

Theory of Machines and Languages

Fatemeh Deldar

1403-1404

□ Right-Linear Grammars Generate Regular Languages

Example

$$V_0 \rightarrow aV_1,$$
 $V_1 \rightarrow abV_0|b$

- Every regular language can be generated by some right-linear grammar
- Example

Construct a right-linear grammar for $L(aab^*a)$.

$\delta(q_0, a) = \{q_1\}$	$q_0 \longrightarrow aq_1$
$\delta(q_1, a) = \{q_2\}$	$q_1 \longrightarrow aq_2$
$\delta(q_2, b) = \{q_2\}$	$q_2 \longrightarrow bq_2$
$\delta(q_2, a) = \{q_f\}$	$q_2 \longrightarrow aq_f$
$q_f \epsilon F$	$q_f \longrightarrow \lambda$

□ A language L is regular if and only if there exists a left-linear grammar G such that L = L(G)

- Exercise
 - Construct a left-linear grammar for the following nfa

Find a regular grammar for the language $L = \{a^n b^m : n + m \text{ is odd}\}$

Properties of Regular Languages

Closure Properties of Regular Languages

- □ If L_1 and L_2 are regular languages, then so are $L_1 \cup L_2$, $L_1 \cap L_2$, L_1L_2 , $\overline{L_1}$, and L_1^* . We say that the family of regular languages is closed under union, intersection, concatenation, complementation, and star-closure.
- □ **Proof:** If L_1 and L_2 are regular, then there exist regular expressions r_1 and r_2 such that $L_1 = L(r_1)$ and $L_2 = L(r_2)$. By definition, $r_1 + r_2$, r_1r_2 , and r_1^* are regular expressions denoting the languages $L_1 \cup L_2$, L_1L_2 , and L_1^*
- \square If $M = (Q, \Sigma, \delta, q_0, F)$ be a dfa that accepts L_1

$$\widehat{M} = (Q, \Sigma, \delta, q_0, Q - F)$$
accepts $\overline{L_1}$

Closure Properties of Regular Languages

Proof (Cont.)

> Intersection

$$M_1 = (Q, \Sigma, \delta_1, q_0, F_1)$$

 $M_2 = (P, \Sigma, \delta_2, p_0, F_2)$

$$\widehat{M} = \left(\widehat{Q}, \Sigma, \widehat{\delta}, (q_0, p_0), \widehat{F}\right)$$

$$\widehat{Q} = Q \times P$$

$$\widehat{Q} = Q \times P$$

$$\widehat{\delta}\left(\left(q_{i},p_{j}\right),a\right)=\left(q_{k},p_{l}\right)$$

$$\delta_1\left(q_i,a\right) = q_k$$

$$\delta_2(p_i, a) = p_l.$$

 \widehat{F} is defined as the set of all (q_i, p_j) , such that $q_i \in F_1$ and $p_j \in F_2$