

Propagação de ondas numa corda

Objectivos

- 1. Identificar ondas estacionárias numa corda e determinar as suas características: nodos, antinodos, comprimento de onda, amplitude e frequência.
- 2. Estudar a variação da velocidade de propagação das ondas em função da tensão aplicada na corda.

Introdução

Neste trabalho observamos ondas mecânicas que se propagam num meio deformável ou elástico, um fio metálico. Estas ondas têm origem no deslocamento de uma parte do meio elástico, provocando a sua oscilação em torno de uma posição de equilíbrio. Uma tal perturbação numa zona de um fio horizontal sob tensão propaga-se ao logo do fio na forma de uma onda. Neste caso, a direção da propagação da onda é perpendicular ao do deslocamento do fio, pelo que se designa por uma *onda transversal*. Como a energia associada a esta onda se propaga exclusivamente numa direcção dizemos que a onda é unidimensional.

Num fio com um comprimento finito, L, e as extremidades fixas, as ondas que nele se propagam são reflectidas ao atingir as extremidades do fio. As ondas reflectidas propagam-se no sentido oposto ao das ondas incidentes, com a mesma frequência, velocidade e amplitude. A onda incidente e a onda reflectida sobrepõem-se. Se o comprimento do fio for um múltiplo da metade do comprimento de onda, as duas ondas estão em fase e podem representar-se por expressões do tipo

$$y_1(x,t) = A\operatorname{sen}(kx - \omega t), \qquad y_2(x,t) = A\operatorname{sen}(kx + \omega t),$$
 (1)

onde A é a amplitude, k o número de onda e ω a frequência angular. As grandezas k e ω relacionam-se com o comprimento de onda, λ , e com a frequência, f (ou o período T), pelas expressões:

$$k = \frac{2\pi}{\lambda}, \qquad \omega = \frac{2\pi}{T} = 2\pi f, \qquad (2)$$

e a velocidade de propagação de uma onda é dada por

$$v = \frac{\lambda}{T} = \lambda f. {3}$$

A onda resultante da sobreposição pode ser representada pela soma das duas expressões em (1),

$$y(x,t) = y_1(x,t) + y_2(x,t) = A\operatorname{sen}(kx - \omega t) + A\operatorname{sen}(kx + \omega t) = 2A\operatorname{sen}(kx)\operatorname{cos}(\omega t)$$
(4)

que é a equação de uma *onda estacionária*. As frequências de oscilação respectivas são chamadas *frequências normais*, e também *frequências de ressonância*.

Analisando a expressão (4) verificamos que neste caso a amplitude da onda é igual a $2A \operatorname{sen}(kx)$, e que portanto varia ao longo da corda (é função de x). Pontos onde a amplitude é nula (onde $\operatorname{sen}kx=0$) chamam-se nodos , e pontos onde a amplitude é máxima (onde $\operatorname{sen}kx=\pm 1$) chamam-se $\operatorname{antinodos}$. A corda está fixa em x=0 e x=L, o que impõe as condições fronteira y(0,t)=0 e y(L,t)=0 em todos os instantes t. A condição fronteira em x=0 está automaticamente satisfeita porque $\operatorname{sen}kx=0$ em x=0 para qualquer k. A segunda condição fronteira estará satisfeita para valores de $k=k_n$ tais que

$$\operatorname{sen} k_n L = 0 \qquad \Rightarrow k_n L = n\pi \,, \quad \operatorname{com} \quad n = 1, 2, 3, \cdots \,, \tag{5}$$

ou seja

$$\lambda_n = \frac{2L}{n} \,. \tag{6}$$

Para n=1 obtem-se o modo fundamental ou primeiro harmónico da vibração, para n=2 o segundo harmónico, etc. A frequência do n-ésimo modo harmónico é dada pela sua relação com o comprimento de onda λ_n e a velocidade de propagação da onda,

$$f_n = \frac{v}{\lambda_n} = n \frac{v}{2L}, \quad \text{com} \quad n = 1, 2, 3, \cdots.$$
 (7)

Designa-se por frequência fundamental a frequência de oscilação que produz uma onda estacionária com um único antinodo (n = 1).

É possível mostrar que a velocidade de propagação duma onda numa corda depende da tensão T a que a corda está sujeita e da densidade linear de massa (massa por unidade de comprimento da corda), μ , da forma

$$v = \sqrt{\frac{T}{\mu}} \,. \tag{8}$$

Procedimento

Figura 1: Montagem da experiência.

O dispositivo utilizado (ver Figura 1) é constituído por um fio metálico esticado, na horizontal, e fixo numa das extremidades. Na outra extremidade o fio passa por uma roldana depois da qual lhe podem ser suspensas massas que submetem o fio a uma tensão conhecida. Em cima da mesa coloca-se um íman de modo a que o fio passe entre os seus dois pólos. Ligando as duas extremidades do fio aos dois terminais de um gerador de sinais faz-se passar uma corrente eléctrica no fio. Devido à existência do campo magnético criado pelo íman, as cargas eléctricas (e por conseguinte o fio) vão estar sujeitas a forças verticais, cuja intensidade e sentido varia com a intensidade e sentido da corrente elétrica no fio. O fio vai assim vibrar, dando origem a ondas mecânicas. Como o fio está preso nas duas extremidades as ondas irão ser reflectidas sobrepondo-se. Para determinadas frequências (ou seja, determinados comprimentos de onda) geram-se ondas estacionárias.

- 1. Suspenda uma massa previamente pesada na extremidade do fio.
- 2. Meça o comprimento L do fio entre as duas extremidades, e registe a sua densidade linear de massa μ .
- 3. Ligue o gerador de sinais com frequência zero. Aumente a frequência de modo a obter uma onda estacionária.
- 4. Registe a frequência, o número n do modo harmónico (igual ao número de antinodos) e o comprimento de onda.
- 5. Altere a frequência de modo a obter uma outra onda estacionária e repita os passos anteriores.
- 6. Calcule a velocidade de propagação v para todos os modos observados (pelo menos 5 diferentes). Determine a média e o desvio-padrão da média da velocidade. Estime a incerteza da medição da velocidade.
- 7. Repita a experiência suspendendo massas diferentes (no total 5 massas diferentes).
- 8. Faça um gráfico onde se mostra a velocidade de propagação v em função da tensão T. Deve mostrar os pontos medidos, incluindo a estimativa da incerteza de cada velocidade em forma de barra de erro, e uma curva que representa o resultado teórico (8).
- 9. Repita todos os passos anteriores usando um segundo fio com outra densidade linear de massa.