Relation Extraction using Pattern Generation and Semantic Embeddings

Danish Ahmed

University of Paderborn DICE Group

Supervisor:

Dr. Ricardo Usbeck

June 19, 2019

Overview

- Motivation
- Problem Statement
- Architecture
- 4 Approach
- Evaluation
- 6 Limitations And Future Work
- Live Demo

Motivation

- 12,500+ words
 - 1000 sentences approximately?
- Almost 60 triples in infoxbox

Education	Swiss Federal Polytechnic		
	(1896–1900; B.A., 1900)		
	University of Zurich (Ph.D.,		
	1905)		

Example

Sentence: Albert attended a Catholic elementary school in Munich. **Triple:** dbr:Albert_Einstein dbo:education dbr:Catholic_school

- Extend existing and create new knowledgebases
- Minimize proofreading

Problem Statement

Goal

Identify relations that could hold between entities and to disambiguate between relations.

RAPID

$$RAPID(D) = \bigcup_{i=1}^{T} (e_x, p, e_y) : e_x \neq e_y \mid D, E$$

- D is a document set having sentence(s)
 - $D = \{se_1, se_2, ..., se_n\}$
- E is the set of entities in Document
 - $E = \{e_1, e_2, ..., e_i\}$
- $(e_x \text{ subject}, p \text{ predicate}, e_y \text{ object})$
- T number of relations determined by RAPID

RAPID Architecture

Preprocessing

- Index creation using Elasticsearch
- Triple selection using DBpedia
- Harvesting sentences

Candidate Sentences (CSE)

$$\left\{\bigcup_{i=x}^{y} se_{i} : (se_{x} \supset I_{s}) \land (se_{y} \supset I_{o})\right\} \lor \left\{\bigcup_{i=y}^{x} se_{i} : (se_{y} \supset I_{s}) \land (se_{x} \supset I_{o})\right\}$$

Extending Sentences

$$CSE = CSE \cup \left\{ \bigcup_{k=y+1} se_k : (se_k \supset l_s) \oplus (se_k \supset l_o) \right\}$$

Sentence Refinement (Coreference Resolution)

$$CSE = \bigcup_{i=1}^{n} se_i : (se_i \supset I_s) \land (se_i \supset I_o)$$

Property Embedding Model Generation

- Words that semantically reflects the property
 - Property label (L_p)
 - Property Comment (L_c)

Label Set (L)

$$L = L_p - (L_c - SP)$$

- Vocabulary Expansion (WordNet)
 - Synonyms
 - Hyponyms

Synonyms - spouse

{partner, mate, better half, spouse, married person}

Hyponyms - spouse

{married man, wife, honeymooner, polygamist, monogamist, husband, married woman, bigamist, helpmeet, consort, monogynist, newlywed, hubby, helpmate}

Property Embedding Model Generation

LabelSet (L)

```
L = L \cup wordNet(L) : wordNet(L) = \{synonyms(L) \cup hyponyms(L)\}
```

- Vocabulary Normalization
 - Lemmatization

Lemma

```
\label{lemma}  \mbox{$Lemma(\{employ, employed, employing\})$} \rightarrow employ \\ \mbox{$Lemma(employee), Lemma(employer), Lemma(employment)$} \rightarrow ?
```

Lexical-related words

Word in Label set (I_w)

 $I_w = lemma(nn2vb(word))$

Property Vector Generation

- Vocabulary is a semantic representation of a property
- HashSet?
 - Cannot handle words outside vocabulary
- Single vector representation for each property
- Use of Word Embeddings
 - Word2Vec
 - Global Vectors for Word Representation (Glove)
 - fastText

Property Vector Generation

Property Embedding Model (PEM)

$$\mathbf{u}_{i} = \left[\frac{\sum_{k=1}^{j} v_{k1}}{j}, \frac{\sum_{k=1}^{j} v_{k2}}{j}, ..., \frac{\sum_{k=1}^{j} v_{kd}}{j}\right]$$

affiliation -0.017893536 -0.045529217 -0.0051208185 -8.97618E-4 almaMater 0.013885535 0.04698701 0.0010437527 0.05139419 0.04159 bandMember 0.052005745 -0.07762692 -0.015077149 0.01401134 -0.04 birthPlace 0.021396212 0.045171227 0.014700594 0.004971906 -0.02 ceo 0.02789023 -0.0367615 -0.00690852 -0.04308021 -0.008731632 child 0.010353886 0.014000095 -0.022126973 0.023273598 0.0015987 club -0.021402836 -0.009516117 0.04230016 -0.02254374 0.04469683 deathPlace 0.018342787 0.04798468 -0.0023197616 0.08208557 -0.03 debutTeam -0.0192695 0.019238498 -0.026177414 -0.009202471 0.034 department -0.07548131 0.037946284 0.013026152 -0.032666698 -0.0 district 4.9547944E-4 -0.004887579 0.023869252 -0.022869527 -0.0 doctoralAdvisor -0.01991654 0.004269961 0.054084897 0.02728245 0 doctoralStudent -0.005935667 0.0089201685 0.009387679 0.01739716

Figure: PEM file

Pattern Generation

- Semantic subgraphs generation between entity nodes
- Generated subgraphs filtration
- Subgraph refinement
- Pattern representation

Semantic Subgraphs Generation

Goal

- Let G = (V, E) be original semantic graph
- x_1 and x_2 are entities
- $G' = (V', E') : (V' \subset V \wedge E' \subset E) \wedge (\exists x_1 \in V' \wedge \exists x_2 \in V')$
- Each subgraph equivalent to a pattern pt
- Determine node representing entities
 - No intersection between node sets of subject (IWS) and object (IWO)
- Make combinations from IWS and IWO, and determine shortest undirected path for each combination
 - Set of semantic graph edges
 - ullet Add possession typed dependency nodes from G to G' if in MTYPD set
 - Determine the root node

Generated Subgraphs Filtration

Example

Input: Ahmed studied at University of Paderborn, and his thesis was under the supervision of Dr. Ricardo.

```
[studied/VBD nsubj>Ahmed/NNP conj:and>[supervision/NN cop>was/VBD case>under/IN nmod:of>[Ricardo/NNP case>of/IN compound>Dr./NNP]]]
```

```
G_2 Ahmed (7), Dr. Ricardo (15)
```

```
[supervision/NN nsubj>[thesis/NN nmod:poss>[Ahmed/NNP case>'s/POS]] cop>was/VBD case>under/IN nmod:of>[Ricardo/NNP case>of/IN compound>Dr./NNP]]
```

14/31

Subgraph Refinement

Rule

If a nominal modifier is followed by the same nominal modifier, then the semantic graphs can be split into two

Figure: Inclusion of another object node

Figure: Node removal and edge creation

Domain (%D%) and Range (%R%) replacement

Pattern Representation

Pattern Format

{rootToSubjectPath}rootLemma{rootToObjectPath}

- Two representations
 - Generalized
 - Extended

Example

Input: Ahmed studied at University of Paderborn, and his thesis was

under the supervision of Dr. Ricardo.

Subject: Ahmed **Object:** Dr. Ricardo

G. Pattern: {(NN)-nsubj>(NN)-nmod:poss>%D%(NNP)}

supervise{(NN)-nmod:of>%R%(NNP)}

Property Recognition

- Given input sentence(s)
 - Determine entities and their entity type
 - Find entity nodes from original semantic graph
 - Make entity combinations and generate patterns
 - Classify each pattern against properties satisfying domain and range
- Means to score a pattern

Support

Pattern pt occurrence in classification property cp_i itself

$$sup(pt, cp_i) = \frac{freq(pt): pt \in PT_i}{totalPatternInProperty(cp_i)}$$

Specificity

Pattern pt occurrence in other properties OP

$$spc(pt, cp_i) = \frac{freq(pt):pt \in getPatterns(OP)}{\sum_{k=1}^{sizeOf(OP)} totalPatternsInProperty(op_k)}$$

Pattern Similarity

- Select sequences from pattern (seq_{in_{subj}}, seq_{comp_{subj}})
- Align sequence by matrix formation
- Populate matrix with similarity score

Each Matrix block mii

```
 \begin{cases} 0.5 + cos(POS_{seq_{1j}}, POS_{seq_{2i}}) + WESim(label(seq_{1j}), label(seq_{2i})) \\ \times \left\{ 0.5 + cos(typD_{seq_{1j}}, typD_{seq_{2i}}) \right\} \end{cases}
```


Forskippo Semantic Similarity (FSS)

Forward Skipping Rules

- No previous block selection
- Available matrix starts from m[i+1][j+1]
- Select any node as next node from available matrix
- No next moves once current pointer at last row

Pattern Similarity

- Create summation matrix of same size
- Populate matrix by maximum summation similarity value that can be obtained starting from each matrix block

Pattern Similarity Score

$$ps(pt_i, pt_{comp}) = \frac{FSS(seq_{in_{subj}}, seq_{comp_{subj}}) + FSS(seq_{in_{obj}}, seq_{comp_{obj}})}{2}$$

- Similarity with respect to property?
 - Normalized words from pattern
 - Get vector representation from source embedding model
 - Calculate mean vector v_{pmean}

Embedding Similarity $ems(v_{pmean}, cp_i)$

$$\textit{getSimilarity}(\textit{v}_{\textit{pmean}}, \textit{v}_{\textit{cp}_i}) : \textit{v}_{\textit{pmean}} = [\frac{\sum_{k=1}^{n} \textit{v}_{k1}}{n}, \frac{\sum_{k=1}^{n} \textit{v}_{k2}}{n}, ..., \frac{\sum_{k=1}^{n} \textit{v}_{kd}}{n}]$$

Confidence Value

- Unsupervised learning
- ullet α as pattern boosting parameter
- ullet β as embedding boosting parameter

Confidence $\varrho(pt_{in}, cp_i)$

```
\{\alpha(\mathit{sup}(\mathit{pt}_{\mathit{in}},\mathit{cp}_i)) + (1-\alpha)(\mathit{spc}(\mathit{pt}_{\mathit{in}},\mathit{cp}_i))\} \times \mathit{ps}(\mathit{pt}_{\mathit{in}},\mathit{pt}) + \beta(\mathit{ems}(\mathit{vpt}_{\mathit{iMean}},\mathit{cp}_i))
```

- ForEach Property cp in CP
 - Calculate embedding similarity of input pattern with candidate property
 - 2 get pre-generated patterns for candidate property: trainPatterns
 - Some For Each Pattern pt_{cp} in trainPatterns
 - calculate confidence
 - 2 compare maximum score

Evaluation

- OKE train dataset (96 files)
- Semantic comparison using Source and Property Embedding Models
 - Word2Vec
 - Glove
 - fastText

Embedding	Precision	Recall	f-measure
Word2Vec	0.30223880597014924	0.7941176470588235	0.4378378378378378
Glove	0.250	0.8539325842696629	0.38676844783715014
fastText	0.250	0.8045977011494253	0.38147138964577654

Discussion

Embedding	(Alpha, Beta)
Word2Vec	(0.4, 0.7), (0.4, 0.8), (0.5, 0.9)
Glove	(0.7, 0.5)
fastText	(0.6, 0.9)

- Corpus Independence
- High Recall
 - Coreference Resolution
- Low Precision
 - Property for each pattern
- Better results with $\beta \geq 0.5$
 - Property Embedding Model performs good
- Better results with $\alpha > 0.4$
 - FSS performs satisfactory but can be improved
- Same f-measure for multiple parameter combinations
 - Property parameter dependency

Embedding Comparison

Embedding Comparison

Empirical Threshold

Goal

Get rid of False Positive results

Figure: dbo:birthPlace

Threshold

$$\theta = \frac{(\mu_{FP} + \sigma_{FP}^2) + (\mu_{TP} - \sigma_{TP}^2)}{2}$$

 \bullet $(0.51268521 + 0.55048492)/2 \implies 0.531585065$

Word2Vec Results after Empirical Threshold

Limitations And Future Work

- Limitations
 - Single property per pattern
 - False results due to lack of Sentiment Analysis
- Future Work
 - Multiple properties per pattern if > threshold
 - Named Entity Recognition Enhancement
 - Generate Patterns for other DBpedia properties
 - Supervised Learning

Live Demo

 $\bullet \ \, \mathsf{http://danish-thesis.cs.upb.de:} 3000/$

Acknowledgement

- Special Thanks to Dr. Ricardo Usbeck
- Prof. Dr. Axel Ngonga
- Parents and my dearest brother Ali Shah

Questions?

Modified Equation for Confidence

Confidence

$$\beta \left\{ \alpha(\sup(pt_{in}, cp_i)) + (1 - \alpha)(\operatorname{spc}(pt_{in}, cp_i)) \right\} \times ps(pt_i, pt) + (1 - \beta)(\operatorname{ems}(v_{pt_{iMean}}, cp_i))$$