Unit – II (LAPLACE TRANSFORM)

- 1. Find the Laplace transform of the following functions
 - (i) sin(a + bt)

 $sin^3 2t$

(ii) $\sin 3t \cos 2t$

 $(1 + te^{-t})^3$ (iv)

Ans: (i) $\sin a \frac{s}{s^2 + b^2} + \cos a \frac{b}{s^2 + b^2}$ (ii) $\frac{1}{2} \left(\frac{5}{s^2 + 25} + \frac{1}{s^2 + 1} \right)$ (iii) $\frac{48}{(s^2 + 4)(s^2 + 36)}$ (iv) $\frac{1}{s} + \frac{3}{(s + 1)^2} + \frac{6}{(s + 2)^3} + \frac{6}{(s + 2)^3}$

- Find the Laplace transform

(ii) $\frac{e^{-at}-e^{-bt}}{t}$

 $(\mathbf{i})\frac{8(3s^2-6s-13)}{(s^2-2s+17)^3}(\mathbf{ii})\log\frac{s+b}{s+a}(\mathbf{iii})\frac{1}{4}\log\frac{s^2+4}{s^2}(\mathbf{iv})\frac{1}{2}\log\frac{s^2+b^2}{(s-a)^2}(\mathbf{v})\cot^{-1}(s+1)$

- **3.** Evaluate the following integrals.
 - (i) $\int_0^\infty \frac{\sin t}{t} \ dt$

(iii) $\int_0^\infty \frac{\cos 6t - \cos 4t}{t} \ dt$

 $(\mathbf{v}) \quad \int_0^\infty \frac{e^{-t} \sin^2 t}{t} \ dt$

(ii) $\int_0^\infty \frac{e^{-at} - e^{-bt}}{t} dt$

(iv) $\int_0^\infty e^{-2t} \sin^3 t \ dt$

Ans:(i) $\frac{\pi}{2}$ (ii) $\log \frac{b}{a}$ (iii) $\log \frac{2}{3}$ (iv) $\frac{6}{65}$ (v) $\frac{1}{4}$ log 5

- **4.** Find its Laplace transform
 - (i) $f(t) = \begin{cases} t & , & 0 < t < \pi \\ \pi t & , & \pi < t < 2\pi \end{cases}$
 - (ii) $f(t) = \begin{cases} 1 & , & 0 \le t \le a/2 \\ -1 & , & a/2 < t < a \end{cases}$
 - (iii) $f(t) = \begin{cases} t & for \quad 0 < t \le a \\ 2a t & for \quad a < t < 2a \end{cases}$

- (iv) $f(t) = \begin{cases} t & for & 0 < t \le 1 \\ 1 & for & 1 < t < 2 \end{cases}$
- (v) $f(t) = \begin{cases} \frac{h}{a}t & for \quad 0 < t \le a \\ \frac{h}{a}(2a-t) & for \quad a < t < 2a \end{cases}$

 $\mathbf{Ans:(i)} \, \frac{-\pi s e^{-\pi s} + 1 - e^{-\pi s}}{s^2 (1 + e^{-\pi s})} \, (\mathbf{ii}) \, \frac{1}{s} \tanh \frac{as}{4} (\mathbf{iii}) \frac{1}{s^2} \tanh \frac{as}{2} (\mathbf{iv}) \frac{1}{s^2 (1 - e^{-2s})} \big[1 - e^{-s} - s e^{-2s} \big] (\mathbf{v}) \frac{h}{as^2} \tanh h \, \frac{as}{2} (\mathbf{iv}) \frac{1}{s^2 (1 - e^{-2s})} \big[1 - e^{-s} - s e^{-2s} \big] (\mathbf{v}) \frac{h}{as^2} \tanh h \, \frac{as}{2} (\mathbf{iv}) \frac{1}{s^2 (1 - e^{-2s})} \big[1 - e^{-s} - s e^{-2s} \big] (\mathbf{v}) \frac{h}{as^2} \tanh h \, \frac{as}{2} (\mathbf{iv}) \frac{1}{s^2 (1 - e^{-2s})} \big[1 - e^{-s} - s e^{-2s} \big] (\mathbf{v}) \frac{h}{as^2} \tanh h \, \frac{as}{2} (\mathbf{iv}) \frac{1}{s^2 (1 - e^{-2s})} \big[1 - e^{-s} - s e^{-2s} \big] (\mathbf{v}) \frac{h}{as^2} \tanh h \, \frac{as}{2} (\mathbf{iv}) \frac{1}{s^2 (1 - e^{-2s})} \big[1 - e^{-s} - s e^{-2s} \big] (\mathbf{v}) \frac{h}{as^2} \tanh h \, \frac{as}{2} (\mathbf{iv}) \frac{1}{s^2 (1 - e^{-2s})} \big[1 - e^{-s} - s e^{-2s} \big] (\mathbf{v}) \frac{h}{as^2} \tanh h \, \frac{as}{2} (\mathbf{iv}) \frac{1}{s^2 (1 - e^{-2s})} \big[1 - e^{-s} - s e^{-2s} \big] (\mathbf{v}) \frac{h}{as^2} \tanh h \, \frac{as}{2} (\mathbf{iv}) \frac{1}{s^2 (1 - e^{-2s})} \big[1 - e^{-s} - s e^{-2s} \big] (\mathbf{v}) \frac{h}{as^2} (\mathbf{iv}) \frac{h}{as^2} (\mathbf{iv}) \frac{h}{as^2} \mathbf{iv} \frac{h}{a$

- 5. Find the Laplace transform of (i) $(t-1)^2U(t-1)$
- (ii) $\sin t \ U(t-\pi)$ (iii) $e^{-3t}U(t-2)$

Ans:(i) $\frac{2e^{-s}}{s^3}$ (ii) $-\frac{e^{-\pi s}}{s^2+1}$ (iii) $\frac{e^{-2(s+3)}}{s+3}$

- Find the Laplace transform of following functions:
 - (i) $f(t) = \begin{cases} t^2 & 0 < t < 2 \\ t 1 & 2 < t < 3 \\ 7 & t > 3 \end{cases}$

(iii) $f(t) = \begin{cases} t/\omega, & 0 < t < \omega \\ 1 - (t/\omega) & \omega < t < 2\omega \\ 1 & t > 2\omega \end{cases}$

(ii) $f(t) = \begin{cases} 1 & 0 < t < 1 \\ t & 1 < t < 2 \\ t^2 & t > 2 \end{cases}$

(iv) $f(t) = \begin{cases} e^{t-a} & t > a \\ 0 & t < a \end{cases}$

Ans: (i) $\frac{2}{s^3} - \frac{e^{-2s}}{s^3} (2 + 3s + 3s^2) + \frac{e^{-3s}}{s^2} (5s - 1)$ (ii) $\frac{1}{s} + \frac{2e^{-2s}}{s} + \frac{e^{-s}}{s^2} + \frac{3e^{-2s}}{s^2} + \frac{2e^{-2s}}{s^3}$

- (iii) $\frac{1}{s} \left[\frac{1}{s\omega} e^{-s\omega} \left(1 + \frac{2}{s\omega} \right) + e^{-2s\omega} \left(2 + \frac{1}{s\omega} \right) \right] (iv) \frac{e^{-as}}{s-1}$
- 7. Express the following functions in terms of unit step function & hence find its Laplace transform
 - $f(t) = \begin{cases} t 1 & \text{when } 1 < t < 2 \\ 3 t, & \text{when } 2 < t < 3 \end{cases}$ (i)

 $f(t) = \begin{cases} 4 & \text{when } 0 < t < 1 \\ -2 & \text{when } 1 < t < 3 \\ 5 & \text{when } t > 3 \end{cases}$

Ans:(i) $\frac{e^{-s}}{s^2} (1 - e^{-s})^2 (ii) \frac{4 - 6e^{-s} + 7e^{-3s}}{s}$

8. Find the inverse Laplace transform of the following

(i)
$$\frac{2s+1}{s^2-4}$$

(iv)
$$\frac{1}{\sqrt{2s+3}}$$

(vii)
$$\frac{5s+3}{(s-1)(s^2+2s+5)}$$

(x)
$$\frac{2s^2-6s+5}{s^3-6s^2+11s-6}$$

(ii)
$$\frac{s^3}{s^4 - a^4}$$

$$(\mathbf{v}) \qquad \frac{s}{s^2 + 6s + 25}$$

(viii)
$$\frac{s}{s^4+s^2+}$$

(iii)
$$\frac{s}{s^4 + 4a^4}$$

(vi)
$$\frac{s+8}{s^2+4s+5}$$

$$(ix) \frac{1}{(s^2+1)^3}$$

Ans:(i)2 cos h2t + $\frac{1}{2}$ sin h2t(ii) $\frac{1}{2}$ (cos hat + cos at)(iii) $\frac{1}{2a^2}$ (sin at sin hat)(iv) $\frac{1}{\sqrt{2\pi t}}e^{-\frac{3t}{2}}$ (v) e^{-3t} (cos 4t - $\frac{3}{4}$ sin 4t)

$$(\mathbf{vi})e^{-2t}(\cos t + 6\sin t) \ (\mathbf{vii})e^t - e^{-t}\left(\cos 2t - \frac{3}{2}\sin 2t\right)(\mathbf{viii})\frac{2}{\sqrt{3}}\sinh \frac{t}{2}\sin \frac{\sqrt{3}}{2}t$$

$$(\mathbf{i}\mathbf{x})^{\frac{1}{8}}_{8}[(3-t^{2})\sin t - 3t\cos t](\mathbf{x})^{\frac{e^{t}}{2}} - e^{2t} + \frac{5e^{3t}}{2}$$

9. Find the inverse Laplace Transform of the following functions.

$$(i) \qquad \frac{e^{-2\pi s}}{s(s^2+1)}$$

(ii)
$$\frac{e^{-s} - 3e^{-3s}}{s^2}$$

Ans:(i) $(1 - \cos t) U(t - 2\pi)$ (ii)(t - 1)u(t - 1) - 3(t - 3)u(t - 3)

10. Find inverse Laplace for the following: (i) $\frac{e^{4-3s}}{(s+4)^{\frac{5}{2}}}$ (ii) $\frac{s e^{-\frac{s}{2}} + \pi e^{-s}}{s^2 + \pi^2}$

Ans. (i)
$$\frac{4(t-3)^{\frac{3}{2}}e^{-4(t-4)}}{3\sqrt{\pi}}u(t-3)$$
 (ii) $\sin \pi t \left[u\left(t-\frac{1}{2}\right)-u(t-1)\right]$

11. Use convolution theorem to find the inverse Laplace transform of following functions

(i)
$$\frac{s}{(s^2+4)^2}$$

(iii)
$$\frac{s^2}{(s^2+a^2)(s^2+b^2)}$$

(iv)
$$\frac{1}{s^3(s^2+1)}$$

(ii)
$$\frac{s}{(s^2+1)(s^2+4)}$$

$$(\mathbf{v}) \quad \frac{1}{s^2(s+1)^2}$$

Ans:(i)
$$\frac{t}{4}$$
 sin 2t (ii) $\frac{\cos t - \cos t}{3}$

Ans:(i)
$$\frac{t}{4}$$
sin 2t (ii) $\frac{\cos t - \cos 2t}{3}$ (iii) $\frac{a sin a t - b sin b t}{a^2 - b^2}$ (iv) $\frac{t^2}{2} + \cos t - 1$ (v) $(t + 2)e^{-t} + t - 2$

Questions on Application of Laplace Transform

12. Solve the following initial value problems using Laplace transform

(i)
$$y''(t) + 4y'(t) + 4y(t) = 6e^{-t}y(0) = -2, y'(0) = 8.$$

(ii)
$$\frac{d^2y}{dx^2} + 9y = 6\cos 3x$$
, $y(0) = 2$, $y'(0) = 0$.

(iii)
$$\frac{d^2y}{dt^2} + y = t\cos 2t, \ t > 0 \text{ given that } y = \frac{dy}{dt} = 0 \text{ for } t = 0.$$

Ans. (i)
$$y = 6e^{-t} - (8 + 2t)e^{-2t}$$

$$(\mathbf{ii})y = x\sin 3x + 2\cos 3x$$

Ans. (i)
$$y = 6e^{-t} - (8 + 2t)e^{-2t}$$
 (ii) $y = x\sin 3x + 2\cos 3x$ (iii) $y = -\frac{5}{9}\sin t + \frac{4}{9}\sin 2t - \frac{t}{3}\cos 2t$

13. Solve the following differential equations:

(i)
$$\frac{d^3y}{dt^3} - 3\frac{d^2y}{dt^2} + 3\frac{dy}{dt} - y = t^2e^t$$
 where $y(0) = 1, y'(0) = 0, y''(0) = -2$.

(ii)
$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 8y = \sin x \text{ where } y(0) = 0, y'(0) = 1.$$

(iii)
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = e^x \text{ where } y(0) = 1, y'(0) = 0.$$

Ans: (i)
$$y = \left(1 - t - \frac{t^2}{2} + \frac{t^5}{60}\right)e^t$$
(ii) $y = \frac{e^{-2x}}{65}(4\cos 2x + 33\sin 2x) - \frac{1}{65}(4\cos x - 7\sin x)$

$$(\mathbf{iii})\mathbf{y} = \left(1 - x + \frac{x^2}{2}\right)e^x$$

14. Solve the following simultaneous differential equations by Laplace transform

$$Dx - y = e^t$$
, $Dy + x = \sin t$, given that $x(0) = 1$, $y(0) = 0$.

15. $\frac{dx}{dt} + y = \sin t$; $\frac{dy}{dt} + x = \cos t$ given that x = 2, y = 0 at t = 0.

Ans:(14)
$$x = \frac{1}{2} \{e^t + \cos t + 2\sin t - t\cos t\}, y = \frac{1}{2} \{t\sin t - e^t + \cos t - \sin t\}$$
 (15) $x = 2\cosh t, y = \sin t + 2\sinh t$