

March 3, 2025 Matt version 1.3.0

Contents

1	Infos	3
2	Warning: Please read this note carefully	3
3	Notes for publishing results	3
4	Data sets	4
5	Overview: Features with statistically significant differences (p-val ≤ 0.05)	5
6	Details: Box plots and statistical assessments for all features	15
	6.1 INTRON LENGTH	. 15
	6.2 UPEXON MEDIANLENGTH	. 17
	6.3 DOEXON MEDIANLENGTH	. 18
	6.4 RATIO UPEXON INTRON LENGTH	. 20
	6.5 RATIO DOEXON INTRON LENGTH	. 22
	6.6 INTRON GCC	. 24
	6.7 UPEXON GCC	
	6.8 DOEXON GCC	26

	DATE OF THE TOTAL	~-
	RATIO UPEXON INTRON GCC	27
	RATIO DOEXON INTRON GCC	28
6.11	SF1 HIGHESTSCORE 3SS	29
		31
	MAXENTSCR HSAMODEL 5SS	33
	MAXENTSCR HSAMODEL 3SS	
	DIST FROM MAXBP TO 3SS	
	SCORE FOR MAXBP SEQ	
	PYRIMIDINECONT MAXBP	39
		40
		41
	POLYPYRITRAC SCORE MAXBP	
		43
		44
		45
	The state of the s	46
		47
		48
	MEDIAN POLYPYRITRAC LEN	
	MEDIAN POLYPYRITRAC SCORE	
	MEDIAN BPSCORE	
		52
	MEDIAN INTRON NUMBER	54
	INTRON MEDIANRELATIVERANK	56
		58
	INTRON MEDIANRELATIVERANK 5BINS	59
	INTRON MEDIANRELATIVERANK 10BINS	
	NTRS ALL FOR GENE	
	PROP FIRST INTRON	63
		65
6.40	PROP INTERNAL INTRON	66
6 41	PROP INTRON IN UTR	68

1 Infos

Visualizations of intron features for different groups of introns. Each intron occurs in exactly one gene, but might occur in several transcripts of that gene. Hence, for some features like the intron length, there is exactly one value for each intron. For other features, e.g., length of the up-stream exon(s), which could be different in different transcripts, there might be several values for each intron. Consequently, in the latter cases, the median of these value gets reported.

2 Warning: Please read this note carefully

Please keep in mind that some features might affect other features. Especially: all branch-point features get extracted from sub-sequences of introns, by standard the last 150 nt at the 3' end of each intron (if you haven't changed this) always neglecting the first 20 nt at their 5' end. If introns of one set are especially short, i.e., many are shorter then these 150 nt, then the shorter intron length might affect branch-point features. For example, there might be less branch points found in shorter introns or their distance to the 3' intron ends might be generally shorter simply because of their shorter intron length.

3 Notes for publishing results

The Matt paper: Matt: Unix tools for alternative splicing analysis, A. Gohr, M. Irimia, Bioinformatics, 2018, bty606, DOI: 10.1093/bioinformatics/bty606

When publishing results wrt. splice site strengths which you determined for your data using matt, please cite: Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals, Yeo et al., 2003, DOI: 10.1089/1066527041410418

When publishing results wrt. branch point features which you determined for your data with matt, please cite: Genome-wide association between branch point properties and alternative splicing, Corvelo et al., 2010, DOI: 10.1371/journal.pcbi.1001016

When publishing results with respect to the binding strength of the human Sf1 splicing factor, you might refert to where the Sf1 binding motif comes from: Analysis of in situ pre-mRNA targets of human splicing factor SF1 reveals a function in alternative splicing, Margherita Corioni, Nicolas Antih, Goranka Tanackovic, Mihaela Zavolan, and Angela Kramer, 2011, DOI: 10.1093/nar/gkq1042

The Sf1 binding motif is described in supplement, page 13, table S2: Weight matrix of the binding specificity of SF1.

4 Data sets

Input file:

MATT_INPUT_INTRONS_TAF2_HeLa.tab

Selection criteria for defining intron groups:

UP_INTRONS_TAF2 : having value UP_INTRONS_TAF2 in column GROUP
DOWN_INTRONS_TAF2 : having value DOWN_INTRONS_TAF2 in column GROUP
UP_INTRONS_TAF2dIDR : having value UP_INTRONS_TAF2dIDR in column GROUP
DOWN_INTRONS_TAF2dIDR : having value DOWN_INTRONS_TAF2dIDR in column GROUP

CR: having value CR in column GROUP CS: having value CS in column GROUP

AS_NC : having value AS_NC in column GROUP

Intron duplicates removal: yes

Numbers of introns per group before / after neglecting introns which were not found in gene annotation (GTF file). For the comparisons only introns which were found in the gene annotation are used. These numbers might change slightly for each feature if NAs occur.

UP_INTRONS_TAF2: 120 / 107 DOWN_INTRONS_TAF2: 99 / 94 UP_INTRONS_TAF2dIDR: 96 / 89 DOWN_INTRONS_TAF2dIDR: 105 / 100

CR: 50 / 49 CS: 1000 / 966 AS_NC: 1000 / 949

Overview: Features with statistically significant differences (p-val ≤ 0.05)

MEDIAN TR LENGTH

INTRON GCC

INTRON 3SS 20INT10EX GCC

DOEXON GCC

UPEXON GCC

INTRON 5SS 20INT10EX GCC

RATIO DOEXON INTRON LENGTH

NUM PREDICTED BPS

SF1 HIGHESTSCORE 3SS

RATIO UPEXON INTRON GCC

MEDIAN POLYPYRITRAC OFFSET

MAXENTSCR HSAMODEL 5SS

MEDIAN INTRON NUMBER

NTRS ALL FOR GENE

INTRON MEDIANRELATIVERANK

INTRON MEDIANRELATIVERANK 5BINS

$\mathop{\rm DOEXON}_{\stackrel{\circ}{2}_{1}}\mathop{\rm MEDIANLENGTH}_{\stackrel{-}{-}}$

UPEXON MEDIANLENGTH

POLYPYRITRAC SCORE MAXBP

MEDIAN SCORE FOR BPSEQ

MEDIAN POLYPYRITRAC SCORE

SCORE FOR MAXBP SEQ

DIST FROM MAXBP TO 3SS

BPSCORE MAXBP

POLYPYRITRAC LEN MAXBP

6 Details: Box plots and statistical assessments for all features

6.1 INTRON LENGTH

Back to: Overview | ToC

Meaning:

- UP_INTRONS_TAF2 vs DOWN_INTRONS_TAF2 : 0.0184638 mean: 1939.486 > 1672.8085, median: 430 < 917
- UP_INTRONS_TAF2 vs DOWN_INTRONS_TAF2dIDR : 0.0089633 mean: 1939.486 > 1728.36, median: 430 < 807.5
- UP_INTRONS_TAF2 vs CS : 8.3985e-11 mean: 1939.486 < 5064.7308, median: 430 < 1641
- UP_INTRONS_TAF2 vs AS_NC : 0.0183574 mean: 1939.486 > 888.0242, median: 430 > 325
- DOWN_INTRONS_TAF2 vs CS : 0.000101596 mean: 1672.8085 < 5064.7308, median: 917 < 1641
- DOWN_INTRONS_TAF2 vs AS_NC : 9.36524e-08 mean: 1672.8085 > 888.0242, median: 917 > 325
- UP_INTRONS_TAF2dIDR vs CS : 9.08837e-07 mean: 1898.1685 < 5064.7308, median: 599 < 1641
- UP_INTRONS_TAF2dIDR vs AS_NC : 0.00048822 mean: 1898.1685 > 888.0242 , median: 599 > 325

• DOWN_INTRONS_TAF2dIDR vs CS : 0.000147588 mean: 1728.36 < 5064.7308 , median: 807.5 < 1641

 \bullet DOWN_INTRONS_TAF2dIDR vs AS_NC : 6.49998e-09 mean: 1728.36 > 888.0242 , median: 807.5 > 325

 \bullet CR vs CS : 1.42888e-05

mean: 1180.3673 < 5064.7308, median: 592 < 1641

 \bullet CR vs AS_NC : 0.0129423

mean: 1180.3673 > 888.0242, median: 592 > 325

 \bullet CS vs AS_NC : 1.20013e-82

mean: 5064.7308 > 888.0242, median: 1641 > 325

6.2 UPEXON MEDIANLENGTH

Back to: Overview | ToC

Meaning: if intron is in several transcripts, it might have different up-stream exons, and this is the median length of them

- UP_INTRONS_TAF2 vs CR : 0.00206092 mean: 190.285 < 382.9694, median: 136 < 207.5
- UP_INTRONS_TAF2 vs CS : 0.0291571 mean: 190.285 > 143.0047, median: 136 > 124
- DOWN_INTRONS_TAF2 vs CR : 0.00104752 mean: 181.2819 < 382.9694, median: 131.75 < 207.5
- UP_INTRONS_TAF2dIDR vs CR : 0.0101179 mean: 205.5843 < 382.9694, median: 137 < 207.5
- UP_INTRONS_TAF2dIDR vs CS : 0.00805679 mean: 205.5843 > 143.0047, median: 137 > 124
- UP_INTRONS_TAF2dIDR vs AS_NC : 0.0281292 mean: 205.5843 > 163.4842, median: 137 > 126
- DOWN_INTRONS_TAF2dIDR vs CR : 0.000354222 mean: 193.87 < 382.9694, median: 129.5 < 207.5
- CR vs AS_NC : 1.13843e-06 mean: 382.9694 > 163.4842, median: 207.5 > 126

6.3 DOEXON MEDIANLENGTH

Back to: Overview | ToC

Meaning: same as UPEXON MEDIANLENGTH but for down-stream exons

- UP_INTRONS_TAF2 vs CR : 0.00108883
 - mean: 347.1963 < 521.5306, median: 152 < 316
- UP_INTRONS_TAF2 vs CS : 0.00505644 mean: 347.1963 > 257.1242, median: 152 > 128
- DOWN_INTRONS_TAF2 vs CR : 6.79037e-05
- mean: 238.484 < 521.5306, median: 132.75 < 316• UP_INTRONS_TAF2dIDR vs CR: 0.000541282
- mean: 308.2753 < 521.5306, median: 152 < 316
- UP_INTRONS_TAF2dIDR vs CS : 0.0364582 mean: 308.2753 > 257.1242, median: 152 > 128
- DOWN_INTRONS_TAF2dIDR vs CR : 0.00328645 mean: 309.425 < 521.5306, median: 159 < 316
- DOWN_INTRONS_TAF2dIDR vs CS : 0.00156852 mean: 309.425 > 257.1242, median: 159 > 128
- DOWN_INTRONS_TAF2dIDR vs AS_NC : 0.0424845 mean: 309.425 > 263.8467, median: 159 > 135
- CR vs AS_NC : 2.11858e-06 mean: 521.5306 > 263.8467, median: 316 > 135

 \bullet CS vs AS_NC : 0.0136925

mean: 257.1242 < 263.8467 , median: 128 < 135

6.4 RATIO UPEXON INTRON LENGTH

Back to: Overview | ToC

Meaning: median up-stream exon length / intron length

- UP_INTRONS_TAF2 vs DOWN_INTRONS_TAF2 : 0.0166178 mean: 0.581333 > 0.435666 , median: 0.323276 > 0.163357
- UP_INTRONS_TAF2 vs DOWN_INTRONS_TAF2dIDR : 0.0043362 mean: 0.581333 > 0.34257, median: 0.323276 > 0.172691
- UP_INTRONS_TAF2 vs CS : 1.67322e-13 mean: 0.581333 > 0.263246 , median: 0.323276 > 0.0762247
- DOWN_INTRONS_TAF2 vs CR : 0.00573334 mean: 0.435666 < 1.2375 , median: 0.163357 < 0.35337
- DOWN_INTRONS_TAF2 vs CS : 6.89924e-06 mean: 0.435666 > 0.263246 , median: 0.163357 > 0.0762247
- DOWN_INTRONS_TAF2 vs AS_NC : 3.28715e-05 mean: 0.435666 < 0.688341 , median: 0.163357 < 0.388889
- UP_INTRONS_TAF2dIDR vs CS : 3.36709e-08 mean: 0.674577 > 0.263246 , median: 0.291785 > 0.0762247
- UP_INTRONS_TAF2dIDR vs AS_NC : 0.023132 mean: 0.674577 < 0.688341 , median: 0.291785 < 0.388889
- DOWN_INTRONS_TAF2dIDR vs CR : 0.00170376 mean: 0.34257 < 1.2375, median: 0.172691 < 0.35337
- DOWN_INTRONS_TAF2dIDR vs CS : 1.34936e-05 mean: 0.34257 > 0.263246, median: 0.172691 > 0.0762247

 \bullet DOWN_INTRONS_TAF2dIDR vs AS_NC : 9.01569e-07

mean: 0.34257 < 0.688341, median: 0.172691 < 0.388889

 \bullet CR vs CS : 5.66054e-10

mean: 1.2375 > 0.263246 , median: 0.35337 > 0.0762247

 \bullet CS vs AS_NC : 1.89983e-80

mean: 0.263246 < 0.688341, median: 0.0762247 < 0.388889

6.5 RATIO DOEXON INTRON LENGTH

Back to: Overview | ToC

Meaning: median down-stream exon length / intron length

- UP_INTRONS_TAF2 vs DOWN_INTRONS_TAF2 : 0.00641893 mean: 0.788857 > 0.525866 , median: 0.407115 > 0.221111
- UP_INTRONS_TAF2 vs DOWN_INTRONS_TAF2dIDR : 0.0121889 mean: 0.788857 > 0.628273 , median: 0.407115 > 0.213347
- UP_INTRONS_TAF2 vs CS : 5.86374e-13 mean: 0.788857 > 0.393069 , median: 0.407115 > 0.0895518
- DOWN_INTRONS_TAF2 vs CR : 0.000682717 mean: 0.525866 < 1.4742, median: 0.221111 < 0.597403
- DOWN_INTRONS_TAF2 vs CS : 7.08575e-05 mean: 0.525866 > 0.393069, median: 0.221111 > 0.0895518
- DOWN_INTRONS_TAF2 vs AS_NC : 4.27895e-06 mean: 0.525866 < 1.0008 , median: 0.221111 < 0.497856
- UP_INTRONS_TAF2dIDR vs CR : 0.0227246 mean: 0.853285 < 1.4742 , median: 0.308219 < 0.597403
- UP_INTRONS_TAF2dIDR vs CS : 1.53931e-07 mean: 0.853285 > 0.393069, median: 0.308219 > 0.0895518
- UP_INTRONS_TAF2dIDR vs AS_NC : 0.00578146 mean: 0.853285 < 1.0008, median: 0.308219 < 0.497856
- DOWN_INTRONS_TAF2dIDR vs CR : 0.000983805 mean: 0.628273 < 1.4742, median: 0.213347 < 0.597403

• DOWN_INTRONS_TAF2dIDR vs CS : 1.65042e-06 mean: 0.628273 > 0.393069, median: 0.213347 > 0.0895518

 \bullet DOWN_INTRONS_TAF2dIDR vs AS_NC : 9.22945e-06

mean: 0.628273 < 1.0008 , median: 0.213347 < 0.497856

 \bullet CR vs CS: 7.84386e-11

mean: 1.4742 > 0.393069, median: 0.597403 > 0.0895518

• CS vs AS_NC : 1.75445e-76

mean: 0.393069 < 1.0008, median: 0.0895518 < 0.497856

6.6 INTRON GCC

Back to: Overview | ToC

Meaning: GC content of entire intron sequence

- UP_INTRONS_TAF2 vs DOWN_INTRONS_TAF2 : 0.00851849 mean: 0.568618 > 0.529553 , median: 0.588608 > 0.528957
- UP_INTRONS_TAF2 vs CS : 3.06111e-23 mean: 0.568618 > 0.436335, median: 0.588608 > 0.41294
- DOWN_INTRONS_TAF2 vs CR : 0.0479418 mean: 0.529553 < 0.567094, median: 0.528957 < 0.595349
- DOWN_INTRONS_TAF2 vs CS : 5.9512e-14 mean: 0.529553 > 0.436335 , median: 0.528957 > 0.41294
- DOWN_INTRONS_TAF2 vs AS_NC : 0.000139585 mean: 0.529553 < 0.573131 , median: 0.528957 < 0.586288
- UP_INTRONS_TAF2dIDR vs CS : 7.60208e-18 mean: 0.558975 > 0.436335, median: 0.567442 > 0.41294
- DOWN_INTRONS_TAF2dIDR vs CS : 2.50239e-21 mean: 0.553399 > 0.436335 , median: 0.562386 > 0.41294
- DOWN_INTRONS_TAF2dIDR vs AS_NC : 0.0499544 mean: 0.553399 < 0.573131, median: 0.562386 < 0.586288
- CS vs AS_NC : 2.805e-125 mean: 0.436335 < 0.573131 , median: 0.41294 < 0.586288

6.7 UPEXON GCC

Back to: Overview \mid ToC

Meaning: median GC content of up-stream exons for all occurrences of intron

Significant results from Mann-Whitney U test:

- UP_INTRONS_TAF2 vs CS: 1.26297e-20
- mean: 0.5953 > 0.492495, median: 0.611498 > 0.477628 DOWN_INTRONS_TAF2 vs CS : 3.26931e-16
- mean: 0.588378 > 0.492495, median: 0.588738 > 0.477628
- UP_INTRONS_TAF2dIDR vs CS : 3.05794e-15 mean: 0.589414 > 0.492495 , median: 0.60177 > 0.477628
- DOWN_INTRONS_TAF2dIDR vs CS : 2.9916e-19 mean: 0.600642 > 0.492495 , median: 0.610776 > 0.477628
- \bullet CR vs CS : 2.06025 e-07

mean: 0.580403 > 0.492495, median: 0.62042 > 0.477628

 \bullet CS vs AS_NC: 1.61282e-89

mean: 0.492495 < 0.592162, median: 0.477628 < 0.60197

6.8 DOEXON GCC

Back to: Overview | ToC

Meaning: same as UPEXON MEDIANGCC but for down-stream exons

- UP_INTRONS_TAF2 vs CS : 1.41494e-14
 - mean: 0.564654 > 0.478673, median: 0.585938 > 0.460893
- DOWN_INTRONS_TAF2 vs UP_INTRONS_TAF2dIDR : 0.0263441 mean: 0.541528 < 0.566604 , median: 0.555716 < 0.597826
- DOWN_INTRONS_TAF2 vs CS: 2.07795e-09
 - mean: 0.541528 > 0.478673, median: 0.555716 > 0.460893
- \bullet DOWN_INTRONS_TAF2 vs AS_NC : 0.000214565
 - mean: 0.541528 < 0.578015, median: 0.555716 < 0.59
- \bullet UP_INTRONS_TAF2dIDR vs CS: 1.74038e-13
 - mean: 0.566604 > 0.478673, median: 0.597826 > 0.460893
- DOWN_INTRONS_TAF2dIDR vs CS: 1.11293e-11
 - mean: 0.553456 > 0.478673, median: 0.569048 > 0.460893
- DOWN_INTRONS_TAF2dIDR vs AS_NC: 0.0169532
- mean: 0.553456 < 0.578015, median: 0.569048 < 0.59
- \bullet CR vs CS : 0.000121241
 - mean: 0.540458 > 0.478673, median: 0.558824 > 0.460893
- CR vs AS_NC: 0.0376878
 - mean: 0.540458 < 0.578015, median: 0.558824 < 0.59
- \bullet CS vs AS_NC : 2.08968e-95
 - mean: 0.478673 < 0.578015, median: 0.460893 < 0.59

6.9 RATIO UPEXON INTRON GCC

Back to: Overview | ToC

Meaning: median GC content of up-stream exons / GC content of intron

- \bullet UP_INTRONS_TAF2 vs DOWN_INTRONS_TAF2 : 0.0237351 mean: 1.0766 < 1.1429 , median: 1.023 < 1.1008
- UP_INTRONS_TAF2 vs CS : 0.000232132 mean: 1.0766 < 1.1559, median: 1.023 < 1.1235
- DOWN_INTRONS_TAF2 vs CR : 0.00830768 mean: 1.1429 > 1.0397, median: 1.1008 > 1.0149
- DOWN_INTRONS_TAF2 vs AS_NC : 0.000365118 mean: 1.1429 > 1.0541, median: 1.1008 > 1.037
- UP_INTRONS_TAF2dIDR vs CS : 0.00498581 mean: 1.0817 < 1.1559, median: 1.0365 < 1.1235
- DOWN_INTRONS_TAF2dIDR vs CS : 0.0417684 mean: 1.1033 < 1.1559, median: 1.0927 < 1.1235
- DOWN_INTRONS_TAF2dIDR vs AS_NC : 0.0143612 mean: 1.1033 > 1.0541, median: 1.0927 > 1.037
- CR vs CS : 0.000345774 mean: 1.0397 < 1.1559, median: 1.0149 < 1.1235
- CS vs AS_NC : 2.69574e-23 mean: 1.1559 > 1.0541, median: 1.1235 > 1.037

6.10 RATIO DOEXON INTRON GCC

Back to: Overview | ToC

Meaning: same as RATIO UPEXON INTRON GCC but for down-stream exons

Significant results from Mann-Whitney U test:

• UP_INTRONS_TAF2 vs CS : 3.8257e-08

mean: 1.0106 < 1.1219, median: 1.0038 < 1.0946

• DOWN_INTRONS_TAF2 vs CS: 6.15168e-05

mean: 1.0432 < 1.1219, median: 1.0266 < 1.0946 • UP_INTRONS_TAF2dIDR vs CS : 0.000130287

mean: 1.0379 < 1.1219, median: 1.0323 < 1.0946

• DOWN_INTRONS_TAF2dIDR vs CS : 1.24437e-07 mean: 1.0116 < 1.1219, median: 1.0164 < 1.0946

• CR vs CS: 7.04813e-07

mean: 0.969457 < 1.1219, median: 0.992481 < 1.0946

• CS vs AS_NC: 8.35131e-28

mean: 1.1219 > 1.0283, median: 1.0946 > 1.0078

6.11 SF1 HIGHESTSCORE 3SS

Back to: Overview | ToC

Meaning: highest score of a SF1 positon weight matrix trained with human data in the last 150 nt 3 prime intron positons

- \bullet UP_INTRONS_TAF2 vs CS : 6.68522e-06
 - mean: -6.7321 < -6.19464, median: -6.81202 < -6.26872
- DOWN_INTRONS_TAF2 vs CR: 0.0325605
 - mean: -6.5751 > -7.07336, median: -6.66903 > -7.15474
- \bullet DOWN_INTRONS_TAF2 vs CS : 0.00127012
 - mean: -6.5751 < -6.19464, median: -6.66903 < -6.26872
- \bullet UP_INTRONS_TAF2dIDR vs CS : 0.00041971
 - mean: -6.72458 < -6.19464, median: -6.6381 < -6.26872
- DOWN_INTRONS_TAF2dIDR vs CR: 0.0126623
 - mean: -6.54342 > -7.07336, median: -6.62001 > -7.15474
- DOWN_INTRONS_TAF2dIDR vs CS: 0.00198725
 - mean: -6.54342 < -6.19464, median: -6.62001 < -6.26872
- DOWN_INTRONS_TAF2dIDR vs AS_NC: 0.0155696
- mean: -6.54342 > -6.83588, median: -6.62001 > -6.8734
- \bullet CR vs CS: 1.95145e-06
- mean: -7.07336 < -6.19464, median: -7.15474 < -6.26872
- \bullet CS vs AS_NC : 6.28079e-34
- mean: -6.19464 > -6.83588, median: -6.26872 > -6.8734

6.12 INTRON 5SS 20INT10EX GCC

Back to: Overview | ToC

Meaning: GC content of last 10 exon and first 20 intron positions at 5 prime end of intron

Significant results from Mann-Whitney U test:

- UP_INTRONS_TAF2 vs CS : 1.14467e-13 mean: 0.575701 > 0.461939, median: 0.6 > 0.433333
- DOWN_INTRONS_TAF2 vs CS : 5.24444e-10 mean: 0.563475 > 0.461939, median: 0.566667 > 0.433333
- DOWN_INTRONS_TAF2 vs AS_NC : 0.0231283 mean: 0.563475 < 0.594766 , median: 0.566667 < 0.6
- UP_INTRONS_TAF2dIDR vs CS : 8.91158e-13 mean: 0.583146 > 0.461939 , median: 0.6 > 0.433333
- DOWN_INTRONS_TAF2dIDR vs CS : 2.9592e-14 mean: 0.579667 > 0.461939, median: 0.583333 > 0.433333
- CR vs CS: 2.47e-07

mean: 0.57551 > 0.461939, median: 0.6 > 0.433333

 \bullet CS vs AS_NC : 6.04821e-82

mean: 0.461939 < 0.594766, median: 0.433333 < 0.6

6.13 INTRON 3SS 20INT10EX GCC

Back to: Overview | ToC

Meaning: GC content of last 20 intron and first 10 exon positions at 3 prime end of intron

- UP_INTRONS_TAF2 vs DOWN_INTRONS_TAF2 : 0.000885121 mean: 0.568536 > 0.497872 , median: 0.6 > 0.533333
- UP_INTRONS_TAF2 vs DOWN_INTRONS_TAF2dIDR : 0.0484363 mean: 0.568536 > 0.5333333 , median: 0.6 > 0.566667
- UP_INTRONS_TAF2 vs CS : 3.91953e-20 mean: 0.568536 > 0.418288, median: 0.6 > 0.4
- DOWN_INTRONS_TAF2 vs UP_INTRONS_TAF2dIDR : 0.0226531 mean: 0.497872 < 0.550562 , median: 0.533333 < 0.566667
- DOWN_INTRONS_TAF2 vs CR : 0.0174201 mean: 0.497872 < 0.565306, median: 0.533333 < 0.6
- DOWN_INTRONS_TAF2 vs CS : 1.49894e-07 mean: 0.497872 > 0.418288, median: 0.533333 > 0.4
- DOWN_INTRONS_TAF2 vs AS_NC : 1.26084e-05 mean: 0.497872 < 0.568599 , median: 0.533333 < 0.6
- UP_INTRONS_TAF2dIDR vs CS : 1.9235e-16 mean: 0.550562 > 0.418288 , median: 0.566667 > 0.4
- DOWN_INTRONS_TAF2dIDR vs CS : 2.58003e-14 mean: 0.533333 > 0.418288, median: 0.566667 > 0.4

• DOWN_INTRONS_TAF2dIDR vs AS_NC : 0.0104434 mean: 0.533333 < 0.568599 , median: 0.566667 < 0.6

• CR vs CS: 1.72611e-10

mean: 0.565306 > 0.418288, median: 0.6 > 0.4

 \bullet CS vs AS_NC : 2.19029e-111

mean: 0.418288 < 0.568599, median: 0.4 < 0.6

6.14 MAXENTSCR HSAMODEL 5SS

Back to: Overview | ToC

Meaning: maximum entropy score of 5ss using a model trained with human splice sites

- UP_INTRONS_TAF2 vs UP_INTRONS_TAF2dIDR: 0.0307751
 - mean: 7.2515 < 8.0161, median: 7.96 < 8.73
- UP_INTRONS_TAF2 vs CR : 1.85021e-07 mean: 7.2515 > 2.4767, median: 7.96 > 4.05
- UP_INTRONS_TAF2 vs CS: 6.24525e-06
 - mean: 7.2515 < 8.4679, median: 7.96 < 8.88
- DOWN_INTRONS_TAF2 vs UP_INTRONS_TAF2dIDR: 0.0145034
 - mean: 7.2206 < 8.0161, median: 7.895 < 8.73
- \bullet DOWN_INTRONS_TAF2 vs CR : 2.25843e-07
 - mean: 7.2206 > 2.4767, median: 7.895 > 4.05
- \bullet DOWN_INTRONS_TAF2 vs CS : 1.60443e-06
 - mean: 7.2206 < 8.4679, median: 7.895 < 8.88
- UP_INTRONS_TAF2dIDR vs DOWN_INTRONS_TAF2dIDR: 0.00245377
 - mean: 8.0161 > 6.8956, median: 8.73 > 7.65
- \bullet UP_INTRONS_TAF2dIDR vs CR : 1.92598e-10
 - mean: 8.0161 > 2.4767, median: 8.73 > 4.05
- UP_INTRONS_TAF2dIDR vs AS_NC: 0.0260367
 - mean: 8.0161 > 7.2152, median: 8.73 > 8.07
- DOWN_INTRONS_TAF2dIDR vs CR : 1.13283e-06
- mean: 6.8956 > 2.4767, median: 7.65 > 4.05

• DOWN_INTRONS_TAF2dIDR vs CS : 1.30147e-08 mean: 6.8956 < 8.4679, median: 7.65 < 8.88

 \bullet CR vs CS : 2.20109e-17

mean: 2.4767 < 8.4679 , median: 4.05 < 8.88

 \bullet CR vs AS_NC : 1.19476e-10

mean: 2.4767 < 7.2152 , median: 4.05 < 8.07

 \bullet CS vs AS_NC : 3.26574e-18

mean: 8.4679 > 7.2152, median: 8.88 > 8.07

6.15 MAXENTSCR HSAMODEL 3SS

Back to: Overview | ToC

Meaning: maximum entropy score of 3ss using a model trained with human splice sites

- UP_INTRONS_TAF2 vs CR : 1.00302e-06 mean: 7.8701 > 1.2061, median: 8.16 > 4.24
- UP_INTRONS_TAF2 vs CS : 0.0133576 mean: 7.8701 < 8.6681, median: 8.16 < 8.775
- DOWN_INTRONS_TAF2 vs CR : 5.95799e-06 mean: 7.6812 > 1.2061, median: 7.94 > 4.24
- DOWN_INTRONS_TAF2 vs CS : 0.0073173 mean: 7.6812 < 8.6681, median: 7.94 < 8.775
- UP_INTRONS_TAF2dIDR vs CR : 4.6343e-05 mean: 7.2569 > 1.2061, median: 7.49 > 4.24
- UP_INTRONS_TAF2dIDR vs CS : 0.00089832 mean: 7.2569 < 8.6681, median: 7.49 < 8.775
- DOWN_INTRONS_TAF2dIDR vs CR : 8.24022e-06 mean: 7.55 > 1.2061, median: 8.565 > 4.24
- DOWN_INTRONS_TAF2dIDR vs CS : 0.0060663 mean: 7.55 < 8.6681, median: 8.565 < 8.775
- CR vs AS_NC : 3.03037e-08 mean: 1.2061 < 7.6425 , median: 4.24 < 8.28

 \bullet CS vs AS_NC : 1.42038e-09

mean: 8.6681 > 7.6425, median: 8.775 > 8.28

6.16 DIST FROM MAXBP TO 3SS

Back to: Overview | ToC

Meaning: Distance to 3ss of best precited BP

Significant results from Mann-Whitney U test:

• UP_INTRONS_TAF2 vs CR : 0.0318395 mean: 51.3077 < 60.6889, median: 30 < 44

• UP_INTRONS_TAF2dIDR vs CR : 0.0248237 mean: 48.4762 < 60.6889, median: 32 < 44

• DOWN_INTRONS_TAF2dIDR vs CR : 0.0420781 mean: 50.81 < 60.6889, median: 32 < 44

 \bullet CS vs AS_NC : 0.000701499

mean: 54.1944 > 50.5473, median: 36 > 32

6.17 SCORE FOR MAXBP SEQ

Back to: Overview | ToC

Meaning: BP sequence score of best predicted BP

Significant results from Mann-Whitney U test:

• UP_INTRONS_TAF2 vs CR : 0.00780121 mean: 1.5056 > 0.727067 , median: 1.4172 > 0.834817

• UP_INTRONS_TAF2 vs CS : 0.0161378 mean: 1.5056 > 1.114, median: 1.4172 > 1.1088

• UP_INTRONS_TAF2dIDR vs CR : 0.0114016 mean: 1.4578 > 0.727067, median: 1.2964 > 0.834817

• DOWN_INTRONS_TAF2dIDR vs CR : 0.0408561 mean: 1.2454 > 0.727067 , median: 1.1766 > 0.834817

• CS vs AS_NC : 0.000284643 mean: 1.114 < 1.3493, median: 1.1088 < 1.3728

6.18 PYRIMIDINECONT MAXBP

Back to: Overview | ToC

Meaning: Pyrimidine content between the BP adenine and the 3 prime splice site for best BP $\,$

- UP_INTRONS_TAF2 vs CR : 0.00310845 mean: 0.709879 > 0.640034, median: 0.711195 > 0.626506
- DOWN_INTRONS_TAF2 vs CR: 0.011935
- mean: 0.704664 > 0.640034, median: 0.717143 > 0.626506 • UP_INTRONS_TAF2dIDR vs CR : 0.00666117
- DOWN_INTRONS_TAF2GIDR VS CR : 0.0192713 mean: 0.689789 > 0.640034 , median: 0.732684 > 0.626506
- \bullet CR vs CS : 0.00178398 mean: 0.640034 < 0.706294 , median: 0.626506 < 0.711111
- \bullet CR vs AS_NC : 0.00255973 mean: 0.640034 < 0.702141 , median: 0.626506 < 0.705882

6.19 POLYPYRITRAC OFFSET MAXBP

Back to: Overview | ToC

Meaning: Polypyrimidine track offset relative to the BP adenine for best BP

Significant results from Mann-Whitney U test:

 \bullet UP_INTRONS_TAF2 vs DOWN_INTRONS_TAF2 : 0.0162287

mean: 7.0673 > 5.913, median: 3 > 1

 \bullet UP_INTRONS_TAF2 vs CS : 0.0167756

mean: 7.0673 > 4.0541, median: 3 > 2

• DOWN_INTRONS_TAF2 vs DOWN_INTRONS_TAF2dIDR: 0.0291507

mean: 5.913 < 9.82, median: 1 < 2.5

• DOWN_INTRONS_TAF2 vs CR : 0.00200017

mean: 5.913 < 8.0667, median: 1 < 4

 \bullet DOWN_INTRONS_TAF2 vs AS_NC : 0.00124204

mean: 5.913 < 6.445, median: 1 < 3

• UP_INTRONS_TAF2dIDR vs CR: 0.0202325

mean: 4.7262 < 8.0667, median: 1.5 < 4

 \bullet DOWN_INTRONS_TAF2dIDR vs CS : 0.0232675

mean: 9.82 > 4.0541, median: 2.5 > 2

 \bullet CR vs CS : 0.0013561

mean: 8.0667 > 4.0541, median: 4 > 2

• CS vs AS_NC: 7.96057e-09

mean: 4.0541 < 6.445, median: 2 < 3

6.20 POLYPYRITRAC LEN MAXBP

Back to: Overview | ToC

Meaning: Polypyrimidine track length for best BP

Significant results from Mann-Whitney U test:

• UP_INTRONS_TAF2dIDR vs CS : 0.0113608 mean: 14.2619 < 16.2536 , median: 13 < 15

6.21 POLYPYRITRAC SCORE MAXBP

Back to: Overview | ToC

Meaning: Polypyrimidine track score for best BP

Significant results from Mann-Whitney U test:

• UP_INTRONS_TAF2 vs CS : 0.0355092 mean: 27.0962 < 31.1403, median: 25 < 28

• UP_INTRONS_TAF2dIDR vs CS : 0.00107304 mean: 26.6786 < 31.1403, median: 24 < 28

• CR vs CS: 0.00935101

mean: 28.0222 < 31.1403, median: 24 < 28

 \bullet CS vs AS_NC : 4.43541e-06

mean: 31.1403 > 28.2111, median: 28 > 25

6.22 BPSCORE MAXBP

Back to: Overview | ToC

Meaning: SVM classification score of best BP

Significant results from Mann-Whitney U test:

• UP_INTRONS_TAF2 vs CR : 0.0131889 mean: 1.0256 > 0.643616 , median: 1.178 > 0.687251

• DOWN_INTRONS_TAF2 vs CR : 0.0144838 mean: 0.930115 > 0.643616 , median: 1.1952 > 0.687251

• UP_INTRONS_TAF2dIDR vs CR : 0.00552453 mean: 1.1495 > 0.643616 , median: 1.1762 > 0.687251

• CR vs AS_NC : 0.0159753 mean: 0.643616 < 1.0117, median: 0.687251 < 1.1169

6.23 NUM PREDICTED BPS

Back to: Overview | ToC

Meaning: number of all predicted BPs which have a positive BP score

Significant results from Mann-Whitney U test:

- UP_INTRONS_TAF2 vs CS : 1.11953e-06 mean: 2.5096 < 3.4283, median: 2 < 3
- UP_INTRONS_TAF2 vs AS_NC : 0.0339819 mean: 2.5096 > 2.1132, median: 2 = 2
- DOWN_INTRONS_TAF2 vs CS : 2.39544e-05 mean: 2.5761 < 3.4283, median: 2 < 3
- UP_INTRONS_TAF2dIDR vs AS_NC : 0.00299055 mean: 2.7619 > 2.1132, median: 2 = 2
- DOWN_INTRONS_TAF2dIDR vs CS : 6.67877e-05 mean: 2.57 < 3.4283 , median: 2 < 3
- DOWN_INTRONS_TAF2dIDR vs AS_NC : 0.013405 mean: 2.57 > 2.1132, median: 2 = 2
- CR vs CS : 0.000223094 mean: 2.4 < 3.4283, median: 2 < 3
- CS vs AS_NC : 4.30433e-50

mean: 3.4283 > 2.1132, median: 3 > 2

6.24 MEDIAN DIST FROM BP TO 3SS

Back to: Overview | ToC

Meaning: like DIST FROM MAXBP TO 3SS but median over top-3 predicted BPs $\,$

Significant results from Mann-Whitney U test:

• none

6.25 MEDIAN SCORE FOR BPSEQ

Back to: Overview | ToC

Meaning: like SCORE FOR MAXBP SEQ but median over top-3 predicted BPs

- UP_INTRONS_TAF2 vs DOWN_INTRONS_TAF2 : 0.0309811 mean: 0.687826 > 0.174783 , median: 0.555944 > 0.236987
- UP_INTRONS_TAF2 vs DOWN_INTRONS_TAF2dIDR : 0.0464067 mean: 0.687826 > 0.30313, median: 0.555944 > 0.27667
- UP_INTRONS_TAF2 vs CR : 0.00724519 mean: 0.687826 > 0.0265635, median: 0.555944 > -0.0489897
- UP_INTRONS_TAF2 vs CS : 0.00280971 mean: 0.687826 > 0.29138, median: 0.555944 > 0.286001
- DOWN_INTRONS_TAF2 vs UP_INTRONS_TAF2dIDR : 0.0121674 mean: 0.174783 < 0.767415, median: 0.236987 < 0.654206
- UP_INTRONS_TAF2dIDR vs DOWN_INTRONS_TAF2dIDR : 0.0218737 mean: 0.767415 > 0.30313, median: 0.654206 > 0.27667
- UP_INTRONS_TAF2dIDR vs CR : 0.00239222 mean: 0.767415 > 0.0265635, median: 0.654206 > -0.0489897
- UP_INTRONS_TAF2dIDR vs CS : 0.000760755 mean: 0.767415 > 0.29138, median: 0.654206 > 0.286001
- \bullet CR vs AS_NC : 0.00855432 mean: 0.0265635 < 0.55621 , median: -0.0489897 < 0.546263
- CS vs AS_NC : 4.30369e-05 mean: 0.29138 < 0.55621 , median: 0.286001 < 0.546263

6.26 MEDIAN PYRIMIDINECONT

Back to: Overview | ToC

Meaning: like PYRIMIDINECONT MAXBP but median over top-3 predicted BPs

Significant results from Mann-Whitney U test:

• DOWN_INTRONS_TAF2dIDR vs CS: 0.00310937

mean: 0.620797 < 0.64973, median: 0.622359 < 0.647059

 \bullet CR vs CS : 0.0119525

mean: 0.608188 < 0.658743, median: 0.621622 < 0.653454

 \bullet CR vs AS_NC : 0.0432779

mean: 0.608188 < 0.64973, median: 0.621622 < 0.647059

6.27 MEDIAN POLYPYRITRAC OFFSET

Back to: Overview | ToC

Meaning: like POLYPYRITRAC OFFSET MAXBP but median over top-3 predicted BPs

Significant results from Mann-Whitney U test:

• UP_INTRONS_TAF2 vs CS : 3.9985e-05

 $\begin{array}{l} \text{mean: } 12.601 > 6.2386 \text{ , median: } 6.5 > 3 \\ \bullet \text{ DOWN_INTRONS_TAF2 vs CS: } 0.00665537 \end{array}$

 $\begin{array}{l} \text{mean: } 12 > 6.2386 \text{ , median: } 5.5 > 3 \\ \bullet \text{ UP_INTRONS_TAF2dIDR vs CS: } 0.0134334 \end{array}$

mean: 10.506 > 6.2386, median: 5 > 3

 \bullet CR vs CS : 0.0002235

mean: 11.7667 > 6.2386, median: 8 > 3

 \bullet CS vs AS_NC : 1.08241e-22

mean: 6.2386 < 11.7198, median: 3 < 7

6.28 MEDIAN POLYPYRITRAC LEN

Back to: Overview | ToC

Meaning: like POLYPYRITRAC LEN MAXBP but median over top-3 predicted BPs

Significant results from Mann-Whitney U test:

 \bullet UP_INTRONS_TAF2 vs DOWN_INTRONS_TAF2dIDR : 0.046529 mean: 16.0337 > 14.09 , median: 14.5 > 13

6.29 MEDIAN POLYPYRITRAC SCORE

Back to: Overview | ToC

Meaning: like POLYPYRITRAC SCORE MAXBP but median over top-3 predicted ${\rm BPs}$

Significant results from Mann-Whitney U test:

• DOWN_INTRONS_TAF2dIDR vs CS : 0.000331214 mean: 24.455 < 29.2968, median: 22 < 26

 \bullet CS vs AS_NC : 0.000237225

mean: 29.2968 > 27.2514, median: 26 > 24

6.30 MEDIAN BPSCORE

Back to: Overview | ToC

Meaning: like BPSCORE MAXBP but median over top-3 predicted BPs

Significant results from Mann-Whitney U test:

 \bullet UP_INTRONS_TAF2 vs CR : 0.0493043

mean: 0.321846 > 0.0460514, median: 0.665263 > 0.264176

 \bullet DOWN_INTRONS_TAF2dIDR vs CS : 0.0235018

mean: -0.0169653 < 0.523785, median: 0.372218 < 0.565722

 \bullet CR vs CS: 0.00548657

mean: 0.0460514 < 0.523785, median: 0.264176 < 0.565722

 \bullet CS vs AS_NC : 0.000316957

mean: 0.523785 > 0.264585 , median: 0.565722 > 0.45818

6.31 MEDIAN TR LENGTH

Back to: Overview | ToC

Meaning: median length of transcripts the intron occurs in

- UP_INTRONS_TAF2 vs CR: 0.0173738
- mean: 34139.5841 > 19738.1837, median: 15230 > 7107 UP_INTRONS_TAF2 vs CS : 2.59227e-19
- mean: 34139.5841 < 75308.278, median: 15230 < 46337.5
- \bullet DOWN_INTRONS_TAF2 vs CS : 1.10492e-17 mean: 29085.8138 <75308.278 , median: 11998.5 <46337.5
- UP_INTRONS_TAF2dIDR vs CR : 0.0116439 mean: 33907.3427 > 19738.1837 , median: 17111 > 7107
- UP_INTRONS_TAF2dIDR vs CS : 4.85822e-14 mean: 33907.3427 < 75308.278, median: 17111 < 46337.5
- UP_INTRONS_TAF2dIDR vs AS_NC : 0.0214639 mean: 33907.3427 > 20284.3203, median: 17111 > 10531.5
- DOWN_INTRONS_TAF2dIDR vs CR : 0.0104752 mean: 33619.035 > 19738.1837, median: 14176.25 > 7107
- \bullet DOWN_INTRONS_TAF2dIDR vs CS : 1.71254e-15 mean: 33619.035 < 75308.278 , median: 14176.25 < 46337.5
- \bullet CR vs CS : 1.02478e-14 mean: 19738.1837 < 75308.278 , median: 7107 < 46337.5
- CR vs AS_NC : 0.0342503 mean: 19738.1837 < 20284.3203, median: 7107 < 10531.5

 \bullet CS vs AS_NC : 1.04971e-127

mean: 75308.278 > 20284.3203, median: 46337.5 > 10531.5

6.32 MEDIAN INTRON NUMBER

Back to: Overview | ToC

Meaning: number of introns of transcripts where intron occurs in

Significant results from Mann-Whitney U test:

- UP_INTRONS_TAF2 vs DOWN_INTRONS_TAF2: 0.0314383
- mean: 11.6308 > 8.734, median: 8 > 6• UP_INTRONS_TAF2 vs CR: 6.326e-05

mean: 11.6308 > 6.2857, median: 8 > 4

- UP_INTRONS_TAF2 vs CS : 1.54687e-05 mean: 11.6308 < 16.4752, median: 8 < 12.5
- DOWN_INTRONS_TAF2 vs CR : 0.00716418 mean: 8.734 > 6.2857, median: 6 > 4
- DOWN_INTRONS_TAF2 vs CS : 1.32177e-11 mean: 8.734 < 16.4752, median: 6 < 12.5
- DOWN_INTRONS_TAF2 vs AS_NC : 9.82127e-06 mean: 8.734 < 12.7339, median: 6 < 10
- UP_INTRONS_TAF2dIDR vs CR : 0.000311467 mean: 11.3258 > 6.2857, median: 9.5 > 4
- UP_INTRONS_TAF2dIDR vs CS : 0.000145679 mean: 11.3258 < 16.4752, median: 9.5 < 12.5
- DOWN_INTRONS_TAF2dIDR vs CS : 3.47182e-06 mean: 10.93 < 16.4752, median: 8.5 < 12.5

 \bullet DOWN_INTRONS_TAF2dIDR vs AS_NC : 0.0375664 mean: 10.93 < 12.7339 , median: 8.5 < 10

 \bullet CR vs CS: 3.87834e-12

mean: 6.2857 < 16.4752, median: 4 < 12.5

 \bullet CR vs AS_NC : 2.5395e-08

mean: 6.2857 < 12.7339 , median: 4 < 10

 \bullet CS vs AS_NC : 6.35515e-12

mean: 16.4752 > 12.7339, median: 12.5 > 10

6.33 INTRON MEDIANRELATIVERANK

Back to: Overview | ToC

Meaning: similar to INTRON MEDIANRANK, relative rank = rank / number of all introns in transcript, is between 0 and 1

- UP_INTRONS_TAF2 vs UP_INTRONS_TAF2dIDR : 0.0158802 mean: 0.617421 < 0.708616 , median: 0.583333 < 0.714286
- UP_INTRONS_TAF2 vs CR : 0.000130569 mean: 0.617421 < 0.787237, median: 0.583333 < 1
- DOWN_INTRONS_TAF2 vs UP_INTRONS_TAF2dIDR : 0.0334102 mean: 0.607061 < 0.708616 , median: 0.604348 < 0.714286
- DOWN_INTRONS_TAF2 vs CR : 0.000319645 mean: 0.607061 < 0.787237 , median: 0.604348 < 1
- UP_INTRONS_TAF2dIDR vs CR : 0.0168714 mean: 0.708616 < 0.787237, median: 0.714286 < 1
- UP_INTRONS_TAF2dIDR vs CS : 6.55648e-06 mean: 0.708616 > 0.576095 , median: 0.714286 > 0.590972
- UP_INTRONS_TAF2dIDR vs AS_NC : 0.043831 mean: 0.708616 > 0.649585 , median: 0.714286 > 0.692105
- DOWN_INTRONS_TAF2dIDR vs CR : 0.000505086 mean: 0.625244 < 0.787237 , median: 0.671875 < 1
- CR vs CS : 6.74798e-08 mean: 0.787237 > 0.576095, median: 1 > 0.590972

 \bullet CR vs AS_NC : $3.6448\mathrm{e}\text{-}05$

mean: 0.787237 > 0.649585 , median: 1 > 0.692105

 \bullet CS vs AS_NC : 1.47703e-09

mean: 0.576095 < 0.649585 , median: 0.590972 < 0.692105

6.34 INTRON MEDIANRELATIVERANK 3BINS

Back to: Overview | ToC

Meaning: median bin into which INTRON MEDIANRELATIVERANK falls when binning 0-1 into 3 bins

- UP_INTRONS_TAF2 vs UP_INTRONS_TAF2dIDR: 0.0268501
 - mean: 2.3458 < 2.5506, median: 2 < 3
- UP_INTRONS_TAF2 vs CR: 0.0308992
 - mean: 2.3458 < 2.5714, median: 2 < 3
- DOWN_INTRONS_TAF2 vs UP_INTRONS_TAF2dIDR: 0.0133042
 - mean: 2.2553 < 2.5506 , median: 2 < 3
- \bullet DOWN_INTRONS_TAF2 vs CR : 0.0196318
 - mean: 2.2553 < 2.5714, median: 2 < 3
- UP_INTRONS_TAF2dIDR vs DOWN_INTRONS_TAF2dIDR: 0.0459304
 - mean: 2.5506 > 2.32, median: 3 = 3
- UP_INTRONS_TAF2dIDR vs CS: 2.36892e-05
 - mean: 2.5506 > 2.2039, median: 3 > 2
- \bullet DOWN_INTRONS_TAF2dIDR vs CR : 0.0493921
 - mean: 2.32 < 2.5714, median: 3 = 3
- \bullet CR vs CS: 0.00048695
 - mean: 2.5714 > 2.2039, median: 3 > 2
- CS vs AS_NC : 4.47311e-09
 - mean: 2.2039 < 2.3962, median: 2 < 3

6.35 INTRON MEDIANRELATIVERANK 5BINS

Back to: Overview | ToC

Meaning: similar to INTRON MEDIANRELATIVERANK 3BINS with 5 bins

Significant results from Mann-Whitney U test:

 $\bullet \ \mathtt{UP_INTRONS_TAF2} \ \mathtt{vs} \ \mathtt{UP_INTRONS_TAF2dIDR} : 0.0186823$

mean: 3.4953 < 3.8989, median: 3 < 4

• UP_INTRONS_TAF2 vs CR : 0.000481161

mean: 3.4953 < 4.1633 , median: 3 < 5

• DOWN_INTRONS_TAF2 vs CR : 0.00276199 mean: 3.4362 < 4.1633, median: 3.5 < 5

• UP_INTRONS_TAF2dIDR vs CR: 0.0392587

mean: 3.8989 < 4.1633, median: 4 < 5

• UP_INTRONS_TAF2dIDR vs CS : 7.17099e-05 mean: 3.8989 > 3.3437, median: 4 > 3

• DOWN_INTRONS_TAF2dIDR vs CR : 0.00535933 mean: 3.54 < 4.1633 , median: 4 < 5

• CR vs CS: 3.21625e-06

mean: 4.1633 > 3.3437, median: 5 > 3

 \bullet CR vs AS_NC : 0.00135058

mean: 4.1633 > 3.6786, median: 5 > 4

• CS vs $AS_NC : 5.56003e-09$

mean: 3.3437 < 3.6786, median: 3 < 4

6.36 INTRON MEDIANRELATIVERANK 10BINS

Back to: Overview | ToC

Meaning: similar to INTRON MEDIANRELATIVERANK 3BINS with 10 bins

Significant results from Mann-Whitney U test:

• UP_INTRONS_TAF2 vs UP_INTRONS_TAF2dIDR: 0.0125033

mean: 6.6075 < 7.4944, median: 6 < 8• UP_INTRONS_TAF2 vs CR: 0.000113986

mean: 6.6075 < 8.1429 , median: 6 < 10

• DOWN_INTRONS_TAF2 vs CR : 0.000849002 mean: 6.5745 < 8.1429, median: 6.5 < 10

• UP_INTRONS_TAF2dIDR vs CR : 0.0196503 mean: 7.4944 < 8.1429, median: 8 < 10

• UP_INTRONS_TAF2dIDR vs CS: 1.32532e-05 mean: 7.4944 > 6.2588, median: 8 > 6

• DOWN_INTRONS_TAF2dIDR vs CR : 0.000810084 mean: 6.74 < 8.1429, median: 7 < 10

• CR vs CS : 2.01587e-07

mean: 8.1429 > 6.2588, median: 10 > 6

 \bullet CR vs AS_NC : 8.77334e-05

mean: 8.1429 > 6.9442, median: 10 > 7

 \bullet CS vs AS_NC : 4.90923e-09

mean: 6.2588 < 6.9442, median: 6 < 7

6.37 NTRS ALL FOR GENE

Back to: Overview | ToC

Meaning: number of transcripts of gene where the intron occurs in

- UP_INTRONS_TAF2 vs CR : 0.00206863 mean: 10.0841 > 7.0204, median: 8 > 5
- UP_INTRONS_TAF2 vs CS : 0.0172566 mean: 10.0841 < 11.266, median: 8 < 10
- UP_INTRONS_TAF2 vs AS_NC : 6.66437e-06 mean: 10.0841 < 13.1423, median: 8 < 11
- DOWN_INTRONS_TAF2 vs CR : 0.025149 mean: 8.6915 > 7.0204, median: 8 > 5
- DOWN_INTRONS_TAF2 vs CS : 0.000186757 mean: 8.6915 < 11.266, median: 8 < 10
- DOWN_INTRONS_TAF2 vs AS_NC : 1.22017e-08 mean: 8.6915 < 13.1423, median: 8 < 11
- UP_INTRONS_TAF2dIDR vs CR : 0.0186041 mean: 9.4831 > 7.0204, median: 9 > 5
- UP_INTRONS_TAF2dIDR vs CS : 0.00558034 mean: 9.4831 < 11.266, median: 9 < 10
- UP_INTRONS_TAF2dIDR vs AS_NC : 4.25044e-06 mean: 9.4831 < 13.1423, median: 9 < 11
- DOWN_INTRONS_TAF2dIDR vs CR : 0.00461313 mean: 10.32 > 7.0204, median: 8 > 5

 \bullet DOWN_INTRONS_TAF2dIDR vs AS_NC : 1.11464e-05

mean: 10.32 < 13.1423 , median: 8 < 11

 \bullet CR vs CS : 2.70254e-07

mean: 7.0204 < 11.266, median: 5 < 10

 \bullet CR vs AS_NC : 2.7049e-10

mean: 7.0204 < 13.1423, median: 5 < 11

 \bullet CS vs AS_NC : 7.55967e-08

mean: 11.266 < 13.1423, median: 10 < 11

6.38 PROP FIRST INTRON

Back to: Overview | ToC

Meaning: NTRS WITH INTRON AS FIRST INTRON / NTRS WITH INTRON

- UP_INTRONS_TAF2 vs DOWN_INTRONS_TAF2 : 0.0160008 mean: 0.249383 < 0.377828 , median: 0 < 0.183333
- UP_INTRONS_TAF2 vs CR : 0.00794986 mean: 0.249383 < 0.489456 , median: 0 < 0.5
- UP_INTRONS_TAF2 vs CS : 0.00647512 mean: 0.249383 > 0.122024, median: 0 = 0
- DOWN_INTRONS_TAF2 vs UP_INTRONS_TAF2dIDR : 0.0284241 mean: 0.377828 > 0.250331 , median: 0.183333 > 0
- DOWN_INTRONS_TAF2 vs CS : 2.50783e-10 mean: 0.377828 > 0.122024, median: 0.183333 > 0
- DOWN_INTRONS_TAF2 vs AS_NC : 1.15924e-06 mean: 0.377828 > 0.158179 , median: 0.183333 > 0
- UP_INTRONS_TAF2dIDR vs CR : 0.0175043 mean: 0.250331 < 0.489456 , median: 0 < 0.5
- UP_INTRONS_TAF2dIDR vs CS : 0.00692755 mean: 0.250331 > 0.122024, median: 0 = 0
- DOWN_INTRONS_TAF2dIDR vs CS : 0.000498849 mean: 0.305726 > 0.122024 , median: 0 = 0
- DOWN_INTRONS_TAF2dIDR vs AS_NC : 0.0387333 mean: 0.305726 > 0.158179 , median: 0 = 0

• CR vs CS : 3.50239e-07

mean: 0.489456 > 0.122024, median: 0.5 > 0

 \bullet CR vs AS_NC : 4.14762e-05

mean: 0.489456 > 0.158179, median: 0.5 > 0

 \bullet CS vs AS_NC : 0.000628243

mean: 0.122024 < 0.158179 , median: 0=0

6.39 PROP LAST INTRON

Back to: Overview | ToC

Meaning: NTRS WITH INTRON AS LAST INTRON / NTRS WITH INTRON

- UP_INTRONS_TAF2 vs CR : 6.86813e-06 mean: 0.234986 < 0.62619 , median: 0 < 1
- DOWN_INTRONS_TAF2 vs CR : 5.11313e-05
- mean: 0.272826 < 0.62619, median: 0 < 1 • DOWN_INTRONS_TAF2 vs CS : 0.0237306
- mean: 0.272826 > 0.152926, median: 0 = 0
- UP_INTRONS_TAF2dIDR vs CR : 0.000346648 mean: 0.307074 < 0.62619 , median: 0 < 1
- UP_INTRONS_TAF2dIDR vs CS : 0.00664224 mean: 0.307074 > 0.152926, median: 0 = 0
- DOWN_INTRONS_TAF2dIDR vs CR : 3.59589e-05 mean: 0.26214 < 0.62619 , median: 0 < 1
- DOWN_INTRONS_TAF2dIDR vs CS : 0.0170834 mean: 0.26214 > 0.152926, median: 0 = 0
- CR vs CS : 6.34572e-12 mean: 0.62619 > 0.152926, median: 1 > 0
- CR vs AS_NC : 1.77408e-07 mean: 0.62619 > 0.237764 , median: 1 > 0
- CS vs AS_NC : 5.66807e-09 mean: 0.152926 < 0.237764, median: 0 = 0

6.40 PROP INTERNAL INTRON

Back to: Overview | ToC

Meaning: NTRS WITH INTRON AS INTERNAL INTRON / NTRS WITH INTRON

- UP_INTRONS_TAF2 vs DOWN_INTRONS_TAF2 : 0.0260942 mean: 0.596639 > 0.46737, median: 0.75 > 0.464286
- UP_INTRONS_TAF2 vs CR : 1.07198e-05 mean: 0.596639 > 0.242857, median: 0.75 > 0
- UP_INTRONS_TAF2 vs CS : 0.00202874 mean: 0.596639 < 0.750345, median: 0.75 < 0.888889
- DOWN_INTRONS_TAF2 vs CR : 0.00215016 mean: 0.46737 > 0.242857 , median: 0.464286 > 0
- DOWN_INTRONS_TAF2 vs CS : 6.29367e-10 mean: 0.46737 < 0.750345, median: 0.464286 < 0.888889
- DOWN_INTRONS_TAF2 vs AS_NC : 0.00026969 mean: 0.46737 < 0.647068 , median: 0.464286 < 0.8
- UP_INTRONS_TAF2dIDR vs CR : 0.00012496 mean: 0.569552 > 0.242857 , median: 0.75 > 0
- UP_INTRONS_TAF2dIDR vs CS : 0.000164199 mean: 0.569552 < 0.750345 , median: 0.75 < 0.888889
- DOWN_INTRONS_TAF2dIDR vs CR : 7.70196e-05 mean: 0.557913 > 0.242857 , median: 0.75 > 0
- DOWN_INTRONS_TAF2dIDR vs CS : 3.14037e-05 mean: 0.557913 < 0.750345, median: 0.75 < 0.888889

 \bullet CR vs CS : 1.2596e-12

mean: 0.242857 < 0.750345, median: 0 < 0.888889

 \bullet CR vs AS_NC : 1.58787e-08

mean: 0.242857 < 0.647068 , median: 0 < 0.8

 \bullet CS vs AS_NC : 1.08108e-10

mean: 0.750345 > 0.647068, median: 0.888889 > 0.8

6.41 PROP INTRON IN UTR

Back to: Overview | ToC

Meaning: NTRS WITH INTRON IN UTR / NTRS WITH INTRON

Significant results from Mann-Whitney U test:

• UP_INTRONS_TAF2 vs CS : 0.0355764 mean: 0.0251573 > 0.0111757 , median: 0 = 0

• DOWN_INTRONS_TAF2 vs UP_INTRONS_TAF2dIDR: 0.0224228

mean: 0.0411585 > 0.0138109, median: 0 = 0

• DOWN_INTRONS_TAF2 vs CS: 0.00287597

mean: 0.0411585 > 0.0111757, median: 0 = 0

 \bullet CS vs AS_NC : 0.00606231

mean: 0.0111757 < 0.0200644, median: 0 = 0