

جامهة هواري بومدين للهلوم و التكنولوجيا Université des Sciences et de Technologie Houari

Boumediene Faculté d'Electronique et d'Informatique

EMD MEL502/LGE604

EXO N°1:

Un pont monophasé à deux diodes est utilisé pour recharger une batterie d'accumulateur de f.e.m E=84.85V et une résistance R=10 Ω . La tension sinusoïdale appliquée au pont à une fréquence de 50Hz. L'angle d'extinction θ_2 =3 π /4.

- 1- Tracer sur le document-réponse n°1, avec explication les oscillogrammes suivants: $U_c(t)$, $V_{D1}(t)$, $i_c(t)$ et $i_{D1}(t)$ en précisant la valeur maximale de chacune de ces grandeurs.
- 2- Calculer la valeur moyenne et efficace de la tension redressée.
- 3- Déduire la valeur moyenne du courant qui traverse la charge et qui traverse un élément du redressement.
- 4- Calculer la puissance délivrée par le secondaire du transformateur sachant que i_{Deff}=1.27A.
- 5- Calculer la valeur moyenne de la tension aux bornes d'un élément du redressement.

EXO N°2:

Soit le montage ci-contre. Le pont est alimenté par un réseau 220V-50Hz. La charge est constituée par une résistance $R=20\Omega$ en série avec une inductance L.

On donne $\alpha = \pi/3$ l'angle de retard à l'amorçage des thyristors et $\beta = 5\pi/4$ l'angle d'extinction.

- 1- Tracer sur le document-réponse n°2, avec explication les oscillogrammes suivants: $U_c(\theta)$, $U_{Th1}(\theta)$, $i_c(\theta)$, $i_{Th1}(\theta)$ et $i_s(\theta)$.
- 2- Quelle est l'indication du voltmètre, calculer cette valeur.
- 3- Donner l'expression du courant $i_c(\theta)$ sur une période.
- Exprimer la valeur moyenne du courant qui traverse la charge en fonction de celle qui traverse un élément de redressement. Calculer la valeur de ces deux courants.
- 5- Quelle est l'indication de l'Ampèremètre, calculer cette valeur.

MATRICULE: 5841003 SECTION et GROUPE: Section B

EXO N°01:

<u>1- Etude de fonctionnement</u>:

 $-\ 0\!\leq\! t\!\leq\! t_1: D_1 \text{ et } D_2 \text{ bloqu\'ees}: U_c(t)\!\!=\!\! E, \ V_{D1}(t)\!\!=\!\! V_1(t)\!\!-\!\! E \text{ et } i_c(t)\!\!=\! i_{D1}(t)\!\!=\!\! 0;$

$$-\ t_1 \leq t \leq t_2 \ : D_1 \ \text{passante et } D_2 \ \text{bloqu\'ee} : U_c(t) = V_1(t), \ V_{D1}(t) = 0, \ \ i_c = i_{D1} = \frac{V_1(t) - E}{R};$$

-
$$t_2 \le t \le \frac{T}{2} + t_1$$
: D_1 et D_2 bloquées : $U_c(t) = E$, $V_{D1}(t) = V_1(t) - E$ et $i_c(t) = i_{D1}(t) = 0$;

$$-\frac{T}{2} + t_1 \le t \le \frac{T}{2} + t_2 : D_1 \text{ bloqu\'ee et } D_2 \text{ passante: } U_c(t) = V_2(t), \ V_{D1}(t) = 2V_1(t), \ i_c = \frac{V_1(t) - E}{R} \text{ et } i_{D1}(t) = 0.$$

$$-\frac{T}{2} + t_2 \le t \le T + t_1 : D_1 \text{ et } D_2 \text{ bloquées} : U_c(t) = E, V_{D1}(t) = V_1(t) - E \text{ et } i_c(t) = i_{D1}(t) = 0$$

- Calcul de l'angle d'ouverture :
$$\theta_1 = \pi - \theta_2 = \pi - \frac{3\pi}{4} \implies \theta_1 = \frac{\pi}{4}$$

- Calcul de la tension maximale V_M:

$$E = V_M \sin \theta_1 \implies V_M = \frac{E}{\sin \theta_1} = \frac{84.85}{\sin \left(\frac{\pi}{4}\right)} = 120 V$$

- Valeurs maximales :

- Tension redressée : $U_{cmax} = V_M = 120V$
- Tension supportée par la diode : $V_{Dmax} = 2V_{M} = 240V$
- Courant qui traverse la charge: $I_{cmax} = \frac{V_M E}{R} = 3.5 \text{ IA}$
- Courant qui traverse une diode: $I_{cmax} = \frac{V_M E}{R} = 3.51A$

2- Valeurs moyennes de la tension redressée:

$$U_{cmoy} = \frac{1}{T} \int_{0}^{T} u_{c}(t) dt = \frac{1}{\pi} \left[\int_{\theta_{1}}^{\theta_{2}} V_{M} \sin \theta d\theta + \int_{\theta_{2}}^{\pi+\theta_{1}} E d\theta \right] = \frac{1}{\pi} \left[-V_{M} \left(\cos \theta_{2} - \cos \theta_{1} \right) + E \left(\pi + \theta_{1} - \theta_{2} \right) \right]$$

$$\Rightarrow U_{cmoy} = \frac{1}{\pi} \left[-120(\cos 3\pi / 4 - \cos \pi / 4) + 84.85(\pi + \pi / 4 - 3\pi / 4) \right] = 96.44V \Rightarrow U_{cmoy} = 96.44V$$

MATRICULE: 5841003 SECTION et GROUPE: Section B

- Valeurs efficace de la tension redressée:

$$\begin{split} U_{ceff}^{2} &= \frac{1}{T} \int_{0}^{T} u_{c}^{2}(t) dt = \frac{1}{\pi} \left[\int_{\theta_{1}}^{\theta_{2}} V_{M}^{2} \sin^{2}\theta \, d\theta + \int_{\theta_{2}}^{\pi+\theta_{1}} E^{2} d\theta \right] = \frac{1}{\pi} \left[V_{M}^{2} \int_{\theta_{1}}^{\theta_{2}} \frac{1 - \cos 2\theta}{2} \, d\theta + \int_{\theta_{2}}^{\pi+\theta_{1}} E^{2} d\theta \right] \\ \Rightarrow U_{ceff} &= \sqrt{\frac{V_{M}^{2}}{2\pi} \left[\theta - \frac{\sin 2\theta}{2} \right]_{\frac{\pi}{4}}^{\frac{3\pi}{4}} + E^{2} \left[\theta \right]_{\frac{3\pi}{4}}^{\frac{5\pi}{4}}} \\ \Rightarrow U_{ceff} &= \sqrt{\left[\frac{120^{2}}{2\pi} \left[\left(\frac{3\pi}{4} - \frac{\pi}{4} \right) - \frac{1}{2} \sin \left(\frac{3\pi}{2} \right) + \frac{1}{2} \sin \left(\frac{3\pi}{2} \right) \right] + \left(84.85 \right)^{2} \left[\frac{5\pi}{4} - \frac{3\pi}{4} \right] \right]} \Rightarrow U_{ceff} = 97.42V \end{split}$$

3- Valeurs moyennes du courant qui traverse la charge:

$$I_{cmoy} = \frac{U_{cmoy} - E}{R} = \frac{96.44 - 84.85}{10} = 1.159A$$

- Valeurs moyennes du courant qui traverse un élément du redressement :

$$I_{Dmoy} = \frac{I_{cmoy}}{2} = \frac{1.159}{2} = 0.579 A$$

4- Puissance délivrée par le secondaire du transformateur :

$$P_S = u_{ceff} i_{ceff} = u_{ceff} \sqrt{2} i_{Deff} = 97.42 \sqrt{2}.1.27 = 174.97 VA$$

5- Valeur moyenne de la tension aux bornes d'un élément du redressement :

$$U_{Dmoy} = \frac{1}{T} \int_{0}^{T} U_{D}(t) dt = \frac{1}{2\pi} \left[\int_{\theta_{2}}^{\pi+\theta_{1}} (V_{M} \sin\theta - E) d\theta + \int_{\theta_{2}}^{\pi+\theta_{1}} 2V_{M} \sin\theta d\theta + \int_{\pi+\theta_{2}}^{2\pi+\theta_{1}} (V_{M} \sin\theta - E) d\theta \right]$$

$$\Rightarrow U_{Dmoy} = \frac{1}{2\pi} \left[\left[-V_{M} \cos\theta - E \theta \right] \frac{\frac{5\pi}{4}}{\frac{3\pi}{4}} - 2V_{M} \left[\cos\theta \right] \frac{\frac{7\pi}{4}}{\frac{5\pi}{4}} + \left[-V_{M} \cos\theta - E \theta \right] \frac{\frac{9\pi}{4}}{\frac{7\pi}{4}} \right]$$

$$\Rightarrow U_{Dmoy} = -96.44 V$$

MATRICULE: 5841003 <u>SECTION et GROUPE</u>: Section B

EXO N°02:

- Calcul de l'angle φ:
$$\beta = \pi + \varphi \implies \varphi = \pi - \beta = \frac{5\pi}{4} - \pi \implies \varphi = \frac{\pi}{4}$$

Etude de fonctionnement :

 $0 \le \theta \le \varphi$: Th₂-Th₃ passants et Th₁-Th₄ bloqués:

$$U_c(t) = -V(t), \ U_{Th1}(t) = V(t), \ i_c(t) \neq 0, \ i_{Th1}(t) = 0 \ et \ i_s(t) = -i_{Th3}(t) = -i_c(t) \ ;$$

 $\varphi \leq \theta \leq \alpha$: Le pont est bloqué : $U_c(t)=0$, $U_{Th1}(t)=V(t)$, $i_c(t)=0$, $i_{Th1}(t)=0$ et $i_s(t)=0$;

 $\alpha \le \theta \le \pi + \varphi$: Th₁-Th₄ passants et Th₂-Th₃ bloqués:

$$U_c(t)=V(t), U_{Th1}(t)=0, \text{ et } i_c(t)=i_{Th1}(t)=i_s(t)\neq 0$$
;

 $\pi + \varphi \le \theta \le \pi + \alpha$: Le pont est bloqué : $U_c(t) = 0$, $U_{Th1}(t) = V(t)$, $i_c(t) = 0$, $i_{Th1}(t) = 0$ et $i_s(t) = 0$;

 $\pi + \alpha \le \theta \le 2\pi + \varphi$: Th₂-Th₃ passants et Th₁-Th₄ bloqués:

$$U_c(t)=-V(t), U_{Th1}(t)=V(t), i_c(t)\neq 0, i_{Th1}(t)=0 \text{ et } i_s(t)=-i_{Th3}(t)=-i_c(t);$$

2- Le voltmètre indique la valeur efficace de la tension redressée:

$$U_{ceff}^{2} = \frac{1}{T} \int_{0}^{T} U_{c}^{2}(t) dt = \frac{1}{\pi} \int_{\alpha}^{\pi+\varphi} V_{M}^{2} \sin^{2}(\theta) d\theta = \frac{V_{M}^{2}}{\pi} \int_{\alpha}^{\pi+\varphi} \frac{1 - \cos 2\theta}{2} d\theta$$
$$\Rightarrow U_{ceff} = \frac{V_{M}}{\sqrt{2}} \sqrt{\left[\frac{\pi + \varphi - \alpha}{\pi} - \frac{1}{2\pi} \left(\sin 2\varphi - \sin 2\alpha\right)\right]}$$

$$\Rightarrow U_{ceff} = \frac{220\sqrt{2}}{\sqrt{2}} \sqrt{\left[\frac{\pi + \frac{\pi}{4} - \frac{\pi}{3}}{\pi} - \frac{1}{2\pi} \left(\sin\left(\frac{\pi}{2}\right) - \sin\left(\frac{2\pi}{3}\right)\right)\right]} = 371.95V \Rightarrow U_{ceff} = 371.95V$$

MATRICULE: 5841003 SECTION et GROUPE: Section B

<u>3- Expression du courant $i_c(\theta)$ sur une période:</u>

 $\alpha \le \theta \le \pi + \varphi$: Th₁-Th₄ passants et Th₂-Th₃ bloqués: Uc(t) = V(t) $\Rightarrow L \frac{di(t)}{dt} + Ri_c(t) = V_M \sin \omega t$

La résolution de l'éq.diff.conduit à : $i_c(\theta) = i_{cp}\theta + i_{ch}(\theta) = Ae^{-\frac{R}{L\omega}\theta} + \frac{V_M}{Z}\sin(\theta - \varphi)$

Avec:
$$Z = \sqrt{R^2 + (L\omega)^2} = \sqrt{20^2 + 20^2} = 20\sqrt{2}\Omega$$
 et $tg\varphi = \frac{L\omega}{R} \Rightarrow L\omega = Rtg\varphi = 20tg\left(\frac{\pi}{4}\right) \Rightarrow L\omega = 20\Omega$

Calcul de la constante d'intégral A:

Condition initiale: à $\theta = \alpha$, $i_c(\alpha) = 0$ \Rightarrow $Ae^{-\frac{R}{L\omega}\alpha} + \frac{V_M}{Z} sin(\alpha - \varphi) = 0$ $\Rightarrow A = -\frac{V_M}{Z} sin(\alpha - \varphi)e^{\frac{R}{L\omega}\alpha}$

$$i_{c}(\theta) = \frac{V_{M}}{Z} \left[\sin(\theta - \varphi) - \sin(\alpha - \varphi) \cdot e^{-\frac{R}{L\omega}(\theta - \alpha)} \right] = \frac{220\sqrt{2}}{20\sqrt{2}} \left[\sin(\theta - \frac{\pi}{4}) - \sin(\pi/3 - \frac{\pi}{4}) \cdot e^{-(\theta - \pi/3)} \right]$$

$$i_c\left(\theta\right) = 11 \left[\sin\left(\theta - \frac{\pi}{4}\right) - 0.25 e^{-(\theta - \pi/3)}\right]$$

$$i_{c}(\theta) = \begin{cases} 11 \left[\sin(\theta - \pi / 4) - 0.25 e^{-(\theta - \pi / 3)} \right] & 0 \le \theta \le \varphi \\ 0 & \varphi \le \theta \le \alpha \\ 11 \left[\sin(\theta - \pi / 4) - 0.25 e^{-(\theta - \pi / 3)} \right] & \alpha \le \theta \le \pi \end{cases}$$

4- Valeur moyenne du courant qui traverse la charge en fonction de celle qui traverse un élément de redressement :

$$i_{Thmoy} = \frac{1}{T} \int_{0}^{T} i_{Th}(t) dt = \frac{1}{2\pi} \int_{\alpha}^{\pi+\varphi} i_{c}(\theta) d\theta = \frac{1}{2} \cdot \frac{1}{\pi} \int_{\alpha}^{\pi+\varphi} i_{c}(\theta) d\theta = \frac{I_{cmoy}}{2} \Rightarrow I_{Thmoy} = \frac{I_{cmoy}}{2}$$

$$I_{cmoy} = \frac{U_{cmoy}}{R} A vec \quad U_{cmoy} = \frac{1}{T} \int_{0}^{T} U_{c}(t) dt = \frac{1}{\pi} \int_{\alpha}^{\pi+\varphi} V_{M} sin\theta d\theta = \frac{V_{M}}{\pi} \left[cos\varphi + cos\alpha \right] \Rightarrow U_{cmoy} = 119.54V_{cmoy}$$

$$I_{\text{cmoy}} = \frac{U_{\text{cmoy}}}{R} = \frac{119.54}{20} = 5.97A \Rightarrow I_{\text{cmoy}} = 5.97A \ I_{\text{cmoy}} = \frac{119.54}{20} = 5.97A$$

$$I_{Thmoy} = \frac{I_{cmoy}}{2} = \frac{5.97}{2} = 2.98 \, A$$

5- L'Ampèremètre indique la valeur moyenne du courant de source :

$$I_{smoy} = \frac{1}{T} \int_{0}^{T} i_{s}(t) dt = \frac{1}{2\pi} \left[\int_{\alpha}^{\pi+\varphi} i_{c}(\theta) d\theta - \int_{\pi+\alpha}^{2\pi+\varphi} i_{c}(\theta) d\theta \right] \implies I_{smoy} = 0$$

MATRICULE: 5841003 SECTION et GROUPE: Section B

Document réponse n°1 Document réponse n°2 $V_1,V_2,E[V]$ V E θ(rad) θ 0 0 θ_2 $\pi + \alpha$ α 2π θ_1 /π 2π Uc[V] Uc[V] θ(rad) 2π $\pi + \varphi \pi + \alpha$ α θ (rad) $V_{Dl_{i}}$ θ_{1} θ_2 π 2π θ (rad) $V_{th}[V]$ $\pi + \theta_1$ $\pi + \theta_2$ 2π -E $\theta(rad)$ 0 +φ π+α 2π -2E -Vm-E ◆ **▲** ic[♠] **↑**ic[A] θ (rad) $\pi + \varphi_{\pi + \alpha}$ 2π **↑**ith₁[A] θ (rad) 0 $\pi + \theta_1$ θ_1 θ_2 $\pi + \theta_2$ 2π θ (rad) i_{D1}[Å] 0 α π+φ 2π **∱**is[A] θ (rad) θ (rad) $\pi + \varphi$ π 2π $\pi + \theta_2$ 2π $\pi + \theta_1$