

Imfusion LiteTracker Leveraging Temporal Causality for Accurate Low-latency Tissue Tracking

Mert Asım Karaoğlu, Wenbo Ji, Ahmed Abbas, Nassir Navab, Benjamin Busam, and Alexander Ladikos

Motivation

Accurate tissue tracking is crucial for surgical navigation and XR applications, yet remains difficult due to non-rigid deformations, occlusions, and abrupt camera motions.

While existing approaches that formulate the task as long-term point tracking achieve high accuracy, their high latency hinders real-time use.

LiteTracker builds on the prior art and bridges this gap by introducing a set of training-free runtime optimizations that enable efficient and accurate frame-by-frame tissue tracking.

Overview

ong Key Laboratory of then University Medical

henzhen Maternity and

School of Biomedical

partment of Biomedical

Cleveland, OH, USA.

ENTAL SETUP

SA-Med2D-20M

OASBUD.

ive publicly available

sets—DDTI, TN3K,

arity Coefficient (DSC).

X 3070 (8GB VRAM)

cessfully adds reliable

ntion while maintaining

ble to the MedSAM

DSCAVg). SO-KAN

non-essential tokens,

eed of 0.03s/sample,

outperforms other methods, making it

W (initial LR 0.0001)

ENTAL RESULTS

AM (LiteMedSAM)

LiteTracker tracks a set of query points by estimating their motion (P_t) , visibility (C_t) , and confidence score (V_t) .

It uses a lightweight CNN to extract point descriptors and employs a temporal memory buffer that caches point-to-template correlation features to efficiently retain causal information.

For context fusion, it leverages consecutive temporal and spatial attention blocks, employing per-point causal attention masks to enable dynamic removal or addition of query points at runtime.

Each frame's motion prediction is warm-started with an exponential moving average (EMA) flow for fast convergence.

Built on the CoTracker31 architecture, LiteTracker remains fully compatible with its pre-trained weights.

Experiments

Evaluated on STIR Challenge 2024 and SuPer datasets, LiteTracker shows state-of-the-art tracking and occlusion prediction accuracy.

\$ TITT

It achieves 29.7 ms per frame latency, tracking 1,024 points on a single RTX 3090; 7x faster than its predecessor, and 2x faster than its closest competitor.

Qualitative results confirm robustness under occlusions, tool interactions, and perspective changes.

Model	Input	STIR	SuPer		
A-MFST* MFTIQ (ROMA)* Online BootsTAPIR MFTIQ (SEA-RAFT)* MFT* CoTracker3 Online Track-On (48) Track-On (12) LiteTracker (Ours)	Frame Frame Frame Frame Win. Frame Frame	δ ^{avg} ↑ 58.59 77.22 68.59 76.82 77.62 75.24 74.44 72.74	AJ ↑ 66.61 74.27 69.14 67.02 80.82 70.22 72.97	OA ↑ 83.73 93.63 83.73 83.73 96.96 83.92 86.86	Latency (ms) ↓ 4355.11 466.38 327.93 317.05 200.98 74.80 60.18
	Frame	75.81	80.68	97.45	29.67

Conclusion

LiteTracker is a low-latency and accurate tissue tracking method for

It combines efficiency and robustness, achieving substantial speedups while preserving accuracy.

Its design enables seamless integration into real-time surgical

¹⁻ Karaev, Nikita, Iurii Makarov, Jianyuan Wang, Natalia Neverova, Andrea Vedaldi, and Christian Rupprecht. "Cotracker3: Simpler and better point tracking by pseudo-labelling real videos." arXiv preprint