Question

- lackbox Sphere of density ho, radius R with velocity $ec{v}=-v_0\hat{e}_x.$
- Hit wall, bounces elastically and without slipping
- ▶ What is velocity \vec{v}' after collision, and how does it depend on v_0 , ρ and R?
- ► What if sphere is hollow?

Quantities

- ightharpoonup Angular velocity: ω
- ightharpoonup Mass: $m=\frac{4\pi}{3}\rho R^3$.
- ▶ Moment of inertia: $I = \frac{2}{5}mR^2$.
- ightharpoonup After: ω' , $\vec{v}' = v_x \hat{e}_x + v_y \hat{e}_y$.

Conditions

- ▶ No slip at ground: $\omega = \frac{v_0}{R}$.
- ightharpoonup No slip at collision: $\omega' = \frac{v_y}{R}$.
- ► Energy:

$$E = \frac{1}{2}m|\vec{v}|^2 + \frac{1}{2}\frac{I}{R^2}\omega^2 = \frac{1}{2}\frac{7}{5}mv_0^2,$$

$$E' = \frac{1}{2}m|\vec{v}'|^2 + \frac{1}{2}\frac{I}{R^2}\omega'^2 = \frac{1}{2}m\left(v_x^2 + \frac{7}{5}v_y^2\right)$$

► Elasticity:

$$E = E' \implies v_0^2 = \frac{5}{7}v_x^2 + v_y^2$$

Conservation of angular momentum

- ▶ Angular momentum around point of collision: No arm, no torque, conservation of angular momentum.
- ▶ No angular momentum from center-of-mass motion.
- Angular momentum by parallel axis theorem: $|\vec{L}| = (I + mR^2)\omega = \frac{7}{5}mv_0R$.
- After, additional term from y component of velocity: $|\vec{L}'| = (I + 2mR^2)\omega' = \frac{12}{5}mv_yR$.
- ▶ Conservation of angular momentum, $\vec{L} = \vec{L}'$, $\implies v_y = \frac{7}{12}v_0$.

Solution

Combining gives

$$v_0^2 = \frac{5}{7}v_x^2 + \left(\frac{12}{7}\right)^2 v_0^2 \implies v_x^2 = \frac{133}{144}v_0^2$$

Finally

$$\vec{v}' = \frac{1}{12}v_0(\sqrt{133}\hat{e}_x + 7\hat{e}_y).$$