Взвешенные ПБВ вырождения

И. Махлин, Сколтех/НИУ ВШЭ

План

- классическое многообразие флагов и вложение Плюккера
- (абелевы) ПБВ вырождения (Feigin-Fourier-Littelmann 2010, Feigin 2010, Feigin 2011, Cerulli-Irelli-Feigin-Reineke 2011,...)
- ▶ взвешенные ПБВ вырождения («ФФЛВ вырождения», Fang-Feigin-Fourier-M. 2017)
- ► «вырождения Гельфанда-Цетлина» (WIP)

Вложение Плюккера

- $ightharpoonup G=SL_n(\mathbb C)$, F=G/B многообразие полных флагов
- lacktriangle L_λ неприводимое представление со старшим весом λ
- lacktriangle вложение Плюккера: $F\subset \mathbb{P}=\mathbb{P}(L_{\omega_1}) imes\ldots imes\mathbb{P}(L_{\omega_{n-1}})$ $(\omega_k$ фундаментальный вес)
- $lacksymbol{L}_{\omega_k} = \wedge^k(\mathbb{C}^n)$, в нем базис из $e_{i_1,...,i_k} = e_{i_1}\wedge\ldots\wedge e_{i_k}$ по $1\leq i_1<\ldots< i_k\leq n$
- ho $R=\mathbb{C}[\{X_{i_1,...,i_k}\}]$ однородное координатное кольцо \mathbb{P} , вложение Плюккера задается идеалом $I\subset R$

Другая реализация F

- ightharpoonup N противоположная B унипотентная подгруппа
- $lacksymbol{ iny}$ $v_{\lambda}\in L_{\lambda}$ старший вектор, $\mathbb{C}\mathit{N}v_{\lambda}=L_{\lambda}$
- lacktriangledown $\mathbb{V}_{\lambda} \in \mathbb{P}(L_{\lambda})$ точка, соответствующая $\mathbb{C} v_{\lambda}$
- $lackbox{m{F}} = \overline{m{N}}oxtlesup_{\lambda} \subset \mathbb{P}(m{L}_{\lambda})$ для регулярного λ

Абелевы ПБВ вырождения I

- $ightharpoonup \mathfrak{g} = \mathfrak{sl}_n(\mathbb{C}), \ \mathfrak{n}_- = \mathrm{Lie} N$
- lacktriangle для пар $1 \leq i < j \leq n$ отрицательные корневые векторы $f_{i,j} \in \mathfrak{n}_-$
- lacktriangle ПБВ фильтрация: $\mathcal{U}(\mathfrak{n}_-)_m$ линейная оболочка мономов от $f_{i,j}$ степени не больше m
- ightharpoonup Теорема ПБВ: присоединенная градуированная алгебра $\mathcal{U}^a = \bigoplus \mathcal{U}_m/\mathcal{U}_{m-1}$ это симметрическая алгебра пространства n_- (т.е. $\mathcal{U}(\mathfrak{n}_-^a)$ для абелевой алгебры Ли \mathfrak{n}_-^a) с образующими $f_{i,j}^a$
- индуцированная фильтрация $(L_{\lambda})_m = \mathcal{U}(\lambda)_m v_{\lambda}$, присоединенное градуированное пространство $L_{\lambda}^a \mathcal{U}^a$ -модуль (ПБВ вырождение представления)

Абелевы ПБВ вырождения II

- ightharpoonup группа $N^a=\mathbb{G}_a^{inom{n}{2}}$ с $\mathrm{Lie}N^a=\mathfrak{n}_-^a$
- $ightharpoonup N^a$ действует на $\mathbb{P}(L_\lambda^a)$
- lacktriangle в L^a_λ есть «старший вектор» v^a_λ , $\mathbb{v}^a_\lambda\in\mathbb{P}(L^a_\lambda)$ соответствующая точка
- ▶ ПБВ вырождение многообразия флагов: $F^a = \overline{N^a} \mathbb{v}^{\overline{a}}_{\lambda} \subset \mathbb{P}(L^a_{\lambda}) \ (\lambda \mathsf{регулярный})$

Вложение Плюккера для F^a

- $ightharpoons \mathbb{Z}_{\geq 0}$ -градуировка на R: grad $X_{i_1,...,i_k} = |\{i_1,\ldots,i_k\} \setminus \{1,\ldots,k\}|$
- ightharpoonup начальный идеал $\inf_{\mathrm{grad}^3}I\subset R$ линейная оболочка начальных частей (компонент минимальной градуировки) элементов I
- ▶ **Теорема** 1. Подмногообразие в \mathbb{P} , задаваемое идеалом ingrad I, изоморфно F^a .

Базисы Фейгина-Фурье-Литтелманна-Винберга

- ▶ целочисленному доминантному весу $\lambda=a_1\omega_1+\ldots+a_{n-1}\omega_{n-1}$ сопоставляется многогранник ФФЛВ $P_\lambda\in\mathbb{R}^{\{1\leq i< j\leq n\}}$
- $lacktriangledown P_{\lambda}$ множество точек $T=(T_{i,j})$, для которых
 - $1. \ \ T_{i,j} \geq 0$ для любых $1 \leq i < j \leq n$
 - 2. $\sum_{(i,j)\in d} T_{i,j} \leq a_i + \ldots + a_j$ для каждого пути Дика d из (i,i+1) в (j,j+1)
- ightharpoonup Π_{λ} множество целых точек в P_{λ}
- ▶ **Теорема 2.** Множество $\{\prod_{i,j}(f^a_{i,j})^{T_{i,j}}v^a_\lambda,\,T\in\Pi_\lambda\}$ базис в $L^a_\lambda.$
- ▶ Следствие. Множество $\{\prod_{i,j} f_{i,j}^{T_{i,j}} v_{\lambda}, T \in \Pi_{\lambda}\}$ базис в L_{λ} (при любых порядках сомножителей в произведениях).

Взвешенные ПБВ вырождения

- lacktriangle сопоставим каждому отрицательному корню число $a_{i,j}\in\mathbb{Z}$ (система весов A)
- lacktriangle \mathbb{Z} -фильтрация на $\mathcal{U}(\mathfrak{n}_-)$ задается

$$\mathcal{U}_m = \mathsf{span}(f_{i_1,j_1} \dots f_{i_N,j_N} | a_{i_1,j_1} + \dots + a_{i_N,j_N} \leq m)$$

(т.е. фильтруем по взвешенной ПБВ степени)

- ightharpoonup присоединенная градуированная алгебра \mathcal{U}^A
- lacktriangle индуцированная фильтрация $(L_{\lambda})_m = \mathcal{U}_m v_{\lambda}$
- lacktriangle присоединенное градуированное пространство $L^A_\lambda-\mathcal{U}^A$ -модуль (вырожденное представление)

ФФЛВ вырождения I

- Вопрос: для каких взвешенных вырождений подходит базис ФФЛВ?
- Ответ: при
 - (A) $a_{i,j} + a_{j,k} \geq a_{i,k}$ при $1 \leq i < j < k \leq n$ и
 - (В) $a_{i,j} + a_{k,l} \geq a_{i,l} + a_{k,j}$ при $1 \leq i < k < j < l \leq n$
- $lackbox (\mathfrak{n}_-)_m = igoplus_{a_{i,j} \leq m} \mathbb{C} f_{i,j} фильтрованная алгебра Ли в силу (A)$
- lacktriangle присоединенная градуированная алгебра Ли $\mathfrak{n}_-^A = igoplus \mathbb{C} f_{i,j}^A$
- $\mathcal{U}(\mathfrak{n}_{-}^{A}) = \mathcal{U}^{A}$
- lacktriangle аналог теоремы 2: Teopema~3. Множество $\{\prod_{i,j}(f_{i,j}^A)^{T_{i,j}}v_\lambda^A,\, T\in\Pi_\lambda\}$ базис в $L_\lambda^A.$

ФФЛВ вырождения II

- lacktriangle связная односвязная группа Ли N^A с $\mathrm{Lie}(N^A)=\mathfrak{n}_-^A$
- $ightharpoonup N^A$ действует на $\mathbb{P}(L_\lambda^A)$
- lacktriangle в L^a_λ есть «старший вектор» v^A_λ , $\mathbb{v}^a_\lambda\in\mathbb{P}(L^A_\lambda)$ соответствующая точка
- lacktriangle вырожденное многообразие флагов: $F^A=N^A \mathbb{V}^A_\lambda \subset \mathbb{P}(L^A_\lambda)$ $(\lambda$ регулярный)
- lackдля $1 \leq i_1 < \ldots < i_k \leq n$ пусть $\{p_1 < \ldots < p_l\} = \{1, \ldots, k\} \backslash \{i_1, \ldots, i_k\}$, а $\{q_1 > \ldots > q_l\} = \{i_1, \ldots, i_k\} \backslash \{1, \ldots, k\}$
- lacktriangle градуировка на R: $\operatorname{grad}^A X_{i_1,...,i_k} = a_{p_1,q_1} + \ldots + a_{p_l,q_l}$
- ▶ аналог теоремы 1: **Теорема 4.** Подмногообразие в \mathbb{P} , задаваемое идеалом in $_{\mathrm{grad}^A}I$, изоморфно F^A .

Замечания

- точки, удовлетворяющие (А) и (В) целые точки конуса
 К, для всех точек относительной внутренности любой
 грани К получаем одни и те же вырождения
- если все $a_{i,j}=0$, то получаем невырожденный случай (и всегда, когда все неравенства (A) и (B) обращаются в равенства)
- если все $a_{i,j}=1$, то получаем абелевы ПБВ вырождения (и всегда, когда все неравенства (A) строгие, а все (B) равенства)
- ▶ **Теорема 5.** Если A лежит во внутренности конуса K, то многообразие F^A торическое многообразие многогранника ФФЛВ P_λ для регулярного λ .

Вопросы

- Вопрос: для каких торических вырождений многообразия флагов есть похожий теоретико-представленческий сюжет?
- Уточняющий вопрос: а нельзя ли что-нибудь похожее сказать для многогранников Гельфанда—Цетлина и соответствующих торических многообразий?
- Ответ: вроде можно!

Действие «вырожденной» алгебры

- ▶ ассоциативная алгебра Φ_n с образующими $\{\varphi_{i,j}, 1 \leq i < j \leq n\}$ и соотношениями $\varphi_{i_1,j_1}\varphi_{i_2,j_2} = 0$ при $i_1 > i_2$ и $\varphi_{i,j_1}\varphi_{i,j_2} = \varphi_{i,j_2}\varphi_{i,j_1}$ при $1 \leq i < j_1 < j_2 \leq n$
- lacktriangle для $1 \leq k \leq n-1$ подпространство $L_\lambda(k) \subset L_\lambda$ порожденное из v_λ действием $\mathcal{U}(igoplus_{i>k}\mathbb{C} f_{i,j})$
- ightharpoonup пусть $arphi_{i,j}$ действует на весовых векторах из $L_{\lambda}(i)$ так же, как $f_{i,j}$, а на весовых векторах вне $L_{\lambda}(i)$ нулем
- lacktriangle это действие Φ_n на пространстве L_λ

Вырождения Гельфанда-Цетлина І

- lacktriangle возьмем систему весов $A=(a_{i,j})$ такую, что
 - (A1) $a_{i,j} + a_{j,k} \le a_{i,k}$ при $1 \le i < j < k \le n$ и (B1) $a_{i,j} + a_{k,l} \le a_{i,l} + a_{k,j}$ при $1 \le i < k < j < l \le n$
 - lackbox проградуируем $lackbox{0}$ при помощи $deg^A(c) = a$: одноро
- lacktriangle проградуируем Φ_n при помощи $\deg^A arphi_{i,j} = a_{i,j}$, однородные компоненты $\Phi_{n,m}$
- lacktriangle фильтрация $\Phi_{n,\leq m} = \bigoplus_{l\leq m} \Phi_{n,l}$, присоединенная градуированная алгебра опять Φ_n с той же градуировкой
- индуцированная фильтрация $(L_\lambda)_{\leq m}=\Phi_{n,\leq m}v_\lambda$, присоединенное градуированное пространство \widetilde{L}_λ^A модуль над Φ_n

Вырождения Гельфанда-Цетлина ІІ

- проблема: нет действия группы... зато есть экспонента!
- lacktriangledown для $c\in\mathbb{C}^{\{1\leq i< j\leq n\}}$ введем оператор $\exp(c)=\prod_{i,j}\exp(c_{i,j}arphi_{i,j})$ на $ilde{L}^A_\lambda$, в котором сомножители упорядочены по возрастанию i слева направо
- lacktriangle есть старший вектор $ilde{v}_\lambda^A\in ilde{L}_\lambda^A$ и соответствующая точка $ilde{v}_\lambda^A\in\mathbb{P}(ilde{L}_\lambda^A)$
- lacktriangle вырожденное многообразие флагов $ilde{F}^A$ замыкание образа отображения из $\mathbb{C}^{\{1\leq i< j\leq n\}}$ в $\mathbb{P}(ilde{L}^A_\lambda)$, переводящего c в $\exp(c)$ \mathbb{V}^A_λ
- ▶ **Теорема 6.** Пусть все неравенства (A1) и (B1) строгие. Тогда \tilde{F}^A торическое многообразие многогранника Гельфанда—Цетлина GT_λ .