SIMPLIFYING RADICAL EXPRESSIONS

Perfect Squares: 1, 4, 9, 16, 25, ____, ____, ____, ____, 144...

 x^2 , x^4 , x^6 , ____, ___... Exponents must be _____.

 $\sqrt{25}$ is read "the square root of 25".

$$\sqrt{25} = 5$$
 because $5^2 = 25$

$$\sqrt{25} = 5$$
 because $5^2 = 25$ $\sqrt{36} = 6$ because ____ = ___ $\sqrt{100} =$ ____ $\sqrt{49} =$ ____

$$\sqrt{100} =$$

$$\sqrt{49} = _{---}$$

$$\sqrt{a^6} = a^3$$
 because $(a^3)^2 =$

 $\sqrt{a^6} = a^3$ because $(a^3)^2 = a^6$ $\sqrt{m^{16}} = m^8$ because ____ = ___ $\sqrt{y^{10}} =$ ____ $\sqrt{a^2} =$ ____

$$\sqrt{y^{10}} =$$

Hint: Divide the exponent by _____.

In the expression \sqrt{a} , the $\sqrt{}$ is called the radical and a is called the radicand.

Simplify (Simplifying Perfect Squares):

1.
$$\sqrt{4}$$

2.
$$\sqrt{16}$$

1.
$$\sqrt{4}$$
 2. $\sqrt{16}$ 3. $-\sqrt{100}$ 4. $\sqrt{a^8}$

4.
$$\sqrt{a^8}$$

5.
$$\sqrt{w^{12}}$$

6.
$$\sqrt{a^6b^{10}}$$

7.
$$\sqrt{9a^2}$$

8.
$$-\sqrt{81m^{64}}$$

6.
$$\sqrt{a^6b^{10}}$$
 7. $\sqrt{9a^2}$ 8. $-\sqrt{81m^{64}}$ 9. $\sqrt{49a^4b^{12}}$

10.
$$\sqrt{121x^{14}y^6}$$

Simplify (Simplifying Radicals that are not Perfect Squares):

1.
$$\sqrt{20} = \sqrt{4} \cdot \sqrt{5} = 2\sqrt{5}$$
 2. $\sqrt{27} = \sqrt{9}\sqrt{3} = 3\sqrt{3}$ 3. $\sqrt{48} = \sqrt{16}\sqrt{3} = 4\sqrt{3}$

2.
$$\sqrt{27} = \sqrt{9}\sqrt{3} = 3\sqrt{3}$$

3.
$$\sqrt{48} = \sqrt{16}\sqrt{3} = 4\sqrt{3}$$

4.
$$\sqrt{45} = \sqrt{100} = \sqrt{100}$$

4.
$$\sqrt{45} = \sqrt{12} = \sqrt$$

6.
$$\sqrt{50} =$$

7.
$$\sqrt{a^5} = \sqrt{a^4} \sqrt{a} = a^2 \sqrt{a}$$

7.
$$\sqrt{a^5} = \sqrt{a^4} \sqrt{a} = a^2 \sqrt{a}$$
 8. $\sqrt{x^9} = \sqrt{100} = \frac{1}{100} = \frac{1}{1$

9.
$$\sqrt{x^3} =$$

Simplify:

1.
$$\sqrt{18}$$

2.
$$\sqrt{125}$$

3.
$$\sqrt{72}$$

4.
$$\sqrt{180}$$

3.
$$\sqrt{72}$$
 4. $\sqrt{180}$ 5. $\sqrt{a^3}$

6.
$$\sqrt{b^2}$$

6.
$$\sqrt{b^7}$$
 7. $\sqrt{m^{11}}$

8.
$$\sqrt{75x^7y^5}$$

8.
$$\sqrt{75x^7y^5}$$
 9. $\sqrt{27a^{11}b^7}$ 10. $\sqrt{32a^7b^4}$

10.
$$\sqrt{32a^7b^4}$$

11.
$$\sqrt{9a^8}$$

11.
$$\sqrt{9a^8}$$
 12. $\sqrt{45a^7}$

13.
$$\sqrt{36x^2y^6}$$

13.
$$\sqrt{36x^2y^6}$$
 14. $\sqrt{12x^{20}y^8}$ 15. $-\sqrt{200}$

15.
$$-\sqrt{200}$$

16.
$$\sqrt{196}$$

16.
$$\sqrt{196}$$
 17. $\sqrt{63x^4y}$

18.
$$\sqrt{6x^3}$$

19.
$$\sqrt{100x^5y}$$

19.
$$\sqrt{100x^5y}$$
 20. $\sqrt{80x^{100}y^{49}}$

Simplify each of the following expressions completely.

 $1. \sqrt{64}$

2. $-\sqrt{18}$

 $3. \sqrt{32}$

4. $\sqrt{50}$

 $_{---}$ 5. $\sqrt{400}$

_____6. $\sqrt{x^6}$

_____7. $\sqrt{x^7}$

 $8. \sqrt{16x^{16}}$

 $9. \sqrt{9x^9}$

 $_{----10.}$ $\sqrt{40x^8}$

_____11. $\sqrt{25x^7}$

_____12. $\sqrt{12x^5}$

____13. $\sqrt{a^2b^4}$

 $49a^8x^{12}$

 $28x^9y^6$

 $\sqrt{32m^7n^{11}}$

 $20x^{10}y^5$

_____18. $\sqrt{100ab^4}$

 $\sqrt{75x^8y^3}$

 $20. \sqrt{98x^7y^5}$

 $21. \frac{x^2+16x+63}{2x^2+19x+9}$

Homework: This worksheet Answers to odd problems on worksheet:

1. 8

3. $4\sqrt{2}$ 5. 20 7. $x^3\sqrt{x}$ 9. $3x^4\sqrt{x}$

11. $5x^3\sqrt{x}$

13. ab^2 15. $2x^4y^3\sqrt{7x}$ 17. $2x^5y^2\sqrt{5y}$ 19. $5x^4y\sqrt{3y}$