AUS920010118US1 Alpert et al. Practical Methodology for Early Buffer and Wire Resource Allocation

1/8

AUS920010118US1 Alpert et al. Practical Methodology for Early Buffer and Wire Resource Allocation

		450	I'IG.	41	
401	402	00 ₀	a a a a 404	u 405	406
<u>407</u>	a 408	0 0 409	0 0 410	0 0 411	 0 0 0 0 0 0 41.2
413	00 00 00 0 414	0 0 <u>415</u>	416	0 0 0 <u>417</u>	<u>418</u>
419	<u>420</u>	00 421	0 0 422	0 0 423	424
425	426	a <u>427</u>	428	429	<u>430</u>
431	<u>432</u>	<u>433</u>	0 0 434	u <u>435</u>	<u>436</u>

AUS920010118US1 Alpert et al. Practical Methodology for Early Buffer and Wire Resource Allocation

FIG. 4B 3/8

0	0	6	4	1	2
<u>401</u>	<u>402</u>	<u>403</u>	<u>404</u>	<u>405</u>	<u>406</u>
2	2	4	3	3	6
<u>407</u>	<u>408</u>	<u>409</u>	<u>410</u>	<u>411</u>	<u>412</u>
2	8	2	0	5	0
<u>413</u>	<u>414</u>	<u>415</u>	<u>416</u>	<u>417</u>	<u>418</u>
2	2	3	3	2	0
<u>419</u>	<u>420</u>	<u>421</u>	<u>422</u>	<u>423</u>	<u>424</u>
0	0	1	0	0	1
<u>425</u>	<u>426</u>	<u>427</u>	<u>428</u>	<u>429</u>	<u>430</u>
0	0	1	2	1	0
<u>431</u>	<u>432</u>	<u>433</u>	<u>434</u>	<u>435</u>	<u>436</u>

FIG. 5

٠.4

	<u>5</u> (502		<u>503</u>		<u>)4</u>	
<u>501</u>	521 ⁵		530			522	<u>505</u>
523							524
<u>506</u>	<u>507</u>		<u>508</u>		<u>509</u>		<u>510</u>
	527					525	
<u>511</u>	5	ر 1 <u>2</u>	<u>513</u>		5	1 <u>4</u>	<u>515</u>
				526			
<u>516</u>	<u>5</u>	<u>17</u>	5 5	ر 1 <u>8</u>	<u>5</u>	<u>19</u>	<u>520</u>

FIG. 8

1. SET $C_t(ij) = 0$ FOR $1 \le j < L_j$ AND SINK t. SET $\nu = t$

2. WHILE $v\neq s$ DO FOR j=1 to L_j-1 DO

SET $C_{par(v)}[j] = C_v[j-1]$

SET v=par(v)

3. LET v BE SUCH THAT par(v)=s. RETURN $min\{C_v[j]||0\leq j< L_j\}$

	726	707 708	0	0	വ	8
	Z ⁷²⁴	<u>70</u>	5	0	4	1.0
-		705	3	ÿ	0.8	8
	\$722	7 907	12	2	2	0.5
		<u>202</u>	5	4	3.6	9.8
	730	702	8	٣	2.5	1.3
	220		B(v)	p(v)	(q)d	(v)p

604	606	909
FIG. 6	909	9 09

5/8

COMWELED LONGED H

DSETHES DSET

7/8

FIG. 11

- 1. PICK AN UNVISITED NODE ν SUCH THAT ALL DESCENDANTS OF ν HAVE BEEN VISITED WHILE $\nu \neq s$ DO
- 2. IF v IS A SINK THEN SET $C_v[j] = 0$ FOR $1 \le j < L_j$
- 3. IF v HAS ONE CHILD l(v) THEN FOR j=1 TO L_i . -1 DO SET $C_v[j] = C_{|(v)}[j-1]$ SET $C_v[0] = q(v) + min\{C_{|(v)}[j] || 0 \le j < L_i.\}$
- 4. IF v HAS TWO CHILDREN ((v) AND r(v) THEN
- 4.1 FOR j=2 TO L_{j} . -1 DO SET $C_{V}[j] = min\{C_{I(V)}[j_{j}] + C_{r(V)}[j_{r}] || j_{j} + j_{r} + 2 = j\}$
- 4.2 SET $C_{V}[0] = q(v) + min\{C_{I(v)}[j_{I}] + C_{r(v)}[j_{r}] || j_{I} + j_{r} + 2 \le L_{i}\}$
- 4.3 SET $C_V[1] = \infty$
- 4.4 FOR j=1 TO L_j-1 DO SET $C_V[j] = min\{C_V[j], q(v) + C_{I(V)}[j-1], q(v) + C_{r(V)}[j-1]\}$
 - 5. MARK ν AS VISITED PICK AN UNVISITED NODE ν SUCH THAT ALL DESCENDANTS OF ν HAVE BEEN VISITED
 - 6. RETURN $min\{C_S[j] | 0 \le j < L_j\}$.

8/8

