Hjemmeeksamen i FYS2160, høsten 2012

Oppgave 1

Vi har tidligere funnet følgende relasjon for en ideell gass:

$$PV^{\alpha} = \text{konst.}; \quad \alpha = \frac{C - C_P}{C - C_V} ,$$
 (1)

der C, C_P og C_V er varmekapasiteter (alle konstante) henholdsvis for en vilkårlig prosess, for en isobar og for en isokor prosess.

a) Forklar at arbeidet W gjort på gassen, varmen Q tilført og entropiendringen ΔS for gassen under kvasistatiske forhold, generelt kan uttrykkes:

$$W = \frac{\text{konst.}}{\alpha - 1} \left(\frac{1}{V^{\alpha - 1}} - \frac{1}{V_0^{\alpha - 1}} \right) ;$$

$$Q = C(T - T_0) ;$$

$$\Delta S = C \ln \frac{T}{T_0} .$$
(2)

Drøft relasjonene for spesialtilfellene isoterm, isobar, adiabatisk og isokor prosess, og identifiser eventuelle unntak.

En varmekraftmaskin opererer med en monatomig ideell gass (N atomer) som gjennomløper en syklisk prosess. Syklusen har fire deler: $1 \to 2$ er en adiabatisk kompresjon fra volumet V_1 til V_2 , $2 \to 3$ en isokor oppvarming ved volum V_2 , $3 \to 4$ en adiabatisk ekspansjon fra V_2 til V_1 , og $4 \to 1$ en isokor avkjøling ved volum V_1 . Alle delprosessene finner sted under kvasistatiske forhold.

b) Tegn syklusen inn i et PV-diagram og et SV-diagram. Redegjør for at maskinens effektivitet e kan uttrykkes som:

$$e = \frac{Q_h - Q_c}{Q_h} \,, \tag{3}$$

og forklar hvor i syklusen det gjøres arbeid, mottas varme Q_h og avgis spillvarme Q_c .

- c) Bestem varmemengdene Q_h og Q_c uttrykt ved trykkene og volumene (P_i, V_i) i punktene (1,2,3,4).
- d) Vis at maskinens effektivitet er gitt ved:

$$e = 1 - \left(\frac{V_2}{V_1}\right)^{\frac{2}{3}} = 1 - \frac{T_1}{T_2} = 1 - \frac{T_4}{T_3}$$
 (4)

e) Maskinen er i kontakt med et varmt og et kaldt reservoar med temperaturer T_h og T_c . Hvor i syklusen oppnås høyeste og laveste temperatur T_h og T_c ? Sammenlign effektivitet for denne syklusen med den for en Carnot-syklus, $e_{\text{Carnot}} = 1 - \frac{T_c}{T_h}$. Bestem ΔS_{maskin} , $\Delta S_{\text{reservoarer}}$ og ΔS_{total} i løpet av en syklus, og kommenter resultatet.

Oppgave 2

Vi skal i denne oppgaven se på en monatomig ideell gass med N atomer, som kan bevege seg i 2 dimensjoner og okkuperer et areal A i stedet for et volum V. Det kan vises at gassens multiplisitet $\Omega = \Omega(U, A, N)$ med god tilnærmelse er gitt ved:

$$\Omega(U, A, N) = \frac{1}{N!} \frac{A^N}{h^{2N}} \frac{\pi^N}{N!} (2mU)^N .$$
 (5)

- a) Finn en formel for gassens entropi S = S(U, A, N).
- b) Bestem temperatur T, trykk-analog P for 2 dimensjoner (kraft pr. lengde) og kjemisk potensiale μ for gassen. (Hint: Husk at arealet A erstatter volumet V overalt.) Kommenter resultatene.
- c) Varmekapasitetene ved konstant areal og konstant trykk er definert ved:

$$C_A = \left(\frac{\partial U}{\partial T}\right)_{A,N}; \quad C_P = \left(\frac{\partial H}{\partial T}\right)_{P,N}.$$
 (6)

Sett opp de termodynamiske identitetene for U og H i 2 dimensjoner, og bruk disse til å uttrykke C_A og C_P som partialderiverte av entropien S. Bestem C_A og C_P for den todimensjonale gassen og kommenter resultatene. N antas konstant.

d) Utled følgende Maxwell-relasjon for et 2-dimensjonalt system:

$$\left(\frac{\partial S}{\partial A}\right)_{T,N} = \left(\frac{\partial P}{\partial T}\right)_{A,N}$$
(7)

e) I denne deloppgaven skal vi utlede følgende ligning:

$$\left(\frac{\partial S}{\partial T}\right)_{PN} = \frac{C_A}{T} + \left(\frac{\partial P}{\partial T}\right)_{AN} \left(\frac{\partial A}{\partial T}\right)_{PN}.$$
 (8)

Bruk resultatet til å verifisere differansen mellom C_P og C_A funnet i deloppgave c). N kan antas konstant gjennom hele oppgaven.

Hint: Vi tar utgangspunkt i en generell entropifunksjon uttrykt ved temperatur, areal og partikkeltall, S = S(T, A, N). Med N konstant kan differensialet dS skrives:

$$dS = \left(\frac{\partial S}{\partial T}\right)_{A,N} dT + \left(\frac{\partial S}{\partial A}\right)_{T,N} dA . \tag{9}$$

Sett deretter A = A(T, P, N) (med N konstant), uttrykk dA ved hjelp av partialderiverte på tilsvarende måte som over, og sett inn uttrykket for dA i ligningen for dS. Sammenlign denne dS-ligningen med differensialet for dS når vi i stedet antar S = S(T, P, N) (med N konstant) og merk deg at dS-ligningen nå inneholder et ikke-trivielt uttrykk for $\left(\frac{\partial S}{\partial T}\right)_{P,N}$. Sett til slutt inn de alternative uttrykkene for de partialderiverte $\left(\frac{\partial S}{\partial T}\right)_{P,N}$ og $\left(\frac{\partial S}{\partial A}\right)_{T,N}$ utledet i c) og d).

Lykke til!