R Markdown Tutorial

Ruben Bach and Christoph Kern

2024-09-11

Contents

R Markdown	1
Including Plots	2
A large header	2
Citations	2
Installing scripts	3
Installing packages	3
Example analysis	3
Parameters	4
References	4

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

summary(cars)

```
speed
                         dist
          : 4.0
                   Min.
                           :
                              2.00
##
    Min.
    1st Qu.:12.0
                   1st Qu.: 26.00
##
   Median:15.0
                   Median : 36.00
    Mean
           :15.4
                   Mean
                           : 42.98
##
    3rd Qu.:19.0
                   3rd Qu.: 56.00
   Max.
           :25.0
                   Max.
                           :120.00
```

Same Code, but results only.

##	speed	dist
##	Min. : 4.0	Min. : 2.00
##	1st Qu.:12.0	1st Qu.: 26.00
##	Median:15.0	Median : 36.00
##	Mean :15.4	Mean : 42.98
##	3rd Qu.:19.0	3rd Qu.: 56.00
##	Max. :25.0	Max. :120.00

Still same code but this time code only and no results!

summary(cars)

Data tables can be formatted in different styles.

cars[1:5,]

##		speed	${\tt dist}$
##	1	4	2
##	2	4	10
##	3	7	4
##	4	7	22
##	5	8	16

Including Plots

You can also embed plots, for example:

For headers, use #, ##, ###, ####, ##### t

A large header

A slightly smaller header with a bold word (two asterisks)

For *italic* font use one asterisk. We can also cross out words! Two begin a new line, add two spaces to the end of a line. A new line starts!

Citations

Seminal work on propensity score (Rosenbaum and Rubin 1983). Year cited without author (1983). Rosenbaum and Rubin (1983) cited in line.

Installing scripts

Installing packages

We often need to include the repository from where a package should be installed. Also, it is good practice to check whether a required package is already installed and then install it only if it isn't.

```
if (!require('MASS')) install.packages('MASS', repos = "http://cran.us.r-project.org")
library('MASS')
if (!require('ggplot2')) install.packages('ggplot2', repos = "http://cran.us.r-project.org")
library('ggplot2')
if (!require('dplyr')) install.packages('dplyr', repos = "http://cran.us.r-project.org")
library('dplyr')
```

Example analysis

We estimate a linear regression model explaining the price of a diamond by its clarity, cut, and carat. By the way, the mean of c(1:5) is 3.

```
regmod.1 <- lm(price ~ clarity + cut + carat, data = diamonds)</pre>
summary(regmod.1)
##
## Call:
## lm(formula = price ~ clarity + cut + carat, data = diamonds)
## Residuals:
##
       Min
                  1Q
                      Median
                                    3Q
                                            Max
## -16842.5 -636.4
                       -114.3
                                 474.8
                                       11238.6
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3187.540
                            14.475 -220.208
                                               <2e-16 ***
## clarity.L
               4011.681
                             33.931 118.231
                                               <2e-16 ***
## clarity.Q
              -1821.922
                             31.870 -57.167
                                               <2e-16 ***
## clarity.C
                917.658
                             27.313
                                    33.598
                                               <2e-16 ***
                             21.831 -19.699
## clarity^4
                -430.047
                                               <2e-16 ***
                 257.141
                                     14.429
                                               <2e-16 ***
## clarity^5
                             17.821
                 26.909
                             15.539
## clarity^6
                                      1.732
                                               0.0833 .
## clarity^7
                 186.742
                             13.685
                                     13.646
                                               <2e-16 ***
## cut.L
                713.804
                             22.511
                                      31.709
                                               <2e-16 ***
                             19.828 -16.871
## cut.Q
                -334.503
                                               <2e-16 ***
## cut.C
                188.482
                             17.218
                                     10.947
                                               <2e-16 ***
                             13.794
                                               0.9040
## cut^4
                   1.663
                                       0.121
## carat
                8472.026
                             12.615 671.584
                                               <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1281 on 53927 degrees of freedom
## Multiple R-squared: 0.8969, Adjusted R-squared: 0.8969
## F-statistic: 3.911e+04 on 12 and 53927 DF, p-value: < 2.2e-16
```

Parameters

```
print(paste("The years is ", params$year))
## [1] "The years is 2020"
regmod.2 <- lm(mpg ~ cyl + disp, data = params$data)
summary(regmod.2)
##
## Call:
## lm(formula = mpg ~ cyl + disp, data = params$data)
##
## Residuals:
##
      Min
                1Q Median
                                30
                                       Max
## -4.4213 -2.1722 -0.6362 1.1899 7.0516
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 34.66099
                           2.54700 13.609 4.02e-14 ***
               -1.58728
                           0.71184 - 2.230
                                             0.0337 *
## cyl
## disp
               -0.02058
                           0.01026 -2.007
                                             0.0542 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.055 on 29 degrees of freedom
## Multiple R-squared: 0.7596, Adjusted R-squared: 0.743
## F-statistic: 45.81 on 2 and 29 DF, p-value: 1.058e-09
For a nicer look of the regression output, we can use the stargazer package
library(stargazer)
stargazer(regmod.1,
          title = "Regression table with stargazer",
          label="tab1",
          model.numbers = FALSE,
```

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Wed, Sep 11, 2024 - 03:16:20 PM

Simply include a references heading at the end. References will be added automatically.

References

type="latex")

Rosenbaum, Paul R., and Donald B. Rubin. 1983. "The Central Role of the Propensity Score in Observational Studies for Causal Effects." *Biometrika* 70(1):41–55.

Table 1: Regression table with stargazer

	$Dependent\ variable:$
	price
clarity.L	4,011.681***
	(33.931)
clarity.Q	-1,821.922***
•	(31.870)
clarity.C	917.658***
	(27.313)
clarity ⁴	-430.047***
	(21.831)
clarity ⁵	257.141***
	(17.821)
clarity ⁶	26.909*
	(15.539)
clarity ⁷	186.742***
	(13.685)
cut.L	713.804***
	(22.511)
cut.Q	-334.503***
	(19.828)
cut.C	188.482***
	(17.218)
cut ⁴	1.663
	(13.794)
carat	8,472.026***
	(12.615)
Constant	-3,187.540***
	(14.475)
Observations	53,940
\mathbb{R}^2	0.897
Adjusted R^2	0.897
Residual Std. Error	1,280.935 (df = 53927)
F Statistic	$39,106.570^{***} \text{ (df} = 12; 53927)$
Note:	*p<0.1; **p<0.05; ***p<0.01