$\underline{Demorgan's\ First\ Theorem\ } \to \overline{AB} = \overline{A} + \overline{B}$

Truth Table:

A	В	AB	AB	Ā	$\overline{\mathbf{B}}$	$\overline{\mathbf{A}} + \overline{\mathbf{B}}$
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0

Circuit Diagram:

$\underline{Demorgan's\ Second\ Theorem\ } \to \overline{A+B} = \overline{A}\ . \ \overline{B}$

Truth Table:

A	В	A + B	$\overline{\mathbf{A} + \mathbf{B}}$	Ā	$\overline{\mathbf{B}}$	$\overline{\mathbf{A}}$. $\overline{\mathbf{B}}$
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

(1) Commutative Property: A + B = B + A

Truth Table:

A	В	A + B	$\mathbf{B} + \mathbf{A}$
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	1

Circuit Diagram:

(2) Commutative Property: $A \cdot B = B \cdot A$

Truth Table:

A	В	A.B	B .A
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

EXPT. NO: 01	
DATE.	

VERIFICATION OF BOOLEAN THEOREMS USING LOGIC GATES

(1) <u>Distributive Property</u>: A + BC = (A + B) (A + C)

Truth Table:

A	В	С	BC	A + BC	A + B	A + C	$(A+B) \cdot (A+C)$
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

EXPT. NO: 01
DATE:

VERIFICATION OF BOOLEAN THEOREMS USING LOGIC GATES

(2) <u>Distributive Property</u>: $A \cdot (B + C) = (A \cdot B) + (A \cdot C)$

Truth Table:

A	В	C	$\mathbf{B} + \mathbf{C}$	A.(B+C)	A.B	A.C	(A.B) + (A.C)
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

(1) Half – Adder:

Truth Table:

A	В	SUM	CARRY
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

K – Map:

 $Sum = A\overline{B} + \overline{A}B = A \oplus B$

CARRY

Carry = AB

(2) Full – Adder:

Truth Table:

A	В	Cin	SUM	CARRYout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

K – Map:

$$Sum = \overline{A}\overline{B}C + \overline{A}B\overline{C} + A\overline{B}\overline{C} + ABC$$

CARRYout

$$Carry_{out} = AB + AC_{in} + BCin$$

EXPT. NO: 03
DATE

IMPLEMENTATION OF MULTIPLEXER AND DEMULTIPLEXER

(1) 4 : 1 MULTIPLEXER:

Truth Table:

S 1	S0	OUTPUT
0	0	D0
0	1	D1
1	0	D2
1	1	D3

EXPT. NO: 03
DATE:

IMPLEMENTATION OF MULTIPLEXER AND DEMULTIPLEXER

(2) 1:4 DEMULTIPLEXER:

Truth Table:

SELECTOR LINES		OUTPUT				
S0	S1	Y0	Y1	Y2	Y3	
0	0	D	0	0	0	
0	1	0	D	0	0	
1	0	0	0	D	0	
1	1	0	0	0	D	

EXPT. NO: 04
DATE:

DESIGN OF D AND JK FLIP FLOPS USING NAND GATES

(1) <u>D FLIP – FLOP:</u>

Truth Table:

CLOCK	D	Qn	Qn+1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

(2) $\underline{JK FLIP - FLOP}$:

Truth Table:

CLOCK	J	K	Q _{n+1}	STATE
1	0	0	Qn	No Change
1	0	1	0	Reset (0)
1	1	0	1	Set (1)
1	1	1	$\overline{\mathbb{Q}}_{\mathrm{n}}$	Toggle

EXPT. NO: 05

DATE:

IMPLEMENTATION OF SISO AND PIPO SHIFT REGISTER USING FLIP - FLOPS

(1) SISO SHIFT REGISTER USING D FLIP — FLOP:

Truth Table:

CLOCK	\mathbf{Q}_0	Q_1	\mathbf{Q}_2	\mathbf{Q}_3
Initially	0	0	0	0
1 st falling edge	1	0	0	0
2 nd falling edge	1	1	0	0
3 rd falling edge	1	1	1	0
4 th falling edge	1	1	1	1

EXPT. NO: 05
DATE:

IMPLEMENTATION OF SISO AND PIPO SHIFT REGISTER USING FLIP - FLOPS

(2) PIPO SHIFT REGISTER USING D FLIP — FLOP:

Truth Table:

CLOCK -	DATA INPUT			OUTPUT				
	$\mathbf{D_0}$	\mathbf{D}_1	$\mathbf{D_2}$	\mathbf{D}_3	\mathbf{Q}_0	\mathbb{Q}_1	\mathbb{Q}_2	\mathbb{Q}_3
1	1	0	0	1	1	0	0	1
2	1	0	1	0	1	0	1	0

(1) 4 - BIT RIPPLE UP COUNTER:

Truth Table:

CLOCK PULSES	\mathbf{D}_3	\mathbb{D}_2	\mathbf{D}_1	$\mathbf{D_0}$
Initially (0)	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1

EXPT.	NO:	06

CONSTRUCTION AND VERIFICATION OF 4 – BIT RIPPLE COUNTER

(2) 4 - BIT RIPPLE DOWN COUNTER:

Truth Table:

CLOCK PULSES	D ₃	\mathbf{D}_2	\mathbf{D}_1	\mathbf{D}_0
Initially	0	0	0	0
1	1	1	1	1
2	1	1	1	0
3	1	1	0	1
4	1	1	0	0
5	1	0	1	1
6	1	0	1	0
7	1	0	0	1
8	1	0	0	0
9	0	1	1	1
10	0	1	1	0
11	0	1	0	1
12	0	1	0	0
13	0	0	1	1
14	0	0	1	0
15	0	0	0	1

EXPT. NO: 07

DATE:

DESIGN AND IMPLEMENTATION OF 2 - BIT ALU USING VARIOUS COMBINATIONAL CIRCUITS

2 - BIT ARITHMETIC LOGIC UNIT:

