Повторные пределы

О. Пусть функция f(x, y) определена на множестве точек $0 < |x - x_0| < d_1$, $0 < |y - y_0| < d_2$ (прямоугольник с выброшенными границей и прямыми $x = x_0, y =$ y_0).

Пусть существует $f(x,y) = \varphi(y)$ — внутрен- $0 < |y - y_0| < d_2$

ний предел.

Тогда повторным пределом называется

$$\lim_{y \to y_0} \lim_{x \to x_0} f(x, y) = \lim_{y \to y_0} \varphi(y).$$

Аналогично определяется другой повторный предел $\lim_{x \to x_0 y \to y_0} f(x, y)$.

Пример 2 (Демидович № 3181). Для функции $f(x,y) = \frac{x-y}{x+y}$ найти предел и повторные пределы в точке O(0; 0).

$$D(f) = \mathbb{R}^2 \setminus \{(x, y) : x + y = 0\}.$$

Точка O(0;0) является предельной точкой области определения функции.

Пусть точка M(x, y) стремится к точке O(0; 0)вдоль оси Ох, тогда

$$\lim_{\substack{M \to 0 \\ M \in Ox}} f(M) = \lim_{\substack{x \to 0 \\ y = 0}} \frac{x - y}{x + y} = \lim_{x \to 0} \frac{x}{x} = 1.$$

Теперь пусть точка M(x, y) стремится к точке

$$O(0,0)$$
 вдоль оси Oy , тогда $\lim_{\substack{M \to O \ M \in Oy}} f(M) = \lim_{\substack{y \to 0 \ x = 0}} \frac{x - y}{x + y} = \lim_{y \to 0} \frac{-y}{y} = -1.$

Поскольку предел $\lim_{M\to 0} f(M)$ зависит от способа стремления точки M к точке O, то он не существует.

A повторные пределы существуют:
$$\liminf_{x\to 0}\frac{x-y}{x+y} = \lim_{x\to 0}\frac{x}{x} = 1, \qquad \liminf_{y\to 0}\frac{x-y}{x+y} = \lim_{y\to 0}\frac{-y}{y} = -1.$$

Ответ:
$$\lim_{x \to 0} \lim_{y \to 0} \frac{x - y}{x + y} = 1$$
, $\lim_{y \to 0} \lim_{x \to 0} \frac{x - y}{x + y} = -1$, $\lim_{x \to 0} \frac{x - y}{x + y}$ не существует.

Т. Если функция f(x,y) определена при $0<|x-x_0|< d_1$, $0<|y-y_0|< d_2$, существует $\lim_{x \to x_0} f(x, y)$ существуют внутренние пределы $y \rightarrow y_0$ y — фикс. $0 < |y - y_0| < d_2$

f(x,y), то существуют и повторные пределы $\lim_{y \to y_0} \lim_{x \to x_0} f(x,y)$, $\lim_{x \to x_0} \lim_{y \to y_0} f(x,y)$, и x — фикс. $0 < |x - x_0| < d_1$

оба они равны b.

Следствие. Если внутренние пределы существуют, а повторные не существуют или не равны друг другу, то $\lim_{x \to x_0} f(x, y)$ не существует.

В обратную сторону теорема неверна, т.е. из существования повторных пределов и их равенства между собой не следует существование $\lim_{x \to x_0} f(x, y)$, что показывает следую $y \rightarrow y_0$

щий пример.

Пример 3 (Демидович № 3182). Для функции $f(x,y) = \frac{x^2y^2}{x^2v^2+(x-v)^2}$ найти предел и повторные пределы в точке O(0;0).

$$D(f) = \mathbb{R}^2 \setminus O.$$

Точка O(0;0) является предельной точкой области определения функции.

$$\lim_{y \to 0} \lim_{x \to 0} \frac{x^2 y^2}{x^2 y^2 + (x - y)^2} = \lim_{y \to 0} \frac{0}{y^2} = 0.$$

$$\lim_{x \to 0} \lim_{y \to 0} \frac{x^2 y^2}{x^2 y^2 + (x - y)^2} = \lim_{x \to 0} \frac{0}{x^2} = 0.$$

Повторные пределы существуют и равны. Но из этого не следует, что существует $\lim_{M \to \infty} f(M)$.

Докажем, что он не существует.

Пусть точка
$$M(x,y)$$
 стремится к точке $O(0;0)$ вдоль прямой $x=y$:
$$\lim_{\substack{x\to 0\\y\to 0\\x=y}}\frac{x^2y^2}{x^2y^2+(x-y)^2}=\lim_{\substack{x\to 0\\x\to 0}}\frac{x^4}{x^4}=1.$$

Значит, если предел $\lim_{x\to 0} f(x,y)$ существует, то он равен 1 (поскольку при любом способе

стремления точки M(x, y) к точке O(0; 0) предел должен получаться один и тот же). Но тогда и повторные пределы должны быть равны 1 (из теоремы). Полученное противоречие доказывает, что предел $\lim_{x\to 0} f(x,y)$ не существует.

Ответ:
$$\lim_{y \to 0} \lim_{x \to 0} \frac{x^2 y^2}{x^2 y^2 + (x - y)^2} = \lim_{x \to 0} \lim_{y \to 0} \frac{x^2 y^2}{x^2 y^2 + (x - y)^2} = 0$$
, $\lim_{x \to 0} f(x, y)$ не существует.

Пусть функция f(M) определена на неограниченном множестве точек.

О. (предела функции f(M) при $M \to \infty$). Число b называется пределом функции f(M)при $M \to \infty$, если $\forall \varepsilon > 0 \ \exists R : \forall M \in D(f), \rho(M, O) > R \Rightarrow |f(M) - b| < \varepsilon$.

Обозначение:
$$\lim_{M\to\infty} f(M) = b$$
 или $\lim_{\substack{x_1\to\infty\\x_2\to\infty\\x_1\to\infty}} f(x_1,x_2,...,x_m) = b$.

Пример 4 (Демидович № 3183.3). Найти $\lim_{x\to\infty} x^2 e^{-(x^2-y)}$.

Пусть точка M(x, y) стремится к бесконечности вдоль прямой y = kx:

$$\lim_{\substack{x \to \infty \\ y \to \infty \\ y = kx}} x^2 e^{-(x^2 - y)} = \lim_{x \to \infty} x^2 e^{-(x^2 - kx)} = \lim_{x \to \infty} x^2 e^{-(x^2 - kx)} = \lim_{x \to \infty} e^{-(x^2 - kx)}$$

Вдоль любой прямой вида y = kx получается одинаковый предел. Но это ещё не значит, что предел $\lim_{x \to 0} x^2 e^{-(x^2-y)}$ существует.

Пусть точка M(x,y) стремится к бесконечности вдоль параболы $y=x^2$: $\lim_{\substack{x\to\infty\\y\to\infty}} x^2 e^{-(x^2-y)} = \lim_{\substack{x\to\infty\\y\to\infty}} x^2 = \infty.$

$$\lim_{\substack{x \to \infty \\ y \to \infty}} x^2 e^{-(x^2 - y)} = \lim_{x \to \infty} x^2 = \infty.$$

$$y = x^2$$

Значит, предел функции зависит от способа стремления точки M(x, y) к бесконечности, и поэтому предел не существует.

Ответ: предел не существует.

Пример 5 (МАВЗ гл. X № 12а). Доказать, что функция $f(x,y) = \frac{x^2}{|x|+|y|}$ — бесконечно малая в точке O(0;0), т.е. $\lim_{\substack{x\to 0\\y\to 0}} f(x,y) = 0$.

Функция определена везде, кроме точки O(0;0). Точка O(0;0) является предельной точкой области определения функции.

Первый способ. Справедливы оценки

$$0 \le \frac{x^2}{|x| + |y|} \le \frac{x^2}{|x|} = |x| \to 0$$
 при $x \to 0$ $\Rightarrow \lim_{\substack{x \to 0 \ y \to 0}} \frac{x^2}{|x| + |y|} = 0$

по теореме о двух полицейских, ч.т.д.

Второй способ. Перейдём к полярным координатам: $x=
ho\cos \varphi$, $y=
ho\sin \varphi$, тогда ho= $\sqrt{x^2+y^2} \to 0$, а угол φ изменяется произвольным образом: $\varphi=\varphi(\rho)$. Получим

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^2}{|x| + |y|} = \lim_{\substack{\rho \to 0 \\ \varphi = \varphi(\rho)}} \frac{\rho^2 \cos^2 \varphi}{\rho |\cos \varphi| + \rho |\sin \varphi|} = \lim_{\substack{\rho \to 0 \\ \varphi = \varphi(\rho)}} \left(\rho \cdot \underbrace{\frac{\cos^2 \varphi}{|\cos \varphi| + |\sin \varphi|}}_{g(\varphi)} \right).$$

Функция ρ является бесконечно малой при $\rho \to 0$, а функция $g(\varphi) = \frac{\cos^2 \varphi}{|\cos \varphi| + |\sin \varphi|}$ непрерывна на отрезке $\varphi \in [0; 2\pi]$ (т.к. знаменатель не обращается в нуль), а следовательно, ограничена на этом отрезке. А в силу её 2π -периодичности, функция $g(\varphi)$ ограничена на всей вещественной оси. Произведение бесконечно малой функции на ограниченную является бесконечно малой функцией, поэтому предел равен нулю, ч.т.д.

Пример 6 (МАВЗ гл. Х № 13а). Найти $\lim_{\substack{x \to 0 \\ y \to a}} \frac{\sin xy}{x}$.

$$\lim_{\substack{x\to 0\\y\to a}}\frac{\sin xy}{x}=\lim_{\substack{x\to 0\\y\to a}}\left(\frac{\sin xy}{xy}\cdot y\right)=\lim_{\substack{x\to 0\\y\to a}}\left(\frac{\sin xy}{xy}\right)\cdot\lim_{\substack{x\to 0\\y\to a}}(y)=1\cdot a=a.$$
 Пояснение:
$$\lim_{\substack{x\to 0\\y\to a}}\frac{\sin xy}{xy}=\lim_{t\to 0}\frac{\sin t}{t}=1,\text{ т.к. }t=xy\to 0.$$

Otbet: $\lim_{\substack{x \to 0 \\ y \to a}} \frac{\sin xy}{x} = a.$

Пример 7 (МАВЗ гл. X № 13г). Найти $\lim_{\substack{x \to \infty \\ y \to \infty}} \frac{ax + by}{x^2 + xy + y^2}$.

Перейдём к полярным координатам: $x=\rho\cos\varphi$, $y=\rho\sin\varphi$, тогда $\rho=\sqrt{x^2+y^2}\to\infty$, а

угол
$$\varphi$$
 изменяется произвольным образом: $\varphi = \varphi(\rho)$. Получим
$$\lim_{\substack{x \to \infty \\ y \to \infty}} \frac{ax + by}{x^2 + xy + y^2} = \lim_{\substack{\rho \to \infty \\ \varphi = \varphi(\rho)}} \frac{a\rho \cos \varphi + b\rho \sin \varphi}{\rho^2 \cos^2 \varphi + \rho^2 \cos \varphi \sin \varphi + \rho^2 \sin^2 \varphi} =$$

$$= \lim_{\substack{\rho \to \infty \\ \varphi = \varphi(\rho)}} \left(\frac{1}{\rho} \cdot \frac{a \cos \varphi + b \sin \varphi}{1 + \frac{\sin 2\varphi}{2}} \right).$$

Функция $g(\varphi)$ непрерывна на отрезке $\varphi \in [0; 2\pi]$ (т.к. знаменатель не обращается в нуль), поэтому она ограничена на нём. Поскольку функция $g(\varphi)$ является 2π -периодической, то она ограничена и на всей вещественной оси. Поэтому

$$\lim_{\substack{x \to \infty \\ y \to \infty}} \frac{ax + by}{x^2 + xy + y^2} = \lim_{\substack{\rho \to \infty \\ \varphi = \varphi(\rho)}} \left(\frac{1}{\varrho} \cdot \underbrace{g(\varphi)}_{\text{orp.}} \right) = 0.$$
Otbet:
$$\lim_{\substack{x \to \infty \\ y \to \infty}} \frac{ax + by}{x^2 + xy + y^2} = 0.$$

Пример 8 (МАВЗ гл. X № 14а). Доказать, что предел $\lim_{x\to 0} \frac{x^2 + xy + y^2}{x^2 - xy + y^2}$ не существует.

Функция определена везде, кроме точки O(0;0), которая является предельной точкой области определения функции.

Первый способ. Пусть точка M(x,y) стремится к точке O(0;0) вдоль прямой y=kx:

Первыи способ. Пусть точка
$$M(x)$$

$$\lim_{\substack{x\to 0\\y\to 0}} \frac{x^2 + xy + y^2}{x^2 - xy + y^2} = \lim_{\substack{x\to 0\\y=kx}} \frac{1 + k + k^2}{1 - k + k^2}.$$

Предел получается различный вдоль различных прямых, поэтому он не существует,

Второй способ. Перейдём к полярным координатам: $x=\rho\cos\varphi$, $y=\rho\sin\varphi$, тогда $\rho=$ $\sqrt{x^2+y^2} \to 0$, а угол φ изменяется произвольным образом: $\varphi=\varphi(\rho)$. Получим

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^2 + xy + y^2}{x^2 - xy + y^2} = \lim_{\substack{\rho \to 0 \\ \varphi = \varphi(\rho)}} \frac{\rho^2 \cos^2 \varphi + \rho^2 \cos \varphi \sin \varphi + \rho^2 \sin^2 \varphi}{\rho^2 \cos^2 \varphi - \rho^2 \cos \varphi \sin \varphi + \rho^2 \sin^2 \varphi} = \lim_{\substack{\rho \to 0 \\ \varphi = \varphi(\rho)}} \frac{1 + \frac{\sin 2\varphi}{2}}{1 - \frac{\sin 2\varphi}{2}}.$$
3.434444446 The field 3.334454T OT φ (The hard field by a field

Значение предела зависит от φ (при различных φ получаются различные значения), поэтому предел не существует, ч.т.д.

МАВЗ гл. Х № 12(б). Докажите, что функция $f(x,y) = \sin(x+y)\ln(x^2+y^2)$ является б.м. в точке O(0; 0).

Рассмотрим

$$\lim_{\substack{x \to 0 \\ y \to 0}} f(x, y) = \lim_{\substack{x \to 0 \\ y \to 0}} \sin(x + y) \ln(x^2 + y^2) = \lim_{\substack{x \to 0 \\ y \to 0}} \left(\frac{\sin(x + y)}{x + y} \cdot (x + y) \ln(x^2 + y^2) \right).$$

Вычислим

Вычислим
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{\sin(x+y)}{x+y} = \lim_{t \to 0} \frac{\sin t}{t} = 1.$$

Для того чтобы вычислить

$$\lim_{\substack{x \to 0 \\ y \to 0}} (x + y) \ln(x^2 + y^2),$$

перейдём к полярным координатам: $x=\rho\cos\varphi$, $y=\rho\sin\varphi$, $\rho\to0$, $\varphi=\varphi(\rho)$. Тогда $\lim_{x\to 0}(x+y)\ln(x^2+y^2) = \lim_{\rho\to 0} (\cos\varphi+\sin\varphi)\rho\ln\rho^2.$ $y\rightarrow 0$

Функция $\cos \varphi + \sin \varphi$ является ограниченной на любой области изменения φ . Докажем, что функция $\rho \ln \rho^2$ является б.м. при $\rho \to 0$:

$$\lim_{\rho \to 0} \rho \ln \rho^2 = \lim_{\rho \to 0} \frac{\ln \rho^2}{1/\rho} = \lim_{\rho \to 0} \frac{\frac{1}{\rho^2} \cdot 2\rho}{-1/\rho^2} = 0,$$

где предел вычислен с помощью правила Лопиталя.

Поскольку произведение ограниченной функции на б.м. является б.м. функцией, то $\lim (\cos \varphi + \sin \varphi) \rho \ln \rho^2 = 0.$

 $\varphi = \varphi(\rho)$

Тогда получаем, что

$$\lim_{\substack{x \to 0 \\ y \to 0}} f(x, y) = \lim_{\substack{x \to 0 \\ y \to 0}} \left(\underbrace{\frac{\sin(x + y)}{x + y}}_{\to 1} \cdot \underbrace{(x + y) \ln(x^2 + y^2)}_{\to 0} \right) = 0, \quad \text{ч. т. д.}$$

МАВЗ гл. X № 14(б). Докажите, что предел $\lim_{\substack{x\to 0\\y\to 0}} \frac{\ln(x+y)}{y}$ не существует.

Пусть точка M(x,y) стремится к точке O(0;0) вдоль прямой x=0. Тогда

$$\lim_{\substack{x=0\\y\to 0}} \frac{\ln(x+y)}{y} = \lim_{\substack{y\to 0}} \frac{\ln y}{y} = \frac{\infty}{0} = \infty,$$

откуда следует, что исходный предел не существует, ч.т.д.

МАВЗ гл. Х № 15.

- а) Докажите, что предел функции $f(x,y) = \frac{x^2y}{x^4+y^2}$ при стремлении точки M(x,y) к точке O(0;0) по любой прямой, проходящей через точку O(0;0), существует.
- б) Докажите, что предел функции $f(x,y) = \frac{x^2y}{x^4+y^2}$ в точке O(0;0) не существует.

а) Вычислим предел вдоль прямой вида y = kx:

$$\lim_{\substack{x \to 0 \\ y \to 0}} f(x, y) = \lim_{x \to 0} \frac{kx^3}{x^4 + k^2 x^2} = \lim_{x \to 0} \frac{kx}{x^2 + k^2} = \lim_{x \to 0} \frac{kx}{x^2 + k^2} = 0.$$

Вычислим предел вдоль прямой x=0:

$$\lim_{\substack{x=0\\y\to 0}} f(x,y) = \lim_{y\to 0} \frac{0}{y^2} = 0.$$

Таким образом, предел функции вдоль любой прямой, проходящей через точку O(0;0), существует и равен 0, ч.т.д.

б) Теперь пусть точка M(x,y) стремится к точке O(0;0) вдоль параболы $y=x^2$:

$$\lim_{\substack{x \to 0 \\ y \to 0}} f(x, y) = \lim_{x \to 0} \frac{x^4}{x^4 + x^4} = \frac{1}{2}.$$

$$y = x^2$$

Поскольку предел получился другой, то предел функции f(x,y) в точке O(0;0) не существует, ч.т.д.

МАВЗ гл. Х № 16(ж). Вычислите повторные пределы $\lim_{x \to +\infty} \lim_{y \to +0} \frac{x^y}{1+x^y}$ и $\lim_{y \to +0} \lim_{x \to +\infty} \frac{x^y}{1+x^y}$.

$$\lim_{x \to +\infty} \lim_{y \to +0} \frac{x^{y}}{1+x^{y}} = \lim_{x \to +\infty} \frac{1}{1+1} = \frac{1}{2}.$$

$$\lim_{y \to +0} \lim_{x \to +\infty} \frac{x^{y}}{1+x^{y}} = \lim_{y \to +0} \lim_{x \to +\infty} \frac{1}{x^{-y}+1} = \lim_{y \to +0} \frac{1}{0+1} = 1.$$

$$Omsem: \lim_{x \to +\infty} \lim_{y \to +0} \frac{x^{y}}{1+x^{y}} = \frac{1}{2}, \lim_{y \to +0} \lim_{x \to +\infty} \frac{x^{y}}{1+x^{y}} = \lim_{y \to +0} \frac{1}{0+1} = 1.$$

$$\lim_{x \to \infty} \lim_{y \to \infty} \sin \frac{\pi(x+y)}{2x+3y}.$$

$$\lim_{y \to \infty} \lim_{x \to \infty} \sin \frac{\pi(x+y)}{2x+3y} = \lim_{y \to \infty} \lim_{x \to \infty} \sin \frac{\pi\left(1+\frac{y}{x}\right)}{2+3\frac{y}{x}} = \lim_{y \to \infty} \sin \frac{\pi}{2} = 1.$$

$$\lim_{x \to \infty} \lim_{y \to \infty} \sin \frac{\pi(x+y)}{2x+3y} = \lim_{x \to \infty} \lim_{y \to \infty} \sin \frac{\pi\left(\frac{x}{y}+1\right)}{2\frac{x}{y}+3} = \lim_{x \to \infty} \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}.$$

Omeem:
$$\lim_{y \to \infty} \lim_{x \to \infty} \sin \frac{\pi(x+y)}{2x+3y} = 1$$
, $\lim_{x \to \infty} \lim_{y \to \infty} \sin \frac{\pi(x+y)}{2x+3y} = \frac{\sqrt{3}}{2}$.

МАВЗ гл. Х № 17(6). Существуют ли предел и повторные пределы в точке (1;0) функции $f(x,y) = \log_x(x+y)$?

Поскольку
$$f(x, y) = \frac{\ln(x+y)}{\ln x}$$
, то

$$\lim_{y \to 0} \lim_{x \to 1} f(x, y) = \lim_{y \to 0} \lim_{x \to 1} \frac{\ln(x + y)}{\ln x} = \lim_{y \to 0} \frac{\ln(1 + y)}{0} = \lim_{y \to 0} \infty = \infty,$$

$$\lim_{x \to 1} \lim_{y \to 0} f(x, y) = \lim_{x \to 1} \lim_{y \to 0} \frac{\ln (x + y)}{\ln x} = \lim_{x \to 1} \frac{\ln x}{\ln x} = 1.$$

Теперь рассмотрим

$$\lim_{\substack{x \to 1 \\ y \to 0}} f(x, y) = \lim_{\substack{x \to 1 \\ y \to 0}} \frac{\ln(x + y)}{\ln x}.$$

Если точка M(x, y) стремится к точке (1; 0) вдоль оси Ox, то получим

$$\lim_{\substack{x \to 1 \\ y = 0}} \frac{\ln(x + y)}{\ln x} = \lim_{\substack{x \to 1}} \frac{\ln x}{\ln x} = 1.$$

Если же точка M(x,y) стремится к точке (1;0) вдоль прямой y=1-x, то получим

вдоль прямой
$$y = 1 - x$$
, то получим
$$\lim_{\substack{x \to 1 \\ y \to 0}} \frac{\ln(x+y)}{\ln x} = \lim_{x \to 1} \frac{\ln 1}{\ln x} = 0.$$

Поскольку вдоль разных траекторий предел получился разным, то он не существует.

$$\mathit{Omsem:} \lim_{y \to 0} \lim_{x \to 1} \log_x(x+y) = \infty$$
, $\lim_{x \to 1} \lim_{y \to 0} \log_x(x+y) = 1$, $\lim_{x \to 1} \log_x(x+y)$ не существует.