Faculté des Sciences Exactes

Département de Mathématiques /M.I

2019/2020

Master 1 (PSA)

Série de TD N 1 de MBCS

Exercice 1. 1. Soit $\Omega = \{1, 2, ..., 6\}$ et $\mathcal{A} = \{\{1, 3, 5\}, \{2, 4, 6\}\}, \mathcal{B} = \{\{2, 4, 6\}, \{2, 3, 4\}\}.$ Décrire $\sigma(\mathcal{A})$ et $\sigma(\mathcal{B})$.

2. Soit $\mathcal{F}_1, \mathcal{F}_2$ deux tribus sur Ω . Montrer que $\mathcal{F}_1 \cap \mathcal{F}_2$ est une tribu. Montrer qu'en général $\mathcal{F}_1 \cup \mathcal{F}_2$ n'est pas une tribu.

Exercice 2. 1. Soit Ω un ensemble muni d'une tribu \mathcal{F} et $\mathbf{E} \subset \Omega$.

Montrer que

 $\mathcal{F}_{\mathbf{E}} = \{A \cap \mathbf{E}, A \in \mathcal{F}\}$ est une tribu sur \mathbb{E} (tribu trace de \mathcal{F} sur \mathbf{E}).

2. Soit $f: \mathbb{F} \to \mathbb{G}$ une application. Montrer que si \mathcal{T}' est une tribu sur \mathbb{G} alors $f^{-1}(\mathcal{T}')$ est une tribu sur \mathbb{F} (tribu image réciproque).

Exercice 3. Soit $g: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction borélienne et $X: \Omega \longrightarrow \mathbb{R}$ une variable aléatoire. Montrer que g(X) est une variable aléatoire.

Exercice 4. Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé, \mathcal{G} une sous tribu de \mathcal{F} . On considère deux variables aléatoires X et Y telles que: X - Y est indépendante de \mathcal{G} d'espérance mathématique m et de variance σ^2 et Y est \mathcal{G} -mesurable.

- 1. Calculer $\mathbb{E}(X Y | \mathcal{G})$. En déduire $\mathbb{E}(X | \mathcal{G})$.
- **2.** Calculer $\mathbb{E}[(X-Y)^2|\mathcal{G})$. En déduire $\mathbb{E}(X^2|\mathcal{G})$.

Exercice 5. Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité, $\mathcal{F}_1 \subset \mathcal{F}_2$ des sous tribus de \mathcal{F} et X une variable aléatoire.

- 1. Montrer que: $\mathbb{E}([X \mathbb{E}(X|\mathcal{F}_2)]^2) + \mathbb{E}([\mathbb{E}(X|\mathcal{F}_2) \mathbb{E}(X|\mathcal{F}_1)]^2) = \mathbb{E}([X \mathbb{E}(X|\mathcal{F}_1)]^2)$
- **2.** On pose $Var(X|\mathcal{F}_1) = \mathbb{E}(X^2|\mathcal{F}_1) (\mathbb{E}(X|\mathcal{F}_1))^2$. Montrer que $Var(X) = \mathbb{E}(Var(X|\mathcal{F}_1)) + Var(\mathbb{E}(X|\mathcal{F}_1))$.

Exercice 6. 1. Soit X une v.a. de loi $\mathcal{N}(0, \sigma^2)$. Calculer $\mathbb{E}(X^3)$, $\mathbb{E}(X^4)$, $\mathbb{E}(|X|)$, $\mathbb{E}(|X^3|)$ et $\mathbb{E}(e^X)$.

- **2.** Soit X une v.a.r. de loi $\mathcal{N}(m; \sigma^2)$.
 - a) Quelle est la loi de $\frac{X-m}{\sigma}$? Calculer $\mathbb{E}(|X-m|)$.
 - **b)** Montrer que $\mathbb{E}(e^{\lambda X}) = \exp(\lambda m + \frac{1}{2}\lambda^2\sigma^2)$. Calculer $\mathbb{E}(Xe^{\lambda X})$.

Exercice 7. Soit X une v.a. sur $(\Omega, \mathcal{F}, \mathbb{P})$ et $Y(w) = e^{X(w)}, \ \forall w \in \Omega$

- 1. Exprimer la fonction de répartion F_Y de Y en fonction de F_X de X.
- 2. Supposons que X est continue. Exprimer f_Y en fonction de f_X .
- **3.** On suppose que $X \rightsquigarrow \mathcal{N}(0,1)$. Calculer f_Y et $\mathbb{P}(Y \leq 1)$.

Exercice 8. Soit $(X_n; n \ge 1)$ une suite de v.a. gaussiennes qui converge dans L^2 vers X. Quelle est la loi de X?

Exercice 9. Soient X, Y deux variables aléatoires gaussiennes centrées de variance 1.

1. Montrer que si X et Y sont indépendantes, alors (X;Y) est un vecteur gaussien, donc X+Y est gaussienne.

Soit T une variable aléatoire indépendante de X et telle que $\mathbb{P}(T=+1)=\mathbb{P}(T=-1)=1.$

- 2. Montrer que Z = TX est gaussienne, mais que X + Z n'est pas gaussienne, et donc que (X; Z) n'est pas un vecteur gaussien.
- 3. Montrer aussi que X et Z ne sont pas indépendantes, alors que Cov(X;Z)=0.

Exercice 10. Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité et \mathcal{G} une sous tribu de \mathcal{F} .

- 1. a) Montrer que $\mathbb{E}(Y\mathbb{E}(X|\mathcal{G})) = \mathbb{E}(X\mathbb{E}(Y|\mathcal{G}))$
 - b) Montrer que si $X \in L^2(\Omega)$ et $\mathbb{E}(X|\mathcal{G}) = Y$ et $\mathbb{E}(X^2|\mathcal{G}) = Y^2$ alors X = Y.
- **2.** Soit $X = X_1 + X_2$. On suppose que X_1 est gaussienne et indépendante de \mathcal{G} , que X_2 est \mathcal{G} -mesurable.
 - a) Calculer $\mathbb{E}(X|\mathcal{G})$.
 - **b)** Calculer $\mathbb{E}(e^{\lambda}X|\mathcal{G})$.

Exercice 11. Dans $(\Omega, \mathcal{F}, (\mathcal{F}_t))$, on considère $(M_t)_{t\geq 0}$ une \mathcal{F}_t -martingale de carré intégrable.

- 1. Montrer que $\mathbb{E}[(M_t M_s)^2 | \mathcal{F}_s] = \mathbb{E}(M_t^2 | \mathcal{F}_s) M_s^2, \quad \forall t > s.$
- **2.** En déduire $\mathbb{E}[(M_t M_s)^2] = \mathbb{E}(M_t^2) \mathbb{E}(M_s^2), \quad \forall t > s.$
- 3. Soit ϕ définit par $\phi(t) = \mathbb{E}(M_t^2)$. Montrer que ϕ est croissante.

Exercice 12. L'espace Ω est muni d'une filtration (F_t) .

- 1. Soit X une v.a. intégrable. Montrer que $(\mathbb{E}(X|F_t); t \geq 0)$ est une martingale.
- **2.** On dit que M est une surmartingale si M_t est adapté, intégrable et $\mathbb{E}(M_t|\mathcal{F}_t) \leq M_s; \forall s \leq t.$

Le processus M est une sous-martingale si -M est une sur-martingale.

- a) Montrer que si M est une martingale et A un processus croissant adapté $(A_s \leq A_t; \forall s \leq t)$ alors M A est une sur-martingale.
 - b) Soit M une martingale. Que peut-on dire de M^2 ?