Formalisme général d'un test Un test sur la moyenne dans le modèle normal Les tests usuels sur μ Les tests usuels sur σ dans le modèle normal

Tests paramétriques II : tests sur μ et σ

Frédérique Leblanc

- **objet du test :** un paramètre inconnu $(\mu$ ou $\sigma)$
- deux options possibles : \mathcal{H}_0 (hyp. nulle) ou \mathcal{H}_1 (hyp. alternative) qui portent sur le paramètre testé
- deux décisions possibles : Conserver \mathcal{H}_0 (soit rejeter \mathcal{H}_1) ou pas (soit accepter \mathcal{H}_1)
- Risques de bonnes ou mauvaises décisions

	Décision	\mathcal{H}_0	\mathcal{H}_1
Vérité			
\mathcal{H}_0		$P(\mathcal{H}_0 \mathcal{H}_0) = 1 - \alpha$	$P(\mathcal{H}_1 \mathcal{H}_0) = \alpha$
\mathcal{H}_1		$P(\mathcal{H}_0 \mathcal{H}_1)=\beta$	$P(\mathcal{H}_1 \mathcal{H}_1) = 1 - \beta$

 α : risque de 1ère espèce ; β : risque de sde espèce

X de loi $\mathcal{N}(\mu,\sigma^2)$ avec σ connu

Choix entre hypothèses simples : soient $\mu_0 > \mu_1$ connus et le problème de test :

$$\mathcal{H}_0: \mu = \mu_0$$
 $\mathcal{H}_1: \mu = \mu_1$

Un test : si $\bar{X}_n > C$ alors conclure \mathcal{H}_1 Les risques :

$$\alpha = 1 - \Phi\left(\frac{\sqrt{n}}{\sigma}(C - \mu_0)\right)$$
 et $\beta = \Phi\left(\frac{\sqrt{n}}{\sigma}(C - \mu_1)\right)$

Ex: le montrer

Exercice :
$$\mu_0 = 0$$
, $\mu_1 = 1$, $\sigma = 1.5$ et $n = 9$

- Exprimer α et β en fonction de C
- Les calculer pour C=1/2, C=1/4 et C=3/4 et renseigner le tableau suivant :

С	1/2	1/4	3/4
α			
β			
hyp. favorisée			

Commentaires

test de niveau α :

Soit $C_{\alpha} = \mu_0 + \frac{\sigma}{\sqrt{n}} u_{1-\alpha}$ alors $\{\bar{X}_n > C_{\alpha}\}$ est un test dit de niveau α .

 C_{α} ne dépend pas de la valeur μ_1 donc pour tout $\mu_1 > \mu_0$ il fournit un test de niveau α pour tester :

$$\mathcal{H}_0: \mu = \mu_0 \qquad \mathcal{H}_1: \mu > \mu_0$$

Ainsi au niveau lpha on utilisera le test défini par la région de rejet :

$$W_{\alpha} = \left\{ \bar{X} > \mu_0 + \frac{\sigma}{\sqrt{n}} \phi^{-1} (1 - \alpha) \right\}$$

p-valeur

On reprend l'exemple $\mu_0=0$, $\mu_1=1$, $\sigma=1.5$ et n=9. Quelle décision prendra t-on si $\bar{x}=1/2$ pour

- $\alpha = 10\%$
- $\alpha = 31\%$
- $\alpha = 40\%$

On définit la p-valeur d'un test par $\alpha*$ tel que

- si $\alpha > \alpha *$ on conclut \mathcal{H}_1
- si $\alpha \leq \alpha *$ on conclut \mathcal{H}_0

c'est le plus grand risque pour lequel on ne rejette pas \mathcal{H}_0 . Que vaut la p-valeur du précedent test si on a observé $\bar{x}=1/2$?

Trois formes de problèmes de tests :

$$\mathcal{H}_0: \mu = \mu_0$$
 $\mathcal{H}_1: \mu > \mu_0$
 $\mathcal{H}_0: \mu = \mu_0$ $\mathcal{H}_1: \mu < \mu_0$
 $\mathcal{H}_0: \mu = \mu_0$ $\mathcal{H}_1: \mu \neq \mu_0$

- région de rejet de même forme que l'alternative
- bord de la région de rejet dépend de α,μ_0 , n et σ (si connu) ou $\hat{\sigma}$ (si σ inconnu).
- les régions de rejet sont exprimées soit sur \bar{X} l'estimateur de μ soit sur sa version centrée et reduite sous \mathcal{H}_0 notée T et appelée statistique du test.

Les tests usuels sur μ dans le modèle normal σ inconnu et de niveau α

la valeur prise par T pour l'échantillon observé est notée t_{calc}

\mathcal{H}_0	\mathcal{H}_1	T	$T \mathcal{H}_0$	rejet \mathcal{H}_0	p — val
$\mu = \mu_0$	$\mu > \mu_0$	$\frac{\bar{X}-\mu_0}{S'/\sqrt{n}}$	\mathcal{T}_{n-1}	$T > t_{n-1,1-\alpha}$	$P(T > t_{calc})$
$\mu \leq \mu_0$	$\mu > \mu_0$	$\frac{\bar{X}-\mu_0}{S'/\sqrt{n}}$	\mathcal{T}_{n-1}	$T > t_{n-1,1-\alpha}$	$P(T > t_{calc})$
$\mu = \mu_0$	$\mu < \mu_0$	$\frac{\bar{X}-\mu_0}{S'/\sqrt{n}}$	\mathcal{T}_{n-1}	$T < -t_{n-1,1-\alpha}$	$P(T \leq t_{calc})$
$\mu \geq \mu_0$	$\mu < \mu_0$	$\frac{\bar{X}-\mu_0}{S'/\sqrt{n}}$	\mathcal{T}_{n-1}	$T < -t_{n-1,1-\alpha}$	$P(T \leq t_{calc})$
$\mu = \mu_0$	$\mu \neq \mu_0$	$\frac{\bar{X}-\mu_0}{S'/\sqrt{n}}$	\mathcal{T}_{n-1}	$ T > t_{n-1,1-\frac{\alpha}{2}}$	$P(T > t_{calc})$

Les tests usuels sur μ dans le modèle de Bernoulli : $\mu=p$ de niveau asymptotique α

la valeur prise par T pour l'échantillon observé est notée t_{calc}

\mathcal{H}_0	\mathcal{H}_1	T	$T \mathcal{H}_0$	rejet \mathcal{H}_0	p — val
$p=p_0$	$p > p_0$	$rac{\sqrt{n}(ar{X}-p_0)}{\sqrt{p_0(1-p_0)}}$	$\mathcal{N}(0,1)$	$T>u_{1-\alpha}$	$1-\Phi(t_{calc})$
$p \leq p_0$	$p > p_0$	$rac{\sqrt{n}(ar{X}-p_0)}{\sqrt{p_0(1-p_0)}}$	$\mathcal{N}(0,1)$	$T>u_{1-\alpha}$	$1-\Phi(t_{calc})$
$p=p_0$	$p < p_0$	$\frac{\sqrt{n}(\bar{X}-p_0)}{\sqrt{p_0(1-p_0)}}$	$\mathcal{N}(0,1)$	$T<-u_{1-\alpha}$	$\Phi(t_{calc})$
$p \geq p_0$	$p < p_0$	$\frac{\sqrt{n}(\bar{X}-p_0)}{\sqrt{p_0(1-p_0)}}$	$\mathcal{N}(0,1)$	$T<-u_{1-\alpha}$	$\Phi(t_{calc})$
$p=p_0$	$p \neq p_0$	$rac{\sqrt{n}(ar{X}-p_0)}{\sqrt{p_0(1-p_0)}}$	$\mathcal{N}(0,1)$	$ T > u_{1-\frac{\alpha}{2}}$	$2-2\Phi(t_{calc})$

la valeur prise par ${\cal T}$ pour l'échantillon observé est notée t_{calc}

\mathcal{H}_0	\mathcal{H}_1	T	$T \mathcal{H}_0$	rejet \mathcal{H}_0	p — val
$\sigma = \sigma_0$	$\sigma > \sigma_0$	$\frac{nS_n^2}{\sigma_0^2}$	\mathcal{X}_{n-1}^2	$T>z_{n-1,1-\alpha}$	$P(T > t_{calc})$
$\sigma \leq \sigma_0$	$\sigma > \sigma_0$	$\frac{nS_n^2}{\sigma_0^2}$	\mathcal{X}_{n-1}^2	$T>z_{n-1,1-\alpha}$	$P(T > t_{calc})$
$\sigma = \sigma_0$	$\sigma < \sigma_0$	$\frac{nS_n^2}{\sigma_0^2}$	\mathcal{X}_{n-1}^2	$T < z_{n-1,\alpha}$	$P(T < t_{calc})$
$\sigma \geq \sigma_0$	$\sigma > \sigma_0$	$\frac{nS_n^2}{\sigma_0^2}$	\mathcal{X}_{n-1}^2	$T>z_{n-1,\alpha}$	$P(T < t_{calc})$
$\sigma = \sigma_0$	$\sigma eq \sigma_0$	$\frac{nS_n^2}{\sigma_0^2}$	\mathcal{X}_{n-1}^2	$T < z_{n-1,rac{lpha}{2}}$ ou	$min(2P(T < t_{calc}),$
		Ů		$T>z_{n-1,1-\frac{\alpha}{2}}$	$2P(T > t_{calc}))$