Pareto Distribution

Background

- Vilfredo Pareto (1897) presents a versatile functional relation that well describes wealth distribution across countries and centuries.
- Same concept is applied to several other fields and colloquially called Pareto Principle.
 - 80% of land owned by 20% of individuals (revenue \sim products; sales \sim clients; etc)
- Generally, it follows a power law probability distribution, where one
 measure varies constantly as an exponential of another, independently
 of initial values.
 - Example: if one increases the side length of a square by x, its area increases by x^2 , independently of initial area of square.

Pareto Distribution
Background

Background

- Vilfredo Pareto (1897) presents a versatile functional relation that well describes wealth distribution across countries and centuries.
- Same concept is applied to several other fields and colloquially called Pareto Principle.
 80% of land owned by 20% of individuals (revenue ~ products; sales ~

clients; etc)

- Generally, it follows a power law probability distribution, where one
 measure varies constantly as an exponential of another, independently
 of initial values.
 Example: if one increases the side length of a square by x, its area
 - Example: If one increases the side length of a square by x, its are increases by x², independently of initial area of square.

- Latent sector errors in hard-drives failures
- Clusters of Bose–Einstein condensate near absolute zero

Functional Form

The **Pareto Distribution** is defined by

$$f(y, \underline{y}, \alpha) = \frac{\alpha \underline{y}^{\alpha}}{\underline{y}^{\alpha+1}}, \quad 0 < \underline{y} < y$$

and

$$F(y, \underline{y}, \alpha) = 1 - \left(\frac{\underline{y}}{\underline{y}}\right)^{\alpha}, \quad 0 < \underline{y} < y$$

where:

- y: wealth measure
- α : Pareto's α (or shape/slope parameter)
- y: lower bound (or scale parameter or threshhold value)

Graphical Visualisation I

Graphical Visualisation I

Here we can see how the Probability and Cumulative Distribution looks like.

- Only defined after lowerbound
- very heavy right tail
- very left dense

Graphical Visualisation II

-Graphical Visualisation II

In order to better visualise this distribution TWO transformations are taken:

- 1. calculate 1 CDF
- plot on log-log scale (or log-log the data)

•

HERE: lower bound = 1000

 α = Slope in loglog

Properties

Pareto's α :

- Sloppy interpretation: for a percentage increase in y, the proportion of *richer* individuals by α percents.
- Higher α values \Rightarrow less inequality.¹
- Several inequality indexes can be estimated based on α .
 - Example: Gini coefficient: $\frac{1}{2\alpha-1}$.

Possible problems:

- High flexibility on estimating the lower bound
- ullet Sensibility of α due to choice of the lower bound y

¹for inequality measures satisfying the Weak Transfers Principle (Cowell 2011, p. 89).

Pareto's o:
 Sloppy interpretation: for a percentage increase in y, the proportion of richer individuals by α percents. Higher α values → less inequality.¹ Several inequality indexes can be estimated based on α. Example: Gain coefficient: ¹/_{2n-1}
Possible problems:
• High flexibility on estimating the lower bound • Sensibility of α due to choice of the lower bound y

Properties

- For narrow excerpts of the data other distributions are "just as good"