Using the BsMD Package for Bayesian Screening and Model Discrimination

Ernesto Barrios Center for Quality and Productivity Improvement University of Wisconsin-Madison

Contents

1	Intr	oduction	2
2	Scr	eening Designs	2
	2.1	Daniel Plots	3
		2.1.1 Box et al. 1986: Example 1	4
		2.1.2 Box et al. 1986: Example 3	4
	2.2	Lenth Plots	5
		2.2.1 Box et al. 1986: Example 2	6
		2.2.2 Box et al. 1986: Example 4	7
3	Bay	esian Screening	8
	3.1	Fractional Factorial Designs	8
		3.1.1 Box et al. 1986: Example 1	9
			10
	3.2		12
		· · · · · · · · · · · · · · · · · · ·	12
			15
	3.3	Extra Runs	16
		3.3.1 Box et al. 1993: Example 3	16
4	Mo	del Discrimination	19
	4.1	4-run Follow-Up Experiments	19
		4.1.1 Meyer et al. 1996: Example 1	19
		4.1.2 Meyer et al. 1996: Example 2	21
	4.2		25
		4.2.1 Meyer et al. 1996: Example 2	25
5	Sun	nmary	27
\mathbf{R}	efere	nces	27
\mathbf{A}	ppen	dix	28

1 Introduction

Screening experiments are employed the at initial stages of investigation to discriminate, among many factors, those with potential effect over the response under study. It is common in screening studies to use most of the observations estimating different contrasts, leaving only a few or even no degrees of freedom at all to estimate the experiment standard error. Under these conditions it is not possible to assess the statistical significance of the estimated contrast effects. Some procedures, for example, the analysis of the normal plot of the effects, have been developed to overcome this situation.

BsMD package includes a set of functions useful for factor screening in unreplicated factorial experiments. Some of the functions were written originally for S, then adapted for S-PLUS and now for R. Functions for Bayesian screening and model discrimination follow-up designs are based on Daniel Meyer's mdopt fortran bundle (Meyer, 1996). The programs were modified and converted to subroutines to be called from R functions.

This document is organized in three sections: Screening Designs, Bayesian Screening, and Model Discrimination, with the references to the articles as subsections to indicate the sources of the examples presented. All the examples in Box and Meyer (1986, 1993) and Meyer, Steinberg, and Box (1996) are worked out and the code displayed in its totality to show the use of the functions in the BsMD package. The detailed discussion of the examples and the theory behind them is left to the original papers. Details of the BsMD functions are contained to their help pages.

2 Screening Designs

In screening experiments, factor sparsity is usually assumed. That is, from all factors considered in the experiment only a few of these will actually affect the response. (See for example, Box and Meyer (1986), sec. 1.) Based on this sparsity hypothesis various procedures have have been developed to identify such active factors. Some of these procedures are included in the BsMD package: DanielPlot (Normal Plot of Effects), LenthPlot (based on a robust estimation of the standard error of the contrasts), and BsProb for Bayesian screening. See the references for details on the theory of the procedures. The data set used in the examples of this section is from Box and Meyer (1986). They represent four different experiments: log drill advance, tensile strength, shrinkage and yield of isatin with responses denoted by y1,...,y4 and different design factors. The estimable contrasts are denoted by X1,...,X15. The design matrix and responses are presented next.

```
> options(width = 80)
> library(BsMD)
> data(BM86.data, package = "BsMD")
> print(BM86.data)
   X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15
                                                                      уЗ
                                                           у1
                                                                у2
                                                       1 0.23 43.7 14.0 0.08
1
                1
                   1 -1 -1
                             1
                                  1
                                     -1
                                          1
                                             -1
                                                  -1
    1 -1 -1 -1 -1
                    1
                                                  -1
                                                      -1 0.30 40.2 16.8 0.04
                       1 -1 -1
                                  1
                                          1
                                              1
                                      1
       1 -1 -1
                1 -1
                       1 -1
                                -1
                                          1
                                             -1
                                                   1
                                                      -1 0.52 42.4 15.0 0.53
                                      1
          1 -1 -1 -1 -1 -1
                                -1
                                                   1
                                                       1 0.54 44.7 15.4 0.43
                                     -1
                                          1
                                              1
          1
             1 -1 -1
                       1 -1
                                  1
                                     -1
                                         -1
                                              1
                                                   1
                                                      -1 0.70 42.4 27.6 0.31
                                         -1
                1 -1 -1 -1 -1
                                      1
                                             -1
                                                   1
                                                       1 0.76 45.9 24.0 0.09
```

```
1 1.00 42.2 27.4 0.12
                     1 -1 -1
                                  -1
                                            -1
                                                 1
                                                    -1
                                   -1
                                       -1
                                            -1
                                                -1
                                                     -1
                                                         -1 0.96 40.6 22.6 0.36
                                                         -1 0.32 42.4 22.3 0.79
                                            -1
                              -1
                                  -1
                                        1
                                                 1
             -1
                     1
                               1
                                  -1
                                       -1
                                            -1
                                                -1
                                                      1
                                                          1 0.39 45.5 17.1 0.68
                                                          1 0.61 43.6 21.5 0.73
                                            -1
                                                -1
                                                     -1
                                                         -1 0.66 40.6 17.5 0.08
             -1 -1 -1 -1
                               1
                                    1
                                        1
                                             1
                                                          1 0.89 44.0 15.9 0.77
                -1 -1
                            1
                              -1
                                  -1
                                        1
                                                -1
                                                     -1
      -1 -1
              1
                  1
                    -1
                       -1
                            1
                               1
                                   -1
                                       -1
                                             1
                                                 1
                                                     -1
                                                         -1 0.97 40.2 21.9 0.38
                                                         -1 1.07 42.5 16.7 0.49
16
              1
                     1
                        1
                                    1
                                             1
                                                 1
                                                      1
                                                          1 1.21 46.5 20.3 0.23
                                        1
```

Saturated linear models for each of the responses are fitted and the estimated coefficients are presented in the table below. The lm calls, not displayed here, produce the advance.lm, ..., yield.lm objects used in the next subsections.

	advance	shrinkage	strength	yield
(Intercept)	0.70	42.96	19.75	0.38
X1	0.03	0.06	-0.30	-0.10
X2	0.13	-0.07	-0.20	-0.01
ХЗ	-0.01	0.15	-0.30	0.00
X4	0.25	0.08	2.30	-0.04
X5	0.00	0.20	0.45	0.02
Х6	-0.01	-0.01	-0.10	-0.03
Х7	0.00	0.19	-0.15	0.07
X8	0.07	0.20	-0.60	0.14
Х9	0.01	-0.03	0.35	-0.08
X10	0.00	0.21	0.05	-0.13
X11	0.01	0.06	0.15	-0.05
X12	0.02	0.06	-2.75	-0.01
X13	0.01	-0.19	1.90	0.00
X14	-0.01	1.07	0.05	0.06
X15	0.01	1.55	-0.30	0.01

For each of the experiments the 16 runs are used on the estimation of the 15 contrasts and the constant term. Thus the need of graphical aims to determine which are likely active contrasts.

2.1 Daniel Plots

Daniel plots, known as normal plot of effects, arrange the estimated factor effects in a normal probability plot; those factors "out of the straight line" are identified as potentially active factors. See for example, Daniel (1976) for different applications and interpretations.

DanielPlot produces normal plot of effects. The main argument of the function is an lm object, say, lm.obj. The function removes the constant term (Intercept) if it is in the model. Factor effects, assumed as 2*coef(lm.obj) are displayed using the qqnorm function. See the help pages for details.

2.1.1 Box et al. 1986: Example 1

By default DanielPlot labels all the effects, as show in figure a). This example shows how to label only some particular factors for clarity, as exhibited in figure b). The corresponding linear model advance.lm was already fitted at the beginning of the section.

2.1.2 Box et al. 1986: Example 3

Some people prefer the use of half-normal plots. These plots are similar to the normal plots but instead of the signed effects absolute values of the effects are displayed. There are some advantages and disadvantages using one or the other. See for example, Daniel (1976, chap. 7.6).

Figure a) depicts the half-normal plot of the effects for the strength response (y3). DanielPlot has the option to generate half-normal plots (half=TRUE). The corresponding normal plot of signed effects is presented in figure b) below.

```
> par(mfrow = c(1, 2), mar = c(3, 3, 1, 1), mgp = c(1.5, 0.5, 0),
+ oma = c(0, 0, 0, 0), xpd = TRUE, pty = "s", cex.axis = 0.7,
```

```
+ cex.lab = 0.8, cex.main = 0.9)
> DanielPlot(strength.lm, half = TRUE, cex.pch = 0.8, main = "a) Half-Normal Plot",
+ faclab = list(idx = c(4, 12, 13), lab = c(" x4", " x12",
+ " x13")))
> DanielPlot(strength.lm, main = "b) Normal Plot", faclab = list(idx = c(4, 12, 13), lab = c(" 4", " 12", " 13")))
```


2.2 Lenth Plots

Lenth's method for factor effects assessment is based on factor sparsity too. For and unreplicated factorial design Let c_1, \ldots, c_m the estimated contrasts and approximate the standard error by $s_0 = 1.5 \times \text{median} |c_i|$. Then the author defines the *pseudo standard error* by

$$\text{PSE} = 1.5 \times \underset{|c_j| < 2.5s_0}{\text{median}} |c_j|$$

and the 95% margin of error by

$$ME = t_{0.975,d} \times PSE$$

where $t_{0.975,d}$ is the .975th quantile of the t distribution with d = m/3 degrees of freedom. The 95% simultaneous margin of error (SME) is defined for simultaneous inference on all the contrast and is given by

$$SME = t_{\gamma,d} \times PSE$$

where $\gamma = (1 + 0.95^{1/m})/2$. See Lenth (1989), for details.

The LenthPlot function displays the factor effects and the SE and SME limits. Spikes instead of the barplot used originally by Lenth are employed to represent the factor effects. As in DanielPlot, the main argument for the function is a lm object, and 2*coef(lm.obj) is displayed.

2.2.1 Box et al. 1986: Example 2

Figure a) below shows the default plot produced by LenthPlot. The SE and MSE limits at a 95% confidence level ($\alpha=0.05$) are displayed by default. Figure b) shows Lenth's plot for the same experiment using $\alpha=0.01$, locating the labels of SME and ME close to the vertical axis and labelling the contrast effects X_{14} and X_{15} as P and -M, for period and material respectively and accordingly to Lenth's paper. Note that the effects are considered as 2 times the coefficients b.

```
> par(mfrow = c(1, 2), mar = c(4, 4, 1, 1), mgp = c(1.5, 0.5, 0),
      oma = c(0, 0, 0, 0), xpd = TRUE, pty = "s", cex.axis = 0.7,
      cex.lab = 0.8, cex.main = 0.9)
> LenthPlot(shrinkage.lm)
   alpha
                PSE
                           ME
                                    SME
0.0500000 0.2250000 0.5783809 1.1741965
> title("a) Default Lenth Plot")
> b <- coef(shrinkage.lm)[-1]</pre>
> LenthPlot(shrinkage.lm, alpha = 0.01, adj = 0.2)
   alpha
                PSE
                           ME
0.0100000 0.2250000 0.9072322 1.6855749
> title(substitute("b) Lenth Plot (" * a * ")", list(a = quote(alpha ==
      0.01))))
> text(14, 2 * b[14], "P ", adj = 1, cex = 0.7)
> text(15, 2 * b[15], "-M", adj = 0, cex = 0.7)
```


2.2.2 Box et al. 1986: Example 4

This example exhibits the Daniel and Lenth plots for the isatin data, originally presented by Davis and co-authors in 1954 and discussed in the Box and Meyer paper (p. 16–17). As can be seen in the figures below, it is not clear which contrasts may be active. For example, in Lenth's plot none of the effects goes beyond the margin of error ME, thus the SME limits are not displayed. The corresponding Bayes plot is presented in the next section.

3 Bayesian Screening

Box and Meyer Bayesian screening is also based on the factor sparsity hypothesis. For the linear model $y = X\beta + \epsilon$, the procedure assigns to each of the β_i independent prior normal distributions $N(0, \gamma^2 \sigma^2)$, where σ^2 is the variance of the error and γ^2 is the magnitude of the effect relative to the experimental noise. The factor sparsity assumption is brought into the procedure assigning a prior probability π to any factor of being active, and $1 - \pi$ to the factor of being inert. Models M_l for all-subsets of factors (main effects and interactions) are constructed and their posterior probabilities calculated. Marginal factor posterior probabilities p_i are computed and displayed. Those contrasts or factor effects with higher probabilities are identified as potentially active. See Box and Meyer (1986, 1993) for explanation and details of the procedure.

The BsProb function computes the posterior probabilities for Bayesian screening. The function calls the bs FORTRAN subroutine, a modification of the mbcqpi5.f program included in the mdopt bundle. The complete output of the program is saved in the working directory as BsPrint.out. The file is overwritten if it already exists. Thus, rename the BsPrint.out file after each call to BsProb if you want to keep the complete output. Note however, that most of the output is included in the BsProb's output list. This is a list of class BsProb with methods functions for print, plot and summary.

3.1 Fractional Factorial Designs

Bayesian screening was presented by Box and Meyer in their 1986 and 1993 papers. The former refers to 2-level orthogonal designs while the latter refer to general designs. The distinction is

important since in the case of 2-level orthogonal designs some factorization is possible that allows the calculation of the marginal probabilities without summing over all-subsets models' probabilities. This situation is explained in the 1986 paper, where α and k are used instead of the π and γ described at the beginning of the section. Their correspondence is $\alpha = \pi$, and $k^2 = n\gamma^2 + 1$, where n is the number of runs in the design. The function is written for the general case and arguments p and p (for p and p) should be provided. In the mentioned paper the authors estimated p and p for a number of published examples. They found p and p are used in the examples.

3.1.1 Box et al. 1986: Example 1

This example exhibits most of the output of the BsProb function. The design matrix and response vector, the 15 contrasts and 5 models posterior probabilities are printed. As mentioned before, g=2.49 corresponds to k=10 used in the paper. Note that all possible 2^{15} factor combinations were used to construct the totMod=32768 estimated models. Only the top nMod=5 are displayed. See the BsProb help pages for details. Figures below show the Bayes plot (a) and Daniel plot (b) for the estimated effects. In this case both procedures clearly identify x_2 , x_4 , and x_8 as active contrasts.

```
> par(mfrow = c(1, 2), mar = c(3, 3, 1, 1), mgp = c(1.5, 0.5, 0),
      oma = c(0, 0, 0, 0), pty = "s", cex.axis = 0.7, cex.lab = 0.8,
      cex.main = 0.9)
> X <- as.matrix(BM86.data[, 1:15])</pre>
> y <- BM86.data[, 16]
> advance.BsProb \leftarrow BsProb(X = X, y = y, blk = 0, mFac = 15, mInt = 1,
      p = 0.2, g = 2.49, ng = 1, nMod = 10)
> print(advance.BsProb, X = FALSE, resp = FALSE, nMod = 5)
Calculations:
    nRun
                                                                     totMod
             nFac
                       nBlk
                                mFac
                                          mInt
                                                       p
                                                                g
   16.00
            15.00
                       0.00
                                15.00
                                          1.00
                                                    0.20
                                                             2.49 32768.00
```

Output file: BsPrint.out

Factor probabilities:

```
Factor Code Prob
1
     none none 0.000
2
       Х1
             x1 0.240
3
       X2
             x2 1.000
4
       ХЗ
             x3 0.028
5
       Х4
             x4 1.000
6
       Х5
             x5 0.025
7
       Х6
             x6 0.034
8
             x7 0.025
       X7
9
       Х8
             x8 0.983
10
       Х9
             x9 0.046
      X10
            x10 0.025
11
```

```
X11 x11 0.037
12
13
      X12
           x12 0.091
           x13 0.034
14
      X13
15
      X14
           x14 0.028
           x15 0.030
16
      X15
 Model probabilities:
   Prob Sigma2 NumFac Factors
M1 0.504 0.003
                       2,4,8
                3
M2 0.148 0.002
                       1,2,4,8
M3 0.043 0.003
                       2,4,8,12
M4 0.022 0.003
                       2,4,8,9
M5 0.022 0.002
                       1,2,4,8,12
> plot(advance.BsProb, main = "a) Bayes Plot")
> DanielPlot(advance.lm, cex.pch = 0.6, main = "b) Daniel Plot",
      faclab = list(idx = c(2, 4, 8), lab = c(" x2", " x4", " x8")))
```


3.1.2 Box et al. 1986: Example 4

As mentioned in section 2.2.2, in the isatin data example active contrasts, if present, are not easily identified by Daniel or Lenth's plot. This situation is reflected in the sensitivity of the Bayes procedure to the value of γ . Different values for k (γ) can be provided to the BsProb function and the respective factor posterior probabilities computed. The range of such probabilities is plotted as

stacked spikes. This feature is useful in data analysis. See next subsection for further explanation. In the call of the function BsProb, g=c(1.22,3.74) and ng=10 indicate that the calculation of the marginal posterior probabilities is done for 10 equally spaced values of γ in the range (1.22,3.74) corresponding to the range of k between 5 and 15 used in the paper. The sensitivity of the posterior probabilities to various values of γ is exhibited in figure a) below. The large ranges displayed by some of the contrasts is an indication that no reliable inference is possible to draw from the data.

```
> par(mfrow = c(1, 2), mar = c(3, 3, 1, 1), mgp = c(1.5, 0.5, 0),
      oma = c(0, 0, 0, 0), pty = "s", cex.axis = 0.7, cex.lab = 0.8,
      cex.main = 0.9)
> X <- as.matrix(BM86.data[, 1:15])</pre>
> y <- BM86.data[, 19]</pre>
> yield.BsProb \leftarrow BsProb(X = X, y = y, blk = 0, mFac = 15, mInt = 1,
      p = 0.2, g = c(1.22, 3.74), ng = 10, nMod = 10)
> summary(yield.BsProb)
 Calculations:
    nRun
                       nBlk
                                mFac
                                         mInt
                                                            g[1]
                                                                     g[10]
             nFac
                                                      p
   16.00
            15.00
                       0.00
                               15.00
                                         1.00
                                                   0.20
                                                            1.22
                                                                      3.74
  totMod
32768.00
 Posterior probabilities for each gamma value:
                2
                       3
                             4
                                   5
                                         6
                                                            9
                                                                 10
          1
                                                7
                                                      8
gamma 1.220 1.500 1.780 2.060 2.340 2.620 2.900 3.180 3.460 3.740
none 0.120 0.167 0.218 0.268 0.316 0.360 0.400 0.436 0.469 0.498
      0.314 0.271 0.228 0.190 0.159 0.134 0.115 0.099 0.086 0.076
x1
      0.049 0.041 0.035 0.030 0.027 0.024 0.022 0.020 0.018 0.017
x2
      0.048 0.039 0.034 0.029 0.026 0.023 0.021 0.019 0.018 0.016
xЗ
      0.074 0.066 0.059 0.053 0.048 0.042 0.037 0.032 0.028 0.025
x4
x5
      0.051 0.043 0.037 0.032 0.028 0.026 0.023 0.021 0.019 0.018
x6
      0.066 0.057 0.051 0.047 0.042 0.038 0.034 0.030 0.027 0.024
      0.196 0.170 0.143 0.119 0.099 0.083 0.070 0.060 0.052 0.045
x7
      0.588 0.531 0.473 0.420 0.374 0.335 0.302 0.274 0.250 0.230
8x
x9
      0.228 0.197 0.164 0.136 0.113 0.095 0.080 0.069 0.060 0.052
x10
      0.513 0.456 0.399 0.348 0.304 0.267 0.237 0.212 0.191 0.173
      0.104 0.093 0.082 0.071 0.061 0.052 0.045 0.039 0.034 0.030
x11
      0.050 0.041 0.035 0.031 0.027 0.024 0.022 0.020 0.019 0.017
x12
      0.048\ 0.040\ 0.034\ 0.029\ 0.026\ 0.023\ 0.021\ 0.019\ 0.018\ 0.016
x13
      0.142\ 0.125\ 0.107\ 0.091\ 0.076\ 0.064\ 0.055\ 0.047\ 0.041\ 0.035
x14
      0.049 0.040 0.034 0.030 0.026 0.024 0.021 0.020 0.018 0.017
> plot(yield.BsProb, main = "a) Bayes Plot")
> title(substitute("( " * g * " )", list(g = quote(1.2 <= gamma <=</pre>
      3.7))), line = -1)
> DanielPlot(yield.lm, cex.pch = 0.6, main = "b) Daniel Plot",
      faclab = list(idx = c(1, 7, 8, 9, 10, 14), lab = paste(" ",
```

c(1, 7, 8, 9, 10, 14), sep = "")))

3.2 Plackett-Burman Designs

Simulation studies have shown Bayes screening to be robust to reasonable values of π (α). The method however is more sensitive to variation of γ values. Box and Meyer suggest the use of the γ value that minimize the posterior probability of the null model (no active factors). The rationale of this recommendation is because this value of γ also maximizes the likelihood function of γ since

$$p(\gamma|y) \propto \frac{1}{p(M_0|y,\gamma)}$$

where M_0 denotes the null model with no factors. See Box and Meyer (1993) and references therein.

3.2.1 Box et al. 1993: Example 1

This example considers a factorial design where 5 factors are allocated in a 12-run Plackett-Burman. The runs were extracted from the 2^5 factorial design in of the reactor experiment introduced by Box et al. (1978) and presented in section 4.1.2. Posterior probabilities are obtained and 3 factors are identified as potentially active, as shown in figure a) below. Then, the complete saturated design (11 orthogonal columns) is considered and marginal probabilities are calculated and displayed in figure b). None of the other contrasts x_6 - x_{11} seem to be active.

```
> par(mfrow = c(1, 2), mar = c(3, 3, 1, 1), mgp = c(1.5, 0.5, 0),
+ oma = c(0, 0, 0, 0), pty = "s", cex.axis = 0.7, cex.lab = 0.8,
+ cex.main = 0.9)
> data(BM93.e1.data, package = "BsMD")
```

```
> X <- as.matrix(BM93.e1.data[, 2:6])</pre>
> y <- BM93.e1.data[, 7]</pre>
> prob <- 0.25
> gamma <- 1.6
> reactor5.BsProb <- BsProb(X = X, y = y, blk = 0, mFac = 5, mInt = 3,
     p = prob, g = gamma, ng = 1, nMod = 10)
> summary(reactor5.BsProb)
 Calculations:
 nRun nFac nBlk
                     mFac mInt
                                            g totMod
                                   р
 12.00 5.00 0.00
                     5.00 3.00 0.25 1.60 32.00
 Factor probabilities:
 Factor Code Prob
   none none 0.025
2
      A x1 0.011
3
      B x2 0.964
4
      C x3 0.009
      D x4 0.899
5
      E x5 0.577
6
Model probabilities:
    Prob Sigma2 NumFac Factors
M1 0.563 8.67 3
                      2,4,5
M2 0.324 39.51 2
                     2,4
M3 0.062 122.11 1
M4 0.025 240.45 0
                     none
M5 0.004 89.75 2
                      2,5
M6 0.003 211.33 1
M7 0.003 22.91 3
                     1,2,4
M8 0.002 226.88 1
                      4
M9 0.002 5.96 4
                    2,3,4,5
          5.99 4
M10 0.002
                     1,2,4,5
> plot(reactor5.BsProb, main = "a) Main Effects")
> data(PB12Des, package = "BsMD")
> X <- as.matrix(PB12Des)</pre>
> reactor11.BsProb < BsProb(X = X, y = y, blk = 0, mFac = 11,
     mInt = 3, p = prob, g = gamma, ng = 1, nMod = 10)
> print(reactor11.BsProb, models = FALSE)
 Design Matrix:
  x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11
1 1-1 1-1-1 1 1 1 -1
                                1
2 1 1 -1 1 -1 -1 1 1
                             1 -1
3 -1 1 1 -1 1 -1 -1 1
                            1
                                1
4 1 -1 1 1 -1 1 -1 -1 -1
```

Response vector:

56 93 67 60 77 65 95 49 44 63 63 61

Calculations:

```
        nRun
        nFac
        nBlk
        mFac
        mInt
        p
        g
        totMod

        12.00
        11.00
        0.00
        11.00
        3.00
        0.25
        1.60
        2048.00
```

Output file: BsPrint.out

Factor probabilities:

```
Factor Code Prob
   none none 0.019
1
2
     x1 x1 0.056
3
     x2 x2 0.881
4
     x3 x3 0.053
     x4 x4 0.823
5
6
     x5 x5 0.531
7
    x6 x6 0.065
    x7 x7 0.052
8
9
     x8 x8 0.067
10
    x9
         x9 0.110
11
    x10 x10 0.052
12
     x11 x11 0.090
```

> plot(reactor11.BsProb, main = "b) All Contrasts")

3.2.2 Box et al. 1993: Example 2

In this example again a 12-run Plackett-Burman design is analyzed. The effect of 8 factors (A, \ldots, G) , on the fatigue life of weld repaired castings is studied. As mentioned before, Box and Meyer suggest the use of values of γ that maximizes its likelihood (minimizes the probability of the null model). Figure a) below displays $P\{\gamma|y\}$ ($\equiv 1/P\{M_0|y\}$) as function of γ . It can be seen that the likelihood $P\{\gamma|y\}$ is maximum around $\gamma=1.5$. In this example the maximization is carried out by calculating the marginal posterior probabilities for $1 \le \gamma \le 2$ and plotting the reciprocal of the probabilities of the null model. These probabilities are allocated in the first row of the probabilities matrix (fatigueG.BsProb\$prob), where fatigueG.BsProb is the output of BsProb. A Bayes plot based on this $\gamma=1.5$ is exhibited in figure b). Factors $F(X_6)$ and $G(X_7)$ clearly stick out from the rest. Alternatively, the unscaled γ likelihood ($P\{\gamma|y\}$) could be used since it has been already calculated by BsProb and assigned to fatigueG.BsProb\$pgam element.

3.3 Extra Runs

3.3.1 Box et al. 1993: Example 3

This the injection molding example from Box et al. (1978), where the analysis of the design is discussed in detail. In Box and Meyer (1993) the design is reanalyzed from the Bayesian approach. Firstly, a 16-run fractional factorial design is analyzed and the marginal posterior probabilities are calculated and displayed in figure a) below. Factors A, C, E and H are identified as potential active factors. The 2^{8-4} factorial design collapses to a replicated 2^{4-1} design in these factors. Thus, estimates of the main effects and interactions are not all possible. Then, it is assumed that 4 extra runs are available and the full 20-run design is analyzed considering the blocking factor as another

design factor. Their posterior probabilities are computed and exhibited in figure b). It is noted in the paper that the conclusions arrived there differ from those in Box et al. (1978), because the order of the interactions considered in the analysis, 3 and 2 respectively. In the BsProb function, the maximum interaction order to consider is declared with the argument mInt. For a detailed of the analysis see the source paper and reference therein.

```
> par(mfrow = c(1, 2), mar = c(4, 4, 1, 1), mgp = c(2, 0.5, 0),
      oma = c(0, 0, 1, 0), pty = "s", cex.axis = 0.7, cex.lab = 0.8,
      cex.main = 0.9)
> data(BM93.e3.data, package = "BsMD")
> print(BM93.e3.data)
   blk A B C D E F G
                                  У
1
    -1 -1 -1 -1
               1 1
                      1 -1
                            1 14.0
2
    -1 1 -1 -1 -1
                      1
                         1
                             1 16.8
3
    -1 -1
           1 -1 -1 1 -1 1
                             1 15.0
4
       1
             -1
                 1 -1 -1 -1
                1 -1 -1
                        1 1 27.6
5
    -1 -1 -1
             1
              1 -1
                   1 -1 -1
7
              1 -1 -1 1 -1
    -1 -1
           1
                            1 27.4
8
    -1
        1
           1
              1
                 1
                    1
                      1
                          1
                            1 22.6
9
    -1
        1
           1
              1 -1 -1 -1 1 -1 22.3
    -1 -1
           1
                   1 -1 -1 -1 17.1
              1
                 1
11
   -1
        1 -1
                 1 -1
                      1 -1 -1 21.5
              1
                      1 1 -1 17.5
    -1 -1 -1
             1 -1
                    1
13
   -1
       1
           1 -1 -1
                   1 1 -1 -1 15.9
   -1 -1
           1 -1
                1 -1 1 1 -1 21.9
15
   -1
       1 -1 -1
                1
                   1 -1 1 -1 16.7
   -1 -1 -1 -1 -1 -1 -1 -1 20.3
16
                1 -1 -1 -1 1 29.4
17
     1 -1
           1 1
18
     1 -1
           1 -1 -1 -1 1 1 19.7
19
           1 -1 -1
                   1 -1 -1 1 13.6
20
             1 1 1 1 1 1 24.7
           1
> X <- as.matrix(BM93.e3.data[1:16, 2:9])</pre>
> y <- BM93.e3.data[1:16, 10]</pre>
> prob <- 0.25
> gamma <- 2
> plot(BsProb(X = X, y = y, blk = 0, mFac = 8, mInt = 3, p = prob,
      g = gamma, ng = 1, nMod = 10), code = FALSE, main = "a) Fractional Factorial (FF)")
> X <- as.matrix(BM93.e3.data[, c(2:9, 1)])</pre>
> y <- BM93.e3.data[, 10]</pre>
> plot(BsProb(X = X, y = y, blk = 0, mFac = 9, mInt = 3, p = prob,
      g = gamma, ng = 1, nMod = 5), code = FALSE, main = "b) FF with Extra Runs",
     prt = TRUE, )
 Calculations:
 nRun
        nFac
                              mInt
                                               g totMod
               nBlk
                       mFac
```

20.00 9.00 0.00 9.00 3.00 0.25 2.00 512.00

Factor probabilities:

	Factor	Code	Prob
1	none	none	0.000
2	A	x1	0.781
3	В	x2	0.000
4	C	x3	1.000
5	D	x4	0.000
6	E	x5	0.987
7	F	x6	0.000
8	G	x7	0.000
9	Н	8x	0.318
10	blk	x9	0.045

Model probabilities:

	Prob	Sigma2	NumFac	Factors
M1	0.672	1.012	3	1,3,5
M2	0.194	1.154	3	3,5,8
МЗ	0.086	0.593	4	1,3,5,8
M4	0.024	0.473	4	3,5,8,9
M5	0.010	0.519	4	1,3,5,9

> mtext(side = 1, "(Blocking factor blk)", cex = 0.7, line = 2.5)

4 Model Discrimination

Follow-up experiments for model discrimination (MD) are discussed by Meyer, Steinberg, and Box (1996). They introduce the design of follow-up experiments based on the MD criterion:

$$MD = \sum_{i \neq j} P(M_i|Y)P(M_j|Y)I(p_i, p_j)$$

where p_i denotes the predictive density of a new observation(s) conditional on the observed data Y and on model M_i being the correct model, and $I(p_i, p_j) = \int p_i \ln(p_i/p_j)$ is the Kullback-Leibler information, measuring the mean information for discriminating in favor of M_i against M_j when M_i is true. Under this criterion designs with larger MD are preferred.

The criterion combines the ideas for discrimination among models presented by Box and Hill (1967) and the Bayesian factor screening by Box and Meyer. The authors present examples for 4-run follow-up experiments but the criterion can be applied to any number of runs. In the next subsections we present the 4-run examples in the Meyer et al. (1996) paper and revisit the last of the examples from the one-run-at-a-time experimentation strategy.

The MD function is available for MD optimal follow-up designs. The function calls the md FORTRAN subroutine, a modification of the MD.f program included in the mdopt bundle. The output of the MD program is saved at the working directory in MDPrint.out file. The output of the MD function is a list of class MD with print and summary method functions.

For a given number of factors and a number of follow-up sets of runs, models are built and their MD calculated. The method employs the exchange search algorithm. See Meyer et al. (1996) and references therein. The MD function uses factor probabilities provided by BsProb. See the help pages for details.

4.1 4-run Follow-Up Experiments

4.1.1 Meyer et al. 1996: Example 1

The example presents the 5 best MD 4-run follow-up experiments for injection molding example, presented in section 3.3.1. In the code below note the call to the BsProb function before calling MD. The procedure selects the follow-up runs from a set of candidate runs Xcand (the original 2^{8-4} design), including the blocking factor blk. The best 4-run follow-up experiment, runs (9, 9, 12, 15), has a MD of 85.72, followed by (9,12,14,15) with MD = 84.89. Note that these runs are different from the 4 extra runs in section 3.3.1.

```
> nf <- injection16.BsProb$nftop</pre>
> facs <- injection16.BsProb$jtop</pre>
> nFDes <- 4
1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1,
     1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1), nrow = 16,
     dimnames = list(1:16, c("blk", "A", "C", "E", "H")))
> print(MD(X = X, y = y, nFac = 4, nBlk = 1, mInt = 3, g = 2, nMod = 5,
    p = p, s2 = s2, nf = nf, facs = facs, nFDes = 4, Xcand = Xcand,
     mIter = 20, nStart = 25, top = 5))
 Base:
 nRuns
       nFac
             nBlk maxInt gMain gInter
                                   nMod
                     3
   16
        4
               1
                           2
 Follow up:
 nCand
       nRuns maxIter nStart
    16
           4
                 20
                        25
 Competing Models:
  Prob Sigma2 NumFac Factors
M1 0.236 0.582 3
                  1,2,3
M2 0.236 0.582 3
                  2,3,4
M3 0.236 0.582 3
                  1,3,4
M4 0.236 0.582 3
                  1,2,4
M5 0.057 0.441 4
                  1,2,3,4
Candidate runs:
  blk A C E H
    1 -1 -1 -1 -1
    1 -1 -1 1 1
2
3
    1 -1 1 -1 1
4
    1 -1 1 1 -1
5
    1 1 -1 -1 1
6
    1 1 -1 1 -1
7
    1 1 1 -1 -1
8
    1 1 1 1 1
9
    1 -1 -1 -1 1
    1 -1 -1 1 -1
10
11
    1 -1 1 -1 -1
12
    1 -1 1 1 1
13
   1 1 -1 -1 -1
14
    1 1 -1 1 1
15
   1 1 1 -1 1
16
   1 1 1 1 -1
```

Search trace output file: MDPrint.out

```
Top 5 runs:

D r1 r2 r3 r4
1 85.726 9 9 12 15
2 84.893 9 12 14 15
3 83.684 9 11 12 15
4 77.136 9 11 12 14
5 77.111 9 9 11 12
```

4.1.2 Meyer et al. 1996: Example 2

This example is based on the 2⁵ factorial reactor experiment presented initially in Box et al. (1978, chap. 12) and revisited from the MD criterion perspective in Box et al. (2004, chap. 7). The full design matrix and response is:

```
> data(Reactor.data, package = "BsMD")
> print(Reactor.data)
   A B C D E y
  -1 -1 -1 -1 61
   1 -1 -1 -1 53
3
  -1 1 -1 -1 -1 63
   1 1 -1 -1 -1 61
4
5
  -1 -1 1 -1 -1 53
   1 -1 1 -1 -1 56
7
  -1 1 1 -1 -1 54
     1
        1 -1 -1 61
  -1 -1 -1 1 -1 69
10 1 -1 -1
           1 -1 61
11 -1 1 -1 1 -1 94
  1 1 -1
           1 -1 93
13 -1 -1 1 1 -1 66
14 1 -1 1 1 -1 60
15 -1 1 1 1 -1 95
16 1 1 1
           1 -1 98
17 -1 -1 -1 1 56
18 1 -1 -1 -1 1 63
19 -1 1 -1 -1 1 70
20 1 1 -1 -1 1 65
21 -1 -1 1 -1 1 59
22 1 -1 1 -1 1 55
23 -1 1
        1 -1
              1 67
24 1 1 1 -1 1 65
```

1 44

25 -1 -1 -1 1

26 1 -1 -1 1 1 45

```
27 -1 1 -1 1 1 78
             1
                1 77
29 -1 -1
             1
                1 49
   1 -1
          1
             1
                1 42
31 -1
          1
             1
                1 81
   1
      1
          1
             1
                1 82
```

First, it is assumed that only 8 runs $(25, 2, \ldots, 32)$, from a 2^{5-2} were run. The runs are displayed in the output as Fraction. Bayesian screening is applied and posterior marginal probabilities are calculated and shown in figure a) below. These probabilities are used to find the MD optimal 4-run follow-up designs choosing the possible factor level combinations from the full 2^5 design. Since in this example responses for all the 32 runs are available, they are used as if the follow-up experiment was actually run and the posterior factor probabilities for the 12-run experiment determined and displayed in figure b). It is apparent how the extra runs clean up the activity of factors B, D and E. Note that the output of the BsProb function is used in the the call of MD. The complete output of both functions is sent to the files BsPrint.out and MDPrint.out respectively. Also, remember that method functions print and summary are available to control the amount of displayed output.

```
> par(mfrow = c(1, 2), mar = c(3, 4, 1, 1), mgp = c(2, 0.5, 0),
      oma = c(0, 0, 0, 0), pty = "s", cex.axis = 0.7, cex.lab = 0.8,
      cex.main = 0.9)
> fraction <- c(25, 2, 19, 12, 13, 22, 7, 32)
> cat("Fraction: ", fraction)
Fraction: 25 2 19 12 13 22 7 32
> X <- as.matrix(cbind(blk = rep(-1, 8), Reactor.data[fraction,
      1:5]))
> y <- Reactor.data[fraction, 6]</pre>
> print(reactor8.BsProb <- BsProb(X = X, y = y, blk = 1, mFac = 5,
      mInt = 3, p = 0.25, g = 0.4, ng = 1, nMod = 32), X = FALSE,
      resp = FALSE, factors = TRUE, models = FALSE)
 Calculations:
                                                g totMod
 nRun
         nFac
                nBlk
                               mInt
                                         p
  8.00
         5.00
                1.00
                       5.00
                               3.00
                                      0.25
                                             0.40 32.00
 Output file: BsPrint.out
 Factor probabilities:
 Factor Code Prob
    none none 0.230
1
2
           x1 0.271
       Α
3
       В
           x2 0.375
4
       C
           x3 0.172
5
       D
           x4 0.291
6
       Ε
           x5 0.170
```

```
> plot(reactor8.BsProb, code = FALSE, main = "a) Initial Design\n(8 runs)")
> p <- reactor8.BsProb$ptop
> s2 <- reactor8.BsProb$sigtop
> nf <- reactor8.BsProb$nftop</pre>
> facs <- reactor8.BsProb$jtop</pre>
> nFDes <- 4
> Xcand <- as.matrix(cbind(blk = rep(+1, 32), Reactor.data[, 1:5]))</pre>
> print(MD(X = X, y = y, nFac = 5, nBlk = 1, mInt = 3, g = 0.4,
      nMod = 32, p = p, s2 = s2, nf = nf, facs = facs, nFDes = 4,
      Xcand = Xcand, mIter = 20, nStart = 25, top = 5), Xcand = FALSE,
      models = FALSE)
 Base:
 nRuns
       nFac nBlk maxInt gMain gInter
                                           nMod
   8.0
        5.0
              1.0
                       3.0
                             0.4 0.4
                                           32.0
 Follow up:
  nCand nRuns maxIter nStart
     32
             4
                    20
 Search trace output file: MDPrint.out
   Top 5 runs:
      D r1 r2 r3 r4
1 0.615 4 10 11 26
2 0.610 4 10 11 28
3 0.608 4 10 26 27
4 0.606 4 10 12 27
5 0.603 4 11 12 26
> new.runs <- c(4, 10, 11, 26)
> cat("Follow-up:", new.runs)
Follow-up: 4 10 11 26
> X <- rbind(X, Xcand[new.runs, ])</pre>
> y <- c(y, Reactor.data[new.runs, 6])</pre>
> print(reactor12.BsProb <- BsProb(X = X, y = y, blk = 1, mFac = 5,
      mInt = 3, p = 0.25, g = 1.2, ng = 1, nMod = 5)
 Design Matrix:
   blk A B C D E
25 -1 -1 -1 -1 1 1
2 -1 1 -1 -1 -1 -1
19 -1 -1 1 -1 -1 1
12 -1 1 1 -1 1 -1
13 -1 -1 -1 1 1 -1
22 -1 1 -1 1 -1 1
```

Response vector:

44 53 70 93 66 55 54 82 61 61 94 45

Calculations:

```
nRun nFac nBlk mFac mInt p g totMod 12.00 5.00 1.00 5.00 3.00 0.25 1.20 32.00
```

Output file: BsPrint.out

Factor probabilities:

```
Factor Code Prob
1 none none 0.041
2 A x1 0.012
3 B x2 0.938
4 C x3 0.199
5 D x4 0.873
6 E x5 0.647
```

Model probabilities:

```
Prob Sigma2 NumFac Factors
M1 0.462 17.11 3 2,4,5
M2 0.209 66.63 2 2,4
M3 0.172 7.51 4 2,3,4,5
M4 0.064 167.76 1 2
M5 0.041 288.79 0 none
```

> plot(reactor12.BsProb, code = FALSE, main = "b) Complete Designn(12 runs)")

4.2 One-run-at-a-time Experiments

4.2.1 Meyer et al. 1996: Example 2

Example 4.1.2 is considered again in this subsection. In this exercise we assume that the follow-up experimentation is in one-run-at-a-time fashion instead of the 4-run experiment discussed before. At each stage marginal posterior probabilities are computed and MD is determined, using $\gamma = 0.4, 0.7, 1.0, 1.3$. Once again, candidate runs are chosen from the 2^5 design. It can be seen there that at run 11, factors B, D and possibly E too, are cleared from the other factors. Note also that the final set of runs under the one-at-a-time approach (10,4,11,15) ended being different from (4,10,11,26) suggested by the 4-run follow-up strategy based on $\gamma = 0.4$. Bayes plots for each step are displayed in the figure below. See Box et al. (2004, chap. 7) for discussion of this approach. The code used in this section is included as appendix.

Design Matrix:

	blk	Α	В	C	D	Ε
25	-1	-1	-1	-1	1	1
2	-1	1	-1	-1	-1	-1
19	-1	-1	1	-1	-1	1
12	-1	1	1	-1	1	-1
13	-1	-1	-1	1	1	-1
22	-1	1	-1	1	-1	1
7	-1	-1	1	1	-1	-1
32	-1	1	1	1	1	1

Response vector:

44 53 70 93 66 55 54 82 61 61 94 95

Calculations:

```
nRun nFac nBlk mFac mInt p g totMod 12.00 5.00 1.00 5.00 3.00 0.25 1.30 32.00
```

Output file: BsPrint.out

Factor probabilities:

Factor Code Prob
1 none none 0.035
2 A x1 0.026
3 B x2 0.944
4 C x3 0.021
5 D x4 0.917
6 E x5 0.469

Model probabilities:

Prob Sigma2 NumFac Factors
M1 0.441 15.24 3 2,4,5
M2 0.428 52.45 2 2,4
M3 0.036 173.18 1 2
M4 0.036 277.34 0 none
M5 0.016 8.95 4 1,2,4,5

5 Summary

Various techniques are available for factor screening of unreplicated experiments. In this document we presented the functions of the BsMD package for Bayesian Screening and Model Discrimination. A number of examples were worked to show some of the features of such functions. We refer the reader to the original papers for detailed discussion of the examples and the theory behind the procedures.

Acknowledgment

Many thanks to Daniel Meyer for making his FORTRAN programs available and his permission to adapt and include them in this package. I want to thank as well Alejandro Muñoz whose detailed comments on early versions of the package and this document made BsMD easier to use and understand.

References

- G. E. P. Box and W.J. Hill. Discrimination among mechanistic models. Technometrics, 9(1):57–71, 1967.
- G. E. P Box, W. G. Hunter, and J. S. Hunter. Statistics for Experimenters. Wiley, New York, 1978.
- G. E. P Box, W. G. Hunter, and J. S. Hunter. Statistics for Experimenters II. Wiley, New York, 2004.
- G. E. P. Box and R. D. Meyer. An analysis for unreplicated fractional factorials. *Technometrics*, 28(1):11–18, 1986.
- G. E. P. Box and R. D. Meyer. Finding the active factors in fractionated screening experiments. Journal of Quality Technology, 25(2):94–105, 1993.
- C. Daniel. Applications of Statistics to Industrial Experimentation. Wiley Sciences, New Jersey, 1976.
- R. V. Lenth. Quick and Easy Analysis of Unreplicated Factorials. Technometrics, 31(4):469–473, 1989.
- R. D. Meyer. mdopt: FORTRAN programs to generate MD-optimal screening and follow-up designs, and analysis of data. *Statlib*, August 1996. URL http://lib.stat.cmu.edu.
- R. D. Meyer, D. M. Steinberg, and G. E. P. Box. Follow-Up Designs to Resolve Confounding in Multifactor Experiments (with discussion). *Technometrics*, 38(4):303–332, 1996.

Appendix

Code used in section 4.2.1.

```
#cat("Follow-Up: run 2\n")
p <- lst$ptop; s2 <- lst$sigtop; nf <- lst$nftop; facs <- lst$jtop</pre>
reactor9.MD <- MD(X=X,y=y,nFac=5,nBlk=1,mInt=3,g=0.7,nMod=32,p=p,s2=s2,nf=nf,facs=facs,</pre>
            nFDes=1, Xcand=Xcand, mIter=20, nStart=25, top=3)
new.run <- 4
X <- rbind(X,Xcand[new.run,]); rownames(X)[nrow(X)] <- new.run</pre>
y <- c(y,Reactor.data[new.run,6])</pre>
lst <- reactor10.BsProb <- BsProb(X=X,y=y,blk=1,mFac=5,mInt=3,p=0.25,g=1.0,ng=1,nMod=32)</pre>
#cat("Follow-Up: run 3\n")
p <- lst$ptop; s2 <- lst$sigtop; nf <- lst$nftop; facs <- lst$jtop
reactor10.MD <- MD(X=X,y=y,nFac=5,nBlk=1,mInt=3,g=1.0,nMod=32,p=p,s2=s2,nf=nf,facs=facs,
            nFDes=1, Xcand=Xcand, mIter=20, nStart=25, top=3)
new.run <- 11
X <- rbind(X,Xcand[new.run,]); rownames(X)[nrow(X)] <- new.run</pre>
y <- c(y,Reactor.data[new.run,6])
lst <- reactor11.BsProb <- BsProb(X=X,y=y,blk=1,mFac=5,mInt=3,p=0.25,g=1.3,ng=1,nMod=32)</pre>
#cat("Follow-Up: run 4\n")
p <- lst$ptop; s2 <- lst$sigtop; nf <- lst$nftop; facs <- lst$jtop
reactor10.MD <- MD(X=X,y=y,nFac=5,nBlk=1,mInt=3,g=1.3,nMod=32,p=p,s2=s2,nf=nf,facs=facs,
            nFDes=1, Xcand=Xcand, mIter=20, nStart=25, top=3)
X <- rbind(X,Xcand[new.run,]); rownames(X)[nrow(X)] <- new.run</pre>
y <- c(y,Reactor.data[new.run,6])
reactor12 <- BsProb(X=X,y=y,blk=1,mFac=5,mInt=3,p=0.25,g=1.30,ng=1,nMod=10)
print(reactor12,nMod=5,models=TRUE,plt=FALSE)
par(mfrow=c(2,2), mar=c(3,4,1,1), mgp=c(2,.5,0), oma=c(1,0,1,0),
    pty="s",cex.axis=0.7,cex.lab=0.8,cex.main=0.9)
plot(reactor9.BsProb,code=FALSE)
mtext(side=1,"b) 9 runs",line=3,cex=0.7)
plot(reactor10.BsProb,code=FALSE)
mtext(side=1,"c) 10 runs",line=3,cex=0.7)
plot(reactor11.BsProb,code=FALSE)
mtext(side=1,"d) 11 runs",line=3,cex=0.7)
plot(reactor12.BsProb,code=FALSE)
mtext(side=1,"e) 12 runs",line=3,cex=0.7)
title("One-at-a-time Experiments",outer=TRUE)
```