Quadratic optimization with quantum computing

Biweekely Presentation III

Bálint Hantos

Supervisor: Péter Rakyta

Combinatorial optimization

- Combinatorial optimisation problems:
 - Discrete variables (instead of continous)
 - Optimizing over discrete >> continous variables
 - Constraints?
 - Continous: add to the objective function! (eg. Lagrangian multiplier)
 - Discrete is hard, if there are constraints (check every case)
 - It is even harder for **binary** (0,1) variables: brute force method

Quadratic unconstrained binary optimization - QUBO

```
\langle \boldsymbol{b} \mid \boldsymbol{Q} \mid \boldsymbol{b} \rangle
\langle 10010 \mid \boldsymbol{Q} \mid 10010 \rangle = \text{scalar}
```

- Q is a symmetric matrix (n x n)
- **b** is a **binary** vector (n)

Optimization problem: We want to find **b** such that

$$\min(\langle b | Q | b \rangle)$$

```
0
1
1
0
...
1
```

Size of problem $n \to 2^n$ possible solutions

Binary optimization is expensive.

Boson sampling

Boson sampling: interferometer

Boson sampling: interferometer

Boson sampling: distribution and energy

Distribution of quantum states:

$$P_S(\vartheta,\psi) = |\alpha_S|^2$$

Boson sampling: distribution and energy

Distribution of quantum states: $P_S = |\alpha_S|^2$

Mapping to qubit basis: $|\mathbf{n}\rangle \to |\mathbf{b}\rangle$ binary vectors $\sum_{s\subset S} P_s \to \beta_{|\mathbf{b}\rangle} \; \epsilon \, [0,1]$

$$E(\psi,\vartheta) = \sum_{|\mathbf{b}\rangle} \beta_{|\mathbf{b}\rangle} \langle \mathbf{b} | \, Q \, | \mathbf{b} \rangle = \langle Q \rangle$$
 Depends on Fixed
$$\vartheta_i \quad \text{and} \quad \psi_i$$

Goal: find $|\mathbf{b}^*\rangle = \operatorname{argmin}(\langle \mathbf{b}^* | Q | \mathbf{b}^* \rangle)$

Variational solver: gradient descent

Apply gradient descent:

$$\vartheta_i' o \vartheta_i - \eta \frac{\partial E}{\partial \vartheta_i}$$
 Need to compute the gradient

Approximating the gradient:

$$\frac{\partial E}{\partial \vartheta_i} \approx \frac{E(\vartheta_i + \varepsilon) - E(\vartheta_i)}{\varepsilon}$$

Practically infeasible

- Very high accuracy in tuning optical components (ε is small)
- Need many samples to capture difference by distributions ($E(\vartheta_i + \varepsilon)$ and $E(\vartheta_i)$)

Use the parameter shift rule instead:

$$2\frac{\partial E(\vartheta_i)}{\vartheta_i} = E(\vartheta_i + \pi/2) - E(\vartheta_i - \pi/2)$$

Hint: trigonometric functions backing it up

Model overview

Break minimization: formulation

Take a timetable

Slot	1	2	3	4	5	6
team 1	2	3	4	2	3	4
team 2	1	4	3	1	4	3
team 3	4	1	2	4	1	2
team 4	3	2	1	3	2	1

Group the coefficients

0	4	-2	2	-4	0
4	-4	4	4	0	-4
-2	4	-2	0	4	-2
2	4	0	-6	4	2
-4	0	4	4	-4	4
$\begin{bmatrix} 0 \\ 4 \\ -2 \\ 2 \\ -4 \\ 0 \end{bmatrix}$	-4	-2	2	4	0

Create an assignment schema

Slot	1	2	3	4	5	6
team 1	z_1	z_2	z_3	$1 - z_1$	$1 - z_2$	$1 - z_3$
team 2	$1 - z_1$	z_5	z_4	z_1	$1 - z_5$	$1 - z_4$
team 3	z_6	$1 - z_2$	$1 - z_4$	$1 - z_6$	z_2	z_4
team 4	$1 - z_6$	$1 - z_5$	$1 - z_3$	z_6	z_5	z_3

Apply $f(\mathbf{z})$ objective function

$$f(\mathbf{z}) \sim \sum_{k} [z_k z_{k'} + (1 - z_k)(1 - z_{k'})]$$

Find **z**vector(s)
/w minimal
<**Q**>

Progress

- Calculated the $\langle \mathbf{z} | \mathbf{Q} | \mathbf{z} \rangle$ for all \mathbf{z} in a tournament
- Counted breaks for every z
- Compared energy and number of breaks
- Expected a linear connection between breaks and energy (<Q> = <E>)
- Found no clear correspondence bw breaks and expected value
- Perhaps **Q** calculated wrongly

Progress

- Calculated the $\langle \mathbf{z} | \mathbf{Q} | \mathbf{z} \rangle$ for all \mathbf{z} in a tournament
- Counted breaks for every z
- Compared energy and number of breaks
- Expected a linear connection between breaks and energy (<Q> = <E>)
- **Q was** calculated wrongly (change up $z_4 z_5$)
- Overlapping data points noise
- Correspondence bw energies and breaks
- The lowest energy configuration paired with a min-break → quantum annealing is viable

