Билеты по мат. анализу, 2 сем (преподаватель Кононова А. А.) Записал Костин П.А.

Данный документ неидеальный, прошу сообщать о найденных недочетах в вконтакте

Содержание

1	Интегральные суммы Римана. Интегрируемость по Риману.	5
2	Интегрируемость по Риману. Ограниченность интегрируемой функции.	7
3	Суммы Дарбу, их свойства (связь с суммами Римана, поведение при измельчении).	8
4	Критерий интегрируемости в терминах сумм Дарбу. Критерий Римана (б/д).	9
5	Интегрируемость непрерывной функции, монотонной функции.	10
6	Интегрируемость кусочно-непрерывной функции.	11
7	Интегрируемость суммы, произведения, модуля.	12
8	Интегрируемость функции и ее сужений.	13
9	Свойства интеграла Римана (линейность; аддитивность; свойства, связанные с неравенствами).	14
10	Первая теорема о среднем. Следствие для непрерывных функций.	16
11	Формула Ньютона-Лейбница. Теорема об интеграле с переменным верхним пределом.	17
12	Формула интегрирования по частям в интеграле Римана. Применение: формула Валлиса.	20
13	Формула Тейлора с остаточным членом в интегральной форме.	22
14	Формула интегрирования по частям в интеграле Римана. Вторая теорема о среднем.	23
15	Замена переменной в определенном интеграле (две формулировки, доказательство одной).	24

16	Признаки сравнения для положительных рядов.	26
17	Признаки Даламбера и Коши для положительных рядов.	27
18	Абсолютная и условная сходимость рядов. Сходимость следует из абсолютной сходимости.	28
19	Абсолютная и условная сходимость. Пример: $\sum\limits_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$	29
20	Перестановка абсолютно сходящегося ряда. Теорема Римана (б/д).	30
21	Асимптотика частичных сумм расходящегося ряда (случай гармонического ряда). Постоянная Эйлера.	32
22	Несобственные интегралы. Примеры. Несобственный интеграл в смысле главного значения. Критерий Больцано-Коши для несобственных интегралов.	33
23	Свойства несобственных интегралов (линейность, аддитивность, монотонность, формула Ньютона-Лейбница).	35
24	Свойства несобственных интегралов (интегрирование по частям, замена переменной).	37
25	Интегральный признак Коши сходимости несобственных интегралов и рядов.	38
26	Признаки сравнения для несобственных интегралов.	39
27	Абсолютная и условная сходимость интегралов. Сходимость следует из абсолютной сходимости.	41
28	Абсолютная и условная сходимость. Пример: $\int\limits_0^\infty \frac{\sin x}{x}$	42
29	Признаки Дирихле и Абеля для несобственных интегралов (док-во одного из них).	43
30	Признаки Дирихле и Абеля для рядов (док-во одного из них).	44
31	Применение интеграла Римана для вычисления площадей и объемов. Примеры.	45
32	Путь. Длина пути. Спрямляемый путь. Аддитивность длины пути.	48

33	Кривая. Длина кривой.	51
34	Теорема о вычислении длины гладкого пути.	52
35	Функциональные последовательности и ряды. Поточечная и равномерная сходимость. Примеры.	54
36	Критерий Коши для равномерной сходимости функциональной последовательности.	55
37	Сохранение непрерывности при равномерном предельном переходе. Теорема Дини ($6/д$). Теорема о предельном переходе под знаком интеграла.	56
38	Дифференцируемость и равномерная сходимость.	58
3 9	Признак Вейерштрасса равномерной сходимости функциональных рядов.	59
40	Степенной ряд (в С). Радиус сходимости. Формула Коши-Адамар	oa. 60
41	Теорема о комплексной дифференцируемости степенного ряда. Следствие: единственность разложения в степенной ряд.	61
42	Ряд Тейлора. Примеры $(e^x, \sin x, \ln(1+x), e^{-\frac{1}{x^2}})$.	62
43	Биномиальный ряд $(1+x)^{\alpha}$	63
44	Признак Абеля-Дирихле для равномерной сходимости функциональных рядов (доказательство одного).	64
45	Теорема Абеля. Сумма ряда $\sum\limits_{n=1}^{\infty} rac{(-1)^{n-1}}{n}$.	65
46	Интеграл комплекснозначной функции. Скалярное произведение и норма в пространстве $C(\mathbb{C}\setminus\mathbb{R})$, в пространстве $R([a;b])$. Ортогональность. Пример: $e_k(x)=e^{2\pi i k x}$.	66
47	Свойства скалярного произведения и нормы (теорема Пифагора, неравенство Коши-Буняковского-Шварца, неравенство треугольника).	67
48	Коэффициенты Фурье функции по ортогональной системе e_k . Ряд Фурье. Пример: тригонометрический полином.	68
49	Свойства коэффициентов Фурье (коэффициенты Фурье сдви-	69

50	Неравенство Бесселя. Лемма Римана-Лебега (light).	70
51	Вычисление интеграла Дирихле $\int\limits_0^\infty \frac{\sin x}{x}$.	71
52	Ядра Дирихле, их свойства. Выражение частичных сумм ряда Фурье через ядра Дирихле.	72
53	Свертка. Простейшие свойства. Свертка с тригонометрическими и алгебраическими полиномами.	73
54	Принцип локализации Римана.	74
5 5	Теорема о поточечной сходимости ряда Фурье для локально- Гельдеровой функции.	75
56	Ядра Фейера, их свойства. Связь с $\sigma_N(f)$.	76
	Аппроксимативная единица. Определение, примеры. Теорема о равномерной сходимости свертки с аппроксимативной единицей.	77
58	Теорема Фейера. Теорема Вейерштрасса.	78
	Среднеквадратичное приближение функций, интегрируемых по Риману, тригонометрическими полиномами.	79
60	Равенство Парсеваля.	80
61	Замечания из конспектов, которые не вошли в билеты 61.1 Множества меры ноль	81 81

1 Интегральные суммы Римана. Интегрируемость по Риману.

Опр

 τ -разбиение на [a;b]:

$$\tau = \{x_k\}_{k=0}^n : a = x_0 < x_1 < \dots < x_n = b$$

Опр

Мелкость разбиения **т**:

$$\lambda(\tau) = \max_{k=0\dots n-1} \Delta_k = x_{k+1} - x_k$$

Опр

Оснащение разбиения т:

$$\xi = \{\xi_k\}_{k=0}^{n-1} : \xi_k \in [x_k, x_{k+1}]$$

Опр

 $\Pi y cmv \ f:[a,b] o \mathbb{R}, \ mor \partial a \ cymma \ Pumaha:$

$$S(f, \tau, \xi) = \sum_{k=0}^{n-1} f(\xi_k) \Delta_k$$

Опр

Интегралом Римана функции f по отрезку [a,b] называется $I \in \mathbb{R}$:

$$\forall \mathcal{E} > 0 \ \exists \delta > 0 : \forall \tau : \ \lambda(\tau) < \delta, \ \forall \xi \ |S(f, \tau, \xi) - I| < \mathcal{E}$$

то есть неформально

$$\lim_{\lambda(\tau)\to 0} S(f,\tau,\xi) = I$$

Опр

Будем говорить, что f интегрируема по Риману на [a;b], если $\exists I$ - интеграл функции f по Риману на [a,b]. U записывать это как

$$f \in R[a,b], \ I = \int_a^b f(x)dx = \int_a^b f$$

Пример

$$f(x) = C$$

Решение

$$\forall \tau \ \forall \xi \ S(f, \tau, \xi) = \sum_{k=0}^{n-1} f(\xi_k) \Delta_k = C \sum_{k=0}^{n-1} \Delta_k = C(b-a)$$
$$I = C(b-a) = \int_a^b C dx$$

Пример

Функция Дирихле $\mathcal{D}(x) = \mathcal{X}_{\mathbb{Q}}$ на отрезке [0,1]

 $\frac{\mathbf{Onp}}{A} \subset \mathbb{R}, \ \mathcal{X}_{\mathbb{A}} = \begin{cases} 1, & \textit{ecnu } x \in A \\ 0, & \textit{ecnu } x \notin A \end{cases}$

Решение

 $\Pi y cm \sigma \tau$ - произвольное разбиение.

$$\xi^* = \{\xi_k^*\} : \xi_k^* \in \mathbb{Q} \cap [x_k, x_{k+1}]$$
 - рациональное оснащение

$$\widetilde{\xi}=\{\widetilde{\xi}_k\}:\widetilde{\xi}_k\in[x_k,x_{k+1}]\setminus\mathbb{Q}$$
 - иррациональное оснащение

$$S(f, \tau, \xi^*) = \sum_{k=0}^{n-1} \mathcal{D}(\xi_k^*) \Delta_k = \sum_{k=0}^{n-1} \Delta_k = b - a$$
$$S(f, \tau, \widetilde{\xi}) = 0$$

 $\mathcal{D} \notin R[0,1]$. Док-во от противного, пусть это не так, тогда

$$\exists I: \ \forall \mathcal{E} > 0 \ \exists \delta > 0: \forall \tau: \ \lambda(\tau) < \delta, \ \forall \xi \ |S(f,\tau,\xi) - I| < \mathcal{E}$$

Возъмём ξ^* и $\widetilde{\xi}$:

$$1 = |S(f, \tau, \xi^*) - S(f, \tau, \widetilde{\xi})| \leqslant |S(f, \tau, \xi^*) - I| + |S(f, \tau, \widetilde{\xi}) - I| \leqslant 2\mathcal{E}$$

Пример

$$f(x) = \mathcal{X}_0, f \in R[-1, 1]$$

Решение

Покажем, что I=0. ξ_i на интервалах δ_i может тах два раза попадать в θ . Пусть это будет при $k,\ k+1$. Тогда:

$$S(f, \tau, \xi) = \sum_{i=0}^{n-1} f(\xi_i) \Delta_i = \sum_{i=0, i \neq k, k+1}^{n-1} f(\xi_i) \Delta_i + f(\xi_k) \Delta_k + f(\xi_{k+1}) \Delta_{k+1} =$$

$$= f(\xi_k) \Delta_k + f(\xi_{k+1}) \Delta_{k+1} \leqslant \Delta_k + \Delta_{k+1} < 2\lambda(\tau) \to 0$$

2 Интегрируемость по Риману. Ограниченность интегрируемой функции.

Определение интегрируемости см. в первом билете.

y_{TB}

Eсли $f \in R[a,b]$, то f - ограничена на [a,b].

Док-во (от противного)

 $\Pi ycmb \sup_{[a,b]} f(x) = +\infty.$

Для $\mathcal{E}=1$ $\exists \delta>0: \forall \tau: \ \lambda(\tau)<\delta, \ \forall \xi \ |S(f,\tau,\xi)-I|<\mathcal{E}.$

Зафиксируем $\tau^* : \lambda(\tau^*) < \delta$:

$$Ta\kappa \ \kappa a\kappa \ \sup_{[a,b]} f(x) = +\infty \Rightarrow \exists k : \sup_{[x_k,x_{k+1}]} f(x) = +\infty.$$

"отпустим ξ_k^* ". $S(f, \tau, \xi) = \sum_{i=0}^{n-1} f(\xi_i) \Delta_i = \sum_{i \neq k}^{n-1} f(\xi_i) \Delta_i + f(\xi_k) \Delta_k$ (неограничена, выберем ξ_k так чтобы) $> \mathcal{E} + I$, Противоречие.

3 Суммы Дарбу, их свойства (связь с суммами Римана, поведение при измельчении).

Опр

$$\Pi y cm \delta f : [a,b] \to \mathbb{R}, \ \tau$$
-разбиение. $M_k = \sup_{[x_k,x_{k+1}]} f(x), \ m_k = \inf_{[x_k,x_{k+1}]} f(x), \ mor \partial a$: $S^*(f,\tau) := \sum_{k=0}^{n-1} M_k \Delta_k$ - верхняя сумма Дарбу $S_*(f,\tau) := \sum_{k=0}^{n-1} m_k \Delta_k$ - нижняя сумма Дарбу

Опр

 τ' называется измельчением τ ($\tau' \prec \tau$), если $\tau \subset \tau'$

Свойства

1.
$$\forall \xi, f, \tau - safu\kappa c \Rightarrow S_*(f, \tau) \leqslant S(f, \tau, \xi) \leqslant S^*(f, \tau)$$

2. (a)
$$S^*(f,\tau) = \sup_{\xi} S(f,\tau,\xi)$$
, (6) $S_*(f,\tau) = \inf_{\xi} S(f,\tau,\xi)$

3.
$$S^*(f, \tau') \leq S^*(f, \tau), S_*(f, \tau') \geq S_*(f, \tau)$$

4.
$$\forall \tau_1, \tau_2 : S_*(\tau_1) \leq S^*(\tau_2)$$

Док-во

- 1. Очевидно из определения
- 2. Докажем пункт (а). Нужно доказать, что:

$$\forall \mathcal{E} > 0 \ \exists \xi^* \ S(f, \tau, \xi^*) > S^*(f, \tau) - \mathcal{E}$$

$$M_k = \sup_{[x_k, x_{k+1}]} \Rightarrow \exists \xi_k^* : f(\xi_k^*) > M_k - \frac{\mathcal{E}}{b - a}$$

$$S(f, \tau, \xi^*) = \sum_{k=0}^{n-1} f(\xi^*) \Delta_k > \sum_{k=0}^{n-1} M_k \Delta_k - \frac{\mathcal{E}}{b - a} \sum_{k=0}^{n-1} \Delta_k = S^*(f, \tau) - \mathcal{E}$$

3. Пусть $\tau : x_0 < x_1 < ... < x_n$, добавим x':

$$\tau': x_0 < x_1 < \dots < x_k < x' < x_{k+1} < \dots < x_n,$$

$$S^*(f,\tau) - S^*(f,\tau') = \sup_{[x_k, x_{k+1}]} f(x)(x_{k+1} - x_k) - \sup_{[x_k, x']} f(x)(x' - x_k) - \sup_{[x', x_{k+1}]} f(x)(x_{k+1} - x') \geqslant \sup_{[x_k, x_{k+1}]} f(x)(x_{k+1} - x_k - x' + x_k - x_{k+1} + x') = 0, \Rightarrow S^*(f,\tau') \leqslant S^*(f,\tau)$$

$$[x_k, x_{k+1}]$$

4. Пусть $\tau = \tau_1 \cup \tau_2$ (произведение разбиений в обозначениях Кононовой), тогда $\tau \prec \tau_1, \tau_2$, значит

$$S_*(f, \tau_1) \leqslant S_*(f, \tau) \leqslant S^*(f, \tau) \leqslant S^*(f, \tau_2)$$

4 Критерий интегрируемости в терминах сумм Дарбу. Критерий Римана (б/д).

Теорема (критерий Дарбу)

$$f \in R[a,b] \Leftrightarrow \forall \mathcal{E} > 0, \ \exists \delta > 0 : \forall \lambda(\tau) < \delta \Rightarrow S^*(f,\tau) - S_*(f,\tau) < \mathcal{E}$$

Док-во

 (\Rightarrow) Необходимость. $f \in R[a,b] \Rightarrow I \in \mathbb{R}$:

$$\forall \mathcal{E} > 0 \; \exists \delta > 0 : \forall \tau : \; \lambda(\tau) < \delta, \; \forall \xi \; |S(f, \tau, \xi) - I| < \frac{\mathcal{E}}{3}$$
$$I - \frac{\mathcal{E}}{3} \leqslant S_*(f, \tau) \leqslant S(f, \tau, \xi) \leqslant S^*(f, \tau) \leqslant I + \frac{\mathcal{E}}{3}$$
$$0 \leqslant S^*(f, \tau) - S_*(f, \tau) \leqslant \frac{2\mathcal{E}}{3} < \mathcal{E}$$

 (\Leftarrow) Достаточность.

$$\forall \mathcal{E} > 0 \ \exists \delta > 0 : \forall \tau : \ \lambda(\tau) < \delta \ S^*(f,\tau) - S_*(f,\tau) < \mathcal{E}$$
$$I^* := \inf_{\tau} S^*(f,\tau), \ I_* := \sup_{\tau} S_*(f,\tau)$$
$$0 \leqslant I^* - I_* \leqslant S^*(f,\tau) - S_*(f,\tau) < \mathcal{E} \Rightarrow I^* = I_* = I$$
$$\forall \xi \ S_*(f,\tau) \leqslant S(f,\tau,\xi) \leqslant S^*(f,\tau) \Rightarrow |S(f,\tau,\xi) - I| < \mathcal{E}$$

Теорема (критерий Римана)

$$f \in R[a,b] \Leftrightarrow \forall \mathcal{E} > 0, \ \exists \tau : S^*(f,\tau) - S_*(f,\tau) < \mathcal{E}$$

5 Интегрируемость непрерывной функции, монотонной функции.

Опр

Колебание
$$f: E \to \mathbb{R}$$
 на $E \subset \mathbb{R}$, $\omega(f, E) = \sup_{x \in E} f(x) - \inf_{x \in E} f(x)$,
$$d_k = [x_k, x_{k+1}], \ S^*(f, \tau) - S_*(f, \tau) = \sum_{k=0}^{n-1} M_k \Delta_k - \sum_{k=0}^{n-1} m_k \Delta_k = \sum_{k=0}^{n-1} \omega(f, d_k) \Delta_k$$

Теорема (критерий Дарбу, другая форма)

$$f \in R[a,b] \Leftrightarrow \forall \mathcal{E} > 0, \ \exists \delta > 0 : \forall \tau : \lambda(\tau) < \delta \Rightarrow \sum_{k=0}^{n-1} \omega(f,d_k) \Delta_k < \mathcal{E}$$

(неформально
$$\lim_{\lambda(\tau)\to 0}\sum_{k=0}^{n-1}\omega(f,d_k)\Delta_k=0$$
)

Следствие (1)

$$C[a,b] \subset R[a,b]$$

Док-во

$$f \in C[a,b] \Rightarrow f$$
 равн. непр. на $[a,b]$

$$\Leftrightarrow \forall \mathcal{E} > 0 \; \exists \delta > 0 : \forall x', x'' \in E \; cnpaseдливо \; |x' - x''| < \delta \Rightarrow |f(x') - f(x'')| < \mathcal{E}$$
 $\Rightarrow \forall \tau : \lambda(\tau) < \delta \Rightarrow \omega(f, d_k) < \mathcal{E}, \; paccmompum$

$$\sum_{k=0}^{n-1} \omega(f, d_k) \Delta_k < \mathcal{E} \sum_{k=0}^{n-1} \Delta_k = \mathcal{E}(b-a) \widetilde{\mathcal{E}} \Rightarrow \text{ no } \kappa \text{pumepuro } \mathcal{A} \text{apby } f \in R[a, b]$$

Следствие (2)

 \overline{f} -ограничена и монотонна на $[a,b] \Rightarrow f \in R[a,b]$

Док-во

$$(f\nearrow) \ \forall \mathcal{E} > 0 \ \exists \delta = \frac{\mathcal{E}}{f(b) - f(a)}, \ nycmb \ \lambda(\tau) < \delta$$

$$\sum_{k=0}^{k-1} \omega(f, d_k) \Delta_k \leqslant \delta \sum_{k=0}^{k-1} (f(x_{k+1}) - f(x_k)) = \delta(f(b) - f(a)) = \mathcal{E}$$

6 Интегрируемость кусочно-непрерывной функции.

Опр

 $f:[a,b] o \mathbb{R}$ - кусочно-непрерывная функция, если:

$$f \in C([a,b] \setminus \{t_1,...,t_n\})$$
 и $t_1,...,t_n$ - точки разрыва I рода

Следствие (3)

$$f:[a,b] o \mathbb{R}$$
 - кусочно-непрерывная $\Rightarrow f \in R[a,b]$

Док-во

Пусть $A = \{k \in \mathbb{N} | \exists j : t_j \in d_k\}, C = \omega(f, [a, b]) < \infty$

Если $k \notin A \Rightarrow f$ - непр. на $d_k \Rightarrow p/n \Rightarrow \exists \delta_k$ из p/n. Причем $|A| \leqslant 2n$, потому что t_j могут попасть в тах два соседниих промежутка.

Возъмём
$$\delta = \min_{k \notin A} \delta_k, \ ecлu \ \tau : \lambda(\tau) < \delta, \ mo$$

$$\sum_{k=0}^{n-1} \omega(f, d_k) \Delta_k = \sum_{k \in A} \omega(f, d_k) \Delta_k + \sum_{k \notin A} \omega(f, d_k) \Delta_k \leqslant 2nC\lambda_k + \mathcal{E} \sum_{k=0}^{n-1} \Delta_k < 2nC\lambda_k + \mathcal{E} \sum_{k=0}^{n$$

$$< 2nC\lambda(\tau) + \mathcal{E}(b-a) < (nycmb \ \widetilde{\delta} = \min(\delta, \frac{\mathcal{E}}{2nC}), \ mor \partial a \ \forall \tau : \lambda(\tau) < \delta)$$
 $< \mathcal{E} + \mathcal{E}(b-a) = \mathcal{E}(1+b-a)$

7 Интегрируемость суммы, произведения, модуля.

Свойство (1)

$$f, g \in R[a, b] \Rightarrow f + g \in R[a, b]$$

Док-во

$$\omega(f+g,E) = \sup_{E} (f+g) - \inf_{E} (f+g) \leqslant \sup_{E} f + \sup_{E} g - \inf_{E} f - \inf_{E} g$$

$$\leqslant \omega(f,E) + \omega(g,E) \to 0 \Rightarrow_{\kappa p. \mathcal{H}ap6y} f + g \in R[a,b]$$

Свойство (2)

$$f \in R[a,b] \Rightarrow f^2 \in R[a,b]$$

Док-во

$$f$$
 - ограничено $\Rightarrow \exists M>0: |f(x)|\leqslant M \quad \forall x\in [a,b]$ $\omega(f^2,E)=\sup_E(f^2)-\inf_E(f^2)=\sup_{x_1,x_2\in E}(f^2(x_2)-f^2(x_1))=$ $=\sup_{x_1,x_2\in E}(f(x_2)-f(x_1))(f(x_2)+f(x_1))\leqslant 2M\omega(f,E)\to 0$

Свойство (3)

$$f, g \in R[a, b] \Rightarrow f \cdot g \in R[a, b]$$

Док-во

Так как
$$f \in R[a,b] \Rightarrow -f \in R[a,b]$$

$$\Rightarrow f \cdot g = \frac{1}{4}((f+g)^2 - (f-g)^2) \in R[a,b]$$

<u>Свойство</u> (4)

$$f \in R[a,b] \Rightarrow |f| \in R[a,b]$$

Док-во

$$\overline{||f(x_1)| - |f(x_2)||} \leqslant |f(x_2) - f(x_1)| \xrightarrow{sup} \omega(|f|, E) \leqslant \omega(f, E) \to 0 \Rightarrow \in R[a, b]$$

8 Интегрируемость функции и ее сужений.

Свойство (5)

$$f\in R[a,b],\ [c,d]\subset [a,b]\Rightarrow f\in R[c,d]$$

Док-во

$$f \in R[a,b] \Rightarrow \forall \mathcal{E} > 0 \; \exists \delta > 0 :$$

для всех τ' на [c,d] расширенных до τ на [a,b] :

$$\lambda(\tau) < \delta \Rightarrow \sum_{\textit{pas6 } \tau'} \omega(f, d_k) \Delta_k \Rightarrow \sum_{\textit{pas6 } \tau} \omega(f, d_k) \Delta_k \Rightarrow < \mathcal{E}$$

Свойство (6)

$$a < c < b \Rightarrow R[a,c] \cup R[c,b] \subset R[a,b]$$

Док-во

$$\forall \mathcal{E} > 0 \; \exists \delta_1 > 0 \; na \; [a,c] : \lambda(\tau_1) < \delta_1 \Rightarrow S^*(f_1,\tau_1) - S_*(f_1,\tau_1) < \mathcal{E}$$

 $\exists \delta_2 > 0 \; na \; [c,b] : \lambda(\tau_2) < \delta_2 \Rightarrow S^*(f_2,\tau_2) - S_*(f_2,\tau_2) < \mathcal{E}$
 $\Pi y cmb \; \delta = min(\delta_1,\delta_2), \; \tau = \tau_1 \cup \tau_2, \; \lambda(\tau_1) < \delta, \; \lambda(\tau_2) < \delta$

Мог произойти разрыв, но $|f| \leqslant M \Rightarrow \omega(f, [a, b]) < W$

$$\sum \omega(f, d_k) \Delta_k = S^*(f, \tau) - S_*(f, \tau) \leqslant S^*(f, \tau_1) - S_*(f, \tau_1) + S^*(f, \tau_2) - S_*(f, \tau_2) + d_m^{\mathcal{I}} \Delta_m^{\mathcal{I}} + d_m^{\mathcal{I}} \Delta_m^{\mathcal{I}} \leqslant (d_m = d_m^{\mathcal{I}} \cup d_m^{\mathcal{I}}, \ \widetilde{\delta} = \min(\delta_1, \delta_2, \frac{\mathcal{E}}{W})) 2\mathcal{E} + W\widetilde{\delta} < 3\mathcal{E}$$

9 Свойства интеграла Римана (линейность; аддитивность; свойства, связанные с неравенствами).

Опр

Если
$$a < b$$
, то $\int_{b}^{a} f = -\int_{a}^{b} f u \int_{a}^{a} = 0$

Свойство (1, линейность)

$$\forall f, g \in R[a, b], \alpha, \beta \in \mathbb{R} \Rightarrow \int\limits_{b}^{a} (\alpha f + \beta g) = \alpha \int\limits_{b}^{a} f + \beta \int\limits_{b}^{a} g$$

Док-во

Знаем, что $\alpha f + \beta g \in R[a,b],$

$$S(\alpha f + \beta g, \tau, \xi) = \alpha S(f, \tau, \xi) + \beta S(g, \tau, \xi)$$
 (очевидно из определения сумм Римана)

Свойство (2, аддитивность)

$$\forall f \in R[a, b], \ a < c < b \Rightarrow \int_{b}^{a} f = \int_{c}^{a} f + \int_{b}^{c} f$$

Док-во

Свойство (3)

$$\forall f \in R[a, b], \ a < b, \ f \geqslant 0 \Rightarrow \int_{a}^{b} f \geqslant 0$$

Док-во

Очевидно из определения суммы Римана

Свойство (4)

$$\forall f, g \in R[a, b], \ g(x) \leqslant f(x) \ \forall x \in [a, b], a < b \Rightarrow \int_{b}^{a} g \leqslant \int_{b}^{a} f(x)$$

Док-во

Свойство (5)

$$\forall f \in R[a,b], \ m \leqslant f(x) \leqslant M \ \forall x \in [a,b], a < b \Rightarrow m(b-a) \leqslant \int_{b}^{a} f \leqslant M(b-a)$$

Док-во

С использованием предыдущего свойства взять интеграл

Свойство (6)

$$f \in R[a,b], \ m = \inf_{[a,b]} f, \ M = \sup_{[a,b]} f \Rightarrow \exists \mu \in [m,M] : \int_{b}^{a} f = \mu(b-a)$$

Док-во

$$\mu = \frac{\int\limits_{b}^{a}f}{b-a} \in [m,M] \ (no\ npedыдущему\ неравенству)$$

Свойство (7)

$$f \in C[a,b], \Rightarrow \exists \xi \in [a,b] : \int_{b}^{a} f = f(\xi)(b-a)$$

Док-во

По теореме о промежуточном значении (Больцано-Коши) используя предыдушее свойство

Свойство (8)

$$f \in R[a,b], \Rightarrow |\int_{b}^{a} f| \leqslant \int_{b}^{a} |f|$$

$$\frac{\underline{\underline{\mathcal{H}}}\mathbf{ok-bo}}{-|f|\leqslant f\leqslant |f|\Rightarrow -\int\limits_{b}^{a}|f|\leqslant \int\limits_{b}^{a}f\leqslant \int\limits_{b}^{a}|f|\Rightarrow |\int\limits_{b}^{a}f|\leqslant \int\limits_{b}^{a}|f|$$

10 Первая теорема о среднем. Следствие для непрерывных функций.

Теорема

$$f, g \in R[a, b], g \geqslant 0, m \leqslant f \leqslant M$$

$$\forall x \in [a, b] \Rightarrow \exists \mu \in [m, M] : \int_{b}^{a} fg = \mu \int_{b}^{a} g$$

$$\frac{\underline{\mathbf{Док-во}}}{mg} \leqslant fg \leqslant Mg \Rightarrow m \int_{b}^{a} g \leqslant \int_{b}^{a} fg \leqslant M \int_{b}^{a} g$$

$$\frac{m \int_{b}^{a} g}{\int_{b}^{a} g} \leqslant \frac{\int_{b}^{a} fg}{\int_{b}^{a} g} \leqslant \frac{M \int_{b}^{a} g}{\int_{b}^{a} g}$$

$$m \leqslant \frac{\int_{b}^{a} fg}{\int_{b}^{a} g} \leqslant M$$

$$a)\int\limits_{b}^{a}g=0,\ mor\partial a\ \mu$$
 - любое.

$$6) \int_{b}^{a} g \neq 0 \Rightarrow \mu := \frac{\int_{b}^{a} fg}{\int_{a}^{b} g} \in [m, M]$$

Следствие

$$\frac{\underline{\underline{ACTBRC}}}{\underline{Ecnu}\ f} \in C[a,b],\ g \in R[a,b],\ g\geqslant 0 \Rightarrow \exists \xi \in [a,b]: \int\limits_{b}^{a}fg = f(\xi)\int\limits_{b}^{a}g = f(\xi)\int\limits_{b}^{a$$

Док-во

По теореме о промежуточном значении (Больцано-Коши) используя неравенство из последнего доказательства для $m=\inf_{[a,b]}f,\ M=\sup_{[a,b]}f$

11 Формула Ньютона-Лейбница. Теорема об интеграле с переменным верхним пределом.

Опр

$$E \subset \mathbb{R}, \quad F: E \to \mathbb{R} \quad f: E \to \mathbb{R}$$

Тогда F называется первообразной f, если $F'(x) = f(x) \quad \forall x \in E$

 y_{TB}

 F_1, F_2 - первообразные f на E, тогда:

$$F(x_1) - F(x_2) = \text{const} \ (m.\ Лагранжа)$$

Теорема (формула Ньютона-Лейбница)

 $f \in R[a,b], \ F$ -первообразная $f, \ mor \partial a$:

$$\int_{a}^{b} f = F(b) - F(a) = F|_{a}^{b}$$

Док-во

 $\forall \tau$ на [a,b] по теореме Лагранжа:

$$\exists \xi_k \in [x_k, x_{k+1}]: F(x_{k+1}) - F(x_k) = F'(\xi_k)(x_{k+1} - x_k) = f(\xi_k)\Delta_k$$

Так как $f \in R[a,b] \Rightarrow \forall \mathcal{E} > 0 \; \exists \delta > 0 : \forall \tau : \; \lambda(\tau) < \delta, \; \forall \xi \; |S(f,\tau,\xi) - I| < \mathcal{E}$ Возьмём оснащение ξ из теоремы Лагранжа:

$$S(f, \tau, \xi) = \sum_{k=0}^{n-1} f(\xi_k) \Delta_k = \sum_{k=0}^{n-1} (F(x_{k+1}) - F(x_k)) = F(b) - F(a)$$

Опр

 $E \subset \mathbb{R}$, E - невырожденный промежуток,

$$f: E \to \mathbb{R} \quad \forall \alpha, \beta \in E: \quad \alpha < \beta \quad f \in R[\alpha, \beta] \quad$$
для $a \in E$ (фиксированного)

$$F(x):=\int\limits_a^x f(t)dt$$
 - интеграл c переменным верхним пределом $F:E o\mathbb{R}$

Теорема

$$f \in R[a,b], \ F(x) = \int_a^x f(t)dt, \ mor \partial a$$
:

1.
$$F \in C[a, b]$$

2. (теорема Барроу) Если f - непр. в т. $x_0 \in [a,b]$, то $F'(x_0) = f(x_0)$

Док-во

 $\overline{x \in [a,b]}, h: x+h \in [a,b]$

1)
$$F(x+h) - F(x) = \int_{a}^{x+h} f - \int_{a}^{x} f = \int_{a}^{x+h} f + \int_{x}^{a} f = \int_{x}^{x+h} f$$

 $Tak \ kak \ f \in R[a,b] \Rightarrow \exists M \in \mathbb{R} : |f| < M, \ shape sha$

$$|F(x+h) - F(x)| \le \left| \int_x^{x+h} f \right| \le \int_x^{x+h} |f| \le M |h|$$

Кроме того, $\forall \mathcal{E} > 0, \ \delta = \frac{\mathcal{E}}{M} \ ecnu \ |h| < \delta \Rightarrow |F(x+h) - F(x)| < \mathcal{E}$

2)
$$Paccmompum \left| \frac{F(x_0+h)-F(x_0)}{h} - f(x_0) \right| = \left| \frac{1}{h} \int_{x_0}^{x_0+h} f(t)dt - f(x_0) \frac{1}{h} \int_{x_0}^{x_0+h} dt \right| =$$

$$= \frac{1}{|h|} \left| \int_{x_0}^{x_0+h} (f(t) - f(x_0))dt \right| \leqslant \frac{1}{|h|} \left| \int_{x_0}^{x_0+h} \mathcal{E}dt \right| = \mathcal{E}$$
 $(npu |h| < \delta \ \forall \mathcal{E} > 0 \ \exists \delta > 0 : |t - x_0| < \delta \Rightarrow |f(t) - f(x_0)| < \mathcal{E})$

Следствие

$$F \in C[a, b] \Rightarrow \exists F : F'(x) = f(x) \ \forall x \in [a, b]$$

$$\frac{\mathbf{Пример}}{f(x)} = |x|, \ F(x) = \int_{0}^{x} |t| dt = \begin{cases} \frac{t^{2}}{2} \Big|_{0}^{x}, & x \geqslant 0 \\ -\frac{t^{2}}{2} \Big|_{0}^{x}, & x < 0 \end{cases}$$

$$\frac{\mathbf{\Pi}\mathbf{pимep}}{f(x)} = \begin{cases} 1, & x \geqslant 0 \\ -1, & x < 0 \end{cases}$$

 $F(x) = |x| \ \forall x \neq 0$, видно что неверно для первообразной, но:

 $\frac{\mathbf{Onp}}{F}$ - "почти первообразная", если:

1.
$$F'(x) = f(x) \ \forall x \in [a, b] \setminus \{t_1, ...t_n\}$$

2.
$$F \in C[a, b]$$

Пример

 $\frac{m c p}{ \Pi p u m e p}$ для "почти первообразной". Найти $\int\limits_0^2 f(x),\ \partial$ ля $f(x)=\max(1,x)$

$$F(t) \stackrel{?}{=} \begin{cases} t, & t \in [0,1] \\ \frac{t^2}{2}, & t \in [1,2] \end{cases}$$

Попробуем использовать H-Л: $F(t)\big|_0^2 = F(2) - F(0) = 2$ Неверно, потому что это не первообразная и даже не "почти первообразная". Поправим F(x):

$$F(t) = \begin{cases} t, & t \in [0, 1] \\ \frac{t^2}{2} + \frac{1}{2}, & t \in [1, 2] \end{cases}$$

Это уже "почти первообразная" можно применять Н-Л.

12 Формула интегрирования по частям в интеграле Римана. Применение: формула Валлиса.

Теорема

$$F,G$$
 - первообразные $f,g\in R[a,b]$ на $[a,b],$ тогда $\int\limits_a^b Fg=FG|_a^b-\int\limits_a^b fG$

$$\left(\int_{a}^{b} uv' = uv|_{a}^{b} - \int_{a}^{b} u'v\right)$$

Док-во

$$(FG)'=fG+Fg,$$
 по ф-ле Н-Л: $\int\limits_a^b(FG)'=FG|_a^b=\int\limits_a^bfG+|_a^bFg|$

Пример $Ecnu\ I_m:=\int\limits_{0}^{\frac{\pi}{2}}\sin^mxdx=\int\limits_{0}^{\frac{\pi}{2}}\cos^mxdx,\ mo:$

$$I_m = egin{cases} rac{\pi}{2} rac{(m-1)!!}{m!!}, & m ext{ - четное} \ rac{(m-1)!!}{m!!}, & m ext{ - нечетное} \end{cases}$$

Док-во

$$I_{m} = \int_{0}^{\frac{\pi}{2}} \sin^{m} x dx = \int_{0}^{\frac{\pi}{2}} (-\cos x)' \sin^{m-1} x dx =$$

$$= -\cos x \sin^{m-1} x \Big|_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \cos^{2} x (m-1) \sin^{m-2} x dx =$$

$$= (m-1) \int_{0}^{\frac{\pi}{2}} (\sin^{m-2} x - \sin^{m} x) dx = (m-1)(I_{m-2} - I_{m})$$

$$I_m = \frac{m-1}{m} I_{m-2}, \ I_0 = \frac{\pi}{2}, \ I_1 = 1, \ I_2 = \frac{\pi}{2} \frac{1}{2}, \ I_{2k} = \frac{\pi}{2} \frac{1}{2} \frac{3}{4} \dots \frac{2k-1}{2k} = \frac{\pi}{2} \frac{(2k-1)!!}{(2k)!!}$$

Теорема (Формула Валлиса)

$$\lim_{n \to \infty} \frac{2 * 2 * 4 * 4 * \dots * (2n)(2n)}{1 * 3 * 3 * 5 * 5 \dots (2n-1)(2n+1)} = \frac{\pi}{2} \left(u \pi u \lim_{n \to \infty} \frac{1}{n} \left(\frac{(2n)!!}{(2n-1)!!} \right)^2 = \pi \right)$$

$$\frac{\mathbf{Док-во}}{\forall x \in [0, \frac{\pi}{2}]} \ \textit{верно} \ \int_{0}^{\frac{\pi}{2}} \sin^{2n+1} x \leqslant \int_{0}^{\frac{\pi}{2}} \sin^{2n} x \leqslant \int_{0}^{\frac{\pi}{2}} \sin^{2n-1} x$$

$$\frac{(2n)!!}{(2n+1)!!} \leqslant \frac{\pi}{2} \frac{(2n-1)!!}{(2n)!!} \leqslant \frac{(2n-2)!!}{(2n-1)!!}$$

$$A_n = \frac{((2n)!!)^2}{(2n-1)!!(2n+1)!!} \le \frac{\pi}{2} \le \frac{(2n)!!(2n-2)!!}{((2n-1)!!)^2} = B_n$$

$$B_n - A_n = \frac{(2n)!!(2n-2)!!}{((2n-1)!!)^2} - \frac{((2n)!!)^2}{(2n-1)!!(2n+1)!!} =$$

$$= (\frac{(2n)!!}{(2n-1)!!})^2 (\frac{1}{2n} - \frac{1}{2n+1}) = (\frac{((2n)!!)^2}{(2n-1)!!(2n-1)!!}) \frac{1}{(2n+1)(2n)} =$$

$$= A_n \frac{1}{2n} \leqslant \frac{\pi}{2} \frac{1}{2n} \to_{n \to \infty} 0 \Rightarrow \lim_{n \to \infty} A_n = \lim_{n \to \infty} B_n = \frac{\pi}{2}$$

13 Формула Тейлора с остаточным членом в интегральной форме.

Теорема

$$f \in C^{n+1}([a,b]) \Rightarrow f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^k + R_n(b,a),$$
$$e \partial e \ R_n(b,a) = \frac{1}{n!} \int_a^b f^{(n+1)}(t) (b-t)^n dt$$

Замечание

$$f \in C^{n+1}([a,b]) \Rightarrow f^{(n+1)} \in C[a,b] \Rightarrow \exists \xi \in [a,b] :$$

$$R_n = \frac{1}{n!} f^{(n+1)}(\xi) \int_a^b (b-t)^n dt = \frac{-f^{(n+1)}(\xi)}{n!} \frac{(b-t)^{n+1}}{n+1} \Big|_a^b = \frac{-f^{(n+1)}(\xi)}{(n+1)!} (b-a)^{n+1}$$

Док-во (по индукции)

1)
$$n = 0$$

$$f(b)=f(a)+\int\limits_a^bf'(t)dt$$
 - формула Н-Л

2) Инд. переход. Пусть для n-1 - доказано, $f \in C^{n-1}[a,b] \subset C^n[a,b]$, по инд. предположению:

$$f(b) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (b-a)^k + R_{n-1}(*)$$

$$R_{n-1} = \frac{1}{(n-1)!} \int_a^b f^{(n)}(t) (b-t)^{n-1} dt = \begin{bmatrix} u = f^{(n)}(t) \\ dv = (b-t)^{n-1} dt \end{bmatrix} =$$

$$= \frac{1}{(n-1)!} (-f^{(n)}(t) \frac{(b-t)^n}{n} \Big|_a^b + \int_a^b f^{(n+1)}(t) \frac{(b-t)^n}{n} dt) =$$

$$= \frac{1}{(n)!} (f^{(n)}(a)(b-a)^n + \int_a^b f^{(n+1)}(t)(b-t)^n dt) - no\partial c masum \delta \delta (*)$$

14 Формула интегрирования по частям в интеграле Римана. Вторая теорема о среднем.

Формулу интегрирования по частям см. в 12 билете.

Теорема (Бонне или вторая теорема о среднем)

$$f\in C[a,b],\ g\in C^1[a,b], g$$
 — монотонна

$$\Rightarrow \exists \xi \in [a,b]: \int_{a}^{b} fg = g(a) \int_{a}^{\xi} f + g(b) \int_{\xi}^{b} f$$

Док-во
$$(\partial \Lambda g \nearrow) F(x) := \int\limits_a^x f \Rightarrow F' = f$$

$$\int_{a}^{b} fg = \int_{a}^{b} F'g = Fg|_{a}^{b} - \int_{a}^{b} Fg' = F(b)g(b) - F(a)g(a) - \int_{a}^{b} Fg' = F(b)g(b) - F(a)g(b) - F(a)g($$

$$(m.\kappa.\ g\nearrow g\geqslant 0\Rightarrow\ no\ m.\ o\ cpeд$$
нем $\exists \xi\in [a,b]:)$

$$= F(b)g(b) - g(a)F(a) - F(\xi) \int_{a}^{b} g' = g(b)(F(b) - F(\xi)) + g(a)(F(\xi) - F(a))$$

15 Замена переменной в определенном интеграле (две формулировки, доказательство одной).

Теорема

$$\varphi \subset C^1[\alpha, \beta], \ f \in C(\varphi([\alpha, \beta])), \ mor \partial a \int\limits_{\varphi(\alpha)}^{\varphi(\beta)} f = \int\limits_{\alpha}^{\beta} (f \circ \varphi) \varphi'$$

Док-во

$$f \in C(\varphi([\alpha, \beta])) \Rightarrow \exists F : F' = f$$

$$(F \circ \varphi)' = (F' \circ \varphi)\varphi' = (f \circ \varphi)\varphi' \Rightarrow \int_{\alpha}^{\beta} (f \circ \varphi)\varphi' = (F \circ \varphi)(\beta) - (F \circ \varphi)(\alpha)$$

$$\int\limits_{\varphi(\alpha)}^{\varphi(\beta)} f = F(\varphi(\beta)) - F(\varphi(\alpha)) = \int\limits_{\alpha}^{\beta} (f \circ \varphi) \varphi'$$

Теорема

$$f \in R[a,b], \ \phi \in C^1[\alpha,\beta], \ \phi$$
 - cmposo bospacmaem,

$$\phi(lpha)=a, \quad \phi(eta)=b, \; extit{mor}\partial a \int\limits_a^b f=\int\limits_lpha^eta(f\circ\phi)\phi'$$

Пример

$$\int_{0}^{1} \sqrt{1 - x^2} dx, \quad \varphi(t) = \cos t, \quad \varphi(\alpha) = 0, \ \varphi(\beta) = 1$$

$$\int\limits_{0}^{1} \sqrt{1-x^{2}} dx = -\int\limits_{\frac{\pi}{2}}^{0} \sqrt{1-\cos^{2}t} \sin t dt = -\int\limits_{\frac{\pi}{2}}^{0} \frac{1-\cos 2t}{2} dt = \left(-\frac{t}{2} + \frac{\sin 2t}{4}\right)\Big|_{\frac{\pi}{2}}^{0} = \frac{\pi}{4}$$

Напоминание (про ряды)

Опр

Числовой ряд из элементов $\{a_j\}_{j\in\mathbb{N}}$ - это $\sum\limits_{j=1}^\infty a_j$

Опр

Частичная сумма ряда $S_n = \sum_{j=1}^n a_j$

Опр

Говорят, что сумма ряда $S=\sum\limits_{i=1}^{\infty}a_{i}=\lim\limits_{n\to\infty}S_{n}$

Замечание

 P яд $\sum_{j=1}^{\infty} a_j$ $\mathit{cxodumcs}$ или $\mathit{pacxodumcs}$ одновременно c рядом $\sum_{j=N}^{\infty} a_j$

Теорема (необходимое условие сходимости)

$$E$$
сли $\sum_{j=1}^{\infty} a_j$ - $cxo dumcs$, $mo \lim_{j \to \infty} a_j = 0$

Опр

Ряд Лейбница
$$\sum\limits_{j=0}^{\infty}(-1)^{j}a_{j},\ a_{j}>0,\
ho\partial e\lim_{j
ightarrow\infty}a_{j}=0,\ a_{j}\searrow$$

Теорема

Пусть $\sum\limits_{j=0}^{\infty}(-1)^{j}a_{j}$ - ряд Лейбница, тогда:

- 1. Ряд Лейбница сходится
- 2. $S_{2n} \setminus S_{2n-1} \nearrow$
- 3. $|S S_n| < a_{n+1}$

Теорема

Критерий Коши для числовых последовательностей.

$$\sum_{j=1}^{\infty} a_j - cx \Leftrightarrow \forall \mathcal{E} > 0 \ \exists N : \forall m > n > N \ |S_m - S_n| < \mathcal{E}$$

16 Признаки сравнения для положительных рядов.

Опр

EЕсли $a_j\geqslant 0,\; mo\sum_{j=1}^\infty a_j$ - положительный ряд

Теорема

Положительный ряд $cxodumcs\Leftrightarrow S_n$ - ограничены

Следствие

Пусть $0 \leqslant a_j \leqslant b_j$, тогда:

1.
$$\sum b_j$$
 - $cx \Rightarrow \sum a_j$ - cx (первый признак $cxodu$ мо cmu)

2.
$$\sum a_j$$
 - $pacx \Rightarrow \sum b_j$ - $pacx$ (первый признак сравнения)

Следствие

$$a_k \geqslant 0, \ b_k \geqslant 0, \ \exists c, d > 0 \ \exists N : \forall n > N \ 0 < c \leqslant \frac{a_n}{b_n} \leqslant d \leqslant \infty$$

Тогда $\sum a_k$ и $\sum b_k$ сх. или расх. одновременно

Док-во

$$(m.e. \sum a_k - cx \Leftrightarrow \sum b_k - cx)$$

$$(\Leftarrow) \ 0 \leqslant a_n \leqslant db_n \ m.\kappa. \ db_n - cx \Rightarrow a_n - cx$$

$$(\Rightarrow) \ 0 \leqslant cb_n \leqslant a_n \ m.\kappa. \ a_n - cx \Rightarrow cb_n - cx \Rightarrow b_n - cx$$

Следствие (второй признак сравнения)

Пусть $a_n, b_n \geqslant 0$, тогда если

$$\exists \lim_{n \to \infty} \frac{a_n}{b_n} = L \in (0, +\infty), \ mo \sum a_n \ u \sum b_n \ cx$$
или расх одновременно

Док-во

$$\frac{L}{B}$$
 Возъмём $\mathcal{E}:=\frac{L}{2}\Rightarrow\exists N:\forall n>N\; \left|rac{a_n}{b_n}-L
ight|<rac{L}{2}\Rightarrow 0<rac{L}{2}<rac{a_n}{b_n}<rac{3L}{2}<+\infty\Rightarrow no\; предыдущему\; следствию\; верно$

17 Признаки Даламбера и Коши для положительных рядов.

Teopeма (радикальный признак Koши для положительных рядов)

$$\begin{array}{c} \overline{a_k \geqslant 0, \ c := \overline{\lim_{k \to \infty}} \sqrt[k]{a_k}} \\ Ecnu \ c < 1, \ mo \ \sum a_k \ - \ cx \\ Ecnu \ c > 1, \ mo \ \sum a_k \ - \ pacx \end{array}$$

Док-во

a)
$$0 \le c < 1$$

 $q := \frac{c+1}{2}, \ c < q < 1, \ no \ xapakmepucmuke \overline{\lim} : \exists N : \forall n > N \ \sqrt[n]{a_n} < q$ $m.\kappa. \ 0 \leqslant a_n < q^n \ u \sum q^n - cx \Rightarrow \sum a_n - cx$

$$(6)$$
 (c) (c)

 $q:=\frac{c+1}{2},\ 1< q< c,\ no\ xapakmepucmuke\ \overline{\lim}: \forall N: \exists n>N\ \sqrt[n]{a_n}> q$ $\Rightarrow \lim a_{n_k} \neq 0 \Rightarrow \sum a_n - pacx$

Теорема (признак Даламбера сходимости положительных рядов)

$$a_k \geqslant 0, \ \mathcal{D} := \lim_{k \to \infty} \frac{a_{k+1}}{a_k}$$
 $Ecnu \ \mathcal{D} < 1, \ mo \ \sum a_k - cx$
 $Ecnu \ \mathcal{D} > 1, \ mo \ \sum a_k - pacx$

Док-во

$$\overline{a)} \mathcal{D} < 1, \ q := \frac{\mathcal{D}+1}{2} \mathcal{E} := \frac{1-\mathcal{D}}{2}$$

$$\xrightarrow[0 \quad \mathcal{D} \quad \mathsf{q} \quad 1]{+\mathcal{E}}$$

$$\exists N: \forall k>N \ \mathcal{D}-\mathcal{E}<rac{a_{k+1}}{a_k}<\mathcal{D}+\mathcal{E}=q$$
 - reom $np.\ q<1$

 $a_{k+1} < qa_k < q^2a_{k-1} < \dots < q^{k-N+1}a_N, \sum q^{k-N+1}a_k - cx \Rightarrow \sum a_{k+1} - cx$ no первому пр. сходимости

6)
$$\mathcal{D} < 1$$
, $q := \frac{\mathcal{D}+1}{2} \mathcal{E} := \frac{\mathcal{D}-1}{2}$

$$\exists N : \forall k > N \ q = \mathcal{D} - \mathcal{E} < \frac{a_{k+1}}{a_k} < \mathcal{D} + \mathcal{E}, \ q > 1$$

 $a_{k+1} > qa_k > q^2a_{k-1} > \dots > q^{k-N+1}a_N, \quad q^{k-N+1}a_N - pacx \Rightarrow \sum a_{k+1} - pacx$ по первому пр. сравнения

18 Абсолютная и условная сходимость рядов. Сходимость следует из абсолютной сходимости.

$$rac{\mathbf{O}\mathbf{n}\mathbf{p}}{\sum\limits_{j=1}^{\infty}a_{j}}$$
 - cx абсолютно, если $\sum\limits_{j=1}^{\infty}|a_{j}|$ - cx

Опр

Ряд сходится условно если сходится, но не абсолютно

Теорема

Если ряд сходится абсолютно, то он сходится

Док-во

$$\sum_{i=1}^{\infty} |a_i| - cx, \text{ no } \kappa \text{ pume puro } Kouu \ \forall \mathcal{E} > 0 \ \exists N : \forall m > n > N :$$

 $||a_{n+1}|+...+|a_m||<\mathcal{E},$ по неравенству треугольника:

$$|a_{n+1} + \dots + a_m| < \mathcal{E} \Rightarrow \sum_{j=1}^{\infty} a_j - cx.$$

19 Абсолютная и условная сходимость. Пример: $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$

Определения см. в предыдущем билете.

Ряд не сходится абсолютно, т.к. $\sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}$ - расх. ряд, т.к.:

Теорема (критерий Коши сходимости последовательности)

 x_n - $cx \Leftrightarrow x_n$ - cx в ceбe.

Покажем, что для $S_n=1+\frac{1}{2}+\ldots+\frac{1}{n}$ $\exists \mathcal{E}>0: \forall N\ \exists m,n\geqslant N: |x_m-x_n|>\mathcal{E}$:

Возьмём
$$\mathcal{E} = \frac{1}{4}$$
 n = N, $m = 2N$:

$$|S_{2N} - S_N| = \left| \frac{1}{N+1} + \dots + \frac{1}{2N} \right| > N \frac{1}{2N} = \frac{1}{2} > \mathcal{E}$$

Но ряд сходится (значит условно сходится) по признаку Лейбница (или это можно показать прямо, доказав что $S_{2n} \nearrow$ и ограничена сверху единицей, а $S_{2n+1} = S_{2n}$ в пределе)

20 Перестановка абсолютно сходящегося ряда. Теорема Римана (б/д).

Опр

Пусть есть ряд $\sum\limits_{k=1}^{\infty}a_k$ и биективная функция $\mathbf{\phi}:\mathbb{N} o\mathbb{N}$, тогда ряд $\sum\limits_{k=1}^{\infty}a_{\mathbf{\phi}(k)}$ называется перестановкой ряда $\sum\limits_{k=1}^{\infty}a_{k}$

Теорема (Римана v1)

 Π исть ряд $\sum a_n$ - условно сходится, тогда:

$$\forall S \in \overline{\mathbb{R}} \ \exists \varphi : \mathbb{N} \to \mathbb{N} : \sum a_{\varphi(k)} = S$$

$$a_k^+ = \max\{a_k, 0\}, \ a_k^- = \max\{-a_k, 0\}$$

Теорема (Дирихле, о перестановке абсолютно сходящегося ряда)

$$Ecnu\sum_{n=1}^{\infty}a_n=S$$
 сх абсолютно, то $\forall \varphi:\mathbb{N} o \mathbb{N},\
ho \partial e \ \phi$ - биекция $\Rightarrow \sum_{n=1}^{\infty}a_{\varphi(n)}=S$

Док-во

a) $\Pi ycmb \ a_n \geqslant 0 \ \forall n \in \mathbb{N}$

$$S:=\sum\limits_{n=1}^{\infty}a_n$$
 - $cx\Leftrightarrow$ все частичные суммы ограничены, $S_n\leqslant S\ orall n\in\mathbb{N}$

Частичные суммы $\sum\limits_{k=1}^n a_{\phi(k)}$ обозначим перестановками ряда $T_n:=\sum\limits_{k=1}^n a_{\phi(k)}$

Пусть $m := \max{\{\phi(1), \phi(2), ..., \phi(n)\}}$

$$T_n\leqslant S_m:=\sum\limits_{n=1}^m a_{\phi(a_n)}\leqslant S\Rightarrow T_n\nearrow$$
 - огр \Leftrightarrow ряд $T:=\sum\limits_{n=1}^\infty a_{\phi(a_n)}$ сходится. Предельный переход даёт $T\leqslant S$, но так как S - тоже перестаовка $T\Rightarrow$

 $S \leqslant T$

Значит
$$S=T$$
, то есть $\sum\limits_{n=1}^{\infty}a_n=\sum\limits_{n=1}^{\infty}a_{\varphi(a_n)}$

б) Общий сличай, $a_{i} \in \mathbb{R}$

$$a_k = a_k^+ - a_k^-, \ |a_k| = a_k^+ + a_k^- \Rightarrow a_k^+ = \frac{a_k + |a_k|}{2}, \ a_k^- = \frac{|a_k| - a_k}{2}$$

 $m.\kappa. \sum a_k - cx$ абсолютно $\Rightarrow \sum |a_k| - cx$
 $\Rightarrow \sum a_k^+, \sum a_k^- - cx$ (причем абсолютно)

$$\sum_{k=0}^{\infty} a_{\varphi(k)} = \sum_{k=0}^{\infty} (a_{\varphi(k)}^{+} - a_{\varphi(k)}^{-}) = \sum_{k=0}^{\infty} a_{\varphi(k)}^{+} - \sum_{k=0}^{\infty} a_{\varphi(k)}^{-} = (n. \ a) \sum_{k=0}^{\infty} (a_{k}^{+} - a_{k}^{-}) = \sum_{k=0}^{\infty} a_{k}$$

Теорема (Римана v2)

Пусть ряд $\sum a_n$ - условно сходится. Тогда $\sum a_n^+ - \sum a_n^- = +\infty$

Док-во

Можно доказать одну из теорем

21 Асимптотика частичных сумм расходящегося ряда (случай гармонического ряда). Постоянная Эйлеpa.

$$\frac{1}{1+k} = \frac{\frac{1}{k}}{\frac{1}{k}+1} < \ln(1+\frac{1}{k}) < \frac{1}{k} \Rightarrow 0 < \frac{1}{k} - \ln(1+\frac{1}{k}) < \frac{1}{k} - \frac{1}{k+1}$$

Значит,

$$0 < \sum_{k=1}^{n} \left(\frac{1}{k} - \ln(1 + \frac{1}{k}) \right) < \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1} \right) =$$

$$= 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \dots + \frac{1}{n} - \frac{1}{n-1} =$$

$$= 1 - \frac{1}{n+1} = \frac{n}{n+1} < 1 \ \forall n \in \mathbb{N}$$

$$\Rightarrow S_n := \sum_{k=1}^n \left(\frac{1}{k} - \ln(1 + \frac{1}{k}) \right) \nearrow$$
 и ограничено сверху $\Rightarrow \exists \lim_{n \to \infty} S_n$

$$\sum_{k=1}^n \ln(1+\frac{1}{k}) = \sum_{k=1}^n (\ln(k+1) - \ln(k)) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n+1) = -\ln 1 + \ln 2 - \ln 2 + \ln 3 - \dots - \ln(n) + \ln(n$$

$$=\ln(n+1)\Rightarrow \exists \lim_{n\to\infty}\sum_{k=1}^n\frac{1}{k}-\ln(n+1)=\lim_{n\to\infty}(\sum_{k=1}^n\frac{1}{k}-\ln n)$$

$$\frac{\mathbf{Oпp}}{\gamma}:=\lim_{n o\infty}(\sum\limits_{k=1}^n rac{1}{k}-\ln n)=0,5722...$$
 - постоянная Эйлера

Несобственные интегралы. Примеры. Несобствен-22 ный интеграл в смысле главного значения. Критерий Больцано-Коши для несобственных интегралов.

Onp (1) $f: [a, +\infty) \to \mathbb{R}, f \in R[a, b] \ \forall b \in (a, +\infty).$

 $Ecлu \exists \lim_{b \to \infty} \int\limits_{b \to \infty}^{b} f$, то говорят, что несобственный интеграл

$$\int\limits_{a}^{+\infty}f$$
 - $cxoдится и равен $\lim\limits_{b o\infty}\int\limits_{a}^{b}f$$

Oпр (2)

$$f: [a, \omega) \to \mathbb{R}, \ -\infty < a < \omega \leqslant +\infty, \ f \in R[a, b] \ \forall b \in (a, +\infty).$$

 $Ecлu \exists \lim_{b \to 0} \int\limits_{b}^{b} f$, то говорят, что несобственный интеграл

$$\int_{a}^{\omega} f - cx \ u \ paseh \lim_{b \to \omega_{-}} \int_{a}^{b} f$$

Опр (3)

$$f: \mathbb{R} \to \mathbb{R} \ u \ \forall a < b \in \mathbb{R} : f \in R[a,b], \ mor \partial a \int\limits_{-\infty}^{+\infty} f := \lim_{a \to -\infty} \int\limits_{a}^{0} f + \lim_{b \to +\infty} \int\limits_{0}^{b} f,$$

Если оба предела \exists и конечны, то говорят что $\int\limits_{-\infty}^{+\infty} f$ - сходится

Onp (4)

Аналогично
$$\int\limits_{\omega_1}^{\omega_2},\ ecnu\ f\in R[a,b]\ \forall [a,b]\subset (\omega_1,\omega_2).$$
 $\int\limits_{\omega_1}^{\omega_2}f=\int\limits_{\omega_1}^cf+\int\limits_c^{\omega_2}$

$$\frac{\textbf{Пример}}{\textit{1.}} \;\; \alpha = 1, \; \int\limits_{1}^{+\infty} \frac{dx}{x^{\alpha}} = \lim_{b \to +\infty} \ln |x| \big|_{1}^{b} = +\infty \; \text{-} \; pacx$$

2.
$$\alpha > 1$$
, $\int_{1}^{+\infty} \frac{dx}{x^{\alpha}} = \lim_{b \to +\infty} \frac{x^{1-\alpha}}{1-\alpha} \Big|_{1}^{b} = 0 - \frac{1}{1-\alpha} - cx$

3.
$$\alpha < 1$$
, $\int_{1}^{+\infty} \frac{dx}{x^{\alpha}} = +\infty$ - pacx

Пример

$$\int\limits_{-1}^{1} \frac{dx}{x} = \lim_{a \to 0_{-}} \int\limits_{-1}^{a} \frac{dx}{x} + \lim_{b \to 0_{+}} \int\limits_{b}^{1} \frac{dx}{x}$$
 - расх по опр, т.к. оба предела расх

$$\frac{\mathbf{Opp}}{f: \mathbb{R} \to \mathbb{R} \ u \ \forall a < b \in \mathbb{R}: f \in R[a,b], \ \textit{morda} \ (\textit{V.P.}) \int\limits_{-\infty}^{+\infty} f := \lim_{A \to +\infty} \int\limits_{-A}^{A} f$$

Пример

(V.P.)
$$\int_{-\infty}^{+\infty} x = \lim_{A \to +\infty} \int_{-A}^{A} x = \lim_{A \to +\infty} \frac{x^{2}}{2} \Big|_{-A}^{A} = 0$$

$$(Ho \int_{-\infty}^{+\infty} x = \lim_{a \to -\infty} \int_{a}^{0} x + \lim_{b \to +\infty} \int_{0}^{b} x - pacx)$$

Теорема (критерий Больцано-Коши для несобственных интегралов)

$$f:[a,\omega)\to\mathbb{R},\quad -\infty < a < \omega \leqslant +\infty, \quad f\in R[a,b] \quad \forall b\in (a,+\infty), \ \mathit{morda}:$$

$$\int_{a}^{\omega} f - cx \iff \forall \mathcal{E} > 0 \ \exists B \in (a, \omega) : \forall b_1, b_2 \in (B, \omega) \mid \int_{b_1}^{b_2} \mid < \mathcal{E}$$

Док-во

$$\int\limits_{a}^{\omega}f - cx \Leftrightarrow \exists \lim\limits_{b \to \omega} \int\limits_{a}^{b}f \Leftrightarrow (\kappa p \ \textit{Коши для пределов ϕ.})$$

$$\forall \mathcal{E} > 0 \,\, \exists \delta > 0 : \forall b_1, b_2 \in (\omega - \delta, \omega) \,\, | \int\limits_a^{b_1} f - \int\limits_a^{b_2} f | < \mathcal{E} \Rightarrow | \int\limits_{b_1}^{b_2} f | < \mathcal{E}$$

23 Свойства несобственных интегралов (линейность, аддитивность, монотонность, формула Ньютона-Лейбниц

Свойство (1, линейность)

$$\int_{a}^{\omega} f_{1}, \int_{a}^{\omega} f_{2} - cx \implies \forall k_{1}, k_{2} \in \mathbb{R} \quad \int_{a}^{\omega} (k_{1}f_{1} + k_{2}f_{2}) = k_{1} \int_{a}^{\omega} f_{1} + k_{2} \int_{a}^{\omega} f_{2}$$

Свойство (2, монотонность)

$$f,g:[a,\omega)\to\mathbb{R},\quad f,g\in R[a,b],\quad \forall b\subset [a,\omega),\quad f(x)\leqslant g(x),$$

$$\forall x\in [a,\omega)\Rightarrow \int\limits_{-\infty}^{\omega}f\leqslant \int\limits_{-\infty}^{\omega}g(x)dx$$

Лемма

$$f:[a,\omega) o\mathbb{R},\quad f\in R[a,b],\ orall b\in (a,\omega).$$
 Пусть $c\in (a,\omega),\ mor\partial a\int\limits_{-\infty}^{\omega}f\ u\int\limits_{-\infty}^{\omega}f$ - cx или расх одновременно

Док-во

$$\int_{a}^{\omega} f - cx \Leftrightarrow \lim_{b \to \omega_{-}} \int_{a}^{b} f = A \in \mathbb{R}$$

$$Tor \partial a \int_{a}^{\omega} f = \lim_{b \to \omega_{-}} \int_{a}^{b} f = \lim_{b \to \omega_{-}} (\int_{a}^{b} f - \int_{a}^{c} f) = A - \int_{a}^{c} f \in \mathbb{R} \Rightarrow \int_{a}^{\omega} f - cx$$

Свойство (3, аддитивность)

$$f:[a,\omega)\to\mathbb{R},\quad f\in R[a,b]\ \forall b\subset[a,\omega)$$

$$orall c \in [a,\omega) \Rightarrow \int\limits_a^\omega f = \int\limits_a^c f + \int\limits_a^\omega f, \ \mathit{npuчем} \ \int\limits_a^\omega f \ \mathit{-cx} \ \mathit{unu} \ \mathit{pacx} \ \mathit{od}$$
новременно

Свойство (4, формула Н-Л)

Eсли F - первообразная f, то:

$$\int_{a}^{\omega} f = \lim_{b \to \omega_{-}} (F(b) - F(a)) =: F \Big|_{a}^{\omega_{-}} = F(\omega_{-}) - F(a)$$

Свойство (5)

$$E$$
сли $f\in R[a,\omega]$ $(\omega\in\mathbb{R}),\ mo\ (\mathit{neco6}.\ \mathit{uhm})\int\limits_a^\omega f=\int\limits_a^\omega f(\mathit{uhm}\ \mathit{Pumaha})$

$$\frac{\underline{\mathcal{H}}\text{ок-во}}{f \in R[a, \omega] \Rightarrow F(x) := \int\limits_a^x f \in C[a, \omega],}$$
 (несоб. инт) $\int\limits_a^\omega f = \lim\limits_{b \to \omega} \int\limits_a^b f (= F(b) \ (\text{непр. 6 m } \omega)) = F(\omega) = \int\limits_a^\omega f \ (\text{инт Римана})$

24 Свойства несобственных интегралов (интегрирование по частям, замена переменной).

Свойство (интегрирование по частям)

Пусть
$$f,g\in C^1[a,\omega),\quad\exists\lim_{x\to\omega_-}f(x)g(x)\in\mathbb{R},\$$
тогда:
$$\int\limits_a^\omega f'g\ u\int\limits_a^\omega fg'\ -\ cx\$$
или расх одновременно, причем
$$\int\limits_a^\omega fg'=fg|_a^\omega-\int\limits_a^\omega f'g(fg|_a^\omega=\lim_{x\to\omega_-}(f(x)g(x)-f(a)g(a))$$

Свойство (замена переменной)

$$E$$
сли $\int\limits_a^\omega f$ - cx , $\varphi: [\alpha, \upsilon) \to [a, \omega)$, $\varphi \in C^1[\alpha, \upsilon)$, φ - монот.,
$$\varphi(\alpha) = a, \quad \lim_{t \to \upsilon} \varphi(t) = \omega, \ \textit{morda} \ \int\limits_a^\omega f = \int\limits_\alpha^\upsilon (f \circ \varphi) \varphi'$$

25 Интегральный признак Коши сходимости несобственных интегралов и рядов.

Теорема

 $\overline{\mathit{\Piycmb}}\ f:[1,+\infty) \to [0,+\infty),\ f\in R[1,A]\ \forall A>1,\ f$ - строго убывает (можно

Тогда $\int\limits_{1}^{\infty}f\ u\ \sum\limits_{n=1}^{\infty}f(n)$ - cx или pacx одновременно, причем

$$\sum_{n=1}^{\infty} f(n+1) \leqslant \int_{1}^{\infty} f \leqslant \sum_{n=1}^{\infty} f(n)$$

Лемма

Тогда
$$\int_{a}^{\omega} f - cx \Leftrightarrow F(x) = \int_{a}^{x} f, \ \exists M < \infty : F(x) \leqslant M \ \forall x \in [a, \omega)$$

Док-во

 (\Rightarrow) очевидно

(
$$\Leftarrow$$
) почти очевидно, $f\geqslant 0\Rightarrow F\nearrow u$ ог $p\Rightarrow\exists\lim_{x\to\omega}F(x)=\int\limits_a^\omega f<+\infty$

$$\underline{\mathcal{A}}$$
ок-во $f(n+1)\leqslant \int\limits_{n}^{n+1}f\leqslant f(n)$ (видно через суммы Дарбу) $|\sum\limits_{n=1}^{N}$

$$\sum\limits_{n=1}^{N}f(n+1)\leqslant \int\limits_{1}^{N+1}f\leqslant \sum\limits_{n=1}^{N}f(n),\; npu\;N\to +\infty\; nonyчим\; нaше\; уравнение$$

1)
$$Ecnu \sum_{1}^{\infty} f(n) - cx \Leftrightarrow \sum_{1}^{N} f(n) \leqslant A \in \mathbb{R} \Rightarrow F(N+1) = \int_{1}^{N+1} f \leqslant A \in \mathbb{R} \ cx$$

2) Ecau
$$\int\limits_1^\infty f$$
 - $cx \Rightarrow \sum\limits_1^N f(n+1) \leqslant \int\limits_1^{N+1} f \leqslant \int\limits_1^\infty f \in \mathbb{R}$ - $oep \Rightarrow \sum\limits_1^N f(n+1)$ cx

Примеры 1.
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
. Рассмотрим $\int_{1}^{\infty} \frac{1}{x^2} = -\frac{1}{x}|_{1}^{\infty} = 0 - (-1)$ - cx

2.
$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$$
. Cx. npu $\alpha > 1$, pacx. npu $\alpha \leqslant 1$ (аналогично интегралу $\int_{1}^{\infty} \frac{1}{x^{\alpha}}$)

26 Признаки сравнения для несобственных интегралов.

Теорема (І признак сравнения)

$$f,g:[a,\omega) o\mathbb{R},\quad f,g\geqslant 0,\quad f,g\in R[a,b],\quad b\in (a,\omega),$$
 $0\leqslant f(x)\leqslant g(x)\quad orall x\in [a,\omega)$ Тогда $\int\limits_a^\infty g-cx\Rightarrow \int\limits_a^\omega f-cx\;(\int\limits_a^\omega f-pacx\Rightarrow \int\limits_a^\infty g-pacx)$

Док-во

$$F(b) := \int_{a}^{b} f \leqslant \int_{a}^{b} g \leqslant \int_{a}^{\omega} g \in \mathbb{R}$$

То есть $\int\limits_a^\omega f$ - cx, $m.к. <math>F \nearrow u$ огр сверху на $[a, \omega)$

Теорема (II признак сравнения)

$$f,g:[a,\omega)\to(0,+\infty),\ f,g\in R[a,b]\ \forall b\in(a,\omega)$$

Тогда если $\exists \lim_{x \to \omega_-} \frac{f(x)}{g(x)} \in (0,+\infty)$, то $\int_a^\omega f \ u \int_a^\omega g$ - cx или расх одновременно

Док-во

$$k := \lim_{x \to \omega_{-}} \frac{f(x)}{g(x)} \in (0, +\infty), \ \mathcal{E} := \frac{k}{2}$$

$$\Rightarrow \exists b \in (a, \omega) : \forall x \in (b, \omega) \mid \frac{f(x)}{g(x)} - k \mid < \mathcal{E} \Rightarrow \mathcal{E} < \frac{f(x)}{g(x)} < 3\mathcal{E}$$

То есть с некоторого места $f(x) \leqslant g(x)$, а так как $\int\limits_a^\omega = \int\limits_a^b + \int\limits_b^\omega u \int\limits_a^b f, \int\limits_a^b g$ - конечные числа, то $\int\limits_a^\omega f u \int\limits_a^\omega g$ - сх или расх одновременно по первому признаку

$$\int_{0}^{+\infty} e^{-x^{2}} dx = \int_{0}^{1} + \int_{1}^{+\infty}$$

$$e^{-x^2} \geqslant e^{-x} \Rightarrow x \in [0, 1], \quad \int_{0}^{1} e^{-x} = \frac{1}{e} \underset{no\ I}{\Rightarrow} \int_{np.\ cp.}^{+\infty} e^{-x^2} - cx$$

$$\int_{1}^{+\infty} \sin^2 \frac{1}{x} dx$$

$$\lim_{x\to\infty}\frac{\sin^2\frac{1}{x}}{\frac{1}{x^2}}=1\in(0,+\infty)\Rightarrow\int\limits_1^{+\infty}\sin^2\frac{1}{x}dx\ u\int\limits_1^{+\infty}\frac{1}{x^2}dx\ \text{-}\ cx\ \text{unu\ pacx\ odnosp}\Rightarrow cx$$

Абсолютная и условная сходимость интегралов. Сходимость следует из абсолютной сходимости.

$$\frac{\mathbf{Oпр}}{f:[a,\omega)\to\mathbb{R},\;f\in R[a,b]\;\forall b\in(a,\omega)}$$

$$\int\limits_{a}^{\omega}f\text{ - }cx\text{ абсолютно}\Leftrightarrow\int\limits_{a}^{\omega}|f|\text{ - }cx$$

$$\int\limits_{a}^{\omega}f\text{ - }cx\text{ условно}\Leftrightarrow\int\limits_{a}^{\omega}f\text{ - }cx,\int\limits_{a}^{\omega}|f|\text{ - }pacx$$

 $\underbrace{\mathbf{y_{TB}}}_{\omega} _{\int f} - cx \ aбсолютно \Rightarrow cxodumcs$

Док-во

$$\frac{\partial \mathcal{B}}{\partial y}$$
 $\int_{a}^{\omega} |f| - cx \Leftrightarrow (\kappa p. \ \textit{Больцано-Коши}) \ \forall \mathcal{E} > 0 \ \exists A \in (a, \omega) : \forall b_1, b_2 \in (A, \omega)$ $|\int_{b_1}^{b_2} |f|| < \mathcal{E} \Rightarrow m.\kappa. \ |\int_{b_1}^{b_2} f| \leqslant |\int_{b_1}^{b_2} |f|| < \mathcal{E}, \ \textit{mo no } \kappa p. \ \textit{E-K} \int_{b_1}^{b_2} f - cx$

$$\begin{split} &\int\limits_{0}^{+\infty}\cos(x^{3})dx = \left| \frac{x^{3}=t}{x=\sqrt[3]{t}} \right| = \frac{1}{3}\int\limits_{0}^{\infty}\cos t\frac{dt}{t^{\frac{2}{3}}} = \frac{1}{3}\frac{\sin t}{t^{\frac{2}{3}}} \Big|_{0}^{\infty} + \frac{2}{9}\int\limits_{0}^{\infty}\frac{\sin t}{t^{\frac{5}{3}}} = \frac{2}{9}\int\limits_{0}^{\infty}\frac{\sin t}{t^{\frac{5}{3}}} \\ &Mccaedyem\int\limits_{0}^{\infty}\frac{|\sin t|}{t^{\frac{5}{3}}} = \int\limits_{0}^{1}\frac{|\sin t|}{t^{\frac{5}{3}}} + \int\limits_{1}^{\infty}\frac{|\sin t|}{t^{\frac{5}{3}}} : \\ &a)\int\limits_{0}^{1}\frac{|\sin t|}{t^{\frac{5}{3}}}, \ |\sin t| \leqslant t \ na \ [0,1] \\ &\int\limits_{0}^{1}\frac{t}{t^{\frac{5}{3}}} = \int\limits_{0}^{1}t^{-\frac{2}{3}} = 3t^{\frac{1}{3}}|_{0}^{1} = 3 - cx \underset{no \ I \ np \ cp}{} \int\limits_{0}^{1}\frac{|\sin t|}{t^{\frac{5}{3}}} - cx \\ &6)\int\limits_{1}^{\infty}\frac{|\sin t|}{t^{\frac{5}{3}}}, \quad \frac{|\sin t|}{t^{\frac{5}{3}}} \leqslant \frac{1}{t^{\frac{5}{3}}} \\ &\int\limits_{1}^{\infty}\frac{1}{t^{\frac{5}{3}}} = -\frac{3}{2}t^{-\frac{2}{3}}|_{1}^{\infty} = \frac{3}{2} - cx \underset{no \ I \ np \ cp}{} \int\limits_{1}^{\infty}\frac{|\sin t|}{t^{\frac{5}{3}}} - cx \\ &3nauum\int\limits_{0}^{\infty}\frac{\sin t}{t^{\frac{5}{3}}} - a\delta c \ cx \ \Rightarrow \int\limits_{0}^{+\infty}\cos(x^{3}) - cx \end{split}$$

${f 28}$ Абсолютная и условная сходимость. Пример: $\int\limits_0^\infty {{\sin x}\over x}$

Определения и теорему см. в билете 27

Пример

$$\int\limits_{0}^{\infty} \frac{\sin x}{x} = \int\limits_{0}^{\frac{\pi}{2}} \frac{\sin x}{x} + \int\limits_{\frac{\pi}{2}}^{\infty} \frac{\sin x}{x}$$

1)
$$\int_{\frac{\pi}{2}}^{\infty} \frac{\sin x}{x} = \frac{-\cos x}{x} \Big|_{\frac{\pi}{2}}^{\infty} - \int_{\frac{\pi}{2}}^{\infty} \frac{\cos x}{x^2} = \int_{\frac{\pi}{2}}^{\infty} \frac{\cos x}{x^2}$$

Исследуем $\int\limits_{\frac{\pi}{2}}^{\infty} \frac{\cos x}{x^2}$ на абс сходимость. $\frac{|\cos x|}{x^2} \leqslant \frac{1}{x^2}$, $a\int\limits_{\frac{\pi}{2}}^{\infty} \frac{1}{x^2}$ - сходится

$$\Rightarrow$$
 no 1 признаку сравнения $\int\limits_{\frac{\pi}{2}}^{\infty} \frac{|\cos x|}{x^2}$ - cx \Rightarrow $\int\limits_{\frac{\pi}{2}}^{\infty} \frac{\cos x}{x^2}$ - cx абс \Rightarrow $\int\limits_{\frac{\pi}{2}}^{\infty} \frac{\sin x}{x}$ - cx

$$2) \quad \int_{0}^{\frac{\pi}{2}} \frac{|\sin x|}{x}$$

Знаем, что $\lim_{x\to 0}\frac{|\sin x|}{x}=1$. Кроме того, $\frac{|\sin x|}{x}<1$, значит на конечном

промежутке $(0,\frac{\pi}{2}]$ интеграл конечный $\Rightarrow \int\limits_0^\infty \frac{\sin x}{x}$ - cx

3) Покажем, что
$$\int\limits_{\frac{\pi}{2}}^{\infty} \frac{|\sin x|}{x}$$
 - pacx. $\Rightarrow \int\limits_{0}^{\infty} \frac{|\sin x|}{x}$ - pacx

$$|\sin x| \geqslant |\sin^2 x|, \quad \int_{\frac{\pi}{2}}^{\infty} \frac{\sin^2 x}{x} = \int_{\frac{\pi}{2}}^{\infty} \frac{1 - \cos 2x}{x} = \frac{1}{2} \int_{\frac{\pi}{2}}^{\infty} \frac{dx}{x} (pacx) + \int_{\frac{\pi}{2}}^{\infty} \frac{\cos 2x}{x} (cx)$$

29 Признаки Дирихле и Абеля для несобственных интегралов (док-во одного из них).

Теорема (признак Абеля-Дирихле)

$$f,g:[a,\omega) o\mathbb{R},\quad f\in C[a,\omega),\quad g\in C^1[a,\omega),\ g$$
 - монотонна.

Тогда если выполнено одно из условий:

$$(A) \int_{a}^{\omega} f - cx, g - oep$$

$$(\mathcal{A}) \ F(x) := \int_{a}^{x} f - oep, \ g(x) \underset{x \to \omega_{-}}{\longrightarrow} 0$$

Тогда
$$\int_{a}^{\omega} fg - cx$$

Док-во

(Д) без теоремы Бонне

$$|F(x)| \leqslant C : g(x) \underset{x \to \omega_{-}}{\longrightarrow} 0$$

$$\lim_{b \to \omega_{-}} \int_{a}^{b} fg = \lim_{b \to \omega_{-}} (Fg|_{a}^{b} - \int_{a}^{b} Fg') = F(a)g(a) - \lim_{b \to \omega_{-}} \int_{a}^{b} Fg'$$

Исследуем интеграл на абс сходимость.

$$\int\limits_a^b |Fg'|\leqslant C\int\limits_a^b |g'|=(m.\kappa.\ g\ \text{- монотонна})C|\int\limits_a^b g'|=C|g(b)-g(a)|\underset{b\to \omega_-}{\longrightarrow} C|g(a)|$$

 $extit{Tаким образом инт. ограничен} \Rightarrow uзначальный <math>cxodumcs$

30 Признаки Дирихле и Абеля для рядов (док-во одного из них).

 $\frac{\mathbf{O}\pi\mathbf{p}}{A_n} := \sum_{k=1}^n a_k, \ A_0 = 0$

Теорема (преобразование Абеля)

$$\sum_{k=1}^{n} a_k b_k = A_n b_n + \sum_{k=1}^{n-1} A_k (b_k - b_{k+1})$$

Док-во

$$\sum_{k=1}^{n} a_k b_k = \sum_{k=1}^{n} (A_k - A_{k-1}) b_k = \sum_{k=1}^{n} A_k b_k - \sum_{k=1}^{n} A_{k-1} b_k =$$

$$= \sum_{k=1}^{n} A_k b_k - \sum_{k=0}^{n-1} A_k b_{k+1} = A_n b_n + \sum_{k=0}^{n-1} A_k (b_k - b_{k+1})$$

Теорема (признак Дирихле для рядов)

$$\overline{\Pi y c m b} \ A_n$$
 - $o c p., \ b_k o 0, \ b_k$ - монотонно. $T o c \partial a \sum_{k=1}^{\infty} a_k b_k$ - $c x$

Док-во

$$\sum_{k=1}^{n} a_k b_k = A_n b_n + \sum_{k=1}^{n-1} A_k (b_k - b_{k+1}) \underset{n \to \infty}{\to} \sum_{k=1}^{n-1} A_k (b_k - b_{k+1})$$

$$P$$
яд $\sum\limits_{k=1}^{\infty}a_kb_k$ - $cx\Leftrightarrow\sum\limits_{k=1}^{\infty}A_k(b_k-b_{k+1})$ - $cx\Leftrightarrow$ все частичные суммы огр $\sum\limits_{k=1}^{N}|A_k||b_k-b_{k+1}|\leqslant M\sum\limits_{k=1}^{N}|b_k-b_{k+1}|=M|b_1-b_{N+1}|\leqslant 2M|b_1|\Rightarrow ucx$ ряд cx

Теорема (признак Абеля для рядов)

$$\overline{\mathit{Пусть}}\ A_n$$
 - $\mathit{cx.}\ b_k$ - монотонно, b_k - $\mathit{orp.}\ \mathit{Tor}\partial a\ \sum_{k=1}^\infty a_k b_k$ - cx

31 Применение интеграла Римана для вычисления площадей и объемов. Примеры.

Опр (школьное)

Пусть $P \in \mathbb{R}^2$ ("фигрура"), \mathcal{P} - некоторый набор плоских "фигур", $P_i \in \mathcal{P}$ $g: \mathcal{P} \to [0, +\infty)$ - называется площадью, если:

1.
$$\forall P \in \mathcal{P}, S(P) \geqslant 0$$

2.
$$\forall P_1, P_2 \in \mathcal{P} : P_1 \cap P_2 = \emptyset \Rightarrow S(P_1 \cup P_2) = S(P_1) + S(P_2)$$

Опр

 $\tau: \mathbb{R}^2 \to \mathbb{R}^2$, сохраняет расстояние

3.
$$\forall P \in \mathcal{P} \ \tau$$
-движения $S(\tau(P)) = S(P)$

Площадь криволинейной трапеции.

Опр

Подграфиком $f \in R[a,b]$ называется $P_f := \{(x,y)|a \leqslant x \leqslant b, \ 0 \leqslant y \leqslant f(x)\}$

Возьмём разбиение и верх. и нижн. суммы Дарбу. S - монотонна, т.е.

$$P_1 \subset P_2 \Rightarrow S(P_1) \leqslant S(P_2), \ S_*(\tau) = S(P_*(\tau)), \ S^*(\tau) = S(P^*(\tau))$$

$$P_*(f,\tau) \subset P(f) \subset R^*(f,\tau)$$

$$S(P_*(f,\tau)) = S_*(f,\tau) \to \int_a^b f, \ S(P^*(f,\tau)) = S^*(f,\tau) \to \int_a^b f, \ S(P_f) := \int_a^b f(f,\tau) df(f,\tau) = \int_a^b f$$

Пример

Первая четверть эллипса с радиусами (a,b).

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, $y = b\sqrt{1 - \frac{x^2}{a^2}}$, $S = \int\limits_0^a b\sqrt{1 - \frac{x^2}{a^2}} dx$ - сложно, перейдём в поляры

$$\begin{cases} x = a\cos t \\ y = b\sin t \end{cases}$$

$$\int\limits_{0}^{a}f(x)dx=\int\limits_{\frac{\pi}{2}}^{0}b\sin td(a\cos t)=ab\int\limits_{\frac{\pi}{2}}^{0}\sin^{2}tdt=-ab(t-\frac{\sin 2t}{2})|_{\frac{\pi}{2}}^{0}=0-(-\frac{\pi ab}{4})=\frac{\pi ab}{4}$$

Вычисление объемов

$\mathbf{y}_{ ext{TB}}$

Принцип Кавальери. Если у двух тел одни сечения на одном уровне, то их объемы равны.

$$\sum\limits_{k=0}^{n-1}S(\xi_k)\Delta_k$$
 - сумма Римана $V=\int\limits_a^bS(x)dx$ - измельчаем плоскости

Пример

 $\frac{\mathbf{Mep}}{(\text{на самом деле тела вращения можно считать как }V=\pi\int\limits_a^b f^2(x)dx)$

32 Путь. Длина пути. Спрямляемый путь. Аддитивность длины пути.

 $\frac{\mathbf{Oпр}}{\gamma:[a,b]} \rightarrow \mathbb{R}^n, \ \gamma = \begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \dots \\ \gamma_n \end{pmatrix}, \ \gamma_k:[a,b] \rightarrow \mathbb{R}. \ \textit{Расстояние считается как } d(x,y) = \\ ||x-y||_2 = \sqrt{\sum\limits_{k=1}^n (x_k-y_k)^2}, \ \gamma - nymv, \ \textit{если} \ \forall i \in \{1,...k\} \ \gamma_i \in C[a,b]$

Опр

Путь называется r-гладким, если $\forall i \in \{1,...k\} \ \gamma_i \in C^r[a,b]$

Опр

Два пути считаются эквивалентными если можно сделать замену переменной. Т.е. пусть $\gamma:[a,b]\to\mathbb{R},\ \widetilde{\gamma}:[\alpha,\beta]\to\mathbb{R},\ mor\partial a:$

 $\gamma \sim \widetilde{\gamma} \Leftrightarrow \exists \phi: [a,b] \to [\alpha,\beta]$ - строго возрастающая, $\alpha = \phi(a)$, $\beta = \phi(b)$, $\gamma = \widetilde{\gamma} \circ \phi$

Опр

Кривая - класс эквивалентности путей. ∀путь - представитель класса эквивалентности называется "параметризацией"

Пример

$$\gamma_1 : \begin{cases} x = \cos t & 0 \leqslant t \leqslant 2\pi \\ y = \sin t & 0 \leqslant t \leqslant 2\pi \end{cases} \qquad \gamma_2 : \begin{cases} x = \cos t^2 & 0 \leqslant t \leqslant 2\pi \\ y = \sin t^2 & 0 \leqslant t \leqslant 2\pi \end{cases}$$

 $\gamma_1 \sim \gamma_2$, определяют одну и ту же кривую (окружность)

Опр

Кривая называется r-гладкой, если у неё есть r-гладкая параметризация

Опр

 γ - простой путь $\Leftrightarrow \gamma$ - биекция на (a,b), т.е. $\forall t_1,t_2 \in (a,b): \gamma(t_1) \neq \gamma(t_2)$ (без самопересечений).

Eсли $\gamma(a) = \gamma(b), \, \gamma$ - замкнутый путь.

Опр (длины пути)

 $\gamma: [a,b] \to \mathbb{R}^m$, $\tau - [a,b]: a = t_0 < t_1 < ... < t_n = b$. Соединим $[\gamma(t_k), \gamma(t_{k+1})]$ отрезками - получим вписанную ломанную.

Длина
$$k$$
-ого звена: $\sqrt{\sum_{j=0}^m (\gamma_j(t_{k+1}) - \gamma_j(t_k))^2}$

Тогда длина вписанной ломанной:
$$l=\sum_{k=0}^{n-1}\sqrt{\sum_{j=0}^m(\gamma_j(t_{k+1})-\gamma_j(t_k))^2}$$

Длиной пути назовём $S_{\gamma}:=\sup_{\tau}l_{\tau}$ - всевозможных ломанных

Опр

Путь называется спрямляемым, если $S_{\gamma} < +\infty$

$\underline{\mathbf{y}_{\mathbf{TB}}}$

Аддитивность длины пути. $\gamma:[a,b]\to\mathbb{R},\ c\in(a,b),\ пусть\ \gamma_1$ - сужение γ на $[a,c],\ \gamma_2$ - сужение γ на [c,b]. Тогда $S_\gamma=S_{\gamma_1}+S_{\gamma_2}$

Док-во

а)
$$S_{\gamma} \geqslant S_{\gamma_1} + S_{\gamma_2}$$
?

 $\Pi y cmb \ \tau_1 - pas buenue \ [a,c], \ \tau_2 - pas buenue \ [c,b],$
 $\tau = \tau_1 + \tau_2, \ l_{\tau_1} + l_{\tau_2} = l_{\tau} \leqslant S_{\gamma}$
 $(m.\kappa. \ S_{\gamma} - \sup)$

Возьмём \sup по всем развиениям отрезка $[a,c]$
 $\Rightarrow \sup_{\tau_1} (l_{\tau_1} + l_{\tau_2}) = S_{\gamma_1} + l_{\tau_2} \leqslant S_{\gamma}$
 $Tenepb \ \sup$ по всем развиениям отрезка $[c,b]$
 $\Rightarrow \sup_{\tau_1} (S_{\gamma_1} + l_{\tau_2}) = S_{\gamma_1} + S_{\gamma_2} \leqslant S_{\gamma}$

6) $S_{\gamma} \leqslant S_{\gamma_1} + S_{\gamma_2}$?

 $\Pi y cmb \ \tau - pas buenue \ [a,b].$
 $\Pi y cmb \ \tau^* = \tau \cup \{c\}. \ l_{\tau} \leqslant l_{\tau^*}, \ \tau = \tau_1 \cup \tau_2,$
 $v \in \tau_1 - v \in \tau_1 + l_{\tau_2} \leqslant S_{\gamma_1} + S_{\gamma_2}$

Возьмём $t \in \tau_1 + l_{\tau_2} \leqslant S_{\gamma_1} + S_{\gamma_2}$
 $v \in \tau_1 + l_{\tau_2} \leqslant S_{\gamma_1} + S_{\gamma_2}$

Примеры

Неспрямляемые пути:

1) Кривая Пеано

В пределе $\gamma:[0,1]\to [0,1]^2$ - сюръективное отображение. В итоге получается прямая заполняющая весь квадрат с пересеченями (в смысле дополнение до подкривых пределе пусто)

nookpublix npeoene nycm
$$2) y = \begin{cases} x \cos \frac{\pi}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Докажем, что прямая не является спямляемой. Пусть $\tau:0<\frac{1}{N}<\frac{1}{N-1}<...<1,\ t_N=\frac{1}{N},\ mor\partial a$

$$y(t_k) = \frac{1}{k}\cos \pi k = \frac{1}{k}(-\pi)^k$$

Длина к-ого звена:

$$\frac{1}{k} - \left(-\frac{1}{k+1}\right) \geqslant \frac{2}{k} \Rightarrow l_{\tau} \geqslant \sum_{k=1}^{N} \frac{1}{k} \Rightarrow \sup l_{\tau} = +\infty$$

33 Кривая. Длина кривой.

Опр. см. в билете 32

Теорема (о длинах эквивалентных путей)

$$\overline{\varPi yc}$$
ть $\pmb{\gamma}_1:[a_1,b_1] o\mathbb{R}^m$, $\pmb{\gamma}_2:[a_2,b_2] o\mathbb{R}^m$. Если $\pmb{\gamma}_1\sim\pmb{\gamma}_2\Rightarrow S_{\pmb{\gamma}_1}=S_{\pmb{\gamma}_2}$

Док-во

 $\gamma_1 \sim \gamma_2 \Rightarrow \exists \phi: [a_1,b_1] \to [a_2,b_2]$ - строго возрастающая, $\gamma_1(t) = \gamma_2(\phi(t))$, $\phi(\tau_1) = \tau_2$ - разбиение $[a_2,b_2]$,

$$l_{\tau_1} = \sum_{k=0}^{n-1} \sqrt{\sum_{j=0}^{m} (\gamma_1(t_{k+1}) - \gamma_1(t_k))^2} = l_{\tau_2} \leqslant S_{\tau_2}$$

Перейдём к sup по всем τ_1 : $\sup_{\tau_1}(l_{\tau_1}) = S_{\tau_1} \leqslant S_{\tau_2}$

Аналогично получим неравенство $S_{\tau_2} \leqslant S_{\tau_1}$

Замечание

Корректность определения (с классами эквивалентности) длины пути следует из доказанной выше теоремы

34 Теорема о вычислении длины гладкого пути.

Теорема

$$rac{\partial Soliton}{\gamma:[a,b]} o \mathbb{R}^m$$
 - C^1 -гладкая кривая, тогда γ - спрямляется, $S_\gamma=\int\limits_a^b|\gamma'|$

Док-во

1) γ - спрямляемая?

 $\gamma_j \in C^1[a,b] \ \forall j \in \{1,2,...,m\} \Rightarrow ($ ф-ия достигает $\min u \max \mu a \ [a,b] \ no \ m.$ Вейерштрасса)

$$m_j \leqslant \gamma_j \leqslant M_j, \ M := \sqrt{\sum_{j=1}^m M_j}, \ m := \sqrt{\sum_{j=1}^m m_j}, \ \gamma' = \begin{pmatrix} \gamma_1' \\ \gamma_2' \\ \dots \\ \gamma_n' \end{pmatrix}$$

$$\forall \tau$$
-разбиения $[a,b]: l_{\tau} = \sum_{k=0}^{n-1} \sqrt{\sum_{j=0}^{m} (\gamma_1(t_{k+1}) - \gamma_1(t_k))^2} =$

(по т. Лагранжа
$$\forall k = 0, 1, ... n - 1 \ \exists \xi_k \in [t_k, t_{k+1}] : \gamma_j(t_{k+1}) - \gamma_j(t_k) = \gamma_j'(\xi_k) \Delta_{t_k}$$
)

$$= \sum_{k=0}^{n-1} \sqrt{\sum_{j=0}^{m} (\gamma'_j(\xi_k))^2 \Delta_{t_k}^2} = \sum_{k=0}^{n-1} \sqrt{\sum_{j=0}^{m} (\gamma'_j(\xi_k))^2} \Delta_{t_k} \Rightarrow m \sum_{k=0}^{n-1} \Delta_{t_k} \leqslant l_{\tau} \leqslant M \sum_{k=0}^{n-1} \Delta_{t_k} \leqslant M \sum_{k=0}^{n-1} \Delta_$$

$$\Rightarrow m(b-a) \leqslant l_{\tau} \leqslant M(b-a) \xrightarrow{sun} m(b-a) \leqslant S_{\gamma} \leqslant M(b-a) \Rightarrow -\infty < S_{\gamma} < +\infty$$

2)
$$S_{\gamma} = \int_{a}^{b} |\gamma'|$$
?

Пусть $\gamma^{(k)}$ - сужение γ на $[t_k, t_{k+1}]$. Для него выполняется пункт (1):

 * переобозначим γ' как $\overset{ullet}{\gamma}$ из-за сложности обозначений *

$$m_{j}^{(k)} = \min_{t \in [t_{k}, t_{k+1}]} | \stackrel{\bullet}{\mathbf{\gamma}_{j}}(t) |, \ M_{j}^{(k)} = \max_{t \in [t_{k}, t_{k+1}]} | \stackrel{\bullet}{\mathbf{\gamma}_{j}}(t) |$$

$$m^{(k)} = \sqrt{\sum_{j=1}^{m} (m_j^{(k)})^2}, \ M^{(k)} = \sqrt{\sum_{j=1}^{m} (M_j^{(k)})^2}$$

$$m^{(k)}\Delta t_k \leqslant S_{\gamma^{(k)}} \leqslant M^{(k)}\Delta t_k \Rightarrow \sum_{k=1}^{n-1} \leqslant S_{\gamma} \leqslant \sum_{k=1}^{n-1} M^{(k)}\Delta t_k$$

$$m_j^{(k)} \leqslant | \dot{\gamma}_j^{\bullet(k)}(t) \leqslant M_j^{(k)} | t_k \leqslant t \leqslant t_{k+1}, \ \forall j = 1, ..., m$$

Суммируем, возводим в квадрат, иззвлекаем корень:

$$m^{(k)} \leqslant |\stackrel{\bullet}{\gamma}^{(k)}(t)| \leqslant M^{(k)}| t_k \leqslant t \leqslant t_{k+1}$$

Проинтегрируем по
$$\int\limits_{t_k}^{t_{k+1}}dt:\ m^{(k)}\Delta t_k\leqslant \int\limits_{t_k}^{t_{k+1}}|\stackrel{\bullet}{\Upsilon}^{(k)}(t)|dt\leqslant M^{(k)}\Delta t_k$$

$$\begin{split} &\Rightarrow \sum_{k=1}^{n-1} \leqslant \int\limits_{t_k}^{t_{k+1}} | \stackrel{\bullet}{\gamma}^{(k)}(t) | dt \leqslant \sum_{k=1}^{n-1} M^{(k)} \Delta t_k, \ ouenum \ \sum_{k=1}^{n-1} (M^{(k)} - m^{(k)} \Delta t_k) : \\ &M^{(k)} - m^{(k)} = \frac{(M^{(k)})^2 - (m^{(k)})^2}{M^{(k)} + m^{(k)}} = \sum_{j=1}^m (M^{(k)}_j - m^{(k)}_j) \frac{M^{(k)}_j + m^{(k)}_j}{M^{(k)} + m^{(k)}} \leqslant \sum_{j=1}^m (M^{(k)}_j - m^{(k)}_j) \\ & \gamma_j \in C^1[a, b] \Rightarrow \gamma'_j \in C[a, b] \Rightarrow p/n \Leftrightarrow \forall \mathcal{E} > 0 \ \exists \delta_j > 0 : \\ &\lambda(\tau) < \delta_j \Rightarrow 0 \leqslant M^{(k)}_j - m^{(k)}_j \leqslant \frac{\mathcal{E}}{m(b-a)} \stackrel{\sum_{k=0}^m \delta_j}{\delta_{1 \leqslant j \leqslant m}} 0 \leqslant M^{(k)} - m^{(k)} \leqslant \frac{\mathcal{E}}{b-a} \\ & \Rightarrow \sum_{k=0}^{n-1} (M^{(k)-m^{(k)}} \Delta t_k < \frac{\mathcal{E}}{b-a} \sum_{k=0}^{n-1} \Delta t_k = \mathcal{E} \Rightarrow S_\gamma = \int\limits_{-\infty}^{b} | \stackrel{\bullet}{\gamma} | \end{split}$$

Функциональные последовательности и ряды. По-35 точечная и равномерная сходимость. Примеры.

Опр

$$f_n: E \to \mathbb{R} \quad E \subset \mathbb{R}$$

говорят, что функ. последовательность сходится поточечно

$$\kappa \not \phi. \ f: E \to \mathbb{R}, \ ecnu \quad \forall x \in E \quad \forall \mathcal{E} > 0 \quad \exists N_{(x,\mathcal{E})}: \quad \forall n > N$$
$$|f_n(x) - f(x)| < \mathcal{E}$$

Опр

Говорят, что функ. послед. сходится к f равномерно на E

$$\begin{split} &f_n \underset{E}{\Longrightarrow} f \\ & Ecnu \sup_{x \in E} |f_n(x) - f(x)| \underset{n \to \infty}{\longrightarrow} 0 \\ & \Leftrightarrow \forall \mathcal{E} > 0 \quad \exists N_{(\mathcal{E})} \quad \forall n > N \quad \sup_{x \in E} |f_n(x) - f(x)| < \mathcal{E} \\ & \Leftrightarrow \forall \mathcal{E} > 0 \quad \exists N_{(\mathcal{E})} \quad \forall n > N \quad \forall x \in E \quad |f_n(x) - f(x)| < \mathcal{E} \end{split}$$

$$\frac{\mathbf{Примеры}}{1.} f_n(x) = \frac{\sin^2(e^x) - \arctan(n^2\sqrt{x})}{\sqrt{n}} \qquad x \in [0; +\infty)$$

$$0 \leqslant \sup_{[0, +\infty)} |f_n(x)| \leqslant \frac{10}{\sqrt{n}} \to 0$$

$$\Rightarrow f_n \underset{[0, +\infty)}{\Rightarrow} 0$$

2.
$$f_n(x) = x^n - x^{2n}$$
 $x \in [0,1]$ $f_n(x) \underset{n \to \infty}{\to} 0$ $\forall x \in [0,1]$ равномерно?
$$f'_n(x) = nx^{n-1} - 2nx^{2n-1} = x^{n-1}(n-2nx^n)$$
 $x_n = \frac{1}{\sqrt[n]{2}} - \kappa pum.$ точка
$$f_n(x_n) = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$$
 $\Rightarrow \sup_{x \in [0,1]} |f_n(x)| = \frac{1}{4} \Rightarrow$ равномерной сх-ти нет

Замечание

Из равномерной cx- $mu \Rightarrow nomoчечная$

36 Критерий Коши для равномерной сходимости функциональной последовательности.

Теорема (Критерий Коши для равномерной сходимости функ. послед.)

$$f_n \underset{E}{\Longrightarrow} f \Leftrightarrow \forall \mathcal{E} > 0 \quad \exists N_{\mathcal{E}} : \forall m, n > N_{\mathcal{E}} \qquad \sup_{x \in E} |f_n(x) - f_m(x)| < \mathcal{E}$$

Док-во

$$\Rightarrow: \quad f_n \rightrightarrows f \Leftrightarrow \sup |f_n(x) - f(x)| \to 0$$

$$\Rightarrow \forall \mathcal{E} > 0 \quad \exists N_{\mathcal{E}} > 0: \quad \forall m, n > N_{\mathcal{E}}: \quad \sup |f_n - f_m| \leqslant \sup(|f_n - f| + |f - f_m|) <$$

$$< \frac{\mathcal{E}}{2} + \frac{\mathcal{E}}{2} = \mathcal{E}$$

$$\Leftarrow: \quad \forall x \in E \quad \forall \mathcal{E} > 0 \quad \exists N_{\mathcal{E}}: \forall m, n > N_{\mathcal{E}} \quad |f_n(x) - f_m(x)| < \mathcal{E}$$

$$m.e. \; \{f_n(x)\} - cx. \; 6 \; ce6e \; \Leftrightarrow \{f_n(x)\} \; umeem \; koneu. \; npeden$$

$$f(x) = \lim_{n \to \infty} f_n(x) \; m.o. \; f_n(x) \to f(x) \quad \forall x \in E(\; m.e. \; f \; - \; nomoueu. \; npeden \; nocned.)$$

$$\forall \mathcal{E} > 0 \quad \exists N_{\mathcal{E}}: \forall m, n > N_{\mathcal{E}} \quad \forall x \in E$$

$$f_m(x) - \mathcal{E} < f_n(x) < f_m(x) + \mathcal{E} \; \underset{n \to \infty}{\to} f_m(x) - \mathcal{E} \leqslant f(x) \leqslant f_m(x) + \mathcal{E}$$

$$\Rightarrow |f_m(x) - f(x)| \leqslant \mathcal{E} < 2\mathcal{E}$$

$$\Rightarrow \sup |f_m(x) - f(x)| < \mathcal{E}$$

37 Сохранение непрерывности при равномерном предельном переходе. Теорема Дини (б/д). Теорема о предельном переходе под знаком интеграла.

Теорема (О равномерном пределе непр. функции)

$$f_n$$
 - непр в $m. \ x_0 \in E$ $f_n \underset{E}{\Longrightarrow} f$ Тогда f - непр. в $m. \ x_0$

Док-во

$$\forall \mathcal{E} > 0 \quad (\textit{sadwkcup.})$$

$$T.\kappa. \ f_n \Rightarrow f, \ mo \ \exists N_{\mathcal{E}} : \forall n > N_{\mathcal{E}} \quad (\textit{sadwkc} \ n^* > N_{\mathcal{E}}) \quad \sup_E |f_n - f| < \frac{\mathcal{E}}{3} \quad (*)$$

$$B \ \textit{vacmhocmu}, \ \textit{dns} \ n^* > N_{\mathcal{E}} \quad \sup_E |f_n - f| < \frac{\mathcal{E}}{3}$$

$$f_{n^*} - \textit{henp.} \ \textit{e} \ m \ x_0 : \quad \exists \delta > 0 \quad \forall t \in E : \quad |t - x_0| < \delta \quad |f_{n^*}(t) - f_{n^*}(x_0)| < \frac{\mathcal{E}}{3}$$

$$Toeda \ \forall x \in E : \quad |x - x_0| < \delta$$

$$|f(x) - f(x_0)| \leq |f(x) - f_{n^*}(x)| + |f_{n^*}(x) - f_{n^*}(x_0)| + |f_{n^*}(x_0) - f(x_0)| < \mathcal{E}$$

Следствие

Если
$$f_n \in C(E)$$
, $f_n \underset{E}{\Longrightarrow} f$, то $f \in C(E)$

Теорема (Дини)

$$f_n \in C[a,b]$$
 $f_n(x) \to f(x)$ (поточ. на $[a,b]$)
причем $\forall x \in [a,b]$ $f_n(x) \searrow$ (по n) $m.e$ $f_{n+1}(x) \leqslant f_n(x)$
Если $f \in C[a,b]$, то $f_n \underset{[a,b]}{\Longrightarrow} f$

Теорема (О предельном переходе под знаком интеграла)

$$f_n \in R[a,b]$$
 $f_n \underset{[a,b]}{\Rightarrow} f \in R[a,b]$

$$Tor\partial a \int_a^b f_n \underset{n \to \infty}{\Rightarrow} \int_a^b f$$

Док-во

$$\left| \int_a^b f_n - \int_a^b f \right| \leqslant \int_a^b |f_n - f| < \sup_{[a,b]} \left| f_n - f \right| \cdot (b - a) \to 0$$

$\mathbf{y}_{\mathbf{TB}}$

 Φ унк. ряд сход равномерно \Leftrightarrow посл-ть частичных сумм сход равномерно

Следствие (1)

$$f_n \in C[a,b]$$
 $\sum_{n=1}^N f_n \Rightarrow f$

Тогда 1)
$$f(x) = \sum_{n=1}^{\infty} f_n \in C[a,b]$$

$$2) \quad \int \sum_{n=1}^{\infty} f_n = \sum_{n=1}^{\infty} \int f_n$$

Следствие (2)

Если
$$f_n(x) \ge 0$$
 $\forall x \in [a, b]$ $f_n \in C[a, b]$

$$\sum_{n=1}^{\infty} f_n = f \in C[a, b]$$

To
$$\sum f_n$$
 - сход. равномерно на $[a,b]$

38 Дифференцируемость и равномерная сходимость.

Теорема (диф-сть и равном. сх-ть)

$$f_n \in c^1[a,b]$$
 $f'_n \underset{[a,b]}{\Rightarrow} g$
 $u \exists c \in [a,b]: \{f_n(c)\}_{n=1}^{\infty} - cx$
 $Tor \partial a (a)$ $f_n \rightrightarrows f \ na [a,b]$
 (b) $f \in C^1[a,b] \ u \ f' = g$

Док-во

(b)
$$f_n(x) - f_n(c) = \int_c^x f'_n \underset{n \to \infty}{\to} \int_c^x g = f(x) - f(c)$$
 $f(c) = \lim_{n \to \infty} f_n(c)$ $(no\ m.\ o\ npedenthom\ nepexode\ nod\ знаком\ интеграла.)$

$$f(x) = \int_c^x g + f(c)$$
 $m.o\ f_n(x) \to f(x)\ nomou.\ na\ [a,b]$ $f'(x) = g(x)\ nenp\ (pagh.\ npeden\ nenp\ \phi.)$

$$\Rightarrow f \in C^1[a,b]$$
(a) $nokaskem,\ umo\ f_n \Rightarrow f$

$$\sup_{x \in [a,b]} |f_n(x) - f(x)| = \sup_{x \in [a,b]} \left| f_n(x) - f(c) + f_n(c) - f(c) + f(c) - f(x) \right| \leqslant \sup_{x \in [a,b]} \left| \int_c^x f'_n - \int_c^x g + f_n(c) - f(c) \right| \leqslant \sup_{x \in [a,b]} \left| \int_c^x (f'_n - g) \right| + |f_n(c) - f(c)| \quad (*)$$

$$f'_n \Rightarrow g \Rightarrow \left| \int_c^x (f'_n - g) \right| \leqslant \sup_{x \in [a,b]} \left| \int_c^x (f'_n - g) \right| < \mathcal{E}$$

$$\exists N_2 : \forall n > N_2 \quad |f_n(c) - f(c)| < \mathcal{E}$$

$$\Rightarrow (*) < 2\mathcal{E}$$

$$f_n(x) = \frac{1}{n} \arctan(x^n)$$

$$\sup_{\mathbb{R}} |f_n(x)| \leqslant \frac{\pi}{2n} \to 0 \quad \text{m.e. } f_n \underset{\mathbb{R}}{\Longrightarrow} 0 = f$$

$$f'_n(1) = \frac{1}{n} \cdot \frac{1}{1 + x^{2n}} \cdot n \cdot x^{n-1} \Big|_1 = \frac{1}{2}$$

$$Ho \left(\lim_{n \to \infty} f_n\right)'_{x=1} = 0 \neq \lim_{n \to \infty} f'_n(1)$$

39 Признак Вейерштрасса равномерной сходимости функциональных рядов.

Теорема

40 Степенной ряд (в $\mathbb C$). Радиус сходимости. Формула Коши-Адамара.

41 Теорема о комплексной дифференцируемости степенного ряда. Следствие: единственность разложения в степенной ряд.

42 Ряд Тейлора. Примеры $(e^x, \sin x, \ln(1+x), e^{-\frac{1}{x^2}})$.

43 Биномиальный ряд $(1+x)^{\alpha}$

44 Признак Абеля-Дирихле для равномерной сходимости функциональных рядов (доказательство одного).

45 Теорема Абеля. Сумма ряда $\sum\limits_{n=1}^{\infty} rac{(-1)^{n-1}}{n}$.

46 Интеграл комплекснозначной функции. Скалярное произведение и норма в пространстве $C(\mathbb{C}\setminus\mathbb{R}),$ в пространстве R([a;b]). Ортогональность. Пример: $e_k(x)=e^{2\pi ikx}.$

47 Свойства скалярного произведения и нормы (теорема Пифагора, неравенство Коши-Буняковского-Шварца, неравенство треугольника). 48 Коэффициенты Фурье функции по ортогональной системе e_k . Ряд Фурье. Пример: тригонометрический полином.

49 Свойства коэффициентов Фурье (коэффициенты Фурье сдвига, производной).

50 Неравенство Бесселя. Лемма Римана-Лебега (light).

51 Вычисление интеграла Дирихле $\int\limits_0^\infty \frac{\sin x}{x}$.

52 Ядра Дирихле, их свойства. Выражение частичных сумм ряда Фурье через ядра Дирихле.

53 Свертка. Простейшие свойства. Свертка с тригонометрическими и алгебраическими полиномами.

54 Принцип локализации Римана.

55 Теорема о поточечной сходимости ряда Фурье для локально-Гельдеровой функции.

56 Ядра Фейера, их свойства. Связь с $\sigma_N(f)$.

57 Аппроксимативная единица. Определение, примеры. Теорема о равномерной сходимости свертки с аппроксимативной единицей.

58 Теорема Фейера. Теорема Вейерштрасса.

59 Среднеквадратичное приближение функций, интегрируемых по Риману, тригонометрическими полиномами.

60 Равенство Парсеваля.

61 Замечания из конспектов, которые не вошли в билеты

61.1 Множества меры ноль

Опр

 $E \subset \mathbb{R}$, говорят, что E - мн-во меры ноль, если:

$$\forall \mathcal{E} > 0 \quad \exists I_j = (\alpha_j, \beta_j) : E \subset \bigcup_{j \in \mathbb{N}} I_j \quad \sum_{j=1}^{\infty} |I_j| < \mathcal{E} \quad (|I_j| = \beta_j - \alpha_j)$$
He bose tem ct.
Habor omer. uhm.

Примеры

1) ∀ Конечное множество - мн-во меры ноль

$$E = \{x_1, ..., x_n\}, I_j := (x_j - \frac{\mathcal{E}}{4n}, x_j + \frac{\mathcal{E}}{4n}), \sum_{j=1}^n |I_j| = \frac{\mathcal{E}}{2}$$

2) $A=\{a_j\}_{j\in\mathbb{N}}$ - счётное \Rightarrow имеет меру 0. Как покрыть \mathbb{N} ? $|I_j|=rac{\mathcal{E}}{2^{j+1}}$ - геом. прогрессия

3) Несчетное множество меры ноль: Канторовское мн-во (Канторовский компакт), построение:

$$C = \bigcap_{n=1}^{\infty} C_n$$

Определим $C_{\frac{1}{3^p}}$ как множество отрезков, получинных для $\mathcal{E}=\frac{1}{3^p}$ для крайних точек каждого отрезка из C_p (они их покроют "вплотную"и по краям будет немного лишнего). На каждом шаге p у нас 2^p отрезков

$$\Rightarrow |C_{\frac{1}{3^p}}| = 5\frac{2^{p-1}}{3^p} \underset{p \to \infty}{\to} 0$$

61.2 Критерий Лебега интегрируемости функции

Теорема

 \overline{Hycm} ь $f:[a,b] o \mathbb{R}$, тогда: $f \in R[a,b] \Leftrightarrow f$ имеет ограниченное мн-во точек разрыва и меру θ

 $\frac{\mathbf{\Pi}\mathbf{pимеры}}{1)\ \mathit{Функция}\ \mathit{Дирихле}\ \mathcal{D}(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \notin \mathbb{Q} \end{cases}$

 $\mathcal{D} \notin R[0,1]$. Проверим по критерию Лебега. Множество точек разрыва - \mathbb{R} , но оно не множество меры θ (слишком много точек).

оно не множество жеры $\sigma = \begin{cases} 0, & x \notin \mathbb{Q} \\ \frac{1}{n}, & x = \frac{m}{n} - несократимая дробъ$

Оказывается, она интегрируема по Риману на любом отрезке. Рассмотрим [0,1]:

- $a) \ \forall a \in \mathbb{Q}$ точка разрыва Φ :
- $\Phi(a)>0$ по определению. С другой стороны как угодно близко найдётся иррациональная точка, в которой функция принимает значение θ .
 - б) $\forall a \notin \mathbb{Q}$ непрерывна:

Для произвольного $\mathcal{E} > 0$ рассмотрим множество $M = \{x \in \mathbb{R} : f(x) > \mathcal{E}\}.$

Никакая иррациональная точка не лежит в М, поскольку в иррациональных точках функция f обращается в ноль.

Eсли $x\in M$, тогда x есть рациональное число вида $x=\frac{m}{n}$, где $m\in\mathbb{Z},\ n\in\mathbb{N},$ дробь $\frac{m}{n}$ несократима, и тогда $f(x) = \frac{1}{n} \geq \mathcal{E}$ и, следовательно, $n \leq \frac{1}{\mathcal{E}}$. Из ограничения на п следует, что пересечение множества М и любого ограниченного интервала состоит из конечного числа точек.

 Π усть α - произвольное иррациональное число. По определению $f(\alpha)=0$. Мы можем выбрать окрестность точки lpha так, чтобы в ней не содержалась ни одна точка множества M. Если же $x \notin M$, то $f(x) < \mathcal{E}$. Таким образом, мы нашли интервал, который требуется в определении непрерывности.