TP5 Thermodynamique

Partie 1 : Rayonnement

BERREDO DE LA COLINA Lucas MARTIN Lola

Fichiers: https://github.com/LucasBerredo/DiapoThermo

BUT DE L'EXPERIENCE

L'emissivité
 Nous allons determiner l'emmissivité d'un corps noir et gris.
 Pour cela nous avons :

$$\epsilon = \frac{C}{\tau S_1 \sigma 4 T_f^3}$$

■ Échange de chaleur Nous allons déterminer l'échange de chaleur de nos deux corps h représente l'ensemble des échanges de chaleur (conduction,rayonement,convection)

$$h = \frac{C}{\tau' S_1} - \frac{\sigma 4 T_f^3}{\frac{1}{\epsilon} + \frac{1}{\epsilon \cdot s_f} - 1}$$

Explication de l'expérience

■ La variation de température obéit à l'équation différentielle :

$$C\frac{dT}{dt} = \epsilon S\sigma \left(T_f^4 - T(t)^4\right)$$

Résolution exacte :

$$t = 2\tau \left[\left(\arctan \left(\exp \left(2 \tanh^{-1} \frac{T(t)}{T_f} \right) \right) - \arctan \left(\exp \left(2 \tanh^{-1} \frac{T_i}{T_f} \right) \right) \right) + \left(\tanh^{-1} \frac{T(t)}{T_f} - \tanh^{-1} \frac{T_i}{T_f} \right) \right]$$

Résolution approchée :

$$T = T_f + (T_i - T_f) \left(1 - \exp\left(\frac{-t}{\tau}\right)\right)$$

Explication de l'expérience

- Mise sous vide : Évite les échanges de chaleur (h = 0)
- Pression ambiante : Permet de mesurer l'échange de chaleur

DISPOSITIF EXPÉRIMENTAL

- Deux échantillons (gris, noir)
- Deux chambres :
 - ► Four (200°*C*)
 - ► Refroidessement à l'eau
- Elles peuvent être mises sous vide
- Mesures de temperature analogiques (100 points, 15 min)

EXPERIENCES

- 1. Corps gris, chauffage, vide
- 2. Corps gris, refroidissement, vide
- 3. Corps gris, chauffage, sans vide
- 4. Corps gris, refroidissement, sans vide
- 5. Corps noir, chauffage, vide
- 6. Corps noir, chauffage, sans vide

Organisation des données

- tp5-gris-vide-chauff.csv tp5-gris-vide-refroid.csv 3. tp5-gris-air-chauff.csv
- 4. tp5-gris-air-refroid.csv
- 5. tp5-noir-vide-chauff.csv

Temps	Thermocouple	EA0	
0	43,2356657	0,209796296	
9	50,75927386	0,214779578	
18	57,27973427	0,214779578	
27	64,80334243	0,219762859	
36	71,32380283	0,219762859	
45	77,84426324	0,22474614	
54	84,36472365	0,219762859	
63	90,88518405	0,22474614	
72	96,90407058	0,219762859	
81	102,9229571	0,22474614	
90	108,4402698	0,219762859	
99	113,9575824	0,214779578	

APPROXIMATION GRAPHIQUE 1ER ORDRE

Il ne faut que vérifier les valeur initiales, finales et approcher au de façon qu'on trouve des courbes proches

Figure – Example representation graphique : Vert : points experimentaux, Bleu : courbe théorique

APPROXIMATION GRAPHIQUE

Nous obtenons les prochains valeurs :

1. Corps gris, chauffage, vide
$$au=100$$

2. Corps gris, refroidissement, vide
$$au=69$$

3. Corps gris, chauffage, sans vide
$$au=117$$

4. Corps gris, refroidissement, sans vide
$$\tau = 68$$

5. Corps noir, chauffage, vide
$$au=105$$

6. Corps noir, chauffage, sans vide
$$au=99$$

Approximation graphique 2ème ordre

1. Corps gris, chauffage, vide	$\tau = 82$
2. Corps gris, refroidissement, vide	$\tau = 85$
3. Corps gris, chauffage, sans vide	$\tau = 100$
4. Corps gris, refroidissement, sans vide	$\tau = 84$
5. Corps noir, chauffage, vide	$\tau = 111$
6. Corps noir, chauffage, sans vide	$\tau = 89$

1.0

Approximation numérique avec Python

Comme nous avons la résolution pour τ , nous pouvons donner ça vers un curve_fit dans Python.

```
def theoretical_model(t, tau):
    term1 = np.arctan(np.exp(2) * arccoth(T_kelvin_data / T_f))
    term2 = np.arctan(np.exp(2) * arccoth(T_i / T_f))
    term3 = arccoth(T_kelvin_data / T_f)
    term4 = arccoth(T_i / T_f)
    return 2 * tau * (term1 - term2 + term3 - term4)

# Use curve_fit to find the optimal tau
popt, pcov = curve_fit(theoretical_model, t_data, T_kelvin_data, p0=[1.0])
optimal_tau = popt[0]
print(optimal_tau)
```

Figure – Exemple refroidissement. Il y a aussi un fichier pour chauffement.

Approximation numérique avec Python

Résultats:

- 1. Corps gris, chauffage, vide $\tau = 96,0399...$
- 2. Corps gris, refroidissement, vide $\tau = 86, 1429...$
- 3. Corps gris, chauffage, sans vide $\tau = 99,2634...$
- 4. Corps gris, refroidissement, sans vide $\tau = 84,5618...$
- 5. Corps noir, chauffage, vide $\tau = 111,8591...$
- 6. Corps noir, chauffage, sans vide au = 90,5110...

Comparaison des résultats

Expérience	1er ordre	2ème ordre	Python
1	100	82	96,0399
2	69	85	86,1429
3	117	100	99,2634
4	68	84	84,5618
5	105	111	111,8591
6	99	89	90,5110

Table – Valeurs du paramètre au

Analyse des résultats

- Les valeurs generés par Python suivent avec le moindre erreur possible la courbe.
- L'approximation à premier ordre a un erreur autour 20% pour chaque expérience.
- L'approximation à deuxième ordre est beaucoup plus proche (autour ± 1 point).

Analyse des résultats

On trouve les résultats suivant

$$\bullet$$
 $\epsilon_{gris}=0,54$

$$h_{gris} = 11,27W.m.K^{-1}$$

$$\bullet$$
 $\epsilon_{noir} = 0.76$

$$h_{noir} = 15, 13W.m.K^{-1}$$

TP5 Thermodynamique

Partie 2 : Loi de Stefan

BERREDO DE LA COLINA Lucas MARTIN Lola

Fichiers: https://github.com/LucasBerredo/DiapoThermo

Avertissement

Bien que nous ayons travaillé avec l'équipement et observé des résultats avec Mme Quilliet, nous n'avons pas enregistré de résultats numériques.

Rappel théorique

■ Loi de Stefan

$$M = \sigma T^4$$

Avec M la densité de puissance $(W.m^{-2})$

Figure – Shémas de l'experience

DISPOSITIF EXPERIMENTAL

- Deux parties :
 - ► Côté emmisive Boule à cuivre "corps noir"
 - Côté receptive Thermopile CA2 (filtre en option) et multimètre

- Emmisivité fixé mesure du puissance avec le multimètre
- Il faut attendre après chaque changement vers la stabilisation
- Mesures a plusieurs distances (0,3; 0,4; 0,8; 1,2m) et temperatures (20, 60, 90, 120 ° C)

APPROXIMATION DES RÉSULTATS

```
      distances <- c(0.3, 0.4, 0.6, 0.8, 1)</td>
      # Distances emitter-thermopile (m)

      T_ext <- 293.15</td>
      # External temperature (K)

      temperatures <- c(293.15, 333.15, 363.15, 395.15)</td>
      # Emmiter temperatures (K)

      isFiltered <- TRUE</td>
      # Is the thermopile filtered? (Bool)

      times <- 1:50</td>
      # Measurement points (default: 1:50 - once every second for 50 seconds)
```

Figure – Paramètres à choisir

```
T_func <- function(t, PK, KC, T_ext) {
         PK * (1-exp(-KC*t)) + T_ext
}</pre>
```

Figure - Fonction pour l'évolution temporelle théorique

APPROXIMATION DES RÉSULTATS

```
noisy_func_name <- paste0("NoisyDeltaV_d", d, "_T", T)
f <- function(x) {
    original_val <- original_f(x)
    noise <- rnorm(n=1, mean=1, sd=0.05)*original_val
    return(noise)
}
assign(noisy_func_name, f)</pre>
```

Figure - Ajout du bruit

APPROXIMATION DES RÉSULTATS

output_d0.3_T293.15.csv output_d0.6_T395.15.csv output_d0.3_T393.15.csv output_d0.8_T293.15.csv output_d0.8_T393.15.csv output_d0.8_T393.15.csv output_d0.8_T393.15.csv output_d0.8_T393.15.csv output_d0.8_T395.15.csv output_d0.8_T395.15.csv output_d0.4_T293.15.csv output_d1.7293.15.csv output_d1.7293.15.csv output_d1.733.15.csv output_d0.4_T395.15.csv output_d1.7333.15.csv output_d0.6_T293.15.csv output_d1.7335.15.csv output_d0.6_T293.15.csv output_d1.7375.15.csv output_d0.6_T393.15.csv simulation.ipynb output_d0.6_T363.15.csv

Figure – Fichiers generés par le script

Time	Delta.V
1	39,14920053
2	39,60327472
3	40,01413804
4	40,38590254
5	40,72228897
6	41,02666401
7	41,30207392
8	41,55127512
9	41,77676169
10	41,98079038
11	42,16540317
12	42,33244773
13	42,48359589
14	42,62036041
15	42,74411007
16	42,85608338
17	42,95740103
18	43,04907703

Figure – Example des premières colonnes du .csv

Analyse des données

Pour chaque fichier:

- On attend jusqu'à la courbe est presque stabilisé. (Après 30 secondes).
- On prend la moyenne des résultats après t = 30, afin de trouver un résultat plus proche au valeur théorique
- En utilisant la formule

$$\sigma = \frac{U}{\alpha \left(\frac{r}{r+d+d_0}\right)^2 \left(T^4 - T_{\text{ext}}^4\right)},$$

on calcule la constante de Stefan

Analyse des données

Dist\Temp	333,15	363,15	395,15
0,3	1,491E-09 (2,63%)	1,546E-09 (2,72%)	5,364E-09 (9,45%)
0,4	4,668E-09 (8,23%)	9,580E-11 (0,17%)	1,443E-10 (0,25%)
0,6	2,277E-09 (4,01%)	2,754E-09 (4,85%)	1,676E-09 (2,95%)
0,8	1,078E-09 (1,90%)	1,065E-10 (0,19%)	1,200E-09 (2,12%)
1	4,995E-10 (0,88%)	2,061E-10 (0,36%)	4,690E-10 (0,83%)

Table – Erreur absolue (erreur relative)