Example 11

B is the trisection point of the side AC of $\triangle AFC$. Draw a line through B to meet the extension of CF at E, to meet AF at D such that $\frac{ED}{DB} = \frac{AB}{BC} = \frac{2}{1}$. Show that $\frac{AD}{DF} = \frac{7}{2}$. Solution:

As shown in the figure to the right, draw DG//AG through D to meet EC at

In
$$\triangle FAC$$
, $\frac{FA}{FD} = \frac{AC}{DG} = \frac{3BC}{DG}$

 $\begin{array}{c} \text{In }\triangle EBC, \frac{BC}{DG}=\frac{EB}{ED}=\frac{3}{2}\\ \text{Substituting (2) into (1) gives us: } \frac{AF}{FD}=\frac{9}{2}\Rightarrow\frac{AD}{DF}=\frac{7}{2}\\ \text{Method 2:} \end{array}$ As shown in the figure to the right, draw DG//CE through D to meet AC at

$$G.$$
In $\triangle BEC$, $\frac{BG}{GC} = \frac{BD}{DE} = \frac{1}{2} \implies \frac{BC}{GC} = \frac{3}{2}$

Since
$$BC = \frac{1}{3}AC$$
, $\frac{AC}{GC} = \frac{9}{2}$
In $\triangle ACF$, $\frac{AF}{DF} = \frac{AC}{GC}$, $\therefore \frac{AF}{DF} = \frac{9}{2}$, $\therefore \frac{AD}{DF} = \frac{7}{2}$.
Method 3:
As shown in the figure to the right, draw $BG//AF$ through B to meet CE at

$$G.$$
In $\triangle CFA$, $\frac{AF}{BG} = \frac{AC}{BC} = \frac{3}{1}$,
In $\triangle EBG$, $\frac{BG}{DF} = \frac{EB}{ED} = \frac{3}{2}$,

(1) × (2):
$$\frac{AF}{DF} = \frac{9}{2}$$
, $\therefore \frac{AD}{DF} = \frac{7}{2}$. Method 4:

As shown in the figure to the right, draw BG//CE through B to meet AF at

G. Since
$$\triangle EFD \sim \triangle BGD$$
, $\frac{DF}{DG} = \frac{ED}{DB} = \frac{2}{1}$. Therefore $DG = \frac{1}{2}DF$ In $\triangle ACF$, $\frac{AG}{AF} = \frac{AB}{AC} = \frac{2}{3}$. In other words,

$$\frac{AD-DG}{AD+DF} = \frac{2}{3}. \quad \frac{AD-\frac{1}{2}DF}{AD+DF} = \frac{2}{3}.$$
Simplifying yields: $\frac{AD}{DF} = \frac{7}{2}$.

Method 5:

As shown in the figure to the right, draw AG//CE through A to meet the

extension of
$$CE$$
 at G .

In $\triangle ACG$, $\frac{BE}{AG} = \frac{BC}{AC} = \frac{1}{3}$

In $\triangle AFG$, $\frac{AG}{DE} = \frac{AF}{DF}$

(1) × (2): $\frac{BE}{DE} = \frac{AF}{3DF}$

Since $\frac{BE}{DE} = \frac{3}{2}$, $\frac{3}{2} = \frac{AF}{3DF}$, $\frac{AF}{DF} = \frac{9}{2}$.

Hence $\frac{AD}{DF} = \frac{7}{2}$.

Method 6:

As shown in the figure to the right, draw AG//CE through A to meet the

extension of
$$EB$$
 at G .

Since $\triangle ABG \sim \triangle CBE$, $\frac{BG}{BE} = \frac{AB}{BC} = \frac{2}{1}$ and $BG = 2EB$

Since $\triangle FED \sim \triangle AGD$,
$$\frac{DF}{AD} = \frac{ED}{DG} = \frac{ED}{DB+BG}$$

$$= \frac{ED}{DB+2EB} = \frac{2DB}{DB+6DB} = \frac{2}{7}.$$
Therefore $\frac{AD}{DF} = \frac{7}{2}$.

Method 7: As shown in the figure to the right, draw EG//FA through E to meet the extension of CA at G. In $\triangle BEG: \frac{EG}{AD} = \frac{EB}{DB} = \frac{GB}{AB} = \frac{3}{1}$

Therefore we have:

$$GB = 3AB$$

$$EG = 3AD$$

In
$$\triangle CEG$$
:

$$\frac{EG}{AF} = \frac{GC}{AC} = \frac{GB+BC}{AB+BC} = \frac{3(2BC)+BC}{2BC+BC} = \frac{3(2BC)+BC}{2BC} = \frac{3(2BC)+BC}{2B$$

$$\Rightarrow EG = \frac{1}{3}AF = \frac{1}{3}(AD + DF)$$

$$EG = 3AD$$

$$In \triangle CEG :$$

$$\frac{EG}{AF} = \frac{GC}{AC} = \frac{GB+BC}{AB+BC} = \frac{3(2BC)+BC}{2BC+BC} = \frac{7}{3}$$

$$\Rightarrow EG = \frac{7}{3}AF = \frac{7}{3}(AD+DF)$$
Substituting (2) into (3): $3AD = \frac{7}{3}(AD+DF) \Rightarrow 9AD = 7(AD+DF)$
Therefore $\frac{AD}{DF} = \frac{7}{2}$.
Method 8:

Therefore
$$\frac{AD}{DF} = \frac{7}{2}$$

As shown in the figure to the right, draw EG//AB through E to meet the

extension of
$$AF$$
 at G .
Since $\triangle DAB \sim \triangle DGE, \frac{EG}{AB} = \frac{ED}{DB} = \frac{DG}{AD} = \frac{2}{1}$.
We have $EG = 2AB$
 $DG = 2AD$

Since
$$\triangle FAC \sim \triangle FGE$$
: $\frac{EG}{AC} = \frac{FG}{AF} = \frac{2AB}{AB+BC} = \frac{2AB}{AB+\frac{1}{2}AB} = \frac{4}{3}$.

We have 3FG = 4AFOr 3(DG - DF) = 4(AD + DF)Substituting (2) into (4): $3(2AD - DF) = 4(AD + DF) \Rightarrow$ $6AD - 3DF = 4AD + 4DF \Rightarrow 2AD = 7DF$ Therefore $\frac{AD}{DF} = \frac{7}{2}$.