523

NPS-OC-92-002

NAVAL POSTGRADUATE SCHOOL

Monterey, California

HYDROGRAPHIC DATA FROM THE COASTAL TRANSITION ZONE (CTZ) PROGRAM 5 - 19 JULY 1988

bу

Paul F. Jessen and Steven R. Ramp

December 1991

Approved for public release; distribution unlimited

Prepared for:

Chief of Naval Research gton, VA 22217

FedDocs D 208.14/2 NPS-0C-92-002 Teabors D 208.14/2. MAS-00-92-002

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA 93943-5002

NAVAL POSTGRADUATE SCHOOL Monterey, CA 93943

RADM R. W. West Jr. Superintendent

Harrison Shull Provost

This report was prepared for and funded by the Chief of Naval Research, Arlington, VA.

Reproduction of all or part of this report is authorized.

This report was prepared by:

SECURITY CLASSIFICATION OF THIS PAGE

	REPORT DOCL	IMENTATION PAGE					
1a. REPORT SECURITY CLASSIFICATION	THE OWN BOCK	16 RESTRICTIVE MARKINGS					
Unclassified		TO RESTRICTIVE MARKINGS					
2a SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION / AVAILABILITY OF	REPORT				
2b DECLASSIFICATION / DOWNGRADING SCHEDU	IL F	Approved for public					
		distribution unlimit	ed				
4 PERFORMING ORGANIZATION REPORT NUMBER	R(S)	5 MONITORING ORGANIZATION RE	PORT NUMBER(S)				
NPS-OC-92-002							
60 NAME OF PERFORMING ORGANIZATION	6b OFFICE SYMBOL	7a NAME OF MONITORING ORGAN	NIZATION				
NAVPGSCOL	(If applicable)						
Department of Oceanography	ОС	Chief of Naval Resear					
6c. ADDRESS (City, State, and ZIP Code)		7b. ADDRESS (City, State, and ZIP C	lode)				
Monterey, CA 93943-5000		Arlington, VA 22217					
8a. NAME OF FUNDING / SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9 PROCUREMENT INSTRUMENT IDE	NTIFICATION NUMBER				
Chief of Naval Research	1122CS	N0001487WR24018					
8c. ADDRESS (City, State, and ZIP Code)		10 SOURCE OF FUNDING NUMBERS					
800 N. Quincy Street		PROGRAM PROJECT	TASK WORK UNIT				
Arlington, VA 22217-5000		ELEMENT NO. NO. 61153N RR031-03-09	NO ACCESSION NO.				
11. TITLE (Include Security Classification)		01153N RR031-03-09	4201006-6				
Hydrographic Data from the Coa 5 - 19 July 1988 (Unclassified	astal Transition	n Zone (CTZ) Program					
12. PERSONAL AUTHOR(S)							
Paul F. Jessen, Steven R. Ramp							
13a. TYPE OF REPORT 13b. TIME CO Technical FROM Oct	OVERED E 87 to Sep 88	14. DATE OF REPORT (Year, Month, D 91-12-31	ay) 15 PAGE COUNT				
16. SUPPLEMENTARY NOTATION							
17. COSATI CODES	19 SUBJECT TERMS /						
FIELD GROUP SUB-GROUP	Office of Nava	Continue on reverse if necessary and al Research, Coastal Tran	identify by block number)				
	CTD data, hydi	rographic data, Californi	a Current.				
10. ADSTRACT (5	mesoscale eddi	ies, cold filaments, squi	rts, jets				
19. ABSTRACT (Continue on reverse if necessary a	and identify by block o	umber)					
This is a data report which pr Point Arena, CA during 5-19 Ju and 123°20'W to 126°20'W. The	IIV IYXX Thac	study area tran hater an 27	90137 . 000011				
120 20 W. The	Sampilno bian	consisted of a amid of a	2 1 1				
The state of the s	O Y SEAFIONS on	nrovinatola 75km and -	1				
The bill was occupied	. LWICE diirino f	the crutical atambina anal	4-2				
standard corner of the study	area. A fotal	of 11/4 CTD +0 500 1 1	(NDM 1				
The data are prese	illen as individ	und moreical markiles					
and property distributions on horizontal surfaces. The data were collected as part of the ONR Coastal Transition Program to study cold filaments in the region.							
		rold liliamenes in the leg	1011.				
20 DISTRIBUTION / AVAILABILITY OF ABSTRACT 23 UNCLASSIFIED/UNLIMITED SAME AS RP		21. ABSTRACT SECURITY CLASSIFICAT	ION				
L'S UNCLASSIFIED/UNLIMITED ☐ SAME AS RP 22a NAME OF RESPONSIBLE INDIVIDUAL	T DTIC USERS	Unclassified					
Steven R. Ramp		22b TELEPHONE (Include Area Code) (408) 646-3162					
DD FORM 1473 9444AB 92 ABB		(100)040 3102	OC/Ra				

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA 93943-5002

Hydrographic Data from the Coastal Transition Zone (CTZ) Program

5 - 19 July, 1988

by

Paul F. Jessen and Steven R. Ramp

Chief Scientist: Steven R. Ramp

TABLE OF CONTENTS

	Page
List of Tables	ii
List of Figures	iii
Introduction	1
Data Acquisition and Calibration	9
Data Processing	20
Data Presentation	21
Acknowledgements	22
Appendix I - Fluorometer Calibration	320
References	336
Initial Distribution List	337

LIST OF TABLES

Table	Caption	Pag
1.	List of stations occupied during the Coastal Transition Zone (CTZ88) filament study showing date, time, type, location, and weather.	10
2.	Differences between salinities (psu) calculated using the corrected CTD pressure, temperature, and conductivity readings and those of the water samples at the same depth measured by the Guildline Autosal.	16
3.	Station numbers, sample depths, chlorophyll "a" fluorescence, phaeopigment, the sum of chlorophyll "a and phaeopigment, and the raw fluorometer voltages for each water sample taken during the Coastal Transition Zone (CTZ88) filament study.	320

LIST OF FIGURES

Figure	Caption	Page
1.	Planned CTD station grid and numbers for the Coastal Transition Zone experiment (CTZ88) during July 5-19, 1988.	2
2.	CTD station numbers and locations for part I of the Coastal Transition Zone experiment (CTZ88) during July 5-12, 1988 aboard the R/V POINT SUR.	3
3.	CTD station numbers and locations for part II of the Coastal Transition Zone experiment (CTZ88) during July 13-19, 1988 aboard the R/V POINT SUR.	4
4.	XBT station numbers and locations for parts I and II of the Coastal Transition Zone experiment (CTZ88) during July 5-19, 1988 aboard the R/V POINT SUR.	7
5.	Hourly averaged wind speed (ms ⁻¹) and direction measured at 10 m height from the R/V POINT SUR during part I of cruise CTZ88.	23
6.	Hourly averaged wind speed (ms ⁻¹) and direction measured at 10 m height from the R/V POINT SUR during part II of cruise CTZ88.	24
7.	Map of surface temperature (°C) during part I of cruise CTZ88, July 5-12, 1988.	25
8.	Map of surface salinity (psu) during part I of cruise CTZ88, July 5-12, 1988.	26
9.	Map of the dynamic height (dyn m) of the sea surface relative to 500 dbar during part I of cruise CTZ88, July 5-12, 1988.	27
10.	Map of surface temperature (°C) during part II of cruise CTZ88, July 13-19, 1988.	28
11.	Map of surface salinity (psu) during part II of cruise CTZ88, July 13-19, 1988.	29
12.	Map of the dynamic height (dyn m) of the sea surface relative to 500 dbar during part II of cruise CTZ88, July 13-19, 1988.	30

13.	Vertical sections of a) temperature (°C), b) salinity (psu), and c) density anomaly (kgm ⁻³) from CTD stations 102, 103, 105, 106, 108, 109 and 112 of part I.	31
14.	Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 113-121 of part I.	34
15.	Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 122, 123, 924, and 125-128 of part I.	37
16.	Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 133-139 and 939 of part I.	40
17.	Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 940 and 140-147 of part I.	43
18.	Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 152-155, 955, and 156-158 of part I.	46
19.	Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 159-163 of part I.	49
20.	Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 202, 203, 205, 206, 208, 209, and 212 of part II.	52
21.	Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 213-221 of part II.	55
22.	Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 222-228 of part II.	58
23.	Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 233-238 and 839 of part II.	61
24.	Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 840 and 240-245 of part II.	64

25.	Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 253-255, 855, and 256-258 of part II.	67
26.	Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 858, and 259-263 of part II.	70
27.	Vertical section of temperature for XBT stations 1 - 14 of cruise CTZ88.	73
28.	Data listings and vertical profiles of temperature (T), salinity (psu), density anomaly (γ), specific volume anomaly (δ), dynamic height ($\Sigma\Delta D$), transmissivity (beam-c) and fluorometer voltage for all CTD casts of cruise CTZ88.	74
29.	Listings of temperature at selected pressures and profiles of temperature (T) for all XBT stations	202

INTRODUCTION

The data included in this report were collected as part of the Office of Naval Research (ONR) Coastal Transition Zone program during July 5-19, 1988, aboard the research vessel POINT SUR. The study area encompassed the region from 20 nautical miles south of San Francisco, California north to about 39° 21.00' N from the coast to approximately 275 km offshore. This cruise was one of five conducted between June and August of 1988 to make six maps of an area off Point Arena where cold filaments had been previously observed. Each cruise produced a quasi-synoptic 3dimensional map of the hydrographic structure and velocity fields in the study area with the purpose of improving our understanding of cold filaments off the California coast. The planned sampling grid (Fig. 1) consisted of 6 alongshore transects 40 km apart, with 5 to 9 CTD stations approximately 25 km apart along each transect. This grid was occupied twice during the cruise, starting each time at the southeast corner of the study area.

Based on satellite imagery from the Scripps Satellite
Oceanography Facility and communication with the other research
vessels in the area, the actual sampling grids (Figs. 2 & 3) were
modified somewhat from the planned grid to insure more complete
sampling in the observed filament. Stations C1, D1, E1, and F1
through F3 (Fig. 1) were dropped from the northern edge of the
grid and one station was added to each of these sections at the
southern edge of the grid (stations 122, 939, 940, and 158 (Fig.
2) and stations 222, 839, 840, and 258 (Fig. 3)). Also, an extra

Figure 1. Planned CTD station grid and numbers for the Coastal Transition Zone experiment (CTZ88) during July 5-19, 1988.

Figure 2. CTD station numbers and locations for part I of the Coastal Transition Zone experiment (CTZ88) during July 5-12, 1988 aboard the R/V POINT SUR.

Figure 3. CTD station numbers and locations for part II of the Coastal Transition Zone experiment (CTZ88) during July 13-19, 1988 aboard the R/V POINT SUR.

section was added to the offshore edge of the grid consisting of stations 159 - 163 (Fig. 2) and stations 259-263 (Fig. 3). A total of 114 casts with a CTD, fluorometer, and transmissometer mounted on the same instrument package were made to within approximately 10 m of the bottom or to a maximum depth of 500 m. A total of 16 XBT drops to a maximum depth of 450 m were also completed during the cruise.

The R/V POINT SUR departed from the Monterey Coast Guard Pier at 1936 Universal Time (UT) July 5, 1988 and arrived on station 101 at 0945 UT on July 6 (Fig. 2) to begin hydrographic mapping of the grid. Following the completion of the CTD cast at this station the ship proceeded offshore slightly to begin the first section (section A) of CTD casts toward the north. The section (stations 102, 103, 105, 107, 108, 109, and 112, Fig. 2) was interrupted by the occupation of stations 104, 107, 110, and 111 in order to gather additional nearshore data. CTD station 112 was completed at 0941 UT on July 7.

The weather conditions began to deteriorate towards the north end of section A with winds increasing to about 30 knots out of the north-northwest and seas up to 12 feet. These conditions lasted for the next several days forcing the ship to reduce speed to about 5 knots on the northward sections (sections C and E, Fig. 1).

The first station of section B (station 113, Fig. 2) was occupied at 1220 UT on July 7. After completing this station the ship proceeded southeast completing the rest of the stations of

this section (stations 114 - 121, Fig. 2) by 0416 UT on July 8. The stations of section C (stations 122 - 128, Fig. 2) were occupied between 0820 UT on July 8 and 0350 UT on July 9 during continued bad weather.

The first station of section D (station 133, Fig. 2) was started at 1620 UT on July 9. Following the completion of the CTD cast at this station the ship continued to the southeast taking CTD casts at the remainder of the stations (stations 134 - 139, 939, Fig. 2) of this section. The final station of section D was occupied at 0740 UT on July 10.

Turning back to the northwest, section E was started with the occupation of station 940 at 1140 UT on July 10. All stations of this section (stations 140 - 147, Fig. 2) were completed by 1420 on July 11. Weather began to moderate about the time section E was completed allowing sections F (stations 152 - 155, 955, and 156 - 158, Fig. 2) and G (stations 159 - 163, Fig. 2) to be completed more rapidly. Section F was completed by 0700 UT on July 12 and section G by 1730 UT of July 12.

Following the completion of the last station of the grid (station 163 Fig. 2) the ship steamed east toward station 201 (Fig. 3) to begin the second mapping of the grid. During this steam XBT's were dropped on an hourly basis. A total of 14 XBT's were dropped during this time (XBT stations 1 - 14 Fig. 4).

The first station of the second occupation of the grid (station 201, Fig. 3) was started at 0813 UT on July 13. The weather during sections A thru D of the second grid occupation remained

Figure 4. XBT station numbers and locations for parts I and II of the Coastal Transition Zone experiment (CTZ88) during July 5-19, 1988 aboard the R/V POINT SUR.

good and the stations were completed rapidly. Section A (stations 202, 203, 205, 206, 208, 209, and 212, Fig. 3) was completed by 0230 UT on July 13. The stations of section B (stations 213 - 221, Fig. 3) were occupied between 0445 UT and 2000 UT on July 14. Section C (stations 222 - 228, Fig. 3) was completed by 1030 UT on July 15 and section D (stations 233 - 239, and 839, Fig. 3) was finished by 0230 UT on July 16.

The stations of section E (stations 840, 240 - 245, Fig. 3) were occupied from south to north starting with station 840 at 0500 UT on July 16. The weather began to deteriorate again as the stations of this section were completed. Wind speeds rose to 35 knots with seas to 15 feet. Following the completion of station 245 the ship continued to the northwest, but was able to make only about 3 knots against the seas. Weather conditions were too severe for the deployment of the CTD so XBT's (station 15, 16, Fig. 4) were dropped at locations E3 and E2 (Fig. 1), and the station at location E1 was skipped.

Due to continued bad weather and a slight southward shift in the position of the filament, the CTD casts at locations F1 through F4 (Fig. 1) were skipped. CTD casts were made at the remaining stations of section F (stations 253 - 255, 855, 256 - 258, Fig. 3) with station 258 completed at 1940 UT on July 17.

An additional station was added to the southern end of section G (station 858, Fig. 3) because of the southward movement of the filament, and this station was occupied at 2345 UT on July 17. The remaining stations of section G (stations 259 - 263) were

completed by 1530 UT on July 18. This completed the hydrographic sampling and the remainder of the cruise was spent steaming back to Monterey Bay. The ship arrived at Moss Landing at 1530 UT on July 19. A listing of all CTD and XBT stations occupied during the cruise is shown in Table 1.

The personnel on this cruise were; Dr. Steven R. Ramp, Naval Postgraduate School (NPS); Mr. Paul Jessen, NPS; Ms. Shannon Raugust, NPS; LT. Jeffrey Best, NPS; LT. Susan Davies, NPS; Mr. Yasushi Fakamachi, Nova University; Mr. Ronald Haynes, University College of North Wales; Mr. Kent Forte, Monterey Bay Aquarium Research Institute (MBARI); Mr. Bill Clinton, University of California at Santa Cruz (UCSC); and Mr. Chuck Cheaney, Moss Landing Marine Laboratory (MLML).

DATA ACQUISITION AND CALIBRATION

Hydrographic data was acquired using a Neil Brown Mark III-B CTD equipped with a Sea Tech fluorometer and Sea Tech 25 cm beam transmissometer. A General Oceanics rosette sampler was attached to the CTD and was equipped with twelve 5-liter Niskin bottles for in situ water sampling. Water was collected with the Niskin bottles during the upcast at pressures of 500, 300, 200, 150, 100, 80, 60, 40, 20 dbar, and just beneath the surface. Water samples were taken at all pressures for dissolved oxygen at sections B, D, and F only (Figs. 2 & 3), and for nutrients and chlorophyll at all stations. Water samples for salinity were taken from the deepest bottle at each station. The CTD sampling rate was 32 Hz, but the acquisition software employed a filter

Table 1. List of stations occupied during the Coastal Transition Zone (CTZ88) filament study, showing date, time, type, location, and weather.

Date	Time (UT)	Sta No.	Туре	Latitude	Longitude	Wind Dir (ms ⁻¹)	Air (°C)	Dewpt (°C)
July 6	1148 1428 1700 1807 2023 2231	102 103 104 105 106 107	CTD CTD CTD CTD CTD CTD	38 11.8 38 9.9 38 21.7 38 33.9 38 33.1 38 44.1 38 56.4	123 20.8 123 32.2 123 36.9 123 39.7 123 45.6 123 52.8 123 54.7	304 8.5 296 8.5 317 8.9 314 6.0 322 6.4 318 7.8 320 5.8	11.38 11.93 12.50 11.85 12.93 12.26	8.23 8.59 9.38 9.11 9.50 9.01
July 7	0521 0625 0843 1223 1423 1621 1812 2004	109 110 111 112 113 114 115 116 117	CTD CTD CTD CTD CTD CTD CTD CTD CTD	38 55.4 39 6.9 39 20.9 39 20.4 39 18.7 39 15.8 39 4.2 38 52.9 38 40.6 38 29.7	124 2.0 124 11.2 123 56.1 124 2.2 124 17.5 124 44.7 124 36.7 124 27.4 124 19.9 124 11.3	331 5.9 319 7.7 314 2.5 327 6.9 315 11.1 317 11.8 322 12.4 322 11.6 329 7.4 320 6.5	12.57 13.22 11.00 12.07 14.45 15.28 15.66 13.33 12.83	9.80 9.10 9.34 10.97 12.35 12.31 11.60 11.11
July 8	0215 0416 0820 1059 1426 1711 2017 2350	119 120 121 122 123 924 125 126 127	CTD	38 18.2 38 7.2 37 55.4 37 43.9 37 39.8 37 51.2 38 3.1 38 14.7 38 25.9 38 37.8	124 2.9 123 54.4 123 46.1 123 36.6 124 5.0 124 13.7 124 23.3 124 30.6 124 38.9 124 47.5	324 8.4 321 9.6 322 10.5 311 11.1 327 12.2 317 9.8 325 8.0 324 9.0 322 10.3 317 13.5	13.93 14.25 14.58 14.04 15.34 14.61 13.48 14.48 16.28 16.38	11.53 11.60 11.55 11.53 11.25 11.16 10.97 11.36 11.40 11.34
July 9	1617 1840 2038	133	CTD CTD CTD CTD	38 49.2 38 46.2 38 34.0 38 22.5 38 10.8	124 56.1 125 22.6 125 14.1 125 5.5 124 57.1	326 15.5 332 12.9 322 12.4 327 14.1 322 12.4	16.14 17.28 17.38 18.14 17.81	11.85 - 12.73 11.62 12.93
July 10	0028 0222 0423 0640 1128 1502 1813	137 138 139 939 940 140 141	CTD CTD CTD CTD CTD CTD	37 59.0 37 48.2 37 37.3 37 24.2 37 19.7 37 32.2 37 43.5	124 48.6 124 40.5 124 32.9 124 18.7 124 49.3 124 58.0 125 7.0	330 11.9 321 11.9 308 16.3 331 13.9 327 11.7 324 10.3	17.23 16.38 16.32 16.13 15.49 15.33 15.47	11.56 11.90 10.87 12.28 12.87 13.60 11.82
July 11	2131 0113 0454 0804 1124	143 144 145	CTD CTD CTD CTD		125 24.0 125 33.2 125 40.6	323 12.0 328 10.2 341 11.5 317 9.9 314 8.8	16.68 16.22 15.99 16.08 15.19	12.46 12.95 12.15 12.10 12.54

Table 1. (continued)

Date	Time Sta	Туре	Latitude	Longitude	Wind Dir (ms ⁻¹)	Air (°C)	Dewpt.
July 12	1400 147 1727 152 1923 153 2114 154 2308 155 0110 156	CTD CTD CTD CTD CTD	38 54.6 38 27.1 38 15.5 38 3.4 37 51.3 37 39.7	125 58.5 126 8.5 125 59.6 125 50.9 125 42.4 125 33.4	319 5.1 284 5.7 305 5.8 292 5.5 298 6.3 294 4.7	14.91 16.13 16.10 16.03 15.38 14.30	13.69 14.99 14.86 14.53 14.67 13.82
	0219 955 0459 157 0656 158 0950 159 1139 160 1317 161 1520 162 1730 163 1857 1 1959 2 2059 3	CTD CTD CTD CTD CTD CTD CTD XBT XBT	37 44.8 37 27.6 37 17.2 37 12.6 37 23.5 37 33.9 37 47.2 37 59.1 37 59.7 37 59.9 38 1.2	125 37.0 125 24.2 125 15.6 125 44.0 125 52.9 126 0.6 126 9.7 126 17.4 126 5.8 125 53.7 125 41.8	309 4.6 291 4.9 255 3.2 293 5.1 309 5.9 283 2.6 281 4.6 237 3.5 249 5.1 261 5.7 267 5.6	14.60 14.48 14.60 15.07 14.65 13.58 14.63 15.47 15.54	13.13 13.37 13.58 14.01 13.42 13.08 14.20 15.13 15.11 15.04
July 13	2159 4 2259 5 0000 6 0100 7 0200 8 0300 9 0400 10 0459 11 0600 12 0700 13 0800 14 0813 201	XBT XBT XBT XBT XBT XBT XBT XBT XBT XBT	38 1.4 38 2.1 38 3.1 38 4.6 38 5.1 38 6.7 38 7.7 38 8.2 38 9.1 38 10.4 38 11.1 38 11.4	125 29.5 125 17.7 125 7.0 124 54.4 124 42.9 124 30.7 124 17.9 124 4.5 123 50.2 123 38.2 123 25.1 123 22.5	264 5.6 261 5.8 262 5.8 263 5.8 260 5.8 285 5.6 288 6.2 294 6.7 294 6.7 294 6.6 279 6.6	16.49 15.85 15.92 15.18 14.33 13.50 13.58 13.33 12.99 11.27 11.08	15.15 14.85 15.31 14.90 14.35 13.59 13.83 13.57 13.14 11.46 11.07
	0927 202 1125 203 1320 204 1419 205 1619 206 1820 207 1910 208 2053 209 2324 210	CTD CTD CTD CTD CTD CTD CTD CTD	38 10.1 38 21.6 38 34.1 38 33.1 38 44.2 38 56.5 38 55.3 39 6.8 39 20.5	123 31.9 123 36.9 123 39.1 123 45.4	296 6.0 265 7.7 280 8.7 312 7.3	11.37 12.14 12.65 13.23 13.23 13.23 13.00 15.07 12.91	11.09 11.30 11.53 11.95 12.08 12.43 12.20 11.71 11.17
July 14		CTD CTD CTD CTD CTD CTD CTD	39 19.8 39 18.0 39 15.0 39 3.4 38 52.0 38 40.8 38 29.5 38 18.1	123 36.3 124 3.3 124 19.0 124 46.2 124 37.7 124 29.2 124 20.6 124 12.0 124 3.7	329 4.6 311 6.5 311 5.0 312 6.0 310 5.8 319 5.9 315 5.7 308 5.3	14.20 16.54 15.33 14.80 14.83 13.22 12.70 12.90	11.17 11.05 11.89 12.58 12.58 12.85 11.97 11.84 11.72

Table 1. (continued)

Date	Time Sta (UT) No.	Type Latitude	Longitude	Wind Dir (ms ⁻¹)	Air (°C)	Dewpt.
July 15	0158 224 0354 225 0605 226 0818 227 1007 228 1239 233	CTD 38 6.7 CTD 37 55.6 CTD 37 43.8 CTD 37 39.5 CTD 37 51.0 CTD 38 2.9 CTD 38 14.8 CTD 38 26.1 CTD 38 38.0 CTD 38 49.1 CTD 38 45.8	123 55.0 123 49.5 123 38.3 124 5.4 124 13.6 124 22.1 124 30.8 124 38.9 124 47.0 124 56.1 125 22.8	311 5.5 312 6.7 292 6.7 280 6.5 290 5.9 285 5.3 295 5.1 314 4.6 289 3.8 296 5.9 338 2.5	13.90 15.34 15.08 16.17 16.93 16.40 15.66 16.21 15.76 16.81 15.89	12.33 13.15 12.92 14.14 14.44 13.82 14.05 14.58 14.68 13.96 15.11
July 16	0159 839 0504 840 0710 240 0906 241 1156 242 1431 243	CTD 38 34.2 CTD 38 22.5 CTD 38 10.8 CTD 37 59.0 CTD 37 47.5 CTD 37 35.6 CTD 37 23.5 CTD 37 19.8 CTD 37 32.1 CTD 37 43.6 CTD 37 56.1 CTD 38 7.2	125 14.3 125 5.5 124 57.0 124 48.6 124 40.2 124 31.4 124 22.1 124 49.3 124 57.4 125 6.8 125 15.8 125 24.1	325 4.2 330 5.6 306 6.4 311 6.0 316 6.9 308 9.2 312 9.2 316 10.7 310 8.2 323 8.9 334 11.7 332 10.6	15.85 16.50 17.43 16.44 16.28 16.70 16.47 17.36 16.84 16.51 17.55 18.43	15.00 14.59 14.80 14.44 14.36 14.46 14.31 14.28 14.44 13.02 13.50 13.48
July 17	1808 244 2159 245 0124 15 0250 16 0417 253 0627 254 0838 255	CTD 38 19.2 CTD 38 30.9 XBT 38 42.0 XBT 38 29.1 CTD 38 15.4 CTD 38 3.3 CTD 37 51.2	125 32.9 125 41.1 125 50.5 125 54.9 125 59.6 125 50.8 125 44.5	334 11.4 331 13.1 340 12.4 344 12.2 341 12.3 337 13.7 341 14.1	18.90 18.77 19.31 19.03 18.43 18.38 18.08	12.89 13.41 12.15 12.18 12.58 13.08 13.12
July 18	1010 855 1547 256 1752 257 1939 258 2346 858 0256 259 0540 260 0827 261 1150 262 1454 263	CTD 37 47.6 CTD 37 39.1 CTD 37 27.6	125 41.0 125 33.7 125 24.0 125 16.6 125 35.9 125 43.6 125 52.2 125 59.7 126 12.7 126 17.5	328 12.2 339 13.3 343 14.4	18.18 18.68 18.78	13.01 11.80 12.27

which decimated the data to a uniform series of 8616 data points. On the 500 m casts this resulted in the acquisition of approximately 17 data points per meter of water. CTD data were acquired only on the downcast with a winch speed of approximately 30 mmin⁻¹ to 150 m then 60 mmin⁻¹ to 500 m. The data were acquired using an HP200 computer and stored on 3.5 inch diskettes. Upon return to shore the data were transferred to 9 track tape and then processed on an IBM 3033 mainframe computer.

XBT data were acquired using a Sippican MK9 deck unit, T-4

XBT's, and a hand held XBT launcher. These data were also

collected on the HP200 computer, stored on 3.5 inch diskettes at

sea and processed on the IBM mainframe upon return to shore.

In addition to the CTD and XBT data, an underway data acquisition loop recorded 30 second averages of 2 m temperature and salinity, sea surface skin temperature, wind speed and direction, air temperature, dew point temperature, and visible and infrared radiation. The sensors used to acquire this data included Seabird temperature and conductivity sensors for the sea surface temperature and salinity, a Rosemount 100 ohm platinum resistance thermistor for the sea surface skin temperature, an R. M. Young anemometer for the wind speed and direction, a General Eastern dewpoint sensor for the air and dewpoint temperatures, and Epply pyronometers for the visible and infrared radiation. The underway data was acquired on an HP9816 computer and recorded on 3.5 inch diskettes. Like the CTD data, the underway data were transferred to 9 track tape upon return and processed on the IBM

mainframe.

The temperature, conductivity, and pressure sensors on the CTD and the temperature and conductivity sensors used with the underway sampling system were calibrated shortly before the cruise. The pressure calibration was carried out using a Chandler Engineering dead weight tester as a standard. At 10 equally spaced pressures from 50 to 500 dbar, indicated pressures from the standard and the CTD sensor were recorded. The differences between recorded values were within the stated accuracy of the sensor (+/- 1.6 dbar) therefore no pressure correction was applied.

The temperature calibration was done using a Seabird temperature sensor as a standard. This standard sensor is recalibrated by the manufacturer approximately every six months. A temperature bath of 70 - 80 liters of fresh water in an insulated tub was used to compare the standard and CTD sensors at 1 °C increments from 0 - 20 °C. Thirty data points were collected at each temperature and then averaged to yield a single value for each sensor. A regression analysis was run on the 21 data points revealing a linear difference between the standard sensor the CTD temperature sensor. The coefficients were 0.998543 (slope) and +0.047536 (intercept). The same procedure was used to calibrate the Seabird and Rosemount temperature sensors used in the underway acquisition system. The regression for the Seabird sensor used to measure the 2 m temperature was linear with a slope of 1.0027 and an intercept of +0.0087. The best fit for the

relationship between the resistance of the Rosemount thermistor and the reference sensor temperature was a 2^{nd} order polynomial $(y=ax^2+bx+c)$ with a=0.001728, b=2.202511, and c=-237.9795.

The conductivity calibration was carried out using a Guildline Model 8400 Autosal as a standard. A constant conductivity bath was used to compare the standard and sample sensor conductivities at five different conductivity levels. Ten samples were taken at each conductivity level and averaged to yield a single value for each sensor at each conductivity level. Regression analysis was used to compare the sample cell conductivities (CTD and underway) with the standard sensor conductivities (Autosal). A linear correction was found for the CTD sensor with coefficients of 1.023828 (slope) and +0.005897 (intercept). The best fit for the Seabird conductivity sensor used in the underway system was a linear correction with coefficients of 1.00585(slope) and +0.0000115 (intercept).

A total of 114 water samples were taken at 114 CTD stations for further calibration of the CTD salinity data. The CTD pressure, conductivity and temperature were noted as each sample was taken. These numbers, after applying the pre-cruise calibration coefficients, were used to calculate salinity and the results compared with the water sample salinities calculated using the Guildline Model 8400 Autosal in the laboratory. The station, depth of sample, CTD salinity calculated using the pre-cruise calibrations, sample salinity from the autosal, and difference between CTD and autosal salinities are listed in Table 2. The

Table 2. Differences between salinities (psu) calculated using the corrected CTD pressure, temperature, and conductivity readings and those of the water samples at the same depth measured by the Guildline Autosal.

STA	P	(dbar)	CTD SAL	BOTTLE	SAL	DIFFERENCE
101		146	34.021	34.005		0.016
102		490	34.203	34.190		0.013
103		500	34.209	33.295		0.914
104		171	34.008	34.065		-0.057
105		502	34.231	34.219		0.012
106		504	33.842	33.830		0.012
107		137	34.080	34.067		0.013
108		504	34.261	34.248		0.013
109		500	34.341	34.227		0.114
110		144	34.112	34.103		0.009
111		501	34.254	34.210		0.044
112		452	34.181	34.175		0.006
113		491	34.117	34.100		0.007
114		498	34.182	34.170		0.012
115		500	34.160	34.159		0.001
116		498	34.201	34.188		0.013
117		485	34.252	34.236		0.016
118		515	34.280	34.349		0.031
119		501	34.104	34.096		0.008
120		500	34.215	34.205		0.010
121		498	34.246	34.232		0.014
122		496	34.214	34.199		0.015
123		493	34.228	34.216		0.012
124		498	34.189	34.176		0.013
125		500	34.229	34.211		0.018
126		489	34.110	34.107		0.003
127		507	34.120	34.109		0.011
128		500	34.167	34.164		0.003
133		497	34.077	34.065		0.012
134		500	34.100	34.082		0.018
135		498	34.123	34.116		0.007
136		495	34.235	34.217		0.018
137		498	34.235	34.226		0.009
138		499	34.200	34.190		0.010
139		498	34.240	34.228		0.012
939		503	34.183	34.171		0.012
940		499	34.261	34.247		0.014
140		499	34.228	34.216		0.012
141		498	34.201	34.187		0.014
142		496				0.050
			34.233	34.183		0.017
143		500	34.237	34.220		
144		499	34.090	34.080		0.010
145		477	34.070	34.065		0.005
146		498	34.081	34.069		0.012
147		499	34.105	34.293		0.012
152		498	34.095	34.085		0.010

Table 2. (continued)

153	STA	P (dbar)	CTD SAL	BOTTLE SAL	DIFFERENCE
154 502 34.104 34.091 0.013 155 487 34.162 34.146 0.016 156 498 34.224 34.198 0.026 955 498 34.156 34.147 0.009 157 499 34.223 34.210 0.013 158 502 34.232 34.202 0.024 160 501 34.221 34.202 0.024 160 501 34.221 34.203 0.006 161 499 34.089 34.131 -0.042 163 499 34.069 34.057 0.012 201 181 34.056 34.040 0.016 202 499 34.213 34.203 0.010 203 498 34.213 34.202 0.012 204 196 34.087 34.078 0.009 205 498 34.154 34.165 0.009 205 498	152	510	24 001	34 069	0 012
155 487 34.162 34.146 0.016 156 498 34.224 34.198 0.026 955 498 34.156 34.147 0.009 157 499 34.223 34.210 0.013 158 502 34.232 34.224 0.008 159 502 34.226 34.202 0.024 160 501 34.221 34.212 0.009 161 499 34.089 34.131 -0.042 163 499 34.069 34.057 0.012 201 181 34.056 34.040 0.016 202 499 34.213 34.203 0.010 203 498 34.214 34.203 0.010 204 196 34.087 34.078 0.009 205 498 34.154 34.145 0.009 206 499 34.175 34.165 0.010 207 148					
156 498 34.224 34.198 0.026 955 498 34.156 34.147 0.009 157 499 34.223 34.210 0.013 158 502 34.226 34.202 0.024 160 501 34.221 34.202 0.009 161 499 34.209 34.203 0.006 162 499 34.089 34.131 -0.042 163 499 34.069 34.057 0.012 201 181 34.056 34.040 0.016 202 499 34.213 34.203 0.010 203 498 34.213 34.202 0.012 204 196 34.087 34.078 0.009 205 498 34.154 34.145 0.009 205 498 34.175 34.165 0.010 207 148 34.011 34.003 0.08 208 502 3					
955 498 34.156 34.147 0.009 157 499 34.223 34.210 0.013 158 502 34.232 34.224 0.008 159 502 34.226 34.202 0.024 160 501 34.221 34.212 0.009 161 499 34.089 34.131 -0.042 163 499 34.069 34.057 0.012 201 181 34.056 34.040 0.016 202 499 34.213 34.203 0.010 203 498 34.214 34.202 0.012 204 196 34.087 34.078 0.009 205 498 34.154 34.145 0.009 206 499 34.175 34.165 0.010 207 148 34.011 34.003 0.008 208 502 34.228 34.220 0.008 209 497					
157 499 34.223 34.210 0.003 158 502 34.232 34.224 0.008 159 502 34.226 34.202 0.024 160 501 34.221 34.212 0.009 161 499 34.089 34.131 -0.042 163 499 34.069 34.057 0.012 201 181 34.056 34.040 0.016 202 499 34.213 34.203 0.010 203 498 34.214 34.202 0.012 204 196 34.087 34.078 0.009 205 498 34.154 34.145 0.009 206 499 34.175 34.165 0.010 207 148 34.011 34.003 0.008 208 502 34.228 34.220 0.008 209 497 34.221 34.216 0.005 210 179					
158 502 34.232 34.224 0.008 159 502 34.226 34.202 0.024 160 501 34.221 34.202 0.024 161 499 34.209 34.203 0.006 162 499 34.089 34.131 -0.042 163 499 34.069 34.040 0.016 201 181 34.056 34.040 0.016 202 499 34.213 34.203 0.010 203 498 34.214 34.202 0.012 204 196 34.087 34.078 0.009 205 498 34.175 34.165 0.010 206 499 34.175 34.165 0.010 207 148 34.011 34.003 0.008 208 502 34.228 34.220 0.008 209 497 34.221 34.216 0.005 210 179					
159 502 34.226 34.202 0.024 160 501 34.221 34.212 0.009 161 499 34.089 34.131 -0.042 163 499 34.069 34.057 0.012 201 181 34.056 34.040 0.016 202 499 34.213 34.203 0.010 203 498 34.214 34.202 0.012 204 196 34.087 34.078 0.009 205 498 34.154 34.078 0.009 206 499 34.175 34.165 0.010 207 148 34.011 34.003 0.088 208 502 34.228 34.220 0.008 209 497 34.221 34.216 0.005 210 179 34.068 34.559 0.009 211 502 34.223 34.216 0.005 212 499					
160 501 34.221 34.212 0.009 161 499 34.209 34.203 0.006 162 499 34.089 34.131 -0.042 163 499 34.069 34.057 0.012 201 181 34.056 34.040 0.016 202 499 34.213 34.203 0.010 203 498 34.214 34.202 0.012 204 196 34.087 34.078 0.009 205 498 34.154 34.145 0.009 206 499 34.175 34.165 0.010 207 148 34.011 34.003 0.008 208 502 34.228 34.220 0.008 209 497 34.221 34.216 0.005 210 179 34.068 34.059 0.009 211 502 34.229 34.219 0.010 212 499 34.139 34.134 0.005 213 501 34.173 34					
161 499 34.209 34.203 0.006 162 499 34.089 34.131 -0.042 163 499 34.069 34.057 0.012 201 181 34.056 34.040 0.016 202 499 34.213 34.203 0.010 203 498 34.214 34.202 0.012 204 196 34.087 34.078 0.009 205 498 34.154 34.145 0.009 206 499 34.175 34.165 0.010 207 148 34.011 34.003 0.008 208 502 34.228 34.220 0.008 209 497 34.221 34.216 0.005 210 179 34.068 34.059 0.009 211 502 34.229 34.219 0.010 212 499 34.133 34.134 0.005 213 501 34.173 34.161 0.012 214 502 34.213 34					
162 499 34.089 34.131 -0.042 163 499 34.069 34.057 0.012 201 181 34.056 34.040 0.016 202 499 34.213 34.203 0.010 203 498 34.214 34.202 0.012 204 196 34.087 34.078 0.009 205 498 34.154 34.145 0.009 206 499 34.175 34.165 0.010 207 148 34.011 34.003 0.008 208 502 34.228 34.220 0.008 209 497 34.221 34.216 0.005 210 179 34.068 34.059 0.009 211 502 34.229 34.219 0.010 212 499 34.133 34.134 0.005 213 501 34.173 34.161 0.012 214 502 34.213 34.201 0.021 214 503 34.215 34					
163 499 34.069 34.057 0.012 201 181 34.056 34.040 0.016 202 499 34.213 34.203 0.010 203 498 34.214 34.202 0.012 204 196 34.087 34.078 0.009 205 498 34.154 34.145 0.009 206 499 34.175 34.165 0.010 207 148 34.011 34.003 0.008 208 502 34.228 34.220 0.008 209 497 34.221 34.216 0.005 210 179 34.068 34.059 0.009 211 502 34.229 34.219 0.010 212 499 34.139 34.134 0.005 213 501 34.173 34.161 0.012 214 502 34.215 34.208 0.007 217 503 34.211 34.208 0.007 217 503 34.213 34.					
201 181 34.056 34.040 0.016 202 499 34.213 34.203 0.010 203 498 34.214 34.202 0.012 204 196 34.087 34.078 0.009 205 498 34.154 34.145 0.009 206 499 34.175 34.165 0.010 207 148 34.011 34.003 0.008 208 502 34.228 34.220 0.008 209 497 34.221 34.216 0.005 210 179 34.068 34.059 0.009 211 502 34.229 34.219 0.010 212 499 34.139 34.144 0.005 213 501 34.173 34.161 0.012 214 502 34.151 34.143 0.008 215 496 34.222 34.201 0.021 216 500 34.215 34.208 0.007 217 503 34.241 34.					
202 499 34.213 34.203 0.010 203 498 34.214 34.202 0.012 204 196 34.087 34.078 0.009 205 498 34.154 34.145 0.009 206 499 34.175 34.165 0.010 207 148 34.011 34.003 0.008 208 502 34.228 34.220 0.008 209 497 34.221 34.216 0.005 210 179 34.068 34.059 0.009 211 502 34.229 34.219 0.010 212 499 34.133 34.161 0.012 214 502 34.173 34.161 0.012 214 502 34.151 34.143 0.008 215 496 34.222 34.201 0.021 216 500 34.215 34.208 0.009 218 502 34.208 34.199 0.009 219 499 34.235 34.					
203 498 34.214 34.202 0.012 204 196 34.087 34.078 0.009 205 498 34.154 34.145 0.009 206 499 34.175 34.165 0.010 207 148 34.011 34.003 0.008 208 502 34.228 34.220 0.008 209 497 34.221 34.216 0.005 210 179 34.068 34.059 0.009 211 502 34.229 34.219 0.010 212 499 34.139 34.134 0.005 213 501 34.173 34.161 0.012 214 502 34.151 34.143 0.008 215 496 34.222 34.201 0.021 216 500 34.215 34.208 0.007 217 503 34.211 34.202 0.009 218 502 34.247 34.235 0.012 220 499 34.235 34.					
204 196 34.087 34.078 0.009 205 498 34.154 34.145 0.009 206 499 34.175 34.165 0.010 207 148 34.011 34.003 0.008 208 502 34.228 34.220 0.008 209 497 34.221 34.216 0.005 210 179 34.068 34.059 0.009 211 502 34.229 34.219 0.010 212 499 34.139 34.134 0.005 213 501 34.173 34.161 0.012 214 502 34.151 34.143 0.008 215 496 34.222 34.201 0.021 216 500 34.215 34.208 0.007 217 503 34.211 34.202 0.009 218 502 34.263 34.199 0.009 219 499 34.235 34.218 0.012 220 499 34.235 34.					
205 498 34.154 34.145 0.009 206 499 34.175 34.165 0.010 207 148 34.011 34.003 0.008 208 502 34.228 34.220 0.008 209 497 34.221 34.216 0.005 210 179 34.068 34.059 0.009 211 502 34.229 34.219 0.010 212 499 34.139 34.134 0.005 213 501 34.173 34.161 0.012 214 502 34.151 34.143 0.005 213 501 34.215 34.201 0.012 214 502 34.215 34.208 0.007 217 503 34.211 34.202 0.009 218 502 34.208 34.199 0.009 218 502 34.247 34.235 0.012 220 499 34.235 34.218 0.017 222 502 34.166 34.	203		34.214	34.202	0.012
206 499 34.175 34.165 0.010 207 148 34.011 34.003 0.008 208 502 34.228 34.220 0.008 209 497 34.221 34.216 0.005 210 179 34.068 34.059 0.009 211 502 34.229 34.219 0.010 212 499 34.139 34.134 0.005 213 501 34.173 34.161 0.012 214 502 34.151 34.143 0.008 215 496 34.222 34.201 0.021 216 500 34.215 34.208 0.007 217 503 34.211 34.202 0.009 218 502 34.208 34.199 0.009 219 499 34.247 34.235 0.012 220 499 34.247 34.235 0.012 221 501 34.235 34.218 0.017 222 502 34.166 34.	204	196	34.087	34.078	0.009
207 148 34.011 34.003 0.008 208 502 34.228 34.220 0.008 209 497 34.221 34.216 0.005 210 179 34.068 34.059 0.009 211 502 34.229 34.219 0.010 212 499 34.139 34.134 0.005 213 501 34.173 34.161 0.012 214 502 34.151 34.143 0.008 215 496 34.222 34.201 0.021 216 500 34.215 34.208 0.007 217 503 34.211 34.208 0.007 218 502 34.208 34.199 0.009 218 502 34.208 34.199 0.009 219 499 34.235 34.223 0.012 220 499 34.235 34.223 0.012 221 501 34.235 34.218 0.017 222 502 34.166 34.	205	498	34.154	34.145	0.009
208 502 34.228 34.221 0.008 209 497 34.221 34.216 0.005 210 179 34.068 34.059 0.009 211 502 34.229 34.219 0.010 212 499 34.139 34.134 0.005 213 501 34.173 34.161 0.012 214 502 34.151 34.143 0.008 215 496 34.222 34.201 0.021 216 500 34.215 34.208 0.007 217 503 34.211 34.202 0.009 218 502 34.208 34.199 0.009 218 502 34.247 34.235 0.012 220 499 34.247 34.235 0.012 221 501 34.235 34.218 0.017 222 502 34.166 34.157 0.009 223 500 34.218 34.238 0.010 224 499 34.296 34.	206	499	34.175	34.165	0.010
209 497 34.221 34.216 0.005 210 179 34.068 34.059 0.009 211 502 34.229 34.219 0.010 212 499 34.139 34.134 0.005 213 501 34.173 34.161 0.012 214 502 34.151 34.143 0.008 215 496 34.222 34.201 0.021 216 500 34.215 34.208 0.007 217 503 34.211 34.202 0.009 218 502 34.208 34.199 0.009 219 499 34.247 34.235 0.012 220 499 34.235 34.218 0.017 222 502 34.166 34.157 0.009 223 500 34.218 34.208 0.010 224 499 34.246 34.232 0.014 225 499 34.183 34.168 0.015 227 501 34.142 34.	207	148	34.011	34.003	0.008
210 179 34.068 34.059 0.009 211 502 34.229 34.219 0.010 212 499 34.139 34.134 0.005 213 501 34.173 34.161 0.012 214 502 34.151 34.143 0.008 215 496 34.222 34.201 0.021 216 500 34.215 34.208 0.007 217 503 34.211 34.202 0.009 218 502 34.208 34.199 0.009 219 499 34.247 34.235 0.012 220 499 34.235 34.218 0.012 221 501 34.235 34.218 0.017 222 502 34.166 34.157 0.009 223 500 34.218 34.208 0.010 224 499 34.246 34.232 0.014 225 499 34.183 34.168 0.015 227 501 34.142 34.	208	502	34.228	34.220	0.008
211 502 34.229 34.219 0.010 212 499 34.139 34.134 0.005 213 501 34.173 34.161 0.012 214 502 34.151 34.143 0.008 215 496 34.222 34.201 0.021 216 500 34.215 34.208 0.007 217 503 34.211 34.202 0.009 218 502 34.208 34.199 0.009 219 499 34.247 34.235 0.012 220 499 34.247 34.223 0.012 221 501 34.235 34.218 0.017 222 502 34.166 34.157 0.009 223 500 34.218 34.208 0.010 224 499 34.246 34.232 0.014 225 499 34.183 34.168 0.015 227 501 34.142 34.127 0.015 228 502 34.176 34.	209	497	34.221	34.216	0.005
211 502 34.229 34.219 0.010 212 499 34.139 34.134 0.005 213 501 34.173 34.161 0.012 214 502 34.151 34.143 0.008 215 496 34.222 34.201 0.021 216 500 34.215 34.208 0.007 217 503 34.211 34.202 0.009 218 502 34.208 34.199 0.009 219 499 34.247 34.235 0.012 220 499 34.247 34.223 0.012 221 501 34.235 34.218 0.017 222 502 34.166 34.157 0.009 223 500 34.218 34.208 0.010 224 499 34.246 34.232 0.014 225 499 34.183 34.168 0.015 227 501 34.142 34.127 0.015 228 502 34.176 34.	210	179	34.068	34.059	0.009
212 499 34.139 34.134 0.005 213 501 34.173 34.161 0.012 214 502 34.151 34.143 0.008 215 496 34.222 34.201 0.021 216 500 34.215 34.208 0.007 217 503 34.211 34.202 0.009 218 502 34.208 34.199 0.009 219 499 34.247 34.235 0.012 220 499 34.235 34.223 0.012 221 501 34.235 34.218 0.017 222 502 34.166 34.157 0.009 223 500 34.218 34.208 0.010 224 499 34.246 34.232 0.014 225 499 34.296 34.238 0.058 226 499 34.183 34.168 0.015 227 501 34.142 34.127 0.015 228 502 34.176 34.					
213 501 34.173 34.161 0.012 214 502 34.151 34.143 0.008 215 496 34.222 34.201 0.021 216 500 34.215 34.208 0.007 217 503 34.211 34.202 0.009 218 502 34.208 34.199 0.009 219 499 34.247 34.235 0.012 220 499 34.235 34.218 0.017 222 502 34.166 34.157 0.009 223 500 34.218 34.208 0.010 224 499 34.246 34.232 0.014 225 499 34.183 34.168 0.058 226 499 34.183 34.168 0.015 227 501 34.142 34.127 0.015 228 502 34.176 34.165 0.011 233 499 34.151 34.129 0.022 234 500 34.157 34.					
214 502 34.151 34.143 0.008 215 496 34.222 34.201 0.021 216 500 34.215 34.208 0.007 217 503 34.211 34.202 0.009 218 502 34.208 34.199 0.009 219 499 34.247 34.235 0.012 220 499 34.235 34.223 0.012 221 501 34.235 34.218 0.017 222 502 34.166 34.157 0.009 223 500 34.218 34.208 0.010 224 499 34.246 34.232 0.014 225 499 34.246 34.238 0.058 226 499 34.183 34.168 0.015 227 501 34.142 34.127 0.015 228 502 34.176 34.165 0.011 233 499 34.151 34.129 0.022 234 500 34.157 34.					
215 496 34.222 34.201 0.021 216 500 34.215 34.208 0.007 217 503 34.211 34.202 0.009 218 502 34.208 34.199 0.009 219 499 34.247 34.235 0.012 220 499 34.235 34.218 0.017 221 501 34.235 34.218 0.017 222 502 34.166 34.157 0.009 223 500 34.218 34.208 0.010 224 499 34.246 34.232 0.014 225 499 34.296 34.238 0.058 226 499 34.183 34.168 0.015 227 501 34.142 34.127 0.015 228 502 34.176 34.165 0.011 233 499 34.151 34.129 0.022 234 500 34.153 34.132 0.021 235 502 34.157 34.					
216 500 34.215 34.208 0.007 217 503 34.211 34.202 0.009 218 502 34.208 34.199 0.009 219 499 34.247 34.235 0.012 220 499 34.235 34.223 0.012 221 501 34.235 34.218 0.017 222 502 34.166 34.157 0.009 223 500 34.218 34.208 0.010 224 499 34.246 34.232 0.014 225 499 34.296 34.238 0.058 226 499 34.183 34.168 0.015 227 501 34.142 34.127 0.015 228 502 34.176 34.165 0.011 233 499 34.151 34.129 0.022 234 500 34.153 34.132 0.021 235 502 34.157 34.148 0.009 236 499 34.128 34.					
217 503 34.211 34.202 0.009 218 502 34.208 34.199 0.009 219 499 34.247 34.235 0.012 220 499 34.235 34.218 0.012 221 501 34.235 34.218 0.017 222 502 34.166 34.157 0.009 223 500 34.218 34.208 0.010 224 499 34.246 34.232 0.014 225 499 34.296 34.238 0.058 226 499 34.183 34.168 0.015 227 501 34.142 34.127 0.015 228 502 34.176 34.165 0.011 233 499 34.151 34.129 0.022 234 500 34.153 34.132 0.021 235 502 34.157 34.148 0.009 236 499 34.128 34.116 0.012 237 496 34.197 34.					
218 502 34.208 34.199 0.009 219 499 34.247 34.235 0.012 220 499 34.235 34.223 0.012 221 501 34.235 34.218 0.017 222 502 34.166 34.157 0.009 223 500 34.218 34.208 0.010 224 499 34.246 34.232 0.014 225 499 34.296 34.238 0.058 226 499 34.183 34.168 0.015 227 501 34.142 34.127 0.015 228 502 34.176 34.165 0.011 233 499 34.151 34.129 0.022 234 500 34.153 34.132 0.021 235 502 34.157 34.148 0.009 236 499 34.128 34.116 0.012 237 496 34.197 34.186 0.011 238 501 34.216 34.					
219 499 34.247 34.235 0.012 220 499 34.235 34.223 0.012 221 501 34.235 34.218 0.017 222 502 34.166 34.157 0.009 223 500 34.218 34.208 0.010 224 499 34.246 34.232 0.014 225 499 34.183 34.168 0.058 226 499 34.183 34.168 0.015 227 501 34.142 34.127 0.015 228 502 34.176 34.165 0.011 233 499 34.151 34.129 0.022 234 500 34.157 34.148 0.002 235 502 34.157 34.148 0.009 236 499 34.128 34.116 0.012 237 496 34.197 34.186 0.011 238 501 34.195 34.181 0.014 239 501 34.216 34.					
220 499 34.235 34.223 0.012 221 501 34.235 34.218 0.017 222 502 34.166 34.157 0.009 223 500 34.218 34.208 0.010 224 499 34.246 34.232 0.014 225 499 34.296 34.238 0.058 226 499 34.183 34.168 0.015 227 501 34.142 34.127 0.015 228 502 34.176 34.165 0.011 233 499 34.151 34.129 0.022 234 500 34.153 34.148 0.002 235 502 34.157 34.148 0.009 236 499 34.128 34.116 0.012 237 496 34.197 34.186 0.011 238 501 34.195 34.181 0.014 239 501 34.216 34.203 0.013					
221 501 34.235 34.218 0.017 222 502 34.166 34.157 0.009 223 500 34.218 34.208 0.010 224 499 34.246 34.232 0.014 225 499 34.296 34.238 0.058 226 499 34.183 34.168 0.015 227 501 34.142 34.127 0.015 228 502 34.176 34.165 0.011 233 499 34.151 34.129 0.022 234 500 34.153 34.132 0.021 235 502 34.157 34.148 0.009 236 499 34.128 34.116 0.012 237 496 34.197 34.186 0.011 238 501 34.195 34.181 0.014 239 501 34.216 34.203 0.013					
222 502 34.166 34.157 0.009 223 500 34.218 34.208 0.010 224 499 34.246 34.232 0.014 225 499 34.296 34.238 0.058 226 499 34.183 34.168 0.015 227 501 34.142 34.127 0.015 228 502 34.176 34.165 0.011 233 499 34.151 34.129 0.022 234 500 34.153 34.132 0.021 235 502 34.157 34.148 0.009 236 499 34.128 34.116 0.012 237 496 34.197 34.186 0.011 238 501 34.195 34.181 0.014 239 501 34.216 34.203 0.013					
223 500 34.218 34.208 0.010 224 499 34.246 34.232 0.014 225 499 34.296 34.238 0.058 226 499 34.183 34.168 0.015 227 501 34.142 34.127 0.015 228 502 34.176 34.165 0.011 233 499 34.151 34.129 0.022 234 500 34.153 34.132 0.021 235 502 34.157 34.148 0.009 236 499 34.128 34.116 0.012 237 496 34.197 34.186 0.011 238 501 34.195 34.181 0.014 239 501 34.216 34.203 0.013					
224 499 34.246 34.232 0.014 225 499 34.296 34.238 0.058 226 499 34.183 34.168 0.015 227 501 34.142 34.127 0.015 228 502 34.176 34.165 0.011 233 499 34.151 34.129 0.022 234 500 34.153 34.132 0.021 235 502 34.157 34.148 0.009 236 499 34.128 34.116 0.012 237 496 34.197 34.186 0.011 238 501 34.216 34.203 0.013					
225 499 34.296 34.238 0.058 226 499 34.183 34.168 0.015 227 501 34.142 34.127 0.015 228 502 34.176 34.165 0.011 233 499 34.151 34.129 0.022 234 500 34.153 34.132 0.021 235 502 34.157 34.148 0.009 236 499 34.128 34.116 0.012 237 496 34.197 34.186 0.011 238 501 34.195 34.181 0.014 239 501 34.216 34.203 0.013					
226 499 34.183 34.168 0.015 227 501 34.142 34.127 0.015 228 502 34.176 34.165 0.011 233 499 34.151 34.129 0.022 234 500 34.153 34.132 0.021 235 502 34.157 34.148 0.009 236 499 34.128 34.116 0.012 237 496 34.197 34.186 0.011 238 501 34.195 34.181 0.014 239 501 34.216 34.203 0.013					
227 501 34.142 34.127 0.015 228 502 34.176 34.165 0.011 233 499 34.151 34.129 0.022 234 500 34.153 34.132 0.021 235 502 34.157 34.148 0.009 236 499 34.128 34.116 0.012 237 496 34.197 34.186 0.011 238 501 34.195 34.181 0.014 239 501 34.216 34.203 0.013					
228 502 34.176 34.165 0.011 233 499 34.151 34.129 0.022 234 500 34.153 34.132 0.021 235 502 34.157 34.148 0.009 236 499 34.128 34.116 0.012 237 496 34.197 34.186 0.011 238 501 34.195 34.181 0.014 239 501 34.216 34.203 0.013					
233 499 34.151 34.129 0.022 234 500 34.153 34.132 0.021 235 502 34.157 34.148 0.009 236 499 34.128 34.116 0.012 237 496 34.197 34.186 0.011 238 501 34.195 34.181 0.014 239 501 34.216 34.203 0.013					
234 500 34.153 34.132 0.021 235 502 34.157 34.148 0.009 236 499 34.128 34.116 0.012 237 496 34.197 34.186 0.011 238 501 34.195 34.181 0.014 239 501 34.216 34.203 0.013					
235 502 34.157 34.148 0.009 236 499 34.128 34.116 0.012 237 496 34.197 34.186 0.011 238 501 34.195 34.181 0.014 239 501 34.216 34.203 0.013					
236 499 34.128 34.116 0.012 237 496 34.197 34.186 0.011 238 501 34.195 34.181 0.014 239 501 34.216 34.203 0.013					
237 496 34.197 34.186 0.011 238 501 34.195 34.181 0.014 239 501 34.216 34.203 0.013					
238 501 34.195 34.181 0.014 239 501 34.216 34.203 0.013					
239 501 34.216 34.203 0.013					
839 495 34.206 34.191 0.015					
	839	495	34.206	34.191	0.015

Table 2. (continued)

STA	P	(dbar)	CTD SAL	BOTTLE SAL	DIFFERENCE
840 240 241 242 243 244 245 253 254	0, 0, 0, 0, 0, 0, 0, 0	502 501 501 502 500 500 501 500	34.248 34.227 34.192 34.209 34.176 34.139 34.091 34.085 34.171	34.235 34.218 34.180 34.195 34.159 34.118 34.081 34.097 34.159	0.013 0.009 0.012 0.014 0.017 0.018 0.010 -0.012 0.012
255 855 256 257 258 858 259 260 261 262 263	5 5 5 4 4 4	500 485 501 500 501 502 500 498 499	34.107 34.161 34.211 34.238 34.249 34.163 34.169 34.238 34.220 34.135 34.076	34.103 34.148 34.198 34.227 34.237 34.149 34.148 34.226 34.209 34.121 34.062	0.004 0.013 0.013 0.011 0.012 0.014 0.021 0.012 0.011 0.014

points at stations 103 and 109 were considered eroneous and were eliminated before further calibration was done. The mean and standard deviation of the differences between the remaining CTD salinities and sample salinities were calculated. The mean difference was +0.0126 with a standard deviation of 0.0148. Points further than two standard deviations from the mean were assumed erroneous and were not included, eliminating samples at stations 104, 111, 142, 162, and 225. A new mean and standard deviation were calculated using the remaining 107 points. The new mean difference was +0.012 with a standard deviation of 0.0052. As a result of these differences a constant of -0.012 was added to the CTD salinities. This was the final calibration made to the CTD salinity.

Light transmission was measured with a Sea Tech 25 cm beam transmissometer. The fraction of light transmitted over the length of the beam is related to the instrument voltage by the formula:

$$T = ((A/B) * (X-Z))/V$$

where T is the fraction of light transmitted over the length of the beam (25 cm), A is the factory air calibration, B is the most recent air calibration, X is the measured voltage, Z is the zero offset, and V is the full scale instrument voltage. For this instrument A and Z were taken from the factory manual and were 4.760 and -0.002 respectively. B was observed to be 4.535 by Dr. Tom Dickey of the University of Southern California. The fraction of light transmission (T) was converted to beam attenuation

coefficient "c" using the formula:

$$T = e^{-cx}$$

where x is the path length (Jerlov, 1976). Solving the above equation for c with a path length of 0.25 m yields:

$$c = -4.0 * ln(T)$$

In situ fluorescence was measured with a Sea Tech fluorometer. The raw instrument voltage can be converted to chlorophyll "a" in mg m⁻¹ using a linear correction based on the chlorophyll "a" values of the in situ water samples. The calibration coefficients varied spatially, day vs. night, and as a function of pressure. Due to this variability no calibrations are applied to the raw fluorometer voltages in this report. Fluorometer calibration information is provided in Appendix I which contains the chlorophyll "a" fluorescence, the phaeopigment values, and the raw fluorometer voltages associated with each sample collected during the cruise (provided by Dr. Francisco Chavez, MBARI).

DATA PROCESSING

After the raw CTD data were transferred to the IBM 3033 mainframe computer at the Naval Postgraduate School, the temperature, conductivity, and transmissivity corrections described were applied to produce profiles of corrected pressure, temperature, conductivity, beam attenuation coefficient (beam c), and raw fluorescence voltage. Salinity was calculated from corrected values of temperature, pressure, and conductivity according to the algorithm of Lewis and Perkin (1981). Severe spiking due to system malfunctions was eliminated from the

salinity signal with a search for vertical salinity gradients greater than 1.0 psu m⁻¹. Bad points were replaced using linear interpolation. Time lag spikes were eliminated by discarding salinity data in regions where the vertical temperature gradient exceeded 0.2 °C m⁻¹ and replacing the discarded data with linearly interpolated values. Finally the data were averaged within 2-m intervals and visually examined for any remaining outliers missed during processing. If found, these points were replaced with linearly interpolated values. The final salinity correction (as described above) was then applied.

The density anomaly (γ) at atmospheric pressure was calculated using the corrected values of temperature and salinity and the appropriate algorithms found in Volume 4 of the International Oceanographic Tables (UNESCO, 1987).

DATA PRESENTATION

The CTD station positions and numbers for each part of the cruise are shown in Figs. 2 and 3. The XBT station numbers and positions are shown in Fig. 4. Maps of hourly averaged wind vectors during each part of the cruise are presented in Figs. 5 and 6. Hydrographic data are presented in the form of horizontal maps, vertical sections, and vertical profiles. Maps of surface temperature (T), salinity (S), and dynamic height relative to 500 db ($\Sigma\Delta D_o/500$) for each part of the cruise are presented in Figs. 7 - 12. Vertical sections of temperature, salinity, and the density anomaly at atmospheric pressure (γ) from the CTD data are shown in Figs. 13 - 26. Sections from part I are shown in Figs.

13 - 19 and those from part II in Figs. 20 - 26. Fig. 27 shows a vertical section of temperature from the XBT drops made between parts I and II of the cruise. Selected data from each CTD cast is presented along with vertical profiles of temperature, salinity, density anomaly at atmospheric pressure, raw fluorometer voltage, and beam attenuation coefficient (beam c) in Fig. 28. Fig. 29 presents the XBT data in the same form. In these two figures an asterisk next to a point in the data listing indicates that the point is an interpolated value.

ACKNOWLEDGEMENTS

This work was funded by the Office of Naval Research and the Naval Postgraduate School's direct research funding. We thank Ms. Melissa Ciandro and Mr. Bob Whritner of the Scripps Institution of Oceanography for the real-time transmission of the satellite AVHRR sea surface temperature data to the R/V POINT SUR. The able assistance of the officers and crew of the POINT SUR are much appreciated.

Figure 5. Hourly averaged wind speed (ms.) and direction measured at 10 m height from the R/V POINT SUR during part I of cruise CTZ88.

Figure 6. Hourly averaged wind speed (ms⁻¹) and direction measured at 10 m height from the R/V POINT SUR during part II of cruise CTZ88.

Figure 7. Map of surface temperature (°C) during part I of cruise CTZ88, July 5-12, 1988.

Figure 8. Map of surface salinity (psu) during part I of cruise CTZ88, July 5-12, 1988.

Figure 9. Map of the dynamic height (dyn m) of the sea surface relative to 500 dbar during part I of cruise CTZ88, July 5-12, 1988.

Figure 10. Map of surface temperature (°C) during part II of cruise CTZ88, July 13-19, 1988.

Figure 11. Map of surface salinity (psu) during part II of cruise CTZ88, July 13-19, 1988.

Figure 12. Map of the dynamic height (dyn m) of the sea surface relative to 500 dbar during part II of cruise CTZ88, July 13-19, 1988.

Vertical sections of a) temperature $({}^{\circ}C)$, b) salinity (psu), and c) density anomaly (kgm^{-3}) from CTD stations 105, 106, 108, 109, and 112 of part I.

Figure 13c.

c) density anomaly from CTD stations 113-121 of part I. Figure 14. Vertical sections of a)

Figure 14b.

b) salinity, and CTD stations temperature, c) density anomaly from Vertical sections of a) and 125-128 of part I. Figure 15.

Figure 15b.

Figure 15c.

c) density anomaly from CTD stations 133-139 and 939 of part I. Figure 16.

and c) density anomaly from CTD stations 940 and 140-147 of part I. b) salinity, temperature, Figure 17. Vertical sections of a)

Figure 17c.

c) density anomaly from CTD stations 152-155, 955, and 156-158 of part I. Figure 18. Vertical sections of a)

Figure 18b.

Figure 18c.

temperature, b) salinity, and 159-163 of part c) density anomaly from CTD stations I. Figure 19. Vertical sections of a)

Figure 19c.

c) density anomaly from CTD stations 202, 203, 205, 206, 208, 209, and 212 of part IT Figure 20.

Figure 20b.

Figure 21. Vertical sections of a) temperature, b) salinity, and c) density anomaly from CTD stations 213-221 of part II.

Figure 21c.

c) density anomaly from CTD stations 222-228 of part II. Vertical sections of a) Figure 22.

Figure 22b.

Figure 22c.

60

and 839 b) salinity, 233-238 and c) density anomaly from CTD stations of part II. temperature, Figure 23. Vertical sections of a) part II

Figure 23c.

temperature, b) salinity, and c) density anomaly from CTD stations 840 and 240-245 of part II. Vertical sections of a) Figure 24.

Figure 24b.

Figure 24c.

salinity, and (q c) density anomaly from CTD stations 256-258 of part II. temperature, Vertical sections of a) Figure 25.

Figure 25c.

b) salinity, and 858, and 259-263 temperature, CTD stations c) density anomaly from of part I. Vertical sections of a) Figure 26.

7 1

7 2

7 3

Figure 28. Data listings and vertical profiles of temperature (T), salinity (psu), density anomaly (γ), specific volume anomaly (δ), dynamic height ($\Sigma\Delta D$), transmissivity (beam-c), and fluorometer voltage for all CTD cast of cruise CTZ88.

SUM	0.000	0.011	0.020	0.032	0.041	0.053	0.081	0.073	0.081	0.092	0.100	0.118	0.135	0.151	0.168	0.184	0.227	0.268
SVA	225.8	218.5	214.5	210.5	209.4	204.8	202.1	197.0	190.8	187.3	181.7	173.1	187.1	168.0	185.4	164.9	183.8	159.1
DENSITY	25.725	25.825	25.848	25.890	25.902	25.954	25.981	28.035	26.102	26.139	26.199	26.291	28.358	26.389	26.377	26.385	26.403	28.454
SAL	33.345	33.474	33.501	33.544	33.558	33.613	33.828	33.843	33.713	33.757	33.799	33.873	33.940	33.949	33.949	33.955	33.974	34.001
TEMP	9.608	9.818	9.614	9.554	9.544	9.490	9.387	9.133	9.058	9.038	8.867	8.649	8 569	8.527	8.478	8.455	8.438	8.238
PRESS	-	89	10	18	20	26	30	38	40	4 8	20	09	20	80	06	100	128	150

FLUOR	1.618	1.500		1.519	1.424	1.484	1.741	8	0.388	64		29	.87	.53	0.482	.48		0.238
TRANS	0.70	~	0.89	0.89	0.68	0.70	~	0.57	0.45	0.50	0.49	4	0.53	2	0.50	5	0.53	0.53
PRESS	-	8	10	1.6	20	28	30	38	40	46	20	09	20	80	0.6		128	150

STATION:101 LAT:38 11.8 N LON:123 20.8 W DATE:7/6/88

SUM	: o	0.011	0.020	.03	.04	0.056	0.064	0.078		0.098	0.103	0.122	0 140	0.158	0.178	0.193	0.239	0.278	0.320	0 358	0.394	0.429	0.466	0.500	0.538	9		0 635	0.689	G	0.732	8
SVA	225.7	225.7	225.0	224.8	221.8	213.9	204.7	196.8	196.2	192.5	189.1	181.7	180.7	179.2	177.8	175.4	171.0	161.9	154.5	149.4	146.1	143.2	140.9	138.8	137.3	135.4	132.7	131.4	128.9	127.3	124.4	122.5
DENSITY	25.72	25.727	3	25.741	25.771	25.856	25,953	26.038	26.045	28.084	26.121	26.201	26.214	26.231	26.250	28.275	28.325	26.425	26.507	28.584	26.603	26.637	28.664	28.890	26.709	26.732	26.783	28.780	26.809	28.829	26.862	26.884
SAL	3.47	33.475	3.48	3.48	3.50	3.56	1.83	3.69	3.70	3.72	3.74	3.81	3.83	3.84	1.88	3.87	3.91	3.98	1.03	1.08	34.084	4.09	1 10	34.113	4.12	4.12	4.14	34.148	34.158	4.18	-:	34.198
TEMP	0	10.204	10.180	9	10.073	9.842	9.604	9 388							8.864			8 333	8.058	7.807	7.671	7.508	7,349	7.219	7.138	6.991	6.875	8 767	.60	6.523		.27
PRESS	-	9	10	18	20	56	30	38	40	4 8	20	0.9	2.0	80	06	100	128	150	178	200	226	250	278	300	328	350	378	400	428		476	200

FLUOR	3.159	3.080	3.309	3.233	2.932	2.920	1.957	1.983	1.853	1.241	0.600	1.098	0.778	0.881	0.932	0.859	0.584	0.159	0.099	0.081	0.074	0.075	0.073	0.074	0.074	0.078	0.069	0.070	0.077	0.072	0.070	0.074
TRANS	0.98	0.98	0.95	0.95	0.91	0.85	0.79	0.70	0.65	0.89	0.54	0.55	0.57	0.59	0.59	0.58	0.58	0.42	0.39	0.37	0.37	0.37	0.37	0.37	0.37	0.38	0.35	0 35	0.38	0.38	0.35	0.35
PRESS	-	9			20		30	3.8	40			0.9		80	96	100	2	2	178	200	23	2	~	Ö	328	2	378	400	428	450	478	200

STATION: 102 LAT: 38 9.9 N LON: 123 32.2 W DATE: 7/8/88 TIME: 1200Z

SUM	: o	0.015	C	0.040		0	0.074		0.099	0.113	0.122	0.145	0.165	0.188	0.205	0.224	0.270	0.311	0.352	0.388	0.426	0.481	0.497	0.530		.59	0.832	88	θ.	.72	.75	0.785	78
SVA	248.2	248.3	248.4	248.0	247.8	247.1	247.0	243.7	237.4	235.5	233.2	212.6	204.2	198.7	190.3	184.1	173.4	162.9	154.2	147.8	145.2	142.1	1398	137.5	134.3	131.8	129.3	128.9	123.8	122.8	120.9	120.8	120.5
DENSITY	25.48	25.489	25.490	25.495	25.500	25.507	25.508	25.544	25.812	25.833	25.857	25.878	25.987	28.028	26.116	26.183	28.300	26.414	26.511	28.581	28.612	28.847	26.678	28.703	28.740	28.769	26.798	28.825	26.860	28.878	26.896	26.903	26.904
SAL	-	33.294	-	~	_	-	-	_	33.325	-	~	33.513	-	~	-	P	33.891	490	~	~	P-	~		0.1	-	34.141	34.155	34,161	34.183	4.18	34.195	34.197	4.19
TEMP	35	マ	32	47		10.706	10.696	10.530	10.195	10.121	9.981	9.491	9.522	9.378	9.051	8.854	8.682	8.190	8.023	7.721	7.549	7.395	7.263	7.185	8.978	Θ	70	6 502	.38	8 278	6.164	6.122	6.119
PRESS	0	9	10	18	20	26	30	36	40	48	50	60	20	80	06	100	126	150	176	200	226	250	276	300	326	350	378		426		476	200	501

0.105 0.122 0.074 0.079 0.075 1.487 1.134 0.308 0.518 0.708 0.324 0.246 0.088 0.089 4.720 3.988 4.595 4.059 1.534 1.276 0.074 0.072 0.070 4.811 2.941 0.071 0.071 FLUOR TRANS 1.13 1.12 1.10 1.07 0 97 0.71 0.68 0.47 0.88 0.58 0.48 0.47 0.37 0.37 0.36 0.36 0.38 0.36 0.36 0.35 0.38 PRESS 400 428 450 476 500

STATION: 103 LAT: 38 Z1.6 N LON: 123 36.9 W DATE: 7/6/88

SUM	0.00.0	0.013	0.024	0.039	0.049	0.065	0.075	0.090	0.039	0.114	0.123	0.145	0.167	0.188	0.208	0.226	0.270	0 309	0.344
SVA	262.2	261.2	280.8	259.5	259.1	254.8	247.2	243.8	240.7	232.9	229.3	223.3	213 6	208.3	187.8	174.8	163.8	158.1	149.4
DENSITY	25.343	25.354	25,361	25.374	25.380	25.425	25.507	25 543	25.577	25 880	25.699	25.783	25,867	25.946	26.144	26.280	28.401	26.465	26.580
SAL	33.145	33.152	33.153	33.183	33.167	33.212	33.298	33,347	33,388	33,337	33,382	33.421	33.505	33.575	33,727	33.829	33,935	33.995	34.084
TEMP	10.939	10,903	10.867	10.840	10.825	10.765	10.681	10.695	10.585	9.983	9.941	9.736	9.503	9.357	8.858	8.495	8.247	8.136	7.858
PRESS	-	89	10	16	20	56	30	36	40	48	20	00	20	80	06	100	128	150	173

FLUOR	1.214	-	3.881	8	84	92	8	59	0	73	44	65	50	42	14	15	14	0.205	-
TRANS	0	8	0.98			0	8	~	0.81	3	9	S	5	4.	9	9	4	0.40	0.58
PRESS	-	80							40										173

STATION:104 LAT:38 33.9 N LON:123 39.7 W DATE:7/6/88

SUM	00	0.015	0.028	0.041	0.051	0.067	0.077	0.092	0.102	0.118	0.128	0.151	0.173	0.193	0.213	0.232	0.280	0.323	0.367	0.405	0.444	7	3	0.550	5	0.618	0.652	0 683	0.715	0.745	0.776	0.804
SVA	256.7	258.7	256.4	255.9	255.8	255.6	255.3	255.2	255.2	254.8	252.4	221.6	208.0	199.7	194.7	188.3	181.4	174 3	162.5	153.2	148.1	144.3	142.2	8	36	3	129.7	c_3	23	121.3		117.0
DENSITY	25.4	25.402	25.408	25.412	25.414	25.418	25.421	25.423	25.424	25.430	25.456	25.782	25.927	26.018	26.070	26.140	28.217	28.295	26.423	28.524	28.582	28.625	26.851	28.689	26.715	26.751	26.793	26.839	28.859	26.889	26.917	26.939
SAL	33.236	~	33.235	~	33.234	33.236	33.238	~	33.239	33.248	33.280	~	m	0	~	\sim	(33898	10	34.034	34.068	34.081	34.089	34.100		34.115	34.128	34.178		4.1	34.196	4.2
TEMP		003	Θ	941	928	915	905	891	891	96	890		9.760	88	58	1.1	45		28	.941	716	503	364	7.154	0.02	788	.540	6.483	6.258	6.185	6.008	5.914
PRESS	0	8	10	18	20	26	30	36	40	48	20	09	20	80	06	100	128	150	178	200	226	250	276	300	328	350	378	400	428		476	200

3.185 2.738 2.803 3.086 1.686 1.348 0.545 0.090 0.075 0.068 2.713 3.535 2.578 2.467 0.894 0.770 0.078 0.078 0.072 0.078 0.071 0.074 0.000 3.337 1.678 0.074 FLUOR TRANS 0.89 0.88 0.93 0.94 0.92 0.98 0.88 0.83 0.83 0.90 PRESS

STATION:105 LAT:38 33.1 N LON:123 45.6 W DATE:7/6/88

SUM	0.00.0	0.018	0.027	0.042	0.052	0.067	0.077	0.091	0.100	0.113	0.122	0.143	0.183	0.182	0.200	0.218	0.280	0.298	0.337	0.373	0.410	0.444	0.480	0.513	0.547	0.579	0.812	0.642	0.874	0.703	0.734	0.782	
SVA	287.8	267.2	284.4	253.9	252.8	246.5	238.8	230.8	223.6	216.1	212.9	202.8	193.3	187.9	179.7	170.8	158.8	154.3	149.8	145.8	141.8	139.7	137.3	135.1	132.0	129.4	126.5	124.4	121.1	0	116.9	3	
DENSITY	25.283	25.291	25.322	25.433	25.448	25.512	25.594	25.682	25.758	25.837	25.871	25.979	28.081	26.139	28.227	26.324	28.455	26.505	28.558	28.801	28.647	26.872	28.701	28.728	26.763	26.793	26.826	26.850	26.886	26.898	26.935	26.954	
SAL	33.131	33,133	33.151	33.243	33.252	33.224	33.214	33.248	33.380	33.519	33.544	33.575	33.694	33.713	33.801	33,855	33.998	34.033	34.058	34.073	34.093	34.093	34.114	34.128	34.143	34.155	34.184	34.151	34.158	34 164	34.191	34.205	
TEMP	C3	11.175	11.082	9.0	10.815	0.31	9.783	9.408	9.488	9.758	9.665	9.148	9.095	8.820	8.697	8.345	8.213	8.088	7.840	7.622	7.415	7.238	7.145	7.030	6.860	6.709	6.512	6.253	0.005	5.951	5.827	5.768	
PRESS	0	9	10	10	20	28	30	38	40	48	20	09	7.0	8.0	0.6	100	128	150	178	200	228	250	278	300	328	350	378	400	428	450	476	200	

FLUOR	1.132	2.189	3.980	5.000	5.000	4.175	1.717	0.398	0.338	1.501	1.340	0.888	1.085	0.757	0.204	0.111	0.081	0.092	0.074	0.078	0.077	0.071	0.089	0.071	0.072	0.074	0.072	0.073	0.072	0.072	0.073	0.089
TRANS	0		_	1.24	03	_	~	7	4	m	~	2	9	(O	4	3	3	3	3	3	3	3	3	3	3	3	3	3	3	~	0.33	3
PRESS	0	89		16			30	36	40	46	20		20	80	06														428			200

STATION: 106 LAT: 38 44.1 N LON: 123 52.8 W DATE: 7/6/88

SUM	0.000	0.013	0.024	0.040	0.050	0.065	0.074	0.088	0.094	0.105	0.112	0.130	0.148	0.162	0.177	0.193	0.232	0.267	0.268
SVA	270.3	268.3	288.4	282.2	258.2	223.6	210.1	205.8	191.3	182.0	177.0	187.2	181.2	155.8	154.8	152.6	148.0	146.0	148.0
DENSITY	25.257	25.280	25.300	25.348	25.378	25.754	25.898	25.945	28.095	26.195	26.248	26.353	26.418	28.477	26.491	26.514	28.587	26.591	26.591
SAL	33.109	33.108	33.098	33.124	33.155	33.439	33.482	33.508	33.659	33.781	33.787	33.887	33.958	34.009	34.022	34.041	34.068	34.085	34.085
TEMP	11.260	11.122	10.961	10.827	10.782	9.878	9.211	9.033	8.829	8.705	8.489	8.314	8 244	8.130	8 101	8.047	7.694	7 651	7.651
PRESS	1	9	10	1 8	20	26	30	38	4 0	48	20	09	20	80	06	100	128	150	151

FLUOR	1.008	က	01	84	53	02	00	36	38	19	17	11	11	10	08	14	0.9	0.181	18
TRANS	0	1.05	0	8	0.87	~	10	0.45	4	0.40	4	3	0.39	3	0.37	က	4	0.51	5
PRESS	-	9							40										151

STATION:107 LAT:38 56.4 N LON:123 54.7 W DATE:7/6/88 TIME:2241Z

SUM	0.00.0	0.013	0	0.037	0 045	0.057	0.064	0.075	0.083	0 094	0.101	0.119	0 137	0.154	0 170	0.186	0.227	0.284	0.302	0.337	0.374	0.407	0.443	0.475	0.509	0.540	0.573	0 603	0.634	.88	0.693	.72
SVA	289.0	266.4	243.1	203.2	195.0	191.8	190.3	188.7	185.0	182.8	180.3	177.5	172.0	166.9	184.7	161.9	154.0	149.8	146.0	143 3	140.0	137.3	135.1	132.3	130.4	128.4	125.9	123.4	119.8		113.2	·
DENSITY	25.271	5.30	25.545	5.98	26.053	26.088	26.105	26.143	26.163	28.187	26.213	26.245	26.304	26.359	26.384	28.415	26.503	26.553	26.595	26.627	28.665	26.696	28.724	28.755	26.778	26.802	8.8	26.861	8.9	26.930	26.974	
SAL	3.17	33,165	33.351	33.618	3.8	33.717	33.727	33.744	33.780	33.764	33.781	33.805	33.838	33.872	33.875	33.888	34.008	34.022	34.058	34.074	34.088	34.093	34.109	34.132	34.135	34.134	34.147	34.180	4.2	34.212	34.231	4.24
TEMP	11.473	11.264	10 700	9.438		9.161	9.108	.94	8.904	8.770		8.603		194		901	945	678	.572	7.448	7.254	7.080	6.952	6.852	6 6 8 3	6.515	6.370	8 340	6.143	0.00.9	5.772	
PRESS		8	10	18	20	26	30	36	40	48	20	09	20	80	06	100	126	150	178	200	226	250	278	300	326	350	376	400	428	450	476	200

0.072 0.235 0.086 0.083 0.000 0.073 5.000 1.070 0.943 1.622 0.715 0.840 0.450 0.252 0.224 0.072 0.078 0.071 0.070 0.078 0.074 0.071 0.075 1.718 1.015 0.691 0.871 FLUOR TRANS 0.58 0.58 0.81 0.60 0.58 0.52 0.47 0.45 0.42 0.37 0.35 0.38 0.35 0.34 0.35 0.33 1.48 0.82 0.81 0.61 PRESS 400 428 450 476 500

STATION: 108 LAT: 38 55.4 N LON: 124 2.0 W DATE: 7/6/88 TIME: 2400Z

SUM	0.000	0.015	.02	0.043	.05	0.070	0.081	960.0	0.108	0.120	0.129	0.151	0.172	0.191	0.210	0.229	0.278	0.318	0.381	0.398	0.437	0.471	0.508	0.541	0.575	0.607	0.640	θ.		.73	0.760	.78
SVA	291.6	290.3	284.3	278.8	272.8	270.1	282.2	248.2	242.8	228.8	223.3	213.0	202.3	191.2	189.8	185.1	177.0	168.7	161.5	150.8	146.1	142.3	138.7	135.9	131.4	128.7	125.3	123.3	120.2	118.2	115.8	113.6
DENSITY	25.0	25.048	25.112	25.192	25.237	25.284	25.348	25.497	25.558	25.702	25.762	25.871	25.986	26.104	28.121	26.173	28.282	28,353	26.433	26.548	26.800	26.643	26.684	28.717		6.79	9	8.88	8 8	6.9	26.946	6.9
SAL	2.80	32.809	2.83	32.825	32.842	32.841	32.899	33.078	33.098	33.282	33.421	33.418	33.545	33.701	33.701	33.767	33.853	33.866	33.910	33.975	33.988	34.010	34 033	34.042	34.088	34.108	34.159	34.175	4.19	4.20	34.202	4.22
TEMP	1.16	11.123	Φ.	25	.185	0.015	.781	728	449	349	9.745	045	958	981	873	.874	.733	203	.901	455	.160	972	800	613	391	389	9	2	6.165	0.1	5.807	۲.
PRESS	1	9	10	16	20	26	30	36	40	48	20	0.9	20	8.0	0.6	100	128	150	178	200	226	250	276	300	328	350	376	400	428	450	476	200

909.0 0.935 1.538 0.981 0.183 0.083 3.397 3.835 2.118 1.224 1.333 0.498 0.280 0.581 0.330 0.781 0.272 0.081 0.078 0.078 0.000 0.072 0.000 0.000 0.072 0.072 3.745 4.427 2.994 0.071 0.071 FLUOR TRANS 0.36 0.35 0.35 0.34 0.33 0.55 0.60 0.50 0.38 0.48 0.48 0.57 0.78 0.85 0.47 0.41 0.34 0.33 0.33 0.34 0.33 0.33 0.33 0.88 0.75 0.47 1.13 1.01 PRESS 400 428 450 478 500

STATION:109 LAT:39 6.9 N LON:124 11.2 W DATE:7/7/88 TIME:0223Z

SUM	0.00.0	0.010	0.018	0.030	0.038	0.049	0.058	0.068	0.073	0.083	0.090	0.108	0.122	0.137	0.152	0.167	0.204	0.230
SVA	218.2	202.2	194.9	191.8	188.5	181.4	177.3	169.7	168.3	185.2	183.5	180.1	158.2	154.1	147.8	143.1	140.3	135.2
DENSITY	25.828	25.975	28.052	28.088	26.121	28.198	26.241	28.323	28.338	26.372	26.391	28.427	26.449	28.494	26.561	26.813	28.646	26.702
SAL	33.588	33.654	33.728	33.704	33.718	33.785	33.807	33.868	33.887	33.917	33.928	33.957	33,971	33.992	34.038	34.067	34.081	34.100
TEMP	10.142	9.557	9.437	9.112	8.958	8.804	6.637	8.408	8.418	8.345	8.279	8.187	8.112	7.919	7.897	7.507	7.350	7.058
PRESS	1	9	10	18	20	28	30	36	40	48	50	09	20	80	06	100	126	145

PRESS TRANS FLUOR

1 1.32 4.307
6 1.39 5.000
10 1.89 5.000
16 1.17 4.278
20 0.84 2.255
26 0.88 2.096
30 0.81 1.898
36 0.74 1.706
40 0.78 1.548
46 0.81 1.078
50 0.71 1.626
60 0.55 0.536
70 0.52 0.772
80 0.45 0.298
100 0.40 0.091
126 0.44 0.083

STATION: 110 LAT: 39 20.9 N LON: 123 56.1 W DATE: 7/7/88

SUM	0	0.012	.02	.03	.04	.05	.08	0.079	0.087	0.100	0.108	0.126	0.144	0.181	0.178	0.195	0.238	0 273	0.311	0.345	0.381	0.414	0 448	0.480	5.1	5	.57	0.606	.83			
SVA	240.7	239.0	238.6	227.9	224.5	216.0	214.0	211.5	207.7	198.7	195.4	161.3	175.2	169.4	185.8	163.0	155.8	149.1	143.4	140.2	138.7	135.7	133.2	130.0	128.6	125.6	123.5	1202	117.8	115.9	114.5	112.9
DENSITY	25.58	38	81	70	74	33	95	36	25.923	0.1	05	28.204	28.271	26.333	28.373	26.404	28.488	26.558	26.821	28 659	26.679	26.712	28.742	28 778	28.817	26.830	26,655	26.893	28.921	28.944	26.961	26.979
SAL	3.27	33,296	3.32	33.401	33.394	33.487	33.525	33.577	33.601	33.646	33.665	33.748	33.788	33.822	33.688	33.916	33,995	33,983	34.018	34.095	34.101	34.082	m	34.104	34.128	34.135	34.145	34.190	34.207	-	34.225	34.235
TEMP	22	0	.16	98	73	9.625	.67	74	62	9.254	9.115	8,565	3	8.108	0	0.3	0	ಣ	83	က	7.231	8		_	6.369	6.305	Τ.		0	5.937	33	5.751
PRESS	-	в	10	18	20	26	30	36	40	46	20	0.8	7.0	8.0	0.6	100	126	150	178	200	226	250	278	300	328	350	378	400	428	450	476	

2.869 2.100 0.235 0.080 0.089 0.069 3.885 4.103 2.249 2.243 3.327 4.737 4.558 0.925 0.211 0.375 0.171 0.122 0.084 0.074 0.074 0.071 0.073 0.073 0.071 0.000 3.351 FLUOR TRANS 0.70 0.92 1.28 1.31 0.89 0.89 0.45 1.17 1.18 1.19 1.17 0.94 PRESS

STATION:111 LAT:39 20.4 N LON:124 2.2 W DATE:7/7/88

SUM	00	0.020	0.034	0.054	0.087	980.0	0.099	0.117	0.129	0.146	0.158	0.185	0.212	0.237	0.261	0 283	0.334	0.376	0.417	0.454	0.492	0.526	0.582	0.594	0.628	0.659	0.692	0.722	0.753	0.781	0.810	0,837
SVA	337.7	338.0	338.8	331.7	328.8	315.1	314.6	302.1	291.0	285.0	281.7	289.8	259.8	243.5	227.8	214.7	181.3	166.2	154.3	148.1	143.7	140.7	1363	132.8	130.1	127.7	124.5	120.9	118.0	116.1	113,1	
DENSITY	24.55	24.548	24.583	24.616	24.670	24.792	24.799	24.931	25.048	25.112	25.147	25.276	25.382	25.554	25.723	25.861	26.216	26.379	28.507	28,574	26.624	26.658	26.708	26.744	26.775	26,805	26.842	26.882	26.915	26.937	26.971	26.994
SAL	2.49	32.497	2.50	2.53	2.58	2.80	2.80	2.82	32.715	32.627	32.644	32,789	32.848	33.101	33,284	33,373	33.723	33 842	33.922	33.940	33,975	33.974	33.972	33.988	33.981	34.045	34.081	34.111	34.148	34.153	34.178	4.1
TEMP	_	12.521	12 476	12.301	12.142	11,682	11.612	10.970	10.710	9.929	9.795	9.699	9 316	9.489	9.228	8.838	8.372	7.905	7,453	7.072	6.907	6.651	6.270	5.948	5.782	9.	87	5.750	7	5.584	44	5.124
PRESS	0	9	10	16	20	26	30	36	40	46	20	09	20	80	06	100	128	150	178	200	226	250	276	300	326	350	378	400	428	450	476	200

2.969 0.370 0.219 0.143 0.151 0.080 0.068 1.080 1.449 1.883 0.812 0.438 0.107 0.058 0.058 0.080 0.080 0.058 0.058 0.059 FLUOR 0.077 0.081 0.074 0.074 0.071 TRANS

 6
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0.55 0.54 0.55 0.58 0.86 0.82 0.77 PRESS

STATION: 112 LAT: 39 18.7 N LON: 124 17.5 W DATE: 7/7/88

SUM	00.	.02	03	.08	(-	0.100	0.118	0.139	0.154	0.175	0.189	0.220	0.249	0.278	0.305	0.331	0.392	0.442	0.489	0.529	0.570	0.607	0 646	0.880	0.718	0.748	0.782	0 813	0.845	0.874	0.904	0.932
SVA	385.9	8	386.1	386.3	388.5	388.6	386.5	382.5	372.5	338.8	324.3	299.6	288.2	277.9	267.0	253.3	219.7	190.9	171.3	162.8	156.3	150.5	145.4	140.4	135.6	132.9	129.3	128.2	122.1	9	115.1	ο.
DENSITY	24.04	24.043	24.044	24.043	24.043	24.043	24.045	24.089	24.195	24.549	24.702	24.963	25.084	25.194	25.310	25.455	25.814	26.120	28.330	28.422	26.494	28.557	26.614	28.888	26.721	26.751	26.790	26.823	26.869	28.903	26.944	28.977
SAL	2.51	32.518	2.51	2.51	2.51	2.51	32.517	32,589	32,711	32.741	32.728	32.822	32,828	32.900	32.944	33.015	33,359	33.639	33.839	33.878	33.915	3.93	3.95	3.97	3,99	4.00	3.9	4 0	4	4.0	34.075	34.108
TEMP	15.056	5.07	15.068	15.073	15.071	15.065	15.068	15.119	15.083	13.478	12.650	11.652	11.008	10.699	10.224	9.685	9.127	8.568	8.217	7.801	7.501	7.184	6.851	6.585	8.297	6.123	5.720	5.547	5.389	5.281	4.984	4.921
PRESS	0	9	10	18	20	56	30	36	40	48	20	09	20	80	9.0	100	128	150	178	200	528	2	\sim	0	23	2	378	400	428	450	476	

0.070 0.085 0.119 0.545 0.442 0.169 0.073 0.057 0.053 0.080 0.080 0.082 0.082 0.000 0.080 0.070 0.083 0.079 0.075 0.152 0.055 0.054 0.078 0.075 0.055 0.061 0.061 0.074 FLUOR TRANS 0.42 0.42 0.42 0.41 0.40 0.40 0.43 0.40 0.39 0.34 0.33 0.33 0.34 0.34 0.33 0.33 0.33 0.42 PRESS 400 426 450 476 500

STATION: 113 LAT: 39 15.7 N LON: 124 44.7 W DATE: 7/7/88

SUM	00.	0.019	0.035				0.112	0 135	0.151	0.174	0.189	0.223	0.254	0.283	0.312	0.339	0.405	0.458	0 508	0.549	0.591	0.628	0.867	0.701	0.737	0.769	0.803	0 833	0.885	89	0.925	0.952
SVA	385.8	385.9	386.0	388.2	366.3	388.4	388.5	386.5	386.1	381.1	369.5	318.2	297.5	288.8	281.0	269.3	238.2	203.8	160.6	188.5	157.0	151.0	144.7	140.1	134.8	132.0	128.8	25.	21.	19.	116.3	13.
DENSITY	24.	-	24.045	24.045	24.045	24.045	24.048	24.047	24.052	24.107	24.229	24.788	24.987	25.079	25.163	25.287	25.639	25 983	26.231	26.385	26.489	28.554	28.821	28.872	26.729	26.759	28.797	26 635	28.878	28.837	26.934	3.9
SAL	32.518	32.515	32.515	32.515	32.515	32.518	32.517	32.520	32.529	32.597	32.726	32.631	32.711	32.817	32.852	32,673	33.186	33.529	33.751	33.694	33.994	33.995	33.877	33.993	33.984	33.980	33,997	34.012	34.028	34.074	34.100	4.1
TEMP	5.0	15.058	5.0	5.0	5.0	15.062	5.0	15.069	15.077	15.068	14.960	11.907	11.041	10.985	10.659	0	9.370	6.895	8.417	8.141	7.968	7.522	6.942	6.658	6 169	5.903	5.708	48	5.251	.37	5.237	38
PRESS	-	9	10	1.6	20	26	30	3.6	40	4 8	20	09	20	0.9	06	100	126	150	178	200	226	250	278	300	328	350	378	400	428	450	476	200

0.285 0.803 0.059 0.053 0.057 0.059 0.055 0.058 0.058 0.077 0.088 0.073 0.080 0.075 0.081 0.137 0.584 0.114 0.055 0.058 0.080 0.080 0.078 0.079 0.077 0.077 TRANS 0.41 0.44 0.45 0.42 0.37 0.33 0.33 0.33 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 PRESS

STATION:114 LAT:39 4.2 N LON:124 36.7 W DATE:7/7/88

SUM	0	0.017	0.031	0.051	.08	0.085	0.9	0.117	0.129	0.147	0.159	0.187	0.215	0.241	0.288	0.289	0.343	0 388	0.432	0.470	0.509	0.544	0.581	0.814	0.649	0.681	0.714	0 744	0.778	0.805	0.836	0.863
SVA		342.7		343.0	334.0	331.4	328.9	304.9	302.2	293.6	290.0	281.6	271.4	256.8	239.4	221.3	192.8	180.4	162.2	153.5	147.4	143.8	139.1	135.9	132.7	130.1	126.8	24.	121.9	119.3	115.6	114.0
DENSITY	24.49	24.498	24.497	24.497	24.593	24.621	24.649	24.902	24.931	25.022	25.060	25.150	25.259	25.416	25.599	25.791	26.098	26.229	26.425	26.519	26.586	28.826	26.678	26.713	26.749	26.778	26.816	26.839	26.874	8.9	26.946	26.984
SAL	2.52	32.527	2.52	2.52	2.5	2.59	32.620	2.72	32.7	6.5	6.5	m	(,)	n	6.1	(C)	က	(7)	33.8	3	33	32	8	33.989	33.972	33.986	4.01	34.050	4		34.163	34.155
TEMP	12.904	12.900	12.903	12 891	12.588	12.515	12.491	11.551	11.322	10.425	10.116	9.752	9.929	9.666	9.325	9.067	8.734	8.344	7.815	7.431	7.140	6.926	6.503	6.197	5.935	5.788	69	5 705	5.879	7	5.558	5.358
PRESS	-	9	10	18	20	26	30	36	40	46	20	00	20	80	06	100	126	150	178	200	226	250	276	300	328	350	378	400	428		476	200

FLUOR	38	36	38	48	82	63	.81	27	38	38	.21	.18	.20	.15	.12	.07	0.0	.18	.08	32	0.5	.05	0.5	.05	0.5	.05	0.5	0.8	0.8	0.5	0.069	0.0
TRANS	S	ĸ,	5	5		S	10	4.	4	4	6	Θ.	6	6	6	3	6	6	6	G.	6	ε.	G	6	6	Θ.	6	3	3	က	0.32	6
PRESS	-	8			20		30	38	40	48	20		20	80	06	100	CQ.	150	176	200	228	2	~	300	326	350	376	400	428	450	~	200

STATION:115 LAT:38 52.9 N LON:124 27.4 W DATE:7/7/88

SUM	0.000	0.013	0 024	0.040	0.050	0.064	0.073	0.087	0.098	0.109	0.117	0.139	0.180	0.181	0.201	0 220	0.267	0.308	0.349	0 385	0.423	0.458	0.492	0.524	0.558	0.589	0.621	0.651	0.683	0.711	0.741	2
SVA	268.4	267.9	267.3	284.8	247.0	225.8	223.8	219.2	218.5	217.0	216.3	214.9	210.3	208.9	198.9	187.8	172.4	164.5	152.7	147.7	142.9	138.0	134 8	132.3	129:3	126.9	125.1	122.9	119.7	116.9	114.3	111.4
DENSITY	25.278	25.284	25.291	25.320	25.507	25.730	25.752	25.802	25.811	25.827	25.836	25.852	25.903	25.940	26.046	26.144	26.310	26.397	26.524	28.580	26.632	28.887	28.728	26.752	28.787	26.813	26.837	26.861	26.838	26.930	26.960	26.991
SAL	33.161	33.163	33.167	33.185	33.299	33.468	33.478	33.548	33.553	33.559	33.563	33.588	33,592	33.608	33.658	33.705	33.817	33.888	33.964	33.985	33.964	34.002	34.043	34.049	34.084	34.068	34.088	34 095	34.152	34.171	34.186	34.187
TEMP	11.371	348	-						10.070						9.124	748	237	018	208	287		599	545				965	5 818	5.867	5 739	59	5.342
PRESS	1	9	10	18	20	26	30	36	40	46	20	09	20	80	06	100	126	150	178	200	226	250	278	300	328	350	376	400	428		476	0

4.680 4.379 4.352 4.466 3.065 2.625 0.431 0.255 0.113 0.070 5.000 4.695 4.732 4.520 0.097 0.089 0.080 0.084 0.070 0.070 0.073 0.067 0.072 0.073 2.871 FLUOR TRANS 1.21 1.21 1.26 1.28 1.23 1.21 1.17 1.10 0.90 0.49 1.21 1.21 1.23 1.21 0.74 PRESS

STATION: 116 LAT: 38 40.6 N LON: 124 19.9 W DATE: 7/7/88

SUM	0	0		.04	0.5		0.077	0.092	0.101	0.115	0.125	0.147	0 168	0.189	0.208	0.227	0.273	0.314	0.355	0.392	0.430	0.465	20	0.534	.58	.59	0.632	99.	69	.72	0.750	77
SVA	280.4	279.4	273.7	288.0	261.1	249.7	248.8	240.0	235.2	232.9	228.0	217.1	210.0	199.3	191.1	186.1	171.1	183.7	157.1	148.5	145.3	141.8	137.2	135.2	131.8	126.0	123.5	120.8	118.7	118.5	114.8	113.1
DENSITY	25.15	25.182	25.223	25.308	25.359	25.480	25.490	25.584	25.835	25.660	25.713	25.829	25.905	28.020	26.108	26.163	26.324	26.405	28.480	26.573	26.610	26.852	26.702	28.725	26.783	26.828	26.858	26.887	28.912	26.937	26.958	26.978
SAL	2.9	4	33.02	33.02	33.10	33.254	33.28	က	33.4	6.1	က	3	63	C	\mathbb{C}	33.7	33.8	33.9	33.9	34.0	34.0	34.0	34 1	34.0	34.0	4.1	4.1	4 19	4.2	4.2	22	4.23
TEMP	1.1	11.077	11.101	10.818	10.879	10.641	10.700	10.858	10.753	10.688	10.485	10.032	9.804	9.448	8.998	9.058	8.517	8.138	8.045	7.824	7.442	7.202	7.078	8.707	6.308	.57	6.411	4	Ξ.	98	5.881	5.784
PRESS	1	99							40																28	350	376		428	450	478	200

2.808 0.689 0.218 0.155 0.083 0.079 4.015 0.074 0.073 2.165 4.022 3.648 2.383 0.828 0.073 0.072 0.078 0.078 0.000 3.702 2.649 4.758 2.487 1.834 1.084 0.077 0.071 FLUOR 1.05 1.04 0.98 0.82 0.75 0.58 TRANS 1.04 0.84 1.00 0.83 0.83 1.12 0.95 PRESS

STATION: 117 LAT: 38 29.7 N LON: 124 11.3 W DATE: 7/7/88

SUM	00	_	02	04	0.5	0	0.085	10	0.110	0.123	0.131	15	0.171	0.190	0.208	0.226	0.270	0.308	0.347	0.382	0.419	0.452	0.488	0.520	0.553	0.584	0.616	0.645	0.878	.70	0.734	.78
SVA	297.9	298.0	298.1	298.7	295.3	288.3	264.3	239.7	226.8	215.8	208.8	201.2	191.6	188.7	178.9	174.2	164.1	153.1	147.4	143.8	140.0	137.1	134.1	131.2	128.0	125.9	123.0	121.1		115.5	112.1	108.3
DENSITY	24.96	24.967	24.968	24.984	24.999	25.074	25.327	25.588	25.723	25.842	25.916	25.995	26.098	26.152	26.236	28.286	26.397	28.518	26.581	28.822	28.665	26.699	26.733	28.785	28.803	26.827	26.860	28 882	26.920	26.946	26.985	27.025
SAL	33.108	33.108	33.107	33.102	33.098	33.108	33.097	33,270	33.377	33.420	33.515	33.616	33.692	33.744	33.813	33.845	33.928	33.988	34.071	34.071	34.080	34.098	34.109	4.0	4.13	4.14	4.15	4.15	4.18	4.18	34.229	4.24
TEMP	79	12.792	0	0	12.590	12.245	10.817	10 092	9.778	9.251	9.248	9.248	8.977	8.892	8.701	8.537	8.228	7.643	7.754	7.470	7.211	7.070	6.882	6.538	6.497	6.370	6.182	99	5.775	69	5.669	.46
PRESS	-	8	10	18	20	28	30	38	40	48	20	09	20	90	06	100	128	150	178	200	226	250	276	300	326	350	376		428		476	200

0.118 0.143 0.126 0.066 0.094 0.069 0.815 0.808 0.837 0.152 0.072 0.089 0.089 0.458 0.087 0.087 0.087 FLUOR 1.850 1.784 1.312 0.194 0.073 0.078 0.071 TRANS 0.88 0.85 0.88 0.88 0.88 0.44 0.39 0.37 0.34 PRESS

STATION: 118 LAT: 38 18.2 N LON: 124 2.9 W DATE: 7/7/88

SUM	0	0.017	0.2	0.048	0.058	0.075	0.085	0.101	0.111	0.125	0.134	0.157	0.178	0.198	0.217	0.235	0.280	0.320	0.361	0.397	0.436	0.471	0.507	0.540	0 575	0.607	64	0 671	70	73	92	79
SVA	288.7	288.8	288.0	287.2	286.9	278.7	288.0	251.0	245.8	229.7	227.8	223.9	203.1	191.0	185.2	178.9	187.5	182.4	154.1	150.4	147.3	141.3	139.8	138.3	131.5	130.4	128.5	128.8	123.8	122.4	119.7	117.7
DENSITY	25.08		25.074	25.084	25.088	25.175	25.310	25.468	25.523	25.893	25.715	25.758	25.977	26.108	26.169	26.237	26.361	28.419	26.511	26.553	26.589	26.855	26.874	26.715	28.787	26.782	26.808	28.828	28.857	26.874	26.904	8.92
SAL	33.104	33.105	33.109	33.118	33.122	33.169	33.209	33.270	33.261	33.409	33,452	33.480	33,568	33.847	33.713	33.771	33.870	33 905	34.009	34.039	34.050	34.083	34.088	34.111	34.122	34.138	34.153	34 148	34.123	34.121	34.134	
TEMP	12.282	12.275	12.252	12.235	12.232	11.963	11.400	10.781	10.423	10.100	10.171	9.954	9.125	8.697	8.828	8.478	8.173	7.970	7.900	7.770	7.581	7.299	7.182	7.028	8.705		8.602	6.393	02	.87	5.712	28
PRESS	0	89	10	18	20	26	30	36	40	4 8	20	09	20	90	0.6	100	128	150	178	200	226	250	278	300	326	350	376	400	428	450	476	0

0.069 0.068 0.069 1.405 0.416 0.393 0.078 0.072 0.073 0.072 0.070 0.070 0.071 0.000 0.088 0.884 1.442 1.084 0.850 0.723 0.457 0.307 0.214 0.078 0.075 0.074 0.071 0.083 1.594 FLUOR 0.38 0 0.32 0.32 0.32 0.32 TRANS 0.58 0.59 0.58 0.58 0.52 0.43 0.40 0.42 0.43 0.32 0.44 PRESS 50 60 70 80 90 1100 1128 1150 1150 1250

STATION: 119 LAT: 38 7.2 N LON: 123 54.4 W DATE: 7/8/88

SUM	0.00.0	0.018	0.028	0.047	0.059	9.000	0.088	0.104	0.115	0 131	0.141	0.165	0.186	0.208	0.228	0.244	0.289	0.328	0.389	0.408	0.445	0.480	.51	.54	58	.61	64	.67	-	73	0.769	.79
SVA	310.7	310.8	310.7	308.4	295.1	288.7	282.9	270.4	287.5	281.5	249.5	222.8	208.2	198.1	188.4	178.4	166.3	1.091	158.2	151.1	147.8	142.4	138.9	135.4	130.8	128.8	126.3	123 9	121.8	119.0	115.6	13
DENSITY	24.83	24.833	24.835	24.881	25.002	25.070	25.132	25.284	25.295	25.380	25.486	25.768	25.923	28.031	28.157	28.242	28.374	26.444	26.489	28.645	26.586	28.844	26.683	26.723	28.775	26.797	28.828	8.85	8.8	8.90	26.947	6.9
SAL	33.030	33.031	33,033	33.055	33.119	33.110	33.123	33.193	33.205	33.197	33.153	33.358	33.483	33.567	33.880	33.772	33,895	33.943	33.989	34.012	34.051	34.052	34.084	34.087	34.120	34.107	34.121	4 12	34.140	4.13	4.17	34.200
TEMP	13.177	13.177	13.175	13.132	m	~	11.999	11.580	11.461	11.070	10.147	9.398	9.048	8.778	8.538	8.451	8.220	8 003	7.842	7.880	7.607	7.207	6.992	6 833	6.639	6.391	6.257	8.088	5.949	.68	5.625	.61
PRESS	-	89	10	18	20	26	30	36	40	48	20	0.8	20	80	0.6	100	126	150	176	200	226	250	278	300	328	350	376	400	428		478	

0.405 0.626 0.420 0.082 0.080 0.089 0.068 0.080 0.089 0.068 0.065 0.088 2.542 0.078 0.072 0.081 0.072 0.067 0.084 0.000 1.280 0.611 2.255 0.071 0.071 TRANS 0.54 0.55 0.54 0.85 0.72 0.51 0.47 0.48 0.40 0.34 0.34 0.34 0.34 0.34 0.35 0.35 0.34 0.34 0.33 0.32 0.32 0.32 0.32 0.33 PRESS 450 476 500

STATION: 120 LAT: 37 55.4 N LON: 123 46.1 W DATE: 7/8/88

SUM	0.00.0	.01	0.028	0.044	0.058	0.073	0.085	0.102	0.113	0.128	0.137	0.159	0.180	0.200	0.219	0.237	0.283	0.323	0.365	0.402	0.440	0.474	0.510	0.543	0.578	609.0	0.842	0.671	0.702	0.730	0.760	0.787
SVA	293.7	293.8	293.7	293.7	292.9	292.3	292.0	270.5	261.8	240.2	234.5	212.6	201.0	189.5	187.7	183.8	172.1	182.1	158.0	149.8	144.3	140.9	138.9	135.3	132.2	127.8	124.9	120.8	118.2	118.2	114.1	112.5
DENSITY	25.0	25.014		_	~ 1	~	~	~		~	-44	~	~	28.123	-	3	_	0.1	a	~	CQ.	10		^ >	8	26.811		26.889	26.916	28.940	28.964	26.983
SAL	3.10	33.108	3.10	-	_	33.109	_	~	_	-	_	_	. ~	33.738	O 3		~	-				~~	~		34.138	34.148			34.201	т.	34.221	
TEMP	2.5	12.582	2.56	2.55	2.51	12.467	2.41	ω	.42	.75	58	0.8	93	9.039	32	.27	79	.42	10	74	4.1	18	95	7.003	83	52	6.458	8.208	6.040	5.909	5.786	5.680
PRESS	-	9	10	16	20	56	30	36	40	4.6	20	80	2.0	80	06	100	128	150	178	200	226	250	278	300	328	350	378	400	428	450	478	200

0.061 0.097 0.099 0.119 0.147 0.119 0.069 0.077 0.078 0.073 0.073 0.073 0.980 0.818 1.058 0.952 0.185 0.127 0.074 0.072 0.073 1.058 1.028 0.074 0 079 0.078 FLUOR TRANS 0.59 0.48 0.38 PRESS

STATION: 121 LAT: 37 43.8 N LON: 123 36.6 W DATE: 7/8/88

SUM	0.000	0.018	0.029	0.049	0.082	0.081	0.094	0.112	0.124	0.142	0.153	0.181	0.208	0.230	0.253	0.275	0.327	0.371	0.415	0.454	0.494	0.530	0.588	0.802	0.637	0.669	0.703	.73	.78	~	0.824	Θ.
SVA	327.1	327.2	327.3	328.3	323.3	316.5	312.6	305.5	296.9	283.8	281.8	268.3	241.5	237.7	228.4	214.0	187.1	174.4	185.0	158.0	153.1	146.7	142.8	138.8	135.1	131.0	127.9	124.8	121.3	118.0	114.4	112.0
DENSITY	24.861	24.681	24.881	24.673	24.708	24.778	24.821	24.897	24.987	25.120	25.148	25.293	25 577	25.618	25.739	25.871	28.157	26.295	26.397	26.473	26.528	26.599	26.643	26.689	28.727	26.771	26.804	26.839	26.878	26.913	26.954	26.985
SAL	2.93	32.939	2.93	32.947	2.98	33.017	3.03	3.08	3.08	33.173	33.185	33.341	33.807	33.622	33.657	33.638	33.758	33.908	33.952	33,950	33.972	34.023	34.044	34.041	4.04	34.031	34.017	1.03	4.0	4.07	34.125	4.19
TEMP	13.679	13.679	13.679	13.654	KO.	-	~ >	\sim	12.805	12.237	12.171	12.044	11.631	11.488	10.951	10 108	8.921	8 800	8.359	7.839	7.577	7.365	7.169	6.813	8.531	-	777	5	せ	5.218	\mathbb{C}	5.437
PRESS	-	9	10	18	20	26	30	36	40	48	20	09	20	80	06	100	126	150	178	200	226	250	278	300	328	350	376	400	428	450	476	200

0.180 0.068 0.422 0.843 0.375 0.088 0.079 0.088 0.083 0.083 0.062 0.082 0.088 0.083 0.449 0.430 0.412 0.372 0.842 0.245 0.059 0.631 0.071 FLUOR TRANS 0.48 0.48 0.52 0.43 0.39 0.32 0.43 0.43 0.43 0.43 0.45 0.45 0.45 0.32 PRESS

STATION: 122 LAT: 37 39.8 N LON: 124 4.9 W DATE: 7/8/88

SUM	0.00.0	0.020	0.033	0.053	0.087	0.086	0.099	0 118	0.129	0.148	0.157	0.182	0.205	0.227	0.247	0.267	0.314	0.354	0.394	0.431	0.469	0.504	0 540	0.573	0.607	0.638	0.670	69	.73	.75	0.788	8.1
SVA	332.9	333.1	333.4	333.4	332.7	326.3	316.2	298.0	287.8	271.7	264.4	240.2	222.1	207.7	199.8	193.0	170.7	160.1	153.3	149.6	144.8	142.5	138.0	134.9	29	26	22	120.1	18	15	112.7	1
DENSITY	24.60	24.599	24.597	24.598	24.807	24.678	24.782	24.975	25.083	25.252	25.330	25.588	25.778	25.931	26.015	26.089	26,327	26 443	26.519	26.561	26.616	26.643	26.693	26.728	26.788	26.821	26.869	26.894	26.918	26.948	26.974	26.991
SAL	32.872	32.874	32.878	32.877	32.872	32.880	32.916	32,908	33.084	33.053	33.105	33.278	33.424	33.588	33.610	33.660	33.837	33.930	34.005	34.035	34.051	34.058	34.081	34.082	34.107	34.107	34.187	34.195	34.203	34.200	34.164	34.196
TEMP	13.728	13.739	13.754	13.754	13.891	13.382	12.987	11.949	12.019	11.044	10.835	10.131	9.683	9.404	9.093	8.874	8.224	7.941	7.820	7.892	7.401	7.246	7.018	8.782	6 478		0	8.178	4	77	5.331	5.400
PRESS	0	9	10	16	20	26	30	36	40	46	20	09	20	0.0	06	100	126	150	178	200	228	250	278	300	328	350	378	400	428	450	476	

-

STATION:123 LAT: 37 51.2 N LON:124 13.7 W DATE: 7/8/88

0.609 0.602 0.285 0.085 0.075 0.072 0.088 1.233 1.398 0.088 0.088 0.065 0.088 0.088 1.257 2.250 1.438 0.248 0.078 0.000 1.847 2.075 1.181 0.121 0.071 0.071 FLUOR TRANS 0.32 0.32 0.33 0.32 0.32 0.82 0.83 0.67 0.73 0.69 0.78 0.71 0.64 0.48 0.35 0.34 0.34 0.34 0.33 0.33 PRESS

STATION: 924 LAT: 38 3.1 N LON: 124 23.3 W DATE: 7/8/88

SUM	E 3	0.015	24	0.	0.058	9.000	0.088	0.105	0.118	0 132	0.143	0.168	0.193	0.218	0.239	0.260	0.311	0.353	0.398	0.434	0.473	0.507	0 544	0.577	0.611	0.643	0.878	0 708	0.737	0.785	0.795	0.822
SVA	304.7	304.5	304.4	303.5	302.5	300.9	292.7	282.0	275.9	2002	259.7	249.5	238.2	230.3	221.0	206.8	183.5	168.9	161.3	153.1	147.3	143.0	138.2	134.6	131.8	129.1	128.1	122.5	119.3	116.9	113.6	111.1
DENSITY	24.89	24.900	24.901	24.911	24.923	24.942	25.028	25.142	25.207	25.309	25.378	25.488	25.630	25.694	25.793	25.944	26.193	26.351	26.435	28.525	26.589	26.637	26.691	26.731	26.788	26.794	26.829	26 869	26.901	26.930	26.968	26.995
SAL		32.657	2.65	32.660	32.883	32.671	32.749	32.807	32.868	32.837	32.907	33.114	33.275	33.294	33.383	33.507	33.724	33.878	33.900	34.008	34.056	34.055	34.090	34.088	34.108	34.119	34.135	34.158	34.123	34.162	34.201	34.210
TEMP	11.308	11.294	11.289	11.241	33	0.3	92	62	31	54																.486	.318			685	624	5.481
PRESS	-	90	10	18	20	26	30	36	40	40	20	09	7.0	80	0.6	100	128	150	178	200	226	250	278	300	328	350	378	400	428	450	476	200

0.480 0.383 0.109 0.159 0.121 0.175 0.660 0.069 0.089 0.068 1.479 0.338 0.092 0.082 0.078 0.073 0.073 0.020 0.745 0.443 0.074 0.073 0.087 1.451 1.311 1.601 0.42 0.49 0.33 TRANS 0.42 0.39 0.36 0.35 0.33 0.33 0.64 0.80 0.64 0.64 0.64 PRESS

STATION: 125 LAT: 38 14.7 N LON: 124 30.6 W DATE: 7/8/88

SUM	0.00.0	0.022	0.036	0.057	0 071	0.091	0.103	0 122	0.135	0.154	0.166	0.196	0.225	0.253	0.279	0.304	0.364	0.411	0.458	0.499	0.540	0.577	0.615	0.849	0.885			0 782			0.875	0.903
SVA	363.3	362.8	380.5	347.5	335.4	319.3	316.5	313.1	312.1	311.8	311.5	298.4	280.5	271.3	255.4	244.2	211.7	186.5	173.5	164.4	154 8	148.7	144.8	140.2	138.7	132.4	129.4	126.8	124.1	0	~	115.0
DENSITY	24.281	24.290	24.313	24.450	24.578	24.748	24.778	24.818	24.828	24.831	24.835	24.998	25.184	25.282	25.432	25.551	25,897	28.187	28.309	26.407	26.513	26.578	26.623	26.871	28.711	26.760	26.792	26.823	28.850	28.884	26.927	26.950
SAL	2.4	32.488	32.490	32.518	32.548	32.598	32.614	32.835	32.640	32.843	32.646	32.698	32.738	32.798	33.054	33.171	33.464	33.764	33.888	33.942	33.978	34.001	33.984	4.0	4.01	4.07	4.0	2	34.048	34.044	34.100	34.098
TEMP	13.825	13.788	13.688	13.107	12.584	11.865	11.778	11.661	11.825	11.813	11.604	10.932	10.128	9.819	10.009	9.840	9.119	8 894	8.800	8 241	7.718	7.390	6.971	8.815	8.507	6.487	6.138	8	5.589		5.299	5.080
PRESS	0	9					30	36	40	48	20	09	20	80	0.6	100	128	150	178	200	226	250	278	300	320	350	378	400	428	450	476	200

FLUOR	0.249	0.302	0.350	0.558	0.999	1.060	1.372	1.041	0.777	1.084	1.227	0.339	0.378	0.243	0.169	0.137	0.058	0.061	0.055	0.055	0.057	0.055	0.054	0.081	0.081	0.082	0.081	090'0	0.080	0.082	0.064	0.081
TRANS	4				Ď.	3	3	5	5.	5	S	4.	3	3	ε.	ε.	3	e.	ε.	3	ε.	ε,	က	Б.	6	ε.	ε.	₆	ω.	6	0.32	ε.
PRESS	0	89						38				80		80	90	100	N	150	~	0	228	2	~	ō	Q	350	~	400	N	2	478	

STATION: 126 LAT: 38 25.9 N LON: 124 38.9 W DATE: 7/8/88 TIME: 2030Z

SUM	0.00.0	0.023	0.039	0.082	0.077	0.100	0.118	0.139	0.155	0.178	0.192	0.228	0.280	0.290	0.319	0.348	0.418	0.471	0.522	0.583	0.605	0.842	0.681	0.716	0.752	0.785	0.820	0.851	.88	0.914	0.945	6
SVA	385.9	386.0	386.1	386.3	388.2	386.4	386.5	3867	388.8	379.7	368.4	334.0	311.4	298.3	287.8	281.4	244.5	209.1	182.7	185.8	157.0	151.8	1482	142.5	138.3	134.9	131.0	129.2	125.4	121.0	117.9	115.1
DENSITY	24.0	4	24.044	24.044	-	24.045	24.045	24.045	24.047	24.121	24.241	24.804	24.842	25.002	25.093	25.162	25.554	25.930	28.212	26.395	28.489	26.545	28.808	28.848	26.695	26.732	28.776	26.799	26.839	28.887	26.925	28.951
SAL	2.51	32.517	2.51	2.51	2.51	2.5	2.5	2.5	32.522	3.8	2.7	2.7	2.8	3.8	3.8	2.9	3.2	3.5	3.8	3.8	3.9	3.9	4.0	34.004	4.01	34.025	34.072	60.1	34.077	4.1	34.141	1.1
TEMP	15.069	15.071	5 07	15.071	15.088	15.071	15.073	15.075	15.074	15.108	15.076	13.421	12.325	11.636	11.285	10.952	10.243	9.253	8.882	8.167	7.836	7.498	7.206	6.898	8.838	6.391	6.337	6 274	∞	5.734	5.614	5.341
PRESS	0	9	10	16	20	56	30	38	40	48	20	09	20	80	0.6	100	128	150	178	200	228	250	278	300	328	350	378	400	428	450	476	

0.098 0.139 0.088 0.093 0.093 0.081 0.000 0.080 0.062 0.085 0.119 0.529 0.054 0.058 0.058 0.058 0.084 0.083 0.084 0.197 0.317 0.381 0.081 0.080 0.101 FLUOR 0.44 0.43 0.41 0.41 TRANS 0.40 0.35 0.35 0.35 0.35 0.35 0.35 0.34 0.36 0.36 0.34 0.34 0.45 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.41 0.34 PRESS 428 450 476 500

STATION:127 LAT:38 37.8 N LON:124 47.5 W DATE:7/9/88

SUM	0.000	0.019	0.035	0.058	0.073	960.0	0.112	0 134	0.149	0.171	0.185	0.218	0.249	0.280	0.309	0.338	0.408	0.485	0.520	0.585	0.610	0.650	0.891	0.727	0.784	0.798	0.833	0 864	0.897	0.927	0.958	0.987
SVA	384.4	384.9	385.0	385.0	385.2	384.2	383.0	373 5	368.1	352.2	343.8	318.3	309.0	302.9	291.8	281.2	255.1	222.1	197.8	180.8	168.4	180.1	153.5	147.3	141.5	137.2	32	29	25	22	118.5	15
DENSITY	24.06	24.058	24.058	24.058	24.058	24.069	24.082	24.184	24.241	24.410	24.498	24.788	24.888	24.934	25.052	25.168	25.444	25.794	26.055	28.235	26.370	26.480	26.532	26.800	26.662	28.708	26.758	26.794	26.837	26.873	26.917	26.948
SAL	3.6	32.658	2.85	2.8	32.680	32.684	32.709	32.911	32.943	32.928	32,921	32.941	32,929	0.3	C	ë	33	33	33	33	33.88	33.9	33.97	33	34.01	C	4.0	3	4.0	34.112		34.153
TEMP	15.514	15.515	15.515	15.519	15.518	15.546	15.573	15.812	15.666	14.842	14.399	13.158	12.599	12.303	12.178	11.925	10.730	9.529	9.012	8.609	8.213	7.891	7 558	7.145	8.878	6.384	6.175	98	5.883	Ω,	ಬ	4,
PRESS	-	9	10	16	20	28	30	38	40	4 6	20	60	20	80	06	100	128	150	178	200	226	250	278	300	326	350	378	400		2	476	0

0.265 0.074 0.113 0.053 0.058 0.062 0.088 0.074 0.082 0.118 0.164 0.198 0.247 0.391 0.101 0.055 0.084 0.058 0.057 0.081 0.059 0.081 0.067 0.073 0.074 0.075 0.080 0.083 FLUOR TRANS 0.48 0.40 0.41 0.40 0.41 0.41 0.48 0.41 0.41 PRESS

STATION:128 LAT: 38 49.2 N LON:124 56.1 W DATE: 7/9/88

SUM	00	0.019	0.3		0.073		0.111	13	0.149	0.171	0.185	0.218	0.250	0.281	0.310	0.338	0.409	0.469	0 525	0.570	0.615	0.655	0.695	0.731	0.789	0.802	0.838	.87	0.903	0.933	0.964	0.993
SVA	382.4	382.5	382.7	382.8	382.8	383.0	382.7	378.8	369.6	358.4	346.4	325.9	310.7	299.7	288.2	280.5	283.8	231.6	200.1	178.4	168.0	160.4	152.1	147.5	142.1	138.0	134.4	130.4	127.2	122.2	120.0	117.5
DENSITY	24.0	24.081	4.0	4.08	4.08	24.082	4.08	4.13	24.226	24.385	24.471	24.688	24.850	24.987	25.090	25.172	25.358	25.894	26.029	26.261	26.374	8.4	8.5	6.5	8.8	6.7	26.740	8.7	6.81	8.B		28.922
SAL	32.815	32.815	32.814	32.815	32.818	32.816	32.819	32.860	32.948	32.936	32.913	32.959	32.984	32.984	33.081	33.054	33.177	33.354	33.629	33.824	33.907	33.964	33.967	3.8	3.99	3.99	4.00	34.007	4.03	34.084	4.06	34.064
TEMP	5.9	15.948	15.945	5.9	5.9	15.943	15.936	15.879	15.753	15.078	14.498	13.623	12.828	12.301	12.049	11.492	11.008	9 839	9.099	8.593	8.279	8.023	7.425	7.238	8.787	٧.	$^{\circ}$	5 890	5.778	ιÜ.	5.323	0.0
PRESS	-	9	10	18	20	26	30	36	40	48	50	00	20	80	9.0	100	128	150	178	200	226	250	278	300	328	350	376	400	428	450	476	200

0.053 0.056 0.061 0.045 0.000 0.138 0.148 0.228 0.128 0.080 0.058 0.055 0.080 0.058 0.059 0.082 0.082 0.082 0.045 0.078 0.101 0.215 0.324 0.457 0.081 0.083 FLUOR 0.048 0.062 TRANS 0.38 0.38 0.39 0.39 0.35 0.35 0.35 0.33 0.33 0.32 0.32 0.32 0.32 0.32 0.32 0.38 0.38 0.38 0.38 0.38 0.38 0.38 PRESS 10 16 20 20 30 30 30 40 40 40 40 40 40 40 40 40 40

STATION:133 LAT: 38 46.2 N LON: 125 22.6 W DATE: 7/9/88

0.221 0.387 0.398 0.038 0.153 0.058 0.080 0.000 0.080 0.000 0.048 0.055 0.059 0.062 0.087 0.059 0.059 0.058 0.083 0.037 0.043 0.055 0.142 0.078 0.051 0.057 0.083 0.081 0.084 0.045 FLUOR 0.36 0.37 0.36 0.36 0.38 0.38 TRANS 0.52 0.36 0.37 0.36 0.36 PRESS

STATION:134 LAT: 38 34.0 N LON:125 14.1 W DATE: 7/9/88 TIME:1853Z

SUM	0.000	0.023	0.038	0.081	0.078	0.099	0.114	0.137	0.152	0.175	0.191	0.228	0.283	0.294	0.325	0.354	0.428	0.486	0.540	0.584	0.629	0.867	0.707	0.742	0.779	0.812	0.848	0 880	0.914	94	0.977	1.005
SVA	380.9	381.0	381.0	381.0	381.2	381.4	381.4	381.4	381.6	381.1	380.8	367.6	324.9	310.1	297.8	286.0	288.1	227.9	191.5	178.5	166.0	155.5	1488	144.5	140.0	37	34	132.3	129.1	25.	122.3	117.8
DENSITY	24.0	24.097	24.097	24.099	24.099	24.098	24.099	24.100	24.099	24.108	24.113	24.253	24.701	24.859	24.989	25.115	25.308	25.733	26.120	26.282	26.395	28.508	28.580	28.827	28.879	28.703	28.739	26.785	28.799	28.836	26.873	26.924
SAL	32.562	32.583	32.583	32.581	32.584	32.583	32.564	32,585	32.584	32.569	32.580	32.945	32.922	32.895	32.970	33.047	33.145	33,389	33.761	33.907	33.924	33.968	33.978	33.998	34.045	34.040	34.053	34.037	4.0	4.03	.05	4.1
TEMP	14.992	14.991	4	4.97	4.98	4.98	4.98	4.98	14.982	14.989	14.975	15.623	13.416	12.509	12.128	11.775	11.133	9 787	9.178	8.875	8.229	7.700	7.244	7.007	8.913	6.701	8.511	6.210		5.601	4.2	5.473
PRESS	0	9	10	18	20	56	30	36							06	100	128	150	178	200	226	250	278	300	328	350	378	400	428	450	476	200

0.098 0.438 0.058 0.057 0.068 0.088 0.102 0.190 0.180 0.058 0.058 0.087 0.073 0.079 0.084 0.079 0.102 0.101 0.057 0.058 0.057 0.058 0.059 0.059 0.055 0.061 TRANS 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.42 0.42 0.42 0.42 0.42 0.42 PRESS

STATION:135 LAT:38 22.5 N LON:125 5.5 W DATE:7/9/88

SUM		0.021	0.035	0	0.000	0.091	0.104	0.124	0.137	0.157	0.169	0.201	0.230	0.259	0.288	0.312	0.372	0.419	0.466	0.507	0.549	0.588	0.825	0.859	0.895	0.728	0.782	0 793	0.825	0.855	0.886	0.914
SVA	351.3	352.4	350.3	346.3	347.8	340.8	329.5	327.7	327.8	324.9	322.5	305.1	284.7	280.4	269.6	250.4	208.0	167.4	174.8	166.3	157.1	151.0	144.9	141.1	137.0	133.9	130.0	128.5	123.9	21.	118.5	
DENSITY	4.4	24.398	\sim	24.442	24.448	24.522	24.843	24.883	24.885	24.894	24.721	24.908	25.121	25.168	25.283	25.488	25.937	28.157	28.297	28.387	26.487	28.554	26.621	26.663	28.709	26.746	26.791	28.830	26.659	28.888	.92	6.9
SAL	2.57	32.570	2.57	32.578	32.576	32.564	32.582	32.590	32.590	32.597	32,601	32.777	32.835	32.651	32.982	33.131	33.548	33.730	33,880	33.930	33.968	33.973	34.012	34.014	34.048	34.113	34.155	34.171	34.178	34.171	4.20	34.221
TEMP	13.538	13.579	13.483	13.375					12.287																		.721	6.524	65	6.077	.03	5.838
PRESS	0	9	10	18	20	56	30	38	40	48	20	0.9	20	00	06	100	128	150	178	200	228	250	278	300	328	350	376	400	428	450	476	200

0.073 0.148 0.056 0.055 0.053 0.000 0.072 0.085 0.070 0.193 0.211 1.405 1.128 1.185 1.048 0.255 0.439 0.058 0.079 0.083 0.075 0.075 0.421 1.084 0.424 0.224 0.074 0.075 FLUOR TRANS 0.40 0.35 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.49 0.51 0.52 0.55 0.59 0.58 0.59 0.57 0.56 0.39 0.33 0.33 0.33 0.33 PRESS 400 450 476 500

STATION:136 LAT:38 10.8 N LON:124 57.1 W DATE:7/9/88

FLUOR	1.247	1.624	1.837	1.962	2.258	1.863	1.785	2.393	1.275	1.097	1.163	0.141	0.090	0.250	0.368	0.250	0.157	0.128	0.098	0.125	0.085	0.073	0.079	0.077	0.110	0.072	0.078	0.078	0.086	0.080	0.067	0.073
TRANS	0.70	0.70	0.71	0.71	0.71	0.70	0.87	0.88	0.58	0.50	0.44	0.34	0.34	0.36	0.41	0.39	0.39	0.38	0.38	0.38	0.35	0.34	0.33	0.34	0.33	0.34	0.35	0.33	0.34	0.33	0.34	0.33
PRESS	1	9		16					40					80		Ö	CV.	S	~	Ö	CQ.	250	~	ō	326	350	<u>-</u> -	400	N	2	476	ō

STATION: 137 LAT: 37 59.0 N LON: 124 48.6 W DATE: 7/10/88

SUM	0.00.0	0.020	0.034	0.054	0.087	990.0	0.097	0.112	0.123	0.138	0.148	0.171	0.193	0.214	0.234	0.253	0.299	0.339	0.379	0.414	0.452	0.488	0.522	0.555	0.591	0.622	0.858	0 666	0.718	0.747	0.778	
SVA	338.0	338.2	338.2	338.5	328.4	282.1	264.9	257.3	255.8	248.8	248.1	226.9	218.5	200.0	193.8	188.9	168.6	157.8	151.3	145.8	142.1	139.8	1385	137.5	135.4	130.8	27.	(1)	22.	18	115.1	11.
DENSITY	4.5	24.548	24.547	24.588	24.852	25.140	25,321	25.402	25.420	25.493	25.522	25,728	25.837	26.012	26.079	26.133	26.349	28.487	26.539	26.601	26.643	26.671	26.889	28.703	26,728	26.777	28.814	8.8	6.87	6.91	26.951	8.98
SAL	32.89	32.892	32.89	32.90	32.92		ന	30	33.275	က	က	60	က	က	က				6							34.104	34.092	34.115	34.147	4.13	34.165	4.1
TEMP	14.063	14.085	14.080	13.995	13.669	12.035	11.355	11.139	11.071	10.705	10.448	9.745	9.408	9.025	8.932	8.791	8.204	7.859	7.534	7.435	7.371	7.260	7.177	7.093	8.894	2	8.172		6.035	θ.	5.531	0
PRESS	0	8	10	18	20	28	30	38	40	48	20	09	20	80	06	100	128	150	178	200	226	250	278	300	328	350	376	400	426		476	200

0.106 1.803 0.068 1.452 0.810 0.133 0.088 0.072 0.088 0.087 0.085 0.335 0.333 0.384 2.332 0.353 0.118 0.114 0.087 0.067 0.087 0.073 0.355 0.071 0.071 FLUOR 0.33 0.33 0.33 0.33 TRANS 0.92 0.48 0.48 0.48 0.71 0.71 PRESS

STATION:138 LAT:37 48.2 N LON:124 40.5 W DATE:7/10/88 TIME:0223Z

SUM	0.000	0.018	0.029	0.049	0.062	0.082	0.095	0.114	0.127	0.145	0.156	0.182	0.207	0.230	0.252	0.272	0.322	0 363	0.408	0.443	0.482	0.518	0.553	0.588	0.621	0.652	0.688	0.715	0.747	~	0.805	83
SVA	327.0	327.2	327.2	327.3	327.4	327.4	327.3	322.5	308.8	280.8	273.2	253.8	238.8	228.4	208.2	198.8	181.0	188.9	158.5	151.2	146.6	142.9	138.9	136.0	132.6	129.5	125.7	123.1	119.3	115.8	112.8	110.1
DENSITY	24.8	24.881	1.88	24.883	24.662	24.664	24.887	24.718	24.882	25.158	25.237	25.444	25.805	25.714	25.928	28.029	26.221	26.373	28.484	28.545	26.597	26.638	26.682	26.718	28.755	26.789	26.833	26.862	28.904	26.943	26.976	27.007
SAL	32.988	32.988	32,986	32,986	32,986	32,980	32.975	32.929	32.928	32,915	32.953	33.138	33,302	33,378	33.584	33.668	33,865	33.925	33.951	34.023	34.041	34.080	2	34.072	3	34.098	34.141		34.158	34.174	20	4.2
TEMP	13.853	13.857	13.853	13.849	13.851	13.819	13.789	13.362	12.817	10.979	10.688	10.328	10.131	9.821	9.414	9.285	9.055	8.380	7.908	7.743	7.479	7.292	8.954	8.794	6.581	39	.32	6.124	5.869	5 651	5.608	5.489
PRESS	1	8	10	18	20	56	30	36	40	48	20	00	2.0	80	0.6	100	128	150	178	200	226	250	276	300	328	350	378	400	428	450	476	200

FLUOR	0.435	0.490	0.483	0.429	0.457	0.451	0.448	0.450	0.409	0.391	0.328	0.217	0.197	0.152	0.100	0.077	0.071	0.087	0.080	0.087	0.068	0.083	0.088	0.083	0.085	0.065	0.088	0.071	0.068	0.070	0.070	0.068
TRANS	4				4	0.48	4		4	4.	4	6	S	9	6	6	Э.	6	3	б.	3	6.	6	6	ω.	Б.	6	6	6	0.32	Θ.	ь.
PRESS	-	9			20				40	48	20	0.9	20	8.0	0.6	100	128	150	178	200	226	2	278	300	328	350	378	400	428	3		200

STATION: 139 LAT: 37 37.3 N LON: 124 32.9 W DATE: 7/10/88

SUM	00	0.019	0.	0.050	0.8	0.081	60	0.111	0.122	0.138	0.148	0.172	0.198	0.218	0.240	0.260	0.310	0.353	0.398	0.434	0.474	0.510	0.549	0.584	0.821	0.654	0.889		0.752	.78	0.812	84
SVA	310.9	311.1	311.3	311.4	311.5	311.7	311.5	288.7	288.3	254.6	249.8	235.8	230.1	220.3	203.8	196.9	188.2	171.5	180.8	158.1	152.7	149.7	~	6	8	8	131.0	2	123.8	20	116.7	13.
DENSITY	24.83	24.830	24.829	24.830	24.829	24.829	24.832	25.093	25.287	25.433	25.486	25.634	25,895	25.801	25.977	26.049	26.146	26.328	26.441	28.495	26.534	28.570	26.802	28.839	28.881	26.722	28.778	28.816	26.858	28.898	26,935	28.966
SAL	33.034	33.034	33.033	33.034	33.033	33,033	33.033	33.109	33.143	33.288	33,313	33.537	33.545	33.594	33.754	33.747	33.825	33.943	34.008	34.042	34.061	34.079	34.074	34.085	34.088	34.079	34.082	34.121	34.138	34 145	34.167	4.18
TEMP	13.204	13.208	13.209	13.207	13.207	13.208	13.194	12.149	11.241	10.970	10.868	11.017	10.705	10.318	10.013	9.548	9.328	8.778	8.348	8.182	0	7.870	8	7.427	7.030	~	8.388	6.331	6.109	5.838	5,673	5.548
PRESS	0	9	10	18	20	56	30	36	40	48	20	0.9	20	80	0.6	100	128	150	178	200	228	250	276	300	328	350	378	400	428	450	476	200

0.245 0.329 0.228 0.281 0.210 0.088 0.403 0.268 0.088 0.080 0.088 0.072 0.389 0.432 0.418 0.470 0.375 0.237 0.228 0.238 0.118 0.000 0.087 0.078 0.087 0.451 FLUOR TRANS 0.43 0.43 0.43 0.43 0.42 0.44 0.38 0.48 0.37 0.38 0.45 0.39 0.41 0.41 0.38 0.37 0.36 0.37 0.34 0.33 0.32 0.33 0.33 0.43 PRESS 400 428 450

STATION: 939 LAT: 37 24.2 N LON: 124 18.7 W DATE: 7/10/88 TIME: 0741Z

SUM	0	0.	0.033	.05	0.087	0.087	10	.12	0.133	0.152	0.164	0.190	0.214	0.238	0.257	0.277	0.324	0.385	0.408	0.443	0.481	0.515	0.550	0.582	. 8 1	64	.87	70	0.737	78	0.794	0.820
SVA	333.3	333.4	333.4	333.5	333.8	333.9	333.8	332.5	331.8	297.5	282.0	246.1	229.0	215.9	204.1	192.4	171.5	163.2	158.1	149.1	143.3	139.3	134.2	132.2	127.8	124.3	121.3	118.2	115.8	113.0	109.8	108.8
DENSITY	24.58	24.598	24.597	24.597	24.598	24.596	24.597	24.613	24.823	24.982	25.146	25.524	25.705	25.845	25.971	26.096	26.321	26.412	26.490	26.567	26.629	28.875	26.731	28.755	28.808	26.843	26.878	26.912	26.942	28.971	27.007	27.039
SAL	32,859	32,859	2.8	32.880	32.880	32.880	32.880	32.867	32.888	32.907	2.9	33.242	3.3	3.48	3.59	33.725	3.94	33.997	3.99	6.0	(°)	CJ	6.3		34.111	34.142	34.167	34.162	34.191	4.20	34.227	2.2
TEMP	13.697	13.694	13.693	3.89	13.701	2	6	13.643	13.589	11.905	11.266	10.331	9 907	9.523 3	9.287	9.150	8.823	8 498	7.942	7.787	7.112	6.972	8.779	6.838	8.350	.25		3	5.775	8.4	5 474	5.335
PRESS	0	8	10	16	20	26	30	36	40	46	20	09	20	80	06	100	128	150	178	200	226	250	278	300	328	350	376	400	428	450	476	200

0.099 0.549 0.088 0.085 0.088 0.088 0.069 0.409 990.0 0.087 0.088 0.072 0.088 0.065 0.428 0.434 0.245 0.075 0.071 0.084 0.088 0.072 0.404 0.418 0.431 0.579 0.151 FLUOR 0.33 TRANS 0.43 0.43 0.48 0.48 0.37 0.35 0.33 0.33 0.32 0.32 0.32 0.32 0.32 0.44 0.43 0.42 0.44 0.43 PRESS

STATION: 940 LAT: 37 19.7 N LON: 124 49.3 W DATE: 7/10/88 TIME: 1141Z

SUM	0.000	0.018	0.029	0.048	0.081	0.080	0.091	0.107	0.118	0.132	0.142	0.165	0.188	0.208	0 228	0.244	0.290	0.328	0.388	0.404	0.442	0.476	0.512	0.544	0.578	0.610	0 643	0.873	0.704	0.732	0.762	0.789
SVA	322.7	322.5	322.8	322.8	319.7	295.8	274.0	265.4	252.8	242.8	236.5	219.2	203.7	197.5	192.8	182.1	165.6	157.9	150.9	146.5	142.7	139.9	138.5	133.7	131.2	129.0	125.5	122.8	118.9	115 8	113.8	111.2
DENSITY	24.70	24.711	24.711	24.712	24.743	24.998	25.225	25.318	25.452	25.558	25.623	25.808	25.971	26.038	26.090	26.203	26.381	28 487	28.544	26.593	26.636	28.870	26.707	26.739	26.788	26.794	26.833	26.864	26.908	26.944	28.966	26.994
SAL	32.931	32,933	32,933	32.934	32.924	32.984	33.058	33.122	33.207	33.247	33.318	33.428	33.539	33.590	33.638	33.720	33.884	33.970	34.010	34.034	34.028	34.085	34.057	34.057	34.080	34.093	34.104	0.8	4.13		34.208	4.20
TEMP		13.412																								6.328	8.097	5.752	5.708	.65	5.674	.46
PRESS	-	8	10	18	20	26	30	36	40	48	20	60	20	80	06	100	128	150	176	200	226	250	278	300	326	350	376	400	428	450	478	200

0.408 0.111 0.098 0.069 0.077 0.073 0.071 0.088 0.073 0.070 0.072 0.070 0.088 0.283 0.293 0.422 0.473 0.138 0.077 0.072 0.089 0.337 0.311 0.218 0.127 0.087 0.073 0.077 0.077 FLUOR TRANS 0.40 0.39 0.39 0.39 0.49 0.49 0.49 0.50 0.48 0.49 0.41 0.40 PRESS

STATION: 140 LAT: 37 32.2 N LON: 124 58.0 W DATE: 7/10/88

SUM	0.000	0.015	0.028	0.048	0.058	0.076	0.088	0.101	0.110	0.123	0.132	0.153	0.173	0.192	0.211	0.230	0.275	0.314	0.354	0 3 3 0	0.428	0.482	0 498	0.530	0.584	0.595	0.628	0.857	0.888	0.718	0.746	0.772
SVA	308.0	307.8	307.5	307.3	305.0	277.5	249.7	228.8	224.8	219.7	214.2	205.8	198.7	192.5	185.4	180.5	167.4	159.0	150.8	147.1	142.8	140.8	138.1	133.8	129.7	126.7	123.8	120.5	117.5	115.9	113.2	110.4
DENSITY	24.88	24.888	24.869	24.872	24.898	25.188	25.480	25.701	25.744	25.799	25.857	25.949	28.045	28.091	26.187	28.221	26.362	28.454	28.544	28.588	28.637	26.862	28.712	28.742	28.784	26.815	28.851	28.888	26.922	26.941	26.971	27.001
SAL	33.078	33.082	33.084	33.087	33.105	33.208	33.270	33,385	33.410	33.452	33.503	33.555	33.643	33.870	33.712	33.759	33.888	33.923	33.978	34.002	34.078	34.057	34.087	34.100	34.089	34.063	34.102	34.151	34.173	34.177	34.190	4.18
TEMP	13.221	13.210	13.208	13.201	13.142	12.047	10.712	9.943	9.804	9.870	9.554	9.240	9.072	8.911	8.635	8.525	8.154	7.825	7.504	7.338	7.403	7.102	6.910	8.788	6.381	5.977	5.938	0	Θ	8	5.530	€.
PRESS	-	89	10	18	20	28	30	38	40	48	20	09	20	80	06	100	128	150	178	200	226	250	276	300	328	350	378	400	428	450	476	200

0.089 0.808 0.095 0.092 0.072 0.088 0.069 0.088 0.069 0.068 0.068 0.684 0.804 1.220 1.049 0.298 0.170 0.125 0.078 0.071 0.070 0.375 0.279 0.201 0.111 0.241 0.074 0.071 0.074 FLUOR TRANS 0.58 0.58 0.59 0.81 0.68 0.41 0.41 PRESS

STATION:141 LAT: 37 43.5 N LON:125 7.0 W DATE: 7/10/88 TIME:1811Z

SUM	0	0.020	0.034	0.054	0.087	0.087	0.100	0.118	0.130	0.148	0.160	0.190	0.219	0.247	0.273	0.298	0.355	0.402	0.448	0.488	0.529	0.585	0 604	0.638	0.674	0.707	0.741	0.772	0.804	α	0.864	9
SVA	339.1	338.8	338.8	34.	328.0	321.9	316.4	303.9	300.5	300.2	299.7	299.6	279.9	269.9	254.7	238.6	204.5	182.6	170.8	181.5	154.9	150.1	145.2	140.8	137.5	133.4	130.1	128.0	123.1	9	116.9	69
DENSITY	24.5	24.539	24.541	24.592	24.656	24.722	24.780	24.912	24.949	24.953	24.959	24.962	25.170	25.277	25.439	25.610	25.974	26.207	26.336	26.437	26.510	26.565	26.619	26.669	28.705	26.749	26.787	26.810	26.862	26.903	26.936	26.973
SAL	32.601	32.608	32.608	32.619	32.639	32,653	32.670	32.707	32.715	32.712	32.715	32.718	32.832	32.890	33.064	33.237	33.567	33.785	33.874	33.945	34.012	34.048	34.045	34.051	34.070	34.072	34.094	34.084	4.0	4	34.196	4.22
TEMP	13.005	13.012	13.002	12.784	12.533	12.244	12.002	11.443	11.272	11.234	11.215	11.209	10.528	10.166	10.011	9.794	9.143	8.642	8.362	8.059	7.917	7.727	7.347	7.019	8.868	6.545	6.391	6 147	5.791	5.707	5.858	72
PRESS	0	9	10	18	20	28	30	38	40	48	20	0.9	20	80	06	100	128	150	176	200	226	250	278	300	326	350	376	400	428	450	476	

1.028 0.978 1.336 1.001 0.205 0.109 0.193 0.185 0.103 0.105 0.092 990.0 0.590 0.616 1.294 0.073 0.074 0.000 0.073 0.070 0.072 FLUOR 1.084 1.011 0.477 0.074 0.071 0.57 0.46 0.37 0.38 0.35 0.38 0.38 0.37 0.38 0.38 0.35 0.35 0.35 0.35 TRANS 0.58 0.59 0.59 0.35 0.53 0.53 0.55 0.65 0.57 0.54 0.34 PRESS

STATION: 142 LAT: 37 54.6 N LON: 125 13.8 W DATE: 7/10/88

SUM	-	0.023	т.		.07	1.0	0.118	0.139	0.154	0.177	0.192	0.228	0.258	0.288	0.317	0.346	0.415	0.474	0.528	0.573	0.618	0.857	0.698	0.733	0.770	0.804		0 871	.90	.93	996.0	99
SVA	385.2	385.4	385.5	385.7	365.8	386.0	365.6	385.7	385.5	378.1	360.4	329.8	307.1	293.8	288.4	277.8	280.1	224.7	195.3	179.4	167.9	158.4	150.7	145.3		137.3	133.8	129.8	S	4	121.2	116.8
DENSITY	4.050	24.050	24.050	24.050	24.050	24.050	24.055	24.055	24.058	24.138	24.324	24.850	24.888	25.032	25.109	25.204	25.391	25.787	28.080	28.252	26.378	28.477	28.582	28.820	8.87	6.7	3.75	6.79	26.827	3.85	3.8	9.94
SAL	2.54	32.542	2.54	2.54	2.54	2.54	32.547	32.547	32.548	32.572	32.890	32.938	32.989	33.100	33.098	33.152	33.180	33.411	33.683	33.852	33.928	33.958	33.992	34.011	34.027	34.078	34.092	34.108	34.118	4.18	34.195	4.22
TEMP	15.133	15.130	15.130	15.131	15.131	15.132	15.127	15.125	15.114	14.831	15.102	13.723	12.735	12.438	12.013	11.737	10.818	8988	9.047	8.795	8.368	7.844		7.144	8.867	6.858	2	41	6.211	27	6.185	.94
PRESS	0	8	10	18	20	56	30	36	40	48	20	0.9	20	80	0.6	100	128	150	178	200	226	250	276	300	N	3	~	0	428	3	476	0

STATION: 143 LAT: 38 7.2 N LON: 125 24.0 W DATE: 7/11/88

SUM	0.00.0	0.022	0.037	0.080	0.075	0.097	0.112	0.134	0.149	0.172	0.187	0.224	0.280	0.293	0.324	0.353	0.427	0.490	0.550	0.599	0.647	0.888	0.730	0.787	0.808	0.841	0.878		0.945	.97	1.009	1.038
SVA	372.7	373.0	373.1	373.2	373.4	373.5	373.6	373.7	373.7	373.4	373.2	369.0	352.2	313.3	300.4	292.3	275.3	245.9	218.4	190.8	177.0	167.3	157.0	151.4	147.2	144.2	139.6	135.3	131.3	127.3	123.1	120.6
DENSITY	24.1	24.181	24.181	24.181	24.180	24.181	24.181	24.182	24.183	24.188	24.191	24.238	24.416	24.825	24.982	25.049	25.233	25.545	25.858	26.134	26.279	28.385	26.497	28.556	26.805	26.638	28.690	26.736	θ	8.8	26.865	8.8
SAL	32.844	32.844	32.844	32.848	32.845	32.846	32.847	32.849	32.852	32.884	32.869	32.881	32,911	32.989	33.024	33.053	33.122	33.248	33.482	33.727	33.814	33.883	33 967	33.985	34.018	4.01	4.04	4.04	34.034	34.028	34.054	34.077
TEMP	15.593	15.598	15.597	15.807	0	15.604	15.607	15.810	15.815	15.833	15.635	15.488	14.752	12.978	12.490	12.151	11.448	10.236	9.448	8.924	8.423	8.081	7.770	7.341	7.290	7.034	6.818	6.486	6.093	5.718	5.514	
PRESS	0	9	10	18	20	56	30	38	40	48	20	09	20	80	06	100	128	150	178	200	226	250	278	300	328	350	378	400	428	450	476	200

0.109 0.109 0.109 0.109 0.108 0.314 0.268 0.085 0.111 0.111 0.114 0.115 0.119 0.171 0.181 0.200 0.070 0.057 0.059 0.059 0.059 0.082 0.059 0.081 0.082 0.084 0.081 0.081 FLUOR TRANS 0.43 0.43 0.43 0.42 0.41 0.42 0.38 0.37 0.36 0.37 0.37 0.37 0.37 0.38 0.38 0.36 0.36 0.36 0.36 0.41 0.44 0.44 0.44 0.44 0.44 0.44 0.44 PRESS 10 11 16 20 20 30 30 44 40 40 50 60 70 80 80 80 11 20 2228 2228 2228 2228 2320 3320 3320 4400 4400 4526

STATION:144 LAT:38 19.1 N LON:125 33.2 W DATE:7/11/88

LON:125 40.6 W

TIME: 0818Z

30.9 N

STATION: 145 LAT: 38 DATE: 7/11/88

SUM	00.	0.023	.03	.08	~	0.102	0.117	0 141	0.156	0.177	0.192	0.228	0.258	0.288	0.318	0.347	0.419	0.481	0.540	0.587	0.634	0.673	0.714	0.751	0.789	.82	0.859	0.891	0.925	.95	.98	1.018
SVA	391.1	391.3	391.5	391.7	391.8	391.9	391.8	381.5	366.3		354.2	334.3	307.8	299.9	290.8	285.6	270.4	2438	208.7	187.1	171.1	181.3	153.8	149.2	4	140.7	35.	131.8	$^{\circ}$	25.	ò	118.9
DENSITY	33.9	98	3.9	3.98	3.98	က	0	0	24.281	8	24.390	24.801	24.880	24.985	25.083	25.119	25.284	25 589	25.938	26.189	26.342	26.447	26.530	28.580	28.835	26.674	26.729	28.770	28.807	26.842	~	26.909
SAL	2.71	32.712	2.71	2.71	2.71	2.71	2.71	2.85	3.87	98.3	3.96	2.95	2.97	2.90	33.020	3.01	3.13	3.28	3.48	3.89	33.875	3.93	3.99	34.004	33.984	34.015	3.97	Θ	4.0	34.023	4.05	34.067
TEMP	6.00	16.002	0.9	0.0	0.01	-	18.021	16.004	15.872	15.234	15.073	13.922	12.728	12.005	11.944	11.599	11.222	10.157	8.974	8.510	8.327	7.947	7.690	7.390	6.877	6.771	13	5.910		5.501	.47	5.230
PRESS	0	9	10	18	20	56	30	36	40	48	20	09	20	80	0.6	100	126	150	178	200	226	250	276	300	326	350	378	400	428	450	476	200

0.149 0.099 0.108 0.053 0.080 0.089 0.070 0.083 0.073 0.082 0.111 0.300 0.327 0.159 0.087 0.054 0.058 0.055 0.058 0.082 0.059 0.083 0.084 0.080 0.063 0.084 0.481 0.081 FLUOR TRANS 0.42 0.40 0.41 0.39 0.36 0.36 0.36 0.38 0.38 0.35 0.35 0.41 0.41 0.43 0.42 0.42 0.41 0.41 PRESS

STATION:146 LAT:38 42.5 N LON:125 50.0 W DATE:7/11/88

SUM	0	0.019		0.058	0.074	0.097	0.113	0.138	0.152	0.175	0.190	0.225	0.257	0.288	0.317	0.346	0.419	0.480	0.537	0.582	0.626	0.664	0.704	0.739	0 778	0.809	0.844	0.878	0.909	0.939	0.970	0.999
SVA	388.7	388.9	388.0	388.2	389.3	389.4	389.6	389.7	388.8	389.0	359.2	331.7	313.8	299.4	292.3	286.8	271.1	239.8	197.5	177.7	163.7	155.0	148.1	144.4	140.2	136.8	132.7	129.0	125.9	123.2	120.3	117.8
DENSITY	24.0	24.014	24.013	24.013	24.013	24.014	24.014	24.014	24.014	24.024	24.336	24.627	24.819	24.989	25.048	25.108	25.278	25,606	26.055	28.287	26.417	26.511	28.587	28.628	26.874	26.712	28.757	28.797	3	28.882	~	28.922
SAL	5.7	32.710	5.7	32.710	32.710	32.711	32.711	32.711	32.711	32.712	32.723	32.761	32.831	32.880	32.916	32.893	32.990	33.208	33.577	33.753	33.877	33.929	33.981	33.997	33.984	33.993	34.010	34.028	34.039	34.058	4.0	34.093
TEMP	15.883	15.884	15.885	15.885	5.88	5.88	15.887	15.888	15.888	15.843	14.443	13.164	12.457	11.881	11.598	11.155	10.832	9.673	8.872	8.190	7.830	7.461	7.211	7.005	6.587	6.353	8.108	5.899	5.894	3	5.438	S
PRESS	-	9	10	18	20	56	30	38	40	46	20	0 9	7.0	80	06	100	128	150	178	200	226	250	276	300	328	350	378	400	428	450	476	200

0.069 0.449 0.208 0.072 0.088 0.088 0.071 0.239 0.051 0.083 0.083 0.058 0.083 0.083 0.062 0.000 0.097 0.152 0.111 0.051 0.058 0.058 0.082 0.082 FLUOR 0.071 0.111 TRANS 0.41 0.44 0.42 0.42 0.42 0.44 0.42 0.37 0.35 0.35 0.35 0.37 0.37 0.37 0.38 0.38 0.36 0.39 0.37 0.41 0.41 0.41 0.41 0.41 0.41 0.41 PRESS

STATION: 147 LAT: 38 54.1 N LON: 125 58.1 W DATE: 7/11/88 TIME: 1400Z

SUM	0.000	0.019	0.034	0.057	0.072	0.095	0.110	0.133	0.149	0.171	0.187	0.224	0 280	0.293	0.325	0.354	0.427	0.490	0.553	0.804	0.653	0.895	0.738	0.778	0 815	0.850	0.887	91	0.954	98	1.018	.04
SVA	381.3	381.4	381.0	380.8	360.8	380.9	361.0	381.0	381.0	361.1	376.7	366.3	353.8	320.4	301.0	290.7	273.3	251.7	228.8	198.0	180.8	169.4	159.8	154.1	147.2	143.1	3	C	131.1	N	124.6	
DENSITY	24.092	24.093	24.098	24.102	24.102	24.104	24.103	24.105	24.108	24.107	24.154	24.285	24.399	24.750	24.955	25.065	25.252	25.483	25.731	26.058	28.241	28.365	26.489	26.530	26.807	26.852	26.694	26.739	26.778	26.612	26.853	26.692
SAL	32.824	32.825	32.828	32.827	32.82	32.82	32.82	32.82	32.82	32.62	32.79	32.78	32.78	32.79	32.60	32.84	33.02	33.19	33.38	33.679	33.842	33.917	33,980	34.002	34.080	34.075	34.052	34.023	34.004	34.020	34.095	34.082
TEMP	5.92	15.925	5.90	5.89	15.890	15.888	15.885	15.678	15.861	15.858	15.561	14.920	14.384	12.653	11.610	11.194	10.934	10.330	9.778	9.174	8.812	8.394	8.029	7.728	7.512	7.274	ω,	6.324	5.889	.73	5.875	4
PRESS	-	9	10	18					40							00	28		28	0	228	2	\sim	0	2	350	376	400	428	450	476	

FLUOR	0.042	0.048	0.051	0.058	0.082	0.067	0.087	0.071	0.078	0.079	0.092	0.133	0.167	0.226	0.557	0.314	0.101	0.057	0.058	0.080	0.083	0.083	0.061	0.059	0.087	0.064	0.085	0.083	0.059	0.084	0.065	0.084
TRANS	4		4	4	4	4	4	0.40	4	0.40	4	4.			4	4	6	6	3	6	6	6	6	3	6	6	ε.	6	6	3	0.35	6
PRESS	1	9	10					36	40			0.9		80	06	100	128	2	~	200	228	250	~	ō	R	350	~	0	428	450	476	200

STATION: 152 LAT: 38 27.1 N LON: 126 8.5 W DATE: 7/11/88

SUM	0.000	0.023	0.038	0.081	.07	10	1.	13	0.153	Ξ.	0.191	0.229	0.285	0.298	0.330	0.361	0.435	0.498	0 558	0.804	0.651	0.692	0.734	0.771	0.810	0.845	0.882	0.915	0.949	0.980	1.013	1.042
SVA	383.8	383.9	383.2	383.0	383.1	382.5	382.4	382.1	381.6	380.1	379.0	373.2	343.4	330.3	308.7	299.7	270.9	242.5	213.1	188.0	174.3	165.9	157.9	153.2	147.0	143.3	138,5	135.9	131.1	128.1	123.3	120.8
DENSITY	24.06	24.088	24.075	24.078	24.079	24.087	24.088	24.094	24.100	24.117	24.130	24.194	24.508	24.647	24 875	24.970	25.278	25.580	25.894	26.161	26.308	26.401	26.489	26.542	26.609	9	26.701	8		8.8	26.883	6.8
SAL		32.889	2.88	32.883	32.881	32.883	32.882	32.881	32.875	32.872	32.855	32.849	32.820	32.822	32.801	32.812	33.047	33.269	33.539	33.771	33.861	33.942	34.018	34.043	4.0	4.0	34.055	4.03	4.0	4 0		34.059
TEMP	S	18.281	ςŅ	16.188	16.177	16.149	16.139	16.110	16.084	15.977	15.862	15.553	13.979	13.300	12.040	11.569	10.871	10 122	9.502	8.968	8.476	8.283	8.084	7.870	7.481	7.098	8.800	6.475	6.308	5.742	5.470	5.338
PRESS	0	9	10	16	20	26	30	36	40	46	20	09	20	80	90	100	128	150	178	200	228	250	278	300	326	350	378		428	450	478	200

0.085 0.085 0.097 0.205 0.404 0.099 0.058 0.083 0.085 0.088 0.072 0.072 0.144 0.518 0.082 0.082 0.064 0.089 0.068 0.059 0.073 0.071 0.064 FLUOR TRANS 0.41 0.41 0.41 0.41 0.41 0.41 0.40 0.41 0.41 0.40 PRESS

STATION: 153 LAT: 38 15.5 N LON: 125 59.6 W DATE: 7/11/88

SUM	0.000	0.019	0	0.058	0.071	0	0.109	.13	Ξ.	0.169	0.184	0.219	0.252	0.284	0.314	0.342	0.410	0.468	0.524	0.573	0.621	0.864	0.707	0.745	0.784	0.819	0.855	0.888	0.922	0 953	0.985	1.014
SVA	379.2	378.0	375.4	374.8	374.7	374.7	374.8	374.8	374.8	374.7	365.3	341.8	322.9	308.0	288.2	278.8	249.7	228.1	208.9	195.0	181.2	172.8	160.9	153.6	148.5	142.5	~	133.5	129.3	125.7	rv.	119.0
DENSITY	24.1	24.128	24.158	24.166	24.187	24.188	24.170	24.170	24.172	24.174	24.273	24.521	24.721	24.880	25.079	25.211	25.499	25.752	25.937	28.087	26.235	28.328	26.455	26.533	26.612	26.658	26.705	28.751	26.799	8.8	28.870	6.9
SAL	32.804	2.61	8	32.709	32 712	32.728	32.733	32.727	32.725	32.703	32.644	32.602	32.652	32.803	32.956	33.024	33.205	33.403	33.584	33.674	33.758	33.871	33.930	33.982	34.019	34.032	34.005	34.004	34.052	4.08	4.05	4.0
TEMP	5.0	15.040	15.088	15.190	15.197	15.248	15.257	15 235	15.221	15.133	14.457	13.079	12.244	12.020	11.588	11.148	10.305	9.720	9.357	8.954	8.414	8.396	7.854	7.801	7.244	7.000	6.482	8.118	8.038	5.920		5.360
PRESS	-	80	10	18	20	28	30	36	40	46	20	09	20	90	9.0	100	126	150	178	200	226	250	278	300	328	350	376	400	426	450	476	200

0.075 0.082 0.088 0.087 0.084 0.087 0.085 0.083 0.068 0.088 0.070 0.087 0.100 0.103 0.110 0.159 0.455 0.367 0.325 0.311 0.194 0.065 0.083 0.065 0.084 FLUOR TRANS 0.42 0.42 0.42 0.42 0.42 0.48 0.48 0.43 0.41 0.40 0.35 0.38 0.38 0.38 0.38 0.38 0.38 0.35 0.35 0.35 0.35 0.35 0.44 0.43 0.43 PRESS

STATION:154 LAT: 38 3.4 N LON:125 50.9 W DATE: 7/11/88

SUM	0	0.023	(,,)	0.081	0.075	960.0	0.110	0 131	0.144	0.184	0.176	0.207	0.238	0.264	0.291	0.317	0.378	0.424	0.474	0.517	0.561	0.598	0 637	0.672	0.708	0.740	0.775	0.808	0.638	0.888	0.699	.92
SVA	387.3	384.9	378.8	359.2	354.9	350.8	348.8	345.8	332.9	318.9	312.6	297.6	284.1	275.7	263.0	247.7	208.7	196.3	165.2	174.8	159.9	152.7	147.4	141.4	138.1	133.4	130.5	127.4	125.1	122.1	119.4	118.1
DENSITY	24.0	24.055	24.120	24.328	24.374	24.418	24.443	24.478	24.610	24.779	24.825	24.983	25.128	25.217	25.353	25.518	25.931	26.085	26.187	26.301	26.459	26.538	26 597	26.661	26.717	26.748	26.783	8.8	8.8	28.877	6.9	6.92
SAL	32.608	32.600	32.578	32.548	32.581	32.578	32.578	32 569	32.770	32.814	32.808	32.812	32.630	32.899	33.144	33.223	33.607	33.725	33.800	33.878	33.985	34.007	34.048	34.081	34.037	34.048	34.101	34.137	34.140	34.127	34.147	34.147
TEMP	5.4	.31	14.934	13.634	13.655	13.493	13.379	13.258	13.288	12.598	12.325	11.498	10.773	10.580	10.873	10.291	9.603	9.344	8.951	8.597	6.123	7.704	7 508	7.131	6.577	6.397	6.460	.40	6.216	5.885	77	5.641
PRESS	0	9	10	18	20	26	30	36	40	48	20	09	20	80	06	100	128	150	178	200	226	250	278	300	328	350	378	400	428	450	476	200

0.235 0.397 0.105 0.081 0.495 0.201 0.178 0.138 0.085 0.089 0.073 0.048 0.088 1.435 0.187 0.161 0.078 0.070 0.078 0.072 0.079 0.287 0.834 0.994 0.951 0.072 FLUOR TRANS 0.38 0.38 0.41 0.51 0.53 0.55 0.54 0.41 0.42 0.41 0.38 0.47 0.41 0.40 0.37 0.34 0.35 0.34 0.38 PRESS

STATION:155 LAT:37 51.3 N LON:125 42.4 W DATE:7/11/88

SUM	. 0	0.015	.02	0.	2	0.074	0.084	0.098	0.108	0.122	0.131	0.153	0.175	0.198	0.218	0.238	0.283	0 324	0.385	0.402	0.440	0.474	0.510	0.542	0.577	0.607	0.840	689 0		0.729	0.758	8
SVA	317.2	302.8	301.1	299.3	288.4	258.2	250.1	238.0	231.7	229.3	228.3	218.5	214.0	208.8	198.0	191.2	178.1	162.9	155.1	148.1	144.3	140.7	136.4	133.8	129.8	128.8	123.7	121.1	118.1		112.3	109.4
DENSITY	24.7	24.919	24.936	24.958	25.071	25.390	25.478	25.828	25.872	25.898	25.709	25.814	25.883	25.921	28.035	26.108	28.271	28.415	28.500	28.577	28.620	28.880	28.707	28.740	28.782	26.818	28.850	26.878	26.909	6	28.977	0.
SAL	3.0	07	33.0	33.12	33.14	33.2	33.30	C	33.409	33.417	33.416	33.488	33.532	33.522	33.808	33.689	33,798	33,958	33.983	34.018	34.044	34.044	34.033	34.085	34.087	34.075	34.097	34.074	34.071	34.148	34.152	2.2
TEMP	13.731	CV	12.832	12.924	12.402	11.183	10.878	10.413	10.228	10.109	10.038	9.643	9.857	9.250	8.952	8.832			7.831		7.328	7.041	8.832	8.572	8.288	6.033	5.911	5.541	5.255	5.480	5.229	5.280
PRESS	-	9							40								128	150	178	200	226	250	278	300	328	350	378	400	428	450	476	200

0.269 0.288 0.234 0.196 0.177 0.089 0.070 0.888 0.849 0.389 0.083 0.073 0.069 0.718 1.079 1.212 3.817 2.648 1.142 0.511 0.104 0.102 0.084 0.087 0.077 0.078 0.072 0.074 FLUOR TRANS 0.35 0.35 0.35 0.70 0.59 0.50 0.49 0.46 0.41 0.40 0.38 0.37 0.36 0.36 0.38 0.74 1.44 0.72 0.44 0.41 0.41 PRESS 400 428 450 476 500

STATION: 156 LAT: 37 39.7 N LON: 125 33.4 W DATE: 7/12/88 TIME: 0111Z

SUM	0	.01	0.027	.04	0.055	0.073	0.084	0.101	0.113	0.129	0.141	0.167	0.192	0.215	0.238	0.260	0.312	0.357	0.401	0.439	0.479	0.514	0.552	0.588	0.821		0.688	0.718	.74	77	0.807	
SVA	303.8	298.2	291.2	288.0	285.5	285.4	285.3	284.8	283.8	281.1	279.1	253.2	239.1	232.4	220.8	211.5	194.1	173.8	164.9	155.8	149.0	148.7	142.9	138.2	133.7	130.2	126.8	124.8	121.2	117.8	114.1	111.9
DENSITY	6.4	4.98	25.039	25.095	26.101	25.104	25.108	25.113	25.128	25.154	25.175	25.449	25.599	25.872	25.798	25.898	28.083	28.300	26.397	26.499	26.572	26.800	26.641	26.894	28.742	28.783	28.821	26.843	26.883	8.91	26.954	28.983
SAL	32.777	32,800	2 81	32.833	32.838	32.837	32.838	32.840	32.848	32.844	32.856	33.081	33.288	33.378	33.482	33.604	33.877	33.838	33.934	34.009	34.038	34.045	$\overline{}$	34.094	34.058	34.100	34.121	34.111	34.124	34.091	34.075	4.14
TEMP	11.775	11.432	11.213	10.983	10.943	10.932	0.2	10.895	10.848	10.680	10.611	9.938	9.888	10.073	9.721	9.799	9.000	8 412	8.285	7.980	7.625	7.479	7.037	7.079	5	6.460	8	6 058	8	5.309	4.897	5.133
PRESS	1	9	10	18	20	26	30	36	40	46	20	0 9	20	8.0	06	100	128	150	178	200	226	250	278	300	328	350	376	400	428	450	476	200

0.183 0.308 0.385 0.290 0.108 2.346 0.237 0.109 0.082 0.090 2.250 2.188 2.299 1.920 0.073 0.068 1.721 2.318 1.727 0.195 0.075 0.077 0.070 0.084 FLUOR TRANS 0.68 0.38 0.44 0.39 0.36 0.36 0.37 0.35 0.35 0.35 0.35 0.35 0.34 0.40 0.71 0.75 0.78 0.78 0.80 0.71 0.61 0.44 0.74 PRESS

STATION: 955 LAT: 37 44.8 N LON: 125 37.0 W DATE: 7/12/88 TIME: 02182

SUM	0	0.022	0.037	.05	0.073	0.095	0.109	0.130	0.142	0.159	0.169	0.194	0.218	0.240	0.281	0.279	0.325	0 384	0.404	0 440	0.477	0.511	0.545	0.577	0.810	0.840	0.872	0 701	0.733		0.792	0.820
SVA	365.8	365.8	365.8	365.9	364.9	362.8	358.2	328.3	287.9	263.1	256.7	243.8	228.8	213.5	197.1	180.0	169.5	158.1	151.8	148.8	140.5	135.5	131.8	128.8	128.1	124.5	123.0	21.	20	19	118.7	15.
DENSITY	24.25	10	24.257	24.258	24.289	24.295	24.342	24.857	25.081	25.343	25.411	25.550	25.707	25.870	26.044	26.226	26.340	26.488	26.537	26.572	26.660	26.715	26.757	26.794	28.823	26.643	26.861	26.878	26.894	26.910	26.937	26.953
SAL	0.1	32.824	-	32.821	_	32.810	0.1	32,933	33.119	33.208	33.213	33.218	33,337	~	33.641	\sim	\sim	•	~	0.1	34.053	•	0.1	-	34.159	(0		4.17	4.1		34.198	5.2
TEMP	5.179	184	5.173	15.185	15.090	14.952	14.795	13.678	12.252	11 203	10.852	10.058	9.680		9.068			1.179	72	1 8		955	782		505	405	6	6.193		00	5.855	.79
PRESS	0	9	10	18	20	26	30	36	40	46	20	60	20	80	06	100	128	150	176	200	226	5	\sim	300	CV.	350	376	400	426	450	476	200

FLUOR	0.234	0.212	0.197	0.188	0.188	0.157	0.208	0.435	0.539	0.819	0.494	0.270	0.104	0.108	0.092	0.078	0.087	0.071	0.088	0.087	0.073	0.072	0.071	0.073	0.073	0.074	0.079	0.071	0.077	0.071	0.074	0.084
TRANS	4	4	4	4	4	4	4.	4.	0.50	4.	4.	4.	3	9	6	6	6	t3	6	6	9	6	3	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34
PRESS	0	9		18					40				20		06						S.	10									478	200

STATION: 157 LAT: 37 27.6 N LON: 125 24.2 W DATE: 7/12/88

SUM	0.000	0.022	0.038	0.057	0 072	0.093	0.108	0.125	0.137	0.155	0.166	0.193	0 219	0.243	0.268	0.287	0.337	0.378	0 420	0.457	0.496	0.531	0.567	0.601	0.838	0.667	0.700	0.730	0.782	.79	0.821	.64
SVA	358.8	359.0	359.2	357.3	353.4	350.1	318.7	307.0	299.3	285.3	281.0	266.4	249.2	232.9	222.5	205.7	178.0	165.1	156.4	151.4	147.1	143.2	139.7	138.4	132.6	129.1	128.2	123.4	120.2	117.5	114.8	112.7
DENSITY	24.32	24.328	24.327	24.347	24.390	24.426	24.758	24.880	24.962	25.110	25.155	25.311	25.493	25.887	25.777	25.956	28.252	26.391	26.487	28.542	26.591	26.635	26 676	26.713	28.755	26.795	26.827	28.859	26.885	26.925	26.958	26.961
SAL	2.85	2.85	2.8	2.8	2.85	2.8	2.84	2.79	$\overline{}$	2.98	32.948	2.98	33.149	33.303	33 390	33.555	33.804	33.889	33.990	34.000	34.007	34.072	34.089	34.081	34.134	34.132	34.126	34.137	34.166	34.180	34.206	34.219
TEMP	14.957	14.959	14.959	14.845	14.662	14.466	12.827	11.985	11.645	11 435	11.130	10 395	10.086	9.785	9.503	9.198	6.551	8.073	7.980	7.633	7.332	7.378	7 181	8.871	8.888	6.555					5.738	
PRESS	0	9	10	18	20	26	30	36	40	48	20	00	20	80	0.6	100	126	150	178	200	226	250	276	300	328	350	378	400	428		476	200

0.174 0.099 0.076 0.074 0.081 0.710 0.068 0.088 0.070 0.145 0.140 0.190 0.323 0.564 0.084 0.072 0.069 0.088 0.068 0.152 0.070 0.081 0.071 0.072 FLUOR 0.48 0.43 0.43 0.43 0.42 0.48 TRANS 0.43 0.43 0.41 PRESS

STATION: 158 LAT: 37 17.2 N LON: 125 15.6 W DATE: 7/12/88 TIME: 0706Z

SUM	0	0.018	0.033	0.055	0.070	0.092	0.106	0.128	0.142	0.181	0.171	0.194	0.214	0.234	0.252	0.270	0.313	0.351	0.390	0.428	0.463	0.498	0.532	0.585	0.599	0.630	0.862	1690	0.721	0.749	0.778	0.804
SVA	370.0	389.9	370.1	385.0	384.5	364.1	381.7	357.8	351.0	272.9	238.8	215.2	197.8	190.1	178.7	173.9	180.4	154.3	149.1	144.5	140.5	138.9	137.5	134.5	129.1	125.4	122.9	119.3	118.1	113.3	109.8	108.0
DENSITY	24.2	24.213	24.212	24.287	24.273	24.280	24.308	24.351	24.421	25.240	25.822	25.848	28.035	28.118	26.238	28.290	26.438	28.504	28.582	26.813	26.660	28.681	26.699	28.732	28.791	26.830	8.8	8.8	8.9	8.9	26.939	7.0
SAL	32.873	32.878	32.874	2.83	32.832	32.830	32.823	32.817	32.850	33.217	33.361	33.485	33.837	33.703	33.809	33.856	33,958	33.992	34.010	34.041	34.098	34.110	34.118	34.100	34.115	34.085	34.062	34.081	34.098	4.1	34.143	য
TEMP	15,563	15.563	15.559	15.154	15 132	15.096	14.949	14.719	14.509	11.811	10.300	9.524	9.102	8.918	8.868	8.568	6.130	7.852	7.551	7 301	7.348	7.268	7.173	6.838	6.484	6.001	5.638		5.237	5.131	4.970	4.969
PRESS		9	10	18	20	26	30	36	0 +	48	20	09	20	80	06	100	126	150	178	200	226	250	278	300	328	350	376	400	426	.450	476	200

FLUOR	24	23	23	.22	24	25	.28	28	38	50	43	.20	0.8	.07	.07	90.	0.5	.08	.07	.08	.07	.07	.08	.08	90.	90.	90.	90.	0.0	0.8	0.068	0.0
TRANS	0.44	0.44	0.44	0.44	0.44	0.43	0.43	4	0.42	4	4	3	3	3	3	6	6	0.35	6	0	0.34	E	6	3	60	63	0.34	3	m	m	0.33	m
PRESS	1	89		16								0.9				0	N	150	~	ō	3	S	~	ō	Q	350	378	ō	428	S	476	ō

STATION: 159 LAT: 37 12.6 N LON: 125 44.0 W DATE: 7/12/88

SUM	0	0.018	0.030	0.	0	0.077	08	10	0.114	12		0.163	0.185	0.208	0.228	0.244	0.290	0.329	0.370	0.408	0.444	0.478	0.515	0.547	0.582	0.613	0.648	0.678	0.707		0.765	79	
SVA	308.1	304.9	299.0	297.5	288.7	279.7	287.8	280.5	258.8	247.9	244.8	231.4	214.8	2002	189.7	181.0	168.2	159.5	153.9	149.8	144.4	140.9	137.8	134.3	131.3	128.1	125.0	ci.	119.3	\sim	113.7	0	
DENSITY	24.86	4.8	4.95	24.875	25.089	25.184	25.290	25.388	25.410	25.502	25.538	25.679	25.857	28.005	28.122	28.215	28.354	26.450	26.512	26.559	26.619	26.858	26.697	26.735	26.768	26.804	26.839	28.872	26.904		28.966	6.9	
SAL	2.91	.91	2.83	32.938	32.91	32.90	3	33.10	33.13	33.20	33.23	33.32	33.48	33.622	33.708	33.771	33.863	33.943	33.982	34.028	34.019	34.051	34.082	34.092	34.102	0	34.123	-	34.185	34.175	34.191	4.2	
TEMP	12.467	12.407	CV	12.082	11.473	10.904	10.633	10.592	10.499	10.302	10.217	9.801	9.474	9.218	8.904	8.624	8.184	7.962	7.743	7.880	7.200	7.095	6.991	8.773	8.580	6.262	6.161	0	Θ	78	5.575	33	
PRESS	0	8	10	18	20	28	30	38	40	48	20	0.9	20	80	06	100	128	150	178	200	226	250	278	300	328	350	376	400	428		476		

STATION: 160 LAT: 37 23.5 N LON: 125 52.9 W DATE: 7/12/88

FLUOR	0.807	30	0.593	0.807	1.214	1.413	0.548	0.273	0.472	0.291	0.129	0.098	0.198	0.205	0.132	0.171	0.092	0.073	0.089	0.071	0.068	0.085	0.080	0.089	0.087	0.172	0.085	0.088	0.069	0.069	0.065	0.089
TRANS	0.58			0.53				0.40	0.38	63	ε.	Б.	6		3	ε.	ш.	3	3	6	6		6	6			3				0.34	
PRESS	0	9		16	20	26	30	38	40	48	20	80	20	80	06	100	128	150	178	200	228	250	~	300	328	10	378	400	428	2	478	õ

SUM	0.000	0.018	0.030	0.047	0.058	.07	0.083	0.098	0.107	0.121	0.130	0.152	0.173	0.193	0.212	0.231	0.277	0.317	0.358	0.394	0.433	0.488	0.505	0.538	0.573	0.604	0.637	0.667		0.727	75	0.784
SVA	305.1	301.5	295.4	270.4	282.3	252.9	248.5	234.5	233.1	225.8	223.3	214.5	203.4	196.8	190.2	183.8	171.7	181.9	153.9	149.3	147.1	143.7	140.2	138.7	132.1	129.2	125.4	122.8	119.0	117.0	114.1	111.9
DENSITY	24.8	24.931	24.998	25.260	25.345	25.446	25.513	25.841	25.857	25.735	25.781	25.858	25.974	26.045	26.117	26.186	26.317	28.424	26.512	28.585	26.592	28.830	28.869	26.708	26.761	26.792	26.832	26.861	28.902	26.928	26.963	26.987
SAL	33.055	33.130	33,153	33.188	33.169	33.227	33.280	33.355	33,380	33.407	33,452	33.430	33.551	33.620	33.704	33.777	33.835	33.849	34.000	34.030	34.035	34.051	34.044	34.054	34.099	34.078	34.089	34.078	34.090	34.115	34.194	4.20
TEMP	12.979											.211			8.917													4	.441	4	5.621	4
PRESS	0	9	10	16	20	26	30	38	40	48	20	60	20	80	00	100	126	150	178	200	228	250	278	300	328	350	376	400	428	450	~	200

0.089 0.408 0.342 0.138 0.137 0.065 0.080 0.068 0.088 5.000 2.922 1.438 0.920 0.783 0.133 0.117 0.072 0.079 0.073 0.073 0.071 0.000 FLUOR TRANS 1.68 0.50 0.48 0.43 0.40 0.39 0.37 0.36 0.36 0.35 0.35 0.35 0.45 0.44 0.34 0.34 0.34 0.34 PRESS 400 450 478 500

STATION: 161 LAT: 37 33.9 N LON: 126 0.6 W DATE: 7/12/88

SUM	0	-	0.035	0.058	0.073	960.0	0.112	0.134	0.148	0.187	0.180	0.211	0.240	0.268	0.295	0.321	0.382	0.432	0.483	0.527	0.571	0.810	0.850	0.686	0.723	0.757	0.792	0 824	0.858	88	0.920	.94
SVA	387.5	387.8	387.5	383.9	383.8	383.3	382.4	354.5	334.4	321.8	312.4	300.0	288.5	277.4	285.5	253.2	214.8	203.3	187.9	177.8	165.3	157.5	150.4	148.1	141.8	138.3	134.8	131.2	128.5	124.8	21.	119.4
DENSITY	4.08	24.027	02	08	.07	24.077	24.089	24.382	24.594	24.727	24.827	24.960	25.103	25.201	25.328	25.459	25.887	25.992	28.158	28.289	28.402	28.488	28 584	26.813	26.881	28.701	26.740	28.778	28.808	8.84	26.887	8.9
SAL	2.57	32.573	2.5	2.59	32.598	01	32.812	32.774	32.824	2.8	2.80	3.98	98.5	33.117	3.17	3.18	3.58	3.68	33.788	3.81	33,929	3.98	4.01	4.04	34.049	4.0	34.053	34.088	34.088	34.090	34.158	4.1
TEMP	15.347	15.347	15.340	15.233	15.218	15.218	15.202	14.412	13.572	12.835	12.289	12.261	11.812	11.805	11.131	10.471	9.805	9.594	9.083	8.510	8.209	7.905	7.545	7.380	7.084	6.837	5.	3	8.007	5.888	6.007	.62
PRESS	-	9	10	18	20	56	30	36	40	48	20	80	20	80	06	100	128	150	178	200	226	250	278	300	326	350	378	400		450	476	200

FLUOR	0.065	0.072	0.073	0.029	0.083	0.084	0.087	0.182	0.133	0.184	0.237	0.287	0.303	0.232	0.153	0.109	0.536	0.210	0.217	0.118	0.111	0.245	0.080	0.083	0.073	0.075	0.071	0.073	0.069	0.073	0.070	0.083
TRANS	0.45	0.45	0.45	0.45	0.45	0.45	0.48	0.48	0.44	0.45	0.48	0.45	0.43	0.41	0.39	0.39	0.45	0.44	0.44	0.42	0.42	0.41	0.40	0.39	0.39	0.38	0.39	0.38	0.38	0.38	0.38	0.37
PRESS	1	89			20		30	38	40	48	20	80		80	06	100	128	150	178	200	228	250	278	300	328	350	378	400	428	450	~	200

STATION: 162 LAT: 37 47.2 N LON: 126 9.7 W DATE: 7/12/88

FLUOR	m	~	6	0.089	B	0	0	\sim	0.140	0.149	0.188	0.242	0.197	0.208	0.270	0.467	0.139	0.081	0.058	0.058	0.063	0.088	0.085	0.084	8	ω	0.082	10	8	0.085	m	õ
TRANS	0.49		4	0.50	S	2	S		0.49	0.50	2	0.50	0.48	0.48	0.48	4	0.42	0.41	0.41	0.41	0.41	0.42	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41
PRESS	-	8		18	20		30	38	40		20		20	80	9.0	ō		150	~	200	228	250	~	0	328	350	~	400	428	450	~	200

STATION: 163 LAT: 37 59.1 N LON: 126 17.4 W DATE: 7/12/88 TIME: 1730Z

SUM	0.00.0	0.012	0.019	0.031	0.038	0 049	0.057	0.068	0.075	0.088	0.094	0.112	0.129	0.145	0.161	0.177	0.218	0.255	0.295	0.304
SVA	193.3	192.7	190.5	187.8	187.4	186.4	185.7	185.1	184.9	184.4	184.2	176.1	168.8	161.4	160.4	159.1	155.8	153.1	152.3	152.3
DENSITY	26.068	26.074	28.098	26.128	26.133	26.145	26.153	26.161	28.184	26 170	26.173	26.259	28.359	26.417	26.431	26.445	26.487	28.517	28.529	28.631
SAL	33.789	33.790	33.801	33.828	33.834	33.846	33.847	33.849	33.849	33.848	33.847	33.869	33.934	33.969	33 988	33.994	34.016	34 034	34.039	34.041
TEMP	9.635	9.599	9 5 0 5	9.454	9 451	9.436	9.391	9.353	9.335	9.292	9.270	8.831	8.519	8.315	8.328	0.260	8.099	7.990	7.933	7.932
PRESS	0	8	10	16	20	56	30	36	40	46	20	09	20	80	06	100	126	150	178	182

FLUOR	4.271	4	4.322	4.859	4.471	4.478	4.127	4.099	4.018	3.863	3.558	0.684	0.159	0.180	0.139	0.130	0.128	0.128	0.136	0.139
TRANS	1.31	1.31	1.28	1.27	α	1.29	N	2	$\overline{}$	0	0	50	0.44	4	0.47	4	0.52	2	0.88	0.88
PRESS	0	90		1.6														150	178	182

STATION: 201 LAT: 38 11.3 N LON: 123 22.5 W DATE: 7/13/88 TIME: 0823Z

SUM	00	\leftarrow	0.1	03	03	0	05	0	07	0	0	11	0 130	0.147	0.184	0.180	0.221	0.259	0.299	0.338	0.374	.40	4.4	0.481	.51	0.550	58	61	65	8	0.713	74	
SVA	98.	197.6	97.	8	0	190.0	83	Θ	35	84	8	8	74	169.1	8	31	22	55	5	4.9	48	45	41	140.5	37	35	33	32	27	25.	121.4		
DENSITY	28.01	26.023												26.337	26.381	26.423	28.470	26 494	26.513	26.559	26.580	26.618	26.654	26.672	26.708	26.728	26.760	26.788	26.819	26.846	26.891	\vdash	
SAL	~	33.737	~	m	~	\sim	33.605	33.841	33.646	33.649	33.845	10		33.934	2	7~		_	~	~	10	m		_	\sim	3	-4	4.14	34.185	34.177	34.192	₹.	
TEMP	9.701	9.658	9.643	9.538	9.509	9.462	9.442	9.360	9.347	9.328	9.309	9.252	8.837	6.659	6.459	8.304	8.161	8.028	8.015	7.895	7.712	7.463	7-415	7.342	7,158	7.058	6.	8.	.57	.43	6.182	.08	
PRESS	1	8	10	18	20	56	30	36	40	46	20	80	20	8.0	9.0	100	126	150	178	200	226	250	276	300	328	350	376	400	428	450	476	0	

0.098 0.097 0.099 0.077 3.867 2.810 2.879 0.103 0.093 0.083 4.007 3.815 3.543 2.221 0.094 0.084 0.078 0.083 0.083 0.082 2.297 2.551 0.074 0.077 0.074 0.078 0.074 FLUOR TRANS 1.13 1.12 1.09 0.93 0.92 0.91 0.90 0.40 0.40 0.39 0.48 0.48 0.49 0.42 0.41 0.39 0.39 0.40 PRESS

STATION: 202 LAT: 38 10.1 N LON: 123 31.9 W DATE: 7/13/88 TIME: 0941Z

SUM	0.00.0	0.011	0.018	0.029	0.038	0.046	0.053	0.084	0.071	0.081	0.088	0.105	0.122	0.138	0.155	0.172	0.213	0 250	0.288	0.323	0.360	0.393	0.429	0.462	0.497	0.529	0.583	0 594	0.828	0.658	0.69.0	0.719
SVA	183.7	183.5	177.5	178.0	174.8	174.0	173.8	173.7	173.5	172.4	171.5	168.3	167.7	167.3	166.4	163.0	155.6	150.2	148.7	142.2	140.3	137.7	137.3	135.2	134.6	132.8	131.8	129.3	26.	2	123.0	23
DENSITY	8.16	26.171	26.235	26.253	26.268	26.276	26.278	26.281	26.283	26.296	26.306	26.341	28.350	26.356	26.368	26.405	26.487	28 547	26.587	26.638	26.682	26.692	26.702	28.727	28.737	26.758	26.774	26 801	26.833	8.88	26.875	6.9
SAL	3.8	æ.	3.88	33.891	33.898	33.904	33.907	33.911	33.914	33.921	33.927	33.951	33.959	33.983	33.970	33.988	34.021	34.039	34.083	34.081	34.086	34.108	34.114	34.125	34.131	34.137	34.150	34.159	34.169	34.184	4.18	34.200
TEMP	9.335	9.317	9.050	8.984	8.910	8.903	9.0	8.906	8.904	8.858	8.824	8.718	8.701	8.682	8.645	8.497	6.123	7.814	7.664	7.408	7.266	7.173	7 141	7.023	6.982	6.862	6.817	6.672	6.493	3	6.275	.12
PRESS	0	9	10	16	20	26	30	36	40	48	50	09	20	80	06	100	126	150	176	200	226	250	276	300	326	350	376	400	428	450	476	200

FLUOR	2.873	2.904	2.435	2.589	2.128	2.235	1.997	2.495	2.128	2.198	1.981	1.727	1.887	1.826	1.324	1.131	0.383	0.099	0.110	0.079	0.082	0.081	0.080	0.079	0.113	0.081	0.095	0.093	0.097	0.130	0.102	10
TRANS	1.04	1.04	1.01	0.93	0.92	0.92	0.89	06.0	0.91	0.89	0.87	0.84	0.85	0.83	0.77	0.73	0.85	0.47	0.41	0.40	0.39	0.39	0.39	0.39	0.42	0.39	0.41	0.41	0.42	0.48	0.43	0.42
PRESS	0	8				28			40	48	20	80	20	80	06	0	CV2	S	178	0	228	250	\sim	300	328	2	~	ō	428	450	478	ō

STATION: 203 LAT: 38 21.6 N LON: 123 36.9 W DATE: 7/13/88 TIME: 1136Z

SUM	0.000	0.011	0.019	0.030	0.037	0.048	0.055	0.085	0.072	0.082	0.088	0.104	0.120	0.138	0.152	0.167	0.205	0.241	0.279	0.314	0.315
SVA	192.3	187.3	183.5	180.3	178.4	175.8	174.1	169.8	169.2	183.1	163.5	160.7	160.8	156.5	149.8	149.8	148.2	146.3	146.6	146.4	146.3
DENSITY	28.078	26.132	28.172	26.208	26.229	26.256	26.278	26.322	26.329	26.394	26.391	26.422	26 422	26.470	26.541	26.543	28.584	26.588	26.589	26.598	28.596
SAL	33.794	33.838	33.866	33.892	33.905	33.922	33.934	33.957	33.962	33.991	33.892	34.003	33.996	34.013	34.045	34.048	34.064	34.074	34.075	34.078	34.078
TEMP	9.598	9.466	9.364	9.270	9.204	9.113	9.052	8.875	8.851	8.582	8.608	8.459	8.423	8.197	7.887	7.879	7.833	7.723	7.717	7.889	7.684
PRESS	0	9	10	18	20	26	30	36	40	48	20	09	2.0	80	06	100	128	150	178	200	201

 PRESS
 TRANS
 FLUOR

 0
 1.15
 3.257

 6
 1.16
 3.509

 10
 1.13
 3.425

 10
 1.12
 3.259

 20
 1.05
 2.829

 26
 1.05
 2.612

 30
 1.00
 2.185

 36
 0.89
 1.916

 40
 0.86
 1.619

 40
 0.74
 1.041

 50
 0.75
 1.125

 60
 0.68
 0.997

 70
 0.68
 0.997

 70
 0.48
 0.112

 100
 0.46
 0.112

 100
 0.46
 0.112

 126
 0.47
 0.105

 176
 0.59
 0.112

 200
 0.59
 0.112

 200
 0.59
 0.112

 201
 0.59
 0.110

 201
 0.59
 0.110

 201
 0.105
 0.1105

STATION: 204 LAT: 38 34.1 N LON: 123 39.1 W DATE: 7/13/88 TIME: 1318Z

SUM	0.000	0.	0.022	0	0	0.082	9	0	0.094	0.108	0.114	0.134	0.152	0.171	0.189	0.207	0.252	0.292	0.333	0.370	0.409	0.445	0.482	0.517	0.554	0.589	0.625	0.657	0.892	0.722	0.754	0.783
SVA	249.1	248.8	247.4	244.9	243.9	243.5	242.2	220.3	213.5	204.9	199.2	188.1	183.4	182.9	181.0	179.1	187.7	162.9	156.8	151.2	148.4	146.6	144.3	144.3	144.0	140.5	137.1	133.9	129.8	25.		20.
DENSITY	25.4	25.488	25.500	25.527	25.539	25.544	25.559	25.790	25.883	25.954	26.015	26.134	26.185	28.192	28 214	26.235	28.359	28.414	26.484	28.548	26.578	26.601	28.829	28.833	28.840	26.679	26.718	26 754	26.798	28.848	26.886	26.905
SAL	3	35	3.3	3.38	3.39	33.387	3.38	3.40	3.4	3.59	3.65	3.78	33.817	3.82	33.839	3.85	3.89	5	34.020	34 047	34.063	34.075	34.088	34.088	34.082	34.099	34.114	4.1	34.122	34.140		34.140
TEMP	11.055	0	11.000	10.941	10.925	10.863	10.669	9.511	9.484	9.385	9.304	9.204	9.044	9.030	8.968	8.905	8.295	8 279	8.141	7.884	7.727	7.638	7 502	7.481	7.403	7.218	7.023	6.784	6.472		5.939	5.748
PRESS	1	9	10	16	20	28	30	36	40	46	20	0.8	20	80	06	100	128	150	178	200	226	250	276	300	326	350	376	400	428	450	476	200

2.654 2.781 3.214 3.408 0.181 0.305 0.095 0.422 0.403 0.168 0.199 0.102 0.107 0.077 3.624 2.800 0.483 0.154 0.509 0.118 0.073 3.421 0.481 0.077 FLUOR TRANS 0.92 1.03 1.01 0.87 0.52 0.49 0.53 0.54 0.45 0.61 0.82 0.62 0.84 0.62 0.51 0.40 0.44 0.44 0.44 0.44 PRESS 400 450

STATION: 205 LAT: 38 33.1 N LON: 123 45.4 W DATE: 7/13/88 TIME: 1418Z

SUM	00.	0.013	.02	.03	0.4	8	0.7	08	0.097	0.111	0.120	0.143	0 168	0.187	0.208	0.228	0.275	0 318	0.358	0.398	0.437	0.474	0.513	0.548	0.585	0.618	0.853	0.685	0.719	0.750	0.782	0.811
SVA	269.7	288.2	261.3	248.9	248.2	241.2	239.5	237.3	235.5	231.1	230.0	226.5	221.1	211.8	202.8	194.6	170.3	164.5	161.3	156.1	155.2	152.1	148.2	143.8	140.0	\sim	4	Q	8	2	122.2	o o
DENSITY	25.26	25.281	25.354	25.488	25.515	25.569	25.587	25.811	25.631	25.679	25.691	25.730	25.789	25.689	25.964	26.074	26.333	26.398	26.438	28.474	26.509	26.544	26.589	26.640	28.882	~	~	~	26.812	m	8	26.914
SAL	33.278	33.280	33.288	33.295	33.296	33.319	33.337	33.358	33.373	33.414	33.423	33,435	33.493	33.567	33.632	33.715	33.920	33 967	33.992	34.020	34.036	34.050	34.075	34.094	34.114	34.097	34.118	34.109	34.138	4.1	34.127	34.153
TEMP	6	11.857	4	10.789	10.827	10.418	10.393	10 339	10.299	10.210	10.178	10.003	9.922	9.669	9.393	9.243	8.613	8 433	6.312	8.207	8.065	7.889	7.718	7.485	7 283	6.979	8.878	6.612	7	6.252	5.867	5.755
PRESS	-	8	10	18	20	26	30	36	40	48	20	0 9	20	0.9	06	100	126	150	178	200	226	250	278	300	328	350	376	400	428	450	476	200

STATION: 206 LAT: 38 44.2 N LON: 123 52.8 W DATE: 7/13/88 TIME: 16192

1.250 0.745 1.374 0.817 0.180 0.135 0.126 0.110 0.092 0.523 0.898 0.828 1.199 0.858 0.087 0.083 0.081 0.078 0.072 0.914 0.081 0.073 0.211 0.074 0.075 0.075 0.80 0.58 0.58 0.58 0.80 0.55 0.54 0.44 0.48 0.48 0.43 0.43 0.41 0.40 0.40 0.40 0.38 0.38 TRANS 0.61 0.64 0.48 PRESS

STATION: 206 LAT: 38 44.2 N LON: 123 52.8 W DATE: 7/13/88 TIME: 1618Z

SUM	0.00.0	0.014	0.028	0.042	0.052	0.067	0.078	0.093	0.103	0.118	0.128	0.150	0.171	0.190	0.208	0.225	0.269	0.308
SVA	289.5	268.4	281.3	258.4	255.2	253.9	253.5	251.2	249.8	249.0	242.7	214.8	198.8	182.6	175.8	170.3	163.6	160.0
DENSITY	25.055	25.068	25.144	25.407	25.421	25,435	25.441	25.488	25.462	25.491	25.558	25.855	28.022	26.196	26.271	26.328	26.401	28.445
SAL	33.177	33.179	33.183	33.267	33.286	33,304	33,304	33.298	33.296	33.315	33.326	33.524	33.612	33.606	33.906	33.941	33.974	33,999
TEMP	12.622	12.564	12.184	11.197	11.125	11.113	11.084	10.913	10.816	10.845	10.511	9.666	9.059	6.924	8.943	8.754	8.448	8.287
PRESS	-	9	10	16	20	26	30	36	40	4 6	20	09	20	0.9	0.6	100	126	150

PRESS TRANS FLUOR

1 0.67 0.505
8 0.63 0.658
10 0.68 1.218
18 0.48 0.375
20 0.51 0.479
28 0.52 0.641
30 0.55 0.627
36 0.56 0.901
40 0.55 0.874
46 0.62 1.064
50 0.72 1.392
80 0.48 0.365
70 0.44 0.153
80 0.48 0.260
100 0.51 0.322
128 0.50 0.259

STATION: 207 LAT: 38 56.4 N LON: 123 55.0 W DATE: 7/13/88 TIME: 1818Z

SUM	0.00.0	0.017	0.027	0.043	0.053	0.068	0.077	0.091	0.101	0.114	0.124	0.148	0.167	0.166	0.208	0.226	0.273	0.313	0.355	0.392	0.431	0.465	0.502	0.535	0.570	0.602	0.836	0.667	0.700	0.729	0.760	0.787
SVA	276.0	274.8	264.9	254.1	246.8	240.3	237.4	234.7	232.8	230.8	227.1	219.9	207.8	202.4	192.2	165.9	172.4	163.3	155.9	151.8	146.8	142.8	140.2	136.5	134.7	132.3	129.0	126.1	23	120.3	117.2	15.
DENSITY	25.1	25.214	25.318	25.431	25.509	25.578	25.809	25.640	25.680	25.884	25.722	25.799	25.931	25.987	28.097	26.184	26,311	26.410	26.492	28.539	26.595	26.642	26.671	26.712	26.735	26.762	26.799	26.631	26.661	28.885	26.932	26.955
SAL		33.267																						34.11	34.11	34.11		34.12	34.1	34.13	34.1	4.2
TEMP	12.276	12.160	11.597	11.123	10.636	10.585	10.425	10.311	10.225	10.179	10.106	9.697	9.646	9.541	9.085	6.835	8.465	6.215	7.884	7.524	7.349	7.328	7.298	7.048	8.897	6.675	6.391	6 216	5.908	5.773	5.851	~
PRESS	0	9	10	18	20	26	30	36	40	46	20	0.9	20	0.8	06	100	128	150	178	200	226	250	278	300	328	350	378	400	428	450	~	200

1.472 1.309 1.039 0.294 0.235 0.199 0.129 0.087 0.076 1.275 1.583 0.072 0.480 1.142 1.354 0.071 0.091 0.077 0.075 0.071 0.074 0.078 0.072 0.071 FLUOR 0.40 0.38 0.39 0.38 0.38 0.37 0.38 0.38 0.36 0.36 0.38 0.38 TRANS 0.80 0.80 0.82 0.63 0.82 0.45 0.41 0.79 0.83 0.83 0.84 0.44 PRESS 10 118 20 26 30 30 40

STATION: 208 LAT: 38 55.3 N LON: 124 1.9 W DATE: 7/13/88 TIME: 1923Z

SUM	0.00.0	0.018	0.027	0.042	0.052	0.068	0.075	0.087	0.095	0.107	0.115	0.134	0.153	0.171	0.189	0.206	0.250	0.288	0.328	0.384	0.402	0.436	0.472	0.505	0.539	0.571	0.804	0 635	0.887	969.0	0.727	0.754
SVA	273.8	265.8	262.3	254.2	241.3	218.9	213.1	206.1	200.4	198.3	194.5	190.5	184.2	181.1	175.2	171.2	183.2	158.0	151.7	148.4	143.1	140.5	136.4	133.7	132.3	130.8	127.4	124.4	122.2	120.3	117.1	114.9
DENSITY	25.220	25.308	25.343	25.430	25.587	25.803	25.865	25.940	28.000	28.045	26.064	26.108	28.177	26.211	28.275	26.318	26.406	28.486	26.536	26.573	26.832	28.884	26.709	28.740	28.759	28.776	26.816	26.850	26.877	26.899	26.934	26.959
SAL	33.244	33.243	33.257	33.299	33.380	33.542	33.587	33.614	33,636	33.870	33.662	33.703	33.778	33.797	33.838	33.845	33.927	33.975	34.038	34.029	34.080	34.077	34.084	34.095	34.113	34.121	34.135	34.172	34.187	34.187	34.198	34.211
TEMP	12.032	11.558	11.421	11.121	10.704	10.064	9.908	9.585	9.314	8.204	9.045	8.968	8.895	8.781	8.566	8.330	8.169	7.887	7.873	7.575	7.332	7.205	6.912	8.747	8.718	6.632	6.415	8.375	6.284	6.093	5.882	5.762
PRESS	0	89	10	18	20	56	30	36	40	48	20	80	20	80	9.0	100	128	150	178	200	226	250	278	300	326	350	376	400	428	450		200

5.000 3.541 2.368 0.347 1.205 0.838 0.313 0.080 0.096 1.405 5.000 0.097 0.083 0.078 0.082 0.078 4.418 0.718 1.227 0.194 0.079 0.078 0.078 0.079 0.078 0.075 2.877 FLUOR TRANS 1.07 1.26 1.29 1.03 0.80 0.65 0.50 0.84 0.48 0.47 0.46 0.40 0.38 0.38 0.37 0.37 0.38 0.38 0.37 PRESS 50 60 80 80 80 80 1100 1126 2200 2226 2200 2226 2200 3326 3350 4460 4450 20 28 30 36 40 46

STATION: 209 LAT: 39 6.8 N LON: 124 10.3 W DATE: 7/13/88 TIME: 2106Z

SUM	0.000		0.024	0.038	0.048	0.059	0.068	0.080	0.088	0.099	0.107	0.125	0.142	0.158	0.174	0.190	0.229	0.265	0.303	0.309
SVA	254.3	234.5	228.8	223.8	221.5	213.6	209.7	197.9	192.3	188.7	184.2	170.7	168.2	161.9	159.5	153.2	149.7	1485	148.1	148.1
DENSITY	25.425	5.8	25.696	25.750	25.774	5.8	25,900	28.028	26.086	26.125	26.173	26.316	28.344	26.412	26.439	26.507	26.548	26.565	26.573	26.674
SAL	33.228	33.300	33,333	33.388	33.397	33.411	33.430	33.607	33.755	33.790	33.831	3	33.914		3.99	34.006	34.038	34.049	34.055	34.058
TEMP	10.837	9.939	9.730	9.684	9.558	9.102	8.929	9.014	9.359	9.287	9.190	8.447	8.512	6	8.279	7.907	7.788	7.744	7.718	7.717
PRESS	0	8	10	16	20	28	30	36	40	48	20	09	20	80		100	126	2	178	180

FLUOR	.46	m	_	1.550		~	-	~	~			~	~	m	Θ	0.113		.0	0.3	0.124
TRANS	0.71	0.82	0.63	0.85	0.87	0.52	0.43	0.50	1.04	1.28	1.17	0.58	4.	6	0.39	0.48	5	8	0.88	0.88
PRESS	0	89		16										80		100	126	150	178	180

STATION: 210 LAT: 39 20.5 N LON: 123 56.5 W DATE: 7/13/88

SUM	0.000	0.014	0.025	0.042	0.052	0.068	0.078	0.093	0.103	0.118	0.124	0.144	0.184	0.183	0.202	0.220	0.284	0 302	0.342	0.378	0.418	0.451	0.487	0.520	0 555	985.0	0.819	0 650	0.682	0.712	0.744	~
SVA	301.1	277.8	270.4	288.8	266.1	255.7	258.2	242.0	228.5	215.8	203.4	194.5	193.9	192.3	185.1	175.2	182.0	158.2	151.9	149.0	145.4	143.7	137.8	134.4	130.9	129.0	128.0	125.9	125.0	124.2	117.3	115.8
DENSITY	6.4	25.182	25.258	25.278	25.305	25.416	25.412	25.581	25.704	25.839	25.970	26.088	28.075	26.094	26.172	26.277	28.420	28,485	26.533	28 587	26.608	26.830	26 898	28.734	28.774	26.796	26.811	28.836	26.848	26.859	26.933	26.950
SAL	2.7	32.779	2.8	32.812	2.8	33.043	33.155	33 119	33,238	33,373	33.484	33.719	33.741	33.772	33.848	33.847	33.988	4	33,988	2	34.028	Z.	34.093	34.109	34.128	34.142	34.150	34 162	34.189	34.175	34 212	4.2
TEMP	11.563	10.219	~	9.808	9.732	0.0	10.588	5.		9.035		9.307	9.360	9.392	9.271	8.610	8.398	8.167	7.822	7.400	7.327	7.288	7.051	6.878	Θ.	6.608	.54	CV	.37	8.324		.87
PRESS	1	8	10	18	20	28	30	36	40	46	20	0.9	20	80	06	100	126	150	178	200	226	250	278	300	328	350	376	400	428	450	~	200

2.939 2.425 0.090 0.080 0.315 0.235 0.780 1.039 0.155 0.092 0.082 0.415 0.218 1.604 0.215 3.931 1.774 0.084 0.077 0.078 0.075 0.075 0.081 0.078 0.081 0.081 0.078 FLUOR 0.074 TRANS 0.38 0.88 0.93 1.20 0.90 0.39 0.38 0.38 0.37 0.37 0.38 0.37 0.38 0.37 0.37 0.40 1.11 0.58 0.62 0.45 0.44 0.44 0.54 0.63 0.58 0.43 PRESS 428 450

STATION: 211 LAT: 39 19.8 N LON: 124 3.3 W DATE: 7/14/88 TIME: 0018Z

SUM	00.	0.020	03	0	0.074	0	Ξ.	-	0.147	0.185	0.177	20	0.234	0.281	0.287	0.310	0.364	0.409	0.453	0.491	0.530	0.585	0.602	0.636	.87	.70	.73		.79		0.855	
SVA	92.	0	90.	386.8	88	383.7	83	326.9	308.2	303.3	298.2	288.0	278.9	264.9	237.9	220.4	197.0	178.4	163.7	163.8	147.6	144.3	141.4	136.9	133.4	128.4	125.3	123.0	20	-	115.4	-
DENSITY	23.97	23.978		~	-41	24.074	24.080	24.671	24.858	24.820	24.996	25.104	25.181	25.330	25.614	25.803	28.052	26.272	26.409	28.518	26.585	26.622	28.857	28.705	26.744	26.800	83	26.882	26.894	26.917	26.944	26.972
SAL	2.6	8	2 88	2.88	2.85	32.642	2.64	2.58	(1)	32.849	32.622	32.897	32.727	32.835	33.065	33.502	33.590	33.791	33.890	B	34.008	_	m	34.028	34.020	34.104	4.1	34.134	34.138	34.111	Ξ	34.132
TEMP	15.937	15.915	15.826	15.625	15.539	15.375	15.371	12 271	11.423	11.143	10.593	10.300	9.983	9.590	8.930	9.881	8.760	8 350	7.953	7.609	7.375	7.181	7 003	6.814	6.270	6.348	6.203	0	5.807	5 457	5.226	5.131
PRESS	1	9	10	18	20	56	30	38	40	46	20	09	20	80	0.6	100	126	150	178	200	226	250	276	300	328	350	378	400	428	450	476	200

0.080 0.131 1.026 0.062 0.080 0.081 0.084 0.089 0.459 0.087 0.083 0.073 0.070 0.057 0.058 0.127 0.178 0.337 0.102 0.077 0.082 0.092 0.057 0.101 0.077 FLUOR TRANS 0.43 0.43 0.44 0.43 0.48 0.48 0.47 0.47 0.41 0.54 0.37 0.38 0.38 0.38 0.38 0.37 0.38 0.38 0.36 PRESS 10 110 20 28 28 30 36 40 428 450 476 500

STATION: 212 LAT: 39 18.0 N LON: 124 19.0 W DATE: 7/14/88 TIME: 0211Z

SUM	00	0.020	0	0	0.078	0	_	$\overline{}$	0.154		0.187	0.218	0.248	0 278	0.304	0.330	0.393	0.444	0.491	0.530	0.571	0.607	0.645	0.679	0.715	0.747	0.781	0.812	0.844	0 873		0.931
SVA	402.8	402.5	398.5	394.7	393.6	393.2	393.0	391.2	357.3	328.4	321.8	301.4	2878	878.8	270.1	258.3	229.8	191.8	170.2	157.8	151.8	148.5	144.5	141.9	138.4	132.7	28	124.8	21		117.1	114.8
DENSITY	0	23.871	23.914	23.955	23.968	23.974	23.978	23.997	24.354	24.679	24.729	24.943	25.088	25.174	25.277	25.403	25.707	28.112	26.341	28.478	28.542	26.579	28.824	26.654	26.713	26.754	26.801	26 841	26.874	26.907		8.95
SAL	2.54	32.547	2.54	2.54	32.541	32.541	32.542	32.545	32.679	32.788	32.764	32,705	32.732	32.817	32.897	32.978	33.253	33.625	33.822	33.959	33.991	33.986	3.87	33.983	\mathbb{C}	4.01	4.00	34.024	34.055	4.12		34.159
TEMP	15.972	0	5 7	5.5	0	15.476	15.464	15.384	14.195	12.927	12.657	11.260	10.554	10.438	10.200	9.823	9.274	8.548	8.058	7.855	7.589	7.297	8.925	6.737	ε.	Ξ.	۲.	5.519	4,	5.659	5.494	5.438
PRESS	-	9	10	18	20	26	30	36	40	46	20	09	20	80	9.0	100	128	150	178	200	226	250	278	300	328	350	376	400	428	450	476	200

0.108 0.058 0.100 0.439 0.248 0.080 0.085 0.088 0.058 0.059 0.074 0.122 0.232 0.540 0.118 0.058 0.057 0.083 0.059 0.059 0.059 0.083 0.081 0.057 0.081 0.084 0.081 FLUOR TRANS 0.42 0.42 0.42 0.43 0.45 0.41 0.42 0.43 0.42 0.42 0.44 0.44 0.43 PRESS

STATION: 213 LAT: 39 15.0 N LON: 124 46.2 W DATE: 7/14/88 TIME: 0500Z

FLUOR	0	60	08	0.9	60	60	0.0	10	0.118	14	.13	15	28	28	83	tv.	1.0	05	90	08	90	90	05	05	08	90	90	05	90	0.8	90	0
TRANS	4	4	0.42	4	4	0.43		0.43	0.44		0.44					n	6	က	6	n	n	n	6	3	3	6	6	6		3	6	
PRESS	0	8	10	18		26	30	36	40	48	20	0.9	20	80	06	100	128	3	178	200	228	2	~	300	328	350	378	400	428	450		200

STATION: 214 LAT: 39 3.4 N LON: 124 37.7 W DATE: 7/14/88 TIME: 0648Z

SUM	00	0.019	0.035	0.5	.07	60	10	12	0.132	0.148	0.159	0.188	0.211	0.238	0.280	0.282	0.334	0.378	0.421	0.459	0.498	0.533	0.569	0.602	0.837	9	0.701	0.730	0.782	0.790	0.820	0.847
SVA	387.8	388.2	83	358.4	338.0	306.5	303.5	291.7	283.7	271.7	270.3	258.6	249.8	248.7	230.8	214.4	186.8	172.9	161.0	153.8	146.9	143.2	138.9	134.4	131.1	128.0	124.8	122 5	119.2	116.6	115.0	
DENSITY	24.0	24.021	24.073	24.357	24.551	24.883	24.915	25.039	25.124	25.251	25.287	25.393	25.487	25.501	25.694	25.865	26.159	26.309	26.437	28.519	26.592	26.633	26.681	26.730	26.768	26.802	28.840	28 867	26.902	26.933	26.953	26.994
SAL	32,586	32.585	32.570	32.594	32.632	32.709	32.700	32.631	32.631	32.844	32.888	33.085	33.134	33.146	33.418	33.540	33.743	33.825	33.892	33.988	33.988	34.001	9	34.018	\sim	34.052	3	34.114	34.124	34.182	4.18	34.204
TEMP	15.407	15.418	15.125	13.888	13.044	11.609	11.394	10.378	9.872	10.107	10.116	10.291	10.050	10.028	10.131	9.682	8.841	8.288	7.774	7.621	7.213	6.992	6.613	6.364	8.142	6.015	5.885	89	5.868	5.657	5.647	5.429
PRESS	-	80	10	18	20	28	30	38	40	46	20	0.9	20	80	0.6	100	126	150	178	200	226	250	276	300	328	350	378	400	428	450	476	200

FLUOR	0.112	0.124	0.149	0.837	0.723	1.298	1.303	0.475	0.398	0.851	0.630	0.708	0.871	0.700	1.150	0.468	0.326	0.135	0.105	0.091	0.088	0.087	0.071	0.148	0.074	0.071	0.071	0.072	0.073	0.088	0.072	0.070
TRANS	0.44	0.43	0.45	0.58	0.58	0.68	0.67	0.47	0.44	0.51	0.50	0.51	0.54	0.54	0.58	0.48	0.49	0.43	0.41	0.39	0.39	0.38	0.37	0.37	0.37	0.37	0.38	0.37	0.37	0.38	0.38	0.37
PRESS	-	8		18	20	28	30	38	40	48	20	0.0	20	80	9.0	100	128	150	178	200	228	3	278	300	CQ.	350	378	400	428	450	478	200

STATION: 215 LAT: 38 52.0 N LON: 124 29.2 W DATE: 7/14/88

FLUOR	5.000	5.000	4.188	2.987	2.127	1.659	1.378	1.193	1.361	1.207	1.407	1.017	0.342	0.241	0.271	0.114	0.108	0.084	0.083	0.073	0.078	0.078	0.075	0.073	0.078	0.074	0.074	0.074	0.073	0.082	0.073	0.071
TRANS	2.13	2.13	1.28	0.85	0.78	0.74	0.70	0.64	0.63	0 83	0.84	0.63	0.48		0.47	0.41	0.39	0.39	0.38	0.37	0.38	0.38	0.37	0.38	0.38	0.35	0.38	0.35	0.38	0.38	0.38	0.38
PRESS	0	9	10						40			0.9			90	100	128	150	178	200	228	250	278	300	N	350	~	400	428	450	478	200

STATION: 216 LAT: 38 40.8 N LON: 124 20.6 W DATE: 7/14/88

SUM	0.000	0.018	0.025	0.038	0.047	0.061	690.0	0.082	0.091	0.104	0.112	0.134	0.154	0.174	0.193	0.210	0.255	0.294	0.334	0.370	0.408	0.442	0.478	0.511	0.545	0.576	609.0	63	0.871	.70	0.730	.75
SVA	276.8	243.7	225.3	222.2	221.8	220.8	219.8	215.5	213.3	213.1	213.2	211.0	199.8	193.6	181.4	176.2	166.5	158.8	152.4	147.2	142.6	140.0	137.3	133.2	130.9	128.6	128.7	123.4	120.5	119.0	116.4	114.8
DENSITY	25.18	25.538	25.732	25.787	25.773	25.782	25.795	25.841	25.885	25.668	25.868	25.893	26.013	26.079	26.209	26.285	26.372	26.458	26.527	28.587	26.838	26.670	26.701	28.747	26.773	26.797	28.825	26.660	26.692	26.910	26.940	26.961
SAL	33.250	33.431	33.482	33.492	33.499	33.502	33.513	33.545	33.557	33.580	33.580	33.580	33.633	33.630	33.728	33.782	33,875	33,936	33.979	34.080	34.090	34.094	34.097	34.129	34.118	34.101	34.124	34 152	34.170	34.178	34.195	4.1
TEMP	12.221	11.093	10,207	10.050	10.043	10.002	9.981	9.651	9.785	9.780	9.760	9.705	9.224	8.785	8.445	8.349	8.125	7.690	7.624	7.853	7.471	7.258	7 049	6.897	6.830	6.357	6.304	6.183	03	.93	5.814	9.
PRESS	0	8	10	18	20	26	30	36	40	48	20	09	20	80	06	100	128	150	178	200	226	250	278	300	328	350	378	400	428	450	476	200

1.903 4.385 2.195 1.378 1.752 1.367 1.642 1.193 0.074 0.068 0.068 0.069 0.069 0.073 0.071 1.466 1.488 0.879 0.337 0.073 0.074 0.073 0.000 1.848 0.073 0.072 0.075 FLUOR TRANS 0.70 0.72 0.69 0.48 0.38 0.37 0.38 0.37 0.38 0.38 0.35 0.35 0.35 0.35 0.35 0.85 0.68 0.81 PRESS 450 478 500

STATION: 217 LAT: 38 29.5 N LON: 124 12.0 W DATE: 7/14/88

SUM	00	0.014	0 024	0.039	0.048	0.062	0.071	0.084	0.092	0.105	0.113	0.132	0.151	0.170	0.188	0.205	0.251	0.291	0.331	0.368	0.406	0.442	4	0.513	54	0.581	.61	0.645	0.877	7.0	0.737	.78
SVA	288.2	269.6	252.2	234.2	231.7	230.2	222.7	208.8	206.8	202.0	198.6	192.2	185.7	182.7	179.1	177.2	170.8	161.3	153.1	149.3	147.8	147.1	141.9	138.2	135.8	132.0	128.3	125.5	122.5	119.9	117.6	115.4
DENSITY	25.	25.263	25.450	25.641	25.668	25.685	25.764	25.912	25.933	25.985	26.022	26.091	26.161	26.195	26.235	26.256	26.328	26.431	26.521	26.565	26.585	26.596	26.652	26.693	26.722	26.783	26.804	26 835	26.871	28.903		26.952
SAL	33.219	3.2	3.33	3.40	3.49	3.39	33.449	3 54	33.612	3.64	3.75	33,786	33.817	33.839	33.862	33 887	33,908	33,982	34.001	34.029	34.067	34.072	34.038	34.059	34.071	~	34.084	34 098	34.148	34.197	8	34.181
TEMP	12.612	11.986	11.166	10.409	10.627	10.082	9.866	9.404	9.615	9.474	9.748	9.477	9.196	9.091	8.955	8.945	8.587	8.290	7.784	7.637	7,703	7.652	7.069	8.888	6.744	6.474		6.025			5.872	5.625
PRESS	-	9		18	20	26	30	36	40	48	20	0.9	20	80	06	100	126	150	178	200	226	250	278	300	326	350	\sim	400	426	450	478	200

FLUOR	0.999	2.438	1.655	2.982	1.858	0.222	0.502	1.532	1.529	2.467	3.081	2.078	1.489	0.847	1.417	0.879	0.163	0.112	0.090	0.099	0.083	0.071	0.072	0.088	0.066	0.088	0.087	0.074	0.072	0.073	0.068
TRANS	0.65	0.78	0.72	0.83	0.78	0.43	0.48	0.84	0.79	0.78	1.04	0.84	0.78	0.53	0.69	0.62	0.44	0.41	0.41	0.45	0.45	0.38	0.38	0.38	0.38	0.35	0.38	0.38	0.38	0.38	0.35
PRESS	→ (10			30	36	40	46	20	0.9		80	90	100	126	150	178	200	226	5	278	300	326	350	378	400	428		478	200

STATION: 218 LAT: 38 18.1 N LON: 124 3.7 W DATE: 7/14/88 TIME: 14062

SUM	0	0.018	0.029	0.047	0.058		_	0.098	0.107	0.121	8	0.150	0.170	0.189	0 207	0.225	0.270	0 308	0.350	0.387	0.425	₹.		0.529			0.629	0.659	0.691	0.719	0.750	0.777
SVA	319.5	318.7	317.1	284.2	272.4	262.9	244.8	227.5	224.3	217.9	210.6	203.1	192.4	189.9	185.2	176.3	187.0	159.3	154.2	149.8	144.9	142.9	139.8	138.5	133.8	0	126.3	~		~	15	112.8
DENSITY	24.7	24.751	24.768	25.115	25.240	25.341	25.532																					26.884	26.902	28.925	26.947	26.980
SAL	3.0	33.100	3.1	3.0	3.1	3.2	33.288	33,385	33.414	33.449	33,509	33.584	33.649	33.793	33.853	33.902	33.927	33,980	33.997	34.025	34.050	34.054	34.055	34.078	34.100	34.118	34.170	34.178	4.2	34.202	4.1	34.232
TEMP	8		Θ.	11.884	11.422	ပ	4	828	793	540	355	.214	815	342	310	958	.427	.037	0.1	854	408	.254	900	852	60	539	6.529	30	6.150	98	5 735	5.728
PRESS	-	8	10	18	20	28	30	38	40	48	20	80	7.0	80	06	100	128	150	178	200	228	250	278	300	328	350	376	400	428	450	476	200

0.309 0.098 0.098 1.668 1.068 0.372 0.222 0.092 0.302 0.388 0.082 0.080 0.275 0.132 0.117 0.114 0.079 0.075 0.072 0.075 0.075 0.075 0.079 0.078 0.081 0.078 TRANS 0.49 0.50 0.47 0.48 0.47 0.42 0.40 0.39 0.38 0.37 0.41 0.72 0.06 0.50 0.42 0.40 0.38 0.38 0.37 0.37 0.36 0.38 0.37 PRESS 326 350 376 400 450 450 500

STATION: 219 LAT: 38 6.7 N LON: 123 55.0 W DATE: 7/14/88 TIME: 1600Z

SUM	0	0.1	0.030	.05	.08		0.0	11	0.123	0.138	0.147	0.171	0.193	0.215	0.238	0.258	0.304	0.345	0.388	0.425	0.463	0.498	0.535	0.568	0.803	0.634	0.868	0.698	0.730	0.759	0.790	0.818
SVA	339.2	337.8	336.1	325.8	322.1	316.9	310.1	275.9	283.1	232.8	232.1	229.7	227.8	214.0	203.3	193.8	175.0	188.1	157.1	150.8	146.8	142.8	139.3	136.1	133.3	130.2	126.8	124.5	121.4	120.2	117.8	115.1
DENSITY	5.5	24.552	24.568	24.678	24.718	24.774	24.846	25.207	25.342	25.882	25.669	25.897	25.722	25.888	25.981	26.083	26.284	28.380	26.480	26.549	26.594	26.839	26.679	28.718	28.750	26.785	26.824	26.849	28.882	28.900	26.930	26.957
SAL	2.92	32.931	2.83	~	0	_	$^{\circ}$	10	33.223		\circ	3	3		m	\sim		3	_	90	34.038	~	44	34.081	$^{\circ}$	-	8	34.174	34.190	6	34.210	4.2
TEMP	14.259	14.181	13	-	3	-	0	3	11.282	0	10.692	S	Œ	Θ	2	9.701	~	\sim	~	_	7.481	~	0.2	- क्क्री	~	0.3	neds.	~	6.220	6.157	6.	5.831
PRESS	-	9	10	18	20	56	30	36	40	48	20	0.0	70	80	06	100	128	150	178	200	226	250	278	300	326	350	376	400	428	450	476	200

0.408 2.202 4.036 2.349 1.248 1.624 0.220 0.126 0.078 0.228 0.308 0.388 0.428 0.348 0.000 0.070 1.337 0.073 1.994 0.074 0.075 0.078 0.078 0.079 0.077 0.077 FLUOR TRANS 0.59 0.73 0.82 0.96 0.89 0.62 0.38 0.36 0.36 0.35 0.35 0.36 0.38 0.48 0.48 0.45 0.48 0.48 0.47 PRESS 46 50 60 60 70 90 1126 90 1176 220 220 2226 220 2276 3300 3326 3360 400 10 118 20 28 30 30 40 428

STATION: 220 LAT: 37 55.6 N LON: 123 49.5 W DATE: 7/14/88

SUM	00.	0.019	.03	0.051	0.084	0.083	0.095	0.112	0.123	0.139	0.148	0.172	0.195	0.218	0.237	0.256	0.303	0.343	0.385	0.422	0.460	0.495	0.532	0.585	0.800	0.632	0.885	0.695	0.727	0.758	0.786	0.814
SVA	319.5	318.7	317.8	317.2	316.2	315.1	307.7	270.1	266.5	248.9	241.7	232.5	218.4	214.3	195.7	189.8	171.0	163.6	158.3	151.8	146.4	143.0	139.8	138.5	132.8	129.8	27.	123.9	21.	8	116.7	2
DENSITY	4.74	24.750	24.760	24.769	24.780	24.793	24.871	25.268	25.307	25.493	25.569	25.668	25.817	25.883	26.060	26.123	26.325	26.407	26.488	26.541	26.598	26.637	26.873	26.710	26.752	26.786	26.818	26.854	28.882	26.914		26.978
SAL	3.0	4	3.04	33.037	3.03	က	3.03	3.14	33.288	3.5	\sim	3.4	3.5	3.5	3.7	3.7	3.90	3.95	က	4.03	1.03	4.04	4.04	4.05	34.070	34.083	Τ.	34.131	34.151	34.164	34.178	34.209
TEMP	m	3.6	13.578	13.522	13.484	13.420	12.989	11.352	11.659	11.665	11.042	10.477	10.041	9.825	9.404	8.900	8.601	8.307	7.990	7.819	7.422	7.198	6	۲.	6 514	6.329		0	5.997	82	5.740	59
PRESS	0	9	10	16	20	26	30	36	40	46	20	09	20	80	06	100	128	150	178	200	226	250	278	300	328	350		400	428		476	

FLUOR	0.188	0.201	0.270	0.331	0.377	0.449	0.488	0.388	0.351	0.211	0.162	0.149	0.128	0.120	0.170	0.088	0.112	0.077	0.074	0.073	0.069	0.088	0.087	0.088	0.070	0.065	0.087	0.089	0.071	0.070	0.071	0.087
TRANS	0.48	4	4	4	4	0.49	4	0.45	4	4.	3	0.38	3	3	က	က	4	3	3	3	က	3	က	က	3	3	3	6	3	6	0.35	6
PRESS	0					28			40			00		80	06	Ö	128	150	178	200	226	2	278	Ö	326	5	~	400	Ñ	5	478	õ

STATION: 221 LAT: 37 43.8 N LON: 123 38.3 W DATE: 7/14/88 TIME: 1941Z

SUM	0	.01	0.031	.05	0.0	0	0	\neg	0.129	0.148	0.158	0.184	0.209	0.233	0.256	0.278	0.329	0.372	0.418	0.454	0.493	0.528	0.568	0.599	0.834	0.665	0.898	0.728	7.	.78	_	0.845
SVA	345.1	340.7	334.2	332.0	330.5	327.2	325.2	318.2	310.1	289.0	289.9	257.7	248.0	237.7	221.9	202.2	189.5	171.5	181.0	154.8	149.3	145.4	140.7	138.3	132.7	129.2	125.8	1230	119.2	117.0	114.0	111.9
DENSITY	4	^1	24.588	and.	24.631	24.666	24.889	24.783	24.849	25.071	25.272	25.403	25.527	25.817	25.784	25,958	26.131	26.323	28.438	26.508	26.568	26.612	26.683	26.713	\sim	26.791	8.8	26.860	8.90	6.9	95	3.9
SAL	2.97	~	32.982	32.977	32.978	32.987	33.002	32 949	32.951	32.957	32.991	33.229	33.252	33.340	33.458	33.549	33.715	33.841	33.928	33.988	33,993	34.018	34 022	34.080	34.082	34.068	34.084	34.097	34.101	34.093	34.125	4.1
TEMP	14.705	14.478	14.194	14.057	13.976	13.836	13.784	13.213	12.783	11.634	10.655	\sim	10 356	10.232	9.788	9.152	8.880	8 272	7.958	7.709	7.416	7.241	6.893	8.744	6.458	6.202	6.004		5.525		20	18
PRESS	1	8	10	18	20	28	30	38	40	46	50	0.9	20	80	06	100	126	150	178	200	226	250	276	300	326	350	376	400	428	450	476	200

0.266 0.066 0.085 0.065 0.524 0.508 0.367 0.068 0.069 0.067 0.068 0.086 990.0 0.196 0.279 0.348 0.410 0.479 0.520 0.181 0.178 0.127 0.082 0.072 0.070 0.067 0.068 FLUOR TRANS 0.47 0.48 0.51 0.48 0.49 0.47 0.47 0.48 0.48 0.43 0.39 0.38 0.37 0.37 0.37 0.37 0.36 0.35 0.35 0.35 0.38 0.35 0.38 PRESS 400 428 450

STATION: 222 LAT: 37 39.5 N LON: 124 5.4 W DATE: 7/14/88

SUM	0.00.0	0.018	0.032	0.053	0.087	980.0	0.099	0.118	0.130	0.147	0.159	0.185	0.208	0.230	0.251	0.271	0.319	0.359	0.400	0.438	0.474	0.508	0 544	0.578	0.810	0.641	0.673	0	0.734	0.782	0.791	0.818
SVA	364.4	355.4	352.2	343.3	333.8	326.3	319.0	304.5	298.8	285.7	273.4	246.3	228.4	210.4	205.2	195.8	173.0	181.7	154.3	148.7	143.2	138.0	135.3	132.8	130.0	126.9	123.8	121.1	117.9	114.8	111.7	109.9
DENSITY	24.289	24.365	24.400	24.494	24.595	24.678	24.754	24.907	24.990	25.108	25.235	25.522	25.734	25.904	25.980	26.080	26.303	26.428	26.508	28.571	26.630	28.688	26.719	28.750	26.781	26.815	3.8	3.8	26.911	8.94	6	7.00
SAL	2.89	32.888	2.88	32.974	32.955	32.990	32,995	33.000	33.038	33.081	33.120	33.283	33.450	33.621	33.644	33.675	33.823	33.938	33.974	34.034	34.012	34.038	34.080	34.098	34.091	34.094	34.074	34.054	34.088	34.115		34.204
TEMP	15.381	14.907	14.782																								.784	420	5.204	N		5.321
PRESS	-	89	10	18	20	56	30	36	40	48	20	09	20	80	06	100	128	150	178	200	226	250	278	300	326	350	376	400	428	450	476	200

FLUOR	0.187	0.240	0.280	0.330	0.341	0.378	0.417	0.499	0.514	0.515	0.499	0.173	0.183	0.118	0.103	0.079	0.072	0.071	0.070	0.088	0.068	0.070	0.089	0.068	0.070	0.069	0.069	0.083	0.065	0.084	0.070	0.068
TRANS	0.49	S	3	0.50	Ď.	4	4	0.51	4	4	4	4	S	0.37	ε,	ę,	3	6	3	9	6	0.35	9	G	6	9	က	3	6	60	0.35	ë
PRESS	1			18			30		40			0.9		80	06		3			0		2		0	N	3					478	ō

STATION: 223 LAT: 37 51.0 N LON: 124 13.6 W DATE: 7/15/88 TIME: 0011Z

SUM	00	0.017	0.030	.04	0.081	~	0.8	0.102	0.111	0.124	0.132	0.152	0.172	0.191	0.209	0.227	0.272	0 311	0.351	0.387	0.425	0.459	0.498	0.529	0.583	0.594	0.827	0.656	0.687	0.718	0.746	۲.
SVA	341.2	335.8	328.1	298.7	288.2	284.5	254.7	237.1	217.8	208.2	203.7	198.3	192.8	188.7	181.8	176.9	185.5	158.9	151.5	148.1	145.0	141.4	138 4	134.7	130.8	127.3	123.5	121.0	118.8	117.4	114.6	12.
DENSITY	3.	24.573	24.653	24.984	25.074	25.324	25.428	25.814	25.820	25.920	25.967	26.047	28.088	26.152	28.205	26.258	28.382	28.458	28.537	28.577	26.613	28.853	26.687	26.729	28.773	26.811	28.854	8.88	8.9	8.92	95	26.985
SAL	3.01	33.075	33.088	33.218	33.255	33.252	33.310	33.394	33.550	33.590	33.609	33.651	33.719	33.747	33.775	33.785	33.897	33,972	34.002	34.034	34.049	4.0	34.024	0.4	34.058	34.088	34.138	34.164	34.179	34.188	34.206	4.2
TEMP	14.918	14.807	14.277	444	12.837	50	.17	10.493	10.000	9.590	9.389	9.095	9.187	8.909	8.710	8.411	8.171	8.074	7.682	7.578	7.409	7.071	6.729	8.488	8.278	Ξ.	8.128		σ.	5.884	5.735	9
PRESS	-	8	10	18	20	28	30	36	40	48	20	00	20	8.0	06	100	126	150	178	200	226	250	276	300	326	350	376	400	428	450	476	200

FLUOR	~	ന	m	-	m	œ	~	C.	\sim	0.3	-	-	_	-		-		\sim			0	\sim	\circ	\circ	\mathbf{c}	\mathbf{c}	\circ	\sim	$\overline{}$	$\overline{}$	0.072	\sim
TRANS	5	ď	Š	3	Ď.	~	~	8	4	4	4	ε.	6		<u>ෆ</u>	6	ε.	Б.		Э.	Э.	ε.	9	6	n	6	3	6	e.	6	0.38	
PRESS	-	9		16		26	30	36	40	46	20		20	80	06	100	126	150	176	200	226	2	278	300	R	350	376	400	428	450	478	200

STATION: 224 LAT: 38 2.9 N LON: 124 22.1 W DATE: 7/15/88 TIME: 0200Z

SUM	0.00.0	0.015	0.027	0.044	0.055	0.000	0.081	0.098	0.108	0.120	0.129	0.152	0.174	0.194	0.214	0.232	0.278	0.317	0.357	0.393	0.431	0.465	0.501	0.533	0.587	0.598	0.631	0.881	0.692	.72	0.750	.77
SVA	321.0	297.4	283.8	271.9	268.4	258.9	254.0	249.8	245.5	238.0	233.6	225.5	205.7	198.5	190.8	183.2	167.0	158.0	151.4	147.5	143.5	140.2	138.1	133.5	130.8	127.2	124.2	122.3	119.3	116.8	114.0	111.9
DENSITY	24.72	24.974	25.119	25.243	25.282	25.403	25.435	25.482	25.528	25.808	25.651	25.740	25.951	28.028	26.111	26.192	26.388	26.465	26.539	28.583	28.629	26.887	26.713	28.742	28.778	26.813	26.848	26.870	26.904	26.935	26.966	26.990
SAL	33.175	3.1	2.99	32.874	32.874	32.981	33.029	33.093	33.138	33.188	33.283	33.398	33.840	33.657	33.877	33.755	33.852	33.940	34.025	34.048	34.064	34.085	34.103	34.108	34.122	34.121	34.136	34.145	34.177	4.2	34.224	4.2
TEMP	14.255	12.742	11.524	10.293	10.088	9.839	9.873	0.830	9.834	9.587	9.767	9.757	9.638	9.244	8.821	8.688	8.042	7.842	7.793	7.813	7.378	7.228	8 994	8.797	6.636	6.351	8.178	8 057	5.987	0	5.793	9
PRESS	-	89	10	18	20	26	30	36	40	48	20	09	2.0	80	06	100	128	150	178	200	226	250	276	300	326	350	378	400	428	2	476	200

FLUOR	4	42	40	0.948	0.418	0.213	0.169	0.223	0.195	0.229	1.104	0.933	1.426	0.897	0.619	0.276	0.129	0.090	0.133	0.096	0.061	0.062	0.077	0.079	0.073	0.077	0.078	0.075	0.078	0.074	0.078	0.075
TRANS	0.59	0.52	0 57	0.88	0.52	0.45	0.44	0.44	0.44	0.44	0.59	09.0	0.88	0.82	0.58	0.48	0.45	0.44	0.43	0.43	0.42	0.48	0.41	0.42	0.41	0.40	0.40	0.40	0.40	0.41	0.41	0.41
PRESS	1	8		16	20	28	30	36	40	48	20	09	20	80	06	100	126		176			2								2	478	

STATION: 225 LAT: 38 14.8 N LON: 124 30.8 W DATE: 7/15/88 TIME: 04062

SUM	00	0.020	03	~	_	0	-	0.118	0.130	0.147	0.158	0.184	0.210	0.235	0.257	0.279	0.331	0.373	0.417	0.454	0.494	0.529	0.568	5	83	99	.69	0.727	.75	7.	0.817	9
SVA	395.4	392.8	388.2	338.1	324.0	308.8	301.2	293.3	284.1	276.1	274.4	280.8	254.8	232.4	218.2	213.2	166.3	170.7	180.7	154.7	148.5	143.8	139.1	135.9	131.2	127.7	w					
DENSITY	23.9	23.972	24.232	24.549	24.898	24.880	24.939	25.022	25.120	25.205	25.224	25.369	25.435	25.672	25.823	25.878	26.164	26.332	26.441	26.508	26.576	28.629	28.878	28.714	28.787	26.806	26.834	8.6	26.897	8 9		6.9
SAL	32.658	32.654	32.835	32.629	32.835	32.694	32.897	32.858	32.858	32.758	32.792	33.042	33.111	33.331	33.485	33.549	33.691	33 844	33.943	33.988	33.984	33.992	33 997	34.000	34.052	4.0	4.09	10	4.10	4.09	34.120	4.18
TEMP	-	15.878	31	0.4	6	11.562	4	10 591	10.028	9.980	10.029	10.322	10.254	9.886	9.678	9.650	8.549	8 233	6.021	7.805	7.310	6.988	6.834	6.380	.29	0	03	8	5	G	Ċ	6
PRESS	-	9	10	18	20	28	30	38	40	48	20	09	20	80	06	100	128	150	178	200	226	250	278	300	328	350	378	400	428	450	476	

STATION: 226 LAT: 38 26.1 N LON: 124 38.9 W DATE: 7/15/88 TIME: 0606Z

SUM	0.00.0	0.024	0.039	0.082	0.077	0.099	0.113	0.134	0.148	0.168	0.181	0.212	0.242	0.272	0.301	0.329	0.392	0.441	0.469	0.529	0.570	908.0	0.644	0.878	.71	74	78	.81	0.843	.87	90	0.930
SVA	401.0	390.0	387.4	380.8	369.9	360.1	349.9	340.6	338.0	331.2	320.3	308.4	300.9	291.4	288.0	287.4	217.7	194.7	172.7	160.4	153.8	148.8	142.8	139.1	135.4	132.7	129.0	128.1	122.2	120.2		114.4
DENSITY	23.885	24.002	m	24.101	24.218	24.321	24.429	24.528	24.577	24.829	24.743	24.891	24.950	25.052	25.089	25.307	25,835	28.080	26.315	26.449	26.521	26.578	28.842	28.683	28.725	26.755	26.798	26.829	26.871	8.89	.93	26.957
SAL	2.4	32.455	2.4	32.484	32.492	32.517	32.547	32.587	32.570	32.577	32.591	32.658	32,688	32.897	32.678	32.838	33.389	33,623	33.847	33.958	33.982	3.9	3.9	34.015	34.039	34.038	34.057	34.075	34.102	34.111		4.
TEMP	15.582	15.044	14.881	14.811	33	13.749	13.329	12.905	12.684	12.423	11.870	11.344	11.059	10.608	10.290	9.748	9.143	8.743	8.358	8.035	7.681	7.213	6 894	8.704	6.535	(C)	060.9	5.948	5.774	5.646	CS	5.193
PRESS	0	9	10	18	20	56	30	36	40	46	20	0 9	20	80	06	100	128	150	178	200	226	250	278	300	328	350	378	400	428	450	476	200

0.087 0.105 0.169 0.432 0.428 0.292 0.407 0.671 0.453 0.602 0.080 0.058 0.083 0.088 0.088 0.068 0.000 0.240 0.073 0.069 0.111 0.387 0.191 0.081 0.071 FLUOR TRANS 0.54 0.50 0.50 0.49 0.42 0.40 0.40 0.40 0.39 0.39 0.39 0.39 0.39 0.47 0.48 0.49 0.51 0.53 0.54 0.52 0.52 0.39 0.38 PRESS

STATION: 227 LAT: 38 38.0 N LON: 124 47.0 W DATE: 7/15/88 TIME: 0830Z

SUM	0.000	0.025	0.041	0.085	0.081	0.105	0.120	0.144	0.180	0.182	0.196	0.229	0.281	0.290	0.319	0.347	0.415	0.469	0.520	0.583	0.605	0.643	0.683	0.717	0.754	0.787	0.822	0.853	0.888	0.916	0.947	.97
SVA	411.9	409.8	405.1	398.6	396.1	395.2	394.8	394.3	393.7	355.6	340.4	320.4	303.2	291.7	284.2	277.7	242.1	210.7	183.0	169.8	160.2	154.5	147.7	143.2	139.5	134.6					119.2	
DENSITY	23.	8	23.848	23.915	23.942	23.954	23.959	23 966	23.973	24.373	24.534	24.745	24.928	25.050	25.131	25.201	25.578	25.913	26.208	26.351	26.458	26.519	26.591	26.640	28.882	26.733	26.768	26.801	26.833	26.870	28.907	6.94
SAL	2.5	32.541	32.542	32.554	32.557	32.558	32.558	32.554	32.557	32,723	32.771	32.833	32.848	32.905	32.937	32.985	33.187	33 521	33.782	33.686	33.971	33.998	33.981	33.978	34.005	33,993	33.999	4.03	34.061	34.078	4.10	34.165
TEMP	16.392	8.2	18 058	15.790	15.678	15.629	,15.598	15.559	15.539	14.268	13.667	12.847	11 944	11.528	11.218	10.948	9.750	9.297	8.722	8.323	8.067	7.778	7.182	8 799	6.655	6.188	9	5.910	Θ.	в	5.512	5
PRESS	0	9	10	18	20	26	30	38	40	4 6	20	0.0	70	80	06	100	126	150	178	200	226	250	278	300	328	350	376	400	428	450	476	200

FLUOR	8	IO.	in	10	2	10	8	~	Θ	6	B	\sim	B	\sim	8	4	$\overline{}$	8	2	8	Š	8	2	8	8	8	8	8	9	8	0.066	9
TRANS	0.45	4	4	0.44	4	4	4.	4.	4.	4.	4	4	4	4	4	4.	3	က	က	က	3	က	က	က	က	က	က	က	က	က	0.38	က
PRESS	0	9							40							0	Q	2	~	0	CZ	5	~	0	CZ	2	~	0	CZ	S	478	ō

STATION: 228 LAT: 38 49.1 N LON: 124 56.1 W DATE: 7/15/88

SUM	0.000	.02	0.037	0.081	0.077	0.101	0.118	0.140	0.155	0.178	0.189	0.221	0.251	0.281	0.310	0.338	0.407	0.463	0.515	0.558	0 602	0.840	0.680	0.718		~.	α	85	Φ,	g.	0.948	6.
SVA	415.8	410.1	4087	396.4	395.8	395.5	395.2	394.2	358.9	337.5	325.5	307.8	299.8	293.4	287.0	277.3	253.5	213.8	184.6	173.1	163.7	157.4	1502	146.6	141.8	138.5	34	131.0	26	23	119.2	6
DENSITY	23	23.792	23.828	23.938	23.946	23.951	23.955	23.967	24.338	24.583	24.890	24.879	24.963	25.033	25.102	25.205	25.460	25.880	26.191	26.318	26.418	26.487	26.588	28.807	26.659	28.695	26.741	~	82	86	26.907	93
SAL	8.8	61	8.8	32.644	6.3	n	6.3	6.3	32.787	6.7	0.5	CJ	က	6.7	6.3	6.3	63	c		C)	c	co	က	3	C	34.001	3.9		4.0	4.08	34.117	\exists
TEMP	6.77		8.41	15.994	15.947	15.922	15.908	15.881	14.671	13.572	13.053	12.308	11.991	11.679	11.252	10.882	10.097	9.061	8.573	8.354	8.015	7.730	7.397	7.139	8.751	6.528		6.031	5.780	.72	5.577	.41
PRESS	1	9	10	18					40		20	09	7.0	80	06	100	126	150	178	200	226	250	278	300	326	350	376	400	428	450	476	

0.100 0.117 0.206 0.264 0.313 0.263 0.196 0.058 0.057 0.062 0.060 0.080 0.082 0.083 0.088 0.067 FLUOR 0.058 0.048 0.056 0.081 0.118 0.055 0.082 0.083 0.061 0.081 TRANS 0.48 0.45 0.42 0.42 0.42 0.42 0.43 0.47 0.45 0.44 0.44 0.44 PRESS

STATION: 233 LAT: 38 45.8 N LON: 125 22.8 W DATE: 7/15/88 TIME: 1248Z

SUM	0.000	0.020	0.038	0.080	0.078	0.099	0.114	0 137	0.152	0.174	0.188	0.222	0.254	0.285	0.314	0.343	0.413	0.471	0.524	0.589	0.614	0.653	0.693	CS	۲.	79	.83	0.868	8.	0.928		
SVA	408.0	403.4	399.8	388.8	387.4	384.9	383.5	383.2	368.9	358.0	351.1	327.0	311.6	298.9	289.0	283.8	260.3	220.0	192.1	179.9	165.8	158.0	151.8	146.3	140.4	135.8	132.6	128.5	2	23		17
DENSITY	23.812	23.862	23.900	24.009	24.033	24.062	24.077	80	24.233	24.348	24.422	24.678	24.839	24.975	25.081	25.138	25.389	25.818	26.114	26.245	26.397	26.482	26.551	28.809	26.674	26.724	28.760	20.802	5.63	8.88	26.897	26.927
SAL	2.7	32.759	32.787	2.83	2.88	2.9	32.924	32.920	32.808	32.762	32.781	32.804	32,821	32.855	32.890	32,949	33.119	33.450	33.708	33.809	33.942	33.966	33.971	33.988	34.030	34.048	Ö	34 011	34.028	34.051	34.099	34.121
TEMP	16.831	-	16.643	18.303	18.381	16.474	16.330	0	15.233	14.530	14.248	13.083	12,310	11.725	11.295	11.232	10.580	9.555	8.947	8.820	8.306	7.866	7.411	7.080	6.828	6.590	2	5 757	\blacksquare	50	5 547	5.437
PRESS	-	8	10	18	20	26	30	36	40	48	20	0.9	7.0	80	06	100	128	150	178	200	226	250	276	300	328	350	376	400	428	450	476	200

FLUOR	0	0	0	0	0	0	0	0	0.095	Ξ.	Ξ.	Ξ.	3	'n	Si	-:	Ξ.	0	0	0	0	0	0	0	0	0	0	0	0	0	0.065	90.
TRANS	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.44	0.44	0.44	0.45	0.47	0.48	0.42	0.41	0.39	0.38	0.39	0.39	0.40	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38
PRESS	1	80	10	18	20	56	30	36	40	48	20		20	80		100	CV.	2	178	200	226	2	~	Ö	328	350	~	400	428	2	478	200

STATION: 234 LAT: 38 34.2 N LON: 125 14.3 W DATE: 7/15/88

SUM	0.00.0	0.020	0.038	0.059	0.075	0.099	0.114	0.137	0.153	0.175	0.189	0.224	0.258	0.289	0.319	0.347	0.417	0.475	0.529	0.571	0.614	0.651	0690	0.725	0.762	0.795	82	8	θ	6	0.954	6
SVA	387.5		396.1	394.0	392.7	391.5	389.8	381.3	377.3	366.7	355.3	343.0	328.8	299.8	290.2	283.2	257.3	224.3	186.0	170.4	158.3	152.0	146.8	143.4	139.2	135.1	130.9	127.7	Ñ.	121.0	117.8	15.
DENSITY	23.92	23.935	23.939	23.983	23.978	23.992	24.013	24.103	24.148	24.257	24.379	24.510	24.683	24.965	25.068	25.143	25.421	25.771	26.178	26.345	26.475	26.543	26.600	26.640	26.686	26.730	26.777	26.810	8.84	8.88	26.923	8.95
SAL	2.7	32.718	32.681	2.83	32.630	32.640	32.701	32.837	32.854	32.884	32.910	32.928	32.840	32,834	32.888	32.939	33.144	33,396	33.755	33.925	33.956	33.968	33,985	34.040	34.013	34.024	34 049	03	34.057	34.094	34.133	4.14
TEMP	16.368	6.2	16.117	15.884	15.768	15.740	15.857	15,923	15.789	15,388	14.922	14.369	13.190	11.692	11.260	11.157	10.487	9.572	8.784	0.560	7.860	7,453	7.139	7,185	6.672	6.403	6.192	5.835	5.711		5.555	
PRESS	1	9	10	1.6	20	26	30	36	40	46	20	0.9	20	80	0.6	100	126	150	178	200	226	5	~	300	23	350	376	400	428	450	476	200

0.085 0.066 0.089 0.080 0.057 0.087 0.053 0.082 0.085 0.085 0.088 0.052 0.081 0.084 0.101 0.155 0.455 0.247 0.082 0.082 0.058 0.083 0.084 0.087 0.481 0.081 FLUOR TRANS 0.42 0.42 0.43 0.42 0.43 0.48 0.48 0.43 0.44 0.44 0.44 0.44 PRESS

STATION: 235 LAT: 38 22.5 N LON: 125 5.5 W DATE: 7/15/88

SUM	0.000	0.020			0.078	0.099	0.114	0.138	0.151	0.173	0.187	0.221	0.252	0.283	0.312	0.340	0.405	0.455	0.502	0.542	0.583	0.820	0.858	0.692	0.727	0.759	0.793	0.624	0.858	0.885	0.916	0.944
SVA	403.8	402.5	387.2	392.0	391.7	383.0	377.5	373.0	370.8	359.0	348.8	321.5	311.5	295.6	288.8	273.6	225.9	189.8	173.1	163.3	153.5	148.2	143.3	140.0	135.4	131.6	128.8	125.2	123.2	0	117.5	114.3
DENSITY	23.8	23.872	3.9	3.9	3.98	24.081	24.140	24.188	24.214	24.337	24.488	24.733	24.840	25.010	25.108	25.245	25.749	26.132	26.312	26.418	26.524	28.582	28.837	26.673	26.724	28.787	28.800	26.839	26.883	26.698	26.922	26.958
SAL	2.50	32.502	32.511	32.508	2.49	32.442	32.480	32.489	32.474	32.502	32.548	32.633	32.653	32.878	32.902	33.039	33.378	33,708	33.859	33.928	33.973	33.982	34.015	33.995	34.017	34.058	m.	0	4.1	4.11	0	34.114
TEMP	15.874	15.804	15.583	15.314	15.285	14.629	14.413	14.214	14.108	13.614	13.134	12.098	11.605	11.635	11.208	11.025	9.819	8.831	8.443	8.093	7.614	7.255	7.047	6.660	4	3	3	0	6.023	8	5.196	Ξ.
PRESS	-	9	10	18	20	28	30	36	40	48	20	09	20	80	0.6	100	128	150	178	200	226	250	278	300	328	350	376	400	428	450	476	200

0.078 0.095 0.111 1.136 0.280 0.403 0.207 0.064 0.055 0.088 0.085 0.000 0.089 0.179 0.088 0.073 0.332 0.059 0.084 0.084 0.067 0.087 0.072 0.000 0.081 FLUOR TRANS 0.48 0.48 0.48 0.48 0.48 0.55 0.43 0.45 0.45 0.45 0.48 0.51 PRESS 20 28 30 36 40

STATION: 236 LAT: 38 10.8 N LON: 124 57.0 W DATE: 7/15/88 TIME: 1823Z

SUM	0	0.019	0.032	~~**	0.081	0.078	0.069	0.105	0.118	0.132	0.142	0.168	0.192	0.215	0.237	0.258	0.308	0.352	0.395	0.432	0.470	0.505	0.541	0.574	0.809	0.640	0.873	0.703	0.734	0.783	0.793	0.821
SVA	325.1	317.9	303.3	288.7	284.9	275.3	270.5	287.7	287.3	266.7	262.8	252.3	238.2	224.0	211.3	201.8	189.0	171.4	158.0	152.0	145.7	141.4	138.2	135.8	131.7	128.9	124.9	122.9	120.5	117.8	115.0	111.8
DENSITY	4.8	24.759	24.913	25.087	25.108	25.210	25.281	25.292	25.298	25.305	25.348	25.459	25.830	25.780	25.695	25.999	28.137	28.324	26.469	28.534	26.804	28.82	26.689	28.720	28.783	26.798	28.840	26.884	26.682	26.921	26.952	8.98
SAL	32.803	32.782	2.67	73		32.835	32.912	32,983	32.981	32.998	33.029	33.139	33.258	33.319	33.494	33.585	33.734	33.636	33.980	33.951	33.984	33,990	34.035	34.040	34.058	34.140	34.114	34.143	34.166	34.168	34.185	34.186
TEMP	13.051	.57	11.285	10.884	10.496	10.308	10.364	10 416	10.484	10.469	10.398	10.242	9.783	9.270	9.276	9.073	6.938	8.239	7.921	7.419	7.106	6.793	8.775	8.579	6.356	6.584	6.101	8.098	6.011	5.781	5.520	5.366
PRESS	0	9	10	16	20	56	30	38	40	48	20	80	70	80	06	100	126	150	178	200	226	250	278	300	326	350		400	426	450	476	200

FLUOR	0.178	0.895	0.801	0.817	0.678	0.488	0.402	0.372	0.321	0.359	0.492	0.404	0.539	0.180	0.411	0.360	0.191	0.093	0.091	0.088	0.081	0.070	0.078	0.075	0.073	0.080	0.077	0.072	0.077	0.071	0.070	0.071
TRANS	0.51	0.55	0.59	0.87	0.55	0.47	0.47	0.48	0.48	0.48	0.50	0.47	0.51	0.42	0.48	0.45	0.43	0.40	0.40	0.39	0.39	0.39	0.38	0.39	0.39	0.38	0.39	0.38	0.38	0.38	0.38	0.38
PRESS	0	9				28		36	40		20		20	80	9.0	100	128	150	178	ō	226	250	278	300	326	350	376	400	428	2	~	

STATION: 237 LAT: 37 59.0 N LON: 124 48.6 W DATE: 7/15/88 TIME: 2030Z

SUM	0	0.021	0	0.053	.08	08	0	10	_	-	.14	0.188	0.187	0.208	0.228	0.247	0.293	0.332	0.373	0.409	0.447	0.481	0.517	0.550	0.585	0.616	0.848	.67		Ē	797.0	0.794
SVA	347.3	340.5	333.0	305.5	288.7	287.3	263.8	251.3	249.9	244.2	239.3	227.7	208.9	202.3	192.7	187.0	169.0	159.9	152.4	148.0	143.9	140.8	138.0	134.7	130.5	128.0	124.8	121.3	118.9	118.4	112.8	109.5
DENSITY	24.44	24.521	24.801	4.8	25.088	25.294	25.334	25.465	25.480	25.541	25.594	25.717	25.938	25.988	28.090	26.152	28.346	28.448	26.528	28.577	26.824	28.683	26.694	26.730	28.778	26.804	26.841	θ	9.90	8.93	26.972	7.00
SAL	32.984	32.955	2.98	32.897	2.87	2.96	3.0	3.20	0	33.212	33.213	33.308	33.528	33.583	33.664	33.708	33.870	33.964	34.014	34.023	34.044	34.082	34.098	34.100	34.088	0	34.084		34.135	34.148	34.150	4.1
TEMP	14.865	14.415	14.141	12.348	11.308	10.413	10.514	10.485	10.385	10.089	9.781	9.470	9.167	9.135	8.888	8.712	8.273	0.100	7.805	7.518	7.301	7.240	7.095	8.823	8.438	6.280	5.905	5.766	5.705	4	5.252	3
PRESS	0	99	10	18	20	2.8	30	3.8	40	46	20	09	20	80	06	100	128	150	178	200	226	250	278	300	328	350	378	400	426	450	476	

0.208 0.072 0.072 0.069 0.068 1.071 0.852 0.827 0.087 0.073 0.072 0.069 0.087 0.088 0.201 0.379 0.597 0.786 0.480 0.481 0.200 0.225 0.143 0.118 0.079 0.071 0.071 0.071 FLUOR TRANS 0.49 0.54 0.48 0.52 0.57 0.58 0.55 0.49 0.48 0.43 0.43 0.42 0.42 0.40 0.38 0.38 0.38 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.54 0.61 PRESS

STATION: 238 LAT: 37 47.5 N LON: 124 40.2 W DATE: 7/15/88 TIME: 2223Z

FLUOR	0.227	0.273	0.433	0.651	0.818	0.867	0.845	0.918	0.890	0.607	0.627	0.321	0.114	0.214	0.221	0.154	0.108	0.091	0.089	0.078	0.074	0.069	0.087	0.088	0.089	0.072	0.072	0.069	0.072	0.071	0.071	0.088
TRANS	0.54	0.55	0.83	0.55	0.58	0.61	0.83	0.59	0.58	0.55	0.52	0.48	0.40	0.45	0.44	0.44	0.43	0.41	0.40	0.40	0.40	0.38	0.38	0.39	0.38	0.38	0.39	0.38	0.38	0.38	0.38	0.37
PRESS	0	8		18				3.6	40	48				80		ō	N.	2	178	200	226	250	~	ō	2	2	378	Ō	CV.	2	478	200

STATION: 239 LAT: 37 35.6 N LON: 124 31.4 W DATE: 7/16/88 TIME: 0018Z

SUM	00	0.017	0.030	0.049	0.081	0.079	0.091	0.108	0.119	0.135	0.145	0.170	0.194	0.217	0.238	0.259	0.309	0.351	0.398	0.435	0.475	0.511	0.549	0.583	8	0.652	•		0.750	-		0.839
SVA	338.9	339.2	328.7	301.7	300.5	295.8	285.8	278.0	271.8	263.5	258.5	248.2	235.0	217.1	208.0	200.1	184.7	173.1	188.1	158.9	152.9	147.1	143.7	141.3	138.6	134.7	130.7	127.8	124.0	120.9	117.3	113.9
DENSITY	24.53																								26.695	26.739	26.784	26.819	28.858	26.890	26.929	28.987
SAL	33.027	33.023	33.027	33.072	33.078	33.093	33.138	33.185	33.220	33.280	33.280	33.428	33,386	33.622	33.676	33.727	33.849	33.922	33.979	34.020	34.047	34.067	34.074	34.089	34.102			~	34.144		.16	4.1
TEMP	14.605	14.600	14 080	12.842	12.791	12.594	12.215	11.865	11.788	11.454	11.133	11.149	10.288	10.249	9.927	9.657	9.218	8.784	8.589	8.283	7.954	7.626	7.395	7.272	7.117	6.883	6.797	6.641	8	~	5.733	9
PRESS	-	89	10	18	20	56	30	38	40	46	20	09	20	80	06	100	128	150	178	200	226	250	278	300	328	350	376	400	428		~	200

0.808 0.410 0.095 0.089 0.082 0.078 0.073 0.077 0.785 0.807 0.290 0.170 0.182 0.159 0.123 0.073 0.073 0.448 0.825 0.544 0.271 0.155 0.072 0.074 0.074 FLUOR TRANS 0.52 0.52 0.58 0.58 0.58 0.49 0.48 0.45 0.42 0.42 0.36 0.51 PRESS

STATION: 839 LAT: 37 23.5 N LON: 124 22.1 W DATE: 7/16/88 TIME: 02002

SUM	0.00.0	0.017	0.031	.05	m	0.081	0.092	0.109	0.120	0.135	0.145	0.169	0.192	0.214	0.235	0.255	0.304	0 348	0.389	0.427	0.467	0.503	0.540	0.574	0.810	0.842	67	0.705	0.737	0.788	~	0.823	
SVA	345.3	345.2	2	309.4	303.8	292.6	282.8	270.3	258.9	251.8	245.3	235.7	227.8	214.0	208.4	195.8	180.2	189.3	161.9	158.0	150.4	147.0	141.8	139.3	135.5	130.3	127.3	124 0	0	~	115.7	6	
DENSITY	4.4	24.473	24.473	24.851	24.910	25.029	25.133	25.285	25.407	25.484	25.531	25.634	25.721	25.888	25.948	26.061	26.230	28.348	26.430	26.495	26.558	28.597	26.855	26.684	28.727	26.783	8.81	8.85	6.8	8.92	26.949		
SAL	3.01	33.012	3.01	33.118	3.0	33.061	33.117	33.108	33.258	33.305	33,369	33.467	33.521	33.613	33.671	33.764	33.890	33.940	33.991	34.034	34.058	m	34.081	34.093	34.108	34.129	34.158	34.141	34.188	34.211		34.233	
TEMP	14.858	14.851	4.84	13.427	12.860	12.292	11.970	11.210	11.073	10.959	10.859	10.708	10.450	10.019	9.803	9.558	9.124	8.619	8.348	8.135	7.839	က	9	7.148	6.914	6.626	6.537	6.170	6.148	8.048	5.912	5.785	
PRESS	-	8	10	18	20	26	30	36	40	48	20	0 9	20	80	9.0	100	128	150	178	200	226	250	278	300	328	350	378	400	428		476	200	

FLUOR	0.389	0.384	0.385	0.712	0.738	0.688	0.828	0.577	0.484	0.330	0.253	0.178	0.144	0.113	0.122	0.205	0.151	0.098	0.078	0.082	0.077	0.077	0.072	0.075	0.071	0.075	0.077	0.073	0.078	0.074	0.078	0.078
TRANS	0.50	10	5	2	2	3	4	4	0.47	4	4	63	0.39	3	0.39	63	4	9	0.38	3	3	0.37	3	3	0.38	3	3	0	3	0	0.37	ë
PRESS	1	8			20	28	30	38	40	48	20	0.8	20	80	9.0	100	128	S	178	200	228	250	~	300	Ñ	350	~	400	428	2	478	

STATION: 840 LAT: 37 19.8 N LON: 124 49.3 W DATE: 7/16/88 TIME: 0506Z

SUM	. 0	0.019	0.034	0.058	0.070	0.089	0.102	0.120	0.131	0.148	0.159	0.185	0.208	0.229	0.250	0.269	0.317	0.358	0.400	0.437	0.475	0.510	0.548	0.579	0.814	0.645	0.879	0 708	0.740	78	0.799	.62
SVA	374.3	374.4	374.0	362.3	339.2	311.0	303.7	297.1	286.9	278.3	288.2	241.8	221.4	210.0	2002	191.3	175.2	164.7	158.4	151.9	145.9	142.4	138.1	135.0	132.3	129.2	25	23	20	18	115.8	13
DENSITY	24.1	24.188	24.171	24.298	24.538	24.838	24.913	24.984	25.093	25.184	25.290	25.572	25.785	25.907	26.012	26.108	28.281	28.395	28.487	28.538	28.604	28.845	28.882	28.727	28.758	26.795	26.631	26.882	26.695	26.918	26.947	26.974
SAL	2.81	32.813	32.811	32.602	32,859	32.991	33.030	33.063	33.101	33.147	33.173	33.270	33.417	33.523	33.605	33.690	33.830	33.934	34.018	34.028	34.064	34.098	34.098	34.092	34.093	34.135	34.138	34.184	34.181	34.189	34.209	34.215
TEMP	5.5	15.555	5 524			13.008													8.097									8.240	.085	0	844	3
PRESS	1	9	10	18	20	58	30	38	40	48	20	09	20	90	06	100	128	150	178	200	228	250	278	300	328	350	378	400	428	450	476	200

FLUOR		.12	.12	0.137	.28	38	0.411	0.494	0.891	0.845	.51	35,	.12	07	0.5	0.8	.08	.07	0.088	.08	.08	.08	.07	.07	.08	.08	.07	.07	.07	.07	0.071	
TRANS	4	4	4		4	4	4		5	0.52	4	4	3	3	Ε.	6	8	3	0.37	ε.	3	3	3	3	S	3	က	3	3	e.	0.38	က
PRESS	Ţ	89		16	20	26	30	38	40	48	20	0.9		80		0	CV.	150	178	200	228	2	~	300	N	320	378	400	428	2	478	õ

STATION: 240 LAT: 37 32.1 N LON: 124 57.4 W DATE: 7/16/88 TIME: 0718Z

SUM	0.000	0.018	0.030	0.047	0.058	0.074	0.084	0.100	0.110	0.125	0.135	0.159	0.182	0.204	0.225	0.245	0.294	0.338	0.378	0.414	0.453	0.487	0.524	0.557	0.592	0.623	0.657	0.687	0.718		0.778	
SVA	308.5	303.0	289.4	272.3	268.5	263.6	260.6	257.7	253.7	250.3	245.7	235.3	223.8	212.6	204.0	197.2	179.3	168.0	158.7	149.8	145.0	141.7	139.2	136.6	132.9	129.4	126.7	123.3	121.7	119.5	115.7	113.2
DENSITY	24.85	24.915	25.059	25.240	25.280	25.333	25.384	25.397	25.440	25.477	25.526	25.637	25.759	25.877	25.971	26.045	26.237	28.380	26.462	26.580	26.612	26.651	26.680	26.711	26.752	26.792	26.823	26.880	26.879	26.904	26.946	26.973
SAL	32,903	32,905	~	33.07	33.12	33.14	33.164	33.183	33.142	33.158	33.187	33.228	33,330	33.444	33.530	33.624	33.771	33,878	33.944	33.999	34.031	34.088	34.071	34.069	34.107	34.122	34.129	34.142	34.139	34.148	34.173	34.179
TEMP	.55	12.252	39	11.197	11.200	10.984	10.902	10.798	10,366	10.214	10.064	9.577	9.325	9.145	8.977	8.977	8.477	8.211	7.745	7.503	7.313	7.235	7.050	6 928	6.729	6.519	6	6.118	5.949	6	5.625	
PRESS	0	9	10	8	0	9	0	8	40	8	0	0	0	0	0	00	28	0	9.4	00	56	20	9.4	00	26	0	~	400	428	450	476	

FLUOR	0.394	0.584	0.700	1.579	1.124	1.146	0.754	0.822	0.508	0.884	0.484	0.209	0.168	0.283	0.250	0.212	0.102	0.082	0.078	0.072	0.073	0.075	0.074	0.074	0.072	0.072	0.075	0.069	0.071	0.075	0.072	0.073
TRANS	S	3	2	0.75	0		S	2	4	4.	4.	0.41	4	0.42	4.	4,	4	3	3	က	6	0.37	6	က	6	6	6	3	3	6	0.38	ë
RESS	0	80			20			36	40	48		09		80	06	0	128	5	~	200	228		278	ō	Ĉ.	2	378	ō	428	2	476	ō

STATION: 241 LAT: 37 43.5 N LON: 125 6.8 W DATE: 7/16/88 TIME: 0918Z

SUM	0.00.0	0.024	0.040	0.084	0.080	0.104	0.120	0.142	0.158	0.178	0.190	0.222	0.252	0.281	0.310	0.337	0.402	0.453	0.502	0.543	0.585	0.622	0.681	0.696	0.732	0.765	0.799	0.830	0.883	0.892	0.923	0.951
SVA	402.3	401.9	401.3	402.5	401.4	396.7	388.8	345.5	343.5	341.3	332.8	312.9	282.7	286.2	878.8	268.4	229.1	198.0	177.2	184.5	158.5	152.1	148.3	143.3	138.0	34	30	128.5	23	0	117.0	115.1
DENSITY	23.8	23.877	23.885	23.874	23.887	23.937	24.022	24.477	24.499	24.522	24.615	24.823	25.037	25.107	25.178	25.299	25.715	28.048	28.270	28.408	28.473	28.542	26.805	26.840	28.899	26.743	26.781	28.825	3.88	8.89	26.933	28.955
SAL	2.52	32.528	32.531	32.525	32.533	32.564	32.580	32.581	32.575	32.587	32.748	32.838	32.885	32.901	32.948	33.182	33.287	33.818	33.837	33.934	33.978	33.988	33.989	34.011	34.051	34.083	34.118	34.090	34.147	4.15	34.180	4.18
TEMP	15.875	5.8	15.845	15.874	15.843	15.724	15.325	13.221	13.088	13.013	13.165	12.454	11.512	11.193	11.015	11.342	9.394	8.928	8.804	8 207	7.989	7.557	7.128	8.998	8.798	6.656	6.567	8.068	6.147	94	5.775	5.653
PRESS	0	8	10	18	20	56	30	38	40	48	20	90	20	80	06	100	126	150	178	200	226	250	278	300	328	350	376	400	428	450	476	200

STATION: 242 LAT: 37 56.1 N LON: 125 15.8 W DATE: 7/16/88 TIME: 1206Z

SUM	0	0.020	0	0	2	0	Ξ.	-	0.148		0.185	0.222	0 256	0.287	0.317	0.346	0.417	0.475	0.530	0.575	0.620	0.659	6690	0.735		0.807	0.843	Θ.	0.909	0.939	0.970	866'0
SVA	399.5	399.0	397.2	374.4	373.0	372.1	371.2	370.1	370.2	370.3	370.5	356.9	325.9	305.1	294.4	284.1	258.8	224.1	199.1	179.1	185.8	159.2	152.1	148.1	143.5	141.0	135.3	130.7	128.1	123.0	118.7	116.2
DENSITY	33.90	23.807	23.928	24.189	24.184	24.195	24.208	24.219	24.220	24.220	24.220	24.364	24 890	24.910	25.024	25.134	25.407	25.772	26.041	28.255	26.399	28.470	28.546	26.591	28.842	26.671	26.732	28.782	26.834	26.868	26.911	26.943
SAL	32.781	32.788	32.799	32.924	32.918	32.924	32.935	32.947	32.947	32.947	32.944	32.837	32.713	32.838	32.848	32.918	33.128	33.410	33.689	33.848	33.930	33,964	33.970	33.978	34.022	34.031	34.024	34.050	34.105	4.09	34.104	4.1
TEMP	16.818	0	16.561	15,927	\mathbb{C}	0	15.798	15 780	15.778	15.775	15.766	14.726	12.653	12.005	11.418	11.109	10.496	9.629	9.225	8.748	8.234	7.937	44	.15	0.4	8	38	$\overline{}$	6.095	78	5.458	5.554
PRESS	-	8	10	18	20	26	30	36	40	48	20	09	20	80	0.6	100	128	150	178	200	226	250	278	300	328	350	376	400	428	450	\sim	200

FLUOR	0	0	0	0.	0.	0	0.	0.	0.091	0.	0.		3	ε.	ε.	8	0.	0	0	0	0	0	0.	0	0	0	0	0	0.	0.	0.	0.
TRANS	4.	٠.	0.41	٠.	4	4		0.40	0.40	4		₹.	4	0.42	4	4	6	6	6	6	0.38	6	6	6	3	6	6	3	3	3	0.38	9
PRESS	1	9			20			36	40		20			80	06	100	128	150	178	200	228	2	278	ō	N	S	~	400			478	200

STATION: 243 LAT: 38 7.2 N LON: 125 24.1 W DATE: 7/16/88 TIME: 1430Z

SUM		0.020	3	0.059	0	0.9	0.114	13	0.153	.17	0.191	22	0.263	0.297	0.328	0.359	0.432	0.492	0.550	0.598	0.644	0.684	5	0.782	0.800	θ.	0.869	0.901	0.935	96	G	1.028
SVA	396.7	398.4	396.4	396.3	393.9	388.9	384.8	384.5	384.1	382.3	381.2	380.0	345.3	324.0	310.0	296.3	287.1	237.1	208.8	188.3	170.7	163.3	153.1	148.8	144.4	139.4	134.7	132.0	128.3	120.6	122.2	119.2
DENSITY	3.93	23.938	23.937	23.940	23.965	24.020	24.083	24.089	24.074	24.095	24.107	24.331	24 488	24.712	24.881	25.007	25.318	25,838	25.938	28.179	28.346	28.428	26.536	28.585	26.833	26.688	28.738	28.788	26.808	8.80	26.876	28.909
SAL	32.799	32.803	32.804	32.804	32.808	32.826	32.844	32.643	32.815	52,614	32.767	32.689	32 688	32.728	32.794	32.646	33.072	33 269	33.573	33.761	33.908	33.948	33,981	34.015	33,998	34.036	0.1			4 05	34.077	34.109
TEMP	16.552	16,543	16.542	N	16.430	16.253	16.121	16.094	15.075	15.879	15.664	14.270	13.571	12.590	12.085	11.514	10.754	9 788	9.398	8.808	8.457	8 128	7.570	7.418	6.985	6.791	6.404	5 888	5.728	94	5.577	5.508
PRESS	1	9	10	18	20	26	30	36	40	48	50	09	07	80	06	100	126	150	178	200	226	250	276	300	326	350	378	400	426	450	476	

STATION: 244 LAT: 38 19.1 N LON: 125 32.9 W DATE: 7/16/88 TIME: 1806Z

SUM	00.	0.024	0.4	0	Θ	0.103	0.119	0.142	0.157	0.160	0.195	0.232	0.267	0.300	0.331	0.361	0.434	0.495	0.552	0.599	0 644	0 684	0.724	0.780	0.797	0.830	8	0.897	0.830	.98	0.992	.02
SVA	402.3	402.4	403.0	400.8	389.8	385.2	385.1	3845	384.1	382.3	373.1	358.9	344.2	319.7	301.0	290.9	269.4	238.8	205.1	183.1	166.8		0.3	145.7	_	9	132.9	0	128.1	122.7	119.2	115.4
DENSITY	23.8	23.872	23.888	23.882	24.009	24.059	24.081	24.069	24.074	24.095	24.192	24.343	24.498	24.757	24.955	25.062	25.294	25.620	25.977	26.212	26.387	28.465	28 547	26 616	28.670	26.711	26.754	8.78	26.830	26.888	6	26.944
SAL	81	2.81	32 818	2.83	2.79	2.77	2.7	2.77	32 870	32,937	32.782	32.662	32.627	32.824	32.823	32.871	33.042	33.251	33.557	33.754	33.920	33.962	34 002	34.004	33,990	34.002	34.005	34 018	4.0	34.052		34.078
TEMP	16.868	16.888	Θ.	16.791	16.202	15.096	15.870	15.648	18.162	16 297	15,329	14.187	13.291	12.748	11.701	11.314	10.760	0086	9.074	8.559	8.263	7.961	7.615	37	8.823	17	860.	34	5.732	5.494	5.215	5.003
PRESS	0	8	10	18	20	56	30	36	40	46	20	0.9	20	80	9.0	100	128	150	178	200	226	250	278	300	328	350	378	400	428	450	476	200

STATION: 245 LAT: 38 30.9 N LON: 125 41.1 W DATE: 7/16/88

SUM	00	0	03	0	0.078	0	0.114	1.	0.152		0.190	0.228	0.264	0.298	33	0.361	0.436	0.499	0.580	0.609	0.658	8	0.740	0.777	0.818	ω.	0.886	6.	0.854	0.985	1.018	1.047
SVA	399.1	99	399.3	399.5	397.3	379.9	379.4	378.9	378.7	378.5	378.1	370.8	357.3	327.0	310.5	301.2	278.1	249.9	217.7	195.7	177.0	164.9	157.0	150.7	144.9	141.0		4		129.2	125.4	121.1
DENSITY	3.905	23.908	90	3.90	3.93		24.1	24.12	24.13	24.13	24.14		24.3	24.881	24.856	24.955	25.224	25 503	25.845	28.080	26.281	28.411	28.497	26.567	28.628	6.67	8.70	8 7	28.778	8.80	28.844	m.
SAL	2.74	32.745	2.74	32.745	32.759	32.869	32.867	32.889	32.889	32 870	32,869	32.871	32,832	32,737	32.793	32.809	33.005	33,203	33.490	33.898	33.863	33,958	33.982	34.047	34.000	33,995	34.019	0 4	34.014		34.071	34.093
TEMP	~	6.4	16.479	16.480	8.41	15.980	5.94	15 921	15.908	15.892	15.868	15.510	14.718	12.797	12.107	11.638	10.994	10.277	9.568	9.119	8 663	8.300	7.849	7.717	7.024	9.	8.557	6.178	5.963	.83	5.795	56
PRESS	1	9	10	16	20	26	30	36	40	46	20	09	20	0.0	06	100	126	150	176	200	226	250	276	300	328	350	376	400	426	450	476	200

STATION: 253 LAT: 38 15.4 N LON: 125 59.6 W DATE: 7/17/88 TIME: 0418Z

SUM	. 0	0.024	3	8	0.079	0.103	0.118	0.141	0.157	0.179	0.194	0.231	0.266	0.298	0.329	0.358	0.430	0.491	0.547	0.593	0.839	0.878	0.718	0.754	0.792	0.826	0 861	0 893	0.928	0.958	0.988	1.016
SVA	394.3	394.4	394.8	394.7	394.8	394.9	391.4	380.9	379.5	378.2	374.5	355.1	338.4	311.8	299.5	289.0	289.0	232.9	2002	183.0	187.2	158.7	152.2	148.0	142.8	138.8	134.2	130.1	126.9	123.2	119.1	116.8
DENSITY	23.95	23.957	23.955	23.955	23.958	23.957	23.994	24.105	24.122	24.137	24.178	24.383	24.580	24.840	24.970	25.083	25.298	25.880	26.028	26.214	26.382	28.474	28.545	26.592	28.850	26.693	28.742	28 787	26.823	8.8	26.909	6.9
SAL	32,620	32.622	32 822	32.623	32.824	32.624	32.553	32.480	32.626	32.880	32.568	32.914	32.851	32.852	32.768	32,903	33.090	33,345	33.651	33.810	33.902	33.934	33.983	33.983	34.030	34.006	33,998	4 03	*	1.08	4.12	4.1
TEMP	5.8	15.837	15.843	15.848	15.845	15.844	15.428	14.650	15.099	15.149	14.629	14.918	13.742	12.433	11.380	11.337	10.950	9.879	9.213	8.829	8.201	7.749		_	7.037	10		8 0 0 2	.85	. 81	5.619	62
PRESS	0	9	10	18	20	56	30	38	40	48	20	09	20	80	06	100	128	150	178	200	226	250	278	300	326	350	378	400	428	450	476	

FLUOR	0.083	0.085	0.084	0.085	0.083	0.083	0.075	0.088	0.090	0.088	0.110	0.120	0.232	0.308	0.429	0.341	0.144	0.084	0.059	0.059	0.080	0.081	0.080	0.058	0.080	0.083	0.082	0.088	0.065	0.083	0.084	0.073
TRANS	0.42	0.41			0.41	0.41	0.41	0.42	0.45	0.40	0.41	4	4	0.42	4	4	3	9	3	9	0.35	3	က	3	C	C	0.34	S	0.34	0.34	0.34	0.34
PRESS	0	9					30		40		20			80	06		2				228		~	ō	Q					S	478	

STATION: 254 LAT: 38 3.3 N LON: 125 50.8 W DATE: 7/17/88 TIME: 0623Z

SUM	0.	.02	.03	90.	0.079	0.103	0.118	0.142	0.157	0.178	0.193	0.226	0.257	0.287	0.318	0.344	0.413	0.469	0.521	0.584	209.0	0.644	0.684	0.719	0.758	0.789	0.824		0.888	0.918	0.950	0.978
SVA	394.0	394.4	394.8	394.9	394.9	395.2	393.3	378.6	371.8	358.9	343.7	318.6	307.3	295.1	265.8	279.1	251.4	213.3	187.1	169.6	160.0	154.2	149.0	145.4	140.2	135.6	132.4	129.0	125.1	122.7	119.5	117.3
DENSITY	23.95	23.958	23.955	23.954	23.955	23.954	23.974	24.130	24.205	24.340	24.499	24.788	24.865	25.014	25.118	25.186	25.481	25.886	26.165	28.353	26.458	26.522	26.580	28.620	28.678	26.727	26.783	26 801	28.844	26.672	26.905	28.929
SAL	32.762	32.759	32 759	32.758																						34.07	34.075	34 099	CV.	3	\blacksquare	34.127
TEMP	6.30	16.307	6.3	16.311	18.313	16.313	16.260	15 858	15.472	14.756	13.889	12.602	12.075	11.490	11.176	11.050	9.904	9.112	8.813	0.236	8.035	7.836	7.579	7.255	7.039	6.704	4	6.310	Ξ.	98	9	5.463
PRESS	0	9	10	18					40							00		50		00		20	97	00	28	50	376	400	428	400	476	200

0.059 0.059 0.059 0.071 0.108 0.159 0.628 0.372 0.204 0.129 0.074 0.087 0.085 0.075 0.082 0.072 FLUOR 0.059 0.059 0.227 0.294 0.079 0.074 0.074 0.075 0.071 TRANS 0.40 0.40 0.40 0.40 0.42 0.42 0.45 0.40 0.35 0.35 0.35 0.36 0.36 0.36 0.36 0.37 0.40 0.40 0.41 0.34 0.34 0.34 0.34 PRESS

STATION: 255 LAT: 37 51.2 N LON: 125 44.5 W DATE: 7/17/88 TIME: 0853Z

SUM	0.000	0.024	0.040	.08	.08	0.103	0.119	0.141	0.154	0.174	0.186	0.217	0.248	0.274	0.301	0.328	0.390	0.440	0.489	0.530	0.572	609.0	0.648	0.882	0.718	0.751	0.788	0.817	0.850	.87	0.910	93
SVA	398.1	397.5	397.7	397.5	397.8	395.1	390.3	341.1	327.7	320.5	314.2	293.8	286.5	277.4	270.1	256.8	222.2	194.1	177.2	187.0	157.1	151.5	145.7	141.4	137.4	135.3	131.2	127.5	124.2		119.3	
DENSITY	23.9	23.924	23.923	23.928	23.927	23.954	24.008	24.523	24.884	24.740	24.808	25.028	25.103	25.201	25.278	25.398	25.767	28.087	28.289	28.380	26.487	26.549	26.614	26.881	28.708	26.731	28.778	26.616	26.653	28.885	26.909	26.945
SAL	32.489	32.501	32.500	32.501	32.500	32.510	32.523	32.607	32.623	32.637	32.611	32.892	32.921	33.078	32.954	32.978	33,380	33.632	33.828	33.895	33.956	33.995	34 034	34.047	34.080	34.067	34.091	34.091	34.122	34.152	34.151	34.184
TEMP	15.581	5.585	568																										8.050		5.781	5.703
PRESS	0	9	10	18	20	26	30	36	40	48	20	0.9	2.0	0.9	0.6	100	128	150	178	200	226	250	278	300	328	350	376	400	428		476	200

FLUOR	.07	.07	.07	.07	.07	0.4	04	.14	.18	31	42	39	39	28	23	.19	90.	0.0	.08	0.8	.07	.07	0.4	.07	0.3	.07	.08	.07	0.2	.07	0.073	.07
TRANS		4		4	4	4	4	4		4	4.	4	4	3	3	3	6	က	ε,	ε.	3	3	က	3	3	3	6	G	8	e,	0.34	
PRESS	0	9			20				40					80		100	128	5	178	200	228	250	~	300	CQ.	2	378	400	428	450	478	200

STATION: 855 LAT: 37 47.8 N LON: 125 41.0 W DATE: 7/17/88

SUM	0.000	0.019	0.031	0.049	0 082	0.080	0.092	0.108	0.118	0.133	0.143	0.188	0.192	0.214	0.237	0.258	0.309	0.351	0.394	0.430	0.468	0.502	0.538	0.571	0	969.0	80	6	0.732	0 781	0.792	
SVA	309.4	308.9	309.2	309.4	309.2	308.3	275.5	258.9	258.2	249.7	248.7	241.4	231.9	225.1	219.0	205.4	184.5	170.1	158.9	149.1	143.2	140.8	135.7	133.0	130.7	128.7	128.8	Q	122.9	20	118.4	15.
DENSITY	24.8	24.853	24.851	24.850	24.853	24.886	25.210	25.385	25.415	25.483	25.494	25.573	25.874	25.748	25.814	25.959	26.183	28.338	28.481	28.588	28.631	26.662	28.717	26.749	28.778	26.800	8.8	8.8	8.8	26.893	26.919	6.9
SAL	33.002	33.010	33.012	33.009	33.008	33.003	33.153	33.233	33.254	33.233	33.238	33.200	33,291	33.333	33.378	33.511	33.748	33.854	33.989	34.019	34.047	34.078	34 102	34.120	34.135	34.147	34.15	34.162	9	34.171	34.180	4.19
TEMP	2.99	12.998	3.01	13.005	12.988	12.801	11.707	11.088	11.010	10.527	10.475	9.848	9.861	9.407	9.217	8.960	8.701	8.243	7.887	7.572	7.268	7.210	6 964	6.831	8.717	8.608	8.489	8 377	.20	6.038	5.085	5
PRESS	0	89	10	18	20	56	30	36	40	46	20	09	70	80	06	100	128	150	178	200	226	250	276	300	328	350	378	400	428		478	200

FLUOR	0.194	0.213	.40	0.368	33	.40	.73	90	0.587	.47	47	39	33	37	19	14	0.9	0.8	0.8	03	.07	.07	.07	.07	07	07	0.8	07	.07	.07	0.073	.07
TRANS	4		4	4	0.47	4.	0	5	0.47	4.	4	4.	4	4.	3	9	6	6	3	က	6	9	0.34	0.34	6	0.34	3	0.34	0.34	0.34	0.34	0.34
PRESS	0	89			20	28	30	36	40	48	20		20	80	06	100	128	2	178	200	226	250	278	300	328	3	~	400	428	450	478	

STATION: 256 LAT: 37 39.1 N LON: 125 33.7 W DATE: 7/17/88 TIME: 1548Z

SUM	0.00.0	0.019	0.034	0.058	0.071	0.093	0.108	0.125	0.137	0.154	0.165	0.190	0.215	0.238	0.259	0.279	0.327	0.368	0.410	0.447	0.486	0.521	0.557	0.590	0.824	0.656	0.889	0.718	۲.	0.778	0.808	89.
SVA	373.0	373.0	373.2	373.4	373.5	347.2	318.9	310.7	291.8	272.8	268.9	251.1	238.0	221.3	208.8	194.2	174.0	184.7	159.8	151.5	147.9	143.2	138.9	133.7	131.7	128.6	125.8	123.0	119.3	116.8	114.4	111.8
DENSITY	24.17	24.180	24.179	24.180	24.180	24.456	24.754	24.841	25.041	25.243	25.304	25.471	25.832	25.788	25.945	26.076	26.294	28.395	28.454	28.542	26.582	28.634	28.704	28.741	28.785	26.800	8.83	8.88	26.905	6.93	8.88	6.98
SAL	32.877	32.880	~	32.880	~	32.758	32.771	32.739	32.870	33.011	33.023	33.238	33.302	33.408	33.554	33.658	33.839	33.920	33.968	34.029	34.025	34.000	34.087	34.115	34.124	34.138	34.138	34.153	34.174	34.191	.20	4
TEMP	_	15.723	2	15.728	15.728	13.989	12.555	11.961	11.431	10.914	10.619	10.808	9.968	9.522	9.260	8.945	8.458	8.205	8.057	7.795	7.491	6.980	8.969	6.859	8.732	6.540	6.314	8.155	5.965	5.830	5.707	8
PRESS	1	89	10	18	20	28	30	38	40	48	20	09	20	80	06	100	126	150	178	200	226	250	278	300	328	350	378	400	428	450	476	200

FLUOR	0.099	0.101	0.118	0.132	0.149	0.277	0.491	0.602	0.661	0.585	0.549	0.324	0.268	0.121	0.078	0.073	0.083	0.087	0.068	0.087	0.071	0.084	0.070	0.020	0.069	0.068	0.089	0.089	0.073	0.069	0.067	0.089
TRANS	4	4	4	4	4	4	0.48	4		4	4	4.	6	3	6	6	6	3	3	6	6	3	က	က	9	က	9	က	က	3	0.33	6
PRESS	1	9					30		40			09			06	Ö	N	5	176	200	226	250	~	Õ	326	5	~	400	N	450		200

STATION: 257 LAT: 37 27.6 N LON: 125 24.0 W DATE: 7/17/88

SUM	0	2	3	2	~	0		7	0.140		0.170	0.198	0.225	0.251	0.275	0.299	0.354	0.387	0.441	0.479	0.519	0.555	0.592	0.626	0.881	0.693	0.727	0.757	0.788	0.617	.64	θ.
SVA	364.1	384.2	364.5	364.0	382.9	356.2	344.9	308.8	304.2	293.0	287.4	278.2	265.9	248.2	239.5	227.3	194.0	172.1	163.5	155.5	151.1	146.0	142.2	136.5	133.9	130.8	127.3	123.4	119.5	117.0	113.9	111.0
DENSITY	24.8	24.273	24.271	24.278	24.290	24.382	24.481	24.849	24.911	25.029	25.089	25.167	25.318	25.508	25.800	25.729	26.084	28.317	26.413	28.501	26.551	26.607	26.850	26.891	26.743	26.780	26.817	~	$\overline{}$	26.932	3	26.998
SAL	32.838	32.837	32.837	32.838	32.638	32.828	32.786	32.791	32.808	32.679	32.922	32.949	33.015	33.192	33.284	33,349	33.888	33.646	33.953	34.044	34.043	34.072	34.087	34.075	34.107	34.130	34.140	34.158	34.173	34.195	34.212	4
TEMP	.15	15.153	18	15.124	15.076	14.696	13.962	12.135	11.877	11.535	11.369	10.955	10.498	10.207	9.985	9.602	8.946	8.349	6.283	6.149	7.609	7.577	7 248	6.993	6.799	6.659	8.437	CS	6	5.881	5.718	57
PRESS	0	8	10	16	20	28	30	38	40	48	20	0.8	20	09	06	100	126	150	178	200	226	250	278	300	326	350	~	400	C	450	478	200

STATION: 258 LAT: 37 16.6 N LON: 125 16.6 W DATE: 7/17/88 TIME: 1953Z

SUM	0.000	0.022	0.037	0.080	0.075	0.098	0.109	0.128	0.140	0.157	0.168	0.198	0.222	0.248	0.289	0.291	0.341	0.382	0.423	0.480	0.499	0.534	0.570	0.803	0.838	0.669	0.701	0.730	0.781	0.789	0.819	0.845
SVA	373.7	373.9	374.0	373.9	372.9	345.5	310.8	300.7	294.9	285.0	282.8	265.5	253.0	240.8	219.7	204.2	179.0	184.7	156.1	151.5	146.4	141.8	138.8	135.5	131.4	126.3	123.7	1205	117.8	114.9	112.2	109.0
DENSITY	24.17	24.171	24.171	24.174	24.188	24.474	24.841	24.948	25.007	25.113	25.137	25.321	25.454	25.583	25.807	25.972	26.241	28.395	26.489	28.542	26.598	28.851	28.884	28.720	26.784	26.822	28.852	26.688	26.921	28.950	26.977	27.011
SAL	32.847	32.847	32.848	32.848	32.847	32.814	32.789	32.817	32.841	33.023	33.043	33.071	33.140	33.200	33.418	33.571	33.818	33.908	33.978	34.005	34.024	34.041	34.053	34.047	34.031	34.116	34.121	34.148	34.166	34.184	34.134	34.148
TEMP	15.648	15.850	15.652	15.842	15.585	14.120	12.189	11.723	11.490	11.888	11.638	10.734	10.275	9.782	9 4 4 5	9.177	8.683	8.148	7.870	7.885	7.374	7.088	8.923	8.818	8.181	6.250	8.053	5.932	5.784	5.532	5.102	4.901
PRESS	0	9	10	18	20	28	30	38	40	4 6	20	60	20	80	06	100	128	150	178	200	226	250	278	300	328	350	376	400	428	450	~	200

FLUOR	0.149	0.183	0.173	0.182	0.195	0.233	0.314	0.207	0.505	0.410	0.428	0.234	0.330	0.098	0.078	0.065	0.088	0.080	0.083	0.088	0.087	0.088	0.070	0.089	0.088	0.087	0.088	0.072	0.068	0.087	0.065	0.084
TRANS	4	0.47	4	4	0.48	0.48	4	0.48		4	4	0.48	4	0.41	4	4	3	0.39	3	9	3	9	3	9	9	3	0	9	9	9	0.39	6
PRESS	0	80			20	28	30	38	40	48	20	90	20	80	06	100	128	2	178	ō	228	3	~	300	N	3	~	400	N	2	476	ō

STATION: 858 LAT: 37 2.1 N LON: 125 35.9 W DATE: 7/17/88 TIME: 2400Z

SUM	0.000	0.019	0.033	0.058	0.070	0.092	0.104	0.123	0.134	0.152	0.163	0.191	0.217	0.242	0.284	0.285	0.338	0.377	0.419	0.458	0.494	0.528	0.583	0.595	0.629	0.659	0.892	0.721	0.752	0.779	.80	0.835
SVA	370.2	370.4	370.8	370.8	369.5	337.4	308.2	294.9	291.3	286.8	2002	273.5	256.1	235.2	217.7	203.8	162.3	166.3	155.3	149.2	142.8	138.8	135.2	131.3	128.4	128.2	122.8	120.0	115.9	113.4	111.5	110.8
DENSITY	5.4	24.207	24.207	24.209	24.221	4.55	24.888	25.007	25.045	25.094	25.181	25.237	25.421	25.842	25.628	25.978	26.208	26.378	26.498	28.584	26.835	26.681	26.721	28.784	26.798	26.624	28.882	26.893	26.936	26.985	26.988	26.996
SAL	32.850	32.850	32.849	32.649	32.654	32.831	32.657	32.854	32.880	32.984	32.986	33.064	33.182	33.248	33.484	33.580	33.788	33.921	33.996	33.994	34.019	34.089	34 095	34.099	34.120	34.138	4.1	4.15	4.1	34.170	.19	4
TEMP	15.490	15.497	15.498	15.487	15.450	13.770	12.316	11.548	11.447	11.538	11.274	11.178	10.656	9.653	9.641	9.178	6.755	8.323	7.913	7.448	7.085	7.035	6.889	6.591	4.	6.357	Ξ.	5.904	5.	5.448	5.390	.05
PRESS	-	9	10	18	20	26	30	36	40	48	20	0.8	20	0.0	06	100	128	150	178	200	CV	S	278	300	328	5	378	400	428	450	478	200

FLUOR	0.225	0.234	0.235	0.230	0.227	0.317	0.492	0.518	0.505	0.609	0.579	0.525	0.408	0.127	0.238	0.130	0.078	0.069	0.072	0.088	0.088	0.088	0.071	0.089	0.068	0.071	0.071	0.070	0.068	0.073	0.070	0.088
TRANS	4	0.47	4	4	4	4	0.50	4	4	4	4	0.49	4	0.41	4	4.	9	3	0.38	3	3	3	6	6	3	က	က	က	က	3	0.37	9
PRESS	1	9					30		40					80		100	128	150	~	200	226	250	~	300	N	2	~	400	CZ	2	478	

STATION: 259 LAT: 37 13.3 N LON: 125 43.6 W DATE: 7/18/88

SUM	0.00.0	0.019	0.034	0.057	0.072	0.094	0.109	0 132	0.147	0.187	0.178	0.201	0.222	0.241	0.280	0.278	0.322	0 361	0.401	0.437	0.475	0.509	0.545	0.578	0.612	0.643	0.675	0.704	0.735	0.783	0.792	0.818
SVA	378.8	378.9	377.1	377.1	377.3	376.8	377.3	375.3	371.1	305.4	244.8	212.4	198.9	189.8	182.9	175.8	165.8	158.3	152.8	148.0	143.8	139.9	136.6	133.5	129.8	128.8	122.5	119.6	117.0	113.7	110.7	109.0
DENSITY	24.1	24.140	24.139	24.140	24.139	24.148	24.142	24.165	24.210	24.900	25.539	25.878	26.022	26.119	26.193	28.272	28.379	28.482	28.525	26.578	26.824	26.889	28.708	28.742	26.783	26.815	28.860	26.893	8.92	3.96	0	7.01
SAL	32.888	2.88	32,868	32.889	32.889	32.867	32.888	32.661	32.865	33.123	33.334	33.490	33,827	33.696	33,783	33.624	33.697	33.977	34.028	34.027	34.030	34.054	34.055	34.086	34.049	34.038	34.055	34.071	34.171	34.194	34.212	4.22
TEMP		15.864	5.866	65		5.831		5.727	15.535	3.202	0.661															5.819	.581		8	82	5.457	3
PRESS	-	99	10	16	20	26	30	36	40	48	20	09	20	0.0	0.6		126	150	178	200	226	250	276	300	328	350	378	400			476	200

0.213 0.213 0.213 0.089 0.065 0.085 0.220 0.090 0.085 0.088 0.088 0.232 0.199 0.072 0.074 0.067 0.070 0.221 0.214 0.218 0.245 0.872 0.724 0.079 0.079 0.075 0.071 0.074 0.071 0.064 FLUOR TRANS 0.48 0.48 0.48 0.47 0.48 PRESS

STATION: 260 LAT: 37 24.0 N LON: 125 52.2 W DATE: 7/18/88 TIME: 0541Z

SUM	0.00.0	0.020	0.034	0.055	0.088	0.088	0.101	0.120	0.132	0.149	0.159	0.185	0.208	0.230	0.251	0.270	0.318	0.359	0.401	0.438	0.477	0.512	0.548	0.581	0.815	0.646	0.879	604.0	4	0.769	0.799	82
SVA	341.3	341.1	341.0	338.7	335.3	330.0	328.3	303.7	293.2	288.8	264.6	242.5	228.2	210.2	200.7	192.6	177.9	164.8	158.1	151.2	147.9	142.2	137.8	135.1	130.8	127.4	124.8	122.0	119.8	118.5	113.8	111.5
DENSITY	24.511	4.5	4.51	24.543	24.579	24.637	24.678	24.915	25.028	25.285	25.327	25.582	25.735	25.905	28.007	26.093	28.253	26.398	26.489	28.548	26.583	28.848	26.897	28.727	8.7	3.8	26.844	26.873	3.8	26.935	26.965	3.99
SAL	32.922	32,923	32.924	32.928	32.928	32.930	32.938	32,980	33.002	33.082	33.070	33.224	33.378	33.513	33.598	33.682	33.805	33.911	33.980	34.044	34.050	34.083	34.089	34.113	34.121	34.141	$\vec{-}$	2	4.1	34.175	34.193	34.207
TEMP	14.341	14.328	4.32	14.208	4.02	3.76	13.593	2.58	12.084	0.89	0.69	0.02	9.703	9.308	9.088	8.958	8.549	8 151	7.892	7.848	7.623	7.364	7.030	6.951	6.843	8.478	8.232	1.1	5.889	5.729	5.594	4.
PRESS	0	89	10	18	20	56	30	38	40	48	20	09	20	80	0.6	100	128	150	178	200	226	250	278	300	328	350	378	400	428	450	478	200

FLUOR	0.485	34	37	38	38	39	39	44	.51	.52	.45	.21	.13	60.	0.	.08	.07	.08	.07	.07	90.	.06	90.	.07	.07	.07	.07	.08	.07	.08	0.089	.07
TRANS	3	Ď	Ď	2	0.50	Ď	3	5	3	0	4	0.42	4.	4	4	4	9	4	4	9	9	3	က	0	9	0	က	0	c	c	0.39	က
PRESS	0	9			20				40	48		0 0		8.0	06						ŝ	5		0	R					2	478	

STATION: 261 LAT: 37 34.3 N LON: 125 59.7 W DATE: 7/18/88 TIME: 0841Z

SUM	0.000	0.023	0.039	0.062	0.078	0.101	0.118	0.140	0.155	0.178	0.192	0.228	0.257	0.288	0.318	0.346	0.415	0.471	0.524	0.568	0.612	0.651	0.891	0.728	0.784	0.798	0.834	8	.89	0.930	0.962	0.991
SVA	387.8	387.8	387.9	388.0	388.1	387.9	388.2	387.4	383.5	387.0	354.6	319.8	311.8	304.0	289.7	278.0	249.0	219.4	190.8	174.5	164.7	156.4	150.3	147.4	143.2	139.6	135.1	131.2	128.1	24	122.0	19
DENSITY	24.02	24.028	24.025	24.028	24.028	24.030	24.028	24.038	24.080	24.254	24.385	24.751	24.839	24.921	25.073	25.198	25.505	25.821	28.128	28.301	26.409	26.498	28.567	28.800	26.648	26.888	28.738	28.779	26.814	8.8	8	28.912
SAL	32.743	32.743	32.743	32.743	32.737	32.737	32.738	32.722	32.698	32.778	32.712	32.888	32.723	32.770	32.872	32.978	33.087	33.375	33.688	33.841	33.950	33.977	34.039	34.054	34.078	34.087	34.103	34.089	34.101	34.133	34.161	34.115
TEMP	15.943		15.945	15.944	15.920	15.908	15.914	15.815	15.542	15.022	14.169	12.149	11.908	11.882	11.260	11.020	9.719	9.157	8.778	8.418	8.271	7.812	7.875	7.528	7.313	7.083	8.814	8.422	8.227	8.115	2	5.524
PRESS	0	8	10	16	20	56	30	38	40	48	50	09	7.0	80	06	100	128	150	178	200	226	250	278	300	326	350	378	400	428	450		200

0.069 0.097 0.138 0.088 0.089 0.146 0.599 0.439 0.073 0.073 0.075 0.518 0.318 0.215 0.094 0.173 0.072 0.078 0.079 0.075 0.073 0.073 0.073 0.070 0.078 0.072 0.074 0.091 0.074 0.075 0.074 0.072 FLUOR TRANS 0.41 0.39 0.39 0.39 0.40 0.40 0.39 0.45 0.53 0.45 0.39 0.38 0.38 0.38 0.38 0.38 0.38 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 PRESS 0 110 120 220 230 240 440 440 440 1100 450 476 500

STATION: 262 LAT: 37 46.4 N LON: 126 12.7 W DATE: 7/18/88 TIME: 12002

SUM	00	0.020	.03	.05	Ξ.	6	0.114	0.138	0.153	0.178	0.191	0.227	0.262	0.295	0.328	0.356	0.429	0 492	0.553	0.802	0.651	0.691	0.734	0.771	0.809	0.844	0.881	0.914	0.949	9 8	1.013	1 042
SVA	393.4	393.3	393.4	393.8	393.8	393.8	393.7	391.5	387.1	377.0	369.7	353.7	331.2	328.8	8.662	291.8	274.5	250.2	217.4	194.9	175.7	165.7	157.5	151.9	148.7	143.2	138.4	135.4	132.3	1287	124.0	121.5
DENSITY	23.9	23.968	23.968	23.968	23.968	23.968	23.971	23.885	24.042	24.149	24.227	24.397	24.834	24.884	24.966	25.056	25.240	25.500	25.848	26.089	26.294	26.403	26.492	26.553	28.810	26.648	26.701	28.735	28.770	8.8	26.661	8.8
SAL	2.75	32.758	2.75	2.75	2.78	2.75	2.74	2.73	2.88	2.70	2.65	2.80	2.70	2.68	2.83	2.86	3.01	3 19	3.49	3.70	3.86	3,97	3.99	3.99	33,994	4.00	4.01	4.05	4.0	4.08	.10	34.088
TEMP	16.255	16.251	16.253	16.254	16.283	16.248	16.208	16.085	15.863	15.235	14.697	13.695	12.899	12.684	11.669	11.320	10.929	10.267	9.572	9.108	8.598	8.424	7.947	7.517	7.123	-	6.569	6 554			5.905	.43
PRESS	-	8	10	18	20	56	30	36	40	48	20	0 9	20	8.0	0.6	100	126	150	178	200	226	250	276	300	328	350	376	400	420	450	476	200

0.088 0.063 0.084 0.055 0.058 0.058 0.088 0.088 0.065 0.109 0.126 0.252 0.398 0.342 0.468 0.100 0.082 0.080 0.088 0.087 0.059 0.069 0.088 0.068 0.057 0.071 0.341 FLUOR 0.061 TRANS 0.43 0.43 0.48 0.49 0.43 0.43 0.43 0.43 0.43 0.43 0.44 0.44 0.47 0.38 0.38 0.36 PRESS 450

STATION: 263 LAT: 37 59.2 N LON: 126 17.5 W DATE: 7/18/88 TIME: 1453Z

Figure 29. Listings of temperature at selected pressures and profiles of temperature (T) for all XBT stations of cruise CTZ88.

TEMP			 _	=	_	 15.480	 -	-	_	-	-				_	-	т.	-	_	_	_		т.		_	_	
PRESS	-	2				35						0	N	2	~		N	2	~	0	N	2	~	0	N	2	2

14.720 12.910 11.090 10.415 9.610 9.100 8.470 TEMP 16.195 16.070 18.055 18.070 18.020 15.835 15.820 15.880 15.890 15.915 12.310 11.925 8.080 7.510 7.340 7.000 8.110 8.005 5.745 5.805 15.825 PRESS 425 450 452

STATION: 2 LAT: 37 59.9 N LON: 125 53.7 W DATE: 7/12/88 TIME: 2000Z

15.205 13.550 13.350 13.010 12.150 11.780 10.880 10.345 8.935 8.850 8.285 7.870 7.800 7.450 7.210 8.800 6.710 8.510 TEMP 15.645 15.515 15.310 8.400 5.990 5.775 13.590 15.270 15.250 15.955 PRESS 450

STATION: 4 LAT: 38 1.4 N LON: 125 29.5 W DATE: 7/12/88 TIME: 2200Z

10.595 9.880 9.285 8.850 TEMP 13.250 12.290 12.080 11.330 11.230 11.010 8.500 8.185 7.780 7.345 6.950 6.480 6.070 5.950 5.940 15.165 11.515 060.8 14.175 11.840 11.790 11.810 PRESS

STATION: 6 LAT: 38 3.0 N LON: 125 7.0 W DATE: 7/13/88 TIME: 00002

11.235 10.510 9.015 8.720 8.360 8.135 7.770 7.855 7.030 6.940 TEMP 12,310 11.350 11.140 10.570 9.930 9.815 9.370 8.310 6.210 5.985 11.860 5.950 PRESS

STATION: 8 LAT: 38 5.1 N LON: 124 42.9 W DATE: 7/13/88 TIME: 02002

STATION: 10 LAT: 38 7.7 N LON: 124 17.9 W DATE: 7/13/88 TIME: 0400Z

9.305 8.925 8.570 8.285 8.040 7.670 7.360 7.210 7.010 6.870 6.570 6.250 TEMP 9.830 9.500 9.010 8.140 6.250 6.225 11.405 10.840 9.900 9.730 9.575 9.325 9.105 PRESS 450

STATION:12 LAT:38 9.1 N LON:123 50.2 W DATE:7/13/88 TIME: 0600Z

STATION:14 LAT:38 11.1 N LON:123 25.1 W DATE:7/13/88

LON: 125 50.5 W TIME: 0123Z STATION:15 LAT:38 42.0 N DATE:7/17/88

TEMP 16.080 15.830 15.870 13.820 13.285 11.505 10.030 16.790 15.580 15.175 11.850 9.410 8.980 8.500 8.130 7.700 7.380 7.280 6.970 6.710 8.285 5.885 5.785 18.790 18.750 15.430 10.795 PRESS

STATION: 16 LAT: 38 29.1 N LON: 125 54.9 W DATE: 7/17/88 TIME: 0253Z

Appendix I

Fluorometer Calibration

The fluorometer voltages listed in Figure 28 are raw instrument voltages. The information needed to convert raw fluorometer voltages to fluorescence values are presented in Table 3.

Table 3. Station numbers, sample depths, chlorophyll "a" fluorescence, phaeopigment, the sum of chlorophyll "a" and phaeopigment, and the raw fluorometer voltages for each water sample taken during the Coastal Transition Zone (CTZ88) filament study.

	•		_		
Station	Depth	*a*	Phaeopig.	Total Chl.	Voltage
101	2	3.903	3.617	7.520	1.570
101	10	3.787	0.650	4.437	1.550
101	20	3.787	3.962	7.749	1.440
101	40	3.128	2.157	5.285	0.730
101	60	1.729	2.377	4.106	0.330
101	81	1.976	2.025	4.001	0.460
101	100	1.565	1.321	2.886	0.450
101	148	0.703	2.671	3.374	0.320
102	2	5.984	1.669	7.653	3.170
102	10	5.463	2.922	8.385	3.310
102	19	1.976	3.478	5.454	3.150
102	39	3.211	3.170	6.381	1.570
102	60	3.046	2.597	5.643	0.910
102	80	2.882	2.994	5.876	1.070
102	99	1.070	3.478	4.548	0.790
102	150	0.005	0.105	0.110	0.150
103	1	7.805	4.174	11.979	4.650
103	10	7.545	4.035	11.580	4.620
103	22	3 211	3.654	6.865	4.380
103	42	3.540	4.799	8.339	1.530
103	59	2.552	7.660	10.212	0.630
103	81	1.565	4.711	6.276	1.190
103	100	0.338	2.324	2.662	0.320
103	149	0.011	0.126	0.137	0.080
104	1	5.203	2.783	7.986	1.180
104	10	5.463	2.922	8.385	2.690
104	20	4.943	2.644	7.587	4.070
104	40	2.141	4.050	6.191	2.190
104	59	0.546	2.435	2.981	1.190
104	80	0.443	2.838	3.281	0.560
104	99	0.468	2.393	2.861	0.120
104	151	0.365	2.185	2.550	0.390
105	10	4.423	5.426	9.849	1.790
105	20	4.943	5.704	10.647	2.850
105	40	5.203	5.843	11.046	3.190
105	60	7.024	6.816	13.840	3.460
105	80	4.683	2.505	7.188	1.660
105	101	2.964	3.522	6.486	0.850
105	150	2.470	3.258	5.728	0.620
106	1	6.244	7.93 0	14.174	1.230
106	10	7.024	5.286	12.310	3.180
106	20	9.626	6.677	16.303	4.920

Table 3. (continued)

, , , , , , , , , , , , , , , , , , , ,	,				
Station	Depth	*a*	Phaeopig.	Total Chl.	Voltage
106	41	0.806	1.808	2.614	0.320
106	59	2.305	3.654	5.959	1.440
106	79	2.716	6.296	9.012	0.880
106	99	0.416	2.212	2.628	0.130
106	150	0.107	1.025	1.132	0.090
107	9	5.203	2.783	7.986	2.980
107	20	5.724	1.530	7.254	3.830
107	40	1.317	2.642	3.959	0.460
107	59	0.416	1.753	2.169	0.140
107	80	0.028	0.160	0.188	0.080
107	100	0.020	0.132	0.152	0.130
107	139	0.260	2.128	2.388	0.120
108	1	6.764	5.147	11.911	2.630
108	10	10.146	6.956	17.102	5.000
108	20	4.163	3.756	7.919	1.650
108	40	2.223	3.125	5.348	0.710
108	61	3.046	5.019	8.065	0.690
108	80	1.811	3.875	5.686	0.270
108	100	0.755	2.393	3.148	0.190
108	150	0.107	0.977	1.084	0.090
109	1	3.293	1.761	5.054	3.630
109	10	4.034	2.157	6.191	4.060
109	21	6.504	3.478	9.982	2.760
109	41	0.416	1.141	1.557	0.650
109	61	2.716	0.968	3.684	0.540
109	81	2.799	2.465	5.264	0.740
109	100	5.724	4.591	10.315	1.200
109	149	1.400	2.685	4.085	0.490
110	1	8.325	5.982	14.307	4.300
110	10	12.487	9.738	22.225	5.000
110	20	10.666	0.000	10.666	3.010
110	40	5.724	4.591	10.315	2.180
110	60	1.811	2.905	4.716	0.570
110	81	0.286	1.530	1.816	0.320
110	100	0.140	1.818	1.958	0.090
	146				
110		0.083	1.109	1.192	0.080
111	1	7.024	0.695	7.719	3.620
111	10	6.764	0.000	6.764	3.770
111	20	9.886	0.000	9.886	2.760
111	40	6.504	0.417	6.921	4.170
111	60	0.806	4.410	5.216	0.470
111	80	1.317	3.125	4.442	0.200
111	101	0.205	1.854	2.059	0.410
111	150	0.091	1.307	1.398	0.150
112	2	1.066	0.876	1.942	0.560
112	10	0.936	0.654	1.590	0.770
112	19	1.317	0.705	2.022	1.140
112	39	2.058	1.585	3.643	1.500
112	60	0.390	0.974	1.364	0.240
112	80	0.148	0.660	0.808	0.140
112	99	0.063	0.416	0.479	0.080
112	149	0.010		0.335	0.060
			0.325		
113	12	0.109	0.150	0.259	0.080
113	19	0.124	0.115	0.239	0.070
113	40	0.132	0.070	0.202	0.070
113	60	0.181	0.291	0.472	0.130
113	78	0.728	1.614	2.342	0.510
113	98	0.231	0.511	0.742	0.180

Table 3. (continued)

Station	Depth	"a"	Phaeopig.	Total Chl.	Voltage
113	151	0.008	0.188	0.196	0.060
114	10	0.115	0.153	0.268	0.070
114	20	0.117	0.108	0.225	0.080
114	40	0.115	0.076	0.191	0.080
114	60	0.197	0.251	0.448	0.130
114	80	0.676	0.974	1.650	0.580
114	100	0.443	1.155	1.598	0.420
114	150	0.016	0.174	0.190	0.060
115	10	0.833	0.292	1.125	0.400
115	20	0.858	0.459	1.317	0.560
115	41	0.703	0.375	1.078	0.320
115	61	0.223	0.748	0.971	0.170
115	80	0.247	0.810	1.057	0.160
115	100	0.065	0.310	0.375	0.080
115	150	0.132	0.603	0.735	0.080
116	10	7.024	5.286	12.310	4.850
				14.707	
116	21	8.586	6.121		5.000
116	40	9.886	2.225	12.111	4.510
116	61	9.886	2.225	12.111	4.310
116	78	6.764	3.617	10.381	2.690
116	101	2.141	4.050	6.191	0.490
116	150	0.443	2.685	3.128	0.140
117	1	3.457	3.786	7.243	1.090
117	9	3.869	3.522	7.391	2.530
117	19	5.984	3.200	9.184	3.450
117	39	4.423	2.365	6.788	3.860
117	60	3.211	3.654	6.865	2.280
117	78	3.540	4.799	8.339	1.300
117	100	3.540	3.830	7.370	0.630
117	150	0.148	1.290	1.438	0.090
118	1	1.729	0.440	2.169	0.680
118	9	1.646	0.881	2.527	0.810
118	20	2.058	1.101	3.159	1.940
118	40	0.443	1.920	2.363	0.220
118	60	0.223	1.378	1.601	0.130
118	80	3.211	2.201	5.412	0.220
118	99	0.312	1.697	2.009	0.110
118	150	0.115	1.078	1.193	0.070
119	0	1.400	1.717	3.117	0.730
					0.750
119	10	1.317	0.313	1.630	
119	20	1.646	2.334	3.980	1.080
119	40	0.885	2.156	3.041	0.610
119	60	0.988	3.436	4.424	0.390
119	80	0.091	0.824	0.915	0.080
119	100	0.091	0.968	1.059	0.080
119	150	0.057	1.048	1.105	0.080
120	1	0.936	0.179	1.115	0.810
120	10	1.066	0.193	1.259	0.930
120	20	1.171	0.346	1.517	0.780
120	40	1.235	0.395	1.630	0.680
120	60	0.124	0.130	0.254	0.090
120	80	0.091	0.145	0.236	0.100
120	100	0.052	0.120	0.172	0.070
120	150	0.047	0.128	0.175	0.070
121	1	0.546	0.084	0.630	0.960
121	10	0.546	0.112	0.658	1.080
121	21	0.911	0.148	1.059	1.100
121	40	0.911	0.205	1.116	0.310
_			7.070		

Table 3. (continued)

	(concinaca)				
Station	n Depth	"a"	Phaeopig.	Total Chl.	Voltage
121	61	0.083	0.126	0.000	0.000
121	80	0.083	0.153	0.209	0.090
121	101	0.286	0.458	0.236	0.070
121	152	0.148		0.744	0.100
122	1		0.495	0.643	0.110
122	10	0.495 0.405	0.106	0.601	0.410
122		0.495	0.193	0.688	0.420
122	19	0.546	0.197	0.743	0.410
	40	0.625	0.148	0.773	0.340
122	59	1.317	0.856	2.173	0.64 0
122	80	0.338	0.320	0.658	0.290
122	101	0.416	0.442	0.858	0.260
122	149	0.156	0.369	0.525	0.110
123	1	0.390	0.125	0.515	0.310
123	10	0 .365	0.122	0.487	0.320
123	20	0.416	0.127	0.543	0.310
123	40	3.903	0.963	4.866	0.390
123	60	0.390	0.182	0.572	0.260
123	81	0.286	0.344	0.630	0.080
123	100	0.065	0.143	0.208	0.070
123	149	0.057	0.151	0.208	0.080
124	1	2.387	0.601	2.988	1.070
124	10	2.635	0.625	3.260	1.060
124	21	2.305	0.684	2.989	1.220
124	40	5.463	0.833	6.296	2.120
124	60	1.235	0.485	1.720	0.087
124	81	1.153	0.477	1.630	0.200
124	100	0.312	0.432	0.744	0.110
124	150	0.083	0.216	0 299	0.080
125	1	2.058	0.205	2.263	0.680
125	9	2.141	0.305	2.446	1.070
125	20	2.305	0.321	2.626	1.640
125	41	0.468	0.275	0.743	0.790
125	61	1.093	0.281	1.374	0.460
125	80	0.650	0.408	1.058	0.550
125	101	0.107	0.146	0.253	0.130
125	151	0.214	0.320	0.534	0.120
126	1	0.495	0.021	0.516	0.120
126	10	0.520	0.052	0.572	0.230
126	20	0.936	0.122	1.058	
126	40	1.317	0.223	1.540	0.840 1.080
126	59	1.093	0.253	1.346	0.410
126	77	0.442	0.245	0.687	
126	98	0.197	0.110	0.307	0.280
126	148	0.010	0.051	0.061	0.130
127	2	0.148	0.042	0.190	0.060
127	11	0.140	0.014		0.080
127	22	0.148	0.024	0.154 0.172	0.09 0
127	41	0.156	0.025		0.090
127	60	0.231		0.181	0.100
127	80	0.390	0.032	0.263	0.150
127	100	0.390	0.154	0.544	0.260
127	148	0.008	0.268	0.658	0.450
128	1		0.045	0.053	0.050
128	10	0.102 0.106	0.022	0.124	0.080
128	20		0.025	0.131	0.070
128	40	0.115	0.015	0.130	0.080
128	80	0.140	0.014	0.154	0.080
128	102	0.365	0.208	0.573	0.250
.20	102	0.312	0.289	0.601	0.300

Table 3. (continued)

133	Station	Depth	"a"	Phaeopig.	Total Chl.	Voltage
133	133	1	0.115	0.012	0.127	0.040
133						
133						
133						
133 80 0.365 0.286 0.572 0.280 133 150 0.028 0.043 0.071 0.060 134 1 0.122 0.021 0.143 0.030 134 10 0.112 0.024 0.146 0.040 134 20 0.122 0.024 0.146 0.040 134 40 1.235 0.305 1.540 0.070 134 60 1.317 0.223 1.540 0.070 134 80 0.390 0.125 0.515 0.210 134 150 0.020 0.029 0.049 0.000 134 150 0.020 0.029 0.049 0.001 134 150 0.020 0.029 0.049 0.001 135 1 0.140 0.041 0.181 0.001 135 1 0.140 0.041 0.181 0.060 135 1 0.156<						
133 100 0.286 0.286 0.572 0.280 134 1 0.122 0.021 0.143 0.030 134 10 0.115 0.028 0.143 0.030 134 20 0.122 0.024 0.146 0.040 134 40 1.235 0.305 1.540 0.070 134 60 1.317 0.223 1.540 0.070 134 80 0.390 0.125 0.515 0.210 134 100 0.573 0.429 1.002 0.500 134 150 0.020 0.029 0.049 0.060 135 1 0.140 0.041 0.181 0.060 135 1 0.140 0.041 0.181 0.060 135 1 0.140 0.041 0.181 0.060 135 40 0.156 0.015 0.171 0.060 135 60 0.173 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
133 150 0.028 0.043 0.071 0.060 134 1 0.122 0.021 0.143 0.030 134 10 0.115 0.028 0.143 0.040 134 20 0.122 0.024 0.146 0.040 134 40 1.235 0.305 1.540 0.070 134 60 0.390 0.125 0.515 0.210 134 100 0.573 0.429 1.002 0.501 134 150 0.020 0.029 0.049 0.060 135 1 0.140 0.041 0.181 0.060 135 10 0.156 0.015 0.171 0.060 135 40 0.156 0.025 0.181 0.080 135 40 0.156 0.025 0.181 0.090 135 80 0.280 0.145 0.425 0.150 135 100 0.49						
134 1 0.122 0.021 0.143 0.030 134 10 0.115 0.028 0.143 0.040 134 20 0.122 0.024 0.146 0.040 134 40 1.235 0.305 1.540 0.070 134 80 0.390 0.125 0.515 0.210 134 100 0.573 0.429 1.002 0.500 134 150 0.020 0.029 0.049 0.080 135 1 0.140 0.041 0.181 0.060 135 1 0.140 0.041 0.181 0.060 135 1 0.140 0.041 0.181 0.060 135 40 0.156 0.015 0.171 0.060 135 40 0.156 0.025 0.181 0.060 135 80 0.280 0.145 0.425 0.181 0.060 135 80 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
134						
134						
134						
134 60 1.317 0.223 1.540 0.070 134 100 0.573 0.429 1.002 0.500 134 150 0.020 0.029 0.049 0.060 135 1 0.140 0.041 0.181 0.060 135 10 0.156 0.015 0.171 0.060 135 20 0.173 0.008 0.181 0.080 135 40 0.156 0.025 0.181 0.080 135 40 0.156 0.025 0.181 0.080 135 80 0.280 0.145 0.425 0.180 135 100 0.495 0.307 0.802 0.370 135 150 0.199 0.145 0.425 0.180 136 1 0.520 0.024 0.544 0.230 136 1 0.520 0.024 0.544 0.230 136 1 0.520<						
134						
134						
134						
135						
135						
135						
135 40 0.156 0.025 0.181 0.090 135 60 0.197 0.029 0.226 0.100 135 80 0.280 0.145 0.425 0.180 135 100 0.495 0.307 0.802 0.370 135 150 0.189 0.145 0.334 0.060 136 1 0.520 0.024 0.544 0.230 136 10 0.676 0.010 0.686 0.210 136 20 0.703 0.042 0.745 0.330 136 40 1.729 0.354 2.083 1.120 136 60 0.676 0.182 0.858 0.410 136 80 0.468 0.247 0.715 0.400 136 150 0.003 0.064 0.127 0.170 136 150 0.003 0.064 0.127 0.170 137 0 3.54						
135 60 0.197 0.029 0.226 0.100 135 80 0.280 0.145 0.425 0.180 135 100 0.495 0.307 0.802 0.370 135 150 0.189 0.145 0.334 0.060 136 1 0.520 0.024 0.544 0.230 136 10 0.676 0.010 0.686 0.210 136 20 0.703 0.042 0.745 0.330 136 40 1.729 0.354 2.083 1.120 136 60 0.676 0.182 0.858 0.410 136 80 0.468 0.247 0.715 0.400 136 100 0.063 0.064 0.127 0.170 136 150 0.009 0.035 0.044 0.050 137 11 3.540 0.716 4.256 1.270 137 11 3.5						
135 80 0.280 0.145 0.425 0.180 135 100 0.495 0.307 0.802 0.370 135 150 0.189 0.145 0.334 0.060 136 1 0.520 0.024 0.544 0.230 136 10 0.676 0.010 0.686 0.210 136 20 0.703 0.042 0.745 0.330 136 40 1.729 0.354 2.083 1.120 136 60 0.676 0.182 0.588 0.410 136 80 0.468 0.247 0.715 0.400 136 150 0.009 0.035 0.044 0.050 137 0 3.540 0.716 4.256 1.270 137 11 3.540 0.625 4.165 2.060 137 21 3.623 0.815 4.438 2.190 137 41 3.211						
135 100 0.495 0.307 0.802 0.370 135 150 0.189 0.145 0.334 0.060 136 1 0.520 0.024 0.544 0.230 136 10 0.676 0.010 0.686 0.210 136 20 0.703 0.042 0.745 0.330 136 40 1.729 0.354 2.083 1.120 136 60 0.676 0.182 0.858 0.410 136 80 0.468 0.247 0.715 0.400 136 100 0.063 0.064 0.127 0.170 136 100 0.063 0.064 0.127 0.170 136 150 0.009 0.035 0.044 0.050 137 1 3.540 0.716 4.256 1.270 137 1 1 3.540 0.716 4.256 1.270 137 2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
135 150 0.189 0.145 0.334 0.060 136 1 0.520 0.024 0.544 0.230 136 10 0.676 0.010 0.686 0.210 136 20 0.703 0.042 0.745 0.330 136 40 1.729 0.354 2.083 1.120 136 60 0.676 0.182 0.858 0.410 136 80 0.468 0.247 0.715 0.400 136 100 0.063 0.064 0.127 0.170 136 150 0.009 0.035 0.044 0.050 137 0 3.540 0.716 4.256 1.270 137 11 3.540 0.625 4.165 2.060 137 21 3.623 0.815 4.438 2.190 137 41 3.211 0.412 3.623 2.200 137 80 0.650						
136 1 0.520 0.024 0.544 0.230 136 10 0.676 0.010 0.686 0.210 136 20 0.703 0.042 0.745 0.330 136 40 1.729 0.354 2.083 1.120 136 60 0.676 0.182 0.858 0.410 136 80 0.468 0.247 0.715 0.400 136 100 0.063 0.064 0.127 0.170 136 150 0.009 0.035 0.044 0.050 137 0 3.540 0.716 4.256 1.270 137 11 3.540 0.716 4.256 1.270 137 21 3.623 0.815 4.438 2.190 137 21 3.623 0.815 4.438 2.190 137 41 3.211 0.412 3.623 2.200 137 60 0.156<						
136 10 0.676 0.010 0.686 0.210 136 20 0.703 0.042 0.745 0.330 136 40 1.729 0.354 2.083 1.120 136 60 0.676 0.182 0.858 0.410 136 80 0.468 0.247 0.715 0.400 136 100 0.063 0.064 0.127 0.170 136 150 0.009 0.035 0.044 0.050 137 0 3.540 0.716 4.256 1.270 137 11 3.540 0.625 4.165 2.060 137 21 3.623 0.815 4.438 2.190 137 41 3.211 0.412 3.623 2.200 137 40 0.156 0.097 0.253 0.160 137 80 0.650 0.351 1.001 0.100 137 150 0.36						
136 20 0.703 0.042 0.745 0.330 136 40 1.729 0.354 2.083 1.120 136 60 0.676 0.182 0.858 0.410 136 80 0.468 0.247 0.715 0.400 136 100 0.063 0.064 0.127 0.170 136 150 0.009 0.035 0.044 0.050 137 0 3.540 0.716 4.256 1.270 137 11 3.540 0.625 4.165 2.060 137 21 3.623 0.815 4.438 2.190 137 41 3.211 0.412 3.623 2.200 137 40 0.156 0.097 0.253 0.160 137 80 0.650 0.351 1.001 0.100 137 100 0.468 0.390 0.858 0.250 137 150 0.3						
136 40 1.729 0.354 2.083 1.120 136 60 0.676 0.182 0.588 0.410 136 80 0.468 0.247 0.715 0.400 136 100 0.063 0.064 0.127 0.170 136 150 0.009 0.035 0.044 0.050 137 0 3.540 0.716 4.256 1.270 137 11 3.540 0.625 4.165 2.060 137 21 3.623 0.815 4.438 2.190 137 41 3.211 0.412 3.623 2.200 137 40 0.156 0.097 0.253 0.160 137 80 0.650 0.351 1.001 0.100 137 150 0.365 0.408 0.773 0.140 138 1 0.390 0.858 0.250 137 150 0.365 0.48						
136 60 0.676 0.182 0.858 0.410 136 80 0.468 0.247 0.715 0.400 136 100 0.063 0.064 0.127 0.170 136 150 0.009 0.035 0.044 0.050 137 0 3.540 0.716 4.256 1.270 137 11 3.540 0.625 4.165 2.060 137 21 3.623 0.815 4.438 2.190 137 41 3.211 0.412 3.623 2.200 137 41 3.211 0.412 3.623 2.200 137 80 0.650 0.351 1.001 0.100 137 80 0.650 0.351 1.001 0.100 137 150 0.365 0.408 0.773 0.140 138 1 0.390 0.067 0.457 0.340 138 1 1						
136 80 0.468 0.247 0.715 0.400 136 100 0.063 0.064 0.127 0.170 136 150 0.009 0.035 0.044 0.050 137 0 3.540 0.716 4.256 1.270 137 11 3.540 0.625 4.165 2.060 137 21 3.623 0.815 4.438 2.190 137 41 3.211 0.412 3.623 2.200 137 60 0.156 0.097 0.253 0.160 137 80 0.650 0.351 1.001 0.100 137 100 0.468 0.390 0.858 0.250 137 150 0.365 0.408 0.773 0.140 138 1 0.390 0.067 0.457 0.340 138 11 0.365 0.122 0.487 0.350 138 21 1.48						
136 100 0.063 0.064 0.127 0.170 136 150 0.009 0.035 0.044 0.050 137 0 3.540 0.716 4.256 1.270 137 11 3.540 0.625 4.165 2.060 137 21 3.623 0.815 4.438 2.190 137 41 3.211 0.412 3.623 2.200 137 60 0.156 0.097 0.253 0.160 137 80 0.650 0.351 1.001 0.100 137 100 0.468 0.390 0.858 0.250 137 150 0.365 0.408 0.773 0.140 138 1 0.390 0.067 0.457 0.340 138 1 1.0390 0.067 0.457 0.340 138 1 1.482 0.329 1.811 0.340 138 21 1.482						
136 150 0.009 0.035 0.044 0.050 137 0 3.540 0.716 4.256 1.270 137 11 3.540 0.625 4.165 2.060 137 21 3.623 0.815 4.438 2.190 137 41 3.211 0.412 3.623 2.200 137 60 0.156 0.097 0.253 0.160 137 80 0.650 0.351 1.001 0.100 137 100 0.468 0.390 0.858 0.250 137 150 0.365 0.408 0.773 0.140 138 1 0.390 0.067 0.457 0.340 138 1 0.390 0.067 0.487 0.350 138 1 0.390 0.067 0.487 0.340 138 1 1.0365 0.122 0.487 0.350 138 21 1.482 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
137 0 3.540 0.716 4.256 1.270 137 11 3.540 0.625 4.165 2.060 137 21 3.623 0.815 4.438 2.190 137 41 3.211 0.412 3.623 2.200 137 60 0.156 0.097 0.253 0.160 137 80 0.650 0.351 1.001 0.100 137 100 0.468 0.390 0.858 0.250 137 150 0.365 0.408 0.773 0.140 138 1 0.390 0.067 0.457 0.340 138 11 0.365 0.122 0.487 0.350 138 11 0.365 0.122 0.487 0.350 138 21 1.482 0.329 1.811 0.340 138 39 1.400 0.955 2.355 1.750 138 59 0.223<						
137 11 3.540 0.625 4.165 2.060 137 21 3.623 0.815 4.438 2.190 137 41 3.211 0.412 3.623 2.200 137 60 0.156 0.097 0.253 0.160 137 80 0.650 0.351 1.001 0.100 137 100 0.468 0.390 0.858 0.250 137 150 0.365 0.408 0.773 0.140 138 1 0.390 0.067 0.457 0.340 138 1 0.390 0.067 0.457 0.340 138 1 0.390 0.067 0.457 0.340 138 1 0.395 0.122 0.487 0.350 138 21 1.482 0.329 1.811 0.340 138 39 1.400 0.955 2.355 1.750 138 59 0.223 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
137 21 3.623 0.815 4.438 2.190 137 41 3.211 0.412 3.623 2.200 137 60 0.156 0.097 0.253 0.160 137 80 0.650 0.351 1.001 0.100 137 100 0.468 0.390 0.858 0.250 137 150 0.365 0.408 0.773 0.140 138 1 0.390 0.067 0.457 0.340 138 1 0.390 0.067 0.457 0.340 138 1 0.365 0.122 0.487 0.350 138 21 1.482 0.329 1.811 0.340 138 39 1.400 0.955 2.355 1.750 138 59 0.223 0.266 0.489 1.130 138 80 0.286 0.344 0.630 0.100 138 152 0.107<						
137 41 3.211 0.412 3.623 2.200 137 60 0.156 0.097 0.253 0.160 137 80 0.650 0.351 1.001 0.100 137 100 0.468 0.390 0.858 0.250 137 150 0.365 0.408 0.773 0.140 138 1 0.390 0.067 0.457 0.340 138 11 0.365 0.122 0.487 0.350 138 11 0.365 0.122 0.487 0.350 138 21 1.482 0.329 1.811 0.340 138 39 1.400 0.955 2.355 1.750 138 59 0.223 0.266 0.489 1.130 138 80 0.286 0.344 0.630 0.100 138 152 0.107 0.201 0.308 0.070 139 1 0.546						
137 60 0.156 0.097 0.253 0.160 137 80 0.650 0.351 1.001 0.100 137 100 0.468 0.390 0.858 0.250 137 150 0.365 0.408 0.773 0.140 138 1 0.390 0.067 0.457 0.340 138 11 0.365 0.122 0.487 0.350 138 21 1.482 0.329 1.811 0.340 138 39 1.400 0.955 2.355 1.750 138 59 0.223 0.266 0.489 1.130 138 80 0.286 0.344 0.630 0.100 138 97 0.214 0.293 0.507 0.080 138 152 0.107 0.201 0.308 0.070 139 1 0.546 0.112 0.658 0.440 139 9 0.546<						
137 80 0.650 0.351 1.001 0.100 137 100 0.468 0.390 0.858 0.250 137 150 0.365 0.408 0.773 0.140 138 1 0.390 0.067 0.457 0.340 138 11 0.365 0.122 0.487 0.350 138 21 1.482 0.329 1.811 0.340 138 39 1.400 0.955 2.355 1.750 138 59 0.223 0.266 0.489 1.130 138 80 0.286 0.344 0.630 0.100 138 97 0.214 0.293 0.507 0.080 138 152 0.107 0.201 0.308 0.070 139 1 0.546 0.112 0.658 0.440 139 9 0.546 0.084 0.630 0.420 139 42 0.650<						
137 100 0.468 0.390 0.858 0.250 137 150 0.365 0.408 0.773 0.140 138 1 0.390 0.067 0.457 0.340 138 11 0.365 0.122 0.487 0.350 138 21 1.482 0.329 1.811 0.340 138 39 1.400 0.955 2.355 1.750 138 59 0.223 0.266 0.489 1.130 138 80 0.286 0.344 0.630 0.100 138 97 0.214 0.293 0.507 0.080 138 152 0.107 0.201 0.308 0.070 139 1 0.546 0.112 0.658 0.440 139 9 0.546 0.084 0.630 0.420 139 42 0.650 0.151 0.801 0.400 139 42 0.650<						
137 150 0.365 0.408 0.773 0.140 138 1 0.390 0.067 0.457 0.340 138 11 0.365 0.122 0.487 0.350 138 21 1.482 0.329 1.811 0.340 138 39 1.400 0.955 2.355 1.750 138 59 0.223 0.266 0.489 1.130 138 80 0.286 0.344 0.630 0.100 138 97 0.214 0.293 0.507 0.080 138 152 0.107 0.201 0.308 0.070 139 1 0.546 0.112 0.658 0.440 139 9 0.546 0.084 0.630 0.420 139 42 0.650 0.115 0.801 0.400 139 42 0.650 0.151 0.801 0.400 139 81 0.189 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
138 1 0.390 0.067 0.457 0.340 138 11 0.365 0.122 0.487 0.350 138 21 1.482 0.329 1.811 0.340 138 39 1.400 0.955 2.355 1.750 138 59 0.223 0.266 0.489 1.130 138 80 0.286 0.344 0.630 0.100 138 97 0.214 0.293 0.507 0.080 138 152 0.107 0.201 0.308 0.070 139 1 0.546 0.112 0.658 0.440 139 9 0.546 0.084 0.630 0.420 139 20 0.573 0.115 0.688 0.430 139 42 0.650 0.151 0.801 0.400 139 81 0.189 0.127 0.316 0.150 139 100 0.055 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
138 11 0.365 0.122 0.487 0.350 138 21 1.482 0.329 1.811 0.340 138 39 1.400 0.955 2.355 1.750 138 59 0.223 0.266 0.489 1.130 138 80 0.286 0.344 0.630 0.100 138 97 0.214 0.293 0.507 0.080 138 152 0.107 0.201 0.308 0.070 139 1 0.546 0.112 0.658 0.440 139 9 0.546 0.084 0.630 0.420 139 20 0.573 0.115 0.688 0.430 139 42 0.650 0.151 0.801 0.400 139 81 0.189 0.127 0.316 0.150 139 100 0.055 0.088 0.143 0.080 139 148 0.018						
138 21 1.482 0.329 1.811 0.340 138 39 1.400 0.955 2.355 1.750 138 59 0.223 0.266 0.489 1.130 138 80 0.286 0.344 0.630 0.100 138 97 0.214 0.293 0.507 0.080 138 152 0.107 0.201 0.308 0.070 139 1 0.546 0.112 0.658 0.440 139 9 0.546 0.084 0.630 0.420 139 20 0.573 0.115 0.688 0.430 139 42 0.650 0.151 0.801 0.400 139 60 0.365 0.151 0.516 0.230 139 81 0.189 0.127 0.316 0.150 139 100 0.055 0.088 0.143 0.080 139 148 0.018		11			0.487	
138 39 1.400 0.955 2.355 1.750 138 59 0.223 0.266 0.489 1.130 138 80 0.286 0.344 0.630 0.100 138 97 0.214 0.293 0.507 0.080 138 152 0.107 0.201 0.308 0.070 139 1 0.546 0.112 0.658 0.440 139 9 0.546 0.084 0.630 0.420 139 20 0.573 0.115 0.688 0.430 139 42 0.650 0.151 0.801 0.400 139 60 0.365 0.151 0.516 0.230 139 81 0.189 0.127 0.316 0.150 139 100 0.055 0.088 0.143 0.080 139 148 0.018 0.119 0.137 0.070 939 1 0.520<						
138 59 0.223 0.266 0.489 1.130 138 80 0.286 0.344 0.630 0.100 138 97 0.214 0.293 0.507 0.080 138 152 0.107 0.201 0.308 0.070 139 1 0.546 0.112 0.658 0.440 139 9 0.546 0.084 0.630 0.420 139 20 0.573 0.115 0.688 0.430 139 42 0.650 0.151 0.801 0.400 139 60 0.365 0.151 0.516 0.230 139 81 0.189 0.127 0.316 0.150 139 100 0.055 0.088 0.143 0.080 139 148 0.018 0.119 0.137 0.070 939 1 0.520 0.138 0.658 0.403						1.750
138 80 0.286 0.344 0.630 0.100 138 97 0.214 0.293 0.507 0.080 138 152 0.107 0.201 0.308 0.070 139 1 0.546 0.112 0.658 0.440 139 9 0.546 0.084 0.630 0.420 139 20 0.573 0.115 0.688 0.430 139 42 0.650 0.151 0.801 0.400 139 60 0.365 0.151 0.516 0.230 139 81 0.189 0.127 0.316 0.150 139 100 0.055 0.088 0.143 0.080 139 148 0.018 0.119 0.137 0.070 939 1 0.520 0.138 0.658 0.403	138	59	0.223		0.489	1.130
138 152 0.107 0.201 0.308 0.070 139 1 0.546 0.112 0.658 0.440 139 9 0.546 0.084 0.630 0.420 139 20 0.573 0.115 0.688 0.430 139 42 0.650 0.151 0.801 0.400 139 60 0.365 0.151 0.516 0.230 139 81 0.189 0.127 0.316 0.150 139 100 0.055 0.088 0.143 0.080 139 148 0.018 0.119 0.137 0.070 939 1 0.520 0.138 0.658 0.403	138	80			0.630	0.100
138 152 0.107 0.201 0.308 0.070 139 1 0.546 0.112 0.658 0.440 139 9 0.546 0.084 0.630 0.420 139 20 0.573 0.115 0.688 0.430 139 42 0.650 0.151 0.801 0.400 139 60 0.365 0.151 0.516 0.230 139 81 0.189 0.127 0.316 0.150 139 100 0.055 0.088 0.143 0.080 139 148 0.018 0.119 0.137 0.070 939 1 0.520 0.138 0.658 0.403	138	97	0.214	0.293	0.507	0.080
139 9 0.546 0.084 0.630 0.420 139 20 0.573 0.115 0.688 0.430 139 42 0.650 0.151 0.801 0.400 139 60 0.365 0.151 0.516 0.230 139 81 0.189 0.127 0.316 0.150 139 100 0.055 0.088 0.143 0.080 139 148 0.018 0.119 0.137 0.070 939 1 0.520 0.138 0.658 0.403	138	152	0.107	0.201	0.308	0.070
139 20 0.573 0.115 0.688 0.430 139 42 0.650 0.151 0.801 0.400 139 60 0.365 0.151 0.516 0.230 139 81 0.189 0.127 0.316 0.150 139 100 0.055 0.088 0.143 0.080 139 148 0.018 0.119 0.137 0.070 939 1 0.520 0.138 0.658 0.403	139	1	0.546	0.112	0.658	0.440
139 42 0.650 0.151 0.801 0.400 139 60 0.365 0.151 0.516 0.230 139 81 0.189 0.127 0.316 0.150 139 100 0.055 0.088 0.143 0.080 139 148 0.018 0.119 0.137 0.070 939 1 0.520 0.138 0.658 0.403		9	0.546	0.084	0.630	0.420
139 42 0.650 0.151 0.801 0.400 139 60 0.365 0.151 0.516 0.230 139 81 0.189 0.127 0.316 0.150 139 100 0.055 0.088 0.143 0.080 139 148 0.018 0.119 0.137 0.070 939 1 0.520 0.138 0.658 0.403	139				0.688	0.430
139 81 0.189 0.127 0.316 0.150 139 100 0.055 0.088 0.143 0.080 139 148 0.018 0.119 0.137 0.070 939 1 0.520 0.138 0.658 0.403	139	42	0.650		0.801	0.400
139 81 0.189 0.127 0.316 0.150 139 100 0.055 0.088 0.143 0.080 139 148 0.018 0.119 0.137 0.070 939 1 0.520 0.138 0.658 0.403	139	60	0.365	0.151	0.516	0.230
139 148 0.018 0.119 0.137 0.070 939 1 0.520 0.138 0.658 0.403	139	81	0.189		0.316	0.150
939 1 0.520 0.138 0.658 0.403	139		0.055	0.088	0.143	0.080
939 1 0.520 0.138 0.658 0.403	139	148	0.018	0.119	0.137	0.070
939 10 0.520 0.138 0.658 0.422	939	1	0.520		0.658	
	939	10	0.520	0.138	0.658	0.422

Table 3. (continued)

	neinaca,				
Station	Depth	"a"	Phaeopig.	Total Chl.	Voltage
939	20	0.546	0.169	0.715	0.421
939	40	0.390	0.154	0.544	0.305
939		0.312	0.232	0.544	0.213
	60		0.565	1.060	0.213
939	80	0.495	0.447		
939	100	0.468		0.915	0.272
939	147	1.070	0.741	1.811	0.441
940	3	0.416	0.156	0.572	0.396
940	8	0.468	0.161	0.629	0.400
940	20	0.520	0.138	0.658	0.410
940	40	0.755	0.333	1.088	0.455
940	61	0.214	0.157	0.371	0.275
940	81	0.075	0.076	0.151	0.100
940	100	0.026	0.060	0.086	0.069
940	151	0.013	0.093	0.106	0.070
140	0	0.598	0.145	0.743	0.280
140	10	0.573	0.115	0.688	0.320
140	21	0.676	0.154	0.830	0.410
140	40	0.156	0.187	0.343	0.140
140	61	0.124	0.212	0.336	0.110
140	80	0.091	0.190	0.281	0.080
140	100	0.057	0.223	0.280	0.090
140	149	0.041	0.195	0.236	0.080
141	1	0.911	0.120	1.031	0.410
141	10	1.066	0.164	1.230	0.490
141	20	1.235	0.305	1.540	0.810
141	40	0.468	0.447	0.915	0.230
141	60	0.148	0.305	0.453	0.120
141	80	0.107	0.228	0.335	0.100
141	100	0.057	0.205	0.262	0.090
141	150	0.013	0.070	0.083	0.080
142	1	0.858	0.057	0.915	0.260
142	11	1.015	0.159	1.174	0.270
142	21	1.565	0.337	1.902	0.720
142	41	1.646	0.436	2.082	1.920
142	61	1.317	0.494	1.811	1.180
142	81	0.231	0.168	0.399	0.220
142	102	0.045	0.085	0.130	0.110
142	120	0.442	0.416	0.858	0.120
143	0	0.165	0.016	0.181	0.090
143	10	0.165	0.016	0.181	0.090
143	20		0.000		0.090
143	40	0.181		0.181	
		0.165	0.016	0.181	0.100
143	64	0.354	0.117	0.471	0.190
143	78	0.416	0.185	0.601	0.360
143	101	0.272	0.145	0.417	0.270
143	151	0.049	0.056	0.105	0.060
144	1	0.189	0.019	0.208	0.110
144	10	0.181	0.018	0.199	0.110
144	21	0.197	0.020	0.217	0.110
144	41	0.189	0.010	0.199	0.120
144	61	0.231	0.032	0.263	0.160
144	81	0.305	0.085	0.390	0.190
144	102	0.495	0.250	0.745	0.460
144	151	0.034	0.037	0.071	0.080
145	1	0.132	0.031	0.163	0.070
145	11	0.132	0.005	0.137	0.080
145	20	0.124	0.022	0.146	0.070
145	41	0.117	0.026	0.143	0.080

Table 3. (continued)

C 3. (C.	oncinaca				
Station	Depth	"a"	Phaeopig.	Total Chl.	Voltage
145	61	0.255	0.044	0.299	0.100
145	81	0.546	0.169	0.715	0.270
145	101	0.264	0.162	0.426	0.510
145	132	0.024	0.051	0.075	0.070
146	1	0.099	0.013	0.112	0.060
146	11	0.112	0.003	0.115	0.060
146	22	0.106	0.005	0.111	0.070
146	41	0.109	0.019	0.128	0.100
146	61	0.214	0.013	0.227	0.140
146	81	0.416	0.127	0.543	0.300
146	101	0.338	0.377	0.715	0.360
146	150	0.057	0.057	0.114	0.090
147	3	0.112	0.014	0.126	0.070
147	11	0.109	0.025	0.134	0.070
147	19	0.112	0.020	0.132	0.070
147	40	0.109	0.019	0.128	0.070
147	60	0.181	0.027	0.208	0.100
147	80	0.390	0.125	0.515	0.210
147	101	0.520	0.253	0.773	0.390
147	150	0.096	0.053	0.149	0.100
152	1	0.106	0.019	0.125	0.040
152	10	0.112	0.025	0.137	0.050
152	20	0.115	0.017	0.132	0.060
152	40	0.963	0.383	1.346	0.080
152	60	0.288	0.038	0.326	0.140
152	79	0.468	0.190	0.658	0.190
152	99	0.365	0.208	0.573	0.340
152	149	0.013	0.002	0.015	0.060
153	1	0.102	0.007	0.109	0.040
153	9	0.112	0.003	0.115	0.050
153	19	0.104	0.019	0.123	0.060
153	40	0.120	0.004	0.124	0.070
153	60	0.156	0.006	0.162	0.090
153	81	0.313	0.058	0.371	0.190
153	101	0.625	0.205	0.830	0.390
153	150	0.022	0.032	0.054	0.050
154	1	0.124	0.130	0.254	0.070
154	10	0.115	0.156	0.271	0.070
154	20	0.132	0.005	0.137	0.080
154	40	0.181	0.009	0.190	0.110
154	60	0.598	0.145	0.743	0.440
154	80	0.390	0.182	0.572	0.310
154	100	0.264	0.198	0.462	0.220
154	150	0.073	0.082	0.155	0.060
155	1	0.112	0.020	0.132	0.050
155	10	0.337	0.061	0.398	0.070
155	20	0.806	0.081	0.887	0.340
155	40	0.703	0.099	0.802	1.150
155	60	0.416	0.127	0.543	0.300
155	80	0.365	0.208	0.573	0.280
155	100	0.416	0.614	1.030	0.110
155	150	0.081	0.068	0.149	0.220
156	1	1.223	0.151	1.374	0.750
156	10	1.119	0.141	1.260	1.270
156	20	1.565	0.337	1.902	1.470
156	40	2.058	1.202	3.260	0.650
156	60	0.495	0.707	1.202	0.240
156	80	0.598	0.718	1.316	0.280
100	00	0.550	0.710	1.010	0.200

Table 3. (continued)

Station	Depth	'a'	Phaeopig.	Total Chl.	Voltage
156	100	0.468	0.476	0.944	0.220
156	150	0.132	0.348	0.480	0.110
157	1	1.729	0.264	1.993	0.210
157	10	2.141	0.305	2.446	0.200
157	21	2.799	0.461	3.260	0.210
157	40	2.964	0.387	3.351	0.470
157	61	0.806	0.366	1.172	0.310
157	81	0.495	0.278	0.773	0.100
157	100	0.780	0.593	1.373	0.080
157	199	0.338	0.435	0.773	0.070
158	1	0.181	0.027	0.208	0.150
158	10	0.181	0.018	0.199	0.130
158	20	0.231	0.032	0.263	0.140
158	40	0.936	0.265	1.201	0.580
158	59	0.223	0.167	0.390	0.200
158	79	0.055	0.083	0.138	0.080
158	100	0.052	0.100	0.152	0.080
158	148	0.026	0.148	0.174	0.060
159	0	0.272	0.036	0.308	0.243
159	9	0.272	0.055	0.327	0.240
159	20	0.264	0.054	0.318	0.221
159	40	0.345	0.116	0.461	0.308
159	59	0.468	0.190	0.658	0.323
159 159	79 99	0.060 0.036	0.109 0.098	0.169	0.083 0.071
159	149	0.013	0.093	0.134 0.106	0.069
160	1	0.963	0.182	1.145	0.791
160	10	1.066	0.365	1.431	0.478
160	20	3.211	1.136	4.347	0.923
160	40	0.390	0.383	0.773	0.355
160	59	1.729	3.071	4.800	0.119
160	80	0.286	0.315	0.601	0.158
160	99	0.208	0.422	0.630	0.128
160	149	0.576	1.869	2.445	0.076
161	0	1.119	0.255	1.374	1.149
161	10	0.806	0.366	1.172	0.424
161	20	5.203	1.951	7.154	4.814
161	41	1.482	0.873	2.355	0.509
161	59	0.260	0.541	0.801	0.169
161	81	0.235	0.366	0.601	0.145
161	100	0.173	0.425	0.598	0.098
161	150	0 075	0.243	0.318	0.078
163	0	0.148	0.024	0.172	0.063
163	10	0.165	0.016	0.181	0.076
163	20	0.189	0.028	0.217	0.096
163	40	0.247	0.052	0.299	0.137
163	60	0.362	0.100	0.462	0.217
163 163	80	0.371	0.109	0.480 0.858	0.221
163	100 150	0.598	0.260	0.075	0.432 0.062
201	1	0.034 11.96 7	0.041 1.769	13.736	4.600
201	10	11.706	1.457	13.736	4.800
201	21	12.487	1.535	14.022	4.830
201	40	11.186	1.405	12.591	3.850
201	60	4.163	0.988	5.151	1.150
201	79	0.338	0.692	1.030	0.120
201	99	0.365	0.437	0.802	0.160
201	149	0.260	0.627	0.887	0.130

Table 3. (continued)

Station	Depth	' a'	Phaeopig.	Total Chl.	Voltage
		2.205			
202	1	8.065	1.093	9.158	2.310
202	9	7.805	1.066	8.871	2.980
202	19	12.227	1.795	14.022	4.030
202	38	9.626	1.249	10.875	2.770
202	59	7.545	0.755	8.300	2.070
202	79	0.099	0.255	0.354	0.090
202	100	0.049	0.186	0.235	0.080
202	150	0.107	0.427	0.534	0.100
203	1	9.626	0.000	9.626	2.710
203	9	9.106	0.911	10.017	3.090
203	20	7.805	0.495	8.300	2.100
203	40	5.724	1.145	6.869	2.480
	60	5.724			
203			0.573	6.297	1.510
203	79	5.203	1.379	6.582	1.450
203	99	3.382	1.483	4.865	1.370
203	150	0.182	0.562	0.744	0.140
204	1	6.764	1.249	8.013	3.200
204	10	7.805	1.066	8.871	3.370
204	20	9.626	0.963	10.589	3.220
204	40	4.163	1.275	5.438	1.700
204	59	3.293	0.873	4.166	0.940
204	80	3.623	0.815	4.438	0.760
204	100	3.787	1.013	4.800	0.120
204	150	0.650	0.924	1.574	0.100
205	1	3.642	1.223	4.865	2.520
205	10	3.902	1.249	5.151	2.740
	20				
205		4.943	1.066	6.009	3.750
205	40	1.482	1.054	2.536	0.380
205	60	1.729	1.350	3.079	0.800
205	80	0.468	0.676	1.144	0.180
205	100	0.520	0.625	1.145	0.190
205	149	0.182	0.591	0.773	0.450
206	1	0.313	0.131	0.444	0.110
206	10	0.495	0.221	0.716	0.170
206	21	1.646	0.980	2.626	0.440
206	40	1.894	0.642	2.536	0.910
206	59	2.470	0.700	3.170	1.020
206	80	2.716	0.996	3.712	1.050
206	100	1.565	1.153	2.718	0.690
206	149	0.338	0.606	0.944	0.150
207		1.066		1.344	0.560
207	1 9	0.650	0.278	1.001	0.360
			0.351		
207	21	0.703	0.471	1.174	0.270
207	39	1.482	1.145	2.627	0.720
207	60	0.625	0.864	1.489	0.390
207	81	0.598	0.833	1.431	0.300
207	100	0.988	1.005	1.993	0.380
207	150	0.442	0.645	1.087	0.160
208	1	0.296	0.048	0.344	0.100
208	10	1.565	0.337	1.902	0.220
208	20	1.975	0.469	2.444	1.310
208	40	2.799	0.824	3.623	1.350
208	60	2.964	1.202	4.166	1.150
208	79	0.390	1.269	1.659	0.240
208	100	0.182	0.476	0.658	0.130
208				0.327	0.080
	149	0.075	0.252		
209	2	1.400	0.049	1.449	0.350
209	10	1.729	0.354	2.083	1.110

Table 3. (continued)

16 5.	(concinued)				
Station	Depth	*a*	Phaeopig.	Total Chl.	Voltage
209	20	3.457	0.980	4.437	3.550
209	40	8.585	2.289	10.874	2.330
209	61	1.235	0.576	1.811	0.590
209	80	2.799	1.095	3.894	0.310
209	101	0.573	0.658	1.231	0.180
209	149	0.057	0.277	0.334	0.080
210	1	3.128	0.494	3.622	0.510
210	9	2.387	0.601	2.988	0.830
210	19	3.902	0.676	4.578	2.230
210	39	8.846	1.743	10.589	3.500
210	61	0.650	0.465	1.115	1.030
210	79	0.091	0.335	0.426	0.080
210	100	0.115	0.446	0.561	0.120
210	148	0.182	0.562	0.744	0.120
211	1	0.885	0.000	0.885	0.280
211	10	0.416	0.099	0.515	0.240
211	20	0.650	0.151	0.801	0.250
211	40	1.041	0.275	1.316	0.450
211	59	0.365	0.094	0.459	2.530
211	81	5.984	0.885	6.869	3.030
211	100	8.846	0.598	9.444	2.680
211	150	0.033	0.212	0.245	0.080
212	0	0.094	0.024	0.118	0.060
212	8	0.091	0.009	0.100	0.060
212	20	0.099	0.030	0.129	0.060
212	40	0.148	0.042	0.190	0.140
212	60	0.520	0.195	0.715	0.480
212	80	0.416	0.242	0.658	0.350
212	99	2.552	0.436	2.988	0.820
212	150	0.013	0.067	0.080	0.070
213	0	0.085	0.008	0.093	0.060
213	10	0.085	0.017	0.102	0.060
213	20	0.091	0.046	0.137	0.060
213	40	0.115	0.048	0.163	0.090
213	61	0.264	0.099	0.363	0.190
213	80	0.520	0.224	0.744	0.420
213	100	0.247	0.161	0.408	0.210
213	150	0.009	0.055	0.064	0.060
214	0	0.112	0.014	0.126	0.090
214	10	0.122	0.015	0.137	0.080
214	20	0.132	0.013	0.145	0.100
214	40	0.165	0.025	0.190	0.110
214	60	0.223	0.031	0.254	0.150
214 214	81	0.703	0.242	0.945	0.480
214	101 150	0.338	0.235	0.573	0.320
214	0	0.011	0.027	0.038	0.060
215	10	0.124	0.013	0.137	0.110 0.110
215	20	0.124	0.031	0.155	
215	41	0.728	0.102	0.830 0.686	1.020 0.440
215	60	0.468 1.811	0.218 0.544	2.355	0.440
215	80	3.211	0.544	2.355 3.985	0.590
215	100	1.729	0.774	3.985 2.626	0.530
215	151	0.260	0.897	0.801	0.530
215	1	6.764	10.978	17.742	5.000
216	10	8.325	0.833	9.158	5.000
216	20	5.464	1.405	6.869	2.250
216	40	3.623	0.996	4.619	0.990
	.0	0.020	0.000	4.010	0.000

Table 3. (continued)

Station	Depth	'a'	Phaeopig.	Total Chl.	Voltage
		0.470			
216	59	2.470	1.153	3.623	0.950
216	78	0.755	0.963	1.718	0.250
216	99	0.208	0.422	0.630	0.130
216	150	0.049	0.304	0.353	0.080
217	0	2.387	0.329	2.716	1.930
217	10	3.382	2.055	5.437	4.930
217	21	3.293	1.506	4.799	1.540
217	40	4.683	1.041	5.724	1.490
217	61	4.163	1.275	5.438	1.270
217	80	1.317	0.675	1.992	0.400
217	100	0.057	0.205	0.262	0.080
217	149	0.049	0.322	0.371	0.070
218	1	1.482	0.510	1.992	0.980
218	10	3.540	0.716	4.256	2.600
218	20	1.015	0.359	1.374	2.110
	40				
218		1.093	0.538	1.631	1.100
218	60	4.423	1.301	5.724	3.060
218	80	5.984	1.457	7.441	1.830
218	100	4.683	0.468	5.151	1.330
218	150	0.338	0.435	0.773	0.170
219	0	0.468	0.104	0.572	0.170
219	10	0.416	0.156	0.572	0.370
219	20	0.520	0.195	0.715	0.340
219	39	0.124	0.185	0.309	0.120
219	60	0.073	0.096	0.169	0.660
219	80	5.724	1.431	7.155	1.540
219	100	1.811	1.268	3.079	1.030
219	150	0.148	0.405	0.553	0.100
220	1	0.305	0.103	0.408	0.130
220	10	0.354	0.117	0.471	0.200
220	20	0.214	0.048	0.262	0.340
220	40	0.390	0.211	0.601	0.360
		5.984			
220	60		2.029	8.013	2.170
220	80	6.244	1.196	7.440	2.770
220	100	4.683	1.613	6.296	1.820
220	149	0.156	0.531	0.687	0.150
221	1	0.390	0.096	0.486	0.170
221	9	0.442	0.130	0.572	0.230
221	20	0.442	0.159	0.601	0.400
221	40	0.468	0.190	0.658	0.360
221	60	0.140	0.114	0.254	0.140
221	80	0.214	0.230	0.444	0.140
221	98	0.099	0.236	0.335	0.110
221	150	0.041	0.231	0.272	0.080
222	0	0.337	0.088	0.425	0.160
222	10	0.442	0.130	0.572	0.230
222	20	0.442	0.130	0.572	0.380
222	40	0.598	0.203	0.801	0.530
222	60	0.272	0.145	0.417	0.240
222	79	0.189	0.145	0.334	0.180
222	100	0.091	0.082	0.173	0.080
222	150	0.026	0.075	0.101	0.070
223	0	0.354	0.045	0.399	0.180
223	10	0.362	0.055	0.417	0.260
223	20	0.390	0.096	0.486	0.340
223	40	0.703	0.271	0.974	0.530
223	60	0.231	0.095	0.326	0.210
223	79	0.140	0.114	0.254	0.130

Table 3. (continued)

	(concinaca)				
Stati	on Depth	"a"	Phaeopig.	Total Chl.	Voltage
223	99	0.039	0.115	0.154	0.000
223	149	0.026	0.115	0.141	0.080
224	0	0.495	0.021		0.070
224	10	0.495		0.516	0.320
224	20		0.000	0.495	0.490
224		0.676	0.755	1.431	0.450
224	40	0.625	0.950	1.575	0.560
	60	0.260	0.513	0.773	0.150
224	80	0.156	0.351	0.507	0.110
224	100	0.148	0.305	0.453	0.100
224	150	0.083	0.271	0.354	0.080
225	1	0.468	0.075	0.543	0.550
225	10	0.416	0.070	0.486	0.260
225	20	0.625	0.177	0.802	1.050
225	40	0.296	0.184	0.480	0.190
225	60	2.716	0.634	3.350	1.080
225	80	2.552	0.617	3.169	1.070
225	100	0.676	0.611	1.287	0.230
225	150	0.173	0.325	0.498	0.090
226	1	0.091	0.006	0.097	0.070
226	10	0.099	0.010	0.109	0.070
226	20	0.305	0.039	0.344	0.160
226	40	0.546	0.112	0.658	0.400
226	60	1.400	0.231	1.631	0.670
226	80	3.705	0.733	4.438	1.160
226	100	3.046	0.667	3.713	1.220
226	152	0.042	0.087	0.129	0.070
227	1	0.148	0.005	0.153	0.090
227	11	0.156	0.000	0.156	0.090
227	20	0.205	0.021	0.226	0.030
227	40	0.728	0.130	0.858	
227	61	0.988	0.414	1.402	0.430
227	79	0.963	0.354	1.317	1.250 1.210
227	99	0.197	0.110	0.307	
227	150	0.018	0.037	0.055	0.190 0.060
228	-2	0.099	0.000	0.099	0.060
228	10	0.096	0.006	0.102	
228	20	0.088	0.006	0.094	0.060 0.060
228	41	0.124	0.022	0.146	
228	60	0.173	0.054		0.080
228	80	0.305	0.257	0.227	0.100
228	100	0.296	0.202	0.562 0.498	0.290
228	149	0.015	0.044		0.240
233	1	0.088	0.000	0.059	0.060
233	10	0.091	0.000	0.088	0.060
233	20	0.094		0.092	0.060
233	40	0.181	0.004	0.098	0.050
233	60	0.329	0.009	0.190	0.090
233	80	0.329	0.142	0.471	0.190
233	100	0.312	0.317	0.629	0.310
233	150		0.156	0.361	0.200
234	1	0.019 0.091	0.032	0.051	0.060
234	10		0.004	0.095	0.060
234	20	0.091	0.004	0.095	0.060
234	40	0.109	0.011	0.120	0.060
234		0.156	0.034	0.190	0.080
234	60 80	0.313	0.095	0.408	0.160
234		0.806	0.310	1.116	0.560
234	100	0.223	0.213	0.436	0.200
204	150	0.014	0.022	0.036	0.060

Table 3. (continued)

	,				
Station	Depth	"a"	Phaeopig.	Total Chl.	Voltage
235	1	0.102	0.000	0.102	0.050
235	10	0.096	0.000	0.096	0.050
235	20	0.091	0.015	0.106	0.050
235	40	0.112	0.005	0.117	0.060
235	60	0.173	0.035	0.208	0.100
235	80	0.416	0.185	0.601	0.330
235	100	0.288	0.237	0.525	0.250
235	150	0.017	0.027	0.044	0.060
236	1	0.115	0.000	0.115	0.050
236	10	0.120	0.017	0.137	0.070
236	20	0.120	0.015	0.135	0.070
236	40	0.313	0.049	0.362	0.100
236	60	0.468	0.104	0.572	0.300
236	80	0.416	0.214	0.630	0.260
236	100	0.231	0.123	0.354	0.240
236	150	0.009	0.025	0.034	0.060
237	2	0.598	0.000	0.598	0.170
237	10	1.066	0.164	1.230	0.290
237	20	0.573	0.200	0.773	0.790
237	40	0.625	0.292	0.917	0.370
237	60	1.015	0.531	1.546	0.450
237	80	0.755	0.419	1.174	0.220
237	100	1.482	0.510	1.992	0.450
237	150	0.091	0.126	0.217	0.100
238	1	0.362	0.036	0.398	0.150
238	10	0.354	0.081	0.435	0.190
238	20	0.833	0.084	0.917	0.290
238	40	2.387	0.692	3.079	0.910
238	61	1.153	0.658	1.811	0.620
238	80	0.416	0.556	0.972	0.190
238 238	100 149	0.235 0.041	0.424	0.659	0.11 0 0.070
239	1	0.495	0.185 0.135	0.226 0.630	0.070
239	10	0.703	0.127	0.830	0.350
239	20	1.041	0.419	1.460	0.760
239	40	1.153	0.568	1.721	0.970
239	60	0.468	0.362	0.830	0.330
239	80	0.416	0.556	0.972	0.230
239	100	0.260	0.398	0.658	0.190
239	150	0.075	0.252	0.327	0.090
839	1	0.390	0.125	0.515	0.323
839	20	0.755	0.505	1.260	0.765
839	40	0.650	0.208	0.858	0.564
839	60	0.223	0.231	0.454	0.268
839	79	0.132	0.312	0.444	0.156
839	100	0.165	0.361	0.526	0.162
839	153	0.057	0.277	0.334	0.089
840	1	0.442	0.102	0.544	0.390
840	10	0.495	0.135	0.630	0.388
840	20	0.781	0.335	1.116	0.709
840	41	0.703	0.328	1.031	0.508
840	60	0.205	0.165	0.370	0.182 0.116
840 840	81 101	0.148 0.173	0.133 0.244	0.281 0.417	0.116
840	149	0.173	0.244	0.281	0.208
240	1	0.148	0.015	0.163	0.120
240	10	0.148	0.024	0.172	0.120
240	20	0.247	0.052	0.299	0 200
0		U.E. 17	0.002	0.200	

Table 3. (continued)

Station	Depth	"a"	Phaeopig.	Total Chl.	Voltage
240	40	0.676	0.296	0.972	0.580
240	61	0.442	0.245	0.687	0.380
240	80	0.047	0.082	0.129	0.080
240	99	0.031	0.097	0.128	0.080
240	151	0.013	0.067	0.080	0.070
241	1	0.520	0.052	0.572	0.390
241	10	0.988	0.042	1.030	0.550
241	20	1.565	0.337	1.902	1.320
241	40	1.153	0.477	1.630	0.480
241	61	0.338	0.235	0.573	0.380
241	79	0.264	0.262	0.526	0.210
241	99	0.390	0.411	0.801	0.270
241	151	0.115	0.247	0.362	0.090
242	1	0.140	0.005	0.145	0.070
242	10	0.124	0.022	0.146	0.070
242	19	0.132	0.022	0.154	0.070
242	40	0.247	0.034	0.281	0.150
242	60	0.329	0.078	0.407	0.210
242	80	0.416	0.214	0.630	0.380
242	100	0.181	0.154	0.335	0.180
242	150	0.029	0.019	0.048	0.060
243	0	0.122	0.000	0.122	0.060
243	10	0.109	0.005	0.114	0.060
243	20	0.124	0.031	0.155	0.070
243	40	0.181	0.018	0.199	0.090
243 243	60 79	0.390	0.096	0.486	0.130
243	101	0.780 0.286	0.000 0.257	0.780 0.543	0.320 0.280
243	150	0.034	0.049	0.083	0.060
244	1	0.099	0.007	0.106	0.040
244	10	0.109	0.000	0.109	0.040
244	21	0.112	0.005	0.117	0.050
244	40	0.165	0.025	0.190	0.070
244	60	0.280	0.055	0.335	0.140
244	80	0.676	0.268	0.944	0.360
244	100	0.495	0.335	0.830	0.350
244	151	0.024	0.039	0.063	0.060
245	1	0.085	0.005	0.090	0.050
245	10	0.088	0.006	0.094	0.040
245	20	0.088	0.006	0.094	0.050
245	40	0.124	0.031	0.155	0.070
245	60	0.296	0.065	0.361	0.140
245	80	1.066	0.479	1.545	0.290
245	100	0.280	0.182	0.462	0.290
245	151	0.036	0.144	0.180	0.060
253	1	0.081	0.005	0.086	0.070
253 253	10 19	0.078	0.014	0.092	0.060 0.060
253	40	0.081 0.102	0.008	0.089 0.124	0.060
253	60	0.165	0.022 0.016	0.181	0.080
253	80	0.345	0.135	0.480	0.180
253	99	0.495	0.365	0.860	0.450
253	150	0.013	0.046	0.059	0.060
254	1	0.102	0.007	0.109	0.070
254	12	0.096	0.013	0.109	0.070
254	20	0.096	0.015	0.111	0.060
254	40	0.124	0.031	0.155	0.090
254	61	0.189	0.037	0.226	0.120

Table 3. (continued)

	,				
Station	Depth	"a"	Phaeopig.	Total Chl.	Voltage
254	81	0.390	0.096	0.486	0.250
254	101	0.390	0.239	0.629	0.350
254	151	0.017	0.041	0.058	0.070
255	1	0.081	0.011	0.092	0.070
255	10	0.085	0.008	0.093	0.060
255	20	0.085	0.008	0.093	0.060
255	40	0.124	0.022	0.146	0.080
255	60	0.313	0.122	0.435	
			0.328		0.210
255	80	0.703 0.214		1.031	0.560
255	100		0.166 0.065	0.380	0.230
255	150	0.026		0.091	0.080
855	1	0.109	0.014	0.123	0.065
855	10	0.106	0.034	0.140	0.070
855	20	0.117	0.015	0.132	0.069
855	40	0.231	0.041	0.272	0.174
855	80	0.313	0.204	0.517	0.341
855	100	0.214	0.121	0.335	0.204
855	150	0.024	0.054	0.078	0.067
256	10	0.573	0.000	0.573	0.383
256	21	0.495	0.021	0.516	0.388
256	38	0.442	0.045	0.487	1.136
256	61	0.988	0.156	1.144	0.574
256	81	0.780	0.479	1.259	0.490
256	101	0.780	0.278	1.058	0.143
256	150	0.156	0.251	0.407	0.115
257	1	0.231	0.000	0.231	0.099
257	10	0.247	0.000	0.247	0.107
257	20	0.239	0.005	0.244	0.182
257	40	0.598	0.175	0.773	0.627
257	60	0.573	0.229	0.802	0.338
257	80	0.107	0.137	0.244	0.148
257	100	0.036	0.150	0.186	0.074
257	150	0.008	0.051	0.059	0.065
258	1	0.197	0.002	0.199	0.092
258	9	0.197	0.011	0.208	0.090
258	20	0.214	0.022	0.236	0.140
258	42	0.520	0.195	0.715	0.512
258	60	0.573	0.257	0.830	0.495
258	80	0.132	0.113	0.245	0.141
258	100	0.055	0.077	0.132	0.085
258	148	0.012	0.056	0.068	0.065
858		0.247			
858	0		0.034	0.281 0.290	0.141 0.173
	10	0.264	0.026		0.173
858	21	0.239	0.042	0.281	
858	41	0.546	0.284	0.830	0.430
858	61	0.223	0.131	0.354	0.239
858	80	0.065	0.126	0.191	0.104
858	99	0.024	0.085	0.109	0.080
858	149	0.011	0.059	0.070	0.063
259	0	0.255	0.044	0.299	0.234
259	11	0.247	0.034	0.281	0.234
259	21	0.255	0.044	0.299	0.227
259	41	0.573	0.229	0.802	0.514
259	61	0.755	0.190	0.945	0.532
259	81	0.173	0.144	0.317	0.168
259	101	0.173	0.135	0.308	0.139
259	152	0.018	0.102	0.120	0.068
260	0	0.231	0.059	0.290	0.214

Table 3. (continued)

Station	Depth	*a*	Phaeopig.	Total Chl.	Voltage
260	10	0.239	0.042	0.281	0.214
260	20	0.223	0.049	0.272	0.215
260	40	0.255	0.080	0.335	0.239
260	61	0.520	0.338	0.858	0.271
260	80	0.042	0.095	0.137	0.075
260	100	0.026	0.100	0.126	0.066
260	150	0.008	0.069	0.077	0.070
261	2	0.442	0.073	0.515	0.417
261	12	0.468	0.104	0.572	0.385
261	19	0.546	0.084	0.630	0.363
261	41	0.728	0.359	1.087	0.505
261	60	0.260	0.312	0.572	0.266
261	80	0.115	0.156	0.271	0.095
261	100	0.036	0.095	0.131	0.072
261	149	0.018	0.076	0.094	0.064
262	2	0.104	0.005	0.109	0.069
262	10	0.112	0.011	0.123	0.072
262	20	0.109	0.008	0.117	0.073
262	38	0.117	0.012	0.129	0.073
262	60	0.416	0.099	0.515	0.532
262	81	0.520	0.253	0.773	0.335
262	102	0.365	0.236	0.601	0.214
262	150	0.060	0.060	0.120	0.095
263	0	0.099	0.005	0.104	0.057
263	10	0.104	0.005	0.109	0.057
263	20	0.102	0.013	0.115	0.059
263	40	0.181	0.018	0.199	0.070
263	60	0.468	0.133	0.601	0.194
263	80	0.416	0.214	0.630	0.324
263	99	0.390	0.296	0.686	0.386
263	150	0.013	0.035	0.048	0.062

REFERENCES

- Jerlov, N. G., 1976. Marine Optics, Elsevier, New York.
- Lewis, E. L. and R. G. Perkin, 1981. The Practical Salinity Scale 1978: conversion of existing data. Deep Sea Res., Vol. 28A, pp. 307-328.
- UNESCO, 1987. International Oceanographic Tables, Vol. 4, National Institute of Oceanography of Great Britain; and UNESCO, Paris.

INITIAL DISTRIBRTION LIST

1.	Naval Postgraduate School Department of Oceanography Monterey, CA 93943	
	Prof. Curtis Collins Dr. Steven R. Ramp Dr. Mary L. Batteen Mr. Timothy P. Stanton Ms. Arlene A. Bird Mr. Paul F. Jessen	1 1 1 1 30
2.	Office of Naval Research (ONR) 800 Quincy St. Arlington, VA 22217	
	Dr. Tom Kinder, Code 1122CS Dr. Eric Hartwig, Code 1122EP Dr. David Evans, Code 1122PO	1 1 1
3.	College of Oceanography Oregon State University Corvallis, OR 97331	
	Dr. Robert L. Smith Dr. Adriana Huyer Dr. P. Micheal Kosro Dr. Mark R. Abbott Dr. John S. Allen Dr. Tim Cowles Dr. David Kadco Dr. Ted Strub Dr. Leonard Walstad Dr. Jack Barth	1 1 1 1 1 1 1
4.	Jet Propulsion Laboratory (JPL) California Institute of Technology 4800 Oak Grove Road Pasadena, CA 91109	
	Dr. Curt Davis	1

5.	Scripps Institution of Oceanography University of California, San Diego La Jolla, CA 92093	
	Dr. Pearn P. Niiler Prof. Joe Reid Dr. Tom Hayward Dr. Nan Bray	1 1 1
6.	Woods Hole Oceanographic Institute Department of Physical Oceanography Woods Hole, MA 02543	
	Dr. Kenneth H. Brink Dr. Robert C. Beardsley Dr. Kathryn Kelly Dr. Steve Lentz	2 1 1
7.	School of Oceanography University of Washington Seattle, WA 98195	
	Dr. Barbara Hickey	1
8.	University of Southern California Los Angeles, CA 90089	
	Dr. Burton H. Jones	1
9.	University of California at Santa Barbara Santa Barbara, CA 93016	
	Dr. Libe Washburn	1
9.	Defense Technical Information Center Cameron Station Alexandria, VA 2314	1
10.	Duddley Knox Library (Code 52) Naval Postgraduate School Monterey, CA 93943	2
11.	Research Administration (Code 08) Naval Postgraduate School Monterey, CA 93943	1
12.	Monterey Bay Aquarium Research Institute 160 Central Ave. Pacific Grove, CA 93950	
	Dr. Francisco Chavez Dr. Leslie Rosenfeld	1

13.	Department of Meteorology Naval Postgraduate School Monterey, CA 93943	
	Dr. Robert L. Haney	1
14.	Department of Oceanography Texas A & M University College Station, TX 77843	
	Dr. David Brooks	1
15.	E.G. & G. Oceanographic Services 77 Rumford Ave. Waltham, MA 02154	
	Dr. Bruce Magnell Dr. Cheryl Greengrove	1
16.	NASA/Goddard Space Flight Center Laboratory for Oceans Greenbelt, MD 20771	
	Dr. Michelle Rienecker	1
17.	Moss Landing Marine Laboratory Moss Landing, CA 95039	
	Dr. John Martin	1
18.	Fleet Numerical Oceanography Center Monterey, CA 93943	
	Dr. Doug McLain	1
19.	OPAL/SERB University of New Hampshire Durham, NH 03824	
	Dr. C.N.K. Mooers	1
21.	Duke University Beaufort Marine Laboratory Beaufort, N.C.	
	Dr. Richard Barber	1

3 2768 00329704 5