Teaching LTL_f Satisfiability Checking to Neural Networks

Weilin Luo¹, Hai Wan ^{1,2*}, Jianfeng Du ^{3,4,*}, Xiaoda Li ¹, Yuze Fu ¹, Rongzhen Ye ¹. Delong Zhang 1

School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China ² Key Laboratory of Machine Intelligence and Advanced Computing (Sun Yat-sen University), Ministry of Education, China ³ Guangdong University of Foreign Studies, Guangzhou, China ⁴ Pazhou Lab, Guangzhou, China

Luo et al. (SYSU) I.TI.fNet. July 2022

Content

- Motivation
- Approach: LTLfNet
- Preliminary Results
- 4 Conclusion and Future Work

July 2022

Content

- 1 Motivation
- 2 Approach: LTLfNet
- Preliminary Results
- Conclusion and Future Work

July 2022

Linear temporal logic over finite traces (LTL $_f$) satisfiability checking: checking whether a given LTL $_f$ formula is satisfiable or unsatisfiable

- Al applications: reinforcement learning ^[15], program synthesis ^[14], and explainable Al ^[9]
- PSPACE-complete^[7]

Linear temporal logic over finite traces (LTL $_f$) satisfiability checking: checking whether a given LTL $_f$ formula is satisfiable or unsatisfiable

- Al applications: reinforcement learning [15], program synthesis [14], and explainable Al [9]
- PSPACE-complete^[7]

Related work

- symbolic approaches: e.g., based on tableau $^{[10]}$ and based on SAT $^{[6,11]}$
- sound and complete
- no symbolic approach scales to all datasets [11]

Linear temporal logic over finite traces (LTL $_f$) satisfiability checking: checking whether a given LTL $_f$ formula is satisfiable or unsatisfiable

- Al applications: reinforcement learning ^[15], program synthesis ^[14], and explainable Al ^[9]
- PSPACE-complete^[7]

Related work

- symbolic approaches: e.g., based on tableau $^{[10]}$ and based on SAT $^{[6,11]}$
- sound and complete
- no symbolic approach scales to all datasets [11]
- end-to-end neural networks to solve Boolean satisfiability (SAT) problem in polynomial time^[4,12]

Luo et al. (SYSU) LTLfNet July 2022 3/1-

Linear temporal logic over finite traces (LTL $_f$) satisfiability checking: checking whether a given LTL $_f$ formula is satisfiable or unsatisfiable

- Al applications: reinforcement learning [15], program synthesis [14], and explainable Al [9]
- PSPACE-complete^[7]

Related work

- symbolic approaches: e.g., based on tableau $^{[10]}$ and based on SAT $^{[6,11]}$
- sound and complete
- no symbolic approach scales to all datasets [11]
- end-to-end neural networks to solve Boolean satisfiability (SAT) problem in polynomial time^[4,12]

Whether LTL_f satisfiability checking can be effectively tackled by end-to-end neural networks?

Content

- Motivation
- Approach: LTLfNet
- Preliminary Results
- 4 Conclusion and Future Work

July 2022

■ syntactics of recursive definition: $\phi := p \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \mathsf{X}\varphi \mid \varphi_1 \cup \varphi_2$

Luo et al. (SYSU) I.TI.fNet July 2022

Recursion

- syntactics of recursive definition: $\phi \coloneqq p \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \mathsf{X}\varphi \mid \varphi_1 \mathsf{U} \varphi_2$
- semantics of recursive definition

Example 1 (Recursion)

Let $\{p,q,r\}$ be a set of atomic propositions.

Figure 1: The semantics of a U (Xb) is recursive.

Example 2 (Permutation Invariant)

permutation invariance of sub-formulae

- \blacksquare $north \lor west \equiv west \lor north$
- \blacksquare (north \lor west) \lor door \equiv (west \lor north) \lor door

Luo et al. (SYSU) July 2022 I.TI.fNet.

Permutation Invariant and Sequentiality

Example 2 (Permutation Invariant)

permutation invariance of sub-formulae

- \blacksquare north \lor west \equiv west \lor north
- \bullet (north \lor west) \lor door \equiv (west \lor north) \lor door

permutation invariance of atomic propositions

- \blacksquare (north \lor door) \bigcup west
- \blacksquare (north \lor west) \lor door

Luo et al. (SYSU) July 2022 I.TI.fNet.

Permutation Invariant and Sequentiality

Example 2 (Permutation Invariant)

permutation invariance of sub-formulae

- \blacksquare north \lor west \equiv west \lor north
- \bullet (north \lor west) \lor door \equiv (west \lor north) \lor door

permutation invariance of atomic propositions

- \blacksquare (north \lor door) \lor west
- \blacksquare (north \lor west) \lor door

Example 3 (Sequentiality)

- $(door\ U\ west) \land \mathsf{G} \neg door\ is\ satisfiable,\ while\ (west\ U\ door) \land \mathsf{G} \neg door\ is\ unsatisfiable$
- \blacksquare door \bigcup west $\not\equiv$ west \bigcup door

Luo et al. (SYSU) LTLfNet July 2022 5/14

LTLfNet: TreeNN-based Embedding Model

Motivation

- **Recursion**: the architecture of recursive neural network (TreeNN) [3]
- Permutation Invariance and Sequentiality: aggregate functions fulfilling permutation invariance or sequentiality

Luo et al. (SYSU) LTLfNet July 2022 6/14

LTLfNet: TreeNN-based Embedding Model

Motivation

- Recursion: the architecture of recursive neural network (TreeNN)^[3]
- Permutation Invariance and Sequentiality: aggregate functions fulfilling permutation invariance or sequentiality

LTLfNet

 COMBINE with different learnable parameters for different logical operators

Algorithm 2: COMBINE

Input : an aggregated representation **r** of sub-formulae and the logical operator *op*.

Output: the combination representation \mathbf{r}_{out} .

- $\mathbf{r}' \leftarrow \mathsf{ReLU}(\mathbf{W}_{0,op} \cdot \mathbf{r})$
- $\mathbf{r}_{out} \leftarrow \mathbf{W}_{1,op} \cdot \mathbf{r}' + \mathbf{W}_{2,op} \cdot \mathbf{r}$
- $\mathbf{return} \ \mathbf{r}_{out}/\|\mathbf{r}_{out}\|_2$
- aggregation function for each operator
 - permutation invariance: mean pooling
 - sequentiality: concatenate

Figure 2: LTLfNet embeds (west ∨ north) U Xdoor

Content

- 1 Motivation
- Approach: LTLfNet
- Preliminary Results
- 4 Conclusion and Future Work

July 2022

Dataset

synthetic dataset

- randltl tool in the SPOT framework to generate random formulae
- \blacksquare formula size is in the interval [20, 100)
- lacktriangle the number of different atomic propositions is less than 100
- 16K/2K formulae for training/validating
- $lue{1}$ 6 test sets with different size intervals: [20, 100), [100, 120), [120, 140), [140, 160), [160, 180), and [180, 200) (2K formulae for each)

Dataset

synthetic dataset

- randltl tool in the SPOT framework to generate random formulae
- \blacksquare formula size is in the interval [20, 100)
- lacktriangle the number of different atomic propositions is less than 100
- 16K/2K formulae for training/validating
- lacksquare 6 test sets with different size intervals: [20,100), [100,120), [120,140), [140,160), [160,180), and [180,200) (2K formulae for each)

large-scale datasets [11]

- LTL-as-LTL_f: 4668 formulae coming from LTL satisfiability checking
- LTL_f -Specific: 1700 formulae generated by common LTL_f patterns
- *NASA-Boeing*: real-world LTL_f specifications
- DECLARE: 112 LTL $_f$ patterns widely used in the business process management

Luo et al. (SYSU)

LTLfNet

July 2022 7/14

Motivation Approach: LTLfNet **Preliminary Results** Conclusion and Future Work Reference
OO OOO OO OO OO
Setting

Competitor

Transformer: transformer-based embedding model

- generating LTL satisfiable traces by training a Transformer model [8]
- Permutation Invariance and Sequentiality: Multi-head Self-attention [4]

RGCN: R-GCN-based embedding model

- relational graph convolutional network (R-GCN) embeds commands in LTL to train an agent to make command-compliant decisions [13]
- **Recursion**: GNNs provide better inductive bias [13]
- **Permutation Invariance**: aggregate functions that is exchangeable [1,2,4,12,16]

TreeNN: TreeNN-based embedding model

■ does not apply different COMBINE functions to different operators

Luo et al. (SYSU) LTLfNet July 2022 8/14

Motivation Approach: LTLfNet **Preliminary Results** Conclusion and Future Work Reference
OO OOO OO OO OO
Setting

Competitor

Transformer: transformer-based embedding model

- generating LTL satisfiable traces by training a Transformer model [8]
- Permutation Invariance and Sequentiality: Multi-head Self-attention [4]

RGCN: R-GCN-based embedding model

- relational graph convolutional network (R-GCN) embeds commands in LTL to train an agent to make command-compliant decisions [13]
- **Recursion**: GNNs provide better inductive bias [13]
- **Permutation Invariance**: aggregate functions that is exchangeable [1,2,4,12,16]

TreeNN: TreeNN-based embedding model

■ does not apply different COMBINE functions to different operators

CDLSC: SOTA symbolic approach to LTL_f satisfiability checking $^{[11]}$

nuXmv: SOTA approaches to model checking [5]

Luo et al. (SYSU) LTLfNet July 2022 8/14

Motivation Approach: LTLfNet **Preliminary Results** Conclusion and Future Work Reference
OO OOO OO OO O
O
Analysis

Evaluation on Synthetic Datasets

Model	acc. (%)	pre. (%)	rec. (%)	F1 (%)	time (s)	
Transformer	83.95	93.58	72.90	81.96	5.63	
RGCN	73.85	72.31	77.30	74.72	97.01	
TreeNN	94.05	94.54	93.50	94.02	13.83	
LTLfNet (our)	99.25	98.91	99.60	99.25	14.72	

Table 1: Evaluation on the synthetic datasets as the same size of training formulae ($\![20,100)\!$).

- LTLfNet outperforms other approaches and keeps the high performance even when formulae become larger.
- The architecture fulfilling more logical properties has better scale generalizability.

(a) Accuracy

(b) F1 score

July 2022

Figure 3: Results of different approaches on test sets with formulae of different sizes.

Evaluation on Large Scale Datasets

	LTL -as- LTL_f		LTL _f -Specific		NASA-Boeing		DECLARE					
Model	acc. (%)	F1 (%)	time (s)	acc. (%)	F1 (%)	time (s)	acc. (%)	F1 (%)	time (s)	acc. (%)	F1 (%)	time (s)
CDLSC	100.00	100.00	75,979.65	100.00	100.00	27.47	100.00	100.00	3,604.41	100.00	100.00	60,905.95
nuXmv	100.00	100.00	75,560.60	100.00	100.00	2,483.38	100.00	100.00	3,695.72	100.00	100.00	18,096.68
Transformer	47.33	62.63	12.98	61.71	61.27	4.25	98.39	99.19	1.34	100.00	100.00	3.71
RGCN	39.17	55.16	4,412.20	54.18	70.28	3,309.81	100.00	100.00	216.92	100.00	100.00	6,854.66
TreeNN	88.65	93.94	311.08	54.18	70.28	101.42	100.00	100.00	27.50	100.00	100.00	170.78
LTLfNet (our)	89.77	94.61	327.25	54.18	70.28	130.93	100.00	100.00	28.70	100.00	100.00	177.36

Table 2: Evaluation on the large-scale datasets.

- The neural approaches are much faster than the symbolic approaches generally.
- Neural approaches are able to learn biases that are widely present in industrial datasets.
- LTLfNet achieves highly confident prediction for LTL_f satisfiability checking in relatively short time.

Luo et al. (SYSU) LTLf.Net July 2022 10 /

Content

- 1 Motivation
- Approach: LTLfNet
- Preliminary Results
- Conclusion and Future Work

July 2022

Conclusion and Future Work

Conclusion:

- By designing the neural architecture (LTLfNet) to characterize logical properties of LTL $_f$, end-to-end neural networks can learn to check LTL $_f$ satisfiability.
- Experimental results show the competitive results of LTLfNet compared with the SOTA symbolic approaches.

Conclusion and Future Work

Conclusion:

- By designing the neural architecture (LTLfNet) to characterize logical properties of LTL_f , end-to-end neural networks can learn to check LTL_f satisfiability.
- Experimental results show the competitive results of LTLfNet compared with the SOTA symbolic approaches.

Future work:

- improve our approach to generalize across distributions
- evaluate our approach in LTL satisfiability checking
- 3 extend our approach to generate a trace as evidence of satisfiability

11 / 14

Motivation Approach: LTLfNet Preliminary Results Conclusion and Future Work **References**

References I

- [1] Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. Learning to solve circuit-sat: An unsupervised differentiable approach. In *ICLR*, 2019.
- [2] Benedikt Bünz and Matthew Lamm. Graph neural networks and boolean satisfiability. CoRR, abs/1702.03592, 2017.
- [3] Jonathon Cai, Richard Shin, and Dawn Song. Making neural programming architectures generalize via recursion. In *ICLR*, 2017.
- [4] Chris Cameron, Rex Chen, Jason S. Hartford, and Kevin Leyton-Brown. Predicting propositional satisfiability via end-to-end learning. In AAAI, pages 3324–3331, 2020.
- [5] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessandro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano Tonetta. The nuxmv symbolic model checker. In CAV, pages 334–342, 2014.
- [6] Valeria Fionda and Gianluigi Greco. The complexity of LTL on finite traces: Hard and easy fragments. In AAAI, pages 971–977, 2016.
- [7] Giuseppe De Giacomo and Moshe Y. Vardi. Linear temporal logic and linear dynamic logic on finite traces. In *IJCAI*, pages 854–860, 2013.
- [8] Christopher Hahn, Frederik Schmitt, Jens U. Kreber, Markus Norman Rabe, and Bernd Finkbeiner. Teaching temporal logics to neural networks. In *ICLR*, 2021.
- [9] Joseph Kim, Christian Muise, Ankit Shah, Shubham Agarwal, and Julie Shah. Bayesian inference of linear temporal logic specifications for contrastive explanations. In IJCAI, pages 5591–5598, 2019.
- [10] Jianwen Li, Lijun Zhang, Geguang Pu, Moshe Y. Vardi, and Jifeng He. Ltlf satisfiability checking. In ECAI, volume 263, pages 513–518, 2014.

 Motivation Approach: LTLfNet Preliminary Results Conclusion and Future Work References

References II

- [11] Jianwen Li, Geguang Pu, Yueling Zhang, Moshe Y. Vardi, and Kristin Y. Rozier. Sat-based explicit ltlf satisfiability checking. Artif. Intell., 289:103369, 2020.
- [12] Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and David L. Dill. Learning a SAT solver from single-bit supervision. In ICLR, pages 1–11, 2019.
- [13] Pashootan Vaezipoor, Andrew C. Li, Rodrigo Toro Icarte, and Sheila A. McIlraith. Ltl2action: Generalizing LTL instructions for multi-task RL. In ICML, volume 139, pages 10497–10508, 2021.
- [14] Shengping Xiao, Jianwen Li, Shufang Zhu, Yingying Shi, Geguang Pu, and Moshe Y. Vardi. On-the-fly synthesis for LTL over finite traces. In AAAI, pages 6530–6537, 2021.
- [15] Yaqi Xie, Fan Zhou, and Harold Soh. Embedding symbolic temporal knowledge into deep sequential models. In ICRA, pages 4267–4273, 2021.
- [16] Wenjie Zhang, Zeyu Sun, Qihao Zhu, Ge Li, Shaowei Cai, Yingfei Xiong, and Lu Zhang. Nlocalsat: Boosting local search with solution prediction. In *IJCAI*, pages 1177–1183, 2020.

Luo et al. (SYSU) LTLfNet July 2022 13/14

Thank you for your listening!

