EXAMEN PROBABILITÉS - 1SN

Mardi 22 Octobre 2019 (14h-15h30)

Partiel sans document (Une feuille A4 recto-verso autorisée)

Exercice 1 : Somme de deux lois de Bernoulli (6 points)

On considère deux variables aléatoires (mutuellement) indépendantes X et Y de lois de Bernoulli telles que

$$P[X = 1] = p, P[X = 0] = 1 - p$$

$$P[Y = 1] = p, P[Y = 0] = 1 - p$$
(1)

avec $p \in]0,1[$. L'objectif de cet exercice est d'étudier la loi de la variable aléatoire T=X+Y de plusieurs manières.

- 1. En recherchant les valeurs possibles de T et les probabilités associées, montrer que T suit une loi binomiale dont on déterminera les paramètres.
- 2. Déterminer la fonction caractéristique de T et retrouver la loi obtenue à la question précédente.
- 3. On pose U = X. Quelle est la loi du couple (T, U)? En déduire la loi marginale de T.
- 4. Déterminer la fonction de répartition de la variable T = X + Y notée F(t) = P[T < t], représenter la graphiquement et expliquer comment retrouver la loi de T à partir de F.

Exercice 2 : Somme de deux lois exponentielles (8 points)

On considère deux variables aléatoires indépendantes X et Y de lois exponentielles de paramètre λ de densités

$$p(x,.) = \left\{ \begin{array}{ll} \lambda e^{-\lambda x} \text{ si } x > 0 \\ 0 \text{ sinon} \end{array} \right. \quad \text{et} \quad p(.,y) = \left\{ \begin{array}{ll} \lambda e^{-\lambda y} \text{ si } y > 0 \\ 0 \text{ sinon} \end{array} \right.$$

avec $\lambda > 0$. On remarquera que la loi exponentielle de paramètres λ est une loi gamma $\Gamma(\lambda, 1)$. L'objectif de cet exercice est d'étudier la loi de la variable aléatoire T = X + Y de plusieurs manières.

- 1. Déterminer la fonction caractéristique de T et en déduire sa loi.
- 2. On définit la variable aléatoire Z = X Y. Quelle est la loi du couple (T, Z) ? (on accordera une attention particulière au domaine de définition de ce couple que l'on représentera graphiquement). En déduire la loi marginale de T et montrer qu'on retrouve le résultat de la question précédente.
- 3. Déterminer la fonction de répartition de la variable T = X + Y notée F(t) = P[T < t] à partir de la densité du couple (X,Y) notée p(x,y) et retrouver la loi de T à partir de F.

Exercice 3: Vecteurs Gaussiens (6 points)

Soient X,Y et Z trois variables aléatoires Gaussiennes indépendantes de loi $\mathcal{N}(0,1)$. On pose U=X+Y-Z et V=aX+bY avec $a\neq 0$ et $b\neq 0$.

- 1. Quelle est la loi du vecteur $(X, Y, Z)^T$?
- 2. Déterminer la loi du vecteur $(U, V)^T$ et les lois marginales de U et de V. A quelle condition les variables aléatoires U et V sont-elles indépendantes ?
- 3. On suppose dans cette question que a=1 et b=-1. Déterminer les densités de $(U,V)^T$ et de V. En déduire que la loi conditionnelle de $U \mid V=v$ est une loi normale dont on déterminera la moyenne et la variance.

LOIS DE PROBABILITÉ DISCRÈTES

m: moyenne σ^2 : variance **F. C.:** fonction caractéristique $p_k = P[X = k]$ $p_{1,...,m} = P[X_1 = k_1,...,X_m = k_m]$

LOI	Probabilités	m	σ^2	F. C.	
Uniforme	$p_k = \frac{1}{n}$ $k \in \{1,, n\}$	$\frac{n+1}{2}$	$\frac{n^2-1}{12}$	$\frac{e^{it}\left(1-e^{itn}\right)}{n\left(1-e^{it}\right)}$	
Bernoulli	$p_1 = P[X = 1] = p$ $p_0 = P[X = 0] = q$ $p \in [0, 1]$ $q = 1 - p$	p	pq	$pe^{it} + q$	
Binomiale $B(n,p)$	$p_k = C_n^k p^k q^{n-k}$ $p \in [0,1] q = 1 - p$ $k \in \{0,1,,n\}$	np	npq	$(pe^{it}+q)^n$	
Binomiale négative	$p_k = C_{n+k-1}^{n-1} p^n q^k$ $p \in [0,1] q = 1 - p$ $k \in \mathbb{N}$	$n\frac{q}{p}$	$n\frac{q}{p^2}$	$\left(\frac{p}{1 - qe^{it}}\right)^n$	
Multinomiale	$p_{1,,m} = \frac{n!}{k_1!k_m!} p_1^{k_1} p_m^{k_m}$ $p_j \in [0,1] q_j = 1 - p_j$ $k_j \in \{0,1,,n\}$ $\sum_{j=1}^m k_j = n \sum_{j=1}^m p_j = 1$	np_j	Variance : np_jq_j Covariance : $-np_jp_k$	$\left(\sum_{j=1}^{m} p_j e^{it}\right)^n$	
Poisson $P(\lambda)$	$\sum_{j=1}^{m} k_j = n \sum_{j=1}^{m} p_j = 1$ $p_k = e^{-\lambda} \frac{\lambda^k}{k!}$ $\lambda > 0 k \in \mathbb{N}$	λ	λ	$\exp\left[\lambda\left(e^{it}-1\right)\right]$	
Géométrique	$p_k = pq^{k-1}$ $p \in [0,1] q = 1 - p$ $k \in \mathbb{N}^*$	$\frac{1}{p}$	$\frac{q}{p^2}$	$\frac{pe^{it}}{1 - qe^{it}}$	

LOIS DE PROBABILITÉ CONTINUES ${\bf m}$: moyenne ${\bf \sigma}^2$: variance ${\bf F.~C.}$: fonction caractéristique

LOI	Densité de probabilité	m	σ^2	F. C.
Uniforme	$f(x) = \frac{1}{b-a}$ $x \in]a, b[$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{itb} - e^{ita}}{it (b - a)}$
Gamma $\Gamma\left(heta, u ight)$	$f(x) = \frac{\theta^{\nu}}{\Gamma(\nu)} e^{-\theta x} x^{\nu - 1}$ $\theta > 0, \ \nu > 0$ $x \ge 0$ $\operatorname{avec} \Gamma(n + 1) = n! \ \forall n \in \mathbb{N}$	$rac{ u}{ heta}$	$rac{ u}{ heta^2}$	$\frac{1}{\left(1-i\frac{t}{\theta}\right)^{\nu}}$
Inverse gamma $\operatorname{IG}(heta, u)$	$f\left(x\right) = \frac{\theta^{\nu}}{\Gamma(\nu)} e^{-\frac{\theta}{x}} \frac{1}{x^{\nu+1}}$ $\theta > 0, \ \nu > 0$ $x \ge 0$ $\operatorname{avec} \Gamma(n+1) = n! \ \forall n \in \mathbb{N}$	$\frac{\theta}{\nu - 1} \text{ si } \nu > 1$	$\frac{\theta^2}{(\nu-1)^2(\nu-2)} \text{ si } \nu > 2$	(*)
Première loi de Laplace	$f\left(x\right) = \frac{1}{2}e^{- x }$	0	2	$\frac{1}{1+t^2}$
Normale $\mathcal{N}\left(m,\sigma^2 ight)$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}$	m	σ^2	$e^{imt-rac{\sigma^2t^2}{2}}$
Khi $_2$ χ^2_{ν} $\Gamma\left(\frac{1}{2},\frac{\nu}{2}\right)$	$f(x) = ke^{-\frac{x}{2}}x^{\frac{\nu}{2}-1}$ $k = \frac{1}{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})}$ $\nu \in \mathbb{N}^*, \ x \ge 0$	ν	2ν	$\frac{1}{(1-2it)^{\frac{\nu}{2}}}$
Cauchy $c_{\lambda,lpha}$	$f(x) = \frac{1}{\pi \lambda \left(1 + \left(\frac{x - \alpha}{\lambda}\right)^2\right)}$ $\lambda > 0, \ \alpha \in \mathbb{R}$	(-)	(-)	$e^{i\alpha t - \lambda t }$
Beta $B(a,b)$	$f(x) = kx^{a-1} (1-x)^{b-1}$ $k = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}$ $a > 0, \ b > 0$ $x \in]0,1[$ $\operatorname{avec} \Gamma(n+1) = n! \ \forall n \in \mathbb{N}$	$\frac{a}{a+b}$	$\frac{ab}{(a+b)^2(a+b+1)}$	(*)