AMENDMENT TO THE CLAIMS:

The following claim set replaces all prior versions, and listings, of claims in the application:

1-24. (canceled)

25. (previously presented) A cosmetic composition comprising a conjugate comprising a hyperbranched polymer covalently bonded to at least three UV absorbing chromophores having an UV absorption maximum λ_{max} ≥ 270 nm selected from the group consisting of the moieties represented by general formulae:

$$(V-A)$$
 $(V-B)$
 $(V-B)$
 $(V-C)$
 $(V-C$

wherein

Y is O or NR³ wherein R³ is H, C₁-C₆-alkyl or C₂-C₆-alkenyl;

R⁴ and R⁵ are independently H, C₁-C₆-alkyl, C₂-C₆-alkenyl, CO₂H, CO₂-C₁-C₆-alkyl, or R⁴ and R⁵ together with the carbon atom to which they are attached form a 6-camphenyl ring;

R⁹ and R¹⁰ are independently H or C₁-C₆-alkyl;

R¹¹ and R¹² are independently H, C₁-C₆-alkyl, NO₂, CO₂-C₁-C₆-alkyl or CN;

Z is C₁-C₆-alkylene, optionally interrupted by 1 to 3 oxygen atoms;

R¹³ and R¹⁴ are independently H, OR¹⁵, NR¹⁶R¹⁷ or C₁-C₆-alkyl; and

R¹⁵, R¹⁶ and R¹⁷ are independently selected from H and C₁-C₆-alkyl; and

wherein R' is H, OH, straight or branched chain C₁-C₂₀-alkyl, C₁-C₂₀-alkoxy or C₂-C₂₀-alkenyl;

and wherein in the above definition the symbol "-| " denotes the linkage to the hyperbranched polymer;

or a moiety of benzophenone-3, benzophenone-4, 2,2',4,4'-tetrahydroxy-benzophenone and 2,2'-dihydroxy-4,4'dimethoxybenzophenone;

and a cosmetically acceptable carrier, and wherein

the hyperbranched polymer is the polycondensation or polyaddition reaction product of building blocks AB₂, which building block AB₂ is glycidol.

26. (currently amended) <u>The composition</u> Compositions according to claim 25, wherein the hyperbranched polymer exhibits an average degree of branching ≥ 25%.

- 27. (currently amended) The composition Compositions—according to claim 25, wherein the hyperbranched polymer has an average molecular weight M_w within the range of from 500 to 50,000 g mol⁻¹.
- 28. (currently amended) <u>The composition</u> Compositions according to claim 25, wherein the hyperbranched polymer comprises an average number of 2 to 600 dendritic building blocks.
- 29. (currently amended) <u>The composition</u> Compositions according to claim 25, wherein the hyperbranched polymer comprises a structure represented by general formula (I)

$$\{[Q] (Y^1)_q\} (LX)_p (Y^2)_h$$
 (I),

wherein

Y¹ and Y² independently represent UV absorbing chromophores;

- {[Q] (Y¹)_g} represents the hyperbranched polymer covalently bonded to g UV absorbing chromophores Y¹;
- (LX)_p represents p linker units LX, wherein independently the distal end of each linker unit LX bears a functional group X either being
- covalently bonded to an UV absorbing chromophore Y², or
- covalently bonded to a capping group, or
- in its free reactive form.

and wherein the proximal end of each linker unit LX is covalently bonded to the hyperbranched polymer; and

wherein

index g is an integer, wherein $0 \le g \le 100$; index h is an integer, wherein $0 \le h \le p$; and index p is an integer, wherein $0 \le p \le 100$; with the proviso that $g + h \ge 3$. 30. (currently amended) Compositions according to claim 29, A cosmetic composition comprising a conjugate comprising a hyperbranched polymer covalently bonded to at least three UV absorbing chromophores having an UV absorption maximum $\lambda_{max} \ge 270$ nm selected from the group consisting of the moieties represented by general formulae:

$$R^{9}$$
 R^{11}
 R^{12}
 R^{14}
 R^{13}
 R^{13}
 R^{14}
 R^{15}
 R^{15}
 R^{15}
 R^{16}
 R^{17}
 R^{11}
 R^{12}
 R^{12}
 R^{14}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}

wherein

Y is O or NR³ wherein R³ is H, C₁-C₆-alkyl or C₂-C₆-alkenyl;

R⁴ and R⁵ are independently H, C₁-C₆-alkyl, C₂-C₆-alkenyl, CO₂H, CO₂-C₁-C₆-alkyl, or R⁴ and R⁵ together with the carbon atom to which they are attached form a 6-camphenyl ring;

R⁹ and R¹⁰ are independently H or C₁-C₆-alkyl;

R¹¹ and R¹² are independently H, C₁-C₆-alkyl, NO₂, CO₂-C₁-C₆-alkyl or CN;

Z is C₁-C₆-alkylene, optionally interrupted by 1 to 3 oxygen atoms;

R¹³ and R¹⁴ are independently H, OR¹⁵, NR¹⁶R¹⁷ or C₁-C₆-alkyl; and

R¹⁵, R¹⁶ and R¹⁷ are independently selected from H and C₁-C₆-alkyl; and

wherein R' is H, OH, straight or branched chain C_1 - C_{20} -alkyl, C_1 - C_{20} -alkoxy or C_2 - C_{20} -alkenyl;

and wherein in the above definition the symbol "-| " denotes the linkage to the hyperbranched polymer;

or a moiety of benzophenone-3, benzophenone-4, 2,2',4,4'-tetrahydroxy-benzophenone and 2,2'-dihydroxy-4,4'dimethoxybenzophenone; and a cosmetically acceptable carrier, wherein

the hyperbranched polymer comprises a structure represented by general formula (II)

$$\{[(B_k)_l (AB_2)_n] (Y^1)_g\} (LX)_p (Y^2)_h$$
 (II),

wherein

Y¹ and Y² independently represent UV absorbing chromophores; are as defined previously;

LX is as defined previously;

(LX)_p represents p linker units LX, wherein independently the distal end of each linker unit LX bears a functional group X either being

- covalently bonded to an UV absorbing chromophore Y², or

- covalently bonded to a capping group, or

in its free reactive form,

and wherein the proximal end of each linker unit LX is covalently bonded to the hyperbranched polymer; and

- B_k represents a starter unit bearing k functional groups B, wherein independently each functional group B is
- covalently bonded to a functional group A of a building block AB₂, or
- covalently bonded to the proximal end of a linker unit LX, or
- covalently bonded to an UV absorbing chromophore Y¹, or
- covalently bonded to a capping group, or
- in its free reactive form;
- (AB₂)_n represents n building blocks AB₂, which building block is glycidol, each bearing a functional group A which is the electrophillic carbon atom of the oxirane and 2 independent functional groups B which are represented by the alcoholate of deprotonated glycidol as well as the alcoholate deliberated upon ring opening, wherein independently each functional group A is
- covalently bonded to a functional group B
- of a further building block AB₂, which building block is glycidol, or
- of the starter unit B_k, or
- covalently bonded to a capping group, or
- in its free reactive form,

and wherein independently each functional group B is

- covalently bonded to a functional group A of a further building block AB₂, which building block is glycidol, or
- covalently bonded to the proximal end of a linker unit LX, or
- covalently bonded to an UV absorbing chromophore Y¹, or
- covalently bonded to a capping group, or
- in its free reactive form;

wherein

index g is an integer, wherein $0 \le g \le 100$; as defined previously; index h is an integer, wherein $0 \le h \le p$, with the proviso that $g + h \ge 3$; as defined previously;

index k is an integer of from 1 to 6; index I is 0 or 1; index m is an integer of from 2 to 4; index n is an integer of from 3 to 100; and index p is an integer wherein $0 \le p \le n(m-1)+k$.

- 31. (currently amended) <u>The composition</u> Compositions—according to claim 30, wherein in the hyperbranched polymer index I is 1, the starting unit B_k is trimethylolpropane and the building block AB_2 is glycidol.
- 32. (currently amended) <u>The composition</u> Compositions according to claim 29, wherein the hyperbranched polymer comprises a structure represented by general formula (III)

$$\{[(B_k)_l\,(AB_2)_n\,(C_q)_r]\,\,(Y^1)_g\}\,\,(LX)_p\,\,(Y^2)_h \eqno(III),$$

wherein

 Y^1 and Y^2 are as defined previously;

LX is as defined previously;

- B_k represents a starter unit bearing k functional groups B, wherein independently each functional group B is
- covalently bonded to a functional group C
- of a monomer C₂ or
- of a building block C_q or
- covalently bonded to the proximal end of a linker unit LX, or
- covalently bonded to an UV absorbing chromophore Y¹, or
- covalently bonded to a capping group, or
- in its free reactive form;
- (AB₂)_n represents n building blocks AB₂, each bearing a functional group A and 2 independent functional groups B, wherein independently each functional group A is

-	covalently bonded to a functional group C
-	of a monomer C ₂ or
-	of a building block C _q , or
-	covalently bonded to the proximal end of a linker unit LX, or
-	covalently bonded to an UV absorbing chromophore Y ¹ , or
-	covalently bonded to a capping group, or
-	in its free reactive form;
and wherein independently each functional group B is	
-	covalently bonded to a functional group C
-	of a monomer C ₂ or
-	of a building block C_q , or
-	covalently bonded to the proximal end of a linker unit LX, or
-	covalently bonded to an UV absorbing chromophore Y ¹ , or
-	covalently bonded to a capping group, or
-	in its free reactive form;
$(C_q)_r$	represents
-	when index $q = 2$: r monomers C_2 or
-	when index $q > 2$: r building blocks C_q
each	bearing q functional groups C, wherein independently each functional group
	C is
-	covalently bonded to a functional group A of a building block AB2, or
-	covalently bonded to a functional group B
-	of a building block AB ₂ , or
-	of the starter unit B _k , or

wherein

covalently bonded to the proximal end of a linker unit LX, or

covalently bonded to an UV absorbing chromophore Y1, or

covalently bonded to a capping group, or

in its free reactive form;

```
index g is as defined previously; index h is as defined previously; index k is an integer of from 1 to 6; index I is 0 or 1; index m is an integer of from 2 to 4; index n is an integer of from 3 to 100; index p is an integer wherein 0 \le p \le n(m-1) + r(q-1) + k; index q is an integer of from 2 to 4; and index r is an integer wherein 1 \le r \le nm/q.
```

- 33. (canceled)
- 34. (currently amended) The composition according to claim 29 or 30, wherein the linker unit LX in the hyperbranched polymer comprises polyethyleneoxide or polypropyleneoxide.
- 35. (currently amended) The composition according to claim 29 or 30, wherein the hyperbranched polymer comprises 1 to 20 capping groups.
- 36. (previously presented) The composition according to claim 35, wherein the capping group is a straight or branched chain ether or ester group with 1 to 20 carbon atoms.