

就业班系列课程

Python数据可视化

课程简介

第一阶段: Python数据可视化入门

第二阶段: Matplotlib绘图入门

第三阶段: Matplotlib绘图高级参数

第四阶段: 高级绘图工具

什么是数据可视化?

- 1. 信息的视觉表达是一种古老的思维和经验的分享方式。
 - 将数据以图片或图形的方式展现的科学。
 - 以连贯和简短的形式展现大量的信息。
- 2. 重点是用图片和图像的形式向观众传递信息。
- 3. 信息多样性——可以传递各种信息 (理念和假设)
- 4. 技术多样性——新的技术和选择交互式的可视化方法。

什么是数据可视化?

Anscombe's quartet	х у				•		(x,y)			
dataset	count	mean	std	var	count	mean	std	var	corr(x,y)	cov(x,y)
ĺ	11	9	3.3	11	11	7.5	2.0	4.1	0.82	5.5
Ш	11	9	3.3	11	11	7.5	2.0	4.1	0.82	5.5
III	11	9	3.3	11	11	7.5	2.0	4.1	0.82	5.5
IV	11	9	3.3	11	11	7.5	2.0	4.1	0.82	5.5
Linear regress	sion equ	ation				y = 1	0.5x +	+3		

什么是数据可视化?

Anscombe's quartet			×			У		(x,y)		
dataset	count	mean	std	var	count	mean	std	var	corr(x,y)	cov(x,y)
I	11	9	3.3	11	11	7.5	2.0	4.1	0.82	5.5
11	11	9	3.3	11	11	7.5	2.0	4.1	0.82	5.5
III	11	9	3.3	11	11	7.5	2.0	4.1	0.82	5.5
IV	11	9	3.3	11	11	7.5	2.0	4.1	0.82	5.5
Linear regression equ	uation					y = 0.5x +	3			

为什么数据可视化重要

- 1. 图像和图表是交流和学习新信息的有效方法。
 - 80%的人能记住他们看到的,但只有20%的人记得怎么读!
 - 在接受信息3天以后,人们只能记住10%他们所听到的,但是如果利用图表展示信息,所记住的信息可以提升到65%。
- 2. 数据可视化能够帮助人们更快地抓住信息关键点。
- 3. 一张图表可能会突出显示多个方面,人们就能对数据形成不同的观点。
- 4. 更容易地从大量的数据和信息中寻找关联

常用可视化第三方库介绍

常用可视化图形介绍


```
dataframe=pd.DataFrame({'A':[9, 4, 4, 5, 7], 'B':[2, 4, 2, 8, 1]})
dataframe.index=['once', 'twice', 'thrice', 'forth', 'fifth']
dataframe.plot.bar();
```


dataframe.plot.density(color='k');

Matplotlib绘图

Matplotlib介绍

- 1. matplotlib是一个用于创建出版质量图表的桌面绘图包。
- 2. 包含大量的工具,可以使用这些工具创建各种图形(主要是2D方面)。

- 3. 它提供了一整套和MATLAB相似的命令API,十分适合交互式地进行制图。
- 4. 可以方便地将它作为绘图控件,嵌入GUI应用程序中。

Matplotlib三种不同的绘图方式

绘图方式	特点	优劣
pyplot	提供了一套和MATLAB类似的绘图API,将众多绘图对象所构成的复杂结构隐藏在这套API内部, 推荐使用	简单易用,方便快捷,交互使用时方便,可 以根据命令实时作图,但底层定制能力不足
pylab	包括了许多NumPy和pyplot模块中常用的函数方便用户快速进行计算和绘图,十分适合在IPython交互式环境中使用。	,完全封装,环境最接近MATLAB,方便用户快速进行计算和绘图,十分适合在IPython交互式环境中使用,不推荐使用
面向对象	Matplotlib的精髓, 更基础和底层的方式	接近Matplotlib基础和底层,难度稍大,但定制能力强

总结:实战中推荐更具需求综合使用pyplot和面向对象的方式,显示导入numpy

常用模块导入代码: import matplotlib.pyplot as plt import numpy as np

Pyecharts介绍与使用

Pyecharts的介绍

- Echarts 是由百度开发的一款开源免费,覆盖各行业图表的纯 JavaScript 的可视化库。
- Echarts可以提供直观、 生动、 可交互和可高度个性化定制的 数据可视化图表 。
- Pyecharts 是一个用于生成 Echarts 图表的类库,能利用几行 代码轻松生成Echarts 风格的图表。
- pyecharts包含的图表:
 - Bar (柱状图/条形图)
 - Bar3D (3D 柱状图)
 - Boxplot (箱形图)
 - EffectScatter (带有涟漪特效动画的散点图)
 - Funnel (漏斗图)
 - Gauge (仪表盘)
 - Geo (地理坐标系)

...

Pyecharts的使用

- 1. pip install pyecharts
- 2. 下面在 CMD 命令提示行中输入命令,安装 Pyecharts,命令代码如下。 conda install pyecharts

3. Pyecharts 自动把 echarts 脚本文件装在了 jupyter nbextensions 文件夹下面。

Talk is cheap Show me the