1 Exercice 1

Sur une étagère se trouvent 7 livres différents : 4 livres de mathématiques, 1 livre de philosophie et 2 livres de cuisine.

On choisit 2 livres de l'étagère.

- 1. Combien de choix y a-t-il ? L'ordre n'est pas important donc il y a 2 parmi 7 permutations possibles : $\frac{7!}{2!(7-2!)} = 21$ (Je lui laisse le raisonnement et la rédaction à faire)
- 2. Combien y a-t-il de choix avec 1 livre de mathématiques et 1 autre livre, choisi en dehors des Mathématiques ?
 Pour chaque livre de maths, il n'y a que 3 possibilités : philo/cuisine A, philo/cuisine B et cuisine A/cuisine B. Il y a 4 livres de maths, il y a donc 4×3 = 12 possibilités.

2 Exercice 2

1.

$$\begin{split} \lim_{n \to +\infty} \frac{2n+1}{n^4 - 3n^2 + 1} &= \lim_{n \to +\infty} \frac{2n}{2n} \frac{1 + \frac{1}{2n}}{\frac{n^3}{2} - \frac{3n}{2} + \frac{1}{2n}} \\ &= \lim_{n \to +\infty} \frac{1 + \frac{1}{2n}}{\frac{n^3}{2} - \frac{3n}{2} + \frac{1}{2n}} \\ &\text{or } \lim_{n \to +\infty} 1 + \frac{1}{2n} = 0 \text{ et } \lim_{n \to +\infty} \frac{n^3}{2} - \frac{3n}{2} + \frac{1}{2n} = \lim_{n \to +\infty} \frac{n^3}{2} = +\infty \\ &\implies \text{par quotient de limite (pas sûr de cette formulation)} : \lim_{n \to +\infty} \frac{2n+1}{n^4 - 3n^2 + 1} = 0 \end{split}$$

2.

$$\lim_{n\to +\infty} \left(3+\frac{1}{n}\right)^n: \forall n\in \mathbb{N}, 3<3+\frac{1}{n}\leq 4 \text{ (je ne sais pas si elle doit expliquer pourquoi plus en détail) (la comparaison
$$\lim_{n\to +\infty} 3^n = +\infty$$

$$\implies \text{par théorème de comparaison}: \lim_{n\to +\infty} \left(3+\frac{1}{n}\right)^n = +\infty$$$$

3 Exercice 3

- 1. Montrer par récurrence que pour tout n de \mathbb{N} , n<50. Je la laisse faire la partie rédaction.
 - Initialisation (n=0): $u_0 = 5 < 50$
 - Récurrence : on suppose la propriété vrai à un rang $k, k \in \mathbb{N}$.

$$u_k < 50 \Longleftrightarrow 0.8u_k < 40 \ (40 = 50 \times 0.8)$$

$$\iff 0.8u_k + 10 < 50$$

$$\iff u_{k+1} < 50$$

- 2. En déduire que la suite (u_n) est strictement croissante. (C'est toujours la question avec laquelle j'ai du mal, je vais essayer de retrouver comme avoir la réponse.)
- 3. En déduire que la suite (u_n) est convergente . La suite est strictement croissante (question précédente) et majorée (question 1) donc (u_n) est convergente.

4 Exercice 4

1. Calculer f'(x) pour tout x de \mathbb{R} .

$$f'(x) = (e^x - x)'$$

= $(e^x)' - (x')$ en dérivant par rapport à x on obtient :
= $e^x - 1$

2. Dresser le tableau de variation de f sur \mathbb{R} et en déduire que pour tout réel x : $f(x) \ge 1$. Pour dresser le tableau de variation de f sur \mathbb{R} , on passe par le tableau de signe de f' : $e^x - 1 < 0 \iff e^x < 1 \iff x < 0$. f'(x) est donc négative pour tout x < 0 et positive pour tout x > 0.

En résumé : si x<0, f'(x)<0 donc f(x) décroissante et si x>0, f'(x)>0 donc f(x) croissante.

- 3. Soit (u_n) la suite définie par : $u_0 = 0$ et $u_{n+1} = e^{u_n}$
 - (a)Montrer par récurrence que pour tout n de $\mathbb{N}, u_n \geq n$. Je la laisse se charger de la rédaction complète.
 - Initialisation (n=0) : $u_0 = 0 \iff u_0 \ge 0$
 - Hérédité : on suppose la propriété vraie à un rang réel k.

 $u_k \geq k \Longleftrightarrow e^{u^k} \geq e^k$ car la fonction exponentielle est strictement croissante sur \mathbb{R} or, pour tout entier naturel k, $e^k \geq k+1$ (cas extrême k=0 et $\exp(0)=1=0+1$) donc $\Longrightarrow e^{u_k} \geq k+1$ $u_{k+1} \geq k+1$

• (b)En déduire que la suite (u_n) est divergente. On a montré à la question 3.a que pour tout entier naturel n, $(u_n) \ge n$, or n diverge en $+\infty$. Par thèorème de comparaison, la suite (u_n) diverge.