Linguagens Formais e Autômatos

Humberto Longo

Instituto de Informática Universidade Federal de Goiás

Bacharelado em Ciência da Computação, 2021/1

INF/UFG – LFA 2021/1 – H. Longo

(1 – 1 de 1

Roteiro

INF/UFG – LFA 2021/1 – H. Longo Pumping Lemma para LLC's (109 – 133 de 134)

Pumping Lemma para LLC

Lema 1.31

Se \mathcal{L} é uma linguagem livre de contexto, então existe um número p tal que cada $w = uvxyz \in \mathcal{L}$, com $|w| \geqslant p$, satisfaz:

- 1. $uv^i x y^i z \in \mathcal{L}, i \ge 0$,
- 2. |vy| > 0,
- 3. $|vxy| \leq p$.
- ightharpoonup p é chamado de *pumping length*.
- \blacktriangleright Condição 2 indica que v ou y não é uma cadeia vazia.
- ► Condição 3 indica que *v*, *x* e *y* juntos têm comprimento máximo *p*.

Pumping Lemma para LLC

Esquema da demonstração:

- $\blacktriangleright \mathcal{L}(G)$: Linguagem gerada pela $GLC\ G$.
- $w \in \mathcal{L}(G)$, tal que w é "suficientemente longa" ($|w| \ge p$).
- ightharpoonup w pode ser decomposta em cinco partes: uvxyz.
- ► Árvore de derivação de *w* contém algum caminho, da raiz até uma folha, que repete uma variável.
- ► Segunda e quarta subcadeias (v e y) podem ser repetidas.

Pumping Lemma para LLC's (110 - 133 de 134)

Demonstração.

- $ightharpoonup G = (V, \Sigma, R, S)$: Gramática livre de contexto.
- $\blacktriangleright \mathcal{L}(G)$: Linguagem gerada por G.

INF/UFG - LFA 2021/1 - H. Longo

Pumping Lemma para LLC's (112 - 133 de 134)

Pumping Lemma para LLC

Demonstração.

- $ightharpoonup G = (V, \Sigma, R, S)$: Gramática livre de contexto.
- ▶ $\mathcal{L}(G)$: Linguagem gerada por G.
- $b \ge 2$ número máximo de símbolos no lado direito de uma produção.

INF/UFG - LFA 2021/1 - H. Longo

Pumping Lemma para LLC's (113 - 133 de 134)

Pumping Lemma para LLC

Demonstração.

- $ightharpoonup G = (V, \Sigma, R, S)$: Gramática livre de contexto.
- $\blacktriangleright \mathcal{L}(G)$: Linguagem gerada por G.
- $b \ge 2$ número máximo de símbolos no lado direito de uma produção.
 - Um nó tem no máximo b filhos.
 - No máximo b folhas no nível 1, b^2 no nível 2,..., b^h no nível h.
 - Árvore de altura $h \Rightarrow$ Cadeia de comprimento máximo b^h .
 - Cadeia w, tal que $|w| \ge b^h + 1$, \Rightarrow Árvore de altura maior ou igual a h + 1.

Pumping Lemma para LLC

Demonstração.

- $\mathbf{v} \in \mathcal{L}(\mathbf{G}).$
- $ightharpoonup au \mapsto$ Árvore de derivação de w, com o menor número possível de nós.

Demonstração.

- $\mathbf{v} \in \mathcal{L}(\mathring{G}).$
- $ightharpoonup au \mapsto$ Árvore de derivação de w, com o menor número possível de nós.
- $p = b^{|V|} + 1$
 - ▶ $|w| \ge p \Rightarrow \tau$ tem altura mínima |V| + 1.
 - ▶ Um caminho mais longo em τ tem no mínimo |V|+2 nós, onde pelo menos |V|+1 são variáveis (só folhas são terminais).
 - Logo, alguma variável aparece mais de uma vez nesse caminho!
 - Seja R uma variável dentre as |V| + 1 variáveis mais inferiores do caminho.

INF/UFG - LFA 2021/1 - H. Longo

Pumping Lemma para LLC's (116 - 133 de 134)

Pumping Lemma para LLC

Demonstração.

INF/UFG - LFA 2021/1 - H. Longo

Pumping Lemma para LLC's (117 - 133 de 134)

Pumping Lemma para LLC

Demonstração.

- 1. $uv^i x y^i z \in \mathcal{L}, i \ge 0$,
 - Cada ocorrência de *R* gera uma subárvore com parte da cadeia *w*.
 - ▶ Ocorrência inferior de R (subárvore τ_1) gera a cadeia x.
 - ▶ Ocorrência superior de R (subárvore τ_2) gera a cadeia vxy.
 - \blacktriangleright Subárvores τ_1 e τ_2 são geradas pela mesma variável.
 - Substituir uma pela outra gera árvore de derivação válida.
 - Troca da menor pela maior repetidas vezes gera árvores de derivação para cadeias $uv^i xy^i z$, para i>1.
 - ▶ Troca da maior pela menor gera a cadeia uxz.
- 2. |vy| > 0,
- $3. |vxy| \leq p.$

Pumping Lemma para LLC

Demonstração.

Demonstração.

- 1. $uv^i x y^i z \in \mathcal{L}, i \geq 0$,
- 2. |vy| > 0,
 - \triangleright v e y não podem ser ε ao mesmo tempo.
 - Árvore obtida ao substituir a menor subárvore pela maior teria menos nós do que τ e ainda geraria a cadeia w.
 - ightharpoonup Contradição, pois τ foi escolhida com o mínimo possível de nós.
- 3. $|vxy| \leq p$.

INF/UFG - LFA 2021/1 - H. Longo

Pumping Lemma para LLC

Demonstração.

- 1. $uv^i x y^i z \in \mathcal{L}, i \geq 0$
- 2. |vy| > 0,
- 3. $|vxy| \leq p$.
 - Ocorrência superior de R gera vxy.
 - ightharpoonup Ocorrências de R entre as |V| + 1 variáveis mais inferiores do caminho.
 - Subárvore com R como raiz tem altura máxima |V| + 1.
 - Cadeia gerada por *R* tem comprimento máximo $b^{|V|+1} = p$.

Pumping Lemma para LLC's (120 - 133 de 134)

INF/UFG - LFA 2021/1 - H. Longo

Pumping Lemma para LLC's (121 - 133 de 134

Pumping Lemma para LLC

Exemplo 1.32

- $\mathcal{L} = \{a^n b^n c^n \mid n \ge 0\}$ não é livre de contexto:
- ▶ Suponha que \mathcal{L} é LLC.
 - p: pumping length.
- $ightharpoonup w = a^p b^p c^p$ pode ser escrita como w = uvxyz.
- ▶ v e y contém, cada um, apenas um tipo de símbolo:
 - $ightharpoonup uv^2xy^2z$ não contém o mesmo número de a's, b's e c's.
- ▶ v e/ou v contém mais de um tipo de símbolo:
 - $ightharpoonup uv^2xy^2z$ não contém os símbolos a's, b's e c's na ordem correta.
- ▶ Dadas as contradições, £ não é LLC.

Pumping Lemma para LLC

Exemplo 1.33

- ▶ $\mathcal{L} = \{a^i b^j c^k \mid 0 \le i \le j \le k\}$ não é livre de contexto:
- ▶ Supor £ LLC, p é o pumping length e $w = a^p b^p c^p = uvxyz$.
- ▶ *v* e *y* contém, cada um, apenas um tipo de símbolo:
 - ▶ a não ocorre em v ou y:
 - $uv^0xy^0z = uxz$ contém mesmo número de a's que w, mas menos b's ou c's.
 - ▶ b não ocorre em v ou y:
 - ightharpoonup a ou c deve ocorrer em v ou y (não podem ser ε).
 - ▶ a ocorre ⇒ a cadeia uv^2xv^2z contém mais a's do que b's.
 - ightharpoonup c ocorre \Rightarrow a cadeia uv^0xy^0z contém mais b's do que c's.
 - c não ocorre em v ou y:
 - A cadeia $uv^2xy^2z = uxz$ contém mais b's do que c's.
- ▶ v e y contém mais de um tipo de símbolo:
 - uv^2xy^2z não contém a's, b's e c's na ordem correta.
- ▶ Dadas as contradições, £ não é LLC.

Exemplo 1.34

- ▶ $\mathcal{L} = \{ss \mid s \in \{0, 1\}^*\}$ não é livre de contexto:
- ▶ Suponha que \mathcal{L} é LLC.
 - $ightharpoonup p \mapsto pumping length.$
- ► Escolha da cadeia w é menos óbvia!

INF/UFG - LFA 2021/1 - H. Longo

Pumping Lemma para LLC's (124 - 133 de 134)

Pumping Lemma para LLC

Exemplo 1.34

- ▶ $\mathcal{L} = \{ss \mid s \in \{0, 1\}^*\}$ não é livre de contexto:
- ▶ Suponha que \mathcal{L} é LLC.
 - ▶ $p \mapsto \text{pumping length}$.
- ► Escolha da cadeia w é menos óbvia!

INF/UFG - LFA 2021/1 - H. Longo

Pumping Lemma para LLC's (125 - 133 de 134)

Pumping Lemma para LLC

Exemplo 1.34

- ▶ $\mathcal{L} = \{ss \mid s \in \{0, 1\}^*\}$ não é livre de contexto:
- ▶ Suponha que \mathcal{L} é LLC.
 - ▶ $p \mapsto \text{pumping length}$.
- ► Escolha da cadeia w é menos óbvia!

Pumping Lemma para LLC

Exemplo 1.34

- ▶ $\mathcal{L} = \{ss \mid s \in \{0, 1\}^*\}$ não é livre de contexto:
- ▶ Suponha que \mathcal{L} é LLC.
 - $p \mapsto pumping length.$
- ► Escolha da cadeia w é menos óbvia!
- ▶ $w = ss = 0^p 10^p 1 \Rightarrow$ não leva a uma contradição:

 $\blacktriangleright uv^i x y^i z \in \mathcal{L}, \ \forall i \geqslant 0.$

Exemplo 1.34

- $\blacktriangleright \mathcal{L} = \{ss \mid s \in \{0, 1\}^*\}$ não é livre de contexto:
- ▶ Suponha que \mathcal{L} é LLC.
 - $p \mapsto pumping length.$
- ► Escolha da cadeia w é menos óbvia!
- $w = ss = 0^p 1^p 0^p 1^p = uvxyz e |vxy| \le p.$

INF/UFG - LFA 2021/1 - H. Longo

Pumping Lemma para LLC

Exemplo 1.34

- \blacktriangleright $\mathcal{L} = \{ss \mid s \in \{0, 1\}^*\}$ não é livre de contexto:
- ▶ Suponha que \mathcal{L} é LLC.
 - $p \mapsto pumping length.$
- ► Escolha da cadeia w é menos óbvia!
- $w = ss = 0^p 1^p 0^p 1^p = uvxyz e |vxy| \le p$.
- ► Se vxy aparece só na primeira metade de w, em uv^2xy^2z aparecem duas sequências de 1's na segunda metade.

Pumping Lemma para LLC's (128 - 133 de 134)

INF/UFG - LFA 2021/1 - H. Longo

Pumping Lemma para LLC's (129 - 133 de 134

Pumping Lemma para LLC

Exemplo 1.34

- \blacktriangleright $\mathcal{L} = \{ss \mid s \in \{0, 1\}^*\}$ não é livre de contexto:
- ▶ Suponha que \mathcal{L} é LLC.
 - $p \mapsto pumping length.$
- ► Escolha da cadeia w é menos óbvia!
- $w = ss = 0^p 1^p 0^p 1^p = uvxyz e |vxy| \le p.$
- ► Se vxy aparece só na primeira metade de w, em uv^2xy^2z aparecem duas sequências de 1's na segunda metade.
- ► Se vxy aparece só na segunda metade de w, em uv^2xy^2z aparecem mais 0's na segunda metade do que na primeira.

Pumping Lemma para LLC

Exemplo 1.34

INF/UFG - LFA 2021/1 - H. Longo

- \blacktriangleright $\mathcal{L} = \{ss \mid s \in \{0, 1\}^*\}$ não é livre de contexto:
- ▶ Suponha que \mathcal{L} é LLC.
 - $p \mapsto pumping length.$
- ► Escolha da cadeia w é menos óbvia!
- $w = ss = 0^p 1^p 0^p 1^p = uvxyz e |vxy| \le p.$
- ightharpoonup Se vxy aparece só na primeira metade de w, em uv^2xy^2z o 1 aparece duas vezes na segunda metade.
- ightharpoonup Se vxy aparece só na segunda metade de w, em uv^2xy^2z o 0 aparece mais na segunda do que na primeira metade.
- ightharpoonup Se vxy aparece nas duas metades, em $0^p 1^i 0^j 1^p$ as variáveis $i \in j$ não podem ser iguais a p ao mesmo tempo.

Exemplo 1.34

- ▶ $\mathcal{L} = \{ss \mid s \in \{0, 1\}^*\}$ não é livre de contexto:
- ▶ Suponha que \mathcal{L} é LLC.
 - ▶ $p \mapsto \text{pumping length}$.
- ► Escolha da cadeia w é menos óbvia!
- $w = ss = 0^p 1^p 0^p 1^p = uvxyz e |vxy| \le p.$
- ► Se vxy aparece só na primeira metade de w, em uv^2xy^2z o 1 aparece duas vezes na segunda metade.
- ► Se vxy aparece só na segunda metade de w, em uv^2xy^2z o 0 aparece mais na segunda do que na primeira metade.
- ▶ Se vxy aparece nas duas metades, em $0^p 1^i 0^j 1^p$ as variáveis $i \in j$ não podem ser iguais a p ao mesmo tempo.
- ▶ Dadas as contradições, £ não é LLC.

INF/UFG - LFA 2021/1 - H. Longo Pumping Lemma para LLC's (132 - 133 de 134)

Livros texto

Discrete and Combinatorial Mathematics - An Applied Introduction. Addison Wesley, 1994.

How To Prove It - A Structured Approach.

Cambridge University Press, 1996.

Introdução à Teoria de Autômatos, Linguagens e Computação. Ed. Campus.

Languages and Machines - An Introduction to the Theory of Computer Science. Addison Wesley Longman, Inc. 1998.

Theory of Finite Automata - With an Introduction to Formal Languages.

Introduction to the Theory of Computation. PWS Publishing Company, 1997

H. R. Lewis; C. H. Papadimitriou

Elementos de Teoria da Computação. Bookman, 2000

INF/UFG - LFA 2021/1 - H. Longo Bibliografia (134 - 134 de 134)

Roteiro

INF/UFG - LFA 2021/1 - H. Longo Pumping Lemma para LLC's (133 - 133 de 134)