MEDIATEK

Android 6573 Audio Tuning Guide

Agenda

Introduction

AFE Block Diagram(MT6573)

Audio Customization

- Speech Fir&Enhancement parameters
- Volume Customization design overview.
- Volume mapping for each stream type.
- Engineer mode
- Meta tool

Introduction

 On MT6573, AP side control audio path, MODEM side control speech path. MODEM side works as the slave of AP side.

 AP side send command to MODEM side by CCCI message. All kinds of speech related configuration and control flow are controlled by AP side. Ex: volume setting, speech on/off, mode setting,...

Audio Block Diagram

Internal Use

MEDIATEK

Audio Customization

Related Customization files

File Name	Path	Description
CFG_AUDIO_File.h	/mediate/custom/common /cgen/cfgfileinc	Audio data structure definition
CFG_Audio_Default.h	/mediate/custom/common /cgen/cfgdefault	Parameters default values that defined in sph_coeff_default.h/audio_custom.h/med _audio_default.h
sph_coeff_default.h	/mediatek/custom/(%proj)/cgen/inc	Speech enhancement coefficient, W1126MP move this file to /mediatek/custom/common/cgen/inc
audio_custom.h	/mediatek/custom/(%proj)/cgen/inc	TX/RX FIR coefficient Volume(Digital Gain) of different Mode, Normal Headset
med_audio_default.h	/mediatek/custom/(%proj)/cgen/inc	Audio and speech volume, android stream type digital gain.
audio_custom_exp.h	/mediatek/custom/(%proj) /hal/audioflinger\audio	Max device gain , Audio parameter, defines
yusu_android_speaker.h	/mediatek/custom/ common/kernel/sound/inc	Speaker turn on/off API Need implement by speaker.c
yusu_android_speaker.c	/mediatek/custom/(%proj)/ kernel/sound/speaker	Implementation of turn on/off speaker.

Speech FIR&Enhancement Parameters

- Speech setting Tx/Rx FIR.
 - Currently, Tx/Rx FIR are stored in NVRAM. The data structure is the same as feature phone.

- The ways of modifying FIR.
 - Using SP Meta Tool.
 - Modify the source code:

\mediatek\custom\\$[project]\cgen\inc\Audio_custom.h

Speech FIR&Enhancement Parameters

- Speech Enhancement Mode Parameters.
 - Currently, Parameters are stored in NVRAM. The data structure is the same as feature phone.
 - Different speech enhancement algorithms are applied to different modes respectively. These algorithms are controlled by speech mode parameters

- The ways of modifying Parameters.
 - Using SP Meta Tool.
 - Using Engineer Mode.
 - Modify the source code:

\mediatek\custom\\$[project]\cgen\inc\sph_coeff_default.h

Volume Customization design overview

- Audio signal path.
 - We could use Digital gain by stream type index.
 - We also could use PGA gain for all the stream types that they go through this PGA.

AUDIO_VOLUME_CUSTOM_STRUCT audio_volume_custom_default = {

Volume Customization design overview

- AUD_VOLUME_RING(0)
 - It's only for the Stream type of RING.(the ring tone of incoming call)
- AUD_VOLUME_KEY(1)
 - Actually used for communication mode downlink volume. (VOIP call)
- AUD_VOLUME_MIC(2)
 - microphone input volume
- AUD_VOLUME_FMR (3)
 - > FM radio output sound volume
- AUD_VOLUME_SPH (4)
 - Normal speech sound (downlink speech volume)
- AUD VOLUME SID (5)
 - side tone (loop-back sound in call)
- AUD VOLUME MEDIA (6)
 - Music, actually many audio is played as MUSIC, such as the tone in dial screen.
- AUD_VOLUME_MATV (7)
 - MATV, only MATV will use these parameters.

Audio volume custom structure

- Each volume type supports 3 modes
 - Normal mode
 - Headset mode
 - LoudSpeaker mode
- And each mode supports 7 level steps (0-6)

Volume mapping for each stream type —Ring

RingVolume customize

- ➤ Only use Handsfree mode 7 level for digital volume
- ➤ Ringtone mode max analog volume is with value Media/ Normal mode[6](refer Paga13 Media)

	0	1	2	3	4	5	6
Normal mode	_1_	16	32	54	120	152	160
Headset mode	33	20	48	64	132	144	152
Hands-free mode	0	48	62	134	172	212	255

Volume mapping for each stream type —— Fm and MATV

FMVolume customize

- ➤ Handsfree mode 7 level for digital volume, output device speaker
- ➤ Handset mode 7 level for digital volume, output device headset
- >There is no normal mode for FM Radio.

	0	1	2	3	4	5	6
Normal mode	1	16	32	54	120	152	160
Headset mode	3	20	48	64	132	172	212
Hands-free mode	0	48	62	134	172	212	255

Volume mapping for each stream type —— Music

Music Volume customize

- ➤ Handsfree mode 7 level for digital volume, output device speaker
- ➤ Headset mode 7 level for digital volume, output device headset.
- Normal mode(means AudioSystem::MODE_NORMAL) speaker's maximum analog gain → Normal mode[6]
- ➤ Normal mode(means AudioSystem::MODE_NORMAL) headset's maximum analog gain → Normal mode[5]

	0	1	2	3	4	5	6
Normal mode	1	16	32	54	120	160	160
Headset mode	3	20	48	64	132	172	212
Hands-free mode	0	48	62	134	172	212	255

Volume mapping for each stream type —— Speech

- ■Voice Volume customize
 - ➤ When AudioSystem::MODE_IN_CALL mode . All step define analog gain.
 - ➤ Use gain mapping table refer to the appendix.

	0	1	2	3	4	5	6
Normal mode	0	16	32	54	120	152	160
Headset mode	0	20	48	64	100	130	152
Hands-free mode	0	48	62	134	142	150	172

Volume mapping for each stream type

—— Microphone gain

- Incall micrphone gain
 - ➤Normal → Normal[3]
 - ➤ Headset → headset[3]
 - ➤ Handsfree → handsfree[3]
- Idle
 - ➤ Headset → Headset [4]
 - ➤ Handsfree → Handsfree[4]
- ■TTY mode → normal[0]

	0	1	2	3	4	5	6
Normal mode	64	16	32	192	192	160	168
Headset mode	0	20	48	192	192	130	152
Hands-free mode	0	48	62	192	192	150	172

Volume mapping for each stream type —— Sidetone

- Sidetone gain
 - ➤ Normal → Normal[3]
 - ➤ Headset → headset[3]
 - ➤ Handsfree → handsFree[3]

	0	1	2	3	4	5	6
Normal mode	0	16	32	32	120	160	0
Headset mode	0	20	48	0	100	130	0
Hands-free mode	0	48	62	0	142	150	0

Confidential B

Engineer Mode 1

Mapping to Source code

What is the Max Volume? Actually it is the analog gain for each out put path(headset/earpiece/Speaker).

Android change these gain only when:1, mode change(e.g. ring tone->in call);2,device changed.

It means that analog gain will not be changed while changing the volume level in APP(only digital gain changed) except in MODE_IN_CALL. In the mode of MODE_IN_CALL, we change the analog gain directly.

Because there is no normal mode for music(only headset &handsfree mode), so we define these 3 parameters as the max volume for different mode.

Media	0	1	2	3	4	5	6
Normal mode	1	16	32	54	120	148	148
Headset mode	3	20	48	64	132	172	152
Hands-free mode	0	48	62	134	172	212	255

Confidential B

Meta tool 1-custom volume

Mapping to Engineer Mode

Meta tool 2-quick speech tuning

Fro Narrow Band/Wide Band choose

Generate File: Audio Custome.h Sph coeff default.h Audio Volume cust om default.h

МЕДІЛТЕК

Meta tool 2-quick speech tuning

Meta tool 3-FIR tuning

Others

——External amplifier&Headset

Change file list

File Path:

alps\mtk\src\custom\[Project Name]\kernel\sound\speaker\ yusu_android_speaker.c

- API
 - void Sound_Speaker_Turnon(int channel); //turn on loudspeaker
 - void Sound_Speaker_Turnoff(int channel); // turn off loudspeaker
 - void Sound_Headset_Turnon(void); // turn on headset amp
 - void Sound_Headset_Turnoff(void);// turn off headset amp
- These API are called by sound driver to turn on/off loud speaker when loud speaker mode.

MEDIATEK

www.mediatek.com

Appendix1. Analog gain range and setting in NVRAM setting

DL (Voice/ Audio buffer)

Gain	NVRAM	Gain	NVRAM	Gain	NVRAM
range	setting	range	setting	range	setting
8dB	160	-6dB	104	-20dB	48
7dB	156	-7dB	100	-21dB	44
6dB	152	-8dB	96	-22dB	40
5dB	148	-9dB	92	-23dB	36
4dB	144	-10dB	88	-24dB	32
3dB	140	-11dB	84	-25dB	28
2dB	136	-12dB	80	-26dB	24
1dB	132	-13dB	76	-27dB	20
0dB	128	-14dB	72	-28dB	16
-1dB	124	-15dB	68	-29dB	12
-2dB	120	-16dB	64	-30dB	8
-3dB	116	-17dB	60	-31dB	4
-4dB	112	-18dB	56	-32dB	0
-5dB	108	-19dB	52		

The maximum allowable DL PGA gain is 5dB w/o distortion

The suggested UL PGA gain is 34dB

U	L

Gain	NVRAM	Gain	NVRAM	Gain	NVRAM.
range	setting	range	setting	range	setting
49dB	252	27dB	164	5dB	76
48dB	248	26dB	160	4dB	72
47dB	244	25dB	156	3dB	68
46dB	240	24dB	152	2dB	64
45dB	236	23dB	148	1dB	60
44dB	232	22dB	144	0dB	56
43dB	228	21dB	140	-1dB	52
42dB	224	20dB	136	-2dB	48
41dB	220	19dB	132	-3dB	44
40dB	216	18dB	128	-4dB	40
39dB	212	17dB	124	-5dB	36
38dB	208	16dB	120	-6dB	32
37dB	204	15dB	116	-7dB	28
36dB	200	14dB	112	-8dB	24
35dB	196	13dB	108	-9dB	20
34dB	<u>192</u>	12dB	104	-10dB	16
33dB	188	11dB	100	-11dB	12
32dB	184	10dB	96	-12dB	8
31dB	180	9dB	92	-13dB	4
30dB	176	8dB	88	-14dB	(
29dB	172	7dB	84	1EDI	ATER
28dB	168	6dB	80		

Appendix1. Digital gain range and setting in NVRAM setting

- The formula of calculating the digital gain is
 - Digital gain = 20 log (NVRAM setting/ 255)
- The mapping table is as below

α .	NITTOANG	<i>a</i> ·	ATT ID A B I
Gain	NVRAM	Gain	NVRAM
range	setting	range	setting
0dB	255	-28dB	10
-2dB	208	-30dB	8
-4dB	161	-32dB	6
-6dB	128	-34dB	5
-8dB	102	-36dB	4
-10dB	81	-38dB	3
-12dB	64	-42dB	2
-14dB	51	-46dB	1
-16dB	40		
-18dB	32		
-20dB	26		
-22dB	20		
-24dB	16		
-26dB	13		

Appendix2 FIR tuning

- according to the following step
- If tune UL choose TX; if tune DL, please chooseRX
- 2. Choose Equpment Acqua or UPV ext.
- 3. If use Acqua, It must be the same settings as in Acqua(linear or log)
- Load the input file and define output file name in" txt"

Appendix2 FIR Tuning

- Load input file
 - Load the trc file (generated by UPL) / txt file (modified the file generated by ACQUA), Blue-line in the right figure
- Load target file
 - META can approach this target curve by pressing "Run", Dot-line in the right figure
- Setup output Tx/Rx file
 - Save the generated FIR coefficient to the specified file
- Load ABS/TXT file
 - Load the abs file (generated by UPL) / txt file (modified the file generated by ACQUA)
 - This file is used to calculate the SLR/RLR before or after applying the FIR

Appendix2 FIR Tuning

- Tx/Rx
 - Select Tx/Rx path
 - •"Setup output Tx file" will be disable while Rx is select, vice versa
- Equipment
 - Select the equipment
 - •The equipment should be correctly selected or some functions will malfunction
- Boundary type
 - Select the preferred mask

- Estimated LR
 - The LR (loudness ratio) will be automatically estimated after you press "Run" button
- Ideal
 - The "Ideal" means the target curve is the average of the upper limited + lower limited
 - The "Load target file" is the extended feature of the "Ideal"

Appendix2 FIR Tuning

FIR offset

- User can offset FIR gain
- The target is the gain below the 1kHz should be under / equal to 0dB
- Figure at the right side shows the original FIR (blue one), and the FIR which is offset -4dB (red one)
- Note: the SLR/RLR will be changed if offset is set

FIR Taps

 Use 44 (For Narrow Band)or 90(for Wide Band) taps to implement the FIR

