TD - Intégration

November 22, 2023

THEVENET Louis

Table des matières

1.	TD:	2	1
	1.1.	Points importants	1
		Exercices	
		1.2.1. Exercice 1	2
		1.2.2. Exercice 2	2
		1.2.3. Exercice 3	2
		1.2.4. Exercice 4	3
		1.2.5. Exercice 5	٠
2.	TD	3	4
	2.1.	Exercice 5.1.1	4
		2.1.1. Version convergence dominée	4
		2.1.2. Version convergence monotone	4
	2.2.	Exercice 5.2.1	١
		2.2.1. 1. $\sin(x) \sin[0, \pi]$	١
		2.2.2. 2. $e^{-x}\cos(x) \sup \mathbb{R}_+$	١
		2.2.3. 3. $\frac{1}{1+x^2}$ sur \mathbb{R}_+	
		2.2.4. 4. $\frac{1}{2\sqrt{x}}\mathbb{1}_{[0,4]} + \frac{1}{x^2}\mathbb{1}_{(]4} + \infty[)(x) \text{ sur } \mathbb{R}_+^*$	6
	2.3.	Exercice 5.2.2	6
		2.3.1. $f_n(x) = \left(1 - \frac{x}{n}\right)^n \mathbb{1}_{[0,n]}(x)$	6

1. TD2

1.1. Points importants

Proposition 1.1.1:

$$\begin{split} f:(E,\mathcal{A}) &\to (\mathbb{R}^+,\mathcal{B}(\mathbb{R}^+)) \text{ \'etag\'ee} \Longleftrightarrow \exists (A_n)_{i=1}^N \subset E \mid (a_i)_{i=0}^N \in \mathbb{R}^+ \text{ tels que } f = \sum_{i=1}^N a_i \mathbbm{1}_{A_i} \end{split}$$
 Et on a $\int_E f \mathrm{d}\mu = \sum_{i=1}^N a_i \mu(A_i)$

Théorème 1.1.1: Bépo-Lévy

 (f_n) suite de fonctions mesurables positives (f_n) croissantes telles que $f_n\underset{n\to\infty}{\to} f$ Alors $\int_E f \mathrm{d}\mu = \lim_{n\to\infty} f \mathrm{d}\mu$

1.2. Exercices

1.2.1. Exercice 1

Soit f mesurable de (E, \mathcal{A}) dans $(\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))$ et positive

Montrons que

$$\forall a>0: \mu(\{f>a\}) \leq \frac{1}{a} \int_E f \mathrm{d}\mu$$

On a

$$\forall x, f(x) \ge a \mathbb{1}_{\{f > a\}}$$

Donc

$$\begin{split} \int_E f \mathrm{d}\mu &\geq \int_E a \mathbb{1}_{\{f > a\}} \mathrm{d}\mu \\ &\geq a \int_E \mathbb{1}_{\{f > a\}} \mathrm{d}\mu \end{split}$$

Donc

$$\frac{1}{a}\int_E f\mathrm{d}\mu \geq \mu(\{f>a\})$$

1.2.2. Exercice 2

- $\begin{array}{ll} \bullet & \mu(\emptyset) = \int_E f \mathbb{1}_\emptyset \mathrm{d}\mu = \int_E 0 \mathrm{d}\mu = 0 \\ \bullet & \mathrm{Soient} \ A_1, ..., A_N \subset E \ \mathrm{disjoints} \end{array}$

$$\mu_f\!\left(\bigsqcup_{i=1}^N A_i\right) = \int_E f\mathbb{1}_{\bigsqcup_{i=1}^N} A_i \mathrm{d}\mu = \int_E f \sum_{i=1}^N \mathbb{1}_{A_i} \mathrm{d}\mu \underset{\text{th.3.2.15}}{=} \sum_{i=1}^N \mu_f(A_i)$$

 μ_f est bien une mesure sur (E, \mathcal{A})

2)

Ici on a $A = \bigcup_{n \in \mathbb{N}} A_n$

$$\int_A f \mathrm{d}\mu = \int_{\bigcup_{n \in \mathbb{N}} A_i} f \mathrm{d}\mu = \int_E f \mathbb{1}_{\bigcup_{i \in \mathbb{N}} A_i} \mathrm{d}\mu = \sum_{n \in \mathbb{N}} \int_E f \mathbb{1}_{A_n} \mathrm{d}\mu = \sum_{n \in \mathbb{N}} \int_{A_n} f \mathrm{d}\mu$$

1.2.3. Exercice 3

Soit g étagée positive.

 $\exists (A_i)$ partition de $\mathbb{R}, (a_i) \in \mathbb{R}^N \mid g = \sum_{i=0}^N a_i \mathbb{1}_{\Delta_i}$

$$\begin{split} \int_{\mathbb{R}} g \mathrm{d}\delta_0 &= \int_{\mathbb{R}} \sum_{i=0}^N a_i \mathbb{1}_{A_i} \mathrm{d}\delta_0 \\ &= \sum_{i=0}^N a_i \delta_0(A_i) \end{split}$$

On a

$$\delta_0(\Delta_i) = \begin{cases} 1 \text{ si } 0 \in A_i = \mathbb{1}_{A_i}(0) \\ 0 \text{ sinon} \end{cases}$$

 Et

$$\int_{\mathbb{R}} g \mathrm{d} \delta_0 = \sum_{i=0}^N a_i \mathbb{1}_{A_i}(0) = g(0)$$

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fontions étagées positives telles que $f_n \xrightarrow[\mathrm{CVS}]{} f$ croissante On a ainsi :

$$\int_{E} f \mathrm{d}\delta_{0} \equiv \lim_{n \to +\infty} \int_{E} f_{n} \mathrm{d}\delta_{0} = \lim_{n \to \infty} f_{n}(0) \equiv f(0)$$

1.2.4. Exercice 4

 $\bullet \quad \forall (k,l) \in \mathbb{N}^2 A_k \cap A_l = \emptyset$

$$\begin{split} \int_A f \mathrm{d}\mu &= \int_{\bigcup A_i} f \mathrm{d}\mu \\ &= \int_E f \mathbb{1}_A \mathrm{d}\mu \\ &= \int f \mathbb{1}_{\bigcup A_i} \mathrm{d}\mu \end{split}$$

Soit $f_n = f \mathbb{1}_{\bigcup A_i} \xrightarrow{CVS} f \mathbb{1}_A$

$$\begin{split} \int f \mathrm{d}\mu & \stackrel{=}{=} \lim_{(n \to \infty)} \int_E f_n \mathrm{d}\mu \\ & = \int_E f \Big(\mathbb{1}_{\bigcup} A_i \Big) \mathrm{d}\mu \\ & = \int_{\bigcup A_i} f \mathrm{d}\mu \end{split}$$

Chasles : $\int_E f_n d\mu = \sum_{i=0}^n \int_{A_i} f d\mu$

$$\int_{A} f d\mu = \lim_{n \to \infty} \sum_{i=0}^{n} \int_{A_{i}} f d\mu$$
$$= \sum_{i=0}^{n} \int_{A_{n}} f d\mu$$

1.2.5. Exercice 5

1)

$$\forall x, f(x) = 1 < +\infty$$

Avec $(\mu(f^{-1}(\{+\infty\})) = 0)$

$$\int_{\mathbb{R}} f \mathrm{d}\mu = 1 \times \mu(\mathbb{R}) = +\infty$$

Donc g non intégrable

2. TD3

2.1. Exercice 5.1.1

2.1.1. Version convergence dominée

Soit (E, \mathcal{A}, μ) et $(f_n)_{n \in \mathbb{N}}$ une suite décroissante de fonctions mesurables positives. Soit $f = \inf_{n \in \mathbb{N}} f_n$

Montrer que

$$\exists N \in \mathbb{N} \mid \int_{E} f_{N} \mathrm{d}\mu < +\infty \Rightarrow \lim_{n \to +\infty} \int_{E} f_{n} \mathrm{d}\mu = \int_{E} f \mathrm{d}\mu$$

Supposons que $\exists N \in \mathbb{N} \mid \int_E f_N \mathrm{d}\mu < +\infty$

La suite $(f_n)_n$ décroissante donc $\forall n \geq N : |f_n| < f_N$

Puis
$$f_n \xrightarrow[n \to +\infty]{\text{PP}} f = \inf_n f_n$$
 mesurable

Par convergence dominée,

$$\lim_{n\to +\infty} \int_E f_n \mathrm{d}\mu = \int_E f \mathrm{d}\mu$$

2.1.2. Version convergence monotone

Soit (E,\mathcal{A},μ) et $(f_n)_{n\in\mathbb{N}}$ une suite décroissante de fonctions mesurables positives. Soit $f=\inf_{n\in\mathbb{N}}f_n$

Montrer que

$$\exists N \in \mathbb{N} \mid \int_{E} f_{N} \mathrm{d}\mu < +\infty \Rightarrow \lim_{n \to +\infty} \int_{E} f_{n} \mathrm{d}\mu = \int_{E} f \mathrm{d}\mu$$

Supposons que $\exists N \in \mathbb{N} \mid \int_E f_N \mathrm{d}\mu < +\infty$

On pose $g_n \coloneqq f_N - f_n, \forall n \ge N$

 $g_n \nearrow, \in \mathcal{I}$ car $f_n \in \mathcal{I}, \forall n$ et positive car $f_n \searrow$

$$g_n \longrightarrow f_N - f = \sup_n g_n = g$$
 mesurable

Donc par convergence monotone,

$$\lim_{n\to +\infty} \int_E g_n \mathrm{d}\lambda = \int_E g \mathrm{d}\lambda$$

Puis

$$\begin{split} &\int_{E} g_{n} \mathrm{d}\lambda \overset{(*)}{\underset{\mathrm{chasles}}{\overset{}{=}}} \int_{E} f_{N} \mathrm{d}\lambda - \int_{E} f \mathrm{d}\lambda \\ \Rightarrow &\int_{E} f_{N} \mathrm{d}\lambda = \int_{E} g_{n} \mathrm{d}\lambda + \int_{E} f_{n} \mathrm{d}\lambda \end{split}$$

En passant à la limite

$$\int_{E} f_{N} d\lambda = \lim_{n \to +\infty} \int_{E} g_{n} d\lambda + \lim_{n \to +\infty} f_{n} d\lambda$$

$$= \int_{E} g d\lambda$$

(*) De l'autre côté, on obtient

$$\int_E f_N \mathrm{d}\lambda = \int_E g \mathrm{d}\lambda + \int_E f \mathrm{d}\lambda$$

2.2. Exercice 5.2.1

Méthode 2.2.1: Equivalence Riemann-Lebesgue

impropre $\rightarrow f$ mesurable

 $\rightarrow f$ absolument intégrable au sens de Riemann

$$\rightarrow \lim_{t \to b^-} \int_a^t |f(x)| \mathrm{d}x < +\infty$$

Justifier que l'intégrale de Lebesgue et de Riemann coincident et les calculer

2.2.1. 1. $\sin(x)$ sur $[0, \pi]$

sin est continue sur $[0,\pi]$ donc Riemann-intégrable et

$$\int_{[0,\pi]} \sin d\lambda = \int_0^{\pi} \sin(x) dx = [-\cos(x)]_0^{\pi} = 2$$

2.2.2. 2. $e^{-x}\cos(x) \, \mathbf{sur} \, \mathbb{R}_+$

 $|f(x)| \leq e^{-x}, \forall x$ et $g: x \mapsto e^{-x}$ intégrable au sens de Riemann

Donc fRiemann absolument intégrable et $\int_{\mathbb{R}_+} f \mathrm{d}\lambda = \int_0^{+\infty} e^{-x}$

- Soit on intègre 2 fois par parties
- Soit

$$\begin{split} \int_0^{+\infty} e^{-x} \cos(x) \mathrm{d}x &= \int_0^{+\infty} e^{-x} \frac{e^{ix} + e^{-ix}}{2} \mathrm{d}x \\ &= \frac{1}{2} \int_0^{+\infty} e^{x + ix} + e^{-x - ix} \mathrm{d}x \\ &= \frac{1}{2} \left(\left[\frac{e^{-x + ix}}{-1 + i} \right]_0^{+\infty} + \left[\frac{e^{-x - ix}}{-1 - i} \right]_0^{+\infty} \right) \\ &= \frac{1}{2} \left(-\frac{1}{-1 + i} + \frac{1}{1 + i} \right) \\ &= \frac{1}{2} \frac{-(1 + i) + (i - 1)}{i^2 - 1} \\ &= \frac{1}{2} \end{split}$$

2.2.3. 3. $\frac{1}{1+x^2}$ sur \mathbb{R}_+

• En 0 : OK

• en $+\infty: |f(x)| = \underset{+\infty}{\sim} \frac{1}{x^2}$ qui est R-intégrable

Donc f est R-abs intégrable

$$\int_{\mathbb{R}_+} f \mathrm{d}\mu = \int_0^{+\infty} f(x) \mathrm{d}x = \left[\arctan(x)\right]_0^{+\infty} = \frac{\pi}{2}$$

2.2.4. 4. $\frac{1}{2\sqrt{x}}\mathbb{1}_{[0,4]} + \frac{1}{x^2}\mathbb{1}_{(]}4, +\infty[)(x)$ **sur** \mathbb{R}_+^* **•** f cpm sur \mathbb{R}_+

• en $0^+: |f(x)| = \frac{1}{2\sqrt{x}} \le \frac{1}{\sqrt{x}}$ R-intégrable

• en $+\infty: |f(x)| = \frac{1}{x^2}$ R-intégrable

$$\int_{\mathbb{R}_{+}} f d\lambda = \int_{0}^{+\infty} f(x) dx$$

$$= \int_{0}^{4} \frac{1}{2\sqrt{x}} d\lambda + \int_{4}^{+\infty} \frac{1}{x^{2}} d\lambda$$

$$= \left[\sqrt{x}\right]_{0}^{4} + \left[-\frac{1}{x}\right]_{4}^{+\infty}$$

$$= \sqrt{4} + \frac{1}{4}$$

$$= \frac{9}{4}$$

2.3. Exercice 5.2.2

2.3.1.
$$f_n(x) = \left(1 - \frac{x}{n}\right)^n \mathbb{1}_{[0,n]}(x)$$
 $\left(1 - \frac{x}{n}\right)^n = e^{n\ln(1 - \frac{x}{n})} \longrightarrow e^{-x}$

$$f_n(x) \to e^{-x} \cos(x) = f(x)$$

Par convergence dominée,

$$\ln\left(1-\frac{x}{n}\right) \le -\frac{x}{n}$$

Donc $e^{n\ln(1-\frac{x}{n})} \le e^{-x}$ par croissance

Donc

$$\begin{split} e^{n\ln(1-\frac{x}{n})} &\leq e^{-x} \\ \lim_n \int_{\mathbb{R}_+} f_n \mathrm{d}\lambda &= \int_{\mathbb{R}_+} f \mathrm{d}\lambda \\ &= \int_0^{+\infty} e^{-x} \cos(x) \mathrm{differential'} x \\ &= \frac{1}{2} \end{split}$$

Convergence dominée :