Ref. I

INFERENCE DEVICE PROVIDED WITH LEARNING FUNCTION

Patent number:

JP6095882

Publication date:

1994-04-08

Inventor:

KUMAMOTO HIROSHI

Applicant:

OMRON TATEISI ELECTRONICS CO

Classification:

- international:

G05B13/02; G06F9/44; G06F15/18; G05B13/02;

G06F9/44; G06F15/18; (IPC1-7): G05B13/02;

G06F9/44; G06F15/18

- european:

Application number: JP19920187022 19920714 Priority number(s): JP19920187022 19920714

Report a data error here

Abstract of JP6095882

PURPOSE: To provide an inference device having a learning function capable of improving inference accuracy by learning while considering the influence of noise. CONSTITUTION:An input distribution coefficient output means 12 outputs how much inputted data are separated from the center of distribution as a distribution coefficient, an inference means 18 performs inference to the input data based on a membership function and rules and a teacher signal input means 20 inputs a teacher signal. A membership function adjustment means 22 adjusts the membership function stored in a membership function storage means 14 based on the error of the teacher signal and an inferred result and the output of the input distribution coefficient. Thus, learning can be performed while considering the influence of the noise corresponding not only to the error of the teacher signal and the inferred result but also to the distribution coefficient of the input data.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-95882

(43)公開日 平成6年(1994)4月8日

(51)Int.Cl. ⁵	識別配号	庁内整理番号	FI	技術表示箇所
G06F 9/44	330 W	9193-5B		
15/18		8945-5L		
// G 0 5 B 13/02	L	9131-3H		

金本語求 未請求 請求項の数2(全 7 頁)

(21)出願番号	特願平4-187022	(71)出願人	000002945 オムロン株式会社
(22)出願日	平成 4年(1992) 7月14日		京都府京都市右京区花園土堂町10番地
		(72)発明者	熊本 浩 京都府京都市右京区花園土堂町10番地 コ ムロン株式会社内
		(74)代理人	弁理士 古谷 栄男 (外2名)

(54) 【発明の名称】 学習機能を有する推論装置

(57)【要約】

[目的] ノイズの影響を考慮して学習することによっ て推論精度を向上させることができる学習機能を有する 推論装置を提供することを目的とする。

【構成】 入力分布係数出力手段12は、入力されたデ ータが分布の中心からどの程度離れているかを分布係数 として出力する。推論手段18は、メンバシップ関数, ルールに基づいて入力データに対する推論を行なう。教 師信号入力手段20は教師信号を入力する。メンバシッ プ関数調整手段22は、前記教師信号と推論結果との誤 差および前記入力分布係数の出力に基づいて、メンバシ ップ関数記憶手段14に記憶されているメンバシップ関 数を調整する。従って、教師信号と推論結果との誤差だ けでなく、入力データの分布係数に対応するノイズの影 響を考慮して学習することができる。

1

【特許請求の範囲】

【讀求項1】データを入力する入力手段、

入力されたデータが分布の中心からどの程度離れているかを分布係数として出力する入力分布係数出力手段、 メンバシップ関数を記憶するメンバシップ関数記憶手段、

ルールを記憶するルール記憶手段、

メンバシップ関数. ルールに基づいて入力データに対する推論を行なう推論手段、

教師信号を入力する教師信号入力手段、

前記教師信号と推論結果との誤差および前記入力分布係数の出力に基づいて、メンバシップ関数記憶手段に記憶されているメンバシップ関数を調整するメンバシップ関数調整手段、

を備えたことを特徴とする学習機能を有する推論装置。 【請求項2】請求項1の学習機能を有する推論装置において、

入力分布係数に基づいて入力データがノイズであるか否 かを判別するノイズ判別装置、

を備えたことを特徴とする学習機能を有する推論装置。 【発明の詳細な説明】

[0001]

【産業上の利用分野】との発明は、学習機能を有する推 論装置に関し、その推論精度の向上に関するものであ る。

[0002]

【従来の技術】従来、ファジイ推論装置のバラメータ (メンバシップ関数など)を設計する方法として事例ベースの学習方法がある。事例ベースの学習方法とは、推論の希望出力(教師データ)にファジイ推論装置の出力 30 を近づけるように学習することにより、バラメータを設計する学習方法をいう。

[0003] この学習機能を有する推論装置は、教師データとして与えられた理想的な入力データを学習し、自動的に推論パラメータの修正を行なう。

[0004]

【発明が解決しようとする課題】しかしながら、従来の 学習機能を有する推論装置においては次のような問題点 があった。

【0005】入力データは、そのまま教師データとして 40 利用されるため、入力データにノイズが含まれている場合には、不正確な学習となり推論精度が悪くなるという 問題点があった。

【0006】との発明は上記問題を解決し、ノイズの影響を考慮して学習することによって推論精度を向上させることができる学習機能を有する推論装置を提供することを目的とする。

[0007]

【課題を解決するための手段】請求項1の学習機能を有 U30には、ROM32,RAM34,データ入力装置する推論装置は、データを入力する入力手段、入力され 50 36,入力分布係数出力装置38,推論出力装置40.

たデータが分布の中心からどの程度離れているかを分布係数として出力する入力分布係数出力手段、メンバシップ関数を記憶するメンバシップ関数記憶手段、ルールを記憶するルール記憶手段、メンバシップ関数、ルールに基づいて入力データに対する推論を行なう推論手段、教師信号を入力する教師信号入力手段、教師信号と推論結果との誤差および入力分布係数の出力に基づいて、メンバシップ関数記憶手段に記憶されているメンバシップ関数を調整するメンバシップ関数調整手段、を備えたことを特徴としている。

【0008】請求項2に係る学習機能を有する推論装置は、請求項1に係る学習機能を有する推論装置において、入力分布係数の出力に基づいて、入力データがノイズであるか否かを判別するノイズ判別装置、を備えたことを特徴としている。

【0009】を特徴としている。

[0010]

【作用】この学習機能を有する推論装置は、入力分布係数出力手段が、入力されたデータが分布の中心からどの程度離れているかを分布係数として出力する。推論手段は、メンバシップ関数、ルールに基づいて入力データに対する推論を行なう。教師信号入力手段は教師信号を入力する。メンバシップ関数調整手段は、教師信号と推論結果との誤差および入力分布係数の出力に基づいて、メンバシップ関数記憶手段に記憶されているメンバシップ関数を調整する。従って、教師信号と推論結果との誤差だけでなく、入力データの分布係数に対応するノイズの影響を考慮して学習することができる。

【0011】さらに、ノイズ判別装置は、入力分布係数 の出力に基づいて、入力データがノイズであるか否かを 判別する。従って、ノイズの影響が高い入力データの学 習を排除することができる。

[0012]

【実施例】図1に、との発明の一実施例による学習機能を有する推論装置の構成を示す。入力手段10はデータを入力する。入力分布係数出力手段12は、入力されたデータが分布の中心からどの程度離れているかを分布係数として出力する。メンバシップ関数記憶手段14はメンバシップ関数を記憶する。ルール記憶手段16はルールを記憶する。推論手段18は、メンバシップ関数、ルールに基づいて入力データに対する推論を行なう。教師信号入力手段20は教師信号を入力する。メンバシップ関数調整手段22は、前記教師信号と推論結果との誤差および前記入力分布係数の出力に基づいて、メンバシップ関数記憶手段14に記憶されているメンバシップ関数記憶手段14に記憶されているメンバシップ関数記憶手段14に記憶されているメンバシップ関数を調整する。

【0013】図2に、図1の各手段をCPUによって構成する場合の、具体的ハードウエアの一例を示す。CPU30には、ROM32、RAM34、データ入力装置36、入力分布係数出力装置38、推論出力装置40、

3

数師信号入力装置42が接続されている。ROM32には、推論手段、メンバシップ関数調整手段であるCPU30の制御プログラムが格納されている。CPU30はこの制御プログラムにしたがって各部を制御する。RAM34はメンバシップ関数、ルールおよび入力データの分布係数を記憶している。

【0014】以下、この装置を描かれた数字「1」、「2」、「3」、・・を判別する装置に適用した場合について説明する。図4aに、識別の対象の一例として「1」を示す。この装置は、識別領域を図4aに示すよ 10 うに領域(A)~(D)に4分割し、各領域の濃度により数字を判別するものである。図4bに、数字「1」を4つの領域に分割した場合の(A)領域を示す。この領域の濃度を計算すると、

(A)領域の濃度=斜線部分の面積/(A)領域の面積 = 10(斜線部分のマス目)/64(全マス目)

= 0.16

*

if $x_1=L$, $x_2=L$, $x_3=L$, $x_4=L$ then $y=\lceil 1 \rfloor$ (1) if $x_1=L$, $x_2=M$, $x_3=M$, $x_4=L$ then $y=\lceil 2 \rfloor$ (12)

 $i f x_1 = L, x_2 = M, x_3 = M, x_4 = L then y = [3]$ (1)

if $x_1 = H$, $x_2 = L$, $x_3 = M$, $x_4 = M$ then $y = \lceil 4 \rfloor$ ($\stackrel{\sim}{=}$)

RAM34に記憶されているメンバシップ関数の例を図5に示す。メンバシップ関数の各節点は、ラベルL(濃度小)が0.0,0.0,0.2,0.5、ラベルM(濃度中)が0.2,0.5,0.5,0.7、ラベルH(濃度大)が0.5,0.7,1.0,1.0のように記憶されている。

【0018】次に、CPU(推論装置)30は、メンバシップ関数の各ラベルの適合度の平均を、そのルールの適合度とする。同様に、各ルールについて適合度を演算し、演算結果から適合度の1番高いものを最終的な結果とする。以上のように、CPU(推論装置)30は推論動作を行なう。次に、この結果を推論出力装置40から出力する(ステップS3)。

[0019] 例えば、ルール (イ) において、「x₁= L」の適合度が0.5、「x₂=L」の適合度が0.

8、「 x_* =L」の適合度が0. 9、「 x_* =L」の適合度が0. 8であるときは、y=「1」である適合度は、

(0.5+0.8+0.9+0.8)/4=0.75により0.75になる。同様に、y=「2」である適合度が0.2 y=「3」である適合度が0.2 y=

が0.2、y=「3」である適合度が0.2、y=「4」である適合度が0.8、・・というように、すべての数字についてその適合度を算出する。これらの適合度の中で一番高いものを認識結果として選択する。例えば、y=「4」の適合度が一番高かったとすれば、y=「4」が最終的な結果として推論出力装置40から出力される。

[0020] ところで、図4aに示すように、認識対象が「1」であるにもかかわらず、上記のように誤って

*同様に、他の(B),(C),(D)領域についても 度を計算する。この例では、識別対象を4分割した各領域の 域の 協度を入力データとする。

[0015] との装置の動作を図3にフローチャートで示す。まず、データ入力装置36は、領域(A)~(D)の設度データを入力する(ステップS1)。次

(D) のほぼデータを入りする (ステッノ S 17 。 人 に、CPU (推論装置) 30は、RAM34 に記憶され ているメンバシップ関数、ルールに基づいて入力データ に対する推論を行なう (ステップ S 2)。 このCPU

LO (推論装置) 3 0 の推論動作を以下に説明する。
【0 0 1 6】まず、R A M 3 4 に記憶されているルール

(イ), (ロ), ・・の例を次のように示す。なお、(A)領域の濃度をx₁, (B)領域の濃度をx₂,

(C)領域の濃度をx, (D)領域の濃度をx,とし、出力をyとする。

[0017]

「4」であると出力する場合がある。このような場合には、教師信号を与え、メンバシップ関数の修正を行なう必要がある。このような操作を学習と呼んでいる。

【0021】例えば、上記においては次に、教師信号入力装置42から教師信号として「1」が入力される(ステップS4)。仮に、完全な推論が行なわれれば、y=「1」(ルール(イ))の適合度は1.0となるはずである。次に、CPU30は、これを受けて、推論したy=「1」(ルール(イ))の適合度0.75と1.0との差を推論出力の誤差として演算する(ステップS

【0022】 この推論出力の誤差は、ルール(イ)全体としての誤差である。ここで、ルール(イ)の前件部の各条件についての適合度を見てみる。「 x_1 =L」の適合度は0.5、「 x_2 =L」の適合度は0.8、「 x_3 =L」の適合度は0.9、「 x_4 =L」の適合度は0.8であったとする。従って、各条件についての誤差は「x40、 x_3 = x_4 0、 x_3 = x_4 0、 x_3 = x_4 0、 x_4 0、 x_4 0、 x_4 0、 x_5 0、 x_4 0、 x_5 0、 x_4 0、 x_5 0 、 x_5 0 x_5

 $\alpha = P_1 / (P_1 + P_2 + P_3 + P_4)$

ccで、P,は0.5, P,は0.2, P,は0.1, P,は0.2である。

【0023】従って、

50 $\alpha = 0.5 / (0.5 + 0.2 + 0.1 + 0.2)$

= 0.5

従って、推論出力に対して「x,=L」が与えた誤差Q、

 $Q_1 = Q \times \alpha$

ととで、Qは推論出力の誤差で0.25である。

【0024】従って、

 $Q_1 = 0.5 \times 0.25$

= 0.125

このように算出された誤差Q,に基づいて、従来はx,に 関するラベルLのメンバシップ関数の修正を行なってい 10 あり、他の調整方法(例えば、メンバシップ関数を左右 た。との実施例では、さらに、入力されたデータの入力 分布も考慮に入れてメンバシップ関数の調整を行なうよ うにしている。以下、この操作について説明する。

【0025】まず、入力分布係数出力装置38は、RA M34 に記憶されている入力データの分布係数 Bを出力 する (ステップS6)。この入力データの分布係数 βは 次のような意味を持つ。

【0026】図6に、数字「1」の各サンプルデータに ついて、各領域の濃度を計算して濃度の分布状態を表わ したグラフを示す。例えば(A)領域は、中心濃度をx 20 1=0.16とした分布状態になっている。 濃度 x1= 0.16のとき分布係数8は1である。中心から濃度が 離れるにしたがって、分布係数8も小さくなっている。

例えば、(A)領域において、x,=0.2の濃度の 入力データD。、を学習するとする。このときの分布係 数βは0.4である。この場合、図7に示すように、入 カデータの(A)領域にノイズNを含んでいるため、濃 度が高くなっていると考えられる。すなわち、図6の入 カデータの濃度の分布状態から、入力データの濃度が中 を強く受けて分布係数が低くなり、逆に、濃度が中心値 に近い場合は、ノイズの影響は低く分布係数が高くなる と考えられる。

【0027】従って、ノイズの影響を強く受けて分布係 数が低い入力データは、理想的なデータではないので学 習に反映させないこととし、ノイズの影響が低く分布係 数が高い入力データは学習に反映させることにする。す なわち、分布係数βは、入力データがノイズの影響を受 けた度合に応じて、入力データを学習に反映させる係数 の意味を持つものである。

【0028】とうして、CPU(メンバシップ関数調整 装置) 30は、推論出力の誤差Q1に分布係数Bを乗算 して、RAM34に記憶されているメンバシップ関数を 調整する(ステップS7)。従って、入力データD。、 を学習するときのメンバシップ関数の調整量₩は、 $W = Q_1 \times \beta$

ここで、 $[x_1 = L]$ が与えた誤差 Q_1 は0.125で、 βは0.4である。

【0029】従って、

 $W = 0.4 \times 0.125$

= 0.05

との調整量Wに基づいて、RAM34に記憶されている ラベルLのメンパシップ関数μを調整する状態を図8に 示す。適合度O.5におけるメンバシップ関数μの位置 を₩=0.05上げる。これにより、メンバシップ関数 μの節点a、は節点a、化移動し、メンバシップ関数μは μ′に調整される。これに伴って、ラベルMのメンバシ ップ関数も節点b、を節点b、に移動して調整される。

6

【0030】 このメンバシップ関数の調整方法は一例で に平行移動する方法。メンバシップ関数の頂点位置はそ のままで底辺をずらす方法。ある評価関数を最適にする ようにメンバシップ関数を調整する方法) により調整し てもよい。

【0031】次に、図9に、他の実施例による学習機能 を有する推論装置を示す。この装置は、図1に加えてノ イズ判別手段24を備えている。ノイズ判別手段24 は、入力分布係数に基づいて入力データがノイズである か否かを判別する。

【0032】図10の入力データの入力分布状態におい て、ノイズ判別手段24は、入力データの濃度が中心値 から一定値(例えば0.3)以上離れる(斜線部S)場 合はノイズが含まれていると判別する。この判別された 入力データは、ノイズの影響度が高いと判断されて学習 に用いられないことになる。

【0033】とのように、との装置は、入力分布係数出 力手段が、入力されたデータが分布の中心からどの程度 離れているかを分布係数として出力する。推論手段は、 メンバシップ関数、ルールに基づいて入力データに対す 心値より離れて高い場合は、入力データはノイズの影響 30 る推論を行なう。メンバシップ関数調整手段は、教師信 号と推論結果との誤差および前記入力分布係数の出力に 基づいて、メンバシップ関数記憶手段に記憶されている メンバシップ関数を調整する。従って、教師信号と推論 結果との誤差だけでなく、入力データの分布係数に対応 するノイズの影響を考慮して学習することができる。

> 【0034】さらに、ノイズ判別装置は、入力分布係数 の出力に基づいて、入力データがノイズであるか否かを 判別する。従って、ノイズの影響が高い入力データの学 習を排除することができる。

[0035] 40

【発明の効果】請求項1の学習機能を有する推論装置 は、入力手段がデータを入力する。入力分布係数出力手 段な、入力されたデータが分布の中心からどの程度離れ ているかを分布係数として出力する。メンバシップ関数 記憶手段はメンバシップ関数を記憶する。ルール記憶手 段はルールを記憶する。推論手段は、メンバシップ関 数、ルールに基づいて入力データに対する推論を行な う。教師信号入力手段は教師信号を入力する。メンバシ ップ関数調整手段は、前記教師信号と推論結果との誤差 50 および前記入力分布係数の出力に基づいて、メンバシッ

特開平6-95882

フ関数記憶手段に記憶されているメンバシップ関数を調 *【図整する。従って、教師信号と推論結果との誤差だけでなく、入力データの分布係数に対応するノイズの影響を考慮して学習することができる。これにより、ノイズの影響を考慮して学習することによって推論精度を向上させる学習機能を有する推論装置を提供することができる。 【0036】請求項2の学習機能を有する推論装置は、 こらに、ノイズ判別装置が、入力分布係数の出力に基づいて、入力データがノイズであるか否かを判別する。従って、ノイズの影響が高い入力データの学習を排除する 10 る。ことができる。 【名

7

【図面の簡単な説明】

【図1】 この発明の一実施例による学習機能を有する推論装置の構成を示す図である。

【図2】との発明の一実施例による学習機能を有する推 論装置のブロック図を示す。

[図3] この発明の一実施例による学習機能を有する推 論装置のフローチャートを示す図である。 *【図4】数字「1」の識別の一例を示す図である。

【図5】メンバシップ関数を示す図である。

【図6】入力データの分布状態の一例を示す図である。

【図7】ノイズを示す図である。

[図8] メンバシップ関数のノイズの影響を考慮した調整を示す図である。

[図9]他の実施例による学習機能を有する推論装置の 構成を示す図である。

【図10】入力データの分布状態の一例を示す図であ
→

【符号の説明】

10・・・入力手段

12・・・入力分布係数出力手段

14・・・メンバシップ関数記憶手段

16・・・ルール記憶手段

18・・・推論手段

20・・・教師信号入力手段

22・・・メンバシップ関数調整手段

