50.042 FCS Summer 2024 Lecture 19 – Information Flow II

Felix LOH
Singapore University of Technology and Design

A more precise definition of information flow

- From the last lecture, we know how to determine whether a system is secure
- So how do we develop mechanisms to detect and stop flows of information that violate a security policy?

 First, let's <u>precisely</u> define information flow, then we can discuss mechanisms to detect and stop flows of information that violate a security policy

A more precise definition of information flow

- Information flow can be precisely defined by utilizing the concept of entropy
 - The notion of *entropy* falls under the field of *information theory*
 - This mathematical field was established by the works of Harry Nyquist and Ralph Hartley in the 1920s, and Claude Shannon in the 1940s

Discrete random variables and expectation

 Before we discuss the definition of entropy, let's talk about some basic probability theory concepts

- Let X be a discrete random variable, with X having some probability of taking one of the values $x_1, x_2, ..., x_n$
- Note that $\sum_{i=1}^{n} P(X = x_i) = 1$
- Then the expected value of X (a.k.a. the expectation of X) is given by
- $E(X) = \sum_{i=1}^{n} P(X = x_i) \cdot x_i$

Discrete random variables and expectation

Let's look at an example...

- Let X denote the outcome of a fair coin toss
- There are two possible outcomes for X:
 - $x_1 = \text{'Heads'} = 1$, with $P(X = x_1) = 0.5$
 - x_2 = 'Tails' = 0, with $P(X = x_2) = 0.5$
- Then $E(X) = P(X = x_1) \cdot x_1 + P(X = x_2) \cdot x_2 = (0.5) \cdot 1 + (0.5) \cdot 0 = 0.5$
 - Intuitively, we can view the expectation of *X* as the <u>average</u> value of *X* after conducting many trials (in this case, many coin tosses)

Information of a particular outcome of a discrete random variable

- The *information* (or *information content*) of a particular outcome x_i of a discrete random variable X is denoted $I_X(x_i)$, or $I(X = x_i)$
- It measures the amount of information received/learned in <u>bits</u>, when the outcome of X is x_i , as shown by the following equation:

$$I(X = x_i) = \log_2 \frac{1}{P(X = x_i)}$$

- The amount of information received, by learning that that outcome of X is x_i , is inversely proportional to the probability of x_i occurring
 - Recall that you learned this in 50.002 (Computation Structures)

Information of a particular outcome of a discrete random variable – example

- Let's go back to our example for X outcome of a <u>fair</u> coin toss...
- Two possible outcomes for *X*:
 - x_1 = 'Heads' = 1, with $P(X = x_1) = 0.5$
 - x_2 = 'Tails' = 0, with $P(X = x_2) = 0.5$
- Then $I(X = x_1) = \log_2 \frac{1}{P(X = x_1)} = \log_2 \frac{1}{0.5} = 1$
- Likewise, $I(X = x_2) = 1$
- We gain 1 bit of information by learning that the outcome of X is 'Heads' (or 'Tails')

Entropy of a discrete random variable

 The entropy of a discrete random variable X is the uncertainty of X, measured in bits

• The entropy of X is denoted as H(X), and we can think of H(X) as the expectation of the information of X:

$$H(X) = \sum_{i=1}^{n} P(X = x_i) \cdot I(X = x_i) = \sum_{i=1}^{n} P(X = x_i) \cdot \log_2 \frac{1}{P(X = x_i)}$$

• Thus, we have the following formal definition for the entropy of X:

$$H(X) = -\sum_{i=1}^{n} P(X = x_i) \cdot \log_2 P(X = x_i)$$

Entropy of a discrete random variable – example

- Again, let's go back to our example for X the outcome of a <u>fair</u> coin toss...
- Two possible outcomes for *X*:
 - x_1 = 'Heads' = 1, with $P(X = x_1) = 0.5$
 - x_2 = 'Tails' = 0, with $P(X = x_2) = 0.5$
- Then $H(X) = -P(X = x_1) \cdot \log_2 P(X = x_1) P(X = x_2) \cdot \log_2 P(X = x_2) = -(0.5) \cdot \log_2 0.5 (0.5) \cdot \log_2 0.5 = 1$

Entropy of a discrete random variable

- The entropy of a variable is inversely proportional to its predictability
 - In other words, the lower the entropy of some variable, the more predictable that variable is
 - If H(X) = 0, then X is completely predictable (it is always a particular value)
 - If $H(X) = \infty$, then X is completely <u>unpredictable</u>
- If the entropy of some variable X' is lower than the entropy of some variable X, then we can say that X' is more predictable than X
 - We can also say that we know more about X' than X
- Let's illustrate this with an example

Entropy of a discrete random variable – another example

- Let X' denote the outcome of a biased coin toss
- There are two possible outcomes for X':
 - x_1' = 'Heads' = 1, with $P(X' = x_1') = 0.75 \rightarrow$ this event is more likely to occur
 - x_2' = 'Tails' = 0, with $P(X' = x_2') = 0.25$
- $E(X') = P(X' = x_1') \cdot x_1' + P(X' = x_2') \cdot x_2' = (0.75) \cdot 1 + (0.25) \cdot 0 = 0.75$
- $I(X' = x_1') = \log_2 \frac{1}{P(X' = x_1')} = \log_2 \frac{1}{0.75} = 0.415$
- $I(X' = x_2') = \log_2 \frac{1}{P(X' = x_2')} = \log_2 \frac{1}{0.25} = 2$

Entropy of a discrete random variable – another example

•
$$H(X') = -P(X' = x_1') \cdot \log_2 P(X' = x_1') - P(X' = x_2') \cdot \log_2 P(X' = x_2') = -(0.75) \cdot \log_2 0.75 - (0.25) \cdot \log_2 0.25 = 0.811$$

- Compare this with H(X) = 1
- We can see that H(X') < H(X)
- This makes sense, because X' is more predictable than X, as X' is more likely to be 'Heads' than 'Tails', whereas X has an equal likelihood of being 'Heads' or 'Tails'
- So X' has a <u>lower</u> entropy than X

Conditional entropy

• Let X and Y be a discrete random variables, with X having some probability of taking one of the values x_1, x_2, \ldots, x_n and Y having some probability of taking one of the values y_1, y_2, \ldots, y_m

$$\bullet \sum_{i=1}^{n} P(X = x_i) = 1$$

•
$$\sum_{j=1}^{m} P(Y = y_j) = 1$$

• Then the *conditional* entropy of X given that $Y = y_i$ is:

$$H(X | Y = y_j) = -\sum_{i=1}^{n} P(X = x_i | Y = y_j) \cdot \log_2 P(X = x_i | Y = y_j)$$

Conditional entropy

• Also, the *conditional* entropy of *X* given *Y* is:

$$H(X | Y) = -\sum_{j=1}^{m} P(Y = y_j) \cdot \sum_{i=1}^{n} P(X = x_i | Y = y_j) \cdot \log_2 P(X = x_i | Y = y_j)$$

- We will use these definitions to develop the notion of information flow in a system, by using X and Y to model objects in a system
- The basic idea is that information flows from an object X to an object Y, if the execution of a sequence of commands c* causes information initially in X to affect the information in Y

Entropy and information flow

 Let c* be a sequence of commands that take a system (an FSM) from state a to state b

- Let X and Y be objects in the system, and X_a and Y_a be the values assigned to X and Y respectively at state a
 - Think of X_a and Y_a as outcomes (which can take on particular values) at state a, so treat X_a and Y_a as discrete random variables
 - Same for X_b and Y_b discrete random variables assigned to X and Y respectively at state b
 - Think of X and Y as more like "containers"

Entropy and information flow

- c* is a sequence of commands that take a system (an FSM) from state a to state b
- X and Y are objects in the system, and X_a and Y_a are the values assigned to X and Y respectively at state α (same for state $b: X_h$ and Y_h)

• Then the command sequence c* causes a flow of information from X to Y, if: $H(X_a \mid Y_b) \Leftrightarrow H(X_a \mid Y_a)$ work predictable

• If Y_a is non-existent in state a, then there is a flow of information from X to Y, if: $H(X_a \mid Y_b) \leqslant H(X_a)$

• Suppose the command sequence c^* is defined by the following code:

```
if x == 1 then y := 0 else y := 1;
```

with x equally likely to have been assigned either 0 or 1

- This implies that y is equally likely to be assigned either 1 or 0
- a is the state before c* is executed, while b is the state after c* is executed
- Note that Y_a does not exist in state $a \rightarrow y$ down exist before walk executes.
- We have $H(X_a) = 1$ (using our earlier example of a fair coin toss)

• Now,
$$H(X_a \mid Y_b) = -\sum_{j=1}^2 P(Y_b = y_j) \cdot \sum_{i=1}^2 P(X_a = x_i \mid Y_b = y_j) \cdot \log_2 P(X_a = x_i \mid Y_b = y_j)$$

$$= -P(Y_b = 0)[P(X_a = 0 \mid Y_b = 0) \cdot \log_2 P(X_a = 0 \mid Y_b = 0) + P(X_a = 1 \mid Y_b = 0) \cdot \log_2 P(X_a = 1 \mid Y_b = 0)]$$

$$0 \le [\log_2 P(X_b = 0) \cdot \log_2 P(X_b = 0)]$$

$$-P(Y_b = 1)[P(X_a = 0 \mid Y_b = 1) \cdot \log_2 P(X_a = 0 \mid Y_b = 1) + P(X_a = 1 \mid Y_b = 1) \cdot \log_2 P(X_a = 1 \mid Y_b = 1)]$$

$$= -0.5[0 \cdot \log_2 0 + 1 \cdot \log_2 1] - 0.5[1 \cdot \log_2 1 + 0 \cdot \log_2 0]$$

• In information theory, we define $0 \cdot \log_2 0 = 0$,

so
$$H(X_a \mid Y_b) = -0.5[0+0] - 0.5[0+0] = 0$$

• Intuitively, we can see that $H(X_a \mid Y_b) = 0$, because if Y_b is 1, then X_a must be 0, and if Y_b is 0, then X_a must be 1; and thus X_a is completely predictable given Y_b ; and the conditional entropy of X_a given Y_b is 0

- $H(X_a) = 1$
- $H(X_a \mid Y_b) = 0$
- So we have $H(X_a \mid Y_b) < H(X_a)$
- Therefore, information has flowed from X to Y
 - Intuitively, this makes sense because the value that was originally assigned to
 x directly affects the value that would be assigned to

• Suppose the command sequence c^* is defined by the following code:

$$x := y + z;$$

with y equally likely to have been assigned the integer values 0 or 1, (i.e. just like the outcome of a fair coin toss)

and **z** having been assigned:

- integer value 1 probability of $\frac{1}{2}$
- integer value 2 probability of $\frac{1}{4}$
- integer value 3 probability of $\frac{1}{4}$

P(7:1) = 12 P(7:2) = 14 P(7:3) = 14

• a is the state before c* is executed, while b is the state after c* is executed

Entropy and information flow — example 2 • X_a does not exist in state a, so $H(Y_a \mid X_a) = H(Y_a)$ • We have: $H(Y_a) = H(Y_b) = -2 \cdot \left(\frac{1}{2} \cdot \log_2 \frac{1}{2}\right) = 1$

- Now, based on the information in this example, X_b can take on one of **four** • integer value 2 – probability of $\frac{1}{4}$ $\frac{3}{6}$ $\frac{3}{4}$ $\frac{3}{6}$ $\frac{3}{6}$ different values:

 - integer value 4 probability of $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$
- Now we need to determine: $H(Y_a \mid X_h) =$

$$-\sum_{j=1}^{4} P(X_b = x_j) \cdot \sum_{i=1}^{2} P(Y_a = y_i \mid X_b = x_j) \cdot \log_2 P(Y_a = y_i \mid X_b = x_j)$$

•
$$H(Y_a \mid X_b) =$$

 $-\sum_{j=1}^4 P(X_b = x_j) \cdot \sum_{i=1}^2 P(Y_a = y_i \mid X_b = x_j) \cdot \log_2 P(Y_a = y_i \mid X_b = x_j)$

• Evaluating the above expression is going to get ugly, we'll go through it bit by bit – hang in there...

•
$$H(Y_a \mid X_b) = -\sum_{j=1}^4 P(X_b = x_j) \cdot \sum_{i=1}^2 P(Y_a = y_i \mid X_b = x_j) \cdot \log_2 P(Y_a = y_i \mid X_b = x_j)$$

$$= -P(X_b = 1)[P(Y_a = 0 \mid X_b = 1) \cdot \log_2 P(Y_a = 0 \mid X_b = 1) + P(Y_a = 1 \mid X_b = 1) \cdot \log_2 P(Y_a = 1 \mid X_b = 1)]$$

$$-P(X_b = 2)[P(Y_a = 0 \mid X_b = 2) \cdot \log_2 P(Y_a = 0 \mid X_b = 2) + P(Y_a = 1 \mid X_b = 2) \cdot \log_2 P(Y_a = 1 \mid X_b = 2)]$$

$$-P(X_b = 3)[P(Y_a = 0 \mid X_b = 3) \cdot \log_2 P(Y_a = 0 \mid X_b = 3) + P(Y_a = 1 \mid X_b = 3) \cdot \log_2 P(Y_a = 1 \mid X_b = 3)]$$

$$-P(X_b = 4)[P(Y_a = 0 \mid X_b = 4) \cdot \log_2 P(Y_a = 0 \mid X_b = 4) + P(Y_a = 1 \mid X_b = 4) \cdot$$

• Now let's evaluate each conditional probability term before getting back to this...

 $\log_2 P(Y_a = 1 \mid X_b = 4)$

- In the expression, notice that we need to evaluate several *conditional* probability terms: $P(Y_a = y_i \mid X_b = x_j)$ for some i and j
 - One major problem: these terms require us to find the probability of Y, given that X is already some particular outcome/value
 - But the value of X is dependent on the value of Y!
 - It can be done, but that requires us to reason deductively (not that easy)

- Fortunately, there is a more straightforward way
- We can use Baye's theorem to compute $P(Y \mid X)$ in terms of $P(X \mid Y)$:

$$P(Y \mid X) = \frac{P(X \mid Y) \cdot P(Y)}{P(X)}$$

• So using Baye's theorem, let's compute the various values of $P(Y_a = y_i \mid X_b = x_i)$:

•
$$P(Y_a = 0 \mid X_b = 1) = \frac{P(X_b = 1 \mid Y_a = 0) \cdot P(Y_a = 0)}{P(X_b = 1)} = \frac{\binom{1}{2} \cdot \binom{1}{2}}{\binom{1}{4}} = 1$$

•
$$P(Y_a = 1 \mid X_b = 1) = \frac{P(X_b = 1 \mid Y_a = 1) \cdot P(Y_a = 1)}{P(X_b = 1)} = \frac{(0) \cdot (\frac{1}{2})}{(\frac{1}{4})} = 0$$

•
$$P(Y_a = 0 \mid X_b = 2) = \frac{P(X_b = 2 \mid Y_a = 0) \cdot P(Y_a = 0)}{P(X_b = 2)} = \frac{\binom{1}{4} \cdot \binom{1}{2}}{\binom{3}{8}} = \frac{1}{3}$$

•
$$P(Y_a = 1 \mid X_b = 2) = \frac{P(X_b = 2 \mid Y_a = 1) \cdot P(Y_a = 1)}{P(X_b = 2)} = \frac{\left(\frac{1}{2}\right) \cdot \left(\frac{1}{2}\right)}{\left(\frac{3}{8}\right)} = \frac{2}{3}$$

•
$$P(Y_a = 0 \mid X_b = 3) = \frac{P(X_b = 3 \mid Y_a = 0) \cdot P(Y_a = 0)}{P(X_b = 3)} = \frac{\binom{1}{4} \cdot \binom{1}{2}}{\binom{1}{4}} = \frac{1}{2}$$

•
$$P(Y_a = 1 \mid X_b = 3) = \frac{P(X_b = 3 \mid Y_a = 1) \cdot P(Y_a = 1)}{P(X_b = 3)} = \frac{\binom{1}{4} \cdot \binom{1}{2}}{\binom{1}{4}} = \frac{1}{2}$$

•
$$P(Y_a = 0 \mid X_b = 4) = \frac{P(X_b = 4 \mid Y_a = 0) \cdot P(Y_a = 0)}{P(X_b = 4)} = \frac{(0) \cdot (\frac{1}{2})}{(\frac{1}{8})} = 0$$

•
$$P(Y_a = 1 \mid X_b = 4) = \frac{P(X_b = 4 \mid Y_a = 1) \cdot P(Y_a = 1)}{P(X_b = 4)} = \frac{\binom{1}{4} \cdot \binom{1}{2}}{\binom{1}{8}} = 1$$

• So we have $H(Y_a \mid X_b) =$

$$-\frac{1}{4} \cdot \left[1 \cdot \log_2 1 + 0 \cdot \log_2 0\right]$$

$$-\frac{3}{8} \cdot \left[\frac{1}{3} \cdot \log_2 \frac{1}{3} + \frac{2}{3} \cdot \log_2 \frac{2}{3} \right]$$

$$-\frac{1}{4} \cdot \left[\frac{1}{2} \cdot \log_2 \frac{1}{2} + \frac{1}{2} \cdot \log_2 \frac{1}{2} \right]$$

$$-\frac{1}{8} \cdot \left[0 \cdot \log_2 0 + 1 \cdot \log_2 1\right]$$

$$= -\frac{3}{8} \cdot \left[\frac{1}{3} \cdot \log_2 \frac{1}{3} + \frac{2}{3} \cdot \left(1 + \log_2 \frac{1}{3} \right) \right] - \frac{1}{4} \cdot \left[\log_2 \frac{1}{2} \right]$$

$$= -\frac{3}{8} \cdot \log_2 \frac{1}{3} - \frac{1}{4} + \frac{1}{4}$$
$$= -\frac{3}{8} \cdot \log_2 \frac{1}{3}$$

- Thus, we have $H(Y_a \mid X_b) = -\frac{3}{8} \cdot \log_2 \frac{1}{3} = 0.594$
- Now, $H(Y_a) = 1$ $H(Y_a | X_b) < H(Y_a)$

étue lawa abort x r Turre predicteble, 7 affects x

So information has flowed from Y to X

- As an extra practice on your own, try calculating $\mathrm{H}(Z_a)$ and $\mathrm{H}(Z_a \mid X_b)$
- Then determine whether information has flowed from Z to X

Implicit flows of information

- Implicit flows are flows of information from X to Y without an explicit assignment of the form y := f(x)
 - f(x) is some arithmetic expression involving the variable x
- Example of an implicit flow of information:

```
if x == 1 then y := 0
else y := 1;
```

 We'll need to look for both explicit and implicit flows of information when analyzing a program, and then use mechanisms to detect and stop flows of information that violate a security policy

Notation for security classes

- Before we discuss possible mechanisms to detect and stop flows of information that would violate a security policy, we need to define some notation for security policies:
- X refers to the security class of X, as defined by the security policy (in a Bell-LaPadula based system)
- $X \le Y$ means that information is allowed to flow from an element in the security class of X to an element in the security class of Y
 - Alternatively, it means that information with a label placing it in class X is allowed to flow into class Y

Compiler-based mechanisms

- A compiler-based mechanism that detects and blocks unauthorized flows of information in a program during compilation, with respect to a given security policy
- The analysis conducted by the mechanism is not precise, but it is secure
 - Not precise: A path of information flow that should have been marked as authorized may instead be marked as unauthorized (i.e. it is a false positive)
 - Secure: No unauthorized path of information flow will remain undetected
- The following definition is important:
 - **Certified**: A set of statements is *certified* with respect to an information flow security policy if the information flow within that set of statements does not violate the security policy

Compiler-based mechanisms – example

Suppose we have the following statement:

```
if x == 1 then y := m else y := n;
```

- From our understanding of the two examples we discussed earlier (calculation of entropy values), we have information flow from X and M to Y, or information flow from X and N to Y
- Then the above statement is certified only if the security policy states that $X \le Y$ and $M \le Y$ and $N \le Y$
 - Note that the information flow of **both** branches must be accounted for in the security policy, unless the compiler is able to determine that one branch will never be taken

Compiler-based mechanisms – security class for array

 Suppose we have the following partial statement (information flowing out):

```
... := m[i];
```

• Here, the values of both I and M[I] affect the variable being assigned to, so the security class for the array is max(I, M[I])

Compiler-based mechanisms – security class for array

 Now suppose we have the following partial statement (information flowing in):

```
m[i] := ...
```

• Here, only the variable M[I] is affected, so the security class for the array is $\underline{M[I]}$

Compiler-based mechanisms – assignment statements

Suppose we have the following statement:

$$x := y + z;$$

• There is information flow from Y and Z to X, so the above statement is certified only if the security policy states that $max(\underline{Y}, \underline{Z}) \leq \underline{X}$

• In general, for the statement

$$y := f(x_1, ..., x_n);$$

to be certified by the compiler-based mechanism, the security policy must state that $max(\underline{X}_1, ..., \underline{X}_n) \leq \underline{Y}$

Compiler-based mechanisms – compound statements

Suppose we have the following code:

```
x := y + z; m := n * o - x;
```

- The first statement is certified only if the security policy states that $max(\underline{Y}, \underline{Z}) \leq \underline{X}$
- The second statement is certified only if the security policy states that $max(N, O, X) \leq M$
- For the entire code (both statements) to be certified, the security policy needs to state that $max(\underline{Y}, \underline{Z}) \le \underline{X}$ and $max(\underline{N}, \underline{O}, \underline{X}) \le \underline{M}$
- In general, for a series of statements

to be certified, the compiler-based mechanism must certify each and every statement with the security policy

Compiler-based mechanisms — conditional statements

Suppose we have the following statement:

```
if x + y < z then m := n
else p := n * o - x;
```

- For the above statement to be certified, the security policy must have: $N \leq M$ and $max(N, O, X) \leq P$
- Now, the parts of the statement that are conditionally executed will reveal information about X, Y and Z (because X, Y and Z are part of the condition), so the security policy must also have:

```
max(\underline{X}, \underline{Y}, \underline{Z}) \leq min(\underline{M}, \underline{P})
```

Compiler-based mechanisms — conditional statements

• In general, for a statement of the following form

to be certified, the compiler-based mechanism must certify <s_1> and <s_2>

And the security policy must also have:

```
max(\underline{X}_1, ..., \underline{X}_n) \le min(\underline{Y} \mid Y \text{ is target of assignment in } <s_1>, <s_2>)
```

Compiler-based mechanisms — iterative statements

Suppose we have the following code:

 For the above code to be certified, the compiler-based mechanism just needs to follow the same certification procedure as that used for a conditional statement, but the compiler-based mechanism must also check that the loop terminates eventually

Compiler-based mechanisms — iterative statements

• In general, for code of the following form

```
while f(x_1, ..., x_n) do \langle S_1 \rangle end
```

- to be certified, the compiler-based mechanism must:
 - check that the loop terminates eventually, and
 - certify the statement <S 1>,
- And the security policy must also have $max(X_1, ..., X_n) \le min(Y \mid Y \text{ is target of assignment in } < 1>)$

Compiler-based mechanisms – infinite loops

Now suppose we have the following code:

The above code can cause problems for a compiler-based mechanism

Compiler-based mechanisms – infinite loops

- If X is 0 initially, then we get an infinite loop
- If X is some other value initially, then the code terminates with Y set to 1
- There is no explicit flow of information, but there is an implicit flow of information from X to Y
- It is hard for the compiler-based mechanism to detect whether the loop will terminate at *compile time*

Execution-based mechanisms

- An execution-based mechanism may be able to deal with an infinite loop (the mechanism is dynamic in nature)
- An execution-based mechanism checks the flow of information at run time, not compile time
- It stops any flow of information that violates the security policy
- Before the statement

$$y := f(x_1, ..., x_n);$$

is executed, the execution-based mechanism first verifies that $max(\underline{X}_1, ..., \underline{X}_n) \leq \underline{Y}$

 The execution-based mechanism will block the execution of the statement if the verification fails

Execution-based mechanisms

- An execution-based mechanism can check for explicit flows of information easily
- However, implicit flows of information complicate the checking procedure

Suppose we have the following statement:

```
if x == 1 then y := m;
```

• There is an explicit flow of information from *M* to *Y*, which can be handled by the execution-based mechanism

Execution-based mechanisms

- However, there is an implicit flow of information from X to M
 - Suppose $X \neq 1$, and $\underline{X} = \mathbf{high}$ security classification, $\underline{Y} = \mathbf{low}$ security classification and $\underline{M} = \mathbf{low}$ security classification
 - There will be an *implicit* flow of information from X to Y, because when $X \neq 1$, the assignment y := m is **not** executed
 - The execution-based mechanism is **unable** block this process
 - An observer who is authorized to access only Y and M can infer that X ≠ 1 by checking the values of Y and M, even though he is not authorized to know the value of X