बिन पत्ती सब सून

किशोर पँवार

एकलव्य का प्रकाशन

वनस्पति जगत में ताकझाँक - 1

बित पत्नी सब स्त

किशोर पँवार

वनस्पति जगत में ताकझांक - 1

बिन पत्नी सब स्न

Bin Patti Sab Soon

लेखकः किशोर पँवार

विषय सलाहकारः भोलेश्वर दुवे शृंखला सम्पादकः सुशील जोशी चित्रः जावेद सिद्ददीकी, शोभा घारे आवरण आकल्पनः प्रगति शिरभाते

मुखपृष्ठ पर फोटोः (स्पेथीफिल्लम) शुभ्रा भावसार

पिछले आवरण पर फोटोः (साइकस रेवोल्यूटा) किशोर पँवार

पहला संस्करणः जून 2007/3000 प्रतियाँ पराग इनिशिएटिय, सर रतन टाटा ट्रस्ट के वित्तीय सहयोग से विकसित 70 gsm मेपलिथो एवं 164 gsm आर्ट कार्ड (कवर) पर प्रकाशित

ISBN: 978-81-89976-09-5

मृल्यः 35.00 रुपए

प्रकाशकः एकलव्य

ई-7/एच आई जी 453 अरेरा कोंलोनी, भोपाल - 462 016 (म. प्र.) फोन: 0755 - 246 3380 फैक्स: 0755 - 246 1703

www.eklavya.in

सम्पादकीयः books@eklavya.in

किताबें मैंगवाने के लिए: pitara@eklavya.in

कहाँ-क्या

1	विन पत्ती सब सून	01
2	पत्ती एक, रूप अनेक	05
3	प्याज की पत्तियाँ	10
4	कैसे तय होता है पत्तियों का रूप-रंग	12
5	पौधों में भोजन निर्माणः कुछ प्रयोग, कुछ इतिहास	18
6	प्रकाश, कार्बन डाईऑक्साइड और क्लोरोफिल का कमाल	27
7	शिकारी पत्तियाँ	32
8	क्यों नहीं होतीं परजीवी पौधों में पत्तियाँ?	38
9	आने वाली बहार का संकेत देती हैं पत्तियाँ	42
10	ज़रूरी है पतझड़ भी	46

बित पत्री सब स्त

पा की पहली फुहार के साथ धरती पर हरियाली छाने लगती है और सावन-भादों आते-आते कोई जगह ऐसी नहीं बचती जहाँ छोटे-बड़े पौधे न दिखाई दें। यह सारी हरियाली पत्तियों की बदौलत ही तो है। ज़रा सोचिए, पेड़ों पर पत्तियाँ न होतीं तो क्या वे हमेशा ठूँठ ही न दिखाई देते, जैसे वे पतझड़ में दिखाई देते हैं? फूल आने से पहले पत्तियाँ ही पेड़-पौधों का शृंगार होती हैं। पौधों का तो ये अभिन्न अंग हैं ही, हमारे लिए भी इनका महत्व कम नहीं है।

जन्तु मात्र की भोजन सम्बन्धी समस्त आवश्यकताओं की पूर्ति इन्हीं हरी पत्तियों से होती है। पत्तियों के बिना मनुष्य सहित किसी भी जीव-जन्तु का जीवन सम्भव नहीं है। जो भोजन हम करते हैं, उसका निर्माण इन्हीं पत्तियों में होता है। इसे हम अनाज, दाल, सब्ज़ी, फल, तेल, शक्कर तथा अन्य कई रूपों में जानते हैं।

शाकाहारी जन्तु अपना भोजन चारे के रूप में सीघे पत्तियों से प्राप्त करते हैं। हमारे खाने में सब्ज़ियाँ न हों तो क्या मज़ा। पालक, सरसों का साग, चौलाई, मैथी, बथुआ और न जाने क्या-क्या, सब पत्तियाँ ही तो हैं। पत्तीदार सब्ज़ियाँ विटामिनों तथा खनिज लवणों की प्रमुख स्रोत हैं, जिनका सेवन अच्छे स्वास्थ्य के लिए ज़रूरी है। बरसते पानी में भजिए का आनन्द लेना हो तो पोई, अरबी के पत्ते, गोफना और अजवाइन के पत्तों को मला कोई कैसे भूल सकता है!

खाने को स्वादिष्ट तथा पाचक बनाने में भी पत्तियों का योगदान कम नहीं। जैसे तेजपान, पुदीना, कढ़ी पत्ता या मीठा नीम। मीठा नीम नाम से ऐसा लगता है कि इसका हमारे परिचित पेड़ कड़वे नीम से कोई सम्बन्ध है।

परन्तु यह सही नहीं है। यह एक अलग ही जाति का पेड़ है जिसकी रिश्तेदारी सुगन्धित झाड़ी मधुकामिनी से है। हाँ, इसकी पत्तियाँ ज़रूर नीम जैसी दिखती हैं। हरे धनिये की पत्तियों की तो शान ही निराली है। तैयार सब्ज़ियों और पुलाव पर जब तक हरा धनिया न बुरका जाए, मज़ा ही नहीं आता।

तैयार खाना परोसने के लिए भी पत्तियाँ काम आती हैं। भले ही "ढाक के तीन

घर आए मेहमान का स्वागत बिना चाय-पान के अधूरा ही होता है। ताज़गी तथा चुरती से भरपूर असम व दार्जीलिंग के बागानों से देश-विदेश में पहुँचने वाली चाय, थिया साइनेंसिस, पौधे के शीर्ष की तीन कोमल पत्तियाँ हैं। चाय के बाद पान का ज़िक्र न हो तो मेज़बानी का रंग अधूरा ही होता है। हज़ारों लोगों को शहर व गाँव में रोज़गार उपलब्ध कराने वाला पान भी एक बेल का पत्ता ही है। मुगल काल से ही पान शान और शौक का प्रतीक रहा है।

खाने-पीने के अलावा पत्तियाँ तीज-त्यौहार के अवसरों पर घरों को सजाने-सँवारने में भी काम आती हैं। आम, अशोक तथा मौलश्री के पत्तों से बनी बन्दनवार का उपयोग आज भी आम भारतीय घरों में होता है। आम की पत्तियों से बन्दनवार बनाने के पीछे इनकी सुलभ उपलब्धि, सदा हरा बने रहना और कई दिनों तक ताज़ा बने रहना जैसे गुण हैं। औषधीय महत्व के तुलसी के पत्तों से भला कौन अनिभन्न हो सकता है?

पत्तियों का उपयोग फूलों के हार को सजाने तथा गुलदस्ता बनाने में भी होता है। रंग-बिरंगे फूलों से बनी मालाओं के बीच-बीच में करंज व बेशर्म के पत्तों का उपयोग सुन्दरता को बढ़ा देता है। घरों की भीतरी सज्जा में मनी-प्लांट की सुन्दर, चिकनी व गहरी हरी और चितकबरी पत्तियों का अपना ही महत्व है। घर-आँगन को सजाने के साथ-साथ स्वयं का शृंगार भी कम महत्व का नहीं है। जीवन के विभिन्न रंगों में मेहँदी के रंग का अपना विशिष्ट स्थान है। इसके बिना सोलह शृंगार अधूरे हैं। शादी-ब्याह, तीज-त्यौहार या खुशी के अन्य अवसरों पर हाथों में मेहँदी रचाना एक परम्परा है। इसका प्रयोग बिना किसी जाति व धर्म के मेदभाव के खुलकर किया जाता है। आजकल मेहँदी के पत्तों का प्रयोग बालों को रँगने तथा कण्डीशन करने के लिए भी किया जाता है। मेहँदी की पत्तियों का यह गुण उसमें उपस्थित पदार्थ लासोन के कारण होता है। यह प्रोटीन-युक्त पदार्थ जैसे त्वचा, बाल व रेशम से क्रिया कर उन्हें गहरा लाल-कत्थई रंग देता है।

प्राचीन काल में जब कागज़ की खोज नहीं हुई थी, तब ताड़ व भोज-पत्र के पत्ते ही कागज़ का काम करते थे। अनेक प्राचीन ग्रन्थ इन्हीं पत्तों पर लिखे गए हैं। बीड़ी शुष्क, पतझड़ी जंगलों के महत्वपूर्ण वृक्ष तेन्दू के पत्ते से बनाई जाती है। तेन्दू के वृक्ष मध्यप्रदेश के अलावा बिहार, महाराष्ट्र तथा समस्त प्रायद्वीपों में मिलते हैं। इस पत्ते के महत्वपूर्ण होने का कारण है इसकी विशिष्ट गन्ध, लचक तथा लम्बे समय तक खराब न होने का गुण। इन्हीं विशेषताओं के कारण इसे बीड़ी बनाने के काम में लिया जाता है। और इस बीड़ी में भरा तम्बाकू भी तो एक पत्ती ही है, जिसे पीकर और खाकर लोग अपनी सेहत के साथ खिलवाड़ करते हैं।

लेकिन पेड़-पौधों पर पत्तियाँ इसलिए नहीं लगतीं कि आप उनसे बन्दनवार सजा लें या हरी पत्तेदार सब्ज़ियाँ प्राप्त करें। पत्तियाँ पौधों का महत्वपूर्ण अंग हैं और उनके जीवन में नाना प्रकार की भूमिकाएँ निभाती हैं। सबसे प्रमुख

भूमिका तो भोजन निर्माण की है, जो न सिर्फ इन पत्तियों के मालिक पेड़-पौधों के लिए बल्कि लगभग समस्त जीवधारियों के जीवन का आधार है। भोजन निर्माण के साथ-साथ कुछ पौधों की पत्तियाँ रूप बदलकर शिकारी भी बन जाती हैं और जीव-जन्तुओं का शिकार करके भोजन जुटाने का काम भी करती हैं। इसके अलावा पत्तियाँ वाष्पोत्सर्जन (transpiration) और गैसों के आदान-प्रदान जैसे ज़रूरी काम करती हैं। आपको यह जानकर आश्चर्य होगा कि पौधों पर फूल खिलाने में भी पत्तियाँ एक अहम भूमिका अदा करती हैं। और गाहे-बगाहे पत्तियाँ पौधों की रक्षा करने, उनके लिए सहारा खोजने वगैरह जैसे विविध कार्य भी करती हैं।

सूखकर गिरने के बाद भी इनका महत्व कम नहीं होता। सूखी पत्तियों से उम्दा किस्म की खाद बनती है, जिससे अन्य पौधों को ढेर सारे खनिज लवण तथा अन्य पोषक तत्व मिलते हैं। यानी पत्तियाँ मरने के बाद भी काम आती हैं। पत्तियों के इतने सारे उपयोग और महत्व जान लेने के बाद यह कहना सोलह आने सच है कि "बिन पत्ती सब सून"।

पत्नी एक, रूप अनेक

तियों के दो प्रमुख कार्य हैं — पौधे के लिए भोजन बनाना और वाष्पोत्सर्जन करना। भोजन बनाने की कुछ बात तो हो ही चुकी है और कुछ हम आगे विस्तार से करेंगे। रहा वाष्पोत्सर्जन। जड़ों से सोखा गया पानी जब पत्तियों तक पहुँचता है, तो स्टोमेटा से वाष्प के रूप में उड़ता रहता है। इस प्रक्रिया को वाष्पोत्सर्जन कहते हैं। यह उड़ता हुआ पानी पौधे को शीतलता प्रदान करता है। इसी वाष्पोत्सर्जन के कारण जड़ों तक एक खिंचाव पैदा होता है, जो पानी को ऊपर चढ़ाने में एक महत्वपूर्ण भूमिका निभाता है। इसकी वजह से जड़ें और पानी खींचती हैं। मगर सूखे, गर्म मौसम में कभी-कभी यह एक अच्छा-खासा नुकसान साबित होता है जिससे पौधे मुर्झाकर सूख भी जाते हैं। इन बातों को ध्यान में रखकर यह भी कहा जाता है कि वाष्पोत्सर्जन एक अनिवार्य बुराई है!

भोजन बनाने और वाष्पोत्सर्जन के अलावा पौघों की पत्तियाँ अन्य काम भी करती हैं। कुछ पत्तियाँ बनेबनाए भोजन को आड़े वक्त के लिए संग्रह करके भी रखती हैं, जैसे प्याज़ व लहसुन। कहीं पत्तियाँ किसी नाजुक पौधे को मज़बूत सहारे पर चढ़ने में मदद करती हैं, कहीं ये अपना हरे रंग का चोला उतारकर रंग-बिरंगी हो जाती हैं और कीटों को अपनी ओर आकर्षित करती हैं। बोगेनविलिया और लाल पत्ता (पोइन्सेटिया) की पत्तियाँ यही करती हैं। और कहीं-कहीं ये काँटों और कुण्डलीदार प्रतानों का रूप भी ले लेती हैं। आइए वनस्पत्ति जगत की कुछ ऐसी ही विचित्र, बहुरूपी पत्तियों की बात करें।

संयुक्त और सरल पत्तियाँ

पत्तियाँ दो प्रकार की होती हैं - सरल व संयुक्त। इनकी पहचान काफी आसान है। पत्ती और तने के जुड़ाव बिन्दु पर अक्सर एक कलिका नज़र आती है। यदि कलिका के बाजू से लगी पत्ती एक ही फलक से बनी है, तो वह सरल पत्ती है। मगर यदि पत्ती एक से अधिक फलकों में बँटी हुई है तो वह संयुक्त पत्ती है।

शुरुआत मटर और जंगली मटर से करते हैं। मटर की संयुक्त पत्ती के कुछ ऊपरी पत्रक प्रतान में बदल जाते हैं। वहीं जंगली मटर में पूरी पत्ती ही प्रतान-नुमा रचना में बदलकर स्प्रिंग के समान कुण्डलित हो जाती है। ये प्रतान किसी आधार को छूते ही उससे लिपटकर मटर की बेल को चढ़ने में सहायता देते हैं। अधिकांश मरुस्थलीय पौधों में पत्तियाँ नुकीले, चुभने वाले काँटों में बदल जाती हैं जो चरने वाले जन्तुओं से पौधे की रक्षा करते हैं। ये काँटे पौधे से अधिक मात्रा में पानी को वाष्प के

भी रोकते हैं। भी रोकते हैं। नागफनी में जो मोटी, माँसल पत्ती जैसी रचना दिखाई देती है, वह वास्तव में उसका तना होता है। यदि आप ध्यान से देखें तो पता चलता है कि ये एक के ऊपर एक लगे होते हैं और इनमें कहीं से भी पत्तीनुमा रचनाएँ निकल आती हैं। परन्तु असल में

पत्तियों पर पत्तियाँ नहीं लगतीं। अतः ये जो पत्तियों जैसी रचनाएँ दिखती हैं, ये वस्तुतः नागफनी का तना है जिस पर फूल भी लगते हैं। फूल लगना भी इस बात का प्रमाण है कि ये पत्तियाँ नहीं तने हैं, क्योंकि फूल कभी पत्तियों पर नहीं लगते। नागफनी की पत्तियाँ तो जल्दी ही झड़ जाती हैं और कुछ काँटों में बदल जाती हैं। हिमालय पर पाई जाने वाली झाड़ी बारबेरी में पूरी पत्तियाँ काँटों में बदल जाती हैं। असम में बहुतायत से पाए जाने वाले पौधे बिगनोनिया में पत्तियाँ संयुक्त होती हैं। इसके आगे के तीन पर्णक तेज़, नुकीले अंकुशों का रूप धारण कर लेते हैं जो बिल्ली के पँजों की तरह तीखे होते हैं। ये पेड़ की छाल या दीवार पर चिपककर बेल को ऊपर चढ़ने में सहायता देते हैं। इस पर बहुत ही सुन्दर नारंगी-पीले रंग के फूल खिलते हैं जिन पर शकरखोरे (सनबर्ड) को मण्डराते हुए देखा जा सकता है।

कुछ पौधों में तो पत्तियाँ रूप बदलकर हूबहू जग के आकार की हो जाती हैं, जैसे डिस्चीड़िया। यह एक उपरिरोही पौधा है जो अन्य पौधों पर लगा रहता है। इसका भूमि से कोई सम्पर्क नहीं होता। अतः पौधे की पानी की ज़रूरत को पूरा करने के लिए

सुन्दर नारंगी-पीले फूल पर शकरखोरा

इसकी कुछ पत्तियाँ जग-नुमा हो जाती हैं। पौधे पर सामान्य पत्तियों के साथ यहाँ-वहाँ लटके ये जग बरसाती पानी के संग्रह का काम करते हैं। इन जगों में पौधे के तने से निकलने वाली जड़ें रहती हैं जो आवश्यकतानुसार पानी सोखती रहती हैं।

इस तरह हम देखते हैं कि प्रकृति में पत्तियों ने पौधों की ज़रूरतों को पूरा करने के लिए तरह-तरह के रूप धारण किए हैं। काँटों से लेकर कलश तक।

बहुरूपियों की पहचान

पत्तियाँ सदैव हरी और चपटी हों तथा तना हमेशा गोल-मटोल, यह ज़रूरी नहीं है। कई बार पत्तियाँ कई अन्य रूप धर लेती हैं। ऐसे में यह पहचानना मुश्किल हो जाता है कि यह पत्ती का ही बदला हुआ रूप है। जैसे कई पौधों में काँटे, कई पौधों में प्रतान, तो कुछ पौधों में कलश का रूप धर लेती हैं ये पत्तियाँ।

पत्ती और तने के इस तरह के रूपान्तरण को पहचानने के दो तरीके हैं। एक है स्थिति का और दूसरा है आन्तरिक रचना का। स्थिति-आधारित तरीके में यह देखा जाता है कि वह रचना पौधे में किस जगह से निकलती है। पौधों में विभिन्न अंगों के निकलने का स्थान निश्चित होता है। जैसे पत्तियाँ तने या शाखाओं पर लगती हैं। उनके लगने का तरीका भी विशिष्ट होता है। पत्ती कभी अकेली होती है, जैसे पीपल और गुड़हल में, तो कभी जोड़ी में, जैसे अकाव, तुलसी और पुदीने में। पत्ती जहाँ भी तने या शाखा से जुड़ी रहती है वहाँ एक कलिका पाई जाती है जिसे कक्ष कलिका कहते हैं। नई शाखाएँ और पुष्प कलिकाएँ यहीं से निकलती हैं। हमें मालूम है कि पत्ती के कक्ष में कक्षस्थ कलिका होती है जिससे नई शाखा बनती है। परन्तु किसी पौधे में कक्षस्थ कलिका की जगह हमें काँटा लगा दिखता है तो हम कह सकते हैं कि यह काँटा एक कलिका का रूपान्तरण है। इसका उदाहरण ड्रेन्टा में देखा जा सकता है। इसी तरह राखी फूल के पौधे के प्रतान भी

पत्तियों की जमावट

कक्षस्थ कलिका, जिससे नई शाखा बनती है, का रूपान्तरण हैं। इस प्रकार से स्थिति के आधार पर किसी अंग की हकीकत का पता लगाया जा सकता है।

रोचक बात यह है कि पौधों में काँटे सिर्फ पत्तियों के परिवर्तित रूप नहीं होते। कई बार कलियाँ तो कई बार शाखाएँ भी काँटे का रूप ले लेती हैं। देखने में तो ये सारे काँटे एक-से दिखते हैं और सम्भवतः एक ही तरह का काम भी करते हैं, यानी सुरक्षा का। मगर मूल रूप में ये अलग-अलग रचनाएँ हैं। ऐसे अंगों को समरूपी (analogous) अंग कहते हैं। इसी तरह सभी प्रतान समरूपी संरचनाएँ हैं चाहे वे पत्ती, कक्षस्थ कलिका या तने से बने हों।

दूसरी ओर कई बार ऐसा भी होता है कि पत्ती ऐसे रूपों में रूपान्तरित होती है जो एक-दूसरे से बिलकुल अलग दिखते हैं। जैसे मटर का प्रतान पत्ती का रूपान्तरण है और नागफनी के काँटे भी पत्ती के रूपान्तरण हैं। ऐसी रचनाएँ दिखने में और कार्य में तो अलग-अलग होती हैं, मगर एक ही मूल अंग से तैयार हुई हैं। अतः इन्हें समजात (homologous) संरचनाएँ कहते हैं। यानी जो रचनाएँ उत्पत्ति के आधार पर समान हों किन्तु रचना और कार्य में भिन्नता रखती हों, वे समजात होती हैं। इस तरह मटर के प्रतान, नागफनी के कण्टक (spines) और बारबेरिस के कण्टक सभी पत्तियों के रूपान्तरण हैं और आपस में समजात हैं।

राखी का प्रतान

प्याज की पतियाँ

बाज़ार से नाना प्रकार की जो सब्ज़ियाँ खरीदते हैं, प्याज भी उनमें से एक है। सब्ज़ियों में कुछ पत्तियाँ होती हैं, जैसे पालक और मैथी; कुछ फल होती हैं, जैसे टमाटर और मटर; और कुछ जड़ें, जैसे गाजर और मूली। परन्तु आलू और प्याज जैसी सब्ज़ियों को किस श्रेणी में रखें? प्याज क्या है – जड़, तना, फल या कुछ और?

प्याज मूलतः मध्य एशिया और भूमध्य सागरीय क्षेत्रों का निवासी है। वनस्पति विज्ञानी इसे लिलिएसी कुल के अन्तर्गत ऐलियेम सेपा के नाम से पुकारते हैं। वनस्पति विज्ञान की दृष्टि से यह एक ज़मीनी कली है जिसे बल्ब कहते हैं। लहसुन इसका करीबी रिश्तेदार है। इसके आधार पर एक छोटा-सा तना एक डिस्क के रूप में पाया जाता है। प्याज खाते समय इसे हम काटकर फेंक देते हैं। इस छोटे से तने पर पर्व सन्धियाँ (यानी वे जगहें जहाँ से पत्तियाँ निकलती हैं) बहुत पास-पास होती हैं, और पर्व (यानी दो सन्धियों के बीच की जगह) बहुत छोटे। पर्व से विशेष प्रकार की पतली, झिल्लीदार, छोटी-छोटी पत्तियाँ निकलती हैं जो अग्रस्थ और कक्षीय कली को सुरक्षित रखती हैं।

वैसे तो शल्क-पत्रों का मुख्य कार्य कलिका की सुरक्षा है। परन्तु कभी-कभी ये माँसल होकर भोजन और पानी के संग्रह का कार्य भी करते हैं। ऐसा ही प्याज में होता है। प्याज के शल्क-पत्र गोलाकार होते हैं जो एक-दूसरे को पूर्णतः घेरे रहते हैं। प्याज का बल्ब सफेद, लाल, ताम्बई या गुलाबी रंग के एक पतले आवरण से ढँका रहता है। इसे ट्यूनिका कहते हैं। आपको याद होगा कि ट्यूनिक एक वस्त्र को भी कहते हैं। प्याज में शल्क-पत्र दो तरह के होते हैं। बाहर के एक-दो पत्र सूखे, पतली झिल्ली जैसे और अन्दर वाले गोल, छल्लेदार, माँसल, रसीले, खाने योग्य।

दरअसल ऊपर आया यह वर्णन किताबी है और अपने आप में अस्पष्ट भी। मसलन इससे यह स्पष्ट नहीं होता कि प्याज की जो पत्तियाँ हम खाते हैं वे माँसल शल्क-पत्र हैं या सामान्य हरी पत्तियाँ। इस बात को जाँचने के लिए मैं बाज़ार से एक ताज़ा पत्तेदार प्याज ले आया। मैंने उसकी ऊपरी हरी पत्ती को खींचकर हटाया तो वह नीचे आकर अलग हुई। यानी ऊपरी हरी पत्ती का निचला भाग ही भोजन संग्रह कर फूल जाता है, न कि शल्क-पत्र। अन्य पुस्तकें और विश्व-कोष देखने पर इस अवलोकन की पुष्टि हुई।

प्याज की एक और खासियत इसके बीजों में है। अन्य एक-बीजपत्री पौधों, जैसे गेहूँ, ज्वार, मक्का आदि, के बीज बोने पर उनके बीजपत्र ज़मीन के ऊपर नहीं आते। परन्तु प्याज इसका अपवाद है। प्याज का अंकुरण होते समय बीजपत्र मिट्टी के ऊपर आते हैं, इमली के बीजपत्रों के समान। इस तरह के अंकुरण को एपिजियल (epigeal) अंकुरण कहते हैं। दूसरे किस्म का अंकुरण हायपोजियल (hypogeal) कहलाता है, जिसमें बीजपत्र ज़मीन के अन्दर ही रहते हैं।

प्याज की सामान्य गन्ध डायप्रोपाइल डायसल्फाइड के कारण आती है। एक और बात – प्याज काटने पर जो आँसू आते हैं, वे इसकी पत्तियों में उपस्थित एक वाष्पशील, गन्धक-युक्त तेल के कारण हैं जिसे प्रोपेनथायोल कहते हैं। मज़ेदार बात यह है कि उपद्रव या भीड़ आदि पर काबू पाने के लिए पुलिस द्वारा छोड़ी जाने वाली अश्रुगैस के आविष्कार की प्रेरणा भी प्याज से ही मिली थी। महँगे प्याज खरीदने से आने वाले आँसुओं से तो नहीं बचा जा सकता है, परन्तु इसे काटने पर निकलने वाले आँसुओं से बचने का एक आसान तरीका उपलब्ध है। प्याज काटते समय प्याज का एक छिलका सिर पर रख प्याज काटिए, आँसू नहीं आएँगे।

कटा प्याज

कैसे तय होता है पतियों का रूप-रंग

तियाँ पौधों का प्रमुख हिस्सा हैं यह हम जान चुके हैं। और यही वह भाग है जो पर्यावरणीय बदलावों को सबसे ज़्यादा झेलता है, और इससे प्रभावित होता है। पेड़ों की पत्तियाँ ही सबसे पहले किसी स्थान विशेष की वायु में हो रहे परिवर्तन की सूचना देती हैं। विशेषज्ञ पत्तियों पर उभरी इन सूचनाओं को पढ़कर वायु प्रदूषण की स्थिति और प्रदूषकों के प्रकार का पता लगा पाते हैं।

फूलधारी पेड़-पौधों की एक विशेषता उनकी पत्तियों के आकार और प्रकार में विभिन्नता है। यह विभिन्नता आनुवंशिक है, इसलिए पत्तियों का आकार पौधों के वर्गीकरण में एक महत्वपूर्ण आधार साबित हुआ है – वंश अर्थात जीनस से कुल यानी फैमिली के स्तर तक। जैसे गुलमोहर, अमलतास, बबूल और इमली के पेड़ों का आकार-प्रकार अलग-अलग है, परन्तु उनकी पत्तियों को देखकर कहा जा सकता है कि ये एक ही कुल के सदस्य होने चाहिए, जिसका एक लक्षण संयुक्त पत्तियाँ हैं।

वैसे तो अधिकांश पत्तियाँ हरी होती हैं, पर चितकबरी या अन्य रंगों की पत्तियाँ भी कम नहीं हैं। क्रोटन और कोलियस इनके अच्छे उदाहरण हैं। खैर, पत्ती बाहर से कैसी भी दिखाई दे, उसमें कुछ हरा पदार्थ तो होता ही है जिसे क्लोरोफिल कहते हैं। यही वह पदार्थ है जो पौधों की पत्तियों को भोजन बनाने में सक्षम बनाता है। कई बार अन्य रंगों की उपस्थिति में हरा रंग छिप जाता है।

पत्तियों के माप में अन्तर भी गज़ब का है - केज़ुराइना की अतिसूक्ष्म, शल्क-नुमा पत्तियों से लेकर ताड़, केले और नारियल की विशालकाय पत्तियों

तक। ट्रेवलर्स पाम की पत्तियाँ एक-दो नहीं, पूरी छह मीटर लम्बी होती हैं। इसे काटने पर एक स्वादिष्ट पेय पदार्थ मिलता है। तभी तो यह नाम मिला – ट्रेवलर्स पाम, यानी यात्रियों की प्यास बुझाने वाला ताड़।

जैसा देश वैसा भेष

नम एवं ठण्डे और छायादार स्थानों पर पाए जाने वाले पेड़-पौधों की पत्तियाँ पतली, बड़ी और अधिकतर पंख-नुमा होती हैं, जैसे फर्न और ट्रीफर्न। वहीं तेज़ धूप व प्रचुर वर्षा वाले स्थानों की पत्तियाँ चौड़ी, मोटी और कटी-फटी न होकर पूर्ण किनारे वाली होती हैं, जैसे बरगद, पीपल, आम और साल या सागौन। जहाँ धूप की तेज़ी तो बरकरार हो, परन्तु पानी की कमी हो जाए तो पत्तियाँ अतिसूक्ष्म या सिर्फ काँटों के रूप में होती हैं। रेगिस्तानी इलाकों में ऐसी ही वनस्पतियाँ मिलती हैं। यानी जैसी आबोहवा, वैसी पत्तियाँ। पर यह कैसे तय होता है कि किस पौधे की पत्तियाँ कैसी होंगी?

हम जानते हैं कि ये दुनिया भौतिक और जैविक दोनों रूपों से बड़ी जटिल है। यहाँ कई तरह के जीव-जन्तु और वनस्पतियाँ विकसित हुई हैं। इन जीवों में निश्चित आनुवंशिक गुण होते हैं। उन्हीं गुणों के अनुसार उनका आकार-प्रकार व रूप-रंग तय होता है। परन्तु इस आनुवंशिक निश्चितता के अलावा इन जीवों में वैकासिक लचीलापन (developmental elasticity) भी पाया जाता है। यह एक ऐसा गुण है जिसके कारण आनुवंशिक रूप से समान होते हुए भी जीव पर्यावरण के प्रभाव से भिन्न हो जाते हैं। ऐसा लचीलापन जन्तुओं की तुलना में पौधों में ज्यादा होता है। आइए कुछ उदाहरण देखें।

कई बार एक ही पौधे की निचली और ऊपरी पत्तियों में भी इतना अन्तर होता है कि यदि उन्हें तोड़कर पास-पास रख दिया जाए तो यह पता लगाना मुश्किल हो जाता है कि वे एक ही पौधे की पत्तियाँ हैं। उदाहरण के लिए टिकोमा या लाल पत्ता देखें। टिकोमा पीले फूल वाली एक सजावटी झाड़ी है। इसमें निचली पत्तियाँ सरल एवं ऊपरी संयुक्त होती हैं। ऊपर की पत्तियों में तो पाँच से ज़्यादा पत्रक देखे जा सकते हैं। पता लगा है कि पत्तियों में यह अन्तर पौधे की उम्र से जुड़ा है।

जो पौधे छायादार स्थानों या घने जंगलों में पेड़ों की छाया तले उगते हैं,

उनकी पत्तियाँ पतली और अधिक क्षेत्रफल वाली होती हैं। इन पत्तियों में अपेक्षाकृत ज़्यादा क्लोरोफिल होता है जिससे ये उपलब्ध प्रकाश का अधिकाधिक इस्तेमाल कर पाती हैं। इन पत्तियों में प्रति इकाई क्षेत्रफल में स्टोमेटा की संख्या कम होती है। क्षेत्रफल अधिक और क्लोरोफिल ज़्यादा होने के कारण प्रकाश की कम मात्रा में भी इनका काम चल जाता है। छाया में उगाए गए पाँधे की पत्तियाँ उसी जाति के सीधे प्रकाश में उगाए पाँधे की तुलना में ज़्यादा पतली, चौड़ी, आन्तरिक रूप से अधिक हवादार और कम स्टोमेटा वाली होती हैं।

पत्तियों के आकार-प्रकार पर दिन की लम्बाई का भी प्रभाव पड़ता है। खटूम्बरा या पत्थरचट्टा (ब्रायोफिल्लम) के पौधों में सर्दियों यानी छोटे दिन वाली अवस्था में छोटी, गूदेदार और चिकने किनारे वाली पत्तियाँ आती हैं। इन्हीं पौधों में गर्मियों के बड़े दिनों में आने वाली

संयुक्त पत्तियाँ बड़ी, पतली और कटे किनारों वाली होती हैं।

कभी-कभी एक ही पौघे में नीचे की पुरानी, सर्दी वाली सरल पत्तियाँ और गर्मी में आई हुईं संयुक्त पत्तियाँ देखी जा सकती हैं। गर्मियों में ही इस पर सुन्दर घण्टी-नुमा फूल भी लगते हैं।

एक ही पौधे में अलग-अलग तरह की पत्तियों का पाया जाना पर्ण-विभिन्नता (heterophylly) कहलाता है। यानी आनुवंशिक रूप से समान होने पर भी इन पौधों की पत्तियों में पर्यावरणीय कारणों से भिन्नता आ जाती है। इस तरह के उदाहरण जलीय पौधों में ज़्यादा देखने में आते हैं, जैसे सेजिटेरिया, लिम्नोफिला हिटरोफिला तथा रेननकुलस एक्वाटिलस आदि।

सेजिटेरिया यानी बाणपत्र की पानी में डूबी पत्तियाँ तो रिबन-नुमा होती हैं। परन्तु इसकी लम्बाई बढ़ने या पानी का तल कम होने पर नई पत्तियाँ पानी की सतह के ऊपर आ जाती हैं और उनका फलक भाले की नोक जैसा हो जाता है। पानी के अन्दर और बाहर की पत्तियों को अलग-अलग देखने पर यह कहना नामुमकिन ही है कि ये दोनों पत्तियाँ एक ही पौधे की हैं।

पहले ऐसा माना जाता था कि पत्तियों के कटे-फटे या रिबन-नुमा होने का कारण उनका पानी में डूबे रहना है। जबकि वास्तविकता यह है कि ऐसा प्रकाश की मात्रा में परिवर्तन के कारण होता है। पानी के नीचे प्रकाश कम पहुँच पाता है, इसीलिए पत्तियाँ रिबन-नुमा हो जाती हैं। देखा गया है कि बाणपत्र को मिट्टी में उगाकर उस पर छाया कर दें तो पानी के बाहर भी इसकी सारी पत्तियाँ रिबन-नुमा ही आती हैं। मतलब यह कि इन पौधों के जीनरूप (genotype) में दोनों प्रकार की पत्तियों के संकेत मौजूद हैं। यह उनके पर्यावरण पर निर्भर करता है कि पत्ती में कब, कौन-सा रूप (phenotype) प्रकट होकर सामने आएगा। यानी यहाँ रूप परिवर्तन मूलतः पर्यावरण के प्रभाव से हो रहा है।

तरह-तरह के सायेनिया

निकट सम्बन्धित पौधों में पत्तियों की बनावट में पाए जाने वाले अन्तर सम्भवतः अलग प्रक्रिया के कारण होते हैं। पत्तियों में इस प्रकार की विभिन्नता का एक बेहतरीन उदाहरण सायेनिया वंश में देखा जा सकता है। यह लोबेलिएसी कुल का पौधा है, जो केवल हवाई द्वीप पर मिलता है। इसकी लगभग 60 प्रजातियाँ हैं जो आपस में एक-दूसरे से काफी भिन्न हैं, विशेषकर पत्तियों की रचना एवं आकार के सन्दर्भ में।

मसलन सायेनिया लाइनरीफोलिया शुष्क, तेज़ घूप वाले स्थानों पर उगता है। इसकी पत्तियाँ सँकरी सुई जैसी होती हैं। जबिक पंख जैसी पत्तियों वाले सायेनिया नम और छायादार स्थानों पर मिलते हैं, जैसे सायेनिया एस्प्लेनीफोलिया। ऐसी पर्यावरणीय परिस्थितियों में ये पतली और बड़ी-बड़ी पंखदार पत्तियाँ ज़्यादा अच्छी तरह से प्रकाश अवशोषित कर सकती हैं। इस तरह यह इसका पर्यावरण के प्रति अनुकुलन है।

सायेनिया जैसे अवलोकनों के कारण 1930 तक कई वैज्ञानिक यही मानते थे कि जो भी विभिन्नता पेड़-पौधों के रूप-रंग और आकार में दिखाई देती है, उसके लिए मुख्य रूप से पर्यावरण ही ज़िम्मेदार है। इसमें आनुवंशिक कारणों का कोई खास लेना-देना नहीं है।

कई बार एक ही प्रजाति के पौधे अलग-अलग जगह पर अलग-अलग रूप में पाए जाते हैं। विभिन्न आवास स्थलों में पौधों की किस्मों में जो अन्तर नज़र सेजिटेरिया

सायेनिया वंश में तरह-तरह की पतियाँ

आते हैं, वे आनुवंशिक रूप से नियंत्रित होते हैं या पर्यावरणीय स्थितियों द्वारा? इसका ठीक उत्तर पहली बार एक स्वीडी पर्यावरणविद् गोथे दुरेसाँ (Gothe Turesant) ने 1925 में दिया। उन्होंने अपने बगीचे में 31 प्रजातियों की विभिन्न किस्में उगाईं और पाया कि कुछ अपवादों को छोड़कर उनमें अन्तर का कारण आनुवंशिक है, न कि पर्यावरणीय। दुरेसाँ ने एक ही प्रजाति के ऐसे पौधों को, जो विभिन्न आवासीय स्थितियों में अलग-अलग रूपों में उगते हैं, इकोटाइप (ecotype) नाम दिया।

विभिन्न पर्यावरणीय स्थितियों में एक ही प्रजाति के पौधों में समय के साथ विकास के चलते और पर्यावरणीय समायोजन के कारण कई भिन्नताएँ पैदा होती हैं। धीरे-धीरे ये गुण आनुवंशिक रूप ले लेते हैं। ऐसी किस्मों को इकॉलॉजिकल वेरीएन्ट्स (ecological variants) या इकोटाइप कहा जाता है। इनमें परिवर्तन मूल्यतः किसी पर्यावरणीय कारक के कारण हुआ था, मगर पर्यावरण बदलने पर वह वापिस परिवर्तित नहीं होता।

पर्यावरण के दबावों के चलते ऐसे आनुवंशिक परिवर्तन इन पौधों को उनके पर्यावरण से ज़्यादा सही तालमेल बनाने में मदद करते हैं। प्रकृति में ऐसे पौधों का चुनाव होने की सम्भावना अधिक होती है और धीरे-धीरे इनकी संख्या बढ़ती जाती है। कालान्तर में जब ये परिवर्तन इतने अधिक हो जाते

हैं कि ये पौधे मूल पौधों के साथ प्रजनन क्रिया नहीं कर पाते हैं, तो एक नई प्रजाति बन जाती है। वर्तमान में देखने में ऐसा लगता है कि इन पौधों ने अपने आप को पर्यावरण के अनुरूप ढाल लिया है, जैसे प्रकाश या पानी की कमी या अधिकता के अनुरूप। असलियत यह है कि इस प्रजाति का विकास लाखों सालों में हुए परिवर्तनों का नतीजा है, जिसमें छोटी-मोटी विविधताओं और प्राकृतिक चयन की महती भूमिका है।

खैर, कुछ भी हो, आनुवंशिक परिवर्तन स्थिर हो या अस्थिर, उसमें पर्यावरण की भूमिका से इन्कार नहीं किया जा सकता। कुल मिलाकर पत्तियों का आकार-प्रकार उनके पर्यावरण, रचना, कार्य तथा आनुवंशिक गुणों के आपसी तालमेल का मिला-जुला नतीजा है।

विविध आकार की पत्तियाँ

पौधों में भोजन निर्माणः कुछ प्रयोग, कुछ इतिरास

री दुनिया या यूँ कहें कि लगभग सारी दुनिया अपने भोजन के लिए पेड़-पौधों पर निर्भर है। लेकिन क्या किसी ने इन पेड़-पौधों को कुछ खाते-पीते देखा है? नन्हा-सा बीज फूटकर छोटा-सा पौधा कैसे बनता है? फिर देखते-देखते वह एक भरे-पूरे पेड़ में बदल जाता है! ऐसे ही कई सवाल सदियों से उठते रहे हैं जो अरस्तू से लेकर आज तक के वैज्ञानिकों को खोज करने के लिए प्रेरित करते रहे हैं।

आज हम जानते हैं कि पेड़-पौधे अपना भोजन सूर्य के प्रकाश की उपस्थिति में हरे क्लोरोफिल की सहायता से स्वयं बनाते हैं। हम पत्तियों में पाए जाने वाले विभिन्न रंजकों की रचना व उनकी भूमिका के बारे में काफी कुछ जानते हैं – कि किस तरह के रंजक सूर्य की ऊर्जा को ग्रहण कर उसे रासायनिक ऊर्जा में बदल देते हैं; किस तरह पत्तियों में पानी और कार्बन डाईऑक्साईड जैसे सरल अकार्बनिक पदार्थों से ग्लूकोज़, स्टार्च और अन्य जटिल कार्बनिक पदार्थ बनते हैं। संक्षेप में कहें तो प्रकाश संश्लेषण आज हमारे लिए कोई अनोखा शब्द नहीं रहा है। लेकिन जिस जानकारी या ज्ञान को हम कक्षा के एक पाठ में पढ़ लेते हैं, उसे खोजने में सदियाँ लग गईं। लम्बे-लम्बे प्रयोग हुए, उपकरण बने, और फिर प्रयोगों को और परिष्कृत किया गया। कई शंकालु, खोजी और जिज्ञासु प्रवृत्ति के लोगों ने अपने जीवन का एक महत्वपूर्ण हिस्सा इनमें लगा दिया। रोचक बात तो यह है कि शुरुआत में शायद खोजकर्ता को भी नहीं मालूम होगा कि उसने जो खोजा है वह आगे जाकर किसी दूसरी जानकारी से जुड़ेगा। खोज करने वाले को तो शायद यह भी पता नहीं था कि अन्त में जो सिद्धान्त आएगा वह क्या होगा। तो

आइए, अतीत पर नज़र डालकर सरल-सी दिखने वाली इस जटिल प्रक्रिया को कदम-दर-कदम समझने की कोशिश करें।

आज से लगभग 2300 साल पूर्व ग्रीक दार्शनिक-वैज्ञानिक अरस्तू (Aristotle) का विचार था कि पौधों में जन्तुओं की तरह कोई पाचक अंग नहीं होते। अतः पौधे पोषण के रूप में मिट्टी में घुले, सड़े-गले पदार्थ लेते हैं जो उनके शरीर के पदार्थों में बदल जाते हैं। इनसे उनके शरीर में वृद्धि होती है। उनकी मृत्यु पर ये पदार्थ मिट्टी बन जाते हैं और इस तरह यह चक्र चलता रहता है। लगभग डेढ़ हज़ार साल तक यही मान्यता प्रचलित रही।

फिर सन् 1450 के आस-पास यह विचार आया कि पौधों को अपनी ज़रूरत का सामान दरअसल पानी से मिलता है, तभी वे इतने हरे-भरे हो पाते हैं। इसलिए साल-दर-साल फसल लेने पर भी मिट्टी की पर्त वैसी ही बनी रहती है, कमतर नहीं होती। लेकिन इनमें से किसी भी धारणा का कोई प्रयोगात्मक आधार नहीं था।

अरस्त

पाँच साल चला एक प्रयोग

बेल्जियन वैज्ञानिक ज्यां बैपटिस्ट फॉन हेल्मॉन्ट (Jean Baptiste Von Helmont) का भी विश्वास था कि समस्त वनस्पति जगत प्रमुखतः पानी से ही बना है। उन्होंने एक प्रयोग करके इस विचार को जाँचने की ठानी। यह उस ज़माने में अनोखी बात थी कि किसी विचार की जाँच के लिए प्रयोग किया जाए। आज हम इस प्रयोग को साधारण कह सकते हैं, लेकिन जीव विज्ञान के इतिहास में लम्बी अवधि का शायद यह पहला प्रयोग था जिसमें इतने व्यवस्थित तरीके से अवलोकन लिए गए और उनको रिकॉर्ड किया गया। सन् 1648 में इस प्रयोग और उसके निष्कर्षों से सम्बन्धित एक पर्चा प्रकाशित हुआ। हेल्मॉन्ट के शब्दों में ही सुनें कि उन्होंने क्या प्रयोग किया और किस निष्कर्ष पर पहुँचेः

"मैंने मिट्टी से बना एक गमला लिया और इसमें बिलकुल सूखी 200 पाँड (करीब 91 किलोग्राम) मिट्टी भरी। फिर इसे पानी से सींचा और इसमें वीर (विलो) का एक पौधा लगाया जिसका वज़न 5 पाँड (2.27 किलोग्राम) था। पाँच साल निकल गए और यह पौधा बढ़कर 169 पाँड 3 औंस (76.9

कॉन हेल्मॉन्ट

किलोग्राम) का हो गया। इस बीच इस मिट्टी को बरसात के पानी से या फिर ज़रूरी हो तो आसुत पानी से सींचा गया। गमला ज़मीन में गड़ाकर रखा था। बाहर से आने वाली धूल-मिट्टी इसमें न जा पाए इसलिए मैंने इसके मुँह को बारीक छेद वाले लोहे के पतरे से ढँककर रखा था। इस बीच जो चार पतझड़ आए उस समय गिरने वाली पत्तियों का वज़न मैंने नहीं लिया। अन्त में मैंने फिर से बर्तन की मिट्टी को निकाला, सुखाया और तौला। और यह 200 पींड से बस 200 औंस (5.9 किलोग्राम) कम निकली। इसका अर्थ है कि 164 पींड (74.47 किलोग्राम) की लकड़ी, तना और जड़ सिर्फ पानी से बन गए।"

अरस्तू की तरह हेल्मॉन्ट भी यह विश्वास करते थे कि सामान्य परिवर्तनों के दौरान एक तत्व दूसरे में बदल सकता है। इसलिए उनका निष्कर्ष था कि पानी नामक "तत्व" ही पौधे के विभिन्न पदार्थों में बदल जाता है (हम आज जानते हैं कि ऐसा नहीं होता)। वैसे भी यह निष्कर्ष बहुत स्थूल है क्योंकि हेल्मॉन्ट ने पेड़ के आस-पास की हवा पर कोई गौर नहीं किया था। परन्तु आज से लगभग साढ़े तीन सौ साल पहले पाँच साल चलने वाले इस प्रयोग की रूपरेखा बनाना और प्रयोग करना अपने आप में मायने रखता है। दरअसल यह वह ज़माना था जब यह विचार जड़ पकड़ रहा था कि प्रयोग का अवलोकन सत्य को जानने का एक प्रमुख तरीका है।

हेल्मॉन्ट का एक योगदान यह भी है कि उन्होंने हवाओं को गैस नाम दिया। उन्होंने लकड़ी को जलाकर गैस बनाई थी और उसे काष्ठ गैस नाम दिया था। अलबत्ता इस प्रयोग का सम्बन्ध उन्होंने पौधों के संघटन से जोड़ने की कोशिश नहीं की थी।

सत्रहवीं सदी के अन्त में कैम्ब्रिज विश्वविद्यालय के प्रोफेसर जॉन वुडवर्ड (John Woodward) ने हेल्मॉन्ट की बात को जाँचने के लिए एक प्रयोग किया। इसमें उन्होंने पानी की मात्रा का हिसाब रखा। उन्होंने एक पौधे को 76,000 ग्राम पानी दिया, मगर उसके वज़न में वृद्धि मात्र एक ग्राम हुई। इसके आधार पर वुडवर्ड का मत बना कि पौधों की वृद्धि के लिए पदार्थ पानी से नहीं मिट्टी से ही आता है, पानी तो सिर्फ एक वाहक है। वैसे वुडवर्ड के प्रयोग में कई दिक्कतें थीं और इससे कोई निष्कर्ष निकालना उचित नहीं कहा जा सकता था।

लगभग सौ साल तक यह स्थिति बरकरार रही। तत्पश्चात 1727 में अँग्रेज़ वनस्पतिशास्त्री स्टीफन हेल्स (Stephen Hales) की एक पुस्तक आई वैजिटेबल स्टेटिक्स। इसमें उन्होंने लिखा कि पौधों के पोषण में हवा का भी योगदान होता है। हेल्स ने पौधों के साथ बहुत से प्रयोग किए। उन्होंने देखा कि लकड़ी को जलाओ तो उसमें से गैस निकलती है। इसी आधार पर उन्होंने तर्क दिया कि हो सकता है कि पत्तियाँ इससे उलटा करती हों, यानी हवा में से गैस सोखती हों।

दूषित हवा और ताज़ा हवा

इसके करीब 50 साल बाद एक और महत्वपूर्ण प्रयोग हुआ जिसने इस मामले में कुछ नए पहलू जोड़े। प्रयोगकर्ता थे एक प्रसिद्ध रसायनज्ञ जोसेफ प्रीस्टले (Joseph Priestley)। वे पहले वैज्ञानिक थे जिनका ध्यान इस बात की ओर गया कि श्वसन और जलाने की क्रिया में हम हवा को दूषित कर देते हैं और पेड़-पौधे इससे उलटा, इस दूषित हवा का उपचार कर उसे फिर से ठीक कर देते हैं। आइए देखते हैं प्रीस्टले के उस प्रसिद्ध प्रयोग को उन्हीं के शब्दों में:

"कोई भी यह सोचेगा कि हवा जन्तुओं और पेड़-पौधों दोनों के लिए ज़रूरी है, इसलिए दोनों ही हवा के साथ एक समान व्यवहार करेंगे। और इस प्रयोग से पहले मेरी धारणा भी बिलकुल यही थी।

"मैंने पुदीने की एक शाखा को पानी पर उलटे किए हुए काँच के जार में रखा। यह जार पानी से भरे हुए बर्तन में रखा गया था। कुछ महीनों तक यह शाखा उस जार में बढ़ती रही। मैंने पाया कि इस जार की हवा में न तो मोमबत्ती बुझी, न ही उस चूहे को कोई परेशानी हुई जिसे मैंने इस जार में रखा था।

"यह जानने के बाद कि जिस हवा में कई दिनों से पुदीने की टहनी रखी थी उसमें मोमबत्ती काफी अच्छी तरह जली, यह विचार आया कि यहाँ पेड़-पौधे से जुड़ा कोई मामला है जो श्वसन के द्वारा दूषित हवा को ठीक कर देता है।

"इसलिए मैंने सोचा कि इस प्रक्रिया से शायद उस हवा को भी ठीक करना सम्भव होना चाहिए जो मोमबत्ती के जलने से दूषित हो जाती है।

जोसेफ प्रीस्टले

"इसलिए 17 अगस्त 1771 को मैंने पुदीने की एक शाखा को उस हवा में रखा जिसमें मोमबत्ती जलकर बुझ चुकी थी, और पाया कि उसी महीने की 27 तारीख को एक दूसरी मोमबत्ती उसी हवा में काफी अच्छे से जली। बिना कुछ भी बदले इसी प्रयोग को मैंने उन गर्मियों में आठ-दस बार दोहराया। कई बार मैंने उस हवा को दो भागों में विभाजित किया

> जिसमें मोमबत्ती जलकर बुझ चुकी थी। एक भाग में पौधे को रखा और दूसरे को वैसा ही रहने दिया। उसी तरह पानी पर उलटाकर रखे हुए काँच के जार में, पर बिना किसी

टहनी के। हर बार मैंने पाया कि पौधे वाले भाग में मोमबत्ती फिर से जली, जबिक दूसरे भाग में नहीं। मैंने पाया कि अगर पौधा सशक्त हो तो हवा को फिर से ठीक करने के लिए पाँच से छह दिन पर्याप्त होते हैं।..."

प्रीस्टले इस प्रयोग को करके सन्तुष्ट नहीं हुए। प्रयोग ने उनके दिमाग में एक और महत्वपूर्ण सवाल पैदा कर दिया। उन्होंने सोचा कि दुनिया भर में इतने सारे जन्तु हैं जो हवा को दूषित करते रहते हैं। दुनिया भर में इतनी आग जलती रहती है, वह भी हवा को श्वसन के काबिल नहीं रहने देती। तो दुनिया की पूरी हवा बिगड़ क्यों नहीं जाती? उन्होंने तर्क किया कि जन्तुओं के श्वसन और आग के कारण बिगड़ी हवा को पौधे दुरुस्त करते हैं। प्रीस्टले की यह खोज वनस्पतियों और जन्तुओं के बीच आपसी सामंजस्य को समझने की एक प्रमुख कड़ी थी।

प्रीस्टले के प्रयोगों से यह तो पता चल गया था कि पौधे धूप में ऑक्सीजन छोड़ते हैं (हालाँकि प्रीस्टले ऑक्सीजन नामक किसी चीज़ को नहीं जानते थे), मगर इसका भोजन से क्या सम्बन्ध? कहने का मतलब यह है कि इतिहास में पौधों के भोजन की गुत्थी को उलटी तरफ से देखा गया और सुलझाया गया। आप देख ही सकते हैं कि अभी तक पौधों के भोजन का प्रमुख किरदार कार्बन डाईऑक्साइड "प्रकाश" में नहीं आया है।

वैसे 1754 में जोसेफ ब्लैक (Joseph Black) ने चूने के पत्थर (कैल्शियम कार्बोनेट) को गर्म करके एक गैस प्राप्त की थी और उसे नाम दिया था

"फिक्स्ड एयर"। वे यह भी दर्शाने में सफल रहे थे कि हवा में भी थोड़ी मात्रा में फिक्स्ड एयर होती है। प्रीस्टले के प्रयोग से यह भी पता चला था कि पौधे ऑक्सीजन छोड़ने के साथ-साथ फिक्स्ड एयर सोखते भी हैं। यह फिक्स्ड एयर और कुछ नहीं कार्बन डाईऑक्साइड थी। प्रिस्टले ने इस गैस पर काफी प्रयोग किए थे, और वे इससे भलीभाँति परिचित थे।

प्रीस्टले के इस प्रयोग पर कई लोगों को शक था क्योंकि वे लोग इसे दोहरा नहीं पा रहे थे। परन्तु प्रीस्टले के प्रयोग के कुछ साल बाद हुए कुछ और प्रयोगों ने सिद्ध कर दिया कि प्रीस्टले सही थे और यह भी स्पष्ट किया कि अन्य लोगों से यह प्रयोग क्यों नहीं हो पा रहा था। और इन्हीं कोशिशों में से एक और अहम तथ्य सामने आया।

सूर्य का प्रकाश और पौधे का हरा भाग

इन्गेनहोज

प्रीस्टले के बाद प्रकाश संश्लेषण को समझने की दिशा में सबसे महत्वपूर्ण प्रयोग डच वैज्ञानिक जॉन इन्गेनहोज़ (Jan Ingen-Housz) का है। दरअसल इन्गेनहोज़ प्रीस्टले के प्रयोग को दोहरा रहे थे और उन्हें दिक्कत आ रही थी। काफी कोशिशों के बाद 1779 में वे सफल हुए। इस दौरान उन्होंने एक महत्वपूर्ण बात का पता लगाया।

इन्गेनहोज़ ने अपने प्रयोग में यह सिद्ध किया कि दूषित हवा को फिर से शुद्ध करने के लिए सूर्य का प्रकाश ज़रूरी है। प्रकाश की उपस्थिति में ही वह तत्व बनता है जो श्वसन या दहन से दूषित हवा को फिर से ठीक कर देता है। साथ ही उन्होंने यह भी सिद्ध किया कि यह प्रक्रिया पौधे के हरे भाग की उपस्थिति में ही होती है। पौधे के अन्य भाग, जो हरे नहीं हैं, जैसे तना फूल आदि, हवा के साथ वैसा ही व्यवहार करते हैं जैसे जन्तु। अर्थात वे हवा को दूषित करते हैं। इस प्रक्रिया में प्रकाश की अनिवार्यता के चलते ही इसे प्रकाश संश्लेषण नाम मिला है। वैसे इस बात को निश्चित तौर पर साबित प्रीस्टले के प्रयोग की एक बात पर ध्यान देना ज़रूरी है। उनके इस कथन पर गौर कीजिए: "मैंने उस हवा को दो भागों में विभाजित किया जिसमें मोमबत्ती जलकर बुझ चुकी थी। एक हिस्से में पौधे को रखा और दूसरे को वैसा ही रहने दिया, उसी तरह पानी पर उलटाकर रखे हुए काँच के जार में, पर बिना किसी टहनी के।"

आखिर क्यों ये दो जार लेने की जरूरत पड़ी थी उन्हें? दरअसल इस तरह के प्रयोगों से ही हम कार्य-कारण सम्बन्धों तक पहुँच सकते हैं। यदि सिर्फ इतना ही किया गया होता कि एक टहनी को उलटे जार के नीचे रखकर देख लेते कि कुछ समय बाद मोमबत्ती जल सकती है, तो शायद यह कहना मुश्किल था कि जो भी परिवर्तन हुआ है वह टहनी के कारण है, क्योंकि यह भी सम्भव है कि मात्र समय बीतने के साथ यह परिवर्तन हो जाता हो। शेष समस्त परिस्थितियों को एक समान रखकर, मात्र एक कारक को बदलना आधुनिक विज्ञान में प्रयोगों का एक खास गुण है। ऐसे प्रयोगों को नियंत्रित (controlled) प्रयोग कहते हैं।

करने का श्रेय 1837 में फ्रांसीसी रसायनज्ञ रेने हेनरी जोएकिम डुट्रोशेट (Rene Henri Joachim Dutrochet) को जाता है। उन्होंने दर्शाया था कि प्रकाश संश्लेषण की क्रिया पाँधों की सिर्फ उन्हीं कोशिकाओं में होती है जो हरे रंग की होती हैं। हरे पदार्थ को क्लोरोफिल नाम अभी नहीं दिया गया था। जब यह खोज हुई उस वक्त भी हवा की संरचना के बारे में ठीक से जानकारी नहीं थी। हालाँकि यह साफ हो चला था कि हवा एक तत्व नहीं बल्कि मिश्रण है। परन्तु कुछ ही सालों में आधुनिक रसायन शास्त्र के प्रणेता फ्रांसीसी वैज्ञानिक लेवोज़िए (Antoine-Laurent de Lavoisier) ने ऑक्सीजन की पहचान एक पदार्थ के रूप में बना दी थी। सन् 1784 तक यह स्पष्ट हो गया

उन्नीसवीं सदी की शुरुआत तक हम पौधों के पोषण यानी प्रकाश संश्लेषण में सक्रिय सब प्रमुख कलाकारों को पहचान चुके थे, जैसे पानी, ऑक्सीजन, पौधों का हरा पदार्थ क्लोरोफिल और कार्बन डाईऑक्साइड।

कि प्रकाश की उपस्थिति में हरे पौधे जो गैस बनाते हैं वह ऑक्सीजन है।

फिक्स्ड एयर को कार्बन डाईऑक्साइड नाम सन 1804 में मिला।

इसके बाद प्रकाश संश्लेषण की क्रिया की और जानकारी तेज़ी से इकट्ठी होने लगी। एक तो इसलिए कि हमारे सामने खोज की दिशा स्पष्ट थी और दूसरा इसलिए कि खोज की नई-नई विधियाँ विकसित हो रही थीं।

स्टोमेटा

अगला दौर

इसी दौरान सूक्ष्मदर्शी के विकास ने भी पौधों में भोजन निर्माण की प्रक्रिया को समझने में मदद की। इससे हमें पता चला कि पत्तियों और हरे तनों पर हज़ारों सूक्ष्म छिद्र होते हैं। इन छिद्रों को स्टोमेटा कहा गया। यह विचार भी सामने आया कि पौधों के भोजन निर्माण में इन छिद्रों की भी कुछ भूमिका अवश्य होगी। पौधे केवल जड़ों से ही

नहीं, पत्तियों से भी कुछ लेन-देन कर सकते हैं। अतः पहली बार पेड़-पौधों के सन्दर्भ में गैसों के आदान-प्रदान का तरीका उजागर हुआ।

उन्नीसवीं शताब्दी की शुरुआत (सन् 1804) में एक और स्विस शोधकर्ता निकोलस थियोडोर (Nicolas Theodore) ने पौधों द्वारा गैसों के आदान-प्रदान की प्रक्रिया पर कुछ प्रयोग किए। थियोडोर ने अपने प्रयोगों में पौधों के

द्वारा ली जाने वाली कार्बन डाईऑक्साइड, उनमें बनने वाले कार्बनिक पदार्थ तथा उनमें से निकलने वाली ऑक्सीजन के मात्रात्मक सम्बन्धों का अध्ययन किया। थियोडोर ने बताया कि पौधे जो वज़न हासिल करते हैं वह कार्बन डाईऑक्साइड के कार्बन और पौधों की जड़ों द्वारा अवशोषित पानी की बदौलत है। उन्होंने पक्के तौर पर बताया कि पौधों के भोजन निर्माण की प्रक्रिया में पानी भी एक कच्चे माल के रूप में इस्तेमाल होता है।

हरा पदार्थ क्लोरोफिल

सन् 1847 में दो फ्रांसीसी रसायनज्ञों पेलेटीयर (Pierre Joseph Pelletier) और केवेन्टो (Joseph Bienaimé Caventou) ने पत्तियों का हरा पदार्थ अलग किया और उसे क्लोरोफिल नाम दिया।

इनसे पूर्व सन् 1845 में एक जर्मन चिकित्सक मेयर (Julius Robert von Mayer) ने कहा कि हरे पौधे सूर्य की ऊर्जा को रासायनिक ऊर्जा में बदलते हैं। इस क्रिया में जितनी कार्बन डाईऑक्साइड खर्च होती है उतनी ही ऑक्सीजन निकलती है। यह बात सर्वप्रथम पक्के तौर पर एक फ्रांसीसी वैज्ञानिक बॉसिनगॉल्ट (Joseph Boussingault) ने सन् 1864 में बताई। यानी प्रकाश संश्लेषण में कार्बन डाईऑक्साइड और ऑक्सीजन का अनुपात 1:1 होता है।

इसी वर्ष सैक्स (Julius von Sachs) ने बताया कि प्रकाश संश्लेषण पत्तियों में मौजूद क्लोरोप्लास्ट में होता है और इसमें स्टार्च के कण बनते हैं। यह प्रयोग स्टार्च आयोडीन टेस्ट द्वारा किया गया था।

वर्तमान सदी की शुरुआत तक पौधों में भोजन निर्माण की प्रक्रिया का जो स्वरूप हमारे सामने आ चुका था, वह कुछ ऐसा थाः

सूर्य प्रकाश कार्बन डाईऑक्साइड + पानी ———→कार्बनिक पदार्थ + ऑक्सीजन क्लोरोफिल

पौधे कार्बन डाईऑक्साइड भी छोड़ते हैं

हमारी अधिकतर पाठ्य पुस्तकों में लिखा होता है कि पौधे कार्बन डाईऑक्साइड लेते हैं और ऑक्सीजन छोड़ते हैं। आम तौर पर यह नहीं बताया जाता कि

हरे पौधों के अलावा और भी हैं स्वयंपोषी

ऐसा नहीं है कि सिर्फ हरे पौधों में ही सूर्य के प्रकाश की सहायता से अपना भोजन बनाने की क्षमता है। प्रकृति में इनके अलावा कुछ सूक्ष्मजीवियों में भी यह गुण पाया जाता है, जैसे क्रोमेशियम, क्लोरोबियम आदि। जो सूक्ष्मजीवी (बैक्टीरिया) प्रकाश की कर्जा से अपना भोजन बनाते हैं, उन्हें प्रकाश संश्लेषी बैक्टीरिया कहा जाता है। इनमें भी हरे पौधों की तरह हरा पदार्थ क्लोरोफिल होता है, परन्तु इसे बैक्टीरियल क्लोरोफिल कहते हैं। इनके उदाहरण हैं सायनोबैक्टीरिया, जैसे नास्टाक, एनाबीना आदि। इसके अलावा कुछ जीवाणु रासायनिक प्रक्रिया के द्वारा भी पोषण प्राप्त करते हैं, जैसे सल्फर जीवाणु स्नु के विघटन से तथा मीथेन जीवाणु मीथेन के विखण्डन से पोषक पदार्थ जुटाते हैं। ये रसायन संश्लेषी जीवाणु कहलाते हैं। इसके अन्य उदाहरण हैं बँगनी सल्फर बैक्टीरिया, मिथेनोजन्स, थायोबैसिलस आदि।

यह लेन-देन प्रकाश संश्लेषण की क्रिया के दौरान होता है, जबकि श्वसन की क्रिया में पौधे भी ऑक्सीजन लेते हैं और कार्बन डाईऑक्साइड छोड़ते हैं। यह बात सर्वप्रथम जॉन इन्गेनहोज़ ने प्रीस्टले के प्रयोगों को दोहराने के बाद स्पष्ट की थी।

प्रकाश संश्लेषण और श्वसन की क्रिया में एक समानता यह है कि दोनों में कार्बन डाईऑक्साइड और ऑक्सीजन की भूमिका है। यहीं से यह भ्रम उत्पन्न होता है कि जन्तुओं और पेड़-पौधों की श्वसन क्रिया अलग-अलग है। वास्तविकता यह है कि श्वसन की क्रिया जन्तुओं और वनस्पतियों दोनों में एक-सी होती है। सूर्य के प्रकाश की उपस्थित में वनस्पतियों में एक अतिरिक्त क्रिया होती है – प्रकाश संश्लेषण। प्रकाश संश्लेषण की क्रिया श्वसन के मुकाबले बहुत तेज़ होती है। श्वसन के दौरान उत्पन्न कार्बन डाईऑक्साइड का उपयोग भी प्रकाश संश्लेषण में हो जाता है और परिणाम यह होता है कि दिन के समय पौधे ऑक्सीजन ही छोड़ते नज़र आते हैं।

प्रकाश, कार्बन डाईऑक्साइड और क्लोरोफिल का कमाल

धे सूर्य के प्रकाश में क्लोरोफिल की सहायता से पानी और कार्बन डाईऑक्साइड से कार्बोहाइड्रेट बनाते हैं। इस क्रिया में पानी को तोड़कर उससे ऑक्सीजन अलग करने और कार्बन को हाइड्रोजन से जोड़ने में जो ऊर्जा लगती है वह सूर्य के प्रकाश से मिलती है। भोजन निर्माण की इस क्रिया में उपयोग में आने वाला कच्चा माल हवा और मिट्टी से प्राप्त होता है – कार्बन डाईऑक्साइड हवा से और पानी मिट्टी से। कार्बन डाईऑक्साइड हवा के साथ पेड़-पौधों की पत्तियों की सतह पर पाए जाने वाले स्टोमेटा के ज़रिए पत्तियों के अन्दर पहुँचती है। आवश्यक पानी ज़मीन से जड़ों द्वारा सोख लिया जाता है। इतना सब जान लेने के बाद भी बहुत से सवाल अनुत्तरित रह जाते हैं। जैसे, सूर्य का प्रकाश इस क्रिया में किस तरह मददगार है? पत्तियों में उपस्थित हरा पदार्थ क्लोरोफिल क्या है? पत्तियों में यह कहाँ मिलता है? प्रकाश संश्लेषण में इसकी क्या और कैसी भूमिका है?

सवाल यह भी है कि हवा की कार्बन डाईऑक्साइड पत्तियों में कहाँ जाती है? उसे कौन ग्रहण करता है? उससे ग्लूकोज़ या मण्ड कैसे बनता है? इन सब बातों को जानने के लिए सबसे पहले पौधों के भोजन निर्माण कारखानों यानी क्लोरोप्लास्ट की चर्चा करें।

क्लोरोफिल और क्लोरोप्लास्ट

थोड़ी और गहराई में जाकर पत्तियों की आन्तरिक रचना को देखें तो पता चलता है कि क्लोरोफिल पत्ती की ऊपरी व निचली सतह के बीच के

क्लोरोप्लास्ट को देखें

यदि आप इन हरी-पीली रचनाओं यानी क्लोरोप्लास्ट को देखना चाहते हैं तो आसपास के किसी तालाब, नदी या नाले से कोई जलीय वनस्पति ले आइए। काई या हाइड्रिला (Hydrilla) उपयुक्त रहेंगे। किसी धागे-नुमा काई के एकदो धागे या हाइड्रिला की एक-दो पत्तियाँ एक स्लाइड पर रखकर संयुक्त सूक्ष्मदर्शी से देखें। ध्यान से देखने पर हाइड्रिला की पत्तियाँ में हरे-पीले कण आपको रेलगाड़ी के डिब्बे की तरह एक के पीछे एक चलते नज़र आएँगे। इसे देखकर आप निश्चित रूप से आनन्दित होंगे। पौधों की पत्तियों में भरी पढ़ी भोजन निर्माण की ये इकाइयाँ अलग-अलग आकारों और रूपों में पाई जाती हैं। जैसे स्पायरोगायरा में कुण्डलित रिबिन के आकार की, तो हाइब्रिला

हिस्से मीज़ोफिल में पाई जाने वाली विशेष प्रकार की कोशिकाओं में भरा होता है। वास्तव में क्लोरोफिल इन कोशिकाओं में कुछ विशेष रचनाओं में पाया जाता है जिन्हें क्लोरोप्लास्ट कहते हैं। क्लोरोप्लास्ट की आन्तरिक रचना में दो हिस्से दिखाई देते हैं। एक हिस्सा ऐसा लगता है मानो एक के ऊपर एक रखकर सिक्कों की ढेरियाँ बनाई गई हों, जो आपस में भी एक-दूसरे से जुड़ी हुई हैं। यह ग्रेना कहलाता है। ग्रेना में क्लोरोफिल अपने सहायक रंजकों (केरोटीनॉइड और ज़ैन्थोफिल) के साथ भरा रहता है। यही वह जगह है जहाँ सूर्य का प्रकाश सोखा जाता है और भोजन बनाने की प्रक्रिया शुरू होती है। बाहरी झिल्ली से घिरी बाकी जगह स्ट्रोमा है जिसमें भोजन बनाने में काम आने वाले एन्ज़ाइम भरे रहते हैं।

मोटे तौर पर पिछले अध्याय में दिया गया समीकरण प्रकाश संश्लेषण की क्रिया को दर्शाने के लिए पर्याप्त है। मगर इसने कई नए सवाल भी खड़े कर दिए। जैसे, यह क्रिया पत्तियों में कहाँ होती है? सबसे पहले कौन-से पदार्थ बनते हैं? मण्ड बनने से पहले कौन सी क्रियाएँ होती हैं? ऑक्सीजन कहाँ से आती है, पानी से या कार्बन डाईऑक्साइड से? वगैरह।

प्रयोग एक, निष्कर्ष चार

प्रकाश संश्लेषण की क्रिया में क्लोरोफिल की भूमिका को स्पष्ट करने में एन्जलमैन (T. W. Engelmann) द्वारा किए गए प्रयोगों ने महत्वपूर्ण भूमिका अदा की।

सन् 1880 में किए गए एक साधारण-से प्रयोग से असाधारण और महत्वपूर्ण निष्कर्ष निकले। इस प्रयोग में एन्जलमैन ने हरी काई स्पायरोगायरा का उपयोग किया था। इसकी विशेषता है कि इसमें बड़े-बड़े रिबिन-नुमा क्लोरोप्लास्ट पाए जाते हैं। प्रयोग में ऐन्जलमैन ने स्पायरोगायरा के एक सूत्र को स्लाइड पर ऑक्सीजीवी-बैक्टीरिया के साथ रखकर सील कर दिया। इस प्रयोग के लिए उन्होंने ऐसा बैक्टीरिया चुना जो हलचल कर सकता हो। स्पायरोगायरा और बैक्टीरिया की इस स्लाइड पर प्रकाश डालने पर अधिकांश बैक्टीरिया स्पायरोगायरा के क्लोरोप्लास्ट के आसपास जमा हो गए। इससे यह पता चला कि भोजन निर्माण की क्रिया में निकलने वाली ऑक्सीजन क्लोरोप्लास्ट से ही निकलती है।

इसी प्रयोग में उन्होंने यह भी देखा कि यदि क्लोरोप्लास्ट के अलग-अलग हिस्सों पर अलग-अलग रंगों का प्रकाश डाला जाए तो अधिकतर बैक्टीरिया उस हिस्से के इर्द-गिर्द जमा हो जाते हैं जहाँ नीला और लाल प्रकाश पड़ता है। यानी अधिकतर ऑक्सीजन इन्हीं दो प्रकाश तरंगों के आसपास निकलती है। इससे यह भी पता चलता है कि प्रकाश संश्लेषण भी इन्हीं क्षेत्रों में, यानी लाल और नीले प्रकाश में ज्यादा होता है।

रोचक बात यह भी है कि क्लोरोफिल जिस रंग का प्रकाश सोखता है वही प्रकाश संश्लेषण में भी सर्वाधिक कारगर है। इससे उन्होंने निष्कर्ष निकाला

कि क्लोरोफिल द्वारा अवशोषित प्रकाश ही प्रकाश संश्लेषण के लिए जिम्मेदार है और क्लोरोफिल ही वह रंजक है जिस पर इस पूरी क्रिया का दारोमदार है।

पत्तियों पर पड़ने वाले कुल

प्रकाश का लगभग चार प्रतिशत ही क्लोरोफिल द्वारा अवशोषित होता है और इस क्रिया को आगे बढ़ाता है। प्रकाश की ऊर्जा ग्रहण कर क्लोरोफिल उत्तेजित अवस्था में आ जाता है। ऐसे क्लोरोफिल के अणु से एक इलेक्ट्रॉन बाहर निकल जाता है। क्लोरोफिल के अणु से इलेक्ट्रॉन का निकलना कई प्रकाश-रासायनिक क्रियाओं की शुरुआत है। हम यहाँ उन सारी क्रियाओं में नहीं जा रहे हैं।

प्रकाश संश्लेषण के दो चरण

इसी दौरान ब्रिटिश वैज्ञानिक ब्लैकमैन (Frederick Frost Blackman) ने 1905 में ही यह बता दिया था कि प्रकाश संश्लेषण की क्रिया के दो चरण हैं। पहला है "प्रकाश क्रिया" और दूसरा "अन्धकार क्रिया"। पहले चरण के लिए प्रकाश ज़रूरी है। दूसरे चरण के लिए प्रकाश हो या ना हो कोई फर्क नहीं पड़ता। यानी यह अन्धकार में भी चलता रहता है।

परन्तु सवाल यह भी है कि कार्बन डाईऑक्साइड से मण्ड बनने की क्रिया में कौन-से मध्यवर्ती पदार्थ बनते हैं। यह पता लगाना आसान नहीं है क्योंकि पत्तियों में एक ही समय में श्वसन और प्रकाश संश्लेषण से सम्बन्धित तमाम रासायनिक क्रियाएँ चलती रहती हैं। इनसे बनने वाले पदार्थ पत्तियों में उपस्थित रहते हैं। ऐसे में कैसे पता चले कि कौन-सा पदार्थ किस क्रिया के किस चरण में बना?

इस बात का पता 1940 तक नहीं लग पाया था। 1940 में केलिफोर्निया के सेमुअल रूबेन (Samuel Ruben) और मार्टिन कामेन (Martin David Kamen) द्वारा खोजे गए कार्बन के एक रेडियो सक्रिय आइसोटोप (कार्बन-14) ने यह मुश्किल आसान कर दी। यह कार्बन पत्तियों में कहाँ जाता है, किससे क्रिया करता है, और क्या बनाता है, यह सब जानना अब बहुत आसान हो गया, क्योंकि इसके उपयोग से बने सभी पदार्थों में कार्बन को इसकी रेडियो सक्रियता के कारण पहचाना जा सकता था। इस काम में "पेपर क्रोमेटोग्राफी" ने महत्वपूर्ण तकनीकी योगदान दिया। इन दोनों की सहायता से यह पता लगाया जा सका कि प्रकाश संश्लेषण की क्रिया में कौन-से पदार्थ बनते हैं। केलिफोर्निया विश्वविद्यालय के मेल्विन केल्विन (Melvin Ellis Calvin) और एन्ड्रियू बेनसन (Andrew Benson) ने क्लोरेल्ला नामक हरी शैवाल पर कई प्रयोग किए। सबसे पहले उन्होंने अपने विशेष उपकरण में कार्बन-14 युक्त कार्बन डाईऑक्साइड (4CO,) की उपस्थिति में प्रकाश संश्लेषण की क्रिया को केवल 5 सेकण्ड के लिए चलने दिया। इसके बाद उन्होंने प्रकाश संश्लेषण की अवधि 30 सेकण्ड, 90 सेकण्ड और 5 मिनिट तक बढाई। समय बढ़ाने से प्राप्त पदार्थों का विश्लेषण करने पर देखा गया कि रेडियो सक्रिय कार्बन क्रमशः अलग-अलग पदार्थों में मिलता है। इस तरह से प्रकाश संश्लेषण में बनने वाले पदार्थों का एक क्रम बनाया गया। केल्विन ने बताया कि यह एक चक्रीय क्रिया है।

रास्ते और भी हैं

इस प्रकार के अध्ययनों से एक रोचक बात यह पता चली कि सामान्यतः कार्बन डाईऑक्साइड से पहला पदार्थ तीन कार्बन वाला बनता है जिसे पीजीए (PGA यानी फास्फो ग्लिसरिक एसिड) कहते हैं। इससे ही आगे चलकर विभिन्न शर्कराएँ जैसे ग्लूकोज़, सुक्रोज़ व मण्ड आदि बनते हैं। मगर कुछ पौघों में पहला पदार्थ चार कार्बन वाला भी बन सकता है जिसे ओएए (OAA) यानी आक्सेलो ऐसिटिक ऐसिड कहते हैं। जिन पौघों पहला पदार्थ तीन कार्बन वाला बनता है उन्हें तीन कार्बन पौघे (C-3) और जिनमें पहला पदार्थ चार कार्बन वाला बनता है, उन्हें चार कार्बन पौघे (C-4) कहते हैं। C-4 पौघों में C-3 वाला रास्ता भी चलता है और C-4 वाला भी, जबकि C-3 पौघों के पास एक ही रास्ता है।

ऑक्सीजन कहाँ से आती है?

एक सवाल यह था कि प्रकाश संश्लेषण की क्रिया में जो ऑक्सीजन निकलती है, वह कहाँ से आती है। उस समय इसे जानने का कोई तरीका नहीं था। आम तौर पर सभी ने मान लिया था कि यह ऑक्सीजन कार्बन डाईऑक्साइड से आती होगी। चाहे पानी के टूटने से निकले या कार्बन डाईऑक्साइड के, ऑक्सीजन तो एक जैसी ही होती है। मगर स्टैनफोर्ड विश्यविद्यालय के एक स्नातक छात्र सी.बी. वॉननील (Cornelis Bernardus van Niel) ने प्रकाश-संश्लेषी बैक्टीरिया पर प्रयोग करके इस धारणा को चुनौती दी। ये बैक्टीरिया भोजन निर्माण के लिए कार्बन डाईऑक्साइड और हाइड्रोजन सल्फाइड का उपयोग करते हैं। इस क्रिया में गन्धक बनता है जो या तो बाहर निकलता है या इसके अन्दर ही जमा हो जाता है। यह क्रिया कुछ इस तरह दर्शाई गई:

वॉननील का मत था कि जिस तरह से इस क्रिया में गन्धक H₂S में से आता है, उसी तरह सामान्य हरे पौचों के प्रकाश संश्लेषण में ऑक्सीजन H₂O से आनी चाहिए।

उनकी बात की पुष्टि 1941 में केलिफोर्निया विश्वविद्यालय के रूबेन और कामेन ने की। इन वैज्ञानिकों ने ऑक्सीजन के एक समस्थानिक (isotope) का उपयोग किया जिसका परमाणु भार 18 होता है। सामान्य आक्सीजन का परमाणु भार 16 है। रूबेन और कामेन ने पौधों को ऐसा पानी दिया जिसमें ऑक्सीजन का भारी वाला समस्थानिक था (H₂ "O)। देखा गया कि इस क्रिया में निकलने वाली ऑक्सीजन 18 परमाणु भार वाली है। यानी ऑक्सीजन पानी से आई थी।

$$CO_2+2H_2^{18}O \xrightarrow{\text{yability}} (CH_2O) + H_2O + {}^{18}O_2$$

किसी तत्व को चिन्हित करने की यह विधि प्रकाश संश्लेषण के अध्ययन में बहुत उपयोगी साबित हुई। समस्थानिक कार्बन के भी होते हैं। कार्बन के इन समस्थानिकों के परमाणु भार क्रमशः 12, 13 और 14 हैं। कार्बन के एक समस्थानिक का उपयोग प्रकाश संश्लेषण में कार्बन डाईऑक्साइड से ग्लुकोज़ बनने के दौरान बनने वाले मध्यवर्ती पदार्थों की खोज़ में किया गया।

शिकारी पनियाँ

च्यों के ज्ञानवर्धन व मनोरंजन के नाम पर छापी जाने वाली अधिकांश पत्र-पत्रिकाओं में और यहाँ तक की कई समाचार पत्रों में भी अक्सर दक्षिण अफ्रीका के घने जंगलों में पाए जाने वाले विचित्र "नरभक्षी" पेड़ों व बेलों के बारे में छपता रहता है, जो मनुष्य को पकड़कर उसका सारा खून चूस लेती हैं और सिर्फ हिड्डियाँ ही छोड़ती हैं। परन्तु "नरभक्षी" पौधों की इन कहानियों में सच्चाई कितनी है?

फूलधारी पौधों की लगभग ढाई लाख प्रजातियों में से सिर्फ 450 प्रजातियाँ ही कीटमक्षी पौधों की श्रेणी में आती हैं। ये पौधे पृथ्वी के विस्तृत भू-भाग पर फैले हुए हैं। इन सभी में कुछ न कुछ विशेषता है। कीटों का पकड़ने के तौर-तरीकों व आकार-प्रकार में भिन्नता होने के बावजूद इन सभी में एक बात समान है — इनके उगने की जगह या रहने का स्थान। इन स्थानों पर हवा, पानी व रोशनी तो पर्याप्त मात्रा में मिलती है, परन्तु ज़मीन दलदली होने के कारण इसमें हवा से नाइट्रोजन लेकर उसे मिट्टी में छोड़ने वाले सूक्ष्म जीव नहीं रहते। अतः इन जगहों की मिट्टी में मुख्यतः नाइट्रोजन के लवण नहीं मिलते, जो जीवन के लिए ज़रूरी हैं। इसके अतिरिक्त यदि जगह अम्लीय हुई तो कैल्शियम, फॉस्फोरस, पोटेशियम और मॉलिब्डेनम जैसे महत्वपूर्ण तत्यों की भी कमी होती है। कीटों को पकड़कर उनका पाचन करने से नाइट्रोजन के साथ अन्य ज़रूरी तत्व भी इन पौधों को मिल जाते हैं। इस तरह इन विषम पर्यावरणीय स्थानों पर भी इन पौधों का जीवन कीड़े-मकोड़ों की बदौलत चलता रहता है। वैसे ताज़ा प्रयोगों ने जन्तु प्रोटीन आधारित इस परिकल्पना पर प्रश्न चिन्ह लगा दिया है, मगर उसकी बात आगे करेंगे।

साधारण पौधों की पत्तियों को तो एक ही मुख्य काम करना पड़ता है – भोजन बनाने का। परन्तु कीटमक्षी पौधों की पत्तियों को दोहरी भूमिका निभानी

पड़ती है। प्रकाश संश्लेषण से भोजन बनाने के साथ-साथ भोजन के कुछ आवश्यक पोषक पदार्थ जुटाने के लिए उन्हें कीट-पतंगों का शिकार भी करना पड़ता है। अधिकांश कीटभक्षी पौधों में पत्तियाँ कीटों के शिकार का काम करती हैं। सेफेलोटस जैसे पौधे में जहाँ कुछ पत्तियाँ ही यह कार्य करती हैं, वहीं ड्रोसेरा की सभी पत्तियाँ तथा वीनस फ्लाई ट्रेप और निपेन्थिस की कई पत्तियाँ कीटों को पकड़ने का कार्य करती हैं।

ये पत्तियाँ या इनके कुछ हिस्से विशेष रचनाओं में बदलकर कीटों को अपने जाल में फँसाते हैं। ये विशेष रचनाएँ चिपचिपी पत्तियों – जैसे बटरवर्ट और ड्रोसेरा – से लेकर जटिल, सुराहीनुमा ट्रेप – जैसे निपेन्थिस – तक देखने में आती हैं (तालिका 2 देखें)। वीनस फ्लाई ट्रेप की पत्तियाँ पेटी-नुमा होती हैं जो खुलती और बन्द होती रहती हैं। पिचर प्लांट में तो तरह-तरह की कलशनुमा पत्तियाँ होती हैं। इन सुराहियों पर छोटे-बड़े, सजे-धजे, नक्काशींदार, रंग-बिरंगे सभी तरह के सुन्दर ढक्कन भी लगे होते हैं जो वर्षा का पानी सुराही में जाने से रोकते हैं। इनमें गति नहीं होती। ये एक ही जगह स्थिर

नाम	सामान्य नाम	पाए जाने का क्षेत्र	प्राकृतवास
एल्ड्रोवेन्डा	लॉब्सटर ट्रेप	लगभग सभी जगह	अम्लीय जल
सेफेलोटस	फ्लाई कैचर	ऑस्ट्रेलिया	गर्म अम्लीय दलदल
डार्लिंगटोनिया	कोबरा प्लांट	उत्तरी अमरीका	गर्म अम्लीय दलदल
डायोनिया	वीनस फ्लाई ट्रेप	दक्षिण-पूर्वी अमरीका	नम दलदली जगहों प
ड्रोसेरा	सनड्यु	दक्षिण-अफ्रीका, ऑस्ट्रेलिया, एशिया	उण्डे अम्लीय दलदल
हेलिएमफोरा	डचमेन्स पाइप	वेनेजुएला	दलदली स्थान
निपेन्थिस	पिचर प्लांट	एशिया, ऑस्ट्रेलिया	गर्म बरसाती वन
पिनगुइकुला	बटरवर्ट	उत्तरी ठण्डे प्रदेश	ठण्डे अम्लीय दलदल
सरासेनिया	डेविल्स बूट	ंउत्तरी अमरीका	गर्म अम्लीय दलदल
यूट्रीकुलेरिया	ब्लैंडरवर्ट	लगभग सभी जगह	अम्लीय जल,
man trás	to this to trial or		झील-तालाब

तालिका - 2 कीटमक्षी पौधों के सामान्य नाम, जाल एवं मुख्य शिकार

नाम	जाल	मुख्य शिकार
एल्ड्रोवेन्डा	कब्जा-नुमा	जलकीट
सेफेलोटस	मटके-नुमा	कीट
डार्लिंगटोनिया	साँप के फन-नुमा	कीट
डायोनिया	कब्ज़ा-नुमा	पंखदार कीट
ड्रोसेरा	चिपचिपा, ग्रन्थिमय	कीट
हेलिएमफोरा	कीपाकार	कीट
निपेन्थिस	सुराहीदार	चींटियाँ
पिनगुइकुला	चिपचिपा, ग्रन्थिमय	कीट
सरासेनिया	सुराहीदार	पंखदार कीट
यूट्रीकुलेरिया	थैली-नुमा	मच्छरों के लावी, जलकीट

बित पत्री सब स्त

जलीय पौधे यूट्रीकुलेरिया में पत्तियाँ रूप बदलकर थैली-नुमा हो जाती हैं। इसीलिए यह ब्लैडरवर्ट भी कहलाता है। इस थैली में कीट के प्रवेश करने पर इसका ढक्कन बन्द हो जाता है और यह तब तक नहीं खुलता जब तक कि कीट का पाचन नहीं हो जाता।

कीटभक्षी पौघे डायोनिया (वीनस फ्लाई ट्रेप) की पत्तियाँ पेटी-नुमा रचना बनाती हैं जिसमें बकायदा दो कपाट होते हैं। इनके किनारों पर 12 से 20 तक कड़े दाँते लगे रहते हैं। इनके बीच में तीन जोड़ी नुकीले संवेदी रोम पाए जाते हैं जो चारों तरफ से गुलाबी रंग की स्पर्श ग्रन्थियों से घिरे रहते हैं। इसकी चमक व रंग से आकर्षित होकर जैसे ही कोई कीट इस पर बैठता है तो पत्तियों के कपाट तुरन्त बन्द हो जाते हैं। इसकी ग्रन्थियों से निकला पाचक रस कीट का काम तमाम कर देता है। कीट के पाचन के बाद पत्ती की पेटी दूसरे कीटों को फाँसने के लिए फिर खुल जाती है।

पत्तियों का सबसे सुन्दर व जटिल रूप कलश पादप (पिचर प्लांट) में देखने को मिलता है। इसकी पत्तियाँ सुराही के आकार की होती हैं। पत्ती का हर भाग इतने सुन्दर तरीके से रूपान्तरित होता है कि देखते ही बनता है। प्रत्येक

सुराही 10 से 20 सेंटीमीटर लम्बी होती है। इस पर एक ढक्कन भी लगा होता है। जैसे ही कोई कीट इस ढक्कन पर या सुराही के मुँह पर बैठता है, वह फिसलकर अन्दर चला जाता है। कलश के अन्दर बहुत सारे चिकने, नुकीले व नीचे की ओर झुके हुए रोम होते हैं जो कीट को बाहर नहीं आने देते। अन्य कीटभक्षी पौधों की तरह सुराही के निचले भाग में भरे पाचक रस इन कीटों को पचा देते हैं। कलश पादप मेघालय की खासी पहाड़ियों पर मिलते हैं। इनकी लगातार घटती संख्या को देखते हुए इस जगह को अब इस पौधे के लिए जीन बैंक (gene bank) में बदला जा चुका है। ये कीटभक्षी पौधे अधिकतर दलदली स्थानों पर पाए जाते हैं, जहाँ मिटटी में नाइट्रोजन की कमी होती है। ये पौधे कीटों से नाइट्रोजन के अलावा कुछ अन्य पदार्थ भी ग्रहण करते हैं जो इनकी वृद्धि और विकास के लिए जुरूरी होते हैं।

डायोनिया

कीटमक्षी पौधों को जन्तु प्रोटीन की ही आवश्यकता हो, ऐसा नहीं है। बटरवर्ट की पत्तियाँ पराग कणों का पाचन करके उनसे भी प्रोटीन ले लेती हैं। शुरुआत में वैज्ञानिकों का मानना था कि जन्तु प्रोटीन कीटमक्षी पौधों में फूल आने के लिए जरूरी है। परन्तु इस दिशा में भारत में हुए अध्ययनों के परिणाम भिन्न हैं।

दिल्ली विश्वविद्यालय के मोहन राम (H.Y. Mohan Ram) व साथियों ने जलीय कीटमक्षी पौधे युट्रीकुलेरिया पर प्रयोग करके पता लगाया कि इसमें फूल आने के लिए जन्तु प्रोटीन बिलकुल आवश्यक नहीं है। प्रोटीन रहित कल्चर माध्यम पर वे भलीभाँति फूलते हैं। सेफेलोटस पर भी यही बात लागू होती है। बिना कीटों के भी इसका जीवन चलता रहता है और फूल भी आते हैं। कोई कीट इसके जाल में फँसे या न फँसे, इससे कोई फर्क नहीं पड़ता। इन अवलोकनों एवं प्रयोगों से स्पष्ट है कि कीटमक्षी पौधों की वृद्धि एवं विकास के लिए जन्तु प्रोटीन आवश्यक नहीं है। प्रसिद्ध इकोलॉजिस्ट डॉबनमायर (Rexford Daubenmire) का मानना है कि कीटों से पोषण प्राप्त करने का यह तरीका विकास के दौरान कुछ पौधों में अचानक विकसित हो गया है। इस मत की पृष्टि इस बात से भी होती है कि इनके साथ अन्य कई

दूसरे पौधे भी उगते हैं। यानी उन पौधों को भी वही परिस्थितियाँ मिलती हैं जो इन कीटमक्षी पौधों को। मगर वे कीटमक्षी नहीं होते। क्या उन्हें नाइट्रोजन की कमी महसूस नहीं होती? यह भी हो सकता है कि कीटमक्षी पौधों को नाइट्रोजन के अलावा भी कुछ अन्य पदार्थ कीटों से मिलते हों जिनका संश्लेषण वे स्वयं करने में असमर्थ हों।

प्रश्न यह भी है कि आखिर कीट-पतंगे अपनी जान जोखिम में डालकर कीटभक्षी पौधों के पास जाते ही क्यों हैं? वस्तुतः कीटभक्षी पौधों

की कीट-पकड़ रचनाएँ अतिसुन्दर, रंग-बिरंगी, चटकीली, लभाने वाली व सगन्धित, मीठे, चिपचिपे शहद जैसे द्रव से भरी होती हैं - चाहे वे ड्रोसेरा की चटक लाल रंग की ओस की बुन्दों के समान चमकने वाली पत्तियाँ हों या डायोनिया का हरा-लाल चमकीला मधुयुक्त कब्ज़ा। इसी प्रकार कलश पादपों का ऊपरी ढक्कन भी किसी फूल से कम चटकीला और रंगीन नहीं होता। इस पर सुगन्धित मीठा द्रव भी लगा रहता है। कीड़े इन्हीं से आकर्षित होकर भोजन की तलाश में जाते हैं और खुद भोजन बन जाते हैं।

जितने भी कीटभक्षी या माँसाहारी पौधे आज तक खोजे गए हैं, उनमें से एक भी ऐसा नहीं है

पिचर प्लांट

जिसे नरभक्षी कहा जा सके। अधिकांशतः अत्यन्त छोटे पौधे हैं या नाजुक लताएँ हैं। कुछ तो ऐसे भी हैं कि यदि हम चलते समय ध्यान न दें तो वे हमारे पैरों के नीचे ही कुचले जाएँगे और हमें पता भी नहीं चलेगा, जैसे ड्रोसेरा के पौधे। नरभक्षी पेड़ होना तो दूर, इनमें से तो कोई झाड़ी भी नहीं है।

कुल ज्ञात 450 कीटभक्षी पौधों में वीनस फ्लाई ट्रेप, ऐल्ड्रोवेन्डा, यूट्रीकुलेरिया और डोसेरा ही ऐसी प्रजातियाँ हैं जिनमें किसी को पकड़ने की क्षमता है, पर किसे? वीनस फ्लाई ट्रेप के तो नाम से ही पता चलता है कि ये मक्खियों को पकड़ता है। इसके 2-3 सेंटीमीटर आकार के जाल में मनुष्य तो क्या कोई छोटा-मोटा जानवर तक नहीं आ सकता। इसमें फुर्तीली गति ज़रूर होती है। पर इसके जाल में मक्खियाँ और पतंगे ही फँसते हैं। कभी-कभार छोटे मेंढक इसके जाल में फँसे ज़रूर देखे गए हैं। वीनस फ्लाई ट्रेप के आकर्षण के कारण इसके आस-पास कीट पतंगे मण्डराते ही रहते हैं। मेंढक का भोजन भी कीडे-मकोडे हैं। सो मेंढक भी इसके आसपास मण्डराते रहते हैं और कभी-कभी इसके शिकार बन जाते हैं।

क्यों तठीं ठोतीं परजीवी पौधों में पतियाँ ?

ियों से भरी इस प्रकृति में कुछ पौधे ऐसे भी हैं जिनमें पत्तियाँ या तो होती ही नहीं या फिर सामान्य से कुछ अलग रूप में होती हैं। पिछले अध्यायों में हम देख ही चुके हैं कि पौधों में भोजन बनाने का काम सिर्फ क्लोरोफिल की उपस्थिति में होता है। तो फिर ये पौधे, जिनमें पत्तियाँ नहीं हैं, भोजन का जुगाड़ कैसे करते हैं? दरअसल ये पौधे अपना भोजन आंशिक या पूर्ण रूप से अन्य हरे पौधों से प्राप्त करते हैं और अपना जीवन आंशिक या पूर्ण परजीवी के रूप में जीते हैं।

इन परजीवी पौधों में अपने पोषक से जुड़े रहने और उससे भोजन प्राप्त करने के लिए विशेष चूषक अंग पाए जाते हैं। इन्हें हॉस्टोरिया कहा जाता है। ये परजीवी पौधे पोषक पौधे से सम्बन्ध जोड़कर उससे बना-बनाया

> भोजन ग्रहण करते हैं। हॉस्टोरिया के अलावा इन पौधों की एक और प्रमुख विशेषता होती है भोजन बनाने वाले अंग, यानी पत्ती की अनुपस्थिति या बहुत कम विकास। गौरतलब है कि इन सभी परजीवियों में वधीं भागों अर्थात पत्ती, तना एवं जड़ की कमी का सम्बन्ध इनकी परजीविता की सीमा से होता है। आंशिक रूप से परजीवी पौधों में बाकायदा

malthan

सामान्य रूप-रंग की हरी-भरी पत्तियाँ होती हैं। परन्तु जैसे-जैसे पोषक पर इनकी निर्भरता बढ़ती है, वैसे-वैसे तना एवं पत्तियाँ कम होती जाती हैं।

पूर्ण परजीवी रेफ्लेसिया जैसे पौधे इस स्थिति के चरम पर हैं। आंशिक परजीवी विस्कम व लोरेन्थस, जिसका नया नाम डेन्ड्रोफ्थी है, के पौधे झाड़ी-नुमा होते हैं। इन्हें सेब, आम और अमरूद के पेड़ों पर चिपके देखा जा सकता है। ये अपने चूषक अंगों की सहायता से पोषक के तने से चिपककर उससे पानी और खनिज पदार्थ ग्रहण करते हैं। परन्तु इनके तने पर आमने-सामने लगी सामान्य हरी पत्तियाँ अपना भोजन स्वयं भी बनाती हैं। हालाँकि लोरेन्थस की तुलना में विस्कम में पत्तियाँ काफी छोटी और कम होती हैं।

इन दोनों परजीवियों की तुलना में आंशिक जड़ परजीवी स्ट्राइगा (विच वीड) एक खरपतवार है। परजीवी होने के कारण यह अफ्रीकी और एशियाई देशों में ज्वार, गन्ने तथा अन्य घास कुल के पौधों को काफी नुकसान पहुँचाता है। यह एक छोटा शाकीय पौधा है जिसमें छोटी-छोटी बहुत सारी हरी पत्तियाँ होती हैं। ये पत्तियाँ अपना कार्बोहाइड्रेट तो स्वयं बनाती हैं, परन्तु खनिज लवण एवं पानी मेजुबान की जड़ों से प्राप्त करती हैं। इसमें सुन्दर, सफेद

फूल आते हैं, जिनसे बनने वाले फलों में हज़ारों की संख्या में सूक्ष्म

बीज बनते हैं।

कई पौधे पूर्ण परजीवी होते हैं। अमरबेल (कस्कूटा) इनका एक बिढ़या उदाहरण है। इसमें न तो क्लोरोफिल होता है और न ही हरी पितयाँ। और तो और इसका तना भी बहुत कमज़ोर व धागे-नुमा होता है। इन परजीवियों का तना पोषक तने से पीले या नारंगी रंग के लम्बे व पतले धागों की तरह लिपटा रहता है। अमरबेल में निश्चित दूरी पर विशेष प्रकार की चूषक जड़ें निकलती हैं जो पोषक से चिपकने के साथ-साथ वहाँ से भोजन चूसने में भी मदद करती हैं। इस बेल को अमर बनाने में इन चूषक जड़ों का विशेष योगदान है, क्योंकि यदि इसे तोड़कर अन्य पौधों पर डाल दें तो वह इन जड़ों की सहायता से वहाँ भी अपना डेरा बना लेती है। विश्व में इसकी लगभग 180 प्रजातियाँ पाई जाती हैं। कस्कूटा रिफ्लेक्सा हमारे यहाँ बेर, नींबू और डूरेन्टा पर सामान्य रूप से मिलती है। इसमें पित्तयाँ हों न हों, तना चाहे जितना कमज़ोर हो, परन्तु समय

रेन्टा पर लिपटी अमरवेल

आने पर इस पर हल्के-पीले रंग के घण्टी-नुमा फूल ढेरों की तादाद में लगते हैं जिनसे बने फलों में बीजों की कोई कमी नहीं होती।

भूफाड़ा (औरोबेंकी) एक अन्य पूर्ण जड़ परजीवी है। इसकी लगभग 100 प्रजातियाँ पाई गई हैं। इसे हमारे यहाँ तम्बाकू, बैंगन, सरसों, टमाटर और आलू की जड़ों पर उगता देखा गया है। इसका तना भूमि के अन्दर रहता है जो मेज़वान पौधों की जड़ों से सम्बन्ध जोड़े रखता है। इसका पुष्पक्रम ही ज़मीन के बाहर आता है। इसके फूल हल्के गुलाबी-नीले रंग के होते हैं। पत्तियाँ सूक्ष्म झिल्ली-नुमा व हल्के भूरे रंग की एवं गिनती की होती हैं। परन्तु इसमें बड़ी संख्या में फूल बनते हैं और फलों में अनगिनत अतिसूक्ष्म धूल के कण जैसे बीज उत्पन्न होते हैं। औरोबेंकी रेमोसा बैंगन व तम्बाकू

के खेतों को बड़ी हानि पहुँचाता है।

वर्धी अंगों की कमी की इन्तहा का नाम है रेफ्लेसिया। इस जड़ परजीवी पौधे की लगभग 14 प्रजातियाँ इण्डोनेशिया और म्यांमार में मिलती हैं। इसकी पोषक सामान्यतः एक कठलता (Lyana) होती है जिसकी जड़ों से रेफ्लेसिया केवल कुछ पतली धागे-नुमा रचनाओं के माध्यम से जुड़ा होता है। असल में रेफ्लेसिया का पूरा शरीर ही कुछ धागे-नुमा तन्तुओं से बना होता है। इसमें न तना होता है, न पत्ती। जो कुछ हमें दिखाई देता है वह है सिर्फ इसका विशालकाय फूल। इसके फूल को वनस्पति जगत का सबसे बड़ा फूल होने का दर्ज़ा प्राप्त है। लगभग एक मीटर व्यास और 15 किलो वज़न के इस फूल की पंखुड़ियों की मोटाई एक सेंटीमीटर तक होती है। इसकी कलियों का आकार बन्दगोभी के बराबर होता है। जब फूल की बात हो रही है तो आप शायद यह सोचेंगे कि इतने बड़े फूल से गुलाब, मोगरा, जूही, चमेली से कई गुना अधिक खुशबू आती होगी। मगर अफसोस! इस फूल से सड़े माँस जैसी गन्ध आती है और इसका परागण मुर्दाखोर मिक्खयों द्वारा होता है।

मेज़बान की पहचान

अब ज़रा इन परजीवियों की एक समस्या पर गौर कीजिए। अन्य पौधे तो जहाँ भी उगेंगे अपनी हरी पत्तियों की मदद से भोजन बना लेंगे। मगर परजीवियों

औरावेंकी

को अपने मेज़बान के पास ही उगना ज़रूरी है, वरना शामत आ जाएगी। यह जानना कम रोचक नहीं है कि परजीवियों के बीजों का अंकुरण सही पोषक की उपस्थिति में ही होता है। यह कुछ खास रसायनों के ज़रिए सुनिश्चित होता है। पोषक से सफल सम्बन्ध बनाने के लिए दो विशेष रासायनिक संकेतों की ज़रूरत होती है जो पोषक की जड़ से निकलते हैं। पहला रसायन परजीवी के बीजों को अंकुरण के लिए उत्तेजित करता है और दूसरा चूषक अंग बनाता है।

वैज्ञानिक चेन्य (Chang M.) ने 1986 में सर्वप्रथम स्ट्राइगा के बीजों का उद्दीपक रसायन ज्वार की जड़ों से प्राप्त किया था। यह एक सरल-सा रसायन पैराडाईफिनॉल है। यह पदार्थ स्ट्राइगा के बीजों के लिए एक आदर्श सन्देशवाहक का कार्य करता है। जब यह पोषक ज्वार की जड़ों से निकलता है तब यह सक्रिय क्विनोल के रूप में होता है। परन्तु जैसे-जैसे यह ज्वार की जड़ से दूर जाता है, यह ऑक्सीकृत होकर निष्क्रिय होता रहता है। अतः जो बीज पोषक की जड़ के पास होते हैं, वे ही अंकुरित हो पाते हैं। है न बहुत खूब, अपने अंकुरण के लिए उपयुक्त परिस्थिति पहचानने का बीजों का तरीका!

आने वाली बठार का संकेत देती हैं पतियाँ

वझड़ी जंगलों में शीत ऋतु जाते-जाते अधिकांश पेड़ों की पत्तियाँ झड़ जाती हैं। इस तरह वे बसन्त के आगमन का सन्देश देती हैं। बसन्त बहार के आने की यह एक प्रामाणिक प्राकृतिक सूचना है। बसन्त के आने से पहले सेमल व पलाश जैसे अधिकांश पेड़ पत्तीविहीन, सूखे ठूँठ की तरह, मृतप्राय अवस्था में नज़र आते हैं।

परन्तु फरवरी बीतते-बीतते ये सूखे ठूँठ एकदम जीवन्त हो उठते हैं। सारा पेड़ देखते-देखते केसिरया-लाल रंग के रस भरे फूलों से लद जाता है। लगता है मानो सारा बसन्त सेमल और पलाश पर ही मेहरबान हो आया हो। सेमल को इसके एकदम सीधे खड़े तने और उसमें से गोल घेरे में समकोण पर निकलती शाखाओं के कारण फूल-रिहत अवस्था में भी आसानी से पहचाना जा सकता है। इसकी दूसरी पहचान है इसके तने पर पाए जाने वाले तीखे, शंकु आकार के बड़े-बड़े काँटे। सेमल की पत्तियाँ चमकीली, हरी व बड़ी-बड़ी होती हैं जिनमें पाँच से सात तक पत्रक मिलते हैं। प्याले-नुमा, बड़े आकार के, लाल रंग के हज़ारों फूलों से लदे इस पेड़ की छटा ही निराली होती है। सेमल की सुन्दरता बढ़ाने में इसके पुंकेसरों का भी महत्वपूर्ण योगदान है। इनकी संख्या 60 से 600 तक होती है। चटक लाल रंग की मोटे रेशे जैसी ये रचनाएँ प्रायः पाँच बण्डलों में जमी रहती हैं। अपने फूलों की विशिष्टता के कारण सेमल वनस्पित शास्त्रियों के भी आकर्षण का केन्द्र रहा है। बहार आने पर मकरन्द से भरपूर फूलों वाला यह पेड़ विभिन्न प्रकार के पिक्षयों का सभा स्थल बन जाता है। पक्षी दर्शन के लिए शायद इससे अच्छा

पत्नाश

कोई पेड़ नहीं है। एक तरह से सेमल पर दोहरी बहार आती है – एक फूलों की और दूसरी परिन्दों की।

बसन्त का दूसरा पर्याय पलाश है। यह खासतौर पर हमारे ही देश का वृक्ष है। लॉर्ड क्लाइव और नवाब सिराजुद्दौला के बीच हुई पलासी की लड़ाई का यह नाम परोक्ष रूप से पलाश के कारण ही पड़ा। इस स्थान पर पलाश का घना वन था जिससे इस गाँव का नाम पलासी हुआ। पेड़ों की प्रमुखता के आधार पर गाँवों के नामकरण की परम्परा काफी पुरानी है। मसलन आगरा-बॉम्बे राजमार्ग पर मुम्बई से इन्दौर के बीच मध्यप्रदेश की सीमा पर स्थित महाराष्ट्र के एक गाँव का नाम पलासनेर है, यानी पलाश के जंगल के बीच बसा गाँव। इसी मार्ग पर इसी जंगल में मानपुर से थोड़ा पहले पलासमाल नाम का गाँव है। उल्लेखनीय है कि मालवी भाषा में जंगल को माल कहते हैं। इन्दौर नगर में पलासिया एक प्रमुख रिहायशी क्षेत्र है। गवली पलासिया जैसे कई गाँव पलाश वृक्षों के बाहुल्य के परिचायक हैं। यानी पलाश ने हमारे जीवन को बहुत प्रभावित किया है, चाहे गाँव का नाम हो या होली के रंग। बसन्त में तोते की चोंच-नुमा फूलों से अटा यह पेड़ सचमुच जंगल की आग सा लगता है।

पत्तियों और फूलों का निर्माण

फूल पेड़ों की जनन अवस्था के द्योतक हैं जिनसे आगे चलकर फल और बीज का निर्माण होता है। वैज्ञानिकों ने पता लगाया है कि फूलों के निर्माण में पत्तियों की भूमिका अहम है। पेड़ पर कब नई शाखाओं की जगह कितयाँ बनेंगी और फूल खिलेंगे, यह सब पत्तियों द्वारा तय होता है। यानी पेड़ को फूलने-फलने का सन्देश पत्तियों द्वारा ही दिया जाता है। परिपक्व अवस्था में एक निश्चित अन्धकार अवधि मिलने पर ही पौधे फूलना शुरू करते हैं। यानी दिन और रात की लम्बाई का पौधों के फूलने पर सीधा प्रभाव पड़ता है। प्रकाश की यह निश्चित अवधि "प्रकाश अवधि" कहलाती है। प्रत्येक पौधे की प्रकाश अवधि अलग-अलग होती है। इस आधार पर पेड़-पौधों को तीन समूहों में बाँटा गया है। एक हैं वे पौधे जिन्हें फूलने के लिए छोटी प्रकाश अवधि की ज़रूरत होती है – यानी रातें जब लम्बी होने लगती हैं, तब ये फूलने लगते हैं। दूसरे वे पौधे हैं जिन्हें लम्बी प्रकाश अवधि चाहिए। ये पौधे तब फूलते हैं जब दिन बड़े होने लगते हैं। तीसरे समूह में वे पौधे आते हैं जिन्हें

दिन-रात की लम्बाई से कोई फर्क नहीं पड़ता। यही कारण है कि कुछ पेड़-पौधे ठण्ड के छोटे दिनों व लम्बी रातों में फूलते हैं, तो कुछ गर्मी के लम्बे दिनों व छोटी रातों में। बसन्त में दूसरे समूह के पेड़-पौधे ही फलते-फूलते हैं। कपास व टमाटर वगैरह ऐसे पौधे हैं जो वर्ष भर फूलते-फलते रहते हैं। ये प्रकाश अवधि निरपेक्ष पौधे हैं।

पौधे को आवश्यक अवधि तक अन्धकार मिला या नहीं इसका पता पत्तियों के ज़िर्य ही लगता है। सही प्रकाश अवधि मिलने पर इनमें फ्लोरीजन नामक हॉर्मोन बनता है। हालाँकि अभी तक इसे प्राप्त नहीं किया जा सका है, मगर ऐसे स्पष्ट प्रमाण हैं कि यह रसायन हॉर्मोन-नुमा होता है। यह पदार्थ नई शाखाओं को पुष्प-किलका में बदलने के निर्देश देता है। फिलहाल फूल खिलने के बारे में हम जितना जानते हैं, उसके आधार पर इस प्रक्रिया की व्याख्या के लिए एक मॉडल प्रस्तावित किया गया है। वैसे यह कहना ठीक ही होगा कि अभी हम भलीभाँति नहीं जानते हैं कि पौधों को पता कैसे चलता है कि उन्हें कितनी प्रकाश अवधि मिल रही है।

अन्धेरे से बहार

फिलहाल के प्रस्तावित मॉडल के अनुसार पत्तियाँ एक विशेष, रंगीन पदार्थ से इस बात का पता लगाती हैं कि पौधों को उचित प्रकाश अवधि मिली है कि नहीं। यह पदार्थ नीले रंग का एक प्रोटीन है जिसे बोर्थविक (H. A Borthwick) और हैन्ड्रिक्स (S. B. Hendricks) ने 1972 में फाइटोक्रोम नाम दिया। यह एक प्रकाशग्राही पदार्थ है जो दो अलग-अलग रूपों में पाया जाता है। प्रकाश के प्रभाव के तहत ये दो रूप आसानी से एक से दूसरे में तबदील हो जाते हैं। फाइटोक्रोम का एक रूप लाल प्रकाश का अवशोषण करता है। इसे फाइटोक्रोम रेड (P) कहते हैं।

जब P, पर लाल प्रकाश डाला जाता है तो यह एक अन्य रूप में बदल जाता है। यह दूसरा रूप ज़्यादा तरंग लम्बाई वाला लाल प्रकाश सोखता है। इसे फाइटोक़ोम फार रेड (P,) कहते हैं। जब P, पर सुदूर लाल प्रकाश डाला जाता है तो यह पुनः P, में बदल जाता है। यह भी देखा गया है कि P, का रूप अन्धेरे में अपने आप धीरे-धीरे P, के रूप में बदलता रहता है। जब दोनों तरह का प्रकाश पड़ता है तो लाल प्रकाश का असर प्रभावी होता है।

दिन में सूरज की रोशनी में लाल और सुदूर लाल दोनों तरह का प्रकाश होता है। दिन में पत्तियों पर लगातार प्रकाश पड़ते रहने के कारण शाम ढलने तक P, की मात्रा काफी बढ़ जाती है, जो लम्बी, अन्धेरी रातों के बाद फूलने वाले पौधों में फूल आने की क्रिया को रोकती है। परन्तु सर्दी की लम्बी, अन्धेरी रातों के दौरान P, रात भर में धीरे-धीरे P, में बदल जाता है, जिससे पुष्पन की क्रिया प्रेरित होती है।

इसके ठीक विपरीत छोटी रातों के बाद फूलने वाले पौधों में फाइटोक्रोम का P, रूप फूल बनने की क्रिया को उद्दीप्त करता है। ऐसी स्थितियाँ गर्मी के दिनों में बनती हैं। हमारे देश में छोटी रातों वाले पेड़-पौधों में फूल तब तक नहीं आते जब तक रातें एक हद तक छोटी न हो जाएँ। ऐसा बसन्त आते-आते होने लगता है।

यानी पत्तियाँ पौधों के लिए भोजन तो बनाती ही हैं, साथ ही फूलने-फलने का सन्देश भी देती हैं। परन्तु सेमल, गुलमोहर, अमलतास और पलाश पर जब बहार आती है तब उनके तने पर एक भी पत्ती नहीं होती। तो फिर इन्हें फूलने का सन्देश कैसे मिलता है? वास्तव में इनकी पत्तियाँ झड़ने से पहले ही पौधों को संकेत दे जाती हैं कि "फूलने का समय आ गया है। फूलो! फूलो और बसन्त की अगवानी के लिए तैयार रहो।"

ज़रूरी है पतझड़ भी

के बाद अचानक पतझड़ी जंगलों के सारे पेड़ों के पत्ते पीले पड़कर झड़ जाते हैं। क्या आपने कभी सोचा कि ये पत्ते क्यों झड़ जाते हैं? प्रति वर्ष पतझड़ में लाखों टन क्लोरोफिल कुछ ही सप्ताह में नष्ट हो जाता है। ऐसा क्यों होता है? पत्तियों का ये हरा पदार्थ कहाँ गायब हो जाता है? इन सवालों के जवाब जानने का प्रयास वैज्ञानिक लम्बे समय से कर रहे हैं। पतझड़ की प्रक्रिया कई कारणों से महत्वपूर्ण है। इसके कारण ऊष्ण-कटिबन्धीय देशों का सारा नज़ारा ही बदल जाता है। उपग्रह इस मौसम में जो चित्र भेजते हैं, उनमें पृथ्वी कुछ ज़्यादा ही रंगीन नज़र आती है। इन चित्रों में गहरे हरे, पीले, लाल व भूरे रंग के बदलाव की स्पष्ट तरंगें देखने को मिलती हैं।

यूरोपीय देशों में पतझड़ में प्रकृति के इस बदले हुए रूप को देखने के लिए भारी भीड़ उमड़ती है। वहाँ पर्यटन स्थलों के होटल बहुत पहले ही आरक्षित हो जाते हैं। पूर्वी-उत्तरी अमरीका में तो पतझड़ आने पर पर्यटन से करोड़ों डॉलर की कमाई हो जाती है।

पत्तियों में क्लोरोफिल का विघटन स्थानीय मौसम व पेड़-पौधों की प्रजातियों पर निर्भर करता है। इन सबका मिला-जुला नज़ारा बहुत लुभावना होता है। रंग परिवर्तन की यह लहर ध्रुवों से ऊष्ण-कटिबन्धों की ओर दक्षिणी यूरोप में 60 से 70 कि.मी. प्रतिदिन की रफ्तार से चलती है, और सारा क्लोरोफिल 2-3 सप्ताह में नष्ट हो जाता है। कटिबन्धों से दूर ध्रुवीय प्रदेशों में और पहाड़ों पर चीड़ के सदाबहार वनों में पतझड़ नहीं आता। इनकी पत्तियाँ सारा साल धीरे-धीरे झड़ती रहती हैं। पृथ्वी पर ऊष्ण-कटिबन्धीय ज़मीनी पौधों में प्रति वर्ष लगभग 30 करोड़ टन क्लोरोफिल नष्ट हो जाता है। पूरी पृथ्वी पर लगभग 12 खरब टन क्लोरोफिल टूटकर रंगहीन पदार्थ में बदल जाता है। इसी तरह दो करोड़ टन पीला केरॉटीन भी विघटित होकर अन्य पदार्थों में बदल जाता है।

क्लोरोफिल का टूटना व अन्य पदार्थों में बदलना पत्तियों के पक जाने की जिटल क्रियाओं के कारण होता है। इस दौरान पत्ती के उपयोगी पदार्थ (जैसे शर्करा, प्रोटीन या डी.एन.ए.) पत्तियों से निकलकर पेड़ के अन्य भागों, जैसे कन्दों या जड़ों में चले जाते हैं। इस तरह पत्ती जब झड़ती है तो वह मात्र एक कंकाल होती है। पत्तियों के पकने की शुरुआत उनके पीले पड़ने से होती है। इस समय उनके भोजन निर्माण कारखानों (क्लोरोप्लास्ट) के अवयव बिखरने लगते हैं और सरल पदार्थों में टूट-बिखर जाते हैं। ऐसी पत्ती भोजन नहीं बना सकती और अन्त में पीली-भूरी होकर झड़ जाती है।

1890 में विएना में वनस्पति शास्त्र के प्रोफेसर एण्टोन जोसेफ केरनर (Anton Joseph Kerner) ने देखा कि पतझड़ से पहले क्लोरोफिल के कण सिकुड़कर चमकीले कणों में बदल जाते हैं। इनको उन्होंने "अन्तिम व्यर्थ पदार्थ" कहा। इसके लगभग 100 साल बाद इस दिशा में विज्ञान और आगे बढ़ा तो पता चला कि ये पीले, सिकुड़े कण प्रोटीन व वसा की झिल्लियाँ हैं, जो सिक्रय (हानिकारक) ऑक्सीजन के कारण कठोर हो जाती हैं।

कुछ समय बाद वैज्ञानिकों ने यह भी देखा कि क्लोरोफिल को अल्कोहल, एसीटोन व ईथर जैसे कार्बनिक पदार्थों में घोला जा सकता है। इस घुलित अवस्था में भी क्लोरोफिल से निकला इलेक्ट्रॉन ऑक्सीजन से क्रिया करके उसे सक्रिय मूलक में बदल देता है। सक्रिय ऑक्सीजन क्लोरोफिल के कणों पर आक्रमण कर उसे एक निष्क्रिय, रंगहीन पदार्थ में बदल देती है। क्लोरोफिल के रंगहीन हो जाने की समस्या से डिब्बाबन्द पदार्थों के उत्पादक भी परेशान थे। डिब्बाबन्द ताज़ा, हरे मटर धीरे-धीरे भूरे रंग में बदल जाते हैं। उत्पादकों ने देखा कि यदि डिब्बों में ताज़ा, हरे मटर ताम्बे की सूक्ष्म मात्रा के साथ रखे जाएँ तो वे लम्बे समय तक हरे बने रहते हैं और उनकी चमक भी बढ जाती है।

वैज्ञानिकों ने इसे आगे बढ़ाते हुए देखा कि क्लोरोफिल अणु के बीच में जो मैग्नीशियम का परमाणु होता है, यदि उसकी जगह ताम्बे या जस्ते का परमाणु हो तो ऐसा क्लोरोफिल ज़्यादा टिकाऊ होता है। नवीनतम खोजों से पता चलता है कि क्लोरोफिल एक से अधिक तरीकों से टूटता है। पके फलों में क्लोरोफिल पदार्थों का संचय हो जाता है जिनमें क्लोरोफिल अणु की संरचना थोड़ी मिन्न होती है। ये पदार्थ क्लोरोफिल अणु का ही कोई उत्पाद होते हैं। क्लोरोफिल विघटन के कुछ अन्य सम्भावित पदार्थों में ऐसे नाइट्रोजन-युक्त चमकदार पदार्थ भी हैं जो कुछ पत्तियों व फलों में बनते हैं।

यह तो आपने सुना ही है कि ज़िन्दा हाथी लाख का और मरे तो सवा लाख का। ऐसा ही कुछ क्लोरोफिल के साथ भी है। इसके विघटन का मूल्य पौध शालाओं के मालिकों ने खूब समझा और उसकी अच्छी कीमत वसूली। बाज़ार में ऐसे पौधे ज़्यादा महँगे मिलते हैं जिनकी पत्तियाँ पतझड़ से पहले पीली पड़ने लगती हैं। इसी तरह वे पौधे भी खूब बिकते हैं जिनकी पत्तियाँ पूरी हरी न होकर चितकबरी होती हैं। याद कीजिए, आपके बगीचे व घर के गमलों में लगे तरह-तरह के क्रोटन। वे जितने रंग-बिरंगे होते हैं, उतने ही सुन्दर और उतने ही महँगे। पत्तियों में कुछ स्थानों पर क्लोरोफिल नहीं होने के कारण ऐसा होता है।

इसके ठीक विपरीत क्लोरोफिल को टिकाऊ बनाकर उसकी भी खूब कीमत वसूली जा रही है। डिब्बाबन्द खाद्य पदार्थों के उत्पादक इस तकनीक का खूब लाभ उठा रहे हैं। विदेशी बाज़ार क्लोरोफिल-युक्त खाद्य पदार्थों से भरे पड़े हैं। खाने के तेलों, दही, फलों के रस व सब्ज़ियों में ताम्बा-युक्त क्लोरोफिल मिलाया जा रहा है। इसका उपयोग महँगे सौन्दर्य पदार्थों में भी होने लगा है। हर्बल शैम्पू, झाग-युक्त नहाने की क्रीम, टूथपेस्ट और दुर्गन्धनाशक पदार्थों में भी नकली क्लोरोफिल मिलाकर लाभ कमाया जा रहा है। ताम्बा-युक्त क्लोरोफिल प्रकृति में नहीं पाया जाता है। इस तरह का क्लोरोफिल प्रकाश संश्लेषण भी नहीं कर सकता है। क्लोरोफिल को रासायनिक परिवर्तन द्वारा टिकाऊ बनाकर खाद्य व सौन्दर्य उद्योग का व्यापार विदेशों में खूब फल-फूल रहा है।

क्लोरोफिल अणु के अति अस्थिर होने के कुछ लाभ भी हैं। इसके इस गुण का उपयोग येल विश्वविद्यालय के डेविड केसेल (David Castle) ने कैंसर उपचार में किया है। उन्होंने देखा कि जब क्लोरोफिल को मानव शरीर में

प्रविष्ट कराया जाता है तो यह उस जगह पर ज़्यादा एकत्र हो जाता है जहाँ कैंसर होता है। इसके बाद जब लाल लेज़र किरणें उस स्थान पर डाली जाती हैं, तो क्लोरोफिल से निकलने वाली सक्रिय ऑक्सीजन ट्यूमर को नष्ट कर देती है।

क्लोरोफिल का यह गुण समुद्र में पाए जाने वाले सूक्ष्म जन्तुओं की इकोलॉजी को भी प्रभावित करता है। रात में तैरने वाले ये सूक्ष्म जन्तु समुद्र सतह से कुछ मीटर नीचे मौजूद हरे पौधों को अपना भोजन बनाते हैं। ये जन्तु लगभग पारदर्शी होते हैं। हरे पौधों से पेट भरने पर ये हरे दिखाई देते हैं। खाए गए पौधों का क्लोरोफिल रात के अन्धेरे में प्रकाश संश्लेषण करने में असमर्थ रहता है। परन्तु सुबह सूर्य की पहली किरण के साथ ही जन्तुओं के पेट में पड़ा क्लोरोफिल सक्रिय हो जाता है। इससे इलेक्ट्रॉन निकलते हैं जिनसे जन्तु की पारदर्शी आहार नली में हानिकारक सक्रिय ऑक्सीजन का निर्माण होता है। इससे जन्तु की मृत्यु तक हो जाती है। कुछ जन्तु ऑक्सीकरणरोधी पदार्थों की उपस्थिति के कारण बच जाते हैं, परन्तु अधिकतर इस खतरे से बचने के लिए सूर्योदय से पहले ही चुपचाप समुद्र में 10 से 100 मीटर गहरे चले जाते हैं जहाँ सूर्य का प्रकाश नहीं पहुँच पाता। शाम होते ही ये फिर अन्धेरे में भोजन की तलाश में ऊपर चले आते हैं। यह क्रम अबाध रूप से दिन-रात चलता रहता है। रात के अन्धेरे में किया गया भोजन दिन के उजाले में इनकी मौत का कारण बन जाता है।

इस तरह से पतझड़ में पत्तियों का पीला पड़ना और झड़ना एक अनिवार्यता है, ताकि इस धरती पर जीवन व्यवस्थित और निर्बाध रूप से चलता रहे। पतझड़ आने वाली बहार का सन्देश वाहक है। एक का अन्त और दूसरे की शुरुआत – प्रकृति का यही अटल नियम है।

किशोर पँवार

किशोर पँवार पेशे से शिक्षक हैं। उनकी प्रारम्भिक शिक्षा उज्जैन, शाजापुर और मन्दसौर ज़िले के ग्रामीण अंचल में हुई। विक्रम विश्वविद्यालय, उज्जैन, से स्नातक और स्नातकोत्तर की पढ़ाई करने के बाद उन्होंने विक्रम विश्वविद्यालय से ही वायु प्रदूषण एवं पेड़-पौधों पर इसके प्रभावों पर शोध कार्य किया।

इनके शोध पत्र विभिन्न राष्ट्रीय तथा अन्तरराष्ट्रीय पत्रिकाओं में प्रकाशित हुए हैं। वे लोक रुचि विज्ञान पर भी लगातार लिखते हैं। स्कूल विज्ञान शिक्षण में रुचि रखने वाले श्री पँवार फिलहाल इन्दौर के होल्कर विज्ञान महाविद्यालय में वनस्पति विज्ञान के प्राध्यापक एवं पर्यावरण विभाग के प्रमुख हैं।

सम्पर्कः किशोर पँवार 142 ग्रेटर वैशाली अन्नपूर्णा रोड, इन्दौर (मध्य प्रदेश) फोनः 0731-248 0374

एकलव्यः एक परिचय

एकलव्य एक स्वैच्छिक संस्था है जो पिछले कई वर्षों से शिक्षा एवं जनविज्ञान के क्षेत्र में काम कर रही है। एकलव्य की गतिविधियाँ स्कूल में व स्कूल के बाहर दोनों क्षेत्रों में हैं।

एकलव्य का मुख्य उद्देश्य ऐसी शिक्षा का विकास करना है जो बच्चे व उसके पर्यावरण से जुड़ी हो और खेल, गतिविधि व सृजनात्मक पहलुओं पर आधारित हो। अपने काम के दौरान हमने पाया है कि स्कूली प्रयास तभी सार्थक हो सकते हैं जब बच्चों को स्कूली समय के बाद, स्कूल से बाहर और घर में भी रचनात्मक गतिविधियों के साधन उपलब्ध हों। किताबें तथा पत्रिकाएँ इन साधनों का एक अहम हिस्सा हैं।

पिछले कुछ वर्षों में हमने अपने काम का विस्तार प्रकाशन के क्षेत्र में भी किया है। बच्चों की पत्रिका चकमक के अलावा खोत (विज्ञान एवं टेक्नॉलॉजी फीचर) तथा शैक्षणिक संदर्भ (शैक्षिक पत्रिका) हमारे नियमित प्रकाशन हैं। शिक्षा, जनविज्ञान व बच्चों के लिए सृजनात्मक गतिविधियों के अलावा विकास के व्यापक मुद्दों से जुड़ी किताबें, पुस्तिकाएँ, सामग्रियाँ आदि भी एकलव्य ने विकसित एवं प्रकाशित की हैं।

वर्तमान में एकलव्य मध्यप्रदेश में भोपाल, होशंगाबाद, पिपरिया, हरदा, देवास, इन्दौर, उज्जैन, शाहपुर (वैतृल) व परासिया (छिन्दवाड़ा) में स्थित कार्यालयों के माध्यम से कार्यरत है।

नीम की पत्तियाँ

