

But g is a generator of the cyclic group. That means that ord (g) = q-1
From (3) it's clear that 2/e.
Indled, we should have that $e \cdot \frac{q-1}{2} = \overline{3} \cdot (q-1)$, $\overline{7} \cdot \overline{3} \in \mathbb{Z}$ $\Rightarrow = \overline{3} \Rightarrow 2 \mid e$.
So now let $e' = \frac{e}{2} \Rightarrow e = 2e'$
$\Rightarrow t = g^e = g^{2e'} = (g^{e'})^2$ Since g is a generator, $g^e = v_6 k$
$\Rightarrow t = v^2$
This means that t is a square. []
T 10.3
Let $E: y^2 = x^3 + ax + b$ be defined over k (a, b \in k).
Assume $P = (x_p, y_p)$, $Q = (x_Q, y_Q) \in E(k) \setminus \{O\}$ (i.e. $x_p, y_p, x_Q, y_Q \in k$) $s.t. x_p \neq x_Q$
Let L _{P,Q} be the line through P,Q.
Th: L _{p,Q} intersects E in a third point $R = (x_R, y_R) \in E(k)$. Find a formula for x_R in terms of x_p, y_p, x_Q, y_Q, a, b .
We have that the line $L_{P,Q}$ is given by $y - y_P = \frac{y_2 - y_P}{x_2 - x_P} (\chi - \chi_P) \iff y = \frac{y_2 - y_P}{x_2 - \chi_P} \chi + y_P - \frac{y_2 - y_P}{x_2 - \chi_P} \chi_P$
Let $M := \frac{y_a - y_p}{x_a - x_p}$, $q := y_p - \frac{y_a - y_p}{x_a - x_p} \times p$
The intersection between E and Lie will be given by the solutions of the following system of equations:

Jy= mx+9	(1)	, , , , , 2		
Ly2= x3+ax+b	2	$(mx+q)^2 = x^2$		
		$(MX)^2 + q^2 +$	$2mqx = x^3 + ax +$	<u> </u>
		$\chi^3 - m^2 \chi^2$	+(a-2mg)x+b-	$q^2 = 0$
Using Viète's form by solving the R	wlas with no	=3, we can	compute the n=3	noots ri, r2, r3
1,+1, +1, = u	η2			
1 1 1 2 + 1 1 1 3 + 1 2	rz = a-2mq			
Lr, r ₂ r ₃ = -(b-q ²	.)			
Two of these thre (that we already	e noots will be know).	e xp and xo	, so let's say ris	: xp , r2 = XQ
From the 1st eque				
r3 = m2 - r, - rz	$= m^2 - \chi_p -$	X _Q		
So we have that such that:	$R = (x_R, y_R)$	e E(k) is the	3rd point of m	tersectnon and it is
XR = M2 - Xp -	x0, y2=1	M XR + 9.		
So in conclusion				
$\chi_{R} = \left(\frac{y_{R} - y_{P}}{\chi_{Q} - \chi_{P}}\right)^{2} -$	Xp-Xa			