s725xdump - dumping Polar S725X data in Linux

After a weekend of digging through hex dumps, I managed to produce a little tool that dumps graphs from the Polar S725X bicycle monitor slash exercise watch in Linux. I've only tested it on my own device with my own settings, but I would guess it works on at least the S625X too.

It's rather meager, but it works well enough to dump the heart rate logs in a gnuplotable format. It will show timestamps, durations, kcals and lap times. I also have no idea about altitude, distances, etc.

— <u>Vidar Holen</u>. <u>More junk</u>. <u>Mail Vidar</u>.

Usage

<u>Get it here</u>. Feel free to plunder if you want to make a more sturdy and polished app. There's also <u>a</u> <u>contributed patch</u> to make it a bit more intelligent.

To run:

```
$ make s725xdump
$ ./s725xdump > dumpfile
```

Make sure that your system supports IrDA first. The drivers should be loaded, and the irda0 interface should exist and be UP.

Sample run

This is what it should look like:

```
vidar@kelvin ~/c/irda $ ./s725xdump > dumpfile
Doing device discovery.....
Discovered: (list len=1)
name: Polar S725X
daddr: ec40565b
   saddr: d8baa0e0
Connected
Device time is 02:31:39, 14/01 2007
In 2
Done downloading
vidar@kelvin ~/c/irda $ cat dumpfile
# Date: 2007-01-13 23:46:55
# Duration: 00:02:04.1
# AvgHR: 55
# MaxHR: 63
# Laps: 4
# RecordingRate: 5 secs
              Heartrate Unknown Unknown
## Number
   0 0 0
0 0 0
60 0 0
    55 0 0
55 0 0
    56 0 0
     56 0 0
     54 0 0
```

Partial specification of the S725X protocol

Connecting

Connect to the device over an IR socket using "HRM" as service name.

Commands

Most of the commands I used were single-byte. Most of this is specified in hex. All data is big-endian except where indicated.

0x02 — Get device time

Send the byte 02, and you get a response like

```
02 #Responding to command 02
06 54 01 #Timestamp, ss:mm:hh (BCD), in this case 01:54:06
14 07 #date/year, 30. [20]04
61 #Lower four bits, Month (January)
00 10 44 10 00 #Unknown
```

0x09 — Reset device

Send the byte 09, and you get no response but the device is fairly completely reset.

0x0B — Transfer all files

Send the byte 0B, and you will receive a packet. Then send "16 2F" to receive more. The packet structure is like this:

180 160 140 120 100 80 60 40 20 0 20 40 60 80 100 120 140

1 of 2 12/30/2015 01:54 PM

```
# Response to command OB
80 01 # Packets remaining. If top bit is set, like here, this is the first packet. There is 1 more.
(data)
Continue to send "16 2F" until you receive "16 02". This means that there is no more data. The (data) sections, when concatenated, are like
this:
00 b0 \# The number of following bytes, not including this one nor the next two 26 08 \# Unknown but constant, probably device model. Not included in byte count.
#File (the rest of this page, down to and including heart rate samples, is repeated once per file) b0 00  # The number of bytes in this file, little-endian (including this number). 176 dec in this case 00 00 00 00 # Unknown, presumably reservered
40 54 10 # Timestamp, BCD. 10:54:40
          # 30. of the month, [20]04
# Lowest four bits: month (October)
# Highest four bits: tenth of a second (.9)
# Duration, BCD. 00:00:59.9
9a
     # Average Heartrate (62)
# Maximum heartrate (67)
36
01
       # Number of laps
     # Unknown, same as number of laps
00 00 00 20 # Unknown
                #Recording interval: 0, 1 or 2 for 5, 15 or 60 secs
01 #Best lap number
90 59 00 00#Best lap time (0:00:59.9)
              #Unknowr
              #Kcal (BCD, little-endian), 0 here, but another example is 82 03 meaning 382 dec
00 00
-- (Packet breaks aren't important, but for reference, there's one here)
# 21 dec bytes Unknown
# 10 dec bytes of Lap information. Repeat as many times as necessary.
7b  # Start of lap, seconds: 01 111011 (low 2 bits of fraction, 59 sec)
80  # Start of lap, minutes: 10 000000 (high 2 bits of fraction, 0 min)
00  # Hours. This lap started after 0:00:59.9
43 3e 43 # Heart rates
00 00 00 00 # Reserved?
#The rest of the bytes in the file (I think you have to keep track) are samples:
#Note, the last recorded sample comes first! 42 00 00 #Heartrate, unknown, unkown
3e 00 00
3f 00 00
3c 00 00
3b 00 00
41 00 00
3e 00 00
00 00 00
00 00 00
00 00 00
```

2 of 2 12/30/2015 01:54 PM