Ejercicios propuestos

- Cada una de las relaciones lógicas siguientes define una relación en el conjunto N*. Estudie si cada una de las relaciones es reflexiva, simétrica, antisimétrica o transitiva.
 - a) x es distinto de y
- b) x es menor o iqual a y
- c) x + y = 20

d) x - y = 1

- e) x divide a y
- f) xy es el cuadrado de un número natural
- 2. Sean \mathcal{R} y \mathcal{S} dos relaciones en el conjunto A. Determine la validez de las siguientes proposiciones:
 - a) Si \mathcal{R} es reflexiva entonces $\mathcal{R} \cap \mathcal{R}^{-1} \neq \emptyset$.
 - b) Si \mathcal{R} es simétrica entonces $\mathcal{R} \cap \mathcal{R}^{-1} \neq \emptyset$.
 - c) Si \mathcal{R} es simétrica entonces \mathcal{R}^{-1} es simétrica.
 - d) Si \mathcal{R} es antisimétrica entonces \mathcal{R}^{-1} es antisimétrica.
 - e) Si \mathcal{R} y \mathcal{S} son reflexivas entonces $\mathcal{R} \cup \mathcal{S}$ es reflexiva.
 - f) Si \mathcal{R} y \mathcal{S} son reflexivas entonces $\mathcal{R} \cap \mathcal{S}$ es reflexiva.
 - g) Si $\mathcal R$ y $\mathcal S$ son transitivas entonces $\mathcal R\cup\mathcal S$ es transitiva.
 - h) Si $\mathcal R$ y $\mathcal S$ son transitivas entonces $\mathcal R\cap\mathcal S$ es transitiva.
 - i) Si $\mathcal R$ y $\mathcal S$ son antisimétricas entonces $\mathcal R\cup\mathcal S$ es antisimétrica.
 - j) Si \mathcal{R} y \mathcal{S} son antisimétricas entonces $\mathcal{R} \cap \mathcal{S}$ es antisimétrica.
- 3. Se define la relación \mathcal{E} en \mathbb{R}^* :

$$x\mathcal{E}y$$
 si y sólo si $xy > 0$

Demuestre que es una relación de equivalencia y determine el conjunto cociente.

- 4. Se denomina **bytes** a cada elemento del conjunto $\{0,1\}^8$ y se emplea la notación $a_7a_6a_5a_4a_3a_2a_1a_0$ para representar a $(a_0,a_1,a_2,a_3,a_4,a_5,a_6,a_7) \in \{0,1\}^8$. Estudie las propiedades que cumplen cada una de las siguientes relaciones.
 - a) $a_7a_6a_5a_4a_3a_2a_1a_0 \mathcal{R} b_7b_6b_5b_4b_3b_2b_1b_0$ si y sólo si $\sum_{n=0}^7 a_n = \sum_{n=0}^7 b_n$.
 - b) $a_7a_6a_5a_4a_3a_2a_1a_0 \mathcal{R} b_7b_6b_5b_4b_3b_2b_1b_0$ si y sólo si $\sum_{n=0}^7 a_n2^n \leqslant \sum_{n=0}^7 b_n2^n$.
 - c) $a_7a_6a_5a_4a_3a_2a_1a_0 \mathcal{R} b_7b_6b_5b_4b_3b_2b_1b_0$ si y sólo si máx $\{a_1, a_3, a_5, a_7\} \leqslant \max\{b_1, b_3, b_5, b_7\}.$

- d) $a_7a_6a_5a_4a_3a_2a_1a_0 \mathcal{R} b_7b_6b_5b_4b_3b_2b_1b_0$ si y sólo si $a_n2^n \leq b_n2^n$ para todo $n \in \{0,1,2,3,4,5,6,7\}.$
- e) $a_7a_6a_5a_4a_3a_2a_1a_0 \mathcal{R} b_7b_6b_5b_4b_3b_2b_1b_0$ si y sólo si $b_7 < a_7$ o $\left(a_7 = b_7 \text{ y } \sum_{n=0}^6 a_n 2^n \leqslant \sum_{n=0}^6 b_n 2^n\right)$.
- 5. Estudie las propiedades que cumplen cada una de las siguientes relaciones definidas en \mathbb{R}^3 o en $\mathbb{R}^3 \setminus \{(0,0,0)\}$.
 - a) $(a_1, a_2, a_3)\Re(b_1, b_2, b_3)$ si y sólo si $a_3 \le b_3$ o $(a_3 = b_3 \text{ y } a_1 \le b_1)$ o $(a_3 = b_3, a_1 = b_1 \text{ y } a_2 \le b_2)$.
 - b) $(a_1, a_2, a_3)\Re(b_1, b_2, b_3)$ si y sólo si $a_1 \leq b_1$ y $a_2 \leq b_2$ y $a_3 \leq b_3$.
 - c) En $\mathbb{R}^3 \setminus \{(0,0,0)\}$, $(a_1,a_2,a_3) \mathcal{R}(b_1,b_2,b_3)$ si y sólo si $b_1 a_2 = a_1 b_2$ y $b_1 a_3 = a_1 b_3$.
 - d) $(a_1, a_2, a_3) \mathbb{R}(b_1, b_2, b_3)$ si y sólo si hay un único subíndice $i \in \{1, 2, 3\}$ tal que $a_i \neq b_i$.
 - e) $(a_1, a_2, a_3)\Re(b_1, b_2, b_3)$ si y sólo si $a_3 < b_3$ o $(a_3 = b_3 \text{ y } a_1 < b_1)$ o $(a_3 = b_3, a_1 = b_1 \text{ y } a_2 \leq b_2)$.
- 6. Se consideran el orden usual \leq en \mathbb{R} y el orden lexicográfico \leq_L en \mathbb{R}^2 . Se define la relación \leq en el conjunto \mathbb{R}^3 mediante:

$$(a_1, a_2, a_3) \preccurlyeq (b_1, b_2, b_3) \iff \begin{cases} a_1 < b_1 \\ o & ((a_2, a_3) \leqslant_L (b_2, b_3) \text{ y } a_1 = b_1) \end{cases}$$

Se define la relación \ll en el conjunto \mathbb{R}^3 mediante :

$$(a_1, a_2, a_3) \ll (b_1, b_2, b_3) \iff \begin{cases} (a_1, a_2) <_L (b_1, b_2) \\ o & (a_3 \le b_3) \end{cases} y (a_1, a_2) = (b_1, b_2)$$

Compruebe que las dos relaciones son iguales y que definen un orden total en \mathbb{R}^3 . Exprese el intervalo final $[(1,1,1),\rightarrow)$ y el intervalo [(0,0,0),(1,1,1)].

- 7. Defina un orden de tipo lexicográfico en \mathbb{R}^3 haciendo uso de lo estudiado en el problema 6. Generalice esa definición a \mathbb{R}^n con $n \in \mathbb{N}^*$.
- 8. Dados el orden usual \leq en \mathbb{R} y el orden producto \leq_P en \mathbb{R}^2 , se define la relación \leq en el conjunto \mathbb{R}^3 mediante:

$$(a_1,a_2,a_3) \preccurlyeq (b_1,b_2,b_3) \text{ si y s\'olo si } a_1 \leqslant b_1 \text{ y } (a_2,a_3) \leqslant_P (b_2,b_3).$$

Compruebe que es una relación de orden parcial. Exprese el intervalo final $[(1,1,1), \rightarrow)$ y el intervalo [(0,0,0),(2,1,1)].

Ejercicios 117

9. Defina un orden producto en \mathbb{R}^3 haciendo uso de lo estudiado en el problema 8. Generalice esa definición a \mathbb{R}^n , con $n \in \mathbb{N}^*$.

- 10. En el plano real \mathbb{R}^2 dotado de un sistema de referencia se consideran los siguientes conjuntos:
 - a) $A = \{(x,y) \mid 1 < x < 2, 3 \le y \le 4\}$ b) $B = \{(x,y) \mid 2 < x < 3\}$
 - c) $C = \{(x,y) \mid 1 \le y \le 2\}$ d) $D = \{(x,y) \mid \max(x,y) = 1\}$
 - e) $E = \{(x, y) \mid |x| + |y| = 1\}$ f) $F = \{(x, y) \mid x^2 + y^2 = 1\}$

Estúdiese la existencia, y en su caso explicítelos, de cotas superiores e inferiores, supremo, ínfimo, máximo, mínimo, maximales y minimales de cada uno de los conjuntos con el orden lexicográfico y posteriormente con el orden producto.

- 11. En el conjunto de las sucesiones de números reales, $\mathbb{R}^{\mathbb{N}}$, se consideran las relaciones siguientes:
 - a) $\{a_n\} \leq \{b_n\}$ si y sólo si $a_n \leq b_n$ para todo $n \in \mathbb{N}$ salvo un número finito de subíndices.
 - b) $\{a_n\} \cong \{b_n\}$ si y sólo si $a_n = b_n$ para todo $n \in \mathbb{N}$ salvo un número finito de subíndices.
 - c) $\{a_n\} \leqslant \{b_n\}$ si y sólo si $a_n \leqslant b_n$ para todo $n \in \mathbb{N}$.
 - d) $\{a_n\} = \{b_n\}$ si y sólo si $a_n = b_n$ para todo $n \in \mathbb{N}$.

Estudie si son relaciones de orden o de equivalencia. En este último caso, determine el conjunto cociente.

- 12. En el conjunto de las funciones reales de variable real, $\mathbb{R}^{\mathbb{R}}$, se considera las relaciones siguientes:
 - a) $f \leqslant g$ si y sólo si $f(x) \leqslant g(x)$ para todo $x \in \mathbb{R}$.
 - b) f = g si y sólo si f(x) = g(x) para todo $x \in \mathbb{R}$.
 - c) $f \leq g$ si y sólo si $f(x) \leq g(x)$ para todo $x \in \mathbb{R}$ salvo un número finito de valores de x.
 - d) $f \cong g$ si y sólo si f(x) = g(x) para todo $x \in \mathbb{R}$ salvo un número finito de valores de x.

Estudie si son relaciones de orden o de equivalencia. En este último caso, determine el conjunto cociente.

- 13. Ponga un ejemplo en cada caso de una aplicación de N en N que sea:
 - a) Inyectiva y no sobreyectiva.
 - b) Sobreyectiva y no inyectiva.

118 Ejercicios

- c) No sobreyectiva y no inyectiva.
- d) Biyectiva.
- 14. Identifique mediante una biyección el conjunto de las matrices cuadradas de orden dos con el conjunto \mathbb{R}^4 .
- 15. Determine el dominio de definición de las siguientes funciones:

a)
$$f(x) = \frac{x-1}{x+2} + \frac{1}{x^2-1}$$
 b) $g(x) = \sqrt{1-x^2}$

c)
$$h(x) = \log(x^3 - x)$$
 d) $t(x) = \sqrt{\frac{x^2 - 1}{4 - x^2}}$

- 16. Estudie si las siguientes funciones de \mathbb{R} a \mathbb{R} son inyectivas, sobreyectivas o biyectivas.
 - a) f(x) = ax + b, tal que $a \neq 0$ b) $g(x) = ax^2 + b$, tal que $a \neq 0$
 - c) $h(x) = ax^3 + bx$, tal que $a \neq 0$ d) $t(x) = x^3$, si $x \leq 0$, y $t(x) = x^2$ si 0 < x
 - e) $m(x) = -\sqrt{-x}$, si $x \le 0$, y $m(x) = \sqrt{x}$ si 0 < x f) $k(x) = \sqrt{x^2}$
- 17. Sean A un conjunto y $f: A \to A$ una aplicación tal que existe $n \in \mathbb{N}^*$ cumpliendo que $f^n = I_A$. Demuestre que f es una aplicación biyectiva.
- 18. Se denomina:

Circuito lógico OR a la aplicación OR : $\{0,1\}^2 \to \{0,1\}$ definida por $OR(x,y) = \max(x,y)$.

Circuito lógico AND a la aplicación AND : $\{0,1\}^2 \to \{0,1\}$ definida por AND(x,y)=xy.

Circuito lógico NOT a la aplicación NOT : $\{0,1\} \rightarrow \{0,1\}$ definida por NOT(x) = 1 - x.

Determine la expresión de los siguientes circuitos lógicos:

- a) P(x, y) = NOT(OR(x, y)).
- $b) \ \operatorname{XOR}(x,y) = \operatorname{OR}(\operatorname{AND}(x,\operatorname{NOT}(y)),\operatorname{AND}(\operatorname{NOT}(x),y)).$
- c) IF(x, y) = OR(NOT(x), y).
- d) IFF(x, y) = AND(OR(x, NOT(y)), OR(NOT(x), y)).
- 19. Sea el conjunto $\mathcal{P}(U)$ de las partes de un conjunto U.
 - a) Determínese una aplicación inyectiva de U a $\mathcal{P}(U)$.
 - b) Defina una aplicación sobreyectiva de $\mathcal{P}(U)$ a U.
 - c) ¿Son biyectivos $\mathcal{P}(U)$ y U?

- 20. Dadas dos aplicaciones $f \in \mathcal{F}(A,B)$ y $g \in \mathcal{F}(B,C)$, determine la validez de las siguientes afirmaciones, demostrándolas en caso afirmativo o poniendo un contraejemplo en caso contrario:
 - a) Si $g \circ f$ es inyectiva entonces f es inyectiva.
 - b) Si $g \circ f$ es inyectiva entonces g es inyectiva.
 - c) Si $g \circ f$ es sobreyectiva entonces f es sobreyectiva.
 - d) Si $g \circ f$ es sobrevectiva entonces g es sobrevectiva.
- 21. Dada una aplicación $f \in \mathcal{F}(A, B)$, se consideran C y D dos subconjuntos de A, y E y F dos subconjuntos de B. Determine si las siguientes expresiones son ciertas:
- $\begin{array}{ll} a) \ C \subset D \Longrightarrow f(C) \subset f(D) & b) \ f(C \cup D) = f(C) \cup f(D) \\ c) \ f^{-1}(E \cup F) = f^{-1}(E) \cup f^{-1}(F) & d) \ f^{-1}(E \cap F) = f^{-1}(E) \cap f^{-1}(F) \end{array}$
- $e) \ f(C \cap D) \subset f(C) \cap f(D)$
- f) Si f es inyectiva, entonces $f(C \cap D) = f(C) \cap f(D)$