Novo Espaço – Matemática A, 12.º ano

Data: ___ - ___ -

3

Proposta de teste de avaliação [abril- 2024]

Nome:

Ano / Turma: ______ N.º: ____

1. Na figura seguinte está representada, num referencial o.n. Oxy, parte do gráfico de uma função f, de domínio $\mathbb R$.

Tal como a figura sugere:

- f(e)=1;
- a reta de equação x = e é assíntota do gráfico de f.

(A) 1

(B) *e*

(C) 3

(D) +∞

2. Sejam $a \in b$ dois números reais positivos tais que $\log_a(ab^3) = 3$.

Qual é o valor de $\log_b \left(\frac{a}{\sqrt{b}} \right)$?

(A) 2

(B) 1

(C) $\frac{1}{6}$

(D) $-\frac{1}{2}$

3. Considera, para um certo número real k, a função f, de domínio $\mathbb R$, definida por:

$$f(x) = \begin{cases} 2 + xe^{x-1} & \text{se } x \le 1\\ \frac{ke^{x-1} + k}{x - x^2} & \text{se } x > 1 \end{cases}$$

- **3.1.** Determina o valor do número real k para o qual a função f é contínua em x=1.
- **3.2.** Verifica se o gráfico de f admite assíntota não vertical quando $x \to -\infty$. Em caso afirmativo, escreve a sua equação reduzida.
- **4.** Seja f a função, de domínio \mathbb{R} , definida por $f(x) = e^x + 6e^{-x} 5$.

Determina, analiticamente, os valores de x para os quais f é negativa.

Proposta de teste de avaliação [abril - 2024]

5. Seja f a função, de domínio $\left[-\frac{1}{3}, +\infty\right[$, definida por $f(x) = -x + \ln(1+3x)$.

Qual é o valor de $\lim_{x\to 1} \frac{f(x)-f(1)}{1-x^2}$?

- (A) $-\frac{1}{8}$ (B) $\frac{1}{8}$ (C) $-\frac{1}{4}$

- Seja f a função, de domínio \mathbb{R} , definida por $f(x) = x \cdot e^{2-x}$.
 - **6.1.** Estuda a função f quanto à monotonia e quanto à existência de extremos relativos e determina o valor do(s) extremo(s), caso exista(m).
 - **6.2.** Seja g a função de domínio \mathbb{R} definida por $g(x) = x^2$. Mostra, recorrendo a métodos exclusivamente analíticos, que os gráficos de f e de g se intersetam em pelo menos um ponto com abcissa pertencente ao [1, 2].
 - **6.3.** No gráfico da função f existe um ponto P, de abcissa positiva, cuja distância à origem é igual a 4. Determina, recorrendo à calculadora gráfica, a abcissa do ponto P. Na tua resposta, apresenta:
 - uma equação que te permita resolver o problema;
 - o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora, num referencial, assinalando a(s) abcissa(s) do(s) ponto(s) relevantes, que te permite(m) resolver a equação;
 - a abcissa do ponto P, arredondada às centésimas.
- Na figura ao lado está representada parte do gráfico de uma função f , contínua em $\mathbb R$.

Tal como a figura sugere, o gráfico de f encontra-se nos primeiro e segundo quadrantes, não intersetando o eixo Ox. Sabe-se que g", segunda derivada de uma função g, tem domínio \mathbb{R} e é definida por $g''(x) = -f(x) \times (x^2 - 4)$.

Qual das seguintes afirmações é verdadeira?

- **(A)** $g''(-4) \times g''(6) < 0$
- **(B)** O gráfico de *g* não admite pontos de inflexão.
- (C) O gráfico de g tem concavidade voltada para baixo em [-2,2]
- **(D)** g' é crescente no intervalo [-2,2].

8. Na figura seguinte está representada, num referencial o.n. Oxy, parte dos gráficos das funções f e g.

Sabe-se que, para um determinado número real a > 1:

- $f(x) = \log_a(x^2)$;
- $g(x) = 1 + \log_a(x)$;
- ullet A é o ponto de interseção do gráfico de $\ g$ com o eixo das abcissas.
- ullet B é o ponto de interseção do gráfico de f com o eixo das abcissas.
- $\bullet \ \ \, C\,$ é o ponto de interseção dos gráficos de $\,f\,$ e $\,g\,$.

Mostra que a área do triângulo [ABC] é igual a $\frac{a-1}{a}$.

FIM Cotações

Questões	1.	2.	3.1	3.2	4.	5.1	6.1	6.2	6.3	7.	8.	Total
Cotação	15	15	20	20	20	15	20	20	15	20	20	200
(pontos)												