

Tópicos de matemática I: Noções básicas de Álgebra Linear

Prof. André L. A. dos Reis

Objetivos da aula

- * Realizar a revisão dos conceitos de espaço vetorial
- * Definir as operações com matrizes e vetores
- * Entrar no contexto da solução de sistemas lineares
- * Esclarecer as notações que serão utilizadas ao longo do curso

Introdução à Álgebra Linear

É o estudo dos espaços vetoriais e as transformações que acontecem entre eles.

Quando os espaços vetoriais são finitos, tais transformações são dadas por matrizes.

A noção de espaço vetorial é o terreno onde se desenvolve toda a Álgebra Linear.

Definição:

Um espaço vetorial E é um conjunto, cujos elementos são chamados vetores, no qual estão definidos dois tipos de operações: a adição, que a cada operação se faz gerar um novo vetor, e a multiplicação por um escalar (número), que a cada número e a cada vetor faz corresponder um novo vetor.

O que é um vetor?

Um segmento orientado de reta que possui um módulo, direção e sentido

Axiomas de espaço vetorial:

Comutatividade: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$

Associatividade: (u + v) + w = u + (v + w)

Vetor nulo: $\mathbf{u} + \mathbf{0} = \mathbf{u}$

Inverso aditivo: $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$

Distributividade: $(a + b) \mathbf{v} = a \mathbf{v} + b \mathbf{v}$ ou $a (\mathbf{u} + \mathbf{v}) = a \mathbf{u} + a \mathbf{v}$

Multiplicação por 1: 1.v = v

Exemplo.1:

Seja um espaço \mathbf{R}^n que representa um espaço euclidiano n-dimensional. Tomando dois representantes deste espaço dados por:

$$\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n)$$

e

$$\mathbf{V} = (\mathbf{V}_1, \mathbf{V}_2, \dots, \mathbf{V}_n).$$

Prove que \mathbb{R}^n é um espaço vetorial.

Veremos que a relação entre a formulação de um problema inverso e o conceito de espaço vetorial se cruzam no sentido de que devemos resolver sistemas lineares.

O que irá mediar as operações de transformação entre os espaços vetoriais serão os operadores matriciais.

O que é uma matriz?

Um arranjo de números (ou não) que estão dispostos em forma de tabela, ou seja, em colunas e linhas.

```
Notação: [ ], | |, ( )
```

Dimensão: diz-se (N X M), N linhas e M colunas

Elementos: a_{ij}, i-ésima linha e j-ésima coluna.

M

Operações de matrizes:

Comutatividade: A + B = B + A

Associatividade: (A + B) + C = A + (B + C)

Matriz nula: A + 0 = A

Inverso aditivo: A + (-A) = 0

Distributividade: (a + b) A = aA + bA ou

 $a\left(\mathbf{A}+\mathbf{B}\right)=a\,\mathbf{A}+a\,\mathbf{B}$

Multiplicação por 1: 1.A = A

Soma matricial:

Se eu quero resolver A + B = C, essa soma será:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1M} \\ a_{21} & a_{22} & \dots & a_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N1} & a_{N2} & \dots & a_{NM} \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1M} \\ b_{21} & b_{22} & \dots & b_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ b_{N1} & b_{N2} & \dots & b_{NM} \end{bmatrix}$$

$$(\mathbf{N} \times \mathbf{M})$$

$$(\mathbf{N} \times \mathbf{M})$$

Soma elemento a elemento. Repare que as matrizes devem ter a mesma dimensão!

$$\mathbf{C} = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1M} \\ c_{21} & c_{22} & \dots & c_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ c_{N1} & c_{N2} & \dots & c_{NM} \end{bmatrix}$$
(N X M)

Produto por escalar:

Se eu quero resolver k (A + B) = k A + k B, esse resultado será:

$$k([a_{ij}] + [b_{ij}]) = k[a_{ij}] + k[b_{ij}] = c_{ij}$$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1M} \\ a_{21} & a_{22} & \dots & a_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N1} & a_{N2} & \dots & a_{NM} \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1M} \\ b_{21} & b_{22} & \dots & b_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ b_{N1} & b_{N2} & \dots & b_{NM} \end{bmatrix}$$

$$(N \times M)$$

$$(N \times M)$$

Soma elemento a elemento. Repare que as matrizes devem ter a mesma dimensão!

$$\mathbf{C} = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1M} \\ c_{21} & c_{22} & \dots & c_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ c_{N1} & c_{N2} & \dots & c_{NM} \end{bmatrix}$$
(N X M)

Produto matricial:

Se eu quero resolver AB = C, essa resultado será:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1M} \\ a_{21} & a_{22} & \dots & a_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N1} & a_{N2} & \dots & a_{NM} \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1M} \\ b_{21} & b_{22} & \dots & b_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ b_{N1} & b_{N2} & \dots & b_{NM} \end{bmatrix}$$

$$\mathbf{A} \text{ linha de uma deverá ter o} \quad (\mathbf{N} \mathbf{X} \mathbf{L}) \qquad \qquad (\mathbf{L} \mathbf{X} \mathbf{M})$$

$$a_{21} \ a_{22} \ \dots \ a_{2M}$$
 $\vdots \ \vdots \ \cdots \ \vdots$
 $a_{N1} \ a_{N2} \ \dots \ a_{NM}$

mesmo valor da coluna da outra!

$$AB = BA$$

Esta operação não é satisfeita!

Perda da comutatividade!

$$\mathbf{C} = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1M} \\ c_{21} & c_{22} & \dots & c_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ c_{N1} & c_{N2} & \dots & c_{NM} \end{bmatrix}$$

1. Matriz nula

```
[a_{ij}] = 0, para todo ij.
```

2. Matriz identidade

 $[a_{ii}] = 1$, para todo i.

3. Matriz Triangular

Somente os elementos acima (ou abaixo) da diagonal principal são diferentes de zero.

4. Matriz quadrada

(ou M).

Número de linhas igual ao número de colunas (N=M) $\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1M} \\ a_{21} & a_{22} & \dots & a_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N1} & a_{N2} & \dots & a_{NM} \end{bmatrix}$ (ou M).

Diagonal principal são os elementos a_{ii} de uma matriz quadrada

O traço de uma matriz é o somatório de todos os elementos da diagonal principal.

Propriedade: tr(AB) = tr(BA) Denota-se por: tr(A)

5. Matriz Transposta

Posição dos elementos da linhas trocam com os elementos da coluna.

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1M} \\ a_{21} & a_{22} & \dots & a_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N1} & a_{N2} & \dots & a_{NM} \end{bmatrix}$$

Denota-se por: A^T por transposta da matriz **A**

Os elementos a_{ij} serão iguais a a_{ji}

Dimensão: M x N

Propriedades
$$(A + B)^T = A^T + B^T$$

 $(\mathbf{A}^{\mathsf{T}})^{\mathsf{T}} = \mathbf{A}$

 $\mathbf{D}^{\mathsf{T}} = \mathbf{D}$

 $(AB)^{\mathsf{T}} = B^{\mathsf{T}}A^{\mathsf{T}}$

6. Matriz Simétrica (e antissimétrica)

Os elementos estão dispostos simetricamente em relação a diagonal $\mathbf{A}=\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1M} \\ a_{21} & a_{22} & \dots & a_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N1} & a_{N2} & \dots & a_{NM} \end{bmatrix}$

Denota-se por: $A^T = A$

Os elementos a_{ii} serão iguais a a_{ii}

Ortogonalidade

 $A^TA = AA^T = I$

Dimensão: N x N

6. Matriz Simétrica (e antissimétrica)

Os elementos estão dispostos simetricamente em relação a diagonal $\mathbf{A}=\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1M} \\ a_{21} & a_{22} & \dots & a_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N1} & a_{N2} & \dots & a_{NM} \end{bmatrix}$

Denota-se por: $A^T = -A$

Os elementos a_{ii} serão iguais a -a_{ii}

Ortogonalidade

 $A^TA = AA^T = I$

Dimensão: N x N

7. Matriz Inversa

A matriz inversa de A será uma matriz $\mathbf{A}^{\text{-1}}$, tal que: $\mathbf{A}^{\text{-1}} \mathbf{A} = \mathbf{I}.$ $\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1M} \\ a_{21} & a_{22} & \dots & a_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N1} & a_{N2} & \dots & a_{NM} \end{bmatrix}$

$$A^{-1}A = I$$

Ortogonalidade

$$\mathbf{A}^{-1} = \mathbf{A}^{\mathsf{T}}$$

"Se a matriz A é invertível, ou seja, possui inversa, ela é dita **NÃO singular**".

Caso contrário, ela é uma **matriz singular**.

Determinante e suas propriedades

É uma função de número real associada a uma variável matricial, que nada mais é que associar um número a uma matriz.

Denota-se por: det(A) como determinante da matriz A.

Propriedades:

$$det(A) = det(A^{T})$$

$$det(A) = 0$$

Se possui coluna ou linha iguais a zero

Se possui coluna ou linha iguais

Se possui uma linha ou coluna que é combinação linear de alguma outra.

Determinante e suas propriedades

É uma função de número real associada a uma variável matricial, que nada mais é que associar um número a uma matriz.

Denota-se por: det(A) como determinante da matriz A.

 $\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1M} \\ a_{21} & a_{22} & \dots & a_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N1} & a_{N2} & \dots & a_{NM} \end{bmatrix}$ **Propriedades:** Através do determinante podemos \rightarrow det(A⁻¹) = 1/det(A) $det(A) = det(A^T)$ analisar o condicionamento de um sistema linear. det(A) = 0

det(A B) = det(A) det(B)

 $det(kA) = k^{N} det(A)$

Se uma matriz é não singular o seu determinante será diferente de zero.

Sistema de equações lineares

É um conjunto de N equações com M número de variáveis.

$$\begin{cases} a_{11}p_1 + a_{12}p_2 + ... + a_{1M}p_M = y_1 \\ a_{21}p_1 + a_{22}p_2 + ... + a_{2M}p_M = y_2 \\ \vdots \\ a_{N1}p_1 + a_{N2}p_2 + ... + a_{NM}p_M = y_N \end{cases}$$

Sistema de equações lineares

É um conjunto de N equações com M número de variáveis.

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1M} \\ a_{21} & a_{22} & \dots & a_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N1} & a_{N2} & \dots & a_{NM} \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_M \end{bmatrix}$$

$$\begin{bmatrix} y_1 \\ p_2 \\ \vdots \\ p_M \end{bmatrix}$$

$$\begin{bmatrix} y_1 \\ p_2 \\ \vdots \\ p_M \end{bmatrix}$$

$$\begin{bmatrix} y_1 \\ p_2 \\ \vdots \\ p_M \end{bmatrix}$$

$$\begin{bmatrix} y_1 \\ p_2 \\ \vdots \\ p_M \end{bmatrix}$$

$$\begin{bmatrix} y_1 \\ p_2 \\ \vdots \\ p_M \end{bmatrix}$$

$$\begin{bmatrix} y_1 \\ p_2 \\ \vdots \\ p_M \end{bmatrix}$$

- 1. Tem uma única solução
- 2. Não tem solução
- 3. Infinitas soluções

Exemplo:

Seja o sistema de equações lineares abaixo:

$$\begin{cases} x + 2y + 3z = 14 \\ x + 2y + 2z = 11 \\ x + 3y + 4z = 19 \end{cases}$$

Resolva e encontre o valor de x, y e z.

Combinação linear

Podemos escrever um vetor como uma combinação linear de um conjunto de outros vetores.

$$\begin{cases} a_{11}p_1 + a_{12}p_2 + ... + a_{1M}p_M = y_1 \\ a_{21}p_1 + a_{22}p_2 + ... + a_{2M}p_M = y_2 \\ \vdots \\ a_{N1}p_1 + a_{N2}p_2 + ... + a_{NM}p_M = y_N \end{cases}$$

Manipulando esta equação um pouco mais....

Combinação linear

Podemos escrever esta equação da seguinte forma:

$$p_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{N1} \end{bmatrix} + p_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{N2} \end{bmatrix} + \dots + p_M \begin{bmatrix} a_{1M} \\ a_{2M} \\ \vdots \\ a_{NM} \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$

O vetor \mathbf{y} é dado como a combinação linear de outros \mathbf{M} vetores \mathbf{a}_{M} !

Combinação linear

Podemos escrever esta equação da seguinte forma:

$$p_1 \mathbf{a}_1 + p_2 \mathbf{a}_2 + ... + p_M \mathbf{a}_M = \mathbf{y}$$

O vetor \mathbf{y} é dado como a combinação linear de outros \mathbf{M} vetores \mathbf{a}_{M} !

Dependência linear

Dizemos que o conjunto de vetores \mathbf{a}_{M} são **linearmente independentes (LI)**, se e somente se,

$$p_1 \mathbf{a}_1 + p_2 \mathbf{a}_2 + ... + p_M \mathbf{a}_M = \mathbf{0}$$

Para todo p_j , j=1,...,M, sejam iguais a zero.

Dependência linear

Dizemos que o conjunto de vetores \mathbf{a}_{M} são **linearmente independentes (LI)**, se e somente se,

$$p_1 \mathbf{a}_1 + p_2 \mathbf{a}_2 + ... + p_M \mathbf{a}_M = \mathbf{0}$$

Para todo p_i , j=1,...,M, sejam iguais a zero.

Se houver somente um p_j diferente de zero, os vetores serão **linearmente dependentes (LD)**.

Dependência linear

Dizemos que o conjunto de vetores \mathbf{a}_{M} são **linearmente independentes (LI)**, se e somente se,

$$p_1 \mathbf{a}_1 + p_2 \mathbf{a}_2 + ... + p_M \mathbf{a}_M = \mathbf{0}$$

Se for **LI**, dizemos que o sistema **tem uma solução trivial**, ou seja, **uma única solução**.

Se for **LD**, dizemos que o sistema **NÃO tem uma solução trivial**, ou seja, **tem infinitas soluções**.

Dependência linear versus Sistema linear

Como já vimos, um vetor y pode ser escrito como uma combinação linear de outros vetor aM. Uma maneira de saber quais as colunas (ou linhas) são LI é analisar o **posto** (*rank*) da matriz do sistema linear.

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1M} \\ a_{21} & a_{22} & \dots & a_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N1} & a_{N2} & \dots & a_{NM} \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_M \end{bmatrix}$$

Através dessa medida podemos analisar **a existência** e **a unicidade** da solução do sistema linear.

Objetivos da aula

- * Realizar a revisão dos conceitos de espaço vetorial
- * Definir as operações com matrizes e vetores
- * Entrar no contexto da solução de sistemas lineares
- * Esclarecer as notações que serão utilizadas ao longo do curso

Até breve!