T.2 Table: Computations with a highly signed Dirichlet inverse function

1 2 3 4	$\frac{1^{1}}{2^{1}}$	-	Y				$g^{-1}(n)$	$\lambda(n)\operatorname{sgn}(g^{-1}(n))$	$\lambda(n)g^{-1}(n) - \widehat{f}_1(n)$			$G^{-1}(n)$	$G_{+}^{-1}(n)$	$G_{-}^{-1}(n)$
3 4	2^1		Y	N	N	-	1	1	0	0	_	1	1	0
4		_	Y	Y	N	_	-2	1	0	0	_	-1	1	-2
	3^1	_	Y	Y	N	-	-2	1	0	0	_	-3	1	-4
٠ ـ	2^2	_	N	Y	N	_	2	1	0	-1	_	-1	3	-4
5	5^1	_	Y	Y	N	_	-2	1	0	0	_	-3	3	-6
6	$2^{1}3^{1}$	_	Y	N	N	_	5	1	0	-1	_	2	8	-6
7	7^{1}	_	Y	Y	N	_	-2	1	0	0	_	0	8	-8
8	2^{3}	_	N	Y	N	_	-2	1	0	-2	_	-2	8	-10
9	3^2	_	N	Y	N	_	2	1	0	-1	_	0	10	-10
10	$2^{1}5^{1}$	_	Y	N	N	_	5	1	0	-1	_	5	15	-10
11	11^{1}	_	Y	Y	N	_	-2	1	0	0	_	3	15	-12
12	$2^{2}3^{1}$	_	N	N	Y	_	-7	1	2	-2	_	-4	15	-19
13	13^{1}	_	Y	Y	N	_	-2	1	0	0	_	-6	15	-21
14	$2^{1}7^{1}$	_	Y	N	N	_	5	1	0	-1	_	-1	20	-21
15	$3^{1}5^{1}$	_	Y	N	N	_	5	1	0	-1	_	4	25	-21
16	2^4	_	N	Y	N	_	2	1	0	-3	_	6	27	-21
17	17^{1}	_	Y	Y	N	_	-2	1	0	0	_	4	27	-23
18	$2^{1}3^{2}$	_	N	N	Y	_	-7	1	2	-2	_	-3	27	-30
19	19^{1}	_	Y	Y	N	_	-2	1	0	0	_	-5	27	-32
20	$2^{2}5^{1}$	_	N	N	Y	_	-7	1	2	-2	_	-12	27	-39
21	$3^{1}7^{1}$	_	Y	N	N	_	5	1	0	-1	_	-7	32	-39
22	$2^{1}11^{1}$	_	Y	N	N	_	5	1	0	-1	_	-2	37	-39
23	23^{1}	_	Y	Y	N	_	-2	1	0	0	_	-4	37	-41
24	$2^{3}3^{1}$	_	N	N	Y	_	9	1	4	-3	_	5	46	-41
25	5^2	_	N	Y	N	_	2	1	0	-1	_	7	48	-41
26	$2^{1}13^{1}$	_	Y	N	N	_	5	1	0	-1	_	12	53	-41
27	3^{3}	_	N	Y	N	_	-2	1	0	-2	_	10	53	-43
28	$2^{2}7^{1}$	_	N	N	Y	_	-7	1	2	-2	_	3	53	-50
29	29^{1}	_	Y	Y	N	-	-2	1	0	0	_	1	53	-52
30	$2^{1}3^{1}5^{1}$	-	Y	N	N	-	-16	1	0	-4	_	-15	53	-68
31	31^{1}	-	Y	Y	N	-	-2	1	0	0	-	-17	53	-70
32	2^{5}	-	N	Y	N	-	-2	1	0	-4	_	-19	53	-72
33	$3^{1}11^{1}$	-	Y	N	N	-	5	1	0	-1	-	-14	58	-72
34	$2^{1}17^{1}$	-	Y	N	N	-	5	1	0	-1	-	-9	63	-72
35	$5^{1}7^{1}$	-	Y	N	N	-	5	1	0	-1	_	-4	68	-72
36	$2^{2}3^{2}$	-	N	N	Y	-	14	1	9	1	-	10	82	-72
37	37^{1}	-	Y	Y	N	-	-2	1	0	0	-	8	82	-74
38	$2^{1}19^{1}$	-	Y	N	N	-	5	1	0	-1	-	13	87	-74
39	$3^{1}13^{1}$	-	Y	N	N	-	5	1	0	-1	-	18	92	-74
40	$2^{3}5^{1}$	-	N	N	Y	-	9	1	4	-3	-	27	101	-74
41	411	-	Y	Y	N	-	-2	1	0	0	_	25	101	-76
	$2^{1}3^{1}7^{1}$	-	Y	N	N	-	-16	1	0	-4	-	9	101	-92
43	431	-	Y	Y	N	-	-2	1	0	0	-	7	101	-94
44	$2^{2}11^{1}$	-	N	N	Y	-	-7	1	2	-2	-	0	101	-101
45	$3^{2}5^{1}$	-	N	N	Y	-	-7	1	2	-2	-	-7	101	-108
46	$2^{1}23^{1}$	-	Y	N	N	-	5	1	0	-1	-	-2	106	-108
47	47^{1}	-	Y	Y	N	-	-2	1	0	0	_	-4	106	-110
48	$2^{4}3^{1}$	-	N	N	Y	-	-11	1	6	-4	_	-15	106	-121
49	7^2	-	N	Y	N	-	2	1	0	-1	-	-13	108	-121
50	$2^{1}5^{2}$	-	N	N	Y	-	-7	1	2	-2	_	-20	108	-128
51	$3^{1}17^{1}$	-	Y	N	N	-	5	1	0	-1	_	-15	113	-128
52	$2^{2}13^{1}$	-	N	N	Y	-	-7	1	2	-2	_	-22	113	-135
53	53 ¹	-	Y	Y	N	-	-2	1	0	0	_	-24	113	-137
54	$2^{1}3^{3}$	-	N	N	Y	-	9	1	4	-3	-	-15	122	-137
55	$5^{1}11^{1}$	-	Y	N	N	-	5	1	0	-1	-	-10	127	-137
56	$2^{3}7^{1}$	-	N	N	Y	-	9	1	4	-3	-	-1	136	-137

Table T.2: Computations of the first several cases of $g^{-1}(n) \equiv (\omega + 1)^{-1}(n)$ for $1 \le n \le 56$.

The column labeled Primes provides the prime factorization of each n so that the values of $\omega(n)$ and $\Omega(n)$ are easily extracted. The columns labeled, respectively, Sqfree, PPower and $\bar{\mathbb{S}}$ list inclusion of n in the sets of squarefree integers, prime powers, and the set $\bar{\mathbb{S}}$ that denotes the positive integers n which are neither squarefree nor prime powers. The next two columns provide the explicit values of the inverse function $g^{-1}(n)$ and indicate that the sign of this function at n is given by $\lambda(n) = (-1)^{\Omega(n)}$. Then the next two columns show the small-ish magnitude differences between the unsigned magnitude of $g^{-1}(n)$ and the summations $\hat{f}_1(n) := \sum_{k \geq 0} {\omega(n) \choose k} \cdot k!$ and $\hat{f}_2(n) := \sum_{k \geq 0} {\omega(n) \choose k} \cdot \#\{d|n : \omega(d) = k\}$. Finally, the last three columns show the summatory function of $g^{-1}(n)$, $G^{-1}(x) := \sum_{n \leq x} g^{-1}(n)$, borken down into its respective positive and negative components: $G_+^{-1}(x) := \sum_{n \leq x} g^{-1}(n) \left[g^{-1}(n) > 0\right]_{\delta}$ and $G_-^{-1}(x) := \sum_{n \leq x} g^{-1}(n) \left[g^{-1}(n) < 0\right]_{\delta}$.