```
In [324]: #Goal: Predict the sales price for each house.
In [325]: #For each Id in the test set, predict the value of the SalePrice variable.
In [326]: #Using DecisionTreeRegressor to create a model, use the model to predict on the new feature list, assign the
In [327]: #Load the packages
           import pandas as pd
           import numpy as np
           import seaborn as sns
           import matplotlib.pyplot as plt
           from sklearn.model_selection import train_test_split
           from sklearn.model selection import GridSearchCV
           from sklearn import metrics
           from sktools import GradientBoostingFeatureGenerator
           from sklearn.pipeline import Pipeline
           from sklearn.linear_model import LinearRegression
           from sklearn.metrics import mean_absolute_error
In [328]: #Load data
           train_df = pd.read_csv('train.csv')
           test_df = pd.read_csv('test.csv')
           train_df.head()
Out[328]:
               Id MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape LandContour Utilities ... PoolArea PoolQC Fence MiscFeature
            0
              1
                          60
                                   RL
                                             65.0
                                                    8450
                                                          Pave
                                                                NaN
                                                                                           AllPub ...
                                                                                                           0
                                                                                                                      NaN
                                                                                                                                 NaN
                                                                          Reg
                                                                                      Lvl
                                                                                                                NaN
                                                                                           AllPub ...
               2
                                             0.08
                                                    9600
                          20
                                   RL
                                                          Pave
                                                                NaN
                                                                          Reg
                                                                                                           0
                                                                                                                NaN
                                                                                                                      NaN
                                                                                                                                 NaN
            1
                                                                                      Lvl
            2
              3
                          60
                                   RL
                                             68.0
                                                   11250
                                                           Pave
                                                                NaN
                                                                          IR1
                                                                                      LvI
                                                                                           AllPub ...
                                                                                                                NaN
                                                                                                                      NaN
                                                                                                                                  NaN
                          70
                                   RL
                                             60.0
                                                                          IR1
                                                                                           AllPub ...
            3
              4
                                                    9550
                                                           Pave
                                                                NaN
                                                                                      LvI
                                                                                                           0
                                                                                                                NaN
                                                                                                                      NaN
                                                                                                                                  NaN
                          60
                                   RL
                                                   14260
                                                                          IR1
                                                                                           AllPub ...
              5
                                             84.0
                                                          Pave
                                                                NaN
                                                                                                           0
                                                                                                                NaN
                                                                                                                      NaN
                                                                                                                                 NaN
            4
                                                                                      Lvl
           5 rows × 81 columns
In [329]: |test_df.head()
Out[329]:
                 Id MSSubClass
                               MSZoning LotFrontage LotArea Street Alley LotShape LandContour Utilities ... ScreenPorch PoolArea
                                                                                                                          PoolQC Fen
            0 1461
                            20
                                     RH
                                               80.0
                                                      11622
                                                             Pave
                                                                  NaN
                                                                            Reg
                                                                                             AllPub ...
                                                                                                              120
                                                                                                                        0
                                                                                                                              NaN
                                                                                                                                  Mnl
                            20
                                     RL
                                                      14267
                                                                  NaN
                                                                            IR1
                                                                                             AllPub ...
                                                                                                                0
                                                                                                                        0
            1 1462
                                               81.0
                                                             Pave
                                                                                        Lvl
                                                                                                                              NaN
                                                                                                                                    Ν
                                                                                                                              NaN Mnl
                            60
                                     RL
                                                      13830
                                                                  NaN
                                                                            IR1
                                                                                             AllPub ...
                                                                                                                0
            2 1463
                                               74.0
                                                             Pave
                                                                                        Lvl
                                                                                                                        0
            3 1464
                            60
                                     RL
                                               78.0
                                                      9978
                                                             Pave
                                                                  NaN
                                                                            IR1
                                                                                         Lvl
                                                                                             AllPub ...
                                                                                                                              NaN
                                                                                                                                    Ν
            4 1465
                           120
                                     RL
                                               43.0
                                                      5005
                                                             Pave
                                                                  NaN
                                                                            IR1
                                                                                       HLS
                                                                                             AllPub ...
                                                                                                              144
                                                                                                                         0
                                                                                                                              NaN
                                                                                                                                    Ν
           5 rows × 80 columns
```

```
In [330]: #Drop NaN Arributes
    train_df=train_df.drop(['Alley','PoolQC','Fence','FireplaceQu','MiscFeature'],axis=1)
    train_df.drop(['Id'],axis=1,inplace=True)
    train_df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1460 entries, 0 to 1459 Data columns (total 75 columns): # Column Non-Null Count Dtype 0 MSSubClass 1460 non-null int64 1 MSZoning 1460 non-null object float64 2 LotFrontage 1201 non-null 3 LotArea 1460 non-null int64 4 Street 1460 non-null object 5 LotShape 1460 non-null object LandContour 1460 non-null object 6 7 Utilities 1460 non-null object 8 LotConfig 1460 non-null object 9 LandSlope 1460 non-null object 10 Neighborhood 1460 non-null object 11 Condition1 1460 non-null object 12 Condition2 1460 non-null object 13 BldgType 1460 non-null object 14HouseStyle 1460 non-null object 15 OverallQual 1460 non-null int64 16 OverallCond 1460 non-null int64 17 YearBuilt 1460 non-null int64 18 YearRemodAdd 1460 non-null int64 RoofStyle 19 1460 non-null object 20 RoofMatl 1460 non-null object 21 Exterior1st 1460 non-null object Exterior2nd 1460 non-null object MasVnrType 1452 non-null object 23 float64 24MasVnrArea 1452 non-null 25 ExterQual 1460 non-null object ExterCond 26 1460 non-null object 1460 non-null 27 Foundation object 28 BsmtQual 1423 non-null object 29 BsmtCond 1423 non-null object 30 BsmtExposure 1422 non-null object BsmtFinType1 31 1423 non-null object 32 BsmtFinSF1 1460 non-null int64 33 BsmtFinType2 1422 non-null object 34 BsmtFinSF2 1460 non-null int64 35 BsmtUnfSF 1460 non-null int64 36 TotalBsmtSF 1460 non-null int64 37 Heating 1460 non-null object 1460 non-null 38 HeatingQC object 39 1460 non-null CentralAir object 40 Electrical 1459 non-null object 411stFlrSF 1460 non-null int64 42 2ndFlrSF 1460 non-null int64 1460 non-null 43 LowQualFinSF int64 44 GrLivArea 1460 non-null int64 45 BsmtFullBath 1460 non-null int64 46 BsmtHalfBath 1460 non-null int64 47 FullBath 1460 non-null int64 48 HalfBath 1460 non-null int64 49 BedroomAbvGr 1460 non-null int64 50 KitchenAbvGr 1460 non-null int64 KitchenQual 1460 non-null object 51 52 TotRmsAbvGrd 1460 non-null int64 53 Functional 1460 non-null object int64 54 Fireplaces 1460 non-null 1379 non-null 55 GarageType object 1379 non-null 56 GarageYrBlt float64 GarageFinish 57 1379 non-null object 58 GarageCars int64 1460 non-null 59 GarageArea 1460 non-null int64 60 GarageQual 1379 non-null object GarageCond 1379 non-null object 61 1460 non-null 62 PavedDrive object 63 WoodDeckSF 1460 non-null int64 int64 64 OpenPorchSF 1460 non-null 1460 non-null 65 EnclosedPorch int64 3SsnPorch 1460 non-null int64 66 ScreenPorch 1460 non-null 67 int64 1460 non-null 68 PoolArea int64 MiscVal 69 1460 non-null int64 70 MoSold 1460 non-null int64 YrSold 1460 non-null 71 int64 72 SaleType 1460 non-null object SaleCondition 1460 non-null object 73 SalePrice 74 1460 non-null int64 dtypes: float64(3), int64(34), object(38) memory usage: 855.6+ KB

```
In [331]: test_df=test_df.drop(['Id','Alley','PoolQC','Fence','FireplaceQu','MiscFeature'],axis=1)
test_df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1459 entries, 0 to 1458
Data columns (total 74 columns):

Data	·	74 columns):	
#	Column	Non-Null Count	Dtype
0	MSSubClass	1459 non-null	 int64
1	MSZoning	1455 non-null	object
2	LotFrontage	1232 non-null	float64
3	LotArea	1459 non-null	int64
4	Street	1459 non-null	object
5 6	LotShape LandContour	1459 non-null 1459 non-null	object object
7	Utilities	1457 non-null	object
8	LotConfig	1459 non-null	object
9	LandSlope	1459 non-null	object
10	Neighborhood	1459 non-null	object
11 12	Condition1 Condition2	1459 non-null 1459 non-null	object object
13	BldgType	1459 non-null	object
14	HouseStyle	1459 non-null	object
15	OverallQual	1459 non-null	int64
16	OverallCond	1459 non-null	int64
17 18	YearBuilt YearRemodAdd	1459 non-null 1459 non-null	int64 int64
19	RoofStyle	1459 non-null	object
20	RoofMatl	1459 non-null	object
21	Exterior1st	1458 non-null	object
22	Exterior2nd	1458 non-null	object
23 24	MasVnrType MasVnrArea	1443 non-null 1444 non-null	object float64
25	ExterQual	1459 non-null	object
26	ExterCond	1459 non-null	object
27	Foundation	1459 non-null	object
28	BsmtQual	1415 non-null	object
29 30	BsmtCond	1414 non-null 1415 non-null	object
31	BsmtExposure BsmtFinType1	1417 non-null	object object
32	BsmtFinSF1	1458 non-null	float64
33	BsmtFinType2	1417 non-null	object
34	BsmtFinSF2	1458 non-null	float64
35 36	BsmtUnfSF TotalBsmtSF	1458 non-null 1458 non-null	float64 float64
37	Heating	1459 non-null	object
38	HeatingQC	1459 non-null	object
39	CentralAir	1459 non-null	object
40	Electrical	1459 non-null	object
41 42	1stFlrSF 2ndFlrSF	1459 non-null 1459 non-null	int64 int64
43	LowQualFinSF	1459 non-null	int64
44	GrLivArea	1459 non-null	int64
45	BsmtFullBath	1457 non-null	float64
46	BsmtHalfBath	1457 non-null	float64
47 48	FullBath HalfBath	1459 non-null 1459 non-null	int64 int64
49	BedroomAbvGr	1459 non-null	int64
50	KitchenAbvGr	1459 non-null	int64
51	KitchenQual	1458 non-null	object
52 53	TotRmsAbvGrd Functional	1459 non-null 1457 non-null	int64 object
54	Fireplaces	1457 non-null	int64
55	GarageType	1383 non-null	object
56	GarageYrBlt	1381 non-null	float64
57	GarageFinish	1381 non-null	object
58 59	GarageCars GarageArea	1458 non-null 1458 non-null	float64 float64
60	GarageQual	1381 non-null	object
61	GarageCond	1381 non-null	object
62	PavedDrive	1459 non-null	object
63	WoodDeckSF	1459 non-null	int64
64 65	OpenPorchSF EnclosedPorch	1459 non-null 1459 non-null	int64 int64
66	3SsnPorch	1459 non-null	int64
67	ScreenPorch	1459 non-null	int64
68		1459 non-null	int64
69 70		1459 non-null	int64
70 71	MoSold YrSold	1459 non-null 1459 non-null	int64 int64
	SaleType	1458 non-null	object
73	SaleCondition	1459 non-null	object
		, int64(25), obj	ect(38)
memoi	ry usage: 843.6-	t KB	

```
11/15/23, 1:32 PM
                                                           HousePrice-DT-Copy2 - Jupyter Notebook
  In [332]: #1. Data Preprocessing
             # Handling Missing values with Mean
             # training set
             train_df['LotFrontage']=train_df['LotFrontage'].fillna(train_df['LotFrontage'].mean())
             train_df['MasVnrArea'] = train_df['MasVnrArea'].fillna(train_df['MasVnrArea'].mean())
             train_df['GarageYrBlt'] = train_df['GarageYrBlt'].fillna(train_df['GarageYrBlt'].mean())
             train_df['MasVnrArea'] = train_df['MasVnrArea'].fillna(train_df['MasVnrArea'].mean())
  In [333]: #test set
             test_df['LotFrontage'] = test_df['MasVnrArea'].fillna(test_df['MasVnrArea'].mean())
             test_df['MasVnrArea'] = test_df['MasVnrArea'].fillna(test_df['MasVnrArea'].mean())
             test_df['BsmtFinSF1'] = test_df['BsmtFinSF1'].fillna(test_df['BsmtFinSF1'].mean())
             test_df['BsmtFinSF2'] = test_df['BsmtFinSF2'].fillna(test_df['BsmtFinSF2'].mean())
             test_df['BsmtUnfSF'] = test_df['BsmtUnfSF'].fillna(test_df['BsmtUnfSF'].mean())
             test_df['TotalBsmtSF'] = test_df['TotalBsmtSF'].fillna(test_df['TotalBsmtSF'].mean())
             test_df['BsmtFullBath'] = test_df['BsmtFullBath'].fillna(test_df['BsmtFullBath'].mean())
             test_df['BsmtHalfBath'] = test_df['BsmtHalfBath'].fillna(test_df['BsmtHalfBath'].mean())
             test_df['GarageCars'] = test_df['GarageCars'].fillna(test_df['GarageCars'].mean())
             test_df['GarageArea'] = test_df['GarageArea'].fillna(test_df['GarageArea'].mean())
             test_df['GarageYrBlt'] = test_df['GarageYrBlt'].fillna(test_df['GarageYrBlt'].mean())
  In [334]: # Filter Numerical Features
             numerical_features = train_df.select_dtypes(include=['int64','float64'])
             numerical_features.columns
  Out[334]: Index(['MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual', 'OverallCond',
                    'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'BsmtFinSF1', 'BsmtFinSF2',
                    'BsmtUnfSF', 'TotalBsmtSF', '1stFlrSF', '2ndFlrSF', 'LowQualFinSF',
                    'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 'FullBath', 'HalfBath',
                    'BedroomAbvGr', 'KitchenAbvGr', 'TotRmsAbvGrd', 'Fireplaces',
                    'GarageYrBlt', 'GarageCars', 'GarageArea', 'WoodDeckSF', 'OpenPorchSF',
                    'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea', 'MiscVal',
                    'MoSold', 'YrSold', 'SalePrice'],
                   dtype='object')
  In [335]: #2. Interactions between Features
  In [336]: #Pearson Correlation
             plt.figure(figsize=(14,8))
             bars=train_df.corr()['SalePrice'].sort_values(ascending=False).plot(kind='bar')
```



```
In [337]: #Heatmap
plt.figure(figsize=(10,8))
sns.heatmap(train_df.corr(), cmap="hot")
plt.title("Heatmap Correlations Between Features")
plt.show()
```


	MSSubClass	LotFrontage	LotArea	OverallQual	OverallCond	YearBuilt	YearRemodAdd	MasVnrArea	BsmtFinSF1	BsmtFinSF2
count	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000
mean	56.897260	70.049958	10516.828082	6.099315	5.575342	1971.267808	1984.865753	103.685262	443.639726	46.549315
std	42.300571	22.024023	9981.264932	1.382997	1.112799	30.202904	20.645407	180.569112	456.098091	161.319273
min	20.000000	21.000000	1300.000000	1.000000	1.000000	1872.000000	1950.000000	0.000000	0.000000	0.000000
25%	20.000000	60.000000	7553.500000	5.000000	5.000000	1954.000000	1967.000000	0.000000	0.000000	0.000000
50%	50.000000	70.049958	9478.500000	6.000000	5.000000	1973.000000	1994.000000	0.000000	383.500000	0.000000
75%	70.000000	79.000000	11601.500000	7.000000	6.000000	2000.000000	2004.000000	164.250000	712.250000	0.000000
max	190.000000	313.000000	215245.000000	10.000000	9.000000	2010.000000	2010.000000	1600.000000	5644.000000	1474.000000

8 rows × 37 columns

Out[338]:

```
In [339]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=11)
X_train.head()
```

```
Out[339]:
                   MSSubClass LotFrontage LotArea OverallQual OverallCond YearBuilt YearRemodAdd MasVnrArea BsmtFinSF1 BsmtFinSF2 ... Garage/
                                                              3
                                                                           7
                                                                                                                                          0 ...
                            50
                                       50.0
                                               6000
                                                                                  1948
                                                                                                 2002
                                                                                                               0.0
                                                                                                                            331
              449
                                                                                                                                          0 ...
                            60
                                              10800
                                                              8
                                                                           5
                                                                                  2007
                                                                                                 2008
                                                                                                              100.0
                                                                                                                            789
              409
                                       85.0
                                                                                                                                          0 ...
              398
                            30
                                       60.0
                                               8967
                                                              5
                                                                           2
                                                                                  1920
                                                                                                 1950
                                                                                                               0.0
                                                                                                                             0
              932
                            20
                                       84.0
                                              11670
                                                              9
                                                                           5
                                                                                  2006
                                                                                                 2006
                                                                                                              302.0
                                                                                                                              0
                                                                                                                                          0 ...
                                                                                                                                        279 ...
              499
                            20
                                       70.0
                                               7535
                                                              5
                                                                           7
                                                                                  1958
                                                                                                 1985
                                                                                                               0.0
                                                                                                                            111
```

5 rows × 36 columns

```
In [340]: y_train.head()
Out[340]: 449 120000
```

```
Out[340]: 449 120000
409 339750
398 67000
932 320000
499 120000
```

Name: SalePrice, dtype: int64

```
In [341]: #4. Fit a baseline model --XGBoost(XGBoostRegressor)
    from xgboost import XGBRegressor
    regressor=XGBRegressor()
    model=regressor.fit(X_train,y_train)
    y_pred=model.predict(X_test)
```

```
In [342]: #Plot Predicted house price v.s. Actual house price(base model performance)
    test=pd.DataFrame({'Predicted value':y_pred,'Actual value':y_test})
    fig=plt.figure(figsize=(16,8))
    test=test.reset_index()
    test=test.drop(['index'],axis=1)
    plt.plot(test[:50])
    plt.legend(['Actual value','Predicted value'])
```

Out[342]: <matplotlib.legend.Legend at 0x7fd14909a3a0>


```
In [343]: from sklearn.metrics import r2_score
r2_score(y_test, y_pred)
```

Out[343]: 0.8042243989969304

```
In [344]: #Assess baseline model performance, get mean squared error..(aim to minimize)
          print('Mean Absolute Error(MAE):', metrics.mean_absolute_error(y_test,y_pred))
          print('Mean Squared Error(MSE):',metrics.mean_squared_error(y_test,y_pred))
          print('Root Mean SquaredError(RMSE):',np.sqrt(metrics.mean_squared_error(y_test,y_pred)))
          Mean Absolute Error(MAE): 19123.644067494293
          Mean Squared Error(MSE): 1304569830.7689064
          Root Mean SquaredError(RMSE): 36118.82931060898
In [345]: | #Using Decision Tree to generate new feature
In [346]: \#Fit a DecisionTreeRegressor, and choose max-depth at 3
          from sklearn.tree import DecisionTreeRegressor
          DT=DecisionTreeRegressor(max depth=4, random state=11)
In [347]: DT.fit(X_train,y_train)
Out[347]: DecisionTreeRegressor(max_depth=4, random_state=11)
In [348]: #Extract the tree attributes
          n_nodes = DT.tree_.node_count
          children_left = DT.tree_.children_left
          children right = DT.tree .children right
          feature = DT.tree_.feature
In [349]: #Traverse the tree to get features in each branch
          def extract_path_features(node, path_features):
              if children_left[node] != children_right[node]: # check if it's an internal node
                  left_path = path_features + [feature[node]]
                  right_path = path_features + [feature[node]]
                  left_branch = extract_path_features(children_left[node], left_path)
                  right_branch = extract_path_features(children_right[node], right_path)
                  return left_branch + right_branch
              return [path_features]
          branch_features = extract_path_features(0, [])
In [350]: | #Convert feature indices to feature names
          branch_features_named = [[X.columns[f] for f in branch] for branch in branch_features]
In [351]: #Each inner list represents a branch in the tree
          branch_features_named
Out[351]: [['OverallQual', 'OverallQual', 'GrLivArea', 'YearBuilt'],
           ['OverallQual', 'OverallQual', 'GrLivArea', 'YearBuilt'],
           ['OverallQual', 'OverallQual', 'GrLivArea', 'BsmtFinSF1'],
           ['OverallQual', 'OverallQual', 'GrLivArea', 'BsmtFinSF1'],
           ['OverallQual', 'OverallQual', 'GrLivArea', 'TotalBsmtSF'],
           ['OverallQual', 'OverallQual', 'GrLivArea', 'TotalBsmtSF'],
           ['OverallQual', 'OverallQual', 'GrLivArea', 'BsmtFinSF1'],
           ['OverallQual', 'OverallQual', 'GrLivArea', 'BsmtFinSF1'],
           ['OverallQual', 'OverallQual', 'GrLivArea', '1stFlrSF'],
           ['OverallQual', 'OverallQual', 'GrLivArea', '1stFlrSF'],
           ['OverallQual', 'OverallQual', 'GrLivArea', 'GrLivArea'],
           ['OverallQual', 'OverallQual', 'GrLivArea', 'GrLivArea'],
           ['OverallQual', 'OverallQual', 'GarageCars', 'LotFrontage'],
           ['OverallQual', 'OverallQual', 'GarageCars', 'LotFrontage'],
           ['OverallQual', 'OverallQual', 'GarageCars', 'WoodDeckSF'],
           ['OverallQual', 'OverallQual', 'GarageCars', 'WoodDeckSF']]
In [352]: #'OverallQual': Overall material and finish quality;
          #'GrLivArea': Above grade (ground) living area square feet;
          #'GarageCars': Size of garage in car capacity
          #'YearBuilt': Original construction date
          #'BsmtFinSF1': Type 1 finished square feet
          #'1stFlrSF': First Floor square feet
          #'LotFrontage': Linear feet of street connected to property
          #'WoodDeckSF': Wood deck area in square feet
```

```
In [353]: #Visualize this tree
    from sklearn.tree import DecisionTreeRegressor, plot_tree
    import matplotlib.pyplot as plt
    plt.figure(figsize=(20,10))
    plot_tree(DT, filled=True, feature_names=X.columns, rounded=True)
    plt.show()
```



```
In [354]: #Find interactions by computing ratio
          def create interaction features(data, branch features named):
              new_features = pd.DataFrame()
              for branch in branch features named:
                  if len(branch) == 1:
                      continue
                  interaction_name = "_div_".join(branch)
                  # Check if all features in branch are numerical (either int or float)
                  if all(pd.api.types.is_numeric_dtype(data[col].dtype) for col in branch):
                      # Compute the ratio
                      denominator = data[branch[1:]].prod(axis=1)
                      # Replace 0 in the denominator to avoid division by zero
                      denominator = denominator.replace(0, 1)
                      interaction_feature = data[branch[0]] / denominator
                  else:
                      # For non-numerical features, concatenate as string
                      interaction_feature = data[branch].astype(str).agg("_".join, axis=1)
                  new_features[interaction_name] = interaction_feature
              return new_features
          new_feature_data = create_interaction_features(X, branch_features_named)
```

```
In [355]: #Concatenate interaction features with original features
X_extended = pd.concat([X, new_feature_data], axis=1)
X_extended
```

Out[355]: /_OverallQual_div_GrLivArea_div_GrLivArea	OverallQual_div_OverallQual_div_GarageCars_div_LotFrontage	OverallQual_div_OverallQual_div_GarageCars_di
3.419856e-07	0.007692	
6.278867e-07	0.006250	
3.134997e-07	0.007353	
3.392028e-07	0.005556	
2.069877e-07	0.003968	
3.686488e-07	0.008065	
2.327027e-07	0.005882	
1.826284e-07	0.015152	
8.605230e-07	0.014706	
6.339000e-07	0.013333	

```
In [356]: #list of interaction feature names
          new_feature_data_list = new_feature_data.columns.tolist()
          print(new_feature_data_list)
          ['OverallQual_div_OverallQual_div_GrLivArea_div_YearBuilt', 'OverallQual_div_OverallQual_div_GrLivArea_div
          _BsmtFinSF1', 'OverallQual_div_OverallQual_div_GrLivArea_div_TotalBsmtSF', 'OverallQual_div_OverallQual_di
          v_GrLivArea_div_1stFlrSF', 'OverallQual_div_OverallQual_div_GrLivArea_div_GrLivArea', 'OverallQual_div_Ove
          rall Qual\_div\_Garage Cars\_div\_Lot Frontage', 'Overall Qual\_div\_Overall Qual\_div\_Garage Cars\_div\_Wood Deck SF']
In [357]: | #Separate each element by the ',' to get new individual features
          new_feature = [name.split(',') for name in new_feature_data_list]
          print(new feature)
          [['OverallQual_div_OverallQual_div_GrLivArea_div_YearBuilt'], ['OverallQual_div_OverallQual_div_GrLivArea_
          div BsmtFinSF1'], ['OverallQual div OverallQual div GrLivArea div TotalBsmtSF'], ['OverallQual div Overall
          Qual_div_GrLivArea_div_1stFlrSF'], ['OverallQual_div_OverallQual_div_GrLivArea_div_GrLivArea'], ['OverallQual_div_OverallQual_div_GrLivArea_div_GrLivArea'],
          ual_div_OverallQual_div_GarageCars_div_LotFrontage'], ['OverallQual_div_OverallQual_div_GarageCars_div_Woo
          dDeckSF']]
In [358]:
               Remove the '_div_' part and duplicates from the feature names in the lists.
          def clean_feature_names(new_feature):
              cleaned_lists = []
              for feature list in new feature:
                  # Extracting the first element of each list and splitting it by '_div_'
                  cleaned_features = feature_list[0].split('_div_')
                  # Removing duplicates while preserving order
                  cleaned_features = list(dict.fromkeys(cleaned_features))
                  cleaned lists.append(cleaned features)
              return cleaned_lists
          # Cleaning the feature names
          cleaned_feature_lists = clean_feature_names(new_feature)
          cleaned feature lists
Out[358]: [['OverallQual', 'GrLivArea', 'YearBuilt'],
           ['OverallQual', 'GrLivArea', 'BsmtFinSF1'],
           ['OverallQual', 'GrLivArea', 'TotalBsmtSF'],
           ['OverallQual', 'GrLivArea', '1stFlrSF'],
           ['OverallQual', 'GrLivArea'],
           ['OverallQual', 'GarageCars', 'LotFrontage'],
           ['OverallQual', 'GarageCars', 'WoodDeckSF']]
In [359]: |total_number_of_lists = len(cleaned_feature_lists)
          total_number_of_lists
Out[359]: 7
In [360]: #Rename new features:
          new_feature1=cleaned_feature_lists[0]
          new_feature2=cleaned_feature_lists[1]
          new_feature3=cleaned_feature_lists[2]
          new_feature4=cleaned_feature_lists[3]
          new_feature5=cleaned_feature_lists[4]
          new_feature6=cleaned_feature_lists[5]
          new_feature7=cleaned_feature_lists[6]
          #Hyperparameter Tuning: Optimize max-depth parameters using GridSearchCV
In [361]:
          from sklearn.tree import DecisionTreeRegressor
          param_grid={
               'max_depth':[None,2,3,4]
          DTModel=GridSearchCV(
              DecisionTreeRegressor(random_state=11),
              cv=10,
              scoring='neg_mean_squared_error',
              param grid=param grid
In [362]:
          #Pass to X train, and using fit in DecisionTree model
          DTModel.fit(X_train[new_feature1],y_train)
          DTModel.fit(X_train[new_feature2],y_train)
          DTModel.fit(X_train[new_feature3],y_train)
          DTModel.fit(X_train[new_feature4],y_train)
          DTModel.fit(X_train[new_feature5],y_train)
          DTModel.fit(X_train[new_feature6],y_train)
Out[362]: GridSearchCV(cv=10, estimator=DecisionTreeRegressor(random_state=11),
                       param_grid={'max_depth': [None, 2, 3, 4]},
                        scoring='neg mean squared error')
```

```
HousePrice-DT-Copy2 - Jupyter Notebook
In [363]: #Using Predict() to predict target variable using two new features, assign back to X train, X test dataset
          #for feature 1
          X train=X train.assign(OverQual Area Year=DTModel.predict(X train[new feature1]))
          X_test=X_test.assign(OverQual_Area_Year=DTModel.predict(X_test[new_feature1]))
          /Users/yam/opt/anaconda3/lib/python3.9/site-packages/sklearn/base.py:493: FutureWarning: The feature names
          should match those that were passed during fit. Starting version 1.2, an error will be raised.
          Feature names unseen at fit time:
          GrLivArea
          - YearBuilt
          Feature names seen at fit time, yet now missing:
          - GarageCars
          - LotFrontage
            warnings.warn(message, FutureWarning)
          /Users/yam/opt/anaconda3/lib/python3.9/site-packages/sklearn/base.py:493: FutureWarning: The feature names
          should match those that were passed during fit. Starting version 1.2, an error will be raised.
```

Feature names unseen at fit time: GrLivArea

- YearBuilt

Feature names seen at fit time, yet now missing:

- GarageCars
- LotFrontage

warnings.warn(message, FutureWarning)

```
In [364]: #for feature 2
          X train=X train.assign(OverQual Area Bsmt=DTModel.predict(X train[new feature2]))
          X test=X test.assign(OverQual Area Bsmt=DTModel.predict(X test[new feature2]))
```

/Users/yam/opt/anaconda3/lib/python3.9/site-packages/sklearn/base.py:493: FutureWarning: The feature names should match those that were passed during fit. Starting version 1.2, an error will be raised. Feature names unseen at fit time:

- BsmtFinSF1
- GrLivArea

Feature names seen at fit time, yet now missing:

- GarageCars
- LotFrontage

warnings.warn(message, FutureWarning)

/Users/yam/opt/anaconda3/lib/python3.9/site-packages/sklearn/base.py:493: FutureWarning: The feature names should match those that were passed during fit. Starting version 1.2, an error will be raised.

Feature names unseen at fit time:

- BsmtFinSF1
- GrLivArea

Feature names seen at fit time, yet now missing:

- GarageCars
- LotFrontage

warnings.warn(message, FutureWarning)

```
In [365]: #for feature 3
```

```
X_train=X_train.assign(OverQual_Area_TBsmt=DTModel.predict(X_train[new_feature3]))
X_test=X_test.assign(OverQual_Area_TBsmt=DTModel.predict(X_test[new_feature3]))
```

/Users/yam/opt/anaconda3/lib/python3.9/site-packages/sklearn/base.py:493: FutureWarning: The feature names should match those that were passed during fit. Starting version 1.2, an error will be raised. Feature names unseen at fit time:

- GrLivArea
- TotalBsmtSF

Feature names seen at fit time, yet now missing:

- GarageCars
- LotFrontage

warnings.warn(message, FutureWarning)

/Users/yam/opt/anaconda3/lib/python3.9/site-packages/sklearn/base.py:493: FutureWarning: The feature names should match those that were passed during fit. Starting version 1.2, an error will be raised. Feature names unseen at fit time:

- GrLivArea
- TotalBsmtSF

Feature names seen at fit time, yet now missing:

- GarageCars
- LotFrontage

warnings.warn(message, FutureWarning)

In [366]: #for feature 4
X_train=X_train.assign(OverQual_Area_Flr=DTModel.predict(X_train[new_feature4]))
X_test=X_test.assign(OverQual_Area_Flr=DTModel.predict(X_test[new_feature4]))

/Users/yam/opt/anaconda3/lib/python3.9/site-packages/sklearn/base.py:493: FutureWarning: The feature names should match those that were passed during fit. Starting version 1.2, an error will be raised. Feature names unseen at fit time:

- 1stFlrSF
- GrLivArea

Feature names seen at fit time, yet now missing:

- GarageCars
- LotFrontage

warnings.warn(message, FutureWarning)

/Users/yam/opt/anaconda3/lib/python3.9/site-packages/sklearn/base.py:493: FutureWarning: The feature names should match those that were passed during fit. Starting version 1.2, an error will be raised. Feature names unseen at fit time:

- reature names unseen at
- 1stFlrSFGrLivArea

Feature names seen at fit time, yet now missing:

- GarageCars
- LotFrontage

warnings.warn(message, FutureWarning)

```
In [367]: #for feature 5 -- only two, but DT expecting 3 features as input
#X_train=X_train.assign(OverQual_Area=DTModel.predict(X_train[new_feature5]))
#X_test=X_test.assign(OverQual_Area=DTModel.predict(X_test[new_feature5]))
```

```
In [368]: #for feature 6
X_train=X_train.assign(OverQual_Car_Lot=DTModel.predict(X_train[new_feature6]))
X_test=X_test.assign(OverQual_Car_Lot=DTModel.predict(X_test[new_feature6]))
```

```
In [369]: #for feature 7
X_train=X_train.assign(OverQual_Car_Wood=DTModel.predict(X_train[new_feature7]))
X_test=X_test.assign(OverQual_Car_Wood=DTModel.predict(X_test[new_feature7]))
```

/Users/yam/opt/anaconda3/lib/python3.9/site-packages/sklearn/base.py:493: FutureWarning: The feature names should match those that were passed during fit. Starting version 1.2, an error will be raised. Feature names unseen at fit time:

- WoodDeckSF

Feature names seen at fit time, yet now missing:

LotFrontage

warnings.warn(message, FutureWarning)

/Users/yam/opt/anaconda3/lib/python3.9/site-packages/sklearn/base.py:493: FutureWarning: The feature names should match those that were passed during fit. Starting version 1.2, an error will be raised. Feature names unseen at fit time:

- WoodDeckSF

Feature names seen at fit time, yet now missing:

LotFrontage

warnings.warn(message, FutureWarning)

```
In [370]: X_train.head()
```

Out[370]:

	MSSubClass	LotFrontage	LotArea	OverallQual	OverallCond	YearBuilt	YearRemodAdd	MasVnrArea	BsmtFinSF1	BsmtFinSF2	•••	PoolAre
449	50	50.0	6000	3	7	1948	2002	0.0	331	0		
409	60	85.0	10800	8	5	2007	2008	100.0	789	0		1
398	30	60.0	8967	5	2	1920	1950	0.0	0	0		1
932	20	84.0	11670	9	5	2006	2006	302.0	0	0		1
499	20	70.0	7535	5	7	1958	1985	0.0	111	279		1

5 rows × 42 columns

```
In [371]: | X_test.head()
Out[371]:
                 MSSubClass LotFrontage LotArea OverallQual OverallCond YearBuilt YearRemodAdd MasVnrArea BsmtFinSF1 BsmtFinSF2 ... PoolAre
                        45
                                                                7
                                                                                              0.0
                                                                                                                     0 ...
            127
                                  55.0
                                        4388
                                                     5
                                                                      1930
                                                                                   1950
                                                                                                         116
                        20
                                  80.0
                                        9600
                                                     7
                                                                6
                                                                      1973
                                                                                   1973
                                                                                             320.0
                                                                                                                     0 ...
            455
                                                                                                         916
            1323
                        30
                                  50.0
                                        5330
                                                     4
                                                                7
                                                                      1940
                                                                                   1950
                                                                                              0.0
                                                                                                         280
                                                                                                                     0 ...
                                        9906
                                                     4
                                                                4
                                                                      1925
                                                                                   1950
                                                                                              0.0
                                                                                                          0
                                                                                                                     0 ...
            217
                        70
                                  57.0
                                                                                                                     0 ...
                       120
                                                     8
                                                                5
                                                                      2008
                                                                                   2008
                                                                                                        1480
                                  64.0
                                        5587
                                                                                             186.0
            1181
           5 rows × 42 columns
In [372]: y_train.head()
Out[372]: 449
                  120000
           409
                  339750
           398
                   67000
           932
                  320000
           499
                  120000
           Name: SalePrice, dtype: int64
In [373]: y_test.head()
Out[373]: 127
                     87000
                   175500
           455
           1323
                     82500
           217
                   107000
           1181
                   392500
           Name: SalePrice, dtype: int64
In [374]: | #Re-fit baseline model using new feature to new X_train data, and predict new X_train data
           regressor=XGBRegressor()
           model=regressor.fit(X_train,y_train)
           y_pred=model.predict(X_test)
In [375]: #Print RMSE score to see if is reduced loss function, if yes, then have better performance due to new featur
           print('Mean Absolute Error(MAE):',metrics.mean_absolute_error(y_test,y_pred))
           print('Mean Squared Error(MSE):',metrics.mean_squared_error(y_test,y_pred))
           print('Root Mean SquaredError(RMSE):',np.sqrt(metrics.mean_squared_error(y_test,y_pred)))
           Mean Absolute Error(MAE): 18807.28407712614
           Mean Squared Error(MSE): 1193076014.614751
           Root Mean SquaredError(RMSE): 34540.93245143725
In [376]: from sklearn.metrics import r2_score
           r2_score(y_test, y_pred)
```

Out[376]: 0.8209561739858096

```
In [377]: #Plot
          test=pd.DataFrame({'Predicted value':y pred,'Actual value':y_test})
          fig=plt.figure(figsize=(16,8))
          test=test.reset_index()
          test=test.drop(['index'],axis=1)
          plt.plot(test[:50])
          plt.legend('Actual value', 'Predicted value')
          /var/folders/3j/bd328j896wgfz88pgbggdm640000gn/T/ipykernel_32632/290178646.py:7: UserWarning: Legend does
          not support 'A' instances.
          A proxy artist may be used instead.
          See: https://matplotlib.org/users/legend_guide.html#creating-artists-specifically-for-adding-to-the-legend
          -aka-proxy-artists (https://matplotlib.org/users/legend guide.html#creating-artists-specifically-for-addin
          g-to-the-legend-aka-proxy-artists)
            plt.legend('Actual value', 'Predicted value')
          /var/folders/3j/bd328j896wgfz88pgbggdm640000gn/T/ipykernel_32632/290178646.py:7: UserWarning: Legend does
          not support 'c' instances.
          A proxy artist may be used instead.
          See: https://matplotlib.org/users/legend_guide.html#creating-artists-specifically-for-adding-to-the-legend
          -aka-proxy-artists (https://matplotlib.org/users/legend guide.html#creating-artists-specifically-for-addin
          g-to-the-legend-aka-proxy-artists)
            plt.legend('Actual value', 'Predicted value')
          /var/folders/3j/bd328j896wgfz88pgbggdm640000gn/T/ipykernel_32632/290178646.py:7: UserWarning: Legend does
          not support 't' instances.
          A proxy artist may be used instead.
          See: https://matplotlib.org/users/legend_guide.html#creating-artists-specifically-for-adding-to-the-legend
          -aka-proxy-artists (https://matplotlib.org/users/legend_guide.html#creating-artists-specifically-for-addin
          g-to-the-legend-aka-proxy-artists)
            plt.legend('Actual value', 'Predicted value')
          /var/folders/3j/bd328j896wgfz88pgbggdm640000gn/T/ipykernel_32632/290178646.py:7: UserWarning: Legend does
          not support 'u' instances.
          A proxy artist may be used instead.
          See: https://matplotlib.org/users/legend_guide.html#creating-artists-specifically-for-adding-to-the-legend
          -aka-proxy-artists (https://matplotlib.org/users/legend_guide.html#creating-artists-specifically-for-addin
          g-to-the-legend-aka-proxy-artists)
            plt.legend('Actual value','Predicted value')
          /var/folders/3j/bd328j896wgfz88pgbggdm640000gn/T/ipykernel_32632/290178646.py:7: UserWarning: Legend does
          not support 'a' instances.
          A proxy artist may be used instead.
          See: https://matplotlib.org/users/legend guide.html#creating-artists-specifically-for-adding-to-the-legend
          -aka-proxy-artists (https://matplotlib.org/users/legend_guide.html#creating-artists-specifically-for-addin
          g-to-the-legend-aka-proxy-artists)
            plt.legend('Actual value', 'Predicted value')
          /var/folders/3j/bd328j896wgfz88pgbggdm640000gn/T/ipykernel_32632/290178646.py:7: UserWarning: Legend does
          not support 'l' instances.
          A proxy artist may be used instead.
          See: https://matplotlib.org/users/legend_guide.html#creating-artists-specifically-for-adding-to-the-legend
          -aka-proxy-artists (https://matplotlib.org/users/legend_guide.html#creating-artists-specifically-for-addin
          g-to-the-legend-aka-proxy-artists)
            plt.legend('Actual value', 'Predicted value')
          /var/folders/3j/bd328j896wgfz88pgbggdm640000gn/T/ipykernel_32632/290178646.py:7: UserWarning: Legend does
          not support ' ' instances.
          A proxy artist may be used instead.
          See: https://matplotlib.org/users/legend_guide.html#creating-artists-specifically-for-adding-to-the-legend
          -aka-proxy-artists (https://matplotlib.org/users/legend_guide.html#creating-artists-specifically-for-addin
          g-to-the-legend-aka-proxy-artists)
            plt.legend('Actual value', 'Predicted value')
          /var/folders/3j/bd328j896wgfz88pgbggdm640000gn/T/ipykernel_32632/290178646.py:7: UserWarning: Legend does
          not support 'v' instances.
          A proxy artist may be used instead.
          See: https://matplotlib.org/users/legend_guide.html#creating-artists-specifically-for-adding-to-the-legend
          -aka-proxy-artists (https://matplotlib.org/users/legend_guide.html#creating-artists-specifically-for-addin
          g-to-the-legend-aka-proxy-artists)
            plt.legend('Actual value','Predicted value')
          /var/folders/3j/bd328j896wgfz88pgbggdm640000gn/T/ipykernel_32632/290178646.py:7: UserWarning: Legend does
          not support 'e' instances.
          A proxy artist may be used instead.
          See: https://matplotlib.org/users/legend_guide.html#creating-artists-specifically-for-adding-to-the-legend
          -aka-proxy-artists (https://matplotlib.org/users/legend_guide.html#creating-artists-specifically-for-addin
          g-to-the-legend-aka-proxy-artists)
            plt.legend('Actual value', 'Predicted value')
```

local host: 8888/notebooks/Feature Eng/House Price-DT-Copy 2. ipynb#

Out[377]: <matplotlib.legend.Legend at 0x7fd13823e8e0>

In []: