Infrastructure as a Service

Teerachai Laothong

10101 01010 00100

Azure laaS

Teerachai Laothong

Agenda

Your services and Azure

- → Virtual Machines
- → Virtual Networks
- Azure Resource Manager

- → Your application code
- → Regruinfdastructure code

You: Code (application, infrastructure) Azure: Resources (laaS, PaaS, SaaS)

Virtual Machines

Azure Virtual Machines

- Launch Windows Server and Linux in minutes
- → Scale from 1 to 1000s of VM Instances
- → Save money with per-minute billing
- Open and extensible

THE WAIT IS OVER

Use Red Hat products on Microsoft Azure

Security, consistency, reliability: These are why enterprises trust Red Hat® solutions. They're also why enterprises turn to a public cloud like Microsoft Azure. It's only natural that customers want to unite the 2.

Now you can. Red Hat and Microsoft are teaming up to offer open hybrid cloud solutions on Azure.

READ THE PRESS RELEASE

Microsoft Azure

This partnership is a powerful win for enterprises, ISVs and developers. With this partnership, we are expanding our commitment to offering unmatched choice and flexibility in the cloud today, meeting customers where they are so they can do more with their hybrid cloud deployments - all while fulfilling the rigorous security and scalability requirements that

Provisioning VM

Getting Started

Management Portal

Select Image and VM Size

Windows Server

Linux

General Purpose
Basic
Standard
Optimized Compute
Performance Optimized
Network Optimized

New Disk Persisted in Storage

Boot VM from New Disk

Cloud

VM Gallery

A COLLECTION OF PREBUILT IMAGES FOR VARIOUS WORKLOADS

Virtual Machine Sizess

- General Purpose compute: Basic
- General Purpose compute: Standard
- Optimized Compute
- Performance Optimized
- Network Optimized

Scale-up options

NESADGETOREAUTEON of BastaroPyUs/Ms

35% faster than D

Intel E5-2673 v3 CPUs

NVIDIA GPUs

Remote visualization

Compute-intensive + RDMA

Largest virtual machines Fastest storage in the public cloud

The **G** family

Optimized for data workloads

Up to 32 CPU cores, 448 GB RAM

6.5 TB local SSD

Latest generation Intel processor

Up to 64 attached disks!!

General Purpose Compute

Basic Tier

An economical option for development workloads, test servers, and other applications that don't require load balancing, auto-scaling, or memory-intensive virtual machines.

Instance	Cores	RAM	Disk sizes
A0	1	0.75 GB	20 GB
A1	1	1.75 GB	40 GB
A2	2	3.5 GB	60 GB
A3	4	7 GB	120 GB
A4	8	14 GB	240 GB

General Purpose Compute

Standard Tier

Offers the most flexibility. Supports all virtual machine configurations and features

Size	CPU cores	Memory	NICs (Max)	Max. disk size	Max. data disks (1023 GB each)	Max. IOPS (500 per disk)
Standard_A0\ExtraSmall	1	768 MB	1	Temporary = 20 GB	1	1x500
Standard_A1\Small	1	1.75 GB	1	Temporary = 70 GB	2	2x500
Standard_A2\Medium	2	3.5 GB	1	Temporary = 135 GB	4	4x500
Standard_A3\Large	4	7 GB	2	Temporary = 285 GB	8	8x500
Standard_A4\ExtraLarge	8	14 GB	4	Temporary = 605 GB	16	16x500
Standard_A5	2	14 GB	1	Temporary = 135 GB	4	4X500
Standard_A6	4	28 GB	2	Temporary = 285 GB	8	8x500
Standard_A7	8	56 GB	4	Temporary = 605 GB	16	16x500

General Purpose Compute

Network optimized with Infiniband support

Adds a 40Gbit/s InfiniBand network with remote direct memory access (RDMA) technology.

Instance	Cores	RAM	Disk sizes
A8	8	56 GB	382 GB
A9	16	112 GB	382 GB

Adds a 40Gbit/s InfiniBand network with remote direct memory access (RDMA) technology. Ideal for Message Passing Interface (MPI) applications, high-performance clusters, modeling and simulations, video encoding, and other compute or network intensive scenarios.

Optimized Compute (D Tier)- 60% faster CPUs, more memory, and local

Size	CPU cores	Memory	NICs (Max)	Max. disk size	Max. data disks (1023 GB each)	Max. IOPS (500 per disk)
Standard_D1	1	3.5 GB	1	Temporary (SSD) =50 GB	2	2x500
Standard_D2	2	7 GB	2	Temporary (SSD) =100 GB	4	4x500
Standard_D3	4	14 GB	4	Temporary (SSD) =200 GB	8	8x500
Standard_D4	8	28 GB	8	Temporary (SSD) =400 GB	16	16x500
Standard_D11	2	14 GB	2	Temporary (SSD) =100 GB	4	4x500
Standard_D12	4	28 GB	4	Temporary (SSD) =200 GB	8	8x500
Standard_D13	8	56 GB	8	Temporary (SSD) =400 GB	16	16x500
Standard_D14	16	112 GB	8	Temporary (SSD) =800 GB	32	32x500

Dv2 Series- 35% faster than D series, 2.4 GHz Intel Xeon® E5-2673 v3

Size	CPU cores	Memory	NICs (Max)	Max. disk size	Max. data disks (1023 GB each)	Max. IOPS (500 per disk)
Standard_D1_v2	1	3.5 GB	1	Temporary (SSD) =50 GB	2	2x500
Standard_D2_v2	2	7 GB	2	Temporary (SSD) =100 GB	4	4x500
Standard_D3_v2	4	14 GB	4	Temporary (SSD) =200 GB	8	8x500
Standard_D4_v2	8	28 GB	8	Temporary (SSD) =400 GB	16	16x500
Standard_D5_v2	16	56 GB	8	Temporary (SSD) =800 GB	32	32x500
Standard_D11_v2	2	14 GB	2	Temporary (SSD) =100 GB	4	4x500
Standard_D12_v2	4	28 GB	4	Temporary (SSD) =200 GB	8	8x500
Standard_D13_v2	8	56 GB	8	Temporary (SSD) =400 GB	16	16x500
Standard_D14_v2	16	112 GB	8	Temporary (SSD) =800 GB	32	32x500

DS-series VMs can use Premium Storage- high-performance, low-latency storage.

Size	CPU cores	Memory	NICs (Max)	Max. disk size	Max. data disks (1023 GB each)	Cache size (GB)	Max. disk IOPS & bandwidth
Standard_DS1	1	3.5	1	Local SSD disk = 7 GB	2	43	3,200 32 MB per second
Standard_DS2	2	7	2	Local SSD disk = 14 GB	4	86	6,400 64 MB per second
Standard_DS3	4	14	4	Local SSD disk = 28 GB	8	172	12,800 128 MB per second
Standard_DS4	8	28	8	Local SSD disk = 56 GB	16	344	25,600 256 MB per second
Standard_DS11	2	14	2	Local SSD disk = 28	4	72	6,400 64 MB per second

G-series VMs offer the most memory and run on hosts that have Intel Xeon E5 V3 family processors.

Size	CPU cores	Memory	NICs (Max)	Max. disk size	Max. data disks (1023 GB each)	Max. IOPS (500 per disk)
Standard_G1	2	28 GB	1	Local SSD disk = 384 GB	4	4 x 500
Standard_G2	4	56 GB	2	Local SSD disk = 768 GB	8	8 x 500
Standard_G3	8	112 GB	4	Local SSD disk = 1,536 GB	16	16 x 500
Standard_G4	16	224 GB	8	Local SSD disk = 3,072 GB	32	32 x 500
Standard_G5	32	448 GB	8	Local SSD disk = 6,144 GB	64	64 x 500

GS-series VMs, Godzilla ++ (Premium Storage- highperformance, low-latency storage

Size	CPU cores	Memory	NICs (Max)	Max. disk size	Max. data disks (1023 GB each)	Cache size (GB)	Max. disk IOPS & bandwidth
Standard_GS1	2	28	1	Local SSD disk = 56 GB	4	264	5,000 125 MB per second
Standard_GS2	4	56	2	Local SSD disk = 112 GB	8	528	10,000 250 MB per second
Standard_GS3	8	112	4	Local SSD disk = 224 GB	16	1056	20,000 500 MB per second
Standard_GS4	16	224	8	Local SSD disk = 448 GB	32	2112	40,000 1,000 MB per second
Standard_GS5	32	448	8	Local SSD disk = 896 GB	64	4224	80,000 2,000 MB per second

Key Improvements: Azure Virtual Machines (v2)

- Massive and parallel deployment of Virtual Machines
- 3 Fault Domains in Availability Sets
- Custom URLs for Custom Script VM Extensions for VMs

https://azure.microsoft.com/en-us/documentation/articles/virtual-machines-app-frameworks/

NEW: VM Scale Sets

Virtual Machine Scale Sets

- "Next-Generation Worker Role"
- Supports Windows, Linux, and custom images
- Stateless and persistent disks
- Image-based OS patching
- Ideal for clusters

NEW: Application Gateway

Azure Application Gateway

- Azure-managed, first party virtual appliances
- HTTP routing based on app-level policies
 - Cookies affinity
 - URL hash
- SSL termination and caching

VMs + Containers

Containers

- What are they?
 - Unit of deployment
 - Isolated environment
 - Isolated collection of resources
- What are the benefits?
 - Instant startup
 - Repeatable and reliable execution
- Scenarios
 - Dev/Test
 - Great for micro-services

Container Ecosystem via Docker

Docker API / Client

Docker images

Docker Hub (trusted repositories)

Demo: Managing VMs using Azure portal

Image Mobility

VM Extensions

- Installable components to customize VM instances
- Enable various DevOps scenarios
- Can be added, updated, disabled or removed at any time
- Managed via portal, PowerShell and Management APIs

Demo: Add an extension to a VM instance

Data Persistence

- → OS Disks
- → Data Disks

OS Images

- Microsoft
- Partner
- User

Base OS image for new Virtual Machines Sys-Prepped/Generalized/Read Only Created by uploading or by capture

Disks

- OS Disks
- Data Disks

Writable Disks for Virtual Machines Created during VM creation or during upload of existing VHDs.

Disks and Images

Microsoft

VM disk layout

Data Disk(s)

- Persistent
- SCSI
- Customer Defined Letter

Persistent Disks and Highly Durable

Virtual Machine

Linux on the Microsoft Cloud Platform

Microsoft Linux

Microsoft adds Linux monitoring to Azure in continued open-source push

+ Follow

Craig Sheppard @craigsheppard

Microsoft talking open source at #ATO2015. I don't think Microsoft means what you think it means any more...

Microsoft is committed to Linux and open source

Linux is a real business for Microsoft

25% of laaS VMs in Azure are Linux

System Center manages hundreds of thousands of Linux/UNIX servers

Many enterprises and service providers run Linux as a guest on Hyper-V

... and we're been in a long open source journey!

System Center has managed Linux and UNIX servers since 2009

Linux drivers for Hyper-V available since 2010

Azure laaS has run Linux VMs since "day 1" in 2013

Linux and open source are a fundamental part of how we do business

Virtual Machine Availability

Meaning of 9's

→ Fault domains, update domains and availability sets

Load balancing

Meaning of 9's

Service Availability (%)	System Type	Annualized Down Minutes	Quarterly Down Minutes	Monthly Down Minutes	Practical Meaning	FAA rating
90	Unmanaged	52,596.00	13,149.00		Down 5 weeks per year	
99	Managed	5,259.60	1,314.90		Down 4 days per year	ROUTINE
99.9	Well managed	525.96	131.49		Down 9 hours per year	ESSENTIAL
99.99	Fault tolerant	52.60	13.15		Down 1 hour per year	

From Generic Requirements for Operation Systems Platform Reliability, Telcordia Technologies System Documentation, GR-2841-CORE and Federation Aviation Administration Handbook: Reliability, Maintainability, and Availability (RMA) Handbook, FAA-HDBK-006A, Jan 7, 2008.

Meaning of 9's

Service Availability (%)	System Type	Annualized Down Minutes	Quarterly Down Minutes	Monthly Down Minutes	Practical Meaning	FAA rating
99.999	High availability	5.26	1.31	0.44	Down 5 minutes per year	CRITICAL
	Very high availability	0.53	0.13	0.04	Down 30 seconds per year	
99.99999	Ultra availability	0.05	0.01	-	Down 3 seconds per year	SAFETY CRITICAL

From Generic Requirements for Operation Systems Platform Reliability, Telcordia Technologies System Documentation, GR-2841-CORE and Federation Aviation Administration Handbook: Reliability, Maintainability, and Availability (RMA) Handbook, FAA-HDBK-006A, Jan 7, 2008.

99.95% for multiple role instances

4.38 hours of downtime per year

What's included

Compute Hardware failure (disk, CPU, memory)
Datacenter failures - Network failure, power failure
Hardware upgrades, Software maintenance – Host OS Updates

What is not included

VM Container crashes, Guest OS Updates

Service Level Agreements

Availability Sets

Availability set

SLA High Availability
Hardware and Software
Windows and Linux

Availability Sets

Physical Machines

Power Unit Rack Switch

Availability Sets

Availability Set

Physical Machines

Power Unit Rack Switch

VM2

VM1

Fault and Update Domains

Virtual Machine Availability Sets

UPDATE DOMAINS ARE HONORED BY HOST OS UPDATES

Availability Set Guidance

- VMs in Availability Set Must Be in Same Resource Group
- Availability Set: 5 Update Domains, 3 Fault Domains
 - Update Domain Host Maintenance
 - Fault Domain Isolation from component failure in rack unit
- Maximum of 100 VMs in a Availability Set
- Avoid Availability Sets with Single VM
 - This eliminates notification for host maintenance operations

Load balancing

- Load balancing
 Multiple VMs share the workload via public facing endpoints
- Internal Load balancing
 Load balancing between VMs that don't have public facing endpoints

Traffic Manager

- Load balancing
- Failover

Virtual Networks

Azure Virtual Networks

→ A protected private virtual network in cloud

→ Extend enterprise networks into Azure

Cross-premises connectivity

Cross-premises Connectivity

- Site-to-site Create a secure connection between your on-premises site and your virtual network
- Point-to-site Create a secure connection via VPN to your virtual network
- ExpressRouteTM

Create a private connection between Azure data centers and infrastructures on your premises or in a co-location environment.

- Connect at an ExpressRoute location (Exchange Provider facility)
- Direct connect via a Network Service Provider

Level(3)

Azure Resource Manager

Azure Resource Manager & Resource Groups

 Manage resources as a single unit

 Role based access and control (RBAC) on groups or resources

Billing integrated tagging on groups or resources

Azure Resource Manager (ARM)

Consistent management layer

Tools

Provider rest points

Azure Resource Manager templates

ARM templates can:

- Simplify deployment
- Simplify roll-back
- Provide cross-resource configuration and update support
- Be used as a learning tool to build to suit

Azure templates are:

- Source file, checked-in
- Specifies resources and dependencies
 (VMs, websites, DBs) and connections
 (configuration, LB sets)
- Configurable parameters for input/output

JSON files—simpler than they look

Schema, content version, parameters, variables, resources, and outputs

```
≔
       "resources": [
                                                                                 on
           "type": "Microsoft.Storage/storageAccounts",
           "name": "[parameters('newStorageAccountName')]",
4 con
           "apiVersion": "2015-05-01-preview".
           "location": "[variables('location')]",
                                                                                                            placed."
           "properties": {
             "accountType": "[variables('storageAccountType')]"
           "apiVersion": "2015-05-01-preview",
           "type": "Microsoft.Network/publicIPAddresses",
           "name": "[variables('publicIPAddressName')]",
           "location": "[variables('location')]",
           "properties": {
             "publicIPAllocationMethod": "[variables('publicIPAddressType')]",
             "dnsSettings": {
                                                                                 irtualNetworkName'))]",
               "domainNameLabel": "[parameters('dnsNameForPublicIP')]"
                                                                                 Name'))]"
```


Get started

Visit azure.microsoft.com

© 2014 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.

The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.