

DSD Exercise

Gauss-Seidel Iteration Machine

Speaker: Alex

Advisor: Prof. An-Yeu Wu

Date: 2025/04/17

Background

- Solving large systems of linear equations is required in many engineering simulations and scientific computing applications
- Several iterative methods are used to accelerate the computing due to their simplicity, such as Jacobi Iteration, Gauss-Seidel Iteration

$$\begin{bmatrix} a_{11} & \cdots & a_{1N} \\ \vdots & \ddots & \vdots \\ a_{N1} & \cdots & a_{NN} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_N \end{bmatrix}$$

$$\vdots$$

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1N}x_N = b_1$$

$$\vdots$$

$$a_{21}x_1 + a_{22}x_2 + \cdots + a_{2N}x_N = b_2$$

$$\vdots$$

$$a_{N1}x_1 + a_{N2}x_2 + \cdots + a_{NN}x_N = b_N$$

Expand eq (1)

Gauss-Seidel Iteration Machine (GSIM)

Iterative method to solve a linear system of equations

$$x_3^0 \text{: initial value of } x_3 \\ x_1^1 = \frac{1}{a_{11}} (b_1 - a_{12} x_2^0 - \dots - a_{1N} x_N^0) \\ a_{21} x_1 + a_{22} x_2 + \dots + a_{2N} x_N = b_1 \\ \vdots \\ a_{N1} x_1 + a_{N2} x_2 + \dots + a_{NN} x_N = b_N \\ \vdots \\ x_N^1 = \frac{1}{a_{11}} (b_1 - a_{12} x_2^0 - \dots - a_{1N} x_N^0) \\ x_1^2 = \frac{1}{a_{21}} (b_2 - a_{21} x_1^1 - a_{22} x_3^0 - \dots - a_{2N} x_N^0) \\ \vdots \\ x_N^1 = \frac{1}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{k+1} - \sum_{j=i+1}^{N} a_{ij} x_j^k \right] \\ \vdots \\ x_N^1 = \frac{1}{a_{NN}} (b_N - a_{N1} x_1^1 - a_{N2} x_2^1 - \dots - a_{NN-1} x_{N-1}^1)$$

Change the order

Final equation

Project Description

Initialization

M iterations (define by yourself!)

Output result x

$$oldsymbol{x}^0 = egin{bmatrix} oldsymbol{x}_1^0 \ oldsymbol{x}_2^0 \ dots \ oldsymbol{x}_N^0 \end{bmatrix}$$

$$x^{M} = \begin{bmatrix} x_{1}^{M} \\ x_{2}^{M} \\ \vdots \\ x_{N}^{M} \end{bmatrix}$$

❖ Given a fixed 16 × 16 matrix **A**

$$x_{1}^{1} = \frac{1}{20}[b_{1}+13(x_{2}^{0}+0)-6(x_{3}^{0}+0)+(x_{4}^{0}+0)]$$

$$x_{2}^{1} = \frac{1}{20}[b_{2}+13(x_{3}^{0}+x_{1}^{1})-6(x_{4}^{0}+0)+(x_{5}^{0}+0)]$$

$$x_{3}^{1} = \frac{1}{20}[b_{3}+13(x_{4}^{0}+x_{2}^{1})-6(x_{5}^{0}+x_{1}^{1})+(x_{6}^{0}+0)]$$

$$x_{4}^{1} = \frac{1}{20}[b_{4}+13(x_{5}^{0}+x_{3}^{1})-6(x_{6}^{0}+x_{2}^{1})+(x_{7}^{0}+x_{1}^{1})]$$

$$\vdots$$

$$x_{16}^{1} = \frac{1}{20}[b_{16}+13(0+x_{15}^{1})-6(0+x_{14}^{1})+(0+x_{13}^{1})]$$

At most 7 non-zero terms one time

Only divided by 20

Score Criteria

- ❖ 評分一: Error rate E²

 - Achieve Level A

A 級:		E^2	< 0.000001
B級:	$0.000001 \le$	E^2	< 0.000005
C級:	$0.000005 \le$	E^2	< 0.000010
D級:	$0.000010 \leq$	E^2	< 0.000050
E級:	$0.000050 \le$	E^2	< 0.000100
F級:	$0.000100 \le$	E^2	< 0.001000
G級:	$0.001000 \le$	E^2	< 0.005000
H級:	$0.005000 \le$	E^2	< 0.010000
I級:	$0.010000 \le$	E^2	< 0.100000
J級:	$0.100000 \le$	E^2	< 0.300000
K 級:	$0.300000 \le$	E^2	

- ❖ 評分二:AT score
 - $AT = area \times total timing$
 - Area: synthesis cell area
 - Timing: total execution time (tb1+tb2+...+tb5)

```
Your Score Level: A

Congratulations! GSIM's Function Successfully!

PASS

Simulation complete via $finish(1) at time 3734500 PS + 0

/testfixture5.v:213 #(`CYCLE/2); $finish;
ncsim> exit
```

Combinational area: 3875.164193
Buf/Inv area: 434.534396
Noncombinational area: 1147.442383
Macro/Black Box area: 0.000000
Net Interconnect area: 48580.242432

Total cell area: 5022.606576
Total area: 53602.849008

Design Guidelines

- Architecture level
 - Data path scheduling
 - Parallel processing (unfolding)
 - Pipelining
- Computation unit level
 - Constant multiplier, constant divider
 - Decimal analysis

Architecture Level Optimization (1/3)

- Reading data
 - ❖ Arbitrary reading: Using several MUXs to load data
 - Structural reading: Similar computation dataflow

Scheduling by removing 6 MUXs

Architecture Level Optimization (2/3)

- Parallel processing (unfolding)
 - Using multi-core to compute
 - Necessity: No data dependency
- Reordering computation
 - ❖ Processing elements: 1, 5, 9, 13, ...

rescheduling

Architecture Level Optimization (3/3)

- Pipelining
 - Divide computation into several cycles

e.g. 3-stages pipeling

Computation Unit Level (1/2)

1 Division 2 Multiplication

Computation flow x_5^0 x_3^1 x_6^0 x_7^0 x_1^1 Divider x_7^0 x_1^0 x_1^0 x_2^0 x_2^0 x_2^0 x_2^0 x_1^0 x_2^0 x_2

Division and multiplication is complicated.
It need large area and long computation time.

Computation Unit Level (2/2)

- Multiplier
 - Power-of-two method (e.g. $6 = 110_2$, $13 = 1101_2$)
- Divider
 - Conventional (for arbitrary input): requires 32 cycles
 - Constant divider: requires 3 cycles
 - Canonic Signed Digit (CSD) code
 - For each odd integer d, there exists an odd integer m such that $d \times m = 2^n 1$

Need: 1 Adder, 1 shifter

Time: 32 cycles

$$\frac{1}{d} = \frac{m}{2^{n} - 1} = \frac{m}{2^{n} (1 - 2^{-n})}$$
$$= \frac{m}{2^{n}} (1 + 2^{-n}) (1 + 2^{-2n}) (1 + 2^{-4n}) \dots$$

Need: 1 Adder, 1 shifter

Time: 3 cycles

Simulation & Synthesis

- Check "doc.pdf"
- 3 Major Things
 - RTL coding & Simulation
 - Synthesizable coding & Logic Synthesis
 - Gate-level simulation & Debugging/refinement
- Files needed for simulation
 - RTL code: GSIM.v
 - Gate-level code: GSIM _syn.v,
 - Timing info (SDF file): GSIM _syn.sdf,
 - Design library (DDC file): GSIM _syn.ddc

Notice

- Do not fit the given test pattern, there will be hidden cases!
- Latches are not allowed in gate level code after synthesis, use Flipflop instead.
- Negative Slack and Timing Violations are not allowed after synthesis.
- The tsmc13_neg.v file is not allowed to be downloaded! Or you may offend the copyright protected by NTU & TSRI!

Grading Policy

- * RTL (40%): Function correctness, Rank A
 - 10% for hidden tb
- Synthesis (40%):
 - 10% for hidden tb
 - 20% for passing weak baseline AT score: 1.0×10^8
 - 10% for passing strong baseline AT score: 1.0×10^7
- Ranking (15%): AT ranking. Get 0% if not passing the hidden to
- Report (5%)

report.pdf

1. Simulated cycle time (ns)

Gate-level simulation clock cycle (i.e. The cycle you passed testbench after synthesis)

2. Area (um^2)

report_area

3. AT score

 $AT = area \times timing$

Area: total cell area

❖ Timing: total execution time (tb1 + tb2 + ... + tb5)

Combinational area: 3875.164193 Buf/Inv area: 434.534396

Noncombinational area: 1147.442383

Macro/Black Box area: 0.000000

Net Interconnect area: 48580.242432

Total cell area: 5022.606576

Total area: 53602.849008

4. Screenshot

Inferred memory devices in process (XNo latch should be inferred!)

5. Difference between $0.13\mu m$ technology and 16nm ADFP

- Area comparison
- Timing comparison
- Design methodology

performance.txt

- 1. Simulated cycle time (ns)
 - Gate-level simulation clock cycle
 (i.e. The cycle you passed testbench after synthesis)
- 2. Area (um^2)
 - report_area

Combinational area:	3875.164193		
Buf/Inv area:	434.534396		
Noncombinational area:	1147.442383		
Macro/Black Box area:	0.000000		
Net Interconnect area:	48580.242432		
Total cell area:	5022.606576		
Total area:	53602.849008		

Submission – NTUCOOL

dsdxxx-hw4/

GSIM.v report.pdf

- Compress all the files into one tar.gz file
 - File name: dsdxxx-hw4.tar.gz
 - tar -zcvf dsdxxx-hw4.tar.gz [path to dsdxxx-hw4]
 - EX: dsd001-hw4.tar.gz
- Upload the file to NTUCOOL
- Deadline: 2025/05/01 23:59 XLate submission is not allowed

Submission – 16nm ADFP

dsdxxx-hw4/

GSIM.v GSIM_syn.v GSIM_syn.sdf GSIM_syn.ddc performance.txt

- Compress all the files into one tar.gz file
 - File name: dsdxxx-hw4.tar.gz
 - EX: dsd001-hw4.tar.gz
- Put the tar.gz file in your home directory
 - EX path: /nfshome/dsd029/dsd029-hw4.tar.gz
- Deadline: 2025/05/01 23:59 XLate submission is not allowed