We understand air-sea exchange,

iron cycle and weathering

State of today

- Choose between two setups:
 - OMIP if lomip
 - Schmidt-numbers and Solubility as in OMIP CMIP6 Protocol
 - Based on Wannikhof (2014)
 - NOT OMIP if not.lomip
 - Older model version, older references; just backup; won't stay in code
- Choose where to calc CO2flux:
 - atmospheric side in ECHAM (see ECHAM mo_co2.f90)
 - ocean side in HAMOCC carchm.f90
 - → difference in coupling frequency

carchm.f90

Air-sea exchange implementation

carchm.f90

Air-sea exchange: The concept

• $X = CO_2$, O_2 , DMS, N_2 , N_2O concentation in ocean [ppmv]

- S_X = Solubility in seawater Meerwasserlöslichkeit
- $V_X = a \left(\frac{Sc}{660}\right)^{-1/2} u^2 (1 f_i)$ transfer velocity [m/s]
- Sc =Schmidt-number ~4th order polynomial of T
- u: wind velocity, f_i : sea-ice cover, a: conversion factor (new OMIP)

CO_2

$$\frac{\Delta C_T^{12}}{\Delta t} = \frac{V_{CO2}}{\Delta z_1^t} S_{CO2} \left(pCO_2^{atm} - pCO_2^{water} \right)$$

- New: pressure effect (Weiss 1974)
 - * $(p_{total,atm} p_{1013})$ not implemented yet

O_2

- As in Meiner-Reimer et. al, 2005, Eq. 74
- Solubility S_{O2} from Weiss (1970)
- pressure effect Weiss (1974)

*
$$(p_{total,atm} - p_{1013})$$

$$\frac{\Delta o_2}{\Delta t} = \frac{-V_{o_2}}{\Delta z_1^t} \left(o_2 - S_{o_2} \frac{pO_2^{atm}}{196800} \right)$$

N_2O and N_2

- follows Meiner-Reimer et. al, 2005, Eq. 75
- S_{N2} from Weiss (1974)
- same piston velocity as for O_2
- Sc and piston velocity are same from N_2O and N_2

$$\frac{\Delta N_2}{\Delta t} = \frac{-V_{O_2}}{\Delta z_1^t} \left(N_2 - S_{N_2} \frac{p N_2^{atm}}{802000} \right)$$

$$\frac{\Delta_{\rm N_2O}}{\Delta t} = \frac{-V_{\rm o_2}}{\Delta z_1^t} \, ({\rm N_2O} - S_{\rm N_2O})$$

DMS

- after Meiner-Reimer et. al, 2005, Eq. 77
- assumes $p_{DMS_atm} = 0$

$$\frac{\Delta \text{DMS}}{\Delta t} = \frac{-V_{\text{DMS}}}{\Delta z_1^t} \text{ DMS}$$

Dimethyl sulfide

Iron Cycle

- Dust deposition (Dep_d) added to surface layer as FDUST [kg m-3]
 - Climatology
 - Alternative dust fields possible
- Dust particles have same diameter and sinking speed

$$\frac{\Delta \text{FDUST}}{\Delta t} = \frac{Dep_d}{\Delta z_1^t}$$

ocprod.f90

Life of iron

$$\frac{\Delta \text{FE}}{\Delta t} = \frac{Dep_d}{\Delta z_1^t} \times \epsilon_{Fe} \times S_F$$

- Dissolves (FE) 3.5% partly (ϵ_{Fe}) at const. solubility S_{Fe} 1%
- Relaxation time constant λ_{Fe} (Johnson et al. 1997)
 - Dissolved iron is complexed by strong iron binding ligands, hence lost for bio

$$\frac{\Delta_{\text{FE}}}{\Delta t} = \frac{\Delta_{\text{PO}4}}{\Delta t} R_{Fe:P} - \lambda_{\text{FE}} \max(0, \text{FE} - \text{FE}_0)$$

- Chemically inert: only sinks to sediment
- FE needed for phytosynthesis, released by remineralization at fixed Redfield ratio $R_{F
 ho\cdot P}$

Weathering

- To adjust for losses to sediment
- Aims for stable nondrifting runs
- According to a uniform rate deltasil/org/calc to be adjusted in the runscript
- Gets added to pools in top layer
 - calc into DIC
 - 2*calc into alkali CO3⁻⁻
 - org into DOC
 - sil into silicate

Literature citations in code

- Johnson et al., (1997), What controls dissolved iron concentrations in the world ocean?, Mar. Chemistry 57, 137-161
- Orr et al. (2016), Geosci. Model Dev. Discuss., CMIP6 Protocol
- Meiner-Reimer et. Al., (2005)
- Wanninkhof (1992, J. Geophys. Res., 97, 7373-7382)
- Weiss, R.F. (1974). Carbon dioxide in water and sea water: The solubility of a non-ideal gas. Marine Chem., 2, 203–215.
- Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean revisited, Limnol. Oceanogr. Methods, 12, 351–362, (2014)