1. 下列有关 CPU 中部分部件的功能的描述中,错误的是(D)。 A. 控制单元用于对指令操作码译码并生成控制信号 B. PC 称为程序计数器,用于存放将要执行的指令的地址 C. 通过将 PC 按当前指令长度增量,可实现指令的按序执行 D. IR 称为指令寄存器,用来存放当前指令的操作码 2. 执行完当前指令后, PC 中存放的是后继指令的地址, 因此 PC 的位数和(C)的 位数相同。 A. 指令寄存器 IR B. 指令译码器 ID C. 主存地址寄存器 MAR D. 程序状态字寄存器 PSWR 3. 通常情况下,下列(D)部件不包含在中央处理器(CPU)芯片中。 B. 控制器 C. 通用寄存器 D. DRAM A. ALU 4. 下列有关程序计数器 PC 的叙述中,错误的是(B)。 A. 每条指令执行后, PC 的值都会被改变 B. 指令顺序执行时, PC 的值总是自动加1 C. 调用指令执行后, PC 的值一定是被调用过程的入口地址 D. 无条件转移指令执行后, PC 的值一定是转移目标地址 5. CPU 取出一条指令并执行所用的时间被称为(D)。 A. 时钟周期 B. CPU 周期 C. 机器周期 D. 指令周期 6. 下列有关指令周期的叙述中,错误的是(B)。 A. 指令周期的第一个阶段一定是取指令阶段 B. 乘法指令和加法指令的指令周期总是一样长 C. 一个指令周期由若干个机器周期或时钟周期组成 D. 相对于 RISC, CISC 风格处理器的指令周期更长 7. 下列有关 CPU 时钟信号的叙述中,错误的是(A)。 A. 处理器总是每来一个时钟信号就开始执行一条新的指令 B. 边沿触发指状态单元总在时钟上升沿或下降沿开始改变状态 C. 时钟周期以相邻状态单元之间最长组合逻辑延迟为基准确定 D. 每个时钟周期称为一个节拍, 机器的主频就是时钟周期的倒数 8. 下列有关数据通路的叙述中,错误的是(D)。 A. 数据通路由若干操作元件和状态元件连接而成 B. 数据通路的功能由控制部件送出的控制信号决定 C. ALU 属于操作元件,用于执行各类算术和逻辑运算 D. 通用寄存器属于状态元件,但不包含在数据通路中

9. 下列有关 RISC 特征的描述中,错误的是(C)。

- A. 指令格式规整, 寻址方式少
- B. 采用硬连线控制和指令流水线
- C. 配置的通用寄存器数目不多
- D. 运算类指令的操作数不访存
- 10. 假定在如下图所示的单总线数据通路中,总线传输延迟和 ALU 运算时间分别是 20ps 和 200ps,寄存器建立时间为 10ps,寄存器保持时间为 5ps,寄存器的锁存延迟(Clk-to-Q time)为 4ps,控制信号的生成延迟(Clk-to-signal time)为 7ps,三态门接通时间为 3ps,则从当前时钟到达开始算起,完成以下操作的最短时间是多少?各需要几个时钟周期?
 - (1) 将数据从一个寄存器传送到另一个寄存器。
 - (2) 将程序计数器PC加1。

答:

图 5.2 单总线数据通路中主要路径的定时

- (1) 寄存器之间进行传送的时间延迟至少为 7+3+20+10=40ps。在这个寄存器数据传送过程中,只需要在一个寄存器中保存信息,因此只需要一个时钟周期就可完成该操作。
- (2) 将 PC 中的内容加 1 送 PC,被分解成以下两个过程: PC 加 1 送 Z、Z 送 PC。对于第一个过程,其延迟至少为 7+3+20+200+10=240ps;第二个过程实现的是寄存器之间的传送,因此延迟至少为 40ps。因为在该操作过程中保存了两次信息,所以需要两个时钟周期才能完成该操作。