그런데 명제 3에 의하여 F_q 의 임의의 비자명한 더하기지표 ψ 에 대하여

$$\left| \sum_{x \in D} \psi(x) \right| = \left| \frac{\sum_{x \in F_q} \psi(x) - 1}{m} \right| \le \frac{(m-1)\sqrt{q} + 1}{m} < \sqrt{q}$$

이다. 따라서 $|D| > 6s\sqrt{q}$ 즉 $m < (q-1)/(6s\sqrt{q})$ 이면 정리 1을 적용하여 다음의 결과를 얻을수 있다.

정리 2 m을 $m < (q-1)/(6s\sqrt{q})$ 인 정의 옹근수, D를 F_q^* 의 지표 m인 부분군(여기서 $q=2^s$, $s\ge 1$ 이다.), k는 $\frac{|D|}{3} < k \le \frac{|D|}{2} - \sqrt{q}$ 인 정의 옹근수라고 하자.

이때 임의의 $b \in F_q$ 에 대하여 $N_D(k, b) > 0$ 이다.

참 고 문 헌

- [1] 김률; 유한체, **김일성**종합대학출판사, 250~300, 주체100(2011).
- [2] G. Zhu et al.; Finite Fields Appl., 18, 192, 2012.
- [3] J. Li et al.; Sci. China Math., 53, 9, 2351, 2010.
- [4] J. Li et al.; Finite Fields Appl., 14, 911, 2008.
- [5] W. Wang; J. Nguyen Finite Fields Appl., 51, 204, 2018.
- [6] W. Wang et al.; Finite Fields Appl., 43, 106, 2017.

주체108(2019)년 3월 15일 원고접수

The k-Subset Sum Problem over Finite Fields of Characteristic 2

Choe Hyok, Choe Chung Hyok

We study the k-subset sum problem over finite fields and improve the previous results for this problem in the case of characteristic 2.

Key words: subset sum, additive character

차분행렬을 리용한 일반화된 균형적시합배치의 구성

김성철

론문에서는 아직까지 미해결로 남아있는 경우인 n이 2의 제곱인 경우 GBTD(n, n)의 존재성문제를 해결하기 위하여 차분행렬을 리용하여 n이 4인 경우와 8인 경우 즉 GBTD(4, 4)와 GBTD(8, 8)을 구성하였다.

선행연구[1]에서는 k=2, 3 인 경우, 선행연구[3, 6]에서는 k=4 인 경우, 선행연구[4]에서는 k=5 인 경우 GBTD(k, m)의 존재성을 연구하였으며 차분행렬을 리용하여 n이 홀 씨수의 제곱일 때 GBTD(n, n)의 구성법을 제안하였다.

선행연구[5]에서는 GBTD(k, k)와 동등한 k^2 차행렬을 도입하여 p가 홀씨수이고 n이 2이상의 옹근수일 때 $GBTD(p^n, p^n)$ 을 구성하였다.

정의 1[1] V 를 원소(점이라고 부른다.)가 v 개인 모임, B 를 V의 어떤 k - 부분모임 (블로크라고 부른다.)들의 모임이라고 하자.

만일 V의 임의의 서로 다른 두 원소들이 B의 꼭 λ 개의 블로크들에 같이 포함되면 순서붙은 쌍 (V,B) 를 (v,k,λ) - 균형적불완전블로크배치(Balanced Incomplete Block Design) 또는 (v,k,λ) -BIBD 라고 부른다.

보조정리 1[2] (v, k, λ) -BIBD는 블로크를 $\lambda v(v-1)/[k(k-1)]$ 개 가진다. 즉 (km, k, k-1)-BIBD는 블로크를 m(km-1)개 가진다.

정의 2[1] 어떤 (km, k, k-1)-BIBD (V, B)에 대하여 B의 블로크들을 다음의 두가지 조건을 만족시키는 $(m \times (km-1))$ 형행렬로 배렬할수 있다면 (V, B)를 일반화된 균형적시합배치(Generalized Balanced Tournament Design)라고 부르고 GBTD(k, m)으로 표시한다.

- ① V의 모든 점은 매 렬의 꼭 1개 블로크에 포함된다.
- ② V의 모든 점은 매 행의 기껏 k개 블로크에 포함된다.

GBTD(k, m) 은 블로크들을 점모임의 모든 원소는 조건 ①, ②를 만족시키도록 $(m \times (km-1))$ 형행렬로 배렬할수 있는 균형적불완전블로크배치 (km, k, k-1)-BIBD이다.

정의 2에 의하여 GBTD는 그것에 대응되는 블로크들의 배렬로 생각할수 있다.

정의 3[4] G를 위수가 v인 가법군이라고 하자.

G 우에서의 $(k \times \lambda v)$ 형행렬 D 에 대하여 만일 D의 임의의 서로 다른 두 행 R_i, R_j 에 대하여 차벡토르 $R_j - R_i$ 가 G의 모든 원소들을 꼭 λ 번씩 포함하면 차분행렬이라고 부르고 (v, k, λ) – DM 으로 표시한다.

어떤 차분행렬에 대하여 그 행렬의 매 행들이 G의 모든 원소들을 꼭 λ 번씩 포함하면 균일한 차분행렬이라고 부른다.

정의옹근수 $m \neq 2$ 에 대하여 GBTD(2, m), GBTD(3, m) 이 존재하며[1] 옹근수 $k \geq 2$ 에 대하여 GBTD(k, 2) 는 존재하지 않는다.[6] $m \neq 2$, 3 인 정의 옹근수 m 에 대하여 GBTD(4, m)은 존재하며 GBTD(4, 2)와 GBTD(4, 3)은 존재하지 않는다.[3, 11]

m ≥ 62 이거나 *m* ∈ {5~18, 30, 42, 46, 48~50, 54~57}인 경우 GBTD(5, *m*) 이 존재한다.[4] *n* 이 홀씨수의 제곱일 때 GBTD(*n*, *n*) 이 존재한다.[4, 5]

GBTD의 구성방법들을 보면 아핀면, HGBTD, FGDRP와 같은 보조적인 배치를 리용하는 방법[3, 4, 6], 차분행렬(DM)을 리용하여 구성하는 방법[4], k가 홀씨수의 제곱일 때와 동등한 k^2 차행렬의 구성에 의한 방법[5] 등이 있다.

우리는 론문에서 다음의 표기들을 리용한다.

 $\mathbf{Z}_k = \{0, 1, \dots, k-1\}$ 은 k를 모듈로 하는 옹근수모임의 잉여환이다.

 \mathbf{F}_n 은 원소수가 n인 유한체이다.

우리의 결과는 다음의 세가지 보조정리에 기초하고있다.

보조정리 2[4] 위수가 k 인 가법군우에서의 균일한 (k, k, k-1)-DM 이 존재하면 $G \times \mathbb{Z}_k$ 우에서의 GBTD(k, k) 가 존재한다.

보조정리 3 균일한 (4, 4, 3)-DM 이 존재한다.

증명 G를 유한체 $\mathbf{F}_4 = \mathbf{Z}_2[x]/(x^2 + x + 1) = \{0, 1, x, x + 1\}$ 의 가법군으로 취한다.

 \mathbf{F}_4 우에서 4차행렬 D_1 , D_2 , D_3 을

$$D_{i} = \begin{pmatrix} y \\ xy \\ (x+1)y + a_{i} \\ b_{i} \end{pmatrix}, i = \overline{1, 3}$$

과 같이 구성한다. 여기서 $y \in \mathbb{F}_4$ 이고 $a_1 = 0$, $a_2 = 1$, $a_3 = x$ 이며 $b_i \in \mathbb{F}_4$, $i = \overline{1, 3}$ 이다. 그리고 b_i 들은 서로 다르다. 마지막 행벡토르는 모든 성분들이 b_i 이다.

매 D_i 에 대하여 D_i 의 임의의 서로 다른 두 행의 차가 \mathbf{F}_4 의 원소들을 꼭 한번씩 포함한다는것은 쉽게 알수 있다. 따라서 행렬 $D^*=(D_1\,|\,D_2\,|\,D_3)$ 역시 차분행렬이다.

그런데 D^* 에서 첫 3개의 행들에는 모든 원소들이 다 3번씩 포함되지만 마지막행에는 $b_1,\ b_2,\ b_3$ 들이 각각 4번씩 포함된다. 즉 균일하지 않다.

 D^* 을 균일하게 변경시키기 위한 한가지 해결방도는 매 D_i 의 마지막행들에서 각각하나의 원소를 b_1 , b_2 , b_3 이 아닌 \mathbf{F}_4 의 나머지원소 즉 $\Sigma = b_1 + b_2 + b_3$ 으로 바꾸면서도 여전히 차분행렬이 되도록 하는것이다.

 $i=\overline{1,3}$ 에 대하여 매 D_i 에서 마지막행의 j_i 번째 원소들을 Σ 로 교체한다고 하자. 이때 교체전과 교체후의 원소들만을 추려서 보면 다음과 같다.(표 1, 2)

표 1. 교체전의 원소들

j_2	j_3								
$x j_2$	$x j_3$								
$(x+1) j_2 + 1$	$(x+1) j_3 + x$								
b_2	b_3								
	$ \begin{array}{c} x \ j_2 \\ (x+1) \ j_2 + 1 \end{array} $								

표 2. 교체후의 원소들

$\overline{j_1}$	j_2	\dot{J}_3							
$x j_1$	$x j_2$	$x j_3$							
$(x+1) j_1$	$(x+1) j_2 + 1$	$(x+1) j_3 + x$							
Σ	Σ	Σ							

교체전의 행렬에서 임의의 서로 다른 두 행의 차가 \mathbf{F}_4 의 원소들을 꼭 세번씩 포함하므로

$$\begin{cases} \{j_1 + b_1, \ j_2 + b_2, \ j_3 + b_3\} = \{j_1 + \Sigma, \ j_2 + \Sigma, \ j_3 + \Sigma\} \\ \{xj_1 + b_1, \ xj_2 + b_2, \ xj_3 + b_3\} = \{xj_1 + \Sigma, \ xj_2 + \Sigma, \ xj_3 + \Sigma\} \\ \{(x+1)j_1 + b_1, \ (x+1)j_2 + 1 + b_2, \ (x+1)j_3 + x + b_3\} \\ = \{(x+1)j_1 + \Sigma, \ (x+1)j_2 + 1 + \Sigma, \ (x+1)j_3 + x + \Sigma\} \end{cases}$$

이도록 한다.

우리는 \mathbf{Z}_2 에 기초한 연산을 생각하기때문에 +와 -는 동등하다고 본다.

이때 우의 련립방정식의 풀이는 총 32개이다.

그러므로 균일한 (4, 4, 3)-DM 이 존재한다.

실례로 방정식의 한 풀이 $b_1 = 1$, $b_2 = x$, $b_3 = 0$, $j_1 = 0$, $j_2 = 1$, $j_3 = x$ 를 리용하여 균일한 (4, 4, 3) - DM 을 만들면 다음과 같다.

0	1	х	<i>x</i> + 1	0	1	x	<i>x</i> + 1	0	1	х	<i>x</i> + 1
0	x	<i>x</i> + 1	1	0	x	x + 1	1	0	x	<i>x</i> + 1	1
0	<i>x</i> + 1	1	х	1	х	0	<i>x</i> + 1	х	1	<i>x</i> + 1	0
x+1	1	1	1	x	<i>x</i> + 1	x	x	0	0	<i>x</i> + 1	0

따라서 보조정리가 증명된다.(증명끝)

보조정리 3과 같은 방법으로 다음의 사실을 증명할수 있다.

보조정리 4 균일한 (8, 8, 7)-DM이 존재한다.

보조정리 2-4로부터 다음의 결과가 곧 나온다.

정리 GBTD(4, 4)와 GBTD(8, 8)이 존재한다.

참 고 문 헌

- [1] C. J. Colbourn et al.; The CRC Handbook of Combinatorial Designs, CRC Press, 72~336, 2007.
- [2] D. R. Stinson; Combinatorial Designs, Springer, 1~108, 2004.
- [3] J. X. Yin et al.; Des. Codes Cryptogr., 46, 211, 2008.
- [4] P. P. Dai et al.; Des. Codes Cryptogr., 74, 15, 2015.
- [5] S. C. Kim et al.; arXiv:1208.1920v1 [math. CO] 9, 2012.
- [6] Y. M. Chee et al.; Electron. J. Comb., 20, 2, 2013.

주체108(2019)년 3월 15일 원고접수

Construction of Generalized Balanced Tournament Designs using Difference Matrices

Kim Song Chol

We construct a GBTD(4, 4) and a GBTD(8, 8) using difference matrices.

Key words: generalized balanced tournament design(GBTD), difference matrix