# Calibration with Linear Regression On Outdoor Sensor Data

## All data vs MEB data as Training Data

All Data Points (1512 data points)



MEB Outdoor Data Points (252 data points)



## Linear Regression: Offset vs No Offset

- Method: 10-fold cross validation used for 2 linear regression models: one with offset (ax+b) and one without offset (ax)
- 2 sets of training data for training: All data points (PM2.5 concentration data points from all 6 locations, excluding Saad's), MEB data points

|                                            | average MSE | average R squared |
|--------------------------------------------|-------------|-------------------|
| All data points as training with no offset | 285.584     | 0.9233            |
| All data points as training with offset    | 280.7394    | 0.9270            |
| MEB as training with no offset             | 195.7051    | 0.9462            |
| MEB as training with offset                | 208.1803    | 0.9441            |

Conclusion: Miniscule difference. Either one can work.

## Linear Regression: Offset vs No Offset

- Our linear regression model: Y = aX + b
- Training data: All data points
- Use each location's PM2.5 concentration data as test data and test it with our model

| <b>ALL DATA POINT TRAIN</b> |        |           | <b>ALL DATA POINT TRAIN</b> |        |           |
|-----------------------------|--------|-----------|-----------------------------|--------|-----------|
| a = 0.9046                  |        |           | a = 0.9046                  |        |           |
| b = 0.5310                  | MSE    | r squared | b = 0                       | MSE    | r squared |
| MEB                         | 206.14 | 0.9454    | MEB                         | 205.87 | 0.9455    |
| lgor                        | 315.80 | 0.9163    | lgor                        | 309.66 | 0.9179    |
| Stephanie                   | 281.59 | 0.9254    | Stephanie                   | 280.22 | 0.9258    |
| Alex                        | 280.27 | 0.9258    | Alex                        | 282.97 | 0.9250    |
| Edmund                      | 234.31 | 0.9379    | Edmund                      | 236.08 | 0.9375    |
| Brad                        | 373.05 | 0. 9012   | Brad                        | 378.01 | 0.8999    |

## Linear Regression: All data points vs MEB w/o offset

- Compare using all data points as training data vs using MEB as training data
- Use linear regression model Y = aX

| MSE    | r squared                                      |
|--------|------------------------------------------------|
| 205.87 | 0.9455                                         |
| 309.66 | 0.9179                                         |
| 280.22 | 0.9258                                         |
| 282.97 | 0.9250                                         |
| 236.08 | 0.9375                                         |
| 378.01 | 0.8999                                         |
|        | 205.87<br>309.66<br>280.22<br>282.97<br>236.08 |

| <b>MEB Train Data</b> a = 0.9039 | MSE    | r squared |
|----------------------------------|--------|-----------|
| G 0.5055                         | 11102  | •         |
| MEB                              | 205.87 | 0.9455    |
| lgor                             | 308.51 | 0.9183    |
| Stephanie                        | 279.98 | 0.9258    |
| Alex                             | 283.35 | 0.9249    |
| Edmund                           | 236.48 | 0.9374    |
| Brad                             | 378.69 | 0.8997    |

#### All Data as train data

#### MEB as train data



#### All Data as train data

#### MEB as train data



#### All Data as train data

#### MEB as train data



## Linear Regression vs Polynomial Regression

MEB data as training data; other locations as test data



# Linear Regression vs Polynomial Regression

| Linear Model | MSE    | r squared |
|--------------|--------|-----------|
| Igor         | 308.51 | 0.9183    |
| Stephanie    | 279.98 | 0.9258    |
| Alex         | 283.35 | 0.9249    |
| Roosevelt    | 236.48 | 0.9374    |
| Brad         | 378.69 | 0.8997    |

| Polynomial Model | MSE    | r squared |
|------------------|--------|-----------|
| lgor             | 307.39 | 0.9186    |
| Stephanie        | 279.03 | 0.9249    |
| Alex             | 279.37 | 0.926     |
| Roosevelt        | 236.12 | 0.9375    |
| Brad             | 372.74 | 0.9013    |

BIC: 1347.99 BIC: 1353.12