射频电路板设计技巧

成功的 RF 设计必须仔细注意整个设计过程中每个步骤及每个细节,这意味着必须在设计开 始阶段就要进行彻底的、仔细的规划,并对每个设计步骤的进展进行全面持续的评估。而这种细 致的设计技巧正是国内大多数电子企业文化所欠缺的。

近几年来,由于蓝芽设备、无线局域网络(WLAN)设备,和行动电 话的需求与成长,促使业者越来越关注RF电路设计的技巧。从过去 到现在, RF 电路板设计如同电磁干扰(EMI)问题一样, 一直是工程 师们最难掌控的部份,甚至是梦魇。若想要一次就设计成功,必须 事先仔细规划和注重细节才能奏效。

射频(RF)电路板设计由于在理论上还有很多不确定性, 因此常被 形容为一种「黑色艺术」(black art)。但这只是一种以偏盖全的 观点,RF电路板设计还是有许多可以遵循的法则。不过,在实际设 计时,真正实用的技巧是当这些法则因各种限制而无法实施时,如 何对它们进行折衷处理。重要的 RF 设计课题包括: 阻抗和阻抗匹配、 绝缘层材料和层迭板、波长和谐波...等,本文将集中探讨与 RF 电 路板分区设计有关的各种问题。

微过孔的种类

电路板上不同性质的电路必须分隔,但是又要在不产生电磁干扰 的最佳情况下连接,这就需要用到微过孔(mi crovi a)。通常微过孔 直径为 0.05mm 至 0.20mm, 这些过孔一般分为三类, 即盲孔(blind via)、埋孔(bury via)和通孔(through via)。盲孔位于印刷线路板 的顶层和底层表面,具有一定深度,用于表层线路和下面的内层线 路的连接,孔的深度通常不超过一定的比率(孔径)。埋孔是指位于 印刷线路板内层的连接孔,它不会延伸到线路板的表面。上述两类 孔都位于线路板的内层, 层压前利用通孔成型制程完成, 在过孔形 成过程中可能还会重迭做好几个内层。第三种称为通孔,这种孔穿 过整个线路板,可用于实现内部互连或作为组件的黏着定位孔。

采用分区技巧

在设计 RF 电路板时,应尽可能把高功率 RF 放大器 (HPA)和低噪音放大器 (LNA)隔离开来。简单的说 RF 接,就是让高功率 RF 发射电路远离低功率收电路。如果 PCB 板上有很多空间,那么可以很容易地做到这一点。但通常零组件很多时,PCB 空间就会变的很小,因此这是很难达到的。可以把它们放在 PCB 板的两面,或者让它们交替工作,而不是同时工作。高功率电路有时还可包括 RF 缓冲器 (buffer)和压控振荡器 (VCO)。

设计分区可以分成实体分区(physical partitioning)和电气分区(Electrical partitioning)。实体分区主要涉及零组件布局、方位和屏蔽等问题;电气分区可以继续分成电源分配、RF 走线、敏感电路和信号、接地等分区。

实体分区

零组件布局是实现一个优异 RF 设计的关键,最有效的技术是首先固定位于 RF 路径上的零组件,并调整其方位,使 RF 路径的长度减到最小。并使 RF 输入远离 RF 输出,并尽可能远离高功率电路和低功率电路。

最有效的电路板堆栈方法是将主接地安排在表层下的第二层,并尽可能将 RF 线走在表层上。将 RF 路径上的过孔尺寸减到最小不仅可以减少路径电感,而且还可以减少主接地上的虚焊点,并可减少 RF 能量泄漏到层迭板内其它区域的机会。

在实体空间上,像多级放大器这样的线性电路通常足以将多个RF 区之间相互隔离开来,但是双工器、混频器和中频放大器总是有多 个 RF/IF 信号相互干扰,因此必须小心地将这一影响减到最小。RF 与 IF 走线应尽可能走十字交叉,并尽可能在它们之间隔一块接地面 积。正确的 RF 路径对整块 PCB 板的性能而言非常重要,这也就是为 什么零组件布局通常在行动电话 PCB 板设计中占大部份时间的原 因。

在行动电话 PCB 板上,通常可以将低噪音放大器电路放在 PCB 板 的某一面,而高功率放大器放在另一面,并最终藉由双工器在同一 面上将它们连接到 RF 天线的一端和基频处理器的另一端。这需要一 些技巧来确保 RF 能量不会藉由过孔,从板的一面传递到另一面,常 用的技术是在两面都使用盲孔。可以藉由将盲孔安排在PCB板两面 都不受RF干扰的区域,来将过孔的不利影响减到最小。

金属屏蔽罩

有时, 不太 可 能 在 多 个 电 路 区 块 之 间 保 留 足 够 的 区 隔 , 在 这 种 情 况下就必须考虑采用金属屏蔽罩将射频能量屏蔽在 RF 区域内,但金 属屏蔽罩也有副作用,例如:制造成本和装配成本都很高。

外 形 不 规 则 的 金 属 屏 蔽 罩 在 制 造 时 很 难 保 证 高 精 密 度 , 长 方 形 或 正方形金属屏蔽罩又使零组件布局受到一些限制; 金属屏蔽罩不利 干零组件更换和故障移位:由干金属屏蔽罩必须焊在接地面上,而 且必须与零组件保持一个适当的距离,因此需要占用宝贵的 PCB 板 空间。

尽可能保证金属屏蔽罩的完整非常重要,所以进入金属屏蔽罩的 数字信号线应该尽可能走内层,而且最好将信号线路层的下一层设 为接地层。RF信号线可以从金属屏蔽罩底部的小缺口和接地缺口处 的布线层走线出去,不过缺口处周围要尽可能被广大的接地面积包 围,不同信号层上的接地可藉由多个过孔连在一起。

尽管有以上的缺点,但是金属屏蔽罩仍然非常有效,而且常常是 隔离关键电路的唯一解决方案。

电源去耦电路

此外,恰当而有效的芯片电源去耦(decouple)电路也非常重要。 许多整合了线性线路的 RF 芯片对电源的噪音非常敏感,通常每个芯 片都需要采用高达四个电容和一个隔离电感来滤除全部的电源噪 音。(图一)

《图一 芯片电源去耦电路》

最小电容值通常取 决于电容本身的谐振 频率和接脚电感, C4 的值就是据此选择的。 C3 和 C2 的值由于其自 身接脚电感的关系而 相对比较大,从而RF 去耦效果要差一些,不 过它们较适合于滤除 较低频率的噪音信号。

RF 去耦则是由电感 L1 完成的,它使 RF 信号无法从电源线耦合到芯 片中。因为所有的走线都是一条潜在的既可接收也可发射 RF 信号的 天线,所以,将射频信号与关键线路、零组件隔离是必须的。

这些去耦组件的实体位置通常也很关键。这几个重要组件的布局 原则是: C4 要尽可能靠近 IC 接脚并接地, C3 必须最靠近 C4, C2 必 须最靠近 C3, 而且 IC 接脚与 C4 的连接走线要尽可能短,这几个组 件的接地端(尤其是 C4)通常应当藉由板面下第一个接地层与芯片的 接地 脚 相 连 。 将 组 件 与 接 地 层 相 连 的 过 孔 应 该 尽 可 能 靠 近 PCB 板 上

的组件焊盘,最好是使用打在焊盘上的盲孔将连接线电感减到最小, 电感 L1 应该靠近 C1。

一个集成电路或放大器常常具有一个开集极 (open collector)输出,因此需要一个上拉电感 (pullup inductor)来提供一个高阻抗RF负载和一个低阻抗直流电源,同样的原则也适用于对这一电感的电源端进行去耦。有些芯片需要多个电源才能工作,因此可能需要两到三套电容和电感来分别对它们进行去耦处理,如果该芯片周围没有足够的空间,那幺去耦效果可能不佳。

尤其需要特别注意的是: 电感极少平行靠在一起, 因为这将形成一个空芯变压器, 并相互感应产生干扰信号, 因此它们之间的距离至少要相当于其中之一的高度, 或者成直角排列以使其互感减到最小。

电气分区

电气分区原则上与实体分区相同,但还包含一些其它因素。现代行动电话的某些部份采用不同工作电压,并借助软件对其进行控制,以延长电池工作寿命。这意味着行动电话需要运行多种电源,而这产生更多的隔离问题。电源通常由连接线(connector)引入,并立即进行去耦处理以滤除任何来自电路板外部的噪音,然后经过一组开关或稳压器,之后,进行电源分配。

在行动电话里,大多数电路的直流电流都相当小,因此走线宽度通常不是问题,不过,必须为高功率放大器的电源单独设计出一条尽可能宽的大电流线路,以使发射时的压降(voltage drop)能减到最低。为了避免太多电流损耗,需要利用多个过孔将电流从某一层传递到另一层。此外,如果不能在高功率放大器的电源接脚端对它进行充分的去耦,那么高功率噪音将会辐射到整块电路板上,并带来各种各样的问题。高功率放大器的接地相当重要,并经常需要为其设计一个金属屏蔽罩。

RF 输出必须远离 RF 输入

在大多数情况下,必须做到 RF 输出远离 RF 输入。这原则也适用 于放大器、缓冲器和滤波器。在最坏的情况下,如果放大器和缓冲 器的输出以适当的相位和振幅反馈到它们的输入端, 那幺它们就有 可能产生自激振荡。它们可能会变得不稳定,并将噪音和互调相乘 信号(intermodulation products)添加到 RF 信号上。

如果射频信号线从滤波器的输入端绕回输出端,这可能会严重损 害滤波器的带通特性。为了使输入和输出得到良好的隔离,首先在 滤波器周围必须是一块主接地面积,其次滤波器下层区域也必须是 一块接地面积,并且此接地面积必须与围绕滤波器的主接地连接起 来。把需要穿过滤波器的信号线尽可能远离滤波器接脚也是个好方 法 。 此 外 , 整 块 电 路 板 上 各 个 地 方 的 接 地 都 要 十 分 小 心 , 否 则 可 能 会在不知不觉中引入一条不希望发生的耦合信道。(图二)详细说明 了这一接地办法。

有时可以选择走单端(single-ended)或平衡的 RF 信号线 (balanced RF traces), 有关串音(crosstalk)和 EMC/EMI 的原则在 这里同样适用。平衡 RF 信号线如果走线正确的话,可以减少噪音和 串音,但是它们的阻抗通常比较高。而且为了得到一个阻抗匹配的 信号源、走线和负载,需要保持一个合理的线宽,这在实际布线时 可能会有困难。

缓冲器

缓冲器可以用来提 高隔离效果,因为它可 把同一个信号分为两 个部份,并用于驱动不 同的电路。尤其是本地 振荡器可能需要缓冲 器来驱动多个混频器。 当混频器在 RF 频率处

《图二 滤波器四周被接地面(绿色区域)包围》

到达共模隔离(common mode i solation)状态时,它将无法正常工作。 缓冲器可以很好地隔离不同频率处的阳抗变化,从而电路之间不会 相互干扰。

缓冲器对设计的帮助很大,它们可以紧跟在需要被驱动电路的后 面,从而使高功率输出走线非常短,由于缓冲器的输入信号电平比 较低,因此它们不易对板上的其它电路造成干扰。

压控振荡器

压控振荡器(VCO)可将变化的电压转换为变化的频率,这一特性被 用于高速频道切换,但它们同样也将控制电压上的微量噪音转换为 微小的频率变化,而这就给 RF 信号增加了噪音。总之,在压控振荡 器处理过以后,再也没有办法从RF输出信号中将噪音去掉。困难在 于 VCO 控制线(control line)的期望频宽范围可能从 DC 到 2MHz, 而藉由滤波器来去掉这幺宽的频带噪音几乎是不可能的:其次,VCO 控制线通常是一个控制频率的反馈回路的一部份,它在很多地方都 有可能引入噪音,因此必须非常小心处理 VCO 控制线。

谐振电路

谐振电路(tank circuit)用于发射机和接收机,它与 VCO 有关,但也有它自己的特点。简单地说,谐振电路是由一连串具有电感电容的二极管并连而成的谐振电路,它有助于设定 VCO 工作频率和将语音或数据调变到 RF 载波上。

所有 VCO 的设计原则同样适用于谐振电路。由于谐振电路含有数量相当多的零组件、占据面积大、通常运行在一个很高的 RF 频率下,因此谐振电路通常对噪音非常敏感。信号通常排列在芯片的相邻接脚上,但这些信号接脚又需要与较大的电感和电容配合才能工作,这反而需要将这些电感和电容的位置尽量靠近信号接脚,并连回到一个对噪音很敏感的控制环路上,但是又要尽量避免噪音的干扰。要做到这点是不容易的。

自动增益控制放大器

自动增益控制(AGC)放大器同样是一个容易出问题的地方,不管是发射还是接收电路都会有 AGC 放大器。AGC 放大器通常能有效地滤掉噪音,不过由于行动电话具备处理发射和接收信号强度快速变化的能力,因此要求 AGC 电路有一个相当大的频宽,这就使 AGC 放大器很容易引入噪音。

设计 AGC 线路必须遵守模拟电路的设计原则,亦即使用很短的输入接脚和很短的反馈路径,而且这两处都必须远离 RF、IF 或高速数字信号线路。同样,良好的接地也必不可少,而且芯片的电源必须得到良好的去耦。如果必须在输入或输出端设计一条长的走线,那幺最好是选择在输出端实现它,因为,通常输出端的阻抗要比输入端低得多,而且也不容易引入噪音。通常信号电平越高,就越容易将噪音引入到其它电路中。

要确保 RF 走线下层的接地是实心的,而且所有的零组件都要牢固地连接到主接地上,并与其它可能带来噪音的走线隔离开来。此外,要确保 VCO 的电源已得到充分去耦,由于 VCO 的 RF 输出往往是一个相当高的电平,VCO 输出信号很容易干扰其它电路,因此必须对 VCO 加以特别注意。事实上,VCO 往往放在 RF 区域的末端,有时它还需要一个金属屏蔽罩。

在所有 PCB 设计中,尽可能将数字电路远离模拟电路是一个大原则,它同样也适用于 RF PCB 设计。公共模拟接地和用于屏蔽和隔开信号线的接地通常是同等重要的。同样应使 RF 线路远离模拟线路和一些很关键的数字信号,所有的 RF 走线、焊盘和组件周围应尽可能是接地铜皮,并尽可能与主接地相连。微型过孔(mi crovi a)构造板在 RF 线路开发阶段很有用,它毋须花费任何开销就可随意使用很多过孔,否则在普通 PCB 板上钻孔将会增加开发成本,这在大批量产时是不经济的。

将一个实心的整块接地面直接放在表面下第一层时,隔离效果最好。将接地面分成几块来隔离模拟、数字和 RF 线路时,其效果并不好,因为最终总是有一些高速信号线要穿过这些分开的接地面,这不是很好的设计。

还有许多与信号和控制线相关的课题需要特别注意,但它们超出 了本文探讨的范围。

结语

不论 RF PCB 设计是不是一门「黑色艺术」,遵守一些基本的 RF 设计规则和参考一些优异的设计实例将有助于完成 RF 设计工作。成功的 RF 设计必须仔细注意整个设计过程中每个步骤及每个细节,这意味着必须在设计开始阶段就要进行彻底的、仔细的规划,并对每

个设计步骤的进展进行全面持续的评估。而这种细致的设计技巧正是国内大多数电子企业文化所欠缺的。

资料收藏: PCB 收藏天地

网址: http://www.maihui.net

邮址: killmai@163.net

