

Processing tables with Python

Till Korten

With materials from

Marcelo L. Zoccoler, Robert Haase, Pol – TU Dresden

Pandas

• pandas is a library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language.

conda install pandas

Pandas is very useful for processing 2D tables

- Typical use-case:
 - You get data from a colleague in form of a table
 - You get a table as output of a function and save it to disk
 - Using pandas, you can analyze it in python.
- Loading a table in python using pandas:

```
import pandas as pd

data_frame = pd.read_csv("Measurements_ImageJ.csv", delimiter=',')

data_frame
```

		Area	Mean	Circ.	AR	Round	Solidity
0	1	2610	96.920	0.773	1.289	0.776	1.0
1	2	2100	90.114	0.660	2.333	0.429	1.0
2	3	27	110.222	0.108	27.000	0.037	1.0

Display just the 5 first rows of a table:

Display just the 5 last rows of a table:

Creating pandas tables from Python data

from a list of lists

from a nupy array

```
import numpy as np
  data = np.random.random((4,3))
  pd.DataFrame(data, row_header)
   0.2s
                  0
                             1
           0.564022
                      0.271416
                                0.539888
    labels
           0.686078
                     0.836249
                                0.784269
minor_axis
           0.907028
                     0.773920
                                0.097580
           0.186222
major_axis
                      0.228141
                                0.289165
```

from a dictionary

```
measurements = {
    "labels": [1, 2, 3],
    "area": [45, 23, 68],
    "minor_axis": [2, 4, 4],
    "major_axis": [3, 4, 5],
}

pd.DataFrame(measurements)

$\square$ 0.2s
```

	labels	area	minor_axis	major_axis
0	1	45	2	3
1	2	23	4	4
2	3	68	4	5

labels

3

5

minor_axis major_axis

Saving pandas tables to disk

save a dataframe to a CSV data_frame.to_csv("output.csv")

Selecting pandas table columns

		Area	Mean	Circ.	AR	Round	Solidity
0	1	2610	96.920	0.773	1.289	0.776	1.0
1	2	2100	90.114	0.660	2.333	0.429	1.0
2	3	27	110.222	0.108	27.000	0.037	1.0

How to select the column "Area"?

data_frame['Area']

data_frame[:][0]

data_frame.iloc[:,1]

data_frame.loc[:,1]

Selecting multiple columns

	City	Country	Population	Area_km2
0	Tokyo	Japan	13515271	2191
1	Delhi	India	16753235	1484
2	Shanghai	China	24183000	6341
3	Sao Paulo	Brazil	12252023	1521
4	Mexico City	Mexico	9209944	1485

M	<pre>cities[['City',</pre>	'Country']]
---	----------------------------	-------------

	City	Country
0	Tokyo	Japan
1	Delhi	India
2	Shanghai	China
3	Sao Paulo	Brazil
4	Mexico City	Mexico

Accessing pandas table rows

		Area	Mean	Circ.	AR	Round	Solidity
0	1	2610	96.920	0.773	1.289	0.776	1.0
1	2	2100	90.114	0.660	2.333	0.429	1.0
2	3	27	110.222	0.108	27.000	0.037	1.0

• How to select the first row?

data_frame[0,:]

data_frame[:][0]

data_frame.iloc[0,:]

data_frame.loc[0,:]

Selecting individual cells in pandas tables

		Area	Mean	Circ.	AR	Round	Solidity
0	1	2610	96.920	0.773	1.289	0.776	1.0
1	2	2100	90.114	0.660	2.333	0.429	1.0
2	3	27	110.222	0.108	27.000	0.037	1.0

data_frame["Mean"][0]

data_frame.loc[0, "Mean"]

data_frame.iloc[0, 2]

Selecting individual cells in pandas tables

		Area	Mean	Circ.	AR	Round	Solidity
0	1	2610	96.920	0.773	1.289	0.776	1.0
1	2	2100	90.114	0.660	2.333	0.429	1.0
2	3	27	110.222	0.108	27.000	0.037	1.0

Accessing a column

```
M data_frame["Mean"]

0    96.920
1    90.114
2    110.222
Name: Mean, dtype: float64
```

Determining mean of a column

```
import numpy as np
np.mean(data_frame["Mean"])

99.08533333333333
```


Selecting rows that fulfill criteria

Select citis with an area of more than 2000 km²

	City	Country	Population	Area_km2
0	Tokyo	Japan	13515271	2191
1	Delhi	India	16753235	1484
2	Shanghai	China	24183000	6341
3	Sao Paulo	Brazil	12252023	1521
4	Mexico City	Mexico	9209944	1485

cities['Area	km2']	>	2000
_	_	_		

0 True
1 False
2 True
3 False
4 False

Name: Area_km2, dtype: bool

	City	Country	Population	Area_km2
0	Tokyo	Japan	13515271	2191
2	Shanghai	China	24183000	6341

Combining similar tables

• The big art in data science is the ability of combining information from multiple

sources to gain new insights.

If tables have the same columns

<pre>countries1['Survey</pre>	ID']	= 26
countries1		

	Country	Population	Survey ID
0	Japan	127202192	26
1	India	1352642280	26
2	China	1427647786	26

Country	Population	Survey I
countries2[countries2	'Survey ID'] = 73

	Country	Population	Survey ID
0	Brazil	209489323	73
1	Mexico	126190788	73

Country		Population	Survey ID	
0	Japan	127202192	26	
1	India	1352642280	26	
2	China	1427647786	26	
0	Brazil	209489323	73	
1	Mexico	126190788	73	

	Country	Population	
0	Japan	127202192	
1	India	1352642280	
2	China	1427647786	

countries1

	Country	Population
0	Japan	127202192
1	India	1352642280
2	China	1427647786
0	Brazil	209489323
1	Mexico	126190788

Combining different tables

• The big art in data science is the ability of combining information from multiple sources to gain new insights.

Japan	127202192
India	1352642280
China	1427647786
Brazil	209469323
Mexico	126190788
1	
	ries.merge(c
	Brazil Mexico

	Country	Population_country	City	Population_city	Area_km2
0	Japan	127202192	Tokyo	13515271	2191
1	India	1352642280	Delhi	16753235	1484
2	China	1427647786	Shanghai	24183000	6341
3	Brazil	209469323	Sao Paulo	12252023	1521
4	Mexico	126190788	Mexico City	9209944	1485

```
# compute ratio
combined['City_Country_population_ratio'] = combined['Population_city'] / combined['Population_country']
# only show selected columns
combined[['City', 'City_Country_population_ratio']]
```

	City	City_Country_population_ratio
0	Tokyo	0.106250
1	Delhi	0.012386
2	Shanghai	0.016939
3	Sao Paulo	0.058491
4	Mexico City	0.072984

Handling NaNs

- Sometimes tables may contains NaNs (Not a Number). These values may come from missing experimental data or from missing data when merging tables.
- They can introduce errors to calculations with tables.
- The easiest way to drop them is to use the ".dropna" method. This will drop any rows that contain NaN.

```
data_no_nan = data.dropna(how="any")
data_no_nan
```

• But be careful, do not drop NaNs carelessly. Try to investigate first why they are there. Also, you may accidentally discard useful data from other columns.

Always work with tidy-data

- Tidy data frames follow the rules:
 - Each variable is a column.
 - Each observation is a row.
 - Each type of observation has its own separate data frame.

df['intensity_mean'] > 200

Which of these data is tidy?

		Before		After
	channel_1	channel_2	channel_1	channel_2
0	13.250000	21.000000	15.137984	42.022776
1	44.954545	24.318182	43.328836	48.661610
2	13.590909	18.772727	11.685995	37.926184
3	85.032258	19.741935	86.031461	40.396353

df['inten	sity	mean	'1	> 200
-----	--------	------	------	----	-------

	time	label	intensity_mean	area
0	0	1	233.5	20
1	0	2	403.0	40
2	0	3	255.3	30
3	1	1	244.5	20
4	1	2	402.0	40
5	1	3	256.7	30
6	2	1	278.9	20
7	2	2	401.2	40
8	2	3	255.1	30

Tidy-Data

- Tidy data frames follow the rules:
 - Each variable is a column.
 - Each observation is a row.
 - Each type of observation has its own separate data frame.

Using pd.melt may help tidying data

		Before	Afte		
	channel_1	channel_2	channel_1	channel_2	
0	13.250000	21.000000	15.137984	42.022776	
1	44.954545	24.318182	43.328836	48.661610	
2	13.590909	18.772727	11.685995	37.926184	
3	85.032258	19.741935	86.031461	40.396353	

df.melt()					
	variable_0	variable_1	value		
0	Before	channel_1	13.250000		
1	Before	channel_1	44.954545		
2	Before	channel_1	13.590909		
3	Before	channel_1	85.032258		
4	Before	channel_1	10.731707		
99	After	channel_2	73.286439		
100	After	channel_2	145.900739		

Common workflow: Split-Apply-Combine

	area	intensity_mean	major_axis_length	minor_axis_length	aspect_ratio	file_name	round
0	139	96.546763	17.504104	10.292770	1.700621	20P1_POS0010_D_1UL	False
1	360	86.613889	35.746808	14.983124	2.385805	20P1_POS0010_D_1UL	False
2	43	91.488372	12.967884	4.351573	2.980045	20P1_POS0010_D_1UL	False
3	140	73.742857	18.940508	10.314404	1.836316	20P1_POS0010_D_1UL	False
4	144	89.375000	13.639308	13.458532	1.013432	20P1_POS0010_D_1UL	True

- compute the median "intensity_mean"
- of round objects

grouped = df.groupby('round')

Apply (calculate median):

df_median = grouped.median()

Combine

	df_	_median.	reset_	_index()
--	-----	----------	--------	----------

	round	area	intensity_mean	major_axis_length	minor_axis_length	aspect_ratio
0	False	270.0	92.788345	21.459495	15.858324	1.412849
1	True	291.0	100.256000	20.155547	18.352287	1.101700

