

Schletter, Inc.		15° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2

Module Tilt = 15°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 22.68 psf (ASCE 7-05, Eq. 7-2)
$$I_s = 1.00$$

$$C_s = 1.00$$

$$C_e = 0.90$$

$$C_t = 1.20$$

2.3 Wind Loads

Design Wind Speed, V =	120 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 22.61$ psf Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ _{TOP}	=	1.000 (Prossure)	
Cf+ BOTTOM	=	1.000 1.600 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.300	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.780 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applied away from the surface.

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S _s of 1.5
$S_{DS} =$	1.67	$C_{S} = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used
$T_a =$	0.05	$C_{d} = 1.25$	to calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E ^O

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

 $\begin{array}{c} 1.0D + 1.0S \\ 1.0D + 1.0W \\ 1.0D + 0.75L + 0.75W + 0.75S \\ 0.6D + 1.0W & \text{(ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2)} \\ 1.238D + 0.875E & \text{0} \\ 1.1785D + 0.65625E + 0.75S & \text{0} \\ 0.362D + 0.875E & \text{0} \\ \end{array}$

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	<u>Location</u>	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u> Front</u>	<u>Rear</u>	
<u> 1937.15</u>	<u>6511.33</u>	k
<u>5035.69</u>	<u>5218.74</u>	k
<u>288.78</u>	2335.42	k
<u>0.59</u>	0.38	k
	5035.69 288.78	1937.156511.335035.695218.74288.782335.42

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (3) #5 rebar. Compressive Strength = 2500 psi Yield Strength = 60000 psi Overturning Check $M_O = 162988.5 \text{ in-lbs}$ Resisting Force Required = 2469.52 lbs A minimum 132in long x 37in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 4115.87 lbs to resist overturning. Minimum Width = <u>37 in</u> in Weight Provided = 7376.88 lbs Sliding 561.34 lbs Force = Friction = Use a 132in long x 37in wide x 18in tall 0.4 ballast foundation to resist sliding. Weight Required = 1403.34 lbs Friction is OK. Resisting Weight = 7376.88 lbs Additional Weight Required = 0 lbs Cohesion Sliding Force = 561.34 lbs Cohesion = 130 psf Use a 132in long x 37in wide x 18in tall 33.92 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3688.44 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi $f'_c =$

Bearing Pressure

Length =

8 in

 $\frac{\text{Ballast Width}}{37 \text{ in}} \frac{38 \text{ in}}{38 \text{ in}} \frac{39 \text{ in}}{39 \text{ in}} \frac{40 \text{ in}}{37 \text{ in}}$ $P_{\text{ftg}} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(3.08 \text{ ft}) = \frac{7377 \text{ lbs}}{7576 \text{ lbs}} \frac{7776 \text{ lbs}}{7776 \text{ lbs}} \frac{7975 \text{ lbs}}{7975 \text{ lbs}}$

ASD LC		1.0D	+ 1.0S			1.0D+	- 1.0W		1.	.0D + 0.75L +	0.75W + 0.75	S		0.6D+	- 1.0W	
Width	37 in	38 in	39 in	40 in	37 in	38 in	39 in	40 in	37 in	38 in	39 in	40 in	37 in	38 in	39 in	40 in
FA	1594 lbs	1594 lbs	1594 lbs	1594 lbs	2014 lbs	2014 lbs	2014 lbs	2014 lbs	2586 lbs	2586 lbs	2586 lbs	2586 lbs	-926 lbs	-926 lbs	-926 lbs	-926 lbs
F _B	1649 lbs	1649 lbs	1649 lbs	1649 lbs	2087 lbs	2087 lbs	2087 lbs	2087 lbs	2679 lbs	2679 lbs	2679 lbs	2679 lbs	-3125 lbs	-3125 lbs	-3125 lbs	-3125 lbs
F_V	138 lbs	138 lbs	138 lbs	138 lbs	986 lbs	986 lbs	986 lbs	986 lbs	833 lbs	833 lbs	833 lbs	833 lbs	-1123 lbs	-1123 lbs	-1123 lbs	-1123 lbs
P _{total}	10619 lbs	10819 lbs	11018 lbs	11217 lbs	11478 lbs	11677 lbs	11877 lbs	12076 lbs	12642 lbs	12842 lbs	13041 lbs	13241 lbs	375 lbs	495 lbs	615 lbs	734 lbs
M	3873 lbs-ft	3873 lbs-ft	3873 lbs-ft	3873 lbs-ft	6101 lbs-ft	6101 lbs-ft	6101 lbs-ft	6101 lbs-ft	7189 lbs-ft	7189 lbs-ft	7189 lbs-ft	7189 lbs-ft	1518 lbs-ft	1518 lbs-ft	1518 lbs-ft	1518 lbs-ft
е	0.36 ft	0.36 ft	0.35 ft	0.35 ft	0.53 ft	0.52 ft	0.51 ft	0.51 ft	0.57 ft	0.56 ft	0.55 ft	0.54 ft	4.04 ft	3.07 ft	2.47 ft	2.07 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft									
f _{min}	250.8 psf	249.9 psf	249.1 psf	248.3 psf	240.3 psf	239.7 psf	239.1 psf	238.6 psf	257.1 psf	256.1 psf	255.1 psf	254.2 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	375.4 psf	371.2 psf	367.3 psf	363.5 psf	436.5 psf	430.8 psf	425.3 psf	420.1 psf	488.4 psf	481.2 psf	474.5 psf	468.1 psf	55.7 psf	42.8 psf	41.6 psf	42.8 psf

Maximum Bearing Pressure = 488 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 37in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Seismic Design

A minimum 132in long x 37in wide x 18in tall

Overturning Check

 $M_O = 3477.3 \text{ ft-lbs}$

Resisting Force Required = 2255.56 lbs

S.F. = 1.67

Weight Required = 3759.27 lbs Minimum Width = 37 in in ballast foundation is required to resist overturning.

Weight Provided = $\frac{37 \text{ in}}{7376.88}$ lbs

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		37 in			37 in			37 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	239 lbs	599 lbs	209 lbs	886 lbs	2639 lbs	863 lbs	80 lbs	175 lbs	51 lbs		
F _V	198 lbs	195 lbs	199 lbs	148 lbs	142 lbs	154 lbs	198 lbs	196 lbs	198 lbs		
P _{total}	9371 lbs	9732 lbs	9342 lbs	9579 lbs	11333 lbs	9556 lbs	2751 lbs	2846 lbs	2721 lbs		
M	788 lbs-ft	780 lbs-ft	792 lbs-ft	596 lbs-ft	592 lbs-ft	616 lbs-ft	785 lbs-ft	780 lbs-ft	786 lbs-ft		
е	0.08 ft	0.08 ft	0.08 ft	0.06 ft	0.05 ft	0.06 ft	0.29 ft	0.27 ft	0.29 ft		
L/6	0.51 ft	0.51 ft	0.51 ft	0.51 ft	0.51 ft	0.51 ft	0.51 ft	0.51 ft	0.51 ft		
f _{min}	231.1 psf	242.2 psf	230.0 psf	248.2 psf	300.2 psf	246.4 psf	36.1 psf	39.2 psf	35.1 psf		
f _{max}	321.5 psf	331.7 psf	320.9 psf	316.6 psf	368.1 psf	317.1 psf	126.1 psf	128.6 psf	125.4 psf		

Maximum Bearing Pressure = 368 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 37in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 37in wide x 18in tall ballast foundation and fiber reinforcing with (3) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut
Maximum Axial Load =	3.874 k	Maximum Axial Load = 4.559 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>52%</u>	Utilization = 61%
Diagonal Strut		
Maximum Axial Load =	1.694 k	
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)
Utilization =	<u>23%</u>	

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & & 36.30 \text{ in} \\ \text{Allowable Story Drift for All} & & 0.020 h_{\text{sx}} \\ \text{Other Structures, } \Delta = \{ & & 0.726 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.412 \text{ in} \\ \end{array}$

 $0.412 \le 0.726$, OK.

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 111 \text{ in}$$

$$J = 0.432$$

$$307.078$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

Not Used

$$\varphi F_L = 27.6 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_{b} = 111$$

$$J = 0.432$$

$$195.283$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 28.8$$

3.4.16

b/t = 32.195

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 25.1 \text{ ksi}$$

$$lx = 897074 \text{ mm}^4$$

$$2.155 \text{ in}^4$$

$$y = 41.015 \text{ mm}$$

$$Sx = 1.335 \text{ in}^3$$

$$M_{max} St = 2.788 \text{ k-ft}$$

3.4.18

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{cccc} \phi F_L W \, k = & 23.1 \, \, ksi \\ y = & 446476 \, \, mm^4 \\ & 1.073 \, \, in^4 \\ x = & 45.5 \, \, mm \\ Sy = & 0.599 \, \, in^3 \\ M_{max} W \, k = & 1.152 \, \, k\text{-ft} \end{array}$$

Compression

3.4.9

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

$$b/t = 37.0588$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\varphi F_L = (\varphi ck2^* \sqrt{(BpE)})/(1.6b/t)$$

$$\phi F_L = 21.9 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{max} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis:

3.4.14
$$L_b = 88.9 \text{ in}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$$

 $φF_L = 29.4 \text{ ksi}$

Weak Axis:

3.4.14

$$L_b = 88.9$$
 $J = 1.08$
 161.829

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 29.2$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$

$$\phi F_L = 31.6 \text{ ksi}$$

3.4.16

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used
$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S1 = 1.1$$

 $S2 = C_t$
 $S2 = 141.0$

$$0.05 = 0.0181 \cdot 0.0$$

$$\varphi F_L = \varphi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.1 \text{ ksi}$$

3.4.18

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L St = 29.4 \text{ ksi}$$

$$x = 984962 \text{ mm}^4$$

 2.366 in^4
 $y = 43.717 \text{ mm}$

43.2 ksi

$$Sx = 1.375 \text{ in}^3$$

 $maxSt = 3.363 \text{ k-ft}$

 $M_{max}St =$

 $\phi F_L =$

3.4.9

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 31.6 \text{ ksi}$$

$$S2 = 32.70$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87

$$\varphi F_L = \varphi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$P_{max} = 58.55 \text{ kips}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 33.3 \text{ ksi}$$
 $ly = 923544 \text{ mm}^4$
 2.219 in^4
 $x = 40 \text{ mm}$
 $Sy = 1.409 \text{ in}^3$

3.904 k-ft

 $M_{max}Wk =$

Compression

$$b/t = 7.4$$

$$S2 = 32.70$$

$$\phi F_L {=} \; \phi y F c y$$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 24.8 \text{ in} \\ \mathsf{J} = & 0.942 \\ & 38.7028 \\ \\ \mathit{S1} = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ \\ \mathit{S2} = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib}[\mathsf{Bc-1.6Dc^*}\sqrt{(\mathsf{LbSc})/(\mathsf{Cb^*}\sqrt{(\mathsf{lyJ})/2}))}] \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= & 24.8 \\ \mathsf{J} &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc} \right)^2 \\ \mathsf{S1} &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6} \right)^2 \\ \mathsf{S2} &= & 1701.56 \\ \phi \mathsf{F_L} &= & \phi b [\mathsf{Bc-1.6Dc}^* \sqrt{((\mathsf{LbSc})/(\mathsf{Cb}^* \sqrt{(\mathsf{lyJ})/2}))}] \end{split}$$

31.4

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16

 $\phi F_L =$

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

N/A for Weak Direction

3.4.16.1

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi Fcy$$

38.9 ksi

 $\phi F_L =$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.16.1

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$\begin{array}{ccc} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max} W k = 1.460 \text{ k-ft}$$

-Schi

Compression

3.4.7

$$\lambda = 0.57371$$

 $r = 0.81$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$
 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$
 $S2^* = 1.23671$
 $\varphi cc = 0.87952$
 $\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$

 $\phi F_L = 28.0279 \text{ ksi}$

b/t = 24.5
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c [Bp-1.6Dp^*b/t]$$

 $\phi F_L = 28.2 \text{ ksi}$
b/t = 24.5
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi c [Bp-1.6Dp^*b/t]$

3.4.10

 $\phi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 28.03 \text{ ksi}$
 $\phi F_L = 663.99 \text{ mm}^2$
1.03 in²
 $\phi F_L = 28.85 \text{ kips}$

28.2 ksi

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

	<u>Weak Axis:</u> 3.4.14
$L_{\rm b} = 86.60 \text{ in}$	$L_b = 86.6$
J = 0.942 135.148	J = 0.942 135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$	$\varphi F_{L} = \varphi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)})}]$
$\varphi F_L = 29.6 \text{ ksi}$	$\phi F_{L} = 29.6$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 <u>Not Used</u>

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$Cz = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$\varphi F_L St = 28.2 \text{ ksi}$

$$lx = 279836 \text{ mm}^4$$

 0.672 in^4
 $y = 27.5 \text{ mm}$
 $Sx = 0.621 \text{ in}^3$

 $M_{\text{max}}St = 1.460 \text{ k-ft}$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$\phi F_L W k = 28.2 \text{ ksi}$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

Compression

3.4.7

$$\begin{array}{ll} \lambda = & 2.00335 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.86047 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 7.50396 \text{ ksi} \end{array}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

$$L_b = 48.30 \text{ in}$$
 $J = 0.942$
 75.3767

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$$

 $φF_L = 30.6 \text{ ksi}$

$$\phi F_L =$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 48.3$$
 $J = 0.942$
 75.3767

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 30.6$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1 N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$\phi F_L St = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$\phi F_L St = 27.5 \text{ mm}$$

0.621 in³

1.460 k-ft

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$\psi = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

Compression

 $M_{max}St =$

y =

Sx =

3.4.7 λ = 1.11734 0.81 in Bc-Fcy $S1^* = \frac{1}{2}$ 1.6Dc* S1^{*} = 0.33515 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ 1.23671 $\phi cc = 0.76536$ $\phi F_L = \phi cc(Bc-Dc^*\lambda)$

$$φF_L = φcc(Bc-Dc^*λ)$$
 $φF_L = 18.9268 \text{ ksi}$

3.4.9

$$b/t = 24.5$$
 $S1 = 12.21 \text{ (See 3.4.16 above for formula)}$
 $S2 = 32.70 \text{ (See 3.4.16 above for formula)}$

$$φF_L = φc[Bp-1.6Dp^*b/t]$$

$$φF_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$
 $S1 = 12.21$
 $S2 = 32.70$

$$φF_L = φc[Bp-1.6Dp^*b/t]$$

$$φF_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 18.93 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 19.48 \text{ kips}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc.

: HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	, I
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-61.093	-61.093	0	0
2	M14	Υ	-61.093	-61.093	0	0
3	M15	Υ	-61.093	-61.093	0	0
4	M16	Υ	-61 093	-61 093	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-63.051	-63.051	0	0
2	M14	٧	-63.051	-63.051	0	0
3	M15	V	-100.882	-100.882	0	0
4	M16	V	-100.882	-100.882	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	145.018	145.018	0	0
2	M14	V	112.231	112.231	0	0
3	M15	V	63.051	63.051	0	0
4	M16	У	63.051	63.051	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	6.693	6.693	0	0
2	M14	Z	6.693	6.693	0	0
3	M15	Z	6.693	6.693	0	0
4	M16	Z	6.693	6.693	0	0
5	M13	Z	0	0	0	0
6	M14	Z	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	<u>Fa</u>
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	5.	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	442.163	2	1223.79	2	.899	1	.004	1	0	1	0	1
2		min	-569.679	3	-1538.197	3	-75.981	5	291	4	0	1	0	1
3	N7	max	.028	9	1309.401	1	307	12	0	12	0	1	0	1
4		min	146	2	-442.612	3	-222.142	4	45	4	0	1	0	1
5	N15	max	.022	9	3873.604	1	0	11	0	11	0	1	0	1
6		min	-1.785	2	-1490.112	3	-214.611	5	44	4	0	1	0	1
7	N16	max	1629.547	2	4014.415	1	0	3	0	3	0	1	0	1
8		min	-1796.478	3	-5008.713	3	-75.838	5	293	4	0	1	0	1
9	N23	max	.028	14	1309.401	1	6.512	1	.014	1	0	1	0	1
10		min	146	2	-442.612	3	-218.123	4	443	4	0	1	0	1
11	N24	max	442.163	2	1223.79	2	051	12	0	12	0	1	0	1
12		min	-569.679	3	-1538.197	3	-76.39	5	293	4	0	1	0	1
13	Totals:	max	2511.796	2	12935.09	1	0	11						
14		min	-2936.869	3	-10460.441	3	-879.291	5						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	73.916	4	534.841	1	-4.741	12	0	3	.168	1	0	4
2			min	3.496	12	-786.641	3	-125.575	1	016	2	.008	12	0	3
3		2	max	70.928	1	374.199	1	-3.79	12	0	3	.065	4	.689	3
4			min	3.496	12	-553.487	3	-96.422	1	016	2	.004	10	467	1
5		3	max	70.928	1	213.557	1	-2.84	12	0	3	.035	5	1.138	3
6			min	3.496	12	-320.333	3	-67.269	1	016	2	03	1	769	1
7		4	max	70.928	1	52.915	1	-1.89	12	0	3	.019	5	1.347	3
8			min	3.496	12	-87.179	3	-38.116	1	016	2	084	1	906	1
9		5	max	70.928	1	145.975	3	399	10	0	3	.004	5	1.317	3
10			min	3.496	12	-107.727	1	-15.88	4	016	2	108	1	878	1
11		6	max	70.928	1	379.129	3	20.19	1	0	3	004	12	1.047	3
12			min	3.496	12	-268.369	1	-12.263	5	016	2	102	1	685	1
13		7	max	70.928	1	612.283	3	49.343	1	0	3	003	12	.538	3
14			min	-4.162	5	-429.011	1	-10.792	5	016	2	067	1	326	1
15		8	max	70.928	1	845.438	3	78.495	1	0	3	.001	2	.197	1
16			min	-14.712	5	-589.653	1	-9.322	5	016	2	033	4	212	3
17		9	max	70.928	1	1078.592	3	107.648	1	0	3	.095	1	.886	1
18			min	-25.263	5	-750.295	1	-7.852	5	016	2	041	5	-1.2	3

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
19		10	max	70.928	1	1311.746	3	136.801	1	.005	14	.22	1	1.739	1
20			min	3.496	12	-910.936	1	-78.565	14	016	2	.004	12	-2.429	3
21		11	max	70.928	1	750.295	1	-2.862	12	.016	2	.095	1	.886	1
22			min	3.496	12	-1078.592	3	-107.648	1	0	3	0	12	-1.2	3
23		12	max	70.928	1	589.653	1	-1.912	12	.016	2	.032	4	.197	1
24			min	3.496	12	-845.438	3	-78.495	1	0	3	003	3	212	3
25		13	max	70.928	1	429.011	1	961	12	.016	2	.015	5	.538	3
26			min	3.496	12	-612.283	3	-49.343	1	0	3	067	1	326	1
27		14	max	70.928	1	268.369	1	.046	3	.016	2	0	15	1.047	3
28			min	.47	15	-379.129	3	-20.19	1	0	3	102	1	685	1
29		15	max	70.928	1	107.727	1	8.963	1	.016	2	003	12	1.317	3
30			min	-9.757	5	-145.975	3	-12.793	5	0	3	108	1	878	1
31		16	max	70.928	1	87.179	3	38.116	1	.016	2	002	12	1.347	3
32			min	-20.307	5	-52.915	1	-11.323	5	0	3	084	1	906	1
33		17	max	70.928	1	320.333	3	67.269	1	.016	2	0	3	1.138	3
34			min	-30.858	5	-213.557	1	-9.852	5	0	3	045	4	769	1
35		18	max	70.928	1	553.487	3	96.422	1	.016	2	.054	1	.689	3
36			min	-41.408	5	-374.199	1	-8.382	5	0	3	047	5	467	1
37		19	max	70.928	1	786.641	3	125.575	1	.016	2	.168	1	0	1
38			min	-51.958	5	-534.841	1	-6.912	5	0	3	055	5	0	3
39	M14	1	max	55.314	4	573.838	1	-4.872	12	.011	3	.194	1	0	1
40	14111		min	1.504	12	-627.108	3	-129.718	1	013	1	.009	12	0	3
41		2	max	44.764	4	413.196	1	-3.922	12	.011	3	.095	4	.552	3
42		_	min	1.504	12	-447.871	3	-100.565	1	013	1	.005	12	507	1
43		3	max	34.692	1	252.555	1	-2.972	12	.011	3	.052	5	.921	3
44			min	1.504	12	-268.633	3	-71.412	1	013	1	013	1	849	1
45		4	max	34.692	1	91.913	1	-2.021	12	.011	3	.028	5	1.105	3
46		-	min	1.504	12	-89.395	3	-42.259	1	013	1	071	1	-1.026	1
47		5	max	34.692	1	89.843	3	764	10	.011	3	.006	5	1.104	3
48			min	1.504	12	-68.729	1	-24.146	4	013	1	1	1	-1.038	1
49		6	max	34.692	1	269.08	3	16.046	1	.013	3	004	12	.92	3
50		-	min	-4.518	5	-229.371	1	-19.535	5	013	1	098	1	885	1
51		7	max	34.692	1	448.318	3	45.199	1	.011	3	003	12	.551	3
52			min	-15.068	5	-390.013	1	-18.065	5	013	1	067	1	567	1
		8		34.692	1	627.556	3	74.352	1	.013	3	<u>067</u> 0	10	001	
53 54		0	max min	-25.619	5	-550.655	1	-16.595	5	013	1	054	4	096	15
		9		34.692			3			.013	3	.086	1	.565	1
55		9	max	-36.169	5	806.793	1	103.505 -15.124	5	013	1	068	5	739	3
56		10	min		4	-711.297	3				3		1		1
57		10	max	56.983		986.031		132.658	1	.011		.207		1.379	
58		44	min max	1.504 46.432	12	-871.939 711.297	<u>1</u> 1	-80.15	14 12	013	1	.004 .095	12	-1.66	3
59		11			4	-806.793		-2.73		.013 011			12	.565	_
60		40	min	1.504	12		3	-103.505	1		3	0		739	3
61		12		35.882	4	550.655	1	-1.78	12	.013	1	.051	5	001	15
62		40	min	1.504	12	-627.556	3	-74.352	1	011	3	005	1	096	2
63		13	max	34.692	1	390.013	1	83	12	.013	1	.027	5	.551	3
64		4.4	min	1.504	12	-448.318	3	-45.199	1	011	3	067	1	567	1
65		14	max	34.692	1	229.371	1_	.243	3	.013	1	.005	5	.92	3
66		4 =	min	1.504	12	-269.08	3	-24.702	4	011	3	098	1	885	1
67		15	max	34.692	1	68.729	1_	13.106	1	.013	1	003	12	1.104	3
68		40	min	-2.676	5	-89.843	3	-19.648	5	011	3	<u>1</u>	1	-1.038	1
69		16	max	34.692	1	89.395	3	42.259	1	.013	1	001	12	1.105	3
70			min	-13.226	5	-91.913	1_	-18.177	5	011	3	071	1	-1.026	1
71		17	max	34.692	1	268.633	3	71.412	1	.013	1	.002	3	.921	3
72				-23.776	5	-252.555	1_	-16.707	5	011	3	057	4	849	1
73		18	max	34.692	1	447.871	3	100.565	1	.013	1	.075	1	.552	3
74			min	-34.327	5	-413.196	1_	-15.237	5	011	3	07	5	507	1
75		19	max	34.692	1	627.108	3	129.718	1	.013	1	.194	1	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
76			min	-44.877	5	-573.838	1	-13.767	5	011	3	085	5	0	3
77	M15	1	max	73.517	5	733.531	2	-4.823	12	.013	2	.194	1	0	2
78			min	-36.243	1	-354.52	3	-129.712	1	009	3	.009	12	0	3
79		2	max	62.967	5	525.552	2	-3.873	12	.013	2	.13	4	.314	3
80			min	-36.243	1	-256.156	3	-100.559	1	009	3	.005	12	647	2
81		3	max	52.416	5	317.573	2	-2.923	12	.013	2	.078	5	.527	3
82			min	-36.243	1	-157.792	3	-71.406	1	009	3	013	1	-1.08	2
83		4	max	41.866	5	109.595	2	-1.972	12	.013	2	.044	5	.638	3
84			min	-36.243	1	-59.428	3	-42.253	1	009	3	071	1	-1.3	2
85		5	max	31.316	5	38.936	3	787	10	.013	2	.012	5	.649	3
86			min	-36.243	1	-98.384	2	-33.676	4	009	3	1	1	-1.306	2
87		6	max	20.765	5	137.3	3	16.052	1	.013	2	004	12	.558	3
88			min	-36.243	1	-306.363	2	-29.062	5	009	3	098	1	-1.098	2
89		7	max	10.215	5	235.664	3	45.205	1	.013	2	003	12	.366	3
90			min	-36.243	1	-514.341	2	-27.592	5	009	3	067	1	676	2
91		8	max	186	15	334.028	3	74.358	1	.013	2	0	10	.074	3
92			min	-36.243	1	-722.32	2	-26.121	5	009	3	078	4	056	1
93		9	max	-1.849	12	432.392	3	103.511	1	.013	2	.086	1	.809	2
94			min	-36.243	1	-930.299	2	-24.651	5	009	3	102	5	32	3
95		10	max	-1.849	12	530.756	3	132.664	1	.013	2	.207	1	1.872	2
96			min	-36.243	1	-1138.278	2	-84.981	14	009	3	.004	12	815	3
97		11	max	7.032	5	930.299	2	-2.779	12	.009	3	.129	4	.809	2
98			min	-36.243	1	-432.392	3	-103.511	1	013	2	0	12	32	3
99		12	max	-1.849	12	722.32	2	-1.829	12	.009	3	.075	5	.074	3
100			min	-36.243	1	-334.028	3	-74.358	1	013	2	005	1	056	1
101		13	max	-1.849	12	514.341	2	879	12	.009	3	.041	5	.366	3
102			min	-36.243	1	-235.664	3	-45.205	1	013	2	067	1	676	2
103		14	max	-1.849	12	306.363	2	.165	3	.009	3	.009	5	.558	3
104			min	-36.243	1	-137.3	3	-34.244	4	013	2	098	1	-1.098	2
105		15	max	-1.849	12	98.384	2	13.1	1	.009	3	003	12	.649	3
106		10	min	-42.939	4	-38.936	3	-29.175	5	013	2	1	1	-1.306	2
107		16	max	-1.849	12	59.428	3	42.253	1	.009	3	001	12	.638	3
108		1.0	min	-53.49	4	-109.595	2	-27.705	5	013	2	071	1	-1.3	2
109		17	max	-1.849	12	157.792	3	71.406	1	.009	3	.002	3	.527	3
110		11	min	-64.04	4	-317.573	2	-26.235	5	013	2	082	4	-1.08	2
111		18	max	-1.849	12	256.156	3	100.559	1	.009	3	.075	1	.314	3
112		10	min	-74.59	4	-525.552	2	-24.764	5	013	2	105	5	647	2
113		19	max	-1.849	12	354.52	3	129.712	1	.009	3	.194	1	0	2
114		13	min	-85.141	4	-733.531	2	-23.294	5	013	2	13	5	0	5
115	M16	1	max	73.198	5	695.928	2	-4.575	12	.013	1	.169	1	0	2
116	IVITO			-74.989		-325.856		-4.575		012	3	.008	12	0	3
117		2	max		5	487.949	2	-3.624	12	.013	1	.095	4	.284	3
118			_	-74.989	1	-227.492	3	-96.634	1	012	3	.003	12	608	2
119		3	max	52.097	5	279.97	2	-2.674	12	.013	1	.056	5	.468	3
120			min	-74.989	1	-129.128	3	-67.481	1	012	3	029	1	-1.003	2
121		4	max	41.547	5	71.991	2	-1.724	12	.013	1	.032	5	.55	3
122		7	min	-74.989	1	-30.764	3	-38.328	1	012	3	084	1	-1.184	2
123		5	max	30.996	5	67.6	3	503	10	.013	1	.009	5	.531	3
124		3		-74.989	1	-135.987	2	-23.786	4	012	3	108	1	-1.151	2
		6													
125 126		6	max	<u>20.446</u> -74.989	5	165.964	2	19.977 -20.099	5	.013 012	3	004 102	12	<u>.411</u> 904	2
127		7			1 5	-343.966									
		/	max	9.896	5	264.328	3	49.13	1	.013	3	003	12	.19	2
128		0		<u>-74.989</u>	1 1 5	-551.945	2	-18.629	5	012		067	10	<u>444</u>	
129		8	max	388	15	362.692	3	78.283	1	.013	1	0	10	.23	2
130		0	min	<u>-74.989</u>	12	-759.924	2	-17.159	5	012	3	052	4	133 1 110	3
131		9	max	-3.407	12	461.056	3	107.436	1	.013	1	.094	1	1.118	2
132			rnin	-74.989	1	-967.902	2	-15.688	5	012	3	068	5	556	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

134		Member	Sec		Axial[lb]	LC	y Shear[lb]			LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	
136	133		10	max		12	559.42	3	136.589	1				-	2.22	2
136				min		1				14				12	-1.08	
138	135		11	max	3.634	5	967.902	2	-3.028	12	.012	3	.097	4	1.118	2
138	136			min		1		3	-107.436	1		1	.001	12	556	3
138			12	max		12				12		3	.051			
1440				min	-74.989	1	-362.692	3	-78.283	1	013	_	002	3	133	
141	139		13	max	-3.407	12	551.945	2		12	.012	3	.025	5	.19	3
142	140			min	-74.989	1	-264.328	3	-49.13	1	013	1	067	1	444	2
144	141		14	max	-3.407	12	343.966	2	177	12	.012	3	.002	5	.411	3
144				min	-74.989	1	-165.964	3	-26.351	4	013	1	102	1	904	
146	143		15	max	-3.407	12	135.987	2	9.176	1	.012	3	003	12	.531	3
146	144			min	-74.989	1	-67.6	3	-20.62	5	013	1	108	1	-1.151	2
147	145		16	max	-3.407	12	30.764	3	38.328	1	.012	3	002	12	.55	3
148	146			min	-74.989	1	-71.991	2	-19.15	5	013	1	084	1	-1.184	2
149	147		17	max	-3.407	12	129.128	3	67.481	1	.012	3	0	3	.468	3
150	148			min	-75.481	4	-279.97	2	-17.679	5	013	1	066	4	-1.003	2
151	149		18	max	-3.407	12	227.492	3	96.634	1	.012	3	.055	1	.284	3
152	150			min	-86.031	4	-487.949	2	-16.209	5	013	1	077	5	608	2
153 M2	151		19	max	-3.407	12	325.856	3	125.787	1	.012	3	.169	1	0	2
155	152			min	-96.581	4	-695.928	2	-14.739	5	013	1	093	5	0	3
155	153	M2	1	max	1176.816	1	2.335	4	1.012	1	0	3	0	3	0	1
156	154			min	-1401.115	3	.573	15	-71.214	4	0	4	0	1	0	1
157	155		2	max	1177.144	1	2.32	4	1.012	1	0	3	0	1	0	15
158	156			min	-1400.869	3	.569	15	-71.499	4	0	4	016	4	0	4
158			3	max	1177.473	1	2.305	4	1.012	1	0	3	0	1	0	15
160	158			min	-1400.622	3		15	-71.784	4	0	4	032	4	001	4
160	159		4	max	1177.801	1	2.29	4	1.012	1	0	3	0	1	0	15
162				min	-1400.376	3	.562	15	-72.068	4	0	4	048	4	002	
163	161		5	max	1178.129	1	2.274	4	1.012	1	0	3	0	1	0	15
164	162			min	-1400.13	3	.559	15	-72.353	4	0	4	064	4	002	4
165	163		6	max	1178.458	1	2.259	4	1.012	1	0	3	.001	1	0	15
166	164			min	-1399.883	3	.555	15	-72.638	4	0	4	08	4	003	4
167	165		7	max	1178.786	1	2.244	4	1.012	1	0	3	.001	1	0	15
167 8 max 1179.115 1 2.229 4 1.012 1 0 3 .002 1 0 15 168 min -1399.391 3 .548 15 -73.208 4 0 4 112 4 004 4 169 9 max 1179.443 1 2.213 4 1.012 1 0 3 .002 1 0 15 170 min -1399.144 3 .544 15 -73.493 4 0 4 128 4 004 4 171 10 max 1179.772 1 2.198 4 1.012 1 0 3 .002 1 001 15 172 min -1398.898 3 .541 15 -73.777 4 0 4 145 4 005 4 173 11 max 1180.1 1 2.183 4 1.012 1 0 3 </td <td>166</td> <td></td> <td></td> <td>min</td> <td>-1399.637</td> <td>3</td> <td>.552</td> <td>15</td> <td>-72.923</td> <td>4</td> <td>0</td> <td>4</td> <td>096</td> <td>4</td> <td>003</td> <td>4</td>	166			min	-1399.637	3	.552	15	-72.923	4	0	4	096	4	003	4
169	167		8	max	1179.115	1	2.229	4	1.012	1	0	3	.002	1	0	15
170	168			min	-1399.391	3	.548	15	-73.208	4	0	4	112	4	004	4
171	169		9	max	1179.443	1	2.213	4	1.012	1	0	3	.002	1	0	15
172 min -1398.898 3 .541 15 -73.777 4 0 4 145 4 005 4 173 11 max 1180.1 1 2.183 4 1.012 1 0 3 .002 1 001 15 174 min -1398.652 3 .537 15 -74.062 4 0 4 161 4 005 4 175 12 max 1180.429 1 2.168 4 1.012 1 0 3 .002 1 001 15 176 min -1398.405 3 .534 15 -74.347 4 0 4 177 4 005 4 177 13 max 1180.757 1 2.152 4 1.012 1 0 3 .003 1 001 15 178 min -1398.159 3	170			min	-1399.144	3	.544	15	-73.493	4	0	4	128	4	004	4
173 11 max 1180.1 1 2.183 4 1.012 1 0 3 .002 1 001 15 174 min -1398.652 3 .537 15 -74.062 4 0 4 161 4 005 4 175 12 max 1180.429 1 2.168 4 1.012 1 0 3 .002 1 001 15 176 min -1398.405 3 .534 15 -74.347 4 0 4 177 4 005 4 177 13 max 1180.757 1 2.152 4 1.012 1 0 3 .003 1 001 15 178 min -1398.159 3 .53 15 -74.632 4 0 4 194 4 006 4 179 14 max 1181.085 1 2.137 4 1.012 1 0 3 .003 1 002 </td <td>171</td> <td></td> <td>10</td> <td>max</td> <td>1179.772</td> <td>1</td> <td>2.198</td> <td>4</td> <td>1.012</td> <td>1</td> <td>0</td> <td>3</td> <td>.002</td> <td>1</td> <td>001</td> <td>15</td>	171		10	max	1179.772	1	2.198	4	1.012	1	0	3	.002	1	001	15
174 min -1398.652 3 .537 15 -74.062 4 0 4 161 4 005 4 175 12 max 1180.429 1 2.168 4 1.012 1 0 3 .002 1 001 15 176 min -1398.405 3 .534 15 -74.347 4 0 4 177 4 005 4 177 13 max 1180.757 1 2.152 4 1.012 1 0 3 .003 1 001 15 178 min -1398.159 3 .53 15 -74.632 4 0 4 194 4 006 4 179 14 max 1181.085 1 2.137 4 1.012 1 0 3 .003 1 002 15 180 min -1397.913 3	172			min	-1398.898	3	.541	15	-73.777		0		145	4	005	
175 12 max 1180.429 1 2.168 4 1.012 1 0 3 .002 1 001 15 176 min -1398.405 3 .534 15 -74.347 4 0 4 177 4 005 4 177 13 max 1180.757 1 2.152 4 1.012 1 0 3 .003 1 001 15 178 min -1398.159 3 .53 15 -74.632 4 0 4 194 4 006 4 179 14 max 1181.085 1 2.137 4 1.012 1 0 3 .003 1 006 4 180 min -1397.913 3 .526 15 -74.917 4 0 4 21 4 006 4 181 15 max 1181.414 1 2.122 4 1.012 1 0 3 .003 1 002 </td <td>173</td> <td></td> <td>11</td> <td>max</td> <td>1180.1</td> <td>1</td> <td>2.183</td> <td>4</td> <td>1.012</td> <td>1</td> <td>0</td> <td>3</td> <td>.002</td> <td>1</td> <td>001</td> <td>15</td>	173		11	max	1180.1	1	2.183	4	1.012	1	0	3	.002	1	001	15
176 min -1398.405 3 .534 15 -74.347 4 0 4 177 4 005 4 177 13 max 1180.757 1 2.152 4 1.012 1 0 3 .003 1 001 15 178 min -1398.159 3 .53 15 -74.632 4 0 4 194 4 006 4 179 14 max 1181.085 1 2.137 4 1.012 1 0 3 .003 1 002 15 180 min -1397.913 3 .526 15 -74.917 4 0 4 21 4 002 15 180 min -1397.913 3 .526 15 -74.917 4 0 4 21 4 006 4 181 min -1397.666 3 .522	174			min	-1398.652	3	.537	15	-74.062	4	0	4	161	4	005	4
177 13 max 1180.757 1 2.152 4 1.012 1 0 3 .003 1 001 15 178 min -1398.159 3 .53 15 -74.632 4 0 4 194 4 006 4 179 14 max 1181.085 1 2.137 4 1.012 1 0 3 .003 1 002 15 180 min -1397.913 3 .526 15 -74.917 4 0 4 21 4 006 4 181 15 max 1181.414 1 2.122 4 1.012 1 0 3 .003 1 002 15 182 min -1397.666 3 .522 12 -75.202 4 0 4 227 4 007 4 183 16 max 1181.742 1 2.107 4 1.012 1 0 3 .003 1 002<	175		12	max	1180.429	1	2.168	4	1.012	1	0	3	.002	1	001	15
178 min -1398.159 3 .53 15 -74.632 4 0 4 194 4 006 4 179 14 max 1181.085 1 2.137 4 1.012 1 0 3 .003 1 002 15 180 min -1397.913 3 .526 15 -74.917 4 0 4 21 4 006 4 181 15 max 1181.414 1 2.122 4 1.012 1 0 3 .003 1 002 15 182 min -1397.666 3 .522 12 -75.202 4 0 4 227 4 007 4 183 16 max 1181.742 1 2.107 4 1.012 1 0 3 .003 1 002 15 184 min -1397.42 3 <	176			min	-1398.405	3	.534	15	-74.347	4	0	4	177	4	005	4
179 14 max 1181.085 1 2.137 4 1.012 1 0 3 .003 1 002 15 180 min -1397.913 3 .526 15 -74.917 4 0 4 21 4 006 4 181 15 max 1181.414 1 2.122 4 1.012 1 0 3 .003 1 002 15 182 min -1397.666 3 .522 12 -75.202 4 0 4 227 4 007 4 183 16 max 1181.742 1 2.107 4 1.012 1 0 3 .003 1 002 15 184 min -1397.42 3 .516 12 -75.486 4 0 4 244 4 007 4 185 17 max 1182.071 1 2.091 4 1.012 1 0 3 .004 1 002 15 186 min -1397.174 3 .51 12 -75.771 4 0 4 <	177		13	max	1180.757	1	2.152	4	1.012	1	0	3	.003	1	001	15
180 min -1397.913 3 .526 15 -74.917 4 0 4 21 4 006 4 181 15 max 1181.414 1 2.122 4 1.012 1 0 3 .003 1 002 15 182 min -1397.666 3 .522 12 -75.202 4 0 4 227 4 007 4 183 16 max 1181.742 1 2.107 4 1.012 1 0 3 .003 1 002 15 184 min -1397.42 3 .516 12 -75.486 4 0 4 244 4 007 4 185 17 max 1182.071 1 2.091 4 1.012 1 0 3 .004 1 002 15 186 min -1397.174 3	178			min	-1398.159	3	.53	15	-74.632	4	0	4	194	4	006	4
181 15 max 1181.414 1 2.122 4 1.012 1 0 3 .003 1 002 15 182 min -1397.666 3 .522 12 -75.202 4 0 4 227 4 007 4 183 16 max 1181.742 1 2.107 4 1.012 1 0 3 .003 1 002 15 184 min -1397.42 3 .516 12 -75.486 4 0 4 244 4 007 4 185 17 max 1182.071 1 2.091 4 1.012 1 0 3 .004 1 002 15 186 min -1397.174 3 .51 12 -75.771 4 0 4 26 4 008 4 187 18 max 1182.399 1 2.076 4 1.012 1 0 3 .004 1 002 </td <td>179</td> <td></td> <td>14</td> <td>max</td> <td>1181.085</td> <td>1</td> <td>2.137</td> <td>4</td> <td>1.012</td> <td>1</td> <td>0</td> <td>3</td> <td>.003</td> <td>1</td> <td>002</td> <td>15</td>	179		14	max	1181.085	1	2.137	4	1.012	1	0	3	.003	1	002	15
182 min -1397.666 3 .522 12 -75.202 4 0 4 227 4 007 4 183 16 max 1181.742 1 2.107 4 1.012 1 0 3 .003 1 002 15 184 min -1397.42 3 .516 12 -75.486 4 0 4 244 4 007 4 185 17 max 1182.071 1 2.091 4 1.012 1 0 3 .004 1 002 15 186 min -1397.174 3 .51 12 -75.771 4 0 4 26 4 008 4 187 18 max 1182.399 1 2.076 4 1.012 1 0 3 .004 1 002 15 188 min -1396.927 3 <	180			min	-1397.913	3	.526	15	-74.917	4	0	4	21	4	006	4
183 16 max 1181.742 1 2.107 4 1.012 1 0 3 .003 1 002 15 184 min -1397.42 3 .516 12 -75.486 4 0 4 244 4 007 4 185 17 max 1182.071 1 2.091 4 1.012 1 0 3 .004 1 002 15 186 min -1397.174 3 .51 12 -75.771 4 0 4 26 4 008 4 187 18 max 1182.399 1 2.076 4 1.012 1 0 3 .004 1 002 15 188 min -1396.927 3 .504 12 -76.056 4 0 4 277 4 008 4	181		15	max	1181.414	1	2.122	4	1.012	1	0	3	.003	1	002	15
184 min -1397.42 3 .516 12 -75.486 4 0 4 244 4 007 4 185 17 max 1182.071 1 2.091 4 1.012 1 0 3 .004 1 002 15 186 min -1397.174 3 .51 12 -75.771 4 0 4 26 4 008 4 187 18 max 1182.399 1 2.076 4 1.012 1 0 3 .004 1 002 15 188 min -1396.927 3 .504 12 -76.056 4 0 4 277 4 008 4	182			min	-1397.666	3	.522	12	-75.202	4	0	4	227	4	007	4
185 17 max 1182.071 1 2.091 4 1.012 1 0 3 .004 1 002 15 186 min -1397.174 3 .51 12 -75.771 4 0 4 26 4 008 4 187 18 max 1182.399 1 2.076 4 1.012 1 0 3 .004 1 002 15 188 min -1396.927 3 .504 12 -76.056 4 0 4 277 4 008 4	183		16	max	1181.742	1	2.107	4	1.012	1	0	3	.003	1	002	15
185 17 max 1182.071 1 2.091 4 1.012 1 0 3 .004 1 002 15 186 min -1397.174 3 .51 12 -75.771 4 0 4 26 4 008 4 187 18 max 1182.399 1 2.076 4 1.012 1 0 3 .004 1 002 15 188 min -1396.927 3 .504 12 -76.056 4 0 4 277 4 008 4						3		12		4				4		
186 min -1397.174 3 .51 12 -75.771 4 0 4 26 4 008 4 187 18 max 1182.399 1 2.076 4 1.012 1 0 3 .004 1 002 15 188 min -1396.927 3 .504 12 -76.056 4 0 4 277 4 008 4			17													
187														4		
188 min -1396.927 3 .504 12 -76.056 4 0 4277 4008 4			18													
						3								4		
			19			1	2.061		1.012							

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]		z Shear[lb]		Torque[k-ft]	LC		LC	z-z Mome	LC_
190			min	-1396.681	3	.498	12	-76.341	4	0	4	294	4	009	4
191	M3	1	max	417.956	2	8.107	4	.017	1	0	3	0	1_	.009	4
192			min	-538.795	3	1.918	15	-1.165	5	0	4	011	4	.002	15
193		2	max	417.786	2	7.334	4	.017	1	0	3	0	1	.006	4
194			min	-538.922	3	1.737	15	623	5	0	4	011	4	0	12
195		3	max	417.616	2	6.562	4	.024	14	0	3	0	1	.003	2
196			min	-539.05	3	1.555	15	081	5	0	4	012	4	0	3
197		4	max	417.445	2	5.789	4	.513	4	0	3	0	1	0	2
198			min	-539.178	3	1.374	15	.001	12	0	4	011	4	002	3
199		5	max	417.275	2	5.017	4	1.055	4	0	3	0	1	0	15
200			min	-539.306	3	1.192	15	.001	12	0	4	011	4	003	3
201		6	max	417.105	2	4.245	4	1.597	4	0	3	0	1	0	15
202			min	-539.433	3	1.01	15	.001	12	0	4	011	4	004	6
203		7	max	416.934	2	3.472	4	2.139	4	0	3	0	1	001	15
204			min	-539.561	3	.829	15	.001	12	0	4	01	4	006	6
205		8	max	416.764	2	2.7	4	2.681	4	0	3	0	1	002	15
206			min	-539.689	3	.647	15	.001	12	0	4	009	5	007	6
207		9	max	416.594	2	1.927	4	3.224	4	0	3	0	1	002	15
208			min	-539.817	3	.466	15	.001	12	0	4	008	5	008	6
209		10	max	416.423	2	1.155	4	3.766	4	0	3	0	1	002	15
210			min	-539.944	3	.284	15	.001	12	0	4	006	5	009	6
211		11	max	416.253	2	.45	2	4.308	4	0	3	0	1	002	15
212			min	-540.072	3	032	3	.001	12	0	4	004	5	009	6
213		12	max	416.082	2	079	15	4.85	4	0	3	0	1	002	15
214		12	min	-540.2	3	483	3	.001	12	0	4	002	5	009	6
215		13	max		2	261	15	5.392	4	0	3	0	1	002	15
216		13	min	-540.328	3	-1.164	6	.001	12	0	4	0	5	009	6
217		14	max	415.742	2	442	15	5.934	4	0	3	.002	4	003	15
218		17	min	-540.456	3	-1.936	6	.001	12	0	4	0	12	002	6
219		15	max	415.571	2	624	15	6.476	4	0	3	.005	4	002	15
220		13	min	-540.583	3	-2.708	6	.001	12	0	4	0	12	002	6
221		16	max	415.401	2	805	15	7.018	4	0	3	.008	4	001	15
222		10	min	-540.711	3	-3.481	6	.001	12	0	4	0	12	006	6
223		17	max		2	987	15	7.561	4	0	3	.011	4	0	15
224		17		-540.839	3	-4.253	6	.001	12	0	4	.011	12	004	6
225		18	min max	415.06	2	-1.168	15	8.103	4	0	3	.014	4	0	15
226		10		-540.967	3	-5.026		.001	12	0	4	0	12	002	6
227		19	min	414.89	2	-1.35	6 15	8.645	4	0	3	.018	4	0	1
		19	max						12				12		1
228	N. 1. 4	4	min	-541.094	3	-5.798	6	.001		0	4	0		0	
229	M4	1		1306.335	1	0	1	304	12	0	1	.009	4	0	1
230			_	-444.911		0	1	-220.792		0	1	0	10	0	1
231		2		1306.505	1	0	1	304	12	0	1	0	12	0	1
232		0	min		3_	0	1	-220.939		0	1	016	4	0	1
233		3		1306.676		0	1	304	12	0	1	0	12	0	1
234		1	min			0	1	-221.087		0	1	041	4	0	1
235		4	1	1306.846		0	1	304	12	0	1	0	12	0	1
236		-	min			0	1	-221.234		0	1	067	4	0	1
237		5		1307.016		0	1	304	12	0	1	0	12	0	1
238			min		3_	0	1	-221.382		0	1	092	4	0	1
239		6		1307.187	1	0	1	304	12	0	1	0	12	0	1
240				-444.273	3	0	1	-221.53	4	0	1	118	4	0	1
241		7		1307.357	_1_	0	1	304	12	0	1	0	12	0	1
242			min		3	0	1	-221.677		0	1	143	4	0	1
243		8	1	1307.527	1_	0	1	304	12	0	1	0	12	0	1
244			min		3	0	1	-221.825		0	1	169	4	0	1
245		9		1307.698		0	1	304	12	0	1	0	12	0	1
246			min	-443.889	3	0	1	-221.973	4	0	1	194	4	0	1

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
247		10	max	1307.868	_1_	0	1	304	12	0	_1_	0	12	0	1
248			min	-443.762	3	0	1	-222.12	4	0	1	22	4	0	1
249		11	max	1308.038	1	0	1	304	12	0	1	0	12	0	1
250			min	-443.634	3	0	1	-222.268	4	0	1	245	4	0	1
251		12	max	1308.209	1	0	1	304	12	0	1	0	12	0	1
252			min	-443.506	3	0	1	-222.415	4	0	1	271	4	0	1
253		13	max	1308.379	1	0	1	304	12	0	1	0	12	0	1
254			min	-443.378	3	0	1	-222.563	4	0	1	296	4	0	1
255		14	max	1308.549	1	0	1	304	12	0	1	0	12	0	1
256			min	-443.25	3	0	1	-222.711	4	0	1	322	4	0	1
257		15	max		1	0	1	304	12	0	1	0	12	0	1
258		1.0	min	-443.123	3	0	1	-222.858	4	0	1	347	4	0	1
259		16	max		1	0	1	304	12	0	1	0	12	0	1
260		10	min	-442.995	3	0	1	-223.006	4	0	1	373	4	0	1
261		17	max		1	0	1	304	12	0	1	0	12	0	1
262		17	min	-442.867	3	0	1	-223.154	4	0	1	399	4	0	1
263		18		1309.231	1	0	1	304	12	0	1	0	12	0	1
		10		-442.739	3	0	1	-223.301	4	0	1	424	4	0	1
264		40	min				1							_	
265		19		1309.401	1	0		304	12	0	1	0	12	0	1
266	MC	4	min	-442.612	3	0	1	-223.449	4	0	1	45	4_	0	1
267	<u>M6</u>	1_		3763.968	1_	2.965	2	0	1	0	1	0	4_	0	1
268		_	min	-4559.244	3	119	3	-71.83	4	0	4	0	1_	0	1
269		2		3764.296	1_	2.953	2	0	1	0	1	0	_1_	0	3
270			min	-4558.998	3	128	3	-72.115	4	0	4	016	4	0	2
271		3		3764.625	_1_	2.941	2	0	1	0	_1_	0	_1_	0	3
272			min	-4558.752	3	137	3	-72.4	4	0	4	032	4	001	2
273		4	max	3764.953	<u>1</u>	2.929	2	0	1	0	_1_	0	<u>1</u>	0	3
274			min	-4558.505	3	146	3	-72.685	4	0	4	048	4	002	2
275		5	max	3765.282	1	2.917	2	0	1	0	1	0	1	0	3
276			min	-4558.259	3	155	3	-72.97	4	0	4	064	4	003	2
277		6	max	3765.61	1	2.906	2	0	1	0	1	0	1	0	3
278			min	-4558.013	3	164	3	-73.255	4	0	4	08	4	003	2
279		7	max	3765.938	1	2.894	2	0	1	0	1	0	1	0	3
280			min	-4557.766	3	173	3	-73.539	4	0	4	097	4	004	2
281		8		3766.267	1	2.882	2	0	1	0	1	0	1	0	3
282			min	-4557.52	3	182	3	-73.824	4	0	4	113	4	005	2
283		9		3766.595	1	2.87	2	0	1	0	1	0	1	0	3
284			min	-4557.274	3	191	3	-74.109	4	0	4	129	4	005	2
285		10		3766.924	1	2.858	2	0	1	0	1	0	1	0	3
286		10	min	-4557.027	3	199	3	-74.394	4	0	4	146	4	006	2
287		11		3767.252	1	2.846	2	0	1	0	1	0	1	0	3
288			min		3	208	3	-74.679	4	0	4	162	4	006	2
289		12		3767.581	1	2.834	2	0	1	0	1	0	1	0	3
290		14	min		3	217	3	-74.964	4	0	4	179	4	007	2
291		13		3767.909	<u> </u>	2.822	2	0	1	0	1	0	1	007 0	3
292		13	min		3	226	3	-75.248	4	0	4	195	4	008	2
		11		3768.237				0	1		1	0	1	0	3
293 294		14	min		<u>1</u> 3	2.81 235	3	-75.533	4	0	4	212	4	008	2
		4.5			_										
295		15		3768.566	1	2.799	2	0	1	0	1	0	1	0	3
296		40		-4555.796	3_	244	3	-75.818	4	0	4	229	4	009	2
297		16		3768.894	1_	2.787	2	0	1	0	1	0	1_	0	3
298				-4555.55	3	253	3	-76.103	4	0	4	246	4_	01	2
299		17		3769.223	1_	2.775	2	0	1	0	1	0	_1_	0	3
300			min		3_	262	3	-76.388	4	0	4	263	4_	01	2
301		18		3769.551	1_	2.763	2	0	1	0	1	0	_1_	0	3
302			min		3	271	3	-76.673	4	0	4	28	4	011	2
303		19	max	3769.88	_1_	2.751	2	0	1	0	_1_	0	_1_	0	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

004	Member	Sec		Axial[lb]						Torque[k-ft]					
304	N 4 7	4	min	-4554.811	3	28	3	-76.957	4	0	4_	297	4	011	2
305	<u> </u>	1		1561.693 -1692.079	2	8.115	6	0	1	0	1_1	0	1	.011	2
306		2	min		3	1.904	15	-1.235	<u>5</u> 1	0	<u>4</u> 1	011	1	0	3
307		2		1561.523 -1692.207	2	7.342	6 1E	0		0		0		.009	2
308		2	min		3	1.723	15	693	<u>5</u>	0	<u>4</u> 1	012	1	002	3
309		3	max	1561.353 -1692.335	2	6.57	6 15	0	5	0	4	0	4	.006	3
310		4	min	1561.182	3	1.541		151		0	_ 4 _	012	1	004 .004	_
311		4		-1692.463	2	5.798	6 15	.435	<u>4</u> 1	0	4	0	4		3
		5	min	1561.012	3	1.36				-	_ 4 _	012 0	1	005	2
313		5		-1692.59	3	5.025 1.178	6 15	.977 0	4	0	4	011	4	.002 006	3
315		6		1560.842		4.253	6	1.519	4	0	1	0	1	0	2
316		0		-1692.718	3	.996	15	0	1	0	4	011	4	007	3
317		7	min	1560.671	2	3.48	6	2.061	4	0	1	0	1	007	15
318			min	-1692.846	3	.815	15	0	1	0	4	01	4	007	3
319		8			2	2.708	6	2.603	4	0	_ 4 _	0	1	007	15
320		0	max	-1692.974	3	.564	12	0	1	0	4	009	4	002	3
321		9			2	2.103	2	3.145	4	0	1	0	1	002	15
322		9	max	-1693.101	3		12	3.145	1	0	4	008			
		10	min			.263		3.687		-	_ 4 _	008	1	008	4
323		10	max min	1560.16 -1693.229	3	1.502 105	3	0.007	4	0	4	006	4	002 009	1 <u>5</u>
325		11				.9	2	4.229	4	0	1	0	1	009	15
			max	-1693.357	3	556	3	0	1	0	4	005	4		
326		12	min					4.772	-	0	_ 4 _ 1		1	009	4
		12		1559.819 -1693.485	2	.298	2		4	-		0	<u> </u>	002	15
328		12	min	1559.649	3	-1.008	3	0 5 24 4	1_1	0	<u>4</u> 1	003	5	009	4
329		13			2	275	15	5.314	4	0	<u> </u>	0	1	002	15
330		4.4	min	-1693.613	3	-1.459	3	0	1_4	0	4	0	5	009	4
331		14		1559.479	2	456	15	5.856	4	0	1_	.002	4	002	15
332		4.5		-1693.74	3	-1.927	4	0	1	0	4	0	1	008	4
333		15		1559.308 -1693.868	2	638	15	6.398	4	0	1_4	.004	4	002	15
334		16	min	1559.138	3	-2.699	4 1E	0	_	0	<u>4</u> 1	0		007	4
335		16		-1693.996	3	819 -3.472	<u>15</u>	6.94	<u>4</u> 1	0	4	.007	1	001	15
336		17	min	1558.968				7.482		0	_ 4 _ 1	.01	- -	006	4
337		17		-1694.124	3	-1.001	15	0	<u>4</u> 1	-	4		1	0	15
338		18	min		2	-4.244 -1.182	4 15	8.024	4	0	_ 4 _	.013	4	004 0	15
		10	max	-1694.251		-5.016	4		1	0	4		1	002	4
340		10	min	1558.627	<u>3</u> 2		15	0 566	4	0	_ 4 _	.017			1
341		19		-1694.379	3	-1.364		8.566	1	0			1	0	1
	MO	1		3870.537	<u>ა</u> 1	-5.789	<u>4</u> 1	0	1	0	<u>4</u> 1	0	4	1	1
343	<u>M8</u>			-1492.411	3	0		0	_	0		.009	1	0	1
344		2		3870.708		0	<u>1</u> 1	-216.015	<u>4</u> 1	0	<u>1</u> 1	0	1	0	1
346				-1492.284	<u>1</u> 3	0	1	-216.162	4	0	1	016	4	0	1
		3			_		1		1	0	1		1	0	1
347 348		3		3870.878 -1492.156	<u>1</u> 3	0	1	0 -216.31	4	0	1	041	4	0	1
349		4		3871.048	<u>ა</u> 1	0	1	0	1	0	1	0	1	0	1
350		4		-1492.028	3	0	1	-216.457	4	0	1	066	4	0	1
351		5		3871.219	<u> </u>	0	1	0	1	0	1	0	1	0	1
352		3		-1491.9		0	1			0	1	09	4	0	1
		G			<u>3</u> 1		1	-216.605	4		1	09 0	1		1
353		6		3871.389 -1491.773		0	1	216.752	4	0	1		4	0	1
354		7			3	0	•	-216.753				115	_	0	
355		7		3871.56	1	0	1	0	1_1	0	1	0	1	0	1
356				-1491.645	3_	0	1_	-216.9	4	0	1_	14	4	0	1
357		8		3871.73	1_	0	1	0	1	0	1_	0	1	0	1
358		_	min	-1491.517	3	0	1	-217.048	4	0	1_	165	4	0	1
359		9	max		1_	0	1	0	11	0	1	0	1	0	1
360			min	-1491.389	3	0	1	-217.196	4	0	1_	19	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]						Torque[k-ft]		15 5	LC	_	1
361		10		3872.071	1_	0	1	0	1	0	1	0	1	0	1
362		4.4	min	-1491.261	3	0	1	-217.343	4	0	1_	215	4	0	1
363		11		3872.241	1_	0	1	0	1	0	1	0	1	0	1
364		40		-1491.134	3	0	1	-217.491	4	0	1	24	4	0	1
365		12		3872.411	1_	0	1	0	1_	0	1_	0	1	0	1
366		40		-1491.006	3	0	1	-217.639	4	0	1_	265	4	0	1
367		13		3872.582	1_	0	1	0	1	0	1	0	1	0	1
368		4.4		-1490.878	3	0	1	-217.786	4	0	1_	29	4	0	1
369		14		3872.752	1_	0	1	0	1_	0	1	0	1_	0	1
370		4.5		-1490.75	3	0	1	-217.934	4_	0	1_	315	4	0	1
371		15		3872.922	1_	0	1	0	1	0	1	0	1	0	1
372		10	min	-1490.623	3	0	1	-218.081	4	0	1	34	4	0	1
373		16		3873.093	_1_	0	1	0	_1_	0	1	0	1	0	1
374				-1490.495	3	0	1	-218.229	4	0	1	365	4	0	1
375		17		3873.263	1_	0	1	0	_1_	0	_1_	0	1	0	1
376				-1490.367	3	0	1	-218.377	4_	0	1_	39	4	0	1
377		18		3873.433	_1_	0	1	0	1	0	1	0	1	0	1
378				-1490.239	3	0	1	-218.524	4_	0	1_	415	4	0	1
379		19		3873.604	_1_	0	1_	0	_1_	0	_1_	0	1_	0	1
380				-1490.112	3	0	1	-218.672	4	0	1_	44	4	0	1
381	M10	1	max	1176.816	_1_	2.229	6	046	12	0	_1_	0	1	0	1
382			min	-1401.115	3	.502	15	-71.724	4	0	5	0	3	0	1
383		2		1177.144	1_	2.214	6	046	12	0	1_	0	10	0	15
384				-1400.869	3	.498	15	-72.009	4	0	5	016	4	0	6
385		3	max	1177.473	1	2.199	6	046	12	0	1	0	10	0	15
386			min	-1400.622	3	.494	15	-72.293	4	0	5	032	4	0	6
387		4	max	1177.801	1	2.183	6	046	12	0	1	0	12	0	15
388			min	-1400.376	3	.491	15	-72.578	4	0	5	048	4	001	6
389		5	max	1178.129	1	2.168	6	046	12	0	1	0	12	0	15
390			min	-1400.13	3	.487	15	-72.863	4	0	5	064	4	002	6
391		6	max	1178.458	1	2.153	6	046	12	0	1	0	12	0	15
392			min	-1399.883	3	.484	15	-73.148	4	0	5	08	4	002	6
393		7	max	1178.786	1	2.138	6	046	12	0	1	0	12	0	15
394				-1399.637	3	.48	15	-73.433	4	0	5	096	4	003	6
395		8		1179.115	1	2.122	6	046	12	0	1	0	12	0	15
396			min		3	.477	15	-73.718	4	0	5	113	4	003	6
397		9		1179.443	1	2.107	6	046	12	0	1	0	12	0	15
398				-1399.144	3	.473	15	-74.002	4	0	5	129	4	004	6
399		10		1179.772	1	2.092	6	046	12	0	1	0	12	0	15
400				-1398.898	3	.469	15	-74.287	4	0	5	146	4	004	6
401		11	max		1	2.077	6	046	12	0	1	0	12	001	15
402			min	-1398.652	3	.466	15	-74.572	4	0	5	162	4	005	6
403		12		1180.429	1	2.061	6	046	12	0	1	0	12	001	15
404		12		-1398.405	3	.462	15	-74.857	4	0	5	179	4	005	6
405		13		1180.757	1	2.046	6	046	12	0	1	0	12	001	15
406		13		-1398.159	3	.459	15	-75.142	4	0	5	195	4	006	6
407		14		1181.085	1	2.031	6	046	12	0	1	0	12	001	15
408		17		-1397.913	3	.455	15	-75.427	4	0	5	212	4	006	6
409		15		1181.414	<u> </u>	2.016	6	046	12	0	1	0	12	001	15
410		10		-1397.666	3	.451	15	-75.711	4	0	5	229	4	007	
		16		1181.742		2			<u>4</u> 12	0	<u> </u>	<u>229</u> 0	12		15
411		10			1		6	046 75.006						002	15
412		47		-1397.42	3	.448	15	-75.996	4	0	5	245	4	007	6
413		17		1182.071	1	1.985	6 1 <i>E</i>	046	12	0	1	0	12	002	15
414		40		-1397.174	3	.444	15	-76.281	4	0	5	262	4	007	6
415		18		1182.399	1	1.97	6 1 <i>E</i>	046	12	0	1	0	12	002	15
416		40		-1396.927	3	.441	15	-76.566	4	0	5	279	4	008	6
417		19	max	1182.728	_1_	1.955	6	046	12	0	_1_	0	12	002	15

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
418			min	-1396.681	3	.437	15	-76.851	4	0	5	296	4	008	6
419	M11	1	max	417.956	2	8.051	6	001	12	0	1	0	12	.008	6
420			min	-538.795	3	1.881	15	-1.166	5	0	4	011	4	.002	15
421		2	max	417.786	2	7.278	6	001	12	0	1	0	12	.005	2
422			min	-538.922	3	1.699	15	624	5	0	4	011	4	0	12
423		3	max	417.616	2	6.506	6	.006	14	0	1	0	12	.003	2
424			min	-539.05	3	1.518	15	082	5	0	4	012	4	0	3
425		4	max	417.445	2	5.734	6	.505	4	0	1	0	12	0	2
426			min	-539.178	3	1.336	15	017	1	0	4	012	4	002	3
427		5	max	417.275	2	4.961	6	1.047	4	0	1	0	12	0	15
428			min	-539.306	3	1.154	15	017	1	0	4	011	4	003	3
429		6	max	417.105	2	4.189	6	1.589	4	0	1	0	12	001	15
430			min	-539.433	3	.973	15	017	1	0	4	011	4	005	4
431		7	max	416.934	2	3.416	6	2.131	4	0	1	0	12	002	15
432			min	-539.561	3	.791	15	017	1	0	4	01	4	006	4
433		8	max	416.764	2	2.644	6	2.673	4	0	1	0	12	002	15
434			min	-539.689	3	.61	15	017	1	0	4	009	4	007	4
435		9	max	416.594	2	1.872	6	3.215	4	0	1	0	12	002	15
436			min	-539.817	3	.428	15	017	1	0	4	008	4	008	4
437		10	max	416.423	2	1.099	6	3.758	4	0	1	0	12	002	15
438			min	-539.944	3	.247	15	017	1	0	4	006	4	009	4
439		11	max	416.253	2	.45	2	4.3	4	0	1	0	12	002	15
440			min	-540.072	3	032	3	017	1	0	4	004	4	009	4
441		12	max	416.082	2	117	15	4.842	4	0	1	0	12	002	15
442			min	-540.2	3	483	3	017	1	0	4	003	4	009	4
443		13	max	415.912	2	298	15	5.384	4	0	1	0	12	002	15
444			min	-540.328	3	-1.219	4	017	1	0	4	0	5	009	4
445		14	max	415.742	2	48	15	5.926	4	0	1	.002	4	002	15
446			min	-540.456	3	-1.992	4	017	1	0	4	0	1	008	4
447		15	max	415.571	2	661	15	6.468	4	0	1	.005	4	002	15
448		'	min	-540.583	3	-2.764	4	017	1	Ö	4	0	1	007	4
449		16	max	415.401	2	843	15	7.01	4	0	1	.007	4	001	15
450		1.0	min	-540.711	3	-3.537	4	017	1	0	4	0	1	006	4
451		17	max	415.231	2	-1.024	15	7.552	4	0	1	.011	4	001	15
452			min	-540.839	3	-4.309	4	017	1	0	4	0	1	004	4
453		18	max	415.06	2	-1.206	15	8.095	4	0	1	.014	4	0	15
454			min	-540.967	3	-5.081	4	017	1	0	4	0	1	002	4
455		19	max	414.89	2	-1.388	15	8.637	4	0	1	.017	4	0	1
456			min	-541.094	3	-5.854	4	017	1	0	4	0	1	0	1
457	M12	1		1306.335	1	0	1	6.787	1	0	1	.009	4	0	1
458	10112			-444.911		0	1	-217.362		0	1	0	1	0	1
459		2		1306.505	1	0	1	6.787	1	0	1	0	1	0	1
460		_	min	-444.784	3	0	1	-217.51	4	0	1	016	4	0	1
461		3		1306.676		0	1	6.787	1	0	1	.001	1	0	1
462			min		3	0	1	-217.657	4	0	1	041	4	0	1
463		4		1306.846	1	0	1	6.787	1	0	1	.002	1	0	1
464			min			0	1	-217.805		0	1	066	4	0	1
465		5		1307.016	<u> </u>	0	1	6.787	1	0	1	.003	1	0	1
466			min		3	0	1	-217.952	4	0	1	091	4	0	1
467		6		1307.187	<u> </u>	0	1	6.787	1	0	1	.004	1	0	1
468		U		-444.273	3	0	1	-218.1	4	0	1	116	4	0	1
469		7		1307.357	<u> </u>	0	1	6.787	1	0	1	.005	1	0	1
470			min	-444.145	3	0	1	-218.248		0	1	141	4	0	1
471		8		1307.527	<u>ာ</u> 1	0	1	6.787	1	0	1	.005	_ 4 _	0	1
471		0			3	0	1	-218.395		0	1	166	4	0	1
473		9	min		<u> </u>		1	6.787	1		1	.006	_ 4		1
		9		1307.698		0	1			0				0	1
474			min	-443.889	3	0		-218.543	4	0	1	191	4	0	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
475		10	max	1307.868	_1_	0	1	6.787	1	0	1	.007	_1_	0	1
476			min	-443.762	3	0	1	-218.691	4	0	1	216	4	0	1
477		11	max	1308.038	1	0	1	6.787	1	0	1	.008	1	0	1
478			min	-443.634	3	0	1	-218.838	4	0	1	241	4	0	1
479		12	max	1308.209	1	0	1	6.787	1	0	1	.008	1	0	1
480			min	-443.506	3	0	1	-218.986	4	0	1	266	4	0	1
481		13	max	1308.379	1	0	1	6.787	1	0	1	.009	1	0	1
482			min	-443.378	3	0	1	-219.134	4	0	1	292	4	0	1
483		14	max	1308.549	1	0	1	6.787	1	0	1	.01	1	0	1
484			min	-443.25	3	0	1	-219.281	4	0	1	317	4	0	1
485		15	max	1308.72	1	0	1	6.787	1	0	1	.011	1	0	1
486			min	-443.123	3	0	1	-219.429	4	0	1	342	4	0	1
487		16	max	1308.89	1	0	1	6.787	1	0	1	.012	1	0	1
488			min	-442.995	3	0	1	-219.576	4	0	1	367	4	0	1
489		17	max	1309.06	1	0	1	6.787	1	0	1	.012	1	0	1
490			min	-442.867	3	0	1	-219.724	4	0	1	392	4	0	1
491		18	max		1	0	1	6.787	1	0	1	.013	1	0	1
492		''	min	-442.739	3	0	1	-219.872	4	0	1	418	4	0	1
493		19		1309.401	1	0	1	6.787	1	0	1	.014	1	0	1
494		13	min	-442.612	3	0	1	-220.019	4	0	1	443	4	0	1
495	M1	1	max		1	786.619	3	51.948	5	0	1	.168	1	0	3
496	171 1	<u> </u>	min	-6.912	5	-533.625	1	-70.867	1	0	3	055	5	016	2
497		2	max	125.949	1	785.582	3	53.189	5	0	1	.131	1	.267	1
498			min	-6.739	5	-535.009	1	-70.867	1	0	3	027	5	414	3
499		3	max	321.81	3	608.177	1	-3.447	12	0	3	.094	1	.536	1
500		3	min	-195.055	2	-583.208	3	-70.029	1	0	1	0	15	812	3
		4		322.088	3	606.793	1	-3.447	12		3	.057	1 <u>1</u>	.215	1
501 502		4	max min	-194.685	2	-584.246	3	-70.029	1	0	1	008	5	504	3
503		5	max	322.367	3	605.409	1	-3.447	12	0	3	.02	<u> </u>	004	15
504		5	min	-194.314	2	-585.283	3	-70.029	1	0	1	015	5	195	3
505		6	max	322.645	3	604.026	1	-3.447	12	0	3	0	12	.114	3
506		-	min	-193.943	2	-586.321	3	-70.029	1	0	1	025	4	435	2
507		7	max	322.923	3	602.642	1	-3.447	12	0	3	003	12	.423	3
508		- '	min	-193.572	2	-587.359	3	-70.029	1	0	1	054	1	742	1
509		8	max	323.201	3	601.259	1	-3.447	12	0	3	004	12	.734	3
510		-	min	-193.202	2	-588.397	3	-70.029	1	0	1	004	1	-1.06	1
511		9	max	330.849	3	52.512	2	36.868	5	0	9	.055	1	.855	3
512		9	min	-143.236	2	.417	15	-104.743	1	0	3	108	5	-1.208	1
513		10	max	331.127	3	51.128	2	38.109	5	0	9	0	10	.835	3
514		10	min	-142.865	2	0	5	-104.743	1	0	3	088	4	-1.222	1
		11					_				_		_		
515		11		331.405	3	49.745	2	39.351	5	0	9	003	<u>12</u>	.814	3
516		12	min		2	-1.74	3	-104.743	5	0	2	079 .09	<u>4</u> 1	-1.248 711	2
517		12	max		3	393.951		117.851	1	0			1	.711	2
518 519		13	min	-92.499 339.253	3	-684.201 392.913	3	-68.52 119.092	5	0	2	16 .054	<u>5</u> 1	-1.106 .503	3
		13							1	0					1
520		1.1	min		2	-685.585	2	-68.52		0	3	097	5	745	_
521		14		339.531	3_	391.875	3	120.334	5	0	2	.018	1	.296	3
522		4.5	min	-91.757	2	-686.969	2	-68.52	1	_	3	034	<u>5</u>	398	_
523		15		339.81	3	390.837	3	121.575	5	0	2	.03	5	.089	3
524		10	min	-91.386	2	-688.352	2	-68.52	1	0	3	018	1	049	1
525		16	max		3	389.8	3	122.817	5	0	2	.094	5	.344	2
526		17	min	-91.016	2	-689.736	2	-68.52	1	0	3	054	1_	117	3
527		17	max		3_	388.762	3	124.058	5	0	2	.159	5	.708	2
528		40	min		2	-691.12	2	-68.52	1	0	3	091	1_	322	3
529		18	max		_5_	697.729	2	-3.407	12	0	3	.136	5	.356	2
530		40		-126.155		-324.863	3	-97.853	4	0	2	13	1	159	3
531		19	max	14.738	<u>5</u>	696.345	2	-3.407	12	0	3	.093	5	.012	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC				LC	Torque[k-ft]	LC		LC	z-z Mome	LC
532			min	-125.785	1	-325.901	3	-96.611	4	0	2	169	1_	013	1
533	M5	1	max		1	2623.428	3	78.828	5	0	1	0	<u>1</u>	.032	2
534			min	7.625	12	-1815.062	1	0	1	0	4	12	4	001	3
535		2	max	273.967	1	2622.39	3	80.069	5	0	1	0	_1_	.988	1
536			min	7.81	12	-1816.445	1	0	1	0	4	079	4	-1.385	3
537		3	max	1029.525	3	1827.483	1	13.865	4	0	4	0	1_	1.903	1
538			min	-675.268	2	-1843.481	3	0	1	0	1	037	4	-2.715	3
539		4	max	1029.803	3	1826.099	1	15.107	4	0	4	0	1_	.939	1
540			min	-674.897	2	-1844.518	3	0	1	0	1	03	4	-1.742	3
541		5	max	1030.081	3	1824.716	1	16.348	4	0	4	0	1	.019	9
542			min	-674.526	2	-1845.556	3	0	1	0	1	021	4	769	3
543		6	max	1030.359	3	1823.332	1	17.59	4	0	4	0	1	.205	3
544			min	-674.156	2	-1846.594	3	0	1	0	1	013	5	-1.016	2
545		7	max	1030.638	3	1821.948	1	18.831	4	0	4	0	1	1.18	3
546			min	-673.785	2	-1847.631	3	0	1	0	1	004	5	-1.948	1
547		8	max	1030.916	3	1820.565	1	20.072	4	0	4	.007	4	2.155	3
548			min	-673.414	2	-1848.669	3	0	1	0	1	0	1	-2.909	1
549		9	max	1042.112	3	176.099	2	118.063	4	0	1	0	1	2.478	3
550			min	-569.26	2	.417	15	0	1	0	1	142	4	-3.296	1
551		10	max	1042.39	3	174.715	2	119.304	4	0	1	0	1	2.404	3
552			min	-568.889	2	0	15	0	1	0	1	079	5	-3.344	1
553		11	max	1042.668	3	173.332	2	120.546	4	0	1	0	1	2.329	3
554			min	-568.518	2	-1.628	6	0	1	0	1	017	5	-3.427	2
555		12	max		3	1223.629	3	160.184	4	0	1	0	1	2.045	3
556			min	-464.423	2	-2090.378	2	0	1	0	4	221	4	-3.069	2
557		13		1054.298	3	1222.591	3	161.425	4	0	1	0	1	1.4	3
558			min	-464.052	2	-2091.761	2	0	1	0	4	136	4	-1.966	1
559		14		1054.576	3	1221.554	3	162.667	4	0	1	0	1	.755	3
560			min	-463.681	2	-2093.145	2	0	1	0	4	051	4	907	1
561		15		1054.854	3	1220.516	3	163.908	4	0	1	.035	4	.244	2
562		1.0	min	-463.311	2	-2094.529	2	0	1	Ö	4	0	1	003	13
563		16		1055.132	3	1219.478	3	165.15	4	0	1	.122	4	1.349	2
564		1.0	min	-462.94	2	-2095.912	2	0	1	0	4	0	1	533	3
565		17	max		3	1218.441	3	166.391	4	0	1	.21	4	2.455	2
566			min	-462.569	2	-2097.296	2	0	1	0	4	0	1	-1.176	3
567		18	max	-8.142	12	2355.396	2	0	1	0	4	.21	4	1.266	2
568		1	min	-273.553	1	-1118.032	3	-37.215	5	0	1	0	1	615	3
569		19	max	-7.956	12	2354.012	2	0	1	0	4	.191	4	.026	1
570		'	min	-273.182	1	-1119.07	3	-35.974	5	0	1	0	1	025	3
571	M9	1	max		1	786.619	3	73.984	4	0	3	008	12	0	3
572	1110		min	4 - 4	12			3.496	12	0	4	168	1	016	2
573		2	max		1	785.582	3	75.226	4	0	3	006	12	.267	1
574			min	4.926	12	-535.009		3.496	12	0	4	131	1	414	3
575		3		321.81	3	608.177	1	70.029	1	0	1	005	12	.536	1
576			min		2	-583.208	3	-8.287	5	0	3	094	1	812	3
577		4		322.088	3	606.793	1	70.029	1	0	1	003	12	.215	1
578			min		2	-584.246	3	-7.045	5	0	3	057	1	504	3
579		5		322.367	3	605.409	1	70.029	1	0	1	001	12	004	15
580				-194.314	2	-585.283	3	-5.804	5	0	3	021	4	195	3
581		6		322.645	3	604.026	1	70.029	1	0	1	.017	1	.114	3
582		U		-193.943	2	-586.321	3	-4.562	5	0	3	02	5	435	2
583		7		322.923	3	602.642	1	70.029	1	0	1	.054	1	.423	3
584			min		2	-587.359	3	-3.321	5	0	3	022	5	742	1
585		8		323.201		601.259	1	70.029	1	0	1	.022	<u> </u>	.734	3
		0			2		3	-2.08	5	0	3	023	5		1
586 587		9	min	330.849	3	<u>-588.397</u> 52.512	2	104.743	1	0	3	023	<u>5</u> 12	-1.06 .855	3
		9													
588			min	-143.236	2	.422	15	4.949	12	0	9	125	4	-1.208	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	331.127	3	51.128	2	104.743	1	0	3	0	1	.835	3
590			min	-142.865	2	.005	15	4.949	12	0	9	088	4	-1.222	1
591		11	max	331.405	3	49.745	2	104.743	1	0	3	.056	1	.814	3
592			min	-142.494	2	-1.701	6	4.949	12	0	9	062	5	-1.248	2
593		12	max	338.975	3	393.951	3	140.056	4	0	3	004	12	.711	3
594			min	-92.499	2	-684.201	2	3.102	12	0	2	189	4	-1.106	2
595		13	max	339.253	3	392.913	3	141.297	4	0	3	002	12	.503	3
596			min	-92.128	2	-685.585	2	3.102	12	0	2	114	4	745	1
597		14	max	339.531	3	391.875	3	142.539	4	0	3	0	12	.296	3
598			min	-91.757	2	-686.969	2	3.102	12	0	2	04	4	398	1
599		15	max	339.81	3	390.837	3	143.78	4	0	3	.036	4	.089	3
600			min	-91.386	2	-688.352	2	3.102	12	0	2	0	12	049	1
601		16	max	340.088	3	389.8	3	145.022	4	0	3	.112	4	.344	2
602			min	-91.016	2	-689.736	2	3.102	12	0	2	.002	12	117	3
603		17	max	340.366	3	388.762	3	146.263	4	0	3	.189	4	.708	2
604			min	-90.645	2	-691.12	2	3.102	12	0	2	.004	12	322	3
605		18	max	-4.76	12	697.729	2	75.048	1	0	2	.177	4	.356	2
606			min	-126.155	1	-324.863	3	-74.512	5	0	3	.006	12	159	3
607		19	max	-4.575	12	696.345	2	75.048	1	0	2	.169	1	.012	3
608			min	-125.785	1	-325.901	3	-73.27	5	0	3	.008	12	013	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	Ō	1	.129	2	.006	3	1.039e-2	2	NC	1	NC	1
2			min	428	4	03	3	003	2	-2.311e-3	3	NC	1	NC	1
3		2	max	0	1	.263	3	.024	1	1.184e-2	2	NC	5	NC	2
4			min	428	4	052	1	01	5	-2.377e-3	3	757.593	3	9738.951	1
5		3	max	0	1	.5	3	.056	1	1.329e-2	2	NC	5	NC	2
6			min	428	4	191	1	013	5	-2.443e-3	3	418.857	3	4025.417	1
7		4	max	0	1	.643	3	.084	1	1.475e-2	2	NC	5	NC	3
8			min	428	4	266	1	009	5	-2.509e-3	3	329.719	3	2678.077	1
9		5	max	0	1	.675	3	.098	1	1.62e-2	2	NC	5	NC	3
10			min	428	4	267	1	002	5	-2.575e-3	3	314.743	3	2290.768	1
11		6	max	0	1	.598	3	.094	1	1.765e-2	2	NC	5	NC	3
12			min	428	4	196	1	.003	10	-2.64e-3	3	353.132	3	2383.998	
13		7	max	0	1	.436	3	.073	1	1.911e-2	2	NC	5	NC	3
14			min	428	4	068	1	0	10	-2.706e-3	3	476.511	3	3062.173	1
15		8	max	0	1	.229	3	.042	1	2.056e-2	2	NC	2	NC	2
16			min	428	4	.002	15	003	10	-2.772e-3	3	854.756	3	5406.859	1
17		9	max	0	1	.24	2	.018	3	2.201e-2	2	NC	4	NC	1
18			min	428	4	.005	15	006	10	-2.838e-3	3	2011.508	2	NC	1
19		10	max	0	1	.295	2	.018	3	2.347e-2	2	NC	3	NC	1
20			min	428	4	042	3	011	2	-2.904e-3	3	1337.132	2	NC	1
21		11	max	0	12	.24	2	.018	3	2.201e-2	2	NC	4	NC	1
22			min	428	4	.005	15	008	5	-2.838e-3	3	2011.508	2	NC	1
23		12	max	0	12	.229	3	.042	1	2.056e-2	2	NC	2	NC	2
24			min	428	4	.002	15	008	5	-2.772e-3	3	854.756	3	5406.859	1
25		13	max	0	12	.436	3	.073	1	1.911e-2	2	NC	5	NC	3
26			min	428	4	068	1	003	5	-2.706e-3	3	476.511	3	3062.173	1
27		14	max	0	12	.598	3	.094	1	1.765e-2	2	NC	5	NC	3
28			min	428	4	196	1	.003	15	-2.64e-3	3	353.132	3	2383.998	1
29		15	max	0	12	.675	3	.098	1	1.62e-2	2	NC	5	NC	3
30			min	428	4	267	1	.004	10	-2.575e-3	3	314.743	3	2290.768	1
31		16	max	0	12	.643	3	.084	1	1.475e-2	2	NC	5	NC	3
32			min	428	4	266	1	.004	10	-2.509e-3	3	329.719	3	2678.077	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					
33		17	max	0	12	5	3	.056	1	1.329e-2	2	NC	5	NC	2
34			min	428	4	<u>191</u>	1	.002	10	-2.443e-3	3	418.857	3_	4025.417	1
35		18	max	0	12	.263	3	.024	1	1.184e-2	2	NC	5	NC	2
36		40	min	428	4	052	1	0	10		3	757.593	3	9738.951	1
37		19	max	0	12	.129	2	.006	3	1.039e-2	2	NC NC	1_	NC NC	1
38	N/4 /	1	min	428	1	03	3	003	2	-2.311e-3	3	NC NC	1	NC NC	1
39	M14	1	max	0	4	.254	3	.005	2	6.11e-3 -4.556e-3	<u>1</u> 3	NC NC	1		1
40		2	min	345 0	1	398 .558	3	002 .016	1	7.286e-3	<u> </u>	NC NC	5	NC NC	1
42			max min	345	4	71	1	015	5	-5.507e-3	3	710.064	1	NC NC	1
43		3	max	345 0	1	.816	3	015 .045	1	8.463e-3	<u>3</u> 1	NC	5	NC NC	2
44		3	min	345	4	982	1	018	5	-6.458e-3	3	380.182	1	5081.625	
45		4	max	<u>545</u>	1	.998	3	.071	1	9.639e-3	1	NC	15	NC	3
46		_	min	345	4	-1.183	1	013	5	-7.41e-3	3	282.74	1	3156.03	1
47		5	max	<u>.545</u>	1	1.089	3	.086	1	1.081e-2	1	NC	15	NC	3
48		T .	min	345	4	-1.299	1	002	5	-8.361e-3	3	246.247	1	2599.434	
49		6	max	0	1	1.088	3	.085	1	1.199e-2	1	NC	15	NC	3
50			min	345	4	-1.33	1	.003	_	-9.313e-3	3	238.194	1	2640.352	
51		7	max	0	1	1.012	3	.068	1	1.317e-2	1	NC	15	NC	2
52			min	345	4	-1.287	1	0	10	-1.026e-2	3	249.591	1	3332.058	
53		8	max	0	1	.891	3	.039	1	1.434e-2	1	NC	15	NC	2
54			min	345	4	-1.198	1	002	10	-1.122e-2	3	277.314	1	5790.048	1
55		9	max	0	1	.771	3	.021	4	1.552e-2	1	NC	15	NC	1
56			min	345	4	-1.103	1	005	10	-1.217e-2	3	314.544	1	NC	1
57		10	max	0	1	.715	3	.016	3	1.67e-2	1	NC	5	NC	1
58			min	345	4	-1.057	1	01	2	-1.312e-2	3	336.591	1	NC	1
59		11	max	0	12	.771	3	.016	3	1.552e-2	_1_	NC	<u>15</u>	NC	1
60			min	345	4	<u>-1.103</u>	1	01 <u>5</u>	5	-1.217e-2	3	314.544	1_	NC	1
61		12	max	0	12	.891	3	.039	1	1.434e-2	_1_	NC	15	NC	2
62			min	345	4	-1.198	1	018	5	-1.122e-2	3	277.314	_1_	5790.048	
63		13	max	0	12	1.012	3	.068	1	1.317e-2	1_	NC	<u>15</u>	NC	2
64			min	<u>345</u>	4	-1.287	1	011	5	-1.026e-2	3	249.591	1_	3332.058	
65		14	max	0	12	1.088	3	.085	1	1.199e-2	1_	NC	<u>15</u>	NC 2010 050	3
66		4.5	min	345	4	-1.33	1	0	5	-9.313e-3	3	238.194	1_	2640.352	1
67		15	max	0	12	1.089	3	.086	1	1.081e-2	1_	NC 040.047	<u>15</u>	NC OFFICE 424	3
68		4.0	min	345	4	-1.299	1	.004		-8.361e-3	3	246.247	1_	2599.434	
69		16	max	0	12	.998	3	.071	1	9.639e-3	<u>1</u>	NC 282.74	<u>15</u>	NC 24F6 02	3
70		17	min	<u>345</u>	12	<u>-1.183</u>	1	.003	10		_	NC	<u>1</u> 5	3156.03	2
71 72		17	max min	0 345	4	.816 982	3	.045 .001	10	8.463e-3 -6.458e-3	3	380.182	<u> </u>	NC 5081.625	
73		18	max	- <u>345</u> 0	12	.558	3	.021				NC	5		1
74		10	min	345	4	71	1	0	10	-5.507e-3		710.064	1	NC	1
75		19		<u>.545</u>	12	.254	3	.005	3	6.11e-3	1	NC	1	NC	1
76		10	min	345	4	398	1	002	2	-4.556e-3	3	NC	1	NC	1
77	M15	1	max	0	12	.26	3	.005	3	3.876e-3	3	NC	1	NC	1
78	IVIIO	•	min	293	4	397	1	002	2	-6.264e-3	2	NC	1	NC	1
79		2	max	0	12	.463	3	.016	1	4.686e-3	3	NC	5	NC	1
80		_	min	293	4	769	2	023	5	-7.47e-3	2	596.647	2	9124.15	5
81		3	max	0	12	.639	3	.045	1	5.495e-3	3	NC	5	NC	2
82			min	293	4	-1.088	2	029	5	-8.675e-3	2	321.081	2	5065.253	
83		4	max	0	12	.773	3	.072	1	6.305e-3	3	NC	15	NC	3
84			min	293	4	-1.319	2	021	5	-9.881e-3	2	240.862	2	3147.375	
85		5	max	0	12	.853	3	.087	1	7.114e-3	3	NC	15	NC	3
86			min	293	4	-1.442	2	006	5	-1.109e-2	2	212.542	2	2592.307	1
87		6	max	0	12	.88	3	.085	1	7.923e-3	3	NC	15	NC	3
88			min	293	4	-1.456	2	.003	10		2	209.559	2	2632.015	
89		7	max	0	12	.861	3	.068	1	8.733e-3	3	NC	15	NC	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

91		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
93	90			min	293	4	-1.381	2	.001	10 -1.35e-2	2	225.674	2		
94			8												
95															4
95			9		-										
96			10												
98			10												
98			11												
12															
100			12												
101			12			_									
102			13												2
103			10												
104			14												3
105					-										1
106			15												3
107						4									1
108			16			1									3
109					293	4					2				
110			17			1		3			3	NC	5		2
112				min	293	4							2		1
113	111		18	max	0	1	.463	3	.029	4 4.686e-3	3	NC	5	NC	1
114 min 293 4 397 1 002 2 -6.264e-3 2 NC 1 NC 1 115 M16 1 max 0 12 .119 1 .004 3 6.864e-3 3 NC 1 NC 1 116 min 133 4 087 3 002 2 -9.152e-3 1 NC 1 NC 1 117 2 max 0 12 .016 3 .024 1 7.974e-3 3 NC 5 NC 2 118 min 133 4 129 2 -017 5 -1.032e-2 1 919.966 2 9783.22 1 119 3 max 0 12 .095 3 .056 1 9.084e-3 3 NC 5 NC 2 120 min 133 4 32	112			min	293	4	769	2	0	10 -7.47e-3	2	596.647	2	7527.385	4
115 M16 1 max 0 12 .119 1 .004 3 6.864e-3 3 NC 1 NC 1 116 min 133 4 087 3 002 2 -9.152e-3 1 NC 1 NC 1 117 2 max 0 12 .016 3 .024 1 7.974e-3 3 NC 5 NC 2 118 min 133 4 129 2 017 5 -1.032e-2 1 919.966 2 9783.22 1 119 3 max 0 12 .095 3 .056 1 9.084e-3 3 NC 5 NC 2 120 min 133 4 32 2 022 5 -1.149e-2 3 NC 5 NC 3 122 min 133 4 43	113		19	max	0	1	.26	3	.005	3 3.876e-3	3	NC	1	NC	1
116 min 133 4 087 3 002 2 -9.152e-3 1 NC 1 NC 1 117 2 max 0 12 .016 3 .024 1 7.974e-3 3 NC 5 NC 2 118 min 133 4 129 2 017 5 -1.032e-2 1 919.966 2 9783.22 1 119 3 max 0 12 .095 3 .056 1 9.084e-3 3 NC 5 NC 2 120 min 133 4 32 2 022 5 -1.149e-2 1 512.556 2 4029.537 1 121 4 max 0 12 .136 3 .084 1 1.019e-2 3 NC 5 NC 3 122 min 133 4 441				min	293	_		1					1		1
117 2 max 0 12 .016 3 .024 1 7.974e-3 3 NC 5 NC 2 118 min 133 4 129 2 017 5 -1.032e-2 1 919.966 2 9783.22 1 119 3 max 0 12 .095 3 .056 1 9.084e-3 3 NC 5 NC 2 120 min 133 4 32 2 022 5 -1.149e-2 1 512.556 2 4029.537 1 121 4 max 0 12 .136 3 .084 1 1.019e-2 3 NC 5 NC 3 122 min 133 4 43 2 017 5 -1.266e-2 1 409.329 2 2674.737 1 123 5 max 0 12		M16	1	max		12			.004		3		_1_		1
118 min 133 4 129 2 017 5 -1.032e-2 1 919.966 2 9783.22 1 119 3 max 0 12 .095 3 .056 1 9.084e-3 3 NC 5 NC 2 120 min 133 4 32 2 022 5 -1.149e-2 1 512.556 2 4029.537 1 121 4 max 0 12 .136 3 .084 1 1.019e-2 3 NC 5 NC 3 122 min 133 4 43 2 017 5 -1.266e-2 1 409.329 2 2674.737 1 123 5 max 0 12 .132 3 .098 1 1.13e-2 3 NC 5 NC 3 124 min 133 4 441				min	133	_					1				1
119 3 max 0 12 .095 3 .056 1 9.084e-3 3 NC 5 NC 2 120 min 133 4 32 2 022 5 -1.149e-2 1 512.556 2 4029.537 1 121 4 max 0 12 .136 3 .084 1 1.019e-2 3 NC 5 NC 3 122 min 133 4 43 2 017 5 -1.266e-2 1 409.329 2 2674.737 1 123 5 max 0 12 .132 3 .098 1 1.13e-2 3 NC 5 NC 3 124 min 133 4 441 2 007 5 -1.383e-2 1 400.841 2 2282.764 1 125 6 max 0 12 .084 3 .095			2		_										2
120 min 133 4 32 2 022 5 -1.149e-2 1 512.556 2 4029.537 1 121 4 max 0 12 .136 3 .084 1 1.019e-2 3 NC 5 NC 3 122 min 133 4 43 2 017 5 -1.266e-2 1 409.329 2 2674.737 1 123 5 max 0 12 .132 3 .098 1 1.13e-2 3 NC 5 NC 3 124 min 133 4 441 2 007 5 -1.383e-2 1 400.841 2 2282.764 1 125 6 max 0 12 .084 3 .095 1 1.241e-2 3 NC 5 NC 3 126 min 133 4 35				min							•				1
121 4 max 0 12 .136 3 .084 1 1.019e-2 3 NC 5 NC 3 122 min 133 4 43 2 017 5 -1.266e-2 1 409.329 2 2674.737 1 123 5 max 0 12 .132 3 .098 1 1.13e-2 3 NC 5 NC 3 124 min 133 4 441 2 007 5 -1.383e-2 1 400.841 2 2282.764 1 125 6 max 0 12 .084 3 .095 1 1.241e-2 3 NC 5 NC 3 126 min 133 4 358 2 .003 15 -1.5e-2 1 472.007 2 2368.339 1 127 7 max 0 12 .003 12 .074 1 1.352e-2 3 NC 5 NC			3												2
122 min 133 4 43 2 017 5 -1.266e-2 1 409.329 2 2674.737 1 123 5 max 0 12 .132 3 .098 1 1.13e-2 3 NC 5 NC 3 124 min 133 4 441 2 007 5 -1.383e-2 1 400.841 2 2282.764 1 125 6 max 0 12 .084 3 .095 1 1.241e-2 3 NC 5 NC 3 126 min 133 4 358 2 .003 15 -1.5e-2 1 472.007 2 2368.339 1 127 7 max 0 12 .003 12 .074 1 1.352e-2 3 NC 5 NC 3 128 min 133 4 2<															
123 5 max 0 12 .132 3 .098 1 1.13e-2 3 NC 5 NC 3 124 min 133 4 441 2 007 5 -1.383e-2 1 400.841 2 2282.764 1 125 6 max 0 12 .084 3 .095 1 1.241e-2 3 NC 5 NC 3 126 min 133 4 358 2 .003 15 -1.5e-2 1 472.007 2 2368.339 1 127 7 max 0 12 .003 12 .074 1 1.352e-2 3 NC 5 NC 3 128 min 133 4 2 2 .002 10 -1.617e-2 1 710.362 2 3024.857 1 129 8 max 0 12			4		-					1 1.019e-2					-
124 min 133 4 441 2 007 5 -1.383e-2 1 400.841 2 2282.764 1 125 6 max 0 12 .084 3 .095 1 1.241e-2 3 NC 5 NC 3 126 min 133 4 358 2 .003 15 -1.5e-2 1 472.007 2 2368.339 1 127 7 max 0 12 .003 12 .074 1 1.352e-2 3 NC 5 NC 3 128 min 133 4 2 2 .002 10 -1.617e-2 1 710.362 2 3024.857 1 129 8 max 0 12 .03 1 .043 1 1.463e-2 3 NC 3 NC 2 130 min 133 4 095			-												
125 6 max 0 12 .084 3 .095 1 1.241e-2 3 NC 5 NC 3 126 min 133 4 358 2 .003 15 -1.5e-2 1 472.007 2 2368.339 1 127 7 max 0 12 .003 12 .074 1 1.352e-2 3 NC 5 NC 3 128 min 133 4 2 2 .002 10 -1.617e-2 1 710.362 2 3024.857 1 129 8 max 0 12 .03 1 .043 1 1.463e-2 3 NC 3 NC 2 130 min 133 4 095 3 001 10 -1.734e-2 1 1865.829 2 5260.903 1 131 9 max 0 12 .191 1 .019 4 1.574e-2 3 NC 4 NC			5		-										
126 min 133 4 358 2 .003 15 -1.5e-2 1 472.007 2 2368.339 1 127 7 max 0 12 .003 12 .074 1 1.352e-2 3 NC 5 NC 3 128 min 133 4 2 2 .002 10 -1.617e-2 1 710.362 2 3024.857 1 129 8 max 0 12 .03 1 .043 1 1.463e-2 3 NC 3 NC 2 130 min 133 4 095 3 001 10 -1.734e-2 1 1865.829 2 5260.903 1 131 9 max 0 12 .191 1 .019 4 1.574e-2 3 NC 4 NC 1 132 min 133 4 1			6			_					•				
127 7 max 0 12 .003 12 .074 1 1.352e-2 3 NC 5 NC 3 128 min 133 4 2 2 .002 10 -1.617e-2 1 710.362 2 3024.857 1 129 8 max 0 12 .03 1 .043 1 1.463e-2 3 NC 3 NC 2 130 min 133 4 095 3 001 10 -1.734e-2 1 1865.829 2 5260.903 1 131 9 max 0 12 .191 1 .019 4 1.574e-2 3 NC 4 NC 1 132 min 133 4 18 3 004 10 -1.85e-2 1 2386.258 3 NC 1 133 10 max 0 1			В												
128 min 133 4 2 2 .002 10 -1.617e-2 1 710.362 2 3024.857 1 129 8 max 0 12 .03 1 .043 1 1.463e-2 3 NC 3 NC 2 130 min 133 4 095 3 001 10 -1.734e-2 1 1865.829 2 5260.903 1 131 9 max 0 12 .191 1 .019 4 1.574e-2 3 NC 4 NC 1 132 min 133 4 18 3 004 10 -1.85e-2 1 2386.258 3 NC 1 133 10 max 0 1 .263 1 .013 3 1.685e-2 3 NC 5 NC 1			7												
129 8 max 0 12 .03 1 .043 1 1.463e-2 3 NC 3 NC 2 130 min 133 4 095 3 001 10 -1.734e-2 1 1865.829 2 5260.903 1 131 9 max 0 12 .191 1 .019 4 1.574e-2 3 NC 4 NC 1 132 min 133 4 18 3 004 10 -1.85e-2 1 2386.258 3 NC 1 133 10 max 0 1 .263 1 .013 3 1.685e-2 3 NC 5 NC 1															1
130 min 133 4 095 3 001 10 -1.734e-2 1 1865.829 2 5260.903 1 131 9 max 0 12 .191 1 .019 4 1.574e-2 3 NC 4 NC 1 132 min 133 4 18 3 004 10 -1.85e-2 1 2386.258 3 NC 1 133 10 max 0 1 .263 1 .013 3 1.685e-2 3 NC 5 NC 1			Ω								•				2
131 9 max 0 12 .191 1 .019 4 1.574e-2 3 NC 4 NC 1 132 min 133 4 18 3 004 10 -1.85e-2 1 2386.258 3 NC 1 133 10 max 0 1 .263 1 .013 3 1.685e-2 3 NC 5 NC 1			0						- 001	10 -1 7346-2					
132 min 133 4 18 3 004 10 -1.85e-2 1 2386.258 3 NC 1 133 10 max 0 1 .263 1 .013 3 1.685e-2 3 NC 5 NC 1			g												
133 10 max 0 1 .263 1 .013 3 1.685e-2 3 NC 5 NC 1															1
			10		_										1
					-			_							1
135 11 max 0 1 .191 1 .013 3 1.574e-2 3 NC 4 NC 1			11								3		4		1
					-	4		3					3		1
			12								3				2
138 min133 4095 3015 5 -1.734e-2 1 1865.829 2 5260.903 1					-	4					1				
			13			1					3		5		3
140 min133 42 2007 5 -1.617e-2 1 710.362 2 3024.857 1						4									1
			14								_3				3
			15		_										3
144 min133 4441 2 .005 10 -1.383e-2 1 400.841 2 2282.764 1					-	4									
			16			1		3			3				3
					133	4					1	409.329	2	2674.737	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			LC
147		17	max	0	1	.095	3	.056	1	9.084e-3	3	NC	5	NC	2
148			min	133	4	32	2	.003	10	-1.149e-2	1	512.556	2	4029.537	1
149		18	max	0	1	.016	3	.025	4	7.974e-3	3	NC	5	NC	2
150			min	133	4	129	2	0	10	-1.032e-2	1	919.966	2	8677.498	4
151		19	max	0	1	.119	1	.004	3	6.864e-3	3	NC	1	NC	1
152			min	133	4	087	3	002	2	-9.152e-3	1	NC	1	NC	1
153	M2	1	max	.005	1	.004	2	.005	1	1.148e-3	5	NC	1	NC	2
154	1712		min	006	3	007	3	406	4	-1.376e-4	1	NC	1	117.787	4
155		2	max	.005	1	.003	2	.005	1	1.222e-3	5	NC	1	NC	2
156			min	006	3	007	3	373	4	-1.275e-4	1	NC	1	128.34	4
		2			1		2	.005	1		•	NC NC	1	NC	1
157		3	max	.005		.003				1.296e-3	5				
158		-	min	006	3	007	3	34	4	-1.174e-4	<u>1</u>	NC NC	1_	140.887	4
159		4	max	.005	1	.002	2	.004	1	1.37e-3	_5_	NC	1_	NC	1
160			min	005	3	007	3	307	4	-1.073e-4	1_	NC	1_	155.953	4
161		5	max	.004	1	.002	2	.004	1	1.444e-3	5_	NC	_1_	NC	1
162			min	005	3	006	3	275	4	-9.721e-5	1_	NC	1_	174.246	4
163		6	max	.004	1	.001	2	.003	1	1.518e-3	5_	NC	<u>1</u>	NC	1
164			min	005	3	006	3	243	4	-8.713e-5	1	NC	1	196.755	4
165		7	max	.004	1	.001	2	.003	1	1.592e-3	5	NC	1	NC	1
166			min	004	3	006	3	213	4	-7.704e-5	1	NC	1	224.881	4
167		8	max	.003	1	0	2	.002	1	1.667e-3	4	NC	1	NC	1
168			min	004	3	005	3	184	4	-6.696e-5	1	NC	1	260.674	4
169		9	max	.003	1	0	2	.002	1	1.745e-3	4	NC	1	NC	1
170			min	004	3	005	3	156	4	-5.687e-5	1	NC	1	307.224	4
171		10	max	.003	1	0	2	.002	1	1.823e-3	4	NC	1	NC	1
172		10	min	003	3	005	3	13	4	-4.679e-5	1	NC	1	369.374	4
		11					15					NC	_	NC	
173		11	max	.002	1	0		.001	1	1.9e-3	4		1_		1
174		40	min	003	3	004	3	105	4	-3.671e-5	1_	NC NC	1_	455.069	4
175		12	max	.002	1	0	15	.001	1	1.978e-3	4_	NC		NC .	1
176		10	min	003	3	004	3	083	4	-2.662e-5	1_	NC	1_	578.1	4
177		13	max	.002	1	0	15	0	1	2.056e-3	4_	NC	_1_	NC	1
178			min	002	3	003	3	063	4	-1.654e-5	1_	NC	1_	764.182	4
179		14	max	.002	1	0	15	0	1	2.133e-3	_4_	NC	_1_	NC	1
180			min	002	3	003	3	045	4	-6.452e-6	1	NC	1	1065.927	4
181		15	max	.001	1	0	15	0	1	2.211e-3	4	NC	1_	NC	1
182			min	001	3	002	3	03	4	-3.287e-7	3	NC	1	1605.59	4
183		16	max	0	1	0	15	0	1	2.289e-3	4	NC	1	NC	1
184			min	001	3	002	3	018	4	3.039e-7	12	NC	1	2725.05	4
185		17	max	0	1	0	15	0	1	2.367e-3	4	NC	1	NC	1
186			min	0	3	001	3	008	4	8.066e-7	12	NC	1	5716.003	
187		18	max	0	1	0	15	0	1	2.444e-3	4	NC	1	NC	1
188		10	min	0	3	0	3	002	4	1.309e-6	12	NC	1	NC	1
189		19	max	0	1	0	1	<u>002</u> 0	1	2.522e-3	4	NC	1	NC	1
		19		0	1	0	1	0	1			NC	1	NC	1
190 191	M3	1	min	0	1	0	1	0	1	1.812e-6 -5.762e-7	12 12	NC NC	1	NC NC	1
	IVIS	1	max		_		-								
192			min	0	1	0	1	0	1	-5.631e-4	4	NC NC	1_	NC NC	1
193		2	max	0	3	0	15	.012	4	6.631e-6	4_	NC	1	NC NC	1
194			min	0	2	001	6	0	12	1.795e-7	12	NC	1_	NC	1
195		3	max	0	3	0	15	.024	4	5.764e-4	4	NC	_1_	NC	1
196			min	0	2	003	6	0	12	9.351e-7	12	NC	1_	NC	1
197		4	max	0	3	001	15	.035	4	1.146e-3	4	NC	_1_	NC	1
198			min	0	2	005	6	0	12	1.691e-6	12	NC	1	NC	1
199		5	max	.001	3	001	15	.046	4	1.716e-3	4	NC	1	NC	1
200			min	0	2	007	6	0	12	2.446e-6	12	NC	1	NC	1
201		6	max	.001	3	002	15	.056	4	2.286e-3	4	NC	1	NC	1
202			min	001	2	008	6	0	12	3.202e-6	12	NC	1	9775.437	5
203		7	max	.002	3	002	15	.066	4	2.855e-3	4	NC	1	NC	1
			max	.002		.002		.000	<u> </u>			.,,			

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

205		Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
Dec	204			min	001	2	01	6	0	12	3.958e-6	12	9471.44	6		
207			8							_						
208														_		-
10 max			9													•
210			40													
11			10													
212			11													
1213																
214			12													
215			12								7.7360-6					
216			13													•
14			13								8 4916-6					
218			14											_		
219			17													
Description Description			15											_		
16																
222			16													
17																
Description			17					15	.149					1		1
225														1		1
19	225		18		.004	3	0	15	.158	4	9.123e-3	4	NC	1	NC	1
19 max	226			min	003		005	1	0	12	1.227e-5	12	NC	1	NC	1
229 M4	227		19	max	.005	3	0	5	.168	4		4	NC	1	NC	1
230	228			min	004	2	003		0	12	1.303e-5	12	NC	1	NC	
231	229	M4	1	max	.003		.003			12		12		1_	NC	2
232	230			min	001	3	005		168	4	-7.218e-4	4		1		4
233			2							12	-1.358e-7	12		_1_		2
234									154			_		1_		•
235			3_			-					-1.358e-7					
236										_				•		
237 5 max .002 1 .002 2 0 12 -1.358e-7 12 NC 1 NC 2 238 min 0 3 004 3 114 4 -7.218e-4 4 NC 1 217.587 4 239 6 max .002 1 .002 2 0 12 -1.358e-7 12 NC 1 NC 2 240 min 0 3 003 3 101 4 -7.218e-4 4 NC 1 245.473 4 241 7 max .002 1 .003 3 003 3 008 4 -7.218e-4 4 NC 1 280.297 4 243 8 max .002 1 .002 2 0 12 -1.358e-7 12 NC 1 NC 1 244 9 max <td></td> <td></td> <td>4_</td> <td></td>			4_													
238			-													
239			5			-			-							
240 min 0 3 003 3 101 4 -7.218e-4 4 NC 1 245.473 4 241 7 max .002 1 .002 2 0 12 -1.358e-7 12 NC 1 NC 2 242 min 0 3 003 3 088 4 -7.218e-4 4 NC 1 280.297 4 243 8 max .002 1 .002 2 0 12 -1.358e-7 12 NC 1 NC 1 244 min 0 3 003 3 076 4 -7.218e-4 4 NC 1					•							_				
241 7 max .002 1 .002 2 0 12 -1.358e-7 12 NC 1 NC 2 242 min 0 3 003 3 088 4 -7.218e-4 4 NC 1 280.297 4 243 8 max .002 1 .002 2 0 12 -1.358e-7 12 NC 1 NC 1 244 min 0 3 003 3 076 4 -7.218e-4 4 NC 1 324.576 4 245 9 max .002 1 .002 2 0 12 -1.358e-7 12 NC 1 NC			Ь													
242 min 0 3 003 3 088 4 -7.218e-4 4 NC 1 280.297 4 243 8 max .002 1 .002 2 0 12 -1.358e-7 12 NC 1 NC 1 244 min 0 3 003 3 076 4 -7.218e-4 4 NC 1 324.576 4 245 9 max .002 1 .002 2 0 12 -1.358e-7 12 NC 1 NC 1 246 min 0 3 003 3 065 4 -7.218e-4 4 NC 1 382.097 4 247 10 max .002 1 .001 2 0 12 -1.358e-7 12 NC 1 NC 1 248 min 0 3 002 3 <td></td> <td></td> <td>7</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td>			7			_								•		
243 8 max .002 1 .002 2 0 12 -1.358e-7 12 NC 1 NC 1 244 min 0 3 003 3 076 4 -7.218e-4 4 NC 1 324.576 4 245 9 max .002 1 .002 2 0 12 -1.358e-7 12 NC 1 NC 1 246 min 0 3 003 3 065 4 -7.218e-4 4 NC 1 382.097 4 247 10 max .002 1 .001 2 0 12 -1.358e-7 12 NC 1 NC 1 248 min 0 3 002 3 054 4 -7.218e-4 4 NC 1 458.783 4 249 11 max .001 1 .001<																
244 min 0 3 003 3 076 4 -7.218e-4 4 NC 1 324.576 4 245 9 max .002 1 .002 2 0 12 -1.358e-7 12 NC 1 NC 1 246 min 0 3 003 3 065 4 -7.218e-4 4 NC 1 382.097 4 247 10 max .002 1 .001 2 0 12 -1.358e-7 12 NC 1 NC 1 248 min 0 3 002 3 054 4 -7.218e-4 4 NC 1 458.783 4 249 11 max .001 1 .001 2 0 12 -1.358e-7 12 NC 1 NC 1 250 min 0 3 002 3 <td></td> <td></td> <td>0</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td>			0		_									_		
245 9 max .002 1 .002 2 0 12 -1.358e-7 12 NC 1 NC 1 246 min 0 3 003 3 065 4 -7.218e-4 4 NC 1 382.097 4 247 10 max .002 1 .001 2 0 12 -1.358e-7 12 NC 1 NC 1 248 min 0 3 002 3 054 4 -7.218e-4 4 NC 1 458.783 4 249 11 max .001 1 .001 2 0 12 -1.358e-7 12 NC 1 NC 1 250 min 0 3 002 3 044 4 -7.218e-4 4 NC 1 NC 1 251 min 0 3 002 3			0							12	-7.2180-1			_	324 576	
246 min 0 3 003 3 065 4 -7.218e-4 4 NC 1 382.097 4 247 10 max .002 1 .001 2 0 12 -1.358e-7 12 NC 1 NC 1 248 min 0 3 002 3 054 4 -7.218e-4 4 NC 1 458.783 4 249 11 max .001 1 .001 2 0 12 -1.358e-7 12 NC 1 NC 1 250 min 0 3 002 3 044 4 -7.218e-4 4 NC 1 564.325 4 251 12 max .001 1 .001 2 0 12 -1.358e-7 12 NC 1 NC 1 252 min 0 3 002 0 </td <td></td> <td></td> <td>a</td> <td></td>			a													
247 10 max .002 1 .001 2 0 12 -1.358e-7 12 NC 1 NC 1 248 min 0 3 002 3 054 4 -7.218e-4 4 NC 1 458.783 4 249 11 max .001 1 .001 2 0 12 -1.358e-7 12 NC 1 NC 1 250 min 0 3 002 3 044 4 -7.218e-4 4 NC 1 564.325 4 251 12 max .001 1 .001 2 0 12 -1.358e-7 12 NC 1 NC			-		_											
248 min 0 3 002 3 054 4 -7.218e-4 4 NC 1 458.783 4 249 11 max .001 1 .001 2 0 12 -1.358e-7 12 NC 1 NC 1 250 min 0 3 002 3 044 4 -7.218e-4 4 NC 1 564.325 4 251 12 max .001 1 .001 2 0 12 -1.358e-7 12 NC 1 NC 1 252 min 0 3 002 3 035 4 -7.218e-4 4 NC 1 NC 1 253 13 max .001 1 0 2 0 12 -1.358e-7 12 NC 1 NC 1 254 min 0 3 002 3			10													
249 11 max .001 1 .001 2 0 12 -1.358e-7 12 NC 1 NC 1 250 min 0 3 002 3 044 4 -7.218e-4 4 NC 1 564.325 4 251 12 max .001 1 .001 2 0 12 -1.358e-7 12 NC 1 NC 1 252 min 0 3 002 3 035 4 -7.218e-4 4 NC 1 715.488 4 253 13 max .001 1 0 2 0 12 -1.358e-7 12 NC 1 NC 1 254 min 0 3 002 3 026 4 -7.218e-4 4 NC 1 943.393 4 255 14 max 0 1 0 2 0 12 -1.358e-7 12 NC 1 NC 1			10													
250 min 0 3 002 3 044 4 -7.218e-4 4 NC 1 564.325 4 251 12 max .001 1 .001 2 0 12 -1.358e-7 12 NC 1 NC 1 252 min 0 3 002 3 035 4 -7.218e-4 4 NC 1 715.488 4 253 13 max .001 1 0 2 0 12 -1.358e-7 12 NC 1 NC 1 254 min 0 3 002 3 026 4 -7.218e-4 4 NC 1 943.393 4 255 14 max 0 1 0 2 0 12 -1.358e-7 12 NC 1 NC 1 256 min 0 3 001 3			11		_											
251 12 max .001 1 .001 2 0 12 -1.358e-7 12 NC 1 NC 1 252 min 0 3 002 3 035 4 -7.218e-4 4 NC 1 715.488 4 253 13 max .001 1 0 2 0 12 -1.358e-7 12 NC 1 NC 1 254 min 0 3 002 3 026 4 -7.218e-4 4 NC 1 943.393 4 255 14 max 0 1 0 2 0 12 -1.358e-7 12 NC 1 NC 1 256 min 0 3 001 3 019 4 -7.218e-4 4 NC 1 NC 1 257 15 max 0 1 0 2																
252 min 0 3 002 3 035 4 -7.218e-4 4 NC 1 715.488 4 253 13 max .001 1 0 2 0 12 -1.358e-7 12 NC 1 NC 1 254 min 0 3 002 3 026 4 -7.218e-4 4 NC 1 943.393 4 255 14 max 0 1 0 2 0 12 -1.358e-7 12 NC 1 NC 1 256 min 0 3 001 3 019 4 -7.218e-4 4 NC 1 1311.364 4 257 15 max 0 1 0 2 0 12 -1.358e-7 12 NC 1 NC 1 258 min 0 3 001 3 <t< td=""><td></td><td></td><td>12</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			12													
253 13 max .001 1 0 2 0 12 -1.358e-7 12 NC 1 NC 1 254 min 0 3 002 3 026 4 -7.218e-4 4 NC 1 943.393 4 255 14 max 0 1 0 2 0 12 -1.358e-7 12 NC 1 NC 1 256 min 0 3 001 3 019 4 -7.218e-4 4 NC 1 1311.364 4 257 15 max 0 1 0 2 0 12 -1.358e-7 12 NC 1 NC 1 258 min 0 3 001 3 013 4 -7.218e-4 4 NC 1 1965.401 4																
254 min 0 3 002 3 026 4 -7.218e-4 4 NC 1 943.393 4 255 14 max 0 1 0 2 0 12 -1.358e-7 12 NC 1 NC 1 256 min 0 3 001 3 019 4 -7.218e-4 4 NC 1 1311.364 4 257 15 max 0 1 0 2 0 12 -1.358e-7 12 NC 1 NC 1 258 min 0 3 001 3 013 4 -7.218e-4 4 NC 1 1965.401 4			13		_									_		
255 14 max 0 1 0 2 0 12 -1.358e-7 12 NC 1 NC 1 256 min 0 3001 3019 4 -7.218e-4 4 NC 1 1311.364 4 257 15 max 0 1 0 2 0 12 -1.358e-7 12 NC 1 NC 1 258 min 0 3001 3013 4 -7.218e-4 4 NC 1 1965.401 4						-						-				
256 min 0 3 001 3 019 4 -7.218e-4 4 NC 1 1311.364 4 257 15 max 0 1 0 2 0 12 -1.358e-7 12 NC 1 NC 1 258 min 0 3 001 3 013 4 -7.218e-4 4 NC 1 1965.401 4			14							_						
257																
258 min 0 3001 3013 4 -7.218e-4 4 NC 1 1965.401 4			15											1		
						3								1		4
259 16 max 0 1 0 2 0 12 -1.358e-7 12 NC 1 NC 1	259		16	max	0	1	0	2	0	12	-1.358e-7	12	NC	1	NC	1
260 min 0 3 0 3007 4 -7.218e-4 4 NC 1 3309.201 4					0	3	0		007	4		4	NC	1	3309.201	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
261		17	max	0	1	0	2	0	12	-1.358e-7	12	NC	1	NC	1
262			min	0	3	0	3	004	4	-7.218e-4	4	NC	1	6840.067	4
263		18	max	0	1	0	2	0	12	-1.358e-7	12	NC	1	NC	1
264			min	0	3	0	3	001	4	-7.218e-4	4	NC	1	NC	1
265		19	max	0	1	0	1	0	1	-1.358e-7	12	NC	1	NC	1
266			min	0	1	0	1	0	1	-7.218e-4	4	NC	1	NC	1
267	M6	1	max	.017	1	.016	2	0	1	1.194e-3	4	NC	4	NC	1
268			min	021	3	023	3	41	4	0	1	2066.386	3	116.822	4
269		2	max	.016	1	.014	2	0	1	1.267e-3	4	NC	4	NC	1
270			min	02	3	022	3	376	4	0	1	2190.325	3	127.29	4
271		3	max	.015	1	.013	2	0	1	1.34e-3	4	NC	4	NC	1
272			min	019	3	021	3	342	4	0	1	2330.041	3	139.736	4
273		4	max	.014	1	.012	2	0	1	1.413e-3	4	NC	4	NC	1
274			min	017	3	019	3	309	4	0	1	2488.703	3	154.68	4
275		5	max	.013	1	.01	2	0	1	1.486e-3	4	NC	4	NC	1
276			min	016	3	018	3	277	4	0	1	2670.388	3	172.826	4
277		6	max	.013	1	.009	2	0	1	1.559e-3	4	NC	1	NC	1
278			min	015	3	017	3	245	4	0	1	2880.425	3	195.153	4
279		7	max	.012	1	.008	2	0	1	1.631e-3	4	NC	1	NC	1
280			min	014	3	015	3	215	4	0	1	3125.921	3	223.053	4
281		8	max	.011	1	.007	2	0	1	1.704e-3	4	NC	1	NC	1
282		0	min	013	3	014	3	185	4	0	1	3416.569	3	258.56	4
283		9	max	.013 .01	1	.006	2	<u>165</u> 0	1	1.777e-3	4	NC	<u> </u>	NC	1
284		9	min	012	3	013	3	157	4	0	1	3765.939	3	304.738	4
		10			1				1	_	•		<u>ა</u> 1		1
285		10	max	.009	3	.005	3	0 131	4	1.85e-3	<u>4</u> 1	NC 4193.633	3	NC 366.393	4
286		44	min	01		011				0	_				
287		11	max	.008	1	.004	2	0	1	1.923e-3	4	NC	1	NC	1
288		40	min	009	3	01	3	106	4	0	1_	4729.058	3	451.408	4
289		12	max	.007	1	.003	2	0	1	1.996e-3	4_	NC 5440	1_	NC 570 47	1
290		40	min	008	3	009	3	083	4	0	1_	5418.42	3	573.47	4
291		13	max	.006	1	.002	2	0	1	2.069e-3	4_	NC	1_	NC	1
292		4.4	min	007	3	008	3	063	4	0	1_	6338.738	3_	758.094	4
293		14	max	.005	1	.002	2	0	1	2.141e-3	4	NC TOOLS OF T	1	NC 100	1
294			min	006	3	006	3	045	4	0	1_	7628.645	3	1057.499	4
295		15	max	.004	1	.001	2	0	1	2.214e-3	_4_	NC	_1_	NC	1
296			min	005	3	005	3	03	4	0	<u>1</u>	9565.411	3	1593.032	4
297		16	max	.003	1	0	2	0	1	2.287e-3	_4_	NC	_1_	NC	1
298			min	003	3	004	3	018	4	0	_1_	NC	1_	2704.102	4
299		17	max	.002	1	00	2	0	1	2.36e-3	4_	NC	_1_	NC	1
300			min	002	3	002	3	008	4	0	1_	NC	_1_	5673.464	4
301		18	max	0	1	0	2	0	1	2.433e-3	4	NC	_1_	NC	_1_
302			min	001	3	001	3	002	4	0	1_	NC	1_	NC	1
303		19	max	0	1	0	1	0	1	2.506e-3	4	NC	<u>1</u>	NC	1
304			min	0	1	0	1	0	1	0	1_	NC	1_	NC	1
305	M7	1	max	0	1	0	1	0	1	0	<u>1</u>	NC	1_	NC	1
306			min	0	1	0	1	0	1	-5.577e-4	4	NC	1_	NC	1
307		2	max	0	3	0	2	.012	4	1.369e-6	14	NC	1_	NC	1
308			min	0	2	002	3	0	1	-1.173e-7	15	NC	1	NC	1
309		3	max	.002	3	0	15	.024	4	5.6e-4	4	NC	1	NC	1
310			min	002	2	005	3	0	1	0	1	NC	1	NC	1
311		4	max	.002	3	001	15	.035	4	1.119e-3	4	NC	1	NC	1
312			min	002	2	007	3	0	1	0	1	NC	1	NC	1
313		5	max	.003	3	002	15	.045	4	1.678e-3	4	NC	1	NC	1
314			min	003	2	008	3	0	1	0	1	NC	1	NC	1
315		6	max	.004	3	002	15	.056	4	2.236e-3	4	NC	1	NC	1
316			min	004	2	01	3	0	1	0	1	9313.885	3	9290.565	
317		7	max	.005	3	002	15	.065	4	2.795e-3	4	NC	1	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	I.C.	x Rotate [r	I.C.	(n) L/v Ratio	LC	(n) I /z Ratio	I.C.
318	Wichiber		min	005	2	011	3	0	1	0	1	8287.928	3	8903.138	
319		8	max	.006	3	003	15	.074	4	3.354e-3	4	NC	1	NC	1
320			min	005	2	012	3	0	1	0	1	7676.02	3	8928.465	4
321		9	max	.007	3	003	15	.083	4	3.913e-3	4	NC	1	NC	1
322			min	006	2	013	3	0	1	0	1	7352.581	3	9330.935	4
323		10	max	.007	3	003	15	.091	4	4.472e-3	4	NC	1	NC	1
324			min	007	2	013	4	0	1	0	1	7260.604	3	NC	1
325		11	max	.008	3	003	15	.099	4	5.031e-3	4	NC	1_	NC	1
326			min	008	2	013	4	0	1	0	1	7384.478	3	NC	1
327		12	max	.009	3	003	15	.107	4	5.589e-3	4	NC	1_	NC	1
328			min	008	2	013	4	0	1	0	1_	7665.245	4	NC	1
329		13	max	.01	3	003	15	115	4	6.148e-3	4	NC	1_	NC NC	1
330		4.4	min	009	2	012	4	0	1	0	_1_	8164.226	4_	NC NC	1
331		14	max	.011	3	003	15	.122	4	6.707e-3	4	NC	1_	NC NC	1
332		4.5	min	01	2	011	1	0	1	7 000 - 0	1_	9078.748	4	NC NC	1
333		15	max	.012	3	002	15	.13	4	7.266e-3	4	NC NC	1_	NC NC	1
334		16	min	011 .012	3	<u>011</u>	15	120	1	7 0250 2	1_1	NC NC	<u>1</u> 1	NC NC	1
335 336		16	max	011	2	002 01	1	.138 0	1	7.825e-3	<u>4</u> 1	NC NC	1	NC NC	1
337		17		.013	3	01 001	15	.146	4	8.384e-3	4	NC NC	1	NC NC	1
338		17	max min	012	2	001	1	0	1	0.3646-3	1	NC NC	1	NC NC	1
339		18	max	.014	3	009	15	.155	4	8.942e-3	4	NC	1	NC	1
340		10	min	013	2	008	1	0	1	0.3426-3	1	NC	1	NC	1
341		19	max	.015	3	0	15	.165	4	9.501e-3	4	NC	1	NC	1
342		10	min	014	2	007	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.009	1	.012	2	0	1	Ö	1	NC	1	NC	1
344	1110		min	004	3	014	3	165	4	-7.45e-4	4	NC	1	150.768	4
345		2	max	.009	1	.011	2	0	1	0	1	NC	1	NC	1
346			min	003	3	014	3	151	4	-7.45e-4	4	NC	1	164.13	4
347		3	max	.008	1	.01	2	0	1	0	1	NC	1	NC	1
348			min	003	3	013	3	138	4	-7.45e-4	4	NC	1	180.022	4
349		4	max	.008	1	.01	2	0	1	0	1	NC	1	NC	1
350			min	003	3	012	3	125	4	-7.45e-4	4	NC	1	199.103	4
351		5	max	.007	1	.009	2	0	1	0	_1_	NC	1_	NC	1
352			min	003	3	011	3	112	4	-7.45e-4	4	NC	1	222.266	4
353		6	max	.007	1	.008	2	00	1	0	_1_	NC	_1_	NC	1
354			min	003	3	01	3	099	4	-7.45e-4	4_	NC	1_	250.755	4
355		7	max	.006	1	.008	2	0	1	0	_1_	NC	_1_	NC	1
356			min	002	3	01	3	087	4	-7.45e-4	4	NC	1_	286.331	4
357		8	max	.006	1	.007	2	0	1	7 45 0	1_1	NC NC	1	NC	1
358		0	min	002	3	009	3	075	4	-7.45e-4	4	NC NC	1_	331.566	4
359		9	max	.005	1	.006	2	0	1	7.450.4	1_1	NC NC	1	NC 300 320	1
360 361		10	min	002	3	008 .006	2	064 0	1	-7.45e-4	<u>4</u> 1	NC NC	<u>1</u> 1	390.329 NC	1
362		10	max	.005 002	3	007	3	053	4	-7.45e-4	4	NC NC	1	468.672	4
363		11	max	.002	1	.005	2	055 0	1	0	1	NC	1	NC	1
364			min	002	3	006	3	043	4	-7.45e-4	4	NC NC	1	576.493	4
365		12	max	.004	1	.005	2	<u>043</u> 0	1	0	1	NC	1	NC	1
366		14	min	001	3	006	3	034	4	-7.45e-4	4	NC	1	730.922	4
367		13	max	.003	1	.004	2	034	1	0	1	NC	1	NC	1
368			min	001	3	005	3	026	4	-7.45e-4	4	NC	1	963.75	4
369		14	max	.003	1	.003	2	0	1	0	1	NC	1	NC	1
370			min	0	3	004	3	019	4	-7.45e-4	4	NC	1	1339.671	4
371		15	max	.002	1	.003	2	0	1	0	1	NC	1	NC	1
372			min	0	3	003	3	012	4	-7.45e-4	4	NC	1	2007.841	4
373		16	max	.002	1	.002	2	0	1	0	1	NC	1	NC	1
374			min	0	3	002	3	007	4	-7.45e-4	4	NC	1	3380.684	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
375		17	max	.001	1	.001	2	0	1	0	1	NC	1	NC	1
376			min	0	3	002	3	004	4	-7.45e-4	4	NC	1	6987.888	4
377		18	max	0	1	0	2	0	1	0	_1_	NC	<u>1</u>	NC	1
378			min	0	3	0	3	001	4	-7.45e-4	4	NC	1	NC	1
379		19	max	00	1	00	1	00	1	0	_1_	NC	_1_	NC	1
380			min	0	1	0	1	0	1	-7.45e-4	4	NC	1_	NC	1
381	M10	1_	max	.005	1	.004	2	0	12	1.193e-3	4_	NC	_1_	NC	2
382			min	006	3	007	3	409	4	7.237e-6	12	NC	<u>1</u>	116.994	4
383		2	max	.005	1	.003	2	0	12	1.265e-3	4_	NC	1_	NC_	2
384			min	006	3	007	3	<u>375</u>	4	6.735e-6	12	NC	1_	127.477	4
385		3	max	.005	1	.003	2	0	12	1.338e-3	4	NC NC	1	NC 400 044	1
386		1	min	006	3	007	3	342	4	6.232e-6	12	NC NC	1_	139.941	4
387		4	max	.005	1	.002	2	0	12	1.41e-3	4	NC NC	1	NC	1
388		-	min	005	3	007	3	309	4	5.729e-6	12	NC NC	1_	154.907	4
389		5	max	.004	3	.002	3	0 276	12	1.483e-3	<u>4</u> 12	NC NC	<u>1</u> 1	NC	4
390		6	min	005		006	2	<u>276</u> 0	4	5.226e-6		NC NC	-	173.08 NC	1
391 392		6	max	.004 005	3	.001 006	3	245	12	1.556e-3 4.724e-6	<u>4</u> 12	NC NC	<u>1</u> 1	195.44	4
393		7	min	.004	1	.001	2	<u>245</u> 0	12	1.628e-3	4	NC NC	+	NC	1
394			max	004	3	006	3	214	4	4.221e-6	12	NC NC	1	223.381	4
395		8	max	.003	1	<u>006</u> 0	2	<u>214</u> 0	12	1.701e-3	4	NC	+	NC	1
396		10	min	004	3	005	3	185	4	3.718e-6	12	NC	1	258.939	4
397		9	max	.003	1	<u>003</u> 0	2	0	12	1.774e-3	4	NC	1	NC	1
398			min	004	3	005	3	157	4	3.215e-6	12	NC	1	305.185	4
399		10	max	.003	1	<u>.005</u>	2	0	12	1.846e-3	4	NC	1	NC	1
400		10	min	003	3	005	3	13	4	2.713e-6	12	NC	1	366.931	4
401		11	max	.002	1	0	2	0	12	1.919e-3	4	NC	1	NC	1
402			min	003	3	004	3	106	4	2.21e-6	12	NC	1	452.072	4
403		12	max	.002	1	0	2	0	12	1.991e-3	4	NC	1	NC	1
404		<u> </u>	min	003	3	004	3	083	4	1.707e-6	12	NC	1	574.314	4
405		13	max	.002	1	0	2	0	12	2.064e-3	4	NC	1	NC	1
406			min	002	3	003	3	063	4	1.131e-6	10	NC	1	759.211	4
407		14	max	.002	1	0	15	0	12	2.137e-3	4	NC	1	NC	1
408			min	002	3	003	3	045	4	3.348e-7	10	NC	1	1059.06	4
409		15	max	.001	1	0	15	0	12	2.209e-3	4	NC	1	NC	1
410			min	001	3	002	3	03	4	-3.633e-6	1	NC	1	1595.389	4
411		16	max	0	1	0	15	0	12	2.282e-3	4	NC	1	NC	1
412			min	001	3	002	3	018	4	-1.372e-5	1	NC	1	2708.123	4
413		17	max	0	1	0	15	0	12	2.354e-3	4	NC	_1_	NC	1
414			min	0	3	001	4	008	4	-2.38e-5	1_	NC	1_	5681.985	4
415		18	max		1	0	15	0	12	2.427e-3	4_	NC	_1_	NC	1
416			min	0	3	0	4	002	4	-3.389e-5	1_	NC	1_	NC	1
417		19	max	0	1	0	1	0	1	2.5e-3	_4_	NC	_1_	NC	1
418			min	0	1	0	1	0	1	-4.397e-5	1_	NC	1_	NC	1
419	<u>M11</u>	1	max	0	1	0	1	0	1	1.368e-5	_1_	NC	_1_	NC	1
420			min	0	1	0	1	0	1	-5.562e-4	4_	NC	1_	NC	1
421		2	max	0	3	0	15	.012	4	4.766e-6	_4_	NC	_1_	NC	1
422			min	0	2	002	4	0	1	-3.725e-6	1_	NC	1_	NC	1
423		3	max	0	3	0	15	.024	4	5.657e-4	_4_	NC	1_	NC	1
424		4	min	0	2	003	4	0	1	-2.113e-5	1_	NC NC	1_	NC NC	1
425		4	max	0	3	001	15	.035	4	1.127e-3	4	NC	1	NC NC	1
426		-	min	0	2	005	4	0	1 1	-3.853e-5	1_	NC NC	1	NC NC	1
427		5	max	.001	3	002	15	.045	4	1.688e-3	4	NC NC	1	NC NC	1
428		6	min	001	2	007	15	0	1 1	-5.593e-5	1_1	NC NC	1_1	NC NC	1
429		6	max	.001 001	3	002 009	15	.055 001	1	2.249e-3	4	NC NC	<u>1</u> 1	NC 9643.446	4
430		7	min		3		15	.065		-7.333e-5	1_1	NC NC	•	NC	1
431			max	.002	<u> </u>	003	l 10	.000	4	2.81e-3	4	INC	_1_	INC	

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

400	Member	Sec		x [in]	LC	y [in]	LC 4	z [in]	LC			(n) L/y Ratio			
432		8	min	001 .002	3	01 003	15	001 .074	4	-9.073e-5 3.371e-3	<u>1</u> 4	9107.415 NC	<u>4</u> 1	9278.164 NC	1
434		0	max min	001	2	003 012	4	002	1	-1.081e-4	1	8130.599	4	9349.586	
435		9	max	.002	3	003	15	.083	4	3.932e-3	4	NC	1	NC	1
436		9	min	002	2	003 013	4	002	1	-1.255e-4	1	7548.025	4	9829.718	4
437		10	max	.002	3	003	15	.091	4	4.493e-3	4	NC	2	NC	1
438		10	min	002	2	013	4	002	1	-1.429e-4	1	7256.642	4	NC	1
439		11	max	.002	3	003	15	.099	4	5.054e-3	4	NC	2	NC	1
440			min	002	2	013	4	003	1	-1.603e-4	1	7212.947	4	NC	1
441		12	max	.002	3	003	15	.107	4	5.615e-3	4	NC	1	NC	1
442		12	min	002	2	013	4	003	1	-1.777e-4	1	7416.211	4	NC	1
443		13	max	.002	3	003	15	.115	4	6.176e-3	4	NC	1	NC	1
444		10	min	002	2	012	4	003	1	-1.951e-4	1	7910.264	4	NC	1
445		14	max	.003	3	003	15	.123	4	6.736e-3	4	NC	1	NC	1
446			min	003	2	011	4	003	1	-2.125e-4	1	8806.728	4	NC	1
447		15	max	.004	3	002	15	.131	4	7.297e-3	4	NC	1	NC	1
448		1	min	003	2	01	4	004	1	-2.299e-4	1	NC	1	NC	1
449		16	max	.004	3	002	15	.139	4	7.858e-3	4	NC	1	NC	1
450		1	min	003	2	008	4	004	1	-2.474e-4	1	NC	1	NC	1
451		17	max	.004	3	001	15	.147	4	8.419e-3	4	NC	1	NC	1
452			min	003	2	006	1	004	1	-2.648e-4	1	NC	1	NC	1
453		18	max	.004	3	0	15	.156	4	8.98e-3	4	NC	1	NC	1
454			min	003	2	005	1	005	1	-2.822e-4	1	NC	1	NC	1
455		19	max	.005	3	0	12	.165	4	9.541e-3	4	NC	1	NC	1
456			min	004	2	003	1	005	1	-2.996e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.003	2	.005	1	8.021e-6	1	NC	1	NC	2
458			min	001	3	005	3	165	4	-7.177e-4	4	NC	1	149.957	4
459		2	max	.003	1	.003	2	.005	1	8.021e-6	1	NC	1	NC	2
460			min	001	3	004	3	152	4	-7.177e-4	4	NC	1	163.245	4
461		3	max	.003	1	.003	2	.004	1	8.021e-6	1	NC	1	NC	2
462			min	0	3	004	3	139	4	-7.177e-4	4	NC	1	179.047	4
463		4	max	.003	1	.002	2	.004	1	8.021e-6	1	NC	1	NC	2
464			min	0	3	004	3	125	4	-7.177e-4	4	NC	1	198.02	4
465		5	max	.002	1	.002	2	.004	1	8.021e-6	1	NC	_1_	NC	2
466			min	0	3	004	3	112	4	-7.177e-4	4	NC	1_	221.054	4
467		6	max	.002	1	.002	2	.003	1	8.021e-6	_1_	NC	_1_	NC	2
468			min	0	3	003	3	099	4	-7.177e-4	4_	NC	<u>1</u>	249.383	4
469		7	max	.002	1	.002	2	.003	1	8.021e-6	_1_	NC	_1_	NC	2
470			min	0	3	003	3	087	4	-7.177e-4	4_	NC	1_	284.76	4
471		8	max	.002	1	.002	2	.002	1	8.021e-6	_1_	NC	_1_	NC	1
472			min	0	3	003	3	075		-7.177e-4		NC	1_	329.741	4
473		9	max	.002	1	.002	2	.002	1	8.021e-6	1	NC	1	NC 000 474	1
474		10	min	0	3	003	3	064	4	-7.177e-4		NC	1_	388.174	4
475		10	max	.002	1	.001	2	.002	1	8.021e-6	1	NC		NC 400.070	1
476		44	min	0	3	002	3	053	4	-7.177e-4	4	NC NC	1_	466.078	4
477		11	max	.001	1	.001	2	.001	1	8.021e-6	1_1	NC NC	1	NC	1
478		40	min	0	3	002	3	043	4	-7.177e-4	4_	NC NC	1_	573.294	4
479		12	max	.001	3	.001	2	.001	1	8.021e-6	1_1	NC NC	1_	NC 700.0FC	1
480		12	min	0		002	3	034	4	-7.177e-4 8.021e-6	4	NC NC	1_1	726.856	4
481		13	max	.001	3	0 002	2	0	1		1_1	NC NC	1	NC 059.376	1
482 483		14	min	0	1	<u>002</u> 0	2	026 0	1	-7.177e-4 8.021e-6	4	NC NC	1	958.376 NC	4
484		14	max min	0	3	001	3	019	4	-7.177e-4	<u>1</u> 4	NC NC	1	1332.183	4
485		15	max	0	1	<u>001</u> 0	2	<u>019</u> 0	1	8.021e-6	1	NC NC	1	NC	1
486		13	min	0	3	001	3	012	4	-7.177e-4	4	NC NC	1	1996.591	4
487		16	max	0	1	<u>001</u> 0	2	<u>012</u> 0	1	8.021e-6	1	NC NC	1	NC	1
488		10	min	0	3	0	3	007	4	-7.177e-4		NC NC	1	3361.695	
+00			111111	U	J	U	J	007	4	7.1776-4	4	INC		3301.033	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

100	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		
489		17	max	0	1	0	2	0	1	8.021e-6	_1_	NC	_1_	NC	1
490			min	0	3	0	3	004	4	-7.177e-4	4	NC	1_	6948.522	4
491		18	max	0	1	0	2	0	1	8.021e-6	_1_	NC	_1_	NC	1
492			min	0	3	0	3	001	4	-7.177e-4	4	NC	1_	NC	1
493		19	max	0	1	0	1	0	1	8.021e-6	1	NC	1	NC	1
494			min	0	1	0	1	0	1	-7.177e-4	4	NC	1	NC	1
495	M1	1	max	.006	3	.129	2	.428	4	1.497e-2	1	NC	1	NC	1
496			min	003	2	03	3	0	12	-2.466e-2	3	NC	1	NC	1
497		2	max	.006	3	.063	2	.417	4	7.594e-3	4	NC	4	NC	1
498			min	003	2	015	3	004	1	-1.22e-2	3	1750.347	2	NC	1
499		3	max	.006	3	.009	3	.406	4	1.246e-2	4	NC	5	NC	1
500			min	003	2	008	2	005	1	-1.22e-4	3	843.995	2	9547.713	5
501		4	max	.006	3	.047	3	.395	4	1.094e-2	4	NC	5	NC	1
502			min	003	2	087	2	005	1	-4.784e-3	3	533.137	2	6494.483	
503		5	max	.006	3	.096	3	.385	4	9.578e-3	1	NC	15	NC	1
504			min	003	2	17	2	004	1	-9.445e-3	3	384.989	2	4956.033	-
505		6	max	.005	3	.149	3	.374	4	1.441e-2	1	NC	15	NC	1
506		-	min	003	2	251	2	001	1	-1.411e-2	3	303.348	2	4052.109	
		7			3		3			1.924e-2		NC	15	NC	1
507 508			max	.005 003	2	.199 323	2	.362	12	-1.877e-2	<u>1</u> 3	255.142	2	3468.989	4
		0	min					0							
509		8	max	.005	3	.241	3	.35	4	2.407e-2	1	9018.998	<u>15</u>	NC	1
510			min	002	2	38	1	0	12	-2.343e-2	3	226.607	1_	3075.374	4
511		9	max	.005	3	.269	3	.337	4	2.662e-2	1	8432.713	15	NC 0040454	1
512		4.0	min	002	2	417	1	0	1	-2.37e-2	3	211.46	1_	2849.154	
513		10	max	.005	3	.279	3	.321	4	2.769e-2	2	8254.034	<u>15</u>	NC 0704 040	1
514		4.4	min	002	2	<u>429</u>	1	0	12	-2.105e-2	3	206.941	1_	2784.819	
515		11	max	.005	3	.272	3	.304	4	2.976e-2	2	8432.524	15	NC	1
516			min	002	2	416	1	0	12	-1.84e-2	3	211.806	_1_	2852.453	
517		12	max	.005	3	.249	3	.285	4	2.873e-2	2	9018.562	15	NC	1
518			min	002	2	379	1	0	1	-1.557e-2	3	227.667	1_	3068.463	5
519		13	max	.005	3	.212	3	.263	4	2.303e-2	2	NC	15	NC	1
520			min	002	2	32	1	0	1	-1.247e-2	3	258.344	1_	3611.415	
521		14	max	.005	3	.164	3	.239	4	1.734e-2	2	NC	15	NC	1
522			min	002	2	246	1	0	12	-9.365e-3	3	310.692	1_	4723.335	4
523		15	max	.004	3	.111	3	.215	4	1.164e-2	2	NC	<u>15</u>	NC	1_
524			min	002	2	164	1	0	12	-6.26e-3	3	400.52	1	7102.538	4
525		16	max	.004	3	.056	3	.191	4	8.391e-3	4	NC	5	NC	1
526			min	002	2	082	1	0	12	-3.156e-3	3	566.163	1_	NC	1
527		17	max	.004	3	.003	3	.169	4	9.325e-3	4	NC	5	NC	1
528			min	002	2	005	2	0	12	-5.096e-5	3	918.754	1	NC	1
529		18	max	.004	3	.06	1	.149	4	1.012e-2	2	NC	4	NC	1
530			min	002	2	043	3	0	12	-4.291e-3	3	1939.834	1	NC	1
531		19	max	.004	3	.119	1	.133	4	2.037e-2	2	NC	1	NC	1
532			min	002	2	087	3	0	1	-8.703e-3	3	NC	1	NC	1
533	M5	1	max	.018	3	.295	2	.428	4	0	1	NC	1	NC	1
534			min	011	2	042	3	0	1	-2.477e-6	4	NC	1	NC	1
535		2	max	.018	3	.145	2	.419	4	6.377e-3	4	NC	5	NC	1
536			min	012	2	021	3	0	1	0.07700	1	772.772	2	NC	1
537		3	max	.018	3	.027	3	.409	4	1.256e-2	4	NC	5	NC	1
538			min	012	2	023	2	.403	1	0	1	363.991	2	8025.488	
539		4	max	.018	3	.127	3	.398	4	1.023e-2	4	NC	15	NC	1
540		+	min	011	2	224	2	0	1	0	1	223.13	2	5817.073	4
541		5		.017	3	.261	3	.387	4	7.905e-3	4	7140.443	15	NC	1
542		10	max	011	2	441	2	.301	1	0	1	157.243	2	4681.437	_
543		6	min		3	441 .41	3	.375	4	5.579e-3	•	5494.436		NC	1
544		6	max	.017	2	656	2	.375	1	0.5796-3	<u>4</u> 1	121.653	<u>15</u> 2	3979.642	_
		7	min	011					4						
545		/	max	.016	3	<u>.555</u>	3	.362	4	3.253e-3	4_	4544.471	15	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

E 40	Member	Sec		x [in]	LC	y [in]	LC	z [in]		_		(n) L/y Ratio LC		
546			min	<u>011</u>	2	<u>851</u>	1	0	1	0	1_	100.985 2	3489.202	4
547		8	max	.016	3	<u>.677</u>	3	.35	4	9.269e-4	4	3992.379 15		1
548			min	01	2	<u>-1.009</u>	1	0	1	0	_1_	88.726 1	3111.588	4
549		9	max	.016	3	.755	3	.337	4	0	_1_	3709.351 15		1
550		40	min	01	2	<u>-1.109</u>	1	0	1	-1.435e-6	5_	82.407 1	2849.551	4
551		10	max	.015	3	.784	3	.321	4	0	_1_	3624.083 15		1
552		4.4	min	01	2	<u>-1.142</u>	1	0	1	-1.358e-6	5	80.532 1	2805.541	4
553		11	max	.015	3	.764	3	.304	4	0	_1_	3709.426 15	NC	1
554		40	min	01	2	-1.109	1	0	1	-1.28e-6	5_	82.55 1	2881.504	4
555		12	max	.015	3	.698	3	.286	4	6.719e-4	4_	3992.555 15	NC	1
556		40	min	01	2	<u>-1.007</u>	1	0	1	0	_1_	89.197 1	3026.698	4
557		13	max	.014	3	.59	3	.264	4	2.358e-3	4	4544.827 15		1
558			min	01	2	<u>845</u>	1	0	1	0	_1_	102.283 1	3552.584	4
559		14	max	.014	3	.455	3	.239	4	4.044e-3	4	5495.128 15		1
560			min	009	2	<u>643</u>	1	0	1	0	<u> 1</u>	125.032 1	4833.285	4
561		15	max	.014	3	.305	3	.213	4	5.731e-3	4	7141.804 15		1
562		10	min	009	2	423	1	0	1	0	_1_	165.013 1	8145.11	5
563		16	max	.013	3	.152	3	.188	4	7.417e-3	4_	NC 15	NC	1
564		H	min	009	2	207	1	0	1	0	_1_	241.024 1	NC	1
565		17	max	.013	3	.01	3	.165	4	9.103e-3	4_	NC 5	NC	1
566		10	min	009	2	016	2	0	1	0	1_	408.073 1	NC	1
567		18	max	.013	3	.136	1	.147	4	4.623e-3	_4_	NC 5	NC	1
568			min	009	2	11	3	0	1	0	_1_	891.353 1	NC	1
569		19	max	.013	3	.263	1	.133	4	0	_1_	NC 1	NC	1
570			min	009	2	218	3	0	1	-1.018e-6	4_	NC 1	NC	1
571	<u>M9</u>	1	max	.006	3	.129	2	.428	4	2.466e-2	3_	NC 1	NC	1
572			min	003	2	03	3	0	1	-1.497e-2	1_	NC 1	NC	1
573		2	max	.006	3	.063	2	.419	4	1.22e-2	3	NC 4	NC	1
574			min	003	2	015	3	0	12	-7.299e-3	1_	1750.347 2	NC	1
575		3	max	.006	3	.009	3	.409	4	1.252e-2	_4_	NC 5	NC	1
576			min	003	2	008	2	0	12	-3.808e-5	<u>10</u>	843.995 2	8248.466	4
577		4	max	.006	3	.047	3	.398	4	9.856e-3	5	NC 5	NC	1
578		_	min	003	2	087	2	0	12	-4.746e-3	_1_	533.137 2	5904.595	4
579		5	max	.006	3	.096	3	.386	4	9.445e-3	3	NC 15		1
580			min	003	2	17	2	0	12	-9.578e-3	1_	384.989 2	4701.388	4
581		6	max	.005	3	.149	3	.375	4	1.411e-2	3	NC 15		1
582			min	003	2	251	2	0	12	-1.441e-2	_1_	303.348 2	3966.649	4
583		7	max	.005	3	.199	3	.362	4	1.877e-2	3	NC 15		1
584			min	003	2	323	2	0	1	-1.924e-2	1_	255.142 2	3466.124	4
585		8	max	.005	3	.241	3	.35	4	2.343e-2	3	9007.442 15	NC	1
586			min	002	2	38	1	0		-2.407e-2		226.607 1		5
587		9	max	.005	3	.269	3	.337	4	2.37e-2	3	8422.029 15		1
588			min	002	2	417	1	0	12	-2.662e-2	_1_	211.46 1	2843.131	4
589		10	max	.005	3	.279	3	.321	4	2.105e-2	3	8243.6 15		1
590			min	002	2	429	1	0	1	-2.769e-2	2	206.941 1	2785.625	4
591		11	max	.005	3	.272	3	.304	4	1.84e-2	3_	8421.832 15		1
592			min	002	2	416	1	0	1	-2.976e-2	2	211.806 1	2859.761	4
593		12	max	.005	3	.249	3	.285	4	1.557e-2	3	9007.059 15		1
594			min	002	2	379	1	0	12	-2.873e-2	2	227.667 1	3050.032	4
595		13	max	.005	3	.212	3	.263	4	1.247e-2	3_	NC 15	NC	1
596			min	002	2	32	1	0	10	-2.303e-2	2	258.344 1	3610.862	4
597		14		.005	3	.164	3	.238	4	9.365e-3	3	NC 15		1
598			min	002	2	246	1	001	1	-1.734e-2	2	310.692 1	4820.835	
599		15	max	.004	3	.111	3	.213	4	6.26e-3	3	NC 15		1
600			min	002	2	164	1	003	1	-1.164e-2	2	400.52 1	7600.237	5
601		16	max	.004	3	.056	3	.188	4	7.237e-3	5	NC 5	NC	1
602			min	002	2	082	1	005	1	-5.939e-3	2	566.163 1	NC	1

Company Designer Job Number Model Name Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	o LC
603		17	max	.004	3	.003	3	.166	4	9.14e-3	4	NC	5	NC	1
604			min	002	2	005	2	005	1	-4.184e-4	1	918.754	1	NC	1
605		18	max	.004	3	.06	1	.148	4	4.357e-3	5	NC	4	NC	1
606			min	002	2	043	3	004	1	-1.012e-2	2	1939.834	1	NC	1
607		19	max	.004	3	.119	1	.133	4	8.703e-3	3	NC	1	NC	1
608			min	002	2	087	3	0	12	-2.037e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 37-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No Anchors subjected to sustained tension: No Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 37	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 37	-42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2915.5	1524.0	0.0	1524.0
2	2915.5	1524.0	0.0	1524.0
Sum	5831.0	3048.0	0.0	3048.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5831 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	lc / A _{Nco}) Ψ _{ec,N} Ψ _{ea}	$_{I,N}\Psi_{c,N}\Psi_{cp,N}N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408 24	324 00	1 000	1 000	1.00	1 000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	a / A_{Na0}) $\Psi_{\sf ed,Na}$ $\Psi_{\sf g}$	$_{ extstyle I,Na}arPsi_{ extstyle ec,Na}arPsi_{ extstyle p,Na} \Lambda$	I _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 37-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}}c_{a1}^{1.5}$	° (Eq. D-24)						
le (in)	da (in)	λ	f'_c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Vc / Avco) Yec, v Ye	$_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	դ. D-22)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (Ib)
666.00	648.00	1.000	0.969	1.000	1.000	15593	0.70	10875

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}\lambda}\sqrt{f'_{c}c_{a1}}^{1.}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	16.16	24369		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
872.64	1175.16	1.000	1.000	1.000	24369	0.70	25334

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n kcpNag; kcpN	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / A Nco) Ψ ec,N Ψ	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
<i>k</i> _{cp}	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\varPsi_{ ho,Na}$	N _{a0} (lb)	N _a (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	Ncb (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2916	6071	0.48	Pass
Concrete breakout	5831	10231	0.57	Pass
Adhesive	5831	8093	0.72	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1524	3156	0.48	Pass (Governs)
T Concrete breakout x+	3048	10875	0.28	Pass
Concrete breakout y-	1524	25334	0.06	Pass
Pryout	3048	20601	0.15	Pass
Interaction check Nua	/φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 37-42 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.72 0.48 120.3 % 1.2 Pa	3C. D.7.3	0.72	0.48	120.3 %	1.2	Pas
-------------------------------------	-----------	------	------	---------	-----	-----

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.