Character Sums and Generating Sets

Ming-Deh A. Huang, Lian Liu

University of Southern California

July 14, 2015

Introduction

Let p be a prime number, $f \in \mathbb{F}_p[x]$ be an irreducible polynomial of degree $d \geq 2$ and $q = p^d$ be a prime power.

Theorem (Chung)

Given $\mathbb{F}_q \cong \mathbb{F}_p[x]/f$, if $\sqrt{p} > d-1$, then $\mathbb{F}_p + x$ is a generating set for \mathbb{F}_q^{\times} .

$$\mathbb{F}_p + x := \{a + x | a \in \mathbb{F}_p\}$$

Today's topic

Today, we will discuss more on the relationship between character sums and group generating sets. To illustrate, we will take a detailed look the multiplicative group of the algebra A^{\times} , where A is of the form:

$$A := \mathbb{F}_p[x] / f^e$$

where $e \ge 1$ is an integer.

Outline

Question

- ▶ Given $S \subseteq A^{\times}$ a subset of elements, what are the sufficient or necessary conditions for S to generate A^{\times} ?
- ▶ How to construct a small generating set for A^{\times} ?
- ► How strong are the above sufficient conditions for generating sets? Can they be substantially weakened in practice?

Difference graphs

Given G, a nontrivial finite abelian group and $S \subseteq G$ a subset of elements, the difference graph G defined by the pair (G, S) is constructed as follows:

Algorithm

- 1. For each element $g \in G$, create a vertex g in G;
- 2. Create an arc $g \to h$ in $\mathcal G$ if and only if gs = h for some $s \in \mathcal S$.

E.g., in Chung's situation, $G = \mathbb{F}_q^{\times} \cong (\mathbb{F}_p[x]/f)^{\times}$ and $S = x + \mathbb{F}_p$.

Lemma

If G has a finite diameter, then S is a generating set for G.

Diameters and eigenvalues

Theorem (Chung)

Suppose a k-regular directed graph G which has out-degree k for every vertex, and the eigenvectors of its adjacency matrix form an orthogonal basis. Then

$$\operatorname{diam}(G) \leq \left| \frac{\log(n-1)}{\log(\frac{k}{\lambda})} \right|$$

where n is the number of vertices and λ is the second largest eigenvalue (in absolute value) of the adjacency matrix.

Adjacency matrices defined on general finite abelian groups

Assume that G is any nontrivial finite abelian group, and assume the adjacency matrix, M, of $\mathcal{G} := (G, S)$ has rows and columns indexed by $g_1, \ldots, g_n \in G$:

Dirichlet character sums

Let G be any nontrivial finite abelian group. Then

$$G \cong \mathbb{Z}_{d_1} \oplus \ldots \oplus \mathbb{Z}_{d_k}$$

for some integers $d_i > 1$.

Consider Dirichlet characters $\chi: G \to \mathbb{C}^{\times}$ of the following form:

$$g\cong (g_1,\ldots,g_k) o \prod_i \omega_{d_i}^{g_i}$$

for every $g \in G$, where ω_{d_i} is a d_i^{th} root of unity.

A generalization of Chung's results

The adjacency matrix M has the following properties:

Lemma

The eigenvectors of M are $[\chi(g_1), \ldots, \chi(g_n)]^{\top}$, and the corresponding eigenvalutes are $\sum_{s \in S} \chi(s)$.

Lemma

The set of eigenvectors $[\chi(g_1), \dots, \chi(g_n)]^{\top}$ form an orthogonal basis for \mathbb{C}^n .

A generalization of Chung's results

Following the diameter theorem for directed graphs, we may generalize Chung's results to obtain

Theorem (Main)

lf

$$\left|\sum_{s\in S}\chi(s)\right|<|S|$$

for every nontrivial Dirichlet character χ of G, then S is a generating set for G.

The structure of A^{\times}

Now let us consider groups of the form $A:=\mathbb{F}_p[x]/f^e$. Recall that $f\in\mathbb{F}_p[x]$ is a monic irreducible polynomial of degree $d\geq 2$ and $e\geq 1$ is an integer.

Lemma (Decomposition)

If $p \ge e$, then

$$A^{ imes}\cong \mathbb{Z}_{p^d-1}\oplus \left(igoplus_{d(e-1)}^{}\mathbb{Z}_p
ight)$$

Theorem

If $p \geq e$, then any generating set of A^{\times} contains at least d(e-1)+1 elements.

The structure of A^{\times}

This isomorphism allows us to define a Dirichlet character from A^{\times} to the unit circle. For every $\alpha \in A^{\times}$,

$$\chi: \alpha \to \omega \prod_{i=1}^{d(e-1)} \theta_i$$

where ω is a $(p^d-1)^{\rm th}$ root of unity and each θ_i is a $p^{\rm th}$ root of unity. χ is trivial if ω and every θ_i equals 1.

A as an \mathbb{F}_p -algebra

Let us first consider if the set of linear elements $S = \mathbb{F}_p - x$ generates A^{\times} .

Theorem (Katz, Lenstra)

Given \mathbb{F}_q a finite filed and B an arbitrary finite n-dimensional commutative \mathbb{F}_q -algebra. For any nontrivial complex-valued multiplicative character χ on B^{\times} , extended by zero all of B,

$$\left|\sum_{\mathbf{a}\in\mathbb{F}_q}\chi(\mathbf{a}-\mathbf{x})\right|\leq (n-1)\sqrt{q}$$

A as an \mathbb{F}_p -algebra

Since A can be naturally regarded as an \mathbb{F}_p -algebra of dimension de, by the Main theorem we get

Theorem

If $\sqrt{p} > de-1$, then $\mathbb{F}_p - x$ is a generating set for A^{\times} . Furthermore, every element $\alpha \in A^{\times}$ can be written as $\prod_{i=1}^m (a_i - x)$ where $a_i \in \mathbb{F}_q$ and

$$m < 2de + 1 + \frac{4de \log(de - 1)}{\log p - 2\log(de - 1)}$$

More on the structure of A^{\times}

The constraint $\sqrt{p} > de - 1$ might be critical on the size of the base field \mathbb{F}_p , and hence we wonder whether we can use other base fields of A to build generating sets in a similar way.

One candidate base field is $\mathbb{F}_q := \mathbb{F}_p[x]/f$, and we proved that A is indeed an \mathbb{F}_q -algebra:

Lemma

A is an \mathbb{F}_q -algebra of dimension e, and there exists a embedding $\pi: \mathbb{F}_q \to A$ such that $\mathbb{F}_q \cong \pi(\mathbb{F}_q)$ as rings.

The embedding

Given an element $a \in \mathbb{F}_q^{\times}$, the image $\pi(a)$ is uniquely determined by the following constraints:

- $\blacktriangleright \ \pi(a) \equiv a \ (\bmod \ f);$
- $(\pi(a))^{q-1} \equiv 1 \pmod{f^e}.$

We extend the embedding to all of \mathbb{F}_q by enforcing $\pi(0)=0$. Each image can be computed with $O(de \log p)$ group operations in $(\mathbb{F}_p[x]/f^i)^{\times}$ where $1 \leq i \leq e$.

A as an \mathbb{F}_q -algebra

Knowing that A as an \mathbb{F}_q -algebra of dimension e, we may similarly consider whether or not the set $\pi(\mathbb{F}_q)-x$ generates A^\times . Again, by Katz and Lenstra's character sum theorem, we have

Theorem

If $p \geq e$, then $\pi(\mathbb{F}_q) - x$ is a generating set for A^{\times} . Furthermore, every element $\alpha \in A^{\times}$ can be written as $\prod_{i=1}^{m} (\pi(a_i) - x)$ where $a_i \in \mathbb{F}_q$ and

$$m < 2e + 1 + \frac{4e\log(e-1)}{d\log p - 2\log(e-1)}$$

Constructing a small generating set

Based on previous discussions we observe that

- $ightharpoonup \mathbb{F}_p x$ generates A^{\times} if $\sqrt{p} > de 1$, but requires p to be large;
- ▶ $\pi(\mathbb{F}_q) x$ generates A^{\times} if $p \geq e$, but might be over-killing;
- Next step: take a *nice* subfield $K \subset \mathbb{F}_q$ and build a generating set from $\pi(K) x$.

Constructing a small generating set

Let $K \subset \mathbb{F}_q$ be a subfield of size p^c where c|d. Then $\mathbb{F}_p[x]/f$ can be considered as an K-algebra of dimension de/c. Based on our previous discussion we can similarly show that

Theorem

If $p^{c/2} > de/c - 1$ and $p \ge e$, then $\pi(K) - x$ is a generating set for A^{\times} . Furthermore, every element $\alpha \in A^{\times}$ can be written as $\prod_{i=1}^{m} (\pi(a_i) - x)$ where $a_i \in K$ and

$$m < 2\frac{de}{c} + 1 + \frac{4\frac{de}{c}\log(\frac{de}{c} - 1)}{\frac{d}{c}\log p - 2\log(\frac{de}{c} - 1)}$$

Constructing a small generating set

Now we conclude the algorithm for constructing the smallest generating set for A^{\times} in the situation that $p \geq e$:

Algorithm

- 1. Find the smallest c such that c|d which satisfies $p^{c/2} > de/c 1$;
- 2. Take the subfield $K \subset \mathbb{F}_q$ of size p^c and return $\pi(K) x$ as a generating set for A^{\times} .

Theorem

Given fixed p and e with $p \ge e$, if d is a perfect power, then there is (constructively) a generating set for A^{\times} of size $p^{O(\log d)}$.

Experiments

In the following experiments, we compare the size of the following three types of generating sets for A^{\times} :

- $S := \pi(\mathbb{F}_q) x$, the size is equal to p^d ;
- $S^* := \pi(K) x$, the size is equal to p^c ;
- ▶ \tilde{S}^* , the set generated by adding elements in S^* one-by-one to \emptyset , until it generates the whole group. We denote its size as p^b for some real number b.

Obviously, we have $b \le c \le d$. Also note that \tilde{S}^* might still be much bigger than the real smallest generating set.

The relationship between c and d

Experiment setting:

- p = 7, e = 5;
- $d = 2^1, 2^2, 2^3, \dots$

(a) Comparison between c and d

(b) The logarithmic growth of c

The relationship between c and b

- \rightarrow $d = 2^1, 2^2, 2^3, \ldots;$
- fix e = 4 and increase the value of p.

(c)
$$p = 5, e = 4$$

(d) p = 11, e = 4

The relationship between c and b

- \rightarrow $d = 2^1, 2^2, 2^3, \ldots;$
- fix p = 7 and increase the value of e.

(e)
$$p = 7, e = 3$$

(f) p = 7, e = 5

Remarks and future work

We observe that both b and c grows linearly with $\log(d)$, and they may differ only by a constant ratio, i.e. \tilde{S}^* is still of size $p^{O(\log d)}$ given d being a perfect power.

Problem

Given $p \ge e > 1$ and $f \in \mathbb{F}_p[x]$ an irreducible polynomial of degree d, a perfect power, how to construct a generating set of size $p^{o(\log d)}$ for the group A^{\times} ?

Remarks and future work

A big assumption we made in our work is that $p \ge e$, which helps guarantee the decomposition of the group. It is therefore an important question to ask what if p < e?

Problem

If p < e, can we get similar results for the group A^{\times} ?

Thanks! @Y