MATH 113 Notes

Jad Damaj

Spring 2022

Contents

1	1/18/2022			
	1.1		2	
	1.2	Set Theory	2	
	1.3	Maps/Functions	3	
	1.4	Equivalence Relations	4	
	1.5	Properties of the Integers (\mathbb{Z})	$\overline{4}$	
2	1/20/2022			
	2.1	Properties of the Integers (\mathbb{Z})	5	
	2.2	Primes	6	
	2.3	Congruences	6	
	2.4	Groups	7	
3	1/25/2022 7			
	3.1		7	
	3.2	Dihedral Groups	9	
4	1/27/2022			
		Dihedral Groups	10	
	4.2	Symmetric Groups	11	
	4.3		12	

1 1/18/2022

1.1 What is Algebra?

High School Algebra: Solve equations (over real and complex numbers), precalculus material

Abstract Algebra: Study algebraic structures more general than the real or complex numbers

• The abstract encapsulation of our intuition for composition

Summary of first 6-7 years of math education:

- The notion of unity, eg. 1
- The natural numbers $\mathbb{N} := \{1, 2, 3, \ldots\}$ with $+, \times$
- the integers $\mathbb{Z} := \{\ldots, -2, -1, 0, 1, 2, \ldots\}$ with $+, \times$, additive inverses exist
- the rational numbers $\mathbb{Q} := \{ \frac{a}{b} | a, b \in \mathbb{Z}, b \neq 0 \}$ with $+, \times$, additive and multiplicative inverses exist
- \mathbb{R} , real numbers
- C, complex numbers

Adding structure at each step: $(\mathbb{Z}, +)$ - Group, $(\mathbb{Z}, +, \times)$ -Ring, $(\mathbb{Q}, +, \times)$ -Field

Goal of this class: define larger class of objects like this

1.2 Set Theory

Definition 1.1. A set is a collection of elements

Ex: Numbers, symbols shapes, turkeys

Notation: P, Q are two statements

- $P \to Q$ means if P is true then Q is true, "P implies Q"
- $P \leftrightarrow Q$ "P is true if and only if Q is true"
- ∀ "for all"
- \exists "there exists", \exists ! "there exists unique"

Let S and T be two sets

• if s is an object in S we say s is an element of S or a member of S. Write $s \in S$ if s is in $S, s \notin S$ if s is not in S

• If S has finitely many elements we say it is a finite set. |S| = # of elements in S (cardinality)

Set notation:

- $S = \{ \text{Notation for elements in } S | \text{ properties specifying being in } S \}$ Ex: $\{ x \in \mathbb{Z} | 2 \text{ divides } x \}, \{ 1, 2, 3, \dots, \}, \{ 1, 2, 3 \}$
- If every object in S is also an object in T we say "S is contained in T", $S \subset T$. If S is not contained in T, $S \not\subset T$
- If $S \subset T$ and $T \subset S$, then S = T
- \bullet The set of objects contained in both S and T is called the intersection, $S\cap T$
- The set of objects contained in either S or T is called the union, $S \cup T$. (If S and T are disjoint $S \sqcup T$)
- $S \times T = \{(a,b) | a \in S, b \in T\}$ Cartesian product of S and T
- The set that contains no objects is called the empty set, \emptyset

1.3 Maps/Functions

- $f: A \to B$ or $A \xrightarrow{B} f$ is a map or function. The value of f at a is denoted f(a)
- If specifying a function on elements, $f: a \mapsto b$ or $a \mapsto b$
- A is called the domain of f. B is called the codomain of f. Ex: $S = \mathbb{N}, T = \mathbb{N}$ $f : \mathbb{N} \to \mathbb{N}$ $a \mapsto a^2$
- We say f is well defined if $a_1 = a_2 \to f(a_1) = f(a_2) \ \forall a_1, a_2 \in A$
- The set $f(A) = \{b \in B | b = f(a) \text{ for some } a \in A\}$ is a subset of B called the range or image of f
- The set $f^{-1}(C) = \{a \in A | f(a) \in C\}$ is called the preimage of C under $f(C \subset B)$
- We say f is injective if $f(x) = f(y) \to x = y \ \forall x, y \in A$
- We say f is surjective if given $b \in B \exists a \in A \text{ such that } f(a) = b$
- We say f is bijective if it is both injective and surjective
- We say that f is the identity map if A = B and $f(a) = a \ \forall a \in A$. In this case we write $f = \operatorname{Id}_A$
- if $f: A \to B$ and $g: B \to C$, the composite map $f\dot{g}: A \to C$ is defined by $(g\dot{f})(a) = g(f(a))$

1.4 Equivalence Relations

Let A be a nonempty set. A binary relation on as set A is a subset R of $A \times A$ and we write $a \equiv b$ if $(a, b) \in R$

We say \sim is an equivalence relation if \sim is:

- reflexive: $a \sim a \ \forall a \in A$
- symmetric: $a \sim b \rightarrow b \sim a \ \forall a, b \in A$
- transitive: $a \sim b$ and $b \sim c \rightarrow a \sim c \ \forall a, b, c \in A$

If \sim defines an equivalence relation on A, then the equivalence class of $a \in A$ is defined to be $[a] = \{x \in A | x \sim a\}$

Example 1.2. Consider the binary relation on $\mathbb{Z} \times \mathbb{Z}$ given by $(x,y) \in R$ if 2|x-y. We will show \sim is an equivalence relation: reflexiveness: x-x=0 so 2|0=x-x for all $x \in \mathbb{Z}$ symmetricness: Suppose 2|x-y. Since (x-y)=-(y-x), 2|y-x for all $x,y \in \mathbb{Z}$ transitivity: If 2|x-y and 2|y-z then 2|x-y+y-z so 2|x-z So \sim is an equivalence relation

Remark 1.3. The reflexive property, implies that $x \in [x]$ so equivalence classes are nonempty and their union is A

What are the equivalence classes for " $x \sim y$ if and only if 2|x-y"

$$[x] = \{ y \in \mathbb{Z} | 2|x - y \}$$

- If x is even, x=2n for some $n \in \mathbb{Z}$ then $2|y-2n \to y$ is even so y=2m for some $m \in \mathbb{Z}$
- If x is odd, x=2n+1 for some $n\in\mathbb{Z}$ then $2|y-2n-1\to y$ is odd so y=2n+1 for some $m\in\mathbb{Z}$

Remark 1.4. The symmetric and transitive properties imply that $y \in [x]$ if and only if [y] = [x] so two equivalence classes are either equal or disjoint

1.5 Properties of the Integers (\mathbb{Z})

- If $a, b \in \mathbb{Z}$, $a \neq 0$ we say a divides b if there is an element $c \in \mathbb{Z}$ such that b = ac. Write a|b (if a does not divide b, write $a \nmid b$)
- If $a, b \in \mathbb{Z} \setminus \{0\}$ there is a unique positive integer d, called the greatest common divisor gcd(a, b), satisfying:
 - 1. d|a and d|b
 - 2. If e|a and e|b, then e|d

- If $a, b \in \mathbb{Z} \setminus \{0\}$ there is a unique positive integer l, called the least common divisor satisfying:
 - 1. a|l and b|l
 - 2. If a|m and b|m, then l|m

2 1/20/2022

2.1 Properties of the Integers (\mathbb{Z})

The division algorithm: If $a, b \in \mathbb{Z}$ and $b \neq 0$ then there exists unique $q, r \in \mathbb{Z}$ such that a = qb + r and $0 \leq r < |b|$.

 \bullet q is the quotient, r is the remainder

Example 2.1. For
$$a = 23, b = 7 \ 23 = 7 * 3 + 2$$
. Here $q = 3, r = 2$

The Euclidean Algorithm: an important procedure which produces the greatest common divisor of two integers a and b by iterating the division algorithm.

If $a, b \in \mathbb{Z} \setminus \{0\}$, we obtain $a = q_0b + r_0$, $b = q_1r_0 + r_1$, $r_0 = q_2r_1 + r_2$, ..., $r_{n-2} = q_nr_{n-1} + r_n$, $r_{n-1} = q_{n+1}r_n$ where r_n is the last nonzero remainder, $r_n = \gcd(a, b)$

Because of division algorithm, $|b| > |r_0| > |r_1| > \cdots > |r_n|$ is a deceasing sequence of strictly positive integers so this cannot continue indefinitely, so r_n exists.

Why is $r_n = \gcd(a, b)$? Claim: $\gcd(a, b) = \gcd(b, r_0)$

Proof.
$$r_0 = a - q_0 b$$
 so if $d|b$ and $d|a$, $d|a - q_0 b = r_0$
Also $r_0 + q_0 b = a$ so if $d|b$ and $d|r_0$, $d|r_0 + q_0 b = a$

Iterate this to get $r_n = \gcd(r_{n-1}, r_n) = \cdots = \gcd(a, b)$

Example 2.2. Calculate gcd(35, 20)

$$25 = 20 \cdot 1 + 5$$
, $20 = 15 \cdot 1 + 5$, $15 = 5 \cdot 3 + 0$ so $gcd(35, 20) = gcd(15, 5) = 3$

Theorem 2.3. Given any $a, b \in \mathbb{Z}$, $\exists u, v \in \mathbb{Z}$ such that $au + bv = \gcd(a, b)$.

Proof. Work backwards through Euclidean Algorithm

Example 2.4. Write gcd from example 2 in terms of 20 and 35.

$$20 = 15 \cdot 1 + 5$$
 so $5 = 20 - 15 \cdot 1$
 $15 = 35 - 20 \cdot 1$ so $5 = 20 - (35 - 20)$ so $5 = 20 \cdot 2 - 35 \cdot 1$

2.2 Primes

Definition 2.5. An integer p > 1 is prime if its only positive divisors are 1 and p itself

Lemma 2.6. Euclid's Lemma $a, b \in \mathbb{Z}, p$ is primes. If p|ab then p|a or p|b.

Remark 2.7. Primality is important. $15|3 \cdot 5$ but 15 / 3, 15 / 5

Proof. If $p \not| a$ then gcd(p, a) = 1, thus there exists $u, v \in \mathbb{Z}$ such that au + pv = 1 but then b = b(au + pv) = bau = bpv. By assumption p|ab so p|bau and p|p so p|bpv so p|bau + pbv so p|b.

The fundamental Theorem of Arithmetic: if $n \in \mathbb{Z}$, n > 1 then n can be factored uniquely into the product of primes. In other words, there are distinct primes p_1, \ldots, p_s and positive integers d_1, \ldots, d_s such that $n = p_1^{d_1} p_2^{d_2} \cdots p_s^{d_s}$. Such a factorization is unique up to ordering.

Theorem 2.8. There are infinitely many primes

Proof. Suppose not, then there are finitely many primes, p_1, \ldots, p_n . Consider $p_1 \cdots p_n + 1$ by FTA there is a prime factorization so at least one prime divides it. Can't be p_1, \ldots, p_r so must be prime not listed.

2.3 Congruences

Fix $m \in \mathbb{N}$, by division algorithm, for $a \in \mathbb{Z}$, there exists unique q, r such that a = qm + r and $0 \le r < m$. We call r the remainder of a modulo m.

This gives a natural equivalence relation on \mathbb{Z} : $a \sim b \leftrightarrow a$ and b have the same remainder modulo $m \leftrightarrow m | (a-b)$

Definition 2.9. a and b are congruent modulo $m \leftrightarrow m | (a - b)$. We write $a \equiv b \mod m$.

Remark 2.10. The equivalence classes of \mathbb{Z} under this relation are indexed by the possible remainders modulo m. We call these residue classes: $\mathbb{Z}/m\mathbb{Z} = \{[0], [1], \ldots, [n-1]\}$

• We have a natural surjective map $[\]: \mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \quad a \mapsto [a]$

Definition 2.11. We define addition and multiplication on $\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ by $[a] \times [b] = [a \times b] \ \forall a, b \in \mathbb{Z}$ and $[a] + [b] = [a + b] \ \forall a, b \in \mathbb{Z}$

• This doesn't depend on choice of representatives for the class

Proof. Suppose $a_1 \equiv b_1 \mod m$, then $m|a_1 - b - 1$ so $a_1 = b_1 + sm$ for $s \in \mathbb{Z}$

Also $a_2 \equiv b_2 \mod m$ so $a_2 = b_2 + tm$ for $t \in \mathbb{Z}$ $(a_1 + a_2) = b_1 + b_2 + (s + t)m$ so $a_1 + a_2 \equiv b_1 + b_2 \mod m$ also $a_1 a_2 = (b_1 + sm)(b_2 + tm) = b_1 b_2 + (b_1 t + b_2 s + stm)m$ so $a_1 a_2 \equiv b_1 b_2 \mod m$

- $[0] \in \mathbb{Z}/m\mathbb{Z}$ behaves like 0 in $\mathbb{Z} : [0] + [a] = [a]$ for $[a] \in \mathbb{Z}/m\mathbb{Z}$
- $[1] \in \mathbb{Z}$ $m\mathbb{Z}$ behaves like 1 in \mathbb{Z} : $[1] \times [a] = [a]$ for $[a] \in \mathbb{Z}/m\mathbb{Z}$ but $\underbrace{[1] + \dots + [1]}_{m \text{ times}} = [0]$ and [r][s] = [rs] = [m] = [0] for some r, s

Proposition 2.12. For every $m \in \mathbb{N}$, $a \in \mathbb{Z}$ the congruence $ax \equiv 1 \mod m$ has a solution in \mathbb{Z} if and only if a and m are coprime.

Proof. If a and m are coprime, gcd(a, m) = 1 so $\exists u, v \in \mathbb{Z}$ such that au + mv = 1 so $au \equiv 1 \mod m$

2.4 Groups

Definition 2.13. Let G be a set. A binary operation is a map of sets $*: G \times G \to G$. Write a*b for *(a,b) for $a,b \in G$ or ab when * is clear.

Definition 2.14. A group is a set G with a binary operation * such that the following hold:

- 1. (Associativity): $(a*b)*c = a*(b*c) \forall a,b,c \in G$
- 2. (Identity): $\exists e \in G$ such that $a * e = e * a = a \ \forall a \in G$
- 3. (Inverses): Given $a \in G$, $\exists b \in G$ such that a * b = b * a = e

$3 \quad 1/25/2022$

3.1 Groups

Example 3.1.

- \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , $\mathbb{Z}/n\mathbb{Z}$ under +, e = 0, [0], for $a \in G$, $a^{-1} = -a$
- $\mathbb{Q} \setminus \{0\}, \mathbb{R} \setminus \{0\}, \mathbb{C} \setminus \{0\}, \text{ under } \times, e = 1, a^{-1} = \frac{1}{a}$

Example 3.2 (Non-Example).

 $(\mathbb{Z}\setminus\{0\},\times)$ not group since no inverses.

Example 3.3. $\mathbb{Z}/n\mathbb{Z}^{\times}$:= elements in $\mathbb{Z}/n\mathbb{Z}$ that have inverses ([a] such that gcd(a, n) = 1). $\mathbb{Z}/n\mathbb{Z}^{\times}$ is a group.

Example 3.4.

- If (A,*) and (B, \lozenge) are groups. We can from the group $(A \times B, (*, \lozenge))$ where $A \times B = \{(a,b) | a \in A, b \in B\}$ whose operation is defined componentwise $(a_1,b_1)(*,\lozenge)(a_2,b_2) = (a_1*a_2,b_1 \lozenge b_2)$
- The trivial group: a set with a single element e, e*e=e is the definition of the binary operation. No choice but to be associative. e is the identity and its own inverse.

A set with a binary operation * is called a moniod if the first two properties of a group hold (no need for inverses.)

Example 3.5. (\mathbb{Z}, \times) is a monoid.

• All groups are monoids but not all monoids are groups.

Definition 3.6. A group (G, *) is called abelian if it satisfies

$$a * b = b * a \forall a, b \in G$$
 (commutative).

Example 3.7. $(\mathbb{Z},+)$ is an abelian group.

Example 3.8. Non Abelian group $=GL_n(\mathbb{R}):=\{M\in M_n(\mathbb{R})| \det(M)\neq 0\}$. A square matrix has a nonzero determinant iff it is invertible so every element has an inverse under matrix multiplication. Matrix multiplication is associative and we have $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ as the identity matrix. So $\{GL_n(\mathbb{R}), \times\}$ is a group and for $n\geq 2$ is non-abelian.

Proposition 3.9. If G is a group under * them,

- 1) The identity of G is unique.
- 2) For each $a \in G$, a^{-1} is uniquely determined.
- 3) $(a^{-1})^{-1} = a$ for all $a \in G$.
- 4) $(a*b)^{-1} = (b^{-1})*(a^{-1}).$

Proof. 1) If e_1, e_2 are both identities, by axiom of identity $e_1 * e_2 = e_1$, but also $e_1 * e_2 = e_2$ so $e_1 = e_2$.

- 2) Assume b and c are both inverses of a. Let e be the identity of G. By inverse axiom, a*b=e, and a*c=e so c=c*e by identity axiom so c=c*(a*b)=(c*a)*b by associativity axiom so c=e*b=b by identity axiom.
- 3) To show $(a^{-1})^{-1} = a$ we need to show that a is the inverse of a^{-1} (By (2) the inverse is unique.) Since a^{-1} is the inverse of a, we have $a * a^{-1} = a^{-1} * a = e$ but this is the same as $a^{-1} * a = a * a^{-1} = e$ so a is the inverse of a^{-1} .
- 4) Let $c = (a * b)^{-1}$, then (a * b) * c = e. By associativity, a * (b(c) = e. "multiply" by a^{-1} to get $a^{-1} * (a * (b * c)) = a^{-1} * e$ so by the associativity and inverse axioms $(a^{-1} * a) * (b * c) = a^{-1}$ so $e * (b * c) = a^{-1}$ so $b * c = a^{-1}$. Now, "multiply" by b^{-1} to get $b^{-1} * (b * c) = b^{-1} * a^{-1}$ so $(b^{-1} * b) * c = b^{-1} * a^{-1}$ so $e * c = b^{-1} * a^{-1}$ so $c = b^{-1} * a^{-1}$.

Proposition 3.10. Let G be a group and $a, b \in G$. The equality ax = b and ya = b have unique solutions for $x, y \in G$. In particular,

- (1) if au = av then u = v
- (2) if ub = vb then u = v

Proof. Existence - multiply by inverses Uniqueness - because inverses are unique

Definition 3.11. For G a group and $x \in G$, the order of x is the smallest positive integer n such that $x^n = 1 (:= \underbrace{x * \cdots * x})$, where 1 is the identity of G.

We denote this by |x| and x is said to be of order n. If no positive power of x is 1, then $|x| = \infty$.

Example 3.12.

- Elements of $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ (additive): All nonzero elements have order ∞ .
- $(\mathbb{Z}/9\mathbb{Z}, +) = \{[0], \dots, [8]\}$: [6] + [6] + [6] = [18] = 0 so [6] has order 3 in $\mathbb{Z}/9\mathbb{Z}$.

3.2 Dihedral Groups

- The elements are symmetries of geometric objects
- Consider regular n gons for $n \ge 3$

Example 3.13. Symmetries of a hexagon:

• We describe these symmetries by labeling the vertices

Observe: A symmetry of a hexagon gives you a function $\{1,\ldots,6\} \to \{1,\ldots,6\}$. if σ is a symmetry, $\sigma(i)=j$ means σ sends i to the place where i used to be.

eg:
$$r(1) = 2$$
, $s(3) = 5$

Note that not every such function gives you a symmetry

Let D_{2n} be the set of symmetries of the n-gon. Define t_1t_2 to be the symmetry reached by applying t_2 then applying t_1 for t_1, t_2 symmetries of the n-gon $(t_1, t_2 \in D_{2n})$. This operation is associative because composition of functions is associative. The identity symmetry is do nothing, denoted by 1. The inverse of a symmetry is to undo the symmetry. Under these operations, D_{2n} is the dihedral group of order 2n.

Why is $|D_{2n}| = 2n$?

For any vertex i, there is a symmetry that sends 1 to the vertex i. The vertex 2 (next to 1) must go either to the vertex i+1 or i-1. So you have n choices for where to send the vertex "1" and 2 choices for where to send to vertex "2". So there are $n \cdot 2$ choices for symmetries of an n-gon. So $|D_{2n}| = 2n$.

$4 \quad 1/27/2022$

4.1 Dihedral Groups

Explicitly, what are these symmetries?

- n rotations about the center through $2\pi/n$ radians (clockwise)
- n reflections through n lines of symmetry

- If n odd: symmetry lines pass through the vertex, midpoint of opposite side.
- if n even: n/2 symmetry lines pass through opposite edges. n/2 symmetry lines pass through opposite vertices.

Fix Notation:

- r- rotation clockwise about the origin through $2\pi/n$ radians
- s- reflection (through 1 and the origin)

Example 4.1. D_{12} 2n = 12 so n = 6

(i)
$$1, r(\frac{2\pi}{6}), r^2(\frac{4\pi}{6}), r^3(\pi), r^4(\frac{8\pi}{6}), r^5(\frac{10\pi}{6}), r^6(2\pi) = 1$$

 $1, r, \dots, r^5$ all distinct so $|r| = 6$

(ii)
$$s^2 = 1$$
 so $|s| = 2$

- (iii) $s \neq r^i$ for any i
- (iv) $sr^{i} \neq sr^{j} \ 0 \leq i, j < 6$
- (v) $r^i \neq sr^j$ for any i, j

Thus, $D_{12} = \{1, r, r^2, r^3, r^4, r^5, s, sr, sr^2, sr^3, sr^4, sr^5\}$ all distinct, and there are 12 so this is all the elements.

 $D_{12} = \{r^i s^j | i = 0, \dots, n-1 \ j = 0, 1\}$ or equivalently $D_{12} = \{r, s | r^n = s^2 = 1, rs = sr^{-1}\}$

4.2 Symmetric Groups

- Let Ω be a nonempty set and let S_{Ω} be the set of bijections from Ω to itself (ie. permutations.)
- Let σ, τ be elements of S_{Ω} , $\sigma : \Omega \to \Omega$, $\tau : \Omega \to \Omega$, then $\sigma \circ \tau$ is a bijection $\Omega \to \Omega$.
- The identity of S_{Ω} is the permutation 1 defined by $1(a) = a \, \forall a \in \Omega$.
- Every permutation has an inverse $\sigma^{-1}:\Omega\to\Omega$ such that $\sigma^{-1}\dot{\sigma}=\sigma\circ\sigma^{-1}=1.$
- Composition of functions is associative so \circ is associative.
- Thus, (S_{Ω}, \circ) is a group called the symmetric group of S_{Ω}
- Often we will use $\Omega = \{1, \dots, n\}$ will write S_n instead of S_{Ω}

Example 4.2. $\Omega = \{1, 2, 3\}$

Let σ be in S_{Ω} sending $\sigma(1) = 2$, $\sigma(2) = 3$, $\sigma(3) = 1$.

$$\begin{pmatrix} \sigma: & 1 \to 2 \\ & 2 \to 3 \\ & 3 \to 1 \end{pmatrix}$$
 We write $(1\,2\,3)$ to represent σ .

$$\tau \in S_{\Omega} \text{ by } \tau(1) = 2, \ \tau(2) = 1, \ \tau(3) = 3$$

$$\begin{pmatrix} \tau: & 1 \to 2 \\ & 2 \to 1 \\ & 3 \to 3 \end{pmatrix} = (1\,2)(3).$$
 Often we will leave out 1 element cycles and write (1\,2)

- A cycle is a string of integers representing an element of S_n which cyclically permutes the integers
- The length of a cycle is the number of integers that appear in it
- Two cycles are disjoint if they have no numbers in common

Example 4.3. The Group S_3

$$\begin{array}{c|ccccc} \sigma_1(1) = 1, \, \sigma_1(2) = 2, \, \sigma_1(3) = 3 & 1 = (1)(2)(3) \\ \sigma_2(1) = 1, \, \sigma_2(2) = 3, \, \sigma_2(3) = 2 & (23) \\ \sigma_3(1) = 3, \, \sigma_3(2) = 2, \, \sigma_3(3) = 1 & (13) \\ \sigma_4(1) = 2, \, \sigma_4(2) = 1, \, \sigma_4(3) = 3 & (1, 2) \\ \sigma_5(1) = 2, \, \sigma_5(2) = 3, \, \sigma_5(3) = 1 & (123) \\ \sigma_6(1) = 3, \, \sigma_6(2) = 1, \, \sigma_6(3) = 2 & (132) \end{array}$$

• For any $\sigma \in S_n$ the cycle decomposition of σ^{-1} is obtained by writing the number sin each cycle of the decomposition of σ in reverse order.

Example 4.4.
$$\sigma = (1128104)(213)(5117)(6, 9) \in S_{13}$$
 $\sigma^{-1} = (4108121)(132)(7115)(9, 6)$

Remark 4.5. $(2\,13)=(13\,2)$ since they permute cyclically. More generally, $(a_1\,a_2\,a_3)=(a_3\,a_1\,a_2)=(a_2\,a_3\,a_1)$ By convention, we put the smallest number first.

4.3 Composing $\sigma \circ \tau$ in S_n

• Go from right to left

Example 4.6. $(1\,2\,3) \circ (1\,2)(3\,4)$ $\tau: 1 \to 2$ $\sigma: 2 \to 1$ so $\sigma \circ \tau: 1 \to 3$ $\tau: 3 \to 4$ $\sigma: 4 \to 4$ so $\sigma \circ \tau: 4 \to 4$ $\tau: 4 \to 4$ $\sigma: 3 \to 1$ so $\sigma \circ \tau: 4 \to 1$ $\tau: 2 \to 1$ $\sigma: 1 \to 2$ so $\sigma \circ \tau: 2 \to 2$ so $\sigma \circ \tau = (1\,3\,4)$

Remark 4.7.

- S_n is non abelian for $n \ge 3$ ex: $(12) \circ (13) = (132)$ but $(13) \circ (12) = (123)$
- The order of a permutation is the lcm of the lengths of the cycles in its decomposition
- A transposition is a cycle of length 2
- The order of S_n is n!