Mathématiques discrètes et applications Discrete Mathematics and Applications

Problem Session 1

Peterson Yuhala

Instituts d'informatique et de mathématiques Université de Neuchâtel

Automne 2025 / Fall 2025

Contact information

Peterson Yuhala Office B119 peterson.yuhala@unine.ch

Exercise 1-a

NB: Two statement forms are logically equivalent if and only if they have identical truth values for all possible combinations of truth values of their statement variables.

$$\neg(p \lor q) \stackrel{?}{\equiv} \neg p \land \neg q$$

р	q	$\neg p$	$\neg q$	$p \lor q$	$\neg(p \lor q)$	$\neg p \land \neg q$
Т	Т	F	F	Т	F	F
Т	F	F	Т	Т	F	F
F	Т	Т	F	Т	F	F
F	F	T	Т	F	Т	Т

· The last two columns have the same truth values for all possible combinations of truth values of p and q; so we can conclude that $\neg(p\lor q)$ and $\neg p\land \neg q$ are equivalent.

Exercise 1-a

$$\neg(p \land q) \stackrel{?}{=} \neg p \lor \neg q$$

р	q	$\neg p$	$\neg q$	$p \wedge q$	$\neg(p \land q)$	$\neg p \lor \neg q$
Т	Т	F	F	Т	F	F
Т	F	F	Т	F	Т	Т
F	Т	Т	F	F	Т	Т
F	F	Т	Т	F	Т	Т

Exercise 1-b

$$p \wedge (q \vee r) \stackrel{?}{=} (p \wedge q) \vee (p \wedge r)$$

р	q	r	$(p \land q)$	$(p \wedge r)$	$(q \lor r)$	$p \wedge (q \vee r)$	$(p \land q) \lor (p \land r)$
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	Т	Т	Т
Т	F	Т	F	Т	Т	Т	Т
Т	F	F	F	F	F	F	F
F	T	Т	F	F	Т	F	F
F	Т	F	F	F	Т	F	F
F	F	Т	F	F	Т	F	F
F	F	F	F	F	F	F	F

Exercise 1-c

NB: A statement form is a tautology if it is true for all possible combinations of truth values of its statement variables.

$$p \to (p \lor q) \stackrel{?}{=} \mathbf{T}$$

р	q	$(p \lor q)$	$p o (p \lor q)$
Т	Т	Т	Т
Т	F	Т	Т
F	Т	Т	Т
F	F	F	Т

Exercise 1-d

$$p \oplus (q \oplus r) \stackrel{?}{=} (p \oplus q) \oplus r$$

р	q	r	$(p \oplus q)$	$(q \oplus r)$	$p \oplus (q \oplus r)$	$(p \oplus q) \oplus r$
Т	Т	Т	F	F	Т	Т
Т	Т	F	F	Т	F	F
Т	F	Т	Т	Т	F	F
Т	F	F	Т	F	Т	Т
F	Т	Т	Т	F	F	F
F	Т	F	Т	Т	Т	Т
F	F	Т	F	Т	Т	Т
F	F	F	F	F	F	F

Exercise 2-a

$$\neg(\neg p \land q) \land (p \lor q) \stackrel{?}{\equiv} \stackrel{\text{R.H.S}}{p}$$

$$L.H.S = \neg(\neg p \land q) \land (p \lor q)$$

$$\equiv (\neg \neg p \lor \neg q) \land (p \lor q)$$

$$\equiv (p \lor \neg q) \land (p \lor q)$$

$$\equiv p \lor (\neg q \land q)$$

$$\equiv p \lor (q \land \neg q)$$

$$\equiv p \lor \mathbf{F}$$

$$\equiv p$$

$$= R H S \quad \Box$$

De Morgan's law
Double negative law
Distributive law
Commutative law
Negation law
Identity law

Exercise 2-b

$$a \rightarrow b \stackrel{\text{R.H.S}}{\equiv} \neg a \lor b$$

а	b	$\neg a$	$\neg a \lor b$	a o b
Т	Т	F	Т	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	T

Let
$$E: a \rightarrow b \equiv \neg a \lor b$$

Exercise 2-b

$$(p \rightarrow r) \land (q \rightarrow r) \stackrel{?}{\equiv} (p \lor q) \stackrel{\text{R.H.S}}{\rightarrow} r$$

$$L.H.S = (p \to r) \land (q \to r)$$

$$\equiv (\neg p \lor r) \land (\neg q \lor r)$$

$$\equiv (r \lor \neg p) \land (r \lor \neg q)$$

$$\equiv r \lor (\neg p \land \neg q)$$

$$\equiv r \lor \neg (p \lor q)$$

$$\equiv \neg (p \lor q) \lor r$$

$$\equiv (p \lor q) \to r$$

$$= R H S \Box$$

Follows from E

Commutativity of ∨

Distributive law

De Morgan's law

Commutavity of ∨

E

Exercise 2-c

$$(p \land q) \rightarrow r \stackrel{?}{=} p \rightarrow \stackrel{\text{R.H.S}}{\rightarrow} r)$$

$$R.H.S = p \rightarrow (q \rightarrow r)$$

$$\equiv \neg p \lor (\neg q \lor r)$$

$$\equiv (\neg p \lor \neg q) \lor r$$

$$\equiv \neg (p \land q) \lor r$$

$$\equiv (p \land q) \rightarrow r$$

$$= L.H.S \quad \Box$$

E Associative law De Morgan's law

Ε

Exercise 2-d

$$\stackrel{\text{L.H.S}}{p} \stackrel{?}{\leftrightarrow} \stackrel{}{q} \stackrel{?}{\equiv} (p \land q) \stackrel{\text{R.H.S}}{\vee} (\neg p \land \neg q)$$

 $= I.H.S \square$

$$\begin{array}{ll} \textit{R.H.S} = (p \land q) \lor (\neg p \land \neg q) \\ & \equiv ((p \land q) \lor \neg p) \land ((p \land q) \lor \neg q) & \textbf{Distrib. law} \\ & \equiv (\neg p \lor (p \land q)) \land (\neg q \lor (p \land q)) & \textbf{Comm. law} \\ & \equiv ((\neg p \lor p) \land (\neg p \lor q)) \land ((\neg q \lor p) \land (\neg q \lor q)) & \textbf{Distrib. law} \\ & \equiv (T \land (\neg p \lor q)) \land ((\neg q \lor p) \land T) & \textbf{Negation law} \\ & \equiv (\neg p \lor q) \land (\neg q \lor p) & \textbf{Identity law} \\ & \equiv (p \rightarrow q) \land (q \rightarrow p) & \textbf{E} \\ & \equiv p \leftrightarrow q & \textbf{Def. of} \leftrightarrow \\ \end{array}$$

Exercise 2-e

$$p \wedge (p \vee q) \stackrel{?}{\equiv} {}^{\text{R.H.S}}_{p}$$

$$L.H.S = p \land (p \lor q)$$

$$\equiv (p \lor \mathbf{F}) \land (p \lor q)$$

$$\equiv p \lor (\mathbf{F} \land q)$$

$$\equiv p \lor (q \land \mathbf{F})$$

$$\equiv p \lor \mathbf{F}$$

$$\equiv p$$

$$= R.H.S \quad \Box$$

Identity law
Distributive law
Commutative law
Universal bound law
Identity law

Exercise 2-e

$$p \lor (p \land q) \stackrel{?}{\equiv} {}^{\text{R.H.S}}_{p}$$

$$L.H.S = p \lor (p \land q)$$

$$\equiv (p \land \mathbf{T}) \lor (p \land q)$$

$$\equiv p \land (\mathbf{T} \lor q)$$

$$\equiv p \land (q \lor \mathbf{T})$$

$$\equiv p \land \mathbf{T}$$

$$\equiv p$$

 $= R.H.S \square$

Identity law
Distributive law
Commutative law
Universal bound law
Identity law

Exercise 3: Important concepts

- · "if" introduces a sufficient, but not necessary condition. For ex., "P if Q" means $Q \to P$. I.e. Q is a sufficient, but not necessary condition for P.
- · "only if" introduces a necessary, but not sufficient condition. For ex., "P only if Q" means $P \to Q$. I.e. Q is necessary, but not sufficient condition for P.
- · "if and only if" (iff) is the conjunction of "if" and "only if" and introduces a **necessary and sufficient condition**. For ex., "P if and only if Q" means " $Q \to P$ and $P \to Q$ " $\equiv P \leftrightarrow Q$. I.e. Q is a necessary and sufficient condition for P (and vice versa).

Exercise 3

Consider the following statements:

p: "You will be hired"

q: "You major in mathematics or computer science, get a B avg. or better, and take accounting".

The director's statement can be represented as: $p \rightarrow q$.

Consider the truth table of $p \rightarrow q$:

Þι	presented as. $p \rightarrow$					
	p	q	p o q			
	Т	Т	Т			
	Т	F	F			
	F	Т	Т			
	F	F	Т			

If you major in mathematics or computer science, get a B avg. or better, take accounting, and do not get hired, this corresponds to the third row in the truth table: i.e. p=F and q=T. From the truth table, the director's statement, $p \to q$, remains true.

Exercise 3

Conclusion: The director did not lie to you.

In other words, majoring in mathematics or computer science, getting a B avg. or better, and taking accounting is a **necessary, but not sufficient** condition to get hired.

Exercise 4

Consider the following statements:

p: "Compound X is boiling."

q: "The temperature of X is at least 150°C."

The logical content of the statement in the exercise is: $p \rightarrow q$.

- (a) $q \to p$ (Converse) $\not\equiv p \to q$: False. In fact, if p is false, but q is true, then $p \to q$ is true, but $q \to p$ is false.
- (b) $\neg q \rightarrow \neg p$ (Contrapositive) $\equiv p \rightarrow q$: True.
- (c) p only if $q \equiv p \rightarrow q$: True.
- (d) $\neg p \rightarrow \neg q$ (Inverse) $\not\equiv p \rightarrow q$: False. In fact, if p is false, but q is true, then $p \rightarrow q$ is true, but $\neg p \rightarrow \neg q$ is false.

End

For more exercises and notes, see Rosen 7th Edition Chap. 1