Cardiopulmonary Resuscitation

CPR For All

Members:

Tom Maloney, Ph.D. (Weill Cornell) Kristen Flaherty, Shou-Kai Cheng, Siqi Ke (Cornell Tech)

Project Mentor:

Emily Chien, M.D. (Weill Cornell)

General Mentor:

Niti Parikh, Professor (Cornell Tech) Michele Fuortes, M.D. (Weill Cornell) Sebastian Bidegain, M.D. (Cornell Tech & Weill Cornell)

The Challenge

CRP For All

How Might We create a **low-cost** version of a CPR model that appropriately simulates the **compression force** and **depth** required for high-quality CPR?

User Groups & Needs

School Children

6-12th Grade. Bystander CPR

Organizations

Govt. workers, corporate employees.

Bystander CPR

College Students

Pre-Med Students.
Bystander CPR

PLS & Trainers

Running and administering bystander CPR trainings.

Medical Students

Early year students.
Bystander & Clinical CPR

General Public

Any layperson trainee in PLS Bystander CPR programs

Design Challenge Framework

Components from empathy mapping:

Says:

- How do I know when to stop?
- Am I doing this correctly?
- What comes next?

Does:

- **Hesitation** to touch models or germs (Fear of failure).
- Ask trainer more questions.

Thinks:

- This is messy/gross!
- Will this feel the same if I do it on a real person?

Feels:

- Confused/unsure.
- Imposter Syndrome.
- Performance Anxiety.

Needs:

- Building empowerment/confidence
- ☐ Increase engagement
- ☐ Help build accuracy
 - **Enhance self-monitoring**
- Quick feedback

Interview Takeaways

4 Emergency Medicine Physicians @ Weill Cornell

Pakistan Life Savers Program

- Recent implementation of CPR into national education curriculum, ~10 million students 6th-12th grade
- Every trainee has one pillow and shares an expensive training mannequin
- Low resourced, high work output
- Need an affordable, portable, scalable, reproducible CPR model to deploy in their programs

CPR Training

- Compressions (depth, rate, hand placement, length) is necessary to teach in bystander CPR over ventilation
- 2-2.5 inches deep at 100-120 cpm for 2 minutes
- Deliver high quality, intuitive feedback without increasing cost

Project Goals & Constraints

Expensive

Highly Accurate Feedback

No Feedback

Project Goals & Constraints

Goals

- Compression only
- Accurate depth and rate feedback
- ☐ Scalable and portable for schools

Constraints

- Low cost, affordable objects
- □ Reproducible
- Easy to assemble
- Repairable

Prototype

Final CPR Compression Trainer

RATE.

THIS IS MUCH

BETTER THAN OUR USUAL PILLOWS!

"...AND THE GREEN LIGHT TELLS US THE SAME THING!"

Our Design Process

Build Compression Box

Kickball holder out of cardboard

Add Electronics

 Set-up sensor code and LED + audio feedback on compression depth

Build Sturdier Model

- Laser cut wood for compression box
- 3D-printed pieces to hold electronics

Add Final Electronics

 Reposition and fasten electronics and all parts

Cardboard Model —

Scissors + cardboard
Laser cut wood
Nuts + bolts
Fabric cover

Learnings:

- Realistic compressions
- Withstands force
- Considering electronics placement

Cardboard Model -

+ Electronics

Scissors + cardboard

Laser cut wood

Nuts + bolts

Fabric cover

Arduino + depth sensor + LED

Learnings:

- Tune light and audio feedback to be less jerky
- Finalize sensor placement
- Consider portability & durability

Final CPR Model

Scissors + cardboard Laser cut wood + wood glue **Nuts + bolts Fabric cover** Arduino + depth sensor + LED **3D-printed electronics holders Sewn fabric + velcro straps**

Learnings:

- Relocate electronics
- Position light feedback away from a user's hand

User Manual and Costs

- User manual (link)
 - Supplies
 - DIY instructions
 - Building process
 - Arduino code
 - Laser cut wood file
 - Estimated costs (below \$80)
- Keep improving our model for
 - May 19: Spring 2023 Open
 Studio
 - July 17: International
 Symposium on Academic
 Makerspaces 2023

Thanks!

Feedbacks and questions?

