Лабораторная работа №3.6.1 Б

Спектральный анализ электрических сигналов

Маслов Артём Симанкович Александр Б01-104

13.10.2022

Аннотация

В работе приводится эмпирическая теория спектрального анализа сигналов. Исследуются спектры периодической последовательности прямоугольных импульсов, синусоидальных цугов и спектр амплитудно-модулированного сигнала.

Введение

Поведение физической системы можно описать, рассматривая её реакцию (отклик) на входное воздействие (сигнал). Для анализа линейных систем и периодических сигналов применяется спектральный анализ. Этот метод основан на теореме Фурье, согласно которой, любую периодическую функцию можно представить в виде в суммы гармонических функций, называемых гармониками. Часто исследовать отклик системы на гармоническое воздействие проще, чем определить её реакцию на произвольный сигнал.

В данной работе сигналы создаются генератором и исследуются цифровым осциллографом. С помощью встроенной в осциллограф функции быстрого преобразования Фурье анализируется спектр сигнала.

Теоретическое введение

Прямое и обратное преобразование Фурье

Рассмотрим физическую систему, на вход которой подаётся меняющийся со временем сигнал f(t). Поставим задачу определить реакцию g(t) этой системы на входное воздействие, называемую omknukom:

$$f(t) \to \widehat{\Lambda} \to g(t).$$

Для удобства дальнейшего изложения введём оператор $\hat{\Lambda}$, который преобразует входной сигнал f(t) в выходной g(t):

$$g = \hat{\Lambda}(f)$$

В общем случае нахождение отклика системы для произвольного сигнала затруднительно. Если система является линейной, то для любых входных сигналов $f_1(t)$ и $f_2(t)$ и любых чисел $\lambda_1, \lambda_2 \in \mathbb{R}$ выполнено:

$$\hat{\Lambda}(\lambda_1 \cdot f_1 + \lambda_2 \cdot f_2) = \lambda_1 \cdot \hat{\Lambda}(f_1) + \lambda_2 \cdot \hat{\Lambda}(f_2)$$

Таким образом, решение поставленной задачи упрощается. Достаточно разложить входной сигнал в линейную комбинацию более простых составляющих, и исследовать отклик системы на каждой из них.

Пусть входной сигнал является периодическим с периодом T. Тогда согласно теоремы Фурье его можно представить в виде суперпозиции синусоид с периодами $T_0, 2T_0, 3T_0, \ldots$ или частотами $\omega_n = n\omega_0$. В комплексной форме ряд записывается в виде:

$$f(t) = \sum_{n=0}^{\infty} a_n \cos(\omega_n t + \varphi_n)$$

Данное представление f(t) называется pядом Фурье, отдельные слагаемые $a_n \cos(\omega_n t + \varphi_n)$ называются гармониками, а совокупность гармоник — cneкmpom.

Удобно записать ряд Фурье в комплексной форме:

$$f(t) = \sum_{n = -\infty}^{\infty} c_n e^{iw_n t}$$

При этом вводятся формальные отрицательные частоты. Докажем эквивалентность записи ряда Фурье в комплексной и вещественной формах, для этого найдём связь между a_n и c_n . Воспользуемся формулой Эйлера:

$$e^{i(w_n t + \varphi_n)} = \cos(w_n t + \varphi_n) + i\sin(w_n t + \varphi_n) = e^{i\varphi_n} e^{iw_n t}$$

$$a_n \cos(w_n t + \varphi_n) = \frac{a_n}{2} e^{i\varphi_n} e^{iw_n t} + \frac{a_n}{2} e^{-i\varphi_n} e^{-iw_n t}$$

Чтобы представление в вещественной и комплексной форме совпадали, необходимо и достаточно, чтобы:

$$\begin{cases} c_n = \frac{a_n}{2} e^{i\varphi_n} \\ c_{-n} = \frac{a_n}{2} e^{-i\varphi_n} = \overline{c_n} \end{cases}$$

Оборудование

- 1. Цифровой генератор сигналов АКИП-3409/4.
- 2. Цифровой осциллограф SIGLENT АКИП 4131/1.

Экспериментальные результаты

Спектр периодической последовательности прямоугольных импульсов

Теоретическое описание спектра периодической последовательности прямоугольных импульсов приведено на рисунке 1.

Рис. 1: Периодическая последовательность импульсов и её спектр.

Настраиваем генератор на прямоугольные импульсы с частотой повторения $\nu_T=1$ к Γ ц (период T=1 мс) и длительностью импульса $\tau=\frac{T}{20}=50$ мкс. Снимки экрана электронного осциллографа приведены на рисунках 2 и 3. На первом снимке видно, что половина ширины спектра составляет $\Delta\nu=20$ к Γ ц, что совпадает с рассчитанной выше.

Из соотношения неопределенности $\Delta \nu \cdot \tau = 1 \Rightarrow \Delta \nu = 20$ к Γ ц, где $\Delta \nu$ – половина ширины главного спектра.

На снимках 2 приведены спектры для различных частот ν_T . Видно, что ширина спектра для них практически не меняется, тогда как меняется расстояние между соседними компонентами спектра.

Рис. 2: Изменения спектра при увеличении ν

На снимках 3 спектры при различных τ . Изменение τ влияет только на ширину спектра.

Рис. 3: Изменения спектра при увеличении au

Измерим высоты гармоник спектра при $\nu_T = 1$ к Γ ц, $\tau = 100$ мкс. Теоретические значения высот вычисляются по формуле (??). Снимок спектра приведен на рисунке 5, график измеренных значений и огибающая приведены на рисунке 4. Нормировка a_n проведена по высоте пика спектра.

Рис. 4: Спектр и огибающая

зависимость ширины спектра $\Delta \nu(\tau)$ при постоянной $\nu_T=1$ к Γ ц.

Проверим выполнимость соотношения неопределенностей $\Delta \nu \cdot \tau = 1$. Для этого измерим

$\Delta \nu$, к Γ ц	τ , MC	$\frac{1}{\tau}$, $1/\text{mc}$
5.2	200	0.0050
5.8	180	0.0056
6.2	160	0.0063
7.2	140	0.0071
8.2	120	0.0083
10.2	100	0.0100
12.8	80	0.0125
17.2	60	0.0167
25.2	40	0.0250
50.0	20	0.0500

Рис. 6: График зависимости $\Delta \nu(\frac{1}{\tau})$

\overline{x}	σ_x^2	\overline{y}	σ_y^2	r_{xy}	a	Δa	b	Δb
1.46e-02	1.73e-04	$1.48\mathrm{e}{+01}$	1.73e + 02	1.73e-01	998.99	4.92	0.17	0.10

Таблица 1: Обработка МНК

Погрешность эксперимента коррелирует с погрешностью коэффициента наклона. Следовательно, рассчитаем количественный критерий точности:

$$C \approx \frac{\Delta a}{a} \approx 0.5\%$$

Спектр периодической последовательности синусоидальных цугов

Теоретическое описание спектра периодической последовательности цугов приведено на рисунке 7.

Рис. 7: Периодическая последовательность импульсов и её спектр.

На вход осциллографа подаем последовательность цугов. Период повторения T=1 мс $(\nu_T=1~\mathrm{k}\Gamma\mathrm{ц}),$ число периодов в одном импульсе N=5 (длительность импульса $\tau=N/\nu_0=100$ мкс). Несущие частоты возьмем $\nu_0=\{50,70,90\}$ к $\Gamma\mathrm{ц}.$ Снимки приведены на рисунке 8.

Рис. 8: Изменение спектра при увеличении несущей частоты

На снимках видно, что при увеличении несущей частоты спектр сдвигается, при этом центр спектра находится в ν_0 , это характерное отличие последовательности синусоидальных цугов от прямоугольных импульсов. На изменения T, τ спектр реагирует аналогично 2, 3.

Проверим выполнимость соотношения неопределенностей для T: $\delta \nu \cdot T = 1$. Для этого измерим зависимость $\delta \nu(T)$.

δu , к Γ ц	T, MC	$\frac{1}{T}$, $1/\text{mc}$
1.0	1.00	1.0000
2.0	0.50	2.0000
3.0	0.33	3.0303
4.0	0.25	4.0000
0.5	2.00	0.5000
0.4	3.00	0.3333

Рис. 9: График зависимости $\Delta \nu(\frac{1}{\tau})$

\overline{x}	σ_x^2	\overline{y}	σ_y^2	r_{xy}	a	Δa	b	Δb
$1.81\mathrm{e}{+00}$	1.81e + 00	1.82e + 00	1.77e + 00	1.79e + 00	0.99	0.01	0.03	0.02

Таблица 2: Обработка МНК

Оценим погрешность как

$$C \approx \frac{\Delta a}{a} \approx 1.0\%.$$

Спектр гармонических сигналов, модулированных по амплитуде

Теоретическое описание гармонического сигнала, модулированного по амплитуде приведено на рисунке 10.

 $\begin{array}{c|c} & a_n & a_0 \\ & & \frac{ma_0}{2} \\ & & \omega_0 - \Omega & \omega_0 + \Omega \end{array}$

Рис. 10: Амплитудная модуляция и её спектр.

Настраиваем генератор на частоту несущей $\nu_0=50$ к Γ ц, частоту модуляции $\nu_{\text{мод}}=4$ к Γ ц и глубину модуляции m=0.5. Частоты модуляции возьмем $\nu_{\text{мод}}=\{4,8,12\}$ к Γ ц. Фотографии экрана электронного осциллографа приведены на рисунке 11.

Рис. 11: Изменения спектра при увеличении $\nu_{\text{мод}}$

Меняя на генераторе глубину модуляции m в диапазоне от 10% до 100%, измерим отношение $\frac{a_{60\mathrm{K}}}{a_{\mathrm{och}}}$ амплитуд боковой и основной спектральных линий. Строим график зависимости $\frac{a_{60\mathrm{K}}}{a_{\mathrm{och}}}(m)$ (см. рис. 12).

m, %	$a_{\rm och}$, мВ	$a_{\rm бок}$, мВ	$\frac{a_{\mathrm{бok}}}{a_{\mathrm{och}}}$
10	688.0	28.0	0.0407
20	674.0	52.0	0.0772
30	664.0	76.0	0.1145
40	648.0	96.0	0.1481
50	632.0	124.0	0.1962
60	608.0	140.0	0.2303
70	592.0	164.0	0.2770
80	576.0	180.0	0.3125
90	552.0	196.0	0.3551
100	536.0	220.0	0.4104

Рис. 12: График зависимости $\frac{a_{\rm for}}{a_{\rm och}}(m)$

$\overline{\overline{x}}$	σ_x^2	\overline{y}	σ_y^2	r_{xy}	$a \cdot 10^3$	$\Delta a \cdot 10^3$	b	Δb
$5.50 \mathrm{e}{+01}$	$8.25 e{+02}$	2.16e-01	1.36e-02	$3.34\mathrm{e}{+00}$	4.05	0.07	-6.61e-03	4.33e-03

Таблица 3: Обработка МНК

Погрешность эксперимента коррелирует с погрешностью коэффициента наклона. Следовательно, рассчитаем количественный критерий точности:

$$\mathcal{C} \approx \frac{\Delta a}{a} \approx 3\%$$

Заключение и выводы

Данная работа демонстрирует точность модели спектрального анализа, описывающей структуру различных сигналов. С помощью спектрального анализа можно вычислить реакцию линейной стационарной системы на произвольный периодический сигнал как сумму реакций на его гармонические составляющие, что сильно упрощает расчеты.