СПбПУ Петра Великого

Высшая школа прикладной математики и вычислительной физики, ФизМех

Направление подготовки «01.03.02 Прикладная математика и информатика»

Отчёт по лабораторной работе \mathbb{N}^5

Тема

Решение задачи Коши для ОДУ 1-го порядка методами Рунге-Кутты

Дисциплина

Численные методы

Выполнил студент группы 5030102/00002 Преподаватель

Димитрюк Н. С.

1. Формулировка задачи и формализация задачи

Дана равномерная сетка на промежутке [a,b]: $x^n = \{x_i\}_{i=0}^n, x_0 = a, x_n = b, (x_i \in [a,b])$. Необходимо решить задачу Коши для ОДУ 1-го порядка (y' = f(x,y)) с начальным условием $y(a) = y_a$ (найти функцию y(x) такую, что $y(a) = y_a$), используя модифицированный метод Эйлера (2-го порядка).

Необходимо построить графики точного и полученного решений на отрезке для 2-х значений шага, график ошибки на заданном отрезке, построить графики зависимостей фактической точности и числа итераций от заданной точности, график нормы ошибки от величины возмущения входных данных при фиксированной заданной точности.

2. Алгоритм метода и условия его применимости

2.1 Условия применимости

Решение задачи Коши существует и единственно.

2.2 Алгоритм

Дано: отрезок [a,b], функция y'=f(x,y), точность ϵ , равномерная сетка с начальным значением шага $h, x_i \in [a,b], y_0=y(a)$.

Алгоритм:

- 1. Вычисления будем проводить в цикле, уменьшая шаг, пока не будет достигнута заданная точность.
- 2. В цикле по всему отрезку вычисляем значения искомой функции в узлах сетки по формулам: $\begin{cases} y_{k+\frac{1}{2}} = y_k + \frac{h}{2} f(x_k, y_k) \\ y_{k+1} = y_k + h f(x_{k+\frac{1}{2}}, y_{k+\frac{1}{2}}) \end{cases}, \text{ где } x_{k+\frac{1}{2}} = x_k + \frac{h}{2}, \text{ а } k \text{переменная цикла.}$
- 3. По правилу Рунге проверяем достижение заданной точности: $\frac{|y_b^{j-1}-y_b^j|}{2^2-1} < \epsilon$, где j и j-1 не степени, а верхние индексы, и j номер итерации цикла. Если это условие не выполняется, то удваиваем число узлов сетки, тем самым уменьшая величину шага в те же 2 раза, и возвращаемся к пункту 1. Если условие выполняется получаем искомую сеточную функцию y(x).

3-4. Предварительный анализ задачи и проверка условий применимости

Для существования и единственности решения задачи Коши необходимо, чтобы f(x,y) была непрерывной и имела непрерывную производную $\frac{\partial f}{\partial y}$ на отрезке решения [a,b].

- 1. $f(x,y) = \frac{-y}{x+1} y^2$, очевидно, что на отрезке [1,5] данная функция непрерывна.
- 2. Найдём производную f(x,y): $\frac{\partial f}{\partial y} = -\frac{1}{x+1} 2y$, очевидно, что она тоже непрерывна на отрезке [1,5].

5. Тестовый пример

Проведём пару итераций для ОДУ $y' = y^2(x+5) - y$ на отрезке [4,8] с начальными данными $y_0 = y(a) = 0.1$. Без сомнений, функция $f(x,y) = y^2(x+5) - y$ удовлетворяет условиям применимости. Начальное значение шага h = 4.

h = 4:

$$y_{0.5} = y_0 + \frac{h}{2}f(x_0, y_0) = 0.1 + \frac{4}{2}(0.1^2 \cdot (4+5) - 0.1) = 0.08$$

$$y_1 = y_0 + hf(x_{\frac{1}{2}}, y_{\frac{1}{2}}) = 0.1 + 4 \cdot (0.08^2 \cdot (6+5) - 0.08) = 0.0616$$

Проверим условие цикла (по правилу Рунге): $\frac{|y_b^1|}{2^2-1} \approx 0,02053$

Уменьшаем значение шага в два раза:

h = 2:

$$\begin{array}{l} y_{0.5}=y_0+\frac{h}{2}f(x_0,y_0)=0.1+\frac{2}{2}(0.1^2\cdot(4+5)-0.1)=0.09\\ y_1=y_0+hf(x_{\frac{1}{2}},y_{\frac{1}{2}})=0.1+2\cdot(0.09^2\cdot(5+5)-0.09)=0.082\\ y_{1.5}=y_1+\frac{h}{2}f(x_1,y_1)=0.082+\frac{2}{2}(0.082^2\cdot(6+5)-0.082)=0.073964\\ y_2=y_1+hf(x_{1.5},y_{1.5})=0.082+2\cdot(0,073964^2\cdot(7+5)-0,073964)=0.0654\\ \Pi\text{роверим условие цикла (по правилу Рунге}): \frac{|y_b^1-y_b^2|}{2^2-1}=\frac{|0.0616-0.0654|}{3}=0.00127 \end{array}$$

Уменьшим ещё в два раза:

h = 1:

$$y_{0.5} = y_0 + \frac{h}{2}f(x_0,y_0) = 0.1 + \frac{1}{2}(0.1^2 \cdot (4+5) - 0.1) = 0.095$$

$$y_1 = y_0 + hf(x_{\frac{1}{2}},y_{\frac{1}{2}}) = 0.1 + 1 \cdot (0.095^2 \cdot (4.5+5) - 0.095) = 0.09074$$

$$y_{1.5} = y_1 + \frac{h}{2}f(x_1,y_1) = 0.09074 + \frac{1}{2}(0.09074^2 \cdot (5+5) - 0.09074) = 0.08654$$

$$y_2 = y_1 + hf(x_{1.5},y_{1.5}) = 0.09074 + 1 \cdot (0.08654^2 \cdot (5.5+5) - 0.08654) = 0.08284$$

$$y_{2.5} = y_2 + \frac{h}{2}f(x_2,y_2) = 0.08284 + \frac{1}{2}(0.08284^2 \cdot (6+5) - 0.08284) = 0.07916$$

$$y_3 = y_2 + hf(x_{2.5},y_{2.5}) = 0.08284 + 1 \cdot (0.07916^2 \cdot (6.5+5) - 0.07916) = 0.07574$$

$$y_{3.5} = y_3 + \frac{h}{2}f(x_3,y_3) = 0.07574 + \frac{1}{2}(0.07574^2 \cdot (7+5) - 0.07574) = 0.07229$$

$$y_4 = y_3 + hf(x_{3.5},y_{3.5}) = 0.07574 + 1 \cdot (0.07229^2 \cdot (7.5+5) - 0.07229) = 0.06877$$
 Проверим условие цикла (по правилу Рунге):
$$\frac{|y_b^2 - y_b^3|}{2^2 - 1} = \frac{0.00337}{3} = 0,00112$$

Как мы видем значение условия убывает, следовательно, продолжая цикл, пока значение не станет меньше заданной точности, мы получим искомую сеточную функцию y(x).

6. Контрольные тесты

- 1. Отрезок: [1, 5]
- 2. Начальное условие: $y_0 = y(a) = y(1) = \frac{1}{2\ln(2)}$
- 3. Два значения шага: h = 0.03125; 0.0625
- 4. Функция: $f(x,y) = \frac{-y}{x+1} y^2$
- 5. Заданная точность: $\epsilon = 10^{-i}$, (i = 1, ..., 12)
- 6. Возмущение начальных данных: $\delta = 10^{-j}$, (j = 0, ..., 11)
- 7. Фиксированная точность для графика ошибки от возмущений: $\epsilon = 10^{-3}$

8. Точное решение: $y = \frac{1}{(x+1)\ln(x+1)}$

7. Модульная структура программы

1. double Func(double x, double y) — вычисляет значение заданной функции $(f(x,y) = \frac{-y}{x+1} - y^2)$ в точке (x,y).

Параметры:

x — первая координата точки

у — вторая координата точки

Возвращаемое значение: занчение функции в точке (x, y).

2. double FuncExact(double x) — вычисляет значение заданного точного решения $(y = \frac{1}{(x+1)\ln(x+1)})$ в точке x.

Параметры:

x — точка

Возвращаемое значение: занчение функции в точке x.

3. double* Eiler(double* grid, double eps) — вычисляет значния y в узлах сетки с помощью модифицированного метода Эйлера с заданной точностью.

Параметры:

grid — сетка

eps — заданная точность

Возвращаемое значение: значения y в узлах сетки grid, найденные с заданной точностью eps.

8. Численный анализ

На графиках точного решения и найденного на отрезке для двух значений шага видно, что решения почти совпадают, лежат очень близко друг к другу, но при меньшем значении шага видно, что графики расположены ещё ближе друг к другу, чем при большем значении шага.

На графиках ошибки на отрезке для двух значений шага видно, что ошибка сначала возрастает, потому что в начальной точке значение точное, а затем плавно убывает, стремясь к асимптоте: для графика с шагом h=0.0625 асимптота $y\approx 10^{-4}$, а для шага h=0.03125 асимптота $y\approx 10^{-5}$.

На грфике зависимости числа итераций от заданной точности видно, что при повышении точности вычислений возрастает и количество итераций, необходимой для достижения этой заданной точности. При повышении точности на порядок в среднем требуется на $\Delta n \approx 1.73 \approx 2$ итерации больше.

На графике зависимости фактической точности от заданной точности видно, что при повышении точности вычислений повышается и фактическая точность, то есть при повышении точности вычислений фактическая ошибка вычислений убывает. При этом график фактической точности идёт "параллельно" биссектрисе и выше неё.

На графике зависимости нормы ошибки от от величины возмущения начальных данных при фиксированной точности $\epsilon=10^{-3}$ видно, что для возмущения на порядок или более меньше точности ошибка не изменяется график является прямой. А начиная с возмущения 10^{-3} , при увеличении возмущения увеличивается и ошибка и максимального значения ока достигает $\Delta=1$ при возмущении $\delta=1$.

9. Вывод

В ходе работы было найдено численное решение задачи Коши для ОДУ 1-го порядка с помощью модифицированного метода Эйлера на равномерной сетке. Были построены графики зависимостей числа итераций от заданной точности, фактической точности от заданной и нормы ошибки от возмущений в начальных данных, а также графики точного решения и полученного, и ошибки на отрезке для двух значений шага. Итак, чем меньше брать значение шага для построения сетки, тем точнее получается численное решение.

10. Исправления

2.1 Условия применимости

Условия применимости метода это существование и единственность решения задачи Коши. Для этого необходимо, чтобы функция y' = f(x,y) была непрерывной и удовлетворяла условию Липшица с константой L, то есть $|f(x,y) - f(x,\tilde{y})| \le L|y - \tilde{y}|$ для любого $x \in [a,b]$.

2.2 Алгоритм

Дано: отрезок [a,b], функция y'=f(x,y), точность ϵ , равномерная сетка с начальным значением шага $h, x^h=\{x_i\}_{i=0}^n, x_0=a, x_n=b, (x_i\in[a,b]), y_0=y_h(a).$