Set Theory

1	Axioms and Operations			
	1.1	Basic Axioms	2	
2	Relations and Functions 4			
	2.1	Ordered Pairs	4	
	2.2	Relations	5	
	2.3	Equivalence Relations and Ordering Relations	6	
3	Nat	ural Numbers	7	
	3.1	Inductive Sets	7	
	3.2	Recursion	8	
	3.3	Arithmetic	9	
	3.4	Ordering	2	

Chapter 1

Axioms and Operations

1.1 Basic Axioms

For sets x and y, we write $x \in y$ to say that x is an element of y, and we write x = y to say that x and y are equal. Furthermore, we define

$$x \notin y \Leftrightarrow \neg(x \in y)$$

 $x \neq y \Leftrightarrow \neg(x = y).$

Axiom I (Extensionality). Two sets are equal if they have exactly the same elements. Formally,

$$\forall x \forall y (\forall z (z \in x \leftrightarrow z \in y) \to x = y).$$

Definition 1.1. Let x and y be sets. We say that x is a **subset** of y, denoted by $x \subseteq y$, if every element of x belongs to y. Formally,

$$x \subseteq y \iff \forall z (z \in x \to z \in y).$$

Furthermore, x is a **proper subset** of y, denoted by $x \subseteq y$, if both $x \subseteq y$ and $x \neq y$ hold.

Definition 1.2. The **empty set**, denoted by \emptyset , is the set that has no elements.

Axiom II (Pairing). For any two sets x and y, there is a set that consists of exactly x and y. Formally,

$$\forall x \forall y \exists z \forall w (w \in z \leftrightarrow (w = x \lor w = y)).$$

Definition 1.3. The pair set of two sets x and y, denoted by $\{x, y\}$, is the set that consists of exactly x and y.

Axiom III (Power Set). For any set x, there is a set whose members are exactly the subsets of x. Formally,

$$\forall x \exists y \forall z (z \subseteq x \leftrightarrow z \in y).$$

Definition 1.4. The **power set** of a set x, denoted by $\mathcal{P}(x)$, is the set that consists of exactly the subsets of x.

Axiom IV (Separation Scheme). Let $\phi(z)$ be a formula. For any set x, there exists a set y such that for any set z, we have $z \in y$ if and only if both $z \in x$ and $\phi(z)$ hold. Formally,

$$\forall x \exists y \forall z (z \in y \leftrightarrow z \in x \land \phi(z)).$$

Definition 1.5. Let x, y be sets and let $\phi(z)$ be a formula. If for any set z, we have $z \in y$ if and only if $z \in x$ and $\phi(z)$, then we write

$$y = \{z \in x : \phi(z)\}.$$

Definition 1.6. For sets x and y, we define

$$x \setminus y = \{z \in x : z \notin y\}.$$

Theorem 1.7. There is no set to which every set belongs. Formally,

$$\forall x \exists y (y \notin x).$$

Proof. Let x be a set and let $y = \{z \in x : z \notin z\}$. Then

$$y \in y \quad \Leftrightarrow \quad y \in x \land y \notin y.$$

If $y \in x$, then

$$y \in y \Leftrightarrow y \notin y$$

contradiction. Thus $y \notin x$, which completes the proof.

Axiom V (Union). For any set x, there exists a set whose elements are exactly the elements of the elements of x. Formally,

$$\forall x \exists y \forall z (z \in y \leftrightarrow \exists w (w \in x \land z \in w)).$$

Definition 1.8. Let x be a set.

• We define the **union** of x, denoted by $\bigcup x$, to be the set that consists of the sets that belongs to at least one element of x. Formally, for any set z we have

$$z \in \bigcup x \iff \exists w (w \in x \land z \in w).$$

• If x is nonempty, we define the **intersection** of x, denoted by $\bigcap x$, to be the set that consists of the sets that belongs to all elements of x. Formally, for any set z we have

$$z \in \bigcap x \iff \forall w (w \in x \to z \in w).$$

For sets u and v, we define

$$u \cup v = \bigcup \{u, v\}$$
 and $u \cap v = \bigcap \{u, v\}.$

Chapter 2

Relations and Functions

2.1 Ordered Pairs

Definition 2.1. For sets x and y, we define

$$\langle x, y \rangle = \{ \{x\}, \{x, y\} \}.$$

Lemma 2.2. Let x, y, y' be sets. If $\{x, y\} = \{x, y'\}$, then y = y'.

Proof. Suppose that $y \neq y'$. Since $y \in \{x, y\} = \{x, y'\}$ and $y \neq y'$, we have y = x. Then we have $y' \in \{x, y'\} = \{x, y\} = \{x\}$, implying y' = x = y, contradiction. Thus, y = y'.

Theorem 2.3. For sets x, x', y, y', we have

$$\langle x, y \rangle = \langle x', y' \rangle$$

if and only if x = x' and y = y'.

Proof. (\Leftarrow) Straightforward. (\Rightarrow) Suppose that $x \neq x'$. Since

$$\{\{x\}, \{x, y\}\} = \{\{x'\}, \{x', y'\}\},\$$

either $\{x\} = \{x', y'\}$ or $\{x\} = \{x'\}$ holds. For both cases we all have $x' \in \{x\}$, implying x' = x, contradiction. Hence we have x = x', and it follows that $\{x\} = \{x'\}$, implying $\{x, y\} = \{x', y'\}$, and thus y = y'.

Lemma 2.4. If $x, y \in C$, then $\langle x, y \rangle \in \mathcal{P}(\mathcal{P}(C))$.

Proof. Since $\{x\}$ and $\{y\}$ are subsets of C, we have $\{x\}, \{x, y\} \in \mathcal{P}(C)$. It follows that $\{\{x\}, \{x, y\}\}$ is a subset of $\mathcal{P}(C)$, implying

$$\langle x, y \rangle = \{ \{x\}, \{x, y\} \} \in \mathcal{P}(\mathcal{P}(C)).$$

Theorem 2.5. For any sets A and B, there is a set whose members are exactly the pairs (x, y) with $x \in A$ and $y \in B$.

Proof. Since $x, y \in A \cup B$, the set of pairs $\langle x, y \rangle$ with $x \in A$ and $y \in B$ can be given by

$$\{z \in \mathcal{P}(\mathcal{P}(A \cup B)) : z = \langle x, y \rangle \text{ for some } x \in A \text{ and } y \in B\}.$$

Definition 2.6. For any sets A and B, the **Cartesian product** of A and B, denoted by $A \times B$, is the set whose members are exactly the pairs $\langle x, y \rangle$ with $x \in A$ and $y \in B$.

2.2 Relations

Definition 2.7. A **relation** is a set of ordered pairs. For any relation R, the **domain** and the **range** of R, denoted by dom(R) and ran(R), respectively, are defined as follows.

- dom(R) is the collection of sets x with $\langle x, y \rangle \in R$ for some y.
- ran(R) is the collection of sets y with $\langle x, y \rangle \in R$ for some x.

Definition 2.8. Let R and S be relations and let X be a set.

- The **inverse** of R, denoted by R^{-1} , is the set of all pairs $\langle y, x \rangle$ with $\langle x, y \rangle \in R$.
- The **restriction** of R to X, denoted by $R \upharpoonright X$, is the set of all pairs $\langle x, y \rangle \in R$ with $x \in X$.
- The **composition** of R and S, denoted by $R \circ S$, is the set of all pairs $\langle x, z \rangle$ with $\langle x, y \rangle \in R$ and $\langle y, z \rangle \in S$.

Definition 2.9. A function is a relation f such that for any set $x \in \text{dom}(f)$, there exists a unique set y such that $\langle x, y \rangle \in f$. The unique set y with respect to x is called the **value** of f at x and is denoted f(x).

- We say that f is a function from A to B, denoted by $f: A \to B$, if dom(f) = A and $ran(f) \subseteq B$.
- f is **one-to-one** if for any $y \in \text{ran}(f)$, there exists a unique set $x \in \text{dom}(f)$ with f(x) = y.

Definition 2.10. For any sets A and B, the set of functions from A to B is denoted by B^A .

2.3 Equivalence Relations and Ordering Relations

Definition 2.11. Let A be a set. An **equivalence relation** on A is a relation $R \subseteq A \times A$ that satisfies the following three conditions.

- Reflexivity: $\langle x, x \rangle \in R$ for any $x \in A$.
- Symmetry: $\langle x, y \rangle \in R$ implies $\langle y, x \rangle \in R$ for any $x, y \in A$.
- $\bullet \ \ \text{Transitivity:} \ \langle x,y\rangle \in R \ \text{and} \ \langle y,z\rangle \in R \ \text{implies} \ \langle x,z\rangle \in R \ \text{for any} \ x,y,z \in A.$

Chapter 3

Natural Numbers

3.1 Inductive Sets

Definition 3.1. The successor of a set x, denoted x^+ , is defined by

$$x^+ = x \cup \{x\}.$$

Definition 3.2. A set A is **inductive** if it has the empty set as member and is closed under successor. Formally,

A is inductive
$$\Leftrightarrow \varnothing \in A \land \forall x (x \in A \to x^+ \in A).$$

Axiom VI (Infinity). There exists an inductive set.

Definition 3.3. A **natural number** is a set x that belongs to all inductive sets. The set of natural numbers is denoted by ω . Formally,

$$x \in \omega \quad \Leftrightarrow \quad \forall A(A \text{ is inductive} \rightarrow x \in A)$$

Theorem 3.4. ω is inductive.

Proof. First, $\emptyset \in \omega$ since \emptyset belongs to all inductive sets by definition. For any set $x \in \omega$, x belongs to all inductive sets, implying that x^+ belongs to all inductive sets, and thus $x^+ \in \omega$. Thus, ω is inductive.

Definition 3.5. Let

$$0 = \varnothing, \quad 1 = \varnothing^+, \quad 2 = (\varnothing^+)^+, \quad 3 = ((\varnothing^+)^+)^+, \quad 4 = (((\varnothing^+)^+)^+)^+, \quad \dots$$

denote the natural numbers.

3.2 Recursion

Theorem 3.6 (Recursion Theorem). For any sets A and e with $e \in A$ and any function $\Phi: A \to A$, there is a unique function $f: \omega \to A$ such that

$$f(\varnothing) = e$$
 and $f(n^+) = \Phi(f(n))$

for all $n \in \omega$.

Proof. We call a function $h \in \mathcal{P}(\omega \times A)$ a candidate function if it satisfies the following properties.

- 1. If $\varnothing \in \text{dom}(h)$, then $h(\varnothing) = e$.
- 2. For every $n \in \omega$, if $n^+ \in \text{dom}(h)$, then $n \in \text{dom}(h)$ and $f(n^+) = \Phi(f(n))$.

Let H denote the set of all candidate functions and let $f = \bigcup H$. First we show that $f \in \mathcal{P}(\omega \times A)$ is a function, i.e., the set

$$I = \{n \in \omega : \langle n, a \rangle, \langle n, a' \rangle \text{ implies } a = a' \text{ for all } a, a' \in A\}$$

is inductive. We have $\emptyset \in I$ by definition of candidate function. Now suppose that $n \in I$ and we prove that $n^+ \in I$. For any $h, h' \in H$ with $n^+ \in \text{dom}(h)$ and $n^+ \in \text{dom}(h')$, we have h(n) = h'(n) by $n \in I$, implying

$$h(n^+) = \Phi(h(n)) = \Phi(h'(n)) = h'(n^+).$$

Thus $n^+ \in I$, and we conclude that f is a function. Now we show that $dom(f) = \omega$. We have $\emptyset \in dom(f)$ since $\{\langle \emptyset, e \rangle\} \in H$. For any $n \in dom(f)$, let $h \in H$ with $n \in dom(h)$. If $n^+ \in dom(h)$, then $n^+ \in dom(f)$. Otherwise, since $h' = h \cup \{\langle n^+, \Phi(h(n)) \rangle\} \in H$, we also have $n^+ \in dom(f)$.

Now we show that $f \in H$. We have $f(\emptyset) = e$ since $\{\langle \emptyset, e \rangle\} \in H$. For any $n \in \text{dom}(f)$, let $h \in H$ with $n \in \text{dom}(h)$. If $n^+ \in \text{dom}(h)$, then we have

$$f(n^+) = h(n^+) = \Phi(h(n)) = \Phi(f(n)).$$

Otherwise, let $h' = h \cup \{\langle n^+, \Phi(h(n)) \rangle\} \in H$, and then we have

$$f(n^+) = h'(n^+) = \Phi(h(n)) = \Phi(f(n)).$$

Thus $f \in H$. For the uniqueness of f, let $g \in H$ with $dom(g) = \omega$, and then since $g \subseteq f$, we have g(n) = f(n) for all $n \in \omega$, implying g = f. This completes the proof.

3.3 Arithmetic

Definition 3.7. For $n, m \in \omega$, we define

$$n + 0 = n$$
 and $n + m^+ = (n + m)^+$

for all $n, m \in \omega$.

Lemma 3.8. For $n, m \in \omega$, we have the following properties.

- (a) 0 + n = n.
- (b) $n^+ + m = (n+m)^+$.

Proof.

(a) The proof is by induction on n. We have 0 + 0 = 0. Now let $n \in \omega$. If 0 + n = n, then

$$0 + n^+ = (0 + n)^+ = n^+.$$

(b) The proof is by induction on m. We have $n^+ + 0 = n^+ = (n+0)^+$ for all $n \in \omega$. Now let $m \in \omega$. If $n^+ + m = (n+m)^+$ for all $n \in \omega$, then

$$n^+ + m^+ = (n^+ + m)^+ = ((n+m)^+)^+ = (n+m^+)^+.$$

for all $n \in \omega$.

Theorem 3.9. For $n, m, \ell \in \omega$, we have the following properties.

- (a) n + m = m + n.
- (b) $(n+m) + \ell = n + (m+\ell)$.

Proof.

(a) The proof is by induction on m. We have n+0=n=0+n for all $n \in \omega$. Now let $m \in \omega$. If n+m=m+n for all $n \in \omega$, then

$$n + m^{+} = (n + m)^{+} = (m + n)^{+} = m^{+} + n.$$

for all $n \in \omega$.

(b) The proof is by induction on ℓ . We have (n+m)+0=n+m=n+(m+0). Now let $\ell \in \omega$. If $(n+m)+\ell=n+(m+\ell)$ for all $n,m\in \omega$, then

$$(n+m) + \ell^{+} = ((n+m) + \ell)^{+}$$
$$= (n + (m+\ell))^{+}$$
$$= n + (m+\ell)^{+}$$
$$= n + (m+\ell^{+})$$

for all $n, m \in \omega$.

Definition 3.10. For $n, m \in \omega$, we define

$$n \cdot 0 = 0$$
 and $n \cdot m^+ = n \cdot m + n$

for all $n, m \in \omega$.

Lemma 3.11. For $n, m \in \omega$, we have the following properties.

- (a) $0 \cdot n = 0$.
- (b) $n^+ \cdot m = n \cdot m + m$.

Proof.

(a) The proof is by induction on n. We have $0 \cdot 0 = 0$. Now let $n \in \omega$. If $0 \cdot n = 0$, then

$$0 + n^+ = 0 \cdot n^+ + 0 = 0.$$

(b) The proof is by induction on m. We have $n^+ \cdot 0 = 0 = n \cdot 0 + 0$ for all $n \in \omega$. Now let $m \in \omega$. If $n^+ \cdot m = n \cdot m + m$ for all $n \in \omega$, then

$$n^+ \cdot m^+ = n^+ \cdot m + n^+$$

$$= n \cdot m + m + n^+$$

$$= n \cdot m + n + m^+$$

$$= n \cdot m^+ + m^+$$

for all $n \in \omega$.

Theorem 3.12. For $n, m, \ell \in \omega$, we have the following properties.

- (a) $n \cdot (m + \ell) = n \cdot m + n \cdot \ell$.
- (b) $n \cdot m = m \cdot n$.
- (c) $(n \cdot m) \cdot \ell = n \cdot (m \cdot \ell)$.

Proof.

(a) The proof is by induction on ℓ . We have

$$n \cdot (m+0) = n \cdot m = n \cdot m + 0 = n \cdot m + n \cdot 0$$

for all $n, m \in \omega$. Now let $\ell \in \omega$. If $n \cdot (m + \ell) = n \cdot m + n \cdot \ell$ for all $n, m \in \omega$, then

$$n \cdot (m + \ell^{+}) = n \cdot (m + \ell)^{+}$$

$$= n \cdot (m + \ell) + n$$

$$= (n \cdot m + n \cdot \ell) + n$$

$$= n \cdot m + (n \cdot \ell + n)$$

$$= n \cdot m + n \cdot \ell^{+}$$

for all $n, m \in \omega$.

(b) The proof is by induction on m. We have $n \cdot 0 = 0 = 0 \cdot n$ for all $n \in \omega$. Now let $m \in \omega$. If $n \cdot m = m \cdot n$ for all $n \in \omega$, then

$$n \cdot m^+ = n \cdot m + n = m \cdot n + n = m^+ \cdot n$$

for all $n \in \omega$.

(c) The proof is by induction on ℓ . We have $(n \cdot m) \cdot 0 = 0 = n \cdot (m+0)$. Now let $\ell \in \omega$. If $(n \cdot m) \cdot \ell = n \cdot (m \cdot \ell)$ for all $n, m \in \omega$, then

$$(n \cdot m) \cdot \ell^{+} = (n \cdot m) \cdot \ell + n \cdot m$$
$$= n \cdot (m \cdot \ell) + n \cdot m$$
$$= n \cdot (m \cdot \ell + m)$$
$$= n \cdot (m \cdot \ell^{+})$$

for all $n, m \in \omega$.

3.4 Ordering

Definition 3.13. We define binary relations < and \le over the set ω of natural numbers such that

$$n < m \quad \Leftrightarrow \quad n \in m$$

and

$$n \le m \quad \Leftrightarrow \quad n \in m \text{ or } n = m$$

for $n, m \in \omega$.