Федеральное государственное автономное образовательное учреждение высшего образования Национальный исследовательский университет ИТМО

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №4 Вычислительная математика

Вариант: №1

Группа	P3208
Студент	Абдуллин И.Э.
Преподаватель	Машина Е.А.

Цель работы:

Найти функцию, являющуюся наилучшим приближением заданной табличной функции по методу наименьших квадратов.

Вычислительная реализация задачи:

Исследуемый интервал:

$$x \subseteq [0, 2]; h = 0.2$$

Функция:

$$y = \frac{12x}{x^4 + 1}$$

1. Сформировать таблицу табулирования заданной функции на указанном

x_{i}	0	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2
y_{i}	0	2.396	4.68	6.374	6.81	6	4.69	3.47	2.541	1.879	1.412

2. Построить линейное и квадратичное приближения по 11 точкам заданного интервала

<u>Линейное приближение:</u>

$$\phi_1(x) = ax + b$$

$$SX = \sum_{i=1}^{n} x_i = 11$$
 $SXX = \sum_{i=1}^{n} (x_i)^2 = 15.4$

$$SY = \sum_{i=1}^{n} y_i = 40.248$$
 $SXY = \sum_{i=1}^{n} x_i^* y_i = 38.376$

$$\begin{cases} a = \frac{SXY \cdot n - SX \cdot SY}{SXX \cdot n - SX \cdot SX} \\ b = \frac{SXX \cdot SY - SX \cdot SXY}{SXX \cdot n - SX \cdot SX} \end{cases} = \begin{cases} a \approx -0.425 \\ b \approx 4.084 \end{cases}$$

$$\phi_1(x) = -0.425x + 4.084$$

x_i	0	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2
y_i	0	2.396	4.68	6.374	6.81	6	4.69	3.47	2.541	1.879	1.412
ϕ_{1i}	4.084	4	3.914	3.829	3.744	3.659	3.574	3.489	3.404	3.319	3.234
ϵ_i	4.084	1.603	-0.766	-2.545	-3.066	-2.341	-1.111	0.019	0.862	1.44	1.822

$$\sigma_{1} = \sqrt{\frac{\sum_{i=1}^{n} \varepsilon_{i}^{2}}{n}} \simeq 2.101$$

Квадратичное приближение:

$$\phi_2(x) = a + bx + cx^2$$

$$SX = \sum_{i=1}^{n} x_i = 11$$

$$SXX = \sum_{i=1}^{n} (x_i)^2 = 15.4$$

$$\sum_{i=1}^{n} (x_i)^4 = 40.533$$

$$SXY = \sum_{i=1}^{n} x_i * y_i = 38.376$$

$$SXX = \sum_{i=1}^{n} (x_i)^2 = 15.4$$

$$\sum_{i=1}^{n} (x_i)^3 = 24.2$$

$$SY = \sum_{i=1}^{n} y_i = 40.248$$

$$\sum_{i=1}^{n} (x_i)^2 * y_i = 45.287$$

$$\begin{cases} n \cdot a + SX \cdot b + SXX \cdot c = SY \\ SX \cdot a + SXX \cdot b + S3X \cdot c = SXY \\ SXX \cdot a + S3X \cdot b + S4X \cdot c = SXXY \end{cases}$$

$$\begin{cases} a \approx 0.887 \\ b \approx 10.232 \\ c \approx -5.327 \end{cases}$$

$$\phi_2(x) = 0.887 + 10.232x - 5.327x^2$$

x_{i}	0	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2
y_i	0	2.396	4.68	6.374	6.81	6	4.69	3.47	2.541	1.879	1.412
Φ_{2i}	0.887	2.72	4.127	5.108	5.663	5.792	5.494	4.77	3.621	2.045	0.043
ϵ_{i}	0.887	0.324	-0.552	-1.265	-1.147	-0.208	0.809	1.3	1.079	0.166	-1.368

$$\sigma_{2} = \sqrt{\frac{\sum_{i=1}^{n} \varepsilon_{i}^{2}}{n}} \simeq 0.933$$

 $\sigma_{2} < \sigma_{1} = >$ квадратичное приближение — наилучшее

Красная - линейное приближение

Зеленая - исходная функция

Синий - квадратичное приближение

Программная реализация задачи:

```
public class LinearApproximation {
```

```
public double getDeterminationCoefficient(double[] result, double y[], int amount) (
    double midthi = 0;
    double r2 = 0;
    for (int i = 0; i < amount; i++) (
        midthi + result[i];
    }
    midthi = midthi / amount;
    double chisl = 0;
    double znam = 0;
    for (int i = 0; i < amount; i++) {
        chisl + (y[i] - result[i]) * (y[i] - result[i]);
        znam += (y[i] - midthi) * (y[i] - midthi);
    }
    r2 = 1 - chisl / znam;
    return r2;
}

public double getA() {
    return a;
}

public double getEpsilon() {
    return epsilon;
}

public double getSko() {
    return sko;
}
</pre>
```

```
package Abdullin_367039.lab4;

public class QuadraticApproximation {
    private final int number = 2;
    private double[] epsilon;
    double a0 = 0;
    double a1 = 0;
    double sx = 0;
    double sx = 0;
    double sx = 0;
    double sxx = 0;
    double sx = 0;
    for (int i = 0; i < amount; i++) {
        sx + = x[i];
    }
    for (int i = 0; i < amount; i++) {
        sxxx + = x[i] * x[i] * x[i];
    }
    for (int i = 0; i < amount; i++) {
        sxxxx + = x[i] * x[i] * x[i] * x[i];
    }
    for (int i = 0; i < amount; i++) {
        sxxxx + = x[i] * x[i] * x[i] * x[i];
}
    for (int i = 0; i < amount; i++) {</pre>
```

```
double chisl = 0;
double znam = 0;
for (int i = 0; i < amount; i++) {
    chisl += (y[i] - result[i]) * (y[i] - result[i]);
    znam += (y[i] - midPhi) * (y[i] - midPhi);
}
r2 = 1 - chisl / znam;
return r2;
}
public double getA0() {
    return a0;
}

public double getA1() {
    return a1;
}

public double getA2() {
    return a2;
}

public double [] getEpsilon() {
    return epsilon;
}

public double getSko() {
    return sko;
}</pre>
```

Linear Approximation Linear Approximation

Quadratic Approximation Quadratic Approximation

Exponential Approximation Exponential Approximation

 \square \times

Power Approximation

Logarithmic Approximation Logarithmic Approximation

Выводы:

Во время выполнения работы мне удалось изучить различные виды аппроксимации: линейную, квадратичную, кубическую, логарифмическую, экспоненциальную и степенную.

Нельзя однозначно сказать, какая аппроксимирующая функция лучше, так как это зависит от самих экспериментальных данных.

_ ×