1	2	3	4	5	6	7	8	Calif.

APELLIDO Y NOMBRE:

Condición: Libre Regular

Algebra III - Final 22 de febrero de 2023

Justificar todas las respuestas. No se permite el uso de dispositivos electrónicos. Todos los resultados teóricos utilizados deben ser enunciados apropiadamente; en caso de utilizar resultados teóricos no dados en clase, los mismos deben demostrarse. Para aprobar se debe tener como mínimo 15 pts. en la parte teórica y 30 pts. en la parte práctica.

Parte Teórica (30 pts.)

- 1. (14 pts) Enunciar y demostrar el Teorema de Cayley-Hamilton generalizado.
- 2. (12 pts) Enunciar y demostrar el teorema de caracterización de las transformaciones lineales diagonalizables.
- 3. Determinar si cada una de las siguientes afirmaciones son verdaderas o falsas, justificando en cada caso la respuesta dada.
 - (a) (3 pts) Toda matriz sobre \mathbb{Z}_3 es triangularizable.
 - (b) (3 pts) Si S es un subconjunto de 31 matrices de $(\mathbb{Z}_5)^{2\times 2}$, entonces hay dos de ellas que son equivalentes.
 - (c) (3 pts) Sea $T:V\to V$ una transformación autoadjunta. Todo espacio T-invariante tiene un complemento T-invariante.

Parte Práctica (70 pts.)

- 4. (15 pts) Sean \mathbbm{k} un cuerpo y V el conjunto de polinomios en una variable x de grado ≤ 4 . Sea $T:V\to V$ la transformación lineal tal que $T(x^i)=x^{i+1}$ para $0\leq i\leq 3$ y $T(x^4)=1$.
 - (a) Para $\mathbb{k} = \mathbb{C}$, hallar la forma de Jordan de T y una base en la cual se realiza.
 - (b) Repetir el ítem anterior pero para $\mathbb{k} = \mathbb{Z}_5$.
- 5. (15 pts) Sea $A \in \mathbb{R}^{n \times n}$ una matriz simétrica tal que $\operatorname{tr}(A) = 0$ y $(A I)(A + 6I)^3 = 0$.
 - (a) Probar que n es necesariamente un múltiplo de 7.
 - (b) Probar que $tr(A^2) = 6n$.
 - (c) Hallar el polinomio característico de A.
- 6. (15 pts) Sea $A \in \mathbb{C}^{n \times n}$, $H = \frac{1}{2}(A + A^*)$, $S = \frac{1}{2}(A A^*)$. Probar que A es normal si y sólo si todo autovector de B es autovector de B (notar que B es autoadjunta).
- 7. (15 pts) Sean \mathbb{k} un cuerpo. Para cada $a \in \mathbb{k}$, sea $\operatorname{ev}_a : \mathbb{k}[t] \to \mathbb{k}$ la evaluación en $a : \operatorname{ev}_a(p) = p(a)$.
 - (a) Probar que $ev_a \in (\mathbb{k}[t])^*$.
 - (b) Probar que $\cap_{a \in \mathbb{k}} \ker \mathsf{ev}_a = 0$ si y sólo si \mathbb{k} es infinito.
 - (c) Sean $a_1, \dots, a_n \in \mathbb{k}$, todos distintos. Probar que (ev_{a_i}) es un conjunto linealmente independiente.
- 8. (20 pts) Sea $J \in \mathbb{C}^{n \times n}$ un bloque de Jordan con autovalor λ .
 - (a) Asumimos que $\lambda \neq 0$. Probar que J^2 es equivalente a un bloque de Jordan de tamaño n con autovalor λ^2 .
 - (b) Si $\lambda=0$, probar que J^2 es equivalente a una suma de dos bloques de Jordan de autovalor 0: si n es par, ambos bloques tienen tamaño $\frac{n}{2}$, si n es impar los tamaños son $\frac{n+1}{2}$, $\frac{n-1}{2}$.