Forme canonique de Jordan

Exercice 1. Pour chaque matrice complexe a, calculer sa forme canonique de Jordan, une matrice b telle que $b^{-1}ab$ est sous forme de Jordan, et le polynôme minimal de la transformation linéaire associée :

a)
$$a = \begin{bmatrix} 3 & 1 \\ -1 & 1 \end{bmatrix}$$
 d) $a = \begin{bmatrix} 2 & 3 & 0 \\ 0 & -1 & 0 \\ 0 & -1 & 2 \end{bmatrix}$ g) $a = \begin{bmatrix} 4 & -4 & -11 & 11 \\ 3 & -12 & -42 & 42 \\ -2 & 12 & 37 & -34 \\ -1 & 7 & 20 & -17 \end{bmatrix}$ e) $a = \begin{bmatrix} 3 & 3 \\ -3 & -3 \end{bmatrix}$ e) $a = \begin{bmatrix} 2 & 3 & 2 \\ -1 & 4 & 2 \\ 0 & 1 & 3 \end{bmatrix}$ f) $a = \begin{bmatrix} 4 & 1 & 0 \\ -1 & 2 & 0 \\ 1 & 1 & 3 \end{bmatrix}$

Exercice 2. Soit $A \in \text{Hom}(\mathbb{C}^n, \mathbb{C}^n)$, et soit $p_A(x)$ son polynôme caractéristique, et $m_A(x)$ son polynôme minimal. Calculer la forme canonique de Jordan de A, en sachant que :

- a) $p_A(x) = (2-x)^3$ et $m_A(x) = (x-2)^3$.
- b) $p_A(x) = (-2 x)^3$ et $m_A(x) = (x + 2)^2$.
- c) $p_A(x) = (2-x)^3(3-x)^2$ et $m_A(x) = (x-2)^2(x-3)$.
- d) $p_A(x) = (2-x)^4$ et $\dim_{\mathbb{C}} \text{Ker}(A-2Id_{\mathbb{C}^4}) = 3$.
- e) $p_A(x) = (2-x)^4$, $\dim_{\mathbb{C}} \text{Ker}(A-2Id_{\mathbb{C}^4}) = 2$ et $(A-2Id_{\mathbb{C}^4})^2 = 0 \in \text{Hom}(\mathbb{C}^4, \mathbb{C}^4)$.

Exercice 3. Soit A un opérateur linéaire de \mathbb{C}^n ayant pour polynôme caractéristique $p_A(x) = (x - \lambda_1)^{n_1} \dots (x - \lambda_k)^{n_k}$. Montrer que A est diagonalisable si et seulement si son polynôme minimal est $m_A(x) = (x - \lambda_1) \dots (x - \lambda_k)$.