Queen's Power Group Kingston, ON, Canada

A High Efficiency Synchronous Buck VRM with Current Source Gate Driver

Wilson Eberle

Zhiliang Zhang

Dr. Yan-Fei Liu

Dr. P.C. Sen

Outline

- 1. Introduction
 - 1. Why you should use current source gate drive
 - 2. Drawbacks of existing voltage source and resonant based drivers
- 2. Proposed Driver and Operation
- 3. Driver Design Procedure
- 4. Driver Optimization in the VRM
- 5. Logic and Level Shift Circuits
- 6. Experimental Results
- 7. Conclusions

Introduction

 Application: low voltage high current voltage regulator modules

- Trend to increase switching frequency for improvements in:
 - + power density
 - + dynamic performance

Drawbacks of Increased Switching Frequency with Conventional Drivers

Resonant Gate Drive Techniques

- + Many good (~10) circuits proposed since early 1990s, but generally unused
- LC resonant charging of the power MOSFET gate from zero initial current
- These circuits emphasize gate energy savings, but ignore, or can't achieve potential switching loss savings

Resonant Gate Drive Review

Existing techniques suffer from at least one of five problems:

- 1. Circulating current conduction loss
- 2. Peak current dependent on duty cycle

Resonant Gate Drive Review

- Large inductance, bulky transformer, or coupled inductor
- 4. Slow turn-on and/or turn-off
- Gate not actively clamped high and/or low, so false triggering (Cdv/dt) can result

Conventional vs. Resonant Drive Switching Loss Savings

Voltage source
RC-type charging
limits speed

Constant current source type charging improves speed!

CURRENT SOURCE DRIVERS CAN REDUCE TURN-ON AND TURN-OFF LOSS!

Outline

- 1. Introduction
- 2. Proposed Driver and Operation
- 3. Driver Design Procedure
- 4. Driver Optimization in the VRM
- 5. Logic and Level Shift Circuits
- 6. Experimental Results
- 7. Conclusions

Proposed Driver

Creating a Discontinuous Current Source

Independent control of high side (HS) MOSFET and SR

Key To Speed:

- Create discontinuous inductor current source, then
- Divert inductor precharge current to the gate

- Dictated by PWMQ₁ signal
- Independent control of HS MOSFET and SR

- Dictated by PWMQ₁ signal
- Independent control of HS MOSFET and SR

- Dictated by PWMQ₁ signal
- Independent control of HS MOSFET and SR

- Dictated by PWMQ₁ signal
- Independent control of HS MOSFET and SR

- Dictated by PWMQ₁ signal
- Independent control of HS MOSFET and SR

SR Operation

- Same procedure for SR
- Different time intervals due to larger gate charge

Dictated by PWMQ₂ signal

Outline

- 1. Introduction
- 2. Proposed Driver and Operation
- 3. Driver Design Procedure
- 4. Driver Optimization in the VRM
- 5. Logic and Level Shift Circuits
- 6. Experimental Results
- 7. Conclusions

Driver Design

- 1. Set the turn on time, or average gate current
- 2. Set inductor pre-charge time
- 3. Calculate the inductor value

$$t_{on} = \frac{Q_g}{Ig_{avg}}, Ig_{avg} = \frac{Q_g}{t_{on}}$$
$$t_{d1} \approx \frac{1}{2}t_{on}$$

$$L_1 = \frac{V_{cb}t_{on}}{Q_g} \left(\frac{t_{on}}{4} + t_{d1}\right)$$

Outline

- 1. Introduction
- 2. Proposed Driver and Operation
- 3. Driver Design Procedure
- 4. Driver Optimization in the VRM
- 5. Logic and Level Shift Circuits
- 6. Experimental Results
- 7. Conclusions

Optimizing HS Gate Current w.r.t. Driver Loss and Switching Loss

Optimizing SR Gate Current w.r.t. Driver Loss and Body Diode Loss

Outline

- 1. Introduction
- 2. Proposed Driver and Operation
- 3. Driver Design Procedure
- 4. Driver Optimization in the VRM
- 5. Logic and Level Shift Circuits
- 6. Experimental Results
- 7. Conclusions

Logic Generation for Deadtime and S₁-S₄ Gating Signals

Level Shift Circuit

6 Switches (S₁-S₆) Require Level Shift Circuits

x6

Outline

- 1. Introduction
- 2. Proposed Driver and Operation
- 3. Driver Design Procedure
- 4. Driver Optimization in the VRM
- 5. Logic and Level Shift Circuits
- 6. Experimental Results
- 7. Conclusions

Experimental Setup and Specs

- Single Phase Apples to apples comparison
- 6-layer, 2oz
- 12V Input
- 1.3V Output
- Up to 30A Load
- 1MHz
- IRF6617 HS
- IRF6691 SR
- 330nH inductor: Vishay IHLP5050FD

 S_1 - S_8 : NDS351AN, L_1 : 68nH, L_2 : 307nH 2.5ns fixed maximum deadtime

Conventional Driver

UCC27222, Predictive deadtime control

Waveforms

HS MOSFET and SR gate-source waveforms

HS MOSFET
Driver
Inductor
Current
Waveform

Efficiency vs. Load 1MHz, 12V input, 1.3V load, 10V Vcc

Power Loss vs. Load 1MHz, 12V input, 1.3V load, 10V Vcc

Implications of Loss Savings

- 15W savings (2.5Wx6) in a 6 phase VRM, or
- 120A output, assuming loss limited to 9W per phase:
 - 5 phases required for conventional driver (27A max per phase; 120A/27A=5 phases)
 - 4 phases required for current source driver (30A max per phase; 120A/30A=4 phases)
- 1 phase eliminated: A SIGNIFICANT COST SAVINGS

Outline

- 1. Introduction
- 2. Proposed Driver and Operation
- 3. Driver Design Procedure
- 4. Driver Optimization in the VRM
- 5. Logic and Level Shift Circuits
- 6. Experimental Results
- 7. Conclusions

Summary of Advantages

- Current source drive to increase switching speed, decrease switching loss and decrease conduction loss
- SR gate energy recovery (~50%) or higher operating Vcc
- Small driver inductors:
 - HS MOSFET: <100nH compared to 1uH+ for other competitor current source gate driver
- Optimized independent control of HS and SR gate currents
- Potential driver integration with no additional pins for HS MOSFET and 1 additional pin for SR

Conclusions

- Novel current source gate driver for synchronous buck VRM proposed
- Driver operation, design, optimization, logic, level shift and experimental results presented
- Driver achieves 4% efficiency improvement and 2.5W savings over conventional at 1MHz
- Elimination of 1 phase at 1.3V/120A load

Acknowledgements

The authors would like to thank:
Ontario Centres of Excellence

C&D Technologies

TECHNOLOGIES

Other interesting material available at: www.queenspowergroup.com

Questions?

