Chapter 1: Functions and Limits Week 3

Pierre-Olivier Parisé Calculus I (MATH-241 01/02)

> University of Hawai'i Fall 2021

Upcoming this week

- 1.7. The precise definition of limit
- 2 1.8. Continuity

If we want to tackle detailed proof in mathematics, we have to transfer vague phrases into precise statements with the mathematical language.

If f(x) gets closer and closer to a number L as x gets closer and closer to a number a, then f(x) has a limit L.

We will need the following interpretation of $|\Box|$.

Proposition 1

If $\delta > 0$ is a positive real number, then

$$|\Box| < \delta \iff -\delta < \Box < \delta.$$

Here, \square is a box that contains something.

Example 1

Take $\square = x - 3$ and $\delta = 3$. Then, |x - 3| < 3 is the same thing as saying that

$$-3 < x - 3 < 3$$
.

So, in this situation, 0 < x < 6.

PO Parisé Week 3 UHawai'i

Example 2

Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} 2x - 1 & x = 3 \\ 6 & x = 3. \end{cases}$$

Analyze the function near x = 3.

In the last example, as we use smaller and smaller values (e.g. 0.1, 0.01, 0.001, ...), it is always possible to find a number δ such that $|x-3| < \delta$.

Definition 3 (Formal definition of Limit)

Let f be a function defined around a point a. We say that f has a limit L at the point a if whenever $\varepsilon>0$, there is a number $\delta>0$ such that

$$0 < |x - a| < \delta \Rightarrow |f(x) - L| < \varepsilon$$
. Limit

PO Parisé Week 3 UHawai'i 4/15

Definition 4 (Right-Hand limit)

Let f be a function defined on the right of a point a. We say that f has a Right-Hand limit L at the point a if whenever $\varepsilon>0$, there is a number $\delta>0$ such that

$$a < x < a + \delta \Rightarrow |f(x) - L| < \varepsilon$$
.

Definition 5 (Left-Hand limit)

Let f be a function defined on the left of a point a. We say that f has a Left-Hand limit L at the point a if whenever $\varepsilon > 0$, there is a number $\delta > 0$ such that

$$a - \delta < x < a \Rightarrow |f(x) - L| < \varepsilon$$
.

▶ P/L Hand Limits

PO Parisé Week 3 UHawai'i 5/15

Definition 6 (Infinity limits)

Let f be a function be defined around a point a. Then f(x) has an infinite limit if whenever M>0 there is a $\delta>0$ such that

$$0<|x-a|<\delta\Rightarrow f(x)>M.$$

Example 7

Take $f(x) = 1/x^2$. We know that $\lim_{x\to 0} f(x) = \infty$.

Definition 8

Let f be a function be defined around a point a. Then f(x) has an negative infinite limit if whenever M<0 there is a $\delta>0$ such that

$$0 < |x - a| < \delta \Rightarrow f(x) < M$$
.

Exercises: 1,2,4,14,16.

PO Parisé Week 3 UHawai'i 6/15

We can have a intuitive definition of a continuous function:

A continuous function is a function such that its graph can be drawn without lifting your pen from your sheet of paper (or your tablet).

Example 9

In the following, which function is continuous?

Figure: Which one is continuous?

PO Parisé Week 3 UHawai'i 7/15

Definition 10

A function f is <u>continuous</u> at a point a if

$$\lim_{x\to a} f(x) = f(a).$$

Remarks. The definition has two implicit statements:

- a belongs to the domain of f(f(a)) is well-defined).
- $\lim_{x\to a} f(x)$ exists.
- $\lim_{x\to a} f(x) = f(a)$.

Using the mathematical language: f is continuous at a point a if $a \in \text{dom } f$ and whenever $\varepsilon > 0$ there is a $\delta > 0$ such that

$$|x-a|<\delta \Rightarrow |f(x)-f(a)|<\varepsilon.$$

Using the commun language: f is continuous at a point a if $a \in \text{dom } f$ and as x becomes closer and closer to a, so does f(x) with f(a).

PO Parisé Week 3 UHawai'i

Example 11

Let f be the function defined by the following graph:

Figure: Is this function continuous at x = 5?

PO Parisé Week 3 UHawai'i

Definition 12

Let f be a function defined around a point a.

- f is continuous on the right if $\lim_{x\to a^+} f(x) = f(a)$.
- f is continuous on the left if $\lim_{x\to a^-} f(x) = f(a)$.

Definition 13

A function f is <u>continuous</u> on an interval $[\alpha, \beta]$ if it is continuous at each of the points a in the interval $[\alpha, \beta]$

Remark. We understand continuous at the endpoints α and β to mean continuous from the right and continuous from the left respectively.

Definition 14

A function is <u>discontinuous</u> at a point *a* if it is not continuous at that point.

PO Parisé Week 3 UHawai'i 10 / 15

Example 15

Are the following functions continuous at the given point a?

a)
$$f(x) = \frac{x^2 - x - 2}{x - 2}$$
 at $a = 2$.

b)
$$f(x) = \begin{cases} \frac{1}{x^2} & x \neq 0 \\ 1 & x = 0. \end{cases}$$
 at $a = 0$.

c)
$$f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & x \neq 2 \\ 1 & x = 2 \end{cases}$$
 at $a = 2$.

Theorem 16

Let f and g be two continuous functions at a point a. Then

- \bullet f+g, f-g are continuous functions at a.
- fg, cf $(c \in \mathbb{R})$ are continuous functions at a.
- f/g is a continuous function at a if $g(a) \neq 0$.

Example 17

We know that $\lim_{x\to 2} x^2 = 2^2$ and $\lim_{x\to 2} 2x = 2\cdot 2$. Is the function $f(x) = x^2 + 2x$ continuous at a = 2?

PO Parisé Week 3 UHawai'i 12/15

We saw in the previous sections that

$$\lim_{x\to a} (a_n x^n + a_{n-1} x^{n-1} + \dots + a_0) = a_n a^n + a_{n-1} a^{n-1} + \dots + a_0.$$

Theorem 18

- Any polynomial is a continuous function everywhere; that is on $(-\infty, \infty)$.
- Any rational function is continuous whenever it is defined; that is, if f(x) = P(x)/Q(x), then it is continuous on the set $\{x \in \mathbb{R} : Q(x) \neq 0\}$.
- Any root function is continuous whenever it is defined; that is, if $f(x) = \sqrt[n]{x}$, then
 - If n is even, it is continuous on $[0, \infty)$.
 - If n is odd, it is continuous on $(-\infty, \infty)$.

Example 19

Find
$$\lim_{x\to -2} \frac{x^3+2x^2-1}{5-3x}$$
.

PO Parisé Week 3 UHawai'i

We have to be careful for the tangent function: it has zero where cos(x) = 0. Elsewhere, there is no problem.

Theorem 20

- the functions sin and cos are continuous everywhere; that is on $(-\infty, \infty)$.
- the function tan is continuous on its domain; that is at every point a except $a = (2n+1)\pi/2$.

Example 21

On what intervals is each function continuous?

- a) $f(x) = x^{100} 2x^{37} + 75$.
- b) $f(x) = \sqrt{x} + \frac{x+1}{x-1} \frac{x+1}{x^2+1}$.

Example 22

Compute $\lim_{x\to\pi} \frac{\sin x}{2\pm\cos x}$.

PO Parisé Week 3 UHawai'i 14 / 15 Remember(?): the composition of g with f is defined as

$$(g \circ f)(x) = g(f(x)).$$

Definition 23

Let f be a function continuous at a and g be a function continuous at b = f(a). Then $g \circ f$ is continuous at a and

$$\lim_{x\to a}(g\circ f)(x)=g(f(a)).$$

Example 24

Where are the following functions continuous?

- a) $h(x) = \sin(x^2)$.
- b) $F(x) = \frac{1}{\sqrt{x^2+7}-4}$.

Exercises: 2, 4-8, 10, 12-18, 23, 24, 35, 37, 46-49, 73.

PO Parisé Week 3 UHawai'i