Plural Discourse Reference

Patrick D. Elliott

April 23, 2022

Contents

1	PID	PIDPL 1				
	1.1	Information states	1			
	1.2	Atomic sentences	2			
	1.3	Random assignment	3			
	1.4	Negation and closure	4			
		1.4.1 Negation	4			
		1.4.2 Closure	4			
	1.5	Dynamic generalized quantifiers	4			
2	Refe	erences	5			

1 PIDPL

1.1 Information states

A state is a set of partial assignments.

States assign variables to pluralities (i.e., sets of individuals) distributively:

$$(1) \quad G(x) = \{ g(x) \mid g \in G \land g(x) \neq \star \}$$

Definition 1.1. Assignment extension.

$$g \ge h \iff \forall x, h(x) \ne \star \to g(x) = h(x)$$

This induces an ordering on states by taking the cumulative generalization of assignment extension:

Definition 1.2. State extension.

$$G \ge H \iff \forall g \in G, \exists h \in H[g \ge h] \land \forall h \in H, \exists g \in G[g \ge h]$$

Some examples of states (H, G) s.t., $G \ge H$.

	\boldsymbol{x}	y
m	t	d
$\frac{x}{}$	t	h
t	d	d
d	d	h
h	h	d
	h	h

Relative to matrices G, H:

- G(x) returns the set of all values in the column labelled x.
- $G \ge H$ holds iff for each row $g \in G$, there's a row $h \in H$, which is contained by g, and for each row $h \in H$, there's a row $g \in G$ which contains it.

As emphasized by van den Berg, it's often useful to think of *states* simply as assignments from variables to sets of individuals (for simple applications).

1.2 Atomic sentences

Predicates are interpreted collectively.

- $[P(x_1,...,x_n)]^? = \{ (G,H) \mid G(x_1) = \emptyset \lor ... \lor G(x_n) = \emptyset \}$
- $[P(x_1,...,x_n)]^+ = \{ (G,H) \mid G = H \land G(x_1),...,G(x_n) \neq \emptyset \land (G(x_1),...,G(x_n)) \in I(P) \}$
- $[P(x_1, ..., x_n)]^- = \{ (G, H) \mid G = H \land G(x_1), ..., G(x_n) \neq \emptyset \land (G(x_1), ..., G(x_n)) \notin I(P) \}$

The true output states are those for which $P(x_1, \ldots, x_n)$ is true in static plural logic.

Let's say that we're in a scenario where Tom loves Dick and Harry, and we interpret L(x, y) at the following state G_1 :

$$\frac{x}{t}$$

The sentence is undefined relative to this state since $G(y) = \emptyset$, but true relative to the following extended state G_2 :

$$egin{array}{ccc} x & y \ t & d \ t & h \ \end{array}$$

This is because $G(x) = \{t\}$, and $G(y) = \{d, h\}$ and $(\{t\}, \{d, h\}) \in I(L)$

1.3 Random assignment

We can recreate our notion of random assignment in a way parallel to our old logic:

- $[\varepsilon_x]^+ = \{ (G, H) \mid G(x) = \emptyset \land G[x]H \}$
- $[\varepsilon_x]^- = \emptyset$
- $[\varepsilon_x]^? = \{ (G, H) \mid G(x) \neq \emptyset \}$

We need to cash out exactly what G[x]H means in a plural setting. The intuition is that H introduces plural values for x without creating dependencies by multiplying assignments in the input state. I.e.:

$$egin{array}{ccc} x & y \ t & d \ m & h \ \end{array}$$

For each row in the input state we randomly assign values to z. Here's the result of doing random assignment relative to z with a domain $\{t, d, h\}$.

$$\begin{array}{c|cccc} x & y & z \\ \hline t & d & t \\ m & h & t \\ \hline \\ x & y & z \\ \hline t & d & d \\ m & h & d \\ \hline \\ x & y & z \\ \hline t & d & h \\ m & h & h \\ \end{array}$$

m h h

1.4 Negation and closure

1.4.1 Negation

- $[\neg \phi]^+ = [\phi]^-$
- $[\neg \phi]^- = [\phi]^+$
- $[\neg \phi]^? = [\phi]^?$

1.4.2 Closure

- $\bullet \ \ [\dagger \phi]^+ := [\phi]^+$
- $\bullet \ \ [\dagger \phi]^- := \{\, (G,H) \mid G = H \land \neg \exists I [(G,I) \in [\phi]^+] \land \exists I [(G,I) \in [\phi]^-] \,\}$
- $[\dagger \phi]^? := [\phi]^?$

1.5 Dynamic generalized quantifiers

- $\phi_x = \{ H(x) \mid (G, H) \in [\phi]^+ \}$
- $\langle \phi \rangle_x = \bigcup \{ H(x) \mid (G, H) \in [\phi]^+ \} bigcup$

2 References