How to evaluate communication

Maxime Toquebiau^{1,2}, Nicolas Bredeche², Faïz Ben Amar², Jae Yun Jun Kim¹

¹ECE Paris ²ISIR, Sorbonne Universités

November 23th, 2023

Table of Content

- Architectures for communicating with language
 - Fine-tuning the decoder
 - Architecture
 - First results
 - Issues
 - Learning a communication encoder
 - Learning setting
 - First results
 - Better evaluating the communication policy

Architecture for communicating with language

Old version

Architecture for communicating with language

ÉCOLE D'INGÉNIEURS ENGINEERING SCHOOL

Update

Fine-tuning the Decoder

Fine-tuning the decoder with PPO:

- Task: Generating messages (sequences of tokens)
- States: previous token
- Actions: next token
- Reward:
 - env reward
 - + penalty for message length
 - + penalty for diverging from pre-trained decoder [1]

Fine-tuning the Decoder

Simplifying the architecture:

- No communication encoder
- Take observation encoding as input to the decoder

Reward:

- Got after generating a token:
 - penalty for generating a token (-0.01)
 - penalty for KL divergence from pre-trained decoder
- Got after generating the whole message:
 - reward from environment r_t

Fine-tuning the Decoder: First Results

Fine-tuning the Decoder: Issues

- Message rewards from the environment
 - Reward r_t doesn't reflect the quality of the message
 - Need to compute the return got from this message => train at the end of each episode
- Task may be too hard
- Need a communication encoder to have information about previous messages

Learning a Communication Encoder

Learning a Communication Encoder

Communication Encoder as a Policy:

- **Task:** Choose what to communicate
- Reward: Quality of the message generated by the Decoder
- Multi-agent setting: Quality of the message depends on other agents messages and actions

Communication Encoder learnt with MAPPO

Communication Encoder with MAPPO:

- State: personal and social contexts
- Action: a communication context (vector of floats)
- Reward:
 - env reward
 - + penalty for message length
 - + penalty for distance from personal context.
- Algo: MAPPO (or any other MADRL) to learn a policy and value in a multi-agent setting

MAPPO Communication Encoder: First Results

MAPPO Communication Encoder: First Results

150

175

x25000 training steps

25

- n_gen_sent : Number of different generated sentence
- mean_len_perf : Average length of perfect sentences
- mean_len_gen : Average length of generated sentences
- ratio_gen_is_perf : Ratio of generated sentences that are identical to the corresponding perfect sentences
- mean_n_same_token: Average number of similar tokens between generated and perfect sentences
- mean_ratio_same_token: Average ratio of similar tokens between generated and perfect sentences

MAPPO Communication Encoder: First Results

Evaluating the quality of messages

Evaluating the quality of messages

Shared Memory

Shared Memory for training the Communication Policy:

- Learning task: Predict the global state
- Reward: Reward messages that communicate valuable information a about the current state of the environment

- MSE:
$$r_t^{comm} = \delta_t = ||\hat{s_t} - s_t||_2$$

Shaping:
$$r_t^{comm} = \delta_{t-1} - \delta_t$$

- Learnt during pre-training phase

Next steps

- Pre-training with Shared Memory
- Fine-tuning communication with Shared Memory
- Moving to BabyAl
- Submit to conf end of 2023/start of 2024
 - IJCAI (January 17th)
 - ICML (February 1st)
 - RSS (February 2nd)
 - Practical applications of Agents and Multi-Agent System (rank B) (deadline TBC)

Thank you for you attention!

Questions?

Training Process

Phase 1: Learning to ground and generate language

CLIP Loss

With the Observation Encoder $\omega: \mathbb{R}^N \to \mathbb{R}^M$, and the Language Encoder $\lambda: \mathbb{R}^{L \times V} \to \mathbb{R}^M$,

the grounding objective is:

$$J(\theta_{\omega}, \theta_{\lambda}) = max[cosim(\omega(o_k), \lambda(l_k))]$$

Captioning Loss

With the Language Encoder $\lambda: \mathbb{R}^{L \times V} \to \mathbb{R}^{M}$, and the Decoder $\delta: \mathbb{R}^{M} \to \mathbb{R}^{L \times V}$,

the captioning objective is:

$$J(heta_{\lambda}, heta_{\delta}) = min \left[rac{1}{N}\sum_{i=0}^{N}(\hat{l_i}-l_i)^2
ight]$$

Training Process

Phase 2: Learning a working policy with "perfect messages"

Training Process

Phase 3: Learning the communication policy

RL from Communication quality

We train a Communication Encoder

 $\mathbb{C}:\mathbb{R}^{2M}\to\mathbb{R}^M \text{ to learn to choose which information to share, and we fine-tune the } \textbf{Decoder} \\ \delta \text{ (pre-trained on captioning) to generate useful messages.}$

The reward for communication quality can be defined as,

$$r_t^{comm} = r_t - eta \log \left(rac{\delta_{FT}}{\delta_{PT}}
ight) + \ldots$$

with δ_{FT} the current fine-tuned version of the decoder and δ_{PT} the pre-trained version of the decoder with fixed parameters. We use PPO for learning the communication policy.

Fixed parameters