

SIPMOS® Small-Signal-Transistor

Features

- N-channel
- Depletion mode
- dv/dt rated
- \bullet Available with $V_{\rm GS(th)}$ indicator on reel
- Pb-free lead-plating; RoHS compliant

Product Summary

V _{DS}	60	V
R _{DS(on),max}	8	Ω
I _{DSS,min}	0.13	Α

Туре	Package	Pb-free	Tape and Reel Information	Marking
BSS159	PG-SOT-23	Yes	L6327: 3000 pcs/reel	SGs
BSS159	PG-SOT-23	Yes	L6906: 3000 pcs/reel sorted in V _{GS(th)} bands ¹⁾	SGs

Maximum ratings, at T_j =25 °C, unless otherwise specified

Parameter	Symbol	Conditions	Value	Unit
Continuous drain current	I _D	T _A =25 °C	0.23	Α
		T _A =70 °C	0.18	
Pulsed drain current	I _{D,pulse}	T _A =25 °C	0.92	
Reverse diode dv/dt	dv/dt	I _D =0.23 A, V _{DS} =60 V, di/dt=200 A/μs, T _{j,max} =150 °C	6	kV/μs
Gate source voltage	V_{GS}		±20	V
ESD sensitivity (HBM) as per MIL-STD 883			Class 0	
Power dissipation	P _{tot}	T _A =25 °C	0.36	W
Operating and storage temperature	$T_{\rm j},T_{\rm stg}$		-55 150	°C
IEC climatic category; DIN IEC 68-1			55/150/56	

¹⁾ see table on next page and diagram 11

Parameter	Symbol	Symbol Conditions		Values		
			min.	typ.	max.	
Thermal characteristics						
Thermal characteristics	$R_{ m thJA}$	minimal footprint	-	-	350	K/W
Electrical characteristics, at T_j =25	5 °C, unless	otherwise specified				
Static characteristics						
Drain-source breakdown voltage	V _{(BR)DSS}	V _{GS} =-10 V, I _D =250 μA	60	-	-	V
Gate threshold voltage	$V_{\rm GS(th)}$	V _{DS} =3 V, I _D =26 μA	-3.5	-2.8	-2.4	
Drain-source cutoff current	I _{D(off)}	V _{DS} =60 V, V _{GS} =-10 V, T _j =25 °C	-	-	0.1	μA
		V _{DS} =60 V, V _{GS} =-10 V, T _j =125 °C	-	-	10	
Gate-source leakage current	I _{GSS}	V _{GS} =20 V, V _{DS} =0 V	-	-	10	nA
On-state drain current	I _{DSS}	V _{GS} =0 V, V _{DS} =10 V	130	-	-	mA
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =0 V, I _D =0.07 A	-	3.9	8	Ω

Threshold voltage $V_{\rm GS(th)}$ sorted in bands²⁾

Transconductance

J	$V_{\rm GS(th)}$	$V_{\rm DS}$ =3 V, $I_{\rm D}$ =26 μA	-2.6	1	-2.4	V
К			-2.75	1	-2.55	
L			-2.9	1	-2.7	
М			-3.05	1	-2.85	
N			-3.2	-	-3	

I_D=0.16 A

V_{GS}=10 V, I_D=0.16 A

 $|V_{\rm DS}| > 2|I_{\rm D}|R_{\rm DS(on)max}$

1.7

0.19

0.1

3.5

S

 $g_{
m fs}$

²⁾ Each reel contains transistors out of one band whose identifying letter is printed on the reel label. A specific band cannot be ordered separately.

Parameter	Symbol	Symbol Conditions	Values			Unit
			min.	typ.	max.	
Dynamic characteristics						
Input capacitance	C iss		-	33	44	pF
Dynamic characteristics	C _{oss}	V _{GS} =-10 V, V _{DS} =25 V, f=1 MHz	-	8.3	11	1
Reverse transfer capacitance	C _{rss}		-	3.9	5.9	
Turn-on delay time	t _{d(on)}		-	3.1	4.7	ns
Rise time	t _r	V _{DD} =25 V, V _{GS} =-37 V,	-	2.9	4.4	
Turn-off delay time	t _{d(off)}	I_{D} =0.16 A, R_{G} =6 Ω	-	9	13	
Fall time	t _f]	-	9	13	
Gate Charge Characteristics	_			1	Ī	Ī
Gate to source charge	Q _{gs}]	-	0.14	0.21	nC
Gate to drain charge	Q_{gd}	$V_{\rm DD}$ =40 V, $I_{\rm D}$ =0.16 A, $V_{\rm GS}$ =-3 to 5 V	-	0.7	1.1	
Gate charge total	Q _g		-	2.2	2.9	
Gate plateau voltage	V _{plateau}		-	-0.14	-	V
Reverse Diode						
Diode continous forward current	Is	T -25 °C	-	-	0.20	Α
Diode pulse current	I _{S,pulse}	− T _A =25 °C	-	-	0.81	
Diode forward voltage	V _{SD}	V _{GS} =-3 V, I _F =0.16 A, T _j =25 °C	-	0.79	1.2	V
Reverse recovery time	t rr	V _R =30 V, I _F =0.16 A,	-	10.4	13	ns
Reverse recovery charge	Q _{rr}	$di_F/dt = 100 \text{ A/µs}$	_	3.3	4.1	nC

1 Power dissipation

P_{tot} =f(T_{A})

2 Drain current

3 Safe operating area

$$I_D = f(V_{DS}); T_A = 25 \text{ °C}; D = 0$$

4 Max. transient thermal impedance

$$Z_{thJA}$$
=f(t_p)

parameter: $D = t_p/T$

5 Typ. output characteristics

 $I_D = f(V_{DS}); T_j = 25 °C$

parameter: $V_{\rm GS}$

6 Typ. drain-source on resistance

 $R_{DS(on)}=f(I_D); T_j=25 \text{ }^{\circ}\text{C}$

parameter: $V_{\rm GS}$

7 Typ. transfer characteristics

 I_{D} =f(V_{GS}); $|V_{DS}|$ >2 $|I_{D}|R_{DS(on)max}$

8 Typ. forward transconductance

$$g_{fs}$$
=f(I_D); T_j =25 °C

9 Drain-source on-state resistance

$$R_{DS(on)}$$
=f(T_j); I_D =0.07 A; V_{GS} =0 V

10 Typ. gate threshold voltage

 $V_{GS(th)}$ =f(T_j); V_{DS} =3 V; I_D =26 μ A

parameter: I_D

11 Threshold voltage bands

$$I_D$$
=f(V_{GS}); V_{DS} =3 V; T_j =25 °C

12 Typ. capacitances

$$C = f(V_{DS}); V_{GS} = -10 \text{ V}; f = 1 \text{ MHz}$$

13 Forward characteristics of reverse diode

$I_{\mathsf{F}} = \mathsf{f}(V_{\mathsf{SD}})$

parameter: T_j

15 Typ. gate charge

 $V_{\rm GS}$ =f($Q_{\rm gate}$); $I_{\rm D}$ =0.16 A pulsed

parameter: $V_{\rm DD}$

16 Drain-source breakdown voltage

 $V_{BR(DSS)}$ =f(T_j); I_D =250 μ A

Package Outline:

Footprint:

0.9

Packaging:

Dimensions in mm

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2006. All Rights Reserved.

Attention please!

The information given in this data sheet shall in no event be regarded as a guarantee of conditions o characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties o non-infringement of intellectual property rights of any third party

Information

For further information on technology, delivery terms and conditions and prices please contact your neares Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types ir question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express writter approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustair and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.