Échauffement : deux algorithmes probabilistes.

Exemple 1 (Vérifier la multiplication de matrices). Soient A, B, C trois matrices carrées à coefficients dans $\mathbb{F}_2 = \{0, 1\}$. On cherche à décider AB = C.

Idée 1. On calcule AB et on vérifie l'égalité à C. L'algorithme pour calculer AB avec $(AB)_{i,j} = \sum_{k=1}^{n} A_{i,k} B_{k,j}$ se fait avec une complexité en $O(n^3)$.

On peut améliorer la complexité en $O(n^{\alpha})$ avec $2 < \alpha < 3$ (actuellement, on peut le faire avec $\alpha \approx 2{,}37$) à l'aide de la méthode de Strassen.

Idée 2. On calcule ABx et Cx pour un vecteur $x \in \mathbb{F}_2^n$. On a des multiplications matrices \times vecteurs, en complexité en $O(n^2)$. Pour trouver un « bon » vecteur x, on le choisit au hasard.

Lemme 1. Si $D \in \mathcal{M}_n(\mathbb{F}_2)$ est non-nulle et $x \in \mathbb{F}_2^n$ est choisi uniformément au hasard, alors on a $P(Dx \neq 0) \geq \frac{1}{2}$.

Preuve. Au moins un coefficient de D est non-nul et, sans perte de généralité, on peut supposer que $D_{1,n} \neq 0$. Alors,

$$(Dx)_1 = \sum_{i=1}^n D_{1,i} x_i = \sum_{i=1}^{n-1} D_{1,i} x_i + x_1.$$

Quels que soient x_1, \dots, x_{n-1} , il y a une probabilité de $\frac{1}{2}$ que

 $(Dx)_1 \neq 0$. On en conclut que

$$P(Dx \neq 0) \ge P((Dx)_1 \neq 0) = \frac{1}{2}.$$

Exemple 2 (suite de 1). Ainsi, si $AB \neq C$, on a donc

$$P(ABx \neq Cx) \ge \frac{1}{2}.$$

On choisit x_1, \ldots, x_{100} des vecteurs uniformément dans \mathbb{F}_2^n . Si on a $AB \neq C$, alors

$$P(\forall i \in [1, 100], ABx_i = Cx_i) \le \left(\frac{1}{2}\right)^{100}.$$

On a donc un algorithme ayant une complexité $O(n^2)$ pour détecter, avec grande probabilité, si AB = C.

Exemple 3 (Coupe minimale dans un graphe). On considère G un graphe non-orienté sans boucle (éventuellement avec des arêtes multiples). Une *coupe* du graphe est un sous-ensemble $C \subseteq E$ tel que $(V, E \setminus C)$ n'est pas connexe. On cherche une coupe de taille minimale :

$$mincut(G) = min\{|C| \mid C \text{ est une coupe}\}.$$

De manière équivalente, on cherche une partition $V = V_1 \sqcup V_2$ (avec $V_1, V_2 \neq \emptyset$) qui minimise le nombre d'arêtes reliant V_1 et V_2 .

Étant donné un graphe G=(V,E), et une arête $e=\{x,y\}\in E$, la contraction de G selon e, notée G/e, est le graphe où les sommets x et y sont fusionnés en un sommet xy, et les arêtes $\{x,z\}$ ou $\{y,z\}$ sont remplacées en $\{xy,z\}$ si $z \notin \{x,y\}$.

Figure 1 | Contraction de l'arête {D, F}.

On a que $mincut(G/e) \ge mincut(G)$.

On utilise l'algorithme de Krager (1993). On contracte successivement selon des arêtes choisies uniformément au hasard, jusqu'à n'obtenir que 2 sommets, ce qui donne une coupe du graphe initial.

Lemme 2. La coupe C produite par l'algorithme de vérifie

$$P(|C| = mincut(G)) \ge \frac{2}{n^2}$$

où
$$n = |V|$$
.

Preuve. Soit $k = \operatorname{mincut}(G)$ et C une coupe de taille k. Montrons que P(l'algorithme renvoie la coupe $C) \geq 2/n^2$. Notons A_i (pour $i \in [\![1,n-2]\!]$) l'événement « l'arête contractée à la i-ème étape est dans C », et B_i l'événement complémentaire. L'algorithme renvoie la coupe C si et seulement si tous les événements B_1,\ldots,B_{n-2} sont vérifiés. On a $P(A_1)=k/|E|\leq 2/n$. Or, tout sommet a un degré $\geq k$, et donc $|E|\geq nk/2$. Conditionnellement à B_{11} , le graphe obtenu après contraction de la première arête vérifie $\operatorname{mincut}(G/e)=k\operatorname{donc} P(A_2\mid B_1)\leq 2/(n-1)$. De même, $P(A_j\mid B_1\cap\cdots\cap B_{j-1})\leq 2/(n+1-j)$, pour tout $j\in [\![1,n-2]\!]$. On a donc $P(A_{n-2}\mid B_1\cap B_{n-2})\leq \frac{2}{3}$, et donc

$$P(B_1 \cap \dots \cap B_{n-2}) = P(B_1)P(B_2 \mid B_1) \dots P(B_{n-2} \mid B_1 \cap \dots \cap B_{n-1})$$

$$\geq \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \dots \left(1 - \frac{2}{3}\right)$$

$$\geq \frac{n-2}{n} \frac{n-3}{n-1} \times \dots \times \frac{2}{3}$$

$$\geq \frac{2}{n(n-1)} \geq \frac{2}{n^2}.$$

Exemple 4 (suite de 3). On répète $N = 50n^2$ fois cet algorithme (tous les choix étant indépendant). On note k_i la taille de la coupe obtenue à la i-ème itération, et alors

$$\mathrm{P}(k_i = \mathsf{mincut}(G)) \geq \frac{2}{n^2},$$

d'où $P(k_i \neq \mathsf{mincut}(G)) \leq 1 - \frac{2}{n^2}$.

On en conclut que

$$\begin{split} \mathrm{P}(\forall i, k_i \neq \mathsf{mincut}(G)) &\leq \left(1 - \frac{2}{n^2}\right)^{50n^2} \\ &\leq \exp\left(-\frac{2}{n^2}50n^2\right) \\ &\leq \exp(-100). \end{split}$$

Chaque itération prend un temps en $O(n^2)$, on obtient donc un algorithme en $O(n^4)$ qui calcule une coupe minimale avec très grande probabilité.