TopAL - Tópicos de Álgebra Linear Lista 3

- 1. Verifique que as seguintes são transformações lineares:
 - (i) $T: \mathbb{R}^3 \to \mathbb{R}^2$, T(x, y, z) = (x y + z, 2x + 3y 7z).
 - (ii) $T: \mathbb{R}^2 \to \mathbb{R}^3$, $T(x, y) = (a_1x + b_1y, a_2x + b_2y, a_3x + b_3y)$ com $a_j, b_j \in \mathbb{R}$.
 - (iii) $T: C^2(\mathbb{R}) \to C(\mathbb{R}), T(f) = f''.$
 - (iv) $T: C([a,b]) \to C^1([a,b]), (Tf)(x) = \int_a^x f(s) ds, x \in [a,b].$
 - (v) $T: \mathbb{R}[t] \to \mathbb{R}, T(p) = p(1).$
 - (vi) $T : \mathbb{R}[t] \to \mathbb{R}[t], (Tp)(t) = p(t+1).$
 - (vii) $T: \mathbb{R}^2 \to M_2(\mathbb{R}),$

$$T(x,y) = \left[\begin{array}{cc} x+y & x-2y \\ 2x-3y & 3x-4y \end{array} \right].$$

- 2. Dê exemplos, quando possível, de transformações lineares que satisfazem:
 - (i) $T: \mathbb{R}^3 \to \mathbb{R}^2$ é sobrejetora.
 - (ii) $T: \mathbb{R}^3 \to \mathbb{R}^2 \text{ com Nu}(T) = \{(0,0,0)\}.$
 - (iii) $T: \mathbb{R}^3 \to \mathbb{R}^2 \text{ com } \text{Im}(T) = \{(0,0)\}.$
 - (iv) $T : \mathbb{R}^2 \to \mathbb{R}^2 \text{ com Nu}(T) = \{(x, y) \in \mathbb{R}^2 | x = -y \}.$
 - (v) $T : \mathbb{R}^3 \to \mathbb{R}^3 \text{ com Nu}(T) = \{(x, y) \in \mathbb{R}^3 | y = -z\}.$
 - (vi) $T: \mathbb{R}^4 \to \mathbb{R}^4$ com Nu(T) = Im(T).
- 3. Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ a reflexão através da reta y = ax, com $a \neq 0$. Calcule T(x,y) e $[T]^{\beta}_{\beta}$, sendo β a base canônica do \mathbb{R}^2 .
- 4. Seja $T:V\to V$ linear, tal que $T^2=T$. Mostre que $V=\mathrm{Nu}(T)\oplus\mathrm{Im}(T)$.
- 5. Determine dois operadores lineares $S,T:\mathbb{R}^2\to\mathbb{R}^2$ tais que ST=0, mas $TS\neq 0.$
- 6. Seja V um espaço vetorial em \mathbb{K} , com dimensão n>1 e base $\beta=\{v_1,\ldots,v_n\}$. Seja $T:V\to V$ definida por

$$T(v_j) = v_{j+1}, \quad j = 1, \dots, n-1 \quad \text{e} \quad T(v_n) = 0.$$

- (i) Calcule $[T]^{\beta}_{\beta}$.
- (ii) Mostre que $T^n = 0$, mas $T^k \neq 0, k < n$.
- 7. Sejam U e W subespaços do espaço vetorial V tais que $V = U \oplus W$. Sendo P_1 e P_2 as projeções dadas por $P_1(v) = u$ e $P_2(v) = w$, onde v = u + w, $u \in U$ e $w \in W$, mostre que
 - (i) $P_1^2 = P_1 \in P_2^2 = P_2$.
 - (ii) $P_1 + P_2 = I$.
 - (iii) $P_1P_2 = P_2P_1 = 0$.

8. Sejam $T, S : \mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$ definidas por

$$T(\xi_1, \xi_2, \xi_3, \dots) = (0, \xi_1, \xi_2, \dots),$$

e

$$S(\xi_1, \xi_2, \xi_3, \dots) = (\xi_2, \xi_3, \xi_4, \dots).$$

Para cada uma, prove ou dê um contra-exemplo de injetividade e sobrejetivada.

9. (i) Encontre $T: \mathbb{R}^2 \to M_2(\mathbb{R})$ linear tal que

$$T(1,1) = \begin{bmatrix} 1 & -1 \\ 2 & 0 \end{bmatrix}$$
 e $T(1,2) = \begin{bmatrix} -2 & 0 \\ 1 & 1 \end{bmatrix}$.

(ii) Seja $T:M_2(\mathbb{R})\to\mathbb{R}^2$ a transformação linear cuja matriz em relação às bases

$$\beta = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\},$$

е

$$\beta' = \{(0,1), (1,1)\}$$

é dada por

$$[T]_{\beta'}^{\beta} = \begin{bmatrix} 2 & 1 & 0 & 1 \\ -1 & 3 & 2 & -1 \end{bmatrix}.$$

Calcule

$$T\bigg(\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\bigg),$$

e determine uma base para Nu(T) e Im(T).

- 10. Seja $T \in \mathcal{L}(V)$, dim $(V) < \infty$. Suponha que $\alpha_0 \neq 0$ e $\alpha_0 I + \alpha_1 T + \alpha_2 T^2 + \cdots + \alpha_m T^m = 0$, onde $\alpha_i \in \mathbb{R}$. Prove que T é inversível.
- 11. Seja $A : \mathbb{R}^3 \to \mathbb{R}^2$, definida por A(x,y,z) = (x,y) e $B : \mathbb{R}^2 \to \mathbb{R}^3$, definida por $B(x,y) = (x,y,\alpha x + \beta y)$, $\alpha, \beta \in \mathbb{R}$. Mostre que $B \circ A = I$. Isto é, B é uma inversa à esquerda de A. O que se pode ser dito sobre as inversas à esquerda de A?
- 12. Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ definida por T(x, y, z) = (3x + z, -2x + y, -x + 2y + 4z). T é inversível? Justifique. Em caso afirmativo, calcule $T^{-1}(x, y, z)$.
- 13. Seja $T \in \mathcal{L}(V)$ tal que $T^3 + T + 3I = 0$, $(\dim(V) = n)$. Mostre que T é inversível e calcule T^{-1} .
- 14. Sejam V e W espaços vetoriais com dimensões n e m, respectivamente. Mostre que
 - (i) Se m < n, então nenhuma $T \in \mathcal{L}(V, W)$ é injetora.
 - (ii) Se m>n, então nenhuma $T\in\mathcal{L}(V,W)$ é sobrejetora.
- 15. Para cada número real θ , seja $T_{\theta} \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$ a transformação linear representada (em relação à base canônica do \mathbb{R}^2) pela matriz

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

Mostre que $T_{\theta} \circ T_{\theta'} = T_{\theta+\theta'}$ e $T_{\theta}^{-1} = T_{-\theta}$.

- 16. Seja $T \in \mathcal{L}(\mathbb{R}_2[t], \mathbb{R}_2[t])$ definida por T(f) = f + f' + f''. Mostre que T é um isomorfismo e calcule $T^{-1}(f)$.
- 17. Seja $T \in \mathcal{L}(V)$ tal que $T^2 = 0$. Mostre que $\mathrm{Im}(t) \subset \mathrm{Nu}(T)$. A recíproca é verdadeira?
- 18. Seja V um espaço de vetorial e W e U subespaços não trivias. Dê exemplos onde
 - (i) W e V/W não tem dimensão finita.
 - (ii) V/W tem dimensão finita, mas V/U não tem dimensão finita.
- 19. Seja V um espaço de dimensão finita sobre \mathbb{K} . Dados $v, w \in V$ dizemos que $v \equiv w \Leftrightarrow \text{ existe } T : V \to V$ linear e inversível tal que Tx = y.
 - (i) Mostre que essa relação é de equivalência.
 - (ii) Se $v \neq 0$ é um elemento de V, então $[x] \neq [0]$.
 - (iii) Existem apenas duas classes de equivalência, a saber: a classe $[0] = \{0\}$ e uma classe contendo todos os elementos não nulos.