# Embedded System Hardware Architectures, *Introduction*

Lecture 1 April 1st 2024



Michael Wang

#### **Student Services**

E: extension@ucsc.edu

P: 408.861.3860

#### Schedule

| Date:           | Start Time: | End Time: | Meeting Type: | Location:            |
|-----------------|-------------|-----------|---------------|----------------------|
| Mon, 04-01-2024 | 6:30 p.m.   | 9:30 p.m. | Flexible      | SANTA CLARA / REMOTE |
| Mon, 04-08-2024 | 6:30 p.m.   | 9:30 p.m. | Flexible      | SANTA CLARA / REMOTE |
| Mon, 04-15-2024 | 6:30 p.m.   | 9:30 p.m. | Flexible      | SANTA CLARA / REMOTE |
| Mon, 04-22-2024 | 6:30 p.m.   | 9:30 p.m. | Flexible      | SANTA CLARA / REMOTE |
| Mon, 04-29-2024 | 6:30 p.m.   | 9:30 p.m. | Flexible      | SANTA CLARA / REMOTE |
| Mon, 05-06-2024 | 6:30 p.m.   | 9:30 p.m. | Flexible      | SANTA CLARA / REMOTE |
| Mon, 05-13-2024 | 6:30 p.m.   | 9:30 p.m. | Flexible      | SANTA CLARA / REMOTE |
| Mon, 05-20-2024 | 6:30 p.m.   | 9:30 p.m. | Flexible      | SANTA CLARA / REMOTE |
| Mon, 06-03-2024 | 6:30 p.m.   | 9:30 p.m. | Flexible      | SANTA CLARA / REMOTE |
| Mon, 06-10-2024 | 6:30 p.m.   | 9:30 p.m. | Flexible      | SANTA CLARA / REMOTE |



## Agenda (1)



#### 1. April 1<sup>st</sup> 6:30pm – Online

- Tear Down Analysis, Inter-IC communications
- Basic Concepts ( Serial vs Parallel bus)
- Quiz 1 (closed Notes)

#### 2. April 8th 6:30pm Online

Microcontroller/ Microprocessor Systems / SoC Concepts

Quiz 2 (closed Notes)



## Agenda (2)

- 3. April 15th (?) Monday 6:30pm: Online
- Volatile Memories (System and Architectures)
- Quiz 3 (closed Notes)

- 4. April 22<sup>nd</sup>(?) Monday 6:30pm: Online
  - Non-Volatile Memories (System and Architectures)
  - Quiz 4 (closed Notes)

### Agenda (3)

#### 5. April 29th Monday 6:30pm: Online

- Special Functions Circuitry in Embedded Processors ColdFireV1
   v S5D9 Synergy v 8051: FPU, DMA
- Quiz 5 (closed Notes)

#### 6. May 6th Monday 6:30pm: Online

- Special Function Circuitry: GPIO, UART
- Hardware System Design Considerations: IC Packaging, IC Thermal Considerations
- Quiz 6 (closed Notes)



#### Agenda (4)

#### 7. May 13th Monday 6:30pm: Online

- Embedded systems in Makers Faire DIY movement, single board computers, industry trends and best practices.
- Guest Speaker 1: CM, EspressoBin / Dragon Board/ other SBCs
- Project 1 Presentation Due
- Quiz 7 (Closed Notes)

#### 8. May 20th Monday 6:30pm: Online

- Special Function Circuitry: PWM, WDT, PMIC
- Embedded System Design Methodology: FPGA, ASIC, Full-Custom Design, COTs
- Guest Speaker 2: "FPGA and SOMs"
- Quiz 8 (Closed Notes)

(Memorial Day on May 27<sup>th</sup> – no class)



### Agenda (5)

#### 9. Jun 3<sup>rd</sup> Monday 6:30pm: Online

- Special Function Circuitry: ADC, DAC, RTC
- Form Factor, System Benchmarking
- Guest Speaker 3: "Age of AI and the Transformation of Compute Infrastructure"
- Quiz 9 (Closed Notes)

#### 10 Jun 10th Monday 6:30pm: Online

- CPU v GPU v TPU v NPU v VPU v XPU v DPU
- Software Considerations: OS, RTOS, Baremetal, Middleware
- Industry Case Studies
- Project2 + Presentation Due,
- Course Wrap Up
- Final Exam (Open Notes)



#### Class Introduction

- Your name
- Your job title
- Company
- Why are you taking this class?



### Class Expectations

What you want to gain out of this class?

## Grading

- Quizzes (9 quizzes) 45% each
- Project1 15%
- Project2 20%
- Final Exam 20%

#### Project

#### Choose one of the following:

- 1. 4-page (double spaced) minimum Research on the Topic of your choice. Topic should be related to class materials eg Main Memory development over the last 20 years.
- 2. Read a book on class related material and write a 4-page book review. Review topics should summarize the contents of the book and include your feedback and recommendations.
- 3. Designing an embedded system on paper Choose a hardware project of your choice and draft out the system functional block diagram (1 page). Explain why you choose the components, what is the functional purpose of the component (3 page).



### **Project Grading**

#### Grading to be based on:

**Content: (60%)** 

- 1. Technical Accuracy
- 2. Addresses Project Complexity
- 3. Quality of Response during Q&A

Presentation: (40%)

- 1. Organization
- 2. Visual Aids
- 3. Time Allotment



## Suggested Readings 1

- Embedded Systems Architecture, Second Edition: A Comprehensive Guide for Engineers and Programmers [Hardcover]
- Tammy Noergaard (Author)
- Hardcover: 672 pages
- Publisher: Newnes; 2 edition (December 28, 2012)
- Language: EnglishISBN-10: 0123821967ISBN-13: 978-0123821966
- Embedded Systems Design
- Steve Heath
- Second Edition
- ISBN: 0750655461
- Format: Paperback, 430ppPub. Date: December 2002
- Publisher: Elsevier Science & Technology Books
- Source attributed to www.amazon.com







## Suggested Readings 2

 Embedded Microprocessor Systems (Embedded Technology Series): Real World Design

Stuart Ball

Publisher: Elsevier Science & Technology Books

Pub. Date: January 2002 ISBN-13: 9780750675345

362pp

Edition Description: THIRD



- Computer Organization and Design, ARM Edition: The Hardware/Software Interface (The Morgan Kaufmann Series in Computer Architecture and Design) [Paperback]
- David A. Patterson John L. Hennessy
- Series: The Morgan Kaufmann Series in Computer Architecture and Design

Paperback: Publisher: Morgan Kaufmann; ARM edition

Language: English

ISBN-13: 978-0128017333ISBN-10: 0128017333



### Suggested Readings 3

- Inside the Machine:
- John Stokes
- Publisher: No Starch Press San Francisco, CA
- Pub. Date: November 2006
- ISBN-13: 9781593271046
- 292pp
- Embedded Systems Design with Platform FPGAs:
   Principles and Practices [Hardcover]
- Ronald Sass (Author), Andrew G. Schmidt (Author)
- Publisher: Morgan Kaufmann; 1 edition (August 11, 2010)
- Language: English
- ISBN-10: 0123743338
- ISBN-13: 978-0123743336





### What is an embedded system?

Typically a microprocessor-based system not thought of as a PC:

- Comprises: Memory, Storage, Buses, Micro processor
- Specialized functions circuitry
- eg. Cell phones, mp3 player, STB, routers



#### Terminology 1

Microprocessors (uP, MPU) - CPU that connects to external memory, I/O, Peripherals. Sometimes called GPPs

Microcontroller (uC/ MCU) – CPU Core, memory, I/O, peripherals integrated on chip

Embedded System – uP/uC based system not thought of as a PC. Example PDA, PND, PMPs etc.

DSP – Microprocessors specialized for signal processing applications.



#### Terminology 2 MCU Tools

I DE – Integrated Development Environment – Software package for application development. An IDE normally consists of a source code editor, a compiler and/or interpreter, build automation tools, and (usually) a debugger.

In Circuit Emulator - a hardware device used to debug the software of an embedded system. It is usually in the form of bond-out processor which has many internal signals brought out for the purpose of debugging. These signals tell about the state of a processor.



#### Bill of Material 1



MAX2312 EV KIT BILL OF MATERIAL

Date:5/1/00 BOM REV:E BOARD REV:C

#### MODIFIED for 190MHz IF

\* Maxim will supply component

|   | DESIGNATION                                                                            | QTY | DESCRIPTION                                                               | E# |
|---|----------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------|----|
| * | C1, C3, C9 -C11, C13,<br>C14, C21, C22, C28,                                           | 14  | 0.01uF 10v Min, 10% Ceramic Capacitor (0402)<br>MURATA GRM36X7R103K016A   | EC |
|   | C35, C37, C38, C42                                                                     |     |                                                                           |    |
| * | C2, C4, C8, C12, C23 -<br>C25                                                          | 7   | 330pF 10% 10V Min, Ceramic Capacitor (0402)<br>MURATA GRM36X7R331K050A    | EC |
| * | C5                                                                                     | 1   | 1.5 pF +/1pF 16V Min, Ceramic Capacitor (0402)<br>MURATA GRM36COG1R5B050A | EC |
| * | C6, C7                                                                                 | 2   | 12 pF 5% 16V Min, Ceramic Capacitor (0402)<br>MURATA GRM36COG120J050A     |    |
|   | C15, C26, C32, C36,<br>C39, C40, R6, R10<br>R15, R17, R19 - R21,<br>R25, R27-R30, R36, | 18  | Do Not Install                                                            |    |
| * | C16, C33, C34                                                                          | 3   | 47pF 25v Min, 5% Ceramic Capacitor (0402) MURATA GRM36COG470J050A         | EC |



#### **Bill of Material 2**



MAX2312 EV KIT BILL OF MATERIAL

Date:5/1/00 BOM REV:E BOARD REV:C

\* Maxim will supply component

|   | makim mii sappij compone |   |                                               |        |
|---|--------------------------|---|-----------------------------------------------|--------|
| * | L2                       | 1 | 24 nH Inductor 0805CS-240XJBC 5% Coilcraft    | EL     |
| * | L4                       | 1 | 180nH Inductor 0805CS - 181TKBC 10% Coilcraft | EL     |
| * | L6                       | 1 | 270nH Inductor 0805CS - 271TKBC 10% Coilcraft | EL     |
|   | J1-J5, J7, J8            | 7 | SMA EDGE MT CONNECTOR 142-0701-801 DIGI-      |        |
|   |                          |   | KEY J502-ND                                   |        |
|   |                          |   | NOTE: CUT CENTER PIN TO APPROXIMATELY 1/16"   |        |
|   |                          |   | LENGTH.                                       |        |
|   | JU2, JU3, JU10, JU11     | 4 | SHUNT Digi-key S9000-ND                       |        |
|   | Q1                       | 1 | LEAVE SITE OPEN                               |        |
|   | D1                       | 1 | LEAVE SITE OPEN                               |        |
| * | D4                       | 1 | VARACTOR DIODE ED0070                         |        |
|   |                          |   | ALPHA SMV1255-003                             |        |
| * | U1                       | 1 | MAX2312EEI 28QSOP                             | EU0432 |
|   | JU2, JU3, JU10, JU11,    | 7 | 1X2 Header Digi-key S1012-36-ND               |        |
|   | VCC, GND, DGND           |   |                                               |        |
|   | \STBY \BUF_EN            | 4 | 1X3 Header Digi-key S1012-36-ND               |        |
|   | DIV_SEL, \SHDN\          |   |                                               |        |
|   | DATA. \EN\. CLK.         | 1 | 2X6                                           |        |



#### Codewarrior IDE



### Terminology MCU Tools 3

Evaluation and Development Kit - low costs, easy to use hardware tools.

3<sup>rd</sup> Party tools – H/W S/W tools made by non

MCU vendor



Compiler, Assembler, Emulator & Simulator Debugger Software

## Tear Down Analysis 1 Apple iPho

- Skyworks SKY77356-8 Power Amplifier Module
- Avago ACPM-8020 Power Amplifier Module
- RF Micro Devices RF5159 Antenna Switch
- Avago ACPM-8010 Power Amplifier Module
- Skyworks SKY77802-23 Power Amplifier Module
- TriQuint TQF6410 Power Amplifier Module (possibly includes switch)
- Qualcomm QFE1100 Envelope Power Tracker
- Qualcomm MDM9625M Baseband Processor
- Bosch Sensortec BMA280 3-Axis Accelerometer MEMS
- # InvenSense MPU-6700? 6-Axis Gyro and Accelerometer MEMS
- Apple A8 / APL1011 Applications Processor
- Micron EDF8164A3PM-GD-F 1 GB LPDDR3 SDRAM Memory
- RF Micro Devices RF1331 RF Antenna Tuner





## Tear Down Analysis 2

Apple iPhone 6+ (hottom)



## Tear Down Analysis 3 Apple iPhone 6+/6/ 5s Comparison

| Features                                   |                                                          |                                                              |                                                              |  |  |  |  |
|--------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--|--|--|--|
| Specifications                             | iPhone 5S<br>A1533                                       | iPhone 6<br>QTT                                              | iPhone 6 Plus<br>QTT<br>iOS 8                                |  |  |  |  |
| Operating System                           | iOS 7                                                    | iOS 8                                                        |                                                              |  |  |  |  |
| Display                                    | 4" IPS (1136x640)                                        | 4.7" IPS (1334x750)                                          | 5.5" IPS (1920x1080)                                         |  |  |  |  |
| Battery                                    | 1560 mAh                                                 | 1810 mAh                                                     | 2915 mAh                                                     |  |  |  |  |
| Camera                                     | 8 Megapixel with<br>1.5μ pixels, f/2.2 + 1.2MP<br>Front  | 8 Megapixel with<br>1.5μ pixels, f/2.2 + 1.2MP<br>Front      | 8 Megapixel with<br>1.5μ pixels, f/2.2 OIS + 1.2MP<br>Front  |  |  |  |  |
| Connectivity & Sensors                     | 2.4 + 5GHz 802.11 a/b/g/n<br>Bluetooth 4.0               | 2.4 + 5GHz 802.11 a/b/g/n/ac<br>Bluetooth 4.0                | 2.4 + 5GHz 802.11 a/b/g/n/ac<br>Bluetooth 4.0                |  |  |  |  |
| NAND                                       | 16 GB                                                    | 16 GB                                                        | 16 GB                                                        |  |  |  |  |
| SDRAM                                      | 1 GB                                                     | 1 GB                                                         | 1 GB                                                         |  |  |  |  |
| Processor                                  | Apple A7 + M7  1.3 GHz Dual-Core 64 Bit  ARMv8 Processor | Apple A8 + M8<br>1.4 GHz Dual-Core 64 Bit<br>ARMv8 Processor | Apple A8 + M8<br>1.4 GHz Dual-Core 64 Bit<br>ARMv8 Processor |  |  |  |  |
| BB+XCR Qualcomm MDM9615M Qualcomm WTR1605L |                                                          | Qualcomm MDM9625M<br>Qualcomm WTR1625L<br>Qualcomm WFR1620   | Qualcomm MDM9625M<br>Qualcomm WTR1625L<br>Qualcomm WFR1620   |  |  |  |  |





# Tear Down Analysis 4 Apple iPhone 6+/6/ 5s BOM







## Tear Down Analysis 5 Sonos Audio system



## Tear Down Analysis 6 Sonos



## Tear Down Analysis 7 Sonos



Again it has a Renesas SH-4 and M16 microcontroller, a TI '5402 DSP, RealTek RTL8139CL Ethernet MAC, Atmel OTP EPROM, two ISSI 16-Mbyte x 8 synchronous DRAMs, the Samsung NAND (32 Mbytes) etc However, though the ZP80 has only two Ethernet ports, it still uses a Marvell 88E6060 6-port Ethernet switch (versus the Kendin controller on the ZP100) with an LF-H20P-1 magnetics chip.

The controller relies on an Atheros AR2414A mini-PCI card and instead of 32 Mbtyes has 16 Mbytes of Samsung NAND flash. The controller is also differentiated by having a ball-bearing-based motion sensor and a Sharp 1/4-VGA transflective LCD display. Again, a Renesas M16 microncontroller is included, but this time to also manage the control buttons and scroll wheel.

### Tear Down Analysis 8 Converter Box



## Tear Down Analysis 9 Sony Playstation 4



## Tear Down Analysis 10

Sony



- \* SCEI (Sony Computer Entertainment, Inc.) CXD90026G SoC (includes AMD "Jaguar" Cores and AMD Radeon Graphics GPU)
- # Samsung K4G41325FC-HC03 4 Gb (512 MB) GDDR5 SGRAM (total of 16 x 512 MB = 8 GB)
- ★ SCEI CXD90025G
- \* Samsung K4B2G1646E-BCK0 2Gb DDR3 SDRAM
- # Macronix MX25L25635FMI 256Mb Serial Flash Memory
- # Marvell 88EC060-NNB2 Ethernet Controller

# Tear Down Analysis 11 Sony Playstation 4



- # Genesys Logic GL3520 USB 3.0 Hub Controller
- Samsung K4G41325FC-HC03 4 Gb (512 MB) GDDR5 SGRAM
- International Rectifier 3585B N326P IC2X
- # Macronix MXIC B01 25L1006E CMOS Serial Flash Memory
- # TI 53123A 2AK64 D756

## Tear Down Analysis 12 Sony Playstation 4

Sony PlayStation 4 - Quick Cost Estimate



\*Further analysis has resulted in higher costs for the processor found in the PlayStation 4. Cost estimate is based on initial analysis.

Techinsights will be completing a Deep Dive teardown and costs may be updated.

■ teardown
…

**TECHINSIGHTS** 



## Tear Down Analysis 13 Wireless SD Ca



A Wi-Fi-enabled SD card makes it easy and affordable to add Wi-Fi connectivity to any digital camera with an SD card slot



# Tear Down Analysis 14 Wireless SD Card Wireless SD Card



2GB NAND Flash



## Tear Down Analysis 15

### Amazon



#### Amazon Kindle Fire Front

- Texas Instruments TWL6030B107
   Power Management IC with Switch Mode Charger
- Package-on-package Elpida B4064B2PB
   Multichip Memory Package 512 MB DDR2 Mobile
- Package-on-package Texas Instruments OMAP4430 Applications Processor
- Texas Instruments SN75LVDS83B FlatLink 10-135 MHz Transmitter
- Samsung KLM8G2FEJA 8GB moviNAND Flash memory module
- Jorjin WG7310 Wireless Connectivity Module
  containing WL1270B 802.11b/g/n WiFi + Bluetooth and
  Triquint TQM679002 WLAN/Bluetooth Front-End Module



# Tear Down Analysis 16



- Texas Instruments TLV320AIC3110 Low-Power Audio Codec With 1.3W Stereo Class-D Speaker Amplifier
- Texas Instruments SN74AVCH4T245 4-Bit Dual-Supply Bus Transceiver

# Tear Down Analysis 17 Amazon Kindle Fire

#### **Primary Component Listing**

 Package-on-Package with: Elpida B4064B2PB -Multichip Memory Package - 512 MB DDR2 Mobile SDRAM

Texas Instruments OMAP4430 – Applications Processor

- •Samsung KLM8G2FEJA 8GB moviNAND Flash memory module
- •Texas Instruments SN75LVDS83B FlatLink 10-135 MHz Transmitter
- •Texas Instruments TWL6030B107 Power Managment IC with Switch Mode Charger
- •Jorjin WG7310 Wireless Connectivity Module containing: Texas Instruments WL1270B 802.11b/g/n WiFi + Bluetooth and Triquint TQM679002 WLAN/Bluetooth Front-End Module
- •Texas Instruments TLV320AIC3110 Low-Power Audio Codec With 1.3W Stereo Class-D Speaker Amplifier
- •Texas Instruments SN74AVCH4T245 4-Bit Dual-Supply Bus Transceiver
- •ILITEK 21D7QS001KsouTouch Screen Controller



# Tear Down Analysis 18 Amazon Kindle Fire comparison

| Features     |                                |                                     |                                     |                                     | AL CAL                               |  |
|--------------|--------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--|
| 3377.3       | Original<br>Amazon Kindle Fire | Kindle Fire HD<br>8.9" 4G LTE 32GB  | Kindle Fire HD<br>8.9" 16GB         | Kindle Fire HD<br>7" 16GB           | Google Nexus 7 8GB                   |  |
| Display      | 7" 1024 x 600                  | 8.9" 1920 x 1200                    | 8.9" 1920 x 1200                    | 7" 1280 x 800                       | 7"1280x800                           |  |
| Battery      | 4400 mAh                       | 6100 mAh?                           | 6100 mAh?                           | 4800 mAh?                           | 4325 mAh                             |  |
| Camera       |                                | 2MP?                                | 2MP?                                | 2MP?                                | 1.2MP Front Camera                   |  |
| Wi-Fi/BT/GPS | 802.11 b/g/n<br>Bluetooth 2.1  | MIMO 802.11<br>a/b/g/n<br>Bluetooth | MIMO 802.11<br>a/b/g/n<br>Bluetooth | MIMO 802.11<br>a/b/g/n<br>Bluetooth | 802.11 b/g/n<br>Bluetooth 4.0<br>GPS |  |
| NAND         | 8GB                            | 32GB                                | 16GB                                | 16GB                                | 8GB                                  |  |
| SDRAM        | 512MB                          | 1GB?                                | 1GB?                                | 1GB?                                | 1GB                                  |  |
| Processor    | TI OMAP 4430                   | TI OMAP 4470                        | TI OMAP 4470                        | TI OMAP 4460                        | NVIDIA Tegra 3                       |  |
| BB+XCR       |                                | Qualcomm?                           |                                     |                                     |                                      |  |

| Cost                 |                    |                                     |                              |                            |                    |
|----------------------|--------------------|-------------------------------------|------------------------------|----------------------------|--------------------|
|                      | Amazon Kindle Fire | Kindle Fire HD*<br>8.9" 4G LTE 32GB | Kindle Fire HD*<br>8.9" 16GB | Kindle Fire HD*<br>7" 16GB | Google Nexus 7 8GB |
| 1147 %               | Dec-11             | Sep-12                              | Sep-12                       | Sep-12                     | Sep-12             |
| Display              | \$35               | \$45                                | \$45                         | \$35                       | \$29               |
| Touchscreen          | \$19               | \$20                                | \$20                         | \$15                       | \$20               |
| Battery              | \$11               | \$12                                | \$12                         | \$9                        | \$11               |
| Cameras              |                    | \$4                                 | \$4                          | \$4                        | \$3                |
| Wi-Fi/BT/GPS         | \$4                | \$6                                 | \$6                          | \$4                        | \$5                |
| NAND                 | \$10               | \$17                                | \$9                          | \$9                        | \$6                |
| SDRAM                | \$8                | \$4                                 | \$4                          | \$4                        | \$5                |
| Processor            | \$18               | \$28                                | \$28                         | \$21                       | \$25               |
| BB+XCR               |                    | \$27                                |                              |                            |                    |
| Non-electronic       | \$20               | \$16                                | \$16                         | \$14                       | \$20               |
| Other                | \$25               | \$36                                | \$32                         | \$30                       | \$30               |
| Supporting Materials | \$3                | \$3                                 | \$3                          | \$3                        | \$4                |
| Total                | \$153              | \$218                               | \$179                        | \$148                      | \$158              |

<sup>\*</sup> Estimate only since device has not been fully analyzed



# Tear Down Analysis 19 Xbox 360 driving



Bluetooth allows wireless control of the Xbox 360 driving experience.



### Tear Down Analysis 20 Xbox 360 driving











# Tear Down Analysis 21 Xbox 360 driving



# JM Badge





### MCF51JM Block Diagram



Figure 1. MCF51JM Block Diagram

### CodeWarrior for Microcontrollers (RS08/HC(S)08/ColdFire V1)

|                                        | SPECIAL<br>get   info<br>\$0 (free) | BASIC<br>buy info<br>from \$395 | STANDARD<br>buy   info<br>from \$995 | PROFESSIONAL<br>buy   info<br>from \$1995 |
|----------------------------------------|-------------------------------------|---------------------------------|--------------------------------------|-------------------------------------------|
| Supported Platforms                    |                                     |                                 |                                      |                                           |
| HC(S)08/RS08 Microcontrollers          | <b>✓</b>                            | 4                               | 4                                    | 4                                         |
| ColdFire® Architectures (V1)           | 1                                   | 4                               | 4                                    | 4                                         |
| Build Tools                            |                                     |                                 |                                      |                                           |
| Macro Assembler                        | <b>✓</b>                            | 1                               | 4                                    | 4                                         |
| Compiler (C/C++)                       | *                                   | *                               | 1                                    | 4                                         |
| Libmaker                               | *                                   | *                               | 1                                    | 4                                         |
| Debug Tools                            |                                     |                                 |                                      |                                           |
| Source-Level Debugger                  | *                                   | *                               | 1                                    | 4                                         |
| Flash Programmer                       | *                                   | *                               | 1                                    | 4                                         |
| Data Visualization and I/O Stimulation | *                                   | *                               | 1                                    | 4                                         |
| Simulator                              |                                     |                                 | 1                                    | 4                                         |
| Decoder                                |                                     |                                 | 4                                    | 4                                         |
| OSEK Awareness                         |                                     |                                 |                                      | 4                                         |
| Advanced Tools                         |                                     |                                 |                                      |                                           |
| Device Initialization                  | ✓                                   | 1                               | 4                                    | 4                                         |
| Processor Expert                       | 4                                   | 1                               | 1                                    | 4                                         |
| - Basic Beans                          | 1                                   | *                               | 4                                    | 4                                         |
| - Software Beans                       |                                     |                                 | 4                                    | 1                                         |
| - Advanced Beans                       |                                     |                                 |                                      | 1                                         |
| - Bean Wizard                          |                                     |                                 |                                      | 1                                         |
| PC-Lint Plug-in                        |                                     |                                 |                                      | 1                                         |
| Profile Analysis and Code Coverage     |                                     |                                 |                                      | 1                                         |





### Reference Designs

PROFESSIONAL EDUCATION





#### 5 Schematics





### Basic Concepts (1)

- Parallel vs Serial Communications
- Highway Example: 1 lane highway versus 8 lane highway
- Concepts applies to system and Inter-IC communications



### Basic Concepts (2)

Systems

Parallel Example: SCSI, IEEE1284

Serial Example: USB, Firewire 1394a/b





### Basic Concepts (3)

Inter-IC communications

Parallel Example: PCI, FSB, MemBus

Serial Example: I2C, SPI, JTAG...





### Basic Concepts (4)

- SPI- Serial Peripheral Interface
- 4 wire
- SCLK, SI, SO, CS#





### Basic Concepts (5)

#### PIN CONFIGURATIONS

#### 8-PIN SOP (150/200mil)



#### 8-PIN PDIP (300mil)



#### PIN DESCRIPTION

| SYMBOL | DESCRIPTION                       |
|--------|-----------------------------------|
| CS#    | Chip Select                       |
| SI     | Serial Data Input                 |
| SO     | Serial Data Output                |
| SCLK   | Clock Input                       |
| HOLD#  | Hold, to pause the device without |
|        | deselecting the device            |
| WP#    | Write Protection                  |
| VCC    | + 3.3V Power Supply               |
| GND    | Ground                            |



### Basic Concepts (6)

SPI: Serial Peripheral Interface—command definition

Table 2. COMMAND DEFINITION

| COMMAND | WREN      | WRDI      | RDID          | RDSR         | WRSR            | READ        | Fast Read |
|---------|-----------|-----------|---------------|--------------|-----------------|-------------|-----------|
| (byte)  | (write    | (write    | (read ident-  | (read status | (write status   | (read data) | (fastread |
|         | Enable)   | disable)  | ification)    | register)    | register)       |             | data)     |
| 1st     | 06 Hex    | 04 Hex    | 9F Hex        | 05 Hex       | 01 Hex          | 03 Hex      | 0B Hex    |
| 2nd     |           |           |               |              |                 | AD1         | AD1       |
| 3rd     |           |           |               |              |                 | AD2         | AD2       |
| 4th     |           |           |               |              |                 | AD3         | AD3       |
| 5th     |           |           |               |              |                 |             | х         |
| Action  | sets the  | reset the | output the    | to read out  | to write new    | n bytes     |           |
|         | (WEL)     | (WEL)     | manufacturer  | the status   | values to the   | read out    |           |
|         | write     | write     | ID and 2-byte | register     | status register | until       |           |
|         | enable    | enable    | device ID     |              |                 | CS# goes    |           |
|         | latch bit | latch bit |               |              |                 | high        |           |

### Basic Concepts (7)

SPI : Serial Peripheral Interface –more command definition

|         | loe I   | D.F.   | 05     |          | 55     | DDD         | DEO        | DEMO(D. I     |
|---------|---------|--------|--------|----------|--------|-------------|------------|---------------|
| COMMAND | SE      | BE     | CE     | PP       | DP     | RDP         | RES        | REMS (Read    |
| (byte)  | (Sector | (Block | (Chip  | (Page    | (Deep  | (Release    | (Read      | Electronic    |
|         | Erase)  | Erase) | Erase) | Program) | Power  | from Deep   | Electronic | Manufacturer  |
|         |         |        |        |          | Down)  | Power-down) | ID)        | & Device ID)  |
| 1st     | 20 Hex  | 52 or  | 60 or  | 02 Hex   | B9 Hex | AB Hex      | AB Hex     | 90 Hex        |
|         |         | D8 Hex | C7 Hex |          |        |             |            |               |
| 2nd     | AD1     | AD1    |        | AD1      |        |             | x          | х             |
| 3rd     | AD2     | AD2    |        | AD2      |        |             | x          | х             |
| 4th     | AD3     | AD3    |        | AD3      |        |             | х          | ADD(1)        |
| 5th     |         |        |        |          |        |             |            |               |
| Action  |         |        |        |          |        |             |            | Output the    |
|         |         |        |        |          |        |             |            | manufacturer  |
|         |         |        |        |          |        |             |            | ID and device |
|         |         |        |        |          |        |             |            | ID            |
|         |         |        |        |          |        |             |            |               |



# Basic Concepts (8)

#### **Timing Diagram Symbol Table**

| Symbol | Input Signals                                            | Output Signals                                                           |  |
|--------|----------------------------------------------------------|--------------------------------------------------------------------------|--|
|        | Input signal must be valid                               | Output signal will be valid                                              |  |
| ×><>   | Input signal doesn't affect system, will work regardless | Indeterminate output signal                                              |  |
|        | Garbage signal (nonsense)                                | Output signal not driven<br>(floating), tristate, HiZ, high<br>impedance |  |
|        | If the input signal rises                                | Output signal will rise                                                  |  |
|        | If the input signal falls                                | Output signal will fall                                                  |  |



## Basic Concepts (9)

#### **Timing Diagram Example**





## Basic Concepts (10)

SPI: Serial Peripheral Interface- 03# command





### Basic Concepts (11)

 SPI : Serial Peripheral Interface (02 Command- page program)





### Basic Concepts (12)





### Basic Concepts (13)

- 12C
- Invented by Philips 20+ year ago
- Version 2.1 Jan 2000
- 2 wire: SCL Serial Clock, SDA Serial Data





### Basic Concepts (14)

### • 12C



Fig.3 Connection of Standard- and Fast-mode devices to the I<sup>2</sup>C-bus.



### Basic Concepts (15)

• I2C



Fig.4 Bit transfer on the I2C-bus.



### Basic Concepts (16)

• I2C



Fig.5 START and STOP conditions.



### Basic Concepts (17)

### • I2C





### Basic Concepts (18)

JTAG – Joint Test Action Group 1985

IEEE 1149.1

- 1. TDI (Test Data In)
- 2. TDO (Test Data Out)
- 3. TCK (Test Clock)
- TMS (Test Mode Select)
- TRST (Test Reset) optional.



## Basic Concepts (19)

### JTAG daisy chained devices

Test reset signal is not shown in the image.





### Basic Concepts (20)

### JTAG – Most FPGAs have JTAG ports – SPI Programming for PROM

Table 5: Download Header Signal Description for SPI Programming Mode

| Ribbon<br>Cable<br>Number | SPI<br>Programming<br>Mode | JTAG/Slave<br>Serial<br>Configuration<br>Mode Signal<br>Cross<br>Reference | Туре  | SPI Header Usage Description                                                                                                                                                                                                                                                             |
|---------------------------|----------------------------|----------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2                         | VREF                       | VREF                                                                       | ln    | Target Reference Voltage. This pin should be connected to a voltage bus on the target system that serves the JTAG, Slave-serial, or SPI interface. The target reference voltage must be regulated and must not have a current-limiting resistor in series with the V <sub>REF</sub> pin. |
| 4                         | SS                         | TMS/PROG                                                                   | Out   | Chip Select (S). This pin is used to enable the device to accept an instruction.                                                                                                                                                                                                         |
| 6                         | SCK                        | TCK/CCLK                                                                   | Out   | SPI Clock (C). SPI flash memory clock provides the timing for the serial interface and is produced by the Xilinx cable.                                                                                                                                                                  |
| 8                         | MISO                       | TDO/DONE                                                                   | ln    | Serial Data Output (Q). This signal is used to transfer data serially out of the device.                                                                                                                                                                                                 |
| 10                        | MOSI                       | TDI/DIN                                                                    | Out   | Serial Data Input (D). This input signal is used to transfer data serially into the device. The device receives instructions, addresses, and the data to be programmed from this signal.                                                                                                 |
| 12                        | N/C                        | N/C                                                                        | -     | Reserved. This pin is reserved for Xilinx diagnostics and should not be connected to any target circuitry.                                                                                                                                                                               |
| 14                        | -                          | - /INIT                                                                    | BIDIR | -                                                                                                                                                                                                                                                                                        |
| 1, 3, 5, 7,<br>9, 11, 13  | -                          | GND                                                                        | GND   | Digital Ground.                                                                                                                                                                                                                                                                          |

### Basic Concepts (21)

JTAG applications – Boundary Scan

ranlacee "had of naile"



## Basic Concepts (22)

### Parallel Flash Interface - JEDEC

#### PIN DESCRIPTION

RY/BY#

VCC

GND

SYMBOL PINNAME

|   | JIIIDOL | THITIAME                           |
|---|---------|------------------------------------|
|   | A0~A17  | Address Input                      |
| _ | Q0~Q14  | Data Input/Output                  |
|   | Q15/A-1 | Q15(Word mode)/LSB addr(Byte mode) |
|   | CE#     | Chip Enable Input                  |
|   | WE#     | Write Enable Input                 |
|   | BYTE#   | Word/Byte Selection input          |
|   | RESET#  | Hardware Reset Pin/Sector Protect  |
|   |         | Unlock                             |
|   | OE#     | Output Enable Input                |

Ready/Busy Output

Ground Pin

Power Supply Pin (+5V)

#### LOGIC SYMBOL



## Basic Concepts (23)

Parallel Flash Interface – JEDEC

Figure 1. COMMAND WRITE OPERATION





## Basic Concepts (24)

### Parallel Flash Interface - JEDEC

Figure 2. READTIMING WAVEFORMS



### Basic Concepts (25)

 Serial Peripheral Interface – Single IO Normal Read

Figure 15. Read Data Bytes (READ) Sequence (Command 03)



# Basic Concepts (26)

 Serial Peripheral Interface – Fast Read/ Dummy Cycles

Figure 16. Read at Higher Speed (FAST\_READ) Sequence (Command 0B)



# Basic Concepts (26)

Serial Peripheral Interface – Dual Output Read

Figure 17. Dual Output Read Mode Sequence (Command 3B)



# Basic Concepts (27)

# • Sorial Interface Ouad IO Waveform for Quad I/O read:





### Basic Concepts (28)





### Basic Concepts (29)



Note: Performance enhance, if P7≠P3 & P6≠P2 & P5≠P1 & P4≠P4 (Toggle)



# Basic Concepts (30)

Serial Interface – Quad IO (single –in multi out)

Figure 16. Quad Read Mode Sequence (Command 6B)



# Basic Concepts (31)

• Serial Peripheral Interface – Octa SPI OPI Command Scataring Contract Command Set

#### Read/Write Array Commands

| Command<br>(byte) | 8READ<br>(Octa IO Read)   | 8DTRD<br>(Octa IO DT Read) | RDID<br>(read identification)                                                   | RDSFDP    |  |
|-------------------|---------------------------|----------------------------|---------------------------------------------------------------------------------|-----------|--|
| 1st byte          | EC (hex)                  | EE (hex)                   | 9F (hex)                                                                        | 5A (hex)  |  |
| 2nd byte          | 13 (hex)                  | 11 (hex)                   | 60 (hex)                                                                        | A5 (hex)  |  |
| 3rd byte          | ADD1                      | ADD1                       | 00h                                                                             | ADD1      |  |
| 4th byte          | ADD2                      | ADD2                       | 00h                                                                             | ADD2      |  |
| 5th byte          | ADD3                      | ADD3                       | 00h                                                                             | ADD3      |  |
| 6th byte          | ADD4                      | ADD4 (Note 6)              | 00h                                                                             | ADD4      |  |
| 7th byte          | Dummy <sup>(Mote 4)</sup> | Dummy <sup>(Wode 4)</sup>  |                                                                                 | Dummy(20) |  |
| Data Cycles       |                           |                            | 3 (Note 8)                                                                      |           |  |
| Action            | Octa I/O STR read         | Octa I/O DTR read          | outputs JEDEC ID: Read SFD<br>1-byte Manufacturer mode<br>ID & 2-byte Device ID |           |  |

| Command     | PP                              | SE             | BE                 | CE                  |
|-------------|---------------------------------|----------------|--------------------|---------------------|
| (byte)      | (page program)                  | (sector erase) | (block erase 64KB) | (chip erase)        |
| 1 st byte   | 12 (hex)                        | 21 (hex)       | DC (hex)           | 60 or C7 (hex)      |
| 2nd byte    | ED (hex)                        | DE (hex)       | 23 (hex)           | 9F or 38 (hex)      |
| 3rd byte    | ADD1                            | ADD1           | ADD1               |                     |
| 4th byte    | ADD2                            | ADD2           | ADD2               |                     |
| 5th byte    | ADD3                            | ADD3           | ADD3               |                     |
| 6th byte    | ADD4 <sup>(Note 6)</sup>        | ADD4           | ADD4               |                     |
| 7th byte    |                                 |                |                    |                     |
| Data Cycles | 1-256                           |                |                    |                     |
| Action      | to program the<br>selected page |                |                    | to erase whole chip |

# Basic Concepts (32)

 Serial Peripheral Interface – Octa STR Output Read

Figure 42. OCTA Read Mode Sequence (STR-OPI Mode)



### Basic Concepts (33)

Serial Peripheral Interface – Octa DTR Output

Figure 43. OCTA Read Mode Sequence (DTR-OPI Mode)



# Basic Concepts (34)

### Other Commonly Used Interface/ Bus

SDIO - A SDIO (Secure Digital Input Output) card is an extension of the SD specification to cover I/O functions. SDIO cards are only fully functional in host devices designed to support their input-output functions (typically PDAs like the <u>Palm Treo</u>, but occasionally laptops or mobile phones). These devices can use the SD slot to support <u>GPS</u> receivers, <u>modems</u>, <u>barcode readers</u>, <u>FM radio</u> tuners, TV tuners, <u>RFID</u> readers, <u>digital cameras</u>, and interfaces to <u>Wi-Fi</u>, <u>Bluetooth</u>, <u>Ethernet</u>, and <u>IrDA</u>.

| SD Mode (1 and 4-bit) |        | SPI Mode         |      |        |             |
|-----------------------|--------|------------------|------|--------|-------------|
| Name                  | Туре   | Description      | Name | Туре   | Description |
| CMD                   | Bidir. | Command/Response | DI   | Input  | Data In     |
| CLK                   | Input  | Clock            | SCLK | Input  | Clock       |
| DAT[0]                | Bidir. | Data Line 0      | DO   | Output | Data Out    |
| DAT[1]                | Bidir. | Data Line 1      | RSV  | -      | -           |
| DAT[2]                | Bidir. | Data Line 2      | RSV  | -      | -           |
| DAT[3]                | Bidir. | Data Line 3      | CS   | Input  | Chip-select |

There are 3 fundamental modes that the SD Physical layer can operate in:

- 4-bit SD DAT Mode
- 2. 1-bit SD DAT Mode
- SPI-Mode



### Basic Concepts (34)

### Other Commonly Used Interface

- CAN Bus-Controller Area Network is a <u>multi-master serial bus</u> standard for connecting Electronic Control Units [ECUs] also known as nodes.
- Two or more nodes are required on the CAN network to communicate.
- Commonly used in Automotive.
- Maximum BW is about 1Mbps
- Based on ISO-11898:2003\*- The ISO-11898:2003 standard specifies differential data transmission and half duplex communication over any cable type (although the use of twisted pair has become best practice) at up to 1Mbps.

<sup>\*</sup> About ISO-(International Organization for Standardization) is an independent, non-governmental membership organization and the <u>world's largest developer of voluntary International Standards</u>-specifications for products, services and systems, to ensure quality, safety and efficiency. They are instrumental in facilitating international trade.



### Basic Concepts (34)

Other Commonly Used Interface-- USB



| Version | Max. Signaling Rate | Date Introduced |
|---------|---------------------|-----------------|
| USB 1.1 | 12Mbps              | Jan-96          |
| USB 2.0 | 480 Mbps            | Apr-00          |
| USB 3.0 | 5Gbps               | Nov-08          |
| USB 3.1 | 10Gbps              | Jan-13          |

### Introducing the ArtyZ7 Board

