Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (original) A histone deacetylase inhibitor of formula (1):

or a pharmaceutically acceptable salt thereof, wherein

Ar² is a saturated or mono- or poly- unsaturated C_5 - C_{14} -mono- or fused poly- cyclic hydrocarbyl, optionally containing one, two, three, or four annular heteroatoms per ring optionally substituted with one or more groups selected from C_1 - C_7 -alkyl, hydroxy, C_1 - C_7 -alkoxy, halo, and amino, provided that an annular O or S is not adjacent to another annular O or S;

 R^5 and R^6 are independently selected from the group consisting of hydrogen, C_1 - C_7 -alkyl, aryl, and aralkyl;

 R^2 , R^3 and R^4 are independently selected from the group consisting of hydrogen, halogen, -NH₂, nitro, hydroxy, aryl, heterocyclyl, C_3 - C_8 -cycloalkyl, heteroaryl, C_1 - C_7 -akyl, haloalkyl, C_1 - C_7 -alkenyl, C_1 - C_7 -alkyl-aryloxy, C_1 - C_7 -alkyl-arylsulfanyl, C_1 - C_7 -alkyl-arylsulfinyl, C_1 - C_7 -alkyl-arylsulfonyl, C_1 - C_7 -alkyl-arylaminosulfonyl, C_1 - C_7 -alkyl-arylamine, C_1 - C_7 -alkyl or C_1 - C_7 -alkoxy;

q is 0 or 1;

 R^1 is a mono-, bi-, or tri-cyclic aryl or heteroaryl, each of which is optionally substituted; Y is any pharmaceutically acceptable chemical moiety consisting of 1 to 50 atoms; and provided that

when R^1 is *N*-imidazolyl, R^2 - R^4 are H, q is 0, and Ar^2 is pyridine, Y is not CI; and when R^1 is *p*-aminophenyl, R^2 - R^4 are H, q is 0, and Ar^2 is phenyl, Y is not H.

2. (original) The compound according to claim 1 wherein R^1 is phenyl, naphthyl, anthracenyl, or fluorenyl.

- 3. (original) The compound according to claim 1 wherein R¹ is furanyl or thienyl.
- 4. (original) The compound according to claim 2 wherein R², R³, and R⁴ are all -H.
- 5. (original) The compound according to claim 3 wherein R², R³, and R⁴ are all –H.
- 6. (original) The compound according to claim 1 wherein Y is Cy²-X¹- and
- Cy² is hydrogen, cycloalkyl, aryl, heteroaryl, or heterocyclyl, each of which is optionally substituted and each of which is optionally fused to one or two aryl or heteroaryl rings, or to one or two saturated or partially unsaturated cycloalkyl or heterocyclic rings, and wherein any of the aforementioned rings are optionally substituted; and
- X¹ is selected from the group consisting of a covalent bond, M¹-L²-M¹, and L²-M²-L² wherein
- L^2 , at each occurrence, is independently selected from the group consisting of a chemical bond, C_0 - C_4 -hydrocarbyl, C_0 - C_4 -hydrocarbyl, C_0 - C_4 -hydrocarbyl, C_0 - C_4 -hydrocarbyl, provided that L^2 is not a chemical bond when X^1 is M^1 - L^2 - M^1 ;
- M^1 , at each occurrence, is independently selected from the group consisting of -O-, -N(R^7)-, -S-, -S(O)-, S(O)₂-, -S(O)₂N(R^7)-, -N(R^7)-S(O)₂-, -C(O)-NH-, -NH-C(O)-, -NH-C(O)-O-and -O-C(O)-NH-, -NH-C(O)-NH-,
- R^7 is selected from the group consisting of hydrogen, C_1 - C_6 -hydrocarbyl, aryl, aralkyl, acyl, C_0 - C_6 -hydrocarbyl-heteroaryl, wherein the hydrocarbyl moieties are optionally substituted with –OH, -NH₂, -N(H)CH₃, –N(CH₃)₂, or halo; and
- M^2 is selected from the group consisting of M^1 , heteroarylene, and heterocyclylene, either of which rings optionally is substituted.
- 7. (original) The compound according to claim 6, wherein X^1 is selected from the group consisting of a -N(Z)-C₀-C₇-alkyl-, -O-C₀-C₇-alkyl-, -C(H)=CH-C₀-C₇-alkyl-, -S-C₀-C₇-alkyl-, or -C₁-C₇-alkyl-, wherein Z is -H or -C₁-C₇-alkyl- optionally substituted with -OH, -NH₂, or halo.
- 8. (original) The compound according to claim 6, wherein X¹ is selected from methylene, aminomethyl, and thiomethyl.
- 9. (original) The compound according to claim 6, wherein Cy² is selected from

each of which optionally is substituted and optionally is fused to one or more aryl rings.

- 10. (original) The compound according to claim 6 wherein Cy² is aryl or heteroaryl, each optionally substituted.
- 11. (original) The compound according to claim 6 wherein Cy² is phenyl, pyrimidinyl, benzoimidazolyl or benzothiazolyl, each of which is optionally substituted.
- 12. (original) The compound according to claim 11 wherein Cy² has from one and three substituents independently selected from the group consisting of C₁-C₇-alkoxy, halo, di-C₁-C₇-alkoxy and heteroaryl.
- 13. (original) The compound according to claim 12 wherein the substituents are selected from methoxy, fluoro, chloro, pyridinyl and dimethylamino-ethoxy.
- 14. (original) The compound according to claim 13 wherein Cy² is phenyl substituted with one to three CH₃O-.
- 15. (original) The compound according to claim 6 wherein Y is (V'-L⁴)_t-V-L³-, and

L³ is a direct bond, $-C_1-C_6$ -hydrocarbyl, $-(C_1-C_3$ -hydrocarbyl)_{m1}-X'- $-(C_1-C_3$ -hydrocarbyl)_{m2}, -NH- $-(C_0-C_3$ -hydrocarbyl)-NH-, or -NH- $-(C_1-C_3$ -hydrocarbyl)-NH-;

m1 and m2 are independently 0 or 1;

X' is -N(R^{21})-, -C(O)N(R^{21})-, N(R^{21})C(O)-, -O-, or -S-;

R²¹ is -H, V"-(C₁-C₆-hydrocarbyl)_a;

 L^4 is $(C_1-C_6-hydrocarbyl)_a-M-(C_1-C_6-hydrocarbyl)_b$;

a and b are independently 0 or 1;

M is -NH-, -NHC(0)-, -C(0)NH-, -C(0)-, -SO₂-, -NHSO₂-, or -SO₂NH-

V, V', and V" are independently selected from cycloalkyl, heterocyclyl, aryl, and heteroaryl; t is 0 or 1:

16. (original) The compound according to claim 15 wherein Y is V-L 3 and L 3 is -NH-CH- or -CH-NH-:

- V is phenyl optionally substituted with from 1 to 3 moieties independently selected from halo, hydroxy, C₁-C₆-hydrocarbyl, C₁-C₆-hydrocarbyl-oxy or -thio (particularly methoxy or methylthio), wherein each of the hydrocarbyl moieties are optionally substituted with one or more moieties independently selected from halo, nitroso, amino, sulfonamido, and cyano.
- 17. (original) The compound according to claim 16 wherein V is an optionally substituted ring moiety selected from:

- 18. (original) The compound according to claim 6 wherein
- Cy² is cycloalkyl, aryl, heteroaryl, or heterocyclyl, each of which optionally is substituted, and each of which optionally is fused to one or more aryl or heteroaryl rings, or to one or more saturated or partially unsaturated cycloalkyl or heterocyclic rings, each of which rings optionally is substituted, provided that when Cy² is a cyclic moiety having -C(O)-, -C(S)-, -S(O)-, or -S(O)₂- in the ring, then Cy² is not additionally substituted with a group comprising an aryl or heteroaryl ring; and
- X¹ is selected from the group consisting of a chemical bond, L³, W¹-L³, L³-W¹, W¹-L³-W¹, and L³-W¹-L³, wherein
- W¹, at each occurrence, is S, O, or N(R⁹), where R⁹ is selected from the group consisting of hydrogen, alkyl, aryl, and aralkyl; and
- L^3 is C_1 - C_4 alkylene, C_2 - C_4 alkenylene, or C_2 - C_4 alkynylene.
- 19. (original) The compound according to claim 6 wherein Y is selected from:
 - a) $A_1-L_1-B_1$ -, wherein A_1 is an optionally substituted aryl, optionally substituted heteroaryl or optionally substituted heterocyclyl; wherein L_1 is $-(CH_2)_{0^{-1}}NH(CH_2)_{0^{-1}}$ -, -NHC(O)-, or $-NHCH_2$ -; and wherein B_1 is phenyl or a covalent bond;

- b) A_2 - L_2 - B_2 -, wherein A_2 is $CH_3(C=CH_2)$ -, optionally substituted cycloalkyl, optionally substituted alkyl, or optionally substituted aryl; wherein L_2 is -C=C-; and wherein B_2 is a covalent bond;
- c) A_3 - L_3 - B_3 -, wherein A_3 is an optionally substituted aryl, optionally substituted heteroaryl or optionally substituted heterocyclyl; wherein L_3 is a covalent bond; and wherein B_3 is CH_2NH -;
- d) $A_4-L_4-B_4$, wherein A_4 is an optionally substituted aryl; wherein L_4 is $-NHCH_2$; and wherein B_4 is a thienyl group;
- e) $A_5-L_5-B_5$ -, wherein A_5 is an optionally substituted heteroaryl or optionally substituted heterocyclyl; wherein L_5 is a covalent bond; and wherein B_5 is -SCH₂-:
- f) morpholinyl-CH₂-
- g) optionally substituted aryl;
- h) $A_6-L_6-B_6-$, wherein A_6 is an optionally substituted aryl, optionally substituted heteroaryl or optionally substituted heterocyclyl; wherein L_6 is a covalent bond; and wherein B_6 is NHCH₂-;
- i) $A_7-L_7-B_7$, wherein A_7 is an optionally substituted heteroaryl or optionally substituted heterocyclyl; wherein L_7 is a covalent bond; and wherein B_7 is $-CH_2$ -;
- optionally substituted heteroaryl or optionally substituted heterocyclyl;
- k) A_8 - L_8 - B_8 -, wherein A_8 is optionally substituted phenyl; wherein L_8 is a covalent bond; and wherein B_8 is -0-;
- I) A_9 - L_9 - B_9 -, wherein A_9 is an optionally substituted aryl; wherein L_9 is a covalent bond; and wherein B_9 is a furan group;
- m) A_{10} - L_{10} - B_{10} -, wherein A_{10} is an optionally substituted heteroaryl or optionally substituted heterocyclyl; wherein L_{10} is $-CH(CH_2CH_3)$ -; and wherein B_{10} is $-NHCH_2$ -;
- n) A_{11} - L_{11} - B_{11} -, wherein A_{11} is an optionally substituted heteroaryl or optionally substituted heterocyclyl; wherein L_{11} is a covalent bond; and wherein B_{11} is $-OCH_{2}$ -;
- o) A_{12} - L_{12} - B_{12} -, wherein A_{12} is an optionally substituted aryl, optionally substituted heteroaryl or optionally substituted heterocyclyl; wherein L_{12} is-NHC(O)-; and wherein B_{12} is -N(optionally substituted aryl)CH₂-;

- p) A_{13} - L_{13} - B_{13} -, wherein A_{13} is an optionally substituted aryl, optionally substituted heterocyclyl; wherein L_{13} is a covalent bond; and wherein B_{13} is -NHC(O)-;
- q) A_{14} - L_{14} - B_{14} -, wherein A_{14} is an optionally substituted aryl, optionally substituted heteroaryl or optionally substituted heterocyclyl; wherein L_{14} is-NHC(O)(optionally substituted heteroaryl); and wherein B_{14} is -S-S-;
- r) $F_3CC(0)NH$ -;
- s) A_{15} - L_{15} - B_{15} -, wherein A_{15} is an optionally substituted aryl, optionally substituted heteroaryl or optionally substituted heterocyclyl; wherein L_{15} is- $(CH_2)_{0^{-1}}NH$ (optionally substituted heteroaryl)-; and wherein B_{15} is $-NHCH_2$ -;
- t) A_{16} - L_{16} - B_{16} -, wherein A_{16} is an optionally substituted aryl, optionally substituted heterocyclyl; wherein L_{16} is a covalent bond; and wherein B_{16} is -N(optionally substituted alkyl)CH₂-; and
- u) A_{17} - L_{17} - B_{17} -, wherein A_{17} is an optionally substituted aryl, optionally substituted heterocyclyl; wherein L_{17} is a covalent bond; and wherein B_{17} is –(optionally substituted aryl- CH_2)₂-N-.
- 20. (original) The compound according to claim 6 wherein Y is selected from:
 - a) D_1 - E_1 - F_1 -, wherein D_1 is an optionally substituted aryl, optionally substituted heteroaryl or optionally substituted heterocyclyl; wherein E_1 is $-CH_2$ or a covalent bond; and wherein F_1 is a covalent bond;
 - b) D_2 - E_2 - F_2 -, wherein D_2 is an optionally substituted aryl, optionally substituted heteroaryl or optionally substituted heterocyclyl; wherein E_2 is $-NH(CH_2)_{0^-2^-}$; and wherein F_2 is a covalent bond;
 - c) D_3 - E_3 - F_3 -, wherein D_3 is an optionally substituted aryl, optionally substituted heteroaryl or optionally substituted heterocyclyl; wherein E_3 is $-(CH_2)_{0^-2}NH$ -; and wherein F_3 is a covalent bond;
 - d) D_4 - E_4 - F_4 -, wherein D_4 is an optionally substituted aryl, optionally substituted heteroaryl or optionally substituted heterocyclyl; wherein E_4 is $-S(CH_2)_{0^-2}$ -; and wherein F_4 is a covalent bond;

- e) D_5 - E_5 - F_5 -, wherein D_5 is an optionally substituted aryl, optionally substituted heteroaryl or optionally substituted heterocyclyl; wherein E_5 is $-(CH_2)_{0^-2}S$ -; and wherein F_5 is a covalent bond; and
- f) D_6 - E_6 - F_6 -, wherein D_6 is an optionally substituted aryl, optionally substituted heteroaryl or optionally substituted heterocyclyl; wherein E_6 is $-NH(CH_2)_{0^-2}NH$ -; and wherein F_6 is a covalent bond.
- 21. (original) The compound according to claim 2 wherein R^2 to R^4 are independently hydrogen, NH₂, nitro, furanyl, chloro, fluoro, butyl, trifluoromethyl, bromo, thienyl, phenyl, -CHCHC(O)-NH₂, C=CCH₂-R⁹ wherein R⁹ is hydrogen, C₁-C₇-alkyl, hydroxy, amino, or C₁-C₇-alkoxy.
- 22. (original) The compound according to claim 3 wherein R^2 to R^4 are independently hydrogen, NH₂, nitro, furanyl, chloro, fluoro, butyl, trifluoromethyl, bromo, thienyl, phenyl, -CHCHC(O)-NH₂, C=CCH₂-R⁹ wherein R⁹ is hydrogen, C₁-C₇-alkyl, hydroxy, amino, or C₁-C₇-alkoxy.
- 23. (original) The compound according to claim 6 wherein q is 0 and X^1 is independently selected from the group consisting of a -NH-CH₂-, -S-CH₂- and -CH₂-.
- 24. (original) The compound according to claim 1 wherein Ar² has the formula

and wherein G, at each occurrence, is independently N or C, and C is optionally substituted.

25. (original) The compound according to claim 24 wherein Ar² has the formula

- 26. (original) The compound according to claim 24 wherein Ar² is selected from the group consisting of phenylene, benzofuranylene and indolinylene.
- 27. (original) The compound according to claim 6 wherein the moiety formed by Cy²-X¹ is selected from:

	-CH₃,		
,	4		

28. (original) The compound of claim 6 of formula (2):

or a pharmaceutically acceptable salt thereof, wherein

 R^2 and R^3 are independently selected from the group consisting of hydrogen, trifluoromethyl, butyl, - $(CH_2)_3$ -OH, chloro, fluoro, amino, phenyl, thienyl, furanyl, -CHCCHC(O)NH₂, -C \equiv CCH₂-OCH₃; and

the A ring is optionally further substituted with from 1 to 3 substituents independently selected from methyl, hydroxy, methoxy, halo, and amino.

29. (original) The compound according to claim 28 wherein Cy² is selected from:

- 30. (original) The compound according to claim 28 wherein the A ring is not further substituted.
- 31. (original) The compound according to claim 28 wherein R² and R³ are -H.
- 32. (original) A compound according to claim 1 selected from:

N-[2-amino-5-(2-thienyl)phenyl]-4-{[(3,4-dimethoxyphenyl)amino]methyl}benzamide;

N-[2-amino-5-(2-thienyl)phenyl]-4-{[(4-pyridin-3-ylpyrimidin-2-yl)amino]methyl}benzamide;

N-[2-amino-5-(2-thienyl)phenyl]-4-[({6-[2-(dimethylamino)ethoxy]-1*H*-benzimidazol-2-yl}thio)methyl]benzamide;

N-{2-amino-5-(2-thienyl)phenyl]-4-{[(5-chloro-6-fluoro-1*H*-benzimidazol-2-yl)amino]methyl}benzamide;

N-[2-amino-5-(2-thienyl)phenyl]-5-{[(3,4,5-trimethoxyphenyl)amino]methyl}-1-benzofuran-2-carboxamide;

N-[2-amino-5-(2-thienyl)]phenyl]-1-(3,4,5-trimethoxybenzyl)indoline-6-carboxamide; trans-N-[2-amino-5-(2-thienyl)]phenyl]- $3-(4-\{[(3,4,5-trimethoxybenzyl)]$

trimethoxyphenyl)amino]methyl}phenyl)acrylamide;

N-[2-amino-5-(2-thienyl)phenyl]-4-{[(3-fluoro-4-methoxyphenyl)amino]methyl}benzamide;

yl)thio]methyl}benzamide:

and a pharmaceutically acceptable salt of any one or more of the foregoing.

N-[2-amino-5-(2-thienyl)phenyl]-4-([(6-chloro-5-fluoro-1H-benzimidazol-2-

33. - 54. (Canceled)

55. (Original) A compound of the formula

or a pharmaceutically acceptable salt or *in vivo* hydrolyzable ester or amide thereof, wherein: Φ is $-NH_2$ or -OH;

ring A is a heterocyclyl, wherein if said heterocyclyl contains an -NH- moiety that nitrogen is optionally substituted by a group selected from K;

R⁵ is a substituent on carbon and is selected from halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C₁₋₆-alkyl, C₂₋₆-alkynyl, C₁₋₆-alkoxy, C₁₋₆-alkanoyl, C₁₋₆-alkanoyloxy, *N*-(C₁₋₆-alkyl)amino, *N*,*N*-(C₁₋₆-alkyl)amino, *N*,*N*-(C₁₋₆-alkyl)₂carbamoyl, C₁₋₆-alkyl)₂carbamoyl, C₁₋₆-alkylS(O)_a wherein a is 0 to 2, C₁₋₆-alkoxycarbonyl, *N*-(C₁₋₆-alkyl)sulphamoy1, *N*,*N*-(C₁₋₆-alkyl)₂sulphamoyl, aryl, aryloxy, arylC₁₋₆-alkyl, heterocyclic group, (heterocyclic group)C₁₋₆-alkyl, or a group (B-E-); wherein R⁵, including group (B-E-), is optionally substituted on carbon by one or more W; and wherein if said heterocyclic group contains an -NH- moiety that nitrogen is optionally substituted by J;

W is halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C_{1-6} -alkyl, C_{2-6} -alkenyl, C_{2-6} -alkyny1, C_{1-6} -alkoxy, C_{1-6} -alkyl

- alkanoyl, C_{1-6} -alkanoyloxy, $N+(C_{1-6}$ -alkyl)amino, $N+(C_{1-6}$ -alkyl)2amino, C_{1-6} -alkanoylamino, $N+(C_{1-6}$ -alkyl)2carbamoyl, C_{1-6} -alkyl)2carbamoyl, C_{1-6} -alkyl)2carbamoyl, C_{1-6} -alkyl)2sulphamoyl, C_{1-6} -alkyl)2sulphamoyl, or a group (B'-E'-); wherein W, including group (B'-E'-), is optionally substituted on carbon by one or more Y;
- Y and Z are independently selected from halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, $C_{1\cdot6}$ -alkyl, $C_{2\cdot6}$ -alkenyl, $C_{2\cdot6}$ -alkynyl, $C_{1\cdot6}$ -alkoxy, $C_{1\cdot6}$ -alkanoyl, $C_{1\cdot6}$ -alkanoyloxy, N-($C_{1\cdot6}$ -alkyl)amino, N-($C_{1\cdot6}$ -alkyl)2amino, $C_{1\cdot6}$ -alkanoylamino, $C_{1\cdot6}$ -alkyl)carbamoyl, $C_{1\cdot6}$ -alkyl)2carbamoyl, $C_{1\cdot6}$ -alkyl)2carbamoyl, $C_{1\cdot6}$ -alkyl)3ulphamoyl or $C_{1\cdot6}$ -alkyl)2sulphamoyl;
- G, J and K are independently selected from $C_{1:8}$ -alkyl, $C_{1:8}$ -alkenyl, $C_{1:8}$ -alkanoyl, $C_{1:8}$ -alkylsulphonyl, $C_{1:8}$ -alkoxycarbonyl, carbamoyl, N-($C_{1:8}$ -alkyl)carbamoyl, N-($C_{1:8}$ -alkyl)carbamoyl, benzyloxycarbonyl, benzoyl, phenylsulphonyl, aryl, aryl $C_{1:6}$ -alkyl or (heterocyclic group) $C_{1:6}$ -alkyl; wherein G, J, and K are optionally substituted on carbon by one or more Q; and wherein if said heterocyclic group contains an -NH- moiety that nitrogen is optionally substituted by hydrogen or $C_{1:6}$ -alkyl;
- Q is halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C₁₋₆-alkyl, C₂₋₆-alkenyl, C₂₋₆-alkynyl, C₁₋₆-alkoxy, C₁₋₆-alkanoyl, C₁₋₆-alkanoyloxy, *N*-(C₁₋₆-alkyl)amino, *N*,*N*-(C₁₋₆-alkcyl)₂amino, C₁₋₆-alkanoylamino, *N*-(C₁₋₆-alkyl)carbamoyl, *N*,*N*-(C₁₋₆-alkyl)₂carbamoyl, C₁₋₆-alkylS(O)_a wherein a is 0 to 2, C₁₋₆-alkoxycarbonyl, C₁₋₆-alkoxycarbonylamino, *N*-(C₁₋₆-alkyl)sulphamoyl, *N*,*N*-(C₁₋₆-alkyl)₂sulphamoyl, aryl, aryloxy, aryl C₁₋₆-alkyl, arylC₁₋₆-alkoxy, heterocyclic group, (heterocyclic group)C₁₋₆-alkyl, (heterocyclic group)C₁₋₆-alkoxy, or a group (B"-E"-); wherein Q, including group (B"-E"-), is optionally substituted on carbon by one or more Z;
- B, B' and B" are independently selected from $C_{1.6}$ -alkyl, $C_{2.6}$ -alkenyl, $C_{2.6}$ -alkynyl, $C_{3.8}$ -cycloalkyl, $C_{3.8}$ -cycloalkyl, aryl, aryl $C_{1.6}$ -alkyl, heterocyclic group, (heterocyclic group) $C_{1.6}$ -alkyl, phenyl or phenyl $C_{1.6}$ -alkyl; wherein B, B' and B" is optionally substituted on carbon by one or more D; and wherein if said heterocyclic group contains an -NH-moiety that nitrogen is optionally substituted by a group selected from G;
- E, E' and E" are independently selected from -N(Ra)-, -O-, -C(O)O-, -OC(O)-, -C(O)-, -N(Ra)C(O)-, -N(Ra)C(O)N(Ra)-, -C(O)N(Ra)-, -C(O)N(Ra)-, -SO₂N(Ra)-, -N(Ra)SO₂- wherein

 R^a and R^b are independently selected from hydrogen or C_{1-6} -alkyl optionally substituted by one or more F and r is 0-2;

D and F are independently selected from halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, $C_{1.6}$ -alky1, $C_{2.6}$ -alkenyl, $C_{2.6}$ -alkynyl, $C_{1.6}$ -alkoxy, $C_{1.6}$ -alkanoyl, $C_{1.6}$ -alkanoyloxy, $N(C_{1.6}$ -alkyl)amino, $NN(C_{1.6}$ -alkyl)2amino, $C_{1.6}$ -alkanoylamino, $N(C_{1.6}$ -alkyl)carbamoyl, $NN(C_{1.6}$ -alkyl)2carbamoyl, $C_{1.6}$ -alkylS(O)a wherein a is 0 to 2, $C_{1.6}$ -alkoxycarbonyl, $N(C_{1.6}$ -alkyl)sulphamoyl or $NN(C_{1.6}$ -alkyl)2sulphamoyl;

m is 0, 1, 2, 3 or 4; wherein the values of R^5 may be the same or different; R^6 is halo;

n is 0, 1 or 2; wherein the values of R^6 are the same or different; and R^1 , R^2 , R^3 , and R^4 are as defined in claim 1.

56. – 58. (Canceled)

59. (Original) The compound of claim 55 that is selected from one of the compounds from Tables 1-8 and 13 of WO 03/087057 modified by replacing the terminal moiety:

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

60. – 81. (Canceled)

82. (Original) A compound of the formula:

the N-oxide forms, the pharmaceutically acceptable addition salts or the stereo-chemically isomeric forms thereof, wherein

 Φ is $-NH_2$ or -OH;

n is 0,1, 2 or 3, wherein when n is 0 then a direct bond is intended;

t is 0, 1, 2, 3 or 4, wherein when t is 0 then a direct bond is intended;

Q, X, Y, and Z are independently N or CH;

R¹ is H or as defined in claim 1;

R², R³, and R⁴ are as defined in claim 1;

 R^{12} is hydrogen, halo, hydroxy, amino, nitro, C_{1-6} -alkyl, C_{1-6} -alkyloxy, trifluoromethyl, di(C_{1-6} -alkyl)amino, hydroxyamino and naphthalenylsulfonylpyrazinyl;

-L- is a direct bond or a bivalent radical selected from C₁₋₆-alkanediyl, amino, carbonyl and aminocarbonyl;

each R^{13} is a hydrogen atom, wherein when t is 2, 3, or 4 one of the R^{13} is optionally aryl; R^{14} is hydrogen, hydroxy, amino, hydroxy C_{1-6} -alkyl, C_{1-6} -alkyl, C_{1-6} -alkyloxy, aryl C_{1-6} -alkyl, aminocarbonyl, hydroxycarbonyl, amino C_{1-6} -alkyl, aminocarbonyl C_{1-6} -alkyl, hydroxyaminocarbonyl, C_{1-6} -alkyloxycarbonyl, C_{1-6} -alkylamino C_{1-6} -alkyl or di(C_{1-6} -alkyl)amino C_{1-6} -alkyl;

Ring A is selected from

$$(a-1) \qquad (a-2) \qquad (a-3) \qquad (a-4)$$

$$(a-6) \qquad (a-7) \qquad (a-8)$$

$$(a-9) \qquad (a-10) \qquad (a-11) \qquad (a-12)$$

$$(R^6)_s \qquad (R^6)_s \qquad (R^$$

$$(a-13) \qquad (a-14) \qquad (a-15) \qquad (a-16)$$

$$(a-17) \qquad (a-18) \qquad NH \qquad (a-19) \qquad (a-20)$$

$$(a-21) \qquad (a-22) \qquad (a-23) \qquad (a-24)$$

$$(a-25) \qquad (a-26) \qquad (a-27) \qquad (a-28)$$

$$(a-29) \qquad (a-30) \qquad (a-31) \qquad (a-32)$$

$$(R^{6})_{s} \qquad (R^{6})_{s} \qquad (R^{6})_{s}$$

$$(a-37)$$
 $(a-38)$ $(a-39)$ $(a-40)$ $(a-40)$ $(a-41)$ $(a-42)$ $(a-43)$ $(a-44)$ $(a-44)$ $(a-45)$ $(a-46)$ $(a-46)$ $(a-47)$ $(a-47)$ $(a-48)$ $(a-49)$ $(a-50)$ $(a-50)$ $(a-51)$

wherein each s is independently 0, 1, 2, 3, 4 or 5;

 R^5 and R^6 are independently selected from hydrogen; halo; hydroxy; amino; nitro; trihalo $C_{1\cdot6}$ -alkyl; trihalo $C_{1\cdot6}$ -alkyloxy; $C_{1\cdot6}$ -alkyl; $C_{1\cdot6}$ -alkyl substituted with aryl and $C_{3\cdot10}$ -cycloalkyl; $C_{1\cdot6}$ -alkyloxy; $C_{1\cdot6}$ -alkyloxy; hydroxy $C_{1\cdot6}$ -alkyloxy; hydroxy $C_{1\cdot6}$ -alkyloxy; hydroxy $C_{1\cdot6}$ -alkyloxy; hydroxy $C_{1\cdot6}$ -alkyloxy; di($C_{1\cdot6}$ -alkyloxy; aryloxy $C_{1\cdot6}$ -alkyloxy; aryloxy $C_{1\cdot6}$ -alkyl; aryloxy $C_{1\cdot6}$ -alkyl)amino $C_{1\cdot6}$ -alkyl)amino $C_{1\cdot6}$ -alkyl; di($C_{1\cdot6}$ -alkyl)amino $C_{1\cdot6}$ -alkyl

alkyl)amino C_{1-6} -alkyl(C_{1-6} -alkyl)amino; di(C_{1-6} -alkyl)amino C_{1-6} -alkyl(C_{1-6} -alkyl)amino C_{1-6} -alkyl; aminosulfonylamino(C_{1-6} -alkyl)amino; aminosulfonylamino(C_{1-6} -alkyl)amino C_{1-6} -alkyl; di(C_{1-6} alkyl)aminosulfonylamino(C₁₋₆-alkyl)amino; di(C₁₋₆-alkyl)aminosulfonylamino(C₁₋₆alkyl)aminoC₁₋₆-alkyl; cyano; thiophenyl; thiophenyl substituted with di(C₁₋₆-alkyl)aminoC₁₋₆alkyl(C_{1-6} -alkyl)amino C_{1-6} -alkyl, di(C_{1-6} -alkyl)amino C_{1-6} -alkyl, C_{1-6} -alkylpiperazinyl C_{1-6} -alkyl, hydroxy C_{1-6} -alkylpiperazinyl C_{1-6} -alkyl, hydroxy C_{1-6} -alkyloxy C_{1-6} -alkylpiperazinyl C_{1-6} -alkyl, $di(C_{1-6}-alkyl)$ aminosulfonylpiperazinyl $C_{1-6}-alkyl$, $C_{1-6}-alkyl$ oxypiperidinyl, $C_{1-6}-alkyl$ $alkyloxypiperidinylC_{1-6}$ -alkyl, morpholinyl C_{1-6} -alkyl, hydroxy C_{1-6} -alkyl(C_{1-6} -alkyl) $aminoC_{1-6}$ alkyl, or di(hydroxyC₁₋₆-alkyl)aminoC₁₋₆-alkyl; furanyl; furanyl substituted with hydroxyC₁₋₆alkyl; benzofuranyl; imidazolyl; oxazolyl; oxazolyl substituted with aryl and C1-6-alkyl; C1-6alkyltriazolyl; tetrazolyl; pyrrolidinyl; pyrrolyl; piperidinylC₁₋₆-alkyloxy; morpholinyl; C₁₋₆alkylmorpholinyl; morpholinylC₁₋₆-alkyloxy; morpholinylC₁₋₆-alkyl; morpholinylC₁₋₆-alkylamino; morpholinyl C_{1-6} -alkylamino C_{1-6} -alkyl; piperazinyl; C_{1-6} -alkylpiperazinyl C_{1-6} -alkylpiperazinylpiperazinylpiperazinylpiperazinylpiperazinylpiperazinylpiperazinylpiperazinylpiperazinylpiperazinylpiperazinylpiperazinylpiperazinylpiperazinylpiperazinylpiperazinylpiperazinylpiperazinylpip 6-alkyloxy; piperazinylC₁₋₆-alkyl; naphthalenylsulfonylpiperazinyl; naphthalenylsulfonylpiperidinyl; naphthalenylsulfonyl; C_{1-6} -alkylpiperazinyl C_{1-6} -alkyl; C_{1-6} -alkylpiperazinyl C_{1-6} -alkyl; C_{1-6} -alkylpiperazinyl C_{1-6} -alkyl; C_{1-6} -alkylpiperazinyl C_{1-6} -alkylpiperazinylpiperazi alkylpiperazinyl C_{1-6} -alkylamino; C_{1-6} -alkylpiperazinyl C_{1-6} -alkylamino C_{1-6} -alkyl alkylpiperazinylsulfonyl; aminosulfonylpiperazinylC₁₋₆-alkyloxy; aminosulfonylpiperazinyl; aminosulfonylpiperazinylC₁₋₆-alkyl; di(C₁₋₆-alkyl)aminosulfonylpiperazinyl; di(C₁₋₆alkyl)aminosulfonylpiperazinylC₁₋₆-alkyl; hydroxyC₁₋₆-alkylpiperazinyl; hydroxyC₁₋₆alkylpiperazinyl C_{1-6} -alkyl; C_{1-6} -alkyloxyperidinyl; C_{1-6} -alkyloxypiperidinyl C_{1-6} -alkyl; piperidinylaminoC₁₋₆-alkylamino; piperidinylaminoC₁₋₆-alkylaminoC₁₋₆-alkyl; (C₁₋₆alkylpiperidinyl)(hydroxyC₁₋₆-alkyl)aminoC₁₋₆-alkylamino; (C₁₋₆-alkylpiperidinyl)(hydroxyC₁₋₆alkyl)amino C_{1-6} -alkylamino C_{1-6} -alkyl; hydroxy C_{1-6} -alkyloxy C_{1-6} -alkylpiperazinyl; hydroxy C_{1-6} -alkyloxy C_{1-6} -a alkyloxy C_{1-6} -alkylpiperazinyl C_{1-6} -alkyl; (hydroxy C_{1-6} -alkyl)(C_{1-6} -alkyl)amino; (hydroxy C_{1-6} -alkyl) alkyl)(C_{1-6} -alkyl)amino C_{1-6} -alkyl; hydroxy C_{1-6} -alkylamino C_{1-6} -alkyl; di(hydroxy C_{1-6} alkyl)amino C_{1-6} -alkyl; pyrrolidinyl C_{1-6} -alkyl; pyrrolidinyl C_{1-6} -alkyloxy; pyrazolyl; thiopyrazolyl: pyrazolyl substituted with two substituents selected from C₁₋₆-alkyl and trihaloC₁₋₆-alkyl; pyridinyl; pyridinyl substituted with C₁₋₆-alkyloxy, aryloxy or aryl; pyrimidinyl; tetrahydropyrimidinylpiperazinyl; tetrahydropyrimidinylpiperazinylC₁₋₆-alkyl; quinolinyl; indolyl; phenyl; phenyl substituted with one, two or three substituents independently selected from halo, amino, nitro, C₁₋₆-alkyl, C₁₋₆-alkyloxy, hydroxyC₁₋₄-alkyl, trifluoromethyl,

alkyloxycarbonyl, amino C_{1-4} -alkyloxy, di(C_{1-4} -alkyl) amino C_{1-4} -alkyloxy, di(C_{1-4} -alkyl) amino, $di(C_{1-4}-alkyl)aminoC_{1-4}-$ 4-alkyl, di(C₁₋₄-alkyl)amino(C₁₋₄-alkyl)amino, di(C₁₋₄-alkyl)amino(C₁₋₄-alkyl)aminoC₁₋₄-alkyl, di(C₁₋₄-alkyl)aminoC₁₋₄-alkyl, di(C₁₋₄-alkyl)amino(C₁ $_4$ -alkyl)amino C_{1-4} -alkyl(C_{1-4} -alkyl)amino, di(C_{1-4} -alkyl)amino C_{1-4} -alkyl(C_{1-4} -alkyl)amino C_{1-4} -alkyl, aminosulfonylamino(C_{1-4} -alkyl)amino, aminosulfonylamino(C_{1-4} -alkyl)amino C_{1-4} -alkyl, di(C_{1-4} alkyl)aminosulfonylamino(C₁₋₄-alkyl)amino, di(C₁₋₄-alkyl)aminosulfonylamino(C₁₋₄alkyl)amino C_{1-4} -alkyl, cyano, piperidinyl C_{1-4} -alkyloxy, pyrrolidinyl C_{1-4} -alkyloxy. aminosulfonylpiperazinyl, aminosulfonylpiperazinylC₁₋₄-alkyl, di(C₁₋₄alkyl)aminosulfonylpiperazinyl, di(C_{1-4} -alkyl)aminosulfonylpiperazinyl C_{1-4} -alkyl, hydroxy C_{1-4} -alkyl)aminosulfonylpiperazinyl alkylpiperazinyl, hydroxyC₁₋₄-alkylpiperazinylC₁₋₄-alkyl, C₁₋₄-alkyloxypiperidinyl, C₁₋₄alkyloxypiperdinylC₁₋₄-alkyl, hydroxyC₁₋₄-alkyl ₄-alkylpiperazinyl C_{1-4} -alkyl, (hydroxy C_{1-4} -alkyl)(C_{1-4} -alkyl)amino, (hydroxy C_{1-4} -alkyl)(C_{1-4} alkyl)aminoC₁₋₄-alkyl, di(hydroxyC₁₋₄-alkyl)amino, di(hydroxyC₁₋₄-alkyl)aminoC₁₋₄-alkyl, furanyl, furanyl substituted with-CH=CH-CH=CH-, pyrrolidinylC₁₋₄-alkyl, pyrrolidinylC₁₋₄-alkyloxy, morpholinyl, morpholinyl C_{1-4} -alkyloxy, morpholinyl C_{1-4} -alkylamino, morpholinyl C_{1-4} -alkylamino C_{1-4} -alkyl, piperazinyl, C_{1-4} -alkylpiperazinyl, C_{1-4} -alkylpiperazinyl C_{1-4} -alkylpiperazinyl 4-alkyloxy, piperazinylC₁₋₄-alkyl, C₁₋₄-alkylpiperazinylC₁₋₄-alkyl, C₁₋₄-alkylpiperazinylC₁₋₄alkylamino, C₁₋₄-alkylpiperazinylC₁₋₄-alkylaminoC₁₋₆-alkyl, tetrahydropyrimidinylpiperazinyl, tetrahydropyrimidinylpiperazinylC₁₋₄-alkyl, piperidinylaminoC₁₋₄-alkylamino. piperidinylaminoC₁₋₄-alkylaminoC₁₋₄-alkyl, (C₁₋₄-alkylpiperidinyl)(hydroxyC₁₋₄-alkyl)aminoC₁₋₄alkylamino, $(C_{1-4}$ -alkylpiperidinyl)(hydroxy C_{1-4} -alkyl)amino C_{1-4} -alkylamino C_{1-4} -alkyl, pyridinylC₁₋₄-alkyloxy, hydroxyC₁₋₄-alkylamino, hydroxyC₁₋₄-alkylaminoC₁₋₄-alkyl, di(C₁₋₄alkyl)aminoC₁₋₄-alkylamino, aminothiadiazolyl,aminosulfonylpiperazinylC₁₋₄-alkyloxy, and thiophenylC₁₋₄-alkylamino; the central moiety

$$-N$$
 Z

is optionally bridged (i.e., forming a bicyclic moiety) with a methylene, ethylene or propylene bridge;

each R⁵ and R⁶ can be placed on the nitrogen in replacement of the hydrogen;

aryl in the above is phenyl, or phenyl substituted with one or more substituents each independently selected from halo, C_{1-6} -alkyl, C_{1-6} -alkyloxy, trifluoromethyl, cyano, and hydroxycarbonyl.

83. - 88. (Canceled)

89. (Original) The compound of claim 82 that is selected from one of the compounds of pages 21 and 22 and Table F-1 of WO 03/076422 wherein the terminal hydroxamic acid moiety (HO-NH-C(O)-) is replaced with

$$\begin{array}{c|c}
R^1 & O \\
R^2 & H & \square \\
R^3 & -|-| & N - C & \square \\
R^4 & \Phi &
\end{array}$$

wherein Φ, R¹, R², R³, and R⁴ are as defined in claim 1.

90. - 111. (Canceled)

112. (Original) A compound of the formula:

$$R^{1}$$
 R^{2}
 R^{3}
 $= |=$
 R^{4}
 $Q = X$
 $|C(H_{2})_{n}$
 $Z = R^{13}$
 $|C(H_{2})_{n}|$
 $|C(H_{2})_{n}$

or a pharmaceutically acceptable salt thereof, wherein

 Φ is -NH₂ or -OH;

R¹ is H or as defined in paragraph claim 1:

 R^2 , R^3 , and R^4 are as defined in paragraph claim 1;

n is 0, 1, 2 or 3 and when n is 0 then a direct bond is intended;

- R is selected from the group consisting of hydrogen, halogen, -NH₂, nitro, hydroxy, aryl, heterocyclyl, C_3 - C_8 -cycloalkyl, heteroaryl, C_1 - C_7 -akyl, haloalkyl, C_1 - C_7 -alkenyl, C_1 - C_7 -alkyl-aryloxy, C_1 - C_7 -alkyl-arylsulfanyl, C_1 - C_7 -alkyl-arylsulfinyl, C_1 - C_7 -alkyl-arylaminosulfonyl, C_1 - C_7 -alkyl-arylamine, C_1 - C_1 -
- is hydrogen, halo, hydroxy, amino, nitro, C₁₋₆alkyl, C₁₋₆alkyloxy, trifluoromethyl, di(C₁₋₆alkyl)amino, hydroxyamino or naphtalenylsulfonylpyrazinyl;
- is hydrogen, C₁₋₆alkyl, arylC₂₋₆alkenediyl, furanylcarbonyl, naphtalenylcarbonyl, -C(O)phenylR⁹, C₁₋₆alkylaminocarbonyl, aminosulfonyl, arylaminosulfonyl, aminosulfonylamino, di(C₁₋₆alkyl)aminosulfonylamino, arylaminosulfonylamino, aminosulfonylaminoC₁₋₆alkyl, di(C₁₋₆alkyl)aminosulfonylaminoC₁₋₆alkyl, arylaminosulfonylaminoC₁₋₆alkyl, di(C₁₋₆alkyl)aminoC₁₋₆alkyl, C₁₋₁₂alkylsulfonyl, di(C₁₋₆alkyl)aminosulfonyl, trihaloC₁₋₆alkylsulfonyl, di(aryl)C₁₋₆alkylcarbonyl, thiophenylC₁₋₆alkylcarbonyl, pyridinylcarbonyl or arylC₁₋₆alkylcarbonyl

wherein each R^9 is independently selected from phenyl; phenyl substituted with one, two or three substituents independently selected from halo, amino, $C_{1.6}$ alkyl, $C_{1.6}$ alkyloxy, hydroxy $C_{1.4}$ alkyl, hydroxy $C_{1.4}$ alkyloxy, amino $C_{1.4}$ alkyloxy, di($C_{1.6}$ alkyl)amino $C_{1.6}$ alkyl, di($C_{1.6}$ alkyl)amino $C_{1.6}$ alkyl($C_{1.6}$ alkyl)amino $C_{1.6}$ alkyl, hydroxy $C_{1.4}$ alkylpiperazinyl $C_{1.4}$ alkyl, $C_{1.4}$ alkyloxypiperidinyl $C_{1.4}$ alkyl, hydroxy $C_{1.4}$ alkylpiperazinyl, $C_{1.4}$ alkylpiperazinyl $C_{1.4}$ alkyl, di(hydroxy $C_{1.4}$ alkyl)amino $C_{1.4}$ alkyl, pyrrolidinyl $C_{1.4}$ alkyloxy, morpholinyl $C_{1.4}$ alkyloxy, or morpholinyl $C_{1.4}$ alkyl); thiophenyl; or thiophenyl substituted with di($C_{1.4}$ alkyl)amino $C_{1.4}$ alkyloxy, di($C_{1.6}$ alkyl)amino $C_{1.6}$ alkyl, di($C_{1.6}$ alkyl)amino $C_{1.6}$ alkyl, pyrrolidinyl $C_{1.4}$ alkyloxy, $C_{1.4}$ alkylpiperazinyl $C_{1.4}$ alkyl, di(hydroxy $C_{1.4}$ alkyl)amino $C_{1.4}$ alkyl or morpholinyl $C_{1.4}$ alkyloxy.

is hydrogen, hydroxy, amino, hydroxyC₁₋₆alkyl, C₁₋₆alkyl, C₁₋₆alkyloxy, arylC₁₋₆alkyl, aminocarbonyl, hydroxycarbonyl, aminoC₁₋₆alkyl, aminocarbonylC₁₋₆alkyl, hydroxycarbonylC₁₋₆alkyl, hydroxyaminocarbonyl, C₁₋₆alkyloxycarbonyl, C₁₋₆alkylaminoC₁₋₆alkyl or di(C₁₋₆alkyl)aminoC₁₋₆alkyl;

when $R^{13} \& R^{14}$ are present on the same carbon atom, $R^{13} \& R^{14}$ together may form a bivalent radical of formula

when R¹³ & R¹⁴ are present on adjacent carbon atoms, R¹³ & R¹⁴ together may form a bivalent radical of formula

$$=$$
CH-CH=CH-CH= (b-1);

aryl in the above is phenyl, or phenyl substituted with one or more substituents each independently selected from halo, C₁₋₆alkyl, C₁₋₆alkyloxy, trifluoromethyl, cyano or hydroxycarbonyl.

113. – 119. (Canceled)

120. (Original) The compound of claim 112 that is selected from one of

wherein the terminal hydroxamic acid moiety (-C(O)-NH-OH) is replaced with

wherein Φ , R^1 , R^2 , R^3 , and R^4 are as defined in accordance with claim 1.

121. - 142. (Canceled)

143. (Original) A compound of the formula:

or a pharmaceutically acceptable salt thereof, wherein

 Φ is -NH₂ or -OH;

R¹ is H or as defined in claim 1;

R², R³, and R⁴ are as defined in claim 1;

n is 0, 1, 2 or 3 and when n is 0 then a direct bond is intended;

m is 0 or 1 and when m is 0 then a direct bond is intended;

t is 0, 1, 2, 3 or 4 and when t is 0 then a direct bond is intended;

R is selected from the group consisting of hydrogen, halogen, -NH₂, nitro, hydroxy, aryl, heterocyclyl, C_3 - C_8 -cycloalkyl, heteroaryl, C_1 - C_7 -akyl, haloalkyl, C_1 - C_7 -alkenyl, C_1 - C_7 -alkyl-aryloxy, C_1 - C_7 -alkyl-arylsulfanyl, C_1 - C_7 -alkyl-arylsulfinyl, C_1 - C_7 -alkyl-arylaminosulfonyl, C_1 - C_7 -alkyl-arylamine, C_1 - C_1 -

- R¹² is hydrogen, halo, hydroxy, amino, nitro, C₁₋₆alkyl, C₁₋₆alkyloxy, trifluoromethyl, di(C₁₋₆alkyl)amino, hydroxyamino or naphtalenylsulfonylpyrazinyl;
 - -L- is a direct bond or a bivalent radical selected from C₁₋₆alkanediyl, C₁₋₆alkanediyloxy, amino, carbonyl or aminocarbonyl;
- each R¹³ is independently represents a hydrogen atom and one hydrogen atom can be replaced by a substituent selected from aryl;
- is hydrogen, hydroxy, amino, hydroxyC₁₋₆alkyl, C₁₋₆alkyl, C₁₋₆alkyloxy, arylC₁₋₆alkyl, aminocarbonyl, hydroxycarbonyl, aminoC₁₋₆alkyl, aminocarbonylC₁₋₆alkyl, hydroxycarbonylC₁₋₆alkyl, hydroxyaminocarbonyl, C₁₋₆alkyloxycarbonyl, C₁₋₆alkylaminoC₁₋₆alkyl or di(C₁₋₆alkyl)aminoC₁₋₆alkyl;
- R¹⁵ is hydrogen, C₁₋₆alkyl, C₃₋₁₀cycloalkyl, hydroxyC₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkyl, di(C₁₋₆alkyl)aminoC₁₋₆alkyl or aryl;

(A) is a radical selected from

$$(a-1)$$
 $(a-2)$ $(a-3)$ $(a-4)$ $(a-4)$ $(a-5)$ $(a-6)$ $(a-6)$ $(a-7)$ $(a-7)$ $(a-7)$ $(a-8)$

$$(a-9) \qquad (a-10) \qquad (a-11) \qquad (a-12)$$

$$(a-13) \qquad (a-14) \qquad (a-15) \qquad (a-16)$$

$$(a-17) \qquad (a-18) \qquad (a-18) \qquad (a-19) \qquad (a-20)$$

$$(a-21) \qquad (a-22) \qquad (a-23) \qquad (a-24)$$

$$(a-29) \qquad (a-30) \qquad (a-31) \qquad (a-32)$$

$$(a-31) \qquad (a-32)$$

$$(R^{7})_{s} \longrightarrow (R^{7})_{s} \longrightarrow$$

```
wherein each s is independently 0, 1, 2, 3, 4 or 5;
each R<sup>6</sup> and R<sup>7</sup> are independently selected from hydrogen; halo; hydroxy; amino; nitro;
     trihaloC<sub>1-6</sub>alkyl; trihaloC<sub>1-6</sub>alkyloxy; C<sub>1-6</sub>alkyl; C<sub>1-6</sub>alkyl substituted with aryl and
     C_{3\text{-}10} cycloalkyl; \ C_{1\text{-}6} alkyloxy; \ C_{1\text{-}6} alkyloxyC_{1\text{-}6} alkyloxy; \ C_{1\text{-}6} alkyloxy; 
     C<sub>1-6</sub>alkyloxycarbonyl; C<sub>1-6</sub>alkylsulfonyl; cyanoC<sub>1-6</sub>alkyl; hydroxyC<sub>1-6</sub>alkyl;
     hydroxyC<sub>1-6</sub>alkyloxy; hydroxyC<sub>1-6</sub>alkylamino; aminoC<sub>1-6</sub>alkyloxy;
     di(C<sub>1-6</sub>alkyl)aminocarbonyl; di(hydroxyC<sub>1-6</sub>alkyl)amino; (aryl)(C<sub>1-6</sub>alkyl)amino;
     di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyloxy; di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkylamino;
     di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkylaminoC<sub>1-6</sub>alkyl; arylsulfonyl; arylsulfonylamino;
     aryloxy; aryloxyC<sub>1-6</sub>alkyl; arylC<sub>2-6</sub>alkenediyl; di(C<sub>1-6</sub>alkyl)amino;
     di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl; di(C<sub>1-6</sub>alkyl)amino(C<sub>1-6</sub>alkyl)amino;
      di(C_{1-6}alkyl)amino(C_{1-6}alkyl)aminoC_{1-6}alkyl;
     di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl(C<sub>1-6</sub>alkyl)amino;
     di(C_{1-6}alkyl)aminoC_{1-6}alkyl(C_{1-6}alkyl)aminoC_{1-6}alkyl;
      aminosulfonylamino(C_{1-6}alkyl)amino;
  aminosulfonylamino(C_{1-6}alkyl)aminoC_{1-6}alkyl;
  di(C<sub>1-6</sub>alkyl)aminosulfonylamino(C<sub>1-6</sub>alkyl)amino;
  di(C<sub>1-6</sub>alkyl)aminosulfonylamino(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl; cyano; thiophenyl;
  thiophenyl substituted with di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl,
  di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl, C<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkyl,
  hydroxyC<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkyl,
  hydroxyC<sub>1-6</sub>alkyloxyC<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkyl,
```

```
di(C<sub>1-6</sub>alkyl)aminosulfonylpiperazinylC<sub>1-6</sub>alkyl,
C<sub>1-6</sub>alkyloxypiperidinyl, C<sub>1-6</sub>alkyloxypiperidinylC<sub>1-6</sub>alkyl, morpholinylC<sub>1-6</sub>alkyl,
hydroxyC_{1-6}alkyl(C_{1-6}alkyl)aminoC_{1-6}alkyl, or di(hydroxyC_{1-6}alkyl)aminoC_{1-6}alkyl;
furanyl; furanyl substituted with hydroxyC<sub>1-6</sub>alkyl; benzofuranyl; imidazolyl;
oxazolyl; oxazolyl substituted with aryl and C_{1-6}alkyl; C_{1-6}alkyltriazolyl; tetrazolyl;
pyrrolidinyl; pyrrolyl; piperidinylC<sub>1-6</sub>alkyloxy; morpholinyl; C<sub>1-6</sub>alkylmorpholinyl;
morpholinylC<sub>1.6</sub>alkyloxy;
morpholinylC<sub>1-6</sub>alkyl; morpholinylC<sub>1-6</sub>alkylamino;
morpholinylC<sub>1-6</sub>alkylaminoC<sub>1-6</sub>alkyl; piperazinyl; C<sub>1-6</sub>alkylpiperazinyl;
C_{1-6}alkylpiperazinylC_{1-6}alkyloxy; piperazinylC_{1-6}alkyl;
naphtalenylsulfonylpiperazinyl; naphtalenylsulfonylpiperidinyl; naphtalenylsulfonyl;
C_{1-6}alkylpiperazinylC_{1-6}alkyl; C_{1-6}alkylpiperazinylC_{1-6}alkylamino;
C_{1-6}alkylpiperazinylC_{1-6}alkylaminoC_{1-6}alkylpiperazinylsulfonyl;
aminosulfonylpiperazinylC<sub>1-6</sub>alkyloxy; aminosulfonylpiperazinyl;
aminosulfonylpiperazinyl C_{1\text{--}6} alkyl; \ di (C_{1\text{--}6} alkyl) aminosulfonylpiperazinyl;
di(C<sub>1-6</sub>alkyl)aminosulfonylpiperazinylC<sub>1-6</sub>alkyl; hydroxyC<sub>1-6</sub>alkylpiperazinyl;
hydroxyC<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkyl; C<sub>1-6</sub>alkyloxypiperidinyl;
C<sub>1-6</sub>alkyloxypiperidinylC<sub>1-6</sub>alkyl; piperidinylaminoC<sub>1-6</sub>alkylamino;
piperidinylaminoC<sub>1-6</sub>alkylaminoC<sub>1-6</sub>alkyl;
(C_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkyl)aminoC_{1-6}alkylamino;
(C_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkyl)aminoC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkyl)aminoC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidinylpiperidi
hydroxyC_{1-6}alkyloxyC_{1-6}alkylpiperazinyl;
hydroxyC<sub>1-6</sub>alkyloxyC<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkyl;
(hydroxyC_{1-6}alkyl)(C_{1-6}alkyl)amino; (hydroxyC_{1-6}alkyl)(C_{1-6}alkyl)aminoC_{1-6}alkyl;
hydroxyC<sub>1-6</sub>alkylaminoC<sub>1-6</sub>alkyl; di(hydroxyC<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl;
pyrrolidinylC<sub>1-6</sub>alkyl; pyrrolidinylC<sub>1-6</sub>alkyloxy; pyrazolyl; thiopyrazolyl; pyrazolyl
substituted with two substituents selected from C<sub>1-6</sub>alkyl or trihaloC<sub>1-6</sub>alkyl;
pyridinyl; pyridinyl substituted with C<sub>1-6</sub>alkyloxy, aryloxy or aryl; pyrimidinyl;
tetrahydropyrimidinylpiperazinyl; tetrahydropyrimidinylpiperazinylC<sub>1-6</sub>alkyl;
quinolinyl; indole; phenyl; phenyl substituted with one, two or three substituents
```

```
independently selected from halo, amino, nitro, C<sub>1-6</sub>alkyl, C<sub>1-6</sub>alkyloxy,
hydroxyC<sub>1.4</sub>alkyl, trifluoromethyl, trifluoromethyloxy, hydroxyC<sub>1.4</sub>alkyloxy,
C<sub>1-4</sub>alkylsulfonyl, C<sub>1-4</sub>alkyloxyC<sub>1-4</sub>alkyloxy, C<sub>1-4</sub>alkyloxycarbonyl,
aminoC_{1-4}alkyloxy,
di(C<sub>1-4</sub>alkyl)aminoC<sub>1-4</sub>alkyloxy, di(C<sub>1-4</sub>alkyl)amino, di(C<sub>1-4</sub>alkyl)aminocarbonyl,
di(C<sub>1-4</sub>alkyl)aminoC<sub>1-4</sub>alkyl, di(C<sub>1-4</sub>alkyl)aminoC<sub>1-4</sub>alkylaminoC<sub>1-4</sub>alkyl,
di(C<sub>1-4</sub>alkyl)amino(C<sub>1-4</sub>alkyl)amino, di(C<sub>1-4</sub>alkyl)amino(C<sub>1-4</sub>alkyl)aminoC<sub>1-4</sub>alkyl.
di(C<sub>1-4</sub>alkyl)aminoC<sub>1-4</sub>alkyl(C<sub>1-4</sub>alkyl)amino,
di(C_{1-4}alkyl)aminoC_{1-4}alkyl(C_{1-4}alkyl)aminoC_{1-4}alkyl,
aminosulfonylamino(C<sub>1-4</sub>alkyl)amino,
aminosulfonylamino(C<sub>1-4</sub>alkyl)aminoC<sub>1-4</sub>alkyl,
di(C_{1-4}alkyl)aminosulfonylamino(C_{1-4}alkyl)amino,
di(C<sub>1-4</sub>alkyl)aminosulfonylamino(C<sub>1-4</sub>alkyl)aminoC<sub>1-6</sub>alkyl, cyano,
piperidinylC<sub>1-4</sub>alkyloxy, pyrrolidinylC<sub>1-4</sub>alkyloxy; aminosulfonylpiperazinyl,
aminosulfonylpiperazinylC<sub>1-4</sub>alkyl, di(C<sub>1-4</sub>alkyl)aminosulfonylpiperazinyl
di(C<sub>1-4</sub>alkyl)aminosulfonylpiperazinylC<sub>1-4</sub>alkyl, hydroxyC<sub>1-4</sub>alkylpiperazinyl,
hydroxyC<sub>1-4</sub>alkylpiperazinylC<sub>1-4</sub>alkyl, C<sub>1-4</sub>alkyloxypiperidinyl,
C<sub>1-4</sub>alkyloxypiperidinylC<sub>1-4</sub>alkyl, hydroxyC<sub>1-4</sub>alkyloxyC<sub>1-4</sub>alkylpiperazinyl,
hydroxyC<sub>1-4</sub>alkyloxyC<sub>1-4</sub>alkylpiperazinylC<sub>1-4</sub>alkyl,
(hydroxyC<sub>1-4</sub>alkyl)(C<sub>1-4</sub>alkyl)amino, (hydroxyC<sub>1-4</sub>alkyl)(C<sub>1-4</sub>alkyl)aminoC<sub>1-4</sub>alkyl,
di(hydroxyC<sub>1-4</sub>alkyl)amino, di(hydroxyC<sub>1-4</sub>alkyl)aminoC<sub>1-4</sub>alkyl, furanyl
substituted with -CH=CH-CH=CH-, pyrrolidinylC<sub>1-4</sub>alkyl, pyrrolidinylC<sub>1-4</sub>alkyloxy,
morpholinylC<sub>1-4</sub>alkyloxy, morpholinylC<sub>1-4</sub>alkyl,
```

morpholinyl C_{1-4} alkylamino, morpholinyl C_{1-4} alkylamino C_{1-4} alkyl, piperazinyl, C_{1-4} alkylpiperazinyl, C_{1-4} alkylpiperazinyl C_{1-4} alkylamino C_{1-6} alkyl, tetrahydropyrimidinylpiperazinyl, tetrahydropyrimidinylpiperazinyl C_{1-4} alkyl, piperidinylamino C_{1-4} alkylamino, piperidinylamino C_{1-4} alkylamino C_{1-4} alkyl,

 $(C_{1\text{-4}alkylpiperidinyl})(hydroxyC_{1\text{-4}alkyl})aminoC_{1\text{-4}alkylamino},\\ (C_{1\text{-4}alkylpiperidinyl})(hydroxyC_{1\text{-4}alkyl})aminoC_{1\text{-4}alkylamino}C_{1\text{-4}alkyl},\\ pyridinylC_{1\text{-4}alkyloxy}, hydroxyC_{1\text{-4}alkylamino}, hydroxyC_{1\text{-4}alkylamino}C_{1\text{-4}alkyl},\\ di(C_{1\text{-4}alkyl})aminoC_{1\text{-4}alkylamino}, aminothiadiazolyl,\\ aminosulfonylpiperazinylC_{1\text{-4}alkyloxy}, or thiophenylC_{1\text{-4}alkylamino};$

each R⁶ and R⁷ can be placed on the nitrogen in replacement of the hydrogen;

aryl in the above is phenyl, or phenyl substituted with one or more substituents each independently selected from halo, C₁₋₆alkyl, C₁₋₆alkyloxy, trifluoromethyl, cyano or hydroxycarbonyl.

144. – 147. (Canceled)

148. (Original) The compound of claim 143 that is selected from one of

wherein the terminal hydroxamic acid moiety (-C(O)-NH-OH) is replaced with

wherein Φ, R¹, R², R³, and R⁴ are as defined in accordance with claim1.

149. - 171. (Canceled)

172. (Original) A compound of the formula:

$$R^{1}$$
 R^{2}
 R^{3}
 $= | -Y |$
 R^{4}
 R^{4}
 R^{14}
 $(CH_{2})_{n}$
 $(CH_{2})_{n}$
 $(CR^{13}_{2})_{t}$
 $(CR^{13}_{2})_{t}$

or a pharmaceutically acceptable salt thereof, wherein

 Φ is -NH₂ or -OH;

R¹ is H or as defined in claim 1:

R², R³, and R⁴ are as defined in claim 1;

n is 0, 1, 2 or 3 and when n is 0 then a direct bond is intended;

t is 0, 1, 2, 3 or 4 and when t is 0 then a direct bond is intended;

R is selected from the group consisting of hydrogen, halogen, -NH₂, nitro, hydroxy, aryl, heterocyclyl, C_3 - C_8 -cycloalkyl, heteroaryl, C_1 - C_7 -akyl, haloalkyl, C_1 - C_7 -alkenyl, C_1 - C_7 -alkyl-aryloxy, C_1 - C_7 -alkyl-arylsulfanyl, C_1 - C_7 -alkyl-arylsulfinyl, C_1 - C_7 -alkyl-arylaminosulfonyl, C_1 - C_7 -alkyl-arylamine, C_1 - C_1 -

 C_1 - C_7 -alkenyl-C(O)-amine, C_1 - C_7 -alkynyl- R^9 , C_1 - C_7 -alkenyl- R^9 wherein R^9 is hydrogen , hydroxy, amino, C_1 - C_7 -alkyl or C_1 - C_7 -alkoxy;

- R¹² is hydrogen, halo, hydroxy, amino, nitro, C₁₋₆alkyl, C₁₋₆alkyloxy, trifluoromethyl, di(C₁₋₆alkyl)amino, hydroxyamino or naphtalenylsulfonylpyrazinyl;
- -L- is a direct bond or a bivalent radical selected from C_{1-6} alkanediyl, C_{1-6} alkyloxy, amino, carbonyl or aminocarbonyl;
- each R¹³ independently represents a hydrogen atom and one hydrogen atom can be replaced by a substituent selected from aryl;
- R¹⁴ is hydrogen, hydroxy, amino, hydroxyC₁₋₆alkyl, C₁₋₆alkyl, C₁₋₆alkyloxy, arylC₁₋₆alkyl, aminocarbonyl, hydroxycarbonyl, aminoC₁₋₆alkyl, aminocarbonylC₁₋₆alkyl, hydroxycarbonylC₁₋₆alkyl, hydroxyaminocarbonyl, C₁₋₆alkyloxycarbonyl, C₁₋₆alkylaminoC₁₋₆alkyl or di(C₁₋₆alkyl)aminoC₁₋₆alkyl;

is a radical selected from $(A - 1) \qquad (a - 2) \qquad (a - 3) \qquad (a - 4)$ $(A - 1) \qquad (a - 2) \qquad (a - 3) \qquad (a - 4)$ $(A - 2) \qquad (a - 3) \qquad (a - 4)$ $(A - 3) \qquad (a - 4) \qquad (a - 4)$ $(A - 5) \qquad (a - 6) \qquad (a - 7) \qquad (a - 8)$ $(A - 7) \qquad (a - 8)$ $(A - 8) \qquad (a - 9) \qquad (a - 10) \qquad (a - 11) \qquad (a - 12)$

$$(a-13)$$
 $(a-14)$
 $(a-15)$
 $(a-16)$
 $(a-16)$
 $(a-17)$
 $(a-18)$
 $(R^6)_S$
 $(R^6)_S$
 $(R^6)_S$
 $(R^6)_S$
 $(R^6)_S$
 $(R^6)_S$
 $(R^6)_S$
 $(A-16)$
 $(A-17)$
 $(A-18)$
 $(A-19)$
 $(A-19)$
 $(A-19)$
 $(A-19)$

$$(a-49)$$
 $(a-50)$ $(R^6)_s$ $(R^6)_s$ $(R^6)_s$ $(R^6)_s$ $(R^6)_s$ $(R^6)_s$

wherein each s is independently 0, 1, 2, 3, 4 or 5;

are independently selected from hydrogen; halo; hydroxy; amino; nitro; each R⁵ and R⁶ trihaloC₁₋₆alkyl; trihaloC₁₋₆alkyloxy; C₁₋₆alkyl; C₁₋₆alkyl substituted with aryl and C_{3-10} cycloalkyl; C_{1-6} alkyloxy; C_{1-6} C_{1-6} alkyloxycarbonyl; C_{1-6} alkylsulfonyl; cyano C_{1-6} alkyl; hydroxy C_{1-6} alkyl; hydroxy C_{1-6} alkyloxy; hydroxy C_{1-6} alkylamino; amino C_{1-6} alkyloxy; di(C₁₋₆alkyl)aminocarbonyl; di(hydroxyC₁₋₆alkyl)amino; (aryl)(C₁₋₆alkyl)amino; di(C₁₋₆alkyl)aminoC₁₋₆alkyloxy; di(C₁₋₆alkyl)aminoC₁₋₆alkylamino; di(C₁₋₆alkyl)aminoC₁₋₆alkylaminoC₁₋₆alkyl; arylsulfonyl; arylsulfonylamino; aryloxy; aryloxyC₁₋₆alkyl; arylC₂₋₆alkenediyl; di(C₁₋₆alkyl)amino; di(C₁₋₆alkyl)aminoC₁₋₆alkyl; di(C₁₋₆alkyl)amino(C₁₋₆alkyl)amino; $di(C_{1-6}alkyl)amino(C_{1-6}alkyl)aminoC_{1-6}alkyl$ di(C₁₋₆alkyl)aminoC₁₋₆alkyl(C₁₋₆alkyl)amino; $di(C_{1-6}alkyl)aminoC_{1-6}alkyl(C_{1-6}alkyl)aminoC_{1-6}alkyl;$ aminosulfonylamino(C₁₋₆alkyl)amino; aminosulfonylamino(C₁₋₆alkyl)aminoC₁₋₆alkyl; $di(C_{1-6}alkyl)aminosulfonylamino(C_{1-6}alkyl)amino;$

```
di(C<sub>1.6</sub>alkyl)aminosulfonylamino(C<sub>1.6</sub>alkyl)aminoC<sub>1.6</sub>alkyl; cyano; thiophenyl;
thiophenyl substituted with di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl,
di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl, C<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkyl,
hydroxyC<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkyl,
hydroxyC<sub>1-6</sub>alkyloxyC<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkyl,
di(C<sub>1-6</sub>alkyl)aminosulfonylpiperazinylC<sub>1-6</sub>alkyl,
C<sub>1.6</sub>alkyloxypiperidinyl, C<sub>1.6</sub>alkyloxypiperidinylC<sub>1.6</sub>alkyl, morpholinylC<sub>1.6</sub>alkyl,
hydroxyC_{1-6}alkyl(C_{1-6}alkyl)aminoC_{1-6}alkyl, or di(hydroxyC_{1-6}alkyl)aminoC_{1-6}alkyl;
furanyl; furanyl substituted with hydroxyC<sub>1-6</sub>alkyl; benzofuranyl; imidazolyl;
oxazolyl; oxazolyl substituted with aryl and C<sub>1-6</sub>alkyl; C<sub>1-6</sub>alkyltriazolyl; tetrazolyl;
pyrrolidinyl; pyrrolyl; piperidinylC<sub>1-6</sub>alkyloxy; morpholinyl; C<sub>1-6</sub>alkylmorpholinyl;
morpholinylC<sub>1-6</sub>alkyloxy;
morpholinylC<sub>1-6</sub>alkyl; morpholinylC<sub>1-6</sub>alkylamino;
morpholinylC<sub>1-6</sub>alkylaminoC<sub>1-6</sub>alkyl; piperazinyl; C<sub>1-6</sub>alkylpiperazinyl;
C_{1-6}alkylpiperazinylC_{1-6}alkyloxy; piperazinylC_{1-6}alkyl;
naphtalenylsulfonylpiperazinyl; naphtalenylsulfonylpiperidinyl; naphtalenylsulfonyl;
C<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkyl; C<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkylamino;
C_{1-6}alkylpiperazinylC_{1-6}alkylaminoC_{1-6}alkylpiperazinylsulfonyl;
aminosulfonylpiperazinylC<sub>1-6</sub>alkyloxy; aminosulfonylpiperazinyl;
aminosulfonylpiperazinylC<sub>1.6</sub>alkyl; di(C<sub>1.6</sub>alkyl)aminosulfonylpiperazinyl;
di(C<sub>1-6</sub>alkyl)aminosulfonylpiperazinylC<sub>1-6</sub>alkyl; hydroxyC<sub>1-6</sub>alkylpiperazinyl;
hydroxyC<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkyl; C<sub>1-6</sub>alkyloxypiperidinyl;
C_{1-6}alkyloxypiperidinylC_{1-6}alkyl; piperidinylaminoC_{1-6}alkylamino;
piperidinylaminoC_{1-6}alkylaminoC_{1-6}alkyl;
(C<sub>1-6</sub>alkylpiperidinyl)(hydroxyC<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkylamino;
(C<sub>1-6</sub>alkylpiperidinyl)(hydroxyC<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkylaminoC<sub>1-6</sub>alkyl;
hydroxyC<sub>1-6</sub>alkyloxyC<sub>1-6</sub>alkylpiperazinyl;
hydroxyC_{1-6}alkyloxyC_{1-6}alkylpiperazinylC_{1-6}alkyl;
(hydroxyC<sub>1-6</sub>alkyl)(C<sub>1-6</sub>alkyl)amino; (hydroxyC<sub>1-6</sub>alkyl)(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl;
```

hydroxyC₁₋₆alkylaminoC₁₋₆alkyl; di(hydroxyC₁₋₆alkyl)aminoC₁₋₆alkyl; pyrrolidinylC₁₋₆alkyl; pyrrolidinylC₁₋₆alkyloxy; pyrazolyl; thiopyrazolyl; pyrazolyl substituted with two substituents selected from C₁₋₆alkyl or trihaloC₁₋₆alkyl; pyridinyl; pyridinyl substituted with C₁₋₆alkyloxy, aryloxy or aryl; pyrimidinyl; tetrahydropyrimidinylpiperazinyl; tetrahydropyrimidinylpiperazinylC₁₋₆alkyl; quinolinyl; indole; phenyl; phenyl substituted with one, two or three substituents independently selected from halo, amino, nitro, C₁₋₆alkyl, C₁₋₆alkyloxy, hydroxyC₁₋₄alkyl, trifluoromethyl, trifluoromethyloxy, hydroxyC₁₋₄alkyloxy, C₁₋₄alkylsulfonyl, C₁₋₄alkyloxyC₁₋₄alkyloxy, C₁₋₄alkyloxycarbonyl, aminoC₁₋₄alkyloxy, di(C₁₋₄alkyl)aminoC₁₋₄alkyloxy, di(C₁₋₄alkyl)amino, di(C₁₋₄alkyl)aminocarbonyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)amino(C₁₋₄alkyl)amino, di(C₁₋₄alkyl)amino(C₁₋₄alkyl)aminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl(C₁₋₄alkyl)amino, $di(C_{1-4}alkyl)aminoC_{1-4}alkyl(C_{1-4}alkyl)aminoC_{1-4}alkyl,$ aminosulfonylamino(C₁₋₄alkyl)amino, aminosulfonylamino(C_{1-4} alkyl)amino C_{1-4} alkyl, di(C₁₋₄alkyl)aminosulfonylamino(C₁₋₄alkyl)amino, di(C₁₋₄alkyl)aminosulfonylamino(C₁₋₄alkyl)aminoC₁₋₆alkyl, cyano, piperidinylC₁₋₄alkyloxy, pyrrolidinylC₁₋₄alkyloxy, aminosulfonylpiperazinyl, aminosulfonylpiperazinylC₁₋₄alkyl, di(C₁₋₄alkyl)aminosulfonylpiperazinyl, di(C₁₋₄alkyl)aminosulfonylpiperazinylC₁₋₄alkyl, hydroxyC₁₋₄alkylpiperazinyl, hydroxyC₁₋₄alkylpiperazinylC₁₋₄alkyl, C₁₋₄alkyloxypiperidinyl,

 $C_{1\text{-4}alkyloxypiperidinyl}C_{1\text{-4}alkyl}, hydroxyC_{1\text{-4}alkyloxy}C_{1\text{-4}alkylpiperazinyl}, hydroxyC_{1\text{-4}alkylpiperazinyl}C_{1\text{-4}alkyl}, (hydroxyC_{1\text{-4}alkyl})(C_{1\text{-4}alkyl})amino, (hydroxyC_{1\text{-4}alkyl})(C_{1\text{-4}alkyl})aminoC_{1\text{-4}alkyl}, di(hydroxyC_{1\text{-4}alkyl})amino, di(hydroxyC_{1\text{-4}alkyl})aminoC_{1\text{-4}alkyl}, furanyl, furanyl substituted with -CH=CH-CH=CH-, pyrrolidinylC_{1\text{-4}alkyl}, pyrrolidinylC_{1\text{-4}alkyloxy}, morpholinyl, morpholinylC_{1\text{-4}alkyloxy}, morpholinylC_{1\text{-4}alkyloxy}, morpholinylC_{1\text{-4}alkyl}, piperazinyl, C_{1\text{-4}alkylpiperazinyl}, C_{1\text{-4}alkylpiperazinyl}, C_{1\text{-4}alkylpiperazinyl}, C_{1\text{-4}alkylpiperazinyl}, C_{1\text{-4}alkylpiperazinyl}, C_{1\text{-4}alkylpiperazinyl}, C_{1\text{-4}alkylpiperazinyl}, C_{1\text{-4}alkylpiperazinyl}, tetrahydropyrimidinylpiperazinyl}, tetrahydropyrimidinylpiperazinylC_{1\text{-4}alkyl}, piperidinylaminoC_{1\text{-4}alkylamino}, piperidinylaminoC_{1\text{-4}alkyl}, piperidinylaminoC_{1\text{-4}alkylamino}, piperidinylaminoC_{1\text{-4}alkyl}, piperidinylaminoC_{1\text{-4}alkylamino}, piperidinylaminoC_{1\text{-4}alkyl}, piperidinylaminoC_{1\text{-4}alkylamino}, piperidinylaminoC_{1\text{-4}alkyl}, piperidinylaminoC_{1\text{-4}alkylamino}, piperidinylaminoC_{1\text{-4}alkyl}, piperidinylaminoC_{1\text{-4}alkylamino}, piperidinylaminoC_{1\text{-4}alkyl}, piperidinylaminoC_{1\text{-4}alkylamino}, piperidinylaminoC_{1\text$

hydroxy C_{1-4} alkylamino, hydroxy C_{1-4} alkylamino C_{1-4} alkyl, di $(C_{1-4}$ alkyl)amino C_{1-4} alkylamino, aminothiadiazolyl, aminosulfonylpiperazinyl C_{1-4} alkyloxy, or thiophenyl C_{1-4} alkylamino;

 $(C_{1-4}alkylpiperidinyl)(hydroxyC_{1-4}alkyl)aminoC_{1-4}alkylaminoC_{1-4}alkyl,$

(C₁₋₄alkylpiperidinyl)(hydroxyC₁₋₄alkyl)aminoC₁₋₄alkylamino,

each R5 and R6 can be placed on the nitrogen in replacement of the hydrogen;

aryl in the above is phenyl, or phenyl substituted with one or more substituents each independently selected from halo, C₁₋₆alkyl, C₁₋₆alkyloxy, trifluoromethyl, cyano or hydroxycarbonyl.

173. – 176. (Canceled)

pyridinylC₁₋₄alkyloxy,

177. (Original) The compound of claim 172 that is selected from one of

wherein the terminal hydroxamic acid moiety (-C(O)-NH-OH) is replaced with

$$\begin{array}{c|c}
R^1 & O \\
R^2 & H & 0 \\
R^3 & = |= \\
R^4 & \Phi
\end{array}$$

wherein Φ , R^1 , R^2 , R^3 , and R^4 are as defined in accordance with claim 1.

178. – 200. (Canceled)

201. (Original) A compound of the formula:

or a pharmaceutically acceptable salt thereof, wherein

 Φ is $-NH_2$ or -OH;

R1 is H or as defined in claim 1;

R², R³, and R⁴ are as defined in claim1;

n is 0, 1, 2 or 3 and when n is 0 then a direct bond is intended;

t is 0, 1, 2, 3 or 4 and when t is 0 then a direct bond is intended;

R is selected from the group consisting of hydrogen, halogen, -NH₂, nitro, hydroxy, aryl, heterocyclyl, C_3 - C_8 -cycloalkyl, heteroaryl, C_1 - C_7 -akyl, haloalkyl, C_1 - C_7 -alkenyl, C_1 - C_7 -alkynyl, C_1 - C_7 -alkyl-arylsulfanyl, C_1 - C_7 -alkyl-arylsulfinyl, C_1 - C_7 -alkyl-arylsulfonyl, C_1 - C_7 -alkyl-arylaminosulfonyl, C_1 - C_7 -alkyl-arylamine, C_1 - C_7 -alkynyl-C(0)-amine, C_1 - C_7 -alkenyl-C(0)-amine, C_1 - C_7 -alkyl-arylamine, C_1 -

- each R¹² 1ydrogen, halo, hydroxy, amino, nitro, C₁₋₆alkyl, C₁₋₆alkyloxy, trifluoromethyl, di(C₁₋₆alkyl)amino, hydroxyamino or naphtalenylsulfonylpyrazinyl;
 - each R¹³ independently represents a hydrogen atom and one hydrogen atom can be replaced by a substituent selected from aryl;
 - R¹⁴ is hydrogen, hydroxy, amino, hydroxyC₁₋₆alkyl, C₁₋₆alkyl, C₁₋₆alkyloxy, arylC₁₋₆alkyl, aminocarbonyl, hydroxycarbonyl, aminoC₁₋₆alkyl, aminocarbonylC₁₋₆alkyl, hydroxycarbonylC₁₋₆alkyl, hydroxyaminocarbonyl, C₁₋₆alkyloxycarbonyl, C₁₋₆alkylaminoC₁₋₆alkyl or di(C₁₋₆alkyl)aminoC₁₋₆alkyl;
 - R^{15} is hydrogen, C_{1-6} alkyl, C_{3-10} cycloalkyl, hydroxy C_{1-6} alkyl, C_{1-6} alkyloxy C_{1-6} alkyl, di $(C_{1-6}$ alkyl)amino C_{1-6} alkyl or aryl;

is a radical selected from

$$(a-21) \qquad (a-22) \qquad (a-23) \qquad (a-24)$$

$$(a-21) \qquad (a-22) \qquad (a-23) \qquad (a-24)$$

$$(a-21) \qquad (a-22) \qquad (a-23) \qquad (a-24)$$

$$(a-24) \qquad \qquad (a-24)$$

$$(a-25) \qquad (a-26) \qquad (a-27) \qquad (a-28)$$

$$(a-27) \qquad (a-28)$$

$$(a-29) \qquad (a-30) \qquad (a-31) \qquad (a-32)$$

$$(R^7)_s \qquad \qquad (a-31) \qquad (a-32)$$

$$(R^7)_s \qquad \qquad (a-33) \qquad (a-34) \qquad (a-35) \qquad (a-36)$$

$$(a-37) \qquad (a-38) \qquad (a-39) \qquad (a-40)$$

$$(a-41)$$
 $(a-42)$ $(a-43)$ $(a-44)$ $(a-44)$ $(a-44)$ $(a-44)$ $(a-45)$ $(a-46)$ $(a-46)$ $(a-47)$ $(a-48)$ $(a-49)$ $(a-50)$ $(a-50)$ $(a-51)$

```
wherein each s is independently 0, 1, 2, 3, 4 or 5;
each R<sup>6</sup> and R<sup>7</sup> are independently selected from hydrogen; halo; hydroxy; amino; nitro;
     trihaloC<sub>1-6</sub>alkyl; trihaloC<sub>1-6</sub>alkyloxy; C<sub>1-6</sub>alkyl; C<sub>1-6</sub>alkyl substituted with aryl and
     C_{3-10}cycloalkyl; C_{1-6}alkyloxy; C_{1-6}
     C<sub>1-6</sub>alkyloxycarbonyl; C<sub>1-6</sub>alkylsulfonyl; cyanoC<sub>1-6</sub>alkyl; hydroxyC<sub>1-6</sub>alkyl;
     hydroxyC<sub>1-6</sub>alkyloxy; hydroxyC<sub>1-6</sub>alkylamino; aminoC<sub>1-6</sub>alkyloxy;
     di(C<sub>1-6</sub>alkyl)aminocarbonyl; di(hydroxyC<sub>1-6</sub>alkyl)amino; (aryl)(C<sub>1-6</sub>alkyl)amino;
    di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyloxy; di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkylamino;
    di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkylaminoC<sub>1-6</sub>alkyl; arylsulfonyl; arylsulfonylamino:
    aryloxy; aryloxyC<sub>1-6</sub>alkyl; arylC<sub>2-6</sub>alkenediyl; di(C<sub>1-6</sub>alkyl)amino;
    di(C_{1-6}alkyl)aminoC_{1-6}alkyl; di(C_{1-6}alkyl)amino(C_{1-6}alkyl)amino;
    di(C_{1-6}alkyl)amino(C_{1-6}alkyl)aminoC_{1-6}alkyl;
    di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl(C<sub>1-6</sub>alkyl)amino;
    di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl;
    aminosulfonylamino(C<sub>1-6</sub>alkyl)amino;
    aminosulfonylamino(C_{1-6}alkyl)aminoC_{1-6}alkyl;
   di(C_{1-6}alkyl)aminosulfonylamino(C_{1-6}alkyl)amino;
   di(C_{1-6}alkyl)aminoC_{1-6}alkyl)aminoC_{1-6}alkyl; cyano; thiophenyl;
thiophenyl substituted with di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl,
di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl, C<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkyl,
```

 $\label{eq:hydroxyC1-6alkylpiperazinylC1-6alkyl} hydroxyC_{1-6alkylpiperazinylC_{1-6alkyl},\\ di(C_{1-6alkyl})aminosulfonylpiperazinylC_{1-6alkyl},\\ C_{1-6alkyloxypiperidinyl}, C_{1-6alkyloxypiperidinylC_{1-6alkyl},\\ morpholinylC_{1-6alkyl})aminoC_{1-6alkyl},\\ or\ di(hydroxyC_{1-6alkyl})aminoC_{1-6alkyl},\\ furanyl;\ furanyl\ substituted\ with\ hydroxyC_{1-6alkyl};\ benzofuranyl;\ imidazolyl;\\ oxazolyl;\ oxazolyl\ substituted\ with\ aryl\ and\ C_{1-6alkyl};\ C_{1-6alkyltriazolyl};\ tetrazolyl;\\ pyrrolidinyl;\ pyrrolyl;\ piperidinylC_{1-6alkyloxy};\ morpholinylC_{1-6alkylmorpholinyl};\\ morpholinylC_{1-6alkyloxy};\ morpholinylC_{1-6alkylmorpholinylC_{1-6alkylpiperazinyl};\\ C_{1-6alkylpiperazinylC_{1-6alkyloxy};\ piperazinylC_{1-6alkyl};\\ naphtalenylsulfonylpiperazinyl;\ naphtalenylsulfonylpiperidinyl;\ naphtalenylsulfonylpiperidinyl;\ naphtalenylsulfonylpiperidinyl;$

```
C<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkyl; C<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkylamino;
 C<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkylaminoC<sub>1-6</sub>alkyl; C<sub>1-6</sub>alkylpiperazinylsulfonyl;
 aminosulfonylpiperazinylC<sub>1-6</sub>alkyloxy; aminosulfonylpiperazinyl;
 aminosulfonylpiperazinylC<sub>1-6</sub>alkyl; di(C<sub>1-6</sub>alkyl)aminosulfonylpiperazinyl;
di(C<sub>1-6</sub>alkyl)aminosulfonylpiperazinylC<sub>1-6</sub>alkyl; hydroxyC<sub>1-6</sub>alkylpiperazinyl;
hydroxyC<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkyl; C<sub>1-6</sub>alkyloxypiperidinyl;
C<sub>1-6</sub>alkyloxypiperidinylC<sub>1-6</sub>alkyl; piperidinylaminoC<sub>1-6</sub>alkylamino;
piperidinylaminoC<sub>1-6</sub>alkylaminoC<sub>1-6</sub>alkyl;
(C<sub>1-6</sub>alkylpiperidinyl)(hydroxyC<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkylamino;
(C<sub>1-6</sub>alkylpiperidinyl)(hydroxyC<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkylaminoC<sub>1-6</sub>alkyl;
hydroxyC<sub>1-6</sub>alkyloxyC<sub>1-6</sub>alkylpiperazinyl;
hydroxyC_{1\text{-}6}alkyloxyC_{1\text{-}6}alkylpiperazinylC_{1\text{-}6}alkyl;
(hydroxyC_{1-6}alkyl)(C_{1-6}alkyl)amino; (hydroxyC_{1-6}alkyl)(C_{1-6}alkyl)aminoC_{1-6}alkyl;
hydroxyC_{1-6}alkylaminoC_{1-6}alkyl; di(hydroxyC_{1-6}alkyl)aminoC_{1-6}alkyl;
pyrrolidinylC<sub>1-6</sub>alkyl; pyrrolidinylC<sub>1-6</sub>alkyloxy; pyrazolyl; thiopyrazolyl; pyrazolyl
substituted with two substituents selected from C<sub>1-6</sub>alkyl;
pyridinyl; pyridinyl substituted with C<sub>1-6</sub>alkyloxy, aryloxy or aryl; pyrimidinyl;
tetrahydropyrimidinylpiperazinyl; tetrahydropyrimidinylpiperazinylC<sub>1-6</sub>alkyl;
quinolinyl; indole; phenyl; phenyl substituted with one, two or three substituents
independently selected from halo, amino, nitro, C<sub>1-6</sub>alkyl, C<sub>1-6</sub>alkyloxy,
hydroxyC<sub>1-4</sub>alkyl, trifluoromethyl, trifluoromethyloxy, hydroxyC<sub>1-4</sub>alkyloxy,
C<sub>1-4</sub>alkylsulfonyl, C<sub>1-4</sub>alkyloxyC<sub>1-4</sub>alkyloxy, C<sub>1-4</sub>alkyloxycarbonyl,
aminoC<sub>1-4</sub>alkyloxy, di(C<sub>1-4</sub>alkyl)aminoC<sub>1-4</sub>alkyloxy, di(C<sub>1-4</sub>alkyl)amino,
di(C<sub>1-4</sub>alkyl)aminocarbonyl, di(C<sub>1-4</sub>alkyl)aminoC<sub>1-4</sub>alkyl,
di(C<sub>1-4</sub>alkyl)aminoC<sub>1-4</sub>alkylaminoC<sub>1-4</sub>alkyl,
di(C<sub>1-4</sub>alkyl)amino(C<sub>1-4</sub>alkyl)amino, di(C<sub>1-4</sub>alkyl)amino(C<sub>1-4</sub>alkyl)aminoC<sub>1-4</sub>alkyl,
di(C_{1-4}alkyl)aminoC_{1-4}alkyl(C_{1-4}alkyl)amino,
di(C_{1-4}alkyl)aminoC_{1-4}alkyl(C_{1-4}alkyl)aminoC_{1-4}alkyl,
aminosulfonylamino(C<sub>1-4</sub>alkyl)amino,
aminosulfonylamino(C<sub>1.4</sub>alkyl)aminoC<sub>1.4</sub>alkyl,
```

$$\label{eq:continuous_continuous_continuous} \begin{split} & \text{di}(C_{1\text{-4}}\text{alkyl})\text{aminosulfonylamino}(C_{1\text{-4}}\text{alkyl})\text{amino}C_{1\text{-6}}\text{alkyl}, \, \text{cyano}, \\ & \text{di}(C_{1\text{-4}}\text{alkyl})\text{aminosulfonylamino}(C_{1\text{-4}}\text{alkyl})\text{aminosulfonylpiperazinyl}, \\ & \text{piperidinyl}C_{1\text{-4}}\text{alkyloxy}, \, \text{pyrrolidinyl}C_{1\text{-4}}\text{alkyloxy}, \, \text{aminosulfonylpiperazinyl}, \\ & \text{aminosulfonylpiperazinyl}C_{1\text{-4}}\text{alkyl}, \, \text{di}(C_{1\text{-4}}\text{alkyl})\text{aminosulfonylpiperazinyl}, \\ & \text{di}(C_{1\text{-4}}\text{alkyl})\text{aminosulfonylpiperazinyl}C_{1\text{-4}}\text{alkyl}, \, \text{hydroxy}C_{1\text{-4}}\text{alkylpiperazinyl}, \\ & \text{hydroxy}C_{1\text{-4}}\text{alkylpiperazinyl}C_{1\text{-4}}\text{alkyl}, \, \text{Cl}_{1\text{-4}}\text{alkyloxy}\text{piperidinyl}, \\ & \text{Cl}_{1\text{-4}}\text{alkyloxy}\text{piperidinyl}C_{1\text{-4}}\text{alkylpiperazinyl}C_{1\text{-4}}\text{alkyl}, \\ & \text{hydroxy}C_{1\text{-4}}\text{alkyloxy}C_{1\text{-4}}\text{alkylpiperazinyl}C_{1\text{-4}}\text{alkyl}, \\ & \text{hydroxy}C_{1\text{-4}}\text{alkylpiperazinyl}C_{1\text{-4}}\text{alkyl}, \\ & \text{hydroxy}C_{1\text{-4}}\text{alkylpiperazinyl}C_{1\text{-4}}\text{alkylpiperazinyl}C_{1\text{-4}}\text{alkylpiperazinyl}C_{1\text{-4}}\text{alkylpiperazinyl}C_{1\text{-4}}\text{alkylpiperazinyl}C_{1\text{-4}}\text{alkylpiperazinyl}C_{1\text{-4}}\text{alkylpiperazinyl}C_{1\text{-4}}\text{alkylpiperazinyl}C_{1\text{-4}}\text{alkylpiperazinyl}C_{1\text{-4}}\text{alkylpiperazinyl}C_{1\text{-4}}\text{alkylpiperazinyl}C_{1\text{-4}}\text{alkylpiperazinyl}C_{1\text{-4}}\text{alkylpiperazinyl}C_{1\text{-4}}\text{alkylpiperazinyl}C_{1\text{-4}}\text{alkylpiperazinyl}C_{1\text{-4}}\text{alkylpiperazinyl}C_{1\text{-4}}\text{alkylpiperazinyl}C_{1\text{-4}}\text{alkylpiperazinyl}C_{1\text$$

 $(hydroxyC_{1-4}alkyl)(C_{1-4}alkyl)amino, (hydroxyC_{1-4}alkyl)(C_{1-4}alkyl)aminoC_{1-4}alkyl,$ di(hydroxyC₁₋₄alkyl)amino, di(hydroxyC₁₋₄alkyl)aminoC₁₋₄alkyl, furanyl, furanyl substituted with -CH=CH-CH=CH-, pyrrolidinylC₁₋₄alkyl, pyrrolidinylC₁₋₄alkyloxy, morpholinylC₁₋₄alkyloxy, morpholinylC₁₋₄alkyl, morpholinylC₁₋₄alkylamino, morpholinylC₁₋₄alkylaminoC₁₋₄alkyl, piperazinyl, C₁₋₄alkylpiperazinylC₁₋₄alkylpiperazinylC₁₋₄alkyl, C₁₋₄alkylpiperazinylC₁₋₄alkyl, C₁₋₄alkylpiperazinylC₁₋₄alkylamino, C₁₋₄alkylpiperazinylC₁₋₄alkylaminoC₁₋₆alkyl, tetrahydropyrimidinylpiperazinyl, tetrahydropyrimidinylpiperazinylC₁₋₄alkyl, piperidinylaminoC₁₋₄alkylamino, piperidinylaminoC₁₋₄alkylaminoC₁₋₄alkyl, (C₁₋₄alkylpiperidinyl)(hydroxyC₁₋₄alkyl)aminoC₁₋₄alkylamino, (C₁₋₄alkylpiperidinyl)(hydroxyC₁₋₄alkyl)aminoC₁₋₄alkylaminoC₁₋₄alkyl, pyridinylC₁₋₄alkyloxy, hydroxyC₁₋₄alkylaminoC₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkylamino, aminothiadiazolyl. aminosulfonylpiperazinylC₁₋₄alkyloxy, or thiophenylC₁₋₄alkylamino; each R⁶ and R⁷ can be placed on the nitrogen in replacement of the hydrogen;

hydroxycarbonyl. 202. – 206. (Canceled)

207. (Original) The compound of claim 201 that is selected from one of

aryl in the above is phenyl, or phenyl substituted with one or more substituents each

independently selected from halo, C1-6alkyl, C1-6alkyloxy, trifluoromethyl, cyano or

wherein the terminal hydroxamic acid moiety (-C(O)-NH-OH) is replaced with

wherein Φ , R^1 , R^2 , R^3 , and R^4 are as defined in accordance with claim 1.

231. (Original) A compound of the formula:

or a pharmaceutically acceptable salt thereof, wherein

 Φ is -NH₂ or -OH;

R¹ is H or as defined in claim 1;

R², R³, and R⁴ are as defined in claim 1;

n is 0, 1, 2 or 3 and when n is 0 then a direct bond is intended;

X is nitrogen or —

Y is nitrogen or —C

R is selected from the group consisting of hydrogen, halogen, -NH₂, nitro, hydroxy, aryl, heterocyclyl, C_3 - C_8 -cycloalkyl, heteroaryl, C_1 - C_7 -akyl, haloalkyl, C_1 - C_7 -alkenyl, C_1 - C_7 -alkynyl, C_1 - C_7 -alkyl-arylsulfanyl, C_1 - C_7 -alkyl-arylsulfinyl, C_1 - C_7 -alkyl-arylsulfonyl, C_1 - C_7 -alkyl-arylaminosulfonyl, C_1 - C_7 -alkyl-arylamine, C_1 - C_7 -alkynyl-C(0)-amine, C_1 - C_7 -alkenyl-C(0)-amine, C_1 - C_7 -alkyl-arylamine, C_1 - C_7 -alkynyl- C_1 - C_7 -alkenyl- C_1 - C_7 - C_7 -alkenyl- C_1 - C_7

R¹² is hydrogen, halo, hydroxy, amino, nitro, C₁₋₆alkyl, C₁₋₆alkyloxy, trifluoromethyl, di(C₁₋₆alkyl)amino, hydroxyamino or naphtalenylsulfonylpyrazinyl;

R¹³ is hydrogen, hydroxy, amino, hydroxyC₁₋₆alkyl, C₁₋₆alkyl, C₁₋₆alkyloxy, arylC₁₋₆alkyl, aminocarbonyl, hydroxycarbonyl, aminoC₁₋₆alkyl, aminocarbonylC₁₋₆alkyl, hydroxycarbonylC₁₋₆alkyl, hydroxyaminocarbonyl, C₁₋₆alkyloxycarbonyl, C₁₋₆alkylaminoC₁₋₆alkyl or di(C₁₋₆alkyl)aminoC₁₋₆alkyl;

when Z is equal to nitrogen, then-L- is a direct bond;

when Z is equal to $\stackrel{-\text{CH}}{-}$, then -L- is -NH- or the bivalent radical -C₁₋₆alkanediylNH-;

 R^{14} is hydrogen, $\mathsf{C}_{1\text{-}6}$ alkyl, $\mathsf{C}_{3\text{-}10}$ cycloalkyl, hydroxy $\mathsf{C}_{1\text{-}6}$ alkyl, $\mathsf{C}_{1\text{-}6}$ alkyl, $\mathsf{C}_{1\text{-}6}$ alkyl)amino $\mathsf{C}_{1\text{-}6}$ alkyl or aryl;

$$(a-13)$$
 $(a-14)$
 $(a-15)$
 $(a-16)$
 $(a-16)$
 $(a-17)$
 $(a-18)$
 $(a-18)$
 $(a-19)$
 $(a-19)$

$$(a-41)$$
 $(a-42)$ $(a-43)$ $(a-44)$ $(a-44)$ $(a-44)$ $(a-45)$ $(a-46)$ $(a-46)$ $(a-47)$ $(a-48)$ $(a-49)$ $(a-50)$ $(a-50)$ $(a-51)$

```
wherein each s is independently 0, 1, 2, 3, 4 or 5;
 each R<sup>5</sup> and R<sup>6</sup> are independently selected from hydrogen; halo; hydroxy; amino; nitro;
   trihaloC<sub>1-6</sub>alkyl; trihaloC<sub>1-6</sub>alkyloxy; C<sub>1-6</sub>alkyl; C<sub>1-6</sub>alkyl substituted with aryl and
   C<sub>3-10</sub>cycloalkyl; C<sub>1-6</sub>alkyloxy; C<sub>1-6</sub>alkyloxy; C<sub>1-6</sub>alkyloxy; C<sub>1-6</sub>alkyloxy;
   C_{1-6}alkyloxycarbonyl; C_{1-6}alkylsulfonyl; cyanoC_{1-6}alkyl; hydroxyC_{1-6}alkyl;
   hydroxyC<sub>1-6</sub>alkyloxy; hydroxyC<sub>1-6</sub>alkylamino; aminoC<sub>1-6</sub>alkyloxy;
   di(C<sub>1-6</sub>alkyl)aminocarbonyl; di(hydroxyC<sub>1-6</sub>alkyl)amino; (aryl)(C<sub>1-6</sub>alkyl)amino;
   di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyloxy; di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkylamino;
   di(C_{1-6}alkyl)aminoC_{1-6}alkylaminoC_{1-6}alkyl; arylsulfonyl; arylsulfonylamino;
   aryloxy; aryloxyC<sub>1-6</sub>alkyl; arylC<sub>2-6</sub>alkenediyl; di(C<sub>1-6</sub>alkyl)amino;
   di(C_{1-6}alkyl)aminoC_{1-6}alkyl; di(C_{1-6}alkyl)amino(C_{1-6}alkyl)amino;
   di(C_{1-6}alkyl)amino(C_{1-6}alkyl)aminoC_{1-6}alkyl;
   di(C_{1-6}alkyl)aminoC_{1-6}alkyl(C_{1-6}alkyl)amino;
   \label{eq:continuous} \mbox{di}(C_{1\mbox{-}6}\mbox{alkyl}) a \mbox{mino} C_{1\mbox{-}6}\mbox{alkyl};
   aminosulfonylamino(C<sub>1-6</sub>alkyl)amino;
   aminosulfonylamino(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl;
 di(C_{1-6}alkyl)aminosulfonylamino(C_{1-6}alkyl)amino;
 di(C<sub>1-6</sub>alkyl)aminosulfonylamino(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl; cyano; thiophenyl;
 thiophenyl substituted with di(C_{1-6}alkyl)aminoC_{1-6}alkyl(C_{1-6}alkyl)aminoC_{1-6}alkyl,
di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl, C<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkyl,
hydroxyC_{1-6}alkylpiperazinylC_{1-6}alkyl,
hydroxyC_{1-6}alkyloxyC_{1-6}alkylpiperazinylC_{1-6}alkyl,
di(C<sub>1-6</sub>alkyl)aminosulfonylpiperazinylC<sub>1-6</sub>alkyl,
C<sub>1-6</sub>alkyloxypiperidinyl, C<sub>1-6</sub>alkyloxypiperidinylC<sub>1-6</sub>alkyl, morpholinylC<sub>1-6</sub>alkyl,
hydroxyC<sub>1-6</sub>alkyl(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl, or di(hydroxyC<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl;
furanyl; furanyl substituted with hydroxyC<sub>1-6</sub>alkyl; benzofuranyl; imidazolyl;
oxazolyl; oxazolyl substituted with aryl and C<sub>1-6</sub>alkyl; C<sub>1-6</sub>alkyltriazolyl; tetrazolyl;
pyrrolidinyl; pyrrolyl; piperidinylC<sub>1-6</sub>alkyloxy; morpholinyl; C<sub>1-6</sub>alkylmorpholinyl;
morpholinylC<sub>1-6</sub>alkyloxy;
morpholinylC<sub>1-6</sub>alkyl; morpholinylC<sub>1-6</sub>alkylamino;
morpholinylC<sub>1-6</sub>alkylaminoC<sub>1-6</sub>alkyl; piperazinyl; C<sub>1-6</sub>alkylpiperazinyl;
```

```
C_{1-6}alkylpiperazinylC_{1-6}alkyloxy; piperazinylC_{1-6}alkyl;
 naphtalenylsulfonylpiperazinyl; naphtalenylsulfonylpiperidinyl; naphtalenylsulfony
 C_{1-6}alkylpiperazinylC_{1-6}alkyl; C_{1-6}alkylpiperazinylC_{1-6}alkylamino;
 C_{1-6}alkylpiperazinylC_{1-6}alkylaminoC_{1-6}alkyl; C_{1-6}alkylpiperazinylsulfonyl;
 aminosulfonylpiperazinylC<sub>1-6</sub>alkyloxy; aminosulfonylpiperazinyl;
 aminosulfonylpiperazinylC_{1-6}alkyl; di(C_{1-6}alkyl)aminosulfonylpiperazinyl;
 di(C<sub>1-6</sub>alkyl)aminosulfonylpiperazinylC<sub>1-6</sub>alkyl; hydroxyC<sub>1-6</sub>alkylpiperazinyl;
 hydroxyC<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkyl; C<sub>1-6</sub>alkyloxypiperidinyl;
 C<sub>1-6</sub>alkyloxypiperidinylC<sub>1-6</sub>alkyl; piperidinylaminoC<sub>1-6</sub>alkylamino;
piperidinylaminoC<sub>1-6</sub>alkylaminoC<sub>1-6</sub>alkyl;
(C<sub>1-6</sub>alkylpiperidinyl)(hydroxyC<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkylamino;
(C_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkyl)aminoC_{1-6}alkylaminoC_{1-6}alkyl;
hydroxyC_{1-6}alkyloxyC_{1-6}alkylpiperazinyl;
hydroxyC_{1\text{-}6}alkyloxyC_{1\text{-}6}alkylpiperazinylC_{1\text{-}6}alkyl;
(hydroxyC_{1-6}alkyl)(C_{1-6}alkyl)amino; (hydroxyC_{1-6}alkyl)(C_{1-6}alkyl)aminoC_{1-6}alkyl;
hydroxyC_{1-6}alkylaminoC_{1-6}alkyl; di(hydroxyC_{1-6}alkyl)aminoC_{1-6}alkyl;
pyrrolidinyl C_{1-6} alkyl; \ pyrrolidinyl C_{1-6} alkyloxy; \ pyrazolyl; \ thiopyrazolyl; \ pyrazolyl
substituted with two substituents selected from C<sub>1-6</sub>alkyl or trihaloC<sub>1-6</sub>alkyl;
pyridinyl; pyridinyl substituted with C<sub>1-6</sub>alkyloxy, aryloxy or aryl; pyrimidinyl;
tetrahydropyrimidinylpiperazinyl; tetrahydropyrimidinylpiperazinylC<sub>1-6</sub>alkyl;
quinolinyl; indolyl; phenyl; phenyl substituted with one, two or three substituents
independently selected from halo, amino, nitro, C1-6alkyl, C1-6alkyloxy,
hydroxyC_{1-4}alkyl, trifluoromethyl, trifluoromethyloxy, hydroxyC_{1-4}alkyloxy,
```

```
C_{1-4}alkylsulfonyl,\ C_{1-4}alkyloxyC_{1-4}alkyloxy,\ C_{1-4}alkyloxy,\ di(C_{1-4}alkyl)aminoC_{1-4}alkyl)aminoC_{1-4}alkyl)amino, di(C_{1-4}alkyl)aminoC_{1-4}alkyl)aminoC_{1-4}alkyl, di(C_{1-4}alkyl)aminoC_{1-4}alkyl, di(C_{1-4}alkyl)aminoC_{1-4}alkyl, di(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino, di(C_{1-4}alkyl)aminoC_{1-4}alkyl)amino, di(C_{1-4}alkyl)aminoC_{1-4}alkyl)amino, di(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino, di(C_{1-4}alkyl)aminosulfonylamino(C_{1-4}alkyl)amino(C_{1-4}alkyl)aminoC_{1-6}alkyl,\ cyano, piperidinylC_{1-4}alkyloxy,\ pyrrolidinylC_{1-4}alkyloxy,\ aminosulfonylpiperazinyl,\ aminosulfonylpiperazinylC_{1-4}alkyl,\ di(C_{1-4}alkyl)aminosulfonylpiperazinyl,\ di(C_{1-4}alkyl)aminosulfonylpiperazinyl,\ hydroxyC_{1-4}alkylpiperazinylC_{1-4}alkyl,\ C_{1-4}alkyloxypiperidinyl,\ hydroxyC_{1-4}alkyloxypiperidinyl,\ hydroxyC_{1-4}alkyloxypiperidinyl,\ hydroxyC_{1-4}alkyloxypiperidinyl,\ hydroxyC_{1-4}alkyloxypiperidinyl,\ hydroxyC_{1-4}alkyloxypiperidinyl,\ hydroxyC_{1-4}alkyloxypiperidinyl,\ hydroxyC_{1-4}alkyloxypiperidinyl,\ hydroxyC_{1-4}alkyloxypiperidinyl,\ hydroxyC_{1-4}alkyloxypiperidinyl,\ hydroxyC
```

 C_{1-4} alkyloxypiperidinyl C_{1-4} alkyl, hydroxy C_{1-4} alkyloxy C_{1-4}

 $\label{eq:control_problem} $$ (hydroxyC_{1-4}alkyl)(C_{1-4}alkyl)aminoC_{1-4}alkyl) aminoC_{1-4}alkyl, $$ di(hydroxyC_{1-4}alkyl)aminoC_{1-4}alkyl, furanyl, furanyl substituted with -CH=CH-CH=CH-, pyrrolidinylC_{1-4}alkyl, pyrrolidinylC_{1-4}alkyloxy, morpholinyl, morpholinylC_{1-4}alkyloxy, morpholinylC_{1-4}alkyl, $$$

 $morpholinyl C_{1\text{--4}} alkylamino, morpholinyl C_{1\text{--4}} alkylamino C_{1\text{--4}} alkyl, piperazinyl,$

 C_{1-4} alkylpiperazinyl, C_{1-4} alkylpiperazinyl C_{1-4} alkyloxy, piperazinyl C_{1-4} alkyl,

C₁₋₄alkylpiperazinylC₁₋₄alkyl, C₁₋₄alkylpiperazinylC₁₋₄alkylamino,

 $C_{1\text{-4}}$ alkylpiperazinyl $C_{1\text{-4}}$ alkylamino $C_{1\text{-6}}$ alkyl, tetrahydropyrimidinylpiperazinyl, tetrahydropyrimidinylpiperazinyl $C_{1\text{-4}}$ alkyl, piperidinylamino $C_{1\text{-4}}$ alkylamino $C_{1\text{-4}}$ alkylamino $C_{1\text{-4}}$ alkyl,

 $(C_{1-4}alkylpiperidinyl)(hydroxyC_{1-4}alkyl)aminoC_{1-4}alkylamino,$

 $(C_{1-4}alkylpiperidinyl)(hydroxyC_{1-4}alkyl)aminoC_{1-4}alkylaminoC_{1-4}alkyl, pyridinylC_{1-4}alkyloxy,$

hydroxyC₁₋₄alkylamino, hydroxyC₁₋₄alkylaminoC₁₋₄alkyl,

di(C₁₋₄alkyl)aminoC₁₋₄alkylamino, aminothiadiazolyl,

aminosulfonylpiperazinylC₁₋₄alkyloxy, or thiophenylC₁₋₄alkylamino;

each R⁵ and R⁶ can be placed on the nitrogen in replacement of the hydrogen;

aryl in the above is phenyl, or phenyl substituted with one or more substituents each independently selected from halo, C₁₋₆alkyl, C₁₋₆alkyloxy, trifluoromethyl, cyano or hydroxycarbonyl.

232. – 234 (Canceled)

235. (Original) The compound of claim 231 that is selected from one of

wherein the terminal hydroxamic acid moiety (-C(O)-NH-OH) is replaced with

$$R^{1}$$
 R^{2}
 $H = 0$
 $R^{3} = | = 0$
 $R^{4} \oplus 0$

wherein Φ , R^1 , R^2 , R^3 , and R^4 are as defined in accordance with claim 1.

236. - 258. (Canceled)

259. (Original) A compound of the formula:

or a pharmaceutically acceptable salt thereof, wherein

 Φ is -NH₂ or -OH;

R1 is H or as defined in claim 1

R², R³, and R⁴ are as defined in claim1:

n is 0, 1, 2 or 3 and when n is 0 then a direct bond is intended;

m is 0, 1, 2 or 3 and when m is 0 then a direct bond is intended;

t is 0 or 1 and when t is 0 then a direct bond is intended;

Q is nitrogen or
$$-CC$$
, $-CR$, or $-CH$;

X is nitrogen or —CS;

Y is nitrogen or —C ;

Z is -CH₂- or -O-;

R is selected from the group consisting of hydrogen, halogen, -NH₂, nitro, hydroxy, aryl, heterocyclyl, C_3 - C_8 -cycloalkyl, heteroaryl, C_1 - C_7 -akyl, haloalkyl, C_1 - C_7 -alkenyl, C_1 - C_7 -alkynyl, C_1 - C_7 -alkyl-arylsulfanyl, C_1 - C_7 -alkyl-arylsulfinyl, C_1 - C_7 -alkyl-arylsulfonyl, C_1 - C_7 -alkyl-arylamine, C_1 - C_7 -alkyl-arylamine, C_1 - C_7 -alkynyl-C(0)-amine, C_1 - C_7 -alkenyl-C(0)-amine, C_1 - C_7 -alkyl-arylamine, C_1 - C_7 -alkynyl-C(0)-amine, C_1 - C_7 -alkyl or C_1 - C_7 -alkoxy:

R¹² is hydrogen, hydroxy, amino, hydroxyC₁₋₆alkyl, C₁₋₆alkyl, C₁₋₆alkyloxy, arylC₁₋₆alkyl, aminocarbonyl, hydroxycarbonyl, aminoC₁₋₆alkyl, aminocarbonylC₁₋₆alkyl, hydroxycarbonylC₁₋₆alkyl, hydroxyaminocarbonyl, C₁₋₆alkyloxycarbonyl, C₁₋₆alkylaminoC₁₋₆alkyl or di(C₁₋₆alkyl)aminoC₁₋₆alkyl;

- -L- is a bivalent radical selected from C_{1-6} alkanediyl, carbonyl, sulfonyl, or C_{1-6} alkanediyl substituted with phenyl;
- is a radical selected from

wherein each s is independently 0, 1, 2, 3, 4 or 5;

each R⁵ and R⁶ are independently selected from hydrogen; halo; hydroxy; amino; nitro; trihaloC₁₋₆alkyl; trihaloC₁₋₆alkyloxy; C₁₋₆alkyl; C₁₋₆alkyl substituted with aryl and C₃₋₁₀cycloalkyl; C₁₋₆alkyloxy; C₁₋₆alkyloxyC₁₋₆alkyloxy; C₁₋₆alkyloxyC₁₋₆alkyloxyC₁₋₆alkyl; hydroxyC₁₋₆alkyl;

```
hydroxyC<sub>1-6</sub>alkyloxy; hydroxyC<sub>1-6</sub>alkylamino; aminoC<sub>1-6</sub>alkyloxy;
 di(C_{1-6}alkyl)aminocarbonyl; di(hydroxyC_{1-6}alkyl)amino; (aryl)(C_{1-6}alkyl)amino;
 di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyloxy; di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkylamino;
 di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkylaminoC<sub>1-6</sub>alkyl; arylsulfonyl; arylsulfonylamino;
 aryloxy; aryloxyC<sub>1.6</sub>alkyl; arylC<sub>2.6</sub>alkenediyl; di(C<sub>1.6</sub>alkyl)amino;
 di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl; di(C<sub>1-6</sub>alkyl)amino(C<sub>1-6</sub>alkyl)amino;
di(C<sub>1-6</sub>alkyl)amino(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl;
di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl(C<sub>1-6</sub>alkyl)amino;
di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl;
aminosulfonylamino(C<sub>1.6</sub>alkyl)amino:
aminosulfonylamino(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl;
di(C<sub>1-6</sub>alkyl)aminosulfonylamino(C<sub>1-6</sub>alkyl)amino;
di(C<sub>1-6</sub>alkyl)aminosulfonylamino(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl; cyano; thiophenyl;
thiophenyl substituted with di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl,
di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl, C<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkyl,
hydroxyC<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkyl,
hydroxyC<sub>1-6</sub>alkyloxyC<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkyl.
di(C<sub>1-6</sub>alkyl)aminosulfonylpiperazinylC<sub>1-6</sub>alkyl,
C<sub>1-6</sub>alkyloxypiperidinyl, C<sub>1-6</sub>alkyloxypiperidinylC<sub>1-6</sub>alkyl, morpholinylC<sub>1-6</sub>alkyl,
hydroxyC<sub>1-6</sub>alkyl(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl, or di(hydroxyC<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl;
furanyl; furanyl substituted with hydroxyC<sub>1-6</sub>alkyl; benzofuranyl; imidazolyl;
oxazolyl; oxazolyl substituted with aryl and C<sub>1-6</sub>alkyl; C<sub>1-6</sub>alkyltriazolyl; tetrazolyl;
pyrrolidinyl; pyrrolyl; piperidinylC<sub>1-6</sub>alkyloxy; morpholinyl; C<sub>1-6</sub>alkylmorpholinyl;
morpholinylC<sub>1-6</sub>alkyloxy;
morpholinylC<sub>1-6</sub>alkyl; morpholinylC<sub>1-6</sub>alkylamino;
morpholinylC<sub>1-6</sub>alkylaminoC<sub>1-6</sub>alkyl; piperazinyl; C<sub>1-6</sub>alkylpiperazinyl;
C<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkyloxy; piperazinylC<sub>1-6</sub>alkyl;
naphtalenylsulfonylpiperazinyl; naphtalenylsulfonylpiperidinyl; naphtalenylsulfonyl;
C_{1.6}alkylpiperazinylC_{1-6}alkyl; C_{1-6}alkylpiperazinylC_{1-6}alkylamino;
```

```
C_{1-6}alkylpiperazinylC_{1-6}alkylaminoC_{1-6}alkylpiperazinylsulfonyl;
 aminosulfonylpiperazinylC<sub>1-6</sub>alkyloxy; aminosulfonylpiperazinyl;
 aminosulfonylpiperazinylC<sub>1-6</sub>alkyl; di(C<sub>1-6</sub>alkyl)aminosulfonylpiperazinyl;
 di(C<sub>1-6</sub>alkyl)aminosulfonylpiperazinylC<sub>1-6</sub>alkyl; hydroxyC<sub>1-6</sub>alkylpiperazinyl;
 hydroxyC<sub>1.6</sub>alkylpiperazinylC<sub>1.6</sub>alkyl; C<sub>1.6</sub>alkyloxypiperidinyl;
 C<sub>1-6</sub>alkyloxypiperidinylC<sub>1-6</sub>alkyl; piperidinylaminoC<sub>1-6</sub>alkylamino;
 piperidinylaminoC<sub>1-6</sub>alkylaminoC<sub>1-6</sub>alkyl;
 (C<sub>1-6</sub>alkylpiperidinyl)(hydroxyC<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkylamino;
 (C<sub>1-6</sub>alkylpiperidinyl)(hydroxyC<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkylaminoC<sub>1-6</sub>alkyl;
hydroxyC<sub>1.6</sub>alkyloxyC<sub>1.6</sub>alkylpiperazinyl;
 hydroxyC<sub>1-6</sub>alkyloxyC<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkyl;
(hydroxyC<sub>1-6</sub>alkyl)(C<sub>1-6</sub>alkyl)amino; (hydroxyC<sub>1-6</sub>alkyl)(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl;
hydroxyC<sub>1-6</sub>alkylaminoC<sub>1-6</sub>alkyl; di(hydroxyC<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl;
pyrrolidinylC<sub>1-6</sub>alkyl; pyrrolidinylC<sub>1-6</sub>alkyloxy; pyrazolyl; thiopyrazolyl; pyrazolyl
substituted with two substituents selected from C<sub>1-6</sub>alkyl or trihaloC<sub>1-6</sub>alkyl;
pyridinyl; pyridinyl substituted with C<sub>1-6</sub>alkyloxy, aryloxy or aryl; pyrimidinyl;
tetrahydropyrimidinylpiperazinyl; tetrahydropyrimidinylpiperazinylC<sub>1-6</sub>alkyl;
quinolinyl; indolyl; phenyl; phenyl substituted with one, two or three substituents
independently selected from halo, amino, nitro, C<sub>1-6</sub>alkyl, C<sub>1-6</sub>alkyloxy,
hydroxyC<sub>1-4</sub>alkyl, trifluoromethyl, trifluoromethyloxy, hydroxyC<sub>1-4</sub>alkyloxy,
C<sub>1-4</sub>alkylsulfonyl, C<sub>1-4</sub>alkyloxyC<sub>1-4</sub>alkyloxy, C<sub>1-4</sub>alkyloxycarbonyl,
aminoC<sub>1-4</sub>alkyloxy, di(C<sub>1-4</sub>alkyl)aminoC<sub>1-4</sub>alkyloxy, di(C<sub>1-4</sub>alkyl)amino,
di(C<sub>1-4</sub>alkyl)aminocarbonyl, di(C<sub>1-4</sub>alkyl)aminoC<sub>1-4</sub>alkyl,
di(C<sub>1-4</sub>alkyl)aminoC<sub>1-4</sub>alkylaminoC<sub>1-4</sub>alkyl,
di(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}alkyl)amino(C_{1-4}a
di(C<sub>1-4</sub>alkyl)aminoC<sub>1-4</sub>alkyl(C<sub>1-4</sub>alkyl)amino,
di(C_{1-4}alkyl)aminoC_{1-4}alkyl(C_{1-4}alkyl)aminoC_{1-4}alkyl
aminosulfonylamino(C<sub>1-4</sub>alkyl)amino,
aminosulfonylamino(C<sub>1-4</sub>alkyl)aminoC<sub>1-4</sub>alkyl,
di(C<sub>1-4</sub>alkyl)aminosulfonylamino(C<sub>1-4</sub>alkyl)amino,
```

di(C₁₋₄alkyl)aminosulfonylamino(C₁₋₄alkyl)aminoC₁₋₆alkyl, cyano, piperidinylC₁₋₄alkyloxy, pyrrolidinylC₁₋₄alkyloxy, aminosulfonylpiperazinyl, aminosulfonylpiperazinylC₁₋₄alkyl, di(C₁₋₄alkyl)aminosulfonylpiperazinyl, $di(C_{1-4}alkyl)$ aminosulfonylpiperazinyl $C_{1-4}alkyl$, hydroxy $C_{1-4}alkyl$ piperazinyl, hydroxyC₁₋₄alkylpiperazinylC₁₋₄alkyl, C₁₋₄alkyloxypiperidinyl, C₁₋₄alkyloxypiperidinylC₁₋₄alkyl, hydroxyC₁₋₄alkyloxyC₁₋₄alkylpiperazinyl, hydroxyC₁₋₄alkyloxyC₁₋₄alkylpiperazinylC₁₋₄alkyl, $(hydroxyC_{1-4}alkyl)(C_{1-4}alkyl)amino, (hydroxyC_{1-4}alkyl)(C_{1-4}alkyl)aminoC_{1-4}alkyl,$ di(hydroxyC₁₋₄alkyl)amino, di(hydroxyC₁₋₄alkyl)aminoC₁₋₄alkyl, furanyl substituted with -CH=CH-CH=CH-, pyrrolidinylC₁₋₄alkyl, pyrrolidinylC₁₋₄alkyloxy, morpholinyl, morpholinylC₁₋₄alkyloxy, morpholinylC₁₋₄alkyl, morpholinylC₁₋₄alkylamino, morpholinylC₁₋₄alkylaminoC₁₋₄alkyl, piperazinyl, C₁₋₄alkylpiperazinyl, C₁₋₄alkylpiperazinylC₁₋₄alkyloxy, piperazinylC₁₋₄alkyl, C₁₋₄alkylpiperazinylC₁₋₄alkyl, C₁₋₄alkylpiperazinylC₁₋₄alkylamino, C₁₋₄alkylpiperazinylC₁₋₄alkylaminoC₁₋₆alkyl, tetrahydropyrimidinylpiperazinyl, tetrahydropyrimidinylpiperazinylC₁₋₄alkyl, piperidinylaminoC₁₋₄alkylamino. piperidinylaminoC₁₋₄alkylaminoC₁₋₄alkyl, (C₁₋₄alkylpiperidinyl)(hydroxyC₁₋₄alkyl)aminoC₁₋₄alkylamino, (C₁₋₄alkylpiperidinyl)(hydroxyC₁₋₄alkyl)aminoC₁₋₄alkylaminoC₁₋₄alkyl, pyridinylC₁₋₄alkyloxy,

hydroxyC₁₋₄alkylamino, hydroxyC₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkylamino, aminothiadiazolyl, aminosulfonylpiperazinylC₁₋₄alkyloxy, or thiophenylC₁₋₄alkylamino; each R⁵ and R⁶ can be placed on the nitrogen in replacement of the hydrogen;

aryl in the above is phenyl, or phenyl substituted with one or more substituents each independently selected from halo, C₁₋₆alkyl, C₁₋₆alkyloxy, trifluoromethyl, cyano or hydroxycarbonyl.

260. - 262. (Canceled)

263. (Original) The compound of claim 259 that is selected from one of

wherein the terminal hydroxamic acid moiety (-C(O)-NH-OH) is replaced with

wherein Φ, R¹, R², R³, and R⁴ are as defined in accordance with claim 1.

264. – 286. (Canceled)

287. (Original) A compound of the formula:

$$R^{1}$$
 R^{2}
 R^{3}
 $=$
 R^{4}
 $Q=X$
 R^{12}
 CH_{2}
 CH_{2}

or a pharmaceutically acceptable salt thereof, wherein

 Φ is -NH₂ or -OH;

R¹ is H or as defined in claim1:

R², R³, and R⁴ are as defined in claim 1:

t is 0, 1, 2, 3 or 4 and when t is 0 then a direct bond is intended;

Q is nitrogen or
$$-CC$$
, $-CR$, or $-CH$;

X is nitrogen or — ;

Y is nitrogen or —C

Z is -NH-, -O- or $-CH_2$ -;

R is selected from the group consisting of hydrogen, halogen, -NH₂, nitro, hydroxy, aryl, heterocyclyl, C_3 - C_8 -cycloalkyl, heteroaryl, C_1 - C_7 -akyl, haloalkyl, C_1 - C_7 -alkenyl, C_1 - C_7 -alkyl-arylsulfanyl, C_1 - C_7 -alkyl-arylsulfinyl, C_1 - C_7 -alkyl-arylsulfonyl, C_1 - C_7 -alkyl-arylaminosulfonyl, C_1 - C_7 -alkyl-arylamine, C_1 - C_7 -alkyl-arylamine, C_1 - C_7 -alkynyl-C(0)-amine, C_1 - C_7 -alkynyl- C_1 - C_7 -alkenyl- C_1 - C_7 -alkoxy;

- R¹² is hydrogen, hydroxy, amino, hydroxyC₁₋₆alkyl, C₁₋₆alkyl, C₁₋₆alkyloxy, arylC₁₋₆alkyl, aminocarbonyl, hydroxycarbonyl, aminoC₁₋₆alkyl, aminocarbonylC₁₋₆alkyl, hydroxycarbonylC₁₋₆alkyl, hydroxyaminocarbonyl, C₁₋₆alkyloxycarbonyl, C₁₋₆alkylaminoC₁₋₆alkyl or di(C₁₋₆alkyl)aminoC₁₋₆alkyl;
 - -L- is a bivalent radical selected from -NR⁹C(O)-, -NR⁹SO₂- or -NR⁹CH₂-wherein R⁹ is hydrogen, C₁₋₆alkyl, C₃₋₁₀cycloalkyl, hydroxyC₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkyl or di(C₁₋₆alkyl)aminoC₁₋₆alkyl;
 - is a radical selected from

$$(a-9) \qquad (a-10) \qquad (a-11) \qquad (a-12)$$

$$(a-13) \qquad (a-14) \qquad (a-15) \qquad (a-16)$$

$$(a-17) \qquad (a-18) \qquad (a-18) \qquad (a-19) \qquad (a-20)$$

$$(a-21) \qquad (a-22) \qquad (a-23) \qquad (a-24)$$

$$(a-25) \qquad (a-26) \qquad (a-27) \qquad (a-28)$$

wherein each s is independently 0, 1, 2, 3, 4 or 5; each R⁵ and R⁶ are independently selected from hydrogen; halo; hydroxy; amino; nitro;

```
trihaloC<sub>1-6</sub>alkyl; trihaloC<sub>1-6</sub>alkyloxy; C<sub>1-6</sub>alkyl; C<sub>1-6</sub>alkyl substituted with aryl and
C_{3-10}cycloalkyl; C_{1-6}alkyloxy; C_{1-6}
C_{1-6}alkyloxycarbonyl; C_{1-6}alkylsulfonyl; cyanoC_{1-6}alkyl; hydroxyC_{1-6}alkyl;
hydroxyC<sub>1-6</sub>alkyloxy; hydroxyC<sub>1-6</sub>alkylamino; aminoC<sub>1-6</sub>alkyloxy;
di(C_{1-6}alkyl)aminocarbonyl; di(hydroxyC_{1-6}alkyl)amino; (aryl)(C_{1-6}alkyl)amino;
di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyloxy; di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkylamino;
di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkylaminoC<sub>1-6</sub>alkyl; arylsulfonyl; arylsulfonylamino;
aryloxy; aryloxyC<sub>1-6</sub>alkyl; arylC<sub>2-6</sub>alkenediyl; di(C<sub>1-6</sub>alkyl)amino;
di(C_{1-6}alkyl)aminoC_{1-6}alkyl; di(C_{1-6}alkyl)amino(C_{1-6}alkyl)amino;
di(C_{1-6}alkyl)amino(C_{1-6}alkyl)aminoC_{1-6}alkyl;
di(C_{1-6}alkyl)aminoC_{1-6}alkyl(C_{1-6}alkyl)amino;
di(C_{1-6}alkyl)aminoC_{1-6}alkyl(C_{1-6}alkyl)aminoC_{1-6}alkyl;
aminosulfonylamino(C<sub>1-6</sub>alkyl)amino;
aminosulfonylamino(C_{1-6}alkyl)aminoC_{1-6}alkyl;
di(C<sub>1-6</sub>alkyl)aminosulfonylamino(C<sub>1-6</sub>alkyl)amino;
di(C<sub>1-6</sub>alkyl)aminosulfonylamino(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl; cyano; thiophenyl;
thiophenyl substituted with di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl,
di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl, C<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkyl,
hydroxyC<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkyl,
hydroxyC<sub>1-6</sub>alkyloxyC<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkyl,
di(C<sub>1-6</sub>alkyl)aminosulfonylpiperazinylC<sub>1-6</sub>alkyl,
C_{1-6}alkyloxypiperidinyl, C_{1-6}alkyloxypiperidinylC_{1-6}alkyl, morpholinylC_{1-6}alkyl,
hydroxyC_{1-6}alkyl(C_{1-6}alkyl)aminoC_{1-6}alkyl, or di(hydroxyC_{1-6}alkyl)aminoC_{1-6}alkyl;
furanyl; furanyl substituted with hydroxyC<sub>1-6</sub>alkyl; benzofuranyl; imidazolyl;
oxazolyl; oxazolyl substituted with aryl and C_{1-6}alkyl; C_{1-6}alkyltriazolyl; tetrazolyl;
pyrrolidinyl; pyrrolyl; piperidinylC<sub>1-6</sub>alkyloxy; morpholinyl; C<sub>1-6</sub>alkylmorpholinyl;
morpholinylC<sub>1-6</sub>alkyloxy;
morpholinylC<sub>1-6</sub>alkyl; morpholinylC<sub>1-6</sub>alkylamino;
morpholinylC<sub>1-6</sub>alkylaminoC<sub>1-6</sub>alkyl; piperazinyl; C<sub>1-6</sub>alkylpiperazinyl;
C_{1-6}alkylpiperazinylC_{1-6}alkyloxy; piperazinylC_{1-6}alkyl;
naphtalenylsulfonylpiperazinyl; naphtalenylsulfonylpiperidinyl; naphtalenylsulfonyl:
C<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkyl; C<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkylamino;
C_{1-6}alkylpiperazinylC_{1-6}alkylaminoC_{1-6}alkyl; C_{1-6}alkylpiperazinylsulfonyl;
aminosulfonylpiperazinylC<sub>1-6</sub>alkyloxy; aminosulfonylpiperazinyl;
aminosulfonylpiperazinylC<sub>1-6</sub>alkyl; di(C<sub>1-6</sub>alkyl)aminosulfonylpiperazinyl;
```

```
di(C<sub>1-6</sub>alkyl)aminosulfonylpiperazinylC<sub>1-6</sub>alkyl; hydroxyC<sub>1-6</sub>alkylpiperazinyl;
 hydroxyC<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkyl; C<sub>1-6</sub>alkyloxypiperidinyl;
 C_{1-6}alkyloxypiperidinylC_{1-6}alkyl; piperidinylaminoC_{1-6}alkylamino;
 piperidinylaminoC<sub>1-6</sub>alkylaminoC<sub>1-6</sub>alkyl;
 (C<sub>1-6</sub>alkylpiperidinyl)(hydroxyC<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkylamino;
 (C_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkyl)aminoC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkyl)aminoC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkyl)aminoC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkyl)aminoC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkyl)aminoC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkyl)aminoC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkyl)aminoC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkyl)aminoC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkyl)aminoC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkylpiperidinyl)(
 hydroxyC<sub>1-6</sub>alkyloxyC<sub>1-6</sub>alkylpiperazinyl;
 hydroxyC<sub>1-6</sub>alkyloxyC<sub>1-6</sub>alkylpiperazinylC<sub>1-6</sub>alkyl;
 (hydroxyC_{1-6}alkyl)(C_{1-6}alkyl)amino; (hydroxyC_{1-6}alkyl)(C_{1-6}alkyl)aminoC_{1-6}alkyl;
 hydroxyC<sub>1-6</sub>alkylaminoC<sub>1-6</sub>alkyl; di(hydroxyC<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl;
 pyrrolidinylC<sub>1-6</sub>alkyl; pyrrolidinylC<sub>1-6</sub>alkyloxy; pyrazolyl; thiopyrazolyl; pyrazolyl
 substituted with two substituents selected from C<sub>1-6</sub>alkyl or trihaloC<sub>1-6</sub>alkyl;
 pyridinyl; pyridinyl substituted with C<sub>1-6</sub>alkyloxy, aryloxy or aryl; pyrimidinyl;
 tetrahydropyrimidinylpiperazinyl; tetrahydropyrimidinylpiperazinylC<sub>1-6</sub>alkyl;
 quinolinyl; indole; phenyl; phenyl substituted with one, two or three substituents
 independently selected from halo, amino, nitro, C1-6alkyl, C1-6alkyloxy,
 hydroxyC<sub>1-4</sub>alkyl, trifluoromethyl, trifluoromethyloxy, hydroxyC<sub>1-4</sub>alkyloxy,
 C<sub>1-4</sub>alkylsulfonyl, C<sub>1-4</sub>alkyloxyC<sub>1-4</sub>alkyloxy, C<sub>1-4</sub>alkyloxycarbonyl,
 aminoC<sub>1-4</sub>alkyloxy, di(C<sub>1-4</sub>alkyl)aminoC<sub>1-4</sub>alkyloxy, di(C<sub>1-4</sub>alkyl)amino,
 di(C<sub>1-4</sub>alkyl)aminocarbonyl, di(C<sub>1-4</sub>alkyl)aminoC<sub>1-4</sub>alkyl,
 di(C_{1-4}alkyl)aminoC_{1-4}alkylaminoC_{1-4}alkyl
 di(C<sub>1-4</sub>alkyl)amino(C<sub>1-4</sub>alkyl)amino, di(C<sub>1-4</sub>alkyl)amino(C<sub>1-4</sub>alkyl)aminoC<sub>1-4</sub>alkyl,
di(C_{1-4}alkyl)aminoC_{1-4}alkyl(C_{1-4}alkyl)amino,
di(C_{1-4}alkyl)aminoC_{1-4}alkyl(C_{1-4}alkyl)aminoC_{1-4}alkyl,
aminosulfonylamino(C<sub>1-4</sub>alkyl)amino,
 aminosulfonylamino(C<sub>1-4</sub>alkyl)aminoC<sub>1-4</sub>alkyl.
di(C<sub>1-4</sub>alkyl)aminosulfonylamino(C<sub>1-4</sub>alkyl)amino.
di(C<sub>1-4</sub>alkyl)aminosulfonylamino(C<sub>1-4</sub>alkyl)aminoC<sub>1-6</sub>alkyl, cyano.
piperidinylC<sub>1-4</sub>alkyloxy, pyrrolidinylC<sub>1-4</sub>alkyloxy, aminosulfonylpiperazinyl,
aminosulfonylpiperazinylC<sub>1-4</sub>alkyl, di(C<sub>1-4</sub>alkyl)aminosulfonylpiperazinyl,
di(C<sub>1-4</sub>alkyl)aminosulfonylpiperazinylC<sub>1-4</sub>alkyl, hydroxyC<sub>1-4</sub>alkylpiperazinyl,
hydroxyC<sub>1-4</sub>alkylpiperazinylC<sub>1-4</sub>alkyl, C<sub>1-4</sub>alkyloxypiperidinyl,
C<sub>1-4</sub>alkyloxypiperidinylC<sub>1-4</sub>alkyl, hydroxyC<sub>1-4</sub>alkyloxyC<sub>1-4</sub>alkylpiperazinyl,
hydroxyC<sub>1-4</sub>alkyloxyC<sub>1-4</sub>alkylpiperazinylC<sub>1-4</sub>alkyl,
(hydroxyC<sub>1-4</sub>alkyl)(C<sub>1-4</sub>alkyl)amino, (hydroxyC<sub>1-4</sub>alkyl)(C<sub>1-4</sub>alkyl)aminoC<sub>1-4</sub>alkyl.
di(hydroxyC<sub>1-4</sub>alkyl)amino, di(hydroxyC<sub>1-4</sub>alkyl)aminoC<sub>1-4</sub>alkyl, furanyl, furanyl
substituted with -CH=CH-CH=CH-, pyrrolidinylC<sub>1-4</sub>alkyl, pyrrolidinylC<sub>1-4</sub>alkyloxy,
morpholinyl, morpholinylC<sub>1-4</sub>alkyloxy, morpholinylC<sub>1-4</sub>alkyl,
```

morpholinyl C_{1-4} alkylamino, morpholinyl C_{1-4} alkylamino C_{1-4} alkyl, piperazinyl, C_{1-4} alkylpiperazinyl C_{1-4} alkylamino C_{1-6} alkyl, tetrahydropyrimidinylpiperazinyl, tetrahydropyrimidinylpiperazinyl C_{1-4} alkyl, piperidinylamino C_{1-4} alkylamino, piperidinylamino C_{1-4} alkylamino C_{1-4} alkyl,

(C₁₋₄alkylpiperidinyl)(hydroxyC₁₋₄alkyl)aminoC₁₋₄alkylamino, (C₁₋₄alkylpiperidinyl)(hydroxyC₁₋₄alkyl)aminoC₁₋₄alkylaminoC₁₋₄alkyl,

pyridinylC₁₋₄alkyloxy,

hydroxy C_{1-4} alkylamino, hydroxy C_{1-4} alkylamino C_{1-4} alkyl, di $(C_{1-4}$ alkyl)amino C_{1-4} alkylamino, aminothiadiazolyl,

aminosulfonylpiperazinylC₁₋₄alkyloxy, or thiophenylC₁₋₄alkylamino;

each R⁵ and R⁶ can be placed on the nitrogen in replacement of the hydrogen;

aryl in the above is phenyl, or phenyl substituted with one or more substituents each independently selected from halo, C₁₋₆alkyl, C₁₋₆alkyloxy, trifluoromethyl, cyano or hydroxycarbonyl.

288. - 291. (Canceled)

292. (Original) The compound of claim 287 that is selected from one of

wherein the terminal hydroxamic acid moiety (-C(O)-NH-OH) is replaced with

wherein Φ , R^1 , R^2 , R^3 , and R^4 are as defined in accordance with claim 1.

293. - 315. (Canceled)

316. (Original) A compound of the formula:

$$R^{1}$$
 R^{2}
 R^{3}
 $= |=$
 R^{4}
 Φ
 R^{1}
 $(R^{11})_{m}$
 $(R^{12})_{n}$
 $(R^{12})_{n}$

or a pharmaceutically acceptable salt thereof, wherein

 Φ is -NH₂ or -OH;

R¹ is H or as defined in claim 1;

R², R³, and R⁴ are as defined in claim 1;

Ring A is a heterocyclyl, wherein if said heterocyclyl contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from G;

R¹¹ is a substituent on carbon and is selected from halo, nitro, cyano, hydroxy, oxo, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, N-(C₁₋₆alkyl)sulphamoyl, N,N-(C₁₋₆alkyl)₂sulphamoyl, aryl, aryloxy, arylC₁₋₆alkyl, heterocyclic group, (heterocyclic group)C₁₋₆alkyl or a group (D-E-); wherein R¹, including group (D-E-), may be optionally substituted on carbon by one or more V; and wherein, if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from J;

V is halo, nitro, cyano, hydroxy, oxo, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, N-(C₁₋₆alkyl)sulphamoyl, N,N-(C₁₋₆alkyl)₂sulphamoyl

or a group (D'-E'-); wherein V, including group (D'-E'-), may be optionally substituted on carbon by one or more W;

W and Z are independently selected from halo, nitro, cyano, hydroxy, oxo, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)2amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)2carbamoyl, C₁₋₆alkylS(O)a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, N-(C₁₋₆alkyl)sulphamoyl or N,N-(C₁₋₆alkyl)2sulphamoyl;

G, J and K are independently selected from C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{1-8} alkylsulphonyl, C_{1-8} alkoxycarbonyl, carbamoyl, N-(C_{1-8} alkyl)carbamoyl, N-(C_{1-8} alkyl)carbamoyl, benzyloxycarbonyl, benzoyl and phenylsulphonyl, aryl, aryl C_{1-6} alkyl or (heterocyclic group) C_{1-6} alkyl; wherein G, J and K may be optionally substituted on carbon by one or more Q; and wherein if said heterocyclic group contains an - NH- moiety that nitrogen may be optionally substituted by a group selected from hydrogen or C_{1-6} alkyl;

Q is halo, nitro, cyano, hydroxy, oxo, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, C₁₋₆alkoxycarbonylamino, N-(C₁₋₆alkyl)sulphamoyl, N,N-(C₁₋₆alkyl)₂sulphamoyl, aryl, aryloxy, arylC₁₋₆alkyl, arylC₁₋₆alkoxy, heterocyclic group, (heterocyclic group)C₁₋₆alkyl, (heterocyclic group)C₁₋₆alkoxy, or a group (D"-E"-); wherein Q, including group (D"-E"-), may be optionally substituted on carbon by one or more Z;

D, **D**' and **D**'' are independently selected from C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₃₋₈cycloalkylC₁₋₆alkyl, aryl, arylC₁₋₆alkyl, heterocyclic group, (heterocyclic group)C₁₋₆alkyl; wherein D, D' and D'' may be optionally substituted on carbon by one or more F'; and wherein if said heterocyclic group contains an –NH- moiety that nitrogen may be optionally substituted by a group selected from K;

E, E' and E'' are independently selected from -N(R^a)-, -O-, -C(O)O-, -OC(O)-, -C(O)-, -N(R^a)C(O)-, -N(R^a)C(O)N(R^b)-, -N(R^a)C(O)O-, -OC(O)N(R^a)-, -C(O)N(R^a)-, -S(O)_r-, -SO₂N(R^a)-, -N(R^a)SO₂-; wherein R^a and R^bare independently selected from hydrogen or $C_{1.6}$ alkyl optionally substituted by one or more F and r is 0-2;

F and F' are independently selected from halo, nitro, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino,

N, N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl,

 $N,N-(C_{1-6}alkyl)_2$ carbamoyl, $C_{1-6}alkylS(O)_a$ wherein a is 0 to 2, $C_{1-6}alkoxy$ carbonyl,

 $N-(C_{1-6}alkyl)$ sulphamoyl and $N,N-(C_{1-6}alkyl)$ 2sulphamoyl;

m is 0, 1, 2, 3 or 4; wherein the values of R¹ may be the same or different;

Ring B is a ring selected from

$$X^{1} - X^{2}$$
 or
$$Y^{1} = Y^{2}$$

$$Y^{3} - Y^{4}$$

wherein,

X1 and X2 are selected from CH or N, and

 Y^1 , Y^2 , Y^3 and Y^4 are selected from CH or N provided that at least one of Y^1 , Y^2 , Y^3 and Y^4 is N;

R¹² is halo;

n is 0, 1, or 2, wherein the values of R^{12} are the same or different.

317. – 326. (Canceled)

327. (Original) The compound of claim 316 that is

$$\begin{array}{c|c}
R^{11} \\
N \\
N \\
N \\
R^4 \\
R^3 \\
R^2 \\
R^1
\end{array}$$

wherein R¹¹ is selected from one of:

	3-6-4	000	
	0=N-	4.2m~+	2~~
0	+>-	Dort	Ool
of N Don't			Xolunt
Tho		Don	
	0=5-+	.Do.~~	~~~~
O Cont	070~	°Dont	60/4
34		N N N N N N N N N N N N N N N N N N N	de la companya della companya della companya de la companya della

328. (Canceled)

329. The compound of claim 316 that is selected from one of the compounds of WO 03/024448 wherein the terminal moieties -C(O)-NH-Ay 1 , -C(O)-NH-Ay 2 , -C(O)-NH-Ar a -NH $_2$, and

are replaced with the moiety:

$$\begin{array}{c|c} R^1 \\ R^2 \\ R^3 \\ R^4 \end{array}$$

wherein Φ , R^1 , R^2 , R^3 , and R^4 are as defined in accordance with claim 1.

330. – 352. (Canceled)

353. (Original) A compound of the formula:

Ar-A-D-E-G-NH-
$$R^1$$
 R^2
 R^3

or a pharmaceutically acceptable salt thereof, wherein

 Φ is -NH₂ or -OH;

R¹ is H or as defined in claim 1;

R², R³, and R⁴ are as defined in claim 1; and

Ar, A, D, E, and G are as defined in JP 2003137866.

354. (Canceled)

355. (Original) The compound of claim 353 that is selected from one of the compounds of JP 2003137866 wherein the terminal moiety:

$$\begin{array}{c|c}
R^1 \\
R^2 \\
R^3 \\
R^4
\end{array}$$

wherein Φ, R¹, R², R³, and R⁴ are as defined in accordance with claim 1.

356. - 377. (Canceled)

378. (Original) A compound of the formula:

or a pharmaceutically acceptable salt thereof, wherein

 Φ is $-NH_2$ or -OH;

R¹ is H or as defined in claim 1;

R², R³, and R⁴ are as defined in claim 1;

X, Y, and A are as defined in JP 11-269146 (1999); and R^{11} is the same as R^{1} of JP 11-269146 (1999).

379. (Canceled)

380. (Original) The compound of claim 378 that is selected from one of the compounds 1-50 of Tables 2-4 of JP 11-269146 (1999) wherein the terminal moiety:

NH₂ is replaced with the moiety:

$$\begin{array}{c|c} & R^1 \\ R^2 \\ & R^3 \\ R^4 \end{array}$$

wherein Φ , R^1 , R^2 , R^3 , and R^4 are as defined in accordance with claim 1.

381. - 402. (Canceled)

403. (Original) A compound of the formula:

$$A-X-Q-(CH_2)_n$$
 R^{11}
 O
 NH
 R^2
 R^3

or a pharmaceutically acceptable salt thereof, wherein

 Φ is -NH₂ or -OH;

R¹ is H or as defined in claim 1;

 R^2 , R^3 , and R^4 are as defined in claim 1;

n, X, Q, and A are as defined in JP 11-302173 (1999); and

 R^{11} is the same as R^{1} of JP 11-302173 (1999).

404. (Canceled)

405. (Original) The compound of claim 403 that is selected from one of the compounds 1-67 of JP 11-302173 (1999) wherein the terminal moiety:

wherein Φ , R^1 , R^2 , R^3 , and R^4 are as defined in accordance with claim 1.

(Canceled)

(Original) A compound of the formula: 406. - 427. 428.

compound of the formula:
$$R^{11} O R^{2}$$

$$A-X-Q-(CH_{2})_{n} R^{3}$$

or a pharmaceutically acceptable salt thereof, wherein

 Φ is -NH₂ or -OH;

 R^1 is H or as defined in claim 1;

 R^2 , R^3 , and R^4 are as defined in claim 1;

 $_{\mbox{\scriptsize n, Q, and A}}$ are as defined in JP 2001131130; and

 R^{11} is the same as R^1 of JP 2001131130.

429.

(Original) The compound of claim 428 that is selected from one of the compounds of JP

2001131130 wherein the terminal moieties

$$\begin{array}{c|c}
R^1 \\
R^2 \\
R^3 \\
R^4 \\
R^4
\end{array}$$

wherein Φ , R^1 , R^2 , R^3 , and R^4 are as defined in accordance with claim 1.

431. - 452. (Canceled)

453. (Original) A compound of formula:

$$A-X-Q-(CH_2)_n$$
 R^{11}
 O
 NH
 R^2
 R^3

or a pharmaceutically acceptable salt thereof, wherein

 Φ is -NH₂ or -OH;

R¹ is H or as defined in claim 1;

R², R³, and R⁴ are as defined in claim 1;

n, X, Q, and A are as defined in JP 10152462, JP 2002332267, and JP 11-302173; and R^{11} is the same as R^{1} of JP 10152462, JP 2002332267, and JP 11-302173.

454. (Canceled)

455. (Original) The compound of claim 453 that is selected from one of the compounds of JP 10152462, JP 2002332267, and JP 11-302173 wherein the terminal moiety

$$\bigcup_{N \in \mathbb{N}} \mathbb{R}^2$$

is replaced with the moiety:

$$\begin{array}{c|c}
R^1 \\
R^2 \\
R^3 \\
R^4
\end{array}$$

wherein Φ , R^1 , R^2 , R^3 , and R^4 are as defined in accordance with claim 1.

456. - 477. (Canceled)

478. (Original) A compounds of the formula:

$$A-X-Q-(CH_2)_n$$
 R_1^{11}
 O
 NH
 R_2^{12}
 R_3^{13}

or a pharmaceutically acceptable salt thereof, wherein

 Φ is -NH₂ or -OH;

 R^1 is H or as defined in claim 1;

 R^2 , R^3 , and R^4 are as defined in claim 1;

n, X, Q, and A are as defined in US 6,174,905; and

 R^{11} is the same as R^1 of US 6,174,905.

479. (Canceled)

480. (Original) The compound of claim 478 that is selected from one of the compounds of US 6,174,905 wherein the terminal moiety:

$$\bigcup_{H} \mathbb{R}^{3} \mathbb{R}^{2}$$

of the compounds of Table 1 of US 6,174,905 and the terminal moiety:

of the compounds of Tables 2-4 of US 6,174,905 are replaced with the moiety:

$$\begin{array}{c|c} & & & R^1 \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

wherein Φ , R^1 , R^2 , R^3 , and R^4 are as defined in accordance with paragraph claim 1.

481. - 502. (Canceled)

503. (Original) A compound selected from the compounds of Table 1 and Table 1a and pharmaceutically acceptable salts thereof.

- 504. (New) A pharmaceutical composition comprising a compound according to claims 1 and a pharmaceutically acceptable carrier, diluent, or excipient.
- 505. (New) The pharmaceutical composition of claim 504 further comprising a nucleic acid level inhibitor of histone deacetylase.
- 506. (New) The pharmaceutical composition of claim 505, wherein said nucleic acid level inhibitor is an antisense oligonucleotide complementary to a nucleic acid that encodes for a histone deacetylase.
- 507. (New) The pharmaceutical composition of claim 506, wherein said antisense oligonucleotide is selected from the group consisting if SEQ ID No:1, SEQ ID No:2, SEQ ID No:3, SEQ ID No:4, SEQ ID No:5, SEQ ID No:6, SEQ ID No:7, SEQ ID No:8, SEQ ID No:9, SEQ ID No:10, SEQ ID No:11, SEQ ID No:12, SEQ ID No:13, SEQ ID No:14, SEQ ID No:15, SEQ ID No:16, and SEQ ID No:17.
- 508. (New) A method of inhibiting histone deacetylase, the method comprising contacting said histone deacetylase with an effective inhibiting amount of a compound according to claims 1.
- 509. (New) A method of treating an individual having a disease selected from the group consisting of a cell proliferative disease, a protozoal disease and a fungal disease, said method comprising administering to said individual a treatment effective amount of the pharmaceutical composition according to claim 504.
- 510. (New) The method of claim 509, wherein the disease is a cell proliferative disease.
- 511. (New) The method of claim 510, wherein said cell proliferative disease is selected from the group consisting of a lymphoma, lung cancer, colon cancer, prostrate cancer, stomach cancer, breast cancer and leukemia.