Project description and feedback

July 21, 2024

1 Project description

1.1 Formalities

Hand in a single report in PDF format and your code in a single file (zip or tar archive). The report must include:

- A single page with the main text, including figures and tables. Include names, student numbers, course number, and the title "Mini-project 1".
- Unlimited pages of references.
- A single page of well-formatted code snippets.

Use at least font size 10pt and margins of at least 2cm. Content violating these limitations will not be evaluated.

1.2 Project Description

Train and evaluate various deep generative models on binarized MNIST and MNIST. The project has three parts:

1.2.1 Part A: Priors for VAEs

Train VAEs with the following priors:

- Standard Gaussian prior.
- Mixture of Gaussian (MoG) prior.
- Flow-based prior.

For each prior:

- Plot the prior and the aggregate posterior.
- Compare the match between priors and posteriors.
- Evaluate test set log-likelihood using ELBO.

- Report mean and standard deviation over multiple runs.
- Briefly describe encoder and decoder architectures.

Optional: Implement an alternative prior or report a better log-likelihood approximation like the IWAE bound.

1.2.2 Part B: Sampling Quality of Generative Models

Train the following models on standard MNIST:

- Flow-based model.
- Denoising Diffusion Probabilistic Model (DDPM) using a U-Net.

In the report:

- Show four samples for each model and a VAE of your choice.
- Qualitatively compare the sampling quality.
- Briefly describe the architectures used.

Optional: Quantitatively compare sampling quality using metrics like FID.

1.2.3 Part C: Code Snippets

Include snippets showing:

- VAE ELBO evaluation for a non-Gaussian prior.
- Central parts of the Flow-based prior implementation.
- DDPM ELBO implementation.
- DDPM sampling algorithm implementation.

2 Feedback

Excellent work, with very few shortcomings. Your technical presentation is very clear. Part A: You have a clear presentation and discussion of plots and ELBO results. Your ELBO results are very low, probably due to using a 2D latent space, and your IWAE results are too high (should be around -80 for binary MNIST). Your plots are very good, but you lack a scale for the density. You implement both the VAMP prior and the IWAE bound. Part B: You have a clear presentation and discussion of samples. You implemented the FID and KID scores and compared the scores to your qualitative results.