Organometallic Chemistry

Inorganic Chemistry Organic Chemistry primarily ionic M-X bonds, dative M-L bonds variable and often

- more or less covalent bonds
- rigid element environments
- fixed oxidation states

Chemistry of Carbon (O, S, Se, N etc.)

Organometallics Chemistry of all elements (metals)

- Direct M-C bond
- more covalent (less ionic)
- than coordination compounds

often less symmetric

Importance

fluxional environments

variable oxidation states

- Easy access to C-C bond
- Catalysis
- Small molecule activation
- New industry
- Around 2000 research article
- Six Nobel Prizes

Edward Frankland

Innocent Ligands: In a metal complex, if the ligands whose oxidation state is clearly known, Eg: O²⁻, Cl⁻

Non-innocent ligands: In a metal complex, if the ligands igands whose oxidation state is not known, Eg: NO

Exercises

The following organometallic compounds are stable and have a 2nd row transition metal at its centre. Find out the metal and its oxidation state

Exceptions to the 18 electron rule

- Square planar organometallic complexes of the late transition metals (16e).
- Some organometallic complexes of the early transition metals (e.g.Cp₂TiCl₂, WMe₆, Me₂NbCl₃, CpWOCl₃) [Possible reason: Some of the orbitals of these complexes are too high in energy for effective utilization in bonding or the ligands are mostly σ donors.]
- Some high valent d⁰ complexes have a lower electron count than
 18. [Eg:]
- Sterically demanding bulky ligands force complexes to have less than 18 electrons.
- The 18 electron rule fails when bonding of organometallic clusters of moderate to big sizes (6 Metal atoms and above) are considered.
- The rule is not applicable to organometallic compounds of main group metals as well as to those of lanthanide and actinide metals.

Molecular Orbital diagram of CO

orbital (LUMO) is also of comparatively lower energy which makes it possible to interact with metal t_{2g} orbitals for π bonding. There exists a strong back bonding of metal electrons to the π^* antibonding orbitals of CO

Source: Inorganic chemistry by Shriver & Atkins, page 541

Stabilizing Low Oxidation State: CO Can Do the Job

Why 18- electrons?

Ligand Field Theory: Concepts

- Ligand Orbitals(LGO)are obtained by Linear Combination of Atomic Orbitals (LCAO)
- LGOs overlap with symmetry related Metal Orbitals

p-orbitals

 T_{2g} orbitals cannot form sigma bonds with the L_6 set.

MO diagram of an Octahedral complex

 ML_6

6 LGOs

MO of π -complex

Stabilizing Low Oxidation State: CO Can Do the Job

Ni(CO)₄], [Fe(CO)₅], [Cr(CO)₆], [Mn₂(CO)₁₀], [Co₂(CO)₈], Na₂[Fe(CO)₄], Na[Mn(CO)₅]

A σ MO diagram for a complex of O_h symmetry

A σ MO diagram for a complex of sq. planar symmetry

Bonding modes of CO

terminal

$$v_{\rm CO}$$
 = 2120-1850 cm⁻¹ $v_{\rm CO}$ = 1850-1700 cm⁻¹

bridging
$$\mu_2$$

 $v_{CO} = 1850-1700 \text{ cm}^{-1}$

bridging μ_3 $\nu_{CO} = 1730\text{-}1620 \text{ cm}^{-1}$

 σ/π asymmetric bridge

Semi-bridging

Iso-carbonyl coordination

Infrared Spectroscopy- Spectra of Metal Carbonyls

Factors which affect v_{co} stretching frequencies

Variation in v _{co} (cm ⁻¹) of the first row transition metal carbonyls		
	free CO - 2143	
Ni(CO) ₄ 2057		
Co(CO) ₄ - 1890		Co ₂ (CO) ₈ 2044
[Fe(CO) ₄] ²⁻ 1815	Fe ₂ (CO) ₉ 2018, 1826	Fe(CO) ₅ 2030
[Mn(CO) ₄] ³⁻ 1600,1790	Mn(CO) ₆ ⁺ 2098	Mn ₂ (CO) ₁₀ 2013
[Cr(CO) ₄] ⁴⁻ 1462,1657		Cr(CO) ₆ 2000
	V(CO) ₆ 1860	V(CO) ₆ 1976
	Ti(CO) ₆ ²⁻ 1747	

More back bonding

- 1.Charge on the metal
- 2. Effect of other ligands
- As the electron density on a metal centre increases, more π-backbonding to the
 CO ligand(s) takes place.
- This weakens the C–O bond further as more electron density is pumped into the empty π* anti-bonding carbonyl orbital.
- This increases the M–C
 bond order and reduces
 the C-O bond order.
- That is, the resonance structure M=C=O becomes more dominant.

Exercises

Q1: Account for the following observations

- A) $V(CO)_6^-$ 1860 cm⁻¹, $V(CO)_6$ 1976 cm⁻¹
- B) $[Mn(CO)_4]^{3-}$ 1600 cm⁻¹, 1790 cm⁻¹, $Mn(CO)_6^+$ 2098 cm⁻¹, $Mn_2(CO)_{10}$ 2013 cm⁻¹
- C) $[Fe(CO)_4]^{2-}$ 1815 cm⁻¹, $Fe(CO)_5$ 2030 cm⁻¹
- D) $Co_2(CO)_8$ 2044 cm⁻¹, $Co(CO)_4$ 1890 cm⁻¹
- E) Free CO -2143 cm^{-1} , Ni(CO)₄ 2057 cm^{-1} , V(CO)₆1976 cm⁻¹, Fe(CO)₅ 2030 cm^{-1}
- F) $Mn_2(CO)_{10}$ 2013 cm⁻¹, $Co_2(CO)_8$ 2044 cm⁻¹

Q2: Predict the number of M-M bonds in the following

- a) $(\mu-CI)_2Rh_2(CO)_4$, b) Co_2CO_8 ,
- Q3: What are the cases where the 18 electron rule is not valid?
- Q4: Explain using Molecular Orbital Theory, how CN⁻, CO and PPh3 give rise to low spin complexes