# Group Theory: Some Fundamentals

## Sumit Kumar Adhya

Summer of Science MnP Club IIT Bombay

July 2024

## Overview

- Groups
- Abelian Groups
- Subgroups
- Centre of a group, Normalizer and Congruency
- Sight and Left Cosets
- Ocyclic Groups

# Groups

### Definition

A non empty set G, together with a binary composition \* (star) is defined to be a group, if it satisfies the following postulates:

- **1** Associativity: a \* (b \* c) = (a \* b) \* c, for all a, b, c.
- ② Existence of Identity:  $\exists$  an element  $e \in G$ , s.t., a \* e = e \* a = a for all a (e is then called identity).
- **3** Existence of Inverse: For every  $a \in G$ ,  $\exists a' \in G$  s.t., a \* a' = a' \* a = e (a' is then called inverse of a)

### Definition

Order of a group G: no. of elements in G, denoted by o(G) or |G|. It can be either finite or infinite.

# Abelian Groups

## Example

The group of real numbers under addition as a+(b+c)=(a+b)+c, a+0=0+a=a and a+(-a)=(-a)+a=0 where  $a,b,c\in\mathbb{R}$  and 0 is the identity and inverse of a being (-a)

### Definition

If  $a*b = b*a \ \forall \ a,b \in G$ . Then G is said to be an abelian group.

### Example

The previous example is an abelian group as a+b=b+a for  $a,b\in\mathbb{R}$ 

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

### **Theorem**

In a group G, the properties hold true:

- 1 Identity element e is unique.
- 2 Inverse of each a is unique.
- **③**  $(a^{-1})^{-1}$ =a  $\forall$  a ∈ G
- $(ab)^{-1} = b^{-1}a^{-1}$
- **⑤** Cancellation laws:  $ab=ac \implies b=c$  and  $ba=ca \implies b=c$  ∀a,b,c∈G.

## Proof

### Proof.

- Let there be two identities e and e' in a group G. Then since e is an identity, ee' = e'e = e' and since e' is an identity, e'e = ee' = e. So, e = e'
- 2 Let there be two inverses a' and a'' of a. Then a' = a'e = a'(aa'') = (a'a)a'' = ea'' = a''
- 3 Since,  $a^{-1}$  is inverse of a,  $aa^{-1} = a^{-1}a = e$  which also implies a is inverse of  $a^{-1}$ . So,  $(a^{-1})^{-1} = a$
- **4**  $ab(b^{-1}a^{-1}) = [(ab)b^{-1}]a^{-1} = [a(bb^{-1})]a^{-1} = (ae)a^{-1} = e$ . Similarly,  $(b^{-1}a^{-1})ab = e$  and the result follows
- **5** Let ab = ac, then  $b = eb = (a^{-1}a)b = a^{-1}(ab) = a^{-1}(ac) = ec = c$



# Subgroups

### **Definition**

Let H be a non-empty subset of a group G, then it's a subgroup of G if it forms a group under the binary composition of G.

### **Theorem**

A non-empty subset H of a group G is a subgroup of G iff:

- $a \in H \implies a^{-1} \in H$

### Proof.

From (i), closure property is satisfied and as  $H \subseteq G$ , associative property would be satisfied in H as well. From (ii), the inverse exists and from (i) and (ii),  $aa^{-1} \in H$  and so  $e \in H$ 

# Subgroups

#### **Theorem**

A non-empty subset H of a group G is a subgroup of G iff  $a,b \in H \implies ab^{-1} \in H$ .

### Proof.

 $aa^{-1} \in H \implies e \in H$ . Now as  $e, a \in H$ ,  $ea^{-1} = a^{-1} \in H$ . So the inverse exists. Finally for  $a, b \in H \implies a, b^{-1} \in H \implies a(b^{-1})^{-1} \in H \implies ab \in H$ . Now by the previous theorem, H is a subgroup of G.

## Some more definitions

### **Definition**

Centre of a group G:  $Z(G) = \{x \in G \mid xg=gx \ \forall \ g \in G.\}$ 

## Theorem (without proof)

Centre of a group G is a subgroup of G.

If  $Z(G)=G \longleftrightarrow G$  is abelian.

#### Definition

Normalizer/Centralizer of a:  $N(a) = \{x \in G \mid xa=ax\}$  for some  $a \in G$ .

## Theorem (without proof)

Normalizer/Centralizer of a in G is a subgroup of G.

## Some more definitions

#### Definition

Let H be a subgroup of G. For a,b  $\in$  G, if  $ab^{-1} \in H$ , we say a is congruent to b mod H or a  $\equiv$  b mod H

This relation is an equivalence relation. Corresponding to this, we therefore get equivalence classes. For any  $a \in G$ , the equivalence class of a is  $cl(a)=\{x\in G\mid x\equiv a\mod H\}$ 

# Right and Left Cosets

### **Definition**

Right or Left coset of H in G is  $Ha=\{ha \mid h \in H \}$  or  $aH=\{ah \mid h \in H \}$  respectively.

#### **Theorem**

Ha=cl(a) for any  $a \in G$ . Therefore, Right cosets are equivalence classes.

### Proof.

Let  $x \in Ha$ , then x = ha for some  $h \in H$ . So,  $xa^{-1} \in H \implies x \in cl(a) \implies Ha \subseteq cl(a)$ . Again let  $x \in cl(a) \implies x \equiv a \mod H \implies xa^{-1} \in H \implies x = ha \in Ha$  for some  $h \in H$ . Thus  $cl(a) \subseteq Ha$  and hence Ha = cl(a)

# Right and Left Cosets

Two important properties of equivalence classes:

- Two equivalence classes are either identical or disjoint
- Union of all equivalence classes is the original set

From these two properties and the previous theorem we can conclude the following:

#### **Theorem**

Two right cosets in G are either equal or have no element in common and the union of all right cosets in G is equal to G.

# Right and Left Cosets

#### Definition

The index of a subgroup H in G is the no. of distinct right(left) cosets of H in G, denoted by  $i_G(H)$  or [G:H]

It is, of course possible for an infinite group G to have a subgroup H with finite index.

## Example

G=  $\langle Z, + \rangle$ , H = {3n | n  $\in$  Z}. H has only 3 right cosets in G  $\rightarrow$  H, H+1, H+2. So  $i_G(H) = 3$ 

# Cyclic Groups

### Definition

Order of an element: o(a) or |a| is the least positive integer n s.t  $a^n = e$ 

### Definition

Cyclic group:- A group G is defined to be a cyclic group if  $\exists$  an element  $a \in G$  s.t every element of G can be expressed as a power of a. In that case a is called the generator of G, denoted by  $G = \langle a \rangle$  or (a).

### Example

The group of integers under addition is a cyclic group, 1 and -1 being it's generators.

### Example

The group  $G = \{1, -1, i, -i\}$  under multiplication is cyclic as we can express it's members as  $i, i^2, i^3, i^4$ , so, i is it's generator.