PT Assignment 11

- 1. A die is rolled twice. Let X equal the sum of the outcomes, and let Y equal the first outcome minus the second. Compute Cov(X,Y).
- 2. The joint density function of X and Y is given by

$$f(x,y) = \frac{1}{y}e^{-(y+x/y)}, \quad x > 0, y > 0$$

Find E[X], E[Y], and show that Cov(X, Y) = 1.

- 3. Suppose $X \sim \text{Uniform } (1,2)$, and given X = x, Y is exponential with parameter $\lambda = x$. Find Cov(X,Y).
- 4. Let X_1, \ldots be independent with common mean μ and common variance σ^2 , and set $Y_n = X_n + X_{n+1} + X_{n+2}$. For $j \geq 0$, find $\text{Cov}(Y_n, Y_{n+j})$.
- 5. Show that if Y = a + bX, then

$$\rho_{X,Y} = \begin{cases} +1 & \text{if } b > 0\\ -1 & \text{if } b < 0 \end{cases}$$

- 6. If X_1, X_2, X_3 , and X_4 are (pairwise) uncorrelated random variables, each having mean 0 and variance 1, compute the correlations of
 - (a) $X_1 + X_2$ and $X_2 + X_3$;
 - (b) $X_1 + X_2$ and $X_3 + X_4$.
- 7. Let X and Y be 2 random variables with probability mass functions

$$p_X(x) = \begin{cases} 0.9 & x = 1 \\ 0.1 & x = 0 \\ 0 & \text{otherwise} \end{cases} \quad p_Y(y) = \begin{cases} 0.2 & y = 1 \\ 0.8 & y = 0 \\ 0 & \text{otherwise} \end{cases}$$

Suppose $\rho_{X,Y} = -0.5$. Find $p_{X,Y}(0,0), p_{X,Y}(0,1), p_{X,Y}(1,0), p_{X,Y}(1,1)$.

8. You are given that the random variable X is exponential with mean 1, and that the random variable Y is uniformly distributed on the interval [0,1]. Furthermore, it is known that X and Y are independent. Find the density of the joint distribution of U = XY and $V = \frac{X}{Y}$.

1