Numerical Integration of a Function

- If we evaluate the function at 2 points, what should be the location of these points such that the error is minimized?
- Standard domain $\int_{-1}^{1} f(z)dz \approx \widetilde{I}_z = c_0 f(z_0) + c_1 f(z_1)$
- Four adjustable parameters, c_0 , z_0 and c_1 , z_1
- May integrate polynomials of degree 3 exactly
- How to obtain these parameters?
- One option: Using f(z) as $1,z,z^2,z^3$

Integration of a Function: Standard Domain

• We get:

$$c_0 + c_1 = 2; c_0 z_0 + c_1 z_1 = 0; c_0 z_0^2 + c_1 z_1^2 = \frac{2}{3}; c_0 z_0^3 + c_1 z_1^3 = 0$$

resulting in

$$z_0 = -\frac{1}{\sqrt{3}}; z_1 = \frac{1}{\sqrt{3}}; c_0 = 1; c_1 = 1$$

2-point Gauss Quadrature

General Methodology

Let the exactly integrable polynomial be

$$f_3(z) = \frac{z - z_1}{z_0 - z_1} f(z_0) + \frac{z - z_0}{z_1 - z_0} f(z_1) + (a + bz)(z - z_0)(z - z_1)$$

a and b are arbitrary constants

This function satisfies

$$f_3(z_0) = f(z_0)$$
 and $f_3(z_1) = f(z_1)$

$$\int_{1}^{1} f(z)dz \approx \widetilde{I}_{z} = c_{0}f(z_{0}) + c_{1}f(z_{1})$$

$$f_3(z) = \frac{z - z_1}{z_0 - z_1} f(z_0) + \frac{z - z_0}{z_1 - z_0} f(z_1) + (a + bz)(z - z_0)(z - z_1)$$

Gauss Quadrature: General Form

Since the cubic polynomial is exactly integrable

$$\int_{-1}^{1} \frac{z - z_1}{z_0 - z_1} f(z_0) + \frac{z - z_0}{z_1 - z_0} f(z_1) + (a + bz)(z - z_0)(z - z_1) dz$$

$$= c_0 f(z_0) + c_1 f(z_1)$$

Which implies that
$$c_0 = \int_{-1}^{1} \frac{z - z_1}{z_0 - z_1} dz$$
 and $c_1 = \int_{-1}^{1} \frac{z - z_0}{z_1 - z_0} dz$

And, for any arbitrary a and b:

$$\int_{-1}^{1} (a+bz)(z-z_0)(z-z_1)dz = 0$$

Gauss-Legendre Quadrature

Recall the first few Legendre polynomials:

$$P_0(x)=1$$
; $P_1(x)=x$; $P_2(x)=(-1+3x^2)/2$
 $P_3(x)=(-3x+5x^3)/2$; $P_4(x)=(3-30x^2+35x^4)/8$

• Any of these is orthogonal to all lower degree polynomials. Earlier we had seen that $P_2(z)$ is orthogonal to $P_0(z)$, and $P_1(z)$, *i.e.*,

$$\int_{-1}^{1} P_2(z) P_0(z) dz = \int_{-1}^{1} P_2(z) P_1(z) dz = 0$$

• It implies that $P_2(z)$ is orthogonal to 1 and z

Gauss-Legendre Quadrature

• Therefore, if we want the quadratic $(z-z_0)(z-z_1)$ to be orthogonal to all linear functions, we should choose z_0 and z_1 as the roots of $(-1+3z^2)=0$

- Which gives us $-1/\sqrt{3}$, and $1/\sqrt{3}$
- The weights are obtained from

$$c_0 = \int_{-1}^{1} \frac{z - \frac{1}{\sqrt{3}}}{-\frac{1}{\sqrt{3}} - \frac{1}{\sqrt{3}}} dz = \left[\frac{z}{2} - \frac{\sqrt{3}}{4} z^2 \right]_{-1}^{1} = 1 \text{ and } c_1 = \int_{-1}^{1} \frac{z + \frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}}} dz = 1$$

Gauss-Legendre Quadrature

• Similarly, for three Gauss points, we need the

zeroes of
$$(-3z+5z^3)$$
, which are $0, \pm \sqrt{\frac{3}{5}}$

$$L_0(z) = \frac{z\left(z-\sqrt{\frac{3}{5}}\right)}{\sqrt{\frac{3}{5}} \times 2\sqrt{\frac{3}{5}}} = -\frac{5}{6}\sqrt{\frac{3}{5}}z + \frac{5}{6}z^2; L_1(z) = 1 - \frac{5}{3}z^2; L_2(z) = \frac{5}{6}\sqrt{\frac{3}{5}}z + \frac{5}{6}z^2$$

$$c_0 = \int_{-1}^{1} L_0(z) dz = \left[-\frac{5z^2}{12} \sqrt{\frac{3}{5}} + \frac{5}{18} z^3 \right]_{-1}^{1} = \frac{5}{9}; c_1 = \frac{8}{9}; c_2 = \frac{5}{9}$$

 Since the c's are weights, it is common to use the symbol, W

Gauss-Legendre Quadrature Weights

• The weights may be related to the Legendre polynomials, $P_n(z)$:

$$W_{i} = \frac{2(1-z_{i}^{2})}{[(n+1)P_{n}(z_{i})]^{2}}$$

- For example, with 3 Gauss points (n=2), $P_2(z) = (-1+3z^2)/2$; the z's are $-\sqrt{0.6}$, 0, $\sqrt{0.6}$
- The value of $P_2(z)$ at these points are 0.4, -0.5, and 0.4, respectively.
- The weights are 5/9, 8/9, and 5/9, as before.

$$f(x) = 1 + 2x + 3x^2 + 4x^3 + 5x^4 + 6x^5$$

Abscissa, Weight, and Error for the Gauss-Legendre Quadrature points

n	Abscissa	Weight	Error
0	0.00000	2.0000	$\frac{f"(\xi)}{3}$
1	±0.57735	1.0000	$\frac{f^{iv}(\xi)}{135}$
	0.00000	0.88889	$f^{vi}(\xi)$
2	± 0.77460	0.55556	15750
	±0.33998	0.65215	$f^{(8)}(\xi)$
3	±0.86114	0.34785	$\frac{3}{3472875}$
	0.00000	0.56889	$f^{(10)}(\xi)$
4	± 0.53847	0.47863	
	±0.90618	0.23693	1237732650

Weighted Gauss Quadrature

 Instead of integral of the function, we need the integral with a weight-function

$$\int_{-1}^{1} w(z)f(z)dz \approx \widetilde{I} = \sum_{i=0}^{n} W_{i}f(z_{i})$$

- Recall the Tchebycheff polynomials, where the weight was $1/\sqrt{1-z^2}$
- Using this weight function, we get the Gauss-Tchebycheff quadrature
- Of course, we could treat w(z)f(z) as a single function and use Gauss-Legendre quadrature

Gauss-Tchebycheff quadrature

- The quadrature points are the zeroes of Tchebycheff polynomial of degree n+1
- These zeroes are given by

$$z_i = \cos \left[\frac{2n - 2i + 1}{n + 1} \frac{\pi}{2} \right] \qquad i = 0, 1, 2, ..., n$$

• And all the weights turn out to be equal to $\pi/(n+1)$

Gauss Quadrature: Example

• Estimate
$$I = \int_{1}^{2} \frac{1}{xe^{x}} dx$$
 (T.V. = 0.170483)
• First, convert to standard domain: $z=2(x-1.5)$

- Use 2-point Gauss-Legendre:

i	Z	W	х	f
0	−1/√3	1	1.5-1/2√3	0.245849
1	1/√3	1	1.5+1/2√3	0.093467

resulting in I_{z} =0.339315 and I_{x} =0.169658

- Error in $I_x = 8.25 \times 10^{-4}$. In $I_7 = 1.65 \times 10^{-3}$
- Recall: $E = \frac{f^{iv}(\zeta)}{135}$. 4th derivative (z) varies from 0.04 to 1.5. Theoretical error: 0.0003 to 0.011

Gauss Quadrature: Example

Use 3-point Gauss-Legendre:

i	Z	W	х	f
0	-√0.6	5/9	1.5-√0.6/2	0.295380
1	0	8/9	1.5	0.148753
2	√0.6	5/9	1.5+\(\psi 0.6/2\)	0.080263

resulting in I_z =0.340916 and I_x =0.170458

• Error in $I_x = 2.5 \times 10^{-5}$. In $I_z = 5 \times 10^{-5}$

Gauss-Tchebycheff Quadrature: Example

Estimate (same as before, but weighted)

$$I_z = \int_{-1}^{1} \frac{e^{-(z/2+1.5)}}{\sqrt{1-z^2}(z/2+1.5)} dz \qquad \text{(T.V. = 0.571946)}$$

• Use 2-point Gauss-Tchebycheff (n=1), $T_2(z) = 2z^2-1$; the z's are $\pm \sqrt{0.5}$:

i	Z	W	x	f
0	−1/√2	π/2	1.5−1/2√2	0.277173
1	1/√2	π/2	1.5+1/2√2	0.084529

resulting in I_z =0.568160

• Error in $I_7 = 3.79 \times 10^{-3}$

Gauss-Tchebycheff Quadrature: Example

• Use 3-points, $T_3(z) = 4z^3 - 3z$; the z's are $-\sqrt{0.75}$, $0, \sqrt{0.75}$:

i	Z	W	х	f
0	-√0.75	π/3	1.5-√0.75/2	0.322444
1	0	π/3	1.5	0.148753
2	√0.75	π/3	1.5+v0.75/2	0.074863

resulting in I_7 =0.571833

• Error in I_z = 1.13x10⁻⁴

Numerical Integration: Improper Integrals

• Estimate
$$I = \int_{a}^{b} f(x)dx$$
 for a known function

- We have assumed:
 - a and b are finite
 - f(x) is defined and is continuous in (a,b)
- Improper Integral: When any (or both) of these assumptions is violated

• E.g.,
$$I = \int_{1}^{\infty} e^{-x^2} dx \qquad I = \int_{0}^{1} \frac{\cos x}{\sqrt{x}} dx$$

Improper Integrals: Convergence

- An improper integral may or may not converge (i.e., have a finite value)
- We assume that it converges! How to find it?
 - If the domain is unbounded, we use a transformation of variable to make it finite

$$I = \int_{1}^{\infty} e^{-x^{2}} dx : z = \frac{1}{x} \Longrightarrow I = \int_{0}^{1} \frac{e^{-\frac{1}{z^{2}}}}{z^{2}} dz$$

• If f(x) is undefined at one end, a semi-open method could be used (or variable transform)

$$I = \int_{0}^{1} \frac{\cos x}{\sqrt{x}} dx : z = \sqrt{x} \Rightarrow I = \int_{0}^{1} 2\cos z^{2} dz$$

Improper Integrals: Evaluation

- If f(x) is undefined at both ends, an open method could be used
- If f(x) is undefined at some point within (a,b), we may need to split the integral into two parts
- Sometimes both the domain and the range could be unbounded. E.g.,

$$I = \int_{0}^{\infty} \frac{\cos x}{\sqrt{x}} dx$$

Improper Integrals: Example

The complementary error function is defined

as
$$erfc(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^2} dt$$

- Estimate the value of *erfc*(1) (T.V.=0.157299)
- Transformation: y=1/t

$$I = \int_{1}^{\infty} e^{-t^{2}} dt \Longrightarrow I = \int_{0}^{1} \frac{e^{-\frac{1}{y^{2}}}}{y^{2}} dy$$

- Note that f(y) is undefined at y=0 (limit does exist). Trapezoidal, Simpson... cannot be used!
- Use 3-point Gauss-quadrature

Improper Integrals: Example

• 3-point Gauss-quadrature

i	Z	W	У	f
0	-√0.6	5/9	(−√0.6+1)/2	0.000000
1	0	8/9	0.5	0.073263
2	√0.6	5/9	(√0.6+1)/2	0.356644

- $I_z=0.263258$; $I_y=0.131629$; erfc(1)=0.148527
- Error = 8.77×10^{-3}