MATH 425A HW7, OCT. 12, 6PM

1. Chapter 4.

Chapter 4 §1.2: Exercise 1.8.

Let (X,d) be a metric space, and let E be a subset of X. Prove that $\operatorname{Lim}_X(E)$ is a closed set of X.

Proof. Our strategy is to show that $\operatorname{Lim}_X(\operatorname{Lim}_X(E)) \subseteq \operatorname{Lim}_X(E)$. Take $x \in \operatorname{Lim}_X(\operatorname{Lim}_X(E))$. Then we have that $\operatorname{Lim}_X(E) \cap B_X(x,\frac{\epsilon}{2}) \neq \emptyset$ and let ℓ be this intersection. Then $d(x,\ell) < \epsilon/2$ and $\ell \in \operatorname{Lim}_X(E)$. So then $E \cap B_X(\ell,d(x,\ell)) \setminus \{\ell\} \neq \emptyset$ and take p to be in this intersection. And thus $d(x,p) \leq d(p,\ell) + d(\ell,x) < d(x,\ell) + d(x,\ell) = 2d(x,\ell) < 2(\frac{\epsilon}{2}) = \epsilon$ as $p \in B_X(\ell,d(x,\ell))$ and $\ell \in B_X(x,\frac{\epsilon}{2})$. Now $p \neq x$ as $d(p,\ell) < d(x,\ell)$. So thus $p \in E \cap B_X(x,\epsilon) \setminus \{x\}$. Hence $x \in \operatorname{Lim}_X(E)$ and we can conclude the claim of the exercise.

Chapter 4 §1.2: Exercise 1.9.

Let (X,d) be a metric space, and let E be a subset of X. Prove that $X \setminus \operatorname{Cl}_X(E) = \operatorname{Int}_X(X \setminus E)$

Proof. (⊇) Note that $\operatorname{Int}_X(X \setminus E) \subseteq X \setminus E$, and also $E = X \setminus (X \setminus E) \subseteq X \setminus \operatorname{Int}_X(X \setminus E)$. Thus $X \setminus \operatorname{Int}_X(X \setminus E)$ is a closed set that contains E, which means that $\operatorname{Cl}_X(E) \subseteq X \setminus \operatorname{Int}_X(X \setminus A)$ and so $X \setminus (X \setminus \operatorname{Int}_X(X \setminus A)) = \operatorname{Int}_X(X \setminus A) \subseteq X \setminus \operatorname{Cl}_X(E)$. Hence we have the backwards inclusion. (⊆) As $E \subseteq \operatorname{Cl}_X(E)$, then we have that $X \setminus \operatorname{Cl}_X(E) \subseteq E$. And as $\operatorname{Cl}_X(E)$ is a closed set, then we have an open set $X \setminus \operatorname{Cl}_X(E)$ contained in E.

Chapter 4 §1.2: Exercise 1.10.

Let (X,d) be a metric space. Let E and Y be subsets of X such that $E\subseteq Y$. Prove that

$$\mathrm{Cl}_Y(E) = \mathrm{Cl}_X(E) \cap Y.$$

Proof. (⊆) Suppose $p \in \operatorname{Cl}_Y(E)$. Then $p \in \operatorname{Lim}_Y(E) \cup E$. If $p \in E$, then $p \in \operatorname{Cl}_X(E) = \operatorname{Lim}_X(E) \cup E$, as $p \in E$, and as $E \subseteq Y$ we also have $p \in Y$. Thus $p \in \operatorname{Cl}_X(E) \cap Y$. On the other hand, if $p \in \operatorname{Lim}_Y(E)$, then we have that $p \in Y$ such that for any open neighborhood $p \in V$ of Y such that $E \setminus \{p\} \cap Y \neq \emptyset$. As V is open in Y and $Y \subseteq X$, then $V = U \cap Y$ for some open set U of X. But as $U \cap Y \subseteq U$, then $p \in U$ and U is an open neighborhood of p such that $U \cap E \setminus \{p\}$. Therefore $p \in \operatorname{Lim}_X(E)$, and hence $p \in \operatorname{Cl}_X(E) \cap Y$. The forward inclusion follows from these two cases.

(⊇) Suppose that $\ell \in \operatorname{Cl}_X(E) \cap Y$. Then $\ell \in \operatorname{Lim}_X(E) \cup E$ and $\ell \in Y$. If $\ell \in E$, then $\ell \in \operatorname{Cl}_Y(E) = \operatorname{Lim}_Y(E) \cup E$, as $\ell \in E$. On the other hand, let $\ell \in \operatorname{Lim}_X(E)$. Then $\ell \in X$ and for any open neighborhood $\ell \in W$ of X we have $W \cap E \setminus \{\ell\} \neq \emptyset$. As W is open in X, then $L = W \cap Y$ is open in Y. But as ℓ in both Y and W then L is an open neighborhood of ℓ in X. Lastly, as $L = W \cap Y \subseteq W$, then $L \cap E \setminus \{\ell\} \neq \emptyset$. Therefore $\ell \in \operatorname{Cl}_Y(E)$. Hence the backwards inclusion follows. □

Date: October 3, 2022

Chapter 4 §1.2: Exercise 1.14.

Let (X, d) be a metric space.

- (a) Prove that for any $x \in X$ and r > 0, we have $\overline{B_X(x,r)} \subseteq \{y \in X : d(x,y) \le r\}$. Note that the inclusion $\overline{B_X(x,r)} \subseteq B_X(x,r+\epsilon)$ follows for any $\epsilon > 0$.
- (b) Give an example using the discrete metric that demonstrates that equality need not hold in the inclusion $\overline{B_X(x,r)} \subseteq \{y \in X : d(x,y) \le r\}$ that you proved in part (a)
- (c) Prove that in \mathbb{R}^n under the Euclidean metric d(x,y) = ||x-y||, we have $\overline{B_{\mathbb{R}^n}(x,r)} = \{y \in \mathbb{R}^n : ||x-y|| \le r\}$.
- (d) Using part (a), prove that if A is bounded in (X,d), then \overline{A} is also bounded in (X,d).
- *Proof.* (a) Let $x \in X$ and r > 0. Then by Remark 1.18 in the course notes, if $p \in \overline{B_X(x,r)}$ if and only if for any $\epsilon > 0$ we have that $B_X(x,r) \cap B_X(p,\epsilon) \neq \emptyset$. By contrapositive suppose d(x,y) > r. Now consider $\epsilon = d(x,y) r > 0$. So then $B_X(x,r) \cap B_X(p,d(x,y) r) = \emptyset$. Thus we have that $p \notin \overline{B_X(x,r)}$.
- (b) Consider $\mathbb{R}_{\mathrm{disc}}$ with the discrete metric $d_{\mathrm{disc}}(x,y)=0$ if x=y in \mathbb{R} or 1 if $x\neq y$. Now consider $S=\{y\in\mathbb{R}\colon d_{\mathrm{disc}}(3,y)\leq 1\}$. WLOG, consider $\ell\in S$ such that $\ell\neq 3$. Then $d_{\mathrm{disc}}(3,\ell)=0\leq 1$. So then clearly $\ell\notin B_{\mathbb{R}}(3,1)=\{3\}$. Now we claim that $\ell\notin \mathrm{Lim}_{\mathbb{R}}(B_{\mathbb{R}}(3,1))$. This is simple as $\mathrm{Lim}_{\mathbb{R}}(B_{\mathbb{R}}(3,1))=\mathrm{Lim}_{\mathbb{R}}(\{3\})$. Now suppose that $\ell\in\mathrm{Lim}_{\mathbb{R}}(\{3\})$. Then this would mean that $B_{\mathbb{R}}(\ell,1)\cap(\{3\}\setminus\{\ell\})$ intersect as $B_{\mathbb{R}}(\ell,1)$ is an open neighborhood of ℓ . So then if $p\in B_{\mathbb{R}}(\ell,1)=\{\ell\}$ (i.e. $p=\ell$) and $p\in\{3\}\setminus\{\ell\}$ (i.e. p=3 and $p\neq\ell$), then we have a contradiction. Therefore the equality in part (a) need not hold.
- (c) The forward inclusion follows from part (a). Thus is remains to show the backwards inclusion: It suffices to show that that if we take $p \in \{y \in X : d(x,y) = r\}$. But $B_X(x,r) \subseteq \overline{B_X(x,r)} \subseteq \{y \in X : d(x,y) \le r\}$.
- (d) Suppose A is bounded in X, i.e. we have $A \subseteq B_X(x, \epsilon)$, which is to say that $d(x, q) < \epsilon$ for all $q \in A$. So then for any $a \in \overline{A}$ we have that we have that $B_1(a, 1)$ intersects with A; let t be a point in this intersection. Then $d(a, x) \le d(a, t) + d(t, x) < 1 + \epsilon$. Therefore we are done.

Exercise 1.15.

Let (X, d) be a metric space.

- (a) If X is totally bounded, then it is bounded.
- (b) If $Y \subseteq X$, then (Y, d) is totally bounded if and only if for any $\epsilon > 0$, there exists $a_1, \ldots, a_J \in X$ such that $Y \subseteq \bigcup_{j=1}^J B_X(a_j, \epsilon)$.
- (c) If X is totally bounded and $Y \subseteq X$, then Y is totally bounded.
- (d) If $Y \subseteq X$ and (Y, d) is totally bounded, then (\overline{Y}, d) is totally bounded.
- Proof. (a) Suppose X is totally bounded. Then $X = \bigcup_{j=1}^n B_X(x_j, \epsilon)$, and let $\epsilon = 1$ and $x, y \in X$. So $x \in B_X(x_j, 1)$ and $y \in B_X(x_i, 1)$ for some $1 \le j, i \le n$. Then $d(x, x_j) < 1$ and $d(x_i, y) < 1$. Write $\ell = \max_{1 \le i, j \le n} \{d(x_i, x_j)\}$. So then $d(x, y) \le d(x, x_j) + d(x_j, x_i) + d(x_i, y) \le 2 + \ell$. Hence $\operatorname{diam}(\bigcup_{j=1}^n B_X(x_j, \epsilon)) = \operatorname{diam}(X) \le 2 + \ell$, and thus we can conclude that X is bounded.
- (b) Suppose $Y \subseteq X$. (\Rightarrow) Assume that (Y,d) is totally bounded, i.e. $Y = \bigcup_{j=1}^n B_Y(y_j,\epsilon)$ for all $\epsilon > 0$. Each open ball $B_Y(y_j,\epsilon)$ is open in Y so it can be written as $B_X(a_i,\epsilon) \cap Y$, so then $Y = \bigcup_{j=1}^J B_X(a_j,\epsilon) \cap Y = \bigcup_{j=1}^J B_X(a_j,\epsilon) \cap Y$. So then clearly $Y \subseteq \bigcup_{j=1}^J B_X(a_i,\epsilon)$. (\Leftarrow) Suppose that for any $\epsilon > 0$ there exists $a_1, \ldots, a_j \in X$ such that $Y \subseteq \bigcup_{j=1}^J B_X(a_j,\epsilon)$. Then for every open ball $B_X(a_j,\epsilon)$, we consider $B_X(a_j,\epsilon) \cap Y$ but then this just $B_Y(a_j,\epsilon)$. So then $Y = \bigcup_{j=1}^n B_Y(a_j,\epsilon)$ is clear.
- (c) Let X be totally bounded and let $Y \subseteq X$. Then $X = \bigcup_{j=1}^n B_X(x_i, 1)$. Then, for each 1-ball open in X, we have open 1-balls of Y where $B_Y(x_\alpha, 1) = B_X(x_\alpha, 1) \cap Y \subseteq X$ with $1 \le \alpha \le n$. So then $X \cap Y = \bigcup_{j=1}^n B_X(x_i, 1) \cap Y = \bigcup_{i=1}^k B_Y(x_k, 1)$, but as $Y \subseteq X$, then $X \cap Y = Y$, so then $Y = \bigcup_{k=1}^n B_Y(x_j, 1)$.
- (d) Suppose $Y \subseteq X$ and let Y be totally bounded. Take $\epsilon > 0$. So then we have that $Y = \bigcup_{i=1}^n B_X(x_i, \epsilon/2)$. Now take $y \in \overline{Y}$. Then, by Remark 1.18, we have that $B_X(y, \epsilon/2)$ and Y intersect. Now let $p \in B_X(y, \epsilon/2) \cap Y$. Then we have that $p \in B_X(x_\alpha, \epsilon/2)$ for some $1 \le \alpha \le n$ as $Y = \bigcup_{i=1}^n B_X(x_i, \epsilon/2)$. So then $d(x_\alpha, y) \le d(x_\alpha, p) + d(p, y) < \epsilon/2 + \epsilon/2 = \epsilon$. Hence we have that $d(x_\alpha, y) < \epsilon$ so we have that $y \in B_X(x_\alpha, \epsilon/2) \subseteq \bigcup_{i=1}^n B_X(x_i, \epsilon/2)$. Hence \overline{Y} is totally bounded. \square

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTHERN CALIFORNIA, LOS ANGELES, CA 90007