

North South University

Department of Electrical & Computer Engineering

Project

19Z2OSO

Submitted By:

Name: Sunjare Zulfiker

ID: 1912050642

Course: CSE231

Section: 4

Submitted To:

Ms. Tanjila Farah Senior Lecturer & Lab Co-ordinator

CSE 231

OTnuth Table 19×2050

	Input				Ordput							
	×	Y	2	a	Ь) (2	d	9.	F	18	
	0	0	0	0	1	1		0	0	0	0	
9	0	0	1	1	1	1		1	0	1	1	
Z.	0	1	0	1	1	0		1	1	0	1 1	
2	-0	1	1	1	1	0	1	1	1	0	1	
0	1	0	0	1	Į.	1	1	1	1	1	0	
5	1	0	1	1	0	1			0	1	1	
0	1	1	0	1	1	1	1	1	1	1	0	
X	1	1	1	X	X	×	×		X	×	×	

8= (X+Z)(X+Z)

1	00	01	11	10'
0	1	1	1	h
1	1	0	X	1
	/b=	x'+	7'1	50P)
	96 =	(\times')	+12	(POS)

3 Simplified Equation (SOP & POS)

Simplified Equation SOP	Simplified Equation POS
Q=X+Y+Z	a=(x+4+Z)
b= x'+Z'	b= (x'+Z')
C= X+Y'	C= (x+Y')
9= X+145	d= (x+ 4+ 5)
e= Y+ xz'	e= (x+Y) (Y+Z')
f= x + Y'Z	F= (x+2) (x+Y')
g=Z+×'Y	g= (x+2)(x+2)

Grenenalized sop cincult with basic gates

a= X+Y+Z

a= £(1,2,3,4,5,6)

= XYZ/+XYZ+XYZ/+XYZ+XYZ/

b= x42"

b= \(\xi(0,1,2,3,4,6)\)

= × YZ + × YZ' + × YZ'

#C=Y'+x

C= 5(0,1,4,5,6)

= XY'Z+XY'Z'+XY'Z+XY'Z'+ XYZ'

$$d = x + y + 7$$

$$d = 5(17,2,3,4,5,6)$$

$$= xyz' + xy'z + xy'z' + x'yz + x'yz'$$

$$+ x'y'z$$

$$\# e = Y + \times Z'$$
 $e = (2, 3, 4, 6)$
 $= \times YZ' + \times YZ' + \times YZ' + \times YZ'$

It Generalized SOP cincuit with basic gates

(5) Grenenalized POS Cincuit with Basic gales

$$Q = \pi(0) = (X+Y+Z)$$

$$F = \pi(0,2,3)$$

#Grenenalized POS cincuit with basic godes

@ Simplified SOP cincuit with basic gades

Simplified corps ainsuit with boxie gales

#8 Design the aincuit using NAND Gales only

#9 Design the cincuit using NOR gales Only

#10 Design the cincuit using Decoden & OR gates

1 Design The Circuit Using Multiplement.

6. Simplified SOP Circuit using Basic Gates in Logisim:

7. Simplified POS Circuit using Basic Gates in Logisim:

4. Generalized SOP circuit with basic gates in Logisim:

5. Generalized POS circuit with basic gates in Logisim:

8. Design the circuit using NAND gates only in Logisim:

9. Design the circuit using NOR gates only in Logisim:

10. Design the circuit using Decoder & OR gates:

11. Design the circuit using Multiplexer:

