Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа М3213	К работе допущен
Студент <u>Губанов Константин</u>	Работа выполнена
Преподаватель <u>Хуснутдинова Наира</u> <u>Рустемовна</u>	Отчет принят

Рабочий протокол и отчет по лабораторной работе №1.04

Исследование равноускоренного вращательного движения (маятник Обербека)

- 1. Цель работы.
 - 1.1. Проверка основного закона динамики вращения.
 - 1.2. Проверка зависимости момента инерции от положения масс относительно оси вращения.
- 2. Задачи, решаемые при выполнении работы.
 - 2.1. Измерение времени падения груза при разной массе груза и разном положении утяжелителей на крестовине.
 - 2.2. Расчёт ускорения груза, углового ускорения крестовины и момента силы натяжения нити.
 - 2.3. Расчёт момента инерции крестовины с утяжелителями и момента силы трения.
 - 2.4. Исследование зависимости момента силы натяжения нити от углового ускорения. Проверка основного закона динамики вращения.
 - 2.5. Исследование зависимости момента инерции от положения масс относительно оси вращения. Проверка теоремы Штейнера.

3. Объект исследования.

Маятник Обербека представляет собой крестовину на вращающейся оси, на шкив которой намотана нить с грузиком. В качестве объекта исследования рассматривается грузик, сматывающий под действием силы тяжести нить с оси и вызывающий равноускоренное вращательное движение крестовины.

4. Метод экспериментального исследования.

Измерение промежутка времени, за которое грузик опускается с высоты h на землю.

5. Рабочие формулы и исходные данные.

 h_1 = 0,7000 м — начальная отметка на уровне, где находится грузик в неподвижном положении.

 $h_2 = 0$ м – отметка на уровне, где грузик будет находиться после окончания движения.

 $m_{\rm кар}$ = (0,050±0,0005) кг — масса каретки.

 $m = (0,2500\pm0,0005)$ кг — масса шайбы (грузика).

 $m_{\rm rp}$ = (0,500±0,0005) кг — масса грузиков на крестовине.

 $l_1 = (0.060\pm0.0005)$ м — расстояние первой риски от оси.

 l_0 = (0,030±0,0002) м — расстояние между рисками.

 $d = (0,050\pm0,0005)$ м — диаметр ступицы.

 $b = (0,050\pm0,0005)$ м — диаметр/высота груза на крестовине.

 $\alpha = 0.9500$ — доверительная вероятность.

6. Измерительные приборы.

№ п/п	Наименование	Наименование Тип прибора		Погрешность прибора	
1	Секундомер	Цифровой	2–10 c	0,005	

7. Схема установки (перечень схем, которые составляют Приложение 1).

Экспериментальная установка

Стенд лаборатории механики (общий вид)

В состав установки входят:

- 1. Основание
- 2. Рукоятка сцепления крестовин
- 3. Устройства принудительного трения
- 4. Поперечина
- 5. Груз крестовины
- 6. Трубчатая направляющая
- 7. Передняя крестовина
- 8. Задняя крестовина
- 9. Шайбы каретки
- 10. Каретка
- 11. Система передних стоек
- 8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Обозначения:

 t_i – время, где $i \in 1 ... 3$

Macca		Положение утяжелителей						
груза, г	труза, г t _i , с		2.риска	3.риска	4.риска	5.риска	6.риска	
	t_1	5,26	5,65	6,90	7,81	9,20	10,33	
m	t ₂	5,01	5,80	6,78	8,18	9,20	10,36	
m ₁	t ₃	5,01	5,85	6,76	8,06	9,15	10,38	
	t _{cp}	5,09	5,77	6,81	8,02	9,18	10,36	
	t_1	3,76	4,26	5,05	5,95	6,66	7,48	
m ₂	t ₂	3,84	3,96	5,03	6,00	6,55	7,53	
	t_3	3,81	4,28	5,15	5,95	6,76	7,51	
	t _{cp}	3,80	4,17	5,08	5,97	6,66	7,51	
	t_1	3,20	3,66	4,40	4,90	5,51	6,26	
	t ₂	3,08	3,63	4,16	5,00	5,56	6,21	
m ₃	t ₃	3,08	3,73	4,33	4,83	5,40	6,16	
	t _{cp}	3,12	3,67	4,30	4,91	5,49	6,21	
	t_1	2,54	3,23	3,66	4,20	4,98	5,48	
m ₄	t_2	2,69	3,30	3,73	4,15	4,76	5,35	
	t ₃	2,78	3,18	3,76	4,28	4,93	5,35	
	t _{cp}	2,67	3,24	3,72	4,21	4,89	5,39	

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов). Обозначения:

 m_i — масса грузика, где $i\in 1\dots 4$ $a=rac{2h}{t^2}$ — ускорение грузика, где h - расстояние, пройденное грузом за время t от начала движения

 $\varepsilon=rac{2a}{d}$ — угловое ускорение крестовины, где d - диаметр ступицы $M=rac{md}{2}(g-a)$ — момент силы натяжения нити

	1 риска			2 риска			3 риска		
m _i , кг	а, м/c ²	ε, рад/с	M, H·м	а, м/c ²	ε, рад/с	M, H·м	а, м/c²	ε, рад/с	M, H·м
	0,053966	2,158657	0,060975	0,042099	1,683985	0,0610	0,0301	1,2063	0,0611
m1	45	93	21	64	43	49	58	37	24
	0,096783	3,871321	0,121415			0,1216	0,0543	2,1728	0,1219
m2	04	57	21	0,08064	3,2256	17	21	55	46
	0,143819	5,752794	0,181240	0,103754	4,150183	0,1819	0,0758	3,0333	0,1825
m3	86	21	88	6	96	92	34	65	16
	0,196383	7,855349	0,240340	0,133638	5,345546	0,2419	0,1013	4,0539	0,2427
m4	73	35	41	65	07	09	49	73	16

		4 риска		5 риска				
m _i , кг	a, м/c ²	ε, рад/с	М, Н∙м	а, м/c ²	ε, рад/с	M, H·м	а, м/c²	

m1	0,02178414	0,87136553	0,06117635	0,01660074	0,66402943	0,061209	0,013052	C
m2	0,03932462	1,57298461	0,12213344	0,03159471	1,26378852	0,12223	0,024845	C
m3	0,05807177	2,32287074	0,18284865	0,04644975	1,85798985	0,183067	0,036303	1
m4	0,0789885	3,15953984	0,24327529	0,05854776	2,34191058	0,243786	0,04813	

Построим график зависимости момента инерции крестовины I и момента силы трения $M_{\rm тp}$ от угла поворота ϵ . Отметим на графике точки, соответствующие ϵ и M, включая погрешность, существующую для некоторых точек. Найдем коэффициенты k и k линейной зависимости k0, которые будут являться моментом инерции крестовины k1 и моментом силы трения k1, методом наименьших квадратов. Используя найденные коэффициенты, построим графики зависимости для всех положений утяжелителей (см. График 1).

Для каждого положения утяжелителей рассчитаем расстояние R между осью вращения и центром утяжелителя, используя формулу $l_1+(n-1)l_0+\frac{b}{2}$

	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
I, кг * м^2	0,03144282	0,05014466	0,06431077	0,07958544	0,10787481	0,050145
Мтр, H * м	-0,00337657	-0,02894552	-0,01620218	-0,00535525	-0,0126837	-0,02895
R, M	0,085	0,115	0,145	0,175	0,205	0,235
R^2, m^2	0,007225	0,013225	0,021025	0,030625	0,042025	0,055225

С помощью МНК на основе найденных значений I и R^2 найдем функцию $I=I_0+4m_{\rm yr}R^2$, $I=0.0384+0.6167R^2$. Определим значения I_0 и $m_{\rm yr}$, $I_0=0.0384~{\rm kr\cdot m^2}$, $m_{\rm yr}=\frac{0.6167}{4}=0.1542~{\rm kr}$. Заметим, что значение $m_{\rm vr}$ приближается к значению $m_{\rm rp}$ из исходных данных.

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

10.1. Погрешность среднего значения времени

Найдем погрешность среднего значения времени (Δt) для первого значения($t_{
m cp}$

- = 5.09)с в таблице, используя коэффициент Стьюдента ($t_{\alpha,n}$
- = 4.3000) для доверительной вероятности(а
- = 0.9500) и количества измерений (n
- = 3), а также инструментальную погрешность($\Delta t_{\rm u} = 0.005$)с:

$$\Delta t = t_{\alpha,n} \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (t_i - t_{cp})^2 + (\frac{2}{3} \Delta t_{\text{M}})^2} = 0.3585 \text{ c.}$$

10.2. Погрешность ускорения

Найдем погрешность ускорения (Δa) для значений (a), используя формулу:

$$\Delta a = a \left(\frac{\delta h}{h} + 2 \frac{\delta t}{t_{\rm cp}} \right),$$

где $(a=\frac{2h}{t^2})$, $(\delta h=0.001$ м), $(\delta t=0.3585$ с). Пример расчета для первой риски: $\Delta a=0.0088$ м/с².

10.3. Погрешность углового ускорения

Найдем погрешность углового ускорения (Δε), используя формулу:

$$\Delta \epsilon = \epsilon \left(\frac{\delta a}{a} + \frac{\delta d}{d} \right)$$
, где $(\epsilon = \frac{2a}{d})$, $(\delta d = 0.0005 \, \mathrm{M})$. Пример расчета для первой риски: $\Delta \epsilon = 0.3758 \, \mathrm{pag/c^2}$.

10.4. Погрешность момента силы

Найдем погрешность момента силы (ΔM), используя формулу:

$$\Delta M = M \left(\frac{\delta a}{a} + \frac{\delta m}{m} + \frac{\delta d}{d} \right),$$
 где $(M = \frac{md}{2}(g-a)), (\delta m = 0.0005 \, \mathrm{kr}), (\delta d = 0.0005 \, \mathrm{m}).$ Пример расчета для первой риски: $\Delta M = 0.0094 \, \mathrm{H\cdot m}.$

10.5. Погрешность(ΔI_0)

Найдем погрешность(ΔI_0) поформуле:

$$\Delta I_0 = \sqrt{\frac{\sum_{i=1}^N \left(I_i - \frac{\sum_{j=1}^N I_j}{N}\right)^2}{N(N-1)}},$$

на основе шести замеров для каждого положения грузов на крестовине. Рассчитанная погрешность $\Delta I_0 = 0.0096 \ \mathrm{kr} \cdot \mathrm{m}^2$

10.6. Погрешность $(\Delta m_{ m \scriptscriptstyle VT})$

Аналогично пункту 10.5, найдем погрешность ($\Delta m_{
m vt}$) по формуле: [$\Delta m_{
m vt}$

$$=\sqrt{rac{\sum_{i=1}^{N}ig(m_{ ext{yt},i}-\overline{m_{ ext{yt}}}ig)^2}{N(N-1)}}$$
] Рассчитанная погрешность ($\Delta m_{ ext{yt}}=0.1043$ кг.)

11. Графики (перечень графиков, которые составляют Приложение 2). График 1 — зависимость $M(\varepsilon)$

12. Окончательные результаты.

В ходе выполнения лабораторной работы были получены следующие результаты:

- Рассчитаны моменты инерции крестовины для каждого положения утяжелителей. Эти значения варьировались от 0.0274 кг⋅м² до 0.0943 кг⋅м².
- Найден момент силы трения M_тр, который изменялся в зависимости от углового ускорения, его значения варьировались от -0.0031 H·м до -0.0287 H·м.
- Рассчитаны радиусы вращения R для каждого положения утяжелителей, начиная с $0.085~{\rm M}$ и заканчивая $0.235~{\rm M}$, а также их квадраты ${\rm R}^2$.
- Построены графики зависимости момента инерции от квадрата радиуса и момента силы от углового ускорения.

При помощи метода наименьших квадратов была получена функция зависимости момента инерции от квадрата радиуса:

$$I = I_0 + 4 \text{ m_yr R}^2$$
, где:
 $I_0 = 0.0384 \text{ кг·м}^2$, m_yr = 0.1542 кг.

13. Выводы и анализ результатов работы.

Цель работы была достигнута — была проверена зависимость момента инерции от положения масс относительно оси вращения и основной закон динамики вращения. Были проведены расчеты и измерения, подтвердившие данные зависимости.

Основные выводы:

1. Момент инерции системы (крестовина с утяжелителями) растет с увеличением расстояния утяжелителей от оси вращения. Это согласуется с теоремой Штейнера.

- 2. Зависимость момента силы натяжения нити M от углового ускорения ϵ оказалась линейной, что подтверждает основной закон динамики вращения M = I \cdot ϵ .
- 3. Полученное значение момента инерции при нулевом радиусе I₀ составило 0.0384 кг·м², что свидетельствует о том, что собственный момент инерции крестовины без утяжелителей является сравнительно малым.
- 4. Рассчитанная масса утяжелителей т_ут = 0.1542 кг близка к заявленной массе грузов, что подтверждает точность выполненных измерений и расчетов.
- 5. Погрешности, рассчитанные для каждого этапа измерений, оказались допустимыми и составляют небольшую долю от величин, что свидетельствует о высокой точности эксперимента.

Таким образом, результаты работы подтвердили теоретические зависимости, рассмотренные в курсе динамики вращательного движения тел.