Recap

• We have studied the Bayes Classifier last class.

Recap

- We have studied the Bayes Classifier last class.
- We have seen the Bayes classifier for general loss function and proved its optimality.

Recap

- We have studied the Bayes Classifier last class.
- We have seen the Bayes classifier for general loss function and proved its optimality.
- We had also seen many special cases and how one can analytically derive the Bayes classifier for some simple cases of class conditional densities.

An Example

Consider another example of deriving Bayes classifier.

• Suppose we have K classes. The classifier is allowed the option to 'reject' a pattern and this is done by the classifier assigning class K+1 to the pattern.

An Example

Consider another example of deriving Bayes classifier.

• Suppose we have K classes. The classifier is allowed the option to 'reject' a pattern and this is done by the classifier assigning class K+1 to the pattern. Define the loss function by

$$L(i,j) = 0$$
 if $i = j$ and $i,j = 1, \dots, K$
= ρ_m if $i = 1, \dots, K$, and $i \neq j$
= ρ_r if $i = K + 1$

An Example

Consider another example of deriving Bayes classifier.

• Suppose we have K classes. The classifier is allowed the option to 'reject' a pattern and this is done by the classifier assigning class K+1 to the pattern. Define the loss function by

$$L(i,j) = 0$$
 if $i = j$ and $i,j = 1, \dots, K$
= ρ_m if $i = 1, \dots, K$, and $i \neq j$
= ρ_r if $i = K + 1$

Now we want to derive the Bayes classifier in terms of the posterior probabilities.

Example Contd.

Recall that the Bayes classifier is

$$h_B(\mathbf{X}) = \alpha_i$$
 if

$$R(\alpha_i \mid \mathbf{X}) \leq R(\alpha_j \mid \mathbf{X}), \ \forall j.$$

where

$$R(\alpha_i \mid \mathbf{X}) = \sum_{j=0}^{K} L(\alpha_i, C_j) q_j(\mathbf{X})$$

Example Contd.

Recall that the Bayes classifier is

$$h_B(\mathbf{X}) = \alpha_i$$
 if

$$R(\alpha_i \mid \mathbf{X}) \leq R(\alpha_j \mid \mathbf{X}), \ \forall j.$$

where

$$R(\alpha_i \mid \mathbf{X}) = \sum_{j=0}^{K} L(\alpha_i, C_j) q_j(\mathbf{X})$$

• So, we now need to calculate $R(\alpha_i \mid \mathbf{X})$ for different actions, α_i available to the classifier.

• For $\alpha_i = 1, \dots, K$, we have $L(\alpha_i, C_j) = \rho_m$ if $\alpha_i \neq C_j$ and it is zero otherwise.

- For $\alpha_i = 1, \dots, K$, we have $L(\alpha_i, C_j) = \rho_m$ if $\alpha_i \neq C_j$ and it is zero otherwise.
- Hence, $R(i \mid \mathbf{X}) = \sum_{j \neq i} \rho_m q_j(\mathbf{X}) = \rho_m (1 q_i(\mathbf{X}))$.

- For $\alpha_i = 1, \dots, K$, we have $L(\alpha_i, C_j) = \rho_m$ if $\alpha_i \neq C_j$ and it is zero otherwise.
- Hence, $R(i \mid \mathbf{X}) = \sum_{j \neq i} \rho_m q_j(\mathbf{X}) = \rho_m (1 q_i(\mathbf{X}))$.
- Also, $R(K+1\mid \mathbf{X}) = \sum_j \, \rho_r q_j(\mathbf{X}) = \rho_r$

- For $\alpha_i = 1, \dots, K$, we have $L(\alpha_i, C_j) = \rho_m$ if $\alpha_i \neq C_j$ and it is zero otherwise.
- Hence, $R(i \mid \mathbf{X}) = \sum_{j \neq i} \rho_m q_j(\mathbf{X}) = \rho_m (1 q_i(\mathbf{X}))$.
- Also, $R(K+1\mid \mathbf{X}) = \sum_j \, \rho_r q_j(\mathbf{X}) = \rho_r$
- Hence, $h_B(\mathbf{X}) = i$, $1 \le i \le K$, if

- For $\alpha_i = 1, \dots, K$, we have $L(\alpha_i, C_j) = \rho_m$ if $\alpha_i \neq C_j$ and it is zero otherwise.
- Hence, $R(i \mid \mathbf{X}) = \sum_{j \neq i} \rho_m q_j(\mathbf{X}) = \rho_m (1 q_i(\mathbf{X}))$.
- Also, $R(K+1\mid \mathbf{X}) = \sum_j \, \rho_r q_j(\mathbf{X}) = \rho_r$
- Hence, $h_B(\mathbf{X}) = i$, $1 \leq i \leq K$, if

$$\rho_m(1 - q_i(\mathbf{X}) \le \rho_m(1 - q_j(\mathbf{X}), \forall j)$$

and

$$\rho_m(1 - q_i(\mathbf{X}) \le \rho_r$$

$$\rho_m(1 - q_i(\mathbf{X}) \le \rho_m(1 - q_j(\mathbf{X}), \forall j)$$

and

$$\rho_m(1-q_i(\mathbf{X}) \leq \rho_r$$

$$\rho_m(1 - q_i(\mathbf{X}) \le \rho_m(1 - q_j(\mathbf{X}), \forall j)$$

and

$$\rho_m(1 - q_i(\mathbf{X}) \le \rho_r$$

- Thus, $h_B(\mathbf{X}) = i$, $1 \le i \le K$, if
 - (i). $q_i(\mathbf{X}) \geq q_j(\mathbf{X}), \forall j$, and

(ii).
$$q_i(\mathbf{X}) \geq 1 - \frac{\rho_r}{\rho_m}$$
;

else
$$h_B(X) = K + 1$$
.

(i).
$$q_i(\mathbf{X}) \geq q_j(\mathbf{X}), \forall j$$
, and

(ii).
$$q_i(\mathbf{X}) \geq 1 - \frac{\rho_r}{\rho_m}$$
;

else
$$h_B(X) = K + 1$$
.

(i).
$$q_i(\mathbf{X}) \geq q_j(\mathbf{X}), \forall j$$
, and

(ii).
$$q_i(\mathbf{X}) \geq 1 - \frac{\rho_r}{\rho_m}$$
;

else
$$h_B(X) = K + 1$$
.

• If $\rho_r \geq \rho_m$

(i).
$$q_i(\mathbf{X}) \geq q_j(\mathbf{X}), \forall j$$
, and

(ii).
$$q_i(\mathbf{X}) \geq 1 - \frac{\rho_r}{\rho_m}$$
;

else
$$h_B(X) = K + 1$$
.

• If $\rho_r \geq \rho_m$ – Never reject a pattern!

(i).
$$q_i(\mathbf{X}) \geq q_j(\mathbf{X}), \forall j$$
, and

(ii).
$$q_i(\mathbf{X}) \geq 1 - \frac{\rho_r}{\rho_m}$$
;

else
$$h_B(X) = K + 1$$
.

- If $\rho_r \geq \rho_m$ Never reject a pattern!
- If $\rho_r = 0$

(i).
$$q_i(\mathbf{X}) \geq q_j(\mathbf{X}), \forall j$$
, and

(ii).
$$q_i(\mathbf{X}) \geq 1 - \frac{\rho_r}{\rho_m}$$
;

else
$$h_B(X) = K + 1$$
.

- If $\rho_r \geq \rho_m$ Never reject a pattern!
- If $\rho_r = 0$ Always reject the pattern (unless you are absolutely sure)

 Given class conditional densities, the Bayes classifier is easily computed.

- Given class conditional densities, the Bayes classifier is easily computed.
- We may also want to compute the Bayes error.
- Gives us the expected performance. Also lets us decide whether we need better features.

- Given class conditional densities, the Bayes classifier is easily computed.
- We may also want to compute the Bayes error.
- Gives us the expected performance. Also lets us decide whether we need better features.
- For the case of 0-1 loss function, we need to evaluate

$$\int_{\mathbb{R}^n} \min(p_0 f_0(\mathbf{X}), \ p_1 f_1(\mathbf{X})) \ d\mathbf{X}$$

- Given class conditional densities, the Bayes classifier is easily computed.
- We may also want to compute the Bayes error.
- Gives us the expected performance. Also lets us decide whether we need better features.
- For the case of 0-1 loss function, we need to evaluate

$$\int_{\mathbb{R}^n} \min(p_0 f_0(\mathbf{X}), \ p_1 f_1(\mathbf{X})) \ d\mathbf{X}$$

In general, a difficult integral to evaluate.

- Let us consider the simplest case: 2-class problem, $X \in \Re$, normal class conditional densities and 0-1 loss function.
- Assume equal priors. Let $\sigma_0 = \sigma_1 = \sigma$ and $\mu_0 < \mu_1$.

- Let us consider the simplest case: 2-class problem, $X \in \Re$, normal class conditional densities and 0-1 loss function.
- Assume equal priors. Let $\sigma_0 = \sigma_1 = \sigma$ and $\mu_0 < \mu_1$.
- Then $h_B(X) = 0$ if $X < (\mu_0 + \mu_1)/2$.

- Let us consider the simplest case: 2-class problem, $X \in \Re$, normal class conditional densities and 0-1 loss function.
- Assume equal priors. Let $\sigma_0 = \sigma_1 = \sigma$ and $\mu_0 < \mu_1$.
- Then $h_B(X) = 0$ if $X < (\mu_0 + \mu_1)/2$.
- Then, Bayes error is

$$P(\text{error}) = 0.5 \int_{-\infty}^{\frac{\mu_0 + \mu_1}{2}} f_1(X) \ dX + 0.5 \int_{\frac{\mu_0 + \mu_1}{2}}^{\infty} f_0(X) \ dX$$

$$P(\text{error}) = 0.5 \int_{-\infty}^{\frac{\mu_0 + \mu_1}{2}} f_1(X) \ dX + 0.5 \int_{\frac{\mu_0 + \mu_1}{2}}^{\infty} f_0(X) \ dX$$

$$P(\text{error}) = 0.5 \int_{-\infty}^{\frac{\mu_0 + \mu_1}{2}} f_1(X) \ dX + 0.5 \int_{\frac{\mu_0 + \mu_1}{2}}^{\infty} f_0(X) \ dX$$

• Put $Z=(X-\mu_1)/\sigma$ in the first and $Z=(X-\mu_0)/\sigma$ in the second integral.

$$P(\text{error}) = 0.5 \int_{-\infty}^{\frac{\mu_0 + \mu_1}{2}} f_1(X) \ dX + 0.5 \int_{\frac{\mu_0 + \mu_1}{2}}^{\infty} f_0(X) \ dX$$

- Put $Z=(X-\mu_1)/\sigma$ in the first and $Z=(X-\mu_0)/\sigma$ in the second integral.
- Now both f_1 and f_0 become standard normal distribution.

$$P(\text{error}) = 0.5 \int_{-\infty}^{\frac{\mu_0 + \mu_1}{2}} f_1(X) \ dX + 0.5 \int_{\frac{\mu_0 + \mu_1}{2}}^{\infty} f_0(X) \ dX$$

- Put $Z=(X-\mu_1)/\sigma$ in the first and $Z=(X-\mu_0)/\sigma$ in the second integral.
- Now both f_1 and f_0 become standard normal distribution.
- The upper limit in the first integral becomes $(\mu_0 \mu_1)/2\sigma$ and lower limit in second integral becomes $(\mu_1 \mu_o)/2\sigma$.

Now we get

$$P(\mathsf{error}) = 0.5\Phi\left(\frac{\mu_0 - \mu_1}{2\sigma}\right) + 0.5\left[1 - \Phi\left(\frac{\mu_1 - \mu_0}{2\sigma}\right)\right]$$

Now we get

$$P(\text{error}) = 0.5\Phi\left(\frac{\mu_0 - \mu_1}{2\sigma}\right) + 0.5\left[1 - \Phi\left(\frac{\mu_1 - \mu_0}{2\sigma}\right)\right]$$
$$= \Phi\left(\frac{\mu_0 - \mu_1}{2\sigma}\right)$$

Here, Φ is the distribution function of the Standard Normal random Variable.

Now we get

$$P(\text{error}) = 0.5\Phi\left(\frac{\mu_0 - \mu_1}{2\sigma}\right) + 0.5\left[1 - \Phi\left(\frac{\mu_1 - \mu_0}{2\sigma}\right)\right]$$
$$= \Phi\left(\frac{\mu_0 - \mu_1}{2\sigma}\right)$$

Here, Φ is the distribution function of the Standard Normal random Variable.

The quantity $\frac{|\mu_0 - \mu_1|}{\sigma}$ is called *discriminability*.

• In the general case, we need to evaluate

$$P(\mathsf{error}) = \int_{\Re^n} \min(p_0 f_0(\mathbf{X}), \ p_1 f_1(\mathbf{X})) \ d\mathbf{X}$$

• In the general case, we need to evaluate

$$P(\mathsf{error}) = \int_{\mathbb{R}^n} \min(p_0 f_0(\mathbf{X}), \ p_1 f_1(\mathbf{X})) \ d\mathbf{X}$$

A useful inequality here is

$$\min(a, b) \le a^{\beta} b^{1-\beta}, \ \forall \ a, b \ge 0, \ 0 \le \beta \le 1.$$

In the general case, we need to evaluate

$$P(\text{error}) = \int_{\mathbb{R}^n} \min(p_0 f_0(\mathbf{X}), \ p_1 f_1(\mathbf{X})) \ d\mathbf{X}$$

A useful inequality here is

$$\min(a, b) \le a^{\beta} b^{1-\beta}, \ \forall \ a, b \ge 0, \ 0 \le \beta \le 1.$$

• Easy to prove. Suppose a < b

$$a^{\beta}b^{1-\beta} = a^{-1+\beta}b^{1-\beta}a = \left(\frac{b}{a}\right)^{1-\beta}a \ge a = \min(a, b)$$

In the general case, we need to evaluate

$$P(\text{error}) = \int_{\Re^n} \min(p_0 f_0(\mathbf{X}), \ p_1 f_1(\mathbf{X})) \ d\mathbf{X}$$

A useful inequality here is

$$\min(a, b) \le a^{\beta} b^{1-\beta}, \ \forall \ a, b \ge 0, \ 0 \le \beta \le 1.$$

• Easy to prove. Suppose a < b

$$a^{\beta}b^{1-\beta} = a^{-1+\beta}b^{1-\beta}a = \left(\frac{b}{a}\right)^{1-\beta}a \ge a = \min(a, b)$$

Hence we have (for 0-1 loss function)

$$P(\mathsf{error}) \leq p_0^\beta p_1^{1-eta} \int_{\Re^n} f_0^eta(\mathbf{X}) f_1^{1-eta}(\mathbf{X}) \, d\mathbf{X}$$

Suppose $f_0 \sim \mathcal{N}(\boldsymbol{\mu}_0, \Sigma_0)$ and $f_1 \sim \mathcal{N}(\boldsymbol{\mu}_1, \Sigma_1)$.

Suppose $f_0 \sim \mathcal{N}(\boldsymbol{\mu}_0, \Sigma_0)$ and $f_1 \sim \mathcal{N}(\boldsymbol{\mu}_1, \Sigma_1)$. Then we can show

$$\int f_0^{\beta}(\mathbf{X}) f_1^{1-\beta}(\mathbf{X}) d\mathbf{X} = \exp(-K(\beta))$$

where

$$K(\beta) = \frac{\beta(1-\beta)}{2} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0)^t (\beta \Sigma_0 + (1-\beta)\Sigma_1)^{-1} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0)^t + \frac{1}{2} \ln \left(\frac{|\beta \Sigma_0 + (1-\beta)\Sigma_1|}{|\Sigma_0|^{\beta}|\Sigma_1|^{(1-\beta)}} \right)$$

• We thus have: $P(\mathsf{error}) \leq p_0^\beta p_1^{(1-\beta)} \exp(-K(\beta))$

- We thus have: $P(\text{error}) \leq p_0^{\beta} p_1^{(1-\beta)} \exp(-K(\beta))$
- We can choose a β and calculate a bound from this expression.

- We thus have: $P(\text{error}) \leq p_0^{\beta} p_1^{(1-\beta)} \exp(-K(\beta))$
- We can choose a β and calculate a bound from this expression.
- To get a tighter bound we can choose β to minimize $\exp(-K(\beta))$. Gives so called Chernoff bound.

- We thus have: $P(\text{error}) \leq p_0^{\beta} p_1^{(1-\beta)} \exp(-K(\beta))$
- We can choose a β and calculate a bound from this expression.
- To get a tighter bound we can choose β to minimize $\exp(-K(\beta))$. Gives so called Chernoff bound.
- Often this minimization can be difficult.

- We thus have: $P(\text{error}) \leq p_0^{\beta} p_1^{(1-\beta)} \exp(-K(\beta))$
- We can choose a β and calculate a bound from this expression.
- To get a tighter bound we can choose β to minimize $\exp(-K(\beta))$. Gives so called Chernoff bound.
- Often this minimization can be difficult.
- In such cases, a useful choice is $\beta=0.5$. Known as Bhattacharya bound.

- We thus have: $P(\text{error}) \leq p_0^{\beta} p_1^{(1-\beta)} \exp(-K(\beta))$
- We can choose a β and calculate a bound from this expression.
- To get a tighter bound we can choose β to minimize $\exp(-K(\beta))$. Gives so called Chernoff bound.
- Often this minimization can be difficult.
- In such cases, a useful choice is $\beta=0.5$. Known as Bhattacharya bound.
- The bound $\min(a, b) \le a^{\beta}b^{(1-\beta)}$ can always be used; the resulting integral may be complex for other densities. Can use some numerical approximation.

Other Criteria

- The Bayes classifier is optimal for the criterion of risk minimization.
- There can be other criteria.

Other Criteria

- The Bayes classifier is optimal for the criterion of risk minimization.
- There can be other criteria.
- The Bayes classifier depends on both p_i , prior probabilities, and f_i , class conditional densities.
- Suppose we do not want to rely on prior probabilities.
- We may want a classifier that does best against any (or worst) prior probabilities.

- Consider a 2-class case.
- Let $\mathcal{R}_i(h)$ denote the subset of feature space where h classifies into Class-i.

- Consider a 2-class case.
- Let $\mathcal{R}_i(h)$ denote the subset of feature space where h classifies into Class-i.
- Then the Risk integral is

$$R(h) = \int_{\mathcal{R}_1(h)} L(1,0) p_0 f_0(\mathbf{X}) d\mathbf{X} + \int_{\mathcal{R}_0(h)} L(0,1) p_1 f_1(\mathbf{X}) d\mathbf{X}$$

 We can simplify this to get rid of dependence on priors. • Using $p_0 = 1 - p_1$, we get

$$R = \int_{\mathcal{R}_1} L(1,0)p_0 f_0(\mathbf{X}) d\mathbf{X} + \int_{\mathcal{R}_0} L(0,1)p_1 f_1(\mathbf{X}) d\mathbf{X}$$

• Using $p_0 = 1 - p_1$, we get

$$R = \int_{\mathcal{R}_1} L(1,0)p_0 f_0(\mathbf{X}) d\mathbf{X} + \int_{\mathcal{R}_0} L(0,1)p_1 f_1(\mathbf{X}) d\mathbf{X}$$
$$= L(1,0)p_0 \int_{\mathcal{R}_1} f_0(\mathbf{X}) d\mathbf{X} +$$
$$L(0,1)(1-p_0) \int_{\mathcal{R}_0} f_1(\mathbf{X}) d\mathbf{X}$$

Thus we get

$$R = \int_{\mathcal{R}_1} L(1,0) p_0 f_0(\mathbf{X}) d\mathbf{X} + \int_{\mathcal{R}_0} L(0,1) p_1 f_1(\mathbf{X}) d\mathbf{X}$$

$$= L(0,1) \int_{\mathcal{R}_0} f_1(\mathbf{X}) d\mathbf{X} +$$

$$p_0 \left[L(1,0) \int_{\mathcal{R}_1} f_0(\mathbf{X}) d\mathbf{X} - L(0,1) \int_{\mathcal{R}_0} f_1(\mathbf{X}) d\mathbf{X} \right]$$

Minmax Classifier

Consider a classifier such that

$$L(1,0) \int_{\mathcal{R}_1} f_0(\mathbf{X}) d\mathbf{X} = L(0,1) \int_{\mathcal{R}_0} f_1(\mathbf{X}) d\mathbf{X}$$

Minmax Classifier

Consider a classifier such that

$$L(1,0) \int_{\mathcal{R}_1} f_0(\mathbf{X}) d\mathbf{X} = L(0,1) \int_{\mathcal{R}_0} f_1(\mathbf{X}) d\mathbf{X}$$

 For this classifier the risk would be independent of priors.

Minmax Classifier

Consider a classifier such that

$$L(1,0) \int_{\mathcal{R}_1} f_0(\mathbf{X}) d\mathbf{X} = L(0,1) \int_{\mathcal{R}_0} f_1(\mathbf{X}) d\mathbf{X}$$

- For this classifier the risk would be independent of priors.
- Called the minmax classifier
- We are minimizing the maximum possible (over all priors) risk.
- In general, finding the minmax classifier can be analytically complicated.

- Bayes classifier minimizes risk.
- It minimizes some weighted sum of all errors.

- Bayes classifier minimizes risk.
- It minimizes some weighted sum of all errors.
- We may not explicitly want to trade one type of error with another

- Bayes classifier minimizes risk.
- It minimizes some weighted sum of all errors.
- We may not explicitly want to trade one type of error with another
- One criterion: minimize Type-II error under the constraint that Type-I error is below some threshold.
- This is the Neyman-Pearson criterion.

- Bayes classifier minimizes risk.
- It minimizes some weighted sum of all errors.
- We may not explicitly want to trade one type of error with another
- One criterion: minimize Type-II error under the constraint that Type-I error is below some threshold.
- This is the Neyman-Pearson criterion.
- This could be useful in, e.g., biometric applications.

- Type-I error: Wrongly classifying a Class-0 pattern
- Suppose the upper bound on Type-I error is α .
- The Neyman Person classifier can also be expressed as a threshold on the likelihood ratio.

Neyman-Pearson Classifier

• The Neyman-Pearson classifier, h_{NP} , is characterized by: given any $\alpha \in (0,\ 1)$

Neyman-Pearson Classifier

- The Neyman-Pearson classifier, h_{NP} , is characterized by: given any $\alpha \in (0, 1)$
 - 1. $P[h_{NP}(\mathbf{X}) = 1 \mid \mathbf{X} \in \mathbf{C-0}] \leq \alpha$

Neyman-Pearson Classifier

- The Neyman-Pearson classifier, h_{NP} , is characterized by: given any $\alpha \in (0, 1)$
 - 1. $P[h_{NP}(\mathbf{X}) = 1 \mid \mathbf{X} \in \mathbf{C-0}] \leq \alpha$
 - 2. $P[h_{NP}(\mathbf{X}) = 0 \,|\, \mathbf{X} \in \mathbf{C-1}] \leq [P[h(\mathbf{X}) = 0 \,|\, \mathbf{X} \in \mathbf{C-1}]$

for all h such that $P[h(\mathbf{X}) = 1 \mid \mathbf{X} \in \mathbf{C} \cdot \mathbf{0}] \leq \alpha$

Neyman-Person Classifier

• Let the bound on Type-I error be α . Then

$$h_{NP}(\mathbf{X}) = 1 \text{ if } \frac{f_1(\mathbf{X})}{f_0(\mathbf{X})} > K$$

$$= 0 \text{ Otherwise}$$

where K is such that

$$P\left[\frac{f_1(\mathbf{X})}{f_0(\mathbf{X})} \le K \mid \mathbf{X} \in \mathbf{C-0}\right] = 1 - \alpha$$

(We assume $P\{\mathbf{X}: f_1(\mathbf{X}) = Kf_0(\mathbf{X})\} = 0$, for simplicity)

 We now prove that this satisfies the NP Criterion. By construction, we have

$$P[h_{NP}(\mathbf{X}) = 1 \mid \mathbf{X} \in \mathbf{c-0}] = P\left[\frac{f_1(\mathbf{X})}{f_0(\mathbf{X})} > K \mid \mathbf{X} \in \mathbf{c-0}\right]$$
$$= \alpha$$

 We now prove that this satisfies the NP Criterion. By construction, we have

$$P[h_{NP}(\mathbf{X}) = 1 \mid \mathbf{X} \in \mathbf{C-0}] = P\left[\frac{f_1(\mathbf{X})}{f_0(\mathbf{X})} > K \mid \mathbf{X} \in \mathbf{C-0}\right]$$
$$= \alpha$$

 So, we need to show that its Type-II error is less than that for any other classifier satisfying the constraint on Type-I error. Let h be any classifier such that

$$P[h(\mathbf{X}) = 1 \mid \mathbf{X} \in \mathbf{C} \cdot \mathbf{0}] \le \alpha$$

Let h be any classifier such that

$$P[h(\mathbf{X}) = 1 \mid \mathbf{X} \in \mathbf{C} \cdot \mathbf{0}] \le \alpha$$

To complete the proof we have to show that

$$P[h_{NP}(\mathbf{X}) = 0 \mid \mathbf{X} \in \mathbf{C-1}] \le P[h(\mathbf{X}) = 0 \mid \mathbf{X} \in \mathbf{C-1}]$$

Let h be any classifier such that

$$P[h(\mathbf{X}) = 1 \mid \mathbf{X} \in \mathbf{C} \cdot \mathbf{0}] \le \alpha$$

To complete the proof we have to show that

$$P[h_{NP}(\mathbf{X}) = 0 \mid \mathbf{X} \in \mathbf{C-1}] \le P[h(\mathbf{X}) = 0 \mid \mathbf{X} \in \mathbf{C-1}]$$

Or, equivalently

$$P[h_{NP}(\mathbf{X}) = 1 \mid \mathbf{X} \in \mathbf{C-1}] \ge [P[h(\mathbf{X}) = 1 \mid \mathbf{X} \in \mathbf{C-1}]]$$

Consider the Integral

$$I = \int_{\mathbb{R}^n} (h_{NP}(\mathbf{x}) - h(\mathbf{x})) (f_1(\mathbf{x}) - Kf_0(\mathbf{x})) d\mathbf{x}$$

Consider the Integral

$$I = \int_{\Re^n} (h_{NP}(\mathbf{x}) - h(\mathbf{x})) (f_1(\mathbf{x}) - Kf_0(\mathbf{x})) d\mathbf{x}$$

$$= \int_{f_1 > Kf_0} (h_{NP}(\mathbf{x}) - h(\mathbf{x})) (f_1(\mathbf{x}) - Kf_0(\mathbf{x})) d\mathbf{x} +$$

$$\int_{f_1 \le Kf_0} (h_{NP}(\mathbf{x}) - h(\mathbf{x})) (f_1(\mathbf{x}) - Kf_0(\mathbf{x})) d\mathbf{x}$$

We first show that this integral is always non-negative.

• When $f_1(\mathbf{x}) > Kf_0(\mathbf{x})$, we have $h_{NP}(\mathbf{x}) - h(\mathbf{x}) = 1 - h(\mathbf{x}) \ge 0$

• When $f_1(\mathbf{x}) > Kf_0(\mathbf{x})$, we have $h_{NP}(\mathbf{x}) - h(\mathbf{x}) = 1 - h(\mathbf{x}) \geq 0$ which implies $(h_{NP}(\mathbf{x}) - h(\mathbf{x})) (f_1(\mathbf{x}) - Kf_0(\mathbf{x})) \geq 0$

• When $f_1(\mathbf{x}) > Kf_0(\mathbf{x})$, we have $h_{NP}(\mathbf{x}) - h(\mathbf{x}) = 1 - h(\mathbf{x}) \ge 0$ which implies

$$(h_{NP}(\mathbf{x}) - h(\mathbf{x}))(f_1(\mathbf{x}) - Kf_0(\mathbf{x})) \ge 0$$

• Similarly, when $f_1(\mathbf{x}) < K f_0(\mathbf{x})$, we have $h_{NP}(\mathbf{x}) - h(\mathbf{x}) = 0 - h(\mathbf{x}) \le 0$ which implies

$$(h_{NP}(\mathbf{x}) - h(\mathbf{x}))(f_1(\mathbf{x}) - Kf_0(\mathbf{x})) \ge 0$$

• When $f_1(\mathbf{x}) > Kf_0(\mathbf{x})$, we have $h_{NP}(\mathbf{x}) - h(\mathbf{x}) = 1 - h(\mathbf{x}) \ge 0$ which implies

$$(h_{NP}(\mathbf{x}) - h(\mathbf{x}))(f_1(\mathbf{x}) - Kf_0(\mathbf{x})) \ge 0$$

• Similarly, when $f_1(\mathbf{x}) < K f_0(\mathbf{x})$, we have $h_{NP}(\mathbf{x}) - h(\mathbf{x}) = 0 - h(\mathbf{x}) \le 0$ which implies

$$(h_{NP}(\mathbf{x}) - h(\mathbf{x}))(f_1(\mathbf{x}) - Kf_0(\mathbf{x})) \ge 0$$

• This shows that $I \geq 0$.

Thus, we have

$$\int_{\Re^n} (h_{NP}(\mathbf{x}) - h(\mathbf{x}))(f_1(\mathbf{x}) - Kf_0(\mathbf{x})) d\mathbf{x} \ge 0$$

Thus, we have

$$\int_{\mathbb{R}^n} (h_{NP}(\mathbf{x}) - h(\mathbf{x}))(f_1(\mathbf{x}) - Kf_0(\mathbf{x})) d\mathbf{x} \ge 0$$

This implies

$$\int h_{NP}(\mathbf{x}) f_1(\mathbf{x}) d\mathbf{x} - \int h(\mathbf{x}) f_1(\mathbf{x}) d\mathbf{x} \ge$$

$$K \left[\int h_{NP}(\mathbf{x}) f_0(\mathbf{x}) d\mathbf{x} - \int h(\mathbf{x}) f_0(\mathbf{x}) d\mathbf{x} \right]$$

Since h_{NP} and h take values in $\{0, 1\}$,

$$\int_{\Re^n} h_{NP}(\mathbf{x}) f_1(\mathbf{X}) d\mathbf{X} = P[h_{NP}(\mathbf{X}) = 1 \mid \mathbf{X} \in \mathbf{C-1}]$$

and

$$\int_{\mathfrak{D}^n} h(\mathbf{x}) f_1(\mathbf{X}) d\mathbf{X} = P[h(\mathbf{X}) = 1 \mid \mathbf{X} \in \mathbf{C-1}]$$

Since h_{NP} and h take values in $\{0, 1\}$,

$$\int_{\Re^n} h_{NP}(\mathbf{x}) f_1(\mathbf{X}) d\mathbf{X} = P[h_{NP}(\mathbf{X}) = 1 \mid \mathbf{X} \in \mathbf{C-1}]$$

and

$$\int_{\mathbb{R}^n} h(\mathbf{x}) f_1(\mathbf{X}) d\mathbf{X} = P[h(\mathbf{X}) = 1 \mid \mathbf{X} \in \mathbf{C-1}]$$

Similarly for the integrals involving f_0 .

$$P[h_{NP}(\mathbf{X}) = 1 \mid \mathbf{X} \in \mathbf{C-1}] - P[h(\mathbf{X}) = 1 \mid \mathbf{X} \in \mathbf{C-1}] \ge$$
 $K[P[h_{NP}(\mathbf{X}) = 1 \mid \mathbf{X} \in \mathbf{C-0}] - P[h(\mathbf{X}) = 1 \mid \mathbf{X} \in \mathbf{C-0}]]$

$$P[h_{NP}(\mathbf{X}) = 1 \mid \mathbf{X} \in \mathbf{C-1}] - P[h(\mathbf{X}) = 1 \mid \mathbf{X} \in \mathbf{C-1}] \ge$$
 $K[P[h_{NP}(\mathbf{X}) = 1 \mid \mathbf{X} \in \mathbf{C-0}] - P[h(\mathbf{X}) = 1 \mid \mathbf{X} \in \mathbf{C-0}]]$

 But for all h under consideration, the RHS above is non-negative.

$$P[h_{NP}(\mathbf{X}) = 1 \mid \mathbf{X} \in \mathbf{C-1}] - P[h(\mathbf{X}) = 1 \mid \mathbf{X} \in \mathbf{C-1}] \ge$$
 $K[P[h_{NP}(\mathbf{X}) = 1 \mid \mathbf{X} \in \mathbf{C-0}] - P[h(\mathbf{X}) = 1 \mid \mathbf{X} \in \mathbf{C-0}]]$

 But for all h under consideration, the RHS above is non-negative. Hence

$$P[h_{NP}(\mathbf{X}) = 1 \,|\, \mathbf{X} \in \mathbf{C-1}] - P[h(\mathbf{X}) = 1 \,|\, \mathbf{X} \in \mathbf{C-1}] \ge 0$$

$$P[h_{NP}(\mathbf{X}) = 1 \mid \mathbf{X} \in \mathbf{C-1}] - P[h(\mathbf{X}) = 1 \mid \mathbf{X} \in \mathbf{C-1}] \ge$$
 $K[P[h_{NP}(\mathbf{X}) = 1 \mid \mathbf{X} \in \mathbf{C-0}] - P[h(\mathbf{X}) = 1 \mid \mathbf{X} \in \mathbf{C-0}]]$

 But for all h under consideration, the RHS above is non-negative. Hence

$$P[h_{NP}(\mathbf{X}) = 1 \,|\, \mathbf{X} \in \mathbf{C-1}] - P[h(\mathbf{X}) = 1 \,|\, \mathbf{X} \in \mathbf{C-1}] \ge 0$$

This completes the proof.

- Neymann-Pearson classifier also needs knowledge of class conditional densities.
- Like Bayes classifier, it also is based on the ratio $\frac{f_1(\mathbf{X})}{f_0(\mathbf{X})}$.
- In Bayes classifier we say c-1 if $\frac{f_1(\mathbf{X})}{f_0(\mathbf{X})} > \frac{p_0}{p_1} \frac{L(0,1)}{L(1,0)}$.
- In NP, this threshold, K, is set based on the allowed Type-I error.

Example of NP classifier

- Take $X \in \Re$ and class conditional densities normal with equal variance. Let $\mu_0 < \mu_1$.
- Now the NP classifier is: If $X > \tau$ then **c-1** where τ is simply determined by Type-I error bound.
- This is intuitively clear.
- We will now derive this formally.

Example

Now (assuming $\mu_1 > \mu_0$),

$$\frac{f_1(X)}{f_0(X)} = \exp\left(-\frac{(X-\mu_1)^2}{2\sigma^2} + \frac{(X-\mu_0)^2}{2\sigma^2}\right)$$

Example

Now (assuming $\mu_1 > \mu_0$),

$$\frac{f_1(X)}{f_0(X)} = \exp\left(-\frac{(X-\mu_1)^2}{2\sigma^2} + \frac{(X-\mu_0)^2}{2\sigma^2}\right)$$
$$= \exp\left(-\frac{1}{2\sigma^2}[\mu_1^2 - \mu_0^2 - 2X(\mu_1 - \mu_0)]\right)$$

Example

Now (assuming $\mu_1 > \mu_0$),

$$\frac{f_1(X)}{f_0(X)} = \exp\left(-\frac{(X-\mu_1)^2}{2\sigma^2} + \frac{(X-\mu_0)^2}{2\sigma^2}\right)$$

$$= \exp\left(-\frac{1}{2\sigma^2}[\mu_1^2 - \mu_0^2 - 2X(\mu_1 - \mu_0)]\right)$$

$$= \exp\left(\frac{\mu_1 - \mu_0}{2\sigma^2}[2X - (\mu_1 + \mu_0)]\right)$$

ullet We need to find K such that

$$P\left[\ln\frac{f_1(X)}{f_0(X)} \le \ln K \mid X \in \mathbf{C-0}\right] = 1 - \alpha$$

We need to find K such that

$$P\left[\ln\frac{f_1(X)}{f_0(X)} \le \ln K \mid X \in \mathbf{C-0}\right] = 1 - \alpha$$

• From the earlier expression, $\ln \frac{f_1(X)}{f_0(X)} \leq \ln K$ is same as

$$\frac{\mu_1 - \mu_0}{2\sigma^2} [2X - (\mu_1 + \mu_0)] \le \ln K$$

We need to find K such that

$$P\left[\ln\frac{f_1(X)}{f_0(X)} \le \ln K \mid X \in \mathbf{C-0}\right] = 1 - \alpha$$

• From the earlier expression, $\ln \frac{f_1(X)}{f_0(X)} \leq \ln K$ is same as

$$\frac{\mu_1 - \mu_0}{2\sigma^2} [2X - (\mu_1 + \mu_0)] \le \ln K$$

i.e.,
$$X \le \frac{\sigma^2 \ln K}{\mu_1 - \mu_0} + \frac{\mu_1 + \mu_0}{2}$$

Hence we have $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ P[A|X\in {\bf c-0}] \ \ \ \ \ \ \ \ \ P_0[A])$

$$P_0 \left[\ln \frac{f_1(X)}{f_0(X)} \le \ln K \right] = P_0 \left[X \le \frac{\sigma^2 \ln K}{\mu_1 - \mu_0} + \frac{\mu_1 + \mu_0}{2} \right]$$

$$P_{0} \left[\ln \frac{f_{1}(X)}{f_{0}(X)} \le \ln K \right] = P_{0} \left[X \le \frac{\sigma^{2} \ln K}{\mu_{1} - \mu_{0}} + \frac{\mu_{1} + \mu_{0}}{2} \right]$$
$$= P_{0} \left[\frac{X - \mu_{0}}{\sigma} \le \frac{\sigma \ln K}{\mu_{1} - \mu_{0}} + \frac{\mu_{1} - \mu_{0}}{2\sigma} \right]$$

$$P_{0} \left[\ln \frac{f_{1}(X)}{f_{0}(X)} \leq \ln K \right] = P_{0} \left[X \leq \frac{\sigma^{2} \ln K}{\mu_{1} - \mu_{0}} + \frac{\mu_{1} + \mu_{0}}{2} \right]$$

$$= P_{0} \left[\frac{X - \mu_{0}}{\sigma} \leq \frac{\sigma \ln K}{\mu_{1} - \mu_{0}} + \frac{\mu_{1} - \mu_{0}}{2\sigma} \right]$$

$$= \Phi \left(\frac{\sigma \ln K}{\mu_{1} - \mu_{0}} + \frac{\mu_{1} - \mu_{0}}{2\sigma} \right)$$

$$P_{0} \left[\ln \frac{f_{1}(X)}{f_{0}(X)} \le \ln K \right] = P_{0} \left[X \le \frac{\sigma^{2} \ln K}{\mu_{1} - \mu_{0}} + \frac{\mu_{1} + \mu_{0}}{2} \right]$$

$$= P_{0} \left[\frac{X - \mu_{0}}{\sigma} \le \frac{\sigma \ln K}{\mu_{1} - \mu_{0}} + \frac{\mu_{1} - \mu_{0}}{2\sigma} \right]$$

$$= \Phi \left(\frac{\sigma \ln K}{\mu_{1} - \mu_{0}} + \frac{\mu_{1} - \mu_{0}}{2\sigma} \right)$$

We need this quantity to be equal to $(1 - \alpha)$.

Thus we want

$$\Phi\left(\frac{\sigma \ln K}{\mu_1 - \mu_0} + \frac{\mu_1 - \mu_0}{2\sigma}\right) = (1 - \alpha)$$

Thus we want

$$\Phi\left(\frac{\sigma \ln K}{\mu_1 - \mu_0} + \frac{\mu_1 - \mu_0}{2\sigma}\right) = (1 - \alpha)$$

This gives us an expression for $\ln K$ as

$$\frac{\sigma \ln K}{\mu_1 - \mu_0} = \Phi^{-1}(1 - \alpha) - \frac{\mu_1 - \mu_0}{2\sigma}$$

Thus we want

$$\Phi\left(\frac{\sigma \ln K}{\mu_1 - \mu_0} + \frac{\mu_1 - \mu_0}{2\sigma}\right) = (1 - \alpha)$$

This gives us an expression for $\ln K$ as

$$\frac{\sigma \ln K}{\mu_1 - \mu_0} = \Phi^{-1}(1 - \alpha) - \frac{\mu_1 - \mu_0}{2\sigma}$$

or

$$\ln K = \frac{\mu_1 - \mu_0}{\sigma} \Phi^{-1} (1 - \alpha) - \frac{(\mu_1 - \mu_0)^2}{2\sigma^2}$$

We say $X \in \textbf{c-1}$ if $\ln \frac{f_1(X)}{f_0(X)} > \ln K$. That is

We say $X \in \textbf{c-1}$ if $\ln \frac{f_1(X)}{f_0(X)} > \ln K$. That is

$$\frac{\mu_1 - \mu_0}{2\sigma^2} [2X - (\mu_1 + \mu_0)] > \frac{\mu_1 - \mu_0}{\sigma} \Phi^{-1} (1 - \alpha) - \frac{(\mu_1 - \mu_0)^2}{2\sigma^2}$$

We say $X \in \mathbf{c-1}$ if $\ln \frac{f_1(X)}{f_0(X)} > \ln K$. That is

$$\frac{\mu_1 - \mu_0}{2\sigma^2} [2X - (\mu_1 + \mu_0)] > \frac{\mu_1 - \mu_0}{\sigma} \Phi^{-1} (1 - \alpha) - \frac{(\mu_1 - \mu_0)^2}{2\sigma^2}$$

i.e.,
$$2X - (\mu_1 + \mu_0) > 2\sigma \Phi^{-1}(1 - \alpha) - (\mu_1 - \mu_0)$$

PR NPTEL course - p.103/128

We say $X \in \textbf{c-1}$ if $\ln \frac{f_1(X)}{f_0(X)} > \ln K$. That is

$$\frac{\mu_1 - \mu_0}{2\sigma^2} [2X - (\mu_1 + \mu_0)] > \frac{\mu_1 - \mu_0}{\sigma} \Phi^{-1} (1 - \alpha) - \frac{(\mu_1 - \mu_0)^2}{2\sigma^2}$$

i.e.,
$$2X - (\mu_1 + \mu_0) > 2\sigma \Phi^{-1}(1 - \alpha) - (\mu_1 - \mu_0)$$

i.e., $X > \sigma \Phi^{-1}(1 - \alpha) + \mu_0$

PR NPTEL course - p.104/128

Thus NP classifier puts $X \in \mathbf{c-1}$ if

i.e.,
$$X > \sigma \Phi^{-1}(1-\alpha) + \mu_0$$

Thus NP classifier puts $X \in \mathbf{c-1}$ if

i.e.,
$$X > \sigma \Phi^{-1}(1-\alpha) + \mu_0$$

$$i.e., \quad \Phi\left(\frac{X-\mu_0}{\sigma}\right) > (1-\alpha)$$

Thus NP classifier puts $X \in \mathbf{c-1}$ if

i.e.,
$$X > \sigma \Phi^{-1}(1-\alpha) + \mu_0$$

i.e.,
$$\Phi\left(\frac{X-\mu_0}{\sigma}\right) > (1-\alpha)$$

This means the NP classifier puts X in c-1 if $X > \tau$ where $\int_{\tau}^{\infty} f_0(X) \ dX = \alpha$.

- Like the Bayes classifier, the NP classifier also needs knowledge of class conditional densities.
- NP classifier is only for the 2-class case.
- It is actually more important in hypothesis testing problems. (Likelihood ratio test)

Receiver Operating Characteristic (ROC)

- Consider a one dimensional feature space, 2-class problem with a classifier, h(X)=0 if $X<\tau$.
- Consider equal priors, Gaussian class conditional densities with equal variance, 0-1 loss. Now let us write the probability of error as a function of τ .

Receiver Operating Characteristic (ROC)

$$P[\text{error}] = 0.5 \int_{-\infty}^{\tau} f_1(X) dX + 0.5 \int_{\tau}^{\infty} f_0(X) dX$$
$$= 0.5 \Phi\left(\frac{\tau - \mu_1}{\sigma}\right) + 0.5(1 - \Phi\left(\frac{\tau - \mu_0}{\sigma}\right))$$

• As we vary τ we trade one kind of error with another. In Bayes classifier, the loss function determines the 'exchange rate'.

ROC curve

- The receiver operating characteristic (ROC) curve is one way to conveniently visualize and exploit this trade off.
- For a two class classifier there are four possible outcomes of a classification decision – two are correct decisions and two are errors.
- Let e_i denote probability of wrongly assigning class i, i = 0, 1.

ROC curve

Then we have

$$e_0 = P[X \le \tau \mid X \in \mathbf{c-1}]$$
 (a miss) $e_1 = P[X > \tau \mid X \in \mathbf{c-0}]$ (false alarm) $1 - e_0 = P[X > \tau \mid X \in \mathbf{c-1}]$ (correct detection) $1 - e_1 = P[X \le \tau \mid X \in \mathbf{c-0}]$ (correct rejection)

ROC curve

Then we have

$$e_0 = P[X \le \tau \mid X \in \textbf{c-1}] \quad \text{(a miss)}$$

$$e_1 = P[X > \tau \mid X \in \textbf{c-0}] \quad \text{(false alarm)}$$

$$1 - e_0 = P[X > \tau \mid X \in \textbf{c-1}] \quad \text{(correct detection)}$$

$$1 - e_1 = P[X \le \tau \mid X \in \textbf{c-0}] \quad \text{(correct rejection)}$$

- For fixed class conditional densities, if we vary τ the point $(e_1, 1 e_0)$ moves on a smooth curve in \Re^2 .
- This is traditionally called the ROC curve. (Choice of coordinates is arbitrary)

• For any fixed τ we can estimate e_0 and e_1 from training data.

- For any fixed τ we can estimate e_0 and e_1 from training data.
- Hence, varying τ we can find ROC and decide which may be the best operating point.

- For any fixed τ we can estimate e_0 and e_1 from training data.
- Hence, varying \(\tau \) we can find ROC and decide which may be the best operating point.
- This can be done for any threshold based classifier irrespective of class conditional densities.

- For any fixed τ we can estimate e_0 and e_1 from training data.
- Hence, varying \(\tau \) we can find ROC and decide which may be the best operating point.
- This can be done for any threshold based classifier irrespective of class conditional densities.
- When the class conditional densities are Gaussian with equal variance, we use this procedure to estimate Bayes error also.

$$rac{ au - \mu_0}{\sigma} = \Phi^{-1}(1-e_1) = a, \; {
m say}$$
 $rac{ au - \mu_1}{\sigma} = \Phi^{-1}(1-(1-e_0)) = b, \; {
m say}$

$$rac{ au - \mu_0}{\sigma} \ = \ \Phi^{-1}(1-e_1) = a, \ \ {
m say}$$

$$rac{ au - \mu_1}{\sigma} \ = \ \Phi^{-1}(1-(1-e_0)) = b, \ \ {
m say}$$

• Then, $|a-b|=\frac{|\mu_1-\mu_0|}{\sigma}=d$, the discriminability.

$$\frac{\tau - \mu_0}{\sigma} \ = \ \Phi^{-1}(1 - e_1) = a, \ \text{say}$$

$$\frac{\tau - \mu_1}{\sigma} \ = \ \Phi^{-1}(1 - (1 - e_0)) = b, \ \text{say}$$

- Then, $|a-b|=\frac{|\mu_1-\mu_0|}{\sigma}=d$, the discriminability.
- Knowing e_1 , $(1-e_0)$, we can get d and hence the Bayes error. For our given τ we can also get the actuall error probability. We can tweak τ to match the Bayes error.

$$\frac{\tau - \mu_0}{\sigma} \ = \ \Phi^{-1}(1 - e_1) = a, \ \text{say}$$

$$\frac{\tau - \mu_1}{\sigma} \ = \ \Phi^{-1}(1 - (1 - e_0)) = b, \ \text{say}$$

- Then, $|a-b|=\frac{|\mu_1-\mu_0|}{\sigma}=d$, the discriminability.
- Knowing e_1 , $(1-e_0)$, we can get d and hence the Bayes error. For our given τ we can also get the actuall error probability. We can tweak τ to match the Bayes error.

 We can in general use the ROC curve in multidimensional cases also. Consider, for example,

$$h(\mathbf{X}) = \operatorname{sgn}(\mathbf{W}^t \mathbf{X} + w_0).$$

We can use ROC to fix w_0 after learning **W**.

• Bayes classifier is optimal for minimizing risk.

- Bayes classifier is optimal for minimizing risk.
- we can derive Bayes classifier if we know class conditional densities.

- Bayes classifier is optimal for minimizing risk.
- we can derive Bayes classifier if we know class conditional densities.
- There are criteria other than minimizing risk.

- Bayes classifier is optimal for minimizing risk.
- we can derive Bayes classifier if we know class conditional densities.
- There are criteria other than minimizing risk.
- MinMax classifier, Naymann-Pearson Classifier are some such examples.

- Bayes classifier is optimal for minimizing risk.
- we can derive Bayes classifier if we know class conditional densities.
- There are criteria other than minimizing risk.
- MinMax classifier, Naymann-Pearson Classifier are some such examples.
- ROC curves allow us to visualize trade-offs between different types of errors as we vary a threshold.