An attempt to give the most abstract possible definition of a blockchain.

1 BlockChain

Chains as lists and their validation

Given a set S, let $\operatorname{LIST}(S)$ and $\operatorname{SET}(S)$ be the sets of all finite lists and all finite sets of elements of S, respectively. Given $L \in \operatorname{LIST}(S)$, we use notation |L| to refer to the number of elements in L, and notation L[i] to refer to the i-th element in L, where $i \in \{1, \dots, |L|\}$. From now on, assume that Σ is a finite alphabet, and that $\mathbf{B} \subseteq \Sigma^*$ is the set of all possible blocks. Moreover we extend the definition of \subseteq such that :

$$\forall S \in \text{SET}(B), \forall L \in \text{LIST}(B), L \subseteq S \Leftrightarrow \forall i \in \{1, \dots, |L|\}, L[i] \in S$$

Definition 1. A validation rule is a function $V : List(\mathbf{B}) \to Set(\mathbf{B})$

Intuitively V is a function taking a list L of block as input, and returning the set of blocks that could be added to L to produce a valid blockchain.

Definition 2. Let $G \in LIST(\mathbf{B})$ be non-empty, and V be a validation rule. Then a list $L \in LIST(\mathbf{B})$ is a validated chain with respect to (G, V) if:

- 1. $|G| \le |L|$ and L[i] = G[i], for every $i \in \{1, ..., |G|\}$.
- 2. $L[1] \in V([])$ and $L[i+1] \in V([L[1], ..., L[i]])$, for every $i \in \{1, ..., |L|-1\}$.

List L in this definition is a valid chain according to the validation rule V and the lists G of genesis blocks (whose role is to provide the blocks to startup the system). Let Log(G, V) be the set of validated chains with respect to (G, V).

Definition 3. Let $G \in LIST(\mathbf{B})$ be non-empty, and V be a validation rule. Then LOG(G, V) is safe if for every $L \in LOG(G, V)$ such that every $b_1, b_2 \in \mathbf{B}$ such that $b_1 \neq b_2$:

$$V([L[1], \dots, L[|L|], b_1]) \cap V([L[1], \dots, L[|L|], b_2]) = \emptyset$$

Intuitively, in order to be secured V should depend on the last block b that is included in the blockchain.

Knowledge

Definition 4. A knowledge tree K is a tree K = (N, E) with $N \subseteq \mathbf{B}$ and such that every path in K from its root to a leaf belongs to $LOG_{G,V}$. Let K be the set of knowledge tree with respect to (G,V).

Intuitively, the knowledge tree represents all the blockchain information we know. Abusing notation, we say that a block B is in a knowledge tree K = (N, E) if $B \in N$. (this is informal) We use $\operatorname{PATHS}(K)$ to denote the set of all lists of blocks made out of a path in K from its root to a leaf.

Block chain, protocols

Definition 5. Let $\preceq_{G,V,t}$ be a total preorder over $LOG_{G,V}$:

$$\forall L_1, L_2, L_3 \in LOG_{G,V}, L_1 \preceq_{G,V,t} L_2 \land L_2 \preceq_{G,V,t} L_3 \implies L_1 \preceq_{G,V,t} L_3$$
$$\forall L_1, L_2 \in LOG_{G,V}, L_1 \preceq_{G,V,t} L_2 \lor L_2 \preceq_{G,V,t} L_1$$

A block chain protocol over $LOG_{G,V}$ is a function noted $\leq_{G,V}$ such that:

$$\forall t \in \mathbb{N}, \prec_{G,V}(t) = \prec_{G,V,t}$$

Definition 6. Let $t \in \mathbb{N}$, $\preceq_{G,V}$ a block chain protocol and K a knowledge tree. A block chain of K with respect to $\preceq_{G,V}$ in t is any minimal element in PATHS(K) with respect to $\preceq_{G,V}$ (t).

Action, incentive and game

Definition 7. We call action a function $a : \mathcal{K} \to \mathcal{K}$ such that:

$$\forall K \in \mathcal{K}, K \subseteq a(K)$$
$$\forall K \in \mathcal{K}, |a(K) \setminus K| \le 1$$

Let A be the set of action.

Definition 8. We call incentive a function $I: A \times \mathcal{K} \times P \to \mathbb{R}^+$

Definition 9. Considering a set of player P, a function $K_P : P \to \mathcal{K}$, the set of action A, and a incentive I. We define a strategic game such that:

- *P* is the set of player.
- $\forall p \in P$, A is the set of available action.
- $\forall p \in P, \forall a_1, a_2 \in A \text{ we say that } a_1 \text{ is preferred to } a_2 \text{ if } I(a_1, K_P(p), p) \geq I(a_2, K_P(p), p).$

Tweak definition a bit to reach finite game (doable if i touch to A) and proove equilibrium existence..

Definition 10. We say that K'_P is reasonable if exists an equilibrium profile E such that:

$$\forall p \in P, K_P'(p) = E(p)(K_P(p))$$

Good to go we finally have a defintion of reasonable K and can define blockchain property which should be verified over all reasonable K.

2 old stuff

Block chain game

Definition 11. A block-chain game is a tuple $(G, V, \preceq_{G,V}, P, \mathcal{K}, D)$ where V is a validation rule, G a list of genesis blocks, $\preceq_{G,V}$ a block chain protocol over $LOG_{G,V}$, P a set of player, \mathcal{K} a function which map each player of P to a knowledge tree and $D: P \to [0,1]$ such that

$$\sum_{p \in P} D(p) = 1 \vee \sum_{p \in P} D(p) = 0$$

D(p) represents the probability, that a player p, has to be the first to discover a list $L \in LOG_{G,V}$ such that for all L' block chain of $\mathcal{K}(p)$ with respect to $\preceq_{G,V}(t)$, $L \neq L'$ and $L \preceq_{G,V,t} L'$

Definition 12. A block-chain game $(G, V, \preceq_{G,V}, P, K, D)$ is said to be alive if

$$\sum_{p \in P} D(p) = 1$$

Strategies for discovery

Definition 13. A strategy is a partial function $S : \mathbf{B} \times \mathbb{N} \to [0,1]$ that satisfies $S(B,i) \leq S(B,j)$ for all $i \leq j$. That is, S assigns to each block B and number i a probability S(B,i) that is not decreasing on i.

Intuitively, a strategy assigns to a time i a probability that a certain block is discovered amongst the i next blocks that are discovered.

Definition 14. Given a genesis G and a validation function V, A Knowledge representation for G and V is a pair (K, S), where K is a knowledge tree and S is a strategy with preimage $\{B \in \mathbf{B} \mid B \notin K\} \times \mathbb{N}$.

Let \mathcal{K} be a set $\{(K_1, S_1), \dots, (K_n, S_n)\}$ of knowledge trees. We say that $LOG_{G,V}$ is alive with respect to \mathcal{K} if there is an (K_ℓ, S_ℓ) with $1 \le \ell \le n$ and a block B not in K_ℓ such that

$$\lim_{\delta \to +\infty} S_{\ell}(B, \delta) = 1$$

 $LOG_{G,V}$ is alive with respect to $\mathcal K$ and a protocol $\preceq_{G,V}$ on a time t if there is an (K_ℓ,S_ℓ) with $1 \le \ell \le n$ and a block $B \in V(BC_t)$ such that

$$\lim_{\delta \to +\infty} S_{\ell}(B, \delta) = 1,$$

where BC_t is a blockchain of K_ℓ with respect to $\leq_{G,V}$ in t.

Definition 15. Let P be a set of players and K_T a function :

$$K_T: P \times \llbracket 0; T \rrbracket \times \mathbb{N} \to \mathsf{SET}(\mathbf{B} \times [0; 1])$$

Then (P, K_T) is a valid knowledge representation if:

$$\forall p \in P, \forall t \in \llbracket 0; T \rrbracket, (b, \alpha) \in K_T(t, 0, p) \implies \alpha = 1 \lor \alpha = 0$$

$$\forall p \in P, \forall t, t' \in \llbracket 0; T \rrbracket, t' \geq t, \forall b \in \mathbf{B}, (b, 1) \in K_T(t, 0, p) \implies (b, 1) \in K(t', 0, p)$$

$$\forall p \in P, \forall t \in \llbracket 0; T \rrbracket, \forall \delta \in \mathbb{N}, \forall b \in \mathbf{B}, (b, 1) \in K_T(t, 0, p) \implies (b, 1) \in K(t, \delta, p)$$

$$\forall p \in P, \forall t \in \llbracket 0; T \rrbracket, \forall \delta, \delta' \in \mathbb{N}, \delta' \geq \delta \implies \forall (b, \alpha) \in K_T(p, t, \delta), \exists (b, \alpha') \in K_T(p, t, \delta'), \alpha' \geq \alpha$$

Notation. $\forall p \in P, \forall t \in [0, T]$ we denote

$$K_T(p,t) = \{b|(b,1) \in K_T(p,t,0)\}$$

Definition 16. Let $T, T' \in \mathbb{N}$ such that T > T' we say that $K'_{T'}$ extend K_T if

$$\forall p, K_T(p,T) = K'_{T'}(p,T)$$

Definition 17. Let $\leq_{G,V,t}$ be a total preorder over $LOG_{G,V}$:

$$\forall L_1, L_2, L_3 \in LOG_{G,V}, L_1 \preceq_{G,V,t} L_2 \land L_2 \preceq_{G,V,t} L_3 \implies L_1 \preceq_{G,V,t} L_3 \forall L_1, L_2 \in LOG_{G,V}, L_1 \preceq_{G,V,t} L_2 \lor L_2 \preceq_{G,V,t} L_1$$

A block chain protocol over $LOG_{G,V}$ is a function noted $\leq_{G,V}$ such that:

$$\forall t \in \mathbb{N}, \preceq_{G,V} (t) = \preceq_{G,V,t}$$

where $\leq_{G,V,t}$ is a total preorder over $LOG_{G,V}$

Remark. $\leq_{G,V}$ can be seen as the rules in case of fork and new block.

Definition 18. Considering $LOG_{G,V}$ the set of validated chains with respect to (G,V), (P,K_T) a valid knowledge representation and $\preceq_{G,V}$ a block chain protocol. We denote $S_{t,p}$ where $t \in [0,T]$ and $p \in P$ the set:

$$S_{t,p} = \{L | L \in LOG_{G,V} \land L \subseteq K_T(p,t)\}$$

We call a BlockChain at time $t \in [0, T]$ for user $p \in P$ noted $BC_{t,p}$ a list such that:

$$BC_{t,n} \in S_{t,n} \land \forall L \in S_{t,n}, L \preceq_{G,V,t} BC_{t,n}$$

Remark. Intuitively the blockchain for a user p at a time t is one of the best chain he fully knows regarding the protocol function and the validity at time t (time-stamping).

Definition 19. Considering $LOG_{G,V}$ the set of validated chains with respect to (G,V), (P,K_T) a valid knowledge representation. We denote α^* the function

$$\mathbb{N} \times LOG_{G,V} \times P \rightarrow [0,1]$$

such that:

$$\alpha^*(\delta, L, p) = \max\{\alpha | \exists b \in \mathbf{B}; (b, \alpha) \in K_T(p, T, \delta) \cap V(L)\}$$

We said that $LOG_{G,V}$ is alive regarding (P, K_T) if:

$$\exists p \in P, \exists L \in LOG_{G,V}, L \subseteq K_T(p,T) \land K_T(p,T) \cap V(L) = \emptyset \land \lim_{\delta \to +\infty} \alpha^*(\delta, L, p) = 1$$

3 draft

Definition 20. Considering (P, K_T) a valid knowledge representation, $LOG_{G,V}$ the set of validated chains with respect to (G, V) alive, and $\preceq_{G,V}$ a block chain protocol. Let $L \in LOG_{G,V}$ we note the probability that $L \subseteq B_{T+\delta,p}$

Definition 21. Considering $LOG_{G,V}$ the set of validated chains with respect to (G,V), (P,K_T) a valid knowledge representation. A block chain protocol $\leq_{G,V,T}$ is said to be ageing-secured if

$$\forall p \in P, \forall T_0 < T, \forall t, t' \leq T, B_{t,p} \subseteq B_{T_0,p}, B_{t',p} \subseteq B_{T_0,p}$$

$$t \leq t' \implies \forall T_1 \geq T_0, \mathbb{P}(B_{t,p} \subseteq B_{T_1,p}) \geq \mathbb{P}(B_{t',p} \subseteq B_{T_1,p})$$