WYBRANE ZAGADNIENIA AI Reasoning with uncertainty – rough sets theory Halina Kwaśnicka

Choose yourself and new technologies

Repetition

- Deduction
 - Forward Chaining
 - Backward Chaining
- Probabilistic Approach
 - Not useful why?
- Heuristic Approach (Certainty Factor)
 - Similar to the confidence perceived by people?
- Fuzzy Logic
 - Useful, especially in real time systems

Probabilistic Approach

Probabilistic representation: Given P(A) and P(B), P(D)=? $P(A \land B)=P(C)$; $P(A \land C)=P(D)$

- Propagation of probabilities
- Assumption:
 - A, B: independent
 - P(A)=P(B)=0.5
- $P(C)=P(A)\cdot P(B)=0.5\cdot 0.5=0.25$
- P(D)=P(A)·P(C)=0.5·0.25=0.125
- Output is too rigorous!
- If A and C are depended:
 - $P(D)=P(A \land C)=P(A) \cdot P(C/A)$
- ■We obtain: $P(D) = P(A) \cdot P(C/A) = P(A) \cdot P(B)$

Certainty Factor

- Let us assume:
- R1: IF INTERETS RATES =FALL (CF=0.6)
 AND TAXES=REDUCED (CF=0.8)
 THEN STOCK MARCET=RISE (Rule CF=0.9)
- CF(h)=MB(h)-MD(h)
 - MB Measure of Belief,
 - MD Measure of Disbelief
 - $0 \le MB \le 1$; $0 \le MD \le 1$; $-1 \le CF \le 1$

$$CF(h:rule_1,rule_2)=CF(h:rule_1)+ + CF(h:rule_2)*[1-CF(h:rule_1)]$$

Fuzzy Logic

Fuzzy logic expert system

Rough sets* – general information

- Rough sets were invented by prof. Zdzialaw Pawlak (1926 2006)
- Usefulness
 - Rough sets are an extension of the Classical Set Theory, useful when knowledge is incomplete
 - tool to reduce data collections
 - Data Mining
 - knowledge discovery
 - classification of complex tasks
 - computer decision support systems

"Rough Sets: A Tutorial". Jan Komorowski, Lech Polkowski, Andrzej Skowron. http://folli.loria.fr/cds/1999/library/pdf/skowron.pdf, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.2477

Rough sets theory

- Rough sets are an extension of the Classical Set Theory, useful when knowledge is incomplete
- Rough sets sets with fuzzy boundaries, they cannot be precisely characterized using the available set of attributes

Basic definitions

- Information system: SI = (U, A, V, f)
- **Decision table**: *TD* = (*U*, *C*, *D*, *V*, *f*)

U – universe, finite, non-empty set, objects are its elements

- A set of attributes; for decision table:
 - *C* conditional attributes,
 - D decision $C, D \subset A; C \neq \emptyset; C \cup D = A; C \cap D = \emptyset$,
- V- the value set
- f information or decision function, Cartesian product of object and attribute sets, resulting as a set of attribute values

Decision table (DT) – example

Patient	Headache (h)	Muscle Pain (m)	Temperature (t)	Influenza (c)
1	not	yes	high	yes
2	yes	not	high	yes
3	yes	yes	very high	yes
4	not	yes	very high	yes
5	yes	not	high	not
6	not	yes	normal	not

U={1,2,3,4,5,6}, C={Headache . Muscle Pain. Tempe

C={Headache, Muscle Pain, Temperature}

D={Influenza }

 $V=V_{Headache}$ U $V_{Muscle\ Pain}$ U $V_{Temperature}$ U $V_{Influenza}$

V_{Headache}={not, yes}

V_{Muscle Pain}={not, yes}

V_{Temperature}={normal, high, very high}

V_{Influenza}={not, yes}

 $f: U \times A \rightarrow V$ (e.g., f(1, Headache) = not; f(3, Influenza) = yes)

Indiscernibility – definition

- A binary relation $R \subseteq X \times X$, which is reflexive (i.e. an object is in relation with itself xRx), symmetric (if xRy then yRx) and transitive (if xRy and yRz then xRz) is called an **equivalence** relation.
- The equivalence class of an element x∈ X consists of all objects y∈ X such that xRy.
- SI = (U, A, V, f), $B \subseteq A$ (SI Information system)
- **Indiscernibility Relation** on the set of objects U generated by a set of attributes **B**:

$$IND_{SI}(B) = \{(x,y) \in U \times U : \forall_{a \in B} f(x,a) = f(y,a)\}$$

• IND(B) is called the B-indiscernibility relation

Indiscernibility relation - example

• Let us assume: *A1 = h, m, t and A2 = h, m*

$$\begin{split} &\text{IND}_{SI}\left(A1\right) = \{(1,\,1),\,(2,\,2),\,(3,\,3),\,(4,\,4),\,(5,\,5),\,(6,\,6),\,(2,\,5),\,(5,\,2)\} \\ &\text{IND}_{SI}\left(A2\right) = \{(1,\,1),\,(2,\,2),\,(3,\,3),\,(4,\,4),\,(5,\,5),\,(6,\,6),\,(1,\,4),\,(4,\,1),\,(1,\,6),\,(6,\,1),(4,\,6),\,(6,\,4),\,(2,\,5),\,(5,\,2)\} \end{split}$$

 Above relations divide set of objects of Information System for following equivalence classes (elementary sets):

$$U/IND_{SI}(A1) = \{\{1\}, \{2, 5\}, \{3\}, \{4\}, \{6\}\}\}$$

 $U/IND_{SI}(A2) = \{\{1, 4, 6\}, \{2, 5\}, \{3\}\}$

 Exemplary equivalence classes containing respective objects of the considered Information System

$$I_{SI,A2}(1) = \{1, 4, 6\}$$

 $I_{SI,A2}(2) = \{2, 5\}$
 $I_{SI,A2}(3) = \{3\}$

10 0				
#	h	m	t	С
1	n	У	h	У
3	У	n	h	У
	У	У	v h	У
4	n	У	v h	У
5	У	n	h	n
6	n	У	n	n

Examples ("Rough Sets: A Tutorial", J.Komorowski, L. Polkowski, A.Skowron)

Age and Lower Extremity Motor Score (LEMS)

	Age	LEMS
x_1	16-30	50
x_2	16-30	0
x_3	31-45	1-25
x_4	31-45	1-25
x_5	46-60	26-49
x_6	16-30	26-49
x_7	46-60	26-49

Information Systems (IS)

	Age	LEMS	Walk
x_1	16-30	50	Yes
x_2	16-30	0	No
x_3	31-45	1-25	No
x_4	31-45	1-25	Yes
x_5	46-60	26-49	No
x_6	16-30	26-49	Yes
x_7	46-60	26 - 49	No

decision table (DT)

cases x3 and x4; x5 and x7 are pairwise indiscernible using the available attributes (have exactly the same values of conditions)

Illustration how the DT (Decision Table) defines an indiscernibility relation

 There are three non empty subsets of conditional attributes: {Age}, {LEMS}, {Age, LEMS}

 $IND(\{Age\}) = \{\{x_1, x_2, x_6\}, \{x_3, x_4\}, \{x_5, x_7\}\}$ $IND(\{LEMS\}) = \{\{x_1\}, \{x_2\}, \{x_3, x_4\}, \{x_5, x_6, x_7\}$ $IND(\{Age, LEMS\}) = \{\{x_1\}, \{x_2\}, \{x_3, x_4\}, \{x_5, x_7\}, \{x_6\}\}$

		Age	LEMS
	x_1	16-30	50
	x_2	16-30	0
	x_3	31-45	1-25
	x_4	31-45	1-25
i	x_5	46-60	26-49
1	x_6	16-30	26-49
į	x_7	46-60	26-49

Set Approximation

- An equivalence relation induces a partitioning of the universe
- Let IS = (U, A) and $B \subseteq A$ and $X \subseteq U$
- We can approximate X using the information contained in B by constructing the B-lower and B-upper approximations of X, denoted $\underline{B}X$ and $\overline{B}X$ respectively
- $\underline{B}X = \{x \mid [x]_{B} \subseteq X\}; \overline{B}X = \{x \mid [x]_{B} \cap X \neq \emptyset\}$
- Objects in <u>B</u>X can be with certainty classified as members of X on the basis of knowledge in B
- Objects in $\overline{B}X$ can be only classified as possible members of X on the basis of knowledge in B
- B-boundary region of X is $BN_B(X) = \overline{B}X \underline{B}X$ it consists of objects that cannot be decisively classified into X on the basis of knowledge in B
- B-outside region of X is the set $U \overline{B}X$ it consists of objects that can be certainty classified as not belong to X on the basis of knowledge in B
- A set is rough (respectively crisp) if the boundary region is non-empty (empty, respectively)

Set Approximation

- RX lower approximations of set X
- $\overline{R}X$ upper approximations of set X
- POS_R(X) positive area
- NEG_R(X) negative area of set X
- BN_R(X) boundary of set X

- Example in Decision table for X where *Influenza=yes*
- boundary: {p2,p5}
- Upper approximations: {p1,p2,p3,p4,p5},
- Lower approximations: {p1,p3,p4}

Examples of approximation regions

- Let W={x | *Walk*(x)=yes}
- The approximation regions are:

$$BW = \{x_1, x_6\},
BW = \{x_1, x_3, x_4, x_6\},
BN_R(W) = \{x_3, x_4\},
U - BW = \{x_2, x_5, x_7\},$$

• Walk is rough (the boundary region is non empty)

	Age	LEMS	Walk	
x_1	16-30	50	Yes	-
x_2	16-30	0	No	
x_3	31-45	1-25	No	
x_4	31-45	1-25	Yes	
x_5	46-60	26-49	No	
x_6	16-30	26-49	Yes	00.00000 <u>20.200</u> 00
x_7	46-60	26-49	No	HUMAN CAPITAL HUMAN – BEST INVESTMENTI

Four basic classes of rough sets, i.e., four categories of vagueness

- a) X is roughly B-definable if $\underline{B}(X) \neq \emptyset$ and $\overline{B}(X) \neq U$
- b) X is internally B-undefinable if $\underline{B}(X) = \emptyset$ and $\overline{B}(X) \neq U$
- c) X is externally B-undefinable if $\underline{B}(X) \neq \emptyset$ and B(X) = U
- d) X is totally B-undefinable if $\underline{B}(X) = \emptyset$ and $\overline{B}(X) = U$.
- The intuitive meaning of this classification is the following:
 - X is roughly B-definable means that with the help of B we are able to decide for some elements of U that they belong to X and for some elements of U that they belong to X
 - X is internally B-undefinable means that using B we are able to decide for some elements of U that
 they belong to -X but we are unable to decide for any element of U whether it belongs to X
 - X is externally B-undefinable means that using B we are able to decide for some elements of U that
 they belong to X but we are unable to decide for any element of U whether it belongs to –X
 - X is totally B-undefinable means that using B we are unable to decide for any element of U whether
 it belongs to X or –X

The accuracy of approximation

- it characterizes a Rough set numerically
- it is defined by the following coefficient

$$\alpha_B(X) = \frac{|\underline{B}(X)|}{|\overline{B}(X)|}$$

- |x| denotes the cardinality of $X \neq \emptyset$
- $0 \le \alpha_B(X) \le 1$, if $\alpha_B(X) = 1$, than X is *crisp* with respect to B (X is *precise* with respect to B),
- If $\alpha_B(X) < 1$, than X is *rough* with respect to B (X is *vague* with respect to B)

Removing inconsistencies from the decision table - 5 methods

- Ask an expert which example you can remove
- Separation of conflicting objects creating two (or more generally, coherent)
 decision tables, rules created on the basis of object 2 in the first table and
 object 5 in the second table, will be contradictory
- Removing objects that cause inconsistencies which object to delete? one can delete this object whose decision has been confirmed less times
- Quality method remove this object whose decision value is "less important", i.e. less accuracy of the lower or upper approximation, defined

as: $\underline{B}X/U$ and $\overline{B}X/U$ respectively

 Creating a new Information System by generalizing the decision attribute for inconsistent examples

#	h	m	t	С
1	n	У	h	У
3	у	n	h	y,n
3	У	У	v h	У
4	n	У	v h	У
5	У	n	h	y,n
6	n	У	n	n

Deterministic and non-deterministic decision tables*

- Each object $u \subset U$ in the decision table DT = (U, C, D, V, f) can be written in the form of conditional sentences and be treated as a decision rule
- A decision rule g in a decision table DT is a function:
 - $C \cup D \rightarrow V$, if exists $x \in U$ such that $g = f_x$
- Truncate g to C (g | C) and g to D (g | D) are called respectively the conditions and decisions of decision rules g.

Examples from previous Decision Tables DT

- 1. if (h="not") and (m="yes") and (t="high") then (c="yes")
- 2. if (h="yes") and (m="not") and (t="high") then (c="yes")
- 3. if (h="yes") and (m="yes") and (t="very high") then (c="yes")
- 4. if (h="not") and (m="yes") and (t="very high") then (c="yes")
- 5. if (h="yes") and (m="not") and (t="high") then (c="not")
- 6. if (h="not") and (m="yes") and (t="normal") then (c="not")

*On the basis of: "Teoretyczne podstawy zbiorów przybliżonych", Agnieszka Nowak, 2009. http://zsi.ii.us.edu.pl/~nowak/se/konspektTD.pdf

Deterministic and non-deterministic rules

• Rule in DT is *deterministic* when equality of conditional attributes implies the equality of the decision attributes

$$\forall \mathop{\times}_{\substack{x,y \in U \\ x \neq y}} (\forall c \in C (f(x,c) = f(y,c)) \Rightarrow \forall d \in D (f(x,d) = f(y,d)))$$

 Rule in DT is non-deterministic when equality of conditional attributes does not imply the equality of the decision attributes

$$\forall \mathop{\times}_{\substack{x,y \in U \\ x \neq y}} (\forall c \in C (f(x,c) = f(y,c)) \land \exists_{d \in D} (f(x,d) \neq f(y,d)))$$

The redundant information is harmful

- In order to describe the precise and specific relationships between objects in the knowledge base, a reduction of the number of attributes describing these relationships is applied
- We are looking a subset of attributes which gives the same division of objects into the decision classes as that with all the attributes
- These sets of attributes cannot be designated in any way
- Reduct the subset of attributes that preserves the same division decision classes
- A narrower definition of the concept is the kernel, which defines a set of attributes necessary to preserve the distinguishability of objects in the system

Data reduction

- Identifying of equivalence classes (indiscernible objects) is a natural dimension of reducing data
- Keeping only those attributes that preserve the indiscernibility relation (set approximation) is the next dimension in reduction

 – the rejected attributes are redundant, they do not improve the classification.
- Usually we have several such subsets of attributes, the minimal ones are called reducts
- A *reduct* of a given Information Systems A = (U, A) is a minimal subset of attributes $B \subseteq A$ such that $IND_A(B) = IND_A(A)$

Reducts

- Computing equivalence classes is straightforward
- Finding a minimal reduct (i.e. reduct with a minimal cardinality of attributes among all reducts) is NP-hard problem
- How many reducts can be defined in an information system with m attributes?

$$\begin{pmatrix} m \\ \lfloor m/2 \rfloor \end{pmatrix}$$

- We see that computing reducts is a non-trivial task, it is perceived as the one of the bottlenecks of the rough set methodology
- Often a good heuristics, based on genetic algorithms can compute sufficiently many reducts in acceptable time

Discernibility matrix of Information System A

- Let $A = \{a_1, ..., a_m\}$, $U = \{x_1, ..., x_n\}$:
- The *discernibility matrix M(A)* of *A* is a symmetric matrix $n \times n$ matrix with entries c_{ij} : $c_{ij} = \{a \in A \mid a(x_i) \neq a(x_j)\}$ for i, j = 1, ..., n
- M(A) is symmetric, and $c_{ii} = \Theta$ (empty) for i = 1, ..., n, so we represent M(A) only by elements in the lower triangle of M(A), i.e., the c_{ii} 's with $1 \le j < i \le n$
- A discernibility function f_A for an information system A is a Boolean function of m Boolean variables $\overline{a}_1, \ldots, \overline{a}_m$, corresponding to the attributes a_1, \ldots, a_n , defined as:

$$f_{\mathcal{A}}(a_1^*, ..., a_m^*) = \bigwedge \left\{ \bigvee c_{ij}^* \mid 1 \le j \le i \le n, c_{ij} \ne \emptyset \right\}$$

Implicant of a Boolean function

- where $c_{ij}^* = \{a^* \mid a \in c_{ij}\}$, the set of all prime implicants of f_A determines the set of all reducts of A
- where $V(c_{ij})$ is the disjunction of all variables \overline{a} such that $a \in c_{ij}$
- An implicant of a Boolean function f is any conjunction of literals (variables or their negations) such, that if the values of these literals are true under an arbitrary valuation v of variables, then the value of the function f under v is also true
- A prime implicant is a minimal implicant
- Here we are interested in implicants of monotone Boolean functions only i.e., functions constructed without negation

Master programmes in English Xamus Deer Ly of Technology

U	a	c	d	e	o
1	0	1	1	1	1
2	1	1	0	1	0
3	1	0	0	1	1
4	1	0	0	1	0
5	1	0	0	0	0
6	1	1	0	1	1

Table 1

	1	2	3	4	5	6				
1										
2	ado)								
3	acd	co								
4	acdo	c	0							
5	acdeo	ce	eo	e						
6	ad	o	c	co	ceo					
	Table 2									

Table 2
The discernibility matrix $M(\mathbf{A})$ $c_{ii} = \emptyset$ and $c_{ij} = c_{ji}$ for i, j = 1, ..., 6

- $\land (a \lor d) \land (c \lor e) \land (c \lor o) \land (e \lor o) \land$ C_{21} Example
- $\wedge (a \vee c \vee d) \wedge (a \vee d \vee o) \wedge (c \vee e \vee o \wedge$

 $f_{\mathbb{A}}(a,c,d,e,o) = c \wedge e \wedge o \wedge$

 $\wedge (a \vee c \vee d \vee o) \wedge$

 $\land (a \lor c \lor d \lor e \lor o)$

- C_{21} marked in the table
- Example from: THE DISCERNIBILITY MATRICES AND FUNCTIONS IN INFORMATION SYSTEMS. Andrzej SKOWRON Cecylia RAUSZER

Discernibility matrix

Cell M(SI)[i, j] contains a set of all attributes such, that objects of universe u_i and u_j have different values (are discriminate with using these attributes).

	1	l		l	
	Diploma	Experience	French	Reference	Decision
x_1	MBA	Medium	Yes	Excellent	Accept
x_2	MBA	Low	Yes	Neutral	Reject
x_3	MCE	Low	Yes	Good	Reject
x_4	MSc	High	Yes	Neutral	Accept
x_5	MSc	Medium	Yes	Neutral	Reject
x_6	MSc	High	Yes	Excellent	Accept
x_7	MBA	$_{ m High}$	No	Good	Accept
x_8	MCE	Low	No	Excellent	Reject

Unreduced decision table (Skowron at al., "Tutorial:...")

Master programmes in English at Wrocław University of Technology

Reordered decision table (Skowron at al., "Tutorial:...")

	Diploma	Experience	French	Reference	Decision
x_1	MBA	Medium	Yes	Excellent	Accept
x_4	MSc	High	Yes	Neutral	Accept
x_6	MSc	High	Yes	Excellent	Accept
x_7	MBA	High	No	Good	Accept
x_2	MBA	Low	Yes	Neutral	Reject
x_3	MCE	Low	Yes	Good	Reject
x_5	MSc	Medium	Yes	Neutral	Reject
x_8	MCE	Low	No	Excellent	Reject
		'	'	•	•

The decision-relative discernibility matrix (Skowron at al., "Tutorial:...")

	$[x_1]$	$[x_4]$	$[x_6]$	$[x_7]$	$[x_2]$	$[x_3]$	$[x_5]$	$[x_8]$
$[x_1]$	Ø							
$[x_4]$	Ø	Ø						
$[x_6]$	Ø	Ø	Ø					
$[x_7]$	Ø	Ø	Ø	Ø				
$[x_2]$	e, r	d, e	d, e, r	e, f, r	Ø			
$[x_3]$	d, e, r	d, e, r	d, e, r	d, e, f	Ø	Ø		
$[x_5]$	d, r	e	e, r	d,e,f,r	Ø	Ø	Ø	
$[x_8]$	d, e, f	d, e, f, r	d, e, f	d,e,r	Ø	Ø	Ø	Ø

Algorithm 1. Reduct set computation

Input:

Information system A = (U, A)

Output:

Set $RED_{\mathbf{A}}(A)$ of all reducts of \mathbf{A}

Method:

Compute indiscernibility matrix $M(\mathbf{A}) = (C_{ij})$

Reduce M using absorbtion laws

d - number of non-empty fields $C_1, C_2, ..., C_d$ of reduced M

Build families of sets $R_0, R_1, ..., R_d$ in the following way:

begin

$$R_0 = \emptyset$$

for i = 1 to d

begin

$$R_i = S_i \cup T_i$$
, where $S_i = \{R \in R_{i-1} : R \cap C_i \neq \emptyset\}$
and $T_i = (R \cup \{a\})_{a \in C_i, R \in R_{i-1} : R \cap C_i = \emptyset}$

end

end

Remove dispensable attributes from each element of family R_d Remove redundant elements from R_d

$$RED_{\mathbf{A}}(A) = R_d$$

Problems with discernibility matrix

- Computational cmplexity of discernibility matrix calculation is high, we should calculate values of (n²-n)/2 cells
- Calculation complexity of each cell depends on number of attributes m and is $O(n^2, m)$
- The matrix contains redundant information, this structure has high memory complexity, for $IS=\{U,A,V,f\}$ it is $|U|^2*|A|$
- The knowledge contained in a discernibility matrix can be presented in the form of discernibility function

The discernibility function for the information system A

```
f_{\mathcal{A}}(d, e, f, r) = (e \lor r)(d \lor e \lor r)(d \lor e \lor r)(d \lor r)(d \lor e)(e \lor f \lor r)(d \lor e \lor f)
(d \lor r)(d \lor e)(d \lor e)(d \lor e \lor r)(e \lor f \lor r)(d \lor f \lor r)
(d \lor e \lor r)(d \lor e \lor r)(d \lor e \lor f)(f \lor r)
(e)(r)(d \lor f \lor r)(d \lor e \lor f \lor r)
(e \lor r)(d \lor e \lor f \lor r)(d \lor e \lor f \lor r)
(d \lor f \lor r)(d \lor e \lor f)
(d \lor e \lor r)
```

- Each parenthesized tuple is a conjunction in the Boolean expression, where the one letter Boolean variables correspond to the attribute names.
- After simplification the function is $f_{\mathcal{A}}(d,e,f,r)=er$, (er means $e \cap r$)
- Each row in the discernibility function corresponds to one column in the discernibility matrix. The matrix is symmetrical with the empty diagonal.

k-relative reducts

- If we restrict a Boolean function by the conjunction run only over column *k* in the discernibility matrix (instead of over all columns) we obtain the so called *k*-relative discernibility function.
- The set of all prime implicants of this function determines the set of all krelative reducts of A.
- These reducts reveal the minimum amount of information needed to discern $x_k \in U$ (or more precisely $[x_k] \subseteq U$) from all other objects.
- The problem of *supervised learning* is to find the value of the decision *d* that should be assigned to a new object which is described with the help of the conditional attributes.
- We often require the set of attributes used to define the object to be minimal.
 {Experience, Reference} and {Diploma, Experience} are two minimal sets of
 attributes that uniquely define to which decision class an object belongs. The
 corresponding discernibility function is relative to the decision.

Definitions

- Let SI={U,A,V,f} be an information system and BÍA.
- Def.1. An attribute a|B is significant indispensable if $IND(B) \neq IND(B-\{a\})$, when if $IND(B) = IND(B-\{a\})$, the attribute a is superfluous.
- Def.2. A is an independent set of attributes if and only if for every a⊆A, a is indispensable. In opposite situation, A is dependent.
- Def.3. BÍA is a reduct of A if and only if B is independent and IND(B)=IND(A). RED(A) is the notation of a set of all reducts. A set of all indispensable attributes in B is called a core B: CORE(B)
- $CORE(A) = \cap RED(A)$ (RED(A) is a set of all reducts B)
- $A=\{h,m,t,c\}$ (Example the decision table with influenza)
- A set of all reducts this IS is: REDSI({h,m,t,c})={h,t,c}.
- To proof that the set $\{h,t,c\}$ is a reduct we must show that: $IND_{SI}(\{h,m,t,c\}) = IND_{SI}(\{h,t,c\})$
- We can do it by successive removing attributes and checking indiscernibility relation of cut set in respect to the whole set.

Indiscernibility relation in respect to decision

- Usually DT contains only one decision attribute, i.e., D={d}, but all theory can be extended to a number of decision attributes.
- Let DT= $(U,C, \{d\}, V, f)$ and $B \subseteq C$
- Indiscernibility relation in respect to decision d on a set of objects
 U generated by set of attributes B we define as:
- The above relation does not distinguish objects having the same decision values even when they are different on a set of conditional attributes B
- This relation is not a transitive relation, however it is reflexive and symmetric

Example: Indiscernibility relation in respect to decision d generated by sets of attributes C1, C2, C3

$$C_1 = \{h, m, t\}, \qquad C_2 = \{h, m\}, \qquad C_3 = \{h, t\},$$

$$C_2 = \{h, m\},\$$

$$C_3 = \{h, t\},\$$

$$d = \{c\}$$

- $INDTD(C_1, d) = \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (2, 5), (5, 2), (1,$
- (2, 1), (1, 3), (3, 1), (1, 4), (4, 1), (2, 3), (3, 2), (2, 4), (4, 2), (3, 4), (4, 3), (5, 6), (6, 5)
- $INDTD(C_2, d) = \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (1, 4), (4, 1), (1, 6), ($
- (6, 1), (4, 6), (6, 4), (2, 5), (5, 2), (1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2), (2, 4), (4, 2), (3, 4), (4, 3), (5, 6), (6, 5)}
- $INDTD(C_3, d) = \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (2, 5), (5, 2), (1, 2), ($
- (2, 1), (1, 3), (3, 1), (1, 4), (4, 1), (2, 3), (3, 2), (2, 4), (4, 2), (3, 4), (4, 3), (5, 6), (6, 5)}

The homework problems (presentations and discussion on the last lecture)

- Applications of Rough sets theory, e.g.:
- Rough Set Approach to Knowledge Discovery about Preferences
- Classical Rough Set Approach adapted to ordinal data
- Rough Set Approach to images analysis
- Dominance-based Rough Set Approach

Jan Komorowski, Lech Polkowski, Andrzej Skowron: Rough Sets: A Tutoria. http://eecs.ceas.uc.edu/~mazlack/dbm.w2011/Komorowski.RoughSets.tutor.pdf

Reducts

- Computing equivalence classes is straightforward.
- Finding a minimal reduct (i.e. reduct with a minimal cardinality of attributes among all reducts) is NP-hard problem
- How many reducts can be defined in an information system with m attributes?

$$\begin{pmatrix} m \\ \lfloor m/2 \rfloor \end{pmatrix}$$

- We see that computing reducts it is a non-trivial task, it is perceived as the one of the bottlenecks of the rough set methodology
- Often a good heuristics, based on genetic algorithms can compute sufficiently many reducts in acceptable time

Discernibility matrix of Information System A

- The *discernibility matrix* of A is a symmetric matrix nxn matrix with entries c_{ij} : $c_{ij} = \{a \in A \mid a(x_i) \neq a(x_j)\} \text{ for } i, j = 1, ..., n$
- A discernibility function f_A for an information system A is a Boolean function of Boolean variables (corresponding to the attributes $a_1,...,a_n$) defined as:
- where $c_{ij}^* = \{a^* \mid a \in c_{ij}\}$, the set of all prime implicants of f_A determines the set of all reducts of A:

$$f_{\mathcal{A}}(a_1^*,...,a_m^*) = \bigwedge \left\{ \bigvee c_{ij}^* \mid 1 \leq j \leq i \leq n, c_{ij} \neq \emptyset \right\}$$

• An implicant of a Boolean function f is any conjunction of literals (variables or their negations) such that if the values of these literals are true under an arbitrary valuation v of variables then the value of the function f under v is also true. A prime implicant is a minimal implicant. Here we are interested in implicants of monotone Boolean functions only i.e. functions constructed without negation.

Discernibility matrix

Cell M(SI)[i, j] contains a set of all attributes such, that objects of universe u_i and u_j have different values (are discriminate with using these attributes).

	1	l		l	
	Diploma	Experience	French	Reference	Decision
x_1	MBA	Medium	Yes	Excellent	Accept
x_2	MBA	Low	Yes	Neutral	Reject
x_3	MCE	Low	Yes	Good	Reject
x_4	MSc	High	Yes	Neutral	Accept
x_5	MSc	Medium	Yes	Neutral	Reject
x_6	MSc	High	Yes	Excellent	Accept
x_7	MBA	High	No	Good	Accept
x_8	MCE	Low	No	Excellent	Reject

Unreduced decision table (Skowron at al., "Tutorial:...")

Master programmes in English at Wrocław University of Technology

Reordered decision table (Skowron at al., "Tutorial:...")

	Diploma	Experience	French	Reference	Decision
x_1	MBA	Medium	Yes	Excellent	Accept
x_4	MSc	High	Yes	Neutral	Accept
x_6	MSc	High	Yes	Excellent	Accept
x_7	MBA	High	No	Good	Accept
x_2	MBA	Low	Yes	Neutral	Reject
x_3	MCE	Low	Yes	Good	Reject
x_5	MSc	Medium	Yes	Neutral	Reject
x_8	MCE	Low	No	Excellent	Reject
		'	'	'	•

The decision-relative discernibility matrix (Skowron at al., "Tutorial:...")

	$[x_1]$	$[x_4]$	$[x_6]$	$[x_7]$	$[x_2]$	$[x_3]$	$[x_5]$	$[x_8]$
$[x_1]$	Ø							
$[x_4]$	Ø	Ø						
$[x_6]$	Ø	Ø	Ø					
$[x_7]$	Ø	Ø	Ø	Ø				
$[x_2]$	e, r	d, e	d, e, r	e, f, r	Ø			
$[x_3]$	d, e, r	d, e, r	d, e, r	d, e, f	Ø	Ø		
$[x_5]$	d, r	e	e, r	d,e,f,r	Ø	Ø	Ø	
$[x_8]$	d, e, f	d, e, f, r	d, e, f	d,e,r	Ø	Ø	Ø	Ø

Problems with discernibility matrix

- Computational cmplexity of discernibility matrix calculation is high, we should calculate values of (n²-n)/2 cells
- Calculation complexity of each cell depends on number of attributes m and is $O(n^2, m)$
- The matrix contains redundant information, this structure has high memory complexity, for $IS=\{U,A,V,f\}$ it is $|U|^2*|A|$
- The knowledge contained in a discernibility matrix can be presented in the form of discernibility function

The discernibility function for the information system A

```
f_{\mathcal{A}}(d, e, f, r) = (e \lor r)(d \lor e \lor r)(d \lor e \lor r)(d \lor r)(d \lor e)(e \lor f \lor r)(d \lor e \lor f)
(d \lor r)(d \lor e)(d \lor e)(d \lor e \lor r)(e \lor f \lor r)(d \lor f \lor r)
(d \lor e \lor r)(d \lor e \lor r)(d \lor e \lor f)(f \lor r)
(e)(r)(d \lor f \lor r)(d \lor e \lor f \lor r)
(e \lor r)(d \lor e \lor f \lor r)(d \lor e \lor f \lor r)
(d \lor f \lor r)(d \lor e \lor f)
(d \lor e \lor r)
```

- Each parenthesized tuple is a conjunction in the Boolean expression, where the one letter Boolean variables correspond to the attribute names.
- After simplification the function is $f_{\mathcal{A}}(d,e,f,r)=er$, (er means $e \cap r$)
- Each row in the discernibility function corresponds to one column in the discernibility matrix. The matrix is symmetrical with the empty diagonal.

k-relative reducts

- If we restrict a Boolean function by the conjunction run only over column *k* in the discernibility matrix (instead of over all columns) we obtain the so called *k*-relative discernibility function.
- The set of all prime implicants of this function determines the set of all krelative reducts of A.
- These reducts reveal the minimum amount of information needed to discern $x_k \in U$ (or more precisely $[x_k] \subseteq U$) from all other objects.
- The problem of *supervised learning* is to find the value of the decision *d* that should be assigned to a new object which is described with the help of the conditional attributes.
- We often require the set of attributes used to define the object to be minimal.
 {Experience, Reference} and {Diploma, Experience} are two minimal sets of
 attributes that uniquely define to which decision class an object belongs. The
 corresponding discernibility function is relative to the decision.

Definitions

- Let $SI=\{U,A,V,f\}$ be an information system and $B\hat{A}$.
- Def.1. An attribute a|B is significant indispensable if $IND(B) \neq IND(B-\{a\})$, when if $IND(B) = IND(B-\{a\})$, the attribute a is superfluous.
- Def.2. A is an independent set of attributes if and only if for every a⊆A, a is indispensable. In opposite situation, A is dependent.
- Def.3. BÍA is a reduct of A if and only if B is independent and IND(B)=IND(A). RED(A) is the notation of a set of all reducts. A set of all indispensable attributes in B is called a core B: CORE(B)
- $CORE(A) = \cap RED(A)$ (RED(A) is a set of all reducts B)
- $A=\{h,m,t,c\}$ (Example the decision table with influenza)
- A set of all reducts this IS is: REDSI({h,m,t,c})={h,t,c}.
- To proof that the set $\{h,t,c\}$ is a reduct we must show that: $IND_{SI}(\{h,m,t,c\}) = IND_{SI}(\{h,t,c\})$
- We can do it by successive removing attributes and checking indiscernibility relation of cut set in respect to the whole set.

Indiscernibility relation in respect to decision

- Usually DT contains only one decision attribute, i.e., D={d}, but all theory can be extended to a number of decision attributes.
- Let DT=(*U*,*C*, {*d*}, *V*, *f*) and *B*⊆*C*
- Indiscernibility relation in respect to decision d on a set of objects
 U generated by set of attributes B we define as:
- The above relation does not distinguish objects having the same decision values even when they are different on a set of conditional attributes B
- This relation is not a transitive relation, however it is reflexive and symmetric

Example: Indiscernibility relation in respect to decision d generated by sets of attributes C1, C2, C3

$$C_1 = \{h, m, t\}, \qquad C_2 = \{h, m\}, \qquad C_3 = \{h, t\},$$

$$C_2 = \{h, m\},\$$

$$C_3 = \{h, t\},\$$

$$d = \{c\}$$

- $INDTD(C_1, d) = \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (2, 5), (5, 2), (1,$
- (2, 1), (1, 3), (3, 1), (1, 4), (4, 1), (2, 3), (3, 2), (2, 4), (4, 2), (3, 4), (4, 3), (5, 6), (6, 5)
- $INDTD(C_2, d) = \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (1, 4), (4, 1), (1, 6), ($
- (6, 1), (4, 6), (6, 4), (2, 5), (5, 2), (1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2), (2, 4), (4, 2), (3, 4), (4, 3), (5, 6), (6, 5)}
- $INDTD(C_3, d) = \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (2, 5), (5, 2), (1, 2), ($
- (2, 1), (1, 3), (3, 1), (1, 4), (4, 1), (2, 3), (3, 2), (2, 4), (4, 2), (3, 4), (4, 3), (5, 6), (6, 5)}

The homework problems (presentations and discussion on the last lecture)

- Applications of Rough sets theory, e.g.:
- Rough Set Approach to Knowledge Discovery about Preferences
- Classical Rough Set Approach adapted to ordinal data
- Rough Set Approach to images analysis
- Dominance-based Rough Set Approach

"Rough Sets: A Tutorial". Jan Komorowski, Lech Polkowski, Andrzej Skowron. http://folli.loria.fr/cds/1999/library/pdf/skowron.pdf, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.2477

Next lecture:

RL

http://www.alanturing.net/turing_archive/graphics/realneurons.gif

