

Credit Rating Classification

CS 513 Knowledge Discovery and Data Mining - Section A Group 1

Harshil Cherukuri, Harshal Panpaliya, Sidharth Peri, Sufyan Shaha

Team Members

Sufyan Shaha CWID: 20010972

Harshal Panpaliya CWID: 20009251

Harshil Cherukuri CWID: 10455724

Sidharth Peri CWID: 10454365

Overview

- 1. Problem Overview
- 2. Objective and Goals
- 3. Data Description
- 4. Sub-Problem 1: Data Cleaning and Feature Importance
- 5. Main Problem: Predicting Credit Ratings
- 6. Sub-Problem 2: Clustering Bonds
- 7. Conclusion

3

Problem Overview

- Global fixed income (bond) market totals about **\$130 trillion** in outstanding debt
- Bonds are denoted with a **credit rating**, a measurement of their overall risk as an investment by 3 different credit rating agencies (Moody's, S&P, and Fitch)
- For traders and financial market participants, predicting corporate bond ratings, forecasting rating changes, and analyzing market data to accurately make these predictions are all important

Objective and Goals

Sub-Problem 1: Data Cleaning and Feature Importance

O Goal: Systematically determine what the most important financial metrics within the dataset are for predicting credit ratings

Importance: Eliminates noise within data and provides a focused set of metrics for

fundamental analysis

Main Problem: Predicting Credit Ratings

Goal: Using most important financial metrics, create models to accurately predict and classify credit ratings on unseen data

Importance: Main objective of project, if models are accurate they can be used to determine future bond ratings given forecasts of financial performance

Sub-Problem 2: Bond Clustering

Goal: Implement unsupervised learning models to see if clustering bonds leads to a grouping system aligning with credit ratings **Importance:** Provides a similar predictive model for unknown credit ratings, which would

be more beneficial for new issuances

Data Description

- The data is collected from Intercontinental Bond Data Index (ICE) from BoFa
- Specifically using High-Yield Index data from September 1, 2023
- The dependent variable, RATINGS consists of 11 different groups:
 - Low-Risk Credit: BB1, BB2, BB3
 - **High-Risk Credit:** B1, B2, B3, CCC1, CCC2, CCC3, CC, C
 - Models will predict binary classes:Low-Risk and High-Risk
- Data includes 1865 unique bonds (rows) and 138 unique features (columns)

Numeric	Composite	Moody's	S&P	Fitch
1	AAA	Aaa	AAA	AAA
2	AA1	Aa1	AA+	AA+
3	AA2	Aa2	AA	AA
4	AA3	Aa3	AA-	AA-
5	A1	A1	A+	A+
6	A2	A2	Α	Α
7	A3	A3	A-	A-
8	BBB1	Baa1	BBB+	BBB+
9	BBB2	Baa2	BBB	BBB
10	BBB3	Baa3	BBB-	BBB-
11	BB1	Ba1	BB+	BB+
12	BB2	Ba2	BB	BB
13	BB3	Ba3	BB-	BB-
14	B1	B1	B+	B+
15	B2	B2	В	В
16	B3	B3	B-	B-
17	CCC1	Caa1	CCC+	CCC+
18	CCC2	Caa2	CCC	CCC
19	CCC3	Caa3	CCC-	CCC-
20	CC	Ca	CC	CC
24	C	C	_	C

Data Cleaning

- 1. Drop columns with **100% NaN**
 - a. WAM, MUNI_STATE, WAC, WALA, CPR
- 2. Drop Constant Features
 - a. 15 Total (Ex: AS_OF_DATE, INDEX_NAME, MLINDLVL1 CODE)
- 3. Drop CUSIP and ISIN NUMBER
- Drop features with duplicate information in multiple columns
 - a. DESCRIPTION and TICKER
 - b. ML_INDUSTRY_LVL_2 (3,4) and MLINDLVL2 CODE (3,4)
- 5. Interpolate **Missing Values**
 - a. Numerical Features: Fill with column average
 - b. Categorical Features: Fill with column mode

Length: 112, dtype: float64

Multicollinearity, One-Hot Encoding, Feature Scaling, Train-Test Split

- Multicollinearity: Exists when multiple features exhibit high correlations (+ or -) with each other.
 - Solution: Pairwise correlation check
- One-Hot Encoding: Method to convert categorical variables into numerical variables for model construction
 - Now 2415 total columns
- Feature-Scaling: Min-Max Normalization
- Train-Test Split: 70% Train (1305), 30% Test (560)

Feature2	Correlation
CURRENT_COUPON	1.000000
FACE_VALUE_PREVMEND_LOC	1.000000
OAS_MTD_CHANGE	1.000000
SPRD_TO_WORST_MTD_CHGE	1.000000
TRR_MTD_LOC	1.000000
EFF_DUR	0.908030
SPREAD_DURATION	0.903976
SPREAD_DURATION	0.903966
OAS_1_MO_CHANGE	-0.901407
OAS_1_MO_CHANGE	-0.903408
	FACE_VALUE_PREVMEND_LOC OAS_MTD_CHANGE SPRD_TO_WORST_MTD_CHGE TRR_MTD_LOC EFF_DUR SPREAD_DURATION SPREAD_DURATION OAS_1_MO_CHANGE

Feature Importance Model 1: Logistic Lasso

- LASSO: Least Absolute Shrinkage and Selection Operator (also known as L1 Regularization)
- Goal: Help models find balance between simplicity and accuracy by adding a penalty term to a linear models
- Penalty term encourages sparse solutions and forces coefficients to be 0
- Cost function adds penalty term, which is tuning parameter (λ) multiplied by the sum of the absolute value of feature coefficients
- Python Implementation: Determine C parameter (1/λ), fit logistic regression model specifying: penalty = 'l1', extract features with non-zero coefficients
- Result: 2415 features -> 474 features

Selected features: ['CURRENT_COUPON' 'MACAULAY_DUR' 'CONVEXITY' 'KDR_SWAP_6_MOS 'KDR_SWAP_5 YRS' 'KDR_SWAP_20 YRS' 'EXCESS RTN 3 MONTH' 'EXCESS_RTN_6_MONTH' 'EXCESS_RTN_12_MONTH' 'EXCESS_RTN_YTD' 'ASSETSWP_YTD_CHGE' 'PREVMEND_ACCRUED_INTEREST' 'LIBOROAS' 'MARKET_CONVENTION_PRICE' 'FACE_VALUE_PREVMEND_LOC' 'TICKER_AAWW' 'TICKER ABG' 'TICKER ACI' 'TICKER ADAHEA' 'TICKER ADT' 'TICKER ADVGRO' 'TICKER AGKLN' 'TICKER AHLMUN' 'TICKER AMCX' 'TICKER AMN' 'TICKER ANF' 'TICKER APG' 'TICKER AR' 'TICKER ARI' 'TICKER ARMK' 'TICKER ARNC' 'TICKER ASCRES' 'TICKER ASGN' 'TICKER ASHWOO' 'TICKER ATGE' 'TICKER ATI' 'TICKER AXL' 'TICKER BBCP' 'TICKER BBDBCN' 'TICKER BBWI' 'TICKER BCO' 'TICKER BECN' 'TICKER BIGSKY' 'TICKER BLOCKC' 'TICKER BLURAC' 'TICKER BMCAUS' 'TICKER BRPCN' 'TICKER BURLN' 'TICKER BZH' 'TICKER CABO' 'TICKER CAR' 'TICKER CASAVI' 'TICKER CASCN' 'TICKER CC' 'TICKER CCL' 'TICKER CCO' 'TICKER CDK' 'TICKER CHDN' 'TICKER CHK' 'TICKER CHTR' 'TICKER CITPET' 'TICKER CIVI' 'TICKER CLF' 'TICKER CMP' 'TICKER CNX' 'TICKER CODI' 'TICKER COMM' 'TICKER CPE' 'TICKER CPN' 'TICKER CRGYFN' 'TICKER CRK' 'TICKER CRL' 'TICKER CROX' 'TICKER CSCHLD' 'TICKER CSTM' 'TICKER_CTLT' 'TICKER_CVI' 'TICKER_CVLGHT' 'TICKER_CVT' 'TICKER_CWK' 'TICKER CXW' 'TICKER DAN' 'TICKER DAR' 'TICKER DFH' 'TICKER DNB 'TICKER_DVA' 'TICKER_EAF' 'TICKER_EHC' 'TICKER_ENR' 'TICKER_F' 'TICKER FIP' 'TICKER FL' 'TICKER FOR' 'TICKER FREMOR' 'TICKER FYBR' 'TICKER GATGLO' 'TICKER GCCN' 'TICKER GCI' 'TICKER GCUNIV' 'TICKER GDDY 'TICKER GEL' 'TICKER GEN' 'TICKER GFF' 'TICKER GLP' 'TICKER GT' 'TICKER GTLS' 'TICKER GTN' 'TICKER HARMID' 'TICKER HBMCN' 'TICKER HEES' 'TICKER HILCRP' 'TICKER HLSTWR' 'TICKER HOUS' 'TICKER HOWMID' 'TICKER HOY' 'TICKER HRI' 'TICKER HUNTCO' 'TICKER IBP' 'TICKER IEP' 'TICKER IGT' 'TICKER IHOVER' 'TICKER IHRT' 'TICKER INTEL' 'TICKER IONTRA' 'TICKER IOV' 'TICKER IRM' 'TICKER IT' 'TICKER JELD' 'TICKER KALU' 'TICKER KBH' 'TICKER KENGAR' 'TICKER KNIRIV' 'TICKER LABL' 'TICKER LADR'

Feature Importance Model 2: Random Forest

- By fitting a random forest model, we can determine feature importances using the MDI metric (Mean Decrease in Impurity)
- MDI: Calculates each importance as the sum over the number of splits (across all trees) that include the feature, proportional to the number of samples it splits
- Python Implementation: Fit random forest model and obtain feature importances using built-in function
- Results: 474 features -> 15 features
- These 15 features are the most important features in the dataset for predicting ratings (~91% of importance of data)

	Importance
Feature	
LIBOROAS	0.103966
KDR_SWAP_6_MOS	0.053849
EXCESS_RTN_YTD	0.053060
CURRENT_COUPON	0.052446
ASSETSWP_YTD_CHGE	0.051126
MACAULAY_DUR	0.045992
CONVEXITY	0.045819
EXCESS_RTN_6_MONTH	0.045689
MARKET_CONVENTION_PRICE	0.045602
EXCESS_RTN_12_MONTH	0.044854
EXCESS_RTN_3_MONTH	0.042877
KDR_SWAP_2_YRS	0.035887
KDR_SWAP_5_YRS	0.031549
PREVMEND_ACCRUED_INTEREST	0.031096
FACE_VALUE_PREVMEND_LOC	0.025670

Model 1: K-Nearest Neighbors (KNN)

- Using a grid search with cross-validation to estimate the optimal hyperparameters, we obtained the optimal hyperparameters as: k = 15, weights = distance
- **Accuracy:** 0.7125
- High-Risk predictions have higher precision and lower recall

Model 2: Naive Bayes

The model performs well in terms of precision for both classes, especially for HIGH-RISK

The recall for HIGH-RISK is lower, indicating that the model struggles to identify all instances of this class

The F1-score for LOW-RISK (0.73) is relatively higher, indicating that it effectively identifies positive cases while minimizing false positives and false negatives

Accuracy: 0.675

Model 3: CART (Decision Tree Classifier)

After hyperparameter tuning, we found that the **entropy** criterion was better for decision-making than **gini** criterion. (Entropy involves logarithmic calculations)

Accuracy: 0.744

ı							Predic	ted label		
							HIGH-RISK	LOW-RISK		_
	weighted avg	0.74	0.74	0.74	560					- 80
	macro avg	0.74	0.74	0.74	560					- 100
		0.74	0.74			LOW-RISK -	72	193		
	accuracy			0.74	560	,			ш	- 120
						True				- 140
	LOW-RISK	0.73	0.73	0.73	265	label			н	- 160
	HIGH-RISK	0.76	0.76	0.76	295				ш	
						HIGH-RISK -	224	71	ш	- 180
		precision	recall	f1-score	support				ш	- 200
		127 2		_					П	- 220

Model 4: SVM

Key Parameters: C: 10, gamma: scale, kernel: poly, chosen based on a grid search with a cross-validation score of 0.78.

Model Accuracy: 76.42%

The model was better at identifying true 'LOW-RISK' instances, as indicated by a higher recall value.

	precision	recall	f1-score	support	209	86	- 200 - 180
HIGH-RISK LOW-RISK	0.82 0.72	0.71 0.83	0.76 0.77	295 265 🖁			- 160 - 140
accuracy macro avg weighted avg	0.77 0.77	0.77 0.76	0.76 0.76 0.76	560 560 560	- 46	219	- 120 - 100 - 80
gou ug	• • • • • • • • • • • • • • • • • • • •	3170		230	HIGH-RISK Predicts	LOW-RISK	- 60

Model 5: Neural Network

Key Parameters: Epochs: 100, Batch Size: 32, Validation Split: 20%

Model Accuracy: 75.71%

Neural Network model is structured with an input layer, two hidden layers with dropout for regularization, and a softmax output layer.

	precision	recall	f1-score	support			- 220 - 200
HIGH-RISK LOW-RISK	0.78 0.73	0.75 0.76	0.77 0.75	295 HIGH-RISK - 265 g	222	73	- 180 - 160
				ue la			- 140
accuracy			0.76	560 ⁼			- 120
macro avg	0.76	0.76	0.76	560 LOW-RISK	63	202	- 100
weighted avg	0.76	0.76	0.76	560			- 80
					HIGH-RISK	LOW-RISK	
					Predict	ed label	

Model 5: Neural Network 2

Key Parameters: Epochs: 100, Batch Size: 32, with L1 and L2 Regularization

l1=l2=0.001

Model Accuracy: 80.12%

With a different architecture and Regularization unlike in the previous one, the model seemed to be performing slightly better than the other one

	precision	recall	f1-score	support
HIGH-RISK LOW-RISK	0.83 0.77	0.79 0.82	0.81 0.79	295 265
accuracy macro avg weighted avg	0.80 0.80	0.80 0.80	0.80 0.80 0.80	560 560 560

Model 6: XGBoost Classifier

Key Parameters: Learning rate set to 0.1, max depth at 3, and 100 estimators.

Model Accuracy: **78.39%**, one of the *highest* among the tested models.

Balanced Classification: Equitable performance in identifying both

'HIGH-RISK' and 'LOW-RISK' categories.

	precision	recall	f1-score	support	HIGH-RISK -	228	67	- 220 - 200
HIGH-RISK LOW-RISK	0.81 0.76	0.77 0.80	0.79 0.78	295 265	line label			- 180 - 160 - 140
accuracy macro avg weighted avg	0.78 0.79	0.78 0.78	0.78 0.78 0.78	560 560 560	LOW-RISK -	54	211	- 120 - 100 - 80 - 60
						HIGH-RISK Predicte	LOW-RISK ed label	-

Model 7: LightGBM Classifier

Key Parameters: Learning rate: 0.1, Max depth: 5, n estimators: 100, Num leaves: 15

Model Accuracy: 77.14%, showcasing strong predictive capabilities.

Balanced Classification: Equitable performance in identifying both 'HIGH-RISK' and

'LOW-RISK' categories.

Model 8: Voting Classifier

- Voting Technique used to combine multiple classification models into a single ensemble model
- For our implementation, we combined the KNN, Naive Bayes, CART, and SVM models shown earlier (using same hyperparameters) into a single voting classifier using hard voting
- Accuracy: **0.766**

Predicted label

Sub-Problem 2: Clustering Bonds

Model 1: K-Means Clustering

- Clusters are formed with the goal to minimize the inertia of each cluster
- Each cluster centroid aims to represent the cluster as a measure of the mean of the data points assigned to each cluster
- Result: Even distribution of low and high risk bonds between both clusters, does not provide divisive split we were looking for

Cluster	0	1
Rating		
HIGH-RISK	164	131
LOW-RISK	155	110

Sub-Problem 2: Clustering Bonds

Model 2: Hierarchical Clustering

- Using single linkage, the clusters are formed by initially having each data point represent its own cluster and continuously merging based on minimum distance until 2 clusters are formed
- **Result:** Heavily skewed distribution to one cluster, showing high probability of outliers in the data considering we are using single linkage

Conclusion

Sub-Problem 1: Data Cleaning and Feature Importance

- Logistic LASSO and Random Forest feature importance methods in combination can help extract most important features
- Financial metrics are most important to consider, particularly: LIBOROAS,
 KDR_SWAP_6_MOS, and EXCESS_RTN_YTD

Main Problem: Predicting Credit Ratings

- Models ranging from basic to more advanced can all fairly accurately classify bonds as high and low risk according to rating
- Advanced models despite not being as interpretable perform better than more basic models
- Combining basic models into a single ensemble classifier yields as good results as advanced models

Sub-Problem 2: Clustering Bonds

- Hierarchical and K-Means clustering are not able to cluster bonds in alignment with rating riskiness
- Potentially due to outliers in data and other factors outside dataset affecting ratings

THANK YOU

Stevens Institute of Technology 1 Castle Point Terrace, Hoboken, NJ 07030