COM6115: Text Processing

Information Retrieval: Term Manipulation

Mark Hepple

Department of Computer Science University of Sheffield

Overview

- Definition of the information retrieval problem
- Approaches to document indexing
 - manual approaches
 - automatic approaches
- Automated retrieval models
 - boolean model
 - ranked retrieval methods (e.g. vector space model)
- Term manipulation:
 - stemming, stopwords, term weighting
- Web Search Ranking
- Evaluation

What counts as a term?

Common to just use the words, but pre-process them for generalisation

- Tokenisation: split words from punctuation (get rid of punctuation)
 e.g. word-based. → word based three issues: → three issues
- Capitalisation: normalise all words to lower (or upper) case
 e.g. Cat and cat should be seen as the same term, but should we conflate Turkey and turkey?
- Lemmatisation: conflate different inflected forms of a word to their basic form (singular, present tense, 1st person):
 - e.g. cats, cat o cat have, has, had o have worried, worries o worry

What counts as a term? (ctd)

• Stemming: conflate morphological variants by chopping their affix:

CONNECTED
CONNECTING
CONNECTION
CONNECTIONS

WORRY
WORRIED
WORRIES
WORRYING
WORRYINGLY

GALL
GALLING
GALLED
GALLEY
GALLERY

- Normalisation: heuristics to conflate variants due to spelling, hyphenation, spaces, etc.
 - e.g. USA and U.S.A. and U.S.A. \rightarrow USA
 - e.g. chequebook and cheque book \rightarrow cheque book
 - e.g. word-sense and word sense \rightarrow word-sense

Word Frequency and Term Usefulness

- The most and least frequent terms are not the most useful for retrieval
 - ♦ (Figure from van Rijsbergen (1979) Information Retrieval http://www.dcs.gla.ac.uk/Keith/Preface.html)

Stop words

- Use Stop list removal to exclude "non-content" words
- Usually most frequent (and least useful for retrieval)

а	always	both
about	am	being
above	among	СО
across	amongst	could

- greatly reduces the size of the inverted index
- but what if we want to search for *phrases* that include these terms?
 - Kings of Leon
 - Let it be
 - To be or not to be
 - Flights to London

Single vs. Multi-word Terms

- To aid recognition of phrases, might allow multi-word terms
 e.g. Sheffield University
- Possible approach allow multi-word indexing
 e.g. bigram indexing: store each bigram as a term in index

For pease porridge in the pot get:

pease porridge porridge in in the the pot

- ♦ Problem: number of bigrams is v.large c.f. number of words
 - leads to a huge increase in size of the index
- Alternative: identify multi-word phrases during retrieval
 - Positional indexes, storing position terms in documents, can help
 - use to compute if occurrences of search terms in document are adjacent / close / far apart

Single vs. Multi-word Terms (ctd)

Positional indexes:

Doc	Text
1	Pease porridge hot, pease porridge cold
2	Pease porridge in the pot
3	Nine days old
4	Some like it hot, some like it cold
5	Some like it in the pot
6	Nine days old

Num	Token	Docs
1	cold	1:(6), 4:(8)
2	days	3:(2), 6:(2)
3	hot	1:(3), 4:(4)
4	in	2:(3), 5:(4)
5	it	4:(3, 7), 5:(3)
6	like	4:(2, 6), 5:(2)
7	nine	3:(1), 6:(1)
8	old	3:(3), 6:(3)
9	pease	1:(1, 4), 2:(1)
10	porridge	1:(2, 5), 2:(2)
11	pot	2:(5), 5:(6)
12	some	4:(1, 5), 5:(1)
13	the	2:(4), 5:(5)

