

Outline

- Introduce to Geofence
- Hardware description
 - Block diagram
 - I/O Information
 - Reference flow for Lab9
- SDC file & testfixture.sv
- Criteria
 - Grading policy
 - Requirement & file format

LPHPLMB VLSI Design LAB

Introduce to Geofence

- This system employs 7 receivers to construct a virtual convex heptagon on a plane
- Geofence system analyzes whether the object under test is inside or outside based on the coordinates of the receivers and the object under test

LPHPLDI VLSI Design LAE

Hardware description

Block Diagram

□ I/O Information

Signal	1/0	length	Desc.		
clk	I	1	positive-edged triggered		
reset	ı	1	asynchronous positive-edged triggered		
Х	ı	10	receivers and the object under test coordinate X		
У	I	10	receivers and the object under test coordinate Y		
valid	0	1	is_inside signal valid, active high		
is_inside	0	1	object under test inside or not? 1 for inside, 0 for outside		

- I/O Information
 - univ.txt (golden file)
 - √ 50 objects
 - pattern is_inside
 - object under test coordinate X,Y
 - 7 receivers coordinate X,Y

□ I/O Information

Waveform

- I/O Information
 - Golden pattern
 - Receivers' order will generate randomly
 - Order may not necessarily be assigned CW or CCW

No part of this confidential report may be reproduced in any form without written permission from Prof. Lih-Yih Chiou NCKU LPHP Lab, Taiwan

Reference flow for Lab9

- You can reference this algorithm or create a better one by yourself
 - Step 1 sorting receivers to clockwise or counterclockwise
 - ✓ Choose the leftmost point
 - Calculate the slope with every other receivers
 - ✓ Rearrange the receivers' order

Reference flow for Lab9

- You can reference this algorithm or create a better one by yourself
 - Step 2 Check if the cross products are always positive
 - ✓ Doing cross products sequence in order
 - ✓ If cross products are always positive, object is inside
 - If some are positive, some are negative, object is not inside

SDC file & testfixture.sv

- Testbench
- You can only modify those red box in testbench
- Simulation screenshot should set check = 0 (if not -10%)

```
timescale Ins/10ps
                   16.2
 define CYCLE
 define End CYCLE
                    1000000
                      "../../univ.txt"
                                                  //Quartus
//`define PAT
                      "../../verification.txt"
 define PAT
                                                  //Quartus
                                                      Choose the pattern you want to test
//`define PAT
                      "./univ.txt"
                                                  //modelsim
//`define PAT
                      "./verification.txt"
                                                  //modelsim
module testiixture();
integer fd;
integer objnum;
integer obj isin;
                                                                            reg check = 1;
integer charcount;
integer pass=0;
                                                                           reg clk = 0;
integer fail=0;
                                                                           wire valid;
string line;
reg [5:0] npoint;
reg [9:0] X;
reg [9:0] Y;
req check = 0;
                                       // 0 => no print 1 => print pattern
reg clk = 0;
wire valid;
reg reset =0;
wire is inside;
```


SDC file & testfixture.sv

- Verification.txt
- Generate your own pattern base on following format
- Please give an explanation in your report
- Generate reasonable & meaningful pattern (corner case of your design), not redundant patterns

SDC file & testfixture.sv

- geofence.sdc
- You can only modify this red box in geofence.sdc
- Do not set this clock period more than 25(ns)
- The "CYCLE" in your TB must be set to match the "clk_period" in your sdc file

```
# operating conditions and boundary conditions #
                                                                  timescale lng/10ng
set clk period 16.2
                           //you can only modify this line
                                                                  define CYCLE
#Don't touch the basic environment setting as below
set input max
              [expr { double($clk period * 0.5) }]
set input min [expr { double($clk period * 0.1) }]
set output max [expr { double($clk period * 0.5) }]
set output min [expr { double($clk period * 0.1) }]
# Setting Clock Constraints
create clock -name clk -period $clk period
                                           [get ports clk]
set clock uncertainty -rise from [get clocks clk] -rise to [get clocks clk] 0.02
set clock uncertainty -rise from [get clocks clk] -fall to [get clocks clk] 0.02
set clock uncertainty -fall from [get clocks clk] -rise to [get clocks clk] 0.02
set clock uncertainty -fall from [get clocks clk] -fall to [get clocks clk] 0.02
# Setting Design Environment
set input delay -clock clk -max $input max [remove from collection [all inputs] [get ports clk]]
set input delay -clock clk -min $input min [remove from collection [all inputs] [get ports clk]]
set output delay -clock clk -max $output max [all outputs]
set output delay -clock clk -min $output min [all outputs]
```


☐ Grading policy(100%)

Score – simulation with univ.txt pattern

(50%)

- Class S (50 points)
 - Pass == 50/50 (Gate level & RTL)
 - Area <= 1500
- Class A (40 points)
 - \rightarrow Pass == 50/50 (Gate level & RTL)
 - Area <= 2500
- Class B (35 points)
 - Pass == 50/50 (Gate level & RTL)
 - Area <= 3000</p>
- Class C (30 points)
 - → Pass == 50/50 (Gate level & RTL)
 - ♦ Area > 3000
- Class D (25 points)
 - \rightarrow Pass == 50/50 (RTL)
- Class E (15 points)
 - \rightarrow Pass == (45~50)/50 (RTL)
- Class F (5 points)
 - ◆ Pass < 44/50 (RTL)
- PA(Simulation time * Area) univ.txt pattern (25%)
- Report (25%)

- ☐ Grading policy Performance & Area (25%)
 - Performance : Simulation time in Gate-Level Simulation
 - Area: Total logic elements + 1000 * embedded Multipliers
 - This 25 points need Gate-Level all pass to attend the PA Ranking
 - → Top 10% got 25 points, Top 10%~20% got 22.5 points....

Loading instances from geofence 7 1200mv 85 Loading altera_ver.PRIM_GDFF_LOW Loading timing data from geofence 7 1200mv ** Note: (vsim-3587) SDF Backannotation Suc Time: 0 ps Iteration: 0 Instance: /tes	85c_v_slow.sdo
<pre># add wave * # view structure # .main_pane.structure.interior.cs.body.struc # view signals # .main_pane.objects.interior.cs.body.tree # run -all</pre>	You should prove this scream shot is Gate-Level simulation & run in the same cell library case
	"Check" in TB should = 0 Simulation time: 15762600(ps) nts/NCKU/HDL/geofence/2021 univ cell/testfixture.sv(144)
# Time: 15762600 ps Iteration: 1 Instanc	

- ☐ Grading policy Performance & Area (25%)
- □ Please update your PA every time you upload your code!!!
- □ No upload, no PA credit
 - Report can submit individually after submitting your code.
 - Lab9 geofence PA google form
 - ♦ You can check your PA from the excel link on Moodle
 - Lab 9 geofence PA excel report

٨	D	C	n		E	G
^	D	C	U	-	ſ	9
時間戳記	電子郵件地址	Student ID	Score	Gate level simulation time (ps)	Area (Total elements + 1000*embedded 9 bit mul)	Performance * Area
2024/5/15 下午 2:22:51	justin4638@gmail.com	TA test	Class B	15762600	2665	42007329000

- ☐ Grading policy Report (25%)
 - Your Report should include those components
 - Performance & Area table
 - Architecture Diagram (10%)
 - Explain algorithm & how your design works? (25%)
 - RTL & Gate-level simulation result on the terminal. (5%)
 - Screenshot form Quartus (10%, 2% each)
 - ✓ Schematic view of the design netlist
 - Finite State Machine view
 - Fmax summery
 - ✓ worst-case timing paths
 - √ flow summery
 - Verification (create new pattern in verification.txt) (40%)
 - Explain the pattern you generate to test your design
 - Simulation result
 - > lesson learned (10%)

Requirement & file format

- File format
- Deadline:2024/05/238:59:59

No part of this confident

Midterm project code Midterm project report StudentID_Lab9.pdf StudentID_Lab9.zip StudentID_Lab9 geofence.sv geofence.sdc testfixture.sv univ.txt verification.txt

written permission from Prot. Lin-Yin Chiou NCKU LPHP Lab, Taiwan

oduced in any form without

Requirement & file format

Friendly reminder

- Please complete the assignment by your own, discussion with peers is recommended, but do not cheat.
- Warning! Any dishonesty found will result in zero grade.
- Warning! Designing responses tailored to the golden files will result in zero grade.
- Warning! Any late submission will also receive zero.
- Warning! Please make sure that your code can be compiled in Modelsim & Quartus, any dead body that we cannot compile will also receive zero.
- Warning! Please submit your work according to the specified file format, making sure not to include any unnecessary files. Any unnecessary file found, will lead to 10% deduction from the overall score.
- Please start this project As Soon As Possible, Quartus synthesize & Gate Level simulation will take you a lot of time.
- A bad coding style may cause your Gate Level simulation unsuccessful!!!
- There should be no setup time/hold time violation in your gate-level simulation.

- Simulation result
 - Failed
 - There should be no setup time/hold time violation in your gate-level simulation, as shown in the figure below.

```
Transcript

Time: 2505598110 ps Iteration: 0 Instance: /tb_Laser/UUT/\acc_dot[0]

** Error: /build/swbuild/sJ/nightly/17.1std/590/164/work/modelsim/eda/sim_lib/altera_primitives.v(294): 5hold( posedge clk &&& reset:2506588077 ps, ena:2506588122 ps. 18e ps); 
Time: 2505588122 ps Iteration: 0 Instance: /tb_Laser/UUT/\acc_dot[3]

*** Error: /build/swbuild/sJ/nightly/17.1std/590/164/work/modelsim/eda/sim_lib/altera_primitives.v(294): 5hold( posedge clk &&& reset:2506588077 ps, ena:2506588122 ps. 18e ps); 
Time: 2505588122 ps Iteration: 0 Instance: /tb_Laser/UUT/\acc_dot[5]

*** Error: /build/swbuild/sJ/nightly/17.1std/590/164/work/modelsim/eda/sim_lib/altera_primitives.v(294): 5hold( posedge clk &&& reset:2506588078 ps, ena:2506588248 ps. 18e ps); 
Time: 2506588248 ps Iteration: 0 Instance: /tb_Laser/UUT/\acc_dot[5]

*** Error: /build/swbuild/sJ/nightly/17.1std/590/164/work/modelsim/eda/sim_lib/altera_primitives.v(294): 5hold( posedge clk &&& reset:2506588078 ps, ena:2506588248 ps. 18e ps); 
Time: 2506588248 ps Iteration: 0 Instance: /tb_Laser/UUT/\acc_dot[4]

*** Error: /build/swbuild/sJ/nightly/17.1std/590/164/work/modelsim/eda/sim_lib/altera_primitives.v(294): 5hold( posedge clk &&& reset:2506588078 ps, ena:2506588248 ps, 18e ps); 
Time: 2506588248 ps Iteration: 0 Instance: /tb_Laser/UUT/\acc_dot[2]

*** Error: /build/swbuild/sJ/nightly/17.1std/590/164/work/modelsim/eda/sim_lib/altera_primitives.v(294): 5hold( posedge clk &&& reset:2506588078 ps, ena:2506588248 ps, 18e ps); 
Time: 2506588248 ps Iteration: 0 Instance: /tb_Laser/UUT/\acc_dot[1]

*** Error: /build/swbuild/sJ/nightly/17.1std/590/164/work/modelsim/eda/sim_lib/altera_primitives.v(294): 5hold( posedge clk &&& reset:2506880077 ps, ena:2506808248 ps, 18e ps); 
Time: 2506808248 ps Iteration: 0 Instance: /tb_Laser/UUT/\acc_dot[0]

*** Error: /build/swbuild/sJ/nightly/17.1std/590/164/work/modelsim/eda/sim_lib/altera_primitives.v(294): 5hold( posedge clk &&& reset:2506808077 ps, ena:2506808248 ps, 18e ps); 
Time: 2506808248 ps Iteration: 0 Instance: /tb_Lase
```

```
$hold( posedge clk &&& reset:2506588077 ps, ena:2506588122 ps, 186 ps );
$hold( posedge clk &&& reset:2506588078 ps, ena:2506588248 ps, 186 ps );
$hold( posedge clk &&& reset:2506588078 ps, ena:2506588248 ps, 186 ps );
$hold( posedge clk &&& reset:2506588078 ps, ena:2506588248 ps, 186 ps );
$hold( posedge clk &&& reset:2506588078 ps, ena:2506588248 ps, 186 ps );
$hold( posedge clk &&& reset:2506588078 ps, ena:2506588248 ps, 186 ps );
$hold( posedge clk &&& reset:2506808077 ps, ena:2506808248 ps, 186 ps );
$hold( posedge clk &&& reset:2506808077 ps, ena:2506808248 ps, 186 ps );
```


Requirement & file format

- ☐ Friendly reminder
 - □ Table of contents should not have any red symbol.

Table of Contents	
Flow Summary	
■ Flow Settings	
■ Flow Non-Default Global Settings	
■ Flow Elapsed Time	
■ Flow OS Summary	
■ Flow Log	
> • Analysis & Synthesis	
> = Fitter	
> Assembler	
> TimeQuest Timing Analyzer	
> EDA Netlist Writer	
Flow Messages	
 Flow Suppressed Messages 	

Thanks for listening

