Q1. Download the Titanic dataset and perform the Exploratory data analysis using pandas.

- 1. Read the dataset (df= pd.read_csv(r'.....\Titanic.csv')
- 2. Display the first and last 10 instances from the dataset
- 3. Acquire the necessary information using the df.info() and df. Describe()
- 4. Retrieve the number of columns and rows. (using shape)

```
In []: import numpy as np
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    import plotly.express as px
In []: import pandas as pd
    df= pd.read_csv('Titanic - Titanic.csv')
In []: df.head(10)
```

Out

[]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket
	0	1	0	3	Braund, Mr. Owen Harris	male		1	0	A/5 2117′
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2 3101282
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450
	5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877
	6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463
	7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909
	8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742
	9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736

In []: df.tail(10)

Out[]:

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Т
881	882	0	3	Markun, Mr. Johann	male	33.0	0	0	34
882	883	0	3	Dahlberg, Miss. Gerda Ulrika	female	22.0	0	0	
883	884	0	2	Banfield, Mr. Frederick James	male	28.0	0	0	C.A./SC 3
884	885	0	3	Sutehall, Mr. Henry Jr	male	25.0	0	0	SOTOI 39
885	886	0	3	Rice, Mrs. William (Margaret Norton)	female	39.0	0	5	38
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	21
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	11
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C.
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	11
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	37

Values

Distributions

Categorical distributions

2-d distributions

2-d categorical distributions

Faceted distributions

Time series

In []: df.info(10)

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	 PassengerId	891 non-null	 int64
-	•		_
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
dtvn	es: float6//2) $int64(5)$ ohi	ect(5)

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

In []: df.describe()

Out[]:

		PassengerId	Survived	Pclass	Age	SibSp	Parch
	count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000
	mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594
	std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057
	min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000
	25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000
	50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000
	75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000
	max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000

Values

Distributions

2-d distributions

In []: df.shape

Out[]: (891, 12)

Q2. Create the data visualization using the matplotlib.

- 1. Visualize the Gender of Passengers using the Bar graph.
- 2. Visualize the Survival Count of Passengers using the Bar graph.
- 3. Visualize the Age of Passengers using the Bar/Histogram graph.
- 4. Visualize the comparison of Age and Fare of Passengers using the Scatterplot.

```
In []: gender_counts = df['Sex'].value_counts()
    plt.figure(figsize=(6, 4))
    sns.barplot(x=gender_counts.index, y=gender_counts.values)
    plt.title('Gender of Passengers')
    plt.xlabel('Gender')
    plt.ylabel('Count')
    plt.show()
```



```
In []: survival_counts = df['Survived'].value_counts()
   plt.figure(figsize=(6, 4))
   sns.barplot(x=survival_counts.index, y=survival_counts.values)
   plt.title('Survival Count of Passengers')
   plt.xlabel('Survived')
   plt.ylabel('Count')
   plt.show()
```

Survival Count of Passengers


```
In []: plt.figure(figsize=(8, 6))
    sns.scatterplot(x='Age', y='Fare', data=df)
    plt.title('Age vs Fare of Passengers')
    plt.xlabel('Age')
    plt.ylabel('Fare')
    plt.show()
```


In []: