Численные методы Лекция 1

Евгений Александрович Яревский

28 октября 2020

evgeny. yarevsky @yandex.ru

Основная цель численного анализа и научных вычислений — разработка эффективных и точных методов вычисления величин, которые трудно или невозможно получить аналитически.

Когда нужны численные методы:

- Высокая точность результатов
- Большое количество/высокая скорость вычислений
- "Плохо обусловленные" модели явлений/процессов

Основная цель численного анализа и научных вычислений — разработка эффективных и точных методов вычисления величин, которые трудно или невозможно получить аналитически.

Когда нужны численные методы:

- Высокая точность результатов
- Большое количество/высокая скорость вычислений
- "Плохо обусловленные" модели явлений/процессов

$$x^4 - 2^4 = \varepsilon,$$
 $x \approx (\pm 1)(\pm i) \ 2(1 + \varepsilon/64),$
 $(x - 2)^4 = \varepsilon,$ $x = 2 + (\pm 1)(\pm i) \sqrt[4]{\varepsilon},$

Численные методы

2/30

План курса

- Точность и погрешность.
- Решение систем линейных алгебраических уравнений.
- Решение задачи на собственные значения.
- SVD и CUR разложения матриц.

Источники погрешностей (ошибок)

Численные методы подвержены влиянию погрешностей (ошибок).

- А) ошибки входных (исходных) данных систематические и случайные ошибки
- В) ошибки округления (представления чисел и операций в компьютере)
- С) ошибки, возникающие из-за "обрезания" бесконечно малых или больших величин
- рупрощения в используемых математических моделях
- Е) "человеческие" и машинные ошибки

Ошибки типов A и D, как правило, не могут контролироваться в рамках численных методов.

Тип С, как правило, можно контролировать.

Тип В можно контролировать частично.

Понятия абсолютной $(A \pm \Delta A)$ и относительной $(\Delta A/A)$ погрешностей.

(Масса нейтрино: $m_{
u}^2 = -22 \pm 17_{stat} \pm 17_{syst}$ э ${\sf B}^2$, 1995.

Сейчас: не более 0.28 эВ, но не 0 – Нобелевская премия по физике 2015).

Часто хочется иметь границы (точные или приближенные) для абсолютной и относительной погрешностей.

Получить их обычно трудно, так что часто пользуются оценками погрешностей.

Числа с плавающей точкой (запятой) (FP)

Дробные числа с плавающей точкой — удобная модель вещественных чисел: $\pm m imes eta^{\it E}$.

Исключение неоднозначности представления — нормализованные числа В компьютере занимают фиксированное число бит (байт) — конечное количество чисел!

Особенности FP по сравнению с вещественными числами:

- ullet Если a,b принадлежат FP, то $a+b,\ a-b,\ a*b,\ a/b$ не обязательно принадлежат FP
- Из a + b = a не следует, что b = 0
- ullet Нет ассоциативности: a+(b+c)
 eq (a+b)+c
- Нет дистрибутивности: $a*(b+c) \neq a*b+a*c$

Коммутативность присутствует.

Пример.

Вычисления с одинарной точностью:

$$1 + 1/2 + 1/3 + \ldots + 1/10^9 = 16.1$$

 $1/10^9 + 1/(10^9 - 1) + \ldots + 1/2 + 1 = 23.02$

7/30

Нормализованное представление вещественного числа *а* в форме с плавающей точкой:

$$a = \pm m \cdot \beta^e$$
, $\beta^{-1} \le m < 1$, e — целое.

m — мантисса, e — экспонента, β — основание системы. В реальности, количество цифр в e и m ограничено. Таким образом,

$$\overline{a} = \pm \overline{m} \cdot \beta^e, \quad \overline{m} = (0.d_1 d_2 \cdots d_t)_\beta, \quad 0 \le d_i < \beta.$$
 $e_{min} \le e \le e_{max}.$

 $\mathsf{Mamunhas}$ точность ϵ_M — минимальное положительное число такое, что

$$1 + \epsilon_M \neq 1$$
.

В машинной системе чисел с плавающей точкой $F = F(\beta, t, e_{min}, e_{max})$ любой вещественное число в диапазоне F может быть представлено с относительной ошибкой, не превосходящей ошибку округления u

$$u = \frac{1}{2}\beta^{-t+1}$$

(при использовании округления).

Численные методы

9/30

Стандарт IEEE 754 чисел с плавающей точкой

$$v = (-1)^s (1.m)_2 2^e \quad e_{min} \le e \le e_{max}.$$

Name	Common name	Bas	e Digits	E min E	max	Notes	Dec digits	Dec Emax
binary16	Half precision	2	10+1	-14	+15	storage	3.31	4.51
binary32	Single prec	2	23+1	-126	+127		7.22	38.23
binary64	Double prec	2	52+1	-1022	+1023		15.95	307.95
binary128	Quadruple pr	2	112+1	-16382	2 +16383	3	34.02	4931.77
decimal32	2	10	7	-95	+96	storage	7	96
decimal64	1	10	16	-383	+384		16	384
decimal12	28	10	34	-6143	+6144		34	6144

Математически эквивалентные формулы или алгоритмы не обязательно являются вычислительно эквивалентными

Математическая эквивалентность — одинаковые результаты для одинаковых входных данных при использовании точной арифметики

Вычислительная эквивалентность – одинаковые (в пределах погрешности) результаты для одинаковых входных данных при использовании машинной арифметики

Пример: вычисление экспоненты от отрицательного аргумента.

$$\exp(-x) pprox \sum_{k=0}^N (-x)^k/k! pprox \left(\sum_{k=0}^N x^k/k!\right)^{-1}.$$

х=10, одинарная точность

Статистическая модель ошибок округления

До сих пор обсуждались максимальные ошибки.

Они не учитывают знак ошибок (возможна компенсация!) и часто чересчур пессимистичны.

Альтернатива – статистический анализ в предположении, что ошибки независимы и случайны. (Хотя это выполняется не всегда.)

Если каждое значение x_i имеет погрешность $|\Delta_i| \leq \delta$, то максимальная оценка погрешности суммы $y = \sum_{i=1}^n x_i$ равна $n\delta$ — линейный рост.

Если числа округляются (а не усекаются!) и если предположить, что разные слагаемые статистически независимы с дисперсией ϵ , тогда стандартная ошибка y равна

$$(\epsilon^2 + \epsilon^2 + \ldots + \epsilon^2)^{1/2} = \epsilon \sqrt{n}$$

- пропорциональность корню из n.

Эмпирическое правило: если граница максимальной ошибки оценена как f(n)u, тогда можно ожидать фактическую ошибку $\sqrt{f(n)}u$. (Обязательна случайность ошибок!).

<ロ > → □

13/30

Переполнение и потеря точности

- 1) Переполнение в процессе вычислений превышение максимальных машинных значений (Например, при вычислении длин векторов, модулей комплексных чисел и т.д.)
- 2) Потеря точности существенное уменьшение числа значащих цифр в процессе вычислений (например, при вычитании двух близких чисел). Вычисление производных, приведение аргументов функций к удобным (малым) диапазонам.

Вычислительная задача: описание функциональной зависимости между входными данными (независимыми переменными) и выходными данными (желаемый результат).

Входные и выходные данные состоят из конечного числа вещественных (комплексных) величин.

Предполагается, что выходные данные однозначно определяются входными данными и непрерывно зависят от них.

Численный (вычислительный) метод: процедура, "аппроксимирующая" математическую задачу вычислительной задачей, или же решающая вычислительную задачу.

Распространение ошибок

В вычислительных задачах, как правило, входные данные неточны. В процессе вычислений эти погрешности эволюционируют и приводят к погрешностям результата.

Основные результаты о распространении ошибок

1) При сложении (вычитании):

$$y = \sum_{i=1}^{n} x_i, \qquad \Delta y \leq \sum_{i=1}^{n} |\Delta x_i|$$

- граница абсолютной ошибки результата определяется суммой абсолютных ошибок данных.
- 2) При умножении (делении): то же верно для относительных ошибок:

$$y = \prod_{i=1}^n x_i^{m_i}, \qquad \left| \frac{\Delta y}{y} \right| \leq \sum_{i=1}^n |m_i| \left| \frac{\Delta x_i}{x_i} \right|.$$

(Достаточно перейти к логарифмам).

Произвольная функция одного аргумента y = f(x)

Пусть $\Delta x = \tilde{x} - x$. Естественно аппроксимировать $\Delta y = \tilde{y} - y$ с помощью дифференциала y. По теореме о среднем,

$$\Delta y = f(x + \Delta x) - f(x) = f'(\xi)\Delta x$$
, где $\xi \in [x, x + \Delta x]$.

Пусть $|\Delta x| \leq \epsilon$. Тогда

$$|\Delta y| \leq \max_{\xi} |f'(\xi)|\epsilon$$
, где $\xi \in [x - \epsilon, x + \epsilon]$.

На практике ξ можно заменить на x, поскольку высокая относительная точность в оценке погрешности востребована редко.

Функция нескольких аргументов

Рассмотрим f(x), $x=(x_1,x_2,\ldots x_n)$, $\tilde{x}=x+\Delta x$. Тогда существует такое число θ , что

$$\Delta f = f(x + \Delta x) - f(x) = \sum_{i=1}^n rac{\partial f}{\partial x_i} (x + heta \Delta x) \Delta x_i,$$
 где $0 \leq heta \leq 1.$

Доказательство следует из рассмотрения функции $F(t)=f(x+t\Delta x)$.

Функция нескольких аргументов

Таким образом, для дифференцируемой функции $f = f(x_1, x_2, \dots x_n)$ в окрестности $x = (x_1, x_2, \dots x_n)$ с погрешностями $\Delta x_1, \Delta x_2, \dots \Delta x_n$, погрешность

$$\Delta f \approx \sum_{i=1}^n \frac{\partial f}{\partial x_i} \Delta x_i.$$

Для максимальной погрешности верно

$$|\Delta f| \leq \sum_{i=1}^{n} \left| \frac{\partial f}{\partial x_i} \right| |\Delta x_i|.$$

Строго говоря, в этой формуле должны браться максимумы частных производных в окрестности, однако часто берут значения в точке x.

(Это может быть неверно в экстремумах!).

Статистическая оценка

Полученная формула часто сильно переоценивает погрешность – помочь может статистическое рассмотрение.

Пусть погрешности $\Delta x_1, \Delta x_2, \ldots \Delta x_n$ – независимые случайные переменные со средними нулевыми значениями и стандартными девиациями $\epsilon_1, \epsilon_2, \ldots \epsilon_n$. Тогда стандартная погрешность ϵ для $f(x_1, x_2, \ldots x_n)$ даётся формулой

$$\epsilon pprox \left(\sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}\right)^2 \epsilon_i^2\right)^{1/2}.$$

Плохо обусловленные задачи

Если "малые" изменения во входных данных приводят к "большим" изменениям в выходных данных, задача называет плохо обусловленной (иначе – хорошо обусловленной).

Рассмотрим вычислительную задачу $y=f(x)\in R^m$, $x\in R^n$. Зафиксируем \hat{x} и предположим, что $\hat{x}\neq 0$ и $\hat{y}=f(\hat{x})\neq 0$. Чувствительность y по отношению к малым изменениям в x может быть охарактеризована относительным числом обусловленности

$$\kappa(f;\hat{x}) = \lim_{\epsilon \to 0} \sup_{||h||=\epsilon} \left\{ \frac{||f(x+h)-f(x)||}{||f(x)||} / \frac{||h||}{||x||} \right\}.$$

Для достаточно малых возмущений

$$||\tilde{y} - y|| \le \kappa \epsilon ||y|| + O(\epsilon^2).$$

イロト イラト イヨト ま めなべ

Системы линейных алгебраических уравнений (СЛАУ)

Многие задачи численного анализа сводятся к исследованию СЛАУ. Как правило, система задаётся с помощью матрицы A размерности N. Существуют различные задачи, два основных типа:

• Решение СЛАУ: матрица A и вектор b известны, требуется найти вектор x такой, что

$$Ax = b$$
.

• Решение спектральной задачи (задачи на собственные значения): найти (все или некоторые) числа λ_i и вектора x_i такие, что

$$Ax_i = \lambda_i x_i$$
.

Возможность и эффективность решения указанных задач определяются свойствами матрицы A.

В частности, с точки зрения вычислительной эффективности очень важно количество ненулевых элементов матрицы и их распределение в матрице.

- ullet Плотно заполненные матрицы: количество ненулевых элементов $N_{nz}\sim N^2$
- ullet Разреженные матрицы: количество ненулевых элементов $N_{nz}\ll N^2$
- Специальный тип разреженных матриц, ленточные матрицы: все ненулевые элементы расположены на нескольких ($\ll N$) субдиагоналях главной диагонали.

Элементы матрицы A могут как вычисляться заранее и храниться, так и вычисляться "на лету" при обращении к ним.

Решение СЛАУ: обусловленность

Задача Ax = b должна быть корректной: решение должно существовать, быть единственным и непрерывно зависеть от входных данных.

Есть специфика вычислений: насколько большое изменение решения x вызывает изменение входных данных b?

Естественно оценивать относительную погрешность.

Пусть
$$A(x+\Delta x)=b+\Delta b$$
, $A\Delta x=\Delta b$. Оценим

$$\frac{||\Delta x||}{||x||} \bigg/ \frac{||\Delta b||}{||b||} = \frac{||\Delta x||}{||\Delta b||} \frac{||b||}{||x||}.$$

Поскольку $\Delta x = A^{-1} \Delta b$, то $||\Delta x|| \leq ||A^{-1}|| \; ||\Delta b||$. Далее,

$$||b|| \le ||A|| \ ||x||, \quad ||b||/||x|| \le ||A||.$$

Число обусловленности матрицы

Оценка чувствительности:

$$\frac{||\Delta x||}{||x||} / \frac{||\Delta b||}{||b||} \le ||A|| \ ||A^{-1}||.$$

Определение: Число обусловленности.

Пусть задана обратимая матрица A размерности N. Тогда

$$\kappa(A) = ||A|| \, ||A^{-1}||,$$

где ||.|| – некоторая матричная норма, называется числом обусловленности матрицы A по отношению к норме ||.||.

Свойства $\kappa(A)$:

- 1) $\kappa(A) \geq 1$;
- 2) $\kappa(\alpha A) = \kappa(A)$.

Число обусловленности матрицы

Для вычисления числа обусловленности можно использовать, например, спектральную норму:

$$||A||_* = \max_{x \neq 0} \frac{||Ax||}{||x||},$$

где ||Ax|| - Эвклидова норма вектора.

Спектральное число обусловленности,

$$\kappa^*(A) = ||A||_* \, ||A^{-1}||_* = \frac{\max_{\lambda \in \sigma(A)} |\lambda|}{\min_{\lambda \in \sigma(A)} |\lambda|},$$

обладает следующим минимальным свойством:

$$1 \leq \kappa^*(A) \leq \kappa(A),$$

где $\kappa(A)$ – число обусловленности для любой другой нормы.

28 / 30

Задача 1

Постройте график относительной погрешности при вычислении $\exp(-x)$ с помощью разложения в ряд Тейлора для подходящего диапазона $x, x \ge 0$. Сравните результаты для одинарной и двойной точности.

Литература

1. Dahlquist G., Bjoerck A., *Numerical Methods in Scientific Computing: Volume 1*, SIAM, 2008. Vol. 1. ISBN 0898716446. 793 р. Глава 2.