Name: Ghazi Najeeb Al-Abbar

ID: 2181148914

Theory of Computation

Assignment #2

Q1:

The initial state is q0 and the final state(s) are q4

$$\delta(q0, a) = q1$$

$$\delta(q0, b) = q0$$

$$\delta(q0, c) = q0$$

$$\delta(q1, a) = q0$$

$$\delta(q1, b) = q2$$

$$\delta(q1, c) = q0$$

$$\delta(q2, a) = q1$$

$$\delta(q2, a) = q1$$
 $\delta(q2, b) = q3$

$$\delta(q2, c) = q0$$

$$\delta(q3, a) = q1$$

$$\delta(q3, b) = q0$$

$$\delta(q3, c) = q4$$

$$\delta(q4, a) = q4$$

$$\delta(q4, a) = q4$$
 $\delta(q4, b) = q4$

$$\delta(q4, c) = q4$$

The initial state is q0 and the final state(s) are q0, q1, q2, q3

$$\delta(q0, a) = q1$$

$$\delta(q0, b) = q0$$

$$\delta(q0, c) = q0$$

$$\delta(q1, a) = q0$$

$$\delta(q1, b) = q2$$

$$\delta(q1, c) = q0$$

$$\delta(q2, a) = q1$$

$$\delta(q2, a) = q1 \qquad \delta(q2, b) = q3$$

$$\delta(q2, c) = q0$$

$$\delta(q3, a) = q1$$

$$\delta(q3, a) = q1$$
 $\delta(q3, b) = q0$

$$\delta(q3, c) = q4$$

$$\delta(q4, a) = q4$$

$$\delta(q4, a) = q4 \qquad \quad \delta(q4, b) = q4$$

$$\delta(q4, c) = q4$$

The initial state is q0 and the final state is q5

$$\delta(q0, a) = q1$$
 $\delta(q0, b) = q6$

$$\delta(q0, c) = q0$$

$$\delta(q1, a) = q2$$
 $\delta(q1, b) = q6$

$$\delta(q1, c) = q0$$

$$\delta(q2, a) = q3 \qquad \quad \delta(q2, b) = q4$$

$$\delta(q2, c) = q3$$

$$\delta(q3, a) = q3$$
 $\delta(q3, b) = q4$

$$\delta(q3, c) = q3$$

$$\delta(q4, a) = q3$$
 $\delta(q4, b) = q5$

$$\delta(q4, c) = q3$$

$$\delta(q5, a) = q5$$
 $\delta(q5, b) = q5$

$$\delta(q5, c) = q5$$

$$\delta(q6, a) = q1 \qquad \delta(q6, b) = q7$$

$$\delta(q6, c) = q0$$

$$\delta(q7, a) = q9 \qquad \delta(q7, b) = q8$$

$$\delta(q7, c) = q8$$

$$\delta(q8, a) = q9 \qquad \delta(q8, b) = q8$$

$$\delta(q8, c) = q8$$

$$\delta(q9, a) = q5$$

$$\delta(q9, b) = q8$$

$$\delta(q8, c) = q8$$

Q4:

The initial state is q0 and the final state is q1

$$\delta(q0, 0) = q1$$
 $\delta(q0, 1) = q2$

$$\delta(q1, 0) = q0$$
 $\delta(q1, 1) = q2$

$$\delta(q2, 0) = q2$$
 $\delta(q2, 1) = q3$

$$\delta(q3, 0) = q3$$
 $\delta(q3, 1) = q1$

Q5:

Let
$$A = q0$$
, $B = q1$, $C = q2$, $D = q3$, $E = q4$, $F = q5$

λ-NFA graph:

λ -NFA to NFA transition:

For A:

$$\delta(A,\lambda)=A,\ \delta(A,\,a)=\{B,C\},\,\delta(B,\,\lambda)=\{B,\,D\}\ \text{and}\ \delta(C,\,\lambda)=C$$

$$\delta(A,\lambda)=A,\ \delta(A,\,b)=\Phi$$

 \therefore A's transitions after the λ -NFA to NFA transition:

$$\delta(A, a) = \{B,D\} \cup \{C\} = \{B,C,D\}$$

$$\delta(A, b) = \Phi$$

For B:

$$\delta(B,\lambda) = \{B,D\}, \ \delta(B, a) = \Phi, \ \delta(D, a) = \{D,C\}, \ \text{then} \ \delta(D, \lambda) = \{D\} \ \text{and} \ \delta(C, \lambda) = \{C\} \ \delta(B,\lambda) = \{B,D\}, \ \delta(B, b) = \Phi, \ \delta(D, b) = \{F\}, \ \text{then} \ \delta(F, \lambda) = \{F\}$$

 \therefore B's transitions after the λ -NFA to NFA transition:

$$\delta(B, a) = \{D\} \cup \{C\} = \{C,D\}$$

 $\delta(B, b) = \{F\}$

For C:

$$\delta(C, \lambda) = \{C\}, \delta(C, a) = \Phi$$

$$\delta(C, \lambda) = \{C\}, \delta(C, b) = \{E\}, \text{ then } \delta(E, \lambda) = \{E, F\}$$

 \therefore C's transitions after the λ -NFA to NFA transition:

$$\delta(C, a) = \Phi$$

 $\delta(C, b) = \{E, F\} = \{E, F\}$

For D:

$$\delta(D, \lambda) = \{D\}, \delta(D, a) = \{D, C\}, \text{then } \delta(D, \lambda) = \{D\} \text{ and } \delta(C, \lambda) = \{C\}$$

 $\delta(D, \lambda) = \{D\}, \delta(D, b) = \{F\}, \text{then } \delta(F, \lambda) = \{F\}$

 \therefore D's transitions after the λ -NFA to NFA transition:

$$\delta(D, a) = \{C\} \cup \{D\} = \{C,D\}$$

 $\delta(D, b) = \{F\}$

For E:

$$\delta(E, \lambda) = \{E, F\}, \ \delta(E, a) = \{F\}, \ \delta(F, a) = \{F\}, \ then \ \delta(F, \lambda) = \{F\}$$

 $\delta(E, \lambda) = \{E, F\}, \ \delta(E, b) = \Phi, \ \delta(F, b) = \Phi$

 \therefore E's transitions after the λ -NFA to NFA transition:

$$\delta(E, a) = \{F\}$$

$$\delta(E, b) = \Phi$$

For F:

$$\delta(F, \lambda) = \{F\}, \delta(F, a) = \{F\}, \text{ then } \delta(F, \lambda) = \{F\}$$

 $\delta(F, \lambda) = \{F\}, \delta(F, b) = \Phi$

 \therefore F's transitions after the λ -NFA to NFA transition:

$$\delta(F, a) = \{F\}$$

$$\delta(F, b) = \Phi$$

 \therefore The transition from λ -NFA to NFA is:

$$\delta(A, a) = \{B, C, D\}$$

$$\delta(A, b) = \Phi$$

$$\delta(B, a) = \{C, D\}$$
 $\delta(B, b) = \{F\}$

$$\delta(B, b) = \{F$$

$$\delta(C, a) = \Phi$$

$$\delta(C, a) = \Phi$$
 $\delta(C, b) = \{E,F\}$

$$\delta(D, a) = \{C, D\}$$
 $\delta(D, b) = \{F\}$

$$\delta(D, b) = \{F\}$$

$$\delta(E, a) = \{F\}$$

$$\delta(E, b) = \Phi$$

$$\delta(F, a) = \{F\}$$

$$\delta(F, b) = \Phi$$

NFA graph:

NFA to DFA transition:

$$\delta(A, a) = BCD$$

$$\delta(A, b) = G$$

$$\delta(BCD, a) = CD$$

$$\delta(BCD, b) = EF$$

$$\delta(CD, a) = CD$$

$$\delta(CD, b) = EF$$

$$\delta(EF, a) = EF$$

$$\delta(EF, b) = \Phi$$

$$\delta(G, a) = G$$

$$\delta(G, b) = G (G \text{ is a trap state})$$

DFA graph:

Q6:

Minimization process:

DFA table:

	a	b
q0	q1	q3
q1	q2	q4
q2	q5	q4
q3	q4	q2
q4	q5	q2
q5	q5	q5

n-Equivalnce process is iterated until (n-1)-Equivalnce = n-Equivalnce:

It is done by comparing every state's transitions by seeing if the transitions belong to the same set or a different one. If it is in a different one, then the state goes to another set. Once the comparison is done amongst all states, then a new n-Equivalnce begins.

0-Equivalnce: {{q1, q2, q3, q4}, {q0, q5}}

1-Equivalnce: $\{\{q1, q3\}, \{q2, q4\}, \{q0\}, \{q5\}\}\$

2-Equivalnce: {{q1, q3}, {q2, q4}, {q0}, {q5}}

Since 1-Equivalnce's set **=** 2-Equivalnce's set, then the minimization process is done.

: The minimized DFA table will be:

	a	b
q0	{q1,q3}	{q1,q3}
{q1,q3}	{q2,q4}	{q2,q4}
{q2,q4}	q5	{q2,q4}
q5	q5	q5

Minimied DFA graph:

The initial state is q0, and the final state(s) are q0 and q5

$$\delta(q0, a) = \{q1, q3\}$$

$$\delta(q0, a) = \{q1, q3\}$$
 $\delta(q0, b) = \{q1, q3\}$

$$\delta(\{a1, a3\}, a) = \{a2, a3\}$$

$$\delta(\{q1,\,q3\},\,a)=\{q2,\,q3\} \qquad \quad \delta(\{q1,\,q3\},\,b)=\{q2,\,q4\}$$

$$\delta(\{q2, q4\}, a) = q5$$

$$\delta(\{q2,\,q4\},\,a)=q5 \qquad \qquad \delta(\{q2,\,q4\},\,b)=\{q2,\,q4\}$$

$$\delta(q5, a) = q5$$

$$\delta(q5, a) = q5 \qquad \qquad \delta(q5, b) = q5$$