A temperature calculator for replica exchange molecular dynamics simulations - Corrections

Alexandra Patriksson & David van der Spoel

May 26, 2019

Corrections to the equations in this paper are explained in bold font.

The average probability of exchange over the entire simulation $\langle P \rangle$ can be related to the energy distributions, U_1 and U_2 :

$$\langle P(T_1 \leftrightarrow T_2) \rangle = \int_{-\infty}^{\infty} P(T_1 \leftrightarrow T_2) \ \rho_{U_2 - U_1}(u) du$$
$$= \int_{-\infty}^{0} \rho_{U_2 - U_1}(u) du + \int_{0}^{\infty} e^{-Cu} \rho_{U_2 - U_1}(u) du$$
(6)

where $\rho_{U_2-U_1}(u)$ is the probability of having a certain energy difference U_2-U_1 . Note that a minus sign was missing in e^{-Cu} .

The integral of $\rho_{U_2-U_1}(u)$ can then be written

$$\int_{-\infty}^{u} \rho_{U_2 - U_1}(u') du' = \frac{1}{2} \left[1 + erf\left(\frac{u - \mu_{12}}{\sigma_{12}\sqrt{2}}\right) \right]$$
 (7)

(note that a prime 'was inserted in the integration variable) which after insertion into Eqn. 6 yields:

$$\langle P(T_1 \leftrightarrow T_2) \rangle = \frac{1}{2} \left[1 + erf \left(-\frac{\mu_{12}}{\sigma_{12}\sqrt{2}} \right) \right] + \frac{1}{2} e^{\left(C\mu_{12} + \frac{C^2\sigma_{12}^2}{2} \right)} \left[1 + erf \left(\frac{\mu_{12} + C\sigma_{12}^2}{\sigma_{12}\sqrt{2}} \right) \right]$$
(8)

The second half of the equation involves a product of a very large number and a very small number. Due to the lack of an in-built error function in the PHP programming language the integral is evaluated numerically.