Soutenance de Master 2 Informatique Conception d'un modèle abstrait de métadonnées pour l'interconnexion de jeux de données géoréférencées

Encadré par : I. MOUGENOT - J.-C. DESCONNETS

Hatim Chahdi

Université Montpellier 2 - UMR Espace-DEV, IRD

9 Juillet, 2013

Plan

- Introduction : Contexte et Objectif
- Le web sémantique
- Hétérogénéité et interopérabilité des métadonnées
- Démarche adoptée
 - Profils d'application
 - Etapes de la démarche
- Application de la démarche
- Conclusion et Perspectives

Contexte

Equipex GeoSud

Développement d'infrastructure nationale facilitant l'accès libre à l'imagerie satellitaire pour la communauté scientifique et les acteurs publics

Figure: Fournisseurs de données spatiales **GEOSUD**

Objectif

Approche méthodologique pour la découverte et localisation *pertinente* des images spatiales

Offrir la possibilité de localiser des images spatiales décrites par différents standards de métadonnées

Verrous

- Métadonnées hétérogènes
- Normes différentes, plus ou moins rigides et non adaptées

Figure: Images spatiales décrites au travers différents standards

Idée de départ et Web sémantique

Existant

Recherche sur les éléments communs entre les différents standards ou sur un seul standard spécifique

Idée de départ

Exploiter les technologies du web sémantique

Définitions : Web sémantique

- Nouvelle vision du web visant l'organisation des ressources au travers de métadonnées pour faciliter leur exploitation automatique par des agents logiciels
- Framework technologique offrant une panoplie de langages de description tous exprimables et échangeables en XML

Langages de description des métadonnées

Resource Description Framework

Initiative W3C pour décrire des ressources au travers des métadonnées. RDF s'appuie sur la notion de triplet Sujet, Prédicat, Objet

Resource Description Framework Schema

vocabulaire RDF introduisant des éléments de modélisation simples Concepts de classe et de propriété. Primitives d'organisation hiérarchique des éléments. Introduction de contraintes élémentaires : rdfs:domain, rdfs:range ...

Web Ontology Langage

Langage de représentation des connaissances Enrichit RDFS et emprunte les éléments de logiques de description Perspective : langage pour la construction des schémas de métadonnées

Hétérogénéité des métadonnées : un frein à l'interopérabilité

L'hétérogénéité des métadonnées intervient à tous les niveaux

- Hétérogénéité structurelle : Langages de représentation, schémas différents...
- Hétérogénéité sémantique : Expressivité des langages de descriptions, différences terminologiques...

Les profils d'application

Définition

Ensemble d'éléments de métadonnées pouvant provenir de différents standards répondant à un besoin applicatif précis

Interopérabilité

S'adosser sur des standards pour favoriser l'interopérabilité

Démarche adoptée

- Etude du domaine
- Analyse des standards
- Construction et raffinement du modèle pivot
- Crosswalking (liens sémantiques)

Démarche

1.Étude du domaine

- Entités ciblées par les métadonnées
- Acteurs du domaine
- Relations et interactions entre les acteurs et/ou entités du domaine

2. Analyse des standards

- Prise de connaissance des standards
- Établir des tableaux de référence

Démarche

3. Construction du modèle pivot

- Partir des entités présentes dans le modèle du domaine
- Sélection des éléments pertinents à partir des tableaux des standards établis

4. Raffinement du modèle

Modifier ou restreindre la signification d'un élément, sans le changer fondamentalement

5. Crosswalking

Définition : Établir des liens sémantiquement équivalents ou similaires entre deux schémas de métadonnées différents

Objectif : Exploiter des instances de métadonnées définis au travers de schémas de métadonnées

Démarche

Démarche : Crosswalking

Deux variantes:

- Au niveau du schéma de métadonnées
- Au niveau des instances de métadonnées

Application de l'approche

Étude du domaine : Imagerie Spatiale

1. Dublin Core

- Générique, standard de découverte
- Quinze éléments pour la description de ressources de type quelconque
 contributor, coverage, creator, date, description, format, identifier,
 language, publisher, relation, rights, source, subject, title, type
- Implémenté officiellement dans les langages du web sémantique

1. Dublin Core

Figure: Représentation graphique de la définition d'un élément DC en RDF

2. ISO 19115

- Standard spécialisé
- Norme Internationale Pour l'information géographique
- Organisé en douze rubriques dont deux obligatoires

2. ISO 19115 : Extraction du cœur du standard pour les besoins de découverte

Figure: Extrait du cœur du standard ISO19115

2. ISO 19115: Non disponible en OWL

Étape intermédiaire : transformation du diagramme de classes UML en OWL

Figure: transformation de UML en OWL

Résultats

- Établissement des règles de transformation
- Application des règles sur le cœur du standard
- Validation du schéma de métadonnées OWL
- 104 Entités: 19 classes OWL, 29 DatatypeProperty, 21 ObjectProperty, 35 Restriction...

Construction du modèle pivot

3. Modèle pivot

- disponibilité des schémas de métadonnées en langages du web sémantique
- sélection des éléments pertinents
- construction du schéma de métadonnées du modèle pivot
- raffinement des éléments du modèle pivot

Modèle pivot : Similaire à un profil d'application, c'est le schéma de métadonnées de base constitué d'éléments minimum.

Crosswalking

4. Identification des crosswalks : Utilisation des tableaux du standard ISO 19115 et du modèle pivot

Modèle pivot	ISO 19115	Remarque
dcterms:title	CI_Citation.title	Propriétés
		équivalentes
dcterms:subject	MD_DataIdentification	subject plus général
	.topicCategory	que topic Category
dcterms:subject	MD₋Metadata .Key-	Propriétés
	words	équivalentes
dcterms:Agent	CI_ResponsibleParty	Agent plus général
		que Responsible Party

Table: Aperçu des crosswalks

Résultat : Identification des liens sémantiquement équivalents ou similaires

Crosswalking :schémas de métadonnées

- 4.1 Implémentation des crosswalks : Utilisation des primitives OWL
 - owl:equivalentProperty pour les propriétés équivalentes
 - owl:equivalentClass pour les classes équivalentes
 - rdfs:subPropertyOf et rdfs:subClassOf pour la hiérarchisation

Résultat : Obtention d'un modèle enrichi sémantiquement par les crosswalks capable de reconnaître les éléments des autres standards liés

Transformation des métadonnées

XML to RDF : Développement du transformateur

Résultat : Disponibilité des instances de métadonnées en RDF **500 fiches** XML de métadonnées GEOSUD transformées

Transformation des métadonnées : niveau Schéma de métadonnées

Figure: Transformation des métadonnées XML en RDF

Résultats : Les métadonnées changent de format mais restent conformes à leur standard origine

Jeu de métadonnées obtenu : 181.168 triplets RDF ISO et DC

Démonstrateur

Figure: Architecture du démonstrateur

Démonstrateur

Exemple d'exécution : Schéma de métadonnées

Figure: Exemple d'exécution

Crosswalking : Instances de métadonnées

4.2 Implémentation des crosswalks aux niveau des instances de métadonnées

- utilisation du tableau des correspondances établies
- Implémentation de ces correspondances à l'aide de XSLT

Figure: crosswalking des instances

Résultats :

- Instances de métadonnées en RDF Conforme au modèle pivot
- Jeu de métadonnées obtenu : 171.090 triplets RDF

Crosswalking : Instances de métadonnées

4.2 Implémentation des crosswalks aux niveau des instances de métadonnées

Figure: transformation des métadonnées en RDF conforme Modèle pivot

Résultat : Instances de métadonnées en RDF Conforme au **modèle pivot** Interrogation directe du modèle pivot

Crosswalking: Comparaison des deux variantes

Schéma de métadonnées

- Exploitation des possiblités de OWL
- Mise en œuvre moins coûteuse
- Temps d'exécution plus important (x 1.3 en moyenne)

Instances de métadonnées

- Instances de métadonnées homogènes
- Mise en œuvre plus coûteuse
- Temps d'exécution moins important

Besoins de tests plus approfondis :

- Requêtes plus complexes
- Passage à l'échelle : 10.000 fiches de métadonnées dans le cadre de l'Equipex GEOSUD

Conclusion et perspectives

Résultats et apports:

- Proposition d'une approche modulaire palliant l'hétérogénéité
- Démonstration de la faisabilité de l'approche : Application sur la découverte d'images spatiales
- Implémentation des deux variantes du crosswalking

Conclusion et perspectives

Perspectives:

- Améliorer l'expressivité des requêtes
- Mener des tests de performance plus approfondis
- Application de la démarche pour le traitement d'images spatiales

Merci pour votre attention