

MACHINE LEARNING

Q1 to Q11 have only one correct answer. Choose the correct option to answer your question.

- 1. Movie Recommendation systems are an example of:
 - i) Classification
 - ii) Clustering
 - iii) Regression

Options:

- a) 2 Only
- b) 1 and 2 is the right answer
- c) 1 and 3
- d) 2 and 3
- 2. Sentiment Analysis is an example of:
 - i) Regression
 - ii) Classification
 - iii) Clustering
 - iv) Reinforcement

Options:

- a) 1 Only
- b) 1 and 2
- c) 1 and 3
- d) 1, 2 and 4 is the right answer
- 3. Can decision trees be used for performing clustering?
 - a) True is the right answer
 - b) False
- 4. Which of the following is the most appropriate strategy for data cleaning before performing clustering analysis, given less than desirable number of data points:
 - i) Capping and flooring of variables
 - ii) Removal of outliers

Options:

- a) 1 only is the right answer
- b) 2 only
- c) 1 and 2
- d) None of the above
- 5. What is the minimum no. of variables/ features required to perform clustering?
 - a) (
 - b) 1 is the right answer
 - c) 2
 - d) 3
- 6. For two runs of K-Mean clustering is it expected to get same clustering results?
 - a) Yes
 - b) No is the right answer
- 7. Is it possible that Assignment of observations to clusters does not change between successive iterations in K-Means?
 - a) Yes is the right answer
 - b) No
 - c) Can't say
 - d) None of these

MACHINE LEARNING

- 8. Which of the following can act as possible termination conditions in K-Means?
 - i) For a fixed number of iterations.
 - ii) Assignment of observations to clusters does not change between iterations. Except for cases witha bad local minimum.
 - iii) Centroids do not change between successive iterations.
 - iv) Terminate when RSS falls below a threshold.
 - Options:
 - a) 1, 3 and 4
 - b) 1, 2 and 3
 - c) 1, 2 and 4
 - d) All of the above is the correct answer
- 9. Which of the following algorithms is most sensitive to outliers?
 - a) K-means clustering algorithm is the right answer
 - b) K-medians clustering algorithm
 - c) K-modes clustering algorithm
 - d) K-medoids clustering algorithm
- 10. How can Clustering (Unsupervised Learning) be used to improve the accuracy of Linear Regression model (Supervised Learning):
 - i) Creating different models for different cluster groups.
 - ii) Creating an input feature for cluster ids as an ordinal variable.
 - iii) Creating an input feature for cluster centroids as a continuous variable.
 - iv) Creating an input feature for cluster size as a continuous variable.

 Options:
 - a) 1 only
 - b) 2 only
 - c) 3 and 4
 - d) All of the above is the right answer
- 11. What could be the possible reason(s) for producing two different dendrograms using agglomerative clustering algorithms for the same dataset?
 - a) Proximity function used
 - b) of data points used
 - c) of variables used
 - d) All of the above is the right answer

Q12 to Q14 are subjective answers type questions, Answers them in their own words briefly

- 12. Is K sensitive to outliers?
- 13. Why is K means better?
- 14. Is K means a deterministic algorithm?
- 12. K or K-means clustering algorithm is sensitive to outliers since a mean gets easily influenced by extreme values. Therefore, if we have any outliers then the mean changes drastically and affects the K-means algorithm altogether.
- **13.** The advantages of K-means clustering algorithm are:
 - a) It is relatively easy and simple to implement.
 - b) It scales to large size of datasets in them.
 - c) It guarantees converges to a global minimum. It can warm-start the
 - positions of centroids.
 - d) It easily adapts to new examples.
 - e) It generalizes to clusters of different shapes and sizes such as elliptical clusters.

MACHINE LEARNING

14.	The basic k-means clustering is based on a non-deterministic algorithm. This means that running the algorithm several times on the
	same data could give different results. A deterministic algorithm is simply an algorithm that has a predefined output. For instance
	if you are sorting elements that are strictly ordered (no equal elements) the output is well defined and so the algorithm is
	deterministic. In fact, most of the computer algorithms are deterministic. The non-deterministic nature of K-Means is due to its
	random selection of data points as initial centroids. The key idea of the algorithm is to select data points which belong to dense
	regions and which are adequately separated in feature space as the initial centroids.