Homework 5: EM for a Simple Topic Model

There is a mathematical component and a programming component to this homework. Please submit ONLY your PDF to Canvas, and push all of your work to your Github repository. If a question requires you to make any plots, please include those in the writeup.

Background: In this homework, you will implement a very simple kind of topic model. Latent Dirichlet allocation, as we discussed in class, is a topic model in which each document is composed of multiple topics. Here we will make a simplified version in which each document has just a single topic. As in LDA, the vocabulary will have V words and a topic will be a distribution over this vocabulary. Let's use K topics and the kth topic is a vector $\boldsymbol{\beta}_k$, where $\boldsymbol{\beta}_{k,v} \geq 0$ and $\sum_v \boldsymbol{\beta}_{k,v} = 1$. Each document can be described by a set of word counts \boldsymbol{w}_d , where $\boldsymbol{w}_{d,v}$ is a nonnegative integer. Document d has N_d words in total, i.e., $\sum_v w_{d,v} = N_d$. Let's have the unknown overall mixing proportion of topics be $\boldsymbol{\theta}$, where $\boldsymbol{\theta}_k \geq 0$ and $\sum_k \theta_k = 1$. Our generative model is that each of the D documents has a single topic $z_d \in \{1, \ldots, K\}$, drawn from $\boldsymbol{\theta}$; then, each of the words is drawn from $\boldsymbol{\beta}_{z_d}$.

Problem 1 (Complete Data Log Likelihood, 4 pts)

Write the complete-data log likelihood $\ln p(\{z_d, w_d\}_{d=1}^D \mid \theta, \{\beta_k\}_{k=1}^K)$. It may be convenient to write z_d as a one-hot coded vector z_d .

Problem 2 (Expectation Step, 5pts)

Introduce estimates $q(z_d)$ for the posterior over the hidden variables z_d . What did you choose and why? Write down how you would determine the parameters of these estimates, given the observed data $\{w_d\}_{d=1}^D$ and the parameters θ and $\{\beta_k\}_{k=1}^K$.

Problem 3 (Maximization Step, 5pts)

With the $q(z_d)$ estimates in hand from the E-step, derive an update for maximizing the expected complete data log likelihood in terms of θ and $\{\beta_k\}_{k=1}^K$.

- (a) Derive an expression for the expected complete data log likelihood for fixed γ 's.
- (b) Find a value of θ that maximizes the expected complete data log likelihood derived in (a). You may find it helpful to use Lagrange multipliers in order to force the constraint $\sum \theta_k = 1$. Why does this optimized θ make intuitive sense?
- (c) Apply a similar argument to find the value of $\beta_{k,v}$ that maximizes the expected complete data log likelihood.

Problem 4 (Implementation, 10pts)

Implement this expectation maximization algorithm and try it out on some text data. In order for the EM algorithm to work, you may have to do a little preprocessing.

The starter code loads the text data as a numpy array that is 5224951×3 in size. As shown below, the first number in the numpy array represents the document_id, the second number represents a word_id, and the third number is the count the word appears.

[doc_id, word_id, count]

A dictionary of the mappings between word ids and words is also provided. The full dataset description can be found at http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.data.html.

Plot the objective function as a function of iteration and verify that it never increases. Try different numbers of topics and report what topics you find by, e.g., listing the most likely words.

Problem 5 (Calibration, 1pt)

Approximately how long did this homework take you to complete?