Algorithms & Techniques - Week 3

Quiz, 10 questions

Congratulations! You passed!

Next Item

	 The transaction Merkle Tree root value in a Bitcoin block is calculated using
1 / 1 point	number of transactions
	hash of transactions
	Correct.
	none
	previous block's hash

0/1 point 2. Follow the steps given in the tool at this link to manually calculate the hash of the block #490624. You can obtain the details required in the tool from this link except for the timestamp. Please use the timestamp from this link.

What is the hash of the block #490624? Copy and paste the answer.

Enter answer here

That's incorrect. Please enter the correct value from the links provided into the tool.

√ 3. 1/1 point	Follow the guidelines in the encryption tool at thistlink to better understand the concept of Public-Private key encryption and answer the question below. When encrypting a message with the public key, which key is required to decrypt the message? Both Public key and Private key Public Key Inverted Public Key Correct Correct
√ 4. 1/1 point	What type of hashing algorithm does Bitcoin blockchain use to determine the hash of a block? SHA-256 Correct That's correct. Bitcoin uses: SHA256(SHA256(Block_Header))
	MD5 SHA-1 SHA-512

×	5.	hey in order to get a unique public key.
0 / 1 point		SHA 256
		Keccak
		ECC
		RSA
		This should not be selected That's incorrect. Please review the lesson on "Transaction Integrity".
1/1	6.	Which of the following methods can be used to obtain the original message from its generated hash message using SHA-256?
point		Hashing the reverse of generated hash
		Hashing the generated hash again, twice
		Original message cannot be retrieved
		Correct That's correct. SHA-256 is a one-way hash function, that is a function which is infeasible to invert.
		Hashing the generated hash again
~	7.	In Ethereum, hashing functions are used for which of the following?
1/1 point		1. Generating state hash.

- 2. Generating account addresses.
- 3. Decrypting senders message.
- 4. Generating block header hash.

0

1,2,4

Correct

That's correct. In Ethereum, hashing functions are used for generating account addresses, digital signatures, transaction hash, state hash, receipt hash, and block header hash.

- 2,3,4
- 1,2,3
- 1,3,4

8. What is the purpose of using a digital signature?

1/1 point It supports both user authentication and integrity of messages

Correct

That's correct. A valid digital signature gives a recipient reason to believe that the message was created by a known sender (authentication), that the sender cannot deny having sent the message, and that the message was not altered in transit (integrity).

- None of the above.
- lt supports user authentication
- It supports the integrity of messages

~	9. Encryption of	a message provides
1/1 point	integr	ity
	secur	ity
	Correct Correct.	
	authe	ntication
	nonre	pudiation
~	10. A public key is	derived from the
1/1	privat	e Key
1 / 1 point	Correct Correct!	e Key
	Correct	e Key
	Correct!	e Key is block hash
	Correct Correct!	
	Correct Correct! genes a diffe	is block hash

