Stabilità esterna e risposta a regime Esercizi proposti

1 Esercizio

Dato il sistema dinamico SISO (in forma minima) caratterizzato dalla seguente funzione di trasferimento:

$$H(s) = Y(s)/U(s) = \frac{-4s+12}{s^2+7s+12}$$

calcolare analiticamente, se possibile, la risposta in regime permanente $y_{perm}(t)$ all'ingresso sinusoidale $u(t) = 0.5 \cdot \sin(4t)$.

Soluzione:
$$y_{perm}(t) = 0.35sin(4t - 2.64)$$

2 Esercizio

Dato il sistema dinamico SISO (in forma minima) caratterizzato dalla seguente funzione di trasferimento:

$$H(s) = Y(s)/U(s) = \frac{(s-2)(s+5)}{(s+1)(s+2)}$$

calcolare analiticamente, se possibile, la risposta in regime permanente $y_{perm}\left(t\right)$ all'ingresso sinusoidale $u\left(t\right)=U\cdot\sin\left(\omega_{0}\cdot t\right)$, con U=5 e $\omega_{0}=2$ rad/s.

Soluzione:
$$y_{perm}(t) = 12.04 \cdot \sin(2t + 0.84)$$

3 Esercizio

Dato il sistema dinamico SISO (in forma minima) caratterizzato dalla seguente funzione di trasferimento:

$$H(s) = Y(s)/U(s) = 10 \frac{(s-1)(s+3)}{(s+1)(s^2+4s-2)}$$

calcolare, se possibile, il valore finale y_{∞} della risposta all'ingresso a gradino unitario, $u(t) = \varepsilon(t)$.

Soluzione: Non si può calcolare y_{∞} perché il sistema non va a regime, avendo poli nel semipiano destro.

4 Esercizio

Dato il sistema dinamico SISO (in forma minima) caratterizzato dalla seguente funzione di trasferimento:

$$H(s) = Y(s)/U(s) = -4\frac{(s+1)(s-5)}{(s+2)(s^2+4s+5)}$$

calcolare, se possibile, il valore finale y_∞ della risposta all'ingresso a gradino unitario, $u(t)=\varepsilon(t).$

Soluzione: $y_{\infty} = 2$

Risposte di sistemi del I e II ordine Esercizi proposti

1 Esercizio

Dato il sistema dinamico SISO avente la seguente risposta y(t) ad un gradino di ampiezza unitaria, $u(t)=\varepsilon(t)$:

determinare la funzione di trasferimento $H\left(s\right)$ di tale sistema.

Risultato:
$$H(s) = \frac{6}{1+2s}$$
.

2 Esercizio

Dato il sistema dinamico SISO avente la seguente risposta y(t) ad un gradino di ampiezza unitaria, $u(t)=\varepsilon(t)$:

determinare la funzione di trasferimento $H\left(s\right)$ di tale sistema.

Risultato:
$$H(s) = \frac{36}{s^2 + 6s + 36}$$
.

3 Esercizio

Dato il sistema dinamico SISO caratterizzato dalla seguente funzione di trasferimento:

$$H(s) = \frac{Y(s)}{U(s)} = \frac{100}{s^2 + 3s + 25}$$

dire in quale dei seguenti grafici è riportato l'andamento della sua risposta y(t) ad un gradino unitario $(u(t) = \varepsilon(t))$, a partire da condizioni iniziali nulle (si presti attenzione alle scale di entrambi gli assi):

Risultato: Il grafico corretto è quello della figura D).