Weak Law of Large Numbers Proof

Owen Queen

November 16, 2020

1 Weak Law of Large Numbers Theorem

Let $X_1, X_2, ..., X_n$ be a random sample from the same distribution \widetilde{X} with $E(\widetilde{X}) = \mu$ and $Var(\widetilde{X}) = \sigma^2$. Let $\overline{X}_n = \frac{X_1 + X_2 ... + X_n}{n}$. Then for any $\epsilon > 0$:

$$\lim_{n \to \infty} P(|\bar{X}_n - \mu| \ge \epsilon) = 0$$

1.1 Chebyshev's Inequality

If X has finite mean μ and variance σ^2 , and k > 0, then:

$$P(|X - \mu| \ge k) \le \frac{\sigma^2}{k^2}$$

1.2 Proof of Weak Law of Large Numbers

Let $X_1, X_2, ..., X_n$ be a random sample from the same distribution \widetilde{X} . Assume that $E(\widetilde{X}) = \mu$ and $Var(\widetilde{X}) = \sigma^2$ are both finite.

Let $S_n=X_1+\ldots+X_n$ and let $X_n=\frac{S_n}{n}$. By the Central Limit Theorem, we know that as $n\to\infty$, S_n has a Normal distribution with $\mathrm{Var}(S_n)=n\sigma^2$. By theorem, $\mathrm{Var}(\frac{S_n}{n})=\left(\frac{1}{n}\right)^2\mathrm{Var}(S_n)=\frac{\sigma^2}{n}=\mathrm{Var}(\bar{X_n})$. In addition, we know from CLT that $\mathrm{E}(S_n)=n\mu$. This implies that $\mathrm{E}\left(\frac{S_n}{n}\right)=\mu$ by theorem.

By Chebyshev's Inequality, for any $\epsilon > 0$, we have that:

$$P(|\bar{X}_n - \mu| \ge \epsilon) = \frac{Var(\bar{X}_n)}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}$$

Thus, for a fixed ϵ ,

$$\lim_{n \to \infty} P(|\bar{X}_n - \mu| \ge \epsilon) = 0$$