Relations

Relations

Equivalence relations

Equivalence classes

Relations

Relations

Let S be a set. A **relation** on S is a subset R of $S \times S$.

R consists of ordered pairs (s,t) with $s,t \in S$. For those ordered pairs $(s,t) \in R$, we write $s \sim t$ or sRt and say s is related to t.

Example: Let $S = \mathbb{R}$ and define $a \sim b \iff a < b$. Here:

$$R = \{(s, t) \in \mathbb{R} \times \mathbb{R} \mid s < t\}$$

Example: Let $S = \mathbb{Z}$ and let m be a positive integer. Define $a \sim b \iff a \equiv b \pmod{m}$, then:

$$R = \{(s, t) \in \mathbb{Z} \times \mathbb{Z} \mid s \equiv t \pmod{m}\}\$$

Equivalence relations

Let S be a set, and let \sim be a relation on S. Then \sim is an equivalence relation if the following three properties hold $\forall a,b,c\in S$:

- Reflexivity: $a \sim a$
- Symmetry: $a \sim b \implies b \sim a$
- Transitivity: $(a \sim b) \wedge (b \sim c) \implies a \sim c$

Consider the two examples of relations in the previous section:

- $R = \{(s,t) \in \mathbb{R} \times \mathbb{R} \mid s < t\}$
 - **Reflexivity**: If $(x, x) \in R$, then for reflexivity we need x < x. However, this is clearly not the case, so this relation is **not reflexive**.
 - **Symmetry**: If $(x, y) \in R$, then for symmetry we need $(x < y \implies y < x)$. Again, this is clearly not the case, so this relation is **not symmetric**.
 - **Transitivity**: If $(x,y), (y,z) \in R$, then for transitivity we need $(x,z) \in R \iff x < z$. This is clearly the case, as $x < y < z \iff x < z$, so this relation **is transitive**.
 - The relation is **not an equivalence relation** because not all three properties hold.
- $R = \{(s,t) \in \mathbb{Z} \times \mathbb{Z} \mid s \equiv t \pmod{m}\}$
 - Reflexivity: If $(x, x) \in R$, then for reflexivity, we need $x \equiv x \pmod{m}$, which is clearly the case, so this relation is reflexive.
 - \circ Symmetry: If $(x,y) \in R$, then for symmetry, we need $x-y \equiv 0 \pmod m \implies y-x \equiv 0 \pmod m$. Note that x-y=-(y-x),

so this relation is symmetric.

- **Transitivity**: If $(x,y), (y,z) \in R$, then for transitivity we need $(x,z) \in R \iff x \equiv z \pmod m$. We have $x-y \equiv 0 \pmod m$ and $y-z \equiv 0 \pmod m$. Therefore, $(x-y)+(y-z) \equiv 0 \pmod m$, giving us $x \equiv z \pmod m$, so this relation **is transitive**.
- The relation is an equivalence relation because all three properties hold.

Equivalence classes

Let S be a set and \sim an equivalence relation on S. For $a \in S$, define

$$cl(a) = \{s \mid s \in S, s \sim a\}$$

Thus, cl(a) is the set of things that are related to a. The subset cl(a) of S is called an equivalence class of \sim . The equivalence classes of \sim are the subsets cl(a) as a ranges over the elements of S.

Example: Consider the equivalence relation

$$R = \{(s, t) \in \mathbb{Z} \times \mathbb{Z} \mid s \equiv t \pmod{m}\}\$$

Some various equivalence classes are:

- $cl(0) = \{s \in \mathbb{Z} \mid s \equiv 0 \pmod{m}\}$
- $cl(1) = \{s \in \mathbb{Z} \mid s \equiv 1 \pmod{m}\}$

. . .

• $cl(m-1) = \{s \in \mathbb{Z} \mid s \equiv m-1 \pmod{m}\}$

We claim that these are all the equivalence classes. For if n is any integer, then $\exists q,r \in \mathbb{Z}: n=qm+r$ with $0 \leq r < m$. Then $n \equiv r \pmod m$, so $n \in cl(r)$, which is one of the classes listed above.