Computational Intelligence Laboratory

Lecture 1

Principal Component Analysis

Thomas Hofmann

ETH Zurich - cil.inf.ethz.ch

24 February & March 3, 2017

Section 1

Dimension Reduction

Motto

Before computation comes calculation.

Dimension Reduction

- Dimension reduction
 - ▶ given (high-dimensional) data points $\{\mathbf{x}_i \in \mathbb{R}^m : i=1,\ldots,n\}$
 - ► map data to low-dimensional vector space
 - ▶ more generally: recover/learn a data manifold

Dimension Reduction: Example

- Example: face images
 - ▶ 2D pixel fields, e.g. $\mathbf{x}_i \in \mathbb{R}^{100 \times 100}$;
 - lacktriangle often treated as vectors $\mathbb{R}^{100 \times 100} \simeq \mathbb{R}^{10000}$
 - approximate image by linear combination of basis images

(from: Turk and Pentland, Eigenfaces for Recognition, 1991)

- ▶ images (on r.h.s.) = basis of 4-dim subspace
- ► coefficients = 4-dimensional representation

Dimension Reduction: Motivation

► Motivation

- ▶ visualization e.g. 2D or 3D
- data compression fewer coefficients
- data reconstruction filling in missing data
- signal recovery removing noise
- discover modes of variation intrinsic properties of data
- feature discovery learn better representations

Section 2

1D Linear Case

Line in \mathbb{R}^m

ightharpoonup Parametric form of a line in \mathbb{R}^m

$$\mu + \mathbb{R}\mathbf{u} \equiv \{\mathbf{v} \in \mathbb{R}^m : \exists z \in \mathbb{R} \text{ s.t. } \mathbf{v} = \mu + z\mathbf{u}\}$$

- $\blacktriangleright \mu$: offset or shift
- ▶ u: direction vector
- \mathbf{u} "is direction" \iff $\|\mathbf{u}\| = 1$
- $ightharpoonup \|\cdot\|$ or $\|\cdot\|_2$: Euclidean vector norm, $\|\mathbf{v}\|^2 = \sum_i v_i^2 = \langle \mathbf{v}, \mathbf{v} \rangle$
- $lack \langle \cdot, \cdot \rangle$: inner or dot product, $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^\top \mathbf{v} = \sum_j u_j v_j$

Orthogonal Projection (1 of 2)

- lacksquare Approximate data point $\mathbf{x} \in \mathbb{R}^m$ by a point on the line
- Minimize (squared) Euclidean distance
- Formally:

Dimension Reduction
$$\leftarrow \operatorname*{arg\,min}_{z \in \mathbb{R}} \| \boldsymbol{\mu} + z \mathbf{u} - \mathbf{x} \|^2$$
 or
$$\operatorname*{Reconstruction} \qquad \leftarrow \operatorname*{arg\,min}_{\hat{\mathbf{x}} \in \boldsymbol{\mu} + \mathbb{R}\mathbf{u}} \| \hat{\mathbf{x}} - \mathbf{x} \|^2$$

▶ We know the answer!

Orthogonal Projection (1 of 2)

- $lackbox{ }$ Approximate data point $\mathbf{x} \in \mathbb{R}^m$ by a point on the line
- Minimize (squared) Euclidean distance
- ► Formally:

Dimension Reduction
$$\leftarrow \operatorname*{arg\,min}_{z \in \mathbb{R}} \| \boldsymbol{\mu} + z \mathbf{u} - \mathbf{x} \|^2$$
 or
$$\operatorname{Reconstruction} \qquad \leftarrow \operatorname*{arg\,min}_{\hat{\mathbf{x}} \in \boldsymbol{\mu} + \mathbb{R}\mathbf{u}} \|\hat{\mathbf{x}} - \mathbf{x} \|^2$$

▶ We know the answer! **T** Orthogonal projection.

Orthogonal Projection (2 of 2)

Warm-up exercise: first order optimality condition

$$\frac{d}{dz} \|\boldsymbol{\mu} + z\mathbf{u} - \mathbf{x}\|^2 = 2\langle \boldsymbol{\mu} + z\mathbf{u} - \mathbf{x}, \mathbf{u} \rangle \stackrel{!}{=} 0$$

$$\iff \underbrace{\langle \mathbf{u}, \mathbf{u} \rangle}_{\|\mathbf{u}\|^2 = 1} z \stackrel{!}{=} \langle \mathbf{x} - \boldsymbol{\mu}, \mathbf{u} \rangle$$

► Solution(s):

$$z = \langle \mathbf{x} - \boldsymbol{\mu}, \mathbf{u} \rangle$$
$$\hat{\mathbf{x}} = \boldsymbol{\mu} + \langle \mathbf{x} - \boldsymbol{\mu}, \mathbf{u} \rangle \mathbf{u}$$

▶ Procedure: (1) shift by $-\mu$, (2) project onto \mathbf{u} , (3) shift back by μ

Optimal Line: Formulation

- ▶ Assume we are given data points $\{\mathbf{x}_1, \dots, \mathbf{x}_n\} \subset \mathbb{R}^m$.
- What is their optimal approximation by a line?
 - use orthogonal projection result

$$(\mathbf{u}, \boldsymbol{\mu}) \leftarrow \arg \min \left[\frac{1}{n} \sum_{i=1}^{n} \| \underbrace{\boldsymbol{\mu} + \langle \mathbf{x}_i - \boldsymbol{\mu}, \mathbf{u} \rangle \mathbf{u}}_{=\hat{\mathbf{x}}_i} - \mathbf{x}_i \|^2 \right]$$
$$= \left[\frac{1}{n} \sum_{i=1}^{n} \| \left(\mathbf{I} - \mathbf{u} \mathbf{u}^\top \right) (\mathbf{x}_i - \boldsymbol{\mu}) \|^2 \right]$$

- some simple algebra
- exploit identity $\langle \mathbf{v}, \mathbf{u} \rangle \mathbf{u} = (\mathbf{u}\mathbf{u}^{\top})\mathbf{v}$ there is a error on the slide $\langle \mathbf{u}, \mathbf{v} \rangle \mathbf{u} = \mathbf{u}\mathbf{u}'\mathbf{v}$

I minus U2?

- lacktriangle What does this matrix represent? $\left(\mathbf{I} \mathbf{u}\mathbf{u}^{ op}\right)$
 - ▶ in general: a matrix represents a linear map (in specific basis)
- ▶ Specifically: take argument v, we get

$$\left(\mathbf{I} - \mathbf{u}\mathbf{u}^{\top}\right)\mathbf{v} = \mathbf{v} - \underbrace{\langle \mathbf{u}, \mathbf{v} \rangle \mathbf{u}}_{\text{projection}}$$

- ightharpoonup so this is the vector itself minus the projection to the line $\mathbb{R}\mathbf{u}$
- lacktriangle which is the projection to the orthogonal complement $(\mathbb{R}\mathbf{u})^{\perp}$
- ▶ it is idempotent, because

$$(\mathbf{u}\mathbf{u}^{\top})[\mathbf{v} - \langle \mathbf{u}, \mathbf{v} \rangle \mathbf{u}] = \langle \mathbf{u}, \mathbf{v} \rangle \mathbf{u} - \langle \mathbf{u}, \mathbf{v} \rangle \mathbf{u} = \mathbf{0}$$

Optimal Line: Solving for μ

lacktriangle First order optimality condition for μ

$$\nabla_{\boldsymbol{\mu}}[\cdot] \stackrel{!}{=} 0 \iff \frac{1}{n} \sum_{i=1}^{n} \left(\mathbf{I} - \mathbf{u} \mathbf{u}^{\top} \right) \left(\mathbf{x}_{i} - \boldsymbol{\mu} \right) \stackrel{!}{=} 0$$

$$\iff \left(\mathbf{I} - \mathbf{u} \mathbf{u}^{\top} \right) \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \stackrel{!}{=} \left(\mathbf{I} - \mathbf{u} \mathbf{u}^{\top} \right) \boldsymbol{\mu}$$

b does not determine μ uniquely \P

Optimal Line: Solving for μ

lacktriangle First order optimality condition for μ

$$\nabla_{\boldsymbol{\mu}}[\cdot] \stackrel{!}{=} 0 \iff \frac{1}{n} \sum_{i=1}^{n} \left(\mathbf{I} - \mathbf{u} \mathbf{u}^{\top} \right) \left(\mathbf{x}_{i} - \boldsymbol{\mu} \right) \stackrel{!}{=} 0$$

$$\iff \left(\mathbf{I} - \mathbf{u} \mathbf{u}^{\top} \right) \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \stackrel{!}{=} \left(\mathbf{I} - \mathbf{u} \mathbf{u}^{\top} \right) \boldsymbol{\mu}$$

- **b** does not determine μ uniquely $\ref{fig:sphere}$
- ▶ however, there is a unique (simultaneous) solution for all u:

$$\mu = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i \equiv$$
 sample mean

Optimal Line: Conclusion #1

By centering the data:

$$\mathbf{x}_i \leftarrow \mathbf{x}_i - \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i$$

- restrict to linear (instead of affine) subspaces
- ▶ identify center of mass of data with origin
- simplifies derivations and analyses
- w.l.o.g.: assume data points are centered

Optimal Line: Solving for u (1 of 3)

We are left with

$$\mathbf{u} \leftarrow \underset{\|\mathbf{u}\|=1}{\operatorname{arg min}} \left[\frac{1}{n} \sum_{i=1}^{n} \|\langle \mathbf{u}, \mathbf{x}_i \rangle \mathbf{u} - \mathbf{x}_i \|^2 \right]$$

- Expanding the squared norm
 - ▶ general formula

$$\|\mathbf{v} - \mathbf{w}\|^2 = \langle \mathbf{v} - \mathbf{w}, \mathbf{v} - \mathbf{w} \rangle = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 - 2\langle \mathbf{v}, \mathbf{w} \rangle$$

• yields: $const - \langle \mathbf{u}, \mathbf{x} \rangle^2$ as

$$\begin{split} \|\langle \mathbf{u}, \mathbf{x} \rangle \mathbf{u} \|^2 &= \langle \mathbf{u}, \mathbf{x} \rangle^2 \\ \|\mathbf{x} \|^2 &= \mathsf{const.} \\ -2 \langle \langle \mathbf{u}, \mathbf{x} \rangle \mathbf{u}, \mathbf{x} \rangle &= -2 \langle \mathbf{u}, \mathbf{x} \rangle^2 \end{split}$$

Optimal Line: Solving for u (2 of 3)

► We can equivalently solve

$$\mathbf{u} \leftarrow \underset{\|\mathbf{u}\|=1}{\operatorname{arg\,max}} \left[\frac{1}{n} \sum_{i=1}^{n} \langle \mathbf{u}, \mathbf{x}_i \rangle^2 \right]$$
$$= \left[\mathbf{u}^{\top} \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^{\top} \right) \mathbf{u} \right]$$

► Key matrix: variance-covariance matrix of the data sample

$$\mathbf{\Sigma} \equiv \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^{\top} = \frac{1}{n} \mathbf{X} \mathbf{X}^{\top}, \quad \mathbf{X} \equiv [\mathbf{x}_1 \dots \mathbf{x}_n]$$

Hold on: Baby Step Derivation

$$\begin{split} \frac{1}{n} \sum_{i=1}^{n} \langle \mathbf{u}, \mathbf{x}_{i} \rangle^{2} &= \frac{1}{n} \sum_{i} \left[\left(\sum_{j} u_{j} x_{ij} \right) \left(\sum_{k} u_{k} x_{ik} \right) \right] \\ &= \frac{1}{n} \sum_{i} \sum_{j,k} u_{j} u_{k} x_{ij} x_{ik} \\ &= \sum_{j,k} u_{j} u_{k} \left(\frac{1}{n} \sum_{i} x_{ij} x_{ik} \right) = \mathbf{u}^{\top} \underbrace{\left(\frac{1}{n} \sum_{i} x_{ij} x_{ik} \right)}_{\text{matrix}} \mathbf{u} \\ &= \mathbf{u}^{\top} \left(\frac{1}{n} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \right) \mathbf{u} = \mathbf{u}^{\top} \mathbf{\Sigma} \mathbf{u} \end{split}$$

Optimal Line: Solving for u (3 of 3)

lacktriangle Constrained optimization with Lagrange multiplier λ

$$\mathcal{L}(\mathbf{u}, \lambda) = \mathbf{u}^{\top} \mathbf{\Sigma} \mathbf{u} + \lambda \langle \mathbf{u}, \mathbf{u} \rangle$$

lacktriangle Minimize over ${f u}\Longrightarrow {f u}$ is an ${f eigenvector}$ of ${f \Sigma}$

$$\nabla_{\mathbf{u}} \mathcal{L}(\mathbf{u}) = 2(\mathbf{\Sigma}\mathbf{u} - \lambda\mathbf{u})$$

$$\nabla_{\mathbf{u}} \mathcal{L}(\mathbf{u}) \stackrel{!}{=} 0 \iff \mathbf{\Sigma} \mathbf{u} = \lambda \mathbf{u}$$

Maximize over $\lambda \Longrightarrow \mathbf{u}$ is a **principal** eigenvector of Σ (one with the largest eigenvalue λ)

Linear Algebra: Eigen-{Values & Vectors}

- ▶ Let **A** be a squared matrix, $\mathbf{A} \in \mathbb{R}^{m \times m}$.
- \mathbf{u} is an eigenvector of \mathbf{A} , if exists $\lambda \in \mathbb{R}$ such that $\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$
- such a λ is called an **eigenvalue**
- ▶ if **u** is eigenvector with eigenvalue λ , so is any α **u** with $\alpha \in \mathbb{R}$
- ▶ A is called **positive semi-definite**, if

$$\mathbf{v}^{\top} \mathbf{A} \mathbf{v} \ge 0 \quad (\forall \mathbf{v})$$

▶ If $\mathbf{A} = \mathbf{B}^{\top}\mathbf{B}$ for some $\mathbf{B} \in \mathbb{R}^{n \times m}$, then \mathbf{A} is p.s.d.

$$\mathbf{v}^{\top} \left(\mathbf{B}^{\top} \mathbf{B} \right) \mathbf{v} = \left(\mathbf{B} \mathbf{v} \right)^{\top} (\mathbf{B} \mathbf{v}) = \| \mathbf{B} \mathbf{v} \|^2 \geq 0$$

Optimal Line: Conclusion #2

- Optimal direction = principal eigenvector of the sample variance-covariance matrix
- Extremal characterization

$$\mathbf{u} \leftarrow \operatorname*{arg\,max}_{\mathbf{v}:\|\mathbf{v}\|=1} \left[\mathbf{v}^{\top} \mathbf{\Sigma} \mathbf{v} \right]$$

Variance Maximization

▶ Re-interpret in term of variance maximization in 1d representation

$$\mathsf{Var}[z] = rac{1}{n} \sum_{i=1}^n z_i^2 = rac{1}{n} \sum_{i=1}^n \langle \mathbf{x}_i, \mathbf{u}
angle^2 = \mathbf{u}^ op \mathbf{\Sigma} \mathbf{u}$$

- remember: we subtracted the mean
- same objective as before
- ▶ Direction of smallest reconstruction error ⇔
 Direction of largest data variance

Section 3

Principal Component Analysis

Residual Problem

▶ Residual: projection to $(\mathbb{R}\mathbf{u})^{\perp}$

$$\mathbf{r}_i := \mathbf{x}_i - ilde{\mathbf{x}}_i = \left(\mathbf{I} - \mathbf{u}\mathbf{u}^{ op}
ight)\mathbf{x}_i$$

Variance-covariance matrix of residual vectors

$$\frac{1}{n} \sum_{i=1}^{n} \mathbf{r}_{i} \mathbf{r}_{i}^{\top} = \frac{1}{n} \sum_{i=1}^{n} \left(\mathbf{I} - \mathbf{u} \mathbf{u}^{\top} \right) \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \left(\mathbf{I} - \mathbf{u} \mathbf{u}^{\top} \right)^{\top} \\
= \left(\mathbf{I} - \mathbf{u} \mathbf{u}^{\top} \right) \mathbf{\Sigma} \left(\mathbf{I} - \mathbf{u} \mathbf{u}^{\top} \right)^{\top} \\
= \mathbf{\Sigma} - 2 \underbrace{\mathbf{\Sigma} \mathbf{u}}_{-\lambda \mathbf{u}} \mathbf{u}^{\top} + \mathbf{u} \underbrace{\mathbf{u}^{\top} \mathbf{\Sigma} \mathbf{u}}_{-\lambda} \mathbf{u}^{\top} = \mathbf{\Sigma} - \lambda \mathbf{u} \mathbf{u}^{\top}$$

Iterative View

What does this mean? Note that

$$\left(\mathbf{\Sigma} - \lambda \mathbf{u} \mathbf{u}^{\top}\right) \mathbf{u} = \lambda \mathbf{u} - \lambda \mathbf{u} = 0$$

- ightharpoonup so ${f u}$ is now an eigenvector with eigenvalue 0
- lacktriangle Because $oldsymbol{\Sigma}$ is p.s.d., all eigenvalues are non-negative
- Repeating the above procedure:
 - lacktriangle we find the principal eigenvector of $\left(oldsymbol{\Sigma} \lambda \mathbf{u} \mathbf{u}^{ op}
 ight)$
 - lacktriangle which is the 2nd principal eigenvector of Σ
 - lacktriangle we keep iterating to identify the d principal eigenvectors of $oldsymbol{\Sigma}$
 - eigenvectors are guaranteed to be pairwise orthogonal

Diagonalization

- ▶ Let us take a matrix view (to complement the iterative one ...)
- $ightharpoonup \Sigma$ can be diagonalized by orthogonal matrices

$$\Sigma = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\top}, \quad \mathbf{\Lambda} = \mathsf{diag}(\lambda_1, \dots, \lambda_m), \quad \lambda_1 \geq \dots \geq \lambda_m$$

where U is an orthogonal matrix (unit length, orthogonal columns)

$$\mathbf{U} = \begin{pmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_m \end{pmatrix},$$

 $\mathbf{U}^{\top} \mathbf{u}_i = \mathbf{e}_i, \quad \mathbf{\Sigma} \mathbf{u}_i = \lambda_i \mathbf{u}_i$

i.e. the columns are eigenvectors (form an eigenvector basis).

Results from Linear Algebra

- $oldsymbol{\Sigma}$ is symmetric, $oldsymbol{\Sigma} = oldsymbol{\Sigma}^ op$
 - obvious as $\sigma_{jk} = \frac{1}{n} \sum_{i} x_{ij} x_{ik}$
- ► **Spectral Theorem**: Matrix **A** is diagonalizable by an orthogonal matrix if and only if it is symmetric
 - $lackbox{ } \mathbf{U}$ orthogonal: $\mathbf{U}^{\top}\mathbf{U} = \mathbf{U}\mathbf{U}^{\top} = \mathbf{I}$ (i.e. transpose = inverse)
 - lacktriangle columns are normalized and orthogonal: $\langle {f u}_j, {f u}_k
 angle = \delta_{jk}$
- ► Theorem: Distinct eigenvalues of symmetric matrices have orthogonal eigenvectors

$$\mathbf{u}_{1}^{\top} \mathbf{A} \mathbf{u}_{2} = \langle \mathbf{u}_{1}, \lambda_{2} \mathbf{u}_{2} \rangle \stackrel{\mathsf{symm}}{=} \mathbf{u}_{2}^{\top} \mathbf{A} \mathbf{u}_{1} = \langle \mathbf{u}_{2}, \lambda_{1} \mathbf{u}_{1} \rangle$$
$$\Longrightarrow (\lambda_{1} - \lambda_{2}) \langle \mathbf{u}_{1}, \mathbf{u}_{2} \rangle = 0 \stackrel{\lambda_{1} \neq \lambda_{2}}{\Longrightarrow} \langle \mathbf{u}_{1}, \mathbf{u}_{2} \rangle = 0$$

PCA: Final Answer

- ▶ What is the optimal **reduction** to *d* dimensions?
 - lacktriangleright diagonalize $oldsymbol{\Sigma}$ and pick the d principal eigenvectors

$$\tilde{\mathbf{U}} = \begin{pmatrix} \mathbf{u}_1 & \dots & \mathbf{u}_d \end{pmatrix}, \ d \leq m$$

dimension reduction

$$\mathbf{Z} = \underbrace{\tilde{\mathbf{U}}^{\top}}_{\in \mathbb{R}^{d \times m}} \underbrace{\mathbf{X}}_{\in \mathbb{R}^{m \times n}} \in \mathbb{R}^{d \times n}$$

- ▶ What is the optimal **reconstruction** in *d* dimensions?
 - use eigenbasis

$$\tilde{\mathbf{X}} = \tilde{\mathbf{U}}\mathbf{Z} = \underbrace{\tilde{\mathbf{U}}\tilde{\mathbf{U}}^\top}_{\text{projection}}\mathbf{X}$$

Section 4

Algorithms and Practicalities

Power Method

- ▶ Simple algorithm for finding dominant eigenvector of A
- Power iteration

$$\mathbf{v}_{t+1} = \frac{\mathbf{A}\mathbf{v}_t}{\|\mathbf{A}\mathbf{v}_t\|}$$

- ▶ assumptions: $\langle \mathbf{u}_1, \mathbf{v}_0 \rangle \neq 0$ and $|\lambda_1| > |\lambda_j|$ ($\forall j \geq 2$)
- ► Then it follows:

$$\lim_{t\to\infty}\mathbf{v}_t=\mathbf{u}_1$$

• recover λ_1 from Rayleigh quotient $\lambda_1 = \lim_{t \to \infty} \|\mathbf{A}\mathbf{v}_t\| / \|\mathbf{v}_t\|$

Power Method: Proof Sketch

lacktriangle Focus on $oldsymbol{\Sigma}$ (p.s.d. and symmetric): eigenbasis $\{{f u}_1,\ldots,{f u}_m\}$

$$\mathbf{v}_0 = \sum_{j=1}^m \alpha_j \mathbf{u}_j$$

Evolution equation

$$\mathbf{v}_t = c_t \sum_{j=1}^m \alpha_j \lambda_j^t \mathbf{u}_j = c_t \lambda_1^t \sum_{j=1}^m \alpha_j \left(\frac{\lambda_j}{\lambda_1}\right)^t \mathbf{u}_j \stackrel{t \to \infty}{\longrightarrow} \mathbf{u}_1$$

lacksquare as $\lambda_j/\lambda_1 < 1$ and thus $c_t o 1/lpha_1$ (as $\|\mathbf{u}_1\| = 1$)

Digits Example

▶ Mean vector and first four principal directions:

Eigenvalue spectrum (left), and approximation error (right):

Model Selection in PCA

- ► Eigenvalue spectrum: information source to determine intrinsic dimensionality
- ► Heuristic: detect "knee" in eigenspectrum (= dimension)