Práctica Dirigida 6 Análisis y Modelamiento Numérico I

Alumno:

 \blacksquare Chowdhury Gomez, Junal Johir

20200092K

Enunciado

Use el método del punto fijo para encontrar las soluciones del sistema:

$$\begin{cases} x^2 + xy - 10 = 0\\ y + 3xy^2 - 57 = 0 \end{cases}$$

Inicie con los puntos x = 2.5 y y = 3.5.

Solución

Primero, reformulamos el sistema de ecuaciones para aplicar el método del punto fijo. Despejamos x y y en términos de las otras variables:

1. De la primera ecuación, despejamos x en términos de y:

$$x = \sqrt{10 - xy}$$

2. De la segunda ecuación, despejamos y en términos de x:

$$y = \sqrt{\frac{57 - y}{3x}}$$

Reformulamos estas ecuaciones para obtener funciones de iteración adecuadas:

$$\begin{cases} x_{n+1} = \frac{10}{x_n + y_n} \\ y_{n+1} = \sqrt{\frac{57 - y_n}{3x_n}} \end{cases}$$

Código en python

```
import numpy as np

def punto_fijo(x0, y0, max_iter=1000, tol=1e-6):
    x, y = x0, y0
    for i in range(max_iter):
        x_n1 = 10 / (x + y)
        y_n1 = np.sqrt((57 - y) / (3 * x))
        if np.abs(x_n1 - x) < tol and np.abs(y_n1 - y) < tol:
            break
        x, y = x_n1, y_n1
        print(f"Iteration {i + 1}: x = {x:.6f}, y = {y:.6f}")
    return x, y

x0 = 2.5
y0 = 3.5
x, y = punto_fijo(x0, y0)
print(f"Solucion encontrada: x = {x}, y = {y}")</pre>
```

Salida del código

- \blacksquare Si existe una solucion cuando las iteraciones comienza con los puntos x = 2.5 y y = 3.5..
- \blacksquare La solución encontrada después de 59 iteraciones es aproximadamente $x=1,\!99999950449$ y $y=2,\!9999995139.$.

Enunciado

Use el método de Newton para calcular la única raíz de la ecuación:

$$x + e^{-Bx^2}\cos(x) = 0$$

con B = 1, 5, 10, 25, 50 y puntos iniciales $x_0 = 0, 1, 2, 10$.

Solución:

Primero, definimos la función f(x) y su derivada f'(x):

$$f(x) = x + e^{-Bx^2} \cos(x)$$

La derivada de f(x) con respecto a x es:

$$f'(x) = 1 - e^{-Bx^2}\sin(x) - 2Bxe^{-Bx^2}\cos(x)$$

El método de Newton usa la fórmula iterativa:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Vamos a implementar este método en Python para resolver la ecuación para diferentes valores de B y puntos iniciales x_0 .

Implementación en Python

```
import numpy as np
3
   def f(x, B):
       return x + np.exp(-B * x**2) * np.cos(x)
6
       return 1 - np.exp(-B * x**2) * np.sin(x) - 2 * B * x *
       np.exp(-B * x**2) * np.cos(x)
9
   def newton_method(x0, B, tol=1e-6, max_iter=1000):
11
       for _ in range(max_iter):
12
           fx = f(x, B)
13
           dfx = df(x, B)
           if dfx == 0:
                raise ValueError("La derivada es cero. No se puede continuar.")
           #print(f"x = {x}, f(x) = {fx}, df(x) = {dfx} ) ")
17
           x_new = x - fx / dfx
18
19
           if abs(x_new - x) < tol:</pre>
20
21
               return x_new
           x = x_new
       raise ValueError("El metodo de Newton no convergio.")
23
   # Valores de B y puntos iniciales
25
  Bs = [1, 5, 10, 25, 50]
26
   x0s = [0, 1, 2, 10]
28
   # Calcular y mostrar resultados
29
30
   for B in Bs:
       for x0 in x0s:
31
32
               root = newton_method(x0, B)
33
                print(f"Para B = {B}, x0 = {x0}, la raiz es: {root:.6f}")
34
           except ValueError as e:
                print(f"Para B = {B}, x0 = {x0}, hubo un error: {e}")
```

Salida del código

Al ejecutar el código, obtenemos los siguientes resultados para las iteraciones:

```
Para B = 1, x0 = 0, la raiz es: -0.588401777
Para B = 1, x0 = 1, la raiz es: -0.588401777
Para B = 1, x0 = 2, la raiz es: -0.588401777
Para B = 1, x0 = 10, la raiz es: -0.588401777
Para B = 5, x0 = 0, la raiz es: -0.404911548
Para B = 5, x0 = 1, la raiz es: -0.404911548
Para B = 5, x0 = 2, la raiz es: -0.404911548
Para B = 5, x0 = 10, la raiz es: -0.404911548
Para B = 10, x0 = 0, hubo un error: El metodo de Newton no convergio.
Para B = 10, x0 = 1, hubo un error: El metodo de Newton no convergio.
Para B = 10, x0 = 2, hubo un error: El metodo de Newton no convergio.
Para B = 10, x0 = 10, hubo un error: El metodo de Newton no convergio.
Para B = 25, x0 = 0, hubo un error: El metodo de Newton no convergio.
Para B = 25, x0 = 1, hubo un error: El metodo de Newton no convergio.
Para B = 25, x0 = 2, hubo un error: El metodo de Newton no convergio.
Para B = 25, x0 = 10, hubo un error: El metodo de Newton no convergio.
Para B = 50, x0 = 0, hubo un error: El metodo de Newton no convergio.
Para B = 50, x0 = 1, hubo un error: El metodo de Newton no convergio.
Para B = 50, x0 = 2, hubo un error: El metodo de Newton no convergio.
Para B = 50, x0 = 10, hubo un error: El metodo de Newton no convergio.
```

Observación:

- El método Newton, solo converge cuando B toma los valores de 1 y 5, para todos los valores de x0.
- Cuando B toma los valores: 10, 25 y 50, y todos los valores de x0, el metodo de Newton no converge

Enunciado

Use el método de Newton para aproximar la raíz de la función:

$$f(x) = \cos(x) + \sin^2(50x)$$

e intente aproximar la raíz $\alpha = \frac{\pi}{2}$.

Solución

Primero, definimos la función f(x) y su derivada f'(x):

$$f(x) = \cos(x) + \sin^2(50x)$$

La derivada de f(x) con respecto a x es:

$$f'(x) = -\sin(x) + 100\sin(50x)\cos(50x)$$

Usando la identidad trigonométrica $\sin(2\theta) = 2\sin(\theta)\cos(\theta)$, podemos simplificar:

$$f'(x) = -\sin(x) + 50\sin(100x)$$

El método de Newton usa la fórmula iterativa:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Vamos a implementar este método en Python para aproximar la raíz $\alpha = \frac{\pi}{2}$.

Código en python

```
import numpy as np
   def f(x):
2
       return np.cos(x) + np.sin(50 * x)**2
   def df(x):
      return -np.sin(x) + 50 * np.sin(100 * x)
5
   def newton_method(x0, tol=1e-8, max_iter=1000):
6
       x = x0
       for i in range(max_iter):
8
           fx = f(x)
9
           dfx = df(x)
           print(f"x = {x}, f(x) = {fx}, df(x) = {dfx} ")
11
           if dfx == 0:
               raise ValueError("La derivada es cero. No se puede continuar.")
13
14
           x_new = x - fx / dfx
15
           if abs(x_new - x) < tol:
               return x new
16
17
           x = x_new
       raise ValueError("El metodo de Newton no convergio.")
18
  # Aproximacion inicial
19
  x0 = np.pi / 2
   # Solucion usando el metodo de Newton
21
  root = newton_method(x0)
  print(f"La raiz aproximada es: {root:.6f}")
  print(f"Error relativo: {abs(root - np.pi / 2):.6e}")
```

Al ejecutar el código, obtenemos la siguiente aproximación para la raíz:

Salida del código

- La raiz aproximada es: 1.570796.
- El método de Newton converge rápidamente a $\frac{\pi}{2}$.

Enunciado

Resolver el sistema de ecuaciones no lineales:

■ a)

$$\begin{cases} x^2 - 2x - y + 0.5 = 0 \\ x^2 + 4y^2 - 4 = 0 \end{cases}$$

■ b)

utilizando el método de Newton y el método de punto fijo a los problemas.

Solución a)

El método de Newton para sistemas de ecuaciones no lineales se expresa como:

$$\mathbf{x}_{n+1} = \mathbf{x}_n - J^{-1}(\mathbf{x}_n)\mathbf{F}(\mathbf{x}_n)$$

donde:

$$\mathbf{F}(\mathbf{x}) = \begin{pmatrix} x^2 - 2x - y + 0.5 \\ x^2 + 4y^2 - 4 \end{pmatrix}$$

y la matriz Jacobiana es:

$$J(\mathbf{x}) = \begin{pmatrix} 2x - 2 & -1\\ 2x & 8y \end{pmatrix}$$

Gráfica de las funciones

Figura 1: Gráficas de las funciones de a) en Geogebra.

Código en python

```
x_n = np.array(x0, dtype=float)
13
14
       for _ in range(max_iter):
           Fx_n = F(x_n)
           Jx_n = J(x_n)
16
           print(f"x_n = \{x_n\}, F(x_n) = \{Fx_n\}, J(x_n) = \{Jx_n\}")
17
           if np.linalg.det(Jx_n) == 0:
18
               print("La matriz Jacobiana es singular")
19
               return None
20
21
           delta = np.linalg.solve(Jx_n, -Fx_n)
           x_n1 = x_n + delta
           if np.linalg.norm(delta, ord=np.inf) < tol:</pre>
23
24
               return x_n1
           x_n = x_{11}
       print("El metodo no convergio")
26
       return None
27
  # Parametros
28
  x0 = [2, 0.5] # Estimacion inicial
29
   tolerancia = 1e-6
   # Encontrar la solucion
31
solucion = metodo_newton_SE(F, J, x0, tolerancia)
  print(f"La solucion encontrada es: {solucion}")
```

Salida del código

```
x_n = [2. \ 0.5], F(x_n) = [0. \ 1.],
J(x_n) = [[2. \ -1.]]
[4. \ 4.]]
x_n = [1.91666667 \ 0.33333333], F(x_n) = [0.00694444 \ 0.11805556],
J(x_n) = [[1.83333333 \ -1.]]
[3.83333333 \ 2.666666667]]
x_n = [1.90100849 \ 0.31157113], F(x_n) = [0.00024518 \ 0.00213955],
J(x_n) = [[1.80201699 \ -1.]]
[3.80201699 \ 2.492569 \ ]]
x_n = [1.90067683 \ 0.31121865], F(x_n) = [1.09998290e-07 \ 6.06962269e-07],
J(x_n) = [[1.80135367 \ -1.]]
[3.80135367 \ 2.48974918]]
La solucion encontrada es: [1.90067673 \ 0.31121857]
```

Conclusión

■ El método de Newton aplicado a este sistema de ecuaciones no lineales converge a la solución (1,90067673, 0,31121857) en 4 iteraciones.

Solución b)

Gráfica de las funciones

Figura 2: Gráficas de las funciones de b) en Geogebra.

Código en python

```
def g1(x, y):
        return (8*x - 4*(x**2) + (y**2) + 1)/8
2
4
   def g2(x, y):
        return (2*x - (x**2) + 4*y - (y**2) + 3)/4
   def punto_fijo(g_funcs, x0, tol, max_iter=1000):
    x = np.array(x0, dtype=float)
7
        for _ in range(max_iter):
             x_nuevo = np.array([g(x[0], x[1]) for g in g_funcs])
if np.linalg.norm(x_nuevo - x, ord=np.inf) < tol:</pre>
10
11
                  return x_nuevo
12
             x = x_nuevo
13
        print("El metodo no convergio.")
14
        return None
15
16
17
   # Parametros
x0 = [2, 0.5] # Estimacion inicial
   tolerancia = 1e-6
19
```

```
# Definir las funciones g
g_funcs = [g1, g2]

# Encontrar la solucion
solucion = punto_fijo(g_funcs, x0, tolerancia)
print(f"La solucion encontrada es: {solucion}")
```

Salida del código

```
Iteracion 1: x: [2. 0.5],x_nuevo: [0.15625 1.1875 ]

Iteracion 2: x: [0.15625 1.1875 ],x_nuevo: [0.4453125 1.65698242]

Iteracion 3: x: [0.4453125 1.65698242],x_nuevo: [0.81435973 1.89366518]

Iteracion 4: x: [0.81435973 1.89366518],x_nuevo: [1.05601482 1.98855765]

Iteracion 5: x: [1.05601482 1.98855765],x_nuevo: [1.11772636 1.99918285]

Iteracion 6: x: [1.11772636 1.99918285],x_nuevo: [1.11766176 1.99653496]

Iteracion 7: x: [1.11766176 1.99653496],x_nuevo: [1.11634684 1.99653593]

Iteracion 8: x: [1.11634684 1.99653593],x_nuevo: [1.11650117 1.99661285]

Iteracion 9: x: [1.11650117 1.99661285],x_nuevo: [1.1165148 1.9966028]

Iteracion 10: x: [1.1165148 1.9966028],x_nuevo: [1.11651499 1.99660319]

La solucion encontrada es: [1.11651499 1.99660319]
```

Conclusión

■ El método del punto fijo partiendo desde el punto (2,0,5) aplicado a este sistema de ecuaciones no lineales converge a la solución (1,11651499, 1,99660319) en 11 iteraciones.

Enunciado

Use el método de la bisección para encontrar una raíz de la ecuación:

$$f(x) = x^8 - 36x^7 + 546x^6 - 4536x^5 + 22449x^4 - 67284x^3 + 118124x^2 - 109584x + 40320 = 0$$
en el intervalo $[5,5,6,5]$.

Solución

Primero, definimos la función f(x):

$$f(x) = x^8 - 36x^7 + 546x^6 - 4536x^5 + 22449x^4 - 67284x^3 + 118124x^2 - 109584x + 40320$$

Para aplicar el método de la bisección, verificamos que f(x) cambie de signo en el intervalo [5,5,6,5], lo que asegura la existencia de al menos una raíz en este intervalo.

El método de la bisección consiste en dividir el intervalo a la mitad repetidamente y seleccionar el subintervalo donde la función cambia de signo.

Código en python

```
def f(x):
       return x**8 - 36*x**7 + 546*x**6 - 4536*x**5 + 22449*x**4
2
3
       -67284*x**3 + 118124*x**2 - 109584*x + 40320
   def biseccion(a, b, tol=1e-6, max_iter=100):
       if f(a) * f(b) >= 0:
6
           raise ValueError("La funcion no cambia de signo en el intervalo dado")
9
       for i in range(max_iter):
           c = (a + b) / 2.0
           print(f"Iteracion {i+1}: a = {a}, f(a) = {f(a)}, b = {b},
11
           f(b) = \{f(b)\}, c = \{c\}, f(c) = \{f(c)\}"\}
           if abs(f(c)) < tol:</pre>
                return c
14
            if f(c) * f(a) < 0:
15
16
               b = c
17
            else:
               a = c
18
19
       raise ValueError("El metodo de la biseccion no convergio")
20
21
   # Intervalo dado
22
   a = 5.5
23
   b = 6.5
24
25
   # Encontrar la raiz usando el metodo de la biseccion
26
27
       raiz = biseccion(a, b)
28
       print(f"Una raiz aproximada en el intervalo [{a}, {b}] es: {raiz:.6f}")
29
   except ValueError as e:
       print(e)
31
```

Salida del código

```
Iteracion 1: a = 5.5, f(a) = -55.37109375, b = 6.5, f(b) = 121.81640625, c = 6.0, f(c) = 0.0
Una raiz aproximada en el intervalo [5.5, 6.5] es: 6.000000
```

- Una raíz aproximada en el intervalo [5.5, 6.5] es: 6.0.
- La raiz se encuentra con la primera iteración.

Enunciado

Resolver el siguiente sistema de ecuaciones no lineales:

$$\begin{cases}
-x_1(x_1+1) + 2x_2 = 18 \\
(x_1-1)^2 + (x_2-6)^2 = 25
\end{cases}$$

Solución

Parte a: Aproximación Gráfica de las Soluciones

Graficamos las curvas de las dos ecuaciones para encontrar las intersecciones.

Código en python

```
import numpy as np
   import matplotlib.pyplot as plt
   # Definir los rangos para x1 y x2
   x1 = np.linspace(-5, 5, 400)
5
6
   x2 = np.linspace(0, 15, 400)
   # Crear una malla para evaluar las funciones
   X1, X2 = np.meshgrid(x1, x2)
10
   # Definir las funciones
11
   F1 = -X1*(X1 + 1) + 2*X2 - 18
   F2 = (X1 - 1)**2 + (X2 - 6)**2 - 25
13
   # Graficar las curvas
15
   plt.figure(figsize=(10, 8))
16
   plt.contour(X1, X2, F1, levels=[0], colors='r', label='F1: -x1(x1+1) + 2x2 = 18')
18 | plt.contour(X1, X2, F2, levels=[0], colors='b', label='F2: (x1-1)^2 + (x2-6)^2 = 25')
   plt.xlabel('x1')
19
   plt.ylabel('x2')
   plt.title('Interseccion de las curvas de las ecuaciones')
21
   plt.axhline(0, color='black',linewidth=0.5)
plt.axvline(0, color='black',linewidth=0.5)
plt.grid(color = 'gray', linestyle = '--', linewidth = 0.5)
plt.legend(['F1: -x1(x1+1) + 2x2 = 18', 'F2: (x1-1)^2 + (x2-6)^2 = 25'])
   plt.show()
```


Figura 3: Gráficas de las funciones.

Parte b: Método del punto fijo

Reformulamos las ecuaciones para obtener las funciones de iteración del punto fijo:

$$g_1(x,y) = \frac{18 + x(x+1)}{2}$$
$$g_2^+(x) = 6 + \sqrt{25 - (x-1)^2}$$
$$g_2^-(x) = 6 - \sqrt{25 - (x-1)^2}$$

Código en python

```
import numpy as np
   # Definir las funciones de iteracion
   def g1(x1, x2):
       return (18 + x1*(x1 + 1))/2
   def g2_plus(x1):
8
       return 6 + np.sqrt(25 - (x1 - 1)**2)
9
   def g2_minus(x1):
       return 6 - np.sqrt(25 - (x1 - 1)**2)
11
   def punto_fijo(g1, g2, x0, tol, max_iter=1000):
13
       x = np.array(x0, dtype=float)
14
       for _ in range(max_iter):
           x_{nuevo} = np.array([g1(x[0], x[1]), g2(x[0])])
16
           if np.linalg.norm(x_nuevo - x, ord=np.inf) < tol:</pre>
17
               return x nuevo
18
           x = x_nuevo
19
       print("El metodo no convergio.")
20
       return None
21
   # Parametros
23
                   # Primera estimacion inicial
   x0_1 = [2, 11]
24
25
   x0_2 = [-2, 10]
                      # Segunda estimacion inicial
   tolerancia = 1e-5
26
27
   # Encontrar la solucion usando g2_plus
28
   solucion_1_plus = punto_fijo(g1, g2_plus, x0_1, tolerancia)
29
   print(f"Solucion encontrada usando g2_plus: {solucion_1_plus}")
31
   solucion_2_plus = punto_fijo(g1, g2_plus, x0_2, tolerancia)
32
   print(f"Solucion encontrada usando g2_plus: {solucion_2_plus}")
33
34
35
   # Encontrar la solucion usando g2_minus
   solucion_1_minus = punto_fijo(g1, g2_minus, x0_1, tolerancia)
36
   print(f"Solucion encontrada usando g2_minus: {solucion_1_minus}")
37
   solucion_2_minus = punto_fijo(g1, g2_minus, x0_2, tolerancia)
39
   print(f"Solucion encontrada usando g2_minus: {solucion_2_minus}")
```

Salida del código

El metodo no convergio.

Solucion encontrada usando g2_plus: None
El metodo no convergio.

Solucion encontrada usando g2_plus: None
El metodo no convergio.

Solucion encontrada usando g2_minus: None
El metodo no convergio.

Solucion encontrada usando g2_minus: None

•	Para las aproximaciones	dadas y utilizando el r	nétodo del punto fijo,	las iteraciones no converger,
	esto debido a un mal mo	delamiento o aproxima	ciones muy lejanos a	las soluciones.