TD 2 - Ecoulement compressible - Propriétés thermodynamiques en un point de stagnation

On s'intéresse à un écoulement compressible à un nombre de Mach uniforme M_{∞} inférieur à 1. On cherche à calculer les propriétés thermodynamiques du gaz au voisinage du point d'arrêt, noté S, sur un obstacle.

On fait les hypothèses suivantes :

- Le régime d'écoulement permanent est établi
- Les forces en volume et les transferts de chaleur sont nuls
- L'évolution est adiabatique et le fluide parfait.
- 1. Montrer, en simplifiant les bilans, que l'enthalpie totale, h_i , et l'entropie, s, sont constantes le long de toute ligne de courant.
- 2. On définit la température d'arrêt, T_i , par $h_i=c_pT_i$ où c_p représente la capacité calorifique à pression constante. Montrer que $T_i=T(1+\frac{\gamma-1}{2}M^2)$
- 3. Pour un gaz parfait, l'entropie par unité de masse vaut : $s = c_v log(\frac{p}{\rho^{\gamma}}) + Cste$. En déduire la valeur de p_s (pression statique au point d'arrêt) en fonction de p_{∞} , T_{∞} et T_s .
- 4. Montrer que l'on peut écrire, en explicitant α et β : $p_s = p_{\infty}(1 + \alpha M^2)^{\beta}$
- 5. En développant cette relation au premier ordre en M^2 et en faisant tendre M_{∞} vers 0, montrer que l'on retrouve une relation bien connue pour un fluide incompressible.