Applying Logistic regression on Amazon fine food reviews dataset

- 1. Dataset: Amazon fine food reviews dataset.
- 2. Vectorizers used here are:-Bag of words, Tf-idf, Average Word 2 Vec and Tfidf weighted Word 2 vec.
- 3. Regularizers used here are:-"L1 and L2" regularizations.
- 4. Feature Importance Techniques: Recursive Feature Elimination (RFE) and Cross-validation (RFECV).
- 5. Metrics used here are:-Confusion metrics, Accuracy as a score metric is used here.

```
In [24]: #Importing important libraries
         %matplotlib inline
         import sqlite3
         import pandas as pd
         import numpy as np
         import nltk
         import string
         import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn.feature extraction.text import TfidfTransformer
         from sklearn.feature_extraction.text import TfidfVectorizer
         import itertools
         from sklearn.feature_extraction.text import CountVectorizer
         from sklearn.metrics import confusion_matrix
         from sklearn.metrics import precision_score
         from sklearn.metrics import recall_score
         from sklearn.metrics import f1_score
         from datetime import datetime
         from scipy.stats import norm
         from sklearn import metrics
         from nltk.stem.porter import PorterStemmer
         from sklearn.cross_validation import train_test_split
         from sklearn.metrics import accuracy_score
         from sklearn.cross_validation import cross_val_score
         from collections import Counter
         from sklearn import cross_validation
         from sklearn.model_selection import train_test_split
         import warnings
         warnings.filterwarnings(action='ignore')
         from sklearn.model_selection import train_test_split
         from sklearn.grid_search import GridSearchCV
         from sklearn.linear_model import LogisticRegression
         from sklearn.model_selection import RandomizedSearchCV
         from prettytable import PrettyTable
```

Connecting to the preprocessed SQLite table

```
In [2]: #Connecting to the SQL table
    con = sqlite3.connect('final.sqlite')
    #Reading data from the database

    Data = pd.read_sql_query("""
    SELECT *
    FROM Reviews """,con)
    Data.shape

Out[2]: (364171, 12)

In [3]: # Drop index column
    Data.drop(columns=['index'],inplace=True)

In [4]: #Converting the Time column into standard Date-time standard
    Data["Time"]=pd.to_datetime(Data.Time)
    Data.head(5)
```

t[4]:	_	ld	ProductId	UserId	ProfileName	HelpfulnessNumerator	HelpfulnessDenominator	Score	
	0	150524	0006641040	ACITT7DI6IDDL	shari zychinski	0	0	positive	1970 00:00:00.939
	1	150506	0006641040	A2IW4PEEKO2R0U	Tracy	1	1	positive	1970 00:00:01.194
	2	150507	0006641040	A1S4A3IQ2MU7V4	sally sue "sally sue"	1	1	positive	1970 00:00:01.191
	3	150508	0006641040	AZGXZ2UUK6X	Catherine Hallberg " (Kate)"	1	1	positive	1970 00:00:01.0760
	4	150509	0006641040	A3CMRKGE0P909G	Teresa	3	4	positive	1970 00:00:01.018
	4								•

In [5]: #Setting Time column as index of the dataframe
Data.set_index("Time",inplace=True)

#Sampling the above data
Sorted=Data.sort_index()

In [6]: Sorted.head()

Out[6]:

	ld	ProductId	Userld	ProfileName	HelpfulnessNumerator	HelpfulnessDenominator	Sco
Time							
1970-01-01 00:00:00.939340800	150524	0006641040	ACITT7DI6IDDL	shari zychinski	0	0	posit
1970-01-01 00:00:00.940809600	150501	0006641040	AJ46FKXOVC7NR	Nicholas A Mesiano	2	2	posit
1970-01-01 00:00:00.944092800	451856	B00004CXX9	AIUWLEQ1ADEG5	Elizabeth Medina	0	0	posit
1970-01-01 00:00:00.944438400	374359	B00004CI84	A344SMIA5JECGM	Vincent P. Ross	1	2	posit
1970-01-01 00:00:00.946857600	451855	B00004CXX9	AJH6LUC1UT1ON	The Phantom of the Opera	0	0	posit
4							•

In [7]: #Sampling the above data

Sampled_data=Sorted.sample(n=50000,replace='False')
Sample_sort=Sampled_data.sort_index()
Sample_sort.shape

Out[7]: (50000, 10)

```
In [8]: #Sampling the above data for implementing the TF-idf technique
          Samp_data=Sorted.sample(n=8000,replace='False')
          TF_sort=Samp_data.sort_index()
          TF_sort.shape
 Out[8]: (8000, 10)
 In [9]: #Setting up the class label variables
          Class=TF_sort["Score"]
          label=Sample_sort["Score"]
          sns.countplot(x="Score",data=Sorted,palette="hls")
          plt.show()
          plt.savefig("count_plot")
            300000
            250000
            200000
          5
150000
            100000
             50000
                           positive
                                                 negative
          <Figure size 432x288 with 0 Axes>
In [ ]:
         #Dropping the Score column which are the actual class labels of the dataset
In [10]:
          TF_sort.drop(columns=['Score'],inplace=True)
          TF_sort.shape
Out[10]: (8000, 9)
In [11]: #Dropping the Score column from the sampled_set which are the actual class labels of the dataset
          Sample_sort.drop(columns=['Score'],inplace=True)
          Sample_sort.shape
Out[11]: (50000, 9)
```

Observations

- Here after all the text-preprocesing and the data-cleaning only 364k datapoints remained.
- I have taken a sample size of 20k and 8k data out of the total population for the purpose of analyzing and studying the behaviour of the data by applying the Logistic regression algorithm.
- First I took the "TIME" column and set as the index of the new sampled dataframe and then sorted accordingly in ascending order since the data has a temporal nature.
- By setting the "SCORE" column as a class label for classifying the reviews as a positive and negative.
- By observing the above bar plot it is clear that the above dataset is highly imbalanced and this may cause problems in the future analysis.

Function for splitting up the datasets

```
In [12]: def data_split(x,y):
    #Splitting the model into 70:30 split of Training and Cross_validate split
    X_1, X_test, y_1, y_test = train_test_split(x, y, test_size=0.3,shuffle=False,random_state=None)

# split the train data set into cross validation train and cross validation test
    X_tr, X_cv, y_tr, y_cv = train_test_split(X_1, y_1, test_size=0.3,shuffle=False,random_state=None)
    return X_tr,y_tr,X_cv,y_cv,X_test,y_test
```

Preparing and printing the Train,cv and test sets

```
In [13]: X=Sample_sort
Y=label

X_tr,y_tr,X_cv,y_cv,X_test,y_test=data_split(X,Y)

print("The shape of x_train is:",X_tr.shape)
print("the shape of y_train is:",y_tr.shape)
print("the shape of x_cv is:",X_cv.shape)
print("the shape of y_cv is:",y_cv.shape)
print("the shape of x_test is:",X_test.shape)
print("the shape of y_test is:",y_test.shape)

The shape of x_train is: (24500, 9)
the shape of y_train is: (24500,)
the shape of y_cv is: (10500, 9)
the shape of x_test is: (15000, 9)
the shape of x_test is: (15000, 9)
the shape of y_test is: (15000, 9)
```

Preparing the Train,CV and Test set for implementing the Tf-idf Vectorizer

```
In [14]: TF_X=TF_sort
TF_Y=Class

TFX_tr,TFy_tr,TFX_cv,TFy_cv,TFX_test,TFy_test=data_split(TF_X,TF_Y)

print("The shape of x_train is:",TFX_tr.shape)
print("the shape of y_train is:",TFy_tr.shape)
print("the shape of x_cv is:",TFY_cv.shape)
print("the shape of y_cv is:",TFy_cv.shape)
print("the shape of x_test is:",TFX_test.shape)
print("the shape of y_test is:",TFy_test.shape)

The shape of x_train is: (3920, 9)
the shape of y_cv is: (1680, 9)
the shape of y_cv is: (1680, 9)
the shape of x_test is: (2400, 9)
the shape of y_test is: (2400, 9)
the shape of y_test is: (2400, 9)
```

Utility function for Training & Testing the models

```
In [15]: def train(X_tr, y_tr,X_cv,y_cv,p="12",C=float(1)):
             clf = LogisticRegression(penalty=p,class_weight="balanced",C=C,n_jobs=-1)
             model = clf.fit(X_tr, y_tr)
             print("The model score on train set is= ", model.score(X_tr,y_tr))
             pred=model.predict(X_cv)
             acc = accuracy_score(y_cv, pred, normalize=True) * float(100)
             print('\nThe accuracy of Logistic Regression over cross-validation set is = %d%% ' % ( acc))
             w = model.coef_
             print("The total number of non zero weights = ",np.count_nonzero(w))
             return pred,acc
         #Hyperparameter tuning using GridSearchCV
         def gridsearch(X_tr, y_tr,X_te, y_te,p="12"):
             tuned_parameters = [\{'C': [10 ** x for x in range(-6, 4)]\}]
             model = GridSearchCV(LogisticRegression(penalty=p,class_weight="balanced",n_jobs=-1),tuned_paramet
         ers, scoring = 'accuracy', cv=10)
             model.fit(X_tr, y_tr)
             print(model.best_estimator_)
             print(model.score(X_te, y_te))
             return model.best_estimator_
         #Hyperparameter tuning by using the Random search
         def randomsearch(X_tr, y_tr,X_te, y_te,p="12"):
             from scipy.stats import uniform
             from sklearn.model_selection import RandomizedSearchCV
         # Create regularization hyperparameter distribution using uniform distribution
             C = uniform(loc=0, scale=3)
         # Create hyperparameter options
             hyperparameters = dict(C=C)
             model1 = RandomizedSearchCV(LogisticRegression(penalty=p,class_weight="balanced",n_jobs=-1),hyper
         parameters, scoring = 'accuracy', cv=10)
             model1.fit(X_tr, y_tr)
             print(model1.best_estimator_)
             print(model1.score(X_te, y_te))
             return model1.best_estimator_
         #Function for testing the models
         def tuned_test(Best_param,X_tr,y_tr,X_test,y_test):
             New_clf=Best_param
             new_model=New_clf.fit(X_tr,y_tr)
             print("The model score on train set is= ", new_model.score(X_tr,y_tr))
             Y_pred=new_model.predict(X_test)
             new_acc = accuracy_score(y_test, Y_pred, normalize=True) * float(100)
             print('\nThe accuracy of Logistic Regression over Test set is = %d%% ' % ( new_acc))
             W = new_model.coef_
             print("The total number of non zero weights = ",np.count_nonzero(W))
             return Y_pred,new_acc
```

```
In [16]: from sklearn.metrics import confusion_matrix
         def Confusion_metric(y_test,y_pred,acc):
             print(metrics.confusion_matrix(y_test,y_pred))
             confusion=metrics.confusion_matrix(y_test,y_pred)
             plt.figure(figsize=(9,9))
             sns.heatmap(confusion, annot=True, fmt=".3f", linewidths=.5, square = True, cmap = 'Blues_r');
             plt.ylabel('Predicted label');
             plt.xlabel('Actual label');
             all_sample_title = 'Accuracy Score: {0}'.format( acc)
             plt.title(all_sample_title, size = 15);
             plt.show()
         #Storing the values of the confusion matrix
             TN=confusion[0,0]
             FP=confusion[0,1]
             FN=confusion[1,0]
             TP=confusion[1,1]
         # use float to perform true division, not integer division
             Class_acc=((TP + TN) / float(TP + TN + FP + FN))*100
         #Code for classification error
              classification_error = ((FP + FN) / float(TP + TN + FP + FN))*100
         #Code for finding the TPR, FPR, TNR, FNR
             TPR = (TP / float(FN + TP))*100
             FNR = (FN / float(FN + TP))*100
             TNR=(TN / float(TN + FP))*100
             FPR=(FP / float(TN + FP))*100
         #Code for finding the Precision, Recall & F1_score
             precision = (TP/float(TP+FP))*100
             recall= (TP / float(FN + TP))*100
             F1_s= ((float(precision*recall))float(precision+recall))*2)
             print()
             ptable=PrettyTable()
             ptable.title="The performance metrics of the above model are as follows: "
             ptable.field_names=["Metrics","Scores"]
             ptable.add_row(["Classification_accuracy",Class_acc])
             ptable.add_row(["Classification_error",classification_error])
             ptable.add_row(["True positive",TP])
             ptable.add_row(["False positive",FP])
             ptable.add_row(["True negative",TN])
             ptable.add_row(["False negative",FN])
             ptable.add_row(["True positive rate",TPR])
             ptable.add_row(["False negative rate",FNR])
             ptable.add_row(["True negative rate",TNR])
             ptable.add_row(["False positive rate",FPR])
             ptable.add_row(["Precision value",precision])
             ptable.add_row(["Recall value", recall])
             ptable.add_row(["f1_score value",F1_s])
             print(ptable)
         #Function for printing the Cross-validation errors
         def cv_results(X_tr, y_tr):
              alpha = [10 ** x for x in range(-6, 4)]
              cv_erro_array = []
             for a in alpha:
                 print("----
              ----")
                 print("for alpha =", a)
                 clf = LogisticRegression(C=a,class_weight='balanced')
                 scores = cross_val_score(clf, X_tr, y_tr, cv=10,scoring='accuracy')
                 cv_erro_array.append(scores.mean())
                 mse=[1- x for x in cv_erro_array]
                 # determining best alpha
                 Best_alpha = alpha[mse.index(min(mse))]
                 print("\nthe misclassification error for each alpha value is : ", np.round(mse,3))
```

```
fig, ax = plt.subplots()
ax.plot(alpha,mse,c='g')
for i, txt in enumerate(np.round(mse,3)):
    ax.annotate((alpha[i],str(txt)), (alpha[i],mse[i]))
plt.grid()
plt.title("Cross Validation Error for each alpha")
plt.xlabel("Alpha i's")
plt.ylabel("Error measure")
plt.show()

Best_alpha = alpha[mse.index(min(mse))]
print('\nThe optimal number of alpha value is %f%%.' % Best_alpha)
```

Utility function for vectorizing the data

```
In [17]: #Code for standardizing the data
         from sklearn.preprocessing import StandardScaler
         scaler=StandardScaler(with_mean=False)
         #Function for vectorizing the train data
         def vec_train(vect,X_tr):
             import warnings
             warnings.filterwarnings("ignore")
             count_vect = vect #in scikit-learn
             BOW = count_vect.fit_transform(X_tr.values)
         #Standardizing the vectorized data
             standardized_data = scaler.fit_transform(BOW)
             standardized_data.shape
             return count_vect,standardized_data
         #Function for vectorizing the CV data
         def vec_cv(count,X_cv):
             cv=count.transform(X_cv.values)
             cv.get_shape()
             std_cv=scaler.transform(cv)
             std_cv.shape
             return std_cv
         #Function for vectorizing the test data
         def vec_test(count,X_test):
             test=count.transform(X_test.values)
             test.get_shape()
             std_data=scaler.transform(test)
             std_data.shape
             return std_data
         #Funtion for printing the total number of top features
         def top_tfidf_feats(name,row, features, top_n=25):
             ''' Get top n tfidf values in row and return them with their corresponding feature names.'''
             topn_ids = np.argsort(row)[::-1][:top_n]
             top_feats = [(features[i], row[i]) for i in topn_ids]
             df = pd.DataFrame(top_feats)
             df.columns = ['feature', name]
             return df
         #Function for displaying top frequent 50 tokens distributions
         from yellowbrick.text import FreqDistVisualizer
         from sklearn.feature_extraction.text import CountVectorizer
         def display_token(Vect,data):
             vectorizer = Vect
             docs = vectorizer.fit transform(data)
             features = vectorizer.get feature names()
             visualizer = FreqDistVisualizer(features=features)
             visualizer.fit(docs)
             visualizer.poof()
```

```
In [18]: #Initializing the count vectorizer
         Count_vect=CountVectorizer(binary=True)
         #vectorizing the X_train set
         count,x_tr=vec_train(Count_vect,X_tr["CleanedText"])
         print("The shape of the X_train is: ",x_tr.shape)
         #Vectgorizing the X_crossvalidation set
         x_cv=vec_cv(count,X_cv["CleanedText"])
         print("The shape of the X_cv is: ",x_cv.shape)
         #Vectorizing the X_test set
         x_test=vec_test(count,X_test["CleanedText"])
         print("The shape of the X_test is: ",x_test.shape)
         #Printing the total length of the features
         print("\nTop 25 feaures acording to the Bow score are as follows")
         features = Count_vect.get_feature_names()
         len(features)
         top_Bow = top_tfidf_feats("bow",x_tr[1,:].toarray()[0],features,25)
         The shape of the X_train is: (24500, 19273)
         The shape of the X_cv is: (10500, 19273)
         The shape of the X_test is: (15000, 19273)
         Top 25 feaures acording to the Bow score are as follows
Out[18]:
```

	feature	bow
0	maitland	110.684236
1	coaster	110.684236
2	danni	90.375145
3	demis	90.375145
4	elfman	90.375145
5	roller	78.268769
6	afterlif	78.268769
7	hilari	70.007144
8	adam	59.169251
9	journey	55.348896
10	burton	52.184505
11	beetlejuic	45.195875
12	tim	40.426896
13	til	35.923174
14	barbara	34.171150
15	score	28.594893
16	transport	27.265832
17	mysteri	26.862420
18	laugh	24.465540
19	cri	24.173023
20	pair	20.756370
21	vacat	20.402369
22	kill	17.865749
23	meet	16.715642
24	magic	16.006632

```
In [21]: display_token(Count_vect,X_tr["CleanedText"])
```


Training the model over Cross_validation set by using the default parameters.

In [39]: #Calling the train function and storing the prediction value and accuracy

Cpred,cacc=train(x_tr,y_tr,x_cv,y_cv)

The model score on train set is= 1.0

The accuracy of Logistic Regression over cross-validation set is = 84% The total number of non zero weights = 18987

Confusion matrix of the above trained model

In [40]: Confusion_metric(y_cv,Cpred,cacc)

[[1035 699] [884 7882]]

+	+
\mid The performance metrics of the al	bove model are as follows:
+	Scores
Classification_accuracy	84.92380952380952
Classification_error	15.076190476190476
True positive	7882
False positive	699
True negative	1035
False negative	884
True positive rate	89.91558293406344
False negative rate	10.084417065936572
True negative rate	59.688581314878896
False positive rate	40.31141868512111
Precision value	91.85409625917725
Recall value	89.91558293406344
f1_score value	90.8745027958725

Observation

- The above Logistic regression model was tested over the cross validation set and the train accuracy is about 85.03%.
- The Performance metrics of this model obtained after analyzing the confusion matrix is not that satisfactory due to the following reasons and they are as follows:
 - 1. The value of the diagonal elements of the matrix are not that much high infact the TP is 7837 and TN is 1092 which is far more less as compared to the TP value.
 - 2. The FNR value is 9.78% which is good because it is meant to be low but the TNR is 60.23% which is considerably not that high and the main reason of increase in the False positive rate (39.76).
 - 3. The Precision, Recall and the F1 Score values can't be trusted because of high TP value.
 - 4. So the model's performance can be improved by doing the hyperparameter tuning.

Hyperparameter Tuning by using Gridsearch and Random-search for finding the optimal value of alpha.

Testing the model over Test set by taking the optimal value of alpha

Confusion matrix of the above model

```
In [32]: Confusion_metric(y_test,y_pre,acc)
        [[ 1956    631]
        [ 1076 11337]]
```


+	+
The performance metrics of the ab	pove model are as follows:
Metrics	Scores
Classification_accuracy	88.62
Classification_error	11.379999999999999999
True positive	11337
False positive	631
True negative	1956
False negative	1076
True positive rate	91.33166841214856
False negative rate	8.668331587851446
True negative rate	75.60881329725551
False positive rate	24.39118670274449
Precision value	94.72760695187165
Recall value	91.33166841214856
f1_score value	92.99864648701858

Observations

- The test accuracy of the above model after taking the optimal alpha value is 88% which is quite good for a classification model.
- But still after doing hyperparameter tuning the model is still facing a little bias problem and the TP value still dominates.
- Since the above model has little bias problem but still it is a sensible and good model as the FNR & FPR have lower values as compared to other metrics which increases the TPR and TNR values.
- The model also has good Precision, Recall and F1_score values which is around (91% to 94%) which is very good for a classification model.
- Lets see by changing the regularization and alpha term how the model's performance changes and affects the logistic regression model

Applying the L1 regularization over the Existing the model

+ The performance metrics of the a	bove model are as follows:
Metrics	Scores
 Classification_accuracy	88.4666666666667
Classification_error	11.5333333333333
True positive	7986
False positive	510
True negative	1303
False negative	701
True positive rate	91.93047081846437
False negative rate	8.069529181535628
True negative rate	71.86982901268615
False positive rate	28.130170987313846
Precision value	93.99717514124293
Recall value	91.93047081846437
f1_score value	92.95233661176744

In [37]: #Calling the train function and storing the prediction value and accuracy
l1_pred,l1_acc=train(x_tr,y_tr,x_cv,y_cv,p="l1",C=0.01)

The model score on train set is= 0.9161632653061225

The accuracy of Logistic Regression over cross-validation set is = 87% The total number of non zero weights = 1602

In [38]: Confusion_metric(y_cv,l1_pred,l1_acc)

[[1446 367] [902 7785]]

The performance metrics of the al	bove model are as follows:
Metrics	Scores
Classification_accuracy Classification_error True positive False positive True negative False negative True positive rate False negative rate False positive rate False positive rate Precision value	87.91428571428571 12.085714285714285 7785 367 1446 902 89.61666858524232 10.383331414757684 79.7573083287369 20.2426916712631 95.49803729146223
Recall value f1_score value	89.61666858524232 92.46392303580973

In [39]: #Calling the train function and storing the prediction value and accuracy
l1_Pred,l1_Acc=train(x_tr,y_tr,x_cv,y_cv,p="l1",C=0.001)

The model score on train set is= 0.6560408163265307

The accuracy of Logistic Regression over cross-validation set is = 66% The total number of non zero weights = 42

In [40]: Confusion_metric(y_cv,l1_Pred,l1_Acc)

[[1540 273] [3220 5467]]

+	+
The performance metrics of the a	bove model are as follows:
Metrics	Scores
Classification_accuracy	66.7333333333333
Classification_error	33.266666666666
True positive	5467
False positive	273
True negative	1540
False negative	3220
True positive rate	62.93311845286059
False negative rate	37.0668815471394
True negative rate	84.94208494208493
False positive rate	15.057915057915059
Precision value	95.24390243902438
Recall value	62.93311845286059
f1_score value	75.78845220766617

Observations

- Since in the formulation of alpha in logistic regression it has a inverse relationship so here I had reduced the Lambda value by using the L1-regularisation and the results are as follows:
 - 1. By increasing the values of lambda the total number of non zero weights decreases sharply as the regularization term which is L1 dominates and create sparsity.
 - 2. The accuracy and the other performance metrics of the also detoriated consistently from (88.64% to 66.73%)
 - 3. As the lamda value increases the False negative and the False positive rates vary which decreases the performance of the model.
 - 4. So clearly by increasing the value of lambda with L1-regularization creates sparsity and reduces accuracy of the model.

Decreasing the "LAMBDA" value with L1- Regularization

```
In [41]: #Calling the train function and storing the prediction value and accuracy
    L1pred,L1acc=train(x_tr,y_tr,x_cv,y_cv,p="11",C=8)

The model score on train set is= 1.0

The accuracy of Logistic Regression over cross-validation set is = 86%
The total number of non zero weights = 5446

In [42]: Confusion_metric(y_cv,L1pred,L1acc)

[[1132 681]
    [ 781 7906]]
```


The performance metrics of the a	above model are as follows:
Metrics	Scores
Classification_accuracy	86.07619047619048
Classification_error	13.923809523809524
True positive	7906
False positive	681
True negative	1132
False negative	781
True positive rate	91.0095545067342
False negative rate	8.990445493265801
True negative rate	62.43794815223387
False positive rate	37.56205184776613
Precision value	92.06940724350763
Recall value	91.0095545067342
f1_score value	91.53641310640269

```
In [43]: L1_pred,L1_acc=train(x_tr,y_tr,x_cv,y_cv,p="11",C=58)
```

The model score on train set is= 1.0

The accuracy of Logistic Regression over cross-validation set is = 85% The total number of non zero weights = 6276

```
In [44]: Confusion_metric(y_cv,L1_pred,L1_acc)
```

[[1092 721] [827 7860]]

The performance metrics of the	above model are as follows:
Metrics	Scores
Classification_accuracy	85.25714285714285
Classification_error	14.742857142857144
True positive	7860
False positive	721
True negative	1092
False negative	827
True positive rate	90.48002762748936
False negative rate	9.519972372510647
True negative rate	60.231660231660236
False positive rate	39.768339768339764
Precision value	91.59771588392961
Recall value	90.48002762748936
f1_score value	91.03544127866573

```
In [45]: L1_Pred,L1_Acc=train(x_tr,y_tr,x_cv,y_cv,p="11",C=100)
```

The model score on train set is= 1.0

The accuracy of Logistic Regression over cross-validation set is = 84% The total number of non zero weights = 6863

```
In [46]: Confusion_metric(y_cv,L1_Pred,L1_Acc)
```

[[1073 740] [862 7825]]

The performance metrics of the a	bove model are as follows:
Metrics	Scores
Classification_accuracy	84.74285714285715
Classification_error	15.257142857142858
True positive	7825
False positive	740
True negative	1073
False negative	862
True positive rate	90.0771267411074
False negative rate	9.922873258892597
True negative rate	59.183673469387756
False positive rate	40.816326530612244
Precision value	91.36018680677175
Recall value	90.0771267411074
f1_score value	90.71412010201715

Observations

- Here there is a decrease in the total number of non zero weights but it becomes stable after a certain point and did not decreased further.
- The True negative rates are get affected most hence reducing the accuracy but it did not decrease beyond 84%.
- Since here sparsity is not seen very severe, that's why the accuracy did not drop sharply.

Plotting the cv error plot using 10K cross validation technique

```
for alpha = 1e-06
the misclassification error for each alpha value is : [0.248]
for alpha = 1e-05
the misclassification error for each alpha value is : [0.248 0.118]
for alpha = 0.0001
the misclassification error for each alpha value is : [0.248 0.118 0.098]
for alpha = 0.001
the misclassification error for each alpha value is : [0.248 0.118 0.098 0.104]
for alpha = 0.01
the misclassification error for each alpha value is : [0.248 0.118 0.098 0.104 0.116]
for alpha = 0.1
the misclassification error for each alpha value is : [0.248 0.118 0.098 0.104 0.116 0.128]
for alpha = 1
the misclassification error for each alpha value is : [0.248 0.118 0.098 0.104 0.116 0.128 0.136]
for alpha = 10
the misclassification error for each alpha value is : [0.248 0.118 0.098 0.104 0.116 0.128 0.136 0.14
for alpha = 100
the misclassification error for each alpha value is : [0.248 0.118 0.098 0.104 0.116 0.128 0.136 0.14
for alpha = 1000
the misclassification error for each alpha value is : [0.248 0.118 0.098 0.104 0.116 0.128 0.136 0.14
 0.154 0.197]
              Cross Validation Error for each alpha
```


The optimal number of alpha value is 0.000100%.

The total number of non zero weights = 18987

Testing the model over th test set using the optimal lamda value

```
In [45]: New_clf=best_param
    y_pre,acc=tuned_test(New_clf,x_tr,y_tr,x_test,y_test)
    The model score on train set is= 0.9617142857142857
    The accuracy of Logistic Regression over Test set is = 88%
```

Confusion matrix of the above model

```
In [46]: Confusion_metric(y_test,y_pre,acc)
```

```
[[ 1972 673]
[ 1047 11308]]
```


The performance metrics of the a	bove model are as follows:
Metrics	Scores
Classification_accuracy	88.5333333333333
Classification_error	11.46666666666667
True positive	11308
False positive	673
True negative	1972
False negative	1047
True positive rate	91.52569809793606
False negative rate	8.474301902063942
True negative rate	74.55576559546314
False positive rate	25.444234404536864
Precision value	94.38277272347884
Recall value	91.52569809793606
f1_score value	92.93228139381985

Observations

- The optimal number of lamda found after gridsearch and 10k crossvalidation is 0.0001 with a missclassification error of 11.46% and gave a test accuracy of 88.53% which is good for a classification model.
- The performance metrics of the logistic regression model over test set is good as compared with the earlier model.
- The model is sensible but still it is facing a slight bias problem as the True negative rate is low as compared to the True positive rates.
- Let's check the multicollinearity of features by using the pertubation test.

Implementing and checking the multicollinearity test.

Function for genarating and adding noise to the above model

```
In [19]: import numpy as np
    def Noise(x_tr,x_test):
        mu, sigma = 0, 0.01
# creating a noise with the same dimension as the dataset (2,2)
        Train_noise = np.random.normal(mu, sigma, x_tr.shape)
        print(Train_noise)

        Train_data=x_tr + Train_noise
        print("\nThe shape of the train data after adding noise is :",Train_data.shape)

        print("*"*100)

# creating a noise with the same dimension as the dataset (2,2)
        Test_noise = np.random.normal(mu, sigma, x_test.shape)
        print(Test_noise)

        Test_data= x_test + Test_noise
        print("\nThe shape of the test data after adding noise is :",Test_data.shape)

        return Train_data,Test_data
```

The shape of the noise added Train and Test set is as follows:

```
In [47]: Train_nd, Test_nd=Noise(x_tr,x_test)
         -0.01178142]
          [-0.01473462 -0.01046555 0.00221836 ... 0.00110465 0.0056567
            0.00933101]
          [ \ 0.00018067 \ -0.01348652 \ \ 0.00996227 \ \dots \ -0.00863126 \ -0.00019525
            0.00274925]
          [ 0.00674569 -0.00579183 -0.01269166 ... 0.00068726 0.00528758
            0.00518848]
          [-0.00796659 0.01397421 0.00390764 ... 0.00125421 -0.00349247
            0.01187116]
          [-0.02003545 \quad 0.01269014 \quad -0.00035191 \quad \dots \quad -0.00517335 \quad 0.00957207
           -0.02423328]]
         The shape of the train data after adding noise is: (24500, 18987)
         [[-0.00706879 -0.00857271 0.00487714 ... 0.01416849 0.01692085
           -0.01188144]
          [-0.00354436 -0.0090666 -0.00869587 ... 0.00395706 0.00070504
            0.00319864]
          [ \ 0.00285856 \ \ 0.01710856 \ \ -0.00473573 \ \dots \ \ -0.00939172 \ \ -0.010282
            0.00178905]
          [-0.01442047 0.00400136 0.00775977 ... 0.00610265 0.0060188
            0.00499617]
          [-0.01823305 \quad 0.00324732 \quad -0.010177 \quad \dots \quad 0.00108983 \quad -0.01260293
            0.0017822 ]
          [-0.01482802 -0.00073025 -0.01544105 ... -0.00028053 0.00448844
            0.00591461]]
         The shape of the test data after adding noise is: (15000, 18987)
```

Testing the above model over the noise added Test set

```
In [48]: New_clf=best_param
    Noise_pre,Noise_acc=tuned_test(New_clf,Train_nd,y_tr,Test_nd,y_test)
The model score on train set is= 0.9616326530612245
The accuracy of Logistic Regression over Test set is = 88%
The total number of non zero weights = 18987
```

Confusion matrix of the above model is as follows:

The performance metrics of the a	bove model are as follows:
Metrics	Scores
Classification_accuracy	88.52
Classification_error	11.48
True positive	11308
False positive	675
True negative	1970
False negative	1047
True positive rate	91.52569809793606
False negative rate	8.474301902063942
True negative rate	74.48015122873346
False positive rate	25.51984877126654
Precision value	94.36701994492196
Recall value	91.52569809793606
f1_score value	92.92464458870901

Observations

- Since the total number of non zero weights are same before and after adding the noise to the data so the features are not collinear with each other.
- The accuracy of the noise added model is slightly increased which is about 0.35% which is due to the small random noise introduced to the data.
- Since the features are not collinear we can find the feature importance by using the Recursive Feature Elimination technique.

Function for implementing the Recursive Feature Elimination Technique for finding the most important features present in the data

```
In [23]: def feature_selection(best,tr_Noise, Train_y):
             from sklearn.feature selection import RFECV
         # Create the RFE object and compute a cross-validated score.
         # The "accuracy" scoring is proportional to the number of correct classifications
             rfecv = RFECV(estimator=best, step=1, cv=3,scoring ='accuracy')
             rfecv.fit(tr_Noise, Train_y)
             print("Optimal number of features: %d" % rfecv.n_features_)
             print('Selected features: %s' % list(tr_Noise.columns[rfecv.support_]))
             NAMES=tr_Noise.columns
             print ("Features sorted by their rank:")
             print (sorted(zip(map(lambda x: round(x, 4), viz.ranking_), NAMES)))
         # Plot number of features VS. cross-validation scores
             plt.figure(figsize=(10,6))
             plt.xlabel("Number of features selected")
             plt.ylabel("Cross validation score (nb of correct classifications)")
             plt.plot(range(1, len(rfecv.grid_scores_) + 1), rfecv.grid_scores_)
             plt.show()
 In [ ]: start = datetime.now()
         best=best_param
         feature_selection(best,Train_nd,y_tr)
         print('Time taken :', datetime.now() - start)
```

Note

- The Recursive Feature elimination technique is used to find out the important features present in the dataset it is basically an Iterative feature selection approach.
- The goal of recursive feature elimination (RFE) is to select features by recursively considering smaller and smaller sets of features.
- First, the estimator is trained on the initial set of features and the importance of each feature is obtained either through a coef_attribute or through a feature_importances_attribute.
- The least important features are pruned from current set of features. That procedure is recursively repeated on the pruned set until the desired number of features to select is eventually reached.
- So the time complexity of this approach is very high. so I had implemented this technique in Avg W2V and Tf-idf weighted W2V where the dimensions of the data is reasonable and can be easily implemented.

Implementing the TF-IDF Vectorization technique over the given data.

```
In [20]: #Initializing the count vectorizer
         TFIDF_vect=TfidfVectorizer(ngram_range=(1,2),binary=True)
         #vectorizing the X_train set
         TF,tfx_tr=vec_train(TFIDF_vect,TFX_tr["CleanedText"])
         print("The shape of the X_train is: ",tfx_tr.shape)
         #Vectgorizing the X_crossvalidation set
         tfx_cv=vec_cv(TF,TFX_cv["CleanedText"])
         print("The shape of the X_cv is: ",tfx_cv.shape)
         #Vectorizing the X_test set
         tfx_test=vec_test(TF,TFX_test["CleanedText"])
         print("The shape of the X_test is: ",tfx_test.shape)
         #Printing the total length of the features
         print("\nTop 25 feaures acording to the TF-IDF score are as follows")
         TF_features = TFIDF_vect.get_feature_names()
         len(TF_features)
         top_TFIDF = top_tfidf_feats("TFIDF",tfx_tr[1,:].toarray()[0],TF_features,25)
         top TFIDF
         The shape of the X train is: (3920, 111810)
         The shape of the X_cv is: (1680, 111810)
         The shape of the X_test is: (2400, 111810)
         Top 25 feaures acording to the TF-IDF score are as follows
```

Out[20]:

	feature	TFIDF
0	romanc	62.617891
1	world live	62.617891
2	break cover	62.617891
3	stori strang	62.617891
4	one funiest	62.617891
5	job see	62.617891
6	see movi	62.617891
7	deceas handbook	62.617891
8	haunt take	62.617891
9	romanc alec	62.617891
10	live dead	62.617891
11	wait hous	62.617891
12	recent deceas	62.617891
13	haunt peopl	62.617891
14	realiti stori	62.617891
15	cover stori	62.617891
16	strang world	62.617891
17	watch time	62.617891
18	deceas	62.617891
19	davi funni	62.617891
20	baldwin geena	62.617891
21	mix strang	62.617891
22	movi cant	62.617891
23	handbook wait	62.617891
24	movi ever	62.617891

In [23]: display_token(TFIDF_vect,TFX_tr["CleanedText"])

Training the Tfidf Vectorized model over the cross-Validation set

```
In [51]: #Training the logistic regression model
tfy_pre,tfacc=train(tfx_tr,TFy_tr,tfx_cv,TFy_cv)
```

The model score on train set is= 1.0

The accuracy of Logistic Regression over cross-validation set is = 85% The total number of non zero weights = 108306

Plotting the Confusion matrix of the above model

```
In [52]: Confusion_metric(TFy_cv,tfy_pre,tfacc)
```

[[12 242] [0 1426]]

The performance metrics of the above model are as follows:	
Metrics	Scores
Classification_accuracy	85.59523809523809
Classification_error	14.404761904761903
True positive	1426
False positive	242
True negative	12
False negative	0
True positive rate	100.0
False negative rate	0.0
True negative rate	4.724409448818897
False positive rate	95.2755905511811
Precision value	85.4916067146283
Recall value	100.0
f1_score value	92.17840982546866

Hyperparameter tuning the lamda value using the Gridsearch & randomsearch cross-validation technique.

Plotting the optimal lamda results using 10k crossvalidation technique.

```
In [55]: cv_results(tfx_tr, TFy_tr)
```

```
for alpha = 1e-06
the misclassification error for each alpha value is : [0.193]
for alpha = 1e-05
the misclassification error for each alpha value is : [0.193 0.101]
for alpha = 0.0001
the misclassification error for each alpha value is : [0.193 0.101 0.129]
for alpha = 0.001
the misclassification error for each alpha value is : [0.193 0.101 0.129 0.134]
______
for alpha = 0.01
the misclassification error for each alpha value is : [0.193 0.101 0.129 0.134 0.134]
for alpha = 0.1
the misclassification error for each alpha value is : [0.193 0.101 0.129 0.134 0.134 0.135]
for alpha = 1
the misclassification error for each alpha value is : [0.193 0.101 0.129 0.134 0.134 0.135 0.135]
for alpha = 10
the misclassification error for each alpha value is : [0.193 0.101 0.129 0.134 0.134 0.135 0.135 0.13
for alpha = 100
the misclassification error for each alpha value is : [0.193 0.101 0.129 0.134 0.134 0.135 0.135 0.13
for alpha = 1000
the misclassification error for each alpha value is : [0.193 0.101 0.129 0.134 0.134 0.135 0.135 0.13
5 0.136 0.136]
                    Cross Validation Error for each alpha
```


The optimal number of alpha value is 0.000010%.

Testing the model over test set using optimal value of lamda

The model score on train set is= 1.0

The accuracy of Logistic Regression over Test set is = 86% The total number of non zero weights = 108306

Confusion matrix of the above model.

```
In [42]: Confusion_metric(TFy_test,TFy_pre,TF_acc)
```

[[193 248] [76 1883]]

The performance metrics of the a	above model are as follows:
Metrics	Scores
Classification_accuracy	86.5
Classification_error True positive	13.5 1883
False positive True negative	248 193
False negative True positive rate	76 96.12046962736089
False negative rate	3.8795303726391013
True negative rate False positive rate	43.76417233560091 56.235827664399096
Precision value Recall value	88.36227123416236 96.12046962736089
f1_score value	92.07823960880195

In []:

Checking the Collinearity of features using the Pertubation test.

In [22]: TrainTf_Noise, TestTF_Noise=Noise(tfx_tr,tfx_test)

```
[[-0.0293998 \quad 0.00574307 \quad -0.01102008 \quad \dots \quad -0.00566326 \quad -0.00394131
  0.00733515]
[ \ 0.0134632 \quad 0.00575275 \ -0.00194554 \ \dots \ -0.01083167 \ -0.00697928
  0.01552455]
[-0.01683894 -0.00300703 0.00960419 ... 0.00361058 0.01164493
 -0.00696104]
0.01166761]
[-0.00076997 \quad 0.00264301 \quad -0.0117148 \quad \dots \quad -0.01369906 \quad -0.00485977
 -0.00973072]
[ \ 0.00940964 \ \ 0.01028941 \ -0.00129644 \ \dots \ -0.01832069 \ -0.00319472
  0.00191571]]
The shape of the train data after adding noise is : (3920, 111810)
[[-0.00417559 -0.00704755 -0.00141303 ... 0.01626558 0.00226082
 -0.01262548]
-0.01257661]
-0.00123502]
[ 0.00426562 -0.00367072  0.00452932  ...  0.00798885  0.01859829
  0.00881884]
[-0.00904702 \ -0.00447615 \ -0.00053691 \ \dots \ -0.00267147 \ -0.0101473
 -0.0028802 ]
[-0.00040311 - 0.00444414 \ 0.02081097 \dots \ 0.00818527 - 0.00943785
  0.00025683]]
```

The shape of the test data after adding noise is : (2400, 111810)

Testing the above model over the noise added Test set

```
In [23]: TF_clf=best_tfparam
   Noise_tfpre,Noise_tfacc=tuned_test(TF_clf,TrainTf_Noise,TFy_tr,TestTF_Noise,TFy_test)
   The model score on train set is= 1.0
   The accuracy of Logistic Regression over Test set is = 87%
   The total number of non zero weights = 111810
```

Observations

- Since the total number of non zero weights are same before and after adding the noise to the data so the features are not collinear with each other.
- The accuracy of the noise added model is slightly increased which is about 0.35% which is due to the small random noise introduced to the data.
- Since the features are not collinear we can find the feature importance by using the Recursive Feature Elimination technique.

Implementing the Avg Word to vectorization technique

```
In [20]: | start = datetime.now()
         import gensim
         # Train our own Word2Vec model using text corpus
         list_of_sentence_vec=[]
         for sentence in Sample_sort['CleanedText'].values:
             list_of_sentence_vec.append(sentence.split())
         # Generate model.
         w2v_Model = gensim.models.Word2Vec(list_of_sentence_vec,min_count=5,size=50, workers=6)
         w2v_Words = list(w2v_Model.wv.vocab)
         print("number of words that occured minimum 5 times is ",len(w2v_Words))
         #code for finding the avg w2v
         # average Word2Vec
         # compute average word2vec for each review.
         sent_vectors = []; # the avg-w2v for each sentence/review is stored in this list
         for sent in list_of_sentence_vec: # for each review/sentence
             sent_vec = np.zeros(50) # as word vectors are of zero length
             cnt_words =0; # num of words with a valid vector in the sentence/review
             for word in sent: # for each word in a review/sentence
                     vec = w2v_Model.wv[word]
                     sent_vec += vec
                     cnt_words += 1
                 except:
                     pass
             sent vec /= cnt words
             #print(np.isnan(np.sum(sent_vec)))
             sent_vectors.append(sent_vec)
         print(len(sent_vectors))
         print(len(sent_vectors[0]))
         print('Time taken :', datetime.now() - start)
         number of words that occured minimum 5 times is 9352
         50000
         50
         Time taken: 0:00:08.840139
         Checking for the NAN Values in the dataset
In [21]: | np.argwhere(np.isnan(sent_vectors))#checking for nan values
Out[21]: array([], shape=(0, 2), dtype=int64)
         Preparing the data for the further implementations
In [22]: X_w2v=sent_vectors
         y_w2v=label
         TrainX_w2v,Trainy_w2v,TrainX_w2vCV,Testy_w2vCV,TestX_w2v,Testy_data=data_split(X_w2v,y_w2v)
In [23]: Train_df=pd.DataFrame(TrainX_w2v)
         print(Train_df.shape)
         Test_df=pd.DataFrame(TestX_w2v)
         print(Test_df.shape)
         (24500, 50)
         (15000, 50)
         Training the model over the Avg word to vectorized data.
In [24]: #Calling the train function and storing the prediction value and accuracy
         W2V_pred,W2V_acc=train(TrainX_w2v,Trainy_w2v,TrainX_w2vCV,Testy_w2vCV)
         The model score on train set is= 0.8046530612244898
         The accuracy of Logistic Regression over cross-validation set is = 77%
         The total number of non zero weights = 50
```

In [25]: Confusion_metric(Testy_w2vCV,W2V_pred,W2V_acc)

[[1446 288] [2047 6719]]

The performance metrics of the above model are as follows:	
Metrics	Scores
Classification_accuracy	77.76190476190476
Classification_error	22.238095238095237
True positive	6719
False positive	288
True negative	1446
False negative	2047
True positive rate	76.64841432808579
False negative rate	23.35158567191421
True negative rate	83.39100346020761
False positive rate	16.608996539792386
Precision value	95.88982446125304
Recall value	76.64841432808579
f1_score value	85.1962213909846

Hyperparameter tuning for finding the optimal lambda using Gridsearch and Randomsearch technique

Implementing the 10K Cross-validation techniques for plotting the optimal K value

```
In [28]: cv_results(TrainX_w2v,Trainy_w2v)
```

```
for alpha = 1e-06
the misclassification error for each alpha value is : [0.19]
for alpha = 1e-05
the misclassification error for each alpha value is : [0.19 0.197]
for alpha = 0.0001
the misclassification error for each alpha value is : [0.19 0.197 0.217]
for alpha = 0.001
the misclassification error for each alpha value is : [0.19 0.197 0.217 0.21 ]
for alpha = 0.01
the misclassification error for each alpha value is : [0.19 0.197 0.217 0.21 0.2 ]
for alpha = 0.1
the misclassification error for each alpha value is : [0.19 0.197 0.217 0.21 0.2 0.197]
for alpha = 1
the misclassification error for each alpha value is : [0.19 0.197 0.217 0.21 0.2 0.197 0.198]
for alpha = 10
the misclassification error for each alpha value is : [0.19 0.197 0.217 0.21 0.2 0.197 0.198 0.19
for alpha = 100
the misclassification error for each alpha value is : [0.19 0.197 0.217 0.21 0.2 0.197 0.198 0.19
for alpha = 1000
the misclassification error for each alpha value is : [0.19 0.197 0.217 0.21 0.2 0.197 0.198 0.19
7 0.197 0.197]
```


The optimal number of alpha value is 0.000001%.

Training the model over the cross-validation set.

The model score on train set is= 0.8042448979591836

The accuracy of Logistic Regression over Test set is = 78% The total number of non zero weights = 50

Confusion matrix of the above model

```
In [31]: Confusion_metric(Testy_data,TFy_pre,TF_acc)
```

[[2273 372] [2849 9506]]

The performance metrics of the above model are as follows:		
Metrics	Scores	
Classification_accuracy	78.5266666666666666667	
Classification_error	21.4733333333333	
True positive	9506	
False positive	372	
True negative	2273	
False negative	2849	
True positive rate	76.94050991501416	
False negative rate	23.059490084985836	
True negative rate	85.93572778827976	
False positive rate	14.064272211720228	
Precision value	96.23405547681718	
Recall value	76.94050991501416	
f1_score value	85.51252642468404	

Implementing the pertubation test for checking the multicollinearity of features.

In [34]: Trw2v_Noise, Tesw2v_Noise=Noise(Train_df, Test_df)

```
[[-3.02199141e-03 -6.40994457e-03 1.40113940e-02 ... -1.83079661e-02
  1.36145430e-02 -8.03450608e-03]
[-6.80652054e-03 1.03672029e-02 9.71838403e-03 ... -1.35212441e-03
  2.17315200e-03 2.34714024e-05]
[ 4.34024763e-03 6.21594492e-03 -1.43264778e-02 ... 2.98205029e-03
  3.14499459e-03 2.87263470e-03]
[-1.75968199e-02 \ 1.55204670e-02 \ 3.35575260e-03 \ \dots \ -4.42612518e-03
  1.93777972e-04 4.97164143e-03]
[ 1.30101268e-02 -1.42451312e-02 -6.56538958e-03 ... 1.21692669e-03
 -3.02072584e-03 1.04822745e-02]
-3.13140673e-03 1.22633742e-02]]
The shape of the train data after adding noise is : (24500, 50)
[[-1.68171043e-02 5.17149174e-03 1.70818856e-02 ... -1.47462812e-04
  1.88291463e-02 -1.23780137e-03]
[-5.06956228e-03 -4.79932671e-03 2.07591027e-02 ... 2.62780661e-02
 -4.95871116e-03 -3.47703774e-04]
[ 1.75299824e-03 6.77775224e-03 7.81561405e-03 ... 1.89639458e-03
  6.09511736e-05 -6.37163059e-03]
[-7.30975822e-03 -1.20704029e-02 -1.38893907e-02 ... 1.06770342e-03
  1.71376229e-02 -2.10246406e-03]
[ 1.51278074e-02 -7.93689043e-03 6.33493600e-03 ... -9.03321657e-03
  8.39426765e-03 7.41618894e-03]
[-4.69488234e-03 -8.45927735e-04 -6.36421597e-03 ... 5.06711659e-03
  1.33999164e-02 1.61475279e-02]]
The shape of the test data after adding noise is : (15000, 50)
```

Testing the model over the noise added inputs

The accuracy of Logistic Regression over Test set is = 78%

Confusion matrix of the above model.

The total number of non zero weights = 50

```
In [36]: Confusion_metric(Testy_data,w2v_Noise_pre,w2v_noise_acc)
```

[[2271 374] [2838 9517]]

The performance metrics of the above model are as follows:	
Metrics	Scores
Classification_accuracy	78.5866666666667
Classification_error	21.413333333333334
True positive	9517
False positive	374
True negative	2271
False negative	2838
True positive rate	77.02954269526508
False negative rate	22.970457304734925
True negative rate	85.8601134215501
False positive rate	14.139886578449905
Precision value	96.2187847538166
Recall value	77.02954269526508
f1_score value	85.56144924930327

Observations

- After performing the pertubation test and testing the features over the test set the performance of the model did not changed that much.
- The total number of the non negative weights are same as compared to the previous model, So the features are not collinear which is good for the model.
- So I had implemented the feature importance by using the Recursive Feature elimination technique to find the most useful features which explain good amount of variance.

Function for performing Feature Importance using Recursive Feature elimination Cross-validation technique.

```
In [37]: #Function for finding the Important features

from yellowbrick.features import RFECV

def Feature_imp(best,tr_Noise, Train_y):
    LOG= best
    viz = RFECV(LOG, cv=3, scoring='accuracy')
    viz.fit(tr_Noise, Train_y)

    print("Optimal number of features: %d" % viz.n_features_)
    print('Selected features: %s' % list(tr_Noise.columns[viz.support_]))

    NAMES=tr_Noise.columns
    print ("Features sorted by their rank:")
    print (sorted(zip(map(lambda x: round(x, 4), viz.ranking_), NAMES)))

    viz.poof()
```

Code for finding the calling the RFECV function and listing the important features by rank.

```
In [38]: start = datetime.now()
    best=Best_W2Vpar
    Feature_imp(best,Trw2v_Noise,Trainy_w2v)

print('Time taken :', datetime.now() - start)

Optimal number of features: 34
    Selected features: [0, 2, 3, 4, 6, 7, 8, 9, 12, 13, 15, 16, 17, 18, 21, 23, 24, 25, 26, 27, 28, 30, 3
    2, 33, 34, 35, 36, 37, 38, 40, 41, 47, 48, 49]
    Features sorted by their rank:
    [(1, 0), (1, 2), (1, 3), (1, 4), (1, 6), (1, 7), (1, 8), (1, 9), (1, 12), (1, 13), (1, 15), (1, 16),
    (1, 17), (1, 18), (1, 21), (1, 23), (1, 24), (1, 25), (1, 26), (1, 27), (1, 28), (1, 30), (1, 32), (1, 33), (1, 34), (1, 35), (1, 36), (1, 37), (1, 38), (1, 40), (1, 41), (1, 47), (1, 48), (1, 49), (2, 4 4), (3, 39), (4, 10), (5, 31), (6, 20), (7, 42), (8, 45), (9, 1), (10, 11), (11, 19), (12, 43), (13, 4 6), (14, 29), (15, 22), (16, 5), (17, 14)]
```


Time taken: 0:09:26.362678

Observation

- 1. Here after implementing the RFE technique the most important features present in the model is 34 which are displayed in the form of a list.
- 2. The Recursive feature elimination Cross validation (RFECV) is a feature selection method that fits a model and removes the weakest feature (or features) until the specified number of features is reached.
- 3. Features are ranked by the model's coef_ or feature_importances_ attributes, and by recursively eliminating a small number of features per loop, RFE attempts to eliminate dependencies and collinearity that may exist in the model.
- 4. Mostly the features which are having higher ranks are got selected and displayed above.
- 5. To find the optimal number of features cross-validation is used with RFE to score different feature subsets and select the best scoring collection of features.
- 6. The RFECV visualizer plots the number of features in the model along with their cross-validated test score and variability and visualizes the selected number of features quite properly.
- 7. This figure shows an ideal RFECV curve, the curve jumps to an excellent accuracy when the six informative features are captured, then gradually decreases in accuracy as the non informative features are added into the model.
- 8. The shaded area represents the variability of cross-validation, one standard deviation above and below the mean accuracy score drawn by the curve.
- 9. After selecting the optimum features the accuracy of the model increased by 2% which is very good.

Implementing TF-IDF Weighted Word to vectorization technique

```
In [52]: start = datetime.now()
          Tfidf_vector=TfidfVectorizer()
         Tf_model=Tfidf_vector.fit_transform(Sample_sort["CleanedText"].values)
         Dimension=Tfidf_vector.get_feature_names()
         LIST_VECTOR=[]
         row=0
         for sentence in list_of_sentence_vec:
              word 2 vec=np.zeros(50)
              weight_tf_sum=0
              for word in sentence:
                      vec=w2v_Model.wv[word]
                      tfidf_value=Tf_model[row,Dimension.index(word)]
                      word_2_vec += (vec* tfidf_value)
                      weight_tf_sum += tfidf_value
                  except:
                      pass
             if weight_tf_sum !=0:
                 word_2_vec /=weight_tf_sum
             LIST_VECTOR.append(word_2_vec)
             row += 1
         print('Time taken :', datetime.now() - start)
```

Time taken : 0:07:25.215544

Preparing the data into train and test sets

```
In [53]: X_tfw=LIST_VECTOR
    y_tfw=label
    TrainX_tfw,Trainy_tfw,TrainX_tfwCV,Testy_tfwCV,TestX_tfw,Testy_tfw=data_split(X_tfw,y_tfw)
```

Training the logistic regression model over the Cross-validation set.

In [54]: #Calling the train function and storing the prediction value and accuracy

TFW_pred,TFW_acc=train(TrainX_tfw,Trainy_tfw,TrainX_tfwCV,Testy_tfwCV)

The model score on train set is= 0.7897142857142857

The accuracy of Logistic Regression over cross-validation set is = 77% The total number of non zero weights = 50

Plotting the confusion matrix of the above table

In [55]: Confusion_metric(Testy_tfwCV,TFW_pred,TFW_acc)

[[1485 302] [2029 6684]]

The performance metrics of the above model are as follows:	
Metrics	Scores
Classification_accuracy	 77.8
Classification_error	22.2
True positive	6684
False positive	302
True negative	1485
False negative	2029
True positive rate	76.71295764948927
False negative rate	23.28704235051073
True negative rate	83.10016787912703
False positive rate	16.899832120872972
Precision value	95.67706842255942
Recall value	76.71295764948927
f1_score value	85.15192050449073

Observations

- The train accuracy of the model is 77.8% which is quite low for a classification model.
- The true positive and true negative rates are good as compared to the other parameters of the model.
- Let's Hyperparameter tune the above model to find the optimum lamda and improve the model's performance further.

Hyperparameter tuning the lambda for optimal performance of the model

Plotting the cross-validation error plots by using the 10k-fold Cross validation technique

```
In [58]: cv_results(TrainX_tfw,Trainy_tfw)
         for alpha = 1e-06
         the misclassification error for each alpha value is : [0.239]
         for alpha = 1e-05
         the misclassification error for each alpha value is : [0.239 0.241]
         for alpha = 0.0001
         the misclassification error for each alpha value is : [0.239 0.241 0.241]
         for alpha = 0.001
         the misclassification error for each alpha value is : [0.239 0.241 0.241 0.229]
         for alpha = 0.01
         the misclassification error for each alpha value is : [0.239 0.241 0.241 0.229 0.218]
         for alpha = 0.1
         the misclassification error for each alpha value is : [0.239 0.241 0.241 0.229 0.218 0.214]
         for alpha = 1
         the misclassification error for each alpha value is : [0.239 0.241 0.241 0.229 0.218 0.214 0.214]
         for alpha = 10
         the misclassification error for each alpha value is : [0.239 0.241 0.241 0.229 0.218 0.214 0.214 0.21
         3]
         for alpha = 100
         the misclassification error for each alpha value is : [0.239 0.241 0.241 0.229 0.218 0.214 0.214 0.21
         for alpha = 1000
         the misclassification error for each alpha value is : [0.239 0.241 0.241 0.229 0.218 0.214 0.214 0.21
         3 0.213 0.213]
```


The optimal number of alpha value is 10.000000%.

Testing the model over the test set

```
In [59]: Tfw_clf=best_TFWparam

TFWordy_pre,TFWord_acc=tuned_test(Tfw_clf,TrainX_tfw,Trainy_tfw,TestX_tfw,Testy_tfw)

The model score on train set is= 0.7892653061224489
```

The accuracy of Logistic Regression over Test set is = 77% The total number of non zero weights = 50

Confusion matrix of the above model

```
In [60]: Confusion_metric(Testy_tfw,TFWordy_pre,TFWord_acc)
```

[[2073 467] [2888 9572]]

The performance metrics of the above model are as follows:		
Metrics	Scores	
Classification_accuracy	77.6333333333333	
Classification_error	22.36666666666667	
True positive	9572	
False positive	467	
True negative	2073	
False negative	2888	
True positive rate	76.82182985553771	
False negative rate	23.17817014446228	
True negative rate	81.61417322834646	
False positive rate	18.385826771653544	
Precision value	95.34814224524355	
Recall value	76.82182985553771	
f1_score value	85.08822614338416	

Observations

- The test accuracy of the model after using the optimal lamda value is around 77.63% which is somewhat not good for a model
- Here the False negative value is high which is indeed decreasing the accuracy and alarming for a model but still it is manageable.
- The precision and the f1_score of the model is good but the recall score is low as compared to them.
- Let's check the multicollinearity of features by using the pertubation test.

Implementing the pertubation test for checking the multicollinearity of the features

```
In [61]: Train_Df=pd.DataFrame(TrainX_tfw)
       print(Train_Df.shape)
       Test_Df=pd.DataFrame(TestX_tfw)
       print(Test_Df.shape)
       (24500, 50)
       (15000, 50)
In [62]: TF_tr_Noise,TF_test_Noise=Noise(Train_Df,Test_Df)
       [[-0.0110854 \quad 0.01238318 \quad -0.00895173 \quad \dots \quad -0.00316227 \quad -0.00861479
         0.0139621 ]
        [-0.00566234 - 0.00611305 - 0.0085816 \dots -0.00280026 0.00415353
         -0.00246439]
        -0.0074085 ]
        0.00459445]
        [ 0.01035186  0.005232
                             0.00468396 ... 0.02468319 -0.00724922
          0.0073261 ]
        -0.00532188]]
       The shape of the train data after adding noise is : (24500, 50)
       **********************
       [[-0.00144414 0.01157601 -0.02103094 ... -0.00353485 0.014855
          0.003139911
        [-0.0073264 -0.0089024 -0.00346809 ... 0.00692251 0.00852939
          0.01221543]
        [ \ 0.00329418 \ -0.0130511 \ \ 0.0090682 \ \dots \ -0.01372008 \ \ 0.01148326
         -0.00046779]
        [-0.01784543 -0.01125
                             0.00703236 ... 0.00192382 -0.02163345
         -0.004999431
        [ 0.01505103 -0.00621715  0.00963229 ...  0.02590472 -0.00056943
          0.01410102]
        -0.00483098]]
       The shape of the test data after adding noise is: (15000, 50)
```

Confusion matrix of the above model.

The total number of non zero weights = 50

The accuracy of Logistic Regression over Test set is = 77%

```
In [64]: Confusion_metric(Testy_tfw,TFw2v_Noise_pre,TFw2v_noise_acc)
    [[2079 461]
```


+		
Metrics	Scores	
Classification_accuracy Classification_error True positive False positive True negative False negative True positive rate False negative rate False positive rate False positive rate Precision value	77.753333333333333333333333333333333333	
Recall value f1_score value	76.91813804173356 85.17218395912019	

Observations

- There is a slight decrease in the accuracy in the model which is ithink due to the small random noise in the dataset
- All the performance metrics are same as compared to the previous model and the best part is that there is no change in the total number of the non negative weights presents in the model.
- So I can conclude that the features are not collinear and let's do some feature importance.

Finding & Ranking the total number of optimal features present in the model by using the RFECV technique.

```
In [70]: start = datetime.now()
    Best=best_TFWparam
    Feature_imp(Best,TF_tr_Noise,Trainy_tfw)
    print('Time taken :', datetime.now() - start)
```

```
Optimal number of features: 45

Selected features: [1, 2, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49]

Features sorted by their rank:

[(1, 1), (1, 2), (1, 3), (1, 5), (1, 6), (1, 7), (1, 9), (1, 10), (1, 11), (1, 12), (1, 13), (1, 14), (1, 15), (1, 17), (1, 18), (1, 19), (1, 20), (1, 21), (1, 22), (1, 23), (1, 24), (1, 25), (1, 26), (1, 27), (1, 28), (1, 29), (1, 30), (1, 31), (1, 32), (1, 33), (1, 34), (1, 35), (1, 36), (1, 37), (1, 38), (1, 39), (1, 40), (1, 41), (1, 42), (1, 43), (1, 44), (1, 45), (1, 47), (1, 48), (1, 49), (2, 4), (3, 0), (4, 46), (5, 16), (6, 8)]
```


Time taken: 0:13:12.753616

Observations

- After performing the RFECV technique the total number of the optimal features are 45 with an increase of 2.08% in the accuracy.
- The above RFECV plot shows that there is a spike in the accuracy the most important 3 features and the variance of the feature is increasing and maximum after the inclusion of the 45th feature in the list.
- So the above plot gives a very intutive and nice understanding of the nature of the features present in the model.

Conclusion

- 1. The Bag-of-words vectorizer technique yielded the best accuracy which is 88% after tuning the hyperaparameter as compared to the other vectorizers.
- 2. By changing the regularizers and lambda values from L2 to L1 severe effect of sparsity in the total number of non zero weights are seen and the accuracy of the model also dropped very sharply.
- 3. After performing the pertubation tests in all the vectorized models there is no sign of multicollinearity seen in the model as the total number of nonzero weights did not changed that much which is a good sign.
- 4. I have shown the feature importance in the Average and Tf-idf weighted word to vectorized models and not shown in the BOW and TF-IDF Vectorized models because the Recursive Feature elimination (RFE) takes a lot of time for the high dimensional data because it has very high time complexity and I was unable to do it because of compute and Time constraints.
- 5. So according to my observations and analysis I can conclude that the Logistic Regression model is very stable and good model as compared with the KNN algorithm.
- 6. Logistic regression model works fairly good with the text data and in this particular scenario it is doing a good job in classiffying the Positive and Negative reviews properly.