

IEL – protokol k projektu

Filip Novák xnovakf00

 $8.\ decembra\ 2023$

Obsah

1	Příl	klad 1	4
	1.1	Zjednodušovanie obvodu	5
		1.1.1	5
		1.1.2	5
		1.1.3	6
		1.1.4	6
		1.1.5	7
		1.1.6	7
	1.2	Spätné skladanie obvodu	8
	1.2	1.2.1	8
		1.2.2	8
		1.2.3	9
		1.2.4	10
			11
		1.2.0	
2	Příl	klad 2	12
	2.1	Určenie R_i medzi A a B	13
		2.1.1	13
		2.1.2	13
		2.1.3	14
		2.1.4	14
		2.1.5	15
	2.2	$\mathbf{V\acute{y}po\check{c}et}\ U_i$	15
		2.2.1	15
		2.2.2	16
		2.2.3	16
		2.2.4	17
		$2.2.5 \qquad \dots $	18
	2.3	Výpočet hľadaných hodnôt	18
3	Děíl	klad 3	19
J	3.1		19
	$3.1 \\ 3.2$	- v	20
	$\frac{3.2}{3.3}$		21
	3.4	Výpočet hodnoty U_C pomocou Crammerovho pravidla	22
	$3.4 \\ 3.5$	v	23
	5.5	Thanly vypocci O_{R_4} a I_{R_4}	20
4	Příl	klad 4	24
	4.1	Doplnenie vyznačení slučkových prúdov do obvodu	24
	4.2	Vyjadrenie impedancií súčiastok	25
	4.3	Vyjadrenie rovníc pre slučky	25
	4.4	Výpočet I_B a I_C	25
	4.5	Určenie hľadaných hodnôt	26
_	.		
5			27
	5.1	· · · · · · · · · · · · · · · · · · ·	27
	5.2	·	28
	5.3	·	28
	5.4	Skúška správnosti	29

6 Shrnutí výsledků

Příklad 1

Stanovte napětí U_{R2} a proud I_{R2} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
\mathbf{E}	115	55	485	660	100	340	575	815	255	225

Pre výpočet U_{R_2} a I_{R_2} na rezistore R_2 potrebujeme celý komplikovaný obvod previesť na obvod s $R_{\rm EKV}$ a U. Následným spätným skladaním vypočítame hľadané hodnoty.

Obr. 1: Hľadaný obvod

Zjednodušovanie obvodu

1.1.1 Zdroje v zadaní sú zapojené sériovo, preto, aby sme dostali spoločné napätie, sčítame U_1 a U_2 .

$$U = U_1 + U_2 = 115 + 55 = 170V$$

Obr. 2: 1.1.1

 ${\bf 1.1.2}$ Rezistory R_5 a R_6 sú zapojené paralelne. R_7 a R_8 sériovo. Spojíme ich.

$$R_{56} = \frac{R_5 \cdot R_6}{R_5 + R_6} = \frac{575 \cdot 815}{575 + 815} = \frac{93725}{278} \,\Omega$$

$$R_{78} = R_7 + R_8 = 225 + 255 = 480\Omega$$

Obr. 3: 1.1.2

 ${\bf 1.1.3}$ Rezistory $R_1,\ R_2$ a R_3 sú v zapojení trojuholník. Prevedieme ich na zapojenie hviezda.

$$R_A = \frac{R_1 \cdot R_2}{R_1 + R_2 + R_3} = \frac{485 \cdot 660}{485 + 660 + 100} = \frac{21340}{83} \Omega$$

$$R_B = \frac{R_1 \cdot R_3}{R_1 + R_2 + R_3} = \frac{485 \cdot 100}{485 + 660 + 100} = \frac{9700}{249} \Omega$$

$$R_C = \frac{R_2 \cdot R_3}{R_1 + R_2 + R_3} = \frac{660 \cdot 100}{485 + 660 + 100} = \frac{4400}{83} \Omega$$

Obr. 4: 1.1.3

1.1.4 Rezistory R_B a R_{56} sú zapojené v sérii. R_C a R_4 s sú tiež zapojené v sérii. Spojíme ich.

$$R_{B56} = R_B + R_{56} = \frac{9700}{249} + \frac{93725}{278} = \frac{26034125}{69222} \Omega$$
$$R_{C4} = R_C + R_4 = \frac{4400}{83} + 340 = \frac{32620}{83} \Omega$$

Obr. 5: 1.1.4

 ${\bf 1.1.5}$ Rezistory R_{B56} a R_{C4} sú zapojené paralelne. Spojíme ich.

$$R_{B56C4} = \frac{R_{B56} \cdot R_{C4}}{R_{B56} + R_{C4}} = \frac{169846631500}{883770803} \Omega$$

Obr. 6: 1.1.5

 ${\bf 1.1.6}$ Rezistory $R_A,\,R_{B56C4},$ a R_{78} sú zapojené sériovo. Spojíme ich.

$$R_{EKV} = R_A + R_{B56C4} + R_{78} = \frac{9894958360}{10647841} \Omega$$

Obr. 7: 1.1.6

Spätné skladanie obvodu

1.2.1 Pomocou Ohmovho zákona si môžme vypočítať celkový prúd prechádzajúci obvodom.

$$I = \frac{U}{R_{EKV}} = \frac{170}{\frac{9894958360}{10647841}} = \frac{181013297}{989495836} A$$

Obr. 8: 1.2.1

 ${\bf 1.2.2}$ Skladáme obvod spätne. Pomocou Ohmovho zákona si vypočítame $U_{R_{78}}$ a $U_{R_{B56C4}}$.

$$U_{R_{78}} = I \cdot R_{78} = \frac{21721595640}{247373959} V$$

$$U_{R_{B56C4}} = I \cdot R_{B56C4} = \frac{103121169125}{2933148371} V$$

Obr. 9: 1.2.2

1.2.3 $U_{R_{B56C4}}$ vzniklo paralelným spojením $U_{R_{C4}}$ a $U_{R_{B56}}$. Preto:

$$U_{R_{B56C4}} = U_{R_{C4}} = U_{R_{B56}} = \frac{103121169125}{2933148371}V$$

 ${\cal I}_{R_{C4}}$ vypočítame pomocou Ohmovho zákona.

$$I_{R_{C4}} = \frac{U_{R_{C4}}}{R_{C4}} = \frac{88516025}{989495836}A$$

Obr. 10: 1.2.3

1.2.4 V jednej slučke môže byť len jeden prúd.

Preto:

$$I_{R_{C4}} = I_{R_C} = I_{R_4} = \frac{88516025}{989495836}A$$

Pre výpočet U_{R_4} použijeme Ohmov zákon.

$$U_{R_4} = I_{R_4} \cdot R_4 = \frac{7523862125}{247373959} V$$

Obr. 11: 1.2.4

 ${\bf 1.2.5}$ V poslednom kroku si U_{R_2} vyjadríme pomocou 2. Kirchhofovho zákona.

$$U_{R_2} = U - U_{R_4} - U_{R_{78}} = \frac{12808115265}{247373959} = 51.7763281V$$

Na výpočet ${\cal I}_{R_2}$ použijeme Ohmov zákon.

$$I_{R_2} = \frac{U_{R_2}}{R_2} = \frac{77624941}{989495836} = 0.07844898197A = 78.448982mA$$

Obr. 12: 1.2.5

Příklad 2

Stanovte napětí U_{R6} a proud I_{R6} . Použijte metodu Théveninovy věty.

sk.	U [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$
В	100	50	310	610	220	570	100

Pre výpočet U_{R_6} a I_{R_6} metódou Théveninovej vety si potrebujeme niekoľkými krokmi upraviť obvod zo zadania na obvod, ktorý obsahuje U_i , R_i a R_6 .

Obr. 13: Hľadaný obvod

Určenie R_i medzi A a B

 ${\bf 2.1.1}$ Rezistor R_6 nahradíme svorkami A a B a zdroj napätia odpojíme.

Obr. 14: 2.1.1

 ${\bf 2.1.2}$ Rezistory R_2 a R_3 sú zapojené v sérii, spojíme ich.

Obr. 15: 2.1.2

$$R_{23} = R_2 + R_3 = 310 + 610 = 920\Omega$$

 ${\bf 2.1.3}$ Rezistory R_1 a R_{23} sú zapojené paralelne, spojíme ich.

$$R_{123} = \frac{R_1 \cdot R_{23}}{R_1 + R_{23}} = \frac{50 \cdot 920}{50 + 920} = \frac{4600}{97} \Omega$$

Obr. 16: 2.1.3

 ${\bf 2.1.4}$ Rezistory R_{123} a R_4 sú zapojené sériovo, spojíme ich.

$$R_{1234} = R_{123} + R_4 = \frac{25940}{97} \Omega$$

Obr. 17: 2.1.4

 ${\bf 2.1.5}~R_i$ vznikne paralelnou kombináciou rezistorov R_{1234} a $R_5.$

$$R_i = \frac{R_{1234} \cdot R_5}{R_{1234} + R_5} = \frac{1478580}{8123} \Omega$$

Obr. 18: 2.1.5

$\mathbf{V\acute{y}po\check{c}et}\ U_i$

2.2.1 Ďalším krokom je výpočet U_i . V zapojení na Obr. 19 je to zároveň napätie na rezistore R_5 (predstavíme si, že na svorky, medzi ktorými je U_i zapojíme voltmeter). Použijeme metódu zjednodušovania.

${\bf 2.2.2}$ Rezistory R_2 a R_3 sú v sérii. Zjednodušíme.

$$R_{23} = R_1 + R_3 = 920\Omega$$

Obr. 20: 2.2.2

${\bf 2.2.3}$ Rezistory R_4 a R_5 sú v sérii. Zjednodušíme.

$$R_{45} = R_4 + R_5 = 790\Omega$$

Obr. 21: 2.2.3

 ${\bf 2.2.4}$ Rezistory R_{23} a R_{45} sú zapojené paralelne. Zjednodušíme.

$$R_{2345} = \frac{R_{23} \cdot R_{45}}{R_{23} + R_{45}} = \frac{72680}{171} \Omega$$

Obr. 22: 2.2.4

 ${\bf 2.2.5}~R_{EKV}$ vznikne sériovým spojením R_{2345} a $R_1.$

$$R_{EKV} = R_1 + R_{2345} = \frac{81230}{171} \Omega$$

Obr. 23: 2.2.5

2.2.6 Spätným skladaním obvodu si vypočítame hodnoty, ktoré nám poslúžia na výpočet U_{R_5} , čo je v tomto obvode zároveň U_{R_i} (hodnoty sú červenou farbou vyznačené v Obr. 19 až Obr. 23).

$$I = \frac{U}{R_{EKV}} = \frac{1710}{8123}A$$

$$U_{R_{2345}} = I \cdot R_{2345} = \frac{726800}{8123} V$$

$$U_{R_{45}} = U_{R_{2345}}$$

$$I_{R_{45}} = \frac{U_{R_{45}}}{R_{45}} = \frac{920}{8123}A$$

$$I_{R_5} = I_{R_{45}}$$

$$U_{R_5} = I_{R_5} \cdot R_5 = \frac{524400}{8123} V$$

$$U_i = U_{R_5}$$

Výpočet hľadaných hodnôt

 ${\bf 2.3}$ Po získaní hodnôt R_i a U_i si jednoducho, pomocou Ohmovho zákona, vypočítame hľadané hodnoty U_{R_6} a $I_{R_6}.$

$$I_{R_6} = \frac{U_i}{R_i + R_6} = \frac{6555}{28636} = 0,2289076687A = 228,9076mA$$

$$U_{R_6} = R_6 \cdot I_{R_6} = \frac{163875}{7159} = 22.89076687V$$

Obr. 24: 2.3

Příklad 3

Stanovte napětí U_{R4} a proud I_{R4} . Použijte metodu uzlových napětí $(U_A,\,U_B,\,U_C)$.

_		-		•			·/	_ , _ ,
sk.	U [V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
Н	130	0.95	0.50	47	39	58	28	25

V tomto príklade budeme vychádzať z troch rovníc o troch neznámych. Naše neznáme budú práve uzlové napätia U_A , U_B a U_C . Po vypočítaní U_C si určíme hľadané hodnoty.

Doplnenie vyznačení do obvodu

Do obvodu doplníme naznačenie prúdov. Tiež si označíme 3 uzly: A,B,C. Referenčný uzol, ku ktorému budeme vzťahovať uzlové napätia si označíme D.

Obr. 25: Doplnené vyznačenia

Určenie prúdov

$$I_{R_1} = \frac{U_A}{R_1}$$

Obr. 26: 3.1

$$I_{R_2} = \frac{U_B - U_A}{R_2}$$

Obr. 27: 3.2

$$I_{R_3} = \frac{U_B - U_C}{R_3}$$

Obr. 28: 3.3

$$I_{R_4} = \frac{U_C}{R_4}$$

Obr. 29: 3.4

$$I_{R_5} = \frac{U - U_C}{R_5}$$

Obr. 30: 3.5

Rovnice pre uzly A,B,C

Použijeme 1. Kirchhofov zákon.

A:
$$I_1 + I_{R_2} - I_{R_1} = 0$$

B:
$$I_2 - I_{R_2} - I_{R_3} = 0$$

C:
$$I_{R_5} + I_{R_3} - I_2 - I_{R_4} = 0$$

Dosadíme prúdy.

A:
$$I_1 + \frac{U_B - U_A}{R_2} - \frac{U_A}{R_4} = 0$$

B:
$$I_2 - \frac{U_B - U_A}{R_2} - \frac{U_B - U_C}{R_2} = 0$$

A:
$$I_1 + \frac{U_B - U_A}{R_2} - \frac{U_A}{R_1} = 0$$

B: $I_2 - \frac{U_B - U_A}{R_2} - \frac{U_B - U_C}{R_3} = 0$
C: $\frac{U - U_C}{R_5} + \frac{U_B - U_C}{R_3} - I_2 - \frac{U_C}{R_4} = 0$

Dosadíme známe hodnoty.

A:
$$0.95 + \frac{U_B - U_A}{39} - \frac{U_A}{47} = 0$$

B: $0.5 - \frac{U_B - U_A}{39} - \frac{U_B - U_C}{58} = 0$
C: $\frac{U - U_C}{25} + \frac{U_B - U_C}{58} - 0.5 - \frac{U_C}{28} = 0$

Upravíme.

A:
$$-\frac{86}{1833}U_A + \frac{1}{39}U_B = -\frac{19}{20}$$

B: $\frac{1}{39}U_A - \frac{97}{2262}U_B + \frac{1}{58}U_C = -\frac{1}{2}$
C: $\frac{1}{58}U_B - \frac{1887}{20300}U_C = -\frac{47}{10}$

Výpočet hodnoty U_C pomocou Crammerovho pravidla

Rovnice si prevedieme na maticu a vypočítame jej determinant D Sarussovým pravidlom.

$$D = \begin{bmatrix} -\frac{86}{1833} & \frac{1}{39} & 0\\ \frac{1}{39} & -\frac{97}{2262} & \frac{1}{58}\\ 0 & \frac{1}{58} & -\frac{1887}{20300} \end{bmatrix}$$
$$= -\frac{2083}{18604950}$$

Tretí stĺpec v matici nahradíme ľavými stranami rovníc A, B, C a vypočítame determinant D_{U_C} Sarussovým pravidlom..

$$D_{U_C} = \begin{vmatrix} -\frac{86}{1833} & \frac{1}{39} & -\frac{19}{20} \\ \frac{1}{39} & -\frac{97}{2262} & -\frac{1}{2} \\ 0 & \frac{1}{58} & -\frac{47}{10} \end{vmatrix}$$
$$= -\frac{15289}{2126280}$$

Pre získanie U_C potrebujeme D_{U_C} vydeliť D.

$$U_C = \frac{D_{U_C}}{D} = \frac{535115}{8332}V$$

Finálny výpočet U_{R_4} a I_{R_4}

Zo zadania vidíme:

$$U_{R_4} = U_C \approx 64.224075V$$

Na výpočet ${\cal I}_{R_4}$ použijeme Ohmov zákon:

$$I_{R_4} = \frac{U_{R_4}}{R_4} \approx 2.293716A$$

Příklad 4

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t), \ u_2 = U_2 \cdot \sin(2\pi f t).$

Ve vztahu pro napětí $u_{L_2}=U_{L_2}\cdot\sin(2\pi ft+\varphi_{L_2})$ určete $|U_{L_2}|$ a φ_{L_2} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t = \frac{\pi}{2\omega})$.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	L_1 [mH]	L_2 [mH]	C_1 [μ F]	$C_2 [\mu F]$	f [Hz]
E	5	3	14	13	130	60	100	65	90

V tomto príklade, podobne ako v predchádzajúcom budeme pracovať so sústavou troch rovníc. Neznáme v týchto rovniciach budú I_A,I_B a I_C .

Doplnenie vyznačení slučkových prúdov do obvodu

Obr. 31: Doplnené vyznačenia

Vyjadrenie impedancií súčiastok

Najprv si vypočítame uhlovú frekvenciu ω .

$$\omega = 2\pi f = 2\pi \cdot 90 = 180\pi rad/s$$

Ďalej vyjadríme impedancie. Necháme ich v obecnom tvare pre prehľadnosť.

$$Z_{C_1} = -\frac{j}{\omega C_1}$$

$$Z_{C_2} = -\frac{j}{\omega C_2}$$

$$Z_{L_1} = j\omega L_1$$

$$Z_{L_2} = j\omega L_2$$

Vyjadrenie rovníc pre slučky

Vychádzame z 2. Kirchhofovho zákona, že súčet všetkých napätí v jednej slučke sa musí rovnať 0.

$$i_A: I_A(Z_{L_1} + R_2 + R_1 + Z_{C_1}) + I_B(-R_2) + I_C(-R_1 - Z_{C_1}) = 0$$

$$i_B: I_A(-R_2) + I_B(R_2 + Z_{C_2} + Z_{L_2}) + I_C(-Z_{L_2}) = -U_2$$

$$i_C: I_A(-R_1 - Z_{C_1}) + I_B(-Z_{L_2}) + I_C(Z_{C_1} + R_1 + Z_{L_2}) = U_1$$

Impedancie a odpory si zobrazíme v matici A, kde stĺpce reprezentujú I_A , I_B a I_C .

$$A = \begin{bmatrix} Z_{L_1} + R_2 + R_1 + Z_{C_1} & -R_2 & -R_1 - Z_{C_1} \\ -R_2 & R_2 + Z_{C_2} + Z_{L_2} & -Z_{L_2} \\ -R_1 - Z_{C_1} & -Z_{L_2} & Z_{C_1} + R_1 + Z_{L_2} \end{bmatrix}$$

Vidíme, že táto matica je symetrická. Ak by nebola, bol by to indikátor zlého vyjadrenia.

Výpočet I_B a I_C

Najprv si vypočítame determinant matice A (napríklad Sarussovým pravidlom).

Následne si vypočítame determinanty matíc, kde v prvej nahradíme stĺpec I_B pravými stranami rovnice, v druhej nahradíme stĺpec I_C .

Keď tieto determinanty vydelíme determinantom matice A, získame hodnoty I_B a I_C .

$$D_A = -3.7760 \cdot 10^3 + 6.8703 \cdot 10^4 j$$

$$D_{I_B} = -7.3245 \cdot 10^3 - 1.7152 \cdot 10^3 j$$

$$D_{I_C} = 4.1700 \cdot 10^3 + 2.4780 \cdot 10^3 j$$

$$I_B = \frac{D_{I_B}}{D_A} = -0.0190 + 0.1077jA$$

$$I_C = \frac{D_{I_C}}{D_A} = 0.0326 - 0.0625jA$$

Určenie hľadaných hodnôt

Z obrázka je zrejmé, že:

$$I_{L_2} = I_C - I_B = 0.0517 - 0.1701jA$$

Obr. 32: Prúdy cez L2

Vypočítame ${\cal U}_{L_2}$ pomocou Ohmovho zákona.

$$U_{L_2} = I_{L_2} \cdot Z_{L_2} = 5.7730 + 1.7535jV$$

Pomocou vzťahu pre výpočet amplitúdy napätia

$$|U| = \sqrt{A^2 + B^2},$$

kde A je reálna zložka a B je imaginárna, si vypočítame $|U_{L_2}|.$

$$|U_{L_2}| = \sqrt{5.7730^2 + 1.7535^2} = 6.0334V$$

Nakoniec si vypočítame fázový posun φ_{L_2} .

$$\varphi_{L_2} = \arctan(\frac{B}{A}) = 16.8958^{\circ}$$

Příklad 5

V obvodu na obrázku níže v čase t=0 [s] sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $u_C=f(t)$. Proveďte kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

	sk.	$\mid U \mid V \mid$	C [F]	$R [\Omega]$	$u_C(0)$ [V]
	В	30	5	125	12
		R			
	\sqcap				
t = 0 s	\ 				
s	-		С		
	٦		_	u _C	
				V	
υ					
1 -	$\overline{\Box}$				

Doplnenie vyznačenia smeru prúdu do obvodu

Obr. 33: Doplnené vyznačenia

Zostavenie diferenciálnej rovnice

Pomocou Ohmovho zákona si vyjadríme i, teda rovnicu č.1.

$$1: i = \frac{u_R}{R}$$

Pomocou 2. Kirchhofovho zákona si napíšeme rovnicu č. 2.

$$2: u_R + u_C - U = 0$$

Pre rovnicu č. 3 použijeme axióm.

$$3: u_C' = \frac{i}{C}, u_C(0) = 12V$$

Rovnice spojíme do jednej.

$$u'_{C} = \frac{\frac{u_{R}}{R}}{C} = \frac{u_{R}}{RC} = \frac{U - u_{C}}{RC}, u_{C}(0) = 12V$$

Po úprave získame rovnicu, ktorú si označíme *.

$$*: u'_C + \frac{u_C}{RC} = \frac{U}{RC}, u_C(0) = 12V$$

Analytické riešenie

Napíšeme si charakteristickú rovnicu, kde $\lambda = u'_C, u_C = 1$.

$$\lambda = \frac{-1}{RC}$$

Očakávané riešenie je:

$$u_C(t) = K(t) \cdot e^{\lambda t} = K(t) \cdot e^{-\frac{t}{RC}}$$

$$u_C'(t) = K'(t) \cdot e^{-\frac{t}{RC}} + K(t) \cdot \left(-\frac{1}{RC}\right) \cdot e^{-\frac{t}{RC}}$$

Do rovnice * si dosadíme u'_C a u_C .

$$K'(t) \cdot e^{-\frac{t}{RC}} + K(t) \cdot \left(-\frac{1}{RC}\right) \cdot e^{-\frac{t}{RC}} + \frac{K(t) \cdot e^{-\frac{t}{RC}}}{RC} = \frac{U}{RC}$$

Dva prostredné členy sa odčítajú. Rovnicu ďalej upravujeme.

$$K'(t) \cdot e^{-\frac{t}{RC}} = \frac{U}{RC} \setminus e^{\frac{t}{RC}}$$
$$K'(t) = \frac{U}{RC} \cdot e^{\frac{t}{RC}} \setminus \int$$

$$K(t) = U \cdot e^{\frac{t}{RC}} + k$$

Túto rovnicu si dosadíme do rovnice pre $u_C(t)$.

$$u_C(t) = (U \cdot e^{\frac{t}{RC}} + k) \cdot e^{-\frac{t}{RC}}$$
$$u_C(t) = U + k \cdot e^{-\frac{t}{RC}}$$

Dosadíme počiatočnú hodnotu u v čase 0 a U a vypočítame konštantu k.

$$u_C(0) = U + k \cdot e^{-\frac{0}{RC}} = 12$$

 $30 + k = 12$
 $k = -18$

Do rovnice pre $u_C(t)$ dosadíme hodnoty.

$$u_C(t) = 30 - 18 \cdot e^{-\frac{t}{625}} V$$

Skúška správnosti

Vypočítame $u_C(0)$ a zistíme, či nám to vyjde v súlade so zadaním.

$$t = 0$$

$$u_C(0) = 12$$

$$30 - 18 \cdot e^0 = 12$$

$$30 - 18 = 12$$

$$12 = 12$$

Výsledok je v súlade so zadaním. Ďalej si spravíme skúšku pomocou rovnice * .

$$*: u'_{C} + \frac{u_{C}}{RC} = \frac{U}{RC}$$
$$u_{C}(t) = 30 - 18 \cdot e^{-\frac{t}{625}}$$
$$u'_{C}(t) = \frac{18}{625}e^{-\frac{t}{625}}$$

$$\frac{18}{625}e^{-\frac{t}{625}} + \frac{30 - 18 \cdot e^{-\frac{t}{625}}}{625} = \frac{30}{625}$$
$$\frac{\frac{18}{625} \cdot e^{-\frac{t}{625}} - \frac{18}{625} \cdot e^{-\frac{t}{625}} + 30}{625} = \frac{30}{625}$$
$$\frac{30}{625} = \frac{30}{625}$$

Aj druhá skúška nám vyšla.

Shrnutí výsledků

Příklad	Skupina	Výslo	edky
1	E	$U_{R2} = 51.7763281V$	$I_{R2} = 78.448982mA$
2	В	$U_{R6} = 22.89076687V$	$I_{R6} = 228.9076mA$
3	Н	$U_{R4} = 64.224075V$	$I_{R4} = 2.293716A$
4	Е	$ U_{L_2} = 6.0334V$	$\varphi_{L_2} = 16.8958^{\circ}$
5	В	$u_C = 30 - 1$	$18 \cdot e^{-\frac{t}{625}}V$