Worksheet 6 – Rational or Irrational?

1. Reduce these "fat" fractions to lowest terms:

$$\frac{6}{24}$$
 $\frac{15}{9}$ $-\frac{14}{42}$ $\frac{125}{10}$ $-\frac{121}{11}$

2. Show that the numbers below are rational by expressing each as a ratio of two integers.

$$\frac{1}{2} + \frac{5}{2}, \quad \frac{1}{2} - \frac{2}{3}, \quad \left(\frac{1}{2}\right) \times \left(\frac{6}{5}\right), \qquad \frac{\frac{1}{2}}{\frac{2}{3}}, \qquad \frac{\left(\frac{5}{2}\right) \times \left(\frac{6}{5}\right)}{\frac{2}{3}}$$

- 3. Show that each of the decimal numbers below is actually a rational number by expressing it as a ratio of two integers.
 - 0.02, 6.23, 2.71828, -168.5, -0.00005
- 4. Express each fraction in its decimal expansion.

$$\frac{17}{7}$$
, $\frac{21.5}{20}$, $\frac{15}{15}$

5. Suppose M = 0.499999... Then what does 10M equal? Find two expressions for the quantity 10M – M and set those two expressions equal to each other. (Hint: One expression is simply 9M.) Can you solve your equation to discover something marvelous about M?

6.	Express each number as a fraction.				
	a.				
	b.	20.4545			
	C.	12.999			
	d.	2.2222222			
	e.	43.12121212			
	f.	5.6312121212			
	g.	0.0101010101			
	h.	71.23999999			
7.	Find a r	rational number that is bigger than 12.0345678 and smaller than 12.0345679.			

6.

- 8. Find a rational number that is bigger than 3.14159 and smaller than 3.14159001.
- 9. Describe an irrational number that is bigger than 5.7 but smaller than 5.72.
- 10. Is it possible to build an irrational number whose decimal digits are just 1's and 2's? If so, describe such a number and show why it is irrational. If not, explain why.
- 11. Is it possible to build an irrational number whose decimal digits are just 1's and 2's and only finitely many 2's appear? If so, describe such a number and show why it is irrational. If not, explain why.
- 12. We know that $\sqrt{2}$ is irrational. Therefore $3\sqrt{2}/5\sqrt{2}$ must also be irrational. Is this conclusion correct? Why or why not?
- 13. We know that 2/5 and 7/3 are rational. Therefore (2/5)/(7/3) is also rational. Is this conclusion correct? Why or why not?
- 14. For each of the following numbers, determine if the number is rational or irrational. Why?

$$\frac{4}{9}$$
, 1.75, $\frac{\sqrt{20}}{3\sqrt{5}}$, $\frac{\sqrt{2}}{14}$, 3.14159

$$\sqrt{\frac{16}{20}}$$
 $\sqrt{\frac{12}{7.5}}$ - 147 0 $\frac{\sqrt{3}}{3}$

15.	Prove	that $\sqrt{5}$	is	irrational
-----	-------	-----------------	----	------------

16. Show that
$$\sqrt{10}$$
 is irrational.

17. Show that for any prime number
$$p,\ \sqrt{p}$$
 is an irrational number.

18. The
$$\sqrt{4}=2$$
 which is a rational number. Try using the argument above to prove $\sqrt{4}$ is irrational. Where does the argument break down?