华东理工大学 2017-2018 学年第二学期

《高等数学(下)》(11 学分) 课程期末考试试卷 (B) 2018.7

开课学院:理学院, 专业:大面积, 考试形式:闭卷, 所需时间 120 分钟

考生姓名: ______ 学号: _____ 班级: _____ 任课教师: _____

题序	_	1	111	四	五	六	七	八	总分
满分	12	18	18	18	16	6	6	6	100
得分									
阅卷人									

注意: 试卷共三页八大题

- 一、解下列各题(每小题6分,共12分):
- 1. 设曲线 L 的方程为 $x = \cos^3 t$, $y = \sin^3 t$, $0 \le t \le \frac{\pi}{2}$, 计算 $\int_L \sqrt[3]{x} ds$.

2. 计算 $I = \oint_{\Gamma} (z - y) dx + (x - z) dy + (x - y) dz$, 其中 Γ 是曲线 $\begin{cases} x^2 + y^2 = 1 \\ x - y + z = 2 \end{cases}$, 从 z 轴正向往负方向看, Γ 取顺时针方向.

- 二、解下列各题 (每小题 6 分, 共 18 分):
- 1. 求微分方程 y'' 2y' + y = 1 的通解.

2. 求经过点(0, 2, -3)且与两个平面x+z=1及x+y+z=1同时平行的直线方程.

3. 求曲面 $z = x^2 + y^2$ 在点 (1,2,5) 处的切平面方程.

- 三、解下列各题(每小题6分,共18分):
- 1. 设函数 f 具有一阶连续偏导数, $u = f(y\sin^2 x, xe^y)$, 求 du, $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$.

2. 求函数 $z = \sqrt{y + \cos x}$ 在点 P = (0, 1) 处沿方向 $\vec{l} = \{3, 4\}$ 的方向导数.

3. 用拉格朗日乘数法求函数 u=xyz 在约束条件 $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$ (x>0, y>0, z>0)下的最小值.

四、解下列各题 (每小题 6 分, 共 18 分):

1. 计算二次积分 $\int_1^2 dy \int_y^2 e^{x^2-2x} dx$.

2. 计算 $\iint_D y \, dx \, dy$, 其中 D 是由不等式 $1 \le x^2 + y^2 \le 16$, $x \ge 0$, $y \ge 0$ 所表示的区域.

3. 计算二重极限 $\lim_{\substack{x\to 0\\y\to 0}} \frac{xy^2}{x^2+y^2}$.

五、选择题(在每小题中选出唯一正确的选项,每小题 4 分,共 16 分)

1. 设
$$u = \ln \sqrt{x^2 + y^2 + z^2}$$
, 则rot(grad u) = ()

(A)
$$\frac{2}{x^2 + y^2 + z^2}$$

(B)
$$\frac{1}{x^2 + y^2 + z^2}$$

(C)
$$\vec{0}$$

(D)
$$\frac{-2\{yz, zx, xy\}}{(x^2 + y^2 + z^2)^2}$$

2. 设连续函数
$$z = f(x, y)$$
 满足 $\lim_{\substack{x \to 0 \ y \to 1}} \frac{f(x, y) - 2x + y - 2}{\sqrt{x^2 + (y - 1)^2}} = 0$, 则 $dz|_{(0,1)} = ($

- (A) 2dx dy (B) -2dx + dy (C) 2dx + dy (D) -2dx dy

3. 设 Σ 是 曲 面 $\frac{x^2}{4} + \frac{y^2}{4} = 1 - z$ 与 平 面 z = 0 所 围 立 体 表 面 的 外 侧 , 则

$$\bigoplus_{\Sigma} x \, \mathrm{d}y \, \mathrm{d}z + y \, \mathrm{d}z \, \mathrm{d}x + z \, \mathrm{d}x \, \mathrm{d}y \text{ in any } 0$$

- (A) 9π
- (B) 6π
- (C) 3π
- (D) 0

4. 设以10为周期的函数 f(x) 在[-5, 5) 内的表达式为 $f(x) = \begin{cases} 2, -5 \le x < 0, \\ 0, 0 \le x < 5 \end{cases}$, 则其傅

里叶级数在x = -5处收敛到

- (C) -1

六、(本题 6 分) 计算曲线积分 $I = \int_L (y e^{-x} + 2x) dx + (4y - e^{-x}) dy$, 其中 L 是从点

A(1,0), 过点 B(0,1) 到点 C(-1,1) 的有向圆弧.

七、(本题 6 分) 计算 $\iint_{\Omega} z^2 \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z$,其中 Ω 是由锥面 $z = \sqrt{x^2 + y^2}$ 和平面 z = 5 所围成的闭区域.

八、(本题 6 分) 计算二次积分 $I = \int_0^{\frac{\pi}{4}} d\theta \int_0^{\sec\theta} \rho^2 \sqrt{1 - \rho^2 \cos 2\theta} \sin \theta d\rho$.