DESENVOLVIMENTO DO PROJETO FINAL DE ANÁLISE E INTERVENÇÃO NO ESPAÇO URBANO

Aluno: Felipe Aguiar Martin

Análise Comparativa de Iluminação Pública de Regionais do Município de Curitiba

- OBJETIVO: Gerar mapa possível de comparação quantitativa e de densidade de iluminação noturna das regionais do município de Curitiba.
- ÁREA DE ESTUDO: Município de Curitiba PR
- METODOLOGIA: Usar OpenStreetMap e satélite noturno de altíssima resolução (0,72 ou 0,90 metros) para comparar a iluminação pública existente.
- BASES DE DADOS: Imagens de satélite (**Jilin**) 0,72 ou 0,90 metros e Openstreetmap do município de Curitiba, contendo informação de ruas e espaços público.

As regionais:

- Regional Matriz
- Regional Portão
- Regional Bairro Novo
- Regional Boa Vista
- Regional CIC
- Regional Santa Felicidade
- Regional Boqueirão
- Regional Pinheirinho
- Regional Cajuru

Por meio do openstreetmap, delimitar na imagem de satélite as porções de ruas e espaços públicos. Formar uma malha de pontos, usando o foco de luminosidade presentes na imagem de satélite.

Além disso, captar informações por meio de mapa colaborativo do público em geral e empresa de fornecimento de energia (SANEPAR), contendo pontos de iluminação pública com defeito ou em ausência.

Trabalho de dimensionamento e identificação, tendo em mente a diferença socioeconômica das regiões. Pode ser criado também um índice de proporção quantitativa ao nível social das diversas regiões de análise.

Análise Comparativa de Iluminação Pública de Regionais do Município de Curitiba

FELIPE AGUIAR MARTIN

OBJETIVO

- 1- O presente trabalho tem como objetivo analisar e comparar quantitativamente a iluminação pública, quanto a parâmetros socioeconômicas qualitativos das regionais dos municípios de Curitiba (Figura 1).
- 2- Além de gerar mapas possível de comparação quantitativa e de densidade de iluminação noturna das regionais. Será criado um índice qualitativo de iluminação "Índice de Luminosidade Social", a fim de subsídio a futuras tomadas de decisões e políticas públicas.

ÁREA DE ESTUDO

O município de Curitiba, localizado no Estado do Paraná (região sul do Brasil), conta com uma população de 1 963 726 habitantes, além de área total de 435,036 quilômetros quadrados (IBGE, 2021). Está localizado no primeiro planalto paranaense a uma altitude de 934 metros de altitude (EMBRAPA, 2008).

Figura 1 - Mapa de Localização. Fonte: IPPUC 1999.

Em parâmetros gerais, apresenta um IDH de 0,823, que é considerado muito alto (PNUD, 2010), índice de Gini de 0,565 (IBGE, 2010), PIB de 87.151.950,10 mil reais e PIB per capito de 45.458,29 mil reais (IBGE, 2018).

Apesar de muito bem classificada em vários parâmetros socioeconômicos comparativamente entre outros municípios, a cidade de Curitiba é composta por diferenças sociais delimitadas espacialmente a depender da atividade econômica e poder aquisitivo. Sendo assim, é possível identificar distinções socioeconômicas entre suas porções regionais (Figura 1). A cidade é dividida em 10 regionais (Regional Matriz, Regional Portão, Regional Bairro Novo, Regional Boa Vista, Regional CIC, Regional Santa Felicidade, Regional Boqueirão, Regional Pinheirinho, Regional Cajuru e Regional Tatuquara), as quais compreendem diversos bairros em cada regional (IPPUC, 2021).

Figura 2 - Mapa de Regionais. Fonte: IPPUC, 2015.

METODOLOGIA

1. Imagem de Satélite

Imagens de satélite são fotos tiradas por sensores óticos instalados em satélites de orbita geoestacionária, que estão em sua maioria em uma altitude próxima a 36.000 quilômetros (INPE, 2022). Para o presente trabalho é esperado a utilização de imagens de satélite de alta resolução (0,92 metros) e bandas do visível (Red B1: 580nm-730nm Green B2: 490nm-580nm Blue B3: 430nm-520nm) do satélite Jilin-1 Nighttime Remote Sensin e posterior classificação de luminosidade, assim como já realizado na cidade de Hangzhou City (Q.Zheng et al, 2018).

Para se conseguir gerar os especificos pontos de iluminação, o método de classificação e interpretação de luz do Jilin-1 *Nighttime Imagery* será utilizado (Chang Guiang Satellite Technology CO., LTD). Trabalhos anteriormente realizados com o satélite Jilin obtiveram bons resultados de acurácia para a classificação de luminosidade (*Overall Accuracy*: 83.86% *Kappa Coefficient*: 0.67) e ainda melhores para a posição de extração de luminosidade (*Extraction accuracy of area* A: 95.5% *Extraction accuracy of area* B: 89.4% *Extraction accuracy of area* C: 92.6%) sendo assim escolhido para o presente trabalho (Q.Zheng et al, 2018).

2. Open Street Map

Para a delimitação de somente o arruamento e maior precisão na extração de luminosidade de vias públicas, a camada de arruamento do Open Street Map (OMS) é indicada. Está é uma plataforma que fornece dados de disposição pública a todos e de trabalho em conjunto.

3. Delimitação das Regionais

A partir dos dados de entrada de imagem de satélite, de arruamento e de delimitação das regionais adquiridos gratuitamente pelo Instituto de Pesquisa e Planejamento Urbano de Curitiba (IPPUC), é extraído os pontos de luminosidade. Assim, já é possível efetuar o "Mapa Geral de Densidade de Iluminação", tendo a distribuição de densidade das iluminações publicas entre as regionais.

Além da densidade, também é possível gerar os dados de distribuição da iluminação por regionais, sendo feito o cálculo de pontos de iluminação por área de cada regional.

4. Analytic Hierarchy Process (AHP) e Álgebra de Mapas

Em seguida, é aplicado o método de Análise Hierárquica de Pesos (AHP) para cada camada, que consiste em classificar os dados por notas e proporções,

segundo pontuações melhores ou piores (0 a 10) e proporções maiores ou menores (equivalente total de 100%). Além disso, posterior a toda a classificação de pontuação das camadas, é feito a álgebra de mapas, que compreende a sobreposição de todas as camadas e cálculo de média simples entre suas pontuações e proporções.

5. Zoneamento, Demografia, Dados Econômicos e Pontos de Iluminação

As camadas aplicadas para o presente trabalho são de dados de zoneamento (Lei de Zoneamento, 2019), censo demográfico (IPPUC, 2021), dados econômicos (IPPUC, 2021) e distribuição dos pontos de iluminação, todos delimitados pelas regionais.

O resultado será de um mapa de nota de 0 a 10 que indicará a pontuação do "Índice de Luminosidade Social", sendo 0 pior e 10 melhor classificação quanto a luminosidade em relação a parâmetros sociais.

Figura 3 – Mapa Lógico. Fonte: O autor, 2022.

Segundo conhecimentos prévios, é esperado grande diferenças entre as distintas regionais, sendo a Regional Portão e Santa Felicidade com melhores pontuações, Regionais Tatuquara, Bairro Novo, CIC e Cajuru com pontuações inferiores e o restante com pontuação intermediaria.

REFERÊNCIAS

Atlas do Desenvolvimento Humano. Programa das Nações Unidas para o Desenvolvimento (PNUD), 2010.

Chang Guiang Satellite Technology CO., LTD.

Empresa Brasileira de Pesquisa Agropecuária - Monitoramento por Satélite (EMBRAPA), 2008.

Instituto Brasileiro de Geografia e Estatística (IBGE). Município de Curitiba, 2021.

Instituto Brasileiro de Geografia e Estatística (IBGE). Portal ODM, 2010.

Instituto Brasileiro de Geografia e Estatística (IBGE). Município de Curitiba, 2018.

Instituto de Pesquisa e Planejamento Urbano de Curitiba (IPPUC). Planos Regionais, 2021.

Instituto Nacional de Pesquisas Espaciais (INPE). Acesso em 03 de outubro de 2022. Em http://www.inpe.br/faq/index.php?pai=2.

Lei de Zoneamento, Lei Lei 15.511/2019, 2019. Acesso em 03 de outubro de 2022. Em https://www.curitiba.pr.gov.br/conteudo/nova-legislacao-de-zoneamento-2020/3180.

Q.Zheng et al, 2018. A new source of multi-spectral high spatial resolution night-time light imagery—JL1-3B, Remote Sensing of Environment 215 300–312.