

NOSITEL VYZNAMENÁNÍ ZA BRANNOU VÝCHOVU I. A II. STUPNĚ

ŘADA B PRO KONSTRUKTÉRY

ČASOPIS PRO ELEKTRONIKU A AMATÉRSKÉ VYSÍLÁNÍ ROČNÍK XXXII/1984 ● © ČÍSLO 1

V TOMTO SESITÉ

Zasedání VII. siezdu Svazarmu 📶	1
ANTÉNY A ANTÉNNÍ	٠٠.
SOUSTAVY	
Yagiho antény –	
znovu a stručněji	3
Doporučené typy Yagiho antér	15
Stručný popis antén z tab. 1	7
Antény pro FM rozhlas	· .
v pásmu 88 až 100 MHz	7
Anténní soustavy	,10
Anténní soustava	
4× TVa Montáž soustavy	11
Jiné uspořádání soustavy	13
4× TVa	14
z Yagiho antén Konstrukční popis	15
Konstrukční popis	15
Elektrické parametry	17
Kosočtverečné uspořádání	•
dílčích antén Sériově-paralelní napájení:	18
Sériově-paralelní napájení:	
dilčích antén soustavy	19
Krizove spoje trubek	42
Pasívní reflektory	22
Stručný souhrn	25
K praktické realizaci	25
Odrazy od nevodivých povrchů Izolační materiály	26
Jzoloční materiály:	20
v konstrukci antén	28
/ Výpočet ztrát v dielektrickém	20
Výpočet ztrát v dielektrickém izolátoru	29
 Kmitočtú zahraničních vycílačů 	
FM v pásmu VKV-CCIR Mapa TV vysílačů	31
Mapa TV vysílačů	31.
Družicový prenos na K41	-
-v Praze	33
Úhlový reflektor	34
Literatura	37
Výsledky konkursu 1983	38
Podmínky konkursu 1984	39

AMATÉRSKÉ RADIO ŘADA B

Vydává ÚV Svazarmu ve vydávatelství NASE VOJSKO, Vladislavova 26, 133 66 Praha 1, tel. 26 06 51-7. Šéfredaktor ing. Jan Klabal, redaktor Luboš Kalousek, OK1FAC. Redaktor radu řídí Ing. J. T. Hvan.

dakční radu řídí Ing. J. T. Hyan.
Redakce Jungmannova 24, 113 66 Praha 1, tel. 26 06 51-7,
šéfredaktor linka 354, redaktor linka 353, sekretářka linka
355. Ročně vyjde 6 čísel. Čena výtisku 5 Kčs, pololetní
předplatné 15 Kčs. Rozšířuje PNS, v jednotkách ozbrojených sil vydavatelství NAŠE VOJSKO, administrace Vladislavova 26, Praha 1. Objednávky přijímá každá pošta i doručovatel. Objednávky do zahranicí vyřízuje PNS, ústřední
expedice a dovoz tisku, závod 01, Kafkova 9, 160 05 Praha 6.
Tiskne NAŠE VOJSKO, n. p., závod 08, 160 05 Praha 6,
Vlastina ulice č. 889/23.

Za původnost a správnost příspevku odpovídá autor. Návštěvy v redakci a telefonické dotazy pouze po 14. hodině. Číslo indexu 46 044.

Toto číslo má vyjít podle plánu 24. 1. 1984 © Vydavatelství NAŠE VOJSKO

Z JEDNÁNÍ

VII. SJEZDU SVAZARMU

VE DNECH 3. a 4. PROSINCE 1983

V pražském Paláci kultury se ve dnech 3. a 4. prosince 1983 uskutečnilo jednání VII. celostátního sjezdu Svazarmu. Na 682 delegátů zastupujících miliónovou členskou základnu této společenské organizace zhodnotilo v průběhu dvoudenního jednání činnost Svazarmu v uplynulých pěti. letech a vytyčilo jeho úkoly na další období

Jednání se účastnily delegace ÚV KSČ, vlády a ÚV Národní fronty ČSSR, vedené členem předsednictva ÚV KSČ a předsedou Federálního shromáždění ČSSR Aloisem Indrou. Jejími členy byli dále ministr národní obrany ČSSR armádní generál Martin Dzúr; ministr vnitra ČSSR Vratislav Vajnar, místopředseda ÚV Národní fronty Tomáš Trávníček, zástupce vedoucího oddělení ÚV KSČ Vladimír Blechta a ministr spojů ČSSR Vlastimil Chalupa. Přítomní byli také představitelé společenských organizací Národní fronty a ozbrojených sil.

Vrcholného jednání Svazarmu se účastnily také delegace Všesvazové dobrovolné společnosti pro spolupráci s armádou, letectvem a námořnictvem (DO-SAAF) v čele s předsedou ÚV DOSAAF hrdinou Sovětského svazu admirálem vojenského námořnictva Georgijem Jegorovem a delegace bratských organizací z Afgánské demokratické republiky, Bulharska, KLDR, Kubánské republiky, Mongolska, NDR, PLR, RSR, SFRJ, Sýrie a VSR.

Na sjezdu bylo přítomno 433 delegátů z ČSSR a 249 ze SSR. Podle odborností zastupovalo 214 delegátů motorismus, 140 střelectví, 21 radioamatérství; 26 letectví a parašutismus, 18 modelářství 17 potápěčství a branné vodácké sporty, 14 kluby elektroniky, 96 branné sporty, 14 kynologii, 67 KDPZ, 26 výcvik branců, 24

CO, 141 politickovýchovnou práci, práci s mládeží, řízení.

Jednání sjezdu zahájil předseda ÚV Svazarmu s. generálporučík Václav Horáček zprávou o činnosti za uplynulé období od VI. sjezdu Svazarmu a hlavních úkolech při plnění úkolů politiky ÚV KSČ. Období, které dnes hodnotíme – řekl – bylo naplněno činorodou prací členů a funkcionářů naší organizace. Jejich zásluhou můžeme dnes s hrdostí prohlásit, že všechny základní úkoly uložené nám v závěrech VI. sjezdu byly splněny. Mimořádnou pozornost – zdůraznil – jsme věnovali rozvoji politickovýchovné práce. Utvářeli jsme socialistické přesvědčení svazarmovců a v jednotě s tím dbali o prohlubování výchovy k socialistickému vlastenectví. Ne všechny záměry se nám však daří uskutečňovat. V politickovýchovné přáci přežívají prvky formalismu, povrchnosti, nedostatečně diferencovaný přístup k jednotlivým sociálním a věkovým skupinám lidí. Masovou politickou práci málo spojujeme s řešením praktických úkolů.

Ve zprávě hodnotil také plnění úkolů

Ve zprávě hodnotil také plnění úkolů jednotlivých odborností Svazarmu. K nasim odbornostem řekl: "Významné úkoly jsme plnili v odbornosti radioamatérství a elektroniky při podněcování zájmu mládeže o zvyšování technických znalostí o nové obory elektroniky a tvořivou vědeckotechnickou aktivitu. Prostřednictvím těchto odborností jsme také přispělik přípravě specialistů pro naši armádu národní hospodářství." Kriticky však hodnotil dosavadní velmi nízkou organizovanost v obou odbornostech, která se pohybuje okolo 3 % celkového počtu členů Svazarmu: (Ke zprávě a závěrům VII. sjezdu se ještě na stránkách AR vrátíme.)

Z jednání VII. sjezdu Svazarmu v Paláci kultury v Praze

Po zprávě ústřední kontrolní a revizní komise Svazarmu ČSSR pokračovalo sobotní jednání sjezdu diskusí. Delegáti hovořili o dalších možnostech zvyšování efektivnosti a produktivity práce členů Svazarmu v závodech a podnicích a informovali o nových formách rozvoje branné výchovy. Zaměřili se na brannětechnickou a branně sportovní činnost a její působení při naplňování jednotného systému branné výchovy obyvatelstva.

Slova se potom ujal vedoucí delegace ÚV KSČ vlády a ÚV NF ČSSR, člen před-sednictva ÚV KSČ a předseda FS A. Indra. Ve svém příspěvku mimo jiné upozornil na požadavek doby – zvyšovat kvalitu veškeré práce. "Jen výrobky prvotřídní jakosti a vysoké technické úrovně mohou obstát na zahraničních trzích a uspokojit i oprávněně rostoucí náročnost domácích zákazníků. Je, myslím, samozřejmé, že při vštěpování těchto všeobecné platných požadavků svým členům, se jimi bůde řídit i Svazarm – všechny jeho součásti. Jste povoláni udělat ještě mnohem více než dosud pro zvyšování technické vyspělosti mladé generace, ovlivňovat tak její zájem o využití vědeckotechnického rozvoje v praxi, připravovat ji na úspěšné zvládnutí nejmodernější techniky a technologie v pracovních procesech i v obra-ně naší vlasti. Vedle toho však je nezbytné, abyste i ve svazové práci hospodařili co nejpozorněji se všemi prostředky, ať už vám je věnuje společnost, nebo si je vytváříte sami. Všechny zdroje mají sloužit především k plnění vašeho základního poslání a nikoliv k případnému uspokojování osobních zájmů jednotlivců či skupinek.

Druhou část prvního dne jednání VII. sjezdu Svazarmu pozdravili příslušníci Československé lidové armády. V jejich čtyřicetičlenné delegaci byly i příslušnice spojovacího vojska, důstojníci, praporčíci a vojáci pražské posádky a žáci gymnázia Jana Žižky z Trocnova. Zdravici přednesl velitel čety vojenského útvaru ČSLA poručík Ing. Martin Novák. Po zdravici vystoupil s projevem zástupce ministra národní obrany generálnoručík Ing. Miloslav Žíka

velitel čety vojenského utvarů CSLA poručík Ing. Martin Novák. Po zdravici vystoupil s projevem zástupce ministra národní obrany generálporučík Ing. Miloslav Zíka. V diskusi vystoupil rovněž vedoucí delegace a předseda DOSAAF admirál G. Jegorov. Připomněl význam nerozborného přátelství a všestranné spolupráce SSSR a ČSSR. Když hovořil o zostřené mezinárodní situaci, vyvolané rozmisťováním nových amerických jaderných zbraní v některých zemích západní Evropy, podtrhl, že Šovětský svaz nikdy nepřipustí ohrožení svého území ani území svých spojenců. V 1. poschodí Paláce kultury byla v prů-

V 1. poschodí Paláce kultury byla v průběhu sjezdu instalována výstava svazarmovských úspěchů a činnosti všech odborností. Na výstavě pracovala kolektivní stanice OK1KLV a stanice OK5CSR, vybavená radiodálnopisným terminálem s obrovským displejem, na kterém se promítaly texty zdravic a čestných hlášení na počest VII. sjezdu Svazarmu.

Jednání sjezdu byli přítomni také členové 405. ZO Svazarmu v Praze 4, která se ve své činnosti zaměřuje především na vývoj a konstrukci nejrůznějších elektronických zařízení, především z oblasti videotechniky. Díky dotaci ČÚV Svazarmu je jejich organizace vybavena přenosnou videosoupravou, kterou obsluhuje reportážní štáb. Činnost tohoto štábu se zaměřuje na reportáže a videozáznamy z významných svazarmovských akcí. Na sjezdu pořizovali záznam, který bude v budoucnu sloužit jako podklad pro pořady a filmy se svazarmovskou tematikou.

Při prohlídce výstavy, dokumentující činnost a úspěchy jednotlivých odborností zprava genpor. V. Horáček, předseda ÚV Svazarmu, pplk. ing. F. Šimek, vedoucí oddělení elektroniky ÚV Svazarmu, admirál G. Jegorov, předseda DOSAAF a J. Dudek, vedoucí odboru oddělení státní administrativy ÚV KSČ

V dalších diskusních příspěvcích vystoupila řada krajských delegátů i někteří vedoucí zahraničních skupin.

Na závěr prvního dne sjezdového jednání byli vyhlášeni nejlepší svazarmovští sportovci roku 1983.

Jednání VII. celostátního sjezdu Svazarmu pokračovalo v neděli diskusí. Delegáti se v ní soustředili hlavně na problematiku zkvalitňování ideově výchovné práce, získávání nových, především mladých členů, hovořili o možnostech rozširování součinnosti ČSLA se společenskými organizacemi a o činnosti jednotlivých svazarmovských odborností.

Po diskusi delegáti vyslechli a schválili zprávu mandátové a volební komise a zvolili 89 členný ústřední výbor a 21 člennou ústřední kontrolní a revizní komisi. Nový ústřední výbor na svém ustavujícím zasedání do svého čela zvolil 17 členné

předsednictvo. Předsedou ústředního výboru Svazarmu byl zvolen generálporučík V. Horáček.

V závěru druhého dne jednání VII. celostátního sjezdu Svazarmu zaslali jeho účastníci mj. pozdravný dopis ÚV KSČ, v němž vyjadřují přesvědčení, že členové Svazarmu i nadále budou přispívat k budovatelskému úsilí našeho lidu na plnění programu Národní fronty.

Význam vzájemné spolupráce bratrských organizací byl oceněn v dopise, který delegáti odeslali ÚV Všesvazové dobrovolné organizace pro spolupráci s armádou, letectvem a námořnictvem SSSR

Delegáti schválili rovněž rezoluci VII. celostátního sjezdu Svazarmu, která stanoví úkoly miliónové organizace na dalších pět let.

JaK

ANTÉNYA ANTÉNNÍ SOUSTAVY

Jindra Macoun

Toto číslo časopisu AR řady B navazuje volně na AR-B1/82, "Yagiho antény na VKV a UKV". Obsah je do značné míry ovlivněn všeobecně stoupajícím zájmem o tuto oblast amatérského experimento-vání a četnými dotazy, se kterými se čtenáři obracejí na redakci i autora. Proto se autor znovu vrací k Yagiho anténám stručným souhrnem podstatného, včetně rozměrové tabulky nejužívanějších typů Yagiho antén. Zájemci o příjem FM rozhlasu na VKV jistě uvítají rozměrové údaje elektrické parametry několika antén. Podrobný konstrukční popis dvou anténních souprav je příspěvkem k dálkovému příjmu TV na IV. a V. pásmu. Další zajímavé informace, které jsou obsahem navazujících kapitol o sériověparalelním napájení a kosočtverečném uspořádání dílčích antén, mohou být podnětem k různým variantám návrhů anténních souprav.

Kapitoly o užití izolačních materiálů a jejich vlivu na elektrické vlastnosti antén, které jsou další částí tohoto čísla, se v literatuře pro amatéry většinou nevyskytují. I ty však mohou být užitečné při návrzích různých, nejen anténních kon-

strukcí.

Zájem čtenářů vyvolal i zařazení obsažnější kapitoly o pasívních reflektorech, kterými lze za jistých podmínek odrazit přijímaný signál do místně zastíněných oblastí.

V závěru je znovu publikována žádaná a poopravená mapa televizních vysílačů, dále kmitočty nejbližších zahraničních stanic rozhlasu FM na VKV a tabulka kanálů, kmitočtů a vlnových délek. Každá kapitola je uvedena konkrétní otázkou k danému tématu a autor na ni konkrétně odpovídá. Celý obsah ovšem není pojat jen jako soubor otázek a odpovědí, ale měl by přispět k širší informovanosti v dalších oblastech anténní problematiky tak, aby zájemce poznal všechny souvislosti a byl schopen se v této problematice přiměřeně orientovat.

Autor i redakce rádi uvítají připomínky k obsahu i podnětné návrhy, které by mohly ovlivnit obsah případného vydání dalšího čísla s anténní a příbuznou pro-

blematikou.

Obsah tohoto čísla byl do značné míry ovlivněn reakcí na dosud vyšlá čísla s anténní problematikou, tzn. písemnými i telefonickými dotazy čtenářů. Jednotlivé kapitoly by proto měly mimo jiné podávat i odpovědi na tyto otázky a připomínky:

Uvitali bychom nové vydání AR-B, č. 1/82, protože se na nás nedostalo.

Prosím uveřejněte příležitostně znovu rozměrovou tabulku Yaglho antén včetně nejdůležitějších informací.

Autoři se málo zabývají anténami pro rozhlas VKV – FM v pásmu 88 až 100 MHz.

Postrádáme podrobný konstrukční návod na účinnou anténní soustavu pro příjem slabých signálů v V. pásmu.

Co je sérlově-paralelní napájení? Sériově paralelní napájení anténní soustavy se mi neosvědčilo; kde by mohla být chyba?

Jak mám nejjednodušeji spojovat kolmé trubky u antén?

Z jakých materiálů mohu zhotovit izolátory antén VKV?

Lze použít organické sklo (plexi) nebo novodur ke zhotovení středového izolátoru celovlnných dipólů soufázové antény pro příjem na IV. a V. pásmu?

Na střechách výškových domů sídliště, 300 m od mého domku, je poměrně silný signál (obraz již bez šumu) na K55, jak velký pasívní reflektor by odrazil dostatečně silný signál k mé anténě?

Naše chatová osada leží v hlubokém údolí nedaleko TV vysílače. TV signál tam však není. Je možné spojit jednoduše dvě přijímací antény a vytvořit tak pasívní relé k ozáření údolí?

V literatuře o anténách se opakovaně setkávám s jednoduchou anténou typu "corner". Z publikovaných křivek vyplývá, že by měla mít zisk až 15 dB při úhlu 45° svíraném oběma rameny reflektoru. Proč se tato anténa nepoužívá pro příjem TV?

Jak se projeví připojení souosého kabelu 75 Ω konektory s impedancí 50 Ω ?

Jak nejlépe nastavovat souosé (koaxiální) kabely? Vznikají v těchto spojích ztráty?

Do jaké míry ovlivní izolační rozpěrky na vzdušném i souosém vedení přenos energie?

"Uvítali bychom nové vydání AR-B, č. 1/82, protože se na nás nedostalo."

"Prosím uveřejněte příležitostně znovu rozměrovou tabulku Yagiho antén včetně nejdůležitějších infor-

Yagiho antény – znovu a stručněji

Na žádost čtenářů i redakce se znovu vracíme k Yagiho anténám stručným souhrnem podstatného, včetně rozměrových údajů vybraných typů antén. (Pro osvěžení paměti postačí číst tučný text.)

Z mnoha druhů směrových antén pro metrové a decimetrové vlny, popř. pro všechna TV. pásma se nejvíce rozšířily Yagiho antény. Jsou to zejména konstrukčně-mechanická hlediska, která roz-

hodla v jejich prospěch

Yagiho antėna je při shodných elektrických parametrech podstatně lehčí, konstrukčné jednodušší a mechanicky odolnější než většina ostatních druhů antén. Její výhodou je i jednoduché napájení, protože se napájí jen jediný prvek

jení, protože se napájí jen jediný prvek. První informace o Yagiho anténách publikovali již v roce 1926 japonští vědci S. Uda a H. Yagi. Po nich také byla anténa pojmenována. Yagiho antény byly ve větším měřítku použity až ve II. světové válce jako radiolokační antény na metrových a později i decimetrových vlnách. Tak vlastně došlo k jejich rozšíření. Dnes se používají zejména na VKV a UKV, kde jsou zcelá převládajícím typem i v různých modifikovaných formách (např. antény se skupinovými direktory).

Yagiho anténá se skládá z aktivního prvku – zářiče (jediného napájeného prvku) z jednoduchého nebo vícenásobného (několikaprvkového) reflektoru a jednoho

až několika (mnoha) direktorů.

Podle teoretického řešení dělíme Yagiho antény na dvě skupiny. **Krátké antény,** dvou, tří až šestiprvkové lze řešit výpočtem proudů, indukovaných v pasívních prvcích. Při výpočtu, který je i s počítači složitý, se vychází ze vzájemných impedancí mezi prvky. **Dlouhé antény,** které mají značný počet direktorů, lze teoreticky řešit jako antény s tzv. povrchovou vlnou. Řadu direktorů považujeme za úsek vedení, podél kterého se mohou šířit povrchové vlny. Při řešení se vychází z teorie šíření těchto povrchových vln. Čím je anténa delší, tím více se shodují její vlastnosti s teoreticky odvozenými předpoklady.

Prakticky používané Yagiho antény dosahují délek od 0,5 do 6 λ , leží tedy většinou na rozhraní obou skupin; tj. v oblasti, v níž se zvětšuje složitost výpočtu antén krátkých a zmenšuje použitelnost a přesnost výpočtu antén dlouhých. Navíc jde většinou o antény, které mají mít v širším pásmu nejen určitý zisk, ale i příznivý směrový diagram, tzn. malé postranní laloky, velmi dobrý činitel zpětného příjmu a samozřejmě i vyhovující přizpůsobení. Uvedené požadavky prakticky nelze zvládnout výpočtem a tak je většina Yagiho antén, zvláště pak TV přijímací antény, výsledkem experimentálních prací, při nichž lze pro stanovení výchozích rozměrů využít některých teoreticky odvozených údajů.

Všechny hlavní elektrické vlastnosti Yagiho antén, tj. směrovost, popř. zisk (G_d) , činitel zpětného příjmu (ČZP), tvar směrového diagramu, popř. úhly příjmu v obou rovinách $(\Theta_{3E}, \Theta_{3H})$, úroveň postranních laloků a impedance antény spolu navzájem souvisí prostřednictvím základních rozměrů (viz obr. 1). Jsou to délky a vzájemné vzdálenosti prvků, jejich průměry a počty.

Při návrhu antény pak tkví hlavní problém ve vyhledání rozměrů, potřebných pro dosažení optimálních směrových vlastností, nejčastěji maximálního zisku v daném kmitočtovém pásmu.

Probereme si teď působení jednotlivých prvků a jejich vliv na elektrické vlastnosti antény.

Každá Yagiho anténa se v podstatě skládá ze dvou částí, ze soustavy zářič – reflektor a z řady direktorů.

Obr. 1. Základní rozměry-Yagiho antény (a) a doporučené uspořádání zářiče – skládaného dipólu a prvků na ráhnu antény (b, c)

Elektrická délka reflektoru (LR) a jeho vzdálenost od zářiče (pr) musí být voleny tak, aby se v něm indukovaly ví proudy v protifázi, tj. aby odrážel elektromagnetické vlny zpět. **Rozměr** p, **tedy musí být asi** 0,15 až 0,25 λ a $L_{\rm R} \geq$ 0,5 λ na nejnižším kmitočtu pracovního pásma. Rozměr ρ , není kritický. Poměrně malé změny zisku soustavy zářič – reflektor (při různém p.) se na konečném zisku celé antény, zvláště víceprvkové, projeví málo. Prakticky nastavujeme konečnou délku reflektoru tak. abychom na nejnižším kmitočtu pásma dosáhli vyhovující velikosti ČZP. Délka reflektoru tedy ovlivňuje směrovost an-tény především na nejnižším kmitočtu pásma. V úzkém pásmu lze i s jednoprvkovým reflektorem dosáhnout výhodnějších velikostí ČZP – až 26 dB. **Dvou až** tříprvkovým reflektorem se ČZP zlepší v širším pásmu. Protože několikaprvko-vý reflektor ztrácí charakter reflektoru laděného, přestává být délka jeho prvků kritickou a nastavuje se na $L_8 = 0,55$ až

Širokopásmové Yagiho antény pro IV. a V. pásmo bývají vybaveny úhlovým reflektorem, který přispívá ke zvětšení zisku v dolní části pásma, v níž se zmenšuje vliv direktorů a tím i zisk antény. U takové antény je úhlový reflektor nositelem zisku na začátku a řada direktorů na konci pásma.

Záříčem je u běžných Yagiho antén zpravidla dipól à /2, nejčastěji skládaný. Proti jednoduchým půlvlnným dipólům má několik výhod. Je širokopásmovější, takže jeho rozměry nejsou tak kritické; má větší impedanci a lze jej galvanicky spojit s ráhnem, tzn. uzemnit. Jeho impedanci lze poměrně snadno ovlivňovat poměrem průměrů obou vodičů. V současné době se používají téměř výhradně skládané dipóly, zhotovené z jediného vodiče (trubky) a impedanci ovlivňujeme uspořádáním a rozměry nejbližších direktorů.

U některých širokopásmových antén pro IV. a V. pásmo je zářičem celovlnný dipól, většinou ve spojení s úhlovým nebo plošným direktorem. Toto uspořádání zvětšuje zisk na začátku pásma v porovnání s půlvlnným dipólem asi o 1,5 dB. K velikosti maximálního zisku na konci pásma však již prakticky nepřispívá.

Druh, tvar ani rozměry zářiče – dipolu λ/2 – nemají vliv na směrový diagram Yagiho antény; ovlivňují však podstatným způsobem její impedanci.

Direktory mají rozhodující vliv na směrové vlastnosti antény a jejich nesprávné rozměry bývají nejčastější příčinou špatné antény. Nebudeme se již zabývat teoretickým zdůvodněním vztahů mezi rozměry direktorů a parametry antén. Pro praxi stačí znát hlavní zásady jejich rozměrového uspořádání.

Elektrická délka direktorů je vždy menší než $0,5~\lambda$ na nejvyšším kmitočtu pracovního pásma. Jejich rozteč nemá překročit velikost $0,4~\lambda_{\rm min}$. Při $p>0,4~\lambda$ se začíná zisk antény rychle zmenšovat, protože vazba mezi direktory již není dostatečná. Anténa určité délky může mít různý počet direktorů, podle rozteče p. Počet direktorů se tedy zmenšuje s jejich zvětšující se roztečí. Čím větší rozteč však zvolíme, tím musí být direktory delší. Použijeme-li pro stejnou délku antény. L_c větší počet direktorů, musíme je naopak zkrátit, aby oblast optimálních směrových vlastností zůstala na původním kmitočtu. "Hustší" direktory jsou proto vždy kratší (a jejich délky poněkud méně kritické), než direktory "řidší".

V celkovém uspořádání direktorů máme několik možností; lze konstruovat a) antény s konstantní délkou a roztečí direktorů;

- b) antény s postupně se zkracujícími direktory, avšak s konstantní roztečí;
- c) antény s konstantní délkou direktorů, avšak s postupně se zvětšující roztečí (až k p = 0,4λ);
- d) antény s kombinací způsobů b) a c), tj. direktory se postupně zkracují a jejich rozteč se zvětšuje;
- e) antény, u nichž se délky direktorů nebo jejich rozteč, popř. délky i rozteč podél antény periodicky nebo nepravidelně mění – rozměry jsou "modulované". Takový charakter mají dnes rozměry antén optimalizované počítačem.

Zásadní rozdíl mezi směrovými vlastnostmi antén uspořádaných podle způsobu a) na straně jedné a podle způsobu b), c), d), a e) na straně druhé je patrný z tvaru směrového diagramu.

Anténa s direktory uspořádanými způsobem a) – konstantní délky, konstantní rozteče – má na kmitočtu maximálního zisku v obou rovinách poměrně výrazné postranní laloky o úrovní necelých 10 dB pod úrovní maxima. I když proti takové anténě nemůže být z hlediska zisku námitek (má opravdu zisk, který odpovídá její délce), je z provozních důvodů méně vhodná. Každou stanici můžeme totiž nasměrovat třikrát. Na postranních maximech je přijímaný signál jen asi o 10 dB menší; toto zeslabení je i při středně silných signálech sotva patrné.

Uspořádáním direktorů podle způsobu b) až e), tj. jejich postupným zkracováním směrem od zářiče nebo postupným zvětšováním roztečí, popřípadě kombinací obou způsobů, lze dosáhnout prakticky stejného zlsku jako při uspořádání podle a), ale při větším potlačení postranních laloků (na –16 až –20 dB), a za cenu malého rozšíření hlavního maxima (tzn. jsou trochu širší úhly příjmu Θ_{3E} i Θ_{3H}).

Velikost změn v délce a roztečích dířektorů závisí na délce antény a šířce pásma. Čím je pásmo širší, tím je zkracování délek rychlejší a růst roztečí pozvolnější. Konečné uspořádání je zpravidla výsledkem systematické experimentální práce.

Celková délka L. antény má zásadnívliv na její zisk. Na tuto délku lze "naskládat" větší počet kratších, nebo menší
počet delších direktorů (p ovšem nesmí
být větší než 0,4%). Maximální zisk antény
se prakticky nezmění, pokud bude v obou
případech odpovídat délka direktorů zvolené roztečí p. Je tedy nesprávné charakterizovat zisk antény počtem prvků. Anténa s menším počtem prvků nemusí mít
menší zisk a naopak anténa s mnoha prvky nemusí mít zisk větší. U antén stejné
délky musí vést různá, ale optimální
uspořádání direktorů prakticky ke stejnému zisku.

U dobře seřízené Yagiho antény se zisk s kmitočtem zvětšuje, dosáhne maxima a pak velmi prudce klesá. Proto má být každá Yagiho anténa nastavena tak, aby měla maximální zisk na konci pásma, tzn. na nejvyšším kmitočtu. Rozdíl v zisku na začátku a konci pásma je zřetelný jen u antén překrývajících několik kanálů, popř. celé TV pásmo. Na úzkých pásmech (asi do 2 %) lze anténu naladit tak, aby oblast maximálního zisku zahrnovala prakticky celé pásmo. Pod pásmem má taková anténa stále poměrně dobré vlastnosti. Nad pásmem se však směrový diagram vlivem rychle vzrůstajících postranních laloků-rychle štěpí a zisk se prudce zmenšuje. Tato vlastnost Yagi-ho anten se může nepříznivě projevit u špatně "střižené" antény, kdy se oblast maximálního zisku posune k nižším kmitočtům a pracovní pásmo antény se do-stane do oblasti rychle se zmenšujícího zisku. Prakticky se to stává u úzkopásmových antén s tlústšími direktory, než uvádí popis. V takovém případě je nutné všech-ny direktory zkrátit. Tím se posune oblast maximálního zisku k vyšším kmitočtům, takže nepříznivá oblast již "padne" mimo pásmo. (O vlivu štíhlosti prvků na jejich elektrickou délku je podrobně referováno

v [1]).
Závislost zisku Yagiho antény na její celkové délce je na obr. 2. Tlustá čára ohraničuje dosažitelné maximum. Byla stanovena experimentálně z četných měření různých typů antén. Pomocí zobrazeného průběhu lze tedy odhadnout předpokládaný, popř. maximálně možný zisk antény. Skutečnou velikost zisku můžeme určit jen měřením. V principu je to měření jednoduché, jeho správné provedení je však z celé řady příčin velmi obtižné. Proto se v praxi obvykle odvozuje velikost, zisku ze směrového diagramu, popř. se měří jen úhel příjmu (záření) v obou rovinách. Připomínáme, že to je úhlový rozdíl mezi směry, v nichž je úroveň vyzařování nebo příjmu o 3 dB menší než v maximu. Z naměřených úhlů

Obr. 2. Maximální zisk Yagiho antény proti dipólu λ/2 (G_o), v závislosti na její celkové délce (L_c)

pak pomocí grafu na obr. 3 určíme předpokládaný zisk. Graf platí pro jednosměrné antény (ČZP > 10 dB) s nevelkými postranními laloky (\geqq 10 dB). Protože v praxi je u již instalované antény nesnadné stanovit úhel příjmů v rovině rovnoběžné s osou otáčení (s osou anténního stožáru), využijeme závislosti mezi úhly Θ_{3E} a Θ_{3H} a délkou antény na obr. 4. Změřený úhel, zpravídla Θ_{3E} (při horizontálné polarizované anténě), doplníme odpovídajícím úhlem v kolmě rovině a zjistíme průměr. Čím je anténa delší, tím menší je rozdíl mezi oběma úhly.

Zkušenosti ukazují, že zisk určený z úhlů příjmu se u přizpůsobené antény shoduje se skutečným ziskem, popř. že chyby při měření úhlů jsou menší, než chyby

při přímém zisku.

Považujeme za nutné zdůraznit, že většinou není účelné konstruovat antény delší než 4 až 5 \(\lambda\). U delších Yagiho antén se přírůstek zisku stále zmenšuje a není úměrný zvyšujícím se nárokům na konstrukci antény a homogenitu elektromagnetického pole v anténou zabíraném prostoru.

"Nejekonomičtější" anténou je tříprvková anténa o délce 0,5 Å, která může mít
zlsk až 7 dB. Nepočítáme-li zářič, připadá
na každý pasívní prvek 3,5 dB. U 17prvkové antény tab. 1 (typ G) s dvojnásobným
ziskem je to už jen 0,85 dB/prvek, a při
tom i tento typ považujeme za ekonomický. Zde je ovšem třeba zdůraznit, že se
u nejkratších antén dosáhne maximálního zisku podle křivky na obr. 2 jen v úzkém
pásmu. Na rozdíl od antén víceprvkových

Obr. 3. Zisk jednosměrné antény v závislosti na úhlu příjmu (záření) Θ_3 Uvažuje se průměrná velikost úhlu v obou rovinách

přispívá u nejkratších antén k dosažení maxima stejnou měrou reflektor i direktor, takže kritické jsou rozměry obou pasívních prvků. Obecně je mnohem obtížnější optimalizovat úzkopásmovou anténu tříprvkovou než anténu dlouhou s mnoha prvky, a to z hlediska směrovosti i přizpůsobení.

Impedancí antény rozumíme, populárně řečeno, její "vnitřní odpor". K maximálnímu přenosu energie z antény do
napáječe dojde jen při shodě impedancí
antény a napáječe, a jen v tom připadě se
projeví energetický přinos, vyplývající
z její směrovosti. Míra přizpůsobení (a tím)
i velikost ztrát) je vyjádřena činitelem
stojatých vln – ČSV – na napáječi, který je
přímo úměrný poměru obou impedancí.
Při ČSV = 2 jsou ztráty nepřizpůsobením
0,5 dB (např. při impedančním skoku
150 Q/75 Q), při ČSV = 3 je to 1,25 dB
a při ČSV = 6 je ztráta větší než 3 dB.

Zjištění impedance antény se na rozdíl od směrovosti většinou vymyká z možností amatérského experimentátora Pro-

Obr. 4. Vztah mezi úhly příjmu Θ_{3E} , Θ_{3H} a délkou Yagiho antény v oblasti maximálního zisku

to jen stručně: Na impedanci Yagiho antény mají největší vliv druh a rozměry zářiče, dále rozměry a uspořádání nejbližších pasívních prvků, především direktorů. Čím je anténa úzkopásmovější, tzn. čím menší je rozdíl v rezonančních délkách reflektoru a direktorů, tim je nastavení impedance obtížnější a průběh kritičtější. To je jistou nevýhodou Yagiho antény. Proto je důležité dodržet při realizaci antény doporučené provedení; rozměry i vzájemné uspořádání zářiče a nejbližších direktorů.

Pro TV příjímací antény je předepsána impedance 300 Ω. Tento požadavek se řeší především rozměrovým uspořádáním dvojice zářič (skládaný dipól λ/2) – kompezanční direktor. Kompezanční direktor kompezanční direktor pe zpravidla velmi blízko zářiči. Jeho vzdálenost p je srovnatelná se vzdáleností m obou vodičů skládaného dipólu. Rozměry této dvojice, tak jak je uvádí i tab. 1, a které piatí jen gro vzájemné uspořádání podle obr. 1b nebo 1c, je třeba dodřet: rozměr m však kritický není, takže může být i větší. Skládaný dipól se ohybá z jediné trubky, průměry napájeného i nenapájeného vodiče jsou shodné.

Všechny změny v obvodu zářiče včetně kompezančního direktoru nemají vliv na tvar směrového diagramu, nastaveného rozměry a roztečemi ostatních pasívních prvků. Na druhé straně změna rozměrů a roztečí ostatních pasívních prvků, zejména nejbližších, má vliv na přizpůsobe-

ní antény. Pro delší antény je charakteristické, že pásmové impedanční a směrové vlastnosti antény mají shodný charakter v tom smyslu, že směrem k vyšším kmitočtům omezují použitelnost antény náhle, směrem k nižším kmitočtům pozvolna.

Impedance 300 Ω umožňuje napájet antény "dvoulinkou" nebo souosým kabelem 75 Ω, připojeným k anténě přes symetrizační a transformační člen (smyčka λ/2 nebo tzv. elevátor [1]). Napájení souosým kabelem by mělo být přednostní nejen proto, že u TV přijímačů dnes převládějí souosé vstupy, ale vyloučí se tím všechny nepříznivé vnější vilvy, kterým je přenos signálu nestíněným a souměrným napáječem vystaven.

Doporučené typy Yagiho antén

Předchozí část měla zopakovat základní informace o Yagiho anténách tak, aby byl každý zájemce schopen se v této problematice přiměřeně orientovat a dokazal posoudit i realizovat antény tohoto druhu.

Nevracíme se ke konstrukčně – mechanické problematice, která si zasluhuje stejnou pozornost. Mnohé však vyplývá, z podrobného konstrukčního popisu anténních soustav na str. 10 až 18. Konstrukční a mechanická hlediska stavby antén byla probrána v AR-B č. 1/82 [1].

Při amatérské realizaci antén se zpravidla vychází z konstrukčních popisů v různé literatuře. Praxe ukazuje, že jen malá část z desítek typů Yagiho antén, publikovaných v posledních letech, byla autory ověřena popř. jako ověřená z jiné literatury převzata. Méně informovaný zá-jemce se pak navíc v záplavě typů těžko orientuje. Zkušenosti potvrzují, že pro příjem TV a rozhlasu FM (případně i jiná použití) zcela postačí několik typů antén s natolik rozdílnými vlastnostmi, že je lzei bez měřicích přístrojů zaregistrovat při subjektivním hodnocení přijímaných signálů. Proto jsme do tab. 1 zařadili několik ověřených typů antén, které většinou postačí pokrýt škálu požadavků od místního až po dálkový příjem.

Rozměrové údaje antén v tab. 1 jsou vyjádřeny ve vlnové délce, odpovídající max. kmitočtu pracovního pásma, což umožňuje navrhnout ověřený typ antény pro libovolný kmitočet či pášmo (viz převodní tabulka kmitočtu a vlnových dělek

na str. 33).

Každá anténa je tedy popisována

 Písmenem, pro potřebu stručného označení.

2. Číselným symbolem, který anténu stručně charakterizuje, např. 12Y 2–0,92 označuje 12prvkovou Yagiho anténu o celkové délce 2 ½ min přo pásmo fmin/fmax = 0,92 popř. fmin = 0,92 max. To znamená, že v uvedeném rozsahu jsou splněny v tabulce udané elektrické parametry.

3. Rozměrovými údaji, vyjádřenými ve vinové délce odpovídající maximálnímu kmitočtu pásma. Nejvyšší kmitočet byl zvolen proto, že u většiny Yagiho antén se tam dosahuje maximálního zisku. Výjimkou jsou krátké tří až šestiprvkové antény, u nichž může být rozložení

zisku jiné.

Elektrickými parametry:
 G_d – získ antény v dB proti dipólu λ/2,
 ČSV – činitel stojatých vln na napáječi
 300 Ω, popř. 75 Ω,
 ČZP – činitel zpětného příjmu v dB,

 Θ_{3E} – úhel příjmu v rovině prvků (E),

Tab.~1.~Rozměrová tabulka vybraných typů Yagiho antén (rozměry jsou vyjádřeny v λ_{\min} , tzn. pro f_{\max})

A . 4 f		T	1		1			T 11	
Anténa	A	B	C 77.4.7.000	D	E	F	G 477/44 000	H .	047.00.00
Тур	5Y 0,4-0,8	5Y 0,42-0,9	7Y 1,7-0,98	12Y 2-0,92	14Y 2,7-0,9	20Y 4-0,91	17Y 4,1-0,96	28Y 7,3-0,9	21Y 6,6-0,9
Rozměry L _R	0,63 (2>) 0,608 · (2×)	0,476· (1×)	0,6 (2×)	0,59 (2×)	0,604 (3×)	0,53 (2×)	0,615 (2×)	0,52 (1)
Lz. Pr	0,19	0,19	0,25 0,52	0,226 0,55	0,23 0,57	0,155 + 0,07 0,552	0,177 0,522	0,18 0,57	0,2 0,51
L _{D1}	0,03 0,472	0,036	0,05 0,47	0,06 0,47	0,05	0,05 0,48	0,064 0,461	0,044 0,426	0,08 0,469
ρ ₂	0,19 0,45	0,2 0,44	0,289 0,436	0,094 0,46	0,165 0,456	0,083 0,463	0,254 0,433	0,128 0,41	0,10 0,455
L _{D3}			0,406 0,43	0,132 0,453	0,172 0,448	0,121 0,459	0,304	0,266 0,408	0,23
ρ ₄			0,323 0,434	0,170 0,445	0,192 0,441	0,155 0,456	0,304 0,428	0,285 0,408	0,26 0,44
L _{DS} P ₅			0,422	0,208 0,436	0,211 0,433	0,19 0,452	0,304 0,415	0,303 0,403	0,28 0,433
L _{D6}				0,236 0,43	0,23 0,425	0,219 0,449	0,304	0,303 0,403	0,33 0,433
L _{D7}				0,264 0,426	0,25 0,418	0,242 0,446	0,304 0,408	0,303 0,403	0,433
L _{D8} P ₈		:		0,292 0,422	0,268 0,41	0,268 0,442	0,304 0,405	0,303 0,403	0,39 0,419
L _{D9}	· ·			0,32 0,415	0,287 0,402	0,293	0,304 0,401	0,303	
<i>p</i> 10					0,306 0,395	0,31 0,435	0,304 0,401	0,303	0,39 0,419
L _{D11} P ₁₁					0,325 0,387	0,31 0,432	0,304 0,401	0,303	0,39 0,419
L _{D12} P ₁₂						0,31 0,428	0,304 0,401	0,303 0,398	0,39 0,419
ρ ₁₃			,			0,31 0,425	0,304 0,401	0,303 0,395	0,39 0,411
P 14				;		0,31° 0,421	0,304 0,396	0,303 0,395	0,39 0,411
<i>P</i> 15						0,31 0,418	· -	0,303 0,395	0,39 0,411
L _{D16} P ₁₆		******				0,31 0,414	-	0,303 0,395	0,39 0,404
L ₀₁₇ ;						~		0,303 0,39	0,39 0,404
P 18				*				0,303	0,39 0,404
<i>L</i> D19				35-2				0,303	0,39 0,404
P 20 až 25 L D20 až 25 (ant. H)	•							0,303	
h t T.	0,28 0,0034 0,004 0,02	0,27 0,005 0,007 0,03	0,0067 0,04	0,28 0,005 0,025 0,05	0,3 0,0045 0,015 0,05	0,5 0,01 0,035 0,05	0,27 0,01 0,03 0,05	0,22 0,0155 0,042 0,08	0,0058 0,024 0,05
S _E S _H ')	1,2 0,75	1,2 0,7	1,6 1,5	1,6 1,5	1,7 , 1,5	2,2 2,0	2,3 2,1	3,0 2,8	2,8 2,6
Elektrické parametry G _d [dB] ČSV ₃₀₀ Ω ČZP [dB]	5,1 až 6,2 1,3 až 2,5 21 až 14	5,0 až 6,0 < 1,4 .25 až 17	11,6 < 1,6 18	10,5 až 12 <1,6 >20	10,6 až 12,2 < 1,3 > 23	12,5 až 13,4 < 1,3 > 24	13,5 až 14,0 < 1,6 > 20	12,0 až 15,2 < 1,5 > 20	14 až 15,2 < 1,6 > 18
θ _{3E} Θ _{3H} 1.p.l. _ε [dB] 1.p.l. _H [dB]	65° až 62 108° až 92 - -		38° 40° 18 13	2 42 až 38° 52 až 43° 20 < 18	42°až 36° 50° až 41° > 20 < 18	33° až 29° 35° až 31° > 20 < 14	30° až 27° 34° až 30° 16 12	26° až 19,5° 30° až 20,5° 10,6 8,5	26° až 22° 28° až 24° 16 13

^{*)} S_E a S_H jsou maximální vzdálenosti antén v soustavě. S_E je vzdálenost v rovině prvků, S_H v rovině kolmé na prvky. V praxi se oba rozměry zmenšují asi o 10 až 15 % bez patrného vlivu na zisk soustavy.

 $Θ_{\rm 3H}$ – úhel příjmu v rovině kolmé na $^{\rm 1}$ prvky (H),

l.p.l – úroveň prvního postranního maxima (laloku) v rovinách E a H.

 Doplňujícím textem se stručnou charakteristikou antény.

Stručný popis antén z tab. 1.

- A Pětiprvková anténa s dvojitým reflektorem, původně navržená pro televizní kabelový rozvod (T.KR) na l. pásmu. Splňuje proto zpřísněné požadavky na antény tohoto druhu. Jde zejména o dokonalé přizpůsobení a velký ČZP. Anténa je použitelná i pro jiná pásma, ovšem značná štihlost prvků neumožňuje realizovat ji ve IV. a V pásmu bez přepočtu průměrů prvků pro menší štíhlosti.
- B Anténa téměř shodná s předchozí co do rozměrů i parametrů, původně navržená pro TKR na II. pásmu jako jednokanálová. Menší štíhlost prvků umožňuje použití na všech TV pásmech s přijatelnými průměry prvků. Je velmi vhodná pro obě pásma FM a jako okenní či vnitřní anténa pro IV. a V. pásmo s t = 2 až 3 mm.

C. Úzkopásmová anténa, která se svým uspořádáním prvků vymyká ostatním uvedeným anténám Původně jde o šestiprvkovou anténu, která byla

vypočítána počítačem.

Při minimálním počtu prvků na délce *L_c* je každý rozměr optimalizován. Pro praktické použití byla doplněna kompenzačním direktorem. Praktickou realizací a ověřením této antény v původní šestiprvkové verzi podle Chenga [4] je např. anténní soustava pro amaterské pásmo 145 MHz, sestavena ze dvou dílčích antén tohoto typu [2]. Ing. Závodský, OK1ZN, ve spolupráci s kolektivem OK1KPA optimalizovál délku tlustších prvků (*t*. = 14 mm = 0,0072 λ) vetknutých do kovového ráhna (*T* = 40 až 50 mm = 0,022λ). Všechny pasívní prvky tak vyšly

Všechny pasívní prvky tak vyšly o 1 cm (0,005 λ) delší než podle rozměrů v tab. 1, kde jsou uvedeny rozměry pro nekovové ráhno. Dokonalé přizpůsobení každé dílčí antény na impedanci 50 Ω v úzkém amatérském pásmu 144 až 146 MHz zabezpečuje bočníkově napájený skládaný

dipól podle [2].
Anténa C je projektována i do vícečlenné anténní soustavy pro příjem telemetrických signálů z další čs. družice, připravované v rámci programu INTERKOSMOS.

- D 12prvková anténa s dvojitým reflektorem a průměrným ziskem větším než 11 dB. Má výrazně potlačené postranní laloky. Univerzální anténa vhodná i na IV. a V. pásmo, kde ji lze při délce 0,8 až 1,2 m s výhodou upevňovat až za reflektorem, např. na okenní rám apod. Je použitelná i v pásmu 88 až 100 MHz, pro které ji lze při délce 6 m ještě amatérsky realizovat. Při převažujícím příjmu v první polovině tohoto pásma počítáme rozměry pro
- E V podstatě jde o prodlouženou anténu předchozí, určenou pro TKR na III. pásmu, kde dosahuje délky 4,5 m. (G_d = 12 dB).

 $f = 94 \text{ MHz } (\lambda = 319 \text{ cm}).$

 F – 20prvková anténa s tříprvkovým tzv. trigonálním reflektorem, použitelná

- především na IV. a V. pasmu, pro které byla původně navržena. Má výborné elektrické parametry. Je výrobně náročnější pro individuální rozměry každého ze šestnácti direktorů.
- G 17prvková anténa s konstantní roztečí většiny direktorů. Proto má poněkud větší postranní maxima, než anténa předchozí. S přihlédnutím k závislosti zisku na délce je možno považovat anténu této délky za ekonomické maximum, a to i při užití v anténních soustavách. Dále popisovaná 4členná soustava 4× 16Y je sestavena z těchto antén.
- H Typická dlouhá, jagina" s konstantní roztečí direktorů a malou změnou jejich délky. Je to anténa v podstatě úzkopásmová. Její délka, 7,27 λ, je prakticky maximem na pásmech UKV. U delších antén se již zisk asymptoticky blíží 15,5 až 16 dB. Nároky na homogenitu elektromagnetického pole v prostoru zaujímaném touto anténou jsou již značné, takže její vlastnosti nebývají vždy využity.
- 21 prvková anténa, odvozená z experimentálně optimalizované antény pro úzké amatérské pásmo 435 MHz, známá pod amatérskou značkou autora -F9FT. Při minimálním počtu prvků (využívá se maximální rozteče $p = 0.39 \lambda$ na délce 6.6λ) se dosahuje zisku 15,2 dB. Postupně zkracované direktory zabezpečují příznivé postranní laloky. Vzhledem k úzkopás-movému charakteru antény je žádoucí dodržet pokud možno s malými tolerancemi délky direktorů. Při průměru prvků $t = 0.0058 \lambda$ vychází na IV. a V. pásmu průměr prvků t = 2 až 3 mm, takže při nejjednodušší konstrukci (přímé vetknutí prvků do ráhna) dostáváme velmi lehkou a účinnou anténu pro dálkový příjem. Při délce 6,6 λ se ovšem opět zvyšují nároky na homogenitu elektromagnetického pole v místě příjmu.

"Autoři se málo zabývají anténami pro rozhlas VKV – FM v pásmu 88 až 100 MHz."

Antény pro FM rozhlas v pásmu 88 až 100 MHz

Z četných dotazů na téma antény pro pásmo 88 až 100 MHz je zřejmý stoupající zájem o tuto oblast příjmu. Souvisí to nepochybně i se zvýšenou nabídkou přijímačů TESLA, zahrnujících již obě pásma VKV FM a umožňujících tak příjem zahraničních stanic na VKV. Valnou část našeho území ovšem nelze považovat za ob-

last zásobenou, nebo lépe, pokrytou dostatečně silným signálem pro dokonalý příjem monofonních signálů, natož pak pro kvalitní příjem stereofonních signálů zahraničních stanic. Specifikem příjmových podmínek zejména v českých zemích je i výskyt řádově stejně silných signálů na shodných kanálech, přicházejících z opačných směrů (NDR-Rakousko). Při vzdálenostech kolem 100 a více km pak příjem těchto stanic závisí i na podmínkách šíření, takže příjem zahraničních stanic má do značné míry charakter dálkového příjmu.

Za této situace proto není divu, že stoupá zájem o antény s větším ziskem a dobrým "předozadním poměrem". Vlnová délka kolem 3 m (100 MHz) ovšem neposkytuje, na rozdíl od vyšších TV pásem, tak velké možnosti k realizaci antén s většími zisky, nemají-li se extrémně zvětšovat jejich rozměry. Z tohoto hlediska lze považovat zisk 12 dB za praktické maximum pro otočnou anténu. I tak se však v tomto případě jedná u Yagiho antény o rozměr $L_c = 6$ m, který přesahuje rozměry antén pro ostatní pásma.

Proto se v dalším textu soustředíme především na porovnání a ověření u nás používaných typů antén, které jednak poskytne zájemcům žádané a ověřené parametry a dále usnadní návrh vhodné antény s rozumnými rozměry. Uvažujeme samozřejmě Yagiho antény jako jediné praktické řešení otočné antény pro toto pásmo.

Pro příjem z jediného směru, popř. nevelkého úhlového sektoru jsou použitelné i jiné druhy antén, stabilně instalované; např. antény kosočtverečné, dlou-

hodrátové apod.

Rozšířenému sortimentu přijímačů s pásmem pro rozhlas FM až do 100 nebo 104 MHz neodpovídá nabídka antén pro toto pásmo. Na trhu je již přes 10 let jen jediná anténa. Je to známá 9prvková Yagiho anténa se čtyřprvkovým (!) reflektorem, vyráběná Kovoplastem Chlumec n/C. pod typovým označením 090G-BL. Použitelné by měly být i antény určené pro K5 ve II. TV pásmu (92 až 100 MHz), typu 0305 KL a 0505 KL od téhož výrobce. Jejich výhodou by byla robustnější konstrukce, nevýhodou jednoprvkový reflektor, nezaručující v tak širokém pásmu přijatelné velikosti ČZP.

Šporadicky se vyskytuje 14prvková anténa s 3prvkovým reflektorem a devíti direktory, dovážená ze zahraničí. Snaha o zvětšení zisku při zachování přijatelné délky vedla v tomto případě výrobce k tzv. prostorovému uspořádání direktorů (obr. 5) s cílem zvětšit tím účinnou plochu popř. zisk antény. Do jaké míry se to podařilo zájímalo i nás, proto jsme tuto anténu zahrnuli mezi tři porovnávané

уру.

Jako třetí byla vybrána anténa B, typu 5Y 0.42-0,9 z tab. 1. Jde o pětiprvkovou

Obr. 5. Anténa pro pásmo 88 až 100 MHz s prostorovým uspořádáním direktorů (zahraniční výrobek)

Obr. 7. 8prvková anténa pro příjem v pásmu 88 až 100 MHz upravená z typu 090G-BL

Obr. 6. Rozměrový náčrt porovnávaných antén pro rozhlas FM a) 5prvková, typ 5Y 0,42–0,9 (anténa B z tabulky 1). Rozměry: $L_R=1775$ (2×), $L_Z=1620$, $L_{D1}=1410$, $L_{D2}=1320$, t=10, T=20, m=90 (rozměry v mm), b) 9prvková, typ 090G-BL (v původním stavu). Rozměry: $L_R=1800$ (4×), $L_Z=1500$, $L_{D1}=1280$, $L_{D2}=1295$, $L_{D3}=1275$, $L_{D4}=1255$, t=6, T=15, m=60 (rozměry v mm), c) 14prvková s prostorově uspořádanými direktory (zahraniční výrobek) Rozměry: $L_R=1700$ (3×), $L_Z=1470$, L_{D1} at $_{2}=1350$ (6×), L_{D4} at $_{3}=1350$ (4×), t=10, t=22, t=100 (rozměry v mm), d) 8prvková, upravená 090G-BL (s maximálním využitím původních prvků a ráhna). Rozměry: $L_R=1750$ (2×), $L_Z=1500$, $L_{D1}=1400$, $L_{D2}=1375$, $L_{D3}=1350$, $L_{D4}=1350$, $L_{D5}=1325$, t=6, t=15, t=60

anténu s dvouprvkovým reflektorem, navrženou původně pro TKR na II. pásmu, která se při příjmu rozhlasu FM osvědčila. Její rozměry, odvozené z údajů v tab. 1, byly vypočteny pro $f_{\text{max}} = 100 \text{ MHz}$ kromě dělky reflektoru L_{R} , ČZP původní jednokanálové antény na II. TV pásmo byl totiž optimalizován na kmitočet obrazu. Kratšími reflektory ($L_{\text{R}} = 0.59 \ \lambda$) byla oblast maximálního ČZP posunuta na vyšší kmitočet, tzn. ke středu pásma rozhlasu FM.

Převzaté i odvozené rozměry všech tří antén jsou zřejmé z obr. 6. Naměřené elektrické parametry jsou shrnuty v tab. 2. U každé antény je na kmitočtech 88, 94 a 100 MHz uveden:

- Θ_{3E} úhel příjmu pro pokles napětí 3 dB proti maximu v rovině E (v rovině prvků);
- Ô3H úhel příjmu pro pokles napětí 3 dB proti maximu v rovině H (v rovině kolmé prvký);

- 3. Q_{10E} úhel pro pokles napětí 10 dB v rovině E;
- 4: Θ_{10H} úhel pro pokles napětí 10 dB v rovině H;
- ČZP činitel zpětného příjmu ze směru 180°;
- ČZP průměrný činitel zpětného příjmu v celém pásmu (po 4 MHz);

- ČSV činitel stojatých vln (vztažený na impedanci 300 Ω, měřený na svorkách zářiče);
- 8. G_d získ proti dipólu $\lambda/2$ v dB

Zatímco u 5prvkové a 14prvkové antény odpovídají naměřené údaje předpokládaným, jsou u 9prvkové antény proti očekávání horší, i když jde o anténu co do délky Lc shodnou s anténou 14prvkovou. Zdálo se, že 9prvková anténa je naladěna výše. Tato domněnka se potvrdila, když jsme pro všechny antény graficky znázornili průběh průměrné velikosti úhlů Θ_3 a Θ_{10} v pásmu 86 až 110 MHz (obr. 9). 9prvková anténa 090G-BL je sice podle firemních údajů určena pro kmitočtový rozsah 87,5 až 104 MHz, ale maximální zisk, tj. minimální úhly Θ_3 a Θ_{10} má až na 108 MHz!! Příčinou jsou příliš krátké direktory. Kmitočet 100 MHz tak vlastně leží na okraji oblasti optimálních směrových vlastností této antény. Poměrně malý je i ČZP, vzhledem k použitému 4prvkovému, tedy poměrně "husté-mu" reflektoru. Částečně to působí poměrně malá vzdálenost h vnějších prvků

Tab. 2. Elektrické vlastnosti porovnávaných antén pro rozhlas FM v pásmu 88 až 100 MHz

- Typ antény		prvkov 0,42–0			orvkov 90G-BI			prvkov hraniči		up	rvková ravena 0G-BL	á
Kmitočet [MHz]	88	94	100	88	94	100	88	94	100	88	94	100
1. Θ _{3E} [°]	65	65	61	63	62	53	52	49	46	59	53	47
2 Θ _{3H} [°]	112	105	. 92	.90	83	72	66	57	47	78	68	55
3 Θ _{10E} , [°]	116	113	107	106	104	92	90	85	80	100	89	79
4 Θ _{10H} [°]	200	185	152	165	134	111	115	97	85	126	106	90
5 ČZP [dB]	18	20	15	14	.16	17	23	22	20	20	22	15
6 ČZP (dB) průměr.		19,6			16,1		ļ	22,5		ł	21	i
7 ČSV	1,1	1,05	1,95	1,55	1,2	1,0	4,0 .	1,7	2,7,	1,65	1,1	2,4
8 <i>G</i> _d [dB]	4.5	5	6	6	6,5	7,8	8,3	9 :	10	7.3	8	9

Obr. 8. Připojení napáječe a symetrizační smyčky k upravené anténě 090G-BL. Délka smyčky je 1055 mm pro kabel s k = 0.67)

Obr. 9. Grafické vyjádření směrových vlastností porovnávaných antén. Průběhy O₃ a O₁₀ platí pro průměrnou velikost úhlů v obou rovinách. Křivky 1 – původní anténa 090G-BL, 2 – 14prvková zahraniční anténa a 3 – upravená anténa

Obr. 10. Výsledek přímého porovnávání zisku původní a upravené antény

reflektoru vzhledem k rozměrup, (vzdálenost reflektor-zářič). Mimochodem i velmi dobré přizpůsobení s minimálním ČSV na 100 MHz jen potvrzuje naladění antény mimo používané pásmo.

Pokusili jsme se tuto anténu co nejjednodušeji upravit tak, aby se oblast maximálního zisku posunula na nižší kmitočty, a antény tak bylo účinněji využito. Navržené uspořádání je na obr. 6d. Úprava vyžaduje tyto změny:

– Odstraníme oba střadní prvky reflektoru, zkrátíme a použijeme je jako D₁ a D₂, délku vnějších prvků reflektoru zkrátíme na 1750 mm, původní direktory D₁, D₂ a D₃ prodloužíme (např. zavrtanými šrouby M3 nebo M4, popř. trubičkami z alobalu nebo jinak) a použijeme je jako D₃, D₄ a D₅.

- změníme polohu zářiče a prvních dvou direktorů na ráhnu,

 nové direktory D₄ a D₅ budou v místech původních direktorů D₃ a D₄.

Dostáváme tak 8prvkovou anténu s dvouprvkovým reflektorem, která má větší zisk a lepší ČZP v pásmu 88 až 100 MHz, než anténa původní. Tuto jednoduchou úpravu jistě zvládnou i měně vybavení amatéři, když "nejnáročnější" operací je vyvrtání tří děr do ráhna antény. Ve skutečnosti je zpravidla nejobtížnější demontáž antény a několika prvků. Většinou vezmou za své zarezivělé šrouby M4 × 25 až 30, které je třeba nahradit novými. Původní i posunuté směrové vlastnosti antény jsou zřejmé z grafického znázornění na obr. 9. V tab. 2 jsou pak uvedeny i charakteristické parametry upravené antény.

Upravená anténa se svými parametry více přibližuje zahraniční 14prvkové anténě, která má vyrovnanější směrové vlastnosti v pásmu 88 až 100 MHz a je lepší především ve vertikální rovině, vlivem prostorově uspořádaných direktorů. Při případné realizaci této 14prvkové antény doporučujeme prodloužit zářič na 1580 mm a D; na 1400 mm. Zlepší se tím přizpůsobení, které není právě nejlepší, zejména na krajích pásma. Poněkud se tím zvětší zisk.

Z obr. 3, kde je vyznačen průběh zisku v závislosti na průměrném úhlu příjmu, teď můžeme určit předpokládané rozdíly v zisku antén, charakterizovaných průběhy Θ_3 na obr. 9. Průměrný úhel příjmu Θ_3 upravené antény 090G-BL je v převážné části používaného pásma VKV FM užší průměrně o 10°. Tomuto zůžení odpovídá přírůstek zisku asi 1,5 dB.

Ověřili jsme tento předpoklad porovnáním signálů z obou antén, původní a upravené, které byly střídavě umístovány přesně do téhož místa. Protože jde o stejně rozměrné antény (rozměry L_c a h jsou shodné), je rozdíl v přijímaných signálech přímo úměrný zisku obou antén, nezávisle na homogenitě elektromagnetického pole v místě měření.

Tzn. že se tento rozdíl prakticky projeví ve všech případech, kdy do téhož místa umístíme upravenou anténu, napájenou stejně dlouhým napáječem.

Naměřený rozdíl v ziscích obou antén, vyjádřený zvětšením nebo zmenšením signálu v dB vůči původní anténě 090G-BL, je na obr. 10. Vyznačený průběh je průměrnou hodnotou z několika měření. Naměřené výsledky jsou ve velmi dobré shodě s předpokládanými, stanovenými z rozdílů úhlů Θ_3 podle obr. 3.

Je věcí názoru, zda je přírůstek 1,5 dB dostatečnou motivací k jednoduché úpravě původní antény; přírůstek 1,5 dB je ovšem např. ekvivalentní zlepšení šumového čísla o tutéž hodnotu. Je také rovnocenný zkrácení souosého napáječe typu VFKV 633 (na 100 MHz) o 20 m!

Zvětšení zisku o 1,5 dB je u tak nelineárního komunikačního systému, jakým je systém s kmitočtovou modulací, zvláště zřetelné u nejslabších prahových signálů, kdy se poměr signál/šum může zlepšit o 10 až 12 dB.

V praxi sice v úrovní prahových signálů FM vysílače většinou nepřijímáme, ale zvětšení zisku antény se projeví příznivě při charakteristickém rytmickém úniku (tzv. locomotiv-QSB), kterým jsou signály při dálkovém šíření troposférou ovlivňovány. Každým zvětšením zisku antény se zmenší procento úniků, kdy se signál dostává na úroveň šumu.

Nejlépe by ovšem bylo, kdyby navrženou a ověřenou úpravu realizoval sám výrobce. Kromě zisku morálního by získal i ekonomicky – totiž ten jeden ušetřený prvek. (Ročně se vyrábí 15 000 kusů.) Obrazně to připomíná situaci, kdy výrobce automobilů dodává po dobu 10 let vozy seřízené na provoz s benzínem super, ale v prodeji je jen nízkooktanový normál. Přijímače se při provozu s "ujetou" anténou sice "nehuntují", ale nepodávají výkon, na který mají. Nepříznivě působí u antény i rachitická konstrukce s prvky pouze 6 mm tlustými o délce až 1800 mm. Obrazně řečeno, je to stejné, jako kdyby osobní vozy měly karosérie z plechu tloušťky 0,5 mm.

Vratme se však k anténám. Méně nároční zájemci o příjem rozhlasu FM se po určité době zpravidla soustředí na monofonní příjem jedné nebo několika nejsilnějších stanic. Za této situace není většinou nutné ani účelné provozovat přijímací anténu pro celé pásmo, ale často vyhoví jednoduchá tří, popř. čtyřprvková úzkopásmová anténa, naladěná do příslušné kmitočtové oblasti pásma. (Z kapitoly o Yagiho anténách víme, že úzkopásmová tříprvková anténa je z hlediska zisku nejekonomičtější anténou vůbec. Při optimálním uspořádání může mít v úzkém pásmu zisk až 7 dB proti dipólu $\lambda/2$). Pro tyto případy vyhoví anténa charakterizovaná obvyklými rozměrovými a elektrickými parametry v tab. 3. Její rozměry se počítají

Tab. 3. Rozměry a elektrické parametry

4prykové antény

4prvkové antény					
Parametry	4prvková úzkopásmová anténa 4Y0,5-0,98				
LR	. 0,495 \(\lambda\) (0,495)				
p,	0,25λ (0,156)				
Lz.	0,495 à (0,495)				
p ₁	0,05% (0,03)				
, L _{D1}	0,46λ (0,456)				
p ₂ ,	0,21 (0,156)				
L D2	0,45λ (0,434)				
t ·	~ 0,0035 <i>λ</i>				
7	~ 0,006 \lambda				
· m	~ 0,03 <i>\lambda</i>				
Lc	0,5λ (0,315)				
Gd ČSV ČZP H 3se H 3sh	6,8 dB (6,2 dB) 1,6 (1,5) 12 dB (26 dB) 56° (60°) 84° (106°)				

pro λ středního přijímaného kmitočtu. Použitelná je bez patrného omezení v pásmu ±1 MHz. Anténa je navržena tak, aby v celém pásmu FM 88 až 100 MHz vyhověl jeden průměr prvků t = 10 až 12 mm, T = 20 mm. Všechny údaje platí pro maximální zisk; údaje v závorkách pro nejlepší ČZP na uvažovaném a počítaném kmitočtu, tzn. s mírným zmenšením zisku. V praxi se lépe osvědčila anténa navržená pro nejlepší ČZP. Po přepočtu je anténa použitelná i jako jednoduchá jednokanálová anténa na III., popř. IV. a V. pásmu s prvky o průměru 6 mm, popř. 2 mm.

Předpokladem pro vyhovující stereofonní příjem je napětí signálu min. o 10 dB větší, než je minimální napětí pro vyhovující monofonní příjem. Proto je pochopitelný zájem o antény s maximálním ziskem pro tento druh dálkového příjmu. Jak již bylo řečeno, omezuje poměrně značnávlnová délka, kolem 3 m, maximální délku otočné antény na asi 6 m. Z tab. 1 tedy protento účel přicházejí v úvahu antény C a D.

Bylo by ovšem chybou domnívať se, že směrová anténa je užitečná jen pro dálkový příjem rozhlasu FM. Opak je pravdou. Náročný posluchač místního rozhlasu FM vybavený špičkovým zařízením a dobře uspořádanou poslechovou místností by neměl přijímat signály na pouhý dipól, popř. náhražkovou vnitřní anténu, byť by byl přijímaný signál sebesilnější. Zejméná ne pak v oblasti, kde se nelze obejít bez směrové antény při TV příjmu (zvláště. v l. pásmu). Šíření signálů rozhlasu FM. podléhá stejným zákonitostem, jako šíření kmitočtově nepříliš vzdálených signálů televizních. Rušívé odrazy při šíření televizních signálů jsou na obřazovce zjevné na první pohled. Zkreslení výsledného akustického signálu při stereofonním příjmu, přisuzované elektronickémů či akustickému zařízení, může být s velkou pravděpodobností způsobeno selektivními odrazi obou vyšílaných signálů na cestě mezi přijímací a vysílací anténou. Degraduje se tím kvalita zařízení, jehož cena mnohonásobně převýší náklady na jednoduchou a účinnou 5prvkovou směrovku, kterou by měly být zcela samozřejmě vybaveny též anténní soustavy všech společných televizních rozvodů v pásmu rozhlasu VKV FM.

> "Postrádáme podrobný konstrukční návod na účinnou anténní soustavu pro příjem slabých signálů v V. pásmu."

Anténní soustavy

Poměrně podrobné informace o anténních soustavách, určených pro příjem VKV a,UKV, byly uveřejněny v AR, řada B, č. 1/82. Dnes se k této problematice vracíme podrobným konstrukčním popisem, určeným hlavně pro ty zájemce, jimž lépe vyhovují vyzkoušené návody. Popisují se dvě čtyřčlenné anténní soustavy. Sirokopásmová, pro celé IV. a V.

Popisují se dvě čtyřčlenné anténní soustavy. Širokopásmová, pro celé IV. a V. pásmo, a úzkopásmová, určená pro příjem na K55. Při konstrukci soustav byla věnována hlavní pozornost napájecímu systému, aby byl bezporuchový, tzn. mechanicky stabilní a měl trvale minimální ztráty.

Obě soustavy jsou opatřeny shodným napájecím systémem, který je možno použít i v jiných případech, popř. i u vysílacích anténních soustav na VKV.

Úvodem však zopakujme nejduležitější závěry o anténních soustavách z citovaného čísla AR.

Obr. 11. Zjednodušenou anténní soustavou je anténa se skupinovými direktory

Anténními soustavami řešíme požadavek na větší získ antény v místech slabého signálu nebo otázku nerušeného příjmu TV v místech, kde je příjem znehodnocen odrazy či jiným rušením, dopadajícím na anténu ze směru jen málo odlišného od směru k přijímanému

vysílači. (Podrobné a názorné vysvětlení k selektivnímu potlačení takového rušení bylo uvedeno v [1].)

Směrôvé vlastnosti anténních soustav jsou dány směrovými vlastnostmijednotlivých dílčích antén soustavy, jejich počtem, uspořádáním, způsobem

Obr. 12. Anténní soustava ze čtyř antén typu TVa (viz též 2. str. obálky)

napájení a vzájemnou vzdáleností. Zisk anténní soustavy by se měl zvětšovat přímo úměrně s rostoucím počtem dílčích antén. Každým zdvojením počtu dílčích antén by se měl zisk soustavy zvětšit téměř o 3 dB.

Maximálně dosažitelný zisk soustavy, popř. maximálně použitelný počet antén v soustavě je zpravidla omezen konstrukčními hledisky – zvláště při amatérské realizaci, a dále rozložením elektromagnetického pole v prostoru zaujímaném anténní soustavou. Celkový energetický přinos soustavy je zejména u vícečlenných soustav a na nejvyšších kmitočtech ovlivněn účinností napájecího systému, což se zpravidla přehlíží.

Tato omezení přispěla k rozšíření kompaktních antén se skupinovými direktory. Jsou to vlastně zjednodušené soustavy Yagiho antén, jejichž direktorové řady jsou seskupeny kolem jediného společ-ného ráhna a buzeny jediným, zpravidla celovlnným zářičem (obr. 11). S ohledem na délky prvků a vzájemné vzdálenosti direktorových řad lze tento typ antény prakticky realizovat jen u antén na IV. a V pásmo, kdy je konstrukčně možné seskupit direktorové řady kolem jediného ráhna. Vzájemné vzdálenosti řad jsou však menší než optimální, které lze realizovat u klasických anténních soustav o stejném počtu optimálně uspořádaných antén dílčích. Vezmeme-li však v úvahu všechny vlivy redukující zisk běžných anténních soustav (ztráty v napájecím systému, nehomogenita elektromagnetického pole, poruchovost dílčích napáječů z dvoulinek, atd.), pak je možné považovat antény se skupinovými direktory za zdařilou konstrukci, která má své oprávnění a která se v praxi dobře osvědčila. Podrobné konstrukční údaje o výše zmíněných čtyřčlenných soustavách jsou uvedeny v dalších odstavcích.

Konstrukční popis anténní soustavy "4× TVa 21/60"

Úvodem pokládáme za nutné zdůraznit, že popisované provedení této soustavy (ale i ostatních konstrukcí) bylo ovlivněno materiálovými i výrobními možnostmi. S touto skutečností, která zákonitě ovlivňuje činnost většiny amatérských pracovníků, se v popisu konstrukce počítá. Pouze rozměry závazné pro dodržení požadovaných parametrů jsou zvýrazněny, příp. označeny zkratkami max. nebo min. Někdy bývá udán rozsah možných rozměrů. Zpravidla se však na alternativní možnosti co do rozměrů i provedení upozorňuje v textu. Obecné a základní otázky ke konstrukci antén a volbě materiálu byly probrány poměrně podrobně v [1]. Dielektrickým materiálům je mimo to věnována v tomto čísle zvláštní kapitola (str. 28)

Nyní k vlastní konstrukci. Celá anténní soustava je v podstatě sestavena ze dvou celků, ze čtveřice antén TVa 21/60, připevněné na základní rám, a z napájecího systému, upevněného na tomtéž rámu (obr. 12). Rozměry a provedení rámu jsou na obr. 13, kde je schematicky vyznačeno i rozmístění antén. Rám je zhotoven svařením Fe trubek. 40 × 1 mm. U realizovaného, popř. alternativního řešení je důležitá pouze osová vzdálenost krajních svislých tyčí, která musí zaručit, aby mezera mezi vnitřními svislými stranami reflektorových sítí nebyla větší než 50 mm, takže rozměr S_E bude max. 600 až 650 mm. (Pro S_E = 600 mm se budou reflektory dotýkat.) Na svislých tyčích se antény upevní tak, aby rozměr S_H byl 875 mm, tzn. že se vnitřní vodorovné

Obr. 13. Základní rozměry soustavy 4× TVa

okraje reflektorů překryjí o 75 mm (o 3 pruhy reflektorové sítě). Tento údaj se neshoduje s provedením soustavy na fotografiích (obr. 12 a 15), kde je mezi těmito okraji mezera 100 mm, takže $S_{\rm H}$ je tam 1050 mm. V tomto uspořádání však měla soustava postranní laloky ve svislé rovině 7,5 dB proti požadovaným -10 dB. Proto je zde navržen menší rozměr $S_{\rm H}$.

Obr. 14. Elektrické schéma napájecího systému s označením konstrukčních dílů

Vzájemná vzdálenost vodorovných distančních tyčí rámu nemusí být totožná s rozměrem S_{H.} jak je tomu na obr. 13. Třmenové příchytky antén TVa umožňují volit průměr trubek v rozsahu 35 až 46 mm. Jednotlivé části rámu nemusí mít shodný průměr ani profil. Nepopisuje se upevnění rámu na anténní stožár, které je možné řešit různým způsobem. Anténní soustava by se však měla na stožár upevňovat již jako kompaktní celek, tzn. i s napájecím systémem.

K obr. 13. ještě pro úplnost: *U* označuje polohu třmenových příchýřek jednotlivých antén, *Z* polohu zářičů, *V* otvory pro podpěry napájecího systému a *B* otvory pro upevnění symetrizačního obvodu.

Elektrické schéma napájecího systému je na obr. 14. Číslice 1 až 6 označují jednotlivé části, nakreslené detailně na jednotlivých výkresech (obr. 16).

Napájecí systém byl navržen jako samostatný celek původně pro širokopásmovou anténní soustavu 4× TVa, později byl použit i u soustavy čtyř Yagiho antén (obr. 18b). Obě provedení se liší jen v detailech. U fotografované soustavy 4× TVa byl pro napájení použit souosý kabel

Obr. 15. Část napájecího systému soustavy 4× TVa

VFKP 930 (průměr nad stínicím pláštěm 16 mm), proto tam mají trubky symetrizačního členu Ø 18 × 1 mm, zatímco soustava čtyř Yagiho antén je napájena běžnějším typem kabelu VFKV 630 a tytéž trubky mají Ø 10 ×'1 mm. Kontaktní šroub je zde také na rozdíl od soustavy 4× TVa umístěn nad vedením 150 Ω (těsně pod odkapávací kryt) pro lepší ochranu před zatékáním: Tyto rozdíly jsou též patrné z fotografií (obr. 15). Z uvedených důvodů se pro obě anténní soustavy popisuje jen toto druhé provedení.

Napájecí systém se skládá z dvojice souměrných vedení o impedanci 300Ω (průměr vodičů $\emptyset=2$ mm), rozteč os 12 mm), ze souměrného spojovacího vedení o impedanci 150Ω (tvořeného 12 mm širokými pásy s mezerou 8 mm) a trubkovým symetrizačním členem (balunem). Všechna vedení jsou vzdušná. Rozměry a vzájemné uspořádání všech dílů jsou voleny tak, aby v místech spojů nedocházelo k impedančním diskontinuitám a tím k nežádoucím ztrátám.

Nyní podrobněji k jednotlivým dílům: (1) Všechny čtyři vodiče vedení 300 Ω spojující vždy dvě a dvě antény nad sebou musí mít zcela shodnou délku, která však není kritická, a nemusí se tédy shodovat s údaji na obr. 16-1 při odlišném uspořádání, např. při jiné vzdálenosti vedení od roviny antény, nebo jiné výšce podpěr (3) apod. Konce vodičů 2 mm jsou zapájeny do provrtaných šroubů (M5 × 10 mm), kterými se připojí do středů laděných napáječů antén TVa v místech, kde byly původně upevněny ochranné kryty, které můžeme použít pro jiné účely. Tyto šrouby zapájíme až na hotovém vedení s distančními rozpěrkami (2). Materiál - měď, mosaz, bronz (telefonní dráty).

(2) Distanční rozpěrky by měly být z nenavlhavého izolačního materiálu (teflon, PE i organické sklo apod.) o maximální tloušťce do 2 mm. Na každé vedení by jich mělo stačit 8. Pokud je to nutné, fixujeme jejich polohu z obou stran několika závity drátu. Někdy postačí, zajistímeli vhodným vrtáním jejich tuhý posuv na vedení.

(3) Podpěrné tyčky v místech spojů s vedením 150 Ω jsou důležitým mechanickým stabilizačním prvkem. Proto jsou zakotveny přímo do základního rámu, popř. do nosné konstrukce soustavy. Obě použitá provedení jsou patrná z obr. 16 (3) i fotografii na obr. 15 a 23. Sklotextilová (laminátová) trubka u antény 4× 16Y je

našroubována zalepenou maticí přímo na šroub, svírající vedení 300 Ω.

(4) U spojovacího vedení je nutné dodržet vzájemnou vzdálenost pásů 8 mm o šířce 12 mm, aby se jeho impedance maximálně přibližovala 150 Ω. Prokonstantních 8 mm podél vedení postačí fixovat tento rozměr u obou soustav v pěti místech. Aby se zabránilo impedančním diskontinuitám, je vhodné upevňovat pásy zahloubenými šrouby (M3 × 6 až 8 mm). Materiál – měď, ocel s povrchovou ochranou. Na výkrese je zakreslen jen jeden pás vedení.

(5) **Okénkový izolátor** stabilizuje rozteč pásů vedení 150 Ω mezi konci vedení a symetrizačním členem. Při dostatečné tuhosti izolátoru by patrně vyhovělo jednodušší provedení (5a). Zjednodušila by se tím montáž. Materiál – teflon, PE, organické sklo apod.

(6) Symetrizační obvod je konstrukční modifikací jednoduchého čtvrtvinného balunu. Jsou to vlastně dva, paralelně spojené čtvrtvinné úseky, popř. půlýlnný obvod napájený uprostřed. Tato úprava

spojene čtvrtvinne useky, popr. pulvinny obvod napájený uprostřed. Tato úprava vyhovuje lépe zvolené konstrukci napájecího systému především z hlediska mechanické stability a nezatěžuje napájecí

bod žádným izolátorem.

I když jde zdánlivě o nejsložitější část napájecího systému, nejsou rozměry jednotlivých součástí kritické. Pro dostatečnou širokopásmovost symetrizačního obvodu (zvláště u soustavy 4× TVa) by poměr a/d (rozteč ku průměru vodičů symetrizačního vedení) neměl být menší než 2 (v našem případě je d = 10 mm a a = 20 mm). Pokud se používají větší průměry a tím i větší rozteče trubek symetrizačního obvodu; bude nutné vyvložkovat rozdíl v roztečích pásů vedení 150 Ω. Celková délka obvodu by měla být 2 × λ/4 na středním kmitočtu přenášeného pásma. Většinou se obvod

dělá delší a konečná délka se nastavuje pohyblivými zkraty, čímž se současně kompenzuje vliv případných reaktancí. Bez vhodných přístrojů je však lépe volit délku jednoduše $2 \times \lambda/4$ na středním kmitočtu. Délky obou čtvrtvln vztahujeme k elektrické ose obvodu, tj. k ose napájecího šroubu. V tomto místě by mělo být připojeno i vedení 150 Ω. Z konstrukčních i montážních "důvodů je posunuto o 10 mm nahoru (nebo dolů), což nemá měřitelný vliv na elektrické vlastnosti.

Objímky (6c), upevňující vedení 150 Ω k trubkám symetrizačního obvodu, musí být asi o 0,3 mm "mělčí", než je průměr trubek, aby byl zaručen tuhý mechanický i spolehlivý elektrický kontakt

Nejdůležitější pro bezporuchovou činnost napájecího systému je dokonalé a stálé galvanické spojení mezi vnitřním vodičem napájecího souosého kabelu a kontaktním šroubem (6a). Spolehlivý a trvalý by měl být i kontakt mezi pláštěm napájecího kabélu-a "zemí" uprostřed symetrizačního obvodu, aby vf proudy z antény přecházely na vnitřní povrch stínění napájecího kabelu bez odporu a nejkratší cestou, tj. na konci stínění. Materiál – měď, ocel s povrchovou galvanickou ochranou, lehké slitiny jen pokud je umíme pájet.

K ochraně těchto míst před přímým působením stékající vody přispívá i odkapávací kryt, zhotovený ze dvou plátků polyetylénové fólie (0,5 až 1 mm) – (6b). Oba plátky navlékáme na svislé trubky symetrizačního obvodu až po celkové montáži. Oba plátky jsou v naznačených místech staženy 6 šroubky M2×5. Jejich spodní okraje pak zajistíme pod pásy vedení 150 Ω izolačními pásky (2imes5 50 mm).

Praxe ukazuje, že i když kryt nechrání místo před všemi klimatickými vlivy, zabraňuje přímému vnikání vody a snižuje výrazně vznik nežádoucí koroze v prostoru napájení.

M5 × 8

Stahovacím páskem kolem pružného konce (naříznuto) napájené trubky balunu odstraníme mechanické namáhání kontaktů a spojů vlastní váhou napájecího kabelu.

Zjednodušení napájecího systému výše popsané soustavy 4× TVa (použitelné pro napájení následující soustavy 4× 16Y), je schematicky znázorněno na obr. 16a. Odpadá zde symetrizační obvod (6) podle obr. 16. Přijímaný signál se jednoduše odvádí z pásového vedení o impedanci 150 Ω souosým napáječem, orientovaným kolmo k ploše pásů. Toto řešení umožňuje použité symetrické uspořádání připojeného napájecího systému, které vytváří minimální podmínky pro vznik povrchových (tzn. ztrátových) proudů na vnějším plášti souosého napáječe mezi stožárem soustavy a symetrickým vede-ním 150 Ω. Nejpříznivějších podmínek se z tohoto hlediska dosahuje, je-li délka tohoto úseku asi / 4 na středním kmitočtu pracovního pásma. Povrchovou impedanci souosého napáječe lze dále zvětšit zjednodušeným "rukávem" λ/4, otevřeným směrem k pásovému vedení. Výho-

Obr. 16a. Zjednodušené napájení souměrného vedení 150 Ω .

~R20

zapájeno

Obr. 16b. Připojení souosého napáječe souměrnému napájecímu systému soustavy

dou tohoto uspořádání je téměř neomezená širokopásmovost celého napájecího systému, což je žádoucí při napájení šírokopásmové anténní soustavy.

Na obr. 16b je spolehlivé a odolné připojení souosého napáječe k oběma pásům vedení. Souosý napáječ je možné připojit i konektorem, pokud šířka pásu vedení umožní upevnění panelové zásuvky, jejíž vnitřní vodič se spojí s druhým pásem vedení podobným způsobem jako na obr. 16b. Souosý napáječ o Ø asi 8 až 10 mm (popř. zavlečený do trubky) je v délkách kolem 150 mm ještě dostatečně tuhý, takže současně mechanicky podpírá a stabilizuje střední část pásového vedení.

S přihlédnutím k právě zmíněnému způsobu napájení se může zdát původně uvedená konstrukce klasického symetrizačního obvodu – balunu – zbytečná. Jde však o velmi dokonalý symetrizační ob-vod, který obecně umožňuje bezeztrátové připojení nesymetrického napáječe k symetrické zátěži. Je téměř nezbytný, je-li touto zátěží již vlastní zářič. Pohyblivými zkraty balunu lze dále kompenzovat případné reaktanční složky impedance antény a ovlivnit tak její přizpůsobení. Konstrukčně obtížnější je připojovat střední vodič v místě napájení. V tomto detailu je napájení podle obr. 16a jednodušší.

Montáž soustavy 4× TVa

Celkové uspořádání soustavy, včetně napájecího systému, je zřejmé z výkresů i fotografií; proto jen to podstatné: Z jednotlivých antén odstraníme ochranné kryty (jejích přívodní příchytky použijeme pro připojení vedení 300 Ω) a antény upevníme na nosný rám tak, aby se reflektorové sítě každé dvojice A1A2 a A3A4 překrývaly o tři pruhy (obr. 13). Pro dobrou stabilitů celé reflektorové stěny mechanicky spojíme každou dvojici sít v místě překrytí vhodným způsobem. Pokud zvolíme S_{E} = 600 (reflektory se budou dotýkat), zpevníme reflektorovou stěnu podobným způ-

Obr. 16. Výkresy dílů napájecího systému 4 × TVa (Díly až na 1 a 4 jsou shodné i pro soustavu 4× 16Y)

kompaktní plocha. Pro upevňovací tyče symetrizačního obvodu však v tomto případě musíme v místech B odstranit krátký úsek svislého drátu.

Je užitečné nahradit samořezné šrouby, upevňující ramena dipólu antén TVa ke střednímu izolátoru, šrouby s maticemi. Zlepší se tím tlak na kontakt mezi laděným vedením a rameny dipólů.

Na vedení 300 Ω navlékneme všechny rozpěrky, včetně středního izolačního upevnění, zapájíme koncové upevňovací šrouby a upevníme je do středů laděných napáječů jednotlivých antén. Vedení 300 Ω z obou stran postupně plynule přetáčíme až o 90°, aby uprostřed bylo možné souměrně připojit vedení 150 Ω. Pro soufázové napájení jednotlivých antén je nutné přetáčet obě vedení tak, aby ke každému vodiči (pásu) vedení 150 Ω byly připojeny stejnolehlé napájecí body dílčích antén. Jen v tomto případě bude maximum příjmu (vyzařování) totožné s osou soustavy, tzn. že jen v tomto případě budou směrové účinky (a tedy i zisk) optimální. Pokud by se navzájem propojily protilehlé napájecí body dílčích anten, byly by dvojice anten A1A2 a A3A4 napájeny v protifázi – směrový diagram by se v horizontální rovině "rozštípnul" na dvě části. Byly by to vlastně dva laloky s minimem uprostřed. Pokud by se někomu podařilo spojit vedením 300 Ω ještě protilehlé napájecí body dvojic antén nad sebou, měl by pak podobný tvar i směrový diagram v rovině vertikální.

Symètrizační obvod upevníme na rám v místech ${\cal B}$. Těsnými objímkami k němu připojíme pásy vedení 150 Ω , do jejich zahnutých konců zaklesneme dvoumilimetrové vodiče vedení 300 Ω a poté dobře stáhneme.

Velkou pozornost věnujeme připojení souosého napájecího kabelu. Pájením zajistíme trvalý galvanický spoj s pružným koncem kontaktního šroubu; pokud je to možné, pájíme i stínění kabelu do výřezu trubky symetrizačního obvodu. Mechanicky zajistíme souosý kabel před vytržením vlastní vahou stahovacím páskem na pružném konci napájené trubky balunu anavíc ještě samostatným držákem napáječe na stožáru ihned pod anténou.

Stabilitu všech šroubovaných spoju lze zlepšit pérovými podložkami, které umístíme pod všechny matice (není zachyceno na výkresech). Po skončené montáži zkontrolujeme všechny elektrické a mechanické spoje, a pak tato místa zabezpečíme vhodným nátěrem tak, aby se nevytvářely podmínky pro vznik koroze, která bývá zdrojem elektrických poruch na straně jedné a příčinou dokonalé nerozebiratelnosti antén na straně druhé. Proto pokryjeme nátěrem i všechny vyčnívající konce šroubů. Vhodným prostředkem pro ochranu těchto míst je např. ohřátý RESISTIN.

Jiná uspořádání soustav 4× TVa

Popsaná konstrukce není pochopitelně jedinou možnou variantou sestavy čtyř širokopásmových antén TVa 21/60. Jsou možná i jiná alternativní řešení co do uspořádání antén i způsobů napájení.

Tak např. 4 antény nad sebou zjednoduší celý nosný systém (stačí jeden stožár), zmenší úhel příjmu v rovině vertikální, což je vždy výhodné – zvětší se naopak úhel příjmu v rovině horizontální, což povede k méně kritickému směrování. Tím se zvýší pravděpodobnost příjmu dalších stanic z širšího úhlového sektoru i při stabilní, neotočné anténě.

Soustava čtyř antén vedle sebe bude mít naopak veľmi úzký směrový diagram v rovině horizontální, takže kritičnost směrování bude značná. Toto uspořádání by bylo výhodné při rušení ze směrů asi ±9 až 14° od směru k přijímané stanici (viz [1], str. 22). Velmi úzký diagram této soustavy v horizontální rovině vyžaduje pečlivé směrování a dobrou stabilizaci optimální polohy. V obou případech všechny antény nad sebou nebo vedle sebe - však vzrůstají nároky na homogenitu elektromagnetického pole, což nakonec může vést ke snížení předpokládaného energetického přínosu soustavy. To-muto "nebezpečí" jsou však se značnou pravděpodobností vystaveny všechny antény popř. soustavy s převládajícím rozměřem v jediném směru. Předchozí, a pro jistotu několikrát opakovaný průzkum rozložení elektromagnetického pole žádaného signálu v oblasti zabírané zamýšlenou soustavou je užitečným činem před konečnou koncepcí, realizácí i umístěním antény. Při této příležitosti se vyplatí prověřit celou oblast přicházející v úvahu pro umístění antény a vybrat nej-vhodnější místo. Obecně i na základě zkušeností převládá v praxi nehomogenita elektromagnetického pole v rovině kolmé na směr šíření spíše ve směru vertikálním než horizontálním. Z tohoto hlediska je pak účinnost "vysokých" soustav (tedy např. 4× TVa nad sebou) problematičtější a navrhované uspořádá-

Tzv. kosočtverečné uspořádání čtveřice dílčích antén je neprávem opomíjená varianta, která má zejména z provozních hledisek zajímavé vlastnosti. Proto je tomuto uspořádání věnována zvláštní kapitola na str. 18

"2 a 2" řešením výhodnějším.

kapitola na str. 18.
Navržený a popsaný napájecí systém je rovněž možné řešit alternativně. Pro antény TVa 21/60 však zásadně volíme napájení širokopásmové, tzn. bez laděných napáječů a bez úzkopásmových symetrizačních a transformačních obvodů.

Velmi jednoduchý a poměrně účinný širokopásmový napájecí systém lze realizovat z běžné ploché dvoulinky, když čtyřmi stejně dlouhými úseky spojíme stejnolehlé napájené svorky dílčích antén do společného středu, kde je přes vhodnou symetrizaci připojíme k souosému kabelu o impedanci 75 Ω. Předpokladem pro dlouhodobou a bezporuchovou činnost napájecího systému z dvoulinky je jeho dokonalá stabilita. Několika izolačními držáky musíme zabránit kmitání dvoulinky, ke kterému dochází i při slabém větru. Důsledkem bývá postupné přerušování vodičů i bez jejich vnějšího zjevného poškození. Náchylnost ke kmitání se zmenší, jestliže mezi jednotlivými držáky dvoulinku několikrát překroutime. V takovém případě však pozor na

správné "pólování" vývodů, aby napájení bylo skutečně soufázové. Náchylnost ke kmitání i závislost útlumu na klimatických vlivech lze zmenšit i rozumnou perforací dieelektrika.

Oválná dvoulinka, typ VFSV 515, tzv. dvoulinka "na druhý program", má prakticky stejný útlum jako dvoulinka plochá. Je však odolnější proti povětrnostním vlivům, takže stárne pomaleji, její útlum se při dešti podstatně nezvětšuje a dvoulinka je tužší a nekmitá tak snadno ve větru. Její impedance se však většinou pohybuje v maximálně povolené minusové toleranci, tj. kolem 260 Q. Předpokladem pro její dlouhodobé použití je opět mechanická stabilizace ihned za místem připojení:

Elektrické parametry soustavy 4× TVa 21/60

Naměřené vlastnosti soustavy na několika kmitočtech IV. a V. pásma v obou rovinách jsou uspořádány do tab. 4 a dále znázorněny graficky na obr. 17. Protože pro absolutní měření zisku nebylo k dispozici vhodné místo, jsou předpokládané zisky G_d proti dipólu odvozeny z grafu na obr. 3 s přihlédnutím k úrovni postranních laloků a přizpůsobení.

Impedanční vlastnosti soustavy jsou vyjádřeny činitelem stojatých vln ~ čsv

Průběh ČSV v pásmu značné kolísá a místy je až 3,5. Souvisí to s tím, že již impedance dílčí antény není "ideální", i když jde o anténu širokopásmovou. Prakticky totiž není u tohoto typu antény možné zaručit lepší impedanci s použitými zářiči v tak širokém kmitočtovém pásmu. Jde ovšem o přijímací anténu, a ta i s poněkud větším ČSV v běžné praxi vyhovuje a má jinak celou řadu dobrých vlastností. Jinak Ize anténní soustavu sestavenou ze čtyř soufázových širokopásmových antén TVa 21/60 považovat za kompaktní, mechanicky dlouhodobě odolnou soustavu, která se v praxi dobře osvědčila.

Obr. 17. Elektrické parametry soustavy 4× TVa

Tab. 4. Elektrické vlastnosti anténní soustvy 4× TVa

Veličina	-	f [MHz] 470	-550	650	750
Θ _{3E} [°] Θ _{3H} [°] Θ _{10E} [°] Θ _{10H} [°] Směr 1. minima _E [°] Úroveň I.p.I. _E [dB]		22,5 17,5 44 29 ±29 10,8	22 16 37 27 ±25 9,8	18,5 14 31,5 23 ±21	16 12,5 27,5 20,5 ±18,5 10,5
Směr l.p.l. _E [°] Úroveň l.p.l. _H [dB] Směr l.p.l. _H [°] ČZP [dB] ČZV _{75 Ω}		±47,5 .13,2 ±29	±39,5 12,2 ±27 >23 2	±34,5 11 ±23	±28 9,5 ±20
$G_{d}[dB]$	•	15	16	17.	18

Obr. 18. Anténní soustava sestavená ze čtyř antén typu 16Y 4,1-0,96; a) pohled zpředu (viz. 2.-str. obálky) b) při pohledu ze strany je dobře patrné napájení soustavy

Anténní soustava z Yagiho antén

Popisovaná anténní soustava (obr. 18) je sestavena ze čtyř Yagiho antén typu 17Y 4,1-0,96 podle tab. 1. Jde o 16prvkové, poměrně úzkopásmové antény, se ziskem 13,5 až 14 dB. (Použité antény mají jednoduchý reflektor, proto jsou jen 16prvkové).

Rozměrv byly vypočítány pro f = 750 MHz ($\lambda = 40 \text{ cm}$), což by mělo vést k optimálním směrovým vlastnostem na K55. Základní rozměry dílčí antény v mm (označení rozměrů Yagiho antény je

na obr. 1):

$$L_{R} = 214$$
 $p_{r} = 70$
 $L_{Z} = 225$ $p_{1} = 42$
 $L_{D1} = 184$ $p_{2} = 102$
 $L_{D2} = 173$ p_{3} až $p_{13} = 122$
 $L_{D3} = 171$

L_{D13} = 157 Všechny rozměry direktorové řady odpovídají údajům v tab. 1 pro anténu G. Jsou však zaokrouhleny na celé mm. Původní tabulkové rozměry pr a pj byly poněkud upraveny pro optimální přizpůsobení antény s delším zářičem – L_Z = 225 mm, tj. 0,563 λ . V tab. 1 se pro anténu G uvádí délka zářiče L_Z = 0,522 λ . Zářič byl prodloužen proto, že použité zářiče byly původně určeny pro jiné pásmo. Ze Śmithova diagramu na obr. 27 je vidět, že i s tak dlouhými dipóly lze anténu dobře přizpůsobit korekcí některých rozměrů.

Konstrukční popis

Pasívní prvky - duralové popř. hliníkové tyčky ($\varnothing=4$ mm) jsou vetknuty přímo do ráhna (trubka 16 × 1 mm) a tam zajištěny zadřením nebo důlčíkem [1].

Záříč, skládaný dipól, je zhotoven méně obvyklým způsobem (– viz výkres na obr. 20 a fotografie na obr. 21). Do žádaného tvaru je upraven z jediného měděného, popř. mosazného vodiče ($\emptyset = 2 \text{ mm}$) o celkové – rozvinuté délce 1500 mm; tvoří tedy se svým napáječem 300 Ω jeden celek. Na ráhno je pak upevněn

Obr. 19. Základní rozměry a uspořádání soustavy 4× 16Y

kapitola Izolační a dielektrické materiály na str. 28). Pro stejný tvar několika zářičů se vyplatí zhotovit jednoduchou šablonu podle obr. 22, která usnadní jejich shodné tvaro-

ven z teflonu, silonu, organického skla, popř. jiné vhodné plastické hmoty (viz

izolátorem tak, že střed nenapájené části

Obr. 21. Zářič a reflektor na ráhnu dílčí antény

Obr. 22. Tvarování zářiče – skládaného dipólu pomocí šablony

Popisované a použité řešení není závazné a ani bezpodmínečně nutné pro správnou funkci dílčí antény i celé soustavy. Při dodržení základních rozměrů zářiče a jeho uspořádání vůči sousedním pasívním prvkům lze použít běžnou úpravu s vetknutým zářičem, na jehož svorky bude připojen oddělitelný napáječ 300 Ω ať vzdušný, nebo běžná dvoulinka. Použitá a ověřená úprava se nabízí právě na vyšších kmitočtech V. pásma pro malé rozměry zářiče i přijatelnou délku připojeného napáječe. To umožňuje použít jediný kus poměrně tenkého vodiče pro zhotovení zářiče i jeho napáječe. Nezanedbatelná je i "úspora" osmi kontaktů u čtyř zářičů, které bývají choulostivým místem běžných soustav a vyžadují zvýšenou pozornost.

Rozdílný průměr prvků, $\emptyset = 4$ mm, a zářičů $\emptyset = 2$ mm, nemá na vlastnosti antény žádný nepříznivý vliv, mimo jiné i proto, že jde o anténu úzkopásmovou, jejíž vlastnosti jsou určeny především délkou, průměrem a roztečí pasívních prvků – zvláště direktorů.

Všechny čtyři dílčí antény jsou mezi 5. a 6. direktorem, tj. zhruba ve svém těžišti, připevněny k nosné konstrukci tvaru H, ke které je samostatně připevněn i napájecí systém. Jeho elektrické schéma je shodné s napájením soustavy 4× TVa

na obr. 14. Základní rozměry nosné konstrukce (obr. 19) jsou dány vzdálenostmi $S_{\rm E}$ a $S_{\rm H}$ dílčích antén. Původní uspořádání s $S_{\rm E}$ = 920 mm a $S_{\rm H}$ = 840 mm bylo pozměně-

no, takže nyní jsou oba rozměry shodné à činí 835 mm.

Celá nosná konstrukce je rozebiratelná Křížová spojení svislých trubek (20×2) a stožáru (32×2) s trubkami vodorovnými (22×2) lze realizovat některým ze způsobů nakreslených na obr. 38 až 40 a popsaných na str. 22.

a popsaných na str. 22.

U popisované soustavy byly použity jednošroubové spoje pomocí příchytek, které byly původně zhotoveny pro jiný účel, ale našemu záměru vyhověly, protože zaručily vzájemně kolmou orientaci spojovaných tyčí. Jinak velmi dobře vyhoví jednošroubové příchytky – spojky podle obr. 40. Musí se však zaručit rovnoběžnost vrtání děr ve spojovaných trubkách. Případnou nerovnoběžnost lze sice opravit pilováním děr, ale takový spoj má již jistou vůli, která k tuhosti konstrukce nepřispívá, nehledě na nedobrý estetický dojem, který i mírně "rozházené" trubky zanechávají.

Tato anténní soustava je napájena téměř stejným napájecím systémem jako soustava 4×TVa (obr. 23). Odchylky jsou

Obr. 23. Viz 2. strana obálky

jen v délce vedení $150~\Omega$ (nyní je $S_{\rm E}=835~{\rm mm}$) a v úpravě jeho konců, které současně spojují konce vedení $300~\Omega$ horní a spodní antény. Zahnuté konce pásů širokých $12~{\rm mm}$ musí proto obejmout dva vodiče $2~{\rm mm}$ (obr. 25). Délka upevňovacích tyčí symetrizačního obvodu i upevňovacích tyčí spojů vedení $150~\Omega$ a $300~\Omega$ bude závislá na uspořádání nosné konstrukce. Orientační délka $200~{\rm mm}$ na obr. $18~{\rm plati}$ pro upevnění dílčích antén na ráhno mezi 5.~a~6. direktorem a pro délku

napáječe $300~\Omega=500$ mm. Záleží i na průměrech tyčí nosné konstrukce a jejich spojení. Ostatní díly napájecího systému již byly podrobně popsány, protože jsou shodné se soustavou $4\times$ TVa.

Montáž soustavy 4×,16Y je poněkud pracnější pro značnou délku dílčích antén. Obtížnější je zvláště konečné vytvarování napáječů 300 Ω, které je třeba udělat tak, aby délka obou vodičů každého vedení zůstala stejná. Definitivní tvar dáme napáječům 300 Ω polohou a stabilizací izolačních rozpěrek. Konce vytvarovaných napáječů by pak měly jít snadno zasunout do zahnutých konců vedení 150 Ω. Kontaktům v těchto místech věnujeme zvýšenou pozornost. Při předpoklá-

Obr. 24. Symetrizační obvod – balur soustavy 4 × 16Y s pohyblivými zkraty

Obr. 25. Pásový vodič 150 Ω vedení pro soustavu 4× 16Y

dané definitivní a dlouhodobé instalaci soustavy je možné kontakty propájet. Ochranným nátěrem je však opatříme v každém případě.

Nejen z estetických, ale i elektrických důvodů je užitečné *překontrolovat a případně poopravit* před vztyčením soustavy rovnoběžnost všech dílčích antén. Zajistime tak symetrii směrového diagramu v oblasti hlavního laloku a prvních postranních minim. Je to užitečné zvláště v těch případech, kdy minima pomáhají potlačit rušení nežádaných signálů nebo odrazů. Čím jsou antény směrovější, tím větší jsou z tohoto hlediska požadavky na celkovou symetrii (tj. elektrickou i mechanickou) soustavy. Mírná nerovnoběžnost, popř. nesymetrie napájení prakticky neovlivní zisk soustavy, ale projeví se nestejnou úrovní úhlově "ostrých" minim. Směrové diagramy každé dvojice, ať vertikální nebo horizontální, se spolu musí přesně krýt, aby minima byla shodná. Pokud se ani při dokonalé symetrii nedosáhne předpokládaného tvaru směrového diagramu, nezbývá než hledat příčinu v nehomogenitě elektromagnetického pole v prostoru soustavy.

Použitý napájecí systém je i u této soustavy možno řešit jiným způsobem. Protože jde o antény poměrně úzkopásmové, nemusíme nutně používat širokopásmový napájecí systém. Je možné vyzkoušet i sériově-paralelní napájení souosým napáječem, jak je popisováno ve zvláštní kapitole na str. 19.

Příležitost k experimentům dále poskytuje již zmíněné a na str. 18 popsané kosočtverečné uspořádání dílčích antén.

Elektrické parametry anténní soustavy 4× 16Y

a) Naměřené směrové vlastnosti soustavy v rozsahu 700 až 770 MHz v obou rovinách jsou uspořádány do tab. 5. Je připojen i zápis směrových diagramů v pravoúhlých souřadnicích na f=745 MHz (obr. 26). Nesymetrie prvních postranních laloků a minim padá na vrub mírnému "vybočení" jedné antény a částečné nehomogenitě elektromagnetického pole v místě měření. Ta se projevuje hlavně u podružných postranních laloků. Pro údaje v tabulkách se bere střední hodnota úrovní.

Tab. 5. Elektrické vlastnosti anténní soustavy 4 × 16Y

Veličina .	f [MHz] 710	730	750	770
θ _{3E} [°]	14	13,5	13	13
θ _{3H} [°]	14,5	14	13	13
θ _{10H} [°]	22,5	23	24	34
Θ _{10H} [°]	24	24	23	28
Směr 1. minima [°]	±14,5	±14	±13,5	±13
Ŭroveň 1. p. l. _E [dB]	9,8	10,5	10,3	9
Směr 1. p. l. _E [°]	±22	±21,5	±19,5	±19
Úroveň 1. p. 1. _H [dB]	8,6	8,7	9,5	8,6
Směr 1. p. 1. _H [°]	±23	±22	±20	±19
ČZP [dB]	12	13,5	18	10
ČSV _{75 Ω}	2,2	1,8	1,5	1,2
G _d [dB]	18	18,5	19	18

Obr. 26. Směrový diagram anténní soustavy 4× 16Y ve vodorovné rovině (E) na f = 745 MHz

Zisk byl odvozen jednak z tvaru směrových diagramů s přihlédnutím k úrovni postranních laloků a přizpůsobení a dále z porovnání jak s anténou TVa, tak jedinou dílčí anténou 16Y.

Je vidět, že soustava má maximální zisk kolem kmitočtu f=750 MHz, na vyšších kmitočtech se zisk výrazně zmenšuje. Přepočtem a úpravou nejdůležitějších rozměřů direktorové řády, tzn. zejména délek a roztečí v poměru 750:785 (k=0,955), bude soustava použitelná až do K60. Na K55 by se však touto úpravou zmenšil zisk asì o 2 dB.

b) Impedanční vlastnosti jsou znázorněny na Smithově diagramu (obr. 27) a vztaženy na charakteristickou impedanci napáječe Z₀=75 Ω. Vyznačené průběhy platí pro impedanci na konektoru krátkého přívodního kabelu o délce 1 m. Je vidět, že anténní soustava je velmi dobře přizpůsobena v pásmu 730 až 780 MHz.

Z tabulkových údajů je zřejmý prakticky shodný tvar směrových diagramů soustavy v obou rovinách. Působí to téměř stejné diagramy v obou rovinách u dílčích antén. Tuto vlastnost mají na nejvyšších kmitočtech pracovního pásma, tzn. v oblasti max. zisku, všechny Yagiho antény delší než 4λ s konstantními délkami nebo roztečemi posledních direktorů. Téměř shodné úhly Θ_3 mají i úzkopásmové kratší antény, optimalizované počítačem (např. anténa C v tab. 1.).

Z úrovně postranních laloků lze usuzovat na možné zmenšení roztečí $S_{\rm E}$ a $S_{\rm H}$, aniž by se tím zmenšil zisk. Vyhovující by byly i rozměry $S_{\rm E}=S_{\rm H}=750$ mm.

Údaje úhlů ve stupních jsou změřeny s přesností asi ±0,5°.

Na závěr popisů obou soustav se ptáme, které z popisovaných konstrukcí dát přednost. Z tabulkových údajů je zřejmé – pokud jde o maximální zisk – že jsou obě soustavy zhruba rovnocenné. I ostatní elektrické parametry se příliš neliší s vý-

Obr. 27. Impedance soustavy 4× 16Y vztažená na 75 Ω. (Impedance byla měřena na 50 Ω, proto je na Smithově diagramu průběh posunut k hodnotě 1,5 = 75/50).

jimkou ČZP, který je pochopitelně u plošné reflektorové antény 4× TVa velmi dobrý v celém IV. a V. pásmu. Volba bude proto ovlivněna hlavně požadavky na druh příjmu (úzkopásmový, popř. kanálový nebo širokopásmový) a materiálovými i dílenskými možnostmí, přičemž je třeba vzít v úvahu i zmíněná alternativní, konstrukčně méně náročná řešení napájecího systému. Jednoduché sestavení čtyř antén TVa je vykoupené cenou 1200 Kčs, zatímco čtyři jednoduché, doma zhotovené "jaginy" s velmi dobrými vlastnostmi v pásmu 2 až 4 kanálů pořídíme levněji. Soustava 4× 16Y je váhově lehčí a představuje i podstatně menší "větrnou zátěž". Výhodou Yagiho antény s dipólem \(\lambda/2\) je i její selektivita z hlediska možného intermodulačního zkreslení v anténním zesilovači. Celovlnné dipóly soufázových soustav (ale i antén X-Color) mají totiž i na nižších pásmech ještě dostí velkou impedanci v porovnání se skládanými dipóly 1/2 Yagiho antén. Proto se na nich může v blízkosti silných místních vysílačů i na I. a III. pásmu nakmitat větší napětí a způsobit v přijímaném pásmu intermodulační produkty rušící slabé signály vzdálených stanic. (Z téhož důvodu je proto vždy účelné zařadit na vstup širokopásmových zesilovačů jedoduchou horní propust.) Za jistých podmínek je proto užitečné uvažovat při volbě antén, popř. jejich zářičů i toto hledisko.

"Kosočtverečné" uspořádání dílčích antén

Již popsané uspořádání čtyřčlenné anténní soustavy 4× TVa nebo 4× 16Y je nejčastěji používanou konfigurací dílčích antén. Její výhody jsou – jednoduchá nosná konstrukce, snadné uspořádání napáječů i nosných prvků dílčích antén (kolmo k podělným osám zářičů, neovlivňující elektromagnetické pole v soustavě) a poměrně krátké délky dílčích napáječů.

Charakteristickou vlastností tákto uspořádané čtyřčlenné soustavy jsou dobře vyjádřené postranní laloky s úrovní asi –10 dB v horizontální a vertikální rovině. Tyto postranní laloky jsou od hlavního maxima odděleny hlubokými a "úhlově ostrými" minimy. Vzájemnou vzdáleností dílčích antén v řadě (v tomto případě. dvoučlenné) lze ovlivňovat směr (úhel) minim i úroveň postranních laloků [1].

Postranní laloky jsou zákonitým produktem řady zářičů, popř. soustavy dílčích antén. A protože soustavou řešímenejčaštěji požadavek maximálního zisku, signalizuje nám při běžně používaném uspořádání dílčích antén (tzn. napájení stejnou amplitudou a shodnou fází) jejich úroveň i optimální zisk soustavy.

Z provozních důvodů, zvláště pak při používání otočných antén (tj. přijímáme-li vysílače z různých směrů), působí postranní laloky jisté potíže. Platí to zvláště na amatérských pásmech VKV a UKV při soutěžním provozu, kdy se při vyhledávání protistanic a rychlém směrování anténa nejednou orientuje k protistanici postranním 'lalokem. Že se tím navíc zvětšuje rušení i nežádoucí "zamořování" amatérského pásma, není třeba zdůrazňovat.

U TV přijímacích antén se postranní laloky uplatňují nepříznivě, jsou-li orientovány směrem, odkud na anténu dopadá odraz nebo silný rušivý signál.

odraz nebo silný rušivý signál, "Kosočtverečným" uspořádáním dílčích antén ve čtyřčlenné soustavě podle obr. 28b se velmi jednoduše, a účinně

Obr. 28. a) Běžně používané uspořádání čtyřčlenné anténní soustavy, b) ,,kosočtverečné" uspořádání téže soustavy

zredukují, popř. úplně odstraní oba hlavní postranní laloky ve vodorovné i svislé rovině – nebo přesněji – postranní laloky se v rovině kolmé na svislou osu otáčení soustavy při praktickém provozů neprojeví, protože tam jednoduše nejsou. Je to způsobeno tím, že takto uspořádaná čtyřčlenná soustava se v kolmém průměru do vodorovné i svislé roviny jeví jako tříčlenná s nerovnoměrným rozložením intenzity elektromagnetického pole, popř. s nerovnoměrným ozářením apertury anténní soustavy. Důsledkem je nepatrné rozšíření hlavního laloku (větší Θ_3), ale zároveň výrazné snížení úrovně laloků nastranních

ků postranních.

Principiálně se zde tedy využívá vlivu rozložení intenzity elektromagnetického pole, popř. ozáření apertury – plochy ústí antény.

Uvažovaná anténní soustava, i když jen čtyřčlenná, má v rovině kolmé k ose maximálního příjmu (vyzařování) již charakter antény plošné.

Z přibližného rozložení intenzity elektromagnetického pole podél soustavy ve vodorovné rovině (obr. 29) je zřejmý rozdílný, příspěvek krajních antén A₁ a A₂ a dvojice antén středních A₂ a A₃ při

Obr. 29. Přibližné rozložení intenzity elektromagnetického pole ve vodorovné rovině podél běžně (nahoře) a "kosočtverečně" (dole) uspořádané čtyřčlenné anténní soustavy

"kosočtverečném" uspořádání antén. Současně je třeba vzít v úvahu, že menším se v průměru do téže roviny jeví i rozměr $S_{\rm E}$, což rovněž přispívá k výhodnějšímu tvaru směrového diagramu bez postranních laloků.

Znázorněné rozložení intenzity elektromagnetického pole měla však soustava i při běžně-užívané "čtvercové" konfiguraci (obr. 28a). Postranní laloky však byly, nezávisle na polarizaci dílčích antén, potlačeny v rovinách svírajících s rovinou otáčení úhel ±45°, takže se při směrování antény v horizontální rovině neprojevily. "Kosočtverečným" uspořádáním

"Kosočtverečným" uspořádáním čtyřčlenné soustavy se její absolutní směrové vlastnosti vůbec nemění. Maximální intenzita přijímaného, popř. vysílaného signálu zůstává v obou případech stejná.

Výrazy čtvercový a kosočtverečný, kterými na těchto stránkách rozlišujemé dvě varianty uspořádání téže anténní soustavy vzhledem k ose otáčení, nejsou přísně vzato správné. Vystihují však nejstručněji, a snad i názorně, rozdíl mezi oběma úpravami.

Za běžně užívané **čtvercové uspořádá- ní** (ve skutečnosti může být i obdélníkové, jsou-li S_E a S_H různé) považujeme takové uspořádání čtyřčlenné soustavy, při němž jsou **dvě strany čtverce** (nebo obdélníku), v jehož vrcholech se nacházejí dílčí antény, **rovnoběžné s osou otáčení**.

Při kosočtverečném uspořádání stejné soustavy je s osou otáčení rovnoběžná jedna z úhlopříček téhož útvaru.

Pro názornou představu o vlivu kosočtverečného uspořádání dílčích antén v soustavě jsou na obr. 30 naměřené směrové diagramy čtyřčlenné, horizontálně i vertikálně polarizované soustavy, uspořádané jak do čtverce, tak kosočtverce. Pro porovnání je připojen i směrový diagram jediné, horizontálně polarizované antény dílčí. Charakteristické údaje směrových diagramů pro různé konfigurace dílčích antén jsou pak ještě přehledně uspořádány v tab. 6 a to pro obě polarizace soustavy.

Ze směrových diagramů i údajů v tabulce je zřejmé, že u kosočtverečného uspořádání jsou postranní laloky v rovině kolmé k ose otáčení dokonce menší než u jediné antény dílčí. Údaje z měření de a d_H připojujeme jen proto, abychom upozornili na rychlé zvětšování úrovně postranních laloků při větším S_E, popř. S_H.

— θε[°]

Obr. 30. a) Směrové diagramy čtyřčlenné
horizontálně polarizované anténní soustavy v rovině kolmé k ose otáčení pro obě
uspořádání dílčích antén, b) směrové diagramy čtyřčlenné vertikálně polarizované
anténní soustavy v rovině kolmé k ose
otáčení pro obě uspořádání dílčích antén

Tab. 6. Charakteristické údaje směrových diagramů pro různé konfigurace dílčích antén

Měření	Uspořádání antén	Θ_3	Θ_{10}	Úroveň postranních łaloků (průměr)
a _E ´	_	35,5°	60°	–17 dB
bε	= =	19°	32°	–13,5 dB
CE		21°	37°	-27,5 dB!!
d _E	<u>-</u>	14,5°	24°	-7.5 dB
a _H	1.1	42°	67°	-10,6 dB
b _Н .	1	20°	33°	–11,3 dB
Ċн		20°	33°	-22 dB!!
dн	- 4 5 +	15°	24°	, -5.5 dB

Jde o dvoučlennou soustavu, sestavenou jen z obou krajních antén čtveřice v kosočtverečném uspořádání. Vliv uspořádání dílčích antén byl ověřován na pokusné konstrukci (viz obr. 28), která jednoduše umožňovala změnu konfigurace, jak je vidět z fotogřafií. Celou soustavu Ize potočit kolem společné osy a dílčí antény pak kolem osy ráhna. Tato jednoduchá konstrukce ovšem vyhoví jen pro poměrně krátké a lehké antény, upevněné až za reflektorem. Soustava na obr. 28 je sestavena z dílčích antén typu C (7Y 1,7–0,98) navržených pro f_{max} =435 MHz. Směrové vlastnosti na obr. 30 byly měřeny na 430 MHz.

Kosočtverečné uspořádání je možné použít i u dříve popsaných anténních soustav 4× TVa a 4× 16Y i 4× X-Color apod. Předpokládá to ovšem změnu celkové konstrukce včetně napájecího systému. Kosočtverečné uspořádání by mělo být přínosem zvláště u soustav sestavených z dlouhých Yagiho antén ($L_c=3$ až 4l), které mají poměrně malý úhel příjmu Θ_3 (kolem 14°) a jejichž postranní laloky jsou při čtvercovém uspořádání odchýleny od maxima jen asi o $\pm 20^\circ$, takže pravděpodobnost chybného nasměrování postranním lalokem vzrůstá.

Stejné výhody poskytuje tato konfigurace dílčích antén i u soustav devítičlenných popř. 16členných. Výhod kosočtverečného uspořádání se např. využilo u čtyřčlenné soustavy šroubovicových antén pro příjem z čs. družice MAGION (viz fotografie na třetí straně obálky).

I méně zkušeným experimentátorům jistě postačí dosud uvedené informace k vyzkoušení takto uspořádané soustavy. Pro úplnost ještě dodejme, že impedance dílčích antén se popsanou změnou uspořádání nezmění, takže se nemění ani impedance celé soustavy. Zůstávají tedy v platnosti všechna dříve uvedená hlediska pro spojování impedancí.

U dlouhých Yagiho antén, které není možno vetknout do nosné konstrukce až za reflektorem, nýbrž se musí upevnit v těžišti nosného ráhna, je třeba zabránit tomu, aby vodorovné kovové trubky nosné konstrukce narušily rozložení elektromagnetického pole v direktorových řadách. Proto se musí použít buď tzv. výložná ramena, nebo spojovat dvojice horizontálně polarizovaných dílčích antén, ležících v rovině otáčení, izolační (laminátovou) tyčí.

"Co je sériově-paralelní napájení? Sériově-paralelní napájení anténní soustavy se mi neosvědčilo; kde by mohla být chyba?"

Sériově-paralelní napájení dílčích antén soustavy

Dílčí antény přijímacích (i vysílacích) anténních soustav pro pásma VKV a UKV bývají většinou napájeny soufázově. Nejjednoduššeji lze soufázové napájení realizovat stejně dlouhými napáječi, vycházejícími ze společného napáječího bodu. Protože se současně musí respektovat požadavky na impedanční přizpůsobení, jenutné, aby výsledná impedance Z_v navzájem spojených neladěných napáječů dílčích antén byla shodná s impedancí společného napáječe celé soustavy. Při běžném "paralelním" propojení dílčích antén je výsledná impedance $Z_v = Z_0/n$, kde Z_0 je impedance napáječů dílčích antén a n je jejich počet (obr. 31). Bez dalších opatření tedy nelzě při paralelním neladěném napájení, použít stejné napájecí (tedy o stejném Z_0) pro napájení celé soustavy i pro napájení dílčích antén.

Obr. 31. Schéma paralelního spojení dílčích antén soustavy při jejich soufázovém napájení

Jednou z metod, jak tuto nesnáz obejít, je tzv. laděné napájení, při kterém se využívá poznatku, že vedení o délce $\lambda/2$ transformuje impedanci v poměru 1:1 nezávisle na vlastní charakteristické impedanci vedení – napáječe. Využitím principu laděného vedení odpadají potíže s realizací zvláštních transformací, zejména u vícečlenných soustav. Laděné vedení se však nehodí k napájení širokopásmových antén. Podrobně se o laděném napájení pojednává v [1].

Další možností, jak obejít potřebu několika druhů napáječů, poskytuje tzv.
sériově-paralelní napájení, které bylo
předmětem několika dotazů. Podstata tohoto způsobu je v tom, že antérní soustavu rozdělíme na paralelně spojené dvojice, které napájíme sériově – viz schéma
na obr. 32. Napáječe každé dvojice antén
A1 – A2 a A3 – A4 jsou spojeny paralelně
a obě tyto dvojice jsou pak zapojeny
v sérii, takže výsledná impedance

z_v=Z₀/2+Z₀/2=Z₀. Napáječe dílčích antén i společný napáječ celé soustavy
mají tedy stejnou impedanci.

Obr. 32. Schéma sériově-paralelního spojení dílčích antén soustavy při jejich soufázovém napájení

Předpokladem pro správňou funkci takto napájené soustavy je samozřejmě soufázové napájení všech dílčích antén. U běžně užívaného paralelního napájení dítčích antén "dvoulinkami" prostě spojujeme dílčími napáječi stejnolehlé svorky zářičů, takže všechny svorky jsou napájeny přimo, a stejnolehlé svorky jsou k napáječům připojeny v místech stejné fáze ("polarity"). U sériově-paralelního napájení jsou spolu spojeny stejnolehlé poloviny zářičů jen u paralelně spojených dvojic. Na obr. 32 jsou to dvojice A1–A2 a A3–A4. U sériově spojených dvojic však musíme napájet protilehlé svorky zářičů. U čtyřčlenné soustavy se stávají sériově

napájenými dvojicemi páry A1, A2 – A3, A4. Pomůckou je, označíme-li si okamžitou fázi v přímo napájených bodech znaménky + a –, což znamená fázový rozdíl 180°

*Napětí s opačnou fází se pak na druhé, přímo nenapájené svorky (na obr. 32 jsou to všechny "vnitřní" svorky zářičů), dostává jen tzv. linkovými proudy přes vlastní zářič. K správnému nafázování dochází proto jen na kmitočtech, pro které je elektrická délka zářičů právě \(\lambda/2\). Tento požadavek zářiče Yagiho antén většinou nesplňují, protože jsou zpravidla delší s ohledem na dobré přizpůsobení, jak je ostatně zřejmé z tab. 1 – rozměr Lz. Celovlnné zářiče tak nelze napájet vůbec. Navíc se u sériově-paralelního napájení souměrnými napáječi – dvoulinkami snadno poruší jejich symetrie různými vnějšími vlivy, což účinnost dále zmenšuje.

Suje.

Z těchto důvodů proto nejsou praktické zkušenosti s timto sériově-paralelním napájením nijak povzbudívé. Jde totiž o způsob anténářsky nesprávný, i když je v některých publikacích doporuObr. 33. Sériově-paralelní soufázové napájení 4členné anténní soustavy souosými kabely

Sériově-paralelní napájení dílčích antén bude správné a účinné jen tehdy, když zavedeme na příslušné svorky zářičů dílčích antén (v našem případě na "vnitřní" svorky) napětí opačné fáze přímo. To lze udělat je obvodem, který sice otočí fázi o 180°, ale jinak poměry neovlivní. Takovým obvodem je známá symetrizační a transformační smyčka $\lambda/2$, používaná při napájení zářičů-antén s impedancí 300 Ω (200 Ω) souosým kabelem o impedanci 75 Ω (50 Ω). To znamená, že sériově-paralelní napájení lze zhotovit správně a při tom poměrně jednoduše souosým kabelem. Napětí opačné fáze se pak na druhé svorky zářičů dostává přes tuto smyčku $\lambda/2$. Není třeba jistě připominat, že máme na mysli délku elektrickou,

 z_0 z_0

Obr. 34. Sériově-paralelní soufázové napájení 16členné anténní soustavy souosými kahely

Obr. 35. Zapojení všech napáječů – souosých kabelů při sériově-paralelním napájení čtyřčlenné soustavy uvnitř napájecí hlavice (vlevo)

Obr. 36. Napájecí hlavice s připojenými napáječi je upevněna ke stožáru. Symetrizační obvod λ/4 je v místě zkratu spojen se stožárem (vpravo)

Obr. 37. Rozvinutý plášť hlavice z obr. 35

která je kratší vlivem činitele zkrácení příslušného dielektrika.

Při napájení dílčích antén souosými kabely je tedy třeba opět zabezpečit, aby na stejnolehlých svorkách zářičů bylo napětí se shodnou fází.

Z obr. 33 vidíme, že při správném provedení je schéma zapojení dvojice antén A1 – A2 zrcadlovým obrazem dvojice A3 – A4. Je tedy velmi důležité věnovat pozornost správnému zapojení vnitřních vodičů dílčích napáječů k zářičům.

Princip sériově-paralelního napájení je možné uplatnit i u mnohačlenných soustav, jak to je znázorněno na obr. 34. Považujeme-li v tomto případě za dílčí antény jednotlivé čtyřčtenné soustavy (S₁ až S₄), je výsledná impedance této 16členné anténní soustavy stejná jako u původní soustavy čtyřčlenné. Pro správné připojení všech 16 zářičů si opět pomůžeme zrcadlovými obrazy sériově napájených dvojic.

V principu je sériově-paralelní napájení širokopásmové – aperiodické. Kmitočtová omezení ovlivňují jen pásmové vlastnosti použitých symetrizačních členů. S tím je nutné počítat. Pro úplnost dodejme, že smyčka \(\lambda\) /2 je selektivnějším obvodem než běžný balun \(\lambda\)/4.

Lze tedy shrnout. Sériově-paralelním napájením anténních soustav souosými napáječi odpadají problémy s impedančními skoky mezi napáječi. Všechny připojené napáječe mají stejnou impedanci. Impedanční, popř. tázové poměry nejsou závislé na okolních vlivech, včetně vlivů povětrnostních. Napáječe lze proto vést-těsně podél ráhen a nosných konstrukcí. Totéž nelze říci o sériověparalelním napájení symetrickými napáječí – dvoulinkami. Vliv blízkého okolí se zde uplatňuje velmi nepříznivě. Jistou nevýhodou souosého napájení je potřeba smyčkové symetrizace u každé antény. Symetrizační člen – smyčka $\lambda/2$ – však nemá prakticky žádné ztráty, takže účinnost napájecího systému nezmenšuje. Totéž platí o symetrizačních obvodech čtvrtvlnných.

Na obr. 35 je napájecí hlavice, kde jsou spojeny souosé napáječe dílčích antén se společným napáječem soustavy. Sériové napájení dvojic A1, A2 a A3, A4 se uzavírá přes stínění souosých napáječů, takže je možné připojit napáječe dílčích antén konektory. Plášť napájecí hlavice by měl být uzemněn na nosnou konstrukci anténní soustavy. Čtvrtvlnný symetrizační obvod je zaveden do hlaviće dnem z izolačního materiálu. S nosnou konstrukcí může být vodivě spojen až za zkratem symetrizačního obvodu (obr. 36). Pro lepší odolnost proti zatékání mají být všechny napáječe přiváděny "zdola". Úžitečné jsou proto převislé kryty napájecích míst.

Na obr. 37 je výkres rozvinutého pláště napájecí hlavice z obr. 35. Naznačené

řešení je možné zjednodušit; dílčí napáječe lze do hlavice zapájet. Montáž je pak sice méně pohodlná, ale při nedostatku vhodných konektorů je toto řešení použitelné. Konektory BNC nejsou vhodné do venkovního prostředí, ale v našem případě šlo o rozebiratelnou konstrukci, určenou k občasnému použití.

Tolik tedy k sériově-paralelnímu napájení. Pokud by schéma napájení 16členné anténní soustavy bylo inspirací k její realizaci, je nutné pečlivě zv<u>á</u>žit, zda nepochybně náročná konstrukce bude přiměřená konečnému efektu (nikoli optickému, pokud ovšem právě ten není záměrem konstruktéra). Ponecháme-li stranou požadavek na dostatečnou homogenitu elektromagnetického pole v prostoru zabíraném tak rozměrnou anténní soustavou, pak je v tomto případě nutné předem zvážit ztráty ve složitém napájecím systému, popř. použít co nejkvalitnější napáječe.

V úvahách o energetické účinnosti napájecího systému anténních soustav může být užitečný příklad dvojího uspořádání napájecího systému čtyřčlenné soustavy. Na obr. 37a vlevo jsou dílčí antény spojeny do jednoho místa, a odtud napájeny společně. Na obr. 37a vpravo je u stejné soustavy každá dílčí anténa spojena přímo se zdrojem. Napájení, nebo lépe napáječe obou soustav se celkovou délkou a tedy i celkovým útlumem liší. V prvním uspořádání je útlum všech napáječů 4× 3 dB + 3 dB = 15 dB. V druhém případě je celkový útlum 4× 6 dB = 24 dB. Bude mít rozdíl 9 dB vliv na účinnost obou napájecích systémů?

Pro snažší představu předpokládejme, že jde o antény vysílací, napájené výkonem 100 W. Bude celkový vyzářený výkon rozdílný?

Uspořádání A: výkon vysílače 100 W, útlum společného napáječe 3 dB (0,5×), výkon na konci společného napáječe

výkon do každého dílčího napáječe 50 W: 4=12,5 W. útlum dílčího napáječe 3 dB $(0,5\times)$, výkon na svorkách dílčí antény 12,5 W: 0,5=6,25 W,

celkový výkon na svorkách všech dílčích antén soustavy 4 × 6,25 W = 25 W, energetická účinnost napájecího systému 25%

uspořádání B:
výkon vysílače
výkon do každého dílčího napáječe
100 W, 100 W: 4 = 25 W,
útlum dílčího napáječe 6 dB (0,25×),
výkon na svorkách dílčí antény
25 W × 0,25 = 6,25 W,

25 W × 0,25 = 6,25 W, celkový výkon na svorkách všech dílčích antén soustavy 6,25 W × 4 = 25 W, energetická účinnost napájecího systému 25 %

Tutéž účinnost má i stejně dlouhý napáječ jedné antény. Jeho útlum 6 dB (0,25×) pohltí 75 % výkonu, takže na svorky antény se dostane opět (100 W × 0,25) jen 25 W, jako u čtyřčlenné soustavy vlevo či vpravo na obr. 37a. Celkový výkon, který se přes napájecí systém dostane na svorky antén, je ve všech případech stejný, i když se celková délka použitých napáječů značně liší.

Dospěli jsme tedy k tomuto závěru: zvýšením počtu dílčích antén v soustavě se účinnost napájecího systému nezmenšuje, pokud se současně neprodlužuje dělka dílčích napáječů. Tento závěr pochopitelně platí j pro napájecí systém soustav přijímacích a je mu tedy třeba podřídit koncepci sestavy dílčích antén, zvláště u mnohačlenných soustav.

Připomínáme, že předchozí úvaha se týká výlučně napájecího systému a vůbec nesouvisí se ziskem soustavy, který je dán především celkovými rozměry soustavy, včetně rozměrů dílčích antén. A ještě jedna poznámka. I když z hlediska energetického přenosu není proti uspořádání vpravo na obr. 37a námitek, nelze toto řešení doporučit pro obtížné dodržení stejné elektrické délky dílčích napáječů, zvláště na pásmech UKV.

Uvedená numerická úvaha též názorně

Uvedená numerická úvaha též názorně dokladuje, jak důležitá je maximální redukce útlumu v napájení, jak užitečné je připojení koncových zesilovačů či vstupních předzesilovačů přímo na svorky antény. U vysílacích soustav je ovšem nutné brát v úvahu i energetické zatížení jednotlivých úseků a volit vhodné typy napáječů.

"Jak mám nejjednodušeji spojovat kolmé trubky u antén?"

Křížové spoje trubek

Při sestavování směrových antén a soustav na VKV i KV pásmech se často potýkáme s otázkou, jak jednoduše realizovat křížové spoje trubek. Ne každý má možnost svářet nebo lisovat, popř. soustružit tvarované příchytky.

Mezi křížové spoje patří i spojení prvek ráhno. Nejjednodušší způsoby použitelné zvláště na pásmech VKV byly uvedeny v 111

S ohledem na případné experimenty jsou pro amatérskou práci zvláště výhodné křížové spoje posouvatelné, které navíc umožňují nezávisle otáčet spojovanými prvky. Pro spojení tlustších trubek u směrovek na pásma VKV i KV se osvědčila spojení podle obr. 38 až 40.

Obr. 38. Křížové spojení trubek stejných průměrů tvarovou příchytkou. Pro stejné průměry spojovaných trubek jsou oba díly shodné

Na obr. 38 je posouvatelné křížové spojení, provedené tvarovanými příchytkami z ocelového plechu. Tento způsob je výhodný, spojujeme-li dvě trubky shodného průměru. Potřebujeme vlastně jen samé stejné díly; jejich zhotovení ovšem klade větší nároky na mechanickou zručnost. Mimo jiné i proto, že je třeba dodržet s malou tolerancí hloubku h, která musí být u ocelových trubek asi o 2% (h=1,02D) a u hliníkových trubek asi o 5% (h=1,05D) větší, než průměr objímané trubky, aby byl spoj dostatečně pevný. Dělka objímané částí má být asi 2D až 3D. Nýtování je vhodné jen u větších sérií nerozebiratelných spojů, popř. u strojně lisovaných příchytek. V amatěrské praxi raději spoje šroubujeme.

Obr. 39. Křížové posouvatelné spojení trubek svorníkovými třmeny. Kolmost spojovaných trubek závisí na přesnosti, rozvrtání" spojovací desky

Křížovým posouvatelným spojením se svorníkovými třmeny podle obr. 39 lze velmi dokonale spojovat trubky stejných i různých průměrů. Pro každý spoj potřebujeme čtyři svorníkové třmeny a jednu spojovací desku, "rozvrtanou" souměrně k osám tak, aby osové rozteče děr každé čtveřice měly rozměr D+d (přesně) a 2D (přibližně). Kolmost spojovaných trubek závisí na přesnosti vrtání spojovací desky: Svorníkové třmeny zhotovujeme z tyčí o délce (rozvinuté) l=2.6D+5.6d (pro d=2s), jejichž konce opatříme závitem

Obr. 40. Pevně křížové spojení stejných nebo různých trubek zajišťuje jediný šroub

v délce asi 2d. Průměr svorníkových třmenů bude ovlivněn pevnostními požadavky na spoj a druhem materiálů. V praxi vyhovuje d=0,3 až 0,2D. Jde o jedno z nejlepších rozebiratelných a posouvatelných spojení co do pevnosti i snadnosti amatérské realizace.

Pevné křížové spojení na obr. 40 zajišťuje jediný šroub, spojující trubky stejných nebo různých průměrů, zatlačených do zářezů jednoduché univerzální spojky z ocelového i hliníkového plechu. Kolmost spojovaných trubek lze snadno zaručit již na rozvinutém tvaru příchytky. Výchozí tvar je většinou čtverec o straně asi 30. "Zákryt" všech prvků, upevněných na společné ráhno touto příchytkou, však již závisí na rovnoběžném vrtání děr v ráhnu. Je třeba brát v úvahu, že se vrtáním zmenšuje pevnost trubek.

Uvedená spojení jsou sice mimoosá, ale většinou jich lze užít i jako spojů T k upevnění anténního ráhna ke stožáru apod. Výjimkou jsou zpravidla jen ráhna antén pro pásma UKV, kde by nesymetrie a rozměr uchycení mohly nepříznivě ovlivnit rozložení elektromagnetického pole podél direktorové řady. Jednoduchý souosý spoj T je na obr. 41. Tvoří jej dvě stejně vrtané desky a čtyři šrouby.

Obr., 41. Jednoduchý spoj T realizovaný dvěma deskami a čtyřmi šrouby

"Na střechách výškových domů sídliště, 300 m od mého domku, je poměrně silný signál (obraz již bez sumu) na K55, jak velký pasívní reflektor by odrazil dostatečně silný signál k mé anténě?"
"Naše chatová osada leží v hlubokém údolí nedaleko TV vysílače.

"Naše chatová osada leží v hlubokém údolí nedaleko TV vysílače. TV signál tam však není. Je možné spojit jednoduše dvě přijímací antény a vytvořit tak pasívní relé k ozáření údolí?"

Pasívní reflektory

Pasívní reflektor je jednoduché anténní zařízení, kterého se užívá k odrazu cm a dm elektromagnetických vln do zastíněných oblastí (obr. 42). Protože přibývá dotazů na možnosti amatérského využití pasívních reflektorů, pokusíme se problematiku pasívních reflektorů vysvětlit z tohoto hlediska.

Na základé údajů v dalších odstavcích nebude pravděpodobně většinou možné odstranit nedostatek signálu v malých, místně zástíněných oblastech. Tyto odstavce by však měly poskytnout takové informace, aby se čtenář mohl rozhodnout, zda je vůbec reálně zkoušet nedostatek signálu odstranit tímto způsobem.

Obr. 42. a) Pasívní reflektor pro odraz elektromagnetických vln. Dokonalou stabilitu za všech podmínek zajišťuje robustní konstrukce na solidních základech, b) konečné "dosměrování" ve vertikální rovině se dělá tlustými svorníky

Dopravit signál do neozářených, tzv. nepokrytých oblastí ve vyhovující kvalitě je v současné době možné několika způsoby. Ponechme při tom stranou úvahy o vysílání z družic, které zcela jistě zásobí dostatečným signálem většinu dnes nepokrytých oblastí; zatím totiž nelze odhadnout, jak dostupná budou v příslušné době potřebná zařízení pro individuální příjem v pásmech kolem 12 GHz (popř. jak rozsáhlé územní celky budou pokryty potřebným kabelovým rozvodem).

Jedním z běžně užívaných způsobů je zřizování vykrývacích vysílačů o malém výkonu. U nás je jich v provozu již přes 1000, další přibývají. Jejich zřízení je podmíněno radou hledisek. Jde vlastně o aktivní retranslaci, kterou realizuje a provozuje Správa radiokomunikací. Používaná zařízení jsou vyráběna v k. p.

TESLA Orava.

Televizní kabelový rozvod (TKR) je progresívní formou rozvodu televizních signálů. V zahraničí jsou pomocí TKR zásobeny kvalitními signály obyvatelé mnoha měst, ale i malých horských osad. Lze říci, že na dnešních sídlištích, s roztříštěnou výškovou zástavbou, je to jediný možný způsob, jak zásobit všechny účastníky kvalitními obrazy několika programů. Pro instalaci centrálních anténních přijímacích systémů je nutné vybrat optimální místo. U nás se vývojem zařízení pro TKR nyní zabývá TESLA Bratislava.

Systém společného televizního rozvodu (STR), tak jak jej v dnešní podobě známe hlavně na sídlištích by nepochybně uspokojil i požadavky chatařů v některých osadách. Potenciálním realizátorem je např. Kovoslužba. Vyloučena není ani svépomocná instalace. Předpokládá se nevelká vzdálenost přijímací antény od

místa rozvodu.

Nepřichází-li v úvahu žádný z předchozích způsobů, tedy zejména při individuálním příjmu, můžeme se zamyslet nad použitím pasívních reflektorů.

V praxi se velmi často setkáváme s nekvalitním obrazem, způsobeným vícesměrným příjmem z místních, popř. velmi silných vysílačů. Silný signál dopadá na přijímací anténu přímo, ale s velkou intenzitou i odrazem od různých terénních překážek a jiných objektů. Jsou to zvláště obvodové, někdy i kovové pláště výško-

vých budov, které svými odraznými vlast-

nostmi znehodnocují přijímaný obraz. Nabízí se tedy otázka, zda by na druhé straně nebylo možné využít odrazů k šíření žádaného signálu. Z praxe známe nemálo případů, kdy je příjem TV umožněn jen odrazy od terénních či umělých překážek. Většinou jde o příjem silných, nepříliš vzdálených vysílačů. Přijímaný obraz však zpravidla nemívá uspokojivou kvalitu.

Za jakých podmínek je vlastně možný příjem cíleným odrazem od přirozené nebo umělé překážky – od pasívního reflektoru? Zabývejme se situací na obr. 43, která se snaží schematicky znázornit problém, formulovaný otázkou k této kapitole.

Na střechách výškových budov sídliště je údajně dostatečně silný signál na K 55. Na střeše rodinného domku, ve vzdále-

objekty sidlišté

Robodovic virm

odražený signált v ~ lou j

Obr. 43. Schéma místní situace při odrazu signálu od pasívního reflektoru zpět směrem k vysílači (poloha ,,1", $\vartheta = 180^\circ$), popř. směrem k poloze ,,2" ($\vartheta = 120^\circ$); a) pohled shora, b) pohled zepředu

nosti 300 m, "není nic". Předpokládejme, že signál hodnotíme na černobílém televizoru s anténou o zisku 15 dB (např. X-Color), umístěnou na střeše sídlištního bloku. Délka napáječe typ VFKV 630, popř. VCCOY 75-5,6 je 10 m (poslední patro). Na K55, tj. na.750 MHz, má tento napáječ útlum 24 dB/100 m. Pro 10 m tedy počítejte se ztrátou 2,5 dB.

"Dostatečně silný signál" u dálkového příjmu a bez zesilovače obvykle znamená, že napětí na vstupu TV přijímače má asi takovou úroveň, při které právě mizí šum, tj. asi 40 dBµV. Připomínáme, že uvažujeme, úroveň signálu přijatého anténou o zisku 15 dB, zmenšenou o ztráty 2,5 dB

na napáječi.

Předpokládejme dále, že se s tímto přijímacím zářízením přemístíme do bodu "1" ve vzdálenosti 300 m. Předpokládejme ještě, že bod "1" leží přesně proti směru šíření žádaného signálu, a že vzdálenosti 300 m je zanedbatelná proti vzdálenosti k vysílači. (Bod "1" je též od přímého dignálu dokonale odstíněn.) Zajímá nás tedy, jak útlum 300 m dlouhé trasy mezi reflektorem R a přijímací anténou P zredukuje úroveň původního signálu. Za jakých podmínek bude ještě možný příjem odraženého signálu?

Nejprve se seznámíme s problémem

obecně.

Na obr. 44 a 45 je schematicky znázorněno použití pasívního reflektoru. Pasívní reflektory se používají zejména na mikro-

Obr. 44. Odklon signálu odrazem od jediného pasívního reflektoru. Účinná (efektivní) plocha 🕰 je průmětem skutečné odrazné plochy A, do roviny kolmé ke směru odrazu

Obr. 45. Odklon signálu odrazy od dvojice velmi blízkých reflektorů. Využívá se při malých úhlech ϑ, popř. při přenosu za překážku

vlnných trasách pro přesměrování mikrovinných svazků. Systém s jedním reflektorem je použitelný, pokud se úhel odklonu θ od přímého směru nezmenší pod 60° Pro menší úhly v nabývá reflektor R, jak dále uvidíme, značných rozměrů, takže je pak ekonomičtější použít systém dvou reflektorů podle obr. 45. Čím je úhel θ' větší, tím je obraz "ekonomičtější", protože se zmenšuje rozdíl mezi skutečnou a účinnou – efektivní plochou pasívního reflektoru. Pro $\theta'=180^\circ$, tj. při odrazu proti směru šíření odpovídá skutečná plocha slože, efektivní Uhol, odklozu musíma. ploše efektivní. Úhel odklonu musíme respektovat i v rovině vertikální $-\vartheta$. Leží-li pasívní reflektor a přijímací anténa v jedné rovině, je $\vartheta = 180^\circ$ (obr. 43b).

Při výpočtu útlumu trasy vycházíme ze ztráty vysílaného výkonu N_v. Pro poměr vyslaného a přijatého výkonu na celé trase mezi přijímačem a vysílačem můžeme psát:

$$10\log\frac{N_{\rm V}}{N_{\rm o}} = \alpha_{\rm c}$$

Při dostatečné vzdálenosti mezi pasívním reflektorem R a oběma anténami (vysílací V a přijímací P) jsou vlny dopadající na pasívní reflektor rovinné, s konstantní amplitudou a fází, takže můžeme praktický počítat se 100 % účinností pasívního reflektoru. Za takových podmínek může-me vyjádřit útlum celé trasy mezi V a P výrazem:

$$\alpha_{\rm c} = 10\log \frac{\lambda^4 r^2 r^2}{A A^2 A_{\rm p}},$$

jehož úpravou dostaneme:

$$\alpha_c = 10\log \frac{\lambda (r_1 + r_2)^2}{A A_p} + 20\log \frac{\lambda r r_2}{A_0(r_1 + r_2)} =$$

 $\alpha_1 + \alpha_2$

kde i je vlnová délka,

efektivní plocha (apertura) vysí- A_{v} lací antény,

efektivní plocha (apertura) přijímací antény,

efektivní plocha (apertura) pasívního reflektoru (odrazné antény) v rovině kolmé k dopadající, popř. odražené vlhě,

vzdálenost mezi anténou vysílací a pasívním reflektorem,

vzdálenost mezi pasívním reflektorem a přijímací anténou.

První člen výrazu, α_1 , je jednoduše útlum trasy mezi anténami V a P, oddělenými vzdáleností r_1 a r_2 . Druhý člen výrazu, α_2 , je přídavný útlum druhé části trasy.

Za předpokladu, že r₁≫r₂, tzn. je-li√ vzdálenost pasívní reflektor-přijímač malá, zanedbatelná proti vzdálenosti vysílač-pasívní reflektor, můžeme výraz pro α_2 zjednodušit takto.

$$\alpha_2 = 20\log \frac{\lambda r_2}{A_1}$$

Pro výpočet přídavného útlumu α_2 v dB dosazujeme všechny veličiny ve stejném

Obr. 46. Přídavný útium trasy pasívní reflektor – přijímací antěna na $f=750\,\mathrm{MHz}$ ($\lambda=0.4\,\mathrm{m}$) v závislosti na vzdálenosti r_2 Parametrem je efektivní délka strany a_0 (efektivní plocha A_o) čtvercového reflektoru

rozměru - nejlépe v metrech, nebo je vyjadřujeme ve vlnové délce. Ao, efektivní plochu pasívního reflektoru, dosazujeme pochopitelně v metrech čtverečních nebo $v\lambda^2$. Pro praktickou potřebu je výraz pro α_2 znázorněn grafem na obr. 46, a to pro náš případ, tj. pro $\lambda = 0.4$ m (f = 750 MHz). V závislosti na vzdálenosti r2 udává v rozsahu 10 až 10 000 m přídavný útlum α2 pro různé velikosti odrazného reflektoru čtvercového tvaru. Parametrem jsou tedy rozměry reflektoru, vyjádřené pro lepší představu délkou jeho strany (a), v rovině kolmé k dopadající, popř. odražené vlně. Každému zdvojení délky strany čtverce odpovídá čtyřnásobná plocha pasívního reflektoru a změna směrovosti, popř. přírůstek zisku o 6 dB. Protože pasívní reflektor zastává současně funkci dvou steině rozměrných antén (vysílací a přijímací) pracujících se 100% účinností, projeví se pracujicion se 100 % doliniosti, projection di utilumu trasy r₂ změnou o 12 dB. Z výrazu pro n₂ dále logický vyplývá, že se při konstantní ploše pasívního reflektion zvětšuje (zmenšuje) útilum trasy o 6 dB při polovičním (dvojnásobném) kmitočtu, tj. při dvojnásobné (poloviční) vlnové délce. Pravděpodobnost možného využití pasívních reflektorů tedy stoupá s kmitočtem.

Vratme se znovu k našemu příkladu. Použijeme-li v místě vlastního příjmu stejné přijímací zařízení, kterým jsmé hodnótili signál tam, kam hodláme umístit pasívní reflektor, pak je za daných okolností rozhodující, jakou ztrátu signálu si na dané trase můžeme dovolit, abychom neztratili reálnou možnost příjmu. Podle toho pak určíme z grafu na obr. 46 potřebnou délku strany efektivní plochy čtvercového reflektoru. Za efektivní plochu považujeme plochu čtverce v rovině kolmé k odražené vlně, do které se nám kolme k odrazene vine, do kiere se nam skutečná plocha reflektoru promítá. Pro θ =180°, popř. φ =0° – odraz proti směru dopadajícího signálu – (anténa P je v poloze "1") jsou obě plochy shodné. Pro θ =60° je vodorovná strana skutečné plochy shodné. chy reflektoru 2× větší než efektivní. Pro $artheta {<} 60^\circ$ nabývají vodorovné rozměry reflektoru rychle extrémních hodnot. (Poměr skutečné a efektivní strany čtverco-vého reflektoru v závislosti na úhlu odklonu je vyznačen grafem na obr. 47.)

Na mikrovlnných trasách se v těchto případech používá dvojice pasívních reflektorů podle obr. 45. V amatérské praxi však toto řešení přichází sotva v úvahu.

Pro náš příklad lze při r2=300 m připus tit ztrátu asi 20 dB, aby byl obraz na TVP ještě "ke koukání" bez anténního zesilovače. Zvolíme-li tedy podle grafu na obr. 46 stranu reflektoru a=4 m, bude přídav-

ný útlum na trase r_2 18,5 dB. Na vstupu přijímače s anténou v poloze "1" by se měla objevit úroveň napětí 40 -= 21,5 dB_uV. Pokud bychom přijímali s anténou P v poloze "2" (úhel odklonu ϑ =60°), měla by mít vodorovná strana a již dělku 8 m (a= a_o /cos φ). Pro ostatní úhly ϑ stanovíme skutečný rozměr pomo-

cí grafu na obr. 47. Při předpokládaném homogenním ozáření a 100% účinnosti má reflektor při ploše A_o =16 m², tj. 100 λ^2 , na 750 MHz zisk G_d =29 dB. Anténa s tak velkým ziskem má pochopitelně velmi úzký hlavní lalok, což předpokládá velmi pečlivé nasměrování. Jinými slovy – signál odražený od pasívního reflektoru je k dispozici v předpokládané síle jen ve velmi Připustíúzkém úhlovém sektoru. Připustí-me-li pokles signálu maximálně 3 dB, ke sektoru. kterému dojde na okrajích svazku o úhlu Θ₃, odpovídajícímu efektivnímu horizontálnímu rozměru pasívního reflektoru, pak je nutné umístit přijímací anténů na poloměru r2 v rozsahu oblouku o délce /o

$$I_0=\frac{2\pi r_2}{360}\,\Theta_3,$$

O₃ určíme s dostatečnou přesností z rozměru a podle vzorce

$$\Theta_3 = 52^{\circ} \frac{\lambda}{a_{\circ}}$$
.

Pro náš případ, kdy $\lambda = 0,4$ m a $a_0 = 4$ m, je $\Theta_3 = 5,2^\circ$, takže

Obr. 47. Poměr skutečné a efektivní délky strany a_s/a₀ pasívního reflektoru v závislosti na úhlu odklonu ช

Obr. 48. Tvar hlavního laloku směrového diagramu rovnoměrně ozářené plošné antény. Na vodorovné ose je vynášen poměr úhlové odchylky Δ Θ od maxima ku polovině úhlu příjmu Θ√2

Výše uvažovaný pokles 3 dB je ovšem při cílených odrazech v profesionální praxi nepřijatelný, mimo jiné i pro značné náklady na stavbu vysoce stabilních reflek-torů. Přijímací anténa P musí být nasměrováním pasívního reflektoru v horizon-tální i vertikální rovině umístěna v maximu jeho směrového diagramu s přesností ±1 dB. Nároky na přesnost zacílení reflektoru znázorňuje zcela obecně graf na obr. 48, kde je vyznačen vypočtený tvar hlavního laloku směrového diagramu rovnoměrně ozářené plošné antény. Na vertikální ose je vynášen úbytek zisku ve směru skutečné polohy přijímací antény, proti zisku ve směru maxima. Na horizontální ose je vynášen poměr úhlové odchylkyΔΘod optimálního zacílení ku polovině whitu příjmu $\Theta_3/2$ plošné antény. Pro $2\Delta\Theta/\Theta_3 = 1$ je úhlová úchylka $\Delta\Theta = \Theta_3/2$ a pokles je -3 dB. Pro max. pokles do -1 dB přečteme z grafu pro $\Delta G = -1$ dB údaj $2\Delta\Theta/\Theta_3 = 0.6$ a po dosazení za $\Theta_3 = 5.2^\circ$ dostaneme maximální povolenou adobylku ad ostřipálního povolenou procesu povolenou povolen nou odchylku od optimálního směru

$$\Delta\Theta = \frac{\Theta_3 \cdot 0.6}{2} = \frac{5.2 \cdot 0.6}{2} = 1.56^{\circ}.$$

2ΔΘ je vlastně úhel Θ _{1dB} = 3,12°. Dosazením do vzorce pro I_o dostáváme délku oblouku, na kterém je třeba umístit přijímací antěnu, I_o=16,3 m. Stejný pōstup vyžaduje optimální nasměrování reflektoru v rovině vertikální. Použijeme stejných vzorců pro výpočet Θ'₃ i ΔΘ', protože tvary směrových diagramů efektivní čtvercové plochy jsou osově souměrné. Pokud se úhel odklonu θ' ve vertikální rovině nebude příliš lišit od 180°, může zůstat pasívní reflektor svislý a optimálního uspořádání se dosáhne "vysunutím" přijímací antěny do maxima vertikálního diagramu pasívního reflektoru.

Pasívní reflektory nemusí mít pochopiteně čtvercový tvar. Signál odražený od obdélníkových, na výšku postavených reflektorů, zasáhne širší úhlovou oblast, než obdélníkové reflektory nízké a široké. To ostatně plyne ze vzorců pro šířku svazku plošných reflektorů (viz též tab. 7).

Z předchozích úvah vyplynulo, že pro dostatečný odražený signál potřebujeme obecně co největší reflektor. Jeho maximální rozměry jsou však většinou omezeny konstrukčně mechanickými hledisky. Za jistých podmínek však omezují jeho maximální rozměry i hlediska elektrická.

Obr. 49. Průměr D rovinného reflektoru je omezen přípustným rozdílem nejkratších a nejdelších vzdáleností r pro soufázový odraz

Pro kvalitní přenos, popř. odraz je totiž použitelná jen tak rozměrná plocha reflektoru, jaká zaručí soufázový odraz elektromagnetických vln po celé ploše reflektoru. Při dané vzdálenosti r² a vlnové délce λ se od jistého rozměru reflektoru prodlouží dráha na okraji odražených paprsků natolik, že fázový rozdíl mezi středními a okrajovými paprsky přesáhne jistou mez, za kterou již nelze považovat fázové vlnoplochy dopadající na přijímací anténu za rovinné (obr. 49).

S tímto omezením se setkáváme především při měření směrových vlastností antén, při němž je pro dostatečnou přesnost měření žádoucí, aby maximální rozdíl drah od středních a okrajových částí měřené antény k anténě měřicí nepřesáhl velikost $\lambda/16$, popř. 22,5°. Již dříve bylo řečeno, že $\lambda/16$ je též maximálně přípustná nerovnost, lépe nerovinnost plošného reflektoru.

 Pro tento případ platí pro vzdálenost r mezi oběma anténami s dostatečnou přesností jednoduchý vztah

$$r=\frac{2D^2}{\lambda},$$

kde D je největší rozměř měřené antény, r vzdálenost mezi měřenou a měřicí (vysílací) anténou,

 λ vlnová délka, odpovídající pracovnímu kmitočtu.

Chceme-li znát maximálně přípustné D pro dané r a λ , pak platí:

$$D \leq \sqrt{\frac{r\lambda}{2}}$$
.

Pro náš případ ($r = 300 \text{ m a} \lambda = 0,4 \text{ m}$) pak můžeme za fázově kvalitní považovat každý rovinný kruhový reflektor, jehož průměr D nebude větší než

$$D = \sqrt{\frac{300 \cdot 0.4}{2}} = 7.75 \text{ m},$$

nebo čtvercový řeflektor, jehož strana a nebude delší než

$$a = \frac{7,75}{\sqrt{2}} = 5,5 \text{ m}$$
.

Toto kritérium je ovšem velmi přísné, ale zaručuje dostatečnou přesnost při měření směrových parametrů tak rozměrných antén na vzdálenost 300 m a pro $\lambda=0.4$ m.

Při praktickém provozním použití pasívních reflektorů se připouští dvojnásobný rozdíl délek drah, tzn. $\lambda/_8 = 45^\circ$. Pak platí:

$$r \ge \frac{D^2}{\lambda}$$
 a $D \le V r \lambda$.

Použito v našem případě to znamená, že kruhový reflektor by neměl mít větší průměr než D=11 m a strana čtvercového reflektoru by neměla přesáhnout délku a=8 m.

a = 8 m.
Zisk tak rozměrných reflektorů se opět projeví jen tehdy, budou-li po celé ploše rovnoměrně ozařovány elektromagnetickými vlnami přijímaných signálů. Jejich většímu zisku ovšem odpovídá i užší paprsek hlavního laloku a tím i kritičtější směrování, popř. umístění přijímací antény.

Orientačně můžeme stanovit charakteristické směrové parametry homogenně ozářené kruhové nebo čtvercové plochy z údajů v tab. 7. Uvažovanou plochou je v našem případě opět efektivní plocha pasívního reflektoru, tzn. průměr skutečné elipsovité nebo obdélníkovité plochy do roviny kolmé ke směru šíření dopadajících a odražených elektromagnetických vln (viz znovu obr. 44).

Tab. 7. Charakteristické směrové parametry rovnoměrně ozářené rovinné kruhové nebo čtvercové plochy

	Plocha	kruhová (čtvercová
_	Θ_3 dB [°]	601/D	52λ/a
\	$\Theta_6 dB[°]$.	82 <i>\∕D</i>	68ો./a
	Směr 1. minima	± 73λ/D	± 581/a
	Směr 1. maxima	± 951 <i>/D</i>	± 84 <i>\/a</i>
	Směr 2. minima	±130l/D	±116 <i>\/a</i>
	Směr. 2. maxima	±156\/D	±142λ/a
	Směr 3. minima	± 185%/D	$\pm 174\lambda/a$

D je průměr kruhové plochy, a je délka strany čtvercové plochy.

Např. pro čtvercový reflektor a=8 m při $\lambda=0,4$ m dostáváme: $\Theta_{3\text{ dB}}=2,6^\circ$, směr 1. minima $\pm 2,9^\circ$ a směr 1. maxima $\pm 4,2^\circ$ atd.

Stručný souhrn

Při návrhu pasívního reflektoru je nutné vycházet z intenzity přijímaného signálu v místě předpokládaného odrazu, a ze vzdálenosti r₂ k přijímací anténě. Potřebný rozměr efektivní plochy se zjistí z grafu na obr. 46. Vodorovný a svislý rozměr skutečné plochy se musí korigovat podle úhlů odklonu v obou rovinách Odrazná plocha se musí velmi přesně orientovat a v optimální poloze dokonale stabilizovat.

Nerovnost povrchu plochy má být menší než 1/16 \(\lambda\). Aby nevznikaly ztráty prozařováním, musí být reflektor dostatečně
hustý (platí stejné údaje jako u ostatních
plošných antén, obr. 53). Předpoklady
pro využítí pasívních reflektorů stoupají
s kmitočtem a s intenzitou dopadajících
signálů. Retranslace pasívními reflektory
je širokopásmová, tzn. že jedné trasy lze
využít pro současný přenos na různých
kmitočtech. Útlum trasy se ovšem bude
v závislosti na kmitočtu měnit.

K praktické realizaci

Z toho co bylo uvedeno je zřejmé, že amatérská realizace pasívních reflektorů sice není vyloučena, ale ve větším měřítku sotva přichází v úvahu pro značné rozměry reflektorů a s tím spojené konstrukčně mechanické obtíže. Reálné možnosti nám však poskytují různé výškové stavby, jejichž stěn je možné využít (obr. 50). Jsou to zejména hladké boční stěny obytných

bloků, které poskytují dostatečně rovný podklad pro zavěšení větších i velkých odrazných ploch - kovových sítí. Předpokladem pro jejich využití je pochopitelně dokonalá znalost místní situace vzhledem k dopádajícím i odraženým signálům. Zcela nepochybně existují místa, které tyto možností poskytují a některá je dokonce nabízejí. Je nutné se však nad problémy zamyslet a případné možnosti prověřit

Postup při hodnocení situace

Základním požadavkem je dostatečně silný signál v místě předpokládaného odrazu. Pak postupujeme tímto způ-

sobem (obr. 51):

1. Z mapy určíme azimut vysílače ŠV, tj. úhel, který svírá směr k vysílači se směrem k severu. Azimut se měří ve směru pohybu hodinových ručiček (východ – 90°, jih – 180°, západ – 270°, sever – 360°, popř. 0°). Přesnější údaje získáme výpočtem ze zeměpisných souřadnic obou míst. Praxi vyhoví, změříme-li azimut ve směru optimálně nasměrované přijímací antény, umístěné v předpokládaném místě pasivního reflektoru. Azimut měříme vhodnou busolou (vyhoví např. busola typu SPORT, výrobek NDR, který je u nás

v prodeji). 2. Z téhož místa změříme azimut SP k anténě přijímače, popř. azimut z místa přijímací antény směrem k pasívnímu reflektoru, zmenšený o 180°. Polovina rozdílu obou azimutů pak určuje azimut kolmice k odrazné ploše (SIR) pasívního reflektoru. Rovina odrazné plochy pak musí ležet ve směru SIIR = SIR±90° (viz obr. 51). Pokud si chceme ověřit případné využití dalších objektů, které leží v oblasti dostatečně silného přímého signálu a v příznivé poloze vůči přijímači, musíme změřit azimuty všech ploch, přicházejících v úvahu pro odraz do našeho místa P. Měříme opět busolou, a to tak, že změříme azimuty rovin uvažovaných ploch. Měření bude přesnější, když rovinu každé plochy změříme z protiléhlých míst. Poloviná součtu nebo rozdílu obou úhlových údajů by měla být totožná nebo velmi blízká hodnotě S Î R, vypočtené z azimutu vysílače SV a z azimutu přijímače SP pro nejvýhodněji orientovanoú plochu. Tu pak zvolíme pro vlastní realizaci odrazného povrchu.

Situace bude přehlednější a výběr jednodušší, bude-li k dispozici dostatečně podrobný, ale platný plán uvažované ob-lasti, na němž můžeme potřebné úhly (SP

a SliR) a vzdálenosti (r₂) změřit.
Pravděpodobnost výskytu vhodné plochy s potřebnou orientací nebude většinou velká. Pokuď však půjde o plochy dosti rozměrné, odrážející v maximu "více než nutně potřebujeme", může být odražený signál v přijatelné síle i mimo maximum (popř. na 1. postranním maximu). Definitivní umístění antény v místě P mohou ovlivnit ještě poměry na trase r_2 a v nejbližším okolí antény P. Za jistých podmínek tam mohou nastávat i intenzívní odrazy od země nebo jiných překážek, takže interferencí přímých (tzn. ovšem od pasívního reflektoru odražených) a odražených signálů vznikne v prostoru přijímací antény nehomogenní pole. Proto je užitečné optimalizovat v každém případě ještě definitivní polohu přijímací antény s ohledem na tyto vlivy

Kvalitu obrazu přijímaného v místě P cíleným odrazem od pasívního reflektoru může nepříznivě ovlivňovat proni-

Obr. 50. Boční stěny obytných bloků dostatečně maji rovný povrch pro zavěšení odrazných ploch

kání přímého signálu na přijimací anté-nu. Pak jde v podstatě o vícesměrný příjem, jak se s ním běžně setkáváme zejména při příjmu místních vysílačů. Pro-to je žádoucí použít l v místě P anténu s co největším ziskem, popř. úzkým směrovým diagramem.

V této souvislosti pokládáme za užitečné zdůraznit, že pasívní reflektor může být užitečný i při místním příjmu v těch případech, kdy se na obrazovce vytrvale objevuje vícenásobný obraz. Z řady přirozených odrazů působících "zástupy duchů" je někdy možné zvýraznit ten nejvýhodnější zdokonalením odrazných vlast-ností příslušné překážky. Pokud se příjem zlepší, je možné pokračovat dále např. optimalizací fázového posuvu přijímaného odrazu apod. (viz [1], str. 34).

Příklad výpočtu nasměrování (orientace) pasívního reflektoru (obr. 51)

Výchozí informace, zjištěné busolou nebo azimut vysílače $\widehat{SV} = 235^\circ$, azimut přijímače $\widehat{SP} = 155^\circ$;

azimut kolmice k rovině pasívního reflek-

$$SIR = \frac{\hat{SV} + \hat{SP}}{2} = \frac{235^{\circ} + 155^{\circ}}{2} = 195^{\circ},$$

úhel odrazu φ

$$\varphi = \frac{\widehat{SV} - \widehat{SP}}{2} = \frac{235^{\circ} - 155^{\circ}}{2} = 40^{\circ},$$

úhel odklonu ϑ

$$\theta = 180^{\circ} - 2\varphi = 180^{\circ} - 80^{\circ} = 100^{\circ},$$

$$\cos\varphi=\cos 40^\circ=0.766.$$

Obr. 51. Geometrie odrazu od pasívního reflektoru, je-li azimut vysílače SV = 235 a azimut přijímače SP = 155°

Odrazný povrch pasívního reflektoru tedy musí ležet ve sm SîlR = 195°±90° = 285°, popř. 105°. směru

Odrazy od nevodivých povrchů

Až dosud jsme předpokládali a počítali s kovovým a dostatečně rovinným odrazným povrchem pasívního reflektoru, který odráží prakticky stoprocentně dopadající elektromagnetické vlny – nezávisle na jejich polarizaci, úhlu dopadu a vlnové délce.

Schopnost odrážet elektromagnetické vlny však mají i překážky s nevodivým povrchem, jak to ostatně běžně pozorujeme na obrazovkách TV přijímačů, kdy většínu nežádaných odrazů působí terénní a umělé překážky s nevodivým povr-

Obecně dochází k odrazům na rozhraní dvou prostředí, lišících se permitivitou ε_t , měrnou vodivostí ϱ , popř. i permeabilitou μ . Je to možné-říci i tak, že k odrazům dochází nejen na rozhraní vodivého a nevodivého prostředí (tj. ideálního dielektrika), ale i na rozhraní prostředí nevodivého a polovodivého (voda, země a různé jiné hmoty). Tento jev se běžně projevuje při šíření DV až KV nad zemským povrchem, kde se s ním zcela samozřejmě počítá. Jsou vypočteny křivky útlumu šíření elektromagnetických vln nad-různými druhy povrchů země v závislosti na polarizací, úhlu dopadu i vlnové délce. Je tu výrazný rozdíl proti odrazům od vodivého povr-chu, kde na polarizaci, ani úhlu dopadu z hlediska účinnosti odrazu nezáleží. Obecně je činitel odrazu tím větší, čím větší je relativní permitivita a měrná vodivost prostředí.

V tab. 8 jsou uvedeny velikosti $oldsymbol{arepsilon}_{ au}$ a $oldsymbol{arrho}$ pro některé druhy zemského povrchu.

Tab. 8. Permitivita ε_r a měrná vodivost ϱ pro vybrané zemské povrchy

· е
4
asi 1 · 10 ⁻³
3 · 10 ⁻³ až 3 · 10 ⁻² 1 · 10 ⁻⁵ až 2 · 10 ⁻³
1 · 10 ⁻²
2 · 10-3
3 · 10 ⁻³

Nejvíce se vodivému prostředí přibližuje mořská, tedy slaná voda. (Je třeba poznamenat, že předchozí tabulka i následující křivky byly sestaveny a vypočteny pro potřeby běžného šíření DV, SV a KV nad zemským povrchem. Z hlediska odra-, zů VKV a UKV je proto považujeme jen za pomocnou informaci, doplňující naše úvahy o účinnosti odrazů od nevodivých povrchů). Nejdůležitější vztahy mezi číniteli odrazu, popř. účinností odrazů,:úhly dopadu a polarizací vůči odrazné ploše jsou pro kmitočty vyšší než 1 MHz a pro některé druhy povrchu graficky znázor-

Obr. 52. Křivky energetické účinnosti odrazů elektromagnetických vln od různého prostředí v závislosti na polarizaci a na úhlu dopadu

něny na obr. 52. Na vodorovné ose je vynášen úhel dopadu φ (viz obr. 44). Z našeho hlediska jsou zajímavé jen úhly v rozsahu 0 až 45°. Na svislé ose je vynášena účinnost přenosu energie v %. Pro označení RII je odrazná plocha rovnoběžná s elektrickou složkou elektromagnetické vlny. R i znamená, že odrazná plocha je k této složcě kolmá. Povšimněme si, že pro $\varphi=0^\circ$ na polarizaci vlastně nezáleží, ale pro $\varphi>0^\circ$ je vždy R |>R|

me si, že pro $\varphi=0^\circ$ na polarizaci vlastně nezáleží, ale pro $\varphi>0^\circ$ je vždy R $\bot>R\|$. Pro náš případ, tzn. při odrazech od svislých ploch, je na IV. a V. pásmu téměř výlučně používaná horizontální polarizace nahrazována polarizací komou k rovině svislé odrazné plochy, a pro činitele odrazu tedy platí křivky označené R \bot . Při polarizaci vertikální platí za stejných podmí

nek křivky RII.

Činitele odrazu polovodivých prostředí, např. betonových, panelových či zdě-ných staveb, působících většinu odrazů při běžném příjmu, přesně neznáme. Můžeme však předpokládat s přihlédnutím k údajům v tab. 8, že by se svými vlastnostmi zařadily do oblasti ohraničené hodnotami 10 až 30 % na obr. 52. Vyjádříme-li účinnost odrazu v dB, zjišťujeme, že energie, odrážející se od stejně rozměrných a dostatečně rovinných polovodivých "reflektorů", je v průměru jen asi o 10 dB menší, než u povrchů vodivých. A protože odrazné plochy těchto "přirozených" pasívních reflektorů bývají značné, neměli bychom, zvláště po předchozích úva-hách, považovat běžný výskyt duchů vlivem odrazů za něco mimořádného. V této souvislosti se zcela logicky nabízí otázka, zda by nebylo možné využít k cíleným odrazům i těchto "přirozených" pasív-ních reflektorů bez dalších úpray. Na tuto otázku lze odpovědět jen experimentem. Předchozí informace by k takovému experimentování měly býť pohnutkou i pomůckou.

Pasívní retranslace dvojicí antén

Zásadně lze jednoduše spojit dvě směrové antény napáječem a vytvořit tak obousměrný pasívní retranslátor-opakovač (back to back repeater, obr. 54). Každá zz antén může současně působit jako vysílací a přijímací. I když jde principiálně o stejný druh přenosu jako při užití jednoho rovinného pasívního reflektoru, tak se oba způsoby přenosu signálu v lecčems liší.

Dvojice antén je zpravidla zařízení selektivní, které přenáší jen kmitočty společného pracovního rozsahu obou antén; Obr. 53. Nomogram pro určení účinnosti plošného reflektoru. Výkon pronikající reflektorem závisí na rozteči sa průměru vodičů d mříže nebo sítě. Příklad: Je-li s= 0,1 λ a s/d = 24, prochází reflektorem 10 % výkonu (10.dB). Při stejném s lze pronikání zmenšit na 1 % (20 dB) asi 5krát větším průměrem d. Např. na f = = 750 MHz (λ = 0,4 m) je N_p = 20 dB při s = 40 mm a d = 1,7 mm. Pro N_p = 20 dB a s = 40 mm musí být d = 9 mm

Obr. 54. Pasívní retranslace dvojicí antén

zatímco rovinný reflektor je zařízení širokopásmové, jehož kmitočtový rozsah je omezen jen nerovností reflektoru. Každou anténu lze optimálně nasměrovat, nezávisle na druhé, což umožňuje přenos do libovolných směrů v horizontální a vertikální rovině. Efektivní plocha antén se tedy nemění.

Z hlediska energetické bilance přenosu však nelze považovat retranslaci dvojicí antén za zcela ekvivalentní retranslaci jediným pasívním reflektorem. Rozdíl je v tom, že rovinný reflektor pracuje prakticky se 100% účinností. Veškerý výkonový tok, zachycený efektivní plochou reflektoru, je odrážen žádaným směrem. Zisk pasívního reflektoru proti všesměrovému – izotropnímu zářiči můžeme vyjádřit vztahem

$$G_i = 20\log \frac{4\pi A_0}{\lambda^2}.$$

Je to vlastně dvojnásobný zisk řovnoměrně ozářené efektivní plochy A_0 , pracující se 100procentní účinností, popř. součet zisků "přijímací a vysílaci" antény. V anténářské praxi je to vlastně jediný případ, kdy s takovou účinností efektivní plochy – apertury počítáme. U retranslace dvojicí antén se však energetická účinnost přenosu zmenšuje.

Předpokládejme, že každou z antén je parabolický reflektor, jehož skutečná plocha ústí je shodná s efektivní plochou rovinného pasívního reflektoru. Účinnost ozáření parabolických reflektorů primárními zářiči je asi 50 až 60 %. Anténa parabolická stejně rozměrná jako pasívní reflektor bude tedy mít jen poloviční účinnou plochu. Z parabolického, dopadajícími elektromagnetickými vlnami rovno-

měrně ozářeného reflektoru dokáže primární zářič přijmout jen 50 až 60 % energie, a neuvažujeme-li další ztráty, zase jen 50 až 60 % této přijaté energie se druhou stejnou anténou vyzáří. Vyjádřeno v dB je asi –6 dB. Stejný údaj ostatně zjistíme z grafu na obr. 46, dosadíme-li pro útlum trasy r_2 za A_0 poloviční efektivní plochu.

S přihlédnutím k nákladům na jeden plošný reflektor a dvě antény parabolické není řešení s dvěma anténami ekonomické. Platí to i pro jiné typy antén. Můžeme si to dokázat výpočtem energie přenesené dvojicí antén X-color, jak o ní uvažuje náš čtenář. Pro porovnání předpokládejme stejnou výchozí situaci jako v předchozím příkladu:

Anténa X-color o zisku $G_{\rm d}=15~{\rm dB}$, umístěná v předpokládaném prostoru pro retranslační dvojici antén, dodává na vstup TV přijímače o vstupní impedanci 75 Ω signál o úrovni 40 dB $_{\rm H}V$. Jak velkou úroveň signálu dostaneme na stejném zářízení ve vzdálenosti $r_2=300~{\rm m}$, použijeme-li k retranslaci dvě stejné antény se ziskem 15 dB?

Při výpočtu budeme vycházet z uvedených vzorců s jediným rozdílem: pro útlum na trase r₂ použijeme výraz, který se shoduje s prvním členem vzorce pro α¿(tj. výraz pro poměr vyslaného a přijatého výkonu mezi vysílací – retranslační – anténou a přijímací anténou). Tak totiž do výpočtu zahrneme pro větší názornost celou energetickou bilanci přenosu, vycházející z úrovně 40 dBμV, která se objevila na vstupní impedanci 75 Ω TV přijímače, a která tedy bude i na stejně impedanci napáječe zakončeného druhou – "vysílací" – anténou retranslační dvojice. Jednu z retranslačních antén tedy uvažujeme jako vysílací, napájenou výkonem, odpovídajícím úrovni 40.dBμV na 75 Ω:

Výpočet

Vycházíme ze vzorce pro poměr vysílaného a přijímaného výkonu podél trasy r₂

$$\frac{N_{\text{ov}}}{N_{\text{p}}} = \frac{\lambda^2 r^2_2}{A_{\text{ov}} A_{\text{p}}}$$

kde N_{ov} je výkon vysílaný retranslační anténou,

N_p výkon přijímaný přijímací anténou,

Aov efektivní plocha vysílací antény, Ap efektivní plocha přijímací

r₂ vzdálenost mezi anténami.

 Vypočteme vysílaný výkon. Úrovni 40 dBµV na vstupu přijímače v místě uvažovaného umístění retranslátoru odpovídá napětí

 $E_{\rm p}=100~\mu{\rm V}=0.1~{\rm mV}=1\cdot10^{-4}~{\rm V}.$ Z toho výkon $N_{\rm ov}=E_{\rm p}^2/Z=(1\cdot10^{-4})^2/75=1.3\cdot10^{-10}~{\rm W}.$ Je to vlastně výkon, přijímaný na konci trasy V – R_p, ale z hlediska tohoto výpočtu je to i výkon vysílaný na trasu R_v – P.

2. Vypočteme efektivní plochu A_{ov} vysílací antény a A_p přijímací antény. Předpokládáme, že obě antény jsou stejné, takže $A_{ov} = A_p$.

$$A_{\rm ov} = A_{\rm p} = \frac{G_{\rm d} \lambda^2}{4\pi},$$

kde G_d je zisk antény proti dipólu $\lambda/2$, vyjádřený poměrem výkonů pro 15 dB (= 31,6).

Efektivní plocha antény X-color s uvažovaným ziskem $G_d = 15$ dB (zesílení 31,6) a prof = 750 MHz, popř. $\lambda = 0.4$ m tedy je

$$A_{6v} = A_p = \frac{31.6 \cdot 0.4^2}{4\pi} = \frac{31.6 \cdot 0.16}{12.56} =$$

Anténa se ziskem $G_{\rm d}=15$ dB se tedy jeví jako anténa s efektivní plochou $0.4~{\rm m}^2,$ popř. kruhovou plochou o průměru $0.715~{\rm m}.$

3. Vypočteme přenesený výkon $N_{\rm p}$, tj výkon přijímaný anténou P.

$$N_{p} = N_{ov} \frac{A_{ov} A_{p}}{\lambda_{r}^{2} r^{2}} = 1,3.10^{-10} \frac{0.4025^{2}}{0.4^{2}.300^{2}} = \frac{1,3.10^{-10}.1,62.10^{-1}}{1,6.10^{-1}.9.10^{4}}$$

 $N_{\rm p}=1.4625.10^{-15}\,{\rm W}$ 4. Z toho napětí na přijímací anténě $(Z_{\rm p}=75\,\Omega)$

 $E_p = \sqrt{3.52}$ $E_p = \sqrt{N_p Z_p}$ $E_p = \sqrt{1,4625 \cdot 10^{-15} \cdot 7,5 \cdot 10^1} = \sqrt{10,96.10^{-14}}$ $E_p = 3,31 \cdot 10^{-7} \text{ V} = 0,331 \text{ µV}.$

5. Útlum signálu na trase ra

$$\alpha_2 = 20\log \frac{E_{ov}}{E_p} = 20\log \frac{100 \,\mu\text{V}}{0.331 \,\mu\text{V}} = 49.6 \,\text{dB}.$$

 Vyjádříme-li úroveň signálu na vstupu přijímače opět v dBμV, dostáváme -9,6 dBμV.

Napětí na vstupu přijímače v místě P je za těchto okolností zcela nedostatečné a celkový signál je o 29,6 dB menší než ještě použitelný (20 dBμV).

Použitý způsob výpočtu je poněkud těžkopádný, ale názorný, protože udává velikost vstupního napětí. Stejný výsledek obdržíme, když výchozí vzorec ihned logaritmujeme, takže obdržíme ihned útlum celé trasy v dB.

$$\alpha_2 = 10\log\frac{P_{\text{ov}}}{P_{\text{p}}} = 10\log\frac{\lambda^2 r^2}{A_{\text{o}} A_{\text{p}}} =$$

$$= 10\log \frac{0.4 \cdot 300^2}{0.4025^2} = 10\log \frac{1.44 \cdot 10^4}{1.62 \cdot 10^{-1}} =$$

Pokusme se pro zajímavost i pro poučení vypočítat, jaká by měla být délka trasy r_2 , aby s uvažovanou retranslační dvojicí antén X-color byl útlum trasy max. 20 dB.

$$\alpha_2 = 20 \text{ dB} = 10 \log 100 = 10 \log \frac{P_{\text{ov}}}{P_{\text{p}}}$$

neboli

$$100 = \frac{\lambda^2 r^2}{A_o A_p},$$

$$z \text{ toho } r_2 = \sqrt{100 \frac{A_o A_p}{\lambda^2}} = \sqrt{100 \frac{0.4025^2}{0.4^2}}$$

$$= \sqrt{101.25} = 10.06 \text{ m}.$$

Z tohoto výsledku je nereálnost retranslace slabých signálů dvojicí uvažovaných antén ještě zřetelnější. Protože v místě R předpokládáme použití dvojice stejných antén (jako je tomu vlastně i při užití jediného odrazného reflektoru), je možno pro hrubou kalkulaci použít i v tomto případě graf na obr. 46. Pro $A_o = 0.4025 \, \text{m}^2 \, \text{ar}_2 = 20 \, \text{dB zjistíme pro}_2$ rovněž asi 10 m.

Použité výpočty nejsou zcela přesné, mají spíše informativní charakter, protože jsme vycházeli z některých zjednodušujících předpokladů. Nicméně poskytují jednoduchý a reálný pohled na tuto problematiku a jsou pomůckou pro případně úvahy o využití pasívních reflektorů při šíření elektromagnetických vln.

Odpověď k úvodnímu dotažu této kapitoly už vlastně byla vyslovena na předchozích řádcích. Při retranslaci blízkého a silného vysílače může být v místě předpokládaného umístění přijímací antény retranslační dvojice signál ještě natolik silný, že postačí k pokrytí malé oblasti v těsně přilehlém, avšak před přímým signálem zcela odstíněném údolí. Jen za této podmínky může kvalita reléovaného a přijímaného signálu vyhovovat.

"Lze použít organické sklo (plexi) nebo novodur ke zhotovení středového izolátoru celovlnných dipólů soufázové antény pro příjem na IV. a V. pásmu?"

"Z jakých materiálů mohu zhotovit izolátory antén VKV?"

Izolační (dielektrické) materiály v konstrukci antén

Izolanty jsou nezbytnou součástí všech anténních konstrukcí, i když je všeobecná snaha jejich použití z řady důvodů omezit. Jde zejména o místa, kde je izolační materiál zároveň mechanicky namáhán. Mechanicky vyhovující materiály nemívají zpravidla požadované vlastnosti elektrické a naopak, kvalitnější vf izolační materiál bývá někdy měkký a jeho mechanické vlastnosti jsou často teplotně závislé. Proto se zvláště v profesionální praxi preferují ty anténní konstrukce, které mají minimální množství, izolačních prvků. Tzv. "kovovými izolátory" se mechanicky upevňují aktivní prvky v místech s nulovým vf potenciálem proti zemi, např. celovlnné dipóly soufázových antén k odrazným plochám. Kovovým izolátorem je i čtvrtvlnný zkratovaný úsek, který podepírá a upevňuje aktivní prvky v místě

napájení. I za těchto podmínek je však izolační materiál nezbytným prvkem anténních konstrukcí. Protože antény jsou zařízení pro vf popř. vvf, je vhodnější používat místo označení izolační materiál spíše materiál dielektrický. Účinnost antén může být vlastnostmi těchto izolačních – dielektrických materiálů značně ovlivněna, jak si ostatně ukážeme na praktickém příkladu.

Které elektrické vlastnosti dielektrických materiálů by nás tedy měly zajímat?

Dominantní vlastností je činitel ztrát tg δ , což je veličina vyjadřující ztráty v dielektriku kondenzátoru. Kondenzátor se ztrátami si představujeme jako dokonalý kondenzátor s paralelně připojeným rezistorem o odporu odpovídajícím činiteli ztrát použitého dielektrického materiálu. Stejným způsobem, tzn. paralelním ztrátovým odporem, se tg δ projeví např. na svorkách antény procházejících dielektrickým izolátorem. Pro úplnost dodejme, že tg δ se značně mění složením, čistotou a vlhkostí surovin i výsledné látky. Činitel ztrát je u některých látek kmitočtově závislý. Tato závislost je značně složitá, může mít i několik maxim. Pro praktickou potřebu v oblasti VKV a UKV vystačíme s údaji v tab. 9.

Druhým důležitým parametrem je tzv. dielektrická konstanta, správněji permitivita. Je to veličina, charakterizující vliv elektrického pole na elektrické jevy v látce. (Permeabilita je pak veličina charakterizující vliv magnetického pole na magnetické jevy v látce.)

Relativní permitivita (relativní dielektrická konstanta) dielektrika ε_r je definována jako poměr kapacity konděnzátoru, který je zcela tímto dielektrikem obklopen, k jeho kapacitě ve vzduchoprázdnu. Je to tedy číslo bezrozměrné. I když se i zde projevuje jistá závislost na teplotě a kmitočtu, nemusíme s těmito jevy v amatérské praxi počítat a bereme za směrodatné údaje v tab. 9. Činitel tg δ a relativní permitivita ε_r dostatečně charakterizují elektrické vlastnosti používaných izolantů

Pro praktické zhodnocení vhodných druhů je užitečné doplnit elektrické veličiny jednou vlastností mechanickou, která má na ztráty přímý vliv. **Je to nasá-**kavost či navihavost. Obecně označujeme nasákavostí sorpci vody do materiálu, který je v ní ponořen, navlhavostí sorpci vodní páry do materiálu, který je umístěn ve vzduchu o určité relativní vlhkosti. Tyto veličiny bývají vyjadřovány jednak ve vá-hových procentech, jednak ve váhovém přírůstku, vztaženém na povrch zkúšebního vzorku. Nasákavost i navlhavost závisí na době působení vody (páry) a na teplo-tě. Pro praxi jsou nejcennější údaje o rovnovážném obsahu vody, jehož materiál dosáhne při ponoření do vody nebo při působení vlhkého vzduchu. Rychlost sorpce značně závisí na velikosti povrchu, zejména na tloušťce stěny a na jakosti povrchu. U plastických hmot s plnivy a u vrstevnatých hmot závisí rychlost pronikání vlhkosti na velikosti obrobených ploch a jejich jakosti. U tvrzených tkanin (např. tzv. texgumoid) proniká voda obrobenými plochami až šestkrát rychleji než plochami s celistvým pryskyřičným povrchem; u tvrzených papírů až třikrát rychleji. V praxi zpravidla nejsou anténní izolanty trvale ponořeny do vody, takže údaje u některých látek v tab. 9 je třeba považovat za doplňující informaci v tom smyslu, zda jde o materiál-dielektrikum, které může nebo nemůže navlhnout a jehož původní vf vlastnosti se mohou nébo nemohou působením vlhka zhoršit. Další zajímavé informace o elektrických

Tab. 9. Vybrané vlastnosti izolačních (dielektrických) materiálů.
Plastické hmoty Plastické hmoty

Roužívaný (obchodní název)	Chemický název	εr	tg δ · 10 ⁻⁴	Navlhavost
TEFLON, flexon, halon PF4 (v CSSR) TEFLEX, PF3 (v CSSR), PE KRASTEN, trolitul, styrex	polytetráfluóretylén polychlortrifluóretylén polyetylén	2,1 2,5 2,3	1,5 až 5 36 2 až 3	0 0 <0,1 %
styron Organické sklo PLEXI, umaplex	polystyrén	2,4-2,6	4 až 7	0,03 až 0,05 %
	polystyrén pěnový	1,02-1,04	0,3 až 1	0,3 %
	polystyrén rázuvzdorný	2,4-4,5	4 až 20	0,1 až 0,3 %
(v ČSSR) acrylon, dentacryl, isocryl SILON, silamyd NYLON	polymetylmetacrylát polyamid polyamid	2,0–3,2 2,84 2,84	60 až 200 200 až 400 120	0,4 %
PVC, novodur, vinylit C	polyvinylchlorid tvrdý	2,82,	300	0,18 %
PVC, novoplast	polyvinylchlorid měkčený	4–8	160 až 700	
RESIN	polyuretan	2,4	80	
UMACEL, celuloid UMAFOL T, cellon, wopalit ChS POLYESTER ChS EPOXY, eprosin	nitrát celulósy	5,6–6,5	200 až 900	1 až 4 %
	acetát celulósy	3,5–3,9	100 až 400	1,2 až 2,8 %
	polyester, pryskyřice lité	3,24	72	0,15 %
	epoxidové pryskyřice lité	3,84	18	0,15 %

Údaje o navlhavosti v procentech zpravidla označují váhový přírůstek po 24 hodinách, popř. po 7denním ponoření do vody. Někdy se udává přírůstek na jednotku plochy povrchu.

Ostatní hmoty a materiály

	· E1	tg∂ 10 ⁻⁴
Porcelán	5–9	9 až 140
Keramika – calit	6,5	10
Sklo	3,8-5,2	20 až 100
Slída čistá	7 .	33-
Jantar -	2,6	90
Skelný laminát	3,3	. 90
Pryž tvrzená	2,5-3,5	150 až 200
Pryž silikonová	3-7.8	75 až 150
Dřevo-balza	1,22	100
Překližka suchá	1,7	200 až·700
Parafin	2,25	. 2
Vosk včelí	2,38	50 až 100
Sníh prachový (-6 °C)	1,26	4;2-
(-20 °C)	1,2	2,9
Led (-12 °C)	3,2	9
Voda -	80	1500

i mechanických vlastnostech izolantů najde zájemce v literature.

Výpočet ztrát v dielektrickém izolátoru

Pokusme se nyní názorně demonstrovat vliv různých dielektrických materiálů, použitých na jednoduchém izolátoru napájecích svorek zářiče podle obr. 55. Předem konstatujeme, že konstrukční ře-

šení zvoleného příkladu nerespektuje požadavky na optimální uspořádání pro daný účel, ale podobá se praktickému provedení, které se v amatérské praxi vyskytuje. Uvažujme izolátor, zhotovený z těchto materiálů: Teflon, organické sklo (umaplex, dentacryl), epoxidový skelný laminát (sklotextit), PVC – novodur, pertinax. Charakteristické vlastnosti těchto i jiných materiálů, které jsou používány v amatérské praxi, jsou v tab. 9. Pro snadnější orientaci je uvedeno u nejužíva-nějších plastických hmot chemické i obnejsch plastickych innot chemicke i obchodní, obvykle užívané, pojmenování. Izolátor vypočítáme pro impedance 75, 300 a 1200 Ω , tj. impedance nejčastěji se u antén vyskytující. U 75, popř. 50 Ω a 300 Ω jde většinou o impedance jednotlivých antén (či soustav). Impedance kolem 1200 Ω 0. Světší hovoří po verkéch ilvych anten (ci soustay), impedance ko-iem 1200 Ω. a větší bývají na svorkách celovlnných dipólů, používaných v soufá-zových anténách typu TVa. Zjednodušený, schematický náčrt na-pájecích svorek s rozhodujícími rozměry

pro výpočet je na obr. 56. Jde v podstatě

Obr. 56. Zjednodušený schématický náčrt napáiecich svorek

Obr. 55. Uvažovaný napájecích izolátor celovinného svorek zářiče

o velmi krátký úsek vedení, jehož kapacita ve F/cm je dána vzorcem

$$C = \frac{\overline{\varepsilon}_{t}}{4 \ln \frac{2s}{d}}.$$

kde ε_r je relativní permitivita použitého dielektrického materiálu mezi svorkami, s. a d jsou rozměrové parametry. Zvolímeli délku vedení i tloušťku izolantu 1 cm, dostáváme po dosazení za ε_r , s a d téměř přesně kapacitu mezi svorkami uvažovaného izolátoru.

Charakteristickou impedanci "vedení" tvořeného svorkami sice pro výpočet ztrát. v dielektriku nepotřebujeme, ale je užitečné ji znát; v našem případě přispěje k vysvětlení vlivu ε , na změnu impedance

Charakteristická impedance souměrného dvouvodičového vedení se počítá ze vzorce

$$Z = \frac{120}{\sqrt{\varepsilon_r}} \ln \frac{2s}{d},$$

ale většinou se zjišťuje z často publikova-ných grafů. Kapacita svorek, zapuště-ných v uvažovaných materiálech a impedance tohoto "vedení" tedy je:

Materiál -	ε,	C	Z_0
teflon organ. sklo PVC skelný laminát pertinax (vzduch	2,8 3,28 5,0	0,42 pF 0,52 pF 0,56 pF 0,66 pF 1,0 pF 0,2 pF	115 Ω 103 Ω 99 Ω 92 Ω 74,5 Ω 160 Ω)

Je vidět, že uvedené materiály, až snad na pertinax, neovlivňují významně kapacitu a tím i impedanci svorek, protože se jejich dielektrická konstanta příliš neliší. Uvedené změny impedance nemohou mít v pásmu UKV na tak krátkém úseku měřitelný vliv na celkové přizpůsobení (viz dále str. 29). Zásadně by však měla být zachována impedanční kontinuita podél celé-

Pro zjištění dielektrických ztrát je nutné počítat s činitelem ztrát tg δ , impedanci Z připojeného obvodu – antény a s kmi-točtem f jako rozhodujícími veličinami. Pro výpočet vf ztrátového výkonu N_z v izolátoru použíjeme vztah

$$N_z = UI_z = 2\pi f C U^2 \operatorname{tg} \delta$$

Vzorec ovšem platí s dostatečnou přesností jen pro malá tgô běžných dielektrických materiálů. Pro ztráty N v % pak můžėme napsat

$$N = \frac{2\pi C \operatorname{tg} \delta U^2}{(U^2/Z)} = 2\pi C Z \operatorname{tg} \delta \cdot 100 \, \%$$

Jako příklad vypočítejme dielektrické ztráty N v izolátoru z organického skla $(tg\delta = 6.1 \cdot 10^{-3}, f = 750 \text{ MHz}, Z = 300 \Omega)$:

$$N = \underbrace{\frac{6,28.7,5.10^8}{2\pi f}}_{2\pi f} \cdot \underbrace{\frac{0,52.10^{-12}}{C}}_{0.52.10^{-3}}$$
$$\underbrace{\frac{3.10^2}{2} \cdot \underbrace{6,1.10^{-3}}_{100}}_{100} = 4,48^{-3} \cdot 100 \%$$

 $N \doteq 0.45 \% = -23.5 \, dB.$

Ztráty jsou stejné při vysílání i příjmu. U vysílací antény s větším výkonem by se však měla brát v úvahu i energetická zátěž izolátoru ve wattech; která závisí na rozměrech a provedení.

V tab. 10 jsou pro porovnání dielektric-ké ztráty stejných izolátorů vyrobených z různých materiálů pro tři obvyklé impedance na f = 750 MHz, což je asi nejvyšší kmitočet, se kterým se v současné době v amatérské praxi při příjmu TV setkává-

Tab. 10. Porovnání stejných izolátorů z různých materiálů (obr. 55).

Materiál tg <i>§</i>	<i>Ζ</i> [Ω]	Ztráta výkonu [dB]	Ztráta výkonu [%]
Teflon 1,5 · 10 ⁻⁴	75 . 300 1200	46,5 40,5 34,5	0,002 0,009 0,03
Organické sklo 6,1 10 ⁻³	75 300 1200	29,5 23,5 17,5	0,11 0,45 1,78
Skelný laminát 9 10 ⁻³	75 300 1200	26,75 20,75 14,75	0,2 0,84 3,35
PVC – novodur 3 10 ⁺²	. 75 300 1200	22,3 16,3 10,3	0,59 2,3 9,3
Pertinax 8,5 10 ⁻²	75 300 1200	15,2 9,2 3,2	3,02 12,0 47,8

Na radioamatérských pásmech nad 1000 MHz by však měl být používán převážně teflon.

Závěry plynoucí z vypočtených údajů jsou zřejmé. Požadavky na kvalitu dielektrika se zvyšují s kmitočtem a impedancí připojeného obvodu. Zatímco na malých impedancích do asi 300 Ω vyhoví i méně kvalitní, ale nenavlhavé materiály, tak na velkých impedancích se nároky na malé δ zvyšují. S nekvalitním dielektrikem jako je pertinax mohou ztráty i na 1 cm délky dosáhnout 50 %; jak je vidět z tab. 10. Rovněž plastickým materiálům na bázi PVC je užitečné se vyhnout. Rozptyl velikosti jejich tg δ je značný.

Každým zdvojením kapacity nebo kmitočtu se zvětšují ztráty o 3 dB. Totéž platí i o činiteli tg δ . Jeho vliv je ovšem dominantní, protože se s různými látkami mění řádově.

Výše uvedené závěry jsou užitečně např. i při hodnocení materiálů pro desky s plošnými spoji anténních zesilovačů UKV. Vzhledem k malým impedancím tranzistorů a připojených obvodů nemá změna podložky vliv na zesílení nebo šumové vlastnosti zesilovače (pokud ovšem není materiál podložky ladicím dielektrikem plošných kondenzátórů), a běžně používané lamináty zcela vyhoví i na UKV. Na druhé straně se u selektivních souosých filtrů s velkou požadovanou jakostí Q pro odladění nežádaných, kmi-točtově blízkých signálů pracuje s obvody s velkými impedancemi. V tomto případě je žádoucí vyloučit veškeré konstrukční a doladovací prvky z méně kvalitních dielektrických materiálů (např. i skleněné dolaďovací trimry), nebo ještě lépe, ne-používat v místech s velkou impedancí dielektrické materiály vůbec

Na dotaz našeho čtenáře jistě již odpovídat nemusíme. S přihlédnutím k výše uvedeným závěrům je možné uvést jako příkladné provedení izolátoru u celovln-ných zářičů soufázových antén TVa, které

mají minimální kapacitu, kvalitní materiál dlouhou dráhu mezi svorkami, což zmenšuje svodové ztráty vodním filtrem, námrazou a nečistotou (obr. 57).

Obr. 57. Izolátor celovinných zářičů soufázové antény TVa

V souvislosti s diskutovanou problematikou dielektrických materiálů můžeme odpovědět i na dotazy tohoto druhu: Do jaké míry ovlivňují izolační rozpěrky na souměrném vzdušném i souosém vedení činitel stojatých vln a tím i přenos energie?

Jak še projeví připojení souosého kabelu 75 Ω konektory o imdanci 50 Ω ? Vznikají ztráty při nastavování (prodlužo-

vání) souosých kabelů? Cítované případy jsou v amatérské praxi běžné. Předem je však možné konstatovat, že obavy před nepříznivými důsledky mírné impedanční diskontinuity, a o tu ve všech případech jde, jsou v amatérské praxi většinou zbytečné.

Izolační rozpěrkou se na každém vf vedení s konstantními rozměry změní vlivem permitivity dielektrického materiálu původní impedance vzdušného vedeni podle vzorce

$$Z_{\varepsilon} = Z_0 \frac{1}{\sqrt{\varepsilon_{\varepsilon}}},$$

 $kde Z_0$ je původní impedance vedení, z. impedance vedení s použitým Z, dielektrikem.

relativní permitivita, tedy tzv. dielektrická konstanta izolační. $\mathcal{E}_{\mathbf{f}}$

rozpěrky (vložky). Poměr obou impedancí Z_0/Z_c může být současně mírou nepřizpůsobení, vyjádřenou činitelem σ stojatých vln ČSV. **Odraz** ví energie nepřizpůsobením impedancí představuje ovšem jen jeden druh ztrát na vedení. Pro ztráty odrazem od nepřizpůsobené impedance platí vzorec pro odražený výkon

$$N_o = \left(\frac{\sigma - 1}{\sigma + 1}\right)^2. 100 \%.$$

Při $\sigma=2$ se např. odráží 11 %výkonu, při $\sigma=5$ je to již 44,5 %. Stojaté vlny odpovidající poměru Z_0/Z_ϵ ovšem vzniknou jen za určité délky vedení s vloženým dielektrikem, popř. s odchylnou impedancí. Nejnepříznivější případ nastane, dosáh-ne-li vložený úsek elektrické délky ½/4. Za takového stavu se z izolační rozpěrky nebo vložky stane transformátor λ/4, převádějící původní impedanci Z₀ na impedanci Z1 podle vzorce

$$Z_1 = \frac{Z_{\varepsilon}^2}{Z_0}$$

Vycházíme při tom ze základního vzorce pro impedanci transformátoru \(\lambda/4\) označenou Z_{ϵ}

$$Z_r = \sqrt{Z_0 Z_1}$$

$$Z_{\varepsilon} = Z_0 \frac{1}{\sqrt{\varepsilon_{\tau}}}$$
 $\check{\operatorname{cill}} Z_{\varepsilon}^2 = \frac{Z_0^2}{\varepsilon_{\tau}}$

je
$$Z_1 = \frac{Z^2 _0/\varepsilon_1}{Z_0} = \frac{Z_0}{\varepsilon_1}.$$

$$\varepsilon_r = \frac{Z}{Z}$$

Maximální ČSV je roven právě ε , a způsobí ztráty odrazem podle uvedeného vzorce pro No jen tehdy, je-li elektrická dělka vloženého úseku s uvažovaným dielektrikem λ/4 (popř. jeho lichý násobek), a pokračuje-li za tímto úsekem vedení s původní impedancí Z₀. Pokud se délka vloženého úseku zvětší až na λ/2, dojde k transformaci 1:1 a žádné stojaté vlny na kmitočtu odpovídajícím uvažované vínové délce nevzniknou.

V praxi bývají izolační vložky většinou velmi tenké, takže ČSV se zvětší jen nepatrně, jak je ostatně vidět z grafu na obr. 58, kde je vyznačena závislost ČSV na skutečné délce vedení s odlišnou impedanci při různém ε_r . Se zvětšujícím se ε_r se zkracuje skutečná délka vedení, při které bude ČSV maximální. Graf platí pro souosé i symetrické vedení.

Obr. 58. Vliv délky l a ɛ, dielektrického materiálu středicí vložky v napáječi s konstantními rozměry na přizpůsobení – ČSV

Nežádanou dielektrickou "vložkou" se ovšem může stát i voda v konektoru. Permitivita vody je asi 80. Zkracovací: cinitel $k=1/\sqrt{\varepsilon_r}$ pro vodu je tedy 0,118. Na 750 MHz se ve vodě zkrátí "čtvrtvlna" na pouhých 12 mm. Tak silný vodní "špunt", nebo přesněji dielektrikum s $\varepsilon_r=80$ by nebo presnejí dlejektříkum s ε = 80 by mělo způsobit ztráty odrazem, odpovídající ČSV = 80. Odražený výkon by byl N_o = [(80 ÷1)/(80 + 1)]² = 98,8 %. Voda má ovšem i velké tg δ = 1570 · 10⁻⁴, takže velmi značné jsou i ztráty dielektrické. ČSV se proto nezvětší na výše předpokládanou velikost. Napářší se mějše dokonce danou velikost. Napáječ se může dokonce jevit jen jako mírně nepřizpůsobený, protože značná část energie bude absorbována velmi nekvalitním dielektrikem. Pro

30

přesnější výpočet ztrát při tak velkém tg δ je však třeba volit jiný způsób, než jaký jsme použili na str. 29.

Pokud voda v konektoru zamrzne, tak se poměry výrazně zlepší, protože led má $\varepsilon_i = 3.2$ až 4 a tg $\delta = 9.10^{-4}$.

Lze tedy shrnout: Použití konektorů, lišících se svou impedanci od impedance napáječů se při běžném příjmu prakticky neprojeví ani na TV pásmech UKV. ,Poměr impedancí bývá zpravidla malý (50/ 75 Ω , popř. 75/50 Ω), délka konektoru vzhledem k λ malá a ε , velmi kvalitní.

Se stejnými vlivy musíme počítat i při nouzovém spojování souosých kabelů bez konektorů. Pokud v místě spoje nevznikne velká parazitní paralelní kapacita, popř. sériová indukčnost, budou ztráty nepatrné. Místo spoje je však nutné za-bezpečit před hromaděním vody.

Na obr. 59 je nouzový spoj vyhovující i na pásmech UKV. Stínění spojovaných konců rozpleteme a rozdělíme do 3 až 4 pramenů. Zkroutíme navzájem vnitřní vo-

Obr. 59. Nouzový spoj souosých kabelů

diče spojovaných napáječů ve směru kolmo k jejich ose, dokonate propájíme a zkrátíme. Pak vzájemně zkroutíme protilehlé prameny stínění, opět propájíme a zkrátíme. Pevnost a spotehlivost spoje v tahu je značná, pokud se váha napáječe přenáší přes spoje stínění. Ty je třeba zkroutit natolik, aby se odlehčilo namáhání středního vodiče. Celý spoj můžeme konzervovat nátěrem Resistinu ML. Zatékání i hromadění vody při svisle vedeném napáječi zabráníme fólií PE, kterou obtočíme těsně jen kolem vrchního izolačního pláště horní části kabelu a zajistíme několika závity tenčího drátu. Dolní konec neuzavíráme. Pro úplnost je třebá dodat, že za určitých podmínek se může nepříznivě projevit menší vf těsnost takto provedeného spoje. V běžné praxi s tím však počítat nemusíme. Spoj je neohebný.

Mezi dielektrické materiály počítámé i různé zalévací hmoty, kterými můžeme v případě potřeby vyplnit ochranné kryty anténních svorek, popř. i s vestavěnými zesilovači a filtry. Je to jedna z cest, jak zabránit nepříznivému působení kondenzované nebo zateklé vody. V profesionální praxi se některé choulostivé dutiny "vypěpolystyrénem nebo polyuretanem, které mají velmi malé ε i tg δ . Pro jejich malou váhu se jimi-také vyplňují a vyztužují i rozměrné dutiny profilových letadlo-

vých antén. V amatérské praxi je nejvhodnější zalevací hmotou parafin, který má velmi dobré vlastnosti $\varepsilon_r = 2,25$, tg $\delta = 2.10^{-4}$. Pro nižší kmitočty (VKV) je použitelný i dobře Inoucí včelí vosk $\varepsilon_r = 3.38$; tg $\delta = 5$ až 10.10⁻³. Obě hmoty musí být dobře rozehřáté, zvláště pak parafin, který rychleji tvrdne. Zalévacích hmot používáme zpravidla jen v případech, kdy nelze zabránit hromadění vody jinak, popř. v nepřístupných místech, která nelze kontrolovat; popř. se již nepočítá s jejich demontáží.

Pokud nelze vnikání nebo kondenzaci vody zabránit, snažíme se co nejvíce usnadnit její odtok. Nešetříme děrami v nejnižších místech všech dutin, aby veškerá voda mohla bez překážek odkapávat. Praxe potvrdila, že nejlepším těsněním je díra. Ovšem i v děrami chráněných krytech je užitečná opatřit všechny sroubované i pájené spoje a jiné součástky vhodným ochranným, nejlépe voskovým nátěrem (např. Resistin).

Kmitočty

zahraničních výsílačů FM v pásmu VKV =: CCIR 🧽

. V souvislosti s kapitoloù o anténách pro rozhlas FM uveřejňujeme seznam. nejbližších popř. nejsilnějších zahranič- Rakousko nich vystačů z NDR, NSR a Rakouska, pracujících v pásmu 87,5 až 100 MHz.

Každý vysílač je uveden kmitočtem; číslem programu, vyzářeným výkonem v kW a jménem, popř: stanovištěm: Téměř všechny lze vyhledať na mapě televizních vysílačů na str. 32. Ve většině případů se (podobně jako u nás) využívá antenních stožárů na výhodných stanovištích k zavěšení televizních i rozhlasových vysílacích antén, takže stanoviště významných televizních i rozhlasových vysílačů VKV. bývají shodná.

Téměř všechny vysílače vysílají stereofonní signál. Polarizace antén je horizon-

Přehled kmitočtů má přispět k lepší orientaci na pásmu při běžném příjmu za průměrných (normálních) podmínek, kdy se u nás vyskytují na pásmu v přijatelně síle jen nejbližší a nejsilnější stanice. Po delších zkušenostech s takovým příjmem ; je možné (i užitečné) použít jen anténu na užší pásmo s několika vybranými vysílači.

Za mimořádných podmínek se pásmo zaplňuje desítkami dalších i velmi vzdálených stanic, které mohou potlačit za běžných podmínek stabilně poslouchané stanice blízké. Úplný přehled evropských stanic bývá občas publikován v růžných časopisech, popř. ve firemní literature.

Podle rozdělení kmitočtových pásem, přijatého na radiokomunikační konferenci ve Stockholmu, je pro rozhlas VKV FM v Evropě přiděleno pásmo 87,5 až 104 MHz. Až na několik výjimek nejsou zatím kmitočty nad 100 MHz obsazeny. Počítá se s tím, že do této kmitočtové, oblasti se po roce 1990 přesunou i čs. rozhlasové stanice VKV, protože pásmo 66 až 73 MHz bude přiděleno jiným službám.

Německá demokratická republika

Kmitočet [MHz]	Progran		Výkon [kW]	Název
89,8	2 -	٠.	100	Karl-Marx-Stadt
90,1	2		50	Dresden
90,4	2 .		60.	Leipzig '
92;25		4	50	Dresden
92,85		4	60	Karl-Marx-Stadt
93,85	٠.	4	100	Leipzig .
95.4	3	•	100	Dresden
96,6	1		60	Leipzig_
97,05	1 :		50	Karl-Marx-Stadt
97,25	1	: •	100	Dresden

Německá spolková republika (Bavorsko)

87,6	. 2 . 25	Dillberg
88.7	2 - 100	Grünten
88.9	1 25	Dillberg
89.5	2 100	Wendelstein ·
90.7	1 100	
91,2	2 20	
92,1		Brotjacklriegel
92,3	2 25	
93,0	2 25	
93,7	3 100	Wendelstein
94,4	3 100	
94.7	3 50	
95.0	1 25	
95.8	3 100	Grünten
96.0	2 100	Ochsenkopf
96.5	2 100	
96.8	1 50	
. 97,9	3, 25	
98.5	3 100	Wendelstein
99,4	3 100	Ochsenkopf
99.6	3 100	Hohe Linie
55,0	3 23	HOHE LIME

88,8 3	100	Lichtenberg
89,4	100	Jauerling : ;
90,85 ; 1	100	Gaisberg
94.8 2	100	Gaisberg
95,195 2	100	Lichtenberg
97,0 1		Jauerling
97,5	100	Lichtenberg.
97,9 2	50	Kahlenberg -
99.0.	100	Gaisberg '
99.9 - 3	- 50	Kahlenberg '
		, , , -

Mapa TV vysílačů

Mapa TV vysílačů znázorňuje umístění hlavních vysílačů koncem roku 1983. Má být pomůckou při výběru alternativních vysílačů v případech nekvalitního příjmu vysílačů místních. Praxe ukazuje, že v četných případech není místní příjem z hlediska kvality nejvhodnější. Mapa též usnadní orientaci na pásmech při dálkovém příjmu, popř. při mimořádných pod-mínkách šíření. Proto jsou zakrésleny i nejbližší vysílače zahraniční.

U kazdého vysílače je uvedeno číslo programu, kanál a druh polarizace. Vlastní stanoviště je označeno černým bodem. Cennou informací je údaj o vysílané polarizaci. Jde zejména o několik významných vysílačů na III. pásmu, které pracují s vertikální polarizací.

Anténa vysílače Ústí n. L. na Bukové hoře (K12) pracuje s polarizací eliptic-kou. Jde o experiment Výzkumného ústavu spojů. Při příjmu libovolně polarizovanou příjímací anténou není v tomto případě podstatný rozdíl v síle signálu. V Praze je např. horizontální složka elektromag-

Tab. 11. Pásma kanály, kmitočty a vlnové délky (podle OIRT)

Pásmo _.	Kanál	Rozsah [MHz]	f _{obr} . f _{zvuku} [MHz]	λ _{obr} . λ _{zvuku} [cm]
I pásmo	K1 K2	48,5 až 56,5 58 až 66	49,75 56,25 59,25 65,75	603,0 533,3 506,3 456,3
VKV FM		67 až 73	×	447,8 až 441,0
II. pásmo	K3 K4 K5	76 až 84 84 až 92 92 až 100	77,25 83,75 85,25 91,75 93,25 99,75	388,3 358,2 351,9 327,0 321,7 300,7
Amatéři		144 až 146		208,3 až 205,5
III. pásmo	K6 K7 . K8 K9 K10 K11 K12	174 až 182 182 až 190 190 až 198 198 až 206 206 až 214 214 až 222 222 až 230	175,25 181,75 183,25 189,75 191,25 197,25 199,25 205,75 207,25 213,75 215,25 221,75 223,25 229,75	171,2 165,1 163,7 158,1 156,8 151,7 150,6 145,8 144,7 140,3 139,4 135,3 134,4 130,6
Amatéři		432 až 438	•	69,4 až 68,5
IV. pásmo	K21 K22 K23 K24 K25 K26 K27 K28 K29 K30 K31 K32 K33 K34 K35 K36 K37	470 až 478 478 až 486 486 až 494 494 až 502 502 až 510 510 až 518 518 až 526 526 až 534 534 až 542 542 až 550 550 až 558 558 až 566 566 až 574 574 až 582 582 až 590 590 až 598 598 až 606 606 až 614 614 až 622	471,25 477,75 479,25 485,75 487,25 493,75 495,25 501,75 503,25 509,75 511,25 517,75 519,25 525,75 527,25 533,75 535,25 541,75 543,25 549,75 551,25 557,75 567,25 573,75 567,25 573,75 575,25 581,75 567,25 581,75 583,25 589,75 591,25 597,75 599,25 605,75 607,25 613,75 615,25 621,75	63,7 62,9 62,6 61,8 61,6 60,8 60,6 59,8 59,6 58,8 58,7 57,9 57,8 57,1 56,9 56,2 56,0 55,4 55,2 54,6 54,4 53,8 53,6 53,1 52,9 52,3 52,1 51,6 51,4 50,9 50,7 50,3 51,1 49,6 49,4 48,9 48,7 48,2
V. pásmo	K40 K41 K42 K43 K44 K45 K46 K47 K48 K49 K50 K51 K52 K53 K55 K56 K57 K58	622 až 630 630 až 638 638 až 646 646 až 654 654 až 662 662 až 670 670 až 678 678 až 686 686 až 694 694 až 702 702 až 710 710 až 718 718 až 726 726 až 734 734 až 742 742 až 750 750 až 758 758 až 766 766 až 774 774 až 782 782 až 790	623,25 629,75 631,25 637,75 639,25 645,75 647,25 653,75 665,25 661,75 671,25 677,75 679,25 685,75 - 687,25 693,75 695,25 701,75 703,25 709,75 711,25 772,75 719,25 725,75 727,25 733,75 735,25 741,75 743,25 749,75 759,25 765,75 767,25 773,75 775,25 781,75 7783,25 789,5	48,1 47,6 47,5 47,0 46,9 46,4 46,3 45,9 45,8 45,3 45,2 44,8 44,6 44,2 44,1 43,7 43,6 43,2 43,1 42,7 42,6 42,3 42,2 41,8 41,7 41,3 41,2 40,9 40,8 40,5 40,4 40,0 39,9 39,6 39,5 39,2 39,1 38,8 38,7 38,4 38,3 38,0

Pásma, kanály, kmitočty a vlnové délky (podle CCIR)

ł. pásmo	K2 K3 K4	47 až 54 54 až 61 61 až 68	48,25 55,25 62,25	53,75 60,75 67,75	621,8 558,1 543,0 493,8 481,9 442,8
VKV FM		88 až 100 (104)			340,9 až 288,5
III. pásmo	K5 K6 K7 K8 K9 K10 K11	174 až 181 181 až 188 188 až 195 195 až 202 202 až 209 209 až 216 216 až 223 223 až 230	175,25 182,25 189,25 196,25 203,25 210,25 217,25 224,25	180,75 187,75 194,75 201,75 208,75 215,75 222,75 229,75	171,2 166,0 164,6 159,8 158,6 154,0 152,9 148,7 147,6 143,7 142,7 139,0 138,1 134,7 133,8 130,6
IV. Pásmo V. pásmo		í kanálů a kmitočty o my OIRT. Kmitočty z			

netického pole průměrně jen o 3 dB menší než vertikální. Vliv polarizace přijímací antény by se měl projevit v místech s odra-zy. Eliptická, popř. kruhová polarizace vysílací antény umožňuje potlačit za jistých podmínek vhodnou polarizací přijímací antény ty odrazy, které nelze odstranit běžným směrováním antény. Ověření popř. využití této možnosti ovšem předpokládá jistou dávku trpělivosti v experimentování. Vzájemná geografická poloha a shodná polarizace vysílačů Ústí n. L. (K12) a Drážďan (K10) umožňuje posluchačům v oblasti Prahy příjem na obou kanálech na jedinou, stabilní, vertikálně polarizovanou anténu. Významnou, ale málo známou je též skutečnost, že z míst, odkud se vysílá vertikálně televizní program na III. pásmu, se vysílá vertikálně i rozhlas FM na VKV v pásmu 67 až 73 MHz. Příjém na horizontálně polarizované anténý je průměrně o 20 dB slabší. Tuto skutečnost by měli respektovat zejména zájemci o stereofonní příjem

Připomínáme, že kromě vysílačů zá kladní sítě je v provozu značné množství vysílačů místních, tzv. převáděčů, které zajišťují příjem v četných zastíně-ných oblastech. Potřebné informace by měly být dostupné v místních radiotele vizních opravnách a příslušných inspektorátech radiokomunikací.

Družicový přenos televize na K41 v Praze

Počátkem listopadu 1983 byl v Praze uveden do provozu televizní vysílač, který na K41 vysílá 1. program sovětské televi-ze. Jde o signál přenášený sovětskou geostacionární družicí Horizont, pracující v družicovém radiokomunikačním systému MOSKVA v pásmu 6 GHz/4 GHz. Družice je umístěna nad rovníkem na 14° západní délky, takže pokrývá prakticky celou západní Evropu i evropskou část SSSR. Výkon družicového vysílače je 40W, zisk palubní antény 30 dB. Parabolická anténa pozemské přijímací stanice má průměr 2,5 m, zisk 37,5 dB a šířku svazku

Při této příležitosti je vhodné připome-nout, že systém MOSKVA, realizovaný v roce 1980, navazuje na systémy MOLNI-JA (1967) a EKRAN (1976) [11].

Radiokomunikační systém MOLNIJA s přijímači Orbita zásobuje již 15 let TV signálem značnou část Sibiře, přilehlé polární oblasti a částečně i Dálný východ. Družice Molnija obíhá Zemi po eliptické dráze tak, že nad územím SSSR je v apogeu (v největší vzdálenosti), kde se pohybuje velmi pomalu. Přijímací stanice proto musí být vybaveny naváděnými anténami (tzv. tracking system) o průměru 12 m. Družice přijímají v pásmu 6 GHz a vysílají na Zem v pásmu 4 GHz. Pro značné náklady na přijímací střediska se tyto stanice budují jen ve velkých městéch nebo hustě osídlených oblastech

Systém EKRAN [12], pracující již s geostacionárními družicemi Horizont, pokrývá TV signálem rovněž Dálný východ. Je určen i pro místa s menším počtem obyvatel, popř. i pro individuální příjem.

Družice je umístěna nad rovníkem na 99° východní délky. Palubní vysílač má výkon 200 W a pracuje v pásmu 702 až 726 MHz, což umožňuje skupinový i individuální příjem v V. pásmu. Anténní soustavy přijímácích stanic, sestavené z dlouhých Yagiho antén, jsou většinou napájeny sériově-paralelními systémy a byly

popsány ve ST [13].

I. program televize SSSR, přenášený družicí Horizont a pokusně vysílaný z telekomunikací na Žižkově, je tedy skutečným družicovým příjmem releovaným pozemskou stanicí, tak jak se s ním budeme setkávat v budoucnu při příjmu z dalších družic [14]. Ty však již budou pracovat v pásmu 12 GHz. V současné době je na tomto pásmu v rámci programu INTERKOSMOS v pokusném provozu i další radiokomunikační systém s družicí LÚČ II, která je umístěna na 53° východně od nultého poledníku. Družice byla pokusně přijímána i v Praze pozemskou přijímací stanicí, vyvinutou společným úsilím několika pracovních týmů z VÚST, VÚS, ČSAV a ČVÚT.

Vraťme se však k příjmu na K41. Posluchači v Praze a blízkém okelí se mohou přesvědčit o velmi dobré technické kvalitě signálů přenášených družicí Horizont, když si pro příjem na K41 zhotoví lehkou 12prykovou anténu typu D podle tab. 1. Vyzářený výkon vysílače není velký, asi 1 kW, takže jeho dosah nelze srovnávat s dosahem ostatních pražských vysílačů. Pro místní přijem v nezastíněných oblastech však dostačuje. Nízká úroveň vyzářeného výkonu nevytváří tak příznivé podmínky pro vznik odrazů, což se projevuje příznivě i v oblastech, kde odrazy značně zhoršují příjem na K26, K24 i K1.

Dále uvedené rozměry 12prvkové Yagiho antény s dvojitým reflektorem jsou vypočteny podle rozměrové tab. 1 – anténa D, proλ = 470 mm. Označení rozměrů odpovídá obr. 1 na str. 4.

Tab. 12. Rozměry antény pro K41 (v mm)

L _R	282
Lz Pi	106 258
L _{D1}	- 26 220
p_2	. 44
/ ₀₂ .	216 62
L D3	213
L D4	80 209
ρ ₅	98
ρ_6	111
L _{D6}	· 202
. L _{D7}	200 137
L _{D8} , P ₈	198
L _{D9}	150 : 150 : 195
· · · · · · · · · · · · · · · · · · ·	
h = 130 t = 2 až 3	$L_c = 960 (+\sim 300)$
T = 12 až 16	
m = 25 až 35	

Ráhno můžeme ponechat o 200 až 300 mm delší, aby se anténa mohla upevnit vzadu na okenní rám apod. V mnoha případech lze anténu použít i jako vnitřní.

Délka symetrizační smyčky při napájení souosým kabelem je 155 mm (kabel s plným PE dielektrikem), popř. 190 mm (kabel s pěnovým PE dielektrikem). Pokud není napájecí kabel příliš dlouhý (asi do 10 m), je vhodnější tenčí typ do Ø 6 mm. Např. VLEDY 75–3,7, dříve VFKP 252, nebo VCCOY 75–3,7, dříve označený VFKV 610.

Popsaná anténa je použitelná i na nižších kmitočtech asi do K35. Z prodávaných antén vyhoví pro příjem na K41 jen typy TVa, TVb nebo X-Color.

"V literatuřé o antěnách se opakovaně setkáváme s jednoduchou anténou typu "corner". Z publikovaných křívek vyplývá, že by měla mít zisk až 15 dB při úhlu 45° svíraném oběma rameny reflektoru. Proč se tato anténa nepoužívá pro příjem TV?"

Úhlový reflektor

Anténa – úhlový reflektor (corner-reflector antena) vznikne, vytvoříme-li z rovinného reflektoru kout, jehož obě strany spolu svírají jistý úhel (a), menší než 180°. Nazýváme jej úhlem otevření či úhlem apertury. V ose tohoto úhlu je umístěn zářič, zpravidla dipól $\lambda/2$ (obr. 60). Je-li úhel otevření 180°/n a n je celé číslo, můžeme působení úhlového reflektoru vysvětlit na principu zrcadlových obrazů – obr. 61. Při výpočtu směrových vlastností se vychází z teorie anténních řad, jejímiž členy jsou napájený zářič a jeho zrcadlové

Obr. 60. Schematický náčrt a rozměry úhlového reflektoru s dipólem

Obr. 61. Princip úhlového reflektoru – zrcadlové obrazy zářiče

obrazy. Anténu lze uvažovat i jako typickou reflektorovou anténu s primárním zářičem, jejíž vyzařovací vlastnosti se počítají z rozložení pole v ústí úhlového reflektoru. Směrové vlastnosti bývají souhrnně znázorněny grafem, vyjadřujícím vypočtenou závislosť směrovosti (Sd) na úhlu otevření (α) pro různé vzdálenosti (F) zářiče z vrcholu úhlového reflektoru – obr. 62. V této formě pak bývají většinou publikovány. Toto grafické znázornění (vzbuzující optimismus amatérských experimentátorů) však není vhodnou informací, ani podkladem pro návrh a realizaci vlastní antény především proto, že se při výpočtu směrovosti uvažovala neomezená plocha, popř. délka ramen reflektoru. Protože v dostupných publikacích dosud postrádáme jak přehledné, tak podrob-nější informace vhodné i pro praktický návrh, uvádím dále několik užitečných grafů, které dosti podrobně vyjadřují vzájemné vztahy mezi elektrickými vlastnost-

Obr. 62. Zisk antény s úhlovým reflektorem v závislosti na vzdálenosti F (0 až 0,5λ) pro úhly α = 180°, 90°, 60° a 45°

mi a základními rozměry této antény. Jsou výsledkem experimentálních prací [15], jejichž cílem bylo ověřit a pro praktickou potřebu upravit vypočtené závislosti a vztahy

Základní funkce úhlového reflektoru spočívá v soustředění záření ve směru osy úhlu. Z křivek na obr. 62 (vypočtených pro nekonečnou plochu ramen) vyplývá, že pro každý úhel otevření existuje určitá poloha zářiče, daná vzdáleností F od vrcholu, pro kterou se teoreticky dosahuje maximální směrovosti. (To jsou právě ty křivky, které má náš čtenář na mysli.) Skutečný zisk však závisí ještě na dalších činitelích. Pro malé vzdálenosti F se značne zmenšuje vyzařovací odpor – viz obr. 63, ztrátový odpor se zvláště při malých úhlech uplatňuje stále více, pohlcuje značnou část energie, takže skutečný zisk se pro malá F rychle zmenšuje. Všimněme si teď hlavních závislostí z hlediska praktické realizace.

Vliv úhlu otevření na optimální polohu zářiče

Víme, že se zisk dipólu před rovinným reflektorem periodicky mění v závislosti na vzdálenosti. Je to způsobeno tím, žé se v určitých vzdálenostech, konkrétně při $F=0.25\lambda~0.75\lambda,~1.25\lambda,~$ atd. (tedy při lichých násobcích $\lambda/4$), shoduje fáze vlny od reflektoru odražené i fáze vlny vyzářené (přijaté) zářičem přímo, takže směrové či "zesilovací" účinky antény se zvysují. Při vzdálenostech, které jsou sudými nádobky $\lambda/4$, popř. celými násobky $\lambda/2$ se

Obr. 63. Vyzařovací odpor (R_v) antény s úhlovým reflektorem v závislosti na vzdálenosti F (0 až 0,5 λ) pro úhly $\alpha=180^\circ, 90^\circ, 60^\circ$ a 45 $^\circ$

Obr. 64. Optimální vzdálenost F pro tři polohy (maxima) zářiče v závislosti na úhlu α : A – největší zisk se zářičem ve 2. poloze (α = 65°, F = 1,17 λ), B – největší zisk se zářičem ve 3. poloze (α = 90°, F = 1,5 λ)

směrové účinky snižují – obě složky pole jsou v protifázi. Jak se tato vlastnost projevuje u *úhlového* reflektoru? Graf na obr. 62 průběhy směrovosti pro $F>0,5\lambda$ neuvádí. Odpověď je zřejmá z obr. 64, kde jsou vyznačeny naměřené optimální polohy zářiče v závislosti na úhlu otevření v rozsahu úhlů $\alpha=20$ až 180° a pro F až do 2,5 λ . Optimální poloha se zde objevuje 3x

1. poloha je značně "široká" a umožňuje volit α i F v širším rozsahu bez kritických tolerancí. Pro velká α (>150°) stoupá směrovost s klesajícím F. Současný pokles vyzařovacího odporu však přírůstek zisku redukuje (obr. 63). Rozumným kompromisem je $F=0.25\lambda$ a $\alpha=100$ až 140°.

2. a 3. poloha souhlasí s odpovídajícím F pro soufázový odraz od rovinného reflektoru ($\alpha=180^\circ$) při $F=0.75\lambda$ a 1.25 λ . Pro menší α se pak F^- u obou poloh zvětšuje. Nastavení je na rozdíl od 1. polohy *kritické*.

Ukazuje se, že 2. poloha je nespojitou funkcí, a v rozsahu úhlů $\alpha=100$ až 120° splývá s 3. polohou. V rozsahu úhlů 20 až 70° je však průběh jednoznačný – a nastavení opět *kritické*.

Obr. 65. Křivky konstantního zisku antény s úhlovým reflektorem se zářičem v 1. poloze pro různé rozměry ramen reflektoru (L – délka ramenē, W – šířka ramene). Pro každou kombinaci L a W byl úhel optimalizován (viz obr. 66)

Vliv rozměrů na zisk

Měření dále potvrdila, že se zářičem v 1. poloze závisí konečný zisk na úhlu otevření α a délce ramen L. Čím je α menší, tim musí být ramena delší, aby byl zisk maximální. Pro dipól ve 2. poloze je naopak optimální úhel $\alpha=65^\circ$ pro všechny délky reflektoru $L>1\lambda$.

Naměřené zisky pro různé kombinace délek (L) a šířek ramen (W) reflektoru jsou na obr. 65, 67, 68. Obr. 65 plati pro zářiče v 1. poloze. Protože optimální úhel α závisí v tomto případě na délce a v menší míře i na šířce ramen, jsou křivky vhodných úhlů α vyznačeny na obr. 66. Oba obrázky proto používáme spolu, tzn. úhlový reflektor s rozměry L a W podle grafu na obr. 65 musí mít těmto rozměrům odpovídající úhel α podle obr. 66. Z průběhu na obr. 66 je těž naprosto jasné, že optimalizované úhlové reflektory s α = 50° jsou prakticky nerealizovatelné pro značnou délku ramen.

Obr. 66. Křivky konstantních úhlů α pro dosažení maximálního zisku antény s úhlovým reflektorem a se zářičem v 1. poloze pro různé rozměry ramen reflektoru.

Obr. 67. Křivky konstantního zisku antény s úhlovým reflektorem se zářičem ve 2. poloze pro různé rozměry ramen reflektoru. Pro každou kombinaci L a W byl úhel α optimalizován. Pro všechny L>1λ je optimální α = 65°

Naměřené zisky pro různé kombinace L a W se zářičem ve 2. poloze jsou na obr. 67. Maximálního zisku se dosahuje pro všechny rozměr, k6V a W je větší než 1λ, a to s úblem α = 65° a F = 1.171

všechny rozměry, kdyL aW je větší než 1λ , a to s úhlem $\alpha = 65^{\circ}$ a $F = 1,17\lambda$.

Stejné vztahy jsou i na obr. 62 pro 3. polohu zářiče. Maximálního zisku se dosáhlo pro všechny rozměry, kdyL a W byly větší než 0,5 λ , a to s úhlem $\alpha = 90^{\circ}$ a $F = 1,5 \lambda$. Prakticky se však 3. polohy nevyužívá. (Mimo jiné i proto, že se při velkém F zvětšuje přezařování ve směru 180° a ČZP se zhoršuje.)

Obr. 68. Křivky konstantního zisku antény s úhlovým reflektorem se zářičem ve 3. poloze pro různé rozměry famen reflektoru. Pro každou kombinaci L a W byl úhel α optimalizován. Pro všechny L>0,5λ je optimální α = 90°

Impedance

Orientačně je průběh impedance pro některé úhly α v závislosti na F (v rozsahu F=0 až 2,5 \hat{i}) znázorněn na obr. 69. Je vidět, že pro větší F, která přicházejí v úvahu při praktické realizaci, se impedance jednoduchého dipólu bude kolísavě blížit 75 Ω , což je z hlediska napájení příznivé, protože i bez přistrojového vyba-

Obr. 69. Vyzařovací odpor (R.) antény s úhlovým reflektorem v závislosti na vzdálenosti F (0 až 2,5 λ) jednoduchého dipólu $\lambda/2$ pro úhly $\alpha=180^\circ, 90^\circ$ a 60°

vení lze zaručit rozumné hodnoty přizpů-sobení v okolí rezonanční délky zářiče. Totéž platí i při užití dipólu skládaného, kdy velikost vstupní impedance bude kolísat kolem hodnoty 300 Ω v okolí jeho rezonanční délky. Rezonanční délky skládaných dipólů λ/2 pro běžná TV pásma a pro poměr vodičů 1:1 jsou uvedeny na obr. 72. Připomínáme, že rezonanční délky skládaných dipólů jsou vždy menší než 0,51 a závisí jak na roztečích m obou vodičů tak i na průměru t vodičů. (Křivky jsou odvozeny z normy ČSN 367210 – TV přijímací antény.) Větší impedance skládaných dipólů je užitečná při malých F, kdy lze k napájení přimo využit napáječů o impedanci 50 až 75 Ω bez další transformace. Výhodný je v tomto případě koaxiální skládaný dipól, u kterého odpadá vnější symetrizace.

Větší impedance využíváme i u zářičů – celovlnných dipólů, které jsou výhodné i z jiných hledisek (viz Úhlové reflektory v praxi).

Stručný souhrn

.

Prvním předpokladem pro praktické použití antény s úhlovým reflektorem je W=0.51 na nejnižším kmitočtu pracovního pásma. Podstatného a rychlého zvětšení zisku se dosáhne již při W=11. Dalším zvětšováním šířky reflektoru stoupá zisk již pomaleji a za jistou mezí se pak zmenšuje.

Pro dipól v 1. poloze je vztah mezi délkou ramene L a ziskem jednoznačný. S rostoucí délkou L se plynule zvětšuje i zisk.

Pro dipól v 1. poloze závisí optimální úhel apertury na rozměrech reflektoru, zejména délce ramene ${\cal L}$

Pro dipól ve 2. poloze je optimální úhel apertury $\alpha=65^\circ$ pro všechný délky $L>1\lambda$.

Pro dipól ve 3. poloze je optimální úhel apertury $\alpha=90^\circ$ pro všechny délky reflektoru L>0.6i.

Pokud je při návrhu antény s úhlovým reflektorem vůdčím hlediskem maximální zlak, je třeba dát přednost uspořádání s dlpólem ve 2. poloze, při kterém dosahují oba rozměry reflektoru velikosti 2). Vyšších hodnot se dosahuje prodlužováním ramen až na L=4 až 51, kdy se zisk pohybuje kolem 15 až 16 dB. Je to asi o 1,5 dB více, než u téhož rozměru při 1. poloze dipólu.

U malých reflektorů do rozměru ramene 1×1 je z hlediska optimálního zisku výhodnější 1. poloha dipólu $G_d=9,5$ dB. Při 2. poloze pak v tomto případě klesá zisk na pouhých 6,5 dB.

Vyjádřeno čísly dostáváme:

Maximální zisk	Optimální ("ekonomícký")
15,5 dB	zisk 9,4 dB
$L = 5\lambda$ $W = 2.2\lambda$ $\alpha = 65^{\circ}$ $F = 1.2\lambda$ $Z_0 = 60 \Omega$	$L = 1\lambda$ $W = 1\lambda$ $\alpha = 110^{\circ}$ $F = 0.25\lambda$ $Z_{0} = 50 \Omega$

Pokud bý měl být, např. z konstrukčních důvodů, vůdčím hlediskem úhel ramen $\alpha = 90^{\circ}$, pak pro maximální zisk vycházejí tyto rozměry:

$$L = 1,51$$

 $W = 1,31$
 $\alpha' = 90^{\circ}$
 $F = 0,31$
 $Z_0 = 50 \Omega$
 $G_d = 10,8 \text{ dB}$

Úhlové reflektory v praxi

K hodnocení "ekonomie" úhlových reflektorů je sestavena tab. 7, do které jsme seřadili základní rozměrové parametry optimálně navržených reflektorů se získem od.8 do 16 dB, odvozené z křivek na obr. 65, 66 a 67.

Hodnocení je vyjádřeno účinností apertury (η) v ústí úhlového reflektoru, vyplývající z rozdílu zisku při teoreticky 100 %

Obr. 70. Dvojice antén s úhlovým reflektorem pro radioreleový spoj v pásmu 160 MHz, $G_d = 9.5 \, dB$, ČZP = 30 dB. Konstrukce umožňuje nezávislé úhlové natáčení obou antén. Odrazná plocha ramen je vytvořena napnutými dráty, takže větrná zátěž je minimální

Obr. 71. Nejdůležitější oblast reflektoru je v místech, odkud jsou elmag. vlny odráženy podél osy

ozáření a skutečném ozáření plochy ústí – apertury. Všechny délkové rozměry jsou vyjádřeny v λ , plocha ústí v λ^2 .

Je vidět, že využití plochy ústí (apertury) je dobré u malých reflektorů. U větších a velkých reflektorů se účinnost apertury pohybuje kolém 50 %, a je tedy srovnatelná s účinností ostatních klasických reflektorových antén plochých, popř. parabolických.

Z hlediska praktické realizace však bereme v úvahu účinnost (ηc) celé fyzikální (konstrukční) plochy obou ramen úhlového reflektoru. Pro malé reflektory jsou hodnoty ještě přijatelné, u větších však η_c klesá pod 30 %. K lepšímu pochopení malé účinnosti úhlových reflektorů si ještě všimněme obr. 71. Je jasné, že nejdůležitější oblast reflektoru je v místech, odkud jsou elmag, vlny odráženy ve směru osy. Např. pro reflektor s $\alpha = 90^{\circ}$ je to ve vzdálenosti 1,41F od vrcholu (bod M). Je-li $\alpha = 60^{\circ}$, je to ve vzdálenosti 1,73Fapod. Obecně pak ve vzdálenosti 2 sinαF. l z tohoto obrázku je jašné, že menší úhly vyžadují větší vzdálenosti F a delší rámena Vliv zbývající části reflektoru, tzn. přesahující za bod M, postupně klesá, takže pro L=2F. jde mimo osu záření jen v rozsahu úhlů β . Za praktické minimum bychom tedy měli považovat délku ramen L = 2F. Tato nerovnoměrnost vlivu reflektoru je podstatnou příčinou jeho "malé" űčinnosti v provedení se zářičem λ/2.

V amatérské praxi se z těchto důvodů úhlového reflektoru se zářičem ½/2 téměř neužívá: Pokud se však vystačí se získem do 10 dB, nelze již považovat rozměry úhlového reflektoru za extrémní, zvlášťe na vyšších kmitočtových pásmech. Významnou výhodou těchto antén je značná tolerance základních rozměrů. Výhodou je dále širokopásmovost zářiče ½/2 a velmi dobrý činitel zpětného příjmu v širokém kmitočtovém pásmu, což mimo jiné umožňuje montáž několika antén na společný stožár, nezávisle na polarizaci. Proto používají úhlových reflektorů zvláště radiokomunikační služby jako konco-

Tab. 7.

				•					
Poloha zářiče	· a	[], [],	[4]	Plocha A _o apertury [λ²]	G _{100%} [dB]	G _{skut} [dB]	ηΑ	Fyz. plocha reflektoru [λ^z]	ηū
1.	140°	. 1	0,5	0,94	8,5	8	89 %	1	84 %
-1.	110°	1.,	1	1,64	11	9,3	67 %	2	55 %
2.	65°	2,	2 -	4,3	15,5	12,3 "	48 %	. 8	26 %
2.	.65°	3	2	6,46	16,9	14,5	57 %	57 %	12
2.	65°	4	2	8,6	18,2	15,5	54 %	16	29 %
2.	65°	5	. 2	10,8	19,1	16,0	48 % .	20	26 %

Obr. 72. Rezonanční délky půlvlnných dipólů v pásmu 150 až 900 MHz. Rozměry m, s, t nejsou kritické (s = 10 až 25 mm)

Obr. 73. Maximální vstupní odpor R celovlnného dipólu v závislosti na jeho štihlosti L/t.

Rezonanční délka L celovlnného dipólu závisí na štíhlosti L/t a na provedení (kapacitě) anténních svorek. Vyznačený průběh pro L platí pro s = 0,06λ. Obě znázorněné závislosti je třeba považovat za přibližné

vých i releových antén na metrových a decimetrových vlnách (obr. 70). Značné plochy reflektorů nepředstavují významnou větrnou zátěž, pokud jsou zhotoveny z řídkých mříží. Pro jejich návrh platí stejné zásady jako u ostatních reflektorových antén (viz obr. 53).

"Ekonomii" úhlových reflektorů lze zlepšit náhradou půlvlnného zářiče zářičem celovlnným. Jak vime, ma celovlnný dipól absolutní zisk $G_i = 3.8$ dB, tj. $G_d = 1,66$ dB (zisk proti dipólu $\lambda/2$). Pou-žitím celovlnného dipólu můžeme tedy zvětšit zisk antény při stejných rozměrech asi o 1,7 dB. Touto změnou nejsou dotčeny vzájemné vlivy rozměrových (a,F,L,W) a elektrických parametrů (G_d,R_v) , vyznačené na předchozích grafech. Směrovějšímu diagramu celovlnného dipólu v rovině ($\Theta_{3E} = 47^{\circ}$) však "postačí", aby šířka reflektoru W nepřekročila rozměr 1,5% při 2. poloze zářiče. Pro malá F volíme W maximálně 1,21.

Výsledná impedance bude opět kolísat

kolem vlastní impedance celovlnného zářiče v závislosti na F podle grafů na obr. 63 a 69. Výchozí, nebo lépe vlastní impedanci celovinného zářiče určíme podle grafů na obr. Poměrně velká impedance celovíce těchto zářičů a tuto soustavu pak napájet běžným souosým napáječem. Zisk stoupá jako u každé soufázové sous-tavy asi o 2,5 až 3 dB každým zdvojením základní antény.

Principu úhlového reflektoru se užívá: i při profesionálním provozu na pásmech KV, např. u vertikálně polarizovaných unipólů. Jejich směrování se ovlivňuje nejen závěsnými drátovými reflektory, ale i jejich vhodnou polohou v rozích různých objektů.

V technice TV příjmu se malých úhlových reflektorů v současné době užívá zejména u širokopásmových Yagiho antén na IV. a V. pásmo (obr. 11). Úhlový

reflektor s "širokopásmovým" celovlnným dipólem přispívá ke zvětšení zisku na dolním konci pásma, kde se zisk běžné Yagiho antény značně zmenšuje, protože se tam zmenšuje vliv direktorů, a to i direktorů skupinových [1]. I v těchto případech platí pro jejich návrh výše uvedené grafy.

Co říci závěrem? Snad jsme anténě s úhlovým reflektorem věnovali více po-zornosti, než si z hlediska praktického použití zasluhuje. Chtěli jsme však odpovědět na otázku, proč se s anténou tohoto druhu v praktickém použití tak často nesetkáváme a i tím přispět k celkové informovaností o anténách.

Literatura

- [1] Macoun J.: Yagiho antény na VKV a UKV pásma. AR, řada B, č. 1/82.
- [2] Závodský, J.: Směrové anténní soustavy pro 2m pásmo. AR, řada A, č. 9 a 10/83.
- [3] Krupka, Z.: Televizní antény. AR, řada B, č. 6/81.
- [4] Cheng, D. K.; Chen, C. A.: Optimum Element Lenghts of Yagi Arrays. IEEE Trans, AP-23, leden 1975. [5] Espe, W.: Vlastnosti hmot. SNTL:
- Praha 1956.
- [6] Hošek, J.: Materiály pro techniku VKV. SNTL: Praha 1963.
- [7] Hugo, J. a kol.: Konstrukční plastické hmoty, jejich vlastnosti a využití ve strojírenství. SNTL: Praha 1965.
- [8] Adam, V. a kol.: Plastické látky v pra-xi. SNTL: Praha Bratislava 1962.
- UKW Rundfunksender in Mitteleuropa. Funkschau č. 17/74.
- [10] UKW Sender-Tabelle, publikace fy
- Grundig. [11] Ditt, A.: Fernsehsatelliten Rundfunk in der UdSSR. NTZ č. 4/82.
- [12] Sovětské spojové družice EKRAN. ST č. 4/78.
- [13] Základní principy a anténní soustavy systému EKRAN. ST č. 1/79.
 [14] Příjem televizních družic. ST č. 11/83.
- [15] Cottony, H. W.; Wilson, A. S.: Gains of Finite Size Corner-Reflector Antennas. IEE Trans. AP-6, č. 4, 1958.
- [16] Hassdenteufel, J.; Květ, K.: Ele-trotechnické materiály, SNTL: Praha 1967.

Reproduktory a reproduktorové soustavy

Teorie a praxe optoelektroniky

Rozhlasové přijímače

VÝSLEDKY 15. ročníku konkursu Al

Koncem listopadu minulého roku byl komisí vyhodnocen jubilejní 15. ročník konkursu AR, který pořádá redakce AR ve spolupráci s ČSVTS elektrotechnické fakulty ČVUT v Praze. Do konkursu bylo přihlášeno 50 konstrukcí, z nichž bylo hodnoceno 49 konstrukcí. Konstrukce hodnotila komise (porota) ve složení: předseda doc. ing. Jiří Vackář, CSc., Jaroslav, Vorlíček, Josef Kroupa, RNDr. Václav Brunnhofer, Kamil Donát a za redakci AR šéfredaktor ing. Jan Klabal (zástupce předsedy) a Luboš Kalousek.

- 1	~~	•
	ce	nv

Jednoduše laditelný měřič zkreslení (ing. Karel Hájek) Dvojkanálový osciloskop (Milan Biščo) Číslicový multimetr DMM 2000 se samočinným přepínáním rozsahů (Jiří Zuska)	2000 Kčs 2000 Kčs 2000 Kčs
II. ceny Nf zesilovač (Josef Hurta) Stereofonní výkonový zesilovač (František Andrlík) Stereofonní zesilovač Zetawatt 1420	1500 Kčs 1500 Kčs
(ing. Josef Zigmund, CSc.) Absorpční vlnoměry 4,5 až 300 MHz a 200 až 900 MHz (Zdeněk Šoupal)	1500 Kčs 1500 Kčs
III. cena Minipřijímač "Kňour" (ing. Petr Zeman, ing. Ladislav Škapa)	1000 Kčs
Dále se komise rozhodla udělit tyto ceny za konstrukce, splňující vypsané úkoly:	tematické
Nf zesilovač (Josef Hurta) Stereofonní výkonový zesilovač (František Andrlík) Elektronický spínač domovního osvětlení (ing. Libor Kasl) Programátor pro ústřední topení (ing. Oldřich Filip) Automatické nabíjení akumulačních topidel v závislosti	300 Kčs 300 Kčs 800 Kčs 800 Kčs
na venkovní teplotě (ing. J. Kouřil)	500 Kčs

Kromě hlavních cen a cen za tematické úkoly se komise rozhodla odměnit tyto přihlášené konstrukce:

Zobrazovacia jednotka se sedemsegmentovkami z kvapalných kryštálov (Stanislav Vajda a Pavel Štotka) 800 Kčs Elektronicky řízený pohon gramofonu (ing. Pavel Člupek) 500 Kčs

Co napsat na závěr? Stále postrádáme větší výběr vtipných jednoduchých konstrukcí, které by byly účelné a snadno realizovatelné. Z konstrukcí převažovaly nejrůznější měřicí přístroje nejrůznější jakosti – to se samozřejmě odrazilo i na výsledcích konkursu (viz první ceny). Znovu zdůrazňujeme, že složitost konstrukce v žádném případě sama o sobě nezpůsobí, že bude přístroj hodnocen jednou z prvních cen.

15. ročník konkursu skončil, těšíme se na vaše konstrukce v 16. ročníku, jehož podmínky jsou uvedeny dále. Redakce AR

III. cenou byl odměněn Minipřijímač Kňour konstruktérů ing. Petra Zemana a ing. Ladislava Škapy

Stereofonní výkonový zesilovač Františka Andrlíka

Nf zesilovač Josefa Hurta

Absorpční vlnoměr autora Zdeňka Šoupala pro rozsah 4,5 až 300 MHz

Absorpční vlnoměr autora Zdeňka Šoupala pro pásmo 200 až 900 MHz. Konstrukční popis obou přístrojů bude uveřejněn v AR řady A v příští polovině letošního roku a Ročence AR 1984 (měla by vyjít koncem letošního nebo začátkem příštího roku)

KONKURS AR 784

Jako každoročně i letos vypisujeme konkurs AR na nejlepší amatérské konstrukce, jehož spolupořadatelem je ČSVTS elektrotechnické fakulty ČVUT. Jako v loňském roce budou i letos přihlášené konstrukce posuzovány výhradně z hlediska jejich původnosti, nápaditosti, technického provedení, vtipnosti a především účelnosti a použitelnosti. Přitom zdůrazňujeme, že složitost zařízení nebude v žádném případě rozhodujícím kritériem, které by konstrukci automaticky předurčovalo k zařazení do nejvýše hodnocené třídy. To v praxi znamená, že i jednoduchá, ale vtipná a užitečná konstrukce může být odměněna nejvyšší částkou.

Konstrukce, přihlášené do letošního konkursu, budou tedy nejprve hodnoceny podle vyjmenovaných kritérií. Komise pak ty konstrukce, které budou vyhovovat, rozdělí do tří skupin na výborné, velmi dobré a dobré. Zjednodušeně řečeno, bude to obdoba způsobu, kterým se například udělují medaile za nejlepší výrobky. Vybrané konstrukce budou tedy zařazeny do 1., 2. nebo 3. skupiny a v každé této skupině odměněny stanovenou paušální částkou.

Znamená to tedy, že například do první skupiny může být zařázeno více konstrukcí, budou-li skutečně kvalitní a vyhoví-li konkursním požadavkům. Totéž platí samozřejmě i o dalších dvou skupinách. Redakce má pro letošní rok k dispozici dostatečnou částku, aby mohla odměnit prakticky každou konstrukci, kterou komise k ocenění doporučí.

Do konkursu budou přijímány libovolné konstrukce bez ohledu na to, zda jsou jednoduché či složitější, a hodnotícími ukazateli budou vlastnosti, které jsme v úvodu vyjmenovali. V této souvislosti prosíme naše čtenáře, aby však do konkursu nezasílali takové konstrukce, které se již na první pohled zcela vymykají z možnosti amatérské reprodukovatelnosti, anebo takové, jejichž pořizovací náklady dosahují tisícových částek.

Podmínky konkursu

- 1. Konkurs je neanonymní a může se ho zúčastnit každý občan ČSSR. Dokumentace musí být označena jménem a adresou a případně i dalšími údaji, které by umožnily vejít v případě potřeby s přihlášeným účastníkem co nejrychleji do styku.
- V přihlášených konstrukcích musí být použity výhradně součástky dostupné v naší obchodní síti, a to i součástky, dovážené ze zemí RVHP.
- Přihláška do konkursu musí být zaslána na adresu redakce AR nejpozději do 5. září 1984 a musí obsahovat: a) schéma zapojení,
- a) schema zapojem, b) výkresy desek s plošnými spoji, c) fotografie vnitřního i vnějšího provedení, minimální rozměr 9 × 12 cm,
- d) podrobný popis přihlášené konstrukce s technickými údaji a návodem k použití.
- 4. Textová část musí být napsána strojem (30 řádků po 60 úderech), výkresy mohou být na obyčejném papíře a kresleny tužkou, kuličkovou tužkou nebo jinak, ale tak, aby byly přehledné (všechny

- výkresy jsou v redakci překreslovány). Výkresy i fotografie musí být očíslovány (obr. 1 atd.) a v textu na ně musí být odkazy. Na konci textové části musí být uveden seznam použitých součástek a všechny texty pod jednotlivé obrázky.
- 5. Přihlášeny mohou být pouze takové konstrukce, které dosud nebyly v ČSSR publikovány – redakce si přitom vyhrazuje právo jejich zveřejnění. Pokud bude konstrukce zveřejněna, bude honorována jako příspěvek bez ohledu na to, zda byla či nebyla v konkursu odměněna.
- 6. Neúplné či opožděně zaslané příspěvky nemohou být zařazeny do hodnocení. Příspěvky bude hodnotit komise ustanovená podle dohody pořadatelů. V případě potřeby si komise vyžaduje posudky specializovaných výzkumných pracovišť. Členové komise jsou z účastí na konkursu vyloučeni.
- 7. Dokumentace konstrukcí, které nebudou ani odměněny, ani uveřejněny, budou na požádání vráceny.
- Výsledek konkursu bude odměněným sdělen do 15. prosince 1984 a otištěn v AR A2/84.

Odměny

Konstrukce, které budou komisí zařazeny do jmenovaných tří skupin, budou odměněny takto:

1. skupina		2000 Kčs
2. skupina	_	1500 Kčs,
3. skupina		1000 Kčs.

Redakce vypisuje navíc tematické úkoly (tedy vlastní požadavky na určité konstrukce), které, pokud budou úspěšně splněny, budou kromě udělených cen odměněny ještě zvláštními jednorázovými prémiemi v rozmezí 300 až 1000 Kčs.

Stejnou prémii může komise udělit i takové konstrukci, která nebude předmětem tematických úkolů, bude však jakýmkoli způsobem mimořádně zajímavá nebo společensky prospěšná.

Z toho vyplývá, že autoři nejlepších konstrukcí, anebo konstrukce, splňující požadavky tematických úkolů, mohou ziskat celkovou odměnu až 3000 Kčs a tuto odměnu může pochopitelně získat nejen jeden, ale i několik autorů.

Tematické úkoly vypsané AR pro konkurs 81

- Jednoduché konstrukce, v nichž se používají číslicové integrované obvody libovolného stupně integrace.
- Jednoduché proporcionální dálkové ovládání pro svazarmovské modelářské kroužky (minimálně dvoukanálové).
- 3. Zařízení, která budou jakýmkoli příspěvkem k řešení současné energetické a materiálové krize, tj. taková zařízení, která při zachování požadovaných parametrů přinášejí materiálové nebo energetické úspory (vzhledem k dosud používaným zařízením).
- Zařízení všeho druhu, v nichž jsou použity moderní integrované obvody, dostupné na našem trhu.

Konstrukce, splňující jeden z vypsaných tematických úkolů: Programátor pro ústřední topení ing. Oldřicha Filipa. Popis bude uveřejněn v první polovině letošního roku v AR řady A

Konstruktér antén to nemá lehké. Zvýšené namáhání antén námrazou lze očekávat zejména v určitých oblastech (viz ON 73 1430–Navrhování ocelových konstrukcí anténních stožárů; příloha l – Námrazová mapa ČSSR). Tato problematika byla ostatně předmětem nejednoho výzkumu. Destrukci antén může způsobit i "živá váha" různého plactva. Tuto problematiku však výzkum dosud "nezmapoval", takže experimentátorum se zde nabízí pole zatím neorané. Jakou hnotnosti zatěžují anténní konstrukce hejna holubů, vran apod.? Proč některé druhy ptactva dávají přednost anténám určeného typu, popř. na určité pásmo? Souvisí to snad s průměrem prvků? Jaký vliv má povrchová úprava materiálu? Zdá se, že vertikálně polarizované antény nejsou ptactvem vyhledávány, proč? Otázek je celá řada. Odpovědi na ně by velmi usnadnily konstruktérům antén jejich práci.

MNOHO PRACOVNÍCH I OSOBNÍCH ÚSPĚCHŮ, ŠTĚSTÍ A ZDRAVÍ

PŘEJE REDAKCE

PF 1984