Computational tools for problem solving

Lab list 6

Elliptic Curve Cryptography.

Let \mathbb{F}_p be a finite field with p elements, where p > 3 is a prime number. For $a, b \in \mathbb{F}_p$ such that $4a^3 + 27b^2 \neq 0$, the set of points $E(\mathbb{F}_p) = \{(x, y) \in \mathbb{F}_p \times \mathbb{F}_p : y^2 = x^3 + ax + b\} \cup \{\infty\}$, where ∞ is the point at infinity, defines an elliptic curve over \mathbb{F}_p .

 $E(\mathbb{F}_p)$ has an additive group structure (with ∞ as identity) given by the following addition law. Let P, Q be points on $E(\mathbb{F}_p)$.

- 1) If $P = \infty$, then P + Q = Q. If $Q = \infty$, then P + Q = P.
- 2) Otherwise, let $P = (x_1, y_1)$ and $Q = (x_2, y_2)$.
 - a) If $x_1 = x_2$ and $y_1 = -y_2$, then $P + Q = \infty$, (i.e, Q = -P).
 - b) Otherwise, let

$$\lambda = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1}, & \text{if } P \neq Q; \\ \\ \frac{3x_1^2 + a}{2y_1}, & \text{if } P = Q, \end{cases}$$

$$x_3 = \lambda^2 - x_1 - x_2$$
 and $y_3 = \lambda(x_1 - x_3) - y_1$. Then $P + Q = (x_3, y_3)$.

Problem 1. Elliptic Curve Arithmetic

- 1) Write three programs for computing the negative of a point, the sum of two points and the double of a point, respectively.
- 2) A scalar multiplication of a point P by an integer k, denoted kP or [k]P, is the sum

$$kP = \begin{cases} \underbrace{P + P + \dots + P}_{k \text{ times if } k \ge 0}, \\ \underbrace{(-P) + (-P) + \dots + (-P)}_{-k \text{ times if } k < 0}. \end{cases}$$

Write a program that uses an analogue of the binary exponentiation to efficiently compute scalar multiplications.

Problem 2. Elliptic Curve Discrete Logarithm Problem (ECDLP)

Let $G = \langle P \rangle$ be the subgroup of $E(\mathbb{F}_p)$ generated by a point P of prime order n. The ECDLP in G consist of finding $0 \le k < n$ such that Q = kP, for any given point $Q \in G$.

- 1) Write a program that solves the ECDLP in cyclic subgroups of $E(\mathbb{F}_p)$ using the Baby Step Giant Step method.
- 2) For p = 311, $E : Y^2 = X^3 + 5X 9$ and P = (23, 12) of order n = 103, employ your program to solve the ECDLP for Q = (254, 231).