Computer Organization and Architecture

Module 5

Prof. Indranil Sengupta

Dr. Sarani Bhattacharya

Department of Computer Science and Engineering

IIT Kharagpur

Computer Arithmetic

Introduction

- Computers are built using tiny electronic switches.
 - Typically made up of MOS transistors.
 - The state of the switches are typically expressed in binary (ON/OFF).
- To design arithmetic circuits for use in computers, we need to work with *binary numbers*.
 - How to carry out various arithmetic operations in binary?
 - How to implement them efficiently in hardware?

Addition / Subtraction

Addition of Two Binary Digits (Bits)

• When two bits A and B are added, a sum (S) and carry (C) are generated as per the following truth table:

Inputs		Outputs		
А	В	S	С	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

$$S = A'.B + A.B' = A \oplus B$$

 $C = A.B$

HALF ADDER

Addition of Multi-bit Binary Numbers

- At every bit position (stage), we require to add 3 bits:
 - > 1 bit for number A
 - 1 bit for number B
 - 1 carry bit coming from the previous stage

WE NEED A FULL ADDER

Full Adder

Inputs			Outputs	
Α	В	C _{in}	S	C_out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S = A'.B'.C_{in} + A'.B.C_{in}' + A.B'C_{in}' + A.B.C$$

$$= A \oplus B \oplus C_{in}$$

$$C_{out} = B.C_{in} + A.C_{in} + A.B + A.B.C_{in}$$

$$= A.B + B.C_{in} + A.C_{in}$$

Various Implementations of Full Adder

Delay of a full adder:

- Assume that the delay of all basic gates (AND, OR, NAND, NOR, NOT) is δ .
- Delay for Carry = 2δ
- Delay for Sum = 3δ (AND-OR delay plus one inverter delay)

Parallel Adder Design

- We shall look at the various designs of n-bit parallel adder.
 - a) Ripple carry adder
 - b) Carry look-ahead adder
 - c) Carry save adder
 - d) Carry select adder

Ripple Carry Adder

- Cascade n full adders to create a n-bit parallel adder.
- Carry output from stage-i propagates as the carry input to stage-(i+1).
- In the worst-case, carry ripples through all the stages.

Two numbers: $A_{n-1}...A_2A_1A_0$ and $B_{n-1}...B_2B_1B_0$

Input carry: C₀

Sum: $S_{n-1}...S_2S_1S_0$

Output carry: C_n

Delay for S_0 = 3δ Delay for S_1 = $2\delta + 3\delta = 5\delta$ Delay for S_2 = $4\delta + 3\delta = 7\delta$ Delay for S_{n-1} = $2(n-1)\delta + 3\delta = (2n+1)\delta$

Delay is proportional to n

How to Design a Parallel Subtractor?

Observation:

- Computing A-B is the same as adding the 2's complement of B to A.
- 2's complement is equal to 1's complement plus 1.
- Let $X_i = B_i'$.

xor gate is a controlled inverter

A Parallel Adder/Subtractor

Carry Look-ahead Adder

- The propagation delay of an n-bit ripple carry order has been seen to be proportional to n.
 - Due to the rippling effect of carry sequentially from one stage to the next.
- One possible way to speedup the addition.
 - Generate the carry signals for the various stages in parallel.
 - Time complexity reduces from O(n) to O(1).
 - Hardware complexity increases rapidly with n.

- Consider the i-th stage in the addition process.
- We define the *carry generate* and *carry propagate* functions as:

$$G_i = A_i \cdot B_i$$

 $P_i = A_i \oplus B_i$

- G_i = 1 represents the condition when a carry is generated in stage-i independent of the other stages.
- $P_i = 1$ represents the condition when an input carry C_i will be propagated to the output carry C_{i+1} .

$$C_{i+1} = G_i + P_i.C_i$$

Unrolling the Recurrence

$$C_{i+1} = G_i + P_i C_i = G_i + P_i (G_{i-1} + P_{i-1} C_{i-1}) = G_i + P_i G_{i-1} + P_i P_{i-1} C_{i-1}$$

$$= G_i + P_i G_{i-1} + P_i P_{i-1} (G_{i-2} + P_{i-2} C_{i-2})$$

$$= G_i + P_i G_{i-1} + P_i P_{i-1} G_{i-2} + P_i P_{i-1} P_{i-2} C_{i-2} = \dots$$

$$C_{i+1} = G_i + \sum_{k=0}^{i-1} G_k \prod_{j=k+1}^{i} P_j + C_0 \prod_{j=0}^{i} P_j$$

Design of 4-bit CLA Adder

$$C_4 = G_3 + G_2P_3 + G_1P_2P_3 + G_0P_1P_2P_3 + C_0P_0P_1P_2P_3$$

$$C_3 = G_2 + G_1P_2 + G_0P_1P_2 + C_0P_0P_1P_2$$

$$C_2 = G_1 + G_0P_1 + C_0P_0P_1$$

$$C_1 = G_0 + C_0P_0$$

$$S_0 = A_0 \oplus B_0 \oplus C_0 = P_0 \oplus C_0$$

 $S_1 = P_1 \oplus C_1$
 $S_2 = P_2 \oplus C_2$
 $S_3 = P_3 \oplus C_3$

4 XOR2 gates

Design of 4-bit CLA Adder

$$C_4 = G_3 + G_2P_3 + G_1P_2P_3 + G_0P_1P_2P_3 + C_0P_0P_1P_2P_3$$

$$C_3 = G_2 + G_1P_2 + G_0P_1P_2 + C_0P_0P_1P_2$$

$$C_2 = G_1 + G_0P_1 + C_0P_0P_1$$

$$C_1 = G_0 + C_0P_0$$

$$S_0 = A_0 \oplus B_0 \oplus C_0 = P_0 \oplus C_0$$

$$S_1 = P_1 \oplus C_1$$

$$S_2 = P_2 \oplus C_2$$

$$S_3 = P_3 \oplus C_3$$

4 XOR2 gates

Design of 4-bit CLA Adder

$$C_4 = G_3 + C_3 P_3$$

$$C_3 = G_2 + G_1 P_2 + G_0 P_1 P_2 + C_0 P_0 P_1 P_2$$

$$C_2 = G_1 + G_0 P_1 + C_0 P_0 P_1$$

$$C_1 = G_0 + C_0 P_0$$

```
S_0 = A_0 \oplus B_0 \oplus C_0 = P_0 \oplus C_0
S_1 = P_1 \oplus C_1
S_2 = P_2 \oplus C_2
S_3 = P_3 \oplus C_3
```

4 XOR2 gates

The 4-bit CLA Circuit

16-bit Adder Using 4-bit CLA Modules

Problem: Carry propagation between modules still slows down the adder

• Solution:

- Use a second level of carry look-ahead mechanism to generate the input carries to the CLA blocks in parallel.
- The second level of CLA generates C4, C8, C12 and C16 in parallel with two gate delays (2δ).
- For larger values of n, more CLA levels can be added.
- Delay calculation of a 16-bit adder:
 - a) For original single-level CLA: 14δ
 - b) For modified two-level CLA: 10δ

Delay of a k-bit Adder

n	T _{CLA}	T _{RCA}
4	8δ	9δ
16	10δ	33δ
32	12δ	65δ
64	12δ	129δ
128	14δ	257δ
256	14δ	513δ

$$T_{CLA} = (6 + 2 \log_4 n) \delta$$

$$T_{RCA} = (2n + 1) \delta$$

Carry Select Adder

- Basically consists of two parallel adders (say, ripple-carry adder) and a multiplexer.
- For two given numbers A and B, we carry out addition twice:
 - With carry-in as 0
 - With carry-in as 1
- Once the correct carry-in is known, the correct sum is selected by a multiplexer.

Basic building block of a carry-select adder, with block size of 4.

 For a multi-bit adder, the number of bits in each carry select block can be either uniform or variable.

Uniform sized adder

- A 16-bit carry select adder with a uniform block size of 4 is shown.
- The least significant block needs a single adder (since the carry-in is known).
- Total delay is 4 full adder delays, plus 3 MUX delays.

Variable-sized adder

- A 16-bit carry select adder with variable block sizes of 2-2-3-4-5 is shown.
- Total delay is 2 full adder delays, plus 4 MUX delays.

Carry Save Adder

- Here we add three operands (say, X, Y and Z) together.
- For adding multiple numbers, we have to construct a tree of carry save adders.
 - Used in combinational multiplier design.
- Each carry save adder is simply an independent full adder without carry propagation.
- A parallel adder is required only at the last stage.

An illustrative example:

A set of full adders generate carry and sum bits in parallel

The sum and carry vectors are added later (with proper shifting)

An n-bit Carry Save Adder

The carry input of the full adder is used as the third input

Adding m Numbers: Some Examples

Generating the Status Flags

- Many contemporary processors have a flag register that contains the status of the last arithmetic / logic operation.
 - **Zero (Z)**: tells whether the result is zero.
 - Can be used for both arithmetic and logic operations.
 - Sign (S): tells whether the result is positive (=0) or negative (=1).
 - Can be used for both arithmetic and logic operations.
 - Carry (C): tells whether there has been a carry out of the most significant stage.
 - Used only for arithmetic operations.
 - Overflow (V): tells whether the result is too large to fit in the target register.
 - Used only for arithmetic operations (addition and subtraction).

Assume A, B and F are n-bit registers

- Overflow can occur during addition when the sign of the two operands are the same.
 - Sign of the result becomes different from the sign of the operand(s).

$$V = A_{n-1}.B_{n-1}.F_{n-1}' + A_{n-1}'.B_{n-1}'.F_{n-1}$$

 $V = F_{n-1} \oplus Carry_out$

- The MIPS architecture does not have any status flags.
- Why?
 - MIPS ISA is designed for efficient pipeline implementation.
 - Several instructions can be in various stages of execution in the pipeline.
 - Flag registers result in side effects among instructions.
- MIPS stores information about the flags temporarily in a GPR.

slt \$t0, \$s1, \$s2 beq \$t0, \$zero, Label