Math Computing

NCERT 9.7.1.6

This question is from class 9 NCERT chapter 7.triangles

1. AC = AE, AB = AD and $\angle BAD = \angle EAC$. Show that BC = DE

Figure 1: $\triangle ABC$ and $\triangle ADE$

${\bf Construction\ steps:}$

(i) Let assume, the input parameters are,

Parameter	Value	Description
θ	60°	$\angle BAD = \angle CAE$
В	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	Reference point at origin
D	$\begin{pmatrix} 6 \\ 0 \end{pmatrix}$	point ${\bf D}$ on the same axis of ${\bf B}$
C	$\binom{8}{0}$	point C on the same axis of B

Table 1: Input Parameters

 \therefore the output can be calculated as,

Parameter	Value	Description
r1	B-D	Length of BD
A	$D + \begin{pmatrix} -r1\cos\theta\\ r1\sin\theta \end{pmatrix}$	From point D makes an an-
	,	gle θ in clock-wise with line $(\mathbf{AD}, \mathbf{AB})$
r1	B - D	Length of BD
E	$\mathbf{D} + \begin{pmatrix} r2\cos\theta\\r2\sin\theta \end{pmatrix}$	From point D makes an angle θ in anticlock-wise with line
		$(\mathbf{AC}, \mathbf{CE})$

Table 2: Output Parameters

 \therefore By, joining these points forms the required figure

Figure 2: $\triangle \mathbf{ABC}$ and $\triangle \mathbf{ADE}$