Pervasive Sensors and Actuators

COMP5047 - Lecture 06

Anusha Withana

The School of Computer Science The University of Sydney

How we chose different components?

Things to consider

- Application needs
 - What kind of functionality needed? Cost?
- Functional Specification
 - E.g. what to measure?, sensitivity?, bandwidth? Etc.
- Electrical Specification
 - E.g. operating voltage/current, power needs, etc.
- Communication Specification
 - What kind of communication exist, wired/wireless OR what type SPI, I2C, ADC, Bluetooth, etc.
- Safety/Risk
 - · What can go wrong?

INFO3315 - HCI

What sensors are needed?

co2 sensor

- Then go into details
 - Must read the data sheet

• Some data will be available up-front Specification

Resources	Parameter		
CO2 Measurement range	400 ~ 2000 ppm		
CO2 Sampling accuracy	±(50 ppm + 5% of reading)		
Temperature range	-10 - 60 °C		
Humidity range	0 - 95 %RH		
Communication protocol	I2C: 0x62		
Net weight	7.54g		
Gross weight	13.13g		
Product dimensions	48mm x 24mm x 16mm		
Package size	134mm x 61mm x 16.3mm		
Housing material	Plastic (PC)		

https://shop.m5stack.com/products/co2-unit-with-temperature-and-humidity-sensor-scd40

Some data will be available up-front

CO2 Unit	SCL	SDA	5V	GND
M5Core(PORT A)	GPIO22	GPIO21	5V	GND
M5Core2(PORT A)	GPIO22	GPIO21	5V	GND
M5Atom(PORT A)	GPIO32	GPIO26	5V	GND
M5StickC/Plus(PORT A)	GPIO33	GPIO32	5V	GND
M5Station(PORT A1,A2)	GPIO33	GPIO32	5V	GND

But go further to the data sheet

But go further to the data sheet

SENSIRION

SCD4x

Breaking the size barrier in CO₂ sensing

Features

- Photoacoustic NDIR sensor technology PASens®
- Smallest form factor: 10.1 x 10.1 x 6.5 mm³
- Reflow solderable for cost effective assembly
- Large output range: 0 ppm 40'000 ppm
- Large supply voltage range: 2.4 5.5 V

- High accuracy: ±(40 ppm + 5 %)
- Digital I²C interface
- Integrated temperature and humidity sensor
- Low power operation down to < 0.4 mA avg.
 Ø 5 V, 1 meas. / 5 minutes

Lets Look at the Datasheet!

https://sensirion.com/media/documents/C4B87CE6/627C2DCD/CD_DS_SCD40_SCD41_Datasheet_D1.pdf

Think Holistic

- Figure out what microcontroller you use
- Make sure your device/network choices match that
 - Or vice versa
- Find out other needs
 - Power (battery), other components needed

Interfacing with Peripherals

- Find out the method of interfacing
 - ADC, I2C, SPI, PWM, Bluetooth, etc.
- Design connectivity
 - Figure out how to connect / topology / electrical
- Configure the device
 - Some devices support configuration

How can we connect them?

Force-Sensitive Resistor (FSR)

Flex sensor

Accelerometer - ADXL335

Photo cell (CdS photoresistor)

- Some makes a voltage output
 - can directly connect to ADC

Small, Low Power, 3-Axis ± 3 gAccelerometer

ADXL335

FEATURES

3-axis sensing
Small, low profile package
4 mm × 4 mm × 1.45 mm LFCSP
Low power: 350 μA (typical)
Single-supply operation: 1.8 V to 3.6 V
10,000 g shock survival
Excellent temperature stability
BW adjustment with a single capacitor per axis
RoHS/WEEE lead-free compliant

APPLICATIONS

Cost sensitive, low power, motion- and tilt-sensing applications
Mobile devices
Gaming systems
Disk drive protection
Image stabilization
Sports and health devices

GENERAL DESCRIPTION

The ADXL335 is a small, thin, low power, complete 3-axis accelerometer with signal conditioned voltage outputs. The product measures acceleration with a minimum full-scale range of $\pm 3~g$. It can measure the static acceleration of gravity in tilt-sensing applications, as well as dynamic acceleration resulting from motion, shock, or vibration.

The user selects the bandwidth of the accelerometer using the C_X , C_Y , and C_Z capacitors at the X_{OUT} , Y_{OUT} , and Z_{OUT} pins. Bandwidths can be selected to suit the application, with a range of 0.5 Hz to 1600 Hz for the X and Y axes, and a range of 0.5 Hz to 550 Hz for the Z axis.

The ADXL335 is available in a small, low profile, 4 mm \times 4 mm \times 1.45 mm, 16-lead, plastic lead frame chip scale package (LFCSP_LQ).

Accelerometer - ADXL335

https://core-electronics.com.au/

- Some makes a change in electrical characteristics
 - Resistance, current or capacitance change
 - Resistance: You need to use a voltage divider (Ohm's law)

Force-Sensitive Resistor (FSR)

Ohm's law

$$V = IR$$

R = 3kOhm

V = 3.3V

13

$$I = V/R$$

= 3.3 / 3000

= 0.0011 A

= 1.1 mA

https://www.electronics-tutorials.ws/resistor/res_3.html

Lets goto the Datasheet

Force-Sensitive Resistor (FSR)

- Homework
 - See how photodiode works

Digital Interfaces (I2C, SPI, etc.)

- Consider requirements
 - There are maximum supported clock rates (not same as sampling rate)
 - Maximum devices / length that can be connected
- Electrical requirements
 - E.g. Pull Ups in I2C

ResearchGate

Digital Interfaces / Configuration

- I2C
 - MCP9808 temperature sensor data sheet
 - Lot of configuration
 - But you can find libraries

Wireless Networks

- Many things to configure
 - Power settings
 - E.g. BLE
 - Connection settings
 - BLE connection settings / WiFi IP settings etc.
 - Managing disconnections

Summary

- Understand different types of peripherals
- Learn how to read and interpret datasheets
- Making appropriate design choices and configurations

Next Week Prep

- Install Node-RED locally
 - https://nodered.org/docs/getting-started/local
- Run a sample sketch
- Figure out how to import and export your sketches (formatted)