Particle spectrograph

Wave operator and propagator

reps	Fundamental fields	A 4 14 1
		Multiplicities
$\sigma_{0}^{\#1} == 0$ \in	$\epsilon \eta_{\alpha\beta\chi\delta} \partial^{\delta} \sigma^{\alpha\beta\chi} == 0$	1
$\tau_{0+}^{\#2} == 0 \qquad \qquad \boxed{\partial}$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0 \qquad \partial_{0}$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}$	1
$\tau_1^{\#2}\alpha + 2ik \ \sigma_1^{\#2}\alpha == 0 \partial_i$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2 \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3
$\tau_{1}^{\#1}{}^{\alpha} == 0 \qquad \qquad \partial_{\alpha}$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}t^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}t^{\beta\alpha}$	3
$\tau_1^{\#1}{}^{\alpha\beta} + ik \ \sigma_1^{\#2}{}^{\alpha\beta} == 0 \partial$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_{2}^{\#1}\alpha\beta - 2ik \sigma_{2}^{\#1}\alpha\beta == 0$	$t_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0 - i(4 \partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}t^{\chi\delta} + 2 \partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}t^{\chi} -$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\chi \beta} -$	
	$3 \partial_{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial_{\chi} \partial_{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4\ \overline{\imath}\ k^{\chi}\ \partial_{\epsilon}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\sigma^{\delta\epsilon}_{\ \ \delta}$ -	
	6 i k^{χ} $\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{eta\deltaarepsilon}$ -	
	$6 I k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6 I k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6\ ar{\imath}\ k^{\chi}\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{eta\deltalpha}$ -	
	$2 n^{\alpha\beta} \partial_{\epsilon} \partial_{\delta} \partial_{\delta} \partial^{\delta} \tau_{\chi}^{\chi}$ -	
	$4 \bar{l} \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta \epsilon}_{\delta}) = 0$	
Total constraints/gauge generators:	e generators:	17

•	$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_{1}^{\#2}$	$\tau_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_{1^-}^{\#1}{}_{\alpha}$	$\sigma_{1}^{\#2}{}_{\alpha}$	$\tau_{1^{-}\alpha}^{\#1}$	${\mathfrak r}_{1}^{\#2}{}_{\alpha}$
$\sigma_1^{\#1} + ^{lphaeta}$	$\frac{1}{k^2 r_5}$	$\frac{1}{\sqrt{2} \; (k^2 r_5 + k^4 r_5)}$	$\frac{i}{\sqrt{2} (kr_5 + k^3 r_5)}$	0	0	0	0
$\sigma_{1}^{#2} + \tau^{\alpha\beta}$	$\frac{1}{\sqrt{2} \; (k^2 r_5 + k^4 r_5)}$	$\frac{6k^2r_5+t_1}{2(k+k^3)^2r_5t_1}$	$\frac{i(6k^2r_5+t_1)}{2k(1+k^2)^2r_5t_1}$	0	0	0	0
$\tau_{1}^{#1} + \alpha \beta$	$-\frac{i}{\sqrt{2}}(kr_5+k^3r_5)$	$-\frac{i(6k^2r_5+t_1)}{2k(1+k^2)^2r_5t_1}$	$\frac{6k^2r_5+t_1}{2(1+k^2)^2r_5t_1}$	0	0	0	0
$\sigma_{1}^{\#1} +^{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	0	$\frac{2ik}{t_1 + 2k^2t_1}$
$\sigma_1^{\#2} +^{lpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{-2k^2r_5+t_1}{(t_1+2k^2t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2r_5-t_1)}{(t_1+2k^2t_1)^2}$
$\tau_1^{\#1} +^{\alpha}$	0	0	0	0	0	0	0
$\tau_1^{\#2} + \alpha$	0	0	0	$-\frac{2ik}{t_1+2k^2t_1}$	$\frac{i\sqrt{2} k(2k^2 r_5 - t_1)}{(t_1 + 2k^2 t_1)^2}$	0	$\frac{-4k^4r_5 + 2k^2t_1}{(t_1 + 2k^2t_1)^2}$
Quadra	Quadratic (free) action $S_{}$	action + $\mathbf{A}^{\alpha\beta\chi}$ σ +					

Quadratic (free) action	$S == \iiint \{f^{\alpha\beta} \ \tau_{\alpha\beta} + \mathcal{R}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + \}$	$rac{1}{3}t_1$ (3 $\mathcal{A}^{lpha\prime}$ $\mathcal{A}^{}_{$	$3\partial_{i}f^{\theta}_{\alpha}\partial^{i}f^{\alpha}_{\alpha}-3\partial_{i}f^{\alpha i}\partial_{\theta}f^{\theta}_{\alpha}+6\partial^{i}f^{\alpha}_{\alpha}\partial_{\theta}f^{\theta}_{i}+$	$2\mathcal{A}_{1etalpha}\partial^{ heta}f^{lpha\prime}$ $-2\partial_{lpha}f_{\primeeta}\partial^{ heta}f^{lpha\prime}$ $-2\partial_{lpha}f_{eta\prime}\partial^{ heta}f^{lpha\prime}$ $+$	$\partial_{i}f_{\alpha\theta}\partial^{\theta}f^{\alpha\prime} + 2\partial_{\theta}f_{\alpha\prime}\partial^{\theta}f^{\alpha\prime} + \partial_{\theta}f_{\prime\alpha}\partial^{\theta}f^{\alpha\prime} +$	$\mathcal{A}_{\alpha\prime\theta}\left(\mathcal{A}^{\alpha\prime\theta}+2\partial^{ heta}f^{lpha\prime} ight)+\mathcal{A}_{lpha heta\prime}\left(\mathcal{A}^{lpha\prime\theta}+4\partial^{ heta}f^{lpha\prime} ight) ight)$	$r_{5}\left(\partial_{i}\mathcal{A}_{\theta}^{k}\partial^{\theta}\mathcal{A}^{lpha_{i}}_{a}-\partial_{ heta}\mathcal{A}_{i}^{k}\partial^{\theta}\mathcal{A}^{lpha_{i}}_{a}-\left(\partial_{lpha}\mathcal{A}^{lpha_{i} heta}-2\partial^{\theta}\mathcal{A}^{lpha_{i}}_{a} ight)$	$(\partial_{\kappa}\mathcal{A}_{r}^{\kappa}-\partial_{\kappa}\mathcal{A}_{\theta}^{\kappa})))[t,\kappa,y,z]dzdyd\kappa dt$	$\mathcal{A}^{\#1}$ $f^{\#2}$ $\mathcal{A}^{\#1}$

0

 $\tau_{0}^{#1} + \\ \tau_{0}^{#2} + \\ \sigma_{0}^{#1} + \\$

 $\mathcal{A}_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \mathcal{A}_{2^{-}\alpha\beta\chi}^{\#1}$

 $\frac{i k t_1}{\sqrt{2}}$

 $\mathcal{R}_{1^{+}\alpha\beta}^{\#1} \quad \mathcal{R}_{1^{+}\alpha\beta}^{\#2} \quad f_{1^{+}\alpha\beta}^{\#1} \quad \mathcal{R}_{1^{-}\alpha}^{\#1} \quad \mathcal{R}_{1^{-}\alpha}^{\#2} \quad f_{1^{-}\alpha}^{\#1} \quad f_{1^{-}\alpha}^{\#2}$

 $\frac{ikt_1}{3\sqrt{2}}$

0

0

0

 $\mathcal{A}_{1}^{\sharp 1}\dagger^{\alpha}$

 $\mathcal{A}_{1}^{\#2} + \alpha$

 $f_1^{#2} \dagger^c$

S | S | * S | * E | * E

(No massive particles)

Unitarity conditions

 $r_5 > 0 \&\& t_1 < 0 || t_1 > 0$