NCERT Solutions for Class 12-science Maths Chapter 13 - Probability

Chapter 13 - Probability Exercise Ex. 13.1 Solution 1

It is given that P(E) = 0.6, P(F) = 0.3, and $P(E \cap F) = 0.2$

$$\Rightarrow P(E \mid F) = \frac{P(E \cap F)}{P(F)} = \frac{0.2}{0.3} = \frac{2}{3}$$

$$\Rightarrow P(F|E) = \frac{P(E \cap F)}{P(E)} = \frac{0.2}{0.6} = \frac{1}{3}$$

Solution 2

It is given that P(B) = 0.5 and $P(A \cap B) = 0.32$

$$\Rightarrow P\left(\frac{A}{B}\right) = \frac{P(A \cap B)}{P(B)} = \frac{0.32}{0.5} = \frac{16}{25}$$

Solution 3

It is given that P(A) = 0.8, P(B) = 0.5, and P(B|A) = 0.4

(i)
$$P(B|A) = 0.4$$

$$\therefore \frac{P(A \cap B)}{P(A)} = 0.4$$

$$\Rightarrow \frac{P(A \cap B)}{0.8} = 0.4$$

$$\Rightarrow P(A \cap B) = 0.32$$

(ii)
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$\Rightarrow P(A | B) = \frac{0.32}{0.5} = 0.64$$

(iii)

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

 $\Rightarrow P(A \cup B) = 0.8 + 0.5 - 0.32 = 0.98$

It is given that,
$$2P(A) = P(B) = \frac{5}{13}$$

$$\Rightarrow$$
 P(A) = $\frac{5}{26}$ and P(B) = $\frac{5}{13}$

$$P(A \mid B) = \frac{2}{5}$$

$$\Rightarrow \frac{P(A \cap B)}{P(B)} = \frac{2}{5}$$

$$\Rightarrow P(A \cap B) = \frac{2}{5} \times P(B) = \frac{2}{5} \times \frac{5}{13} = \frac{2}{13}$$

It is known that, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

$$\Rightarrow$$
 P(A \cup B) = $\frac{5}{26} + \frac{5}{13} - \frac{2}{13}$

$$\Rightarrow P(A \cup B) = \frac{5+10-4}{26}$$

$$\Rightarrow P(A \cup B) = \frac{11}{26}$$

It is given that $P(A) = \frac{6}{11}$, $P(B) = \frac{5}{11}$, and $P(A \cup B) = \frac{7}{11}$

(i)
$$P(A \cup B) = \frac{7}{11}$$

$$∴ P(A)+P(B)-P(A ∩ B) = \frac{7}{11}$$

$$⇒ \frac{6}{11} + \frac{5}{11} - P(A ∩ B) = \frac{7}{11}$$

$$⇒ P(A ∩ B) = \frac{11}{11} - \frac{7}{11} = \frac{4}{11}$$

(ii) It is known that,
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$\Rightarrow P(A \mid B) = \frac{\frac{4}{11}}{\frac{5}{11}} = \frac{4}{5}$$

(iii) It is known that,
$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

$$\Rightarrow P(B|A) = \frac{\frac{4}{11}}{\frac{6}{11}} = \frac{4}{6} = \frac{2}{3}$$

If a coin is tossed three times, then the sample space S is

S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

It can be seen that the sample space has 8 elements.

(i) $E = \{HHH, HTH, THH, TTH\}$

 $F = \{HHH, HHT\}$

 \therefore E N F = {HHH}

$$P(F) = \frac{2}{8} = \frac{1}{4} \text{ and } P(E \cap F) = \frac{1}{8}$$

$$P(E|F) = \frac{P(E \cap F)}{P(F)} = \frac{\frac{1}{8}}{\frac{1}{4}} = \frac{4}{8} = \frac{1}{2}$$

(ii) $E = \{HHH, HHT, HTH, THH\}$

F = {HHT, HTH, HTT, THH, THT, TTH, TTT}

 $\cdot \in \cap F = \{HHT, HTH, THH\}$

Clearly,
$$P(E \cap F) = \frac{3}{8}$$
 and $P(F) = \frac{7}{8}$

$$P(E|F) = \frac{P(E \cap F)}{P(F)} = \frac{\frac{3}{8}}{\frac{7}{8}} = \frac{3}{7}$$

(iii) E = {HHH, HHT, HTT, HTH, THH, THT, TTH}

F = {HHT, HTT, HTH, THH, THT, TTH, TTT}

 $:: E \cap F = \{HHT, HTT, HTH, THH, THT, TTH\}$

$$P(F) = \frac{7}{8}$$
 and $P(E \cap F) = \frac{6}{8}$

Therefore,
$$P(E|F) = \frac{P(E \cap F)}{P(F)} = \frac{\frac{6}{8}}{\frac{7}{8}} = \frac{6}{7}$$

If two coins are tossed once, then the sample space S is

$$S = \{HH, HT, TH, TT\}$$

(i)
$$E = \{HT, TH\}$$

$$F = \{HT, TH\}$$

$$\therefore E \cap F = \{HT, TH\}$$

$$P(F) = \frac{2}{4} = \frac{1}{2}$$

$$P(E \cap F) = \frac{2}{4} = \frac{1}{2}$$

$$P(E \cap F) = \frac{2}{4} = \frac{1}{2}$$

$$P(E \mid F) = \frac{P(E \cap F)}{P(F)} = \frac{\frac{1}{2}}{\frac{1}{2}} = 1$$

(ii)
$$E = \{HH\}$$

$$F = \{TT\}$$

$$E \cap F = \Phi$$

$$P(F) = \frac{1}{4} \text{ and } P(E \cap F) = 0$$

$$P(E|F) = \frac{P(E \cap F)}{P(F)} = \frac{0}{\frac{1}{4}} = 0$$

If a die is thrown three times, then the number of elements in the sample space will be $6\times6\times6=216$

$$E = \begin{cases} (1,1,4), (1,2,4), \dots (1,6,4) \\ (2,1,4), (2,2,4), \dots (2,6,4) \\ (3,1,4), (3,2,4), \dots (3,6,4) \\ (4,1,4), (4,2,4), \dots (4,6,4) \\ (5,1,4), (5,2,4), \dots (5,6,4) \\ (6,1,4), (6,2,4), \dots (6,6,4) \end{cases}$$

$$F = \{(6,5,1),(6,5,2),(6,5,3),(6,5,4),(6,5,5),(6,5,6)\}$$

$$\therefore E \cap F = \{(6,5,4)\}$$

$$P(F) = \frac{6}{216}$$
 and $P(E \cap F) = \frac{1}{216}$

$$\therefore P(E | F) = \frac{P(E \cap F)}{P(F)} = \frac{\frac{1}{216}}{\frac{6}{216}} = \frac{1}{6}$$

Solution 9

If mother (M), father (F), and son (S) line up for the family picture, then the sample space will be

S = {MFS, MSF, FMS, FSM, SMF, SFM}

 $E = \{MFS, FMS, SMF, SFM\}$

 $F = \{MFS, SFM\}$

 $E \cap F = \{MFS, SFM\}$

$$P(E \cap F) = \frac{2}{6} = \frac{1}{3}$$

$$P(F) = \frac{2}{6} = \frac{1}{3}$$

:.
$$P(E|F) = \frac{P(E \cap F)}{P(F)} = \frac{\frac{1}{3}}{\frac{1}{3}} = 1$$

Let the first observation be from the black die and second from the red die.

When two dice (one black and another red) are rolled, the sample space S has $6 \times 6 = 36$ number of elements.

1. Let

A: Obtaining a sum greater than 9

B: Black die results in a 5.

$$A \cap B = \{(5, 5), (5, 6)\}$$

The conditional probability of obtaining a sum greater than 9, given that the black die resulted in a 5, is given by P (A|B).

$$\therefore P(A | B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{2}{36}}{\frac{6}{36}} = \frac{2}{6} = \frac{1}{3}$$

(b) E: Sum of the observations is 8.

$$= \{(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)\}$$

F: Red die resulted in a number less than 4.

$$= \begin{cases} (1,1),(1,2),(1,3),(2,1),(2,2),(2,3),\\ (3,1),(3,2),(3,3),(4,1),(4,2),(4,3),\\ (5,1),(5,2),(5,3),(6,1),(6,2),(6,3) \end{cases} \therefore E \cap F = \left\{ (5,3),(6,2) \right\}$$

$$P(F) = \frac{18}{36} \text{ and } P(E \cap F) = \frac{2}{36}$$

The conditional probability of obtaining the sum equal to 8, given that the red die resulted in a number less than 4, is given by P(E|F).

Therefore,
$$P(E|F) = \frac{P(E \cap F)}{P(F)} = \frac{\frac{2}{36}}{\frac{18}{36}} = \frac{2}{18} = \frac{1}{9}$$

When a fair die is rolled, the sample space S will be

$$S = \{1, 2, 3, 4, 5, 6\}$$

It is given that $E = \{1, 3, 5\}, F = \{2, 3\}, and G = \{2, 3, 4, 5\}$

$$P(E) = \frac{3}{6} = \frac{1}{2}$$

$$P(F) = \frac{2}{6} = \frac{1}{3}$$

$$P(G) = \frac{4}{6} = \frac{2}{3}$$

(i)
$$E \cap F = \{3\}$$

$$\therefore P(E \cap F) = \frac{1}{6}$$

:
$$P(E|F) = \frac{P(E \cap F)}{P(F)} = \frac{\frac{1}{6}}{\frac{1}{3}} = \frac{1}{2}$$

$$P(F|E) = \frac{P(E \cap F)}{P(E)} = \frac{\frac{1}{6}}{\frac{1}{2}} = \frac{1}{3}$$

(ii)
$$E \cap G = \{3, 5\}$$

$$\therefore P(E \cap G) = \frac{2}{6} = \frac{1}{3}$$

:
$$P(E|G) = \frac{P(E \cap G)}{P(G)} = \frac{\frac{1}{3}}{\frac{2}{3}} = \frac{1}{2}$$

$$P(G|E) = \frac{P(E \cap G)}{P(E)} = \frac{\frac{1}{3}}{\frac{1}{2}} = \frac{2}{3}$$

(iii)
$$EUF = \{1, 2, 3, 5\}$$

$$(EUF) \cap G = \{1, 2, 3, 5\} \cap \{2, 3, 4, 5\} = \{2, 3, 5\}$$

$$E \cap F = \{3\}$$

$$(E \cap F) \cap G = \{3\} \cap \{2, 3, 4, 5\} = \{3\}$$

$$P(E \cup G) = \frac{4}{6} = \frac{2}{3}$$

$$P(E \cup G) = \frac{4}{6} = \frac{2}{3}$$

$$P(E \cup F) \cap G) = \frac{3}{6} = \frac{1}{2}$$

$$P(E \cap F) = \frac{1}{6}$$

$$P(E \cap F$$

Let b and g represent the boy and the girl child respectively. If a family has two children, the sample space will be

$$S = \{(b, b), (b, g), (g, b), (g, g)\}$$

Let A be the event that both children are girls.

$$\therefore A = \{(g, g)\}\$$

(i) Let B be the event that the youngest child is a girl.

$$\therefore B = [(b,g),(g,g)]$$

$$\Rightarrow A \cap B = \{(g,g)\}$$

$$\therefore P(B) = \frac{2}{4} = \frac{1}{2}$$

$$P(A \cap B) = \frac{1}{4}$$

The conditional probability that both are girls, given that the youngest child is a girl, is given by P(A|B).

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2}$$

Therefore, the required probability is $\frac{1}{2}$.

(ii) Let C be the event that at least one child is a girl.

$$\therefore C = \{(b, g), (g, b), (g, g)\}$$

$$\Rightarrow A \cap C = \{g, g\}$$

$$\Rightarrow P(C) = \frac{3}{4}$$

$$P(A \cap C) = \frac{1}{4}$$

The conditional probability that both are girls, given that at least one child is a girl, is given by P(A|C).

Therefore,
$$P(A \mid C) = \frac{P(A \cap C)}{P(C)} = \frac{\frac{1}{4}}{\frac{3}{4}} = \frac{1}{3}$$

Solution 13

The given data can be tabulated as

	True/False	Multiple choice	Total
Easy	300	500	800
Difficult	200	400	600
Total	500	900	1400

Let us denote E = easy questions, M = multiple choice questions, D = difficult questions, and T = True/False questions

Total number of questions = 1400

Total number of multiple choice questions = 900

Therefore, probability of selecting an easy multiple choice question is

$$P(E \cap M) = \frac{500}{1400} = \frac{5}{14}$$

Probability of selecting a multiple choice question, P (M), is

$$\frac{900}{1400} = \frac{9}{14}$$

P (E|M) represents the probability that a randomly selected question will be an easy question, given that it is a multiple choice question.

$$P(E|M) = \frac{P(E \cap M)}{P(M)} = \frac{\frac{5}{14}}{\frac{9}{14}} = \frac{5}{9}$$

Therefore, the required probability is $\frac{5}{9}$.

When dice is thrown, number of observations in the sample space = $6 \times 6 = 36$

Let A be the event that the sum of the numbers on the dice is 4 and B be the event that the two numbers appearing on throwing the two dice are different.

$$A = \{(1, 3), (2, 2), (3, 1)\}$$

$$B = \begin{cases} (1, 2), (1, 3), (1, 4), (1, 5), (1, 6) \\ (2, 1), (2, 3), (2, 4), (2, 5), (2, 6) \\ (3, 1), (3, 2), (3, 4), (3, 5), (3, 6) \\ (4, 1), (4, 2), (4, 3), (4, 5), (4, 6) \\ (5, 1), (5, 2), (5, 3), (5, 4), (5, 6) \\ (6, 1), (6, 2), (6, 3), (6, 4), (6, 5) \end{cases}$$

$$A \cap B = \{(1, 3), (3, 1)\}$$

$$\therefore P(B) = \frac{30}{36} = \frac{5}{6} \text{ and } P(A \cap B) = \frac{2}{36} = \frac{1}{18}$$

Let P(A|B) represent the probability that the sum of the numbers on the dice is 4, given that the two numbers appearing on throwing the two dice are different.

$$\therefore P(A | B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{18}}{\frac{5}{6}} = \frac{1}{15}$$

Therefore, the required probability is $\frac{1}{15}$.

The outcomes of the given experiment can be represented by the following tree diagram.

The sample space of the experiment is,

$$S = \begin{cases} (1, H), (1, T), (2, H), (2, T), (3, 1)(3, 2), (3, 3), (3, 4), (3, 5), (3, 6), \\ (4, H), (4, T), (5, H), (5, T), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6) \end{cases}$$

Let A be the event that the coin shows a tail and B be the event that at least one die shows 3.

Probability of the event that the coin shows a tail, given that at least one die shows 3, is given by P(A|B).

Therefore,

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{0}{\frac{7}{36}} = 0$$

Solution 16

It is given that
$$P(A) = \frac{1}{2}$$
 and $P(B) = 0$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A \cap B)}{0}$$

Therefore, P (A|B) is not defined.

Thus, the correct answer is C.

It is given that, P(A|B) = P(B|A)

$$\Rightarrow \frac{P(A \cap B)}{P(B)} = \frac{P(A \cap B)}{P(A)}$$

$$P(A) = P(B)$$

Thus, the correct answer is D.

Chapter 13 - Probability Exercise Ex. 13.2 Solution 1

It is given that
$$P(A) = \frac{3}{5}$$
 and $P(B) = \frac{1}{5}$

A and B are independent events. Therefore,

$$P(A \cap B) = P(A) \cdot P(B) = \frac{3}{5} \cdot \frac{1}{5} = \frac{3}{25}$$

Solution 2

There are 26 black cards in a deck of 52 cards.

Let P (A) be the probability of getting a black card in the first draw.

$$\therefore P(A) = \frac{26}{52} = \frac{1}{2}$$

Let P (B) be the probability of getting a black card on the second draw.

Since the card is not replaced,

$$\therefore P(B) = \frac{25}{51}$$

Thus, probability of getting both the cards black = $\frac{1}{2} \times \frac{25}{51} = \frac{25}{102}$

Let A, B, and C be the respective events that the first, second, and third drawn orange is good.

Therefore, probability that first drawn orange is good, P (A) = $\frac{12}{15}$

The oranges are not replaced.

Therefore, probability of getting second orange good, P (B) = $\frac{11}{14}$

Similarly, probability of getting third orange good, P(C) = $\frac{10}{13}$

The box is approved for sale, if all the three oranges are good.

Thus, probability of getting all the oranges good $=\frac{12}{15} \times \frac{11}{14} \times \frac{10}{13} = \frac{44}{91}$

Therefore, the probability that the box is approved for sale is $\frac{44}{91}$.

If a fair coin and an unbiased die are tossed, then the sample space S is given by,

$$S = \begin{cases} (H,1), (H,2), (H,3), (H,4), (H,5), (H,6), \\ (T,1), (T,2), (T,3), (T,4), (T,5), (T,6) \end{cases}$$

Let A: Head appears on the coin

$$A = \{(H,1),(H,2),(H,3),(H,4),(H,5),(H,6)\}$$

$$\Rightarrow P(A) = \frac{6}{12} = \frac{1}{2}$$

B: 3 on die = $\{(H,3), (T,3)\}$

$$P(B) = \frac{2}{12} = \frac{1}{6}$$

$$A \cap B = \{(H,3)\}$$

$$P(A \cap B) = \frac{1}{12}$$

$$P(A) \cdot P(B) = \frac{1}{2} \times \frac{1}{6} = P(A \cap B)$$

Therefore, A and B are independent events.

When a die is thrown, the sample space (S) is

Let A: the number is even = {2, 4, 6}

$$P(A) = \frac{3}{6} = \frac{1}{2}$$

B: the number is red = $\{1, 2, 3\}$

$$P(B) = \frac{3}{6} = \frac{1}{2}$$

$$A \cap B = \{2\}$$

$$P(AB) = P(A \cap B) = \frac{1}{6}$$

$$P(A) \cdot P(B) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4} \neq \frac{1}{6}$$

$$\Rightarrow P(A) \cdot P(B) \neq P(AB)$$

Therefore, A and B are not independent.

Solution 6

It is given that
$$P(E) = \frac{3}{5}$$
, $P(F) = \frac{3}{10}$, and $P(EF) = P(E \cap F) = \frac{1}{5}$

$$P(E) \cdot P(F) = \frac{3}{5} \cdot \frac{3}{10} = \frac{9}{50} \neq \frac{1}{5}$$

$$\Rightarrow P(E) \cdot P(F) \neq P(EF)$$

Therefore, E and F are not independent.

It is given that $P(A) = \frac{1}{2}$, $P(A \cup B) = \frac{3}{5}$, and P(B) = p

(i) When A and B are mutually exclusive, A \cap B = ϕ

$$P(A \cap B) = 0$$

It is known that, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

$$\Rightarrow \frac{3}{5} = \frac{1}{2} + p - 0$$
$$\Rightarrow p = \frac{3}{5} - \frac{1}{2} = \frac{1}{10}$$

(ii) When A and B are independent, $P(A \cap B) = P(A) \cdot P(B) = \frac{1}{2}p$

It is known that, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

$$\Rightarrow \frac{3}{5} = \frac{1}{2} + p - \frac{1}{2}p$$

$$\Rightarrow \frac{3}{5} = \frac{1}{2} + \frac{p}{2}$$

$$\Rightarrow \frac{p}{2} = \frac{3}{5} - \frac{1}{2} = \frac{1}{10}$$

$$\Rightarrow p = \frac{2}{10} = \frac{1}{5}$$

It is given that P(A) = 0.3 and P(B) = 0.4

(i) If A and B are independent events, then

$$P(A \cap B) = P(A) \cdot P(B) = 0.3 \times 0.4 = 0.12$$

(ii) It is known that, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

$$\Rightarrow$$
 P(A \cup B) = 0.3 + 0.4 - 0.12 = 0.58

(iii) It is known that, $P(A|B) = \frac{P(A \cap B)}{P(B)}$

$$\Rightarrow P(A | B) = \frac{0.12}{0.4} = 0.3$$

(iv) It is known that, $P(B|A) = \frac{P(A \cap B)}{P(A)}$

$$\Rightarrow P(B|A) = \frac{0.12}{0.3} = 0.4$$

Solution 9

It is given that, $P(A) = \frac{1}{4}$, $P(B) = \frac{1}{2}$ and $P(A \cap B) = \frac{1}{8}$

P(not on A and not on B) = $P(A' \cap B')$

 $P(\text{not on A and not on B}) = P((A \cup B))' \qquad A' \cap B' = (A \cup B)'$

=1-P(A
$$\cup$$
 B)
=1-[P(A)+P(B)-P(A \cap B)]
=1-[\frac{1}{4} + \frac{1}{2} - \frac{1}{8}]
=1-\frac{5}{9}

$$=\frac{3}{8}$$

It is given that
$$P(A) = \frac{1}{2}$$
, $P(B) = \frac{7}{12}$, and $P(\text{not A or not B}) = \frac{1}{4}$

$$\Rightarrow P(A' \cup B') = \frac{1}{4}$$

$$\Rightarrow P((A \cap B)') = \frac{1}{4}$$

$$\Rightarrow 1 - P(A \cap B) = \frac{1}{4}$$

$$\Rightarrow P(A \cap B) = \frac{3}{4}$$
...(1)
However, $P(A) \cdot P(B) = \frac{1}{2} \cdot \frac{7}{12} = \frac{7}{24}$
...(2)
Here, $\frac{3}{4} \neq \frac{7}{24}$

Therefore, A and B are independent events.

 $\therefore P(A \cap B) \neq P(A) \cdot P(B)$

It is given that P(A) = 0.3 and P(B) = 0.6

Also, A and B are independent events.

$$\Rightarrow$$
 P(A \cap B) = 0.3×0.6 = 0.18

(ii) P (A and not B) =
$$P(A \cap B')$$

$$=P(A)-P(A\cap B)$$

$$=0.3-0.18$$

$$=0.12$$

(iii)
$$P(A \text{ or } B) = P(A \cup B)$$

$$= P(A) + P(B) - P(A \cap B)$$

$$=0.3+0.6-0.18$$

$$=0.72$$

(iv) P (neither A nor B) =
$$P(A' \cap B')$$

$$= P\Big(\big(A \cup B\big)'\Big)$$

$$=1-P(A \cup B)$$

$$=1-0.72$$

$$= 0.28$$

Solution 12

Probability of getting an odd number in a single throw of a die = $\frac{3}{6} = \frac{1}{2}$

Similarly, probability of getting an even number = $\frac{3}{6} = \frac{1}{2}$

Probability of getting an even number three times $=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$

Therefore, probability of getting an odd number at least once

= 1 - Probability of getting an odd number in none of the throws

= 1 - Probability of getting an even number thrice

$$=1-\frac{1}{8}$$

$$=\frac{7}{8}$$

Solution 13

Total number of balls = 18

Number of red balls = 8

Number of black balls = 10

(i) Probability of getting a red ball in the first draw $=\frac{8}{18}=\frac{4}{9}$

The ball is replaced after the first draw.

Probability of getting a red ball in the second draw = $\frac{8}{18} = \frac{4}{9}$

Therefore, probability of getting both the balls red = $\frac{4}{9} \times \frac{4}{9} = \frac{16}{81}$

(ii) Probability of getting first ball black = $\frac{10}{18} = \frac{5}{9}$

The ball is replaced after the first draw.

Probability of getting second ball as red = $\frac{8}{18} = \frac{4}{9}$

Therefore, probability of getting first ball as black and second ball as red = $\frac{5}{9} \times \frac{4}{9} = \frac{20}{81}$

(iii) Probability of getting first ball as red = $\frac{8}{18} = \frac{4}{9}$

The ball is replaced after the first draw.

Probability of getting second ball as black = $\frac{10}{18} = \frac{5}{9}$

Therefore, probability of getting first ball as black and second ball as red = $\frac{4}{9} \times \frac{5}{9} = \frac{20}{81}$

Therefore, probability that one of them is black and other is red

= Probability of getting first ball black and second as red + Probability of getting first ball red and second ball black

$$= \frac{20}{81} + \frac{20}{81}$$
$$= \frac{40}{81}$$

Solution 14

Probability of solving the problem by A, P (A) = $\frac{1}{2}$

Probability of solving the problem by B, P (B) = $\frac{1}{3}$

Since the problem is solved independently by A and B,

$$P(AB) = P(A) \cdot P(B) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$$

$$P(A') = 1 - P(A) = 1 - \frac{1}{2} = \frac{1}{2}$$

$$P(B') = 1 - P(B) = 1 - \frac{1}{3} = \frac{2}{3}$$

i. Probability that the problem is solved = $P(A \cup B)$

Probability of solving the problem by A, P (A) = $\frac{1}{2}$

Probability of solving the problem by B, P (B) = $\frac{1}{3}$

Since the problem is solved independently by A and B,

:.
$$P(AB) = P(A) \cdot P(B) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$$

$$P(A')=1-P(A)=1-\frac{1}{2}=\frac{1}{2}$$

$$P(B') = 1 - P(B) = 1 - \frac{1}{3} = \frac{2}{3}$$

(ii) Probability that exactly one of them solves the problem is given by, $P(A).P(B')+P(B)\cdot P(A')$

$$=\frac{1}{2}\times\frac{2}{3}+\frac{1}{2}\times\frac{1}{3}$$

$$=\frac{1}{3}+\frac{1}{6}$$

$$=\frac{1}{2}$$

(i) In a deck of 52 cards, 13 cards are spades and 4 cards are aces.

P(E) = P(the card drawn is a spade) =
$$\frac{13}{52} = \frac{1}{4}$$

$$P(F) = P(\text{the card drawn is an ace}) = \frac{4}{52} = \frac{1}{13}$$

In the deck of cards, only 1 card is an ace of spades.

$$P(EF) = P(the card drawn is spade and an ace) = \frac{1}{52}$$

$$P(E) \times P(F) = \frac{1}{4} \cdot \frac{1}{13} = \frac{1}{52} = P(EF)$$

$$P(E) \times P(F) = P(EF)$$

Therefore, the events E and F are independent.

(ii) In a deck of 52 cards, 26 cards are black and 4 cards are kings.

P(E) = P(the card drawn is black) =
$$\frac{26}{52} = \frac{1}{2}$$

P(F) = P(the card drawn is a king) =
$$\frac{4}{52} = \frac{1}{13}$$

In the pack of 52 cards, 2 cards are black as well as kings.

P (EF) = P(the card drawn is a black king) =
$$\frac{2}{52} = \frac{1}{26}$$

$$P(E) \times P(F) = \frac{1}{2} \cdot \frac{1}{13} = \frac{1}{26} = P(EF)$$

Therefore, the given events E and F are independent.

(iii) In a deck of 52 cards, 4 cards are kings, 4 cards are queens, and 4 cards are jacks.

P(E) = P(the card drawn is a king or a queen) =
$$\frac{8}{52} = \frac{2}{13}$$

P(F) = P(the card drawn is a queen or a jack) =
$$\frac{8}{52} = \frac{2}{13}$$

There are 4 cards which are king or queen and queen or jack.

P(EF) = P(the card drawn is a king or a queen, or queen or a jack)

$$=\frac{4}{52}=\frac{1}{13}$$

$$P(E) \times P(F) = \frac{2}{13} \cdot \frac{2}{13} = \frac{4}{169} \neq \frac{1}{13}$$

$$\Rightarrow P(E) \cdot P(F) \neq P(EF)$$

Therefore, the given events E and F are not independent.

Let H denote the students who read Hindi newspaper and E denote the students who read English newspaper.

It is given that,

$$P(H) = 60\% = \frac{6}{10} = \frac{3}{5}$$

$$P(E) = 40\% = \frac{40}{100} = \frac{2}{5}$$

$$P(H \cap E) = 20\% = \frac{20}{100} = \frac{1}{5}$$

i. Probability that a student reads Hindi or English newspaper is,

$$(H \cup E)' = 1 - P(H \cup E)$$

$$= 1 - \{P(H) + P(E) - P(H \cap E)\}$$

$$= 1 - \left(\frac{3}{5} + \frac{2}{5} - \frac{1}{5}\right)$$

$$= 1 - \frac{4}{5}$$

$$= \frac{1}{5}$$

(ii) Probability that a randomly chosen student reads English newspaper, if she reads Hindi news paper, is given by P(E|H).

$$P(E|H) = \frac{P(E \cap H)}{P(H)}$$
$$= \frac{\frac{1}{5}}{\frac{3}{5}}$$
$$= \frac{1}{3}$$

(iii) Probability that a randomly chosen student reads Hindi newspaper, if she reads English newspaper, is given by P(H|E).

$$P(H|E) = \frac{P(H \cap E)}{P(E)}$$
$$= \frac{\frac{1}{5}}{\frac{2}{5}}$$
$$= \frac{1}{2}$$

Solution 17

When two dice are rolled, the number of outcomes is 36.

The only even prime number is 2.

Let E be the event of getting an even prime number on each die.

$$E = \{(2, 2)\}$$

$$\Rightarrow P(E) = \frac{1}{36}$$

Therefore, the correct answer is D.

Two events A and B are said to be independent, if $P(AB) = P(A) \times P(B)$

Consider the result given in alternative B.

$$P(A'B') = [1-P(A)][1-P(B)]$$

$$\Rightarrow P(A' \cap B') = 1-P(A)-P(B)+P(A) \cdot P(B)$$

$$\Rightarrow 1-P(A \cup B) = 1-P(A)-P(B)+P(A) \cdot P(B)$$

$$\Rightarrow P(A \cup B) = P(A)+P(B)-P(A) \cdot P(B)$$

$$\Rightarrow P(A)+P(B)-P(AB) = P(A)+P(B)-P(A) \cdot P(B)$$

$$\Rightarrow P(AB) = P(A) \cdot P(B)$$

This implies that A and B are independent, if P(A'B') = [1-P(A)][1-P(B)]

Distracter Rationale

A. Let
$$P(A) = m, P(B) = n, 0 < m, n < 1$$

A and B are mutually exclusive.

$$\therefore A \cap B = \phi$$

$$\Rightarrow P(AB) = 0$$
However, $P(A) \cdot P(B) = mn \neq 0$

$$\therefore P(A) \cdot P(B) \neq P(AB)$$

C. Let A: Event of getting an odd number on throw of a die = $\{1, 3, 5\}$

$$\Rightarrow P(A) = \frac{3}{6} = \frac{1}{2}$$

B: Event of getting an even number on throw of a die = $\{2, 4, 6\}$

$$P(B) = \frac{3}{6} = \frac{1}{2}$$

Here, $A \cap B = \phi$

$$\therefore P(AB) = 0$$

$$P(A) \cdot P(B) = \frac{1}{4} \neq 0$$

$$\Rightarrow P(A) \cdot P(B) \neq P(AB)$$

D. From the above example, it can be seen that,

$$P(A)+P(B)=\frac{1}{2}+\frac{1}{2}=1$$

However, it cannot be inferred that A and B are independent.

Thus, the correct answer is B.

Chapter 13 - Probability Exercise Ex. 13.3 Solution 1

The urn contains 5 red and 5 black balls.

Let a red ball be drawn in the first attempt.

$$\therefore$$
 P (drawing a red ball) = $\frac{5}{10} = \frac{1}{2}$

If two red balls are added to the urn, then the urn contains 7 red and 5 black balls.

P (drawing a red ball) =
$$\frac{7}{12}$$

Let a black ball be drawn in the first attempt.

$$Arr$$
 P (drawing a black ball in the first attempt) $=\frac{5}{10}=\frac{1}{2}$

If two black balls are added to the urn, then the urn contains 5 red and 7 black balls.

P (drawing a red ball) =
$$\frac{5}{12}$$

Therefore, probability of drawing second ball as red is

$$\frac{1}{2} \times \frac{7}{12} + \frac{1}{2} \times \frac{5}{12} = \frac{1}{2} \left(\frac{7}{12} + \frac{5}{12} \right) = \frac{1}{2} \times 1 = \frac{1}{2}$$

Let E_1 and E_2 be the events of selecting first bag and second bag respectively.

$$\therefore P(E_1) = P(E_2) = \frac{1}{2}$$

Let A be the event of getting a red ball.

$$\Rightarrow$$
 P(A|E₁) = P(drawing a red ball from first bag) = $\frac{4}{8} = \frac{1}{2}$

$$\Rightarrow$$
 P(A|E₂) = P(drawing a red ball from second bag) = $\frac{2}{8} = \frac{1}{4}$

The probability of drawing a ball from the first bag, given that it is red, is given by $P(E_2|A)$.

By using Bayes' theorem, we obtain

$$P(E_{1}|A) = \frac{P(E_{1}) \cdot P(A|E_{1})}{P(E_{1}) \cdot P(A|E_{1}) + P(E_{2}) \cdot P(A|E_{2})}$$

$$= \frac{\frac{1}{2} \cdot \frac{1}{2}}{\frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{4}}$$

$$= \frac{\frac{1}{4}}{\frac{1}{4} + \frac{1}{8}}$$

$$= \frac{\frac{1}{4}}{\frac{3}{8}}$$

$$= \frac{2}{3}$$

Let E_1 and E_2 be the events that the student is a hostler and a day scholar respectively and A be the event that the chosen student gets grade A.

$$P(E_1) = 60\% = \frac{60}{100} = 0.6$$

$$P(E_2) = 40\% = \frac{40}{100} = 0.4$$

 $P(A|E_1) = P(\text{student getting an A grade is a hostler}) = 30\% = 0.3$

 $P(A|E_1) = P(\text{student getting an A grade is a day scholar}) = 20\% = 0.2$

The probability that a randomly chosen student is a hostler, given that he has an A grade, is given by $P(E_i|A)$.

By using Bayes' theorem, we obtain

$$P(E_{1}|A) = \frac{P(E_{1}) \cdot P(A|E_{1})}{P(E_{1}) \cdot P(A|E_{1}) + P(E_{2}) \cdot P(A|E_{2})}$$

$$= \frac{0.6 \times 0.3}{0.6 \times 0.3 + 0.4 \times 0.2}$$

$$= \frac{0.18}{0.26}$$

$$= \frac{18}{26}$$

$$= \frac{9}{13}$$

Let E_1 and E_2 be the respective events that the student knows the answer and he guesses the answer.

Let A be the event that the answer is correct.

$$\therefore P(E_1) = \frac{3}{4}$$

$$P(E_2) = \frac{1}{4}$$

The probability that the student answered correctly, given that he knows the answer, is 1.

$$P(A|E_1) = 1$$

Probability that the student answered correctly, given that he guessed, is $\frac{1}{4}$.

$$\therefore P(A|E_2) = \frac{1}{4}$$

The probability that the student knows the answer, given that he answered it correctly, is given by $P(E_i|A)$.

By using Bayes' theorem, we obtain

$$P(E_{1}|A) = \frac{P(E_{1}) \cdot P(A|E_{1})}{P(E_{1}) \cdot P(A|E_{1}) + P(E_{2}) \cdot P(A|E_{2})}$$

$$= \frac{\frac{3}{4} \cdot 1}{\frac{3}{4} \cdot 1 + \frac{1}{4} \cdot \frac{1}{4}}$$

$$= \frac{\frac{3}{4}}{\frac{3}{4} + \frac{1}{16}}$$

$$= \frac{\frac{3}{4}}{\frac{13}{16}}$$

$$= \frac{12}{13}$$

Let E_1 and E_2 be the respective events that a person has a disease and a person has no disease.

Since E1 and E2 are events complimentary to each other,

$$P(E_1) + P(E_2) = 1$$

$$P(E_2) = 1 - P(E_1) = 1 - 0.001 = 0.999$$

Let A be the event that the blood test result is positive.

$$P(E_1) = 0.1\% = \frac{0.1}{100} = 0.001$$

 $P(A|E_1) = P(\text{result is positive given the person has disease}) = 99\% = 0.99$

 $P(A|E_2) = P(result is positive given that the person has no disease) = 0.5% = 0.005$ Probability that a person has a disease, given that his test result is positive, is given by $P(E_1|A)$.

By using Bayes' theorem, we obtain

$$\begin{split} P(E_1|A) &= \frac{P(E_1) \cdot P(A|E_1)}{P(E_1) \cdot P(A|E_1) + P(E_2) \cdot P(A|E_2)} \\ &= \frac{0.001 \times 0.99}{0.001 \times 0.99 + 0.999 \times 0.005} \\ &= \frac{0.00099}{0.00099 + 0.004995} \\ &= \frac{0.00099}{0.005985} \\ &= \frac{990}{5985} \\ &= \frac{110}{665} \\ &= \frac{22}{133} \end{split}$$

Let E_1 , E_2 , and E_3 be the respective events of choosing a two headed coin, a biased coin, and an unbiased coin.

:.
$$P(E_1) = P(E_2) = P(E_3) = \frac{1}{3}$$

Let A be the event that the coin shows heads.

A two-headed coin will always show heads.

$$\therefore$$
 P(A|E₁) = P(coin showing heads, given that it is a two-headed coin) = 1

Probability of heads coming up, given that it is a biased coin= 75%

$$\therefore$$
 P(A|E₂) = P(coin showing heads, given that it is a biased coin) = $\frac{75}{100} = \frac{3}{4}$

Since the third coin is unbiased, the probability that it shows heads is always $rac{1}{2}$.

$$\therefore$$
 P(A|E₃) = P(coin showing heads, given that it is an unbiased coin) = $\frac{1}{2}$

The probability that the coin is two-headed, given that it shows heads, is given by $P(E_1|A)$.

By using Bayes' theorem, we obtain

$$P(E_{1}|A) = \frac{P(E_{1}) \cdot P(A|E_{1})}{P(E_{1}) \cdot P(A|E_{1}) + P(E_{2}) \cdot P(A|E_{2}) + P(E_{3}) \cdot P(A|E_{3})}$$

$$= \frac{\frac{1}{3} \cdot 1}{\frac{1}{3} \cdot 1 + \frac{1}{3} \cdot \frac{3}{4} + \frac{1}{3} \cdot \frac{1}{2}}$$

$$= \frac{\frac{1}{3}}{\frac{1}{3} \left(1 + \frac{3}{4} + \frac{1}{2}\right)}$$

$$= \frac{1}{\frac{9}{4}}$$

$$= \frac{4}{9}$$

Let E_1 , E_2 , and E_3 be the respective events that the driver is a scooter driver, a car driver, and a truck driver.

Let A be the event that the person meets with an accident.

There are 2000 scooter drivers, 4000 car drivers, and 6000 truck drivers.

Total number of drivers = 2000 + 4000 + 6000 = 12000

$$P(E_1) = P(driver is a scooter driver) = \frac{2000}{12000} = \frac{1}{6}$$

P (E₂) = P (driver is a car driver) =
$$\frac{4000}{12000} = \frac{1}{3}$$

P (E₃) = P (driver is a truck driver) =
$$\frac{6000}{12000} = \frac{1}{2}$$

$$P(A|E_1) = P(\text{scooter driver met with an accident}) = 0.01 = \frac{1}{100}$$

$$P(A|E_2) = P(car driver met with an accident) = 0.03 = \frac{3}{100}$$

$$P(A|E_3) = P(\text{truck driver met with an accident}) = 0.15 = \frac{15}{100}$$

The probability that the driver is a scooter driver, given that he met with an accident, is given by $P(E_1|A)$.

By using Bayes' theorem, we obtain

$$\begin{split} P(E_{1}|A) &= \frac{P(E_{1}) \cdot P(A|E_{1})}{P(E_{1}) \cdot P(A|E_{1}) + P(E_{2}) \cdot P(A|E_{2}) + P(E_{3}) \cdot P(A|E_{3})} \\ &= \frac{\frac{1}{6} \cdot \frac{1}{100}}{\frac{1}{6} \cdot \frac{1}{100} + \frac{1}{3} \cdot \frac{3}{100} + \frac{1}{2} \cdot \frac{15}{100}} \\ &= \frac{\frac{1}{6} \cdot \frac{1}{100}}{\frac{1}{100} \left(\frac{1}{6} + 1 + \frac{15}{2}\right)} \\ &= \frac{\frac{1}{6}}{\frac{104}{12}} \\ &= \frac{1}{6} \times \frac{12}{104} \\ &= \frac{1}{52} \end{split}$$

Solution 8

Let E_1 and E_2 be the respective events of items produced by machines A and B. Let X be the event that the produced item was found to be defective.

Probability of items produced by machine A, P (E₁) = $60\% = \frac{3}{5}$

Probability of items produced by machine B, P (E₂) = $40\% = \frac{2}{5}$

Probability that machine A produced defective items, P $(\times|E_1) = 2\% = \frac{2}{100}$

Probability that machine B produced defective items, P (\times |E₂) = $1\% = \frac{1}{100}$

The probability that the randomly selected item was from machine B, given that it is defective, is given by $P(E_2|X)$.

By using Bayes' theorem, we obtain

$$P(E_{2}|X) = \frac{P(E_{2}) \cdot P(X|E_{2})}{P(E_{1}) \cdot P(X|E_{1}) + P(E_{2}) \cdot P(X|E_{2})}$$

$$= \frac{\frac{2}{5} \cdot \frac{1}{100}}{\frac{3}{5} \cdot \frac{2}{100} + \frac{2}{5} \cdot \frac{1}{100}}$$

$$= \frac{\frac{2}{500}}{\frac{6}{500} + \frac{2}{500}}$$

$$= \frac{2}{8}$$

$$= \frac{1}{4}$$

Let E_1 and E_2 be the respective events that the first group and the second group win the competition. Let A be the event of introducing a new product.

 $P(E_1) = Probability$ that the first group wins the competition = 0.6

 $P(E_2) = Probability that the second group wins the competition = 0.4$

 $P(A|E_1) = Probability of introducing a new product if the first group wins = 0.7$

 $P(A|E_2) = Probability of introducing a new product if the second group wins = 0.3$

The probability that the new product is introduced by the second group is given by $P(E_2|A)$.

By using Bayes' theorem, we obtain

$$P(E_{2}|A) = \frac{P(E_{2}) \cdot P(A|E_{2})}{P(E_{1}) \cdot P(A|E_{1}) + P(E_{2}) \cdot P(A|E_{2})}$$

$$= \frac{0.4 \times 0.3}{0.6 \times 0.7 + 0.4 \times 0.3}$$

$$= \frac{0.12}{0.42 + 0.12}$$

$$= \frac{0.12}{0.54}$$

$$= \frac{12}{54}$$

$$= \frac{2}{9}$$

Let E_1 be the event that the outcome on the die is 5 or 6 and E_2 be the event that the outcome on the die is 1, 2, 3, or 4.

$$\therefore P(E_1) = \frac{2}{6} = \frac{1}{3} \text{ and } P(E_2) = \frac{4}{6} = \frac{2}{3}$$

Let A be the event of getting exactly one head.

P (A|E_1) = Probability of getting exactly one head by tossing the coin three times if she gets 5 or 6 = $\frac{3}{8}$

P (A|E₂) = Probability of getting exactly one head in a single throw of coin if she gets 1, 2, 3, or 4 = $\frac{1}{2}$

The probability that the girl threw 1, 2, 3, or 4 with the die, if she obtained exactly one head, is given by $P(E_2|A)$.

By using Bayes' theorem, we obtain

$$P(E_{2}|A) = \frac{P(E_{2}) \cdot P(A|E_{2})}{P(E_{1}) \cdot P(A|E_{1}) + P(E_{2}) \cdot P(A|E_{2})}$$

$$= \frac{\frac{2 \cdot 1}{3 \cdot 2}}{\frac{1}{3} \cdot \frac{3}{8} + \frac{2}{3} \cdot \frac{1}{2}}$$

$$= \frac{\frac{1}{3}}{\frac{1}{3} \left(\frac{3}{8} + 1\right)}$$

$$= \frac{1}{11}$$

$$= \frac{8}{11}$$

Let E_1 , E_2 , and E_3 be the respective events of the time consumed by machines A, B, and C for the job.

$$P(E_1) = 50\% = \frac{50}{100} = \frac{1}{2}$$

$$P(E_2) = 30\% = \frac{30}{100} = \frac{3}{10}$$

$$P(E_3) = 20\% = \frac{20}{100} = \frac{1}{5}$$

Let X be the event of producing defective items.

$$P(X|E_1) = 1\% = \frac{1}{100}$$
$$P(X|E_2) = 5\% = \frac{5}{100}$$
$$P(X|E_3) = 7\% = \frac{7}{100}$$

The probability that the defective item was produced by A is given by P $(E_1|A)$.

By using Bayes' theorem, we obtain

$$\begin{split} P(E_1|X) &= \frac{P(E_1) \cdot P(X|E_1)}{P(E_1) \cdot P(X|E_1) + P(E_2) \cdot P(X|E_2) + P(E_3) \cdot P(X|E_3)} \\ &= \frac{\frac{1}{2} \cdot \frac{1}{100}}{\frac{1}{2} \cdot \frac{1}{100} + \frac{3}{10} \cdot \frac{5}{100} + \frac{1}{5} \cdot \frac{7}{100}} \\ &= \frac{\frac{1}{100} \cdot \frac{1}{2}}{\frac{1}{100} \left(\frac{1}{2} + \frac{3}{2} + \frac{7}{5}\right)} \\ &= \frac{\frac{1}{2}}{\frac{17}{5}} \\ &= \frac{5}{34} \end{split}$$

Let E_1 and E_2 be the respective events of choosing a diamond card and a card which is not diamond.

Let A denote the lost card.

Out of 52 cards, 13 cards are diamond and 39 cards are not diamond.

$$\therefore P(E_1) = \frac{13}{52} = \frac{1}{4}$$

$$P(E_2) = \frac{39}{52} = \frac{3}{4}$$

When one diamond card is lost, there are 12 diamond cards out of 51 cards.

Two cards can be drawn out of 12 diamond cards in $^{12}\mathrm{C}_2$ ways.

Similarly, 2 diamond cards can be drawn out of 51 cards in $^{51}C_2$ ways. The probability of getting two cards, when one diamond card is lost, is given by P (A|E₁).

$$P(A|E_1) = \frac{{}^{12}C_2}{{}^{51}C_2} = \frac{12!}{2 \times 10!} \times \frac{2 \times 49!}{51!} = \frac{11 \times 12}{50 \times 51} = \frac{22}{425}$$

When the lost card is not a diamond, there are 13 diamond cards out of 51 cards.

Two cards can be drawn out of 13 diamond cards in $^{13}{\rm C_2}$ ways whereas 2 cards can be drawn out of 51 cards in $^{51}{\rm C_2}$ ways.

The probability of getting two cards, when one card is lost which is not diamond, is given by $P(A|E_2)$.

$$P(A|E_2) = \frac{{}^{13}C_2}{{}^{51}C_2} = \frac{13!}{2!\times 11!} \times \frac{2!\times 49!}{51!} = \frac{12\times 13}{50\times 51} = \frac{26}{425}$$

The probability that the lost card is diamond is given by $P(E_1|A)$.

By using Bayes' theorem, we obtain

$$\begin{split} P(E_1|A) &= \frac{P(E_1) \cdot P(A|E_1)}{P(E_1) \cdot P(A|E_1) + P(E_2) \cdot P(A|E_2)} \\ &= \frac{\frac{1}{4} \cdot \frac{22}{425}}{\frac{1}{4} \cdot \frac{22}{425} + \frac{3}{4} \cdot \frac{26}{425}} \\ &= \frac{\frac{1}{425} \left(\frac{22}{4}\right)}{\frac{1}{425} \left(\frac{22}{4} + \frac{26 \times 3}{4}\right)} \\ &= \frac{\frac{11}{2}}{\frac{25}{25}} \\ &= \frac{11}{50} \end{split}$$

Solution 13

Let E1 and E2 be the events such that

E1: A speaks truth

E2: A speaks false

Let X be the event that a head appears.

$$P(E_1) = \frac{4}{5}$$

 $\therefore P(E_2) = 1 - P(E_1) = 1 - \frac{4}{5} = \frac{1}{5}$

If a coin is tossed, then it may result in either head (H) or tail (T).

The probability of getting a head is $\frac{1}{2}$ whether A speaks truth or not.

$$\therefore P(X|E_1) = P(X|E_2) = \frac{1}{2}$$

The probability that there is actually a head is given by $P(E_1|X)$.

$$P(E_{1}|X) = \frac{P(E_{1}) \cdot P(X|E_{1})}{P(E_{1}) \cdot P(X|E_{1}) + P(E_{2}) \cdot P(X|E_{2})}$$

$$= \frac{\frac{4 \cdot 1}{5 \cdot 2}}{\frac{4 \cdot 1}{5 \cdot 2} + \frac{1 \cdot 1}{5 \cdot 2}}$$

$$= \frac{\frac{1 \cdot 4}{2 \cdot 5}}{\frac{1}{2} \left(\frac{4}{5} + \frac{1}{5}\right)}$$

$$= \frac{4}{5}$$

$$= \frac{4}{5}$$

Therefore, the correct answer is A.

Solution 14

If $A \subset B$, then $A \cap B = A$

$$P(A \cap B) = P(A)$$

Also, P (A) < P (B)

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)}{P(B)} \neq \frac{P(B)}{P(A)} \dots (1)$$

Thus,
$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)}{P(B)} \dots (2)$$

It is known that, $P(B) \le 1$

$$\Rightarrow \frac{1}{P(B)} \ge 1$$
$$\Rightarrow \frac{P(A)}{P(B)} \ge P(A)$$

From (2), we obtain

$$\Rightarrow P(A|B) \ge P(A)$$
 ...(3)

 $\therefore P(A|B)$ is not less than P(A).

Thus, from (3), it can be concluded that the relation given in alternative C is correct.

Chapter 13 - Probability Exercise Ex. 13.4 Solution 1

It is known that the sum of all the probabilities in a probability distribution is one.

(i) Sum of the probabilities = 0.4 + 0.4 + 0.2 = 1

Therefore, the given table is a probability distribution of random variables.

(ii) It can be seen that for X = 3, P(X) = -0.1

It is known that probability of any observation is not negative. Therefore, the given table is not a probability distribution of random variables.

(iii) Sum of the probabilities = $0.6 + 0.1 + 0.2 = 0.9 \neq 1$

Therefore, the given table is not a probability distribution of random variables.

(iv) Sum of the probabilities = $0.3 + 0.2 + 0.4 + 0.1 + 0.05 = 1.05 \neq 1$

Therefore, the given table is not a probability distribution of random variables.

Solution 2

The two balls selected can be represented as BB, BR, RB, RR, where B represents a black ball and R represents a red ball.

X represents the number of black balls.

$$X(BB) = 2$$

$$X(BR) = 1$$

$$X(RB) = 1$$

$$X(RR) = 0$$

Therefore, the possible values of X are 0, 1, and 2.

Yes, X is a random variable.

A coin is tossed six times and X represents the difference between the number of heads and the number of tails.

$$\times$$
 (6 H, 0T) = $|6-0| = 6$

$$\times$$
 (5 H, 1 T) = $|5-1| = 4$

$$X (4 \text{ H, 2 T}) = |4-2| = 2$$

$$\times (3 \text{ H, } 3 \text{ T}) = |3-3| = 0$$

$$X (2 \text{ H, 4 T}) = |2-4| = 2$$

$$\times$$
 (1 H, 5 T) = $|1-5| = 4$

$$\times (OH, 6 T) = |0-6| = 6$$

Thus, the possible values of X are 6, 4, 2, and 0.

(i) When one coin is tossed twice, the sample space is

Let X represent the number of heads.

$$\times$$
 (HH) = 2, \times (HT) = 1, \times (TH) = 1, \times (TT) = 0

Therefore, X can take the value of 0, 1, or 2.

It is known that,

$$P(HH) = P(HT) = P(TH) = P(TT) = \frac{1}{4}$$

$$P(X = 0) = P(TT) = \frac{1}{4}$$

$$P(X = 1) = P(HT) + P(TH) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

$$P(X = 2) = P(HH) = \frac{1}{4}$$

Thus, the required probability distribution is as follows.

х	0	1	2
P (X)	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

(ii) When three coins are tossed simultaneously, the sample space is $\{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$

Let X represent the number of tails.

It can be seen that X can take the value of 0, 1, 2, or 3.

$$P(X = 0) = P(HHH) = \frac{1}{8}$$

$$P (X = 1) = P (HHT) + P (HTH) + P (THH) = \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{3}{8}$$

$$P(X = 2) = P(HTT) + P(THT) + P(TTH) = \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{3}{8}$$

$$P(X = 3) = P(TTT) = \frac{1}{8}$$

Thus, the probability distribution is as follows.

х	0	1	2	3
P (X)	1 8	3 8	3 8	$\frac{1}{8}$

(iii) When a coin is tossed four times, the sample space is

$$S = \left\{ \begin{matrix} HHHH, HHHT, HHTH, HHTT, HTHT, HTHH, HTTH, HTTT, \\ THHH, THHT, THTH, THTT, TTHH, TTHT, TTTH, TTTT \end{matrix} \right\}$$

Let X be the random variable, which represents the number of heads.

It can be seen that X can take the value of 0, 1, 2, 3, or 4.

$$P(X = 0) = P(TTTT) = \frac{1}{16}$$

$$P(X = 1) = P(TTTH) + P(TTHT) + P(THTT) + P(HTTT)$$

$$=\frac{1}{16}+\frac{1}{16}+\frac{1}{16}+\frac{1}{16}=\frac{4}{16}=\frac{1}{4}$$

$$P(X = 2) = P(HHTT) + P(THHT) + P(TTHH) + P(HTTH) + P(HTHT)$$

+ P (THTH)

$$=\frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} = \frac{6}{16} = \frac{3}{8}$$

$$P(X = 3) = P(HHHT) + P(HHTH) + P(HTHH) + P(THHH)$$

$$=\frac{1}{16}+\frac{1}{16}+\frac{1}{16}+\frac{1}{16}=\frac{4}{16}=\frac{1}{4}$$

$$P(X = 4) = P(HHHH) = \frac{1}{16}$$

Thus, the probability distribution is as follows.

х	0	1	2	3	4
P (X)	$\frac{1}{16}$	$\frac{1}{4}$	3 8	$\frac{1}{4}$	$\frac{1}{16}$

When a die is tossed two times, we obtain $(6 \times 6) = 36$ number of observations.

Let X be the random variable, which represents the number of successes.

i. Here, success refers to the number greater than 4.

P(X = 0) = P(number less than or equal to 4 on both the tosses) =
$$\frac{4}{6} \times \frac{4}{6} = \frac{4}{9}$$

P(X = 1) = P(number less than or equal to 4 on first toss and greater than 4 on second toss) + <math>P(number greater than 4 on first toss and less than or equal to 4 on second toss)

$$=\frac{4}{6}\times\frac{2}{6}+\frac{4}{6}\times\frac{2}{6}=\frac{4}{9}$$

P(X = 2) = P(number greater than 4 on both the tosses)

$$=\frac{2}{6}\times\frac{2}{6}=\frac{1}{9}$$

Thus, the probability distribution is as follows.

х	1	1	2
P (X)	4 9	<u>4</u> 9	$\frac{1}{9}$

(ii) Here, success means six appears on at least one die.

P (Y = 0) = P (six does not appear on any of the dice) =
$$\frac{5}{6} \times \frac{5}{6} = \frac{25}{36}$$

$$P(Y = 1) = P(six appears on at least one of the dice) = $\frac{11}{36}$$$

Thus, the required probability distribution is as follows.

Y	0	1
P (Y)	$\frac{25}{36}$	$\frac{11}{36}$

It is given that out of 30 bulbs, 6 are defective.

Number of non-defective bulbs = 30 - 6 = 24

4 bulbs are drawn from the lot with replacement.

Let X be the random variable that denotes the number of defective bulbs in the selected bulbs.

$$\therefore$$
 P (X = 0) = P (4 non-defective and 0 defective) = ${}^{4}C_{0} \cdot \frac{4}{5} \cdot \frac{4}{5} \cdot \frac{4}{5} \cdot \frac{4}{5} \cdot \frac{4}{5} = \frac{256}{625}$

P(X = 1) = P(3 non-defective and 1 defective) =
$${}^4C_1 \cdot \left(\frac{1}{5}\right) \cdot \left(\frac{4}{5}\right)^3 = \frac{256}{625}$$

P (X = 2) = P (2 non-defective and 2 defective) =
$${}^4C_2 \cdot \left(\frac{1}{5}\right)^2 \cdot \left(\frac{4}{5}\right)^2 = \frac{96}{625}$$

P (X = 3) = P (1 non-defective and 3 defective) =
$${}^4C_3 \cdot \left(\frac{1}{5}\right)^3 \cdot \left(\frac{4}{5}\right) = \frac{16}{625}$$

P (X = 4) = P (0 non-defective and 4 defective) =
$${}^4C_4 \cdot \left(\frac{1}{5}\right)^4 \cdot \left(\frac{4}{5}\right)^0 = \frac{1}{625}$$

Therefore, the required probability distribution is as follows.

х	0	1	2	m	4
P (X)	$\frac{256}{625}$	$\frac{256}{625}$	$\frac{96}{625}$	$\frac{16}{625}$	$\frac{1}{625}$

Solution 7

Let the probability of getting a tail in the biased coin be x.

$$P(T) = x$$

$$P(H) = 3x$$

For a biased coin, P(T) + P(H) = 1

$$\Rightarrow x + 3x = 1$$

$$\Rightarrow 4x = 1$$

$$\Rightarrow x = \frac{1}{4}$$

:.
$$P(T) = \frac{1}{4}$$
 and $P(H) = \frac{3}{4}$

When the coin is tossed twice, the sample space is {HH, TT, HT, TH}.

Let X be the random variable representing the number of tails.

$$P(X = 0) = P(no tail) = P(H) \times P(H) = \frac{3}{4} \times \frac{3}{4} = \frac{9}{16}$$

$$P(X = 1) = P(one tail) = P(HT) + P(TH)$$

$$= \frac{3}{4} \cdot \frac{1}{4} + \frac{1}{4} \cdot \frac{3}{4}$$
$$= \frac{3}{16} + \frac{3}{16}$$
$$= \frac{3}{8}$$

$$P (X = 2) = P (two tails) = P (TT) = \frac{1}{4} \times \frac{1}{4} = \frac{1}{16}$$

Therefore, the required probability distribution is as follows.

х	0	1	2
P (X)	9 16	3 8	$\frac{1}{16}$

(i) It is known that the sum of probabilities of a probability distribution of random variables is one.

$$\therefore 0 + k + 2k + 2k + 3k + k^{2} + 2k^{2} + (7k^{2} + k) = 1$$

$$\Rightarrow 10k^{2} + 9k - 1 = 0$$

$$\Rightarrow (10k - 1)(k + 1) = 0$$

$$\Rightarrow k = -1, \frac{1}{10}$$

k = -1 is not possible as the probability of an event is never negative.

$$\Rightarrow k = \frac{1}{10}$$

(ii)
$$P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2)$$

$$= 0 + k + 2k$$

$$=3k$$

$$=3\times\frac{1}{10}$$

$$=\frac{3}{10}$$

(iii)
$$P(X > 6) = P(X = 7)$$

$$=7k^{2}+k$$

$$=7 \times \left(\frac{1}{10}\right)^2 + \frac{1}{10}$$

$$=\frac{7}{100}+\frac{1}{10}$$

$$=\frac{17}{100}$$

(iv)
$$P(0 < X < 3) = P(X = 1) + P(X = 2)$$

$$=k+2k$$

$$=3k$$

$$=3\times\frac{1}{10}$$

$$=\frac{3}{10}$$

(a) It is known that the sum of probabilities of a probability distribution of random variables is one.

$$k + 2k + 3k + 0 = 1$$

$$6k = 1$$

$$k = \frac{1}{6}$$
(b) $P(X < 2) = P(X = 0) + P(X = 1)$

$$= k + 2k$$

$$= 3k$$

$$= \frac{3}{6}$$

$$= \frac{1}{2}$$

$$P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2)$$

$$= k + 2k + 3k$$

$$= 6k$$

$$= \frac{6}{6}$$

$$= 1$$

$$P(X \ge 2) = P(X = 2) + P(X > 2)$$

$$= 3k + 0$$

$$= 3k$$

$$= \frac{3}{6}$$

$$= \frac{1}{2}$$

Let X denote the success of getting heads.

Therefore, the sample space is

It can be seen that X can take the value of 0, 1, 2, or 3.

$$P(X = 0) = P(TTT)$$

$$= P(T) \cdot P(T) \cdot P(T)$$

$$= \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$

$$= \frac{1}{8}$$

$$P (X = 1) = P (HHT) + P (HTH) + P (THH)$$

$$= \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$

$$= \frac{3}{8}$$

$$P(X = 2) = P(HHT) + P(HTH) + P(THH)$$

$$= \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$

$$= \frac{3}{8}$$

$$\therefore P(X=3) = P(HHH)$$

$$= \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$

$$= \frac{1}{8}$$

Therefore, the required probability distribution is as follows.

х	0	1	2	з
P(X)	$\frac{1}{8}$	3 8	3 8	$\frac{1}{8}$

Mean of X E(X), $\mu = \sum X_i P(X_i)$

$$= 0 \times \frac{1}{8} + 1 \times \frac{3}{8} + 2 \times \frac{3}{8} + 3 \times \frac{1}{8}$$

$$= \frac{3}{8} + \frac{3}{4} + \frac{3}{8}$$

$$= \frac{3}{2}$$

$$= 1.5$$

Here, X represents the number of sixes obtained when two dice are thrown simultaneously. Therefore, X can take the value of 0, 1, or 2.

$$P(X = 0) = P \text{ (not getting six on any of the dice)} = \frac{25}{36}$$

P(X = 1) = P(six on first die and no six on second die) + P(no six on first die and six on second die)

$$=2\left(\frac{1}{6}\times\frac{5}{6}\right)=\frac{10}{36}$$

$$P(X = 2) = P(six on both the dice) = \frac{1}{36}$$

Therefore, the required probability distribution is as follows.

х	0	1	2	
P(X)	$\frac{25}{36}$	$\frac{10}{36}$	$\frac{1}{36}$	

Then, expectation of X = E(X) = $\sum X_i P(X_i)$

$$= 0 \times \frac{25}{36} + 1 \times \frac{10}{36} + 2 \times \frac{1}{36}$$
$$= \frac{1}{3}$$

The two positive integers can be selected from the first six positive integers without replacement in $6 \times 5 = 30$ ways

X represents the larger of the two numbers obtained. Therefore, X can take the value of 2, 3, 4, 5, or 6.

For X = 2, the possible observations are (1, 2) and (2, 1).

$$\therefore P(X=2) = \frac{2}{30} = \frac{1}{15}$$

For X = 3, the possible observations are (1, 3), (2, 3), (3, 1), and (3, 2).

$$\therefore P(X=3) = \frac{4}{30} = \frac{2}{15}$$

For X = 4, the possible observations are (1, 4), (2, 4), (3, 4), (4, 3), (4, 2), and (4, 1).

$$\therefore P(X=4) = \frac{6}{30} = \frac{1}{5}$$

For X = 5, the possible observations are (1, 5), (2, 5), (3, 5), (4, 5), (5, 4), (5, 3), (5, 2), and (5, 1).

$$\therefore P(X=5) = \frac{8}{30} = \frac{4}{15}$$

For X = 6, the possible observations are (1, 6), (2, 6), (3, 6), (4, 6), (5, 6), (6, 5), (6, 4), (6, 3), (6, 2), and (6, 1).

$$\therefore P(X=6) = \frac{10}{30} = \frac{1}{3}$$

Therefore, the required probability distribution is as follows.

х	2	Э	4	5	6
P(X)	$\frac{1}{15}$	$\frac{2}{15}$	$\frac{1}{5}$	$\frac{4}{15}$	$\frac{1}{3}$

Then, E(X) =
$$\sum X_i P(X_i)$$

= $2 \cdot \frac{1}{15} + 3 \cdot \frac{2}{15} + 4 \cdot \frac{1}{5} + 5 \cdot \frac{4}{15} + 6 \cdot \frac{1}{3}$
= $\frac{2}{15} + \frac{2}{5} + \frac{4}{5} + \frac{4}{3} + 2$
= $\frac{70}{15}$
= $\frac{14}{3}$

When two fair dice are rolled, $6 \times 6 = 36$ observations are obtained.

$$P(X = 2) = P(1, 1) = \frac{1}{36}$$

$$P(X = 3) = P(1, 2) + P(2, 1) = \frac{2}{36} = \frac{1}{18}$$

$$P(X = 4) = P(1, 3) + P(2, 2) + P(3, 1) = \frac{3}{36} = \frac{1}{12}$$

$$P(X = 5) = P(1, 4) + P(2, 3) + P(3, 2) + P(4, 1) = \frac{4}{36} = \frac{1}{9}$$

$$P(X = 6) = P(1, 5) + P(2, 4) + P(3, 3) + P(4, 2) + P(5, 1) = \frac{5}{36}$$

$$P(X = 7) = P(1, 6) + P(2, 5) + P(3, 4) + P(4, 3) + P(5, 2) + P(6, 1) = \frac{6}{36} = \frac{1}{6}$$

$$P(X = 8) = P(2, 6) + P(3, 5) + P(4, 4) + P(5, 3) + P(6, 2) = \frac{5}{36}$$

$$P(X = 9) = P(3, 6) + P(4, 5) + P(5, 4) + P(6, 3) = \frac{4}{36} = \frac{1}{9}$$

$$P(X = 10) = P(4, 6) + P(5, 5) + P(6, 4) = \frac{3}{36} = \frac{1}{12}$$

$$P(X = 11) = P(5, 6) + P(6, 5) = \frac{2}{36} = \frac{1}{18}$$

$$P(X = 12) = P(6, 6) = \frac{1}{36}$$

Therefore, the required probability distribution is as follows.

х	2	3	4	5	6	7	8	9	10	11	12
P(X)	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{12}$	<u>1</u> 9	<u>5</u> 36	$\frac{1}{6}$	<u>5</u> 36	<u>1</u> 9	$\frac{1}{12}$	$\frac{1}{18}$	$\frac{1}{36}$

Then, E(X) =
$$\sum X_i \cdot P(X_i)$$

= $2 \times \frac{1}{36} + 3 \times \frac{1}{18} + 4 \times \frac{1}{12} + 5 \times \frac{1}{9} + 6 \times \frac{5}{36} + 7 \times \frac{1}{6}$
 $+ 8 \times \frac{5}{36} + 9 \times \frac{1}{9} + 10 \times \frac{1}{12} + 11 \times \frac{1}{18} + 12 \times \frac{1}{36}$
= $\frac{1}{18} + \frac{1}{6} + \frac{1}{3} + \frac{5}{9} + \frac{5}{6} + \frac{7}{6} + \frac{10}{9} + 1 + \frac{5}{6} + \frac{11}{18} + \frac{1}{3}$
= 7

$$E(X^{2}) = \sum X_{i}^{2} \cdot P(X_{i})$$

$$= 4 \times \frac{1}{36} + 9 \times \frac{1}{18} + 16 \times \frac{1}{12} + 25 \times \frac{1}{9} + 36 \times \frac{5}{36} + 49 \times \frac{1}{6}$$

$$+ 64 \times \frac{5}{36} + 81 \times \frac{1}{9} + 100 \times \frac{1}{12} + 121 \times \frac{1}{18} + 144 \times \frac{1}{36}$$

$$= \frac{1}{9} + \frac{1}{2} + \frac{4}{3} + \frac{25}{9} + 5 + \frac{49}{6} + \frac{80}{9} + 9 + \frac{25}{3} + \frac{121}{18} + 4$$

$$= \frac{987}{18} = \frac{329}{6} = 54.833$$

Then,
$$Var(X) = E(X^2) - [E(X)]^2$$

= 54.833 - (7)²
= 54.833 - 49
= 5.833

∴ Standard deviation =
$$\sqrt{Var(X)}$$

= $\sqrt{5.833}$
= 2.415

There are 15 students in the class. Each student has the same chance to be chosen.

Therefore, the probability of each student to be selected is $\frac{1}{15}$.

The given information can be compiled in the frequency table as follows.

х	14	15	16	17	18	19	20	21
f	2	1	2	ω	1	2	з	1

$$P(X = 14) = \frac{2}{15}, P(X = 15) = \frac{1}{15}, P(X = 16) = \frac{2}{15}, P(X = 16) = \frac{3}{15},$$

$$P(X = 18) = \frac{1}{15}$$
, $P(X = 19) = \frac{2}{15}$, $P(X = 20) = \frac{3}{15}$, $P(X = 21) = \frac{1}{15}$

Therefore, the probability distribution of random variable X is as follows.

х	14	15	16	17	18	19	20	21
Р	$\frac{2}{15}$	$\frac{1}{15}$	$\frac{2}{15}$	$\frac{3}{15}$	$\frac{1}{15}$	$\frac{2}{15}$	$\frac{3}{15}$	$\frac{1}{15}$

Then, mean of
$$X = E(X)$$

$$= \sum X_i P(X_i)$$

$$= 14 \times \frac{2}{15} + 15 \times \frac{1}{15} + 16 \times \frac{2}{15} + 17 \times \frac{3}{15} + 18 \times \frac{1}{15} + 19 \times \frac{2}{15} + 20 \times \frac{3}{15} + 21 \times \frac{1}{15}$$

$$= \frac{1}{15} (28 + 15 + 32 + 51 + 18 + 38 + 60 + 21)$$

$$= \frac{263}{15}$$

$$= 17.53$$

$$E(X^2) = \sum X_i^2 P(X_i)$$

$$= (14)^2 \cdot \frac{2}{15} + (15)^2 \cdot \frac{1}{15} + (16)^2 \cdot \frac{2}{15} + (17)^2 \cdot \frac{3}{15} + (18)^2 \cdot \frac{1}{15} + (19)^2 \cdot \frac{2}{15} + (20)^2 \cdot \frac{3}{15} + (21)^2 \cdot \frac{1}{15}$$

$$= \frac{1}{15} \cdot (392 + 225 + 512 + 867 + 324 + 722 + 1200 + 441)$$

$$= \frac{4683}{15}$$

$$= 312.2$$

$$\therefore \text{ Variance}(X) = E(X^2) - \left[E(X)\right]^2$$

$$= 312.2 - \left(\frac{263}{15}\right)^2$$

$$= 312.2 - 307.4177$$

$$= 4.7823$$

$$\approx 4.78$$
Standard derivation = $\sqrt{\text{Variance}(X)}$

 $=\sqrt{4.78}$

 $= 2.186 \approx 2.19$

It is given that
$$P(X = 0) = 30\% = \frac{30}{100} = 0.3$$

$$P(X=1) = 70\% = \frac{70}{100} = 0.7$$

Therefore, the probability distribution is as follows.

×	0	1
P(X)	0.3	0.7

Then,
$$E(X) = \sum X_i P(X_i)$$

= $0 \times 0.3 + 1 \times 0.7$
= 0.7

$$E(X^{2}) = \sum X_{i}^{2}P(X_{i})$$
$$= 0^{2} \times 0.3 + (1)^{2} \times 0.7$$
$$= 0.7$$

It is known that, Var (X) = $E(X^2) - [E(X)]^2$

$$= 0.7 - (0.7)^2$$

$$= 0.7 - 0.49$$

$$= 0.21$$

Let $\boldsymbol{\mathsf{X}}$ be the random variable representing a number on the die.

The total number of observations is six.

$$\therefore P(X=1) = \frac{3}{6} = \frac{1}{2}$$

$$P(X=2) = \frac{2}{6} = \frac{1}{3}$$

$$P(X=5) = \frac{1}{6}$$

Therefore, the probability distribution is as follows.

x	1	2	5
P(X)	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{6}$

$$\mathsf{Mean} = \mathsf{E}(\mathsf{X}) = \sum p_{i} \mathsf{X}_{i}$$

$$=\frac{1}{2}\times1+\frac{1}{3}\times2+\frac{1}{6}\cdot5$$

$$=\frac{1}{2}+\frac{2}{3}+\frac{5}{6}$$

$$=\frac{3+4+5}{6}$$

$$=\frac{12}{6}$$

The correct answer is B.

Let X denote the number of aces obtained. Therefore, X can take any of the values of 0, 1, or 2.

In a deck of 52 cards, 4 cards are aces. Therefore, there are 48 non-ace cards.

P (X = 0) = P (0 ace and 2 non-ace cards) =
$$\frac{{}^{4}C_{0} \times {}^{48}C_{2}}{{}^{52}C_{2}} = \frac{1128}{1326}$$

P (X = 1) = P (1 ace and 1 non-ace cards) =
$$\frac{{}^4C_1 \times {}^{48}C_1}{{}^{52}C_2} = \frac{192}{1326}$$

P (X = 2) = P (2 ace and 0 non- ace cards) =
$$\frac{{}^4C_2 \times {}^{48}C_0}{{}^{52}C_2} = \frac{6}{1326}$$

Thus, the probability distribution is as follows.

х	0	1	2
P(X)	1128	192	6
	1326	1326	1326

Then, E(X) =
$$\sum p_i x_i$$

$$= 0 \times \frac{1128}{1326} + 1 \times \frac{192}{1326} + 2 \times \frac{6}{1326}$$
$$= \frac{204}{1326}$$

Therefore, the correct answer is D.

Chapter 13 - Probability Exercise Ex. 13.5 Solution 1

The repeated tosses of a die are Bernoulli trials. Let \times denote the number of successes of getting odd numbers in an experiment of 6 trials.

Probability of getting an odd number in a single throw of a die is, $p = \frac{3}{6} = \frac{1}{2}$

$$\therefore q = 1 - p = \frac{1}{2}$$

X has a binomial distribution.

Therefore, P (X = x) = ${}^{n}C_{n-x}q^{n-x}p^{x}$, where n = 0, 1, 2 ... n

$$= {}^{6}C_{x} \left(\frac{1}{2}\right)^{6-x} \cdot \left(\frac{1}{2}\right)^{x}$$
$$= {}^{6}C_{x} \left(\frac{1}{2}\right)^{6}$$

(i) P (5 successes) = P (X = 5)

$$= {}^{6}C_{5} \left(\frac{1}{2}\right)^{6}$$
$$= 6 \cdot \frac{1}{64}$$
$$= \frac{3}{32}$$

- (ii) P(at least 5 successes) = $P(X \ge 5)$
- = P(X = 5) + P(X = 6)

$$= {}^{6}\mathrm{C}_{5} \bigg(\frac{1}{2} \bigg)^{6} + {}^{6}\mathrm{C}_{6} \bigg(\frac{1}{2} \bigg)^{6}$$

$$=6\cdot\frac{1}{64}+1\cdot\frac{1}{64}$$

$$=\frac{7}{64}$$

- (iii) P (at most 5 successes) = $P(X \le 5)$
- =1-P(X > 5)
- =1-P(X=6)
- $=1-{}^{6}C_{6}\left(\frac{1}{2}\right)^{6}$
- $=1-\frac{1}{64}$
- $=\frac{63}{64}$

Probability of getting doublets in a single throw of the pair of dice is

$$p = \frac{6}{36} = \frac{1}{6}$$

$$\therefore q = 1 - p = 1 - \frac{1}{6} = \frac{5}{6}$$

Clearly, \times has the binomial distribution with n=4, $p=\frac{1}{6}$, and $q=\frac{5}{6}$

:.
$$P(X = x) = {}^{n}C_{x}q^{n-x}p^{x}$$
, where $x = 0, 1, 2, 3 ... n$

$$= {}^{4}C_{x} \left(\frac{5}{6}\right)^{4-x} \cdot \left(\frac{1}{6}\right)^{x}$$
$$= {}^{4}C_{x} \cdot \frac{5^{4-x}}{6^{4}}$$

P (2 successes) = P (X = 2)

$$= {}^{4}C_{2} \cdot \frac{5^{4-2}}{6^{4}}$$
$$= 6 \cdot \frac{25}{1296}$$
$$= \frac{25}{216}$$

Let X denote the number of defective items in a sample of 10 items drawn successively. Since the drawing is done with replacement, the trials are Bernoulli trials.

$$\Rightarrow p = \frac{5}{100} = \frac{1}{20}$$
$$\therefore q = 1 - \frac{1}{20} = \frac{19}{20}$$

 \times has a binomial distribution with n=10 and $p=\frac{1}{20}$

$$P(X = X) = {}^{n}C_{x}q^{n-x}p^{x}$$
, where $x = 0, 1, 2 ... n$

$$= {}^{10}C_x \left(\frac{19}{20}\right)^{10-x} \cdot \left(\frac{1}{20}\right)^x$$

P (not more than 1 defective item) = $P(X \le 1)$

$$\begin{split} &= P(X=0) + P(X=1) \\ &= {}^{10}C_0 \left(\frac{19}{20}\right)^{10} \cdot \left(\frac{1}{20}\right)^0 + {}^{10}C_1 \left(\frac{19}{20}\right)^9 \cdot \left(\frac{1}{20}\right)^1 \\ &= \left(\frac{19}{20}\right)^{10} + 10 \left(\frac{19}{20}\right)^9 \cdot \left(\frac{1}{20}\right) \\ &= \left(\frac{19}{20}\right)^9 \cdot \left[\frac{19}{20} + \frac{10}{20}\right] \\ &= \left(\frac{19}{20}\right)^9 \cdot \left(\frac{29}{20}\right) \\ &= \left(\frac{29}{20}\right) \cdot \left(\frac{19}{20}\right)^9 \end{split}$$

Let X represent the number of spade cards among the five cards drawn. Since the drawing of card is with replacement, the trials are Bernoulli trials.

In a well shuffled deck of 52 cards, there are 13 spade cards.

$$\Rightarrow p = \frac{13}{52} = \frac{1}{4}$$
$$\therefore q = 1 - \frac{1}{4} = \frac{3}{4}$$

 \times has a binomial distribution with n=5 and $p=\frac{1}{4}$

$$P(X = x) = {}^{n}C_{x}q^{n-x}p^{x}$$
, where $x = 0, 1, ... n$
= ${}^{5}C_{x}\left(\frac{3}{4}\right)^{5-x}\left(\frac{1}{4}\right)^{x}$

(i) P (all five cards are spades) = P(X = 5)

$$= {}^{5}C_{5} \left(\frac{3}{4}\right)^{0} \cdot \left(\frac{1}{4}\right)^{5}$$
$$= 1 \cdot \frac{1}{1024}$$
$$= \frac{1}{1024}$$

(ii) P (only 3 cards are spades) = P(X = 3)

$$= {}^{5}C_{3} \cdot \left(\frac{3}{4}\right)^{2} \cdot \left(\frac{1}{4}\right)^{3}$$

$$= 10 \cdot \frac{9}{16} \cdot \frac{1}{64}$$

$$= \frac{45}{512}$$

(iii) P (none is a spade) = P(X = 0)

$$= {}^{5}C_{\theta} \cdot \left(\frac{3}{4}\right)^{5} \cdot \left(\frac{1}{4}\right)^{0}$$
$$= 1 \cdot \frac{243}{1024}$$
$$= \frac{243}{1024}$$

Let X represent the number of bulbs that will fuse after 150 days of use in an experiment of 5 trials. The trials are Bernoulli trials.

It is given that, p = 0.05

$$\therefore q = 1 - p = 1 - 0.05 = 0.95$$

 \times has a binomial distribution with n = 5 and p = 0.05

$$P(X = x) = {}^{n}C_{x}q^{n-x}p^{x}, \text{ where } x = 1, 2, ... n$$
$$= {}^{5}C_{x}(0.95)^{5-x} \cdot (0.05)^{x}$$

(i) P (none) =
$$P(X = 0)$$

$$= {}^{5}C_{0}(0.95)^{5} \cdot (0.05)^{0}$$

$$=1\times(0.95)^5$$

$$=(0.95)^5$$

(ii) P (not more than one) = $P(X \le 1)$

$$= P(X = 0) + P(X = 1)$$

$$= {}^{5}C_{0}(0.95)^{5} \times (0.05)^{0} + {}^{5}C_{1}(0.95)^{4} \times (0.05)^{1}$$

$$=1\times(0.95)^5+5\times(0.95)^4\times(0.05)$$

$$=(0.95)^5+(0.25)(0.95)^4$$

$$=(0.95)^4[0.95+0.25]$$

$$=(0.95)^4 \times 1.2$$

(iii) P (more than 1) =
$$P(X > 1)$$

$$=1-P(X \le 1)$$

$$=1-P(\text{not more than }1)$$

$$=1-(0.95)^4\times1.2$$

(iv) P (at least one) =
$$P(X \ge 1)$$

$$=1-P(X<1)$$

$$=1-P(X=0)$$

$$=1-{}^{5}C_{0}(0.95)^{5}\times(0.05)^{0}$$

$$=1-1\times(0.95)^5$$

$$=1-(0.95)^5$$

Solution 6

Let X denote the number of balls marked with the digit 0 among the 4 balls drawn.

Since the balls are drawn with replacement, the trials are Bernoulli trials.

 \times has a binomial distribution with n=4 and $p=\frac{1}{10}$

$$\therefore q = 1 - p = 1 - \frac{1}{10} = \frac{9}{10}$$

$$\therefore P(X = x) = {}^{n}C_{x}q^{n-x} \cdot p^{x}, x = 1, 2, ...n$$
$$= {}^{4}C_{x}\left(\frac{9}{10}\right)^{4-x} \cdot \left(\frac{1}{10}\right)^{x}$$

P (none marked with 0) = P (X = 0)

$$= {}^{4}C_{0} \left(\frac{9}{10}\right)^{4} \cdot \left(\frac{1}{10}\right)^{6}$$
$$= 1 \cdot \left(\frac{9}{10}\right)^{4}$$
$$= \left(\frac{9}{10}\right)^{4}$$

The repeated tosses of a coin are Bernoulli trails. Since "head" on a coin represents the true answer and "tail" represents the false answer, the correctly answered questions are Bernoulli trials.

$$p=\frac{1}{2}$$

$$\therefore q = 1 - p = 1 - \frac{1}{2} = \frac{1}{2}$$

 \times has a binomial distribution with n=20 and $p=\frac{1}{2}$

$$\therefore P(X = x) = {}^{n}C_{x}q^{n-x}p^{x}, \text{ where } x = 0, 1, 2, ... n$$

$$= {}^{20}C_{x}\left(\frac{1}{2}\right)^{20-x} \cdot \left(\frac{1}{2}\right)^{x}$$

$$= {}^{20}C_{x}\left(\frac{1}{2}\right)^{20}$$

P (at least 12 questions answered correctly) = $P(X \ge 12)$

$$\begin{split} &= P(X=12) + P(X=13) + ... + P(X=20) \\ &= {}^{20}C_{12} \left(\frac{1}{2}\right)^{20} + {}^{20}C_{13} \left(\frac{1}{2}\right)^{20} + ... + {}^{20}C_{20} \left(\frac{1}{2}\right)^{20} \\ &= \left(\frac{1}{2}\right)^{20} \cdot \left[{}^{20}C_{12} + {}^{20}C_{13} + ... + {}^{20}C_{20}\right] \end{split}$$

 \times is the random variable whose binomial distribution is $B\left(6,\frac{1}{2}\right)$.

Therefore,
$$n = 6$$
 and $p = \frac{1}{2}$

$$\therefore q = 1 - p = 1 - \frac{1}{2} = \frac{1}{2}$$
Then, $P(X = x) = {}^{n}C_{x}q^{n-x}p^{x}$

$$= {}^{6}C_{x}\left(\frac{1}{2}\right)^{6-x} \cdot \left(\frac{1}{2}\right)^{x}$$

 $= {}^{6}C_{x} \left(\frac{1}{2}\right)^{6}$

It can be seen that P(X = x) will be maximum, if $^6\mathrm{C}_x$ will be maximum.

Then,
$${}^{6}C_{0} = {}^{6}C_{6} = \frac{6!}{0! \cdot 6!} = 1$$
 ${}^{6}C_{1} = {}^{6}C_{5} = \frac{6!}{1! \cdot 5!} = 6$
 ${}^{6}C_{2} = {}^{6}C_{4} = \frac{6!}{2! \cdot 4!} = 15$
 ${}^{6}C_{3} = \frac{6!}{3! \cdot 3!} = 20$

The value of $^6\mathrm{C}_3$ is maximum. Therefore, for x = 3, P(X = x) is maximum.

Thus, X = 3 is the most likely outcome.

The repeated guessing of correct answers from multiple choice questions are Bernoulli trials. Let X represent the number of correct answers by guessing in the set of 5 multiple choice questions.

Probability of getting a correct answer is, $p = \frac{1}{3}$

$$\therefore q = 1 - p = 1 - \frac{1}{3} = \frac{2}{3}$$

Clearly, \times has a binomial distribution with n=5 and $p=\frac{1}{3}$

$$\therefore P(X = x) = {}^{n}C_{x}q^{n-x}p^{x}$$
$$= {}^{5}C_{x}\left(\frac{2}{3}\right)^{5-x} \cdot \left(\frac{1}{3}\right)^{x}$$

P (guessing more than 4 correct answers) = $P(X \ge 4)$

$$= P(X = 4) + P(X = 5)$$

$$= {}^{5}C_{4} \left(\frac{2}{3}\right) \cdot \left(\frac{1}{3}\right)^{4} + {}^{5}C_{5} \left(\frac{1}{3}\right)^{5}$$

$$= 5 \cdot \frac{2}{3} \cdot \frac{1}{81} + 1 \cdot \frac{1}{243}$$

$$= \frac{10}{243} + \frac{1}{243}$$

$$= \frac{11}{243}$$

Let X represent the number of winning prizes in 50 lotteries. The trials are Bernoulli trials.

Clearly, \times has a binomial distribution with n=50 and $p=\frac{1}{100}$

$$\therefore q = 1 - p = 1 - \frac{1}{100} = \frac{99}{100}$$

$$\therefore P(X = x) = {^{n}C_{x}}q^{n-x}p^{x} = {^{50}C_{x}}\left(\frac{99}{100}\right)^{50-x} \cdot \left(\frac{1}{100}\right)^{x}$$

(a) P (winning at least once) = P ($X \ge 1$)

$$=1-P(X<1)$$

$$=1-P(X=0)$$

$$=1-{}^{50}C_0\left(\frac{99}{100}\right)^{50}$$

$$=1-1\cdot\left(\frac{99}{100}\right)^{50}$$

$$=1-\left(\frac{99}{100}\right)^{50}$$

(b) P (winning exactly once) = P(X = 1)

$$= {}^{50}C_1 \left(\frac{99}{100}\right)^{49} \cdot \left(\frac{1}{100}\right)^1$$
$$= 50 \left(\frac{1}{100}\right) \left(\frac{99}{100}\right)^{49}$$
$$= \frac{1}{2} \left(\frac{99}{100}\right)^{49}$$

(c) P (at least twice) = $P(X \ge 2)$

$$= 1 - P(X < 2)$$

$$= 1 - P(X \le 1)$$

$$= 1 - [P(X = 0) + P(X = 1)]$$

$$= 1 - P(X = 0) - P(X = 1)$$

$$= 1 - \left(\frac{99}{100}\right)^{50} - \frac{1}{2} \cdot \left(\frac{99}{100}\right)^{49}$$

$$= 1 - \left(\frac{99}{100}\right)^{49} \cdot \left[\frac{99}{100} + \frac{1}{2}\right]$$

$$= 1 - \left(\frac{99}{100}\right)^{49} \cdot \left(\frac{149}{100}\right)$$

$$= 1 - \left(\frac{149}{100}\right) \left(\frac{99}{100}\right)^{49}$$

The repeated tossing of a die are Bernoulli trials. Let X represent the number of times of getting 5 in 7 throws of the die.

Probability of getting 5 in a single throw of the die, $p = \frac{1}{6}$

$$\therefore q = 1 - p = 1 - \frac{1}{6} = \frac{5}{6}$$

Clearly, X has the probability distribution with n = 7 and $p = \frac{1}{6}$

$$\therefore P(X = x) = {^{n}C_{x}}q^{n-x}p^{x} = {^{7}C_{x}}\left(\frac{5}{6}\right)^{7-x} \cdot \left(\frac{1}{6}\right)^{x}$$

P (getting 5 exactly twice) = P(X = 2)

$$= {^{7}C_{2}} \left(\frac{5}{6}\right)^{5} \cdot \left(\frac{1}{6}\right)^{2}$$
$$= 21 \cdot \left(\frac{5}{6}\right)^{5} \cdot \frac{1}{36}$$
$$= \left(\frac{7}{12}\right) \left(\frac{5}{6}\right)^{5}$$

The repeated tossing of the die are Bernoulli trials. Let X represent the number of times of getting sixes in 6 throws of the die.

Probability of getting six in a single throw of die, $p = \frac{1}{6}$

$$\therefore q = 1 - p = 1 - \frac{1}{6} = \frac{5}{6}$$

Clearly, X has a binomial distribution with n = 6

$$\therefore P(X = x) = {^{n}C_{x}}q^{n-x}p^{x} = {^{6}C_{x}}\left(\frac{5}{6}\right)^{6-x} \cdot \left(\frac{1}{6}\right)^{x}$$

P (at most 2 sixes) = P(X ≤ 2)
= P(X = 0) + P(X = 1) + P(X = 2)
=
$${}^{6}C_{0}\left(\frac{5}{6}\right)^{6} + {}^{6}C_{1} \cdot \left(\frac{5}{6}\right)^{5} \cdot \left(\frac{1}{6}\right) + {}^{6}C_{2}\left(\frac{5}{6}\right)^{4} \cdot \left(\frac{1}{6}\right)^{2}$$

= $1 \cdot \left(\frac{5}{6}\right)^{6} + 6 \cdot \frac{1}{6} \cdot \left(\frac{5}{6}\right)^{5} + 15 \cdot \frac{1}{36} \cdot \left(\frac{5}{6}\right)^{4}$
= $\left(\frac{5}{6}\right)^{6} + \left(\frac{5}{6}\right)^{5} + \frac{5}{12} \cdot \left(\frac{5}{6}\right)^{4}$
= $\left(\frac{5}{6}\right)^{4} \cdot \left[\left(\frac{5}{6}\right)^{2} + \left(\frac{5}{6}\right) + \left(\frac{5}{12}\right)\right]$
= $\left(\frac{5}{6}\right)^{4} \cdot \left[\frac{25}{36} + \frac{5}{6} + \frac{5}{12}\right]$
= $\left(\frac{5}{6}\right)^{4} \cdot \left[\frac{25 + 30 + 15}{36}\right]$
= $\frac{70}{36} \cdot \left(\frac{5}{6}\right)^{4}$
= $\frac{35}{18} \cdot \left(\frac{5}{6}\right)^{4}$

The repeated selections of articles in a random sample space are Bernoulli trails. Let \times denote the number of times of selecting defective articles in a random sample space of 12 articles.

Clearly, \times has a binomial distribution with n=12 and $p=10\%=\frac{10}{100}=\frac{1}{10}$

$$\therefore q = 1 - p = 1 - \frac{1}{10} = \frac{9}{10}$$

:.
$$P(X = x) = {}^{n}C_{x}q^{n-x}p^{x} = {}^{12}C_{x}\left(\frac{9}{10}\right)^{12-x} \cdot \left(\frac{1}{10}\right)^{x}$$

P (selecting 9 defective articles) = ${}^{12}C_9 \left(\frac{9}{10}\right)^3 \left(\frac{1}{10}\right)^9$

$$= 220 \cdot \frac{9^3}{10^3} \cdot \frac{1}{10^9}$$
$$= \frac{22 \times 9^3}{10^{11}}$$

The repeated selections of defective bulbs from a box are Bernoulli trials. Let X denote the number of defective bulbs out of a sample of 5 bulbs.

Probability of getting a defective bulb, $p = \frac{10}{100} = \frac{1}{10}$

$$\therefore q = 1 - p = 1 - \frac{1}{10} = \frac{9}{10}$$

Clearly, \times has a binomial distribution with n=5 and $p=\frac{1}{10}$

:.
$$P(X = x) = {}^{n}C_{x}q^{n-x}p^{x} = {}^{5}C_{x}\left(\frac{9}{10}\right)^{5-x}\left(\frac{1}{10}\right)^{x}$$

P (none of the bulbs is defective) = P(X = 0)

$$= {}^{5}C_{0} \cdot \left(\frac{9}{10}\right)^{5}$$
$$= 1 \cdot \left(\frac{9}{10}\right)^{5}$$
$$= \left(\frac{9}{10}\right)^{5}$$

The correct answer is C.

The repeated selection of students who are swimmers are Bernoulli trials. Let \times denote the number of students, out of 5 students, who are swimmers.

Probability of students who are not swimmers, $q = \frac{1}{5}$

$$p = 1 - q = 1 - \frac{1}{5} = \frac{4}{5}$$

Clearly, \times has a binomial distribution with n=5 and $p=\frac{4}{5}$

$$P(X = x) = {}^{n}C_{x}q^{n-x}p^{x} = {}^{5}C_{x}\left(\frac{1}{5}\right)^{5-x} \cdot \left(\frac{4}{5}\right)^{x}$$

P (four students are swimmers) = P(X = 4) =
$${}^{5}C_{4}\left(\frac{1}{5}\right)\cdot\left(\frac{4}{5}\right)^{4}$$

Therefore, the correct answer is A.

Chapter 13 - Probability Exercise Misc. Ex. Solution 1

It is given that, $P(A) \neq 0$

(i) A is a subset of B.

$$\Rightarrow A \cap B = A$$

$$\therefore P(A \cap B) = P(B \cap A) = P(A)$$

$$\therefore P(B|A) = \frac{P(B \cap A)}{P(A)} = \frac{P(A)}{P(A)} = 1$$

(ii)
$$A \cap B = \phi$$

$$\Rightarrow P(A \cap B) = 0$$

$$\therefore P(B|A) = \frac{P(A \cap B)}{P(A)} = 0$$

If a couple has two children, then the sample space is

$$S = \{(b, b), (b, g), (g, b), (g, g)\}$$

(i) Let E and F respectively denote the events that both children are males and at least one of the children is a male.

$$\therefore E \cap F = \{(b, b)\} \Rightarrow P(E \cap F) = \frac{1}{4}$$

$$P(E) = \frac{1}{4}$$

$$P(F) = \frac{3}{4}$$

$$\Rightarrow P(E|F) = \frac{P(E \cap F)}{P(F)} = \frac{\frac{1}{4}}{\frac{3}{4}} = \frac{1}{3}$$

(ii) Let A and B respectively denote the events that both children are females and the elder child is a female.

$$A = \{(g, g)\} \Rightarrow P(A) = \frac{1}{4}$$

$$B = \{(g, b), (g, g)\} \Rightarrow P(B) = \frac{2}{4}$$

$$A \cap B = \{(g, g)\} \Rightarrow P(A \cap B) = \frac{1}{4}$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{4}}{\frac{2}{4}} = \frac{1}{2}$$

Solution 3

It is given that 5% of men and 0.25% of women have grey hair.

Therefore, percentage of people with grey hair = (5 + 0.25) % = 5.25%

Probability that the selected haired person is a male $=\frac{5}{5.25} = \frac{20}{21}$

A person can be either right-handed or left-handed.

It is given that 90% of the people are right-handed.

$$\therefore p = P(\text{right-handed}) = \frac{9}{10}$$

$$q = P(\text{left-handed}) = 1 - \frac{9}{10} = \frac{1}{10}$$

Using binomial distribution, the probability that more than 6 people are right-handed is given by,

$$\sum_{r=7}^{10} {}^{10}C_r p^r q^{n-r} = \sum_{r=7}^{10} {}^{10}C_r \left(\frac{9}{10}\right)^r \left(\frac{1}{10}\right)^{10-r}$$

Therefore, the probability that at most 6 people are right-handed

= 1 - P (more than 6 are right-handed)

$$=1-\sum_{r=7}^{10} {}^{10}C_r (0.9)^r (0.1)^{10-r}$$

Total number of balls in the urn = 25

Balls bearing mark 'X' = 10

Balls bearing mark 'Y' = 15

$$p = P$$
 (ball bearing mark 'X') $= \frac{10}{25} = \frac{2}{5}$

$$q = P \text{ (ball bearing mark 'Y')} = \frac{15}{25} = \frac{3}{5}$$

Six balls are drawn with replacement. Therefore, the number of trials are Bernoulli trials.

Let Z be the random variable that represents the number of balls with 'Y' mark on them in the trials.

Clearly, Z has a binomial distribution with n = 6 and $p = \frac{2}{5}$.

$$P(Z = z) = {}^{n}C_{z}p^{n-z}q^{z}$$

(i) P (all will bear 'X' mark) = P (Z = 0) =
$$^6C_0\left(\frac{2}{5}\right)^6 = \left(\frac{2}{5}\right)^6$$

(ii) P (not more than 2 bear 'Y' mark) = P ($Z \le 2$)

$$= P(Z = 0) + P(Z = 1) + P(Z = 2)$$

$$= {}^{6}C_{0}(p)^{6}(q)^{0} + {}^{6}C_{1}(p)^{5}(q)^{1} + {}^{6}C_{2}(p)^{4}(q)^{2}$$

$$= \left(\frac{2}{5}\right)^{6} + 6\left(\frac{2}{5}\right)^{5} \left(\frac{3}{5}\right) + 15\left(\frac{2}{5}\right)^{4} \left(\frac{3}{5}\right)^{2}$$

$$= \left(\frac{2}{5}\right)^{4} \left[\left(\frac{2}{5}\right)^{2} + 6\left(\frac{2}{5}\right)\left(\frac{3}{5}\right) + 15\left(\frac{3}{5}\right)^{2}\right]$$

$$= \left(\frac{2}{5}\right)^{4} \left[\frac{4}{25} + \frac{36}{25} + \frac{135}{25}\right]$$

$$= \left(\frac{2}{5}\right)^{4} \left[\frac{175}{25}\right]$$

$$= 7\left(\frac{2}{5}\right)^{4}$$

(iii) P (at least one ball bears 'Y' mark) = P ($Z \ge 1$) = 1 - P (Z = 0)

$$=1-\left(\frac{2}{5}\right)^6$$

(iv) P (equal number of balls with 'X' mark and 'Y' mark) = P (Z = 3)

$$= {}^{6}C_{3} \left(\frac{2}{5}\right)^{3} \left(\frac{3}{5}\right)^{3}$$
$$= \frac{20 \times 8 \times 27}{15625}$$
$$= \frac{864}{3125}$$

Let p and q respectively be the probabilities that the player will clear and knock down the hurdle.

$$\therefore p = \frac{5}{6}$$

$$\Rightarrow q = 1 - p = 1 - \frac{5}{6} = \frac{1}{6}$$

Let ${\sf X}$ be the random variable that represents the number of times the player will knock down the hurdle.

Therefore, by binomial distribution, we obtain

$$P(X = X) = {}^{n}C_{x}p^{n-x}q^{x}$$

P (player knocking down less than 2 hurdles) = P(X < 2)

$$= P(X = 0) + P(X = 1)$$

$$= {}^{10}C_0(q)^0(p)^{10} + {}^{10}C_1(q)(p)^9$$

$$= \left(\frac{5}{6}\right)^{10} + 10 \cdot \frac{1}{6} \cdot \left(\frac{5}{6}\right)^{9}$$

$$= \left(\frac{5}{6}\right)^{9} \left[\frac{5}{6} + \frac{10}{6}\right]$$

$$= \frac{5}{2} \left(\frac{5}{6}\right)^{9}$$

$$= \frac{(5)^{10}}{2 \times (6)^{9}}$$

The probability of getting a six in a throw of die is $\frac{1}{6}$ and not getting a six is $\frac{5}{6}$.

Let
$$p = \frac{1}{6}$$
 and $q = \frac{5}{6}$

The probability that the 2 sixes come in the first five throws of the die is

$${}^{5}C_{2}\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{3} = \frac{10\times(5)^{3}}{(6)^{5}}$$

Probability that third six comes in the sixth throw = $\frac{10 \times (5)^3}{(6)^5} \times \frac{1}{6}$

$$= \frac{10 \times 125}{(6)^6}$$
$$= \frac{10 \times 125}{46656}$$
$$= \frac{625}{23328}$$

In a leap year, there are 366 days i.e., 52 weeks and 2 days.

In 52 weeks, there are 52 Tuesdays.

Therefore, the probability that the leap year will contain 53 Tuesdays is equal to the probability that the remaining 2 days will be Tuesdays.

The remaining 2 days can be

Monday and Tuesday

Tuesday and Wednesday

Wednesday and Thursday

Thursday and Friday

Friday and Saturday

Saturday and Sunday

Sunday and Monday

Total number of cases = 7

Favourable cases = 2

Probability that a leap year will have 53 Tuesdays = $\frac{2}{7}$

The probability of success is twice the probability of failure.

Let the probability of failure be x.

Probability of success = 2x

$$x + 2x = 1$$

$$\Rightarrow 3x = 1$$

$$\Rightarrow x = \frac{1}{3}$$

$$\therefore 2x = \frac{2}{3}$$

Let
$$p = \frac{1}{3}$$
 and $q = \frac{2}{3}$

Let X be the random variable that represents the number of successes in six trials.

By binomial distribution, we obtain

$$P(X = X) = {}^{n}C_{x}p^{n-x}q^{x}$$

Probability of at least 4 successes = $P(X \ge 4)$

$$= P (X = 4) + P (X = 5) + P (X = 6)$$

$$= {}^{6}C_{4} \left(\frac{2}{3}\right)^{4} \left(\frac{1}{3}\right)^{2} + {}^{6}C_{5} \left(\frac{2}{3}\right)^{5} \left(\frac{1}{3}\right) + {}^{6}C_{6} \left(\frac{2}{3}\right)^{6}$$
$$= \frac{15(2)^{4}}{3^{6}} + \frac{6(2)^{5}}{3^{6}} + \frac{(2)^{6}}{3^{6}}$$

$$= \frac{(2)^4}{(3)^6} [15 + 12 + 4]$$

$$=\frac{31\times2^4}{(3)^6}$$

$$=\frac{31}{9}\left(\frac{2}{3}\right)^4$$

Let the man toss the coin n times. The n tosses are n Bernoulli trials.

Probability (p) of getting a head at the toss of a coin is $\frac{1}{2}$.

$$\Rightarrow p = \frac{1}{2} \Rightarrow q = \frac{1}{2}$$

$$\therefore P(X = x) = {}^{n}C_{x}P^{n-x}q^{x} = {}^{n}C_{x}\left(\frac{1}{2}\right)^{n-x}\left(\frac{1}{2}\right)^{x} = {}^{n}C_{x}\left(\frac{1}{2}\right)^{n}$$

It is given that,

P (getting at least one head) > $\frac{90}{100}$

$$P(x \ge 1) > 0.9$$

$$1 - P(x = 0) > 0.9$$

$$1 - {^{n}C_0} \cdot \frac{1}{2^{n}} > 0.9$$

$$^{n}C_{0}.\frac{1}{2^{n}} < 0.1$$

$$\frac{1}{2^n} < 0.1$$

$$2'' > \frac{1}{0.1}$$

$$2^n > 10$$
 ...(1)

The minimum value of n that satisfies the given inequality is 4.

Thus, the man should toss the coin 4 or more than 4 times.

In a throw of a die, the probability of getting a six is $\frac{1}{6}$ and the probability of not getting a 6 is $\frac{5}{6}$.

Three cases can occur.

i. If he gets a six in the first throw, then the required probability is $\frac{1}{6}$.

Amount he will receive = Re 1

ii. If he does not get a six in the first throw and gets a six in the second throw,

then probability =
$$\left(\frac{5}{6} \times \frac{1}{6}\right) = \frac{5}{36}$$

Amount he will receive = -Re 1 + Re 1 = 0

iii. If he does not get a six in the first two throws and gets a six in the third throw, then probability $=\left(\frac{5}{6} \times \frac{5}{6} \times \frac{1}{6}\right) = \frac{25}{216}$

Amount he will receive = -Re 1 - Re 1 + Re 1 = -1

Expected value he can win $=\frac{1}{6}(1)+\left(\frac{5}{6}\times\frac{1}{6}\right)(0)+\left[\left(\frac{5}{6}\right)^2\times\frac{1}{6}\right](-1)$

$$= \frac{1}{6} - \frac{25}{216}$$
$$= \frac{36 - 25}{216} = \frac{11}{216}$$

Let R be the event of drawing the red marble.

Let EA, EB, and EC respectively denote the events of selecting the box A, B, and C.

Total number of marbles = 40

Number of red marbles = 15

$$P(R) = \frac{15}{40} = \frac{3}{8}$$

Probability of drawing the red marble from box A is given by $P(E_A|R)$.

$$\therefore P(E_A|R) = \frac{P(E_A \cap R)}{P(R)} = \frac{\frac{1}{40}}{\frac{3}{8}} = \frac{1}{15}$$

Probability that the red marble is from box B is P $(E_B|R)$.

$$\Rightarrow P(E_B|R) = \frac{P(E_B \cap R)}{P(R)} = \frac{\frac{6}{40}}{\frac{3}{8}} = \frac{2}{5}$$

Probability that the red marble is from box C is P $(E_C|R)$.

$$\Rightarrow P(E_C|R) = \frac{P(E_C \cap R)}{P(R)} = \frac{\frac{8}{40}}{\frac{3}{8}} = \frac{8}{15}$$

Solution 13

Let A, E_1 , and E_2 respectively denote the events that a person has a heart attack, the selected person followed the course of yoga and meditation, and the person adopted the drug prescription.

$$\therefore P(A) = 0.40$$

$$P(E_1) = P(E_2) = \frac{1}{2}$$

Probability of having heart attack if he is treated with mediation then mediation reduce the risk by 30%. Hence there is a risk of 70%.

 $P(A|E_1) = 0.40 \times 0.70 = 0.28$ Probability of having heart attack if he is treated with drugs then mediation reduce the risk by 25%. Hence there is a risk of 75%. $P(A|E_2) = 0.40 \times 0.75 = 0.30$

$$P(E_1|A) = \frac{P(E_1)P(A|E_1)}{P(E_1)P(A|E_1) + P(E_2)P(A|E_2)}$$

$$= \frac{\frac{1}{2} \times 0.28}{\frac{1}{2} \times 0.28 + \frac{1}{2} \times 0.30}$$

$$= \frac{14}{29}$$

Solution 14

The total number of determinants of second order with each element being 0 or 1 is $(2)^4 = 16$

The value of determinant is positive in the following cases. $\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix}$

⇒ Required probability =
$$\frac{3}{16}$$

Let the event in which A fails and B fails be denoted by E_A and E_B .

$$P(E_A) = 0.2$$

$$P(E_A \cap E_B) = 0.15$$

$$P(B \text{ fails alone}) = P(E_B) - P(E_A \cap E_B)$$

$$0.15 = P(E_B) - 0.15$$

$$P(E_B) = 0.3$$

(i)
$$P(E_A|E_B) = \frac{P(E_A \cap E_B)}{P(E_B)} = \frac{0.15}{0.3} = 0.5$$

(ii) P (A fails alone) = P (E_A) - P (E_A
$$\cap$$
 E_B)

$$= 0.2 - 0.15$$

$$= 0.05$$

Solution 16

Let E_1 and E_2 respectively denote the events that a red ball is transferred from bag I to II and a black ball is transferred from bag I to II.

$$P(E_1) = \frac{3}{7} \text{ and } P(E_2) = \frac{4}{7}$$

Let A be the event that the ball drawn is red.

When a red ball is transferred from bag I to II,

$$P(A|E_1) = \frac{5}{10} = \frac{1}{2}$$

When a black ball is transferred from bag I to II,

$$P(A|E_2) = \frac{4}{10} = \frac{2}{5}$$

$$P(E_{2}|A) = \frac{P(E_{2})P(A|E_{2})}{P(E_{1})P(A|E_{1}) + P(E_{2})P(A|E_{2})}$$

$$= \frac{\frac{4}{7} \times \frac{2}{5}}{\frac{3}{7} \times \frac{1}{2} + \frac{4}{7} \times \frac{2}{5}}$$

$$= \frac{16}{31}$$

Solution 17

$$P(A) \neq 0$$
 and $P(B|A)=1$

$$P(B|A) = \frac{P(B \cap A)}{P(A)}$$

$$1 = \frac{P(B \cap A)}{P(A)}$$

$$P(A) = P(B \cap A)$$

$$\Rightarrow A \subset B$$

Thus, the correct answer is A.

Solution 18

$$P(A|B) > P(A)$$

$$\Rightarrow \frac{P(A \cap B)}{P(B)} > P(A)$$

$$\Rightarrow P(A \cap B) > P(A) \cdot P(B)$$

$$\Rightarrow \frac{P(A \cap B)}{P(A)} > P(B)$$

$$\Rightarrow P(B|A) > P(B)$$

Thus, the correct answer is C.

Solution 19

$$P(A)+P(B)-P(A \text{ and } B) = P(A)$$

$$\Rightarrow P(A)+P(B)-P(A \cap B) = P(A)$$

$$\Rightarrow P(B)-P(A \cap B) = 0$$

$$\Rightarrow P(A \cap B) = P(B)$$

$$\therefore P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B)}{P(B)} = 1$$

Thus, the correct answer is B.