Cryptography and Network Security Chapter 16

Fourth Edition by William Stallings

Chapter 16 – IP Security

If a secret piece of news is divulged by a spy before the time is ripe, he must be put to death, together with the man to whom the secret was told.

—The Art of War, Sun Tzu

IP Security

- have a range of application specific security mechanisms
 - eg. S/MIME, PGP, Kerberos, SSL/HTTPS
- however there are security concerns that cut across protocol layers
- would like security implemented by the network for all applications

Applications of IP Security

- Secure Branch office connectivity over the internet
- Secure remote access over the internet
- Establishing connectivity with parteners
- Enhances e-commerce security

IPSec

- general IP Security mechanisms
- provides
 - authentication
 - confidentiality
 - key management
- applicable to use over LANs, across public
 & private WANs, & for the Internet

IPSec Uses

Benefits of IPSec

- in a firewall/router provides strong security to all traffic crossing the perimeter
- in a firewall/router is resistant to bypass
- is below transport layer, hence transparent to applications
- can be transparent to end users
- can provide security for individual users
- secures routing architecture

IP Security Architecture

- specification is quite complex
- defined in numerous RFC's
 - incl. RFC 2401/2402/2406/2408
 - many others, grouped by category
- mandatory in IPv6, optional in IPv4
- have two security header extensions:
 - Authentication Header (AH)
 - Encapsulating Security Payload (ESP)

Figure 16.2 IPSec Document Overview

IPSec Services

- Access control
- Connectionless integrity
- Data origin authentication
- Rejection of replayed packets
 - a form of partial sequence integrity
- Confidentiality (encryption)
- Limited traffic flow confidentiality

Table 16.1 IPSec Services

	AH	ESP (encryption only)	ESP (encryption plus authentication)
Access control	V	V	~
Connectionless integrity	V		V
Data origin authentication	/		~
Rejection of replayed packets	/	✓	✓
Confidentiality		V	V
Limited traffic flow confidentiality		/	/

Security Associations

- a one-way relationship between sender & receiver that affords security for traffic flow
- defined by 3 parameters:
 - Security Parameters Index (SPI)
 - IP Destination Address
 - Security Protocol Identifier
- has a number of other parameters
 - seq no, AH & EH info, lifetime etc
- have a database of Security Associations

Table 16.2 Tunnel Mode and Transport Mode Functionality

	Transport Mode SA	Tunnel Mode SA
AH	Authenticates IP payload and selected portions of IP header and IPv6 extension headers.	Authenticates entire inner IP packet (inner header plus IP payload) plus selected portions of outer IP header and outer IPv6 extension headers.
ESP	Encrypts IP payload and any IPv6 extension headers following the ESP header.	Encrypts entire inner IP packet.
ESP with Authentication	Encrypts IP payload and any IPv6 extension headers following the ESP header. Authenticates IP payload but not IP header.	Encrypts entire inner IP packet. Authenticates inner IP packet.

Authentication Header (AH)

- provides support for data integrity & authentication of IP packets
 - end system/router can authenticate user/app
 - prevents address spoofing attacks by tracking sequence numbers
- based on use of a MAC
 - HMAC-MD5-96 or HMAC-SHA-1-96
- parties must share a secret key

Authentication Header

(c) Tunnel Mode

Figure 16.6 Scope of AH Authentication

Transport & Tunnel Modes

IPSec Components

- SPD Security Policy Database
 - Defined by the sysadmin
 - Contains a set of rules

 Src IP | Dst IP | Ports | Action | IPSec Protocol | Mode | SA Index
- SAD Security Association Database
 - Contains Security Associations
 - Each Security Association contains keys, sequence numbers
 - Must be stored in a secure place
- Key Management
 - Internet Key Exchange Protocol (IKE)
- Data Manipulation
 - For authentication, encryption and compression
 - Authentication Header (AH)
 - Encapsulation Security Payload (ESP)
 - IP Compression (IPCOMP)

IPSec Modes

- Transport Mode
 - Used primarily to protect IP traffic between hosts
 - Adds requested protection to the datagram payload
- Tunnel Mode
 - The entire IP Datagram is treated as a block of data
 - Adds new header and protects the datagram

IPSec Transport Mode

IP Datagram to be protected

Protected Datagram

IPSec Tunnel Mode

IP Datagram to be protected

Protected Datagram (Tunnel Mode)

IPSec Protocols (HEADERS)

- AH Authentication Header
 - Connectionless integrity
 - Data origin authentication
 - Optional anti-replay service
- ESP Encapsulating Security Payload
 - Confidentiality plus AH services

Security Associations (SA)

- A Security Association is a simplex "connection" that provides security services to the traffic carried by it.
- SA's are different for tunnel mode and transport mode
- If either end of a security association is a security gateway the SA must be tunnel mode
- Every host must support both tunnel mode and transport mode

Security Association Database (SAD)

- Separate SAD's are required for inbound traffic and outbound traffic
- The SAD contains parameters that are associated with each active security association
- A Selector is a set of IP and upper layer protocol field values that is used by the SPD to map traffic to a policy

SAD Record Contents

SPI 580 974

Src IP 192.168.2.1 192.168.1.1

Dst IP 192.168.1.1 192.168.2.1

Src Port Any Any

Dst Port Any 80

Parameters stuff stuff

Type Inbound Outbound

Pointer to SPD Entry 4 7

Additional SAD Record Fields

- Sequence Counter
- Sequence Counter Overflow
 - A flag when set causes an auditable event
- Anti-Replay Window
- AH Authentication Algorithm, keys, etc.
- ESP Encryption Algorithm, keys, IV Mode, IV, etc.
- ESP Authentication Algorithm, keys, etc.
- Lifetime of this SA
- IPSec protocol mode: tunnel, transport
- Path MTU

Security Policy Database (SPD)

- Security association is a management construct to enforce a security policy
- A security policy specifies what services are to be offered to IP datagrams and in what fashion
- All processing of traffic both inbound and outbound must consult the SPD
- The SPD must specify what action will be taken on every packet

SPD Record Contents

Rule #1 2

Src IP 192.168.1.1 192.168.2.1

Dst IP 192.168.2.1 192.168.1.1

Src Port Any Any

Dst Port 23 443

Action IPSec IPSec

Protocol ESP AH

Mode Tunnel Tunnel

Outbnd SA Index 400 1

Traffic processing

- Every inbound and outbound packet is processed by IPSec
- Three processing choices:
 - Discard
 - Not allowed to enter host
 - Auditable event
 - Bypass IPSec
 - Apply IPSec

Outbound IP Traffic

Processing

- The SPD must be consulted for every outbound packet
 - If no policy is found that matches the packet, the packet MUST be discarded and audited
 - If a policy is found that matches then the packet is mapped to an existing SA or a new SA is created.
- If IPSec is required the packet must be either mapped to an existing SA of a new SA is created
- Create a Header for Tunnel Mode

Outbound IP Traffic Processing

- Some packet's selectors will match multiple SAs
- The SPD is ordered
- IPSec must
 - 1) Locate the first appropriate policy in the SPD
 - 2) Find first SA in the SAD that matches the packet's selectors
 - 3) If no SA is found create a new one and link to the appropriate policy in the SPD
 - 4) Do the required IPSec processing

Inbound IP Traffic Processing

- All fragments are reassembled
- Mapping the IP datagram to the appropriate SA depends on:
 - Outer IP header destination address
 - The IPSec protocol
 - The SPI
- If the mapping fails drop and log
- Otherwise use the SA to do the IPSec processing

Encapsulating Security Payload (ESP)

- provides message content confidentiality & limited traffic flow confidentiality
- can optionally provide the same authentication services as AH
- supports range of ciphers, modes, padding
 - incl. DES, Triple-DES, RC5, IDEA, CAST etc
 - CBC & other modes
 - padding needed to fill blocksize, fields, for traffic flow

Encapsulating Security Payload

Figure 16.9 Scope of ESP Encryption and Authentication

Transport vs Tunnel Mode ESP

- transport mode is used to encrypt & optionally authenticate IP data
 - data protected but header left in clear
 - can do traffic analysis but is efficient
 - good for ESP host to host traffic
- tunnel mode encrypts entire IP packet
 - add new header for next hop
 - good for VPNs, gateway to gateway security

Combining Security Associations

- SA's can implement either AH or ESP
- to implement both need to combine SA's
 - form a security association bundle
 - may terminate at different or same endpoints
 - combined by
 - transport adjacency
 - iterated tunneling
- issue of authentication & encryption order

Combining Security Associations

(d) Case 4

Key Management

- handles key generation & distribution
- typically need 2 pairs of keys
 - 2 per direction for AH & ESP
- manual key management
 - sysadmin manually configures every system
- automated key management
 - automated system for on demand creation of keys for SA's in large systems
 - has Oakley & ISAKMP elements

Oakley

- a key exchange protocol
- based on Diffie-Hellman key exchange
- adds features to address weaknesses
 - cookies, groups (global params), nonces, DH key exchange with authentication
- can use arithmetic in prime fields or elliptic curve fields

ISAKMP

- Internet Security Association and Key Management Protocol
- provides framework for key management
- defines procedures and packet formats to establish, negotiate, modify, & delete SAs
- independent of key exchange protocol, encryption alg, & authentication method

ISAKMP

(b) Generic Payload Header

Table 16.3 ISAKMP Payload Types

Description

Used to negotiate security attributes and indicate the DOI and Situation under which negotiation is

Used during SA negotiation; indicates protocol to

Indicates an SA that is no longer valid.

taking place.

Parameters

DOI, Protocol-ID, SPI Size, # of SPIs, SPI (one or

more)

Domain of Interpretation, Situation

Proposal #, Protocol-ID, SPI Size, # of

Type

Security Association (SA)

Proposal (P)

Delete (D)

,	Transforms, SPI	be used and number of transforms.	
Transform (T)	Transform #, Transform-ID, SA Attributes	Used during SA negotiation; indicates transform and related SA attributes.	
Key Exchange (KE)	Key Exchange Data	Supports a variety of key exchange techniques.	
Identification (ID)	ID Type, ID Data	Used to exchange identification information.	
Certificate (CERT)	Cert Encoding, Certificate Data	Used to transport certificates and other certificate- related information.	
Certificate Request (CR)	# Cert Types, Certificate Types, # Cert Auths, Certificate Authorities	Used to request certificates; indicates the types of certificates requested and the acceptable certificate authorities.	
Hash (HASH)	Hash Data	Contains data generated by a hash function.	
Signature (SIG)	Signature Data	Contains data generated by a digital signa wture function.	
Nonce (NONCE)	Nonce Data	Contains a nonce.	
Notification (N)	DOI, Protocol-ID, SPI Size, Notify Message Type, SPI, Notification Data	Used to transmit notification data, such as an error condition.	

Table 16.4 ISAKMP Exchange Types

Exchange	Note			
(a) Base Exchange				
(1) I → R: SA; NONCE	Begin ISAKMP-SA negotiation			
(2) R → I : SA; NONCE	Basic SA agreed upon			
(3) $\mathbf{I} \to \mathbf{R}$: KE; ID _I ; AUTH	Key generated; Initiator identity verified by responder			
(4) $\mathbf{R} \rightarrow \mathbf{I}$: KE; $\mathrm{ID}_{\mathbf{R}}$; AUTH	Responder identity verified by initiator; Key generated; SA established			
(b) Identity I	Protection Exchange			
(1) I → R : SA	Begin ISAKMP-SA negotiation			
(2) R → I : SA	Basic SA agreed upon			
(3) I → R: KE; NONCE	Key generated			
(4) R → I: KE; NONCE	Key generated			
(5) * $I \rightarrow R$: ID_I ; AUTH	Initiator identity verified by responder			
(6)* \mathbf{R} → \mathbf{I} : $\mathrm{ID}_{\mathbf{R}}$; AUTH	Responder identity verified by initiator; SA established			
(c) Authentication Only Exchange				
 I → R: SA; NONCE 	Begin ISAKMP-SA negotiation			
(2) $\mathbf{R} \rightarrow \mathbf{I}$: SA; NONCE; $\mathrm{ID}_{\mathbf{R}}$; AUTH	Basic SA agreed upon; Responder identity verified by initiator			
(3) $\mathbf{I} \to \mathbf{R}$: $\mathrm{ID}_{\mathbf{I}}$; AUTH	Initiator identity verified by responder; SA established			
(d) Aggressive Exchange				
 I → R: SA; KE; NONCE; ID_I 	Begin ISAKMP-SA negotiation and key exchange			
(2) $\mathbf{R} \rightarrow \mathbf{I}$: SA; KE; NONCE; $\mathrm{ID}_{\mathbf{R}}$; AUTH	Initiator identity verified by responder; Key generated; Basic SA agreed upon			
(3)* I → R : AUTH	Responder identity verified by initiator; SA established			
(e) Informational Exchange				
(1)* I → R : N/D	Error or status notification, or deletion			

ISAKMP Payloads & Exchanges

- have a number of ISAKMP payload types:
 - Security, Proposal, Transform, Key, Identification, Certificate, Certificate, Hash, Signature, Nonce, Notification, Delete
- ISAKMP has framework for 5 types of message exchanges:
 - base, identity protection, authentication only, aggressive, informational

Summary

- have considered:
 - IPSec security framework
 - AH
 - ESP
 - key management & Oakley/ISAKMP