

Множественное тестирование

ПМИ ФКН ВШЭ, 14 октября 2019 г.

Денис Деркач

ФКН BIIIЭ

Оглавление

Мотивация

Групповая вероятность ошибки первого рода

False Discovery Rate

Теорема Байеса и FDR

Перестановочные тесты

Множественные доверительные интервалы

Look Elsewhere Effect

If you torture your data long enough, they will tell you whatever you want to hear.

MILLS (1993)

Мотивация

Есть две разные образовательные программы, Вы хотите понять какая из них лучше.

> Что надо сделать?

Есть две разные образовательные программы, Вы хотите понять какая из них лучше.

- > Что надо сделать?
- > Провести экзамен по самому важному предмету.

Есть две разные образовательные программы, Вы хотите понять какая из них лучше.

- > Что надо сделать?
- > Провести экзамен по самому важному предмету.
- > А если предметов несколько?

Есть две разные образовательные программы, Вы хотите понять какая из них лучше.

- > Что надо сделать?
- > Провести экзамен по самому важному предмету.
- > А если предметов несколько?
- Провести несколько финальных экзаменов, проверить отклонения.

Есть две разные образовательные программы, Вы хотите понять какая из них лучше.

- > Что надо сделать?
- > Провести экзамен по самому важному предмету.
- > А если предметов несколько?
- Провести несколько финальных экзаменов, проверить отклонения.
- > Какой будет в этом случае вероятность найти различие?

Есть две разные образовательные программы, Вы хотите понять какая из них лучше.

- > Что надо сделать?
- > Провести экзамен по самому важному предмету.
- > А если предметов несколько?
- Провести несколько финальных экзаменов, проверить отклонения.
- > Какой будет в этом случае вероятность найти различие?
- > $\mathbb{P}(\text{significant}) = \mathbb{P}(\text{at least one significant result}) = 1 \mathbb{P}(\text{no significant results}) = 1 (1 \alpha)^k$. Например, для k = 20 и $\alpha = 0.05$, $\mathbb{P} = 0.64$.

Зависимость от числа тестов

Вероятность найти хотя бы одно отклонения быстро увеличивается с ростом количества тестирований.

Мотивация: Пример электричество из Швеции

- В 1992 году в Швеции исследование о влиянии линий электропередач на здоровье.
- 25 лет наблюдали всех людей, которые жили вблизи линий электропередач.
- Вывод: есть связь между линией электропередач и возникновением лейкемии.

Мотивация: Пример электричество из Швеции

- В 1992 году в Швеции исследование о влиянии линий электропередач на здоровье.
- 25 лет наблюдали всех людей, которые жили вблизи линий электропередач.
- Вывод: есть связь между линией электропередач и возникновением лейкемии.
- Проблема: тестировали сразу 800 болезней. Некоторые из них случайным образом дали корреляцию.

Мотивация: Библейский код

- Идея: в Библии есть зашифрованная информация, которую необходимо найти, например, читать только буквы, расположенные на диагоналях через 4.
- действительно, в Библии было найдено множество «предсказаний».

gemycommandmentsmysta tutes and mvlaws And Isaa cdweltinGerarAndtheme noftheplace askedhimøf hiswifeandhesaidSheis mvsisterforhefearedto saySheismywifelestsai dhethemenofthep Dacesh ouldkillmeforRebekahb ecauseshewasfairtoloo kupon Andit came topassw hen**he**had**been**therealon gtimethat Abimelechkin qofthePhilistineslook edoutatawindowandsawa ndbehol dIsaacwassport inqwith Rebekahhiswife And Ab imelech called is a acandsaidBeholdofasur etysheisthywifeandhow saidstthou Sheismysist erAndIsaacsaiduntohim **Because** I **said** Lest **I** die **f** orher And Abimelech said What isthisthouhastdon

Мотивация: Библейский код

- Идея: в Библии есть зашифрованная информация, которую необходимо найти, например, читать только буквы, расположенные на диагоналях через 4.
- действительно, в Библии было найдено множество «предсказаний».
- Проблема: Библия большая, всегда можно найти нужное правило и прочитать несколько «скрытых сообщений».

gemycommandmentsmysta tutes and mvlaws And Isaa cdweltinGerarAndtheme noftheplace askedhimøf hiswifeandhesaidSheis mysisterforhefear@dto saySheismywifelestsai dhethemenofthep Dacesh ouldkillmeforRebekahb ecauseshewasfairtoloo kupon Andit came topassw hen**he**had**been**therealon q**time**that**Abimelech**kin qofthePhilistineslook edoutatawindowandsawa ndbehol dIsaacwassport inqwith Rebekahhiswife And Ab imelech called is a acandsaidBeholdofasur etysheisthywifeandhow saidstthou Sheismysist erAndIsaacsaiduntohim **Because** I **said** Lest **I** die **f** orher And Abimelech said What isthisthouhastdon

Множественные тесты при сравнении геномов

Обычный эксперимент включает в себя попарные сравнения, то есть до 10000 тестов проходят одновременно. Таким образом около 500 тестов могут дать "значительное" различие.

Мозговая активность у мёртвого лосося

The salmon was shown a series of photographs depicting human individuals in social situations with a specified emotional valence, either socially inclusive or socially exclusive.

Шнобелевская премия 2011

Как учесть эффект в исследовании?

- Не учитывать, но полностью описывать процесс (включая отсутствие коррекций).
- > Изначально выделять одну интересную область.
- Изначально планировать эксперимент, не предусматривающий множественные сравнения.

NB: все планы экспериментов делаются заранее.

Исходы экспериментов

Рассмотрим т различных проверок гипотез:

$$H_{0i}$$
 vs. H_{1i} , $i = 1, ..., m$.

	\mathbb{H}_0 не отклонена	\mathbb{H}_0 отклонена	\sum
\mathbb{H}_0 верна	U	V	m_0
\mathbb{H}_0 неверна	Т	S	m_1
\sum	m-R	R	m

- $> m_0$ количество верных нулевых гипотез.
- ightarrow R количество отклонённых нулевых гипотез.

Как можно исправить

- > Per comparison error rate (PCER): ожидаемая частота ошибок первого рода $PCER = \mathbb{E}(V)/m$.
- > Per-family error rate (PFER): ожидаемое количество ошибок первого рода. PFE=E(V).
- > Family-wise error rate (FWER):групповая вероятность ошибки первого рода $FWER = \mathbb{P}(V \ge 1)$.
- > False discovery rate (FDR): ожидаемое отношение ошибок первого рода к общему количеству отклонений $FDR = \mathbb{E}(V/R|R>0)\mathbb{P}(R>0)$.
- > Positive false discovery rate (pFDR): pFDR = E(V/R|R > 0).

Групповая

- вероятность ошибки

первого рода

Групповая вероятность ошибки первого рода

Самая популярная величина для контроля: Family-Wise Error Rate (вероятность по крайней мере одной ошибки первого рода):

$$\mathbb{P}(V \ge 1) = 1 - \mathbb{P}(V = 0)$$

Обычно выделяют два типа контроля FWER:

- > Одношаговое: одновременно изменить все p-значения.
- > Последовательная: адаптивная процедура

Метод Бонферрони

Определение (Метод Бонферрони)

Обозначим через $p_1,...,p_m$ величины p-значений этих проверок.Для заданных p-значений $P_1,...,P_m$ основная гипотеза H_{0i} отклоняется, если

$$p_i < \frac{\alpha}{m}.$$

Фактически, вводит новые p значения:

$$\tilde{p}_i = \min(mp_i, 1)$$

Пример: если мы делаем 100 тестов и хотим получить $\alpha=0.05$, то нам придётся получить $p_i=0.05/100=5\cdot 10^{-4}$ для теста, чтобы сказать, что разница значимая.

Оценка метода

- Неинтуитивен: интерпретация результатов зависит от количество других выполненных тестов.
- Групповую нулевая гипотеза редко представляет интерес у исследователей.
- Высокая вероятность ошибок 2 рода, т. е. не отклонения групповой нулевой гипотезы, когда существуют важные эффекты.
- \rightarrow Быстрое снижение мощности теста при при росте m.

Метод Холма

Можно предложить последовательные коррекции.

 \rightarrow отсортируем реальные p-величины по возрастанию:

$$p_{(1)} \ge \cdots \ge p_{(m)};$$

> скорректируем следующим образом:

$$\tilde{p}_i = \min((m-i+1)p_{(i)}, 1);$$

> будем использовать новые p-значения для проверки гипотез, начиная с \tilde{p}_1 .

Этот метод обеспечивает $FWER \geq \alpha$, причём он равномерно мощнее метода Бонферрони.

Например, для 1000 тестов: $\tilde{p}_1 = 1000 p_1$, $\tilde{p}_2 = 999 p_2$ и тд.

Другие методы контроля FWER

- ightarrow метод Шидака: последовательная коррекция $lpha_m = (1-lpha)^{1/m}$;
- > метод Хохберга: аналогично методу Холма, но проверка начинается с \tilde{p}_m ;
- > метод Хоммеля: проверка наличия j такого, что $p_{n-j+k} < \frac{k\alpha}{j}$, где k=1,..,j, по нахождению максимального j тестируем $p_i \leq \alpha/j$.

False Discovery Rate

False Discovery Rate, FDR

	\mathbb{H}_0 не отклонена	\mathbb{H}_0 отклонена	\sum
\mathbb{H}_0 верна	U	V	m_0
\mathbb{H}_0 неверна	Т	S	m_1
\sum	m-R	R	m

Определение

Доля (FDP) и частота (FDR) появления ложных отклонений (среди отклонений вообще):

$$FDP = \frac{V}{R}\mathbb{P}(R > 0)$$

$$FDR = \mathbb{E}(FDP).$$

FDR и FWER

- > FWER используется в случае, если нам очень важно контролировать вероятность ошибки первого рода;
- > в некоторых случаях, более целесообразно ослабить этот подход и контролировать вероятность получить k ошибок первого рода (kFWER) или вообще контролировать частоту ложных срабатываний (FDP, FDR).
- при этом стоит отметить, что мы не делаем ничего сверхестественного:

$$\frac{\mathbb{E}(V)}{m} \le FDR \le FWER \le \mathbb{E}(V)$$

Метод Бенджамини-Хохберга

- 1. Пусть $P_{(1)} < \cdots < P_{(m)}$ -величины p-value, отсортированные по возрастанию.
- 2. Пусть $C_m=1$ в случае, если $P_{(1)},...,P_{(m)}$ независимы, в противном случае $C_m=\sum_{i=1}^m \frac{1}{i}.$
- 3. Определим: $I_i = \frac{i\alpha}{C_m m}$, $R = \max\{i : P_{(i)} < I_i\}$.
- 4. $T = P_{(R)}$ пороговое значение метода.
- 5. Отклоняются такие H_{0i} , для которых $P_i \leq T$.

Метод Стори

формально, мы можем убрать вероятность R>0 из определения FDR:

$$pFDR = \mathbb{E}\frac{V}{R},$$

Тогда метод Бенджамини-Хохберга становится методом Стори.

Теорема Байеса и FDR

Q-значение

По анологии с p-значением мы можем ввести Q-значение для критической области C:

Определение

Для некоторого значения статистики $T=t\ Q$ -значение будет считаться:

$$Q(t) = \inf_{\{C: t \in C\}} pFDR(C)$$

Q-значение — функция p-значений для этого набора тестов. Имеет смысл аналогичный p-значению для одного теста.

FDR и теорема Байеса

Пусть проводится m идентичных тестов с независимыми статистиками T_1,\cdots,T_m для которых определена критическая область C. Нулевая гипотеза верна с априорной вероятностью $\pi_0=\mathbb{P}(\mathbb{H}_0$ is true). Тогда

$$pFDR(C) = \mathbb{P}(\mathbb{H}_0 \text{ is true}|T \in C).$$

По теореме Байеса:

$$pFDR(C) = \frac{\pi_0 \mathbb{P}(T \in C | \mathbb{H}_0 \text{ is true})}{\mathbb{P}(T \in C)}.$$

Распределения p-value

 Если нулевая гипотеза верна, распределение будет равномерным.

figs from VarianceExplained

Распределения p-value

- Если нулевая гипотеза верна, распределение будет равномерным.
- Если нулевая гипотеза неверна, распределение будет сосредоточенно около 0.

figs from VarianceExplained

Распределения p-value

- Если нулевая гипотеза верна, распределение будет равномерным.
- Если нулевая гипотеза неверна, распределение будет сосредоточенно около 0.
- Останется только разделить вклады.

figs from VarianceExplained

Распределения p-value

- Если нулевая гипотеза верна, распределение будет равномерным.
- Если нулевая гипотеза неверна, распределение будет сосредоточенно около 0.
- Останется только разделить вклады.
- > Например, на основании поведения p-значений в правой стороне

Перестановочные

тесты

p-значения

- » во всех процедурах тестирования подразумевается, что распределение -значений "правильное";
- часто, такое предположение неверно, например, если
 р-значение было получено ассимптотическими методами;
- > из-за этого мы можем применить критерий перестановок.

Пример в линейной регрессии

Если мы строим регрессию, и если точки Y случайно связаны с X и указывают на нулевую гипотезу, что истинный наклон ноль, мы можем перемешать Y, связывая их с X случайно, каждый раз проверяя наклон:

Критерий перестановок

Определение

Критерий перестановок применяется для проверки того, отличаются ли распределения.

Пусть $X_1,...X_m \sim F_X$ и $Y_1,...,Y_n \sim F_Y$ - две независимые выборки. Требуется решить:

$$\mathbb{H}_0: F_X = F_Y \quad vs. \quad \mathbb{H}_1: F_X \neq F_Y$$

Критерий перестановок не использует предположения об асимптотической сходимости к нормальному распределению.

Критерий перестановок:

- 1. Обозначим через $T(x_1,...,x_m,y_1,...,y_n)$ некоторую тестовую статистику, например, $T(X_1,...,X_m,Y_1,...,Y_n)=|\overline{X}_m-\overline{Y}_n|.$
- 2. Положим N=m+n и рассмотрим все N! перестановок объединенной выборки $X_1,...,X_m,Y_1,...,Y_n$.
- 3. Для каждой из перестановок подсчитаем значение статистики $T. \ \ \,$
- 4. Обозначим эти значения $T_1, ..., T_{N!}$.

Если \mathbb{H}_0 верна, то при фиксированных упорядоченных значениях $\{X_1,...,X_m,Y_1,...,Y_n\}$ значение статистики T распределены равномерно на множестве $T_1,...,T_{N!}$.

p-значение для перестановок

Обозначим как перестановочное распределение статистики T такое, согласно которому:

$$P_0(T = T_i) = \frac{1}{N!}, \quad i = 1, ..., N!$$

Пусть t_{obs} - значение статистики, которое было получено в опыте. Тогда:

$$Q\text{-value} = \mathbb{P}(T > t_{obs}|f) = \frac{1}{N!} \sum_{j=1}^{N!} \mathbb{I}(T_j > t_{obs}), \quad f \in \mathcal{F}_0$$

Пример

Допустим, что
$$(X_1,X_2,Y_1)=(1,9,3)$$
. Пусть $T(X_1,X_2,Y_1)=|\overline{X}-\overline{Y}|=2$, тогда

Перестановка	Значение T	Вероятность
(1,9,3)	2	1/6
(9,1,3)	2	1/6
(1,3,9)	7	1/6
(3,1,9)	7	1/6
(3,9,1)	5	1/6
(9,3,1)	5	1/6

$$Q$$
-value = $\mathbb{P}(T > 2) = 4/6$

Множественные

доверительные

интервалы

Доверительные интервалы

В литературе описаны способы способы коррекции в случае множественных одновременных построений доверительных интервалов (Бенджамини Йекутели, 2012).

Коррекция покрытия пропорциональна количеству используемых параметров в задаче.

Особое внимание следует уделить утере корреляций в случае простой коррекции.

Look Elsewhere Effect

Мотивация: поиск бозона Хиггса

- При поиске новой частицы не знают точное положение её пика.
- Потому сканируют все возможные значения.
- В итоге, надо сказать является ли пик, который мы увидели настоящим пиком или нет.

Поиск сигнальных пиков

- теоретическая модель позволяет увидеть наличие пика в любом месте m;
- > данные показывают наличие гауссоподобного эффекта в точке m_0 с амплитудой μ ;
- как оценить значимость эффекта?

Локальное p-значение

- > Предлоложим, что мы ожидали пик в точке m_0 ;
- > тогда мы можем использовать тест отношения правдоподобий для нулевой гипотезы отсутсвие сигнала $\mu=0$:

$$t_{fix} = -2\ln\frac{\mathcal{L}(0, m_0)}{\mathcal{L}(\hat{\mu}, m_0)};$$

ightarrow отсюда мы можем найти p-значение:

$$p_{local} = \int_{t_{fix}}^{\infty} f(t_{fix}|0) dt_{fix};$$

 \rightarrow это будет локальное p-значение для конкретной точки m_0 .

Глолбальное p-значение

- > Предлоложи, что мы не знаем где пик;
- > тогда мы можем использовать тест отношения правдоподий для нулевой гипотезы отсутсвие сигнала $\mu=0$:

$$t_{float} = -2 \ln \frac{\mathcal{L}(0)}{\mathcal{L}(\hat{\mu}, m_0)};$$

- \rightarrow но правдоподобие нулевой гипотезы не зависит от m!
- > Мы можем найти p-значение:

$$p_{global} = \int_{t_{float}}^{\infty} f(t_{float}|0) dt_{float};$$

 \rightarrow это будет p-значение для неизвестной массы.

Распределения t_{fix} , t_{float}

- > Для достаточно большого объёма данных, $t_{fix} \sim \chi^2$ (согласно теореме Вилкса)
- > А вот для t_{float} всё неочевидно: теорема Вилкса работать не будет потому что количество мешающих параметров не фиксировано.

Мы можем получить распределение симуляцией.

Примерное правило пересчёта

- Мы хотим получить коррекцию на тот факт, что мы не знаем,
 где находится пик (и при этом хотим не использовать ресурсы).
- > Оказалось, что можно вывести коррекцию:

$$p_{global} = p_{local} + \langle N(c) \rangle,$$

где < N(c) > - среднее количество пересечений t_{fix} , основанного на наблюдении в точке m_0 :

$$c = t_{fix,obs} = Z_{local}^2,$$

где
$$Z_{local} = \Phi^{-1}(1 - p_{local}).$$

> Таким образом, мы либо симулируем все возможные положения сигнала, либо корректиуем локальное p-значение.

Скан

