

Unit 3: Simple and exponential smoothing

Jyothi R.

Department of Computer Science and Engineering

Introduction to Simple and exponential smoothing

- 1. Moving Average
- 2. Single Exponential Smoothing (ES)
- Double Exponential Smoothing HOLT'S Method.
- 4. Triple Exponential Smoothing (HOLT-WINTER Model)

Introduction to Simple and exponential smoothing contd

- This chapter introduces models applicable to time series data with seasonal, trend, or both seasonal and trend component and stationary data.
- Forecasting methods discussed in this chapter can be classified as:
- Averaging methods.
- Equally weighted observations
- Exponential Smoothing methods.
- Unequal set of weights to past data, where the weights decay exponentially from the most recent to the most distant data points.
 - All methods in this group require that certain parameters to be defined.

These parameters (with values between 0 and 1) will determine the unequal weights to be applied to past data.

Moving Average

- If a time series is generated by a constant process subject to random error, then mean is a useful statistic and can be used as a forecast for the next period.
- Averaging methods are suitable for stationary time series data where the series is in equilibrium around a constant value (the underlying mean) with a constant variance over time.

Averaging Methods

- The Mean
 - Uses the average of all the historical data as the forecast

$$F_{t+1} = \frac{1}{t} \sum_{i=1}^{t} y_{i}$$

 When new data becomes available, the forecast for time t+2 is the new mean including the previously observed data plus this new observation.

$$F_{t+2} = \frac{1}{t+1} \sum_{i=1}^{n} y_{i}$$

 This method is appropriate when there is no noticeable trend or seasonality.

Averaging Methods

- The moving average for time period t is the mean of the "k" most recent observations.
- The constant number k is specified at the outset.
- The smaller the number k, the more weight is given to recent periods.
- The greater the number k, the less weight is given to more recent periods.

Moving Averages

- A large k is desirable when there are wide, infrequent fluctuations in the series.
- A small k is most desirable when there are sudden shifts in the level of series.
- For quarterly data, a four-quarter moving average, MA(4), eliminates or averages out seasonal effects.

Moving Averages

- For monthly data, a 12-month moving average, MA(12), eliminate or averages out seasonal effect.
- Equal weights are assigned to each observation used in the average.
- Each new data point is included in the average as it becomes available, and the oldest data point is discarded.

Moving Averages

A moving average of order k, MA(k) is the value of k consecutive observations.

$$F_{t+1} = \hat{y}_{t+1} = \frac{(y_t + y_{t-1} + y_{t-2} + \Box + y_{t-k+1})}{K}$$

$$F_{t+1} = \frac{1}{k} \sum_{i=t-k+1}^{t} y_{i}$$

K is the number of terms in the moving average.

The moving average model does not handle trend or seasonality very well although it can do better than the total mean.

Example: Weekly Department Store Sales

The weekly sales figures (in millions of dollars) presented in the following table are used by a major department store to determine the need for temporary sales personnel.

Period(t)	Sales (y)
1	5.3
2	4 . 4
3	5 . 4
4	5 . 8
5	5 . 6
6	4 . 8
7	5 . 6
8	5 . 6
9	5 . 4
1 0	6 . 5
1 1	5 . 1
1 2	5 . 8
1 3	5
1 4	6 . 2
1 5	5 . 6
1 6	6 . 7
1 7	5 . 2
1 8	5 . 5
1 9	5 . 8
2 0	5 . 1
2 1	5 . 8
2 2	6 . 7
2 3	5 . 2
2 4	6
2 5	5 . 8

Doriod(t)

Example: Weekly Department Store Sales

Example: Weekly Department Store Sales

 Use a three-week moving average (k=3) for the department store sales to forecast for the week 24 and 26.

$$\hat{y}_{24} = \frac{(y_{23} + y_{22} + y_{21})}{3} = \frac{5.2 + 6.7 + 5.8}{3} = 5.9$$

The forecast error is

$$\bullet$$
 $e_{24} = y_{24} - y_{24} = 6 - 5.9 = .1$

Example: Weekly Department Store Sales

Example: Weekly Department Store Sales

Exponential smoothing methods

- The simplest exponential smoothing method is the single smoothing (SES)
 method where only one parameter needs to be estimated
- Holt's method makes use of two different parameters and allows forecasting for series with trend.
- Holt-Winters' method involves three smoothing parameters to smooth the data, the trend, and the seasonal index.

Example: Weekly Department Store Sales

The forecast for the week 26 is

$$\hat{y}_{26} = \frac{y_{25} + y_{24} + y_{23}}{3} = \frac{5.8 + 6 + 5.2}{3} = 5.7$$

Example: Weekly Department Store Sales

	Λ	\frown			\sim	\sim
H	./L	_	_	_	()	63
1 / 1	V I	\smile	_	_	v.	$\cdot \cup \cup$

Weekly Sales Forecasts

	Period (t)	Sales (y)	forecast
	1	5.3	
	2	4 . 4	
	3	5 . 4	
	4	5 . 8	5.033333
	5	5 . 6	5.2
	6	4 . 8	5.6
	7	5 . 6	5.4
	8	5 . 6	5.333333
	9	5 . 4	5.333333
	1 0	6.5	5.533333
	1 1	5 . 1	5.833333
	1 2	5 . 8	5.66667
	1 3	5	5.8
s	1 4	6.2	5.3
	1 5	5 . 6	5 . 6 6 6 6 6 7
as			
_			
	1 6	6 . 7	5.6
	1 7	5 . 2	6.166667
	1 8	5 . 5	5.833333
	1 9	5 . 8	5.8
	2 0	5 . 1	5.5
	2 1	5 . 8	5.46667
	2 2	6 . 7	5.566667
	2 3	5 . 2	5.866667
	2 4	6	5.9
	2 5	5 . 8	5.966667
			5.666667

Exponential Smoothing Methods

- This method provides an exponentially weighted moving average of all previously observed values.
- Appropriate for data with no predictable upward or downward trend.
- The aim is to estimate the current level and use it as a forecast of future value.

Exponential Smoothing Methods

Formally, the exponential smoothing equation is

$$F_{t+1} = \alpha y_t + (1 - \alpha)F_t$$

 $F_{t+1} =_{\text{lorecast for the next period.}}$

- α = smoothing constant.
- y_t = observed value of series in period t.

 F_t old forecast for period t.

The forecast F_{t+1} is based on weighting the most recent observation y_t with a weight α and weighting the most recent forecast F_t with a weight of 1- α

Simple Exponential Smoothing Method

The implication of exponential smoothing can be better seen if the previous equation is expanded by replacing F_t with its components as follows:

$$\begin{split} F_{t+1} &= \alpha \ y_t + (1-\alpha)F_t \\ &= \alpha \ y_t + (1-\alpha)[\alpha \ y_{t-1} + (1-\alpha)F_{t-1}] \\ &= \alpha \ y \ + \alpha(1-\alpha)y \ + (1-\alpha)^2 F_{t-1} \end{split}$$

Simple Exponential Smoothing Method

• If this substitution process is repeated by replacing F_{t-1} by its components, F_{t-2} by its components, and so on the result is:

$$F_{t+1} = \alpha y_{t} + \alpha (1-\alpha) y_{t-1} + \alpha (1-\alpha)^{2} y_{t-2} + \alpha (1-\alpha)^{3} y_{t-3} + \dots + \alpha (1-\alpha)^{t-1} y_{t-1}$$

■ Therefore, F_{t+1} is the weighted moving average of all past observations.

Simple Exponential Smoothing Method

The following table shows the weights assigned to past observations for α = 0.2, 0.4, 0.6, 0.8, 0.9

Weight assigned to	0.2	0.4	0.6	0.8	0.9
Y _t	0.2	0.4	0.6	0.8	0.9
Yt-1	0.2(1-0.2)	0.4(1-0.4)	0.6(1-0.6)		
Yt-2	$0.2(1-0.2)^2$	$0.4(1-0.4)^2$	$0.6(1-0.6)^2$		
Yt-3	0.2(1-0.2) ³	0.4(1-0.4) ³	0.6(1-0.6) ³		
Yt-4	0.2(1-0.2)4	0.4(1-0.4)4	0.6(1-0.6) ⁴		
Yt-5	0.2(1-0.2) ⁵	0.4(1-0.4) ⁵	0.6(1-0.6) ⁵		

Simple Exponential Smoothing Method

The exponential smoothing equation rewritten in the following form elucidate the role of weighting factor $\alpha = 0.2, 0.4, 0.6, 0.8, 0.9$

$$F_{t+1} = F_t + \alpha (y_t - F_t)$$

 Exponential smoothing forecast is the old forecast plus an adjustment for the error that occurred in the last forecast.

Simple Exponential Smoothing Method

- The value of smoothing constant α must be between 0 and 1
- \bullet α can not be *equal* to 0 or 1.
- If stable predictions with smoothed random variation is desired then a small value of α is desire.
- If a rapid response to a real change in the pattern of observations is desired, a large value of α is appropriate.

Simple Exponential Smoothing Method

- ullet To estimate α , Forecasts are computed for
 - α equal to .1, .2, .3, ..., .9 and the sum of squared forecast error is computed for each.
- The value of α with the smallest RMSE is chosen for use in producing the future forecasts.

Simple Exponential Smoothing Method

To start the algorithm, we need F₁ because

$$F_2 = \alpha y_1 + (1 - \alpha) F_1$$

- Since F₁ is not known, we can
 - Set the first estimate equal to the first observation.
 - Use the average of the first five or six observations for the initial smoothed value.

Example: University of Michigan Index of Consumer Sentiment

- University of Michigan Index of Consumer Sentiment for January1995- December1996.
- we want to forecast the University
 of Michigan Index of Consumer
 Sentiment using Simple
 Exponential Smoothing Method.

Date	Observed
Jan-95	97.6
Feb-95	95.1
Mar-95	90.3
Apr-95	92.5
May-95	89.8
Jun-95	92.7
Jul-95	94.4
Aug-95	96.2
Sep-95	88.9
Oct-95	90.2
Nov95	88.2
Dec-95	91
Jan-96	89.3
Feb-96	88.5
Mar-96	93.7
Apr-96	92.7
May-96	94.7
Jun-96	95.3
Jul-96	94.7
Aug-96	95.3
Sep-96	94.7
Oct-96	96.5
Nov96	99.2
Dec-96	96.9
Jan-97	

Example: University of Michigan Index of Consumer Sentiment

- Since no forecast is available for the first period, we will set the first estimate equal to the first observation.
- We try α =0.3, and 0.6.

Example: University of Michigan Index of Consumer Sentiment

- Note the first forecast is the first observed value.
- The forecast for Feb. 95 (t
 = 2) and Mar. 95 (t = 3) are
 evaluated as follows:

$$y_{t+1} = y_t + \alpha (y_t - y_t)$$

 $y_2 = y_1 + 0.6(y_1 - y_1) = 97.6 + 0.6(97.6 - 97.6) = 97.6$
 $y_3 = y_2 + 0.6(y_2 - y_2) = 97.6 + 0.6(95.1 - 97.6) = 96.1$

Date	Consumer Sentiment Alpha = 0	. 3	O N L I N A I p h a = 0 . 6
Jan-95	97.6	#N/A	# N / A
Feb-95	95.1	97.60	97.60
Mar-95	90.3	96.85	96.10
Apr-95	92.5	94.89	92.62
May-95	89.8	94.17	92.55
Jun-95	92.7	92.86	90.90
Jul-95	94.4	92.81	91.98
A u g - 9 5	96.2	93.29	93.43
Sep-95	88.9	94.16	95.09
Oct-95	90.2	92.58	91.38
Nov-95	88.2	91.87	90.67
Dec-95	9 1	90.77	89.19
Jan-96	89.3	90.84	90.28
Feb-96	88.5	90.38	89.69
Mar-96	93.7	89.81	88.98
Apr-96	92.7	90.98	91.81
May-96	89.4	91.50	92.34
Jun-96	92.4	90.87	90.58
Jul-96	94.7	91.33	91.67
A u g - 9 6	95.3	92.34	93.49
Sep-96	94.7	93.23	94.58
Oct-96	96.5	93.67	94.65
Nov-96	99.2	94.52	95.76
Dec-96	96.9	95.92	97.82
Jan-97	97.4	96.22	97.27
	99.7	96.57	97.35
Feb-97 Mar-97	100	97.51	98.76
		98.26	99.50
Apr-97	101.4	99.20	100.64
May-97	103.2	100.40	100.64
Jun-97	104.5	101.63	102.18
Jul-97	107.1	101.63	103.57
Aug-97	104.4		
Sep-97	106	103.61	104.92
Oct-97	105.6	104.33	105.57
N o v - 9 7	107.2	104.71	105.59
Dec-97	102.1	105.46	106.55

Example: University of Michigan Index of Consumer Sentiment

- RMSE = 2.66 for $\alpha = 0.6$
- RMSE = 2.96 for $\alpha = 0.3$

University of Michigan Index of Consumer sentiments

- Holt's two parameter exponential smoothing method is an extension of simple exponential smoothing.
- It adds a growth factor (or trend factor) to the smoothing equation as a way of adjusting for the trend.

Holt's Exponential smoothing

- Three equations and two smoothing constants are used in the model.
 - The exponentially smoothed series or current level estimate.

$$L_{t} = \alpha y_{t} + (1 - \alpha)(L_{t-1} + b_{t-1})$$

The trend estimate.

$$b_{t} = \beta (L_{t} - L_{t-1}) + (1 - \beta)b_{t-1}$$

Forecast m periods into the future.

$$F_{t+m} = L_t + mb_t$$

- L_t = Estimate of the level of the series at time t
- α = smoothing constant for the data.
- $y_t = \text{new observation or actual value of series in period t.}$
- β = smoothing constant for trend estimate
- b_t = estimate of the slope of the series at time t
- m = periods to be forecast into the future.

- The weight α and β can be selected subjectively or by minimizing a measure of forecast error such as RMSE.
- Large weights result in more rapid changes in the component.
- Small weights result in less rapid changes.

- The initialization process for Holt's linear exponential smoothing requires two estimates:
 - One to get the first smoothed value for L₁
 - The other to get the trend b₁.
- One alternative is to set $L_1 = y_1$ and

$$b_{1} = y_{2} - y_{1} \quad o \quad r$$

$$b_{1} = \frac{y_{4} - y_{1}}{3}$$

$$o \quad r$$

$$b_{1} = 0$$

Example: Quarterly sales of saws for Acme tool company

PES UNIVERSITY ONLINE

- The following table shows the sales of saws for the Acme tool Company.
- These are quarterly sales From 1994 through 2000.

Year	Quarter	t	sales
1994	1	1	500
	2	2	350
	3	3	250
	4	4	400
1995	1	5	450
	2	6	350
	3	7	200
	4	8	300
1996	1	9	350
	2	10	200
	3	11	150
	4	12	400
1997	1	13	550
	2	14	350
	3	15	250
	4	16	550
1998	1	17	550
	2	18	400
	3	19	350
	4	20	600
1999	1	21 22	750
	2		500
	3	23	400
	4	24	650
2000	1	25	850
	2	26	600
	3	27	450
	4	28	700

Example: Quarterly sales of saws for Acme tool company

- Examination of the plot shows:
 - A non-stationary time series data.
 - Seasonal variation seems to exist.
 - Sales for the first and fourth quarter are larger than other quarters.

Sales of saws for the Acme Tool Company: 1994-2000

Example: Quarterly sales of saws for Acme tool company

- The plot of the Acme data shows that there might be trending in the data therefore we will try Holt's model to produce forecasts.
- We need two initial values
 - The first smoothed value for L₁
 - The initial trend value b₁.
- We will use the first observation for the estimate of the smoothed value L_1 , and the initial trend value $b_1 = 0$.
- We will use $\alpha = .3$ and $\beta = .1$.

Example: Quarterly sales of saws for Acme tool company

Year	Quarter	t	sales	Lt	b _t	F _{t+m}
1994	1	1	500	500.00	0.00	500.00
	2	2	350	455.00	-4.50	500.00
	3	3	250	390.35	-10.52	450.50
	4	4	400	385.88	-9.91	379.84
1995	1	5	450	398.18	-7.69	375.97
	2	6	350	378.34	-8.90	390.49
	3	7	200	318.61	-13.99	369.44
	4	8	300	303.23	-14.13	304.62
1996	1	9	350	307.38	-12.30	289.11
	2	10	200	266.55	-15.15	295.08
	3	11	150	220.98	-18.19	251.40
	4	12	400	261.95	-12.28	202.79
1997	1	13	550	339.77	-3.27	249.67
	2	14	350	340.55	-2.86	336.50
	3	15	250	311.38	-5.49	337.69
	4	16	550	379.12	1.83	305.89
1998	1	17	550	431.67	6.90	380.95
	2	18	400	427.00	5.74	438.57
	3	19	350	407.92	3.26	432.74
	4	20	600	467.83	8.93	411.18
1999	1	21	750	558.73	17.12	476.75
	2	22	500	553.10	14.85	575.85
	3	23	400	517.56	9.81	567.94
	4	24	650	564.16	13.49	527.37
2000	1	25	850	659.35	21.66	577.65
	2	26	600	656.71	19.23	681.01
	3	27	450	608.16	12.45	675.94
	4	28	700	644.43	14.83	620.61

Holt's Exponential smoothing

RMSE for this application is:

$$\alpha = .3 \text{ and } \beta = .1$$
RMSE = 155.5

 The plot also showed the possibility of seasonal variation that needs to be investigated.

Quarterly Saw Sales Forecast Holt's Method

Winter's Exponential Smoothing

- Winter's exponential smoothing model is the second extension of the basic Exponential smoothing model.
- It is used for data that exhibit both trend and seasonality.
- It is a three parameter model that is an extension of Holt's method.
- An additional equation adjusts the model for the seasonal component.

Winter's Exponential Smoothing

- The four equations necessary for Winter's multiplicative method are:
 - The exponentially smoothed series:

$$L = \alpha \frac{y_t}{S_t} + (1 - \alpha)(L + b_{t-1})$$

■ The trend estimate:

$$b_{t} = \beta (L_{t} - L_{t-1}) + (1 - \beta)b_{t-1}$$

■ The seasonality estimate:

$$S_{t} = \gamma \frac{t}{L_{t}} + (1 - \gamma)S_{t-s}$$

Winter's Exponential Smoothing

$$F_{t+m} = (L_t + mb_t)S_{t+m-s}$$

- L_t = level of series.
- α = smoothing constant for the data.
- $y_t = \text{new observation or actual value in period t.}$
- β = smoothing constant for trend estimate.
- b_t = trend estimate.
- γ = smoothing constant for seasonality estimate.
- S_t = seasonal component estimate.
- m = Number of periods in the forecast lead period.
- s = length of seasonality (number of periods in the season)

 F_{t+m} = forecast for m periods into the future.

Winter's Exponential Smoothing

- As with Holt's linear exponential smoothing, the weights α , β , and γ can be selected subjectively or by minimizing a measure of forecast error such as RMSE.
- As with all exponential smoothing methods, we need initial values for the components to start the algorithm.
- To start the algorithm, the initial values for L_t , the trend b_t , and the indices S_t must be set.

Winter's Exponential smoothing

- To determine initial estimates of the seasonal indices we need to use at least one complete season's data (i.e. s periods). Therefore, we initialize trend and level at period s.
- Initialize level as:

$$L = \frac{1}{s}(y_1 + y_2 + \cdots y)$$

Initialize trend as

$$b_{s} = \frac{1}{s} \left(\frac{y_{s+1} - y_{1}}{s} + \frac{y_{s+2} - y_{2}}{s} + \dots + \frac{y_{s+s} - y_{s}}{s} \right)$$

Initialize seasonal indices as:

$$S_1 = \frac{y_1}{L_s}, S_2 = \frac{y_2}{L_s}, \dots, S_s = \frac{y_s}{L_s}$$

Winter's Exponential smoothing

- We will apply Winter's method to Acme Tool company sales. The value for α is
 - .4, the value for β is .1, and the value for γ is .3.
- ullet The smoothing constant lpha smoothes the data to eliminate randomness.
- The smoothing constant β smoothes the trend in the data set.

Winter's Exponential smoothing

- The smoothing constant γ smoothes the seasonality in the data.
- $\hbox{ The initial values for the smoothed series L_t, the trend b_t, and the seasonal index S_t must be set. }$

Example: Quarterly Sales of Saws for Acme tool

Year	Quarter	t	sales	L _t	b _t	S t	F _{t+m}
1994	1	1	500			1.333333	
	2	2	350			0.933333	
	3	3	250			0.666667	
	4	4	400	375	-12.5	1.066667	
1995	1	5	450	396.9667	-9.05333	1.273412	483.3333
	2	6	350	372.3747	-10.6072	0.935307	362.0524
	3	7	200	296.7938	-17.1046	0.668827	241.1783
	4	8	300	287.3869	-16.3348	1.059833	298.3352
1996	1	9	350	302.1219	-13.2278	1.23893	345.161
	2	10	200	252.9623	-16.821	0.891905	270.2048
	3	11	150	201.4173	-20.2934	0.691596	157.9377
	4	12	400	268.2504	-11.5807	1.189227	191.9611
1997	1	13	550	373.5062	0.102908	1.309011	317.9958
	2	14	350	363.8087	-0.87713	0.912946	333.2237
	3	15	250	317.4823	-5.42206	0.720351	251.002
	4	16	550	406.7605	4.047961	1.238103	371.1103
1998	1	17	550	465.9614	9.563264	1.270414	537.7528
	2	18	400	444.9496	6.505758	0.908756	434.1286
	3	19	350	410.5851	2.418728	0.759978	325.2062
	4	20	600	487.3071	9.84905	1.236049	511.3412
1999	1	21	750	597.7855	19.91199	1.265679	631.5942
	2	22	500	570.255	15.16774	0.899169	561.3363
	3	23	400	510.9496	7.720431	0.766841	444.9085
	4	24	650	570.7076	12.92419	1.206915	641.1016
2000	1	25	850	689.6728	23.52829	1.255716	738.6906
	2	26	600	667.561	18.96428	0.899057	641.2886
	3	27	450	591.6084	9.472591	0.764981	526.4561
	4	28	700	640.1658	13.38107	1.172881	725.4539

Example: Quarterly Sales of Saws for Acme tool

RMSE for this application is:

$$\alpha = 0.4, \ \beta = 0.1, \ \gamma = 0.3 \ \text{and}$$

RMSE = 83.36

Note the decrease in RMSE.

Quarterly Saw Sales Forecas:t Winter's Method

Quarters

Additive Seasonality

- The seasonal component in Holt-Winters' method.
- The basic equations for Holt's Winters' additive method are:

$$L_{t} = \alpha(y_{t} - S_{t-s}) + (1 - \alpha)(L_{t-1} + b_{t-1})$$

$$b_{t} = \beta (L_{t} - L_{t-1}) + (1 - \beta)b_{t-1}$$

$$S_{t} = \gamma (y_{t} - L_{t}) + (1 - \gamma)S_{t-s}$$

$$F_{t+m} = L_{t} + b_{t}m + S_{t+m-s}$$

Additive Seasonality

- The initial values for L_s and b_s are identical to those for the multiplicative method.
- To initialize the seasonal indices we use

$$S_1 = y_1 - L_s$$
, $S_2 = y_2 - L_s$, ..., $S_s = Y_s - L_s$

References

Text Book:

"Business Analytics, The Science of Data-Driven Making", U. Dinesh Kumar, Wiley 2017
Chapter-13

Image Courtesy

https://www.abs.gov.au/websitedbs/D3310114.nsf/home/Time+Series+Analysis:+The+Basics

THANK YOU

Jyothi R

Assistant Professor, Department of Computer Science

jyothir@pes.edu