

GALACTIC GEOMETRY AND THE ROTATION OF THE MILKY WAY

Octavio Vega

Tuesday, December 7, 2021

8.13 Experimental Physics 1 – Fall 2021

Experimental Goals

- Derive a Rotation Curve of the Milky Way
- Compare results with predictive models
 - •i.e. classical models vs. newer models
 - •What do they reveal?

Theory of Gravitation and Rotation

- What we know: centripetal forces
 - Newton's law of gravitation $\leftarrow \rightarrow$ centripetal force:

$$\frac{mv^2}{r} = \frac{GmM}{r^2} \Rightarrow v(r) = \sqrt{\frac{GM}{r}}$$
Hence, Keplerian prediction: $v(r) \sim \frac{1}{\sqrt{r}}$

- What about *internal* to central object?

$$M(r) = \rho \frac{4}{3}\pi r^3 \Rightarrow v(r) = \sqrt{\frac{\rho G 4\pi r^2}{3}}$$

Hence, solid mass prediction: $v(r) \sim r$

Theoretical Models of Rotation Curves

Keplerian:

$$v(r) \sim \frac{1}{\sqrt{r}}$$

Solid Mass:

$$v(r) \sim r$$

Computing Velocities – Geometry of the Galaxy

• Radius:

$$r = R_0 \sin \frac{l\pi}{180'}$$

Doppler Shift:

$$v_{shift} = c \frac{f_0 - f_{red}}{f_0}$$

Max radial velocity along line of sight:

$$v_{max} = c \frac{f_0 - f_{red}}{f_0} - v_{lsr}$$

Galactic velocity:

$$v(r) = v_{max} + v_0 \sin \frac{l\pi}{180}$$

Theory of the 21cm Line of Hydrogen

- Optical light often suffers from absorption from stars and interstellar dust
 - Use instead the radio-wave range
- Quantum mechanics: discrete angular momentum → parallel & antiparallel states allowed
 - Electron transitions between two states of the 1s H atom configuration -> spin flip
 - Energy $E=hf_0$, 21cm line frequency given by $f_0=1420.4~\mathrm{MHz}$

Small Radio Telescope (SRT) Apparatus

(See Appendix C for Circuitry)

Intensity Spectra and Fitting to the Background

Background-Subtracted Fits to the Red Shift

Comparing Our Rotation Curve with Other Observations

Fitting Velocity Data to Two Models of Rotation

Comparing Rotation Curve Model Fits

Results and Discussion of Errors

$$\chi^2_{kep} = 21.293 > 2.123 = \chi^2_{dark}$$

We find a much stronger fit for the 'dark matter' model

Statistical

- Not all longitudes scanned as often as others
- Fewer sessions of data gathering than desired
- Various sources of noise in the galactic plane at different times

Systematic

- Some low-longitude scans performed on longitudes that were partially/becoming invisible due to out of bonds of telescope view
- Fit function for red-shift frequency not precisely determined; only by inspection
- Days of data taking experienced varying weather

Summary, Conclusion, and Future Steps

What have we accomplished?

- Derived an experimental velocity curve for the milky way
- Explored its relationship to other models of rotational velocity
- Confirmed that a 'dark matter' model fits the results better
- Showed that 21cm technique is useful for studying the Milky Way

• Where can these results lead?

- Probing the true mass density of potential dark matter
- Constructing the spiral-arm structure of the milky way

Acknowledgements

- My lab partner, Luke Gianni, for his collaboration on this project
- The 8.13 teaching staff for their instruction and aid in the lab
- MIT's lab facilities and equipment

THANKYOU!

Appendix A: Data Collecting Scheme

Appendix B: Telescope and Experimental Procedure

Appendix C: SRT Signal Chain

Appendix D: Functional Form for Fitting

$$f(x) = a_1 e^{\frac{-(x-\mu_1)^2}{2\sigma_1^2}} + a_2 e^{\frac{-(x-\mu_2)^2}{2\sigma_2^2}} + a_3 e^{\frac{-(x-\mu_3)^2}{2\sigma_3^2}} + a_4 e^{\frac{-(x-\mu_4)^2}{2\sigma_4^2}} + b$$