Anfängerpraktikum der Fakultät für Physik, Universität Göttingen

Versuch Adiabatenexponent Protokoll

Praktikant: Michael Lohmann

Skrollan Detzler

E-Mail: m.lohmann@stud.uni-goettingen.de

skrollan.detzler@stud.uni-goettingen.de

Betreuer: Martin Ochmann

Testat:		

Inhaltsverzeichnis

Inhaltsverzeichnis

Lit	teratur	5
5	Diskussion	5
4	Auswertung4.1 Messung nach Rüchard	3 5
3	Durchführung	3
2	Theorie	3
1	Einleitung	3

1 Einleitung

Der Adiabatenexponent ist ein wichtiges Kennzeichen von Gasen. Er beschreibt das Verhältnis des Wärmespeicherkoeffizienten bei konstantem Druck zu dem mit konstantem Volumen ([Mes10, S. 263]). In der Regel wird er mit κ bezeichnet.

2 Theorie

3 Durchführung

4 Auswertung

4.1 Messung nach Rüchard

Die aufbauspezifischen Daten unseres Versuchs lauten: Da beim schwingenden Gewicht

Messgröße	Messwert
Masse	m = 4.88 g
Durchmesser	d = 9.97 mm
Volumen	$V = 2300.45 \text{ cm}^3$
Luftdruck	$b_1 = 1015.8 \text{ hPa}$
- nachher	$b_2 = 1015.5 \text{ hPa}$
Temperatur	$T_1 = 25.9^{\circ} \text{ C}$
- nachher	$T_2 = 23.6^{\circ} \text{ C}$

Tabelle 1: Versuchsspezifische Größen

in der Röhre zusätzlich noch das sich darin befindliche Gas bewegt werden muss, ist die effektive Masse $m_{\rm eff}$ höher:

$$m_{\text{eff}} = m + \rho_L \cdot A \cdot l$$
$$\sigma_{m_{\text{eff}}} = \sigma_l \cdot \rho_l \cdot A$$

Der daraus resultierende Druck p wird durch

$$p = b + \frac{m_{\text{eff}}g}{A}$$

$$\sigma_p = \sqrt{\sigma_b^2 + \sigma_{m_{\text{eff}}}^2 \left(\frac{g}{A}\right)^2}$$

berechnet. Die Werte für unseren Versuch sind in Tabelle 2 dargestellt.

Gas	$m_{\rm eff}$ [g]	p [hPa]
CO_2	4.8983 ± 0.0005	1021.81 ± 0.10
Argon	4.8917 ± 0.0005	1021.80 ± 0.10
Luft	4.8964 ± 0.0005	1021.80 ± 0.10

Tabelle 2: Effektive Masse zu den einzelnen Gasen und die daraus resultierenden Drücke

Gas	Schwingungen	Periodendauer [ms]	κ
	1	762.1 ± 1.1	0.7587 ± 0.0021
CO_2	10	762.23 ± 0.24	0.7584 ± 0.0005
	20	763.29 ± 0.11	0.75629 ± 0.00025
	50	763.39 ± 0.12	0.75610 ± 0.00026
	100	762.70 ± 0.22	0.7575 ± 0.0004
	1	685.8 ± 1.0	0.9356 ± 0.0028
	10	686.5 ± 0.4	0.9338 ± 0.0012
Argon	20	686.48 ± 0.27	0.9337 ± 0.0008
	50	686.48 ± 0.15	0.9338 ± 0.0004
	100	686.33 ± 0.06	0.93416 ± 0.00021
	1	737.4 ± 1.0	0.8100 ± 0.0023
Luft	10	737.4 ± 0.4	0.8101 ± 0.0008
	20	737.96 ± 0.25	0.8088 ± 0.0006
	50	738.6 ± 0.5	0.8074 ± 0.0012
	100	739.1 ± 0.5	0.8063 ± 0.0012

Tabelle 3: Schwingungszeiten unterschiedlicher Gase

$$\kappa = \frac{4\pi^2 \cdot m_{\text{eff}} \cdot V}{T^2 \cdot p \cdot d^4}$$

$$\sigma_{\kappa} = \frac{4\pi^2 V}{T^3 d^4 p^2} \cdot \sqrt{(T m_{\text{eff}})^2 \cdot \sigma_p^2 + (T p)^2 \cdot \sigma_{m_{\text{eff}}}^2 + (2 m_{\text{eff}} p)^2 \cdot \sigma_T^2}$$

Öffnungszeit [s]	κ
0.1	1.130 ± 0.014
1.0	1.133 ± 0.013
5.0	1.106 ± 0.014

Tabelle 4: κ zu den jeweiligen Öffnungszeiten

$$\kappa = \frac{\Delta h_1}{\Delta h_1 - \Delta h_2}$$

$$\sigma_{\kappa} = \frac{1}{\left(\Delta h_1 - \Delta h_2\right)^2} \cdot \sqrt{\Delta h_1^2 \cdot \sigma_{\Delta h_2}^2 + \Delta h_2^2 \cdot \sigma_{\Delta h_1}^2}$$

4.2 Messung nach Clement-Desormes

5 Diskussion

In der Tabelle der versuchsspezifischen Größen 1 fällt auf, dass sich die Temperatur im Versuchsraum während der Messungen um über 2° C geändert hat. Dies verfälscht die Messwerte, so dass für zukünftige Messungen empfehlenswert ist, zumindest die Fenster zu schließen, so unangenehm dies auch ist. Noch besser wäre allerdings ein klimatisierter Raum.

Literatur

[Mes10] Meschede, Dieter: *Gerthsen Physik*. Springer-Verlag, Berlin Heidelberg, 24. Auflage, 2010, ISBN 978-3-642-12893-6.