<u>Plots</u>
<u>Latency vs Number of Users (for 1,2,4 vCPU)</u>

Latency (CPU1)	Latency (CPU2)	Latency (CPU4)	Number of Users
903.1966666666667	905.83333333333334	902.5033333333333	1
903.9866666666667	903.146666666666	902.08	2
901.6533333333333	903.286666666666	904.16	3
901.0033333333333	903.58333333333334	903.9166666666666	4
899.78	902.33333333333334	902.24	5
901.6033333333334	903.426666666666	904.11	6
901.78	904.37	901.4966666666667	7
901.936666666666	903.0433333333333	901.73	8
983.2833333333333	901.8233333333334	903.18	9
900.92	904.526666666666	903.63	10

Από την πιο πάνω γραφική παράσταση παρατηρούμε ότι το Latency για το CPU 1 είναι μεγαλύτερο από τα Latency των CPU 2 και CPU 4. Αυτό γιατί το CPU 1 είναι πιο αργό και έτσι προκαλείται μεγαλύτερη καθυστέρηση. Το CPU 2 είναι πιο γρήγορο σε σχέση με το

CPU 1 και έτσι η καθυστέρηση θα είναι μικρότερη. Το CPU 4 είναι πιο γρήγορο από τα άλλα δυο, και η πιθανή καθυστέρηση στην ανταλλαγή μηνυμάτων μειώνεται ακόμα περισσότερο.

Throughput vs Number of Users (for 1,2,4 vCPU)

Throughput (CPU1)	Throughput (CPU2)	Throughput (CPU4)	Number of
			Users
0.019997333688841486	0.02	0.02	1
0.009998666844420743	0.01	0.01	2
0.00666607412674429	0.00666666666666666	0.00666607412674429	3
0.004999500049995001	0.004999916668055532	0.004999666688887408	4
0.003999680025597952	0.003999946667377768	0.003999786678043838	5
0.0033330740942371147	0.0033332962967078145	0.003333185191769255	6
0.002856952393649947	0.0028571156465176523	0.0028570340177517047	7
0.002499854175173115	0.0024999791668402762	0.0024998958376734304	8
0.002220906129700918	0.002222205761438804	0.0022221399207436763	9
0.0019989339019189766	0.001999986666755555	0.0019999333355554816	10

Από την πιο πάνω γραφική παράσταση παρατηρούμε ότι το Throughput αυξάνεται με την αλλαγή του CPU από το 1 στο 2, και από το 2 στο 4. Αυτό συμβαίνει γιατί όσο πιο γρήγορος είναι ο επεξεργαστής μας, τόσο πιο μεγάλος θα είναι και ο ρυθμός μεταφοράς των δεδομένων. Η αλλαγή που παρουσιάζεται ανάμεσα στα CPU 1, 2 και 4 είναι πολύ μικρή.

Throughput vs Average CPU Load

• Throughput vs Average CPU 1 Load

Throughput	Average CPU 1 Load
0.019997333688841486	52.6666666666664
0.009998666844420743	105.09333333333333
0.00666607412674429	157.4
0.004999500049995001	209.4866666666668
0.003999680025597952	261.77666666666664
0.0033330740942371147	314.26
0.002856952393649947	366.37666666666667
0.002499854175173115	418.9033333333333
0.002220906129700918	471.51
0.0019989339019189766	523.83

Από την πιο πάνω γραφική παράσταση παρατηρούμε ότι όσο αυξάνεται το Throughput, τόσο μειώνεται το Average CPU Load, καθώς τα δεδομένα μεταφέρονται πιο γρήγορα και αφήνουν λιγότερο φόρτο εργασίας στο CPU.

• Throughput vs Average CPU 2 Load

Throughput	Average CPU 2 Load
0.02	52.35
0.01	104.65
0.00666666666666667	157.32
0.004999916668055532	209.76
0.003999946667377768	262.0933333333333
0.0033332962967078145	314.43666666666667
0.0028571156465176523	366.9633333333333
0.0024999791668402762	419.34
0.002222205761438804	471.5966666666667
0.001999986666755555	524.0833333333334

Από την πιο πάνω γραφική παράσταση παρατηρούμε ότι όσο αυξάνεται το Throughput, τόσο μειώνεται το Average CPU Load, καθώς τα δεδομένα μεταφέρονται πιο γρήγορα και αφήνουν λιγότερο φόρτο εργασίας στο CPU.

• Throughput vs Average CPU 4 Load

Throughput	Average CPU 4 Load
0.02	52.416666666666664
0.01	104.5866666666667
0.00666607412674429	156.92333333333335
0.004999666688887408	209.2566666666666
0.003999786678043838	261.49333333333334
0.003333185191769255	313.89
0.0028570340177517047	366.38
0.0024998958376734304	418.7666666666665
0.0022221399207436763	471.12666666666667
0.0019999333355554816	523.366666666667

Από την πιο πάνω γραφική παράσταση παρατηρούμε ότι όσο αυξάνεται το Throughput, τόσο μειώνεται το Average CPU Load, καθώς τα δεδομένα μεταφέρονται πιο γρήγορα και αφήνουν λιγότερο φόρτο εργασίας στο CPU.

Γενικά, η αλλαγή του CPU σε 1,2,4, οδηγεί στην αύξηση του Throughput το οποίο συνεπάγεται στην (ελάχιστη) μείωση του Average CPU Load.

Throughput vs Average Memory Utilization

• Throughput vs Average Memory Utilization (CPU 1)

Throughput	Average Memory Utilization (CPU 1)
0.019997333688841486	52.3
0.009998666844420743	104.5533333333333
0.00666607412674429	156.9133333333333
0.004999500049995001	209.1366666666666
0.003999680025597952	261.3633333333334
0.0033330740942371147	313.6733333333335
0.002856952393649947	366.0866666666664
0.002499854175173115	418.4266666666667
0.002220906129700918	470.806666666667
0.0019989339019189766	523.033333333333

Από την πιο πάνω γραφική παράσταση παρατηρούμε ότι όσο μειώνεται το Throughput, αυξάνεται το Average Memory Utilization. Ο ρυθμός μεταφοράς των δεδομένων μειώνεται και έτσι χρειάζεται περισσότερη μνήμη για την διαδικασία ανταλλαγής μηνυμάτων.

• Throughput vs Average Memory Utilization (CPU 2)

Throughput	Average Memory Utilization (CPU 2)
0.02	52.73333333333334
0.01	105.2733333333333
0.00666666666666666	157.7
0.004999916668055532	210.2366666666668
0.003999946667377768	262.7266666666667
0.0033332962967078145	315.28
0.0028571156465176523	367.9166666666667
0.0024999791668402762	420.463333333333
0.002222205761438804	472.9066666666667
0.001999986666755555	525.553333333333

Από την πιο πάνω γραφική παράσταση παρατηρούμε ότι όσο μειώνεται το Throughput, αυξάνεται το Average Memory Utilization. Ο ρυθμός μεταφοράς των δεδομένων μειώνεται και έτσι χρειάζεται περισσότερη μνήμη για την διαδικασία ανταλλαγής μηνυμάτων.

• Throughput vs Average Memory Utilization (CPU 4)

Throughput	Average Memory Utilization (CPU 4)
0.02	52.47
0.01	104.9266666666666
0.00666607412674429	157.393333333333
0.004999666688887408	209.9066666666667
0.003999786678043838	262.35
0.003333185191769255	314.9466666666666
0.0028570340177517047	367.33
0.0024998958376734304	419.7566666666666
0.0022221399207436763	472.273333333333
0.0019999333355554816	524.81

Από την πιο πάνω γραφική παράσταση παρατηρούμε ότι όσο μειώνεται το Throughput, αυξάνεται το Average Memory Utilization. Ο ρυθμός μεταφοράς των δεδομένων μειώνεται και έτσι χρειάζεται περισσότερη μνήμη για την διαδικασία ανταλλαγής μηνυμάτων.

Γενικά, η αλλαγή του CPU σε 1,2,4, οδηγεί μείωση του Throughput το οποίο συνεπάγεται στην (ελάχιστη) αύξηση του Average CPU Load.