

ABSTRACTS OF THE II REPUBLICAN SCIENTIFIC AND PRACTICAL CONFERENCE OF YOUNG SCIENTISTS MATHEMATICS, MECHANICS AND INTELLECTUAL TECHNOLOGIES TASHKENT-2023

Tashkent, Uzbekistan March 28-29, 2023

MINISTRY OF HIGHER EDUCATION, SCIENCE AND INNOVATIONS OF THE REPUBLIC OF UZBEKISTAN

NATIONAL UNIVERSITY OF UZBEKISTAN NAMED AFTER MIRZO ULUGBEK

MATHEMATICAL SOCIETY OF UZBEKISTAN

INSTITUTE OF MATHEMATICS NAMED AFTER V.I.ROMANOVSKY OF THE ACADEMY OF SCIENCES OF THE REPUBLIC OF UZBEKISTAN

ABSTRACTS

II Republican Scientific and Practical Conference of Young Scientists

MATHEMATICS, MECHANICS AND INTELLECTUAL TECHNOLOGIES TASHKENT-2023

Садиков 1	
Бипадзе сме	К. Об одной нелокальной задаче для уравнения Лаврентьен
	ва М., Рахматов Н. Нелокальная задача для уравнения третье
	ператором теплопроводности в главной части
Самадова	Д. Об одной смешанной задаче для неоднородного уравнени
	П., Мамадалиев Н. Модификация третьего метода преследовани
	ий нейтрального типа
	П. Метод хе при вычислении предельного цикла некоторы
	их системы на плоскосты
	П. Метод хе при вычисление предельного цикла некоторы их системы на плоскосты
	$\mathbf{P.,\ }$ Исмоилов $\mathbf{M.\ }$ Связь m -выпуклых $(m-cv)$ функций с сильн
	ническими (sh_m) функциями
	ев А., Курбанов К. Свойства ядро Пуассона матричных областе
Шогдоров	У. Об однозначной разрешимости многомерной задачи с дробно
-	й Миллера–Росса, связанные с колебаниями балки
-	., Эшимбетов М., Эшимбетов Ж. Начально-краевая задача дл
	оного уравнения третьего порядка составного типа
-	. Об одной игровой задаче управления пучками траекторий
	гева Н. ω^{ω} - база и ехпоненциалная пространства
-	., Усмонов Д. Об одной нелокальная задаче для уравнени
	типа четвертого порядка, вырождающегося внутри и на грани
	К., Mamadaliyev N. Дифференциальная игра преследовани
	то типа
-	., Рашидов С. Фундаментальные решения для одного класс
	ского уравнения с вырождающимся коэффициентом
-	Р., Омонов Ш., Раупов С. Математическая модель аномально
переноса ве	щества в пористой среде с учетом адсорбционных эффектов
разложения	вешества
Юлдашева	н. Краевая задача для уравнения Геллерстедта с сингулярны
	итом в неограниченной области
-	М., Тўраев Ф., Мардаев С. Релаксациенная дробн
дифференци	иальная модель фильтрации однородной жидкости в пористо

Математическая модель аномального переноса вещества в пористой среде с учетом адсорбционных эффектов и разложения вешества

Холлиев Ф.Б.¹, Омонов Ш.Ш.², Раупов С.Б.³

^{1,2}Самаркандский государственный университет, Самарканд, Узбекистан; ³Термезский государственный университет, Термез, Узбекистан; surxon88@bk.ru

В данный работе изучается процесс аномального переноса веществ в одномерной, неоднородной, двузонной среде с учётом адсорбции, и массообмена между зонами. В зоне с неподвижной жидкостью процесс переноса описывается кинетическим уравнением с учётом адсорбции, где в отличие от других известных работ, учитывается аномальность процесса [1]. В зоне с подвижной жидкостью используется конвективно-диффузионное уравнение с учетом аномальности диффузионного процесса.

Среда состоит из двух зон: подвижной, т.е. пористой среды, где жидкость мобильна, и неподвижной, где жидкость неподвижна, но происходит диффузионный перенос вещества. Аномальная модель записывается как [2]

$$(\theta_m + f\rho_b k_d) \frac{\partial c_m}{\partial t} = \theta_m \frac{\partial}{\partial x} \left[D_m(x) \frac{\partial^\beta c_m}{\partial x} \right] - v_m \theta_m \frac{\partial c_m}{\partial x} - \omega \left(c_m - c_{im} \right) - \left(\theta_m \mu_{lm} + f\rho_b k_d \mu_{sm} \right) c_m, \tag{1}$$

$$\left[\theta_{im} + (1 - f)\rho_b k_d\right] \frac{\partial^{\alpha} c_{im}}{\partial t^{\alpha}} = \omega \left(c_m - c_{im}\right) - \left[\theta_{im} \mu_{\lim} + (1 - f)\rho_b k_d \mu_{sim}\right] c_{im} \tag{2}$$

где θ_m, θ_{im} - коэффициент пористости, v_m - осредненная скорость движения раствора, c_m и c_{im} — концентрации вещества, ω — коэффициент массообмена, f и 1-f представляют доли центров адсорбции, ρ_b — объемная плотность пористой среды, k_d - коэффициент распределения линейного процесса адсорбции, μ_{lm} и μ_{lim} — коэффициенты разложения первого порядка для разложения растворенного вещества в областях с подвижной и неподвижной жидкостью, μ_{sm} и μ_{sim} — коэффициенты разложения вещества первого порядка в подвижной и неподвижной адсорбированных твердых фазах, $D_m(x)$ — коэффициент гидродинамической дисперсии.

Порядки производных: $0 < \alpha \le 1$, $0 \le \beta \le 1$. В отличие от работы [2], здесь $[D_m(x)] = \mu^{\beta+1}/c$, $[\theta_{im} + (1-f)\rho_b k_d] = c^{\alpha-1}$ фрактальные размерности параметров.

Переведенный численный анализ показывает, что аномальность процесса значительно влияет на характеристики переноса вещества в обеих зонах среды, т.е. как в микро, - так и в макропоре. Аномальность переноса характеризуется порядком производной в диффузионном члене уравнения переноса и уравнения кинетики массообмена. Для решения задачи (1-2) с соответствующими начальными граничными условиями использован метод конечных разностей. На основе численных результатов определены профили концентрации.

Литература

1. Gzhou L. and H. M. Selim (2003a), Scale-dependent dispersion in soils: an overview, Adv. Agron., 80, 223-263.

2. Gao G., Zhan H., Feng Sh, Bo-Jie Fu. A new mobile-immobile model for reactive solute transport with scale-dependent dispersion, Water Resources Research August 2010 46(8).

Краевая задача для уравнения Геллерстедта с сингулярным коэффициентом в неограниченной области

Юлдашева Наргиза Тахиржоновна¹

¹Институт математики имени В.И.Романовского АН РУз, Ташкент, Узбекистан; nyuldasheva87@gmail.com

Рассмотрим уравнение

$$sign y | y^{m} | u_{xx} + u_{yy} + \frac{\beta_0}{y} u_{y} = 0$$
 (1)

в области $D = D^+ \cup D^- \cup I_1$ комплексной плоскости z = x + iy, где D^+ – первый квадрант плоскости, D^- – область четвертого квадранта плоскости, ограниченный характеристикой Γ и положительной частью оси абсциссы, $I_1 = \{(x,y): 0 < x < \infty, y = 0\}$.

В (1) m,β_0 — некоторые действительные числа, удовлетворяющие условиям $m>0,\ -\frac{m}{2}<\beta_0<1.$

Введем обозначения: $I_0 = \{(x, y): 0 < y < \infty, x = 0\}.$

Задача: Найти в области D функцию u(x,y) со свойствами:

- 1) $u(x,y) \in C(\overline{D}) \cap C^2(D)$, где $D = D^+ \cup \overline{D^-} \cup \overline{I_0}$ и удовлетворяет уравнению (1) в этой области;
 - 2) выполняет равенства

$$\lim_{R \to \infty} u(x, y) = 0, \quad R^2 = x^2 + \frac{4}{(m+2)^2} y^{m+2}, \quad x > 0, \quad y > 0;$$
 (2)

3) u(x,y) удовлетворяет краевым условиям

$$u(0,y) = \varphi(y), \ y \ge 0, \tag{3}$$

$$u|_{\Gamma} = \psi(x), \ x \in [0, \infty), \tag{4}$$

и условиям сопряжения

$$\lim_{y \to +0} y^{\beta_0} \frac{\partial u}{\partial y} = \lim_{y \to -0} (-y)^{\beta_0} \frac{\partial u}{\partial y}, \ x \in (0, \infty), \tag{5}$$

причем эти приделы при могут иметь особенности порядка ниже $1-2\beta$, где $\beta=\frac{m+2\beta_0}{2(m+2)}, \ \varphi(y)\in C(\overline{I_0}), \ y^{\frac{3m+2\beta_0}{4}}\varphi(y)\in L[0,\infty)$ удовлетворяет условию Гельдера на любом отрезке $[0,N],\ N>0,\ \varphi(\infty)=0,\ \varphi(0)=0,\ \varphi(0)=\psi(0).$

Теорема1. Пусть выполнены условия $\varphi(y) \equiv 0, \ \psi(x) \equiv 0, \$ тогда задача имеет лишь тривиальное решение.

Отметим, что краевая задача для уравнения (1) при $\beta_0 = 0$ изучена в [1].

1. М.М.Смирнов, Уравнения смешанного типа, Москва, Высшая школа, 1985, 304 с.