ISE334/SE425: E-Commerce, Com., and Info. Security Recitation 3 Semester 2 5774 12 March 2014

Simplified DES

1 Introduction

In this lab we will work through a simplified version of the DES algorithm. The algorithm is not crypto graphically secure, but its operations are similar enough to the DES operation to give a better feeling for how it works.

We will proceed by reading the Simplified DES algorithm description in the Stallings section. We will then work through a full example in class.

2 Full Example

Let the plaintext be the string 0010 1000. Let the 10 bit key be 1100011110.

2.1 Key Generation

The keys k_1 and k_2 are derived using the functions P10, Shift, and P8.

P10 is defined as follows:

P10
3 5 2 7 4 10 1 9 8 6

P8 is defined to be as follows:

P8
6 3 7 4 8 5 10 9

The first key k_1 is therefore equal to:

Bit #

K
P10(K)
Shif t(P10(K)) P8(Shif t(P10(K)))

	01100	11110
	11101	0 0 1
12		

00110

01111

The second key k_2 is derived in a similar manner:

111

Bit # K

P10(K)	
Shif $t^3(P10(K)))$ P8(Sh	if
t ² (P10(K)))	
	12
	11

10001	11011
10100	111

So we have the two keys $k_1 = \{1110 \ 1001\}$ and $k_2 = \{1010 \ 0111\}$

0 0

2.2 Initial and Final Permutation

The plaintext undergoes an initial permutation when it enters the encryption function, IP. It undergoes a reverse final permutation at the end IP^{-1} .

The function IP is defined as follows:

IP 26314857 1

The function IP^{-1} is defined as follows:

IP ^{−1}	
41357286	

Applied to the input, we have the following after the initial permutation:

Bit # P
IP(P)
1 2 3 4
0 0 1 0

0010 0010

2.3 Functions f_K , SW, K

- The function f_k is defined as follows. Let P = (L, R), then $f_K(L, R) = (L \oplus F(R, SK), R)$. The function SW just switches the two halves of the plaintext, so $SW(L, R) \to (R, L)$
- The function F(p, k) takes a four bit string p and eight bit key k and produces a four bit output. It performs the following steps.
 - 1. First it runs an expansion permutation *E/P*:

 E/P

41232341

- 2. Then it XORs the key with the result of the E/P function
- 3. Then it substitutes the two halves based on the S-Boxes.
- 4. Finally, the output from the S-Boxes undergoes the *P*4 permutation:

2431

P4

Applying the functions, we must perform the following steps: $IP^{-1} \circ f_{K2} \circ SW \circ f_{K1} \circ IP$ 1. We have already calculated $IP(P) = \{0010\ 0010\}$. Applying the next functions: 2. $f_{K_1}(L, R) =$ $f_{\{1110\ 1001\}}(0010\ 0010) = (0010\ \oplus\ F(0010,\ \{1110\ 1001\}),\ 0010)\ 3.\ F(0010,\ \{1110\ 1001\}) = P4$ ∘ SBoxes ∘ {1110 1001} ⊕ (E/P(0010)) 4. The steps are:

Bit #	1110	1001
R		
E/P(R)	1111	1101
k_1		
^1		
E/P(R)⊕ <i>k</i> ₁	1000	
SBoxes(E/P(R)⊕k₁)		
300xe3(L/F (IX) = x ₁)	0001	
P4(Sboxes(E/P(R)⊕k₁))	0001	

1234	5678
0010	
0001	0100

- 5. The result from F is therefore 0001
- 6. Calculating we then have $f_{k1}(L, R) = (0010 \oplus 0001, 0010) = (0011, 0010)$
- 7. So far, then L = 0011 and R = 0010. SW just swaps them so R = 0011 and L = 0010. 8. We now do the calculation of $f_{k2}(L, R) = f_{(1010\ 0111)}(0010\ 0011) = (0010 \oplus F(0011, \{1010\ 0111\},\ 0011))$

9. The steps for *F* are as above:

i ne steps ioi i	- are as above.		
Bit #		0011	
R			
E/P(R)		1001	0110
k_2		4040	0.4.4.4
E/P(R)⊕k ₂		1010	0111
SBoxes(E/P	(R)⊕ <i>k</i> ₂)	0011	0001
P4(Sboxes(E	E/P(R)⊕ <i>k</i> ₂))	-	
1234	5678	1010	

2

0011	
------	--

- 10. So now we have the outcome of *F* as 0011
- 11. Calculating we then have $f_{k2}(L, R) = (0010 \oplus 0011, 0011) = (0001, 0011)$
- 12. Last, we perform the IP^{-1} permutation:

13. So the final result of the encryption is 1000 1010. 3