Exercice 1 :

Déterminer les limites de chacune des fonctions f suivantes aux extrémités de l'intervalle I :

1)
$$f(x) = x + \frac{1}{x}$$
; $I =]0; +\infty[$ 2) $f(x) = x - 1 + \frac{1}{x - 2}$; $I =]-\infty; 2[$ 3) $f(x) = -2x^3 + 5x + 1$; $I = \mathbb{R}$

4)
$$f(x) = x^2 - 2x + 1 + \frac{1}{x}$$
 $I =]0; +\infty[$ 5) $f(x) = \sqrt{x^2 + x + 1}$ $I = \mathbb{R}$

6)
$$f(x) = \frac{2}{x^2} + \frac{1}{x}$$
 $I =]0; +\infty[$ 7) $f(x) = \frac{1}{x^2} - \frac{1}{x}$ $I =]0; +\infty[$

8)
$$f(x) = \frac{2x^2 - 3x + 1}{x^4 + 1}$$
 $I = \mathbb{R}$ 9) $f(x) = \frac{-2x^3 + 1}{x^2 - 1}$ $I =]1; +\infty[$.

Exercice 2:

Etudier la limite de la fonction f en a dans les cas suivants (on pourra distinguer si nécessaire la limite à droite x>a et la limite à gauche x<a)

1)
$$f(x) = \frac{x^2 + x - 2}{x - 1}$$
; $a = 1$ 2) $f(x) = \frac{x - 1}{x^3 - 1}$; $a = 1$ 3) $f(x) = \frac{\sqrt{x + 1} - 2}{x - 3}$; $a = 3$

4)
$$f(x) = \frac{3x^2 + x - 2}{x^2 - 1}$$
; $a = 1$ 5) $f(x) = \frac{x - 4}{x^2 - x - 12}$; $a = 4$ 6) $f(x) = \frac{x}{\sqrt{1 + x} - 1}$; $a = 0$

7)
$$f(x) = \frac{x}{\sqrt{1+x^2-1}}$$
; $a=0$ 8) $f(x) = \frac{\sqrt{3x+1}-2}{x-1}$; $a=1$ 9) $f(x) = \frac{2-\sqrt{x}}{x^2-16}$; $a=4$.

Exercice 3:

Etudier les limites des fonctions dans les différents cas indiqués

1)
$$f(x) = \frac{x-4}{x^2 - x - 12}$$
 quand x tend vers -3, 4, +\infty, -\infty.

2)
$$f(x) = \frac{x^2 + x - 6}{2x^2 - 14x + 20}$$
 quand x tend vers 2, 5, 0, $+\infty$, $-\infty$.

3)
$$f(x) = \frac{(m+1)x^2 + 3x}{2x-1}$$
 quand x tend vers $\frac{1}{2}$, $+\infty$ (suivant la valeur de m)

4)
$$f(x) = \sqrt{x+2}\sqrt{x}$$
 quand x tend vers $+\infty$

Exercice 4:

1) Soit la fonction définie sur $\mathbb{R}\setminus\{-1,0,1\}$ par : $f(x) = \frac{x^2 + |x|}{x^2 - |x|}$.

Etudier le comportement de f en 1, -3, $+\infty$, $-\infty$.

2) Soit la fonction définie sur $\mathbb{R}\setminus\{-3,1\}$ par : $f(x) = \frac{x^2 - 1}{(x-1)^2(x-3)}$.

Etudier le comportement de f en -1, 3, $+\infty$, $-\infty$.

Exercice 5:

Etudier le comportement de la fonction f suivante en $+\infty$: $f(x) = \sqrt{x^2 + 3x + 2} - x + 2$

Exercice 6:

Soit f la fonction définie sur l'intervalle]0;1] par
$$f(x) = \frac{\sqrt{1+x} + \sqrt{1-x}}{\sqrt{1+x} - \sqrt{1-x}}$$
. Montrer que $f(x) = \frac{1+\sqrt{1-x^2}}{x}$

Déterminer $\lim_{x\to 0} f(x)$ et $\lim_{x\to 1} f(x)$

Limites 2/2

Exercice 7:

On considère la fonction f définie sur $\mathbb{R}\setminus\{7\}$ par : $f(x) = \frac{(x+5)(x+10)}{(x+7)^2}$

- 1) Déterminer la limite de f en $+\infty$, $-\infty$, -7. Montrer que la courbe représentative de f admet une asymptote horizontale et une asymptote verticale.
- 2) Vérifier que $f(x) = -1 + \frac{1}{x+7} + \frac{6}{(x+7)^2}$. Situer la courbe par rapport à l'asymptote horizontale.

Exercice 8:

Soit f la fonction définie par : $f(x) = x - 2 + \frac{1}{|x-1|}$

Etudier les limites éventuelles de la fonction lorsque x tend vers $+\infty$, $-\infty$, 1.

Montrer que la droite d'équation y = x - 2 est asymptote à la courbe © représentative de f.

Exercice 9: Asymptotes

Soit f la fonction définie sur]1;+ ∞ [par : $f(x) = \frac{x^2 + 3x + 1}{x - 1}$

- 1) Déterminer trois nombres réels a, b, c tels que pour tout nombre réel x de]1;+ ∞ [: $f(x) = ax + b + \frac{c}{x-1}$
- 2) En déduire que la courbe représentative C de *f* admet une asymptote oblique D dont on donnera une équation.
- 3) Etudier la position de C par rapport à D sur l'intervalle]l;+∞[
- 4) La courbe C admet-elle une autre asymptote ? Si oui, en donner une équation.

Fonctions circulaires

Exercice 9:

On utilisera si cela est nécessaire les résultats suivants : $\lim_{t \to 0} \frac{\sin kt}{kt} = 1 \quad \lim_{t \to 0} \frac{\tan kt}{kt} = 1$

- 1) Déterminer $\lim_{t \to 0} \frac{1 \cos t}{t^2}$ on utilisera la relation $1 \cos t = 2\sin^2 \frac{t}{2}$
- 2) Déterminer $\lim_{t\to 0} \frac{\sin 3t}{3t}$ 3) Déterminer $\lim_{t\to 0} \frac{\sin 2t}{3t}$ 4) Déterminer $\lim_{t\to 0} \frac{1-\cos t}{\sin t}$

Fonctions équivalentes

Exercice 10:

Montrer au voisinage de 0 les équivalences suivantes :

1)
$$(1+x)^2 - 1 \sim 2x$$
 2) $\frac{1}{1+x} \sim -x$

Représentation de fonctions simples

Si
$$t \in [-\infty; 0[, h(t) = 0$$

Soit la fonction définie sur \mathbb{R} par la fonction h: Si $t \in [0;1[,h(t)=2$

Si
$$t \in [1; +\infty[, h(t) = 0]$$

Donner la représentation graphique du signal h dans un repère orthonormal.