1. Sebuah perusahaan menghasilkan dua jenis produk, yaitu A dan B. Kedua jenis produk diproses melalui tiga departemen, dengan kapasitas jam kerja per hari serta waktu proses setiap produk sebagai berikut:

Departemen	Jenis Produk		Kapasitas Kerja (Jam/Hari)
_	A	В	
Dept. Pencampuran	1	2	40
Dept. Penyaringan	2	1	40
Dept. Penyelesaian	1	1	25

Kedua jenis produk memberikan sumbangan keuntungan sebesar Rp 30, untuk produk A dan Rp 20, untuk produk B.

Tentukan berapa keuntungan maksimum serta jumlah masing-masing produk yang harus diproduksi agar keuntungannya maksimum dengan menggunakan:

- a. Metode Grafis
- b. Metode Simpleks.

2. Untuk menghasilkan 1 unit kursi dibutuhkan waktu 4 jam di bagian assembly, 1 jam dibagian finishing serta 3 jam di bagian packing. Sedangkan untuk menghasilkan 1 unit rak buku dibutuhkan waktu masing-masing 2 jam di bagian assembly, finishing dan packing. Waktu yang tersedia di bagian assembly 48 jam, bagian finishing 32 jam, bagian packing 36 jam. Keuntungan per unit meja adalah \$2, kursi \$4 sedangkan rak buku \$3.

Dengan menggunakan metode simpleks, tentukan:

- a. Model Linear Programming
- b. Tentukan berapa meja, kursi, dan rak buku yang harus diproduksi agar laba dimaksimumkan
- c. Laba maksimumnya.

Jawaban:

1a. Metode Grafis

Z (Keuntungan maksimal dalam Rupiah)= 650

Dengan syarat hasil produksi/hari,

 x_1 (Jumlah produk A)= 15

 x_2 (Jumlah produk B)= 10

1b. Metode Simpleks

Cj	Basic Variables	Quantity	30 jumlah_produk_a	20 jumlah_produk_b	0 slack 1	0 slack 2	0 slack 3
Iteration 1							
0	slack 1	40	1	2	1	0	0
0	slack 2	40	2	1	0	1	0
0	slack 3	25	1	1	0	0	1
	zj	0	0	0	0	0	0
	cj-zj		30	20	0	0	0
Iteration 2							
0	slack 1	20	0	1,5	1	-0,5	0
30	jumlah_produk_a	20	1	0,5	0	0,5	0
0	slack 3	5	0	0,5	0	-0,5	1
	zj	600	30	15	0	15	0
	cj-zj		0	5	0	-15	0
Iteration 3							
0	slack 1	5	0	0	1	1	-3
30	jumlah_produk_a	15	1	0	0	1	-1
20	jumlah_produk_b	10	0	1	0	-1	2
	zj	650	30	20	0	10	10
	cj-zj		0	0	0	-10	-10

2a. Model Linear Programming

x =Jumlah meja yang diproduksi

y = Jumlah kursi yang diproduksi

z =Jumlah rak buku yang diproduksi

Max z (Keuntungan maksimal)= 2x + 4y + 3z

Waktu Assembly $3x + 4y + 2z \le 48$

Waktu Finishing $: 2x + y + 2z \le 32$

Waktu Packing $: x + 3y + 2z \le 36$

Non-negatif : $x, y, z \ge 0$

2b. Laba maksimum sebesar Max z = \$54 dapat dihasilkan dengan syarat,

x (Jumlah meja yang diproduksi)= 4

y (Jumlah kursi yang diproduksi)= 4

z (Jumlah rak buku yang diproduksi)= 10

2c. Hasil cetak dari aplikasi POM-QM

	x (Meja)	y (Kursi)	z (Rak buku)		RHS	Dual
Maximize	2	4	3			
Assembly	3	4	2	<=	48	,1
Finishing	2	1	2	<=	32	,3
Packing	1	3	2	<=	36	1,1
Solution->	4	4	10		54	