EQUILIBRI E ISOCLINE

Definizione

Un equilibrio è uno stato \overline{x} tale che $x(0) = \overline{x}$ implica $x(t) = \overline{x} \ \forall t \ge 0$.

Nei sistemi a tempo continuo
$$\dot{x}(t) = f(x(t))$$
:
 \overline{x} è equilibrio $\Leftrightarrow f(\overline{x}) = 0$

Nei sistemi a tempo discreto
$$x(t+1) = f(x(t))$$
:
 \overline{x} è equilibrio $\Leftrightarrow f(\overline{x}) = \overline{x}$

Nota Bene: $f(\overline{x}) = 0$ [$f(\overline{x}) = \overline{x}$] è un sistema di n equazioni nelle n incognite $\overline{x}_1, \overline{x}_2, ..., \overline{x}_n$.

Esempio: sistemi del 1° ordine

Esempio: sistemi a tempo continuo del 2° ordine (isocline)

$$\dot{\boldsymbol{x}}_1 = \boldsymbol{f}_1(\boldsymbol{x}_1, \boldsymbol{x}_2)$$

$$\dot{\mathbf{x}}_2 = \mathbf{f}_2(\mathbf{x}_1, \mathbf{x}_2)$$

$$\dot{x}_1 = 0 \Leftrightarrow f_1(x_1, x_2) = 0$$

$$\dot{x}_2 = 0 \Leftrightarrow f_2(x_1, x_2) = 0$$

MOLTEPLICITÀ DEGLI EQUILIBRI

Il numero di equilibri di un sistema può essere

• 0 (=nessun equilibrio)

- ∞ numerabile (non in un sistema lineare!)
- ∞ non numerabile

.

Esempio: crescita logistica: x(t) = biomassa all'istante t

$$\dot{x} = rx \left(1 - \frac{x}{k}\right)$$

2 equilibri: $\begin{cases} \overline{x} = 0 \\ \overline{x} = k \text{ (capacità portante)} \end{cases}$

La biomassa x(t) tende verso la capacità portante k.

Esempio: modello preda-predatore:

 $x_1(t)$ = biomassa delle prede

 $x_2(t)$ = biomassa dei predatori

$$\begin{split} \dot{x}_1 &= r x_1 \! \left(1 \! - \! \frac{x_1}{k} \right) \! - \! \frac{a x_1 x_2}{b + x_1} \\ \dot{x}_2 &= - m x_2 + e \frac{a x_1 x_2}{b + x_1} \end{split} \qquad r, k, a, b, m, e > 0 \end{split}$$

Equilibri e isocline si trovano ponendo:

$$x_{1} \left[r \left(1 - \frac{x_{1}}{k} \right) - \frac{ax_{2}}{b + x_{1}} \right] = 0$$

$$x_{2} \left\{ -m + e \frac{ax_{1}}{b + x_{1}} \right\} = 0$$

STABILITÀ

Definizione

Un equilibrio \overline{x} è stabile (localmente) se per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che

$$\|x(0) - \overline{x}\| < \delta \implies \|x(t) - \overline{x}\| < \epsilon \quad \forall x(0), \forall t \ge 0$$

[Qualunque piccola perturbazione dello stato non porta il sistema lontano dall'equilibrio.]

Definizione

Un equilibrio \overline{x} è asintoticamente stabile se è stabile e se

$$x(t) \xrightarrow[t \to +\infty]{} \overline{x} \quad \forall x(0)$$

[Qualunque piccola perturbazione dello stato viene asintoticamente riassorbita.]

Definizione

Un equilibrio \overline{x} è instabile se non è stabile.

Definizione

Dato un equilibrio \overline{x} asintoticamente stabile, l'insieme

$$B(\overline{x}) = \{x(0) : x(1) \to \overline{x}\}$$

è detto bacino di attrazione di \overline{x} .

Definizione

Un equilibrio \overline{x} asintoticamente stabile è detto globalmente stabile se $B(\overline{x}) = R^n$ (con l'eccezione al più di un insieme di misura nulla).

STABILITÀ: ESEMPI

Nota Bene: nei sistemi non lineari la stabilità è una proprietà dell'equilibrio e non del sistema: lo stesso sistema può possedere equilibri stabili e instabili.

Esempio: crescita logistica

 $\overline{x} = 0$ è instabile.

 $\overline{x} = k$ è asintoticamente stabile.

 $B(k) = R_{\perp}$

Esempio: modello preda-predatore

3 equilibri instabili.

Esempio: circuito elettrico

Esempio: competizione fra batteri

$$\dot{\mathbf{x}}_1 = \mathbf{r}_1 \mathbf{x}_1 \left(1 - \frac{\mathbf{x}_1}{\mathbf{k}_1} \right) - \mathbf{a}_1 \mathbf{x}_1 \mathbf{x}_2$$

$$\dot{x}_2 = r_2 x_2 \left(1 - \frac{x_2}{k_2} \right) - a_2 x_1 x_2$$

4 equilibri: 2 asintoticamente stabili + 2 instabili

IL SISTEMA LINEARIZZATO E LA MATRICE JACOBIANA

Consideriamo $\dot{x}(t) = f(x(t))$ e un suo equilibrio \overline{x} ($f(\overline{x}) = 0$).

$$\partial x(t) = x(t) - \overline{x}$$

 $\partial x(t)$ è governato dall'equazione di stato

$$\partial \dot{x}(t) = \dot{x}(t) = f(x(t)) = f(\overline{x} + \partial x(t)) = f(\overline{x}) + \left[\frac{\partial f}{\partial x}\right]_{\overline{x}} \partial x(t) + O(\partial x(t)^{2})$$
$$= \left[\frac{\partial f}{\partial x}\right]_{\overline{x}} \partial x(t) + O(\partial x(t)^{2})$$

Definiamo sistema linearizzato nell'intorno di \overline{x} il sistema lineare che si ottiene troncando lo sviluppo di Taylor al primo ordine:

$$\partial \dot{x}(t) = J(\overline{x})\partial x(t)$$

dove J(x) è la matrice Jacobiana ($n \times n$)

$$\mathbf{J}(\mathbf{x}) = \begin{bmatrix} \frac{\partial f_1}{\partial \mathbf{x}_1} & \frac{\partial f_1}{\partial \mathbf{x}_2} & \cdots & \frac{\partial f_1}{\partial \mathbf{x}_n} \\ \frac{\partial f_2}{\partial \mathbf{x}_1} & \frac{\partial f_2}{\partial \mathbf{x}_2} & \cdots & \frac{\partial f_2}{\partial \mathbf{x}_n} \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_n}{\partial \mathbf{x}_1} & \frac{\partial f_n}{\partial \mathbf{x}_2} & \cdots & \frac{\partial f_n}{\partial \mathbf{x}_n} \end{bmatrix}$$

VARIETÀ STABILE, INSTABILE, CENTRO

Se $J(\overline{x})$ possiede

```
n^- autovalori con Re(\lambda) < 0

n^+ autovalori con Re(\lambda) > 0

n^0 autovalori con Re(\lambda) = 0
```

allora nell'intorno di \overline{x} esistono

```
W^s = varietà stabile (dim W^s = n^-)

W^u = varietà instabile (dim W^u = n^+)

W^0 = varietà centro (dim W^0 = n^0)
```

tali che

- sono invarianti $(x(0) \in W^{s,u,0} \text{ implica } x(t) \in W^{s,u,0} \ \forall t \ge 0)$
- ullet sono tangenti in \overline{x} alle corrispondenti varietà del sistema linearizzato
- la dinamica su W^s e su W^u è equivalente a quella del sistema linearizzato
- la dinamica su W^0 dipende invece dai termini di ordine superiore al primo dello sviluppo di Taylor $(O(\partial x(t)^2)) \Rightarrow$ non può essere studiata per mezzo del sistema linearizzato

Nota Bene: nel caso di sistema a tempo discreto x(t+1)=f(x(t)), il sistema linearizzato nell'intorno di un equilibrio \overline{x} si definisce in modo del tutto analogo. Le varietà stabile, instabile, centro, sono associate rispettivamente agli autovalori con $|\lambda| < 1$, $|\lambda| > 1$, $|\lambda| = 1$.

ESEMPI

autovalori di J	$\partial \dot{\mathbf{x}} = \mathbf{J}(\overline{\mathbf{x}})\partial \mathbf{x}$	$\dot{x} = f(x)$
XX Re		X
Im X Re	10	X
I'm Re		X P
X X Re	1	
Im X Re		

LINEARIZZAZIONE E STABILITÀ

Le proprietà relative a W^s, W^u, W⁰ implicano i risultati seguenti.

Teorema

 $J(\overline{x})$ as into ticamente stabile $\Rightarrow \overline{x}$ as into ticamente stabile

 $J(\overline{x})$ asintoticamente stabile significa che $J(\overline{x})$ ha tutti gli autovalori strettamente stabili (Re(λ_i) < 0 o $|\lambda_i|$ < 1 $\forall i$).

Teorema

 $J(\overline{x})$ esponenzialmente instabile $\Rightarrow \overline{x}$ instabile

 $J(\overline{x})$ esponenzialmente instabile significa che $J(\overline{x})$ ha almeno un autovalore strettamente instabile ($\exists i$ tale che $Re(\lambda_i) > 0$ o $|\lambda_i| > 1$).

Esempio: crescita logistica:

$$\dot{x} = rx\left(1 - \frac{x}{k}\right) \Rightarrow J(x) = r\left(1 - 2\frac{x}{k}\right)$$

$$\mbox{2 equilibri: } \begin{cases} \overline{x} = 0, & J(0) = r, & \mbox{instabile} \\ \\ \overline{x} = k, & J(k) = -r, & \mbox{asintoticamente stabile} \end{cases}$$

Nota Bene: se $J(\overline{x})$ è semplicemente stabile o debolmente (non esponenzialmente) instabile non si può dedurre nulla a proposito della stabilità di \overline{x} .

Esempio: sistemi quadratici e cubici:

$$\dot{x} = x^2$$
, $\overline{x} = 0$, $J(x) = 2x$, $J(\overline{x}) = 0 \Rightarrow ???$
 $\dot{x} = -x^2$, $\overline{x} = 0$, $J(x) = -2x$, $J(\overline{x}) = 0 \Rightarrow ???$
 $\dot{x} = x^3$, $\overline{x} = 0$, $J(x) = 3x^2$, $J(\overline{x}) = 0 \Rightarrow ???$
 $\dot{x} = -x^3$, $\overline{x} = 0$, $J(x) = -3x^2$, $J(\overline{x}) = 0 \Rightarrow ???$

ESEMPI

autovalori di J	$\partial \dot{\mathbf{x}} = \mathbf{J}(\overline{\mathbf{x}})\partial \mathbf{x}$	\overline{x}
X Im X Re X	ASINTOTICAMENTE STABILE	ASINTOTICAMENTE STABILE (esponenzialmente)
X Re X	SEMPLICEMENTE STABILE radici SEMPLICI del polinomio minimo	
× × × Re	INSTABILE (debolmente) almeno uno è radice MULTIPLA del polinomio minimo	
× X Re	INSTABILE (fortemente)	INSTABILE (esponenzialmente)