1. Метрические пространства. Примеры.

Опр

X - мн-во (X
$$\neq \varnothing$$
)
$$\rho: X \times X \to \mathbb{R} \text{ (метрика)}$$

Пара (X, ρ) назыв. метр. пр-вом, если:

1.
$$\rho(x,y) \geqslant 0$$
 и $\rho(x,y) = 0 \Leftrightarrow x = y$

2.
$$\rho(x, y) = \rho(y, x)$$

3. нер-во
$$\triangle$$
 $\rho(x,z) \leqslant \rho(x,y) + \rho(y,z)$

Примеры

- 1. $\mathbb{R}, \mathbb{R}^2, \mathbb{R}^3$ со станд. ρ
- 2. Ha \mathbb{R}^2
 - (a) $\rho_1((x_1,y_1),(x_2,y_2)) = |x_1-x_2| + |y_1-y_2|$ манхэттенская метрика
 - (b) $\rho_{\infty} = max\{|x_1 x_2|, |y_1 y_2|\}$
 - (c) $\rho_p = (|x_1 x_2|^p + |y_1 y_2|^p)^{\frac{1}{p}}$
 - (d) ρ_2 евклидова метрика
- 3. Х мн-во

$$ho(a,b) = \begin{cases} 0, & a=b \\ 1, & a
eq b \end{cases}$$
 - дискретная метрика

$\mathbf{y}_{\mathbf{n}\mathbf{p}}$

Доказать, что это метрики

2. Открытые и замкнутые множества. Свойства

Опр

$$B(x_0,\mathcal{E})=\{x\in X\mid \rho(x,x_0)<\mathcal{E}\}$$
 Называется открытым шаром с центром в x_0 и радиусом \mathcal{E} \mathcal{E} - окр. x_0

Опр

$$U\subset X$$
 U - откр., если:

$$\forall x \in U \quad \exists \mathcal{E} : B(x, \mathcal{E}) \subset U$$

Опр

$$Z\subset X$$
 Z — замкн., если $X\setminus Z$ - откр. мн-во

Теорема (св-ва откр. мн-в)

1. $\{U_{\alpha}\}_{{\alpha}\in A}$ - семейство откр. мн-в

$$\Rightarrow \bigcup_{\alpha \in A} U_{\alpha} - \text{откр.}$$

2. $U_1, ..., U_n$ - откр.(конеч. число)

$$\Rightarrow \bigcap_{i=1}^n U_i$$
 – откр.

3. \varnothing, X – откр.

Док-во

1.
$$\forall x \in \bigcup_{\alpha \in A} U_{\alpha} \Rightarrow \exists \alpha_0 : x \in U_{\alpha_0}$$

$$U_{\alpha_0} - \text{откр.} \Rightarrow \exists \mathcal{E} : B(x, \mathcal{E}) \subset U_{\alpha_0}$$

$$B(x, \mathcal{E}) \subset \bigcup_{\alpha \in A} U_{\alpha} \Rightarrow \bigcup_{\alpha \in A} U_{\alpha} - \text{откр.}$$

2.
$$\forall x \in \bigcap_{i=1}^{n} U_i \Rightarrow \forall i \quad x \in U_i$$

$$\exists \mathcal{E}_i \colon B(x, \mathcal{E}_i) \subset U_i$$

$$\mathcal{E} = \min_{i=1,\dots,n} \{\mathcal{E}_i\} \quad B(x, \mathcal{E}) \subset B(x, \mathcal{E}_i) \subset U_i$$

$$B(x, \mathcal{E}) \subset \bigcap_{i=1}^{n} U_i \Rightarrow \bigcap_{i=1}^{n} U_i - \text{otrp}$$

Пример

$$U_i = \left(-\frac{1}{i}, \frac{1}{i}\right)$$

 $\bigcap_{i=1}^{\infty} U_i = \{0\}$ - объясняет, почему должно быть конечное число в пересеч.

Лемма

$$B(x_0,r)-$$
 откр. $orall$ метр. пр-ва $X \quad orall x_0 \quad orall r>0$

Док-во

$$x \in B(x_0, r)$$

$$\rho(x_0, x) = d < r$$

$$\mathcal{E} = \frac{r - d}{2}$$

$$B(x, \mathcal{E}) \subset B(x_0, r)$$
?

Здесь очень внимательно надо смотреть на предположение

 x_1 лежит в предполагаемой области за пределами шарика $B(x_0,r)$

$$\exists x_1 \in B(x,\mathcal{E}) \setminus B(x_0,r)$$
 $ho(x_1,x) < \mathcal{E} = r - d$ $ho(x_0,x) = d$ $ho(x_1,x_0) \geqslant r$ $ho(x_1,x_0) \geqslant \rho(x_1,x) + \rho(x,x_0)$ $ho(x_1,x_0) \geqslant r$ и $ho(x_1,x_0) < r$ противореч. нер-ву ho

Теорема (св-ва замк. мн-в)

1.
$$\{F_i\}_{i \in A}$$
— замкн.

$$\Rightarrow \bigcap_{i \in A} F_i - \text{замк}.$$

2.
$$F_1, ..., F_n$$
 – замк.

$$\Rightarrow \bigcup_{i=1}^{n} F_i$$
 – замк.

$$3. \varnothing$$
 и X замк.

$$F_i = X \setminus U_i, \quad U_i$$
 - откр.
 $\bigcap F_i = \bigcap (X \setminus U_i) = X \setminus \bigcup U_i$

3. Внутренность и вшеность множества.

Опр

X - м. пространство
$$A\subset X$$
 $x_0\in X$ x_0 - назыв. внутр. относительно A (в X), если \exists E >0 : B(x₀, E) $\subset A$

Опр

$$x_0$$
 - назыв. внешней, если x_0 - внутр. для $\overline{A}=X\setminus A$ \exists $E>0: B(x_0,\mathcal{E})\cap A=\varnothing$

Опр

Остальные точки - граничные x_0 - гранич., если $\forall \mathcal{E} > 0B(x_0,\mathcal{E}) \cap A \neq \emptyset$ и $B(x_0,\mathcal{E}) \not\subset A$ Int A - внутренность A - мн-во внутр. т. Ex A - внешность A - мн-во внешних т. $\partial A = FrA$ - граница A - мн-во гр.т.

Теорема

След. описания Int эквив.

- 1. Int A мн-во внутр. т.
- 2. Наибольшее (по включению) откр. мн-во, содерж. в А
- 3. тах (по включению) откр. мн-во, содерж. в А
- 4. Int $A = \bigcup U_i$, $U_i \text{otrp.}$ $U_i \subset A$
- 5. Int $A = (X \setminus ExA) \setminus \partial A$

Док-во

$$(2)\Leftrightarrow (4)\Leftrightarrow (3)$$
 т.к объед. откр. - откр. $(1)\Leftrightarrow (4):$ \Rightarrow $x_0\in \text{мн-во внутр. т.}\subset\bigcup U_i,\quad U_i\text{- откр.}\quad U_i\subset A$ \exists $E>0\colon \mathrm{B}(\mathrm{x}_0,\mathcal{E})\text{- откр.}\subset A$ (по определению Int A) \Leftarrow $\exists i:x_0\in U_i\subset A\quad x_0\in\bigcup U_i$ \exists $\mathrm{E}\colon \mathrm{B}(\mathrm{x}_0,\mathcal{E})\subset U_i\subset A\Rightarrow x_0\text{- внутр. т. A}$

Теорема (равносильные определения внешности)

- 1. Ех А мн-во внеш. т.
- 2. Ex A = Int $(X \setminus A)$
- 3. Ех А тах (по вкл.) откр. мн-во, не пересек. с А
- 4. Ex A = $\bigcup U_i$, U_i otkp. $U_i \cap A = \emptyset$

Относительно внутр.

$$A\subset X\Rightarrow (A,\rho)$$
 — метр. пр-во $B\subset A$ $Int_AB
eq Int_XB$

Пример

$$X=\mathbb{R},\quad
ho-$$
 станд. $A=[0,1]\quad B=[0,rac{1}{2})$ $Int_XB=(0,rac{1}{2})\quad Int_AB=[0,rac{1}{2})$

4. Замыкание множества.

Опр

Замыкание А
$$ClA = \{x \in X | \forall \mathcal{E} > 0 \mid B(x, \mathcal{E}) \cap A \neq \varnothing \}$$

Теорема

- 1. $ClA = \{x \in X | \forall \mathcal{E} > 0 \mid B(x, \mathcal{E}) \cap A \neq \emptyset \}$
- 2. $ClA = IntA \cup \partial A$
- 3. $ClA = \cap F_i$, $F_i \text{замк}$ $F_i \supset A$
- 4. ClA = min(по вкл.) замк. $\supset A$

Док-во

- $(3) \Leftrightarrow (4)$ пересеч. замк. замк.
- $(1) \Leftrightarrow (2)$ очев.
- $(1) \Rightarrow (3)$:

$$orall \mathcal{E}>0$$
 $x:B(x,\mathcal{E})\cap A\neq\varnothing$
$$\sqsupset x\not\in F\text{- замк}. \quad F\supset A \quad x\in X\setminus F\text{- откр}.$$

$$E>0:B(x,\mathcal{E})\subset X\setminus F\subset X\setminus A$$

$$\Rightarrow x$$
 - внеш. противореч.

$$(3) \Leftarrow (1)$$
:

$$x \in \cap F_i$$

$$\exists \mathcal{E} > 0 : B(x, \mathcal{E}) \cap A = \emptyset$$

$$B(x,\mathcal{E})$$
 - откр. (по л.) замк - $F=X\setminus B(x,\mathcal{E})$ $F\supset A$ $x\not\in F$ - противореч.

Замечание

- 1. А откр. $\Leftrightarrow A = IntA$
- 2. А замк. $\Leftrightarrow A = ClA$
- 3. $IntA \subset A \subset ClA$ $\partial A = ClA \setminus IntA$

Пример

$$\begin{aligned} X &= \mathbb{R}; \quad A &= \varnothing \\ Int A &= \varnothing \quad Ex A = \varnothing \quad \partial A = \mathbb{R} \end{aligned}$$

Пример

Кантор. мн-во - замк.

5. Топологические пространства. Примеры.

Опр

 ${
m X}$ - мн-во ${\Omega}\subset 2^X=\{A\subset X\}$ - мн-во подмн. ${
m X}$ (X,Ω) - назыв. тополог. пр-вом, если

1.

$$\forall \{U_i\}_{i\in I} \in \Omega \Rightarrow \bigcup_{i\in I} U_i \in \Omega$$

- 2. $U_1, U_2, ..., U_n \Rightarrow U_1 \cap U_2 \cap ... \cap U_n \in \Omega$
- 3. $\emptyset; X \in \Omega$

 Ω - тополог. на X $U \in \Omega$ - назыв. открытым мн-вом

Опр

 (X,Ω) - топ. пр-во; $F\subset X$ F - назыв. замк., если $X\setminus F\in\Omega$

Теорема

1.

$$\bigcap_{i \in I} F_i$$
- замк, если F_i – замк

- 2. $F_1 \cup F_2$ замк $(F_1, F_2$ замк.)
- $3. \varnothing, X$ замк.

Примеры

- 1. (X, ρ) топ. пр-во
- 2. дискр. пр-во: $\Omega = 2^X$
- 3. антидискр. пр-во: $\Omega = \{\emptyset, X\}$

Опр

 (X,Ω) - метризуемо, если \exists метрика $\rho: X \times X \to \mathbb{R}_X$ $\Omega=$ мн-во откр. подмн. в ρ Антидискр. - не метризуемо, если $|\mathbf{X}|>1$

4. Стрелка

$$X = \mathbb{R}$$
 или $\mathbb{R}_+ = \{x \geqslant 0\}$
 $\Omega = \{(a, +\infty)\} \cup \{\varnothing\} \cup \{X\}$

5. Связное двоеточие

$$\begin{split} X &= \{a,b\} \\ \Omega &= \{\varnothing, X, \{a\}\} \end{split}$$

6. Топология конечных дополнений (Зариского)

Замкнутые конечные мн-ва и Х

$$\Omega = \{A|X \setminus A \text{ конечно}\}$$

6. База топологии. Критерий базы.

Опр

X - топ. пр-во;
$$A\subset X$$
 $IntA=\cup U,\ U\in\Omega\ U\subset A$ $ClA=\cap F,\ F-$ замк. $F\supset A$ $\partial A=ClA\setminus IntA$

Опр

$$x_0 \in X$$
 окр. x_0 назыв. $\forall U \in \Omega : x_0 \in U$

Опр

$$x_0$$
 назыв. внутр. т. A, если $\exists U_{x_0} \subset A$ x_0 назыв. внеш. т. A, если $\exists U_{x_0} \cap A = \varnothing$ x_0 назыв. граничной, если $\forall U_{x_0} \quad (U_{x_0} \not\subset A)$ и $(U_{x_0} \cap A \neq \varnothing)$

Опр

$$(X,\Omega)$$
 - топ. пр-во $\mathcal{B}\subset\Omega$ \mathcal{B} назыв. базой топологии, если

$$\forall U \in \Omega \quad \exists \{V_i\} \in \mathcal{B}: \quad U = \bigcup_{i \in I} V_i$$

Пример

$$X=\mathbb{R}^n$$
 или другое метр. пр-во $\mathcal{B}=\{B(x_0,\mathcal{E})|x_0\in X,\mathcal{E}>0\}$ - база топологии $\forall U$ - откр. $\forall x_0\in U$ $\exists \mathcal{E}:B(x_0,\mathcal{E})\subset U$

$$\bigcup_{x_0 \in U} B(x_0, \mathcal{E}) = U$$

Теорема (Критерий базы)

X - мн-во
$$\mathcal B$$
 - нек. совокупность подмн-в X $\mathcal B$ - база $\Omega \Leftrightarrow$

1.

$$\bigcup_{U_i \in \mathcal{B}} U_i = X$$

2.
$$\forall U, V \in \mathcal{B} \quad \forall x \in U \cap V \quad \exists W \in \mathcal{B} : x \in W; W \subset U \cap V$$

Док-во

→ очев

$$\leftarrow \Omega = \{ \bigcup_{i \in I} U_i | U_i \in \mathcal{B} \}$$

1.

$$\bigcup_{j \in J} (\bigcup_{i \in I_j}) = \bigcup_{i,j} U_i$$

2.

$$(\bigcup_{j} U_{j}) \cap (\bigcup_{i} U_{i}) = \bigcup_{i,j} (U_{i} \cap U_{j}) = \bigcup_{i,j} (\bigcup_{x \in U_{i} \cap U_{j}} W_{x})$$

$$x \in W_x \subset U_i \cap U_j$$

$$\bigcup_{x \in U_i \cap U_j} W_x = U_i \cap U_j \quad W_x \in \mathcal{B}$$

3.

$$\varnothing = \bigcup_{i \in \varnothing} U_i \quad X = \bigcup_{U_i \in \mathcal{B}} U_i$$

Теорема (База окр. точки)

X - мн-во $\forall x \in X \quad \exists \mathcal{B}_x \subset 2^x$

1.
$$x \in U \quad \forall U \in \mathcal{B}_x$$

2.
$$U, V \in \mathcal{B}_x \to \exists W \in \mathcal{B}_x : W \subset U \cap V$$

3.
$$y \in U \quad (U \in \mathcal{B}_x) \to \exists V \in \mathcal{B}_y : \quad V \subset U$$

0.

$$\mathcal{B}_x
eq \varnothing o igcup_{x \in X} \mathcal{B}_x$$
 — база нек. топологии

7. Топология произведения пространств.

Пример (- конструкция)

$$X,Y$$
 - топ. пр-ва $(X,\Omega_X); \quad (Y,\Omega_Y)$ Введем базу топ. на $X\times Y$ $\mathcal{B}=\{U\times V|\quad U\in\Omega_X;\quad V\in\Omega_Y\}$
$$\Omega_{X\times Y}=\{\bigcup_{i\in I}U_i\times V_i|\quad U_i\in\Omega_X;\quad V_i\in\Omega_Y\}$$
 $(\bigcup_{i\in I}U_i\times V_i)\cap(\bigcup_{j\in J}S_j\times T_j)=\bigcup_{i\in Ij\in J}((U_i\cap S_j)\times (V_i\cap T_j)$ $(U_i\cap S_j)\in\Omega_X\quad (V_i\cap T_j)\in\Omega_Y$

8. Равносильные определения непрерывности.

Опр

$$(X,\rho);$$
 (Y,d) - метр. пр-ва $f:X\to Y$ f - назыв. непр. в т. x_0 , если $\forall \mathcal{E}>0 \quad \exists \delta>0:$ Если $\rho(x,x_0)<\delta\to d(f(x),f(x_0))<\mathcal{E}$ f - непр, если она непр. в каждой точке

Теорема

f - непр в
$$x_0 \Leftrightarrow \forall U - \text{откр.} \subset Y : U \ni f(x_0)$$
 $\exists V - \text{откр.} \subset X \quad x_0 \in V \text{ и } f(V) \subset U$

Док-во

f - непр. в
$$x_0 \Leftrightarrow \forall \mathcal{E} > 0 \quad \exists \delta > 0$$
 $f(B(x_0, \delta)) \subset B(f(x_0), \mathcal{E})$ $\rightarrow \forall U$ - откр. $\subset Y: \quad f(x_0) \in U \rightarrow \exists \mathcal{E} > 0:$ $f(x_0) \in B(f(x_0), \mathcal{E}) \subset U \rightarrow \exists \delta > 0$ $f(B(x_0, \delta)) \subset B(f(x_0), \mathcal{E}) \subset U \quad B(x_0, \delta) = V$ $\leftarrow \forall$ обрывается

9. Прообраз топологии. Индуцированная топология.

Опр

$$f:X o Y$$
 - отобр. мн-в (Y,Ω_Y) - топ. пр-во Ω_X - самая слабая топ. f - непр. $orall U\in\Omega_Y$ $f^{-1}(U)$ должен быть открытым в X

Теорема

 $\{f^{-1}(U)\}$ - топология на X и она назыв. прообразом Ω_Y

Док-во

1.
$$f^{-1}(\bigcup_{i \in I} U_i) = \bigcup_{i \in I} f^{-1}(U_i)$$
 (*)

2.
$$f^{-1}(U_1 \cap U_2) = f^{-1}(U_1) \cap f^{-1}(U_2)$$

3.
$$f^{-1}(\emptyset) = \emptyset$$
 $f^{-1}(Y) = X$

$$(*): \quad f^{-1}(\bigcup_{i \in I} U_i) = \{x | f(x) \in \bigcup_{i \in I} U_i\} = \{x | \exists i \in I : f(x) \in U_i\}$$

Опр

$$(X,\Omega_X)$$
 - топ. пр-во $A\subset X$
$$\Omega_A=\{U\cap A|\ U\in\Omega_X\}$$
 - индуцированная топология на A

10. Инициальная топология. Топология произведения как инициальная.

Опр

$$orall i \in I \quad f_i: X o Y_i \ (Y_i, \Omega_i)$$
 - топ. пр-во

$$\{f_{i1}^{-1}(U_1)\cap f_{i2}^{-1}(U_2)\cap\ldots\cap f_{ik}^{-1}(U_k)|\ U_j\in\Omega_{ij}\}$$
 - база нек. топологии $j=1,\ldots,k\in\mathbb{N}$

 Ω_X - соотв. топология (инициальная топология)

Опр

$$\{f_i^{-1}(U)\}$$
 - предбаза топологии

Теорема

Топология произведения совпадает с инициальной

Опр

$$\prod_{i \in I} x_i = \{ f : I \to \bigcup_{i \in I} x_i \mid f(i) \in X_i \}$$

$$p_k: \prod_{i\in I} x_i \to X_k \quad k\in I$$

$$p_k(f) = f(k) o$$
 если x_{i^-} топ. $o \prod_{i \in I} x_i$ — топ.

11. Финальная топология. Фактортопология. Приклеивание.

Опр

$$\forall i \in I \quad f_i: \ X_i \to Y$$
 - отобр. (X_i, Ω_i) Хотим завести на Y топологию: $\forall f_i$ - непр. Топ на Y самая сильная $U \subset Y \quad \forall i \in I \quad f_i^{-1}(U) \in \Omega_i$ $\Omega_Y = \{U \mid \forall i \ f_i^{-1}(U) \in \Omega_i\}$ $\varnothing, Y \in \Omega_Y$ $f_i^{-1}(U_1 \cap U_2) = f_i^{-1}(U_1) \cap f_i^{-1}(U_2)$ $f_i^{-1}(\bigcup_{k \in K} U_k) = \bigcup_{k \in K} f_i^{-1}(U_k)$

Пример

Приклеивание

$$X,Y$$
 - пр-ва

$$A \subset X$$
 $f: A \to Y$ - отобр.

Хотим получить $X \cup_f Y$ - приклеивание

$$X \cup_f Y = X \cup Y / \sim \forall a \ a \sim f(a)$$

U - откр. в
$$X \cup_f Y$$
, если $U \cap X$ - откр. в X и

$$U \cap Y$$
 - откр. в Y (если f - инъект.)

12. Гомеоморфизм.

Опр

$$f:X o Y$$
 - гомеоморфизм, если

- 1. f непр.
- 2. f биекция
- 3. f^{-1} непр.

Предположение

 \simeq - отношение эквив.

Если
$$(X,\Omega_X)\simeq (Y,\Omega_Y)$$
, то $f_*:\Omega_X\to\Omega_Y$ - биекция $f_*(U)=f(U)$

13. Связность топологического пространства и множества.

14. Связность отрезка.

15. Связность замыкания. Связность объединения.

Теорема

$$(X,\Omega)$$
 - топ. пр-во $A\subseteq X$ - связно $A\subseteq B\subseteq ClA$ $\to B$ - связно

Теорема

Если А - связ., то ClA - связ.

$$(X,\Omega)$$
 - топ. пр-во $A,B\subseteq X$ - связны $A\cap B\neq \varnothing$ $\to A\cup B$ - связно

16. Связность и непрерывные отображения.

$$(X,\Omega_X),(Y,\Omega_Y)$$
 - топ. пр-ва $f:X o Y$ - непр. X - связно \to $f(x)$ - связно

17. Связность произведения пространств

Теорема

$$X, Y$$
 - топ. пр-ва $X \times Y$ - связн. $\Leftrightarrow X, Y$ - связн.

Замечание

Любое конечное произведение связных топ. пр-в связно

$$\prod_{i \in I} X_i$$
 - связно $\Leftrightarrow \forall i \in I \quad X_i$ - связно

18. Компоненты Связности.

Опр

Х - топ. пр-во

Компонентой связности т. $x_0 \in X$ назыв. наиб. по включению связное множество, ее содерж.

$$K_{x_0} = \cup \{M \in 2^X \mid x_0 \in M \text{ - связ.}\}$$

Теорема

- 1. $\forall x,y \in X \quad K_x = K_y$ или $K_x \cap K_y = \varnothing$
- 2. компоненты связности замк.
- 3. Для любого связ. мн-ва \exists компонента связности, в которой оно целиком содержится

$$\forall M \subseteq X \ (M - \text{связ.} \to \exists x \in X : M \subseteq K_x)$$

4.
$$\forall x,y,z\in X\ (x,y\in K_z\Leftrightarrow \exists M$$
 - связ. $:x,y\in M$ и $z\in M)$

Опр

X - топ. пр-во назыв. вполне несвязным, если $\forall x \in X : K_x = \{x\}$

19. Линейная связность

Опр

Линейно связное пр-во - топ. пр-во, в котором любые две точки можно соединить непр. кривой

$$(X,\Omega)$$
 - лин. св., если $\exists f:$ $f:[0,1] \to X$ (путь в X) | $f(0)=x$ (нач. пути); $f(1)=y$ (кон. пути), $\forall x,y \in X$

Теорема

$$X$$
 - топ. пр-во X - лин.св. $\to X$ - св.

Теорема

A, B - лин. св.
$$A \cap B \neq \varnothing \rightarrow A \cup B$$
 - лин.св.

$$X,\ Y$$
 - топ. пр-во; $f:X \to Y$ - непр. X - лин. св. \to $f(x)$ - лин. св.

20. Компактность. Примеры.

Опр

 (X, Ω) - топ. пр-во

 ${\rm X}$ - компакт, если из любого открытого покрытия ${\rm X}$ можно выбрать конечное подпокрытие

$$\forall \{U_i\}_{i\in I}, \quad U_i \in \Omega$$

$$(\bigcup_{i \in I} U_i = X \to \exists n \in \mathbb{N} \quad \exists \{i_1, ..., i_n\}_{ij \in I} : \bigcup_{k=1}^n U_{ik} = X)$$

Опр

 (X,Ω) - топ. пр-во

 $A\subseteq X$ - комп., если оно комп. в индуц. топ.

Теорема

- 1. конечное топ. пр-во всегда компактно
- 2. дискретное бесконечное множ. не комп.
- 3. антидискр. множ. комп.
- 4. [0, 1] компакт.

Теорема

X - комп. $A \subseteq X$ - замк. $\to A$ - комп.

Теорема

X - комп
$$f: X \to Y \to f(x)$$
 - комп.

Следствие

Комп. - топ. св-во

21. Простейшие свойства компактности.

22. Компактность произведения пространств.

Теорема

$$X, Y$$
 - комп $\Leftrightarrow X \times Y$ - комп.

$$\{X_i\}_{i\in I}$$
 - комп. $\Leftrightarrow \prod_{i\in I} X_i$ - комп.

23. Компактность и хаусдорфовость

Опр

X назыв хаусдорф., если
$$\forall x_1 \neq x_2 \in X \quad \exists U_{x_1}, U_{x_2}: \quad U_{x_1} \cap U_{x_2} = \varnothing$$

Теорема (1)

X - хаусдорф. A - комп \in X \rightarrow A - замк.

Теорема

f:X o Y непр., биекция

X - комп.

Ү - хаусдорф.

 $\rightarrow f$ - гомеоморф.

Док-во (1)

$$X\setminus A$$
 - откр? $x_0\in X\setminus A$ $\forall x_1\in A\to \exists U_{x_0}\ni x_0;\ V_{x_1}\ni x_1$ $U_{x_0}\cap V_{x_1}=\varnothing$

$$\bigcup_{x_1 \in A} V_{x_1} \subset A \to x_1, x_2, ..., x_k : \bigcup_{i=1}^k V_{x_i} \supset A$$

$$U_{x_0} = \bigcap_{i=1}^k U_{x_i}$$
 - искомая окр. $U_{x_0} \cap A = \varnothing$

(Иначе $U_{x_0} \cap V_{x_i} \neq \varnothing$, $U_{x_i} \cap V_{x_i} \neq \varnothing$)

24. Лемма Лебега. Компактность отрезка.

Теорема (Лемма Лебега)

$$X = [0,1] \subset \bigcup_{i \in I} U_i \qquad \{U_i\}_{i \in I}$$
 - откр. покр. X

$$ightarrow \exists \mathcal{E} > 0 : \forall x_0 \ \exists i \in I : B(x_0, \mathcal{E}) \subseteq U_i$$
 (\mathcal{E} зависит от покр. \mathcal{E} - число Лебега)

Следствие

Отрезок - комп.

25. Критерий компактности подмножеств евклидова пространства.

Теорема

$$A\subset \mathbb{R}^n$$

А - комп. $\Leftrightarrow A$ - замк и огр.

Опр

A - огр., если
$$\exists N: A \subset B(0,N)$$

Док-во

 $\to A$ - замк. т.к. \mathbb{R}^n - хаусдорф.

A - огр. $\{B(0,n)\}_{n\in\mathbb{N}}$

 $\leftarrow A \subset [-N,N] \times [-N,N] \times ... \times [-N,N] = K$ т.к. огр.

К - комп.

A - замк. в $K \to A$ - комп.

26. Теорема Вейерштрасса. Примеры.

Теорема (Вейерштрасса)

$$K$$
 - компакт.
$$f:K\to\mathbb{R} \text{ - непр.} \to \exists x_0\in K: \\ \forall x\in K \quad f(x)\leqslant f(x_0) \quad (x_0-max)$$

Док-во

$$f(K)$$
 - комп. $\subset \mathbb{R} \to f(K)$ - замк. и огр \to $\sup f(K) \in f(K)$ (замк.) $\sup f(K) \neq \infty$ (огр.) $\sup f(K) = f(x_0)$

27. Вторая аксиома счётности и сепарабельность.

Опр

X - обл. II А.С., если в X \exists счетная база

Опр

X - назыв сепараб., если
$$\exists$$
 A \subset X $|{\rm A}|\leqslant \aleph_0$ и $ClA=X$

Опр

A - всюду плотно, если ClA = X

Теорема

X - II $A.C. \rightarrow X$ - сепараб.

28. Теорема Линделёфа.

Теорема

X - II A.C. \rightarrow из \forall откр. покр. X можно извлечь не более чем счетное подпокрытие

29. Первая аксиома счётности.

Опр

База окр-тей точки $\forall x \quad \exists \{U_{x_i}\}_{i \in I_x}$

- 1. $U_{x_i} \in \Omega; \quad x \in U_{x_i}$
- 2. $\forall U \in \Omega : x \in U \quad \exists U_{x_i} : x \in U_{x_i} \subset U$

Опр

Если \exists база окр-тей:

 $\forall x \; \{U_{x_i}\}_{i \in I_x}$ не более чем счетное $\to X$ удовл. І А.С.

30. Из компактности	следует	секвенц	иальная	компак	гность	(с первоі	i AC).

31. Из секвенциальной к	омпактности	следует н	компкатност	гь (со второй	AC).

32. Полнота и вполне ограниченность метрических пространств.

Опр

Фунд. послед.
$$\{X_n\}$$
 - фунд., если $\forall \mathcal{E}>0 \quad \exists N: \forall n,m>N:
ho(X_n,X_m)<\mathcal{E}$

Опр

Х назыв. полным, если ∀ фунд. послед. сходится

Опр

$$\{X_i\}_{i\in I}$$
 - \mathcal{E} -сеть, если $\forall x \quad \exists x_i : \rho(x,x_i) < \mathcal{E}$

Опр

X назыв. вполне огранич., если $\forall \mathcal{E} > 0 \quad \exists$ конечная \mathcal{E} -сеть

33. Из полноты и вполне ограниченности следует компактность

Теорема (равносильные)

- 1. Х компактно
- 2. Х секцвенц. комп.
- 3. Х полн. и вполне огр.

34. Аксиомы отделимости.

Теорема (Колмогорова)

$$\forall x,y \in X : x \neq y \ \to \ \exists U \in \Omega$$

Теорема (Тихонова)

$$\forall x,y \in X: x \neq y \ \to \ \exists U \in \Omega$$

Теорема (Хаусдорфа)

$$\forall x,y \in X \quad \exists U_x, U_y: \ U_x \cap U_y = \varnothing$$

Теорема (3)

$$\forall x \in X$$
 и замкнуто $F \subseteq X, \ x \notin F$ $\exists U_x$ и $U_F:\ U_x \cap U_F = \varnothing$

Теорема (4)

$$F_1,F_2$$
 - замк. : $F_1\cap F_2=\varnothing$ $\exists U_{F_1}$ и $U_{F_2}:\ U_{F_1}\cap U_{F_2}=\varnothing$ $T_2\to T_1\to T_0$

35. Нормальность матрического пространства.

Опр

$$(X,\Omega)$$
 - хаусдорф. X - нормально \Leftrightarrow $\forall F$ - замк., $\forall G\in\Omega$ $F\subseteq G o \exists G'\in\Omega$: $F\subseteq G'\subseteq ClG'\subseteq G$