LAB REPORT: 3

Name: Arghya Roy

Roll Number: 2021115008

Group: 8

Part A: Designing 4:1 Multiplexer

<u>Aim/Objective of the experiment</u>: To design a 4:1 multiplexer using basic logic gates

<u>Electronic components used</u>: 1 Arduino board, one 1 kilo ohm resistors, 1 LED, 1 breadboard, 1 hex inverter(74HC04), 2 triple 3-input AND gates(74HC11), 1 quad OR gate(74HC32), wires

Reference Circuit:

Procedure:

- 1. The circuit is set up, as shown in the reference figure above, on the breadboard.
- 2. An Arduino code is written to give different combinations of inputs as input and select lines and view them using LED at the output line.
- 3. The multiplexer function is verified by tabulating the values of the output(s) for all input combinations.

The code:

```
int s1, s0, i0, i1, i2, i3;
void setup()
 pinMode(2,OUTPUT);
  pinMode(3,OUTPUT);
 pinMode(4,OUTPUT);
 pinMode(5,OUTPUT);
  pinMode(6,OUTPUT);
 pinMode(7,OUTPUT);
  Serial.begin(9600);
}
void loop()
  if (Serial.available()>0)
    s1=Serial.read();
    s1=s1-'0';
    digitalWrite(2,s1);
  }
  if (Serial.available()>0)
    s0=Serial.read();
    s0=s0-'0';
    digitalWrite(3,s0);
  if (Serial.available()>0)
```

```
i0=Serial.read();
    i0=i0-'0';
    digitalWrite(4,i0);
  }
  if(Serial.available()>0)
    i1=Serial.read();
    i1=i1-'0';
    digitalWrite(5,i1);
  }
  if(Serial.available()>0)
    i2=Serial.read();
    i2=i2-'0';
    digitalWrite(6,i2);
  }
  if (Serial.available()>0)
    i3=Serial.read();
    i3=i3-'0';
    digitalWrite(7,i3);
  delay(100);
/*
inputs verified:
001000
010100
100010
110001
*/
```

}

Conclusion:

S1	SO SO	Υ
0	0	I ₀
0	1	l ₁
1	0	l ₂
1	1	l ₃

So, the multiplexer truth table is verified.

<u>TinderCAD simulation</u>: https://www.tinkercad.com/things/dWlrJIPdstc-lab-3a-multiplexer/editel?sharecode=jDsKUKQWxWcYQ8GbEGU_aK5y1SdgkEMrHGD anGIRV90

Part B: Designing 1:4 Demultiplexer

<u>Aim/Objective of the experiment</u>: To design a 1:4 demultiplexer using basic logic gates

<u>Electronic components used</u>: 1 Arduino board, four 1 kilo ohm resistors, 4 LEDs, 1 breadboard, 2 triple 3-input AND gates(74HC11), 1 hex inverter(74HC04), wires

Reference Circuit:

Procedure:

- 1. The circuit is set up, as shown in the reference figure above, on the breadboard.
- 2. An Arduino code is written to give different combinations of inputs and select lines and view them using LEDs at the output lines.
- 3. The demultiplexer function is verified by tabulating the values of the output(s) for all input combinations.

The code used:

```
int s1,s0,i;

void setup()
{
   pinMode(2,OUTPUT);
   pinMode(3,OUTPUT);
   pinMode(4,OUTPUT);
   Serial.begin(9600);
}
```

```
void loop()
  if(Serial.available()>0)
    s1=Serial.read();
    s1=s1-'0';
    digitalWrite(2,s1);
  }
  if(Serial.available()>0)
    s0=Serial.read();
    s0=s0-'0';
    digitalWrite(3,s0);
  if(Serial.available()>0)
    i=Serial.read();
    i=i-'0';
    digitalWrite(4,i);
  }
  delay(100);
}
/*
inputs verified:
001
011
101
111
*/
```

Conclusion:

S1	S0	у3	y2	y1	y0
0	0	0	0	0	i
0	1	0	0	i	0
1	0	0	i	0	0
1	1	i	0	0	0

So, the demultiplexer truth table is verified.

<u>TinkerCAD Simulation</u>: https://www.tinkercad.com/things/866WCErkqLg-lab-3b/editel?sharecode=-X4UItLwS5bqjn5qror4YYG rjyzS-fMwcWEjr-UYkE

Part C: Assemble both

<u>Aim/Objective of the experiment</u>: To assemble and test the Multiplexer and Demultiplexer circuits

<u>Electronic components used</u>: 2 Arduino boards, four 1 kilo ohm resistors, 4 LEDs, 3 breadboards, 2 hex inverters(74HC04), 4 triple 3-input AND gates(74HC11), 1 quad OR gate(74HC32), wires

Reference Circuit:

Procedure:

- 1. The circuit is set up, as shown in the reference figure above, on the breadboard.
- 2. An Arduino code is written to give different combinations of inputs at MUX and then view them at DEMUX output using LEDs.
- 3. The values of the output(s) for all input combinations are tabulated.

The code used:

```
int s1,s0,i0,i1,i2,i3;

void setup()
{
  pinMode(2,OUTPUT);
  pinMode(3,OUTPUT);
  pinMode(4,OUTPUT);
  pinMode(5,OUTPUT);
  pinMode(6,OUTPUT);
  pinMode(7,OUTPUT);
  serial.begin(9600);
}
```

```
void loop()
{
  if (Serial.available()>0)
    s1=Serial.read();
    s1=s1-'0';
    digitalWrite(2,s1);
  }
  if(Serial.available()>0)
    s0=Serial.read();
    s0=s0-'0';
    digitalWrite(3,s0);
  }
  if (Serial.available() > 0)
  {
    i0=Serial.read();
    i0=i0-'0';
    digitalWrite(4,i0);
  }
  if(Serial.available()>0)
```

```
i1=Serial.read();
    i1=i1-'0';
   digitalWrite(5,i1);
  }
  if(Serial.available()>0)
   i2=Serial.read();
    i2=i2-'0';
   digitalWrite(6,i2);
  }
  if(Serial.available()>0)
  {
   i3=Serial.read();
    i3=i3-'0';
   digitalWrite(7,i3);
  }
 delay(100);
/*
inputs verified:
001000
010100
```

}

100010

110001

*/

Conclusion:

SO	S1	Inputs (in MUX)	Outputs (at DEMUX)
0	0	l ₀ , l ₁ , l ₂ , l ₃	Output 0
0	1	l ₀ , l ₁ , l ₂ , l ₃	Output 1
1	0	l ₀ , l ₁ , l ₂ , l ₃	Output 2
1	1	l ₀ , l ₁ , l ₂ , l ₃	Output 3

So, it is verified that the DEMUX gives back the outputs corresponding to the input channel.

<u>TinkerCAD Simulation</u>: https://www.tinkercad.com/things/4lxZ50Mbl06-lab-3c/editel?sharecode=xXEbb_fFHChx_nwYmrbnTlrbplrHK5lMTs6B-_W3qQc