Problem Set 4

Due date: June 22, 2015, before lecture

Instructions: Please hand in a single PDF-file containing all your answers and results. Show the names of the group members on top. Make use of figures and tables and always provide a short interpretation of your results. Include the source code in the appendix. The code should be well documented and readable.

Problem 1: Interpolation of Simple Function

Read the chapter on interpolation in the book by Miranda and Fackler (2002) to get acquainted with their toolbox.

• Interpolate the function

$$f(x) = \frac{1}{1 + 25x^2}$$

on $x \in [-1, 1]$ using Chebychev polynomials for n equidistant nodes. Increase n from 5 to 15 and plot the residual by comparing the solution with the solution for some large n. What do you find?

Hint: MF assigns Chebychev nodes to Chebychev polynomials. To combine Chebychev polynomials with equidistant nodes, you

- define the function space for Chebychev polynomials, fspace
- define a vector of equidistant nodes, x
- calculate the matrix of basis functions, B, at these nodes by B=funbas(fspace,x).
- you next calculate the function values at x
- and finally get the polynomial coefficients by c=B\y.
- Repeat the exercise using Chebychev nodes. What do you find?

Problem 2: Simple Optimization Problem

We now study a simple optimization problem. A household chooses consumption in two periods, t = 0, 1 to maximize felicity,

$$\max_{C_0,C_1} \left\{ u(C_0) + \mathbb{E}u(C_1) \right\}$$

subject to the constraint that

$$W_1 = W_0(1+r) - C_0$$

 $W_0 > 0$ given.

r is again distributed with two atoms, r_{\min} , r^{\max} , with probabilities p and 1-p. Since waisting resources will be not be an optimal solution, $C_1 = W_1$ and the problem simplifies to

$$\max_{C_0} \left\{ u(C_0) + \mathbb{E}u(W_0(1+r) - C_0) \right\}.$$

• Let utility be given by the quadratic utility function, $u(c_t) = -\frac{1}{2}(c_t - \bar{c})^2$. Write down the optimal consumption rule in period 0 to show that optimal consumption obeys certainty equivalence.

- What happens to C_0^{\star} if the variance of r increases? Does this make economic sense?
- Now, use the CRRA utility function, $u(c_t) = \frac{1}{1-\gamma}(c_t)^{1-\gamma}$ where γ is the coefficient of relative risk aversion. Verify that optimal consumption is characterized by the equation

$$C_0 = \mathbb{E}\left[(W_0(1+r) - C_0)^{-\gamma} \right]^{-1/\gamma}$$
.

Intuitively explain what happens to C_0 if the variance of r increases?

- Define a grid of W for $W^{\min} = 0.5$ and $W^{\max} = 50$ and set $r^{\min} = -0.08$, $r^{\max} = 0.12$, p = 0.5 and $\gamma = 2$. Use a Chebychev approximation with n = 15 interpolation nodes. Plot the solution for the linear function against the Chebychev approximation and calculate the maximum percentage error of the deviation.
- What happens to the deviation if (i) you increase γ , (ii) decrease p, (iii) increase the spread between r^{\min} and r^{\max} while preserving the mean? Notice that the linear solution is unaffected throughout.

Problem 3: Portfolio Choice

Assume that we have a bunch of agents which differ with respect to their degree of risk aversion, γ_i . The problem of each agent i is to chose α_i solving

$$\max_{\alpha} \mathbb{E} \left\{ \frac{1}{1 - \gamma_i} \cdot \left(1 + r^f + \alpha (r - r^f) \right)^{1 - \gamma_i} \right\}$$
s.t.
$$0 \le \alpha \le 1.$$

• Show that the optimal portfolio share for each agent i is the solution to

$$\mathbb{E}\left[\left(1+r^f+\alpha(r-r^f)\right)^{-\gamma_i}\left(r-r^f\right)\right].$$

- Solve the problem for the parametrization of problem 3 and $r^f = 0.02$, $\gamma_i \in [\gamma_{\min}, \gamma^{\max}]$ for $\gamma_{\min} = 1$ and $\gamma^{\max} = 50$ using Chebychev interpolation with n = 15 nodes. Plot α against γ . What do you observe in the neighborhood of the point where the constraint on α^{\max} is binding?
- Now calculate the value of γ where the constraint becomes just binding at $\alpha = 1$ by solving

$$\mathbb{E}\left[\left(1+r\right)\right)^{1-\bar{\gamma}}\right].$$

for $\bar{\gamma}$. Define a grid for $\gamma \in [\bar{\gamma}, \gamma^{\text{max}}]$ and solve the problem again using splines. Compare your solution to what you found above. Is this any better?

Problem 4: Policy Function Approximation in the Neoclassical Growth Model

Consider the textbook neoclassical growth model. There is a representative household that maximizes her lifetime utility subject to a budget constraint, specifically

$$\max_{\{C_t, K_{t+1}\}} \left\{ U(\{C_t\}) = \sum_{t=0}^{\infty} \beta^t \ln C_t \right\}$$

s.t. $C_t + K_{t+1} = (1 + r_t - \delta)K_t + w_t$

Suppose the production sector is competitive and uses a neoclassical production function in capital and labor to produce the all-purpose good. The optimization problem of the representative firm reads

$$\max_{K_t, L_t} \left\{ K_t^{\alpha} L_t^{1-\alpha} - r_t K_t - w_t L_t \right\}$$

For simplicity assume $L_t = 1, \forall t$. Let $\beta = 0.96, \alpha = 0.36$ and $\delta = 0.06$.

- 1. Derive the first-order conditions of the household's and firm's optimization problem for given interest and wage rate.
- 2. Impose market clearing and derive the steady state $(C_t = C_{t+1})$.
- 3. Let K^* denote the steady state capital stock. Construct a capital grid with m = 9 grid points between $0.5K^*$ and $1.5K^*$ using Chebyshev nodes.
- 4. Approximate the consumption policy on the capital grid by a Chebyshev polynomial of degree n = m 1,

$$\tilde{C}(K) \approx \sum_{i=0}^{n} \theta_i T_i(K).$$

Use the Euler equation to derive conditions for $\theta = \{\theta_i\}_{i=0}^n$. Compute θ .

- 5. Plot your approximation of the consumption policy, $\tilde{C}(K)$, on 100 equidistant points on your capital grid.
- 6. Simulate the path of capital, K_t , for 100 periods, starting with $K_1 = 0.5K^*$. Plot the values over time. What do you observe?
- 7. Given your approximation of the consumption policy, compute the relative Euler equation error. I.e., for 1000 random draws on your capital grid, compute

$$E(K;\theta) = \frac{R(K;\theta)}{\tilde{C}(K)},$$

where $R(K;\theta)$ denotes the residual of the Euler equation defined in terms of consumption, e.g., $R(K;\theta) = \tilde{C}\left(K'\left(\tilde{C}(K;\theta)\right);\theta\right) - \beta(1+r'-\delta)\tilde{C}(K;\theta)$ with primes denoting next period variables. Report the maximum and average absolute errors.

References

MIRANDA, M. J. AND P. L. FACKLER (2002): Applied Computational Economics and Finance, Cambridge: MIT Press.