Pattern Recognition Clustering

Useful matlab functions:

pdist, linkage, cluster, clusterdata, dendrogram

Guidelines for lab reports:

- Always give a (short) explanation of what you are doing.
- Do not forget to include your Matlab programs. Present and discuss the results of your programs, be it a number, a matrix or an image.
- Put large pieces of Matlab code in an appendix.
- One should be able to understand plots independently, be sure to label axes, add a legend for colors, etc.
- Refer to all plots, tables, code blocks, etc. in your report.
- If you print gray-scale make sure the colors used in the plots are distinguishable.

Assignment 1: clustering, distance-based connected components, distance threshold.

Given is the data set in cluster_data.mat, which contains 2-dimensional data points. The dissimilarity between 2 points, a and b, is given by the *Minkowski metric*, see equation (1).

$$d_M(a,b) = \left(\sum_{i=1}^d |a_i - b_i|^k\right)^{1/k}$$
 (1)

- 1. Take k=2. What does the Minkowski metric with k=2 remind you of?
- 2. Make a plot of all the points in the data set and connect by a line any two points if their dissimilarity is smaller than a threshold t, resulting in a clustering defined by the connected components.
- 3. Study the influence of the threshold value ($t = \{0.05, 0.1, 0.15, 0.2, 0.25\}$) on the final result of clustering. Which of these values for t do you consider to be best suited for clustering this particular dataset? Why?

Figure 1: Agglomerative hierarchical clustering

Assignment 2: agglomerative hierarchical clustering, distance function, dendrogram.

The agglomerative hierarchical clustering algorithm joins points (or groups of points) together based on their similarity. This can be done until only c groups of points remain. The pseudo code of agglomerative clustering is presented in figure 1.

1. Using the data set given (cluster_data.mat), use agglomerative hierarchical clustering to cluster the points in c=4 groups. Compute the cluster centroids (as means of all points in a cluster) and plot them together with the data for each of the following four distance functions: min, max, average, mean, given by equations 2 to 5.

$$d_{\min}(D_i, D_j) = \min_{x \in D_i, x' \in D_j} ||x - x'||$$
 (2)

$$d_{\max}(D_i, D_j) = \max_{x \in D_i, x' \in D_j} \|x - x'\|$$
(3)

$$d_{\text{avg}}(D_i, D_j) = \frac{1}{n_i n_j} \sum_{x \in D_i} \sum_{x' \in D_j} ||x - x'||$$
(4)

$$d_{\text{mean}}(D_i, D_j) = ||m_i - m_j|| \tag{5}$$

with
$$m_i = \frac{1}{n_i} \sum_{x \in D_i} x$$
 (6)

hint: Call the help function on the 'Useful Matlab functions' listed on the first page of this document.

2. Plot the *dendrograms* for the four previous solutions. Describe and explain the differences between the dendrograms.

Assignment 3: criterion functions for clustering, minimum variance partitioning.

Let

$$x_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, x_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, x_3 = \begin{bmatrix} 1 \\ 4 \end{bmatrix}, x_4 = \begin{bmatrix} 4 \\ 2 \end{bmatrix}, x_5 = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

and consider the following five possible clusterings:

$$\{\{x_1, x_2, x_3\}, \{x_4, x_5\}\}\tag{7}$$

$$\{\{x_2, x_3, x_5\}, \{x_1, x_4\}\}\tag{8}$$

$$\{\{x_4\}, \{x_1, x_2, x_3, x_5\}\}$$
(9)

$$\{\{x_4, x_5\}, \{x_1, x_2, x_3\}\}$$
(10)

$$\{\{x_3, x_5\}, \{x_1, x_2, x_4\}\}$$
(11)

1. Calculate for each of the given clusterings (7-11) the sum-of-squared error criterion J_e (with m_i as defined in eq. 6).

$$J_e = \sum_{i=1}^{c} \sum_{x \in D_i} ||x - m_i||^2$$

2. Which of the clusterings minimizes the sum-of-squared error?

Assignment 4: Application of hierarchical clustering.

The Netherlands has 12 provinces. Table 1 presents some statistical data on the different provinces.

- 1. Apply the z-transform to every feature individually and work further with the transformed data.
- 2. Compute a dissimilarity matrix using Euclidean distance.
- 3. Use hierarchical clustering with single linkage to create a dendrogram.
- 4. Which provinces are most similar and which are most dissimilar? Which are the main factors (features) that determine the (dis)similarity?

Province	Population	Area	Density	GDP	GDP per cap.
South Holland	3,453,000	2,860	1,207.3	95,868	27,825
North Holland	2,583,900	2,660	971.4	65,295	27,169
Utrecht	1,159,200	1,356	854.9	38,355	33,148
Limburg	1,143,000	2,167	527.5	28,038	24,585
North Brabant	2,406,900	4,938	487.4	65,295	27,169
Gelderland	1,967,600	4,995	393.9	45,043	22,942
Overijssel	1,105,800	3,337	331.4	25,854	23,441
Flevoland	356,400	1,426	249.9	6,915	19,439
Groningen	575,900	2,344	245.7	18,496	32,245
Zeeland	378,300	1,792	211.1	9,354	24,706
Friesland	642,500	3,361	191.2	13,989	21,830
Drenthe	482,300	2,652	181.9	10,323	21,427

Table 1: Statistical data on the 12 dutch provinces. Source: http://en.wikipedia.org/wiki/Ranked_list_of_Dutch_provinces