3.1, 3.2, & 3.3 Unit Circle Trigonometry-mild (Calculator, Paper 2)

1a. The following diagram shows a circle with centre 0 and radius 40 cm.

diagram not to scale

The points A, B and C are on the circumference of the circle and $\hat{AOC}=1.9~radians$

Find the length of arc ABC.

[2 marks]

1b. Find the perimeter of sector OABC.

[2 marks]

1c. Find the area of sector OABC.

[2 marks]

2a. The following diagram shows a circle with centre O and radius 3 cm.

diagram not to scale

Points A, B, and C lie on the circle, and $\hat{AOC} = 1.3 \ radians$

Find the length of arc ABC.

[2 marks]

2b. Find the area of the shaded region.

[4 marks]

3a. The following diagram shows a circle with centre O and radius $5\ cm$.

The points A, B, and C lie on the circumference of the circle, and $\hat{AOC}=0.7$ radians.

Find the length of the arc ABC.

[2 marks]

3b. Find the perimeter of the shaded sector.

[2 marks]

3c. Find the area of the shaded sector.

[2 marks]

4a. The diagram below shows a circle centre 0, with radius r. The length of arc ABC is 3π cm and $\widehat{AOC} = \frac{2\pi}{9}$.

Find the value of r. [2 marks]

4b. Find the perimeter of sector OABC.

[2 marks]

4c. Find the area of sector OABC.

[2 marks]

5a. The circle shown has centre 0 and radius 3.9 cm.

Points A and B lie on the circle and angle AOB is 1.8 radians.

Find AB. [3 marks]

5b. Find the area of the shaded region.

[4 marks]

6a. The diagram shows a circle, centre 0, with radius 4 cm. Points A and B lie on the circumference of the circle and $\hat{AOB} = \theta$, where $0 \le \theta \le \pi$.

diagram not to scale

Find the area of the shaded region, in terms of θ .

[3 marks]

6b. The area of the shaded region is 12 cm². Find the value of θ .

[3 marks]

7a. The following diagram shows a circle, centre 0 and radius r mm. The circle is divided into five equal sectors.

diagram not to scale

One sector is OAB, and $\hat{AOB} = \theta$.

Write down the **exact** value of θ in radians.

[1 mark]

7b. The area of sector AOB is 20π mm².

Find the value of *r*.

[3 marks]

7c. Find AB.

[3 marks]

8a. The following diagram shows a circle with centre O and radius $8 \, \mathrm{cm}$.

The points A, B and C are on the circumference of the circle, and \hat{AOB} radians.

Find the length of arc ACB.

[2 marks]

8b. Find AB.

[3 marks]

8c. Hence, find the perimeter of the shaded segment ABC.

[2 marks]

9a. Consider the following circle with centre O and radius 6.8 cm.

The length of the arc PQR is 8.5 cm.

Find the value of heta . [2 marks]

9b. Find the area of the shaded region. [4 marks]

10. The following diagram shows the chord [AB] in a circle of radius 8 cm, where $AB=12\ cm$.

Find the area of the shaded segment.

[7 marks]

11a. A circle centre O and radius r is shown below. The chord [AB] divides the area of the circle into two parts. Angle AOB is θ .

Find an expression for the area of the shaded region.

[3 marks]

11b. The chord [AB] divides the area of the circle in the ratio 1:7. Find the value of θ .

[5 marks]

12a. The following diagram shows a circle with centre O and radius \emph{r} cm.

Points A and B are on the circumference of the circle and $\hat{AOB}=1.4\,\text{radians}$.

The point C is on [OA] such that $\hat{BCO} = \frac{\pi}{2}$ radians .

Show that $OC = r \cos 1.4$.

[1 mark]

12b. The area of the shaded region is $25~\mathrm{cm^2}$. Find the value of r .

[7 marks]

13a. The following diagram shows a square ABCD, and a sector OAB of a circle centre O, radius r. Part of the square is shaded and labelled R.

$$\hat{AOB} = \theta$$
, where $0.5 \le \theta < \pi$.

Show that the area of the square ABCD is $2r^2(1-\cos\theta)$.

[4 marks]

13b. When heta=lpha, the area of the square ABCD is equal to the area of the sector OAB.

- (i) Write down the area of the sector when $\theta=lpha$.
- (ii) Hence find α . [4 marks]

14a. The following diagram shows a triangle ABC.

 $\mathrm{BC}=6$, $\mathrm{C\widehat{A}B}=0.7$ radians , $\mathrm{AB}=4p$, $\mathrm{AC}=5p$, where p>0 .

- (i) Show that $p^2(41-40\cos0.7)=36$.
- (ii) Find *p*. [4 marks]

14b. Consider the circle with centre B that passes through the point C. The circle cuts the line CA at D, and \widehat{ADB} is obtuse. Part of the circle is shown in the following diagram.

Write down the length of BD.

[1 mark]

14c. Find \widehat{ADB} .

- **14d.** (i) Show that $\widehat{CBD} = 1.29$ radians, correct to 2 decimal places.
 - (ii) Hence, find the area of the shaded region.

[6 marks]