CLAIM AMENDMENTS

This listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims

- 1 1. (Currently Amended) A redundant hub-spoke configuration for a virtual 2 private LAN (VPN) of the type having a plurality of emulated LANs (ELANs), each 3 connected at a provider edge (PE) node over a service provider network, comprising: 4 a first hub node serving client equipment (CE) devices connected on a first ELAN, 5 a spoke node serving CE devices on a second ELAN; 6 a first point-to-point link L1 for interconnecting said first hub node and said spoke 7 node; and 8 a second hub node interconnected with said first hub node, 9 wherein whenever said first link L1 fails, said second hub node establishes 10 communication with said spoke node over a second point-to-point link L2. 1 2. (Currently Amended) The redundant hub-spoke configuration of claim 1, 2 wherein said second hub node operates as a spoke node of first said hub node under normal 3 operation conditions. 3. 1 (Original) The redundant hub-spoke configuration of claim 1, wherein said 2 first hub node operates as a spoke node of said second hub node when said first hub node 3 fails. 1 4. (Original) The redundant hub-spoke configuration of claim 1, wherein a first 2 PE node interfacing said first hub with said service provider network monitors said first link L1 for detecting a failure at said hub node. 3 4
 - 1 5. (Currently Amended) The redundant hub-spoke configuration of claim 1, 2 wherein in case of a failure at said <u>first</u> hub node, said first PE node signals to a third PE

3 node interfacing said spoke node with said service provider network to establish a second point-to-point link with said second hub node, and to re-map the traffic from said second hub 4 5 node over said second point-to-point link. 6. 1 (Original) The redundant hub-spoke configuration of claim 1, wherein the access link between said spoke node and said third PE node is an aggregated bundle of links 2 3 comprising a redundant link. 1 7. (Original) The redundant hub-spoke configuration of claim 6, wherein 2 connectivity between said third PE node and said spoke node is maintained when a link on 3 said respective aggregated bundle is interrupted. 8. 1 (Original) The redundant hub-spoke configuration of claim 7, wherein the 2 loss of a link in said aggregated bundle is transparent to said spoke node. 1 9. (Original) In a hub-spoke configuration for a virtual private LAN (VPN) of 2 the type having a plurality of emulated LANs (ELANs), each connected at a service provider 3 edge (PE) node over an access link, a method for recovering the traffic in case of a failure. 4 comprising: 5 a) transmitting traffic from a first hub node to a spoke node over a first point-to-point 6 link established between a first PE at said first hub node and a third PE at said spoke node; 7 b) at said third PE, monitoring the traffic on said first link; 8 c) responsive to a fault on said link, signaling said fault from said third PE to said first 9 PE; and 10 d) transmitting traffic form a second hub node to said spoke node over a second 11 point-to-point link established between a second PE node at said second hub node and said 12 third PE.

1

2

3

10.

first PE;

(Original) The method of claim 9, wherein step a) comprises:

at said first hub node, bridging the traffic destined to said spoke node towards said

2

4 at said first PE, tunneling the traffic received from said first hub node along said point-to-point connection to said third PE, 5 6 at said third PE, mapping the traffic received over said point-to-point connection to 7 said spoke node; and 8 at said spoke node, bridging the traffic received from said third PE. 1 11. (Original) The method of claim 9, wherein step a) comprises: 2 at said second hub node, bridging the traffic destined to said spoke node towards said 3 third PE; 4 at said second PE, tunneling the traffic received from said second hub node along said 5 second point-to-point connection to said third PE, 6 at said third PE, mapping the traffic received over said second point-to-point 7 connection to said spoke node; and 8 at said spoke node, bridging the traffic received from said third PE. 1 12. (Original) The method of claim 9, wherein said step c) comprises using a 2 Layer1 signaling protocol. 1 13. (Original) The method of claim 9, wherein said second hub node operates as 2 a spoke node of said first hub node under normal operation conditions. 1 14. (Original) The method of claim 9, wherein said first hub node operates as a 2 spoke node of said second hub node when said hub node fails. 1 15. (Original) The method of claim 9, wherein first and second point-to-point 2 connections are point-to-point Ethernet tunnels. (Original) The method of claim 9, wherein the access link between said third 1 16.

PE and said spoke is an aggregated bundle of links comprising a redundant link.

1	17. (Original) The method of claim 16, wherein connectivity between third PE			
2	node and said spoke node is maintained when a link on said aggregated bundle is interrupted.			
1	18. (Original) The method of claim 17, wherein the loss of a link in said			
2	aggregated bundle is transparent to said spoke node.			
ĺ	19. (Withdrawn) A method of providing a multipoint emulated LAN connecting			
2	a plurality of sites with site-to-site bandwidth guarantees, comprising:			
3	configuring a second customer located equipment PLE to perform multipoint			
4	switching of the traffic in a first VC/tunnel established between a first site and said second			
5	site, to one of a second or a third site, based on the MAC address;			
6	configuring a first CLE to operate as a spoke of said first CLE to perform point-to-			
7 -	point switching of said first VC/tunnel, and of a second VC/tunnel established between said			
8	third site and said second site; and			
9	allocating a first bandwidth to said first VC/tunnel and a second bandwidth to said			
10	second VC/tunnel and rate limiting traffic in each said first VC/tunnel and said second			
11	VC/tunnel to said respective allocated bandwidth.			
1	20. (Withdrawn) In a virtual private LAN (VPL) of the type having a plurality of			
2	emulated LANs, each emulated LAN comprising an access device connected to a service			
3	provider edge PE node along an access link identified by a data link connection identifier,			
4	and a first PE is interconnected with a second PE along a point-to-point link, a method of			
5	establishing a hybrid connection between a first customer equipment CE device on said VPL			
6	and a second CE device that operates according to a different communication protocol, said			
7	method comprising:			
8	a) at said second CE device, performing bridged encaplsulation of the traffic and			
9	transmitting a second type protocol data unit (PDU) over a second access link to a second			
10	provider edge (PE) node;			
11	b) at said second PE node, decapsulating traffic form said PDU, and transmitting the			
12	traffic into a service provider type PDU over a dedicated point-to-point tunnel across said			

service provider network to a first PE node;

13

communication protocol.

11	b) at said second PE node, decapsulating traffic form said PDU, and transmitting th				
12	traffic into a service provider type PDU over a dedicated point-to-point tunnel across said				
13	service provider network to a first PE node;				
14	c) at said first PE node, decapsuating the traffic from said service provider PDU,				
15	converting it to a first type PDU and transmitting said PDU to a first access device over a				
16	first access link;				
17	d) at said first access device, bridging said PDU to said first CE device.				
1	21. (Withdrawn) The method of claim 20, wherein said first access link is				
2	differentiated at said first access device by a dedicated first data link connection identifier				
3	DCLI, and said second access link is differentiated at said second PE node by a dedicated				
4	second DCLI.				
1	22. (Withdrawn) In a VPL of the type having a plurality of emulated LANs, each				
2	emulated LAN comprising an access link to a service provider edge PE node identified by a				
3	data link connection identifier, a method of establishing a hybrid connection between a first				
4	customer equipment CE device on said VPL and a second CE device that operates according				
5	to a different communication protocol, said method comprising:				
. 6	a) at said first CE device, bridging a first type PDU to a first PE node over a first				
7	access link;				
8	c) at said first PE node, decapsulating traffic from said first type PDU, encapsulating				
9	the traffic into a service provider type PDU and transporting it over a dedicated point-to-				
10	point tunnel across said service provider network to a second PE node; and				
11	d) at said second PE, decapsulating traffic from said service-provider PDU,				
12	performing bridged encapsulation of the traffic in a second type PDU and sending it to said				
13	second CE device over a second access link.				
i	23. (Withdrawn) The method of claim 22, wherein said first access link and said				
2	second access link of said hybrid connection are distinct from access links for a				
3	homogeneous connections between any CE devices operating according to said first				

1	24. (Withdrawn) The method of claim 22, where said first communication				
2 -	protocol is Ethernet and said second communication protocol is one of Frame Relay and				
3	ATM.				
1	25. (Withdrawn) The method of claim 22, wherein said second type PDU is an				
2	FR frame or an ATM cell, and said service provider type PDU is an IP packet of an IP				
3 Layer2 Transport type.					
1	26. (Withdrawn) The method of claim 24, wherein step c) comprises:				
2	provisioning the network address of said second CE device at said first PE node;				
3	at said first CE, sending an ARP request to said first PE node for the IP destination				
4	address of said second CE device,				
5	receiving the MAC address of said PE node if said second device is connected to said				
6	second PE node.				
1	27. (Withdrawn) The method of claim 25, wherein said second PE device uses				
2	Inverse ARP capabilities to discover the network address of said second CE device.				
1	28. (Withdrawn) The method of claim 25, wherein said first PE node uses				
.2	signaling to provide said first CE device with the network address of said second CE device				
1	29. (Withdrawn) In a VPL of the type having a plurality of emulated LANs, eac				
2	emulated LAN comprising an access link to a service provider edge PE node identified by a				
3	data link connection identifier, a method of establishing a hybrid connection between a first				
4	customer equipment CE device on said VPL and a second CE device that operates according				
5	to a different communication protocol, said method comprising:				
6	a) at said second CE device, performing routed encapsulation of traffic into a second				
7	type PDU and transmitting said second type PDU to a second PE node over a second access				
8	link:				

9	b) at said second PE node, decapsulating traffic from said second type PDU,				
10	encapsulating the traffic into a subscriber network type PDU and transmitting it over a				
11	dedicated point-to-point tunnel to a first PE node;				
12	c) at said first PE node, decapsulating the traffic received over said dedicated point-				
13	to-point tunnel, encapsulating it into a first-type PDU, and sending first-type PDU to an				
14	access device over a second access link; and				
15	at sai	at said access device, bridging said PDU to said first CE device.			
1	30.	(Withdrawn) The method of claim 29, wherein said first CE device is an IP			
2	router and said second device is a FR or ATM router.				
1	31.	(Withdrawn) The method of claim 30, wherein step c) comprises			
2	sending from said first PE node a proxy ARP request to said first access device over				
3	said first access link;				
4	receiving in a response ARP request the MAC address corresponding to the IP				
5	address of said first-type PDU; and				
6	6 transmitting said first-type PDU to said first CE device based on said MAC add				
1	32.	(Withdrawn) The method of claim 31, further comprising caching said MAC			
2	address at said first PE node.				
I	33.	(Withdrawn) The method of claim 31, wherein if said first CE device is on an			
2	emulated LAN served by said second PE node, said first CE device sends said response ARI				
3	directly to said second PE device.				
1	34.	(Withdrawn) The method of claim 29, wherein said first CE device is an IP			
2	router enabled with an IRDP protocol (Internet Control Message Protocol Router Discovery				
3	Protocol) and said second device is a FR or ATM router.				
~ <u>1</u>	35.	(Withdrawn) The method of claim 34, wherein step c) comprises: listening at			

said first PE node for advertisement messages issued by said first CE on said first access link;

- 3 discovering the MAC address of said first CE device and transmitting said first-type PDU to
- 4 said first CE device based on said MAC address.
- 1 36. (Withdrawn) The method of claim 35, further comprising caching said MAC address at said first PE node.
- 1 37. (Withdrawn) The method of claim 34, wherein when said MAC address
- 2 identifies a non-optimal router, step c) further comprises sending a redirect message to said
- 3 second PE with the address of said optimal router so that subsequent PDUs are sent to
- 4 optimal router.