MATH10101, optional exercises on proofs in elementary number theory. Will not be discussed in the supervisions — SOLUTIONS

Opt15. Let a, b, c be integers. Prove that if $c \mid a$ and $c \nmid b$, then $c \nmid (a + b)$.

Opt15 - **solution.** Assume for contradiction that $c \mid (a+b)$, meaning that a+b=ck for some integer k. We are given that $c \mid a$, meaning that $a=c\ell$ for some integer ℓ . Then $b=(a+b)-a=ck-c\ell=c(k-\ell)$ and, since $k-\ell$ is an integer, $c \mid b$, a contradiction.

Alternatively, write b = 1(a+b) + (-1)a which is a linear combination of a+b and a. Assume for contradiction that $c \mid (a+b)$, then since c also divides a, by a fact from the course c divides the integral linear combination 1(a+b) + (-1)a. That is, $c \mid b$, a contradiction.

Opt16. Prove that the relation | (divides) on \mathbb{Z} is transitive.

Opt16 - **solution.** By definition of transitivity, we need to prove that for all $a, b, c \in \mathbb{Z}$, $(a \mid b) \land (b \mid c)$ implies $a \mid c$. Assume that a divides b and b divides c. Then by definition b = ak and $c = b\ell$ where k, ℓ are integers. Then $c = ak\ell$, and since $k\ell$ is an integer, by definition $a \mid c$.

Opt17. Let $a \equiv b \mod m$ and let $n \mid m$. Prove that $a \equiv b \mod n$.

Opt17 - **solution.** By definition of congruence, $a \equiv b \mod m$ means that $m \mid (a - b)$. Also, n divides m, so by transitivity of \mid we have $n \mid (a - b)$. By definition of congruence again this means that $a \equiv b \mod n$, as required.

Opt18. Let a, b, c be integers, $a \mid c, b \mid c, \gcd(a, b) = 1$. Prove that $ab \mid c$.

Opt18 - **solution.** By definition $a \mid c$ means that c = ak for some integer k. Thus, $b \mid ak$. However, we are given that b is coprime to a, so by a fact from the course, b must divide k: $k = b\ell$ for some integer ℓ . Then $c = ak = (ab)\ell$ which is divisible by ab since ℓ is an integer.

Opt19. Let a be an integer, p, q be primes, $p \neq q$. Prove: $(p \mid a) \land (q \mid a) \implies pq \mid a$.

Opt19 - **solution.** Two unequal primes p, q are coprime: indeed, p is not a divisor of q because the only positive divisors of q are 1 and q, none of which is p. By a fact from the course, if an integer q is not divisible by a prime p, then q is coprime to p, as claimed.

Hence, by the previous question, pq divides a.

Opt20. Let the relation \sim on \mathbb{Z} be defined by $a \sim b$ iff $5 \mid 9a^2 + b^2$.

- a) Prove that \sim is an equivalence relation.
- b) Show that the equivalence class of 0 is the set of all integers divisible by 5.
- c) Work out all the other equivalence classes induced by the relation \sim .

Opt20 - solution. a) See question Q32.

b) By definition, the equivalence class of 0 is the set of all integers a such that $a \sim 0$, which by symmetry of \sim is the same as $0 \sim a$. By definition of \sim , $0 \sim a$ means that $5 \mid a^2$. Since 5 is a prime, by Euclid's property of a prime $5 \mid (a \times a)$ implies that $5 \mid a$ or $5 \mid a$. Thus, every integer a equivalent to 0 is divisible by 5.

Vice versa, if a is divisible by 5, then $5 \mid 9 \times 0^2 + a^2$ so $0 \sim a$.

We proved that an integer a belongs to the equivalence class of 0 with respect to \sim , if and only if $5 \mid a$, as required.

c) Observe that the integer 1 does not belong to the equivalence class of 0, because 1 is not divisible by 5. Let us find the equivalence class of 1. By definition of \sim , $1 \sim a$ iff $5 \mid (9+a^2)$. This is the same as $9+a^2 \equiv 0 \mod 5$, which can be rewritten as $a^2 \equiv 1 \mod 5$.

By Modular Arithmetic, the remainder of $a^2 \mod 5$ depends only on the remainder of a. From the table

we conclude that $a^2 \equiv 1 \mod 5$ is equivalent to $a \equiv 1$ or $a \equiv 4 \mod 5$. Hence the equivalence class of 1 induced by \sim is the set $[1]_5 \cup [4]_5$.

We notice that 2 is neither divisible by 5 nor in the set $[1]_5 \cup [4]_5$, hence 2 belongs to an equivalence class which is disjoint from the two equivalence classes found so far. Let us find the equivalence class of 2. Observe that $2 \sim a$ iff $5 \mid (36 + a^2)$, equivalently $36 + a^2 \equiv 0 \mod 5$, which can be rewritten as $a^2 \equiv 4 \mod 5$. From the table above, $a^2 \equiv 4 \mod 5$ is the same as $a \equiv 2$ or $a \equiv 3 \mod 5$. Hence the equivalence class of 2 induced by ∞ is the set $[2]_5 \cup [3]_5$.

The three equivalence classes $[0]_5$, $[1]_5 \cup [4]_5$ and $[2]_5 \cup [3]_5$ found so far cover the whole set \mathbb{Z} , therefore these are all the equivalence classes induced by the relation \sim .

Opt21. Let the relation \sim on the set \mathbb{Z}_n be defined as follows: $[a]_n \sim [b]_n$ iff $\exists [x]_n \in \mathbb{Z}_n^*$, $[b]_n = [x]_n [a]_n$.

- a) Use the properties of \mathbb{Z}_n^* , prove that \sim is an equivalence relation on \mathbb{Z}_n .
- b) Put n=14. Find the equivalence classes induced on the set \mathbb{Z}_{14} by the relation \sim .

Opt21 - **solution**. a) We show that \sim is **reflexive**, that is, $[a]_n \sim [a]_n$ for every $[a]_n \in \mathbb{Z}_n$. Indeed, observe that $[1]_n \in \mathbb{Z}_n^*$ because $[1]_n$ is invertible, $[1]_n^{-1} = [1]_n$. We have $[a]_n = [1]_n[a]_n$, so by definition of \sim , $[a]_n \sim [a]_n$.

We show that \sim is **symmetric**, that is, $[a]_n \sim [b]_n$ implies $[b]_n \sim [a]_n$. Assume that $[a]_n \sim [b]_n$, meaning that $[b]_n = [x]_n [a]_n$ for some $[x]_n \in \mathbb{Z}_n^*$. Elements of \mathbb{Z}_n^* are invertible, hence there exists $[x]_n^{-1} \in \mathbb{Z}_n^*$. Multiplying the equation $[b]_n = [x]_n [a]_n$ through by $[x]_n^{-1}$, we obtain $[x]_n^{-1} [b]_n = [x]_n [a]_n$

 $[1]_n[a]_n$, in other words $[a]_n=[x]_n^{-1}[b]_n$, which, since $[x]_n^{-1}\in\mathbb{Z}_n^*$, implies that $[b]_n\sim[a]_n$ as claimed.

We show that \sim is **transitive**, that is, $[a]_n \sim [b]_n$ and $[b]_n \sim [c]_n$ implies $[a]_n \sim [c]_n$. Assume $[a]_n \sim [b]_n$ and $[b]_n \sim [c]_n$, which translates as $[b]_n = [x]_n [a]_n$ and $[c]_n = [y]_n [b]_n$ for some $[x]_n, [y]_n \in \mathbb{Z}_n^*$. Substituting the first equation into the second equation, we obtain $[c]_n = [y]_n [x]_n [a]_n$. The following fact is known from the course: \mathbb{Z}_n^* is multiplicatively closed. This implies that $[y]_n [x]_n \in \mathbb{Z}_n^*$. Hence by definition of \sim we have $[a]_n \sim [c]_n$. Transitivity is proved.

b) We note that $\mathbb{Z}_{14}^* = \{[1]_{14}, [3]_{14}, [5]_{14}, [9]_{14}, [11]_{14}, [13]_{14}\}.$

Let us work out the equivalence class of $[0]_{14} \in \mathbb{Z}_{14}$, induced by the relation \sim . Note that $[0]_{14} \sim [a]_{14}$ means that $[a]_{14} = [x]_{14}[0]_{14}$ for some $[x]_{14} \in \mathbb{Z}_{14}^*$. But this implies that $[a]_{14} = [0]_{14}$. We have shown that the equivalence class of $[0]_{14}$ induced by \sim is the single-element set $\{[0]_{14}\}$.

Let us pick an element not equivalent to $[0]_{14}$ — say, $[1]_{14}$ — and work out its equivalence class. Note that $[1]_{14} \sim [a]_{14}$ means that $[a]_{14} = [x]_{14}[1]_{14} = [x]_{14}$ for some $[x]_{14} \in \mathbb{Z}_{14}^*$. This shows that the set of elements equivalent to $[1]_{14}$ in \mathbb{Z}_{14} is exactly the set \mathbb{Z}_{14}^* .

Let us pick an element which is in neither equivalence class shown so far, say, $[2]_{14}$. By definition of \sim , the set of elements of \mathbb{Z}_{14} equivalent to $[2]_{14}$ is obtained by multiplying $[2]_{14}$ by all elements of \mathbb{Z}_{14}^* . We show the results in the following table:

The equivalence class of $[2]_{14}$ is the set of elements of \mathbb{Z}_{14} shown in the second row of this table.

The only element of \mathbb{Z}_{14} which does not appear in the three equivalence classes found so far is $[7]_{14}$. Hence the only option for $[7]_{14}$ is to form an equivalence class by itself. Nevertheless, we check this by finding all possible elements equivalent to $[7]_{14}$, that is, elements of the form $[x]_{14}[7]_{14}$ where $[x]_{14}$ is in \mathbb{Z}_{14}^* :

We arrive at the following partition of \mathbb{Z}_{14} into four equivalence classes, induced by the relation \sim :

$$\mathbb{Z}_{14}/\sim = \{ \{[0]_{14}\},$$

$$\{[1]_{14}, [3]_{14}, [5]_{14}, [9]_{14}, [11]_{14}, [13]_{14}\},$$

$$\{[2]_{14}, [6]_{14}, [10]_{14}, [4]_{14}, [8]_{14}, [12]_{14}\},$$

$$\{[7]_{14}\} \}.$$

Opt22. Let a, b be integers. Prove that the following two statements about a and b are equivalent:

- (1) a and b are not coprime;
- (2) there exists a prime p such that $p \mid a$ and $p \mid b$.

Opt22 - **solution.** To prove that (1) \Longrightarrow (2), assume that (1) is true, that is, a and b are not coprime. By definition of "coprime", this means that $\gcd(a,b) \neq 1$. There are two cases. First case is $\gcd(a,b) > 1$. By Fundamental Theorem of Arithmetic, every integer greater than 1 is a product of primes, hence $\gcd(a,b)$ is a product of primes, and it is divisible by a prime p. We have $p \mid \gcd(a,b)$ and $\gcd(a,b) \mid a$, so by transitivity of |, $p \mid a$. Similarly, p divides b.

Second case is gcd(a, b) = 0. Then by definition of gcd one has a = b = 0. Then both a and b are indeed divisible by the same prime p, for example p = 2.

We now prove that (2) \implies (1). Assume that there exists a prime p such that $p \mid a$ and $p \mid b$. Recall that by Bezout's Lemma, $\gcd(a,b) = ma + nb$, an integral linear combination of a and b. Hence p divides $\gcd(a,b)$. This implies that $\gcd(a,b) \neq 1$, because 1 is not divisible by any prime. By definition of "coprime", this means that a and b are not coprime.

Opt23. Let $[0]_4$, $[1]_4$, $[2]_4$, $[3]_4$ be the congruence classes of the integers modulo 4; explain why there is only one prime in the set $[0]_4 \cup [2]_4 \subseteq \mathbb{Z}$ and show that $x,y \in [1]_4$ implies $xy \in [1]_4$. By considering integers of the form 4P-1, deduce that $[3]_4$ contains infinitely many primes.

Opt23 - **solution.** The integers contained in $[0]_4$ all have positive divisors 1, 2 and 4 and so cannot be prime. The numbers contained in $[2]_4$ are all divisible by 1 and 2 and so cannot be prime, apart from 2 itself. This means that the only primes contained in the union is 2. If $x,y\in[1]_4$, then $x\equiv 1$ and $y\equiv 1\mod 4$, so by Modular Arithmetic $xy\equiv 1\times 1\equiv 1\mod 4$ meaning that $xy\in[1]_4$.

Now assume for contradiction that p_1,\ldots,p_k is a finite list of all the primes in $[3]_4$, let $P=p_1p_2\ldots p_k$ and consider the integer N=4P-1. Note that $k\geq 1$ (since the prime 3 is in $[3]_4$) so that N>1. Furthermore, N is not divisible by $2,p_1,\ldots,p_k$ (because these primes divide 4P and do not divide -1) and so the unique prime factorisation of N must include only primes in $[1]_4$. However, a product of primes in $[1]_4$ must also lie in $[1]_4$, as shown above. Since $N\in[3]_4$, this is again a contradiction.

Opt24. Prove that if $n \in \mathbb{N}$ and $n \geq 3$, then $\phi(n)$ is even. Here ϕ is Euler's phi-function.

Opt24 - solution. Since n>1, by the Fundamental Theorem of Arithmetic n has prime factorisation. Write it as $n=p_1^{k_1}\dots p_s^{k_s}$ where $s\geq 1$, $k_i\geq 1$ for all i, and p_1,\dots,p_s are distinct primes. By a formula proved in the course,

$$\phi(n) = \prod_{i=1}^{s} p_i^{k_i - 1} (p_i - 1).$$

If at least one of the primes p_1, \ldots, p_s is odd (that is: any prime except 2), the factor $(p_i - 1)$ in the formula for $\phi(n)$ is even, hence the whole product is even, and we are done.

It remains to consider the case where the only prime factor of n is 2, that is, $n=2^k$. Since we are given that $n\geq 3$, we conclude that $k\geq 2$, and so $\phi(n)=\phi(2^k)=2^{k-1}(2-1)$ which is even as $k-1\geq 1$.

Thus, $\phi(n)$ is even in all cases when $n \geq 3$, as required.

Opt25. Prove Fermat's Little Theorem using Euler's theorem and properties of Euler's phifunction.

Opt25 - **solution.** Recall that Fermat's Little Theorem claims that if p is a prime, then

- (i) $a^p \equiv a \mod p$ for all integers a, and
- (ii) $a^{p-1} \equiv 1 \mod p$ whenever a is coprime to p.

Euler's theorem says that $a^{\phi(n)} \equiv 1 \mod n$ whenever a is coprime to n.

Apply Euler's theorem in the case n=p. Observe that $\phi(p)=p-1$ which is the most basic case of the formula $\phi(p^k)=p^{k-1}(p-1)$. We get the following statement: $a^{p-1}\equiv 1 \mod p$ for all a coprime to p. We have thus proved statement (ii) of Fermat's Little Theorem.

It remains to prove statement (i). Let a be an integer. We want to prove that $a^p \equiv a \mod p$. There are two cases: first case, a is coprime to p. Then by (ii) which is already proved, $a^{p-1} \equiv 1 \mod p$; of course, $a \equiv a \mod p$ by reflexivity of congruence, so, multiplying these congruences, we obtain by Modular Arithmetic the required congruence $a^p \equiv a \mod p$.

Second case: a is not coprime to p. By a result from the course, in this case a is divisible by p. But then $a \equiv 0 \mod p$ and also $a^p \equiv 0 \mod p$. Hence the congruence $a^p \equiv a \mod p$ trivially holds. Fermat's Little Theorem is proved.