VISVESVARAYA TECHNOLOGICAL UNIVERSITY

"JnanaSangama", Belgaum -590014, Karnataka.

Bio Inspired Systems

(23CS5BSBIS) Submitted by

Rani Aishwarya H S (1BM22CS217)

in partial fulfillment for the award of the degree of

BACHELOR OF ENGINEERING in COMPUTER SCIENCE AND ENGINEERING

B.M.S. COLLEGE OF

ENGINEERING (Autonomous Institution under VTU)

BENGALURU-560019 Sep-2024 to Jan-2025

B.M.S. College of Engineering,

Bull Temple Road, Bangalore 560019

(Affiliated To Visvesvaraya Technological University, Belgaum)

Department of Computer Science and Engineering

CERTIFICATE

This is to certify that the Lab work entitled "Bio Inspired Systems (23CS5BSBIS)" carried out by Rani Aishwarya H S (1BM22CS217), who is bonafide student of B.M.S. College of Engineering. It is in partial fulfilment for the award of Bachelor of Engineering in Computer Science and Engineering of the Visvesvaraya Technological University, Belgaum. The Lab report has been

approved as it satisfies the academic requirements of the above mentioned subject and the work prescribed for the said degree.

Sowmya T	Dr.Joythi S Nayak
Assistant Professor	Professor & HOD
Department of CSE, BMSCE	Department of CSE, BMSCE

Index

Sl. No.	Date	Experiment Title	Page No.
1	4-10-2024	Genetic Algorithm	1-5
2	18-10-2024	Particle Swarm Optimization	6-9
3	25-10-2024	Ant Colony optimisation	10-13
4	15-11-2024	Cuckoo Search Algorithm	14-17
5	22-11-2024	Grey Wolf Optimiser:	18-22
6	29-11-2024	Parallel Cellular Algorithms	23-26
7	29-11-2024	Gene Expression Algorithms	27-30

Github Link:

https://github.com/RaniAishwarya/BIS

1.Genetic Algorithm

A **genetic algorithm (GA)** is a search heuristic inspired by the process of natural selection and genetics. It is used to solve optimization and search problems. The algorithm simulates the process of natural evolution, where the fittest individuals are selected to reproduce and pass their genes to the next generation, leading to the gradual improvement of solutions.

Algorithm:

	10-02
	program -1. 04/10/24
	03131 - 2
	mother on
	algorithm to solve a medhematical
	sugarion a solve a mothemation
	problem.
	ned if I & negatifican is
V V Million	import randon
	import randon
	and the matter of a prime
March 1	fitness = lambda x: 1 * np. sin(x)
THE RES	(inp. him (x)
	DONWATION - Nice Managation = (0,00
	population size, yenerations = 10,20
- July and	MONOVES_ rate, mutation_ rate = 0.8,0.1
	x-min, x-max = 0,10
	Daniel attention to the second and the second attention to the second attention attention to the second attention attention to the second attention at
200	population = np. random. unifosm (x-min,x-mar,
	population-size)
	for ejeneration in Range (generations):
1 200	for ejenciation in hance (yenerations): fither - wiles - np. array (1/ithes (x)/ix)
	X in productions
	fitness-value = fitnen values - np. minl
	LITHER WALLEY
	total fitnes - nposum (to mes value)
	selection-probs = fitner-values (total-
	fitnes of total-fitnes >0 else up ones!
	selected-population= 130
	selected-population = np. 2 andon.
	thouce (population, size=population-size,

1

Page p = relection-probs) offspring = [] offpring = 1

for i in range (0, population - size, 2):

if random. random() < stockover rate

and it I < population - size:

paind | paind 2 = scleeted - population [i+1]

alpha = random uniform (0,)

alpha = random uniform (0,)

alpha = random uniform (0,)

(1 - alpha) farent 2 alpha parent 2+

(1 - alpha) parent 1)

else: (i), secreted population (i+1)) Alspring = (y + landom uniform - 0.5,05)

I handom random (x mutassom tate else

* for x in Jespen ng ?

population = np. clip (offspring x min, xnot bust individual = max(population, key fitnes)

print (d' generation & seneration est:

Blest situation x = 2 houst - inclividual &

((x) - 2 fitness thest inclivedual) x") part individual - mix (popular, key final)

import random

```
# Define the fitness function

def fitness_function(x):
    return x ** 2

# Generate initial population

def generate_population(size, lower_bound, upper_bound):
    return [random.uniform(lower_bound, upper_bound) for _ in range(size)]

# Selection - select individuals based on fitness

def selection(population, fitness_values):
    total_fitness = sum(fitness_values)
    probabilities = [f / total_fitness for f in fitness_values]
    selected = random.choices(population, weights=probabilities, k=len(population))
    return selected

# Crossover - create new offspring by combining parents

def crossover(parent1, parent2, crossover_rate):
    if random.random() < crossover_rate:
```

```
alpha = random.random()
    child1 = alpha * parent1 + (1 - alpha) * parent2
    child2 = alpha * parent2 + (1 - alpha) * parent1
    return child1, child2
  else:
    return parent1, parent2
# Mutation - introduce random variations
def mutate(individual, mutation rate, lower bound, upper bound):
  if random.random() < mutation rate:
    individual += random.uniform(-1, 1)
    individual = max(lower bound, min(upper bound, individual)) # Keep within bounds
  return individual
# Genetic Algorithm
def genetic algorithm(population size, lower bound, upper bound, generations, mutation rate,
crossover rate):
  population = generate population(population size, lower bound, upper bound)
  for generation in range(generations):
    # Evaluate fitness
    fitness values = [fitness function(ind) for ind in population]
    # Selection
    selected population = selection(population, fitness values)
    # Crossover
    next generation = []
    for i in range(0, len(selected population), 2):
       parent1 = selected population[i]
       parent2 = selected population[i + 1 if i + 1 < len(selected population) else 0]
       child1, child2 = crossover(parent1, parent2, crossover rate)
       next generation.extend([child1, child2])
    # Mutation
    population = [mutate(ind, mutation rate, lower bound, upper bound) for ind in next generation]
    # Log best fitness of the generation
    best fitness = max(fitness values)
    # print(f''Generation {generation + 1}: Best Fitness = {best fitness:.4f}")
  # Return the best fitness value from the final generation
  return max(fitness function(ind) for ind in population)
```

```
# Parameters
population_size = 10
lower_bound = -10
upper_bound = 10
generations = 50
mutation_rate = 0.1
crossover_rate = 0.8
print("Rani Aishwarya H S,1BM22CS217")
# Run Genetic Algorithm
best_fitness = genetic_algorithm(population_size, lower_bound, upper_bound, generations, mutation_rate, crossover_rate)
print(f"Best fitness found: {best_fitness:.4f}")
```

```
Rani Aishwarya H S,1BM22CS217
Best fitness found: 54.4101
=== Code Execution Successful ===
```

2.Particle Swarm Optimisation for function Optimisation

Particle Swarm Optimization (PSO) is a heuristic optimization algorithm inspired by the social behavior of birds flocking or fish schooling. It is used to find optimal solutions by mimicking the collective behavior of a swarm of particles in a search space.

1	2	pacticle man optimization
		The state of the s
		Algorithm:
= 23		step 1: Pick a mathematical function flx
tion		to optimize.
	18/	step 2: set the parameters N, W, C, C,
		whele I is weight at which and hout
		of personal best position and & is
1		of personal best position and a is the weight of ylobal Rest position step 3: Define the limits within which
		step 3: Define the limits within which
		particle can move
ulation		step 4: Arign N with ranclon velocity
CHA	Santia .	stys. For each particle calculate its
		fishes that is the best position step 6: Update velocity based on the
60		3th 6: Update velocity based on the
tion		best velocity of its own fased on
run		The best velocity found by the swaim step? It undergoes iterations to sheek
		step to the undergoed desations to their
		the best solution found steration it
		finds out the best value
-		grave our see man warmer
segl	-	Tode:
-	-	
	-	Import numby as inf # Define the objective function
	1	-04, 1111
		return x + 2
		n particles = 30
		MARKET STATE OF THE STATE OF TH

```
import random
# Objective function to minimize (Example: Sphere function)
def objective function(x):
  return sum(x i ** 2 for x i in x)
# Particle classto represent each particle
class Particle:
  def_init_(self, dimension, bounds):
     self.position = [random.uniform(bounds[0], bounds[1]) for in
     range(dimension)] self.velocity = [random.uniform(-1, 1) for in
     range(dimension)] self.pBest = list(self.position)
     self.pBest fitness = objective function(self.position)
# PSO class
class PSO:
  def init (self, dimension, bounds, num particles=30, max iterations=100):
     self.dimension = dimension
     self.bounds = bounds
     self.num particles = num particles
     self.max iterations = max iterations
     self.particles = [Particle(dimension, bounds) for in
     range(num particles)] self.gBest = list(self.particles[0].position)
     self.gBest fitness = self.particles[0].pBest fitness
     self.w = 0.5 # Inertia weight
     self.c1 = 1.5 # Cognitive coefficient
     self.c2 = 1.5 # Social coefficient
  def optimize(self):
     for iteration in range(self.max iterations):
       for particle in self.particles:
          fitness = objective function(particle.position)
          # Update personal best (pBest)
```

if fitness < particle.pBest fitness:

particle.pBest fitness = fitness

particle.pBest = list(particle.position)

```
self.gBest = list(particle.position)
         self.gBest fitness = fitness
   # Update velocity and position for each particle
for particle in self.particles:
for i in range(self.dimension):
# Update velocity
r1, r2 = random.random(), random.random()
particle.velocity[i] = (self.w * particle.velocity[i]
+ self.c1 * r1 * (particle.pBest[i] - particle.position[i])
+ self.c2 * r2 * (self.gBest[i] - particle.position[i]))
# Update position
particle.position[i] += particle.velocity[i]
# Ensure position stays within bounds
particle.position[i] = max(self.bounds[0], min(particle.position[i], self.bounds[1])) return
self.gBest, self.gBest fitness
# Define parameters
dimension = 2 # Number of dimensions
bounds = (-10, 10) # Search space bounds for each dimension
num particles = 30 # Number of particles in the swarm
max iterations = 100 # Maximum number of iterations
print("Rani Aishwarya H S,1BM22CS217")
# Create PSO instance and optimize
pso = PSO(dimension, bounds, num particles, max iterations)
best position, best fitness = pso.optimize()
# Output the result
print(f"Best Position: {best position}")
print(f"Best Fitness: {best fitness}")
Output:
```

Update global best (gBest) if fitness < self.gBest_fitness:

Rani Aishwarya H S,1BM22CS217

Best Position: [5.039947602443779e-13, 8.939424256650232e-13]

Best Fitness: 1.0531437787576535e-24

3.Ant Colony Optimisation

Ants in nature deposit pheromones on their paths as they move. The intensity of the pheromone on a path influences the probability that other ants will choose that path. Over time, the pheromone trails strengthen on paths that are frequently used and weak on less frequently used ones. This behavior leads to the discovery of the shortest or optimal path between the ant colony and a food source. ACO mimics this process to solve various optimization problems, like the traveling salesman problem (TSP), vehicle routing problems, and others.

	then set # > #+
E [in]	end of
77	end if for all (i,j) \in t do seinforce Zij \in Zij + 3/2 und for
	seinforce Zij bo Zij + 1/2
	and fol
for	for all all (i)) to 1 to 100 reinforce Zij -> Zij + s/2
1000	reinforce Zij -> Zij + s/2
	and for
	mutill condition for termination.
set	The state of the s
1000	program:
	A CONTRACT OF THE PARTY OF THE
	import numpy as up.
	the stines blue manage still or tous b);
1	def initialize pheromonents (n, tan b): retion up full ((n, n), tan 0)
No.	neum up you (10 114), minor
	dele coleulate Alstance (lity 2, citis 2)
	setur up linaly norm (lity 2 , city 2)
15de	suf calculate propabilities (pheromones,
dir ()	distances, alpha beta, visited, wirend lity)
	n = lin (Pheromoner)
01 8/1250	probabilities = np. zecos(n)
(1-f)235	for j in range (n):
	probabilities of 7 - Chisomorus [
	useret ut 9 i 1 " alpha) " (1) (distances
eflath	I runent city, j 1) * + beta)
f car	
The second second	

import numpy as np

Parameters

NUM_CITIES = 10 # Number of cities NUM_ANTS = 20 # Number of ants ITERATIONS = 10 # Number of iterations ALPHA = 1.0 # Pheromone importance BETA = 2.0 # Heuristic importance EVAPORATION_RATE = 0.5 Q = 100 # Pheromone deposit factor

```
# Distance matrix
distance matrix = np.random.randint(1, 100, size=(NUM CITIES, NUM CITIES))
np.fill diagonal(distance matrix, 0)
# Initialize pheromone levels
pheromones = np.ones((NUM CITIES, NUM CITIES))
def calculate route length(route):
  length = 0
  for i in range(len(route) - 1):
     length += distance matrix[route[i], route[i + 1]]
  length += distance matrix[route[-1], route[0]] # Return to the start city
  return length
def construct route(start city):
  route = [start city]
  for in range(NUM CITIES - 1):
     current city = route[-1]
    probabilities = []
     for next city in range(NUM CITIES):
       if next city not in route:
         prob = (pheromones[current city, next city] ** ALPHA) * \
              ((1 / distance matrix[current city, next city]) ** BETA)
         probabilities.append(prob)
       else:
         probabilities.append(0)
    probabilities = np.array(probabilities)
    probabilities /= probabilities.sum()
    next city = np.random.choice(range(NUM CITIES),
    p=probabilities) route.append(next city)
  return route
def update pheromones (pheromones, all routes, all lengths):
  pheromones *= (1 - EVAPORATION RATE) # Evaporation
  for route, length in zip(all routes, all lengths):
    pheromone deposit = Q / length
     for i in range(len(route) - 1):
       pheromones[route[i], route[i + 1]] += pheromone_deposit
       pheromones[route[i + 1], route[i]] += pheromone deposit
    # Closing the route (return to start city)
    pheromones[route[-1], route[0]] += pheromone deposit
    pheromones[route[0], route[-1]] += pheromone deposit
```

```
def aco():
  best route = None
  best length = float('inf')
  for in range(ITERATIONS):
     all routes = []
     all lengths = []
     for in range(NUM ANTS):
       start city = np.random.randint(0, NUM CITIES)
       route = construct route(start city)
       route length = calculate route length(route)
       all routes.append(route)
       all lengths.append(route length)
       if route length < best length:
         best length = route length
         best route = route
    update pheromones(pheromones, all routes, all lengths)
  return best route, best length
# Run the ACO algorithm
print("Rani Aishwarya H S,1BM22CS217")
best route, best length = aco()
print("Best Route:", best route)
print("Best Length:", best length)
```

```
Rani Aishwarya H S,1BM22CS217
Best Route: [7, np.int64(1), np.int64(2), np.int64(0), np.int64(6), np
    .int64(9), np.int64(8), np.int64(4), np.int64(5), np.int64(3)]
Best Length: 220
```

4.Cuckoo Search(CS)

Cuckoo Search (CS) is a nature-inspired optimization algorithm based on the brood parasitism of some cuckoo species. This behaviour involves laying eggs in the nests of other birds, leading to the optimization of survival strategies. CS uses Lévy flights to generate new solutions, promoting global search capabilities and avoiding local minima. The algorithm is widely used for solving continuous optimization problems and has applications in various domains, including engineering design, machine learning, and data mining.


```
Step 2 Evaluate the fitness f(x1) of the
ber histon
code:
import numpy as my
[mport mosh
def lary flight (fambda)
  sigma - (math. gammar)+ Lumbdar matherine
    math.ptx Lambda/2) 1(math. gamma
    ((14 Cambda/2)* Lambda * 9 x+ ((
  u= np. gandom normal(o, sigma,)
   V= np. 2 andon normal (0,1)
  Step = u (obser) + x (1/Lamboa)
   schan Step
```

import numpy as np import math

```
# Objective function (example: Sphere function, you can replace
it) def objective_function(x):
    return sum(x**2) # Minimize the sum of squares

def levy_flight(beta, d):
    sigma u = (math.gamma(1 + beta) * math.sin(math.pi * beta / 2) /
```

```
(\text{math.gamma}((1 + \text{beta}) / 2) * \text{beta} * 2 ** ((\text{beta - 1}) / 2))) ** (1 / \text{beta}) u =
  np.random.normal(0, sigma u, d) # Draw from Gaussian distribution v =
  np.random.normal(0, 1, d)
  step = u / (abs(v)**(1 / beta))
  return step
# Cuckoo Search Algorithm
def cuckoo search(n, d, alpha, pa, maxGen):
  # n: Population size, d: Dimension of the problem
  # alpha: Step size, pa: Discovery probability, maxGen: Max iterations
  nests = np.random.uniform(-10, 10, (n, d))
  fitness = np.array([objective function(nest) for nest in nests])
  best nest index = np.argmin(fitness)
  best nest = nests[best nest index]
  best fitness = fitness[best nest index]
  beta = 1.5
  # Step 2: Iterative loop
  for gen in range(maxGen):
     for i in range(n):
       # Generate a new solution via Lévy flight
       step = levy flight(beta, d)
       new nest = nests[i] + alpha * step * (nests[i] - best nest)
       new nest = np.clip(new nest, -10, 10) # Keep solutions within bounds
       # Evaluate new fitness
       new fitness = objective function(new nest)
       if new fitness < fitness[i]: # Replace with better solution
          nests[i] = new nest
          fitness[i] = new fitness
   # Abandon some nests with a probability pa
   for i in range(n):
   if np.random.rand() < pa:
   # Replace with new random solution
   nests[i] = np.random.uniform(-10, 10, d)
   fitness[i] = objective function(nests[i])
```

```
# Update the current best
best nest index = np.argmin(fitness)
if fitness[best nest index] < best fitness:
best_nest = nests[best_nest_index]
best fitness = fitness[best nest index]
# print(f'Generation {gen+1}, Best Fitness: {best_fitness:.5f}")
return best nest, best fitness
n = 25
d = 5
alpha = 0.01
pa = 0.25
maxGen = 100
print("Rani Aishwarya H S,1BM22CS217")
best_solution, best_value = cuckoo_search(n, d, alpha, pa, maxGen)
print("Best Solution:", best solution)
print("Best Fitness Value:", best value)
```

```
Rani Aishwarya H S,1BM22CS217

Best Solution: [-3.2589848 -8.11177023 -1.11252639 -8.80045712 -5
.55698494]

Best Fitness Value: 16.76397643399841
```

5.Grey Wolf Optimiser:

The Grey Wolf Optimizer (GWO) algorithm is a swarm intelligence algorithm inspired by the social hierarchy and hunting behaviour of grey wolves. It mimics the leadership structure of alpha, beta, delta, and omega wolves and their collaborative hunting strategies. The GWO algorithm uses these social hierarchies to model the optimization process, where the alpha wolves guide the search process while beta and delta wolves assist in refining the search direction. This algorithm is effective for continuous optimization problems and has applications in engineering, data analysis, and machine learning.

		Page	
1	ahr:	grey wolf optimizer:	1
1	MAN	Algorithm:	
		MANUEL TRANSPORT OF Y	
		Initialize the population of wolves (positions) sandomly within the search space Define the maximum not of iterations)	
-		Deline the manigum not an iterational	
		110101010100 X120 (NI)	C.
		solutions. The gitness function to evacuate	50
Or)		sound.	
3		Evaluate the fitnes of each well in	
		the population iclentify the alpha (best solution), hear second best and dollar	1
		third best) wolves	200
			411
		for t=1 to T: for each wolf i in the population	
		for each dimension of	
-		$A = \lambda^{+} \alpha^{+} \operatorname{rand} \alpha - \alpha$	
		0-210 ha= [1 * x alphata]= x i(10)	
13]		p-telpha=[:1 * x-alpha[0]=x-j[0]] xi=x-alpha[0]-A1*D-alpha	
1		$A) = S \neq \alpha \neq \text{rand}(1) - \alpha$	
1		$A_{2} = S * \alpha * rand() - \alpha$ $(2 - S * rand(1)$	
1	-	D_beta = C3 = x_heta[d] - x_i[d] 13- x_heta[d]-13 + D-hefq	
1		X2-X-DETULOU- AZ Y XXXX	

import numpy as np

```
def objective function(x):
  return x ** 2 # The function to minimize
def initialize wolves(num wolves, search space):
  return np.random.uniform(search space[0], search space[1], num wolves)
def update position(alpha, beta, delta, wolf, a):
  r1, r2 = np.random.rand(), np.random.rand()
  A = 2 * a * r1 - a
  C = 2 * r2
  D = abs(C * alpha - wolf)
  X1 = alpha - A * D
  r1, r2 = np.random.rand(), np.random.rand()
  A = 2 * a * r1 - a
  C = 2 * r2
  D = abs(C * beta - wolf)
  X2 = beta - A * D
  r1, r2 = np.random.rand(), np.random.rand()
  A = 2 * a * r1 - a
  C = 2 * r2
  D = abs(C * delta - wolf)
  X3 = delta - A * D
  return (X1 + X2 + X3) / 3
def grey wolf optimization(obj func, num wolves=5, max iter=50, search space=(-10,
  10)): # Initialize wolves' positions
  wolves = initialize wolves(num wolves, search space)
  fitness = np.array([obj func(wolf) for wolf in wolves])
  # Identify alpha, beta, delta
  sorted indices = np.argsort(fitness)
  alpha, beta, delta = wolves[sorted indices[0]], wolves[sorted indices[1]],
  wolves[sorted indices[2]] a = 2 \# Initial value for the parameter a
  for iteration in range(max iter):
     for i in range(num wolves):
       wolves[i] = update position(alpha, beta, delta, wolves[i], a)
        wolves[i] = np.clip(wolves[i], search space[0], search space[1]) # Ensure wolves stay within
bounds
```

```
# Recalculate fitness and update alpha, beta, delta
fitness = np.array([obj_func(wolf) for wolf in wolves])
sorted_indices = np.argsort(fitness)
alpha, beta, delta = wolves[sorted_indices[0]], wolves[sorted_indices[1]],
wolves[sorted_indices[2]]

# Decrease a linearly
a = 2 - (2 * (iteration / max_iter))

# print(f"Iteration {iteration+1}: Alpha = {alpha}, Fitness = {obj_func(alpha)}")
return alpha, obj_func(alpha)

# Run the algorithm
print("Rani Aishwarya H S,1BM22CS217")
best_position, best_fitness = grey_wolf_optimization(objective_function)
print(f"Best Position: {best_position}")
print(f"Best Fitness: {best_fitness}")
```

Rani Aishwarya H S,1BM22CS217

Best Position: -5.175888459194711e-06

Best Fitness: 2.6789821342025004e-11

6.Parallel Cellular Algorithms and Programs:

The Parallel Cell Algorithm is a computational method used for solving problems that involve large datasets, spatial partitioning, or simulations where a domain is divided into smaller "cells" that can be processed independently or semi-independently in parallel. It is commonly applied in scientific computing, numerical simulations, and artificial intelligence, where computational efficiency is crucial.


```
import numpy as np
import random
# Step 1: Define the Problem (Optimization Function)
def fitness function(position):
   """Example fitness function: Sphere function"""
  return sum(x^{**}2 \text{ for } x \text{ in position})
# Step 2: Initialize Parameters
grid size = (10, 10) # Grid size (10x10 \text{ cells})
dim = 2 # Dimensionality of each cell's position
minx, maxx = -10.0, 10.0 \# Search space bounds
max iterations = 50 # Number of iterations
# Step 3: Initialize Population (Random positions)
definitialize population(grid size, dim, minx, maxx):
  population = np.zeros((grid size[0], grid size[1], dim))
  for i in range(grid size[0]):
     for j in range(grid size[1]):
       population[i, j] = [random.uniform(minx, maxx)] for in
  range(dim)] return population
# Step 4: Evaluate Fitness (Calculate fitness for each cell)
def evaluate fitness(population):
  fitness grid = np.zeros((grid size[0], grid size[1]))
  for i in range(grid size[0]):
     for j in range(grid size[1]):
        fitness_grid[i, j] = fitness function(population[i, j])
  return fitness grid
# Step 5: Update States (Update each cell based on its
neighbors) def get neighbors(i, j):
   """Returns the coordinates of neighboring cells."""
  neighbors = []
  for di in [-1, 0, 1]:
     for dj in [-1, 0, 1]:
       if not (di == 0 and dj == 0): # Exclude the cell itself
          ni, nj = (i + di) \% grid size[0], (j + dj) \% grid size[1]
          neighbors.append((ni, nj))
  return neighbors
```

```
def update cell(population, fitness grid, i, j, minx, maxx): """Update the
  state of a cell based on the average state of its neighbors.""" neighbors =
  get neighbors(i, j)
   best neighbor = min(neighbors, key=lambda x: fitness grid[x[0], x[1]])
   # Update cell position to move towards the best neighbor's position
   new position = population[best neighbor[0], best neighbor[1]] + \
   np.random.uniform(-0.1, 0.1, dim) # Small random perturbation
   # Ensure the new position stays within bounds
   new position = np.clip(new position, minx, maxx)
   return new position
   # Step 6: Iterate (Repeat for a fixed number of iterations)
   population = initialize population(grid size, dim, minx, maxx)
   for iteration in range(max iterations):
   fitness grid = evaluate fitness(population)
   # Update each cell in parallel (simultaneously)
   new population = np.zeros like(population)
   for i in range(grid size[0]):
   for i in range(grid size[1]):
   new population[i, j] = update cell(population, fitness grid, i, j, minx, maxx)
   population = new population
   # Print best fitness at each iteration
   best fitness = np.min(fitness grid)
   # print(f"Iteration {iteration + 1}, Best Fitness: {best fitness}")
   # Step 7: Output the Best Solution
   best index = np.unravel index(np.argmin(fitness grid), fitness grid.shape)
   best position = population[best index[0], best index[1]]
   best fitness = np.min(fitness grid)
   print("Rani Aishwarya H S,1BM22CS217")
   print("Best Position Found:", best position)
   print("Best Fitness Found:", best fitness)
```

Rani Aishwarya H S,1BM22CS217

Best Position Found: [0.03240588 -0.03531405]

Best Fitness Found: 4.3671675326705975e-06

7.Gene Expression Algorithms(GEA):

Gene Expression Algorithms (GEA) are inspired by the biological process of gene expression in living organisms. This process involves the translation of genetic information encoded in DNA into functional proteins. In GEA, solutions to optimization problems are encoded in a manner similar to genetic sequences. The algorithm evolves these solutions through selection, crossover, mutation, and gene expression to find optimal or near-optimal solutions. GEA is effective for solving complex optimization problems in various domains, including engineering, data analysis, and machine learning.


```
Code:
import random
import operator
import math
# Constants for the genetic algorithm
POPULATION SIZE = 100
GENERATIONS = 5
MUTATION RATE = 0.1
CROSSOVER RATE = 0.7
MAX TREE DEPTH = 5
FUNCTIONS = ['+', '*', '/']
TERMINALS = ['x', '1', '2', '3']
# Class to represent an individual in the population
class Individual:
  def init (self, expression):
    self.expression = expression
    self.fitness = float('inf')
  # Function to evaluate the fitness of an individual
  def evaluate fitness(self, x value):
       expr = self.expression.replace('x', str(x value))
       # Using eval to evaluate the expression
       self.fitness = eval(expr)
    except Exception as e:
       self.fitness = float('inf')
# Function to generate a random individual
def generate random individual():
  expression = generate random expression(MAX TREE DEPTH)
  return Individual(expression)
# Function to generate a random expression (tree-like structure)
def generate random expression(depth):
  if depth == 0 or random.random() < 0.3:
    # Return a terminal (e.g., x or constants)
    return random.choice(TERMINALS)
  else:
    # Return a function with two subexpressions
    function = random.choice(FUNCTIONS)
    left = generate random expression(depth - 1)
```

```
right = generate random expression(depth - 1)
    return f"({left} {function} {right})"
# Function to perform crossover between two individuals
def crossover(parent1, parent2):
  # For simplicity, we just swap subexpressions between two individuals
  expr1, expr2 = parent1.expression, parent2.expression
  split1 = random.choice(expr1.split())
  split2 = random.choice(expr2.split())
  offspring expr = expr1.replace(split1, split2, 1)
  return Individual(offspring expr)
# Function to mutate an individual
def mutate(individual):
  if random.random() < MUTATION RATE:
    # Replace a random part of the expression with a new one
    mutated expr = individual.expression
    split expr = mutated expr.split()
    mutated expr = mutated expr.replace(random.choice(split expr),
generate random expression(MAX TREE DEPTH), 1)
    individual.expression = mutated expr
# Function to select the best individual
def select best individual(population, x value):
  best individual = min(population, key=lambda ind: ind.fitness)
  best individual.evaluate fitness(x value)
  return best individual
# Main function to run the GEP algorithm
def run gep algorithm():
  population = [generate random individual() for in range(POPULATION SIZE)]
  for generation in range(GENERATIONS):
    # Evaluate fitness for each individual
    for individual in population:
       individual.evaluate fitness(3) \# Example with x=3
    # Select the best individual
    best individual = select best individual(population, 3)
    # Print the fitness of the best individual in each generation
    print(f'Generation {generation + 1}: Best fitness = {best individual.fitness}")
    # Create a new population using crossover and mutation
    new population = []
```

```
while len(new_population) < POPULATION_SIZE:
    if random.random() < CROSSOVER_RATE:
        parent1 = random.choice(population)
        parent2 = random.choice(population)
        offspring = crossover(parent1, parent2)
        new_population.append(offspring)
    else:
        individual = random.choice(population)
        mutate(individual)
        new_population.append(individual)

population = new_population

# Run the algorithm

if __name__ == "__main__":
    print("Rani Aishwarya H S,1BM22CS217")
    run_gep_algorithm()</pre>
```

```
Rani Aishwarya H S,1BM22CS217
Generation 1: Best fitness = 0.012698412698412698
Generation 2: Best fitness = 0.017543859649122806
<string>:1: SyntaxWarning: 'float' object is not callable; perhaps you
   missed a comma?
<string>:1: SyntaxWarning: 'float' object is not callable; perhaps you
    missed a comma?
<string>:1: SyntaxWarning: 'float' object is not callable; perhaps you
   missed a comma?
Generation 3: Best fitness = 0.038461538461538464
Generation 4: Best fitness = 0.5
<string>:1: SyntaxWarning: 'float' object is not callable; perhaps you
   missed a comma?
<string>:1: SyntaxWarning: 'int' object is not callable; perhaps you
   missed a comma?
Generation 5: Best fitness = 13.5
```