Cross Product and Triple Product

- 1. For this problem, let $\vec{v} = \langle 1, 2, 1 \rangle$ and $\vec{w} = \langle 0, -1, 3 \rangle$.
 - (a) Compute $\vec{v} \times \vec{w}$.

Solution. $\langle 7, -3, -1 \rangle$.

(b) Compute $\vec{w} \times \vec{v}$.

Solution. $\langle -7, 3, 1 \rangle$.

(c) Let $\vec{u} = \vec{v} \times \vec{w}$, the vector you found in (a). What is the angle between \vec{u} and \vec{v} ? \vec{u} and \vec{w} ?

Solution. To find the angle between two vectors, we use the dot product.

$$\vec{u} \cdot \vec{v} = \langle 7, -3, -1 \rangle \cdot \langle 1, 2, 1 \rangle = (7)(1) + (-3)(2) + (-1)(1) = 0$$
, so \vec{u} is orthogonal to \vec{v} .

$$\vec{u} \cdot \vec{w} = \langle 7, -3, -1 \rangle \cdot \langle 0, -1, 3 \rangle = (7)(0) + (-3)(-1) + (-1)(3) = 0$$
, so \vec{u} is also orthogonal to \vec{w} .

2. In general, what is the relationship between $\vec{v} \times \vec{w}$ and $\vec{w} \times \vec{v}$?

Solution. From the definition of $\vec{v} \times \vec{w}$, you can compute directly that $\vec{v} \times \vec{w} = -\vec{w} \times \vec{v}$.

Here's another way to get the same conclusion. Let θ be the angle between \vec{v} and \vec{w} . Then, we know that the length of $\vec{v} \times \vec{w}$ is $|\vec{v}| |\vec{w}| \sin \theta$, and the length of $\vec{w} \times \vec{v}$ is $|\vec{w}| |\vec{v}| \sin \theta$. So, $\vec{v} \times \vec{w}$ and $\vec{w} \times \vec{v}$ have the same length. Also, $\vec{v} \times \vec{w}$ and $\vec{w} \times \vec{v}$ are both orthogonal to both \vec{v} and \vec{w} , so they are either the same vector or negatives of each other. The right-hand rule tells us they must point in opposite directions, so $\vec{v} \times \vec{w} = -\vec{w} \times \vec{v}$.

3. Any two vectors \vec{v} and \vec{w} which are not parallel determine a triangle, as shown. What is the relationship between the area of the triangle and $\vec{v} \times \vec{w}$?

Solution. The base of the triangle has length $|\vec{w}|$, and the height of the triangle is $|\vec{v}| \sin \theta$, so the area of the triangle is $\frac{1}{2}|\vec{v}||\vec{w}| \sin \theta$, which is equal to $\frac{1}{2}|\vec{v} \times \vec{w}|$.

(Note that it is NOT correct to say that the area of the triangle is half of the **vector** $\vec{v} \times \vec{w}$; after all, area is a scalar, not a vector. Rather, the area of the triangle is half of the **length** of the vector $\vec{v} \times \vec{w}$).

4. If \vec{v} and \vec{w} are parallel, what is $\vec{v} \times \vec{w}$?

Solution. If \vec{v} and \vec{w} are parallel, then the angle θ between them is either 0 or π . In either case, $\sin \theta = 0$, so $|\vec{v} \times \vec{w}| = |\vec{v}| |\vec{w}| \sin \theta = 0$. This means that $\vec{v} \times \vec{w}$ must be the zero vector $\vec{0}$.

5. If the scalar triple product $\vec{u} \cdot (\vec{v} \times \vec{w})$ is equal to 0, what can you say about the vectors \vec{u} , \vec{v} , and \vec{w} ?

1

Solution. The fact that $\vec{u} \cdot (\vec{v} \times \vec{w}) = 0$ means that \vec{u} is orthogonal to $\vec{v} \times \vec{w}$. We also know that $\vec{v} \times \vec{w}$ is orthogonal to both \vec{v} and \vec{w} , so this means that $\vec{u}, \vec{v}, \vec{w}$ are *all* orthogonal to the vector $\vec{v} \times \vec{w}$. In particular, if we stick the tails of \vec{u} , \vec{v} , and \vec{w} at the same point, then \vec{u} , \vec{v} , and \vec{w} all lie in the same plane. (We say that \vec{u} , \vec{v} , and \vec{w} are coplanar.)

Note: Some students pointed out a special case: $\vec{u} \cdot (\vec{v} \times \vec{w})$ is equal to 0 if \vec{v} and \vec{w} are parallel (since then $\vec{v} \times \vec{w} = \vec{0}$, by #4). In this case, \vec{u} , \vec{v} , and \vec{w} are still coplanar. To visualize this, imagine the plane that contains \vec{u} and \vec{v} : \vec{w} will automatically be in this plane because it's parallel to \vec{v} .

6. Find an equation for the plane which passes through the points (1,0,1), (0,2,0), and (2,1,0).

Solution. Let's give the three points names, say P = (1,0,1), $\overrightarrow{Q} = (0,2,0)$, and $\overrightarrow{R} = (2,1,0)$. A point S = (x,y,z) is in the plane if (and only if) the three vectors \overrightarrow{PQ} , \overrightarrow{PR} , and \overrightarrow{PS} are coplanar. As we saw in #5, this is the same as saying that $\overrightarrow{PS} \cdot (\overrightarrow{PQ} \times \overrightarrow{PR}) = 0$.

So now we compute some things: $\overrightarrow{PQ} = \langle -1, 2, -1 \rangle$ and $\overrightarrow{PR} = \langle 1, 1, -1 \rangle$, so $\overrightarrow{PQ} \times \overrightarrow{PR} = \langle -1, -2, -3 \rangle$. $\overrightarrow{PS} = \langle x - 1, y, z - 1 \rangle$, so $\overrightarrow{PS} \cdot (\overrightarrow{PQ} \times \overrightarrow{PR}) = 0$ can be rewritten as -1(x - 1) - 2y - 3(z - 1) = 0, or x + 2y + 3z = 4.

Note that it is very easy to check that this answer is correct — the three points given in the problem all satisfy this equation.

7. True or false: If $\vec{u} \times \vec{v} = \vec{u} \times \vec{w}$, then $\vec{v} = \vec{w}$.

Solution. False. There are lots of examples where this is not true. A simple one is to suppose that \vec{u} , \vec{v} , and \vec{w} are all parallel but not equal to each other. Then, $\vec{u} \times \vec{v}$ and $\vec{u} \times \vec{w}$ are both $\vec{0}$, but $\vec{v} \neq \vec{w}$.

8. True or false: If $\vec{v} \times \vec{w} = \vec{0}$ and $\vec{v} \cdot \vec{w} = 0$, then at least one of \vec{v} and \vec{w} must be $\vec{0}$.

Solution. True.

Here's one way to think about it: $\vec{v} \times \vec{w} = \vec{0}$ means \vec{v} and \vec{w} are parallel. $\vec{v} \cdot \vec{w} = 0$ means \vec{v} and \vec{w} are perpendicular. The only way to have a pair of vectors that are both parallel to and perpendicular to each other is if at least one of them is the zero vector $\vec{0}$.

If you prefer to write out equations, here's another way to think about the problem. Since $\vec{v} \times \vec{w} = \vec{0}$, $|\vec{v} \times \vec{w}| = 0$. If θ is the angle between \vec{v} and \vec{w} , then this says that $|\vec{v}| |\vec{w}| \sin \theta = 0$. On the other hand, $0 = \vec{v} \cdot \vec{w} = |\vec{v}| |\vec{w}| \cos \theta$. It's not possible for both $\sin \theta$ and $\cos \theta$ to be 0, so it must be the case that $|\vec{v}| |\vec{w}| = 0$. That is, one of the vectors \vec{v} and \vec{w} must have length 0, and the only vector with 0 length is $\vec{0}$.