

Voltage Regulators

LM120 Series 3-Terminal Negative Regulators

General Description

The LM120 series are three-terminal negative regulators with a fixed output voltage of -5V, -12V, and -15V, and up to 1.5A load current capability. Where other voltages are required, the LM137 series provides an output voltage range of -1.2V to -47V.

The LM120 need only one external component-a compensation capacitor at the output, making them easy to apply. Worst case guarantees on output voltage deviation due to any combination of line, load or temperature variation assure satisfactory system operation.

Exceptional effort has been made to make the LM120 Series immune to overload conditions. The regulators have current limiting which is independent of temperature, combined with thermal overload protection. Internal current limiting protects against momentary faults while thermal shutdown prevents junction temperatures from exceeding safe limits during prolonged overloads.

Although primarily intended for fixed output voltage applications, the LM120 Series may be programmed for higher output voltages with a simple resistive divider. The low quiescent drain current of the devices allows this technique to be used with good regulation.

Features

- Preset output voltage error less than ±3%
- Preset current limit
- Internal thermal shutdown
- Operates with input-output voltage differential down to 1V
- Excellent ripple rejection
- Low temperature drift
- Easily adjustable to higher output voltage

LM120 Series Packages and Power Capability

DEVICE	PACKAGE	RATED POWER DISSIPATION	DESIGN LOAD CURRENT
LM120	TO-3	20W	1.5A
LM320	ТО-39	2W	0.5A
LM320T	TO-220	15W	1.5A
LM320M	TO-202	7.5W	0.5A
LM320ML*	TO-202	7.5W	0.25A
LM320L*	TO-92+	1.2W	0.1A

^{*}Electrical specifications shown on separate data sheet

Typical Applications

Preventing Positive Regulator Latch-Up

R1 8. D1 allow the positive regulator to "start-up" when $^{+}V_{IN}$ is delayed relative to $^{-}V_{IN}$ and a heavy load is drawn between the outputs. Without R18. B1, most three termain legislators will not start with heavy (0.1A=1A) load current flowing to the negative regulator, even though the positive outputs is clamped by D2.

*R2 is optional. Ground pin current from the positive regulator flowing through R1 will increase + $V_{OUT} \approx 60$ mV if R2 is omitted.

Fixed Regulator

*Required if regulator is separated from filter capa citor by more than 3". For value given, capacitor must be solid tantalum. 25µF aluminum electrolytic may be substituted.

†Required for stability. For value given, capacitor must be solid tantalum. 25µF aluminum electrolytic may substituted. Values given may be increased without limit.

For output capacitance in excess of 100µF, a high current diode from input to output (1N4001, etc.) will protect the regulator from momentar input shorts

Dual Trimmed Supply

-5 VOLT REGULATORS (Note 3)

Absolute Maximum Ratings

Lead Temperature (Soldering, 10 seconds)

Power Dissipation

Internally Limited

Input Voltage

-25V

Input-Output Voltage Differential

25V

Junction Temperatures

See Note 1 -65°C to +150°C

Storage Temperature Range

300°C

Electrical Characteristics

					METAL CAN PACKAGE														POWER PLASTIC PACKAGE						
ORDER NUMBERS DESIGN OUTPUT CURRENT (ID) DEVICE DISSIPATION (PD)		LM120K-5.0 (TO-3) 1.5A 20W			L	M320K-5	.0	LM120H-5.0 (TO-39)			LM320H-5.0 (TO-39)			LM320T-5.0			LA	,							
						(TO-3)									(TO-220)	-	(TO-202)								
					1.5A 20W			0.5A 2W			0.5A 2W			1.5A 15W			0.5A 7.5W			UNITS					
PARAMETER	CONDITIONS (NOTE 1)	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX						
Output Voltage	T _J = 25°C, V _{IN} = 10V, I _{LOAD} = 5 mA	-5.1	−5	-4.9	-5.2	-5	-4.8	-5.1	-5.0	-4.9	-5.2	-5.0	-4.8	-5.2	-5.0	-4.8	-5.2	-5.0	-4.8	٧					
Line Regulation	$T_J = 25^{\circ}C$, $I_{LOAD} = 5 \text{ mA}$, $V_{MIN} \le V_{IN} \le V_{MAX}$		10	25	•	10	40		10	25		10	40		10	40		10	40	mV					
Input Voltage		-25		-7	-25	67.2	-7	-25		-7	-25	11 N	-7	-25		-7.5	-25		-7.5	V					
Ripple Rejection	f = 120 Hz	54	64		54	64		54	64		54	64		54	64		54	64		dB					
Load Regulation, (Note 2)	$T_J = 25^{\circ}C$, $V_{IN} = 10V$, $5 \text{ mA} \le I_{LOAD} \le I_{D}$		50	75		50	100		30	50		30	50		50	100		40	100	mV					
Output Voltage, (Note 1)	$-7.5V \le V_{IN} \le V_{MAX}$, $5 \text{ mA} \le I_{LOAD} \le I_D$, $P \le P_D$	-5.20		-4.80	-5.25		-4.75	-5.20		-4.80	5.25		-4.75	-5.25		-4.75	-5.25	-5.0	-4.75	V					
Quiescent Current	VMIN S VIN S VMAX		. 1	2		1	2		1	2	1	1	2		<u> </u>	2		1	2	· mA					
Quiescent Current Change	$T_J = 25^{\circ}C$ $V_{MIN} \le V_{IN} \le V_{MAX}$		0.1	0.4		0.1	0.4		0.05	0.4		0.05	0.4		0.1	0.4		0.05	0.3	mA					
	5 mA \leq ILOAD \leq ID	ļ	0.1	0.4		0.1	0.4		0.04	0.4		0.04	0.4		0.1	0.4		0.04	0.25	mA					
Output Noise Voltage	$T_A = 25^{\circ}C$, $C_L = 1\mu F$, $I_L = 5 \text{ mA}$, $V_{IN} = 10V$, $10 \text{ Hz} \le f \le 100 \text{ kHz}$		150			150			150			150			150			150		μV					
Long Term Stability			5	50		5	50		5	50		5	50		10			10		mV					
Thermal Resistance Junction to Case Junction to Ambient				3 35			3 35			15 150			15 150		4 50			12 70		°C/W °C/W					

Note 1: This specification applies over -55° C \leq T $_{J}$ \leq +150 $^{\circ}$ C for the LM120 and 0° C \leq T $_{J}$ \leq +125 $^{\circ}$ C for the LM320.

Note 2: Regulation is measured at constant junction temperature. Changes in output voltage due to heating effects must be taken into account separately. To ensure constant junction temperature, low duty cycle, pulse testing is used. The LM120/LM320 series does have low thermal feedback, improving line and load regulation. On all other tests, even though power dissipation is internally limited, electrical specifications apply only up to PD.

Note 3: For -5V 3 amp regulators, see LM145 data sheet.

-12 VOLT REGULATORS

Absolute Maximum Ratings

Power Dissipation
Input Voltage
Input-Output Voltage Differential
Junction Temperatures
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

Internally Limited
-35V
30V
See Note 1
-65°C to +150°C
300°C

Electrical Characteristics

		· · · · ·															STIC PAG			
		METAL CAN PACKAGE																		
ORDER NUMBERS DESIGN OUTPUT CURRENT (ID) DEVICE DISSIPATION (PD)		L	LM120K-12			LM320K	-12		LM120H	-12	LM320H-12			LM320T-12			LI			
		(TO-3) 1A 20W			(TO-3) 1A 20W			(TO-39) 0.2A 2W			(TO-39) 0.2A 2W			(TO-220) 1A 15W			(TO-202) 0.5A 7.5W			UNITS
Output Voltage	T _J = 25°C, V _{IN} = 17V, I _{LOAD} = 5 mA	-12.3	-12 ·	-11.7	-12.4	-12	-11.6	-12.3	_ -12	-11.7	-12.4	-12	-11.6	-12.4	-12	-11.6	-12.5	-12	-11.5	V
Line Regulation	$T_J = 25^{\circ}C$, $I_{LOAD} = 5 \text{ mA}$, $V_{MIN} \le V_{IN} \le V_{MAX}$		4	- 10		4	20		4	10		. 4	20		4	20		4	24	mV
Input Voltage		-32		-14	-32		-14	-32		-14	-32		-14	−32		-14.5	-32		-14.5	v
Ripple Rejection	f = 120 Hz	56	80		56	80		56	80		56	80		56	80		56	80		dB
Load Regulation, (Note 2)	$T_J = 25^{\circ}C$, $V_{IN} = 17V$, $5 \text{ mA} \le I_{LOAD} \le I_D$		30	80		30	80		10	25		10	40		30	80		40	100	mV
Output Voltage, (Note 1)	$\begin{aligned} &14.5 V \leq V_{IN} \leq V_{MAX}, \\ &5 \text{ mA} \leq I_{LOAD} \leq I_{D}, P \leq P_{D} \end{aligned}$	-12.5	*	-11.5	-12.6		-11.4	-12.5		-11.5	-12.6		-11.4	-12.6		-11.4	-12.6		-11.4	v
Quiescent Current	VMIN S VIN S VMAX		2	4		2 .	4	l	2	4		. 2	4		2	4		2	4	mA
Quiescent Current Change	$T_{J} = 25^{\circ}C$ $V_{MIN} \leq V_{IN} \leq V_{MAX}$ $5 \text{ mA} \leq I_{LOAD} \leq I_{D}$		0.1 0.1	0.4 0.4		0.1 0.1	0.4 0.4		0.05 0.03	0.4 0.4		0.05	0.4 0.4		0.1 0.1	0.4 0.4		0.05 0.04	0.3 0.25	mA mA
Output Noise Voltage	$T_A = 25^{\circ}C$, $C_L = 1\mu F$, $I_L = 5$ mA, $V_{IN} = 17V$, $10 \text{ Hz} \le f \le 100 \text{ kHz}$		400			400			400			400			400			400		μV
Long Term Stability			12	120		12	120		12	120		12	120		24			24		mV
Thermal Resistance			-																	
Junction to Case				3			3			15			15		4			12	•	°C/W
Junction to Ambient		L		35			35			150			150		50			70		°C/W

Note 1: This specification applies over $-55^{\circ}C \le T_{J} \le +150^{\circ}C$ for the LM120 and $0^{\circ}C \le T_{J} \le +125^{\circ}C$ for the LM320.

Note 2: Regulation is measured at constant junction temperature. Changes in output voltage due to heating effects must be taken into account separately. To ensure constant junction temperature, low duty cycle, pulse testing is used. The LM120/LM320 series does have low thermal feedback, improving line and load regulation. On all other tests, even though power dissipation is internally limited, electrical specifications apply only up to P_D.

-15 VOLT REGULATORS

Absolute Maximum Ratings

Power Dissipation Internally Limited Input Voltage

LM120/LM320
LM320T/LM320MP -35V Input-Output-Output Voltage Differential 30V Junction Temperatures See Note 1 Storage Temperature Range -65°C to +150°C Lead Temperature (Soldering, 10 seconds) 300°C

Electrical Characteristics

		METAL CAN PACKAGE														POWER PLASTIC PACKAGE							
ORDER NUMBERS DESIGN OUTPUT CURRENT (ID) DEVICE DISSIPATION (PD)		LM120K-15 (TO-3)			L	M320K-	15		LM120H-	15		LM320H-	15	L	.M320T-1	15	L	M320MP					
					1	(TO-3)			(TO-39)			(TO-39)	1. 1	(TO-220)			(TO-202					
			1A			1A			0.2A			0.2A			1A			0.5A	UNITS				
		20W			<u> </u>	20W			2W			2W			15W		7.5W						
PARAMETER	CONDITIONS (NOTE 1)	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX				
Output Voltage	T _J = 25°C, V _{IN} = 20V, I _{LOAD} = 5 mA	-15.3	-15	-14.7	-15.4	-15	-14.6	-15.3	-15	-14.7	-15.4	-15	-14.6	-15.5	-15	-14.5	-15.6	-15	-14.4	٧			
Line Regulation	$T_J = 25^{\circ}C$, $I_{LOAD} = 5$ mA, $V_{MIN} \le V_{IN} < V_{MAX}$		5	10		5	20		5	1Ö		5	20		5	20		5	30	, mV			
Input Voltage		-35		-17	-35		-17	-35		-17	-35	4. T.	-17	-35		-17.5	-35		-17.5	V			
Ripple Rejection	f = 120 Hz	56	80		56	80		56	80		56	80		56	80	,	56	80		dB			
Load Regulation, (Note 2)	$T_J = 25$ "C, $V_{IN} \approx 20V$, $5 \text{ mA} \le I_{LOAD} \le I_D$		30	80		30	80		10.	25		10	40		30	80		40	100 -	mV			
Output Voltage, (Note 1)	$\begin{aligned} &17.5 \text{V} \leq \text{V}_{\text{IN}} \leq \text{V}_{\text{MAX}}, \\ &5 \text{ mA} \leq \text{I}_{\text{LOAD}} \leq \text{I}_{\text{D}}, \text{P} < \text{P}_{\text{D}} \end{aligned}$	-15.5		~14.5	-15.6		-14.4	-15.5		-14.5	-15.6		-14,4	-15.7		-14.3	-15.7		-14.3	٧			
Quiescent Current	VMIN < VIN \ VMAX	1	2	4		2`	4		- 2 . 3	4		2	. 4		2	4		2	4	mA			
Quiescent Current Change	T _J = 25°C														ji sarak Sarak								
	$V_{MIN} \le V_{IN} \le V_{MAX}$ $5 \text{ mA} \le I_{LOAD} \le I_{D}$	A 6	0.1	0.4 0.4		0.1 0.1	0.4 0.4		0.05	0.4 0.4		0.05	0.4		0.1	0.4		0.05	0.3 0.25	mA mA			
Output Noise Voltage	$T_A = 25^{\circ}C$, $C_L = 1\mu F$, $I_L = 5 \text{ mA}$, $V_{IN} = 20V$, $10 \text{ Hz} \le f \le 100 \text{ kHz}$	regii	400			400			400			400	,		400	:		400		μV			
Long Term Stability		i in	15	150		15	150		15	150	İ	15	150		30			30		mV			
Thermal Resistance Junction to Case	. \	- 64 3		3			3		1	15			15		4		,	12		°C/W			
Junction to Ambient				35	l		35			150	L		150	L	50			70		°C/W			

Note 1: This specification applies over -55° C \leq T $_{J}$ \leq +150 $^{\circ}$ C for the LM120 and 0° C \leq T $_{J}$ \leq +125 $^{\circ}$ C for the LM320.

Note 2: Regulation is measured at constant junction temperature. Changes in output voltage due to heating effects must be taken into account separately. To ensure constant junction temperature, low duty cycle, pulse testing is used. The LM120/LM320 series does have low thermal feedback, improving line and load regulation. On all other tests, even though power dissipation is internally limited, electrical specifications apply only up to P_D.

142

pical Performance Characteristics

Note: Shaded portion refers to LM320 series regulators.

Output Impedance TO-5

Ripple Rejection (All Types) V_{IN}-V_{OUT} = 5V T_I = 25°C VOUT = -12V AND COUT = 1µF RIPPLE REJECTION (dB) 16

FREQUENCY (Hz)

Minimum Input-Output

and TO-202 Packages $I_{OUT} = 100 \text{ mA}$ $C_{OUT} = 5\mu\text{F}$ $V_{IN} - V_{OUT} = 5V$ ALUMINUM $T_1 = 25 \text{ C}$ 3 IMPEDANCE 10º C_{OUT} = 1.0,4F SOLID TANTALUM OUTPUT I 10 EREQUENCY (Hz)

Quiescent Current vs

Note: Shaded area shows operating range of TO-5 and TO-202 packages.

*These curves for LM120 and LM220. Derate 25°C further for LM320.

Typical Applications (cont'd.)

High Stability 1 Amp Regulator

Load and line regulation 0.01% temperature stability 0.2%

†Determines Zener current

TTSolid tantalum

 $^{-1}$ An LM120 12 or LM120-15 may be used to permit higher input voltages, but the regulated output voltage must be at least -15V when using the LM120-12 and -18V for the LM120-15

**Select resistors to set output voltage. 2 ppm/ C tracking suggested.

Wide Range Tracking Regulator

*Resistor tolerance of R1 and R2 determine matching of (+) and (-) inputs
**Necessary only if any supply capacitors are more than 3" from regulators
An LM3096R array may substitute for 01, D1 and D2 for better stability and tracking. In the array dode, transitors of S2 and Q4 (in gazafel) make up Q2, similarly, 01 and Q2 become 01 and Q3 replaces the 2N2222

Current Source

Variable Output

*Optional Improves transient response and

VOUT - VSET R1 + R2 SELECT R2 AS FOLLOWS

LM120-5 LM120-12 - 300 Ω - 750 Ω LM120-15

Light Controllers Using Silicon Photo Cells

*Lamp brightness increases until i, = 5V/R1 (i, can be set as low as 1, A)

Necessary only if raw supply filter capacitor is more than 2" from LM320MP

*Lamp brightness increases until i₁ - i_Q (-1 mA) · 5V R1

†Necessary only if raw supply filter capacitor is more than 2" from LM320

Typical Applications (cont'd.)

±15V, 1 Amp Tracking Regulators

Performance (Typical)

 Load Regulation at ∆I_L = 1A
 10 mV
 1 mV

 Output Ripple, C_{IN} = 3000µF, I_L = 1A
 100µVrm
 100µVrm

 Temperature Stability
 +50 mV
 +50 mV

 Output Noise 10 Hz ≤ f ≤ 10 kHz
 150µVrm
 150µVrm

*Resistor tolerance of R4 and R5 determine matching of (+) and (-) outputs.

**Necessary only if raw supply filter capacitors are more than 2" from regulators.

Connection Diagrams

Metal Can Package (TO-39) (H)
Order Numbers:

LM120H-5.0 LM120H-12 LM120H-15 LM320H-5.0 LM320H-12 LM320H-15

See Package H03A

Steel Metal Can Package TO-3 (K)
Order Numbers:

LM120K-5.0 LM120K-12 LM120K-15 LM320K-5.0 LM320K-12 LM320K-15

See Package K02A

Aluminum Metal Can

Package TO-3 (KC)
Order Numbers:

LM320KC-5.0 LM320KC-12 LM320KC-15

See Package KC02A

Power Package TO-202 (P) Order Numbers:

LM320MP-5.0 LM320MP-12 LM320MP-15 See Package P03A For Tab Formed TO-202 Order Numbers: LM320MP-5.0TB LM320MP-12TB LM320MP-15TB See Package P03E

Power Package TO-220 (T) Order Numbers:

> LM320T-5.0 LM320T-12 LM320T-15

See Package T03B

Schematic Diagrams

-5V

-12V and -15V

