

Actividad | # 3 | Circuito Digital

Ingeniería en Desarrollo de Software

TUTOR: Aarón Iván Salazar Macías

ALUMNO: Alexis Zapata Barbis

FECHA: 18/11/24024

Índice

1	I	Introducción3
		Descripción3
3		Justificación
		Desarrollo
		Definición de funciones4
		Análisis de funciones6
		Interpretación de resultados6
5	(· Conclusión
		Referencias

1 Introducción

En esta actividad realizaremos una tabla de la verdad para poder conocer la lealtad de todos nuestros clientes, con los datos proporcionados y esto a su vez nos ayudara a crear un mapa de Karnaugh, el cual nos ayudara a simplificar el resultado obtenido en nuestra tabla de la verdad, para así poder realizar nuestro circuito digital con los valores obtenidos ya simplificados.

2 Descripción

En este aparatado realizaremos una tabla de la verdad, la cual con los datos obtenidos sabremos que clientes con leales y cuales no los son, ya que estos nos ayudaran a premiar a los clientes leales, también realizaremos un mapa de Karnaugh el cual nos ayudara a simplificar los datos obtenidos en nuestra tabla de la verdad y realizamos un circuito digital con los datos obtenidos, vamos a crear compuertas AND y OR.

3 Justificación

El desarrollo de la tabla de la verdad es muy útil en el trabajo ya que con ella podemos tener resultados reales y precios de los clientes leales al momento de realizar compras o pagos, y así poder premiarlos por la lealtad obtenida. El mapa de Karnaugh nos ayuda a simplificar los resultados obtenidos en nuestra tabla de la verdad, y la elaboración de circuitos lógicos nos sirve para crear dispositivos que trabajan con datos de entradas y salidas.

4 Desarrollo

4.1 Definición de funciones

A partir de 75% se considera un cliente con lealtad alta y recibe beneficios adicionales.

A= 0.15 B= 0.2 C= 0.25 D= 0.25 E= 0.15

	A	В	С	D	Е	F	F
0	0	0	0	0	0	0	0
1	0	0	0	0	1	0.15	0
2	0	0	0	1	0	0.25	0
3	0	0	0	1	1	0.4	0
4	0	0	1	0	0	0.25	0
5	0	0	1	0	1	0.4	0
6	0	0	1	1	0	0.5	0
7	0	0	1	1	1	0.65	0
8	0	1	0	0	0	0.2	0
9	0	1	0	0	1	0.35	0
10	0	1	0	1	0	0.45	0
11	0	1	0	1	1	0.6	0
12	0	1	1	0	0	0.45	0
13	0	1	1	0	1	0.6	0
14	0	1	1	1	0	0.7	0
15	0	1	1	1	1	0.85	1
16	1	0	0	0	0	0.15	0
17	1	0	0	0	1	0.3	0
18	1	0	0	1	0	0.4	0
19	1	0	0	1	1	0.55	0
20	1	0	1	0	0	0.4	0
21	1	0	1	0	1	0.55	0
22	1	0	1	1	0	0.65	0
23	1	0	1	1	1	0.8	1
24	1	1	0	0	0	0.35	0
25	1	1	0	0	1	0.5	0
26	1	1	0	1	0	0.6	0
27	1	1	0	1	1	0.75	1
28	1	1	1	0	0	0.6	0
29	1	1	1	0	1	0.75	1
30	1	1	1	1	0	0.85	1
31	1	1	1	1	1	1	1

F = A'BCDE+AB'CDE+ABC'DE+ABCD'E+ABCDE'+ABCDE

Mapa de Karnaugh

4.2 Análisis de funciones

4.3 Interpretación de resultados

F = ABCE + ABCD + ABDE + ACDE + BCDE

- 1.- LOGISIM.
- 2.- HADES.
- 3.-PROTEUS.
- 4.-KICAD

5 Conclusión

Como pudimos observar en esta actividad, creamos una tabla de la verdad de 5 columnas y 32 filas los acules nos ayudó a saber que clientes son leales y que no para así poder premiar la lealtad de todos nuestros clientes que estén al 75% o superior, esto nos ayudaran a tener los datos correctos y poder bridar mejores servicios y los circuitos lógicos nos sirven para crear compuerta que trabajan con los datos de entrada y muestras un resultado de salida.

6 Referencias

- I. Video conferencing, web conferencing, online meetings, screen sharing Zoom. (s. f.-e). https://academiaglobal-mx.zoom.us/
- II. CircuitVerse Digital Circuit Simulator online. (s. f.). https://circuitverse.org/simulator
- III. programas o herramientas tecnológicas que permiten la simulación de circuitos lógicos Google Search.(s. f.).

 $https://www.google.com/search?q=programas+o+herramientas+tecnol\%C3\%B3gicas+que+permiten+la%\\ 0D\%0Asimulaci\%C3\%B3n+de+circuitos+l\%C3\%B3gicos$