

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

الديوان الوطني للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: آداب وفلسفة، لغات أجنبية

المدة: 02 سا و30 د

دورة: 2021

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

التمرين الأول: (06 نقاط)

b = 1715 و a = 2926 : و طبیعیین حیث a = 2926 و کددین طبیعیین حیث

عيّن باقى القسمة الإقليدية لكلّ من العددين a و b على العدد (1

 $b \equiv -1[13]$: ثمّ استنتج أنّ: $b+1 \equiv 0[13]$: ثمّ استنتج أنّ العدد $a^{1442}+b^{2021}$ على 13 على 14 بيّن أنّ العدد

 $A_n = 27^n + 1$: n نضع من أجل كلّ عدد طبيعي (3

 $A_n\equiv 2igl[13igr]$. تُحقَّق أنّ: $1[13]\equiv 27$ ثمّ استنتج أنّ

 $A_n + n + 11 \equiv 0$ [13] جين الأعداد الطبيعية n حتى يكون:

التمرين الثاني: (06 نقاط)

q المتتالية العددية u_0 هندسية حدودها موجبة تماما، حدّها الأوّل u_n وأساسها

$$u_1 \times u_3 = 144$$
 و $u_0 = 3$

q=2 : تمّ بيّن أنّ u_2 احسب (1

 $u_n = 3 \times 2^n$ ، n عدد طبیعی (2

(u_n) متزايدة تماما. لبيّن أنّ المتتالية

 (u_n) عين قيمة الحدّ الخامس للمتتالية (4

 $S_n = u_0 + u_1 + \dots + u_n$ نضع: n من أجل كلّ عدد طبيعي n نضع (5

 $S_n = 3(2^{n+1} - 1)$: أنّ

التمرين الثالث: (08 نقاط)

 $f(x) = x^3 + 3x^2 - 4$ بنالة العددية f معرّفة على \mathbb{R} بنالة العددية المعرّفة على الدّالة العددية العددية المعرّفة على الدّالة العددية العددية المعرّفة على العرّفة على العرّفة على العرّفة العرّفة العرّفة على العرّفة على العرّفة الع

 $\left(O; \overline{i}, \overline{j}\right)$ المتعامد المتعامد المتعامد المتعامد المتعامد المتعامد (C) و

 $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to -\infty} f(x)$ احسب (1

f'(x) = 3x(x+2)، x عدد حقیقی عدد من أجل كلّ عدد (2

f'(x) ادرس حسب قيم العدد الحقيقى x إشارة

[-2;0] على الدّالة f متزايدة تماما على كلّ من $[0;+\infty[$ و $]-\infty;-2]$ ومتناقصة تماما على f

f شكّل جدول تغيّرات الدّالة f

 $f(x) = (x-1)(x+2)^2$ ، x عدد حقیقی عدد کلّ عدد طقیق انّه من أجل کلّ عدد حقیقی الّه من أجل کلّ عدد حقیقی

 $m{\psi}$. استنتج إحداثيات نقطتي تقاطع المنحنى (C) مع حامل محور الفواصل.

I(-1;-2) عند النّقطة y=-3x-5 بيّن أنّ y=-3x-5 معادلة ل

 $f(1) = f(0) \cdot f(-2) \cdot f(-3) = (6)$

(C) ثمّ المنحنى (T) ثمّ المنحنى ب.

الموضوع الثانى

التمربن الأول: (06 نقاط)

c=1954 و b=1442 ، a=2021 و b ، a و b ، a و b ، b=1442 التكن الأعداد الطبيعية

- عين باقى القسمة الإقليدية للعددين a و c على 3 (1
 - ع بيّن أنّ العددين a و b متوافقان بترديد (2)
- 3 يقبل القسمة على a+b-c يقبل القسمة على 3.

 $n+a+b-c\equiv 0$ [3] :ب. استنتج الأعداد الطبيعية n حتى يكون

3 على 3 على العدد $(a \times c)^{1442} + (b \times c)^{2021}$ على (4

التمرين الثاني: (06 نقاط)

 $v_n = 3n + 2$ و $u_n = 3 \times 4^n$ بناليتان العدديتان (v_n) و (v_n) معرّفتان على المتتاليتان العدديتان لكلّ سؤال جواب واحد فقط صحيح من بين الأجوبة الثّلاثة المقترحة، عيّنه مع التبرير.

الحدّ الخامس للمتتالية (u_n) يساوي:

12288 (ج ب) 768 أ) 3072

د متتالية: (v_n) هي متتالية:

ج) لا حسابية ولا هندسية.

ب) هندسیة.

أ) حسابية.

: هي متتالية (u_n) (3

ج) متزايدة تماما.

ب) غير رتيبة.

أ) متناقصة تماما.

(4) المجموع: $v_0 + v_1 + ... + v_{35}$ يساوي:

ج) 1890

ب) 1962

3815(1

التمربن الثالث: (08 نقاط)

 $g(x) = x^3 - 6x^2 + 9x$ بناية العددية g معرّفة على \mathbb{R} بناية العددية العددية العددية والعرّفة على الدّالة العددية العرّفة على الدّالة العددية العرّفة على الدّالة العددية العرّفة على العرّفة

 $\left(O\,;ec{i}\,,ec{j}\,
ight)$ سنجانس المتعامد المتعامد المتعامد المستوي المنسوب إلى المعلم المتعامد المتجانس

- $\lim_{x \to \infty} g(x)$ و ا $\lim_{x \to \infty} g(x)$ احسب (1
- g'(x) = 3(x-3)(x-1) ، x عدد حقیقی عدد علی عدد الله من أجل كل عدد علی أ. (2
 - g'(x) إشارة x إشارة ويم العدد الحقيقي العدم العدد الحقيقي العدم ال

$\overline{2021}$ اختبار في مادة: الرياضيات / الشعبة: آداب وفلسفة، لغات أجنبية / بكالوريا

- [1;3] متزایدة تماما علی کلّ من $[3;+\infty[$ و $]\infty+[3]$ ومتناقصة تماما علی [3;3]
 - g شكِّل جدول تغيّرات الدّالة 4
 - $g(x) = x(x-3)^2$ ، x عدد حقیقی عدد أجل كل عدد ألك من أبّه من أجل كل عدد عقیقی . أ
 - $oldsymbol{\psi}$. استنتج احداثیات نقطتی تقاطع المنحنی (C) مع حامل محور الفواصل
 - A(2;2) عند النّقطة y=-3x+8 بيّن أنّ y=-3x+8 عند النّقطة و (C) عند النّقطة عند النّقطة (B)
 - g(4) و g(0) . 1
 - (C) و المنحنى (T)

العلامة		(h w ^g h)
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
		التمرين الأول: (06 نقاط)
01,50	2x0,75	باقي قسمة العدد a على a 13 هو a باقي قسمة العدد b على a على 13 المو a
02,25	0,5	2) أ . تبيين أنّ: [13] b+1≡0
	0,25	$b \equiv -1[13]$ استنتاج أنّ
	3x0,5	$a^{1442}+b^{2021}\equiv 0$ [13] : منه $b^{2021}\equiv -1$ و $a^{1442}\equiv 1$ منه $a^{1442}\equiv 1$
	0,5	3) أ . التَحقُّق أنّ: [13] ≡ 27
02,25	2x0,5	$27^n + 1 \equiv 2[13]$: منه $27^n \equiv 1[13]$ لدينا
	3x0.25	$n = 13k \; ; \; k \in \mathbb{N} \; :$ ب. لدينا $n = 0[13] + n + n + 11 = 0[13]$ معناه $n = 13k \; ; \; k \in \mathbb{N}$
		التمرين الثاني: (06 نقاط)
01.70	0,75	$u_2 = 12$ (1
01,50	0,75	q=2 تبیین أنّ $:$
0,75	0,5+0,25	$u_n=3\times 2^n$: منه $u_n=u_0\times q^n$ ادینا (2
0,50	2x0,25	. لدينا $u_n = 3 \times 2^n$ إذن: $u_{n+1} - u_n > 0$ بالتالي $u_{n+1} - u_n = 3 \times 2^n$ لدينا (3
0,75	0,5+0,25	$u_4=48$: منه، u_4 الحدّ الخامس هو u_4
	0,75	$S_n = 3 \times \frac{2^{n+1}-1}{2-1}$ إذن: $S_n = u_0 \times \frac{q^{n+1}-1}{q-1}$ أ. لدينا: (5
	0,5	$q-1$ $q-1$ $S_n=3(2^{n+1}-1)$ بالتالي:
02,50	0,25	, , , , , , , , , , , , , , , , , , , ,
	4x0,25	$S_n = 381$. ب. تعيين العدد الطبيعي n حتى يكون: n
		$n=6$ تعني $S_n=381$ نجد $S_n=381$
		التمرين الثالث: (08 نقاط)
01,00	2x0,5	$\lim_{x \to +\infty} f(x) = +\infty \int_{x \to -\infty} \lim_{x \to -\infty} f(x) = -\infty $ (1)
	2×0,5	f'(x) = 3x(x+2) . (2
02,50	2x0,5	f'(x) ب. إشارة
,	2x0,25	$[0;+\infty[$ و $]-\infty;-2]$ متزایدة تماما علی کلّ من f
		$\left[-2;0 ight]$ ومتناقصة تماما على

العلامة		(1 15t)
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
0,50	0,5	x $-\infty$ -2 0 $+\infty$ $f'(x)$ $+$ 0 $+$ 0 $+\infty$ $f'(x)$ $+$ 0 $+$ 0 $+\infty$ $+\infty$ $f(x)$ $-\infty$ -4
	0,5	$f(x) = (x-1)(x+2)^2$ أ. التَحقِّق: (4
01,00	2×0,25	$oldsymbol{arphi}$. احداثیات نقطتی تقاطع المنحنی (C) مع حامل محور الفواصل هی: $(-2;0)$ و $(0;0)$
01,00	4x0,25	رينا: $y = f'(-1)(x+1) + f(-1)$ و $y = f'(-1)(x+1) + f(-1)$ منه $y = -3x - 5$ المعادلة:
	4x0,25	f(1) = 0 $f(0) = -4$ $f(-2) = 0$ $f(-3) = -4$. (6
02,00	0,25	ب. رسم المماس (T) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C

العلامة		/ *12**11				
مجموعة	مجزأة	عناصر الإجابة (الموضوع االثاني)				
	التمرين الأول: (06 نقاط)					
01,50	2x0,75	a باقي القسمة الإقليدية للعدد a على a هو b باقي القسمة الإقليدية للعدد b على b هو b				
0,75	0,75	$a\!-\!b\!=\!579:3$ تبيان أنّ العددين a و b متوافقان بترديد (2				
02.50	2x0,75	$a+b-c\equiv 0$ منه : $a+b-c\equiv 2+2-1$ اً . تبيان أنّ العدد (3) العدد				
02,50	2x0,50	$n=3k\;;k\in\mathbb{N}\;$ نجد: $n=0[3]:$ معناه $n+a+b-c\equiv0[3]$				
01,25	4x0,25 0,25	$b imes c \equiv -1[3]$ و $a imes c \equiv -1[3]$ لدينا: (4 $(b imes c)^{2021} \equiv -1[3]$ و $(a imes c)^{1442} \equiv 1[3]$ منه: $(a imes c)^{1442} + (b imes c)^{2021} \equiv 0[3]$ بالتالي: $(a imes c)^{1442} + (b imes c)^{2021} \equiv 0[3]$				
		التمرين الثاني: (06 نقاط)				
01,50	01+0,50	1) الإجابة الصحيحة هي: ب) ، التبرير .				
01,50	01+0,50	2) الإجابة الصحيحة هي: أ) ، التبرير.				
01,50	01+0,50	3) الإجابة الصحيحة هي: ج) ، التبرير.				
01,50	01+0,50	4) الإجابة الصحيحة هي: ب) ، التبرير.				
	التمرين الثالث: (08 نقاط)					
01,00	0.5x2	$\lim_{x \to +\infty} g(x) = +\infty \text{o} \lim_{x \to -\infty} g(x) = -\infty \textbf{(1)}$				
02,00	01	g'(x) = 3(x-3)(x-1) . $(2$				
	2×0,50	g '(x) ب. إشارة				
00,50	2x0,25	$[1;3]$ متزایدة تماما علی کلّ من $[1;\infty-[$ و $]\infty+;3]$ ومتناقصة تماما علی g (3				
00,50	0,50	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

العلامة		عنامير الأحادة الأموضوع الأثاني
مجموعة	مجزأة	عناصر الإجابة (الموضوع االثاني)
01,00	0,50	$g(x) = x(x-3)^2 \cdot 5$
	2x0,25	(3;0) و $(0;0)$ عند الفواصل هي: $(0;0)$ و $(0;0)$
01,00	4x0,25	y = -3x + 8, $g(2) = 2$, $g'(2) = -3$, $y = g'(2)(x - 2) + g(2)$ (6
	0,25x2	g(4) = 4 و $g(0) = 0$. أ (7)
02,00	0,50	ب. رسم المماس (T) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C