COMPUTATION

FIGURE 1. Hubbard complexes/trees of the Basilica f_B : $J_B \to J_B$; arrows indicates the covering; numbers are the preperiods. Recall, that J_B is the inverse limit of H_n with respect to i_n ; in this sense H_n approximates J_B . We denote by \mathcal{J}_B the natural extension of J_B .

FIGURE 2. Hubbard complexes/trees of $f_{B,2}:J_{B,2}\to J_{B,2}$. We denote by $\mathcal{J}_{B,2}$ the natural extension of $J_{B,2}$.

Pinching is an equivalent relation?

FIGURE 3.

FIGURE 4.

FIGURE 5. Hubbard tree (H_2, H_1, f_2, j_2) . Arrows describes f_2 ; j_2 collapses painted over circles to points and is identity elsewhere.