WEEK 2

• Descartes Was Really Smart - Practice quiz on the Cartesian Plane (5 questions)

C è	coursera.org/learn/datasciencemathskills/quiz/Jo3WK/practice-quiz-on-the-cartesian-plane/attempt?redirectToCover=true	*
	ce quiz on the Cartesian Plane praticar • 15 min	
	✓ Parabéns! Você foi aprovado! PARA SER APROVADO 75% ou superior Continue aprendendo	лота 100%
	Practice quiz on the Cartesian Plane	
	1. Which of the following points in the Cartesian Plane is on the y -axis?	1 / 1 ponto
	\bigcirc (1,1)	
	\bigcirc (5,0)	
	\bigcirc $(-5,0)$	
	✓ Correto	
	The y -axis is defined to be all points in the Cartesian plane with zero as x -coordinate. The point $(0,-5)$ meets that requirement.	
	and the distance between the points $A=(2,2)$ and $C=(3,3)$: $\begin{array}{c} 2\\ 1\\ 0\\ \sqrt{2} \end{array}$	1 / 1 ponto
	Correto Recall that the distance between points (a,b) and (c,d) is $\sqrt{(c-a)^2+(d-b)^2}$. In this case $(a,b)=(2,2)$ and $(c,d)=(3,3)$, so the distance is $\sqrt{(3-2)^2+(3-2)^2}=\sqrt{2}$.	

$$y-3=\frac{1}{2}(x-1)$$

$$\bigcirc y-1=\frac{1}{2}(x-5)$$

$$\bigcirc \ y=rac{1}{2}\,x$$

✓ Correto

The point-slope form for the equation of a line with slope m that goes through the point (x_0,y_0) is $y-y_0=m(x-x_0)$

In this case, the slope
$$m=rac{3-1}{5-1}=rac{1}{2}$$

We can choose either ${\cal A}$ or ${\cal B}$ for the point on the line, but in neither case do we get this chosen answer.

4. Which of the following points is on the line with equation:

17 I ponto

$$y-1=2(x-2)$$
?

$$\bigcirc$$
 (2,3)

$$\bigcirc$$
 (0,0)

$$\bigcirc$$
 $(3,2)$

✓ Correto

If we plug in 1 for y and 2 for x in the equation of the line, we make a true statement, 0 = 0, so this point lies on the line.

Since $(-1,0)\in \ell$, the point on ℓ with x=0 is obtained by running one unit from (-1,0) while rising two units.

This gives y=2 as the y-intercept.