

Mark Scheme (Results) January 2011

GCE

GCE Core Mathematics C2 (6664) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

January 2011
Publications Code US026235
All the material in this publication is copyright
© Edexcel Ltd 2011

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol √will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

January 2011 Core Mathematics C2 6664 Mark Scheme

Question	Scheme	Marks
Number 1.		
(a)	$f(x) = x^4 + x^3 + 2x^2 + ax + b$	
	Attempting $f(1)$ or $f(-1)$.	M1
	$f(1) = 1 + 1 + 2 + a + b = 7$ or $4 + a + b = 7 \Rightarrow a + b = 3$ (as required) AG	A1 * cso (2)
(b)	Attempting $f(-2)$ or $f(2)$.	M1
	$f(-2) = \underline{16 - 8 + 8 - 2a + b = -8} \{ \Rightarrow -2a + b = -24 \}$	A1
	Solving both equations simultaneously to get as far as $a =$ or $b =$	dM1
	Any one of $a = 9$ or $b = -6$	A1
	Both $a = 9$ and $b = -6$	A1 cso
		(5) [7]
	<u>Notes</u>	[-]
(a)	M1 for attempting either $f(1)$ or $f(-1)$. A1 for applying $f(1)$, setting the result equal to 7, and manipulating this correctly to give the result given on the paper as $a + b = 3$. Note that the answer is given in part (a).	
(b)	M1: attempting either $f(-2)$ or $f(2)$. A1: correct underlined equation in a and b ; eg $16-8+8-2a+b=-8$ or equivalent, eg $-2a+b=-24$. dM1: an attempt to eliminate one variable from 2 linear simultaneous equations in a and b . Note that this mark is dependent upon the award of the first method mark. A1: any one of $a=9$ or $b=-6$. A1: both $a=9$ and $b=-6$ and a correct solution only.	
	Alternative Method of Long Division: (a) M1 for long division by $(x-1)$ to give a remainder in a and b which is independ A1 for {Remainder =} $b + a + 4 = 7$ leading to the correct result of $a + b = 3$ (answer (b) M1 for long division by $(x + 2)$ to give a remainder in a and b which is independent A1 for {Remainder =} $b - 2(a - 8) = -8$ { $\Rightarrow -2a + b = -24$ }. Then dM1A1A1 are applied in the same way as before.	er given.)

Question	Scheme	Marks
Number 2.		
	$11^2 = 8^2 + 7^2 - (2 \times 8 \times 7 \cos C)$	M1
	$\cos C = \frac{8^2 + 7^2 - 11^2}{2 \times 8 \times 7} $ (or equivalent) $\left\{ \hat{C} = 1.64228 \right\} \Rightarrow \hat{C} = \text{awrt } 1.64$	A1
	$\left\{\hat{C} = 1.64228\right\} \Rightarrow \hat{C} = \text{awrt } 1.64$	A1 cso
		(3)
(b)	Use of Area $\triangle ABC = \frac{1}{2}ab\sin(\text{their }C)$, where a, b are any of 7, 8 or 11.	M1
	$= \frac{1}{2} (7 \times 8) \sin C \text{using the value of their } C \text{ from part (a)}.$	A1 ft
	$\{=27.92848 \text{ or } 27.93297\} = \text{awrt } 27.9 \text{ (from angle of either } 1.64^{\circ} \text{ or } 94.1^{\circ})$	A1 cso
		(3) [6]
	Notes	[0]
(a)	M1 is also scored for $8^2 = 7^2 + 11^2 - (2 \times 7 \times 11\cos C)$ or $7^2 = 8^2 + 11^2 - (2 \times 8 \times 11\cos C)$	$(\cos C)$
	or $\cos C = \frac{7^2 + 11^2 - 8^2}{2 \times 7 \times 11}$ or $\cos C = \frac{8^2 + 11^2 - 7^2}{2 \times 8 \times 11}$	·
	1 st A1: Rearranged correctly to make $\cos C =$ and numerically correct (possibly	
	unsimplified). Award A1 for any of $\cos C = \frac{8^2 + 7^2 - 11^2}{2 \times 8 \times 7}$ or $\cos C = \frac{-8}{112}$ or $\cos C$	_ 1
	2 / 0 / / 112	$-\frac{1}{14}$ or
	$\cos C = \operatorname{awrt} - 0.071.$	
	SC: Also allow 1^{st} A1 for $112\cos C = -8$ or equivalent.	
	Also note that the 1 st A1 can be implied for \hat{C} = awrt 1.64 or \hat{C} = awrt 94.1°.	
	Special Case: $\cos C = \frac{1}{14}$ or $\cos C = \frac{11^2 - 8^2 - 7^2}{2 \times 8 \times 7}$ scores a SC: M1A0A0.	
	2 nd A1: for awrt 1.64 cao	
	Note that $A = 0.6876^{\circ} \left(\text{ or } 39.401^{\circ} \right), B = 0.8116^{\circ} \left(\text{ or } 46.503^{\circ} \right)$	
(b)	M1: alternative methods must be fully correct to score the M1. For any (or both) of the M1 or the 1 st A1; their <i>C</i> can either be in degrees or radians.	
	Candidates who use $\cos C = \frac{1}{14}$ to give $C = 1.499$, can achieve the correct answer of	of awrt
	27.9 in part (b). These candidates will score M1A1A0cso, in part (b).	N 1 A O
	Finding $C = 1.499$ in part (a) and achieving awrt 27.9 with no working scores M1A.	ATAU.
	Otherwise with no working in part (b), awrt 27.9 scores M1A1A1. Special Case: If the candidate gives awrt 27.9 from any of the below then awar M1A1A1.	d
	$\frac{1}{2}(7 \times 11)\sin(0.8116^{\circ} \text{ or } 46.503^{\circ}) = \text{awrt } 27.9 , \ \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \text{ or } 39.401^{\circ}) = \text{aw}$	vrt 27.9.
	Alternative: Hero's Formula: $A = \sqrt{13(13-11)(13-8)(13-7)} = \text{awrt } 27.9$, where I	
	attempt to apply $A = \sqrt{s(s-11)(s-8)(s-7)}$ and the first A1 is for the correct applic	
	the formula.	-

Question	Sahama	Morks
Number	Scheme	Marks
3. (a)	$ar = 750$ and $ar^4 = -6$ (could be implied from later working in either (a) or (b)).	B1
	$r^3 = \frac{-6}{750}$	M1
	Correct answer from no working, except	
	Correct answer from no working, except for special case below gains all three marks.	A1
	marks.	(3)
(b)	a(-0.2) = 750	M1
	$a\left\{=\frac{750}{-0.2}\right\} = -3750$	A1 ft
		(2)
(c)	Applies $\frac{a}{1-r}$ correctly using both their a and their $ r < 1$. Eg. $\frac{-3750}{10.2}$ So, $S_{\infty} = -3125$	M1
	So, $S_{\infty} = -3125$	A1
		(2) [7]
	Notes	[/]
()	B1: for both $ar = 750$ and $ar^4 = -6$ (may be implied from later working in either 6)	(a) or
(a)	(b)).	
	M1: for eliminating <i>a</i> by either dividing $ar^4 = -6$ by $ar = 750$ or dividing	
	$ar = 750$ by $ar^4 = -6$, to achieve an equation in r^3 or $\frac{1}{r^3}$ Note that $r^4 - r = -\frac{6}{750}$ is	M0.
	Note also that any of $r^3 = \frac{-6}{750}$ or $r^3 = \frac{750}{-6} \left\{ = -125 \right\}$ or $\frac{1}{r^3} = \frac{-6}{750}$ or $\frac{1}{r^3} = \frac{750}{-6} \left\{ = -125 \right\}$	25} are
	fine for the award of M1.	
	SC: $ar^{\alpha} = 750$ and $ar^{\beta} = -6$ leading to $r^{\delta} = \frac{-6}{750}$ or $r^{\delta} = \frac{750}{-6} \{ = -125 \}$	
	or $\frac{1}{r^{\delta}} = \frac{-6}{750}$ or $\frac{1}{r^{\delta}} = \frac{750}{-6} \left\{ = -125 \right\}$ where $\delta = \beta - \alpha$ and $\delta \ge 2$ are fine for the award	of M1.
	SC: $ar^2 = 750$ and $ar^5 = -6$ leading to $r = -\frac{1}{5}$ scores B0M1A1.	
(b)	M1 for inserting their r into either of their original correct equations of either $ar = 7$	50 or
	$\{a=\}$ $\frac{750}{r}$ or $ar^4=-6$ or $\{a=\}$ $\frac{-6}{r^4}$ – in both a and r . No slips allowed here for M1	
	A1 for either $a = -3750$ or a equal to the correct follow through result expressed either	
	an exact integer, or a fraction in the form $\frac{c}{d}$ where both c and d are integers, or corre	ect to
	awrt 1 dp.	
(c)	M1 for applying $\frac{a}{1-r}$ correctly (only a slip in substituting r is allowed) using both the	neir a
	and their $ r < 1$. Eg. $\frac{-3750}{1 - 0.2}$. A1 for -3125	
	In parts (a) or (b) or (c), the correct answer with no working scores full marks.	

Question Number	Scheme	Marl	(S
4. (a)	Seeing –1 and 5. (See note below.)	B1	(1)
(b)	$(x+1)(x-5) = x^2 - 4x - 5$ or $x^2 - 5x + x - 5$	<u>B1</u>	
	$\int (x^2 - 4x - 5) dx = \frac{x^3}{3} - \frac{4x^2}{2} - 5x \{+c\}$ M: $x^n \to x^{n+1}$ for any one term. 1st A1 at least two out of three terms correctly ft.	M1A1ft	A1
	$\left[\frac{x^3}{3} - \frac{4x^2}{2} - 5x\right]_{-1}^5 = () - ()$ Substitutes 5 and -1 (or limits from part(a)) into an "integrated function" and subtracts, either way round.	dM1	
	$\begin{cases} \left(\frac{125}{3} - \frac{100}{2} - 25\right) - \left(-\frac{1}{3} - 2 + 5\right) \\ = \left(-\frac{100}{3}\right) - \left(\frac{8}{3}\right) = -36 \end{cases}$		
	$\begin{bmatrix} -\left(-\frac{1}{3}\right) - \left(\frac{1}{3}\right) - \frac{1}{3} \end{bmatrix}$ Hence, Area = 36 Final answer must be 36, not -36	A1	(6) [7]
	Notes		[7]
(a)	B1: for -1 and 5. Note that $(-1, 0)$ and $(5, 0)$ are acceptable for B1. Also allow		
	(0,-1) and $(0,5)$ generously for B1. Note that if a candidate writes down that		
	A:(5,0), $B:(-1,0)$, (ie A and B interchanged,) then B0. Also allow values inserted in the		
	correct position on the x-axis of the graph.		
(b)			
	Area $(R) = -\int_{-1}^{5} (x^2 - 4x + 5) dx$ is detailed in the Appendix.		

Question	Scheme	Marks
Number		
5. (a)	$\binom{40}{4} = \frac{40!}{4!b!}$; $(1+x)^n$ coefficients of x^4 and x^5 are p and q respectively. b = 36 Candidates should usually "identify" two terms as their p and q respectively.	B1 (1)
(b)	Any one of	(1)
(6)	Term 1: $\binom{40}{4}$ or $\binom{40}{4}$ or $\frac{40!}{4!36!}$ or $\frac{40(39)(38)(37)}{4!}$ or 91390 Term Term 2 correct. (Ignore the label of p and/or q .)	M1
	2: $\binom{40}{5}$ or $\frac{40!}{5!35!}$ or $\frac{40!}{5!35!}$ or $\frac{40(39)(38)(37)(36)}{5!}$ or 658008 Both of them correct. (Ignore the label of p and/or q .)	A1
	Hence, $\frac{q}{p} = \frac{658008}{91390} \left\{ = \frac{36}{5} = 7.2 \right\}$ for $\frac{658008}{91390}$ oe	A1 oe cso (3)
		[4]
	<u>Notes</u>	
(a)	B1: for only $b = 36$.	
(b)	The candidate may expand out their binomial series. At this stage no marks should until they start to identify either one or both of the terms that they want to focus on. identify their terms then if one out of two of them (ignoring which one is p and which is correct then award M1. If both of the terms are identified correctly (ignoring which and which one is q) then award the first A1. Term $1 = \binom{40}{4} x^4$ or $\binom{40}{4} C_4(x^4)$ or $\frac{40!}{4!36!} x^4$ or $\frac{40(39)(38)(37)}{4!} x^4$ or $91390 x^4$, Term $2 = \binom{40}{5} x^5$ or $\binom{40}{5} (x^5)$ or $\frac{40!}{5!35!} x^5$ or $\frac{40(39)(38)(37)(36)}{5!} x^5$ or $658008 x^5$ are fine for any (or both) of the first two marks in part (b). 2^{nd} A1 for stating $\frac{q}{p}$ as $\frac{658008}{91390}$ or equivalent. Note that $\frac{q}{p}$ must be independent of Also note that $\frac{36}{5}$ or 7.2 or any equivalent fraction is fine for the 2^{nd} A1 mark. SC: If candidate states $\frac{p}{q} = \frac{5}{36}$, then award M1A1A0. Note that either $\frac{4!36!}{5!35!}$ or $\frac{5!35!}{4!36!}$ would be awarded M1A1.	Once they th one is <i>q</i>) th one is <i>p</i>

Question Number	Scheme	Marks
6. (a)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 B1 (2)
(b)	Outside brackets $\frac{1}{2} \times 0.25$ or $\frac{1}{8}$ $\frac{1}{2} \times 0.25; \times \left\{0.5 + 0.2 + 2\left(0.38 + \text{their } 0.30 + \text{their } 0.24\right)\right\}}{\left[0.30 + \text{their } 0.24\right]}$ Correct expression inside brackets which all must be multiplied by their "outside constant". $\left\{=\frac{1}{8}(2.54)\right\} = \text{awrt } 0.32$ awrt 0.32	B1 aef M1 <u>A1</u> √ A1
(c)	Area of triangle = $\frac{1}{2} \times 1 \times 0.2 = 0.1$ Area(S) = "0.3175" - 0.1 = 0.2175	(4) B1 M1 A1 ft (3) [9]

Question Number	Scheme	Marks	
	Notes		
(b)	B1 for using $\frac{1}{2} \times 0.25$ or $\frac{1}{8}$ or equivalent.		
	M1 requires the correct {} bracket structure. This is for the first bracket to contain first	<i>y</i> -	
	ordinate plus last <i>y</i> -ordinate and the second bracket to be the summation of the rema ordinates in the table.		
	No errors (eg. an omission of a y-ordinate or an extra y-ordinate or a repeated y-ordinate) allowed in the second bracket and the second bracket must be multiplied by 2. Only one error is allowed here in the $2(0.38 + \text{their } 0.30 + \text{their } 0.24)$ bracket.		
	A1ft for the correct bracket {} following through candidate's y-ordinates found in part	(a).	
	A1 for answer of awrt 0.32.		
	Bracketing mistake: Unless the final answer implies that the calculation has been done correctly	e	
	then award M1A0A0 for either $\frac{1}{2} \times 0.25 \times 0.5 + 2(0.38 + \text{their } 0.30 + \text{their } 0.24) + 0.2$		
	(nb: yielding final answer of 2.1025) so that the 0.5 is only multiplied by $\frac{1}{2} \times 0.25$		
	or $\frac{1}{2} \times 0.25 \times (0.5 + 0.2) + 2(0.38 + \text{their } 0.30 + \text{their } 0.24)$		
	(nb: yielding final answer of 1.9275) so that the $(0.5 + 0.2)$ is multiplied by $\frac{1}{2} \times 0.25$.		
	Need to see trapezium rule – answer only (with no working) gains no marks. Alternative: Separate trapezia may be used, and this can be marked equivalently. (See appendix.)		
(c)	B1 for the area of the triangle identified as either $\frac{1}{2} \times 1 \times 0.2$ or 0.1. May be identified on	the	
	diagram. M1 for "part (b) answer" – "0.1 only" or "part (b) answer – their attempt at 0.1 only". (Striattempt!) A1ft for correctly following through "part (b) answer" – 0.1. This is also dependent on the answer to (b) being greater than 0.1. Note: candidates may round answers here, so allow A they round their answer correct to 2 dp.	e	

Question Number	Scheme	Marks	
7.			
(a)	$3\sin^2 x + 7\sin x = \cos^2 x - 4; 0 \le x < 360^\circ$		
	$3\sin^2 x + 7\sin x = (1 - \sin^2 x) - 4$	M1	
	$4\sin^2 x + 7\sin x + 3 = 0 \mathbf{AG}$	A1 * cso	
		(2)	
(b)	$(4\sin x + 3)(\sin x + 1) = 0$ Valid attempt at factorisation and sin vertex and sin vertex are sin vertex.	on M1	
(0)	$and \sin x = \frac{(4\sin x + 3)(\sin x + 1)(1 - 0)}{1 + 3\sin x}$	·	
	$\sin x = -\frac{3}{4}, \sin x = -1$ Both $\sin x = -\frac{3}{4}$ and $\sin x = -\frac{3}{4}$	-1. A1	
	$(\alpha = 48.59)$		
	$x = 180 + 48.59$ or $x = 360 - 48.59$ Either $(180 + \alpha)$ or $(360 - \alpha)$	را) dM1	
	x = 228.59, x = 311.41 Both awrt 228.6 and awrt 311	, I	
		70 B1	
	_	(5)	
		[7]	
	<u>Notes</u>		
(a)	M1 for a correct method to change $\cos^2 x$ into $\sin^2 x$ (must use $\cos^2 x = 1 - \sin^2 x$)	•	
	Note that applying $\cos^2 x = \sin^2 x - 1$, scores M0.		
	A1 for obtaining the printed answer without error (except for implied use of zero.), although		
	the equation at the end of the proof must be = 0 . Solution just written only as abscore M1A1.	ove would	
(b)	1^{st} M1 for a valid attempt at factorisation, can use any variable here, s, y, x or sin	x. and an	
	attempt to find at least one of the solutions.	,	
	Alternatively, using a correct formula for solving the quadratic. Either the formula	la must be	
	stated correctly or the correct form must be implied by the substitution.		
	1^{st} A1 for the two correct values of $\sin x$. If they have used a substitution, a correct value of		
	their <i>s</i> or their <i>y</i> or their <i>x</i> . 2^{nd} M1 for solving $\sin x = -k$, $0 < k < 1$ and realising a solution is either of the form		
	$(180 + \alpha)$ or $(360 - \alpha)$ where $\alpha = \sin^{-1}(k)$. Note that you cannot access this i		
	$\sin x = -1 \Rightarrow x = 270$. Note that this mark is dependent upon the 1 st M1 mark awa	iraea.	
	2 nd A1 for both awrt 228.6 and awrt 311.4 B1 for 270.		
	If there are any EXTRA solutions inside the range $0 \le x < 360^{\circ}$ and the candidate	would	
	otherwise score FULL MARKS then withhold the final bA2 mark (the fourth materials)		
	of the question).	in in this purt	
	Also ignore EXTRA solutions outside the range $0 \le x < 360^{\circ}$.		
	Working in Radians: Note the answers in radians are $x = 3.9896, 5.4351, 4.7$		
	If a candidate works in radians then mark part (b) as above awarding the 2^{nd} A1 f 4.0 and awrt 5.4 and the B1 for awrt 4.7 or $\frac{3\pi}{2}$. If the candidate would then score		
	MARKS then withhold the final bA2 mark (the fourth mark in this part of the que		
	No working: Award B1 for 270 seen without any working.	•	
	Award M0A0M1A1 for awrt 228.6 and awrt 311.4 seen without any working.		
	Award M0A0M1A0 for any one of awrt 228.6 or awrt 311.4 seen without any wo	orking.	

Question Number	Scheme	Mai	ks
8. (a)	Graph of $y = 7^x$, $x \in \mathbb{R}$ and solving $7^{2x} - 4(7^x) + 3 = 0$		
	At least two of the three criteria correct. (See notes below.)	B1	
	All three criteria correct. (See notes below.)	B1	
	O X		
	l l		(2)
(b)	Forming a quadratic {using $y^2 - 4y + 3 = 0$ } $y^2 - 4y + 3 = 0$	M1	
	$y^2 - 4y + 3 = 0$	A1	
	$\{(y-3)(y-1)=0 \text{ or } (7^x-3)(7^x-1)=0\}$		
	$y = 3$, $y = 1$ or $7^{x} = 3$, $7^{x} = 1$ Both $y = 3$ and $y = 1$.	A1	
		dM1	
	x = 0.5645 0.565 or awrt 0.56	A1	
	x = 0 stated as a solution.	B1	
			(6)
			[8]
(-)	Notes Notes		
(a)	B1B0: Any two of the following three criteria below correct. B1B1: All three criteria correct.		
	Criteria number 1: Correct shape of curve for $x \ge 0$.		
	Criteria number 2: Correct shape of curve for $x < 0$.		
	Criteria number 3: $(0, 1)$ stated or 1 marked on the y-axis. Allow $(1, 0)$ rather than $(0, 1)$	1) if	
	marked in the "correct" place on the y-axis.	, 1, 11	

Question Number	Scheme	Marks
(b)	1^{st} M1 is an attempt to form a quadratic equation {using "y" = 7^x .}	
	1 st A1 mark is for the correct quadratic equation of $y^2 - 4y + 3 = 0$.	
	Can use any variable here, eg: y , x or 7^x . Allow M1A1 for $x^2 - 4x + 3 = 0$.	
	Writing $(7^x)^2 - 4(7^x) + 3 = 0$ is also sufficient for M1A1.	
	Award M0A0 for seeing $7^{x^2} - 4(7^x) + 3 = 0$ by itself without seeing $y^2 - 4y + 3 = 0$	or
	$(7^x)^2 - 4(7^x) + 3 = 0.$	
	1^{st} A1 mark for both $y = 3$ and $y = 1$ or both $7^x = 3$ and $7^x = 1$. Do not give this accuracy	ıracy
	mark for both $x = 3$ and $x = 1$, unless these are recovered in later working by candidate)
	applying logarithms on these.	
	Award M1A1A1 for $7^x = 3$ and $7^x = 1$ written down with no earlier working.	
	3^{rd} dM1 for solving $7^x = k$, $k > 0$, $k \ne 1$ to give either $x \ln 7 = \ln k$ or $x = \frac{\ln k}{\ln 7}$ or $x = \log k$	$_{7} k$.
	dM1 is dependent upon the award of M1.	
	2^{nd} A1 for 0.565 or awrt 0.56. B1 is for the solution of $x = 0$, from <i>any</i> working.	

Question	Scheme	Marks
Number	SCHEITE	IVIAI KS
9. (a)	$C\left(\frac{-2+8}{2}, \frac{11+1}{2}\right) = C(3, 6)$ AG Correct method (no errors) for finding the mid-point of AB giving $(3, 6)$	B1*
(b)	$(8-3)^2 + (1-6)^2$ or $\sqrt{(8-3)^2 + (1-6)^2}$ or or order to find the radius. $(-2-3)^2 + (11-6)^2$ or $\sqrt{(-2-3)^2 + (11-6)^2}$ Correct application of formula. $(x \pm 3)^2 + (y \pm 6)^2 = k$,	M1 A1 M1
	$(x-3)^2 + (y-6)^2 = 50 \left(\text{or} \left(\sqrt{50} \right)^2 \text{ or } \left(5\sqrt{2} \right)^2 \right)$ $k \text{ is a positive } \underline{\text{value}}.$ $(x-3)^2 + (y-6)^2 = 50 \text{ (Not } 7.07^2 \text{)}$	A1 (4)
(c)	{For $(10, 7)$, } $(10-3)^2 + (7-6)^2 = 50$, {so the point lies on C.}	<u>B1</u> (1)
(d)	{Gradient of radius} = $\frac{7-6}{10-3}$ or $\frac{1}{7}$ This must be seen in part (d).	B1
	Gradient of tangent $=\frac{-7}{1}$ Using a perpendicular gradient method.	M1
	y - 7 = -7(x - 10) $y - 7 = (their gradient)(x - 10)$	M1
	y = -7x + 77 $y = -7x + 77$ or $y = 77 - 7x$	A1 cao
		(4) [10]
	<u>Notes</u>	
(a)	Alternative method: $C\left(-2 + \frac{8 2}{2}, 11 + \frac{1 - 11}{2}\right)$ or $C\left(8 + \frac{-2 - 8}{2}, 1 + \frac{11 - 1}{2}\right)$	
(b)	You need to be convinced that the candidate is attempting to work out the radius and rediameter of the circle to award the first M1. Therefore allow 1 st M1 generously for $\frac{\left(-2-8\right)^2+\left(11-1\right)^2}{2}$ Award 1 st M1A1 for $\frac{\left(-2-8\right)^2+\left(11-1\right)^2}{4}$ or $\frac{\sqrt{\left(-2-8\right)^2+\left(11-1\right)^2}}{2}$. Correct answer in (b) with no working scores full marks.	not the
(c)	B1 awarded for correct verification of $(10-3)^2 + (7-6)^2 = 50$ with no errors.	
	Also to gain this mark candidates need to have the correct equation of the circle either part (b) or re-attempted in part (c). They cannot verify $(10, 7)$ lies on C without a correct equation of the circle either part (b) or re-attempted in part (c). They cannot verify $(10, 7)$ lies on C without a correct equation of the circle either part (b) or re-attempted in part (c). They cannot verify $(10, 7)$ lies on C without a correct equation of the circle either part (b) or re-attempted in part (c). They cannot verify $(10, 7)$ lies on C without a correct equation of the circle either part (b) or re-attempted in part (c). They cannot verify $(10, 7)$ lies on C without a correct equation of the circle either part (b) or re-attempted in part (c). They cannot verify $(10, 7)$ lies on C without a correct equation of the circle either part (b) or re-attempted in part (c). They cannot verify $(10, 7)$ lies on C without a correct equation of the circle either part (b) or re-attempted in part (c).	ect C.

Question Number	Scheme	Marks
(d)	2^{nd} M1 mark also for the complete method of applying $7 = (\text{their gradient})(10) + c$, find	ding c .
	Note : Award 2^{nd} M0 in (d) if their numerical gradient is either 0 or ∞ .	
	Alternative: For first two marks (differentiation):	
	$2(x-3) + 2(y-6)\frac{dy}{dx} = 0$ (or equivalent) scores B1.	
	1 st M1 for substituting both $x = 10$ and $y = 7$ to find a value for $\frac{dy}{dx}$, which must con-	ntain both
	x and y. (This M mark can be awarded generously, even if the attempted "differentia not "implicit".)	tion" is
	<u>Alternative:</u> $(10-3)(x-3) + (7-6)(y-6) = 50$ scores B1M1M1 which leads to	
	y = -7x + 77.	

Question	Scheme					
Number 10.						
(a)	$V = 4x(5-x)^2 = 4x(25-10x+x^2)$					
, ,	So, $V = 100x - 40x^2 + 4x^3$ $\pm \alpha x \pm \beta x^2 \pm \gamma x^3$, where $\alpha, \beta, \gamma \neq 0$	0	M1			
	So, $V = 100x - 40x^2 + 4x^3$ $V = 100x - 40x^2 + 4$	$\cdot x^3$	A1			
	$\frac{dV}{dx} = 100 - 80x + 12x^2$ At least two of their expanded term differentiated correct		M1			
	dx 100 - 80x + 12x	• .	A1	cao		
(b)	$100 - 80x + 12x^2 = 0$ Sets their $\frac{dV}{dx}$ from part (a) =	= 0	M1	(4)		
	$\{ \Rightarrow 4(3x^2 - 20x + 25) = 0 \Rightarrow 4(3x - 5)(x - 5) = 0 \}$					
	{As $0 < x < 5$ } $x = \frac{5}{3}$ or $x = \text{awrt } 1$.	67	A1			
	$x = \frac{5}{3}$, $V = 4(\frac{5}{3})(5 - \frac{5}{3})^2$ Substitute candidate's value o where $0 < x < 5$ into a formula for		dM1			
	So, $V = \frac{2000}{27} = 74\frac{2}{27} = 74.074$ Either $\frac{2000}{27}$ or $74\frac{2}{27}$ or awrt 74	4.1	A1			
_				(4)		
(c)	$\frac{d^2V}{dx^2} = -80 + 24x$ Differentiates their $\frac{dV}{dx}$ correctly to give $\frac{d^2V}{dx}$	$\frac{V}{2}$.	M1			
	When $x = \frac{5}{3}$, $\frac{d^2V}{dx^2} = -80 + 24\left(\frac{5}{3}\right)$					
	$\frac{d^2V}{dx^2} = -40 < 0 \Rightarrow V$ is a maximum $\frac{d^2V}{dx^2} = -40$ and $\frac{d^2V}{dx^2} = -40$	<u>m</u> .	A 1 c	SO		
				(2) [10]		
	<u>Notes</u>	•				
(a)	1 st M1 for a three term cubic in the form $\pm \alpha x \pm \beta x^2 \pm \gamma x^3$.					
	Note that an un-combined $\pm \alpha x \pm \lambda x^2 \pm \mu x^2 \pm \gamma x^3$, α , λ , μ , $\gamma \neq 0$ is fine for the 1	st M 1	1.			
	1^{st} A1 for either $100x - 40x^2 + 4x^3$ or $100x - 20x^2 - 20x^2 + 4x^3$.					
	2^{nd} M1 for any two of their expanded terms differentiated correctly. NB: If expanded expression is divided by a constant, then the 2^{nd} M1 can be awarded for at least two terms are correct. Note for un-combined $\pm \lambda x^2 \pm \mu x^2$, $\pm 2\lambda x \pm 2\mu x$ counts as one term differentiated correctly.					
	$2^{\text{nd}} \text{ A1 for } 100 - 80x + 12x^2$, cao .					
	Note: See appendix for those candidates who apply the product rule of differentiation.					

Question Number	Scheme					
(b)	Note you can mark parts (b) and (c) together.					
	Ignore the extra solution of $x = 5$ (and $V = 0$). Any extra solutions for V inside found for					
	values inside the range of x , then award the final A0.					
(c)	M1 is for their $\frac{dV}{dx}$ differentiated correctly (follow through) to give $\frac{d^2V}{dx^2}$.					
	A1 for all three of $\frac{d^2V}{dx^2} = -40$ and $\frac{\sqrt{9}}{\sqrt{9}}$ and					
	Ignore any second derivative testing on $x = 5$ for the final accuracy mark.					
	Alternative Method: Gradient Test: M1 for finding the gradient either side of their x-value					
	from part (b) where $0 < x < 5$. A1 for both gradients calculated correctly to the near integer,					
	using > 0 and < 0 respectively or a correct sketch and $maximum$. (See appendix for gradient					
	values.)					

Question Number	Scheme			
Aliter 4 (b) Way 2	$(x+1)(x-5) = \frac{x^2 - 4x - 5}{3} \text{ or } \frac{x^2 - 5x + x - 5}{2}$ $-\int (x^2 - 4x - 5) dx = -\frac{x^3}{3} + \frac{4x^2}{2} + 5x \left\{ + c \right\}$ $\left[-\frac{x^3}{3} + \frac{4x^2}{2} + 5x \right]_{-1}^{5} = (\dots) - (\dots)$ $\left\{ \left(-\frac{125}{3} + \frac{100}{2} + 25 \right) - \left(\frac{1}{3} + 2 - 5 \right) \right\}$ $= \left(\frac{100}{3} \right) - \left(-\frac{8}{3} \right)$ Hence, Area = 36	Can be implied by later working. M: $x^n \to x^{n+1}$ for any one term. 1st A1 any two out of three terms correctly ft. Substitutes 5 and -1 (or limits from part(a)) into an "integrated function" and subtracts, either way round.	B1 M1A1ft A1 dM1 A1 (6)	

Question Number	Scheme		
Aliter 6 (b) Way 2	$0.25 \times \left\{ \frac{0.5 + 0.38}{2} + \frac{0.38 + 0.30}{2} + \frac{0.30 + 0.24}{2} + \frac{0.24 + 0.2}{2} \right\}$ which is equivalent to: $\frac{1}{2} \times 0.25 ; \times \left\{ (0.5 + 0.2) + 2(0.38 + \text{their } 0.30 + \text{their } 0.24) \right\}$ $\left\{ = \frac{1}{8}(2.54) \right\} = \text{awrt } 0.32$	0.25 and a divisor of 2 on all terms inside brackets. One of first and last ordinates, two of the middle ordinates inside brackets ignoring the denominator of 2. Correct expression inside brackets if ½ was to be factorised out. awrt 0.32	B1 M1 <u>A1</u> √ A1 (4)

Question Number	Scheme	Mai	ks		
Aliter	Product Rule Method:				
10 (a) Way2	$\begin{cases} u = 4x & v = (5 - x)^2 \\ \frac{du}{dx} = 4 & \frac{dv}{dx} = 2(5 - x)^1(-1) \end{cases}$				
	$\left[\frac{\mathrm{d}u}{\mathrm{d}x} = 4 \qquad \frac{\mathrm{d}v}{\mathrm{d}x} = 2(5-x)^1(-1) \right]$				
	$\pm (\text{their } u')(5-x)^2 \pm (4x)(\text{their } v')$	M1			
	$\frac{dy}{dx} = 4(5-x)^2 + 4x(2)(5-x)^1(-1)$ A correct attempt at differentiating any one of either <i>u</i> or <i>v</i> correctly.	dM1			
	Both $\frac{du}{dx}$ and $\frac{dv}{dx}$ correct	A1			
	$\frac{dy}{dx} = 4(5-x)^2 - 8x(5-x)$ $4(5-x)^2 - 8x(5-x)$	A1			
			(4)		
Aliter 10 (a) Way3	$\begin{cases} u = 4x & v = 25 - 10x + x^2 \\ \frac{du}{dx} = 4 & \frac{dv}{dx} = -10 + 2x \end{cases}$				
	\pm (their u')(their $(5-x)^2$) \pm $(4x)$ (their v')	M1			
	$\frac{dy}{dx} = 4(25 - 10x + x^2) + 4x(-10 + 2x)$ A correct attempt at differentiating any one of either <i>u</i> or their <i>v</i> correctly.	dM1			
	Both $\frac{du}{dx}$ and $\frac{dv}{dx}$ correct	A1			
	$\frac{\mathrm{d}V}{\mathrm{d}x} = 100 - 80x + 12x^2$ $100 - 80x + 12x^2$	A1			
			(4)		
	Note: The candidate needs to use a complete product rule method in order for you to				
	award the first M1 mark here. The second method mark is dependent on the first method mark awarded.				
	method mark awarded.				

Question		Calaana		Marks			
Number	Scheme						
Aliter	Gradient Test Method:						
10 (c)	$\frac{\mathrm{d}V}{\mathrm{d}x} = 100 - 80x + 1$	$\frac{dV}{dx} = 100 - 80x + 12x^2$					
Way 2	Helpful table!						
		177					
	x	$\frac{\mathrm{d}V}{\mathrm{d}x}$					
	0.8	43.68					
	0.9	37.72					
	1	32					
	1.1	26.52					
	1.2	21.28					
	1.3	16.28					
	1.4	11.52					
	1.429	10.204					
	1.5	7					
	1.6	2.72					
	1.7	-1.32					
	1.8	-5.12					
	1.9	-8.68					
	2	-12					
	2.1	-15.08					
	2.2	-17.92					
	2.3	-20.52					
	2.4	-22.88					
	2.5	-25					

Question Number	Scheme				rks
8 (b)	Method of trial and improvement				
	Helpful to				
	X	$y = 7^{2x} - 4(7^x) + 3$			
	0	0			
	0.1	-0.38348			
	0.2	-0.72519			
	0.3	-0.95706			
	0.4	-0.96835			
	0.5	-0.58301			
	0.51	-0.51316			
	0.52	-0.43638			
	0.53	-0.3523			
	0.54	-0.26055			
	0.55	-0.16074			
	0.56	-0.05247			
	0.561	-0.04116			
	0.562	-0.02976			
	0.563	-0.01828			
	0.564	-0.0067			
	0.565	0.00497			
	0.57	0.064688			
	0.58	0.19118			
	0.59	0.327466			
	0.6	0.474029			
	0.7	2.62723			
	0.8	6.525565			
	0.9	13.15414			
	1	24			
			nd improvement by trialing	M1	
			45) = value and f (value between 0.5645 and 1) = value		
	_		rrect to 1sf or truncated 1sf.	A1	
			t to 1sf or truncated 1sf. o 2 dp by finding by trialing	A1	
			1	M1	
	f (value between 0.56 and 0.5645) = value and f (value between 0.5645 and 0.565) = value				
	Both values correct to 1sf or truncated 1sf and the confirmation that the root is				
	both values correct to 1st of truncated 1st and the confirmation that the root is $x = 0.56$ (only)				
	x = 0	• /		B1	
					(6)
	Note: If a	a candidate goes f	from $7^x = 3$ with no working to $x = 0.5645$ then give		
	M1A1 im	=	_		

PhysicsAndMathsTutor.com

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publications@linneydirect.com</u> Order Code US026235 January 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH