UCB-driven Utility Function Search for Multi-objective Reinforcement Learning Supplementary Material

May 28, 2025

1 Algorithms

Algorithm 1 Fixed-MOPPO

```
1: Input: State s_t, weights w
 2: Initialize: K weight-conditioned Actor-Critic Networks \pi_k / v^{\pi_k}, scalarisation-vector sub-
       spaces \mathbf{W}_k for k = 1, \dots, K, and memory buffer \mathcal{E} size of D.
      for k = 1 to K do
             for t = 1 to D do
                   \mathbf{w}_{pivot} \leftarrow \text{get pivot weight}(\mathbf{W}_k)
 5:
                   a_t \leftarrow \pi_k(s_t, \mathbf{w}_{pivot})
 6:
                   s_{t+1}, \mathbf{r_t} \leftarrow simulator(a_t)
 7:
                   \mathcal{E} \leftarrow \mathcal{E} \cup \langle s_t, a_t, \mathbf{w}_{pivot}, \mathbf{r_t}, s_{t+1} \rangle
 9:
                   s_t \leftarrow s_{t+1}
             end for
10:
             sample \langle s_t, a_t, \mathbf{w}_{pivot}, \mathbf{r_t}, s_{t+1} \rangle \leftarrow \mathcal{E}
11:
             \theta \leftarrow \theta + \eta \left( \nabla_{\theta} \log \pi_{\theta}(s_t, a; \mathbf{w}_{pivot}) \right) \left( A^{\pi}(s_t, a_t; \mathbf{w}_{pivot}) \right)
12:
             \phi \leftarrow \phi + || \mathbf{V}^{\pi_k}(s_t; \mathbf{w}_{pivot}) - \mathbf{V}^{\pi_k}(s_{t+1}; \mathbf{w}_{pivot}) ||^2
13:
             clear \mathcal{E}
14:
15: end for
```

2 Benchmark Problems

This section provide detail objective return for each problems. Where C in the following equations is live bonus.

2.1 Swimmer-v2

Observation and action space: $S \in \mathbb{R}^8$, $A \in \mathbb{R}^2$. The first objective is forward speed in x axis:

$$R_1 = v_x \tag{1}$$

The second objective is energy efficiency:

$$R_2 = 0.3 - 0.15 \sum_i a_i^2, \quad a_i \in (-1, 1)$$
 (2)

Algorithm 2 Random-MOPPO

```
1: Input: State s_t, weights w
 2: Initialize: K weight-conditioned Actor-Critic Networks \pi_k / v^{\pi_k}, scalarisation-vector sub-
      spaces \mathbf{W}_k for k=1,\ldots,K, memory buffer \mathcal{E} size of D, and scalarisation-vector re-sampling
      frequency RF.
 3: for k = 1 to K do
            for t = 1 to D do
 4:
                  if t \% RF = 0 then
 5:
                        \mathbf{w}_t \leftarrow \text{uniform random sample}(\mathbf{W}_k)
 6:
 7:
                  a_t \leftarrow \pi_k(s_t, \mathbf{w_t})
 8:
                  s_{t+1}, \mathbf{r_t} \leftarrow simulator(a_t)
 9:
                  \mathcal{E} \leftarrow \mathcal{E} \cup \langle s_t, a_t, \mathbf{w}_t, \mathbf{r_t}, s_{t+1} \rangle
10:
11:
                  s_t \leftarrow s_{t+1}
12:
            end for
            sample \langle s_t, a_t, \mathbf{w}_t, \mathbf{r_t}, s_{t+1} \rangle \leftarrow \mathcal{E}
13:
            \theta \leftarrow \theta + \eta \left( \nabla_{\theta} \log \pi_{\theta}(s, a; \mathbf{w}_t) \right) \left( A^{\pi}(s_t, a_t; \mathbf{w}_t) \right)
            \phi \leftarrow \phi + ||\boldsymbol{V}^{\pi_k}(s_t; \mathbf{w}_t) - \boldsymbol{V}^{\pi_k}(s_{t+1}; \mathbf{w}_t)||^2
15:
            clear \mathcal{E}
16:
17: end for
```

2.2 HalfCheetah-v2

Observation and action space: $S \in \mathbb{R}^{17}$, $A \in \mathbb{R}^6$.

The first objective is forward speed in x axis:

$$R_1 = \min(v_x, 4) + C \tag{3}$$

The second objective is energy efficiency:

$$R_2 = 4 - \sum_i a_i^2 + C, \quad a_i \in (-1, 1)$$
 (4)

$$C = 1 \tag{5}$$

2.3 Walker2d-v2

Observation and action space: $S \in \mathbb{R}^{17}$, $A \in \mathbb{R}^6$.

The first objective is forward speed in x axis:

$$R_1 = v_x + C \tag{6}$$

The second objective is energy efficiency:

$$R_2 = 4 - \sum_i a_i^2 + C, \quad a_i \in (-1, 1)$$
 (7)

$$C = 1 \tag{8}$$

2.4 Ant-v2

Observation and action space: $S \in \mathbb{R}^{27}$, $A \in \mathbb{R}^8$.

The first objective is forward speed in x axis:

$$R_1 = v_x + C \tag{9}$$

The second objective is forward in y axis:

$$R_2 = v_y + C \tag{10}$$

$$C = 1 - 0.5 \sum_{i} a_i^2, \quad a_i \in (-1, 1)$$
(11)

Algorithm 3 UCB-MOPPO

```
1: Input: Environment state S_t and full weight set W.
 2: Initialize: K weight-conditioned Actor-Critic networks \{(\pi_k, v^{\pi_k})\}_{k=1}^K; for each k, a predetermined
      subspace \mathbf{W}_k \subset \mathbf{W} (of size M); working pool \widetilde{\mathbf{W}}_k \leftarrow \mathbf{W}_k; number of objectives m; warm-up iterations
      Q; evaluation interval C; for each k and j=1,\ldots,m, surrogate dataset D_{\text{surrogate}}^{k,j} \leftarrow \emptyset; surrogate
      models \{f_{\text{bagging}}^{k,j}\}; and dynamic weight pool \mathcal E (of size D).
 3: for t = 0 to T do
                                                                                                                                                  ▶ Warm-up Stage
            for k = 1 to K do
 4:
                  \widetilde{\mathbf{W}}_k \leftarrow \text{getPivotWeights}(\mathbf{W}_k)
 5:
                  \pi_k \leftarrow \text{FixWeightOptimization}(\pi_k, \mathbf{W}_k)
 6:
 7:
            end for
                                                                                                         \triangleright Periodic Evaluation (every C iterations)
            if t \mod C = 0 then
 8:
                  for k = 1 to K do
 9:
                       for all \mathbf{w} \in \mathbf{W}_k do
10:
                             V_{i,\mathbf{w}}^{\pi_k} \leftarrow \text{Simulate}(\pi_k,\mathbf{w})
                                                                                                                                           \triangleright for each objective j
11:
12:
                  end for
13:
            end if
14:
            if t > Q then
                                                                                                                 ▷ Construct Surrogate Training Data
15:
16:
                  for k = 1 to K do
                       for all \mathbf{w} \in \mathbf{W}_k do
17:
                             for z = 0 to |t/C| - 1 do
18:
                                  for j=1 to m do
\Delta V_{j,\mathbf{w}}^{\pi_k,(z\to z+1)} \leftarrow V_{j,\mathbf{w}}^{\pi_k,z+1} - V_{j,\mathbf{w}}^{\pi_k,z}
Append (\mathbf{w}, \Delta V_{j,\mathbf{w}}^{\pi_k,(z\to z+1)}) to D_{\text{surrogate}}^{k,j}
19:
20:
21:
                                   end for
22:
23:
                             end for
24:
                       end for
25:
                  end for
                                                                                                                                 ▶ Update Surrogate Models
                  for k = 1 to K do
26:
27:
                       for j = 1 to m do
                             Update f_{\text{bagging}}^{k,j} using D_{\text{surrogate}}^{k,j}
28:
                       end for
29:
                  end for
30:
                                                                                       \triangleright Scalarisation-Vector Selection via UCB Acquisition
                  for k = 1 to K do
31:
32:
                       \mathcal{D}_k \leftarrow \emptyset
                                                                                                                   ▷ Candidates from the full subspace
33:
                       for all \mathbf{w} \in \mathbf{W}_k do
34:
                             V_{\mathbf{w}}^{\pi_k} \leftarrow \text{Simulate}(\pi_k, \mathbf{w})
                            for j = 1 to m do

\hat{V}_{j,\mathbf{w}}^{\pi_k} \leftarrow V_{j,\mathbf{w}}^{\pi_k} + f_{\text{bagging}}^{k,j}(\mathbf{w})

\tilde{V}_{j,\mathbf{w}}^{\pi_k} \leftarrow \hat{V}_{j,\mathbf{w}}^{\pi_k} + \beta_{t'} \cdot \sigma_{k,j}(\mathbf{w})

35:
36:
37:
38:
                             Let \mathbf{V}_{\mathbf{w}} \leftarrow (\widetilde{V}_{1,\mathbf{w}}^{\pi_k}, \dots, \widetilde{V}_{m,\mathbf{w}}^{\pi_k})
39:
                             Compute HV \leftarrow \text{HV}\left(\text{Pareto}(\mathcal{L} \cup \{\mathbf{V_w}\})\right), where \mathcal{L} is the set of existing objective vectors.
40:
                             Add the pair (\mathbf{w}, H\dot{V}) to \mathcal{D}_k
41:
                       end for
42:
                       Sort \mathcal{D}_k in descending order of HV
43:
                       Update working pool: \mathbf{W}_k \leftarrow \text{top } N \text{ weights from } \mathcal{D}_k
44:
45:
                  end for
            end if
46:
47: end for
```

2.5 Hopper-v2

Observation and action space: $S \in \mathbb{R}^{11}$, $A \in \mathbb{R}^3$.

 $R_1 = 1.5v_x + C$

The second objective is jumping height:

$$R_2 = 12(h - h_{init}) + C (13)$$

(12)

$$C = 1 - 2e^{-4} \sum_{i} a_i^2, \quad a_i \in (-1, 1)$$
(14)

2.6 Hopper-v3

Observation and action space: $S \in \mathbb{R}^{11}$, $A \in \mathbb{R}^3$. The first objective is forward speed in x axis:

$$R_1 = 1.5v_x + C (15)$$

The second objective is jumping height:

$$R_2 = 12(h - h_{init}) + C (16)$$

The third objective is energy efficiency:

$$R_3 = 4 - \sum_{i} a_i^2 + C \tag{17}$$

$$C = 1 \tag{18}$$

3 PPO Hyperparameters

Table 1: Hyper-parameter configuration of MOPPO algorithms.

Hyperparameters	Value			
Policy Number	10			
Max Training Iterations	2×10^{6}			
Number of Cells	64			
Actor Learning Rate	3×10^{-4}			
Critic Learning Rate	3×10^{-4}			
Memory Size	2500			
K Epochs	10			
Gamma	0.99			
Lambda	0.95			
C1 Coefficient	0.5			
C2 Coefficient	0			
Epsilon Clip	0.2			
Minibatch Size	64			

4 Convex Coverage Set Expansion

In this section, we illustrate the expansion of the Convex Coverage Set (CCS) throughout the training process using our proposed UCB-MOPPO algorithm. The graphs are arranged sequentially from left to right and top to bottom, showing the progressive evolution of the CCS. Each graph depicts 100 sub-space vectors representing a two-objective optimization problem. The detailed comparison of baselines is provided in Table 2, reporting the mean and standard deviation over three random seeds.

Table 2: Evaluation of HV and EU metrics for continuous MORL tasks over three independent runs. The best results are highlighted in **bold**.

Benchmark	Metric	UCB	Mean	Random	Fixed	PGMORL	PDMORL	CAPQL	GPI-LS
Swimmer-V2	$HV (10^4)$	$5.60 \pm .18$	$4.72\pm .19$	$4.56\pm .23$	$4.45\pm .11$	$1.67 \pm .09$	$1.77\pm .02$	$2.40 \pm .03$	$4.75\pm .02$
	$EU (10^2)$	$2.18 \pm .48$	$2.16\pm .25$	$2.08 \pm .22$	$2.11\pm .12$	$1.23\pm .42$	$1.24\pm .49$	$1.79\pm .45$	$2.14\pm.41$
Halfcheetah-V2	$HV (10^7)$	$1.78 \pm .23$	$1.60 \pm .07$	$1.21 \pm .09$	$1.12 \pm .05$	$0.58 \pm .01$	$0.62 \pm .02$	2.20 ± .08	$2.16 \pm .02$
	$EU (10^3)$	$3.88 \pm .22$	$3.58\pm .25$	$3.55\pm.30$	$3.44\pm .36$	$2.30 \pm .44$	$2.42\pm.31$	4.47 ± .03	$4.30 \pm .08$
Walker2d-V2	$HV (10^7)$	1.40 ± .03	$1.29 \pm .13$	$1.15 \pm .06$	$1.13 \pm .07$	$0.44 \pm .02$	$0.56 \pm .04$	$0.18 \pm .05$	$1.22 \pm .04$
	$EU (10^3)$	$3.54\pm .42$	$3.42\pm .29$	$3.34 \pm .29$	$3.30 \pm .33$	$1.98 \pm .21$	$2.24\pm .34$	$1.50 \pm .12$	$3.40 \pm .30$
Ant-V2	$HV (10^7)$	$1.07 \pm .09$	$0.92 \pm .04$	$0.65 \pm .01$	$0.60 \pm .01$	$0.61 \pm .10$	$0.66 \pm .02$	$0.45\pm.04$	$0.81 \pm .01$
	$EU (10^3)$	2.96 ± .43	$2.61 \pm .17$	$2.35\pm .24$	$2.21 \pm .39$	$2.28\pm.35$	$2.41 \pm .20$	$2.03 \pm .42$	$2.84 \pm .26$
Hopper-V2	$HV (10^7)$	$0.84 \pm .05$	$0.81 \pm .04$	$0.79 \pm .01$	$0.76\pm.02$	$0.23 \pm .02$	$0.25\pm.02$	$0.25\pm.07$	$0.80 \pm .02$
	$EU (10^3)$	$2.77\pm .28$	2.84 ± .30	$2.77\pm.18$	$2.71 \pm .26$	$1.48 \pm .47$	$1.51 \pm .18$	$1.46 \pm .11$	$2.75\pm .07$
Hopper-V3	$HV (10^{10})$	3.62 ± .01	$2.83 \pm .22$	$2.90 \pm .11$	$2.64 \pm .18$	$0.63 \pm .07$	$0.11 \pm .02$	$0.31 \pm .06$	$0.65 \pm .03$
	EU (10^3)	$3.20\pm.02$	$3.19\pm.04$	3.28 ± .20	$2.90 \pm .01$	$1.70 \pm .04$	$1.74 \pm .09$	$1.52 \pm .29$	$2.14 \pm .42$

As training progresses, a clear trend of CCS growth emerges, characterized by an increasing spread and coverage of vectors across the objective space. Notably, the distribution of vectors provides valuable insights: regions where vectors are more widely scattered indicate areas with fewer vectors dominated by others, reflecting an expansion toward a more optimal and comprehensive CCS. This separation demonstrates the growing diversity and coverage of the vectors over time, effectively showcasing the CCS's ability to capture a wider range of trade-offs between objectives. Consequently, this illustrates the effectiveness of UCB-MOPPO in thoroughly exploring the objective space and improving the set of solutions throughout the training process.

4.1 Swimmer-V2

Figure 1: CCS expansion in Swimmer-V2 with one seed. The last graph shows the Hypervolume growth.

4.2 HalfCheetah-v2

Figure 2: CCS expansion in HalfCheetah-V2 with one seed. The last graph shows the Hypervolume growth.

4.3 Walker2D-V2

Figure 3: CCS expansion in Walker 2D-V2 with one seed. The last graph shows the Hypervolume growth.

4.4 Ant-V2

Figure 4: CCS expansion in Ant-V2 with one seed. The last graph shows the Hypervolume growth.

4.5 Hopper-V2

Figure 5: CCS expansion in Hopper-V2 with one seed. The last graph shows the Hypervolume growth.

4.6 Hopper-V3

Figure 6: CCS expansion in Hopper-V3 with one seed. The last graph shows the Hypervolume growth.