L1-MIASH/Biologie - ALGÈBRE ÉLÉMENTAIRE

FEUILLE DE TRAVAUX DIRIGÉS N° 2

Espaces vectoriels

Enseignant : H. El-Otmany

A.U.: 2014-2015

Exercice n°1 (Questions de cours) Soit E un espace vectoriel sur \mathbb{R} , F et G deux sous-espaces vectoriels de E.

- 1. Montrer que $F \cap G$ est un sous-espace vectoriel de E.
- 2. On suppose que F et G sont de dimensions finies. Donner la formule concernant $\dim(F+G)$.

Exercice n°2 Les ensembles suivants sont-ils des espaces vectoriels?

$$E = \{(x_1, x_2) \in \mathbb{R}^2 : x \geqslant 0\}$$

$$E = \{(x_1, x_2, x_3) \in \mathbb{R}^3, x_1^2 + x_2^2 = 0\},$$

$$G = \{(x_1, x_2, x_3) \in \mathbb{R}^3, x_1^2 + x_2^2 = 1\},$$

Exercice n°3 Soit $E = \mathbb{R}[X]$ et $F = \{P \in E, \ P(X) = XP'(X) + P(0)\}$, montrer que F est un sous-espace vectoriel de E.

Exercice $n^{\circ}4$ Déterminer si les parties suivantes sont des sous-espaces vectoriels de K[X]:

- 1. $A = \{P \in K[X] / 0 \text{ est racine de } P\}$
- 2. $B = \{P \in K[X] / 0 \text{ est racine double de } P\}$
- 3. $C = \{P \in K[X] / 0 \text{ est racine au moins d'ordre 2 de } P\}$
- 4. Pour $n \in \mathbb{N}$ fixé : $D = \{P \in K[X] \ / \deg(P) = n\}$
- 5. $E = P \in K[X] / X^2 P' + 2P = 0_{K[X]}$

Exercice n°5 Soit $E = M_n(\mathbb{R})$, soit $A \in E$ fixé et $F = \{M \in E, AM = MA\}$, montrer que F est un sous-espace vectoriel de E. Application : déterminer F si $A = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$.

Exercice n°6

- 1. Décrire les sous-espaces vectoriels de \mathbb{R} ; puis de \mathbb{R}^2 et \mathbb{R}^3 .
- 2. Dans \mathbb{R}^3 donner un exemple de deux sous-espaces dont l'union n'est pas un sous-espace vectoriel.

Exercice n°7 Les parties suivantes elles des sous-espaces vectoriels \mathbb{R}^2 ?

$$- E_1 = \{(x_1, x_2) \in \mathbb{R}^2, x_1 \leqslant x_2\},\$$

$$- E_2 = \{(x_1, x_2) \in \mathbb{R}^2, x_1 = x_2\},\$$

$$E_3 = \{(x_1, x_2) \in \mathbb{R}^2, x_1 x_2 = 0\},\$$

$$-E_3 = \{(x_1, x_2) \in \mathbb{R}^2, x_1 = 4x_2^2\},\$$

$$- E_4 = \{(x_1, x_2) \in \mathbb{R}^2, x_1 - x_2 = 2\},\$$

$$E_5 = \{(x_1, x_2) \in \mathbb{R}^2, x_1 + x_2 = a\}, \quad a \in \mathbb{R}$$

Exercice n°8 Déterminer lesquels des ensembles E_i , $1 \le i \le 5$ sont des sous-espaces vectoriels de \mathbb{R}^3 .

```
 -E_1 = \{(x_1, x_2, x_3) \in \mathbb{R}^3, 2x_1 - 9x_2 = x_3\}, 
 -E_2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3, x_1^2 - 9x_3^2 = 0\}, 
 -E_3 = \{(x_1, x_2, x_3) \in \mathbb{R}^3, x_1 + x_2 + x_3 = x_1 - x_2 - x_3 = 0\}, 
 -E_4 = \{(x_1, x_2, x_3) \in \mathbb{R}^3, x_3(x_1^2 + 2x_2^2) = 0\}, 
 -E_5 = \{(x_1, x_2, x_3) \in \mathbb{R}^3, \frac{x_1^2}{9} + \frac{x_2^2}{4} = 1\},
```

Exercice n°9 Déterminer si les ensembles suivants sont ou ne sont pas des sous-espaces vectoriels :

- $E_1 = \{ P \in \mathbb{R}[X]; \ P(0) = P(2) \},\$
- $-E_2 = \{ P \in \mathbb{R}[X]; P'(0) = 2 \},$
- Pour $A \in \mathbb{R}[X]$ non-nul fixé, $E_3 = \{P \in \mathbb{R}[X]; A|P\},\$
- \mathcal{D} l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} qui sont dérivables,
- E_4 , l'ensemble des solutions de l'équation différentielle y' + a(x)y = 0, où $a \in \mathcal{D}$,
- E_5 , l'ensemble des solutions de l'équation différentielle y' + a(x)y = x, où $a \in \mathcal{D}$.

Exercice $n^{\circ}10$ Soit E un espace vectoriel. Soient F et G deux sous-espaces vectoriels de E.

- 1. Montrer que $F \cap G$ est un sous-espace vectoriel de E.
- 2. Supposons que $E = \mathbb{R}^2$, $F = vect\{(1,0)\}$ et $G = vect\{(0,1)\}$.
- 3. L'ensemble $F \cup G$ est-il un sous-espace vectoriel de E?
- 4. Montrer que $F \cup G$ est un sous-espace vectoriel de E si et seulement si $F \subset G$ ou $G \subset F$.

Exercice n°11 Soient $F = \{(x_1, x_2, x_3) \in \mathbb{R}^3; x_1 + x_2 - x_3 = 0\}$ et $G = \{(x_1 - x_2, x_1 + x_2, x_1 - 3x_2); (x_1, x_2) \in \mathbb{R}\}$

- 1. Montrer que F et G sont des sous-espaces vectoriels de \mathbb{R}^3 .
- 2. Déterminer $F \cap G$.

Exercice $n^{\circ}12$ Soit E un espace vectoriel et A, B et C trois sous-espaces de E.

- 1. Montrer que si A + C = B + C, $A \cap C = B \cap C$ et $A \subset B$, alors A = B.
- 2. Montrer que $A + (B \cap C) \subset (A + B) \cap (A + C)$. Justifier que l'inclusion est stricte.
- 3. Vérifier qu'il existe une inclusion entre les ensembles $A \cap (B+C)$ et $(A \cap B) + (A \cap C)$. Justifier que l'inclusion est stricte.