IM1H Book 1 Selected Answers

IM1H Dream Team

October 25, 2025

- 1. (a) $A_{ABCD} = 25$, $A_{BCEF} = 9$
 - (b) -
 - (c) -
 - (d) A = 34
 - (e) $l = \sqrt{34}$
 - (f) -
- 2. $l = 4\sqrt{5}$
- 3. Yes
- 4. –
- 5. –
- 6. $AB = \sqrt{41}$
- 7. $l = 5\sqrt{2}$
- 8. $l = \sqrt{5}$, No
- 9. 12
- 10. (12, 2), (2, 2)
- 11. No
- 12. $d = 10\sqrt{2}$
- 13. (a) C = (5,0). Answers may vary.
 - (b) D = (5, 1). Answers may vary.
 - (c) x = 5
 - (d) -
- 14. (a) 13, 17, 13, 17
 - (b) -

- 15. (a) $AP = BP = 2\sqrt{5}$
 - (b) (3,5), (2,2), (4,8). Answers may vary.
 - (c) No
 - (d) y = 3(x-2) + 2
- 16. (10,3), (-6,3)
- 17. -
- 18. (a) (0,0), (6,0). Answers may vary.
 - (b) (0,4), (4,2). Answers may vary.
 - (c) (0,4),(2,2). Answers may vary.
- 19. $AB = BC = \sqrt{10}$
- 20. C = (6,3). Infinite. Answers may vary for C.
- 21. $(0,0), (\sqrt{13},0)$. Answers may vary.
- 22. (0,0), (2,3)
- 23. $(0,0), (\sqrt{13},0), (2+\sqrt{13},3), (\sqrt{13},6), (0,6), (-2,3)$. Answers may vary.
- 24. $24 12\sqrt{2}$, $24\sqrt{2} 24$
- 25. There are an infinite number of different ways.
- 26. 208m
- 27. $AP = BP = 5\sqrt{2}$.

2 more equidistant points: $Q=(2,2),\ R=(5,3).$ Answers may vary. All equidistant points: $y=\frac{1}{3}(x-2)+2.$

28. Short leg: $21 - 7\sqrt{5}$

Long leg: $42 - 14\sqrt{5}$

Hypotenuse: $21\sqrt{5} - 35$

- 29. $\frac{5}{12}$
- 30. $(0,5+4\sqrt{2}), (0,5-4\sqrt{2})$
- 31. (a) (0,0), (4,1). Answers may vary.
 - (b) No.
- 32. Yes.
- 33. (a) Yes.
 - (b) \overline{KL}
 - (c) ∠*KLM*

- (d) $\angle BAC$
- (e) They're congruent.
- 34. They sum to 90° .
- 35. It's a right angle.
- 36. (a) -
 - (b) $\frac{b}{a}$ is the negative reciprocal of $\frac{-a}{b}$.
- 37. –
- 38. –
- 39. A line with an undefined slope is perfectly vertical while a line with a slope of 0 is perfectly horizontal.
- 40. $n = \frac{49}{4}$
- 41. x = 1. Answers may vary.
- 42. y = 1. Answers may vary.
- 43. They're the same line. -50x + 30y = 90.
- 44. –
- 45. No.
- 46. (a) $y = \frac{1}{2}(x-5) + 5$
 - (b) 4x 5y = 8
- 47. Yes.
- 48. $\left(\frac{15}{8}, \frac{15}{8}\right)$
- 49. m = -1
- 50. Yes.
- 51. (a) -
 - (b) $\angle Q$; CPTC
- 52. $\triangle ACT \cong \triangle ION$
 - $\triangle ATC \cong \triangle INO$
 - $\triangle CAT \cong \triangle OIN$
 - $\triangle CTA \cong \triangle ONI$
 - $\triangle TAC \cong \triangle NIO$
 - $\triangle TCA \cong \triangle NOI$

- 53. $\triangle BAL \cong \triangle GEL$
 - $\triangle ELB \cong \triangle ALG$
 - $\triangle GEA \cong \triangle BAE$
 - $\triangle ABG \cong \triangle EGB$
- 54. $\angle ABC$ or $\angle CBA$ or $\angle B$ (different ways of writing the same thing).
- 55. \overline{AB}
- 56. (a) PNMRQ
 - (b) ∠Q
- 57. (a) $d_{AP} = \sqrt{(x+1)^2 + (y-5)^2}$
 - (b) $d_{BP} = \sqrt{(x-5)^2 + (y-2)^2}$
 - (c) $\sqrt{(x+1)^2 + (y-5)^2} = \sqrt{(x-5)^2 + (y-2)^2}$
 - (d) 4x 2y = 1
 - (e) (2, 3.5)
 - (f) $m_{AB} = -\frac{1}{2}$; $m_P = 2$
 - (g) –
- 58. (a) The distance between (x, y) and (3, 5) is equal to the distance between (x, y) and (7, -1).
 - (b) 2x 3y = 4
- 59. (a) -
 - (b) -
 - (c) (6, 9.5)
 - (d) (6.2, 9.8)
- 60. (a) 10x 8y = -35
 - (b) (4.5, 10). Answers may vary.
 - (c) $\overline{PA} = \overline{PB}$
- 61. (a) (21, 16)
 - (b) (30, 22)
 - (c) (3+3t,4+2t)
- 62. –
- 63. x = 1 + t; y = 2 + 3t. Answers may vary.
- 64. (-3.5, -0.5)
- 65. (0, 16.9)

- 66. (a) -
 - (b) $\frac{\Delta y \text{ from a 1 unit increase in } t}{\Delta x \text{ from a 1 unit increase in } t}$
 - (c) $y = \frac{11}{3} + \frac{2}{3}x$
- 67. –
- 68. (a) [7, 2]
 - (b) [14, 8]
 - (c) [-7, -4]
 - (d) [7,4]
- 69. (a) [3,6]
 - (b) [3, -2]
 - (c) [-100, 40]
- 70. (a) 12 miles east and 16 miles north
 - (b) 20 miles
 - (c) 10 miles/hour
- 71. (a) 48 miles
 - (b) 4.8 hours
 - (c) 28.8 miles east and 38.4 miles north of his departure point.
- 72. (a) A' = (6,5), B' = (8,-2), C' = (11,4)
 - (b) B'' = (-1,0), C'' = (2,6)
- 73. K' = (5,3), L' = (9,0), M' = (6,-4). Each vertex slides $\sqrt{29}$.
- 74. It depends on whether the triangle is supposed to be right.
- 75. (a) 5 units/second
 - (b) [3, 4]
 - (c) (-3+3t, 1+4t)
 - (d) $\frac{4}{3}$
- 76. Yes, yes, yes, no.
- 77. (a) [4, -12]
 - (b) [-4, 12]
- 78. (a+2,b-4)
- 79. Answers may vary. (0,0), (7,1), (12,6), (5,5)
- 80. (a) 132 miles east and 110 miles north

97. –

98. (a) -

- (b) $d = \sqrt{(3-2t)^2 + (4+t)^2}$
- (c) $(\frac{8}{5}, \frac{21}{5})$
- (d) $(\frac{4}{5}, \frac{23}{5})$
- 99. –
- 100. (a) $s = 3\sqrt{5}$ miles/minute
 - (b) $4\sqrt{10}$ miles
 - (c) t = 8 minutes
- 101. (a) -
 - (b) $\sqrt{13}$
- 102. (a) (2,1)
 - (b) [-12, 5]
 - (c) (x,y) = (2-24t, 1+10t)
- 103. (a) [-6, 8]
 - (b) $\left[-\frac{3}{5}, \frac{4}{5}\right]$
 - (c) $\left[\frac{3}{5}, -\frac{4}{5}\right]$
 - (d) [6, -8]
 - (e) $\left[\frac{3}{5}c, -\frac{4}{5}c\right]$
- 104. (a) [60, -15]
 - (b) $[5, 5\sqrt{2}]$
 - (c) $\left[\frac{3}{8}, \frac{-1}{3}\right]$
 - (d) $\left[\frac{p^2}{q}, p\right]$
- 105. (a) 5
 - (b) 10,080
 - (c) 2016
 - (d) 5t
- 106. -
- 107. –
- 108. –
- 109. They are congruent.
- 110. –
- 111. –

- 112. (a) $x = \frac{3}{5}t + 9$; $y = \frac{4}{5}t 2$
 - (b) $x = \frac{3}{20}t + 9$; $y = \frac{1}{5}t 2$
 - (c) $x = -\frac{3}{5}t + 9$; $y = -\frac{4}{5}t 2$
 - (d) x = -3t + 9; y = -4t 2
- 113. –
- 114. –
- 115. -
- 116. (a)

$$P_3 = (-17, 19)$$

$$P_2 = (-9, 12)$$

$$P_{-2} = (23, -16)$$

$$P_{1.5} = \left(-5, \frac{17}{2}\right)$$

- (b) $y = \frac{33}{8} \frac{7}{8}x$
- (c) Both the x- and y-coordinates are changing at a constant rate.
- 117. (a) $\vec{AB} = [2, -9]$
 - (b) $\vec{AB} = [3t, -4t]$
- 118. (a) $\left[-\frac{8}{5}, \frac{14}{5}\right]$
 - (b) [4, -7]
 - (c) $\left[\frac{4}{\sqrt{65}}, -\frac{7}{\sqrt{65}}\right]$
 - (d) [8, -14]
 - (e) [7, 4]
 - (f) $\left[-\frac{4c}{\sqrt{65}}, \frac{7c}{\sqrt{65}} \right]$
- 119. (a) It moves 3 meters to the left and 4 meters up every second.
 - (b) It moves 180 meters to the left and 240 meters up every second.
 - (c)

$$x = -2 - 180t$$

$$y = 6 + 240t$$

- 120. (a) t = 1s
 - (b) The bug is on the line to the right of the x-intercept.
- 121. (a) m = -4

- (b) $s = \sqrt{17}$ units/minute
- (c) t = 3 minutes
- (d) t = 3 minutes
- (e) -95 or 194 seconds
- 122. y-intercept: $(0, -\frac{26}{3})$ x-intercept: $(\frac{13}{2}, 0)$
- 123. I would find the length of all 4 sides and make sure there were two distinct pairs of congruent adjacent sides.
- 124. -
- 125. -
- 126. -
- 127. -
- 128. (a) $(5, \frac{71}{12})$
 - (b) 7.58
- 129. -
- 130. –
- $131. 68 \text{ cm}^2$
- 132. (a)
 - (b) No
- 133. $\left(-\frac{1}{3}, 2\right), \left(\frac{4}{3}, 3\right)$
- 134. (-5,6). Answers may vary.
- 135. $\left(\frac{48}{13}, \frac{32}{13}\right)$
- 136. $\left(\frac{96}{13}, \frac{40}{13}\right)$
- 137. (4, -1)
- 138. (a) (2,3)
 - (b) $t = \frac{37}{18}$
 - (c) The value of t at which P_t intersects 4x + 3y = 18.
 - (d) $(\frac{13}{6}, \frac{28}{9})$
 - (e) $\left(-\frac{5}{2},0\right)$
- 139. The opposite sides have the same slope, so they must be parallel.
- 140. (a) The direction vector has the same slope as the line.

- (b) Answers may vary. [5, -2], [15, -6].
- (c) They all have the same slope. In other words, they're all multiples of [5,-2].
- 141. (a) $m = -\frac{a}{b}$
 - (b) [a, b] has a slope of $\frac{b}{a}$, and every direction vector has a slope of $-\frac{a}{b}$, so their slopes are opposite reciprocals.
- 142. [2, -3]
- 143. (x,y) = (-19 + 8t, -7 + 6t)
- 144. (a) (x,y) = (1+4t, 5+12t)
 - (b) (-6, -16)
 - (c) $4\sqrt{10}$ units/hour
- 145. $x = \frac{4}{11}$
- 146. -
- 147. –
- 148. $\triangle A \cong \triangle B \cong \triangle C \cong \triangle E$
- 149. 45°
- 150. Answers may vary. $\left[-\frac{18}{13}, \frac{12}{13}\right]$.
- 151. (-1, -7)
- 152. (a) (3,0), (0,2)
 - (b) [2,3]
 - (c) (x,y) = (6+2t,3+3t)
 - (d) $t = -\frac{15}{13}$
 - (e) $\left(\frac{48}{13}, -\frac{6}{13}\right)$
 - (f) $\left(\frac{48}{13}, -\frac{6}{13}\right)$
- 153. (a) [8, -6]
 - (b) $\left[-\frac{9}{2}, -6\right]$
- 154. (a) 2
 - (b) $-\frac{1}{2}$
 - (c) They are perpendicular.
 - (d) $\sqrt{5}$
- 155. $y = \frac{2}{3}(x-1) + 5$

- 156. (a) It's isosceles.
 - (b) It's equilateral.
- 157. (a) There's a typo in this question. It should say $\overline{BA} > \overline{BE}$.
 - (b) -
 - (c) $\overline{BA} + \overline{CA} > \overline{BE} + \overline{CA} > \overline{BE} + \overline{CE} = \overline{BC}$
- 158. $\sqrt{5}$
- 159. (a) -
 - (b) Reflect $\triangle KLM$ over y = 2x.
 - (c) (3, -4)
- 160. (a)
 - (b) $(\frac{72}{13}, \frac{30}{13})$
 - (c) Rotate $\triangle ARM$ counterclockwise.
- 161. The positions are moving in the same direction, but they start at different points, and one is moving three times faster than the other.
- 162. (a) [2,1]
 - (b) (x,y) = (2t,t)
 - (c) $Q = (\frac{8}{5}, \frac{4}{5})$
 - (d) $\overrightarrow{AQ} = \left[\frac{8}{5}, \frac{4}{5}\right]$
 - (e) $B = (\frac{16}{5}, \frac{8}{5})$
 - (f) $t = \frac{8}{5}$
- 163. Q = (1, 2)
- 164. P = (1, 2)
- 165. $F \to \text{midpoint of } \overline{GH} \to D$. There are 4 possible paths.