MATH 644

Chapter 2

SECTION 2.3: POWER SERIES

Contents

A First Example	2
Definition	\$
Tests	<u> </u>

Created by: Pierre-Olivier Parisé Spring 2023

A FIRST EXAMPLE

More complicated functions are found by taking limits of polynomials.

EXAMPLE 1. Study the series $\sum_{n=0}^{\infty} z^n$ for a fixed $z \in \mathbb{C}$.

DEFINITION

A formal power series

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n = a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + \dots$$

is called a convergent power series centered (or based) at \mathbf{z}_0 if

Convention: $f(z_0) = a_0$ (to avoid 0^0).

EXAMPLE 2. Find a convergent power series centered at $z_0 \neq a$ representing $\frac{1}{z-a}$.

Tests

THEOREM 3. Let r > 0 and suppose that

- a) $|a_n(z-z_0)^n| \le M_n$ for every z such that $|z-z_0| < r$;
- b) $\sum_{n=0}^{\infty} M_n < \infty$.

Then $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ converges uniformly and absolutely in the region

$$\{z : |z - z_0| < r\}.$$

Note:

Convergence depends only on the tail of the series. So it is sufficient to satisfy the hypothesis only for $n \ge n_0$, for some non-negative integer n_0 .

THEOREM 4. Let $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ be a formal power series. Let

$$R:= \liminf_{n\to\infty} |a_n|^{-1/n} = \frac{1}{\limsup_{n\to\infty} |a_n|^{1/n}} \in [0,\infty].$$

Then, the power series

- a) converges abs. in $\{z : |z z_0| < R\};$
- **b)** converges uniformly in $\{z : |z z_0| \le r\}$, for any r < R;
- c) diverges in $\{z : |z z_0| > R\}$.

Notes:

- R is called the radius of convergence of the power series.
- Biggest open disk where the power series converges is $\{z: |z-z_0| < R\}$.
- Information on the decay rate of a_n : for any S < R, there is an $n_0 \ge 0$ such that $|a_n| \le S^{-n}$.

Proof.

Note: Root test does not give any information on the convergence of the power series on the circle	
$\{z : z - z_0 = R\}.$	

EXAMPLE 5. Find the Radius of convergence R of the following power series and study their behavior on the boundary of the disk of radius R.

$$\mathbf{A)} \ \sum_{n=1}^{\infty} \frac{z^n}{n};$$

$$\mathbf{C)} \sum_{n=1}^{\infty} nz^n;$$

$$\mathbf{B)} \ \sum_{n=1}^{\infty} \frac{z^n}{n^2};$$

$$\mathbf{D}) \sum_{n=1}^{\infty} 2^{n^2} z^n.$$

EXAMPLE 6. Let $(a_n)_{n=0}^{\infty}$ be defined by

$$a_n = \begin{cases} 3^{-n} & \text{, if } n \text{ is even} \\ 4^n & \text{, if } n \text{ is odd.} \end{cases}$$

What is the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n (z-z_0)^n$.