Digital Logic Design

Lecture 08: Combinational Logic Circuit & Boolean Algebra

Canonical (Standard) POS Function

$$F(A,B,C) = (\overline{A} + \overline{B} + \overline{C})(\overline{A} + \overline{B} + C)(A + \overline{B} + \overline{C})(A + \overline{B} + C)$$

$$= M7 \cdot M6 \cdot M3 \cdot M2$$

$$F(A,B,C) = \prod M(2,3,6,7) = zero - set(2,3,6,7)$$

$$F(A,B,C,D) = (\overline{A} + B + \overline{C} + \overline{D})(A + \overline{B} + \overline{C} + D)(A + B + C + \overline{D})$$
$$= M11 \cdot M6 \cdot M1$$

$$F(A,B,C,D) = \prod M(1,6,11) = zero - set(1,6,11)$$

- Expand the Boolean eqn into a SOP
- Take each product term w/ a missing literal A, "AND" (●) it with (A+Ā)

$$F = \overline{AB} + BC \text{ in } \mathcal{B}^{3}$$

$$\Rightarrow F(A, B, C) = \overline{ABC} + \overline{ABC} + \overline{ABC} + ABC$$

$$= \sum m(0, 1, 3, 7)$$

	Α	В	С	F	
ABC	0	0	0	1 *	0
ABC	0	0	1	1 4	1
ABC	0	1	0	0	2
ABC	0	1	1	1 *	3
ABC	1	0	0	0	
A <u>B</u> C	1	0	1	0	
ABC	1	1	0	0	7
ABC	1	1	1	1	-
				•	

Minterms listed as 1's

$$F = AB + BC \text{ in } \mathcal{B}^{4}$$

$$\Rightarrow F(A, B, C, D) = \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$

$$+ \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$

$$= \sum m(0, 1, 2, 3, 6, 7, 14, 15)$$

$$F = AB + \overline{B}(\overline{A} + \overline{C}) \text{ in } \mathcal{B}^{3}$$

$$\Rightarrow F(A, B, C) = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$= \sum m(0, 1, 4, 6, 7)$$

- Expand Boolean eqn into a POS
 - Use distributive property
- Take each sum term w/ a missing variable A and OR it with A·A

$$F = \overline{AB} + BC \text{ in } \mathcal{B}^{3}$$

$$F = \overline{AB} + BC$$

$$F = (A + \overline{B} + C)(\overline{A} + B + C)(\overline{A} + B + \overline{C})(\overline{A} + \overline{B} + C)$$

$$= \prod M(2,4,5,6)$$

	Α	В	С	F	
ABC	0	0	0	1	
ABC	0	0	1	1	
ABC	0	1	0	0 4	2
ABC	0	1	1	1	
ABC	1	0	0	0 4	4
ABC	1	0	1	0 4	<u> </u>
ABC	1	1	0	0 4	6
ABC	1	1	1	1	

Maxterms listed as 0's

$$F = \overline{AB} + BC \text{ in } \mathcal{B}^{3}$$

$$\Rightarrow F(A,B,C) = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + ABC$$

$$= \sum m(0,1,3,7)$$

	Α	В	С	F	
ABC	0	0	0	1 4	0
ABC	0	0	1	1 4	1
ABC	0	1	0	0	2
ABC	0	1	1	1 4	3
ABC	1	0	0	0	
A <u>B</u> C	1	0	1	0	
ABC	1	1	0	0	7
ABC	1	1	1	1	_

Minterms listed as 1's

$$F = AB + \overline{B}(\overline{A} + \overline{C}) \text{ in } \mathcal{B}^{3}$$

$$\Rightarrow F(A, B, C) = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$= \sum m(0, 1, 4, 6, 7)$$

Interchange Canonical SOP and POS

- For the same Boolean eqn
 - Canonical SOP form is complementary to its canonical POS form
 - Use missing terms to interchange Σ and Π
- Examples
 - $F(A,B,C) = \sum m(0,1,4,6,7)$ Can be re–expressed by
 - F(A,B,C) = Π M(2,3,5)
 Where 2, 3, 5 are the missing minterms in the canonical SOP form

Three- Level and Two- Level Implementation

