

The Implicit Bias of Benign Overfitting

Ohad Shamir Weizmann Institute of Science

Outline

Introduction

ression

Beyond square loss

Classification

- Thang, Chiyuan et al. "Understanding deep learning requires rethinking generalization." ArXiv abs/1611.03530 (2016): n. pag.
- Thang, Chiyuan, et al. "Understanding deep learning (still) requires rethinking generalization." Communications of the ACM 64.3 (2021): 107-115.
- Deep architectures are able to (and often do) memorize whole datasets...
- ...but traditional generalization bounds fail to explain their performance.
- ► Sparked research: tighter generalization bounds, interpolating regime, double descent, benign overfitting, implicit versus explicit regularization

Mallinar, Neil, et al. "Benign, tempered, or catastrophic: A taxonomy of overfitting." arXiv preprint arXiv:2207.06569 (2022).

Notation and setting

- $ightharpoonup \{\mathcal{D}_d\}_{d=k+1}^{\infty}$ sequence of distributions on $\mathbb{R}^d \times Y$
 - $Y=\mathbb{R}$ for regression and $Y=\{-1,1\}$ for classification
- ▶ If $(\mathbf{x}, y) \sim \mathcal{D}_d$, then
 - $-\mathbf{x}_{|k} \in \mathbb{R}^k$ follows a (fixed) arbitrary distribution
 - $-\mathbf{x}_{|d-k} \in \mathbb{R}^{d-k}$ follows a (changing) high-dimensional distribution; "junk features"
- lacktriangle sample sizes $\{m_d\}_{d=k+1}^\infty$ and IID samples $\{(\mathbf{x}_i,y_i)\}_{i=1}^{m_d}$ from \mathcal{D}_d for each d
- $lackbox{}$ Consider linear predictors $\mathbf{w} \in \mathbb{R}^d$ evaluated as $\mathbf{x} \mapsto \mathbf{x}^T \mathbf{w}$ or $\mathbf{x} \mapsto \mathrm{sign}(\mathbf{x}^T \mathbf{w})$

Outline

Introduction

Regression

Beyond square loss

Classification

Min-norm interpolating predictors

- empirical loss $L_d(\mathbf{w}) \coloneqq \frac{1}{m_d} \sum_{i=1}^{m_d} \left(\mathbf{x}_i^T \mathbf{w} y_i \right)^2$
- $\blacktriangleright \ \, \mathsf{true} \; \mathsf{risk} \; R_d(\mathbf{w}) \coloneqq \mathbb{E}_{(\mathbf{x},y) \sim \mathcal{D}_d} \left[\left(\mathbf{x}^T \mathbf{w} y \right)^2 \right]$
- Under mild conditions, iterative training methods with interpolating output converge to the min-norm predictor

$$\hat{\mathbf{w}} \coloneqq \arg\min_{\mathbf{w} \in \mathbb{R}^d} \|\mathbf{w}\| \colon L_d(\mathbf{w}) = 0$$

Benign overfitting

A sequence of distributions $\{\mathcal{D}_d\}_{d=k+1}^\infty$ satisfies benign overfitting if there is a sequence of sample sizes $\{m_d\}_{d=k+1}^\infty$ such that

- $ightharpoonup \Pr\{L_d(\mathbf{w})=0\} o 1 ext{ as } d o \infty$,
- $ightharpoonup \inf_{\mathbf{w} \in \mathbb{R}^d} R_d(\mathbf{w}) > 0$, and
- ightharpoonup with the min-norm predictor $\hat{\mathbf{w}}_d$ we have

$$R_d(\hat{\mathbf{w}}_d) - \inf_{\mathbf{w} \in \mathbb{R}^d} R_d(\mathbf{w}) \xrightarrow{P} 0$$

The well-specified case

Bartlett, Peter L., et al. "Benign overfitting in linear regression." Proceedings of the National Academy of Sciences 117.48 (2020): 30063-30070.

Assume $\mathbb{E}[y \mid \mathbf{x}] = \mathbf{x}^T \mathbf{w}^*$ and let \mathbf{x} have zero mean. Let $\Sigma = \Sigma_k \oplus \Sigma_{d-k}$ be the covariance matrix split along eigenvectors. Then, benign overfitting necessarily implies that

$$m \cdot \frac{\|\Sigma_{d-k}\|_F^2}{\operatorname{Tr}^2(\Sigma_{d-k})} \to 0$$

Lemma

If \mathbf{z}, \mathbf{z}' are IID random vectors such that $\mathbb{E}[\mathbf{z}\mathbf{z}^T] = \Sigma$, then $\mathbb{E}[\mathbf{z}^T\mathbf{z}'] = \|\Sigma\|_F^2$. Consequently, if $m \cdot \|\Sigma\|_F^2 / \operatorname{Tr}^2(\Sigma) \to 0$, then also $m \cdot \frac{\mathbb{E}[(\mathbf{z}\mathbf{z}')^2]}{\mathbb{E}^2[\|\mathbf{z}\|^2]} \to 0$.

► Even in a well-specified setting we need high-dimensional distributions producing samples with almost orthogonal directions.

Deterministic perturbation bound

Let $\{(\mathbf{x}_i, y_i)_{i=1}^m$ be a deterministic sample of size m. Define the perturbation matrix

$$E_{ij} := \mathbf{x}_{i|d-k}^T \mathbf{x}_{j|d-k} \cdot \mathbf{1} \{ i \neq j \} \in \mathbb{R}^{m \times m}.$$

Assume that the $\{\mathbf{x}_i\}_{i=1}^m$ are linearly independent,

$$\frac{\|E\|}{\min_i \|\mathbf{x}_{i|d-k}\|^2} \leq \frac{1}{2}, \quad \text{and} \quad \frac{1}{2} \leq \frac{1}{2} \lambda_{\min} \left(\hat{\mathbb{E}} \left[\frac{\mathbf{x}_{|k} \mathbf{x}_{|k}^T}{\|\mathbf{x}_{|d-k}\|^2} \right] \right).$$

Then, the min-norm predictor $\hat{\mathbf{w}}$ exists and we have the following two bounds:

$$\begin{aligned} \left\| \hat{\mathbf{w}}_{|k} - \left(\hat{\mathbb{E}} \left[\frac{\mathbf{x}_{|k} \mathbf{x}_{|k}^{T}}{\|\mathbf{x}_{|d-k}\|^{2}} \right] \right)^{-1} \hat{\mathbb{E}} \left[\frac{y \mathbf{x}_{|k}}{\|\mathbf{x}_{|d-k}\|^{2}} \right] \right\| \\ \leq & \frac{2 \left\| \hat{\mathbb{E}} \left[\frac{y \mathbf{x}_{|k}}{\|\mathbf{x}_{|d-k}\|^{2}} \right] \right\|}{\lambda_{\min} \left(\hat{\mathbb{E}} \left[\frac{\mathbf{x}_{|k} \mathbf{x}_{|k}^{T}}{\|\mathbf{x}_{|d-k}\|^{2}} \right] \right)^{2}} \cdot \frac{1}{m} + \frac{2\sqrt{\hat{\mathbb{E}}[\|\mathbf{x}_{|k}\|^{2}] \cdot \hat{\mathbb{E}}[y^{2}]}}{\min_{i} \|\mathbf{x}_{i|d-k}\|^{4}} \cdot m \cdot \|E\|, \end{aligned}$$

and

$$\|\hat{\mathbf{w}}_{|d-k}\| \le \frac{\sqrt{\hat{\mathbb{E}}[\|\mathbf{x}_{|d-k}\|^2] \cdot \hat{\mathbb{E}}[y^2]}}{\min_{\|\mathbf{x}_{d,k}\|_{2}} \cdot \left(1 + \frac{2\|E\|}{\min_{\|\mathbf{x}_{d,k}\|_{2}} \cdot \mu\|^2}\right) \cdot m.$$

Moving to statistical setting

Make sure that the previous bounds are well-defined there. Let \mathbb{E}_d be shorthand for $\mathbb{E}_{(\mathbf{x},y)\sim\mathcal{D}_d}$. Assumptions:

- 1. The quantities $\mathbb{E}_d[\|\mathbf{x}\|^4]$, $\mathbb{E}_d[y^4]$, $\mathbb{E}_d[\|y\mathbf{x}_{|k}\|^2/\|\mathbf{x}_{|d-k}\|^4]$, and $\mathbb{E}_d[\|\mathbf{x}_{|k}\|^4/\|\mathbf{x}_{|d-k}\|^4]$ are all bounded in the supremum over d,
- 2. $\inf_d \lambda_{\min}(\mathbb{E}_d[\mathbf{x}_{|k}\mathbf{x}_{|k}^T/\|\mathbf{x}_{|d-k}\|^2]) > 0$,
- 3. If $\{\mathbf{x}_i,y_i\}_{i=1}^{m_d}$ are IID samples from \mathcal{D}_d , the family $\{\mathbf{x}_i\}_{i=1}^{m_d}$ is linear independent with probability approaching 1,
- 4. $\min_i ||\mathbf{x}_{i|d-k}|| > c > 0$ with c independent of d,
- 5. $m_d \cdot \|E\| \xrightarrow{P} 0$, and
- 6. $m_d^2 \cdot \|\mathbb{E}_d[\mathbf{x}_{|d-k}\mathbf{x}_{|d-k}^T]\| \to 0.$

Overfitting is generally not benign in regression

Instead of finding the true unique minimizer (benign overfitting)

$$\mathbf{w} = \mathbb{E}_d[\mathbf{x}\mathbf{x}^T]^{-1}\mathbb{E}_d[y\mathbf{x}], \quad \text{i.e.} \quad \mathbf{w}_{|k} = (\mathbb{E}_d[\mathbf{x}\mathbf{x}^T]^{-1})_{l.}\mathbb{E}_d[y\mathbf{x}]$$

we find asymptotic behavior of the form

$$\mathbb{E}_{d}\left[\left(\mathbf{x}^{T}\hat{\mathbf{w}}_{d}-\mathbf{x}_{|k}^{T}\hat{\mathbf{w}}_{d|k}\right)^{2}\right] \xrightarrow{P} 0, \quad \left\|\hat{\mathbf{w}}_{|k}-\underbrace{\left(\hat{\mathbb{E}}\left[\frac{\mathbf{x}_{|k}\mathbf{x}_{|k}^{T}}{\|\mathbf{x}_{|d-k}\|^{2}}\right]\right)^{-1}\hat{\mathbb{E}}\left[\frac{y\mathbf{x}_{|k}}{\|\mathbf{x}_{|d-k}\|^{2}}\right]}\right\| \xrightarrow{P} 0.$$

► Even in "textbook benign" settings, benign overfitting does not generally occur in misspecified case.

Outline

Introduction

ession

Beyond square loss

Classification

Trick

Let $\ell_y(\cdot)$ non-negative loss function with unique zero for any y at $\ell_y^{-1}(0)$. Observation:

$$\arg\min_{\mathbf{w}} \|\mathbf{w}\| \colon \frac{1}{m} \sum_{i=1}^{m} \ell_{y_i}(\mathbf{x}_i^T \mathbf{w}) = 0$$

equals

$$\arg\min_{\mathbf{w}} \|\mathbf{w}\| \colon \frac{1}{m} \sum_{i=1}^{m} \left(\mathbf{x}_{i}^{T} \mathbf{w} - \ell_{y_{i}}^{-1}(0) \right)^{2} = 0$$

Generalized linear model

Suppose $\sigma \colon \mathbb{R} \to \mathbb{R}$ is a function with Lipschitz inverse and $y = \sigma(\mathbf{x}_{|k}^T \mathbf{w}^*) + \xi$. Then,

$$\mathbb{E}_d\left[\left(\mathbf{x}^T\hat{\mathbf{w}}_d - \mathbf{x}_{|k}^T\hat{\mathbf{w}}_{d|k}\right)^2\right] \xrightarrow{P} 0, \quad \left\|\hat{\mathbf{w}}_{|k} - \left(\hat{\mathbb{E}}\left[\frac{\mathbf{x}_{|k}\mathbf{x}_{|k}^T}{\|\mathbf{x}_{|d-k}\|^2}\right]\right)^{-1} \hat{\mathbb{E}}\left[\frac{\sigma^{-1}(y)\mathbf{x}_{|k}}{\|\mathbf{x}_{|d-k}\|^2}\right]\right\| \xrightarrow{P} 0.$$

- ▶ Even in the well-specified case we cannot expect benign overfitting to occur.
- $$\begin{split} \textbf{Example:} & \|\mathbf{x}_{|d-k}\| = 1 \text{ a.s, } \sigma(0) = 0 \text{, } \mathbf{w}^* = 0 \text{, but } \mathbb{E}[\mathbf{x}_{|k}] \neq 0 \text{, then} \\ & \hat{\mathbf{w}}_{|d-k} \approx \left(\mathbb{E}[\mathbf{x}_{|k}\mathbf{x}_{|k}^T]\right)^{-1} \mathbb{E}[\mathbf{x}_{|k}] \cdot \mathbb{E}[\sigma^{-1}(\xi)] \text{, so necessarily } \mathbb{E}[\sigma^{-1}(\xi)] = 0 \text{ but } \dots \end{split}$$

Lemma

If $\sigma^{-1}(\cdot)$ is such that $\mathbb{E}[\sigma^{-1}(\xi)]=0$ for all zero-mean RVs ξ with support of size at most 2, then σ (and hence σ^{-1}) must be linear.

Convex losses

Assume $\ell_y(\mathbf{x}^T\mathbf{w}) = f(\mathbf{x}^T\mathbf{w} - y)$ for some non-negative f with unique root at 0 and L_d is defined in terms of this. Then for the min-norm predictor $\hat{\mathbf{w}}$,

$$\mathbb{E}_{d}\left[\left(\mathbf{x}^{T}\hat{\mathbf{w}}_{d}-\mathbf{x}_{|k}^{T}\hat{\mathbf{w}}_{d|k}\right)^{2}\right] \xrightarrow{P} 0, \quad \left\|\hat{\mathbf{w}}_{|k}-\underbrace{\left(\hat{\mathbb{E}}\left[\frac{\mathbf{x}_{|k}\mathbf{x}_{|k}^{T}}{\|\mathbf{x}_{|d-k}\|^{2}}\right]\right)^{-1}\hat{\mathbb{E}}\left[\frac{y\mathbf{x}_{|k}}{\|\mathbf{x}_{|d-k}\|^{2}}\right]\right)}_{=}\right\| \xrightarrow{P} 0.$$

- $ightharpoonup \hat{\mathbf{w}}_{|k}$ has same asymptotic characterization as before
- ightharpoonup we can't expect this to be optimal for the objective $\mathbb{E}[f(\mathbf{x}^T\mathbf{w}-y)]$

Implicit bias towards weighted square loss problem

We found asymptotically

$$\hat{\mathbf{w}}_{d|k} \approx \left(\hat{\mathbb{E}}\left[\frac{\mathbf{x}_{|k}\mathbf{x}_{|k}^T}{\|\mathbf{x}_{|d-k}\|^2}\right]\right)^{-1}\hat{\mathbb{E}}\left[\frac{y\mathbf{x}_{|k}}{\|\mathbf{x}_{|d-k}\|^2}\right]$$

Thus, the first k coordinates actually optimize the objective function

$$\mathbb{E}_{d}\left[\left(\frac{\mathbf{x}^{T}}{\|\mathbf{x}_{|d-k}\|}\mathbf{w} - \frac{y}{\|\mathbf{x}_{i|d-k}\|}\right)^{2}\right]$$

 $ightharpoonup \hat{w}$ is consistent w.r.t. the statistical problem that is using the empirical version of the above as loss.

Outline

Introduction

ression

Beyond square loss

Classification

Max-margin classifier

- ▶ Now consider RVs $(\mathbf{x}, y) \sim \mathbb{R}^d \times \{-1, 1\}$
- lacktriangle Same conventions for the sequence $\{\mathcal{D}_d\}_{d=k+1}^\infty$ of distributions as before
- Now, true risk $R_d = \Pr_{(\mathbf{x},y)} \{ y \mathbf{x}^T \mathbf{w} \leq 0 \}$
- Standard gradient methods run on standard convex classification loss (e.g. logistic or cross-entropy) converge in direction of the max-margin predictor

$$\hat{\mathbf{w}} \coloneqq \arg\min_{\mathbf{w} \in \mathbb{R}^d} \|\mathbf{w}\| \colon \min_i y_i \mathbf{x}_i^T \mathbf{w} \ge 1$$

Benign overfitting

A sequence of distributions $\{\mathcal{D}_d\}_{d=k+1}^\infty$ satisfies benign overfitting if there is a sequence of sample sizes $\{m_d\}_{d=k+1}^\infty$ such that

- $ightharpoonup \hat{\mathbf{w}}_d$ exists with probability approaching 1,
- $ightharpoonup \inf_{\mathbf{w} \in \mathbb{R}^d} R_d(\mathbf{w}) > 0$, and
- $R_d(\hat{\mathbf{w}}_d) \inf_{\mathbf{w} \in \mathbb{R}^d} R_d(\mathbf{w}) \xrightarrow{P} 0$

Deterministic perturbation bound

Let $\{(\mathbf{x}_i, y_i)_{i=1}^m$ be a deterministic sample of size m. Define the perturbation matrix

$$E_{ij} := y_i y_j \mathbf{x}_{i|d-k}^T \mathbf{x}_{j|d-k} \cdot \mathbf{1} \{ i \neq j \} \in \mathbb{R}^{m \times m}.$$

Assume that the max-margin predictor exists and suppose

$$\epsilon_0 \coloneqq \frac{2\|E\| \cdot \max_i \|\mathbf{x}_{i|d-k}\|^2}{\min_i \|\mathbf{x}_{i|d-k}\|^4} \le \frac{1}{2}.$$

Then,

$$\hat{\mathbf{w}}_{|k} = \arg\min_{\mathbf{v} \in \mathbb{R}^k} (1 + \epsilon_{\mathbf{v}}) \cdot \hat{\mathbb{E}} \left[\frac{[1 - y\mathbf{x}_{|k}^T \mathbf{v}]_+^2}{\|\mathbf{x}_{|d-k}\|^2} \right] + \frac{\|\mathbf{v}\|^2}{m} \quad \text{with } \sup_{\mathbf{v}} |\epsilon_{\mathbf{v}}| \le \epsilon_0,$$

and

$$\|\mathbf{w}_{|d-k}\|^2 \le \frac{5m}{\min_i \|\mathbf{x}_{i|d-k}\|^2}.$$

Moving to statistical setting

Assumptions:

- 1. $\sup_d \mathbb{E}_d \left[\frac{1 + \|y\mathbf{x}_k\|^4}{\|\mathbf{x}_{|d-k}\|^4} \right] < \infty$,
- 2. With probability approaching 1 (as $d \to \infty$), the max-margin predictor $\hat{\mathbf{w}}_d$ exists and $0 > c \ge \max_i \max\{\|\mathbf{x}_{i|d-k}\|^{-1}, \|\mathbf{x}_{i|d-k}\|\}$,
- 3. $m_d \cdot ||E|| \xrightarrow{P} 0$
- 4. $m_d \cdot \|\mathbb{E}_d[\mathbf{x}_{|d-k}\mathbf{x}_{|d-k}^T]\| \to 0$.

Setting

$$g_d(\mathbf{v}) \coloneqq \mathbb{E}_d \left[\frac{[1 - y\mathbf{x}_{|k}^T\mathbf{v}]_+^2}{\|\mathbf{x}_{|d-k}\|^2} \right], \quad \text{and} \quad \hat{g}_d(\mathbf{v}) \coloneqq \hat{\mathbb{E}}_d \left[\frac{[1 - y\mathbf{x}_{|k}^T\mathbf{v}]_+^2}{\|\mathbf{x}_{|d-k}\|^2} \right].$$

- 5. There exists c' > 0 independent of d such that with probability approaching 1, \hat{g}_d has a minimizer of norm at most c',
- 6. $\inf_{\mathbf{v}} \limsup_{d} (g_d(\mathbf{v}) \inf_{\mathbf{u}} g_d(\mathbf{u})) = 0.$

Asymptotic characterization of max-margin predictor

Under these assumptions, with

$$g_d(\mathbf{v}) \coloneqq \mathbb{E}_d \left[\frac{[1 - y\mathbf{x}_{|k}^T \mathbf{v}]_+^2}{\|\mathbf{x}_{|d-k}\|^2} \right], \quad \text{and} \quad \hat{\mathbf{w}}_d = \arg\min_{\mathbf{w}} \|\mathbf{w}\| \colon \min_i y_i \mathbf{x}_i^T \mathbf{w} \ge 1,$$

the max-margin predictor satisfies

$$g_d(\hat{\mathbf{w}}_{d|k}) - \inf_{\mathbf{v}} g_d(\mathbf{v}) \xrightarrow{P} 0, \quad \text{and} \quad \mathbb{E}_d \left[(\mathbf{x}^T \hat{\mathbf{w}}_d - \mathbf{x}_{|k}^T \hat{\mathbf{w}}_{d|k})^2 \right] \xrightarrow{P} 0.$$

- ► The junk features are asymptotically negligible, and the relevant ones actually minimize a scaled squared hinge loss.
- \blacktriangleright Whether minimizers of g_d also have small misclassification error is equivalent to asking whether this weighted squared hinge loss is a good surrogate.

Study setting

The characterization makes the following assumptions look mild:

- 1. The joint distribution of $(\mathbf{x}_{|k}, ||\mathbf{x}_{|d-k}||, y)$ is the same under any d,
- 2. $\mathbb{E}[\mathbf{x}_{|k}\mathbf{x}_{|k}^T]$ is positive definite
- 3. $\Pr\{\|\mathbf{x}_{|d-k}\| \in I\} = 1 \text{ for a closed interval } I \subset (0, \infty).$

Let $(\mathbf{x}_{|k},y)$ be distributed according to a linearly separable distribution $\mathcal{D}_{\mathsf{clean}}$ but implement label flips via the loss function:

$$L_p(\mathbf{w}) \coloneqq \mathbb{E}_{(\mathbf{x}_{|k}, z, y) \sim \mathcal{D}_{\text{clean}}}[z \cdot \ell_p(y\mathbf{x}_{|k}^T\mathbf{w})], \quad \text{where} \quad \ell_p(\beta) \coloneqq (1-p) \cdot [1-\beta]_+^2 + p \cdot [1+\beta]_+^{-1}$$

- ▶ for $p \in (0, \frac{1}{2})$, L_p is strongly convex \implies unique minimizer \mathbf{w}_p^*
- ▶ benign overfitting happens if $\Pr_{(\mathbf{x}_{1k},y) \sim \mathcal{D}_{\text{clean}}} \{ y \mathbf{x}_{1k}^T \mathbf{w}_p^* \leq 0 \} = 0$

Classification setting favorable for benign overfitting

Two cases in which we have benign overfitting

Theorem

 $(\mathbf{x}_{|k},z,y)\sim\mathcal{D}_{\text{clean}}$ any distribution so that $(\mathbf{x}_{|k},y)$ linearly separable and $\mathbf{x}_{|k}$ has bounded support. Then, there is $a\in(0,\frac{1}{2}$ dependent on $\mathcal{D}_{\text{clean}}$ such that for all $p\in(0,a)$ we have

$$\Pr_{(\mathbf{x}_{|k},y) \sim \mathcal{D}_{\text{clean}}} \{y \mathbf{x}_{|k}^T \mathbf{w}_p^* \leq 0\} = 0.$$

Theorem

 $(\mathbf{x}_{|k}, z, y) \sim \mathcal{D}_{\text{clean}}$ any distribution so that $(\mathbf{x}_{|k}, y)$ linearly separable. Suppose that for some unit vector \mathbf{u} and conditioned on any value of y,

- $ightharpoonup \mathbf{u}^T \mathbf{x}$ and $(I \mathbf{u}\mathbf{u}^T)\mathbf{x}$ are mutually independent, and
- \blacktriangleright the distributions of $(I \mathbf{u}\mathbf{u}^T)\mathbf{x}$ and $-(I \mathbf{u}\mathbf{u}^T)\mathbf{x}$ are identical.

Then, for all $p \in (0, \frac{1}{2})$ we have

$$\Pr_{(\mathbf{x}_{|k},y) \sim \mathcal{D}_{\text{clean}}} \{y \mathbf{x}_{|k}^T \mathbf{w}_p^* \leq 0\} = 0.$$