Αν είναι γνωστή η καμπύλη επιτάχυνσης – χρόνου, η μεταβολή της ταχύτητας βρίσκεται από το εμβαδό της επιφάνειας.

Το παραπάνω ορισμένο ολοκλήρωμα γράφεται

$$\lim_{n\to\infty}\sum_{n}a_{n}\,\Delta t_{n}=\int_{t_{i}}^{t_{f}}a(t)dt$$

□ Γνωρίζοντας τη συνάρτηση α(t) μπορούμε υπολογίσουμε το ολοκλήρωμα για τυχαία χρονική στιγμή t.

$$a(t) = \frac{dv(t)}{dt} \Rightarrow a(t)dt = dv(t) \Rightarrow \int_{t_i}^t a(t)dt = \int_{v_i}^{v_t} dv = v_t - v_i = v(t) - v(t_i)$$

Επομένως σε μια χρονική στιγμή t η ταχύτητα είναι

$$\mathbf{v}(t) = \int_{t_i}^t a(t)dt + \mathbf{v}(t_i)$$

Av
$$t_i = 0$$
 συνήθως γράφουμε $v(t_i) = v_0$ $v(t) = \int_0^t a(t)dt + v_0$

Κατά τον ίδιο τρόπο γνωρίζοντας την ταχύτητα μπορούμε να βρούμε την μετατόπιση

$$v(t) = \frac{dx}{dt} \Rightarrow \int_0^t v(t)dt = \int_{x_i}^x dx = x - x_i = x(t) - x(t_i) = x(t) - x_0$$
$$\Rightarrow x(t) = x_0 + \int_0^t v(t)dt$$

Δύο εξισώσεις κίνησης ανάλογα με το πρόβλημα που δίνεται

$$\mathbf{v}(t) = \int_0^t a(t)dt + \mathbf{v}_0 \qquad (A) \qquad \mathbf{x}(t) = \mathbf{x}_0 + \int_0^t \mathbf{v}(t)dt \qquad (B)$$

Κίνηση με σταθερή επιτάχυνση, α(t) =σταθ.

Από την εξίσωση κίνησης
$$v = \int_{t_0}^{t} a(t)dt + v_0 \Longrightarrow v = at + v_0$$
 (1)

Αντικαθιστώντας στην
$$x = x_0 + \int_{t_0}^t \mathbf{v}(t)dt \Rightarrow x - x_0 = \int_{t_0}^t \mathbf{v}(t)dt \Rightarrow v_{ave}\Delta t = \int_{t_0}^t \mathbf{v}(t)dt$$

Μέση ταχύτητα:
$$v_{ave} = \frac{1}{\Delta t} \int_{t_0}^t v(t) dt$$

Θεωρώντας
$$t_0$$
=0 έχουμε: $x = x_0 + \int_0^t (at + v_0) dt = x_0 + \int_0^t (at) dt + \int_0^t v_0 dt$

$$x = x_0 + \frac{1}{2}at^2 + v_0t$$
 (2)

Λύνοντας ως προς t στην εξίσωση (1) και αντικαθιστώντας στην (2):

$$2a(x-x_0) = v^2 - v_0^2$$
 (3)

Λύνοντας ως προς α (επιτάχυνση) στην (1) και αντικαθιστώντας στην (2)

$$x - x_0 = \frac{1}{2} \left(v + v_0 \right) t \tag{4}$$

Αλλά η μετατόπιση είναι: $x - x_0 = \overline{v}t$

Μέση ταχύτητα για κίνηση με σταθερή επιτάχυνση:

$$\overline{v} = \frac{1}{2} \left(v_0 + v(t) \right)$$

Γεωμετρική ερμηνεία

Ολική επιφάνεια κάτω από την καμπύλη

$$E = E_1 + E_2 = \frac{1}{2}at^2 + v_0t$$

Πιο εύκολα...

$$\overline{\mathbf{v}} = \frac{\mathbf{x} - \mathbf{x}_0}{\mathbf{t} - \mathbf{t}_0} = \frac{\mathbf{x} - \mathbf{x}_0}{\mathbf{t}} \Longrightarrow \mathbf{x} = \mathbf{x}_0 + \overline{\mathbf{v}}\mathbf{t} \tag{1}$$

$$\overline{a} = a = \frac{\mathbf{v} - \mathbf{v}_0}{t} \Longrightarrow \mathbf{v} = \mathbf{v}_0 + at \tag{2}$$

$$\overline{v} = \frac{v + v_0}{2}$$
 αφού η ν γραμμική (3)

Αντικαθιστώντας την (3) στην (1) έχουμε

$$x = x_0 + \overline{v}t = x_0 + \left(\frac{v + v_0}{2}\right)t = x_0 + \left(\frac{v_0 + v_0 + at}{2}\right)t \Rightarrow x = x_0 + v_0t + \frac{1}{2}at^2$$

Θέση συναρτήσει χρόνου - Παράδειγμα

- Ποια η θέση του σώματος για t = 3s?
 x(t=3) = 1m
- Ποια η μετατόπιση του σώματος στο χρονικό διάστημα μεταξύ t = 5 και t = 1s?

$$x(t=5) = 1m$$

 $x(t=1) = 2m$
 Μετατόπιση = $Δx = 1 - 2 = -1m$

→Ποια η μέση ταχύτητα του σώματος στο χρονικό διάστημα t = 5 και t = 1s?

$$\vec{\overline{v}} = \frac{\Delta x}{\Delta t} = \frac{-1}{4} = -0.25 m/s$$

Ταχύτητα συναρτήσει χρόνου - Παράδειγμα

Ποια η ταχύτητα του σώματος για t = 2s?

$$u(t=2) = 3m/s$$

Ποια η μετατόπιση του σώματος στο χρονικό διάστημα μεταξύ t = 3 και t = 0s?

Εύρεση εμβαδού:
$$t=0 \rightarrow 1$$
: $E_1=0.5x(1s)x(3m/s)=1.5m$ $t=1 \rightarrow 3$: $E_2=(2s)x(3m/s)=6.0m$

Μετατόπιση:
$$E_{o\lambda} = E_1 + E_2 = 1.5m + 6m \rightarrow \Delta x = 7.5m$$

Ποια η μέση ταχύτητα στο χρονικό διάστημα μεταξύ t=0 και 3s? $\overline{v} = \frac{\Delta x}{\Delta t} = \frac{7.5m}{3s} = 2.5m/s$

$$\overline{v} = \frac{\Delta x}{\Delta t} = \frac{7.5m}{3s} = 2.5m/s$$

Ποια η μεταβολή της ταχύτητας στο χρονικό διάστημα μεταξύ t=3 και 5s?

$$\Delta v = v(t = 5s) - v(t = 3s) = -2m/s - 3m/s = -5m/s$$

Ποια η μέση επιτάχυνση στο χρονικό διάστημα μεταξύ t=3 και 5s?

$$a = \frac{\Delta v}{\Delta t} = \frac{-5m/s}{2s} \Rightarrow a = -2.5m/s^2$$

Επιτάχυνση συναρτήσει χρόνου - Παράδειγμα

- \rightarrow Ποια η επιτάχυνση του σώματος για t = 4s? $α(t=4) = -2m/s^2$
- →Ποια η μεταβολή της ταχύτητας του σώματος στο χρονικό διάστημα μεταξύ t = 4s και t = 1s?

Μεταβολή ταχύτητας = Εμβαδό κάτω από τη καμπύλη:

$$E_{0\lambda} = E_1 + E_2 = 6.0 - 2.0 \rightarrow \Delta u = 4.0 \text{m/s}$$

Ερώτηση:

►Είναι δυνατό ένα σώμα να έχει θετική ταχύτητα και την ίδια χρονική στιγμή να έχει αρνητική επιτάχυνση ?

Ναι γιατί μπορεί να έχει θετική ταχύτητα καθώς επιβραδύνεται

OXI

Αν η ταχύτητα του σώματος δεν είναι μηδέν μπορεί η επιτάχυνσή του να είναι κάποτε μηδέν

Μηδενική επιτάχυνση σημαίνει σταθερή ταχύτητα

OXI

Αν η μέση ταχύτητα ενός σώματος που εκτελεί μονοδιάστατη κίνηση είναι θετική μπορεί η στιγμιαία ταχύτητα του σώματος για κάποιο χρονικό διάστημα να είναι αρνητική?

Φανταστείτε ότι κινήστε 5km προς τη θετική διεύθυνση, κατόπιν σταματάτε και κινείστε 3km προς το μηδέν (αρνητική διεύθυνση) Η μέση ταχύτητα είναι θετική

OXI

Ελεύθερη πτώση σώματος \implies α = g = σταθ.

- □ Ένα σώμα θεωρούμε ότι κάνει ελεύθερη πτώση όταν κινείται ΜΟΝΟ υπό την επίδραση της βαρύτητας
- ✓ Αυτό ισχύει ανεξάρτητα από την αρχική του κίνηση (αντικείμενα που ρίχνουμε προς τα επάνω ή κάτω κ.λ.π)
- Η επιτάχυνση της βαρύτητας, g, έχει διεύθυνση πάντοτε προς τα κάτω και είναι ίδια για όλα τα σώματα και σταθερή (εκτός και αν αλλάξουμε γεωγραφικό πλάτος, ή πλανήτη)

Ελεύθερη πτώση σωμάτων \rightarrow κίνηση με α =σταθ=-g

Αρνητικό πρόσημο γιατί συνήθως ορίζουμε σα θετική την διεύθυνση του κατακόρυφου άξονα y προς τα πάνω.

Εφαρμόζουμε τις προηγούμενες εξισώσεις βάζοντας α = -g

Ελεύθερη πτώση

$$\mathbf{v} = -gt + \mathbf{v}_0$$

$$y = y_0 - \frac{1}{2}gt^2 + v_0t$$

$$-2g(y - y_0) = v^2 - v_0^2$$

$$y - y_0 = \frac{1}{2}(v + v_0)t$$

Προσοχή !!! Το πρόσημο έχει αλλάξει

Σώμα εκτοξεύεται προς τα πάνω με αρχική ταχύτητα ν₀

ightharpoonup Ποια τα y_{max} , $t_{\alpha v}$, $t_{\kappa \alpha \theta}$?

Η ταχύτητα στο y_{max} γίνεται 0

Από την (1) εξίσωση: $0 = -gt + v_0 \Rightarrow t_{\alpha v} = \frac{v_0}{g}$

Αντικαθιστώντας στη (2) έχουμε y_{max}:

$$y_{\text{max}} = y_0 - \frac{1}{2}gt_{\alpha v}^2 + v_0 t_{\alpha v} = \frac{v_0^2}{2g}$$

Όταν επιστρέφει πάλι στο y=y₀ η (2) δίνει:

$$y_0 = y_0 - \frac{1}{2}gt^2 + v_0t \Rightarrow t = \frac{2v_0}{g} = 2t_{\alpha v}$$

$$v_0^2 = v_0 - \frac{1}{2}gt^2 + v_0t \Rightarrow t = \frac{2v_0}{g} = 2t_{\alpha v}$$

$$v_0^2 = v_0 - \frac{1}{2}gt^2 + v_0t \Rightarrow t = \frac{2v_0}{g} = 2t_{\alpha v}$$

$$v_0 = v_0 - \frac{1}{2}gt^2 + v_0t \Rightarrow t = \frac{2v_0}{g} = 2t_{\alpha v}$$

$$v_0 = v_0 - \frac{1}{2}gt^2 + v_0t \Rightarrow t = \frac{2v_0}{g} = 2t_{\alpha v}$$

$$v_0 = v_0 - \frac{1}{2}gt^2 + v_0t \Rightarrow t = \frac{2v_0}{g} = 2t_{\alpha v}$$

X

Μερικές ερωτήσεις

Μια μπάλα αφήνεται από ύψος 2m να πέσει στο έδαφος.

Ποιό από τα παρακάτω γραφήματα περιγράφει τη σωστή εξάρτηση της ταχυτήτας του σώματος συναρτήσει του χρόνου?

Μερικές ερωτήσεις

Μια μπάλα αφήνεται από ύψος 2m να πέσει στο έδαφος.

►Σχεδιάστε τη θέση της μπάλας συναρτήσει του χρόνου

►Σχεδιάστε την επιτάχυνση συναρτήσει του χρόνου

Μερικές ερωτήσεις

Μια μπάλα εκτοξεύεται κατακόρυφα προς τα πάνω από το έδαφος. Η μπάλα επιστρέφει στο έδαφος μετά από χρόνο t.

►Σχεδιάστε τη θέση της μπάλας συναρτήσει του χρόνου κατά τη πτήση της

►Σχεδιάστε την ταχύτητά της συναρτήσει του χρόνου κατά την πτήση της

Ελεύθερη πτώση

- □ Ένα σώμα σε κατάσταση ηρεμίας αφήνεται να πέσει ελεύθερα από ύψος h
- □ Η θέση του σε κάθε χρονική στιγμή είναι h = -1/2gt²
- Παρατηρούμε ότι:

Οι αποστάσεις που διανύθηκαν σε κάθε δευτερόλεπτο είναι ανάλογες προς τους περιττούς αριθμούς

Παράδειγμα

Μια μπάλα ρίχνεται προς τα πάνω με 14m/s από ένα παράθυρο που βρίσκεται σε ύψος 8m από το έδαφος.

α) Ποιο είναι το μέγιστο ύψος? β) Πότε επιστρέφει στο έδαφος?

ΛΥΣΗ

Ορίζουμε το σύστημα συντεταγμένων και άρα ποια κατεύθυνση είναι θετική.

Στο h_{max} η ταχύτητα είναι 0 και άρα:

$$\mathbf{v}_{h_{\text{max}}} = \mathbf{v}_0 - gt \Rightarrow 0 = \mathbf{v}_0 - gt \Rightarrow t_{h_{\text{max}}} = \frac{\mathbf{v}_0}{g}$$

Απλή αντικατάσταση του χρόνου στην εξίσωση της θέσης y(t) δίνει:

$$y_{\text{max}} = y_0 + v_0 t - \frac{1}{2}gt^2 = h + v_0 \frac{v_0}{g} - \frac{1}{2}g\left(\frac{v_0}{g}\right)^2 \Rightarrow y_{\text{max}} = h + \frac{v_0^2}{2g}$$

Αντικαθιστώντας τα δεδομένα έχουμε: $y_{max} = 8m + 14^2 [m^2/s^2/(2 \times 9.8 m/s^2) = 18m$

Πρόβλημα (συνέχεια)

Αλλά εκεί y = 0Β) Θέλουμε το χρόνο για να φθάσει στο έδαφος.

Λύνοντας την εξίσωση της θέσης του σώματος έχουμε:

$$y_{\varepsilon\delta.}=h+\mathbf{v}_0t-\frac{1}{2}gt^2\Rightarrow 0=h+\mathbf{v}_0t-\frac{1}{2}gt^2$$
 'Οπου οι λύσεις της δευτεροβάθμιας εξίσωσης:
$$t_{1,2}=\frac{\mathbf{v}_0\pm\sqrt{\mathbf{v}_0^2+2gh}}{g}$$

$$t_{1,2} = \frac{\mathbf{v}_0}{g} \left(1 \pm \sqrt{1 + \frac{2gh}{\mathbf{v}_0^2}} \right)$$

$$=3.3s$$

$$t_2 = -0.49s$$

3° Quiz

- > Γράψτε σε μια σελίδα το όνομά σας και τον αριθμό ταυτότητάς σας
- Θα στείλετε τη φωτογραφία της απάντησής σας στο fotis@ucy.ac.cyΈτοιμοι