204224 ปฏิบัติการวงจรตรรกะ

ปฏิบัติการที่ 2 ระบบควบคุมความปลอดภัยรถยนต์ (Car Security System) (การลดรูปสมการลอจิก Karnaugh Maps)

วัตถุประสงค์ เพื่อให้นิสิตนความรู้จากการเรียนในวิชา 204222 มาประยุกต์ใช้งานจริง ออกแบบระบบควบคุม ความปลอดภัยรถยนต์ โดยใช้ Karnaugh Maps ช่วยในการหาสมการลอจิก

ทฤษฎีที่ต้องเข้าใจ

หลักการลดรูปสมการลอจิก (Boolean/logic Algebra)

นอกจากการใช้กฎการลดรูปต่าง ๆ ของสมการลอจิก อีกวิธีหนึ่งที่ง่ายเพราะเป็นการใช้รูปภาพไดอะแกรมคือ Karnaugh map (หรือเรียกย่อว่า K-map) ซึ่งมีหลักการง่ายๆดังนี้

1) หากมีตัวแปร 2 ตัวให้สร้าง K-map ได้อะแกรมดังนี้ (เทียบ๊กับ Truth Table ข้างเพื่อความเข้าใจ) นิสิตสังเกตการณ์วางค่า ลอจิกของตัวแปร

Α	В	F
0	0	a
0	1	Ъ
1	0	С
1	1	d

B	0	1
0	a	Ъ
1	С	d

Truth Table.

F.

ให้คัดลอกค่าผลลัพธ์ F (output) จาก Truth table มาลงที่ตาราง K-map ตรงตามตำแหน่งตัวแปร A และ B ดังรูป

Α	В	F
0	0	0
0	1	1
1	0	1 ≪
1	1	1
		I

B	0	1	
0	0	1	-
1	1	1	
			•

Truth Table.

F

จากนั้นเขียนสมการลอจิกตามนะที่เป็น 1 ตามตามตัวแปร A และ B เช่น

ตัวอย่างที่ 1 ฟังก์ชั่น $Z=f(A,B)=A\overline{B}+AB$ จาก Truth table จะวาด K-map ไดอะแกรม

ได้

Α	В	$Z = A\overline{B} + AB$
0	0	0
0	1	0
1	0	1
1	1	1

BA	0	1
0		$\lceil \overline{1} \rceil$
1		1

เราจะได้ว่าจาก K-map ได้อะแกรมเมื่อจัดกลุ่มลอจิก 1 เข้าด้วยกัน จะได้ว่า Z = A ้ ซึ่งถ้าใช้ กฎการลดรูปต่าง ๆ ของสมการล่อจิกจะเป็นดังนี้

$$Z = A\overline{B} + AB$$

$$Z = A(\overline{B} + B)$$

$$Z = A(1) = A$$

ตัวอย่างที่ 2 ฟังก์ชั้น $Z=f(A,B)=\overline{AB}+A\overline{B}+\overline{AB}$

Α	В	$Z = \overline{AB} + A\overline{B} + \overline{AB}$
0	0	1
0	1	1
1	0	1
1	1	0

กัน จะได้

เราจะได้ว่าจาก K-map ไดอะแกรมเมื่อจัดกลุ่มลอจิก 1 เข้าด้วย $\exists 1 \quad Z = \overline{A} + \overline{B}$

ชื่งถ้าใช้ ก<u>ฎ</u>การลดรูปต่าง ๆ ของสมการลอจิกจะเป็นดังนี้ $Z=\overline{AB}+\overline{AB}+\overline{AB}$

$$Z = \overline{AB} + A\overline{B} + \overline{AB}$$

$$Z = (\overline{AB} + \overline{AB}) + A\overline{B}$$

$$Z = \overline{A} \left(\overline{B} + B \right) + A \overline{B}$$

$$Z = \overline{A} + A\overline{B}$$

$$Z = (\overline{A} + \overline{AB}) + A\overline{B}$$
 เพราะ $\overline{A} = \overline{A} + \overline{AB}$

$$Z = \overline{A} + (\overline{AB} + A\overline{B})$$

$$Z = \overline{A} + \overline{B}$$

กฎ Karnaugh map ในการลดรูปสมการลอจิก คือจัดกลุ่มลอจิก 1 ที่อยู่ใกล้กันดังนี้

ชื่อ-นามสกุล: วรรธนัย สาธุพันธ์ เลขประจำตัว: 6010500117 กลุ่มที่จัดต้องอยู่ในแนวแนว หรือแนวตั้ง **ห้ามแนวทะแยง** 1 1 0 0 0 †₁-<u>(1</u> wrong X RIGHT 🗸 กลุ่มที่จัดต้องมีจำนวน 1, 2, 0 00 01 11 10 4 ,8 ... หรือ 2ⁿ Group of 3 $\overline{1}$ 1)-Group of 2 [1 1 0 0 0 0 0 0 0 0 RIGHT 🗸 WRONG X 00 01 11 10 Group of 5 1 Group of 4 Χ 0 0 0 1 1 RIGHT 🗸 wrong imesกลุ่มที่จัดต้องมี-กลุ่มที่จะจัด ต้องให้ใหญ่ที่สุดเท่าที่จะจัด 00 00 10 01 1 1) 1 ได้ <u>{1</u> 1) 0 0 1 1 0 0 RIGHT V $wrong \times$ (Note that no Boolean laws broken, but not sufficiently minimal) ทุกๆช่องที่มีลอกจิก เป็น 1 จะ ถูกจัดเข้ากลุ่มเสมอกลุ่มที่จัด 1 1 Ģгоцр I 0 สามารถเล็กสุดคือมี 1 ตัว _1 present in at least one group. Group II $\{\widetilde{1}\}$ เดียว

การทดลอง ระบบควบคุมความปลอดภัยรถยนต์ (Car Security System) **อุปกรณ์ที่ต้องใช้** 1) โปรแกรม logicism

2) อุปกรณ์ตามตาราง

No.	Description of Item	Quantity
1	NX-4i Board	1
2	7404 Hex Inverters	1
3	7408 Quad AND gate	1
4		
5		
6		

เงื่อนไขการทำงานของระบบ

1. เพื่อความปลอดภัยของผู้ขับรถและผู้ร่วมเดินทาง การติดเครื่องยนต์จะทำได้ต่อเมื่อผู้ขับเข้าไปนั่งในรถ และระบบตรวจสอบได้ว่าประตูทั้งหมดถูกปิดอย่างเรียบร้อย และที่นั่งมีคนนั่งได้สวมเข็มชัด (Seatbelt) แล้ว และพร้อมกับคนขับรถบิดลูกกุญแจเพื่อสตาร์ทรถ ตรวจสอบทุกอย่างถูกต้องเครื่องยนต์จถูกสตาร์ท แต่ถ้าไม่ใช่จะมีเสียงเตือนดังขึ้นแทน

Car Security System

นิสิตจงออกแบบวงจรตรรกะของสัญญาณ สตาร์ทเครื่องยนต์(Engine) และของสัญญาณเสียงเตือน (Buzzer)

1) เขียน Truth table โดย K=Key C=Cardoors S=Seatbelt B=Buzzer และ E=Engine

Inputs		Output		
K	C	S	В	Е
0	X	X	0	0
1	0	0	1	0
1	1	0	1	0
1	1	1	0	1
1	1	0	1	0

2) เขียนสมการตรรกะโดยใช้วิธี K-Maps

	CS			
Key	00	01	11	10
0	0	0	0	0
1	0	0	1	0
E= K	CS			

	CS			
Key	00	01	11	10
0	0	0	0	0
1	1	1	0	1
B = KC' + KS' = K(C'+S') = K(CS)'				

จัดกลุ่มในไดอะแกรม K-map 2. จำลองการทำงานบนโปรแกรม Logisim

ภาพไดอะแกรมวงจร

ชื่อ-นามสกุล: วรรธนัย สาธุพันธ์ เลขประจำตัว: 6010500117

3. จงใช้ IC ต่อวงจรวงจรที่ออกแบบ บนบอร์ดทดลอง NX-4i สอบการทำงาน ให้ตรงกับ Truth Table ที่ได้จากการจำลอง

ภาพถ่ายวงจรบนบอร์ดทดลอง NX-4i สอบ

แบบฝึกหัดเพิ่มเติม วงจรดิจิทัลตรวจเลขคี่(Odd number)

1) ตัวเลขขนาด 4 บิต แทนเลขจำนวนเต็มบวกฐานสิบ (Unsign Integer) ให้นิสิตออกแบบวงจรตรรกะ ตรวจสอบว่าตัวเลข(ฐานสิบ)ที่เกิดขึ้นจากค่า 0 – 9 เป็นเลขจำนวนคี่ สมมุติให้ DCBA เป็นเลขฐาน สองประจำหลัก D คือหลักที่ 3 และ A คือหลักที่ 0

1.1 นิสิตเขียน Truth table

D	C	В	A	ค่าจำนวนฐาน	Odd
				สิบ	
0	0	0	0	0	0
0	0	0	1	1	1
0	0	1	0	2	0
0	0	1	1	3	1
0	1	0	0	4	0
0	1	0	1	5	1
0	1	1	0	6	0
0	1	1	1	7	1
1	0	0	0	8	0
1	0	0	1	9	1

และเขียน K-map ไดอะแกรม แล้วจัดกลุ่มช่องตารางที่เป็นหนึ่ง

on it inap mostilism tens imite				
	$\overline{C}\overline{D}$	$\overline{C}D$	CD	$C\overline{D}$
\overline{AB}	0	1	1	0
$\overline{A}B$	0	1	1	0
AB	0	1	1	0
$A\overline{B}$	0	1	1	0

ภาพไดอะแกรมวงจร