Resumen 2do Parcial Ingeniería de Software 1

Juan Vanecek Junio 2015

${\rm \acute{I}ndice}$

1.	Fini	ite State Machine (FSM)	2
	1.1.	Máquina de Estado	2
		LTS	2

1. Finite State Machine (FSM)

1.1. Máquina de Estado

Las M'aquinas de Estado denotan una familia de notaciones que tienen: (a) Estados; (b) Transiciones; y (c) Etiquetas.

Por ejemplo: Statecharts, FSM, LTS, Autómatas, Timed Autómatas, etc.

1.2. LTS

Definición 1 (LTS)

Sea *Estados* el universo de estados, Act el universo de acciones observables, y $Act_{\tau} = Act \cup \{\tau\}$ (τ es la acción no observable o silenciosa).

Un LTS es una tupla $P = \langle S, L, \Delta, s_0 \rangle$, donde $S \subseteq Estados$ es un conjunto finito, $L \subseteq Act_{\tau}$ es un conjunto de etiquetas, $\Delta \subseteq (S \times L \times S)$ es un conjunto de transiciones etiquetadas, y $s_0 \in S$ es el estado inicial.

Definimos el alfabeto de comunicaciones de P como $\alpha(P) = L \setminus \{\tau\}$.

Ej:
$$FSM_A = \langle \{1, 2, 3\}, \{a, d, c\}, \{(1, a, 2), (2, d, 3), (3, c, 1)\}, 1 \rangle$$

Definición 2 (Ejecución)

Sea $P = \langle S, L, \Delta, s_0 \rangle$ una LTS. Una ejecución de P es una secuencia $w = q_0 l_0 q_1 l_1 \dots$ donde para todo $i \in [0, w/2)$, q_i es un estado y $l_i \in L$ tal que $q_0 = q$ y $(q_i, l_i, q_{i+1}) \in \Delta$. Ej: Las ejecuciones de FSM_A son (1, a, 2), (1, a, 2)(2, d, 3) y (1, a, 2)(2, d, 3)(3, c, 1)

Definición 3 (Proyección)

Sea w una palabra $w_0w_1w_2...$ y A un alfabeto. La proyección de w en A, que se denota como $w|_A$, es el resultado de eliminar de w todos los w_i que no están en A.

Definición 4 (Trazas)

Sea P una LTS. Una palabra w del alfabeto $\alpha(P)$ es una traza de P si hay una ejecución w' de P tal que $w = w'|_{\alpha(P)}$. Notar que las trazas no incluye acciones τ . También se define $tr(P) = \{w|w \text{ es traza de } P\}$

Definición 5 (Transitar)

Una LTS $P = \langle S, L, \Delta, q \rangle$ transita con una etiqueta l a una LTS P' si $P' = \langle S, L, \Delta, q' \rangle$ y $(q, l, q') \in \Delta$.

Notación: $P \xrightarrow{l} P'$

Definición 6 (Composición Paralela)

Sean P_1 y P_2 LTSs, con $P_i = \langle S_i, L_i, \Delta_i, q_i \rangle$. La composición paralela $P_1 || P_2$ es una LTS $\langle S, L, \Delta, (q_1, q_2) \rangle$ con $S = S_1 \times S_2$, $L = L_1 \times L_2$ y $\Delta \subseteq (S \times \Delta_1 \cup \Delta_2 \times S)$ formada por:

- $((s,t), a, (s',t)) \in \Delta$, si $(s,a,s') \in \Delta_1$, $a \in \alpha(P_1)$ y $a \notin \alpha(P_2)$.
- $((s,t), a, (s,t')) \in \Delta$, si $(t, a, t') \in \Delta_2$, $a \notin \alpha(P_1)$ y $a \in \alpha(P_2)$.

• $((s,t),a,(s',t')) \in \Delta$, si $(s,a,s') \in \Delta_1$, $(t,a,t') \in \Delta_2$, $a \in \alpha(P_1) \cap \alpha(P_2)$

Figura 1: Ejemplo de composición 1

Figura 2: Ejemplo de composición 2