

United International University (UIU)

Dept. of Computer Science & Engineering (CSE)

Mid Exam. :: Trimester: Fall 2020

Course Code: CSE 2213, Course Title: DISCRETE MATHEMATICS

Total Marks: **20** Duration: 1 hour

Answer all the questions. Figures are in the right-hand margin indicate full marks. "Any examinee found adopting unfair means will be expelled from the trimester / program as per UIU disciplinary rules."

as per UIU disciplinary rules."			
Question 1.			
a)	(i) Find the sets A and B if A-B = $\{1, 5, 7, 8\}$, B – A= $\{2, 10\}$, and A \land B = $\{3, 6, 9\}$.	[2.5]	
	(ii) Find out the following:		
	• If $A = \{1,2\}$, then $ p(p(A \times p(A))) = ?$		
	• Let $S = \{x \in Z^+ \mid x \text{ is a divisor of } 40 \text{ and } 10 \text{ and less than } 11\}$, find p(S).		
b)	For the following figures (A,B,C,D,E), find out if the following statement is	$[0.5 \times 5 = 2.5]$	
	true/false. If false, explain the reason briefly.		
	(a) A has an inverse function		
	(b) B is a one to one function		
	(c) C is one to one and onto function		
	(d) D is a onto function		
	(e) E is a one to one function		
	•1 a• a• •1 a• •1		
	a•		
	b• b• b•		
	A .4 d. D d. C .4 d. D .4		
	А В С Б Е		
Oues	tion 2:		
a)	Determine whether $((r \to s) \land (s \to t)) \to (r \to t)$ is a tautology using sequence of	[2]	
	logical equivalences law.	[-]	
b)	Translate the following English sentences into logical expression using predicate,	$[1.5 \times 2 = 3]$	
	quantifiers and logical connectives. Domain consists of all people.		
	P(x): x is a student of UIU		
	Q(x): x has learnt C and C++ programming		
	R(x): x is learning Python (i) There is a student in UIU who hasn't learnt C and C++ but is learning		
	Python.		
	(ii) It is not that every student in UIU has learnt C and C++ programming but		
	some UIU students are learning python.		
Ques	Question 3:		
a)	Translate the following sentence into a logical expression.	$[1 \times 2 = 2]$	
	(i) You can be a member of UIU Programming Club only if you are a student of		
	UIU and you have been admitted into the CSE department.		
	(ii) A necessary condition for you have shown up on Interview is you got the job		

b)	Determine the truth values of the following propositions. Here, the domain of each	$[1 \times 3 = 3]$	
	variable consists of all real numbers.		
	$(i) \forall x \exists y ((x+1)^2 = y)$		
	(ii) $\exists x((-x+1)^2=x^2)$		
	(iii) $\neg \forall x (x^3 > 0)$		
Question 4:			
a)	Prove the following by using the principle of mathematical induction, n is a positive	[3]	
	integer.		
	$1.2 + 2.3 + 3.4 + \cdots + n(n + 1) = n(n + 1)(n + 2)/3$		
b)	Prove by contraposition, If $n^3 - 1$ is even, then n is odd.	[2]	