Papers written by Australian Maths Software

REVISION 1

2016

MATHEMATICS METHODS

Units 1 & 2

Semester 2 SOLUTIONS

(6 marks)

SECTION 1 – Calculator-free

Question 1

(a) $f(x) = x^3 + 1.5x^2 - 6x$

$$f'(x) = 3x^2 + 3x - 6$$

Turning points where f'(x) = 0

$$0 = 3(x^2 + x - 2)$$

$$0 = (x+2)(x-1)$$

$$(-2,10), (1,-3.5)$$

(b)

Question 2 (5 marks)

(a)
$$x^2 - 3x - 4 = 0$$

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
 $x = \frac{3 \pm \sqrt{9 - 4(1)(-4)}}{2}$
 $x = \frac{3 \pm \sqrt{25}}{2} = \frac{3 \pm 5}{2}$
 $x = 4 \text{ or } x = -1$

(b)
$$x^2 - 3x + 1 = 0$$

 $x^2 - 3x + \frac{9}{4} = -1 + \frac{9}{4}$ \checkmark
 $\left(x - \frac{3}{2}\right)^2 = \frac{5}{4}$
 $x = \frac{3}{2} \pm \frac{\sqrt{5}}{2}$ \checkmark

(c)
$$x^3 + x^2 - 16x + 20 = 0$$

Let $P(x) = x^3 + x^2 - 16x + 20$
 $P(2) = 8 + 4 - 32 + 20 = 0$
 \therefore 2 is a root \checkmark
2 /1 1 -16 20
 $/\frac{\checkmark}{2} \frac{2}{3} \frac{6}{-20} \frac{-20}{13} \frac{-10}{3} \frac{-10}{3} \frac{-10}{3} \frac{-10}{3} \checkmark$
 $SO(3) = (x-2)(x^2 + 3x - 10) \checkmark$
 $SO(3) = (x-2)(x+5)(x-2) \checkmark$
 $SO(3) = (x-2)(x+5)(x-2) \checkmark$
 $SO(3) = (x-2)(x+5)(x-2) \checkmark$

Question 3 (3 marks)

$${}^{3}C_{1} \times {}^{5}C_{2} = 3 \times \frac{5!}{3!2!} = 3 \times \frac{5 \times 4}{2 \times 1} = 30$$

Question 4 (14 marks)

(a) Parabolic, concave up, turning point at (-2,2). ✓ ✓

(b)
$$f(x) = -\frac{1}{x+1}$$

(c) The relationship represents a circle with centre (-2, 1) and radius 2. ✓✓

(d)
$$y = (x-1)(x-2)(x+3)$$
 $\checkmark \checkmark \checkmark$ -1/error

(e)
$$f(x) = 2^{1-x}$$

$$(f) \qquad f(x) = 3 - 3^x \qquad \checkmark \checkmark \checkmark$$

Question 5 (10 marks)

(a)
$$\frac{2 \times 8^{\frac{1}{3}} - 16^{0.25}}{81^{-\frac{3}{4}}}$$

$$= \frac{2 \times \left(2^{3}\right)^{\frac{1}{3}} - \left(2^{4}\right)^{0.25}}{\left(3^{4}\right)^{-\frac{3}{4}}}$$

$$= \frac{2 \times 2 - 2}{3^{-3}}$$

$$= 2 \times 27$$

$$= 54 \quad \checkmark$$

(b) (i)
$$\frac{4^{1-2x}}{8^x} = 16$$

$$\frac{2^{2(1-2x)}}{2^{3x}} = 2^4$$

$$2^{2-4x-3x} = 2^4 \quad \checkmark$$

$$\therefore 2 - 7x = 4$$

$$7x = -2$$

$$x = -\frac{2}{7} \quad \checkmark$$

(ii)
$$3^{2x} - 12(3^x) + 3^3 = 0$$

Let $y = 3^x$
 $y^2 - 12y + 27 = 0$ \checkmark
 $(y-3)(y-9) = 0$
 $y = 3 \text{ or } y = 9$
 $3^x = 3 \text{ or } 3^x = 9$
 $x = 1 \text{ or } x = 2$

(c)
$$\frac{a \times \sqrt{c}}{b} = \frac{2 \cancel{4.6} \times 10^2 \times \sqrt{4 \times 10^{-4}}}{\cancel{2.3} \times 10^{-2}} = 2 \times 10^{2+2} \times 2 \times 10^{-2} = 400$$

(d) 6.1×10^9 \checkmark

Question 6 (6 marks)

(a) (i)
$$A_n = 1 + 3n$$
 4,7,10,13

(ii)
$$A_{n+1} = A_n + 3$$
, $A_1 = 4$

(b)
$$3,6,12,...GP$$
 $a=3, r=2$ \checkmark $T_n = ar^{n-1}$ \checkmark $T_n = 3 \times 2^{n-1}$

Question 7 (7 marks)

(a)
$$sin\left(\frac{\pi}{6}\right) + sin^2\left(\frac{\pi}{6}\right) + sin^3\left(\frac{\pi}{6}\right) + \dots$$

$$= \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^3 \dots \quad \checkmark \quad S_{\infty} = \frac{a}{1-r}$$

$$= \frac{\frac{1}{2}}{1-\frac{1}{2}} \quad \checkmark$$

$$= 1 \quad \checkmark$$

(b) (i)
$$P(A \cup B) = P(A) + P(B - P(A \cap B))$$
 \checkmark
$$= 0.3 + 0.5 - 0.2$$

$$= 0.6 \quad \checkmark$$

(ii)
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{0.2}{0.5} = \frac{2}{5}$$

SECTION 2 – Calculator-assumed

Question 8 (3 marks)

Question 9 (9 marks)

(a)
$$P_{n+1} = 1.05 \times P_n$$
, $P_1 = 40$

(b) 2011
$$P_1 = 1.05 \times 40 = 42$$

2015
$$P_5 = 40 \times 1.05^5 \approx 51$$
 \checkmark

- (c) The model is not perfect as it suggest 51 cats and there are only 45. ✓ The ratio should be less than 1.05.
- (d) 2010 t = 0 P = 40

2015
$$t = 5$$
 $P = 45$

$$P(t) = 40(r)^{t}$$

$$45 = 40(r)^5$$

$$r = 1.0238$$

$$P(t) = 40(1.0238)^t$$

(e) 2020 t = 10

$$P(10) = 40(1.0238)^{10} \approx 51$$

No, the number of expected cats in 2020 is 51, so the action need not be taken. \checkmark

Question 10 (5 marks)

(a)
$$PQ^2 = (6-2)^2 + (0-3)^2$$

 $PQ^2 = 25$
 $PQ = 5$

(b) P to Q is 4 units left and 3 units down...

R will be 3 units right and 4 units up.

i.e.
$$Q(6, 0) \longrightarrow R(6+3, 0+4)$$

Check
$$RQ^2 = (3)^2 + (4)^2$$
 $RQ = 5$
 $m_{RQ} = \frac{4}{3}, \quad m_{PQ} = -\frac{3}{4}$

(c) Likewise

S will be 3 units right and 4 units up from P.

i.e.
$$P(2, 3) \longrightarrow S(2+3, 3+4)$$

Question 11 (19 marks)

(a)
$$f(x) = -(x-3)^3 + 2 = -x^3 + 9x^2 - 27x + 29$$

(i)
$$f(0) = 29$$
 $A(0,29)$

(ii)
$$f'(x) = -3x^2 + 18x - 27$$

 $f'(x) = 0$ $-3(x^2 - 6x + 9) = 0$
 $(x-3)^2 = 0$

$$B(3,2)$$
 Equation of the normal is $x=3$

(b)
$$x = t^3 - 9t$$

(i)
$$v = \frac{dx}{dt} = 3t^2 - 9 \quad \checkmark$$

(ii) At
$$t = 3$$
, $x = 0m$, $v = 18m/s$

(iii) Particle changes direction when the velocity equals zero. ✓

$$3t^{2} - 9 = 0$$

$$t^{2} = 3$$

$$t = \sqrt{3} \quad as \quad t \ge 0$$

$$x_{\sqrt{3}} = (\sqrt{3})^3 - 9\sqrt{3} = -6\sqrt{3} m$$

(c) (i)

(ii) The turning points of f occur where f' = 0. There are three of those.

Where f ' < 0, then the gradient of f is negative. \checkmark

Where f ' > 0, then the gradient of f is positive. \checkmark

If f '=0, if the gradient just before the point is –ve and just after +ve, then the point in a minimum turning point.

If f '=0, if the gradient just before the point is +ve and just after -ve, then the point in a maximum turning point.

The maximum gradient occurs where f ' is maximum. Likewise minimum.

Question 12 (14 marks)

(a)
$$y = cos\left(x - \frac{\pi}{4}\right)$$

(b) (i)
$$cos(3x) = -1$$
 for $-90^{\circ} \le x \le 90^{\circ}$
 $3x = 180^{\circ} \pm n360^{\circ}$ \checkmark
 $x = 60^{\circ} \pm n120^{\circ}$
 \checkmark

(ii)
$$tan\left(x + \frac{\pi}{6}\right) = \sqrt{3}$$
 for $0 \le x \le \frac{\pi}{2}$
 $x + \frac{\pi}{6} = \frac{\pi}{3} \pm n\pi$ \checkmark
 $x = \frac{\pi}{6} \pm n\pi$
 $x = \frac{\pi}{6}$ \checkmark

(c)
$$l = r\theta \implies 11 = 8\theta \implies \theta = \frac{11}{8}$$

$$A = \frac{1}{2}r^2\theta$$

$$A = \frac{1}{2}8^2 \times \frac{11}{8}$$

$$A = \frac{88}{2}$$

$$A = 44 cm^2 \checkmark$$

(d) Let
$$y = -\frac{\pi}{2}$$

$$\cos\left(x - \frac{\pi}{2}\right) = \cos(x)\cos\left(-\frac{\pi}{2}\right) - \sin(x)\sin\left(-\frac{\pi}{2}\right)$$

$$\cos\left(\frac{\pi}{2} - x\right) = 0 - \sin(x)\left(-\sin\left(\frac{\pi}{2}\right)\right) \qquad \cos(-\beta) = \cos(\beta) \text{ and } \sin(-\beta) = -\sin(\beta)$$

$$\cos\left(\frac{\pi}{2} - x\right) = -\sin(x) \times (-1)$$

$$\cos\left(\frac{\pi}{2} - x\right) = \sin(x)$$

(e)

$$\frac{\sin B}{b} = \frac{\sin A}{a}$$

$$\sin B = 10 \times \frac{\sin 30^{\circ}}{6}$$

$$\sin B = \frac{5}{6} \quad \checkmark$$

$$B = 56.44^{\circ}$$

$$B = 180^{\circ} - 56.44^{\circ} = 123.56^{\circ}$$

$$C = 93.56^{\circ}$$

$$C = 26.44^{\circ}$$

$$\frac{c}{\sin C} = \frac{a}{\sin A}$$

$$c = \frac{6}{\sin 30^{\circ}} \times \sin 93.56^{\circ}$$

$$c = \frac{6}{\sin 30^{\circ}} \times \sin 26.48^{\circ}$$

$$c = 11.997$$

$$c = 5.344$$

$$AB \approx 12$$
 \checkmark OR

$$AB = 5.34$$

Question 13 (5 marks)

(a)
$$f(x) = x^3 - 9x$$

 $f'(x) = 3x^2 - 9$ \checkmark
 $f'(3) = 27 - 9 = 18$ \checkmark
 $y = 18x + c$
 $(3,0) \Rightarrow 0 = 54 + c \rightarrow c = -54$
 $y = 18x - 54$ \checkmark

(b)
$$f'(x) = 3x^2 - 9$$

 $f'(-3) = 27 - 9 = 18$

Therefore the tangent at (-3, 0) is parallel to the tangent at (3, 0).

Question 14 (8 marks)

(a) (i)
$$g'(x) = -2x + 15x^4 \checkmark \checkmark$$

(ii)
$$f(x) = (2x+1)^2 = 4x^2 + 4x + 1$$
 \checkmark
 $f'(x) = 8x + 4$ \checkmark

(b) By calculator $x = 0.39794 \checkmark \checkmark \checkmark$

Question 15 (6 marks)

Let the side of the little square be x.

$$V = (80-2x)(80-2x)x$$

$$V = 4x^3 - 320x^2 + 6400x \qquad \checkmark$$

For maximum volume $\frac{dV}{dx} = 0$

$$\frac{dV}{dx} = 12x^2 - 640x + 6400$$

If
$$\frac{dV}{dx} = 0$$
, $x = 40$ or $x = 13.3$

But
$$x \neq 40$$
, so $x = 13.3$

Test for maximum

Therefore maximum

Therefore the dimensions of the square are 13.3×13.3 cm for maximum volume. \checkmark

Question 16 (6 marks)

(a) Average rate of change=
$$\frac{f(4) - f(1)}{4 - 1} = \frac{26 - 11}{3} = 5$$

(b)
$$f'(x) = 10 - 2x$$
 \checkmark $10 - 2x = 5$ $x = 2.5$ $P(2.5, 20.75)$ \checkmark

The chord on the interval $1 \le x \le 2$ has a greater gradient than the chord on the interval (c) $3 \le x \le 4$

Question 17 (9 marks)

$$a = 10, d = 2$$
 $T_n = a + (n-1)d$
 $28 = 10 + (n-1)2$
 $\sqrt{18} = (n-1)2$

$$n = 10$$

$$n = 10$$

Jenny will walk 28 km on the 10th day.

(b) Need S_{10} and then she walks 28 km per day.

$$S_n = \frac{n}{2}(a+l)$$

$$S_{10} = \frac{10}{2}(10+28)$$

$$S_{10} = 190$$

She goes 190 in 10 days and there is 60 kms more to walk. ✓

$$\frac{60}{28} = 2 + \frac{4}{28}$$
 so she needs 3 extra days.

Jenny takes 13 days. ✓

(c)
$$\frac{250}{20} = 12.5$$

Steve needs 12,5 days i.e. he arrives on the 13th day.

They arrive on the same day (but Jenny gets there earlier than Steve as she has less distance to travel on the 13th day). ✓

Question 18 (5 marks)

$$f'(x) = \lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{(x+h) - x} \right)$$

$$f(x) = 3x^2$$

$$f(x+h) = 3(x+h)^{2}$$
$$= 3(x^{2} + 2xh + h^{2}) \qquad \checkmark$$

By definition

$$f'(x) = \lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{(x+h) - x} \right)$$

$$f(x+h) - f(x) = 3\left(x^2 + 2xh + h^2\right) - \left(3x^2\right)$$

$$= 6xh + 3h^2 \quad \checkmark$$

$$\frac{f(x+h) - f(x)}{h} = \frac{h(6x+3h)}{h}$$

$$= 6x + 3h \quad \checkmark$$

$$\therefore f'(x) = \lim_{h \to 0} (6x + 3h) \qquad \checkmark$$

$$\therefore f'(x) = 6x \checkmark$$

Question 19 (9 marks)

(a) (i)

(ii)
$$n(G \cap M) = 7$$

(iii)
$$n(\overline{M \cup B \cup G}) = 31$$

(b) (i) If M and N are independent, then

$$P(M \cap N) = P(M) \times P(N)$$

$$P(M) \times P(N) = 0.5 \times 0.4 = 0.20$$

$$P(M \cap N) = 0.2$$

Therefore events M and N are independent.

OR

If M and N are independent, then

$$P(M) = P(M/N) \qquad \bullet$$

$$P(M) = 0.5$$

$$P(M/N) = \frac{0.2}{0.4} = 0.5$$

Therefore events M and N are independent.

(iii) If events M and N are mutually exclusive then $P(M \cap N) = 0$ but $P(M \cap N) = 0.2 \neq 0$ so the events are NOT mutually exclusive.

End of solutions