Apellido y Nombre: email:

nota	1	2	3	4	5	6

Lenguajes y Compiladores

Segundo Examen Parcial

2018

- 1. Considere la expresión $e = (\lambda x.\lambda y.x(e_0y))(\lambda x.\lambda y.y(xy))(\lambda x.\lambda y.y)$. Para cada evaluación (normal o eager) determine si se puede definir e_0 de manera que la expresión e no se pueda evaluar (o sea no está definida la semántica big-step).
- 2. Determine si es Verdadero o Falso. Justifique su respuesta. Enuncie todo resultado teórico que utilice.
 - a) Si $e \to^* z$ entonces $e \Rightarrow_N z$ o $e \Rightarrow_E z$. (Aquí z es una forma canónica).
 - b) Si $e \to^* e'$ entonces $[e]^E = [e']^E$.
 - c) Si existe z' tal que $e' \Rightarrow_E z'$, entonces vale la regla β , o sea las expresiones $(\lambda v.e)e'$ y $(e/v \mapsto e')$ tienen la misma semántica eager.
- 3. Considere la expresión $e = \langle (\lambda v. e_0)e_1, \langle e_2, e_3 \rangle.1, e_4 \rangle$, donde $\llbracket e_0 \rrbracket \eta = \iota_{norm} z$ y $\llbracket e_4 \rrbracket \eta = \bot_D$. Calcule la semántica denotacional eager y normal de e.0, suponiendo que $v \notin FVe_0$.
- 4. Considere el programa aplicativo normal $e = \mathbf{rec}(\lambda w.\langle 1, \langle w, 1 \rangle \rangle)$. Calcule de manera detallada la semántica denotacional de e.0.
- 5. Considere el programa aplicativo eager
 - e =letrec $w \equiv \lambda x$. if e_0 then 1 else w x in w $(2 + e_1)$, donde e_0 y e_1 son expresiones cerradas. Analice todos los resultados posibles que puede asumir $[\![e]\!]\eta$, en función de los resultados que adopte $[\![e_0]\!]\eta$, y $[\![e_1]\!]\eta$.
- 6. Enuncie y demuestre el Teorema de Sustitución para el Cálculo Lambda Normal.