

NATURAL LANGUAGE PROCESSING (NLP)

PMDS606L

MODULE 3 LECTURE 2

Dr. Kamanasish Bhattacharjee

Assistant Professor

Dept. of Analytics, SCOPE, VIT

UNIGRAM

The dog barks

P(dog)?

The cat sleeps

The dog runs

The cat jumps

TRIGRAM

The girl bought a chocolate

P(The girl bought)?

The boy ate the chocolate

P(The girl played)?

The girl bought a toy

The girl played with the toy

N-GRAM

I am Henry

I like college

Do Henry like college

Henry I am

Do I like Henry

Do I like college

I do like Henry

Bigram

Do ____ ?

Henry _____?

Trigram

I like ?

Do I ____ ?

4-gram

I like college ____?

Do I like ____?

P (I like college)?

P (Do I like Henry)?

BERKELEY RESTAURANT PROJECT

A dialogue system from the last century that answered questions about a database of restaurants in Berkeley, California.

9332 sentences

1446 words

can you tell me about any good cantonese restaurants close by tell me about chez panisse i'm looking for a good place to eat breakfast when is caffe venezia open during the day

BIGRAM AND UNIRAM PROABILITY MATRIX

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

i	want	to	eat	chinese	food	lunch	spend
2533	927	2417	746	158	1093	341	278

BIGRAM PROABILITY MATRIX NORMALIZED BY UNIGRAM COUNTS

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

BERKELEY RESTAURANT PROJECT

Here are a few other useful probabilities:

$$P(i | \langle s \rangle) = 0.25$$
 $P(english | want) = 0.0011$ $P(food | english) = 0.5$ $P(\langle s \rangle | food) = 0.68$

Now we can compute the probability of sentences like *I want English food* or *I want Chinese food* by simply multiplying the appropriate bigram probabilities together, as follows:

```
P(<s> i want english food </s>)
= P(i|<s>)P(want|i)P(english|want)
P(food|english)P(</s>|food)
= 0.25 \times 0.33 \times 0.0011 \times 0.5 \times 0.68
= 0.000031
```

BIGRAM

I am from Vellore

I am a teacher

students are good and are from various cities

students from Vellore do engineering

BIGRAM PROABILITY MATRIX NORMALIZED BY UNIGRAM COUNTS

		w_n						
		students	are	from	Vellore			
	<s></s>	2/4	0/4	0/4	0/4	0/4		
w _{n-1}	students	0/2	1/2	1/2	0/2	0/2		
	are	0/2	0/2	1/2	0/2	0/2		
	from	0/3	0/3	0/3	2/3	0/3		
	Vellore	0/2	0/2	0/2	0/2	1/2		