Microarchitectural Data Leakage

via Automated Attack Synthesis

Daniel Moghimi, Worcester Polytechnic University

Jun 23, 2020

Virtual Talk for Intel Product Security Incident Team (IPSIRT)

About Me

- Daniel Moghimi (@danielmgmi)
- Security Researcher
- PhD Student @ WPI
 - Microarchitectural Security
 - Side Channels
 - Breaking Crypto Implementations
 - Trusted Execution Environment (Intel SGX)

Contributed to:

- ZombieLoad, Fallout, LVI,
- MemJam, Spoiler, CacheZoom, CopyCat
- Jackhammer, TPM-Fail

Thanks...

Berk Sunar @ WPI

Moritz Lipp @ tugraz

Michael Schwartz @ tugraz

Disclaimers

- Our findings and reasonings are based on:
 - RE
 - Patents
 - Analysis

You may know more than me how Intel CPU works!!!

Today's Agenda

Motivation: Meltdown-style Attacks

• Background: CPU Memory Subsystem

Transynther, Automated Attack Synthesis

MDS Root Cause Analysis and new subvariants

Medusa attack and RSA key recovery

2018: Meltdown Attack?

```
char secret = *(char *) 0xfffffff81a0123;
printf("%c\n", secret);
```


2018: Meltdown Attack?

```
char secret = *(char *) 0xfffffff81a0123;
```


2018: Meltdown Attack?

```
char secret = *(char *) 0xfffffff81a0123;
```



```
char secret = *(char *) 0xffffffff81a0123;
char x = oracle[secret * 4096];
```



```
char secret = *(char *) 0xffffffff81a0123;
char x = oracle[secret * 4096];
```



```
char secret = *(char *) 0xffffffff81a0123;
char x = oracle[secret * 4096];
```



```
char secret = *(char *) 0xffffffff81a0123;
char x = oracle[secret * 4096];
```



```
char secret = *(char *) 0xffffffff81a0123;
char x = oracle[secret * 4096];
```



```
char secret = *(char *) 0xffffffff81a0123;
char x = oracle[secret * 4096];
```


Microarchitecture Data Sampling (MDS)

- Meltdown is fixed but you can still leak on the fix hardware.
- Which part of the CPU leak the data?!
- Why does it leak?

```
mov 0x401234, %rsi
mov (%rsi), %rax
```


L3 DRAM

L3 DRAM

CPU Memory Subsystem - Leaky Buffers

CPU Memory Subsystem - Store Forwarding

CPU Memory Subsystem - Store Forwarding

VFN	Offset
-----	--------

VFN	Offset

	Р	RW	US		A		Physical Page Number	
--	---	----	----	--	---	--	----------------------	--

VFN Offset

Р	RW	US		Α		Physical Page Number	
---	----	----	--	---	--	----------------------	--

VFN Offset

Р	RW	US		A		Physical Page Number	
---	----	----	--	---	--	----------------------	--

VFN Offset

	Р	RW	US		Α		Physical Page Number	
--	---	----	----	--	---	--	----------------------	--

VFN	Offset

	Р	RW	US		Α	•••	Physical Page Number	
--	---	----	----	--	---	-----	----------------------	--

VFN	Offset
-----	--------

Р	RW US		A		Physical Page Number	
---	-------	--	---	--	----------------------	--

VFN	Offset
-----	--------

Р	RW	US		Α		Physical Page Number	
---	----	----	--	---	--	----------------------	--

VFN Offset

Р	RW	US		Α		Physical Page Number	
---	----	----	--	---	--	----------------------	--

VFN Offset

Р	RW	US		A	•••	Physical Page Number	
---	----	----	--	---	-----	----------------------	--

Challenges with MDS Testing?

- Reproducing attacks is not reliable. It may depend on:
 - massaging the pipeline with other instructions
 - CPU configuration (generation, frequency, microcode patch and etc)
- No public tool to find new variants or to verify hardware patches:
 - Too many things to test (Addressing mode, cache state, assists, and faults)
 - Previous POCs may not work after MC update, but what does it mean?
- Impossible to quantify the impact of leakage:
 - We should care about leakage rate and what data is leaked.
 - My POC is faster than your POC!!

Let's see this problem in action?! (Demo)

Transynther

Step 0: Buffer Grooming Stores Same Thread: 0x41424344

Loads Same Thread: 0x51525354 Stores Hyper Thread: 0x61626364

Loads Hyper thread Thread: 0x71727374

Step 2:

char x = oracle[secret * 4096];

Step 0: **Buffer** Grooming

Stores Same Thread: 0x41424344

Loads Same Thread: 0x51525354 **Stores Hyper** Thread: 0x61626364

Loads Hyper thread Thread: 0x71727374

Transynther Demo

Table 2: Leakage variants discovered by Transynther.

Case	Preparation	Store	Load	Name
1	(access ∅, random instructions)		< + ⊕ / ⓑ / ⊘	MLPDS
	(access Q, random instructions)	-	AVX < + ⊕ / [b / Ø	MLPDS
② ③ ④ ⑤ ⑥ ⑦	(access Q, random instructions)	N = N	AVX + ♠ / ऻ /<×>	Medusa
4	(access Q, random instructions)	-	AVX 式 + ② / ७ / ⊘ / <×> / ✓	Medusa
(5)	-	store (to load)	⊕ / tm / < x > / ✓	S2L
6	(rep mov + store, store + fence + load)	store (to load)	⊕/™/< x> /✓	-
7	-	store (4K Aliasing) + ⊕ / ⊕ / ⊘ / <×>/ ✓	⊕ / ™	MSBDS
8	-	store (4K Aliasing, to load) + ⊕ / [m/⊘/ <x>/</x>	AVX 式 + 🔂 / 🛅 / ⊘ / <×> / ✓	MSBDS, S2L
		~		
9	(Sibling on/off)	store (random address) + ⊘	⊕ / <x >	MSBDS
9 10 11	(Sibling on/off + clflush (store address))	store (Cache Offset of Load) + 🛇	⊕ / < x >	MSBDS
(11)	(Sibling on/off + repmov (to Load))	store (to Load)	AVX 式 + ① / [1 / Ø / < x > / ✓	Medusa,
_		300 12 (200 12) 3		MLPDS
(12)		Store (Unaligned to Load)	⊕ / m/< x>	Medusa
12	(random instructions)	AVX Store (to Load)	< x >	Medusa,
\circ		**************************************		MLPDS,
				MSBDS
14	-	random fill stores	< x>	MSBDS

≺

▼> Non-canonical Address Fault

✓ Non-present Page Fault

✓ Supervisor Protection Fault

→ AVX Alignment Fault

To Access-bit Assist

Demo some Interesting Leakage Pattern

MDS Attacks (ZombieLoad, RIDL, Fallout, ...)

- The CPU must flush the pipeline before executing an assist.
- Upon an Exception/Fault/Assist on a Load, Intel CPUs:
 - Execute the load until the last stage.
 - Flush the pipeline at the retirement stage (Cheap Recovery Logic).
 - Continue the load with some data to reach the retirement stage.
- Which data? (Fill buffer, Store Buffer, Load Buffer)
- Which one will be leaked first? (First come first serve)

Medusa Attack

- Write Combining fills up the entire Data Bus.
- Medusa only leaks the Upper-half of the Data Bus.
- Implicit WC, i.e., 'rep mov', 'rep stos', can be leaked.
- Served by a Write Combining Buffer (or just the the Fill Buffer)

- Advantages:
 - Prefiltered data
 - Less Noise
 - More targeted (maybe also a disadvantage)

Cache Line Index

An invalid (Non-canon) address: 0x55500000000000008-20

Cache Line Index

An invalid (Non-canon) address: 0x55500000000000008-20

Cache Line Index

An invalid (Non-canon) address: 0x55500000000000008-20

Cache Line Index

Common Data Bus?!

Cache Line Index

Faulty Load

ABCDEFGH IJKLMNOP QRSTUVWX YZ...

Cache Line Index

8-byte 8-byte 8-byte 8-byte 8-byte 8-byte 8-byte 8-byte

Cache Line Index

| 8-byte |
--------	--------	--------	--------	--------	--------	--------	--------

Faulty Load

Medusa Attack - V3 Shadow REP MOV

- A REP MOV that fault on the load leaks:
 - the data from the legitimate store address
 - but also the data from the REP MOV running on the hyper thread

HT 1: REP MOV
Valid Store, Faulty Load

HT 1: REP MOV Valid Store, Faulty Load

> ABCDEFGHIJKLMNOP AAAAAAAAAAAAAAA

Medusa Attack - V3 Shadow REP MOV

- A REP MOV that fault on the load leaks:
 - the data from the legitimate store address
 - but also the data from the REP MOV running on the hyper thread

OpenSSL RSA Key Recovery

- OpenSSL Base64 Decoder uses inline Memcpy(-oS)
- Triggerred during the RSA Key Decoding from the PEM format:

-----BEGIN RSA PRIVATE KEY-----MIICXQIBAAKBgQDmTvQjjtGtnlqMwmmaLW+YjbYTsNR8PGKXr78iYwrMV5Ye4VGy BwS6qLD4s/EzCzGIDwkWCVx+gVHvh2wGW15Ddof0gVAtAMkR6gRABy4TkK+6YFSK AyjmHvKCfFHvc9loeFGDyjmwFFkfdwzppXnH1Wwt0OlnyCU1GbQ1w7AHuwIDAQAB AoGBAMyDri7pQ29NBIfMmGQuFtw8c0R3EamlIdQbX7qUguFEoe2YHqjdrKho5oZj nDu8o+Zzm5jzBSzdf7oZ4qaeekv0fO+ZSz6CKYLbuzG2IXUB8nHJ7NuH3lacfivD V4Cfg0yFnTK+MDG/xTVqywrCTsslkTCYC/XZOXU5Xt5z32FZAkEA/nLWQhMC4YPM OLqMtgKzfgQdJ7vbr43WVVNpC/dN/ibUASI/3YwY0uUtqSjillghIY7pRohrPJ6W ntSJw0UAhQJBAOe2b9cfiOTFKXxyU4j315VkulFfTyL6GwXi/7mvpcDCixDLNRyk uRigmdKjtlUrAX0pwjgXa6niqJ691jExez8CQQCcMZZAvTbZhHSn9LwHxqS0SIY1 K+ZxX5ogirFDPS5NQzyE7adSsntSioh6/LQKBX6BAR9FwtxBPACtwz5F9geZAkA8 a3z0SlvG04aC1cjkgUPsx6wxxbl79F2RhmSKRbvh7JiYk3RQ+L7vJgmWPGu5AcLM oVPsjmbbkKfJZNTyVOW/AkABepEi++ZQQW0FXJWZ3nM+2CNcXYCtTgi4bGkvnZPp /1pAy9rjeVJYhb8acTRnt+dU+uZ74CTtfuzUTZLOIuVe ----END RSA PRIVATE KEY-----

OpenSSL RSA Key Recovery

- OpenSSL Base64 Decoder uses inline Memcpy(-oS)
- Triggerred during the RSA Key Decoding from the PEM format:

```
-----BEGIN RSA PRIVATE KEY-----
MIICXQIBAAKBgQDmTvQjjtGtnlqMwmmaLW+YjbYTsNR8PGKXr78iYwrMV5Ye4VGy
BwS6qLD4s/EzCzGIDwkWCVx+gVHvh2wGW15Ddof0gVAtAMkR6gRABy4TkK+6YFSK
AyjmHvKCfFHvc9loeFGDyjmwFFkfdwzppXnH1Wwt0OlnyCU1GbQ1w7AHuwIDAQAB
AoGBAMyDri7pQ29NBIfMmGQuFtw8c0R3EamlIdQbX7qUguFEoe2YHqjdrKho5oZj
nDu8o+Zzm5jzBSzdf7oZ4gaeekv0fO+ZSz6CKYLbuzG2IXUB8nHJ7NuH3lacfivD
V4Cfg<mark>0yFnTK+</mark>MDG/xTVqywrCTsslkTCYC/XZOXU5Xt5z32FZAkEA/nLWQhMC4YPM
OLqMtgKzfgQdJ7vbr43WVVNpC/dN/ibUASI/3Yw<mark>Y0uUtqS</mark>jillghIY7pRohrPJ6W
ntSJw0UAhQJBAOe<mark>2b9cfiOT</mark>FKXxyU4j315VkulF<mark>fTyL6Gw</mark>Xi/7mvpcDCixDLNRyk
uRigmdKjtlUrAX0pwjgXa6niqJ691jExez8CQQCcMZZAvTbZhHSn9LwHxqS0SIY1
K+ZxX5ogirFDPS5NQzyE7adSsntSioh6/LQKBX6BAR9FwtxBPACtwz5F9geZAkA8
a3z0SlvG04aC1cjkgUPsx6wxxbl79F2RhmSKRbvh7JiYk3RQ+L7vJgmWPGu5AcLM
oVPsjmbbkKfJZNTyVOW/AkABepEi++ZQQW0FXJWZ3nM+2CNcXYCtTgi4bGkvnZPp
/1pAy9rjeVJYhb8acTRnt+dU+uZ74CTtfuzUTZLOIuVe
----END RSA PRIVATE KEY-----
```

OpenSSL RSA Key Recovery

- OpenSSL Base64 Decoder uses inline Memcpy(-oS)
- Triggerred during the RSA Key Decoding from the PEM format:

OpenSSL RSA Key Recovery - Coppersmith

- Knowledge of at least $\frac{1}{3}$ of P+Q
- Create a n dimensional hidden number problem where n is relative to the number of recovered chunks
- Feed it to the lattice-based algorithm to find the short vector

OpenSSL RSA Key Recovery - Coppersmith Attack

- Knowledge of at least $\frac{1}{3}$ of P+Q.
- Creating a n dimensional hidden number problem where n is relative to the number of recovered chunks.
- Feeding it to the lattice-based algorithm to find the short vector.

Conclusion

- Automated Testing for CPU Attacks,
 - helps us to understand the root cause of these issues better.
 - can be used to verify hardware mitigations (e.g., Fallout on ICL).
 - can help us to improve the leakage rate and understand the impact of attacks better.
- The impact of attacks depend also on the exploitation technique.
- Potentials and Future work:
 - Can we integrate such tools with feedback from hardware/simulator?

Questions?!

@danielmgmi

• Moghimi, D., Lipp, M., Sunar, B., & Schwarz, M. (2020). Medusa: Microarchitectural Data Leakage via Automated Attack Synthesis. In 29th USENIX Security Symposium (USENIX Security 20).

CPU Memory Subsystem

