V'.

Alors V' est voisin de V'' si l'on est dans une des ces situations

- 1. $V'' := V' \setminus \{v'\}$ pour un $v' \in V'$, (*drop*)
- 2. $V'' := V' \cup \{v''\}$ pour un $v'' \in V \setminus V'$ (add) ou
- 3. $V'' := V' \setminus \{v'\} \cup \{v''\}$ (swap).

Exercice: Points de Steiner

Soit T = (V(T), E(T)) un arbre de Steiner pour (G, w, S). Un point de Steiner est un sommet dans $V(T) \setminus S$.

Soit (G, w, S) une instance du problème d'arbre de Steiner telle que G est complet et w satisfait l'inégalité triangulaire :

$$w(v_1, v_1) \leq w(v_1, v_3) + w(v_3, v_2).$$

alors il existe un arbre de Steiner optimal avec au plus |T| - 2 points de Steiner.

Prouver le résultat.

Correction

Soit T un arbre de Steiner. En utilisant l'inégalité triangulaire, on peut enlever tout point de Steiner dont le degré est ≤ 3 . On note p nombre de points de Steiner dans l'arbre obtenu et t = |T|. En utilisant que c'est un arbre, et en comptant les arêtes, on a $3p + t \leq 2(p + t - 1)$, ce qui donne le résultat.

Sommaire de la partie

- Arbre couvrant de poids minimum
- Arbre de Steiner de poids minimum
- 3. Exercices

Théorème de Cayley

Théorème de Cayley

Soit K_n le graphe complet à n sommets. Alors K_n admet n^{n-2} arbre couvrants.

Soit p_n la probabilité que le sommet 1 soit une feuille pour la probabilité uniforme sur les arbres couvrants de K_n . Que vaut $\lim_{n\to\infty} p_n$?

Théorème de Cayley

Théorème de Cayley

Soit K_n le graphe complet à n sommets. Alors K_n admet n^{n-2} arbre couvrants.

Soit p_n la probabilité que le sommet 1 soit une feuille pour la probabilité uniforme sur les arbres couvrants de K_n . Que vaut $\lim_{n\to\infty} p_n$?

$$p_n = \frac{(n-1)*(n-1)^{n-1-2}}{n^{n-2}} = (1-1/n)^{n-2}$$
 donc $\lim_{n\to\infty} p_n = 1/e$.