THESIS PRESENTATION

Development of Code for a Physical Optics Radar Cross Section Prediction and Analysis Application (POFACETS 3.0)

Major Filippos Chatzigeorgiadis Hellenic Air Force

Co-Advisors:

Prof. David C. Jenn

Prof. D. Curtis Schleher

- PRESENTATION OVERVIEW
 - RADAR CROSS SECTION BASICS
 - THESIS GOALS
 - POFACETS OVERVIEW
 - NEW FUNCTIONALITIES
 - NEW COMPUTATIONAL CAPABILITIES
 - CONCLUSIONS
 - FURTHER IMPROVEMENTS

RADAR CROSS SECTION BASICS

- Radar Cross Section (RCS) represents the magnitude of the echo signal returned to a radar by the target

— Formal definition: $\sigma = \frac{\text{Power reflected to receiver per unit solid angle}}{\sigma}$ Incident power density/ 4π

- Range Independent. Depends on Frequency, Polarization & Target Aspect
- − Units of m² and dBsm

• RCS BASICS

- Why is RCS important?
 - Signal received by radar is proportional to RCS of target
 - Required Effective Radiated Power for Self-Protection Jamming also proportional to RCS
- RCS reduction important aspect of signature reduction in military platforms (e.g. F-117, B-2, Visby corvette)

- PRESENTATION OVERVIEW
 - RADAR CROSS SECTION BASICS
 - THESIS GOALS
 - POFACETS OVERVIEW
 - NEW FUNCTIONALITIES
 - NEW COMPUTATIONAL CAPABILITIES
 - CONCLUSIONS
 - FURTHER IMPROVEMENTS

• THESIS GOALS

- RCS importance makes necessary to predict RCS of targets and evaluate effects of shaping and materials
- Existing RCS prediction software packages are usually <u>expensive</u>, have <u>high requirements</u> on computer resources and feature <u>long run</u>—times
- Need for an inexpensive software that will run on standard PCs and produce results in seconds or minutes for standard geometrical shapes

• THESIS GOALS

- POFACETS 2.3 developed in 2000 by Prof. D.
 Jenn and Commander E. Garrido allows user to design a model and evaluate its RCS
 - MATLAB compatibility issues
 - Limitations in model design
- Thesis Goals:
 - Upgrade POFACETS 2.3 version
 - Add new functionalities
 - Add new computational capabilities

- PRESENTATION OVERVIEW
 - RADAR CROSS SECTION BASICS
 - THESIS GOALS
 - POFACETS OVERVIEW
 - NEW FUNCTIONALITIES
 - NEW COMPUTATIONAL CAPABILITIES
 - CONCLUSIONS
 - FURTHER IMPROVEMENTS

POFACETS OVERVIEW

- Program implements 2 main tasks:
- Target Model Design
 - Model surfaces defined by use of triangular facets
 - Nodes defined by their x,y,z coordinates
 - Facets defined by three nodes (right hand rule used to define external facet side)

POFACETS OVERVIEW

- RCS Calculations
 - Monostatic and Bistatic Cases
 - Physical Optics method is used to calculate current on illuminated facets. Current is set to zero in non-illuminated facets
 - Radiation integrals and Taylor series used to compute scattered field from each facet. Total scattered field is sum of fields from each facet.
 - RCS is computed as: $\sigma = 4\pi \frac{|\vec{E}_s|^2}{|\vec{E}_i|^2}$
 - Diffraction, Multiple Reflections, Shadowing, Surface Waves are not included in calculations

- PRESENTATION OVERVIEW
 - RADAR CROSS SECTION BASICS
 - THESIS GOALS
 - POFACETS OVERVIEW
 - NEW FUNCTIONALITIES
 - NEW COMPUTATIONAL CAPABILITIES
 - CONCLUSIONS
 - FURTHER IMPROVEMENTS

NEW FUNCTIONALITIES

- Upgrade of existing GUIs to MATLAB 6.5
 - Only standard Windows components used

3-Nov-05

NEW FUNCTIONALITIES

- Upgrade of existing model file database
 - Only one file per model used (previous POFACETS versions used two files for each model)
 - Capability to convert from/to previous versions files

3-Nov-05

- NEW FUNCTIONALITIES
 - Upgrade of Manual Model Design
 - Unlimited numbers of vertices and facets

- NEW FUNCTIONALITIES
 - Graphical Model Design
 - Standard geometrical shapes implemented

3-Nov-05

- NEW FUNCTIONALITIES
 - Graphical Model Design
 - Models can be resized, moved or rotated
 - User selectable number of facets for curved surfaces

3-Nov-05

NEW FUNCTIONALITIES

- Import/Export of models from/to other CAD & RCS software
 - Import from CIFER, ACADS, AUTOCAD (stereolithographic format only), MATLAB's PDETOOL
 - Export to CIFER and ACADS

NEW FUNCTIONALITIES

- Combination of existing models
 - Allows the design of very complex models

3-Nov-05

- **NEW FUNCTIONALITIES**
 - RCS computations vs Angle or vs Frequency
 - Monostatic and Bistatic cases implemented

CALCULATE BISTATIC RCS		
Calculation of Bistatic RCS for the plate model		
Load File	Incidence Angle	Observation Angle
○ Ground Plane XY?	Theta: 30 deg	Theta Start: 0 deg Theta Stop: 360 deg Increment: 1 deg
Rel. Permittivity 4	Phi: O deg	Phi Start: 0 deg Phi Stop: 0 deg Increment: 1 deg
	Computational Parameters	
	Taylor Series Incident Polarization	
	Length of	0.05 Theta (TM-z)
Surface Roughness	Number of	5 Frequency: 3
Correlation Dist.(m):		GHz
Standard Dev. (m): 0	⊙ Show 3D Display	O Show Polar Graph
	S Short 3D Display	O Show I state draph
Calculate RCS	Print	Close Help

- NEW FUNCTIONALITIES
 - RCS computations vs Angle or vs Frequency
 - All user input is checked for errors

3-Nov-05

- / NEW FUNCTIONALITIES
 - RCS results display options
 - Standard RCS plot versus angle (1 m by 1 m sphere

at 1 GHz)

- NEW FUNCTIONALITIES
 - RCS results display options
 - Polar Plot

3-Nov-05

- **NEW FUNCTIONALITIES**
 - RCS results display options
 - **Combination Plot**

- PRESENTATION OVERVIEW
 - RADAR CROSS SECTION BASICS
 - THESIS GOALS
 - POFACETS OVERVIEW
 - NEW FUNCTIONALITIES
 - NEW COMPUTATIONAL CAPABILITIES
 - CONCLUSIONS
 - FURTHER IMPROVEMENTS

NEW CAPABILITIES

- Exploitation of symmetry planes
 - Monostatic RCS is the same for symmetrical angles of incidence
 - Can be exploited to expedite RCS computation time
 - Up to three symmetry planes can be defined

- NEW CAPABILITIES
 - Exploitation of symmetry planes
 - Program execution for the RCS calculation of this sphere was reduced by 73%

- NEW CAPABILITIES
 - Effects of Materials on RCS
 - A user-updateable database of materials was created

NEW CAPABILITIES

- Effects of Materials on RCS
 - Materials can be applied to each facet of a model in one or more layers

- NEW CAPABILITIES
 - Effects of Materials on RCS
 - Example of a 1 m by 1 m plate (normal incidence)

Perfect Electric Conductor (PEC) 6.25 mm Composite Layer on PEC (ε_r =16)

NEW CAPABILITIES

- Effects of Infinite Ground Plane
 - Ground effects must be considered for ground targets, naval targets and low–flying airborne targets
 - Option to include or exclude ground effects
 - Ground characteristics can be specified

3-Nov-05

NEW CAPABILITIES

GROUND PLANE

- Effects of Infinite Ground Plane
 - Four cases are taken into account

GROUND PLANE

3-Nov-05

NEW CAPABILITIES

- Effects of Infinite Ground Plane
 - 1 m by 1 m plate 9.25 m above PEC ground, normal incidence

Ground Effects
Excluded

Ground Effect Included

- PRESENTATION OVERVIEW
 - RADAR CROSS SECTION BASICS
 - THESIS GOALS
 - POFACETS OVERVIEW
 - NEW FUNCTIONALITIES
 - NEW COMPUTATIONAL CAPABILITIES
 - CONCLUSIONS
 - FURTHER IMPROVEMENTS

CONCLUSIONS

- User friendly program
 - Use of standard GUI components
 - Minimization of errors in user input
- Complex models can be handled
 - Combination of models
 - Model Import/Export from/to CAD software
- New computational capabilities had minimal effect on execution time. Exploitation of symmetry planes can drastically reduce run—time

CONCLUSIONS

- Added Versatility
 - RCS versus Angle and versus Frequency
 - Options for displaying RCS results
 - RCS prediction and RCS analysis can be performed
- Closer to "real-world" RCS problems
 - Use of ground plane
 - Use of materilas
- POFACETS 3.0 can be used as an instructional tool and as a "first –cut" approach to RCS prediction and analysis

- PRESENTATION OVERVIEW
 - RADAR CROSS SECTION BASICS
 - THESIS GOALS
 - POFACETS OVERVIEW
 - NEW FUNCTIONALITIES
 - NEW COMPUTATIONAL CAPABILITIES
 - CONCLUSIONS
 - FURTHER IMPROVEMENTS

/ FURTHER IMPROVEMENTS

- Capability to import models from:
 - Other RCS software
 - Other CAD software, especially AUTOCAD
- Overcome Physical Optics limitations by including other scattering mechanisms:
 - Diffraction
 - Double Reflections
 - Surface Waves
 - Shadowing

3-Nov-05

Questions?

3-Nov-05