CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I E II) 17 GENNAIO 2018

Svolgere i seguenti esercizi,

giustificando pienamente tutte le risposte

Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza. Non è necessario consegnare la traccia.

Esercizio 1.

- (i) Si diano le definizioni di divisore e di multiplo in \mathbb{Z} di un numero intero a.
- (ii) Enunciare le proprietà che definiscono la divisione in \mathbb{Z} .
- (iii) Per quali interi m è vero che:
 - (b) $\operatorname{rest}(15, m) = 3;$ (c) $3[5]_m = ([5]_m)^3.$ (a) rest(15, m) = rest(15, -m);

Esercizio 2. Si consideri l'applicazione $f: n \in \mathbb{N}^* \mapsto |D(n)| \in \mathbb{N}^*$, dove D(n) indica l'insieme dei divisori di n in \mathbb{N} .

- (i) f è iniettiva? È suriettiva?
- (ii) Determinare tutti e soli gli $n \in \mathbb{N}^*$ tali che |D(n)| = 2 e quelli tali che |D(n)| = 4.
- (iii) Detto \Re il nucleo di equivalenza di f, determinare tutti e soli gli $n \in \mathbb{N}^*$ tali che $[n]_{\Re}$ sia un insieme finito.
- (iv) Calcolare $|D(2^{999}3^{599})|$.

Sia poi σ la relazione d'ordine in \mathbb{N}^* definita da: per ogni $n, m \in \mathbb{N}^*$

$$n \ \sigma \ m \iff (n = m \lor f(n) < f(m)).$$

In (\mathbb{N}^*, σ) :

- (v) determinare gli eventuali minimo, massimo, elementi minimali, elementi massimali;
- (vi) determinare un $Y \subseteq \mathbb{N}^*$ tale che (Y, σ) sia totalmente ordinato e non esista alcun $K \subseteq \mathbb{N}^*$ tale che $Y \subset K$ e (K, σ) sia totalmente ordinato;
- (vii) per ogni $m \in \mathbb{N}^*$, spiegare quali sono gli $n \in \mathbb{N}^*$ tali che $n \in m$ non siano confrontabili;
- (viii) è vero o falso che, scelti comunque in \mathbb{N}^* tre elementi x, y, z a due a due non confrontabili, $\{x,y\}$ e $\{y,z\}$ hanno gli stessi minoranti?
 - (ix) descrivere tutte le parti di \mathbb{N}^* della forma $\{x,y\}$ tali che esista inf $\{x,y\}$. (\mathbb{N}^*,σ) è un reticolo?
 - (x) Fornire, se possibile, un esempio di una parte L di \mathbb{N}^* tale che |L|=4 e:
 - (a) (L, σ) sia un reticolo booleano; (b) (L, σ) sia un reticolo non booleano;
 - (c) (L, σ) non sia un reticolo.

Esercizio 3. Sia * l'operazione binaria definita in $S = \mathbb{Z}_{163} \times \mathbb{Z}_{163}^*$ ponendo, per ogni $(a, b), (c, d) \in S$, (a,b)*(c,d) = (a+bc,bd).

- (i) Si provi che (S, *) è un gruppo e che non è abeliano.
- (ii) Facendo uso di una opportuna equazione congruenziale, si determini l'inverso di (3,52) in (S,*).
- $(iii) \text{ Si decida se le seguenti parti di } S : \quad T = \mathbb{Z}^*_{163} \times \mathbb{Z}^*_{163} \quad \text{e} \quad K = \{(a,b) \in S \mid b = \bar{1} \lor b = -\bar{1}\}$ sono parti chiuse in (S, *).
- (iv) Determinare tutti e soli gli elementi $(a,b) \in S$ tali che $(a,b)*(a,b)=(\bar{0},\bar{1})$.
- (v) Vero o falso, e perché: scelto comunque $(a,b) \in S$ tale che $(a,b)*(a,b) = (\bar{0},\bar{1}), H :=$ $\{(\bar{0},\bar{1}),(a,b)\}$ è un sottogruppo di (S,*).

Esercizio 4.

- (i) In $\mathbb{Z}_5[x]$, il polinomio $x^3 x + \bar{3}$ è irriducibile? Ha radici in \mathbb{Z}_5 ? (ii) In $\mathbb{Z}_5[x]$, il polinomio $(x^3 x + \bar{3})^2$ è irriducibile? Ha radici in \mathbb{Z}_5 ?
- (iii) Sia K un campo finito. Supponiamo che K[x] abbia esattamente n polinomi irriducibili monici di grado 2. Quanti sono in K[x] i polinomi monici di grado 4 privi di radici ma non irriducibili?