Discussion 8

Mengxiang Jiang CSEN 5303 Foundations of Computer Science

October 24, 2022

Problem statement. Consider the statement:

"There is a person x who is a student in CSEN 5303 and has visited Mexico". Explain why the answer cannot be $\exists x(S(x) \to M(x))$.

S(x): x is a student in CSEN 5303.

M(x): x has visited Mexico.

"There is a person x who is a student in CSEN 5303 and has visited Mexico": $\exists x(S(x) \land M(x))$

S(x)	M(x)	$S(x) \wedge M(x)$	$S(x) \to M(x)$
T	Τ	T	T
Γ	\mathbf{F}	\mathbf{F}	F
F	${ m T}$	\mathbf{F}	${ m T}$
F	F	\mathbf{F}	T

Since the truth table values are different, the two statements are not equivalent.

Note: $\exists x(S(x) \to M(x))$ is known as the Drinker's Paradox, and is true in two cases. Case one: there is a CSEN 5303 student who visited Mexico, which intuitively makes sense. Case two: there is a person who is not a CSEN 5303 student (regardless of whether this person visited Mexico or not). This second case is highly unintuitive gives the paradox its name.