

深度學習第1章深度學習簡介

講師:紀俊男

- 什麼是人工智慧程式
- 人工智慧發展簡史
- 人工智慧各領域的關係
- 深度學習程式撰寫流程
- 本章總結

一般程式的運作原理

人工智慧程式運作原理

符號推論時代(1956~1974)

• 達特茅斯會議(1956/08/31)

John McCarthy

Marvin Minsky

Nathaniel Rochester

Claude Shannon

- 與會人員
 - 約翰・麥卡錫(John McCarthy)
 - 「人工智慧」一詞提出者
 - 「符號學派」之父
 - 馬文·閔斯基(Marvin Minsky)
 - 麻省理工學院人工智慧實驗室創始人
 - 「神經網路」之父
 - 納撒尼爾・羅徹斯特(Nathaniel Rochester)
 - IBM 701 設計者
 - 克勞德・夏農 (Claude Shannon)
 - 「資訊理論」創始人
- 成就
 - 正式提出「人工智慧」一詞
 - 奠定「符號學派」在人工智慧的主流地位

專家系統時代(1980~1987)

• 興起原因

• 「專家系統(Expert System)」:嘗試以資料庫灌注大量背景知識

• 代表人物

- 愛德華·費根鮑姆 (Edward A. Feigenbaum)
- 專家系統之父
- 認為「智慧」=「推論」+「知識」

• 實際成果

- Dendral 專家系統
- 可以用「質譜儀」資料,推論「分子結構」

機器學習時代(1989~1997)

• 興起原因

- 將「**統計模型**」引入人工智慧程式撰寫中。
- 人工智慧程式可以不用靠人類,自己從資料中歸納出規則來。

• 代表人物

- 湯姆·米切爾 (Tom M. Mitchell)
- 機器學習先驅之一,時任卡內基美隆大學教授
- 他的書籍《Machine Learning》是該領域之經典教材

• 實際成果

- 利用「**支援向量機(SVM)**」,取得**手寫數字識別**重大進展。
- 用統計推論,使得機器學習用於**金融股票市場**的預測。
- 自然語言處理,透過機器學習,在語音識別與翻譯取得進展。

神經網路時代(1997~)

• 興起原因

「神經網路」證明效果顯著 + 「硬體效能」能跟上

• 代表人物

- 麥可·I·喬丹 (Michael I. Jordan)
 - 第一個把「神經網路」的人
 - 「神經網路」起飛的重要貢獻人物
- 傑佛瑞・辛頓 (Geoffrey E. Hinton)
 - 提出「自動編碼器(Auto Encoder)」理論
 - 能透過「**壓縮資料維度**」,產生「新的概念」
 - 讓電腦從一堆雜亂資料中,自動找出共同的抽象意義,變為可能
 - 「深度學習」之父,第三次人工智慧浪潮起飛的重要貢獻人物

Michael I. Jordan

Geoffrey E. Hinton

• 實際成果

- 1997:許峰雄的「IBM 深藍 (Deep Blue) 」·打敗人類西洋棋棋王卡斯帕洛夫 (Garry Kasparov)
- 2006:「自動編碼器(Auto Encoder)」與「蒙地卡羅樹搜尋(Monte Carlo Tree Search)」理論提出
- 2011:人工智慧程式「華生」,參加 Jeopardy! 益智問答節目,打敗所有人類,獲得冠軍
- 2011: Google 大腦計畫,在看了 1000 萬張照片後,自動產生了「貓」這個概念。
- 2017: 黃士傑主導開發的 AlphaGo 圍棋程式,以三戰全勝的戰績,打敗人類圍棋棋王柯潔。
- 2017: AlphaGo Zero 會自我廝殺,互相教導。40天後,產生比 AlphaGo 還強的版本。
- 2022: OpenAI 推出 ChatGPT, 能夠實現與人類自由對話的目標,並通過圖靈測試。

「人工智慧」有哪些領域

機器 vs. 深度 vs. 強化學習的比較

深度學習演算法族群

專有名詞介紹

特徵值1 特徵值4 特徵值2 特徵值3

資料庫

特徵向量1 特徵向量2 特徵向量3 特徵向量4

Α В D 國別 年齡 薪資 是否購買 72000 France 44 No 27 48000 Spain Yes 30 54000 Germany No 5 38 61000 Spain No 40 Yes Germany 35 58000 Yes France 52000 Spain No. 48 79000 France Yes 50 83000 No Germany 11 France 37 67000 Yes

特徵 = Features

特徵矩陣

自變數

應變數

購買 = a · (國別) + b · (年齡) + c · (薪資) a, b, c = 權重

「深度學習」程式撰寫流程

資料綜覽

- 特徵值差別
- 有無缺失資料

資料前處理

- 讀入資料
- 切分自/應變數
- 資料補遺
- 類別資料數位化
- 降維
- 切分訓練/測試集
- 特徵縮放

模型訓練

- •選擇神經網路模型
- 給定超參數
- ●訓練

效能評估

- 測試集
- K-折驗證

結果視覺化

- 折線圖
 - (迴歸)
- 點狀圖

(分類、集群)

資料綜覽

• 拿到「資料集」後打開,注意下列幾件事:

10°10¹2各特徵數量級是否相差過大
(是→進行「特徵縮放」)

	Α	В	С	D	E
1	City	Children	Age	Salary	ToBuy
2	Taipei		44	72000	No
3	Taichung	0	27	48000	Yes
4	Kaohsiung	0	30	54000	No
5	Taichung	1	38	61000	No
6	Kaohsiung	2	40		Yes
7	Taipei	2	35	58000	Yes
8	Taichung	1		52000	No
	Tainei	2	48	79000	Yes
	siung	1	50	83000	No
^	i	2	37	67000	Yes

有無缺失資料 (有→進行「資料補遺」)

CarEvaluation.csv

資料前處理

讀入

自/應變數

資料補遺

數位化

降維

訓練、測試集

特徵縮放

City	Children	Age	Salary
Tipei	nan	44	72000
Ta. thung	0	27	48000
Kaoh iung	0	30	54000
Taiching	1	38	61000
Kaohsil	2	40	nan
Taipe	2	35	58000
Taic ung	1	nan	52000
Tai ei	2	48	79000
Kohsiung	1	50	83000
aipei	2	37	67989

Children	Age	Salary	ToBuy
nan	44	72000	0
0	27	48000	1
0	30	54000	0
1	38	緬生	0
2	40	nan	1
2	35	58000	1
1	nan	52000	9
2	48	79000	1
1	50	3 88	9
2	37	67888	1

Children	Age	Salary
1,22222	44	72000
0	27	48000
0	30	54000
1	38	61000
2	40	63777,8
2	35	58000
1	38.7778	52000

City	Children	Age	Salary	ToBuy
Taipei	nan	44	72000	No
Taichung	0	27	48000	Yes
Kaohsiung	0	30	54000	No
Taichung	1	38	61000	No
Kaohsiung	2	mc	rv	Yes
Taipei		mc	5800	Yes
Taichung	1	nan	52000	No
Taipei	2	48	79000	Yes
Kaohsiung	1	50	83000	No
Taipei	2	37	67999	Yes

City	Children	Age	Salary	ToBu
aipei	nan	44	72000	No
aichung	0	27	48000	Yes
aohsiung	0	30	54000	No
aichung	1	38	61000	No
aohsiung	2	40	nan	Yes
aipei	2	35	58000	Yes
aichung	1	nan	52000	No
aipei	2	48	79000	Yes
aohsiung	1	50	83000	No
aipei	2	37	67000	Yes

資料補遺法

- 平均值
- 中位數
- 眾數

City	Kaohsiung	Taichung	Taipei
Taipei	9	0	1
Taichung	9	1	0
Kaohsiung	1	0	9
Taichung	χœ ;	たカ 4 三 Z	F 3+
Kaohsiung	1 1 1 1 1 1 1	熱編	师达
Taipei	(°One	-Hot End	oding
Taichung	0	1	0
Taipei	0	0	1
Kaohsiung	1	0	9
Taipei	9	9	1

降維演算法	
-------	--

- 卡方檢定
- 主成分分析 (PCA)

Children	Age	Salary
0.872119	0.263068	0.123815
0.872119	-0.253501	0.461756
-2.04847	-1.9754	-1.53093
-0.588174	0.0526135	-1.11142
0.872119	1.64059	1.7203
-0.588174	-0.0813118	-0.167514
-0.263664	0.951826	0.986148

模型訓練

模型

- 迴歸、分類:多層次神經網路
- 影像:卷積神經網路(Convolutional Neural Network, CNN)
- 時序:循環神經網路(Recurrent Neural Network, RNN)

超參數

- 超參數 = 機器無法決定,需靠人類決定的參數
- →網格搜尋法(Grid Search)

訓練

• .fit(X_train, Y_train)

訓練相關名詞:過擬合 vs. 欠擬合

過擬合(Overfitting)

- 模型維度過高(特徵過多)
- 嘗試在訓練階段「取得高分」, 但在實戰階段卻「一塌糊塗」。
- 如同考試準備時,學了太多刁鑽的題目, 結果正式考試時,基本的題目卻答不出來。

欠擬合(Underfitting)

- 模型維度過低(特徵過少)
- 在訓練時期偷懶,採用了較少的特徵訓練模型, 只為了加快訓練速度。
- 如同考試準備時,只隨便翻了一下課本,結果正式考試時,基本的題目也答不出來。

效能評估

• 效能評估指標

- 迴歸 (Regression)
 - 均方誤差 (Mean Squared Error, MSE)
 - 均方根誤差 (Root Mean Squared Error, RMSE)
- 分類 (Classification)
 - 混淆矩陣 (Confusion Matrix)
 - 確度(準確率 Accuracy)
 - 廣度(召回率、查全率 Recall)
 - 精度(精確度 Precision)
 - F-score (廣度+精度的平衡指標)

• 效能評估方法

K-折交叉驗證 (K-Fold Cross Validation)

5-fold CV			DATASET	Г	
Estimation 1	Test	Train	Train	Train	Train
Estimation 2	Train	Test	Train	Train	Train
Estimation 3	Train	Train	Test	Train	Train
Estimation 4	Train	Train	Train	Test	Train
Estimation 5	Train	Train	Train	Train	Test

△結果視覺化

折線圖 - Line (迴歸)

點狀圖 - Scatter (分類、集群)

本章總結

• 何謂「人工智慧程式」

- 一般程式:「邏輯規則」由程式師產生
- 人工智慧程式:「邏輯規則」由統計模型自動產生

• 人工智慧發展簡史

● 符號推論 → 專家系統 → 機器學習 → 神經網路

• 人工智慧各領域關係

- 資料科學:提供人工智慧程式,所需的資料來源
- 機器學習:下含各種演算法,如:神經網路、深度學習

• 深度學習程式設計流程

● 資料綜覽 → 資料前處理 → 模型訓練 → 效能評估 → 結果視覺化

