

SESSION #8

By Team 2 @ Sojung, Jaehoon, Youngjun Date _ 2017.12.15

CONTENTS

- **O1** Probability
- **02** Naive Bayes
- **03** Practice with Sci-kit Learn
- 04 Quest

베이즈 정리

조건부확률

확률이 0이 아닌 사건 A가 일어났을 때 사건 B가 일어날 확률을 사건 A가 일어났을 때의 사건 B의 조건부확률이라 하고

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$
 (단, $P(A) \neq 0$)

...와 같이 나타낸다.

베이즈 정리

각 사건이 독립일때

$$P(A \cap B) = P(A) * P(B)$$

$$P(A|B) = P(A)$$

$$P(B|A) = P(B)$$

카지노에서 잭팟을 맞을 확률은 1%, 초록색 옷을 입을 확률은 50%라고 할때, 초록색 옷을 입고 잭팟을 맞을 확률은?

옷의 색깔과 잭팟 맞을 확률은 관계가 없으므로 서로 독립이다.

P(잭팟 맞을 확률∩초록색 옷을 입을 확률) = P(잭팟 맞을 확률) * P(초록색 옷을 입을 확률)

베이즈 정리

각 사건이 독립이 아닐 때

$$P(A \cap B) = P(A) * P(B|A)$$

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

베이즈 정리

조건부 확률의 정의를 '반대로 뒤집는 '정리

사건 E가 발생했을 때 사건 F가 발생할 확률 P(F|E)를 이용해 사건 F가 발생했을 때 사건 E가 발생할 확률 P(E|F) 구하기

$$P(E|F) = \frac{P(F \cap E)}{P(F)} = \frac{P(F \cap E)}{P(F \cap E) + P(F \cap \sim E)} = \frac{P(F|E)P(E)}{P(F|E)P(E) + P(F|\sim E)P(\sim E)}$$

Ex.

사건 E=특정 메일이 스팸일 확률 사건 F=메일에 F라는 단어가 포함될 확률

베이즈 정리

Q

질병에 걸린 (D) 사람이 양성 판정을 받을 (T) 확률 P(T|D)=0.99 특정 사람이 질병에 걸릴 확률 P(D)=0.0001

이때, 양성 판정을 받은 사람이 질병에 걸린 사람일 확률은?

베이즈 정리

```
질병에 걸린 (D) 사람이 양성 판정을 받을 (T) 확률 P(T|D)=0.99
특정 사람이 질병에 걸릴 확률 P(D)=0.0001
P(T|\sim D)=1-P(T|D)=0.01
P(\sim D) = 1 - 0.0001 = 0.9999
```

이때, 양성 판정을 받은 사람이 질병에 걸린 사람일 확률은?

$$=P(D|T) = \frac{P(T|D)P(D)}{P(T|D)*P(D)+P(T|\sim D)P(\sim D)} = 0.98 \%$$

나이브 베이즈

베이즈 정리에 '나이브하고 극단적인 가정'하나를 추가한 것

-> "각 단어의 존재 혹은 부재는 서로 조건부 독립적이다. "

스팸메일에 A라는 단어와 B라는 단어가 등장할 확률은 서로 독립적

- = 스팸메일에 A과 B가 모두 등장할 확률은 두 단어가 각각 등장할 확률의 곱
- = 각 단어들의 결합 확률은 개별 확률들의 곱

학습 데이터 (Training Set) + 나이브 베이즈 -> 분류기

Smoothing

스팸인 메일 중에서 스팸이었던 적이 없는 단어가 있다!

> 사건 E=특정 메일이 스팸일 확률 사건 F=메일에 F라는 단어가 포함될 확률

만약 학습 데이터에서 한번도 등장하지 않은 단어가 메시지에 등장한다면?

$$P(E|F) = \frac{P(F|E)P(E)}{P(F|E)P(E) + P(F|\sim E)P(\sim E)} = 0$$
이 추정치가 곱해질 때 다른 확률의 모든 정보를 없앨 수 있음

• 이 오류를 처리하기 위해 smoothing(정규화) 기법 도입

Ex.
$$P(F|E) = \frac{k + (\text{단어 } F) + (\text{FOS한 } \triangle \text{ Here})}{2k + (\text{총 } \triangle \text{ Here})}$$
 (pseudocount $k \in \mathbb{R}$ 도입)

- 1) 라플라스 정규화 (pseudocount=1)
- 2) 리드스톤 정규화

• 학습 데이터

No.	Words	Class
1	fun, couple, love, love	comedy
2	fast, furious, shoot	action
3	couple, fly, fast, fun, fun	comedy
4	furious, shoot, shoot, fun	action
5	fly, fast, shoot, love	action

- 입력 데이터 : {fast, furious, fun} = 사건 D
- 데이터의 Class가 Comedy일 사건=C, Action일 사건=A

•
$$P(C|D) = \frac{P(D \cap C)}{P(D)} = \frac{P(D \cap C)}{P(D \cap C) + P(D \cap A)} = \frac{P(D|C)P(C)}{P(D|C)P(C) + P(D|A)P(A)}$$

•
$$P(A|D) = \frac{P(D|A)P(A)}{P(D|C)P(C) + P(D|A)P(A)}$$

• 학습 데이터

No.	Words	Class
1	fun, couple, love, love	comedy
2	fast, furious, shoot	action
3	couple, fly, fast, fun, fun	comedy
4	furious, shoot, shoot, fun	action
5	fly, fast, shoot, love	action

	Fun	Couple	Love	Fast	Furious	Shoot	Fly	(SUM)
Comedy	3	2	2	1	0	0	1	9
Action	1	0	1	2	2	4	1	11

- 입력 데이터 : {fast, furious, fun} = 사건 D
- P(D|C)P(C)

=P(fast|C)* P(furious|C)* P(fun|C)*P(C)

$$=\frac{1}{9}*\frac{0}{9}*\frac{3}{9}*\frac{9}{20}$$
 (smoothing 전) vs. $=\frac{1+1}{9+2}*\frac{0+1}{9+2}*\frac{3+1}{9+2}*\frac{9+1}{20+2}$ (laplace smoothing 후)

• 학습 데이터

No.	Words	Class
1	fun, couple, love, love	comedy
2	fast, furious, shoot	action
3	couple, fly, fast, fun, fun	comedy
4	furious, shoot, shoot, fun	action
5	fly, fast, shoot, love	action

	Fun	Couple	Love	Fast	Furious	Shoot	Fly	(SUM)
Comedy	3	2	2	1	0	0	1	9
Action	1	0	1	2	2	4	1	11

- 입력 데이터 : {fast, furious, fun} = 사건 D
- Q. laplace smoothing을 적용한 나이브베이즈 분류기에서 입력 데이터는 어떤 Class로 분류될까요?

나이브베이즈 분류 이벤트 모델

- 베르누이 분포 (이항분포)
 X는 0또는 1, 각 확률은 고정 [Ex- 스팸메일, 성별 분류기]
- 2. 다항분포(x1,...xn)이 0 또는 양의 정수[Ex- 주사위를 던진 결과로 어느 주사위를 던졌는지를 찾아내는 모형]
- 3. 가우시안 정규분포X는 실수, 특정한 값 근처[Ex- 시험 점수로 학생을 찾아내는 모형]

책 코드 살펴보기

- 메일 제목에 등장하는 단어들로 Spam 여부를 판단하는 나이브 베이즈 분류기를 만들어 본다.
- 각 특성(단어)는 등장하거나, 등장하지 않거나 두가 지 경우 이므로 베르누이 분포 모형을 따른다.

Import 해야하는 모듈

import **glob**import **re**import **math**import **random**

From **collections** import **Counter**From **collections** import **defaultdict**

[^^^^] [정규표현식] [수학 관련] [임의의 수 생성]

[개수를 세준다] [딕셔너리 관련]

Train - 1. 데이터 정제하기

- 1. 메일 제목을 단어 단위로 나누기 → 정규표현식을 사용한다.
- 2. 소문자로 변환하기 → lower()
- 3. 중복되는 단어 제거하기 → set()

```
def tokenize(message):
    message = message.lower()
    all_words = re.findall("[a-z0-9']+", message)
    return set(all_words)
```

>>> 실행 결과

```
print(tokenize("Hi my name is Aring Aring. Nice to meet you"))
{'nice', 'name', 'hi', 'my', 'to', 'you', 'aring', 'is', 'meet'}
```

Train - 2. P(X|S), P(X|~S) 구하기

- 1. 단어가 나왔을 때 스팸 메일이었던 횟수, 스팸이 아니었던 횟수 구하기
 - * training_set 을 입력인수로 받음
 - * training_set은 (메시지 내용, 스팸 여부 형식으로 구성)

```
(': Re: [Webdev] mod_usertrack', False)
```

* defaultdict(): 딕셔너리의 형식 지정

```
ldef count_words(training_set):
    counts = defaultdict(lambda : [0,0])
    for message, is_spam in training_set:
        for word in tokenize(message):
            counts[word][0 if is_spam else 1] += 1
            return counts
```

>>> 실행 결과

```
'reports': [0, 5], 'moon': [0, 4], 'pravda': [0, 2]
```

Train - 2. P(X|S), P(X|~S) 구하기

- 2. [단어, P(X|S), P(X|~S)]를 리턴하는 함수 만들기
 - * smoothing을 위한 가짜 빈도수 k 고려하기
 - * dict.items(): 딕셔너리의 (key, value) 쌍을 복사한 list를 리턴 dict_items([('bomber', [0, 1]), ('zzzzteana', [0, 50]), ('moscow', [0, 1]),
 - * count_words의 결과값 / 총 스팸 수 / 총 ~스팸 수 / k 를 입력인수로

>>> 실행 결과

Train - 3. P(S|X) 구하기

- * prob_if_spam = P(X|S) * prob_if_not_spam = $P(X|\sim S)$
- * [단어, P(X|S), P(X|~S)] / '판별하고자 하는 이메일의 제목'을 입력인수로 받음
- * 부동소수점 문제를 피하기 위해 log, exp 를 사용
- * 단어들이 조건부 독립이라는 가정 하에 P(X|S) = mul(P(Xw1,2,...,n|S))
 - Ex) 단어 A가 등장, 단어B가 등장
 - \rightarrow P(X|S) = mul(P(Xwa|S),PXwb|S)
 - 단어 A는 등장하지 않고, 단어 B만 등장했다면
 - \rightarrow P(X|S) = mul(P(~Xwa|S),PXwb|S)
- * P(S|X)를 리턴

Train - 3. P(S|X) 구하기

```
|def spam_probability(word_probs, message):
    message_words = tokenize(message)
    log_prob_if_spam = log_prob_if_not_spam = 0.0
    for word, prob_if_spam, prob_if_not_spam in word_probs:
        if word in message_words:
            log_prob_if_spam += math.log(prob_if_spam)
            log_prob_if_not_spam += math.log(prob_if_not_spam)
        else:
            log_prob_if_spam += math.log(1.0 - prob_if_spam)
            log_prob_if_not_spam += math.log(1.0 - prob_if_not_spam)
    prob_if_spam = math.exp(log_prob_if_spam)
    prob_if_not_spam = math.exp(log_prob_if_not_spam)
    return prob_if_spam / (prob_if_spam + prob_if_not_spam)
```

Train - 4. 종합

* 나이브 베이즈 클래스 만들기

이를 통해서 Training set 에서 스팸 메시지와 스팸이 아닌 메시지의 개수 구한다.

```
ass NaiveBavesClassifier
>>> NaiveBayesClassifier()를 적용한 결과
 'reports': [0, 5], 'moon': [0, 4], 'pravda': [0, 2]
 [('moscow', 0.0015337423312883436, 0.0007194244604316547),
           ('zzzzteana', 0.0015337423312883436, 0.02422062350119904)
```

Test

* 데이터를 training set과 test set으로 나눈다.

```
ldef split_data(data, prob):
    results = [], []
    for row in data:
        results[0 if random.random() < prob else 1].append(row)
    return results random.random(): 0-1사이의 임의의 수를 리턴
```

따라서 변수 prob의 확률 만큼의 data가 train data에 속하게 된다.

>>> split_data()를 적용한 결과 results[0] = training set

```
results[1] = test set
```

Test

```
glob.glob()
```

>>> 해당 경로의 모든 파일 목록을 불러옴

불러오지 못하는 이메일은 예외처리를 한다.

>>> 예외 처리 뒤 반복문 계속 진행

re.sub("해당문자", "대체문자", "적용할 객체") 정규 표현식의 '^' 은 문자열의 시작을 의미함

```
data = []
                           'ham'의 포함 여부로 is_spam에 T/F 지정
for fn in glob.glob(path)
   is spam = "ham" not in fn 🖪
   with open(fn, 'r') as file
                                                ^Subject
          lines = file.readlines()
       except UnicodeDecodeError as e continue
          for line in lines
              if line.startswith("Subject")
                 subject = re.sub(r"^Subject', "", line).strip()
                  data.append((subject, is_spam))
random.seed(0)
train_data, test_data = split_data(data, 0.75)
classifier = NaiveBayesClassifier()
classifier.train(train_data)
```

모델 평가

* Counter(): 각 데이터가 등장한 횟수를 딕셔너리 형식으로 리턴

```
classified = [(subject, is_spam, classifier.classify(subject))

for subject, is_spam in test_data]

counts = Counter((is_spam, spam_probability > 0.5)

for _, is_spam, spam_probability in classified)
```

classified : (': EnenKio truth (Answers)', True, 0.7054599657954321)

>>> Counter 실행 결과

```
Counter({(False, False): 670, (True, True): 65, (True, False): 44, (False, True): 23})
```

→ accuracy, precision, recall 등을 계산할 수 있음

분류 결과 분석

classified: (': EnenKio truth (Answers)', True, 0.7054599657954321)

```
# 스팸일 확률을 오름차순으로 정렬
classified.sort(key=lambda row: row[2])
# 스팸이 아닌 메세지 중에서 스팸일 확률이 가장 높은 메세지
spammiest_hams = list(filter(lambda row: not row[1], classified))[-5:]
# 스팸 중에서 스팸일 확률이 가장 낮은 메세지
hammiest_spams = list(filter(lambda row: row[1], classified))[:5]
```

분류 결과 분석

스팸일 확률이 가장 높은 단어, 스팸이 아닐 확률이 가장 높은 단어 추출 나이브 베이즈 클래스 __init__에 있는 self.word_probs 사용

```
def p_spam_given_word(word_prob):
    word, prob_if_spam, prob_if_not_spam = word_prob
    return prob_if_spam / (prob_if_spam + prob_if_not_spam)

words = sorted(classifier.word_probs, key=p_spam_given_word)

spammiest_words = words[-5:]
hammiest_words = words[:5]
```

>>> 실행결과

```
[('clearance', 0.0352760736196319, 0.00023980815347721823), ('rates', 0.04141104294478527, 0.00023980815347721823), [('spambayes', 0.0015337423312883436, 0.0486810551558753), ('users', 0.0015337423312883436, 0.03860911270983213), (
```

모델 개선 방법

- 1. 이메일의 내용에도 나이브 베이즈 모델 적용
- 2. 단어의 최소 빈도 수 정해 기준보다 적게 나온 단어 무시
- 3. stemmer를 통해 동의어를 묶어주기
- 4. 다른 변수 사용하기

Kaggle

2010년 설립된 예측모델 및 분석 대회 플랫폼이다. 기업 및 단체에서 데이터와 해결과제를 등록하면, 데이터 과학자들이 이를 해결하는 모델을 개발하고 경쟁한다. (위키피디아)

타이타닉호의 생존자를 나이브베이즈로 예측해보자!

(https://www.kaggle.com/c/titanic/data)

Scikit-learn

negative matrix factorization.

Classification Regression Clustering Identifying to which category an object Predicting a continuous-valued attribute Automatic grouping of similar objects into belongs to. associated with an object. Applications: Spam detection, Image Applications: Drug response, Stock prices. Applications: Customer segmentation. Grouping experiment outcomes recognition. Algorithms: SVR, ridge regression, Lasso, Algorithms: SVM, nearest neighbors, Algorithms: k-Means, spectral clustering — Examples random forest. ... - Examples mean-shift. ... - Examples **Dimensionality reduction** Model selection **Preprocessing** Reducing the number of random variables to Comparing, validating and choosing Feature extraction and normalization. consider. parameters and models. Application: Transforming input data such as text for use with machine learning algorithms. Applications: Visualization, Increased Goal: Improved accuracy via parameter Modules: preprocessing, feature extraction. efficiency Algorithms: PCA, feature selection, non-Modules: grid search, cross validation, Examples

Simple and efficient tools for data mining and data analysis

Examples

- Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib

Examples

Open source, commercially usable - BSD license

Gaussian Naïve Bayes Classifier

(0) Importing Libraries

```
import numpy as np
import pandas as pd

from scipy.stats import itemfreq

from sklearn.naive_bayes import GaussianNB
from sklearn.proprocessing import LabelEncoder
```

1 Data Import

```
train = pd.read_csv("train.csv", dtype={"Age" : np.float64})
test = pd.read_csv("test.csv", dtype={"Age" : np.float64})
```

Gaussian Naïve Bayes Classifier

>>> Train.head(10)

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	S
8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	S
9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708	NaN	С

Gaussian Naïve Bayes Classifier

- 3 One-Hot Encoding
- 범주형 변수의 이항변수화
- 0과 1로만 구성된 가변수(Dummy Variable) 로의 재구성
- 파이썬에서는 자동으로 변수별 범주의 종류, 개수를 파악

Gaussian Naïve Bayes Classifier

(3) One-Hot Encoding

둘 중 하나의 방법을 사용하면 된다.

* pandas.factorize()

```
train['Sex'] = pd.factorize(train['Sex'])[0]
test['Sex'] = pd.factorize(test['Sex'])[0]
```

사용한 예시에서는 이 코드를 사용하였지만 좋은 방법은 아니다. 왜냐하면 pd.factorize는 Index 값을 가져오는 것이기 때문이다. 리스트로 반환하기 때문에 마지막에 [0]으로 슬라이싱을 해주어야 한다.

df_gender.head()

* pandas.get_dummies()

```
df_gender = pd.get_dummies(train['Sex'])
```

get_dummies()는 앞서 보았던 것과 같은 형태로 반환한다.

	female	male
0	0	1
1	1	0
2	1	0
3	1	0
4	0	1

Gaussian Naïve Bayes Classifier

3 One-Hot Encoding

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	0	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	1	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	1	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	1	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	0	35.0	0	0	373450	8.0500	NaN	S
5	6	0	3	Moran, Mr. James	0	NaN	0	0	330877	8.4583	NaN	Q
6	7	0	1	McCarthy, Mr. Timothy J	0	54.0	0	0	17463	51.8625	E46	S
7	8	0	3	Palsson, Master. Gosta Leonard	0	2.0	3	1	349909	21.0750	NaN	S
8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	1	27.0	0	2	347742	11.1333	NaN	S
9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	1	14.0	1	0	237736	30.0708	NaN	С

Gaussian Naïve Bayes Classifier

4 Handling Missing Data

77개의 결측치가 있다.

	Passengerld	Survived	Pclass	Sex	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	0.352413	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	0.477990	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	0.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	0.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	1.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	1.000000	80.000000	8.000000	6.000000	512.329200

Gaussian Naïve Bayes Classifier

(5) Data Preprocessing

둘 중 하나의 방법을 사용하면 된다.

* pandas.DataFrame.fillna()

```
train.fillna(train.mean(), inplace = True)
test.fillna(test.mean(), inplace = True)

Value to use to fill missing data. 결측치가 NA, NaN으로 정의되어있다.
```

* sklearn.preprocessing.lmputer()

결측치가 정수 형태 또는 NaN

```
imp = Imputer(missing_values="NaN", strategy="mean")
train["Age"]=imp.fit_transform(train[["Age"]]).ravel()
```

적용 대상이 될 데이터 (numpy array of shape)

Gaussian Naïve Bayes Classifier

6 Data Slicing

```
trainData = pd.DataFrame.as_matrix(train[['Pclass', 'Sex', 'Age']])
trainTarget = pd.DataFrame.as_matrix(train[['Survived']]).ravel()
testData = pd.DataFrame.as_matrix(test[['Pclass', 'Sex', 'Age']])
```

Gaussian Naïve Bayes Classifier

7 Gaussian Naive Bayes Implementation

```
classifier = GaussianNB()
classifier.fit(trainData, trainTarget)
GaussianNB(priors=None)
predictedValues = classifier.predict(testData).astype(int)
itemfreq(predictedValues)
array([[ 0, 260],
       [ 1, 158]], dtype=int64)
testResults = test[['PassengerId']]
testResults['Survived'] = predictedValues
```


04 Quest

Quest

특정 단어가 메일에 있을 때 그 메일이 스펨메일 일 확률!

```
from numpy import *
def loadDataSet():
    postingList=[['I', 'got', 'free', 'two', 'movie', 'ticket', 'from', 'your', 'boy', 'friend'],
                 ['free', 'coupon', 'from', 'xx.com'],
                 ['watch', 'free', 'new', 'movie', 'from', 'freemovie.com'],
                 ['best', 'deal', 'promo', 'code', 'here'],
                 ['there', 'will', 'be', 'free', 'pizza', 'during', 'the', 'meeting'],
                 ['scheduled', 'meeting', 'tomorrow'],
                 ['can','we','have','lunch','today'],
                 ['I', 'miss', 'you'],
                 ['thanks','my','friend'],
                 ['it','was','good','to','see','you','today'],
                 ['free','coupon','last','deal'],
                 ['free', 'massage', 'coupon'],
                 ['I','sent','the','coupon','you','asked','it','is','not','free'],
                 ['coupon','promo','code','here']]
```

04 Quest

Quest

특정 단어가 메일에 있을 때 그 메일이 스펨메일 일 확률!

코드가 복잡하니 다음 코드와 해설 동영상을 참고해주세요 https://www.youtube.com/watch?v=d3lEY-hyhag

https://github.com/minsuk-heo/machinelearning/blob/master/machinelearningInAction/03.naivebayes/bayes.py

05 References

- http://scikit-learn.org/stable/
- https://datascienceschool.net/view-notebook/293ece8b0d124fbaa4d4d52bb8f1cb42/
- http://nbviewer.jupyter.org/github/metamath1/ml-simpleworks/blob/master/naive/naive.ipynb

THANK YOU!