Computational Design + Fabrication: 4D Analysis

Jonathan Bachrach

EECS UC Berkeley

October 6, 2015

Today 1

- News
- Torque and Work
- Simple Machines
- Closed Chains
- Analysis
- Paper Review
- Lab 3 Critique

News 2

- reading 5 out read pages 1-3
- lab 4 out after class
- section now on mondays 1-2p in jacobs 210

- rotational force
- force at radius
- torque is cross product of force and radius vectors

by StradivariusTV

Simple Machine

- mechanical device to change direction or magnitude of force
- usually use mechanical advantage to amplify force

- simple 2 bar linkage
- effort
- fulcrum
- resistance

- Work = Force * Distance
- Work Conservation = Work on both ends of lever must equal
- Mechanical Advantage = ratio of output to input forces equal ratio of distances

Class 1

- fulcrum in middle
- see-saw, crow bar, or scissors
- mechanical advantage can be greater than one

by Pearson Scott Foresman

Class 2

- resistence in middle
- wheel barrow, nutcracker, bottle opener, or brake pedal
- mechanical advantage is always greater than one

by Pearson Scott Foresman

Class 3

- effort in middle
- crane, tweezers, or mandible
- mechanical advantage is always less than one

Gears 10

- driver / follower
- mechanical advantage
- gear ratio

Drive Train – Compound Machine

- gears in series
- successive change in mechanical advantage

by Arthur Ganson photo by Shervinafshar

Belt Drives 12

- teeth
- chain

Pulley 13

- changes direction of force
- split force between sides of pulley
- reduce force using multiple pulley stages

by Welkinridge

Closed Chains

- loop in linkage
- less degrees of freedom than number of joints
- loop constraint

DOF Equation

- \blacksquare F = 3(n 1) 2f where n = num links and f = num nodes
- \blacksquare F = 3(4 1) 2*4 = 9 8 = 1 for four bar RRRR
- \blacksquare F = 3(3 1) 2*2 = 6 4 = 2 for two bar RR

- simplicity
- efficiency
- strength

Four Bar: RRRR

- crank / driver
- coupler
- follower

coupler parallel to ground

by ibrahim saed

turn rotary into linear motion

Wind Shield Wiper

turn rotary into rocker motion

by Salix Alba

- S = shortest, L = longest, P,Q = remaining links
- L + S < P + Q shortest can rotate fully

4 Bar Basic Categories

- Crank / Crank
- Crank / Rocker
- Rocker / Crank
- Rocker / Rocker

More Detailed Categories

- \blacksquare T1 = g + h a b
- T2 = b + g a h
- T3 = b + h a g

T1	T2	T3	Grashof	Input	Output
-	-	+	yes	crank	crank
+	+	+	yes	crank	rocker
+	-	-	yes	rocker	crank
-	+	-	yes	rocker	rocker
-	-	-	no	0-rocker	0-rocker
-	+	+	no	π -rocker	π -rocker
+	-	+	no	π -rocker	0-rocker
+	+	-	no	0-rocker	π -rocker

$$Q = \frac{TimeofSlowerStroke}{TImeofFasterStroke} \ge 1$$
 (2)

- four bar has two strokes, the forward and the return
- cycle = forward + return strokes
- symmetric
 - windshield wiper
 - window crank
- asymmetric work done in one direction return fast = offset
 - cutting machines
 - package-moving devices

- graphically display mechanism speed of trajectory
- estimate velocities and accelerations

Mechanical Advantage at Instant

- lacktriangle Perturb the input crank by some small ϵ
- Find the distance ds the point in question travels when the crank moves by ϵ .
- The mechanical advantage = ds/ϵ .
- torque = $F \times ds/\epsilon$ for torque required to produce a force F

- estimate mechanical advantage at a point using epsilon technique
- plot advantage over time

Four Bar Forward Kinematics

- symbolic solve for analytic solution
- numeric optimize to closed chain

(4)

$$\Psi(\theta) = arctan(\frac{B}{A}) \pm arccos(\frac{C}{sqrt(A^2 + B^2)})$$

where

$$A^2+B^2-C^2\geq 0$$

- ± for two solutions
- constraint because of + 1 domain on arccos
- can solve for where zero

- folding all joints can lie on same line
- inflection points
- limited range

Six Bar 32

- compound linkages
- higher order polynomial
- better mechanical advantage
- harder to analyze and synthesize
- determine number of link parameters

by Franz Reuleaux

- two four bar linkages
- 12 and 11 link parameters

- one four and one five bar linkage
- 11,14, and 10 link parameters

by Alexander Slocum

- six bar
- linear walking motion
- quick return

https://en.wikipedia.org/wiki/Klann_linkage#/media/File:F4-motion.gif

Universality of Revolute

- can transform rotational to prismatic
- one planar one 3d mechanism

Coordinating Linkages

- place in space
- cranking out of phase

- mechanisms are mechanical computers
- solve for solution next week
- search for solution week after next
- program solution stretch

Next Time 39

- 4D Linkage Synthesis
- 4D Synthesis Paper Critique

- Design FUNdaMENTALS: Linkages by Alexander Slocum
- Geometric Design of Linkages by McCarthy + Soh