Production of X-Rays

X-Rays are produced when cathode rays strike a target

Energy is released (photon) when accelerated electrons hit the target (tungsten).

Approximately 5% energy is released as form of heat, dissipated by cooling fins.

X-Rays

Bragg's Law

X-Rays

X-Rays Spectra

Continuous(Bremsstrahlung) Spectrum
$$qV=hf_{max}=rac{hc}{\lambda_{min}}$$

Characteristic Line Spectrum

$$\Delta E = hf$$

Bragg's Law

$$m\lambda=2d\sin heta_m$$

$$rac{m\lambda}{2d} \leq 1 \quad m \leq rac{2d}{\lambda}$$

Crystal Atomic Spacing

Diffraction of x-ray occurs in the crystal atomic spacing.

Used to calculate wavelength of x-rays.

Properties of X-Rays

Neutral, not deflected by electric or magnetic fields

Can penetrate through solid matter

Can cause certain compounds to fluorocence, i.e. Zinc Sulphide

Can ionize atoms.

Can cause photoelectric emmision.

Application of X-Rays

Detection of bullet in patient's leg

Observation and photography of the healing of a broken bone.

Detection of contraband in baggage.

Discrimination between authentic gems and artificial gems.

Detection of pearl in oyster.