

Data Privacy CMSC 491/691

L06 – k-anonymity and de-anonymization attacks

Previously on...

- Access Control to represent user preferences
- Policies and mechanisms
- AC models:
 - O DAC, MAC, RBAC, ABAC
- Challenges: scalability, inference problem, semantics...

HBO accused of sharing subscriber data with Facebook in class lawsuit

In the news!

The Need to Share Data

- For research purposes
 - E.g., social, medical, technological, etc.
- Mandated by laws and regulations
 - E.g., census
- For security/business decision making
 - E.g., network flow data for Internet-scale alert correlation
- For system testing before deployment
- ...

Publishing data may result in privacy violations

When Things go Wrong

The Netflix Prize

AOL Search Data

- Anonymizing datasets (e.g., removing user identifiers) does not preserve privacy!
- De-anonymization attacks
 - E.g., use background knowledge (IMDB for Netflix prize)

How to publish data to satisfy privacy while providing utility?

Classification of Attributes

Key attributes

- Name, address, phone number uniquely identifying!
- Always removed before release

Quasi-identifiers

- (5-digit ZIP code, birth date, gender) uniquely identify 87% of the population in the U.S.
- Can be used for linking anonymized dataset with other datasets

Sensitive attributes

- Medical records, salaries, etc.
- O These attributes is what the researchers need, so they are always released directly

Key Attribute

Quasi-identifier

Sensitive attribute

Name	Age	Sex	Zipcode	Disease
Alice	29	Female	47677	Ovarian Cancer
Beth	22	Female	47602	Ovarian Cancer
Andre	27	Male	47678	Prostate Cancer
Dan	43	Male	47905	Heart Disease
Ellen	52	Female	47909	Heart Disease
Eric	47	Male	47906	Heart Disease

k-Anonymity: Intuition

- Each record is indistinguishable from at least k-1 other records when only quasi-identifiers are considered
 - Example: you try to identify a man in the released table, but the only information you have is his birth date and gender. There are k men in the table with the same birth date and gender.

The k records form an equivalence class

Achieving k-Anonymity

- Main methods:
 - Generalization: Replace with less-specific values
 - Suppression: Remove outliers
- Many other methods in the literature...

Age	Sex	Zipcode	Disease
2*	*	476**	Ovarian Cancer
2*	*	476**	Ovarian Cancer
2*	*	476**	Prostate Cancer
[43,52]	*	4790*	Heart Disease
[43,52]	*	4790*	Heart Disease
43,521	*	4790*	Heart Disease

Generalization

Suppression (cell-level)

Generalization Hierarchies

- Generalization Hierarchies: Data owner defines how values can be generalized
- Table Generalization: A table generalization is created by generalizing all values in a column to a specific level of generalization

k-Minimal Generalizations

- There are many k-anonymizations which one to pick?
 - Intuition: The one that does not generalize the data more than needed (decrease in utility of the published dataset!)
- K-minimal generalization: A k-anonymized table that is not a generalization of another k-anonymized table

Race E ₀	ZIP Z ₀		Race E ₁	ZIP Z ₀		Race E ₁	ZIP Z ₁		Race E ₀	ZIP Z ₂	Race E ₀	ZIP Z ₁	
Black	02138		Person	02138		Person	0213*	1	Black	021**	Black	0213*	ı
Black	02139		Person	02139		Person	0213*		Black	021**	Black	0213*	ı
Black	02141		Person	02141		Person	0214*		Black	021**	Black	0214*	ı
Black	02142		Person	02142		Person	0214*		Black	021**	Black	0214*	ı
White	02138		Person	02138		Person	0213*		White	021**	White	0213*	ı
White	02139		Person	02139		Person	0213*		White	021**	White	0213*	ı
White	02141		Person	02141		Person	0214*		White	021**	White	0214*	ı
White	02142		Person	02142		Person	0214*		White	021**	White	0214*	ı
PT GT _[1,0]			l	GT _[1,1] GT _[0,2]		G1	[0,1]	•					
	Figure 4 Examples of generalized tables for PT												

#	Zip	Age	Nationality	Condition
1	13053	< 40	*	Heart Disease
2	13053	< 40	*	Viral Infection
3	13067	< 40	*	Heart Disease
4	13067	< 40	*	Cancer

#	Zip	Age	Nationality	Condition
1	130**	< 30	American	Heart Disease
2	130**	< 30	American	Viral Infection
3	130**	3*	Asian	Heart Disease
4	130**	3*	Asian	Cancer

#	Zip	Age	Nationality	Condition
1	130**	< 40	*	Heart Disease
2	130**	< 40	*	Viral Infection
3	130**	< 40	*	Heart Disease
4	130**	< 40	*	Cancer

NOT a
2-minimal
Generalization

Example k-anonymization

Age	Sex	Zipcode	Disease
2*	*	476**	Ovarian Cancer
2*	*	476**	Ovarian Cancer
2*	*	476**	Prostate Cancer
[43,52]	*	4790*	Heart Disease
[43,52]	*	4790*	Heart Disease
[43,52]	*	4790*	Heart Disease

3-Anonymous table

Problems?

- The adversary knows Alice's QI values (47677, 29, F)
- The adversary does not know which one of the first 3 records corresponds to Alice

Attacks on k-Anonymity

- k-anonymity does not provide privacy if:
 - Sensitive values lack diversity
 - The attacker has background knowledge

Other Attacks

Complementary Release Attack

 Different releases of the same private table can be linked together to compromise k-anonymity

Unsorted Matching Attack

 Records appear in the same order in the released table as in the original table

• ...

Group Activity

Releasing anonymous reviews for professors by students

Name	Age	Nationality	Class	Level	Grade	Prof.
Alice	21	U.S. citizen	CMSC331	Junior	В	Smith
Beth	20	U.S. citizen	CMSC334	Junior	F	Miller
Andre	22	U.S. citizen	CMSC331	Senior	A	Smith
Dan	21	U.S. citizen	CMSC491	Senior	С	Anderson
Ellen	20	U.S. citizen	CMSC203	Sophomore	F	Miller
Eric	19	U.S. citizen	CMSC101	Sophomore	A	Williams

Privacy?

Utility?

k-Anonymity ≠ Privacy

Syntactic

- Focuses on data transformation, not on what can be learned from the anonymized dataset
- "k-anonymous" dataset can leak sensitive information.

"Quasi-identifier" fallacy

 Assumes a priori that attacker will not know certain information about his target

Relies on locality

Destroys utility of many real-world datasets