Exercises

Section 4

4.1 (a) Show that with the notation as above, $\Gamma(-,\pi)$ is indeed isomorphic to the sheaffication of P.

We first fix some notation. Suppose $U \subseteq X$ and let $s \in G(U)$ be a section. Let \overline{s} be the equivalence class of s in $G(U)/im(\alpha_U) = coker(F(U) \xrightarrow{\alpha_U} G(U))$, so that points in the étale space of P are denoted $germ_x(\overline{s})$. We denote by $\overline{germ_x(s)}$ the equivalence class of $germ_x(s)$ under the relation R given above, where $germ_x(s) \in Et(G)$.

To show $\Gamma(-,\pi) \cong P$, we define a map $\phi: \Gamma(-,\pi) \to P$ and show it induces an isomorphism on the stalks. For $U \subseteq X$ and $\sigma \in \Gamma(-,\pi)(\underline{U})$, define $\phi_U: \Gamma(-,\pi)(U) \to P(U)$ by $\phi_U(\sigma) = \tau$, where σ is a function $x \mapsto \overline{germ_x(s)}$ and τ is a function $x \mapsto \overline{germ_x(s)}$ for some $s \in G(U)$. Naturality of ϕ is straightforward, since restriction maps are just restrictions of functions.

To see that ϕ is well defined, suppose $germ_x(t)$ is also a representative of $\overline{germ_x(s)}$. Then $\exists W \ni x$ and $f \in F(W)$ such that $s \mid_W - t \mid_W = \alpha_W(f)$. This however gives $germ_x(\overline{t}) = germ_x(\overline{s})$, since W is then a neighborhood for which $\overline{s \mid_W = t \mid_W}$, so that they are equal as germs.

It remains to show that ϕ induces an isomorphism on the stalks. We show $\phi_x : \Gamma(-,\pi)_x \to P_x$ is injective and surjective. Fix an $x \in X$ and suppose $\phi(\overline{germ}_x(a)) = \overline{germ}_x(\overline{a}) = \phi(\overline{germ}_x(b))$. We have to show $\exists W \ni x$ and $f \in F(W)$ such that $a \mid_W - b \mid_W = \alpha_W(f)$. To see that ϕ_x is surjective.

Let $\overline{germ_x(s)}$ be an element of Et(G)/R, and let $germ_x(s)$ be a representative, so that if $germ_x(t)$ is another representative of $\overline{germ_x(s)}$, then $\exists W \ni x$ and $f \in F(W)$ such that $s \mid_W -t \mid_W = \alpha_W(f)$, where s and t are representatives of $germ_x(s)$ and $germ_x(t)$ respectively.

Let $germ_x(a)$ be an element of P_x , represented by (a,U) for some $U\ni x$ and $a\in P(U)=coker(F(U)\xrightarrow{\alpha_U}G(U))=G(U)/im(\alpha_U)$. If (b,V) is another representative of $germ_x(a)$, then there exists $W\ni x$ such that $a\mid_W=b\mid_W$, i.e., $a\mid_W$ and $b\mid_W$ are in the same equivalence class of $G(W)/im(\alpha_W)$, i.e., $\exists f\in F(W)$ such that $s\mid_W-t\mid_W=\alpha_W(f)$. Then elements of G_x/R and P_x are both correspond to elements of G_x identified via the same relation.

Let $\overline{germ_x(s)}$ be an element of G_x/R , and let $\underline{germ_x(s)}$ be a representative, so that if $\underline{germ_x(t)}$ is another representative of $\overline{germ_x(s)}$, then $\exists W \ni x$ and $f \in F(W)$ such that $s \mid_W -t \mid_W = \alpha_W(f)$, where s and t are representatives of $\underline{germ_x(s)}$ and $\underline{germ_x(t)}$ respectively.

Let $germ_x(a)$ be an element of P_x , represented by (a,U) for some $U\ni x$ and $a\in P(U)=coker(F(U)\xrightarrow{\alpha_U}G(U))=G(U)/im(\alpha_U)$. If (b,V) is another representative of $germ_x(a)$, then there exists $W\ni x$ such that $a\mid_W=b\mid_W$, i.e., $a\mid_W$ and $b\mid_W$ are in the same equivalence class of $G(W)/im(\alpha_W)$, i.e., $\exists f\in F(W)$ such that $s\mid_W-t\mid_W=\alpha_W(f)$. Then elements of G_x/R and P_x are both correspond to elements of G_x identified via the same relation.

4.1(b) Show that the $coker(\alpha)$ has the following universal property: given any other sheaf H, a map $\chi: G \to H$ factors through $coker(\alpha)$ if and only if $\chi \circ \alpha = 0$.

(Forward direction) Let $\alpha: F \to G$ and $\chi: G \to H$ and suppose $\chi \circ \alpha = 0$. Then for $U \in X$, $ker(\chi_U) = im(\alpha_U)$. By the first isomorphism theorem, $\chi_U(G) \cong G(U)/ker(\chi_U) = G(U)/im(\alpha_U) = coker(F(U) \xrightarrow{\alpha_U} G(U))$, so that $\chi = g \circ f$, where $f: G \to coker(\alpha)$ is the projection map and $g: coker(\alpha) \to H$ is an isomorphism.

(Backwards direction) Let $\alpha: F \to G$ and $\chi: G \to H$ and suppose $\chi = g \circ f$ for some $f: G \to coker(\alpha)$ and $g: coker(\alpha) \to H$. Note that $f \circ \alpha = 0$, since f_U has codomain $coker(F(U) \xrightarrow{\alpha_U} G(U))$ for $U \in X$. Then $\chi \circ \alpha = g \circ f \circ \alpha = g \circ 0 = 0$.

4.1(c) Show that $coker(\alpha)_x = coker(\alpha_x)$.

Let $\alpha: F \to G$ for F and G Abelian sheaves on X and let P be the presheaf given by $P(U) = coker(F(U) \xrightarrow{\alpha_U} G(U))$. Since $\pi_P: Et(P) \to X$ is étale, $Et\Gamma EtP \cong EtP$, so the left-hand side is isomorphic to P_x . On the right-hand side, note that $coker(\alpha_x) = coker(F_x \xrightarrow{\alpha_x} G_x) = G_x/Im(\alpha_x)$, so that two points are equivalent in $coker(\alpha_x)$ iff they are both points in G_x , say $germ_x(s)$ and $germ_y(t)$, with $germ_x(s) - germ_y(t) \in Im(\alpha_X)$, ie $\exists W \ni x$ and $f \in F(W)$ such that $s \mid_W - t \mid_W = \alpha_W(f)$. This is exactly the relation given by R in the notes, so that the right-hand side is isomorphic to G_x/R . Then exercise 4.1(a) implies $coker(\alpha)_x \cong coker(\alpha_x)$.

4.2 Show that $\mathbf{Ab}(\mathbf{X})$ is an Abelian category with kernel, cokernel and sum defined as above.

We first show that $\mathbf{Ab}(\mathbf{X})$ has a 0 object. Let $\Delta\{*\}$ be the constant sheaf on a singleton set. Then for $U \subseteq X$, $\Delta\{*\}(U)$ is the trivial group and every restriction map is the identity, so $\Delta\{*\} \in \mathbf{Ab}(\mathbf{X})$. Moreover, for $A \in \mathbf{Ab}(\mathbf{X})$, there is exactly one map from $A(U) \to \Delta\{*\}(U)$ for every open $U \subseteq X$, namely the constant 0-map, and there is also exactly one map from $\Delta\{*\}(U) \to A(U)$ since group homomorphism must send identity to identity. Then $\Delta\{*\}$ is both initial and terminal, and so serves as the 0 element in $\mathbf{Ab}(\mathbf{X})$. We can now define the 0 morphism in $\mathbf{Ab}(\mathbf{X})$ as the map defined for $A, B \in \mathbf{Ab}(\mathbf{X})$ and $U \in X$, open, by $a \in A(U) \mapsto 0_{B(U)}$.

Let us define the sum of two Abelian sheaves A and B by $A(U) \oplus B(U)$ for U open in X, as in the notes. Then this gives the biproduct of Aand B in Ab(X). We know from the notes that $A \oplus B$ is a sheaf and we observe that for $U \subseteq X$, $A(U) \oplus B(U)$ has an Abelian group structure: let (a,b) and (a',b') be elements of $A(U) \oplus B(U)$ for some U. Then $(a,b) + (a',b') = (a+a',b+b') = (a'+a,b'+b) = (a',b') + (a,b) \in$ $A(U) \oplus B(U)$, since A(U) and B(U) are Abelian groups. This also implies $(a,b) + (0_{A(U)}, 0_{B(U)}) = (a,b) = (0_{A(U)}, 0_{B(U)}) + (a,b)$. To see that this is a biproduct, let $p_j: A_1 \oplus A_2 \to A_j$ be the map defined on $U \subseteq X$ as the projection map $p_{U,i}: A_1(U) \oplus A_2(U) \to A_i(U)$ and i_i be the map defined on $U \subseteq X$ as the injection map $i_j(U): A_j(U) \to A_1(U) \oplus A_2(U)$ for $j \in \{1, 2\}$ and $A_i \in \mathbf{Ab}(\mathbf{X})$. Then since $p_{U,i}$ and $i_{U,i}$ give the product and coproduct on each $A_1(U) \oplus A_2(U)$, viewed as elements in the category of Abelian groups, their collection gives the product and coproduct on $A_1 \oplus A_2$ (given a map into or out of the biproduct, find a new map that factors through p_i or i_i respectively, by taking the collection of maps implied by the universal property of each $p_{U,j}$ or $i_{U,j}$).

To see that $\mathbf{Ab}(\mathbf{X})$ has kernels, note that if $A, B \in \mathbf{Ab}(\mathbf{X})$ and $\phi : A \to B$, then ϕ has a kernel when everything is viewed in the category $\mathbf{Sh}(\mathbf{X})$. It remains only to check that $\ker(\phi)(U) = \{f \in A(U) \mid \phi_U(f) = 0_{B(U)}\}$ is an Abelian group for all U, open in X. But $\ker(\phi)(U) = \ker(\phi_U)$ is the kernel of the group homomorphism ϕ_U , and so must itself be a subgroup of A(U) for all $U \in X$. Then $\ker(\phi) \in \mathbf{Ab}(\mathbf{X})$. Likewise, the cokernel of ϕ exists in $\mathbf{Sh}(\mathbf{X})$, and so we need only show $\operatorname{coker}(\phi)(U)$ is an Abelian group, $\forall U$.

4.3 Let $0 \to A \hookrightarrow I^0 \to I^1 \to \dots$ and $0 \to B \to B \hookrightarrow J^0 \to J^1 \to J^2 \to \dots$ be injective resolutions of A and B respectively. Show that a map $\phi: A \to B$ extends to a map of complexes:

Since $0 \to A \hookrightarrow I^0 \to I^1 \to \dots$ is a resolution, in particular exact, for each n, we have an injective map from $A \to I^n$ given by d^n . Since $\phi: A \to B$, we also have for each n, a map from $A \to J^n$ given by $d^n \circ \phi$. Then injectivity of J^n implies the required map $\phi^n: I^n \to J^n$:

4.3 (b) Show that a map of complexes as above induces a homomorphism of cohomology groups

$$H^n(X;A) \to H^n(X,B)$$

Note that the above map of chain complexes implies a map for $U \in X$:

$$0 \longrightarrow A(U) \longrightarrow I^{0}(U) \longrightarrow I^{1}(U) \longrightarrow I^{2}(U) \longrightarrow \dots$$

$$\downarrow \phi_{U} \qquad \downarrow \phi_{U}^{0} \qquad \downarrow \phi_{U}^{1} \qquad \downarrow \phi_{U}^{2}$$

$$0 \longrightarrow B(U) \longrightarrow J^{0}(U) \longrightarrow J^{1}(U) \longrightarrow J^{2}(U) \longrightarrow \dots$$

which for U = X gives the map:

$$0 \longrightarrow \Gamma A \longrightarrow \Gamma I^0 \longrightarrow \Gamma I^1 \longrightarrow \Gamma I^2 \longrightarrow \dots$$

$$\downarrow \Gamma \phi \qquad \downarrow \Gamma \phi^0 \qquad \downarrow \Gamma \phi^1 \qquad \downarrow \Gamma \phi^2$$

$$0 \longrightarrow \Gamma B \longrightarrow \Gamma J^0 \longrightarrow \Gamma J^1 \longrightarrow \Gamma J^2 \longrightarrow \dots$$

Since $H^n(X;A) = \ker(\Gamma I^n \to \Gamma I^{n+1}))/im(\Gamma I^{n-1} \to \Gamma I^n) \subseteq \Gamma I^n$ and likewise $H^n(X;B) = \ker(\Gamma J^n \to \Gamma J^{n+1}))/im(\Gamma J^{n-1} \to \Gamma J^n) \subseteq \Gamma J^n$, the maps $\Gamma \phi^n : \Gamma I^n \to \Gamma J^n$ implies a homomorphism $\Gamma \phi^n \mid_{H^n(X,A)}: H^n(X;A) \to \Gamma J^n$. It remains only to check that $im(\Gamma \phi^n \mid_{H^n(X,A)}) \subseteq H^n(X,B)$. Let $\alpha \in H^n(X;A)$. Then $\alpha \in \ker(d^n : \Gamma I^n \to \Gamma I^{n+1})$, so $\Gamma \phi^{n+1} \circ d^n(\alpha) = 0$. Since the above diagram commutes, this implies $d^n \circ \Gamma \phi^n(\alpha) = 0$, so that $\Gamma \phi^n(\alpha) \in \ker(d^n : \Gamma J^n \to \Gamma J^{n+1})$, which implies $\Gamma \phi^n(\alpha) \in H^n(X;B)$.

4.4(a) Let $f: Y \to X$ be a map of topological spaces. Show that there is a natural isomorphism $\Gamma_Y \to \Gamma_X \circ f_*$,

$$Ab(Y) \xrightarrow{\Gamma_{Y}} Ab(X)$$
Abelian Groups

We must find η_A and η_B , isomorphisms, such that the following commutes for all $A, B \in Ab(Y)$ and $\phi : A \to B$:

$$\Gamma_{Y}(A) \xrightarrow{\Gamma_{Y}\phi} \Gamma_{Y}(B)$$

$$\eta_{A} \downarrow \qquad \qquad \downarrow \eta_{B}$$

$$\Gamma_{X} \circ f_{*}(A) \xrightarrow{\Gamma_{x} \circ f_{*}\phi} \Gamma_{X} \circ f_{*}(B)$$

By the definition of Γ and f_* , this is the same as finding isomorphisms η_A and η_B such that the following commutes:

$$A(Y) \xrightarrow{\phi_Y} B(Y)$$

$$\eta_A \downarrow \qquad \qquad \downarrow \eta_B$$

$$A(f^{-1}(X)) \xrightarrow{\phi_{f^{-1}(X)}} B(f^{-1}(X))$$

But $f^{-1}(X) = Y$, so taking $\eta_A = \rho_{Y,Y} = id_{A(Y)}$ (likewise for η_B) implies the result, since ϕ is a map $A \to B$ and so must be natural wrt the restriction maps.

4.4 (b) Show that a natural isomorphism between left exact functors $\tau: T_1 \to T_2$ induces a natural isomorphism $R^n T_1 \to R^n T_2$ for each n.

Let T_1 and T_2 be left exact functors from $\mathcal{C} \to \mathcal{D}$ and let $\tau: T_1 \to T_2$ be a natural isomorphism. Let $0 \to C \to I^0 \to I^1 \to ...$ be an injective resolution of C for some $C \in \mathcal{C}$. Naturality of τ implies that the following commutes:

$$0 \longrightarrow T_1(C) \longrightarrow T_1(I^0) \longrightarrow T_1(I^1) \longrightarrow T_1(I^2) \longrightarrow \dots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow T_2(C) \longrightarrow T_2(I^0) \longrightarrow T_2(I^1) \longrightarrow T_2(I^2) \longrightarrow \dots$$

Moreover, since T_1 and T_2 are both left exact, each row in the above diagram is exact. Then, by analogous argument to 4.3(b), τ restricts to a natural isomorphism $R^nT_1 \to R^nT_2$ for each n.