Week 2

- 주의 사항: 부정행위 금지, STL 사용 금지, 인터넷 금지, 단일 연결 리 스트(Singly linked list)를 이용하여 구현할 것.
- 표준 입출력 사용을 권장 (C는 scanf / printf, C++은 cin / cout)

문제 2

자연수를 저장하는 단일 연결 리스트를 2개 생성하고, 다음의 순서대로 처리하는 프로그램을 작성하시오.

- 1. $N_1(1 \le N_1 \le 100)$ 개의 자연수 X_1 $(1 \le X_1 \le 10,000)$ 을 입력으로 받는 단일 연결 리스트 L_1 를 생성한다.
- 2. N_1 의 개수만큼 X_1 값을 입력 받아서 단일 연결 리스트 L_1 에 X_1 을 입력 받은 순서대로 저장한다.
- 3. $N_2(1 \le N_2 \le 100)$ 개의 자연수 X_2 $(1 \le X_2 \le 10,000)$ 을 입력으로 받는 단일 연결 리스트 L_2 를 생성한다.
- $4. N_2$ 의 개수만큼 X_2 값을 입력 받아서 단일 연결 리스트 L_2 에 X_2 를 입력 받은 순서대로 저장한다.
- 5. 두 개의 단일 연결 리스트 L_1 , L_2 를 병합하여 하나의 단일 연결 리스트 L_{merge} 로 만들어 출력한다. (단, 병합된 리스트 노드에 저장된 자연수 중 중복된 값은 없고, 항상 L_1 뒤에 L_2 가 연결되어 병합)
- 6. 병합된 단일 연결 리스트 L_{merge} 내의 노드에 저장되어 있는 특정 값 e를 찾는다. 특정 값 e을 포함하고 있는 노드 앞에 v ($1 \le v \le 10,000$)를 포함하는 노드를 추가하여 출력한다. (특정 값 e 가 6이고 추가하고자 하는 값 v 가 8일 경우 아래 그림처럼 실행)단, 특정 값 e는 항상 L_{merge} 내부에 존재하는 값으로 주어진다.

입력

첫 번째 줄에 테스트 케이스의 수 M $(1 \le M \le 1,000)$ 이 주어진다.

두 번째 줄부터, 다음이 M번 반복된다.

- 첫 번째 단일 연결 리스트 L_1 를 구성하기 위한 값의 개수 N_1 이 주어진다.
- 자연수 X_1 이 N_1 개가 차례대로 주어진다.
- ullet 두 번째 단일 연결 리스트 L_2 를 구성하기 위한 값의 개수 N_2 가 주어진다.
- 자연수 X_2 이 N_2 개가 차례대로 주어진다.
- ullet L_{merge} 내의 노드에 저장된 특정 값 e와 특정 값 e앞에 추가할 값 v가 차례대로 주어진다.

출력

병합된 단일 연결 리스트 L_{merge} 에 저장된 모든 값을 출력한다.

특정 값 e 앞에 추가할 값 v를 추가하고, 단일 연결 리스트 L_{merae} 의 모든 값을 출력한다

예제 입출력

예제 입력	예제 출력
4	13 15 11 6 21 14 12
3	13 15 11 6 8 21 14 12
13 15 11	8 14 4 5 17 15
4	8 14 4 8 5 17 15
6 21 14 12	6 12 14 25 3 17 13 7
21 8	6 9 12 14 25 3 17 13 7
2	6 13 15 11 14 2 8
8 14	6 13 15 11 14 2 3 8
4	
4 5 17 15	
5 8	
5	
6 12 14 25 3	
3	
17 13 7	
12 9	
4	

6 13 15 11	
3	
14 2 8	
8 3	