## CHAPTER 4

## Infinite Sequences and Series

### 4.1. Sequences

A sequence is an infinite ordered list of numbers, for example the sequence of odd positive integers:

$$1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...$$

Symbolically the *terms* of a sequence are represented with indexed letters:

$$a_1, a_2, a_3, a_4, a_5, a_6, a_7, \ldots, a_n, \ldots$$

Sometimes we start a sequence with  $a_0$  (index zero) instead of  $a_1$ .

Notation: the sequence  $a_1, a_2, a_3, \ldots$  is also denoted by  $\{a_n\}_{n=1}^{\infty}$ .

Some sequences can be defined with a formula, for instance the sequence  $1, 3, 5, 7, \ldots$  of odd positive integers can be defined with the formula  $a_n = 2n - 1$ .

A recursive definition consists of defining the next term of a sequence as a function of previous terms. For instance the Fibonacci sequence starts with  $f_1 = 1$ ,  $f_2 = 1$ , and then each subsequent term is the sum of the two previous ones:  $f_n = f_{n-1} + f_{n-2}$ ; hence the sequence is:

$$1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \dots$$

**4.1.1.** Limits. The limit of a sequence is the value to which its terms approach indefinitely as n becomes large. We write that the limit of a sequence  $a_n$  is L in the following way:

$$\lim_{n \to \infty} a_n = L \quad \text{or} \quad a_n \to L \text{ as } n \to \infty.$$

For instance

$$\lim_{n \to \infty} \frac{1}{n} = 0 \,,$$

$$\lim_{n \to \infty} \frac{n+1}{n} = 1,$$

etc.

If a sequence has a (finite) limit the it is said to be *convergent*, otherwise it is *divergent*.

If the sequence becomes arbitrarily large then we write

$$\lim_{n\to\infty} a_n = \infty.$$

For instance

$$\lim_{n\to\infty} n^2 = \infty .$$

**4.1.2. Theorem.** Let f be a function defined in  $[1, \infty]$ . If  $\lim_{x\to\infty} f(x) = L$  and  $a_n = f(n)$  for integer  $n \ge 1$  then  $\lim_{n\to\infty} a_n = L$  (i.e., we can replace the limit of a sequence with that of a function.)

Example: Find  $\lim_{n\to\infty} \frac{\ln n}{n}$ .

Answer: According to the theorem that limit equals  $\lim_{x\to\infty} \frac{\ln x}{x}$ , where x represents a real (rather than integer) variable. But now we can use L'Hôpital's Rule:

$$\lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{(\ln x)'}{(x)'} = \lim_{x \to \infty} \frac{1/x}{1} = 0,$$

hence

$$\lim_{n \to \infty} \frac{\ln n}{n} = 0$$

Example: Find  $\lim_{n\to\infty} r^n \ (r>0)$ .

Answer: This limit is the same as that of the exponential function  $r^x$ , hence

$$\lim_{n \to \infty} r^n = \begin{cases} 0 & \text{if } 0 < r < 1 \\ 1 & \text{if } r = 1 \\ \infty & \text{if } r > 1 \end{cases}$$

# **4.1.3. Operations with Limits.** If $a_n \to a$ and $b_n \to b$ then:

$$(a_n + b_n) \rightarrow a + b.$$

$$(a_n - b_n) \to a - b$$
.

 $ca_n \to ca$  for any constant c.

$$a_n b_n \to ab$$
.

$$\frac{a_n}{b_n} \to \frac{a}{b}$$
 if  $b \neq 0$ .

 $(a_n)^p \to a^p$  if p > 0 and  $a_n > 0$  for every n.

Example: Find 
$$\lim_{n\to\infty} \frac{n^2+n+1}{2n^2+3}$$
.

Answer: We divide by  $n^2$  on top and bottom and operate with limits inside the expression:

$$\lim_{n \to \infty} \frac{n^2 + n + 1}{2n^2 + 3} = \lim_{n \to \infty} \frac{1 + \frac{1}{n} + \frac{1}{n^2}}{2 + \frac{3}{n^2}} = \frac{1 + 0 + 0}{2 + 0} = \boxed{\frac{1}{2}}.$$

**4.1.4. Squeeze Theorem.** If  $a_n \leq b_n \leq c_n$  for every  $n \geq n_0$  and  $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$ , then  $\lim_{n \to \infty} b_n = L$ .

Consequence: If  $\lim_{n\to\infty} |a_n| = 0$  then  $\lim_{n\to\infty} a_n = 0$ .

Example: Find  $\lim_{n\to\infty} \frac{\cos n}{n}$ .

Answer: We have  $-\frac{1}{n} \le \frac{\cos n}{n} \le \frac{1}{n}$ , and  $\frac{1}{n} \to 0$  as  $n \to \infty$ , hence by the squeeze theorem

$$\lim_{n \to \infty} \frac{\cos n}{n} = 0$$

#### 4.1.5. Other definitions.

4.1.5.1. Increasing, Decreasing, Monotonic. A sequence is increasing if  $a_{n+1} > a_n$  for every n. It is decreasing if  $a_{n+1} < a_n$  for every n. It is called monotonic if it is either increasing or decreasing.

Example: Probe that the sequence  $a_n = \frac{n+1}{n}$  is decreasing.

Answer:  $a_{n+1} - a_n = \frac{n+2}{n+1} - \frac{n+1}{n} = \frac{-1}{n(n+1)} < 0$ , hence  $a_{n+1} < a_n$  for all positive n.

4.1.5.2. Bounded. A sequence is bounded above if there is a number M such that  $a_n \leq M$  for all n. It is bounded below if there is a number m such that  $m \leq a_n$  for all n. It is called just bounded if it is bounded above and below.

Example: Probe that the sequence  $a_n = \frac{n+1}{n}$  is bounded.

Answer: It is in fact bounded below because all its terms are positive:  $a_n > 0$ . To prove that it is bounded above note that

$$a_n = \frac{n+1}{n} = 1 + \frac{1}{n} \le 2$$
.

since  $1/n \le 1$  for all positive integer n.

**4.1.6.** Monotonic Sequence Theorem. Every bounded monotonic sequence is convergent.

For instance, we proved that  $a_n = \frac{n+1}{n}$  is bounded and monotonic, so it must be convergent (in fact  $\frac{n+1}{n} \to 1$  as  $n \to \infty$ ).

Next example shows that sometimes in order to find a limit you may need to make sure that the limits exists first.

Example: Prove that the following sequence has a limit. Find it:

$$\sqrt{2}, \sqrt{2+\sqrt{2}}, \sqrt{2+\sqrt{2+\sqrt{2}}}, \dots$$

Answer: The sequence can be defined recursively as  $a_1 = \sqrt{2}$ ,  $a_{n+1} = \sqrt{2+a_n}$  for  $n \ge 1$ . First we will prove by induction that  $0 < a_n < 2$ , so the sequence is bounded.

We start (base of induction) by noticing that  $0 < a_1 = \sqrt{2} < 2$ . Next the induction step. Assume (induction hypothesis) that for a given value of n it is true that  $0 < a_n < 2$ . From here we must prove that the same is true for the next value of n, i.e. that  $0 < a_{n+1} < 2$ . In fact  $(a_{n+1})^2 = 2 + (a_n) < 2 + 2 = 4$ , hence  $0 < a_{n+1} < \sqrt{4} = 2$ , q.e.d. So by the induction principle all terms of the sequence verify that  $0 < a_n < 2$ .

Now we prove that  $a_n$  is increasing:

$$(a_{n+1})^2 = 2 + a_n > a_n + a_n = 2a_n > a_n \cdot a_n = (a_n)^2$$

hence  $a_{n+1} > a_n$ .

Finally, since the given sequence is bounded and increasing, by the monotonic sequence theorem it has a limit L. We can find it by taking limits in the recursive relation:

$$a_{n+1} = \sqrt{2 + a_n} \,.$$

Since  $a_n \to L$  and  $a_{n+1} \to L$  we have:

$$L = \sqrt{2+L}$$
  $\Rightarrow$   $L^2 = 2+L$   $\Rightarrow$   $L^2 - L - 2 = 0$ .

That equation has two solutions, -1 and 2, but since the sequence is positive the limit cannot be negative, hence L=2.

Note that the trick works only when we know for sure that the limit exists. For instance if we try to use the same trick with the Fibonacci sequence  $1,1,2,3,5,8,13,\ldots$  ( $f_1=1,\ f_2=1,\ f_n=f_{n-1}+f_{n-2}$ ), calling L the "limit" we get from the recursive relation that L=L+L, hence L=0, so we "deduce"  $\lim_{n\to\infty} f_n=0$ . But this is wrong, in fact the Fibonacci sequence is divergent.

#### 4.2. Series

A *series* is an infinite sum:

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots + a_n + \dots$$

In order to define the value of these sum we start be defining its sequence of *partial sums* 

$$s_n = \sum_{i=1}^n a_i = a_1 + a_2 + \dots + a_n$$
.

Then, if  $\lim_{n\to\infty} s_n = s$  exists the series is called *convergent* and its sum is that limit:

$$\sum_{n=1}^{\infty} a_n = s = \lim_{n \to \infty} s_n .$$

Otherwise the series is called *divergent*.

For instance, consider the following series:

$$\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} + \dots = \sum_{n=1}^{\infty} \frac{1}{2^n}.$$

Its partial sums are:

$$s_n = \sum_{i=1}^n \frac{1}{2^i} = \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n} = 1 - \frac{1}{2^n}.$$

Hence its sum is

$$\sum_{n=1}^{\infty} \frac{1}{2^n} = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{2^i} = \lim_{n \to \infty} \left( 1 - \frac{1}{2^n} \right) = 1 + 0 = 1.$$

**4.2.1. Geometric Series.** A series verifying  $a_{n+1} = ra_n$ , where r is a constant, is called *geometric series*. If the first term is  $a \neq 0$  then the series is

$$a + ar + ar^{2} + \dots + ar^{n} + \dots = \sum_{n=0}^{\infty} ar^{n}.$$

The partial sums are now:

$$s_n = \sum_{i=0}^n ar^i.$$

The nth partial sum can be found in the following way:

$$s_n = a + ar + ar^2 + \dots + ar^n$$
  
$$rs_n = ar + ar^2 + \dots + ar^n + ar^{n+1}$$

hence

$$s_n - rs_n = a + 0 + 0 + \cdots + 0 - ar^{n+1}$$

so:

is

$$s_n = \frac{a(1 - r^{n+1})}{1 - r} \,.$$

If |r| < 1 we can rewrite the result like this:

$$s_n = \frac{a}{1 - r} - \frac{a}{1 - r} r^{n+1} \,,$$

and then get the limit as  $n \to \infty$ :

$$s = \lim_{n \to \infty} s_n = \frac{a}{1 - r} - \frac{a}{1 - r} \underbrace{\lim_{n \to \infty} r^{n+1}}_{0} = \frac{a}{1 - r}$$

So for |r| < 1 the series is convergent and

$$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r} \, .$$

For  $|r| \ge 1$  the series is divergent.

**4.2.2. Telescopic Series.** A telescopic series is a series whose terms can be rewritten so that most of them cancel out.

Example: Find 
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
.

Answer: Note that  $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$  . So the nth partial sum

$$s_n = \sum_{i=1}^{\infty} \left( \frac{1}{i} - \frac{1}{i+1} \right)$$

$$= \frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{n} - \frac{1}{n+1}$$

$$= 1 - \frac{1}{n+1}.$$

Hence, the sum of the series is

$$s = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \left( 1 - \frac{1}{n+1} \right) = \boxed{1}.$$

**4.2.3. Theorem.** If the series  $\sum_{n=0}^{\infty} a_n$  is convergent then  $\lim_{n\to\infty} a_n = 0$ .

*Proof*: If the series is convergent then the sequence of partial sums  $s_n = \sum_{i=1}^n a_i$  have a limit s. On the other hand  $a_n = s_n - s_{n-1}$ , so taking limits we get  $\lim_{n\to\infty} a_n = s - s = 0$ .

The converse is not true in general. The harmonic series provides a counterexample.

**4.2.4.** The Harmonic Series. The following series is called *harmonic series*:

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$

The main fact about it is that it is *divergent*. In order to prove it we find

$$s_1 = 1$$

$$s_2 = 1 + \frac{1}{2}$$

$$s_4 = 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) > 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) = 1 + \frac{1}{2} + \frac{1}{2} = 1 + \frac{2}{2}$$

$$s_8 = 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right)$$

$$> 1 + \frac{1}{2} + (\frac{1}{4} + \frac{1}{4}) + (\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}) = 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1 + \frac{3}{2}$$

etc., so in general  $s_{2^n} > 1 + \frac{n}{2}$ , hence the sequence of partial sums grows without limit and the series diverges.

**4.2.5. Test for Divergence.** If  $\lim_{n\to\infty} a_n$  does not exist or if  $\lim_{n\to\infty} a_n \neq 0$  then  $\sum_{n=0}^{\infty} a_n$  diverges.

Example: Show that 
$$\sum_{n=1}^{\infty} \frac{n}{n+1}$$
 diverges.

Answer: We have  $\lim_{n\to\infty}\frac{n}{n+1}=1$ . Since the *n*th term of the series does not tend to 0, the series diverges.

Example: Show that  $\sum_{n=1}^{\infty} \sin n$  diverges.

Answer: All we need to show is that  $\sin n$  does not tend to 0. If for some value of n,  $\sin n \approx 0$ , then  $n \approx k\pi$  for some integer k, but then

$$\sin(n+1) = \sin n \cos 1 + \cos n \sin 1$$

$$\approx \sin k\pi \cos 1 + \cos k\pi \sin 1$$

$$= 0 \pm \sin 1$$

$$= \pm 0.84 \cdots \neq 0$$

So if a term  $\sin n$  is close to zero, the next term  $\sin (n+1)$  will be far from zero, so it is impossible for  $\sin n$  to get permanently closer and closer to 0.

**4.2.6.** Operations with Series. If  $\sum_{n=1}^{\infty} a_n$  and  $\sum_{n=1}^{\infty} b_n$  are convergent series and c is a constant then the following series are also convergent and:

$$(1) \sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$$

(2) 
$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$

(3) 
$$\sum_{n=1}^{\infty} (a_n - b_n) = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n$$