

COMPUTER COMMUNICATION NETWORKS (UE22EC351A)

Department of Electronics and Communication Engineering

COMPUTER COMMUNICATION NETWORKS

UNIT 1: INTERNET ARCHITECTURE AND APPLICATIONS –

Class 2 - Network Edge - Text book reference - Section 1.2

Pages 39 - 51

- Computer networks that sit on the periphery of the internet constitute the network edge or the access network
- End-systems can be further classified as clients and servers
- Router which connect an access network to a regional/access ISP is referred to as gateway
- Access network nomenclature
- <u>Based on size:</u> Local area networks, home networks, wide area networks, etc.
- Based on topology: Tree, star, ring, bus, point-to-point.
- <u>Based on physical media:</u> Wired (DSL, Cable, Fiber to the home (FTTH)) or wireless

Home access networks

- The devices in the home are connected to the internet via a LAN or Wifi router
- Different physical media could be provided by different access ISPs to connect the home network with the internet

• This home network consists of a roaming laptop, multiple Internet-connected home appliances, as well as a wired PC; a base station(the wireless access point), which communicates with the wireless PC and other wireless devices at home.

- A home router that connects the wireless access point, and any other wired home devices to the internet.
- This network allows household members to have broadband access to the internet with one member roaming from the kitchen to the backyard to the bedrooms.

Class 2 - Network edge

- Home access networks
 - An infrastructure handled by a telecom or cable or fiber operator
 - General architecture is given below

Class 2 - Network edge

Feature	DSL based access network	Cable TV based access network	FTTH based access network
Modem	DSL modem	Cable modem	Optical modem
Local multiplexer	Splitter	Fiber node	Optical network terminator
Central office (CO)	DSL access multiplexer (DSLAM)	Cable modem terminating system (CMTS)	Optical line terminator (OLT)
Downlink rates	12 Mbps [ITU 1999] and 24 Mbps [ITU 2003]	DOCSIS 2.0 standard 42.8 Mbps	100 Mbps (cable length based)
Uplink rates	1.8 Mbps [ITU 1999] and 2.5 Mbps [ITU 2003]	DOCSIS 2.0 standard 30.7 Mbps	30 Mbps (cable length based)

DSL Internet Access

- DSL is used when a customer's telephone company is also its ISP.
- Each customer's DSL modem uses the existing telephone line exchange data with a digital subscriber line access multiplexer (DSLAM) located in telephone company's local central office

DSL Internet Access

- The Home's DSL modem takes digital data and translates it into high frequency tones for transmission over telephone wires to the CO;
- The analog signals from many such houses are translated back into digital format at the DSLAM.

A hybrid fiber-coaxial access network

 Fibre Optics connect the cable head end to neighborhhood-level junctions, from which traditional coaxial cable is then used to reach individual houses & apartments.

Class 2 - Network edge-A hybrid fiber-coaxial access network

- Each neighborhood junctions typically supports 500 to 5,000 homes.
- Because both fiber & coaxial cable are employed in this system, it is often referred to as hybrid fiber coax (HFC).

Class 2 - Network edge-A hybrid fiber-coaxial access network

At the cable head end, the cable modem termination system (CMTS) serves a similar function as the DSL network's DSLAM – turn the analog signal sent from the cable modems in many downstream homes back into digital format.

Class 2 - Network edge-FTTH Internet Access

- Figure shows Fiber to the Home(FTTH) using Passive Optical Networks (PON) distributed architecture.
- Each home has an optical network Terminator (ONT) which is connected by dedicated optical fiber to a neighborhood splitter.

Class 2 - Network edge-FTTH Internet Access

 The splitter combines a number of homes onto a single, shared optical fiber, which connects to an optical line terminator(OLT) in the telephone company's central office (CO)

Class 2 - Network edge-FTTH Internet Access

 The OLT, providing conversion between optical and electrical signals, connects to the internet via a telco router.

Class 2 - Network edge – Enterprise Access Network

- Enterprise access network
 - ISP can be telecom operator
 - Built using Ethernet cables, switches and hubs
 - Ethernet switches are preferred over routers in a LAN
 - Routers are used for separating the network into subnets

Class 2 - Network edge – Enterprise Access Network

- Ethernet users use twisted-pair copper wires to connect to an Ethernet switch.
- The Ethernet switch, or a network or such interconnected switches, is then connected into the larger internet.

- With Ethernet access, users typically have 100 Mbps to tens of Gbps access to the Ethernet switch, whereas servers may have 1 Gbps or 10Gbps access.

Wireless networks:

- Classified according to radio access technologies
 - Spread spectrum, frequency hopping, random access, polling methods, etc.
- More complex compared to wired access networks
 - Packet losses and time varying wireless channel characteristics
- Wireless networks can be WiFi-based or cellular-based
- Wireless networks are usually supported by telecom ISPs
- Span of wireless networks can be few meters to several kilo meters
- Wireless networks have undergone tremendous evolution especially with the exploding data requirements of the users

- Satellite access networks:
 - Remote end systems get access to the internet via satellite links
 - Implemented when other access networks are not feasible
 - Has lowest data rates among access networks
 - The delays are higher. It depends on the distance between the satellite and the users and the type of satellite

Satellite access networks:

- A communication satellite links two or more Earth-based microwave transmitter/receivers, known as ground stations.
- The satellite receives transmissions on one frequency band, regenerates the signal using a repeater and transmits the signal on another frequency.
- Types of satellites: geostationary satellites and low-earth orbiting (LEO) satellites
- Geostationary satellites permanently remain above the same spot on earth.
- This stationary presence is achieved by placing the satellite in orbit at 36,000 kilometers above Earth's surface.
- This huge distance from ground station through satellite back to ground station introduces a substantial signal propagation delay.

THANK YOU

Department of Electronics and communication engineering