

CAP5415 Computer Vision

Yogesh S Rawat

yogesh@ucf.edu

HEC-241

Questions?

Edge Detection

Lecture 4

Outline

- What is edge detection?
- Why we need edge detection?
- Challenges
 - Noise
- How to detect edges?
 - Prewitt
 - Sobel
 - Marr-Hildreth
 - Canny

Edge Detection

Lecture 4

Basics of edge detection

Edge Detection

- Identify sudden changes in an image
 - Semantic and shape information
 - Marks the border of an object
 - More compact than pixels

Origins of Edges

Edges are caused by a variety of factors

Types of edges

• Edge models

Why edge detection?

- Extract useful information from images
 - Recognizing objects
- Recover geometry

Characterizing edges

An edge is a place of rapid change in the image intensity function

Intensity profile

9/7/2023

Source: D. Hoiem

With a little Gaussian noise

9/7/2023 Lecture 3 –Edge Detection Source: D. Hoiem

Effects of Noise

- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal

Where is the edge?

Effects of noise

- Difference filters respond strongly to noise
 - Image noise results in pixels that look very different from their neighbors
 - Generally, the larger the noise the stronger the response
- What can we do about it?

Solution: smooth first

To find edges, look for peaks in

$$\frac{d}{dx}(f*g)$$

9/7/2023 Lecture 3 –Edge Detection 19 Source: S. Seitz

Derivative theorem of convolution

• Convolution is differentiable:
$$\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$$

• This saves us one operation:

Solution: Smoothing

• Smoothing removes noise, but blurs edge.

9/7/2023 Lecture 3 –Edge Detection 21

Evaluate Edge Detection

$$precision = \frac{GT \bigcap RM}{RM} = \frac{TP}{RM}$$
$$recall = \frac{GT \bigcap RM}{GT} = \frac{TP}{GT}$$

Ground Truth (GT)

Results of Method (RM)

True Positives (TP)

True Negatives (TN)

False Negatives (FN)

False Positives (FP)

9/7/2023

Design Criteria for Edge Detection

- Good detection: find all real edges, ignoring noise or other artifacts
- Good localization
 - as close as possible to the true edges
 - one point only for each true edge point

9/7/2023

Lecture 3 –Edge Detection

23

45 years of boundary detection

[Pre deep learning]

Questions?

CAP5415 Computer Vision

Yogesh S Rawat

yogesh@ucf.edu

HEC-241

Questions?

Edge Detection

Lecture 4

Prewitt and Sobel edge detection

Prewitt and Sobel Edge Detector

- Compute derivatives
 - In *x* and *y* directions
- Find gradient magnitude
- Threshold gradient magnitude

Discrete derivative - revisit

$$\frac{df}{dx} = f(x) - f(x-1) = f'(x)$$

Backward difference

$$\frac{df}{dx} = f(x) - f(x+1) = f'(x)$$

Forward difference

$$\frac{df}{dx} = f(x+1) - f(x-1) = f'(x)$$

Central difference

Derivative Masks

Backward difference [-1 1]

Forward difference [1 -1]

Central difference [-1 0 1]

Image derivative

Given function

Gradient vector

$$\nabla f(x, y) = \begin{bmatrix} \frac{\partial f(x, y)}{\partial x} \\ \frac{\partial f(x, y)}{\partial y} \end{bmatrix} = \begin{bmatrix} f_x \\ f_y \end{bmatrix}$$

Gradient magnitude

$$\left|\nabla f(x,y)\right| = \sqrt{f_x^2 + f_y^2}$$

Gradient direction

$$\theta = \tan^{-1} \frac{f_x}{f_y}$$

Example

- a. Original image
- b. Laplacian operator
- c. Horizontal derivative
- d. Vertical derivative

9/7/2023 CAP5415 - Lecture 3 [Filtering] 34

Prewitt Edge Detector

Sobel Edge Detector

Sobel Edge Detector

Sobel Edge Detector

Sobel Edge Detector

Sobel vs Prewitt

Source: Arbelaez, Maire, Fowlkes, and Malik. TPAMI 2011 (pdf)

Questions?

Edge Detection

Lecture 4

Marr Hildreth edge detection

Second derivate

- Maxima minima of first derivative
- Zero-crossings of second derivative

Marr Hildreth Edge Detector

- Smooth image by Gaussian filter
- Apply Laplacian
 - Widely used operator
- Find zero crossings
 - Scan along each row, record an edge point at the location of zero-crossing.
 - Repeat above step along each column

Marr Hildreth Edge Detector

Gaussian smoothing

Find Laplacian

second order derivative in
$$x$$
 second order derivative in y

$$\Delta^2 S = \frac{\partial^2}{\partial x^2} S + \frac{\partial^2}{\partial y^2} S$$

$$g(x,y) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

- ∇ is used for gradient (derivative)
- ullet Δ is used for Laplacian

Finding Zero Crossings

- Four cases of zero-crossings :
 - {+,-}
 - {+,0,-}
 - {-,+}
 - {-,0,+}
- Slope of zero-crossing {a, -b} is |a+b|.
- To mark an edge
 - Compute slope of zero-crossing
 - Apply a threshold to slope

Marr Hildreth Edge Detector

Deriving the Laplacian of Gaussian (LoG)

$$\Delta^2 S = \Delta^2 (g * I) = (\Delta^2 g) * I$$

$$g(x,y) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2+y^2}{2\sigma^2}}$$

$$\Delta^{2}g(x,y) = -\frac{1}{\sqrt{2\pi}\sigma^{3}} \left(2 - \frac{x^{2} + y^{2}}{\sigma^{2}}\right) e^{-\frac{x^{2} + y^{2}}{2\sigma^{2}}}$$

Marr Hildreth Edge Detector

LoG Filter

$$\Delta^{2}G_{\sigma} = -\frac{1}{\sqrt{2\pi}\sigma^{3}} \left(2 - \frac{x^{2} + y^{2}}{\sigma^{2}} \right) e^{-\frac{x^{2} + y^{2}}{2\sigma^{2}}}$$

17	
Y	
L	

0.0008	0.0066	0.0215	<mark>0</mark> .03 ²	0.0215	0.0066	0.0008	
0.0066	0.0438	0.0982	0.108	0.0982	0.0438	0.0066	
0.0215	0.0982	0	- <mark>0</mark> .242	2 0	0.0982	0.0215	
0.031	0.108	-0.242	-0.7979	-0.242	0.108	0.031	X
0.0215	0.0982	0	- <mark>0</mark> .242	2 0	0.0982	0.0215	
0.0066	0.0438	0.0982	<mark>0</mark> .108	0.0982	0.0438	0.0066	
0.0008	0.0066	0.0215	<mark>0</mark> .03 ²	0.0215	0.0066	0.0008	

On the Separability of LoG

- Similar to separability of Gaussian filter
 - 2D Gaussian can be separated into 2 one-dimensional Gaussians

$$h(x, y) = I(x, y) * g(x, y)$$

$$h(x, y) = (I(x, y) * g_1(x)) * g_2(y)$$

 $g_1 = \begin{bmatrix} .011 & .13 & .6 & 1 & .6 & .13 & .011 \end{bmatrix}$

 n^2 multiplications

$$g_2 = \begin{vmatrix} .13 \\ .6 \\ 1 \\ .6 \\ .13 \end{vmatrix}$$

$$g(x,y) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$
$$= \frac{1}{\sqrt{2\pi}\sigma} \left(e^{-\frac{x^2}{2\sigma^2}} \right) \left(e^{-\frac{y^2}{2\sigma^2}} \right)$$

On the Separability of LoG

$$\Delta^2 S = \Delta^2 (g * I) = (\Delta^2 g) * I = I * (\Delta^2 g)$$

Requires n^2 multiplications

$$\Delta^{2}S = (I * g_{yy}(y)) * g(x) + (I * g_{xx}(x)) * g(y)$$

Requires 4n multiplications

Separability

Gaussian Filtering

Laplacian of Gaussian Filtering

Algorithm

- Compute LoG
 - Use 2D filter $\Delta^2 g(x, y)$
 - Use 4 1D filters g(x), $g_{xx}(x)$, g(y), $g_{yy}(y)$
- Find zero-crossings from each row
- Find slope of zero-crossings
- Apply threshold to slope and mark edges

Example

 $I*(\Delta^2 g)$ Zero crossings of $\Delta^2 S$

Example

$$\sigma = 1$$

 $\sigma = 3$

 $\sigma = 6$

Lecture 3 –Edge Detection

55

Questions?

Edge Detection

Lecture 4

Canny edge detection

Canny Edge Detector

- Smooth Image with Gaussian filter
- Compute Derivative of filtered image
- Find Magnitude and Orientation of gradient
- Apply Non-max suppression
- Apply Thresholding (Hysteresis)

Canny

9/7/2023

Canny-Gradients

X-Derivative of Gaussian

Y-Derivative of Gaussian

Gradient Magnitude

9/7/2023 Lecture 3 –Edge Detection 60

Gradient Orientation

Non-maximum suppression

If gradient responses at r and p are smaller than q, q is an edge

Non-maximum suppression

$$M(x,y) = \begin{cases} |\nabla S|(x,y) & \text{if } |\nabla S|(x,y) > |\Delta S|(x',y') \\ & \& |\Delta S|(x,y) > |\Delta S|(x'',y'') \\ 0 & \text{otherwise} \end{cases}$$

x' and x" are the neighbors of x along normal direction to an edge

Non-maximum suppression

Before Non-Max Suppression

After Non-Max Suppression

9/7/2023 Lecture 3 –Edge Detection 64

Hysteresis Thresholding [L, H]

9/7/2023 Lecture 3 –Edge Detection 65

Hysteresis Thresholding [L, H]

- If the gradient at a pixel is
 - above "High", declare it as an 'edge pixel'
 - below "Low", declare it as a "non-edge-pixel"
 - between "low" and "high"
 - Consider its neighbors iteratively then declare it an "edge pixel" if it is connected to an 'edge pixel' directly or via pixels between "low" and "high".

Hysteresis Thresholding [L, H]

- 1. Threshold at low/high levels to get weak/strong edge pixels
- 2. Do connected components, starting from strong edge pixels

Final Canny Edges

Effect of Gaussian Kernel (smoothing)

The choice of σ depends on desired behavior

- large σ detects large scale edges
- small σ detects fine features

9/7/2023

Edge Detection with Deep Learning

- We will revisit edge detection
 - After Deep Learning tutorial lectures
 - If time permits

9/7/2023 Lecture 3 –Edge Detection 70

Questions?

Sources for this lecture include materials from works by Mubarak Shah, Abhijit Mahalanobis, and D. Lowe

Other sources from James Hays, Lana Lazebnik, Steve Seitz, David Forsyth, David Lowe, Fei-Fei Li, and Derek Hoiem