

## MA2201/TMA4150

Vår 2018

Norges teknisk—naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag — Øving 11

Med forbehold om feil. Gi gjerne beskjed til mads.sandoy alfakrøll ntnu.no hvis en finner noen.

## Kapittel 34

3 Se svaret i teksten, side 491 og utover.

[7] La  $x \in H \cap N$  og la  $h \in H$ . Siden  $x \in H$  og H er en undergruppe, vet vi at  $hxh^{-1} \in H$ . Siden  $x \in N$  og N er normal i G, vet vi at  $hxh^{-1} \in N$ . Følgelig er  $hxh^{-1} \in H \cap N$ , slik at  $H \cap N$  er normal i H.

Ved Lemma 34.4, siden K og L er normale i G, vet vi at  $K \vee L = KL$ , slik at G = KL = LK. Ved Teorem 34.5, får vi at  $G/L = LK/K \cong L/(L \cap K) = L/\{e\} \cong L$ . Her følger den første isomorfien fra det andre isomorfiteoremet, mens den andre er enten fra konstruksjonen av faktorgrupper. (Alternativt kan man se sistnevnte fra det første isomorfiteoremet brukt på identitshomomorfien  $1: G \to G$ , som er altså surjektiv og injektiv, slik at kjernen er e.)

## Kapittel 36

12 Vi antar at G er en gruppe slik at |G| deles av to forskjellige primtall p og q.

Anta at H er den eneste Sylow p-undergruppen av G. Siden q deler |G|, men ikke |H|, må  $G \neq H$ , så H er en ekte undergruppe. Siden p deler |G|, er H i følge første Sylowteorem heller ikke den trivielle undergruppen.

Siden H er den eneste undergruppen av sin orden (fordi H er den eneste Sylow p-undergruppen), så er i følge oppgave 14.34 (gitt på øving 6) H en normal undergruppe.

G inneholder dermed en ekte, ikke-triviell normal undergruppe, og er ikke simpel.

13  $|G| = 45 = 3^2 \cdot 5$ 

Siden denne oppgaven kommer rett etter oppgave 12, og ordenen til G oppfyller kravene i den oppgaven, mistenker vi at vi kan bruke resultatet derifra. Vi ser i

tillegg at en Sylow 3-undergruppe av G vil ha orden 9, som er det oppgaven spør etter!

Fra tredje Sylowteorem vet vi at dersom n er antall Sylow 3-undergrupper, så vil  $n \mid |G|$  og  $n \equiv 1 \mod p$ . Så for å finne antall Sylow 3-undergrupper sjekker vi divisorene av |G|:

| Divisor av $ G $ | 1 | 3 | 5 | 9 | 15 | 45 |
|------------------|---|---|---|---|----|----|
| mod 3            | 1 | 0 | 2 | 0 | 0  | 0  |

Dermed kan det bare finnes én Sylow 3-undergruppe, det vil si kun en undergruppe av orden 9; så denne blir normal.

14 La  $|G| < \infty$ . Vi skal vise at  $|G| = p^n \Leftrightarrow G$  er en p-gruppe.

" $\Rightarrow$ " Anta at  $|G| = p^n$ , og la  $g \in G$ . Fra Lagranges teorem (10.10) vet vi at  $|g| \mid |G|$ . Dermed må |g| være en potens av p. Siden dette gjelder for alle  $g \in G$  er G en p-gruppe.

" $\Leftarrow$ " Anta at G er en p-gruppe, og anta at  $|G| \neq p^n$ , det vil si at det eksisterer et primtall  $q \neq p$  som deler |G|, for å komme fram til en selvmotsigelse. I følge teorem 36.3 må da G inneholde et element av orden q. q er åpenbart ikke en potensav p, så G kan ikke være en p-gruppe. Det følger at antagelsen må være gal, og  $|G| = p^n$ .

## Eksamensoppgaver

K2007 - 6 Vi vet at et produkt av to polynomer, henholdsvis av grad m og n, over en kropp<sup>1</sup> er et polynom av grad m + n. Ut ifra det ser vi at enhetene i  $\mathbb{Z}_5[x]$  er alle konstante polynomer unntatt 0.

Videre ser vi at  $\mathbb{Z}_5[x]$  er et integritetsområde (ingen nulldivisorer), men ikke en kropp (alle polynomer av grad større en null mangler inverser).

- V2007 4 a) La  $I \subseteq R$  være et ideal i en kommuttativ ring, og anta at  $a \in I$  er en enhet. Da har vi at  $1 = a^{-1}a \in a^{-1}I = I$ , og dermed har vi at for enhver  $r \in R$ , så er  $r = r1 \in rI = I$ , så R = I.
  - **b)** Kjernen til  $\phi$  er et ideal i K.

Dersom  $\ker \phi = \{0\}$  er  $\phi$  1-1, og vi er i mål.

Dersom  $\ker \phi \neq \{0\}$ , så finnes det et ikke-null element  $a \in \ker \phi$ . Da K er en kropp må a være en enhet. Dermed har vi fra (a) at  $\ker \phi = K$ , så phi er nullavbildningen.

<sup>&</sup>lt;sup>1</sup>Strengt tatt er det nok med et integritetsområde

V2007 - 5

$$R = \left\{ \begin{pmatrix} x & 0 \\ y & z \end{pmatrix} | x, y, z \in Z_2 \right\}$$

$$= \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \right\}.$$

Nulldivisorene er

$$\left\{\begin{pmatrix}1&0\\0&0\end{pmatrix},\begin{pmatrix}0&0\\1&0\end{pmatrix},\begin{pmatrix}0&0\\0&1\end{pmatrix},\begin{pmatrix}1&0\\1&0\end{pmatrix},\begin{pmatrix}0&0\\1&1\end{pmatrix}\right\}.$$

Enhetene er

$$\left\{\begin{pmatrix}1&0\\0&1\end{pmatrix},\begin{pmatrix}1&0\\1&1\end{pmatrix}\right\}.$$

Dette er ikke en divisjonsring, da det finnes ikke-null elementer som ikke enheter.

H2006 - 7 Vi har p et primtall og  $0 \le a < p$  et heltall. Videre lar vi  $q(x) \in \mathbb{Z}_p(x)$  være gitt ved  $q(x) = x^p - a$ . Fermats lille teorem forteller oss at  $a^p \equiv a \mod p$ . Dermed er a en rot av q, og siden  $Z_p$  er en kropp må da (x - a) være en (lineær) faktor av q(x).