

Motivation

- Volcanic Impact: Volcanoes are important contributors to altering Earth's climate, affecting the radiative budget
- Limited Current Capabilities: Current volcano observations mostly limited to low depth sensors
- Relatively Unstudied: Passive microwave sensors can potentially be an additional source of data for analysis

Adaptedfrom Higgson et 3011

Background: Scattering vs Emission

 Mie Scattering typical of ice particles in atmosphere

 Absorption/emission from liquid water as it absorbs shortwave radiation from the sun and reemits as longwave radiation

Image via energy.gov

Relevance in Meteorology

- Deep convective clouds have both scattering and emission, each from different parts of the cloud structure
- Only relevant for microwave radiation

Background: Passive Microwave Satellites

Background: Passive Microwave Satellites

- Active vs. Passive
 - Active satellites emit some signal, then measures the received power of the signal
 - Passive satellites retrieve the radiation emitted from the particles themselves
- Satellites used in this study are passive

What is a brightness temperature?

•
$$B_{\lambda}(T) = \frac{2hc^2}{hc}$$
 = total intensity of emitted radiation $\lambda^5(e^{\frac{hc}{k_B\lambda T}}-1)$

• TB =
$$B_{\lambda}^{-1}(I_{\lambda})$$

Given an intensity of radiation emitted by a blackbody, we can find its temperature

Scattering Induced TB Depression

$$\Delta TB = TB_{obs} - TB_{sim}$$

- Brightness temperatures (TB) can simply be described as a combination of emission/scattering of different hydrometeors in the atmosphere
- TB_{sim} is cloud free simulation
- ΔTB can help isolate the signal of hydrometeors
- Low microwave frequencies are better for emission, while high frequencies are better for scattering

TB Observed

Collocate Eruption

*Infrared & Visible data from Data
Integration and Analysis System (DIAS) by
Japan Agency for Marine-Earth Science
and Technology (JAMSTEC) Himawari-8

Satellite Channel Frequency (GHz) Polarization Swath 150 \mathbf{H} **S**3 S3 183 ± 1 10 183 ± 3 S311 **S3** 183±7 12 19 S1SSMIS 13 S1S114 15 37 S2**S2** 16 37 17 **S4** 91 18 **S4** 91 \mathbf{H} V 10.6 S1S110.6 S118.7 S118.7 23 S137 S1GMI 37 S1S1S1S211 S2 166 12 183 ± 3 S213 S2 183±7

TB Simulated Process

Convective Example

What would a volcanic signal look like?

Hunga Volcano

Fukutoku

Raikoke

Volcanic Pixel Distributions

So Why Passive Microwaves?

- 1. Can provide full lifetime snapshots of eruptions anywhere on the globe
- Able to differentiate between pixels of volcanic plumes and pixels of other hydrometeors in the atmosphere
- Deeper insights into volcanic plume compared to shallow-retrieving sensors
- 4. Future mission applications
- 5. Difficulty: resolution of ~20km, small features might go undetected

Future Work

Physical Understanding

- Set up retrieval algorithms for ash occurrence based on the observed signals.
- Set up generalizable algorithmic approach

Statistical Applications

Bayesian/Al approach

Modeling Limits

Are There cases where this methodology will fail?

Questions?