Diagnosing Pediatric Pneumonia from Chest X-rays Using Convolutional Neural Networks

Caitlin Streamer

Introduction

Pneumonia is responsible for 16% of child deaths under 5 years old

Early detection and treatment is critical to reducing pneumonia fatalities in children

Machine learning models can help expedite the disease screening process and serve as a 2nd opinion

Clinical Decision Support System

Armed with AI systems, physicians make more accurate diagnoses than either the system or physician alone

Goal to classify pediatric pneumonia from chest X-rays using machine learning to reduce time to diagnosis

Data Gathering & Analysis

Obtained 5,000+ physician labeled pediatric chest X-rays from a 2018 study by Kermany et al.

Image analysis revealed varying color distributions and inconsistent sizing in the X-rays

Modeling

Compared performance of newly initialized neural networks to transfer learning approach

Optimized for sensitivity to reduce number of false negatives and ensure delivery of needed treatment

False negatives

Patient diagnosed as healthy who has pneumonia

Sensitivity

False positives

Patient diagnosed with pneumonia who is healthy

Specificity

Binary classification CNN model performed best with 88% accuracy, 99% sensitivity, and 71% specificity

Multi-class VGG16 model performed best with 82% accuracy, 99% sensitivity, and 66% specificity

Conclusions

Results demonstrate success in diagnosing pneumonia from chest X-rays using machine learning

Key takeaways

- Binary classification performance comparable to human experts
- Viral pneumonia proved more difficult to identify than bacterial
- Transfer learning did not always outperform newly initiated neural networks

Models can be further improved to increase accuracy and specificity metrics

Next Steps

Try additional transfer learning models

Replicate Kermany et al. study

Bacterial and viral pneumonia classification

Appendix

Binary classification CNN model had a 0.96 AUC-ROC score

Binary classification CNN model is overfit due to divergence of test and train loss and accuracy scores

VGG16 multi-class classification model had an average 0.95 AUC-ROC score

VGG16 multi-class classification model is overfit due to divergence of test and train loss and accuracy scores

