The idea of sampling-based motion planning

Algorithms and Data Structures 2 – Motion Planning and its applications
University of Applied Sciences Stuttgart

Dr. Daniel Schneider

We know that...

You can solve motion planning problems by computing the configuration space for low dimensions:

What about higher dimensions?

Sources:

Motion Planning: The Essentials – LaValle - http://msl.cs.illinois.edu/~lavalle/papers/Lav11b.pdf

On a scale

How?

- 1. Use a random function to sample the configuration space.
- 2. Check if these samples are free of collision.
- 3. If so, store each of this sampled configurations in a data structure.
- 4. Apply algorithms for this set of points to find a patch from one to another configuration.

Example

Sources:

Configuration Space Configuration Space for Motion Planning—Prof. Seth Teller <u>http://courses.csail.mit.edu/6.141/spring2010/pub/lectures/Lec10-ConfigurationSpace.pdf</u>

Why does this work?

- We do not need to explicitly compute the configuration space \mathcal{C} .
- We approximate the free space \mathcal{C}_{free} by random samples and hope that this approximation is sufficient to solve this problem.
- First we will only address the uniform sampling U(0,1) to sample the configuration space. But there are multiple other approach in research for the random function. \rightarrow This will be covered later in the lecture.
- As we use random function that covers the whole configuration space therefore we will cover the whole free space at some point in time. →

Why does this work?

If you find algorithms that are:

Definition 2.5 (Probabilistic Completeness) An algorithm ALG with x iterations is probabilistically complete if, for any feasible -Motion Planning Problem defined by $MPP = (C_{free}, x_{init}, X_{goal}),$ $\lim_{x\to\infty} P(ALG \text{ returns a solution to } MPP) = 1 \tag{2.2}$

You will at some finite time find a solution to the problem (needs proof):

Note:

- Not all algorithms in motion planning are probabilistic complete.
- Even if they are, the "finite" time doers not have to be practical.

What are **challenges**/requirements with this approach.

- To cover the whole configuration space you have to compute lots of samples. Especially for higher dimensions. —>
- Each configuration must be check for validity. This means we have to call our validity function (most of the time the collision detection) in the workspace for each sample.

 >
- Our collision detection has to be very fast for the algorithm to be fast as well.

What are challenges/requirements with this approach.

• The runtime of the algorithms is dominated by the collision detection:

Dataset	#4	#5	#6
FCL/PQP: Pre-Processing	0.03s	0.03s	0.03s
FCL/PQP: Other MP Tasks	0.50s	0.11s	0.04s
FCL/PQP: Collision Detection	118.84s	30.91s	37.43s
Sum:	119.37s	31.05s	37.5s

If the other MP tasks are well implemented \rightarrow Up to 99%

- Collision detection in 3d with large scenes is quite challenging.
- If you have to apply constraints in the workspace → even more

In the past

Sources:

Classic and heuristic approaches in robot motion planning a chronological review – Ellips Masehian and Davoud Sedighizadeh -

 $\frac{https://citeseerx.ist.psu.edu/viewdoc/citations;jsessionid=62832C3081A3BE7A59323DD111A4AAAD9?doi=10.1.1.193.2015$

> Nowadays most approaches focus on sampling-based motion planning