· Polar Gardinates, Area in Polar Gardinates

· Polar Gordinales

· In polar coordinates, we specify an object's position in terms of its distance or from the origin and the day from the origin to the point makes with respect to the x axis

Ex: What are the polar coordinates for the point with rectangular coordinates (1,-1)?

- . The most common convention is r≥0 and 050<2TT
- · Another Common convention is PZO 2N -TT & OCTI

- · No matter what the Convention, the following formulass are always true:
 - · X = r coso) · Y = r sino
- Ex: (1_{j-1}) Can be represented by $r = -\sqrt{2}$, $O = \frac{3\pi}{4}$. $1 = x = -\sqrt{2} \cos(\frac{3\pi}{4})$, $-1 = y = -\sqrt{2} \sin(\frac{3\pi}{4})$
- Ex: Consider a circle of radius a with its center at X=9, Y=0. Let's find an equation that relates

- In rectangular coordinates, the equation for the Circle is $(x-q)^2 + y^2 = q^2$
 - . We plug in $X = r\cos\theta$, $Y = r\sin\theta$: $(r\cos\theta a)^2 + (r\sin\theta)^2 = a^2$ =7 $r^2\cos^2\theta - 2ar\cos\theta + a^2 + r^2\sin^2\theta = a^2$
 - $r^{2} 2ar \cos = 0$ => $r = 2 a \cos 0$

The range of $0 \le 0 \le \frac{\pi}{2}$ traces out the top half of the Circle, while $-\frac{\pi}{2} \le 0 \le 0$ traces out the bottom half. Let's graph this.

Graph of r = 29 coso, - # 405 #

- · At 0=0 , r=2a => X=2a, y=0
- At $0 = \frac{\pi}{4}$, $r = 2a \cos \frac{\pi}{4} = a \sqrt{2}$
- . The main issue is finding a range of σ values that traces the circle once. In this example $-\frac{\pi}{2}$ $< \Theta < \frac{\pi}{2}$ works.
 - · O = IT (Jown)
 - $O = \frac{Tr}{2} (up)$

· Area in Polar Goordingles

. Let's find the area of a small stice

. The Small Slice is approximately a right triangle.

Area of Sice & Area of right tricingle
= \frac{1}{2} \left(\text{base} \right) \left(\text{cheight} \right) = \frac{1}{2} \right \left(\text{crdo} \right)

Total Area = $\int_{1}^{\infty} \frac{1}{2} r^{2} d\theta$

$$E_{X}$$
: $r = 2a \cos \theta$, $-\frac{\pi r}{2}$ ($6 < \frac{\pi}{2}$ (He circle from a previous example).

Area =
$$\int \frac{1}{2} (2a \cos \theta)^2 d\theta = 2q^2 \int \cos^2 \theta d\theta$$

 $\theta = -\frac{\pi}{2}$

$$= q^2 \int_{-\pi/2}^{\pi/2} (1 + \cos(2\theta)) d\theta = q^2 \int_{-\pi/2}^{\pi/2} d\theta + q^2 \int_{-\pi/2}^{\pi/2} \cos(2\theta) d\theta$$

$$= Q^{2} \left[\Theta + \frac{\sin(2\theta)}{2} \right]^{\frac{1}{2}} = \frac{\pi}{11} Q^{2}.$$

Ex: Circle centered at the Origin Cradius = a)

. The equation of the Circle is
$$x^2 + y^2 = a^2$$
, So $r = a$

Area =
$$\int_{-2\pi}^{2\pi} \frac{1}{2} q^2 d\theta = \frac{1}{2} \cdot q^2 \cdot 2\pi = \pi q^2$$

6=0

Ex A ray.

In this case 0=b, and the range of r is 0 ≤ r coo · X = rosb · Y=rsinb

EX The line y=1

· To find the polar coordinate equation,

plug in Y = rsino, X = rcso and solve for r:

· Y = 1· rsino = 1=> $r = \frac{1}{sino}$ with 0 < 0 < T

• Ex. Finding the (x_{1Y}) coordinates from r = f(0)As an example, let's consider $r = \frac{1}{1 + \frac{1}{2}sino}$

·
$$\Gamma + \frac{\Gamma}{2} sino = 1$$

$$= > \sqrt{\chi^2 + \gamma^2} + \frac{\gamma}{2} = 1$$

Finally,
$$X^2 + \frac{3y^2}{4} + y = 1$$

This is the equation of an ellipse with one focus at theorigin

EX A rose r= cos(20)

The graph looks a bit like a flower

· For the first "petal," -# < OZ #