Ve492: Introduction to Artificial Intelligence

Bayesian Networks: Inference

Paul Weng

UM-SJTU Joint Institute

Slides adapted from http://ai.berkeley.edu, AIMA, UM, CMU

Bayes' Net Semantics

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - * A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

- Bayes' nets implicitly encode joint distributions
 - * As a product of local conditional distributions
 - * To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Example: Alarm Network

Demo BN Applet

Α	J	P(J A)
+a	+j	0.9
+a	ij	0.1
-a	+j	0.05
-a	-j	0.95

Α	M	P(M
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

Е	P(E)	
+e	0.002	
-e	0.998	

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-e	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999

Bayes' Nets

- Representation
- **✓**Conditional Independences
 - * Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case exponential complexity, often better)
 - * Probabilistic inference is NP-complete
 - * Approximate inference (sampling)

Inference

- Inference: calculating some useful quantity from a joint probability distribution
- * Examples:
 - * Marginal probability P(Q)
 - * Posterior probability P(Q | E = e)
 - * Most likely explanation $\operatorname{argmax}_q P(Q = q | E = e)$

Inference by Enumeration with Joint

General case:

- Evidence variables: $E_1 \dots E_k = e_1 \dots e_k$ $X_1, X_2, \dots X_n$ Query* variable: Q All variables
- Hidden variables: $H_1 \dots H_r$

Step 1: Select the entries consistent with the evidence

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(Q, h_1 \dots h_r, e_1 \dots e_k)$$

$$X_1, X_2, \dots X_n$$

We have the joint and we want:

$$P(Q|e_1 \dots e_k)$$

* Step 3: **Normalize**

$$\times \frac{1}{Z}$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$
$$P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$$

$$P(Q|e_1\cdots e_k) = \frac{1}{Z}P(Q,e_1\cdots e_k)$$

^{*} Works fine with multiple guery variables, too

Inference by Enumeration in Bayes' Net

- Given unlimited time, inference in BNs is easy
- * Reminder of inference by enumeration by example:

$$P(B \mid +j,+m) \propto_B P(B,+j,+m)$$

$$= \sum_{e,a} P(B, e, a, +j, +m)$$

$$= \sum_{e,a} P(B)P(e)P(a|B,e)P(+j|a)P(+m|a)$$

$$=P(B)P(+e)P(+a|B,+e)P(+j|+a)P(+m|+a) + P(B)P(+e)P(-a|B,+e)P(+j|-a)P(+m|-a)$$

$$P(B)P(-e)P(+a|B,-e)P(+j|+a)P(+m|+a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)$$

Inference by Enumeration?

 $P(Antilock|observed\ variables) = ?$

Inference by Enumeration vs. Variable Elimination

- * Why is inference by enumeration so slow?
 - * You join up the whole joint distribution before you sum out the hidden variables

- * Idea: interleave joining and marginalizing!
 - Called "Variable Elimination"
 - Still NP-hard, but usually much faster than inference by enumeration

 First we'll need some new notation: factors

Factor Zoo

Factor Zoo I

- * Joint distribution: P(X,Y)
 - * Entries P(x,y) for all x, y
 - * Sums to 1

- Selected joint: P(x,Y)
 - * A slice of the joint distribution
 - * Entries P(x,y) for fixed x, all y
 - * Sums to P(x)

P(T, W)

Τ	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(cold, W)

Т	W	Р
cold	sun	0.2
cold	rain	0.3

Number of capitals = dimensionality of the table

Factor Zoo II

* Single conditional: $P(Y \mid x)$

• Entries $P(y \mid x)$ for fixed x, all y

* Sums to 1

P(W|cold)

Т	W	Р
cold	sun	0.4
cold	rain	0.6

* Family of conditionals:

 $P(X \mid Y)$

Multiple conditionals

* Entries $P(x \mid y)$ for all x, y

* Sums to |Y|

P(W|T)

Т	W	Р
hot	sun	0.8
hot	rain	0.2
cold	sun	0.4
cold	rain	0.6

P(W|hot)

P(W|cold

Factor Zoo III

- * Specified family: P(y | X)
 - * Entries $P(y \mid x)$ for fixed y, but for all x
 - * Sums to ... who knows!

P(rain|T)

Т	W	Р	
hot	rain	0.2	P(rain hot)
cold	rain	0.6	$\left ight P(rain cold)$

Factor Zoo Summary

- * In general, when we write $P(Y_1 ... Y_N \mid X_1 ... X_M)$
 - It is a "factor," a multi-dimensional array
 - * Its values are $P(y_1 ... y_N \mid x_1 ... x_M)$
 - Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array

Variable Elimination (VE)

Example: Traffic Domain

Random Variables

- R: Raining
- * T: Traffic
- L: Late for class!

`	1 7	
+r	+t	0.8
+r	-t	0.2
-۲	+t	0.1
-r	-t	0.9

P(L T)		
+t	+	0.3
+t	-	0.7
-t	+	0.1
_t	_	09

Inference by Enumeration: Procedural Outline

- * Track objects called factors
- * Initial factors are local CPTs (one per node)

P(T R)			
+r	+t	0.8	
+r	-t	0.2	
-r	+t	0.1	
-r	-t	0.9	

$$P(L|T)$$
 $\begin{array}{c|cccc} +t & +l & 0.3 \\ +t & -l & 0.7 \\ -t & +l & 0.1 \\ -t & -l & 0.9 \end{array}$

* E.g. if we know $L = +\ell$, the initial factors are

P(R)	
+r	0.1
-r	0.9

$$P(T|R)$$
+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

$$P(+\ell|T)$$
+t +| 0.3
-t +| 0.1

Procedure: Join all factors, then eliminate all hidden variables

Operation 1: Join Factors

- * First basic operation: joining factors
- Combining factors:
 - Just like a database join
 - * Get all factors over the joining variable
 - * Build a new factor over the union of the variables involved

* Example: Join on R

* Computation for each entry: pointwise products $\forall r,t$: $P(r,t)=P(r)\cdot P(t|r)$

Example: Multiple Joins

Example: Multiple Joins

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9

P(L|T)

0.9

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9

P(L|T)

R, T

Operation 2: Eliminate

- * Second basic operation: marginalization
- * Take a factor and sum out a variable
 - * Shrinks a factor to a smaller one
 - * A projection operation
- * Example:

+r	+t	0.08
+r	+	0.02
-r	+t	0.09
-r	-t	0.81

 $\operatorname{sum} R$

P(T)

+t	0.17
-t	0.83

Multiple Elimination

P(R,T,L)

+r	+t	+	0.024
+r	+t	-	0.056
+r	-t	+	0.002
+r	-t	-	0.018
-r	+t	+	0.027
-r	+t	-	0.063
-r	-t	+	0.081
-r	-t	-	0.729

Sum out R

0.747

Sum

Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)

Marginalizing Early (= Variable Elimination)

Traffic Domain

$$P(L) = ?$$

Inference by Enumeration

Variable Elimination

$$= \sum_{t} P(L|t) \sum_{j \text{ oin on r}} P(r)P(t|r)$$
 Soin on r Eliminate r Eliminate t

Marginalizing Early! (aka VE)

Join R

P(R)

+r	0.1
-r	0.9

P(T|R)

	+r	+t	0.8
	+r	-t	0.2
	Υ_	+t	0.1
	-r	-t	0.9
•	P(L T)		

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9

P(R,T)

+r	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

P(L|T)

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9

Sum out R

P(L|T)

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9

Join T

+t	0.17
_†	0.83

P(T,L)

+t	+	0.051
+t	-	0.119
-t	+1	0.083
-t	-	0.747

Sum out T

P(L)

+	0.134
_	0.866

Evidence

- If evidence, start with factors that select that evidence
 - * No evidence uses these initial factors:

$$P(R)$$
+r 0.1
-r 0.9

I(I Ii)				
+r	+t	0.8		
+r	-t	0.2		
-r	+t	0.1		
-r	-t	0.9		

D(T|R)

P(L|T)

* Computing P(L|+r), the initial factors become:

$$\begin{array}{|c|c|c|c|c|} P(+r) & P(T|+r) \\ \hline +r & 0.1 & +r & +t & 0.8 \\ \hline \end{array}$$

$$+r$$
 +t 0.8
+r -t 0.2

$$P(L|T)$$
+t +l 0.3
+t -l 0.7
-t +l 0.1

0.9

We eliminate all vars other than query + evidence

Evidence ctd.

- Result will be a selected joint of query and evidence
 - * E.g. for $P(L \mid +r)$, we would end up with:

- * How to get the answer?
 - * Just normalize this!

General Variable Elimination

- * Query: $P(Q|E_1 = e_1, ... E_k = e_k)$
- Start with initial factors:
 - Local CPTs (but instantiated by evidence)

- * Pick a hidden variable H
- Join all factors depending on H
- Eliminate (sum out) H

Join all remaining factors and normalize

Example

P(B)

P(E)

P(A|B,E)

P(j|A)

P(m|A)

Choose A

P(m|A)

P(j, m, A|B, E)

P(j,m|B,E)

P(E)

P(j,m|B,E)

Example ctd.

В

Choose E

$$P(E) = P(j,m|B,E)$$

P(j, m, E|B)

P(j, m|B)

Finish with B

$$P(B)$$
 $P(j,m|B)$

P(B|j,m)

Same Example in Equations

$$P(B|j,m) \propto P(B,j,m)$$

P(B) P(E) P(A|B,E) P(j|A) P(m|A)

$$P(B|j,m) \propto P(B,j,m)$$

$$= \sum_{e,a} P(B,j,m,e,a)$$

$$= \sum_{e,a} P(B)P(e)P(a|B,e)P(j|a)P(m|a)$$

$$= \sum_{e,a} P(B)P(e)\sum_{a} P(a|B,e)P(j|a)P(m|a)$$
*use Bayes' net joint definition of the sum of the

 $= P(B) \sum_{e} P(e) f_1(B, e, j, m)$

 $= P(B) f_2(B, j, m)$

- *marginal can be obtained from joint by summing out
- *use Bayes' net joint distribution expression
- ♦joining on a, and then summing out gives f₁
- $use x^*(y+z) = xy + xz$
- *joining on e, and then summing out gives f₂

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!

Another Variable Elimination Example

Query:
$$P(X_3|Y_1 = y_1, Y_2 = y_2, Y_3 = y_3)$$

Start by inserting evidence, which gives the following initial factors:

$$p(Z)p(X_1|Z)p(X_2|Z)p(X_3|Z)p(y_1|X_1)p(y_2|X_2)p(y_3|X_3)$$

Eliminate X_1 , this introduces the factor $f_1(Z, y_1) = \sum_{x_1} p(x_1|Z)p(y_1|x_1)$, and we are left with:

$$p(Z)f_1(Z,y_1)p(X_2|Z)p(X_3|Z)p(y_2|X_2)p(y_3|X_3)$$

Eliminate X_2 , this introduces the factor $f_2(Z, y_2) = \sum_{x_2} p(x_2|Z)p(y_2|x_2)$, and we are left with:

$$p(Z)f_1(Z,y_1)f_2(Z,y_2)p(X_3|Z)p(y_3|X_3)$$

Eliminate Z, this introduces the factor $f_3(y_1, y_2, X_3) = \sum_z p(z) f_1(z, y_1) f_2(z, y_2) p(X_3|z)$, and we are left:

$$p(y_3|X_3), f_3(y_1, y_2, X_3)$$

No hidden variables left. Join the remaining factors to get:

$$f_4(y_1, y_2, y_3, X_3) = P(y_3|X_3)f_3(y_1, y_2, X_3).$$

Normalizing over X_3 gives $P(X_3|y_1,y_2,y_3)$.

Computational complexity critically depends on the largest factor being generated in this process. Size of factor = number of entries in table. In example above (assuming binary) all factors generated are of size 2 --- as they all only have one variable (Z, Z, and X_3 resp.).

Quiz: Variable Elimination Ordering

- Assume all variables are binary.
- * For the query $P(X_n | y_1,...,y_n)$ work through the following two different orderings as done in previous slide: Z, X_1 , ..., X_{n-1} and X_1 , ..., X_{n-1} , Z.

- What is the size of the maximum factor generated for each of the orderings?
- In general, the ordering can greatly affect efficiency.

VE: Computational and Space Complexity

* The computational and space complexity of variable elimination is determined by the largest factor

- * The elimination ordering can greatly affect the size of the largest factor.
 - * E.g., previous slide's example O(2n) vs. O(1)

- * Does there always exist an ordering that only results in small factors?
 - * No!

Worst Case Complexity?

* CSP:

 $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_2 \lor x_4) \land (\neg x_3 \lor \neg x_4 \lor \neg x_5) \land (x_2 \lor x_5 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (\neg x_5 \lor x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (x_4 \lor x_6) \land (x_4 \lor x_6) \land (x_4 \lor x_6) \lor (x$

$$P(X_i = 0) = P(X_i = 1) = 0.5$$

$$Y_1 = X_1 \lor X_2 \lor \neg X_3$$

$$Y_8 = \neg X_5 \lor X_6 \lor X_7$$

$$Y_{1,2} = Y_1 \land Y_2$$

$$Y_{7,8} = Y_7 \land Y_8$$

$$Y_{1,2,3,4} = Y_{1,2} \land Y_{3,4}$$

 $Y_{5,6,7,8} = Y_{5,6} \wedge Y_{7,8}$

 $Z = Y_{1,2,3,4} \wedge Y_{5,6,7,8}$

- * If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.
- * Hence inference in Bayes' nets is NP-hard. No known efficient probabilistic inference in general.

Polytrees

A polytree is a directed graph with no undirected cycles

- For poly-trees you can always find an ordering that is efficient
 - Try it!!
- Cut-set conditioning for Bayes' net inference
 - * Choose set of variables such that if removed only a polytree remains
 - Exercise: Think about how the specifics would work out!

Bayes' Nets

- Representation
- **✓**Conditional Independences
 - * Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - ✓ Variable elimination (exact, worst-case exponential complexity, often better)
 - ❖ Probabilistic inference is NP-complete
 - Approximate inference (sampling)