Package 'asm'

May 11, 2024

Title Optimal Convex M-Estimation for Linear Regression via Antitonic

Type Package

Score Matching

Version 0.2.0 License GPL (>= 3)**Description** Performs linear regression with respect to a data-driven convex loss function that is chosen to minimize the asymptotic covariance of the resulting M-estimator. The convex loss function is estimated in 5 steps: (1) form an initial OLS (ordinary least squares) or LAD (least absolute deviation) estimate of the regression coefficients; (2) use the resulting residuals to obtain a kernel estimator of the error density; (3) estimate the score function of the errors by differentiating the logarithm of the kernel density estimate; (4) compute the L2 projection of the estimated score function onto the set of decreasing functions; (5) take a negative antiderivative of the projected score function estimate. Newton's method (with Hessian modification) is then used to minimize the convex empirical risk function. Further details of the method are given in Feng et al. (2024) <doi:10.48550/arXiv.2403.16688>. **Encoding UTF-8 Depends** R (>= 3.1) Imports fdrtool, pracma, Iso, MASS, quantreg RoxygenNote 7.3.1 NeedsCompilation no Author Yu-Chun Kao [aut], Min Xu [aut, cre], Oliver Y. Feng [aut], Richard J. Samworth [aut] Maintainer Min Xu <min.cut@gmail.com> Repository CRAN **Date/Publication** 2024-05-11 02:23:05 UTC **R** topics documented:

2 asm

Index	11
	summary.asm
	residuals.asm
	print.summary.asm
	print.asm
	predict.asm
	plot.asm
	confint.asm
	coef.asm
	asm.fit

asm

Linear regression via antitonic score matching

Description

Performs linear regression with a data-driven convex loss function

Usage

```
asm(formula, data = NULL, ...)
```

Arguments

formula regression formula data input data frame

... additional arguments for asm.fit

Value

asm class object containing the following components:

betahat: vector of estimated coefficients

std_errs: vector of standard errors of the estimated coefficients

fitted.values: fitted values

residuals: residuals
zvals: z-values
sig_vals: p-values

info_asm: antitonic information

I_mat: estimated antitonic information matrix

Cov_mat: covariance matrix of the estimated coefficients

psi: estimated antitonic score function

```
asm(mpg \sim cyl + hp + disp, data=mtcars)
```

asm.fit 3

 ${\it asm.fit}$

Fit a linear regression model via antitonic score matching

Description

Performs linear regression via M-estimation with respect to a data-driven convex loss function

Usage

```
asm.fit(
   X,
   Y,
   betapilot = "OLS",
   alt_iter = 1,
   intercept.selection = "mean",
   k = 3000,
   max_iter = 65,
   kernel_pts = 2^15,
   bw = "nrd0",
   kernel = "gaussian",
   verbose = FALSE,
   ...
)
```

Arguments

Χ	design matrix		
Υ	response vector		
betapilot	initial estimate of the regression coefficients: can be "LAD", "OLS" or a vector of coefficients		
alt_iter	number of iterations of the alternating procedure: when alt_iter == 1, this function is equivalent to asm_regression		
intercept.selection			
	mean or median of the residuals if intercept.selection == "median", then the standard error of the intercept estimate is set to NA		
k	the density quantile function is evaluated at (0, 1/k, 2/k,, 1)		
max_iter	maximum number of iterations for the damped Newton–Raphson algorithm when minimizing the convex loss function		
kernel_pts	number of points at which the kernel density estimate is evaluated, i.e. the parameter "n" in density()		
bw	bandwidth for kernel density estimation i.e. the parameter "bw" in density()		
kernel	kernel for kernel density estimation i.e. the parameter "kernel" in density()		
verbose	logical; if TRUE, print optimization progress		
	additional arguments to ensure compatibility with generic functions		

4 coef.asm

Value

```
asm class object containing the following components:
betahat: vector of estimated coefficients
std_errs: vector of standard errors of the estimated coefficients
fitted.values: fitted values
residuals: residuals
zvals: z-values
sig_vals: p-values
info_asm: antitonic information
I_mat: estimated antitonic information matrix
Cov_mat: asymptotic covariance matrix of the estimated coefficients
psi: estimated antitonic score function
```

Examples

```
n <- 1000 ; d <- 2
X <- matrix(rnorm(n * d), n, d)
Y <- X %*% c(2, 3) + rnorm(n) # no intercept!
asm.fit(X,Y)</pre>
```

coef.asm

Coefficients of an asm regression model

Description

Outputs the coefficients of a fitted asm regression model

Usage

```
## S3 method for class 'asm'
coef(object, ...)
```

Arguments

```
object asm object
... additional arguments to ensure compatibility with the generic function coef()
```

Value

vector of coefficients of the asm regression model

```
model = asm(mpg ~ cyl + hp + disp, data=mtcars)
coef(model)
```

confint.asm 5

confint.asm

Confidence intervals for coefficients in an asm regression model

Description

Computes confidence intervals for individual regression coefficients based on a fitted asm regression model

Usage

```
## S3 method for class 'asm'
confint(object, parm, level = 0.95, ...)
```

Arguments

object asm object

parm parameters to calculate confidence intervals

level confidence level

... additional arguments to ensure compatibility with the generic function confint()

Value

matrix of confidence intervals for the regression coefficients

Examples

```
model = asm(mpg ~ cyl + hp + disp, data=mtcars)
confint(model)
```

plot.asm

Generate diagnostic plots for an asm regression model

Description

Generates plots of residuals vs fitted values, and the estimated convex loss and antitonic score functions based on a fitted asm regression model

6 plot.asm

Usage

```
## S3 method for class 'asm'
plot(
    x,
    which = c(1, 2, 3),
    caption = list("Residuals vs fitted", "Convex loss function",
        "Antitonic score function"),
    extend.ylim.f = 0.08,
    id.n = 3,
    labels.id = rownames(x$residuals),
    label.pos = c(4, 2),
    ext.xlim.f = 0.08,
    grid.length.f = 10,
    ask = prod(par("mfcol")) < length(which) && dev.interactive(),
    ...
)</pre>
```

Arguments

X	asm object
which	a subset of the plots to be displayed
caption	a list of captions for the plots
extend.ylim.f	factor to extend the y-axis limits for the residuals vs fitted plot
id.n	number of residuals to label in the residuals vs fitted plot
labels.id	labels for the residuals in the residuals vs fitted plot
label.pos	position of the labels in the residuals vs fitted plot
ext.xlim.f	factor to extend the x-axis limits for the convex loss and antitonic score function plots
grid.length.f	the number of grid points for the convex loss plot is defined as grid.length.f $*$ length(x $$$ residuals)
ask	logical; if TRUE, the user is asked before each plot
	additional arguments to ensure compatibility with the generic function plot()

Value

No return value

```
model = asm(mpg ~ cyl + hp + disp, data=mtcars)
plot(model)
```

predict.asm 7

predict.asm

Predict new responses using an asm regression model.

Description

Outputs predictions on new test data based on a fitted asm regression model. Also returns a confidence interval around the conditional mean (if interval = "confidence") or predicted response (if interval = "prediction").

Usage

```
## S3 method for class 'asm'
predict(object, newdata = NULL, interval = "none", level = 0.95, ...)
```

Arguments

object asm object

newdata new data frame

interval type of interval calculation, either "none", "confidence" or "prediction". Default is "none".

level confidence level

... additional arguments to ensure compatibility with the generic function predict()

Value

matrix of predicted values * if interval = "none", the matrix has one column of predicted values * if interval = "confidence" or "prediction", the matrix has three columns: predicted value, lower bound, and upper bound

```
model = asm(mpg ~ cyl + hp + disp, data=mtcars)
predict(model, newdata = data.frame(cyl = 4, hp = 121, disp = 80), interval = "prediction")

n <- 1000
X <- rnorm(n)
beta <- 2
Y <- beta*X + rt(n,df=3)
Mod <- asm(Y ~ X)
predict(Mod, newdata = data.frame(X = 1), interval = "prediction")</pre>
```

8 print.summary.asm

print.asm

Short description of a fitted asm regression model

Description

Outputs estimated coefficients and standard errors

Usage

```
## S3 method for class 'asm'
print(x, ...)
```

Arguments

x asm object

... additional arguments to ensure compatibility with the generic function print()

Value

No return value, called for its side effect

Examples

```
model = asm(mpg ~ cyl + hp + disp, data=mtcars)
print(model)
```

print.summary.asm

Print summary of the asm regression model

Description

Prints the summary of a fitted asm regression model

Usage

```
## S3 method for class 'summary.asm'
print(
    x,
    digits = max(3L, getOption("digits") - 3L),
    signif.stars = getOption("show.signif.stars"),
    concise = FALSE,
    ...
)
```

residuals.asm 9

Arguments

X	summary.asm object
digits	number of digits to print
signif.stars	logical; if TRUE, 'significance stars' are printed
concise	logical; if TRUE, the output is concise

... additional arguments to ensure compatibility with the generic function print()

Value

No return value

Examples

```
model = asm(mpg ~ cyl + hp + disp, data=mtcars)
print(summary(model))
```

residuals.asm

Residuals from an asm regression model

Description

Outputs the residuals (on the training data) from a fitted asm regression model

Usage

```
## S3 method for class 'asm'
residuals(object, ...)
```

Arguments

object asm object

... additional arguments to ensure compatibility with the generic function residu-

als()

Value

vector of residuals from the asm regression model

```
model = asm(mpg ~ cyl + hp + disp, data=mtcars)
residuals(model)
```

10 summary.asm

summary.asm

Summary of an asm regression model

Description

Outputs estimated coefficients, standard errors and p-values based on a fitted asm regression model

Usage

```
## S3 method for class 'asm'
summary(object, ...)
```

Arguments

object asm object

... additional arguments to ensure compatibility with the generic function sum-

mary()

Value

```
summary.asm class object containing the following components:
coefficients: estimated coefficients, standard errors, z-values and p-values
residuals: residuals of the fitted model
call: call to the asm function
```

```
model = asm(mpg ~ cyl + hp + disp, data=mtcars)
summary(model)
```

Index

```
asm, 2
asm.fit, 3
coef.asm, 4
confint.asm, 5
plot.asm, 5
predict.asm, 7
print.asm, 8
print.summary.asm, 8
residuals.asm, 9
summary.asm, 10
```