Lista de exercícios III - Teoria assintótica da verossimilhança

Teoria assintótica

Wagner Hugo Bonat

2018-08-13

Distribuição assintótica da função escore

- 1. Sejam Y_1, \ldots, Y_n v.a iid de uma população Normal com esperança μ e variância conhecida $\sigma^2 = 1$. Encontre a função escore para μ mostre que sua esperança é zero e obtenha a sua distribuição assintótica.
- 2. Sejam Y_1, \ldots, Y_n v.a iid de uma população Normal com esperança $\mu = 10$ e variância desconhecida σ^2 . Encontre a função escore para σ^2 mostre que sua esperança é zero e obtenha a sua distribuição assintótica.
- 3. Sejam Y_1, \ldots, Y_n v.a iid de uma população Poisson com esperança μ . Encontre a função escore para μ mostre que sua esperança é zero e obtenha a sua distribuição assintótica.
- 4. Sejam Y_1, \ldots, Y_n v.a iid de uma população exponencial de esperança μ . Encontre a função escore para μ mostre que sua esperança é zero e obtenha a sua distribuição assintótica.
- 5. Sejam Y_1, \ldots, Y_n v.a. iid de uma população Uniforme com parâmetros a=0 e b desconhecido. Encontre a função escore para b, obtenha sua esperança e se possível sua distribuição assintótica.

Estimador de máxima verossimilhança

- 1. Sejam Y_1, \dots, Y_n v.a iid de uma população Normal com esperança μ e variância conhecida $\sigma^2 = 1$. Encontre o estimador de máxima verossimilhaça para μ e obtenha sua distribuição assintótica.
- 2. Sejam Y_1, \ldots, Y_n v.a iid de uma população Normal com esperança $\mu = 10$ e variância desconhecida σ^2 . Encontre o estimador de máxima verossimilhaça para σ^2 e obtenha sua distribuição assintótica.
- 3. Sejam Y_1, \ldots, Y_n v.a iid de uma população Poisson com esperança μ . Encontre o estimador de máxima verossimilhaça para σ^2 e obtenha sua distribuição assintótica.
- 4. Sejam Y_1, \ldots, Y_n v.a iid de uma população Binomial com n=1 e esperança μ . Encontre o estimador de máxima verossimilhaça para σ^2 e obtenha sua distribuição assintótica.
- 5. Sejam Y_1, \ldots, Y_n v.a iid de uma população Binomial com n=1 e esperança μ . Encontre o estimador de máxima verossimilhaça para σ^2 e obtenha sua distribuição assintótica.
- 6. Sejam Y_1, \ldots, Y_n v.a iid de uma população exponencial com esperança μ . Encontre o estimador de máxima verossimilhaça para μ e obtenha sua distribuição assintótica.
- 7. Sejam Y_1, \ldots, Y_n v.a. iid de uma população Uniforme com parâmetros a=0 e b desconhecido. Encontre o estimador de máxima verossimilhaça para b e obtenha sua distribuição.
- 8. Considere quatro observações $y_1 < 10$, $y_2 > 10$, $5 < y_3 < 10$ e $y_4 = 10$, provenientes de uma população Normal com esperança μ e variância conhecida $\sigma^2 = 1$. Obtenha o estimador de máxima verossimilhança para μ . Dica use um otimizador numérico como a optim() em R.
- 9. Considere quatro observações $y_1 < 10$, $y_2 > 10$, $5 < y_3 < 10$ e $y_4 = 10$, provenientes de uma população Poisson com esperança μ . Obtenha o estimador de máxima verossimilhança para μ . Dica use um otimizador numérico como a optim() em R.

Família exponencial

- 1. Escreva as seguintes distribuições na forma da família exponencial:
 - a) Normal (variância conhecida).
 - b) Exponencial.
 - c) Poisson.
 - d) Binomial.
 - e) Normal inversa.
 - f) Geométrica.