

Art of Problem Solving 2012 Cono Sur Olympiad

Cono Sur Olympiad 2012

1	1. Around a circumference are written 2012 number, each of with is equal to 1 or -1 . If there are not 10 consecutive numbers that sum 0, find all possible values of the sum of the 2012 numbers.
2	2. In a square $ABCD$, let P be a point in the side CD , different from C and D . In the triangle ABP , the altitudes AQ and BR are drawn, and let S be the intersection point of lines CQ and DR . Show that $\angle ASB = 90$.
3	3. Show that there do not exist positive integers a , b , c and d , pairwise coprime, such that $ab + cd$, $ac + bd$ and $ad + bc$ are odd divisors of the number $(a + b - c - d)(a - b + c - d)(a - b - c + d)$.
4	4. Find the biggest positive integer n , lesser than 2012, that has the following property: If p is a prime divisor of n , then $p^2 - 1$ is a divisor of n .
5	5. A and B play alternating turns on a 2012×2013 board with enough pieces of the following types:
	Type 1: Piece like Type 2 but with one square at the right of the bottom square. Type 2: Piece of 2 consecutive squares, one over another. Type 3: Piece of 1 square.
	At his turn, A must put a piece of the type 1 on available squares of the board. B , at his turn, must put exactly one piece of each type on available squares of the board. The player that cannot do more movements loses. If A starts playing, decide who has a winning strategy.
	Note: The pieces can be rotated but cannot overlap; they cannot be out of the board. The pieces of the types 1, 2 and 3 can be put on exactly 3, 2 and 1 squares of the board respectively.
6	6. Consider a triangle ABC with $1 < \frac{AB}{AC} < \frac{3}{2}$. Let M and N , respectively, be variable points of the sides AB and AC , different from A , such that $\frac{MB}{AC} - \frac{NC}{AB} = 1$. Show that circumcircle of triangle AMN pass through a fixed point different from A .

www.artofproblemsolving.com/community/c5482

Contributors: Mualpha7