Projet 5 : Segmentez des clients d'un site e-commerce

Oumeima EL GHARBI

OpenClassrooms - Data Scientist

Soutenance: 08/10/2022

Plan

Introduction

- Problématique
- Présentation du jeu de données

I. Exploration

- Nettoyage
- Feature engineering
- Analyse exploratoire

1) CAH

II. Essais

- 2) DBSCAN
- 3) K-Means
- 4) K-Means / Review Score
- 5) RFM Score
- 6) Personae

III. Simulation

- Expérience 1:9 mois
- Expérience 2 : 3 mois

Conclusion

Introduction

Problématique :

« Olist souhaite que vous fournissiez à ses équipes d'ecommerce une segmentation des clients qu'elles pourront utiliser au quotidien pour leurs campagnes de communication.

Votre objectif est de comprendre les différents types d'utilisateurs grâce à leur comportement et à leurs données personnelles.

Vous devrez fournir à l'équipe marketing une description actionable de votre segmentation et de sa logique sous-jacente pour une utilisation optimale, ainsi qu'une proposition de contrat de maintenance basée sur une analyse de la stabilité des segments au cours du temps.

Votre mission est d'aider les équipes d'Olist à comprendre les différents types d'utilisateurs.»

<u>Implémentation</u>:

Cadre: apprentissage non supervisé

Problème de clustering

Modèles de clustering testés :

- Centroid-based Clustering: K-Means
- Hierarchical Clustering : Agglomerative Clustering
- Density-based Clustering: DBSCAN

Evaluation: méthode du « coude », silhouette score, Davies Bouldin score, ARI et matrice de confusion.

I) Exploration

Nettoyage

Exploration

Feature engineering

Exploration 1) Nettoyage

The dataset called : dataset_order reviews has : 21.006294560071872 % of missing values.

The dataset called: dataset product category name translation has: 0.0 % of missing values.

The dataset called : dataset products has : 0.8254681193287002 % of missing values.

The dataset called : dataset sellers has : 0.0 % of missing values.

Statistiques générales des jeux de données bruts

```
The dataset called : dataset customers has : 0 duplicated rows.
                                                                   The dataset called : dataset geolocation has : 261831 duplicated rows.
                                                                   The dataset called : dataset orders has : 0 duplicated rows.
                                                                   The dataset called : dataset order items has : 0 duplicated rows.
                                                                   The dataset called : dataset order payments has : 0 duplicated rows.
                                                                   The dataset called : dataset order reviews has : 0 duplicated rows.
                                                                   The dataset called : dataset_products has : 0 duplicated rows.
                                                                   The dataset called : dataset sellers has : 0 duplicated rows.
                                                                   The dataset called: dataset product category name translation has: 0 duplicated rows.
Shape dataset
The dataset called : dataset customers has a shape : (99441, 5)
The dataset called : dataset geolocation has a shape : (1000163, 5)
The dataset called : dataset orders has a shape : (99441, 8)
                                                                                        Nous allons fusionner les datasets :
The dataset called : dataset order items has a shape : (112650, 7)
The dataset called: dataset order payments has a shape: (103886, 5)
                                                                                            Customers
The dataset called : dataset_order_reviews has a shape : (99224, 7)
The dataset called : dataset products has a shape : (32951, 9)
                                                                                            Orders
The dataset called : dataset sellers has a shape : (3095, 4)
                                                                                            Order items
The dataset called : dataset product category name translation has a shape : (71, 2)
Missing values
The dataset called : dataset customers has : 0.0 % of missing values.
The dataset called : dataset geolocation has : 0.0 % of missing values.
The dataset called : dataset orders has : 0.616948743476031 % of missing values.
The dataset called : dataset order items has : 0.0 % of missing values.
The dataset called: dataset order payments has: 0.0 % of missing values.
```

Duplicated rows ?

Exploration2) Feature Engineering

Pour chaque client:

Récence : nombre de jours depuis le dernier achat

Fréquence : nombre total de commandes

Montant: montant total des achats

	Recency	Frequency	Monetary
customer_unique_id			
0000366f3b9a7992bf8c76cfdf3221e2	115	1	129.90
0000b849f77a49e4a4ce2b2a4ca5be3f	118	1	18.90
0000f46a3911fa3c0805444483337064	541	1	69.00
0000f6ccb0745a6a4b88665a16c9f078	325	1	25.99
0004aac84e0df4da2b147fca70cf8255	292	1	180.00

	count	mean	std	min	25%	50%	75 %	max
Recency	95420.0	242.600377	153.160320	0.00	118.0	223.0	352.0	728.0
Frequency	95420.0	1.034018	0.211234	1.00	1.0	1.0	1.0	16.0
Monetary	95420.0	142.440198	217.656355	0.85	47.9	89.9	155.0	13440.0

Exploration 2) Feature Engineering

Pour chaque client:

Récence : nombre de jours depuis le dernier achat

Fréquence : nombre total de commandes

Montant: montant total des achats

Review Score: note moyenne sur toutes les commandes

Ajout du dataset order_reviews

	Recency	Frequency	Monetary	Review Score
customer_unique_id				
0000366f3b9a7992bf8c76cfdf3221e2	115	1	129.90	5.0
0000b849f77a49e4a4ce2b2a4ca5be3f	118	1	18.90	4.0
0000f46a3911fa3c0805444483337064	541	1	69.00	3.0
0000f6ccb0745a6a4b88665a16c9f078	325	1	25.99	4.0
0004aac84e0df4da2b147fca70cf8255	292	1	180.00	5.0

	count	mean	std	min	25%	50 %	75 %	max
Recency	94721.0	242.442827	153.170660	0.00	118.0	223.0	352.00	728.0
Frequency	94721.0	1.033741	0.210527	1.00	1.0	1.0	1.00	16.0
Monetary	94721.0	142.811254	217.714921	0.85	47.9	89.9	155.96	13440.0
Review Score	94721.0	4.102202	1.326758	1.00	4.0	5.0	5.00	5.0

Exploration 3) Exploration

Récence : bonne distribution

Fréquence : seulement 3% des clients ont passé plus d'une commande

Montant: la plupart des commandes ont un montant faible

Exploration 3) Exploration

- Pas de corrélation entre les features.
- Récence : distribution assez homogène entre nouveaux clients et anciens clients : cela est dû au fait que les clients ne commandent qu'une fois (dans 97% des cas).
- Review Score : la plupart des clients ont été satisfaits de leur commande

Exploration 3) Exploration

Distribution du Review Score entre par tranche de 1 ou de 0.5

II) Essais

- 1) CAH
- 2) DBSCAN
- 3) K-Means
- 4) K-Means / Review Score
- 5) RFM Score
- 6) Personae

Essais Standardisation

Scale ou Standard Scaler : pour la simulation on utilisera Standard Scaler qui permet de fit/transform.

	Recency	Frequency	Monetary
0	-0.833121	-0.161045	-0.057615
1	-0.813533	-0.161045	-0.567596
2	1.948293	-0.161045	-0.337415
3	0.537999	-0.161045	-0.535021
4	0.322537	-0.161045	0.172566

Essais PCA

Les deux premières composantes de la PCA permettent d'expliquer 70% de la variance.

La première composante explique F + M (la fréquence et le montant).

La deuxième composante explique R (la récence).

Essais Sample

Fléau de la dimensionalité : CAH, DBSCAN : utilisation d'un échantillon de taille 1000.

[0.41106477 0.73319995]

Recency

Frequency

Essais 1) CAH : Clustering Hiérarchique : sample

CAH sans paramètres : 2 clusters.

CAH avec $n_{clusters} = 4$.

- Clustering similaire à celui du K-Means (cf partie 3).
- CAH n'est pas applicable à notre dataset : dataset trop grand => CAH met trop de temps.

Conclusion: nous n'utiliserons pas CAH

Principal Components projection with t-SNE

Visualizing clusters with PCA

Essais 2) DBSCAN: sample

```
Hyperparameter epsilon = 0.5
Hyperparameter epsilon = 1.0
Hyperparameter epsilon = 1.5
Hyperparameter epsilon = 2.0
Hyperparameter epsilon = 2.5
Hyperparameter epsilon = 3.0
```

DBSCAN: clustering par densité.

- La structure de nos données ne correspondent pas au DBSCAN => données ne sont pas connectées par densité.
- DBSCAN : problème de dimension => met trop de temps à répondre
- Conclusion: nous n'utiliserons pas DBSCAN

Essais 3) K-Means : sample

- Utilisation du dataset échantillon pour comparer avec CAH / DBSCAN
- Silhouette optimal pour Silhouette proche de 1 : k = 2

Besoin métier : clusters entre k = 3 à 5

Davies Bouldin optimal pour DB proche de 0 : k = 2

Besoin métier : clusters k = 5

Essais 3) K-Means : complete dataset

- Calcul du coefficient de Silhouette trop long => choix de K avec la méthode du coude / elbow
- K-Means minimise la somme des inerties (variance intra-cluster) : k = 4 ou 5

Le reste de l'analyse a été réalisée pour K = 4 (besoin métier : pas trop de clusters car plus complexe à interpréter / au moins 4 clusters pour différencier les clients)

Pour chaque cluster : calcul de la moyenne par feature

=> Les clusters 0 et 1 contiennent plus de clients que les deux autres clusters.

Customer_cluster				
0	38378	392.691438	1.000000	114.481193
1	51886	132.518810	1.000000	113.596573
2	2883	225.184530	2.114811	243.049823
3	2273	243.351518	1.014078	1145.314571

Nb customers Avg Recency Avg Frequency Avg Monetary

Diagramme à bâton qui présente la moyenne de chaque feature par cluster.

Cluster 0 : clients perdus

Cluster 1: nouveaux clients

Cluster 2 : clients fidèles

Cluster 3 : clients qui dépensent beaucoup

	Distribut	ion of the ave	rage Recency	per cluster	
400 -]
350 -					
- 300 -					
5 250 -					
Average Recency per cluster 200 - 002 - 000 - 00					
e 150 -					
¥ 100 -					
50 -					
0 1	Ó	i	2	3	_
		CIU	uster		

Customer_cluster

0

1

2

3

Nb customers Avg Recency Avg Frequency Avg Monetary

1.000000

1.000000

2.114811

1.014078

114.481193

113.596573

243.049823

1145.314571

392.691438

132.518810

225.184530

243.351518

38378

51886

2883

2273

Customer_cluster								
0	38378	392.691438	1.000000	114.481193				
1	51886	132.518810	1.000000	113.596573				
2	2883	225.184530	2.114811	243.049823				
3	2273	243.351518	1.014078	1145.314571				

Nb customers Avg Recency Avg Frequency Avg Monetary

Pour chaque feature, analyse de la distribution par cluster

Pour chaque cluster, distribution de ses features

Différente échelle pour chaque cluster

	Nb customers	Avg Recency	Avg Frequency	Avg Monetary
Customer_cluster				
0	38378	392.691438	1.000000	114.481193
1	51886	132.518810	1.000000	113.596573
2	2883	225.184530	2.114811	243.049823
3	2273	243.351518	1.014078	1145.314571

Représentation 3D : pas évident de bien visualiser les différents clients / clusters

Cluster 0 : clients perdus

Cluster 1: nouveaux clients

Cluster 2 : clients fidèles

Cluster 3 : clients qui dépensent beaucoup

This is the analysis of our segmentation:

- Cluster 0 (blue): lost customers, customers that didn't buy recently nor ordered more than once and didn't make expensive purchases.
- Cluster 1 (red): new customers, customers who have made a purchase recently.
- Cluster 2 (green): loyal customers, customers that ordered more than once even though they didn't make expensive orders.
- Cluster 3 (purple): royal customers, customers that made expensive purchases.

Essais 4) K-Means / Review Score

Ajout du Review Score moyen par client.

Coude pour K = 5

Choix de K = 4 pour faciliter l'interprétation des clusters

	Recency	Frequency	Monetary	Review Score
0	-0.832036	-0.160271	-0.059304	0.676689
1	-0.812450	-0.160271	-0.569148	-0.077032
2	1.949190	-0.160271	-0.339029	-0.830752
3	0.538991	-0.160271	-0.536582	-0.077032
4	0.323544	-0.160271	0.170815	0.676689

Essais 4) K-Means / Review Score

PCA:

- La première composante explique F + M (fréquence et montant)
- La deuxième composante explique la Récence et le Review Score

[0.28102799 0.53782495]

The PCA with 2 components explains 53.80000000000000 % of the variance.

Cluster 0 : clients perdus

Cluster 1: nouveaux clients

Cluster 2 : moins de clients => clients fidèles et qui

dépensent beaucoup

Cluster 3: clients mécontents

	Nb customers	Avg Recency	Avg Frequency	Avg Monetary	Avg Review Score
Customer_cluster					
0	32299	397.363107	1.000000	136.156248	4.632930
1	42776	126.224518	1.000000	131.160897	4.674245
2	2874	225.671190	2.112039	292.661889	4.145321
3	16772	243.384033	1.000000	159.662849	1.613791

Diagramme à bâton qui présente la moyenne de chaque feature par cluster.

Cluster 0 : clients perdus

Cluster 1: nouveaux clients

Cluster 2 : clients fidèles et dépensent beaucoup

Cluster 3: clients mécontents

	Nb customers	Avg Recency	Avg Frequency	Avg Monetary	Avg Review Score
Customer_cluster					
0	32299	397.363107	1.000000	136.156248	4.632930
1	42776	126.224518	1.000000	131.160897	4.674245
2	2874	225.671190	2.112039	292.661889	4.145321
3	16772	243.384033	1.000000	159.662849	1.613791

	Nb customers	Avg Recency	Avg Frequency	Avg Monetary	Avg Review Score
Customer_cluster					
0	32299	397.363107	1.000000	136.156248	4.632930
1	42776	126.224518	1.000000	131.160897	4.674245
2	2874	225.671190	2.112039	292.661889	4.145321
3	16772	243.384033	1.000000	159.662849	1.613791

Echelle différente pour chaque cluster

Distributions assez similaires entre les clusters

Cluster 2 : grands ordres de grandeurs => top customers

	ND customers	Avg Recency	Avg Frequency	Avg Monetary	Avg Review Score
Customer_cluster					
0	32299	397.363107	1.000000	136.156248	4.632930
1	42776	126.224518	1.000000	131.160897	4.674245
2	2874	225.671190	2.112039	292.661889	4.145321
3	16772	243.384033	1.000000	159.662849	1.613791

Cluster 0 : clients perdus

Cluster 1: nouveaux clients

Cluster 2 : clients « royaux » = fidèles et dépensent beaucoup

Cluster 3 : clients mécontents et assez récents

By adding the review score we can see that we have an interesting cluster: the cluster 3 corresponds to unsatisfied clients!

Adding the review score made our segments more explicit.

This is the analysis of our segmentation:

- Cluster 0 (blue): **lost customers**, customers that didn't buy recently nor ordered more than once and didn't make expensive purchases.
- Cluster 1 (red): new customers, customers who have made a purchase recently.
- Cluster 2 (green): royal customers, customers that ordered more than once and made expensive orders. They are mostly satisfied by the service offered.
- Cluster 3 (purple): **new and unhappy customers**, customers gave a low review score.

Essais 5) RFM Score

Clustering par feature

4 clusters pour chaque feature => 64 combinaisons de clusters

							Re	ecency
	count	mean	std	min	25%	50%	75 %	max
Recency_cluster								
0	16723.0	490.362973	58.790423	406.0	444.0	481.0	532.0	728.0
1	25022.0	319.903285	44.061560	255.0	281.0	313.0	357.0	405.0
2	27735.0	188.320606	35.263820	128.0	159.0	188.0	219.0	254.0
3	25940.0	66.341403	36.097045	0.0	33.0	66.0	100.0	127.0

						Frequ		uency
	count	mean	std	min	25%	50%	75 %	max
Frequency_cluster								
0	92507.0	1.000000	0.000000	1.0	1.0	1.0	1.0	1.0
1	2673.0	2.000000	0.000000	2.0	2.0	2.0	2.0	2.0
2	221.0	3.131222	0.338409	3.0	3.0	3.0	3.0	4.0
3	19.0	6.368421	2.564946	5.0	5.0	6.0	6.5	16.0

							l	wonetary
	count	mean	std	min	25%	50%	75 %	max
Monetary_cluster								
0	75253.0	75.527705	43.316084	0.85	39.89	69.0	109.0	175.66
1	16892.0	275.783227	91.733765	175.79	199.90	249.0	329.0	550.90
2	2885.0	825.691875	241.741323	550.99	629.00	750.0	960.0	1520.88
3	390.0	2223.861590	1007.485998	1534.90	1699.99	1980.0	2300.0	13440.00

Essais 5) RFM Score

Combinaison de cluster => RFM Score Interprétation assez difficile

customer_unique_id	Recency	Frequency	Monetary	Recency_cluster	Frequency_cluster	$Monetary_cluster$	RFM_score
0000366f3b9a7992bf8c76cfdf3221e2	115	1	129.90	3	0	0	300
0000b849f77a49e4a4ce2b2a4ca5be3f	118	1	18.90	3	0	0	300
0000f46a3911fa3c0805444483337064	541	1	69.00	0	0	0	000
0000f6ccb0745a6a4b88665a16c9f078	325	1	25.99	1	0	0	100
0004aac84e0df4da2b147fca70cf8255	292	1	180.00	1	0	1	101

Essais 6) Personae

Clustering par feature : 4 clusters pour chaque feature

Combinaison de cluster => attribution de profils clients (personae)

Interprétation assez difficile : exemple avec 6 Personae

Mais n'explique pas la majorité des clients

III) Simulation

- Expérience 1:9 mois / 15 jours
- Expérience 2 : 3 mois / 7 jours
- Simulation sur le dataset RFM (3 features) avec un clustering K-Means (K = 4)

Simulation 1) Expérience 1 : 9 mois / 15 jours

Step: 1 Maximum order purchase date: 2017-12-22 09:06:57 Verification of the filter: 2017-12-22 09:06:20 This dataset has 42415 unique clients

Step: 2 Maximum order purchase date: 2018-01-06 09:06:57 Verification of the filter: 2018-01-06 09:03:41 This dataset has 44483 unique clients

Step: 3 Maximum order purchase date: 2018-01-21 09:06:57 Verification of the filter: 2018-01-21 09:03:17 This dataset has 48074 unique clients

Step: 4 Maximum order purchase date: 2018-02-05 09:06:57 Verification of the filter: 2018-02-05 09:06:12 This dataset has 51346 unique clients

Step: 5 Maximum order purchase date: 2018-02-20 09:06:57 Verification of the filter: 2018-02-20 09:05:49 This dataset has 54669 unique clients

Step: 6 Maximum order purchase date: 2018-03-07 09:06:57 Verification of the filter: 2018-03-07 09:02:41 This dataset has 58414 unique clients

Baisse significative du ARI score à partir de T = 4 Soit 2 mois

Simulation 2) Expérience 2 : 3 mois / 7 jours

Step: 1 Maximum order purchase date: 2018-06-11 09:06:57 Verification of the filter: 2018-06-11 08:58:16 This dataset has 79092 unique clients

Step: 2 Maximum order purchase date: 2018-06-18 09:06:57 Verification of the filter: 2018-06-18 08:59:45 This dataset has 80547 unique clients

Step: 3 Maximum order purchase date: 2018-06-25 09:06:57 Verification of the filter: 2018-06-25 09:05:04 This dataset has 81949 unique clients

Step: 4 Maximum order purchase date: 2018-07-02 09:06:57 Verification of the filter: 2018-07-02 09:01:31 This dataset has 83297 unique clients

Step: 5 Maximum order purchase date: 2018-07-09 09:06:57 Verification of the filter: 2018-07-09 09:06:51 This dataset has 84460 unique clients

For T = 5
(85421, 3)
We make a new clustering using that fits the new dataset.
KMeans(n_clusters=4, random_state=0)
We predict a clustering using the clustering at T0 for the new dataset.
ARI for T = 5

	T	ARI		pred_0	pred_1	pred_2	pred
0	1	0.974220	true_0	3707	0	28699	
1	2	0.958896	true_1	0	2572	0	
2	3	0.926436	true_2	48076	0	0	
	-	0.020.00	true_3	51	0	0	23
3	4	0.890263					

Baisse significative du ARI score à partir de T = 5

0.841963

→ Contrat de maintenance pour faire la segmentation toutes les 4/5 semaines.

Simulation Contrat de Maintenance

Deux simulations faites pour déterminer la période de renouvellement de la segmentation : toutes les 4 à 5 semaines soit une maintenance de la segmentation tous les mois.

We did two simulations.

For the first simulation, we predicted the initial clustering in December 2017 soit 9 months before the end of the dataset. We simulated the clustering prediction every 15 days.

After two months, we saw the ARI score decreased and get under 0.8.

So, for the second simulation, we predicted the initial clustering in June 2017 so three months before the end of the dataset. We ran the simulation every week.

• NB: In fact, we tried a simulation two months (nb_periods = 8) prior to the end date of the dataset and a simulation three months before (nb_periods = 12). It was difficult to conclude with a simulation period of two months, so we used three months.

We saw that the ARI score decreases significantly at the 5th week.

Thus, we will recommend to our client that the maintenance should be done every month (every 4 or 5 weeks).

Conclusion

- Segmentation avec un clustering K-Means (K = 4)

Cluster 0 : clients perdus

Cluster 1: nouveaux clients

Cluster 2 : clients fidèles

Cluster 3 : clients qui dépensent beaucoup

Cluster 0 : clients perdus

Cluster 1: nouveaux clients

Cluster 2 : clients « royaux » = fidèles et dépensent beaucoup

Cluster 3 : clients mécontents et assez récents

- Maintenance : une fois par mois

Merci!