GENG 8010-Part 1: Elements of Differential and Difference Equations

Mehrdad Saif ©

University of Windsor

Winter 2022

Mehrdad Saif © (UWindsor)

GENG 8010-Part 1-Diffal/Diffce Eqs.

<ロト <部ト <きト <きト = 1 Winter 2022

990 1 / 218

Part I-Outline II

- Solution of the non-homogeneous equation
 - Method of undetermined coefficients
 - Variation of parameters
 - Green Functions
- Laplace transforms
 - Definition and transforms
 - Existence and Properties of $\mathcal{L}\{f(t)\}$
 - System engineering review
 - Response of system
 - Resonance
- 8 Difference equations

Mehrdad Saif © (UWindsor)

- Difference and anti-difference operators
- Solution of difference equation
- System engineering concepts
- Z transform

◆ロ > ← 面 > ← 直 > ← 直 > り へ ○

Part I-Outline I

- Introduction & definitions
- Solution of Differential Equations
 - Existence and uniqueness of the solution
 - General properties of differential equations
- 3 Solution of first order differential equations
 - Solution by integration
 - Solution using integrating factor
- Solution of 2nd order homogeneous equation
 - Distinct roots
 - Repeated roots
 - Complex conjugate roots
- Solution of higher order diff. eqs.
 - Distinct roots
 - Repeated roots
 - Complex conjugate roots

マロケスタケスを大きた。

Mehrdad Saif © (UWindsor)

GENG 8010-Part 1-Diffal/Diffce Eqs.

Winter 2022

Part I-Outline III

- Definitions, transforms, properties
- Applications of \mathscr{Z}

Introduction & defenitions I

theoretical importance, and there is no way it can be of any practical use whatsoever.'

> ◆□▶◆□▶◆臣▶◆臣▶○臣 990

GENG 8010-Part 1-Diffal/Diffce Eqs.

Winter 2022

5 / 218

GENG 8010-Part 1-Diffal/Diffce Eqs.

Winter 2022

《四》《圖》《意》《意》。

Introduction & definitions

Introduction & defenitions III

Many physical systems' behaviors are described in science and engineering with differential or partial differential equations.

Differential equations

- An equation relating an unknown dependent function and one or more of its derivatives with respect to an independent variable is called a **differential equation**.
- If the DE contains only ordinary derivatives of one or more functions with respect to a single independent variable, then the DE is called to be an ordinary differential equation.
- If the DE involves partial derivatives of one or more functions of two or more independent variables, then it is called a partial differential equation.

Introduction & defenitions II

Math phobic's nightmare

Introduction & definitions

Introduction & defenitions IV

Ordinary vs. Partial DE

- Ordinary: dy, $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$, \dot{y} , \ddot{y} , dx
- Partial: $\frac{\partial u}{\partial x}$, $\frac{\partial^2 u}{\partial x^2}$, $\frac{\partial^2 u}{\partial x \partial y}$, u_{xx} , u_{xy}
- Order of the differential equation is the order of the highest derivative in the equation.

Introduction & defenitions V

Example—Consider the following differential equations

$$\frac{dy}{dx} = e^{2x} + \cos x \tag{a}$$

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial u}{\partial t}$$
 (b)

$$y'' - 2y' + y = \sin x \tag{c}$$

$$4x^3dx - 3ydy = 0 (d)$$

- Variables that denote values of a function are often called the dependent variables.
- An independent variable is one that may take on any values in the domain of the function which the dependent variables stands for.

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 のQで

GENG 8010-Part 1-Diffal/Diffce Eqs.

Winter 2022

9 / 218

Introduction & definitions

Introduction & defenitions VI

Example—In the previous example

independent variables.

GENG 8010-Part 1-Diffal/Diffce Eqs.

• In (a,c), y is the dependent variable and x is the independent variable.

• in (d) either x or y can be thought of the dependent variable and

• In (b), u is the dependent variable and, x, y and t are the

then the other would be the independent variable.

Introduction & definitions

Introduction & defenitions VII

Example-

 $\frac{dy}{dx} = 3y$ (e)

or

$$\frac{d^2y}{dx^2} - 6x\frac{dy}{dx} + 3xy = \cos(x) \tag{f}$$

In the above y(x) is a function of x. Hence

- y is dependent variable
- x is independent variable

The order of the differential equation is the order of the highest derivative that appears in the equation. So

- Equation (e) is first order
- Equation (f) is a second order differential equation

Introduction & definitions

Introduction & defenitions VIII

Differential Form

A first order differential equation in differential form

$$M(x,y)dx + N(x,y)dy = 0$$

Example—Consider

$$(2y+3x)dx+2dy=0$$

by assuming that y is the dependent variable and the fact that differential dy is defined as dy = y' dx, we get

$$\frac{dy}{dx} + y + \frac{3}{2}x = 0$$

Introduction & definitions

Introduction & defenitions IX

General vs. Normal Form

• General Form of an *nth* order ordinary equation in one dependent variable

$$F(x, y, y', y'', \dots, y^{(n)}) = 0$$

• Assuming that it is possible to solve for the highest derivative. Then the **Normal Form** of the differential equation is

$$\frac{d^{n}y}{dx^{n}}=f(x,y,y',\cdots,y^{(n-1)})$$

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 のQで

GENG 8010-Part 1-Diffal/Diffce Eqs.

Winter 2022

GENG 8010-Part 1-Diffal/Diffce Eqs.

Winter 2022

13 / 218

Introduction & definitions

Introduction & defenitions XI

Example—Consider the following equations

$$y'' + 5xy' - 8y = \sin x$$
 Linear despite the term xy'
 $y'' + 4yy' - 10y = \cos x$ nonlinear because of yy'

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial v}{\partial t} + u + v = \sin u$$

This last equation is linear in v but nonlinear in u because of $\sin u$ so the equation is nonlinear.

Introduction & defenitions X

Linear vs. Non-Linear

Linearity is a property of differential equations that relates to the relationship of the function to its derivatives. For our purposes, linearity is not affected by anything happening to the independent variable; in ordinary differential equations this is typically x or t.

• Linear terms: $t\dot{v}$, t^3v , $t^2\ddot{v}$, $cos(t)\dot{v}$, $e^{-2t}\ddot{v}$.

• Nonlinear terms: y^3 , yy, sin(y)y, uu_y , u_tu_y .

Introduction & definitions

Introduction & defenitions XII

" ... and according to the legend, there are many, many applications at the other end of the rainbow!"

Introduction & definitions

Introduction & defenitions XIII

Quarter car active suspension system

The equations of motion for this system are

$$m_{s}\ddot{z}_{s} = -b_{s}(\dot{z}_{s} - \dot{z}_{u}) - k_{s}(z_{s} - z_{u}) + f_{a}$$

$$m_{u}\ddot{z}_{u} = b_{s}(\dot{z}_{s} - \dot{z}_{u}) + k_{s}(z_{s} - z_{u}) - f_{a} + b_{t}(\dot{z}_{r} - \dot{z}_{u}) + k_{t}(z_{r} - z_{u})$$

◆ロト ◆団 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

Mehrdad Saif © (UWindsor)

GENG 8010-Part 1-Diffal/Diffce Eqs.

Winter 2022

17 / 218

Introduction & definitions

Introduction & defenitions XV

Li-ion battery in electrified vehicles

Introduction & defenitions XIV

Electric (DC) motor driving an inertial load

$$V = Ri + L\frac{di}{dt}V_{emf} \Longrightarrow \frac{di}{dt} = -\frac{R}{L}i(t) - \frac{K_e}{L}\omega(t) + \frac{1}{L}V$$

$$J\frac{d^2\theta}{dt^2} = K_ii - K_d\frac{d\theta}{dt} \Longrightarrow \frac{d\omega}{dt} = -\frac{1}{J}K_d\omega(t) + \frac{1}{J}K_ii(t)$$

Mehrdad Saif © (UWindsor)

GENG 8010-Part 1-Diffal/Diffce Eqs.

Winter 2022

18 / 218

Introduction & definitions

Introduction & defenitions XVI

19 / 218

20 / 218