PBIO 504 Introductory Biostatistics

Analysis of Variance (ANOVA)

Textbook chapter 12

Hypothesis Testing t-test

- When we want to compare means from two different groups, we use the Student t test (also called the 2 sample t test).
- Null hypothesis: H_0 : $\mu_1 = \mu_2$.
- The test determines whether the difference between the observed means $\bar{X}_1 \bar{X}_2$ is too large to have occurred by chance.
- How large is large?

$$T = |\bar{X}_1 - \bar{X}_2|/S_p$$
, and $P_{H_0}[|T| \ge t] = 0.05$

When n is large, df= n_1+n_2-2 , $P_{H_0}[|T| \ge z]=0.05$

t Tests for more than Two Groups

Suppose we had three different groups

 We could test the following pairs of groups using a t-test for each pair:

- mean₁ vs mean₂
- mean₂ vs mean₃
- mean₁ vs mean₃

Recall the Alpha Level

- We <u>reject</u> the null hypothesis if the p-value from the t test is less than α, the level of chance (probability) that we are willing to accept for wrongly rejecting the null hypothesis.
- If α is set at 0.05, it will have this value for each and every t-test we perform.
- So if there are 3 groups being compared in our study, there are 3 t tests, each carrying its own α of 0.05, and so the study wide α may become as large as 3 x 0.05 = 0.15
- Are we willing to accept such a level? No, see later.

ANOVA

 ANOVA will address this problem by giving us a single p-value to test the hypothesis:

$$H_0$$
: $mean_1 = mean_2 = mean_3 = ... = mean_k$

H_A: at least one of these means is different from the others

where **k** is the number of groups.

Some Features of ANOVA

- ANOVA (analysis of variance) gets its name from its ability to determine whether the variability within groups is greater or lesser than between groups. Clearly the latter outcome would be desirable.
- ANOVA incorporates multiple variables: the outcome variable is the <u>dependent variable</u> (which must <u>be a continuous variable</u>), and the explanatory variables are the <u>independent variables</u>. This total set of variables is called the model.
- If there are just 2 groups, the ANOVA p-value will be the same as the p-value of the 2-sample t test if there are no other variables in the model.

The ANOVA Model

The general form:

```
dependent variable (y) =
=independent variables (x_1 + x_2 + x_3 + ... + x_k)
```

- An example would be:
 blood pressure = agegroup
- Blood pressure is being modeled as a function of age group, where group 1: 20-40 years old, group 2: 41-60 years old, and group 3: 61+ years old. This is an example of a one-way ANOVA because there is only one independent variable agegroup. Var agegroup has 3 levels.

One- Way ANOVA Table

Source	df	SS	MS	F	Р
Model (m) (between groups)	df _m = K-1	SS _m	$MS_m = SS_m / df_m$	MS _m /	P-value from F distri- bution
Error (e) (within groups)	df _e = N-K	SS _e	MS _e = SS _e / df _e		
Total (overall)	df= N-1	SS _m + SS _e			

Note: N is the total sample size and K is the number of groups of the indep var. (in the previous ex age had 3 groups)

ANOVA Table

Source	df	SS	MS	F	Р
Model (m) (between groups)	K-1	SS _m	SS _m / df _m	MS _m / MS _e	from F distri- bution with
Error (e) (within groups)	N-K	SS _e	SS _e / df _e		
Total (<i>overall</i>)	N-1	SS _m + SS _e			

Review Sums of Squares (SS)

- To calculate the total SS, we take the deviation of each observed data point from the mean of all points, square it, and sum all of these squared deviations.
- To find the F statistic we divide the mean square for the model MS_m to the mean square error Ms_e

See Textbook page 289

The F Distribution

- F comes from the ratio of the between- groups variability and the within-groups variability (this is where ANOVA gets its name from, i.e. the statistical analysis of the variability in a study).
- Somewhat like the t distribution, there are many possible F distributions, but it is never negative.
- It is skewed to the right (see next figure).
- It depends on the df_m of the numerator and the df_e of the denominator.

The F Distribution for 4 and 2 df

ANOVA Assumptions

- Independent observations
- Normal distribution of the continuous dependent variable for each level of the categorical independent variable
- Homogeneity of variance across groups

One-Way ANOVA Example

- A new drug to treat acne is given to 35 subjects. It is tested against 2 drugs already on the market.
- Each person takes one of the drugs for 4 weeks, and the number of lesions is counted at the end of the study as the dependent variable.
- Model: lesions = type of drug
- Here lesions is the outcome and there is only one predictor variable type of drug (with three groups).

One-Way ANOVA Results

Source	df	SS	MS	F	Р
Model	2	2133.66	1066.83	262.12	0.001
Error	32	130.30	4.07		
Total	34	2263.96			

This test statistic has an F distribution with 2 and 32 degrees of freedom. We obtain the p-value from this F distrib to be 0.001 and it means the probability of obtaining values **over** 262.12 assuming that Ho true.

P-val is signif and we can conclude that not all means are eq, or at least one differs from the other two.

2-Way and 3-Way ANOVA

 In a 2-way ANOVA model, there are two independent variables, and in a 3-way ANOVA model there are three independent variables

2-way ANOVA example:

Blood pressure = agegroup + gender

3-way ANOVA example:

Blood pressure = agegroup + gender + diabetes

Bonferroni Adjustment Method

- This test addresses the problem of <u>multiple comparisons</u> among the groups.
- If the overall model F test is statistically significant (e.g. P<0.05), then we reject the null hypothesis that all the groups' means are equal.
- However, it is often of interest to determine just which groups are different from the others.
- We don't want to inflate the alpha level, so we need a way to adjust the "pair-wise alpha" so that it keeps the "experiment-wide alpha" at 0.05

Bonferroni's Method

- First decide on the experiment-wide alpha, which is usually $\alpha = 0.05$.
- Calculate the pair-wise alpha (a') that will be used for each comparison of means.
- a' = 0.05 / c where 0.05 is the experiment-wide alpha, and c is the number of pairs of means that will be compared.

Bonferonni Example

- Suppose we are evaluating a study of mice where 3
 different diets (A, B, and C) were given to independent
 groups of animals, and their weight was measured at the
 end of the experiment.
- The ANOVA model: weight = diet
- There are three possible diet comparisons (Number of pairs c is n(n-1)/2=3)
- Hence for each pair the new alpha is a' = 0.05/3 = 0.016
- We'll reject the null hypothesis only if the p-value < 0.016

Another Bonferroni Example

- In this example, we will see how to apply the t-test to each pair of compared means, and using the Bonferroni Method to decide which actual mean differences are significant.
- A study was performed to determine which of 5 water temperature settings for the machinery would be the best for removing impurities from water at a waste water treatment plant.
- ANOVA Model: % impurities removed = temp. setting
- Alpha was set at 0.10 for this experiment.

Water Data

Temperature level						
I (low)	II (I-m)	IV (m-h)	V (high)			
40%	36%	49%	47%	55%		
45%	42%	51%	49%	60%		
42%	38%	53%	51%	62%		
48%	39%	53%	52%	63%		
50%	37%	52%	50%	59%		
51%	40%	50%	51%	61%		

Mean: 46.0 38.7 51.3 50.0 60.0

ANOVA Table for this Example

Source	df	SS	MS	F	Р
Model	4	1458	365.00	47.8	<0.01
Error	25	191	7.63		
Total	29	1649			

Overall reject Ho so at least one mean % impurities removed is diff from the others

Multiple Comparisons

- Note that there are 5 temperature settings, which will yield 10 comparisons.
- Bonferroni a' = $\alpha/c = 0.10/10 = 0.01$
- What we do now is to calculate the p-values for all ten tests and use 0.01 to decide if they are statistically significant or not
- For example say that we obtain the following p-values: 0.001, 0.002, 0.005, 0.02, 0.05,..., 0.99
- Then only for the first three we can claim that the results are statistically significant and reject the null hypothesis.

One Last ANOVA Concept

- The coefficient of variability R² describes how much of the variability in the continuous dependent variable was accounted for by the categorical independent variable.
- R² ranges from 0 (no variability explained) to 1 (100% of the variability explained).
- The more variables in the model, larger the R²
- We will not review how it is calculated; it is available in the software output.

Example for STATA Demo

 Dataset includes pre-test scores and final exam scores for sophomores and juniors in a college course.

 The variables used for ANOVA are final exam score (continuous dependent variable) and year (categorical independent variable with two levels sophomores and juniors).

STATA Program Code

- Generate descriptive statistics for final grade:
 - sum final

. sum final

Variable	0bs	Mean	Std. Dev.	Min	Max
final	19	85.73684	8.818176	72	99

Program Code cont.

- One-way ANOVA for effect of year on final grade:
 - anova final year

	Number of obs Root MSE			quared = R-squared =	0.1344 0.0835
Source	Partial SS	df	MS	F	Prob > F
Model	188.160401	1	188.160401	2.64	0.1226
year	188.160401	1	188.160401	2.64	0.1226
Residual	1211.52381	17	71.2661064		
Total	1399.68421	18	77.7602339		

Note that One-Way Anova with two groups is the same as the t-test (same p-value).