Application No.: 10/651,941

IN THE CLAIMS:

1-5. (canceled)

6. (currently amended) A method of embedding oil well steel pipes having smaller diameters one after another, characterized by using the steel pipe that could be expanded in a well, characterized in that a non-uniform wall thickness ratio E0 of the steel pipe before expanding satisfies the following expression 1;

 $E0 < 30 / (1 + 0.018\alpha)$

wherein α is a pipe expansion ratio calculated by the following expression 2; and E0 is calculated by the following expression 3;

 α = ((inner diameter of the pipe after expanding – inner diameter of the pipe before expanding) / inner diameter of the pipe before expanding) x 100 . . . 2

E0 = ((maximum wall thickness of the pipe before expanding – minimum wall thickness of the pipe before expanding) / average wall thickness of the pipe before expanding) x 100 . . . 3

and further characterized [[according to claim 1 and]] by [[comprising]] the steps of;

embedding a steel pipe in an excavated well,

further excavating the underground on the front end of the embedded steel pipe to deepen the well,

inserting a second steel pipe, whose outer diameter is smaller than the inner diameter of the embedded steel pipe, into the embedded steel pipe, and embedding the second steel pipe in the deepened portion of the well,

expanding the second steel pipe radially by a tool inserted therein to increase the diameter,

further excavating the underground on the front end of the expanded steel pipe to deepen the well,

Application No.: 10/651,941

inserting a third steel pipe, whose outer diameter is smaller than the inner diameter of the expanded steel pipe, into the expanded steel pipe, and embedding the [[a]] third steel pipe in the deepened portion of the well,

expanding the third steel pipe radially, and repeating said steps.

- 7. (canceled)
- 8. (canceled)
- 9. (canceled)
- 10-13. (canceled)
- 14. (new) The method according to claim 6 characterized by using a steel pipe consisting of, by mass %, C: 0.1 to 0.45%, Si: 0.1 to 1.5%, Mn: 0.1 to 3%, P: 0.03% or less, S; 0.01% or less, sol. Al: 0.05% or less, N: 0.01% or less, Ca: 0. to 0.005%, and the balance Fe and impurities.
- 15. (new) The method according to claim 6 characterized by using a steel pipe consisting of, by mass %, C: 0.1 to 0.45%, Si: 0.1 to 1.5%, Mn: 0.1 to 3%, P: 0.03% or less, S; 0.01% or less, sol. Al: 0.05% or less, N: 0.01% or less, Ca: 0. to 0.005%, one or more of Cr: 0.2 to 1.5%, Mo: 0.1 to 0.8% and V: 0.005 to 0.2%, and the balance Fe and impurities.
- 16. (new) The method according to claim 6 characterized by using a steel pipe consisting of, by mass %, C: 0.1 to 0.45%, Si: 0.1 to 1.5%, Mn: 0.1 to 3%, P: 0.03% or less, S; 0.01% or less, sol. Al: 0.05% or less, N: 0.01% or less, Ca: 0. to 0.005%, one or both of Ti: 0.005 to 0.05% and Nb: 0.005 to 0.1%, and the balance Fe and impurities.