

Description

The VSM15N03 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

V_{DS} =30V,I_D =15A

 $R_{DS(ON)}$ <7.0m Ω @ V_{GS} =10V

 $R_{DS(ON)} < 9.5 \text{m}\Omega$ @ $V_{GS} = 5V$

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

SOP-8

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM15N03-S8	VSM15N03	SOP-8	-	_	-

Absolute Maximum Ratings (T_A=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	30	V
Gate-Source Voltage	V _G s	±20	V
Drain Current-Continuous	I _D	15	А
Drain Current-Continuous(T _C =100℃)	I _D (100℃)	10.6	Α
Pulsed Drain Current (Note 1)	I _{DM}	60	Α
Maximum Power Dissipation	P _D	3.5	W
Single pulse avalanche energy (Note 5)	E _{AS}	120	mJ
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 150	$^{\circ}$ C

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	R ₀ JC	36	°C/W
---	-------------------	----	------

Electrical Characteristics (TC=25°Cunless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V_{GS} =0 V I_D =250 μ A	30	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =30V,V _{GS} =0V	-	-	1	μA

Shenzhen VSEEI Semiconductor Co., Ltd

Gate-Body Leakage Current	I _{GSS}	V_{GS} =±20 V , V_{DS} =0 V	-	-	±100	nA	
On Characteristics (Note 3)		•		•			
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1	1.4	2.4	V	
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =10A	-	5.1	7.0	mΩ	
		V _{GS} =4.5V, I _D =10A	-	7.3	9.5		
Forward Transconductance	g FS	V _{DS} =5V,I _D =10A	20	-	-	S	
Dynamic Characteristics (Note4)		•		•			
Input Capacitance	C _{lss}	- V _{DS} =15V,V _{GS} =0V, - F=1.0MHz	-	1400	-	PF	
Output Capacitance	C _{oss}		-	205	-	PF	
Reverse Transfer Capacitance	C _{rss}	F-1.UNITZ	-	177	-	PF	
Switching Characteristics (Note 4)		•					
Turn-on Delay Time	t _{d(on)}	V_{DD} =5V, I_{D} =10A V_{GS} =10V, R_{GEN} =6 Ω	-	9	-	nS	
Turn-on Rise Time	t _r		-	8	-	nS	
Turn-Off Delay Time	$t_{d(off)}$		-	28	-	nS	
Turn-Off Fall Time	t _f		-	5	-	nS	
Total Gate Charge	Qg	- V _{DS} =15V,I _D =10A, - V _{GS} =10V	-	32.3	-	nC	
Gate-Source Charge	Q _{gs}		-	4.9	-	nC	
Gate-Drain Charge	Q_{gd}	VGS-10V	-	6.9	-	nC	
Drain-Source Diode Characteristics		•					
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =10A	-	0.85	1.2	V	
Diode Forward Current (Note 2)	Is		-	-	15	Α	
Reverse Recovery Time	t _{rr}	TJ = 25°C, I _F = 10A	-	-	27	nS	
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	-	20	nC	
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)					
	•						

Notes:

- **1.** Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}$ C,V_{DD}=15V,V_G=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} Test Circuits

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 ID Current- Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance