

Technische Anleitung

BA 1017

Hydrocont B

Hydrostatischer Füllstandsensor – \varnothing 40mm

zur kontinuierlichen Erfassung von Füllständen und Temperaturen in Flüssigkeiten

Hochgenaue und langzeitstabile Füllstandmessung

Keramische hochüberlast- bzw. druckschlagfeste Membrane

Lebensmittel- und trinkwassertaugliche Materialien

Große Vielfalt an Bauformen und Materialien

ATEX II 1/2 G Ex ia IIC T4 GA/Gb bzw. ATEX II 2 G Ex ib IIC T4 Gb Zugelassen zur Verwendung in explosionsgefährdeten Bereichen

Integrierte Auswerteelektronik in 2-Leiter-Technologie mit

- Stromausgang 4...20mA, oder
- pulsfrequenzmoduliertem PFM-Stromsignal 90...520 Hz

Integrierter Überspannungsschutz

Integrierte Temperaturmessung mit Pt100

Kundenspezifischer Abgleich

ACS-CONTROL-SYSTEM

know how mit system

Hydrocont B

Technische Daten

<u>Hilfsenergieversorgung</u>

Spannungsversorgung: verpolungsgeschützt

<u>Signal 4...20mA</u> 11,5 V bis 45 V DC

bei Ex-Ausführung 11,5 V bis 30 V DC

bei geerdetem -L-Anschluss und Überspannungsschutz 11,5 V bis 30 V DC

<u>Signal 90...520Hz</u> 13 V bis 30 V DC

Restwelligkeit: ≤ 2 V_{SS} Bedingung: Innerhalb des zulässigen

Speisespannungsbereichs

Signalausgang 4...20mA / 90...520Hz

Arbeitsbereich: Signal 4...20mA

lineare Kennlinie von \leq 4 mA bzw. \geq 20 mA, minimal 2,75 mA \pm 0,75 mA / maximal 27 mA

<u>Signal 90...520Hz</u>

Signal 5mA±10%, dem Speisestrom (10mA) überlagert,

 T_{Pulse} =110 μ s \pm 20%

Zulässige Bürde: $R_L max = (V_S - V_{S min}) / 20mA$ $V_{S min} = 11,5 V bzw. 13 V$

Kennlinienabweichung $^{3)}$ 5) 12): \leq 0,1% bzw. 0,2% FS $^{2)}$ Nichtlinearität $^{12)}$: \leq \pm 0,1% / 0,2% FS $^{2)}$ Hysterese $^{12)}$: vernachlässigbar

Langzeitdrift $^{12)}$: $\leq \pm 0.1\%$ FS $^{2)}$ / Jahr nicht kumulativ

Temperaturabweichung ¹²⁾: $T_k^{4)}$ Nullpunkt $\leq \pm 0,10\%$ FS ²⁾ / 10 K, max. $\pm 0,75\%$ FS ²⁾

 $T_k^{4)}$ Spanne $\leq \pm 0,10\%$ FS $^{2)}$ / 10 K, max. $\pm 0,5\%$ FS $^{2)}$

 $\leq \pm 0.10\%$ FS ²⁾ / 10 K, max. $\pm 0.8\%$ FS ²⁾ ($\leq 0..0.4$ bar)

Speisespannungseinfluss: $\leq \pm 0.01\%$ FS ²⁾ / 10V

Minimale Verzögerungszeit: ≤ 2 ms

Signalausgang Temperatur

Sensortyp: Pt100 Klasse B 3-Leiter-Anschluss

Messabweichung ⁸⁾: $\leq \pm (0.25 \text{ K} + 0.3 \text{ K} + 0.005 \text{ *} \text{ [t]}) \text{ entspricht z.B.} \leq 0.9 \text{ K bei } +70 ^{\circ}\text{C}$

mit [t] = Prozesstemperatur in °C, ohne Vorzeichen, mit Einheit K

Langzeitdrift ⁸): $\leq \pm 0,15 \text{ K / Jahr}$ ⁸ Ansprechzeit ⁹): $\pm 90 \leq 240 \text{ s}$

Transmitter: Optional integriert im Wandaufbaugehäuse zur Umformung des

Pt100-Signales in ein temperaturproportionales Analogsignal Typ z.B. KTM oder ExKTM, mit Standardmessbereichen oder auch Abgleich nach Kundenspezifikation, Signal 4...20 mA oder 0...10V Bedienungsanleitung des jeweiligen Pt100-Transmitters beachten.

Überspannungsschutz nicht verfügbar für Ex-Variante Ex0B

Kategorie: Grobschutz / Feinschutz

Signalspannung: max. 30V Scheitelwert, gegen PE-Anschluss

Nennableitstrom: 10 000 A – Welle 8/20µs Ansprechspannung: 90V Grobschutz

echspannung: 90V Grobschutz 33V Feinschutz

Bezogen auf Nennmessspanne bzw. Full Scale (FS)

3) Nichtlinearität + Hysterese + Wiederholbarkeit
4) T - Temporaturkooffizioat

T_k = Temperaturkoeffizient Bei Grenzpunkteinstellung

8) Unter Referenzbedingungen

9)

Gemäß DIN EN 60751 / Wasser / 0,4 m/s / Temperaturstufe 23 bis 33°C

Höhere Werte bei Sondermessbereich

ACS-CONTROL-SYSTEM Know how mit system contsys

Seite 8 von 11

Hydrocont B

Technische Daten

Werkstoffe

Membrane: Keramik AL₂O₃ 99,9%

(mediumberührend)

Sonde: Stahl 1.4404 (AISI 316L) / 1.4571 (AISI 316Ti) / (mediumberührend) Marinebronze CU SN 12 / Hastelloy C / PEEK / Titan

Tragkabel: PE – Polyethylen

(mediumberührend) FEP – Fluorinatedetylenepropylen

Rohrverlängerung: Stahl 1.4404 (AISI 316L) / 1.4571 (AISI 316Ti)

(mediumberührend)

Verschlussschraube: CrNi-Stahl

Anschlussgehäuse: Anschlusskopf POM – Polyoxymethylen (Delrin®) /

PP – Polypropylen / CrNi-Stahl

Einschraubgewinde CrNi-Stahl

Wandaufbaugehäuse: PS – Polystyrol oder PC – Polycarbonat

Kabelverschraubung: Gehäuse PA – Polyamid bzw. CrNi-Stahl, Dichtung CR / NBR

Anschlusskabel (Kabelabgang): PE – Polyethylen Druckausgleichselement: PTFE oder PES

Seilabspannklemme: Stahl, feuerverzinkt, Klemmbacken witterungsbeständiger Kunststoff

CrNi-Stahl

Dichtungen: mediumberührende → FPM – Fluorelastomer (Viton®)

EPDM – Etylen-Propylen-Dienmonomer CR – Chloroprenkautschuk (Neopren®) FFKM – Perfluorelastomer (Kalrez®)

andere → FPM – Fluorelastomer (Viton®)

Silikon

<u>Umgebungsbedingungen</u>

Umgebungstemperatur: Standard – Tragkabel (A / T) – 20°C...+70°C

Andere (R / Z / 6 / M / L / O) -20° C...+85°C Wandaufbaugehäuse -20° C...+70°C Anschlusskabel -20° C...+70°C Standard – Tragkabel (A / T) -20° C...+70°C

 Prozesstemperaturen:
 Standard – Tragkabel (A / T)
 – 20°C...+70°C

 Rohrverlängerung (R)
 – 20°C...+85°C

 Andere (Z / 6 / M / L / O)
 – 20°C...+125°C

 Dichtung - CR
 – 20°C...+120°C

Dichtung - FFKM / FFKM hd - 15°C...+125°C

Prozessdruckbereiche: 0... 20 bar

Unter- / Überlastfestigkeit: abhängig von Messbereich, siehe Tabelle zul. Druck auf Membrane

Gewicht: 0,4 kg + (Sondenlänge in Meter x 0,04 kg)

Schutzart: Sonde IP68 DIN EN 60529

Verschlussschraube IP68 DIN EN 60529

Anschlussgehäuse IP68 DIN EN 60529
Wandaufbaugehäuse IP65 DIN EN 60529
4K4H DIN EN 60721-3-4

 Klimaklasse:
 4K4H
 DIN EN 60721-3-4

 Stoßfestigkeit:
 15 g / 11ms
 DIN EN 60068-2-27

EM – Verträglichkeit: Störaussendung DIN EN 61326-1 Betriebsmittel Klasse B

Störfestigkeit DIN EN 61326-1 Industriebereich

Referenzbedingungen: DIN EN 60770-1

T = 25 °C, relative Feuchte 45...75 %, Umgebungsluftdruck 860...1060 kPa

