# 3<sup>rd</sup> Aeroelastic Prediction Workshop (AePW-3) Flight Test Working Group

Jeffrey Ouellette
Alexander Chin

#### Outline

- Introduction
  - Background
  - ➤ X-56 Body Freedom Flutter Mechanism
  - Challenges in X-56 Flutter Modeling
  - ► Flight Test Working Group Challenge
- Individual Presentations
  - Steve Massey
  - Jos Aalbers
  - Jared Grauer
  - Jeffrey Ouellette
- Combined Results
- Discussion

# Background

- Why flight test working group?
- ► Why X-56A?
- Data Released
  - ► CAD geometry (IGES)
  - Finite element model (NASTRAN)
  - Doublet lattice model (NASTRAN)
  - Cross sections
  - ► Frequency and damping from flight



#### Aeroelastic Prediction Workshop, Flight Test Working Group

- Predict blind flutter speed with flutter mode trends
  - ▶ 0 to 200 KEAS
    - ► Although we only have flight data to verify first flutter mode, BFF, we can still examine secondary flutter modes at higher speeds for comparison
  - ► Based on mass condition (fuel) dependency
  - Aero model formulation
  - ▶ Vg and Vf trend plots
  - Leverage flight data as truth model for comparison studies (measured damping and frequency)

Document and present modeling approaches and assumptions



# X-56 Body Freedom Flutter Mechanism



# Body freedom flutter mode shape



### Challenges in X-56 Flutter Modeling

- Rigid body modes
- Winglet/wing interaction
- Thick lifting center body
- Engine/airframe interaction



Credit: NASA/Lauren Hughes



# Flight Testing

- Flight Envelope
  - ► Fuel Weight
  - Airspeed



# Individual Presentations

Steve Massey

Jos Aalbers

Jared Grauer

Jeffrey Ouellette

# Modeling and Flight Test Results

Jeffrey Ouellette, Felipe Valdez, Chris Miller, Matthew Boucher

#### Modeling Results

- ▶ Jeffrey A. Ouellette and Felipe D. Valdez. "Generation and Calibration of Linear Models of Aircraft with Highly Coupled Aeroelastic and Flight Dynamics," AIAA 2020-1016. AIAA SciTech 2020 Forum. January 2020.
- Corrected doublet lattice
  - Downwash correction
  - Correction of mean shape
- Augmented doublet lattice
  - Gravity
  - ► Trim forces
  - Drag

# Steady CFD (STAR-CCM+)

- Steady RANS
- Geometry was different from workshop
  - ► Engines (flow through)
  - ► Landing gear
  - ► Half-span
- ► Two angles of attack
- Data splined to doublet lattice grid







#### Flight Test Results

- ▶ Jeffrey A. Ouellette, Chris J. Miller, and Matthew J. Boucher. "Frequency Domain Quasi Maximum Likelihood Identification of Low Order Aeroservoelastic Models from Flight-Test Data," AIAA Scitech 2023 Forum. January 2023.
  - Monday 14:40, Baltimore 5
- Transfer function fit to multisine maneuvers

$$H = \frac{N_6 s^6 + \dots + N_1 s + N_0}{\prod_{j=1}^3 \left( s^2 + 2\zeta_j \omega_{n_j} s + \omega_{n_j}^2 \right)}$$

► Three modes (pitch, bending, torsion)

# Combined Results

### Combined Results

| Code         | Methods                   | Analysis Team                                                      |
|--------------|---------------------------|--------------------------------------------------------------------|
| FUN3D LFD    | RANS                      | Steve Massey, Bret Stanford, Kevin Jacobson                        |
| ZAERO        | Linearized Potential Flow | Jos Aalbers, Huub Timmermans, Iren<br>Mkhoyan and Peter Blom       |
| ENSOLV       | RANS                      |                                                                    |
| SysID        | Flight Data               | Jared Grauer                                                       |
| NASTRAN      | Linearized Potential Flow | Jeffrey Ouellette, Felipe Valdez, Chris Miller,<br>Matthew Boucher |
| Corrected DL | Hybrid lifting surface    |                                                                    |
| Augmented DL | Hybrid lifting surface    |                                                                    |
| LOES         | Flight Data               |                                                                    |

#### Generalized Aerodynamic Forces

- Modes
  - Pitch
  - Plunge
  - Symmetric Bending
  - Symmetric Torsion
- ▶ 10 lb of fuel only
- Real Part
  - ► Forces in phase with deflections
  - Stiffness
- Imaginary Part/Reduced frequency
  - ► Forces in phase with rate
  - Damping

### Lift and pitch moment due to pitch





#### Bending moment due to pitch and twist





### Frequency and Damping

Poles are

$$P = \left(-\zeta \pm i\sqrt{1-\zeta^2}\right)\omega_n$$

- $\blacktriangleright$   $\omega_n$ , natural frequency
- $ightharpoonup \zeta = 1$ , critically damped
- Airspeed in knots equivalent airspeed

# Frequency and damping Body freedom flutter, low fuel





# Frequency and damping Body freedom flutter, heavy fuel





# Frequency and damping Wing bending, low fuel





# Frequency and damping Wing bending/torsion flutter, low fuel



### Body freedom flutter mode shape





#### Aerodynamic Energy

Aerodynamic energy

$$real(conj(\mathbf{f}) \circ \mathbf{u})$$

- Conservative work due to flow field
- Balanced with kinetic and strain energy
- Aerodynamic work

$$imag(conj(\mathbf{f}) \circ \mathbf{u})$$

- Nonconservative work over the cycle
- Balanced by structural damping
- Which modes are destabilizing
- Normalized to correct for dynamic pressure

### Aerodynamic energy and work Low fuel





# Aerodynamic energy and work Heavy fuel





# Aerodynamic work Classical symmetric bending/torsion flutter





#### Next Steps

- Is there interest in continuing with X-56 analysis?
  - ► Engine/Airframe interaction?
- ▶ New configuration?
  - ► Body-freedom flutter
  - Aeroservoelasticity