4 正餘弦的疊合

1. 正餘弦函數的疊合:

考慮兩週期相同的正弦函數 $y=\sin x$ 與餘弦函數 $y=\cos x$,將其加在一起的新函數 $f(x)=\sin x+\cos x$ 的圖形,可利用和差角公式及相位角改寫成新的正弦函數或餘弦函數,而求出其振幅及週期,並作出其圖形。

(1)
$$f(x) = \sin x + \cos x = \sqrt{2} \left(\sin x \times \frac{1}{\sqrt{2}} + \cos x \times \frac{1}{\sqrt{2}} \right)$$
$$= \sqrt{2} \left(\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4} \right) = \sqrt{2} \sin \left(x + \frac{\pi}{4} \right) ,$$

f(x)的振幅為 $\sqrt{2}$,相位角為 $\frac{\pi}{4}$,週期為 2π 。

(2)
$$f(x) = \cos x + \sin x = \sqrt{2} \left(\cos x \times \frac{1}{\sqrt{2}} + \sin x \times \frac{1}{\sqrt{2}} \right)$$
$$= \sqrt{2} \left(\cos x \cos \frac{\pi}{4} + \sin x \sin \frac{\pi}{4} \right) = \sqrt{2} \cos \left(x - \frac{\pi}{4} \right) ,$$

觀念是非題 試判斷下列敘述對或錯。(每題2分,共10分)

- (\bigcirc) 1. $\sin 74^{\circ} + \sqrt{3} \cos 74^{\circ} = 2 \sin 134^{\circ}$
 - $\sin 74^{\circ} + \sqrt{3}\cos 74^{\circ} = 2\left(\frac{1}{2}\sin 74^{\circ} + \frac{\sqrt{3}}{2}\cos 74^{\circ}\right) = 2\sin(74^{\circ} + 60^{\circ}) = 2\sin 134^{\circ}$
- (\bigcirc) **2.** 函數 $y = \sin x + \sqrt{3} \cos x$ 的振幅為 2。
 - $y = \sin x + \sqrt{3}\cos x = 2\left(\frac{1}{2}\sin x + \frac{\sqrt{3}}{2}\cos x\right) = 2\sin(x + 60^\circ)$
- () 3. 設 $f(x) = 3\sin x + 3\sqrt{3}\cos x = r\sin(x+\theta)$,且 r > 0, $0 < \theta < \frac{\pi}{2}$,則數對 $(r,\theta) = \left(6,\frac{\pi}{3}\right)$ 。
 - $f(x) = 3\sin x + 3\sqrt{3}\cos x = \sqrt{3^2 + \left(3\sqrt{3}\right)^2} \left(\frac{3}{\sqrt{3^2 + \left(3\sqrt{3}\right)^2}}\sin x + \frac{3\sqrt{3}}{\sqrt{3^2 + \left(3\sqrt{3}\right)^2}}\cos x\right)$ $= 6\left(\sin x \cos \frac{\pi}{3} + \cos x \sin \frac{\pi}{3}\right) = 6\sin\left(x + \frac{\pi}{3}\right),$ $\text{Fig. } x = 6, \ \theta = \frac{\pi}{3}, \ \text{Rif}(r, \theta) = \left(6, \frac{\pi}{3}\right).$
- () **4.** 已知 a > 0 , $0 < \phi < 2\pi$,且 $-\cos\theta \sin\theta = a\sin(\theta + \phi)$ 恆成立,則數對

- () **5.** 已知 x = k 為 $y = \sqrt{3} \sin 2x 3\cos 2x$ 的一對稱軸,則 $x = k + \frac{\pi}{2}$ 亦為 $y = \sqrt{3} \sin 2x 3\cos 2x$ 的另一對稱軸。
 - 解 $y = \sqrt{3}\sin 2x 3\cos 2x = 2\sqrt{3}\sin\left(2x \frac{\pi}{3}\right) = 2\sqrt{3}\sin\left(2\left(x \frac{\pi}{6}\right)\right)$, 週期為 $\frac{2\pi}{2} = \pi$,

由圖可知正確。

一、填充題(每題7分,共70分)

- **1.** 下列哪一個數值最接近 $\sqrt{2}$? (D) 。(單選題)
 - (A) $\sqrt{3}\cos 44^{\circ} + \sin 44^{\circ}$ (B) $\sqrt{3}\cos 54^{\circ} + \sin 54^{\circ}$
 - (C) $\sqrt{3}\cos 64^{\circ} + \sin 64^{\circ}$ (D) $\sqrt{3}\cos 74^{\circ} + \sin 74^{\circ}$
 - (E) $\sqrt{3}\cos 84^{\circ} + \sin 84^{\circ}$
- 爾 $\Rightarrow f(x) = \sqrt{3}\cos x + \sin x = 2\cos\left(x \frac{\pi}{6}\right)$ 最接近 $\sqrt{2}$,

代表 $\cos\left(x-\frac{\pi}{6}\right)$ 最接近 $\frac{\sqrt{2}}{2}$ \Rightarrow $\left(x-\frac{\pi}{6}\right)$ 最接近 $\frac{\pi}{4}$, x 最接近 $\frac{5\pi}{12}$, 即 75° , 故選(D)。

2. 已知右圖為函數 $y = a \sin x + b \cos x + c$ 圖形的一部分, 則 $(a,b,c) = (-1,-1,\sqrt{2})$ 。

解 由圖形可知振幅為 $\frac{2\sqrt{2}-0}{2} = \sqrt{2}$,

又點
$$\left(\frac{\pi}{4},0\right)$$
, $\left(\frac{5\pi}{4},2\sqrt{2}\right)$ 在圖形上,

代入函數得
$$a\sin\frac{\pi}{4} + b\cos\frac{\pi}{4} + c = 0 \Rightarrow \frac{1}{\sqrt{2}}a + \frac{1}{\sqrt{2}}b + c = 0 \cdots 2$$
,

$$a\sin\frac{5\pi}{4} + b\cos\frac{5\pi}{4} + c = 2\sqrt{2} \Rightarrow -\frac{1}{\sqrt{2}}a - \frac{1}{\sqrt{2}}b + c = 2\sqrt{2}\cdots (3)$$

由②+③,得
$$2c = 2\sqrt{2} \Rightarrow c = \sqrt{2}$$
,代入②,得 $a+b=-2 \Rightarrow b=-2-a$,

代入①得
$$a^2 + 2a + 1 = 0 \Rightarrow (a+1)^2 = 0 \Rightarrow a = -1$$
, $b = -2 - (-1) = -1$,

因此,
$$(a,b,c)=(-1,-1,\sqrt{2})$$
。

- $\sqrt{3}\sin\theta + \cos\theta = 2\sin(\theta + 30^{\circ}) ,$ $\angle 2\sin(\theta + 30^{\circ}) = 2\sin 2024^{\circ}$ $\Rightarrow \sin(\theta + 30^{\circ}) = \sin 2024^{\circ} = \sin 224^{\circ} = \sin(180^{\circ} + 44^{\circ}) = -\sin 44^{\circ} = \sin(360^{\circ} 44^{\circ}) = \sin 316^{\circ}$ $\Rightarrow \theta = 286^{\circ} \quad \circ$
- **4.** 若 $y = \sin x + \sin\left(\frac{\pi}{3} x\right)$,且 $0 \le x \le \frac{\pi}{2}$,若 y 的最大值為 a,此時的 x 為 b ,則數對 $(a,b) = \left(1,\frac{\pi}{6}\right)$ 。
- $y = \sin x + \sin\left(\frac{\pi}{3} x\right) = \sin x + \sin\frac{\pi}{3}\cos x \cos\frac{\pi}{3}\sin x$ $= \frac{1}{2}\sin x + \frac{\sqrt{3}}{2}\cos x = \sin\left(x + \frac{\pi}{3}\right) \circ$ $0 \le x \le \frac{\pi}{2} \Rightarrow \frac{\pi}{3} \le x + \frac{\pi}{3} \le \frac{5}{6}\pi \Rightarrow \frac{1}{2} \le \sin\left(x + \frac{\pi}{3}\right) \le 1 \quad ,$ 此時 $x + \frac{\pi}{3} = \frac{\pi}{2} \Rightarrow x = \frac{\pi}{6} \quad ,$ 故 $(a,b) = \left(1, \frac{\pi}{6}\right) \circ$

- **5.** 當 $x = \alpha$ 時, $y = 3\sin x 4\cos x$ 有最大值,求數對 $(\cos \alpha, \sin \alpha) = \left(-\frac{4}{5}, \frac{3}{5}\right)$ 。
- - ② 最大值為 $5 \Rightarrow \sin(\alpha \theta) = 1 \Rightarrow \alpha \theta = \frac{\pi}{2} + 2k\pi \Rightarrow \alpha = \frac{\pi}{2} + 2k\pi + \theta$, $k \in \mathbb{Z}$ $\cos \alpha = \cos\left(\frac{\pi}{2} + 2k\pi + \theta\right) = -\sin \theta = -\frac{4}{5}$, $\sin \alpha = \sin\left(\frac{\pi}{2} + 2k\pi + \theta\right) = \cos \theta = \frac{3}{5}$,
 當數對 $(\cos \alpha, \sin \alpha) = \left(-\frac{4}{5}, \frac{3}{5}\right)$ 時,y的最大值為5。

- $\sqrt{3}\cos x \sin x = 2\cos\left(x + \frac{\pi}{6}\right),$ $2\cos\left(x + \frac{\pi}{6}\right) = 1 \Rightarrow \cos\left(x + \frac{\pi}{6}\right) = \frac{1}{2},$ $\nabla -\frac{\pi}{2} < x < \frac{\pi}{2} \Rightarrow -\frac{\pi}{3} < x + \frac{\pi}{6} < \frac{2}{3}\pi, \quad \text{if } x + \frac{\pi}{6} = \frac{\pi}{3} \Rightarrow x = \frac{\pi}{6}.$

- 7. 設 $a \cdot b$ 是常數且a > b,若 $f(x) = a \sin x + b \cos x$ 的最大值為 $\sqrt{13}$,且a + b = 5,試求數 對(a,b) = (3,2)。
- 解 $f(x) = a \sin x + b \cos x = \sqrt{a^2 + b^2} \sin(x + \theta)$, 且 $\cos \theta = \frac{a}{\sqrt{a^2 + b^2}}$, $\sin \theta = \frac{b}{\sqrt{a^2 + b^2}}$, f(x) 最大値為 $\sqrt{a^2 + b^2} = \sqrt{13} \Rightarrow a^2 + b^2 = 13$, $\nabla a + b = 5 \Rightarrow a = 5 - b$, 代入 $a^2 + b^2 = 13$, $(5-b)^2 + b^2 = 13 \Rightarrow 2b^2 - 10b + 12 = 0 \Rightarrow b^2 - 5b + 6 = 0$ ⇒ b = 2 或 3 (不合) , a = 3 。 故數對 (a,b) = (3,2) 。

- 若 $0 \le \theta \le \pi$,求 $f(\theta) = 3\cos^2\theta + 2\sin\theta\cos\theta + \sin^2\theta$ 的最大值為 $2 + \sqrt{2}$
- $f(\theta) = 3\cos^2\theta + 2\sin\theta\cos\theta + \sin^2\theta = 1 + (2\cos^2\theta 1) + 1 + \sin 2\theta$ $= \sin 2\theta + \cos 2\theta + 2 = \sqrt{2} \sin \left(2\theta + \frac{\pi}{4} \right) + 2 ,$

$$\frac{\sqrt{2}}{\frac{\pi}{4}}$$

 $\mathbb{Z} 0 \le \theta \le \pi \Rightarrow 0 \le 2\theta \le 2\pi$,

$$-\sqrt{2} \le \sqrt{2} \sin\left(2\theta + \frac{\pi}{4}\right) \le \sqrt{2} \Rightarrow 2 - \sqrt{2} \le \sqrt{2} \sin\left(2\theta + \frac{\pi}{4}\right) + 2 \le 2 + \sqrt{2}$$

所以最大值為 $2+\sqrt{2}$ 。

如圖, $L_1//L_2$ 且 L_1 和 L_2 距離為 $\sqrt{2}$,將一矩形ABCD斜擺在此兩 平行線之間,且 $\overline{AB} = \sqrt{3}$, $\overline{BC} = 1$,使得頂點B在L,上,頂點D $E(L_2 \perp , \bar{x} \overline{CD})$ 和 L_2 的銳夾角 $\theta = \frac{\pi}{12}$

 $\overline{CF} = \cos\theta \quad , \quad \overline{CE} = \sqrt{3}\sin\theta \quad , \quad \sqrt{3}\sin\theta + \cos\theta = 2\sin\left(\theta + \frac{\pi}{6}\right) \quad ,$ $\mathbb{Z} 2\sin\left(\theta + \frac{\pi}{6}\right) = \sqrt{2}$

 $\Rightarrow \sin\left(\theta + \frac{\pi}{6}\right) = \frac{\sqrt{2}}{2} \Rightarrow \theta + \frac{\pi}{6} = \frac{\pi}{4} \Rightarrow \theta = \frac{\pi}{12}$

- **10.** 設 $0 \le x \le \frac{\pi}{2}$, 函數 $f(x) = 12\cos x 5\sin x + 1$, 若 f(x) 在 $x = \theta$ 時有最小值 m , 則 *m* = ____ 。
- $f(x) = 12\cos x 5\sin x + 1 = 13\left(\frac{12}{13}\cos x \frac{5}{13}\sin x\right) + 1 ,$

$$\Leftrightarrow \cos \phi = \frac{12}{13} \cdot \sin \phi = \frac{5}{13} \cdot \text{ } \exists 0 < \phi < \frac{\pi}{2} \Rightarrow f(x) = 13\cos(x + \phi) + 1$$

$$\bigvee 0 \le x \le \frac{\pi}{2} \Longrightarrow \phi \le x + \phi \le \frac{\pi}{2} + \phi$$

所以當
$$x+\phi=\frac{\pi}{2}+\phi$$
時, $\cos(x+\phi)$ 有最小值為 $\cos(\frac{\pi}{2}+\phi)$,

即當
$$x = \frac{\pi}{2}$$
時($\theta = \frac{\pi}{2}$),

$$f(x)$$
有最小值 $m = 13\cos\left(\frac{\pi}{2} + \phi\right) + 1 = 13\left(-\sin\phi\right) + 1 = 13 \times \left(-\frac{5}{13}\right) + 1 = -4$ 。

二、素養混合題(共20分)

第 11 至 12 題為題組

如圖,P為單位圓(圓心為O)上一定點,且圓上兩動點A、B分別 在P點兩側移動,已知 $\angle APB=\frac{2}{3}\pi$,若 $\angle OPA=\theta$,試回答下列問題。

11.
$$\overline{PA} = 2\cos\theta$$
, $\overline{PB} = 2\cos\left(\frac{2\pi}{3} - \theta\right)$,

$$\text{FTD} = 4\cos\theta + 2\cos\left(\frac{2\pi}{3} - \theta\right)$$

$$= 4\cos\theta + 2\left(\cos\frac{2\pi}{3}\cos\theta + \sin\frac{2\pi}{3}\sin\theta\right)$$

$$= 4\cos\theta - \cos\theta + \sqrt{3}\sin\theta = 3\cos\theta + \sqrt{3}\sin\theta$$

$$= 4\cos\theta - \cos\theta + \sqrt{3}\sin\theta = 3\cos\theta + \sqrt{3}\sin\theta \circ$$
12. $2\overline{PA} + \overline{PB} = 3\cos\theta + \sqrt{3}\sin\theta = 2\sqrt{3}\left(\frac{\sqrt{3}}{2}\cos\theta + \frac{1}{2}\sin\theta\right) = 2\sqrt{3}\cos\left(\theta - \frac{\pi}{6}\right),$
所以當 $\cos\left(\theta - \frac{\pi}{6}\right) = 1$,即 $\theta - \frac{\pi}{6} = 0 \Rightarrow \theta = \frac{\pi}{6}$ 時, $2\overline{PA} + \overline{PB}$ 的最大值為 $2\sqrt{3}$ 。