Approved by AICTE, New Delhi

Academic year 2021-2022 (Even Sem)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Date	29 th June 2022	Maximum Marks	50			
Course Code	18CS43	Duration	120 Min			
Sem IV Semester Test-I						
DESIGN & ANALYSIS OF ALGORITHMS						

Sl. No.	PART A	M	BT	CO
1	In empirical analysis the quadratic efficiency class of the algorithm will have what type of graph	1	2	2
2	State the basic operation in the Tower of Hanoi Problem	1	1	1
3	For an input size of 15 elements, how many times the basic operation will be executed in selection sort.	1	2	2
4	Write the recurrence to denote the worst case of Quicksort	1	2	2
5	The algorithm like Quick sort does not require extra memory for carrying out the sorting procedure. This technique is called	1	1	1
6	If $T(n) = 7T(n/3) + n^2$, then by master method $T(n) =$	1	3	2
7	Find the number of swaps done to sort the following elements in alphabetical order using Bubble Sort EXAMPLE	2	3	3
8	<pre>What is the time complexity of following code void fun() { for(i=1,i<=n;i++) for(j=1;j<=i²;j++) for(k=1;k<=n/2;k++)</pre>	2	3	3
	PART B			
1a	Discuss with a neat flow chart the algorithm design and analysis process.	6	2	1
1b	For the algorithm to find the largest element in a list of n numbers, indicate (i) a natural size metric for its inputs (ii) its basic operation (iii) whether the basic operation count can be different for inputs of the same size:	4	3	1
2a	Write a recursive Tower of Hanoi and analyze its efficiency by writing the recurrence relation.	6	3	2
2b	Illustrate the general plan to analyze the efficiency of non-recursive algorithm.	4	1	2
3a	With an algorithm discuss the efficiency of selection sort.	6	2	2

Approved by AICTE, New Delhi

3b	Compare the orders of growth using limits: i) ½ n(n-1) and n² ii) n! and 2 ⁿ	4	3	3
4a	Write the partition algorithm used in quicksort. Apply the same to sort the elements 5 3 1 9 8 2 4 7. Draw the recursive call tree.	6	3	3
4b	Discuss the efficiency of quicksort.	4	2	2
5a	Apply Strassen's algorithm to compute the matrix multiplication of A1 and B1 matrix. $A1 = \begin{bmatrix} 3 & 2 \\ 5 & 6 \end{bmatrix} B1 = \begin{bmatrix} 5 & 6 \\ 1 & 3 \end{bmatrix}$	6	4	4
5b	Write a pseudocode for a divide-and-conquer algorithm for finding the position of the largest element in an array of n numbers.	4	3	2

Course Outcomes:

COURSE OUTCOMES

- 1. Understand and explore the asymptotic runtime complexity of algorithms by using mathematical relations.
- 2. Select and apply appropriate design techniques to solve real world problems.
- 3. Estimate the computational complexity of different algorithms.
- 4. Apply the efficient algorithm design approaches in a problem specific manner.

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

Marks	Partio	culars	CO1	CO2	CO3	CO4	L1	L2	L3	L4	L5	L6
Distribution	Test	Max Marks	14	28	14	04	06	20	30	04	-	-

	De		: Year 2022- 2023 (Ever Omputer Science ar	•			
Date		10/8/2023	Maximum Marks	50			
	rse Code	21CS43	Duration	90 Min			
		•	nd Analysis of Algo Scheme and Solut				
SL			PART A		M	BT	C
l a	alike but determine Find the comment Algorithm Time com	one is fake (Lighter the fake coin using a	₂ n)	efficient algorithm to ven and no weights).	5	3	2
lb	Write an a same 89, 4 Algorithm 2 ALGORITH //Sorts a g //Input: A //Output: for i←1 to v← j← wh	algorithm to perform i 5, 68, 90, 29, 34, 17 2 marks and InsertionSort($A[0]$ given array $A[0]$ n array $A[0]$ o $n-1$ of $n-1$ sorted $a_i = 1$ and $a_i = 1$	nsertion sort, and sort the $n-1$] n n sort n orderable elements ed in nondecreasing order	given elements using	5	2	2
2a	Along with	45 68 89 90 2 45 68 89 90 2 29 45 68 89 9 29 34 45 68 8 17 29 34 45 6	29 34 17 29 34 17	given graph	5	3	3

Divide and Conquer Method 1.It deals (involves) three steps at each level of recursion: Divide the problem into a number of subproblems. Conquer the subproblems by solving them recursively.	Dynamic Programming 1.It involves the sequence of four steps: • Characterize the structure of optimal						
recursion: Divide the problem into a number of subproblems. Conquer the subproblems by solving them							
Combine the solution to the subproblems into the solution for original subproblems.	solutions. Recursively defines the values of optimal solutions. Compute the value of optimal solutions in a Bottom-up minimum. Construct an Optimal Solution from computed information.						
Example 2 marks		-	2	3			
//Sorts an array by comparison counting //Input: An array $A[0n-1]$ of orderalge //Output: Array $S[0n-1]$ of A 's element for $i \leftarrow 0$ to $n-1$ do $Count[i] \leftarrow 0$ for $i \leftarrow 0$ to $n-2$ do for $j \leftarrow i+1$ to $n-1$ do if $A[i] < A[j]$ $Count[j] \leftarrow Count[j] + 1$ else $Count[i] \leftarrow Count[i] + 1$ for $i \leftarrow 0$ to $n-1$ do $S[Count[i]] \leftarrow A[i]$ return S Algorithm Tracing 3 marks	ALGORITHM ComparisonCountingSort($A[0n-1]$) //Sorts an array by comparison counting //Input: An array $A[0n-1]$ of orderable elements //Output: Array $S[0n-1]$ of A 's elements sorted in nondecreasing order for $i \leftarrow 0$ to $n-1$ do $Count[i] \leftarrow 0$ for $i \leftarrow 0$ to $n-2$ do for $j \leftarrow i+1$ to $n-1$ do if $A[i] < A[j]$ Count $[j] \leftarrow Count[j]+1$ else $Count[i] \leftarrow Count[i]+1$ for $i \leftarrow 0$ to $n-1$ do $S[Count[i]] \leftarrow A[i]$ return S						
Discuss the procedure used in Boyers M the given pattern in the text Text: BESS_KNEW_ABOUT_BAOBAB. Pattern: BAOBAB B A O B A B Bad shift table is B A O _ Other	loor algorithm. in Apply the same to search	5	3	4			
	Design Sort by counting algorithm $20,25,21,23,67,22,23,28,26,21$ ALGORITHM ComparisonCountingSort //Sorts an array by comparison counting //Input: An array $A[0n-1]$ of orderal //Output: Array $S[0n-1]$ of A' 's element for $i \leftarrow 0$ to $n-1$ do A' so element for $A \leftarrow 0$ to $A \leftarrow 0$ to $A \leftarrow 0$ do for $A \leftarrow 0$ to $A \leftarrow 0$	Design Sort by counting algorithm and Sort the elements using same $20,25,21,23,67,22,23,28,26,21$ ALGORITHM ComparisonCountingSort($A[0n-1]$) //Sorts an array by comparison counting //Input: An array $A[0n-1]$ of orderable elements //Output: Array $S[0n-1]$ of A 's elements sorted in nondecreasing order for $i \leftarrow 0$ to $n-1$ do $Count[i] \leftarrow 0$ for $i \leftarrow 0$ to $n-1$ do if $A[i] \leftarrow A[i]$ Count[i] $\leftarrow Count[i] + 1$ else $Count[i] \leftarrow Count[i] + 1$ for $i \leftarrow 0$ to $n-1$ do $S[Count[i]] \leftarrow A[i]$ return S Algorithm Tracing 3 marks Discuss the procedure used in Boyers Moor algorithm. in Apply the same to search the given pattern in the text Text: BESS_KNEW_ABOUT_BAOBAB. Pattern: BAOBAB BAOBAB BAOBAB BAOBAB BAOBAB BAOBAB BAOBAB BABBABABBABABABA	Design Sort by counting algorithm and Sort the elements using same 20,25,21,23,67,22,23,28,26,21 ALGORITHM ComparisonCountingSort(A[0n-1]) //Sorts an array by comparison counting //Input: An array A[0n-1] of orderable elements //Output: Array S[0n-1] of A's elements sorted in nondecreasing order for i \(\cdot \) to n-1 do Count[i] \(\cdot \) of for j \(\cdot \) it 1 to n-1 do if A[i] \(< A[j] \) Count[j] \(\cdot Count[i] \) + 1 else Count[i] \(\cdot Count[i] \) + 1 for i \(\cdot 0 \) to n-1 do S[Count[i]] \(\cdot A[i] \) return S Algorithm Tracing 3 marks Discuss the procedure used in Boyers Moor algorithm. in Apply the same to search the given pattern in the text Text: BESS_KNEW_ABOUT_BAOBAB. Pattern: BAOBAB B A O B A B Bad shift table is B A O C Cother	Design Sort by counting algorithm and Sort the elements using same 20,25,21,23,67,22,23,28,26,21 ALGORITHM ComparisonCountingSort($A[0n-1]$) //Sorts an array by comparison counting //Input: An array $A[0n-1]$ of orderable elements //Output: Array $S[0n-1]$ of A 's elements sorted in nondecreasing order for $i \leftarrow 0$ to $n-1$ do $Count[i] \leftarrow 0$ for $i \leftarrow 0$ to $n-1$ do if $A[i] < A[j]$ Count[$A[i] \leftarrow Count[i] + 1$ else $Count[i] \leftarrow Count[i] + 1$ else $Count[i] \leftarrow Count[i] + A[i]$ return S Algorithm Tracing 3 marks Discuss the procedure used in Boyers Moor algorithm. in Apply the same to search the given pattern in the text Text: BESS_KNEW_ABOUT_BAOBAB. Pattern: BAOBAB BAOBAB BAOBAB BAOBAB BAOBAB BAOBABBBABB			

	Where d1=t(c) is the va	find the value of date(c)-k alue of bad shift taleber of matching cherof matching cheromatching cheromatching cheromatching baobab BAOBAB BAOBAB BAOBAB	ole	No Shifts 2 5 5	d2	A B			
4 a	ALGORITHM //Solves the //Input: An //Output: R sort the arra for i←0 to n if A[i return true	•	Iniqueness(A[0ess problem by soft orderable elements as no equal elements false	n−1]) corting the a nents nents, "false	rray first " otherwise	AB	5	1	3
4b	4 C3 using d	the problems are ynamic programm $ \begin{bmatrix} 1 & k=0 \text{ or } \\ 0 & k>n \\ C(n-1, k)+c(n-1) \end{bmatrix} $ The problems are ynamic programm.	ing $k=n$ $k=1$ $k< n \in k$ weighted matrix	n	K 0 1 1 1 2 1 3 1 3 4	value of 2 3 1 3 1 6 4	4	2	2
	δ ∞ ∞ 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		D4	Final	Matrix			

	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
5b	Write an algorithm to solve 0/1 Knapsack problem using Memory Functions, apply	6	3	4
	the same to find the maximum profit			
	Algorithm 3 Marks			
	ALGORITHM $MFKnapsack(i, j)$ //Implements the memory function method for the knapsack problem //Input: A nonnegative integer i indicating the number of the first // items being considered and a nonnegative integer j indicating // the knapsack capacity //Output: The value of an optimal feasible subset of the first i items //Note: Uses as global variables input arrays $Weights[1n]$, $Values[1n]$, //and table $F[0n, 0W]$ whose entries are initialized with -1 's except for //row 0 and column 0 initialized with 0's if $f[i, j] < 0$ if $f(i, j) < 0$ if $f(i, j) < 0$ else $Value \leftarrow MFKnapsack(i-1, j)$ $Values[i] + MFKnapsack(i-1, j-1)$ $Values[i] + MFKnapsack(i-1, j-1)$ $Values[i] + MFKnapsack(i-1, j-1)$ return $F[i, j] \leftarrow value$			
	W= 5			
	$w_i \ 2 \ 1 \ 3 \ 2$			
	v _i 12 10 20 15			
	Tracing of the input 3 marks Maximum Profit: 37			

Course	Outcomes: After completing the course, the students will be able to:-
CO1	Apply knowledge of computing and mathematics to algorithm analysis and design
CO2	Analyze a problem and identify the computing requirements appropriate for a solution
CO3	Apply mathematical foundations, algorithmic principles, and computer science theory to the modeling, and evaluation of computer-based solutions in a way that demonstrates comprehension of the trade-offs involved in design choices.
CO4	Investigate and apply optimal design, development principles, skills and tools in the construction of software solutions of varying complexity.
CO5	Demonstrate critical, innovative thinking, and display competence in oral, written, and visual communication.
CO6	Exhibits positive group communication exchanges in order to accomplish a common goal and engage in continuing professional development.

Marilan	Particulars	CO1	CO2	CO3	CO4	CO5	C06	L1	L2	L3	L4
Marks Distribution	Max Marks	5	12	15	18	-	1	10	18	22	

Approved by AICTE, New Delhi

Academic year 2022-2023 (Even Sem)

DEPARTMENT OF

COMPUTER SCIENCE & ENGINEERING

	Date	September 2023	Maximum Marks	50
	Course Code	21CS43	Duration	90 Min
	Sem	IV Semester	Improvement Test	7 0 1/1111
	Selli	DESIGN AND ANALYSIS O	1	
Sl. No.		Questions	TILGORITIMS	M
1a.	Write the Algorithm	to find minimum spanning tree us	ing prim's algorithm-4M	4
	ALGORITHM $Prim(G)$ //Prim's algorithm for co //Input: A weighted con //Output: E_T , the set of of $V_T \leftarrow \{v_0\}$ //the set of t $E_T \leftarrow \varnothing$ for $i \leftarrow 1$ to $ V - 1$ do	enstructing a minimum spanning tree nected graph $G = \langle V, E \rangle$ edges composing a minimum spanning tree of G are vertices can be initialized with any vertex eight edge $e^* = (v^*, u^*)$ among all the edges (v, u)	ing prini 3 aigoriumi 4141	
b	the source: Vi	1,9),V3(V1,4),V4(-, ∞),V5(-, ∞),V6(3,6),V4(V3,5),V5(V3,10),V6(-, ∞) 3,6),V5(V4,9),V6(V4,13) V4,9),V6(V4,13) V5,11) t- 1+1		S 6
2.a	With the help of sta State space tree – 5N Solution -1M		oblem using Backtracking approacl	n 6

Approved by AICTE, New Delhi

	2 3 4 2 3 4	
	1 sh - (2, 4,1,3)	
b.	Differentiate Between the following:	4
	i) Optimal solution and Feasible solution : optimal solution is a feasible solution with the best value of the objective function	
	a feasible solution is a point and Feasible solution in the problem's search space that satisfies	
	all the problem's constraints	
	ii) Promising node and Non-promising node Promising node corresponds to a partially constructed solution that may still lead to a complete	
	solution otherwise, it is called non-promising 2+2	
3 a.	General principle of backtracking design technique: The principal idea is to construct solutions one component at a time and evaluate such partially constructed candidates as	3
	follows. If a partially constructed solution can be developed further without violating the	
	problem's constraints, it is done by taking the first remaining legitimate option for the next	
	component. If there is no legitimate option for the next component, no alternatives for <i>any</i> remaining component need to be considered. In this case, the algorithm backtracks to replace	
	the last component of the partially constructed solution with its next option3M	
b	Apply backtracking to solve the following instance of the subset sum problem: $A =$	7
	$\{2,3,4,5\}$ and $d=11$. Give the conditions used to terminate the node as non-promising. State space tree-5M	
1	Condition -2M	

Approved by AICTE, New Delhi

Academic year 2022-2023 (Even Sem)

With the help of a state space tree. Solve the Travelling Salesman Problem for the following graph using branch and bound concept. Find the number of promising and non-promising nodes. Use vertex 'd' as starting node.

No of promising node -5 No ofnon- promising node -10 -----2M

Solution node-1 -----

Solution- d->b->a->c->e->d cost 16 1M

State space tree -7M

10

Approved by AICTE, New Delhi

Approved by AICTE, New Delhi

Approved by AICTE, New Delhi

Approved by AICTE, New Delhi

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution Affiliated to VTU)

IVSemester B. E. Grade Improvement ExaminationsOctober 2021

Common to CS / IS

DESIGN AND ANALYSIS OF ALGORITHMS

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

Answer any FIVE full questions out of TEN. Each carries 20 marks

	1.1		
	1.1	What type of problems can be solved using Dynamic Programming Strategy.	02
	1.2	How many times the basic operation gets executed while finding the value	
		of binomial coefficient $C(6,5)$ using dynamic programming approach? Show	
		tracing.	02
	1.3	Load shedding is necessary to maintain the system reliability in a	
		decentralization grid system, which is vulnerable to power supply shortage.	
		A proposed model considers the customer values and load characteristics to	
		meet the electricity requirement and aims to maximize the customer values	
		within given supply capacity. Which is the best-known algorithm and the	
		algorithm design strategy to that can be used to solve this puzzle to find the	
		best optimized solution capturing the customer values and discrete	
		characteristics of load?	02
	1.4	X company has the largest decentralized communication protocol P2P for	
		sharing files and data of large size over the Internet. P2P communication	
		protocol has the world's highest Internet traffic each day. It offers clients to	
		download files for windows, Mac and Android OS. It offers feature rich, safe	
		programs for desktop, a browser based streaming and downloading	
		product, and a mobile downloader for android is available. Which known	00
	1 -	algorithm and the design strategy best suits to solve the above puzzle?	02
	1.5	What is the worst and average time complexity of Boyer-Moore algorithm for	00
	1.0	a pattern of length m and a text of length n?	02
	1.6	A person wants to visit different places in India. He wants to visit from	
		North to South part and list the places. But there are some places which he	
		wants to visit before some other places. How can this problem be solved as an application of graph?	02
	1.7	How many swaps are made by insertion sort to sort(20,10,30,15,16,25) in	02
	1.7	ascending order? Show tracing.	02
	1.8	Given the graph find the shortest path using Dijkstra's algorithm from	02
	1.0	source'a'.	
		source a.	
		-10	
		4	
		(e)	
		\sim	02
	1.9	Using Huffman encoding technique, the average length of each character is	
		found to be 2.25bits. What is the number of bits used to represent 50	
1		characters? Show the calculations.	02

	1.10	Find the total number of changes (Change in element value) to graph given below after 2 iterations of Floyd's algorithm. Show the iterations.	
		3 70	02
2	a	Analyze the algorithm for time complexity. ALGORITHM findme(A[0n-1]) //Input: Array a[0n-1] of numbers temp $\leftarrow \infty$ for i $\leftarrow 0$ to n-1 do for j $\leftarrow 0$ to n-1 do if i $\neq j$ and $ A[i] - A[j] < temp$ temp $\leftarrow A[i] - A[j] $ return temp	
	b	can the efficiency be improved? If so, propose an algorithm and find its time complexity. Apply bubble sort on the following input and count the number of comparisons done. Show complete passes and comparisons: 21,10,15,88,95,5.	12
3	а	Write a recursive function to solve the tower of Hanoi pruzzle. Analyze its	
	b	running time efficiency. Show all the steps in analysis. Apply selection sort on the following input and count the number of comparison done	12
		ALGORITHMS	08
4	a b	Write the algorithm to traverse a graph using depth-first search traversal. What is its time efficiency.? A digraph is called strongly connected if for any part of two distinct vertices u and v there exists a directed path from u to v and a directed path from v to u . Design a DFS-based algorithm for identifying strongly connected components in a given graph. Apply the same to the following digraph to determine its strongly connected components.	08
		2 5	12
5	a b	Write the pseudo code of merge sort algorithm(along with the merge) and analyses for worst case time efficiency. Compare the standard Brute force algorithm and the divide and conquer	10
	D	algorithm for matrix multiplication.	10

6	a b	Consider a university endowment that needs to invest \$100 million. This sum must be split between three types of investments: stocks, bonds, and cash. The endowment managers expect an annual return of 10%,7% and 3% for their stock, bond and cash investments, respectively. Since stocks are riskier than bonds, the endowment rules require the amount invested in stocks to be no more than one third of the money is invested in bonds. In addition, at least 25% of the total amount invested in stocks and bonds must be invested in cash. Design a transform and conquer based solution to the above problem to find how the mangers can invest the money to maximize the return. Apply Horspool's algorithm to find the pattern "BARBER" in the string. "JIM_SAW_ME_IN_THE_BARBERSHOP"			
7	a	Jealous husbands: There are $n(n \ge 2)$ married couples who need to cross river. They have a boat that can hold no more than two people at a time. To complicated matters , all the husbands are jealous and will not agree on any crossing procedure that would put a wife on the same bank of the river with another woman's husband without the wife's husband being there too, even if there are other people on the same bank. Can they cross the river under such constraints? Design transform and conquer based solution to the above problem to find solution when $n=2$. Draw the state space tree for the solution. Apply Boyer Moore's Algorithm to find the pattern "BAOBAB" in the string. "BESS_KNEW_ABOUT_BAOBABS".	10		
8	a b	Write the algorithm for computing binomial coefficient C(n,k) using dynamic programming approach. Draw the binomial coefficient table for C(8,3). Apply Dijkstra's algorithm to find single source shortest paths from source vertex 'a'.	10		
9	a b	There are n houses build in a line, each of which contains some value in it. A theif is going to steal the maximal values of these houses, but he can't steal in two adjacent houses because the owner of the stolen houses will tell his two neighbours left and right side. Given the number of houses (n) and a list of n values, write a recurrence relation to sove the given problem. Write an Algorithm for the identifiedrecurrence relation to find the maximum stolen value. Trace your algorithm for input: val []={6,7,1,3,8,2,4} What are the advantages of memory function? Write a memory function method to solve the knapsack problem.	12		

10	а	What are the condition search path in state the 0/1 Knapsack p. Knapsack capacity=	space tr roblem v	ree? Apply Bran	nch and Bou	ne to terminate a nd approach to solve	
			Item	Weight (Kg)	Value (\$)		
			1	4	40		
			2	7	42		
			3	5	25		
		j	4	3	12		12
b What are NP,P,NP-complete and NP-Hard problems? Give each.						Give examples for	