Quotient group and isomorphism theorem

Definition (normal subgroup)

Let G be a group. A subgroup $N \leq G$ is called *normal* if

$$gng^{-1} \in N$$
, $\forall g \in G$, $\forall n \in N$.

The notation $N \subseteq G$ is commonly used to indicate that N is a normal subgroup of G.

Definition (quotient group)

Let N be a normal subgroup of a group G. We can define an equivalence relation on G as

$$g \sim h \iff h^{-1}g \in N$$
,

with equivalence classes

$$[g] = \{ h \in G \mid h^{-1}g \in N \}.$$

The quotient group G/N (pronounced " $G \mod N$ ") is the set of equivalence classes

$$G/N = \{[g] \mid g \in G\}$$

which is made into a group by defining

$$[g][h] = [gh], \quad [g]^{-1} = [g^{-1}], \quad e_{G/N} = [e_G].$$

Exercise

Show that the $2\mathbb{Z}=\{2n\,|\,n\in\mathbb{Z}\}$ is a normal subgroup of $(\mathbb{Z},+)$ and that $\mathbb{Z}_2=\mathbb{Z}/2\mathbb{Z}.$

Theorem (first isomorphism theorem)

Let $\varphi: G \to H$ be a group homomorphism. Then:

- $\operatorname{Im} \varphi$ is a subgroup of H
- \bullet $\ker \varphi$ is a normal subgroup of ${\it G}$
- $\operatorname{Im} \varphi$ is isomorphic to the quotient group $G/\ker \varphi$

Exercise

Prove the first two points of the isomorphism theorem.