Задача об эпидемии

ФИО: Жукова Виктория Юрьевна

Группа: НКНбд-01-19

Студ. билет: 1032196000

Прагматика

Для моделирования хода эпидемии

Цель

Рассмотреть задачу об эпидемии, сделать программу для получения графиков течения эпидемии

Задача

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=17 000) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0)=117, А число здоровых людей с иммунитетом к болезни R(0)=17. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0)=N-I(0)-R(0).

Постройте графики изменения числа особей в каждой из трех групп. Рассмотрите, как будет протекать эпидемия в случае:

- 1. если $I(0) \leq I^*$
- 2. если $I(0)>I^st$

Теоретическое введение

Будем считать, что если число заболевших не превышает критического значения I^* , то все больные изолированы и не заражают здоровых. Когда $I(0) > I^*$, тогда инфицирование способны заражать восприимчивых к болезни особей.

Результаты. Случай $I(0) \leq I^*$. Код

```
model lab6_1
constant Real a=0.01;
constant Real b=0.02;
constant Real N=17000;
Real I;
Real R;
Real S;
initial equation
I=117;
R=17;
S=16866;
equation
der(S)=0;
der(I)=-b*I;
der(R)=b*I;
end lab6_1;
```

Результаты. Случай $I(0) \leq I^*$. График

Результаты. Случай $I(0)>I^st.$ Код

```
model lab6 2
constant Real a=0.01;
constant Real b=0.02;
constant Real N=17000;
Real I;
Real R;
Real S;
initial equation
I=117;
R=17;
S=16866;
equation
der(S)=-a*S;
der(I)=a*S-b*I;
der(R)=b*I;
end lab6_2;
```

Результаты. Случай $I(0)>I^st$. График

Выводы

- 1. В первом случае с течением времени количество выздоровливающих и приобретающих иммунитет особей растет, а количество болеющих распространителей уменьшается.
- 2. Во втором случае, восприимчивые к болезни, но пока здоровые особи уменьшаются на протяжении всей эпидемии, количество заболевших и заразных особей увелчивается в первой трети эксперемента и затем медленно уменьшается, а количество людей с иммунитетом постоянно растет.
- 3. Рассмотрела задачу об эпидемии.
- 4. Построила графики и проанализировала результаты.