

Question 1

Given an DFA that recognizes the language $A = \{\epsilon, b, ab\}$ as follows, please present its symbolic description. (20 marks)

Question 2

Use the construction given in our lecture to convert the following NFA N into an equivalent DFA. Notably, you only need to draw the corresponding transition graph. (20 marks)

Question 3

XJTLU/24-25/S1

Design an NFA with exactly four states for the language $\{w \in \Sigma^* \mid w \text{ contains the substring } aab\}$, where $\Sigma = \{a, b\}$. You only need to draw the graph. (20 marks)

Question 4

For each of the languages that all strings begin with b and end with a, over the alphabet $\Sigma = \{a, b\}$, give a DFA and a regular expression for it. For the DFA, you only need to draw the graph. (20 marks)

- (a) Draw the DFA graph. (12 marks)
- (b) Give its regular expression. (8 marks)

Question 5

Consider the language $A = \{www|w \in \{a,b\}^*\}$, proving that it is not a regular language through pumping lemma. (20 marks)

- (a) Describe pumping lemma for regular languages. (4 marks)
- (b) Prove that A is not a regular language. (16 marks)