Introduction to Electrodynamics by David J. Griffiths Problems

Chris Doble

December 2023

Contents

2	\mathbf{Elec}	\mathbf{tr}	o	S	tε	at	ic	s																																2
	2.1																																							2
	2.2																																							2
	2.3																																							2
	2.4																																							2
	2.5																																							3
	2.6																																							3
	2.7																																							3
	2.8																																							3
	2.9																																							4
	2.10																																							4
	2.11										_											_			_															4
	2.12																																							5
	2.13										_											_			_															5
	2.14										_											_			_															5
	2.15																	·																						5
	2.16	·												-	-		-	-	-		-	-	-	-	-	•	-	-	•	-	•	-	•		-		•			6
	2.17	•			•	•	·	Ī	•		•	•	•																									•	·	6
	2.18	•			•	•	·	Ī	•			•	•	-	-		-	-	-	-	-																	•	·	7
	$\frac{2.10}{2.20}$	•			•	•	•	•	•	•	•	•	•	-	-		-	-	-	-	-					-												•	•	7
	2.21	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	8
	2.22	•			•	•	·	Ī	•		•	•	•	·			·			-	-					-												•	·	8
	2.23	•		•	•	•	•	•	•	•	•	•	•	-	-		-	-	-		-	-	-	-	-	•	-	-	•	-	•	-	•	•	-		•	•	•	9
	2.24	•		•	•	•	•	•	•	•	•	•	•	-	-		-	-	-		-	-	-	-	-	•	-	-	•	-	•	-	•		-		•	•	•	9
	2.24 2.25	•		•	•	•	•	•	•	•	•	•	•	-	-		-	-	-	-	-					-												•	•	9
	2.26	•		•	•	•	•	•	•	•	•	•	•	-	-		-	-	-		-	-	-	-	-	•	-	-	•	-	•	-	•		-		•	•	•	10
	2.28	•		•	•	•	•	•	•																												•	•	•	10
	4.40																																							10

2 Electrostatics

2.1

- (a) **0**
- (b) The same as if only the opposite charge were present all others are cancelled out.

2.2

$$\mathbf{E} = \frac{1}{4\pi\epsilon_0} 2 \frac{q}{2^2} \cos \theta \hat{\mathbf{x}}$$
$$= \frac{1}{4\pi\epsilon_0} \frac{dq}{[(d/2)^2 + z^2]^{3/2}} \hat{\mathbf{x}}$$

2.3

$$\begin{split} &\mathbf{r} = z\hat{\mathbf{z}} \\ &\mathbf{r}' = x\hat{\mathbf{x}} \\ &\boldsymbol{\lambda} = z\hat{\mathbf{z}} - x\hat{\mathbf{x}} \\ &\boldsymbol{\lambda} = \sqrt{x^2 + z^2} \\ &\hat{\boldsymbol{\lambda}} = \frac{z\hat{\mathbf{z}} - x\hat{\mathbf{x}}}{\sqrt{x^2 + z^2}} \\ &\mathbf{E} = \frac{1}{4\pi\epsilon_0} \int_0^L \frac{\lambda}{x^2 + z^2} \frac{z\hat{\mathbf{z}} - x\hat{\mathbf{x}}}{\sqrt{x^2 + z^2}} dx \\ &= \frac{1}{4\pi\epsilon_0} \lambda \left(z\hat{\mathbf{z}} \int_0^L \frac{1}{(x^2 + z^2)^{3/2}} dx - \hat{\mathbf{x}} \int_0^L \frac{x}{(x^2 + z^2)} dx \right) \\ &= \frac{1}{4\pi\epsilon_0} \lambda \left[\frac{L}{z\sqrt{L^2 + z^2}} \hat{\mathbf{z}} - \left(\frac{1}{z} - \frac{1}{\sqrt{L^2 + z^2}} \right) \hat{\mathbf{x}} \right] \\ &= \frac{1}{4\pi\epsilon_0} \frac{\lambda}{z} \left[\left(-1 + \frac{z}{\sqrt{L^2 + z^2}} \right) \hat{\mathbf{x}} + \frac{L}{\sqrt{L^2 + z^2}} \hat{\mathbf{z}} \right] \end{split}$$

2.4

The electric field a distance z above the midpoint of a line segment of length 2L and uniform line charge λ is

$$\mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{2\lambda L}{z\sqrt{z^2 + L^2}} \hat{\mathbf{z}}.$$

Applying this to the four sides of the square, the horizontal components of opposite sides cancel leaving only the vertical component.

$$\cos \theta = \frac{z}{2}$$

$$= \frac{z}{\sqrt{(a/2)^2 + z^2}}$$

$$\mathbf{E} = 4\left(\frac{1}{4\pi\epsilon_0} \frac{\lambda a}{\sqrt{(a/2)^2 + z^2}\sqrt{(a/2)^2 + (a/2)^2 + z^2}}\hat{\mathbf{z}}\right) \cos \theta$$

$$= \frac{1}{4\pi\epsilon_0} \frac{4a\lambda z}{[(a/2)^2 + z^2]\sqrt{(a^2/2) + z^2}}\hat{\mathbf{z}}$$

$$\mathbf{E} = \frac{1}{4\pi\epsilon_0} \int_0^{2\pi} \frac{\lambda r}{r^2 + z^2} \cos\alpha \, d\theta \, \hat{\mathbf{z}}$$
$$= \frac{1}{4\pi\epsilon_0} \frac{2\pi\lambda rz}{(r^2 + z^2)^{3/2}} \hat{\mathbf{z}}$$

2.6

$$\mathbf{E} = \frac{1}{4\pi\epsilon_0} \int \frac{dq}{\mathbf{z}^2} \cos\theta \hat{\mathbf{z}}$$

$$= \frac{1}{4\pi\epsilon_0} \int_0^{2\pi} \int_0^R \frac{\sigma}{r^2 + z^2} \frac{z}{\sqrt{r^2 + z^2}} r \, dr \, d\theta \hat{\mathbf{z}}$$

$$= \frac{1}{4\pi\epsilon_0} 2\pi\sigma z \int_0^R \frac{r}{(r^2 + z^2)^{3/2}} \, dr \, \hat{\mathbf{z}}$$

$$= \frac{1}{4\pi\epsilon_0} 2\pi\sigma z \left(\frac{1}{z} - \frac{1}{\sqrt{R^2 + z^2}}\right) \hat{\mathbf{z}}$$

When $R \to \infty$

$$\mathbf{E} = \frac{\sigma}{2\epsilon_0} \hat{\mathbf{z}}.$$

2.7

$$\mathbf{E} = \begin{cases} \frac{1}{4\pi\epsilon_0} \frac{q}{z^2} \hat{\mathbf{z}} & z > R \\ \mathbf{0} & z < R \end{cases}$$

$$\mathbf{E} = \begin{cases} \frac{1}{4\pi\epsilon_0} \frac{q}{z^2} \hat{\mathbf{z}} & z > R \\ \frac{1}{4\pi\epsilon_0} \frac{qz}{R^3} \hat{\mathbf{z}} & z < R \end{cases}$$

$$\rho = \epsilon_0 \nabla \cdot \mathbf{E}$$

$$= \epsilon_0 \frac{1}{r^2} \frac{\partial}{\partial r} (kr^5)$$

$$= 5\epsilon_0 kr^2$$

$$\begin{aligned} Q_{\text{enc}} &= \epsilon_0 \oint \mathbf{E} \cdot d\mathbf{a} \\ &= \epsilon_0 \int_0^{2\pi} \int_0^{\pi} kR^3 R \, d\theta R \sin \theta \, d\phi \\ &= 2\pi \epsilon_0 kR^5 [-\cos \theta]_0^{\pi} \\ &= 4\pi \epsilon_0 kR^5 \\ Q_{\text{enc}} &= \int_V \rho \, d\tau \\ &= \int_0^{2\pi} \int_0^{\pi} \int_0^R 5\epsilon_0 kr^2 \, drr \, d\theta r \sin \theta \, d\phi \\ &= 10\pi \epsilon_0 k \int_0^{\pi} \int_0^R r^4 \sin \theta \, dr \, d\theta \\ &= 2\pi \epsilon_0 kR^5 [-\cos \theta]_0^{\pi} \\ &= 4\pi \epsilon_0 kR^5 \end{aligned}$$

2.10

If the charge was surrounded by 8 such cubes the total flux through all the cubes would be q/ϵ_0 . There are 24 outside faces to the larger cube, so the total flux through the shaded face is $q/(24\epsilon_0)$.

$$\int \mathbf{E}_{\text{inside}} \cdot d\mathbf{a} = \frac{Q_{\text{enc}}}{\epsilon_0}$$

$$= 0$$

$$\mathbf{E}_{\text{inside}} = \mathbf{0}$$

$$\int \mathbf{E}_{\text{outside}} \cdot d\mathbf{a} = \frac{Q_{\text{enc}}}{\epsilon_0}$$

$$4\pi r^2 E_{\text{outside}} = \frac{4\pi R^2 \sigma}{\epsilon_0}$$

$$\mathbf{E}_{\text{outside}} = \frac{1}{4\pi \epsilon_0} \frac{q}{r^2} \hat{\mathbf{r}}$$

$$\int \mathbf{E} \cdot d\mathbf{a} = \frac{Q_{\text{enc}}}{\epsilon_0}$$
$$4\pi r^2 E = \frac{\frac{4}{3}\pi r^3 \rho}{\epsilon_0}$$
$$\mathbf{E} = \frac{r\rho}{3\epsilon_0} \hat{\mathbf{r}}$$

2.13

$$\begin{split} \int \mathbf{E} \cdot d\mathbf{a} &= \frac{Q_{\text{enc}}}{\epsilon_0} \\ 2\pi s l E &= \frac{l\lambda}{\epsilon_0} \\ \mathbf{E} &= \frac{1}{2\pi \epsilon_0} \frac{\lambda}{s} \hat{\mathbf{s}} \end{split}$$

2.14

$$\begin{aligned} Q_{\text{enc}} &= \int_{V} \rho \, d\tau \\ &= \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{r} kr'^{3} \sin \theta \, dr' \, d\theta \, d\phi \\ &= 2\pi k \int_{0}^{\pi} \left[\frac{1}{4} r'^{4} \sin \theta \right]_{0}^{r} \, d\theta \\ &= \frac{1}{2} \pi k r^{4} [-\cos \theta]_{0}^{\pi} \\ &= \pi k r^{4} \\ \int \mathbf{E} \cdot d\mathbf{a} = \frac{Q_{\text{enc}}}{\epsilon_{0}} \\ &4\pi r^{2} E = \frac{\pi k r^{4}}{\epsilon_{0}} \\ \mathbf{E} &= \frac{k r^{2}}{4\epsilon_{0}} \hat{\mathbf{r}} \end{aligned}$$

(a)
$$E = 0$$

$$\begin{aligned} Q_{\text{enc}} &= \int_0^{2\pi} \int_0^{\pi} \int_a^r k \sin \theta \, dr' \, d\theta \, d\phi \\ &= 4\pi k (r-a) \\ 4\pi r^2 E &= \frac{4\pi k (r-a)}{\epsilon_0} \\ \mathbf{E} &= \frac{k (r-a)}{\epsilon_0 r^2} \hat{\mathbf{r}} \end{aligned}$$

(c)
$$\mathbf{E} = \frac{k(b-a)}{\epsilon_0 r^2} \hat{\mathbf{r}}$$

(a)

$$Q_{\rm enc} = \pi s^2 l \rho$$
$$2\pi s l E = \frac{\pi s^2 l \rho}{\epsilon_0}$$
$$\mathbf{E} = \frac{s \rho}{2\epsilon_0} \hat{\mathbf{s}}$$

$$\mathbf{E} = \frac{a^2 \rho}{2\epsilon_0 s} \hat{\mathbf{s}}$$

$$\mathbf{E} = \mathbf{0}$$

$$\begin{aligned} 2AE_{\text{inside}} &= \frac{2Ay\rho}{\epsilon_0} \\ \mathbf{E}_{\text{inside}} &= \frac{y\rho}{\epsilon_0} \\ \mathbf{E} &= \begin{cases} \frac{d\rho}{\epsilon_0} & d < y \\ \frac{y\rho}{\epsilon_0} & 0 < y < d \\ -\frac{y\rho}{\epsilon_0} & -d < y < 0 \\ -\frac{d\rho}{\epsilon_0} & y < -d \end{cases} \end{aligned}$$

The electric field inside a uniformly charged solid sphere is

$$\mathbf{E} = \frac{r\rho}{3\epsilon_0}\hat{\mathbf{r}}.$$

$$\mathbf{d} = \mathbf{r}_1 - \mathbf{r}_2$$

$$\mathbf{E} = \frac{r_1 \rho}{3\epsilon_0} \hat{\mathbf{r}}_1 - \frac{r_2 \rho}{3\epsilon_0} \hat{\mathbf{r}}_2$$

$$= \frac{\rho}{3\epsilon_0} (\mathbf{r}_1 - \mathbf{r}_2)$$

$$= \frac{\rho}{3\epsilon_0} \mathbf{d}$$

2.20

a is impossible because its curl is nonzero.

$$\begin{split} V &= -\int_{0}^{y} 2kxy' \, dy' - \int_{0}^{z} 2kyz' \, dz \\ &= -2kx \left[\frac{1}{2}y'^{2} \right]_{0}^{y} - 2ky \left[\frac{1}{2}z'^{2} \right]_{0}^{z} \\ &= -k(xy^{2} + yz^{2}) \\ -\nabla V &= k[y^{2}\hat{\mathbf{x}} + (2xy + z^{2})\hat{\mathbf{y}} + 2yz\hat{\mathbf{z}}] \\ &= \mathbf{E} \end{split}$$

$$\begin{split} \mathbf{E} &= \begin{cases} \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} & r > R \\ \frac{1}{4\pi\epsilon_0} \frac{qr}{R^3} & r < R \end{cases} \\ V_{\text{outside}}(r) &= -\int_{\infty}^{r} \frac{1}{4\pi\epsilon_0} \frac{q}{r'^2} dr' \\ &= -\frac{1}{4\pi\epsilon_0} q \left[-\frac{1}{r'} \right]_{\infty}^{r} \\ &= \frac{1}{4\pi\epsilon_0} \frac{q}{r} \\ -\nabla V_{\text{outside}} &= \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{\mathbf{r}} \\ &= \mathbf{E}_{\text{outside}} \\ V_{\text{inside}}(r) &= -\left(\int_{\infty}^{R} \frac{1}{4\pi\epsilon_0} \frac{q}{r'^2} dr' + \int_{R}^{r} \frac{1}{4\pi\epsilon_0} \frac{qr'}{R^3} dr' \right) \\ &= -\left(-\frac{1}{4\pi\epsilon_0} \frac{q}{R} + \frac{1}{4\pi\epsilon_0} \frac{q}{R^3} \left[\frac{1}{2} r'^2 \right]_{R}^{r} \right) \\ &= \frac{1}{4\pi\epsilon_0} \frac{q}{2R} \left[3 - \left(\frac{r}{R} \right)^2 \right] \\ -\nabla V_{\text{inside}} &= \frac{1}{4\pi\epsilon_0} \frac{qr}{R^3} \hat{\mathbf{r}} \\ &= \mathbf{E}_{\text{inside}} \end{split}$$

$$\begin{split} \mathbf{E} &= \frac{1}{2\pi\epsilon_0} \frac{\lambda}{s} \hat{\mathbf{s}} \\ V &= -\int_O^s \frac{1}{2\pi\epsilon_0} \frac{\lambda}{s'} \, ds' \\ &= -\frac{1}{2\pi\epsilon_0} \lambda \ln \frac{s}{O} \\ -\nabla V &= \frac{1}{2\pi\epsilon_0} \frac{\lambda}{s} \hat{\mathbf{s}} \end{split}$$

$$\begin{split} \mathbf{E} &= \begin{cases} \mathbf{0} & r < a \\ \frac{k(r-a)}{\epsilon_0 r^2} \hat{\mathbf{r}} & a < r < b \\ \frac{k(b-a)}{\epsilon_0 r^2} \hat{\mathbf{r}} & b < r \end{cases} \\ V(0) &= -\int_{\infty}^{0} E \, dr \\ &= -\left(\int_{\infty}^{b} \frac{k(b-a)}{\epsilon_0 r^2} \, dr + \int_{b}^{a} \frac{k(r-a)}{\epsilon_0 r^2} \, dr\right) \\ &= -\left(\frac{k(b-a)}{\epsilon_0} \left[-\frac{1}{r}\right]_{\infty}^{b} + \frac{k}{\epsilon_0} \left[\ln r + \frac{a}{r}\right]_{b}^{a}\right) \\ &= -\left[-\frac{k(b-a)}{\epsilon_0 b} + \frac{k}{\epsilon_0} \left(\ln a + 1 - \ln b - \frac{a}{b}\right)\right] \\ &= -\frac{k}{\epsilon_0} \left(-1 + \frac{a}{b} + \ln \frac{a}{b} + 1 - \frac{a}{b}\right) \\ &= \frac{k}{\epsilon_0} \ln \frac{b}{a} \end{split}$$

2.24

$$V(b) - V(0) = -\int_0^b E \, dr$$

$$= -\left(\int_0^a \frac{s\rho}{2\epsilon_0} \, ds + \int_a^b \frac{a^2\rho}{2\epsilon_0 s} \, ds\right)$$

$$= -\left(\frac{\rho}{2\epsilon_0} \left[\frac{1}{2}s^2\right]_0^a + \frac{a^2\rho}{2\epsilon_0} \ln\frac{b}{a}\right)$$

$$= -\left(\frac{a^2\rho}{4\epsilon_0} + \frac{a^2\rho}{2\epsilon_0} \ln\frac{b}{a}\right)$$

$$= -\frac{a^2\rho}{4\epsilon_0} \left(1 + 2\ln\frac{a}{b}\right)$$

(a)
$$V = \frac{1}{4\pi\epsilon_0} \frac{2q}{\sqrt{(d/2)^2 + z^2}}$$

$$V = \frac{1}{4\pi\epsilon_0} \int_{-L}^{L} \frac{\lambda}{\sqrt{x^2 + z^2}} dx$$
$$= \frac{1}{4\pi\epsilon_0} \lambda \ln \left(1 + \frac{2L(L + \sqrt{L^2 + z^2})}{z^2} \right)$$

(c)

$$\begin{split} V &= \frac{1}{4\pi\epsilon_0} \int_0^{2\pi} \int_0^R \frac{\sigma}{\sqrt{r^2 + z^2}} r \, dr \, d\theta \\ &= \frac{1}{4\pi\epsilon_0} 2\pi\sigma (\sqrt{R^2 + z^2} - z) \end{split}$$

2.26

$$\begin{split} V_{\text{bottom}} &= \frac{1}{4\pi\epsilon_0} \int_0^{2\pi} \int_0^h \frac{\sqrt{2}\sigma z}{\sqrt{2}z} \, d\phi \, dz \\ &= \frac{\sigma h}{2\epsilon_0} \\ V_{\text{top}} &= \frac{1}{4\pi\epsilon_0} \int_0^{2\pi} \int_0^h \frac{\sqrt{2}\sigma z}{\sqrt{z^2 + (h-z)^2}} \, d\phi \, dz \\ &= \frac{\sqrt{2}\sigma}{2\epsilon_0} \int_0^h \frac{z}{\sqrt{z^2 + (h-z)^2}} \, dz \\ &= \frac{\sigma h}{4\epsilon_0} \ln(3 + 2\sqrt{2}) \\ V_{\text{bottom}} - V_{\text{top}} &= \frac{\sigma h}{2\epsilon_0} \left[1 - \frac{1}{2} \ln(3 + 2\sqrt{2}) \right] \end{split}$$

$$\begin{split} V(r) &= \frac{1}{4\pi\epsilon_0} \int_0^{2\pi} \int_0^{\pi} \int_0^R \frac{\rho r'^2 \sin \theta}{\sqrt{r^2 + r'^2 - 2rr' \cos \theta}} \, dr' \, d\theta \, d\phi \\ &= \frac{\rho}{2\epsilon_0} \int_0^{\pi} \int_0^R \frac{r'^2 \sin \theta}{\sqrt{r^2 + r'^2 - 2rr' \cos \theta}} \, dr' \, d\theta \\ &= \frac{\rho}{2\epsilon_0} \left(R^2 - \frac{r^2}{3} \right) \\ &= \frac{q}{8\pi\epsilon_0 R} \left(3 - \frac{r^2}{R^2} \right) \end{split}$$