See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/258071329

Evaluated Activity and Osmotic Coefficients for Aqueous Solutions: The Alkaline Earth Metal Halides

ARTICLE in JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA · JANUARY 1978			
mpact Factor: 2.81 · DOI: 10.1063/1.555569			
CITATIONS	READS		
63	11		

2 AUTHORS, INCLUDING:

Robert Nathan Goldberg

National Institute of Standards and Technolo...

146 PUBLICATIONS 3,342 CITATIONS

SEE PROFILE

Evaluated Activity and Osmotic Coefficients for

Aqueous Solutions: The Alkaline Earth Metal Halides

R. N. Goldberg and R. L. Nuttall

Institute for Materials Research, National Bureau of Standards, Washington, D. C. 20234

A critical evaluation of the mean activity and osmotic coefficients in aqueous solutions of the alkaline earth metal halides at 298.15 K is presented. Osmotic coefficients were calculated from direct vapor pressure measurements, from isopiestic measurements, and from freezing point depression measurements. Activity coefficients were calculated from electromotive force measurements on galvanic cells, both with and without transference, and from diffusion data. Given are empirical coefficients for three different correlating equations, obtained by a weighted least squares fit of the experimental data, and tables consisting of the activity coefficients of the halides, the osmotic coefficients and activity of water, and the excess Gibbs energy of the solution as a function of the molality for each electrolyte system. The literature coverage is through September 1976.

Key words: Activity coefficient; alkaline earth metal halides; critical evaluation; electrolyte; excess Gibbs energy; osmotic coefficients; solutions; thermodynamic properties.

1. Introduction

The purpose of this paper is to present an evaluation of the activity and osmotic coefficients in aqueous solutions of the alkaline earth metal halides at 298.15 K. The evaluation procedures have been described previously [1,2]1. These documents, with the few additional matters discussed herein provide a description of the evaluation procedures we have used. We have chosen to present our evaluation in detail so that any potential users of the data, as well as future data evaluators, can have a better view of the status of the measurements on these systems. We also give coefficients, obtained by a weighted least-squares fit of the experimental data, for three different correlating equations and tables consisting of the mean activity coefficients of the electrolyte, the osmotic coefficient and activity of water, and the excess Gibbs energy of the solution as a function of the molality for each electrolyte system. The literature coverage is through September 1976.

The reader is referred to the glossary of symbols at the end of this paper for the definitions of the various symbols used throughout this paper. In general, we have attempted to adhere to the recommendations of the IUPAC [2a] with regard to nomenclature and units.

2. Experimental Methods for the Determination of Mean Activity and Osmotic Coefficients

In a previous paper [1], a rather detailed discussion was given of the experimental basis of the various methods by which activity and osmotic coefficients are

measured. The determination of osmotic coefficients from freezing point depression measurements, requires a somewhat more detailed discussion than was given in ref. [1].

2.1. Freezing Point Depression Measurements

Our evaluation procedure calculates the osmotic coefficient, ϕ , using the equations given by Lewis and Randall and Pitzer and Brewer [3] (note that there is a sign error in their equation (26-9)):

$$\begin{split} -\frac{\nu \underline{M_1 R}}{1000} \, m \, \, \phi &= -\left(\frac{\Delta H_{\text{fus}}^{\circ} + \overline{L}_1}{T \, T_{\text{fus}}}\right) \, \Theta \\ &+ (\Delta C_{\text{fus}}^{\circ} + \overline{J}_1) \left[\frac{\Theta}{T} + \ln \left(1 - \frac{\Theta}{T_{\text{fus}}}\right)\right] \\ &+ \Delta b \, \left[\frac{\Theta^2}{2T} - \frac{T_{\text{fus}} \Theta}{T} - T_{\text{fus}} \ln \left(1 - \frac{\Theta}{T_{\text{fus}}}\right)\right]. \end{split}$$

We follow Lewis and Randall and Pitzer and Brewer [3] and use the values $\Delta H_{\rm fus}^{\circ} = 1436 \,\,{\rm cal \cdot mol^{-1}} = 6008 \,\,{\rm J \cdot mol^{-1}}, \,\, \Delta C_{\rm fus}^{\circ} = 9.1 \,\,{\rm cal \cdot K^{-1} \cdot mol^{-1}} = 38.1 \,\,{\rm J \cdot K^{-1} \cdot mol^{-1}}$ for water. We are unaware of any experimental data that lead to a value of Δb for any electrolyte solutions and we therefore use Lewis and Randall's and Pitzer and Brewer's [3] estimated $\Delta b = -0.047 \,\,{\rm cal \cdot K^{-2} \cdot mol^{-1}} = -0.197 \,\,{\rm J \cdot K^{-2} \cdot mol^{-1}}$ which is based on the trend of the heat capacities of pure ice and water near 0 °C.

Values of L_1 and \overline{J}_1 are obtained for each system of interest by using, respectively, measured values of the relative apparent molal enthalpy (Φ_L) and the apparent molal heat capacity (Φ_C) and the relationships;

$$\overline{L}_1 = -\frac{M_1 m^{3/2}}{2000} \frac{d\Phi_L}{dm^{1/2}}$$

¹ Figures in brackets indicate literature references at the end of this paper.

^{© 1978} by the U.S. Secretary of Commerce on behalf of the United States. This copyright is assigned to the American Institute of Physics and the American Chemical Society.

and

$$\bar{J}_1 = -\frac{M_1 m^{3/2}}{2000} \frac{d\Phi_C}{dm^{1/2}}.$$

Since Φ_C and Φ_L are usually obtained at 25 °C, \overline{L}_1 is calculated at the temperature $T_{\rm fus}$ using $(\partial \overline{L}_1/\partial T)_p = \overline{J}_1$ and the calculated value of \overline{J}_1 at 25 °C which is assumed to be constant over the temperature range of interest.

The osmotic coefficients, so obtained at 273.15 K, are used to calculate values at 298.15 K, using the integrated form of the Gibbs-Helmholtz equation:

$$\begin{split} \phi_{298.15} &= \phi_{273.15} - \frac{1000}{\nu m M_1} \left[\frac{-25 \, \overline{L}_1}{R \, (298.15)(273.15)} \right. \\ &+ \frac{\overline{J}_1 \, (25)}{R \, (273.15)} - \frac{\overline{J}_1}{R} \ln \frac{298.15}{273.15} \right], \end{split}$$

which is derived on the assumption, again, that \bar{J}_1 is constant over the temperature range of interest.

While the above is a nearly rigorous treatment of the experimental data, it is worth emphasizing that both accurately measured freezing point depressions and thermal data (Φ_L and Φ_C) are required to obtain accurate values of the osmotic coefficient at both 273.15 and 298.15 K. Indeed, the error in the calculated values of the osmotic coefficients due to any error in the thermal data becomes increasingly larger as the concentrations of the solutions increases. It is for this reason that we have tended to terminate our calculations of osmotic coefficients from freezing point data at a molality of 0.2 to 1.0 mol·kg⁻¹. Nevertheless, the value of this method of obtaining osmotic coefficients, and hence activity coefficients, in the dilute region is a very powerful and general one and is in some cases the only sound method available.

2.2 Some Comments on the Calculation of Activity and Osmotic Coefficients and on the Evaluation Procedure

Osmotic coefficients are directly calculable from measurable quantities (vapor pressures and freezing point depressions of solutions) using the phenomenological laws of thermodynamics and no additional assumptions are required either in the form of a correlating equation or in assumed potential functions. However, activity coefficients are not directly obtainable either by integration of the Gibbs-Duhem equation or from measurements on electrochemical cells (with or without transference) unless one first assumes some theoretical or correlating equation to handle the necessary extrapolation and integration of the data to infinite dilution. One must therefore expect numerical differences between activity coefficients calculated using different correlating equations. The Debye-Hückel limiting law [4] provides a theoretical function for the very dilute region. The self-consistent approach used in a previous paper [1] is one means of obtaining the coefficients for selected correlating equations. We have adopted this procedure here and present coefficients for three correlating equations which, for activity coefficients, are:

$$\ln \gamma = -\frac{A_1 I^{1/2}}{1 + B I^{1/2}} + Cm + Dm^2 + Em^3 + \dots, \quad (1a)$$

$$\ln \gamma = -A_1 I^{1/2} - A_2 I \ln I + \sum_{i=1}^{N} B_i m^{(i+1)/2}, \quad (2a)$$

$$\ln \gamma = -A_1 I^{1/2} + \sum_{i=1}^{N} B_i m^{(i+1)/2}.$$
 (3a)

The Debye-Hückel limiting law [4] is incorporated in the first term in each of the above three equations for the activity coefficient.

The first term of eq (1) is of the form which was derived by Debye and Hückel to account for finite ion size and which has been used successfully to fit data to higher concentrations than the limiting law is valid. In our treatment the coefficient, B, as well as the higher order coefficients are empirically determined.

A higher order limiting law has been derived theoretically [5] and is given in eq (2a) where the coefficients of the first and second terms are functions only of the temperature, the charge type of the salt, and the properties of the solvent. We have examined the magnitude of the second term in this equation and we find no evidence that it contributes significantly to the integrals in the low concentration range; nor do the activity or osmotic coefficient data for the systems considered herein provide evidence for the verification of this term. It is completely swamped by other effects in the experimental range of concentrations for the systems considered in this paper.

In eq (3a) the limiting law is simply followed by an empirical polynomial in the square root of the molality.

The activity coefficient, γ , the osmotic coefficient, ϕ , the water activity, $a_{\rm w}$, and the excess Gibbs energy, $\Delta G^{\rm ex}$, are related by the following expressions:

$$\phi = -\frac{1000}{\nu m M} \ln a_w = 1 + \frac{1}{m} \int_0^m md \ln \gamma$$

and

$$\Delta G^{\rm ex} = \nu m RT (1 - \phi + \ln \gamma).$$

Combining these expressions with eq (1a), (1b) or (1c) leads to equations with common coefficients for the other quantities. These corresponding equations for the osmotic coefficient are, respectively:

$$\phi = 1 + \frac{A_1}{B^3 I} \left\{ - (1 + BI^{1/2}) + 2 \ln(1 + BI^{1/2}) \right\}$$

$$+ 1/(1 + BI^{1/2})$$
 $+ \frac{1}{2}Cm + \frac{2}{3}Dm^2 + \frac{3}{4}Em^3 + \dots,$ (1b)

$$\phi = 1 - \frac{A_1}{3} I^{1/2} - \frac{A_2}{2} I \left[\ln I + \frac{1}{2} \right] + \sum_{i=1}^{N} B_i \frac{(i+1)}{(i+3)} m^{(i+1)/2},$$
 (2b)

and

$$\phi = 1 - \frac{A_1}{3} I^{1/2} + \sum_{i=1}^{N} B_i \frac{(i+1)}{(i+3)} m^{(i+1)/2}.$$
 (3b)

For 2-1 electrolytes in water at 25 °C, $A_1 = 2.3525$ $\text{mol}^{-1/2} \cdot \text{kg}^{1/2}$ and $A_2 = \frac{2}{3}A^2 = 0.92238 \text{ mol}^{-1} \cdot \text{kg}$.

Each of the above correlating equations appears to be justifiable at present and, hence, we have included fits to all three of these equations in this paper. Eqs (1) have two advantages: (1) for most of the systems examined in this paper, fewer coefficients are required to obtain a satisfactory fit to the data and (2) fewer digits in the coefficients are required to calculate a value of the activity or osmotic coefficient to a given degree of precision. Eqs (1), however, suffer from two disadvantages: (1) they are non-linear and hence not as useful as eqs (2) and (3) for application to mixed electrolyte systems and (2) they are not of a form suitable for general application to all binary electrolyte systems in that a negative B value of too large a magnitude is mathematically not allowed.

We have also used activity coefficients based on diffusion measurements. In terms of the laws of thermodynamics (reversible and irreversible) this is not possible [6] unless one first assumes a potential function(s) to represent the various molecular interactions. For activity coefficients calculated from diffusion measurements we have relied upon the analysis of Harned [7]. As noted previously [1], this method of obtaining activity coefficients is applicable only to very dilute solutions.

The proper weighting of the various data sets we are evaluating cannot be entirely made objectively. We have tried to form a judgment as to the accuracy of a given data set by reading the various papers and assessing the merits of the experimental methods used; the general quality of the data obtained from a given laboratory is also a factor. A principal difficulty here is that the numerous details that go into an investigation are only rarely fully described in a given paper. The difficulty in assessing possible systematic errors is mitigated somewhat when data from several different types of measurements are available. These data should, if the systematic and random errors are within bounds, fit together to substantiate the accuracy of the entire data network.

3. Discussion of Data Sources

In this section we present in detail (tables 1 to 11) the experimental data upon which our evaluation is based, the calculated values of ϕ and γ/γ_{ref} , and our weightings

of the various data sources. Using these weightings, a fitting of the data was performed, the results of which are the coefficients given in tables 13 to 15. The recommended values of the activity and osmotic coefficients are given in tables 17 to 27 which also give values of the activity of water and of the excess Gibbs energy per kilogram of solvent. Also shown are deviation plots in $\Delta \phi$ and $\Delta \gamma$ (figures 1 to 16) and the overall standard deviations in the fit for each system (table 16). In the deviation plots, the symbol Δ means observed minus calculated values. In table 12 are given the various auxiliary data that were used in the calculations of the osmotic and activity coefficients.

The values of γ_{ref} given in tables 1 to 11, the deviation plots, the values of the activity and the osmotic coefficients, the water activity and the excess Gibbs energy given in tables 17 to 27 are all based on eqs (1) with the coefficients given in table 13. The coefficients for eqs (2) and (3) are given in tables 14 and 15, respectively.

3.1. Magnesium Chloride (Table 1)

Isopiestic measurements are reported by Robinson and Stokes [8] for molalities of 0.1 to 2.0 mol·kg⁻¹; by Stokes [9] for molalities of 1.1 to 5.9 mol·kg⁻¹ (saturation is reported to be at 5.84 mol·kg⁻¹); by Robinson and Bower [9a] at 0.3 to 4.4 mol·kg⁻¹; by Saad, Padova and Marcus [10] at 0.4 to 2 mol·kg⁻¹; and by Platford [10a] at 0.08 to 2.7 mol·kg⁻¹. Osmotic coefficients from these sets of data are in good agreement, although the data of Platford are quite widely scattered.

Serowy and Soika [11] report vapor pressure measurements at temperatures of 20, 24, 30, 35, 40, and 45 ° C and molalities from 0.5 to 5.2 mol·kg⁻¹. They interpolated their data to report values at 25 ° C. Osmotic coefficients from these data are not in good agreement with those from the isopiestic data.

Petit [12] reports vapor pressure measurements over the range m = 0.7 to $4.5 \text{ mol} \cdot \text{kg}^{-1}$. She claims an accuracy of .001 in the activity of water. However, discrepancies and obvious errors in the reported table of results and a wide scatter of reported results decrease our confidence in her work.

Many measurements of the vapor pressure of water over saturated solutions of magnesium chloride have been made. Greenspan [13] has recently made a critical evaluation of these data and we have included his selected value at 25 °C in our data set.

Freezing point depression measurements have been reported by Gibbard and Gossman [14] for solutions from m = 0.03 to 2.0 mol·kg⁻¹; by Menzel [15]² from 0.06 to 0.6 mol·kg⁻¹; by Rodebush [16] from 0.9 to 2.5 mol·kg⁻¹; by Loomis [17] from 0.01 to 0.3 mol·kg⁻¹ and by Rivett [18] from 0.05 to 0.8 mol·kg⁻¹. The data of Loomis give osmotic coefficients about 2% higher than corresponding values from the other measurements

² Menzel [15] reported his freezing point depression in units of "mole" where 1 mol² = 1.860 ° C. These data are given in the Landoldt-Bornstein [21] tables, but are erroneously labeled and used as ° C.

which agree well with each other. Because of the difficulty of accurate correction to 25 °C the data above about 1.0 molal have not been used in this correlation.

Harned and Polestra [19] reported measurements of the diffusion coefficients for MgCl₂ in water. Harned [7] used these data to calculate activity coefficients. These results are the only ones available in the very dilute region.

Geissler [20] measured the emf of the concentration cell with transference:

Hg(l), $Hg_2Cl_2(s)$; $MgCl_2(c_1) \mid MgCl_2(c_2)$; $Hg_2Cl_2(s)$, Hg(l).

We have combined his results with available data on transference numbers to calculate activity coefficients. The results are not of sufficient accuracy to be used in this correlation.

3.2. Magnesium Bromide (Table 2)

Isopiestic measurements were performed by Robinson and Stokes [22] and by Stokes [23]. Both sets of data were given equal weight, with the exception of one data point at a molality of 1.086 mol·kg⁻¹ which appears to be an outlier, in arriving at a final set of values.

3.3. Magnesium lodide (Table 3)

Isopiestic measurements were performed by Robinson and Stokes [22] and by Stokes [23]. Both sets of data were weighted equally.

3.4. Calcium Bromide (Table 4)

Isopiestic measurements were performed by Robinson [24] and by Robinson and McCoach [25] and freezing point depression measurements by Meyer [26]. The isopiestic measurements were weighted equally, while the less precise freezing point depression measurements were given zero weight in our final fitting. It should be noted, however, that there is a fair amount of scatter in the isopiestic measurements. Also, the isopiestic data [25] extend beyond the solubility at 7.66 mol·kg⁻¹ [58] and apparently pertain to super-saturated solutions [25a].

3.5. Calcium Iodide (Table 5)

Robinson [24] reports a set of isopiestic measurements and Meyer a set of freezing point measurements [26]. The agreement of these two sets of data is probably within their experimental uncertainties.

3.6. Strontium Chloride (Table 6)

Isopiestic measurements were performed by Downes [27], Phillips, Watson, and Felsing [28], Robinson [29], and Stokes [23]. Hepburn [30] reports vapor pressure measurements, and Loomis [31] has performed freezing point depression measurements. Emf measurements on

cells without transference are available from Lucasse [33] and from Longhi et al [32]; measurements on cells with transference have been reported by Masaki [34] and Lucasse [33]. These latter measurements cannot be treated in the absence of the prerequisite transference number measurements (note: Masaki's interpretation of his own measurements is incorrect and his measurements appear to yield highly inaccurate activity coefficients using estimated transference numbers). The cell measurements of Hass and Jellinck [35] involve unknown liquid junction potentials and cannot be rigorously treated to yield activity coefficients. Harned [7] reports a set of activity coefficients based on diffusion measurements.

In the dilute region we rely on the analysis of the diffusion data by Harned [7], the results of which merge reasonably well with the freezing point data of Loomis [31]. The most serious problem in evaluating the data for the SrCl₂ system arises in regards to the nonagreement between the various sets of isopiestic data. The four different sets of isopiestic data begin to diverge at $m = 1.2 \text{ mol kg}^{-1}$, with the data of Robinson [29] showing larger than anticipated deviations from the results of the other three investigations. While the data of Phillips et al. [28] end at $m = 1.302 \text{ mol} \cdot \text{kg}^{-1}$, the data of Downes [27] and of Stokes [23] go to higher molalities and are in good agreement with each other but continue to show large systematic differences from the results of Robinson [29]. The data of Hepburn [30] are not precise enough to help resolve this matter. The data of Lucasse [33], with the exception of one measurement at $m = 2.115 \text{ mol kg}^{-1}$, lie midway between these various data sets. The recent measurements of Longhi et al, [32] on an electrochemical cell without transference show systematic negative differences (from 0.003 to 0.030 in γ) from the isopiestic data, the freezing point data, and the emf measurements of Lucasse [33]. Our weighting scheme reflects our decision to give the most credence to the two isopiestic data sets that are in good agreement with each other.

3.7. Strontium Bromide (Table 7)

Isopiestic measurements were performed by Robinson [24] and freezing point depression measurements by Meyer [26]. The osmotic coefficients calculated from the freezing point data are not in good agreement with those obtained from the isopiestic measurements. The latter are judged to be much more accurate than the former.

3.8. Strontium lodide (Table 8)

Isopiestic measurements were performed by Robinson [24] and freezing point depression measurements by Meyer [26]. The osmotic coefficients calculated from the freezing point data are not in good agreement with those obtained from the isopiestic measurements. The

latter are judged to be much more accurate than the former

3.9. Barium Chloride (Table 9)

Isopiestic measurements have been performed by Robinson et al, in four separate investigations [29, 36-38]; there are several sets of freezing point measurements [17, 39-43], and four reports of vapor pressure measurements [30, 44-46]. There are also emf measurements on cells with [33, 47-49], and without transference [33,48,50,51], the latter being made useful for our purposes due to the presence of a reasonably precise set of transference number measurements [49]. Finally, there is one set of activity coefficients based on diffusion measurements [7] and another based on ultracentrifuge measurements [52].

The isopiestic data of Phillips, Watson and Felsing [28] relative to SrCl₂ were not used to obtain osmotic coefficients for BaCl₂; but rather for SrCl₂ using our final set of calculated osmotic coefficients for BaCl₂ as the "standard." Moore, Humphries, and Patterson [53] have performed isopiestic measurements on BaCl₂ relative to NaCl at 80°C. We choose not to treat this data because of the large uncertainties involved in the various temperature corrections. Christenson [54] reports emf measurements on mixed electrolyte solutions which are not useful for our purposes. The emf data of Berestnewa and Kargin [55] and of Hass and Jellinek [35] involve unknown liquid junction potentials and cannot rigorously be used to obtain activity coefficients.

In the most dilute region ($m \le 0.007 \text{ mol} \cdot \text{kg}^{-1}$), the diffusion data [7] are in good agreement with the freezing point data of Hall and Harkins [41] and, with the exception of two points, of Jones [39]. The data of Bedford [40] show systematic differences from these three data sets. Unfortunately, the emf data of Drucker [47] yield totally unreasonable results and were given zero weight in the fitting. However, in this dilute region, the emf data of Jones and Dole [49] are also in reasonable agreement with the bulk of the freezing point data and the diffusion data, as is one point from the data of Pearce and Gelbach [48] at m = 0.005 $\text{mol} \cdot \text{kg}^{-1}$. In the region 0.007 $\text{mol} \cdot \text{kg}^{-1} < m < 0.20$ mol·kg-1, our fit relies heavily on the freezing point data of Gibbard and Fong [43], Hall and Harkins [41], Loomis [17], and Jones [39]—these four data sets being in good agreement.

For the higher molalities, the isopiestic data [29, 36-38] are judged to be the most reliable. The vapor pressure data of Bechtold and Newton [46] and of Newton and Tippetts [45] are, with the exception of

data of $m \le 0.7 \text{ mol} \cdot \text{kg}^{-1}$, in good agreement with the overall fit, while the data of Perreau [44] and of Hepburn [30] do not appear to be very reliable. The emf measurements of Jones and Dole [49] and of Tippetts and Newton [50], with the exception of two points given zero weight, fit the curve very well over the range m = 0.001 to $1.03 \text{ mol} \cdot \text{kg}^{-1}$. The results of Pearce and Gelbach, [48] who measured two different kinds of concentration cells with transference, show an unusual systematic deviation from our final evaluation; i.e., the deviation is positive for the cell using the silver-silver chloride electrodes and negative for the cell using the barium amalgam electrodes. However, their [48] measurements on the cell without transference do not appear to be very reliable. Lacasse's measurements [33] on cells with and without transference scatter randomly about our final fit and provide additional support to the overall accuracy of the correlations. The recent measurements of Ardizonne et al. [51] on cells without transference cover the range m = 0.04 to 0.30 $mol \cdot kg^{-1}$ and are in excellent agreement with the overall fit of the data. The activity coefficients reported by Rush and Johnson [52], based on ultracentrifuge measurements, are in agreement with our correlation within a reasonable estimate of the uncertainties to be attached to their data.

3.10. Barium Bromide (Table 10).

Meyer [26] and Rivett [18] report freezing point depression measurements, a set of isopiestic data is available from Robinson [56], and there is also a set of electromotive force measurements on cells with and without transference from Gelbach and Huppke [57]. In the absence of transference number measurements, we are unable to treat the data from concentration cells with transference. The emf measurements on cells without transference do not appear to be very precise, but do provide additional confirmation of the overall accuracy of the isopiestic measurements. The freezing point data of Rivett are, within a reasonable estimate of the accuracy of that data, in agreement with isopiestic measurements.

3.11. Barium lodide (Table 11)

Isopiestic measurements from Robinson [24] and the freezing point depression data of Meyer [26] provide the data for this system. The less precise freezing point data are in fair accord with the more reliable isopiestic data.

Table 1. Osmotic and Activity Coefficient Data for $\ensuremath{\mathsf{MgCl}}_2$

Robinson and Stokes [8]. Isopiestic measurements, reference salt is KCl. Assigned weight is 1.0.

Saad, Padova and Marcus [10]. Isopiestic measurements, reference salt is NaCl. Assigned weight is 1.0.

mref	· m	<u>ø</u>
mol·kg ⁻¹	mol·kg ⁻¹	
.1579	.1120	.8625
.2271	.1587	.8691
.2782	.1917	.8781
.2808	. 1944	.8739
.3936	.2656	.8918
.4156	.2795	.8942
.4379	.2933	.8972
.5299	.3492	.9100
.5548	.3644	.9127
.6035	.3924	.9213
.6242	.4040	.9254
.6818	.4387	.9304
.7559	.4815	.9395
.7617	.4840	.9418
.8516	.5293	.9628
.9033	.5600	.9654
1.0750	.6503	.9903
1.2170	.7212	1.0123
1.7980	.9856	1.1047
1.8060	.9906	1.1041
1.9700	1.0590	1.1305
2.4870	1.2660	1.2086
2.7650	1.3670	1.2536
2.8050	1.3810	1.2603
3.7320	1.7130	1.3896
3.9620	1.7840	1.4268
4.7120	2.0160	1.5386

Stokes [9]. Isopiestic measurements, reference salt is KCl. Assigned weight is 1.0.

mref	m	<u>ø</u>
mol·kg ⁻¹	mol·kg ⁻¹	
2.1750 3.5410 3.5910 3.8330 4.8100	1.1430 1.6450 1.6610 1.7430 2.0500	1.1617 1.3648 1.3729 1.4071 1.5495

Stokes [9]. Isopiestic measurements, reference is H₂SO₄. Assigned weight is 1.0.

mref_	m	<u>Ø</u>
mol·kg ⁻¹	mol·kg ⁻¹	
3.3270 3.8600 4.3790 4.4630 4.9590 5.0040 5.2770 5.4260 6.2450 6.2620 6.3070 6.6580 7.3450 7.6080 8.4270 8.6150 9.7400 10.6100	2.1680 2.4800 2.7820 2.8290 3.1110 3.1360 3.2870 3.3710 3.8090 3.8190 3.8430 4.0260 4.3730 4.5020 4.8930 4.9820 5.4760 5.8400	1.6014 1.7534 1.8998 1.9245 2.0644 2.0773 2.1549 2.1956 2.4251 2.4291 2.4412 2.5368 2.7209 2.7902 2.9997 3.0455 3.3213 3.5210
10.8400	5.9250	3.5771

mref	m	<u>ø</u>
mol·kg ⁻¹	mol·kg ⁻¹	
.5840	.3927	.9149
.9067	.5817	.9687
1.6109	.9510	1,0874
1.6908	.9833	1.1085
2.1587	1.2003	1.1902
2.8543	1.5083	1.3065
3.0070	1.5710	1.3344
3.1222	1.6180	1.3552
3.5077	1.7773	1,4211
4.3027	2.0853	1.5655

Serowy and Soika [11]. Vapor pressure measurements. Assigned weight is 0.2.

mref	P/P°	<u>Ø</u>
mol·kg ⁻¹		
.5000	.9740	.9734
1.0000	.9410	1.1236
1.5000	.8990	1.3115
2.0000	. 8440	1.5669
2.5000	.7850	1.7892
3.0000	.7180	2.0406
3.5000	.6440	2.3236
4.0000	.5680	2.6135
4.5000	.4970	2.8717
5.0000	.4290	3.1286
5.5000	.3660	3.3782

Petit [12]. Vapor pressure measurements. Assigned weight is zero.

mref	P/P°	<u>Ø</u>
mol·kg ⁻¹		
.7000	.9651	.9364*
1.0000	.9420	1.1049*
1.3000	.9254	1.1018*
2.0000	.8450	1.5554*
2.1000	.8367	1.5680*
2.8000	.7523	1.8786*
3.0000	.7203	2.0207*
3.4000	.6599	2.2591*
3.7000	.6078	2.4866*
4.0000	.5777	2.5355*
4.5000	.5248	2.6498*

 $^{^{\}star}$ In these tables, an (*) next to a number is used to indicate that it is given zero weight in the fitting.

J. Phys. Chem. Ref. Data, Vol. 7, No. 1, 1978

Table 1. Continued

Greenspan [13]. Evaluated vapor pressure of saturated solution. Assigned weight is 1.0.

mol·kg ⁻¹	P/P°	<u>Ø</u>
5.840	0.3278	3.5306

Gibbard and Gosman [14]. Freezing point depression measurements. Assigned weight is 0.5 or 0.0 $\,$

m	F.P.	ø _{273.15}	ø _{298.15}
mol·kg ⁻¹	Depression/K		
2.02725	18.3940	1.604	1.549*
2.00220	17.9730	1.587	1.534*
1.95925	17.3890	1.571	1.519*
1.85505	15.8650	1.517	1.470*
1.70825	13.9060	1.448	1.405*
1.23940	8.5640	1.235	1.205*
1.20390	8.2320	1.223	1.194*
1.05860	6.8711	1.162	1.136*
1.01610	6.4892	1.143	1.118
.90805	5.5870	1.102	1.079
.90415	5.5624	1.102	1.079
.72550	4.1959	1.036	1.018
.61180	3.4005	.996	.980
.53480	2.9000	.972	.957
.53415	2.8851	.968	.954
.47585	2.5275	.952	.939
.40445	2.1018	.932	.920
.33250	1.6879	.910	.900
.25645	1.2733	.890	.882
.25000	1.2445	.892	.884
.17460	.8510	.874	.867
.16710	.8144	.874	.867
.14920	.7240	.870	.863
.12180	.5901	. 868	.862
.11835	.5732	.868	.862
.07865	.3813	.869	.863
.05675	.2754	.870	.864
.05458	.2653	.870	.866
.03196	.1579	.885	.881
.02805	.1387	.886	.881

See table 12 for the Φ_L and Φ_C data used in treating all of the freezing point data for ${\rm MgCl}_2$

Menzel [15]. Freezing point depression measurements. Assigned weight is $0.5\,$

mol·kg ⁻¹	F.P. Depression/K	ø _{273.15}	ø _{298.15}
.06400	.3097	. 867	.862
.07970	.3841	.864	.858
.13300	.6482	.874	.867
.27590	1.3838	.899	.890
.39560	2.0646	.936	.924
.53880	2.9165	.970	.955
.67240	3.8130	1.016	.999

Rodebush [16]. Freezing point depression measurements. Assigned weight is 0.5 or 0.0.

mol·kg ⁻¹	F.P. Depression/K	Ø _{273.15}	Ø _{298.15}
.92321	5.7100	1.107	1.085
1.23305	8.4600	1.227	1.197
1.71304	13.7900	1.432	1.389*
2.13841	19.5700	1.612	1.553*
2.54277	25.8600	1.763	1.684*

Loomis [17]. Freezing point depression measurements. Assigned weight is 0.1.

m mol·kg ⁻¹	F.P. Depression/K	ø _{273.15}	ø _{298.15}
.00996	.0514	.925	.921
.01987	.1014	.915	.910
.04950	.2489	.901	.896
.09878	.4948	.898	.892
.14808	.7444	.901	.895
.19749	1.0039	.911	.904
.24708	1.2699	.921	.913
.29686	1.5557	.939	.930

Rivett [18]. Freezing point depression measurements. Assigned weight is 0.3.

m mol·kg ⁻¹	F.P. Depression/K	Ø _{273.15}	Ø _{298.15}
.05620	.2820	.899	.894
.11800	.5800	.881	.875
.16.650	.8220	.885	.878
.22550	1.1270	.896	.888
.33910	1.7360	.918	.908
.44390	2.3440	.946	.934
.56660	3.1300	.990	.974
.67370	3.8630	1.027	1.010
.79070	4.7210	1.070	1.050

Harned [7]. Activity coefficients from diffusion measurements. Assigned weight is 1.0.

c/mol·L-1	$\frac{y_{\pm}}{}$
0.0001	0.961
0.0004	0.926
0.001	0.890
0.002	0.854
0.005	0.792
0.007	0.765

No correction was made to convert molarity to molality, nor y_\pm to $\gamma_\pm,$ as the differences are negligible at these concentrations.

Geissler [20]. Activity coefficients from emf measurements. Assigned weight is zero.

 $\label{eq:hg(1), hgCl(s); hgCl} \operatorname{HgCl}_2(\mathbf{m}_{ref}) \left| \operatorname{MgCl}_2(\mathbf{m}); \right. \\ \operatorname{HgCl}(\mathbf{s}), \\ \operatorname{Hg(1)}$

c/mol·L ⁻¹	Emf/V	$\frac{\gamma/\gamma_{ref}}{}$
0.001	- 0.0358	0.9830 * m _{ref} =0.0001mol·kg ⁻¹
0.010	- 0.0704	0.9335 * ^{lel}
0.100	- 0.0994	$0.6911 * \gamma_{ref} = 0.961$
0.500	- 0.1193	0.6519 * Fer
1.000	- 0.1297	0.8164 *
1.500	- 0.1354	0.9394 *
1.750	- 0.1379	1.0355 *
2.000	- 0.1398	1.1011 *

Table 1. Continued

Robinson and Bower [9a]. Isopiestic measurements, reference salt is CaCl₂. Assigned weight is 1.0.

mref_	m	
mol·kg-1	mol·kg-1	Ø
.31211	.30609	.891456
.31662	.31029	.89294
.56061	.54462	.954727
.56109	.54509	.954838
.5625	.54632	.9555429
1.0135	.97	1.09535
1.0198	.9767	1.09652
1.5003	1.4191	1.26917
1.5109	1.4291	1.27293
1.8445	1.7347	1.40265
1.8588	1.7475	1.4086
2.1878	2.05	1.54251
2.2088	2.0686	1.5518
2.4524	2.2908	1.65645
2.4732	2.3101	1.66529
2.6919	2.5076	1.76329
2.6952	2.5091	1.76583
3.204	2.9707	1.99906
3.2061	2.9736	1.99936
3.2213	2.9878	2.00616
3.5689	3.3044	2.16784
3.5888	3.3214	2.17785
3.8882	3.5925	2.31802
3.8898	3.5924	2.31977
4.1086	3.786	2.42395
4.122	3.7967	2.43102

Platford [10a] Isopiestic measurements, reference salt is NaCl. Assigned weight is 0.5.

$^{\mathtt{m}}$ ref	m	Ø
mol·kg-1	mol·kg-1	
.11146	.0801	.863811
.17771	.1248	.878101
.29572	. 2088	.869393
. 54678	.3779	.889348
.57978	.3819	.933802
.70647	.4724	.922963
1.04964	.6599	.994124
1.14171	.7083	1.01145
1.69143	.9852	1.10687
1.96702	1.1149	1.15484
2.5459 7	1.3719	1.25697
3.26385	1.6739	1.38189
3.619	1.8139	1.44708
4.24885	2.0596	1.55968
4.51412	2.1624	1.60617
4.93676	2.3174	1.68519
6.14442	2.7551	1.90509

Table 2. Osmotic Coefficient Data for MgBr,

Robinson and Stokes [22]. Isopiestic measurements, reference salt is KCl. Assigned weight is 1.0.

mref	m	<u>Ø</u>
mol·kg ⁻¹	mol·kg ⁻¹	
.1557	.1086	.8773
.1614	.1127	.8757
.1939	.1341	.8809
.2600	.1770	.8899
.5101	.3250	.9416
.5668	.3575	.9502
.6988	.4284	.9764
.7607	.4592	.9913
.8734	.5171	1.0108
1.0600	.6057	1.0483
1.2400	.6845	1.0871
1.3030	.7192	1.0880
1.6590	.8688	1.1532
2.3070	1.0860	1.3010 *
2.8520	1.3040	1.3589
3.6270	1.5560	1.4820
3.6970	1.5760	1.4947
4.0090	1.6670	1.5476
4.0920	1.6970	1.5558
4.3010	1.7610	1.5865
4.4620	1.8020	1.6169
4.7820	1.8940	1.6661

Stokes [23]. Isopiestic measurements, reference salt is ${\rm CaCl}_2$. Assigned weight is 1.0.

^m ref	m	<u>v</u>
mol·kg-1	mol·kg ⁻¹	
2.6500	2,2980	1.8780
3.4000	2.9330	2,2499
5.1370	4.3450	3.1063
6.5080	5.3140	3.6778
7.0230	5.6100	3.8656

Table 3. Osmotic Coefficient Data for MgI

Robinson and Stokes [22]. Isopiestic measurements, reference salt is XCL. Assigned weight is 1.0.

mref	II.	Ø
mol·kg-1	tmol·kg-1	
.1518	.1049	.8860
.1789	.1217	.8970
.1867	.1266	.8991
.2982	.1958	.9204
.4233	.2696	.9440
.5934	.3595	0.9889
.8626	.4989	1.0347
1,1520	.6225	1.1094
1,1530	.6263	1.1037
1,1780	.6363	1.1102
1.4490	.7496	1.1633
1.4840	.7598	1.1760
1,7760	8704	1.2350
1.9330	.9268	1.2665
2.0580	.9707	1.2909
2.6210	1.1620	1.3926
2.8030	1.2180	1.4279
2.8210	1.2190	1.4366
3.5430	1.4400	1.5602
3,8060	1.5150	1.6062
4.1880	1.6210	1.6721
4.4230	1.6880	1.7089
4.6470	1.7430	1.7516
4.8100	1.7870	1.7778

Stokes [23]. Isopiestic measurements, reference salt is ${\tt CaCl}_2.$ Assigned weight is 1.0.

mref	TE .	<u>Ø</u>
mol·kg-1	mol·kg-1	
2.5690	2.0810	1.9700
2.7470	2.2330	2.0522
3.0990	2.5010	2.2480
4.1600	3.3140	2.8336
4.2930	3.4020	2,9163
5.0750	3.9700	3,3313
6.0320	4.6160	3.7845
6.7700	5.0090	4.1226

Table 4. Osmotic Coefficient Data for CaBr₂

Robinson [24]. Isopiestic measurements, reference salt is KCl. Assigned weight is $1.0.\,$

mref	m	<u>Ø</u>
mol·kg-1	mol·kg ⁻¹	
.1507	.1058	.8722
.1986	.1386	.8725
.2650	.1818	.8828
.3730	.2531	.8875
.3916	.2642	.8920
.6420	.4135	.9297
.9382	.5711	.9833
1.1940	.6995	1.0238
1.2470	.7250	1.0322
1.6150	.8932	1.0911
1.8540	.9972	1.1271
1.9170	1.0230	1.1375
2.1060	1.0980	1.1691
2.4500	1.2410	1.2135
2.8410	1.3820	1.2768
3.5610	1.6430	1.3751
3.8740	1.7480	1.4200
4.2200	1.8670	1.4644
4.8230	2.0560	1.5501

Meyer [76]. Freezing point depression measurements. Assigned weight is zero.

mol·kg-1	F.P. Depression/K	ø _{273.15}	ø _{298.15}
0.05203	0.264	0.909	0.906 *
0.08635	0.441	0.915	0.912 *
0.13605	0.703	0.926	0.921 *

⁻ Values for higher molalities were not considered -

Robinson and McCoach [25]. Isopiestic measurements, reference salt is ${\tt CaCl}_2$. Assigned weight is 1.0.

mref	m	<u>Ø</u>
mol·kg ⁻¹	mol·kg ⁻¹	
1.5240	1.4230	1.2928
1.8970	1.7660	1.4364
2.3090	2.1400	1.6105
2.3210	2.1520	1.6149
2.7640	2.5540	1.8129
2.8010	2.5840	1.8323
3.0260	2,7910	1.9339
3.3870	3.1160	2.1037
3.8880	3.5650	2.3399
4.1580	3.7850	2.4789
4.3120	3.9220	2.5492
4.9650	4.4350	2.8738
5.9520	5.1440	3,3272
6.6550	5.5950	3.6047
6.8930	5.7260	3.6951
7.4700	5.9840	3.9141
7.8310	6.1700	4.0074
8.0670	6.2860	4.0610
8.3750	6.4060	4.1395
8.7300	6.5830	4.1908
8.8380	6.6300	4.2084
9,4980	6.8630	4.3369
9.8150	6.9650	4.4057
10.4100	7.2160	4.5287

Robinson and McCoach [25]. Isopiestic measurements, reference salt is $\rm H_2SO_4$. Assigned weight is 1.0.

m _{ref}	m	$\underline{\emptyset}$
mol·kg ⁻¹	mol·kg ⁻¹	
16,10	7.636	4.689
16.81	7.922	4.771
17.97	8.406	4.887
19.61	9.210	4.971

 $^{^{\}varphi}_{L}$ data used for ${\rm CaBr}_2$ is given in table 12; the $^{\varphi}_{\rm C}$ data for ${\rm CaCl}_2$ was used in the absence of any direct measurements (also see table 12).

J. Phys. Chem. Ref. Data, Vol. 7, No. 1, 1978

Table 5. Osmotic Coefficient Data for CaI_2

Robinson [24]. Isopiestic measurements, reference is KCl. Assigned weight is 1.0.

mrefm	m	<u>Ø</u>
mol·kg ⁻¹	mol·kg ⁻¹	
.1160	.0815	.8764
.2074	.1408	.8962
.3559	.2350	.9127
.4366	.2814	.9324
.6107	.3791	.9650
.7692	.4610	.9985
.7832	.4715	.9940
1.0310	.5943	1.0389
1.2760	.7022	1.0909
1.4080	.7628	1.1101
1.6750	.8728	1.1594
1.7820	.9122	1.1826
2.2170	1.0880	1.2453
2.3660	1.1340	1.2797
2.9510	1.3430	1.3690
3.3230	1.4510	1.4425
3.6550	1.5680	1.4833
4.0580	1.6880	1.5494
4.1820	1.7280	1.5660
4.3970	1.7930	1.5980
4.6120	1.8550	1.6315
4.6450	1.8640	1.6370
4.8400	1.9150	1.6710

Meyer [26]. Freezing point depression measurements. Assigned weight is 0.10.

mol·kg ⁻¹	F.P. Depression/K	φ _{273.15}	ø _{298.15}
0.03992	0.197	0.884	0.881
0.08799	0.430	0.876	0.873
0.12172	0.594	0.875	0.870

⁻ Values for higher molalities were not considered -

In the absence of any measurements, Φ_L data for CaBr $_2$ and Φ_C data for CaCl $_2$ was used (see table 12).

Table 6. Osmotic and Activity Coefficient Data for ${\rm SrCl}_2$

mref

mol·kg⁻¹

.2194

.2749

.5757

.8290

.8434

1.1070

1.3280

1.5460

1.7140

1.8430 2.1860

2.3080

2.6490

3.1280

3.5010

4.0210

4.0830

4.3140

4.5830

Downes [27]. Isopiestic measurements, reference salt is KCl. Assigned weight is 1.0.

Robinson [29]. Isopiestic measurements, reference salt is KCl. Assigned weight is 0.50.

mol·kg⁻¹

.1195

.1574

.1935

.3942

.5501

.5601

.7120

.8320

.9452

1.0280

1.0940

1.2590

1.3170

1.4720

1.6820

1.8370

2.0430

2.0680

2.1570

2.2580

Ø

.8324 .8471

.8598

.8752

.9018

.9011

.9317

.9589

.9859

1.0080

1.0210

1.0603 1.0733

1.1119

1.1646

1.2070

1.2670

1.2735

1.2997

1.3306

m ref	m·	Ø
mol·kg ⁻¹	mol·kg ⁻¹	
.1503	.1083	.8499
.1741	.1254	.8476
.2179	.1561	.8484
.2759	.1963	.8506
.4996	.3456	.8674
.5418	.3728	.8714
.6043	.4118	.8791
.6807	.4594	.8870
.9371	.6113	.9176
. 9696	.6307	.9203
1.1022	.7045	.9375
1.2070	.7416	.9763 *
1.2531	.7877	.9548
1.3659	.8480	.9681
1.5793	.9571	.9951
1.6236	.9800	.9999
1.7770	1.0563	1.0183
1.9495	1.1378	1.0408
2.2309	1.2708	1.0732
2.2506	1.2770	1.0779
2.3184	1.3087	1.0853
2.4274	1.3578	1.0982
2.7081	1.4806	1.1319
2.8800	1.5507	1.1548
2.9089	1.5668	1.1554
2.9762	1.5959	1.1628
3.1115	1.6487	1.1813
3.3918	1.7626	1.2146
3.4487	1.7834	1.2227
3.8305 4.1555	1.9321 2.0541	1.2685 1.3080
4.1333 4.5158	2.0341	1.3080
4.3138	2.1000	1.3510

Stokes [23]]. Isopiestic	measurements,	reference	salt
is CaCl.	Assigned weigh	nt is 1.0.		
2				

Phillips, Watson, and Felsing [28]. Isopiestic measurements, reference salt is ${\rm BaCl}_2$. Assigned weight is 0.80.

mref	m	$\underline{\emptyset}$
mol·kg ⁻¹	mol·kg ⁻¹	
1.4079	1.3020	1.083
1.4020	1.2964	1.083
1.0040	. 9440	.999
.7868	.7490	.951
.7831	.7455	.951
.6929	.6630	.932
.4550	.4380	.891
.3997	.3865	.880
.2374	.2290	.886
.0410	.0396	.886
.0339	.0328	.891

mref	m	<u>Ø</u>
mol·kg ⁻¹	mol·kg ⁻¹	
.0781	.0784	.8527
.3507	.3518	.8826
.4435	.4508	.8899
.5947	.6067	.9203
.6820	.6986	.9373
.6966	.7136	.9408
.7792	.7985	.9611
.9187	.9427	.9962
.9859	1.0150	1.0112
1.0780	1.1120	1.0348
1.1020	1.1350	1.0432
1.3250	1.3710	1.1042
1.7310	1.8020	1.2276
1.9480	2.0280	1.3023
2.0340	2.1230	1.3295
2.3310	2.4370	1.4359
2.3950	2.5110	1.4559
2.6910	2.8270	1.5661
2.7690	2.9090	1.5965
2.3340	3.5200	1.8120
3.7990	4.0380	1.9837

The evaluated osmotic coefficients calculated for BaCl $_2$ in this paper were used to calculate $\emptyset_{\texttt{ref}}$ and thence \emptyset for \texttt{SrCl}_2 .

Hepburn [30]. Vapor pressure measurements. Assigned weight is 0.02.

	-log ₁₀ (P/P°)	<u>Ø</u>
mo1.kg-1		
.40000	0.0075	.7977
.60000	0.0115	.8156
.99500	0.0226	.9665
1.49500	0.0403	1.1470
2.24600	0.0713	1.3509
2.87200	0.1049	1.5544
3.24500	0.1278	1.6761
3.40300	0.1385	1.7321
3.51700	0.1479	1.7897

Table 6. Continued

Assigned weight is 0.50.

m	F.P.	Ø _{273.15}	Ø _{298.15}
mol·kg ⁻¹	epression/K		
0.010038	0.0508	0.907	0.904
0.019994	0.1015	0.910	0.906
0.050271	0.2445	0.872	0.868
0.100893	0.4834	0.859	0.855
0.203631	0.9608	0.846	0.841

- A value at a higher molality was not considered -

See table 12 for the $\Phi_{\underline{L}}$ and $\Phi_{\underline{C}}$ data used in these calculations.

Harned [7]. Activity coefficients from diffusion measurements. Assigned weight is 0.70.

c/mol·L ⁻¹	
0.0001 0.0004 0.0010 0.0020 0.0050 0.0070	0.961 0.926 0.889 0.853 0.790 0.762
0.0100	0.732

No correction was made to convert molarity to molality nor y_+ to γ_+ , as the differences are negligible at these concentrations.

Lucasse [33]. Activity coefficients from emf measurements. Assigned weight is 0.70.

Ag(s), AgC1(s); $SrC1_2(m_{ref}) | Sr_xHg(1) | SrC1_2(m);$ AgCl(s), Ag(s)

$$m_{ref_{mol} \cdot kg^{-1}} = 0.01$$
 $\gamma_{ref} = 0.7258$

m	Emf/V	γ/γ_{ref}
mol·kg ⁻¹		
.029080	.035242	.85812
.089960	.072224	.72418
.116700	.079787	.67928
.345800	.117060	.60300
1.049000	.161225	.62526
1.403000	.176760	.69959
2.115000	.203119	.91967
3.015000	.235650	1.50053

Loomis [31]. Freezing point depression measurements. Longhi, Mussini, and Vaghi [32]. Activity coefficients from emf measurements. Assigned weight is 0.30.

> Ag(s), AgC1(s); $SrC1_2(m_{ref}) | Sr_xHg(1) | SrC1_2(m)$; AgCl(s), Ag(s)

$$\begin{array}{lll} m_{\text{ref}} = 0.010089 & \gamma_{\text{ref}} = 0.7250 \\ \hline m_{\text{mol} \cdot \text{kg}} - 1 & \gamma' \gamma_{\text{ref}} \\ \hline m_{\text{mol} \cdot \text{kg}} - 1 & \gamma' \gamma_{\text{ref}} \\ 0.039946 & 0.81075 \\ 0.079752 & 0.71650 \\ 0.11887 & 0.66326 \\ 0.15959 & 0.62731 \\ 0.19906 & 0.60793 \\ 0.24030 & 0.58214 \\ \end{array}$$

The above values of $(\gamma/\gamma_{\mbox{\scriptsize ref}})$ are averages calculated from the measurements performed at various mole fractions (x = .0007544 to 0.02136) of strontium in the mercury amalgam.

R. N. GOLDBERG AND R. L. NUTTALL

Table 7. Osmotic Coefficient Data for SrBr

Robinson [24]. Isopiestic measurements, reference salt is KC1. Assigned weight is 1.0.

13	1.0.		
	mref_	m	ø
	mol·kg-1	mol·kg ⁻¹	
	.1256	.0896	.8617
	.1648	.1166	.8639
	.2834	.1953	.8778
	.3519	.2413	.8790
	.4548	.3056	.8939
	.4941	.3323	.8923
	.8255	.5257	.9396
	.9330	.5829	.9580
	1.0550	.6524	.9686
	1.2100	.7331	.9901
	1.4270	.8362	1.0266
	1.6720	. 9517	1.0613
	1.6680	.9518	1.0585
	1.9400	1.0790	1.0919
	1.9930	1.0950	1.1066
	2.0500	1.1190	1.1153
	2.1470	1.1610	1.1283
	2.1920	1.1780	1.1365
	2.4960	1.3060	1.1761
	3.0070	1.5080	1,2444
	3.4310	1,6100	1.346/ *
	3.4310	1.6590	1.3069
	3.6990	1.7580	1.3407
	4.2490	1.9420	1.4189
	4.7950	2.1230	1.4911

Meyer [26]. Freezing point depression measurements. Assigned weight is

mol·kg ⁻¹	F.P. Depression/K	Ø _{273.15}	Ø _{298.15}
0.0583	0.245	0.753	0.751 *
0.1071	0.566	0.947	0.945 *

- Values for higher molalities were not considered -

 $\boldsymbol{\Phi}_{L}$ data for SrBr_2 is from table 12; the $\boldsymbol{\Phi}_{C}$ data for SrCl_2 was used in the absence of any direct measurements (also see table 12).

Table 8. Osmotic Coefficient Data for SrI2

Robinson [24]. Isopiestic measurements, reference salt is KC1. Assigned weight is 1.0. $\hfill\Box$

1.0.		_
^m ref	m	. <u>Ø</u>
mol·kg ⁻¹	mol·kg ⁻¹	
.1361	.0952	.8773
.2315	.1572	.8941
.4339	.2827	.9225
.5202	.3322	.9392
.6186	.3883	.9542
.9436	.5605	1.0077
.9654	.5721	1.0102
1.1600	.6645	1.0466
1.3550	.7544	1.0794
1.7840	.9367	1,1530
2.0060	1.0240	1.1914
2.0720	1.0540	1.1973
2.5540	1.2340	1.2756
3.2910	1.4890	1.3908
3.3880	1.5230	1.4040
3.3980	1.5240	1.4076
4.5090	1.8700	1.5770
4.7510	1.9450	1.6103
4.8430	1.9690	1.6263

Mayor [26]. Freezing point depression measurements. Assigned weight is zero.

mol·kg ⁻¹	F.P. Depression/K	Ø _{273.15}	ø _{298.15}
0.0241	0.130	0.965	0.963 *
0.0727	0.385	0.949	0.947 *
0.1106	0.586	0.950	0.948 *

- Values for higher molalities were not considered -

In the absence of any measurements, ϕ_L data for ${\rm SrBr}_2$ and ϕ_C data for ${\rm SrCl}_2$ was used (see table 12).

Table 9. Osmotic and Activity Coefficient Data for BaCl₂

salt is KCl. Assigned weight is 0.30.

m Ø mol·kg-1 0.05 0.861 0.10 0.843 0.20 0.835 0.3 0.836 0.4 0.842 0.5 0.8565 0.6 0.873 0.7 0.888 0.8 0.904 0.9 0.919 1.0 0.9345 0.950 1.1 1.2 0.966 1.3 0.983 1.4 1.000 1.5 1.017 1.6 1.033 1.049 1.7 1.8 1.064

The author did not give the isopiestic molalities and hence the raw data could not be recalculated.

Robinson [36]. Isopiestic measurements, reference salt is KCl. Assigned weight is 1.0.

arc	TS VCT.	weerdued werdur in i'o'	
	mref'		<u>ø</u>
_	mol·kg-l	mol·kg ⁻¹	
	.1209	.0881	.8443
	.1558	.1134	.8407
	.2034	.1475	.8393
	.2106	.1529	.8377
	.2139	.1553	.8375
	.4526	.3213	.8462
	.6696	. 4649	.8623
	.7360	.5088	.8657
	.8278	. 5660	.8752
_	1.1750	. 7809	.9023
- 2	1.4360	.9302	.9288
	1.9620	1.2270	.9716
2	2.1480	1.3220	.9914
4	2.2940	1.4050	.9997
2	2.3950	1.4540	1.0110
2	2.4620	1.4920	1.0146
	2.4720	1.4970	1.0155
	2.7730	1.6490	1.0425
3	3.0460	1.7820	1.0679

Robinson [37]. Isopiestic measurements, reference salt is NaCl. Assigned weight is 1.0.

	•	
m ref	m	<u>Ø</u>
mol·kg-1	mol·kg-1	
1.2292	.8497	.9113
1.2866	.8862	.9171
1.3409	.9193	.9237
1.4235	.9726	.9307
1.5278	1.0380	.9408
1.7981	1.2038	.9686
1.8132	1.2133	.9699
1.8871	1.2578	.9777
2.0344	1.3472	.9922
2.0598	1.3614	.9956
2.1186	1.3965	1.0017
2.1240	1.4002	1.0019
2.3449	1.5318	1.0243
2.4820	1.6147	1.0371
2.4824	1.6169	1.0359
2.5225	1.6400	1.0403
2.7599	1.7813	1.0634
2.7677	1.7884	1.0627

Robinson [29]. Isopiestic measurements, reference Robinson and Bower [38]. Isopiestic measurements, reference salt is NaCl. Assigned weight is 1.0.

m _{ref}	m	<u>Ø</u>
mol·kg ⁻¹	mol·kg ⁻¹	
•5044	.3638	.8516
.5063	.3645	. 8531
.9728	.6832	.8871
1.2328	.8507	.9131
1.5683	1.0634	.9447
1.6226	1.0983	.9490
1.8749	1.2498	.9769
1.9873	1.3149	.9904
2.0021	1.3245	.9914
2.3615	1.5466	1.0227
2.6185	1.6998	1.0481
2.7147	1.7610	1.0551

Bechtold and Newton [46]. Vapor pressure measurements. Assigned weight is 0.80.

<u>m</u>	P/P°	Ø
mol·kg ⁻¹		
.01017	0.99975	.4512 *
.09505	0.99608	.7632 *
.19087	0.99151	.8253 *
.47231	0.97866	.8440 *
.87460	0.95774	.9123
1.23237	0.93746	.9684
1.60010	0.91483	1.0281

Newton and Tippetts [45]. Vapor pressure measurements. Assigned weight is 0.80.

m	P/P°	<u>Ø</u>	
$mol \cdot kg^{-1}$			
.30600	0.9868	.8025	*
.68480	0.9681	.8748	*
.91430	0.9555	.9200	
1.17680	0.9408	.9583	
1.58900	0.9158	1.0229	
1.78800	0.9021	1.0649	

Hepburn [30]. Vapor pressure measurements. Assigned weight is 0.05.

m/	- log ₁₀ (P/P°)	<u>Ø</u>
$mol \cdot kg^{-1}$		
.50800	0.0088	.7372 *
.60600	0.0105	.7372 *
1.00700	0.0184	.7775 *
1.28500	0.0254	.8411 *
1.56800	0.0371	1.0068
1.65500	0.0397	1.0208
1.78800	0.0430	1.0233

Table 9. Continued

m	P	<u>Ø</u>
mol·kg ⁻¹	torr*	
.41960	17.20	.8498
.87200	16.79	.9204
1.01750	16.69	.8973
1.20450	16.53	.9058
1.31280	16.38	.9595
1.44320	16.17	1.0381
1.57640	15.96	1.1036

^{* 1} torr = 101325/760 Pa

Bedford [40]. Freezing point depression measurements. Assigned weight is 0.20.

mol·kg ⁻¹	F.P. Depression/K	$\frac{\emptyset}{273.15}$	Ø _{298.15}
0.0010	0.00531	0.952	0.950
0.0020	0.01042	0.934	0.932
0.0040	0.02048	0.918	0.915
0.0060	0.03042	0.909	0.906
0.0080	0.04024	0.901	0.899
0.0100	0.05000	0.896	0.893

 $^{\Psi}_{L}$ and $^{\Psi}_{C}$ data from table 12 was used in treating \cdot all of the freezing point data for BaCl2.

Gibbard and Fong [43]. Freezing point depression measurements. Assigned weight is 0.80.

mol·kg ⁻¹ De	F.P. pression/K	ø _{273.15}	ø _{298.15}
0.03305	0.1614	0.875	0.872
0.06830	0.3242	0.851	0.848
0.1080	0.5090	0.845	0.842
0.1201	0.5642	0.842	0.840
0.1814	0.8466	0.837	0.836
0.2443	1.1431	0.839	0.838
0.2651	1.2406	0.839	0.839
0.3143	1.4794	0.844	0.844
0.3855	1.8196	0.847	0.848

⁻ Values for higher molalities was not considered -

Hall and Harkins [41]. Freezing point depression measurements. Assigned weight is 0.60.

mol·kg ⁻¹ De	F.P. epression/K	ø _{273.15}	ø _{298.15}
0.00273 0.00534	0.0144	0.945	0.943
0.00334	0.02765 0.0577	0.928 0.906	0.925 0.902
0.02092	0.1458	0.876	0.873
0.05611	0.2682	0.857	0.854
0.11358	0.5319	0.840	0.837

Perreau [44]. Vapor pressure measurements. Assigned Jablczynski and Legat [42]. Freezing point depression measurements. Assigned weight is 0.02.

mol·kg ⁻¹	F.P. Depression/K	Ø _{273.15}	ø _{298.15}
0.1001	0.477	0.854	0.852
0.2013	0.970	0.864	0.863
0.3002	1.422	0.850	0.850
0.4011	1.933	0.865	0.866

- Values for higher molalities were not considered -

Jones [39]. Freezing point depression measurements. Assigned weight is 0.50.

mol·kg-1	F.P. Depression/K	ø _{273.15}	ø _{298.15}	
0.001001	0.0054	0.967	0.965	
0.002001	0.0109	0.976	0.974	*
0.002999	0.0161	0.962	0.960	k
0.003994	0.0209	0.938	0.936	
0.004988	0.0261	0.938	0.935	
0.005979	0.0309	0.926	0.924	
0.006970	0.0360	0.926	0.923	
0.008013	0.0412	0.921	0.919	
0.008999	0.0458	0.912	0.909	
0.009983	0.0507	0.910	0.907	
0.02004	0.1002	0.896	0.893	
0.02966	0.1465	0.885	0.882	
0.03910	0.1899	0.870	0.867	
0.04836	0.2310	0.856	0.853	
0.05743	0.2742	0.856	0.853	
0.07023	0.3333	0.851	0.848	
0.07887	0.3716	0.844	0.842	
0.08735	0.4108	0.843	0.840	
0.09566	0.4478	0.839	0.836	
0.10381	0.4814	0.831	0.829	

Loomis [17]. Freezing point depression measurements. Assigned weight is 0.50.

mol·kg ⁻¹ De	F.P. pression/K	ø _{273.15}	Ø _{298.15}
0.010032	0.04990	0.891	0.889
0.020069	0.09900	0.884	0.881
0.050210	0.23850	0.851	0.848
0.10055	0.46900	0.836	0.834
0.20166	0.93100	0.828	0.827

Lucasse [33]. Emf measurements. Assigned weight is

 $\label{eq:ags} \texttt{Ag(s), AgCl(s); BaCl}_2(\texttt{m}_{\texttt{ref}}) \left| \texttt{Ba}_{\texttt{x}}^{\texttt{Hg(1)}} \right| \texttt{BaCl}_2(\texttt{m});$ AgCl(s), Ag

mol·kg ⁻¹	Emf/V	$\frac{\gamma/\gamma_{ref}}{}$	
.030160	.035492	.83277	
.100400	.074225	.68345	
.297800	.109247	.57171	m _{ref} =0.0100
			mol·kg-l
.971000	.153272	.54954	
1.521000	.171888	.56869	γ _{ref} =0.7211
1.650000	.177190	.60154	TET

Table 9. Continued

Lucasse [33]. Emf measurements. Assigned weight is 0.60.

Ag(s), AgCl(s); $BaCl_2(m_{ref}) | BaCl_2(m)$; AgCl(s), Ag(s)

m mol·kg ⁻¹	Emf/V	$\frac{\gamma/\gamma_{ref}}{}$	
.019230 .038150 .079770 .179100 .242600 .392700 .597100 .812200	009273 018526 028049 039423 042784 049087 054769 059970	.902610 .794453 .681221 .620394 .568588 .532111 .515788	m _{ref} =0.0100 mol·kg ⁻¹ Y _{ref} =0.7211

- Values for higher molalities were not considered -

Pearce and Gelbach [48]. Emf measurements. Assigned weight is 0.10. $\,$

Ag(s), AgCl(s); BaCl $_2$ (m $_{ref}$) | Ba $_x$ Hg(1) | BaCl $_2$ (m); AgCl(s), Ag(s)

mol·kg ⁻¹	Emf/V	Y/Y _{ref}
.005000 .010000 .030000 .050000 .100000 .300000 1.000000 1.256000	.017746 .039793 .075666 .093071 .114239 .149591 .190865	.95089 .84247 .71232 mref=0.003 .67139 mol·kg ⁻¹ .58140 yref=0.8213 .48499 yref=0.8213

Pearce and Gelbach [48]. Emf measurements. Assigned weight is 0.10. $\,$

Ag(s), AgC1(s); $BaC1_2(m_{ref}) \mid BaC1_2(m)$; AgC1(s), Ag(s)

mol·kg ⁻¹	Emf/V	$\frac{\gamma/\gamma_{\text{ref}}}{}$	
.030000 .300000	034452 065432	.771784 .543661	m _{ref} =0.003 mol·kg ⁻¹ Yref 0.8213
.100000 1.000000	032131 063331	.704484 .585933	m _{ref} =0.010 mol·kg-1
.050000	033741	.753330	γ _{ref} =0.7211 m _{ref} -0.005 mol·kg ⁻¹ γ _{ref} =0.7824

Pearce and Gelbach [48]. Emf measurements. Assigned weight is 0.10.

Ba_Hg(1) | BaC1(m____) | BaC1_2(m) | Ba_Hg(1)

x-8(-)	ref/	x	
m	Emf/V	γ/γ_{ref}	
$mol \cdot kg^{-1}$			
.030000	042054	.696277	m _{ref} =0.003
.300000	085069	.466236	rei1
			mol·kg ⁻¹ Yref ^{=0.8213}
.100000	041034	.642425	m _{ref} =0.010
1.000000	090010	.509491	mol·kg-1
			Y _{ref} =0.7211
.050000	042054	.687306	m _{ref} =0.005
			mol·kg -1 Yref=0.7824
			^Y ref=0.7824

Drucker [47]. Emf measurements. Assigned weight is zero.

Hg(s), HgCl(s); $BaCl_2(m_{ref}) | BaCl_2(m)$; HgCl(s), Hg(s)

	Emf/V	γ/γ_{ref}	
mol·kg ⁻¹			
.001001 .002002	.071624 .061321	1.224789 * 1.136839 *	m _{ref} =0.100378
.005007 .010014 .020034	.043615 .032411 .020907	1.326083 * 1.313104 * 1.334101 *	mol·kg ⁻¹ γ _{ref} =0.4925
.050123	.009503 .057820	1.089868 * 1.455951 *	
.002002 .005007 .010014 .020034	.047516 .035512 .022908 .011704	1.351402 * 1.116763 * 1.204456 * 1.201281 *	m _{ref} =0.050123 mo1·kg ⁻¹ γ _{ref} =0.5590
.001001 .002002 .005007 .010014	.070624 .035012 .020907 .009103	.279154 * 1.184236 * 1.111132 * 1.141286 *	m _{ref} -0.020034 mol·kg ⁻¹ γ _{ref} =0.6530
.001001 .002002 .005007	.035612 .023308 .010704	1.160860 * 1.215034 * 1.041171 *	m _{ref} -0.010014 mol·kg ⁻¹ γ _{ref} =0.7210
.001001 .002002	.024808 .015005	1.120576 * 1.009338 *	m _{ref} =0.005007 mol·kg ⁻¹ γ _{ref} =0.7823

Drucker's measurements were performed at a temperature of ~ 17 °C. The transference numbers at this temperature were estimated from the data at 25 °C (see table 12) and the $(\partial t_+ ^{\circ}/\partial T)$ data of Keenan et al. [59] on CaCl $_2$. The concentration dependence of t_+ at 17 °C was assumed to be the same as at 25 °C since this was the case observed for CaCl $_2$ [59]. The densities of the solutions were calculated by letting ϱ ° = 0.99880 g·cm $^{-3}$ and assuming the concentration dependence to be the same as at 25 °C. The rigorous adjustment of $\gamma/\gamma_{\rm ref}$ at 17 °C to be 25 °C was judged to be a negligible correction and was not performed.

Ardizzone, Longhi, Mussini, and Rondinini [51]. Emf measurements. Assigned weight is 0.80.

Ag(s), AgC1(s); BaC1
$$_2$$
(m $_{\rm ref}$) | Ba $_{\rm x}$ Hg(1) | BaC1 $_2$ (m); AgC1(s), Ag(s)

mol·kg ⁻¹	γ/γ _{ref}	
0.040 0.100 0.130 0.160 0.210 0.250	1.08662 0.91464 0.85423 0.84132 0.80121 0.76833	mref=0.0630 mol·kg ⁻¹ Yref ^{=0.5362}

The above values of (γ/γ_{ref}) are averages calculated from the measurements performed at various mole fractions (x = 0.001186 to 0.004350) of barium in the mercury amalgam.

Table 9. Continued

Rush and Johnson [52]. Ultracentrifuge measurements. Assigned weight is 0.40.

Jones and Dole [49]. Emf measurements. Assigned weight is 0.70.

Ag(e) Ag(1(a)	• RoCl (m) RoC	mol·kg ⁻¹		
A5(5), A5CI(5)	, baci ₂ (m _{ref}) bac	Cl ₂ (m); AgCl(s), AgCl	0.6114	0.399
m	Emf/V	$^{\gamma/\gamma}_{ref}$	0.9266	0.400
mol·kg ⁻¹		rei	1.2500	0.412
mor kg			1.5856	0.434
.001003	.058420	1.591015		

.005015 .033271 1.375199 .010032 .022758 .025089 .009423 .100552 - .009223 .882589 - .021337 .252434 - .030820 .710648 .508677 1.034306 - .041034 .722072

Tippetts and Newton [50]. Emf measurements. Assigned weight is 0.90.

 $\begin{aligned} & \text{Hg(1), Hg}_2\text{Cl}_2(\text{s}); \ \text{BaCl}_2(\text{m}_{\texttt{ref}}) \ \big| \ \text{Ba(2 phase amalgam)} \ \big| \\ & \text{BaCl}_2(\text{m}); \ \text{Hg}_2\text{Cl}_2(\text{s}), \ \text{Hg}(\text{1}) \end{aligned}$

mol·kg ⁻¹	Emf/V	$\frac{\gamma/\gamma_{ref}}{}$
.056290 .068970 .115900 .119400 .130300 .153900 .237300 .454600 .485600 .702100 .880700 .997500 1.527100	.003501 .010504 .027009 .027809 .030610 .035912 .050017 .071524 .073525 .087530 .087630 .096433 .121041 .128744	.97273 .95208 .86946 .86169 .84913 .82494 mref=0.0500 .77146 mol·kg ⁻¹ .70363 .69381 Yref=0.5593 .69015 .55162 * .61200 * .75703 .79391

Harned [7]. Diffusion measurements. Assigned weight is $1.0.\,$

c/mol·L ⁻¹	$\frac{y_{\pm}}{}$
0.0001	0.961
0.0004	0.926
0.0010	0.888
0.0020	0.850
0.0050	0.783
0.0070	0.754

No correction was made to convert molarity to molality nor y_\pm to γ_\pm , as the differences are negligible at these concentrations.

Table 10. Osmotic and Activity Coefficient Data for BaBr₂
Rivett [18]. Freezing point depression measurements.
Assigned weight is 0.10.

mol·kg ⁻¹	F.P. Depression/K	$\frac{\emptyset_{273.15}}{}$	ø _{298.15}
0.0865	0.420	0.870	0.869
0.1873	0.909	0.870	0.868

- Values for higher molalities were not considered -

 Φ_{L} data for BaBr $_2$ is from table 12; the Φ_{C} data for BaCl $_2$ was used in the absence of any direct measurements (also see table 12).

Robinson [56]. Isopiestic measurements, reference salt is KCl. Assigned weight is 1.0.

mref .	m	<u>Ø</u>
mol·kg	mol·kg ⁻¹	-
.1253	.09092	.8472
.2178	.1557	.8502
.4035	.2800	.8669
.4355	.3012	.8690
.5932	.4008	.8867
.7140	. 4900	.8721 *
.8110	.5303	.9151
.9640	.6212	.9290
1.1200	.7098	.9508
1.4470	.8847	.9843
1.5530	.9342	1.0021
1.7720	1.0470	1.0243
2.4290	1.3560	1.1004
2.5520	1.4140	1.1123
2.5860	1.4300	1.1155
2.7720	1.5070	1.1403
3.1170	1.6600	1.1755
3.3750	1.7690	1.2036
4.1650	2.0930	1.2870
4.7360	2.3210	1.3445

Gelbach and Huppke [57]. Emf measurements. Assigned weight is 0.40.

Ag(s), AgBr(s); $BaBr_2(m_{ref}) | Ba_x Hg(1) | BaBr_2(m)$; AgBr(s), Ag(s)

m	Emf/V	γ/γ_{ref}	
mol·kg ⁻¹			
0.005	0.018306	0.96481	
0.010	0.042024	0.89267	
0.030	0.077436	0.74581	
0.050	0.094742	0.70113	$m_{mof} = 0.003$
0.100	0.116489	0.61637	ref mol·kg-1
0.300	0.153342	0.53457	-0 8330
0.500	0.172989	0.53402	$\gamma_{\text{ref}} = 0.8239$
1.000	0.198747	0.52095	*

R. N. GOLDBERG AND R. L. NUTTALL

Table 11. Osmotic Coefficient Data for BaI,

Robinson [24]. Isopiestic measurements, reference salt is KCl. Assigned weight is 1.0.

m ref	m	<u>Ø</u>
mol·kg ⁻¹	$mo1 \cdot kg^{-1}$	· ·
.1329	.0940	.8681
.2186	.1484	.8953
.4372	.2865	.9171
.7784	.4755	.9796
1.0380	.6083	1.0220
1.3540	.7565	1.0756
1.5250	.8337	1.1021
1.6960	.9038	1.1341
1.8460	.9686	1.1552
2.3130	1.1630	1.2182
2.5540	1.2550	1.2542
2.6470	1.3000	1.2580
3.1360	1.4740	1.3327
3.4120	1.5660	1.3761
3.9400	1.7480	1.4472
4.4120	1.9010	1.5131
4.7440	1.9980	1.5649

Meyer [26]. Freezing point depression measurements. Assigned weight is zero.

$\frac{m}{\text{mol} \cdot \text{kg}^{-1}}$	F.P. Depression/K	Ø _{273.15}	^Ø 298.15
0.0279	0.143	0.919	0.917 *
0.0593	0.300	0.907	0.905 *
0.1022	0.511	0.896	0.895 *

⁻ Values for higher molalities were not considered -

 $[\]Phi_L$ data for BaBr $_2$ and Φ_C data for BaCl $_2$ was used in the absence of any direct measurements (see table 12).

Table 12. Auxiliary Data Used in Calculations of Osmotic and Activity Coefficients

Relative Apparent Molal Enthalpy Data

$$\Phi_{L}/J \cdot mo1^{-1} = \sum_{i=1}^{n} \alpha_{i} m^{i/2}$$

System	$\frac{\alpha_1}{2}$	$\frac{\alpha_2}{2}$	<u>a</u> 3	$\frac{\alpha_4}{4}$	$\frac{\alpha_5}{}$	$\frac{\alpha}{6}$
MgCl ₂	10479.7	-20703.7	31055.9	-23606.1	9041.39	-1317.91
CaCl ₂	9703.6	-16833.1	21521.9	-15011.1	5463.78	- 763.778
CaBr ₂	10291.7	-35241.8	138565.0	-358111.0	372514.0	-
SrCl ₂	10423.0	-31744.7	146405.0	-545729.0	1.03420x10 ⁶	-731278.0
SrBr ₂	9911.78	-26154.2	42397.1	-27852.2	-	-
BaCl ₂	9946.6	-20223.5	27330.0	-22874.1	10439.6	-1968.45
BaBr ₂	10303.9	-33103.0	84282.3	-139133.0	104683.0	

The above coefficients were obtained by a least squares fit to the evaluated Φ_L data given in ref. [60], and which, in the low concentration region, appear to be largely based on the results of Lange and Streeck [61]. It should be noted that in our least squares fit that we have not fixed the value of α_1 to a theoretical value.

Apparent Molal Heat Capacity Data

$$\phi_{c}/J \cdot mol^{-1} \cdot K^{-1} = \phi_{c}^{\circ} + \sum_{i=1}^{n} \beta_{i} m^{i/2}$$

	0		
System	<u>Ф</u> с	<u>β</u> 1	$\frac{\beta_2}{2}$
MgCl ₂	-257.7	88.75	~
CaCl ₂	-276.3	102.2	3.28
SrCl ₂	-282.0	150.38	-62.6
BaCl ₂	-292.0	150.38	-38.3

The data for MgCl $_2$ is based on an empirical fit to the calorimetric data of Rutskov [62], Vasileev et al. [63], and Perron et al. $_1^2$ [64]. For CaCl $_2$ data from Perron et al. $_1^2$ [64] were combined with data given by Lewis and Randall and Pitzer and Brewer $_1^2$ [3]. The other coefficients are based entirely on the calorimetric measurements of Perron et al. $_1^2$ [64]. As in the case of the fit of the $_1^2$ data, we have not fixed the value of $_1^2$ to a theoretical value for either MgCl $_2$ or CaCl $_2$.

Table 12. Continued

 $t_{+} = t_{+}^{\circ} + \sum_{i=1}^{Transference} \underbrace{\begin{array}{c} Number \ Data \\ Number \ Data \\ i \end{array}}_{per \ cubic \ decimeter}$ where c is the concentration in units of moles per cubic decimeter

System	t [°] +	<u>A</u> 1	<u>A</u> 2	<u>A</u> 3	<u>A</u> 4
MgC1 ₂	0.4100	-0.1672	0.0034	-	-
${\tt BaCl}_2$	0.4542	-0.1791	0.2859	0.3812	0.1727

The coefficients of the transference number equation for $BaCl_2$ are based on a least squares fit to the transference numbers reported by Jones and Dole [49] and a value of t_{+}° = 0.4547. This latter value was calculated using the Λ° values for ${\tt BaCl}_2$ and ${\tt CaCl}_2$ given by Harned and Owen [65] together with a t_{+}° = 0.4381 for CaCl₂, which is an average of the data of Keenan et al. [59] and of Longsworth [66]. Earlier, and less precise, transference number were reported by several different workers [67-70]; see figure 16 for a summary of the available data from the literature.

For ${\rm MgCl}_2$, ${\rm t}_+^\circ$ was calculated via a scheme similar to that used in obtaining ${\rm t}_+^\circ$ for ${\rm Ba}^{2+}$ in aqueous BaCl_2 . The coefficients given above are based on a fit to this t_+° value and data from three other sources [71-73]. We note that the experimental values of the transference numbers for this system are not very precise.

Density Data

 $\rho/g \cdot ml^{-1} = \rho^{\circ} + B_1 c + B_2 c^{3/2} + B_3 c^2$ where c is the concentration in units of moles per cubic decimeter.

System	ρ°	$\frac{^{B}1}{}$	$\frac{B_2}{2}$	<u>B</u> 3	References
${\rm MgCl}_2$	0.99707	0.0808	-0.0077	0.0005	[63,64,74,75]
SrCl ₂	0.99707	0.0700	-0.0022	-	[74]
BaC1 ₂	0.997074	0.184762	-0.006758		[76]

Osmotic Coefficient Data

The evaluated osmotic coefficients given by Hamer and Wu [77] were used for NaCl and KCl. We use the evaluation of Staples and Nuttall for both CaCl, (note here that we have used the coefficients appropriate to their eq. 40) and $\mathrm{H_{2}SO}_{\mathrm{L}}$. Although the evaluation on sulfuric acid is still tentative, the calculated osmotic coefficients are in good agreement with a recent evaluation [78] of that data.

Additional auxiliary data follow:

$$\Delta H_{fus}^{\circ} = 6008 \text{ J} \cdot \text{mol}^{-1}$$
 [3]

$$\Delta C_{fus}^{\circ} - 38.1 \text{ J} \cdot \text{mol}^{-1} \text{ K}^{-1}$$
 [3]

$$\Delta b = -0.197 \text{ J} \cdot \text{K}^{-2} \cdot \text{mol}^{-1}$$
 [3]

$$T_{fus} = 273.15 \text{ K for water}$$
 [2a]

$$R = 8.31441 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$$
 [79]

$$F = 96484.56 \text{ C} \cdot \text{mol}^{-1}$$
 [79]

$$A = 1.17625 \text{ kg}^{1/2} \cdot \text{mol}^{-1/2}$$
 [1]

$$P^{\circ} = 3168.6 \text{ Pa} (23.7627 \text{ torr})$$
 [80]

$$B_{T} = -992 \text{ cm}^{3} \cdot \text{mol}^{-1} \text{ at } 25 \text{ °C}$$
 [81]

Table 13a. Coefficients of Equations (1a) and (1b)

avetem	В :	C	D	·E	. F	· G	н	I
$u_{\rm E}c1_2$	1.745	0.30915		-2.3151_{39694} $\times 10^{-2}$	1.2806 ₄₁₈₁₃ ×10 ⁻³	-	. .	
MEBC 2	1.664936670	0.6114054954	0.1095425731	-7.901_{867257} $\times 10^{-3}$	-	-	* - *.	
tigl ₂	1.730883515	0.740885433	0.134564402	-9.496 ₇₆₀₅₈₈ ×10 ⁻³		<u>-</u> ·	-	
CnCl ₂ [1]	1.600017243	0.2566899947	.15105 ₁₇₈₂₄ -3.7	705 ₅₀₃₀₉ ×10 ⁻² 9.	90578 ₂₆₅₈ ×10 ⁻³ -1	694879 ₈₃₃₆ ×10 ⁻³ 1	.34959 ₉₅₃₀ x10 ⁻⁴ -3.9	207 ₅₄₁₃ ×10 ⁻⁶
		0.3244255774		$-5.6619_{08925} \times 10^{-2}$	1.21564 ₉₉₇₇ ×10 ⁻²	-1.29303 ₀₆₃₇ x10	3 4.8494 ₂₆₅₄₅ ×10 ⁻⁵	
			9.28 ₉₄₀₆₀₀₅ ×10 ⁻²	-	-	-	-	
SrC1 ₂	1.498 397739	0.2633867503	7.973 ₃₁₇₉₆₃ ×10 ⁻²	-5.39 ₈₄₀₈₆₆₁ ×10 ⁻³	-	-	-	
SrBr ₂	1.779766562	0.2554248269	0.1496435300	-1.46 ₂₃₉₇₆₆₉ ×10 ⁻²	-	-	-	
		0.4205813750	0.1615 ₉₉₆₀₇₇	-1.62 ₃₃₃₃₅₄₉ ×10 ⁻²	-	. -	-	
		0.2729656762	-					
BaBr ₂	1.513071093	0.3427681720	2.86 ₉₆₆₁₀₇₉ ×10 ⁻²	-	-			
BaI ₂	1.807342728	0.5135200156	6.29 ₅₈₅₆₂₇₃ x10 ⁻²	_	-	-	-	
	* .							

$$\ln \gamma = -\frac{A_1}{1 + E} \frac{1^{1/2}}{1/2} + C_m + D_m^2 + E_m^3 + \dots$$
 (1a)

$$\phi = 1 + \frac{A_1}{B^3 I} \left\{ -(1 + B I^{1/2}) + 2 \ln (1 + B I^{1/2}) \right.$$

$$\left. + 1/(1 + B I^{1/2}) \right\} + \frac{1}{2} \operatorname{Cm} + \frac{2}{3} \operatorname{Dm}^2 + \frac{3}{4} \operatorname{Em}^3 + \dots$$
(1b)

 $A_1 = 2.3525 \text{ mol}^{-1/2} \cdot \text{kg}^{1/2}$ for the above systems.

Table	13b.	Standard	Deviations	of	the	Coefficients	of	Equations	(1a)	and	(16)	

System	Bx10 ³	Cx10 ³	Dx10 ³	Ex10 ³	Fx10 ³	G×10 ³	Hx10 ³	1x10 ³
MgCl ₂	31.2	17.4	9•6	2.26	0.182	-	-	-
MgBr ₂	25.7	11.3	4.1	01. 45	, -	-	-	_
MgI ₂	57.8	23.1	8.53	1.02	-	-	-	-
CaCl ₂ [1]	8.7	10.8	10.7	5.3	1.4	0.2	0.01	0.0003
CaBr ₂	151	92.3	66.3	24.3	4.5	0.41	0.014	· <u>·</u> .
CaI ₂	47.9	21.8	7.32	-	-	<u>-</u>	- · · · · · · · · · · · · · · · · · · ·	~
SrCl ₂	20.0	16.3	8.16	1.30	-	-	-	·_ ·
SrBr ₂	47.0	34.4	26.0	6.72	-	-	-	-
SrI ₂	47.8	30.9	23.8	6.36	-	-	-	-
BaCl ₂	6.4	2.9	_ ′		-	-	· <u>-</u>	· <u>-</u> · .
BaBr ₂	15.5	10.4	3.47	-	· -	-	-	-
BaI ₂	70.9	27.9	9.15	-	-	-	-	-

R. N. GOLDBERG AND R. L. NUTTALL

Table 14a. Coefficients of Equations (2a) and (2b)

System	^B 1	^B 2	^B 3	B ₄	^B 5	В ₆	в ₇	В8	^B 9
MgCl ₂	1.517737348	7.75759	4 ⁻⁴ ·13444 ₁₃₁₆	1.920982603	-0.526958746	1 ^{6.00945} 1209 ^{×1}	0 ⁻² -	-	-
MgBr ₂	1.511242175	8.62193341	-5.33850 ₀₈₁₁	2.688646717	-0.7594906226	0.087067 ₅₈₆₃	2 -	-	-
MgI ₂	2.7657	5.229659380	-1.100402869	0.1172260761	<u>-</u>	-	-	-	-
CaCl ₂ [1]-1.3981 ₉₂₄₇₆	21.29097	-33.10951 ₈₅₆	36.59996012	-25.677586 ₀₁	11.33499774	-3.0486152 ₀₀ 0.45	508931 ₉₂	-2.883352 ₃₆₉ ×10 ⁻²
CaBr ₂	2.437753200	4.397578906	1.197813134	-2.397370473	3 1.301745 ₅₅₉	-0.3162767000	2.87269 ₇₃₉₅ ×10 ⁻²	· _	-
CaI ₂			-1.9632 ₉₅₁₀₅			-	-	~	-
SrCl ₂	-1.291362164	19.09848118	-25.61053236	23.82305	-13.07326267	3.858152 ₅₂₇	-0.472723 ₀₅₂₂		_
	1.880490724	6.299407207	-2.0020 ₅₇₈₄₅	0.3639314013	-	-	-	-	
SrI ₂	2.330863656	5.837165577	-1.695574538	0.2942	3 -	-	-	-	
BaCl ₂ -	3.6840		-54.2629 ₁₉₁₁	54.7580 ₆₁₁₄ -	-28.2778 ₄₀₂₅	5.81846 ₇₁₇₃	-	-	
	1.113481407	18.3148 ₅₁₇₂	-22.7551	18.3570 ₁₆₈₄ -	-7.75533 ₅₈₈₉	1.317698451	-	-	
	1.824922230	7.2509	-3.0420 ₈₁₁₅₈	0.695254654	7 -	-	=	-	

$$\ln \gamma = -A_1 I^{1/2} - A_2 I \ln I + \sum_{i=1}^{N} B_i m^{(i+1)/2}$$

$$\phi = 1 - \frac{A_1}{3} I^{1/2} - \frac{A_2}{2} I \left[\ln I + \frac{1}{2} \right] + \sum_{i=1}^{N} B_i \frac{(i+1)}{(i+3)} m^{(i+1)/2}$$

$$A_1 = 2.3525 \text{ mol}^{-1/2} \cdot \text{kg}^{1/2} \text{ and } A_2 = 0.92238 \text{ mol}^{-1} \cdot \text{kg for the above systems}$$

Table 14b. Standard Deviations of Coefficients of Equations (2a) and (2b)

System	^B 1	^B 2	В3	в ₄	в ₅	В6	в ₇	В8	89
MgCl ₂	0.733	0.424	0.555	0.358	0:113	0.014	-	-	-
${\tt MgBr}_2$	0.163	0.539	0.73	0.49	0.161	0.0206	-	-	-
MgI ₂	0.077	0.131	0.0774	0.0153	-	-	-	-	-
CaCl ₂ [1]	0.08	0.50	1.2	1.6	1.3	0.58	0.16	0.025	0.002
CaBr ₂	0.492	1.61	2.25	1.65	0.661	0.137	0.0116	-	-
CaI ₂	0.169	0.442	0.404	0.124		-	-	-	-
src1 ₂	0.314	1.86	4.38	5.25	3.4	1.13	0.15	-	-
SrBr ₂	0.0981	0.249	0.221	0.0657	-	_	-	· <u>-</u>	-
SrI ₂	0.0927	0.238	0.213	0.064		-	-	-	-
${\tt BaCl}_2$	0.309	2.09	5.36	6.54	3.83	0.866	-	-	
BaBr ₂	0.257	1.45	3.20	3.43	1.78	0.356	-	-	-
BaI ₂	0.193	0.484	0.429	0.128	-	-	-	-	-

Table 15a. Coefficients of Equations (3a) and (3b)

$$\ln \gamma = - A_1 I^{1/2} + \sum_{i=1}^{N} B_i m^{(i+1)/2}$$

$$\phi = 1 - \frac{A_1}{3} I^{1/2} + \sum_{i=1}^{N} B_i \frac{(i+1)}{(i+3)} m^{(i+1)/2}$$

 A_{γ} = 2.3525 mol^{-1/2}·kg^{1/2} for the above systems.

Table 15b. Standard Deviations of the Coefficients of Equations (3a) and (3b)

System	^B 1	B ₂	B ₃	B ₄	^B 5	В6	^B 7	B ₈
MgC1 ₂	0.439	2.28	5.18	6.42	4.64	1.95	0.442	0.042
MgBr ₂	0.285	1.26	2.36	2.31	1.23	0.338	0.0375	- ,
MgI ₂	0.216	0.54	0.525	0.225	0.0356	-	-	-
CaCl ₂ [1]	0.047	0.23	0.45	0.46	0.27	0.09	0.02	0.001
CaBr ₂	0.48	1.58	2.2	1.61	0.645	0.134	0.0113	
CaI ₂	0.401	1.54	2.30	1.53	0.377	-	-	-
SrCl ₂	0.172	0.764	1.33	1.11	0.448	0.0697	-	-
SrBr ₂	0.222	0.82	1.18	0.748	0.176		<u>`</u> _	-
SrI ₂	0.190	0.718	1.06	0.696	0.169	-	-	-
BaC1 ₂	0.146	0.716	1,26	0.944	0.256	<u>-</u>	· -	_
BaBr ₂	0.269	1.51	3.36	3.6	1.86	0.373	-	-
Bal,	0.489	1.87	2.77	1.82	0.441	-	-	-

Table 16. Standard Deviations for Observations of Unit Weight for \emptyset or $\ln \gamma$

Equation

System	equations (1)	equations (2)	equations (3)
MgCl ₂	0.00724	0.00749	0.00734
MgBr ₂	0.00441	0.00431	0.00526
MgI ₂	0.00889	0.00928	0.0108
CaCl ₂ [1]	0.0045	0.0054	0.0048
CaBr,	0.0140	0.0144	0.0141
CaI,	0.00545	0.00578	0.00549
SrCl ₂	0.00937	0.00922	0.00949
SrI ₂	0.00267	0.00300	0.00232
BaCl ₂	0.00923	0.00960	0.00933
BaBr ₂	0.00426	0.00442	0.00463
BaI ₂	0.00668	0.00597	0.00607

Table 17. Recommended Values for the Mean Activity Coefficient and Osmotic Coefficient of ${\rm MgCl}_2$ in ${\rm H}_2{\rm O}$ at 298.15 K

m/mol·kg ⁻¹	γ	ø	a _w	ΔG ^{ex} /J•kg ⁻¹
	·			
.001	•8893	•9627	•999948	-1.
•002	•8522	•95@1	•999897	-2.
• Ø Ø 3	•8265	•9415	•999847	-3•
• 204	•8065	•9347	• 999 798	-4.
•005	•7899	•9292	•999749	-6.
• 0 2 6	•7758	• 9245	•999700	-8.
• Ø Ø 7	•7634	•9224	•999652	-12.
• ØØ8	•7525	•9168	•999604	-12.
• 009	• 7 426	•9135	•999556	-14.
.010	•7336	•9126	•999508	-16.
•020	•6721	•8916	•999037	-43.
• 030	•6352	•8313	•998572	-75.
• 240	•6094	• 8749	•998110	-110.
•052	• 5899	•8708	•997650	-148.
• 267	• 5745	•8681	•997189	-188.
.878	•5619	•8663	•996728	-231.
• 282	•5513	•8653	•996266	-274•
.090	• 5424	•8648	•995802	-319•
•100 •200	•5347	•8648 3768	•995337	-365.
• 3 Ø Ø	• 4935	•376@	•990576	-866.
•400	•4827 •4796	• 8963	•985573	-1403.
•5ØØ	• 4855	•9206 •9475	•98Ø295	-1949 •
•6ØØ	• 4962	•9765	•974721	-2492•
.700	•5111	1.0073	•96833Ø	-3022.
•80Z	•5296	1.0073	•962608 •956038	-3532•
.900	• 5515	1.0738	•949111	-4019 •
1.22	• 5769	1.1292	•941815	-4477. -4923.
1.250	•6561	1.2034	•921921	-5809•
1.500	.7622	1.3047	•899629	-6458•
1.752	•8943	1.4123	•874965	-6819•
2.000	1.0655	1.5252	·848Ø29	-6866.
2.252	1.2828	1.6421	818987	-6577•
2.500	1.5584	1.7629	•788056	-5934.
2.750	1.9076	1.8865	•755495	-4922.
3 • ØØØ	2.3498	2.2125	•721589	-3529•
3.250	2.9103	2.1403	•686642	-1742.
3.500	3.6211	2.2696	•650952	446.
3.750	4.5231	2.4888	-614828	3045.
4.000	5•6692	2.5313	•578552	6060.
4.250	7 • 1273	2.6634	•542392	9498•
4.500	8•9854	2.7962	•526587	13365•
4.750	11.3582	2.9299	-471354	17664.
5 • 000	14.3960	3 • Ø 6 4 5	436875	22402.
5.250	18.2979	3.2003	423329	27583•
5.500	23.3290	3.3377	•370786	33212.
5.750	29.8468	3 • 4771	•339410	39297•
5 • 8 4 Ø	32.6458	3.5279	•328412	41622.
5.925	35.5476	3.5762	.318175	43832•

_ <u>m</u>	σ(φ)	σ(lny)	_σ(γ)
$mol \cdot kg^{-1}$			
6.00	.0049	•ØØ76	.2921
3.20	.0015	.0055	· @ 13 @
1.00	.0012	.0050	• 3829
.10	.2214	.0243	• 0023
.01	.0005	.0211	• 0073

Table 18. Recommended Values for the Mean Activity Coefficient and Osmotic Coefficient of $MgBr_2$ in H_2O at 298.15 K

	mgbr ₂ in h ₂ 0 at 296.13 k					
m/mol·kg	1 γ	Ø	a W	ΔG ^{ex} /J·kg ⁻¹		
•001	•8892	•9627	•999948	-1.		
.002	-8520	•9500	•999897	-5•		
.003	•8262	•9413	•999847	-3.		
.004	•8062	•9346	•999 7 98	-4.		
•005	• 7896	•9290	•999749	-6•		
.006	•7755	•9243	.999700	-8•		
.007	•7631	•9203	•999652	-10.		
• 008	•7522	•9167	•999604	-12.		
.009	•7423	•9135	•999556	-14.		
.010	•7334	.9107	•999508	-16.		
•020	•6724	•8922	•999036	-43•		
•030	• 6363	•8827	•998570	-75•		
.040	•6114	•8773	•998105	-110.		
•050	• 5928	•8742	•997640	-148 •		
-060	•5783	•8726	•997174	-187.		
•070	• 5667	•8720	.996707	-229•		
• Ø8 Ø	• 5572	•8721	•996236	-272•		
•090	• 5492	•8728	•995764	-316•		
-100	• 5426	•8740	•995288	-361 •		
• 200	•5123	•8976	•990345	-842•		
•300	•5109	•9303	•985030	-1343•		
-400	• 5218	•9666	•979320	-1836•		
• 500	• 5405	1.0051	•973205	-2307• -0740		
• 600	• 5651	1.0451	•966676	-2749 •		
• 700	• 5949	1.0866	•959725	-3154·		
-800	•6298	1.1292	•952348 •944539	-3520• -3841•		
•900	• 6698	1.1730	•936296	-4115.		
1.000	•7151	1 • 21 79 1 • 3345	•913786	-4576.		
1.250	•8541	1.4570	•888588	-4691 •		
1.500	1 • Ø 3 7 2 1 • 2 7 6 9	1.5849	•860790	-4432		
1.750 2.000	1.5902	1.7177	•83Ø548	-3775•		
2.250	2.0006	1.8548	.798074	-2701 •		
2.500	2.5390	1.9958	•763634	-1191.		
2.750	3.2471	2.1402	•727541	769•		
3.000	4.1804	2.2873	690140	3192•		
3.250	5.413	2.4367	•6518	6091 •		
3.500	7.042	2.5879	•6129	9475.		
3.750	9.199	2.7403	• 5738	13352•		
4.000	12.054	2.8934	•5350	17728 •		
4.250	15.831	3.0466	• 49 67	22610.		
4.500	20.823	3.1994	•4593	27999•		
4.750	27 • 408	3.3512	.4230	33899•		
5.000	36.074	3.5015	•3882	40310.		
5.250	47.441	3 • 6498	•3550	47232.		
5.500	62 • 288	3.7954	•3236	54661 •		
	(sat) 70 • 166	3 • 8 5 8 5	•3104	58089•		

$\frac{m}{mo1 \cdot kg} - 1$	σ(φ)	$\sigma(\ln\gamma)$	σ(γ)
5.6	0.0036	0.0067	0.4651
3.0	0.0025	0.0063	0.0264
1.0	0.0012	0.0057	0.0041
0.10	0.0014	0.0040	0.0022
0.01	0.0004	0.0010	0.0007

Table 19. Recommended Values for the Mean Activity Coefficient and Osmotic Coefficient of MgI $_2$ in H $_2$ O at 298.15 K

	¹¹⁸¹ 2	111 11 ₂ 0 at 290.		
m/mol·kg ⁻¹	γ	Ø	a w	Δg ^{ex} /J·kg ⁻¹
•001	•8896	•9629	.999948	-1.
.002	.8528	•9505	•999897	-2.
•003	.8274	•9420	•999847	-3•
• ØØ4	.8076	•9354	•9 997 98	-4.
•005	•7913	•9301	•999749	-6.
•006	•7775	•9256	.999700	-8.
•007	•7654	•9217	•999651	-10.
•008	• 7547	•9183	•999603	-12.
•009	•7451	•9152	•999555	-14.
•010	•7363	•9125	•999507	-16.
•020	•6772	•8955	•999033	-42.
•030	• 6426	•8872	•998563	-73•
• 040	·619Ø	•8829	•998093	-108.
• Ø 5 Ø	•6016	•8808	•997623	-145.
•060	• 5883	•8802	•997150	-183•
•070	• 5777	•8805	•996674	-223.
•080	• 5692	•8815	•996196	-265.
•090	• 5623	•8831	•995714	-307•
•100	• 5565	-8851	•995228	-350 •
•200	• 5353	•9169	•990138	-806. -1267.
• 300	• 5430	•9 57 5 1•0018	•984595 •978576	-1708
• 400	• 5641	1.0484	•972068	-2116.
• 500	•5942 •6318	1.0968	•965059	-2480.
•600 •700	•6768	1.1468	•957542	-2797.
•800	•7291	1.1983	•949509	-3060
•900	.7892	1.2512	•940956	-3265•
1.000	•8579	1.3054	•931879	-3411•
i . 250	1.0736	1.4465	•906903	-3490.
1.500	1.3687	1 • 5949	•878713	-3135.
1.750	1.7724	1.7501	.847449	-2314.
2.000	2.3264	1.9115	•813334	-999.
2.250	3.0900	2.0784	•776671	833.
2.500	4.1475	2.2502	•737831	3203.
2.750	5.6184	2.4264	• 697239	6128 •
3.000	7 • 6727	2.6062	• 655362	9626.
3.250	10.552	2.7891	•6127	13710.
3.500	14.598	2.9743	• 5697	18391 •
3.750	20.296	3.1613	• 52 69	23681 •
4.000	28 • 330	3.3493	· 4848	29588•
4.250	39 • 665	3.5377	•4437	36117.
4.500	55 • 649	3.7260	• 4041	43274.
4.750	78 • 1 63	3.9133	•3662	51062 •
5.000	109.808	4.0991	•3303	59482.
5.010	111.311	4.1065	• 3289	59832.

$\frac{m}{mo1 \cdot kg} - 1$	<u> σ(φ)</u>	σ(lnγ)	<u>σ(γ)</u>
5.0	0.0074	0.0135	1.4814
3.0	0.0039	0.0126	0.0967
1.0	0.0022	0.0119	0.0102
0.1	0.0030	0.0088	0.0049
0.01	0.0010	0.0022	0.0016

Table 20. Recommended Values for the Mean Activity of Coefficient and Osmotic Coefficient of CaCl $_2$ in H $_2$ O at 298.15 K [1]

	or cacr	2 ^{111 11} 20 at 290.	13 7 (1)	
m/mol·kg ⁻¹	Υ	Ø	a w	ΔG ^{ex} /J•kg ⁻¹
•001	•8885	•9623	•999948	-1•
•005	•85Ø8	•9493	•999897	-2.
•003	·8245	•9403	.999848	-3.
.004	·8Ø39	•9332	•999798	- 5•
•005	• 78 69	•9274	.999749	-6•
•006	.7724	.9224	•999701	-8•
•007	•7596	•9181	•999653	-10.
•008	•7483	•9142	•999605	-12•
•009	•7380	•9107	•999557	-14.
•010	•7287	•9076	•999510	-17.
•020	• 6644	•8866	•999042	-44.
•030	•6256	•8748	•998583	-77•
.040	• 5982	-8671	•998127	-113.
•050	•5773	-8619	.997674	-153-
•060	• 56.07	•8582	•997221	-195•
•070	• 5470	•8555	•996769	-239•
•080	• 5355	•8536	•996316	-285•
•090	•5256	•8524	•995863	-332 • -380 •
• 100	•5171	•8516	•995408	
•200	•4692	•8568	•990782	-912. -1492.
•300	• 4508	•8721	•985960 •980912	-2091
•400	• 4442	•8915 •9134	•975621	-2695•
• 500	• 4442 • 4486	•9370	•970072	-3296•
•600 •700	• 4564	•9621	•964256	-3886.
•800	•467Ø	•9884	•958163	-4461 •
•900	·48Ø1	1.0159	•951785	-5017•
1.000	•4956	1.0444	.945117	-5551 •
1.250	.5440	1.1198	.927142	-6773•
1.500	.6070	1.2004	•907271	-7805•
1.750	• 68 61	1.2857	·885497	-8621 •
2.000	.7842	1.3754	•861853	-9199•
2.250	•9049	1 • 4690	•836413	-9519•
2.500	1.0529	1.5660	•809293	-9565•
2.750	1.2339	1.6661	• 780655	-9323•
3.000	1 • 4550	1.7685	•750702	-8780•
3.250	1.724	1.8728	•7197	-7926•
3.500	2.052	1.9781	• 68 79	-6752•
3.750	2.448	2.0836	• 6555	-5252•
4.000	2.926	2 • 1885	• 6231	-3421 •
4.250	3.497	2.2918	• 5907	-1260. 1233.
4.500	4.176	2.3926	•5588 •5277	4054
4.750	4•976 5•907	2•4898 2•5826	• 4976	7198
5•000 5•250	6.980	2.6701	• 4688	10656
5.500	8 • 199	2.7515	• 4414	14419•
5.750	9.565	2.8260	•4155	18475.
6.000	11.072	2.8932	•3913	22811.
6.250	12.709	2.9526	-3689	27410.
6.500	14.461	3.0041	• 3481	32258 •
6.750	16.304	3.0476	• 3290	37338 •
7.000	18.215	3.0833	•3115	42632•
7.250	20.171	3.1117	• 29 54	48124.
7 • 462 (sat)	21.847	3.1304	• 2830	52925•
7 • 500	22.148	3.1332	• 28 Ø8	53798 •
7.750	24.132	3 • 1 488	•2674	59 638 •
8.000	26.111	3.1592	•2551	65632•
8 • 250	28 • 09	3.166	•2438	71766•
8 • 500	30.07	3 • 1 69	•2332	78031 •
8 • 750	32.07	3 • 171	•2233	84419•
9.000	34.11	3 • 171	•2138	90924.
9.250	36.23	3.172	. 2048	97542• 104272•
9 • 500	38 • 43	3 • 173	•1961 •1877	111110.
9•750 10•000	40.73 43.12	3 • 175 3 • 176	•1796	118055•
	70-16	0-170		

For standard deviations of calculated values, see ref. [1].

Table 21. Recommended Values for the Mean Activity Coefficient and Osmotic Coefficient of $^{\rm CaBr}_2$ in $^{\rm H}_2{\rm O}$ at 298.15 K

	CaBr ₂ in H ₂ O at 298.15 K						
m/mol·kg	Υ		Ø		a w	Δι	G ^{ex} /J·kg ⁻¹
•001	•889	6	.9629		•999948		-1.
.002	•852	27	.9504		•999897		-5.
•003	•827	12	.9418		•999847		-3.
.004	-807		.9352		•999798		-4.
•005	.796		.9297		.999749		-6.
•006	•776		.9251		.999700		-8•
.007	•764		.9211		.999652		-10-
•008	•753		.9176		.999603		-12.
•009	.744		.9144		•999555		-14.
.010	•735		.9116		.999507		-16.
.020	•674		-8932		•999035		-43.
•030					•998569		-74.
.040	• 638 • 613	30	•8834 •8774		·998105		-109.
•050	• 594	40	•8736		.997642		-147.
• 0 60	• 578		.8712		.997179		-186.
.070	• 56		-8698		.996715		-558 •
.080	• 55		-8690		.996250		-271.
.090	• 54		•8688		.995783		-315.
-100	• 540		-8690		.995315		-360 •
.200	• 50		.8822		.990509		-851.
•300	• 49		.9044		.985443		-1374.
• 400	• 49		.9304		.980086		-1903.
• 500	.499		.9590		.974417		-2426.
• 680	-51		•9896		.968420		-2932.
.700	• 53		1.0218		.962082		-3417.
.800	• 55	11	1.0554		•955394		-3875.
.900	• 57	56	1.0903		.948346		-4302.
1.000	• 60	36	1.1265		.940935		-4695.
1.250	• 689	97	1.2215		.920793		-5513.
1.500	•80	14	1.3224		.898339		-6066.
1.750	• 94	41	1.4287		.873605		-6328 •
2.000	1.12	55	1.5400		.846657		-6273•
2.250	1.35	61	1.6561		.817593		-5881.
2.500	1 • 65	Ø4	1.7771		•786534		-5134.
2.750	2.02	77	1.9031		•753631		-4012.
3.000	2.51	43	2.0341		.719069		-2500.
3.250	3.14	6	2.1700		• 6831		-578•
3 • 500	3.97	Ø	2.3110		• 6459		1767.
3.750	5.05	3	2.4567		.6078		4554.
4.000	6 • 48	2	2.6070	•	•5692		7796.
4.250	8.37	6	2.7618		• 5303		11508.
4.500	10.89	3	2.9189	ı	.4917		15703.
4.750	14.24	4	3.0790	ı	• 4536		20392.
5.000	18.70	5	3.2408		•4165		25583.
5.250	24.63	5	3.4029		• 38 Ø 8		31284.
5.500	32.48	7	3.5641		•3467		37498 •
5.750	42.82	3	3.7228		•3145		44227.
6.000	56.32	1	3.8776	5	•2844		51467.
6.250	73.76	3	4.0269)	•2566		59213.
6.500	96.00	9	4.1690	}	•2318		67456.
6.750	123.95	3	4.3023	}	.2081		76181.
7.000	158•43	4	4.4254		·1875		85372.
7.250	200.14	ب	4.5369	1	• 169A		95008.
7 • 500	249 • 51		4 • 6358		.1527		105068.
7 • 660 (sa	t) 285 • 19	3	4.6921		•1433		111715.
7.75%	306-63		4.7213		•1384		115523.
8.000	371.20	S	4.7430)	·1259		126349.
४∙ 250	442.57		4.851		• 1150		137515.
8 • 500	519.93		4.897		.1055		148994.
8.750	602 • 63		4.931		.0971		166760.
9.000	690.66		4.956		•0898		178790
9.210	769 • 53		4.973		.0841		183085.
			_	-/0			
	m -1	$\sigma(\phi)$		$\sigma(\ln\gamma)$		$\sigma(\gamma)$	_
	l·kg -	0.0125		0.000		00 000	.
	9.2	0.0135		0.0264		20.222	
	7.0	0.0049		0.0231		3.665	1
	5.0	0.0060		0.0224		0.420	
	3.0	0.0048		0.0235		0.0590	
	1.0 0.1	0.0044		0.0219		0.0132	
	0.01	0.0062 0.0023		0.0193		0.0104	
		0.0023		0.0054		0.0039	

J. Phys. Chem. Ref. Data, Vol. 7, No. 1, 1978

Table 22. Recommended Values for the Mean Activity Coefficient and Osmotic Coefficient of CaI $_2$ in ${\rm H}_2{\rm O}$ at 298.15 K

	2			
m/mol·kg ⁻¹	Υ	Ø	a w	ΔG ^{ex} /J·kg ⁻¹
•001	•8897	• 9 629	•999948	-1•
•002	•8529	•9505	•999897	-2.
•003	.8275	•9420	•999847	-3•
•004	.8077	•9355	•999798	-4.
•005	•7914	•9301	•999749	-6•
•006	•7776	•9256	•999700	-8•
•007	•7655	•9217	•999651	-10.
•008	•7547	•9182	•999603	-12.
•009	•7451	•9152	•999555	-14.
.010	•7363	•9124	•999507	-16.
•020	• 67 6 8	•8950	•999033	-42.
•030	• 6418	•8863	•998564	-74.
-040	-6177	-8815	.998096	-108 -
•050	• 5998	•8788	•997628	-145•
• Ø 6Ø	• 58 59	•8776	•997158	-184
•070	• 5748	•8773	•996687	-224•
.080	-5657	.8777	.996212	-266•
•090	• 5581	•8786	•995735	-309•
-100	• 5518	•8 7 99	•995256	-353•
•200	• 5237	•9042	•990274	-820•
•300	• 5234	•9365	•984930	-1303-
• 400	• 5350	•9720	•979206	-1777•
• 500	• 5541	1.0093	•973094	-2230• -2653•
• 600	•5790	1.0481	•966584	
•700	•6089	1.0881	•959669	-3041 •
•800	• 6438	1 • 1294	•952342	-3390•
.900	• 6837	1.1718	•944596	-3695• -3954•
1.000	•7288	1.2154	•936425 •927825	-4165•
1.100	•7795	1.2601	•927625 •918 7 91	-4324•
1.200	•8364	1.3059	•916791	-4430•
1.300	•9001	1.3530	•899411	-4480•
1 - 400	•9713	1 • 4011 1 • 4505	•889Ø63	-4472•
1.500	1 • 0 5 0 8 1 • 1 3 9 6	1.5010	•878277	-4406.
1 • 600 1 • 700	1.1396	1.5526	•867054	-4277•
1.800	1.3502	1 • 6055	•855400	-4086.
1.000	1.4747	1.6595	•843318	-3830•
1.900	1.4946	1.6677	•841469	-3786.
10213	4 4 4 2 4 0	1.0011	-0	0.00

$\frac{m}{mo1 \cdot kg}$ -1	σ(φ)	σ(lny)	$\sigma(\gamma)$
2.0	0.0032	0 .0 094	0.0152
1.0	0.0019	0.0080	0.0058
0.1	0.0023	0.0068	0.0038
0.01	0.0008	0.0018	0.0013

Table 23. Recommended Values for the Mean Activity Coefficient and Osmotic Coefficient of ${\rm SrCl}_2$ in ${\rm H}_2{\rm O}$ at 298.15 K

	2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
m/mol·kg ⁻¹	Υ	Ø	a _w	ΔG ^{ex} /J•kg ⁻¹
•001	•8880	•9620	•999948	-1.
•002	.8498	• 9488	• 999897	-2.
•003	•8232	•9395	•999848	-3.
· ØØ4	-8023	.9323	·999.798	- 5.
•005	•7850	•9262	•999750	- €. •
•006	•7701	•9211	•999701	- 8•
•007	•7571	. • 9165	•999653	-10.
·068	-7455	.9125	·999606	-12.
•009	• 7351	•9089	•999558	-15.
.010	• 7255	•9056	•999511	-17.
•020	• 6595	•8834	•999046	-45.
•030	•6195	•8706	•998589	- 78 •
• 040	•5911	•8621	•998138	-115.
·050	• 5694	•8562	•997689	-156•
• Ø 60	•5521	•8519	•997241	-199.
•070	•5378	•8487.	•996794	-244.
• 080	•5257	•8464	•996347	-291•
•090	•5153	•8447	•995900	-340 •
.100	•5063	•8435	•995452	-390•
.200	•4550	•8454	•990903	-941.
• 300	• 4336	•8579	•986187	-1547.
• 400	• 4241	•8743	•981276	-2178 •
• 500	• 4209	•8930	•976158	-2880•
• 6ØØ	• 4219	•9131	•970824	-3463•
• 700	• 42 60	• 9345	• 9 652 65	-4101.
•800	• 4324	•9568	•959475	-4731.
•900	• 4409	•9800	•953447	-5347•
1.000	• 4513	1.0041	•947176	-5948 •
1.250	• 4846	1.0677	•930406	-7363.
1.500	• 5283	1 • 1358	.912037	-8632•
1.750	• 5829	1.2078	•892049	-9728•
2.000	• 6496	1.2835	•870456	-10632•
2.250	• 7303	1.3626	•847308	-11327•
2.500	·827Ø	1 • 4446	•822684	-11797•
2.750	•9427	1.5292	• 79 6 6 9 7	-12029 •
3.000	1.0808	1.6161	• 769485	-12012.
3-250	1.245	1.7049	.7412	-11737-
3.500	1 • 441	1 • 7953	•7121	-11194.
3.518 (sat)	1.456	1.8019	• 7099	-11144.
3 • 750	1 • 673	1.8869	• 6822	-10376.
4.000	1.949	1.9793	• 6519	-9278.
4.038	1.995	1.9934	• 6472	-9086.

$\frac{m}{mol\cdot kg}$ -1	$\sigma(\phi)$	$\sigma(ln\gamma)$	$\sigma(\gamma)$
4.0	0.0078	0.0095	0.0185
3.0	0.0032	0.0052	0.0056
1.0	0.0015	0.0039	0.0018
0.1	0.0010	0.0030	0.0015
0.01	0.0003	0.0007	0.0005

Table 24. Recommended Values for the Mean Activity Coefficient and Osmotic Coefficient of ${\rm SrBr}_2$ in ${\rm H}_2{\rm O}$ at 298.15 K

	2	Z		
m/mol·kg ⁻¹	Υ	· Ø	a w	ΔG ^{ex} /J•kg ⁻¹
•001	•8895	•9628	•999948	-1.
-002	·8525	•9503	•999897	-2•
•003	•8268	•9416	•999847	-3•
.004	•8ø68	•9349	•999798	-4.
• 005	•7904	•9294	•999749	-6•
•006	•7763	•9247	•999700	-8•
•007	•7640	•9207	•999652	-10.
•008	•7530	•9171	•999604	-12.
•009	•7432	•9139	•999556	-14.
.010	• 7343	.9110	•999508	-16.
.020	•6729	•8921	•999036	-43•
•030	•6362	•8818	•998571	-75•
.040	• 6104	•8754	•998109	-110.
-050	-5908	-8711	.997649	-148 •
• Ø 6 Ø	• 5753	•8 6 83	•997188	-188 •
.070	• 5626	·8664	•996728	-230•
•080	• 5520	•8652	•996266	-273•
•090	• 5429	·8645	•995804	-318 •
· 100	•5350	•8642	•995340	-364•
.200	• 4921	•8728	•990610	-866•
•300	• 4769	·8900	•985673	-1407•
• 400	•4731	•9108	•980502	-1961•
• 500	• 4758	•9340	•975077	-2517•
• 600	•4830	•9590	•969382	-3064•
•700	•4939	•9856	•963400	-3597•
•800	• 5079	1.0137	•957117	-4112•
•900	• 5249	1.0432	•950522	-4603•
1.000	• 5447	1.0740	•943605	-5069•
1.100	•5672	1.1061	•936356	-5506•
1.200	• 5927	1 • 1394	•928771	-5912•
1.300	. 6211	1.1737	•920843	-6283•
1 • 400	• 6527	1.2091	•912571	-6619•
1.500	• 6 876	1.2456	•903953	-6917•
1.600	• 72 60	1.2829	•894993	-7176.
1.700	•7683	1.3212	•885692	-7393•
1.800	•8146	1.3602	•876057	-7567•
1.900	•8652	1 • 4000	•866093	-7698 •
2.000	•9206	1 • 4405	•855811	-7782•
2.100	•9810	1.4816	•845221	-7820•
2.123	•9957	1 • 49 1 1	•842743	-7822•

_m	<u>σ(φ)</u>	$\sigma(ln\gamma)$	_σ(γ)_
$\frac{m}{mol\cdot kg}$ -1	0.0021	0.0063	0.0058
2.0	0.0021		0.0031
1.0	0.0010	0.0057	• • • • • • •
0.1	0.0017	0.0056	0.0030
0.01	0.0007	0.0016	0.0012

Table 25. Recommended Values for the Mean Activity Coefficient and Osmotic Coefficient of SrI $_2$ in ${\rm H}_2{\rm O}$ at 298.15 K

2 2 2 250.13 1				
m/mol·kg ⁻¹	Υ	Ø .	a w	ΔG ^{ex} /J•kg ⁻¹
•001	•8903	•9633	•999948	-1.
•002	•8540	•9511	•999897	-2.
•003	-8290	•9428	•999847	-3,
.004	- 8095	•9365	•999798	-4.
•005	• 7935	•9313	•999748	-6.
•006	•7799	•9269	•999699	-8•
.007	•7681	•9232	•999651	-10.
•008	•7576	•9199	•999602	-12.
•009	•7481	•9169	•999554	-14.
.010	• 7396	.9143	•999506	-16.
•020	• 6814	•8976	•999030	-42.
•030	• 6470	•8892	•998559	-72.
• 040	• 6233	•8844	•998090	-106.
•050	•6056	•8817	•997620	-143.
• Ø 6 Ø	• 5917	•8803	•997150	-181•
•070	• 5806	.8797	•996677	-220.
• 080	• 5714	•8 79 8	•996203	-261.
•090	•5636	•8803	•995727	-304.
-100	• 5571	•8812	•995249	-347•
-200	• 5257	•9004	•990315	-808
-300	-5212	.9272	.985079	-1291.
• 400	• 5281	•9573	•979517	-1772.
• 500	• 5422	•9897	•973610	-2238•
• 600	•5617	1.0239	•967342	-868ø•
•700	• 58 59	1.0598	•960698	-3094.
•800	• 6147	1.0973	•953666	-3474•
•900	• 6479	1.1362	•946235	-3817.
1.000	• 6856	1.1764	•938398	-4119•
1.100	•7283	1.2180	•930147	-4377•
1.200	•7761	1.2609	•921481	-4589•
1.300	•8296	1 • 3049	•912396	-4753.
1.400	•8892	1.3500	•902896	-4867•
1.500	•9555	1 • 39 62	•892983	-4927•
1.600	1.0291	1.4434	•882662	-4934•
1.700	1.1108	1.4914	•871943	-4884•
1.800	1.2014	1.5404	•860836	-4777•
1.900	1.3018	1.5901	•849353	-4611•
1.970	1.3785	1 • 6253	•841098	-4459•

$\frac{m}{\text{mol} \cdot \text{kg}} - 1$	$\sigma(\phi)$	$\sigma(ln\gamma)$	<u>σ(γ)</u>
2.0	0.0020	0.0055	0.0078
1.0 0.1	0.0010 0.0016	0.0052	0.0036
0.1	0.0016	0.0054 0.0016	0.0030
0.01	0.0007	0.0010	0.0012

Table 26. Recommended Values for the Mean Activity Coefficient and Osmotic Coefficient of BaCl $_2$ in ${\rm H}_2{\rm O}$ at 298.15 K

	2			
m/mol·kg ⁻¹	Υ	Ø .	a w	ΔG ^{ex} /J·kg ⁻¹
•001	•8873	•9616	•999948	-1.
•002	•8486	•9481	•999898	-s•
•003	•8215	•9386	•999848	-3.
• 004	•8002	•9310	•999799	- 5∙
•005	• 7825	•9247	•999750	-6•
•006	•7673	•9193	•999702	-8•
•007	• 7539	•9146	•999654	-10.
• 668	• 7420	•9104	•999606	-12.
•009	•7312	•9065	•999559	-15.
•010	•7214	•9030	•999512	-17.
.020	• 6532	•8791	•999050	-45•
•030	•6115	•8650	•998598	-80.
• 040	• 5819	• 6555	•998152	-118.
•050	•5591	•8487	•997709	-160 •
• Ø 6Ø	• 5409	•8436	•997268	-204•
•070	• 5258	•8397	•996828	-251•
• 080	-5130	-8367	·99 <i>€</i> 389	-300-
•090	•5020	•8344	•995950	-350•
· 100	•4924	•8326	•995510	-402•
.200	•4365	•8301	•991068	-980.
• 300	•4115	•8386	• 98 649 6	-1621•
• 400	• 3983	·8507	•981777	-2295•
•500	•3911	•8645	•976909	-2987•
• 6ØØ	•3877	•8791	•971895	-3688•
.700	• 38 67	•8941	•966740	-4394.
-800	• 3875	•9093	•961446	-5100•
•900	• 3897	•9247	•956019	-5804.
1.000	•3929	9461	•950462	-6501•
1 - 100	.3970	•9555	•944779	-7192•
1.200	• 4019	•9709	•938974	<i>-7</i> 875•
1.300	• 4074	•9863	•933@52	-8548•
1.400	•4135	1.0016	.927014	-9210.
1.500	.4202	1.0169	•920866	-9861 •
1 • 600	• 4273	1.0322	•914611	-10499 •
1.700	•4349	1.0474	•908252	-11125•
1.785(sat)	• 4417	1.0603	•902768	-11647.

$\frac{m}{mo1 \cdot kg} - 1$	<u>σ(φ)</u>	σ(lnγ)	σ(γ)
2.0	0.0020	0.0030	0.0014
1.7	0.0016	0.0026	0.0011
1.0	0.0008	0.0021	0.0008
0.1	0.0005	0.0012	0.0006
0.01	0.0001	0.0003	0.0002

Table 27. Recommended Values for the Mean Activity Coefficient and Osmotic Coefficient of ${\rm BaBr}_2$ in ${\rm H_20}$ at 298.15 K

	-2	2 42 270.	2 42 250.25 K	
m/mol·kg ⁻¹	Υ	Ø	a W	ΔG ^{ex} /J·kg ⁻¹
•001	•8881	•9621	•999948	-1•
•005	·85Ø1	•9490	•999897	-2.
•003	•8235	•9398	•999848	-3.
•004	•8028	•9326	•999798	- 5•
•005	•7856	•9266	•999750	-6.
•006	•7708	•9215	•999701	-8•
•007	•7579	•9170	•999653	-10.
•008	•7464	•9131	•999605	-12.
•009	•7360	•9095	•999558	-14.
•010	•7266	•9063	•999510	-17.
•020	•6613	•8846	•999044	-44.
•030	•6218	•8724	•998587	- 78 •
•040	• 5940	•8644	•998133	-115•
·Ø5Ø	•5728	-8590	•997682	-155•
• Ø 6Ø	• 5559	•8551	•997231	-197.
•070	• 5420	•8524	•996781	-242.
•080	• 5303	•8504	•996330	-288•
• 090	• 5203	•8491	•9958 7 8	-336•
• 100	•5117	•8483	•995426	-385•
•200	•4634	•8536	•990816	-926•
•300	• 4444	•8686	•986016	-1516.
• 400	•4369	•8869	•981010	-2127.
- 500	.4355	-9067	•975795	-2744.
• 600	•4379	•9275	•970370	-3361•
•700 •800	• 4432	•9490	•964735	-3971•
	•4506	• 9709	•958890	-4570•
•900	•4598	•9932	•952836	-5156.
1.000	•4705	1.0159	•946573	-5725•
1 - 100	• 4828	1.0390	•940100	-6276.
1.200	• 49 63	1.0624	•933419	-6808•
1.300	•5113	1.0861	•926530	-7318•
1 • 400	• 5275	1.1101	•919433	-7805.
1.500	• 5451	1 • 1345	•912129	-8269•
1 • 600	• 5641	1.1592	•904620	-8707•
1.700	• 58 44	1.1842	•896905	-9120.
1.800	•6062	1.2096	•888988	-9506•
1.900	• 6295	1.2353	•880869	-9864•
2.000	• 6544	1.2613	•872550	-10194.
2.100	• 68 Ø 9	1.2876	•864034	-10495.
2.200	• 7092	1.3143	•855323	-10766.
2.300	•7393	1.3414	•846419	-11006.
2.321	• 7459	1.3471	•844525	-11052.

$\frac{m}{mo1 \cdot kg}$ -1	σ(¢)	$\sigma(ln\gamma)$	σ(γ)
2.3 2.0 1.0 0.1 0.01	0.0031 0.0019 0.0014 0.0008 0.0003	0.0050 0.0041 0.0037 0.0024 0.0006	0.0037 0.0027 0.0017 0.0013

Table 28. Recommended Values for the Mean Activity Coefficient and Osmotic Coefficient of ${\rm BaI}_2$ in ${\rm H}_2{\rm O}$ at 298.15 K

	2	2		
m/mol·kg ⁻¹	Υ	Ø .	a w	ΔG ^{ex} /J·kg ⁻¹
-001	-8898	•963Ø	.999948	-1.
•002	•8532	•9507	•999897	-2.
•003	•8278	•9422	•999847	-3•
• 004	·8Ø81	•9357	•999798	- 4 ·
•005	•7919	•9303	•999749	-6.
•006	•7781	•9258	•999700	-8•
•007	• 7660	•9220	•999651	-10.
•008	• 7553	•9186	•999603	-12.
•009	• 7457	•9155	•999555	-14.
•010	•7370	•9128	•999507	-16.
•020	• 6777	•8954	•999033	-42.
•030	• 6426	•8866	•998563	-73•
• 040	•6185	•8816	•998096	-108 •
-050	- 6004	•8788	•997628	-145•
•060	• 58 63	•8773	•997159	-183•
•070	•5750	•8767	•996689	-224.
• Ø8 Ø	• 5657	•8768	•996216	-266•
•090	• 5579	•8774	•995741	-309•
• 100	•5513	•8784	•995264	-352•
-200	• 5199	•8987	•990333	-822•
•300	•5156	•9263	•985093	-1313•
• 400	• 5224	•9565	• 9 79 534	-1802•
• 500	• 5358	•9881	•973652	-2276•
• 600	• 5539	1.0207	•967443	-2728•
• 700	•576Ø	1.0541	•960905	-3154•
•800	• 6017	1.0884	•954033	-3548 •
-900	- 6309	1-1233	-946825	-3908•
1.000	• 6636	1 • 1 59 1	•939279	-4232•
1 • 100	•7000	1.1955	•931392	-4517•
1.200	•7402	1.2327	•923163	-4762•
1.300	• 7844	1.2707	•914590	-4964•
1.400	•8331	1.3094	•905673	-5123•
1.500	•8865	1.3489	•896413	-5235•
1 • 600	•9452	1.3891	·886810	-5301•
1.700	1.0095	1.4302	•876866	-5319•
1.800	1.0800	1 • 4720	•866584	-5287•
1.900	1 • 1575	1 • 5145	•855967	-5204•
1.998	1.2407	1 • 557Ø	•845242	-5072.

$\frac{m}{mo1 \cdot kg} - 1$	<u>σ(φ)</u>	σ(lny)	σ(γ)
2.0	0.0045	0.0141	0.0175
1.0	0.0023	0.0126	0.0084
0.1	0.0034	0.0102	0.0056
0.01	0.0012	0.0026	0.0020

R. N. GOLDBERG AND R. L. NUTTALL

- Δ Robinson and Stokes [8], isopiestic vs KCl
- ∇ Stokes [9], isopiestic vs KCl
- Stokes [9], isopiestic vs H₂SO₄
- → Robinson and Bower [9a], isopiestic vs CaCl₂
- ☐ Saad, Padova, and Marcus [10], isopiestic vs NaCl
- ♦ Platford [10a], isopiestic vs NaCl
- \triangle Serowy and Soika [11], vapor pressure
- Petit [12], vapor pressure
- O Greenspan [13], evaluation of vapor pressure data

 X Gibbard and Gosman [14], freezing point depression
- + Menzel [15], freezing point depression
- A Rodebush [16], freezing point depression
- Y Loomis [17], freezing point depression ★ Rivett [18], freezing point depression
- Figure 1. MgCl₂: $\Delta \emptyset$ vs molality

 Δ Harned [7], diffusion not shown Geissler [20], emf with transference (Hg, ${\rm Hg_2Cl_2}$ electrodes)

Figure 2. MgCl $_2$: $_{\Delta Y}$ vs molality $^{1/2}$

 Δ Robinson and Stokes [22], isopiestic vs KCl ∇ Stokes [23], isopiestic vs CaCl $_2$

Figure 3. MgBr₂: $\Delta \emptyset$ vs molality

 Δ Robinson and Stokes [22], isopiestic vs KC1 ∇ Stokes [23], isopiestic vs CaCl $_2$

Figure 4. MgI_2 : $\Delta \emptyset$ vs molality

302

- Δ Meyer [26], freezing point depression
- ∇ Robinson [24], isopiestic vs KC1
- Robinson and McCoach [25], isopiestic vs CaCl₂
 Robinson and McCoach [25], isopiestic vs H₂SO₄

Figure 5. CaBr₂: $\Delta \emptyset$ vs molality

 Δ Meyer [26], freezing point depression ▽ Robinson [24], isopiestic vs KCl

Figure 6. CaI₂: ΔØ vs molality

Figure 7. SrCl₂: ΔØ vs molality

Figure 8. $SrCl_2$: Δ_Y vs molality $^{1/2}$

R. N. GOLDBERG AND R. L. NUTTALL

Δ Meyer [26], freezing point depression

∇ Robinson [24], isopiestic vs KC1

Figure 9. SrBr₂: $\Delta \emptyset$ vs molality

 Δ Meyer [26], freezing point depression ∇ Robinson [24], isopiestic vs KC1

Figure 10. SrI₂: $\Delta \emptyset$ vs molality

- Δ Bechtold and Newton [46], vapor pressure
- ∇ Newton and Tippets [45], vapor pressure
- △ Bedford [40], freezing point depression
- ⇒ Gibbard and Fong [43], freezing point depression
- ☐ Hall and Harkins [41], freezing point depression
- ♦ Hepburn [30], vapor pressure
- △ Jablczynski and Legat [42], freezing point depression
- X Jones [39], freezing point depression
- + Loomis [17], freezing point depression
- ▲ Perreau 1441. vapor pressure
- Y Robinson [29], isopiestic vs KCl
- ≺ Robinson [36], isopiestic vs KCl
- >- Robinson [37]; isopiestic vs NaCl
- ★ Robinson and Bower [38], isopiestic vs NaCl

Figure II. BaCl₂: ΔØ vs molality

- △ Drucker [47], emf
- ∇ Harned [7], diffusion,
- √ Jones and Dole [49], emf with transference
 (Ag, AgCl electrodes)
- ☐ Lucasse [33], emf no transference
- ♦ Pearce and Gelbach [48], emf with transference (Ag, AgCl electrodes)
- Pearce and Gelbach [48] emf with transference · (Barium amalgam electrode)
- × Pearce and Gelbach [48], emf no transference
- + Rush and Johnson [52], ultracentrifugation
- Y Ardizonne et al [51], emf no transference

Figure 12. BaCl $_2$: Δ_Y vs molality $^{1/2}$

R. N. GOLDBERG AND R. L. NUTTALL

 \triangle Rivett [18], freezing point depression

∇ Robinson [56], isopiestic vs KCl

Figure 13. BaBr₂: AØ vs molality

 Δ Gelbach and Huppke [57], emf - no transference

Figure 14. $BaBr_2$: $\Delta \gamma$ vs molality $^{1/2}$

 \triangle Meyer [26], freezing point depression ∇ Robinson [24], isopiestic vs KCl

Figure 15. BaI_2 : $\Delta \phi$ vs molality

4. Evaluated Activity and Osmotic Coefficients

The coefficients of eqs (1), (2), and (3) with their standard deviations are given in tables 13 to 15. We have retained ten digits for the coefficients of eqs (1), (2), and (3). We have chosen not to round off these coefficients further because to do so would be a loss of information which might be useful for some applications in which the derivative of the activity coefficient with respect to the molality is of interest. The digits in excess of those required to ensure a precision of 0.001 or better in the calculation of ϕ or $\ln \gamma$ have been subscripted. The standard deviations for observations of unit weight are given in table 16 for the three equations.

In tables 17 to 28 are values of the activity and osmotic coefficients, the activity of water, and the excess Gibbs energy tabulated at regular intervals up to the highest concentrations at which measurements have been reported. For those cases, where the experimental investigations go to saturation or supersaturation, we have also given the values of these properties at saturation. For CaCl₂, CaBr₂, SrCl₂, and BaCl₂, we have taken the solubilities from tables of Linke and Seidell [58]; for MgCl₂ and MgBr₂, the solubilities are from Stokes [9].

We have also included at the bottom of tables 17 and 28 values for the standard deviations (σ) of the calculated values of the osmotic coefficient, the activity coefficient, and the logarithm of the activity coefficient.

We note that, for a given system, there are systematic differences in the values of the activity and osmotic coefficients calculated from eqs (1), (2), and (3). Typically these differences are less than one percent in γ and less than 0.010 in ϕ . However, these differences become larger at the highest molalities for which data exists and these differences range as high as ten percent in γ and 0.015 in ϕ .

For several systems (CaI₂, SrBr₂, SrI₂, BaBr₂, and BaI₂) the isopiestic data stop at a concentration far short of saturation; isopiestic investigations that fill this gap would be useful. Also of value would be reliable freezing point data and calorimetrically determined ϕ_L and ϕ_C data that could be used to obtain activity and osmotic coefficient data in the dilute range of concentrations.

4.1. Comparison With Other Compilations

The appendices in the book by Robinson and Stokes [58a] contain tables of the mean activity and osmotic coefficients in aqueous solution for the alkaline earth metal halides. Their tables are based entirely on their own isopiestic measurements (see ref. [23] and the papers cited therein). The tables given by Harned and Owen [65] are also based on the isopiestic measurements by Robinson and Stokes [23], although they do give some comparisons with activity coefficients for aqueous barium chloride and strontium chloride that were ob-

tained from emf and direct vapor pressure measurements. Since both these treatises [58a,65] were prepared in the precomputer era, there are no coefficients given in them for correlating equations and there is little statistical analysis.

The more recent paper by Pitzer and Mayorga [58b] gives a correlating equation different than the three selected in this paper. The coefficients of their correlating equations are based on a fit to the osmotic coefficients tabulated by Robinson and Stokes [58a]. A preliminary progress report by Wu and Hamer [58c] give both tables of activity and osmotic coefficients for the systems contained herein and values of the coefficients for an equation essentially identical to eq (1a) in this paper; i.e., it differs in that $log_{10} \gamma$ is calculated rather than ln γ . Wu and Hamer [58c] also give an extensive bibliography of the sources of experimental data for these systems and their tabulated activity and osmotic coefficients are based entirely on the available isopiestic data and on electrochemical cells without transference [58d].

A comparison of our tables of recommended values with the tables of Robinson and Stokes [58a] indicates that the activity and osmotic coefficients are in reasonable agreement with each other, the largest apparent difference in the osmotic coefficient being equal to 0.041 for aqueous barium iodide, and the largest apparent differences in the activity coefficient being equal to 3.5% for aqueous magnesium chloride. However, there are larger than expected difference between our tabulated values and those given by Wu and Hamer [58c] for several of the systems, namely, aqueous MgCl₂, MgI₂, SrI₂, BaBr₂, and BaI₂. These differences are probably attributable to the fact that we have considered a larger set of experimental data in the performance of our evaluations.

References

- Staples, B. R., and Nuttall, R. L., "The Activity and Osmotic Coefficients of Aqueous Calcium Chloride at 298.15 K," J. Phys. Chem. Ref. Data 6, 385 (1977).
- [2] Staples, B. R., and Nuttall, R. L., Computer Programs for the Evaluation of Activity and Osmotic Coefficients, Nat. Bur. Stand. (U.S.) Tech. Note 928, U. S. Gov't. Printing Office, Washington, D. C., (1976).
- [2a] McGlashan, M. L., Manual of Symbols and Terminology for Physicochemical Quantities and Units, Butterworths, London, (1970)
- [3] Lewis, G. N., and Randall, M., Thermodynamics, revised by K. S. Pitzer and L. Brewer, 2nd edition, McGraw-Hill Book Co., New York, (1961).
- [4] Debye, P., and Hückel, E., Phys. Z. 24, 185 (1923).
- [5] Friedman, H. L., Ionic Solution Theory, Interscience Publishers, New York, (1962).
- [6] Miller, D. G., J. Phys. Chem. 70, 2639 (1966).
- [7] Harned, H. S., "Diffusion and Activity Coefficients of Electrolytes in Dilute Aqueous Solutions," The Structure of Electrolytic Solutions, W. J. Hamer, Editor, John Wiley & Sons, Inc., New York, (1959).
- [8] Robinson, R. A., and Stokes, R. H., Trans. Faraday Soc. 36, 733 (1940).
- [9] Stokes, R. H., Trans. Faraday Soc. 41, 642 (1945).

- [9a] Robinson, R. A., and Bower, V. E., J. Res. Nat'l. Bur. Stds. 70A, 305 (1966).
- [10] Saad, D., Padova, J., and Marcus, Y., J. Solution Chem. 4, 983 (1975).
- [10a] Platford, R. F., J. Phys. Chem. 72, 4053 (1968).
- [11] Serowy, F., and Soika, G., Wiss. Z. Tech. Hochsch. Chem. Leuna-Merseburg, 6, 343 (1964).
- [12] Petit, M. C., J. Chim. Phys., Phys. Chim. Biol. 62, 1119 (1965).
- [13] Greenspan, L., "Humidity Fixed Points of Binary Saturated Aqueous Solutions," J. Res. Nat. Bur. Stand. 81A, 89 (1977). press.
- [14] Gibbard, H. F., and Gossman, A. F., J. Solution Chem. 3, 385 (1974).
- [15] Menzel, H., Elektrochem. Angew. Phys. Chem., 33, 63 (1927).
- [16] Rodebush, W. H., J. Am. Chem. Soc. 40, 1204 (1918).
- [17] Loomis, E. H., Ann. Phys. (Leipzig) 57, 495 (1896).
- [18] Rivett, A. C. D., Z. Phys. Chem. (Leipzig) 80, 537 (1912).
- [19] Harned, H. S., and Polestra, F. M., J. Am. Chem. Soc. 76, 2064 (1954).
- [20] Geissler, J. E. A., Z. Elektrochem. Angew. Phys. Chem. 18, 131 (1912).
- [21] Neckel, "Reale Gefrierpunktserniedrigungen und Lewis-Randall-Funktionen (osmotische Koeffizienten) in anorganischen und organischen Lösungsmitten," in Landolt-Bornstein Physikalisch-Chemische Tabellen, Auflage 6, Band II, Teil 2., p. 874, A. Eucken, Editor, Springer-Verlag, Berlin, (1960).
- [22] Robinson, R. A., and Stokes, R. H., Trans. Faraday Soc. 36, 733 (1940).
- [23] Stokes, R. H., Trans. Faraday Soc. 44, 295 (1948).
- [24] Robinson, R. A., Trans. Faraday Soc. 38, 445 (1942).
- [25] Robinson, R. A., and McCoach, H. J., J. Am. Chem. Soc. 69, 2244 (1947).
- [25a] Robinson, R. A., personal communication.
- [26] Meyer, J., Z. Znorg. Allg. Chem. 30, 113 (1902).
- [27] Downes, C. J., J. Chem. Thermodyn. 6, 317 (1974).
- [28] Phillips, B. A., Watson, G. M., and Felsing, W. A., J. Am. Chem. Soc. 64, 244 (1942).
- [29] Robinson, R. A., Trans. Faraday Soc. 36, 735 (1940).
- [30] Hepburn, J. R. I., J. Chem. Soc. 1284 (1932).
- [31] Loomis, E. H., Ann. Phys. (Leipzig) **60**, 523 (1897).
- [32] Longhi, P., Mussini, T., and Vaghi, E., J. Chem. Thermodyn. 7, 767 (1975).
- [33] Lucasse, W., J. Am. Chem. Soc. 47, 743 (1925).
- [34] Masaki, K., Bull. Chem. Soc. Japan 7, 35 (1932).
- [35] Hass, K., and Jellinek, K., Z. Phys. Chem. (Leipzig) 162, 153 (1932).
- [36] Robinson, R. A., J. Am. Chem. Soc. 59, 84 (1937).
- [37] Robinson, R. A., Trans. R. Soc. N. Z. 75, 203 (1945).
- [38] Robinson, R. A., and Bower, V. E., J. Res. Nat. Bur. Stand. Sect. A 69 19 (1965).
- [39] Jones, H. C., Z. Phys. Chem. (Leipzig) 11, 529 (1893).
- [40] Bedford, T. G., Proc. Roy. Soc. London, Ser. A. 83, 454 (1910).
- [41] Hall, R. E., and Harkins, W. D., J. Am. Chem. Soc. 38, 2658 (1916).
- [42] Jablczynski, K., and Legat, R., Rocz. Chem. 15, 350 (1935).
- [43] Gibbard, H. F., and Fong, S. L., J. Solution Chem. 4, 863 (1975).
- [44] Perreau, J., C. R. Hebd. Seances Acad. Sci. 200, 1588 (1935).
- [45] Newton, R. F., and Tippetts, E. A., J. Am. Chem. Soc. 58, 280 (1936).
- [46] Bechtold, M. F., and Newton, R. F., J. Am. Chem. Soc. 62, 1390 (1940).
- [47] Drucker, C., Z. Elektrochem. Angew. Phys. Chem. 19, 797 (1913).
- [48] Pearce, J. N., and Gelbach, R. W., J. Phys. Chem. 29, 1023 (1925).
- Jones, G., and Dole, M., J. Am. Chem. Soc. 51, 1073 (1929).
- [30] Tippetts, E. A., and Newton, R. F., J. Am. Chem. Soc. 56, 1675 (1934).

- [51] Ardizonne, S., Longhi, P., Mussini, T., and Rondinini, S., J. Chem. Thermodyn. 8 557 (1976).
- [52] Rush, R. M., and Johnson, J. S., J. Phys. Chem. 68, 2321 (1964).
- [53] Moore, J. T., Humphries, W. T., and Patterson, C. S., J. Chem. Eng. Data 17, 180 (1972).
- [54] Christenson, P. G., J. Chem. Eng. Data 18, 286 (1973).
- [55] Berestnewa, Z. J., and Kargin, V. A., Acta Physicochim. URSS 2, 163 (1935).
- [56] Robinson, R. A., Trans. Faraday Soc. 37, 82 (1941).
- [57] Gelbach, R. W., and Huppke, W. F., J. Am. Chem. Soc. 48, 1504 (1926).
- [58] Linke, W. F., and Seidell, A., Solubilities: Inorganic and Metal-Organic Compounds—A Compilation of Solubility Data From The Periodical Literature. Volume 1: A-1r and Volume II: K-Z, Volume 1: D. Van Nostrand Co., Princeton, N. J. (1958); Volume II: American Chemical Society, Washington, D. C., (1965).
- [58a] Robinson, R. A., and Stokes, R. H., Electrolyte Solutions, 3rd edition, Butterworth and Co., London, (1970).
- [58b] Pitzer, K. S., and Mayorga, G., J. Phys. Chem. 77, 2300 (1973).
- [58c] Wu, Y. C., and Hamer, W. J., Electrochemical Data—Part XIV, Nat. Bur. Stand. (U.S.) Report 10052, U. S. Department of Commerce, Washington, DC (1969).
- [58d] Hamer, W. J., personal communication.
- [59] Keenan, A. G., McLeod, H. G., and Gordon, A. R., J. Chem. Phys. 13, 466 (1945).
- [60] Parker, V. B., Wagman, D. D., and Evans, W. H., Selected Values of Chemical Thermodynamic Properties. Tables for the Alkaline Earth Elements, Nat. Bur. Stand. (U.S.) Tech. Note 270-6, U. S. Gov't. Printing Office, Washington, D. C., (1971)
- [61] Lange, E., and Streeck, H., Z. Phys. Chem. (Leipzig) A152, 1 (1931).
- [62] Rutskov, A. P., Arkhangel Lesotekh. Inst. in V. U. Krubysheva "Sporik Nauch Issldevotel" No. 8, p. 85, Robst (1946).
- [63] Vasileev, V. A., Fedyainov, N. V., and Kurenkov, Y. V., Zh. Fiz. Khim. 47, 2799 (1973).
- [64] Perron, G., Desnoyers, J. E., and Millero, F. J., Can. J. Chem. 52, 3738 (1974).
- [65] Harned, H. S., and Owen, B. B., The Physical Chemistry of Electrolytic Solutions, 3rd ed., Reinhold Pub. Corp., New York, (1958).
- [66] Longsworth, L. G., J. Am. Chem. Soc. 57, 1185 (1935).
- [67] Hopfgartner, K., Z. Phys. Chem. (Leipzig) 25, 115 (1898).
- [68] Noyes, A. A., J. Am. Chem. Soc. 23, 37 (1901).
- [69] Jahn, H., Z. Phys. Chem. (Leipzig) 37, 673 (1901).
- [70] Denison, R. B., and Steele, B. D., Z. Phys. Chem. (Leipzig) 57, 110 (1907).
- [71] Drucker, C., Rec. Trav. Chim. Pays-Bas. 51, 574 (1932).
- [72] Schmidt, E., Z. Physik. Chem. (Leipzig) 211, 93 (1959).
- [73] Kaimakov, E. A., and Varshavskaya, N. L., Usp. Khim 35, 201 (1966).
- [74] Shedlovsky, T., and Brown, A. S., J. Am. Chem. Soc. 56, 1066 (1934).
- [75] Dunn, L. A., Trans. Faraday Soc. 62, 2348 (1966).
- [76] Jones, G., and Ray, W. A., J. Am. Chem. Soc. 63, 288 (1941).
- [77] Hamer, W. J., and Wu, Y. C., J. Phys. Chem. Ref. Data 1, 1047 (1972).
- [78] Rard, J. A., Habenschuss, A., and Spedding, F. H., J. Chem. Eng. Data 21, 374 (1976).
- [79] Cohen, E. R., and Taylor, B. N., J. Phys. Chem. Ref. Data 2, 663 (1973).
- [80] Stimson, H. F., J. Res. Nat. Bur. Stand. Sect. A 73, 493 (1969).
- [81] Keenan, J. H. Keyes, F. G., Hill, P. G., and Moore, J. G., Steam Tables, International Edition—Metric Units, John Wiley and Sons, Inc., New York, P. 148, (1969).

	Glossary of Symbols	$ar{m{J}}_1$	relative partial molal heat capacity of the solvent in a solution
$a_{ m w}$	activity of water	$\overline{L}_{\scriptscriptstyle 1}$	relative partial molal enthalpy of the sol-
Δb	$(\partial\Delta\overline{C}_p/\partial T)_p$		vent in a solution
$c_{\rm B}$ or c	concentration of solute substance B	M_1	molecular weight of solvent
$m_{\rm B}$ or m	molality of solute substance B	P	vapor pressure of a solution
$t_{ m B}$	transport or transference number of ion B	P°	vapor pressure of pure solvent
$x_{\rm B}$ or x	mole fraction of substance B	R	molar gas constant
$z_{ m B}$	charge number of an ion B	T	thermodynamic or absolute temperature
\boldsymbol{A}	constant in Debye-Hückel limiting law	$T_{ m fus}$	absolute temperature of fusion of pure solvent
A_1	$ z_+z A$	$lpha_{\mathfrak{i}}$	coefficients in a specified equation
	$\left(\sum_{i} \nu_{i} z_{i}^{3}\right)^{2}$	eta_i	coefficients in a specified equation
A_2	$\frac{\left(\sum_{i}\nu_{i}z_{i}^{3}\right)^{2}}{\nu\sum_{i}\left(\nu_{i}z_{i}^{2}\right)}A^{2}$	γ_{\pm} or γ	activity coefficient, molality basis
A_i	coefficients in a specified equation	θ	freezing point depression of a given solution
$B,C,D,E\dots$	E coefficients in eqs (1)		number of ions of species i formed from
\boldsymbol{B}_i	coefficients in a specified equation		one molecule of solute assuming complete dissociation
B_T	the second virial coefficient for water va-	$oldsymbol{ u}$	total number of ions formed from one molecule of solute assuming complete dis-
$\Delta oldsymbol{C}^{\circ}_{ ext{fus}}$	the heat capacity change accompanying		sociation: $[\nu = \sum_{i} \nu_{i}]$
	the fusion of the pure solvent at the freezing temperature of the pure solvent	ρ_B or ρ	mass concentration or density of a given system
$\Delta \overline{C}_{p}$	the difference between the partial molal heat capacity of the solvent in a solution and the molal heat capacity of the solid solvent at the freezing temperature of the	$ ho^{\circ}$	mass concentration or density of pure solvent
	solution	ϕ	osmotic coefficient
$\Delta \mathit{G}^{ex}$	the excess Gibbs energy of a solution containing one kilogram of solvent	Φ_C	apparent molal heat capacity
A 710	_	Φ_L	relative apparent molal enthalpv
$\Delta H_{ m fus}^{ m o}$	the enthalpy of fusion of the pure solvent at the freezing temperature of the pure solvent	Λ	molar conductivity of electrolyte solution
I_m or I	ionic strength: $(I_m = \frac{1}{2} \sum_i m_i z_i^2)$. Λ.	limiting value of the molar conductivity of a solution as the solute concentration ap- proach zero.