MEK 4420 Mandatory Assignment

Andreas Slyngstad

17. desember 2015

$$\iint_{C} \left(\phi \frac{\partial G}{\partial n} - G \frac{\partial \phi}{\partial n} \right) dS = \begin{cases} 0 \\ -\pi \phi(x, y, z) \\ -2\pi \phi(x, y, z) \end{cases}$$
$$-\pi \phi(x_0) = \int_{C} \left(\phi \frac{\partial \psi}{\partial n} - \psi \frac{\partial \phi}{\partial n} \right) dS$$

Here $\psi = \ln r$, which is the source potential in 2D.

$$\pi\phi(X_0) + \sum_{n=1}^{N} \phi(X_n) \int_{C_S} \frac{\partial}{\partial n} \ln r \, dS = \sum_{n=1}^{N} \frac{\partial \phi}{\partial n_X} \int_{C_S} \ln r \, dS$$
$$\int_{C_S} \frac{\partial}{\partial n_x} \ln r \, dS = -\left(\theta_B - \theta_A\right)$$

$$\begin{cases}
\pi & (\theta_1 - \theta_2) & (\theta_2 - \theta_3) \cdots \\
(\theta_{N-1} - \theta_N) & \pi & (\theta_1 - \theta_2) \cdots \\
(\theta_{N-2} - \theta_{N-1}) & (\theta_{N-1} - \theta_N) & \pi \cdots
\end{cases}
\begin{cases}
\phi(x_0) \\
\phi(x_1) \\
\phi(x_2) \\
\vdots \\
\phi(x_N)
\end{cases} = \begin{cases}
\frac{\partial \phi}{\partial n} \int_{C1} \ln r_1 dS \\
\frac{\partial \phi}{\partial n} \int_{C2} \ln r_2 dS \\
\vdots \\
\frac{\partial \phi}{\partial n} \int_{CN} \ln r_N dS
\end{cases}$$

Results

Reference solution circle Reference solution ellipse

• m11: $\rho\pi a^2$ m11: $\rho\pi b^2$

• m22: $\rho \pi a^2$ m22: $\rho \pi a^2$

• m66: 0 m66: $\frac{1}{8}\pi\rho(a^2-b^2)^2$

1										1		
	Added mass is Calculated as											
												-
	For	direction	11	Numerical	solution	12.545,	exact	solution	12.566,	error	0.998	9
	For	direction	22	Numerical	solution	12.545,	exact	solution	12.566,	error	0.998	- %
	For	direction	66	Numerical	solution	-0.000,	exact	solution	0.000, 6	rror	0.000	- %