MESTRADOS INTEGRADOS EM ENG. MECÂNICA E EM ENG. E GESTÃO INDUSTRIAL | 2016-17

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 2h (20m de tolerância)

1ª Prova de Reavaliação

- * Todas as folhas devem ser identificadas com o <u>nome completo</u>. Justifique adequadamente todos os cálculos que efetuar;
- * A entrega da prova e a desistência só serão possíveis após 1 hora do início da prova;
- * Não se pode utilizar telemóveis, máquinas de calcular gráficas e microcomputadores;
- * Resolva cada um dos três grupos utilizando folhas de capa distintas.

GRUPO I

- **1.** [6,2] Considere o conjunto $S = \{\vec{a}, \vec{b}, \vec{c}, \vec{d}\} \subset \mathbb{R}^3$, em que $\vec{a} = (1,2,3)$, $\vec{b} = (1,1,1)$, $\vec{c} = (1,3,-1)$ e $\vec{d} = (1,1,-1)$, e o subespaço $H = \{(x,y,z) \in \mathbb{R}^3 : x+y+2z=0\}$.
 - a) Determine o subespaço gerado pelo conjunto S, L(S). Indique uma base para o subespaço obtido que contenha apenas elementos de S e conclua em relação à sua dimensão.
 - b) Será o conjunto S linearmente dependente? Justifique.
 - c) Verifique se é possível definir uma base V para o subespaço H que inclua algum dos elementos de S. Em caso afirmativo obtenha essa base.
 - **d)** Determine uma base ortogonal, W, para o espaço \mathbb{R}^3 que contenha o maior número possível de elementos de H.

GRUPO II

- **2)** [2,0] Seja o conjunto $U = \{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\} \subset \mathbb{R}^4$, tais que $\vec{u}_1 = (1, k, 6, 3)$, $\vec{u}_2 = (0,1,0,-3)$, $\vec{u}_3 = (1,0,2,2k+4)$ e $\vec{u}_4 = (-3,-1,2,0)$. Determine para que valores de k o conjunto U é uma base para o espaço vetorial \mathbb{R}^4 . Justifique.
- **3.** [2,2] Sejam \vec{a} , \vec{b} , \vec{c} e \vec{d} vetores não nulos do espaço \mathbb{R}^3 , tais que $\|\vec{a}\| = 2$, $\|\vec{b}\| = 1$, $\angle(\vec{a}, \vec{b}) = 60^\circ$, $\vec{c} = \vec{a} 2\vec{b}$ e $\vec{d} = \vec{a} \vec{b} (\vec{a} \times \vec{b})$.
 - a) Determine a norma de \vec{d} e o ângulo, θ , entre \vec{c} e \vec{d} .
 - **b**) Calcule a norma do vetor $\vec{d} \times (\vec{a} \times \vec{b})$.
 - c) Verifique, justificando devidamente, se os vetores \vec{a} , \vec{b} e \vec{d} são linearmente independentes.

MESTRADOS INTEGRADOS EM ENG. MECÂNICA E EM ENG. E GESTÃO INDUSTRIAL | 2016-17

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 2h (20m de tolerância)

1ª Prova de Reavaliação

.....(continua no verso

GRUPO III

- **4.** [2,5] Sejam o plano $M = \{X \in \mathbb{R}^3 : X = P + s\vec{a} + t\vec{b}, s, t \in \mathbb{R}\}$ e o ponto Q que não pertence ao plano. Mostre que:
 - a) Todos os pontos $X \in \mathbb{R}^3$ que satisfazem a condição $(X P) \cdot \vec{a} \times \vec{b} = 0$ pertencem ao plano M.
 - **b**) A projeção do ponto *Q* sobre o plano *M* corresponde ao ponto:

$$Q_1 = Q - \frac{\overrightarrow{PQ} \cdot \vec{a} \times \vec{b}}{\left\| \vec{a} \times \vec{b} \right\|^2} \vec{a} \times \vec{b}$$

- **5.** [4,7] Considere o plano M: x+2y+z=0 e a reta, r, com a equação vetorial $X(t) = P + t\vec{a}$, $t \in \mathbb{R}$, em que P = (3,1,1) e $\vec{a} = (1,1,0)$. Determine:
 - a) A distância da origem à reta r e a equação cartesiana do plano, M_1 , que contém a reta r e é perpendicular ao plano M.
 - **b**) A equação cartesiana do plano, M_2 , perpendicular à reta r e que passa no ponto, Q, desta reta que dista $2\sqrt{6}$ unidades do plano M (apresente todas as soluções possíveis para o problema).
- **6.** [2,4] Seja o plano M e a reta r do exercício **5**. Obtenha a equação vetorial de uma reta, h, contida no plano M, concorrente com a reta r e que faz com esta reta um ângulo de 60° .