Course Logistics

EC 339

Marcio Santetti Fall 2023

Motivation

Why is this course important for you?

Being able to make **sense** of (economic) data is one of the most important **skills** you may develop in your Major field.

- Job market (Stata/R/Python are highly valued!)
- Further **academic** studies

When you can estimate with your own fingers (???) and see with your own eyes a **downward-sloping demand curve**, for example

- Empowerment
- A more comprehensive learning

Is this course hard?

What does an Economist always have as a **standard answer**?

• It depends!

Learning Econometrics is quite a **journey**

- But well worth it!
- Will not be exhausted with this course
- Here, a nicer challenge (theory and practice)
- The instructor is here to **help** you

Is this course hard?

- In summary:
 - Take this course seriously
 - Come to class in time and with an open mind
 - Ask questions
 - Do the assignments
 - Exams will reflect what assignments (esp. Problem Sets) have asked you

- About Stata
 - It may take some **time** to feel comfortable with it
 - But after a few weeks, it will become a good friend
 - Feed it well and it will be fine!

Some practical tips

A friend's advice:

- Create a **folder** in your computer for this course.
 - Please.
- We will use **hundreds** of different files throughout the semester.
 - **Organization** is key!
 - Even better: create folders for each week. It will make your life easier.

The nature of Econometrics

Defining Econometrics

Literally interpreted, Econometrics means "economic measurement."

The methodology of Econometrics

The "classical" workflow of an econometrician goes along the following lines:

- 1. Statement of **theory** or hypothesis;
- 2. Specification of the **mathematical model** of the theory;
- 3. Specification of the statistical, or econometric model;
- 4. Obtaining the **data**;
- 5. Estimation of the parameters of the econometric model;
- 6. Hypothesis testing;
- 7. **Forecasting** or prediction;
- 8. Using the model for control or **policy** purposes.

A practical example

Engel's Law

As one's income **rises**, what happens to the **proportion** of income spent on food?

• In other words, how does the **income elasticity** of demand for food behave with respect to food?

Ernst Engel (1821—1896) argued that food expenditures grow less than people's increases in income, in percentage terms.

Mathematical model

$$Foodexp_i = b_0 + b_1 Income_i$$

Econometric model

$$Foodexp_i = eta_0 + eta_1 Income_i + u_i$$

In **elasticity** terms:

$$log(Foodexp_i) = \beta_0 + \beta_1 log(Income_i) + u_i$$

Engel's *hypothesis*: $0 < \beta_1 < 1$

Obtaining data

Koenker and Bassett (1982) collected data on food expenditure and income for 235 Belgian working class households.

Fitting a linear model

Fitting a linear model (cont.)

Parameter estimation

$$log(\widehat{Foodexp_i})^* = 0.55 + 0.86 \log(Income_i)$$

^{*:} the "^" symbol means **estimated**.

Econometric inference

	log(foodexp)		
Predictors	Estimates	CI	р
(Intercept)	0.55	0.27 - 0.82	<0.001
income [log]	0.86	0.82 - 0.90	<0.001
Observations	235		
R ² / R ² adjusted	0.884 / 0.8	383	

The role of the computer

The role of the computer

"Regression analysis, the bread-and-butter tool of econometrics, these days is *unthinkable* without the computer and some access to statistical software"

(Gujarati, 2004, p. 13, emphasis added).

Next time: Simple Linear Regression