

# TIPOS DE REPRESENTAÇÃO DE UM ALGORÍTMO

- 1. Descrição narrativa;
- 2. Fluxograma;
- 3. Pseudocódigo.

Ilustram os passos; Admitem níveis de abstração; Independe da Linguagem de Programação; Foco: **Descrição Lógica**;

Questionamento: Quem irá utilizar a representação?







"Eu sei cozinhar arroz **OU** feijão"

Na interpretação do dia-a-dia:

- ✓ Eu sei cozinhar arroz;
- ✓ Eu sei cozinhar feijão.

| "Boa tarde! Hoje irei fazer um luau, a partir de<br>meia noite haverá muita música e diversão"      |
|-----------------------------------------------------------------------------------------------------|
|                                                                                                     |
| "O uso de nimesulida não é recomendado para<br>gestantes <b>E</b> mulheres em fase de amamentação." |

#### **PROCESSAMENTO DE DADOS**

## Operadores aritméticos (output: VALOR)

 Adição
 +
 a + b

 Subtração
 a - b

 Multiplicação
 \*
 a \* b

 Divisão
 /
 a / b

 Resto (módulo)
 %
 a % b

 Potenciação
 ^
 a^b

**Prioridade:** e.g.: Média aritmética [NF = P1 + P2 /2]

- 1. Parênteses;
- 2. Potenciação;
- 3. Multiplicação, divisão e módulo;
- 4. Adição e subtração.

### PROCESSAMENTO DE DADOS

## Operadores relacionais (output: FALSE/TRUE)

São muito usados quando temos que tomar <u>decisões</u> nos algoritmos. Com eles fazemos testes, comparações, que resultam em valores lógicos (F ou V): LÓGICA TABELA VERDADE

| Operador         | Símbolo |
|------------------|---------|
| Igual a          | =       |
| Maior que        | >       |
| Menor que        | <       |
| Maior ou Igual a | >=      |
| Menor ou Igual a | <=      |
| Diferente de     | <>      |

| LÓGICA            | TABELA VERDADE |   |   |  |  |  |
|-------------------|----------------|---|---|--|--|--|
|                   | Α              | В | S |  |  |  |
|                   | F              | F | F |  |  |  |
| AND               | F              | V | F |  |  |  |
| A111 (117) A11111 | V              | F | F |  |  |  |
|                   | V              | V | V |  |  |  |
|                   |                |   |   |  |  |  |
|                   | Α              | В | S |  |  |  |
|                   | F              | F | F |  |  |  |
| OR                | F              | V | V |  |  |  |
|                   | V              | F | V |  |  |  |
|                   | V              | V | V |  |  |  |
|                   |                |   |   |  |  |  |
|                   | Α              | S |   |  |  |  |
| NOT               | F              | V |   |  |  |  |
|                   | V              | F | ] |  |  |  |
|                   |                |   |   |  |  |  |







## **CONSIDERAÇÕES PRELIMINARES**

- ✓ Realizar a representação dos algoritmos através da descrição narrativa;
- ✓ Não é necessário validar as entradas, ou seja, se o usuário irá entrar com uma nota entre 0.0 até 10.0, pressupõe-se que ele não irá entrar com valores diferentes destas (a não ser que exista um funcionalidade para este fim);
- ✓ O nível de abstração fica a critério de cada um;
- ✓ Sugere-se realizar o teste de mesa para validar o algoritmo;
- ✓ Existem n formas de resolver um mesmo problema!





# Questão 4

Representar um algoritmo que receba do usuário três notas P1, P2 e P3. A menor nota será desconsiderada. Calcule a nota final pela média aritmética das duas maiores notas.

#### Questão 5

Representar um algoritmo que receba do usuário duas notas P1 e P2. Calcule a nota final pela média ponderada (com pesos 4 e 6) e apresente ao usuário a nota final e a sua situação (onde: APROVADO [NF>=6]; IFA [4<=NF<6]; REPROVADO [NF<4]).

#### Questão 6

Representar um algoritmo que receba do usuário duas notas P1 e P2; e a quantidade de faltas (a disciplina possui 80 h/a e para ser aprovado o aluno precisa ter um freqüência mínima de 75%). Calcule a nota final pela média ponderada (com pesos 6 e 4), e a sua situação considerando a nota (mesmas condições que o exercício anterior) e a freqüência.



Representar um algoritmo que receba do usuário as notas de todos os alunos da sala (suponha que existam exatamente 5 alunos). Após a entrada de dados dos 5 alunos, deverá ser mostrado todas as notas e a média de notas da sala.

# Questão 8

Representar um algoritmo que receba do usuário as notas de todos os alunos da sala (suponha que existam exatamente 10 alunos). Após a entrada de dados dos 10 alunos, deverá ser mostrado: 1) a média das notas; 2) a menor nota; 3) a maior nota.