so we get

$$w = \frac{\sum_{i=1}^{p} \lambda_i u_i - \sum_{j=1}^{q} \mu_j v_j}{\left(\left(\lambda^\top \quad \mu^\top \right) X^\top X \begin{pmatrix} \lambda \\ \mu \end{pmatrix} \right)^{1/2}},$$

which is the result of making $\sum_{i=1}^{p} \lambda_i u_i - \sum_{j=1}^{q} \mu_j v_j$ a unit vector, since

$$X = \begin{pmatrix} -u_1 & \cdots & -u_p & v_1 & \cdots & v_q \end{pmatrix}.$$

It remains to find b and δ , which are not given by the dual program and for this we use the complementary slackness conditions.

The equations

$$\sum_{i=1}^{p} \lambda_i = \sum_{j=1}^{q} \mu_j = \frac{1}{2}$$

imply that there is some i_0 such that $\lambda_{i_0} > 0$ and some j_0 such that $\mu_{j_0} > 0$, but a priori, nothing prevents the situation where $\lambda_i = K$ for all nonzero λ_i or $\mu_j = K$ for all nonzero μ_j . If this happens, we can rerun the optimization method with a larger value of K. If the following mild hypothesis holds, then b and δ can be found.

Standard Margin Hypothesis for (SVM_{s1}). There is some index i_0 such that $0 < \lambda_{i_0} < K$ and there is some index j_0 such that $0 < \mu_{j_0} < K$. This means that some u_{i_0} is a support vector of type 1 on the blue margin, and some v_{j_0} is a support of type 1 on the red margin.

If the **Standard Margin Hypothesis** for (SVM_{s1}) holds, then $\epsilon_{i_0} = 0$ and $\mu_{j_0} = 0$, and then we have the active equations

$$w^{\mathsf{T}}u_{i_0} - b = \delta$$
 and $-w^{\mathsf{T}}v_{j_0} + b = \delta$,

and we obtain the values of b and δ as

$$b = \frac{1}{2} (w^{\top} u_{i_0} + w^{\top} v_{j_0})$$

$$\delta = \frac{1}{2} (w^{\top} u_{i_0} - w^{\top} v_{j_0}).$$

Due to numerical instability, when writing a computer program it is preferable to compute the lists of indices I_{λ} and I_{μ} given by

$$I_{\lambda} = \{ i \in \{1, \dots, p\} \mid 0 < \lambda_i < K \}$$

$$I_{\mu} = \{ j \in \{1, \dots, q\} \mid 0 < \mu_j < K \}.$$