Foundations

Key Concepts: Rewards, States, Actions, Policies

Sarwan Ali

Department of Computer Science Georgia State University

Reinforcement Learning Foundations (a)

Today's Learning Journey

- Introduction to RL Components
- 2 States
- Actions
- Rewards
- 6 Policies
- 6 Putting It All Together
- Summary

The Four Pillars of Reinforcement Learning

These four concepts form the foundation of every reinforcement learning problem

States: The World's Description

What is a State?

- A complete description of the environment at a given time
- Contains all relevant information for decision making
- ullet Denoted as $s\in\mathcal{S}$ (state space)

Key Properties:

- Markov Property: Future depends only on current state
- Observable: Agent can perceive the state
- Discrete or Continuous: Finite vs infinite state spaces

Grid World States

Types of States

Fully Observable

- Agent sees complete environment state
- $s_t = \text{environment state}$
- Example: Chess, Tic-tac-toe

Partially Observable

- Agent has limited view
- $o_t = \text{observation} \neq \text{state}$
- Must maintain belief state
- Example: Poker, autonomous driving

Agent sees everything Fully Observable

Limited view
Partially Observable

Example: Toker, autonomous unving

Mathematical Representation

State space: $\mathcal{S} = \{s_1, s_2, \dots, s_n\}$ (discrete) or $\mathcal{S} \subseteq \mathbb{R}^n$ (continuous)

Actions: What the Agent Can Do

What is an Action?

- Choices available to the agent
- Way to influence the environment
- ullet Denoted as $a \in \mathcal{A}$ (action space)

Types of Action Spaces:

- **Discrete**: Finite set of actions
- Continuous: Real-valued actions
- State-dependent: A(s) varies by state

Examples

- Game: {Up, Down, Left, Right, Shoot}
- **Trading**: {Buy, Sell, Hold}
- **Robot**: Joint angles \mathbb{R}^7 (continuous)

Discrete Actions

Action Space Characteristics

Discrete Actions: $A = \{a_1, a_2, \dots, a_k\}$. **Examples:** Atari games, Board games, Menu selection

Finite choices

Continuous Actions: $A \subseteq \mathbb{R}^n$. Examples: Robot control, Vehicle steering, Portfolio weights

Infinite possibilities

Mathematical Formulation

Action taken at time t: $a_t \in \mathcal{A}(s_t)$ where $\mathcal{A}(s_t)$ is the set of valid actions in state s_t

Rewards: The Learning Signal

What is a Reward?

- Scalar feedback signal
- Indicates how good an action was
- Denoted as $r_t \in \mathbb{R}$
- The only way agent learns!

Reward Function:

$$R(s,a,s') = \mathbb{E}[r_{t+1}|s_t=s,a_t=a,s_{t+1}=s']$$

Key Principles:

- Immediate vs Delayed rewards
- Sparse vs Dense rewards
- Positive, negative, or zero

Reward Hypothesis

"All goals can be described by the maximization of expected cumulative reward"

Reward Signal Over Time

Types of Rewards

Dense Rewards: Frequent feedback, Easy to learn, May lead to myopic behavior

Shaped Rewards: Engineered guidance, Balance of both, Risk of reward hacking

Sparse Rewards: Infrequent feedback, Hard to learn, More realistic

Examples

- Dense: Game score every frame
- **Sparse**: Win/lose at end of game
- **Shaped**: Distance to goal + win bonus

Policies: The Agent's Strategy

What is a Policy?

- Agent's behavior function
- Maps states to actions
- ullet Denoted as $\pi:\mathcal{S}
 ightarrow \mathcal{A}$
- The brain of the agent

Mathematical Definition:

$$\pi(a|s) = P(a_t = a|s_t = s)$$

Types:

- **Deterministic**: $a = \pi(s)$
- **Stochastic**: $\pi(a|s)$ (probability distribution)

Goal

Find optimal policy π^* that maximizes expected cumulative reward

Policy Types and Representations

Policy Optimization

Learning involves finding π^* through exploration and exploitation

The RL Loop: How Components Interact

The Sequential Decision Process:

- Agent observes state s_t
- 2 Policy π selects action a_t
- **1** Environment provides reward r_t and next state s_{t+1}
- Agent updates policy and repeats

Example: Grid World Navigation

States: Grid positions

Actions: {up, down, left, right}

Rewards: Goal: +10, Pit: -10, Step: -1

Policy: Navigate to goal safely

Key Relationships

$\textbf{State} \rightarrow \textbf{Action}$

- Policy determines action selection
- $a_t \sim \pi(\cdot|s_t)$

Action → **Reward**

- Environment provides feedback
- $r_t = R(s_t, a_t, s_{t+1})$

Reward \rightarrow Policy

- Learning signal for improvement
- ullet π updated to maximize rewards

Central Equation

$$\pi^* = rg \max_{\pi} \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r_t | \pi
ight]$$

Key Takeaways

Essential Points

- These four components define every RL problem
- Agent learns optimal policy through trial and error
- Goal: Maximize expected cumulative reward
- Foundation for all RL algorithms we'll study

Next Steps

Examples of RL applications (games, robotics, recommendation systems)

Preparation:

- Review probability theory
- Think about how to formalize the concepts learned today
- Consider: How do we measure policy quality?

These foundations will be the building blocks for everything that follows!