1-400/1 cdot

July 7th, 2023

	0							2022		
1970	Specime	n Status	Location	Conc	Date	Notes	1	2023_	ILT_13	
-	Inf557	7 HU3				Tioles	Volume	Lym	Lym+Mon	Total
707	a-5	S TES4	8	< ? 7			V	4.72	9.06	Total
	Inf557-								(
18900	Inf599-	3 HUZ								
5011	a-2	2 THSK	(1)	< 7.59 >			0.5	0 = 1		
1640 C)						0.5	8.71	146/	
50 pl 2210c.		7H5L	(I).	7.717			0.5	8.43	142/	
SON	Inf 173-1							1	/	
15304.	a	598L	(4)	< 8.027			1	6.99	12.7	
50/	a-2	598M	(13)	7.82			1	7 70	12 /	
1240C.	Inf274-3	HEU-hi 9					1	7.78	12.6	
Hold 8800.	a-1	56 ZN	2	9.387			1	9.16	12.2	
4011	a-2	562P	(12)	9.077			1	9.77	13.4	
11200		HEU-hi 7					1			
10/1	0-1	503N	(3)<	7.217				4.26	6.36	
1000	A-Z	5G 3P	(10) <	6.63>				4.75	7.00	
	1	Heu-hi2								
10 250 c.	9-2	5682	(5) <	8.357			0.5	11.1	16.1/	
AUP!	a-1	5GPY	9 <.8	3.827			0.5	10.7/	16.1/	
4011	ND050			20E6 1/1	3/23			/	/	
0702.				0.417			l	9.32	12.3	
40/1	ND 006		6/	6.87	2/23			14.3	16.9	
and a	,		54.10	Acr 19	17					

Start@ 10:13 am = 10:35 18.13 11:10 only stanted (1557, other & sample

Second set spix @ 11:10 an 11:50 11:50 am stain for count

Ourt @ 12:05pm -> 12:15pm.

2:34 Inf557 aloged #2 Spin # door 11:40

1141 alquat & resusc

2:42 pm Incobation Start -> 8:42 pm

Ab piep @ 7:34pm -> 8:12 reagents piepped @ 8:27

8itspm se spin 8:55 pm sample spin 4:08pm hot ses - 9:38 spine 7:41/ W/QO 9:15 pm - 9:30

00 001 0 001 00 0 000 00 0000 0 00 000 00 000 00 000 00

Cott scis e q:27pm > 37pm?

V/0 spin e q:34pm > 5pme 10:03

It of samples e q:59pm > 10:7a)

10:00 pm tels propod 5pme 10:40

10:17 pm > 27->37 Scis FixPem

55pme 34

tets @ 10:57 -> 11:36 pm

-> 36pm samples -> Spine HSAM 11:52pm : Jes intra

inist seast

Cold stain samples @ 12:05pm -> 12:35am 12:08an sos dore Rbeyse @ 12:39 am -> 12:42 am Spine 12:47an Samples FixPen elioz ->12-722 15 word @ 1:27 pg 2nd wash @ 1:43 pm Intraductise pn -> 2:38an se's 2 enstaineds -> 15pl

-> appears will fill an entire routh exactly (72) 2:41 pm Final Spin

Stashed @ 2:55pm (samples 25/1)

10 -) Lids not doling to these

Adjustion Oc @ 1:03 pm & start @ 1:10 pm Inf274 looks clean per scis 12241 THEA CONTROLD (fixed) Sels done @ 2:02 pm Inf342 Inf 269 hershi In5274 Inf 599 Inf 173 Seriously! In4557 23/1/3n (2:33 pm) 25N/38N ean/GN 26K/411 26 K/411 19n/1.71 39K1 52W 40 pl 24m bareyong Fact Gly / 2.4m 42/ 26M 50H/3.2M Tpusinstand ts with 241/3.21 ¿ put exchange note? Inf 342 poor quality at least the Quanto tooter/medeling HEU-Wi controls \$ PMA chh ... Something odd W/pma/chl unstained toward experimenten Done @ 3:12 pm Dana time?

																													1D006	ND050	NF269	NF342		NF274	NF173	INF599	INF557	ample
			 G				7	Γ					_	Z		-		7 [14.3	9.32	10.9	9.01		18 93	14.77	8.57	9.44	Total
CD107a								-					PMA										R10						ш	Ы	ы	2	^	، د	2	ш	2	Volume
ND050 ND006	INF342	INFZ/4	INF1/3	INIE 22		INF557		ND006	NDOSO	NIDOEO	INIEDED	INERAD	INF274	INF173	INITEDO	INIESS 7	Sample		ND006	NDOSO	INF269	INF342	INESTA	NF173	NF599	INF557	Sample		14.30	9.32	10.90	4.51	9.4/		7 39	8.57	4.72	Concentration
0 0 0	6	σ	n 6	6	(ე 3 M		2	2	, ~) /	۱ د) r	۷ د	· ~	ا د	3M	Y. J	3/8	000	0.70				0.50	0.36	a ≥	0.1	0 21	0.32	0.28	0.67	0.32	0.41		0.35		tion 3M
5.5	5.5	5.5	5.5	5.5	u.i.	2.75M		1.83	1.83	1.83	1.83	1.00	1.83	1.83	1.83		2 75M	0.724	174.0	0.004	0.000	0.625	aw.544	0.03 0.395 0.541	0.733	NC 6.2	2 75M	502			0.25	0.61	0.29	es la una		0.32	MANAGEMENT OF	1 2.75M
ហហហ	ъ	۲	5	5	U	2.5M		1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1817:3	3 EM	0.658	0.521/2 (0.565	0.604	0.278	0.625 0.569	0.494	450.541	0.333. 20.303	1 2.5IVI		0.1/		216	ı	0.55	0.26	0.34				M 2.5M
4.5 4.5 4.5	4.5	4.5	4.5	4.5	4.5	2.25M		1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	IAIC7.7	3 7 7 7	0.59									1	0.16				5 0.50	6 0.24	4 0.30			- 1	M 2.25M
444	4	4	4	4	4	2.0M		1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32	7.0M		0.526	0.451	0.483	0.222	0.455	0.395	0.433	0.242			0.14	13:0			0.44	0.21	0.27				M 2.0M
ω ω ω iπ iπ iπ	3.5	3.5	3.5	3.5	3.5	1.75M		1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.75M		0.461	0.395	0.422	0.195	0.398	0.346	0.379	0.212	1.75M		0.12	61.0	0.10	0.16	0 39	0.18	0.24	0.20		0.37	1 7EM
υ ω ω	ω	ω	ω	ω	ω	1.5M	1	_	ш	Ъ	Ъ	Ы	Ь	₽	1	1.5M		0.40	0.34	0.36	0.17	0.34	0.30	0.32	0.18	1.5M		0.10	0.16	0.14		0	0.16	0.20	0.18		0.32	
							0.00	0 83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	1.25M		0.329	0.282	0.301	0.139	0.284	0.247	0.270	0.151	1.25M		0.09	0.13				0.13	0.17	0.15		2 0.26	
			0.5	0.5	Volume		0.00	0.66	0.66	0.66	0.66	0.66	0.66	0.66	0.66	1.0M		0.263	0.226	0.241		0.22	0.19811	0.216	0.121	1.0M		0.07	0.11	0.09	0.22		0.11	0.14	0.12	Ċ	1.0M	
		!	10.7	11.1	Lym		0.5	O 0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.75M		0.20	0.17	0.18	0.08	₹ 0.17	0.15	0.16	0.09	0.75M		0.05	0.08	0.07	0.17		0.08	0.10	0.09	C.	0.75M	
		10.9	5.35	5.55	Total		0.33	0.00	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.5M		0.132	0.112 63	0.124	0.058-6	0.114	0.099	12 Set 0	0.067	0.5M		0.03	0.05	0.05	0.11		0.05	0.07	0.06	0.11		
		;	5.45	¢	Average												J (a Z		۴	I de		19	7) I chi	No.	0		000		(0		0000	0		J
																			9,		1 . 66	TOWA "	2 4	100	x x	900	28/30				0)		000			00	
																			;	198	20.66	DWA	12 TO	£.	× 0.66	CH	28.80	i,					0		0	0		
																				.00	12 x	041	300	· · ·	00	(0,3)	T. St.	165			(»	>	(0	0

	Tetramer Mix	VaMix 14 EFITC Va24Ia18 1.5 2.1 AF647 Va7 1.2 16.8 Pippette draw volume/sample: 17.8 249.2 Pippette draw volume/sample: 19.5 249.2		100	And UNSTAINED CONTROLS !!!		29 R8		27 R6	26 R4	25 R2			22 B8		20 RA	63			1	14 V13	13 VII	12 VIO			10 V5	V. V.		_	6 U14	1100			2 04/		# Filter Single color (u) Ref Ctrl Unmixing Ctrl name	
							APC/Fire 810	APC/Fire 750	Archie Nin	ABC-B700	APC	PE-vio770	PE-Cy5	PE-Dazzie594	PE	PerCP-Cy5.5	Spark blue 550	FITC/AF488	BV786	8V750	BV711	BYGSO		BV510	BV480	Pacific Blue	Pacific Blue	BV421	RIIVans	BUV737	BUV661	BUV615	BUV563	RIIVAGE	DE D	FL	
Tet:PBS	Tet.PBS Tet.PBS	Zombie NIR 0.8				9000	CD27	L/D	CD107a	Va7.2/hMR1	CD16	PD1	CD25	TNFa	NKG2D	CD26	Ed.)	Va24/hcm14	CCBC	iENt.	CCR7	CD56		CD45RA	CD161	CD19	CD14	CD127	Chance	СХСВЗ	CSV.	CCR4	CD69	AF-UV6	CD62L		
10 1_9 1 9	10 1_9	22 17.6 7.04	Pippette draw volume /sample	R10 Media	Antibody Total	21117	0323	N/A	H4A3	3C10	3G8	PD1.3.1.3	M-A251	MAB11	1D11	BASh SAV	6811	LIAS	82/	M-T701	G043H7	5.1H11		HI100	HP-3G10	SJ25C1	MSE2	SK3	1Cb/LXCR3	and lowers	101	FNOU	RPA-T8		SK11	Clone	
2 18 2 18	20 2_18 2_18	20 PBS 8 Zombie				+					1		1	-	-	-																				Vial Lot #	
3 27	30 3 27 3 27	bie	19.5	14.5 3	6.0			-	6.0		1	-		1																						During stim!!!	
PBS PBS	Number I	Number Number	Pippet	319	132			<1:2500>	132		1		+								-	-	1	1	-											22	
0.18	Number Intracellular SCs Total FBS PBS	Number Samples Number Unstained Number Surface SCs (29)	Pippette draw volume /sample	Brilliant Stain	Antibody Total			000>		<2:10/1 25							<:10/1.5>	1	555				-	1												L/D 15 min Tetr (RT) min	
	134	100			1				4.4.4	11 25	+			-	3	-	1	1	V	and the same of th													1			Tetramer 40 min @ RT 30	
RBC Water		Total FBS 22 176 14 56	65//	50 1100			2 44					1.2 26.4		1.5 33)		1	1.5			1,0			2 .				1.5	20		2.0					HotStain 30min @37C	
		RBC Lyse	59.5	50.0	2 12.5	.2	4			0./	1.5	.4		3		1.2		33		22	22 9 6	100	0.7	4	2.0		33	1	1.3	0.7	4	0.5	0	1	1	Cold 30mir	
1.08	10.8 20	6.6 Fix		1100	5 275.0					15.4	-					2 26.4				2011			7 15.4					-						7.7		ColdStain 30min @4C	
	1.2	Perm		0	.0					4	0					.4							.4		44.0	44.0			28.6	15.4		11.0	15.4	26.4		RBC Lyse, then	
	24 0 200 :	PFA	19.5	11	9.5						0.5	0.5	1.5	0.5	2.5	0.1		1	7 10	0.7	0.1						0.0	0.5		0.1		1			TOTAL STREET	yse, Spiked 40 min	
	0.6 0.12 1.8	0.66		242	209						11.0	11.0	33.0	11.0	55.0	2.2		33.0	220	15.4	2.2						11.0	110		2.2	22.0	770				nin 22	
				•									2	•							Solo									10-1							
				orb more in the man in the in-	Can tubes wran rack in foil store at A*C	Resuspend in 70 ul 0.4% PFA-PBS	First PermWash:	Add Intracellular Stain, incubate @ RT for 40min		Second Perm Wash:	First PermWash:				Soo al DD FIATEITH, IIICADATE @ 40 IOI ZOIIIII	300 of RD Eivparm incubate of	Wash 2 ml 6% PBS-FBS 1400 rpm, 6min	Add 300-500 ut 1x RBC Lysis for 3 minutes	Add ColdStain mix, incubate @ 4C for 30min		Wash 2 ml 5% PBS-FBS 1400 rpm, 6 min	Add Tetramers, incubate @RT for 10 min		Wash 2 ml 5% PBS-FBS 1400 rpm, 6 min	Add HotStain mix, incubate @37C for 30 min	, p	Wash 2 ml 5% BBS EBS spin 1300 rm 9min	Wash with 2 ml PBS, spin down 1300rpm 8min		Cap and incubate at 37 °C for 6 nours	siling volume up to x mc Kio, add y pt PMA/Ctri	Collect, count, aliquot cells 2-3.0E+6 Cells R10 / 5ml	Thaw cells, DNAse, count.			Simplified Protocol	
				or and o	ore at Arc	PBS	2 ml PermWash 1500 rp	ate @ RT for 40min		1 ml PermWash 1500 rg	1 ml PermWash 1500 rj			(vortex every 10 minut	0 40 101 20111111	AC for somin	rpm, 6min	s for 3 minutes	@ 4C for 30min		rpm, 6 min	T for 10 min		rpm, 6 min	37C for 30 min	and the state of t	1300 rpm 8min	wn 1300rpm 8min		b nours	CIU, add Y HL PMA/CITI	-3.0E+6 Cells R10 / 5ml					

lified Protocol

Is, DNAse, count.

ount, aliquot cells 2:3.0E+6 Cells R10 / 5ml polystyrene tube
ume up to "%" mL R10, add "y" μL PMA/Ctrl and "2" μl CD107a
ncubate at 37°C for 6 hours

(vortex every 10 minutes)

1 ml PermWash 1500 rpm 6 min 1 ml PermWash 1500 rpm 6 min

ellular Stain, incubate @ RT for 40min

2 ml PermWash 1500 rpm 6 min

Spectrum UV SFC Panel

	210	783	760	750	730	697	6/0	664	613	598	582	542	525	514	508	473	443	428	388	3/3	2
	UV16		UV14	-	UV13			UV11	UV10	7.5		UV8		LIV7	0 0 0			UV3	UV2	UV1	
	BUV805		BUV737						BUV615		BUV563	<u></u>	0 4 4 9 0		AT		14	/3	/2 BUV395	2	
	loci		1901				1	[50]	14		Į.		100			-		-	forth	-	
	CD4		CXCR3					V82	CCR4		CDee		CD8	}					CD62L		
	V16	V15	V14		V13	V12		<11 c	5 6	0	5 5	8		Y 5	≤	ప	S	<u> </u>		+	
		BV786	BV750		BV711			BV650	BVGOR	0/2/0	BV510			BV480		PacBlue	i	BV421			VIOIP+
	18.89							loci			(88)			[55]		ů,	17/2	1345		\dagger	-
	200		IFNγ		CP7		000	CD56	}		CD45RA			CD161		CD14/19	77102	2012			-
I	B13	B12	B11	810	B9	B8	87	B6	B5	B4	B3	B2		B ₁		_				t	1
					PerCP-Cy5.5						SparkBlue 550	FITC/AF488								Blue	
r				-	[45]						1501	4	_								
					CD26						CD3	Vo24/hCD1d									
	YG9					YG5		YG3	ā	Š											
	Pe-Vio770				,	PE-Cy5		PE-Dazzle594	ř	B										Yellow-Green	
	[66]					ě		logi	To the	ħ.									7		
	PD1					CD25		TNFα	NAGZD												
R8	R7	R	R5	Z	Z3	R 2	Ž												1	٦	
AFC-Fire 810	R7 APC-Fire 750 S CD27	Zombie NIR		APC-R700		AF647	۸۵۲													Red	
CD38	CD27	Viability		CD107a		Vα7.2/hMR1	2														

