Clover is a simple hash algorithm that's based on rhodonea curves. The algorithm supports outputs of varying sizes.

A description of the algorithm follows.

Let **B**, **H**, and **R** be arrays of **N** bytes, where $32 \le N \le 128$. Let **a** and **p** be arrays of **N** / 8 64-bit unsigned integers.

- 1. Convert **B** into a set of 64-bit unsigned integers. Let **a** represent the integer set.
- 2. For **h** in (13, 26, 39, ..., 75):
 - 1. For **i** in (0, 1, ..., N / 8):
 - 1. Set **b** to \mathbf{a}_i / (max(64-bit unsigned integer)) * \mathbf{h} * π .
 - 2. Set \mathbf{x}_0 to max(64-bit unsigned integer) * $\cos(\mathbf{b} * \mathbf{h}) * \cos(\mathbf{b}) / 2$.
 - 3. Set \mathbf{y}_0 to max(64-bit unsigned integer) * $\cos(\mathbf{b} * \mathbf{h})$ * $\sin(\mathbf{b}) / 2$.
 - 4. Set **x** to round(ceiling(\mathbf{x}_0)).
 - 5. Set **y** to round(ceiling(\mathbf{y}_0)).
 - 6. Set \mathbf{p}_i to $\mathbf{x} \wedge \mathbf{y}$.
 - 7. Set \mathbf{a}_i to \mathbf{p}_i .
 - 2. Let **H** represent the output hash. Compute \mathbf{H}_i as follows $(0 \le \mathbf{i} < \mathbf{N}, 0 \le \mathbf{j} < \mathbf{N} / 8)$:
 - 1. $H_i = a_i$.
 - 2. $\mathbf{H}_{i} = \mathbf{a}_{i} << 11$.
 - 3. $\mathbf{H}_{i} = \mathbf{a}_{i} << 13$.
 - 4. $\mathbf{H}_{i} = \mathbf{a}_{i} << 17$.
- 3. Store \mathbf{p} into \mathbf{R} .
- 4. Recompute **H** as follows:
 - 1. $\mathbf{H}_i \wedge = \mathbf{R}_i$.