作业讲解I

Anyi Cao

Nanjing University

Exercises 2.1

Prove that, by redefining the key space, we may assume that the key-generation algorithm Gen chooses a uniform key from the key space, without changeing $\Pr[C=c|M=m]$ for any m,c.

Hint: Define the key space to be the set of all possible random bits used by the randomized algorith *Gen*.

Suppose *Gen* take a random seed $r \stackrel{\$}{\leftarrow} R$ as input, i.e Gen(r) = k, so we have scheme as follow:

Gen: $r \stackrel{\$}{\leftarrow} R$, Gen(r) = k, output k.

Enc: Output $c = Enc_k(m)$.

Dec: Output $m = Dec_k(c)$.

Consider taking *Gen* and *Enc* as a new algorithm *Enc'* and the random seed r as Enc''s key, i.e. $Enc'_r(m) = c$.

Formally, we can define a scheme (Gen', Enc' Dec') as follow:

Gen': Output $r \stackrel{\$}{\leftarrow} R$.

Enc': Gen(r) = k, output $c = Enc_k(m)$.

Dec': Gen(r) = k, output $m = Dec_k(c)$.

Now the key of encryption scheme is chosen uniformly from R without changing $\Pr[C - c|M - m]$

changing $\Pr[C = c | M = m]$.

Exercises 2.3

Prove or refute: An encryption scheme with message space $\mathcal M$ is perfectly secret if and only if for every probability distribution over $\mathcal M$ and every $c_0, c_1 \in \mathcal C$ we have $\Pr[\mathcal C = c_0] = \Pr[\mathcal C = c_1]$.

Refute: For "only if" direction, we now give a counterexample of a perfectly secret scheme, where above condition does not hold.

1
$$\mathcal{M} = \{0,1\}^1$$
, $\mathcal{K} = \{0,1\}^2$, $\mathcal{C} = \{0,1\}^2$.

Quantification Gen:
$$\Pr[K = 00] = \Pr[K = 10] = 1/6$$
 and $\Pr[K = 01] = \Pr[K = 11] = 1/3$.

3 Enc_{$$K$$}(M): $C = (M \oplus K[0])||K[1]|$

9 Dec_K(C):
$$M = C[0] \oplus K[0]$$

1	1	1	1
6	3	6	3

K	00	01	10	11
0	00	01	10	11
1	10	11	00	01

4 T F 4 A B F 4 B F 8 9 9 P

This encryption scheme is simply an extension to The One-Time Pad. For every $c \in \mathcal{C}$, we have $\Pr[\mathcal{C} = c | \mathcal{M} = 0] = \Pr[\mathcal{C} = c | \mathcal{M} = 1]$. For example, when c = 00, $\Pr[\mathcal{C} = 00 | \mathcal{M} = 0] = \Pr[\mathcal{C} = 00 | \mathcal{M} = 1] = 1/6$. Therefore, this scheme is perfectly secret.

However, the ciphertext distribution is clearly not uniform. $\Pr[\mathcal{C}=00]=1/6, \text{ while } \Pr[\mathcal{C}=01]=1/3$ This contradicts the condition given in the exercise.

	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{3}$
K	00	01	10	11
0	00	01	10	11
1	10	11	00	01

Proof Lemma 2.6

LEMMA 2.6 Encryption scheme Π is perfectly secret if and only if it is perfectly indistinguishable.

Proof:

" \Rightarrow ": Assume Π is perfectly secret. Then for every $m_0, m_1 \in \mathcal{M}$ and every $c \in \mathcal{C}$, $\Pr[\mathcal{C} = c | \mathcal{M} = m_0] = \Pr[\mathcal{C} = c | \mathcal{M} = m_1]$. We have:

$$\Pr[\mathsf{Privk}^{\mathsf{eav}}_{\mathcal{A},\Pi}=1]$$

$$= \Pr[b=0] \Pr[\textit{Privk}^{\textit{eav}}_{\mathcal{A},\Pi} = 1 | b=0] + \Pr[b=1] \Pr[\textit{Privk}^{\textit{eav}}_{\mathcal{A},\Pi} = 1 | b=1]$$

$$= \Pr[b=0] \Pr[\mathcal{A} \text{ outputs } 0|b=0] + \Pr[b=1] \Pr[\mathcal{A} \text{ outputs } 1|b=1]$$

$$= \Pr[M = m_0] \Pr[\mathcal{A} \text{ outputs } 0 | M = m_0] + \Pr[M = m_1] \Pr[\mathcal{A} \text{ outputs } 1 | M = m_1]$$

$$= \Pr[M = m_0] \sum_{c \in C} \Pr[C = c | M = m_0] \Pr[A \text{ outputs } 0 | C = c]$$

$$+\Pr[\textit{M}=\textit{m}_1]\sum_{c\in\textit{C}}\Pr[\textit{C}=\textit{c}|\textit{M}=\textit{m}_1]\Pr[\textit{A outputs }1|\textit{C}=\textit{c}]$$

Meanwhile,

$$\begin{split} &\Pr[\textit{Privk}_{\mathcal{A},\Pi}^{\textit{eav}} = 0] \\ &= \Pr[b = 0] \Pr[\textit{Privk}_{\mathcal{A},\Pi}^{\textit{eav}} = 0 | b = 0] + \Pr[b = 1] \Pr[\textit{Privk}_{\mathcal{A},\Pi}^{\textit{eav}} = 0 | b = 1] \\ &= \Pr[b = 0] \Pr[\mathcal{A} \ \textit{outputs} \ 1 | b = 0] + \Pr[b = 1] \Pr[\mathcal{A} \ \textit{outputs} \ 0 | b = 1] \\ &= \Pr[M = m_0] \sum_{c \in C} \Pr[C = c | M = m_0] \Pr[\mathcal{A} \ \textit{outputs} \ 1 | C = c] \\ &+ \Pr[M = m_1] \sum_{c \in C} \Pr[C = c | M = m_1] \Pr[\mathcal{A} \ \textit{outputs} \ 0 | C = c] \\ &= \Pr[M = m_1] \sum_{c \in C} \Pr[C = c | M = m_1] \Pr[\mathcal{A} \ \textit{outputs} \ 1 | C = c] \\ &+ \Pr[M = m_0] \sum_{c \in C} \Pr[C = c | M = m_0] \Pr[\mathcal{A} \ \textit{outputs} \ 0 | C = c] \\ &= \Pr[\textit{Privk}_{\mathcal{A},\Pi}^{\textit{eav}} = 1] = 1/2. \end{split}$$

Therefore, Π is perfectly indistinguishable.

Another way

- Divide C into C_0 and C_1 , s.t. $C_0 \cup C_1 = C$ and $C_0 \cap C_1 = \emptyset$
- Adversary outputs 0 if he received $c \in C_0$, and 1 if $c \in C_1$

$$\sum_{c \in C} \Pr[C = c | M = m_0] \Pr[A \text{ outputs } 0 | C = c]$$

$$= \sum_{c \in C_0} \Pr[C = c | M = m_0] \Pr[A \text{ outputs } 0 | C = c]$$

$$+ \sum_{c \in C_1} \Pr[C = c | M = m_0] \Pr[A \text{ outputs } 0 | C = c]$$

$$= \sum_{c \in C_0} \Pr[C = c | M = m_0] * 1 + \sum_{c \in C_1} \Pr[C = c | M = m_0] * 0$$

$$= \sum_{c \in C_0} \Pr[C = c | M = m_0]$$

So we have,

$$\begin{split} &\Pr[\textit{Privk}_{\mathcal{A},\Pi}^{\textit{eav}} = 1] \\ &= \Pr[\textit{M} = \textit{m}_0] \sum_{c \in \textit{C}} \Pr[\textit{C} = c | \textit{M} = \textit{m}_0] \Pr[\mathcal{A} \ \textit{outputs} \ 0 | \textit{C} = c] \\ &+ \Pr[\textit{M} = \textit{m}_1] \sum_{c \in \textit{C}} \Pr[\textit{C} = c | \textit{M} = \textit{m}_1] \Pr[\mathcal{A} \ \textit{outputs} \ 1 | \textit{C} = c] \\ &= 1/2 (\sum_{c \in \textit{C}_0} \Pr[\textit{C} = c | \textit{M} = \textit{m}_0] + \sum_{c \in \textit{C}_1} \Pr[\textit{C} = c | \textit{M} = \textit{m}_1]) \\ &= 1/2 (\sum_{c \in \textit{C}_0} \Pr[\textit{C} = c | \textit{M} = \textit{m}_0] + \sum_{c \in \textit{C}_1} \Pr[\textit{C} = c | \textit{M} = \textit{m}_0]) \\ &= 1/2 (\sum_{c \in \textit{C}} \Pr[\textit{C} = c | \textit{M} = \textit{m}_0]) \\ &= 1/2 \end{split}$$

<ロ > ← □ > ← □ > ← □ > ← □ = − の へ ⊙

Proof: "\(= ": We try to prove the contrapositive of it.

Assume Π is not perfectly secret. There are $m_0', m_1' \in M$ and $c' \in C$ that $\Pr[C = c' | M = m_0'] \neq \Pr[C = c' | M = m_1']$.

We construct an adversary \mathcal{A} for which $\Pr[Privk_{\mathcal{A},\Pi}^{eav}=1]\neq 1/2$.

- Choose $m_0=m_0'$ and $m_1=m_1'$
- ② Upon receiving the challenge ciphertext c, output b=0 if c=c', and randomly outputs 0 or 1 otherwise.

Now,

$$\begin{split} &\Pr[\textit{Privk}^{\textit{eav}}_{\mathcal{A},\Pi} = 1] \\ &= \Pr[\textit{b} = 0] \Pr[\textit{Privk}^{\textit{eav}}_{\mathcal{A},\Pi} = 1 | \textit{b} = 0] + \Pr[\textit{b} = 1] \Pr[\textit{Privk}^{\textit{eav}}_{\mathcal{A},\Pi} = 1 | \textit{b} = 1] \\ &= \Pr[\textit{b} = 0] \Pr[\mathcal{A} \ \textit{outputs} \ 0 | \textit{b} = 0] + \Pr[\textit{b} = 1] \Pr[\mathcal{A} \ \textit{outputs} \ 1 | \textit{b} = 1] \end{split}$$

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

10 / 24

In addition,

$$\Pr[A \text{ outputs } 0 | b = 0]$$

$$= \Pr[C = c' | b = 0] \Pr[A \text{ outputs } 0 | b = 0 \land C = c']$$

$$+ \Pr[C \neq c' | b = 0] \Pr[A \text{ outputs } 0 | b = 0 \land C \neq c']$$

$$= \Pr[C = c' | b = 0] + 1/2 \Pr[C \neq c' | b = 0]$$

$$= \Pr[C = c' | M = m'_{0}] + 1/2 \Pr[C \neq c' | M = m'_{0}]$$

$$\Pr[A \text{ outputs } 1 | b = 1]$$

$$= \Pr[C = c' | b = 1] \Pr[A \text{ outputs } 1 | b = 1 \land C = c']$$

$$+ \Pr[C \neq c' | b = 1] \Pr[A \text{ outputs } 1 | b = 1 \land C \neq c']$$

$$= 1/2 \Pr[C \neq c' | b = 1]$$
(3)

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 夕へで

 $= 1/2 \Pr[C \neq c' | M = m_1']$

Then substitute (2) and (3) into (1).

$$\begin{split} &\Pr[\textit{Privk}_{\mathcal{A},\Pi}^{\textit{eav}} = 1] \\ &= 1/2(\Pr[\textit{C} = \textit{c}' | \textit{M} = \textit{m}_0'] + 1/2\Pr[\textit{C} \neq \textit{c}' | \textit{M} = \textit{m}_0']) \\ &+ 1/2(1/2\Pr[\textit{C} \neq \textit{c}' | \textit{M} = \textit{m}_1']) \\ &= 1/2\Pr[\textit{C} = \textit{c}' | \textit{M} = \textit{m}_0'] + 1/4(1-\Pr[\textit{C} = \textit{c}' | \textit{M} = \textit{m}_0']) \\ &+ 1/4(1-\Pr[\textit{C} = \textit{c}' | \textit{M} = \textit{m}_1']) \\ &= 1/2 + 1/4(\Pr[\textit{C} = \textit{c}' | \textit{M} = \textit{m}_0'] - \Pr[\textit{C} = \textit{c}' | \textit{M} = \textit{m}_1']) \\ &\neq 1/2 \end{split}$$

Therefore, Π is not perfectly indistinguishable.

In conclusion, the lemma is correct.

4 D > 4 P > 4 B > 4 B > B = 900

作业讲解 1-4

Exercises 2.10

- 2.10 The following questions concern the message space $\mathcal{M} = \{0,1\}^{\leq \ell}$, the set of all nonempty binary strings of length at most ℓ .
 - (a) Consider the encryption scheme in which Gen chooses a uniform key from $\mathcal{K} = \{0,1\}^{\ell}$, and $\operatorname{Enc}_k(m)$ outputs $k_{|m|} \oplus m$, where k_t denotes the first t bits of k. Show that this scheme is not perfectly secret for message space \mathcal{M} .
 - (b) Design a perfectly secret encryption scheme for message space \mathcal{M} .

(a)

There are messages with different length in the message space M and this scheme don't protect this information.

The adversary can choose message $m_0 = 000$, $m_1 = 0001$ and output 0 if |c| = 3 and 1 if |c| = 4.

Obviously $\Pr[\mathit{Privk}^{\mathit{eav}}_{\mathcal{A},\Pi}=1]=1.$

(b)

We can design a scheme that Gen' chooses a unifrom key from $K = \{0,1\}^{l+1}$, and $Enc_k'(m)$ first compute $m' = m||1||0^{l-|m|}$ and outputs $k \oplus m'$, and $Dec_k'(c)$ compute $m' = k \oplus c$ and remove all of 0 and the first 1 from tail and get m.

Exercises 2.18(a)(b)

2.18 Let $\varepsilon > 0$ be a constant. Say an encryption scheme is ε -perfectly secret if for every adversary \mathcal{A} it holds that

$$\Pr\left[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi} = 1\right] \leq \frac{1}{2} + \varepsilon\,.$$

(Compare to Definition 2.6.) Consider a variant of the one-time pad where $\mathcal{M} = \{0,1\}^{\ell}$ and the key is chosen uniformly from an arbitrary set $\mathcal{K} \subseteq \{0,1\}^{\ell}$ with $|\mathcal{K}| = (1-\varepsilon) \cdot 2^{\ell}$; encryption and decryption are otherwise the same.

- (a) Prove that this scheme is ε -perfectly secret.
- (b) Prove that this scheme is $\left(\frac{\varepsilon}{2(1-\varepsilon)}\right)$ -perfectly secret when $\varepsilon \leq 1/2$. (Note that $\frac{\varepsilon}{2(1-\varepsilon)} \leq \varepsilon$ here, so this is an improvement over part (a).)

Anyi Cao (CS@NJU) 15/24

$$\begin{split} &\Pr[\textit{Privk}_{\mathcal{A},\Pi}^{\textit{eav}} = 1] \\ &= \Pr[b = 0] \Pr[\mathcal{A} \; \textit{outputs} \; 0 | b = 0] + \Pr[b = 1] \Pr[\mathcal{A} \; \textit{outputs} \; 1 | b = 1] \\ &= \frac{1}{2} (\Pr[\mathcal{A} \; \textit{outputs} \; 0 | M = m_0] + \Pr[M = m_1] \Pr[\mathcal{A} \; \textit{outputs} \; 1 | M = m_1]) \\ &= \frac{1}{2} (\sum_{c \in \mathcal{C}} \Pr[\mathcal{C} = c | M = m_0] \Pr[\mathcal{A} \; \textit{outputs} \; 0 | \mathcal{C} = c] \\ &+ \sum_{c \in \mathcal{C}} \Pr[\mathcal{C} = c | M = m_1] \Pr[\mathcal{A} \; \textit{outputs} \; 1 | \mathcal{C} = c]) \end{split}$$

(ㅁ▶◀@▶◀불▶◀불▶ 불 쒸٩은

Let $C_0(C_1)$ denote the ciphertext space of $m_0(m_1)$. Let $S = C_0 \cap C_1$ and $|S| = \delta |M|$. The best adversary will outputs 0(1) when $c \in C_0 - S(C_1 - S)$ and randomly outputs when $c \in S$.

$$\sum_{c \in C} \Pr[C = c | M = m_0] \Pr[A \text{ outputs } 0 | C = c]$$

$$= \sum_{c \in C_0 - S} \Pr[C = c | M = m_0] \Pr[A \text{ outputs } 0 | C = c]$$

$$+ \sum_{c \in S} \Pr[C = c | M = m_0] \Pr[A \text{ outputs } 0 | C = c]$$

$$= \sum_{c \in C_0 - S} \Pr[C = c | M = m_0] + \sum_{c \in S} \frac{1}{2} \Pr[C = c | M = m_0]$$

$$= \frac{(1 - \epsilon - \delta)|M|}{(1 - \epsilon)|M|} + \frac{1}{2} \frac{(\delta)|M|}{(1 - \epsilon)|M|}$$

$$= \frac{2 - 2\epsilon - \delta}{2(1 - \epsilon)}$$

Anyi Cao (CS@NJU) 17/24

The same holds on for $\sum_{c \in C} \Pr[C = c | M = m_1] \Pr[A \text{ outputs } 1 | C = c]$, so we have

$$\begin{split} &\Pr[\textit{Privk}^{\textit{eav}}_{\mathcal{A},\Pi} = 1] \\ &= \frac{1}{2} (\sum_{c \in \mathcal{C}} \Pr[\textit{C} = c | \textit{M} = \textit{m}_0] \Pr[\textit{A outputs } 0 | \textit{C} = c] \\ &+ \sum_{c \in \mathcal{C}} \Pr[\textit{C} = c | \textit{M} = \textit{m}_1] \Pr[\textit{A outputs } 1 | \textit{C} = c]) \\ &= \frac{1}{2} (\frac{2 - 2\epsilon - \delta}{2(1 - \epsilon)} + \frac{2 - 2\epsilon - \delta}{2(1 - \epsilon)}) \\ &= \frac{2 - 2\epsilon - \delta}{2(1 - \epsilon)} \end{split}$$

So the smaller δ , the probability of adversary win higher. And $\delta \geq 2(1-\epsilon)-1=1-2\epsilon$. So $\Pr[Privk_{A,\Pi}^{eav}=1] \leq \frac{2-2\epsilon-1+2\epsilon}{2(1-\epsilon)} = \frac{1}{2(1-\epsilon)} = \frac{1}{2} + \frac{\epsilon}{2(1-\epsilon)}$

Exercises 2.18(c)

(c) Prove that any deterministic scheme that is ε -perfectly secret must have $|\mathcal{K}| \geq (1-2\varepsilon) \cdot |\mathcal{M}|$. (Note: It is an open question to prove a tight lower bound that also holds for randomized schemes.)

Let $|K| = (1 - \alpha)|M|$ and we want to prove $(1 - \alpha) \ge (1 - 2\epsilon)$ if $\Pr[Privk_{A,\Pi}^{eav}=1] \leq \frac{1}{2} + \epsilon$. And we try to prove the contrapositive of it that if $(1-\alpha) < (1-2\epsilon)$ then for every encryption sheeme Π , there exists a PPT adversary A' that $\Pr[Privk_{A'\Pi}^{eav} = 1] > \frac{1}{2} + \epsilon$.

For briefly we write n = |M|. Without loss of generality we can choose m_0 randomly and fix C_0 . We denote $|C_0| = (1 - \beta)n$ that $1 - \beta \le 1 - \alpha$.

Now we consider the "number of ciphertexts without considering repeation", denote as γ . Formally for a ciphertext c, $\gamma(c) = |\{(m, k) | Enc_k(m) = c\}|.$

For the correctness of decryption there are at most $(1-\alpha)n$ messages can be encrypted to one ciphertext, i.e. $\gamma(c) \leq (1-\alpha)n$, so $\gamma(C_0) = \sum_{c \in C_0} \gamma(c) \le (1 - \alpha)(1 - \beta)n^2$.

20 / 24

Let
$$\{m_1, m_2, ..., m_{n-1}\} = M - \{m_0\}$$
 and let $\delta_i \cdot n = |\{k | Enc_k(m_i) \in C_i \cap C_0\}|, \sum_{c \in C_i \cap C_0} \Pr[C = c | M = m_i] = \frac{\delta_i}{1 - \alpha}.$

Then $\gamma(C_0)$ is greater than or equal to the results that adding up all of $\delta_i \cdot n$ and plusing the size of C_0 , i.e. $\gamma(C_0) \geq (1-\beta)n + \sum_{i=1}^{n-1} \delta_i \cdot n$.

$$\sum_{i=1}^{n-1} \delta_i \cdot n \le \gamma(C_0) - (1-\beta)n \le (1-\alpha)(1-\beta)n^2 - (1-\beta)n < (1-\alpha)(1-\beta)(n^2-n).$$

$$(n-1)\delta_{\min} \le \sum_{i=1}^{n-1} \delta_i < (1-\alpha)(1-\beta)(n-1).$$

So there exists m_j that $\delta_j = \delta_{\min} < (1 - \alpha)(1 - \beta)$, let m_j be another message.

4□ > 4□ > 4□ > 4□ > 4□ > 4□

For $c \in C_0 \cap C_j$, adversary guess 0 if $\Pr[C = c | M = m_0] \ge \Pr[C = c | M = m_j]$ and 1 otherwise.

Notice that
$$\sum_{c \in C_i \cap C_0} \Pr[C = c | M = m_i] = \frac{\delta_i}{1-\alpha}$$
, and similarly we difine $\sum_{c \in C_i \cap C_0} \Pr[C = c | M = m_0] = \frac{\delta_0}{1-\alpha}$.

$$\Pr[C = c | M = m_0] \Pr[A \text{ outputs } 0 | C = c]$$

$$+ \Pr[C = c | M = m_j] \Pr[A \text{ outputs } 1 | C = c]$$

$$= \max\{\Pr[C = c | M = m_0], \Pr[C = c | M = m_j]\}$$

$$\sum_{c \in C_0 \cap C_j} (\Pr[C = c | M = m_0] \Pr[A \text{ outputs } 0 | C = c]$$

$$+ \Pr[C = c | M = m_j] \Pr[A \text{ outputs } 1 | C = c])$$

$$\geq \frac{\max\{\delta_0, \delta_j\}}{1 - \alpha}$$

4□▶ 4□▶ 4□▶ 4□▶ □ 900

Anyi Cao (CS@NJU) 22 / 24

作业讲解 1 - 5

$$\begin{split} &\Pr[\textit{Privk}^{\textit{eav}}_{\mathcal{A},\Pi} = 1] \\ &= \frac{1}{2} (\sum_{c \in \mathcal{C}} \Pr[\textit{C} = c | \textit{M} = \textit{m}_0] \Pr[\mathcal{A} \; \textit{outputs} \; 0 | \textit{C} = c] \\ &+ \sum_{c \in \mathcal{C}} \Pr[\textit{C} = c | \textit{M} = \textit{m}_1] \Pr[\mathcal{A} \; \textit{outputs} \; 1 | \textit{C} = c]) \\ &\geq \frac{1}{2} (\frac{1 - \alpha - \delta_0}{1 - \alpha} + \frac{1 - \alpha - \delta_j}{1 - \alpha} + \frac{\max\{\delta_0, \delta_j\}}{1 - \alpha}) \\ &= \frac{1}{2} (2 - \frac{\min\{\delta_0, \delta_j\}}{1 - \alpha}) > 1 - \frac{(1 - \alpha)(1 - \beta)}{2(1 - \alpha)} \\ &= 1 - \frac{1 - \beta}{2} > 1 - \frac{1 - \alpha}{2} \\ &> 1 - \frac{1 - 2\epsilon}{2} = \frac{1}{2} + \epsilon \end{split}$$

So if $(1 - \alpha) < (1 - 2\epsilon)$, we can always find messages m_0, m_i making $\Pr[Privk_{A\Pi}^{eav}=1] > \frac{1}{2} + \epsilon.$

The End