

Introduction

- Challenges
- Model Evaluation

Conclusion

Background

Credit card industry grows bigger with the increasing popularity of electronic transactions.

Accurate fraud prevention system can help protect clients' revenues.

Dataset description

- Vesta's e-commerce transaction data
- 590,540 transactions, 394 features
 - Numerical: amount, Vesta features,
 - Categorical: card type, purchaser email
 domain, issue bank, issue country, ...

- Introduction
- Challenges
 - Missing data
 - O UID
 - Unbalanced Outcome Variable
- Model Evaluation
- Conclusion

Missing Data

- Delete 192 columns with >30% missing data
- Imputation:
 - Numerical: median
 - Categorical: mode

- Introduction
- Challenges
 - Missing Data
 - UID
 - Unbalanced Outcome Variable
- Model Evaluation
- Conclusion

The Magic Feature - UID

- Fraud status will impact following transactions with linked information
- Raw data does not have identifier for each card

How do we classify fraudulent credit cards from only the transaction data?

Creating UID

Key features:

"card1", "addr1", "D1", "TransactionDT"

Method:

https://www.kaggle.com/code/kyakovlev/ieee-uid-detection-v6

The Magic Feature - UID

The Magic Feature - UID

	TransactionID	isFraud	TransactionDT	TransactionAmt	card1	card4	addr1	D1	uid	DTdiff	D1diff
1261	2988261	1	129512	Day 2 160.5	11839	visa	420.0	395.0	2988261.0	-0.0	0.0
1274	2988274	1	129834	280.0	11839	visa	420.0	395.0	2988261.0	-0.0	0.0
1282	2988282	1	130050	117.0	11839	visa	420.0	395.0	2988261.0	-0.0	0.0
127650	3114650	1	2537461	108.0	11839	visa	420.0	423.0	2988261.0	28.0	28.0
137995	3124995	1	2804429	171.0	11839	visa	420.0	426.0	2988261.0	31.0	31.0
230888	3217888	1	5474535	171.0	11839	visa	420.0	457.0	2988261.0	62.0	62.0
230893	3217893	1	5474733	100.0	11839	visa	420.0	457.0	2988261.0	62.0	62.0
316951	3303951	1	7889004	171.0	11839	visa	420.0	485.0	2988261.0	90.0	90.0
316955	3303955	1	7889277	117.0	11839	visa	420.0	485.0	2988261.0	90.0	90.0
341594	3328594	1	8429542	117.0	11839	visa	420.0	491.0	2988261.0	96.0	96.0
411332	3398346	1	10391596	117.0	11839	visa	420.0	514.0	2988261.0	119.0	119.0
411335	3398349	1	10391846	171.0	11839	visa	420.0	514.0	2988261.0	119.0	119.0
445894	3432916	1	11359562	Day _{117.0}	11839	visa	420.0	525.0	2988261.0	130.0	130.0
479289	3466323	1	12438287	132	11839	visa	420.0	537.0	2988261.0	142.0	142.0
501966	3489000	1	13154560	171.0	11839	visa	420.0	546.0	2988261.0	151.0	151.0
501971	3489005	1	13154807	171.0	11839	visa	420.0	546.0	2988261.0	151.0	151.0

Preventing Overfitting

Aggregation:

- Numerical: mean, standard deviation
- Categorical: n unique

- Introduction
- Challenges
 - Missing Data
 - o UID
 - Unbalanced Outcome Variable
- Model Evaluation
- Conclusion

Random Over Sampler

- Object to over-sample the minority class
- Pick samples at random with replacement.

Random Over Sampler

SMOTE

- Over sampling technique
- Use a k-nearest neighbor algorithm to create synthetic data points
 - identify the minority class vector
 - compute a line between the minority data points and any of its neighbors and place a synthetic point
 - repeat until balanced

SMOTE

SMOTE & Tomek Links

SMOTE is applied to create new synthetic minority samples

 Tomek Links is used in removing the samples close to the boundary of the two classes, increase the separation

SMOTE & Tomek Links

Introduction

- Challenges
- Model Evaluation

Conclusion

Evaluation Metrics

- Accuracy
 percentage of correctly classified
- Recall
 proportion of actual fraud is detected
- AUC
 how well the separation is

Evaluate KNN Algorithm

Resampling Methods	Accuracy	Recall	AUC
None	0.9675	0.1037	0.5513
Random Over Sampler	0.844	0.54	0.698
SMOTE	0.7162	0.72	0.7178
SMOTE + Tomek	0.7285	0.71	0.7183

Evaluate Random Forest

Resampling Methods	Accuracy	Recall	AUC
None	0.9742	0.29	0.644
Random Over Sampler	0.9825	0.73	0.861
SMOTE	0.9815	0.62	0.8088
SMOTE + Tomek	0.9815	0.62	0.8076

Introduction

- Challenges
- Model Evaluation

Conclusion

Conclusion

 PCA will decrease the performance of Random Forest

Model	Accuracy	Recall	AUC
With PCA	0.7905	0.77	0.78
Without PCA	0.9825	0.73	0.861

Conclusion

- Choice of resampling depends on models
- Drawback of resampling methods: overfitting, hurt accuracy
- KNN model is a lazy algorithm

Thank You

