LÓGICA EI Mestrado Integrado em Engenharia Informática Universidade do Minho

Departamento de Matemática

2020/2021

Observação: Normalmente, referir-nos-emos ao Cálculo Proposicional da Lógica Clássica apenas por Cálculo Proposicional e usaremos a abreviatura CP.

Definição: O *alfabeto do CP* é notado por \mathcal{A}^{CP} e é constituído pelos seguintes símbolos (letras):

- **a)** $p_0, p_1, ..., p_n, ...$ (com $n \in \mathbb{N}_0$), chamados *variáveis proposicionais*, formando um conjunto numerável, denotado por \mathcal{V}^{CP} ;
- b) ⊥, ¬, ∧, ∨, →, ↔, chamados conetivos proposicionais (respetivamente, absurdo, negação, conjunção, disjunção, implicação e equivalência);
- c) (,) (abrir e fechar parênteses), chamados símbolos auxiliares.

As sequências de símbolos $\perp p_{20}$) e (p_1) (ambas de comprimento 3) são palavras sobre \mathcal{A}^{CP} .

A sequência de símbolos p_1 (de comprimento 1) é também uma palavra sobre \mathcal{A}^{CP} .

As palavras p_1 e (p_1) são diferentes (os seus comprimentos são diferentes).

Definição: O conjunto das *fórmulas do CP* (também designadas por *fórmulas proposicionais*) é notado por \mathcal{F}^{CP} e é a linguagem em \mathcal{A}^{CP} definida indutivamente pelas seguintes regras:

- a) $\perp \in \mathcal{F}^{CP}$;
- **b)** $p \in \mathcal{F}^{CP}$, para todo $p \in \mathcal{V}^{CP}$;
- **c)** $\varphi \in \mathcal{F}^{CP} \implies (\neg \varphi) \in \mathcal{F}^{CP}$, para todo $\varphi \in (\mathcal{A}^{CP})^*$;
- **d)** $\varphi, \psi \in \mathcal{F}^{CP} \Longrightarrow (\varphi \square \psi) \in \mathcal{F}^{CP}$, para todo $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ e para todo $\varphi, \psi \in (\mathcal{A}^{CP})^*$.

A palavra $((\neg \bot) \land p_6)$ é uma fórmula proposicional:

- 1. pela regra a), $\perp \in \mathcal{F}^{CP}$;
- 2. pela regra c) e por 1, $(\neg \bot) \in \mathcal{F}^{CP}$;
- 3. pela regra b), $p_6 \in \mathcal{F}^{CP}$;
- 4. pela regra d), por 2 e por 3, $((\neg \bot) \land p_6) \in \mathcal{F}^{CP}$.

As palavras $\perp p_{20}$) e (p_1) não são fórmulas do CP.

De facto, pode provar-se que nenhuma palavra sobre \mathcal{A}^{CP} de comprimento 3 é uma fórmula do CP.

Notação: Os parênteses extremos e os parênteses à volta de negações são muitas vezes omitidos.

Por exemplo, a palavra $(p_5 \land \neg p_0) \lor \bot$ poderá ser utilizada como uma representação da fórmula $((p_5 \land (\neg p_0)) \lor \bot)$.

Por abuso de linguagem, também chamaremos fórmulas a tais representações de fórmulas.

Observação:

A definição indutiva de \mathcal{F}^{CP} admite um princípio de recursão estrutural.

Uma aplicação deste princípio para definir uma função (cujo domínio é \mathcal{F}^{CP}) é chamada uma *definição por recursão estrutural em fórmulas do CP*.

Definição: A função $var: \mathcal{F}^{CP} \longrightarrow \mathcal{P}(\mathcal{V}^{CP})$, que a cada fórmula faz corresponder o conjunto das variáveis proposicionais que nela ocorrem, é definida, por recursão estrutural em fórmulas do CP, do seguinte modo:

- **a)** $var(\bot) = \emptyset;$
- **b)** $var(p) = \{p\}$, para todo $p \in \mathcal{V}^{CP}$;
- **c)** $var(\neg \varphi) = var(\varphi)$, para todo $\varphi \in \mathcal{F}^{CP}$;
- **d)** $var(\varphi \Box \psi) = var(\varphi) \cup var(\psi)$, para todo $\Box \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ e para todo $\varphi, \psi \in \mathcal{F}^{CP}$.

9/20

O conjunto das variáveis proposicionais de $\rho_1 \to (\neg \rho_2 \lor \bot)$ é:

$$var(p_1 \rightarrow (\neg p_2 \lor \bot))$$

$$= var(p_1) \cup var(\neg p_2 \lor \bot)$$

$$= \{p_1\} \cup var(\neg p_2) \cup var(\bot)$$

$$= \{p_1\} \cup var(p_2) \cup \emptyset$$

$$= \{p_1\} \cup \{p_2\}$$

$$= \{p_1, p_2\}.$$

Definição: A função $subf: \mathcal{F}^{CP} \longrightarrow \mathcal{P}(\mathcal{F}^{CP})$ é definida, por recursão estrutural em fórmulas do CP, do seguinte modo:

- a) $subf(\varphi) = \{\varphi\}$, para todo $\varphi \in \mathcal{V}^{CP} \cup \{\bot\}$;
- **b)** $subf(\neg \varphi) = {\neg \varphi} \cup subf(\varphi)$, para todo $\varphi \in \mathcal{F}^{CP}$;
- **d)** $subf(\varphi \Box \psi) = \{\varphi \Box \psi\} \cup subf(\varphi) \cup subf(\psi)$, para todo $\Box \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ e para todo $\varphi, \psi \in \mathcal{F}^{CP}$.

Dadas fórmulas φ e ψ , diremos que φ é uma *subfórmula* de ψ quando $\varphi \in \mathit{subf}(\psi)$.

Exemplo: O conjunto das subfórmulas de $\neg p_1 \rightarrow p_2$ é:

$$\begin{array}{ll} subf(\neg p_1 \to p_2) \\ = & \{\neg p_1 \to p_2\} \cup subf(\neg p_1) \cup subf(p_2) \\ = & \{\neg p_1 \to p_2\} \cup \{\neg p_1\} \cup subf(p_1) \cup \{p_2\} \\ = & \{\neg p_1 \to p_2\} \cup \{\neg p_1\} \cup \{p_1\} \cup \{p_2\} \\ = & \{\neg p_1 \to p_2, \neg p_1, p_1, p_2\}. \end{array}$$

Definição: Sejam p uma variável proposicional e $\psi \in \mathcal{F}^{CP}$.

A função $[\psi/p]: \mathcal{F}^{CP} \longrightarrow \mathcal{F}^{CP}$, que a cada fórmula φ faz corresponder $\varphi[\psi/p]$, a fórmula que resulta de φ por substituição das ocorrências de p por ψ , é definida, por recursão estrutural em fórmulas do CP. do sequinte modo:

- a) $\perp [\psi/\rho] = \perp$;
- **b)** $p_i[\psi/p] = \left\{ egin{array}{ll} \psi & ext{se } p_i = p \ p_i & ext{se } p_i
 eq p \end{array}
 ight.$, para todo $i \in \mathbb{N}_0$;
- c) $(\neg \varphi_1)[\psi/p] = \neg \varphi_1[\psi/p]$, para todo $\varphi_1 \in \mathcal{F}^{CP}$;
- **d)** $(\varphi_1 \Box \varphi_2)[\psi/p] = \varphi_1[\psi/p] \Box \varphi_2[\psi/p]$, para todo $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}, \varphi_1, \varphi_2 \in \mathcal{F}^{CP}$

a)
$$(\neg p_1 \to (p_2 \land \bot))[p_0 \lor p_1/p_2]$$

 $= (\neg p_1)[p_0 \lor p_1/p_2] \to (p_2 \land \bot)[p_0 \lor p_1/p_2]$
 $= \neg p_1[p_0 \lor p_1/p_2] \to (p_2[p_0 \lor p_1/p_2] \land \bot [p_0 \lor p_1/p_2])$
 $= \neg p_1 \to ((p_0 \lor p_1) \land \bot)$

b) Verifique que
$$(\neg p_1 \rightarrow (p_2 \land \bot))[p_0 \lor p_1/p_0] = (\neg p_1 \rightarrow (p_2 \land \bot)).$$

Observe que $p_0 \notin var(\neg p_1 \rightarrow (p_2 \land \bot))$.

Esta igualdade corresponde a um caso particular de uma propriedade da substituição que veremos adiante.

Observação: Como referido anteriormente, a qualquer definição indutiva está associado um princípio de indução estrutural.

Assim, o conjunto \mathcal{F}^{CP} admite um princípio de indução estrutural, que permitirá provar proriedades da forma

"para todo
$$\varphi \in \mathcal{F}^{CP}$$
, $P(\varphi)$ ",

onde *P* é uma condição sobre fórmulas proposicionais.

Uma aplicação deste princípio é chamada uma demonstração por indução (estrutural) em fórmulas proposicionais.

Teorema (Princípio de indução estrutural para fórmulas do CP):

Seja $P(\varphi)$ uma condição sobre $\varphi \in \mathcal{F}^{CP}$.

Se:

- **a)** $P(\bot);$
- **b)** P(p), para todo $p \in \mathcal{V}^{CP}$;
- **c)** $P(\psi) \implies P(\neg \psi)$, para todo $\psi \in \mathcal{F}^{CP}$;
- **d)** $P(\psi_1)$ e $P(\psi_2) \Longrightarrow P(\psi_1 \square \psi_2)$, para todo $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ e para todo $\psi_1, \psi_2 \in \mathcal{F}^{CP}$;
 - então $P(\varphi)$, para todo $\varphi \in \mathcal{F}^{CP}$.

Exemplo: Seja $P(\varphi)$ a condição sobre $\varphi \in \mathcal{F}^{CP}$ dada por: " $var(\varphi) \subseteq subf(\varphi)$ ".

Provemos, por indução estrutural em fórmulas proposicionais, que $P(\varphi)$ é verdadeira para todo $\varphi \in \mathcal{F}^{CP}$.

- a) $var(\bot) = \emptyset \subseteq \{\bot\} = subf(\bot)$. Logo, $var(\bot) \subseteq subf(\bot)$, ou seja, $P(\bot)$.
- **b)** Seja p uma variável proposicional (arbitrária). $var(p) = \{p\} = subf(p)$. Logo, $var(p) \subseteq subf(p)$, ou seja, P(p).
- c) Seja ψ uma fórmula proposicional (arbitrária) e suponhamos $P(\psi)$ (a hipótese de indução). (Queremos mostrar $P(\neg \psi)$.) Ora, $var(\neg \psi) = var(\psi) \subseteq subf(\psi) \subseteq subf(\psi) \cup \{\neg \psi\} = subf(\neg \psi)$, onde a primeira inclusão segue por $P(\psi)$. Logo, $var(\neg \psi) \subseteq subf(\neg \psi)$, ou seja, $P(\neg \psi)$.

Exemplo (cont.):

d) Sejam ψ_1 e ψ_2 fórmulas proposicionais (arbitrárias) e suponhamos $P(\psi_1)$ e $P(\psi_2)$ (as hipóteses de indução).

Seja ainda $\Box \in \{\land, \lor, \rightarrow, \leftrightarrow\}$. (Queremos mostrar $P(\psi_1 \Box \psi_2)$.)

Ora,

$$var(\psi_1 \square \psi_2)$$

$$= var(\psi_1) \cup var(\psi_2)$$

$$\subseteq subf(\psi_1) \cup subf(\psi_2) \qquad (por P(\psi_1) e P(\psi_2))$$

$$\subseteq subf(\psi_1) \cup subf(\psi_2) \cup \{\psi_1 \square \psi_2\}$$

$$= subf(\psi_1 \square \psi_2)$$

Logo, $var(\psi_1 \Box \psi_2) \subseteq subf(\psi_1 \Box \psi_2)$, ou seja, $P(\psi_1 \Box \psi_2)$.

Proposição: Para todo $\varphi, \psi \in \mathcal{F}^{CP}$ e para todo $p \in \mathcal{V}^{CP}$,

se $p \notin var(\varphi)$, então $\varphi[\psi/p] = \varphi$.

Dem.: Sejam ψ uma fórmula proposicional (arbitrária) e p uma variável proposicional (arbitrária).

O resultado segue demonstrando, por indução estrutural em fórmulas proposicionais, que, para todo $\varphi \in \mathcal{F}^{CP}$, $P(\varphi)$, onde $P(\varphi)$ é a condição: se $p \notin var(\varphi)$, então $\varphi[\psi/p] = \varphi$. (Exercício.)

Proposição: Para todo $\psi \in \mathcal{F}^{CP}$ e para todo $\varphi \in \mathcal{F}^{CP}$, φ é uma subfórmula de ψ se e só se uma das seguintes condições é satisfeita:

- a) $\psi = \varphi$;
- **b)** existe $\psi_1 \in \mathcal{F}^{CP}$ t.q. $\psi = \neg \psi_1$ e φ é uma subfórmula de ψ_1 ;
- c) existe $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ e existem $\psi_1, \psi_2 \in \mathcal{F}^{CP}$ t.q. $\psi = \psi_1 \square \psi_2$ e φ é uma subfórmula de ψ_1 ou de ψ_2 .

Dem.: Por indução estrutural em ψ .

