

Exam: M. Streicher, September 24, 2024, Potsdam

Intelligent Data Analysis - Medical lasers

Problem Setting

Input data *D*:

$$D = \left\{ \left(x_i, y_i \right) \right\}_{i=1}^{200},$$

where $x_i = [x_{i1}, x_{i2}, \dots, x_{i60}]$ is the frequency time series of laser i and $y_i \in \{-1, 1\}$ the binary label.

y = 1, Suitable for sale

y = -1, Not suitable for sale

Model:

 $f_{\theta}: \mathbb{R}^{60} \to \{1, -1\}$, where θ is the model parameter vector.

Problem Setting

Task:

Binary classification problem

Type of learning:

Supervised Learning

Goal:

Classify each laser as belonging to one of two classes, 1 or -1, based on the frequency behavior over time.

Data analysis

Input data *D*:

$$D = \left\{ \left(x_i, y_i \right) \right\}_{i=1}^{200}$$

Label distribution:

$$D_{-1} = \{ (x_i, y_i) \mid y_i = -1 \} = 100$$
$$D_1 = \{ (x_i, y_i) \mid y_i = 1 \} = 100$$

Missing data:

No missing data found.

Evaluation Protocol

Train and Test:

BaseDataset(Dataset) #pytorch

data_split_indices.pkl #pickle

Test inputs,
Test labels

Train inputs,
Train labels

Train_validation inputs,
Train_validation labels

Validation inputs, Validation labels

Tripple Cross Validation:

ParameterGrid() #sklearn.model_selection

Models

Linear Classifier, DTW Kernel, Polynomial Kernel, RBF Kernel

Linear Classifier

Model:

$$argmin_{\theta} \sum_{i=1}^{n} l(max(0,1-y_if_{\theta}(x_i)),y_i) + \lambda \Omega_2(\theta), \text{ with } f_{\theta}(x_i) = x_i * \theta_i$$

ERM using Gradient Descent Method:

$$\nabla_{\theta} L(\theta) = \begin{cases} \frac{2\lambda}{n} \theta, & \text{if } 1 - y_i(\mathbf{x}_i \cdot \theta) \le 0\\ -y_i \mathbf{x}_i + \frac{2\lambda}{n} \theta, & \text{if } 1 - y_i(\mathbf{x}_i \cdot \theta) > 0 \end{cases}$$

Feature Engineering:

Feature I: R^2

Feature II: Maximal difference to a subsequent measuring point.

Linear Classifier

Best parameters found:

{'alpha_0': 0.001, 'decay': 0.9, 'epsilon': 0.0001, 'lambda_value': 0.001}

Best score: 0.925

Linear Classifier

DTW Kernel

$$k_{\mathsf{DTW}}(x, x') = e^{-\lambda d} \mathsf{DTW}^{(x, x'; d)}$$

$$d_{DTW}(x, x'; d) = \gamma(\mid x \mid, \mid x' \mid)$$

$$\gamma(i,j) = \begin{cases} d(x_i, x_j') + \min \left(\gamma(i-1, j-1), \gamma(i-1, j), \gamma(i, j-1) \right) & (1 \le i \le |x|, 1 \le j \le |x'|), \\ \infty & i = 0 \lor j = 0, \\ 0 & (i, j) = (0, 0). \end{cases}$$

DTW Kernel:

$$k_{\mathsf{DTW}}(x, x') = e^{-\lambda d} \mathsf{DTW}^{(x, x'; d)}$$

Polynomial Kernel:

$$k_{poly}(x, x') = (\alpha * x^T x' + c)^d$$

RBF Kernel:

$$k_{RBF}(x, x') = e^{-\lambda^* ||x - x'||^2}$$

Results

Linear Classifier, DTW Kernel, Polynomial Kernel, RBF Kernel

	DTW	Polynomial	RBF
Alpha	0,001	0,1	0,001
Decay	0,1	0,1	0,9
Epsilon	0,0001	0,0001	0,0001
Lambda	10	0,1	1
Kernel specific		C = 0 Degree = 5 Alpha_Poly = 1	Gamma = 0,001
Accuracy	0,975	0,675	0,975

Conclusion

Linear Classifier, DTW Kernel, Polynomial Kernel, RBF Kernel

Conclusion

- Polynomial Kernel does not fit the data
- **Lowest accuracy** with 0.675
- Followed by the linear model with 0.95
- Positive: Hardly any risk of overfitting
- Negative: Requires preprocessing of the data
- Best kernels with the same accuracy of 0.975: DTW, RBF
- RBF shows significantly better precision in the Precision-Recall curve and ROC

Conclusion: RBF would be the model of choice.

Sources

- [1] Image cover slide: rbb, 2016, Retrieved from: https://www.rbb-online.de/content/dam/rbb/rbb/fernsehen/rbb_praxis_bilder/2016/05/25/ COLOURBOX8440750.jpg.jpg/size=966x543.jpg
- [2] Image question slide: Gekonnt wirken, Retrieved from: https://www.gekonnt-wirken.de/wp-content/uploads/2018/07/AdobeStock_496887170-scaled-82625 1080x675.jpeg
- [3] Source Code: https://github.com/MarStreicher/IDA_Laser/tree/main/