Homework 7

Walker Bagley

March 25, 2022

1. (a) *Proof.* $A \cup B$ is countable

Let A be a finite set and B be a countable set Because A is finite, $(\exists f:A\to n)$ for some $n\in\mathbb{N}$ s.t. f is a bijection Consider the function $g:n\to\mathbb{N}$, where $g(n)=n\in\mathbb{N}$ which is injective So by def. of composition, $g\circ f:A\to\mathbb{N}$ Then, by def. of countability, A must be countable

Then, by def. of countries, 11 mass se countries

Because A, B are both countable, $|A| \leq |\mathbb{N}| \wedge |B| \leq |\mathbb{N}|$ Let f_a, f_b be injections s.t. $f_a : A \to \mathbb{N}$ and $f_b : B \to \mathbb{N}$

Recall that $|\mathbb{N}_{even}| = |\mathbb{N}_{odd}| = |\mathbb{N}|$

So, we have injections f_e, f_o s.t. $f_e : \mathbb{N} \to \mathbb{N}_{even}$ and $f_o : \mathbb{N} \to \mathbb{N}_{odd}$

Let $\varphi: A \cup B \to \mathbb{N}$ given by $(\varphi(a) = f_e(f_a(a)))$ if $a \in A \to A \to A$ if $a \in A \to A \to A$. Let $a, b \in A \cup B$ and assume $\varphi(a) = \varphi(b)$.

Since these are equal, we know $\varphi(a)$ and $\varphi(b)$ are both either even or odd

Case 1: If $\varphi(a)$ and $\varphi(b)$ are both even, we know $a \in A \land b \in A$

This means $\varphi(a) = f_e(f_a(a)) \wedge \varphi(b) = f_e(f_a(b))$

So, because f_e , f_a are injections, a = b

Case 2: If $\varphi(a)$ and $\varphi(b)$ are both odd, we know $(a \in A \cup B \setminus A) \land (b \in A \cup B \setminus A)$

This means $\varphi(a) = f_o(f_b(a)) \wedge \varphi(b) = f_o(f_b(b))$

So, because f_o, f_b are injections, a = b

Thus, by case 1 and case 2, φ is an injection

Therefore, by def. of countability, $A \cup B$ is countable

(b) *Proof.* $A \cap B$ is finite

Let A be a finite set and B be a countable set

Because A is finite, |A| = |n| for some $n \in \mathbb{N}$

Because $n \in \mathbb{N}, |n| < |\mathbb{N}|$

So, $|A| < |\mathbb{N}|$

By def. of intersection, $(\forall x \in A \cap B)(x \in A \land x \in B)$

So, $(\forall a \in A \cap B)(a \in A)$

Because of this, $|A \cap B| \le |A|$

Since $|A| < |\mathbb{N}|, |A \cap B| < |\mathbb{N}|$

Thus, $A \cap B$ is finite

2. Proof. $A := \{f | f : \mathbb{N} \to \mathcal{H}\}$ is uncountable

Towards a contradiction, assume $|A| \leq |\mathbb{N}|$

So we have $\varphi: \mathbb{N} \to A$ s.t. φ is a surjection

Consider $(\forall i \in \mathbb{N})(\varphi(i) = a_i = a_{i0} \ a_{i1} \ a_{i2} \dots a_{ij})$

Where $a_i \in A$ and $a_{ij} = a_i(j)$ and $a_{ij} \in \mathcal{H}$

Consider $\tilde{a} = \tilde{a}_0$ \tilde{a}_1 \tilde{a}_2 ... \tilde{a}_j defined by $\tilde{a}_i := \{p \text{ if } a_{ii} = w \land w \text{ if } a_{ii} \neq w\}$ Observe that, for any $i \in \mathbb{N}$, $\tilde{a} \neq a_i$ because $\tilde{a}(i) = \tilde{a}_i \neq a_{ii} = a_i(i)$

This means $(\forall i \in \mathbb{N})(\varphi(i) \neq \tilde{a})$

However, $\tilde{a} \in X$, so φ is not a surjection

Therefore, $|A| > |\mathbb{N}|$

So, A is uncountable

```
3. Proof. |\{f|(\exists n \in \mathbb{N})(f: n \to \{0,1\})\}| = |\mathbb{N}| = \aleph_0
```

 $\text{Let } X := \{f | (\exists n \in \mathbb{N}) (f: n \to \{0,1\}) \}$ Consider the set S of all finite binary sequences Ordered s.t. $S := \{0,1,00,01,10,11,000,001,010,011...\}$ Let $g: \{0,1\} \to n$ be a function s.t. $(\forall s \in S)(g(f(s_i)) = i)$ So, g(f(n)) = n and therefore $g \circ f = id_A$ By definition, f is a monomorphism Let $h: \{0,1\} \to n$ be an function s.t. $(\forall s \in S)(f(h(s_i)) = s_i)$ So, $f \circ g = id_B$

Then by definition, f is an epimorphism As we have shown, f is an isomorphism, so $f: \mathbb{N} \to \{0,1\}$ is a bijection This means that $|X| = |\mathbb{N}| = \aleph_0$

4. Proof. $P(\mathbb{N})$ is not countable

By def, A is countable if $|A| \leq |\mathbb{N}|$ By Cantor's Theorem, |A| < |P(A)|So, $|\mathbb{N}| < |P(\mathbb{N})|$ Thus, $|P(\mathbb{N})| \not\leq |\mathbb{N}|$, so $P(\mathbb{N})$ is uncountable

5. Proof. $\forall X \exists Y (|X| < |Y|)$

Let X be a set By Cantor's Theorem, |(P(X)| > |X| Therefore, there is no set with maximal cardinality