Relatório 2 O Pêndulo Físico

Autores:

Arthur Augusto Cândido Luércio (251818) Marcos Ferreira Semolini (204339) Pedro Henrique Segnini Ortolan (258610) Renato Moraes Ferreira Sene (238248) Gustavo Guimarães de Carvalho (258492)

Setembro, 2023

Resumo

Introdução

Objetivo

Modelo

Tomando o ponto de centro de massa como referência, podemos escrever uma lei equivalente a segunda lei de Newton, só que para Torques. Assim, podemos escrever que:

$$\sum \tau_i = I \cdot \alpha \tag{1}$$

De onde, para o nosso sistema, segue que:

$$I \cdot \frac{d^2\theta}{dt^2} = -mg \cdot sen(\theta) \tag{2}$$

Realizando a *suposição* de que a oscilação se dá para pequenos ângulos ($\theta \le 10^o$), podemos aproximar $sen(\theta)$ para θ em radianos. O que resulta na equação (3):

$$I \cdot \frac{d^2\theta}{dt^2} = -mgD \cdot \theta \tag{3}$$

(E.D.O. de 2° ordem, Linear e Homogêna)

Supondo que a solução é do tipo $\theta=e^{\lambda t}$, desenvolvendo a equação, encontrando as raizes complexas. Obtemos que:

$$\theta(t) = \theta_0 \cdot cos(\phi_0 + \omega \cdot t), \text{ com } \omega = \sqrt{\frac{\text{mgD}}{\text{I}}}$$
 (4)

Por fim, como $T = \frac{2\pi}{\omega}$. Obtemos que:

$$T = 2\pi \sqrt{\frac{\mathsf{I}}{\mathsf{mgD}}} \tag{5}$$

Note que a equação (5) é uma generalização para qualquer tipo de pêndulo, entretanto trabalharemos com duas hipóteses:

$$T = 2\pi \sqrt{\frac{\mathsf{D} + \frac{K^2}{\mathsf{D}}}{\mathsf{g}}}, \;\; \mathsf{P\hat{e}ndulo} \;\; \mathsf{F}(\mathsf{sico})$$
 (6)

$$T = 2\pi \sqrt{\frac{\mathsf{D}}{\mathsf{g}}},$$
 Pêndulo Simples (7)

Suposições

Procedimento experimental
Resultado
Discussão:
Conclusão:
Referências:
Apêndice A: Dados experimentais e incertezas