Focused and Synthetic Nested Sequents

Sonia Marin With Kaustuv Chaudhuri and Lutz Straßburger

Inria, LIX, École Polytechnique

Workshop on Efficient and Natural Proof Systems
University of Bath
December 14, 2015

Classical modal logic

Formulas: $A ::= a \mid \bar{a} \mid A \land A \mid A \lor A \mid \Box A \mid \Diamond A$

Classical modal logic

Formulas:
$$A ::= a \mid \bar{a} \mid A \land A \mid A \lor A \mid \Box A \mid \Diamond A$$

Axioms for K: classical propositional logic and

$$k: \Box(A \to B) \to (\Box A \to \Box B)$$

Rules: modus ponens:
$$\frac{A \quad A \to B}{B}$$
 necessitation: $\frac{A}{\Box A}$

Classical modal logic

Formulas: $A ::= a \mid \bar{a} \mid A \land A \mid A \lor A \mid \Box A \mid \Diamond A$

Axioms for K: classical propositional logic and

$$k: \Box(A \to B) \to (\Box A \to \Box B)$$

Rules: modus ponens: $\frac{A \quad A \to B}{B}$ necessitation: $\frac{A}{\Box_A}$

The S5-cube:

- $d: \Box A \rightarrow \Diamond A$
- $t\colon\ A\to \Diamond A$
- b: $A \rightarrow \Box \Diamond A$
- 4: $\Diamond \Diamond A \rightarrow \Diamond A$
- $5: \Diamond A \rightarrow \Box \Diamond A$

$$\Gamma ::= A_1, \ldots, A_m$$

$$\textit{fm}(\Gamma) = \textit{A}_1 \vee \ldots \vee \textit{A}_m$$

Nested sequent:
$$\Gamma ::= A_1, \dots, A_m, [\Gamma_1], \dots, [\Gamma_n]$$

$$fm(\Gamma) = A_1 \vee \dots \vee A_m \vee \Box fm(\Gamma_1) \vee \dots \vee \Box fm(\Gamma_n)$$

$$A_1, \dots, A_m$$

$$\Gamma_1 \qquad \dots \qquad \Gamma_n$$

Nested sequent:
$$\Gamma ::= A_1, \dots, A_m, [\Gamma_1], \dots, [\Gamma_n]$$

$$\mathit{fm}(\Gamma) = A_1 \vee \dots \vee A_m \vee \Box \mathit{fm}(\Gamma_1) \vee \dots \vee \Box \mathit{fm}(\Gamma_n)$$

Sequent context:
$$\Gamma\{\ \}\{\ \} = A, B, [C, [\{\ \}]], [D, \{\ \}]$$

Nested sequent:
$$\Gamma ::= A_1, \dots, A_m, [\Gamma_1], \dots, [\Gamma_n]$$

$$fm(\Gamma) = A_1 \vee \dots \vee A_m \vee \Box fm(\Gamma_1) \vee \dots \vee \Box fm(\Gamma_n)$$

Sequent context:
$$\Gamma\{B\}\{\ \} = A, B, [C, [B]], [D, \{\ \}]$$

Nested sequent:
$$\Gamma ::= A_1, \dots, A_m, [\Gamma_1], \dots, [\Gamma_n]$$

$$fm(\Gamma) = A_1 \vee \dots \vee A_m \vee \Box fm(\Gamma_1) \vee \dots \vee \Box fm(\Gamma_n)$$

Sequent context: $\Gamma\{B\}\{A, [C]\} = A, B, [C, [B]], [D, A, [C]]$

The standard nested system

Formulas:
$$A ::= a \mid \bar{a} \mid A \land A \mid A \lor A \mid \Box A \mid \Diamond A$$

System KN:

$$\begin{split} & \operatorname{cont} \frac{\Gamma\{A,A\}}{\Gamma\{A\}} & \quad \Box \frac{\Gamma\{[A]\}}{\Gamma\{\Box A\}} & \quad \lor \frac{\Gamma\{A,B\}}{\Gamma\{A\lor B\}} \\ & \operatorname{id} \frac{}{\Gamma\{a,\bar{a}\}} & \quad \mathsf{k}^{\diamond} \frac{\Gamma\{[A,\Delta]\}}{\Gamma\{\diamondsuit A,[\Delta]\}} & \wedge \frac{\Gamma\{A\} \quad \Gamma\{B\}}{\Gamma\{A\land B\}} \\ & \quad \mathsf{k} \colon \Box(A\to B) \to (\Box A\to \Box B) \end{split}$$

The standard nested system

Formulas:
$$A ::= a \mid \bar{a} \mid A \land A \mid A \lor A \mid \Box A \mid \Diamond A$$

System KN:

$$\begin{split} &\cot\frac{\Gamma\{A,A\}}{\Gamma\{A\}} & \Box\frac{\Gamma\{[A]\}}{\Gamma\{\Box A\}} & \vee\frac{\Gamma\{A,B\}}{\Gamma\{A\vee B\}} \\ &\operatorname{id}\frac{}{\Gamma\{a,\bar{a}\}} & \mathsf{k}^{\diamond}\frac{\Gamma\{[A,\Delta]\}}{\Gamma\{\diamondsuit A,[\Delta]\}} & \wedge\frac{\Gamma\{A\}}{\Gamma\{A\wedge B\}} \\ & \mathsf{k}\colon\Box(A\to B)\to(\Box A\to\Box B) \end{split}$$

Modal rules:

$$d^{\circ} \frac{\Gamma\{[A]\}}{\Gamma\{\Diamond A\}} \qquad t^{\circ} \frac{\Gamma\{A\}}{\Gamma\{\Diamond A\}} \qquad b^{\circ} \frac{\Gamma\{[\Delta], A\}}{\Gamma\{[\Delta, \Diamond A]\}} \qquad 4^{\circ} \frac{\Gamma\{[\Diamond A, \Delta]\}}{\Gamma\{\Diamond A, [\Delta]\}} \qquad 5^{\circ} \frac{\Gamma\{\emptyset\}\{\Diamond A\}}{\Gamma\{\Diamond A\}\{\emptyset\}}$$

$$d: \Box A \to \Diamond A \qquad t: A \to \Diamond A \qquad b: A \to \Box \Diamond A \qquad 4: \Diamond \Diamond A \to \Diamond A \qquad 5: \Diamond A \to \Box \Diamond A$$

[Brünnler, 2009]

Polarities: Negative connectives : invertible rules
Positive connectives : non-invertible rules

Negative connectives : invertible rules **Polarities:**

Positive connectives : non-invertible rules

Weak focusing: For any subproof $\frac{\pi'}{\Gamma\{P\}}$ the only positive rules

between two rules decomposing P are rules decomposing P.

Polarities: Negative connectives : invertible rules
Positive connectives : non-invertible rules

Weak focusing: For any subproof $\lceil \frac{\pi'}{\Gamma\{P\}} \rceil$ the only positive rules between two rules decomposing P are rules decomposing P.

Polarities: Negative connectives : invertible rules
Positive connectives : non-invertible rules

Weak focusing: For any subproof $\frac{\pi'}{\Gamma\{P\}}$ the only positive rules between two rules decomposing P are rules decomposing P.

Inversion: For any subproof $\Gamma(N)$ the last rule is negative.

The standard nested system

Formulas: $A ::= a \mid \bar{a} \mid A \land A \mid A \lor A \mid \Box A \mid \Diamond A$

System KN:

$$\cot \frac{\Gamma\{A,A\}}{\Gamma\{A\}} \qquad \Box \frac{\Gamma\{[A]\}}{\Gamma\{\Box A\}} \qquad \vee \frac{\Gamma\{A,B\}}{\Gamma\{A\vee B\}}$$

$$\operatorname{id} \frac{1}{\Gamma\{a,\bar{a}\}} \qquad \operatorname{k}^{\diamond} \frac{\Gamma\{[A,\Delta]\}}{\Gamma\{\diamondsuit A,[\Delta]\}} \qquad \wedge \frac{\Gamma\{A\} \qquad \Gamma\{B\}}{\Gamma\{A\wedge B\}}$$

Modal rules:

$$d^{\circ} \frac{\Gamma\{[A]\}}{\Gamma\{\diamondsuit A\}} \qquad t^{\diamond} \frac{\Gamma\{A\}}{\Gamma\{\diamondsuit A\}} \qquad b^{\circ} \frac{\Gamma\{[\Delta], A\}}{\Gamma\{[\Delta, \diamondsuit A]\}} \qquad 4^{\circ} \frac{\Gamma\{[\diamondsuit A, \Delta]\}}{\Gamma\{\diamondsuit A, [\Delta]\}} \qquad 5^{\circ} \frac{\Gamma\{\emptyset\}\{\diamondsuit A\}}{\Gamma\{\diamondsuit A\}\{\emptyset\}}$$

Formulas:
$$A ::= a \mid \bar{a} \mid A \land A \mid A \lor A \mid \Box A \mid \Diamond A$$

System KN:

$$\cot \frac{\Gamma\{A,A\}}{\Gamma\{A\}} \qquad \Box \frac{\Gamma\{[A]\}}{\Gamma\{\Box A\}} \qquad \vee \frac{\Gamma\{A,B\}}{\Gamma\{A\vee B\}}$$

$$\operatorname{id} \frac{1}{\Gamma\{a,\bar{a}\}} \qquad \operatorname{k}^{\circ} \frac{\Gamma\{[A,\Delta]\}}{\Gamma\{\diamondsuit A,[\Delta]\}} \qquad \wedge \frac{\Gamma\{A\}}{\Gamma\{A\wedge B\}}$$

Modal rules:

$$d^{\circ} \, \frac{\Gamma\{[A]\}}{\Gamma\{\diamondsuit A\}} \qquad t^{\diamond} \, \frac{\Gamma\{A\}}{\Gamma\{\diamondsuit A\}} \qquad b^{\circ} \, \frac{\Gamma\{[\Delta], A\}}{\Gamma\{[\Delta, \diamondsuit A]\}} \qquad 4^{\circ} \, \frac{\Gamma\{[\diamondsuit A, \Delta]\}}{\Gamma\{\diamondsuit A, [\Delta]\}} \qquad 5^{\circ} \, \frac{\Gamma\{\emptyset\}\{\diamondsuit A\}}{\Gamma\{\diamondsuit A\}\{\emptyset\}}$$

Polarized formulas:
$$\begin{array}{ccc} P & ::= & a \mid \downarrow N \mid \Diamond P \mid P \land P \\ N & ::= & \bar{a} \mid \uparrow P \mid \Box N \mid N \lor N \end{array}$$

System KN:

$$\cot \frac{\Gamma\{A,A\}}{\Gamma\{A\}} \qquad \Box \frac{\Gamma\{[A]\}}{\Gamma\{\Box A\}} \qquad \vee \frac{\Gamma\{A,B\}}{\Gamma\{A\vee B\}}$$

$$\operatorname{id} \frac{1}{\Gamma\{a,\bar{a}\}} \qquad \operatorname{k}^{\diamond} \frac{\Gamma\{[A,\Delta]\}}{\Gamma\{\diamondsuit A,[\Delta]\}} \qquad \wedge \frac{\Gamma\{A\} \qquad \Gamma\{B\}}{\Gamma\{A\wedge B\}}$$

Modal rules:

$$d^{\circ} \, \frac{\Gamma\{[A]\}}{\Gamma\{\diamondsuit A\}} \qquad t^{\diamond} \, \frac{\Gamma\{A\}}{\Gamma\{\diamondsuit A\}} \qquad b^{\circ} \, \frac{\Gamma\{[\Delta], A\}}{\Gamma\{[\Delta, \diamondsuit A]\}} \qquad 4^{\circ} \, \frac{\Gamma\{[\diamondsuit A, \Delta]\}}{\Gamma\{\diamondsuit A, [\Delta]\}} \qquad 5^{\circ} \, \frac{\Gamma\{\emptyset\}\{\diamondsuit A\}}{\Gamma\{\diamondsuit A\}\{\emptyset\}}$$

Polarized formulas:
$$\begin{array}{ccc} P & ::= & a \mid \downarrow N \mid \Diamond P \mid P \land P \\ N & ::= & \bar{a} \mid \uparrow P \mid \Box N \mid N \lor N \end{array}$$

Focused system KNF:

$$\begin{split} & \operatorname{dec} \frac{\Gamma\{P, \langle P \rangle\}}{\Gamma\{P\}} & & \Box \frac{\Gamma\{[A]\}}{\Gamma\{\Box A\}} & & \vee \frac{\Gamma\{A, B\}}{\Gamma\{A \vee B\}} \\ & \operatorname{id} \frac{}{\Gamma\{\bar{a}, \langle a \rangle\}} & & \mathsf{k}^{\diamond} \frac{\Gamma\{[\langle A \rangle, \Delta]\}}{\Gamma\{\langle \diamond A \rangle, [\Delta]\}} & \wedge \frac{\Gamma\{\langle A \rangle\}}{\Gamma\{\langle A \wedge B \rangle\}} \end{split}$$

Modal rules:

$$d^{\circ} \frac{\Gamma\{[A]\}}{\Gamma\{\diamondsuit A\}} \qquad t^{\diamond} \frac{\Gamma\{A\}}{\Gamma\{\diamondsuit A\}} \qquad b^{\circ} \frac{\Gamma\{[\Delta], A\}}{\Gamma\{[\Delta, \diamondsuit A]\}} \qquad 4^{\circ} \frac{\Gamma\{[\diamondsuit A, \Delta]\}}{\Gamma\{\diamondsuit A, [\Delta]\}} \qquad 5^{\circ} \frac{\Gamma\{\emptyset\}\{\diamondsuit A\}}{\Gamma\{\diamondsuit A\}\{\emptyset\}}$$

Polarized formulas:
$$\begin{array}{ccc} P & ::= & a \mid \downarrow N \mid \Diamond P \mid P \land P \\ N & ::= & \bar{a} \mid \uparrow P \mid \Box N \mid N \lor N \end{array}$$

Focused system KNF:

$$\det \frac{\Gamma\{P, \langle P \rangle\}}{\Gamma\{P\}} \qquad \Box \frac{\Gamma\{[A]\}}{\Gamma\{\Box A\}} \qquad \vee \frac{\Gamma\{A, B\}}{\Gamma\{A \vee B\}} \qquad \text{sto } \frac{\Gamma\{P\}}{\Gamma\{\uparrow P\}}$$

$$\operatorname{id} \frac{\Gamma\{\bar{a}, \langle a \rangle\}}{\Gamma\{\langle a \rangle A, [\Delta]\}} \qquad \wedge \frac{\Gamma\{\langle A \rangle\}}{\Gamma\{\langle a \rangle B, [A]\}}$$

Modal rules:

$$d^{\circ} \, \frac{\Gamma\{[A]\}}{\Gamma\{\diamondsuit A\}} \qquad t^{\diamond} \, \frac{\Gamma\{A\}}{\Gamma\{\diamondsuit A\}} \qquad b^{\circ} \, \frac{\Gamma\{[\Delta], A\}}{\Gamma\{[\Delta, \diamondsuit A]\}} \qquad 4^{\circ} \, \frac{\Gamma\{[\diamondsuit A, \Delta]\}}{\Gamma\{\diamondsuit A, [\Delta]\}} \qquad 5^{\circ} \, \frac{\Gamma\{\emptyset\}\{\diamondsuit A\}}{\Gamma\{\diamondsuit A\}\{\emptyset\}}$$

Polarized formulas:
$$\begin{array}{ccc} P & ::= & a \mid \downarrow N \mid \Diamond P \mid P \land P \\ N & ::= & \bar{a} \mid \uparrow P \mid \Box N \mid N \lor N \end{array}$$

Focused system KNF:

$$\begin{split} \operatorname{dec} & \frac{\Gamma\{P, \langle P \rangle\}}{\Gamma\{P\}} & \quad \Box \frac{\Gamma\{[A]\}}{\Gamma\{\Box A\}} & \quad \vee \frac{\Gamma\{A, B\}}{\Gamma\{A \vee B\}} & \operatorname{sto} \frac{\Gamma\{P\}}{\Gamma\{\uparrow P\}} \\ & \operatorname{id} & \frac{\Gamma\{[A]\}}{\Gamma\{\bar{a}, \langle a \rangle\}} & \quad \mathsf{k}^{\diamond} & \frac{\Gamma\{[A]\}}{\Gamma\{\langle A \rangle, [\Delta]\}} & \quad \wedge \frac{\Gamma\{\langle A \rangle\}}{\Gamma\{\langle A \wedge B \rangle\}} & \quad \operatorname{rel} & \frac{\Gamma\{N\}}{\Gamma\{\langle \downarrow N \rangle\}} \end{split}$$

Modal rules:

$$\mathsf{d}^{\diamond} \, \frac{\Gamma\{[A]\}}{\Gamma\{\diamondsuit A\}} \qquad \mathsf{t}^{\diamond} \, \frac{\Gamma\{A\}}{\Gamma\{\diamondsuit A\}} \qquad \mathsf{b}^{\diamond} \, \frac{\Gamma\{[\Delta], A\}}{\Gamma\{[\Delta, \diamondsuit A]\}} \qquad \mathsf{4}^{\diamond} \, \frac{\Gamma\{[\diamondsuit A, \Delta]\}}{\Gamma\{\diamondsuit A, [\Delta]\}} \qquad \mathsf{5}^{\diamond} \, \frac{\Gamma\{\emptyset\}\{\diamondsuit A\}}{\Gamma\{\diamondsuit A\}\{\emptyset\}}$$

Polarized formulas:
$$\begin{array}{ccc} P & ::= & a \mid \downarrow N \mid \diamond P \mid P \stackrel{\uparrow}{\wedge} P \mid P \stackrel{\downarrow}{\vee} P \\ N & ::= & \bar{a} \mid \uparrow P \mid \Box N \mid N \bar{\vee} N \mid N \bar{\wedge} N \end{array}$$

Focused system KNF:

$$\begin{split} & \operatorname{dec} \frac{\Gamma\{P, \langle P \rangle\}}{\Gamma\{P\}} & \quad \Box \frac{\Gamma\{[A]\}}{\Gamma\{\Box A\}} & \quad \bar{\vee} \frac{\Gamma\{A, B\}}{\Gamma\{A \bar{\vee} B\}} & \quad \bar{\wedge} \frac{\Gamma\{A\}}{\Gamma\{A \bar{\wedge} B\}} & \operatorname{sto} \frac{\Gamma\{P\}}{\Gamma\{\uparrow P\}} \\ & \operatorname{id} \frac{1}{\Gamma\{\bar{a}, \langle a \rangle\}} & \quad \mathsf{k}^{\circ} \frac{\Gamma\{[\langle A \rangle, \Delta]\}}{\Gamma\{\langle \diamond A \rangle, [\Delta]\}} & \quad \bar{\wedge} \frac{\Gamma\{\langle A \rangle\}}{\Gamma\{\langle A \bar{\wedge} B \rangle\}} & \quad \bar{\vee}_{i} \frac{\Gamma\{\langle A_{i} \rangle\}}{\Gamma\{\langle A_{1} \bar{\vee} A_{2} \rangle\}} & \operatorname{rel} \frac{\Gamma\{N\}}{\Gamma\{\langle \downarrow N \rangle\}} \end{split}$$

Modal rules:

$$\mathsf{d}^{\diamond} \, \frac{\Gamma\{[A]\}}{\Gamma\{\diamondsuit A\}} \qquad \mathsf{t}^{\diamond} \, \frac{\Gamma\{A\}}{\Gamma\{\diamondsuit A\}} \qquad \mathsf{b}^{\diamond} \, \frac{\Gamma\{[\Delta], A\}}{\Gamma\{[\Delta, \diamondsuit A]\}} \qquad \mathsf{4}^{\diamond} \, \frac{\Gamma\{[\diamondsuit A, \Delta]\}}{\Gamma\{\diamondsuit A, [\Delta]\}} \qquad \mathsf{5}^{\diamond} \, \frac{\Gamma\{\emptyset\}\{\diamondsuit A\}}{\Gamma\{\diamondsuit A\}\{\emptyset\}}$$

Polarized formulas:
$$\begin{array}{ccc} P & ::= & a \mid \downarrow N \mid \diamond P \mid P \stackrel{\uparrow}{\wedge} P \mid P \stackrel{\downarrow}{\vee} P \\ N & ::= & \bar{a} \mid \uparrow P \mid \Box N \mid N \bar{\vee} N \mid N \bar{\wedge} N \end{array}$$

Focused system KNF:

$$\begin{split} & \operatorname{dec} \frac{\Gamma\{P, \langle P \rangle\}}{\Gamma\{P\}} & \quad \Box \frac{\Gamma\{[A]\}}{\Gamma\{\Box A\}} & \quad \bar{\vee} \frac{\Gamma\{A, B\}}{\Gamma\{A \bar{\vee} B\}} & \quad \bar{\wedge} \frac{\Gamma\{A\}}{\Gamma\{A \bar{\wedge} B\}} & \operatorname{sto} \frac{\Gamma\{P\}}{\Gamma\{\uparrow P\}} \\ & \operatorname{id} \frac{1}{\Gamma\{\bar{a}, \langle a \rangle\}} & \quad \mathsf{k}^{\diamond} \frac{\Gamma\{[\langle A \rangle, \Delta]\}}{\Gamma\{\langle \diamond A \rangle, [\Delta]\}} & \quad \bar{\wedge} \frac{\Gamma\{\langle A \rangle\}}{\Gamma\{\langle A \bar{\wedge} B \rangle\}} & \quad \bar{\vee}_{i} \frac{\Gamma\{\langle A_{i} \rangle\}}{\Gamma\{\langle A_{1} \bar{\vee} A_{2} \rangle\}} & \operatorname{rel} \frac{\Gamma\{N\}}{\Gamma\{\langle \downarrow N \rangle\}} \end{split}$$

Focused modal rules:

$$d^{\circ} \; \frac{\Gamma\{[\langle A \rangle]\}}{\Gamma\{\langle \diamond A \rangle\}} \qquad t^{\circ} \; \frac{\Gamma\{\langle A \rangle\}}{\Gamma\{\langle \diamond A \rangle\}} \qquad b^{\circ} \; \frac{\Gamma\{[\Delta], \langle A \rangle\}}{\Gamma\{[\Delta, \langle \diamond A \rangle]\}} \qquad 4^{\circ} \; \frac{\Gamma\{[\langle \diamond A \rangle, \Delta]\}}{\Gamma\{\langle \diamond A \rangle, [\Delta]\}} \qquad 5^{\circ} \; \frac{\Gamma\{\emptyset\}\{\langle \diamond A \rangle\}}{\Gamma\{\langle \diamond A \rangle\}\{\emptyset\}}$$

Let $X \subseteq \{d, t, b, 4, 5\}$. If A is provable in $KN + X^{\diamond}$, then any pol(A) is provable in $KNF + X^{\diamond}$.

```
Let X \subseteq \{d, t, b, 4, 5\}. If A is provable in KN + X^{\diamond}, then any pol(A) is provable in KNF + X^{\diamond}.
```

Via cut-elimination:

Let $X \subseteq \{d, t, b, 4, 5\}$. If A is provable in $KN + X^{\diamond}$, then any pol(A) is provable in $KNF + X^{\diamond}$.

Via cut-elimination:

$$\operatorname{cut} \frac{\Gamma\{P\} \quad \Gamma\{\bar{P}\}}{\Gamma\{\emptyset\}}$$

$$\mbox{simulation} \label{eq:KN} \mbox{\ensuremath{\longleftarrow}} \mbox{\ensuremath{\mathsf{KNF}}} + \mbox{\ensuremath{\mathsf{cut}}}$$

Let $X \subseteq \{d, t, b, 4, 5\}$. If A is provable in $KN + X^{\diamond}$, then any pol(A) is provable in $KNF + X^{\diamond}$.

Via cut-elimination:

$$\operatorname{cut} \frac{\Gamma\{P\} \quad \Gamma\{\bar{P}\}}{\Gamma\{\emptyset\}}$$

$$\label{eq:KN-model} \begin{array}{c} \text{cut-elimination} \\ \text{KN} & \longrightarrow \text{KNF} + \text{cut} & \longrightarrow \text{KNF} \end{array}$$

Let $X \subseteq \{d, t, b, 4, 5\}$. If A is provable in $KN + X^{\diamond}$, then any pol(A) is provable in $KNF + X^{\diamond}$.

Via cut-elimination:

$$\operatorname{cut} \frac{\Gamma\{P\} \quad \Gamma\{\bar{P}\}}{\Gamma\{\emptyset\}}$$

Problem: weakening on negative formula!

$$\operatorname{cut} \frac{\Gamma\{N\}\{P\}}{\Gamma\{\langle\downarrow N\rangle\}\{P\}} \frac{\Gamma\{\emptyset\}\{\bar{P}\}}{\Gamma\{\langle\downarrow N\rangle\}\{\emptyset\}} \qquad \qquad \operatorname{cut} \frac{\Gamma\{N\}\{P\}}{\Gamma\{N\}\{P\}} \frac{\operatorname{weak}}{\operatorname{rel}} \frac{\Gamma\{\emptyset\}\{\bar{P}\}}{\Gamma\{N\}\{\emptyset\}} \\ \operatorname{rel} \frac{\Gamma\{N\}\{\emptyset\}}{\Gamma\{\langle\downarrow N\rangle\}\{\emptyset\}}$$

Let $X \subseteq \{d, t, b, 4, 5\}$. If A is provable in $KN + X^{\diamond}$, then any pol(A) is provable in $KNF + X^{\diamond}$.

Via cut-elimination:

$$\operatorname{cut} \frac{\Gamma\{P\} \quad \Gamma\{\bar{P}\}}{\Gamma\{\emptyset\}}$$

Problem: weakening on negative formula!

→ Weak focusing:

$$\mathsf{KN} \xrightarrow{} \mathsf{KNwF} + \mathsf{cut}$$
simulation

Let $X \subseteq \{d, t, b, 4, 5\}$. If A is provable in $KN + X^{\diamond}$, then any pol(A) is provable in $KNF + X^{\diamond}$.

Via cut-elimination:

$$\operatorname{cut} \frac{\Gamma\{P\} \quad \Gamma\{\bar{P}\}}{\Gamma\{\emptyset\}}$$

Problem: weakening on negative formula!

→ Weak focusing:

$$KN \longrightarrow KNwF + cut \longrightarrow KNwF$$

$$cut-elimination$$

Let $X \subseteq \{d, t, b, 4, 5\}$. If A is provable in $KN + X^{\diamond}$, then any pol(A) is provable in $KNF + X^{\diamond}$.

Via cut-elimination:

$$\operatorname{cut} \frac{\Gamma\{P\} - \Gamma\{\bar{P}\}}{\Gamma\{\emptyset\}}$$

Problem: weakening on negative formula!

→ Weak focusing:

$$\mathsf{KN} \xrightarrow{} \mathsf{KNwF} + \mathsf{cut} \xrightarrow{} \mathsf{KNwF} \xrightarrow{} \mathsf{KNF}$$
 rules permutation

Let $X \subseteq \{d, t, b, 4, 5\}$. If A is provable in $KN + X^{\diamond}$, then any pol(A) is provable in $KNF + X^{\diamond}$.

Via cut-elimination:

$$\operatorname{cut} \frac{\Gamma\{P\} \quad \Gamma\{\bar{P}\}}{\Gamma\{\emptyset\}}$$

Problem: weakening on negative formula!

→ Weak focusing:

$$KN \longrightarrow KNwF + cut \longrightarrow KNwF \longrightarrow KNF$$
rules permutation

→ Synthetic connectives:

$$KN \longrightarrow KNF + cut \longrightarrow KNF$$

Let $X \subseteq \{d, t, b, 4, 5\}$. If A is provable in $KN + X^{\diamond}$, then any pol(A) is provable in $KNF + X^{\diamond}$.

Via cut-elimination:

$$\operatorname{cut} \frac{\Gamma\{P\} \quad \Gamma\{\bar{P}\}}{\Gamma\{\emptyset\}}$$

Problem: weakening on negative formula!

→ Weak focusing:

$$KN \longrightarrow KNwF + cut \longrightarrow KNwF \longrightarrow KNF$$
rules permutation

→ Synthetic connectives:

$$KN \longrightarrow KNS + cut \longrightarrow KNS$$

Focused system KNF:

$$\begin{split} & \operatorname{dec} \frac{\Gamma\{P, \langle P \rangle\}}{\Gamma\{P\}} & \quad \Box \frac{\Gamma\{[A]\}}{\Gamma\{\Box A\}} & \quad \bar{\vee} \frac{\Gamma\{A, B\}}{\Gamma\{A \, \bar{\vee} \, B\}} & \bar{\wedge} \frac{\Gamma\{A\}}{\Gamma\{A \, \bar{\wedge} \, B\}} & \operatorname{sto} \frac{\Gamma\{P\}}{\Gamma\{\uparrow P\}} \\ & \operatorname{id} \frac{1}{\Gamma\{\bar{a}, \langle a \rangle\}} & \quad \mathsf{k}^{\diamond} \frac{\Gamma\{[\langle A \rangle, \Delta]\}}{\Gamma\{\langle \diamond A \rangle, [\Delta]\}} & \quad \bar{\wedge} \frac{\Gamma\{\langle A \rangle\}}{\Gamma\{\langle A \, \bar{\wedge} \, B \rangle\}} & \quad \bar{\vee}_{i} \frac{\Gamma\{\langle A_{i} \rangle\}}{\Gamma\{\langle A_{1} \, \bar{\vee} \, A_{2} \rangle\}} & \operatorname{rel} \frac{\Gamma\{N\}}{\Gamma\{\langle \downarrow N \rangle\}} \end{split}$$

Focused modal rules:

$$d^{\circ} \frac{\Gamma\{[\langle A \rangle]\}}{\Gamma\{\langle \diamond A \rangle\}} \qquad t^{\circ} \frac{\Gamma\{\langle A \rangle\}}{\Gamma\{\langle \diamond A \rangle\}} \qquad b^{\circ} \frac{\Gamma\{[\Delta], \langle A \rangle\}}{\Gamma\{[\Delta, \langle \diamond A \rangle]\}} \qquad 4^{\circ} \frac{\Gamma\{[\langle \diamond A \rangle, \Delta]\}}{\Gamma\{\langle \diamond A \rangle, [\Delta]\}} \qquad 5^{\circ} \frac{\Gamma\{\emptyset\}\{\langle \diamond A \rangle\}}{\Gamma\{\langle \diamond A \rangle\}\{\emptyset\}}$$

The synthetic nested system

Focused system KNF:

$$\begin{split} & \operatorname{dec} \frac{\Gamma\{P, \langle P \rangle\}}{\Gamma\{P\}} & \quad \Box \frac{\Gamma\{[A]\}}{\Gamma\{\Box A\}} & \quad \bar{\vee} \frac{\Gamma\{A, B\}}{\Gamma\{A \bar{\vee} B\}} & \bar{\wedge} \frac{\Gamma\{A\}}{\Gamma\{A \bar{\wedge} B\}} & \operatorname{sto} \frac{\Gamma\{P\}}{\Gamma\{\uparrow P\}} \\ & \operatorname{id} \frac{1}{\Gamma\{\bar{\partial}, \langle a \rangle\}} & \quad \mathsf{k}^{\diamond} \frac{\Gamma\{[\langle A \rangle, \Delta]\}}{\Gamma\{\langle \diamond A \rangle, [\Delta]\}} & \quad \bar{\wedge} \frac{\Gamma\{\langle A \rangle\}}{\Gamma\{\langle A \hat{\wedge} B \rangle\}} & \quad \bar{\vee}_{i} \frac{\Gamma\{\langle A_{i} \rangle\}}{\Gamma\{\langle A_{1} \bar{\vee} A_{2} \rangle\}} & \operatorname{rel} \frac{\Gamma\{N\}}{\Gamma\{\langle \downarrow N \rangle\}} \end{split}$$

Focused modal rules:

$$d^{\circ} \frac{\Gamma\{[\langle A \rangle]\}}{\Gamma\{\langle \diamond A \rangle\}} \qquad t^{\circ} \frac{\Gamma\{\langle A \rangle\}}{\Gamma\{\langle \diamond A \rangle\}} \qquad b^{\circ} \frac{\Gamma\{[\Delta], \langle A \rangle\}}{\Gamma\{[\Delta, \langle \diamond A \rangle]\}} \qquad 4^{\circ} \frac{\Gamma\{[\langle \diamond A \rangle, \Delta]\}}{\Gamma\{\langle \diamond A \rangle, [\Delta]\}} \qquad 5^{\circ} \frac{\Gamma\{\emptyset\}\{\langle \diamond A \rangle\}}{\Gamma\{\langle \diamond A \rangle\}\{\emptyset\}}$$

The synthetic nested system

Synthetic system KNS:

$$\det \frac{\Gamma\{P, \langle P \rangle\}}{\Gamma\{P\}} \qquad \qquad \operatorname{neg} \frac{\left\{\Gamma\{\Delta\}\right\}_{\Delta \preccurlyeq N}}{\Gamma\{N\}}$$

$$\operatorname{id} \frac{\Gamma\{\bar{\sigma}, \langle a \rangle\}}{\Gamma\{\langle a \rangle, \langle a \rangle\}} \qquad \overset{\mathsf{k}^{\diamond}}{\kappa} \frac{\Gamma\{[\langle A \rangle, \Delta]\}}{\Gamma\{\langle a \rangle, \langle a \rangle\}} \qquad \overset{\mathsf{h}}{\wedge} \frac{\Gamma\{\langle A \rangle\}}{\Gamma\{\langle A \wedge B \rangle\}} \qquad \overset{\mathsf{v}_{i}}{\vee_{i}} \frac{\Gamma\{\langle A_{i} \rangle\}}{\Gamma\{\langle A_{1} \vee A_{2} \rangle\}} \qquad \operatorname{rel} \frac{\Gamma\{N\}}{\Gamma\{\langle A \rangle N\}}$$

Focused modal rules:

$$d^{\circ} \; \frac{\Gamma\{[\langle A \rangle]\}}{\Gamma\{\langle \diamond A \rangle\}} \qquad t^{\circ} \; \frac{\Gamma\{\langle A \rangle\}}{\Gamma\{\langle \diamond A \rangle\}} \qquad b^{\circ} \; \frac{\Gamma\{[\Delta], \langle A \rangle\}}{\Gamma\{[\Delta, \langle \diamond A \rangle]\}} \qquad 4^{\circ} \; \frac{\Gamma\{[\langle \diamond A \rangle, \Delta]\}}{\Gamma\{\langle \diamond A \rangle, [\Delta]\}} \qquad 5^{\circ} \; \frac{\Gamma\{\emptyset\}\{\langle \diamond A \rangle\}}{\Gamma\{\langle \diamond A \rangle\}\{\emptyset\}}$$

Synthetic system KNS:

$$\begin{split} & \operatorname{pos} \frac{\Delta \preccurlyeq \bar{P} \quad \Gamma\{P, \langle \Delta \rangle\}}{\Gamma\{P\}} \qquad & \operatorname{neg} \frac{\left\{\Gamma\{\Delta\}\right\}_{\Delta \preccurlyeq N}}{\Gamma\{N\}} \\ & \operatorname{id} \frac{1}{\Gamma\{\bar{\sigma}, \langle a \rangle\}} \qquad & \operatorname{k}^{\diamond} \frac{\Gamma\{[\langle A \rangle, \Delta]\}}{\Gamma\{\langle \triangle A \rangle, [\Delta]\}} \qquad & \operatorname{split} \frac{\Gamma\{\langle \Delta_1 \rangle\} \quad \Gamma\{\langle \Delta_2 \rangle\}}{\Gamma\{\langle \Delta_1, \Delta_2 \rangle\}} \qquad & \operatorname{rel} \frac{\Gamma\{N\}}{\Gamma\{\langle \downarrow N \rangle\}} \end{split}$$

Synthetic substructure matching:

$$\preccurlyeq\bar{\vee}\frac{\Gamma \preccurlyeq M\quad \Delta \preccurlyeq N}{\Gamma,\Delta \preccurlyeq M\,\bar{\vee}\,N} \quad \preccurlyeq\bar{\wedge}_i\frac{\Gamma \preccurlyeq N_i}{\Gamma \preccurlyeq N_1\,\bar{\wedge}\,N_2} \quad \preccurlyeq\Box\frac{\Gamma \preccurlyeq N}{[\Gamma] \preccurlyeq\Box N} \quad \preccurlyeq\uparrow\frac{P \preccurlyeq\uparrow P}{P \preccurlyeq\uparrow P} \quad \preccurlyeq \mathrm{id}\,\frac{\overline{a} \preccurlyeq \overline{a}}{\overline{a} \preccurlyeq \overline{a}}$$

Synthetic system KNS:

$$\begin{split} & \operatorname{pos} \frac{\Delta \preccurlyeq \bar{P} \quad \Gamma\{P, \langle \Delta \rangle\}}{\Gamma\{P\}} \qquad & \operatorname{neg} \frac{\left\{\Gamma\{\Delta\}\right\}_{\Delta \preccurlyeq N}}{\Gamma\{N\}} \\ & \operatorname{id} \frac{}{\Gamma\{\bar{\partial}, \langle a \rangle\}} \qquad & \mathsf{k}^{\diamond} \frac{\Gamma\{[\langle A \rangle, \Delta]\}}{\Gamma\{\langle \Delta A \rangle, [\Delta]\}} \qquad & \operatorname{split} \frac{\Gamma\{\langle \Delta_1 \rangle\} \quad \Gamma\{\langle \Delta_2 \rangle\}}{\Gamma\{\langle \Delta_1, \Delta_2 \rangle\}} \qquad & \operatorname{rel} \frac{\Gamma\{N\}}{\Gamma\{\langle \downarrow N \rangle\}} \end{split}$$

$$d^{\circ} \frac{\Gamma\{[\langle A \rangle]\}}{\Gamma\{\langle \diamond A \rangle\}} \qquad t^{\circ} \frac{\Gamma\{\langle A \rangle\}}{\Gamma\{\langle \diamond A \rangle\}} \qquad b^{\circ} \frac{\Gamma\{[\Delta], \langle A \rangle\}}{\Gamma\{[\Delta, \langle \diamond A \rangle]\}} \qquad 4^{\circ} \frac{\Gamma\{[\langle \diamond A \rangle, \Delta]\}}{\Gamma\{\langle \diamond A \rangle, [\Delta]\}} \qquad 5^{\circ} \frac{\Gamma\{\emptyset\}\{\langle \diamond A \rangle\}}{\Gamma\{\langle \diamond A \rangle\}\{\emptyset\}}$$

Synthetic substructure matching:

$$\preccurlyeq\bar{\vee}\frac{\Gamma \preccurlyeq M\quad \Delta \preccurlyeq N}{\Gamma,\Delta \preccurlyeq M\;\bar{\vee}\;N} \quad \preccurlyeq\bar{\wedge}_i\frac{\Gamma \preccurlyeq N_i}{\Gamma \preccurlyeq N_1\;\bar{\wedge}\;N_2} \quad \preccurlyeq\Box\frac{\Gamma \preccurlyeq N}{[\Gamma] \preccurlyeq\Box N} \quad \preccurlyeq\uparrow\frac{P \preccurlyeq\uparrow P}{P \preccurlyeq\uparrow P} \quad \preccurlyeq \mathrm{id}\;\frac{\overline{a} \preccurlyeq \overline{a}}{\overline{a} \preccurlyeq \overline{a}}$$

Synthetic system KNS:

$$\operatorname{pos} \frac{\Delta \preccurlyeq \bar{P} \quad \Gamma\{P, \langle \Delta \rangle\}}{\Gamma\{P\}} \qquad \operatorname{neg} \frac{\left\{\Gamma\{\Delta\}\right\}_{\Delta \preccurlyeq N}}{\Gamma\{N\}}$$

$$\operatorname{id} \frac{1}{\Gamma\{\bar{a}, \langle \bar{a} \rangle\}} \qquad \operatorname{k}^{\diamond} \frac{\Gamma\{[\langle A \rangle, \Delta]\}}{\Gamma\{\langle \Delta A \rangle, [\Delta]\}} \qquad \operatorname{split} \frac{\Gamma\{\langle \Delta_1 \rangle\} \quad \Gamma\{\langle \Delta_2 \rangle\}}{\Gamma\{\langle \Delta_1, \Delta_2 \rangle\}} \qquad \operatorname{rel} \frac{\Gamma\{\bar{P}\}}{\Gamma\{\langle P \rangle\}}$$

$$\mathsf{d}^{\circ}\,\frac{\Gamma\{[\langle A\rangle]\}}{\Gamma\{\langle \diamond A\rangle\}} \qquad \mathsf{t}^{\circ}\,\frac{\Gamma\{\langle A\rangle\}}{\Gamma\{\langle \diamond A\rangle\}} \qquad \mathsf{b}^{\circ}\,\frac{\Gamma\{[\Delta],\langle A\rangle\}}{\Gamma\{[\Delta,\langle \diamond A\rangle]\}} \qquad \mathsf{4}^{\circ}\,\frac{\Gamma\{[\langle \diamond A\rangle,\Delta]\}}{\Gamma\{\langle \diamond A\rangle,[\Delta]\}} \qquad \mathsf{5}^{\circ}\,\frac{\Gamma\{\emptyset\}\{\langle \diamond A\rangle\}}{\Gamma\{\langle \diamond A\rangle\}\{\emptyset\}}$$

Synthetic substructure matching:

$$\preccurlyeq\bar{\vee}\frac{\Gamma \preccurlyeq M\quad \Delta \preccurlyeq N}{\Gamma,\Delta \preccurlyeq M\;\bar{\vee}\;N} \quad \preccurlyeq\bar{\wedge}_i\frac{\Gamma \preccurlyeq N_i}{\Gamma \preccurlyeq N_1\;\bar{\wedge}\;N_2} \quad \preccurlyeq\Box\frac{\Gamma \preccurlyeq N}{[\Gamma] \preccurlyeq\Box N} \quad \preccurlyeq\uparrow\frac{P \preccurlyeq\uparrow P}{P \preccurlyeq\uparrow P} \quad \preccurlyeq \mathrm{id}\;\frac{\overline{a} \preccurlyeq \overline{a}}{\overline{a} \preccurlyeq \overline{a}}$$

Synthetic system KNS:

$$\operatorname{pos} \frac{\Delta \preccurlyeq \bar{P} \quad \Gamma\{P, \langle \Delta \rangle\}}{\Gamma\{P\}} \qquad \operatorname{neg} \frac{\left\{\Gamma\{\Delta\}\right\}_{\Delta \preccurlyeq N}}{\Gamma\{N\}}$$

$$\operatorname{id} \frac{1}{\Gamma\{\bar{s}, \langle \bar{s} \rangle\}} \qquad \operatorname{k}^{\Diamond} \frac{\Gamma\{[\langle \Delta \rangle, \Omega]\}}{\Gamma\{\langle [\Delta] \rangle, [\Omega]\}} \qquad \operatorname{split} \frac{\Gamma\{\langle \Delta_1 \rangle\} \quad \Gamma\{\langle \Delta_2 \rangle\}}{\Gamma\{\langle \Delta_1, \Delta_2 \rangle\}} \qquad \operatorname{rel} \frac{\Gamma\{\bar{P}\}}{\Gamma\{\langle P \rangle\}}$$

$$\mathsf{d}^{\circ}\,\frac{\Gamma\{[\langle A\rangle]\}}{\Gamma\{\langle \diamond A\rangle\}} \qquad \mathsf{t}^{\circ}\,\frac{\Gamma\{\langle A\rangle\}}{\Gamma\{\langle \diamond A\rangle\}} \qquad \mathsf{b}^{\circ}\,\frac{\Gamma\{[\Delta],\langle A\rangle\}}{\Gamma\{[\Delta,\langle \diamond A\rangle]\}} \qquad \mathsf{4}^{\circ}\,\frac{\Gamma\{[\langle \diamond A\rangle,\Delta]\}}{\Gamma\{\langle \diamond A\rangle,[\Delta]\}} \qquad \mathsf{5}^{\circ}\,\frac{\Gamma\{\emptyset\}\{\langle \diamond A\rangle\}}{\Gamma\{\langle \diamond A\rangle\}\{\emptyset\}}$$

Synthetic substructure matching:

$$\preccurlyeq\bar{\vee}\frac{\Gamma \preccurlyeq M\quad \Delta \preccurlyeq N}{\Gamma,\Delta \preccurlyeq M\;\bar{\vee}\;N} \quad \preccurlyeq\bar{\wedge}_{i}\frac{\Gamma \preccurlyeq N_{i}}{\Gamma \preccurlyeq N_{1}\;\bar{\wedge}\;N_{2}} \quad \preccurlyeq\Box\frac{\Gamma \preccurlyeq N}{[\Gamma] \preccurlyeq\Box N} \quad \preccurlyeq\uparrow\frac{P \preccurlyeq\uparrow P}{P \preccurlyeq\uparrow P} \quad \preccurlyeq \mathrm{id}\;\frac{\overline{a} \preccurlyeq \overline{a}}{\overline{a} \preccurlyeq \overline{a}}$$

Synthetic system KNS:

$$\begin{split} & \operatorname{pos} \frac{\Delta \preccurlyeq \bar{P} \quad \Gamma\{P, \langle \Delta \rangle\}}{\Gamma\{P\}} & \operatorname{neg} \frac{\left\{\Gamma\{\Delta\}\right\}_{\Delta \preccurlyeq N}}{\Gamma\{N\}} \\ & \operatorname{id} \frac{1}{\Gamma\{\bar{s}, \langle \bar{s} \rangle\}} & \operatorname{k}^{\lozenge} \frac{\Gamma\{\left[\langle \Delta \rangle, \Omega\right]\}}{\Gamma\{\langle [\Delta] \rangle, [\Omega]\}} & \operatorname{split} \frac{\Gamma\{\langle \Delta_1 \rangle\} \quad \Gamma\{\langle \Delta_2 \rangle\}}{\Gamma\{\langle \Delta_1, \Delta_2 \rangle\}} & \operatorname{rel} \frac{\Gamma\{\bar{P}\}}{\Gamma\{\langle P \rangle\}} \end{split}$$

Synthetic modal rules:

$$d^{\lozenge} \frac{\Gamma\{[\langle \Delta \rangle]\}}{\Gamma\{\langle [\Delta] \rangle\}} \qquad t^{\lozenge} \frac{\Gamma\{\langle \Delta \rangle\}}{\Gamma\{\langle [\Delta] \rangle\}} \qquad b^{\lozenge} \frac{\Gamma\{[\Omega], \langle \Delta \rangle\}}{\Gamma\{[\Omega, \langle [\Delta] \rangle]\}} \qquad 4^{\lozenge} \frac{\Gamma\{[\Omega, \langle [\Delta] \rangle]\}}{\Gamma\{[\Omega], \langle [\Delta] \rangle\}} \qquad 5^{\lozenge} \frac{\Gamma\{\langle [\Delta] \rangle\}\{\emptyset\}}{\Gamma\{\emptyset\}\{\langle [\Delta] \rangle\}}$$

In action...

Synthetic connectives:
$$neg \frac{\left\{ \Gamma\{\Delta\} \right\}_{\Delta \preccurlyeq N}}{\Gamma\{N\}}$$
 and $pos \frac{\Delta \preccurlyeq \bar{P} - \Gamma\{P, \langle \Delta \rangle\}}{\Gamma\{P\}}$

Structural modal rules : distinct modal phase and action on substructures

$$\begin{array}{c} \operatorname{id} \\ \mathsf{k}^{\lozenge} \\ \underset{\mathsf{pos}}{\overset{\text{id}}{\underbrace{\Diamond(a\stackrel{\downarrow}{\vee}b), \left[\langle\bar{a}\rangle, \bar{a}\right]}}} \\ \underset{\mathsf{neg}}{\underbrace{\Diamond(a\stackrel{\downarrow}{\vee}b), \left\langle\bar{a}\rangle, \left[\bar{a}\right]}} \\ \underset{\mathsf{Q}(a\stackrel{\downarrow}{\vee}b), \left[\bar{a}\right]}{\underbrace{\Diamond(a\stackrel{\downarrow}{\vee}b), \left[\bar{b}\right]}} \\ \underset{\mathsf{Q}(a\stackrel{\downarrow}{\vee}b), \left[\bar{b}\right]}{\underbrace{\Diamond(a\stackrel{\downarrow}{\vee}b), \left[\bar{b}\right]}} \end{array}$$

9 / 11

Synthetic permutation

Synthetic permutation

Synthetic permutation

$$KN \longrightarrow KNS + cut \longrightarrow KNS$$

Conclusion and perspectives

- Focused and synthetic variants of nested systems for the S5-cube
- Internal proof of focusing via cut-elimination

Conclusion and perspectives

- Focused and synthetic variants of nested systems for the S5-cube
- Internal proof of focusing via cut-elimination

- Intuitionistic modal logics : IKN → IKNF?
- Other proof formalisms: hypersequents...
- Exponentials in linear logic

Cut-elimination

Theorem Let $X \subseteq \{d,t,b,4,5\}$ be 45-closed. If a sequent Γ is provable in KNF + X^{\diamond} + Cut, then it is also provable in KNF + X^{\diamond} .

$$\mathsf{Cut} = \left\{ \mathsf{cut}_1 \, \frac{\Gamma\{P\} \quad \Gamma\{\bar{P}\}}{\Gamma\{\emptyset\}}; \mathsf{cut}_2 \, \frac{\Gamma\{\langle P \rangle\} \quad \Gamma\{\bar{P}\}}{\Gamma\{\emptyset\}}; \mathsf{cut}_3 \, \frac{\Gamma\{\langle Q \rangle\}\{P\} \quad \Gamma\{\emptyset\}\{\bar{P}\}}{\Gamma\{\langle Q \rangle\}\{\emptyset\}} \right\}$$

$$\mathit{clo}(X) = \left\{ \begin{array}{l} X \cup \{4\} & \text{if } \{b,5\} \subseteq X \text{ or if } \{t,5\} \subseteq X \\ X \cup \{5\} & \text{if } \{b,4\} \subseteq X \\ X & \text{otherwise} \end{array} \right.$$

Cut-elimination proof

KN

$$\begin{array}{c} \operatorname{id} \\ \Diamond \\ [\overline{a}, a], [\] \\ [\overline{a}], \Diamond a, [\] \\ [\overline{a}], \Diamond a, [\] \\ [\overline{a}], \Diamond a, [\] \\ [\overline{a}], [\Diamond a] \\ [\overline{a}], [\Diamond a] \\ [\overline{a}], [\Diamond a] \end{array}$$

 $\Box \bar{a}, \Box \Diamond a$

$$\begin{array}{c} \operatorname{id} \\ \diamond \\ \diamond \\ | \overline{[a,\langle \alpha \rangle], [\diamond a]} \\ | \overline{[a],\langle \diamond a \rangle, [\diamond a]} \\ | \overline{a},\langle \diamond a \rangle, [\diamond a] \\ | \overline{a},\langle \diamond a \rangle, [\diamond a] \\ | \overline{a},[\diamond a,\langle \diamond a) \\ | \overline{a},[\diamond a] \\ | \overline{a},[\diamond a] \\ | \overline{a},[\uparrow \diamond a] \\ | \overline{a},[\downarrow \diamond a] \\ | \overline{$$

rules permutation

In action...

- neg and pos : synthetic connectives
- structural modal rules : modal phase / action on substructures

$$\begin{array}{c} \operatorname{id}^{\circ} & \overset{\circ}{\Diamond} \downarrow(\bar{a} \,\bar{\wedge} \, \uparrow \, b), \diamondsuit a, [\langle \bar{a} \rangle, \bar{a}, \bar{b}]} \\ \operatorname{pos}^{\circ} & \overset{\circ}{\Diamond} \downarrow(\bar{a} \,\bar{\wedge} \, \uparrow \, b), \diamondsuit a, \langle [\bar{a}] \rangle, [\bar{a}, \bar{b}]} \\ \operatorname{neg}^{\circ} & \overset{\circ}{\Diamond} \downarrow(\bar{a} \,\bar{\wedge} \, \uparrow \, b), \diamondsuit a, [\bar{a}, \bar{b}]} \\ \operatorname{rel}^{\circ} & \overset{\circ}{\Diamond} \downarrow(\bar{a} \,\bar{\wedge} \, \uparrow \, b), \diamondsuit a, [\bar{a}, \bar{b}]} \\ \operatorname{k}^{\circ} & \overset{\circ}{\Diamond} \downarrow(\bar{a} \,\bar{\wedge} \, \uparrow \, b), \diamondsuit a, [\bar{a} \,\bar{\wedge} \, \uparrow \, b, \bar{b}]} \\ \operatorname{pos}^{\circ} & \overset{\circ}{\Diamond} \downarrow(\bar{a} \,\bar{\wedge} \, \uparrow \, b), \diamondsuit a, [(\bar{a} \, \, \bar{\vee} \, \downarrow \, \bar{b}), \bar{b}]} \\ \overset{\circ}{\Diamond} \downarrow(\bar{a} \,\bar{\wedge} \, \uparrow \, b), \langle \bar{a}, [(\bar{a} \, \, \bar{\vee} \, \downarrow \, \bar{b}), \bar{b}]} \\ \overset{\circ}{\Diamond} \downarrow(\bar{a} \,\bar{\wedge} \, \uparrow \, b), \langle \bar{a}, [\bar{a} \, \bar{\vee} \, \downarrow \, \bar{b}], \Diamond a, [\bar{b}]} \\ \overset{\circ}{\Diamond} \downarrow(\bar{a} \,\bar{\wedge} \, \uparrow \, b), \langle \bar{a}, [\bar{b}] \rangle, \Diamond a, [\bar{b}]} \end{array}$$

$$\label{eq:split_objective} \begin{split} & \underset{\mathsf{split}^\circ}{\mathsf{id}^\circ} & \frac{}{\diamond(a\,\bar{\lambda}\,b), \diamond\downarrow\bar{a}, [\langle\bar{a}\rangle,\bar{a},\bar{b}]} \overset{\mathsf{id}^\circ}{\diamond(a\,\bar{\lambda}\,b), \diamond\downarrow\bar{a}, [\langle\bar{b}\rangle,\bar{a},\bar{b}]} \\ & \frac{\mathsf{k}^\circ}{\diamond(a\,\bar{\lambda}\,b), \diamond\downarrow\bar{a}, [(\bar{a},\bar{b}),\bar{a},\bar{b}]} \overset{\diamond(a\,\bar{\lambda}\,b), \diamond\downarrow\bar{a}, [\bar{a},\bar{b}]}{\diamond(a\,\bar{\lambda}\,b), \diamond\downarrow\bar{a}, [\bar{a},\bar{b}]} \\ & \underset{\mathsf{pos}^\circ}{\mathsf{rel}^\circ} \overset{\diamond}{\underset{\diamond(a\,\bar{\lambda}\,b), \diamond\downarrow\bar{a}, [(\bar{a}),\bar{b}]}{\diamond(a\,\bar{\lambda}\,b), \diamond\downarrow\bar{a}, [(\bar{a}),\bar{b}]}} \\ & \underset{\mathsf{pos}^\circ}{\mathsf{pos}^\circ} \overset{\diamond(a\,\bar{\lambda}\,b), \diamond\downarrow\bar{a}, [(\bar{a}),\bar{b}]}{\overset{\diamond(a\,\bar{\lambda}\,b), \diamond\downarrow\bar{a}, [\bar{b}]}{\diamond(a\,\bar{\lambda}\,b), \diamond\downarrow\bar{a}, [\bar{b}]}} \end{split}$$