Multivariate Statistik, Übung 3

HENRY HAUSTEIN

Aufgabe 1

- (a) Die kritischen Werte können so direkt ausgerechnet werden.
- (b) Chi-Quadrat-Verteilung mit 5 Freiheitsgraden, $\alpha=0.05$

Fisher-Verteilung mit $n=2,\,m=6,\,\alpha=0.05$

(c) Ablehnung von H_0 . Im Ablehnungsbereich ist die Wahrscheinlichkeit, dass die gemessenen Daten zu H_0 passen, kleiner als α .

- (d) keine Ablehnung von H_0 . Man kann sich nicht sicher sein, da eine Stichprobe nicht die Grundgesamtheit allumfänglich beschreibt. Man kann sich aber zu einem gewissen Prozentsatz sicher sein, dass die Entscheidung richtig ist \rightarrow Fehler 1. und 2. Art
- (e) Nicht abgelehnt ist nicht das selbe wie Angenommen. Insbesondere spielt beim Testen auch die Stichprobengröße eine Rolle, beim Quotienten nicht.

Aufgabe 2

Betrag von t: Die t-Verteilung ist symmetrisch, es reicht also sich eine Seite (in dem Fall die rechte Seite) anzuschauen. Man muss aber bedenken, dass es beide Seiten zu betrachten gilt, deswegen $\frac{\alpha}{2}$.

Warum $1-\frac{\alpha}{2}$? Man kann beim Testen nur sagen ob H_0 abgelehnt wird oder nicht, nicht ob es angenommen wird. Man betrachtet also den Ablehnungsbereich.

Aufgabe 3

Wir benutzen folgendes Lemma:

Lemma 1 Für Zufallsvariablen X, Y und Z gilt:

$$r(X,Y) \cdot r(Y,Z) = r(X,Z)$$

PROOF Wir berechnen $r(X, Y) \cdot r(Y, Z)$:

$$\begin{split} r(X,Y) \cdot r(Y,Z) &= \frac{s(X,Y) \cdot s(Y,Z)}{\sqrt{s^2(X)} \cdot \sqrt{s^2(Y)} \cdot \sqrt{s^2(Y)} \cdot \sqrt{s^2(Z)}} \\ &= \frac{\frac{1}{n-1} \left(\sum_i (x_i - \bar{x})(y_i - \bar{y}) \cdot \sum_i (y_i - \bar{y})(z_i - \bar{z}) \right)}{\sqrt{s^2(X)} \sqrt{s^2(Z)} \cdot \frac{1}{n-1} \sum_i (y_i - \bar{y})^2} \\ &= \frac{\frac{1}{n-1} \left((x_1 - \bar{x})(y_1 - \bar{y})^2 (z_1 - \bar{z}) + \dots \right)}{\sqrt{s^2(X)} \sqrt{s^2(Z)} \cdot \frac{1}{n-1} \sum_i (y_i - \bar{y})^2} \\ &= \frac{s(X,Z)}{\sqrt{s^2(X)} \sqrt{s^2(Z)}} \\ &= r(X,Z) \end{split}$$

Dann gilt für die Korrelation zwischen Alter und Ausgaben $r(X_1, X_3) = r(X_1, X_2) \cdot r(X_2, X_3) = 0,9816 \cdot 0,9997 = 0,9813.$

Aufgabe 4

Sei $X \sim U(-1,1)$ und $Y = X^2$. Dann gilt

$$Cov(X, Y) = Cov(X, X^2) = \mathbb{E}(X^3) - \mathbb{E}(X)\mathbb{E}(X^2) = 0 - 0 = 0$$

Also sind X und Y unkorreliert, aber offensichtlich nicht unabhängig.