United States Patent and Trademark Office UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 APR 17 2007 APPLICATION PAD FIRST NAMED INVENTOR ATTORNEY DOCKET NO. CONFIRMATION NO. 10/664,983 09/15/2003 **Donald Pierre Bourgon** 4639 03/22/2007 **EXAMINER** Pierre Bourgon KIM, TAE JUN 915 First Street East Cornwall, ON K6H-1N3 PAPER NUMBER ART UNIT **CANADA** 3746 SHORTENED STATUTORY PERIOD OF RESPONSE MAIL DATE **DELIVERY MODE** 3 MONTHS 03/22/2007 **PAPER**

Please find below and/or attached an Office communication concerning this application or proceeding.

If NO period for reply is specified above, the maximum statutory period will apply and will expire 6 MONTHS from the mailing date of this communication.

If only The results matter then there was no reason for 09/643 to be rejected. There wou have also been no reason replace 2,282, 182 30 rence of they and dynamics. in the cylender PTOL-90A (Rev. 10/06)

notes: The defails of 09/643644 us CA 2,282,182 and CA 2,299,746 may not be convect but from a broad perspective that does not change the energy conversion efficient From Chemical Patential Energy to Mechanical work. It means less gain in eff comes from the extua heat yielded and move From increase in thermal efficiency. (endgases 1) detonation I mep 1) ECE = 96 yield (Heat) x thermal eff. - BW Pière Bourgan

PS. For the last time, this is not an emission control device.

(E=C	aution Em	imissions		
0	Application No.	Applicant(s)		
17 2007	10/664,983	BOURGON, DONALD PIERRE		
APR 17 2007 Action Summary	Examiner	Art Unit		
The second secon	Ted Kim	3746		
Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY	ears on the cover sheet with the c	orrespondence address		
A SHORTENED STATUTORY PERIOD FOR REPLY THE MAILING DATE OF THIS COMMUNICATION. - Extensions of time may be available under the provisions of 37 CFR 1.13 after SIX (6) MONTHS from the mailing date of this communication. - If the period for reply specified above is less than thirty (30) days, a reply If NO period for reply is specified above, the maximum statutory period w - Failure to reply within the set or extended period for reply will, by statute, Any reply received by the Office later than three months after the mailing earned patent term adjustment. See 37 CFR 1.704(b).	6(a). In no event, however, may a reply be tim within the statutory minimum of thirty (30) days ill apply and will expire SIX (6) MONTHS from cause the application to become ABANDONE	nely filed s will be considered timely. the mailing date of this communication. O (35 U.S.C. § 133).		
Status				
1) Responsive to communication(s) filed on 05 Ma	ay 2005.			
2a)⊠ This action is FINAL . 2b)□ This	action is non-final.			
3) Since this application is in condition for allowan	,			
closed in accordance with the practice under E	х рапе Quayle, 1935 С.D. 11, 45	3 O.G. 213.		
Disposition of Claims				
4) Claim(s) 1-8 is/are pending in the application. 4a) Of the above claim(s) is/are withdraw 5) Claim(s) is/are allowed. 6) Claim(s) 1-8 is/are rejected. 7) Claim(s) is/are objected to. 8) Claim(s) are subject to restriction and/or Application Papers 9) The specification is objected to by the Examiner 10) The drawing(s) filed on 09 February 2004 is/are Applicant may not request that any objection to the of Replacement drawing sheet(s) including the correction 11) The oath or declaration is objected to by the Examiner	election requirement. Cataly tic Chemical a) □ accepted or b) ☒ objected drawing(s) be held in abeyance. See on is required if the drawing(s) is obj	e 37 CFR 1.85(a). lected to. See 37 CFR 1.121(d).		
Priority under 35 U.S.C. § 119				
12) Acknowledgment is made of a claim for foreign a) All b) Some * c) None of: 1. Certified copies of the priority documents 2. Certified copies of the priority documents 3. Copies of the certified copies of the priorical application from the International Bureau * See the attached detailed Office action for a list of	s have been received. s have been received in Application ity documents have been received (PCT Rule 17.2(a)).	on No ed in this National Stage		
Attachment(s) 1) Notice of References Cited (PTO-892) 2) Notice of Draftsperson's Patent Drawing Review (PTO-948) 3) Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08) Paper No(s)/Mail Date	4) Interview Summary Paper No(s)/Mail Da 5) Notice of Informal Pa			

Drawing not required mechanics: none Mechanical Engineering application: none Catalytic Conversion: chemical process 25 coralyst not consumed in process, or causes vapid combustion purpose of this device: increase increase engine working efficiency by the France working efficiency by the France of catalytic Conversion is Practical test Results: (\$
V 40% fuel economy gain 86 Old cleara 7
104/100Km city 84001

Page 2 Application/Control Number: 10/664,983

Art Unit: 3746

DETAILED ACTION Chemical

Drawings 9 not region

1. The informal drawings of 02/09/2004 are not of sufficient quality to permit ready reproduction. Furthermore, the figure labels obstruct portions of the figures and should be not be placed in the middle of a figure but to the top, side, or bottom. Accordingly, replacement drawing sheets in compliance with 37 CFR 1.121(d) are required in reply to this Office action. The replacement sheet(s) should be labeled "Replacement Sheet" in the page header (as per 37 CFR 1.84(c)) so as not to obstruct any portion of the drawing figures. If the changes are not accepted by the examiner, the applicant will be notified and informed of any required corrective action in the next Office action.

Cost of Facility to use this technology since work wide The informal drawings of 02/09/2004 are not of sufficient quality to permit ready 1.

The following guidelines illustrate the preferred layout for the specification of a 2. utility application. These guidelines are suggested for the applicant's use.

Arrangement of the Specification

As provided in 37 CFR 1.77(b), the specification of a utility application should include the following sections in order. Each of the lettered items should appear in upper case, without underlining or bold type, as a section heading. If no text follows the section heading, the phrase "Not Applicable" should follow the section heading:

- (a) TITLE OF THE INVENTION.
- (b) CROSS-REFERENCE TO RELATED APPLICATIONS.
- (c) STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT.
- (d) INCORPORATION-BY-REFERENCE OF MATERIAL SUBMITTED ON A COMPACT DISC (See 37 CFR 1.52(e)(5) and MPEP 608.05. Computer program listings (37 CFR 1.96(c)), "Sequence Listings" (37 CFR 1.821(c)), and tables having more than 50 pages of text are permitted to be submitted on compact discs.) or

Application/Control Number: 10/664,983

Art Unit: 3746

REFERENCE TO A "MICROFICHE APPENDIX" (See MPEP § 608.05(a). "Microfiche Appendices" were accepted by the Office until March 1, 2001.)

- (e) BACKGROUND OF THE INVENTION.
 - (1) Field of the Invention.
 - (2) Description of Related Art including information disclosed under 37 CFR 1.97 and 1.98.
- (f) BRIEF SUMMARY OF THE INVENTION.
- (g) BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S). - Note this section is required and completely missing any description of Figures 1-4
- (h) DETAILED DESCRIPTION OF THE INVENTION.
- (i) CLAIM OR CLAIMS (commencing on a separate sheet).
- (i) ABSTRACT OF THE DISCLOSURE (commencing on a separate sheet).
- (k) SEQUENCE LISTING (See MPEP § 2424 and 37 CFR 1.821-1.825. A "Sequence Listing" is required on paper if the application discloses a nucleotide or amino acid sequence as defined in 37 CFR 1.821(a) and if the required "Sequence Listing" is not submitted as an electronic document on compact disc).

Claim Rejections - 35 USC § 112

3. The following is a quotation of the second paragraph of 35 U.S.C. 112:

The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.

Claims 1-8 are rejected under 35 U.S.C. 112, second paragraph, as being indefinite 4.

for failing to particularly point out and distinctly claim the subject matter which applicant

regards as the invention.

(increase free economy) = by increasing

Claims 1-8 are rejected as failing to define the invention in the manner required by 5. 35 U.S.C. 112, second paragraph.

The claim(s) are narrative in form and replete with indefinite and functional or

operational language. The structure which goes to make up the device must be clearly

NO System ou system woods to any engine.

Mau a Fac

Application/Control Number: 10/664,983

Art Unit: 3746

and positively specified. The structure must be organized and correlated in such a manner as to present a complete operative device. The claim(s) must be in one sentence form only. Note the format of the claims in the patent(s) cited.

Claim Rejections - 35 USC § 102

6. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -

- (b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.
- 7. Claims 1-8 are rejected under 35 U.S.C. 102(b) as being anticipated by CA

 2,282,182 or CA 2299746. Applicant's previously filed Canadian patent applications
 published 2/25/2001 and 08/22/2002 respectively disclose the catalytic coating of the
 surfaces of the IC engine and Gas turbine engine with platinum catalyst. All the results
 of the "claims" are inherently performed or taught by these patent publications.

modelled after Bell's Appication for the telephone.

Ivanically, 2282182 was origionally printed on 1 sheet of paper before Engineers and Patent officers started making things complicated.

Pay, Pollute the Environments

See if I cave,

Goto War For that oil

you need to waste in

the USA. (USPTO, CIPO.....

Application/Control Number: 10/664,983

Art Unit: 3746

Claims 1-8 are rejected under 35 U.S.C. 102(b) as being clearly anticipated by Totman (4,530,340), Bradstreet et al (2,978,360), Brass et al (4,612,880), Haginto (4,577,611). Each of these references teaches a catalytic liner on all the internal combustion engine components.

Totman (4,530,340) teaches catalytic liner 12, 18.

Brass et al teach a catalytic coating on the combustion chamber surfaces (see col. 5, lines 56-col. 6, lines 12).

Bradstreet teaches a catalytic coating 12, 13, 14, 15 (see col. 5, lines 9-15).

Hagino teaches a catalytic coating 7 on the combustion chamber surfaces.

CE CE CE CE CE (4,603,547).

Claims 1-8 are rejected under 35 U.S.C. 102(b) as being clearly anticipated by any CE CE (4,603,547).

Weil et al teach a catalytic coating on any and all gas turbine components including combustor and turbine in the flow path (col. 3, lines 28-58). This will inherently reduce relighting in case of flameout.

Hums et al teach a catalytic coating 12 on the gas turbine combustor. This will inherently reduce relighting in case of flameout.

Correa teaches a catalytic coating 26 on the gas turbine combustor. This will inherently reduce relighting in case of flameout.

Pfefferie et al teach a catalytic coating 22 on the gas turbine combustor. This will inherently reduce relighting in case of flameout.

Combustion Chamber Cotaly file Converter (would also work in GTE Pur pose: Lucrease engine efficiency (nighton Fini-or) (pértou Engines) 2 202 102 2005) efficien cy Method: Apply catalytic coating Production Engines: Platinum to combustion use electroplating chamber. (Test caus ASAVER) Results: Deletes end gasses (complete combustion) 25%-50% fuel economy gain city: 50% after much huy driving 50% fuel economy gain hwy

Conclusion: A catalytic coating of the combustion chamber will increase fuel economy by about 40%

notes: -86 Old Cutless Cievra, 2.56 I4 TBI 3 spd Auto w/ electronic lock-up converter.

- gasaver favours larger cars with small

Application/Control Number: 10/664,983

Art Unit: 3746

increase

Claim Rejections - 35 USC § 103

11. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

12. Claims 1-8 are rejected under 35 U.S.C. 103(a) as being unpatentable over any of Hums et al (5.946.917), Correa (5.460.002) (2,978,360), Brass et al (4,612,880), and in view of any of Hagino (4,577,611), Weil (5,355,668), CA 2,282,182 and CA 2299746. The claims are unclear as to what extent they claim the use of a platinum catalyst (appears only in claim 1 and not the rest). Hums et al (5,946,917), Correa (5,460,002), Totman (4,530,340), Bradstreet et al (2,978,360), Brass et al (4,612,880) all teach a catalytic coating on the combustor surfaces. To the extent which platinum is not disclosed, Hagino (4,577,611), Well (5,355,668), CA 2,282,182 and CA 2299746 all explicitly disclose the use of platinum catalysts for either the IC engine or gas turbine engine. It would have been obvious to one of ordinary skill in the art to employ platinum as the catalyst, as a well known catalyst used in catalytic economy gain (Piston) combustion and known for its strength and/or longevity, and/or suitability for this There is a 40% fuel which engineers claim impossible application. An examination of this application reveals that applicant is unfamiliar with patent 13. prosecution procedure. While an inventor may prosecute the application, lack of skill in You have changed the Subject.

A low rejected my origional applicatation for this device because you claimed in a normal engine 95% of the Alfis mixture burned and it turned out you were correct.

Therefore a new application was tiled once the real cause of the increase in efficiency was identified le the engine van. cooler indicating a lower heat rejection varion Unfortunately the 86 Old did not have a temperature guage. In the ovigional application 2282182 and 2,299,746 were retremed since this device was based on these devices. Application/Control Number: 10/664,983

Art Unit: 3746

this field usually acts as a liability in affording the maximum protection for the invention disclosed. Applicant is advised to secure the services of a registered patent attorney or agent to prosecute the application, since the value of a patent is largely dependent upon skilled preparation and prosecution. The Office cannot aid in selecting an attorney or agent.

Applicant is advised of the availability of the publication "Attorneys and Agents Registered to Practice Before the U.S. Patent and Trademark Office." This publication is for sale by the Superintendent of Documents, U.S. Government Printing Office, (avou mentative) Washington, D.C. 20402.

Response to Arguments

Applicant's arguments filed 05/05/2005 have been fully considered but they are 1. not persuasive. Regardless of the principle of operation, applicant admits that the only structural feature is the catalytic coating and hence, the claimed results are all inherent results of using a catalytic coating. Applicant argues that all his previous research and patent applications/publications, including CA 2299746 and CA 2282182 are incorrect. While there may be problems with these applications/publications, the substance of these publications, even if the patents are "withdrawn" as stated by applicant, are still printed publications and their teachings of using catalytic coatings in the same environment are fairly taught to one of ordinary skill in the art. Furthermore, the numbers of 65% are never explicitly set forth in those applications, and these applications fairly/teach the catalytic coating of the combustion engine. Hence, while the calculated numbers may be

A low rejected my origional applicatation for this device because you claimed in a normal engine 95% of the Alfin mixture burned and it turned out you were correct.

Therefore a new application was tiled once the real cause of the increase in efficiency was identified le the engine van rejection votion l'utortunately the 8b U10 and m.

The temperature guage. In the

ovigional application 2 182 182 and
2,299,746 were retreated since this
device was based on these devices. the 86 Old did not have a

Page 8 Application/Control Number: 10/664,983 Art Unit: 3746 different, the results are inherently the same as there is no structural difference with the chemical process prior publications. Applicant's response to the drawings are not persuasive. Corrected drawings are still required and this requirement will not be held in abeyance. New corrected drawings in compliance with 37 CFR 1.121(d) are required in this application for the reasons set forth above. Applicant is advised to em draftsperson outside the Office, as the U.S. Patent and Trademark Office no longer red in reply to the Office action prepares new drawings. The corrected drawings ar to avoid abandonment of the application. The requirement for corrected drawings will not be held in abevance. Applicant's arguments with respect to the rejection under 35 USC 112, second 3. paragraph are not persuasive. The claims are required to recite structure. The claim(s) are narrative in form and replete with indefinite and functional or operational language. The structure which goes to make up the device must be clearly and positively specified. The structure must be organized and correlated in such a manner as to present a complete operative device. The claim(s) must be in one sentence form only. Note the format of tols semmissions the claims in the patent(s) cited. Applicants arguments with regarding the prior art in paragraph 9 of Totman (4,530,340), Bradstreet et al (2,978,360), Brass et al (4,612,880), Hagino (4,577,611) are

not persuasive.\ Each of these references teaches a catalytic liner on all the internal

combustion engine components. Applicant notes his chemistry book teach the same

For efficiency, no Page 9

Application/Control Number: 10/664,983

Art Unit: 3746

[claimed] feature. This statement is regarded as a prior art admission, that the subject Charge C matter of catalytic coating of combustion surfaces of said engines is well known in the art. Furthermore, each of the examiner's statements of inherency has been indicated as falling under the category of "The Theory of Chemical Kinetics." This is entirely two each of these results is inherent as a result of the said theory.

5. THIS ACTION IS MADE FINAL. Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.1/36(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

Contact Information

Any inquiry concerning this communication or earlier communications from the Examiner should be directed to Ted Kim whose telephone number is 571-272-4829. The Examiner can be reached on regular business hours before 5:00 pm, Monday to Thursday and every other Friday.

The fax number for the organization where this application is assigned is 571-273-8300.

Application/Control Number: 10/664,983

Art Unit: 3746

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Ehud Gartenberg, can be reached at 571-272-4828. Alternate inquiries to Technology Center 3700 can be made via 571-272-3700.

Page 10

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). General inquiries can also be directed to the Patents Assistance Center whose telephone number is 800-786-9199. Furthermore, a variety of online resources are available at http://www.uspto.gov/main/patents.htm

$m \rightarrow$	
Ted Kim	Telephone 571-272-48
Primary Examiner	Fax (Regular) 571-273-83
March 6, 2007	Fax (After Final) 571-273-83
Technology Center 3700	Telephone 571-272-37

The INTERNAL COMBUSTION ENGINE CATALYTIC CONVERTER is a catalytic converter built into the engine. This invention uses platinum(Pt) as a the catalyst. Platinum is anodized or electroplated into the combustion chamber an internal combustion engine. The catalyst cracks some of the oxygen molecules into oxygen atoms. It cracks some of the hydrocarbon fuel molecules into smaller hydrocarbon chains.

The oxygen radicals and short chain hydrocarbons burn much faster. This causes a higher percentage of the air/fuel mixture to burn increasing engine efficiency. Because a greater percentage of the air/fuel mixture is burned, fuel's chemical potential energy is converted into heat, thereby increasing the energy conversion efficiency of this exothermic combustion process. Therefore, more heat is yielded from the reactants without more reactants, the air and fuel. This results in smoother running engine with torque or thrust, greater fuel economy and lower emissions. The engine will also be more responsive and drive ability will be improved.

[57]

greater/higher > languan s term engine efficieny - H > chemistry higher heat yeild termanology S X I higher enery com lower specific fuel > Mechanical: Engineer-consumption Term higher thermal eff. Themaldynamics? greater thermal eff or higher heat yeild causes lower specific fuel consumption and greater output specific specific specific Pout = PEX efficient (considered) Chemical Potential Energy > Mechanical Work

Specifications

BACKGROUND OF INVENTION

When I was about 7 my parents gave me a chemistry set for Christmas. I didn't really learn anything useful from it. This is because the people who made it didn't show any chemical equations, probably because they didn't think kid could understand them, ha! However, I became fuel Recommended by Furivanmentaly Pollution Agency very proficient at using the lab equipment. Fast forward to high school, I understood what was happening much better than the other students, although my grades were less than praiseworthy because I was never book smart. This is where I learned what a catalyst and enzymes do. I also started working at a place called the Blue Beacon Truck Wash were I learned what a catalytic converter was and many facts about fuel efficiency. For example, a truck with an empty dry box trailer consumed as much fuel on the highway as a full one. Reducing the weight of the vehicle only effects city fuel efficiency. After college, one of the first designs I perused was the hybrid, but in laying out the basic design I realized that the basic design violated the LAW OF CONSERVATION OF ENERGY and THE FIRST, SECOND and THIRD LAW OF THERMAL DYNAMICS. Remembering that cars had catalytic converters, what they did and how they did it I concluded that a substantial amount of the air/fuel mixture must go through the engine without being burned. Having a 1988 Ford Thunderbird, I decided to test this theory. This vehicle had a MPFI 3.8L V6 and a 4speed overdrive transmission. It was first benchmarked the vehicle's fuel efficiency at 50km/h in the city and 110km/h on the highway.

With MacEwen's Ethanol: With regular gas:

Regular gas with techron or fuel injector cleaner or gas treatment:

With aftermarket "PERK" pills mixed with fuel:

1884 100 (Nower energy content than gasoline) 19/35mpg (fuel designed for SFI engines)

Detergents, fuel designed for MPFI engines, also good for SFI.)
23/41mpg BENCHMARK

12.3/6.91/wk (Fuel Atomizer and detergent additive.)

(Can Imp.
gaMon = 5 quarts
) USg = 9 quarts
who Knew?) From the results of this test I concluded that massive fuel economy gains could be made through pure chemical engineering applications.

A couple years before, my father had purchased a device called the "GASAVER" for his 1979 Cadillac Broham D'Ellegance. It had a TBI 425 CI V8. My dad ordered a GASAVER, I installedit. When I read the instruction I had found that the car had to be driven 200 to 2000km for this device to start working. Upon reading this I didn't think it would do anything, but is did. The car's average fuel efficiency increased from 12mpg to 17mpg. If only the vesalts

Remembering this I concluded that what must happen is that the catalyst are deposited on the top of the pistons and in the combustion chamber in the head, this is why it would need to be run in. This is about the time when I was starting to find out the tranny in the T-Bird had seen better days and it was time to look for a different vehicle with less mileage. Also, the vehicle should be a mid size car with a 4 banger to offset the power gains caused by the increase in energy conversion efficiency. Less displacement would be required to effect an adequate power to weight ratio. The

> Recapounized DA

Environmentan! Pollution Agency

when PERK Pills added the cour Felt like it had aug V8. vehicle that was selected was a 1986 Oldsmobile Cutlass Cierra with a TBI 2.5L 4 cylinder engine and a 3 speed automatic with a locking torque converter clutch, which I originally thought was an overdrive gear. This engine was also chosen for it's reputation for being mechanically indestructible and it's reputation for overheating. Mechanical integrity was important because of the horsepower gain. Overheating was important because I wanted to see if and engine could withstand the higher combustion and operating temperatures. Basically this was a "lets see if it will break anything" car.

Adding the GASAVER increased the car's highway range from 400km to 550km on 50L of fuel at 110km/h. However, in the city it was a different story, the GASAVER can be washed out by excessive cold starts, WYNN'S gas treatment, Petro-Canada's Techron gasoline and PERK pills. If the car is run on the highway, however, the fuel economy gain follow through in the city. This also re-enforces the theory that catalytic deposits collect on the top of the piston and the bottom combustion chamber in the heads. Adding an extra vile of platinum carrying additive made it work in the city. This also indicates the combustion chamber and top of the piston were coated. Finally when the GASAVER was removed after the second vile was added and run for 4000km and removed it still continued to work for another 500km. On the Cadillac I remember that the exhaust went from a smokey white to clear once the GASAVER was installed. For the first time water would run out of the exhaust when it was driven away hot. Just like a new car. It took 2 stages of exhaust mounted catalytic converters on the 99 Lincoln Town Car I saw do this. The Oldsmobile also did this after the GASAVER was installed.

The last parameter laid out was transparent conversion. There must be no loss of reliability. It is designed without compromise.

This is why platinum is specified as the catalyst to be used. This is why no mechanical modifications are specified. The catalytic coating must be inert, not susceptible to contamination from air, fuel or oil. It must also be resistant to the acids formed in the by-products of combustion, including nitric and sulfuric acid. If there is sulfur in the fuel, sulfuric acid will be present in the exhaust. If there are ever any Nitrous Oxide in the exhaust nitric acids will be formed. Eventually these acid compounds dissolve any thin coating that are not completely inert.

Choosing the catalyst

Ceramics can both be contaminated by fuel and oil and dissolved by acids. Eliminated. Nickel, Cobalt, Palladium are attacked by nitric and sulfuric acid. Eliminated. Iridium and Osmium oxidize when heated in air. Eliminated.

Platinum is not oxidized by air. It can not be contaminated by fuel or oil. It is not attacked by acids formed in the exhaust. In fact it is used to make acid proof containers. BINGO!

Reference data from MERCK INDEX, 9th Edition

RESEARCH AND DEVELOPMENT FUNDING: Not applicable

He Soft is produce if there is any salfer in fact it must be acid proof. otherwise it will eventually be dissolved. (by salfar

550@ 160000Km damaged by faulty FGR Value

Most people who vode in this car when the GASAVER was ran in good thought it had the 3.8 V6 One particular passenger was even frighted by the car's "rapid" acceleration. (only be opened) I was Following someone else to a location I did not know. 0-65K 1,2,3065K

HOW TO BUILD THE INTERNAL COMBUSTION ENGINE CATALYTIC CONVERTER INTO AN INTERNAL COMBUSTION ENGINE

Altering the shape of any parts in the engine is not needed. The standard air fuel mixture is used. The electronic engine control module is unaffected.

This device is for designed for but internal combustion engines in general. The thickness of plating will depends much on the engine in question. The thickness only need to be between 10nanometers to 1micrometer thick, depending on the engine.

In a piston engine, the top of the piston, inside the combustion chamber carved into the bottom of the heads and the bottom of the valve. Plating valves is optional in 2 valve per cylinder engines.

In a jet engine and gas turbine engines Pt is added on all the metal parts of the combustion chamber and the turbine. Bearings are optional. This catalyzes some of the air/fuel mixture in the engine where it can do useful work to propel the aircraft. It only needs to use Pt.

In some electronically controlled piston engines were there is a oxygen sensor before and after the exhaust mounted catalytic converter the PCM/ECM may have to be recalibrated to allow for the lower O_2 reading which will be the result of burning a greater percentage of the air fuel mixture. This is because a greater percentage of the oxygen in the air/fuel mixture will be consumed.

Claims

SUMMERY OF INVENTION

This device has the following advantages over previous attempts:

(1) The best catalyst, platinum has been identified. (2) Platinum is a metallic catalyst, so it malleable and hard enough to withstand the mechanical punishment of a piston engine. (3) A cost efficient method of using the platinum catalyst has been identified. (4) The platinum catalyst can't be contaminated by oil or fuel. (5) The platinum catalyst can't be oxidized by oxygen in the air/fuel mixture. (6) The platinum catalyst can't be dissolved by the acidic contents of the exhaust gasses. (7) The platinum catalyst is electroplated onto metal surfaces and relies on thinness to effect and high surface area to weight ratio. (8) The flatness of the surface area also greatly increases exposure to reactants(air and fuel) and products(exhaust gases). (9) Because it is electroplated(anodized) to the top of the piston and the combustion chamber, the aluminum surfaces provide mechanical strength and will prevent it from melting by acting like a heat sink. (10) No mechanical modifications are required. (11) The catalyst can be applied thinly enough to not interfere with the flow path in turbine engines.

DETAILED DESCRIPTION

The INTERNAL COMBUSTION ENGINE CATALYTIC CONVERTER is a catalytic converter built into the engine. This invention uses platinum(Pt) as a the catalyst. Platinum is anodized or electroplated into the combustion chamber an internal combustion engine. The catalyst cracks some of the oxygen molecules into oxygen atoms. It cracks some of the hydrocarbon fuel molecules into smaller hydrocarbon chains.

An octane(gasoline) molecule (C8H18) may be cracked into two reduced butane molecules ($C_4H_9^{+1}$, $C_4H_8^{+2}$). An octane molecule could also be cracked into any combination of reduced methane (CH_3^{+1} , CH_2^{+2}), ethane ($C_2H_5^{+1}$, $C_2H_4^{+2}$), propane ($C_3H_7^{+1}$, $C_3H_6^{+2}$), pentane ($C_5H_{11}^{+1}$, $C_5H_{10}^{+2}$), hexane ($C_6H_{13}^{+1}$, $C_6H_{12}^{+2}$) or heptane ($C_7H_{15}^{+1}$, $C_7H_{14}^{+2}$). In the case of cetane(diesel, $C_{23}H_{48}$), it is unlikely it will be cracked into larger molecules than reduced octane($C_8H_{17}^{+1}$, $C_8H_{16}^{+2}$). Oxygen molecules (O_2) may be cracked into two oxygen atoms O_7^{-2} .

These reduced incomplete molecules are much more reactive than the unreduced molecules they replace. The oxygen atoms and reduced hydrocarbons chains burn much faster. This causes a higher percentage of the air/fuel mixture to burn increasing engine efficiency. Because a greater percentage of the air/fuel mixture is burned, a greater percentage of the fuel's chemical potential energy is converted into heat, thereby increasing the energy conversion efficiency of this exothermic combustion process. Therefore, more heat is yielded from the reactants, the air and fuel. This results in greater torque being produced by piston engines across the power band, particularly in the low end and the mid range. Greater trust is generated in turbine engines. There will be greater fuel economy and lower emissions in both piston engines and turbine engines. The engine will last longer because there will be less contaminants from incomplete combustion to get the inside of the engine dirty. More complete combustion also means less reactant will need

09/643,654

compression which relieves stress on the engine by reducing negative work. (Compression is negative work.) In piston engines it will reduce missing and in gas turbine engines it will reduce the incidences of flameout. Also, if flameout does occur it will facilitate relighting.

Mathematically,

dHeat = Potential Energy)X Energy Conversion Efficiency
dH = PE X ECE

If a 3.8L engine needs 43KJ of heat are needed to propel a 1988 Ford T-Bird on the highway at 110km/h, the amount of PE(air and fuel) required to produce this amount of heat decreases as the ECE increases. Thereby reducing the engine's specific fuel consumption.

PE of AF mixwe x efficient = Power out eff = Pout = Pout Fragy in PF Solve for Pout by multiplying both side by PE nomplet e combustion + = eff x PE

le: Combastion Chamber Catalytic Converter

Lufernal Combastion

Engines.

•

•

Catalysis

15.9 Catalysis

We have seen that the rate of a reaction increases dramatically with temperature. If a particular reaction does not occur fast enough at normal temperatures, we can speed it up by raising the temperature. However, sometimes this is not feasible. For example, since living cells can survive only in a rather narrow temperature range, the human body is designed to operate at an almost constant temperature of 98.6°F. But many of the complicated biochemical reactions keeping us alive would be much too slow at this temperature without intervention. We survive only because the body contains many substances called enzymes, which increase the rates of these reactions even though body temperature remains constant. In fact, almost every biologically important reaction is assisted by a specific enzyme. An important example involves the enzyme carbonic anhydrase, which catalyzes the reaction of carbon dioxide with water:

Figure 15.13
Energy plots for a catalyzed and an uncatalyzed pathway for a given reaction.

 $CO_2 + H_2O \Longrightarrow HCO_3^- + H^-$

This crucial reaction allows the carbon dioxide that forms in the cells during metabolism to be removed. If the carbon dioxide were allowed to accumulate, it would poison the cell. Carbonic anhydrase is so efficient that one molecule of enzyme can catalyze the reaction of over 600,000 carbon dioxide molecules in one second!

Although it is possible to use higher temperatures to speed up commercially important reactions, such as the Haber process for synthesizing ammonia, this is very expensive. In a chemical plant an increase in temperature means significantly increased energy costs. The use of an appropriate catalyst allows a reaction to proceed rapidly at á relatively low temperature and therefore can hold down production costs.

A catalyst is a substance that speeds up a reaction without being consumed iself) Just as virtually all vital biological reactions are assisted by enzymes (biological catalysts), almost all industrial processes also benefit from the use of catalysts. For example, the production of sulfuric acid uses vanadium(V) oxide, and the Haber process uses a mixture of iron and iron oxide.

How does a catalyst work? Remember that for each reaction a certain renergy barrier must be surmounted. How can we make a reaction occur taster without raising the temperature to increase the molecular kinetic energies? The solution is to provide a new pathway for the reaction, one with a lower activation energy. That is what a catalyst does, as shown in Fig. 15.13. Because the catalyst allows the reaction to occur along a pathway with a lower activation energy, a much larger fraction of collisions is effective at a given temperature of this the reaction rate is increased. This effect is illustrated in Fig. 15.14. Note from this diagram that although a catalyst lowers the activation energy (E_a) for a reaction, it does not affect the energy difference (ΔE) between products and reactants. The fuely (ΔE) was (ΔE) between products and reactants.

Catalysts are classified as homogeneous or heterogeneous. A homogeneous catalyst is one that is present in the same phase (physical state) as the reacting molecules. A heterogeneous catalyst exists in a different phase, usually as a solid.

Figure 15.14
Effect of a catalyst on the number of reaction-producing collisions.
Because a catalyst provides a reaction pathway with a lower activation energy, a much greater fraction of the collisions is effective for the catalyzed pathway than for the uncatalyzed pathway (at a given temperature). This allows reactants to become products at a much higher rate, even though there is no temperature increase.

Energy

rived as

measur-

versus

rom the

.s 1/T.

10.82

-9.53

-8.22

-7.00

- 5.84

.nd to

0 x

(15.11)

can be

The catalyst in this device reduces the activation energy to lending electrons to the reactant. ie: A/Fr mixture

Conversly, a stratisfied engine like the one built by Soichiro Honda ruduces the activation energy in the pre-combustion chamber with a saper vich mixture which providers great activation energy for the main chamber. Auto Engineers in the US said he was nuts. The engine passed.

California Exammission with no EGR Value and no accordant Converter. Mr. Honda invented a Serice that Trippled the efficiency of piston engines in 1938. Piston Rings.

Pressure Curve in Combustion Chamber for Different Ignition Points

- 1 Ignition (Z_a) at correct time
- 2 Ignition (Zb) too soon (ignition knock)
- 3 Ignition (Z_c) too late

The proper ignition timing is essential in creating the most cylinder pressure as early as possible in the crankshaft's rotation past TDC.

Closed-loop timing controls need to overcompensate to quench detonation. When entering the hysteresis zone, performance will suffer.

The Combustion Chamber speeda Catalytic Converter Speed up the burning of the AlF mixtue. Allowing the use of Ignition 20 Augle Ze to get the preasure carre Zb peaking at at 25° after TDC which

Mair To

Smoother, more powerful, more fuel efficient. The rules have changed!

१.२५७ वर्षक क्रांक्सिको , क्रिक्सिकिस क्रांक्स िक्ष मान् नकली दिले स्मित का नेद्रानान ন্ত্রান্তর্ভালের বিশ্বনিত্র কা ভার্টার্লাসর্ভ क्षित्रकार किंगू विशेषका महिला कि विश्व हार क्षित्र Sous complitues all (I) istaliment Part wagespoors is TIV affect but

Herring California an Resources Bornell COME with restriction that will supp post larger enging offspleasurent and. Interestioning exhibition livedia while Receiption led a draite raise

वर्णाइड्राकारेन्द्रतान्त्राहितं क्षेत्रीहितांकारन्त्राह विश्वास्त्रका आयोज्यात्र क्रिक्ट्यात्रि क्लिक विद्यारा मात फिलेबीक्सर्वेड फिल्डिक united to any angle lowered the विक्र हार्व । का प्रमान श्वाकी विक्र विकास officer a popular commensioner

Dry flow Carbureted and throttle-body fuel systems are considered wet flow. Port EFI designs (an individual injector for each cylinder) are referred to as dry flow. In a wet-flow system, a mixture of air and fuel coarses through the intake-manifold numbers: in port systems.

intake-manifold runners; in port systems, the fuel is administered at the end of the

intake-manifold runner just prior to entry into the cylinder head. The laws of physics dictate that for every 10 degrees F of change in the temperature of the e a corresponding effect of ature will decrease pow-1 percent to the specific output of the engine-rai antage of cooler charge er: cooling it will have the opposite effect. Wetm a liquid to a gaseous Vhen air temperatures created by the vaporization of ct. Dry-flow manifolds do state, this transformation will consume some not benefit from the latent heat of vaporization.

光源用开始多少这位或为**们**和15元"等以为

ected more by higher ambi-The results of this phenomenon cause fuel-injected g ent temperatures and underhood heat. EFI racers kg rice on the plenum after every run is essential to obtain maximum performance on, the latest in engine technology from Detroit utilizes intake manifolds fabricate plastics such as DuPont Zytel, a materment temperatures have less of an effect on ial relatively impervious to heat. Thus, under les use this technology. the specific output of the engine. Chevrola

ick, but it ingests preheated With this in mind, a throttle body-n best-running EFI cars breathe underhood air from the radiator and the cold air from a ram-air kit. Mustang 5.0L engines are susceptible to an idle instability when an open-element air filter is attached to the end of the mass airflow (MAF) meter. The turbulence creat-Ned by the engagement of the clutch fan causes pockets of low- and high-pressure air entering the MAF sensor, technically referred to as fan wash. This creates idle instability, especially if the engine is fitted with a performance camshaft. A simple sheetmetal shrouding will effectively isolate the air filter from this turbulent air.

The EFI 502 Chevy in this truck runs low 12s. It could go guicker and faster if the engine did not have to breathe hot air from the radiator.

Pressure Curve in Combustion Chamber for Different Ignition Points

1 Ignition (Z₂) at correct time 2 Ignition (Zh) too soon (ignition knock) 3 Ignition (Z_c) too late

The proper ignition timing is essential in creating the most cylinder pressure as early as possible in the crankshaft's rotation past TDC. Closed-loop timing controls need to overcompensate to quench detonation. When entering the hysteresis zone, performance will suffer.

timing and you bump it to 38 degrees and experience detonation, you might assume that the ECU would only need to

2 degrees of advance to squelch ock. Since the combustion chamecomes heated during abnormal ustion, its propensity to knock will reater, and the ECU will need to ove as much as four times the amount dditional advance. In the previous scethe EFI system might need to ve 8 degrees of advance to stop the etonation caused by 2 degrees of addional timing. Away goes the advance and the performance. So when setting the timing on a system with knock retard, inch up on the advance; remember that due to the knock sensor, 1 degree too much advance may trigger a retard of as much as 4 degrees or more.

These two are Leaded like water and oil. On an EFI system, the oxygen sensor monitors the air/fuel ratio to and the assure that it remains at 14.7:1 during most driving scenarios. The sensor sensoris actually a

galvanic battery that produces a minute amount of voltage. When the sensor's output is above 0.5 volt, it tells the ECU that the mixture is rich and needs to be leaned out. Conversely, if the output value is less than 0.5 volt, the mixture needs to be richened. Leaded fuel coats the sensor and degrades output voltage so that the ECU always thinks the mixture is lean. Therefore, the EFI system will add fuel to try to satisfy the sensor. The injectors on port EFI engines are located just above the intake valve, making the rings susceptible to washdown and oil contamination when the system runs rich.

Tuning with Most EFI systems incora knock porate fuel and ignition mansensoragement conjunction

with a closed-loop ignition control. Engines equipped with a knock sensor have the ability to "hear" detonation and then retard the ignition timing to extinguish abnormal combustion. The problem with this occurs when a solid-lifter cam is used with electronic-spark control system. It common for the noise from this typ valvetrain to be interpreted as de tion, so the ECU will continually the timing. Solid roller cams wise noisy valvetrains should lized with the knock-retar injection systems.

Due to a phenomenon called the h teresis of knock when using a closed-le timing system (knock retard), it takes substantially more spark removal to quench the detonation than would be required to never have the abnormal combustion begin. If your engine does not detonate at 36-degrees BTDC total

ıaniooint

tem

iore

ted

ıani-

ump lley per, nind

æch

are

rent

ines

ind,

adly

hen

fuel

Homogeneous Catalysis of Gasoline Combustion By Platinum and Rhenium

Presented by JOEL ROBINSON

Technical Director of National FuelSaver Corporation

American Chemical Society

Annual Meeting, April 11, 1984 St. Louis, Missouri

First of all I wish to thank Dr. Joseph Raksis for inviting me to

speak to you.

As you have read from the program I was invited to speak on the Homogeneous Catalysis of Gasoline Combustion with Platinum and Rhenium. I must clarify that our work was not done by chemists, but rather by observers and appliers of chemistry. Therefore this is more of an historical document than a technical one.

We observed several limitations in the area of gasoline combustion that we felt could be eliminated simply by applying the known

chemistry in a different manner.

There are three areas that I would like to review with you. The first is those limitations presently inherent in the combustion processes of gasoline. The second area is how those limitations have been eliminated elsewhere, and the third area is our application of those solutions to the original limitations.

Much to the dismay of mechanical engineers, the burning of gasoline in an automotive engine is not an act of chemical perfection. A great deal of the fuel simply leaves the engine without burning, while another quantity burns late enough in the power stroke to be of little use.

Rather than going into great detail on the EPA Federal Test Procedures that have been used to measure unburnt fuel leaving an Sengine, as well as research by Ford and Champion Spark Plug, let enters an engine leaves that engine unburnt. And as you are all well aware, most of the unburnt fuel is carbon monovide. when the summarize that approximately one third of the gasoline that pound gallon of gasoline entering an engine, almost 4 pounds of carbon monoxide is emitted.

About 12 years ago, the federal government decided to do something about the ecology part of this problem by ordering the automakers to burn all the fuel before it left the tailpipe. If it did not burn in the engine, then burn it in the exhaust system. Once fuel has burnt, it is no longer polluting. The automakers met those emissions requirements by installing on vehicles something called a catalytic converter.

We all know that a catalytic converter is nothing more than a muffler whose insides have been coated with platinum. We all know why platinum was chosen. It has that interesting characteristic about it that when unburnt fuel comes in contact with platinum, that fuel will burn, when it ordinarily would not have burnt. In other words, you now have a furnace sitting under the floor of your vehicle which is burning one third of your gasoline and

8

which is throwing that released heat and energy away to the atmosphere. The catalytic converter is the great ecological success and he great economic disaster of the last 10 years.

The tragedy of the catalytic converter is that it is the right chemistry in the wrong place. That is the first observation that I wanted to bring to your attention.

About 21/2 years ago, Mr. Yoshiaki Ishizuki, Group Leader at the Engine Technical center of the Komatsu Engine Company of Japan, delivered a paper to the Society of Automotive Engineers and then came to our office to discuss his research with us. That research showed conclusively that if you did not have carbon deposits in the combustion chambers of an engine, you would not wear away the zylinder walls.

The carbon deposits are abrasive, and are being pushed up and down the cylinder walls by the movement of the pistons and rings. The walls are simply being scraped away. But remember that carbon deposits are simply another form of unburnt fuel.

- Carbon deposits are responsible for two other detrimental phenomena called engine knock or ping, and dieseling or run-on. Carbon deposits are responsible for these phenomena for three reasons. First of all, the carbon deposits increase the compression ratio of the engine. Second, carbon deposits are insulation, and do + not permit proper exiting of heat through surfaces of the combustion chamber. And third, a hot spot of carbon can ignite the fuel after you have turned off the key. (carbereted engines)

For these three reasons, carbon deposits are detrimental to proper combustion, while being destructive to engine life. Every engine burning gasoline suffers from this disease.

- After reviewing our observations in the area of unburnt fuel, carbon monoxide and carbon deposits, let's review the concept of

gasoline octane. The combination of gasoline is unique. It is the only hydrocarbon combustion process where we do not want combustion to begin as soon as possible after the air and fuel have mixed. We bring the air and fuel together in the carburetor. The movement of the piston compresses the air/fuel mixture, increasing the pressure and temperature of the mixture, but we do not yet want any combustion to take place.

Finally, at some point in the uppermost section of the compres-To sion stroke, we will ignite the spark plug. At that point, we only want the few molecules of the air/fuel mixture between the electrodes of the spark plug to ignite.

That tiny flame will now ignite the fuel in its immediate surroundings. That flame will then proceed outwards to ignite the fuel throughout the chamber. If all is perfect, the main blast of combustion will begin when the piston is almost at the top, what is called 10 degrees before top dead center. And it will be over a millisecond (1/1,000 second) later as soon as the piston begins to move down, what is called 10 degrees after top dead center. Remember that not not consider the fuel to burn before the right moment, we are pushing our luck with that fuel which is in the outer sections of the chamber that we do not want to ignite from the combined compression of the piston still rising and the burning gasses in the center pushing at the unburnt gasses in that outer section.

Something has to keep that gasoline from burning too early. That is called octane. Otherwise ignition will come from compressing the air/fuel mixture, not from igniting it with flame. Compression ignition is what engine knock and ping are all about. We discussed b_earlier how carbon deposits cause that knock and ping even if you were using the fuel that was right for that engine when it was new. Until ten years ago, you simply added lead to the fuel to increase

car not get black?

9

IF it was there would be no need for any converter at all.

its ability to withstand compression ignition. With today's unleaded fuel, that chemistry is not available. There is however another , chemistry available.

Bring that low-octane gasoline hydrocarbon into a refining chamber, bring that hydrocarbon in contact with rhenium, and the hydrocarbon will reform so that it can withstand the higher pressures and temperatures without igniting in the engine until ignition is desired.

But such a solution to higher octane is economically not viable although chemically available. As you reform the hydrocarbon to withstand the higher pressures and temperatures, there is an enormous loss of yield, making the marketing of higher-octane unleaded gasolines difficult. The 12-to-15 cent differential is too high for the consumer, and not high enough for the producer.

Being limited to this lower (87) octane gasoline means that compression ratios in new automobiles must be lower. And if the engineering of the compression ratio is going to take into account octane requirements as soon as carbon deposits begin to accumulate in the engine, the compression ratios must be still lower. (I am sure that you have all heard the gasoline commercial stating that as soon as you buy your car, its appetite for octane increases.)

Higher compression ratios offer more power and better performance. The major complaint of new car buyers today is the lack of power and performance that they enjoyed with their older vehicles.

Furthermore, with higher compression ratios, you can install lower differential ratios and convert the power increase to fuel economy. So unleaded gasoline has taken away one of our major tools in reducing fuel consumption without reducing vehicle size.

Platinum can reduce the octane requirement of a specific compres-

12

Steam Steam Steam 1.000°F <u>Gasoline</u> Cracking Crude Oi Jel Fuel Small Catalyst Large Diesel Fuel Zeolite Hydro-Hydrocarbon Other Distillates : Aluminosilicate carbons H,O, CO, Air CO + Air 1.000°F Steam Steam

In a refining chamber where crude oil is refined to gasoline, jet fuel, diesel fuel, etc., individual atoms of hydrogen and carbon are cracked off the crude which are not recoverable or saleable as such. The best way to utilize these elements is to permit air into the chamber, which is operating at 1000°F and let this air combust with the hydrogen and carbon to produce heat, permitting a reduction in the external heat supply which keeps the chamber at the prescribed temperature.

This is a very successful application of this fuel in the energy balance of the refining process. But they encountered one difficulty very similar to ours in the gasoline engine. They could not get more than 62 percent of the carbon monoxide to burn to carbon dioxide. Again, they suffered both the loss of fuel as well as the ecological problem of emitting tons of carbon monoxide into the environs. Platinum would be the best promoter to burn carbon monoxide to carbon dioxide if they could find a surface to support the platinum.

Within the refining chamber, throughout its volume, a surface was available, the surface of the fluid cracking catalyst with platinum prior to introducing the catalyst into the refining chamber, they were able to promote the burning of the carbon monoxide to carbon

sion ratio by cleaning out the carbon deposits and by speeding up the flame front, but it does not increase the octane of the fuel itself.

We now understand why so many purchasers of vehicles have removed their catalytic converter as soon as the warranty period is over. Leaded gasoline is 2 octane higher and several cents per gallon cheaper. It may not be legal, but it is very economical.

We believe that the real way to make unleaded gasoline more palatable to the automaker — both of whom want to get every last drop of power and every extra mile per gallon from the larger vehicle with the smaller engine — is to figure out some economical way to increase the octane of the fuel while reducing the octane requirement of the engine through catalyzed combustion, not through lower compression ratios.

Those are the three major problems that we observed:

- 1. A third of the gasoline leaving the engine unburnt;
- 2. Carbon deposits shortening engine life and interfering with proper combustion by causing ping and knock; and
- 3. The inability to offer the motorist and engine manufacturer more than 87 octane gasoline economically, and the associated poorer fuel economies.

Next I would like to review our observations of how other people solved problems of similar chemistry. We have already discussed how rhenium has been used to increase octane. Let me take a moment to discuss how Mobil Oil promoted the burning of carbon monoxide to carbon dioxide with platinum.

Here at the American Chemical Society Meeting in April, 1979, the Research Department of Mobil Oil delivered a paper entitled "CO Oxidation Promoters in Catalytic Cracking."

dioxide with supported platinum.

The degree of their success is described best in this composite of Table 2 of their report with the statement I have underlined from Page 15 of the report. (See addendum.)

They were able to increase the percentage of carbon monoxide that burnt from about 62% to over 99%. More important, they achieved this significant increase in more complete combustion while reducing total air entering the system by 17%. That is about 30% more heat from the same fuel.

For boiler operators, there is a very important message here. Without platinum, they were introducing 120 units of oxygen and utilizing only 85. With platinum, they introduced 100 units of oxygen and utilized all of it. Platinum permitted a drop in excess air from 40% to zero.

All of us can appreciate how platinum as a catalyst can reduce the temperature requirement for CO to burn to CO₂. This would normally explain how they were so successful. But when we see this enormous reduction in excess air, we have to ask in our observations if the platinum might not be doing something much more important. Is it possible that the platinum is getting a much higher percentage of the oxygen to go to the radical state by reducing the energy requirement to do so?

I should mention that the application of homogeneous catalysis is available to the combustion process in boilers and furnaces, and this drop in excess air is the key to that success.

Now the \$64,000 question. How much platinum is needed to catalyze the combustion of hydrocarbon fuels? Mobil reveals this is in their U.S. Patent #4,064,039 where we find that for a supported catalyst, where 40% of platinum's surface area is lost facing the supporting material, a maximum of 100 parts per billion is all that is

13

required. Homogeneous catalysis would not require more than about 70 ppb.

The average gasoline vehicle in this country drives 12,000 miles per year, averages 15 miles per gallon, and therefore consumes 800 gallons of gasoline per year.

To treat that 800 gallons of gasoline, we require less than 1/4 gram of platinum. And from our own experience, about an equal amount of rhenium. That is an economical quantity if we can figure out how to place that quantity economically into the engine. Throughout the volume of the flame zone, combustion in an engine and in a furnace is suspended in mid-air. No surfaces are available to support the platinum.

We have now completed a review of our observations. The present limitations in the gasoline combustion process, and how others have resolved problems of similar chemistry.

Let me now review our application of those latter solutions to the former problems. Let's agree that if we could dispense the economically effective quantity of platinum and rhenium as homogeneous catalysts into the combustion of gasoline, we ought to be successful in increasing the octane of the fuel during the compression stroke, without any loss of yield, while getting much more of the CO to burn to CO₂ and cleaning out the carbon deposits by promoting the oxidation of C to CO₂.

Let me mention parenthetically that when you reform the hydrocarbon to increase octane during the compression stroke, there is no loss of yield.

The first barrier that we ran into is that neither platinum nor any of its stable compounds is soluble in gasoline. Obviously, you cannot $CWC \cap M$ dissolve the platinum and rhenium into some solution, and pump all that solution into the engine. The metals must enter the engine

16

After you have solved all the chemistry problems, remember that the marketplace has two demands. The hardware cannot cost more than \$4 to produce nor take more than 10 minutes to install.

As the vehicle is driven, the vacuum from the engine arrives at the horizontal nozzle of the dispenser where it is attenuated by the 0.005" (1/8 millimeter) orifice before entering the top of the main chamber of the dispenser. This small vacuum inside the main chamber is just enough to cause air at atmospheric pressure to come down the vertical tube, enter the main chamber at the bottom, and rise as a bubble, at the prescribed rate of 2 to 3 bubbles per second.

After 6,000 miles of driving, the platinum and rhenium are depleted, but the liquid level has not changed except for ½ ounce of evaporation. A vial containing ½ ounce of the solution with the appropriate amounts of platinum and rhenium is now added to the dispenser, and the process continues to another 6,000 miles of driving.

About 20,000 of these systems have been sold. In addition to cleaning the carbon deposits out of the combustion chambers and eliminating the need for premium gasoline, these two sets of test data are very representative of the results.

This was a well-controlled fleet test of identical vehicles, comparing 2,000 miles without the platinum in April 1980 to 2,000 miles with the platinum in May 1980. (There was only a 9° rise in average ambient temperature between tests.) Most people ask why one vehicle suffered in the second part of the test. We don't know. Most likely it was a maintenance problem that had nothing to do with the platinum. Let me be frank enough to admit that we are much more interested how 5 of the 15 vehicles were able to increase their gas mileage by over 40%.

unaccompanied by any foreign carrier.

With any sort of mechanical dispenser that would meter less that 1/4 gram of platinum and rhenium into an engine over a year driving, you won't be able to close your hood, and it certainly wor be economical.

It is time to go back for one more observation. In 1966 Profess Robert Lemlich, at the University of Cincinnati, discovered a proce which he called bubble fractionation.

Professor Lemlich was able to fractionate a solute out of a solve selectively by permitting 2 to 3 bubbles per second to rise throug the solution, and then drawing out the vapor above the solutio

He was limited to nonfoaming surfactants and the fractionatic of solutes of very small quantities. The solution is now obvious. Fir nonfoaming surfactant compounds of platinum and rhenium.

Dissolve them in a solution, and design a bubbling mechanis that can dispense the platinum and rhenium into the engine aft fractionation.

Needless to say, you must have platinum and rhenium cor pounds that are not only soluble in your nonfreezing solution, b that will decompose to their most effective catalytic state at tho temperature conditions which will give you optimal catalysis duris the compression stroke for the rhenium, and during the combustic process for the platinum.

This test result also speaks for itself. Permit me to point out two interesting aspects of this test. First, you will notice that the busse: and minibusses were using leaded gasoline. Lead appears to have no bearing on our process. Perhaps this is true because we are in troducing new platinum into the engine with every stroke.

Second, that test result was compiled in October of 1982. By the end of the 1982-1983 school year, the town of Concord had reduced its annual fuel requirment for those 27 vehicles by \$14,000 through the use of platinum, even though their mileage driven had increased slightly over the previous year, when platinum was not used.

On February 28, 1984, four years of administrative procedure were completed by the Consumer Protection Department of the U.S. Government reviewing this process.

The Government's conclusions are:

1. National FuelSaver Corporation invented and markets a product called (Platinum) GASAVER which brings about more complete combustion and better gas mileage in automobile engines by means of platinum catalysis

2. The (Platinum) GASAVER offers 15 to 30% fuel savings when applied properly to a gasoline engine.

3. Independent testing parties make stronger claims for (Platinum) GASAVER than does National FuelSaver Corporation.

Thank you very much.

Saves 20°

CO OXIDATION PROMOTERS IN CATALYTIC CRACKING

A.W. CHESTER, A.B. SCHWARTZ, W.A. STOVER & J.P.WILLIAMS

Mobil Research & Development Corp., Paulsboro, NJ

TABLE 2

EFFECT OF PROMOTER ON CARBON BURNING RATES & OXIDATION ACTIVITY(a)

Apparent Carbon-Burnina

Catalyst	Rate Constant	Activity, CO ₂ /CO	% CO Burnt TO CO ₂
	1.16	0.9	47.4%
A Promoted W/Platinum	1.27	615	99.8%
В	1.26	1.0	50.0%
B Promoted W/Platinum	1.30	565	99.8%
C	1.14	1.9	65.5%
C Promoted W/Platinum	1.28	340	99.7%
D	1.15	3.1	75.6%
D Promoted W/Platinum	1.24	137	99.3%
E	0.97	2.0	66.7%
E Promoted W/Platinum	1.03	118	99.2%
F	0.96	2.0	66.7%
F Promoted W/Platinum	1.04	130	99.2%
(a) 1215°F, 4g catalyst ble	nded to 0.65% C, 21	5 cc air/ mìn	to completion.

From Page 15

20

Eventually cyclone temperatures declined by 55-95° and air usage was reduced by about 17%, yielding a considerable energy savings. Further commercial tests followed rapidly, including units converted from conventional (non CO combustion) to complete CO combustion via use of Mobil's promoter technology. Data from three such tests have been reported in detail.

PLATINUM GASAVER TEST RESULTS

Vehicle Number	Miles Per Gallon Without GASAVER	Miles Per Gallon With GASAVER	Per Cent Improvement With GASAVER
59	12.0	17.8	48.3%
63	11,3	16.6	46.9%
53	14.1	20.7	46.8%
51	13.0	18.8	44.6%
56	12.2	17.1	40.2%
. 64	9.6	13.3	38.5%
60	13.3	17.9	34.6%
55	9.8	13.1	33.7%
68	14.3	18.4	28.7%
50	10.8	13.9	28.7%
62	14.1	17.6	24.8%
66	15.8	17.5	10.6%
57	14.4	15.9	10.4%
54	13.1	14.0	6.9%
65	12.9	11.3	-12.4%
244.904	12.7	16.3	28.3%

Installation of the PLATINUM GASAVER, manufactured by NATIONAL FUELSAVER CORPORATION of Brookine Massachuseits, was performed on 4/22/80 on the above numbered litteen 1980 Chevrolet station wagons with 305 cubic inch V-8 engines (odometer readings between 15.070 and 38.784) owned and operated by TRANSPORTATION MANAGEMENT CORPORATION of Medford, Massachusetts

setts. We, the undersigned, officers of the two corporations (Transportation Management Corp of Medford, Mass and National FuelSaver Corp of Brookine, Mass: participating in the above study do hereby attest to the accuracy of the data contained herein and do agree that it may be made available for public dissemination, but only in its entirety

Richard Zimmerman President Transportation Management Corp.

Ross G Honig C P A V P & Controller Transportation Management Core

CONCORD PU

84 Passenger Ford - 391 Schoolbus with Leaded Gasoline

Vehicle Number	Miles per gallon without Platinum GASAVER	Miles per gallon with Platinum GASAVER	Per Cent Improvement
,	3.82	4.57	19.6%
5	3.77	4.50	19.4%
7	3.79	4.62	21.9%
8	3.76	4.65	23.7%
11	3.59	4.46	24.2%
15	3.56	4.47	25.6%
22	4.01	5.43	35.4%
23	3.56	4.44	24,7%
25	3.78	4.43	17.2%
26	3.78	4,47	18.2%
Group Aver	age 3.74	4.60	23.0%

65-71 Passenger International 345 Schoolbus with Leaded Gasoline

Vehicle Number	Miles per gallon without Platinum . GASAVER	Miles per gallon with Platinum GASAVER	Per Cent Improvement
16	5.41	6.19	14.4%
19	5.19	6.21	19.7%
12	4.82	5.69	18.0%
13	5.20	5.89	13.3%
14	5.21	5.87	12,7%
28	5.04	5.83	15.7%
George Ave	5 15	5.95	15.5%

21 Passenger GM-Chevrolet 350 Minibus with Leaded Gasoline

Vehicle Number	Miles per gallon without Platinum GASAVER	gallon with Platinum GASAVER	Per Cent Improvement
18	6.07	7.37	21.4%
27	5.98	6.77	13.2%
30	6.62	8.28	25.1%
Group Av	erege 6.22	7.47	20.1%

BLIC SCHOOLS

GM-Chevrolet - 350 Station Wagon with Unleaded Gasoline

Vehicle Number	Miles per gallon without Platinum GASAVER	Miles per gallon with Platinum GASAVER	Per Cent Improvemen
33	12.0	14.2	18 3%
34	12.4	15 5	25.0%
35	11.7	13.9	18.8%
36	12.7	14.9	17.3%
37	12.6	15.5	23.0%
Group Aver	ege 12.3	14.8	20.3%

GM-Chevrolet - 305 Station Wagon with Unleaded Gasoline

Vehicle Number	gallon without Platinum GASAVER	gallon with Platinum GASAVER	Per Cent Improvemen
43	14.2	16.6	16.9%
44	12.8	14.3	11 7%
38	13.7	16.9	23.4%
Group Ave	rage 13.6	15.9	16.9%

FLEET AVERAGE IMPROVEMENT 20.4%

For each unit of Platinum GaSaver that we consume (retail price - \$119.00), we save \$385.04 in gasoline. This report may be disseminated

publicly in its entirety.

Manager of Transportation

Date: October 21 1982

23

Special Notes:

Note 1: If engine has been driven approximately 60,000 miles, the O2 (Oxygen) sensor needs to be replaced. It can be purchased at your local auto parts store. Change the O2 sensor after the Gasaver has been hooked up and is operating.

Before removing the old O2 sensor, run your engine until it reaches normal operating temperature. With the engine warm, but shut off, disconnect both positive and negative battery terminals for ten (10) minutes. Ford products require battery terminal disconnection for thirty (30) minutes. Install the new O2 sensor, and reconnect both battery terminals.

Start engineand run it at 3,000 RPM (revolutions per minute), (about 1/3 throttle position), for three (3) minutes. This procedure will recalibrate your computer for the best overall performance.

Note 2: If no improvement is noticed with the Gasaver after 1,000 miles of proper operation (two (2) to three (3) bubbles per second), you should recalibrate your O2 sensor as described above, even though you may not have needed to replace it.

NATIONAL FUELSAVER CORPORATION

developers of the

PLATINUM GASAVER

Gasoline FAQ - Part 1 of 4

4. What is Gasoline?

4.1 Where does crude oil come from?.

The generally accepted origin of crude oil is from plant life up to 3 billion years minantly from 100 to 600 million years ago [1]. "Dead vegetarian dino dinn r" is more correct than "dead dinos". The molecular structure of the hydrocarbons and other compounds present in fossil fuels can be linked to the leaf waxes and other plant molecules of marine and terrestrial plants believed to exist during that erachere are various biogenic marker chemicals (such as isoprenoids from terpenes porphyries and aromatics from natural pigments, pristane and the hydrolysis of chlorophyll, and normal alkanes from waxes), hape can not be explained by known geological processes [2]. Me presence activity and the carbon isotopic ratios also indicate a biological origin [3]. T is another hypothesis that suggests crude oil is derived from methane ham the earth's interior. The current main proponent of this abiotic theory is Thomas cold, however abiotic and extraterrestrial origins for fossil fuels n of the century, and were discarded then. A large amount of additiona for the biological origin of crude oil has accumulated since then.

4.2 When will we run out of crude oil?

It has been estimated that the planet contains over $6.4 \times 10^{\circ}15$ tonnes of organic carbon that is cycled through two major cycles, but only about 18% of that contributes to petroleum production. The primary cycle (turnover of $2.7\text{-}3.0 \times 10^{\circ}12$ tonnes of organic carbon) has a half-life of days to decades, whereas the large secondary cycle (turnover $6.4 \times 10^{\circ}15$ tonnes of organic carbon) has a half-life of several million years [4]. Much of this organic carbon is too dilute or inaccessible for current technology to recover, however the estimates represent centuries to millennia of fossil fuels, even with continued consumption at current or increased rates [5].

The concern about "running out of oil" arises from misunderstanding the significance of a petroleum industry measure called the Reserves/Production ratio (R/P). This monitors the production and exploration interactions. The R/P is based on the concept of "proved" reserves of fossil fuels. Proved reserves are those

•	
Crude Oil	Proved Reserves
Middle East	89.4 billion tonnes
USA	3.8
USA - 1995 USGS data	10.9
Total World	137.3
Coal	Proved Reserves
USA	240.56 billion tonnes
Total World	1,043.864
Natural Gas	Proved Reserves
USA	4.6 trillion cubic meters
USA - 1995 USGS data	9.1
Tetal World	141.0

One billion = 1 x 10^9. One trillion = 1 x 10^12. One barrel of Arabian Light crude oil = 0.158987 m3 and 0.136 tonnes.

If the crude oil price exceeds \$30/bbl then alternative fuels may become competitive, and at \$50-60/bbl coal-derived liquid fuels are economic, as are many biomass-derived fuels and other energy sources [8].

4.3 What is the history of gasoline?

In the late 19th Century the most suitable fuels for the automobile were coal tar distillates and the lighter fractions from the distillation of crude oil. During the early 20th Century the oil companies were producing gasoline as a simple distillate from petroleum, but the automotive engines were rapidly being improved and required a more suitable fuel. During the 1910s, laws prohibited the storage of gasolines on residential properties, so Charles F. Kettering (yes - he of ignition

quantities of fossil fuels that geological and engineering information indicate with reasonable certainty can be recovered in the future from known reservoirs under existing economic and operating conditions. The Reserves/Production ratio is the proved reserves quantity divided by the production in the last year, and the result will be the length of time that those remaining proved reserves would last if production were to continue at the current level [6]. It is important to note the economic and technology component of the definitions, as the price of oil increases (or new technology becomes available), marginal fields become "proved reserves". We are unlikely to "run out" of oil, as more fields become economic. Note that investment in exploration is also linked to the R/P ratio, and the world crude oil R/P ratio typically moves between 20-40 years, however specific national incentives to discover oil can extend that range upward.

Concerned people often refer to the "Hubbert curves" that predict fossil fuel discovery rates would peak and decline rapidly. M. King Hubbert calculated in 1982 that the ultimate resource base of the lower 48 states of the USA was 163+-2 billion barrels of oil, and the ultimate production of natural gas to be 24.6+-0.8 trillion cubic meters, with some additional qualifiers. As production and proved resources were 147 billion barrels of oil and 22.5 trillion cubic meters of gas, Hubbert was implying that volumes yet to be developed could only be 16-49 billion barrels of oil and 2.1-4.5 trillion cubic meters. Technology has confounded those predictions for natural gas [6a].

The US Geological Survey has also just increased their assessment of US (not just the lower 48 states), inferred reserves crude oil by 60 billion barrels, and doubled the size of gas reserves to 9.1 trillion cubic meters. When combined with the estimate of undiscovered oil and gas, the totals reach 110 billion barrels of oil and 30 trillion cubic meters of gas [7]. When the 1995 USGS estimates of undiscovered and inferred crude oil are calculated for just the lower 48 states, they totaled (in 1995) 68.9 billion barrels of oil, well above Hubbert's highest estimate made in 1982.

The current price for Brent Crude is approx. \$22/bbl. The world R/P ratio has increased from 27 years (1979) to 43.1 years (1993). The 1995 BP Statistical Review of World Energy provides the following data [6,7].

R/P Ratio

93.4 year 9.8 years

33.0 years 43.0 years

R/P Ratio

247 years 235 years

R/P Ratio

8.6 years 17.0 years 66.4 years.

system fame) modified an IC engine to run on kerosine. However the kerosine-fueled engine would "knock" and crack the cylinder head and pistons. He assigned Thomas Midgley Jr. to confirm that the cause was from the kerosine droplets vaporizing on combustion as they presumed. Midgley demonstrated that the knock was caused by a rapid rise in pressure after ignition, not during preignition as believed [9]. This then lead to the long search for antiknock agents, culminating in tetra ethyl lead [10]. Typical mid-1920s gasolines were 40 - 60 Octane [11].

Because sulfur in gasoline inhibited the octane-enhancing effect of the alkyl lead, the sulfur content of the thermally-cracked refinery streams for gasolines was restricted. By the 1910s, the petroleum industry had determined that the larger hydrocarbon molecules (kerosine) had major adverse effects on the octane of gasoline, and were developing consistent specifications for desired properties. By the 1940s catalytic cracking was introduced, and gasoline compositions became

fairly consistent between brands during the various seasons.

The 1950s saw the start of the increase of the compression ratio, requiring higher octane fuels. Octane ratings, lead levels, and vapor pressure increased, whereas sulfur content and olefins decreased. Some new refining processes (such as hydro cracking), specifically designed to provide hydrocarbons components with good lead response and octane, were introduced. Minor improvements were made to gasoline formulations to improve yields and octane until the 1970s - when unleaded fuels were introduced to protect the exhaust catalysts that were also being introduced for environmental reasons. From 1970 until 1990 gasolines were slowly changed as lead was phased out, lead levels plummeted, octanes initially decreased, and then remained 2-5 numbers lower, vapor pressures continued to increase, and sulfur and olefins remained constant, while aromatics increased. In 1990, the US Clean Air Act started forcing major compositional changes on gasoline, resulting in plummeting vapor pressure and increasing oxygenate levels. These changes will continue into the 21st Century, because gasoline use in SI engines is a major pollution source. Comprehensive descriptions of the changes to gasolines this century have been provided by L.M.Gibbs [12,13].

The move to unleaded fuels continues worldwide, however several countries have increased the aromatics content (up to 50%) to replace the alkyl lead octane enhancers. These highly aromatic gasolines can result in damage to elastomers and increased levels of toxic aromatic emissions if used without exhaust catalysts.

4.4 What are the hydrocarbons in gasoline?

Hydrocarbons (HCs) are any molecules that just contain hydrogen and carbon, both of which are fuel molecules that can be burnt (oxidized) to form water (

H2O) or carbon dioxide (CO2). If the combustion is not complete, carbon monoxide (CO) may be formed. As CO can be burnt to produce CO2, it is also

The way the hydrogen and carbons hold hands determines which hydrocarbon family they belong to. If they only hold one hand they are called "saturated" hydrocarbons" because they can not absorb additional hydrogen. If the carbons hold two hands they are called "unsaturated hydrocarbons" because they can be converted into "saturated hydrocarbons" by the addition of hydrogen to the double bond. Hydrogens are omitted from the following, but if you remember C = 4 hands, H = 1 hand, and O = 2 hands, you can draw the full structures of most HCs. Gasoline contains over 500 hydrocarbons that may have between 3 to 12 carbons, and gasoline used to have a boiling range from 30C to 220C at atmospheric pressure. The boiling range is narrowing as the initial boiling point is increasing, and the final boiling point is decreasing, both changes are for environmental reasons. Detailed descriptions of structures can be found in any chemical or petroleum text discussing gasolines [14].

4.4.1 Saturated hydrocarbons (aka paraffins, alkanes)

- -, stable, the major component of leaded gasolines.
- tend to burn in air with a clean flame.
- octane ratings depend on branching and number of carbon atoms.

alkanes

C7H16

normal = continuous chain of carbons (Cn H2n+2)

low octane ratings, decreasing with carbon chain length.

iso = branched chain of carbons (Cn H2n+2) - higher octane ratings, increasing with carbon chain branching.

cyclic = circle of carbons (Cn H2n) (aka Naphthenes)

- high octane ratings.

C6H12

easy boeakdown results in brigher

4.4.2 Unsaturated Hydrocarbons

- Unstable, are the remaining component of gasoline.
- Tend to burn in air with a smoky flame.

ad Soud-These are unstable, and are usually limited to a few %.

Alkanes (aka olefins, have carbon=carbon double bonds)

- tend to be reactive and toxic, but have desirable octane ratings.

H400gen C5H10 h h h h h

trace amounts, and only in some poorly-refined gasolines.

- These are even more unstable, are only present in

Alkynes (aka acetylenes, have carbon-carbon triple bonds)

2-methyl-2-butene

h C=C h Acetylene

C2H2

Arenes (aka aromatics)

- Used to be up to 40%, gradually being reduced to <20% in the US.
- tend to be more toxic, but have desirable octane ratings.

- Some countries are increasing the aromatic content (up to 50% in some super unleaded fuels) to replace the alkyl lead octane enhancers.

Polynuclear Aromatics (aka PNAs or PAHs)

- These are high boiling, and are only present in small amounts in gasoline. They contain benzene rings joined together. The simplest, and least toxic, is Naphthalene, which is only present in trace amounts in traditional gasolines, and even lower levels are found in reformulated gasolines. The larger multi-ringed PNAs are highly toxic, and are not present in gasoline.

Unsaturated
C10H8
LZ = 10 0(1) Naphthalene

4.5 What are oxygenates?

Oxygenates are just preused hydrocarbons :-). They contain oxygen, which can not provide energy, but their structure provides a reasonable antiknock value, thus they are good substitutes for aromatics, and they may also reduce the smog-forming tendencies of the exhaust gases [15]. Most oxygenates used in gasolines are either alcohols (Cx-O-H) or ethers (Cx-O-Cy), and contain 1 to 6

carbons. Alcohols have been used in gasolines since the 1930s, and MTBE was first used in commercial gasolines in Italy in 1973, and was first used in the US by ARCO in 1979. The relative advantages of aromatics and oxygenates as environmentally-friendly and low toxicity octane-enhancers are still being researched.

Ethanol h C-C-O-H C2H5OH lamespeed h Methyl tertiary butyl ether h C-C-C-O-C h (aka tertiary butyl methyl ether) hhhh h

They can be produced from fossil fuels e.g. methanol (CH3OH), methyl tertiary butyl ether (MTBE), tertiary amyl methyl ether (TAME), or from biomass, e.g. ethanol(C2H5OH), ethyl tertiary butyl ether (ETBE). MTBE is produced by reacting methanol (from natural gas) with isobutylene in the liquid phase over an acidic ion-exchange resin catalyst at 100C. The isobutylene was initially from refinery catalytic crackers or petrochemical olefin plants, but these days larger plants produce it from butanes. MTBE production has increased at the rate of 10 to 20% per year, and the spot market price in June 1993 was around \$270/tonne [15]. The "ether" starting fluids for vehicles are usually diethyl ether (liquid) or dimethyl ether (aerosol). Note that " petroleum ethers " are volatile alkane hydrocarbon fractions, they are not a Cx-O-Cy compound.

Oxygenates are added to gasolines to reduce the reactivity of emissions, but they are only effective if the hydrocarbon fractions are carefully modified to utilize the octane and volatility properties of the oxygenates. If the hydrocarbon fraction is not correctly modified, oxygenates can increase the undesirable smog-forming and toxic emissions. Oxygenates do not necessarily reduce all exhaust toxins, nor are they intended to.

Oxygenates have significantly different physical properties to hydrocarbons, and

Saturated,

C4H9OCH3

the levels that can be added to gasolines are controlled by the 1977 Clean Air Act amendments in the US, with the laws prohibiting the increase or introduction of a fuel or fuel additive that is not substantially similar to any fuel or fuel additive used to certify 1975 or subsequent years vehicles. Waivers can granted if the product does not cause or contribute to emission device failures, and if the EPA does not specifically decline the application after 180 days, it is taken as granted. In 1978 the EPA granted 10% by volume of ethanol a waiver, and have subsequently issued waivers for <10 vol% ethanol (1982), 7 vol% tertiary butyl alcohol (1979), 5.5 vol% 1:1 MeOH/TBA (1979), 3.5 mass% oxygen derived from 1:1 MeOH/TBA = ~9.5 vol% of the alcohols (1981), 3.7 mass% oxygen derived from methanol and cosolvents = 5 vol% max MeOH and 2.5 vol% min cosolvent - with some cosolvents requiring additional corrosion inhibitor (1985,1988), 7.0 vol% MTBE (1979), and 15.0 vol% MTBE (1988). Only the ethanol waiver was exempted from the requirement to still meet ASTM volatility requirements [16].

In 1981 the EPA ruled that fuels could contain aliphatic alcohols (except MeOH) and/or ethers at concentrations until the oxygen content is 2.0 mass%. It also permitted 5.5 vol% of 1:1 MeOH/TBA. In 1991 the maximum oxygen content was increased to 2.7 mass%. To ensure sufficient gasoline base was available for ethanol blending, the EPA also ruled that gasoline containing up to 2 vol% of

MTBE could subsequently be blended with 10 vol% of ethanol [16]. Initially, the oxygenates were added to hydrocarbon fractions that were slightly-modified unleaded gasoline fractions, and these were known as "oxygenated" gasolines. In 1995, the hydrocarbon fraction was significantly modified, and these gasolines are called), "reformulated gasolines" (RFGs) and there are differing specifications for California (Phase 2) and Federal (simple model) RFGs, however both require oxygenates to provide Octane. The California RFG requires the hydrocarbon composition of the RFG to be significantly more modified than the existing oxygenated gasolines to reduce unsaturates, volatility, benzene, and the reactivity of emissions. Federal regulations only reduce vapor pressure and benzene directly, however aromatics are also reduced to meet emissions criteria [16].

Oxygenates that are added to gasoline function in two ways. Firstly they have high blending octane, and so can replace high octane aromatics in the fuel. These aromatics are responsible for disproportionate amounts of CO and HC exhaust emissions. This is called the "aromatic substitution effect". Oxygenates also cause engines without sophisticated engine management systems to move to the lean side of stoichiometry, thus reducing emissions of CO (2% oxygen can reduce CO by 16%) and HC (2% oxygen can reduce HC by 10%) [17], and other researchers have observed similar reductions also occur when oxygenates are added to reformulated gasolines on older and newer vehicles, but have also shown that NOx levels may increase, as also may some regulated toxins [18,19,20].

However, on vehicles with engine management systems, the fuel volume will be increased to bring the stoichiometry back to the preferred optimum setting. Oxygen in the fuel can not contribute energy, consequently the fuel has less energy content. For the same efficiency and power output, more fuel has to be burnt, and the slight improvements in combustion efficiency that oxygenates provide on some engines usually do not completely compensate for the oxygen. There are huge number of chemical mechanisms involved in the pre-flame reactions of gasoline combustion. Although both alkyl leads and oxygenates are effective at suppressing knock, the chemical modes through which they act are entirely different. MTBE works by retarding the progress of the low temperature or cool-flame reactions, consuming radical species particularly OH radicals and producing iso butene. The iso butene in turn consumes additional OH radicals and produces unreactive,

4.6 Why were alkyl lead compounds added?

The efficiency of a spark-ignited gasoline engine can be related to the compression ratio up to at least compression ratio 17:1 [23]. However any "knock" caused by the fuel will rapidly mechanically destroy an engine, and General Motors was having major problems trying to improve engines without inducing knock. The problem was to identify economic additives that could be added to gasoline or kerosine to prevent knock, as it was apparent that engine development was being hindered. The kerosine for home fuels soon became a secondary issue, as the magnitude of the automotive knock problem increased throughout the 1910s, and so more resources were poured into the quest for an effective "antiknock". A

higher octane aviation gasoline was required urgently once the US entered WWI, and almost every possible chemical (including melted butter) was tested for antiknock ability [24]. Originally, iodine was the best antiknock available, but was not a practical gasoline additive, and was used as the benchmark. In 1919 aniline was found to have superior antiknock ability to iodine, but also was not a practical additive, however aniline became the benchmark antiknock, and various compounds were compared to it. The discovery of tetra ethyl lead, and the scavengers required to remove it from the engine were made by teams lead by Thomas Midgley Jr. in 1922 [9,10,24]. They tried selenium oxychloride which was an excellent antiknock, however it reacted with iron and "dissolved" the engine. Midgley was able to predict that other organometallics would work, and slowly focused on organometal they that had to remove the lead, which would otherwise accumulate and coat the engine and exhaust system with lead. They discovered and developed the halogenated lead scavengers that are still used in leaded fuels. The scavengers, (ethylene dibromide and ethylene dichloride), function by providing halogen atoms that react with the lead to form volatile lead halide salts that can escape out the exhaust. The quantity of scavengers added to the alkyl lead concentrate is calculated according to the amount of lead present. If sufficient scavenger is added to theoretically react with all the lead present, the amount is called one "theory". Typically, 1.0 to 1.5 theories are used, but aviation gasolines must only use one theory. This ensures there is no excess bromine that could react with the engine. The alkyl leads rapidly became the most cost-effective method of enhancing octane. The introduction was not universally acclaimed, as the toxicity of TEL soon became apparent, and several eminent public health officials campaigned against the widespread introduction of alkyl leads [25]. Their cause was assisted by some major disasters at TEL manufacturing plants, and although these incidents were mainly attributable to a failure of management and/or staff to follow instructions, they resulted in a protracted dispute in the chemical and public health literature that even involved Midgley [25,26]. We should be careful retrospectively applying judgement to the 1920s, as the increased octane of leaded gasoline provided major gains in engine efficiency and

resonantly stabilized radicals such as allyl and methyl allyl, as well as stable engineeries to produce hydrocarbon straine that would increase octane with small species such as allene, which resist further oxidation [21,22].

**Continuogenated scartingers meant that periodical relines could then configure resonantly stabilized radicals such as allyl and methyl allyl, as well as stable engineeries to produce hydrocarbon straines that would increase octane with small quantities of allyl lead. If you keep adding any lead compounds, the lead species such as allene, which resist further oxidation [21,22]. lead should be added. e du

Up until the late 1960s, alkyl leads were added to gasolines in increasing concentrations to obtain octane. The limit was 1.14g Pb/l, which is well above the diminishing returns part of the lead response curve for most refinery streams, thus it is unlikely that much the lead was ever made at that level. I believe 1.05 was about the maximum, and articles suggest that 1970 100 RON premiums were about 0.7-0.8 g Pb/l and 94 RON regulars 0.6-0.7 g Pb/l, which matches published lead response data [27,28] e.g.

For Lead g/l	Catalytic Reformat	Straight Run Naphtha. Research Octane Number
0.0	96	72
0.1	98	79
0.2	99	83
0.3	100	85
0.4	101	87
0.5	101.5	88
0.6	102	89
0.7	102.5	89.5
0.8	102.75	90

The alkyl lead antiknock work in a different stage of the pre-combustion reaction to oxygenates. In contrast to oxygenates, the alkyl lead interferes with hydrocarbon chain branching in the intermediate temperature range where HO2 is the most important radical species. Lead oxide, either as solid particles, or in the gas phase, reacts with HO2 and removes it from the available radical pool, thereby deactivating the major chain branching reaction sequence that results in undesirable, easily-autoignitable hydrocarbons [21,22].

By the 1960s, the nature the toxicity of the emissions from gasoline-powered engines was becoming of increasing concern and extensive comparisons of the costs and benefits were being performed. By the 1970s, the failure to find durable, lead-tolerant exhaust catalysts would hasten the departure of lead, as the proposed regulated emissions levels could not be economically achieved without exhaust catalysts [29]. A survey in 1995 indicated that over 50 countries (20 in Africa) still permit leaded fuels containing 0.8g Pb/l, whereas the European maximum is 0.15 g Pb/l [29a]. 4.7 Why not use other organometallic compounds?

As the toxicity of the alkyl lead and the halogenated scavengers became of concern, alternatives were considered. The most famous of these is methylcyclopentadienyl manganese tricarbonyl (MMT), which was used in the USA until banned by the EPA from 27 Oct 1978 [30], but is approved for use in Canada and Australia. Recently the EPA ban was overturned, and MMT can be

used up to 0.031gMn/US Gal in all states except California (where it remains banned). The EPA has stated it intends to review the whole MMT situation and , if evidence supports removing MMT, they will revisit banning MMT. Automobile manufacturers believe MMT reduces the effectiveness of the latest emission control systems [31]. Canada also contemplated banning MMT because of the same concerns, as well as achieving fuel supply uniformity with the lower 48 states of the USA [31]. MMT is more expensive than alkyl leads and has been reported to increase unburned hydrocarbon emissions and block exhaust catalysts [32].

Other compounds that enhance octane have been suggested, but usually have significant problems such as toxicity, cost, increased engine wear etc.. Examples include dicyclopentadienyl iron and nickel carbonyl. Germany used iron pentacarbonyl (Fe(CO)5) at levels of 0.5% or less in gasoline during the 1930s. While its cost was low, one of its major drawbacks was that the carbonyl decomposed rapidly when the gasoline was exposed to light. Iron oxide (Fe3O4) also deposited on the spark plug insulator causing short circuits, and the precipitation of iron oxides in the lubricating oil also led to excessive wear rates [33].

Typical modern refinery processes for gasoline components include

- * Catalytic cracking breaks larger, higher-boiling, hydrocarbons into gasoline range product that contains 30% aromatics and 20-30% olefins.
- * Hydro cracking cracks and adds hydrogen to molecules, producing a more saturated, stable, gasoline fraction.
- * Isomerisation raises gasoline fraction octane by converting straight chain hydrocarbons into branched isomers.
- * Reforming converts saturated, low octane, hydrocarbons into higher octane product containing about 60% aromatics.
- * Alkylation reacts gaseous olefin streams with iso butane to produce liquid high octane iso-alkanes.

Some other countries are removing the alkyl lead compounds for health reasons, and replacing them with aromatics and oxygenates. If the vehicle fleet does not have exhaust catalysts, the emissions of some toxic aromatic hydrocarbons can increase. If maximum environmental and health gains are to be achieved, the removal of lead from gasoline should be accompanied by the immediate introduction of exhaust catalysts and sophisticated engine management systems,

4.9 What energy is released when gasoline is burned?

It is important to note that the theoretical energy content of gasoline when burned in air is only related to the hydrogen and carbon contents. The energy is released when the hydrogen and carbon are oxidized (burnt), to form water and carbon dioxide. Octane rating is not fundamentally related to the energy content, and the actual hydrocarbon and oxygenate components used in the gasoline will determine both the energy release and the antiknock rating.

Gas	Fractional Volume	Molecular Weight	Relative
Species	volume	kg/mole	Mass
N2	0.78084	28.0134	21.873983
O2	0.209476	31.9988	6.702981
Ar	0.00934	39.948	0.373114
CO2	0.000314	44.0098	0.013919
Ne	0.00001818	20.179	0.000365
He	0.00000524	4.002602	0.000021
Kr	0.00000114	83.80	0.000092
Xe	0.000000087	131.29	0.000011
CH4	0.000002	16.04276	0.000032
H2	0.0000005	2.01588	0.000001
Air		28.964419	

For normal heptane C7H16 with a molecular weight = 100.204

C7H16 + 11 O2 = 7 CO2 + 8 H2O

thus 1.000 kg of C7H16 requires 3.513 kg of O2 = 15.179 kg of air.

The chemical stoichiometric combustion of hydrocarbons with oxygen can be written as:-

4.8 What do the refining processes do?

Crude oil contains a wide range of hydrocarbons, organometallics and other compounds containing sulfur, nitrogen etc. The HCs contain between 1 and 60 carbon atoms. Gasoline contains hydrocarbons with carbon atoms between 3 and 12, arranged in specific ways to provide the desirable properties. Obviously, a refinery has to either sell the remainder as marketable products, or convert the larger molecules into smaller gasoline molecules.

A refinery will distill crude oil into various fractions and, depending on the desired final products, will further process and blend those fractions. Typical final products could be:- gases for chemical synthesis and fuel (CNG), liquified gases (LPG), butane, aviation and automotive gasolines, aviation and lighting kerosines, diesels, distillate and residual fuel oils, lubricating oil base grades, paraffin oils and waxes. Many of the common processes are intended to increase the yield of blending feedstocks for gasolines.

The changes to the US Clean Air Act and other legislation ensures that the refineries will continue to modify their processes to produce a less volatile gasoline with fewer toxins and toxic emissions.

Options include:-

- * Reducing the "severity" of reforming to reduce aromatic production.
- * Distilling the C5/C6 fraction (containing benzene and benzene precursors) from reformer feeds and treating that stream to produce non-aromatic high octane components.
- * Distilling the higher boiling fraction (which contains 80-100% of aromatics that can be hydro cracked) from catalytic cracker product [34].
- * Convert butane to iso butane or isobutylene for alkylation or MTBE feed.

Two important reactions are:

The mass or volume of air required to provide sufficient oxygen to achieve this complete combustion is the "stoichiometric" mass or volume of air. Insufficient air = "rich", and excess air = "lean", and the stoichiometric mass of air is related to the carbon:hydrogen ratio of the fuel. The procedures for calculation of stoichiometric air-fuel ratios are fully documented in an SAE standard [35].

Atomic masses used are:-Hydrogen = 1.00794, Carbon = 12.011, Oxygen = 15.994, Nitrogen = 14.0067, and Sulfur = 32.066.

The composition of sea level air (1976 data, hence low CO2 value) is

$$CxHy + (x + (y / 4)) O2 > xCO2 + (y/2)H2O$$

Often, for simplicity, the remainder of air is assumed to be nitrogen, which can be added to the equation when exhaust compositions are required. As a general rule, maximum power is achieved at slightly rich, whereas maximum fuel economy is achieved at slightly lean.

The energy content of the gasoline is measured by burning all the fuel inside a bomb calorimeter and measuring the temperature increase. The energy available depends on what happens to the water produced from the combustion of the hydrogen. If the water remains as a gas, then it cannot release the heat of vaporization, thus producing the Nett Calorific Value. If the water were condensed back to the original fuel temperature, then Gross Calorific Value of the fuel, which will be larger, is obtained.

The calorific values are fairly constant for families of HCs, which is not surprising, given their fairly consistent carbon:hydrogen ratios. For liquid (1) or gaseous (g) fuel converted to gaseous products - except for the 2-methyl butene-2, where only gaseous is reported. * = Blending Octane Number as reported by API Project 45 using 60 octane base fuel, and the numbers in brackets are Blending Octane Numbers currently used for modern fuels. Typical Heats of Combustion are [36]:-

Fuel	State	Spicific Heat MJ/kg	Research Octane	Motor Octane
n-heptane	liquid	44.592	0	0
	gas	44.955		
i-octane	liquid	44.374	100	100
	gas	44.682		
toluene	liquid	40.554	124* (111) 112* (94)
	gas	40.967	•	, , ,
2-methyl b	utene-2	44.720	176* (113) 141* (81)

Because all the data is available, the calorific value of fuels can be estimated quite accurately from hydrocarbon fuel properties such as the density, sulfur content, and aniline point (which indicates the aromatics content).

It should be noted that because oxygenates contain oxygen that can not provide energy, they will have significantly lower energy contents. They are added to provide octane, not energy. For an engine that can be optimized for oxygenates, more fuel is required to obtain the same power, but they can burn slightly more efficiently, thus the power ratio is not identical to the energy content ratio. They also require more energy to vaporize.

		Energy Content	Heat of Oxygen	Content
			Vaporiz	zation
		Net MJ/kg	MJ/kg	w1%1
1	Methanol	19.95	1.154	49.9
1	Ethanol	26.68	0.913	31.7
_	MTBE	35.18	0.322	18.2
	ETBE	36.29	0.310	15.7
	TAME	36.28	0.323	15.7
	Gasoline	42 - 44	0.297	0.0
•				

Typical values for commercial fuels in megajoules/kilogram are [37]:

	Gross	Net	
Hydrogen	141.9	120.0	(^
Carbon to Carbon monoxide	10.2	-	<i>CO</i>
Carbon to Carbon dioxide	32.8	-	
Sulfur to sulfur dioxide	9.16	-	1 (
Natural Gas	53.1	48.0	1.1
Liquified petroleum gas	49.8	46.1	να
Aviation gasoline	46.0	44.0	
Automotive gasoline	45.8	43.8	
Kerosine	46.3	43.3	/ '
Diesel	45.3	42.5	Cc

Obviously, for automobiles, the nett calorific value is appropriate, as the water is emitted as vapor. The engine can not utilize the additional energy available when the steam is condensed back to water. The calorific value is the maximum energy that can be obtained from the fuel by combustion, but the reality of modern SI engines is that thermal efficiencies of only 20-40% may be obtained, this limit being due to engineering and material constraints that prevent optimum thermal conditions being used. CI engines can achieve higher thermal efficiencies, usually over a wider operating range as well. Note that combustion efficiencies are high, it is the thermal efficiency of the engine is low due to losses. For a water-cooled SI engine with 25% useful work at the crankshaft, the losses may consist of 35% (coolant), 33% (exhaust), and 12% (surroundings).

4.10 What are the gasoline specifications?

Gasolines are usually defined by government regulation, where properties and test methods are clearly defined. In the US, several government and state bodies can specify gasoline properties, and they may choose to use or modify consensus minimum quality standards, such as American Society for Testing Materials (ASTM). The US gasoline specifications and test methods are listed in several readily available publications, including the Society of Automotive Engineers (SAE) [38], and the Annual Book of ASTM Standards [39].

The 1995 ASTM edition includes:-

D4814-94d Specification for Automotive Spark-Ignition Engine Fuel. This specification lists various properties that all fuels have to comply with, and may be updated throughout the year. Typical properties are:-

4.10.1 Vapor Pressure and Distillation Classes.

6 different classes according to location and/or season. As gasoline is distilled, the temperatures at which various fractions are evaporated are calculated. Specifications define the temperatures at which various percentages of the fuel are evaporated. Distillation limits include maximum temperatures that 10% is evaporated (50-70C), 50% is evaporated (110-121C), 90% is evaporated (185-190C), and the final boiling point (225C). A minimum temperature for 50% evaporated (77C), and a maximum amount of Residue (2%) after distillation. Vapor pressure limits for each class (54, 62, 69, 79, 93, 103 kPa) are also specified. Note that the EPA has issued a waiver that does not require gasoline with 9-10% ethanol to meet the required specifications between 1st May - 15 September.

4.10.2 Vapor Lock Protection Classes

5 classes for vapor lock protection, according to location and/or season. The limit for each class is a maximum Vapor-Liquid ratio of 20 at one of the specified testing temperatures of 41, 47, 51, 56, 60C.

4.10.3 Antiknock Index (aka (RON+MON)/2, "Pump Octane")

The (Research Octane Number + Motor Octane Number) divided by two. Limits are not specified, but changes in engine requirements according season and location are discussed. Fuels with an Antiknock index of 87, 89, 91 (Unleaded), and 88 (Leaded) are listed as typical for the US at sea level, however higher altitudes will specify lower octane numbers.

4.10.4 Lead Content

Leaded = 1.1 g Pb / L maximum, and Unleaded = 0.013 g Pb / L maximum.

4.10.5 Copper strip corrosion

bility to tarnish clean copper, indicating the presence of any corrosive sulfur compounds

4.10.6 Maximum Sulfur content

Sulfur adversely affects exhaust catalysts and fuel hydrocarbon lead response, and also may be emitted as polluting sulfur oxides. Leaded = 0.15 %mass maximum, and Unleaded = 0.10 %mass maximum. Typical US gasoline levels are 0.03 %mass.

4.10.7 Maximum Solvent Washed Gum (aka Existent Gum)

Limits the amount of gums present in fuel at the time of testing to 5 mg/100mls. The results do not correlate well with actual engine deposits caused by fuel vaporization [40].

4.10.8 Minimum Oxidation Stability

This ensures the fuel remains chemically stable, and does not form additional gums during periods in distribution systems, which can be up to 3-6 months. The sample is heated with oxygen inside a pressure vessel, and the delay until significant oxygen uptake is measured.

4.10.9 Water Tolerance

Highest temperature that causes phase separation of oxygenated fuels. The limits vary according to location and month. For Alaska - North of 62 latitude, it changes from -41C in Dec-Jan to 9C in July, but remains 10C all year in Hawaii. Because phosphorus adversely affects exhaust catalysts, the EPA limits phosphorus in all gasolines to 0.0013g P/L.

As well as the above, there are various restrictions introduced by the Clean Air Act and state bodies such as California's Air Resources Board (CARB) that often have more stringent limits for the above properties, as well as additional limits. More detailed descriptions of the complex regulations can be found elsewhere [16,41,42] - I've just included some of the major changes, as some properties are determined by levels of permitted emissions, e.g. the toxins reduction required for fuel that has the maximum permitted benzene (1.0%), means total aromatics are limited to around 27%. There have been some changes in early 1996 to the implementation timetable, and the following timetable has not yet been changed.

The Clean Air Act also specifies some regions that exceed air quality standards have to use reformulated gasolines (RFGs) all year, starting January 1995. Other regions are required to use oxygenated gasolines for four winter months, beginning November 1992. The RFGs also contain oxygenates. Metropolitan regions with severe ozone air quality problems must use reformulated gasolines in 1995 that;- contain at least 2.0 wt% oxygen, reduce 1990 volatile organic carbon compounds by 15%, and reduce specified toxic emissions by 15% (1995) and 25% (2000). Metropolitan regions that exceeded carbon monoxide limits were required to use gasolines with 2.7 wt% oxygen during winter months, starting in 1992.

The 1990 Clean Air Act (CAA) amendments and CARB Phase 2 (1996) specifications for reformulated gasoline establish the following limits, compared with typical 1990 gasoline. Because of a lack of data, the EPA were unable to define the CAA required parameters, so they instituted a two-stage system. The first stage, the "Simple Model" is an interim stage that run from 1/Jan/1995 to 31/Dec/1997. The second stage, the "Complex Model" has two phases, Phase I (1995-1999) and Phase II (2000+), and there are different limits for EPA Control Region 1 (south) and Control Region 2 (north). Each refiner must have their RFG recertified to the Complex model prior to the 1/Jan/1998 implementation date. The following are some of the criteria for RFG when complying on a per gallon basis, more details are available elsewhere, including the details of the baseline fuel compositions to be used for testing [16,41,42,43,43a].

These regulations also specify emissions criteria. e.g. CAA specifies no increase in nitric oxides (NOx) emissions, reductions in VOC by 15% during the ozone season, and specified toxins by 15% all year. These criteria indirectly establish vapor pressure and composition limits that refiners have to meet. Note that the EPA also can issue CAA Section 211 waivers that allow refiners to choose which oxygenates they use. In 1981, the EPA also decided that fuels with up to 2% weight of oxygen (from alcohols and ethers (except methanol)) were "substantially similar" to 1974 unleaded gasoline, and thus were not "new" gasoline additives. That level was increased to 2.7 wt% in 1991. Some other oxygenates have also been granted waivers, e.g. ethanol to 10% volume (approximately 3.5 wt%) in 1979 and 1982, and tert-butyl alcohol to 3.5 wt% in 1981. In 1987 and 1988 further waivers were issued for mixture of alcohols representing 3.7% wt of oxygen.

4.11 What are the effects of the specified fuel properties?

Volatility

This affects evaporative emissions and drive ability, it is the property that must change with location and season. Fuel for mid-summer Arizona would be difficult to use in mid-winter Alaska. The US is divided into zones, according to altitude

and seasonal temperatures, and the fuel volatility is adjusted accordingly. Incorrect fuel may result in difficult starting in cold weather, carburetor icing, vapor lock in hot weather, and crankcase oil dilution. Volatility is controlled by distillation and vapor pressure specifications. The higher boiling fractions of the gasoline have significant effects on the emission levels of undesirable hydrocarbons and aldehydes, and a reduction of 40C in the final boiling point will reduce the levels of benzene, butadiene, formaldehyde and acetaldehyde by 25%, and will reduce HC emissions by 20% [44].

Combustion Characteristics

As gasolines contain mainly hydrocarbons, the only significant variable between different grades is the octane rating of the fuel, as most other properties are similar. Octane is discussed in detail in Section 6. There are only slight differences in combustion temperatures (most are around 2000C in isobaric adiabatic combustion [45]). Note that the actual temperature in the combustion chamber is also determined by other factors, such as load and engine design. The addition of oxygenates changes the pre-flame reaction pathways, and also reduces the energy content of the fuel. The levels of oxygen in the fuel is regulated according to regional air quality standards.

Stability

Motor gasolines may be stored up to six months, consequently they must not form gums which may precipitate. Reactions of the unsaturated HCs may produce gums (these reactions can be catalyzed by metals such as copper), so antioxidants and metal deactivators are added. Existent Gum is used to measure the gum in the fuel at the time tested, whereas the Oxidation Stability measures the time it takes for the gasoline to break down at 100C with 100psi of oxygen. A 240 minute test period has been found to be sufficient for most storage and distribution systems.

6 moutrs

Corrosiveness

Sulfur in the fuel creates corrosion, and when combusted will form corrosive gases that attack the engine, exhaust and environment. Sulfur also adversely affects the alkyl lead octane response, and will adversely affect exhaust catalysts, but monolithic catalysts will recover when the sulfur content of the fuel is reduced, so sulfur is considered an inhibitor, rather than a catalyst poison. The copper strip corrosion test and the sulfur content specification are used to ensure fuel quality. The copper strip test measures active sulfur, whereas the sulfur content reports the total sulfur present.

Manufacturers many also add additional tests, such as filter ability, to ensure no distribution problems are encountered.

 $15_{1}+20_{2} = 150_{2} + 50_{3}$ $15_{1}+20_{2} = 150_{2} + 50_{3}$ $15_{2}+30_{2} = 150_{2} + 50_{3}$ $15_{2}+30_{3} = 150_{4}$ $15_{2}+30_{3} = 15_{2}+30_{4}$

Gasoline FAQ - Part 2 of 4

Archive-name: autos/gasoline-faq/part2 Posting-Frequency: monthly Last-modified: 17 November 1996

Version: 1.12

4.12 Are brands different?

Yes. The above specifications are intended to ensure minimal quality standards are maintained, however as well as the fuel hydrocarbons, the manufacturers add their own special ingredients to provide additional benefits. A quality gasoline additive package would include:-

- * octane-enhancing additives (improve octane ratings)
- * anti-oxidants (inhibit gum formation, improve stability)
- * metal deactivators (inhibit gum formation, improve stability)
- * deposit modifiers (reduce deposits, spark-plug fouling and pre-ignition)
- * surfactants (prevent icing, improve vaporization, inhibit deposits, reduce NOx emissions)
- * freezing point depressants (prevent icing)
- * corrosion inhibitors (prevent gasoline corroding storage tanks)
- * dyes (product color for safety or regulatory purposes).

During the 1980s significant problems with deposits accumulating on intake valve surfaces occurred as new fuel injection systems were introduced. These intake valve deposits (IVD) were different than the injector deposits, in part because the valve can reach 300C. Engine design changes that prevent deposits usually consist of ensuring the valve is flushed with liquid gasoline, and provision of adequate valve rotation. Gasoline factors that cause deposits are the presence of alcohols or olefins [46]. Gasoline manufacturers now routinely use additives that prevent IVD and also maintain the cleanliness of injectors. These usually include a surfactant and light oil to maintain the wetting of important surfaces. Intake valve deposits have also been shown to have significant adverse effects on emissions [47], and deposit control additives will be required to both reduce emissions and provide clean engine operation [48]. A slighty more detailed description of additives is provided in Section 9.1.

Texaco demonstrated that a well-formulated package could improve fuel economy, reduce NOx emissions, and restore engine performance because, as well as the traditional liquid-phase deposit removal, some additives can work in the vapor phase to remove existing engine deposits without adversely affecting performance (as happens when water is poured into a running engine to remove carbon deposits:-) [49]. Chevron have also published data on the effectiveness of their additives [50], and successfully litigated to get Texaco to modify some of their claims [51]. Most suppliers of quality gasolines will formulate similar additives into their products, and cheaper product lines are less likely to have such additives added. As different brands of gasoline use different additives and oxygenates, it is probable that important fuel parameters, such as octane distribution, are slightly different, even though the pump octane ratings are the same.

So, if you know your car is well-tuned, and in good condition, but the drive ability is pathetic on the correct octane, try another brand. Remember that the composition will change with the season, so if you lose drive ability, try yet another brand. As various Clean Air Act changes are introduced over the next few years, gasoline will continue to change.

4.13 What is a typical composition?

There seems to be a perception that all gasolines of one octane grade are chemically similar, and thus general rules can be promulgated about "energy content", "flame speed", "combustion temperature" etc. etc.. Nothing is further

from the truth. The behavior of manufactured gasolines in octane rating engines can be predicted, using previous octane ratings of special blends intended to determine how a particular refinery stream responds to an octane-enhancing additive. Refiners can design and reconfigure refineries to efficiently produce a wide range of gasolines feedstocks, depending on market and regulatory requirements. There is a worldwide trend to move to unleaded gasolines, followed by the introduction of exhaust catalysts and sophisticated engine management systems.

It is important to note that "oxygenated gasolines" have a hydrocarbon fraction that is not too different to traditional gasolines, but that the hydrocarbon fraction of "reformulated gasolines" (which also contain oxygenates) are significantly different to traditional gasolines.

The last 10 years of various compositional changes to gasolines for environmental and health reasons have resulted in fuels that do not follow historical rules, and the regulations mapped out for the next decade also ensure the composition will remain in a state of flux. The reformulated gasoline specifications, especially the 1/Jan/1998 Complex model, will probably introduce major reductions in the distillation range, as well as changing the various limits on composition and emissions.

I'm not going to list all 500+ HCs in gasolines, but the following are representative of the various classes typically present in a gasoline. The numbers after each chemical are:- Research Blending Octane: Motor Blending Octane: Boiling Point (C): Density (g/ml @ 15C): Minimum Auto ignition Temperature (C). It is important to realize that the Blending Octanes are derived from a 20% mix of the HC with a 60:40 iC8:nC7 (60 Octane Number) base fuel, and the extrapolation of this 20% to 100%. These numbers result from API Project 45, and are readily available. As modern refinery streams have higher base octanes, these Blending Octanes are higher than those typically used in modern refineries. For example, modern Blending Octane ratings can be much lower (toluene = 111RON and 94MON, 2-methyl-2-butene = 113RON and 81MON), but detailed compilations are difficult to obtain.

The technique for obtaining Blending Octanes is different from rating the pure fuel, which often requires adjustment of the test engine conditions outside the acceptable limits of the rating methods. Generally, the actual octanes of the pure fuel are similar for the alkanes, but are up to 30 octane numbers lower than the API Project 45 Blending Octanes for the aromatics and olefins [52].

A traditional composition I have dreamed up would be like the following, whereas newer oxygenated fuels reduce the aromatics and olefins, narrow the boiling range, and add oxygenates up to about 12-15% to provide the octane. The amount of aromatics in super unleaded fuels will vary greatly from country to country, depending on the configuration of the oil refineries and the use of oxygenates as octane enhancers. The US is reducing the levels of aromatics to 25% or lower for environmental and human health reasons.

Some countries are increasing the level of aromatics to 50% or higher in super unleaded grades, usually to avoid refinery reconfiguration costs or the introduction of oxygenates as they phase out the toxic lead octane enhancers. An upper limit is usually placed on the amount of benzene permitted, as it is known human carcinogen.

ection and Personale injection and Personale injection systems of the trick of the trobe.

S

adding alkahol to gasoline increase octaine but creates

15%					
n-paraffins	RON	MON	BP	d	ΑΙΤ
n-butane	113:	114:	-0.5:	gas :	370
n-pentane	62 :	66 :	35 :	0.626:	260
n-hexane	19 :	22:	69 :	0.659:	225
n-heptane1	0:	0:	98 :	0.684:	225
n-octane	-18:	-16 :	126:	0.703:	220
n-decane	-41 :	-38:	174:	0.730:	210
n-do decane	-88 :	-9 0 :	216:	0.750:	204
n-tetra decane	-9 0 :	-99 :	253 :	0.763:	200

(you would not want to have the following alkanes in gasoline, so you would never blend kerosine with gasoline)

30%	iso-para	ffins
-----	----------	-------

	RON	MON	BP	d	AIT
2-methyl propane	122:	120:	-12 :	gas :	460
2-methyl butane	100:	104:	28:	0.620:	420
2-methyl pentane	82:	78 :	62:	0.653:	306
3-methyl pentane	86 :	80:	64 :	0.664:	-
2-methyl hexane	40:	42:	90 :	0.679	
3-methyl hexane	56 :	57:	91 :	0.687:	
2,2-dimethyl pentane	89 :	93:	79 :	0.674:	
2,2,3-trimethyl-	112:	112:	81 :	0.690:	420
butane					
2,2,4-trimethyl-	100:	100:	98 :	0.692:	415
-pentane					
(100:100	by definiti	on)			

12% cycloparaffins

cyclopentane	141 :	141 :	50:	0.751 :	380
methyl cyclopentane	107:	99 :	72 :	0.749 :	
cyclohexane	110:	97 :	81 :	0.779:	245
methyl cyclohexane	104 :	84 :	101 :	0.770 :	250
35% aromatics					
benzene	98:	91 :	80 :	0.874 :	560
toluene	124:	112:	111 :	0.867:	480
ethyl benzene	124:	107:	136 :	0.867:	430
meta-xylene	162 :	124:	138 :	0.868:	463
para-xylene	155:	126:	138 :	0.866:	530
ortho-xylene	126:	102:	144 :	0.870:	530
3-ethyl toluene	162:	138:	158 :	0.865:	
1,3,5-trimethyl	170 :	136 :	163 :	0.864 :	
-benzene					
1,2,4-trimethyl -benzene	148 :	124 :	168 :	0.889 :	
-ochizene					
8% olefins					
2-pentene	154:	138:	37 :	0.649;	
2-methyl butene-2	176 :	140:	36 :	0.662:	

(the following olefins are not present in significant amounts in gasoline, but have some of the highest blending octanes)

148:

126:

67:

44 :

0.690:

 $0.774 \cdot$

1-methyl	184:	146 :	75 :	0.780 :
cyclopentene				
1,3 cyclopentadiene	218:	149 :	42 :	0.805:
dicyclopentadiene	229:	167 :	170 :	1.071:

159:

171:

Oxygenates

2-methyl pentene-2

cyclopentene

Published octane values vary a lot because the rating conditions are significantly different to standard conditions, for example the API Project 45 numbers used above for the hydrocarbons, reported in 1957, gave MTBE blending RON as 148 and MON

as 146, however that was partly based on the lead response, whereas today we use MTBE in place of lead.

methanol	133 :	105 :	65 :	0.796:	385
ethanol	129:	102:	78 :	0.794:	365
iso propyl alcohol	118:	98:	82 :	0.790 :	399
methyl tertiary-	116:	103:	55 ;	0.745:	
butyl ether					
ethyl tertiary-	118:	102:	72 :	0.745:	
butyl ether					
tertiary amyl-	111:	98:	86 :	0.776:	
methyl ether					

There are some other properties of oxygenates that have to be considered when they are going to be used as fuels, particularly their ability to form very volatile azeotropes that cause the fuel's vapor pressure to increase, the chemical nature of the emissions, and their tendency to separate into a separate water-oxygenate phase when water is present. The reformulated gasolines address these problems more successfully than the original oxygenated gasolines.

Before you rush out to make a highly aromatic or olefinic gasoline to produce a high octane fuel, remember they have other adverse properties, e.g. the aromatics attack elastomers, may generate smoke, and result in increased emissions of toxic benzene. The olefins are unstable (besides smelling foul) and form gums. The art of correctly formulating a gasoline that does not cause engines to knock apart, does not cause vapor lock in summer - but is easy to start in winter, does not form gums and deposits, burns cleanly without soot or residues, and does not dissolve or poison the car catalyst or owner, is based on knowledge of the gasoline composition.

4.14 Is gasoline toxic or carcinogenic?

There are several known toxins in gasoline, some of which are confirmed human carcinogens. The most famous of these toxins are lead and benzene, and both are regulated. The other aromatics and some toxic olefins are also controlled. Lead alkyls also require ethylene dibromide and/or ethylene dichloride scavengers to be added to the gasoline, both of which are suspected human carcinogens. In 1993 an International Symposium on the Health Effects of Gasoline was held [53]. Major review papers on the carcinogenic, neurotoxic, reproductive and developmental toxicity of gasoline, additives, and oxygenates were presented, and interested readers should obtain the proceedings. The oxygenates are also being evaluated for carcinogenicity, and even ethanol and ETBE may be carcinogens. The introduction of oxygenated gasoline to Alaska and some other areas of the USA resulted in a range of complaints. Recent research has been unable to identify additional toxicity, but has detected increased levels of offensive smell [54]. It should be noted that the oxygenated gasolines were not initially intended to reduce the toxicity of emissions. The reformulated gasolines will produce different emissions, and specific toxins must initially be reduced by 15% all year.

The removal of alkyl lead compounds certainly reduces the toxicity of exhaust gas emissions when used on engines with modern engine management systems and 3-way exhaust catalysts. If unleaded gasolines are not accompanied by the introduction of catalysts, some other toxic emissions may increase. Engines without catalysts will produce increased levels of toxic carbonyls such as formaldehyde and acrolein when using oxygenated fuels, and increased levels of toxic benzene when using highly aromatic fuels.

There is little doubt that gasoline is full of toxic chemicals, and should therefore be treated with respect. However the biggest danger remains the flamability, and the relative hazards should always be kept in perspective. The major toxic risk from gasolines comes from breathing the tailpipe, evaporative, and refueling emissions, rather than occasional skin contact from spills. Breathing vapors and skin contact should always be minimized.

4.15 Is unleaded gasoline more toxic than leaded?

The short answer is no. However that answer is not global, as some countries have replaced the lead compound octane-improvers with aromatic or olefin octane-improvers without introducing exhaust catalysts. The aromatics contents may increase to around 40%, with high octane unleaded fuels reaching 50% in countries where oxygenates are not being used, and the producers have not reconfigured refineries to produce high octane paraffins. In general, aromatics are significantly more toxic than paraffins. Exhaust catalysts have a limited operational life, and will be immediately poisoned when misfueled with leaded

^{(0:0} by definition)

fuel. Catalyst failure can result in higher levels of toxic emissions if catalysts or engine management systems are not replaced or repaired when defective. Maximum benefit of the switch to unleaded are obtained when the introduction of unleaded is accompanied by the introduction of exhaust catalysts and sophisticated engine management systems. Unfortunately, the manufacturers of alkyl lead compounds have embarked on a worldwide misinformation campaign in countries considering emulating the lead-free US. The use of lead precludes the use of exhaust catalysts, thus the emissions of aromatics are only slightly diminished, as leaded fuels typically contain around 30-40% aromatics. Other toxins and pollutants that are usually reduced by exhaust catalysts will be emitted at significantly higher levels if leaded fuels are used [55].

The use of unleaded on modern vehicles with engine management systems and catalysts can reduce aromatic emissions to 10% of the level of vehicles without catalysts [55]. Alkyl lead additives can only substitute for some of the aromatics in gasoline, consequently they do not eliminate aromatics, which will produce benzene emissions [56]. Alkyl lead additives also require toxic organohalogen scavengers, which also react in the engine to form and emit other organohalogens, including highly toxic dioxin [57]. Leaded fuels emit lead, organohalogens, and much higher levels of regulated toxins because they preclude the use of exhaust catalysts. In the USA the gasoline composition is being changed to reduce fuel toxins (olefins, aromatics) as well as emissions of specific toxins.

4.16 Is reformulated gasoline more toxic than unleaded?

The evidence so far indicates that the components of reformulated gasolines (RFGs) are more benign than unleaded, and that the tailpipe emissions of hydrocarbons are significantly reduced for cars without catalysts, and slightly reduced for cars with catalysts and engine management systems. The emissions of toxic carbonyls such as formaldehyde, acetaldehyde and acrolein are increased slightly on all vehicles, and the emission of MTBE is increased about 10x on cars without catalysts and 4x on cars with catalysts [55]. When all the emissions (evaporative and tailpipe) are considered, RFGs significantly reduce emissions of hydrocarbons, however the emissions of carbonyls and MTBE may increase [55]. There has been an extensive series of reports on the emissions from RFGs, produced by the Auto/Oil Air Quality Improvement Research Program, who measured and calculated the likely effects of RFG [18,19,20,58,59,60,61]. More research is required before a definitive answer on toxicity is available.

The major question about RFGs is not the toxicity of the emissions, but whether they actually meet their objective of reducing urban pollution. This is a more complex issue, and most experts agree the benefits will only be modest [18,19,20,61,62].

4.17 Are all oxygenated gasolines also reformulated gasolines?

No. Oxygenates were initially introduced as alternative octane-enhancers in the 1910s, and are still used in some countries for that purpose. In the US the original "oxygenated gasolines" usually had a slightly- modified gasoline as the hydrocarbon fraction. The US EPA also mandated their use to reduce pollution, mainly via the "enleanment" effect on engines without sophisticated management systems, but also because of the "aromatics substitution" effect. As vehicles with fuel injection and sophisticated engine management systems became pervasive, reformulated gasolines could be introduced to further reduce pollution. The hydrocarbon component of RFGs is significantly different to the hydrocarbon fraction in earlier oxygenated gasolines, having lower aromatics contents, reduced vapor pressure, and a narrower boiling range. RFGs do contain oxygenates as the but have different hydrocarbon composition profiles octane-enhancer, [34,41,42,43,44].

Subject: 5. Why is Gasoline Composition Changing?

5.1 Why pick on cars and gasoline?

5.2 C C

Cars emit several pollutants as combustion products out the tailpipe, (tailpipe emissions), and as losses due to evaporation (evaporative emissions, refueling emissions). The volatile organic carbon (VOC) emissions from these sources, along with nitrogen oxides (NOx) emissions from the tailpipe, will react in the presence of ultraviolet (UV) light (wavelengths of less than 430nm) to form ground-level (tropospheric) ozone, which is one of the major components of 25dill only 10% officient?

photochemical smog [63]. Smog has been a major pollution problem ever since coal-fired power stations were developed in urban areas, but their emissions are being cleaned up. Now it's the turn of the automobile.

Cars currently use gasoline that is derived from fossil fuels, thus when gasoline is burned to completion, it produces additional CO2 that is added to the atmospheric burden. The effect of the additional CO2 on the global environment is not known, but the quantity of man-made emissions of fossil fuels must cause the system to move to a new equilibrium. Even if current research doubles the efficiency of the IC engine-gasoline combination, and reduces HC, CO, NOx, SOx, VOCs, particulates, and carbonyls, the amount of carbon dioxide from the use of fossil fuels may still cause global warming. More and more scientific evidence is accumulating that warming is occurring [64,65]. The issue is whether it is natural, or induced by human activities and a large panel of scientific experts continues to review scientific data and models. Interested reader should seek out the various publications of the Intergovernmental Panel on Climate Change (IPCC). There are international agreements to limit CO2 emissions to 1990 levels, a target that will require more efficient, lighter, or appropriately-sized vehicles, if we are to maintain the current usage. One option is to use "renewable" fuels in place of fossil fuels. Consider the amount of energy-related CO2 emissions for selected countries in 1990 [66].

> CO2 Emissions (tonnes/year/person)

USA	20.0
Canada	16.4
Australia	15.9
Germany	10.4
United Kingdom	8.6
Japan	7.7
New Zealand	7.6

The number of new vehicles provides an indication of the magnitude of the problem. Although vehicle engines are becoming more efficient, the distance traveled is increasing, resulting in a gradual increase of gasoline consumption. The world production of vehicles (in thousands) over the last few years was [67];-

Cars Produced	x 1000	•			
Region	1990	1991	1992	1993	1994
Africa	222	213	194	201	209
Asia-Pacific	12,064	12,112	11,869	11,463	11,020
Central &	800	888	1,158	1,523	1,727
South America			•	ŕ	,
Eastern Europe	2,466	984	1,726	1,837	1,547
Middle East	35	24	300	390	274
North America	7,762	7,230	7,470	8,172	8,661
Region	1990	1991	1992	1993	1994
Western Europe	13,688	13,286	13,097	11,141	12,851
Total World	37,039	34,739	35,815	34,721	36,289
Trucks (including	heavy trucks	and buses)	Produced		
Region	1990	1991	1992	1993	1994
Africa	133	123	108	101	116
Asia-Pacific	5,101	5,074	5,117	5,057	5,407
Central &	312	327	351	431	457
South America					
Eastern Europe	980	776	710	600	244
Middle East	36	28	100	128	76

To fuel all operating vehicles, considerable quantities of gasoline and diesel have to be consumed. Major consumption in 1994 of gasoline and middle distillates (which may include some heating fuels, but not fuel oils) in million tonnes.

4,554

1,818

12,701

5,371

1,869

13,627

6,037

1,718

14.073

7,040

2,116

15.457

4,851

1,924

13,336

North America

Total World

Western Europe

no-one sees the stack at the power station when you look at an EV

Fuel consumption in MEGA-tones

	Gasoline	Middle Distillates
USA	338.6	246.3
Canada	26.8	26.1
Western Europe	163.2	266.8
Japan	60.2	92.2
Total World	820.4	1029.0

The USA consumption of gasoline increased from 294.4 (1982) to 335.6 (1989) then dipped to 324.2 (1991), and has continued to rise since then to reach 338.6 million tonnes in 1994. In 1994 the total world production of crude oil was 3209.1 million tonnes, of which the USA consumed 807.9 million tonnes [68]. Transport is a very significant user of crude oil products, thus improving the efficiency of utilization, and minimizing pollution from vehicles, can produce immediate reductions in emissions of CO2, HCs, VOCs, CO, NOx, carbonyls, and other chemicals.

5.2 Why are there seasonal changes?

Only gaseous hydrocarbons burn, consequently if the air is cold, then the fuel has to be very volatile. But when summer comes, a volatile fuel can boil and cause vapor lock, as well as producing high levels of evaporative emissions.) The solution was to adjust the volatility of the fuel according to altitude and ambient temperature. This volatility change has been automatically performed for decades by the oil companies without informing the public of the changes. It is one reason why storage of gasoline through seasons is not a good idea. Gasoline volatility is being reduced as modern engines, with their fuel injection and management systems, can automatically compensate for some of the changes in ambient conditions - such as altitude and air temperature, resulting in acceptable drive ability using less volatile fuel.

5.3 Why were alkyl lead compounds removed?

"With the exception of one premium gasoline marketed on the east coast and southern areas of the US, all automotive gasolines from the mid-1920s until 1970 contained lead antiknock compounds to increase antiknock quality. Because lead antiknock compounds were found to be detrimental to the performance of catalytic emission control system then under development, U.S. passenger car manufacturers in 1971 began to build engines designed to operate satisfactorily on gasolines of nominal 91 Research Octane Number. Some of these engines were designed to operate on unleaded fuel while others required leaded fuel or the occasional use of leaded fuel. The 91 RON was chosen in the belief that unleaded gasoline at this level could be made available in quantities required using then current refinery processing equipment. Accordingly, unleaded and low-lead gasolines were introduced during 1970 to supplement the conventional gasolines already available.

Beginning with the 1975 model year, most new car models were equipped with catalytic exhaust treatment devices as one means of compliance with the 1975 legal restrictions in the U.S. on automobile emissions. The need for gasolines that would not adversely affect such catalytic devices has led to the large scale availability and growing use of unleaded gasolines, with all late-model cars requiring unleaded gasoline." [69].

There was a further reason why alkyl lead compounds were subsequently reduced, and that was the growing recognition of the highly toxic nature of the emissions from a leaded-gasoline fueled engine. Not only were toxic lead emissions produced, but the added toxic lead scavengers (ethylene dibromide and ethylene dichloride) could react with hydrocarbons to produce highly toxic organohalogen emissions such as dioxin. Even if catalysts were removed, or lead-tolerant catalysts discovered, alkyl lead compounds would remain banned because of their toxicity and toxic emissions [70,71].

5.4 Why are evaporative emissions a problem?

As tailpipe emissions are reduced due to improved exhaust emission control systems, the hydrocarbons produced by evaporation of the gasoline during distribution, vehicle refueling, and from the vehicle, become more and more significant. A recent European study found that 40% of man-made volatile organic compounds came from vehicles [72]. Many of the problem hydrocarbons are the aromatics and olefins that have relatively high octane values. Any sensible strategy to reduce smog and toxic emissions will also attack evaporative and

tailpipe emissions.

v why wante fuel

The health risks to service station workers, who are continuously exposed to refueling emissions remain a concern [73]. Vehicles will soon be required to trap the refueling emissions in larger carbon canisters, as well as the normal evaporative emissions that they already capture. This recent decision went in favor of the oil companies, who were opposed by the auto companies. The automobile manufacturers felt the service station should trap the emissions. The activated carbon canisters adsorb organic vapors, and these are subsequently desorbed from the canister and burnt in the engine during normal operation, once certain vehicle speeds and coolant temperatures are reached. A few activated carbons used in older vehicles do not function efficiently with oxygenates, but carbon cannister systems can reduce evaporative emissions by 95% from uncontrolled levels.

5.5 Why control tailpipe emissions?

Tailpipe emissions were responsible for the majority of pollutants in the late 1960s after the crankcase emissions had been controlled. Ozone levels in the Los Angeles basin reached 450-500ppb in the early 1970s, well above the typical background of 30-50ppb [74].

Tuning a carbureted engine can only have a marginal effect on pollutant levels, and there still had to be some frequent, but long-term, assessment of the state of tuning. Exhaust catalysts offered a post-engine solution that could ensure pollutants were converted to more benign compounds. As engine management systems and fuel injection systems have developed, the volatility properties of the gasoline have been tuned to minimize evaporative emissions, and yet maintain low exhaust emissions.

The design of the engine can have very significant effects on the type and quantity of pollutants, e.g. unburned hydrocarbons in the exhaust originate mainly from combustion chamber crevices, such as the gap between the piston and cylinder wall, where the combustion flame can not completely use the HCs. The type and amount of unburnt hydrocarbon emissions are related to the fuel composition (volatility, olefins, aromatics, final boiling point), as well as state of tune, engine condition, and condition of the engine lubricating oil [75]. Particulate emissions, especially the size fraction smaller than ten micrometers, are a serious health concern. The current major source is from compression ignition (diesel) engines, and the modern SI engine system has no problem meeting regulatory requirements. The ability of reformulated gasolines to actually reduce smog has not yet been confirmed. The composition changes will reduce some compounds, and increase others, making predictions of environmental consequences extremely difficult. Planned future changes, such as the CAA 1/1/1998 Complex model specifications, that are based on several major ongoing government/industry gasoline and emission research programmes, are more likely to provide unambiguous environmental improvements. One of the major problems is the nature of the ozone-forming reactions, which require several components (VOC. NOx, UV) to be present. Vehicles can produce the first two, but the their ratio is important, and can be affected by production from other natural (VOC = terpenes from conifers) or manmade (NOx from power stations) sources [62,63]. The regulations for tailpipe emissions will continue to become more stringent as countries try to minimize local problems (smog, toxins etc.) and global problems (CO2). Reformulation does not always lower all emissions, as evidenced by the following aldehydes from an engine with an adaptive learning management system [55].

FTP-weighted emission rates (mg/mi)

	Gas	Reform
Formaldehyde	4.87	8.43
Acetaldehyde	3.07	4.71

The type of exhaust catalyst and management system can have significant effects on the emissions [55].

FTP-weighted emission rates. (mg/mi)

	Total Aro	matics	Total Carbonyls		
	Gas	Reform	Gas	Reform	
Noncatalyst	1292.45	1141.82	174.50	198.73	
Oxidation Catalyst	168.60	150.79	67.08	76.94	
3-way Catalyst	132.70	93.37	23.93	23.07	
Adaptive Learning	111.69	105.96	17.31	22.35	

If we take some compounds listed as toxins under the Clean Air Act, then the beneficial effects of catalysts are obvious. Note that hexane and iso-octane are the only alkanes listed as toxins, but benzene, toluene, ethyl benzene, o-xylene, m-xylene, and p-xylene are aromatics that are listed. The latter four are combined as C8 Aromatics below [55].

Aromatics FTP-weighted emission rates. (mg/mi	romatics	s FTP-weighter	d emission rates	. (mg/mi
---	----------	----------------	------------------	----------

	_	Benzene	•	,	Toluene	C 8	
	Gas	Reform	Gas	Reform	Gas	Aromatics Reform	
Non-cat.	156.18	138.48	338.36	314.14	425.84	380.44	
Oxidation	27.57	25.01	51.00	44.13	52.27	47.07	
Cat.							
3-way Cat	19.39	15.69	36.62	26.14	42.38	29.03	
Adaptive	19.77	20.39	29.98	29.67	35.01	32.40	
Learn.							

Aldehydes FTP-weighted emission rates. (mg/mi)

i iidolij des	T 11 - 11016	sinca cimasi	on rates. (m	g/iiii)		
	Formalde	hyde	Acrolein		Acetaldel	nyde
		Gas	Reform	Gas	Reform	G a s Reform
Noncat	73.25	85.24	11.62	13.20	19.74	21.72
Oxidation Cat.	28.50	35.83	3.74	3.75	11.15	11.76
3-way Cat	7.27	7.61	1.11	0.74	4.43 3.	64
Adaptive Learn.	4.87	8.43	0.81	1.16	3.07 4.	71

Others	1,3 But	adiene	MTB	Е
	Gas	Reform	Gas	Reform
Noncatalyst	2.96	1.81	10.50	130.30
Oxidation Cat.	0.02	0.33	2.43	11.83
3-way Catalyst	0.07	0.05	1.42	4.59
Adaptive Learn.	0.00	0.14	0.84	3.16

The author reports analytical problems with the 1,3 Butadiene, and only Noncatalyst values are considered reliable. Other studies from the Auto/Oil research program indicate that lowering aromatics and olefins reduce benzene but increase formaldehyde and acetaldehyde [20]

Emission Standards

g/test

There are several bodies responsible for establishing standards, and they promulgate test cycles, analysis procedures, and the % of new vehicles that must comply each year. The test cycles and procedures do change (usually indicated by an anomalous increase in the numbers in the table), and I have not listed the percentages of the vehicle fleet that are required to comply. This table is only intended to convey where we have been, and where we are going. It does not cover any regulation in detail - readers are advised to refer to the relevant regulations. Additional limits for other pollutants, such as formaldehyde (0.015g/mi.) and particulates (0.08g/mi), are omitted. The 1994 tests signal the federal transition from 50,000 to 100,000 mile compliance testing, and I have not listed the subsequent 50,000 mile limits [28,76,77].

Year	Federal HCs	СО	NOx	California Evap HO	_	CO Evap	Nox
	g/mi	g/mi	g/mi	g/test	g/mi	g/mi	g/mi
1981	0.41	3.4	1.0	2	0.39	7.0	0.7
1993	0.41	3.4	1.0	2	0.25	3.4	0.4
1994	0.26	3.4	0.3	2 TLEV0	.13	3.4	
50,000	0.4	2					
1994	0.31	4.2	0.6	2			
100,000							
1997	LEV	0.08	3.4	0.2			
1997	ULEV	0.04	1.7	0.2			
1998	ZEV	0.0	0.0	0.0			
2004	0.125	1.8	0.16	2			

It's also worth noting that exhaust catalysts also emit platinum, and the soluble platinum salts are some of the most potent sensitizes known. Early research [78] reported the presence of 10% water-soluble platinum in the emissions, however later work on monolithic catalysts has determined the quantities of water soluble platinum emissions are negligible [79]. The particle size of the emissions has also been determined, and the emissions have been correlated with increasing vehicle speed. Increasing speed also increases the exhaust gas temperature and velocity, indicating the emissions are probably a consequence of physical attrition.

Estimated Fuel		Median	Aero- dynamic
Speed	Consumption	Emissions	Particle Diameter
km/h	1/100km	ng/ m 3	um
60	7	3.3	5.1
100	8	11.9	4.2
140	10	39.0	5.6
US Cycle- 75		6.4	8.5

Using the estimated fuel consumption, and about 10m3 of exhaust gas per liter of gasoline, the emissions are 2-40 ng/km. These are 2-3 orders of magnitude lower than earlier reported work on pelletized catalysts. These emissions may be controlled directly in the future. They are currently indirectly controlled by the cost of platinum, and the new requirement for the catalyst to have an operational life of at least 100,000 miles.

5.6 Why do exhaust catalysts influence fuel composition?

Modern adaptive learning engine management systems control the combustion

stoichiometry by monitoring various ambient and engine parameters, including exhaust gas recirculation rates, the air flow sensor, and exhaust oxygen sensor outputs. This closed loop system using the oxygen sensor can compensate for changes in fuel content and air density. The oxygen sensor is also known as the lambda sensor because the actual air-fuel mass ratio divided by the stoichiometric air-fuel mass ratio is known as lambda or the air-fuel equivalence ratio.

The preferred technique for describing mixture strength is the fuel-air equivalence ratio (phi), which is the actual fuel-air mass ratio divided by the stoichiometric fuel-air mass ratio, however most enthusiasts use air-fuel ratio and lambda. Lambda is the inverse of the fuel-air equivalence ratio. The oxygen sensor effectively measures lambda around the stoichiometric mixture point.

Typical stoichiometric air-fuel ratios are [80]:-

6.4	methanol
9.0	ethanol
11.7	MTBE
12.1	ETBE, TAME
14.6	gasoline without oxygenates

The engine management system rapidly switches the stoichiometry between slightly rich and slightly lean, except under wide open throttle conditions - when the system runs open loop. The response of the oxygen sensor to composition changes is about 3 ms, and closed loop switching is typically 1-3 times a second, going between 50mV (lambda = 1.05 (Lean)) to 900mV (lambda = 0.99 (Rich)). The catalyst oxidizes about 80% of the H2, CO, and HCs, and reduces the NOX [76].

Typical reactions that occur in a modern 3-way catalyst are:-

$$CxHy + (x + (y/4))O2 \Rightarrow xCO2 + (y/2)H2O$$

 $2 CO + 2 NO \Rightarrow N2 + 2 CO2$

$$CxHy + 2(x + (y/4))NO \Rightarrow (x + (y/4))N2 + (y/2)H2O + xCO2$$

$$CxHy + xH2O \implies xCO + (x + (y/2))H2$$

The use of exhaust catalysts have resulted in reaction pathways that can accidentally be responsible for increased pollution. An example is the CARB-mandated reduction of fuel sulfur. A change from 450ppm to 50ppm, which will reduce HC & CO emissions by 20%, was shown to increase formaldehyde by 45%, but testing in later model cars did not exhibit the same effect [32,58, 59]. This demonstrates that continuing changes to engine management systems can also change the response to fuel composition changes.

The requirement that the exhaust catalysts must now endure for 10 years or 100,000 miles will also encourage automakers to push for lower levels of elements that affect exhaust catalyst performance, such as sulfur and phosphorus, in both the gasoline and lubricant. Modern catalysts are unable to reduce the relatively high levels of NOX that are produced during lean operation down to approved levels, thus preventing the application of lean-burn engine technology. Recently of Rocks improved by some Mazda has announced they have developed a "lean burn" catalyst, which may enable automakers to move the fuel combustion towards the lean side, and different gasoline properties may bereduce pollution_[2.1.3whileevaluat 95 production models.

Catalyst mproving and cleanliness additives Iditives) that may result in refracto alvst, reducing available catalyst ar. 5.7 Why .portant?

The catalyst requires heat to reach the temperature (>300-350C) where it functions most efficiently, and the delay until it reaches operating temperature can produce more hydrocarbons than would be produced during the remainder of many typical urban short trips. It has been estimated that 70-80% of the non-methane HCs that escape conversion by the catalysts are emitted during the first two minutes after a cold start. As exhaust emissions have

	Compound in Wate	Water in Compound		
	% mass/mass @	C	% mass/mass @	C
normal decane	0.0000052	25	0.0072	25
iso-octane	0.00024	25	0.0055	20
normal hexane	0.00125	25	0.0111	20
cyclohexane	0.0055	25	0.010	20
1-hexene	0.00697	25	0.0477	30
toluene	0.0515	25	0.0334	25
	Compound in Wate	r	Water in Compound	
	% mass/mass @	С	% mass/mass @	С
benzene	0.1791	25	0.0635	25
methanol	complete	25	complete	25
ethanol	complete	25	complete	25
MTBE	4.8	20	1.4	20
TAME-	0.6	20		

The concentrations and ratios of benzene, toluene, ethyl benzene, and xylene (BTEX) in water are often used to monitor groundwater contamination from been reduced, the significance of the evaporative emissions increases. Several engineering techniques are being developed, including the Ford Exhaust Gas Lemter (uses a flame to heat the catalyst - lots of potential problems), zeolite hydrocarbon traps, and relocation of the catalyst closer to the engine [76].

Reduced gasoline volatility and composition changes, along with cleanliness additives and engine management systems, can help minimize cold start emissions, but currently the most effectivetechnique appears to be rapid, deliberate heating of the catalyst, and the new generation of low thermal inertia "fast light-up" catalysts reduce the problem, but further research is necessary [76,82].

As the evaporative emissions are also starting to be reduced, the emphasis has shifted to the refueling emissions. These will be mainly controlled on the vehicle, and larger canisters may be used to trap the vapors emitted during refueling.

O

5.8 When will the emissions be "clean enough"?

The California, ZFV regulations effectively preclude IC vehicles, because they stipulate zero emissions. However, the concept of regulatory forces of alternative vehicle propulsion technology may have to be modified to include hybrid or fuel-cont vehicles, as the major failing of EVs remains the lack of a cheap, light, safe, and easily-rechargeable electrical storage device [83,84]. There are several major projects intending to further reduce enussions from automobiles, mainly focusing on vehicle mass and engine fuel efficiency, but gasoline specifications and alternative fuels are also being investigated. It may be that changes to IC engines and gasolines will enable the IC engine to continue well into the 21st century as the prime motive force for personal transportation [77,85]. There have ~ also been calls to use market forces to reduce pollution from automobiles [86],. however most such suggestions (increased gasoline taxes, congestion tolls, and emission-based registration fees) are currently \considered politically unacceptable. The issue of how to target the specific "gross polluters" is being \(\overline{1}\) considered, and is described in Section 5.14.

5.9 Why are only some gasoline compounds restricted?

The less volatile hydrocarbons in gasoline are not released in significant quantities during normal use, and the more volatile alkanes are considerably less toxic than many other chemicals encountered daily. The newer gasoline additives also have potentially undesirable properties before they are even combusted. Most hydrocarbons are very insoluble in water, with the lower aromatics being the most soluble, however the addition of oxygen to hydrocarbons significantly increases

the mutual solubility with water. Catalya

them auless can break d

consoline storage tanks or pipelines. The oxygenates and other new additives may increase the extent of water and soil pollution by acting as co-solvents for HCs.

Afuel vehicles

Various government bodies (EPA, OSHA, NIOSH) are charged with ensuring people are not exposed to unacceptable chemical hazards, and maintain ongoing research into the toxicity of liquid gasoline contact, water and soil pollution, evaporative emissions, and tailpipe emissions [87]. As toxicity is found, the quantities in gasoline of the specific chemical (benzene), or family of chemicals (alkyl leads, aromatics, olefins) are regulated.

The recent dramatic changes caused by the need to reduce alkyl leads, halogens, olefins, and aromatics has resulted in whole new families of compounds (ethers, alcohols) being introduced into fuels without prior detailed toxicity studies being completed. If adverse results appear, these compounds are also likely to be regulated to protect people and the environment.

Also, as the chemistry of emissions is unraveled, the chemical precursors to toxic tailpipe emissions (such as higher aromatics that produce benzene emissions) are also controlled, even if they are not themselves toxic.

5.10 What does "renewable" fuel or oxygenate mean?

FOURT LESTIONED

The general definition of "renewable" is that the carbon originates from recent biomass, and thus does not contribute to the increased CO2 emissions. A truly "long-term" view could claim that fossil fuels are "renewable" on a 100 million year timescale:-). There was a major battle between the ethanol/ETBE lobby (agricultural, corn growing), and the methanol/MTBE lobby (oil company, petrochemical) over an EPA mandate demanding that a specific percentage of the oxygenates in gasoline are produced from "renewable" sources [88]. On 28 April 1995 a Federal appeals court permanently voided the EPA ruling requiring "renewable" oxygenates, thus fossil-fuel derived oxygenates such as MTBE are acceptable oxygenates [89].

Unfortunately, "renewable" ethanol is not cost competitive when crude oil is \$18/bbl, so a federal subsidy (\$0.54/US Gallon) and additional state subsidies (11 states - from \$0.08(Michigan) to \$0.66(Tenn.)/US Gal.) are provided. Ethanol, and ETBE derived from ethanol, are still likely to be used in states where subsidies make them competitive with other oxygenates.

5.11 Will oxygenated gasoline damage my vehicle?

The following comments assume that your vehicle was designed to operate on unleaded, if not, then damage such as exhaust valve seat recession may occur. Damage should not occur if the gasoline is correctly formulated, and you select the appropriate octane, but oxygenated gasoline will hurt your pocket. In the first year of mandated oxygenates, it appears some refiners did not carefully formulate their oxygenated gasoline, and drive ability and emissions problems occurred. Most reputable brands are now carefully formulated. Some older activated carbon canisters may not function efficiently with oxygenated gasolines, but this is a function of the type of carbon used. How your vehicle responds to oxygenated gasoline depends on the engine management system and state of tune. A modern system will automatically compensate for all of the currently-permitted oxygenate levels, thus your fuel consumption will increase. Older, poorly-maintained, engines may require a tune up to maintain acceptable drive ability.

Be prepared to try several different brands of oxygenated or reformulated gasolines to identify the most suitable brand for your vehicle, and be prepared to change again with the seasons. This is because the refiners can choose the oxygenate they use to meet the regulations, and may choose to set some fuel properties, such as volatility, differently to their competitors.

Most stories of corrosion etc, are derived from anhydrous methanol corrosion of light metals (aluminum, magnesium), however the addition of either 0.5% water to pure methanol, or corrosion inhibitors to methanol-gasoline blends will prevent this. If you observe corrosion, talk to your gasoline supplier. Oxygenated fuels may either swell or shrink some elastomers on older cars, depending on the aromatic and olefin content of the fuels. Cars later than 1990 should not experience compatibility problems, and cars later than 1994 should not experience drive ability problems, but they will experience increased fuel consumption depending on the state of tune and engine management system.

5.12 What does "reactivity" of emissions mean?

The traditional method of exhaust regulations was to specify the actual HC, CO, NOX, and particulate contents. With the introduction of oxygenates and reformulated gasolines, the volatile organic carbon (VOC) species in the exhaust also changed. The "reactivity" refers to the ozone-forming potential of the VOC

emissions when they react with NOX, and is being introduced as a regulatory means of ensuring that automobile emissions do actually reduce smog formation. The ozone-forming potential of chemicals is defined as the number of molecules of ozone formed per VOC carbon atom, and this is called the Incremental Reactivity. Typical values (big is bad:-)) are [74]:

Maximum Incremental Reactivities as mg Ozone / mg VOC

Ĥ	carbon monoxide	0.054
alkanes H - C - H olefins	methane ethane propane n-butane ethylene	0.0148 0.25 0.48 1.02 7.29
aromatics	propylene 1,3 butadiene benzene carbon monoxide	9.40 10.89 0.42 0.054
oxygenates	toluene meta-xylene 1,3,5-trimethyl benzepe methanol ethanol MTBE ETBE ##############################	2.73 8.15 10.12 0.56 1.34 0.62 1.98

5.13 What are "carbonyl" compounds?

Carbonyls are produced in large amounts under lean operating conditions, especially when oxygenated fuels are used. Most carbonyls are toxic, and the carboxylic acids can corrode metals. The emission of carbonyls can be controlled by combustion stoichiometry and exhaust catalysts, refer to section 5.5 for typical reductions for aldehydes.

Typical carbonyls are:-

- * aldehydes (containing -CHO), formaldehyde (HCHO) which is formed in large amounts during lean combustion of methanol [90]. acetaldehyde (CH2CHO) which is formed during ethanol combustion. acrolein (CH2=CHCHO) a very potent irritant and toxin. * ketones (containing C=0), acetone (CH3COCH3)
- * carboxylic acids (containing -COOH), formic acid (HCOOH) formed during lean methanol combustion. acetic acid (CH3COOH).

5.14 What are "gross polluters"?

It has always been known that the EPA emissions tests do not reflect real world conditions. There have been several attempts to identify vehicles on the road that do not comply with emissions standards. Recent remote sensing surveys have demonstrated that the highest 10% of CO emitters produce over 50% of the pollution, and the same ratio applies for the HC emitters - which may not be the same vehicles [91-102]. 20% of the CO emitters are responsible for 80% of the CO emissions, consequently modifying gasoline composition is only one aspect of pollution reduction. The new additives can help maintain engine condition, but they can not compensate for out-of-tune, worn, or tampered-with engines. There has recently been some unpublished studies that demonstrate that the current generation of remote sensing systems can not provide sufficient discrimination of gross polluters without also producing false positives for some acception vehicles - more work is required, and in some states l&M emissions testing using dynamometers is being introduced to identify gross polluters.

The most famous of the remote sensing systems is the FEAT (Fuel Efficiency Automobile Test) team from the University of Denver [99]. This team is probably the world leader in remote sensing of auto emissions to identify grossly polluting vehicles. The system measures CO/CO2 ratio, and the HC/CO2 ratio in the exhaust of vehicles passing through an infra-red light beam crossing the road 25cm above the surface. The system also includes a video system that records the licence plate, date, time, calculated exhaust CO₂, CO2, and HC. The system is effective for traffic lanes up to 18 meters wide, however rain, snow, and water spray can cause scattering of the beam. Reference signals monitor such effects and, if possible, compensate. The system has been comprehensively validated,

V Cch

O

including using vehicles with on-board emissions monitoring instruments.

They can monitor up to 1000 vehicles an hour and, as an example, they were invited to Provo, Utah to monitor vehicles, and gross polluters would be offered free repairs [100]. They monitored over 10,000 vehicles and mailed 114 letters to owners of vehicles newer than 1965 that had demonstrated high CO levels. They received 52 responses and repairs started in Dec. 1991, and continued to Mar 1992.

The entire monitored fleet at Provo (Utah) during Winter 1991:1992

Model year	Grams CO/gallon (Median value)	(mean value)	Number of Vehicles
92	40	80	247
91	55		1222
90	75		1467
89	80		1512
88	85		1651
87	90		1439
86	100	300	1563
85	120		1575
84	125		1206
83	145		719
82	170		639
81	230		612
80	220	500	551

As observed elsewhere, over half the CO was emitted by about 10% of the vehicles. If the 47 worst polluting vehicles were removed, that achieves more than removing the 2,500 lowest emitting vehicles from the total tested fleet.

Surveys of vehicle populations have demonstrated that emissions systems had been tampered with on over 40% of the gross polluters, and an additional 20% had defective emission control equipment [101]. No matter what changes are made to gasoline, if owners "tune" their engines for power, then the majority of such "tuned" vehicle will become gross polluters. Professional repairs to gross polluters usually improves fuel consumption, resulting in a low cost to owners (\$32/pa/Ton CO year). The removal of CO in the Provo example above was costed at \$200/Ton CO, compared to Inspection and Maintenance programs (\$780/Ton CO), and oxygenates (\$1034-\$1264/Ton CO in Colorado 1991-2), and UNOCALs vehicle scrapping program (\$1025/Ton of all pollutants).

Thus, identifying and repairing or removing gross polluters can be far more cost-effective than playing around with reformulated gasolines and oxygenates. A recent study has confirmed that gross polluters are not always older vehicles, and that vehicles have been scrapped that passed the 1993 new vehicle emission standards [102]. The study also confirmed that if estimated costs and benefits of various emission reduction strategies were applied to the tested fleet, the identification and repair techniques are the most cost-effective means of reducing HC and CO. It should be noted that some strategies (such as the use of oxygenates to replace aromatics and alkyl lead compounds) have other environmental benefits.

Action	venicies	Estimated	% reduction	% reduction	ì			
			Affected (Cost per \$bi	llion			
			(millions)	(\$billion)	HC	CO	HC	CO
Reformulated Fuels			20	1.5	17	11	11	7.3
Scrap pre-1980 vehic	eles		3.2	2.2	33	42	15	19
Scrap pre-1988 vehic	cles		14.6	17	44	67	2.6	3.9
Repair worst 20% of	vehicles		4	0.88	50	61	57	69
Repair worst 40% of	vehicles		8	1.76	68	83	3,9	47

Gasoline FAQ - Part 3 of 4

Archive-name: autos/gasoline-faq/part3

Posting-Frequency: monthly Last-modified: 17 November 1996

Version: 1.12

Subject: 6. What do Fuel Octane ratings really indicate?

6/1 Who invented Octane Ratings?

Since 1912 the spark ignition internal combustion engine's compression ratio had been constrained by the unwanted "knock" that could rapidly destroy engines. "Knocking" is a very good description of the sound heard from an engine using fuel of too low octane. The engineers had blamed the "knock" on the battery ignition system that was added to cars along with the electric self-starter. The engine developers knew that they could improve power and efficiency if knock could be overcome.

Kettering assigned Thomas Midgley, Jr. to the task of finding the exact cause of knock [24]. They used a Dobbie-McInnes monograph to demonstrate that the knock did not arise from pre ignition, as was commonly supposed, but arose from a violent pressure rise *after* ignition. The monograph was not suitable for further research, so Midgley and Boyd developed a high-speed camera to see what was happening. They also developed a "bouncing pin" indicator that measured the amount of knock [9]. Ricardo had developed an alternative concept of HUCR(

Heat of	Melting Point	Boiling Point	Density
	C	C	g/ml
normal heptane iso octane	-90.7 -107.45	98.4 99.3	0.684

Having decided on standard reference fuels, a whole range of engines and test conditions appeared, but today the most common are the Research Octane Number (RON), and the Motor Octane Number (MON).

6.2 Why do we need Octane Ratings?

To obtain the maximum energy from the gasoline, the compressed fuel-air mixture inside the combustion chamber needs to burn evenly, propagating out from the spark plug until all the fuel is consumed. This would deliver an optimum power stroke. In real life, a series of pre-flame reactions will occur in the unburnt "end gases" in the combustion chamber before the flame front arrives. If these reactions form molecules or species that can auto ignite before the flame front arrives, knock will occur [21,22].

Simply put, the octane rating of the fuel reflects the ability of the unburnt end gases to resist spontaneous autoignition under the engine test conditions used. If autoignition occurs, it results in an extremely rapid pressure rise, as both the desired spark-initiated flame front, and the undesired auto ignited end gas flames are expanding. The combined pressure peak arrives slightly ahead of the normal operating pressure peak, leading to a loss of power and eventual overheating. The end gas pressure waves are superimposed on the main pressure wave, leading to a sawtooth pattern of pressure oscillations that create the "knocking" sound.

The combination of intense pressure waves and overheating can induce piston failure in a few minutes. Knock and pre ignition are both favored by hightemperatures, so one may lead to the other. Under high-speed conditions knock can lead to pre ignition, which then accelerates engine destruction [27,28].

6.3 What fuel property does the Octane Rating measure?

The fuel property the octane ratings measure is the ability of the unburnt end gases to spontaneously ignite under the specified test conditions. Within the chemical structure of the fuel is the ability to withstand pre-flame conditions without decomposing into species that will auto ignite before the flame-front arrives. Different reaction mechanisms, occurring at various stages of the pre-flame compression stroke, are responsible for the undesirable, easily-autoignitable, end gases.

During the oxidation of a hydrocarbon fuel, the hydrogen atoms are removed one

Highest Useful Compression Ratio) using a variable-compression engine. His numbers were not absolute, as there were many variables, such as ignition timing, cleanliness, spark plug position, engine temperature. etc.

In 1927 Graham Edgar suggested using two hydrocarbons that could be produced in sufficient purity and quantity [11]. These were "normal heptane", that was already obtainable in sufficient purity from the distillation of Jeffrey pine oil, and an octane, named 2,4,4-trimethyl pentane " that he first synthesized. Today we call it " iso-octane " or 2,2,4-trimethyl pentane. The octane had a high antiknock value, and he suggested using the ratio of the two as a reference fuel number. He demonstrated that all the commercially- available gasolines could be bracketed between 60:40 and 40:60 parts by volume heptane: iso-octane.

The reason for using normal heptane and iso-octane was because they both have similar volatility properties, specifically boiling point, thus the varying ratios 0:100 to 100:0 should not exhibit large differences in volatility that could affect the rating test.

Vaporization MJ/kg 0.365 @ 25C 0.308 @ 25C

at a time from the molecule by reactions with small radical species (such as OH and HO2), and O and H atoms. The strength of carbon-hydrogen bonds depends on what the carbon is connected to. Straight chain HCs such as normal heptane have secondary C-H bonds that are significantly weaker than the primary C-H bonds present in branched chain HCs like iso-octane [21,22].

The octane rating of hydrocarbons is determined by the structure of the molecule, with long, straight hydrocarbon chains producing large amounts of easily-autoignitable pre-flame decomposition species, while branched and aromatic hydrocarbons are more resistant. This also explains why the octane ratings of paraffins consistently decrease with carbon number. In real life, the unburnt "end gases" ahead of the flame front encounter temperatures up to about 700C due to compression and radiant and conductive heating, and commence a series of pre-flame reactions. These reactions occur at different thermal stages, with the initial stage (below 400C) commencing with the addition of molecular oxygen to alkyl radicals, followed by the internal transfer of hydrogen atoms within the new radical to form an unsaturated, oxygen-containing species. These new species are susceptible to chain branching involving the HO2 radical during the intermediate temperature stage (400-600C), mainly through the production of OH radicals. Above 600C, the most important reaction that produces chain branching is the reaction of one hydrogen atom radical with molecular oxygen to form O and OH radicals.

The addition of additives such as alkyl lead and oxygenates can significantly affect the pre-flame reaction pathways. Antiknock additives work by interfering at different points in the pre-flame reactions, with the oxygenates retarding undesirable low temperature reactions, and the alkyl lead compounds react in the intermediate temperature region to deactivate the major undesirable chain branching sequence [21,22].

The antiknock ability is related to the "auto ignition temperature" of the hydrocarbons. Antiknock ability is not substantially related to:-

1. The energy content of fuel, this should be obvious, as oxygenates have lower energy contents, but high octanes.

2) The flame speed of the conventionally ignited mixture, this should be evident from the similarities of the two reference hydrocarbons. Although flame speed does play a minor part, there are many other factors that are far more important. (such as compression ratio, stoichiometry, combustion chamber shape, chemical

Sec 13.2 it can,

 \mathcal{O}

Ŭ

Detonation / Auto ignition are the determining factors which what limit the efficient of ICEs. Efficiencies increase steadily in Piston Engine with CR up to 17:1 The reason for street cars to have CR 9:1-10:1 is to prevent detonation. ie HUCR

structure of the fuel, presence of antiknock additives, number and position of spark plugs, turbulence etc.) Flame speed does not correlate with octane.

6.4 Why are two ratings used to obtain the pump rating?

The correct name for the (RON+MON)/2 formula is the "antiknock index", and it remains the most important quality criteria for motorists [39].

The initial knock measurement methods developed in the 1920s resulted in a diverse range of engine test methods and conditions, many of which have been summarized by Campbell and Boyd [103]. In 1928 the Co-operative Fuel Research Committee formed a sub-committee to develop a uniform knock-testing apparatus and procedure. They settled on a single-cylinder, valve-in-head, water-cooled, variable compression engine of 3.5"bore and 4.5" stroke. The knock indicator was the bouncing-pin type. They selected operating conditions for evaluation that most closely match the current Research Method, however correlation trials with road octanes in the early 1910s exhibited such large discrepancies that conditions were changed (higher engine speed, hot mixture temperature, and defined spark advance profiles), and a new tentative ASTM Octane rating method was produced. This method is similar to the operating conditions of the current Motor Octane procedure [12,103]. Over several decades, a large number of alternative octane test methods appeared. These were variations to either the engine design, or the specified operating conditions [103]. During the 1950-1960s attempts were made to internationally standardize and reduce the number of Octane Rating test procedures.

During the late 1940s - mid 1960s, the Research method became the important rating because it more closely represented the octane requirements of the motorist using the fuels/vehicles/roads then available. In the late 1960s German automakers discovered their engines were destroying themselves on long Autobahn runs, even though the Research Octane was within specification. They discovered that either the MON or the Sensitivity (the numerical difference between the RON and MON numbers) also had to be specified. Today it is accepted that no one octane rating covers all use. In fact, during 1994, there have been increasing concerns in Europe about the high Sensitivity of some commercially-available unleaded fuels.

The design of the engine and vehicle significantly affect the fuel octane requirement for both RON and MON. In the 1910s, most vehicles would have been sensitive to the Research Octane of the fuel, almost regardless of the Motor Octane, whereas most 1990s engines have a 'severity" of one, which means the engine is unlikely to knock if a changes of one RON is matched by an equal and opposite change of MON [32]. I should note that the Research method was only formally approved in 1947, but used unofficially from 1942.

6.5 What does the Motor Octane rating measure?

The conditions of the Motor method represent severe, sustained high speed, high load driving. For most hydrocarbon fuels, including those with either lead or oxygenates, the motor octane number (MON) will be lower than the research octane number (RON).

Test Engine conditions Motor Octane

Test Method ASTM D2700-92 [104]

Engine Cooperative Fuels Research (CFR) Engine RPM

900 RPM

Intake air temperature 38 C

Intake air humidity 3.56 - 7.12 g H2O / kg dry air

Intake mixture temperature 149 C Coolant temperature 100 C Oil Temperature 57 C

Ignition Advance - variable Varies with compression ratio

(e.g. 14 - 26 degrees BTDC)

Carburetor Venturi 14.3 mm

6.6 What does the Research Octane rating measure?

The Research method settings represent typical mild driving, without consistent heavy loads on the engine.

Test Engine conditions Research Octane Test Method ASTM D2699-92 [105]

Engine Cooperative Fuels Research (CFR)

Engine RPM 600 RPM

Intake air temperature Varies with barometric pressure (e.g. 88kPa = 19.4C, 101.6kPa = 52.2C)

Intake air humidity 3.56 - 7.12 g H2O / kg dry air

Intake mixture temperature Not specified Coolant temperature 100 C Oil Temperature 57 C

Ignition Advance - fixed 13 degrees BTDC

Carburetor Venturi Set according to engine altitude

(e.g. 0-500m=14.3mm, 500-1000m=15.1mm

6.7 Why is the difference called "sensitivity"?

RON - MON = Sensitivity. Because the two test methods use different test conditions, especially the intake mixture temperatures and engine speeds, then a fuel that is sensitive to changes in operating conditions will have a larger difference between the two rating methods. Modern fuels typically have sensitivities around 10. The US 87 (RON+MON)/2 unleaded gasoline is recommended to have a 82+ MON, thus preventing very high sensitivity fuels [39]. Recent changes in European gasolines has caused concern, as high sensitivity unleaded fuels have been found that fail to meet the 85 MON requirement of the EN228 European gasoline specification [106].

6.8 What sort of engine is used to rate fuels?

Automotive octane ratings are determined in a special single-cylinder engine with a variable compression ratio (CR 4:1 to 18:1) known as a Cooperative Fuels Research (CFR) engine. The cylinder bore is 82.5mm, the stroke is 114.3mm, giving a displacement of 612 cm3. The piston has four compression rings, and one oil control ring. The intake valve is shrouded. The head and cylinder are one piece, and can be moved up and down to obtain the desired compression ratio. The engines have a special four-bowl carburetor that can adjust individual bowl air-fuel ratios. This facilitates rapid switching between reference fuels and samples. A magneto restrictive detonation sensor in the combustion chamber measures the rapid changes in combustion chamber pressure caused by knock. and the amplified signal is measured on a "knock meter" with a 0-100 scale [104,105]. A complete Octane Rating engine system costs about \$200,000 with all the services installed. Only one company manufactures these engines, the Waukesha Engine Division of Dresser Industries, Waukesha. WI 53186.

6.9 How is the Octane rating determined?

To rate a fuel, the engine is set to an appropriate compression ratio that will produce a knock of about 50 on the knock meter for the sample when the air-fuel ratio is adjusted on the carburetor bowl to obtain maximum knock. Normal heptane and iso-octane are known as primary reference fuels. Two blends of these are made, one that is one octane number above the expected rating, and another that is one octane number below the expected rating. These are placed in different bowls, and are also rated with each air-fuel ratio being adjusted for maximum knock. The higher octane reference fuel should produce a reading around 30-40, and the lower reference fuel should produce a reading of 60-70. The sample is again tested, and if it does not fit between the reference fuels, further reference fuels are prepared, and the engine readjusted to obtain the required knock. The actual fuel rating is interpolated from the knock meter readings [104,105].

6.10 What is the Octane Distribution of the fuel?

The combination of vehicle and engine can result in specific requirements for octane that depend on the fuel. If the octane is distributed differently throughout the boiling range of a fuel, then engines can knock on one brand of 87 (RON+MON)/2, but not on another brand. This "octane distribution" is especially important when sudden changes in load occur, such as high load, full throttle, acceleration. The fuel can segregate in the manifold, with the very volatile fraction reaching the combustion chamber first and, if that fraction is deficient in octane, then knock will occur until the less volatile, higher octane fractions arrive [27,28].

Some fuel specifications include delta RONs, to ensure octane distribution throughout the fuel boiling range was consistent. Octane distribution was seldom a problem with the alkyl lead compounds, as the tetra methyl lead and tetra ethyl lead octane volatility profiles were well characterized, but it can be a major problem for the new, reformulated, low aromatic gasolines, as MTBE boils at 55C, whereas ethanol boils at 78C. Drivers have discovered that an 87 (RON+MON)/2 from one brand has to be substituted with an 89 (RON+MON)/2 of another, and that is because of the combination of their driving style, engine design, vehicle mass, fuel octane distribution, fuel volatility, and the octane-enhancers used.

6.11 What is a "delta Research Octane number"?

To obtain an indication of behavior of a gasoline during any manifold segregation, an octane rating procedure called the Distribution Octane Number was used. The rating engine had a special manifold that allowed the heavier fractions to be separated before they reached the combustion chamber [27]. That method has been replaced by the "delta" RON procedure.

The fuel is carefully distilled to obtain a distillate fraction that boils to the specified temperature, which is usually 100C. Both the parent fuel and the distillate fraction are rated on the octane engine using the Research Octane method [107]. The difference between these is the delta RON(100C), usually just called the delta RON. The delta RON ratings are not particularly relevant to engines with injectors, and are not used in the US.

6.12 How do other fuel properties affect octane?

Several other properties affect knock. The most significant determinant of octane is the chemical structure of the hydrocarbons and their response to the addition of octane enhancing additives. Other factors include:- Front End Volatility - Paraffins are the major component in gasoline, and the octane number decreases with increasing chain length or ring size, but increases with chain branching. Overall, the effect is a significant reduction in octane if front end volatility is lost, as can happen with improper or long term storage. Fuel economy on short trips can be improved by using a more volatile fuel, at the risk of carburetor icing and increased evaporative emissions.

Final Boiling Point.- Decreases in the final boiling point increase fuel octane. Aviation gasolines have much lower final boiling points than automotive gasolines. Note that final boiling points are being reduced because the higher boiling fractions are responsible for disproportionate quantities of pollutants and toxins.

Pre ignition tendency - both knock and pre ignition can induce each other.

6.13 Can higher octane fuels give me more power?

On modern engines with sophisticated engine management systems, the engine can operate efficiently on fuels of a wider range of octane rating, but there remains an optimum octane for the engine under specific driving conditions. Older cars without such systems are more restricted in their choice of fuel, as the engine can not automatically adjust to accommodate lower octane fuel. Because knock is so destructive, owners of older cars must use fuel that will not knock under the most demanding conditions they encounter, and must continue to use that fuel, even if they only occasionally require the octane.

If you are already using the proper octane fuel, you will not obtain more power from higher octane fuels. The engine will be already operating at optimum settings, and a higher octane should have no effect on the management system. Your drive ability and fuel economy will remain the same. The higher octane fuel costs more, so you are just throwing money away. If you are already using a fuel with an octane rating slightly below the optimum, then using a higher octane fuel will cause the engine management system to move to the optimum settings, possibly resulting in both increased power and improved fuel economy. You may be able to change octanes between seasons (reduce octane in winter) to obtain the most cost-effective fuel without loss of drive ability.

Once you have identified the fuel that keeps the engine at optimum settings, there is no advantage in moving to an even higher octane fuel. The manufacturer's recommendation is conservative, so you may be able to carefully reduce the fuel octane. The penalty for getting it badly wrong, and not realizing that you have, could be expensive engine damage.

6.14 Does low octane fuel increase engine wear?

Not if you are meeting the octane requirement of the engine. If you are not meeting the octane requirement, the engine will rapidly suffer major damage due to knock. You must not use fuels that produce sustained audible knock, as engine damage will occur. If the octane is just sufficient, the engine management system will move settings to a less optimal position, and the only major penalty will be increased costs due to poor fuel economy. Whenever possible, engines should be operated at the optimum position for long-term reliability. Engine wear is mainly related to design, manufacturing, maintenance and lubrication factors. Once the octane and run-on requirements of the engine are satisfied, increased octane will have no beneficial effect on the engine. Run-on is the tendency of an engine to

continue running after the ignition has been switched off, and is discussed in more detail in Section 8.2. The quality of gasoline, and the additive package used, would be more likely to affect the rate of engine wear, rather than the octane rating.

6.15 Can I mix different octane fuel grades?

Yes, however attempts to blend in your fuel tank should be carefully planned. You should not allow the tank to become empty, and then add 50% of lower octane, followed by 50% of higher octane. The fuels may not completely mix immediately, especially if there is a density difference. You may get a slug of low octane that causes severe knock. You should refill when your tank is half full. In general the octane response will be linear for most hydrocarbon and oxygenated fuels e.g. 50:50 of 87 and 91 will give 89.

Attempts to mix leaded high octane to unleaded high octane to obtain higher octane are useless for most commercial gasolines. The lead response of the unleaded fuel does not overcome the dilution effect, thus 50:50 of 96 leaded and 91 unleaded will give 94. Some blends of oxygenated fuels with ordinary gasoline can result in undesirable increases in volatility due to volatile azeotropes, and some oxygenates can have negative lead responses. The octane requirement of some engines is determined by the need to avoid run-on, not to avoid knock.

6.16 What happens if I use the wrong octane fuel?

If you use a fuel with an octane rating below the requirement of the engine, the management system may move the engine settings into an area of less efficient combustion, resulting in reduced power and reduced fuel economy. You will be losing both money and drive ability. If you use a fuel with an octane rating higher than what the engine can use, you are just wasting money by paying for octane that you can not utilize. The additive packages are matched to the engines using the fuel, for example intake valve deposit control additive concentrations may be increased in the premium octane grade. If your vehicle does not have a knock-sensor, then using a fuel with an octane rating significantly below the octane requirement of the engine means that the little men with hammers will gleefully pummel your engine to pieces.

You should initially be guided by the vehicle manufacturer's recommendations, however you can experiment, as the variations in vehicle tolerances can mean that Octane Number Requirement for a given vehicle model can range over 6 Octane Numbers. Caution should be used, and remember to compensate if the conditions change, such as carrying more people or driving in different ambient conditions. You can often reduce the octane of the fuel you use in winter because the temperature decrease and possible humidity changes may significantly reduce the octane requirement of the engine.

Use the octane that provides cost-effective drive ability and performance, using anything more is waste of money, and anything less could result in an unscheduled, expensive visit to your mechanic.

6.17 Can I tune the engine to use another octane fuel?

In general, modern engine management systems will compensate for fuel octane, and once you have satisfied the optimum octane requirement, you are at the optimum overall performance area of the engine map. Tuning changes to obtain more power will probably adversely affect both fuel economy and emissions. Unless you have access to good diagnostic equipment that can ensure regulatory limits are complied with, it is likely that adjustments may be regarded as illegal tampering by your local regulation enforcers. If you are skilled, you will be able to legally wring slightly more performance from your engine by using a dynamometer in conjunction with engine and exhaust gas analyzers and a well-designed, retrofitted, performance engine management chip.

6.18 How can I increase the fuel octane?

Not simply, you can purchase additives, however these are not cost-effective and a survey in 1989 showed the cost of increasing the octane rating of one US gallon by one unit ranged from 10 cents (methanol), 50 cents (MMT), \$1.00 (TEL), to \$3.25 (xylene) [108]. Refer to section 6.20 for a discussion on naphthalene (mothballs). It is preferable to purchase a higher octane fuel such as racing fuel, aviation gasolines, or methanol. Sadly, the price of chemical grade methanol has almost doubled during 1994. If you plan to use alcohol blends, ensure your fuel handling system is compatible, and that you only use dry gasoline by filling up early in the morning when the storage tanks are cool. Also ensure that the service station storage tank has not been refilled recently. Retailers are supposed to waif

Perk Pills > helps de let e

several hours before bringing a refilled tank online, to allow suspended undissolved water to settle out, but they do not always wait the full period.

6.19 Are aviation gasoline octane numbers comparable?

Aviation gasolines were all highly leaded and graded using two numbers, with common grades being 80/87, 100/130, and 115/145 [109,110]. The first number is the Aviation rating (aka Lean Mixture rating), and the second number is the Supercharge rating (aka Rich Mixture rating). In the 1970s a new grade, 100LL (low lead = 0.53mlTEL/L instead of 1.06mlTEL/L) was introduced to replace the 80/87 and 100/130. Soon after the introduction, there was a spate of plug fouling, and high cylinder head temperatures resulting in cracked cylinder heads [110]. The old 80/87 grade was reintroduced on a limited scale. The Aviation Rating is determined using the automotive Motor Octane test procedure, and then converted to an Aviation Number using a table in the method. Aviation Numbers below 100 are Octane numbers, while numbers above 100 are Performance numbers. There is usually only 1 - 2 Octane units different to the Motor value up to 100, but Performance numbers varies significantly above that e.g. 110 MON = 128 Performance number.

The second Avgas number is the Rich Mixture method Performance Number (PN - they are not commonly called octane numbers when they are above 100), and is determined on a supercharged version of the CFR engine which has a fixed compression ratio. The method determines the dependence of the highest permissible power (in terms of indicated mean effective pressure) on mixture strength and boost for a specific light knocking setting. The Performance Number indicates the maximum knock-free power obtainable from a fuel compared to iso-octane = 100. Thus, a PN = 150 indicates that an engine designed to utilize the fuel can obtain 150% of the knock-limited power of iso-octane at the same mixture ratio. This is an arbitrary scale based on iso-octane + varying amounts of TEL, derived from a survey of engines performed decades ago. Aviation gasoline PNs are rated using variations of mixture strength to obtain the maximum knock-limited power in a supercharged engine. This can be extended to provide mixture response curves which define the maximum boost (rich - about 11:1 stoichiometry) and minimum boost (weak about 16:1 stoichiometry) before knock [110].

The 115/145 grade is being phased out, but even the 100LL has more octane than any automotive gasoline.

6.20 Can mothballs increase octane?

The legend of mothballs as an octane enhancer arose well before WWII when naphthalene was used as the active ingredient. Today, the majority of mothballs use para-dichlorobenzene in place of naphthalene, so choose carefully if you wish to experiment:-). There have been some concerns about the toxicity of para-dichlorobenzene, and naphthalene mothballs have again become popular. In the 1920s, typical gasoline octane ratings were 40-60 [11], and during the 1910s and 40s, the ratings increased by approximately 20 units as alkyl leads and improved refining processes became widespread [12].

Naphthalene has a blending motor octane number of 90 [52], so the addition of a significant amount of mothballs could increase the octane, and they were soluble in gasoline. The amount usually required to appreciably increase the octane also had some adverse effects. The most obvious was due to the high melting point (80C), when the fuel evaporated the naphthalene would precipitate out, blocking jets and filters. With modern gasolines, naphthalene is more likely to reduce the octane rating, and the amount required for low octane fuels will also create operational and emissions problems.

Subject: 7. What parameters determine octane requirement?

7.1 What is the Octane Number Requirement of a Vehicle?

The actual octane requirement of a vehicle is called the Octane Number Requirement (ONR), and is determined by using series of standard octane fuels that can be blends of iso-octane and normal heptane (primary reference), or commercial gasolines (full-boiling reference). In Europe, delta RON (100C) fuels are also used, but seldom in the USA. The vehicle is tested under a wide range of conditions and loads, using decreasing octane fuels from each series until trace knock is detected. The conditions that require inaximum octane are not consistent, but often are full-throttle acceleration from low starting speeds using the highest gear available. They can even be at constant speed conditions, which are usually

performed on chassis dynamometers [27,28,111]. Engine management systems that adjust the octane requirement may also reduce the power output on low octane fuel, resulting in increased fuel consumption, and adaptive learning systems have to be preconditioned prior to testing. The maximum ONR is of most interest, as that usually defines the recommended fuel, however it is recognized that the general public seldom drive as severely as the testers, and so may be satisfied by a lower octane fuel [28].

7.2 What is the effect of Compression ratio?

Most people know that an increase in Compression Ratio will require an increase in fuel octane for the same engine design. Increasing the compression ratio increases the theoretical thermodynamic efficiency of an engine according to the standard equation

Efficiency = 1 - (1/compression ratio)^gamma-1

where gamma = ratio of specific heats at constant pressure and constant volume of the working fluid (for most purposes air is the working fluid, and is treated as an ideal gas). There are indications that thermal efficiency reaches a maximum at a compression ratio of about 17:1 for gasoline fuels in an SI engine [23].

The efficiency gains are best when the engine is at incipient knock, that's why knock sensors (actually vibration sensors) are used. Low compression ratio engines are less efficient because they can not deliver as much of the ideal combustion power to the flywheel. For a typical carbureted engine, without engine management [27,38]:-

Compression	Octane Number	Brake Thermal Efficiency
Ratio	Requirement	(Full Throttle)
5:1	72	-
6:1	81	25 %
7:1	87	28 %
8:1	92	30 %
9:1	96 .	32 %
10:1	100	33 %
11:1	104	34 %
12:1	108	35 % -

Modern engines have improved significantly on this, and the changing fuel specifications and engine design should see more improvements, but significant gains may have to await improved engine materials and fuels.

7.3 What is the effect of changing the air-fuel ratio?

Traditionally, the greatest tendency to knock was near 13.5:1 air-fuel ratio, but was very engine specific. Modern engines, with engine management systems, now have their maximum octane requirement near to 14.5:1. For a given engine using gasoline, the relationship between thermal efficiency, air-fuel ratio, and power is complex. Stoichiometric combustion (air-fuel ratio = 14.7:1 for a typical non-oxygenated gasoline) is neither maximum power - which occurs around air-fuel 12-13:1 (Rich), nor maximum thermal efficiency - which occurs around air-fuel 16-18:1 (Lean). The air-fuel ratio is controlled at part throttle by a closed loop system using the oxygen sensor in the exhaust. Conventionally, enrichment for maximum power air-fuel ratio is used during full throttle operation to reduce knocking while providing better drive ability [38]. An average increase of 2 (R+M)/2 ON is required for each 1.0 increase (leaning) of the air-fuel ratio [111]. If the mixture is weakened, the flame speed is reduced, consequently less heat is converted to mechanical energy, leaving heat in the cylinder walls and head, potentially inducing knock. It is possible to weaken the mixture sufficiently that the flame is still present when the inlet valve opens again, resulting in backfiring.

7.4 What is the effect of changing the ignition timing?

The tendency to knock increases as spark advance is increased. For an engine with recommended 6 degrees BTDC (Before Top Dead Center) timing and 93 octane fuel, retarding the spark 4 degrees lowers the octane requirement to 91, whereas advancing it 8 degrees requires 96 octane fuel [27]. It should be noted this requirement depends on engine design. If you advance the spark, the flame front starts earlier, and the end gases start forming earlier in the cycle, providing more time for the autoigniting species to form before the piston reaches the optimum position for power delivery, as determined by the normal flame front propagation. It becomes a race between the flame front and decomposition of the increasingly-squashed end gases. High octane fuels produce end gases that take

longer to autoignite, so the good flame front reaches and consumes them properly.

The ignition advance map is partly determined by the fuel the engine is intended to use. The timing of the spark is advanced sufficiently to ensure that the fuel-air mixture burns in such a way that maximum pressure of the burning charge is about 15-20 degree after TDC. Knock will occur before this point, usually in the late compression - early power stroke period. The engine management system uses ignition timing as one of the major variables that is adjusted if knock is detected. If very low octane fuels are used (several octane numbers below the vehicle's

Basic Ignition Timing

Vehicle	Retarded 5 degrees	Standard	Advanced 5 degrees
Α	88	91	93
В	86	90.5	94.5
C ·	85.5	88	90
D	84	87.5	91
E	82.5	87	90

The actual ignition timing to achieve the maximum pressure from normal combustion of gasoline will depend mainly on the speed of the engine and the flame propagation rates in the engine. Knock increases the rate of the pressure rise, thus superimposing additional pressure on the normal combustion pressure rise. The knock actually rapidly resonates around the chamber, creating a series of abnormal sharp spikes on the pressure diagram. The normal flame speed is fairly consistent for most gasoline HCs, regardless of octane rating, but the flame speed is affected by stoichiometry. Note that the flame speeds in this FAQ are not the actual engine flame speeds. A 12:1 CR gasoline engine at 1500 rpm would have a flame speed of about 16.5 m/s, and a similar hydrogen engine yields 48.3 m/s, but such engine flame speeds are also very dependent on stoichiometry.

7.5 What is the effect of engine management systems?

Engine management systems are now an important part of the strategy to reduce automotive pollution. The good news for the consumer is their ability to maintain the efficiency of gasoline combustion, thus improving fuel economy. The bad news is their tendency to hinder tuning for power. A very basic modern engine system could monitor and control:- mass air flow, fuel flow, ignition timing, exhaust oxygen (lambda oxygen sensor), knock (vibration sensor), EGR, exhaust gas temperature, coolant temperature, and intake air temperature. The knock sensor can be either a nonresonant type installed in the engine block and capable of measuring a wide range of knock vibrations (5-15 kHz) with minimal change in frequency, or a resonant type that has excellent signal-to-noise ratio between 1000 and 5000 rpm [112].

A modern engine management system can compensate for altitude, ambient air temperature, and fuel octane. The management system will also control cold start settings, and other operational parameters. There is a new requirement that the engine management system also contain an on-board diagnostic function that warns of malfunctions such as engine misfire, exhaust catalyst failure, and evaporative emissions failure. The use of fuels with alcohols such as methanol can confuse the engine management system as they generate more hydrogen which can fool the oxygen sensor [76].

The use of fuel of too low octane can actually result in both a loss of fuel economy and power, as the management system may have to move the engine settings to a less efficient part of the performance map. The system retards the ignition timing until only trace knock is detected, as engine damage from knock is of more consequence than power and fuel economy.

7.6 What is the effect of temperature and load?

Increasing the engine temperature, particularly the air-fuel charge temperature, increases the tendency to knock. The Sensitivity of a fuel can indicate how it is affected by charge temperature variations. Increasing load increases both the engine temperature, and the end-gas pressure, thus the likelihood of knock increases as load increases. Increasing the water jacket temperature from 71C to 82C, increases the (R+M)/2 ONR by two [111]. 7.7 What is the effect of engine speed? Faster engine speed means there is less time for the pre-flame reactions in the end gases to occur, thus reducing the tendency to knock. On engines with management systems, the ignition timing may be advanced with engine speed and load, to obtain optimum efficiency at incipient knock. In such cases, both high-and low engines speeds may be critical.

requirement at optimal settings), both performance and fuel economy will decrease

The actual Octane Number Requirement depends on the engine design, but for some 1978 vehicles using standard fuels, the following (R+M)/2 Octane Requirements were measured. "Standard" is the recommended ignition timing for the engine, probably a few degrees BTDC [38].

7.8 What is the effect of engine deposits?

A new engine may only require a fuel of 6-9 octane numbers lower than the same engine after 25,000 km. This Octane Requirement Increase (ORI) is due to the formation of a mixture of organic and inorganic deposits resulting from both the fuel and the lubricant. They reach an equilibrium amount because of flaking, however dramatic changes in driving styles can also result in dramatic changes of the equilibrium position. When the engine starts to burn more oil, the octane requirement can increase again. ORIs up to 12 are not uncommon, depending on driving style [27,28,32,111]. The deposits produce the ORI by several mechanisms:-

- they reduce the combustion chamber volume, effectively increasing the compression ratio.
- they also reduce thermal conductivity, thus increasing the combustion chamber temperatures.
- they catalyze undesirable pre-flame reactions that produce end gases with low auto ignition temperatures.

7.9 What is the Road Octane Number of a Fuel?

The CFR octane rating engines do not reflect actual conditions in a vehicle, consequently there are standard procedures for evaluating the performance of the gasoline in an engine. The most common are:-

- 1. The Modified Uniontown Procedure. Full throttle accelerations are made from low speed using primary reference fuels. The ignition timing is adjusted until trace knock is detected at some stage. Several reference fuels are used, and a Road Octane Number v Basic Ignition timing graph is obtained. The fuel sample is tested, and the trace knock ignition timing setting is read from the graph to provide the Road Octane Number. This is a rapid procedure but provides minimal information, and cars with engine management systems require sophisticated electronic equipment to adjust the ignition timing [28].
- 2. The Modified Borderline Knock Procedure. The automatic spark advance is disabled, and a manual adjustment facility added. Accelerations are performed as in the Modified Uniontown Procedure, however trace knock is maintained throughout the run by adjustment of the spark advance. A map of ignition advance vengine speed is made for several reference fuels and the sample fuels. This procedure can show the variation of road octane with engine speed, however the technique is almost impossible to perform on vehicles with modern management systems [28].

The Road Octane Number lies between the MON and RON, and the difference between the RON and the Road Octane number is called 'depreciation" [111]. Because nominally-identical new vehicle models display octane requirements that can range over seven numbers, a large number of vehicles have to be tested [28,111].

7.10 What is the effect of air temperature?

An increase in ambient air temperature of 5.6C increases the octane requirement of an engine by 0.44 - 0.54 MON [27,38]. When the combined effects of air temperature and humidity are considered, it is often possible to use one octane grade in summer, and use a lower octane rating in winter. The Motor octane rating has a higher charge temperature, and increasing charge temperature increases the tendency to knock, so fuels with low Sensitivity (the difference between RON and MON numbers) are less affected by air temperature.

7.11 What is the effect of altitude?

The effect of increasing altitude may be nonlinear, with one study reporting a

decrease of the octane requirement of 1.4 RON/300m from sea level to 1800m and 2.5 RON/300m from 1800m to 3600m [27]. Other studies report the octane number requirement decreased by 1.0 - 1.9 RON/300m without specifying altitude [38]. Modern engine management systems can accommodate this adjustment, and in some recent studies, the octane number requirement was reduced by 0.2 - 0.5 (R+M)/2 per 300m increase in altitude. The larger reduction on older engines was due to:

- reduced air density provides lower combustion temperature and pressure.
- fuel is metered according to air volume, consequently as density decreases the stoichiometry moves to rich, with a lower octane number requirement.
- manifold vacuum controlled spark advance, and reduced manifold vacuum results in less spark advance.

7.12 What is the effect of humidity?.

An increase of absolute humidity of 1.0 g water/kg of dry air lowers the octane requirement of an engine by 0.25 - 0.32 MON [27,28,38].

7.13 What does water injection achieve?.

Water injection, as a separate liquid or emulsion with gasoline, or as a vapor, has been thoroughly researched. If engines can calibrated to operate with small amounts of water, knock can be suppressed, hydrocarbon emissions will slightly increase, NOX emissions will decrease, CO does not change significantly, and fuel and energy consumption are increased [113]. Water injection was used in WWII aviation engine to provide a large increase in available power for very short periods. The injection of water does decrease the dew point of the exhaust gases. This has potential corrosion problems. The very high specific heat and heat of vaporization of water means that the combustion temperature will decrease. It has been shown that a 10% water addition to methanol reduces the power and efficiency by about 3%, and doubles the unburnt fuel emissions, but does reduce NOX by 25% [114]. A decrease in combustion temperature will reduce the theoretical maximum possible efficiency of an otto cycle engine that is operating correctly, but may improve efficiency in engines that are experiencing abnormal combustion on existing fuels.

Some aviation SI engines still use boost fluids. The water-methanol mixtures are used to provide increased power for short periods, up to 40% more - assuming adequate mechanical strength of the engine. The 40/60 or 45/55 water-methanol mixtures are used as boost fluids for aviation engines because water would freeze. Methanol is just "preburnt" methane, consequently it only has about half the energy content of gasoline, but it does have a higher heat of vaporization, which has a significant cooling effect on the charge. Water-methanol blends are more cost-effective than gasoline for combustion cooling. The high Sensitivity of alcohol fuels has to be considered in the engine design and settings.

Boost fluids are used because they are far more economical than using the fuel. When a supercharged engine has to be operated at high boost, the mixture has to be enriched to keep the engine operating without knock. The extra fuel cools the cylinder walls and the charge, thus delaying the onset of knock which would otherwise occur at the associated higher temperatures.

The overall effect of boost fluid injection is to permit a considerable increase in knock-free engine power for the same combustion chamber temperature. The power increase is obtained from the higher allowable boost. In practice, the fuel mixture is usually weakened when using boost fluid injection, and the ratio of the two fuel fluids is approximately 100 parts of av gas to 25 parts of boost fluid. With that ratio, the resulting performance corresponds to an effective uprating of the fuel of about 25%, irrespective of its original value. Trying to increase power boosting above 40% is difficult, as the engine can drown because of excessive liquid [110].

Note that for water injection to provide useful power gains, the engine management and fuel systems must be able to monitor the knock and adjust both stoichiometry and ignition to obtain significant benefits. Aviation engines are designed to accommodate water injection, most automobile engines are not. Returns on investment are usually harder to achieve on engines that do not normal extend their performance envelope into those regions. Water injection has been used by some engine manufacturers - usually as an expedient way to maintain acceptable power after regulatory emissions baggage was added to the engine, but usually the manufacturer quickly produces a modified engine that does not require water injection.

Subject: 8. How can I identify and cure other fuel-related problems?

8.1 What causes an empty fuel tank?

- You forgot to refill it.
- Your friendly neighborhood thief "borrowed" the gasoline the unfriendly one took the vehicle.
- The fuel tank leaked.
 - Your darling child/wife/husband/partner/mother/father used the car
- * The most likely reason is that your local garage switched to an oxygenated gasoline, and the engine management system compensated for the oxygen content, causing the fuel consumption to increase (although the effect on well tuned engines is only 2-4%).

8.2 Is knock the only abnormal combustion problem?

No. Many of the abnormal combustion problems are induced by the same conditions, and so one can lead to another.

Detonation occurs when the air-fuel mixture is ignited prematurely by glowing deposits or hot surfaces - such as exhaust valves and spark plugs. If it continues, it can increase in severity and become Run-away Surface Ignition (RSI) which prevents the combustion heat being converted into mechanical energy, thus rapidly melting pistons. The Ricardo method uses an electrically-heated wire in the engine to measure detonation tendency. The scale uses iso-octane as 100 and cyclohexane as 0

Some common fuel components:-

paraffins	50-100
benzene	26
toluene	93
xylene	>100
cyclopentane	7 0
di-isobutylene	64
hexene-2	-26

There is no direct correlation between antiknock ability and pre ignition tendency, however high combustion chamber temperatures favor both, and so one may lead to the other. An engine knocking during high-speed operation will increase in temperature and that can induce detonation, and conversely any pre ignition will result in higher temperatures than may induce knock.

Misfire is commonly caused by either a failure in the ignition system, or fouling of the spark plug by deposits. The most common cause of deposits was the alkyl lead additives in gasoline, and the yellow glaze of various lead salts was used by mechanics to assess engine tune. From the upper recess to the tip, the composition changed, but typical compounds (going from cold to hot) were PbClBr; 2PbO.PbClBr; PbO.PbSO4; 3Pb3(PO4)2.PbClBr.

Run-on is the tendency of an engine to continue running after the ignition has been switched off. It is usually caused by the spontaneous ignition of the fuel-air mixture, rather than by surface ignition from hot spots or deposits, as commonly believed. The narrow range of conditions for spontaneous ignition of the fuel-air mixture (engine speed, charge temperature, cylinder pressure) may be created when the engine is switched off. The engine may refire, thus taking the conditions out of the critical range for a couple of cycles, and then refire again, until overall cooling of the engine drops it out of the critical region. The octane rating of the fuel is the appropriate parameter, and it is not rare for an engine to require a higher Octane fuel to prevent run-on than to avoid knock [27,28]. Obviously, engines with fuel injection systems do not have the problem, and idle speed is an important factor. Later model carburetor have an idle stop solenoid which partially closes the throttle blades when the ignition key was off, and thus (if set correctly) prevents run-on.

8.3 Can I prevent carburetor icing?

Yes, carburetor icing is caused by the combination of highly volatile fuel, high humidity and low ambient temperature. The extent of cooling, caused by the latent heat of the vaporized gasoline in the carburetor, can be as much as 20C, perhaps dropping below the dew point of the charge. If this happens, water will condense

towever

Sacons

y chor

on the cooler carburetor surfaces, and will freeze if the temperature is low enough. The fuel volatility can not always be reduced to eliminate icing, so anti-icing additives are used. In the US, anti-icing additives are seldom required because of the widespread use heated intake air and fuel injection [28].

Two types of additive are added to gasoline to inhibit icing:-

 surfactants that form a monomolecular layer over the metal parts that inhibits ice crystal formation. These are usually added at concentrations of 30-150 ppm.

 cryoscopic additives that depress the freezing point of the condensed water so that it does not turn to ice. Alcohols (methanol, iso-propyl alcohol, etc.) and glycols (hexylene glycol, dipropylene glycol) are used at concentrations of 0.03% - 1%.

If you have icing problems, the addition of 100-200mls of alcohol to a full tank of dry gasoline will prevent icing under moderately-cold conditions. If you believe there is a small amount of water in the fuel tank, add 500mls of anhydrous isopropyl alcohol as the first treatment, and isopropyl alcohol is also preferred for more severe conditions. Oxygenated gasolines using alcohols can also be used. It's important to ensure the alcohol is anhydrous, as some grades contain up to 30% water.

8.4 Should I store fuel to avoid the oxygenate season?

No. The fuel will be from a different season, and will have significantly different volatility properties that may induce drive ability problems. You can tune your engine to perform on oxygenated gasoline as well as it did on traditional gasoline, however you will have increased fuel consumption due to the useless oxygen in the oxygenates. Some engines may not initially perform well on some oxygenated fuels, usually because of the slightly different volatility and combustion characteristics. A good mechanic should be able to recover any lost performance or drive ability, providing the engine is in reasonable condition.

8.5 Can I improve fuel economy by using quality gasolines?

Yes, several manufacturers have demonstrated that their new gasoline additive packages are more effective than traditional gasoline formulations. Texaco claimed their new vapor-phase fuel additive can reduce existing deposits by up to 30%, improve fuel economy, and reduce NOX tailpipe emissions by 15%, when compared to other advanced liquid phase additives [49]. The advertising claims have been successfully disputed in court by Chevron - who demonstrated that their existing fuel additive already offered similar benefits. Other reputable gasoline manufacturers will have similar additive packages in their premium quality gasolines [50]. Quality gasolines, of whatever octane ratings, will include a full range of gasoline additives designed to provide consistent fuel quality.

Note that oxygenated gasolines must decrease fuel-economy for the same power. If your engine is initially well-tuned on hydrocarbon gasolines, the stoichiometry

will move to lean, and maximum power is slightly rich, so either the management system (if you have one) or your mechanic has to increase the fuel flow. The minor improvements in combustion efficiency that oxygenates may provide, can not compensate for 2+% of oxygen in the fuel that will not provide energy.

BTG Seller 8.6 What is "stale" fuel, and should I use it?

"Stale" fuel is caused by improper storage, and usually smells sour. The gasoline has been allowed to get warm, thus catalyzing olefin decomposition reactions, and perhaps also losing volatile material in unsealed containers. Such fuel will tend to rapidly form gums, and will usually have a significant reduction in octane rating. The fuel can be used by blending with twice the volume of new gasoline, but the blended fuel should be used immediately, otherwise the old fuel will catalyze rapid decomposition of the new, resulting in even larger quantities of stale fuel. Some stale fuels can drop several octane numbers, so be generous with the dilution.

8.7 How can I remove water in the fuel tank?

If you only have a small quantity of water, then the addition of 500mls of dry isopropanol (IPA) to a near-full 30-40 liter tank will absorb the water, and will not significantly affect combustion. Once you have mopped up the water with IPA, small, regular doses of any anhydrous alcohol will help keep the tank dry. This technique will not work if you have very large amounts of water, and the addition of greater amounts of IPA may result in poor drive ability.

Water in fuel tanks can be minimized by keeping the fuel tank near full, and filling in the morning from a service station that allows storage tanks to stand for several hours after refilling before using the fuel. Note that oxygenated gasolines have greater water solubility, and should cope with small quantities of water.

8.8 Can I used unleaded on older vehicles?

Yes, providing the octane is appropriate. There are some older engines that cut the valve seats directly into the cylinder head (e.g. BMC minis). The absence of lead, which lubricated the valve seat, causes the very hard oxidation products of the exhaust valve to wear down the seat. This valve seat recession is usually corrected by installing seat inserts, hardening the seats, or use of specific valve seat recession protection additives (such as Valvemaster). Most other problems arise because the fuels have different volatility, or the reduction of combustion chamber deposits. These can usually be cured by reference to the vehicle manufacturer, who will probably have a publication with the changes. Some vehicles will perform as well on unleaded with a slightly lower octane than recommended leaded fuel, due to the significant reduction in deposits from modern unleaded gasolines. If premium unleaded petrol containing relatively high levels of aromatics is used, some carbureted engines from the 1960s may experience spark plug fouling, however most vehicle manufacturers have guides to ensure careful engine tuning will eliminate most of the problem.

Gasoline FAQ - Part 4 of 4

Archive-name: autos/gasoline-faq/part4 Posting-Frequency: monthly Last-modified: 17 November 1996

Version: 1.12

8.9 How serious is valve seat recession on older vehicles?

The amount of exhaust valve seat recession is very dependent on the load on the engine. There have been several major studies on valve seat recession, and they conclude that most damage occurs under high-speed, high-power conditions. Engine load is not a primary factor in valve seat wear for moderate operating conditions, and low to medium speed engines under moderate loads do not suffer rapid recession, as has been demonstrated on fuels such as CNG and LPG. Under severe conditions, damage occurs rapidly, however there are significant cylinder-to-cylinder variations on the same engine. A 1970 engine operated at 70 mph conditions exhibited an average 1.5mm of seat recession in 12,000km. The difference between cylinders has been attributed to different rates of valve rotation, and experiments have confirmed that more rotation does increase the recession rate [29]. The mechanism of valve seat wear is a mixture of two major mechanisms. Iron oxide from the combustion chamber surfaces adheres to the valve face and becomes embedded. These hard particles then allow the valve act as a grinding wheel and cut into the valve seat [115]. The significance of valve seat recession is that should it occur to the extent that the valve does not seat, serious engine damage can result from the localized hot spot.

There are a range of additives, usually based on potassium, sodium or phosphorus that can be added to the gasoline to combat valve seat recession. As phosphorus has adverse effects on exhaust catalysts, it is seldom used. The best long term solution is to induction harden the seats or install inserts, usually when the head is removed for other work, however additives are routinely and successfully used during transition periods.

Section: 9. Alternative Fuels and Additives

9.1 Do fuel additives work?

Most aftermarket fuel additives are not cost-effective. These include the octane-enhancer solutions discussed in section 6.18. There are various other pills, ON ONE of tablets, mannets tablets, magnets, etc. that all claim to improve either fuel economy or performance. Some of these have perfectly sound scientific mechanisms, unfortunately they are not cost-effective. Some do not even have sound scientific mechanisms. Because the same model production vehicles can vary significantly, it's expensive to unambiguously demonstrate these additives are not cost-effective. If you wish to try them, remember the biggest gain is likely to be caused by the lower mass of your wallet/purse.

There is one aftermarket additive that may be cost-effective, the lubricity additive used with unleaded gasolines to combat exhaust valve seat recession on engines that do not have seat inserts. This additive may be routinely added during the first few years of unleaded by the gasoline producers, but in the US this could not occur because they did not have EPA waivers, and also may be incompatible with 2-stroke engine oil additives and form a gel that blocks filters. The amount of recession is very dependent on the engine design and driving style. The long-term solution is to install inserts, or have the seats hardened, at the next top overhaul.

Some other fuel additives work, especially those that are carefully formulated into the gasoline by the manufacturer at the refinery, and have often been subjected to decades-long evaluation and use [12,13].

A typical gasoline may contain [16,27,32,38,111]:-

- 1. Oil-soluble Dye, initially added to leaded gasoline at about 10 ppm to prevent its misuse as an industrial solvent, and now also used to identify grades of product.
 - Antioxidants, typically phenylene di amines or hindered phenols, are added to prevent oxidation of unsaturated hydrocarbons.
- 2. Metal Deactivators, typically about 10ppm of chelating agent such as N,N'-disalicylidene-1,2-propane diamine is added to inhibit copper, which can rapidly catalyze oxidation of unsaturated hydrocarbons.

- 3. Corrosion Inhibitors, about 5ppm of oil-soluble surfactants are added to prevent corrosion caused either by water condensing from cooling, water-saturated gasoline, or from condensation from air onto the walls of almost-empty gasoline tanks that drop below the dew point. If your gasoline travels along a pipeline, it's possible the pipeline owner will add additional corrosion inhibitor to the fuel.
- Anti-icing Additives, used mainly with carbureted cars, and usually either a surfactant, alcohol or glycol.
- 5. Anti-wear Additives, these are used to control wear in the upper cylinder and piston ring area that the gasoline contacts, and are usually very light hydrocarbon oils. Phosphorus additives can also be used on engines without exhaust catalyst systems.
- 6. Deposit-modifying Additives, usually surfactants.
- Carburetor Deposits, additives to prevent these were required when crankcase blow-by (PCV) and exhaust gas recirculation (EGR) controls were introduced. Some fuel components reacted with these gas streams to form deposits on the throat and throttle plate of carburetor.
- Fuel Injector tips operate about 100C, and deposits form in the annulus during hot soak, mainly from the oxidation and polymerization of the larger unsaturated hydrocarbons. The additives that prevent and unclog these tips are usually polybutene succinimides or polyether amines.

Intake Valve Deposits caused major problems in the mid-1980s when some engines had reduced driveability when fully warmed, even though the amount of deposit was below previously acceptable limits. It is believed that the new fuels and engine designs were producing a more absorbent deposit that grabbed some passing fuel vapor, causing lean hesitation. Intake valves operate about 300C, and if the valve is kept wet, deposits tend not to form, thus intermittent injectors tend to promote deposits. Oil leaking through the valve guides can be either Towk a programmation of beneficial, depending on the type and quantity. Gasoline factors implicated in these deposits include unsaturates and alcohols. Additives to prevent these deposits contain a detergent and/or The Car Dadispersant in a higher molecular weight solvent or light oil whose low volatility keeps the valve surface wetted [46,47,48].

- 10. Combustion Chamber Deposits have been targeted in the 1990s, as they are responsible for significant increases in emissions. Recent detergent-dispersant additives have the ability to function in both the liquid and vapor phases to remove existing deposits that have resulted from the use of other additives, and prevent deposit formation. Note that these additives can not remove all deposits, just those resulting from the use of additives.
- 11. Octane Enhancers, these are usually formulated blends of alkyl lead or MMT compounds in a solvent such as toluene, and added at the 100-1000 ppm levels. They have been replaced by hydrocarbons with higher octanes such as aromatics and olefins. These hydrocarbons are now being replaced by a mixture of saturated hydrocarbons and and oxygenates.

If you wish to play with different fuels and additives, be aware that some parts of your engine management systems, such as the oxygen sensor, can be confused by different exhaust gas compositions. An example is increased quantities of hydrogen from methanol combustion.

9.2 Can a quality fuel help a sick engine?

It depends on the ailment. Nothing can compensate for poor tuning and wear. If the problem is caused by deposits or combustion quality, then modern premium quality gasolines have been shown to improve engine performance significantly

The new generation of additive packages for gasolines include components that will dissolve existing carbon deposits, and have been shown to improve fuel economy, NOX emissions, and driveability [49,50,111]. While there may be some disputes amongst the various producers about relative merits, it is quite clear that premium quality fuels do have superior additive packages that help to maintain

can be a serious de problem it of a 9:1 chamber is full: 12.81 engine condition [16,28,111],

This section discusses only the use of high (>80%) alcohol or ether fuels.

Alcohol fuels can be made from sources other than imported crude oil, and the nations that have researched/used alcohol fuels have mainly based their choice on

import substitution. Alcohol fuels can burn more efficiently, and can reduce photochemically-active emissions. Most vehicle manufacturers favored the use of liquid fuels over compressed or liquified gases. The alcohol fuels have high research octane ratings, but also high sensitivity and high latent heats [8,27,80,116].

		Methanol Ethanol	Unleaded Gasoline	
RON		106	107	92 - 98
MON		92	89	80 - 90
Heat of Vaporization	(MJ/kg)	1.154	0.913	0.3044
Nett Heating Value	(MJ/kg)	19.95 M J	26.68MJ	42-44 MJ
Vapor Pressure @ 38C	(kPa)	31.9	16.0	48 - 108
Flame Temperature	(C)	1870	1920	2030
Stoich. Flame Speed.	(m/s)	0.43	0.34	
Minimum Ignition Energy	(MJ)	0.14	0.29	
Lower Flammable Limit	(vol%)	6.7	3.3	1.3
Upper Flammable Limit	(vol%)	36.0	19.0	7.1
Auto ignition Temperature	(C)	460	360	260 - 460
Flash Point	(C)	11	13	-4339

The major advantages are gained when pure fuels (M100, and E100) are used, as the addition of hydrocarbons to overcome the cold start problems also significantly reduces, if not totally eliminates, any emission benefits. Methanol will produce significant amounts of formaldehyde, a suspected human carcinogen, until the exhaust catalyst reaches operating temperature. Ethanol produces accuridehyde. The cold-start problems have been addressed, and alcohol fuels are technically viable, however with crude oil at \$30/bbl they are not economically viable, especially as the demand for then as precursors for gasoline oxygenates has elevated the world prices. Methanol almost doubled in price during 1994. There have also been trials of pure MTBE as a fuel, however there are no unique or significant advantages that would outweigh the poor economic viability [15].

9.4 Why are CNG and LPG considered "cleaner" fuels.

CNG (Compressed Natural Gas) is usually around 70-90% methane with 10-20% ethane, 2-8% propanes, and decreasing quantities of the higher HCs up to butane. The fuel has a high octane and usually only trace quantities of unsaturates. The emissions from CNG have lower concentrations of the hydrocarbons responsible for photochemical smog, reduced CO, SOx, and NOX, and the lean misfire limit is extended [117]. There are no technical disadvantages, providing the installation is performed correctly. The major disadvantage of compressed gas is the reduced range. Vehicles may have between one to three cylinders (25 MPa, 90-120 liter capacity), and they usually represent about 50% of the gasoline range. As natural gas pipelines do not go everywhere, most conversions are dual-fuel with gasoline. The ignition timing and stoichiometry are

significantly different, but good conversions will provide about 85% of the gasoline power over the full operating range, with easy switching between the two fuels [118]. Concerns about the safety of CNG have proved to be unfounded [119,120]. CNG has been extensively used in Italy and New Zealand (NZ had 130,000 dual-fueled vehicles with 380 refueling stations in 1987). The conversion costs are usually around US\$1000, so the economics are very dependent on the natural gas price. The typical 15% power loss means that driveability of retrofitted CNG-fueled vehicles is easily impaired, consequently it is not recommended for vehicles of less than 1.51 engine capacity, or retrofitted onto engine/vehicle combinations that have marginal driveability on gasoline. The low price of crude oil, along with installation and ongoing CNG tank-testing costs, have reduced the number of CNG vehicles in NZ. The US CNG fleet continues to increase in size (60,000 in 1994).

LPG (Liquified Petroleum Gas) is predominantly propane with iso-butane and n-butane. It has one major advantage over CNG, the tanks do not have to be high pressure, and the fuel is stored as a liquid. The fuel offers most of the environmental benefits of CNG, including high octane. Approximately 20-25% more fuel is required, unless the engine is optimized (CR 12:1) for LPG, in which case there is no decrease in power or increase in fuel consumption [27,118]. There have been several studies that have compared the relative advantages of CNG and LPG, and often LPG has been found to be a more suitable transportation fuel [118,120].

		methane	propane	iso-octane
RON		120	112	100
MON		120	97	100
Heat of Vaporization	(MJ/kg)	0.5094	0.4253	0.2712
Net Heating Value	(MJ/kg)	50.0	46.2	44.2
Vapor Pressure @ 38 C	(kPa)	-	-	11.8
Flame Temperature	(C)	1950	1925	1980
Stoich. Flame Speed.	(m/s)	0.45	0.45	0.31
Minimum Ignition Energy	(mJ)	0.30	0.26	-
Lower Flammable Limit	(vol%)	5.0	2.1	0.95
Upper Flammable Limit	(vol%)	15.0	9.5	6.0
Auto ignition Temperature	(C)	540 - 630	450	415

9.5 Why are hydrogen-powered cars not available?

The Hindenburg.

The technology to operate IC engines on hydrogen has been investigated in depth since before the turn of the century. One attraction was to use the hydrogen in airships to fuel the engines instead of venting it. Hydrogen has a very high flame speed (3.24 - 4.40 m/s), wide flamability limits (4.0 - 75 vol%), low ignition energy (0.017 mJ), high auto ignition temperature (520C), and flame temperature of 2050 C. Hydrogen has a very high specific energy (120.0 MJ/kg

), making it very desirable as a transportation fuel. The problem has been to develop a storage system that will pass all safety concerns, and yet still be light enough for automotive use. Although hydrogen can be mixed with oxygen and combusted more efficiently, most proposals use air [114,119,121-124].

Unfortunately the flame temperature is sufficiently high to dissociate atmospheric nitrogen and form undesirable NOX emissions. The high flame speeds mean that ignition timing is at TDC, except when running lean, when the ignition timing is advanced 10 degrees. The high flame speed, coupled with a very small quenching distance mean that the flame can sneak past narrow inlet valve openings and

cause backflash. This can be mitigated by the induction of fine mist of water, which also has the benefit of increasing thermal efficiency (although the water lowers the combustion temperature, the phase change creases voluminous gases that increase pressure), and reducing NOX [124]. An alternative technique is to use direct cylinder induction, which injects hydrogen once the cylinder has filled with an air charge, and because the volume required is so large, modern engines have two inlet valves, one for hydrogen and one for air [124]. The advantage of a wide range of mixture strengths and high thermal efficiencies are matched by the disadvantages of pre-ignition and knock unless weak mixtures, clean engines, and cool operation are used.

Interested readers are referred to the group sci.energy.hydrogen and the "Hydrogen Energy" monograph in the Kirk Othmer Encyclopedia of Chemical Technology [124], for recent information about this fuel.

9.6 What are "fuel cells"?

Fuel cells are electrochemical cells that directly oxidize the fuel at electrodes producing electrical and thermal energy. The oxidant is usually oxygen from the air and the fuel is usually gaseous, with hydrogen preferred. There has, so far, been little success using low temperature fuel cells (< 200C) to perform the direct oxidation of hydrocarbon-based liquids or gases. Methanol can be used as a source for the hydrogen by adding an on-board reformer. The main advantage of fuel cells is their high fuel-to- electricity efficiency of about 40-60% of the nett calorific value of the fuel. As fuel cells also produce heat that can be used for vehicle climate control, fuel cells are the most likely candidate to replace the IC engine as a primary energy source. Fuel cells are quiet and produce virtually no toxic emissions, but they do require a clean fuel (no halogens, CO, S, or ammonia) to avoid poisoning. They currently are expensive to produce, and have a short operational lifetime, when compared to an IC engine [125-127].

9.7 What is a "hybrid" vehicle?

A hybrid vehicle has three major systems [128].

- A primary power source, either an IC engine driven generator where the IC engine only operates in the most efficient part of it's performance map, or alternatives such as fuel cells and turbines.
- A power storage unit, which can be a flywheel, battery, or ultra capacitor.
- 3. A drive unit, almost always now an electric motor that can used as a generator during braking. Regenerative braking may increase the operational range about 8-13%.

Battery technology has not yet advanced sufficiently to economically substitute for an IC engine, while retaining the carrying capacity, range, performance, and driveability of the vehicle. Hybrid vehicles may enable this problem to be at least partially overcome, but they remain expensive, and the current ZEV proposals exclude fuel cells and hybrids systems, but this is being re-evaluated.

9.8 What about other alternative fuels?

9.8.1 Ammonia (NH3)

Anhydrous ammonia has been researched because it does not contain any carbon, and so would not release any CO2. The high heat of vaporization requires a pre-vaporization step, preferably also with high jacket temperatures (180C) to assist decomposition. Power outputs of about 70% of that of gasoline under the same conditions have been achieved [114]. Ammonia fuel also produces copious quantities of undesirable oxides of nitrogen (NOX) emissions.

9.8.2 Water

As water-gasoline fuels have been extensively investigated [113,129], interested potential investors may wish to refer to those papers for some background. Mr.Gunnerman advocates hydrocarbon/water emulsion fuels and promoted his A-55 fuel before the new A-21. A recent article claims a 29% gain in fuel economy [130], and he claims that mixing water with naphtha can provide as much power from an IC engine as the same flow rate of gasoline. He claims the increased efficiency is from catalyzed dissociation of A-21 into H2 in the engine, because the combustion chamber of the test engines contain a "non-reactive" catalyst. For his fuel to provide power increases, he has to utilize heat energy that is normally lost. A-21 is just naphtha (effectively unleaded gasoline without oxygenates) and water (about 55%), with small amouts of winterizing and anti-corrosive additives. If the magic catalyst is not present, conventional IC engines will not perform as efficiently, and may possibly be damaged if A-21 is used. The only modification is a new set of spark plugs, and it is also claimed that the fuel can replace both diesel and gasoline.

It has been claimed that test results of A-21 fuel emissions have shown significant reductions in CO2 (50% claimed - who is surprised when the fuel is 55% water?:-)), CO, HCs, NOX and a 70% reduction in diesel particulates and smoke. It's claimed that 70% of the exhaust stream consists of water vapor. He has formed a joint venture company with Caterpillar called Advanced Fuels. U.S. patent #5,156,114 (Aqueous Fuel for Internal Combustion Engines and Combustion Method) was granted to Mr.Gunnerman in 1992.

9.8.3 Propylene Oxide

Propylene oxide (CH3CH(O)CH2 = 1,2 epoxy propane) has apparently been used in racing fuels, and some racers erroneously claim that it behaves like nitrous oxide. It is a fuel that has very desirable volatility, flamability and auto ignition properties. When used in engines tuned for power (typically slightly rich), it will move the air-fuel ratio closer to stoichiometric, and the high volatility, high auto ignition temperature (high octane), and slightly faster flame speed may improve engine efficiency with hydrocarbon fuels, resulting in increased power without major engine modifications. This power increase is, in part, due to the increase in volumetric efficiency from the requirement for less oxygen (air) in the charge. PO is a suspected carcinogen, and so should be handled with extreme care.

Relevant properties include [116]:-	Avgas
		Propylene Oxide
Density	(g/ml)	0.828
Boiling Point	(C)	34
Stoichiometic Ratio	(vol%)	4.97
Auto ignition Temperature	(C)	464
Lower Flammable Limit	(vol%)	2.8
Upper Flammable Limit	(vol%)	37
Minimum Ignition Energy	(mJ)	0.14
Nett Heat of Combustion	(MJ/kg)	31.2
Flame Temperature	(C)	2087
Burning Velocity	(m/s)	0.67

9.8.4 Nitromethane

Contain O2 to oxydize

Nitromethane (CH3(NO2) - usually used as a mixture with methanol to reduce

Nitromethane (CH3NO2) - usually used as a mixture with methanol to reduce peak flame temperatures - also provides excellent increases in volumetric efficiency of IC engines - in part because of the lower stoichiometric air-fuel ratio (1.7:1 for CH3NO2) and relatively high heats of vaporization (0.56 MJ/kg for CH3NO2) result in dramatic cooling of the incoming charge.

100/130	115/145
0.72	0.74
30-170	30-170
2.4	2.2
440	470
1.3	1.2
7.1	7.1
0.2	0.2
43.5	44.0
2030	2030
0.45	0.45

The nitromethane Specific Energy at stoichiometric (heat of combustion divided by air-fuel ratio) of 6.6, compared to 2.9 for iso-octane, indicates that the fuel energy delivered to the combustion chamber is 2.3 times that of iso-octane for the same mass of air. Coupled with the higher flame temperature (2400C), and flame speed (0.5 m/s), it has been shown that a 50% blend in methanol will increase the power output by 45% over pure methanol, however knock also increased [28].

9.9 What about alternative oxidants?

acr: 4 Nz: 102

nuot 20% like out Temp. Fuel Oxidant (C)

Nitrous oxide (N2O) contains 33 vol% of oxygen, consequently the combustion chamber is filled with less useless nitrogen. It is also metered in as a liquid, which can cool the incoming charge further, thus effectively increasing the charge density. With all that oxygen, a lot more fuel can be squashed into the combustion chamber. The advantage of nitrous oxide is that it has a flame speed, when burned with hydrocarbon and alcohol fuels, that can be handled by current IC engines, consequently the power is delivered in an orderly fashion, but rapidly. The same is not true for pure oxygen combustion with hydrocarbons, so leave that oxygen cylinder on the gas axe alone:-). Nitrous oxide has also been readily available at a reasonable price, and is popular as a fast way to increase power in racing engines. The following data are for common premixed flames [131].

Nitrous oxide is not yet routinely used on standard vehicles, but the technology is well understood.

9.9.2 Membrane Enrichment of Air

Over the last two decades, extensive research has been performed on the use of membranes to enrich the oxygen content of air. Increasing the oxygen content can make combustion more efficient due to the higher flame temperature and less nitrogen. The optimum oxygen concentration for existing automotive engine materials is around 30 - 40%. There are several commercial membranes that can provide that level of enrichment. The problem is that the surface area required to produce the necessary amount of enriched air for an SI engine is very large. The membranes have to be laid close together, or wound in a spiral, and significant amounts of power are required to force the air along the membrane surface for sufficient enriched air to run a slightly modified engine. Most research to date has centered on CI engines, with their higher efficiencies. Several systems have been tried on research engines and vehicles, however the higher NOX emissions remain a problem [132,133].

Subject: 10. Historical Legends

10.1 The myth of Triptane

[This post is an edited version of several posts I made after JdA posted some claims from a hot-rod enthusiast reporting that triptane + 4cc TEL had a rich power octane rating of 270. This was followed by another post that claimed the unleaded octane was 150.]

In WWII there was a major effort to increase the power of the aviation engines continuously, rather than just for short periods using boost fluids. Increasing the octane of the fuel had dramatic effects on engines that could be adjusted to utilize the fuel (by changing boost pressure). There was a 12% increase in cruising speed, 40% increase in rate of climb, 20% increase in ceiling, and 40% increase in payload for a DC-3, if the fuel went from 87 to 100 Octane, and further increases if the engine could handle 100+ PN fuel [134]. A 12 cylinder Allison aircraft engine was operated on a 60% blend of triptane (2,2,3-trimethylbutane) in 100 octane leaded gasoline to produce 2500hp when the rated take-off horsepower with 100 octane leaded was 1500hp [14].

Triptane was first shown to have high octane in 1926 as part of the General Motors Research Laboratories investigations [135]. As further interest developed, gallon quantities were made in 1938, and a full size production plant was completed in late 1943. The fuel was tested, and the high lead sensitivity resulted in power outputs up to 4 times that of iso-octane, and as much as 25% improvement in fuel economy over iso-octane [14].

All of this sounds incredibly good, but then, as now, the cost of octane enhancement has to be considered, and the plant producing triptane was not really viable. The fuel was fully evaluated in the aviation test engines, and it was under

CA.		i emp.	Flame Speed
Fuel	Oxidant	(C)	(m/s)
Acetylene	Air	2400	1.60 - 2.70
Acetylene	NO	2800	2.60
Acetylene	Oxygen	3140	8.00 - 24.80
H	Air	2050	3.24 - 4.40
H	NO	2690	3.90
H	Oxygen	2660	9.00 - 36.80
Propane	Air	1925	0.45
CH4	Air	1950	0.39

the aviation test conditions - where mixture strength is varied, that the high power levels were observed over a narrow range of engine adjustment. If turbine engines had not appeared, then maybe triptane would have been used as an octane agent in leaded aviation gasolines. Significant design changes would have been required for engines to utilize the high antiknock rating.

As an unleaded additive, it was not that much different to other isoalkanes, consequently the modern manufacturing processes for aviation gasolines are alkylation of unsaturated C4 HCs with isobutane, to produce a highly iso-paraffinic product, and/or aromatization of naphthenic fractions to produce aromatic hydrocarbons possessing excellent rich-mixture antiknock properties.

So, the myth that triptane was the wonder antiknock agent that would provide heaps of power arose. In reality, it was one of the best of the iso-alkanes (remember we are comparing it to iso-octane which just happened to be worse than most other iso-alkanes), but it was not that different from other members. It was targeted, and produced, for supercharged aviation engines that could adjust their mixture strength, used highly leaded fuel, and wanted short period of high power for takeoff, regardless of economy.

The blending octane number, which is what we are discussing, of triptane is designated by the American Petroleum Institute Research Project 45 survey as 112 Motor and 112 Research [52]. Triptane does not have a significantly different blending number for MON or RON, when compared to iso-octane. When TEL is added, the lead response of a large number of paraffins is well above that of iso-octane (about +45 for 3ml TEL/US Gal), and this can lead to Performance Numbers that can not be used in conventional automotive engines [14].

10.2 From Honda Civic to Formula 1 winner.

[The following is edited from a post in a debate over the advantages of water injection. I tried to demonstrate what modifications would be required to convert my own 1500cc Honda Civic into something worthwhile:-).]

There are many variables that will determine the power output of an engine. High on the list will be the ability of the fuel to burn evenly without knock. No matter how clever the engine, the engine power output limit is determined by the fuel it is designed to use, not the amount of oxygen stuffed into the cylinder and compressed. Modern engines designs and gasolines are intended to reduce the emission of undesirable exhaust pollutants, consequently engine performance is mainly constrained by the fuel available.

My Honda Civic uses 91 RON fuel, but the Honda Formula 1 turbocharged 1.5 liter engine was only permitted to operate on 102 Research Octane fuel, and had limits placed on the amount of fuel it could use during a race, the maximum boost of the turbochargers was specified, as was an additional 40kg penalty weight. Standard 102 RON gasoline would be about 96 (R+M)/2 if sold as a pump gasoline. The normally-aspirated 3.0 liter engines could use unlimited amounts of 102RON fuel. The F1 race duration is 305 km or 2 hours, and it's perhaps worth remembering that Indy cars then ran at 7.3 psi boost.

Engine	Standard	Formula One	Formula One
Year	1986	1987	1989
Size	1.5 liter	1.5 liter	1.5 liter
Cylinders	4	6	6
Aspiration	normal	turbo	turbo
Max. Boost		58 psi	36.3 psi
Fuel in L		200 liters	150 liters
Fuel	91 RON	102 RON	102 RON
Hp @ rpm	92 @ 6K	994 @ 12K	610@ 12,5K
Torque (lb-ft)	89 @ 4.5K	490 @ 9750	280 @ 10000

The details of the transition from Standard to Formula 1, without considering engine materials, are:-

- 1. Replace the exhaust system. HP and torque both climb to 100.
- Double the rpm while improving breathing, you now have 200hp but still only about 100lb-ft of torque.
- 3. Boost it to 58psi which equals four such engines, so you have 1000hp and 500lb-ft of torque.

Simple?, not with 102 RON fuel, the engine/fuel combination would knock the engine into pieces, so....

- Lower the compression ratio to 7.4:1, and the higher rpm is a big advantage - there is much less time for the end gases to ignite and cause detonation.
- 5. Optimize engine design. 80 degree bank angles V for aerodynamic reasons, and go to six cylinders = V-6
- Cool the air. The compression of 70F air at 14.7psi to 72.7psi raises its temperature to 377F. The turbos churn the air, and although they are about 75% efficient, the air is now at 479F.
- The huge intercoolers could reduce the air to 97F, but that was too low to properly vaporize the fuel.
- 8. Bypass the intercoolers to maintain 104F.
- Change the air-fuel ratio to 23% richer than stoichiometric to reduce combustion temperature.
- 10. Change to 84:16 toluene/heptane fuel which complies with the 102

RON requirement, but is harder to vaporize.

 Add sophisticated electronic timing and engine management controls to ensure reliable combustion with no detonation.

You now have a six-cylinder, 1.5 liter, 1000hp Honda Civic.

For subsequent years the restrictions were even more severe, 150 liters and 36.3 maximum boost, in a still vain attempt to give the 3 liter, normally-aspirated engines a chance. Obviously Honda took advantage of the reduced boost by increasing CR to 9.4:1, and only going to 15% rich air-fuel ratio. They then developed an economy mode that involved heating the liquid fuel to 180F to improve vaporization, and increased the air temp to 158F, and leaned out the air-fuel ratio to just 2% rich. The engine output dropped to 610hp @ 12,500 (from 685hp @ 12,500 and about 312 lbs-ft of torque @ 10,000 rpm), but 32% of the energy in the fuel was converted to mechanical work. The engine still had crisp throttle response, and still beat the normally aspirated engines that did not have the fuel limitation. So turbos were banned. No other F1 racing engine has ever come close to converting 32% of the fuel energy into work [136].

In 1995 the FIA listed a detailed series of acceptable ranges for typical components in racing fuels for events such as F1 races, along with the introduction of detailed chromatographic "fingerprinting" of the hydrocarbon profile of the fuel [137]. This was necessary to prevent novel formulations of fuels, such as produced by Honda for their turbos.

Too bad, This could have led to better fuel For all