Estadística I Grado en Matemáticas, UAM, 2018-2019

Hoja 4. Momentos/máxima verosimilitud. Sesgo y eficiencia de estimadores

MÉTODO DE MOMENTOS Y MÁXIMA VEROSIMILITUD

- 1. Calcula los estimadores por máxima verosimilitud (para muestras de tamaño n) para
 - a) el parámetro λ de $X \sim POISS(\lambda)$;
 - b) el parámetro p de $X \sim \text{BIN}(N, p)$, con N dado.
- 2. La función de masa de la variable aleatoria X es

Aquí, el parámetro $\theta \in [0, 1]$.

En una muestra de X de tamaño 100 se han obtenido los siguientes resultados:

Halla la estimación de θ por momentos. Halla la estimación de θ por máxima verosimilitud.

3. La función de masa de la variable X viene dada por

$$\begin{array}{c|cccc} \text{valores} & 1 & 2 & 3 \\ \hline \text{probabilidades} & p_1 & p_2 & p_3 \\ \end{array}$$

El modelo tienen únicamente dos parámetros, por ejemplo p_1 y p_2 , puesto que se debe cumplir que $p_1 + p_2 + p_3 = 1$. Se tiene que $p_1 \in (0,1)$, $p_2 \in (0,1)$ y además que $p_1 + p_2 < 1$.

En una muestra de X de tamaño 100 se han obtenido los siguientes resultados:

Halla la estimación de p_1 y p_2 por máxima verosimilitud.

4. Una variable aleatoria X tiene función de densidad

$$f(x;\theta) = \frac{2}{\theta^2} x$$
 para $x \in [0,\theta]$,

y $f(x;\theta) = 0$ si $x \notin [0,\theta]$. El parámetro θ es positivo. Halla el estimador por máxima verosimilitud de θ para muestras de tamaño n.

5. Una variable aleatoria X tiene función de densidad

$$f(x;\theta) = \begin{cases} \theta/x^2, & \text{si } x > \theta, \\ 0, & \text{si } x \le \theta. \end{cases}$$

El parámetro θ es positivo. Halla los estimadores por momentos y por máxima verosimilitud de θ para muestras de tamaño n.

- **6.** Sea $X \sim \mathcal{N}(\mu, 1)$. El espacio de parámetros (para μ) es el intervalo [-1, 1]. Dada una muestra (x_1, \ldots, x_n) de X, determina la estimación de máxima verosimilitud de μ .
- 7. Sea $\Theta = \{0,1\}$ y considera las dos funciones de densidad (ambas con soporte en (0,1)) alternativas dadas, para $x \in (0,1)$, por

$$f(x;0) = 1$$
, $f(x;1) = \frac{1}{2\sqrt{x}}$.

Determina el estimador de máxima verosimilitud del valor de θ para muestras de tamaño n.

Sesgo y eficiencia de estimadores

- 8. Comprueba que si T_1 y T_2 son estimadores insesgados de un parámetro de θ , entonces, para todo $\lambda \in (0,1), Z = \lambda T_1 + (1-\lambda)T_2$ es estimador insesgado de θ .
- 9. Una variable X sigue una distribución de Rayleigh de parámetro $\sigma^2 > 0$. En un tal modelo se tiene que

$$\mathbf{E}_{\sigma^2}(X) = \sqrt{\pi \sigma^2/2}$$
 y $\mathbf{E}_{\sigma^2}(X^2) = 2\sigma^2$.

Como estimadores del parámetro σ^2 (para muestras de tamaño n), se proponen los dos siguientes:

$$T_1(X_1, \dots, X_n) = \frac{2}{\pi} \overline{X}^2$$
 y $T_2(X_1, \dots, X_n) = \frac{1}{2} \overline{X}^2$.

Comprueba que T_2 es un estimador insesgado de σ^2 , mientras que T_1 no. Calcula el sesgo de T_1 .

10. Sea X una variable aleatoria con función de densidad/masa $f(x;\theta)$, con $\theta \in \Theta$. Sean T_1 y T_2 dos estimadores insesgados de un parámetro θ que actúan sobre muestras de tamaño n. Formamos el estimador U (que actúa sobre muestras (X_1, \ldots, X_{2n}) de tamaño 2n):

$$U(X_1,\ldots,X_{2n}) = \frac{1}{2} (T_1(X_1,\ldots,X_n) + T_2(X_{n+1},\ldots,X_{2n})).$$

Comprueba que $\mathbf{V}_{\theta}(U) = \frac{1}{4} (\mathbf{V}_{\theta}(T_1) + \mathbf{V}_{\theta}(T_2)).$

11. Tenemos una variable X que toma los valores $\{-1,0,+1\}$ con probabilidades respectivas

a) Consideremos el estadístico N_1 dado por

$$N_1 = h_1(X_1, X_2, \dots, X_n)$$
,

donde $h_1(x_1, x_2, ..., x_n) =$ número de $\{x_j = -1\}$. Observa que $N_1 \sim \text{BIN}(n, (2+\theta)/4)$. Comprueba que el estadístico

$$T_1 = \frac{4}{n} N_1 - 2$$

es un estimador insesgado de θ .

b) Consideremos el estadístico N_2 dado por

$$N_2 = h_2(X_1, X_2, \dots, X_n),$$

donde $h_2(x_1,x_2,\ldots,x_n)=$ número de $\{x_j=0\}$. Observa que $N_2\sim \text{BIN}(n,\theta/4)$. Comprueba que el estadístico

$$T_2 = \frac{4}{n} N_2$$

es un estimador insesgado de θ para muestras aleatorias de X de tamaño n. ¿Cuál de los estimadores, T_1 o T_2 , es más eficiente?

c) Supongamos que la muestra $(x_1, x_2, \dots, x_{100})$ tiene las siguientes frecuencias:

$$\begin{array}{c|c|c|c|c}
-1 & 0 & 1 \\
\hline
60 & 16 & 24 \\
\end{array}$$

¿Cuál es la estimación de θ si usamos T_1 ? ¿Y si usamos T_2 ?

EJERCICIOS ADICIONALES

- 12. Un arquero (con escasa puntería) dispara n veces a una diana de radio θ (desconocido). En cada lanzamiento logra darle al disco, pero en lugares completamente aleatorios cuyas distancias al centro del disco son r_1, r_2, \ldots, r_n . Determina el estimador de máxima verosimilitud del radio del disco.
- 13. Sea $X \sim \text{UNIF}(a, b)$, con a < b. Determina los estimadores de a y b para muestras aleatorias de X de tamaño n por máxima verosimilitud y por el método de momentos.
- **14.** Calcula el estimador por máxima verosimilitud del parámetro $\theta \in [0,1]$ para muestras aleatorias de tamaño n de la variable X que toma tres valores -1,0,+1 con probabilidades respectivas

$$\frac{-1 \quad | \quad 0 \quad | \quad +1}{(2+\theta)/4 \mid \theta/4 \mid (2-2\theta)/4}$$

15. La variable X tiene una distribución dada por dos parámetros $\delta>0$ y $\lambda>0$, de manera que

$$X = \delta + Y$$
, donde $Y \sim \text{EXP}(\lambda)$.

Los parámetros δ y λ son desconocidos.

a) Sea $m_n = \min(X_1, X_2, \dots, X_n)$. Comprueba que

$$\mathbf{E}(m_n) = \delta + \frac{1}{n\lambda}$$
 y que $\mathbf{E}(\overline{X}) = \delta + \frac{1}{\lambda}$.

b) Comprueba que

$$T_1 = \frac{n}{n-1} (\overline{X} - m_n)$$
 y $T_2 = \frac{n}{n-1} (m_n - \overline{X}/n)$

son estimadores insesgado de $1/\lambda$ y δ , respectivamente.

16. Sea T un estimador de un parámetro θ . Supongamos que $\mathbf{E}_{\theta}(T) = \alpha \theta$ y que $\mathbf{V}_{\theta}(T) = \beta \theta^2$, donde α y β son dos constantes fijas.

Halla r (en función de α y β) para que $\text{ECM}_{\theta}(rT)$ sea mínimo. Aplícalo al caso en el que $X \sim \text{UNIF}[0, a]$ y al estimador $T = \max(X_1, \dots, X_n)$ de a.