安徽大学 2011 —2012 学年第 1 学期 《离散数学(上)》考试试题(A 卷)参考答案及评分标准

- 一、单选题(每小题2分,共20分) 1. D; 2. C; 3. D; 4. D; 5. C; 6. B; 7. C; 8. A; 9. B; 10. C.
- 二、判断题(每小题 1 分, 共 10 分, 对的打 \checkmark , 错的打×) $1. \times; 2. \times; 3. \checkmark; 4. \times; 5. \checkmark$
- 三、填空题(每小空2分,共20分)
 - 1. $\forall x \forall y (E(x) \land E(y) \rightarrow E(x+y)); \quad \forall x (I(x) \land \neg E(x^2) \rightarrow \neg E(x));$
 - 2. $\{\phi, \{a\}, \{b\}, \{a,b\}\}\}$; 4;

$$\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{bmatrix}; \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{bmatrix};
4. $\psi_{A-B}(x) = \begin{cases}
1, & x \in [0.5, 0.6] \\
0, & x \in U - [0.5, 0.6]
\end{cases}, \quad \psi_{A \oplus B}(x) = \begin{cases}
1, & x \in [0, 0.2] \cup [0.5, 0.6] \\
0, & x \in (0.2, 0.5) \cup (0.6, 1]
\end{cases};$$$

4.
$$\psi_{A-B}(x) = \begin{cases} 1, & x \in [0.5, 0.6] \\ 0, & x \in U - [0.5, 0.6] \end{cases}$$
, $\psi_{A \oplus B}(x) = \begin{cases} 1, & x \in [0, 0.2] \cup [0.5, 0.6] \\ 0, & x \in (0.2, 0.5) \cup (0.6, 1] \end{cases}$

 $5, <, =_{\circ}$

四、计算题(每小题10分,共20分)

1. (1) 哈斯图如右图 (2分)

(2) - (3), 下表每空2分

集合	最大元	最小元	极大元	极小元
$B = \{4,6,12\}$	12	无	12	4, 6
集合	上界	下界	最小上界	最大下界
$C = \{8,10,20\}$	无	2	无	2

2. 化简命题公式

$$G \iff ((P \rightarrow Q) \land (P \rightarrow R)) \rightarrow P$$

$$\Leftrightarrow \neg ((\neg P \lor Q) \land (\neg P \lor R)) \lor P$$
 2 \(\frac{\gamma}{2}\)

$$\iff$$
 $(P \land \neg Q) \lor (P \land \neg R) \lor P$

$$\Leftrightarrow$$
 $((P \land \neg Q) \lor P) \lor (P \land \neg R)$

$$\Leftrightarrow P \vee (P \wedge \neg R)$$

$$G \Leftrightarrow (P \land \neg Q \land \neg R) \lor (P \land \neg Q \land R) \lor (P \land Q \land \neg R) \lor (P \land Q \land R) \qquad (主析取范式) \qquad 2 分$$

$$\iff m_4 \!\vee\! m_5 \!\vee\! m_6 \!\vee\! m_7$$

$$\Leftrightarrow \sum (4,5,6,7)$$

$$\Leftrightarrow \pi(0,1,2,3)$$

14

$$\Leftrightarrow M_0 \land M_1 \land M_2 \land M_3$$

$$\Leftrightarrow$$
 $(P \lor Q \lor R) \land (P \lor Q \lor \neg R) \land (P \lor \neg Q \lor R) \land (P \lor \neg Q \lor \neg R)$ (主合取范式) 2 分

五、证明题(每小题10分,共30分)

1. 1
$$\exists xP(x) \rightarrow \forall x(P(x) \forall Q(x) \rightarrow R(x))$$
 P
2 $\exists xP(x)$ P
3 $\forall x(P(x) \forall Q(x) \rightarrow R(x))$ T, 1, 2, I₃ 2分
4 $\exists xQ(x)$ P
5 $Q(a)$ T, 4, ES 2分
6 $P(a) \forall Q(a)$ T, 5, I₁
7 $P(a) \forall Q(a) \rightarrow R(a)$ T, 3, US 2分
8 $R(a)$ T, 6, 7, I₃
9 $P(b)$ T, 2, ES
10 $P(b) \forall Q(b) \rightarrow R(b)$ T, 9, I₁
11 $P(b) \forall Q(b) \rightarrow R(b)$ T, 3, US 2分
12 $R(b)$ T, 10, 11, I₃
13 $R(a) \land R(b)$ T, 8, 13, 合取式

2. 设F 是非空集合A上的所有划分组成的集合簇,

 $\exists x\exists y(R(x) \land R(y))$

 $\forall \pi \in F$, π 细分 π 自身, 故 < F, 细分 > 是自反的;

3分

2分

T, 13, EG

 $\forall \pi_1, \pi_2 \in F$,若 π_1 细分 π_2 且 π_2 细分 π_1 ,则有 $\pi_1 = \pi_2$,故< F,细分>是反对称的; 3分 $\forall \pi_1, \pi_2, \pi_3 \in F$,若 π_1 细分 π_2 且 π_2 细分 π_3 ,则有 π_1 细分 π_3 ,故< F,细分>是传递的;3分因此,< F,细分>是偏序。 1分

3. 设 $f: R-N \to R$, f(x) = x, 则 f 是从 R-N 到 N 的单射函数,所以 $|R-N| \le |R|$ 。 3 分 构造从 R 到 R-N 的函数 $g: R \to R-N$ 如下:

$$g(x) = \begin{cases} 2x & x \in I_{-} \\ -2x - 1 & x \in N \\ x & 其它x \end{cases}$$
 4分

其中 I_- 为负整数集合,则 g 是从 N 到 R-N 的单射函数(双射函数),所以 $|R| \le |R-N|$ 。 综合以上,|R-N| = |R|。