Appendix A

Rotations, Euler Angles and Wigner Rotation Matrices

There are two primary reasons for looking at rotations in NMR of liquid crystals. First, rotational motion of the spin-bearing molecules determines, in part, relaxation behavior of the spin system. Second, one or more r.f. pulse(s) in NMR experiments has the effect of rotating the spin angular momentum of the spin system. Therefore, it is necessary to deal with spatial rotations of the spin system and with spin rotations. The connection between rotations and angular momentum (\vec{J}) is expressed by a rotation operator

$$R_n(\theta) = \exp[-i\theta \vec{J} \cdot \hat{n}], \qquad (A.1)$$

where \hat{n} is a unit vector directed along an axis n. The operator represents a rotation about the n axis by an angle θ . The derivation of Eq. (A.1) can be found in most quantum mechanics texts. It can be shown that the rotational operator is unitary (i.e., $R^{-1} = R^{\dagger}$). In a coordinate system transformation, a positive rotation of angle θ about an axis n is to rotate the two perpendicular axes by the right-hand rule (i.e., with the thumb pointing along the positive n axis, the perpendicular plane moves in the direction of the fingers wrapped around the axis of rotation). In other words, when looking in the direction of the rotation axis, a positive rotation means that the remaining two axes rotate clockwise. Consider a coordinate system transformation that takes one set of axes (X,Y,Z) into another set (x,y,z), which shares the same origin. This change can always be obtained by three successive rotations, i.e.,

$$R(\alpha, \beta \gamma) = R_z(\gamma) R_N(\beta) R_Z(\alpha),$$
 (A.2)

where the Euler angles $[\Omega \equiv (\alpha, \beta, \gamma)]$ that produce the coordinate system transformation are given in Fig. A.1. From the figure, it can be seen that first rotation by angle α occurs about the Z axis $[R_Z(\alpha)]$, then rotation by angle β occurs about the nodal line N, and finally, rotation about the Z axis by angle γ occurs. An equivalent rotational operator using rotations about the original axis system is

$$R(\alpha, \beta, \gamma) = R_Z(\alpha) R_Y(\beta) R_Z(\gamma)$$
. (A.3)

Note the order reversal from Eq. (A.2) of the rotations with angles α and γ . The Euler angles and the transformation of coordinate axes according

FIGURE A.1. Rotations used in the definition of the Euler angles.

to Eq. (A.2) will be used. For example, our "original X, Y, Z frame" to "final x, y, z frame" can be from the laboratory frame to the principal axes of an interaction tensor (in its principal axis system, $\rho_{J,m}$ is used to denote an irreducible spherical tensor). When a rotation of a coordinate system is performed (by a rotational operator R), the irreducible spherical tensor component $T_{J,m}$ is transformed into a linear combination of the set of 2J+1 operators $T_{J,m'}$

$$\rho_{J,m} = R(\alpha, \beta, \gamma) T_{J,m} R^{-1}(\alpha, \beta, \gamma)$$

$$= \sum_{m'} D_{m',m}^{J} (\alpha, \beta, \gamma) T_{J,m'}, \qquad (A.4)$$

where $D_{m',m}^{J}(\Omega)$ denote Wigner rotation matrices of rank J. The subscripts of the Wigner functions are projection indices and denote components of the angular momentum \vec{J} . The elements of the Wigner matrix are given according to Eq. (A.3),

$$D_{m',m}^{J}(\alpha,\beta,\gamma) = \exp[-i\,m'\alpha]d_{m',m}^{J}(\beta)\,\exp\left[-i\,m\,\gamma\right],\tag{A.5}$$

where $d_{m',m}^J(\beta)$ are the corresponding reduced Wigner matrices. In the tables, Wigner matrix elements are listed for rank one and rank two.

Some basic properties of the Wigner matrices are summarized as follows:

1. Symmetry

$$D_{m',m}^{L^{\bullet}}(\alpha,\beta,\gamma) = (-1)^{m'-m} D_{-m',-m}^{L}(\alpha,\beta,\gamma) = D_{m',m}^{L}(-\gamma,-\beta,-\alpha). \tag{A.6}$$

2. The product of two Wigner matrices of different ranks can be expressed in terms of the Clebsch-Gordon series:

$$\begin{split} D_{m_1',m_1}^{L_1}(\Omega)D_{m_2',m_2}^{L_2}(\Omega) &= \sum_{L,m,m'} c(L_1L_2L;m_1'm_2'm'), \\ &\times c(L_1L_2L;m_1m_2m)D_{m',m}^L(\Omega) \end{split} \tag{A.7}$$

where $c(L_1L_2L; m_1m_2m) \equiv c(L_1L_2L; m_1m_2)$ denote the Clebsch-Gordon coefficients with $m = m_1 + m_2$.

3. The Wigner matrices are orthogonal due to

$$\frac{1}{8\pi^2} \int_0^{2\pi} \int_0^{2\pi} \int_0^{\pi} D_{m'_1,m_1}^{L_1*}(\alpha,\beta,\gamma) D_{m'_2,m_2}^{L_2}(\alpha,\beta,\gamma) d\alpha \sin\beta d\beta d\gamma
= \frac{1}{2L_1 + 1} \delta_{m'_1m'_2} \delta_{m_1m_2} \delta_{L_1L_2}.$$
(A.8)

4. Closure

$$\sum_{n} D_{m,n}^{L}(\alpha_1, \beta_1, \gamma_1) D_{n,m'}^{L}(\alpha_2, \beta_2, \gamma_2) = D_{m,m'}^{L}(\alpha, \beta, \gamma), \quad (A.9)$$

where the Euler angles (α, β, γ) are the resultant of two successive rotations by angles $(\alpha_1, \beta_1, \gamma_1)$ followed by angles $(\alpha_2, \beta_2, \gamma_2)$.

Finally, from properties 2 and 3, the following is found:

$$\frac{1}{8\pi^2} \int_0^{2\pi} \int_0^{2\pi} \int_0^{\pi} D_{m'_1,m_1}^{L_1}(\Omega) D_{m'_2,m_2}^{L_2}(\Omega) D_{m'_3,m_3}^{L_3}(\Omega) d\Omega$$

$$= \frac{1}{2L_3 + 1} \delta_{m'_1,m_1} \delta_{m_1 + m_2,m_3}$$

$$\times C(L_1 L_2 L_3; m'_1, m'_2) C(L_1 L_2 L_3; m_1 m_2) . \tag{A.10}$$

The Wigner rotation matrix elements are related to the modified (or normalized) spherical harmonics by

$$D_{m,0}^{J}(\alpha,\beta,\gamma) = C_{J,-m}(\beta,\alpha)$$

$$= \sqrt{\frac{4\pi}{2J+1}} Y_{J,-m}, \qquad (A.11)$$

$$D_{0,m}^{J}(\alpha,\beta,\gamma) = C_{J,-m}(\beta,\gamma). \tag{A.12}$$

258 Appendix A

Table A.1. The Wigner rotation matrices $D^1_{m',m}(\alpha,\beta,\gamma).$

m'	1	m 0	-1
1	$\frac{1+\cos\beta}{2} e^{-i(\alpha+\gamma)}$	$-\frac{1}{\sqrt{2}}\sin\beta e^{-i\alpha}$	$\frac{1-\cos\beta}{2}e^{-i(\alpha-\gamma)}$
0	$\frac{1}{\sqrt{2}}\sin\beta e^{-i\gamma}$	$\cos eta$	$-\frac{1}{\sqrt{2}}\sin eta e^{i\gamma}$
-1	$\frac{1-\cos\beta}{2} e^{i(\alpha-\gamma)}$	$\frac{1}{\sqrt{2}}\sin\beta e^{i\alpha}$	$\frac{1+\cos\beta}{2} e^{i(\alpha+\gamma)}$

Table A.2. The Wigner rotation matrices $D^2_{m'm}(\alpha,\beta,\gamma).$

m'	2	1	m 0	-1	-2
2	$ \frac{\left(\frac{1+\cos\beta}{2}\right)^2}{e^{-2i(\alpha+\gamma)}} $	$-\frac{1+\cos\beta}{2}\sin\beta$ $e^{-i(2\alpha+\gamma)}$	$\sqrt{\frac{3}{8}}\sin^2\beta$ $e^{-i2\alpha}$	$-\frac{1-\cos\beta}{2}\sin\beta$ $e^{i(-2\alpha+\gamma)}$	$\frac{(\frac{1-\cos\beta}{2})^2}{e^{2i(-\alpha+\gamma)}}$
1	$\frac{1+\cos\beta}{2}\sin\beta$ $e^{-i(\alpha+2\gamma)}$	_	$-\sqrt{\frac{3}{8}} \sin 2eta \ e^{-ilpha}$	$\left[\frac{1+\cos\beta}{2}-\cos^2\beta\right]$ $e^{i(-\alpha+\gamma)}$	-
0	$\sqrt{\frac{3}{8}}\sin^2\beta$ $e^{-i2\gamma}$	$\sqrt{rac{3}{8}}\sin2eta \ e^{-i\gamma}$	$\frac{3\cos^2\beta-1}{2}$	$-\sqrt{rac{3}{8}}\sin2eta \ e^{i\gamma}$	$\sqrt{rac{3}{8}}\sin^2eta \ e^{i2\gamma}$
-1	-	$\left[\frac{1+\cos\beta}{2}-\cos^2\beta\right]$ $e^{i(\alpha-\gamma)}$	$\sqrt{rac{3}{8}}\sin^2eta \ e^{ilpha}$	$\frac{[\cos^2\beta - \frac{1-\cos\beta}{2}]}{e^{i(\alpha+\gamma)}}$	$-rac{1+\coseta}{2}\sineta$
-2	$(rac{1-\coseta}{2})^2 \ e^{2i(lpha-\gamma)}$	$(\frac{1-\cos\beta}{2})\sin\beta$ $e^{i(2\alpha-\gamma)}$	$\sqrt{\frac{3}{8}}\sin^2\beta$ $e^{i2\alpha}$	$(\frac{1+\cos\beta}{2})\sin\beta$ $e^{i(2\alpha+\gamma)}$	$(\frac{1+\cos\beta}{2})^2$ $e^{2i(\alpha+\gamma)}$

Index

Additive potential method, 90 Anisotropic viscosity model, 192	Dipolar Hamiltonian carbon-proton coupling, 85
Asymmetry parameter, 33, 74, 94	dipolar coupling, 31, 248 dipolar splitting, 36
B end, 139	Director, 3, 53, 134, 203
Biaxial nematic, 2, 54	fluctuations, 138ff.
Blue phase, 5	Disclination, 3
Bond-orientational order, 8	Discotic, 11
Broadband J-B excitation, 49	Distribution function, 58, 69
Dioadoand 5-D excitation, 45	Double quantum coherence, 43
Cartesian order tensor, 36, 55, 90, 95	spectrum, 250
Chemical shift, 30, 37	Elastic constants, 139
Chiral nematic, 4	Electric dipole moment, 8
Chord model, 103	Electric field effect, 17
Clebsch-Gordon coefficient, 185, 257	Enantiotropic, 21
Coherence length, 19, 147, 163	Ensemble average, 26, 90
Commutation relations, 39	Entropy of transition, 90, 102, 163
Conformation	Exchange process, 241
gauche, 90, 215	Excluded volume, 220
trans,90,215	
Correlated internal motions, 223	Fictitious spin-1/2, 122
Correlation function, 115	Field-cycling NMR, 152
cross-correlation, 127, 250	Free energy, 161ff.
director fluctuations, 142	electric, 17
internal, 224	Gibbs, 139
reduced, 136	Helmholtz, 63, 101
reorientation, 179, 185	magnetic, 141
Correlation time, 116	Free induction decay, 45
Cutoff function, 144	*
high-frequency cutoff, 143	Jump rate constant, 215 , 225
low-frequency cutoff, 143	T 1 1 C (1 101
Debug associan 199	Landau-de Gennes theory, 161
Debye equation, 182 Deformation, 139	Lattice, 25, 111 Lyotropics, 14
Density matrix	Lyotropics, 14
equation of motion, 27	Maier-Saupe potential, 62ff.
in equilibrium, 28	Magnetic field effect, 18
operator, 26, 112	Markov process, 178
Detailed-balance principle, 178	Master equation, 178, 225
Diamagnetic susceptibility tensor	relaxation, 112
anisotropy, 18, 55, 141	Mean field approximation, 59, 69
Dielectric anisotropy, 16	Mesophases, 2
• • •	•

Micelles, 16 Molecular biaxiality parameter, 56 Molecular reorientation, 178 Monotropic, 21 Multiple-quantum NMR, 248ff. Neat soap phase, 16 Nematic phase, 2 NMR signal, 42, 48	spin-spin relaxation, 122ff. Rotation operator, 47, 255 Rotameric model, 90, 214 Rotational diffusion model cone model, 190 small step, 183 strong collision, 180 third-rate model, 193, 200 Rotational isomeric state, 90
Odd-even effect, 83	Selective inversion, 49
Order fluctuation, 161	Shape model, 106
Order parameter	Short-range order, 163
macroscopic, 53ff.	Smectic phase, 6
nematic order, 62, 95, 145	Solute
order parameter fluctuation, 163	order, 79ff.
smectic order, 70, 149	relaxation, 200
Orientational	Spectral densities, 118ff.
distribution function, 57, 178	angular dependence, 135
order, 2, 34	motional, 118, 128
Oseen-Frank theory, 139	Spherical tensor operator, 31
Oscen-11ank theory, 193	Spin alignment, 45
Partition function, 58, 65, 71	Spin Hamiltonian, 30ff., 112
Phase biaxiality, 72	Spin polarization, 41
Phase-cycling, 48	Splay, 139
Pitch, 5	Stochastic processes, 176
Polar ordering, 8	Strong collision model, 180
Polymer dispersed nematic, 246	Superimposed rotations model, 216ff.
Potential of mean torque, 58ff.	
for flexible mesogen, 91ff.	Thermotropic, 2, 12
instantaneous, 133	Third-rate model, 193, 200
Pretransitional behavior, 166	Tilted smectic phases, 9
Tournal bollavior, 100	Time-averaged Hamiltonian, 33ff.
Quadrupole echo, 45	Translational self-diffusion
Quadrupolar Hamiltonian	diffusion constant, 201ff.
coupling, 32	relaxation, 152, 204
quadrupolar order, 42	Twist, 139
quadrupolar splitting, 37, 74, 168	Two-Dimensional NMR, 83, 238ff.
quadrupotar spiriting, 51, 14, 100	1 100 2 1110110101101 11111111, 00, 20011.
Random phase approximation, 27	Virtual echo, 47
r.f. Hamiltonian, 31	
Re-entrant nematic, 3	Wigner rotation matrix, 34, 255ff.
Redfield relaxation theory	
supermatrix, 113ff.	X-ray diffraction, 6
Relaxation	•
spin-lattice relaxation, 124, 152ff.,	Zeeman Hamiltonian, 30
206	order, 42