Para el ejercicio 2.1 se pide:

- a- Definir las variables del problema (directo y dual).
- Expresar la solución en términos de un programa de producción, indicando el porcentaje de utilización de recursos.
- c- Determinar los valores marginales y los costos de oportunidad. Efectuar los cálculos tanto sobre la tabla óptima como sobre la resolución del LINDO.
- d- Calcular usando la tabla el rango de va riación de los coeficientes del funcional y de los valores de las restricciones, conservando la estructura óptima de la solución.
- e- ¿Cuánto habría que aumentar el precio de los pulóveres "A" para que su fabricación sea conveniente?

Las siguientes son las tablas primera y óptima del problema 2.1 resuelto:

			10	15	15	18						-M
C_K	X_{K}	$\mathbf{B}_{\mathbf{K}}$	A_1	A ₂	A_3	A_4	A ₅	A_6	A ₇	A_8	A ₉	μ
	X5	80	5	6	0	0	1	0	0	0	0	0
	X_6	80	0	0	4	4	0	1	0	0	0	0
	X_7	20	1,6	0	0	1,2	0	0	1	0	0	0
	X_8	36	0	1,8	1,8	0	0	0	0	1	0	0
-M	μ	10	0	1	1	0	0	0	0	0	-1	1
Z = 0		-10	-M-15	-M -15	-18	0	0	0	0	M	0	

			10	1.5	15	10						
C_K	X_{K}	$\mathbf{B}_{\mathbf{K}}$	A_1	A ₂	A ₃	A_4	A ₅	A ₆	A ₇	A_8	A ₉	
15	X_2	40/3	5/6	1	0	0	1/6	0	0	0	0	Y ₇
15	X_3	10/3	-4/3	0	1	0	0	1/4	-5/6	0	0	Y_8
18	X_4	50/3	4/3	0	0	1	0	0	5/6	0	0	Y9
	X_8	6	9/10	0	0	0	-3/10	-9/20	3/2	1	0	Y ₄
	X9	20/3	-1/2	0	0	0	1/6	1/4	-5/6	0	1	Y ₅
Z = 550			13/2	0	0	0	5/2	15/4	5/2	0	0	

Hs maq. 1) 5 X1 + 6 X2 <= 80

Hs maq. 2) 4 X3 + 4 X4 <= 80

Lana mejorada) 1,6 X1 + 1,2 X4 <= 20

Lana normal) 1,8 X2 + 1,8 X3 <= 36

Demanda mínima) X2 + X3 >= 10

Z = 10 X1 + 15 X2 + 15 X3 + 18 X4

X1: cantidad de pulóveres A

X2: cantidad de pulóveres B en maquina 1

X3: cantidad de pulóveres B en maquina 2

X4: cantidad de pulóveres C

X5: sobrante de hs en maquina 1

X6: sobrante de hs en maquina 2

X7: sobrante de lana mejorada

X8: sobrante de lana normal

X9: cuantos pulóveres B se hicieron por encima de la demanda mínima

Y6: costo de oportunidad de pulóveres A

Y7: costo de oportunidad de pulóveres B en maquina 1

Y8: costo de oportunidad de pulóveres B en maquina 2

Y9: costo de oportunidad de pulóveres C

Y1: VM de las horas maquina 1

Y2: VM de las horas maquina 2

Y3: VM de la lana mejorada

Y4: VM de la lana normal

Y5: VM de la demanda /costo de oportunidad encubierto

b)

• Se producen por semana:

Pulóveres A: 0

Pulóveres B en maquina 1: 40/3

Pulóveres B en maquina 2: 10/3

Pulóveres C: 50/3

• Porcentaje de utilización de recursos:

Horas de máquina 1: 100%

Horas de máquina 2: 100%

Lana mejorada: 100%

(no están en la base, el sobrante es 0)

Lana normal: 86% (sobran 6)

La demanda mínima de B se supera por un 66% (X9)

c- Determinar los valores marginales y los costos de oportunidad. Efectuar los cálculos tanto sobre la tabla óptima como sobre la resolución del LINDO.

Costo de oportunidad para pulóveres A: 13/2.

Valor marginal para horas máquina 1: 5/2

Valor marginal para horas máquina 2: 15/4

Valor marginal para lana mejorada: 5/2

- d- Calcular usando la tabla el rango de variación de los coeficientes del funcional y de los valores de las restricciones, conservando la estructura óptima de la solución.
 - Coeficiente C1:

• Coeficiente C2:

$$C2 * 5/6 + 15 * (-4/3) + 18 * 4/3 - 10 >= 0 -> C2 >= 7,2$$

 $C2 * 1/6 >= 0 -> C2 >= 0$
 $C2 >= 7,2$

• Coeficiente C3:

$$15 * 5/6 + C3 * (-4/3) + 18 * 4/3 - 10 >= 0 -> C3 <= 19,875$$

$$C3 * \frac{1}{4} >= 0 -> C3 >= 0$$

$$C3 * (-5/6) + 18 * \frac{5}{6} >= 0 -> C3 <= 18$$

$$0 <= C3 <= 18$$

• Coeficiente C4:

Dual (es de mínimo):

			80	80	20	36	-10				
Ck	Xk	Bk	A1	A2	А3	A4	A5	A6	A7	A8	A9
80	Y1	5/2	1	0	0	3/10	-1/6	0	-1/6	0	0
80	Y2	15/4	0	1	0	9/20	-1/4	0	0	-1/4	0
20	Y3	5/2	0	0	1	-3/2	5/6	0	0	5/6	-5/6
0	Y6	13/2	0	0	0	-9/10	1/2	1	-5/6	4/3	-4/3
	Z = 550		0	0	0	-6	-20/3	0	-80/6	-10/3	-50/3

Como es de mínimo-> Zj-Cj <= 0.

• Coeficiente b1) (40 -> b1)

• Coeficiente b2) (40 -> b2)

80 *
$$3/10 + b2*9/20 + 20*(-3/2) - 36 \le 0 -> b2 \le 280/3$$

80 * $-1/6 + b2*-1/4 + 20*5/6 - 10 \le 0 -> b2 >= 160/3$
 $-1/4 * b2 + 20*5/6 \le 0 -> b2 >= 200/3$
200/3 <= b2 <= 280/3

• Coeficiente b3) (20 -> b3)

$$80 * 3/10 + 80*9/20 + b3*(-3/2) - 36 <= 0 -> b3 >= 16$$

$$80 * -1/6 + 80*-1/4 + b3*5/6 - 10 <= 0 -> b3 <= 28$$

$$-1/4 * 80 + b3*5/6 <= 0 -> b3 <= 24$$

$$-5/6 * b3 <= 0 -> b3 >= 0$$

16 <= b3 <= 24

• Coeficiente b4) (36 -> b4)

• Coeficiente b5) (-10 -> b5)

e- ¿Cuánto habría que aumentar el precio de los pulóveres "A" para que su fabricación sea conveniente?

Debe ser mayor o igual a 16,5.