

Los procesos y su creación

Proyecto PAPIME PE104911

Pertinencia de la enseñanza del cómputo paralelo en el curríulo de las ingenierías.

Luis García Proyecto PAPIME PE104911

Proceso

• ¿Qué es un proceso?

Cuando un programa es leído del disco por el kernel y es cargado en memoria para ejecutarse, se convierte en PROCESO

Luis García Proyecto PAPIME PE104911

Procesos en UNIX

• Un proceso en Unix está conformado por tres bloques fundamentales.

- Segmento de Texto
- Segmento de Datos
- Segmento de Pila

Segmento de Texto

 Contiene las instrucciones que entiende la CPU de nuestra máquina. Este bloque es una copia del bloque de texto del programa.

Segmento de Datos

 Contiene los datos que deben ser inicializados al arrancar el proceso.

Si usamos el compilador de C, en este bloque estarán las variables globales y estáticas.

Segmento de Pila

 Lo crea el núcleo al arrancar el proceso y su tamaño es gestionado por el núcleo

• Éste está conformado por marcos de pila, sirve para funciones, variables así como información útil.

- El proceso se está ejecutando en modo usuario
- 2. El proceso se está ejecutando en modo supervisor
- 3. El proceso no se está ejecutando, pero está listo para ejecutarse tan pronto como el Scheduler lo ordene
- 4. El proceso está durmiendo cargado en memoria

Luis García Proyecto PAPIME PE104911

- 5. El proceso está listo para ejecutarse, pero el intercambiador --Proceso 0-- debe cargar el proceso en memoria antes de que el Scheduler pueda ordenar que pase a ejecutarse
- 6. El proceso está durmiendo y el intercambiador ha descargado el proceso hacia una memoria secundaria --swap--para crear espacio en la memoria principal donde poder cargar otros procesos.

Luis García Proyecto PAPIME PE104911

- 7. El proceso está volviendo del modo supervisor al modo usuario, pero el núcleo se apropia del proceso y hace un cambio de contexto, pasando otro proceso a ejecutarse en modo usuario
- 8. El proceso acaba de ser creado y está en un estado de transición; el proceso existe, pero ni está preparado para ejecutarse --Estado 3--, ni durmiendo --Estado 4--. Este estado es el inicial para todos los procesos, excepto el proceso 0 --Init--.

Luis García Proyecto PAPIME PE104911

9. El proceso ejecuta la llamada exit y pasa al estado zombi. El proceso ya no existe, pero deja para su proceso padre un registro que contiene el código de salida y algunos datos estadísticos tales como los tiempos de ejecución. El estado de zombi es el estado final de un proceso.

Luis García Proyecto PAPIME PE104911

Luis García Proyecto PAPIME PE104911

Creación de procesos (fork)

```
#include <sys/types.h>
pid_t fork ();
```

Luis García Proyecto PAPIME PE104911

Terminación de procesos (exit y wait)

Exit

```
#include <stdlib.h>
void exit (int status);
```

Wait

```
#include <sys/types.h>
#include <sys/wait.h>
pid_t wait (int *stat_loc);
```

Luis García Proyecto PAPIME PE104911

Información sobre procesos

• Identificadores de proceso

```
pid t getpid ();
pid t getppid ();
#include <sys/types.h>
pid t getpgrp ( );
pid t setpgrp ( );
Luis García
```

Proyecto PAPIME PE104911

#include <types.h>

Identificadores sobre procesos

 Identificadores de usuario y de grupo #include <sys/types.h> uid_t getuid ();

```
uid_t geteuid ( );
gid_t getgid ( );
gid_t getegid ( );
```

```
int setuid (uid_t uid);
int setgid (gid_t gid);
```

Luis García Proyecto PAPIME PE104911