NAME: STREAM:	
END OF TERM II EXAMINATIONS	
S.2 PHYSICS	
1 Hour 45 Minutes	
INSTRUCTIONS	
 Answer all the questions in this paper. 	
• Use only the spaces provided to answer the questions.	
• Where necessary, assume $g = 10ms^{-2}$.	
1. (a) The figure below shows the setup of an experiment to observe the motion particles in air.	of smoke
light smoke particles in air	
(i) The view of one smoke particle, labelled P, through the microscope is below.	as shown
bright dot	
Draw 3 joined lines to show the movement of the particles. (02 marks (ii) Explain what makes the smoke particles to move the way they do.	s)
(iii) The air cell containing the smoke particles becomes warmer. Explain changes the motion of the smoke particles.	narks) how this
(02 m	narks)
(b) A lump of ice was left in air. After sometime the ice turned to liquid water.(i) What name is given to the change above?	
(01 m (ii) Compare the arrangement and motion of the molecules in ice and liquid	narks)
(02 m (iii) State one practical application of the change in state above.	narks)

(01 marks)

(a)	Whenever a force moves its point of application work is done. What is	-
(b)	The figure below shows a woman raising a flag by pulling the downwa	(01 marks) rds on a rope.
	(i) Identify the machine being used to raise the flag	
	(i) Identify the machine being used to raise the flag.	
	(ii) State one other application of the machine you have identified.	(01 marks)
••••	(iii) Determine the increase in the gravitational potential energy of the raised through a height of $6.0m$.	(01 marks) ne flag when i
	(iv) Explain why the work done on the rope is larger than the value in	(02 marks) b(i) above.
•	(v) Suggest one way of increasing the work done on the rope.	(01 marks)
		(01 marks)
(b)	In a gear system, a wheel of 40 teeth is driven by a wheel of 10 teeth. The an effort of 100N in order to lift a load of 400N. Calculate the efficient	e system requ
		•••••

The figure below shows a cross word puzzle. Co	omplete the puzzle by filling in a suitable word
2 3	5
8	7 9 10
13 14 15 17 18 18 18 18 18 18 18 18 18 18 18 18 18	16
ACROSS	DOWN
 2 In physics and other sciences, is defined as a work one system does (or can do) on another system 5 Mechanical is the amount of energy transferred by a force. 6 A force is a force that does zero net work on a particle that travels along any closed path in an isolated system. 7 A is a rigid object that is used with an appropriate fulcrum or pivot point to multiply the mechanical force that can be applied to another object. 8 The energy is the energy which causes or is released by the physical distortion of a solid or a fluid. 14 The of energy states that the total amount of energy in an isolated system remains constant, although it may change forms. 15 A is a wheel with a groove along its edge for holding a rope or cable or belt. 16 The is the SI derived unit of power, equal to one joule per second. 17 The inclined is a flat surface whose endpoints are at different heights. 18 A simple is any device that only requires the application of a single force to work. 	 1 is the rate at which work is performed of energy is transmitted. It is the amount of energy required or expended for a given unit of time. 3 The is a unit of energy often used also in theoretical physics as a unit of mass. It is the amount of kinetic energy gained by a single unbound electron when it passes through an electrostatic potential difference of one volt, in vacuo. 4 A is a unit of measurement for energy equal to the amount of heat required to raise a gram of water one degree celsius. In most fields, it has been replaced by the joule. 9 Mechanical is the factor by which a mechanism multiplies the force put into it. 10 The energy of an object is the extratenergy which it possesses due to its motion, defined as the work needed to accelerate the body from rest to its current speed. 11 energy is energy stored within a physic system. 12 The gravitational energy of an object consisting of loose material, held together by gravity alone, is the amount of energy required to pull all of the material apart, to infinity. 13 The is the SI unit of energy.
trie application of a single force to work.	(10 marks)

ł. (a) V	What do you understand by the term moment of a force.	
n	In order to determine the weight of a metal block using a standard weight metre rule, Afuwa pivoted a metre rule at its mid-point and suspended the at a distance of 15cm from the pivot. To keep the metre rule in equilibracy the distance of the metal block to 20cm from the pivot as shown in the	standard weight ium, she had to
(i)	15 cm 20 cm rule 100 N pivot weight metal block What principle must she use in order to calculate the weight of the block	
(ii)) State the assumptions she should make before using the principle in b((01 marks) i) above.
(iv	y) Determine the weight of the metal block.	(02 marks)
(c)	The centre of gravity of a uniform rectangular lamina is located intersection of the diagonals of the lamina. (i) What is meant by the term centre of gravity?	•
	(ii) Draw a diagram to show the lamina and indicate the position of the cas G.	(01 marks)
	(iii) Identify one practical application of the knowledge of centre of gra	•
•••••	*** END ***	(01 marks)

*** END ***