Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	29 /04 /2020	Client	LoremIpsum

1 Input Parameters

Module				Fin Plate	
MainMe	odule		Shear Connection		
Connect	Connectivity			olumn flange-Beam web	
Shear(l	κN)*			50.0	
	Su	pporting Sect	ion		
	Supportin	ng Section		PBP 320X146.7	
	Mate	erial *		E 250 (Fe 410 W)A	
т т	Ultimate stren	ngth, fu (MPa)		410	
	Yield Strengt	th , fy (MPa)		230	
$(B-t)$ α	Mass	146.68	Iz(cm4)	326707000.0	
4 t	Area(cm2) -	18690.0	Iy(cm4)	101505100.0	
ZZ D	A				
	D(mm)	319.0	rz(cm)	132.20000000000002	
R ₁	B(mm)	312.0	ry(cm)	73.7	
В	t(mm)	20.0	Zz(cm3)	2048320.00000000002	
ļ	T(mm)	20	Zy(cm3)	650670.0	
	FlangeSlope	90	Zpz(cm3)	2338490.0	
	R1(mm)	2.7	Zpy(cm3)	650670.0	
	R2(mm)	0.0			
	Su	pported Secti	on		
	Supported Section		MB 250		
	Material *		E 250 (Fe 410 W)A		
т—	Ultimate strength, fu (MPa)		410		
	Yield Strength , fy (MPa)		230		
$(B-t)$ α	Mass	37.2	Iz(cm4)	51190000.0	
4	Area(cm2) -	4740.0	Iy(cm4)	3210000.0	
ZZ D	A				
	D(mm)	250.0	rz(cm)	104.0	
-R ₂	B(mm)	125.0	ry(cm)	26.0	
В	t(mm)	6.9	Zz(cm3)	409600.0	
¥	T(mm)	12.5	Zy(cm3)	51000.0	
	FlangeSlope	98	Zpz(cm3)	464500.0	
	R1(mm)	13.0	Zpy(cm3)	51000.0	
	R2(mm)	6.5			
		Bolt Details			
Diameter(mm)*			, 16.0, 20.0, 24.0, 30.0, 36.0]		
Grade *			[3.6, 4.6, 4.8]	8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9]	
	Type *			Bearing Bolt	
		Bolt hole type			
Bolt hole				Standard	
	r (µ_f)			Standard 0.3 Sheared or hand flame cut	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	29 /04 /2020	Client	LoremIpsum

Gap between beam and support (mm)	10.0	
Are the members exposed to corrosive influences	False	
Weld Details		
Weld Type	Fillet	
Type of weld fabrication	Shop Weld	
Material grade overwrite (MPa) Fu	410.0	

2 Design Checks

2.1 Bolt Design Checks

Check	Required	Provided	Remarks
Shear Capacity (kN)		$V_{dsb} = \frac{f_u b \ n_n \ A_{nb}}{\sqrt{3} \ \gamma_{mb}}$ $= \frac{410 * 1 * 245}{\sqrt{3} \ * 1.25}$ $= 45.26$	
Bearing Capacity (kN)		$V_{dpb} = \frac{2.5 \ k_b \ d \ t \ f_u}{\gamma_{mb}}$ $= \frac{2.5 \ * 0.51 * 20.0 * 8.0 * 290}{1.25}$ $= 45.26$	
Capacity (KN)		$V_{db} = min (V_{dsb}, V_{dpb})$ = $min (45.26, 45.26)$ = 45.26	
No of Bolts	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{50.0^{2} + 50.0^{2}}}{45.26}$ $= 2$	3	
No of Columns		1	
No of Rows		3	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 20.0 = 50.0$	0.0	N/A
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 6.9, \ 300 \ mm)$ = 300	0.0	N/A
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 20.0 = 50.0$	50	Pass
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 6.9, \ 300 \ mm)$ = 300	50	Pass
Min. End Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = $1.7 * 22.0 = 37.4$	40	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	29 /04 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Max. End Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *8.0 * \sqrt{\frac{250}{165}}$ $= 118.08$	40	Pass
Min. Edge Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 22.0 = 37.4	40	Pass
Max. Edge Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *8.0 * \sqrt{\frac{250}{165}}$ $= 118.08$	40	Pass
Capacity (KN)	44876.37	45264.26	Pass

2.2 Plate Design Checks

Check	Required	Provided	Remarks
Min. Plate Height (mm)	$0.6 * d_b = 0.6 * 250.0 = 150.0$	180	Pass
Max. Plate Height (mm)	$d_b - 2(t_{bf} + r_{b1} + gap)$ $= 250.0 - 2 * (12.5 + 13.0 + 10)$ $= 199.0$	180	Pass
Min. Plate Length (mm)	$2 * e_{min} + (n \ c - 1) * p_{min})$ $= 2 * 37.4 + (1 - 1) * 50.0$ $= 84.8$	90.0	Pass
Min.Plate Thickness (mm)	$t_w = 6.9$	8.0	Pass
Shear yielding Capacity (V_dy) (kN)		$V_{dg} = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo}}$ $= \frac{180 * 8.0 * 165}{\sqrt{3} * 1.1}$ $= 74.82$	
Shear Rupture Capacity (V_dn) (kN)		$V_{dn} = \frac{0.75 * A_{vn} * f_u}{\sqrt{3} * \gamma_{mo}}$ $= 1 * (180 - (3 * 22.0)) * 8.0 * 290$ $= 198.36$)
Block Shear Capacity in Shear (V_db) (kN)		196.44	
Shear Capacity (V_d) (kN)	50.0	$V_d = Min(V_{dy}, V_{dn}, V_{db})$ $= Min(74.82, 198.36, 196.44)$ $= 74.82$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	29 /04 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks	
Tension Yielding Capacity (kN)		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{90.0 * 8.0 * 165}{\sqrt{3} * 1.1}$ $= 108.0$		
Tension Rupture Capacity(kN)		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$ $= \frac{0.9 * (90.0 - 3 * 22.0) * 8.0 * 290}{1.25}$ $= 113.59$		
Block Shear Capacity in Tension (T_db) (kN)		196.44		
Tension Capacity (kN)	50.0	$T_d = Min(T_{dg}, T_{dn}, T_{db})$ $= Min(108.0, 113.59, 196.44)$ $= 108.0$	Pass	
Moment Capacity (kNm)	2.5	7.78	Pass	
Interaction Ratio	≤ 1	$\frac{2.5}{7.78} + \frac{50.0}{108.0} = 0.78$	Pass	

2.3 Weld Checks

Check	Required	Provided	Remarks
Min Weld Size (mm)	$Thickness of Thicker part \\ = Max(20, 20) = 20 \\ IS800: 2007 \ cl. 10.5.2.3 \ Table 21, \\ t_{w_{min}} = 5$	5	Pass
Max Weld Size (mm)	Thickness of Thinner part $= Min(20, 20) = 8.0$ $t_{w_{max}} = 8.0$	5	Pass
Weld Strength (kN/mm)	$R_w = \sqrt{(T_{wh} + A_{wh})^2 + (T_{wv} + V_{wv})^2}$ $T_{wh} = \frac{M * y_{max}}{Ipw} = \frac{2500000.0 * 85.0}{818833.33}$ $T_{wv} = \frac{M * x_{max}}{Ipw} = \frac{2500000.0 * 0.0}{818833.33}$ $V_{wv} = \frac{V}{l_w} = \frac{50000.0}{340}$ $A_{wh} = \frac{A}{l_w} = \frac{50000.0}{340}$ $R_w = \sqrt{(259.52 + 147.06)^2 + (0.0 + 147.06)^2}$ $= 432.35$	$f_w = \frac{t_t * f_u}{\sqrt{3} * \gamma_{mw}}$ $= \frac{3.5 * 290}{\sqrt{3}} * 1.25$ $= 662.8$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	29 /04 /2020	Client	LoremIpsum

3 3D View

Figure 1: 3D View