pm_and_measure.pdf
Pre-measurement Circuit Implementation & Spin-Z Measurement
To prepare the circuit for a $(Z_0 \otimes I_1)$ measurement, we must decompose $Z_0 \otimes I_1$ in terms of Z_1 gates to other unitaries. For $Z_0 \otimes I_1$, this is trivial $Z_0 \otimes I_1 = Q_0 - I - Z - I $ This is the pre-measurement step needed to measure $(Z_0 \otimes I_1)$ with a Z_1 -basis measurement.
PM-circuit for (Z_0@I) = 90 II INZ - +Z-measurement is
And similarly, for (I, 02,)
PM-circuit for (Io@Z) = 6. + Z-measurement is 9, — II — MZ
We also do something similar for (2,2,), but we measure both qubits
PM-Circuit for (Z00Z1) = 90 II MZ +Z-measurement 15 = 9, II MZ

We can decompose the Y-gode in terms of a Z-gote & other unitaries.

In parlicular, Y= (HS*) Z (HS*)

In quantum circuit language,

Lastly, we need a PM circuit for $\langle x_0 \otimes x_1 \rangle$ We can compose the X-gate in terms of a Z-gate \$ other Unitaries.

In quarton circuit language,

L>> pre-measurement step to get everything ready for a Z-basis measurement

Thus,

The PM-circuit for $\langle X_0 \otimes X_1 \rangle = Q_0 - H - M_2$ + Z-measurement is: $Q_1 - H - M_2$

Lastly, I would like to verify the non-trivial operator decompositions using matrix multiplications, because I cited them Without proof. In particular, I will verify

and 2) $Y = (HS^{\dagger})^{\dagger} Z(HS^{\dagger})$

1)
$$H^{\bullet}ZH = \frac{1}{2}\begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & -1 \end{pmatrix}$$

$$= \frac{1}{2}\begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$

$$= \frac{1}{2}\begin{pmatrix} 2 & 0 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = X$$

$$\stackrel{\circ}{\sim} H^{\bullet}ZH = X N$$

2)
$$(HS^{\dagger})^{\dagger} Z(HS^{\dagger}) = SH^{\dagger} ZHS^{\dagger}$$

= $\frac{1}{2} (0)^{\circ} (1-1)(0)^{-1} (1-1)(0)^{-1}$

$$=\frac{1}{2}(\frac{1}{i}-\frac{1}{i})(\frac{1}{0}-\frac{1}{i})$$

2)
$$(HS^{*})^{*} \neq (HS^{*}) = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -i \end{pmatrix} \begin{pmatrix} 1 & -i \\ 1 & -i \end{pmatrix} \begin{pmatrix} 1 & -i \\ 1 & -i \end{pmatrix}$$

$$= \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -i \end{pmatrix} \begin{pmatrix} 1 & -i \\ -1 & -i \end{pmatrix}$$

$$= \frac{1}{2} \begin{pmatrix} 0 & -2i \\ 2i & 0 \end{pmatrix} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = Y$$

$$\therefore (HS^{*})^{*} \neq Z(HS^{*}) = Y = Y$$