## **HAI Assignment 1 Report**

#### Ekansh Chauhan

Code : https://github.com/ekansh09/IIITH-HAI-Assignment-1
Overleaf : https://www.overleaf.com/read/gvsgchnhwbqx

#### 1. EIGENFACES

Eigenfaces is a method used for face recognition and detection by determining the variance of faces in a collection of face images and use those variances to encode and decode a face in a machine learning way without the full information reducing computation and space complexity [1].

# 1.1. Eigenfaces needed to satisfactorily reconstruct the image

Top eigenvectors whose corresponding eigenvalues have 95% sum of total eigenvalues were taken to preserve 95% variance of data (Figure 1).

Table 1 represents the number of eigenvectors selected while maintaining 95% data variance and reconstruction error for each dataset.

| Dataset  | No. of Eigenvectors | Reconstruction Error |
|----------|---------------------|----------------------|
| IMFDB    | 81                  | 0.036                |
| IIIT-CFW | 174                 | 0.059                |
| Yale     | 38                  | 0.050                |

Table 1. PCA performance

#### 1.2. Observations from Eigenvectors

The classification of each identity has done on the basis of respective class number assigned to it. Also, same number of eigenvectors (Table 1) for 95% variance are used for each dataset.

The class with highest reconstruction error can be easily distinguished in Figure 2.

| Dataset  | Highest Reconstruction Error |  |
|----------|------------------------------|--|
| IMFDB    | class: 3                     |  |
| IIIT-CFW | class: 5                     |  |
| Yale     | class: 7                     |  |

Table 2. Class having highest reconstruction error

#### 2. MLP Classifier

14 combinations of features extraction algorithms were used with MLP Classifier having 2 layers (1000 size each),







Figure 1. Cumulative Variance Ratio vs Number of Components

activation as Relu, solver as adam for 350 iterations. Performace has been observed by using testing accuracy.



Figure 2. Reconstruction error for each Class in all datasets

| Feature Extraction Method | IMFDB      | IIIT-CFW   | Yale       |
|---------------------------|------------|------------|------------|
| PCA                       | 74.000000  | 52.380000  | 85.710000  |
| LDA                       | 97.000000  | 96.430000  | 100.000000 |
| VGG                       | 87.000000  | 72.020000  | 50.000000  |
| ResNet                    | 97.000000  | 97.620000  | 97.620000  |
| Kernel PCA                | 74.000000  | 52.380000  | 85.710000  |
| Kernel LDA                | 99.000000  | 98.810000  | 100.000000 |
| VGG + PCA                 | 89.000000  | 66.670000  | 45.240000  |
| ResNet + PCA              | 97.000000  | 96.430000  | 100.000000 |
| VGG + LDA                 | 100.000000 | 97.620000  | 100.000000 |
| ResNet + LDA              | 100.000000 | 100.000000 | 100.000000 |
| VGG + Kernel PCA          | 89.000000  | 66.670000  | 45.240000  |
| ResNet + Kernel PCA       | 97.000000  | 96.430000  | 100.000000 |
| VGG + Kernel LDA          | 99.000000  | 96.430000  | 78.570000  |
| ResNet + Kernel LDA       | 100.000000 | 100.000000 | 100.000000 |

Figure 3. Performance of MLP using various feature extraction methods on all datasets

It can be observed from Figure 3 that ResNet + Kernel Lda (rbf) outperforms all other methods.

### 3. t-SNE based visilization of faces

t-Distributed Stochastic Neighbor Embedding (t-SNE) is an unsupervised, non-linear technique primarily used for data exploration and visualizing high-dimensional data [2].

In Figure 4, Images belonging to same class can be observed closer to each other with few outliers in all datasets.

#### 4. k-NN Classifier

Features were extracted using dimensionality reduction algorithms then splitted into train and test set and fitted to k-NN classifier. After testing a few combinations, ResNet +



Figure 4. t-SNE (2-D) Visualization

Kernel LDA and ResNet + LDA performed the best among all.

| Feature Extraction Method | IMFDB (k=1) | IIIT-CFW (k=10) | Yale (k=3) |
|---------------------------|-------------|-----------------|------------|
| PCA                       | 69.000000   | 42.860000       | 85.710000  |
| LDA                       | 98.000000   | 97.020000       | 100.000000 |
| VGG                       | 90.000000   | 72.620000       | 50.000000  |
| ResNet                    | 94.000000   | 98.210000       | 100.000000 |
| Kernel PCA                | 69.000000   | 42.860000       | 85.710000  |
| Kernel LDA                | 98.000000   | 98.810000       | 100.000000 |
| VGG + PCA                 | 90.000000   | 74.400000       | 52.380000  |
| ResNet + PCA              | 95.000000   | 97.620000       | 100.000000 |
| VGG + LDA                 | 100.000000  | 98.810000       | 83.330000  |
| ResNet + LDA              | 100.000000  | 100.000000      | 100.000000 |
| VGG + Kernel PCA          | 90.000000   | 74.400000       | 52.380000  |
| ResNet + Kernel PCA       | 95.000000   | 97.620000       | 100.000000 |
| VGG + Kernel LDA          | 99.000000   | 97.620000       | 85.710000  |
| ResNet + Kernel LDA       | 100.000000  | 100.000000      | 100.000000 |

Figure 5. Performance of k-NN using various feature extraction methods on all datasets

The performance of k-NN classifier on different datasets using different confinations of dimensionality reduction algorithms is shown in Figure 5.

#### 5. Conclusion

The features of faces present in IIIT-CFW dataset are complex and difficult to classify by MLP and k-NN in comparison to other datasets (IMFDB and Yale Dataset). In the case of ResNet and Kernel LDA together, the accuracy came out to be 100% because these dimensionality reducing algorithms extracted some important features which were then used to classify the identity.

#### References

- [1] M. Galarnyk. Pca using python (scikit-learn), Feb 2021.
- [2] L. van der Maaten and G. Hinton. Visualizing data using t-sne. *Journal of Machine Learning Research*, 9(86):2579– 2605, 2008.