

Союз Советских
Социалистических
Республик

Государственный комитет
СССР
по делам изобретений
и открытий

О П И С А Н И Е ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(1) 894169

(61) Дополнительное к авт. свид-ву —

(22) Заявлено 25.12.79 (21) 2858041/22-03

(51) М. Кл.³

с присоединением заявки № ...

Т. 21 В 7/28

(23) Приоритет —

Опубликовано 30.12.81. Бюллетень № 48

(53) УДК 622.248.
.4 (088.8)

Дата опубликования описания 05.01.82

(72) Автор
изобретения

А. В. Иванов

(71) Заявитель

Всесоюзный научно-исследовательский институт по креплению
скважин и буровым растворам

(54) РАСПИРИТЕЛЬ

Изобретение относится к креплению скважин и используется при изоляции проникаемых пластов в необсаденных скважинах и ремонте обсадных колонн.

Известен расширитель для установки расширяемых хвостовиков в скважинах, содержащий штангу с коническим элементом и опирающимися на него секторами [1].

Недостатком этого расширителя является необходимость точного измерения внутреннего диаметра обсадной колонны в месте ремонта для установки регулирующей конической втулки, так как допуск на изготовление обсадных труб значительно превышает упругий прогиб секторов. Неточность измерения приводит к неправильной установке регулирующей конической втулки, что вызывает исполнительное прилегание расширяемого хвостовика к стенке обсадной колонны или поломку секторов.

Наиболее близким к предлагаемому по технической сущности и достигаемому результату является расширитель для установки расширяемых хвостовиков в скважинах, включающий штангу с подвижным конусным пулансоном, секторы, взаимодействующие с опорным элементом, и выступы, опорный элемент жестко закреплен на конусном пулансоне, а выступы — на опорном элементе, установленном с возможностью взаимодействия выступов с секторами.

2
Недостатком этого устройства является возможность заклинивания при встрече меньшего внутреннего диаметра обсадной колонны.

Цель изобретения — повышение надежности работы расширителя путем уменьшения возможности заклинивания.

Указанный цель достигается тем, что в расширителе, включающем штангу с подвижным конусным пулансоном, секторы, взаимодействующие с опорным элементом, и выступы, опорный элемент жестко закреплен на конусном пулансоне, а выступы — на опорном элементе, установленном с возможностью взаимодействия выступов с секторами.

На фиг. 1 изображен расширитель для установки расширяемых хвостовиков в скважинах, общий вид; на фиг. 2 транспортное положение расширителя; на фиг. 3 разрез А-А на фиг. 2; на фиг. 4 разрез Б-Б на фиг. 1.

Расширитель имеет штангу 1, выполненную в верхней части с поддерживающим хвостовиком 2 конусным пулансоном 3, а в нижней части — с резьбой, подвижный конусный пулансон 4, имеющий выступы 5, взаимодействующие с секторами 6, опорный

BEST AVAILABLE COPY

рационимся на гайку 7 и удерживаемы разрезным кольцом 8, возвратную пружину 9, упирающуюся в гайку 10, упор 11, ограничивающий расхождение секторов.

Расширитель работает следующим образом.

При втягивании расширителя в хвостовик 2 (фиг. 1) поддерживаемый конусным пuhanсоном 3 нижний торец расширяемого хвостовика, перемещая подвижный конусный пuhanсон 4 с выступами 5, переводит расширитель в рабочее положение, раздвигая секторы 6 до упора в стенку обсадной колонны 12 и сжимая возвратную пружину 9.

Расширение хвостовика осуществляется посредством поддерживаемым конусным пuhanсоном 3, подвижным конусным пuhanсоном 4 и упругими секторами 6. После расширения всего хвостовика и выхода из него расширителя возвратная пружина 9 переводит расширитель в транспортное положение (фиг. 2), возвращая подвижный конусный пuhanсон 4 и упругие секторы 6 в первоначальное положение.

При расширении хвостовика в необсаженной скважине необходимо упор 11 установить в положение, соответствующее требуемому диаметру расширения хвостовика.

Фиг. 1

Использование предлагаемого расширителя для установки хвостовиков в скважинах позволяет исключить необходимость измерения внутреннего диаметра обсадной колонны перед ремонтом, повысить надежность работы при установке расширяемых хвостовиков.

Формула изобретения

10 Расширитель, включающий штангу с подвижным конусным пuhanсоном, секторы, взаимодействующие с опорным элементом, и выступы, отличающийся тем, что, с целью повышения надежности работы расширителя 15 путем уменьшения возможности заклинивания, опорный элемент жестко закреплен на конусном пuhanсоне, а выступы — на опорном элементе, установленном с возможностью взаимодействия выступов с секторами.

Источники информации, 20 принятые во внимание при экспертизе:

1. Авторское свидетельство СССР

по заявке 2513231, кл. Е 21 В 29/00, 1978.

2. Авторское свидетельство СССР

по заявке № 2611448, кл. Е 21 В 18/00,

1978 (прототип).

Фиг. 2

A-A

Фиг. 3

B-B

Фиг. 4

BEST AVAILABLE COPY

Редактор М. Ткач
Заказ 11417/51

Составитель Л. Черепенкина
Техред А. Бойкас
Тираж 630

Корректор Л. Шевко
Подписьное

ВНИИПТИ Государственного комитета СССР
по делам изобретений и открытий
113035, Москва, Ж-35, Раушская наб., д. 4/5
Филиал НПП «Патент», г. Ужгород, ул. Проектная, 4

Union of Soviet Socialist Republics	SPECIFICATION OF INVENTOR'S CERTIFICATE	(11) 894169
[State Seal]	(61) Inventor's certificate of addition — (22) Applied December 25, 1979 (21) 2858041/22-03 with the attachment of application No. - (23) Priority - Published December 30, 1981, Bulletin No. 48 Publication date of specification January 5, 1982	(51) Int. Cl. ³ E 21 B 7/28 (53) UDC 622.248. 4 (088.8)
USSR State Committee on Inventions and Discoveries		
(72) Inventor (71) Applicant	A. V. Ivanov All-Union Scientific-Research Institute of Well Casing and Drilling Muds	

(54) A REAMER

1

The invention relates to well casing and is used for isolation of permeable formations in uncased wells and repair of casings.

A reamer is known for placing expandable liners in wells, containing a rod with a conical member and sectors supported thereon [1].

A disadvantage of this reamer is the need for exact measurement of the inner diameter of the casing at the repair location in order to place an adjusting conical bushing, since the manufacturing tolerance of the casings significantly exceeds the elastic deflection of the sectors. Inaccuracy in the measurement leads to incorrect placement of the adjusting conical bushing, which results in a loose fit of the expandable liner against the wall of the casing or breakage of the sectors.

The device closest to the proposed device in technical essence and result achieved is a reamer for placing expandable liners in wells, including a rod with a movable conical ram, sectors, a bearing member, and lugs [text cut off] [2].

A disadvantage of that device is the possibility of jamming on contact with the smaller inner diameter of the casing.

The aim of the invention is to improve the reliability of reamer operation by reducing the potential for jamming.

The aforesaid aim is achieved by the fact that in the reamer, including a rod with movable conical ram, sectors that engage a bearing member, and lugs, the bearing member is rigidly attached to the conical ram and the lugs are rigidly attached to the bearing member, mounted so that the lugs can engage the sectors.

Fig. 1 is a general view of the reamer for placing expandable liners in wells; Fig. 2 depicts the run-in position of the reamer; Fig. 3 is a sectional view on line A-A in Fig. 2; Fig. 4 is a sectional view on line B-B in Fig. 1.

The reamer has rod 1, implemented in the upper part with conical ram 3 supporting liner 2 and implemented in the lower part with a thread, a movable conical ram 4 having lugs 5 that engage [text cut off, bottom of page]

nut 7 and retained by split ring 8, return spring 9 that is set into nut 10, and stop 11 that limits parting of the sectors.

The reamer operates as follows.

When the reamer engages liner 2 (Fig. 1), the lower end of the expandable liner supported by conical ram 3, displacing the movable conical punch with lugs 5, conveys the reamer to the working position, parting sectors 6 up to the stop to casing wall 12 and compressing return spring 9.

Expansion of the liner is accomplished successively by supporting conical ram 3, movable conical ram 4, and elastic sectors 6. After the entire liner has been expanded and the reamer emerges from it, return spring 9 takes the reamer to the run-in position (Fig. 2), returning movable conical ram 4 and elastic sectors 6 to the initial position.

When expanding a liner in an uncased well, stop 11 must be placed in a position corresponding to the required expansion diameter of the liner.

Use of the proposed reamer for placing liners in wells makes it possible to eliminate the need for measuring the inner diameter of the casing before the repair, and to improve the reliability of operation when placing expandable liners.

Claim

A reamer, including a rod with movable conical ram, sectors that engage a bearing member, and lugs, *distinguished by the fact that*, with the aim of improving the reliability of reamer operation by reducing the potential for jamming, the bearing member is rigidly attached to the conical ram and the lugs are rigidly attached to the bearing member, mounted so that the lugs can engage the sectors.

Information sources considered in the examination

1. USSR Inventor's Certificate Appl. 2513231, cl. E 21 B 29/00, 1978.
2. USSR Inventor's Certificate Appl. No. 2611448, cl. E 21 B 18/00, 1978
(prototype).

[below columns 3 and 4]

[see Russian original for figure]

B

Fig. 1

[see Russian original for figure]

A

A

B

Fig. 2

894169

[see Russian original for figure]

A-A

Fig. 3

[see Russian original for figure]

B-B

Fig. 4

Compiler L. [illegible]
Editor M. Tkach Tech. Editor A. Boykas Proofreader [illegible]
Order 11417/51 Run 630 Subscription edition
All-Union Scientific Research Institute of Patent Information and Technical and Economic
Research of the USSR State Committee on Inventions and Discoveries [VNIIPI]
4/5 Raushkaya nab., Zh-35, Moscow 113035
Affiliate of "Patent" Printing Production Plant, Uzhgorod, 4 ul. Proektnaya

TRANS^{PERFECT} TRANSLATIONS

AFFIDAVIT OF ACCURACY

I, Kim Stewart, hereby certify that the following is, to the best of my knowledge and belief, true and accurate translations performed by professional translators of the following Patents and Abstracts from Russian to English:

ATLANTA	<i>Patent 1786241 A1</i>
BOSTON	<i>Patent 989038</i>
BRUSSELS	<i>Abstract 976019</i>
CHICAGO	<i>Patent 959878</i>
DALLAS	<i>Abstract 909114</i>
DETROIT	<i>Patent 907220</i>
FRANKFURT	<i>Patent 894169</i>
HOUSTON	<i>Patent 1041671 A</i>
LONDON	<i>Patent 1804543 A3</i>
LOS ANGELES	<i>Patent 1686123 A1</i>
MIAMI	<i>Patent 1677225 A1</i>
MINNEAPOLIS	<i>Patent 1698413 A1</i>
NEW YORK	<i>Patent 1432190 A1</i>
PARIS	<i>Patent 1430498 A1</i>
PHILADELPHIA	<i>Patent 1250637 A1</i>
SAN DIEGO	<i>Patent 1051222 A</i>
SAN FRANCISCO	<i>Patent 1086118 A</i>
SEATTLE	<i>Patent 1749267 A1</i>
WASHINGTON, DC	<i>Patent 1730429 A1</i>

Patent 1686125 A1

Patent 1677248 A1

Patent 1663180 A1

Patent 1663179 A2

Patent 1601330 A1

Patent SU 1295799 A1

Patent 1002514

PAGE 2

AFFIDAVIT CONTINUED

(Russian to English Patent/Abstract Translations)

Kim Stewart

Kim Stewart
TransPerfect Translations, Inc.
3600 One Houston Center
1221 McKinney
Houston, TX 77010

Sworn to before me this
9th day of October 2001.

Maria A. Serna

Signature, Notary Public

Stamp, Notary Public

Harris County

Houston, TX