Conectando métricas de negocio con nuestros modelos de ML.

Por: Jose Alberto Arango S.

¿Cuál DS crees que ella elegirá?

Problema

Standard Churn Model Scenario

≡ Churn	E Contract	Years as Customer	☆ Home Phone
0	Monthly	7	0
0	Annual	1	0
1	Monthly	3	1
0	Monthly	3	0

Prediction Target

Course Outline

Predicted Probability

¿Cómo escogemos el umbral de decisión?

¿Cómo escogemos el umbral de decisión?

```
threshold = 0.5
y_pred_binary = np.where(y_pred >= threshold, 1, 0)
```


Medir el rendimiento de nuestros modelos ML en términos de financieros (\$).

		Churned	
		Yes	No
Discount	True	\$200	-\$30
Disc	False	\$0	\$0

	Sale		
		Yes	No
Call	True	\$5	-\$2
	False	\$0	\$0

	Collection		
		Yes	No
Call	True	\$10	-\$2
	False	\$0	\$0

Traducir los resultados en impacto financiero

Profit curve

Limitaciones:

- No saber los valores de los TP y FP
- Solo problemas de clasificación
- Valores heterogéneos

La importancia de una variables

Todas las variables

Falta 1 variable

Total pérdida: 1.360 USD

Más allá de los umbrales de decisión

Diferentes grupos de clientes

Umbral para clientes que pagan menos de \$20 al mes

Umbral para clientes que pagan entre \$20 y \$60/mes

Umbral para clientes que pagan entre \$60 y \$100/mes

Umbral para clientes que pagan más de \$100/mes

Tipos de umbral

Tipo de Umbral	Ganancia esperada
Umbrales flexibles	44.232 USD
Umbral estático	31.000 USD
Diferencia	13.232 USD

Mejoras del modelo

¿Debo seguir mejorando este modelo o pasar a un nuevo proyecto?

"Datos esperados" que sean precisos.

errors = y_pred - y_true

"Datos esperados" que sean precisos.

synth_data = y_pred - errors * improvement_factor

"Datos esperados" que sean precisos.

synth_data_AUC = roc_auc_score(y_true, synth_data)


```
def make_synth_accurate_data(y_pred, y_true, improvement_factor=0.1):
       """Create synthetic data that is accurate.
       Args:
           y_pred (array-like): Predicted probabilities.
           y_true (array-like): True labels.
           improvement_factor (float): A measure of how much to increase the accuracy of the synthetic data.
       Returns:
           array: Synthetic data.
11
       11 11 11
       errors = y_pred - y_true
       synth_data = y_pred - errors * improvement_factor
       synth_data_AUC = roc_auc_score(y_true, synth_data)
       print(
           f"improvement_factor: {improvement_factor:.2f}. AUC of synthetic data: {synth_data_AUC:.2f}"
       return synth_data
```

Diferentes valores de Improvement factor

```
for i in np.linspace(0, 0.2, 11):
   make synth accurate data(y pred, y test, improvement factor=i)
improvement factor: 0.00.
                           AUC of synthetic data: 0.81
improvement factor: 0.02.
                            AUC of synthetic data: 0.83
improvement factor: 0.04.
                           AUC of synthetic data: 0.84
improvement factor: 0.06.
                           AUC of synthetic data: 0.85
improvement factor: 0.08.
                           AUC of synthetic data: 0.86
improvement factor: 0.10.
                           AUC of synthetic data: 0.87
improvement factor: 0.12.
                            AUC of synthetic data: 0.88
improvement factor: 0.14.
                            AUC of synthetic data: 0.89
improvement factor: 0.16.
                            AUC of synthetic data: 0.90
improvement factor: 0.18.
                            AUC of synthetic data: 0.91
improvement factor: 0.20.
                            AUC of synthetic data: 0.92
```

Profit curve esperada con la mejora

- Improvement factor: 0.14.
- AUC of synthetic data: 0.89

Profit curve Actual vs Esperado

Total ganancia: 13.880 USD

Referencias

- 1. Dataset usado: <u>Telco Customer Churn</u>
- 2. <u>Machine Learning for Business Decision</u> <u>Optimization W&B AI Academy</u>
- 3. <u>Decision.Al</u>

¿Alguna pregunta?