Nonlinear Control

Stuttgart university, May 2018

Intro

Goals of Course

- overview over moder nonlinear analyses and control concepts
- modern methodologies to analyze nonlinear systems
- apply a wide range of nonlinear control method learn the mathmatic basis

Differential equations $\dot{x} = f(x)$

Nonlinear differential eqution $\dot{x} = f(t, x)$

System with input $\dot{x} = f(x, u)$

System with input and output $\dot{x} = f(x, u), y = g(x, u)$

Input-output methods

Scope

- [1] Khalil Nonlinear System, Prentice Hall, 2002
- [2] Sepulchre Constructive Nonlinear Control, Springer-Verlag 1997

1 Differential equations

Consider differential equality

$$\frac{d}{dt}x(t) = \dot{x}(t) = f(x(t)), \ x(0) = x_0 \tag{1}$$

Where $f: D \to \mathbb{R}^n$, $D \subset \mathbb{R}^n$ is open, [here we should explain, what means open set].

Solution to 1 $x: I_{x_0} \to D, t \to x(t)$ is differentiable

Interval existence solution

Questions:

existence of solution

"how large" is I_{x_0}

uniqueness of solution

Usually we will add some restrictions on f functions, like continuous.

1.1 Existence of solutions

Definition. Function $f: D \to R^n$ is continuous at $x' \in D$ if for $\forall \epsilon > 0 \ \exists \delta > 0$ such that for $\forall x \in D, \|x - x'\| < \delta => \|f(x) - f(x')\| < \epsilon$

Function $f: D \to \mathbb{R}^n$ is continuous on D if it's continuous at $\forall x' \in D$

Theorem 1.1 (Piano). If $f: D \to \mathbb{R}^n$ continuous, then for each $x_0 \in D \exists x: (-\epsilon, \epsilon) \to D, \ \epsilon > 0$ satisfying (1).

Further, given a compact set $U \subset D$, then $\exists \alpha > 0$ s.t. $\forall x_0 \in U \ \exists x : (-\epsilon, \epsilon) \to D$ satisfying (1).

Example. Consider equation $\dot{x}(t) = x(t)^2$, $x(0) = x_0 = 0$. Solution $x(t) = -\frac{1}{t-c}$, $c = \frac{1}{x_0}$. In this example solution exist in interval (-c, c).

But, what about the number of solutions? Which conditions we should add to garantie uniqueness of solution?

1.2 Uniquence of solutions

Definition. Function $f: D \to \mathbb{R}^n$ is locally Lipshitz (continuous???) on D if $\forall x \in D$ there is a neighborhood $N(x) \subset D$ and $\exists L > 0$ s.t.

$$||f(x_1) - f(x_2)|| \le L||x_1 - x_2|| \tag{2}$$

For all $x_1, x_2 \in N$.

- Lipschitz on $W \in D$ if (2) holds $\forall x_1, x_2 \in W$ (with same L)
- globally Lipschitz if (2) holds $\forall x_1, x_2 \in \mathbb{R}^n$ (with same L)

We have

locally Lipschitz functions are continuous

differentiable functions are locally Lipschitz

locally Lipschitz functions are Lipschitz on each compact subset of D (Khalil Ex 3.19)

Lemma 1 (Cromwall). Suppose that $0 \le \phi(t) \le c + L \int_0^t \phi(\tau) d\tau$, c, L > 0, ϕ – continuous. Then $\phi(t) \le ce^{Lt}$.

Proof. $c + L \int_0^t \phi(\tau) d\tau := \psi(t), \ \dot{\psi}(t) = L\phi(t) \le L\psi(t).$

Consider $\frac{d}{dt} \left(\psi(t) e^{-LT} \right) = e^{-Lt} \left(\dot{\psi}(t) - L \psi(t) \right) \le 0$, thus $\psi(t) e^{-LT}$ is decreased, and as a result we have $\phi(t) e^{-Lt} \le \psi(t) e^{-Lt} \le \psi(0) = c$

Theorem 1.2 (Picard Lindelof). If function $f: D \to \mathbb{R}^n$ is locally Lipschitz then for $\forall x_0 \in D \exists ! x: (-\epsilon, \epsilon) \to D, \ \epsilon > 0$ satisfying (1).

Proof. * existence from Piano theorem

Proof of uniqueness

Consider two solutions $x_1(.)$ and $x_2(.)$ to (1). $\dot{x}_1 - \dot{x}_2 = f(x_1) - f(x_2)$, $x_1(0) = x_2(0)$. Then we can integrate equality: $x_1(t) - x_2(t) = \int_0^t f(x_1(\tau)) - f(x_2(\tau)) d\tau$. $|x_1(t) - x_2(t)| \le \int_0^t |f(x_1(\tau)) - f(x_2(\tau))| d\tau$. Now we can apply Cromwall's lemma with c = 0 and $\phi(t) = |x_1(t) - x_2(t)|$, then $\phi(t) \le 0$, then $x_1(t) = x_2(t)$, $\forall t \in (-\epsilon, \epsilon)$

Example.

$$\dot{x} = \begin{cases} \sqrt{x}, & \text{if } x \ge 0\\ 0, & \text{else } x < 0 \end{cases}$$

Solutions
$$x(t) = \begin{cases} \frac{1}{4}(t-c)^2, & \text{if } t \ge c \ge 0\\ 0, & \text{else} \end{cases}$$

Global existance & uniqueness

- sufficient condition: f globally Lipschitz
- another sufficient condition: solution entirely lies in a coplex set
- forward completeness has equivalent Lyapunov-like characterization: system is forward-complete iff \exists solution $V: \mathbb{R}^n \to \mathbb{R} \geq 0$ s.t. $\frac{\partial V}{\partial x} f(x) \leq V(x), \forall x \in \mathbb{R}^n$

1.3 Lyapunov stability

If functions $\dot{V}(x) < 0, \forall x \in D \setminus \{0\}$, then x^* is asymptotically stable.

Definition. Equilibrium point x = 0 is stable if $\forall \epsilon > 0 \ \exists \delta > 0$ s.t. from $||x_0|| < \delta$ follows $||x(t)|| \le \epsilon$, $\forall t \ge 0$.

Definition. Equilibrium point x = 0 is asymptotically stable if it is stable and exist $\delta > 0$ s.t. from $||x_0|| < \delta$ follows $\lim_{t\to\infty} x(t) \to 0$.

Theorem 1.3 (Lyapunov's direct method). Let $x^* = 0 \in D$ be an equilibrium point of (1), i.e., f(0) = 0. Let $f: D \to R^n$ is continuous. If there exists a differentiable $V: D \to R$ s.t.

- 1. $V(x^*) = 0, V(x) > 0, \forall x \in D \setminus \{0\}$
- 2. $\dot{V}(x) = \frac{\partial V}{\partial x} f(x) \le 0, \forall x \in D$

then $x^* = 0$ is stable.

Proof. Fix compact $U = \{x : V(x) \le c\}$ s.t. $U \in D$. By Piano: exist $\alpha > 0$ s.t. any solution x with $x_0 \in U$ exists at least on the interval $[0, \alpha)$.

Lyapunovs direct method gives us:

- stability
- convergence (if V < 0)
- subset of the region of attraction (all compact $U = \{x : V(x) \le c\} \in D$)
- existance of solution for all times

2 Nonlinear systems

In this section we consider function $f: R \times D \to R^n$, where $D \subseteq R^n$, and D is open.

$$\dot{x}(t) = f(t, x(t)), \quad t \ge t_0 \ge 0, \quad x(t_0) = x_0$$
 (3)

The origin $x^* \in D$ is an equilibrium point for (3), if f(t,0) = 0, $\forall t \geq 0$.

Remark: EP (equilibrium point) $x^* = 0$ can be translation of a nonzero solution.

Suppose \overline{y} is a solution of $\dot{y} = g(t, y)$.

Change of coordinates: $x(t) = y(t) - \overline{y}(t)$, then $\dot{x}(t) = \dot{y}(t) - \dot{\overline{y}}(t) = g(t, x(t) + \overline{y}(t)) - \dot{\overline{y}}(t) := f(t, x(t))$. Since $\dot{\overline{y}}(t) = g(t, \overline{y}(t))$, then f(t, 0) = 0, $\forall t \geq 0$.

Existence and uniqueness of solution to (3):

- if f continuous, then exist local solution
- if f continuous and locally Lipschitz in x^* , then exist local unique solution

Now we need new stability definitions.

Definition. Point $x^* = 0$ is stable if $\forall \epsilon > 0$ and $\forall t_0 \geq 0$, $\exists \delta > 0$ s.t. from $||x_0|| < \delta$ follows $||x(t)|| < \epsilon$, $\forall t \geq t_0$.

Definition. Point $x^* = 0$ is uniformly stable if $\forall \epsilon > 0 \ \exists \delta > 0$, s.t $\forall t_0 \geq 0$, from $||x_0|| < \delta$ follows $||x(t)|| < \epsilon, \forall t \geq t_0$.

Definition. Point $x^* = 0$ asymptotically stable if it is stable and $\forall t_0 \ge 0 \ \exists c > 0$, s.t from $||x_0|| < c$ follows $\lim_{t\to\infty} ||x(t)|| \to 0$.

Definition. Point $x^* = 0$ uniformly asymptotically stable if it is uniformly stable and $\exists c > 0$, s.t $\forall t_0 \geq 0$ from $||x_0|| < c$ follows $\lim_{t \to \infty} ||x(t)|| \to 0$.

Definition. Convergence: $\forall \eta > 0 \ \forall t_0 \geq 0, \exists T > 0 \text{ such that } \forall t \geq t_0 + T \text{ follows } ||x(t)|| < \eta.$

Definition. Uniform convergence: $\forall \eta > 0 \ \exists T > 0$ such that $\forall t_0 \geq 0$ and $\forall t \geq t_0 + T$ follows $||x(t)|| < \eta$.

Example. Consider next equation:

$$\dot{x}(t) = -\frac{x(t)}{1+t}, \quad t_0 \ge 0$$

Solution $x(t) = x(t_0) \frac{1+t_0}{1+t}$. It is uniformly stable, because we can choose $\delta = \epsilon$. But does x(t) convergence uniformly? Answer is no.

Definition. Point $x^* = 0$ is globally uniformly asymptotically stable if it is uniformly stable with $\delta \to \infty$ for $\epsilon \to \infty$ and $\forall c, \eta \quad \exists T > 0$ such that $\forall t_0 \geq 0$ from $||x_0|| < c$ follows $||x(t)|| < \eta$, $\forall t \geq t_0 + T$.

2.1 Lyapunov's direct method

Consider some function $V:[0,\infty)\times D\to R,\ (t,x)\to V(t,x)$ such that $\dot{V}(t,x)=\frac{\partial}{\partial t}V(t,x)+\frac{\partial}{\partial x}V(t,x)f(t,x)$.

Theorem 2.1 (Lyapunov's direct method). Let $f:[0,\infty)\times D\to R^n$ is continuous and let $x^*=0$ be equilibrium point. If there is a differentiable function $V:[0,\infty)\times D\to R$ with:

•
$$W_1(x) \le V(t,x) \le W_2(x), \forall t \ge 0, x \in D$$

• $\dot{V}(t,x) \le 0, \forall t \ge 0, x \in D$

where $W_1, W_2: D \to R$ continuous and positive definite, then $x^* = 0$ is uniformly stable.

If further $\dot{V}(t,x) \leq -W_3(x)$, $\forall t \geq 0$, $x \in D$ with $W_3: D \to R$ continuous and positive definite, the $x^* = 0$ is uniformly asymptotically stable.

If $D = R^n$ and W_1 is radialy unbounded then $X^* = 0$ is globally uniformly asymptotically stable. **Example.** Consider the equation $\dot{x}(t) = -(1+t)x(t)$.

Check function $V(t,x) = \frac{1}{2}x^2$ as candidate for Lyapunov's function. Then $W_1(x) = W_2(x) = \frac{1}{2}x^2$ and $\dot{V}(t,x) = -(1+t)x^2 \le -x^2(t) =: W_3(x)$. Then from theorem we have, that $X^* = 0$ is globally uniformly asymptotically stable.

2.2 Exponential stability

Definition. Point $X^* = 0$ is an exponentially stable EP of (3) if $\exists \lambda, c, k > 0$ s.t. $t \geq t_0 \geq 0$ and all $||x_0|| < c$ follows $||x(t)|| \leq K||x(t_0)||e^{\lambda(t-t_0)}$.

Remark: from exponential stability follows uniformly asymptotically stability.

Lemma 2 (Auxiliary result). Let $\dot{x}(t) = f(t, x(t))$, f scalar and $\dot{\xi}(t) \leq f(t, \xi(t))$ with $\xi(t_0) \leq x(t_0)$. Then $\xi(t) \leq x(t) \ \forall t \geq t_0$.

Theorem 2.2. Let $f:[0,\infty)\times D\to R^n$ be continuous and $x^*=0\in D$ be an EP.

If there is a differentiable function $V:[0,\infty)\times D\to R$ and constants $k_1,k_2,k_3,a>0$ s.t.

- 1. $k_1||x||^a \le V(t,x) \le k_2||x||^a, \forall t \ge 0, x \in D$
- 2. $\dot{V}(t,x) \leq -k_3 ||x||^a$

then $x^* = 0$ is exponentially stable.

If $D = \mathbb{R}^n$, then X^* is globally exponential stable.

Proof. For c>0 small enough, trajectories initialized in $\{x:k_2||x||^a< c\}$ remain bounded and in D. From 1) and 2) we can conclude $\dot{V}\leq -\frac{k_3}{k_2}V$. Then from previous Lemma $V(t,x(t))\leq -\frac{k_3}{k_2}V$.

$$V(t_0, x(t_0))e^{-\frac{k_3}{k_2}(t-t_0)}. \quad \text{Then } ||x(t)|| \leq [from(1)] \leq \left(\frac{V(t, x(t))}{k_1}\right)^{\frac{1}{a}} \leq \left(\frac{V(t_0, x(t_0))e^{-\frac{k_3}{k_2}(t-t_0)}}{k_1}\right)^{\frac{1}{a}} \leq \left(\frac{V(t_0, x(t_0))e^{-\frac{k_3}{k_2}(t-t_0)}}{k_1}\right)^{\frac{1}{a}}$$

$$\left(\frac{k_2||x(t_0)||^a e^{-\frac{k_3}{k_2}(t-t_0)}}{k_1}\right)^{\frac{1}{a}} = \left(\frac{k_2}{k_1}\right)^{\frac{1}{a}} ||x(t_0)|| e^{-\frac{k_3}{k_2a}(t-t_0)}$$

Example. Consider the equation $\dot{x}(t) = -(1+t)x(t)$.

Here $V(t,x) = \frac{1}{2}x^2$ then X^* is exponentially stable.

2.3 Comparison function

Definition. A function $\alpha:[0,\delta)\to[0,\infty)$ is (of) "class K" if it is continuous, strictly increasing, and $\alpha(0)=0$.

Definition. A function $\alpha:[0,\delta)\to[0,\infty)$ is "class K_{∞} " if $\alpha\in K$ and $\lim_{r\to\infty}\to\infty$.

Example. Function $\alpha(r) = \tan^{-1}(r) - \text{class } K$

Function $\alpha(r) = r^k - \text{class } K_{\infty}$

Definition. A function $\beta: [0, \delta) \times [0, \delta) \to [0, \infty)$ is "class KL if it is continuous, $\beta(\cdot, s) \in K$ for all fixed s, and for each fixed r, $\beta(r, \cdot)$ is strictly decreasing: $\lim_{s\to\infty} \beta(r, s) = 0$

Example. Function $\beta(x,s) = max(r,r^2)e^{-s}$ belongs to class KL.

Properties of comparison functions:

- If $\alpha \in K$ on $[0, \delta)$, then α^{-1} is defined on $[0, \alpha(\delta))$ and $\alpha^{-1} \in K$.
- If $\alpha \in K_{\infty}$, then $\alpha^{-1} \in K_{\infty}$
- If $\alpha_1, \alpha_2 \in K$, then $\alpha_1 \circ \alpha_2 \in K$ (same for K_{∞})
- If $\alpha_1, \alpha_2 \in K$, $\beta \in KL$ then $\alpha_1(\beta(\alpha_2(r), s)) \in KL$

Now we consider comparison functions and stability definitions.

Lemma 3. The equilibrium $x^* = 0$ of $\dot{x}(t) = f(t, x(t))$ is uniformly stable iff $\exists \alpha \in K$ and c > 0 s.t. $\forall t \geq t_0, \forall ||x(t_0)|| < c$ and $||x(t)|| \leq \alpha(||x(t_0)||)$.

(only sufficiency). Given
$$\epsilon > 0$$
 choose $\delta < \min(c, \alpha^{-1}(\epsilon))$. Then from $||x(t_0)|| < \delta$ follows $||x(t)|| \le \alpha(||x(t_0)||) < \alpha(\alpha^{-1}(\epsilon)) = \epsilon$.

Lemma 4. The equilibrium $x^* = 0$ of $\dot{x}(t) = f(t, x(t))$ is uniformly asymptotically stable iff $\exists \beta \in KL \text{ and } c > 0 \text{ s.t. } \forall t \geq t_0, \forall ||x(t_0)|| < c \text{ and } ||x(t)|| \leq \beta(||x(t_0)||, t - t_0).$

(only sufficiency). Let $||x(t_0)|| < c$. Then $||x(t)|| \le \beta(||x(t_0)||, t - t_0) < \beta(c, t - t_0)$. This mean uniform convergence. $||x(t)|| \le \beta(||x(t_0)||, t - t_0) < \beta(||x_{t_0}||, 0)$. This gives us uniform stability. \square

Lemma 5. The equilibrium $x^* = 0$ of $\dot{x}(t) = f(t, x(t))$ is globally uniformly asymptotically stable iff previous lemma holds for all $x_0 \in \mathbb{R}^n$.

Now consider comparison functions and Lyapunov functions

If $W: \mathbb{R}^n \to \mathbb{R}$ is continuous and positive definite, then $\forall r > 0 \ \exists \alpha_1, \alpha_2 \in K$ s.t. $\alpha_1(||x||) \leq W(x) \leq \alpha_2(|x||)$ for all $x \in B_r(0) = \{x|||x|| \leq r\}$.

If W is radially unbounded, then $\exists \alpha_1, \alpha_2 \in K_\infty$ s.t. $\alpha_1(||x||) \leq W(x) \leq \alpha_2(|x||)$ for all $x \in \mathbb{R}^n$.

Lemma 6 (Auxiliary). Consider $\dot{y} = \alpha(y)$, $y(t_0) = y_0 > 0$, $\alpha \in K$. Then $\exists \beta \in KL$ s.t. $y(t) = \beta(y_0, t - t_0)$.

Sketch of proof of Lyapunov's direct method:

$$\begin{cases} W_1(x) \le V(t, x) \le W_2(x) \\ \dot{V} \le -W_3(x) \end{cases}$$

Where W_1, W_2, W_3 – continuous and positive defined.

Then $\exists \alpha_1, \alpha_2, \alpha_3 \in K$ such that $\alpha_1(||x||) \leq V(t, x) \leq \alpha_2(||x||)$ and $\dot{V}(t, x) \leq -\alpha_3(||x||)$.

Proof uniform stability:

$$||x(t)|| \le \alpha_1^{-1}(V(t, x(t))) \le [\alpha_1 \in K] \le \alpha_1^{-1}(V(t_0, x(t_0))) \le \alpha_1^{-1}(\alpha_2(||x(t_0)||)).$$

Proof uniform convergence

 $\dot{V} \leq -\alpha_3(||x||) \leq -\alpha_3(\alpha_2^{-1}(V)). \text{ We know, that } \alpha_3 \circ \alpha_2^{-1} \in K. \text{ By comparison lemma, } V(t,x(t)) \leq W(t), \text{ where } W \text{ solves } \dot{W} = -\alpha_3(\alpha_2^{-1}(W)) \text{ with } W(t_0) = V(t_0,x(t_0)). \text{ By auxiliary lemma } \exists \beta \in KL \text{ s.t. } V(t,x(t)) \leq \beta(V(t_0,x(t_0)),t-t_0), \text{ then } ||x(t)|| \leq \alpha_1^{-1}(V(t,x(t))) \leq \alpha_1^{-1}(\beta(V(t_0,x(t_0)),t-t_0)) \leq \alpha_1^{-1}(\beta(\alpha_2(||x(t_0)||),t-t_0)) =: \bar{\beta}(||x(t_0)||,t-t_0). \text{ From this follows uniform asymptotic stability since } \bar{\beta} \in KL.$

2.4 Converse theorems

Theorem 2.3. Let $X^* = 0$ be an EP of $\dot{x}(t) = f(t, x(t))$ with $f: [0, \infty) \times R^n \to R^n$ continuously differentiable and $\frac{\partial f}{\partial x}$ bounded in R^n , uniformly in t $(||\frac{\partial f}{\partial x}(t, x)|| \le L$ for all $x \in R^n$, $t \ge 0$, L > 0.

If $x^*=0$ is globally exponentially stable, then exists differentiable $V:[0,\infty)\times R^n\to R$ and $c_1,c_2,c_3,c_4>0$ s.t. $c_1||x||^2\leq V(t,x)\leq c_2||x||^2$, $\dot{V}(t,x)\leq -c_3||x||^2$ and $\left\|\frac{\partial V}{\partial x}\right\|\leq c_4||x||$.

Proof. Let $\Phi(\tau;t,x)$ – solution to $\dot{x}(t)=f(t,x(t))$ which is static at (t,x).

 $\begin{array}{ll} V(t,x) \,=\, \int_t^{t+\delta} \Phi^T(\tau;t,x) \Phi(\tau;t,x) d\tau, & \delta > 0. \quad \text{Upper bound:} \ V(t,x) \,=\, \int_t^{t+\delta} ||\Phi(\tau;t,x)||_2^2 d\tau \,\leq \\ [exponential \ stability] \leq \int_t^{t+\delta} k^2 e^{-2\lambda(\tau-t)} d\tau ||x||_2^2 = \frac{k^2}{2\lambda} (1-e^{-2\lambda\delta}) ||x||_2^2. \end{array}$

Lower bound: since $\|\frac{\partial V}{\partial x}\| \leq L$, then $||f(t,x)||_2 \leq L||x||_2$. Thus by comparation lemma $||\Phi(\tau;t,x)||_2^2 \geq ||x||_2^2 e^{-2L(\tau-t)}$. Set it in $V(t,x) \geq \int_t^{t+\delta} e^{-2L(\tau-t)} d\tau ||x||_2^2 = \frac{1}{2L} (1-e^{-2L\delta}) ||x||_2^2$.

Decrease conditions: $\dot{V}(t,x) = \cdots \leq -(1-k^2e^{-2\lambda\delta})||x||_2^2$.

3 System with inputs

Consider equation:

$$\dot{x}(t) = f(x(t), u(t)), \quad x(0) = x_0$$
 (4)

where $f: \mathbb{R}^n \to \mathbb{R}^n$.

Assumption: f in locally Lipschitz.

Exogenous signal $u: R \to R^n$.

Input can be "bad" (disturbance) or "good" (control).

3.1 Input-to-state stability

Motivation: LTI system $\dot{x} = Ax + Bu$, $x(0) = x_0$.

Solution: $x(t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$. If A is Hurwitz, then $||e^{At}|| \le ce^{-\lambda t}$ for some $c, \lambda > 0$.

How large can x grow for some bounded u? $||x(t)|| \leq ||e^{At}|| ||x_0|| + \int_0^t ||e^{A(t-\tau)}|| ||B|| ||u(\tau)|| d\tau \leq e^{-\lambda t} c||x_0|| + \int_0^t e^{-\lambda (t-\tau)} c||B|| ||u(\tau)|| d\tau = ce^{-\lambda t} ||x_0|| + (1-e^{-\lambda t}) \frac{c}{\lambda} ||B|| \sup_{\tau \in [0,t]} ||u(\tau)||.$

- $ce^{-\lambda t}||x_0||$ class KL in $(||x_0||,t)$
- $(1 e^{-\lambda t})$ less than 1
- $\frac{c}{\lambda}||B||\sup||u(\tau)||$ class K

If $\sup_{\tau \in [0,t]} ||u(\tau)||$ is bounded than \dot{x} remains bounded. Even more: the smaller $\sup_{\tau \in [0,t]} ||u(\tau)||$, the smaller ||x(t)||.

Definition. System (4) is input-to-state stable (ISS) if $\exists \beta \in KL, \ \gamma \in K \text{ s.t. } \forall x_0 \in R^n, \ \forall t \geq 0$ follows $||x(t)|| \leq \beta(||x_0||, t) + \gamma(\sup_{\tau \in [0, t]} ||u(\tau)||)$.

Remarks:

- From ISS follows O-GAS (global assymptotical stability of x=0 for $\dot{x}=f(x,0)$)
- γ can be interpreted as "gain" w.r.t. u
- if $\lim_{t\to\infty} u(t) = 0$ then $\lim_{t\to\infty} x(t) = 0$

Example. Consider equation $\dot{x} = -x + xu$. System is O-GASS, not ISS (for example $u \equiv \alpha \Rightarrow \dot{x} = x(\alpha - 1)$ all solution diverge).

Example. Consider equation $\dot{x} = -3x + (1 + 2x^2)u$. System is O-GASS, not ISS (for example $u \equiv 1, x_0 = 2, x(t) = \frac{3-e^t}{3-2e^t}$ has a finite escape time.

Theorem 3.1. Suppose that there exists a continuously differentiable function $V: \mathbb{R}^n \to \mathbb{R}$ and $\alpha_1, \alpha_2 \in K_{\infty}$ and $\alpha_3, \rho \in K$ such that $\alpha_1(||x||) \leq V(x) \leq \alpha_2(||x||), \forall x \in \mathbb{R}^n$ and $\frac{\partial V}{\partial x} f(x, u) \leq -\alpha_3(||x||), \forall x : ||x|| \geq \rho(||u||)$. Then (4) is ISS with $\gamma = \alpha_1^{-1} \circ \alpha_2 \circ \rho$

Proof. Idea: same as Lyapunovs direct method when x is "outside" of ball $\{x|||x|| \le \rho(||u||)\}$

TODO Picture
$$\Box$$

Example. Consider equality $\dot{x} = -x^3 + u$. Let $V(x) = \frac{1}{2}x^2$, then $\dot{V} = -x^4 + xu = [0 < \Theta < 0]$ $[1] = -(1-\Theta)x^4 - \Theta x^4 + xu \le -(1-\Theta)x^4$ for all $x: ||x|| \ge \left(\frac{||u||}{\Theta}\right)^{\frac{1}{3}}$. Thus, system is ISS with $\gamma(v) = \rho(v) = \left(\frac{v}{\Box}\right)^{\frac{1}{3}}$.

Remarks:

- Existence of V is both neccessary and sufficient for ISS;
- (??) is equivalent to $\frac{\partial V}{\partial x}f(x,u) \leq -\alpha_4(||x||) + \alpha_5(||u||), \forall x, u \text{ for some } \alpha_4, \alpha_5 \in K;$
- If $x_1 = 0$ is a globally asymptotically stable EP of Σ_1 and Σ_2 is ISS w.r.t. "input" x_1 , then $(x_1, x_2) = (0, 0)$ is a globally asymptotically stable EP for the cascaded system.

Theorem 3.2. Assume that:

- f is globally Lipschitz;
- x=0 is a globally exponentially stable EP for $\dot{x}=f(x,0)$

Then the system (4) is ISS.

Proof. Sketch: \exists continuous differentiable V:

$$c_1||x||^2 \le V(x) \le c_2||x||^2$$
$$\frac{\partial V}{\partial x}f(x,0)) \le -c_3||x||^2$$
$$||\frac{\partial V}{\partial x}|| \le c_4||x||$$

Then:
$$\frac{\partial V}{\partial x} f(x, u) = \frac{\partial V}{\partial x} f(x, 0) + \frac{\partial V}{\partial x} (f(x, u) - f(x, 0) \le -c_3 ||x||^2 + c_4 ||x|| |L||u|| = -c_3 (1 - \theta) ||x||^2 + c_4 L||x|| ||u|| \le -c_3 (1 - \theta) ||x||^2$$
 if $||x|| \ge \frac{c_4 L}{\theta c_3} ||u||$.

3.2 Control Lyapunov functions

Motivation: Lyapunov theory for control systems.

(input affine systems)

 $\dot{x} = f(x) + \sum_{i=1}^{m} g_i(x)u_i = f(x) + G(x)u,$ $f: R^n \to R^n, g: R^n \to R^n, G: R^n \to R^{n \times m}$

 $u: t \to u(t), R \to R^m$ is a control signal (decision variable).

Definition. A function $V: \mathbb{R}^n \to \mathbb{R}$ is a control Lyapunov function (CLF) if it's differentiable positive definite, radially unbounded and

$$\forall x \neq 0 \quad \inf_{u} (\nabla V(x) \cdot (f(x) + G(x)u)) < 0 \tag{5}$$

Remark:

Concept can be generalized to systems $\dot{x} = f(x, u)$. Then 5 becomes

$$\forall x \neq 0 \quad \inf_{u} (\nabla V(x) \cdot f(x, u)) < 0$$

Theorem 3.3 (Artstein). There exists $k: \mathbb{R}^n \to \mathbb{R}^m$ (state feedback) which is continuous on $\mathbb{R}^n \setminus \{0\}$ s.t. $x^* = 0$ is globally asymptotically stable EP for $\dot{x} = f(x) + G(x)k(x)$ iff there exists a CLF.

How to find CLFs?

Proposition:

Condition (5) is equivalent to

$$\forall x \neq 0, \quad \frac{\partial V}{\partial x}G(x) = 0 \implies L_f V(x) < 0$$
 (6)

Remark:

$$\frac{\partial V}{\partial x}G(x) = (\nabla V(x)g_1(x), \dots \nabla V(x)g_m(x)) =: L_G V(x)$$
(6) $\iff \forall x \neq 0, \ L_f V(x) \geq 0 \implies L_G V(x) \neq 0$

 $Proof. \iff$:

Assume (6) holds. Then:

$$\inf_{u} (\nabla V(x) \cdot (f(x) + G(x)u)) = \inf_{u} L_f V(x) + L_G V(x)u < 0$$

Why?

- If $L_G V(x) = 0$, then by (6) $L_f V(x) < 0$;
- If $L_GV(x) \neq 0$, then (at least) for one i we have $\nabla V(x) \cdot g_i(x) \neq 0 \implies \text{set } u_i = -c\nabla V(x) \cdot g_i(x)$.

 \Longrightarrow :

If (5) holds for some x with $L_GV(x) = 0$, then we must have $L_fV(x) < 0$.

Example (discontinuous control):

$$\dot{x} = \begin{cases} 1 - u, & u \ge 1 \\ -1 - u, & u \le -1 \\ 0, & else \end{cases}$$

If you want to move the system you need to apply control $|u| \ge 1$. Using

$$u(x) = \begin{cases} x+1, & x>0\\ x-1, & x \le 0 \end{cases}$$

results in closed loop $\dot{x} = -x$ - asymptotically stable. $V(x) = x^2$ is a CLF.

Theorem 3.4. There exists a continuous $k: \mathbb{R}^n \to \mathbb{R}^m$, smooth on $\mathbb{R}^n \setminus \{0\}$ s.t. $x^* = 0$ is globally asymptotically stable EP for $\dot{x} = f(x) + G(x)k(x)$ iff:

- there exists a (smooth)CLF V;
- $\begin{array}{l} \bullet \ \, \forall \varepsilon > 0 \ \, \exists \delta > 0 : \ \, \forall x : 0 < ||x|| < \delta \\ \exists u \in R^m : ||u|| < \varepsilon \ \, \text{s.t.} \, \, L_f V(x) + L_G V(x) u < 0 \end{array}$

How to construct a globally stabilizing state feedback k from knowledge of a CLF?

"Sontag's formula"

Fix
$$c \ge 0, a(x) := L_f V(x), b(x) := (L_G V(x))^T$$

$$k(x) = \begin{cases} -cb(x) - \frac{a(x) + \sqrt{a(x)^2 + (b(x)^T b(x))^2}}{b(x)^T b(x)}, & b(x) \neq 0\\ 0, & b(x) = 0 \end{cases}$$

Proposition: Let $V: \mathbb{R}^n \to \mathbb{R}$ be a CLF and k as above. Then $x^* = 0$ is globally asymptotically stable EP for $\dot{x} = f(x) + G(x)k(x)$

Proof.
$$\dot{V} = L_f V(x) + L_G V(x) k(x) = a(x) - cb(x)^T b(x) - \frac{a(x) + \sqrt{a(x)^2 + (b(x)^T b(x))^2}}{b(x)^T b(x)} b(x)^T b(x) = -cb(x)^T b(x) - \sqrt{a(x)^2 + (b(x)^T b(x))^2} < 0 \quad \forall x \neq 0 \text{ s.t. } L_G V(x) \neq 0$$

$$\dot{V} = L_f V(x) + L_G V(x) \cdot 0 < 0 \quad \forall x \neq 0 \text{ s.t. } L_G V(x) = 0 \text{ (since } V \text{ is CLF)}$$

$$\implies V$$
 - Lyapunov function $\implies \dots$

Remarks:

- Sontag's formula is smooth on $\mathbb{R}^n \setminus \{0\}$;
- Sontag's formula is continuous at x = 0 iff small control property holds.

$$\forall x \neq 0 : \inf_{u} \frac{\partial V}{\partial x} f(x, u) < 0 \ \dot{x} = f(x) + G(x)u$$

So this leads to

$$\forall x \neq 0 L_G V(x) = 0 \Rightarrow L_f V(x) \neq 0$$

Remark: The last formula is "optimal" if minimize:

$$\int_0^\infty \frac{1}{2} p(x) b(x)^T b(x) + \frac{1}{2p(x)} u^T u dt$$

$$b(x) := (L_G V(x))^T$$

where c > 0

$$p(x) = \begin{cases} c + \frac{a(x) + \sqrt{a(x)^2 + (b(x)^T b(x))^2}}{b(x)^T b(x)} & b(x) \neq 0\\ c & b(x) = 0 \end{cases}$$

It still works if $u = \lambda h(x)$ with $\lambda \in [\frac{1}{2}; \infty)$ is applied (large "gain margin")

4 Backstepping

Integrator backstepping

$$\dot{x}_1 = f_1(x_1) + g_1(x_1)x_2$$

$$\dot{x}_2 = u$$
(7)

where $x_1 \in \mathbb{R}^m$, x_2 , $u \in \mathbb{R}$ (single input)

image to be inserted

Assumption: we know (smooth) "feedback" $\alpha_1: \mathbb{R}^n \to \mathbb{R}$, and positive definite, differentiable $v_1: \mathbb{R}^m \to \mathbb{R}$

s.t. $L_{f_1+g_1\alpha_1}V_1(x)$ is negative definite \Rightarrow origin of $\dot{x_1} = f_1(x_1) + g_1(x_1)\alpha_1(x_1)$ is asymptotically stable

Goal: Compute feedback u = k(x) which stabilises (7). Backstepping constructs $u = \alpha_2(x_1, x_2)$ s.t. $(e_1, e_2) = (x_1 - 0, x_2 - \alpha_1(x_1)) = 0$ error coordinates

Rewrite (7):

$$\dot{x}_1 = f_1(x_1) + g_1(x_1)\alpha_1(x_1) + g_1(x_1)(x_2 - \alpha_1(x_1))$$

$$\dot{x}_2 = u$$

image to be inserted

In error coordinates

$$\dot{e}_1 = f_1(e_1) + g_1(e_1)\alpha_1(e_1) + g_1(e_1)e_2$$

$$\dot{e}_2 = u - \dot{\alpha}_1 = u - \frac{\partial \alpha_1}{\partial e_1}\dot{e}_1$$
(8)

"backstepping" α_1 through the integrator

Define $V_2(e_2) := \frac{1}{2}e_2^2$, and

$$V(e_1, e_2) = V_1(e_1) + V_2(e_2)$$

$$\dot{V}(e_1, e_2) = \frac{\partial V_1}{\partial e_1} (f_1(e_1) + g_1(e_1)\alpha_1(e_1)) + \frac{\partial V_1}{\partial e_1} g_1(e_1)e_2 + \frac{\partial V_2}{\partial e_2} (u - \dot{\alpha}_1)$$

as far as $L_{f_1+g_1\alpha_1}V_1$ -negative definite and $\frac{\partial V_2}{\partial e_2} o e_2$

Choose

$$u = \left(-\frac{\partial V_1}{\partial e_1}g_1(e_1) + \dot{\alpha}_1\right)(\text{"canaling terms"}) - k_2 e_2(\text{"stabilizing term"}), \ k_2 > 0 \tag{9}$$

$$\Rightarrow$$
 Then $\dot{V}(e_1, e_2) = L_{f_1+g_1\alpha_1}V_1(e_1) - k_2e_2^2 < 0, \ \forall (e_1, e_2) \neq 0$

 \Rightarrow $(e_1, e_2) = (0, 0)$ is an asymptotically stable EP for (8) with u as in (9)

Remark: $(e_1, e_2) \rightarrow (0, 0)$ does not necessarily imply that $(x_1, x_2) \rightarrow 0$ for $u = \alpha_2(x_1, x_2) = -\frac{\partial V_1}{\partial x_1}g_1(x_1) + \dot{\alpha}_1 - k_2(x_2 - \alpha_1(x_1))$

where $u \leftarrow (9)$ the original coordinates and $\dot{\alpha}_1 \leftarrow \frac{\partial \alpha_1}{\partial x_1} (f_1(x_1) + g_1(x_1)x_2)$

But $(x_1, x_2) = (0, 0)$ is asymptotically stable if $\alpha_1(0) = 0$ why? $(e_1, e_2) \rightarrow 0 \Rightarrow x_1 \rightarrow 0 \ x_2 \rightarrow \alpha_1(0) = 0$

Example.

$$\dot{x_1} = x_1 x_2$$

$$\dot{x_2} = u$$

Choose
$$\alpha_1(x_1) = -k \ (k > 0) \rightarrow \dot{x_1} = -kx_1 \Rightarrow V_1(x_1) = \frac{1}{2}x_1^2$$

Then:

$$e_1 = x_1 - 0, \ \dot{e_1} = e_1(e_2 - k)$$

 $e_2 = x_2 + k, \ e_2 = u$

Backstepping yields: $u = -e_1^2 - k_2 e_2$, $k_2 > 0 \Rightarrow (e_1, e_2) = (0, 0)$ is asymptotically stabilized $(x_1, x_2) = (0, -k)$ is asymptotically stabilized

Can we choose different α_1 s.t. $(x_1, x_2) = (0, 0)$ is stabilized?

Yes, e.g.

$$\alpha_1(x_1) = -x_1^2 \Rightarrow \dot{x_1} = -x_1^3, \ V_1(x_1) = \frac{1}{2}x_1^2$$

So we have equations

$$e_1 = x_1 - 0, \ \dot{e_1} = e_1(e_2 - e_1^2)$$

 $e_2 = x_2 + x_1^2, \ \dot{e_2} = u + 2e_1^2(e_2 - e_1^2)$

Backstepping results in

$$u = -e_1^2 - 2e_1^2(e_2 - e_1^2) - k_2e_2, \ k_2 > 0 \Rightarrow (e_1, e_2) \to (0, 0), \ (x_1, x_2) \to (0, 0)$$

Generalization-1

$$\dot{x}_1 = f_1(x_1) + g_1(x_1)x_2$$

$$\dot{x}_2 = f_2(x_1, x_2) + g_2(x_1, x_2)u$$

Assumption: $g_2(x_1, x_2) \neq 0$, $\forall x_1, x_2 \Rightarrow$ Input transformation: $u = \frac{1}{g_2(x_1, x_2)}(V - f_2(x_1, x_2)) \Rightarrow \dot{x_1} = f_1(x_1) + g_1(x_1)x_2$, $\dot{x_2} = V \Rightarrow$ can apply integrator backstepping to determine V results in

$$u = \alpha_2(x_1, x_2) = \frac{1}{g_2(x_1, x_2)} \left(-\frac{\partial V_1}{\partial x_1} g_1(x_1) + \dot{\alpha}_1 - k_2(x_2 - \alpha_1(x_1)) - f_2(x_1, x_2) \right)$$

Generalization 2: (Backstepping through 2 integrators)

$$\dot{x}_1 = f_1(x_1) + g_1(x_1)x_2, \quad x_1 \in \mathbb{R}^{n_1}$$

$$\dot{x}_2 = f_2(x_1, x_2) + g_2(x_1, x_2)x_3, \quad x_2, x_3 \in \mathbb{R}$$

$$\dot{x}_3 = f_3(x_1, x_2, x_3) + g_3(x_1, x_2, x_3)u, \quad u \in \mathbb{R}$$

Assumption: g_2, g_3 nowhere zero.

Shown before: $\exists \alpha_2$: for $x_3 = \alpha_2(x_1, x_2)$ $(e_1, e_2) \to 0$ Thus $e_3 := x_3 - \alpha_2(x_1, x_2)$ Input transformation:

$$u = \frac{1}{g_3(x_1, x_2, x_3)} (V - f_3(x_1, x_2, x_3))$$

 $\implies \dot{x}_1 = \dots, \dot{x}_2 = \dots, \dot{x}_3 = V \implies$ can apply backstepping once more.

In "error" coordinates:

$$\dot{e}_1 = f_1(e_1) + g_1(e_1)(e_2 + \alpha_1(e_1))$$

$$\dot{e}_2 = f_2(e_1, e_2 + \alpha_1(e_1)) + g_2(e_1, e_2 + \alpha_1(e_1))(e_3 + \alpha_2(e_1, e_2 + \alpha_1(e_1))) - \dot{\alpha}_1$$

$$\dot{e}_3 = V - \dot{\alpha}_2$$

Define
$$V_3(e_3) = \frac{1}{2}e_3^2$$
, $V(e_1, e_2, e_3) = \sum_{i=1}^3 V_i(e_i)$

$$\dot{V}(e_1, e_2, e_3) = \frac{\partial V_1}{\partial e_1}(f_1(e_1) + g_1(e_1)(e_2 + \alpha_1(e_1)) + e_2(f_2(e_1, e_2 + \alpha_1(e_1)) + g_2(e_1, e_2 + \alpha_1(e_1))) + e_3(V - \dot{\alpha}_2)$$

$$(e_3, e_2, e_3) = \frac{\partial V_1}{\partial e_1}(f_1(e_1) + g_1(e_1)(e_2 + \alpha_1(e_1)) + e_2(f_2(e_1, e_2 + \alpha_1(e_1)) + g_2(e_1, e_2 + \alpha_1(e_1))) + e_3(V - \dot{\alpha}_2)$$

All the underlined terms were designed (previously) to be $=L_{f_1+g_1\alpha_1}V_1(e_1)-k^2e_2^2<0$

So:
$$\dot{V}(e_1, e_2, e_3) = L_{f_1 + g_1 \alpha_1} V_1(e_1) - k^2 e_2^2 + e_2 g_2(e_1, e_2 + \alpha_1(e_1)) e_3 + e_3 (V - \dot{\alpha}_2)$$

Structurally it is exactly the same as it was in backstepping through 1.

Choose:

$$V = \dot{\alpha}_2 - e_2 g_2(e_1, e_2 + \alpha_1(e_1)) - k_3 e_3$$

 $\dot{\alpha}_2 - e_2 g_2(e_1, e_2 + \alpha_1(e_1))$ - "cancelling terms". $k_3 e_3$ - "stabilizing term".

In original coordinates:

$$u = \frac{1}{g_3(x_1, x_2, x_3)} (\dot{\alpha}_2 - (x_2 - \alpha_1(x_1))g_2(x_1, x_2) - k_3(x_3 - \alpha_2(x_1, x_2)) - f_3(x_1, x_2, x_3))$$

We need α_1, α_2 to compute u.

General backstepping recursion:

Systems in "strict feedback form":

$$\dot{x}_1 = f_1(x_1) + g_1(x_1)x_2, \quad x_1 \in \mathbb{R}^{n_1}$$

$$\dot{x}_2 = f_2(x_1, x_2) + g_2(x_1, x_2)x_3$$

. . .

$$\dot{x}_k = f_k(x_1, \dots x_k) + g_k(x_1, \dots x_k)u, \quad x_2, \dots x_k, u \in R$$

 $g_2, \ldots g_k$ nowhere zero, f_i, g_i (sufficiantly) smooth, as it is needed in α_i .

Backstepping recursion:

1. "Input data": a CLF V_1 for $\dot{x}_1 = f_1(x_1) + g_1(x_1)u_1$ with a (smooth) feedback $u_1 = \alpha_1 x_1$ which as. stabilizes the origin of $\dot{x}_1 = f_1(x_1) + g_1(x_1)u_1$.

2. for i = 2, ... k:

construct a CLF
$$V_i(e_i) = \frac{1}{2}e_i^2$$
, $V = \sum_{j=1}^i V_j(e_j)$ and a feedback α_1 which as. stabilizes origin of $(e_1, \dots e_i) = (x_1, x_2 - \alpha_1(x_1), \dots, x_i - \alpha_{i-1}(x_1, \dots x_{i-1}))$

$$\alpha_i(x_1, \dots x_i) = \frac{1}{g_i}(\dot{\alpha}_{i-1} - \frac{\partial V_{i-1}}{\partial e_{i-1}}g_{i-1} - k_i(x_i - \alpha_{i-1} - f_i)$$

3. apply $u = \alpha_k(x_1, \dots x_k)$

Backstepping and CLFs:

Backstepping is sensitive to uncertainties in f_i, g_i (due to cancelling terms) \implies Sontag's formula is more practical \implies we can use it since V is CLF.

Error system is input affine (using input transformation) $\dot{e} = f(e) + g(e)V$

with
$$f(e) = \begin{pmatrix} f_1(e_1) + g_1(e_1)(e_2 + \alpha_1(e_1)) \\ \dots \\ -\alpha_{k-1} \end{pmatrix}, g(e) = \begin{pmatrix} 0 \\ 0 \\ \dots \\ 0 \\ 1 \end{pmatrix}$$

Claim:
$$V(e) = \sum_{i=1}^{k} V_i(e_i) \text{ is a CLF.}$$

Proof. For input affine systems we need to show $L_gV=0 \implies L_fV<0, \forall e\neq 0$.

$$\dot{V}(e) = L_{f_1 + g_1 \alpha_1} V_1(e_1) - \sum_{i=2}^{k-1} k_i e_i^2 + e_{k-1} g_{k-1}(\dots) e_k - e_k \dot{\alpha}_{k-1} + e_k u.$$

Here $e_k u = L_g V$ and the rest is $L_f V$. Assume $L_g V = 0 \iff e_k = 0$

$$\implies L_f V = L_{f_1 + g_1 \alpha_1} V_1(e_1) - \sum_{i=2}^{k-1} k_i e_i^2 < 0 \quad \forall e \neq 0 \text{ with } e_k = 0.$$

 \implies We can apply Sontag's formula to construct V.

This theory can be extended to systems with $x_2, \ldots x_k, u \in \mathbb{R}^m$ ("block backstepping").

Systems with inputs and outputs 5

Study/control systems $\dot{x} = f(x, u)$ with "output" y(t) = W(x(t))

5.1 Sliding mode control

Motivating example

$$\dot{x_1} = x_2$$

$$\dot{x_2} = u \Rightarrow \dot{y} = x_2 + u$$

$$y = x_1 + x_2$$

Choose:

$$u = \begin{cases} -x_2 - 1, & y > 0 \\ -x_2 + 1, & y < 0 \\ -x_2, & y = 0 \end{cases}$$
$$\Rightarrow \dot{y} = \begin{cases} -1, & y > 0 \\ +1, & y < 0 \\ 0, & y = 0 \end{cases}$$

Solutions(Laratheodory) are if y(0) > 0, then

$$y(t) = \begin{cases} y(0) - t, & t \le y(0) \\ 0, & t > y(0) \end{cases}$$

If y(0) < 0, then

$$y(t) = \begin{cases} y(0) + t, & t \le y(0) \\ 0, & t > -y(0) \end{cases}$$

Key property: choose u s.t. y(t) goes to zero in finite time $\Rightarrow x(t)$ tends $\{(x_1, x_2) \in \mathbb{R}^2 | x_1 + x_2 = 0\}$ in finite time

Consider dynamics on S

$$\begin{cases} \dot{x_1} = x_2(x_2 = -x_1 \text{ if } y = 1) = -x_1 \\ \dot{x_2} = u = -x_2 \end{cases}$$

globally as stable

Two "phases"

- 1. solutions converge to S in finite time
- 2. solutions converge to zero ("on S") asymptotically

 \rightsquigarrow "sliding mode" control

Remark: in (1) "finite time convergence is crucial"

General procedure:

$$\dot{x} = f(x) + q(x)uy = h(x) = s(x)$$

$$f: \mathbb{R}^n \to \mathbb{R}^n, \ y: \mathbb{R}^n \to \mathbb{R}^n, \ s: \mathbb{R}^n \to \mathbb{R}$$

u - scalar input, s(x) - sliding

single input, single output

Assumptions: y has relative degree 1, well - defined globally, i.e. $L_g s(x) \neq 0 \ \forall \in \mathbb{R}^n$

Two-step approach:

- 1. Bring x(t) to $S := \{x \in \mathbb{R}^n | S(x) = 0\}$ in finite time
- 2. Have x(t) going to zero asymptotically (on S)
 - switching between nodes 1 and 2
 - mode 2 is "sliding mode"

How are 1 + 2 achieved?

• Design of sliding manifolds crucial!

Need: For y(t) = 0 for all $t \ge 0$. All solutions convergeto the origin, i.e., "zero dynamics" have globally asymptotically stable origin.

How? e.g. systems in "regular form" $x = [\eta \xi]'$

$$\dot{\eta} = f_1(\eta, \xi)$$

$$\dot{\xi} = f_2(\eta, \xi) + g_2(\eta, \xi)u$$

Choose $s(x) = \eta - \phi(\eta)$, where ϕ asymptotically stabilizes zero dynamics $\dot{\eta} = f_1(\eta, \phi(\eta))$ (and $\phi(0) = 0$) Ex. 1.9 in Khalil

• Converging to sliding manifold in finite time: $\rightsquigarrow \dot{y} = L_f s(x) + L_g s(x) u$, where $L_g s(x) \neq 0$. Obvious choice to render S invariant is $u = -\frac{L_f S(x)}{L_g s(x)}$ (mode 2, behaviour on S)

Asin motivating example, add

$$\left\{ \begin{array}{ll} -\hat{u}/L_g s(x) & y>0 \\ \hat{u}/L_g s(x) & y<0 \end{array} \right.$$

where $\hat{u} > 0$

$$u = -\frac{1}{L_q s(x)} (L_f s(x) + \hat{u} sgn(s(x)))$$

$$\rightsquigarrow \dot{y} = -\hat{u}sgn(y)$$

→ (caratheodory) solutions converge to zero in finite time

 $\rightsquigarrow x(t)$ converges to S in finite time

Control Lyapunov perspective

$$V(X) = \frac{1}{2}s(x)^2$$

$$\dot{V}(x) = s(x)\dot{s}(x) = s(x)(L_f s(x) + L_g s(x)u) = -s(x)sgn(s(x))\hat{u} = |s(x)|\hat{u} < 0 fors(x) \neq 0$$

Consider
$$W = \sqrt{2v} \leadsto^{s \neq 0} \dot{w} = \sqrt{2}, \ \frac{1}{2\sqrt{v}} \dot{v} = -\hat{u}$$

 $\leadsto w$ converges to 0 in finite time $\Rightarrow V$ converges to 0 in finite time $\Rightarrow S(x(t))$ converges to 0 in finite time.

Example.

$$\dot{x_1} = x_2 + x_1 \sin(x_2)
\dot{x_2} = x_2^2 + x_1 + u$$
(10)

Choose $s(x) = x_2 + 2x_1$, where $+2x_! := \phi(x_1)$ on S: $\dot{x_1} = -2x_1 + x_1 sin(-2x_1) \rightsquigarrow$ asymptotically stable

$$\dot{s} = x_2^2 + x_1 + u - 2x_2 - 2x_1 sin(x_2) \implies u = -(x_2^2 + x_1 - 2x_2 - 2x_1 sin(x_2) + \hat{u}sgn(x_2 - 2x_1)), \ \hat{u} > 0$$
 \implies yields finite-time convergence to S .

Alternative sliding mode controllers

$$u = -\frac{1}{L_g s(x)} (L_f s(x) + \hat{u} sgn(s(x))), \ \hat{u} > 0$$

In particular

$$u = -\frac{1}{L_q s(x)} (L_f s(x) + \hat{u} | L_g s(x) | sgn(s(x)))$$

→ ensure robustness w.r.t. "matched uncertainties"

$$\dot{x} = f(x) + g(x)\sigma(x) + g(x)u$$

 $\sigma: \mathbb{R}^n \to \mathbb{R}$, bounded (i.e., $|\sigma(x)| \leq c \ \forall x \in \mathbb{R}^n$)

Why?
$$V(x) = \frac{1}{2}s(x)^2$$

$$\dot{V} = s(x)(L_f s(x) + L_g s(x)u + L_g s(x)\sigma(x)) = -s(x)sgn(s(x))\hat{u}|L_g s(x)| + s(x)L_g s(x)\sigma(x) \le -|s(x)||L_g s(x)||(\hat{u} - c)||L_g s(x)||L_g s(x)||L_g$$

$$u = -\frac{1}{L_g s(x)} (L_f s(x) + (\hat{u} + \beta(x)|L_g s(x)|) sgn(s(x)))$$

ensures robustness w.r.t. matched uncertainties s.t. $\sigma(x) \leq \beta(x) \ \forall x \in \mathbb{R}^n$

Example 2

Example.

$$\dot{x_1} = x_2 + x_1 \sin(x_2)$$

 $\dot{x_2} = \theta x_2^2 + x_1 + u$

$$|\theta| \le 2 \leadsto |\theta x_2^2| \le 2x_2^2 = \beta(x)$$

$$\dot{s} = \theta x_2^2 + x_1 + u + 2x_1 + 2x_1 \sin x_2$$

$$u = -(x_1 + 2x_1 + 2x_1 \sin x_2 + \hat{u} \sin x_1(s(x)) + 2x_2^2 \sin x_1(s(x)))$$

$$L_f s(x) = x_1 + 2x_1 + 2x_1 \sin x_2$$

$$\rightarrow \dot{s} = -\hat{u}sgn(s(x)) + x_2^2(\theta - 2sgn(s(x))) \Rightarrow \text{finite -time convergence to } S.$$

Remedy: replace sign-function by saturated slope (continuous approximation) can be extended to multi-input systems $u \in \mathbb{R}^m \to s : \mathbb{R}^n \to \mathbb{R}^m$

5.2 Dissipativity

Dissipativity: Generalization of Lyapunov theory to systems w inputs and outputs

$$\dot{x} = f(x, u) \quad x(0) = x_0 \quad f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n
y = h(x) \qquad h : \mathbb{R}^n \to \mathbb{R}^p$$
(11)

Definition:

- storage function $s: \mathbb{R}^n \to \mathbb{R}, x \to S(x)$ nonnegative (i.e., $s(x) \geq 0 \ \forall x \in \mathbb{R}^n$)
- supply rate $s: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}, (u, y) \to s(u, y)$

Definition: System (11) is dissipative w.r.t. the supply rate s if there exists a storage function S s.t. $\forall x_0 \in \mathbb{R}, \forall t \geq 0, \forall u : [0, t] \to \mathbb{R}^m$

$$S(x(t)) \le S(x_0) + \int_0^t s(u(\tau), y(\tau)) d\tau$$

First item - storage at time t, second item - initial storage, the last item - supply delivered over [0, t]

"dissipation inequality" (DIE)

Interpretation:

- "Dissipative systems dissipate storage/stored energy"
- "No storage/energy can be created internally"
- positive s "supplied" energy/ storage
 negative s "extracted" energy / storage

Remark:

- If S is differentiable, DIE is equivalent to $\dot{S}(x) \leq s(u,y) \ \forall u,x$
- Dissipation (rate) is defined as $d(x, u) = s(u, h(x)) \dot{S}(x) \ge 0$

Examples of dissipative systems:

	supply rate	input	output	storage function
electrical	$u \cdot i$	voltage	current	energy storage in all capacitors and inductors
mechanical	$F \cdot V$	force	velocity	${ m Hamiltonian} = { m kinetic} + { m potential} \; { m energy}$
thermo-dynamics	Q+W	rate of hate	rate of work	internal energy
	$-\frac{a}{T}$		temperature	entropy

How do we computer storage functions?

- in general difficult (similar to computing Lyapunov functions)
- characterization via optimization problem

Introduce "available storage"

$$S_a(x) := \sup_{u:[0,T] \to \mathbb{R}^m, T \ge 0, x(0) = 0} \left(-\int_0^T s(u(\tau), y(\tau))\right)$$

the maximum of energy we can extract

Theorem 5.1. System (11) is dissipative w.r.t. the supply rate s iff $S_a(x) < \infty$ for all $x \in \mathbb{R}^n$

Moreover, if $S_a(x) < \infty$ for all $x \in \mathbb{R}^n$, then S_a is a storage function and $S(x) \ge S_a(x) \ \forall x \in \mathbb{R}^n$ for all storage functions S.

Proof. Sketch of proof. " $S_a(x) < \infty \Rightarrow$ dissipativity". $S_a(x) \ge 0 \ \forall x \in \mathbb{R}^n$ by definition (can take T = 0)

$$S_{a}(x) = sup_{u[0,T] \to \mathbb{R}^{m}, T \geq 0, x(0) = 0} - \int_{0}^{T} s(u(\tau), y(\tau)) d\tau \geq^{*} - \int_{0}^{t} s(u(\tau), y(\tau)) d\tau + sup_{u[t,t+T] \to \mathbb{R}^{m}, T \geq 0, x(t) = x(t)} - \int_{t}^{t+T} s(u(\tau), y(\tau)) d\tau \leq^{*} - \int_{0}^{t} s(u(\tau), y(\tau)) d\tau + sup_{u[t,t+T] \to \mathbb{R}^{m}, T \geq 0, x(t) = x(t)} - \int_{t}^{t+T} s(u(\tau), y(\tau)) d\tau \leq^{*} - \int_{0}^{t} s(u(\tau), y(\tau)) d\tau + sup_{u[t,t+T] \to \mathbb{R}^{m}, T \geq 0, x(t) = x(t)} - \int_{t}^{t+T} s(u(\tau), y(\tau)) d\tau \leq^{*} - \int_{0}^{t} s(u(\tau), y(\tau)) d\tau + sup_{u[t,t+T] \to \mathbb{R}^{m}, T \geq 0, x(t) = x(t)} - \int_{t}^{t+T} s(u(\tau), y(\tau)) d\tau \leq^{*} - \int_{0}^{t} s(u(\tau), y(\tau)) d\tau + sup_{u[t,t+T] \to \mathbb{R}^{m}, T \geq 0, x(t) = x(t)} - \int_{t}^{t+T} s(u(\tau), y(\tau)) d\tau + sup_{u[t,t+T] \to \mathbb{R}^{m}, T \geq 0, x(t) = x(t)} - \int_{t}^{t+T} s(u(\tau), y(\tau)) d\tau + sup_{u[t,t+T] \to \mathbb{R}^{m}, T \geq 0, x(t) = x(t)} - \int_{t}^{t+T} s(u(\tau), y(\tau)) d\tau + sup_{u[t,t+T] \to \mathbb{R}^{m}, T \geq 0, x(t) = x(t)} - \int_{t}^{t+T} s(u(\tau), y(\tau)) d\tau + sup_{u[t,t+T] \to \mathbb{R}^{m}, T \geq 0, x(t) = x(t)} - \int_{t}^{t+T} s(u(\tau), y(\tau)) d\tau + sup_{u[t,t+T] \to \mathbb{R}^{m}, T \geq 0, x(t) = x(t)} - \int_{t}^{t+T} s(u(\tau), y(\tau)) d\tau + sup_{u[t,t+T] \to \mathbb{R}^{m}, T \geq 0, x(t) = x(t)} - \int_{t}^{t+T} s(u(\tau), y(\tau)) d\tau + sup_{u[t,t+T] \to \mathbb{R}^{m}, T \geq 0, x(t) = x(t)} - \int_{t}^{t+T} s(u(\tau), y(\tau)) d\tau + sup_{u[t,t+T] \to \mathbb{R}^{m}, T \geq 0, x(t) = x(t)} - \int_{t}^{t+T} s(u(\tau), y(\tau)) d\tau + sup_{u[t,t+T] \to \mathbb{R}^{m}, T \geq 0, x(t) = x(t)} - \int_{t}^{t+T} s(u(\tau), y(\tau)) d\tau + sup_{u[t,t+T] \to \mathbb{R}^{m}, T \geq 0, x(t) = x(t)} - \int_{t}^{t+T} s(u(\tau), y(\tau)) d\tau + sup_{u[t,t+T] \to \mathbb{R}^{m}, T \geq 0, x(t) = x(t)} - \int_{t}^{t+T} s(u(\tau), y(\tau)) d\tau + sup_{u[t,t+T] \to \mathbb{R}^{m}, T \geq 0, x(t) = x(t)} - \int_{t}^{t+T} s(u(\tau), y(\tau)) d\tau + sup_{u[t,t+T] \to \mathbb{R}^{m}, T \geq 0, x(t) = x(t)} - \int_{t}^{t+T} s(u(\tau), y(\tau)) d\tau + sup_{u[t,t+T] \to \mathbb{R}^{m}, T \geq 0, x(t) = x(t)} - \int_{t}^{t+T} s(u(\tau), y(\tau)) d\tau + sup_{u[t,t+T] \to \mathbb{R}^{m}, x(t) = x(t)} - \int_{t}^{t+T} s(u(\tau), y(\tau)) d\tau + sup_{u[t,t+T] \to \mathbb{R}^{m}, x(t) = x(t)} - \int_{t}^{t+T} s(u(\tau), y(\tau)) d\tau + sup_{u[t,t+T] \to \mathbb{R}^{m}, x(t) = x(t)} - \int_{t}^{t+T} s(u(\tau), y(\tau)) d\tau + sup_{u[t,t+T] \to \mathbb{R}^{m}, x(t) = x(t)} - \int_{t}^{t+T} s(u(\tau), y(\tau)) d\tau$$

the last item is $S_a(x(t))$,

$$\Rightarrow = S_a(x(t)) - \int_0^t s(u(\tau), y(\tau)) d\tau$$

and this is DIE $\Rightarrow S_a$ is a storage function

Note for (*): "suboptimal" to first transfer system to x(t) and then extract maximum energy starting of x(t)

"Dissip. $\Rightarrow S_a(x) < \infty$ "

From DIE:
$$S(x_0) \ge S(x(T)) - \int_0^T s(u(\tau), y(\tau)) d\tau \ge - \int_0^T s(u(\tau), y(\tau)) d\tau$$

for all
$$x_0$$
, for all $T \ge 0$, all $u(\cdot) \Rightarrow S(x_0) \ge \sup_{u:[0,T] \to \mathbb{R}^m, \ T \ge 0, \ x(0) = x_0} - \int_0^T s(u(\tau), y(\tau)) d\tau = S_a(x)$

$$\Rightarrow S_a(x) < \infty \ \forall x \in \mathbb{R}^n \text{ and } S \geq S_a \text{ for all storage function } S.$$

Another special supply rate: "required supply"

$$S_r(x) := inf_{u:[-T,0] \to \mathbb{R}^m, \ T \ge 0, \ x(-T) = x^*, \ x(0) = x} \int_T^0 s(u(\tau), y(\tau)) d\tau$$

Theorem 5.2. Assume that end state $x \in \mathbb{R}^n$ is readable from x^* . If system (11) is dissipative w.r.t. the supply rate s, then for all storage functions S

$$S(x) \le S_r(x) + S(x^*) \ \forall \in \mathbb{R}^n$$

Furthermore, $S_r(x) + S(x^*)$ is a storage function.

Proof. Sketch of proof.

Consider $u:[-T,0]\to\mathbb{R}^n$ which transfers the system from x^* to x

$$S(x) - S(x^*) \le [byDIE]inf_{u[-T,0] \to \mathbb{R}^n, \ T \ge 0, \ x(-T) = x^*, \ x(0) = x} \int_{-T}^{0} s(u(\tau), y(\tau)) d\tau = S_r(x)$$

Remark: Set of all storage functions is convex, i.e., $\alpha S_1 + (1 - \alpha)S_2$, $\alpha \in [0, 1]$ is a storage function (for S_1 , S_2 storage functions)

6 Exercises

6.1 Exercise 1

Problem 1:

Proof. For any $t \geq 0$, we have

$$\frac{d}{dt}V(x(t)) = \frac{d}{dt}(V \circ x)(t) = \langle \nabla V(x(t)), \frac{d}{dt}x(t) \rangle = \langle \nabla V(x(t)), f(x(t)) \rangle = L_f V(x(t))$$

Problem 2:

Proof.

Lemma 7. Given the assumptions in Problem 2, if there exists a solution $x:[0,+\infty]\to R^n, t\to x(t)$, of $\dot{x}=f(x)$ s.t. $x(t)\in K$ for any $t\geq 0$, where $k\subset R^n$ is a compact with $O\in K$ (O - origin), then $x(t)\xrightarrow{t\to +\infty} 0$.

Clearly, for any c > 0, $lev_{\leq c}V$ is positive invariant w.r.t $\dot{x} = f(x)$. Given c > 0, let $x_0 \in lev_{\leq c}V$, i.e., $V(x_0) \leq c$. Then, for any $t \geq 0$

$$V(x(t)) = V(x_0) + \int_0^t \frac{d}{dt} V(x(\tau)) d\tau < V(x_0) \le c,$$

i.e. $x(t) \in lev_{\leq c}V$ for any $t \geq 0$.

Then, for any $x_0 \in lev_{\leq c}V$ there exists a solution $x:[0,+\infty] \to R^n$ of $\dot{x}=f(x)$ s.t. $x(t) \in lev_{\leq c}V$ for all $t \geq 0$. Clearly, $O \in lev_{\leq c}V$. We conclude by using the above Lemma $(K = lev_{\leq c}V)$.

Problem 3:

Proof. Let r > 0. By assumption, there exists c > 0 s.t. $\overline{B(0,r)} \subset lev < v$.

Since any bounded set $lev_{\leq c}V$ is a subset of the region of attraction, and since the sublevel sets are arbitrary large, R^n is also the region of attraction.

A condition that ensures that for any c > 0, $lev_{\leq c}V$ is bounded is $V(x) \xrightarrow{||x|| \to +\infty} +\infty$.

Problem 4:

Proof. Let $P: \mathbb{R}^2 \to \mathbb{R}^2$ be continuously differentiable. Consider

$$m\dot{v} = -g\nabla P(q).$$

Consider $x=(q,v), \dot{q}=v, \dot{v}=-\frac{g}{m}\nabla P(q)$. Let $H:\mathbb{R}^2\to\mathbb{R}$ be defined by

$$H(q, v) = \frac{1}{2}||v||^2 + \frac{g}{m}P(q).$$

We have

$$\begin{pmatrix} \dot{q} \\ \dot{v} \end{pmatrix} = \begin{pmatrix} & I \\ -I & \end{pmatrix} \nabla H(q,v)$$

Since P is positive definite, then H is positive definite.

Then

$$L_{\begin{pmatrix} & I \\ -I & \end{pmatrix} \nabla H} H(q,v) = \langle \nabla H(q,v), \begin{pmatrix} & I \\ -I & \end{pmatrix} \nabla H(q,v) \rangle = 0 \quad \forall (q,v) \in R^2 \times R^2$$

 \implies the origin is stable.

Problem 5:

Proof. For any $t \geq 0$, we have

$$\frac{d}{dt}V(t,x(t)) = \frac{d}{dt}(V \circ (id_R,x))(t) = [id_R : R \to R, t->t] = \left\langle \begin{pmatrix} \frac{\partial}{\partial t}V(t,x(t))\\ \frac{\partial}{\partial x}V(t,x(t)) \end{pmatrix}, \frac{d}{dt}(id_R(t),x(t)) \right\rangle = \left\langle \begin{pmatrix} \frac{\partial}{\partial t}V(t,x(t))\\ \frac{\partial}{\partial x}V(t,x(t)) \end{pmatrix}, \begin{pmatrix} 1\\ f(t,x(t)) \end{pmatrix} = \frac{\partial}{\partial t}V(t,x(t)) + \left\langle \frac{\partial}{\partial x}V(t,x(t)), f(t,x(t)) \right\rangle = L \begin{pmatrix} 1\\ f \end{pmatrix} V(x(t)).$$

$$g(t,x(t)) := \begin{pmatrix} 1 \\ f(t,x(t)) \end{pmatrix}$$

Problem 6:

Proof. Consider $\dot{x} = a \sin(\omega t)$, $x(0) = x_0 \in R$ $a, \omega > 0$.

This is solved by $x(t) = -\frac{a}{\omega}\cos(\omega t) + \frac{a}{\omega} + x_0$.

Clearly, x is bounded on $[0, +\infty]$ since $x(t) \ge x_0$, and $x(t) \le x_0 + 2\frac{a}{\omega}$ for any $t \ge 0$.

Choose $\varepsilon = \frac{a}{\omega}$ and $t_0 = 0$. Then $\forall \delta > 0 \ \exists x_0 \in B(0, \delta)$, namely x_0 , s.t. $\exists t \geq t_0$, namely $t = \frac{\pi}{\omega}$, with $x(t) \notin B(0,\varepsilon) \ (x(\frac{\pi}{\omega}) = 2\frac{a}{\omega} > \varepsilon).$

Short notes:

Problem 7:

Take $V(t, x) = \frac{1}{2}x^{2}$.

Problem 8:

Take $V(t,x) = x_1^2 + (1 + e^{-2t})x_2^2$.

6.2Exercise 2

Problem 1:

Proof. a) Since α_1 is continuous and strictly increasing:

$$\forall x, y \in [0, \delta), x < y \quad \alpha_1(x) < \alpha_1(y)$$

 $\implies \alpha_1$ is injective, i.e.

$$\forall x, y \in [0, \delta), x \neq y \implies \alpha_1(x) \neq \alpha_1(y).$$

Clearly, $\alpha_1:[0,\delta)\to\alpha_1([0,\delta))$ is surjective, i.e.

$$\forall y \in \alpha_1([0,\delta)) \ \exists x \in [0,\delta): \ \alpha_1(x) = y$$

Thus α_1 is bijective. Define $\alpha_1^{-1}:[0,\alpha_1(\delta))\to[0,\delta)$ by $\alpha_1^{-1}(\alpha_1(x))=x$.

- b) From a) we have $\alpha_3^{-1} \in K$. Since $\alpha_3 \in K_\infty, \alpha_3 1$ is defined om $[0, +\infty)$ and $\alpha_3^{-1}(r) \xrightarrow{r \to \infty} \infty$
- c) Let $\alpha = \alpha_1 \circ \alpha_2$. Then we have $\alpha(0) = \alpha_1(\alpha_2(0)) = 0$ and $\alpha(r) > 0$ whenever r > 0. Moreover, for any x, y:

$$x < y \implies \alpha_2(x) < \alpha_2(y) \implies \alpha(x) = \alpha_1(\alpha_2(x)) < \alpha_1(\alpha_2(y)) = \alpha(y)$$

It is continuous (as composition of continuous functions).

d) From c) we have $\alpha := \alpha_3 \circ \alpha_4 \in K, \alpha$ is defined on $[0, +\infty)$ since $\alpha_3, \alpha_4 \in K_\infty$ and

$$r \to +\infty \implies \alpha_4(r) \to +\infty \implies \alpha(r) \to +\infty$$

e) For each $s, r \mapsto \beta(\alpha_2(r), s)$ is of class K.

Thus $r \mapsto \alpha_1(\beta(\alpha_2(r), s)) \in K$.

For each $r, s \mapsto \beta(\alpha_2(r), s)$ decreases.

Hence, $s \mapsto \alpha_1(\beta(\alpha_2(r), s))$ decreases.

Moreover,

$$\alpha_1(\beta(\alpha_2(r),s)) \xrightarrow{s \to +\infty} 0$$

Problem 3:

Proof. For u=0 the origin is UGAS. Consider $V:[0,+\infty)\times R\to R,\ (t,x)\mapsto \frac{1}{2}x^2$. We have

$$\frac{\partial}{\partial t}V(t,x) + \frac{\partial}{\partial x}V(t,x)f(t,x,u) = (\sin(t)-2)x^2 + xu \leq -x^2 + |x||u| = -(1-\theta)x^2 - \theta x^2 + |x||u|, \ \ \theta \in (0,1)$$

Hence, whenever $|x| \geq \frac{|u|}{\theta}$, the system is ISS with $\gamma = \frac{r}{\theta}$.

Problem 4:

Proof.

$$\dot{x} = -x + (x^2 + 1)d\tag{12}$$

$$\dot{x} = -2x - x^3 + (x^2 + 1)d\tag{13}$$

System (12): Clearly, the system is 0-GAS. However, for d=1 and x>1 we have $x^2+1>x$.

$$f(x,1) = -x + (x^2 + 1) > 0$$

and thus $\dot{x} > 0$. Hence, if $x(0) = x_0 > 1$, the solution diverges (in finite time). \implies System (12) isn't ISS.

System (13): It is 0-GAS. Moreover, for any finite d there exists a "large" x s.t.

$$2x + x^3 > (x^2 + 1)d$$

$$\implies f(x, d) = -2x - x^3 + (x^2 + 1)d < 0$$

and $\dot{x} < 0 \implies \text{System 13 is ISS}$.

Consider $V: R \to R, x \mapsto \frac{1}{2}x^2$ s.t

$$V'(x)f(x,d) = -2x^2 - x^4 + x(x^2 + 1)d \le -x^2 - x^2(x^2 + 1) + (x^2 + 1)|x||d|$$

Hence, whenever $|x| \geq |d|$,

$$V'(x)f(x,d) \le -x^2$$

s.t. system (13) is ISS with $\gamma(r) = r$.

Problem 5:

Proof.

$$\langle \nabla V(x), -\nabla V(x) + \delta u \rangle \leq -||\nabla V(x)||^2 + |\langle \nabla V(x), \delta u \rangle| \leq ||YI|| \leq -||\nabla V(x)||^2 + \frac{1}{2}||\nabla V(x)||^2 + \frac{\delta^2}{2}||u||^2$$

Young's inequality:

$$\forall x,y: \ |\langle x,y\rangle| \leq \varepsilon \frac{||x||^p}{p} + \frac{||y||^q}{\varepsilon q}, \ p,q > 1, \frac{1}{p} + \frac{1}{q} = 1, \varepsilon > 0$$

Hence, whenever $||x|| > \frac{\delta}{\sqrt{c}}||u||, t \mapsto ||x(t)||$ is decreasing.

Moreover whenever $||x|| \ge \frac{\delta}{\sqrt{c\theta}} ||u||, \theta \in (0,1)$, we have $\langle \nabla V(x), -\nabla V(x) + \delta u \rangle \le -\frac{c}{2} (1-\theta) ||x||^2 \Longrightarrow$ ISS.

6.3 Exercise 3

Motivation: Lyapunov Theory

$$\dot{x} = f(x, u)$$

 $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$

Definition. (CLF) A function $V: \mathbb{R}^n \to \mathbb{R}$ is a CLF if it is continuous differentiable, positive definite, radially unbounded and $\forall x \neq 0 \text{ inf}_u < \nabla V(x), f(x, u) > < 0$

In order to find CLFs, we restrict our analysis to input -affine systems

$$\dot{x} = f(x) + G(x)u$$

where $f: \mathbb{R}^n \to \mathbb{R}^n$, $G: \mathbb{R}^n \to \mathbb{R}^{n \times m}$

Proposition: A continuous, differentiable, positive definite and radially unbounded. $V: \mathbb{R}^n \to \mathbb{R}$ is a CLF iff

$$\forall x \neq 0 \ L_G V(x) = 0 \Rightarrow L_f V(x) < 0$$

Image to be inserted

Problem 1

Consider $\dot{x} = \cos(x) + (1 + e^x)u$ where $f(x) = \cos(x)$ - drift and $g(x) = 1 + e^x$

Let $V: \mathbb{R} \to \mathbb{R}$, $x \mapsto \frac{1}{2}x^2$. Clearly, continuous differentiable, positive definite and radially unbounded. Moreover, for any nonzero x, we have $L_GV(x) \neq 0$.

Thus, for any $x \neq 0$, there exists a control that readers $\langle \nabla V(x), f(x) + g(x)u \rangle$ negative. Givn this CLF, there exists a state feedback u = u(x), e.g.

$$u(x) = -\frac{kx + \cos(x)}{1 + e^x}, \ k > 0$$

Problem

Consider

$$\dot{x_1} = -x_1^3 + x_2 e^{x_1} \cos(x_2)$$
$$\dot{x_2} = x_1^5 \sin(x_2) + u$$

Take $V: \mathbb{R}^2 \to \mathbb{R}, \ (x_1, x_2) \mapsto \frac{1}{2}(x_1^2 + x_2^2)$

For any $x \neq 0$, we have

$$\inf_{u \in \mathbb{R}} (L_f V(x) + L_G V(x) u) = \begin{cases} L_f V(x), & \text{if } L_G V(x) = 0 \\ -\infty & \text{else} \end{cases}$$

In particular,

$$L_f V(x) = \dots = x_1(-x_1^3 + x_2 e_1^x cos(x_2)) + x_2 x_1^5 sin(x_2)$$

 $L_G V(x) = \dots = x_2$

However,

$$L_f V(x)|_{x_2=0} = -x_1^4 < 0 \ \forall x_1 \neq 0$$

Image to be inserted

Concluding that V is a CLF.

Problem 2:

 $\dot{x} = Ax + Bu$, input defined system where (A, B) is stabilizable, there exists $K \in \mathbb{R}^{m \times n}$ s.t. A + BK is Hurwitz (cf. KRT). The latter is equivalent to the existance $P = P^T > 0$ s.t. $P(A + BK) + (A + BK)^T P < 0$ (cf. Khalil theorem 4,6)

Let
$$V: \mathbb{R}^n \to \mathbb{R}, x \mapsto \langle x, Px \rangle$$
. Moreover, $\forall x \neq 0 \exists u = Kx \text{ s.t. } \langle \nabla V(x), Ax + Bu \rangle \langle 0, \text{ since} \rangle$
 $\langle \nabla V(x), Ax + Bu \rangle = u = Kx \langle x, (P(A + BK) + (A + BK)^T P)x \rangle \langle 0, \text{ since} \rangle$

In addition,

$$\forall \epsilon > 0 \exists \delta = \frac{\epsilon}{\|K\|} > 0 \ \forall x \neq 0, \ \|x\| < \delta \ \exists u = Kx \ \|u\| < \epsilon$$

s.t.
$$L_f V(x) + L_G V(x) u < 0$$
 since $||u|| = ||Kx|| \le ||K|| ||x|| < ||K|| \delta = \epsilon$

Problem 3

Let $P: \mathbb{R}^2 \to \mathbb{R}$ be continuous, differentiable consider

$$m\dot{v} = -g\nabla P(q) + F, \ m, g > 0$$

a) Hamiltonian form. Let x := (q, v). Then $\dot{x} = \left(-\frac{g}{m}\nabla P(q) + \frac{1}{m}F\right) = \begin{bmatrix} I \\ -I \end{bmatrix} \begin{bmatrix} \frac{g}{m}\nabla P(q) \\ v \end{bmatrix} + \begin{bmatrix} \frac{1}{m}I \end{bmatrix} F = \begin{bmatrix} I \\ -I \end{bmatrix} \nabla H(x) + G(x) \text{ given } H(x) = \frac{1}{2}\|\nu\|^2 + \frac{g}{m}P(q)$

b) "CLF". Take H as a CLF candidate. Then, for any x

$$< \triangledown H(x), \begin{bmatrix} & I \\ -I & \end{bmatrix} \triangledown H(x) + G(x)F > = < \triangledown H(x), \begin{bmatrix} & I \\ -I & \end{bmatrix} \triangledown H(x) > + < \triangledown H(x), G(x)F > = \\ [< \triangledown H(x), \begin{bmatrix} & I \\ -I & \end{bmatrix} \triangledown H(x) > = L_f H(x) = 0] = \frac{1}{m} < v, F > = 0$$

Strictly speaking, H is no CLF, but it reveals how to choose F s.t. the origin is GAS.

For any point x for which there exists no control F s.t. $\langle \nabla H(x), \begin{bmatrix} I \\ -I \end{bmatrix} \nabla H(x) + G(x)F \rangle \langle 0 \rangle$

Choose F = 0. Why? Using the Krasovsky-Lasallle inv. principle, we conclude that the origin is GAS, since any solution in $\{x|\dot{H}(x)=0\}$ verifies $v(t)\equiv 0$, implying $\dot{v}(t)\equiv 0$ s.t.

$$0 = -\frac{g}{m} \nabla P(q(t)) + \frac{1}{m} P(t)$$

The last part equals 0. Since F = 0 (by choice) and $\nabla P(q) = 0$ iff q = 0 we conclude that $\dot{H}(x) = 0$ can only be "maintained" at the origin.

Problem 4

Consider

$$\dot{x_1} = x_2$$

$$\dot{x_2} = -ux_2 + u^3$$

show that $V(x) = \frac{1}{2}x_1^2 + \frac{1}{2}(x_1 + x_2)^2$ is CLF and let $V: \mathbb{R}^n \to \mathbb{R}$ be defined by

$$\ddot{x} + u\dot{x} - u^3 = 0$$

For any x and u, we have $\langle \nabla V(x), f(x, u) \rangle = \cdots = x_1(2x_2 - ux_2 + u^3) + x_2(x_2 - ux_2 + u^3) = x_1h_1 + x_2h_2$

Image to be inserted

Hence if u < 0 and -u "large", then we can render $\langle \nabla V(x), f(x, u) \rangle < 0$.

6.4 Exercise 4

Consider

$$\begin{cases} \dot{x}_1 = f_1(x_1) + g_1(x_1)x_2\\ \dot{x}_2 = f_2(x_1) + g_2(x_1, x_2)u \end{cases}$$
(14)

Using the "preliminary control"

$$\begin{cases} \dot{x}_1 = f_1(x_1) + g_1(x_1)x_2 \\ \dot{x}_2 = \check{u} \end{cases}$$
 (15)

$$u = \frac{1}{g_2(x_1, x_2)} (\check{u} - f_2(x_1, x_2))$$

Idea: Look at the upper(-most) system only and consider x_2 as a "virtual control".

Assumptions: Suppose

- \exists CLF V_1 ;
- \exists (smooth) feedback α_1 s.t. $L_{f_1+g_1\alpha_1}V_1 < 0$.

Now, add and subtract $g_1\alpha_1$ in 15 s.t.

$$\begin{cases} \dot{x}_1 = f_1(x_1) + g_1(x_1)\alpha_1(x_1) + g_1(x_1)(x_2 - \alpha_1(x_1)) \\ \dot{x}_2 = \check{u} \end{cases}$$
 (16)

Next, introduce $(e_1, e_2) := (x_1 - 0, x_2 - \alpha_1(x_1))$ s.t.

$$\begin{cases}
\dot{e}_1 = f_1(e_1) + g_1(e_1)\alpha_1(e_1) + g_1(e_1)e_2 \\
\dot{e}_2 = \check{u} - \dot{\alpha}_1(e_1)
\end{cases}$$
(17)

Problem 1:

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u$$

Proof. 1. Choose "virtual control":

$$x_2 = -(k+1)x_1 =: \alpha_1(x_1), k > 0$$

The origin of $\dot{x}_1 = -kx_1$ is GAS.

(Take
$$V_1: R \to R$$
, $x_1 \mapsto \frac{1}{2}x_1^2$ s.t. $\dot{V}_1(x_1) = -kx_1^2 < 0$ for all $x_1 \neq 0$)

2. Error coordinates:

Let
$$(e_1, e_2) := (x_1 - 0, x_2 - \alpha_1(x_1))$$
 s.t.

$$\dot{e}_1 = -ke_1 + e_2$$

$$\dot{e}_2 = u + (k+1)(-ke_1 + e_2)$$

3. "Composite CLF":

Define $V: R \times R \to R$, $(e_1, e_2) \mapsto V_1(e_1) + \frac{1}{2}e_2^2$ s.t.

$$\dot{V}(e_1, e_2) = -ke_1^2 + e_2(u + (k+1)(-ke_1 + e_2) + e_1)$$

4. Choose control:

Let
$$u = -e_1 - (k+1)(e_2 - ke_1) - ke_2$$

s.t. $\dot{V}(e_1, e_2) = -ke_1^2 - ke_2^2 < 0$ for all $(e_1, e_2) \neq (0, 0)$

Remark: The closed-loop system reads:

$$\begin{pmatrix} \dot{e}_1 \\ \dot{e}_2 \end{pmatrix} = \begin{pmatrix} -k & 1 \\ -1 & -k \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \end{pmatrix}$$

Problem 2:

$$\dot{x}_1 = x_1(x_2 - k), \quad k > 0$$
$$\dot{x}_2 = u$$

Proof. 1. $x_2 = 0 =: \alpha_1(x_1)$

The origin of $\dot{x}_1 = -kx_1$ is GAS $(V_1(x_1) = \frac{1}{2}x_1^2)$

2. $(e_1, e_2) := (x_1, x_2)$ s.t.

$$\dot{e}_1 = e_1(e_2 - k)$$
$$\dot{e}_2 = u$$

3. $V(e_1, e_2) = V_1(e_1) + \frac{1}{2}e_2^2$ s.t.

$$\dot{V}(e_1, e_2) = -ke_1^2 + e_2(e_1^2 + u)$$

4. $u = -e_1^2 - ke_2$

Problem 3:

$$\dot{x}_1 = x_1(x_2 - k)$$

$$\dot{x}_2 = x_2(x_3 - k) - x_1^2$$

$$\dot{x}_3 = u$$

Proof. 1. From problem 2:

$$\dot{x}_2 = x_2(x_3 - k) - x_1^2 = -x_1^2 - kx_2 = u$$
 in Problem 2.

The origin of

$$\dot{x}_1 = x_1(x_2 - k)$$
$$\dot{x}_2 = x_2(x_3 - k) - x_1^2$$

is GAS.

And this is true for $x_3 = 0 =: \alpha_2(x_1, x_2)$.

2.
$$(e_1, e_2, e_3) := (x_1 - 0, x_2 - \alpha_1(x_1), x_3 - \alpha_2(x_1, x_2))$$
 s.t.

$$\dot{e}_1 = e_1(e_2 - k)$$

$$\dot{e}_2 = e_2(e_3 - k) - e_1^2$$

$$\dot{e}_3 = u$$

3.
$$V(e_1, e_2, e_3) = V_1(e_1) + \frac{1}{2}e_2^2 + \frac{1}{2}e_3^2$$
 s.t.

4.
$$u = -e_2^2 - ke_3$$

Problem 4:

$$\dot{x}_1 = x_1(x_2 - k)$$

$$\dot{x}_2 = x_2(x_3 - k) - x_1^2$$

$$\dot{x}_3 = x_3(x_4 - k) - x_2^2$$

$$\dot{x}_4 = u$$

Proof. 1. Is GAS for

$$x_3(x_4 - k) - x_2^2 = -x_2^2 - kx_3$$

which is attained for $x_4 = 0 =: \alpha_3(x_1, x_2, x_3)$.

2.

$$\dot{e}_1 = e_1(e_2 - k)$$

$$\dot{e}_2 = e_2(e_3 - k) - e_1^2$$

$$\dot{e}_3 = e_3(e_4 - k) - e_2^2$$

$$\dot{e}_4 = u$$

. . .

3.
$$u = -e_3^2 - ke_4$$

Problem 5:

$$\dot{x}_1 = x_1(x_2 - k)$$

$$\dot{x}_2 = x_2(x_3 - k) - x_1^2$$

. . .

$$\dot{x}_i = x_i(x_{i+1} - k) - x_{i-1}^2$$

. . .

$$\dot{x}_n = u$$

Proof. We will always have $u=e_{n-1}^2-ke_n$. Let $V:R\times\cdots\times R\to R,\ (e_1,\ldots e_n)\mapsto \sum_{i=1}^n V_i(e_i),$ where $V_i(e_i)=\frac{1}{2}e_i^2,\ i=2,\ldots n.$ We have $\dot{V}(e_1,\ldots e_n)=L_{f_1+g_1\alpha_1}V_1(e_1)-k\sum_{i=2}^{n-1}e_i^2+e_nu+e_{n-1}g_{n-1}(x_1,\ldots x_{n-1})e_n-e_n\dot{\alpha}_{n-1}(x_1,\ldots x_{n-1}).$ We observe that for α_i being zero, the inequality

$$e_{n-1}g_{n-1}(x_1, \dots x_{n-1})e_n - e_n\dot{\alpha}_{n-1}(x_1, \dots x_{n-1}) + e_nu < 0$$

hence $e_{n-1}^2 e_n + e_n u < 0$ for non-zero e. It is solved by $u = e_{n-1}^2 - k e_n, \quad k > 0$.

6.5 Exercise 5

Consider the SISO system

$$\dot{x} = f(x) + g(x)(u + \sigma(x))$$
$$y = s(x)$$

 $f,g:R^n\to R^n,\ \sigma:R^n\to R$ and bounded, $s:R^n\to R$

Design steps for SMC:

- 1. If no output is provided, design a sliding surface $S := \{x \in \mathbb{R}^n | s(x) = 0\}$ s.t.
 - (a) the system has rel. degree one;
 - (b) for $y(t) \equiv 0$, all solutions converge to the origin ("zero dynamics" have GAS origin)
- 2. Choose a control s.t. the sliding surface is reached (in finite time), e.g.

$$v(x) = -\frac{1}{L_q s(x)} (L_f s(x) + \hat{u} \cdot sgn(s(x))), \quad \hat{u} > 0$$

Problem 1:

$$\dot{x}_1 = (x_2 - x_1)x_1^2$$
$$\dot{x}_2 = x_2 + u$$

Sliding surface $S, s: \mathbb{R}^2 \to \mathbb{R}, (x_1, x_2) \mapsto x_2$

Proof. (a) For the given S, we have $L_g s(x) = 1$ for any $x \in \mathbb{R}^2$. Moreover, from

$$\dot{s}(x) = L_f s(x) + L_g s(x) u$$

(we want = 0) we have that for

$$u = -\frac{L_f s(x)}{L_g s(x)} = -x_2$$

the "dynamics on S" (i.e. $x_2 = 0$) reduced to

$$\dot{\eta} = -\eta^3$$

whose origin is GAS.

(b) Consider

$$u = -\frac{1}{L_{a}s(x)}(L_{f}s(x) + \hat{u} \cdot sgn(s(x))) = -x_{2} - \hat{u} \cdot sgn(x_{2}), \quad \hat{u} > 0$$

such that x(t) "tends to S" in finite time (phase 1). Moreover, "on S", x(t) converges to the origin $t \to +\infty$ (phase 2).

Remark: Given a system in regular form

$$x = (\eta, \xi)^{T}$$
$$\dot{\eta} = f_1(\eta, \xi)$$

$$\dot{\xi} = f_2(\eta, \xi) + g_2(\eta, \xi)u$$

choose $s(x) = \xi - \Phi(\eta)$, s.t. Φ as. stabilizes $\dot{\eta} = f_1(\eta, \Phi(\eta))$.

Problem 2:

$$\dot{x}_1 = -x_1 \cos x_2 + x_1 x_2$$
$$\dot{x}_2 = x_1 \cos x_1 + \sigma(x) + u$$

Proof. (a) (For the design of sliding surface pretend that uncertainty $\sigma(x) = 0$) Let $S := \{x \in R^2 | s(x) = 0\}$ be def. by $s : R^2 \to R$, $(x_1, x_2) \mapsto x_2(-\Phi(x_1) = 0)$. We have $L_g s(x) = 1$ for all $x \in R^2$.

$$\dot{s}(x) = L_f s(x) + L_g s(x) u$$

(we want = 0) s.t. for $u = -\frac{L_f s(x)}{L_g s(x)} (= -x_1 \cos x_1)$ the "dynamics on S" (i.e. $x_2 = 0$) reads $\dot{n} = -n$

whose origin is GAS.

(b) Take

From

$$u = -\frac{1}{L_g s(x)} (L_f s(x) + (\hat{u} + \beta(x)|L_g s(x)|) \cdot sgn(s(x))) (= -x_1 \cos x_1 - (\hat{u} + (x_1^2 + x_2^2)) \cdot sgn(x_2)), \quad \hat{u} > 0$$

Consider the Lyapunov(-like) function $V(x) = \frac{1}{2}s(x)^2$ s.t.

$$\dot{V}(x) = s(x)(L_f s(x) + L_g s(x)(u + \sigma(x)))$$

Choosing u as above

$$\dot{V}(x) = s(x)(-(\hat{u} + \beta(x)|L_gs(x)|) \cdot sgn(s(x)) + \sigma(x)L_gs(x)) \le -(\hat{u} + \beta(x)|L_gs(x)|)|s(x)| + |\sigma(x)||L_gs(x)||s(x)| \le -\hat{u}|s(x)| < 0 \text{ for } s(x) \ne 0$$

Problem 3:

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -x_1^3 + \sigma(x) + u$$

$$s(x) = x_2 + x_1, \quad u = -x_2 + x_1^3 - 2 \cdot sgn(s(x))$$

Proof. (a) Given S, we have $L_g s(x) = 1$ for all $x \in \mathbb{R}^2$. The "dynamics on S" (i.e. $x_1 + x_2 = 0$) reads

$$\dot{\eta}_1 = -\eta_1$$

$$\dot{\eta}_2 = -\eta_2$$

whose origin is GAS.

(b) Take $V(x) = \frac{1}{2}s(x)^2$ s.t. $\dot{V}(x) = s(x)(L_f s(x) + L_g s(x)(u + \sigma(x))) \le -\hat{u}|L_g s(x)||s(x)| + |\sigma(x)||L_g s(x)||s(x)| \le ||\sigma(x)|| \le c] \le -(\hat{u} - c)|L_g s(x)||s(x)|.$ Hence, for $c < \hat{u} = 2$ there exists $\varepsilon > 0$ s.t. $\dot{V}(x) \le -\varepsilon|s(x)| < 0$ for $s(x) \ne 0$

6.6 Exercise 6

Problem 1:

$$\dot{x} = xu(x^2 + u)$$
$$\dot{y} = h(x)$$

$$\begin{array}{ll} s:R\times R\to R, & (u,y)\mapsto uy^2+u^2y\\ S:R\to R, & x\mapsto \frac{x^2}{2} \end{array}$$

Proof. Clearly, S is non-negative. Moreover: $\dot{S}(x) = x^2 u(x^2 + u) = x^4 u + x^2 u^2 = [h(x) = x^2] = s(u, x^2)$ for all $x, u \in R$ with $h: R \to R, x \mapsto x^2$.

Problem 2:

$$\dot{x} = u, \quad x(0) = x_0$$
$$y = x$$

$$s: R^n \times R^n \to R, \ (u,y) \mapsto < u,y>$$

Proof. For any $x_0 \in \mathbb{R}^n$, we have

$$S_a(x_0) = \sup_{u:[0,t]\to R^n, \ t\geq 0, \ x(0)=x_0} \left(-\int_0^t \langle u(\tau), y(\tau) \rangle d\tau\right) =$$

$$= \sup_{-//-} \left(-\frac{1}{2} \int_0^t \frac{d}{d\tau} ||x(\tau)||^2 d\tau\right) = \sup_{-//-} \left(-\frac{1}{2} ||x(t)||^2 + \frac{1}{2} ||x(0)||^2\right) \leq \frac{1}{2} ||x_0||^2$$

 \implies av. storage is finite \implies system is dissipative. Moreover, we have for any $x_0 \in \mathbb{R}^n$,

$$S_r(x_0) = \inf_{u:[-t,0] \to R^n, \ t \ge 0, \ x(-t) = 0, \ x(0) = x_0} \int_{-t}^0 \langle u(\tau), y(\tau) \rangle d\tau = \inf_{-//-} (\frac{1}{2}||x_0||^2 - \frac{1}{2}||x(-t)||^2) = \frac{1}{2}||x_0||^2$$

 $(S_a = S_r \implies \text{this is a unique stor. func.})$

Hence the (lossless) system is reachable (from 0 to any x_0).

Problem 3:

Proof. Consider the Lyapunov func. cand.
$$V(x) = S_1(x_1) + S_2(x_2)$$
 s.t.
$$\dot{V}(x) \leq S_1(u_1, y_1) + S_2(u_2, y_2) = S_1(u_1, y_1) + S_2(y_1, -u_1) = 0 \implies \text{origin is stable.}$$

Remark: the above problem captures many stability results (in the frequency domain). Particular choices of supply rates are:

- $s_i(u_i, y_i) = ||u_i||^2 ||y_i||^2, i = 1, 2$ (small-gain theorem);
- $s_i(u_i, y_i) = \langle u_i, y_i \rangle, i = 1, 2$ (positive operator theorem);
- $s_1(u_1, y_1) = \langle u_1 + ay_1, u_1 + by_1 \rangle$ $s_2(u_2, y_2) = -ab \langle u_2 - \frac{1}{a}y_2, u_2 - \frac{1}{b}y_2 \rangle$ (conic operator theorem).

Problem 4:

$$\dot{x} = f(x) + G(x)u$$
$$y = h(x)$$

$$s:R^m\times R^m\to R,\ (u,y)\mapsto ||u||^2-||y||^2$$

Proof. Take V = S s.t.

$$\dot{V}(x) \le ||u||^2 - ||h(x)||^2, \ \forall x \in \mathbb{R}^n, \ \forall u \in \mathbb{R}^m$$

Then the (continuous) state feedback $u = \gamma h(x)$ for some $|\gamma|^2 < 1$, s.t.

$$\dot{V}(x) \le (|\gamma|^2 - 1)||h(x)||^2 < 0, \ \forall x \ne 0$$

Problem 5:

Proof. Take $S(x) = \langle x, P_x \rangle$ s.t.

$$\dot{S}(x) = \langle x, (PA + A^T P)x \rangle + 2 \langle x, PBu \rangle$$

Add and subtract $\gamma^2 ||u||^2$ and $\frac{1}{\gamma^2} ||B^T P x||^2$.

$$\dot{S}(x) = \langle x, (PA + A^T P + \frac{1}{\gamma^2} PBB^T P) x \rangle + \gamma^2 ||u||^2 - \gamma^2 ||u||^2 + |u||^2$$

Add and subtract $||y||^2$.

$$\dot{S}(x) = \langle x, (PA + A^T P + \frac{1}{\gamma^2} PBB^T P + C^T C) x \rangle + \gamma^2 ||u||^2 - ||y||^2 - \gamma^2 ||u - \frac{1}{\gamma^2} B^T P x||^2$$

$$\dot{S}(x) \le \gamma^2 ||u||^2 - ||y||^2$$

6.7 Exercise 7

Definition. A mapping $\Phi: R \to R$, $u \mapsto \Phi(u)$, belongs to the sector

- $[0, +\infty]$ if $u\Phi(u) \ge 0$, $\forall u \in R$;
- $[\alpha, +\infty]$ if $u(\Phi(u) \alpha u) > 0$, $\forall u \in R$ and some $\alpha \in R$;
- $[0, \beta]$ if $\Phi(u)(\Phi(u) \beta u) \le 0$, $\forall u \in R$ and some $\beta \in R$;
- $[\alpha, \beta]$ if $(\Phi(u) \alpha u)(\Phi(u) \beta u) \le 0$, $\forall u \in R$ and some $\alpha, \beta \in R$;

Notation: we write, e.g., $\Phi \in [0, +\infty]$.

Problem 1:

$$\dot{x} = x^3 - kx + u, \ k > 0$$
$$y = x$$

Proof. Take, e.g., $S: R \to R, x \mapsto \frac{x^2}{2} \ (S \ge 0)$ s.t.

$$\dot{S}(x) = x^2(x^2 - k) + yu \le yu$$

whenever $x \in [-\sqrt{k}, \sqrt{k}]$.

Let $\bar{x} \in R$ and take $u = -\bar{x}^3 + k\bar{x}$ with init. condition $x(0) = \bar{x}$, s.t. we have $x(t) = \bar{x}$ for all $t \ge 0$. If the system is passive, then along this (constant) solution we must have

$$S(x(t)) - S(\bar{x}) \le \int_0^t u(\tau)y(\tau)d\tau, \ t \ge 0$$

This inequality, however, is violated for $\bar{x} \notin [-\sqrt{k}, \sqrt{k}]$ and hence $[-\sqrt{k}, \sqrt{k}]$ must be the largest interval.

Problem 2:

$$\dot{x} = -x + \frac{1}{\beta}h(x) + u, \ \beta > 0$$
$$y = h(x)$$

$$S(x) = \int_0^x h(\sigma) d\sigma, \ h \in [0, \beta]$$

Proof. Clearly, we have $S \geq 0$ since $h \in [0, \beta]$. Moreover,

$$\dot{S}(x) = S'(x)\dot{x} = \dot{x}\frac{d}{dx}\int_0^x h(\sigma)d\sigma = h(x)\dot{x} = \frac{1}{\beta}h(x)(h(x) - \beta x) + yu \le yu$$

since $h \in [0, \beta]$.

Problem 3:

$$H_1: \begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -x_1 + kx_2 + u, \ k > 0 \\ y = x_2 \end{cases}$$

Proof. Take $S: \mathbb{R}^2 \to \mathbb{R}$, $(x_1, x_2) \mapsto \frac{x_1^2}{2} + \frac{x_2^2}{2}$ s.t. $\dot{S}(x) = uy + ky^2$. Let $u = -\Phi(y)$, $\Phi: \mathbb{R} \to \mathbb{R}$ satisfying $\Phi \in [l, +\infty]$ for some l > k $(\nu_2 + \rho_1 > 0)$ s.t.

$$\dot{S}(x) = -y\Phi(y) + ky^2 \le -(l-k)y^2$$

Since the system H_1 is ZSO the origin is GAS.

Problem 4:

Proof. Take $S(x) = S_1(x_1) + S_2(x_2)$ s.t.

$$\dot{S}(x) \le \langle u_1, y_1 \rangle - \rho_1 ||y_1||^2 - \nu_1 ||u_1||^2 + \langle u_2, y_2 \rangle - \rho_2 ||y_2||^2 - \nu_2 ||u_2||^2$$

Using that

$$< u_1, y_1 > + < u_2, y_2 > = < u - y_2, y_1 > + < v + y_1, y_2 > = < u, y_1 > + < v, y_2 >$$

and

$$||u_1||^2 = ||u||^2 - 2 < u, y_2 > + ||y_2||^2$$

 $||u_2||^2 = ||v||^2 + 2 < v, y_1 > + ||y_1||^2$

$$\dot{S}(x) = - < \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \begin{pmatrix} (\nu_2 + \rho_1)I_m \\ (\nu_1 + \rho_2)I_m \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} > - < \begin{pmatrix} u \\ v \end{pmatrix}, \begin{pmatrix} \nu_1I_m \\ \nu_2I_m \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} > + < \begin{pmatrix} u \\ v \end{pmatrix}, \begin{pmatrix} I_m & 2\nu_1I_m \\ -2\nu_2I_m & I_m \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} > \leq [Coshi - Schwarz] \leq -a||(y_1, y_2)||^2 + b||(u, v)||||(y_1, y_2)|| + c||(u, v)||^2$$

with $a = \min\{\nu_2 + \rho_1, \nu_1 + \rho_2\} > 0$, $b = ||N|| \ge 0$ and $c = ||M|| \ge 0$.

Hence,
$$\dot{S}(x) \leq -\frac{1}{2a}(b||(u,v)||-a||(y_1,y_2)||)^2 + \frac{b^2}{2a}||(u,v)||^2 - \frac{a}{2}||(y_1,y_2)||^2 + c||(u,v)||^2 \leq \frac{b^2+2ac}{2a}||(u,v)||^2 - \frac{a}{2}||(y_1,y_2)||^2$$

Problem 5:

Proof. Take $V(x) = \langle x, Px \rangle$ s.t.

$$\dot{V}(x) = \langle x, (PA + A^T P)x \rangle - 2\Phi(y) \langle x, PB \rangle$$

Add and subtract
$$2\Phi(y)^2$$
 and $2\Phi(y)BCx$ yields
$$\dot{V}(x) = -\varepsilon < x, Px > -< x, L^TLx > -2\Phi(y) < x, PB - BC^T > -2\Phi(y)^2 + 2\Phi(y)(\Phi(y) - By) = -\varepsilon < x, Px > -|Lx - \sqrt{2}\Phi(y)|^2 + 2\Phi(y)(\Phi(y) - By) \le -\varepsilon < x, Px > .$$