

Pacific Rim Impacts of US Shale Boom

Jason Bordoff
2013 EIA Energy Conference
June 17, 2013

COLUMBIA | SIPA

Global Gas Demand Forecast

Asia Pacific Pipeline vs. LNG Demand

Asia Country Level Forecast

Source: IEA WEO2012, EIA, Jim Jensen

Japanese Power Generation

Billion kWh (left) and trillion BTU (right)

Chinese Power Generation by Type

China's Acrid Air

PM 2.5 microns per cubic meter

Global Gas Supply Forecast

Top 10 countries with technically recoverable shale gas resources

Rank	Country	Shale Gas (tcf)	
1	China	1,115	
2	Argentina	802	
3	Algeria	707	
4	U.S. ¹	665 (1,161)	
5	Canada	573	
6	Mexico	545	
7	Australia	437	
8	South Africa	390	
9	Russia	285	
10	Brazil	245	
	World Total	7299 (7,795)	

¹ EIA estimates used for ranking order. Advanced Resources International estimates in parentheses

Source: EIA

COLUMBIA | SIPA

Center on Global Energy Policy

Global Gas Trade 2013-2017

COLUMBIA | SIPA

Global Gas Supply Forecast

Source: IEA Medium Term Gas Report 2012

Impact of US Shale Boom

Economic

- LNG Exports
- Coal Exports
- Displaced LNG Imports

Geostrategic

- Russia
- Qatar
- Australia
- Other

Environmental

- Substitution of gas for coal?
- Substitution of gas for renewables and nuclear?
- Impact of lower gas prices on consumption?

Regional Gas Price Forecast

Summary of Projected US LNG Exports

Study (year)	Volume	
CRA (2013)	20 bcf/day*	
ICF (2013)	8 bcf/day**	
Moody's (2013)	6 bcf/day	
Navigant (2012)	5-6 bcf/day	
Ken Medlock (2012)	No more than 1.2 bcf/day	
NERA (2012)	0 bcf/day***	

^{*} Likely case. High case = 35 bcf/day.

^{**} Middle case. Low case = 4 bcf/day. High case = 16 bcf/day.

^{***} In its analysis of global markets, NERA found that the U.S. would only be able to market LNG successfully with higher global demand or lower U.S. costs of production than in the Reference cases.

Market-based Pricing in Gas Trade by Region

Additional 42 bcm/year or 4 bcf/day of North American LNG exports into Asia Pacific could increase volume of gas traded on gas-to-gas basis from 12% to 27%

Asia Pacific Pricing Mechanism

LNG Trade versus Pipeline

Source: BP Statistical Review, IEA

Global LNG Majors

Export quantity and revenue as a share of GDP in 2011

Source: IMF, WITS, BP, Rhodium Group estimates

Rising Australia LNG Construction Costs

Gas Substitution Effect on Emissions

Source: IEA 2011, WEO 2012, "Golden Age of Gas Report

Concluding Thoughts

Economic

- LNG exports can lower costs in Pacific and boost competition, but transportation costs mean regional price differential will persist.
- Oil linkage to remain, although with more flexible indexation clauses, but entering a period of more gas-on-gas competition in latter half of decade

Geostrategic

- Ramp up in LNG export capacity to continue pressuring Russia gas terms
- Huge Qatari surplus capacity has been absorbed; question is how they respond to surge in new export capacity.
- Keep an eye on Australian LNG project costs.

Environmental

- Low-cost natural gas tends to lower GHG emissions, but not a lot
- Still need climate policy; gas makes policy cheaper, doesn't solve climate
- Need better information about lifecycle emissions (fugitive methane)

Thank you

For more information:

Jason Bordoff

Professor of Professional Practice in International and Public Affairs Director, Center on Global Energy Policy Columbia University

<u>Jbordoff@columbia.edu</u>
(212) 851-0193

Appendix

U.S. LNG Export and Price Impact Forecast

Study	Average Price without Exports (\$/MMBtu)	Average Price with Exports (\$/MMBtu)	Average Price Increase (%)
EIA*	\$5.28	\$5.78	9%
Deloitte	\$7.09	\$7.21	2%
Navigant (2010)** (2 bcf/day of exports)	\$4.75	\$5.10	7%
Navigant (2012)***	\$5.67	\$6.01	6%
ICF International***	\$5.81	\$6.45	11%

^{*} Price impact figure for EIA study reflects the reference case, low-slow export scenario.

Source: EIA, Deloitte, Navigant, ICF International

^{**} The Navigant study did not analyze exports of 6 bcf/day.

^{***} Navigant (2010 and 2012) and ICF International studies are based on Henry Hub price.