Splitting methods and rigid body integration

Ralf Banisch

Outline

- Langevin Dynamics
- Numerical integration, splitting strategies
- The Mercedes Benz potential as a model for water like particles
- Rigid bodies
- The DLM algorithm

Book 'Molecular Dynamics' by Ben Leimkuhler & Charles Matthews

Numerical integration in MD: Sampling error vs discretisation error

• Discretisation error due to introduction of discretisation time step h:

Picture from [Leimkuhler, Matthews '15]

Sampling error vs. discretisation error:

Langevin dynamics

Langevin dynamics

$$d\mathbf{q} = \mathbf{M}^{-1}\mathbf{p}dt,$$

$$d\mathbf{p} = -\nabla U(\mathbf{q})dt - \gamma \mathbf{p}dt + \sqrt{2\gamma k_{\rm B}T}\mathbf{M}^{1/2}d\mathbf{W}.$$

Langevin dynamics is ergodic:

$$(q, p) \sim Z^{-1} e^{-H(q, p)}$$

Splitting strategy:

$$d\begin{bmatrix} \mathbf{q} \\ \mathbf{p} \end{bmatrix} = \underbrace{\begin{bmatrix} \mathbf{M}^{-1}\mathbf{p} \\ \mathbf{0} \end{bmatrix}}_{A} dt + \underbrace{\begin{bmatrix} \mathbf{0} \\ -\nabla U(\mathbf{q}) \end{bmatrix}}_{B} dt + \underbrace{\begin{bmatrix} \mathbf{0} \\ -\gamma \mathbf{p} dt + \sigma \mathbf{M}^{1/2} d\mathbf{W} \end{bmatrix}}_{O},$$

Splitting strategies

Splitting strategy:

$$d\begin{bmatrix} \mathbf{q} \\ \mathbf{p} \end{bmatrix} = \underbrace{\begin{bmatrix} \mathbf{M}^{-1}\mathbf{p} \\ \mathbf{0} \end{bmatrix}}_{A} dt + \underbrace{\begin{bmatrix} \mathbf{0} \\ -\nabla U(\mathbf{q}) \end{bmatrix}}_{B} dt + \underbrace{\begin{bmatrix} \mathbf{0} \\ -\gamma \mathbf{p} dt + \sigma \mathbf{M}^{1/2} d\mathbf{W} \end{bmatrix}}_{O},$$

Update maps for the individual pieces (O part is solved exactly):

$$\mathcal{U}_h^{\mathrm{A}}(\boldsymbol{q}, \boldsymbol{p}) = (\boldsymbol{q} + h\boldsymbol{M}^{-1}\boldsymbol{p}, \boldsymbol{p}),$$
 $\mathcal{U}_h^{\mathrm{B}}(\boldsymbol{q}, \boldsymbol{p}) = (\boldsymbol{q}, \boldsymbol{p} - h\nabla U(\boldsymbol{q})),$
 $\mathcal{U}_h^{\mathrm{O}}(\boldsymbol{q}, \boldsymbol{p}) = (\boldsymbol{q}, e^{-\gamma h}\boldsymbol{p} + \sqrt{\mathrm{k_B}\mathrm{T}(1 - e^{-2\gamma h})}\boldsymbol{M}^{1/2}\mathbf{R}),$

We can define a family of schemes codified as strings with the alphabet "ABO", e.g.

$$\mathscr{U}_h^{\llbracket ABO\rrbracket} = \mathscr{U}_h^{\mathcal{O}} \circ \mathscr{U}_h^{\mathcal{B}} \circ \mathscr{U}_h^{\mathcal{A}}. \qquad \qquad \mathscr{U}_h^{\llbracket BABO\rrbracket} = \mathscr{U}_h^{\mathcal{O}} \circ \mathscr{U}_{h/2}^{\mathcal{B}} \circ \mathscr{U}_h^{\mathcal{A}} \circ \mathscr{U}_{h/2}^{\mathcal{B}}.$$

Splitting strategies

- Symmetric schemes like "ABOBA" typically have more favourable properties compared to non-symmetric ones, e.g. "ABAO"
- Some schemes and explicit maps:

$$\zeta_j = \left[k_B T \left(1 - e^{-j\gamma h}\right)\right]^{1/2}$$
, \mathbf{R}_n , $\mathbf{R}_{n+1/2}$ are N(0,1) random variables

One derives error bounds by considering perturbative expansions of e.g.

$$e^{h\hat{\mathcal{L}}^{\dagger}} = e^{\frac{h}{2}\mathcal{L}_{X}^{\dagger}}e^{\frac{h}{2}\mathcal{L}_{Y}^{\dagger}}e^{h\mathcal{L}_{Z}^{\dagger}}e^{\frac{h}{2}\mathcal{L}_{Y}^{\dagger}}e^{\frac{h}{2}\mathcal{L}_{X}^{\dagger}},$$

Splitting strategies

Different schemes can have very different discretisation error!

Fig. 7.3 Each pixel in the above grids marks the result of a numerical experiment using one of the four second order (in stepsize) symmetric Langevin discretization schemes. A pixel's color denotes the absolute error of $\langle q^2 \rangle_h$ from an experiment conducted at the given stepsize h (horizontal) and nonlinearity parameter ε (vertical) defining the potential energy in (7.13), with white pixels indicating instability. Experiments were taken over a sufficiently long time interval such that the observed errors are the result of discretization error, rather than sampling error

Ergodicity

Langevin dynamics (friction parameter $\gamma > 0$)

$$\begin{cases} dq_t = M^{-1} p_t dt, \\ dp_t = -\nabla V(q_t) dt - \gamma M^{-1} p_t dt + \sqrt{\frac{2\gamma}{\beta}} dW_t. \end{cases}$$

- Unique invariant measure μ
- Convergence of ergodic averages over one trajectory

$$\lim_{t \to \infty} \frac{1}{t} \int_0^t \varphi(q_s, p_s) ds = \mathbb{E}_{\mu}(\varphi) = \int_{\mathcal{E}} \varphi(q, p) \ d\mu(q, p), \text{ a.s.}$$

• Rate of convergence \to Central limit theorem : define $\Pi \varphi := \varphi - \mathbb{E}_{\mu}(\varphi)$

$$\sqrt{t} \left(\frac{1}{t} \int_0^t \Pi \varphi(q_t, p_t) dt \right) \xrightarrow[t \to +\infty]{\text{law}} \mathcal{N}(0, \sigma^2)$$

with asymptotic variance
$$\sigma^2(\varphi) = 2 \int_0^{+\infty} \mathbb{E}\left(\Pi\varphi(q_t, p_t)\Pi\varphi(q_0, p_0)\right) dt$$

Ergodicity

 Need to check for ergodicity by computing trajectory averages of observables whose exact ergodic averages are known.

Kinetic temperature

$$T = Av_{\beta} \left(\frac{p^2}{mk_B} \right).$$

configurational temperature

$$\frac{\operatorname{Av}_{\beta}(\|\nabla U\|^{2})}{\operatorname{Av}_{\beta}(\Delta U)} = k_{\mathrm{B}}\mathrm{T}.$$

- Av_{β} is the average with respect to the canonical density exp(- β H(q,p))
- Special cases of general result:

Proposition 6.1 Let H be a Hamiltonian defined on the phase space \mathbb{R}^{2N_c} and suppose $G: \mathbb{R}^{2N_c} \to \mathbb{R}^{2N_c}$ is a smooth (C^1) vector field with the following properties:

- $0 < |\operatorname{Av}_{\beta}(\mathbf{G} \cdot \nabla H)| < \infty$,
- $0 < \operatorname{Av}_{\beta}(\nabla \cdot \boldsymbol{G}) < \infty$,
- $|Ge^{-\beta H}| < \infty$

[Leimkuhler, Matthews '15]

Then

$$k_BT = \frac{Av_{\beta}(\mathbf{G} \cdot \nabla H)}{Av_{\beta}(\nabla \cdot \mathbf{G})}.$$

The Mercedes Benz potential

- Model for water like particles
- Each particle has three arms originating from its center of mass. Thus particles are anisotropic rigid bodies.

Double Bond

Single Bond

Tutorial sheet 'Mercedes Benz potential' by Anton Martinsson

The Mercedes Benz potential

- Model for water like particles
- Each particle has three arms originating from its center of mass. Thus particles are anisotropic rigid bodies.

MB pair potential:

$$V(x_{i}, x_{j}, Q_{i}, Q_{j}) = 4\varepsilon_{LJ} \left(\left(\frac{\sigma_{LJ}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{LJ}}{r_{ij}} \right)^{6} \right)$$

$$+ \varepsilon_{HB} G(r_{ij} - r_{HB}) \sum_{k,l=1}^{3} G(\left(Q_{i}^{T} a_{ik} \right)^{T} u_{ij} - 1) G(\left(Q_{i}^{T} a_{ik} \right)^{T} u_{ij} + 1)$$

$$= V_{LJ}(x_{i}, x_{j}) + V_{HB}(x_{i}, x_{j}, Q_{i}, Q_{j}).$$

$$G(x) = \exp\left(-\frac{x^{2}}{2\sigma_{HB}} \right)$$

center of mass

rotation matrix

Rigid bodies

Fig. 4.7 A rigid rotation can be viewed as premultiplication by an orthogonal matrix Θ . In this way the orientation of the position vectors of points in the rigid body at any time t are described by a trajectory in the space of 3×3 orthogonal matrices, $\Theta(t), t \in \mathbb{R}$

Two alternatives for representing rotational motion:

1. The rotation matrix $\Theta(t)$ describing the rotation of each particle in global reference frame is the dynamical quantity, and we solve for $\Theta(t)$. Need to enforce orthogonality constraints.

$$\frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{q}_{\mathrm{cm}} = \boldsymbol{p}_{\mathrm{cm}} / M, \quad \frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{\Theta} = \boldsymbol{\Pi} \boldsymbol{R}^{-1},$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{p}_{\mathrm{cm}} = -\nabla_{\boldsymbol{q}_{\mathrm{cm}}} U, \quad \frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{\Pi} = -\nabla_{\boldsymbol{\Theta}} U - \boldsymbol{\Theta} \boldsymbol{\Lambda},$$

$$\boldsymbol{I} = \boldsymbol{\Theta}^T \boldsymbol{\Theta}.$$

2. Use the orthogonality to perform reduction to angular momentum representation π with respect to body frame of reference.

The DLM rigid body integration algorithm

- Idea: Use splitting strategy
 - Solve for translational motion of center of masses,
 - Integrate torques due to rotational interactions
 - Solve Euler equations, recover rotation matrix

The DLM rigid body integration algorithm

1. "Kick": update the momenta and angular momentum vectors with known forces and torques for a half step:

$$p^k := p^k + \frac{h}{2}F^k, \qquad \pi^k := \pi^k + \frac{h}{2}\tau^k.$$

2. "Drift": step forward a whole step in positions

$$q^k := q^k + hp^k$$
.

3. "Spin": update the rotational state of the kth rigid body by the sequence of steps

$$\Theta := \Theta^{x} \left(\frac{h}{2} \pi_{1}^{k} / I_{1} \right); \quad \pi^{k} := \Theta \pi^{k}; \quad \Theta^{k} := \Theta^{k} \Theta^{T} \\
\Theta := \Theta^{y} \left(\frac{h}{2} \pi_{2}^{k} / I_{2} \right); \quad \pi^{k} := \Theta \pi^{k}; \quad \Theta^{k} := \Theta^{k} \Theta^{T} \\
\Theta := \Theta^{z} \left(h \pi_{3}^{k} / I_{3} \right); \quad \pi^{k} := \Theta \pi^{k}; \quad \Theta^{k} := \Theta^{k} \Theta^{T} \\
\Theta := \Theta^{y} \left(\frac{h}{2} \pi_{2}^{k} / I_{2} \right); \quad \pi^{k} := \Theta \pi^{k}; \quad \Theta^{k} := \Theta^{k} \Theta^{T} \\
\Theta := \Theta^{x} \left(\frac{h}{2} \pi_{1}^{k} / I_{1} \right); \quad \pi^{k} := \Theta \pi^{k}; \quad \Theta^{k} := \Theta^{k} \Theta^{T}$$

The notation $\boldsymbol{\Theta}^{x}(\phi)$ refers to a rotation around the x-axis by an angle ϕ , that is

$$\boldsymbol{\Theta}^{x}(\phi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 \cos(\phi) - \sin(\phi) \\ 0 \sin(\phi) & \cos(\phi) \end{bmatrix},$$

with corresponding formulae for $\boldsymbol{\Theta}^{y}$ and $\boldsymbol{\Theta}^{z}$.

4. "Kick": update the momenta and angular momentum vectors (as in Step 1) with a half step using new forces \mathbf{F}^k and torques $\mathbf{\tau}^k$ evaluated at the current \mathbf{q} , $\mathbf{\Theta}$.

Forces

$$\mathbf{F}^k = -\frac{\partial U}{\partial \mathbf{q}^k},$$

Torques

$$\boldsymbol{\tau}^k = -\mathrm{rot}\left(\left[\boldsymbol{\Theta}^k\right]^T \frac{\partial U}{\partial \boldsymbol{\Theta}^k}\right).$$

$$rot(\mathbf{A}) = skew^{-1}(\mathbf{A} - \mathbf{A}^T).$$

$$\operatorname{skew}(\boldsymbol{\omega}) \equiv \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix}$$

Steps to perform the tutorial

- Read Mercedes Benz tutorial sheet
- Take the BAOAB integrator in MIST as a starting point
- Find a way to store the angular momentum of each particle in the system (hint: there is only one rotation in 2D)
- Modify the BAOAB integrator by incorporating the DLM algorithm
- Set up the force evaluations by calculating the derivatives of the MB potential

Thank you for your attention