Лабораторная работа №**1**

Простые модели компьютерной сети

Кадров Виктор Максимович

Содержание

1	Цель работы Задание		4 5
2			
	Выг	полнение лабораторной работы	6
	3.1	Шаблон сценария для NS-2	6
	3.2	Простой пример описания топологии сети, состоящей из двух узлов	
		и одного соединения	8
	3.3	Пример с усложненной топологией сети	10
	3.4	Пример с кольцевой топологией сети	13
	3.5	Выполнение упражнения	15
4	I Выводы		19
Сг	Список литературы		

Список иллюстраций

3.1	Создание директорий и файла	6
3.2	Симуляция шаблона	7
3.3	Скрипт шаблона	8
3.4	Визуализация простой модели сети с помощью nam	9
3.5	Скрипт сети из двуз узлов и одного соединения	10
3.6	Модель с усложненной топологией сети без симуляции	11
3.7	Модель с усложненной топологией сети. Симуляция	12
3.8	Скрипт модели с усложненной топологией сети	13
3.9	Передача данных по кратчайшему пути сети с кольцевой топологией	14
3.10	Передача данных по сети с кольцевой топологией в случае разрыва	
	соединения	14
3.11	Скрипт сети из двух узлов и одного соединения	15
3.12	Скрипт модели из упражнения	16
3.13	Топология сети из упражнения	16
3.14	Движение по кратчайшему пути	17
3.15	Разрыв связи между узлами	17
3.16	Движение по длинному пути	18

1 Цель работы

Приобретение навыков моделирования сетей передачи данных с помощью средства имитационного моделирования NS-2, а также анализ полученных результатов моделирования[1].

2 Задание

- 1. Создать шаблон сценария для NS-2.
- 2. Рассмотреть простой пример описания топологии сети, состоящей из двух узлов и одного соединения.
- 3. Рассмотреть пример с усложнённой топологией сети.
- 4. Рассмотерть пример с кольцевой топологией сети
- 5. Выполнить упражнение

3 Выполнение лабораторной работы

3.1 Шаблон сценария для NS-2

В своём рабочем каталоге создадим директорию mip, в которой будут выполняться лабораторные работы. Внутри mip создадим директорию lab-ns, а в ней файл shablon.tcl. (рис. 3.1).

```
142 mkdir -p mip/lab-ns
143 cd mip/lab-ns/
144 ls
145 touch shablon.tcl
146 nano shablon.tcl
147 ns shablon.tcl
```

Рис. 3.1: Создание директорий и файла

Откроем на редактирование файл shablon.tcl. Сначала создадим объект типа Simulator. Затем создадим переменную nf и укажем, что требуется открыть на запись nam-файл для регистрации выходных результатов моделирования. Вторая строка даёт команду симулятору записывать все данные о динамике модели в файл out.nam. Далее создадим переменную f и откроем на запись файл трассировки для регистрации всех событий модели. После этого добавим процедуру finish, которая закрывает файлы трассировки и запускает nam. Наконец, с помощью команды at указываем планировщику событий, что процедуру finish следует запустить через 5 с после начала моделирования, после чего запустить симулятор ns. Сохранив изменения в отредактированном файле shablon.tcl и закрыв его, можно запустить симулятор. При этом на экране появится сообщение типа nam: empty trace file out.nam поскольку ещё не

определены никакие объекты и действия. (рис. 3.2).

Рис. 3.2: Симуляция шаблона

Получившийся шаблон можно использовать в дальнейшем в большинстве разрабатываемых скриптов NS-2, добавляя в него до строки \$ns at 5.0 "finish" описание объектов и действий моделируемой системы. (рис. 3.3).

Рис. 3.3: Скрипт шаблона

3.2 Простой пример описания топологии сети, состоящей из двух узлов и одного соединения

Постановка задачи. Требуется смоделировать сеть передачи данных, состоящую из двух узлов, соединённых дуплексной линией связи с полосой пропускания 2 Мб/с и задержкой 10 мс, очередью с обслуживанием типа DropTail. От одного узла к другому по протоколу UDP осуществляется передача пакетов, размером 500 байт, с постоянной скоростью 200 пакетов в секунду.

Реализация модели. Скопируем содержимое созданного шаблона в новый файл example1.tcl и откроем на редактирование. Создадим агенты для генерации и приёма трафика. Создадим агент UDP и присоединим к узлу n0. В узле агент сам не может генерировать трафик, он лишь реализует протоколы и алгоритмы транспортного уровня. Поэтому к агенту присоединяется приложение. В данном случае — это источник с постоянной скоростью (Constant Bit Rate, CBR), который каждые 5 мс посылает пакет R = 500 байт. Далее создадим Null-агент, который

работает как приёмник трафика, и прикрепим его к узлу n1. Соединим агенты между собой. Для запуска и остановки приложения CBR добавляются at-события в планировщик событий. Сохранив изменения в отредактированном файле и запустив симулятор, получим в качестве результата запуск аниматора пат в фоновом режиме. (рис. 3.4).

Рис. 3.4: Визуализация простой модели сети с помощью nam

При нажатии на кнопку play в окне nam через 0.5 секунды из узла 0 данные начнут поступать к узлу 1. Это процесс можно замедлить, выбирая шаг отображения в nam. Можно осуществлять наблюдение за отдельным пакетом, щёлкнув по нему в окне nam, а щёлкнув по соединению, можно получить о нем некоторую информацию. (рис. 3.5).

Рис. 3.5: Скрипт сети из двуз узлов и одного соединения

3.3 Пример с усложненной топологией сети

Постановка задачи. Описание моделируемой сети: – сеть состоит из 4 узлов (n0, n1, n2, n3); – между узлами n0 и n2, n1 и n2 установлено дуплексное соединение с пропускной способностью 2 Мбит/с и задержкой 10 мс; – между узлами n2 и n3 установлено дуплексное соединение с пропускной способностью 1,7 Мбит/с и задержкой 20 мс; – каждый узел использует очередь с дисциплиной DropTail для накопления пакетов, максимальный размер которой составляет 10; – TCP-источник на узле n0 подключается к TCP-приёмнику на узле n3

(по-умолчанию, максимальный размер пакета, который TCP-агент может генерировать, равняется 1КВуte) – TCP-приёмник генерирует и отправляет АСК пакеты отправителю и откидывает полученные пакеты; – UDP-агент, который подсоединён к узлу n1, подключён к null-агенту на узле n3 (null-агент просто откидывает пакеты); – генераторы трафика ftp и cbr прикреплены к TCP и UDP агентам соответственно; – генератор cbr генерирует пакеты размером 1 Кбайт со скоростью 1 Мбит/с; – работа cbr начинается в 0,1 секунду и прекращается в 4,5 секунды, а ftp начинает работать в 1,0 секунду и прекращает в 4,0 секунды.

Реализация модели. Скопируем содержимое созданного шаблона в новый файл и откроем example2.tcl на редактирование. Создадим 4 узла и 3 дуплексных соединения с указанием направления. (рис. 3.6).

Рис. 3.6: Модель с усложненной топологией сети без симуляции

Создадим агент UDP с прикреплённым к нему источником CBR и агент TCP с прикреплённым к нему приложением FTP. Создадим агенты-получатели. Соединим агенты udp0 и tcp1 и их получателей. Зададим описание цвета каждого потока. Отслеживание событий в очереди. Наложим ограничения на размер очереди. Добавим at-события. Сохранив изменения в отредактированном файле и запустив симулятор, получим анимированный результат моделирования (рис.

3.7).

Рис. 3.7: Модель с усложненной топологией сети. Симуляция

При запуске скрипта можно заметить, что по соединениям между узлами n(0)-n(2) и n(1)-n(2) к узлу n(2) передаётся данных больше, чем способно передаваться по соединению от узла n(2) к узлу n(3). Действительно, мы передаём 200 пакетов в секунду от каждого источника данных в узлах n(0) и n(1), а каждый пакет имеет размер 500 байт. Таким образом, полоса каждого соединения 0, 8 Mb, а суммарная — 1, 6 Mb. Но соединение n(2)-n(3) имеет полосу лишь 1 Mb. Следовательно, часть пакетов должна теряться. В окне аниматора можно видеть пакеты в очереди, а также те пакеты, которые отбрасываются при переполнении. (рис. 3.8).

Рис. 3.8: Скрипт модели с усложненной топологией сети

3.4 Пример с кольцевой топологией сети

Постановка задачи. Требуется построить модель передачи данных по сети с кольцевой топологией и динамической маршрутизацией пакетов: – сеть состоит из 7 узлов, соединённых в кольцо; – данные передаются от узла n(0) к узлу n(3) по кратчайшему пути; – с 1 по 2 секунду модельного времени происходит разрыв соединения между узлами n(1) и n(2); – при разрыве соединения маршрут передачи данных должен измениться на резервный.

Реализация модели. Скопируем содержимое созданного шаблона в новый файл и откроем example3.tcl на редактирование. Опишем топологию моделируемой сети. Далее соединим узлы так, чтобы создать круговую топологию. Каждый узел, за исключением последнего, соединяется со следующим, последний соединяется с первым. Для этого в цикле использован оператор %, означающий остаток от деления нацело. Зададим передачу данных от узла n(0) к узлу n(3). Данные передаются по кратчайшему маршруту от узла n(0) к узлу n(3), через узлы n(1) и n(2) (рис. 3.9).

Рис. 3.9: Передача данных по кратчайшему пути сети с кольцевой топологией

Добавим команду разрыва соединения между узлами n(1) и n(2) на время в одну секунду, а также время начала и окончания передачи данных. Передача данных при кольцевой топологии сети в случае разрыва соединения представлена на (рис. 3.10).

Рис. 3.10: Передача данных по сети с кольцевой топологией в случае разрыва соединения

Добавив в начало скрипта после команды создания объекта Simulator, увидим, что сразу после запуска в сети отправляется небольшое количество маленьких пакетов, используемых для обмена информацией, необходимой для маршрутизации между узлами. Когда соединение будет разорвано, информация о топологии будет обновлена, и пакеты будут отсылаться по новому маршруту через узлы n(6), n(5) и n(4). (рис. 3.11).

Рис. 3.11: Скрипт сети из двух узлов и одного соединения

3.5 Выполнение упражнения

Упражнение. Внесите следующие изменения в реализацию примера с кольцевой топологией сети: — повторить топологию сети, предоставленную в файле с заданиями к лаборатороной работе; — передача данных должна осуществляться от узла n(0) до узла n(5) по кратчайшему пути в течение 5 секунд модельного времени; — передача данных должна идти по протоколу TCP (тип Newreno), на принимающей стороне используется TCPSink-объект типа DelAck; поверх TCP работает протокол FTP с 0,5 до 4,5 секунд модельного времени; — с 1 по 2 секунду модельного времени происходит разрыв соединения между узлами n(0) и n(1); — при разрыве соединения маршрут передачи данных должен

измениться на резервный, после восстановления соединения пакеты снова должны пойти по кратчайшему пути.

(рис. 3.12).

Рис. 3.12: Скрипт модели из упражнения

Топология сети. (рис. 3.13).

Рис. 3.13: Топология сети из упражнения

Движение по кратчайшему пути. (рис. 3.14).

Рис. 3.14: Движение по кратчайшему пути

Разрыв связи между узлами.(рис. 3.15).

Рис. 3.15: Разрыв связи между узлами

Движение по длинному пути. (рис. 3.16).

Рис. 3.16: Движение по длинному пути

4 Выводы

Мы приобрели навыки моделирования сетей передачи данных с помощью средства имитационного моделирования NS-2, а также провели анализ полученных результатов моделирования.

Список литературы

1. Королькова А.В., Кулябов Д.С. Лабораторная работа 1. Простые модели компьютерной сети [Электронный ресурс].