AI in Built Environment DCP4300

Week 11: Natural Language Processing

Part B: Language Models

Dr. Chaofeng Wang Jianhao Gao (TA) University of Florida

College of Design Construction and Planning

Word Embeddings

Words are represented using dense continuous vectors

The embedding vectors can be learned using neural networks (supervised or unsupervised?)

The embeddings vectors can be used in other NLP tasks for improved performance (much better than one-hot encoding)

Ε

I would like to have an apple for breakfast.

$$P(t|c) = \frac{\exp(e'_t \cdot e_c)}{\sum_{i=1}^n \exp(e'_i \cdot e_c)}$$
 It's a probability.

Context -> Target

N-gram

I would like to have an apple for breakfast.

P(breakfast | an apple for) =
$$\frac{Count(\text{an apple for breakfast})}{Count(\text{an apple for})}$$

N-gram

I would like to have an apple for

breakfast 0.82

lunch 0.03

supper 0.05

•••

N-gram

I would like to have an apple for breakfast.

P(breakfast | an apple for) =
$$\frac{Count(\text{an apple for breakfast})}{Count(\text{an apple for})}$$

Issue:

Sparsity of data in a corpus makes the likelihood estimation not accurate

Neural networks

a fixed window neural network

Sparsity problem mitigated, but

Fixed window is small

Enlarging window increases size of model

Each word vector has its own weights

The same weight is shared across all units in the same layer.

The operation is repeated along the sequence.

What's inside a RNN cell

Recap

Language model: a system that can predict or generate words based on context

Recurrent Neural Network:

- Input can be a sequence of words of any length
- The same weights is applied to all words in the sequence
- Can output on selected step

Types and applications

Many to many

Can be used for: sequence to sequence taks (e.g., machine translation ...)

Types and applications

Many to one

Can be used for: Classification (e.g., sentiment analysis)

Types and applications

One to many

Can be used for: Generation (e.g., image captioning)

Types and applications

One to one

It's a traditional neural network.

Pros	Cons
 Can process input of any length Model size (weights size) not increasing with input size, because weights are shared and used repeatedly Historical information is counted in 	Computation is slowDifficult to count in long time history

Evaluate the performance of a language model

Perplexity =
$$P(w_1 \ w_2 \dots w_n)^{-1/n} = \sqrt[n]{\prod_{i=1}^n \frac{1}{P(w_i | w_1 w_2 \dots w_{i-1})}}$$

A lower perplexity indicates a better predictive performance, meaning the model is less "perplexed" by the sequence of words

Exploding gradient and Vanishing gradient

Gradient descent:

- J(w)
- 1. Compute the slope (gradient) at the current step $\frac{\partial J}{\partial w}$
- 2. Make a move in the direction opposite to the slope

Gradient exploding in deep neural net

In backpropagation, the error signal increases exponentially with the deep of the neural nets

Gradient exploding

Network not stable Can't learn NaN in weights

Vanishing gradient in deep neural net

In backpropagation, the error signal declines exponentially with the deep of the neural nets

the earlier layers of the network hardly change

Derivatives are small, multiplying many of these small numbers can lead to an exponentially smaller gradient as we move backward through the layers

Vanishing gradient in RNN

Far away gradient is much smaller than the close-by -> so weights are more likely to be updated by nearest words.

Solutions:

Gradient clipping: if the gradients exceed this threshold during backpropagation, they are clipped or scaled down to be within a defined range.

Weight regularization: e.g. L2 regularization, which adds the squared values of the weights, to the loss function.

Use ReLU for activation: gradient to be 1 or 0.

Add residual: skip connections.

More advanced algorithms such as LSTM

Residual

help mitigate the vanishing and exploding gradient problems by providing an alternate shortcut path for the gradient to flow through

ResNet

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). https://arxiv.org/abs/1512.03385

Long Short-Term Memory RNNs (LSTMs)

In a LSTM cell, there's a hidden state $h^{< t>}$ and a cell state $c^{< t>}$

A state is a vector. $h^{<t>}$ and $c^{<t>}$ have the same size

The LSTM cell can store long-term history

The LSTM cell has gates that can be used to read, erase and write information from cell

Gates are also vectors with the same size, their values are calculated based on the context.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. https://www.bioinf.jku.at/publications/older/2604.pdf
Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual prediction with LSTM. Neural computation, 12(10), 2451-2471.

https://dl.acm.org/doi/10.1162/089976600300015015

Long Short-Term Memory RNNs (LSTMs)

Vanishing/exploding might still happen in LSTM

But LSTM can learn long-distance dependencies