

- Transport Systems
- Hazards and Disasters
- Response and Recovery

Transport Systems

Transport as a System

The transport system is a **complex socio-technological system**.

- System: it consists of many parts which are interrelated
- Technological: different technologies are involved in providing its function
- socio-: 1. people and organizations are involved, 2. Laws, regulations etc. are part of the system and necessary for it's functioning
- *Complex:* it is a system of systems, in particular a system of interrelated Transport Modes

Transport Mode: a system made up of

- 1.Vehicle
- 2.Infrastructure
- 3.Service

- Thinking about transport systems
 - Transport systems as systems: interlinked modes
 - Modes as systems: vehicles infrastructures services
 - Infrastructures (vehicles and services)

Infrastructures in historical perspective

Vehicle

Other

Speed

Load

Flexibility

Track Infrastructure

Energy Infrastructure

Cost Infrastructure

Cost Vehicles

Modes of Transport

	<u>::</u>	
Walking	Rail	Road (Truck)
-	Train	Truck
Trails	Rail network	Road network
Food	Electric Grid	Fuel Distribution
	Train Station	
High	Low	High
Very low	High	Medium
Very low	High	medium
Very low	High	High
none	high	Medium

Transport System as Means and Ends

Function – Service – Vehicle – Infrastructure

Function

• Mobility need

Service

 The ride / transportation service

Vehicle

 The vehicle with wich the service is provided

Infrastructure

 Infrastructure (other systems) needed for it to work

Infrastructures

- Transport Infrastructure
 - Roads
 - Bridges
 - Traffic Lights
 - Train Stations
 - Harbors
 - Airports
 - ...
- Energy infrastructure
 - Electric
 - Electricity Generation
 - Transmission Networks
 - Interfaces: Sockets et al.
 - (Batteries)
 - ...
 - Fuel
 - Gas stations
 - Fuel delivery: Trucks, pipelines
 - Fuel production: wells, refineries
 - Tanks
 - ...

Hazards, Disasters, Resilience

Social Theory of Disaster

Natural Hazards and Human Disasters

- There are natural phenomena, which pose hazards (earthquakes, floods, ...)
- They become disasters only if they meet vulnerable populations

Wisner, Blaikie et al. 2003

Disasters and hazards

Table 1.1 Hazard types and their contribution to deaths, 1900–1999

Hazard type in rank order	Percentage of deaths	
Slow onset:		
Famines – drought	86.9	
Rapid onset:		
Floods	9.2	
Earthquakes and tsunami	2.2	
Storms	1.5	
Volcanic eruptions	0.1	
Landslides	< 0.1	
Avalanches	Negligible	
Wildfires	Negligible	

Source: CRED at www.cred.be/emdat

Wisner, Blaikie et al. 2003

Term	Interpretation/analysis	References
Vulnerability	It is defined as the susceptibility to damage or perturbation – especially where small damage or perturbation leads to disproportionate consequences. It is also regarded as the property of a transportation system which may weaken or constrain its ability to endure, handle and survive threats and disruptive events that originated both within and outside the system boundaries.	Asbjørnslett & Rausand (1999); Blockley et al. (2012)
Adaptability (or adaptive capacity)	It is defined as one of the functions of a resilient system, reflecting its flexible ability to response to new pressures. Its main features lie in response to changes reflecting the dynamic nature of complex systems.	Bhamra et al. (2011); Dalziell & McManus (2004); Fiksel (2003); Pettit et al. (2010)
Robustness	It is the property of being strong, healthy and hardy. Thus, it is generally defined as the ability to withstand or absorb disturbances and remain intact when exposed to disruptions.	Blockley et al. (2012); Faturechi & Miller-Hooks (2014b)
Flexibility	It's the ability of a system to respond to shocks and adjust itself to changes through contingency planning after disruptions. It is also referred to as an ability to reconfigure resources as well as to cope with uncertainties. As such, connotations of flexibility are opposite to that of robustness which emphasises the ability to endure these changes rather than to adapt to them.	Berle et al. (2013); Cox et al. (2011); Faturechi & Miller-Hooks (2013); Faturechi & Miller-Hooks (2014a); Goetz & Szyliowicz (1997)
Reliability	It is generally defined as the probability that a network remains operative given the occurrence of a disruption event. It can be either a pre-disruption or post-disruption metric for measuring system performance.	Barker et al. (2013); Faturechi & Miller-Hooks (2014a); Shinozuka et al. (2004)
Recoverability (or the ability to recover)	It has been discussed the most in terms of the research of transportation resilience. It is defined as the ability of a network to recover functionality in a timely manner. It is regarded to as an important feature of secure and highly functioning transport networks.	Baroud et al. (2014)
Redundancy	It indicates the ability of certain components of a system to take over the functions of failed components without adversely affecting the performance of the system itself. In the context of transportation, redundancy is generally viewed as the existence of optional routes between origins and destinations. It is commonly accepted that the more redundancy a system has, the more resilient it will be.	Haimes (2009); Fiksel (2003); Tukamuhabwa et al. (2015); Omer et al. (2012)
	Co-funded by the	Source: Zhou, Wang, Yang 2019

Rapidity

Survivability	It is generally defined as the ability to withstand sudden disturbances while meeting original demands. Survivability techniques have been considered as an access to mitigating the vulnerability of a network or system.	Baroud et al. (2014); Barker et al. (2013); Faturechi & Miller-Hooks (2014b)
Preparedness	It refers to "prepare certain measures before disruption happens", and it enhances the resilience of a system by lessening potential negative impacts from disruptive events. It can be subdivided as emergency preparedness and response preparedness.	Berle et al. (2011); Jin et al. (2014)
Resourcefulness	Resourcefulness is defined as the availability of materials, supplies, and crews to restore functionality in a study of transportation resilience. Resourcefulness was treated as one of stabilizing measures in resilience. It indicates the level of preparedness in effectively resisting an adverse event.	Adams et al. (2012); Francis & Bekera (2014); Reggiani (2013)
Responsiveness	It is regarded as an important factor to the resilience of transportation networks. Similar to redundancy, responsiveness factors of a system may also increase the costs although it is able to improve the service level of a system.	Klibi et al. (2010); Ivanov et al. 2014)

It is a well-studied concept in the "resilience triangle", a framework that has been applied in

emphases on the speed to recover. It affects the duration of reduced performance of a system.

civil infrastructure for decades. It contains a hidden meaning of recovery, but with more

Source: Zhou, Wang, Yang 2019

Adams et al. (2012);

Dorbritz (2011).

Resilience and Vulnerability

Lei, Wang, Yue 2014

Disaster Management Cycle

Fig. 3. Two phases of resilience measurement (Adapted from [103])

Zhou, Wang, Yang 2019

Resilience in Transport

Rodrigue 2020

Everything in context

The DISASTER RISK MANAGEMENT CYCLE (DRMC)^{1.}

Boulanger

Kobe 1995

(picture: national Geographic)

Example: Kobe earthquake 1995

Figure 7. Highway Performance Restoration, Selected Kobe City Wards

Figure 8. Rail Performance Restoration, Selected Kobe City Wards

Chang, Nojima 1999

Note: except for railway and highway, data are based on Takada and Ueno (1995) and represent percent of customers with service restored.

Chang, Nojima 1999

Figure 4. Lifeline Restoration Timeframes, Hyogoken-Nanbu Earthquake

Bringing it together

Response

- Bringing people out
- Bring helpers in
- Bring food etc. in
- → Use available infrastructure
- → Repair/improvise necessary links

Recovery

- Reestablish functioning
- Bring out debree
- → Focus on high impact links first
- → Build back better ©

Monitoring and assessment

- Provision of situational information.
- Actors can implement their own solutions.
- Confidence in crisis management.

Support impacted actors

- Provision of short-term transport alternatives.
- Teleworking, postponement and alternative locations.
- Help for those stranded.

Removal of discretionary demand

- Removal of discretionary demand to support essential demand.
- Creating a capacity-swapping market.

Modal shift

- Alternative modes not able to cope with demand surges.
- · Satellite facilities.

© GTS

Rodrigue 2020

Response Options to a Transport Disruption | The Geography of Transport Systems

Co-runged by the

Preparedness and Resilience

Transport Resilience Building Process

Rodrigue 2020

TABLE VIII LITERATURE REVIEW FOR ENHANCEMENT STRATEGIES OF TRANSPORTATION RESILIENCE

			1
Reference	Phase(s)	Strategies	Bocchini ar Frangopol[
Liu et al.[17]	Mitigation	Optimizing allocation of retrofit resources to highway bridges	Nair et al.[: Chen and
Chang et al.[22]	Mitigation	Selecting bridges to be retrofitted and specific schemes for them	Miller- Hooks[56]
Zhang and Wang[38]	Mitigation	Optimizing bridge retrofitting and new construction	Baroud et al.[85]
Fotuhi and Huynh[63]	Mitigation	Optimizing retrofitting of rail links, location of new terminals, and expansion of existing terminals	Vugrin et al.[80]
Asadabadi and Miller- Hooks[40]	Mitigation	Building seawalls, raising the height of roadways, and improve drainage systems	Zhang and Miller- Hooks[59]
Soltani-Sobh et al.[36]	Preparedness	Optimizing pre-positioning of recovery centers for bridges restoration	Zhang et al [48]
Abadi and Ioannou[58]	Response	Reconfiguring to include normally ineffective resources and routes	Miller-Hoo et al.[57] Faturechi e
Jin et al.[97]	Response	Integrating disrupted metro network with localized bus services	al.[25] Faturechi a
Dunn and Wilkinson[92]	Response	Redirecting air routes from disrupted airports to closest operational ones	Miller- Hooks[26]
Wang et al.[19, 24]	Response	Conducting contraflow and	unueu by the Programme
		***	•

	Bocchini and Frangopol[18]	Recovery	Optimizing intervention schedule for highway bridges
	Nair et al.[55]	Recovery	Optimizing recovery activities on links between terminal processes
	Chen and Miller- Hooks[56]	Recovery	Optimizing recovery activities on modal or transfer arcs
	Baroud et al.[85]	Recovery	Optimizing recovery schedule for water way links
	Vugrin et al.[80]	Recovery	Optimizing recovery modes and sequences for disrupted links
	Zhang and Miller-	Recovery	Optimizing recovery schedule for rail links
	Hooks[59] Zhang et al.[48]	Recovery	Optimizing restoration schedule for road-bridge network links
	Miller-Hooks et al.[57]	Preparedness and recovery	Optimizing preparedness activities and recovery activities on each link
	Faturechi et	Preparedness	Optimizing pre-prepared teams and
	al.[25]	and response	equipment and repair actions on links
	Faturechi and	Mitigation,	Optimizing link retrofit, capacity
	Miller-	preparedness,	expansion, resources preparedness, and
	Hooks[26]	and response	link response actions
un	ided by trie		Zhou. Wana. Yana 2019
_			ZIIUU. VVUIIU. IUIIU ZULJ

of the European Union

Zhou, Wang, Yang 2019

Example: Deutsche Bahn and Climate Change

Abb. 1: Konzept der ganzheitlichen Naturgefahrenstrategie der Deutschen Bahn [Mess19, S. 19]

Abb. 2: Vegetationsschnitt an Strecken der DB. [DBAG18f]

Example: storm damage to railroad infrastructure

- More (extreme) storm events
- → Better vegetation Management
- Generally 6m kept vegetation free
- In storm hotspots V- Cut

Example: Track deformation due to extreme heat

- Local warming in Germany, more extreme heat days
- Tracks deform due to heat
- → Paint tracks white

Co-funded by the Erasmus+ Programme of the European Union

Lei, Y., Wang, J., Yue, Y. et al. Rethinking the relationships of vulnerability, resilience, and adaptation from a disaster risk perspective. Nat Hazards 70, 609–627 (2014). https://doi.org/10.1007/s11069-013-0831-7

Mitusch (2021): Best-Practice-Beispiele im Personenverkehr, Forschungsinformationssystem (https://www.forschungsinformationssystem.de/servlet/is/543793/)

Rodrigue, J-P et al. (2020) The Geography of Transport Systems, Hofstra University, Department of Global Studies & Geography, https://transportgeography.org.

Torqaid 2014: Disaster Risk Management Cycle (DRMC) (https://reliefweb.int/report/world/disaster-risk-management-cycle-drmc)

Y. Zhou, J. Wang and H. Yang, "Resilience of Transportation Systems: Concepts and Comprehensive Review," in *IEEE Transactions on Intelligent Transportation Systems*, vol. 20, no. 12, pp. 4262-4276, Dec. 2019, doi: 10.1109/TITS.2018.2883766

Weilant, Sarah & Strong, Aaron & Miller, Benjamin. (2019). Incorporating Resilience into Transportation Planning and Assessment. 10.7249/RR3038.

Wisner, Blaikie, Cannon and Davis: At Risk: natural hazards, people's vulnerability and disasters. Second edition. 2003.

Stephanie E Chang, Nobuoto Nojima, Measuring post-disaster transportation system performance: the 1995 Kobe earthquake in comparative perspective, working paper 1999.

Stephanie E Chang, Nobuoto Nojima, Measuring post-disaster transportation system performance: the 1995 Kobe earthquake in comparative perspective, Transportation Research Part A: Policy and Practice, Volume 35, Issue 6, 2001, Pages 475-494, ISSN 0965-8564, https://doi.org/10.1016/S0965-8564(00)00003-3.

- Thanks!
- Questions?