

4.3 关系的性质

- ■自反性
- ■反自反性
- ■对称性
- ■反对称性
- ■传递性

自反性与反自反性

定义 设R为A上的关系,

- (1) 若 $\forall x(x \in A \rightarrow \langle x, x \rangle \in R)$, 则称R在A上是自反的.
- (2) 若 $\forall x(x \in A \rightarrow \langle x, x \rangle \notin R)$, 则称R在A上是反自反的.

实例:

反关系: A上的全域关系 E_A ,恒等关系 I_A

小于等于关系 L_A ,整除关系 D_A

反自反关系: 实数集上的小于关系

幂集上的真包含关系

NA.

实例

例1
$$A=\{1,2,3\}, R_1, R_2, R_3$$
是 A 上的关系, 其中 $R_1=\{<1,1>,<2,2>\}$ $R_2=\{<1,1>,<2,2>,<3,3>,<1,2>\}$ $R_3=\{<1,3>\}$

 R_2 自反,

 R_3 反自反,

 R_1 既不是自反也不是反自反的

NA.

对称性与反对称性

定义 设R为A上的关系,

- (1) 若 $\forall x \forall y (x,y \in A \land \langle x,y \rangle \in R \rightarrow \langle y,x \rangle \in R$),则称R为A上对称的关系.

实例:

对称关系: A上的全域关系 E_A ,恒等关系 I_A 和空关系 \emptyset

反对称关系: 恒等关系 I_A , 空关系是A上的反对称关系.

ÞΑ

实例

例2 设 $A = \{1,2,3\}, R_1, R_2, R_3 \Rightarrow R_4 \Rightarrow R_4 \Rightarrow R_4 \Rightarrow R_4 \Rightarrow R_4 \Rightarrow R_5 \Rightarrow R_5 = \{<1,1>,<2,2>\}, R_2 = \{<1,1>,<1,2>,<2,1>\}, R_4 = \{<1,2>,<2,1>,<1,3>\}, R_4 = \{<1,2>,<2,1>,<1,3>\}, R_5 = \{<1,2>,<2,1>,<1,3>\}, R_6 = \{<1,2>,<2,1>,<1,3>\}, R_8 = \{<1,2>,2,2>\}, R_8 = \{$

 R_1 对称、反对称.

 R_2 对称,不反对称.

 R_3 反对称,不对称.

 R_4 不对称、也不反对称.

传递性

定义 设R为A上的关系,若 $\forall x \forall y \forall z (x,y,z \in A \land \langle x,y \rangle \in R \land \langle y,z \rangle \in R \rightarrow \langle x,z \rangle \in R)$, 则称R是A上的传递关系.

实例:

A上的全域关系 E_A ,恒等关系 I_A 和空关系Ø 小于等于关系,小于关系,整除关系,包含关系, 真包含关系

r,e

实例

例3 设
$$A = \{1,2,3\}, R_1, R_2, R_3$$
是 A 上的关系, 其中 $R_1 = \{<1,1>,<2,2>\}$ $R_2 = \{<1,2>,<2,3>\}$ $R_3 = \{<1,3>\}$

 R_1 和 R_3 是A上的传递关系 R_2 不是A上的传递关系

关系性质的充要条件

设R为A上的关系,则

- (1) R在A上自反当且仅当 $I_A \subseteq R$
- (2) R在A上反自反当且仅当 $R \cap I_A = \emptyset$
- (3) R在A上对称当且仅当 $R=R^{-1}$
- (4) R在A上反对称当且仅当 $R \cap R^{-1} \subseteq I_A$
- (5) R在A上传递当且仅当 R°R $\subseteq R$

M

关系性质判别

	自反	反自反	对称	反对称	传递
表达式	$I_A \subseteq R$	$R \cap I_A = \emptyset$	$R=R^{-1}$	$R \cap R^{-1} \subseteq I_A$	$R^{\circ}R\subseteq R$
关系 矩阵	主对 角线 元素 全是1	主对角 线元素 全是0	矩阵是对称 矩阵	若 r_{ij} =1,且 $i \neq j$,则 r_{ji} =	对 <i>M</i> ² 中1 所在位置, <i>M</i> 中相应 位置都是1
关系图	每个 顶点 都有 环	每个顶 点都没 有环	如果两个顶点之间有边, 是一对方向相反的边 (无单边)	如果两点 之间有边, 是一条有 向边(无双 向边)	如果顶点 x_i 连通到 x_k ,则从 x_i 到 x_k 有边

实例

例8 判断下图中关系的性质,并说明理由.

- (a)不自反也不反自反;对称,不反对称;不传递.
- (b)反自反,不是自反的;反对称,不是对称的; 是传递的.
- (c)自反,不反自反;反对称,不是对称;不传递.

自反性证明

```
证明模式 证明R在A上自反
任取x,
x \in A \Rightarrow ... \Rightarrow \langle x, x \rangle \in R
前提 推理过程 结论
```

例4 证明若 $I_A \subseteq R$,则 R在A上自反. 证 任取x, $x \in A \Rightarrow \langle x, x \rangle \in I_A \Rightarrow \langle x, x \rangle \in R$ 因此 R 在 A 上是自反的.

对称性证明

```
证明模式 证明R在A上对称
任取< x, y>
< x, y> \in R \Rightarrow \dots \Rightarrow < y, x> \in R
前提 推理过程 结论
```

例5 证明若 $R=R^{-1}$,则R在A上对称. 证 任取< x,y> $< x,y> \in R \Rightarrow < y,x> \in R^{-1} \Rightarrow < x,y> \in R$ 因此 R 在 A 上是对称的.

M

反对称性证明

```
证明模式 证明R在A上反对称
任取< x, y>
< x, y> \in R \land < y, x> \in R \Rightarrow \dots \Rightarrow x=y
前提 推理过程 结论
```

例6 证明若 $R \cap R^{-1} \subseteq I_A$,则R在A上反对称. 证 任取< x,y> $< x,y> \in R \land < y, x> \in R \Rightarrow < x,y> \in R \land < x,y> \in R^{-1}$ $\Rightarrow < x,y> \in R \cap R^{-1} \Rightarrow < x,y> \in I_A \Rightarrow x=y$ 因此 R 在 A 上是反对称的.

传递性证明

```
证明模式 证明R在A上传递
任取< x, y>, < y, z>
< x, y> \in R \land < y, z> \in R \Rightarrow \dots \Rightarrow < x, z> \in R
前提 推理过程 结论
```

例7 证明若 $R^{\circ}R \subseteq R$,则R在A上传递.

证 任取<*x*,*y*>, <*y*, *z*>

 $\langle x,y \rangle \in R \land \langle y,z \rangle \in R \Rightarrow \langle x,z \rangle \in R^{\circ}R \Rightarrow \langle x,z \rangle \in R$ 因此 R 在 A 上是传递的.

运算与性质的关系

	自反性	反自反性	对称性	反对称性	传递性
R_1^{-1}	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark
$R_1 \cap R_2$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	V	\checkmark
$R_1 \cup R_2$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	×	×
R_1-R_2	×	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	×
$R_1 \circ R_2$		×	×	×	×

4.4 关系的闭包

- ■闭包定义
- ■闭包的构造方法
 - □ 集合表示
 - □ 矩阵表示
 - □ 图表示
- ■闭包的性质

闭包定义

定义 设R是非空集合A上的关系, R的自反(对称或传递)闭包是A上的关系R, 使得R′满足以下条件:

- (1) R'是自反的(对称的或传递的)
- $(2) R \subset R'$
- (3)对A上任何包含R的自反(对称或传递) 关系 R'' 有 R'⊆R''.
- 一般将 R 的自反闭包记作 r(R), 对称闭包记作 s(R), 传递闭包记作 t(R).

M

闭包的构造方法

定理1 设R为A上的关系,则有

$$(1) r(R) = R \cup R^0$$

(2)
$$s(R) = R \cup R^{-1}$$

(3)
$$t(R) = R \cup R^2 \cup R^3 \cup ...$$

说明:

- 对于有穷集合A(|A|=n)上的关系,(3)中的并最多不超过 \mathbb{R}^n .
- 若 R是自反的,则 r(R)=R; 若 R是对称的,则 s(R)=R; 若 R是传递的,则 t(R)=R.

闭包的构造方法(续)

设关系R, r(R), s(R), t(R)的关系矩阵分别为M, M_r , M_s 和 M_t , 则

$$M_r = M + E$$

$$M_s = M + M'$$

$$M_t = M + M^2 + M^3 + \dots$$

E 是和 M 同阶的单位矩阵, M'是 M 的转置矩阵. 注意在上述等式中矩阵的元素相加时使用逻辑加.

闭包的构造方法(续)

设关系R, r(R), s(R), t(R)的关系图分别记为G, G_r , G_s , G_t , 则 G_r , G_s , G_t 的顶点集与G的顶点集相等. 除了G的边以外, 以下述方法添加新边:

考察G的每个顶点,如果没有环就加上一个环,最终得到 G_r . 考察G的每条边,如果有一条 x_i 到 x_j 的单向边, $i \neq j$,则在G中加一条 x_j 到 x_i 的反方向边,最终得到 G_s . 考察G的每个顶点 x_i ,找从 x_i 出发的每一条路径,如果从 x_i 到路径中任何结点 x_j 没有边,就加上这条边. 当检查完所有的顶点后就得到图 G_t .

实例

例1 设 $A=\{a,b,c,d\}$, $R=\{\langle a,b\rangle,\langle b,a\rangle,\langle b,c\rangle,\langle c,d\rangle,\langle d,b\rangle\}$, R和 r(R), s(R), t(R)的关系图如下图所示.

