Detecção de Domínios Maliciosos

Universidade Federal do Paraná - UFPR

Abner Fontebom Bissolli Costa Michele Venturin

Dataset Escolhido e Distribuição dos Dados

Detaset e Motivação

• Dataset:

Conjunto 1M de domínios, previamente classificados como benignos, malware, phishing e spam. (CIC-Bell-DNS2021)

Motivação:

"A cada ano, muitas grandes corporações são afetadas por essas ameaças, resultando em enormes perdas financeiras em um único ataque. Portanto, detectar e classificar um domínio malicioso em tempo hábil é essencial."

Exemplos

Domínio	Class. Multiclasse	Class. Binária	
stockholm.se	Benigno	Benigno	
ahackaday.io	Benigno	Benigno	
arrow.com	Benigno	Benigno	
paypal.de.daten.sicherheit-benutzer.top	Malware	Malicioso	
businessbattle.tk	Phishing	Malicioso	
k-slee.com	Spam	Malicioso	

Problema

• Problema:

Classificar corretamente domínios entre benignos e maliciosos, sem gerar muitos falsos alertas e ao mesmo tempo bloquear uma quantidade significante de domínios maliciosos

• Proposta:

Gerar um algoritmo classificar que atuará em juntamente com uma lista branca.

Distribuição dos Dados

Atributos e Características

Atributos

Os atributos foram gerados utilizando a biblioteca *tld* para Python3, a qual realiza o parsing do domínio.

second level domain (SLD)

www.bookmark.com/
subdomain top level domain (TLD)

Características

Características Léxicas (45)

Tamanho Subdomínio+SLD.

Entropia da string.

Número de caracteres não alfanuméricos ('.' e '-')

Valor TF-IDF do TLD.

Tamanho da maior sequência de mesmos caracteres.

Características de Terceiros (13)

Nº de nomes registrados

Informações Privadas

Valor TF-IDF do TLD.

Nº de servidores registrado.

Menor distância do SLD para SLD famosos (Alexa Rank).

Codificação e Normalização

 Para a codificação de características textuais, foram utilizados os algoritmos TF-IDF e LabelEncoder (sklearn), com pequenas modificações.

 Após a codificação das variáveis textuais, foi realizada uma normalização utilizando utilizando a função Normalizer (sklearn).

Algoritmos Testados

Algoritmos Testados

Florestas Randômicas

Parâmetro	Definição
n_estimators	1000
max_depth	30
class_weight	"balanced"
random_state	42

Perceptron Multicamadas (MLP)

Parâmetro	Definição
n_neighbors	8
metric	"minkowski"
weights	"uniform"

K-Nearest Neighbors (KNN)

Parâmetro	Definição
hidden_layer_sizes	(50, 100, 50)
random_state	42
max_iter	1000
learning_rate_init	0.001
learning_rate	"adaptive"
validation_fraction	0.1
batch_size	32
early_stopping	True
verbose	True

Algoritmos Testados - *Tuning*

MLP - Loss Value

MLP - Validation Score

Algoritmos Testados - *Tuning*

KNN - Número de Vizinhos

Limiares definidos

Algoritmo	Limiar
Florestas Randômicas	0.435
MLP	0.466
KNN	0.4

Algoritmos Testados - Importância das Características

Características Léxicas:

70%

Características de Terceiros:

30%

Algoritmos Testados - Importância das Características

Número de Nomes Registrados.

Idade do Domínio.

Número de Servidores Registrados.

Número de Registradores Registrados.

Tamanho do SSD.

Menor número de caracteres distintos que compõe a maioria do SSD.

Tamanho da maior sequência de mesmos caracteres no SUB.

Tamanho do SUB.

Porcentagem do SSD que os 5 caracteres mais utilizados compreendem.

Menor Distância do SLD para SLD Famosos.

Resultados e Análise

Resultados - Métricas

Algoritmo	Acurácia	Precision	Recall	F1-Score
Florestas Randômicas	0.799	0.799	0.798	0.799
Neurônio Multicamadas	0.797	0.798	0.795	0.796
K-Nearest Neighbors	0.763	0.748	0.792	0.769

Algoritmo	Pasta 1	Pasta 2	Pasta 3	Pasta 4	Pasta 5	Média
Florestas Randômicas	0.799	0.796	0.797	0.793	0.797	0.796
Neurônio Multicamadas	0.792	0.788	0.793	0.786	0.794	0.791
K-Nearest Neighbors	0.772	0.769	0.771	0.764	0.765	0.768

Resultados - Matrizes de Confusão

Resultados - Curvas ROC

Análise

• Através dos algoritmos testados, foi possível observar que todos os resultados ficam próximos a 80%.

• Este fato nos levou a acreditar que as características geradas não são capazes de solucionar o problema.

Análise

 Apenas dois tipos de características foram utilizadas léxicas e de terceiro. No entanto outras características podem ser exploradas, como dados da seção de resposta da resposta do DNS.

 Também é possível utilizar redes neurais recorrentes com palavras ou subdivisões do domínio, ou então utilizando técnicas como n-grams.

Demonstração

Amazon (2021). Top 1M domains.
 http://s3.amazonaws.com/alexa-static/top-1m.csv.zip.
 Acessado em 07/12/2021.

• Bezerra, M. A. et al. (2015). Uma investigação do uso de características na detecção de urls.

• Davison, J., Moffitt, T., and and, H. L. (2019). Webroot cybersecurity. threat report - mid-year update.

 Mahdavifar, S., Maleki, N., Lashkari, A. H., Broda, M., and Razavi, A. H. (2021). Classifying malicious domains using dns traffic analysis.

Olivo, C. K., Santin, A., and Oliveira, L. (2010).
 Avaliação de características para detecção de phishing de e-mail. Pontifícia Universidade Católica do Paraná,
 Curitiba-PR, Brasil.

Ceschin, F., Oliveira, L. S., and Grégio, A. (2019).
 Aprendizado de máquina para segurança: Algoritmos e aplicações. Em Minicursos do XIX Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais.
 Capítulo 2, páginas 41-90. SBSeg.