Data Wrangling with *dplyr* & *tidyr*An introduction

Pierre-Alexandre Fonta R Lunchs - UniGe 10.04.18

Disclaimer

This presentation is a voluntary work.

My current and past institutions are therefore <u>not</u> responsible for its content.

Objectives

Discover how to easily go from raw data to data ready for analytics with R.

Make your life easier with *dplyr* & *tidyr*.

Increase Data Literacy.

Definitions

Data Analytics

Data Analytics is the discovery, interpretation, and communication of <u>meaningful patterns</u> <u>in data</u>.

https://en.wikipedia.org/wiki/Analytics

Data Wrangling

Data Wrangling [...] is the process of transforming and mapping data from one 'raw' data form into another format with the intent of making it more appropriate and valuable for a variety of downstream purposes such as analytics.

https://en.wikipedia.org/wiki/Data wrangling

Data Literacy

Data Literacy is the ability to read, understand, create and communicate data as information. [...] [D]ata literacy focuses on the <u>competencies involved in working with data</u>.

As data collection and sharing become routine and data analysis [...] become[s] common ideas in the news, business, government and society, it becomes more and more important for students, citizens, and readers to have some data literacy.

https://en.wikipedia.org/wiki/Analytics

From the field

Personal experience - Various data

numbers + texts + networks

bibliographic databases
 (Web of Science, PubMed)

numbers

- serious game (RTS Tabula Rasa)
- economic data (IHS Life Sciences)
- operations data (company)
- statistical data (INSEE)

numbers + networks

social networks (Twitter)

states / events sequences

 biographical longitudinal data (TraMineR)

numbers + texts

semantic text annotations

texts

- press releases
- web pages / blogs
- CVs (internal)
- job boards (Indeed)

Personal experience - Various environments

Tips - The Zen of Python

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Flat is better than nested.
Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

In the face of ambiguity, refuse the temptation to guess.

There should be one - and preferably only one - obvious way to do it.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.

https://www.python.org/dev/peps/pep-0020/#id3

Tips - Might be obvious, but...

1/2

We need to understand the logic tomorrow. Our colleagues too.

Reusing variables part of the transformation logic is almost 'irresponsible'.

Modifying a logic used several times but not generalized as a function is a nightmare.

The dataset structure and the data should not be modified by the same logic / code.

Tips - Might be obvious, but...

2/2

The time spend to format the logic to present it to non expert people is significant.

No time for implementing or optimizing the operations at the dataset level.

Data rule. We need interactivity to see them before and after.

We need a 'notebook' to capture methodology and results.

tibble A modern *data.frame*!

At the beginning of the tidyverse were...

Tibbles!

Comparing to data.frames, they:

- complain when a variable does not exist
- don't change variable names or types
- don't do partial matching
- have a better print()

*tidyr*Create tidy data!

Tidy data

Each variable is in a column.

Each observation is a row.

Each value is a cell.

tidyr - go from wide to long

gather(data, key, value, ..., na.rm = FALSE,
convert = FALSE, factor_key = FALSE)

gather() moves column names into a **key** column, gathering the column values into a single **value** column.

gather(table4a, `1999`, `2000`, key = "year", value = "cases")

tidyr - go from long to wide

spread(data, key, value, fill = NA, convert = FALSE,
drop = TRUE, sep = NULL)

spread() moves the unique values of a **key** column into the column names, spreading the values of a **value** column across the new columns.

table2

0.7K 19M 2K	A A B	year 1999 2000	0.7K 2K	19N 20N
19M	Α	2000		Contract of the Contract of th
			2K	201
2K	В	1000		/
		1999	37K	172
20M	В	2000	80K	174
37K	С	1999	212K	1T
72M	С	2000	213K	1T
80K				
174M				
212K				
1T				
213K				
1T				
	74M 212K 1T	74M 212K 1T 213K	74M 212K 1T 213K	74M 212K 1T 213K

key value

spread(table2, type, count)

tidyr - split a column into columns

```
separate(data, col, into, sep = "[^[:alnum:]]
+", remove = TRUE, convert = FALSE,
extra = "warn", fill = "warn", ...)
```

Separate each cell in a column to make several columns.

table3

country	year	rate		country	year	cases	pop
Α	1999	0.7K/19M		Α	1999	0.7K	19M
Α	2000	2K/20M	_	Α	2000	2K	20M
В	1999	37K/172M		В	1999	37K	172
В	2000	80K/174M		В	2000	80K	174
С	1999	212K/1T		С	1999	212K	1T
С	2000	213K/1T		С	2000	213K	1T

separate(table3, rate,
into = c("cases", "pop"))

tidyr - handle missing values

drop_na(data, ...)

Drop rows containing NA's in ... columns.

 $drop_na(x, x2)$

fill(data, ..., .direction = c("down", "up")**)**Fill in NA's in ... columns with most recent non-NA values.

replace_na(data, replace = list(), ...) Replace NA's by column.

 $replace_na(x, list(x2 = 2))$

*dplyr*Handle your data!

Pipes

$$x \% > \% f(y)$$
 is equivalent to $f(x, y)$

dplyr - summarise rows

VARIATIONS

summarise_all() - Apply funs to every column.
summarise_at() - Apply funs to specific columns.
summarise_if() - Apply funs to all cols of one type.

dplyr - group rows by variable(s)

```
mtcars %>%
group_by(cyl) %>%
summarise(avg = mean(mpg))

group_by(.data, ..., add = ungroup(x....)

FALSE)
Returns copy of table
grouped by ...
g_iris <- group_by(iris, Species)
```

dplyr - keep specific rows

filter(.data, ...**)** Extract rows that meet logical criteria. *filter(iris, Sepal.Length > 7)*

distinct(.data, ..., .keep_all = FALSE) Remove
rows with duplicate values.
distinct(iris, Species)

slice(.data, ...) Select rows by position. *slice*(*iris*, *10:15*)

top_n(x, n, wt) Select and order top n entries (by group if grouped data). *top_n(iris, 5, Sepal.Width)*

dplyr - order rows

arrange(.data, ...) Order rows by values of a
column or columns (low to high), use with
desc() to order from high to low.
arrange(mtcars, mpg)
arrange(mtcars, desc(mpg))

dplyr - keep specific variables

pull(.data, var = -1) Extract column values as
a vector. Choose by name or index.
pull(iris, Sepal.Length)

select(.data, ...)
Extract columns as a table. Also select_if().
select(iris, Sepal.Length, Species)

Use these helpers with select (),
e.g. select(iris, starts_with("Sepal"))

starts_with(match)

contains(match)
ends_with(match)
matches(match)

dplyr - rename variable

rename(.data, ...**)** Rename columns. rename(iris, Length = Sepal.Length)

dplyr - add new variable(s)

dplyr - join datasets

d w NA 1

A B C D a t 1 3 b u 2 2 c v 3 NA	left_join(x, y, by = NULL, copy=FALSE, suffix=c(".x",".y"),) Join matching values from y to x.
A B C D a t 1 3 b u 2 2 d w NA 1	<pre>right_join(x, y, by = NULL, copy = FALSE, suffix=c(".x",".y"),) Join matching values from x to y.</pre>
A B C D a t 1 3 b u 2 2	<pre>inner_join(x, y, by = NULL, copy = FALSE, suffix=c(".x",".y"),) Join data. Retain only rows with matches.</pre>
A B C D a t 1 3 b u 2 2	<pre>full_join(x, y, by = NULL, copy=FALSE, suffix=c(".x",".y"),)</pre>

Join data. Retain all values, all rows.

Use **suffix** to specify suffix to give to duplicate column names. $left_join(x, y, by = c("C" = "D"), suffix = <math>c("1", "2"))$

dplyr - set operations on rows

- semi_join(x, y, by = NULL, ...)

 a t 1
 Return rows of x that have a match in y.

 USEFUL TO SEE WHAT WILL BE JOINED.
- anti_join(x, y, by = NULL, ...)

 Return rows of x that do not have a match in y. USEFUL TO SEE WHAT WILL NOT BE JOINED.

Use **setequal()** to test whether two data sets contain the exact same rows (in any order).

dplyr - functions for summarise()

_ _ _

COUNTS

LOCATION

mean() - mean, also mean(!is.na()) median() - median

LOGICALS

mean() - Proportion of TRUE's sum() - # of TRUE's

POSITION/ORDER

dplyr::first() - first value dplyr::last() - last value

dplyr::nth() - value in nth location of vector

RANK

quantile() - nth quantile min() - minimum value max() - maximum value

SPREAD

IQR() - Inter-Quartile Rangemad() - median absolute deviationsd() - standard deviationvar() - variance

dplyr - functions for mutate()

OFFSETS

dplyr::lag() - Offset elements by 1
dplyr::lead() - Offset elements by -1

CUMULATIVE AGGREGATES

RANKINGS

```
dplyr::cume_dist() - Proportion of all values <=
dplyr::dense_rank() - rank with ties = min, no
gaps
dplyr::min_rank() - rank with ties = min
dplyr::ntile() - bins into n bins
dplyr::percent_rank() - min_rank scaled to [0,1]
dplyr::row_number() - rank with ties = "first"</pre>
```

MATH

+,-,*,/,^,%/%, %% - arithmetic ops log(), log2(), log10() - logs <, <=, >, >=, !=, == - logical comparisons dplyr::between() - x >= left & x <= right dplyr::near() - safe == for floating point numbers

MISC

Jupyter A multilanguage notebook!

Jupyter Notebook

https://jupyter.org

JupyterLab - Coming Soon (beta)

https://jupyterlab.readthedocs.io/en/latest/images/jupyterlab.png

Demo

Takeaways

Takeaways

dplyr / tidyr syntax

- beautiful (ugly)
- explicit (implicit)
- simple (complex)
- readable, easy to explain

tidy data

- flat (nested)
- analytics oriented

Jupyter

- interactive
- code, outputs, and comments in one place

To go further

Databases (dbplyr)

http://dbplyr.tidyverse.org

Programming

http://dplyr.tidyverse.org/articles/programming.html

Windows functions

http://dplyr.tidyverse.org/articles/window-functions.html

References

tibble

http://tibble.tidyverse.org

dplyr

http://dplyr.tidyverse.org

https://github.com/rstudio/cheatsheets/raw/master/data-transformation.pdf

tidyr

http://tidyr.tidyverse.org

https://github.com/rstudio/cheatsheets/raw/master/data-import.pdf