Лекция. Арифметические операции над функциями.

Сложная функция (композиция)

Что можно получить из стандартных функций, применяя действия над ними?

1. Уменьшение области определения функции (ограничение). У функции y = f(x) с областью определения D можно уменьшить область определения, сохранив правило вычисления ее значений.

Такая операция называется ограничением.

Так, функцию $y = x^2$, заданную на всей числовой оси, можно рассмотреть только для неотрицательных значений аргумента и записать $y = x^2$, $x \ge 0$.

Если $A \subset D$, то ограничение функции f с областью определения D на подмножество A иногда обозначают так: $f|_A$.

Ограничение функции

$$y = x^2$$
$$x \ge 0$$

- Арифметические операции над функциями. Функции с одной и той же областью определения можно складывать, перемножать и делить друг на друга по следующим правилам:
 - (f+g)(x) = f(x) + g(x);
 - $(f \cdot g)(x) = f(x) \cdot g(x);$
 - $\blacksquare \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}.$

При сложении и умножении функций область определения сохраняется. При делении из нее выбрасываются точки, в которых знаменатель обращается в нуль.

Сложение функций

$$y = x + \sin x$$

Взаимно-обратные функции

$$y = \sqrt{x+1} \, y = x^2 - 1;$$

 $x \ge 0$

Арифметические действия над функциями

Примеры

1. $y = \frac{x}{x^2 - 1}$. Эта функция получена из простейших с помощью арифметических операций. Ее область определения — все числа, кроме тех, для которых $x^2 - 1 = 0$. Для краткости область определения можно записать так: $D = \{x \in \mathbf{R} \mid x \neq \pm 1\}$ или проще D: $x \neq \pm 1$.

2. $y = tg x = \frac{\sin x}{\cos x}$. Тангенс получается делением синуса на косинус. Его область определения — все числа, кроме тех, для которых $\cos x = 0$;

$$D = \left\{ x \in \mathbf{R} \mid x \neq \frac{\pi}{2} + k\pi, \ k \in \mathbf{Z} \right\}.$$

3. Если необходимо выполнять арифметические операции над функциями, имеющими разные области определения, то берут общую часть областей определения.

Функцию вида $y = \frac{1}{x} + \sqrt{x+1}$ можно считать суммой функций $y = \frac{1}{x}$ и $y = \sqrt{x+1}$. Общей областью определения будет множество $D = \{x \neq 0, x \geq -1, k \in \mathbf{Z}\}$.

Композиция — это последовательное применение двух или нескольких функций.

Композиция функций f и g часто обозначается $f \circ g$. Она осуществляется по следующему правилу:

$$(f \circ g)(x) = f(g(x)),$$

т.е. к значению аргумента x сначала применяют функцию g, а затем к ее значению g(x) применяют функцию f.

Область определения композиции $f \circ g$ функций f и g находят так: берут те числа x из **области определения** функции g, для которых значения g(x) попадают в область определения функции f.

Примеры

1. Пусть $f(x) = x^2$, $g(x) = \sin x$.

$$(f \circ g)(x) = f(\sin x) = \sin^2 x,$$

$$(g \circ f)(x) = \sin x^2.$$

2. $y = \sqrt{1-x^2}$. Функцию y можно представить в виде композиции функций: $g(x) = 1 - x^2$ и $f(x) = \sqrt{x}$, $y = (f \circ g)(x) = f(g(x)) = \sqrt{1-x^2}$. Для нахождения области определения нужно взять значения x, для которых $1 - x^2 \ge 0$, т. е. D = [-1; 1].

Заметим, что
$$(g \circ f)(x) = 1 - (\sqrt{x})^2 = 1 - x$$
.

Теперь
$$D = [0; +\infty)$$
.

5. Склеивание функций. Часто встречаются функции, заданные разными формулами на разных частях области определения. Их можно представлять составленными (склеенными) из различных функций.

Например, функция y = |x| склеена из функции y = x, взятой при $x \ge 0$ и y = -x при x < 0.

Замечание. Часто функции, получаемые из простейших стандартных функций с помощью рассмотренных выше операций, называют **элементарными функциями**.

Склеивание функций

$$y = \begin{cases} 1, & x < 1, \\ x, & x \ge 1. \end{cases}$$

Если научиться следить за тем, как меняются свойства функций при тех или иных действиях над ними, то это может облегчить исследование функций.

Обсудим, например, монотонность функций.

Сформулируем несколько правил.

- 1. Если каждая из двух функций возрастает на некотором промежутке, то и сумма этих функций возрастает на этом промежутке.
- 2. Если функция f возрастает на некотором промежутке, то функция -f убывает на этом промежутке.
- 3. Если каждая из двух функций возрастает на некотором промежутке и положительна, то и произведение этих функций возрастает на этом промежутке.
- 4. Если функция f возрастает на некотором промежутке и строго сохраняет на нем постоянный знак (не обращаясь в нуль), то функция $\frac{1}{f}$ убывает на этом промежутке.
- 5. Если каждая из двух функций является возрастающей, то и их композиция будет возрастающей.

При использовании этого свойства надо следить за областями определения и теми промежутками, на которых исследуется монотонность.

- 6. Если функция возрастает на некотором промежутке, то и обратная к ней также будет возрастать на том промежутке, который является областью значений исходной функции.
- 7. Если функция склеена из двух функций, возрастающих на промежутках, имеющих общую точку, то она будет возрастающей на объединенном промежутке.

Все правила приведены для возрастающих функций.

Случай убывающих функций рассматривается аналогично.

Примеры монотонности функций

- 1. Функция $y = -\frac{1}{x}$ будет возрастающей на промежутке $(0; +\infty)$, так как функция $y = \frac{1}{x}$ является убывающей на этом промежутке.
- 2. Функция $y=2x-\frac{1}{x}$ является возрастающей на промежутке $(-\infty;0)$, так как получена как сумма двух функций y=2x и $y=-\frac{1}{x}$, каждая из которых возрастает на этом промежутке.
- 3. Функция $y = \operatorname{tg} x$ является возрастающей на промежутке $\left[0; \frac{\pi}{2}\right]$, так как она является произведением функций $y = \sin x$ и $y = \frac{1}{\cos x}$, каждая из которых возрастает на этом промежутке. Для функции $y = \frac{1}{\cos x}$ применено правило 4.

Функция $y = -\operatorname{tg} x$ будет убывающей на промежутке $\left[0; \frac{\pi}{2}\right]$. Функция $y = \operatorname{tg} x$ на промежутке $\left(-\frac{\pi}{2}; 0\right]$ является возрастающей. Применив правило 7, получим, что тангенс возрастает на всем промежутке $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$.

4. Функция $y = \arcsin x$ возрастает на всей области определения (промежуток [-1; 1]), так как является обратной к возрастающей функции $y = \sin x, x \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$.

Выполнить упражнение «Преобразование функций и действие над ними» Глава 7 «Функции и графики»

Глава 7 «Графики и функции», учебник Башмаков М.И. Математика: алгебра и начала математического анализа, геометрия: учеб. для студ. учреждений сред.проф. образования/ М.И. Башмаков. — 4-е изд.,стер. — М. : ИЦ «Академия», 2017, - 256 с.

В случае отсутствия печатного издания, Вы можете обратиться к Электроннобиблиотечной системе «Академия»

Список использованных интернет-ресурсов:

- 1. https://urait.ru/
- 2. https://23.edu-reg.ru/