

64-040 Modul IP7: Rechnerstrukturen

http://tams.informatik.uni-hamburg.de/ lectures/2012ws/vorlesung/rs

Kapitel 3 –

Andreas Mäder

Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Fachbereich Informatik

Technische Aspekte Multimodaler Systeme

卣

Wintersemester 2012/2013

Kapitel 3

Moore's Law

System on a chip

Smart Dust

Roadmap und Grenzen des Wachstums

Literatur

64-040 Rechnerstrukturer

Moore's Law

- bessere Technologie ermöglicht immer kleinere Transistoren
- ► Materialkosten sind proportional zur Chipfläche
- ⇒ bei gleicher Funktion kleinere und billigere Chips
- ⇒ bei gleicher Größe leistungsfähigere Chips

Moore's Law

Gordon Moore, Mitgründer von Intel, 1965

Speicherkapazität von ICs vervierfacht sich alle drei Jahre

- ⇒ schnelles exponentielles Wachstum
 - klares Kostenoptimum bei hoher Integrationsdichte
- trifft auch auf Prozessoren zu

Moore's Law (cont.)

Gordon Moore, 1965, [Moo65]: Cramming more components onto integrated circuits

Wird das so weitergehen?

- ► Vorhersage gilt immer noch
- "ITRS" Prognose bis über Jahr 2025 hinaus [ITRS11]

64-040 Rechnerstrukturen

▶ Vorhersage: 60% jährliches Wachstum der Transistoranzahl pro IC

3 Moore's Law 64-040 Rechnerstrukturen

Moore's Law: Evolution des Intel x86 (bis 2010)

Universität Hamburg

Moore's Law: Kosten pro Komponente

Originalskizze von G. Moore [Intel]

Moore's Law: Formel und Beispiele

$$L(t) = L(0) \times 2^{t/18}$$

mit: L(t) = Leistung zum Zeitpunkt t, L(0) = Leistung zum Zeitpunkt 0, und Zeit t in Monaten.

Einige Formelwerte: Jahr 1: 1,5874

Jahr 2: 2,51984

Jahr 3: 4

Jahr 5: 10,0794

Jahr 6: 16

Jahr 7: 25,3984

Jahr 8: 40,3175

64-040 Rechnerstrukturen

3 Moore's Law

Leistungssteigerung der Spitzenrechner seit 1993

www.top500.org/list/2012/06/100 de.wikipedia.org/wiki/Supercomputer

Jahr	Rechner	Linpack [GFlop]	Zahl der Prozessoren
1993	Fujitsu NWT	124	140
1994	Intel Paragon XP/S MP	281	6 768
1996	Hitachi CP-PACS	368	2 048
1997	Intel ASCI Red (200 MHz Pentium Pro)	1 338	9 152
1998	ASCI Blue-Pacific (IBM SP 640E)	2 144	5 808
1999	ASCI Intel Red (Pentium II Xeon)	2 3 7 9	9 632
2000	ASCI White, IBM (SP Power 3)	4 903	7 424
2002	Earth Simulator, NEC	35 610	5 104
2006	JUBL	45 600	16 384
2008	IBM Roadrunner (Opteron 2c + IBM Cell)	1 105 000	124 400
2009	Cray XK6 Jaguar (Opteron 16c + NVIDIA)	1 941 000	298 592
2012	Super MUC, Leibnitz Rechenz. (Xeon 8/10c)	2897000	147 456
2012	Sequoia (Power BQC, 16 cores)	16 324 750	1 572 864

Moore's Law: Aktuelle Trends

- Miniaturisierung schreitet weiter fort
- aber Taktraten erreichen physikalisches Limit
- ▶ steigender Stromverbrauch, zwei Effekte:
 - 1. Leckströme
 - 2. proportional zu Taktrate

Entwicklungen

- 4 GByte Hauptspeicher (und mehr) sind bezahlbar
- ▶ Übergang von 32-bit auf 64-bit Adressierung
- ⇒ Integration mehrerer CPUs auf einem Chip (Dual-/Quad-Core)
- ⇒ zunehmende Integration von Peripheriegeräten
- ⇒ seit 2011: CPU plus leistungsfähiger Grafikchip
- ⇒ SoC: "System on a chip"

SoC: System on a chip

Gesamtes System auf einem Chip integriert:

- ein oder mehrere Prozessoren
- Befehls- und Daten-Caches für die Prozessoren
- ► Hauptspeicher (dieser evtl. auch extern)
- weitere Speicher für Medien/Netzwerkoperationen
- ▶ Peripherieblöcke nach Kundenwunsch konfiguriert:
 - serielle und parallele Schnittstellen, I/O-Pins
 - Displayansteuerung
 - USB, Firewire, SATA
 - Netzwerk kabelgebunden (Ethernet)
 - ► Funkschnittstellen: WLAN, Bluetooth, GSM/UMTS
 - ► Feldbusse: I²C, CAN, . . .
- ► Smartphone, Tablets, Medien-/DVD-Player, WLAN-Router . . .

SoC Beispiel: Bluetooth-Controller – Chiplayout

Figure 13.9 Bluetooth Baseband Controller die photograph.

Table 13.1 Bluetooth characteristics.

Process	0.25 μm	Transistors	4,300,000	MIPS	1
Metal layers	3	Die area	20 mm^2	Power	75 mV
Vdd (typical)	2.5 V	Clock	0-13 MHz	MIPS/W	16

S. Furber: ARM System-on-Chip Architecture, 2000 [Fur01]

3.1 Moore's Law - System on a chip

SoC Beispiel: TI OMAP 5430

- ► mehrere (verschiedene) CPUs
- Grafikbeschleuniger
- Chipsatz (Speichercontroller, Interconnect, ...)
- ► Schnittstellen (WiFi, 4G, USB, Audio, I/O, ...)

OMAP5430 Key Benefits

- Designed to drive Smartphones. Tablets and other multimedia-rich mobile devices
- Multi-core ARM® Cortex™ processors
 - Two ARM Cortex-A15 MPCore processors capable of speeds up to 2 GHz each
- Two ARM Cortex-M4 processors for low-power offload and real-time responsiveness
- Multi-core POWERVR™ SGX544-MPx graphics accelerators drive 3D gaming and 3D user interfaces
- Dedicated TI 2D BitBlt graphics accelerator
- IVA-HD hardware accelerators enable full HD 1080p60, multi-standard video encode/decode as well as 1080p30 stereoscopic 3D (S3D)
- Faster, higher-quality image and video capture with up to 24 megapixels (or 12 megapixels S3D) imaging and 1080p60 (or 1080p30S3D) video
- Supports four cameras and four displays simultaneously
- Packaging and memory: 14mm x 14mm, 0.4mm pitch PoP dual-channel LPDDR2 memory

SoC Beispiel: TI OMAP 5430 (cont.)

64-040 Rechnerstrukturer

3.2 Moore's Law - Smart Dust Smart Dust

Wie klein kann man Computer bauen?

- Berkeley Projekt: Smart Dust
- ▶ Integration kompletter Rechensysteme auf 1 mm³
 - vollständiger Digitalrechner
 - Sensoren
 - Kommunikation
 - Stromversorgung Photozellen, Batterie, Vibration, Mikroturbine Echtzeit-Betriebssystem
 - inklusive autonome Vernetzung
- Massenfertigung? Tausende autonome Mikrorechner "Ausstreuen" in der Umgebung
- vielfältige Anwendungen

1997-2002

CPU, Speicher, I/O

Photodioden, Kompass, Gyro

Funk, optisch

Tiny OS

Smart Dust: Konzept

Universität Hamburg

Smart Dust: Prototypen

diverse Prototypen:

- vollwertige CPU / Sensoren / RF
- "out-door"-tauglich
- MEMS-"CCR" für opt. Kommunikation

64-040 Rechnerstrukturer

3.2 Moore's Law - Smart Dust

Smart Dust: Corner-cube reflector ("Katzenauge")

- CCR: seitlich zwei starre Spiegel, Gold auf Silizium
- untere Spiegelfläche beweglich (elektrostatisch, ca. 30 V)
- gezielte Modulation von eingestrahltem Laserlicht
- ▶ Reichweiten > 100 m demonstriert

Universität Hamburg

64-040 Rechnerstrukturen

Smart Dust: Energieverbrauch

Miniatur-Solarzellen Wirkungsgrad ca. 3% 26 µW/mm in vollem Sonnenlicht

Batterien: $\sim 1J/mmł$

Kondensatoren: $\sim 10 \text{ mJ/mm}$ ł

Solarzellen: $\sim 0.1~\text{mW/mm}$ ~ 1J/mm /day (außen, Sonne)

> $\sim 10 \text{mJ/mm/day}$ $\sim 10 \ \mu W/mm$ (innen)

(StrongArm SA1100) Digitalschaltung 1 nJ/instruction

Analoger Sensor 1 nJ/sample

Kommunikation 1 nJ/bit (passive transmitter, s.u.)

opt. digitale ASICs: ~ 5 pJ/bit (LFSR Demonstrator, 1.4V)

64-040 Rechnerstrukturer

Grenzen des Wachstums

- Jeder exponentielle Verlauf stößt irgendwann an natürliche oder wirtschaftliche Grenzen.
- Beispiel: eine DRAM-Speicherzelle speichert derzeit etwa 100 000 Elektronen. Durch die Verkleinerung werden es mit jeder neuen Technologiestufe weniger.
- ► Offensichtlich ist die Grenze spätestens erreicht, wenn nur noch ein einziges Elektron gespeichert würde.
- ► Ab diesem Zeitpunkt gibt es bessere Performance nur noch durch bessere Algorithmen / Architekturen
- ▶ Annahme: 50 % Wachstum pro Jahr, $a^b = \exp(b \cdot \ln a)$
- ▶ Elektronen pro Speicherzelle: $100\,000/(1,5^{x/\mathrm{Jahre}}) \geq 1$
- $x = \ln(100\,000)/\ln(1,5) \approx 28$ Jahre

Roadmap: ITRS

International Technology Roadmap for Semiconductors http://www.itrs.net/reports.html

- ▶ non-profit Organisation
- diverse Fördermitglieder
 - ► Halbleiterhersteller
 - ▶ Geräte-Hersteller
 - Unis, Forschungsinstitute
 - ► Fachverbände aus USA, Europa, Asien
- ► Jährliche Publikation einer langjährigen Vorhersage
- Zukünftige Entwicklung der Halbleitertechnologie
- ► Komplexität typischer Chips (Speicher, Prozessoren, SoC, ...)
- ► Modellierung, Simulation, Entwurfssoftware

3.3 Moore's Law - Roadmap und Grenzen des Wachstums

64-040 Rechnerstrukturen

Roadmap: ITRS (cont.)

Year of Production	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
Flash ½ Pitch (nm) (un-contacted Poly)	22	20	18	17	15	14,2	13,0	11,9	10,9	10,0	8,9	8,0	8,0	8,0	8,0	8,0
DRAM ½ Pitch (nm) (contacted)	36	32	28	25	23	20,0	17,9	15,9	14,2	12,6	11,3	10,0	8,9	8,0	7,1	6,3
MPU/ASIC Metal 1 (M1) ½ Pitch (nm)	38	32	27	24	21	18,9	16,9	15,0	13,4	11,9	10,6	9,5	8,4	7,5	6,7	6,0
MPU High-Performance Printed Gate Length (nm)	35	31	28	25	22	19,8	17,7	15,7	14,0	12,5	11,1	9,9	8,8	7,9	6,79	5,87
MPU High-Performance Physical Gate Length (nm)	24	22	20	18	17	15,3	14,0	12,8	11,7	10,6	9,7	8,9	8,1	7,4	6,6	5,9
Logic (Low-volume Microprocesso	r) High-perfe	ormance														
Generation at Introduction	p13h	p13h	p16h	p16h	p16h	p19h	p19h	p19h	p22h	p22h	p22h	p25h	p25h	p25h	p28h	p28h
Functions per chip at introduction (million transistors)	8.848	8.848	17.696	17.696	17.696	35.391	35.391	35.391	70.782	70.782	70.782	141.564	141.564	141.564	283.128	283.128
Chip size at introduction (mm ²)	520	368	520	413	328	520	413	328	520	413	328	520	413	328	520	413
Generation at production	p11h	p11h	p13h	p13h	p13h	p16h	p16h	p16h	p19h	p19h	p19h	p22h	p22h	p22h	p25h	p25h
Functions per chip at production (million transistors)	4.424	4.424	8.848	8.848	8.848	17.696	17.696	17.696	35.391	35.391	35.391	70.782	70.782	70.782	141.564	141.564
Chip size at production (mm²)	260	184	260	206	164	260	206	164	260	206	164	260	206	164	260	206
OH % of Total Chip Area	29,5%	29,5%	29,5%	29,5%	29,5%	29,5%	29,5%	29,5%	29,5%	29,5%	29,5%	29,5%	29,5%	29,5%	29,5%	29,5%
Logic Core+SRAM (Without OH Average Density (Mt/cm2)	2.414	3.414	4.828	6.083	7.664	9.656	12.166	15.328	19.312	24.332	30.656	38.625	48.664	61.313	77.249	97.328
High-performance MPU Mtransistors/cm² (including on- chip SRAM)	1.701	2.406	3.403	4.287	5.402	6.806	8.575	10.804	13.612	17.150	21.608	27.224	34.300	43.215	54.448	68.600
ASIC																
ASIC usable Mtransistors/cm ² (auto layout)	1.701	2.406	3.403	4.287	5.402	6.806	8.575	10.804	13.612	17.150	21.608	27.224	34.300	43.215	54.448	68.600
ASIC max chip size (mm²) (max. lithographic field size)	858	858	858	858	858	858	858	858	858	858	858	858	858	858	858	858
ASIC max. functions per chip (Mtransistors/chip) (fit in litho. Field size)	14.599	20.646	29.198	36.787	46.348	58.395	73.573	92.697	116.790	147.147	185.393	233.581	294.293	370.786	467.162	588.587

Moore's Law: Schöpferische Pause

Beispiel für die Auswirkung von Moore's Law

Angenommen die Lösung einer Rechenaufgabe dauert derzeit vier Jahre, und die Rechenleistung wächst jedes Jahr um 60 %.

Wie lösen wir das Problem ?

Moore's Law: Schöpferische Pause

Beispiel für die Auswirkung von Moore's Law

Angenommen die Lösung einer Rechenaufgabe dauert derzeit vier Jahre, und die Rechenleistung wächst jedes Jahr um 60 %.

Ein mögliches Vorgehen ist dann das folgende:

- ► Wir warten drei Jahre, kaufen dann einen neuen Rechner und erledigen die Rechenaufgabe in einem Jahr.
- ▶ Wie das ?

Moore's Law: Schöpferische Pause

Beispiel für die Auswirkung von Moore's Law

Angenommen die Lösung einer Rechenaufgabe dauert derzeit vier Jahre, und die Rechenleistung wächst jedes Jahr um 60 %.

Ein mögliches Vorgehen ist dann das folgende:

- Wir warten drei Jahre, kaufen dann einen neuen Rechner und erledigen die Rechenaufgabe in einem Jahr.
- ⇒ Nach einem Jahr können wir einen Rechner kaufen, der um den Faktor 1,6 Mal schneller ist, nach zwei Jahren bereits $1,6 \times 1,6$ Mal schneller, und nach drei Jahren (also am Beginn des vierten Jahres) gilt $(1 + 60\%)^3 = 4,096$.
 - Wir sind also sogar ein bisschen schneller fertig, als wenn wir den jetzigen Rechner die ganze Zeit durchlaufen lassen.

Wie geht es jetzt weiter?

Ab jetzt erst mal ein bottom-up Vorgehen:

Start mit grundlegenden Aspekten

- Grundlagen der Repräsentation von Information
- Darstellung von Zahlen und Zeichen
- arithmetische und logische Operationen
- Schaltnetze, Schaltwerke, endliche Automaten

dann Kennenlernen aller Basiskomponenten des Digitalrechners

- Gatter, Flipflops. . .
- Register, ALU, Speicher...

und Konstruktion eines vollwertigen Rechners

- Befehlssatz, -abarbeitung, Assembler
- Pipelining, Speicherhierarchie

64-040 Rechnerstrukturer

Literatur

- [Moo65] G.E. Moore: Cramming More Components Onto Integrated Circuits. in: Electronics 38 (1965), April 19, Nr. 8
- [ITRS11] International Technology Roadmap for Semiconductors 2011 Edition. Semiconductor Industry Association, 2011. www.itrs.net/Links/2011ITRS/Home2011.htm
- [Fur01] S. Furber: ARM System-on-Chip Architecture. Second. Addison-Wesley Professional, 2001. ISBN 978-0-201-67519-1

Literatur (cont.)

Universität Hamburg

[Intel] Intel Corp.; Santa Clara, CA.

www.intel.com

www.intel.com/content/www/us/en/history/

museum-gordon-moore-law.html

TI Texas Instruments Inc.; Dallas, TX.

www.texasinstruments.com