Chapter 6: I/O System

Ngo Lam Trung

[with materials from Computer Organization and Design, 4th Edition, Patterson & Hennessy, © 2008, MK and M.J. Irwin's presentation, PSU 2008]

Review: Major Components of a Computer

- □ Input + Output = I/O system
- Hard disk
- Network

Anything else?

USB drive

Important metrics for an I/O system

- Performance
- Expandability
- Dependability
- □ Cost, size, weight
- Security

■ What is the most important?

A Typical I/O System

Input and Output Devices

- □ I/O devices are incredibly diverse with respect to
 - Behavior input, output or storage
 - Partner human or machine
 - Data rate the peak rate at which data can be transferred between the I/O device and the main memory or processor

Device	Behavior	Partner	Data rate (Mb/s)
Keyboard	input	human	0.0001
Mouse	input	human	0.0038
Laser printer	output	human	3.2000
Magnetic disk	storage	machine	800.0000-3000.0000
Graphics display	output	human	800.0000-8000.0000
Network/LAN	input or output	machine	100.0000- 10000.0000

I/O Performance Measures

- I/O bandwidth (throughput) amount of information that can be input/output and communicated across an interconnect between the processor/memory and I/O device per unit time
 - 1. How much data can we move through the system in a certain time?
 - 2. How many I/O operations can we do per unit time?
- I/O response time (latency) the total elapsed time to accomplish an input or output operation

Many applications require both high throughput and short response times

Dependability: Reliability and Availability

- Mean Time To Failure (MTTF): average time of normal operation between two consecutive failure
- Mean Time To Repair (MTTR): average time of service interruption when failure occurs

- Reliability: measured by MTTF
- Availability:

Availability =
$$\frac{\text{MTTF}}{(\text{MTTF} + \text{MTTR})}$$

■ Example: Seagate ST33000655SS MTTF = 1400000 hours @25°C

Physical connection

- Processor
- Memory
- □ I/O devices

How to connect them physically?

I/O System Interconnect Issues

- A bus is a shared communication link (a single set of wires used to connect multiple subsystems) that needs to support a range of devices with widely varying latencies and data transfer rates
 - Advantages
 - Versatile new devices can be added easily and can be moved between computer systems that use the same bus standard
 - Low cost a single set of wires is shared in multiple ways
 - Disadvantages
 - Creates a communication bottleneck bus bandwidth limits the maximum I/O throughput
- The maximum bus speed is largely limited by
 - The length of the bus
 - The number of devices on the bus

Types of Buses

- Processor-memory bus ("Front Side Bus", proprietary)
 - Short and high speed
 - Matched to the memory system to maximize the memoryprocessor bandwidth
 - Optimized for cache block transfers
- □ I/O bus (industry standard, e.g., SCSI, USB, Firewire)
 - Usually is lengthy and slower
 - Needs to accommodate a wide range of I/O devices
 - Use either the processor-memory bus or a backplane bus to connect to memory
- Backplane bus (industry standard, e.g., ATA, PClexpress)
 - Allow processor, memory and I/O devices to coexist on a single bus
 - Used as an intermediary bus connecting I/O busses to the processor-memory bus

I/O Transactions

- An I/O transaction is a sequence of operations over the interconnect that includes a request and may include a response either of which may carry data.
- An I/O transaction typically includes two parts
 - Sending the address
 - Receiving or sending the data

- Bus transactions are defined by what they do to memory
- output A read transaction reads data from memory (to either the processor or an I/O device)
- input A write transaction writes data to the memory (from either the processor or an I/O device)

Synchronous and Asynchronous Buses

- Synchronous bus (e.g., processor-memory buses)
 - Includes a clock in the control lines and has a fixed protocol for communication that is relative to the clock
 - Advantage: involves very little logic and can run very fast
 - Disadvantages:
 - Every device communicating on the bus must use same clock rate
 - Short distance
- Asynchronous bus (e.g., I/O buses)
 - It is not clocked, so requires a handshaking protocol and additional control lines (ReadReq, Ack, DataRdy)
 - Advantages:
 - Can accommodate a wide range of devices and device speeds
 - Can be lengthened without worrying about clock skew or synchronization problems

Disadvantage: slow(er)

Key Characteristics of some I/O Standards

	Firewire	USB 2.0	PCle	Serial ATA	SA SCSI
Use	External	External	Internal	Internal	External
Devices per channel	63	127	1	1	4
Max length	4.5 meters	5 meters	0.5 meters	1 meter	8 meters
Data Width	4	2	2 per lane	4	4
Peak Bandwidth	50MB/sec (400) 100MB/sec (800)	0.2MB/sec (low) 1.5MB/sec (full) 60MB/sec (high)	250MB/sec per lane (1x) Come as 1x, 2x, 4x, 8x, 16x, 32x	300MB/sec	300MB/sec
Hot pluggable?	Yes	Yes	Depends	Yes	Yes

A Typical I/O System

Example: The Pentium 4's Buses

Intel Core i7 with Z87 chipset

Interfacing I/O Devices

Physical connection is done, now how about data transfer?

- □ How is a user I/O request transformed into a device command and communicated to the device?
- How is data actually transferred to or from a memory location?
- What is the role of the operating system?

Communication of I/O Devices and Processor

- How the processor directs (find) the I/O devices
 - Special I/O instructions
 - Must specify both the device and the command
 - Memory-mapped I/O
 - I/O devices are mapped to memory addresses
 - Read and writes to those memory addresses are interpreted as commands to the I/O devices
 - Load/stores to the I/O address space can only be done by the OS
- How I/O devices communicate with the processor
 - Polling the processor periodically checks the status of an I/O device to determine its need for service
 - Processor is totally in control but does all the work
 - Can waste a lot of processor time due to speed differences
 - Interrupt-driven I/O the I/O device issues an interrupt to indicate that it needs attention

Interrupt Driven I/O

- □ An I/O interrupt is asynchronous instruction execution
 - Is not associated with any instruction so doesn't prevent any instruction from completing
 - You can pick your own convenient point to handle the interrupt
- With I/O interrupts
 - Need a way to identify the device generating the interrupt
 - Can have different urgencies (so need a way to prioritize them)
- Advantages of using interrupts
 - Relieves the processor from having to continuously poll for an I/O event; user program progress is only suspended during the actual transfer of I/O data to/from user memory space
- Disadvantage special hardware is needed to
 - Indicate the I/O device causing the interrupt and to save the necessary information prior to servicing the interrupt and to resume normal processing after servicing the interrupt

Direct Memory Access (DMA)

- For high-bandwidth devices (like disks) interrupt-driven
 I/O would consume a lot of processor cycles
- With DMA, the DMA controller has the ability to transfer large blocks of data directly to/from the memory without involving the processor
 - 1. The processor initiates the DMA transfer by supplying the I/O device address, the operation to be performed, the memory address destination/source, the number of bytes to transfer
 - 2. The DMA controller manages the entire transfer (possibly thousand of bytes in length), arbitrating for the bus
 - 3. When the DMA transfer is complete, the DMA controller interrupts the processor to let it know that the transfer is complete
- There may be multiple DMA devices in one system

Processor and DMA controllers contend for bus cycles and for memory

Summary

- Characteristics of I/O system and devices
- □ I/O performance measures
- I/O system organization
- Methods for I/O operation and control
 - Polling
 - Interrupt
 - DMA