

• Using describe method, there is extereme data value in the dataset in year 2017, with a solvency coverage ratio 963,584,000.00. Upon sorting by year 2017, the firm identified is Firm 216. The solvency coverage ratio are followed closely by Firm 1, Firm 131, and Firm 127 with 481,792,000%, 481,792,000% and 182,412% each respectively.

	2016	2017	2018	2019	2020
count	3.250000e+02	3.250000e+02	3.250000e+02	325.000000	325.000000
mean	1.286947e+04	5.930313e+06	1.246741e+04	533.017116	514.215109
std	2.319518e+05	6.529400e+07	2.141325e+05	9539.236980	9229.786796
min	-1.974450e+00	-1.973652e+00	-5.515428e-01	-0.669013	-1.066521
25%	1.276845e+00	1.302423e+00	1.268210e+00	1.177754	0.000000
50%	1.662747e+00	1.755881e+00	1.693416e+00	1.710544	1.565516
75%	2.780175e+00	3.203697e+00	2.795907e+00	2.691263	2.367988
max	4.181573e+06	9.635840e+08	3.856018e+06	171974.690816	166394.575872

	2016	2017	2018	2019	2020
Firms_ID					
Firm_216	1.49	963,584,000.00	0.00	0.00	0.00
Firm_1	1.98	481,792,000.00	0.00	0.00	0.00
Firm_131	1.75	481,792,000.00	0.00	0.00	0.00
Firm_127	0.00	182,412.23	194,753.82	171,974.69	166,394.58
Firm_291	146.89	128.53	150.81	261.57	0.00
Firm_319	57.84	67.23	27.86	39.24	0.00
Firm_16	12.25	41.83	26.13	0.00	0.00
Firm_125	2.92	39.83	4.33	14.87	3.65
Firm_103	26.18	34.88	37.91	37.56	6.35
Firm_177	0.00	23.29	31.01	53.35	23.44

• The data for Firm 127 the following years from 2018 to 2020 shows a close average ranging from 166,394% to 194,753%.

Annex

The following section details out the Python script for this report:

```
In []: # script made by Muhammad Syarmine Bin Mohd Shah
    # Feels free to contact me at syarmineshah@yahoo.com for feedback
    # import required libraries and packages
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    import openpyxl as xl # import the dataset using pandas pd.read_excel with openp
    import plotly_express as px
```

Getting and structuring the data

Unnamed: 0	NWP (£m)	NWP (£m) .1	NWP (£m) .2	NWP (£m) .3	NWP (£m) .4
---------------	----------	-------------	-------------	-------------	-------------

0	NaN	2016YE	2017YE	2018YE	2019YE	2020YE	
1	Firm 1	-13779.815629	0	0	0	0	1
2	Firm 2	28.178059	26.865049	25.064438	23.226445	21.718558	
3	Firm 3	0	75.609681	70.578732	78.432782	85.73583	
4	Firm 4	22344.199923	23963.910709	25760.390158	25512.748836	24996.021042	

5 rows × 41 columns

```
In []: # check the Dataset 2 head
```

-			-	-	
()	111	+		- 1	0
\cup	u	L.		- 1	۰

	Unnamed: 0	Gross claims incurred (£m)	Gross claims incurred (£m).1	Gross claims incurred (£m).2	Gross claims incurred (£m).3	Gross claims incurred (£m).4	Gross BEL (inc. TPs as whole, pre- TMTP) (£m)	Gros (inc as w TI (£
0	NaN	2016YE	2017YE	2018YE	2019YE	2020YE	2016YE	20
1	Firm 1	0	0.046674	0	0	0	0	7.67
2	Firm 2	39.241067	35.948249	29.002244	0	0	163.597907	195.52
3	Firm 3	0	0	0	0	0	0	
4	Firm 4	17.125976	75.535951	119.426995	35.884204	6.567988	-18.297099	22.64

5 rows × 46 columns

In []: # check for missing values for Dataset 1
 df.isnull().sum()

```
Out[]: Unnamed: 0
                                                                  1
         NWP (£m)
                                                                  0
         NWP (£m) .1
                                                                  0
         NWP (£m) .2
                                                                  0
         NWP (£m) .3
                                                                  0
         NWP (£m) .4
                                                                 0
         SCR (£m)
                                                                  0
         SCR (£m).1
                                                                  0
         SCR (£m).2
         SCR (£m).3
                                                                  0
         SCR (£m).4
                                                                  0
         EoF for SCR (£m)
                                                                  0
         EoF for SCR (£m).1
                                                                 0
         EoF for SCR (£m).2
                                                                 0
         EoF for SCR (£m).3
                                                                  0
         EoF for SCR (£m).4
                                                                  0
         SCR coverage ratio
                                                                  0
         SCR coverage ratio.1
                                                                  0
         SCR coverage ratio.2
                                                                 0
         SCR coverage ratio.3
                                                                  0
         SCR coverage ratio.4
                                                                 0
         GWP (£m)
                                                                  0
         GWP (£m).1
                                                                  0
         GWP (£m).2
                                                                  0
         GWP (£m).3
                                                                 0
         GWP (£m).4
                                                                  0
         Total assets (£m)
                                                                  0
         Total assets (£m).1
                                                                  0
         Total assets (£m).2
                                                                  0
         Total assets (£m).3
                                                                  0
         Total assets (£m).4
         Total liabilities (£m)
                                                                  0
         Total liabilities (£m).1
                                                                  0
                                                                  0
         Total liabilities (£m).2
         Total liabilities (£m).3
                                                                 0
         Total liabilities (£m).4
                                                                  0
         Excess of assets over liabilities (£m) [= equity]
                                                                  0
         Excess of assets over liabilities (£m) [= equity].1
         Excess of assets over liabilities (£m) [= equity].2
                                                                 0
         Excess of assets over liabilities (£m) [= equity].3
                                                                 0
         Excess of assets over liabilities (£m) [= equity].4
         dtype: int64
In [ ]: # check for missing values for Dataset 2
        df_1.isnull().sum()
```

```
Out[]: Unnamed: 0
                                                            1
        Gross claims incurred (£m)
                                                            0
         Gross claims incurred (£m).1
         Gross claims incurred (£m).2
                                                            a
         Gross claims incurred (£m).3
         Gross claims incurred (£m).4
                                                            0
         Gross BEL (inc. TPs as whole, pre-TMTP) (£m)
         Gross BEL (inc. TPs as whole, pre-TMTP) (£m).1
         Gross BEL (inc. TPs as whole, pre-TMTP) (£m).2
         Gross BEL (inc. TPs as whole, pre-TMTP) (£m).3
         Gross BEL (inc. TPs as whole, pre-TMTP) (£m).4
         Net BEL (inc. TPs as a whole, pre-TMTP) (£m)
         Net BEL (inc. TPs as a whole, pre-TMTP) (£m).1
         Net BEL (inc. TPs as a whole, pre-TMTP) (£m).2
         Net BEL (inc. TPs as a whole, pre-TMTP) (£m).3
                                                            0
         Net BEL (inc. TPs as a whole, pre-TMTP) (£m).4
         Pure net claims ratio
                                                            a
         Pure net claims ratio.1
         Pure net claims ratio.2
                                                            a
         Pure net claims ratio.3
         Pure net claims ratio.4
                                                            0
         Net expense ratio
                                                            a
         Net expense ratio.1
                                                            0
         Net expense ratio.2
                                                            0
         Net expense ratio.3
                                                            0
         Net expense ratio.4
                                                            0
         Net combined ratio
                                                            0
         Net combined ratio.1
                                                            0
         Net combined ratio.2
                                                            0
         Net combined ratio.3
                                                            a
         Net combined ratio.4
         Pure gross claims ratio
                                                            0
         Pure gross claims ratio.1
         Pure gross claims ratio.2
                                                            0
         Pure gross claims ratio.3
                                                            0
         Pure gross claims ratio.4
                                                            0
         Gross expense ratio
                                                            a
         Gross expense ratio.1
                                                            0
         Gross expense ratio.2
                                                            0
         Gross expense ratio.3
         Gross expense ratio.4
                                                            a
         Gross combined ratio
                                                            0
         Gross combined ratio.1
                                                            0
         Gross combined ratio.2
                                                            0
         Gross combined ratio.3
                                                            0
         Gross combined ratio.4
         dtype: int64
```

In []: # check the data type for Dataset 1
 df.dtypes

```
Out[]: Unnamed: 0
                                                                 object
         NWP (£m)
                                                                 object
         NWP (£m) .1
                                                                 object
         NWP (£m) .2
                                                                 object
         NWP (£m) .3
                                                                 object
         NWP (£m) .4
                                                                 object
         SCR (£m)
                                                                 object
         SCR (£m).1
                                                                 object
         SCR (£m).2
                                                                 object
         SCR (£m).3
                                                                 object
         SCR (£m).4
                                                                 object
         EoF for SCR (£m)
                                                                 object
         EoF for SCR (£m).1
                                                                 object
         EoF for SCR (£m).2
                                                                 object
         EoF for SCR (£m).3
                                                                 object
         EoF for SCR (£m).4
                                                                 object
         SCR coverage ratio
                                                                 object
         SCR coverage ratio.1
                                                                 object
         SCR coverage ratio.2
                                                                 object
         SCR coverage ratio.3
                                                                 object
         SCR coverage ratio.4
                                                                 object
         GWP (£m)
                                                                 object
         GWP (£m).1
                                                                 object
         GWP (£m).2
                                                                 object
         GWP (£m).3
                                                                 object
         GWP (£m).4
                                                                 object
         Total assets (£m)
                                                                 object
         Total assets (£m).1
                                                                 object
         Total assets (£m).2
                                                                 object
         Total assets (£m).3
                                                                 object
         Total assets (£m).4
                                                                 object
         Total liabilities (£m)
                                                                 object
         Total liabilities (£m).1
                                                                 object
         Total liabilities (£m).2
                                                                 object
         Total liabilities (£m).3
                                                                 object
         Total liabilities (£m).4
                                                                 object
         Excess of assets over liabilities (fm) [= equity]
                                                                 object
         Excess of assets over liabilities (fm) [= equity].1
                                                                 object
         Excess of assets over liabilities (fm) [= equity].2
                                                                 object
         Excess of assets over liabilities (£m) [= equity].3
                                                                 object
         Excess of assets over liabilities (£m) [= equity].4
                                                                 object
         dtype: object
In [ ]: # check the data type for Dataset 2
        df 1.dtypes
```

```
object
Out[]: Unnamed: 0
        Gross claims incurred (£m)
                                                           object
        Gross claims incurred (£m).1
                                                           object
        Gross claims incurred (£m).2
                                                           object
        Gross claims incurred (£m).3
                                                           object
        Gross claims incurred (£m).4
                                                           object
        Gross BEL (inc. TPs as whole, pre-TMTP) (£m)
                                                           object
        Gross BEL (inc. TPs as whole, pre-TMTP) (fm).1
                                                           object
        Gross BEL (inc. TPs as whole, pre-TMTP) (£m).2
                                                           object
        Gross BEL (inc. TPs as whole, pre-TMTP) (£m).3
                                                           object
        Gross BEL (inc. TPs as whole, pre-TMTP) (£m).4
                                                           object
        Net BEL (inc. TPs as a whole, pre-TMTP) (£m)
                                                           object
        Net BEL (inc. TPs as a whole, pre-TMTP) (£m).1
                                                           object
        Net BEL (inc. TPs as a whole, pre-TMTP) (fm).2
                                                           object
        Net BEL (inc. TPs as a whole, pre-TMTP) (fm).3
                                                           object
        Net BEL (inc. TPs as a whole, pre-TMTP) (£m).4
                                                           object
        Pure net claims ratio
                                                           object
        Pure net claims ratio.1
                                                           object
        Pure net claims ratio.2
                                                           object
        Pure net claims ratio.3
                                                           object
        Pure net claims ratio.4
                                                           object
        Net expense ratio
                                                           object
        Net expense ratio.1
                                                           object
        Net expense ratio.2
                                                           object
        Net expense ratio.3
                                                           object
        Net expense ratio.4
                                                           object
        Net combined ratio
                                                           object
        Net combined ratio.1
                                                           object
        Net combined ratio.2
                                                           object
        Net combined ratio.3
                                                           object
        Net combined ratio.4
                                                           object
        Pure gross claims ratio
                                                           object
        Pure gross claims ratio.1
                                                           object
        Pure gross claims ratio.2
                                                           object
        Pure gross claims ratio.3
                                                           object
        Pure gross claims ratio.4
                                                           object
        Gross expense ratio
                                                           object
        Gross expense ratio.1
                                                           object
        Gross expense ratio.2
                                                           object
        Gross expense ratio.3
                                                           object
        Gross expense ratio.4
                                                           object
        Gross combined ratio
                                                           object
        Gross combined ratio.1
                                                           object
        Gross combined ratio.2
                                                           object
        Gross combined ratio.3
                                                           object
        Gross combined ratio.4
                                                           object
        dtype: object
In [ ]: # There are 326 rows and 6 columns in Dataset 1 and 326 rows and 5 columns in Da
        # The first two rows of Dataset 1 and Dataset 2 being header and the third row b
        # The first column of Dataset 1 and Dataset 2 being the index column with 'Firm
        # As there are 2 headers rows for Dataset 1, create a new header from the first
        # Create a new header from the first two rows
        new_header = [f"{df.iloc[0, i]}_{df.columns[i]}" if not pd.isna(df.iloc[0, i]) e
        # Remove any generated trailing numbers (e.g., '.1', '.2', etc.) from the header
        import re
```

new_header = [re.sub(r'\.\d+\$', '', header) for header in new_header]

```
# Assign the new header to the DataFrame and drop the first two rows
df.columns = new_header
df = df.drop(df.index[0])

# Reset the index
df.reset_index(drop=True, inplace=True)

# Set to display all columns
pd.set_option('display.max_columns', None)

# reinspect the dataframe
df.head(5)
```

Out[]:

	Unnamed: 0	2016YE_NWP (£m)	2017YE_NWP (£m)	2018YE_NWP (£m)	2019YE_NWP (£m)	2020YE_NWP (£m)
0	Firm 1	-13779.815629	0	0	0	0
1	Firm 2	28.178059	26.865049	25.064438	23.226445	21.718558
2	Firm 3	0	75.609681	70.578732	78.432782	85.73583
3	Firm 4	22344.199923	23963.910709	25760.390158	25512.748836	24996.021042
4	Firm 5	68.200993	51.663132	44.010833	42.008556	81.273653
4						•

```
In []: # Similarly, there are 2 headers rows for Dataset 2, create a new header from th
    # Create a new header from the first two rows for clarity
    new_header2 = [f"{df_1.iloc[0, i]}_{df_1.columns[i]}" if not pd.isna(df_1.iloc[0])
    # Remove any trailing numbers (e.g., '.1', '.2', etc.) from the header
    import re
    new_header2 = [re.sub(r'\.\d+$', '', header) for header in new_header2]

# Assign the new header to the DataFrame and drop the first two rows
    df_1.columns = new_header2
    df_1 = df_1.drop(df.index[0])

# Reset the index
    df_1.reset_index(drop=True, inplace=True)

# Set to display all columns
    pd.set_option('display.max_columns', None)

# reinspect the dataframe
    df_1.head(5)
```

	ι	Jnnamed: 0	claims	claims	claims	2019YE_Gross claims incurred (£m)	claims		
	0	Firm 1	0	0.046674	0	0	0		
	1	Firm 2	39.241067	35.948249	29.002244	0	0		
	2	Firm 3	0	0	0	0	0		
	3	Firm 4	17.125976	75.535951	119.426995	35.884204	6.567988		
	4	Firm 5	30.485185	247.872969	449.87474	348.536337	373.786832		
	4						•		
In []:	<pre># for the first dataset, rename the first column "Unnamed: 0" to "Firms_ID". df = df.rename(columns={'Unnamed: 0':'Firms_ID'}) # for the second dataset, rename the first column "Unnamed: 0" to "Firms_ID". df_1 = df_1.rename(columns={'Unnamed: 0':'Firms_ID'}) print(df.columns) print(df_1.columns)</pre>								

```
Index(['Firms_ID', '2016YE_NWP (£m) ', '2017YE_NWP (£m) ', '2018YE_NWP (£m) ',
               '2019YE_NWP (£m) ', '2020YE_NWP (£m) ', '2016YE_SCR (£m)', '2017YE_SCR (£m)', '2018YE_SCR (£m)', '2019YE_SCR (£m)',
               '2020YE_SCR (£m)', '2016YE_EOF for SCR (£m)', '2017YE_EOF for SCR (£m)',
               '2018YE_EoF for SCR (£m)', '2019YE_EoF for SCR (£m)',
               '2020YE_EOF for SCR (£m)', '2016YE_SCR coverage ratio',
               '2017YE_SCR coverage ratio', '2018YE_SCR coverage ratio',
               '2019YE_SCR coverage ratio', '2020YE_SCR coverage ratio',
               '2016YE_GWP (£m)', '2017YE_GWP (£m)', '2018YE_GWP (£m)',
               '2019YE_GWP (£m)', '2020YE_GWP (£m)', '2016YE_Total assets (£m)',
               '2017YE_Total assets (£m)', '2018YE_Total assets (£m)',
               '2019YE_Total assets (£m)', '2020YE_Total assets (£m)',
               '2016YE_Total liabilities (£m)', '2017YE_Total liabilities (£m)',
               '2018YE_Total liabilities (£m)', '2019YE_Total liabilities (£m)',
               '2020YE_Total liabilities (fm)',
               '2016YE_Excess of assets over liabilities (£m) [= equity]',
               '2017YE Excess of assets over liabilities (£m) [= equity]',
               '2018YE_Excess of assets over liabilities (£m) [= equity]',
               '2019YE Excess of assets over liabilities (£m) [= equity]',
               '2020YE_Excess of assets over liabilities (£m) [= equity]'],
              dtype='object')
       Index(['Firms_ID', '2016YE_Gross claims incurred (£m)',
               '2017YE_Gross claims incurred (fm)',
               '2018YE_Gross claims incurred (£m)',
               '2019YE_Gross claims incurred (£m)',
               '2020YE_Gross claims incurred (£m)',
               '2016YE_Gross BEL (inc. TPs as whole, pre-TMTP) (£m)',
               '2017YE_Gross BEL (inc. TPs as whole, pre-TMTP) (£m)',
               '2018YE_Gross BEL (inc. TPs as whole, pre-TMTP) (£m)',
               '2019YE Gross BEL (inc. TPs as whole, pre-TMTP) (£m)',
               '2020YE_Gross BEL (inc. TPs as whole, pre-TMTP) (£m)',
               '2016YE_Net BEL (inc. TPs as a whole, pre-TMTP) (£m)',
               '2017YE_Net BEL (inc. TPs as a whole, pre-TMTP) (£m)',
               '2018YE_Net BEL (inc. TPs as a whole, pre-TMTP) (£m)',
               '2019YE Net BEL (inc. TPs as a whole, pre-TMTP) (£m)',
               '2020YE_Net BEL (inc. TPs as a whole, pre-TMTP) (£m)',
               '2016YE_Pure net claims ratio', '2017YE_Pure net claims ratio',
               '2018YE_Pure net claims ratio', '2019YE_Pure net claims ratio',
               '2020YE_Pure net claims ratio', '2016YE_Net expense ratio',
               '2017YE_Net expense ratio', '2018YE_Net expense ratio',
               '2019YE Net expense ratio', '2020YE Net expense ratio',
               '2016YE_Net combined ratio', '2017YE_Net combined ratio',
               '2018YE_Net combined ratio', '2019YE_Net combined ratio', '2020YE_Net combined ratio', '2016YE_Pure gross claims ratio',
               '2017YE_Pure gross claims ratio', '2018YE_Pure gross claims ratio',
               '2019YE_Pure gross claims ratio', '2020YE_Pure gross claims ratio',
               '2016YE_Gross expense ratio', '2017YE_Gross expense ratio',
              '2018YE_Gross expense ratio', '2019YE_Gross expense ratio',
               '2020YE_Gross expense ratio', '2016YE_Gross combined ratio',
               '2017YE_Gross combined ratio', '2018YE_Gross combined ratio',
               '2019YE_Gross combined ratio', '2020YE_Gross combined ratio'],
              dtype='object')
In [ ]: # as Dataset 1 and Dataset 2 have the same column index which is the 'Firm ID',
         df_c = pd.merge(df, df_1, on = "Firms_ID")
         df c.head(5)
```

	Fi	rms_ID	2016Y	E_NWP (£m)	2017Y	E_NWP (£m)	2018\	(£m)	2019Y	E_NWP (£m)	2020Y	E_NWP (£m)	2
	0	Firm 1	-13779	.815629		0		0		0		0	1
	1	Firm 2	28	.178059	26.	.865049	25	5.064438	23	.226445	21.	718558	
	2	Firm 3		0	75.	.609681	70).578732	78	.432782	8	5.73583	
	3	Firm 4	22344	.199923	23963	.910709	25760).390158	25512	.748836	24996.	021042	
	4	Firm 5	68	.200993	51.	.663132	44	1.010833	42	.008556	81.	273653	
	4)	
	cols	= df_c	.column	ata typ s.drop(cols].a	'Firms	_ID')	Lumns	(except	'Firm_	_ID') in	n the m	erged a	lat
:	df_c	[cols]											
		2016YI	E_NWP (£m)	2017YE	E_NWP (£m)	2018YE	E_NWP (£m)	2019YE	_NWP (£m)	2020YE	E_NWP (£m)	2016Y	'E_
	0	-13779.	815629	0.0	000000	0.0	000000	0.0	000000	0.0	000000	1085.3	360
	1	28.	178059	26.8	365049	25.0	064438	23.2	26445	21.7	718558	10.1	190
	2	0.0	000000	75.6	509681	70.5	578732	78.4	32782	85.7	735830	322.9	95!
	3	22344.	199923	23963.9	910709	25760.3	390158	25512.7	48836	24996.0	21042	16573.6	544
	4	68.	200993	51.6	563132	44.0	010833	42.0	008556	81.2	273653	52.8	324
	•••												
	320		000000		000000		011367		99067		532234	0.0	
	321		156137		124818		212247)48716		597013	1711.2	
	322		000000		000000		000000		000000		000000	30.4	
	323		415380		550321		268465		311984		546638	32.0	
	324	240.	999886	252.6	598937	332.5	521848	294.8	886332	0.0	000000	209.1	18
3	325 rc	ows × 85	columr	าร									
	4)	

```
df_c = df_c.set_index('Firms_ID')

# rewrite 'Firms_ID' remove space, and replace with underscore
df.index = df.index.str.replace(' ', '_')
df_1.index = df_1.index.str.replace(' ', '_')
df_c.index = df_c.index.str.replace(' ', '_')

# rewrite so that include firms_id as index
```

Firms Size Analysis

```
In []: # combine total asset columns to a single dataframe
   ta = df_c[['2016YE_Total assets (£m)','2017YE_Total assets (£m)', '2018YE_Total

# combine gross written premium columns to a single dataframe
   tgwp = df_c[['2016YE_GWP (£m)','2017YE_GWP (£m)', '2018YE_GWP (£m)', '2019YE_GWP

# combine net written premium columns to a single dataframe
   tnwp = df_c[['2016YE_NWP (£m) ','2017YE_NWP (£m) ', '2018YE_NWP (£m) ', '2019YE_

In []: # Calculate total sum of each metrics to 2 decimal places and show general numbe
   print(ta.sum().map('{:,.2f}'.format))
   print(tasum().map('{:,.2f}'.format))
   print(tgwp.sum().map('{:,.2f}'.format))
   print(tgwp.sum().map('{:,.2f}'.format))
   print(tnwp.sum().map('{:,.2f}'.format))
   print(tnwp.sum().map('{:,.2f}'.format))
   print(tnwp.sum().map('{:,.2f}'.format))
```

```
2016YE_Total assets (£m)
                                2,302,481.25
      2017YE_Total assets (£m) 2,355,996.35
      2018YE_Total assets (£m) 2,252,268.47
      2019YE_Total assets (£m) 2,473,086.61
      2020YE_Total assets (£m) 2,458,373.15
      dtype: object
      2016YE_Total assets (£m)
                                 nan%
      2017YE_Total assets (£m)
                                 2.32%
      2018YE_Total assets (£m)
                                -4.40%
      2019YE_Total assets (£m)
                                 9.80%
      2020YE_Total assets (£m) -0.59%
      dtype: object
      2016YE_GWP (£m)
                        273,691.18
      2017YE_GWP (£m)
                        295,676.66
      2018YE_GWP (£m) 340,196.14
      2019YE_GWP (£m) 316,059.10
      2020YE_GWP (£m) 269,890.43
      dtype: object
      2016YE GWP (£m)
                          nan%
      2017YE_GWP (£m)
                         8.03%
      2018YE_GWP (£m)
                        15.06%
      2019YE_GWP (£m)
                        -7.10%
      2020YE_GWP (£m) -14.61%
      dtype: object
      2016YE_NWP (£m)
                        207,222.22
      2017YE_NWP (£m)
                        259,873.53
      2018YE_NWP (£m)
                        274,310.07
                       254,271.27
      2019YE_NWP (£m)
      2020YE_NWP (£m)
                        213,963.82
      dtype: object
      2016YE_NWP (£m)
                           nan%
                         25.41%
      2017YE_NWP (£m)
                          5.56%
      2018YE_NWP (£m)
      2019YE_NWP (£m)
                         -7.31%
      2020YE NWP (£m)
                         -15.85%
      dtype: object
In [ ]: # check for descriptive statistics for each
        print(ta.describe())
        print(tgwp.describe())
        print(tnwp.describe())
```

```
2016YE Total assets (£m)
                                   2017YE_Total assets (£m)
count
                      325.000000
                                                  325.000000
                     7084.557700
                                                 7249.219525
mean
std
                    26542.111520
                                                30607.376781
min
                        0.000000
                                                  -54.526842
25%
                       26.418659
                                                   19.791889
50%
                      157.456339
                                                  137.837056
75%
                     1199.598522
                                                 1091.167855
max
                   284329.904525
                                               298172.843043
       2018YE_Total assets (£m)
                                   2019YE_Total assets (£m)
count
                      325,000000
                                                  325.000000
                                                 7609.497261
mean
                     6930.056846
std
                    28996.531235
                                                32341.403195
min
                     -161.954321
                                                 -217.429787
25%
                       17.780399
                                                    8.467582
50%
                      120.712705
                                                  104.938152
75%
                     1008.409821
                                                  959.515597
                   282829.545364
                                               311228.369410
max
       2020YE_Total assets (£m)
count
                      325.000000
                     7564.225088
mean
std
                    33396.056313
min
                      -83.997561
25%
                        0.000000
50%
                       57.509809
75%
                      678.317542
                   332875.903638
max
       2016YE GWP (£m)
                         2017YE GWP (£m)
                                            2018YE GWP (£m)
                                                              2019YE GWP (£m)
             325.000000
                               325.000000
                                                 325.000000
                                                                   325.000000
count
mean
             842.126715
                              909.774328
                                                1046.757353
                                                                   972.489525
std
           3980.798811
                              3545.771115
                                                4163.304896
                                                                  4008.175641
min
             -13.873442
                                -4.948002
                                                  -7.917129
                                                                    -0.151805
25%
               0.000000
                                 0.000000
                                                   0.000000
                                                                     0.000000
50%
             10.940987
                                19.812373
                                                  19.623853
                                                                    13,355539
75%
             200.808629
                               263.818789
                                                 264.539561
                                                                   219.977537
          45309.819760
                            38199.311256
                                               48117.993733
                                                                 44638.769640
max
       2020YE_GWP (£m)
            325.000000
count
            830.432091
mean
std
           3600.528585
min
             -95.424434
25%
               0.000000
50%
               6.205218
75%
            166.926417
          40135.692258
       2016YE_NWP (£m)
                                              2018YE_NWP (£m)
                           2017YE NWP (£m)
                                                                 2019YE NWP (£m)
              325.000000
                                 325.000000
                                                    325.000000
                                                                       325.000000
count
mean
             637.606837
                                 799.610849
                                                    844.030970
                                                                       782.373137
std
             3858.919674
                                3287.474920
                                                   3687.130996
                                                                      3453.361810
min
           -13779.815629
                               -2305.854316
                                                   -193.083319
                                                                      -181.612136
25%
                0.000000
                                   0.000000
                                                      0.000000
                                                                         0.000000
50%
                4.390134
                                  10.742034
                                                     10.160408
                                                                         6.581324
75%
             104.181634
                                 190.786032
                                                    180.646731
                                                                       106.600218
           45309.838702
                               38199.311256
                                                  48117.993733
                                                                     44638.769640
max
       2020YE_NWP (£m)
count
             325.000000
```

```
mean 658.350221

std 3036.308650

min -1336.553317

25% 0.000000

50% 2.742672

75% 64.369695

max 40135.692258
```

In []: # create a table for total asset, sorted by 2020YE_Total assets (£m) in descendi
ta = ta.sort_values(by = '2020YE_Total assets (£m)', ascending = False)
ta.head(10).style.set_sticky(axis="index").background_gradient(cmap='Blues').for

Out[]: 2016YE_Total 2017YE_Total 2018YE_Total 2019YE_Total 2020YE_Total assets (£m) assets (£m) assets (£m) assets (£m)

Firms_ID

Firm_210	284,329.90	298,172.84	282,829.55	311,228.37	332,875.90
Firm_311	139,095.39	295,913.90	280,664.42	302,099.26	321,563.60
Firm_105	176,860.53	189,105.53	177,363.07	190,804.88	190,431.21
Firm_34	123,131.66	133,659.76	137,198.17	177,652.79	185,108.33
Firm_10	155,205.16	155,343.13	136,914.32	138,456.98	142,144.99
Firm_7	81,043.29	88,006.34	87,435.58	101,517.06	110,371.66
Firm_4	67,404.35	73,034.63	81,184.83	84,801.52	94,065.08
Firm_73	36,769.52	35,482.37	46,223.79	70,743.36	89,412.17
Firm_199	47,564.38	57,192.48	60,263.02	74,546.83	83,298.94
Firm_151	63,229.58	56,191.57	66,160.04	77,101.97	82,397.81

In []: # create a table for gross written premium, sorted by 2020YE_GWP (£m) in descend
tgwp = tgwp.sort_values(by = '2020YE_GWP (£m)', ascending = False)
tgwp.head(10).style.background_gradient(cmap='Blues').format("{:,.2f}") #format

Out[]:	2016YE_GWP	2017YE_GWP	2018YE_GWP	2019YE_GWP	2020YE_GWP
	(fm)	(fm)	(fm)	(fm)	(fm)

Fi	rms	s I	D

Firm_210	27,889.34	38,199.31	48,117.99	44,638.77	40,135.69
Firm_4	29,424.57	32,935.40	35,867.64	36,135.46	34,922.70
Firm_34	8,772.50	12,550.06	17,214.59	20,729.17	20,510.75
Firm_311	2,210.97	11,493.62	16,553.86	18,988.45	19,180.02
Firm_26	45,309.82	7,239.36	7,616.76	10,450.18	10,489.25
Firm_247	13,589.81	24,202.65	22,694.94	10,624.48	9,961.52
Firm_199	28.30	8,808.03	10,211.52	9,756.35	9,149.58
Firm_7	6,567.62	9,542.90	9,662.75	11,259.29	8,652.95
Firm_151	7,753.57	8,125.44	8,076.39	9,188.80	8,341.64
Firm_10	1,317.98	10,559.90	10,122.41	8,960.73	7,923.37

In []: # create a table for net written premium, sorted by 2020YE_NWP (fm) in descendin
tnwp = tnwp.sort_values(by = '2020YE_NWP (fm) ', ascending = False)
tnwp.head(10).style.background_gradient(cmap='Blues').format("{:,.2f}") #format

Out[]: 2016YE_NWP 2017YE_NWP 2018YE_NWP 2019YE_NWP 2020YE_NWP (£m) (£m) (£m) (£m)

Firms_ID

Firm_210	27,889.34	38,199.31	48,117.99	44,638.77	40,135.69
Firm_4	22,344.20	23,963.91	25,760.39	25,512.75	24,996.02
Firm_311	-1,862.24	9,777.53	12,009.16	12,719.40	10,830.97
Firm_26	45,309.84	7,239.36	7,616.76	10,450.18	10,489.25
Firm_247	13,377.53	24,031.38	22,475.77	10,624.48	9,961.52
Firm_199	6.77	8,787.82	10,191.58	9,739.14	9,134.28
Firm_7	5,855.17	11,688.57	9,414.98	10,975.19	8,359.91
Firm_151	-1,750.95	7,626.42	7,867.16	9,028.41	8,180.39
Firm_34	6,817.40	5,780.78	4,497.98	-181.61	8,145.62
Firm_10	1,273.95	10,516.21	10,087.57	8,921.88	7,893.06

```
In []: # vizualize the total asset data using horizontal bar chart, display top 10 firm
ta_2020 = ta['2020YE_Total assets (fm)'].sort_values(ascending=False).head(10)

# highest horizontal bar chart at the top
ax = ta_2020.plot(kind='barh', figsize=(10, 6), zorder=2, width=0.85)
plt.xlabel('Total Assets (fm)')
plt.ylabel('Firms_ID')
plt.title('Top 10 Firms with Highest Total Assets in 2020')
plt.tight_layout()
```

```
ax.invert_yaxis()
ax.bar_label(ax.containers[0], label_type='center', color='white', fontsize=10,
plt.show()
```



```
In []: # vizualize the gross written premium data using horizontal bar chart, display t
    tgwp_2020 = tgwp['2020YE_GWP (fm)'].sort_values(ascending=False).head(10)

# highest horizontal bar chart at the top
    ax = tgwp_2020.plot(kind='barh', figsize=(10, 6), zorder=2, width=0.85)
    plt.xlabel('Gross Written Premium (fm)')
    plt.ylabel('Firms_ID')
    plt.title('Top 10 Firms with Highest Gross Written Premium in 2020')
    plt.tight_layout()
    ax.invert_yaxis()
    ax.bar_label(ax.containers[0], label_type='center', color='white', fontsize=10,
    plt.show()
```

Top 10 Firms with Highest Gross Written Premium in 2020 Firm_210 Firm_4 Firm_34 19,180.02 Firm_311 Firm_26 ₽. £ Firm_247 Firm_199 Firm_7 Firm_151 · Firm_10 0 5000 10000 15000 20000 25000 30000 35000 40000

Gross Written Premium (£m)

```
In []: # vizualize the net written premium data using horizontal bar chart, display top
tnwp_2020 = tnwp['2020YE_NWP (£m) '].sort_values(ascending=False).head(10)

# highest horizontal bar chart at the top
ax = tnwp_2020.plot(kind='barh', figsize=(10, 6), zorder=2, width=0.85)
plt.xlabel('Net Written Premium (£m)')
plt.ylabel('Firms_ID')
plt.title('Top 10 Firms with Highest Net Written Premium in 2020')
plt.tight_layout()
ax.invert_yaxis()
ax.bar_label(ax.containers[0], label_type='center', color='white', fontsize=10,
plt.show()
```



```
In []: # put all ta, tgwp and tnwp horizontal bar into one plot, inver
fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(15, 5))
ta_2020.plot(kind='barh', ax=axes[0], title='Total Assets (fm)')
tgwp_2020.plot(kind='barh', ax=axes[1], title='Gross Written Premium (fm)')
tnwp_2020.plot(kind='barh', ax=axes[2], title='Net Written Premium (fm)')
plt.tight_layout()
#invert all y axis for all plots
for ax in axes:
    ax.invert_yaxis()
    ax.set_xlabel('Firms_ID')
    ax.set_ylabel('Amount (fm)')
# add label to all bar, with thousand separator and 2 decimal places, inside the
for ax in axes:
    ax.bar_label(ax.containers[0], label_type='center', color='white', fontsize=
plt.show()
```



```
In []: # create a line chart for tnwp(10)
    tnwp_10 = tnwp.head(10)
    tnwp_10 = tnwp_10.T
    tnwp_10.plot(kind='line', figsize=(10, 6))
    plt.xlabel('Year')
    plt.ylabel('Net Written Premium (£m)')
    plt.title('Net Written Premium for Top 10 Firms')
    plt.tight_layout()
    plt.show()
```



```
In []: #modify each column name to remove the 'YE' and 'Total assets (£m)', 'GWP (£m)',
    #this is to make the graph more readable
    #rename the column name without chaning the original dataframe
    ta = ta.rename(columns={'2016YE_Total assets (£m)':'2016', '2017YE_Total assets
    tgwp = tgwp.rename(columns={'2016YE_GWP (£m)':'2016', '2017YE_GWP (£m)':'2017',
    tnwp = tnwp.rename(columns={'2016YE_NWP (£m) ':'2016', '2017YE_NWP (£m) ':'2017'

# create a line chart for tnwp(10), ta(10) and tgwp(10) in one plot
    tnwp_10 = tnwp.head(10)
    ta_10 = ta.head(10)
    tgwp_10 = tgwp.head(10)
    fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(15, 5))
    tnwp_10 = tnwp_10.T
    ta_10 = ta_10.T
    tgwp_10 = tgwp_10.T
```

```
ta_10.plot(kind='line', ax=axes[0], title='Total Assets (fm)', legend=False)
tgwp_10.plot(kind='line', ax=axes[1], title='Gross Written Premium (fm)', legend
tnwp_10.plot(kind='line', ax=axes[2], title='Net Written Premium (fm)', legend=F
# add legend to only one plot, with padding and not overlapping with the plot
plt.tight_layout()
#invert all y axis for all plots
for ax in axes:
    ax.set_xlabel('Year')
    ax.set_ylabel('Amount (fm)')
    axes[2].legend(loc='upper center', bbox_to_anchor=(1.2, 0.8), ncol=1)
plt.show()
```



```
In []: # calculate firms concentration by total asset, for every period
for col in ta.columns:
    total = ta[col].sum()
    ta[col + '(%)'] = round((ta[col] / total) * 100, 2)

ta_sort = ta.iloc[:,5:10].sort_values(by=['2020(%)'], ascending=False)
ta_sort.head(10).style.background_gradient(cmap='Blues').format("{:,.2f}")
```

Out[]: 2016(%) 2017(%) 2018(%) 2019(%) 2020(%)

Firms ID

Firm_210	12.35	12.66	12.56	12.58	13.54
Firm_311	6.04	12.56	12.46	12.22	13.08
Firm_105	7.68	8.03	7.87	7.72	7.75
Firm_34	5.35	5.67	6.09	7.18	7.53
Firm_10	6.74	6.59	6.08	5.60	5.78
Firm_7	3.52	3.74	3.88	4.10	4.49
Firm_4	2.93	3.10	3.60	3.43	3.83
Firm_73	1.60	1.51	2.05	2.86	3.64
Firm_199	2.07	2.43	2.68	3.01	3.39
Firm_151	2.75	2.39	2.94	3.12	3.35

```
In [ ]: # calculate firms concentration by gross written premium, for every period
for col in tgwp.columns:
    total = tgwp[col].sum()
    tgwp[col + '(%)'] = round((tgwp[col] / total) * 100, 2)
```

```
tgwp_sort = tgwp.iloc[:,5:10].sort_values(by=['2020(%)'], ascending=False)
tgwp_sort.head(10).style.background_gradient(cmap='Blues').format("{:,.2f}")
```

Out[]: 2016(%) 2017(%) 2018(%) 2019(%) 2020(%)

Firms ID

Firm_210	10.19	12.92	14.14	14.12	14.87
Firm_4	10.75	11.14	10.54	11.43	12.94
Firm_34	3.21	4.24	5.06	6.56	7.60
Firm_311	0.81	3.89	4.87	6.01	7.11
Firm_26	16.56	2.45	2.24	3.31	3.89
Firm_247	4.97	8.19	6.67	3.36	3.69
Firm_199	0.01	2.98	3.00	3.09	3.39
Firm_7	2.40	3.23	2.84	3.56	3.21
Firm_151	2.83	2.75	2.37	2.91	3.09
Firm_10	0.48	3.57	2.98	2.84	2.94

```
In []: # calculate firms concentration by net written premium, for every period
for col in tnwp.columns:
    total = tnwp[col].sum()
    tnwp[col + '(%)'] = round((tnwp[col] / total) * 100, 2)

tnwp_sort = tnwp.iloc[:,5:10].sort_values(by=['2020(%)'], ascending=False)
tnwp_sort.head(10).style.background_gradient(cmap='Blues').format("{:,.2f}")
```

Out[]: 2016(%) 2017(%) 2018(%) 2019(%) 2020(%)

Firms ID

13.46	14.70	17.54	17.56	18.76
10.78	9.22	9.39	10.03	11.68
-0.90	3.76	4.38	5.00	5.06
21.87	2.79	2.78	4.11	4.90
6.46	9.25	8.19	4.18	4.66
0.00	3.38	3.72	3.83	4.27
2.83	4.50	3.43	4.32	3.91
-0.84	2.93	2.87	3.55	3.82
3.29	2.22	1.64	-0.07	3.81
0.61	4.05	3.68	3.51	3.69
	10.78 -0.90 21.87 6.46 0.00 2.83 -0.84 3.29	10.78 9.22 -0.90 3.76 21.87 2.79 6.46 9.25 0.00 3.38 2.83 4.50 -0.84 2.93 3.29 2.22	10.78 9.22 9.39 -0.90 3.76 4.38 21.87 2.79 2.78 6.46 9.25 8.19 0.00 3.38 3.72 2.83 4.50 3.43 -0.84 2.93 2.87 3.29 2.22 1.64	10.78 9.22 9.39 10.03 -0.90 3.76 4.38 5.00 21.87 2.79 2.78 4.11 6.46 9.25 8.19 4.18 0.00 3.38 3.72 3.83 2.83 4.50 3.43 4.32 -0.84 2.93 2.87 3.55 3.29 2.22 1.64 -0.07

```
c:\Users\Syarmine\AppData\Local\Programs\Python\Python312\Lib\site-packages\panda
s\io\formats\style.py:3823: RuntimeWarning: invalid value encountered in scalar m
ultiply
  norm = _matplotlib.colors.Normalize(smin - (rng * low), smax + (rng * high))
```

Out[]: 2016 2017 2018 2019 2020

Firms_ID					
Firm_21	nan	nan	nan	nan	inf
Firm_303	-0.77	-26.24	1.08	6.22	6.82
Firm_152	0.78	0.46	0.68	0.50	2.63
Firm_76	0.87	1.26	1.26	1.24	1.35
Firm_61	0.74	1.06	0.99	-2.67	1.12
Firm_28	0.97	1.02	1.41	1.00	1.00
Firm_226	1.00	1.00	1.00	1.00	1.00
Firm_265	1.00	1.00	1.00	1.00	1.00
Firm_26	1.00	1.00	1.00	1.00	1.00
Firm_25	1.00	1.00	1.00	1.00	1.00

Changing Business Profile

```
In [ ]: # selecting eligible own funds
        teof = df_c[['2016YE_EoF for SCR (£m)','2017YE_EoF for SCR (£m)', '2018YE_EoF for SCR (£m)']
        # selecting SCR
        tscr = df_c[['2016YE_SCR (£m)','2017YE_SCR (£m)', '2018YE_SCR (£m)', '2019YE_SCR
        # selecting SCR coverage ratio
        tscrcr = df_c[['2016YE_SCR coverage ratio','2017YE_SCR coverage ratio', '2018YE_
        # selecting gross claims incurred
        tgci = df_c[['2016YE_Gross claims incurred (£m)','2017YE_Gross claims incurred (
        # selecting gross BEL
        tgbel = df_c[['2016YE_Gross BEL (inc. TPs as whole, pre-TMTP) (£m)','2017YE_Gros
        # selecting net BEL
        tnbel = df_c[['2016YE_Net BEL (inc. TPs as a whole, pre-TMTP) (fm)','2017YE_Net
        # selecting pure net claims ratio
        tpncr = df_c[['2016YE_Pure net claims ratio','2017YE_Pure net claims ratio', '20
        df_c['2016YE_Net expense ratio']
        # selecting net expense ratio
        tnexr = df_c[['2016YE_Net expense ratio','2017YE_Net expense ratio', '2018YE_Net
        # selecting net combined ratio
        tncri = df c[['2016YE Net combined ratio','2017YE Net combined ratio', '2018YE N
        # selecting pure gross claims ratio
        tpgcr = df_c[['2016YE_Pure gross claims ratio','2017YE_Pure gross claims ratio',
```

```
# selecting gross expense ratio
        tgexr = df_c[['2016YE_Gross expense ratio','2017YE_Gross expense ratio', '2018YE
        # selecting gross combined ratio
        tgcri = df c[['2016YE Gross combined ratio','2017YE Gross combined ratio', '2018
        #rename each column
        teof = teof.rename(columns={'2016YE_EOF for SCR (£m)':'2016', '2017YE_EOF for SC
        tscr = tscr.rename(columns={'2016YE_SCR (£m)':'2016', '2017YE_SCR (£m)':'2017',
        tscrcr = tscrcr.rename(columns={'2016YE_SCR coverage ratio':'2016', '2017YE_SCR
        tgci = tgci.rename(columns={'2016YE_Gross claims incurred (£m)':'2016', '2017YE_
        tgbel = tgbel.rename(columns={'2016YE_Gross BEL (inc. TPs as whole, pre-TMTP) (£
        tnbel = tnbel.rename(columns={'2016YE_Net BEL (inc. TPs as a whole, pre-TMTP) (£
        tpncr = tpncr.rename(columns={'2016YE_Pure net claims ratio':'2016', '2017YE_Pur
        tnexr = tnexr.rename(columns={'2016YE_Net expense ratio':'2016', '2017YE_Net exp
        tncri = tncri.rename(columns={'2016YE_Net combined ratio':'2016', '2017YE_Net co
        tpgcr = tpgcr.rename(columns={'2016YE_Pure gross claims ratio':'2016', '2017YE_P
        tgexr = tgexr.rename(columns={'2016YE Gross expense ratio':'2016', '2017YE Gross
        tgcri = tgcri.rename(columns={'2016YE_Gross combined ratio':'2016', '2017YE_Gros
In [ ]: # calculate pure gross claims ratio for every period for each firm using boxplot
        print(tpgcr.describe())
        tpgcr.boxplot(figsize=(10,6))
        plt.xlabel('Year')
        plt.ylabel('Pure Gross Claims Ratio')
        plt.title('Pure Gross Claims Ratio for Each Firm')
        plt.tight_layout()
        plt.show()
        # create a variable outlier dataframe to allow return of the outlier in a datafr
        q1 = tpgcr.quantile(0.25)
        q3 = tpgcr.quantile(0.75)
        iqr = q3 - q1
        tpgcr_outlier = ((tpgcr < (q1 - 1.5 * iqr)) | (tpgcr > (q3 + 1.5 * iqr))).any(ax)
        # new variable without outliers to improve readability of the boxplot
        tpgcr_mod = tpgcr[\sim((tpgcr < (q1 - 1.5 * iqr)) | (tpgcr > (q3 + 1.5 * iqr))).any
        # create a box plot of tpgcr
        # add a reference line of 100% or at 1.0, this ratio should be less than this, i
        # if more than 100%, there is sign of risk mispricing and an incentive to inves
        tpgcr_mod.boxplot(figsize=(10,6))
        plt.axhline(y=1.0, color='r', linestyle='-')
        plt.xlabel('Year')
        plt.ylabel('Pure Gross Claims Ratio')
        plt.title('Pure Gross Claims Ratio for Each Firm')
        plt.tight_layout()
        plt.show()
                    2016
                                  2017
                                               2018
                                                             2019
                                                                          2020
       count 325.000000
                            325.000000
                                         325.000000 3.250000e+02
                                                                    325.000000
              -0.110588
                           -72.376536
                                         26.204866 5.872168e+03
                                                                     9.801827
       mean
       std
               31.446878
                         1438.129350
                                        461.725941 1.060098e+05
                                                                     94.435270
       min
            -387.557255 -25876.266020 -160.128397 -2.893406e+03
                                                                   -21.021266
       25%
               0.000000
                             0.000000
                                           0.000000 0.000000e+00
                                                                      0.000000
```

0.323024 1.962327e-01

0.663285 6.300366e-01

899.702268 8321.272846 1.911108e+06 1165.884916

0.000000

0.627148

50%

75%

max

0.162931

0.578166

321,359543

0.310568

0.698855

In []: # sort the pure gross claims (before cleaning) ratio by 2020 in descending order
tpgcr_sort = tpgcr.sort_values(by=['2020'], ascending=False)
tpgcr_sort.head(10).style.background_gradient(cmap='Blues').format("{:,.2f}")

Out[]:	2016	2017	2018	2019	2020
		-			

Firms_ID

Firm_270	-387.56	-109.74	-160.13	-2,893.41	1,165.88
Firm_99	0.00	-25,876.27	111.68	1.42	1,132.42
Firm_284	0.00	0.00	0.00	183.25	423.54
Firm_72	116.15	899.70	113.70	245.58	301.33
Firm_166	22.00	-0.04	40.85	-214.80	90.21
Firm_146	0.86	-0.93	1.42	-3.85	4.76
Firm_205	0.00	0.58	0.44	0.94	2.68
Firm_214	0.00	0.81	0.51	0.55	2.19
Firm_163	0.56	0.71	0.66	0.63	1.80
Firm_21	0.60	0.58	0.43	0.16	1.77

In []: # sort the pure gross claims (after cleaning) ratio by 2020 in descending order
print(tpgcr_mod.describe())
tpgcr_mod_sort = tpgcr_mod.sort_values(by=['2020'], ascending=False)
tpgcr_mod_sort.head(10).style.background_gradient(cmap='Blues').format("{:,.2f}"

#to calculate use shape
#tpgcr_mod_sort.shape = 285, 5

	2016	2017	2018	2019	2020
count	285.000000	285.000000	285.000000	285.000000	285.000000
mean	0.295359	0.368160	0.342712	0.309643	0.323780
std	0.326850	0.391340	0.349080	0.341326	0.357707
min	-0.113431	-0.536276	-0.315361	-0.889447	-0.301601
25%	0.000000	0.000000	0.000000	0.000000	0.000000
50%	0.162931	0.305848	0.321162	0.213447	0.183942
75%	0.567755	0.685976	0.641764	0.619649	0.622522
max	1.286180	1.626692	1.652928	1.282594	1.373235

Fi	ir	n	n	s	D
				_	

Firm_144	0.66	1.04	0.63	0.78	1.37
Firm_29	0.71	1.63	0.81	0.00	1.34
Firm_91	0.00	0.65	0.94	0.78	1.30
Firm_319	0.35	1.21	0.25	0.04	1.13
Firm_194	0.53	0.64	0.34	0.60	1.09
Firm_206	0.31	0.85	0.71	0.46	1.09
Firm_239	1.29	0.64	0.68	0.58	1.06
Firm_52	0.53	0.85	0.74	0.62	1.05
Firm_160	0.60	0.72	0.60	0.70	1.04
Firm_294	0.78	0.53	0.72	1.28	1.04

In []: # calculate YoY of pure gross claims ratio of tpgcr_mod_sort all years tpgcr_mod_yoy = tpgcr_mod_sort.pct_change(axis='columns').mul(100).round(2) tpgcr_mod_yoy.head(10).style.background_gradient(cmap='Blues').format("{:,.2f}")

c:\Users\Syarmine\AppData\Local\Programs\Python\Python312\Lib\site-packages\panda s\io\formats\style.py:3819: RuntimeWarning: All-NaN slice encountered smin = np.nanmin(gmap) if vmin is None else vmin c:\Users\Syarmine\AppData\Local\Programs\Python\Python312\Lib\site-packages\panda s\io\formats\style.py:3820: RuntimeWarning: All-NaN slice encountered smax = np.nanmax(gmap) if vmax is None else vmax c:\Users\Syarmine\AppData\Local\Programs\Python\Python312\Lib\site-packages\panda s\io\formats\style.py:3823: RuntimeWarning: invalid value encountered in scalar m

ultiply norm = _matplotlib.colors.Normalize(smin - (rng * low), smax + (rng * high))

Out[]: 2016 2017

2018 2019 2020

Firms_ID

Firm_144	nan	56.67	-39.43	24.02	75.82
Firm_29	nan	130.40	-50.09	-99.96	401,486.63
Firm_91	nan	inf	44.25	-16.54	65.41
Firm_319	nan	249.94	-79.22	-84.35	2,771.05
Firm_194	nan	19.70	-46.64	77.06	81.18
Firm_206	nan	176.35	-16.93	-34.47	134.12
Firm_239	nan	-50.03	5.63	-14.18	81.11
Firm_52	nan	61.46	-13.22	-16.16	70.45
Firm_160	nan	18.79	-16.56	16.34	50.04
Firm_294	nan	-32.43	36.04	78.26	-18.85

```
In [ ]: # create a box plot of net combined ratio for each firm
        print(tncri.describe())
        tncri.boxplot(figsize=(10, 6))
        plt.ylabel('Net Combined Ratio')
        plt.title('Net Combined Ratio Boxplot')
        plt.show()
        # create a variable outlier dataframe to allow return of the outlier in a datafr
        q1 = tncri.quantile(0.25)
        q3 = tncri.quantile(0.75)
        iqr = q3 - q1
        tncri_outlier = ((tncri < (q1 - 1.5 * iqr)) | (tncri > (q3 + 1.5 * iqr))).any(ax)
        # new variable without outliers to improve readability of the boxplot
        tncri_mod = tncri[\sim((tncri < (q1 - 1.5 * iqr)) | (tncri > (q3 + 1.5 * iqr))).any
        # create a box plot of tncri
        # add a reference line of 100% or at 1.0
        tncri mod.boxplot(figsize=(10, 6))
        plt.axhline(y=1.0, color='r', linestyle='-')
        plt.ylabel('Net Combined Ratio')
        plt.title('Net Combined Ratio Boxplot')
        plt.tight_layout()
        plt.show()
```


In []: # sort the net combined ratio (before cleaning - without outlier) ratio by 2020
tncri_sort = tncri.sort_values(by=['2020'], ascending=False)
tncri_sort.head(10).style.background_gradient(cmap='Blues').format("{:,.2f}")

Out[]: 2016 2017 2018 2019 2020

Firms_ID

Firm_228	0.00	0.00	0.00	0.00	1,076.16
Firm_166	101.72	-2.44	2.41	-248.63	989.16
Firm_284	0.00	0.00	0.00	435.58	906.31
Firm_72	67.33	-20.54	144.00	48.63	49.51
Firm_178	0.00	0.00	0.00	0.00	21.00
Firm_39	0.00	0.00	0.00	33.18	5.77
Firm_146	1.06	-1.49	1.12	-32.86	5.45
Firm_88	0.00	3.35	13.94	6.72	4.06
Firm_203	0.94	1.10	1.19	0.85	3.12
Firm_97	0.99	1.06	1.01	1.00	2.39

In []: # sort the net combined ratio (after cleaning - without outlier) ratio by 2020 i
 print(tncri_mod.describe())
 tncri_mod_sort = tncri_mod.sort_values(by=['2020'], ascending=False)
 tncri_mod_sort.head(10).style.background_gradient(cmap='Blues').format("{:,.2f}"

	2016	2017	2018	2019	2020
count	288.000000	288.000000	288.000000	288.000000	288.000000
mean	0.508397	0.585547	0.567773	0.521803	0.516621
std	0.539851	0.546949	0.545102	0.515412	0.552255
min	-0.896605	0.000000	-1.113032	0.000000	-0.200397
25%	0.000000	0.000000	0.000000	0.000000	0.000000
50%	0.597382	0.811088	0.809756	0.691984	0.345514
75%	0.949548	1.029891	0.997362	0.971385	0.979243
max	2.053673	2.103911	2.470816	2.052330	2.387685

Out[]: 2016 2017 2018 2019 2020

Firms ID

Firm_97	0.99	1.06	1.01	1.00	2.39
Firm_21	2.01	1.07	0.85	0.68	2.30
Firm_29	0.10	1.52	1.33	0.76	2.15
Firm_214	0.00	0.93	0.93	0.97	1.98
Firm_316	1.57	1.36	2.47	1.63	1.75
Firm_239	2.05	0.99	1.13	1.11	1.74
Firm_137	0.82	1.31	1.59	1.13	1.53
Firm_144	1.03	1.45	1.05	1.14	1.51
Firm_300	0.92	1.00	1.05	1.32	1.45
Firm_160	0.93	1.05	0.94	1.06	1.45

In []: # calculate YoY of net combined ratio of tncri_mod_sort all years
 tncri_mod_yoy = tncri_mod_sort.pct_change(axis='columns').mul(100).round(2)
 tncri_mod_yoy.head(10).style.background_gradient(cmap='Blues').format("{:,.2f}")

c:\Users\Syarmine\AppData\Local\Programs\Python\Python312\Lib\site-packages\panda
s\io\formats\style.py:3819: RuntimeWarning: All-NaN slice encountered
 smin = np.nanmin(gmap) if vmin is None else vmin
c:\Users\Syarmine\AppData\Local\Programs\Python\Python312\Lib\site-packages\panda
s\io\formats\style.py:3820: RuntimeWarning: All-NaN slice encountered
 smax = np.nanmax(gmap) if vmax is None else vmax
c:\Users\Syarmine\AppData\Local\Programs\Python\Python312\Lib\site-packages\panda

c:\Users\Syarmine\AppData\Local\Programs\Python\Python312\Lib\site-packages\panda s\io\formats\style.py:3823: RuntimeWarning: invalid value encountered in scalar multiply

norm = _matplotlib.colors.Normalize(smin - (rng * low), smax + (rng * high))

Firms ID

Firm_97	nan	6.53	-4.79	-0.68	138.98
Firm_21	nan	-46.75	-20.91	-19.63	238.17
Firm_29	nan	1,376.04	-12.44	-43.07	183.62
Firm_214	nan	inf	-0.39	4.36	104.56
Firm_316	nan	-13.44	81.39	-33.89	7.27
Firm_239	nan	-51.55	13.96	-1.82	56.39
Firm_137	nan	59.40	21.07	-28.90	35.28
Firm_144	nan	40.65	-28.01	8.92	32.51
Firm_300	nan	7.88	5.80	24.87	10.59
Firm_160	nan	13.13	-10.74	13.61	36.62

```
In [ ]: # create a box plot for solvency coverage ratio for each firm
        print(tscrcr.describe())
        tscrcr.boxplot(figsize=(10, 6))
        plt.ylabel('Solvency Coverage Ratio')
        plt.title('Solvency Coverage Ratio Boxplot')
        plt.show()
        # create a variable outlier dataframe to allow return of the outlier in a datafr
        q1 = tscrcr.quantile(0.25)
        q3 = tscrcr.quantile(0.75)
        iqr = q3 - q1
        tscrcr_outlier = ((tscrcr < (q1 - 1.5 * iqr)) | (tscrcr > (q3 + 1.5 * iqr))).any
        # new variable without outliers to improve readability of the boxplot
        tscrcr_mod = tscrcr[\sim((tscrcr < (q1 - 1.5 * iqr)) | (tscrcr > (q3 + 1.5 * iqr)))
        # create a box plot of tscrcr
        # add a reference line of 100% or at 1.0
        tscrcr_mod.boxplot(figsize=(10, 6))
        plt.axhline(y=1.0, color='r', linestyle='-')
        plt.ylabel('Solvency Coverage Ratio')
        plt.title('Solvency Coverage Ratio Boxplot')
        plt.tight_layout()
        plt.show()
```

	2016	2017	2018	2019	2020
count	3.250000e+02	3.250000e+02	3.250000e+02	325.000000	325.000000
mean	1.286947e+04	5.930313e+06	1.246741e+04	533.017116	514.215109
std	2.319518e+05	6.529400e+07	2.141325e+05	9539.236980	9229.786796
min	-1.974450e+00	-1.973652e+00	-5.515428e-01	-0.669013	-1.066521
25%	1.276845e+00	1.302423e+00	1.268210e+00	1.177754	0.000000
50%	1.662747e+00	1.755881e+00	1.693416e+00	1.710544	1.565516
75%	2.780175e+00	3.203697e+00	2.795907e+00	2.691263	2.367988
max	4.181573e+06	9.635840e+08	3.856018e+06	171974.690816	166394.575872

In []: # sort the solvency coverage ratio (before cleaning - without outlier) ratio by
 tscrcr_sort = tscrcr.sort_values(by=['2020'], ascending=False)
 tscrcr_sort.head(10).style.background_gradient(cmap='Blues').format("{:,.2f}")

Ou+ [] •	2016	2017	2010	2010	2020
Out[]:	2016	2017	2018	2019	2020

Firm_127	0.00	182,412.23	194,753.82	171,974.69	166,394.58
Firm_177	0.00	23.29	31.01	53.35	23.44
Firm_312	3.56	14.43	22.40	22.49	21.86
Firm_232	13.52	15.69	17.83	18.08	18.57
Firm_190	5.94	7.43	14.14	16.77	16.03
Firm_133	1.99	1.90	2.80	2.56	15.41
Firm_282	2.18	5.21	5.43	13.67	15.23
Firm_300	11.46	11.17	11.15	10.45	14.35
Firm_278	2.79	12.36	14.48	14.40	13.65
Firm_94	6.09	12.77	13.03	13.58	13.62

In []: # sort the solvency coverage ratio (after cleaning - without outlier) ratio by 2
print(tscrcr_mod.describe())
tscrcr_mod_sort = tscrcr_mod.sort_values(by=['2020'], ascending=False)
tscrcr_mod_sort.head(10).style.background_gradient(cmap='Blues').format("{:,.2f}

	2016	2017	2018	2019	2020
count	257.000000	257.000000	257.000000	257.000000	257.000000
mean	1.670129	1.705842	1.668066	1.594209	1.417733
std	0.993736	1.041048	1.090796	1.096293	1.123326
min	-0.699561	-0.579237	-0.551543	-0.669013	-1.066521
25%	1.237247	1.254904	1.246388	1.154880	0.000000
50%	1.495556	1.516419	1.553863	1.579328	1.497979
75%	2.167277	2.180775	2.117042	2.152630	2.057611
max	4.788990	4.839561	5.060825	4.631008	5.426021

Out[]: 2016 2017 2018 2019 2020

Firms_ID

Firms ID

Firm_20	2.32	4.84	5.06	3.82	5.43
Firm_62	0.00	2.19	4.10	3.36	5.03
Firm_13	3.26	3.56	3.77	3.96	4.59
Firm_196	2.48	3.93	4.01	4.02	4.08
Firm_147	2.22	3.51	2.57	4.08	4.05
Firm_75	2.84	2.79	3.12	4.05	3.68
Firm_250	4.05	3.70	3.76	3.04	3.67
Firm_180	2.24	4.17	3.96	3.47	3.64
Firm_138	3.30	3.49	2.75	0.00	3.53
Firm_136	2.96	1.70	1.76	1.89	3.52

```
In []: # calculate YoY of solvency coverage ratio of tscrcr_mod_sort all years
    tscrcr_mod_yoy = tscrcr_mod_sort.pct_change(axis='columns').mul(100).round(2)
    tscrcr_mod_yoy.head(10).style.background_gradient(cmap='Blues').format("{:,.2f}"

c:\Users\Syarmine\AppData\Local\Programs\Python\Python312\Lib\site-packages\panda
    s\io\formats\style.py:3819: RuntimeWarning: All-NaN slice encountered
    smin = np.nanmin(gmap) if vmin is None else vmin
    c:\Users\Syarmine\AppData\Local\Programs\Python\Python312\Lib\site-packages\panda
    s\io\formats\style.py:3820: RuntimeWarning: All-NaN slice encountered
    smax = np.nanmax(gmap) if vmax is None else vmax
    c:\Users\Syarmine\AppData\Local\Programs\Python\Python312\Lib\site-packages\panda
    s\io\formats\style.py:3823: RuntimeWarning: invalid value encountered in scalar m
    ultiply
    norm = _matplotlib.colors.Normalize(smin - (rng * low), smax + (rng * high))
```

Out[]: 2016 2017 2018 2019 2020

		10
-	rms	ID
	11113	יוו

Firm_20	nan	108.16	4.57	-24.61	42.22
Firm_62	nan	inf	86.87	-17.94	49.74
Firm_13	nan	9.00	5.96	5.22	15.83
Firm_196	nan	58.60	1.91	0.19	1.53
Firm_147	nan	57.83	-26.79	58.87	-0.84
Firm_75	nan	-1.94	11.92	29.91	-9.10
Firm_250	nan	-8.63	1.63	-19.07	20.64
Firm_180	nan	86.10	-5.08	-12.40	4.89
Firm_138	nan	5.57	-21.13	-100.00	inf
Firm_136	nan	-42.68	3.90	7.37	85.68

In []: