問題ノ:刺身

原案:楠本

解答:楠本,花田

問題文:楠本

解説:楠本

概要

- □ 1×N のセルがあり, *i* 番目のセルの重さは *w_i* である.
- □ セル $[w_l w_{l+1} ... w_r]$ をコスト $w_l + w_{l+1} + ... + w_r$ で任意の位置で切断できる.

- □ 各セルを全部 1×1 のセルに分解したい.
- □ 最小コストを求めよ.
- $\square N \le 4,000, w_i \le 10^{12}$
- □ 部分点(3点): N ≤ 100

部分点解法

- □ dp[*i*, *j*] := セル *i* , *i*+1,..., *j* を分解する最小コストと置くと 以下が成り立つ
- $\square \operatorname{dp}[i, i] = 0$
- □ そのまま計算すると O(N³) のオーダー
- N ≤ 100 なら間に合う. これで 3 点

- \square cut[i, j] := min { $k \mid dp[i,k] + dp[k+1, j] = dp[i, j]$ } とおく.
- □ [i, j] を切ると良い位置

- ロ 補題. $i \le j \le k \le l$ に対して $dp[i, l] + dp[j, k] \ge dp[i, k] + dp[j, l]$
- □ 証明.
 - □帰納法による. i=j=k=l のときは自明.
 - $\square l i < s$ のとき成立すると仮定.
 - $\square m_1 = \operatorname{cut}[i, l], m_2 = \operatorname{cut}[j, k]$ とおく.

- ロ 補題. $i \le j \le k \le l$ に対して $dp[i, l] + dp[j, k] \ge dp[i, k] + dp[j, l]$
- □ 証明.
 - \square_{m_1} が [j,k] からはみ出ているとき:
 - $\square[i,l] \geq [i,k]$ を m_1 で切断してみる

- ロ 補題. $i \leq j \leq k \leq l$ に対して $dp[i, l] + dp[j, k] \geq dp[i, k] + dp[j, l]$
- □ 証明.
 - □すると帰納法の過程の状態に帰結される.
 - $\square \operatorname{dp}[i, l] + \operatorname{dp}[j, k]$
 - $=\mathrm{dp}[i,m{m_1}]+\mathrm{dp}[m{m_1}+1,l]+\mathrm{dp}[j,k]$ $(m{m_1}$ は最適な切断)
 - $\geq dp[i, m_1] + dp[m_1 + 1, k] + dp[j, l] (帰納法の仮定)$
 - $\geq dp[i, k] + dp[j, l]$

- ロ 補題. $i \le j \le k \le l$ に対して $dp[i, l] + dp[j, k] \ge dp[i, k] + dp[j, l]$
- □ 証明.
 - ■m1 が [j, k] 内に収まっているとき
 - □[*i*, *k*], [*j*, *l*] を良い感じに切る

- ロ 補題. $i \leq j \leq k \leq l$ に対して $dp[i, l] + dp[j, k] \geq dp[i, k] + dp[j, l]$
- □ 証明.
 - □m1 が [j, k] 内に収まっているとき
 - □[*i*, *k*], [*j*, *l*] を良い感じに切る
 - □同じ議論が成立する. ■

- ロ 補題. $i \le j \le k \le l$ に対して $dp[i, l] + dp[j, k] \ge dp[i, k] + dp[j, l]$
- 口補題. $\operatorname{cut}[i,j] \leq \operatorname{cut}[i,j+1]$

- ロ 補題. $i \leq j \leq k \leq l$ に対して $dp[i, l] + dp[j, k] \geq dp[i, k] + dp[j, l]$
- \square 補題. $\operatorname{cut}[i,j] \leq \operatorname{cut}[i,j+1]$

□ 証明.

- □背理法. k = cut[i, j], k' = cut[i, j+1] として k > k'を仮定.
- $\Box \operatorname{dp}[i, k'] + \operatorname{dp}[k', k] < \operatorname{dp}[i, k] + \operatorname{dp}[k, j+1] (仮定)$
- $\square \operatorname{dp}[i, k'] + \operatorname{dp}[k', j] \ge \operatorname{dp}[i, k] + \operatorname{dp}[k, j] \text{ (cutの定義)}$
- $\Box : dp[k', j+1] + dp[k, j] < dp[k', j] + dp[k, j+1]$
- □さっきの補題に矛盾!!!!! ■

- ロ 補題. $i \le j \le k \le l$ に対して $dp[i, l] + dp[j, k] \ge dp[i, k] + dp[j, l]$
- \square 補題. $\operatorname{cut}[i,j] \leq \operatorname{cut}[i,j+1]$
- ロ 同様に $\operatorname{cut}[i,j] \leq \operatorname{cut}[i+1,j]$
- □ よって...

i ∖ j	0	1	2	3
0	cut[0, 0]	cut[0, 1]	cut[0, 2]	cut[0, 3]
1	×	cut[1, 1]	cut[1, 2]	cut[1, 3]
2	×	×	cut[2, 2]	cut[2, 3]
3	×	×	×	cut[3, 3]

- ロ 補題. $i \le j \le k \le l$ に対して $dp[i, l] + dp[j, k] \ge dp[i, k] + dp[j, l]$
- \square 補題. $\operatorname{cut}[i,j] \leq \operatorname{cut}[i,j+1]$
- ロ 同様に $\operatorname{cut}[i,j] \leq \operatorname{cut}[i+1,j]$

□ よって...

これは、この間の数

i ∖ j	0	1	2	
0	cut[0, 0]	cut[0, 1]	cut[0, 2]	cut[0, 3]
1	×	cut[1, 1]	cut[1, 2]	cut[1, 3]
2	×	×	cut[2, 2]	cut[2, 3]
3	×	×	×	cut[3, 3]

- ロ 補題. $i \le j \le k \le l$ に対して $dp[i, l] + dp[j, k] \ge dp[i, k] + dp[j, l]$
- \square 補題. $\operatorname{cut}[i,j] \leq \operatorname{cut}[i,j+1]$
- \square 同様に $\operatorname{cut}[i,j] \leq \operatorname{cut}[i+1,j]$
- ロ よって… 対角線状のセルの $\operatorname{cut}[*,*]$ の候補は O(N) 個しか無い. \rightarrow 対角線は全部で O(N) 個 なので $O(N^2)$ で計算可.

i \ j	0	1	2	3
0	cut[0, 0]	cut[0, 1]	cut[0, 2]	cut[0, 3]
1	×	cut[1, 1]	cut[1, 2]	cut[1, 3]
2	×	×	cut[2, 2]	cut[2, 3]
3	×	×	×	cut[3, 3]

結果

☐ First Accepted : hos.lyric* (10:55)

□ 挑戦者数:58

□ 正解者数:9(7%)

□ 提出数:124

余談

- □「最適2分探索木問題」という名前の有名な問題だったらしい です
 - □参考:
 - http://topcoder.g.hatena.ne.jp/iwiwi/20120701/1341149838

