Problème. Nombres parfaits pairs.

- 1. Pour $n \geq 2$, on pose $a_n = 2^n 1$.
 - (a) Montrer que si a_n est premier, alors n est premier.
 - (b) Prouver que la réciproque est fausse en posant la division euclidienne a_{11} par 23.
- 2. Somme des diviseurs.

Pour $n \in \mathbb{N}^*$, on note S(n) la somme des diviseurs positifs de n.

- (a) Que vaut S(1)?
- (b) Soit un entier $n \geq 2$.

Il existe donc r nombres premiers p_1, \ldots, p_r deux à deux distincts et r entiers naturels non nuls $\alpha_1, \ldots, \alpha_r$ tels que $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$.

Démontrer que
$$S(n) = \prod_{i=1}^r \frac{p_i^{\alpha_i+1} - 1}{p_i - 1}$$
.

(c) Montrer que si m et n sont des entiers naturels non nuls et premiers entre eux, alors

$$S(mn) = S(m)S(n).$$

(d) (*)

Montrer que si m et n sont des entiers naturels, on a $S(mn) \ge mS(n)$. Montrer que si de surcroît $m \ge 2$, alors $S(mn) \ge mS(n) + 1$.

- 3. Un entier naturel non nul est dit
 - déficient si S(n) < 2n,
 - parfait si S(n) = 2n,
 - et abondant si S(n) > 2n.
 - (a) Vérifier que 6 est parfait.
 - (b) Soit p un nombre premier et $\alpha \in \mathbb{N}^*$. Le nombre p^{α} est-il parfait, déficient, ou abondant?

- 4. Soit x un entier parfait pair.
 - (a) Montrer que x possède au moins un facteur premier impair. Justifier alors l'existence d'un entier α non nul et d'un entier k impair et supérieur à 3 tel que $x = 2^{\alpha}k$.
 - (b) Montrer que $2^{\alpha+1} 1$ divise k. Il existe donc k' dans \mathbb{N} tel que $k = (2^{\alpha+1} - 1)k'$.
 - (c) Démontrer que k'=1 puis que $2^{\alpha+1}-1$ est premier.
- 5. Quel est l'ensemble des entiers parfaits pairs?