Mathematische Bibliothek für Koordinatentransformationen und Rotationen

Markus Krug

2. Juli 2012

• Entwurf einer mathematischen Bibliothek für C++

- Entwurf einer mathematischen Bibliothek für C++
 - Quaternionen

- Entwurf einer mathematischen Bibliothek für C++
 - Quaternionen
 - Rotationsmatrizen

- Entwurf einer mathematischen Bibliothek für C++
 - Quaternionen
 - Rotationsmatrizen
 - homogene Koordinaten

- Entwurf einer mathematischen Bibliothek für C++
 - Quaternionen
 - Rotationsmatrizen
 - homogene Koordinaten
 - Koordinatentransformationen

- Entwurf einer mathematischen Bibliothek für C++
 - Quaternionen
 - Rotationsmatrizen
 - homogene Koordinaten
 - Koordinatentransformationen
 - Fast-Fouriertransformation

- Entwurf einer mathematischen Bibliothek für C++
 - Quaternionen
 - Rotationsmatrizen
 - homogene Koordinaten
 - Koordinatentransformationen
 - Fast-Fouriertransformation
 - Kalmanfilter

Vektor \vec{v} mit $\phi = 45^{\circ}$

Vektor \vec{v} mit $\phi' = 60^{\circ}$

Was ist passiert?

• eine Rotation von \vec{v} um die z-Achse mit 15° (im Uhrzeigersinn)

- eine Rotation von \vec{v} um die z-Achse mit 15° (im Uhrzeigersinn)
- ullet eine Rotation des Koordinatensystems um -15° (gegen den Uhrzeigersinn)

- eine Rotation von \vec{v} um die z-Achse mit 15° (im Uhrzeigersinn)
- ullet eine Rotation des Koordinatensystems um -15° (gegen den Uhrzeigersinn)
- eine Rotation von \vec{v} um die z-Achse mit -345° (gegen den Uhrezeigersinn)

- eine Rotation von \vec{v} um die z-Achse mit 15° (im Uhrzeigersinn)
- ullet eine Rotation des Koordinatensystems um -15° (gegen den Uhrzeigersinn)
- eine Rotation von \vec{v} um die z-Achse mit -345° (gegen den Uhrezeigersinn)
- eine Rotation des Koordinatensystems um 345° (im Uhrzeigersinn)

- eine Rotation von \vec{v} um die z-Achse mit 15° (im Uhrzeigersinn)
- ullet eine Rotation des Koordinatensystems um -15° (gegen den Uhrzeigersinn)
- ullet eine Rotation von $ec{v}$ um die z-Achse mit -345° (gegen den Uhrezeigersinn)
- eine Rotation des Koordinatensystems um 345° (im Uhrzeigersinn)
- \Rightarrow es muss immer dazugesagt werden wovon man gerade Redet sonst stets Unklar!

Welche Möglichkeiten gibt es eine Rotation zu beschreiben ?

Rotationsmatrizen

- Rotationsmatrizen
- Achse und Winkel

- Rotationsmatrizen
- Achse und Winkel
- Eulerwinkel(in der Luftfahrt Yaw, Pitch und Roll)

- Rotationsmatrizen
- Achse und Winkel
- Eulerwinkel(in der Luftfahrt Yaw, Pitch und Roll)
- Quaternionen

Beschreibung durch eine Rotationsmatrix

Zurück zum Beispiel:

$$x_1 = \cos \phi \cdot |\vec{v}|$$
$$y_1 = \sin \phi \cdot |\vec{v}|$$

Beschreibung durch eine Rotationsmatrix

Analog gilt:

$$x_2 = \cos \phi' \cdot |\vec{v}|$$
$$y_2 = \sin \phi' \cdot |\vec{v}|$$

Additionstheoreme, jeder kennt sie keiner kann sie

mit
$$\phi' = \phi + \alpha$$
 folgt:

$$x_{2} = \frac{\cos \phi \cos \alpha - \sin \phi \sin \alpha}{\cos(\phi + \alpha)} \cdot |\vec{v}|$$

$$y_{2} = \frac{\sin(\phi + \alpha)}{\sin \phi \cos \alpha + \sin \alpha \cos \phi} \cdot |\vec{v}|$$

$$x_{2} = \frac{\cos \phi \cdot |\vec{v}|}{x_{1}} \cos \alpha - \frac{\sin \phi \cdot |\vec{v}|}{y_{1}} \cos \alpha$$

$$y_{2} = \frac{\sin \phi \cdot |\vec{v}|}{y_{1}} \cos \alpha + \frac{\cos \phi \cdot |\vec{v}|}{x_{1}} \sin \alpha$$

Additionstheoreme, jeder kennt sie keiner kann sie

Also erhalten wir:

$$x_2 = x_1 \cos \alpha - y_1 \sin \alpha$$

$$y_2 = x_1 \sin \alpha + y_1 \cos \alpha$$

Oder analog in Matrixschreibweise:

$$\left(\begin{array}{c} x_2 \\ y_2 \end{array}\right) = \left(\begin{array}{cc} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{array}\right) \left(\begin{array}{c} x_1 \\ y_1 \end{array}\right)$$

Ausdehnung auf den \mathbb{R}^3

Da die Rotation ausschließlich in der xy-Ebene stattfindet, so wird die z-Komponente des Vektors \vec{v} nicht verändert \Rightarrow es wurde die Fundamentalmatrix um die z-Achse gefunden:

$$R_{z}(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Abbildung: Die Projektion in die xy-Ebene

Betrachtet man nun Projektionen in die xz bzw. yz-Ebene, so erhält man die Fundamentalrotationsmatrizen:

$$R_{z}(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{pmatrix}$$

$$R_{y}(\beta) = \begin{pmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{pmatrix}$$

$$R_{\mathsf{x}}(\gamma) = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos \gamma & -\sin \gamma \\ 0 & \sin \gamma & \cos \gamma \end{array}\right)$$

Was bringt uns das nun?

Was bringt uns das nun?

W

ir können mit Hilfe einer einfachen Rechenvorschrift eine Rotation eines Vektors \vec{v} mit einen Winkel ϕ um eine der Koordinatenachsen vollziehen

$$\vec{w} = R(\phi) \cdot \vec{v}$$

Was können wir noch nicht?

Was können wir noch nicht ?
⇒ eine Rotation um einen beliebigen Vektor

Was können wir noch nicht?

⇒ eine Rotation um einen beliebigen Vektor Abhilfe schafft das Theorem von Euler:

Satz (Eulers Theorem)

Zwei voneinander unabhängige, orthonormale Koordinatensysteme können durch eine Folge von nicht mehr als 3 Fundamentalrotationen, wobei keine zwei aufeinanderfolgenden Rotationen um die selbe Achse erfolgen, ineinander überführt werden.

Eulerwinkel

Es ergeben sich folgende 12 Möglichkeiten das Eulertheorem anzuwenden:

- xyz yzx zxy
- xzy yxz zyx
- xyx yzy zxz
- xzx yxy zyz

Eulerwinkel

Es ergeben sich folgende 12 Möglichkeiten das Eulertheorem anzuwenden:

- xyz yzx zxy
- xzy yxz zyx
- xyx yzy zxz
- xzx yxy zyz

zyx bedeutet beispielsweise:

• eine Rotation um die z-Achse

Eulerwinkel

Es ergeben sich folgende 12 Möglichkeiten das Eulertheorem anzuwenden:

- xyz yzx zxy
- xzy yxz zyx
- xyx yzy zxz
- xzx yxy zyz

zyx bedeutet beispielsweise:

- eine Rotation um die z-Achse
- 2 eine Rotation um die neue y-Achse

Eulerwinkel

Es ergeben sich folgende 12 Möglichkeiten das Eulertheorem anzuwenden:

- xyz yzx zxy
- xzy yxz zyx
- xyx yzy zxz
- xzx yxy zyz

zyx bedeutet beispielsweise:

- eine Rotation um die z-Achse
- 2 eine Rotation um die neue y-Achse
- eine Rotation um die neue x-Achse

Eulerwinkel

Es ergeben sich folgende 12 Möglichkeiten das Eulertheorem anzuwenden:

- xyz yzx zxy
- xzy yxz zyx
- xyx yzy zxz
- xzx yxy zyz

zyx bedeutet beispielsweise:

- eine Rotation um die z-Achse
- 2 eine Rotation um die neue y-Achse
- eine Rotation um die neue x-Achse
- ⇒ Yaw-Pitch-Roll Luftfahrtsequenz

Das Schlüsselwort neue:

Es ergeben sich 2 Möglichkeiten die Eulersequenz nachzurechnen:

Multiplikation von rechts

Das Schlüsselwort neue:

Es ergeben sich 2 Möglichkeiten die Eulersequenz nachzurechnen:

- Multiplikation von rechts
- Multiplikation von links

•
$$R_z(\alpha) = R_z(\alpha)$$

•
$$R_{zy}(\alpha, \beta) = R_z(\alpha) \cdot R_y(\beta)$$

•
$$R_{zyx}(\alpha, \beta, \gamma) = R_z(\alpha) \cdot R_y(\beta) \cdot R_x(\gamma)$$

Multiplikation von rechts!!

oder:

•
$$R_z(\alpha) = R_z(\alpha)$$

oder:

•
$$R_{zy}(\alpha, \beta) = R_y(\beta) \cdot R_z(\alpha)$$

oder:

•
$$R_{zyx}(\alpha, \beta, \gamma) = R_x(\gamma) \cdot R_y(\beta) \cdot R_z(\alpha)$$

Multiplikation von links!!

Goldene Merkregel für Rotationssequenzen:

Faustregel (Rotationssequenzen)

Erfolgt eine Rotation um eine der fixen Achsen, so ist stets von links zu Multiplizieren, eine Rotation um eine der neuen Achsen wird stets von rechts Multipliziert.

Eulerwinkel

Für die zuvor vorgestellte Eulersequenz zyx gilt also:

$$R_{zyx}(\alpha, \beta, \gamma) = R_z(\alpha) \cdot R_y(\beta) \cdot R_x(\gamma)$$

Die Winkel α, β, γ werden als Eulerwinkel bezeichnet

Yaw-Pitch-Roll Matrix

Für die zuvor vorgestellte Eulersequenz zyx gilt also:

$$R_{zyx}(\alpha, \beta, \gamma) = R_z(\alpha) \cdot R_y(\beta) \cdot R_x(\gamma)$$

$$= \left(\begin{array}{ccc} \cos\alpha\cos\beta & \cos\alpha\sin\beta\sin\gamma - \sin\alpha\cos\gamma & \cos\alpha\sin\beta\cos\gamma + \sin\alpha\sin\gamma \\ \sin\alpha\cos\beta & \sin\alpha\sin\beta\sin\gamma + \cos\alpha\cos\gamma & \sin\alpha\sin\beta\cos\gamma - \cos\alpha\sin\gamma \\ -\sin\beta & \cos\beta\sin\gamma & \cos\beta\cos\gamma \end{array} \right)$$

YPR Matrix

Was haben wir gelernt:

 Mit Hilfe der YPR-Matrix können wir also einen Vektor mit den Eulerwinkeln drehen.

YPR Matrix

Was haben wir gelernt:

- Mit Hilfe der YPR-Matrix können wir also einen Vektor mit den Eulerwinkeln drehen.
- Wir sind nicht mehr eingeschränkt auf reine Rotationen um die Koordinatensystemachsen.

YPR Matrix

Was haben wir gelernt:

- Mit Hilfe der YPR-Matrix können wir also einen Vektor mit den Eulerwinkeln drehen.
- Wir sind nicht mehr eingeschränkt auf reine Rotationen um die Koordinatensystemachsen.

Was wir jedoch immer noch nicht können ist eine Rotation um einen beliebigen Vektor und Winkel

Abbildung : Eine Rotation um einen beliebigen Vektor \vec{u} mit Winkel ϕ

Zur Herleitung der allgemeinen Matrix müssen folgende Schritte ausgeführt werden:

1 Drehe M um m^3 mit dem Winkel α

- Drehe M um m^3 mit dem Winkel α
- ② Drehe M um m^2 mit dem Winkel $-\beta$

- Drehe M um m^3 mit dem Winkel α
- ② Drehe M um m^2 mit dem Winkel $-\beta$
- 3 Drehe M um m^1 mit dem Winkel ϕ

- Drehe M um m^3 mit dem Winkel α
- ② Drehe M um m^2 mit dem Winkel $-\beta$
- **3** Drehe M um m^1 mit dem Winkel ϕ
- **1** Drehe M um m^2 mit dem Winkel β

- Drehe M um m^3 mit dem Winkel α
- ② Drehe M um m^2 mit dem Winkel $-\beta$
- **3** Drehe M um m^1 mit dem Winkel ϕ
- **1** Drehe M um m^2 mit dem Winkel β
- **1** Drehe M um m^3 mit dem Winkel $-\alpha$

Wir erhalten gemäß Faustregel für Sequenzen:

$$R(\phi, \vec{u}) = R_3(\alpha)R_2(-\beta)R_1(\phi)R_2(\beta)R_3(-\alpha)$$

$$= \begin{pmatrix} u_x^2(1-\cos\phi) + \cos\phi & u_x u_y(1-\cos\phi) - u_z \sin\phi & u_x u_z(1-\cos\phi) + u_y \sin\phi \\ u_x u_y(1-\cos\phi) + u_z \sin\phi & u_y^2(1-\cos\phi) + \cos\phi & u_y u_z(1-\cos\phi) - u_x \sin\phi \\ u_x u_z(1-\cos\phi) - u_y \sin\phi & u_y u_z(1-\cos\phi) + u_x \sin\phi & u_z^2(1-\cos\phi) + \cos\phi \end{pmatrix}$$

kleine Ergebniszusammenfassung

Wir können nun:

- Rotationen um die Koordinatenachsen
- Rotationen mit Hilfe von Eulerwinkeln
- Rotationen um einen beliebigen Vektor mit einem beliebigen Winkel

kleine Ergebniszusammenfassung

Wir können nun:

- Rotationen um die Koordinatenachsen
- Rotationen mit Hilfe von Eulerwinkeln
- Rotationen um einen beliebigen Vektor mit einem beliebigen Winkel

Doch alles hat noch einen Nachteil:

⇒ wir müssen stets zuerst die Rotationsmatrix bilden und damit die Rotation ausführen

$$\vec{w} = R \cdot \vec{v}$$

Betrachtet man die allgemeine Rotation eines Vektors
$$\vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

mit der allgemeinen Rotationsmatrix:

$$\overrightarrow{W} = \left(\begin{array}{ccc} u_x^2(1-\cos\phi) + \cos\phi & u_x u_y(1-\cos\phi) - u_z \sin\phi & u_x u_z(1-\cos\phi) + u_y \sin\phi \\ u_x u_y(1-\cos\phi) + u_z \sin\phi & u_y^2(1-\cos\phi) + \cos\phi & u_y u_z(1-\cos\phi) - u_x \sin\phi \\ u_x u_z(1-\cos\phi) - u_y \sin\phi & u_y u_z(1-\cos\phi) + u_x \sin\phi & u_z^2(1-\cos\phi) + \cos\phi \end{array} \right) \cdot \overrightarrow{V}$$

So erhält man die folgenden Gleichungen:

$$V\overrightarrow{Rot}_{,X} = v_x \cos \phi + \sin \phi [u_y v_z - u_z v_y] + u_x [u_x v_x + u_y v_y + u_z v_z] (1 - \cos \phi)$$

$$\overrightarrow{V_{Rot}}, y = \overrightarrow{v_y} \cos \phi + \sin \phi [u_z v_x - u_x v_z] + u_y [u_x v_x + u_y v_y + u_z v_z] (1 - \cos \phi)$$

$$\overrightarrow{VRot}_{\mathcal{S}} = v_{\mathbf{z}} \cos \phi + \sin \phi [u_{\mathbf{x}}v_{\mathbf{y}} - u_{\mathbf{y}}v_{\mathbf{x}}] + u_{\mathbf{z}}[u_{\mathbf{x}}v_{\mathbf{x}} + u_{\mathbf{y}}v_{\mathbf{y}} + u_{\mathbf{z}}v_{\mathbf{z}}](1 - \cos \phi)$$

Cleveres zusammenfassen ergibt die Rodrigues Rotationsformel:

$$\vec{v_{Rot}} = \vec{v}\cos\phi + (\vec{u}\times\vec{v})\sin\phi + \vec{u}(\vec{u}\cdot\vec{v})(1-\cos\phi)$$

Cleveres zusammenfassen ergibt die Rodrigues Rotationsformel:

$$\vec{v_{Rot}} = \vec{v}\cos\phi + (\vec{u} \times \vec{v})\sin\phi + \vec{u}(\vec{u} \cdot \vec{v})(1 - \cos\phi)$$

⇒ es ist also auch möglich einen Vektor um einen gegebenen Vektor (und Winkel) zu rotieren ohne zunächst die allgemeine Rotationsmatrix bilden zu müssen.

Vorteile der Eulerwinkel:

- nur 3 Variablen müssen gespeichert werden
- am einfachsten aus den Sensordaten zu gewinnen (Strapdown-Algorithmus)

Nachteile der Eulerwinkel:

- es muss jedesmal zunächst die Rotationsmatrix gebildet werden
- Gimbal Locks

Vorteile der Achse-Winkel Darstellung

- es kann ohne die Rotationsmatrix bilden zu m

 üssen rotiert werden
- Skaliert man den Winkel in die Länge des Vektors nur 3 Variablen zu speichern

Nachteile der Achse-Winkel Darstellung

• es können keine Rotationssequenzen berechnet werden (immer einzeln!)

Vorteile der Rotationsmatrizen allgemein

relativ anschaulich

Nachteile der Rotationsmatrizen

- sehr Rechenaufwändig
- sehr Speicheraufwändig

 \bullet Quaternionen $\mathbb H$ als Hyperkomplexe Zahlen des Ranges 4

ullet Quaternionen ${\mathbb H}$ als Hyperkomplexe Zahlen des Ranges 4 ${\it Verdopplungssatz}$

ullet Angefangen bei ${\mathbb R}$

 \mathbb{C}

ullet Quaternionen ${\mathbb H}$ als Hyperkomplexe Zahlen des Ranges 4

Verdopplungssatz

ullet Angefangen bei ${\mathbb R}$

. .

• von den komplexen Zahlen C

 \mathbb{H}

ullet Quaternionen ${\mathbb H}$ als Hyperkomplexe Zahlen des Ranges 4

Verdopplungssatz

Angefangen bei ℝ

Verdopplungssatz

ullet von den komplexen Zahlen ${\mathbb C}$

 \mathbb{H}

Quaternion ist also ein 4-Tupel
$$(q_0, q_1, q_2, q_3) = q_0 + iq_1 + jq_2 + kq_3$$

i,j,k interpretiert man als Einheitsvektoren im 3-dimensionalen Raum.

Die Quaternionen enthalten also den \mathbb{R}^3 als Spezialfall für $q_0=0$ Ein 3-dimensionaler Vektor \vec{v} kann mit Hilfe der Quaternionen also dargestellt werden,als:

$$\vec{v} = 0 + \vec{v} = q_0 + \vec{q}$$

Quaternionen-Rechenregeln

Analog zum \mathbb{R}^4 definiert man die Gleichheit zweier Quaternionen p und q, als:

$$q_0 = p_0$$
 $q_1 = p_1$ $q_2 = p_2$ $q_3 = p_3$

Quaternionen-Rechenregeln

Analog zum \mathbb{R}^4 definiert man die Gleichheit zweier Quaternionen p und q, als:

$$q_0 = p_0$$
 $q_1 = p_1$ $q_2 = p_2$ $q_3 = p_3$ und deren Addition:

$$p + q = (p_0 + q_0) + i(p_1 + q_1) + j(p_2 + q_2) + k(p_3 + q_3)$$

Multipliziert man nach altbekannten Rechenregeln zwei Quaternion p und q, so erhält man :

$$pq = (p_0 + p_1 + p_2 + p_3)(q_0 + q_1 + q_2 + q_3)$$

Multipliziert man nach altbekannten Rechenregeln zwei Quaternion p und q, so erhält man :

$$pq = (p_0 + p_1 + p_2 + p_3)(q_0 + q_1 + q_2 + q_3)$$

$$= p_0 q_0 + ip_0 q_1 + jp_0 q_2 + kp_0 q_3$$

$$+ ip_1 q_0 + i^2 p_1 q_1 + ijp_1 q_2 + ikp_1 q_3$$

$$+ jp_2 q_0 + jip_2 q_1 + j^2 p_2 q_2 + jkp_2 q_3$$

$$+ kp_3 q_0 + kip_3 q_1 + kjp_3 q_2 + k^2 p_3 q_3$$

Um daraus ein nützliches Ergebnis ziehen zu können benötigen wir die Rechenregeln von Hamilton

$$i^{2} = j^{2} = k^{2} = ijk = -1$$
$$ij = k = -ji$$
$$jk = i = -kj$$
$$ki = j = -ik$$

Um daraus ein nützliches Ergebnis ziehen zu können benötigen wir die Rechenregeln von Hamilton

$$i^{2} = j^{2} = k^{2} = ijk = -1$$
$$ij = k = -ji$$
$$jk = i = -kj$$
$$ki = j = -ik$$

mit deren Hilfe dann gilt:

$$pq = p_0q_0 - (p_1q_1 + p_2q_2 + p_3q_3)$$

$$+ p_0(iq_1 + jq_2 + kq_3) + q_0(ip_1 + jp_2 + kp_3)$$

$$+ i(p_2q_3 - p_3q_2) + j(p_3q_1 - p_1q_3) + k(p_1q_2 - p_2q_1)$$

$$pq = p_0q_0 - (p_1q_1 + p_2q_2 + p_3q_3)$$

$$+ p_0(iq_1 + jq_2 + kq_3) + q_0(ip_1 + jp_2 + kp_3)$$

$$+ i(p_2q_3 - p_3q_2) + j(p_3q_1 - p_1q_3) + k(p_1q_2 - p_2q_1)$$

$$pq = p_0q_0 - (p_1q_1 + p_2q_2 + p_3q_3) + p_0(iq_1 + jq_2 + kq_3) + q_0(ip_1 + jp_2 + kp_3) + i(p_2q_3 - p_3q_2) + j(p_3q_1 - p_1q_3) + k(p_1q_2 - p_2q_1)$$

$$pq = p_0q_0 - (p_1q_1 + p_2q_2 + p_3q_3)$$

$$+ p_0(iq_1 + jq_2 + kq_3) + q_0(ip_1 + jp_2 + kp_3)$$

$$+ i(p_2q_3 - p_3q_2) + j(p_3q_1 - p_1q_3) + k(p_1q_2 - p_2q_1)$$

$$pq = p_0q_0 - \overbrace{(p_1q_1 + p_2q_2 + p_3q_3)}^{\vec{p} \cdot \vec{q}} + \overbrace{p_0(iq_1 + jq_2 + kq_3) + q_0(ip_1 + jp_2 + kp_3)}^{q_0 \cdot \vec{p}} + i(p_2q_3 - p_3q_2) + j(p_3q_1 - p_1q_3) + k(p_1q_2 - p_2q_1)$$

$$pq = p_0q_0 - \overbrace{(p_1q_1 + p_2q_2 + p_3q_3)}^{\vec{p} \cdot \vec{q}} + \overbrace{p_0(iq_1 + jq_2 + kq_3) + q_0(ip_1 + jp_2 + kp_3)}^{q_0 \cdot \vec{p}} + \underbrace{i(p_2q_3 - p_3q_2) + j(p_3q_1 - p_1q_3) + k(p_1q_2 - p_2q_1)}_{\vec{p} \times \vec{q}}$$

Damit wurde die wohl am leichtesten per Hand zu berechnende Variante gefunden:

$$pq = p_0 q_0 - \vec{p} \cdot \vec{q} + p_0 \vec{q} + q_0 \vec{p} + \vec{p} \times \vec{q}$$

oder analog in Matrixschreibweise:

$$pq = r = \begin{pmatrix} r_0 \\ r_1 \\ r_2 \\ r_3 \end{pmatrix} = \begin{pmatrix} p_0 & -p_1 & -p_2 & -p_3 \\ p_1 & p_0 & -p_3 & p_2 \\ p_2 & p_3 & p_0 & -p_1 \\ p_3 & -p_2 & p_1 & p_0 \end{pmatrix} \begin{pmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{pmatrix}$$

konjugiertes Quaternionen

Zum Beschreiben, warum ein Quaternion eine Rotation darstellt, wird noch eine letzte Rechenregel für Quaternionen benötigt, ähnlich wie bei den komplexen Zahlen $\mathbb C$ definiert man sich das konjugierte Quaternion als:

$$q^* = q_0 - (iq_1 + jq_2 + kq_3)$$

Zurück zu Rotationsmatrizen, wir wissen:

$$\vec{w} = R \cdot \vec{v}$$

beschreibt eine Rotation mit einer Matrix. Gesucht ist nun ein ähnlicher Audruck für ein Quaternion.

Zurück zu Rotationsmatrizen, wir wissen:

$$\vec{w} = R \cdot \vec{v}$$

beschreibt eine Rotation mit einer Matrix. Gesucht ist nun ein ähnlicher Audruck für ein Quaternion. Instinktiv versucht man zunächst:

$$\vec{w} = q \cdot \vec{v}$$

Berechnet man nun das obige Quaternionenprodukt, so ergibt sich:

$$\vec{w} = q \cdot \vec{v} = (q_0 + \vec{q})(0 + \vec{v})$$

= $q_0 \cdot 0 - \vec{q} \cdot \vec{v} + 0 \cdot \vec{q} + q_0 \vec{v} + \vec{q} \times \vec{v}$
= $-\vec{q} \cdot \vec{v} + q_0 \vec{v} + \vec{q} \times \vec{v}$

Zurück zu Rotationsmatrizen, wir wissen:

$$\vec{w} = R \cdot \vec{v}$$

beschreibt eine Rotation mit einer Matrix. Gesucht ist nun ein ähnlicher Audruck für ein Quaternion. Instinktiv versucht man zunächst:

$$\vec{w} = q \cdot \vec{v}$$

Berechnet man nun das obige Quaternionenprodukt, so ergibt sich:

$$\vec{w} = q \cdot \vec{v} = (q_0 + \vec{q})(0 + \vec{v})$$

= $q_0 \cdot 0 - \vec{q} \cdot \vec{v} + 0 \cdot \vec{q} + q_0 \vec{v} + \vec{q} \times \vec{v}$
= $-\vec{q} \cdot \vec{v} + q_0 \vec{v} + \vec{q} \times \vec{v}$

Wir liegen nur in \mathbb{R}^3 , wenn $q_0 = 0$ und damit:

$$\vec{q} \cdot \vec{v} = 0$$

Wir liegen also nur in \mathbb{R}^3 , wenn \vec{q} senkrecht auf \vec{v} steht: \Rightarrow erster Ansatz im allgemeinen nicht aufrecht zu erhalten! Zweiter Ansatz:

- vpq , vqp , pqv
- qpv , pvq , qvp

Wir liegen also nur in \mathbb{R}^3 , wenn \vec{q} senkrecht auf \vec{v} steht: \Rightarrow erster Ansatz im allgemeinen nicht aufrecht zu erhalten! Zweiter Ansatz:

- vpq , vqp , pqv
- qpv , pvq , qvp

Das Produkt pq ist wieder ein Quaternion also bleibt nur pvq und qvp.

Berechnet man das Produkt $p\vec{v}q$, so ergibt sich für den skalaren Anteil w_0 :

$$w_0 = -q_0(ec{p}\cdotec{v}) - p_0(ec{v}\cdotec{q}) + (ec{p} imesec{q})\cdotec{v}$$

Berechnet man das Produkt $p\vec{v}q$, so ergibt sich für den skalaren Anteil w_0 :

$$w_0 = -q_0(ec{p}\cdotec{v}) - p_0(ec{v}\cdotec{q}) + (ec{p} imesec{q})\cdotec{v}$$

Setzt man nun noch $q = p^*$ ein, so folgt:

$$w_0 = -p_0(\vec{p} \cdot \vec{v}) - p_0(\vec{v} \cdot -\vec{p}) + (\vec{p} \times -\vec{p}) \cdot \vec{v}$$

= $-p_0[\vec{p} \cdot \vec{v} + (-\vec{v} \cdot \vec{p})] + 0$
= 0

Berechnet man das Produkt $p\vec{v}q$, so ergibt sich für den skalaren Anteil w_0 :

$$w_0 = -q_0(ec{p}\cdotec{v}) - p_0(ec{v}\cdotec{q}) + (ec{p} imesec{q})\cdotec{v}$$

Setzt man nun noch $q = p^*$ ein, so folgt:

$$w_0 = -p_0(\vec{p} \cdot \vec{v}) - p_0(\vec{v} \cdot -\vec{p}) + (\vec{p} \times -\vec{p}) \cdot \vec{v}$$

= $-p_0[\vec{p} \cdot \vec{v} + (-\vec{v} \cdot \vec{p})] + 0$
= 0

Ab jetzt wird der Term $q\vec{v}q^*$ als Quaternionenrotationsoperator $L_v(q)$ bezeichnet.

Wir wissen $q = q_0 + \vec{q}$

Für ein normiertes Quaternion gilt:

$$q_0^2 + |\vec{q}|^2 = 1$$

Wir wissen $q = q_0 + \vec{q}$.

Für ein normiertes Quaternion gilt:

$$q_0^2 + |\vec{q}|^2 = 1$$

Erinnerung: Pythagoras am Einheitskreis!

$$\cos^2\phi + \sin^2\phi = 1$$

Wir wissen $q = q_0 + \vec{q}$.

Für ein normiertes Quaternion gilt:

$$q_0^2 + |\vec{q}|^2 = 1$$

Erinnerung: Pythagoras am Einheitskreis!

$$\cos^2\phi+\sin^2\phi=1$$

Daraus folgern wir:

$$\cos^2 \phi = q_0^2$$
$$\sin^2 \phi = |\vec{q}|^2$$

Wir wissen $q = q_0 + \vec{q}$.

Für ein normiertes Quaternion gilt:

$$q_0^2 + |\vec{q}|^2 = 1$$

Erinnerung: Pythagoras am Einheitskreis!

$$\cos^2\phi + \sin^2\phi = 1$$

Daraus folgern wir:

$$\cos^2 \phi = q_0^2$$
$$\sin^2 \phi = |\vec{q}|^2$$

Man kann also allgemein für ein Quaternion schreiben:

$$q = q_0 + \vec{q} = \cos\phi + \vec{u}\sin\phi$$

mit
$$\vec{u} = \frac{\vec{q}}{|\vec{q}|} = \frac{\vec{q}}{\sin\phi}$$

$$q = q_0 + \vec{q} = \cos\phi + \vec{u}\sin\phi$$

$$q = q_0 + \vec{q} = \cos\phi + \vec{u}\sin\phi$$

 \bullet \vec{u} wird sich noch als Rotationsachse herausstellen

$$q = q_0 + \vec{q} = \cos\phi + \vec{u}\sin\phi$$

- \bullet \vec{u} wird sich noch als Rotationsachse herausstellen
- ullet ϕ scheint in jedem Fall im Zusammenhang mit dem Rotationswinkel zu stehen

$$q = q_0 + \vec{q} = \cos\phi + \vec{u}\sin\phi$$

- \bullet \vec{u} wird sich noch als Rotationsachse herausstellen
- ullet ϕ scheint in jedem Fall im Zusammenhang mit dem Rotationswinkel zu stehen
- ⇒ der Achse-Winkel Charackter des Quaternions wird deutlich!

$$q = q_0 + \vec{q} = \cos\phi + \vec{u}\sin\phi$$

- \bullet \vec{u} wird sich noch als Rotationsachse herausstellen
- ullet ϕ scheint in jedem Fall im Zusammenhang mit dem Rotationswinkel zu stehen
- ⇒ der Achse-Winkel Charackter des Quaternions wird deutlich!
- es wird nun Zeit zu zeigen, dass das Quaternion auch eine Rotation darstellt!

Quaternionen-Der Achse-Winkel Charakter

$$q = q_0 + \vec{q} = \cos\phi + \vec{u}\sin\phi$$

- \bullet \vec{u} wird sich noch als Rotationsachse herausstellen
- ullet ϕ scheint in jedem Fall im Zusammenhang mit dem Rotationswinkel zu stehen
- \Rightarrow der Achse-Winkel Charackter des Quaternions wird deutlich!
- es wird nun Zeit zu zeigen, dass das Quaternion auch eine Rotation darstellt!
- Ab jetzt im Hinterkopf behalten, wir behandeln normierte Quaternionen

Wir benötigen noch eine Kurzschreibweise:

$$L_q(v) = q\vec{v}q^*$$

Und das fertig vereinfachte Ergebnis der Multiplikation:

$$\vec{w} = qvq^* = (q_0 + \vec{q})(0 + \vec{v})(q_0 - \vec{q})$$

Wir benötigen noch eine Kurzschreibweise:

$$L_q(v) = q\vec{v}q^*$$

Und das fertig vereinfachte Ergebnis der Multiplikation:

$$egin{aligned} ec{w} &= q v q^* = (q_0 + ec{q})(0 + ec{v})(q_0 - ec{q}) \ &= (2 q_0^2 - 1) ec{v} + 2 (ec{q} \cdot ec{v}) ec{q} + 2 q_0 (ec{q} imes ec{v}) \end{aligned}$$

Wir benötigen noch eine Kurzschreibweise:

$$L_q(v) = q\vec{v}q^*$$

Und das fertig vereinfachte Ergebnis der Multiplikation:

$$egin{aligned} ec{w} &= qvq^* = (q_0 + ec{q})(0 + ec{v})(q_0 - ec{q}) \ &= (2q_0^2 - 1)ec{v} + 2(ec{q} \cdot ec{v})ec{q} + 2q_0(ec{q} imes ec{v}) \ &= (q_0^2 - |ec{q}|^2)ec{v} + 2(ec{q} \cdot ec{v})ec{q} + 2q_0(ec{q} imes ec{v}) \end{aligned}$$

Wir benötigen noch eine Kurzschreibweise:

$$L_q(v) = q\vec{v}q^*$$

Und das fertig vereinfachte Ergebnis der Multiplikation:

$$egin{aligned} ec{w} &= q v q^* = (q_0 + ec{q})(0 + ec{v})(q_0 - ec{q}) \ &= (2q_0^2 - 1)ec{v} + 2(ec{q} \cdot ec{v})ec{q} + 2q_0(ec{q} imes ec{v}) \ &= (q_0^2 - |ec{q}|^2)ec{v} + 2(ec{q} \cdot ec{v})ec{q} + 2q_0(ec{q} imes ec{v}) \end{aligned}$$

Sowie 2 Eigenschaften des Operators:

- Linearität I : $L_q(a+b) = L_q(a) + L_q(b)$
- 2 Linearität II: $L_q(ka) = k \cdot L_q(a)$

Beweis- $L_q(v)$ beschreibt eine Rotation

Trick: zerlege den zu rotierenden Vektor \vec{v} in 2 Teile:

$$ec{v} = \overbrace{\vec{a}}^{parallel\ zu\ ec{q}} + \overbrace{\vec{n}}^{senkrecht\ zu\ ec{q}} = k\,ec{q} + ar{n}$$
 $ec{w} = ec{b} + ec{m}$

Beweis- $L_q(v)$ beschreibt eine Rotation

Trick: zerlege den zu rotierenden Vektor \vec{v} in 2 Teile:

Was uns schon klar sein sollte, der zur Rotationsachse parallel Anteil bleibt bei der Rotation unverändert!

Der parallele Anteil a

Wegen der Linearität von $L_q(v)$ gilt:

$$\vec{w} = L_q(v) = L_q(a+n) = L_q(a) + L_q(n)$$

Was uns erlaubt beide Teile separat zu betrachten.

Der parallele Anteil a

Wegen der Linearität von $L_q(v)$ gilt:

$$\vec{w} = L_q(v) = L_q(a+n) = L_q(a) + L_q(n)$$

Was uns erlaubt beide Teile separat zu betrachten.

$$L_q(a) = L_q(k \cdot \vec{q})$$
 Wobei k ein Skalar darstellt
$$= q(k\vec{q})q^*$$

$$= (q_0^2 - |\vec{q}|^2)(k\vec{q}) + 2(\vec{q} \cdot k\vec{q})\vec{q} + 2q_0(\vec{q} \times k\vec{q})$$

$$= kq_0^2\vec{q} - k|\vec{q}|^2\vec{q} + 2k|\vec{q}|^2\vec{q}$$

$$= k(q_0^2 + |\vec{q}|^2)$$

$$= k\vec{q} = a$$

Der senkrechte Anteil

$$L_{q}(n) = (q_{0}^{2} - |\vec{q}|^{2})n + 2q_{0}|\vec{q}|(\vec{u} \times \vec{n})$$

$$= n(\cos^{2}\phi - \sin^{2}\phi) + 2\cos\phi\sin\phi(\vec{u} \times \vec{n})$$

$$= n\cos(2\phi) + (\vec{u} \times \vec{n})\sin(2\phi)$$

Vermutung: Rotation um die Achse \vec{u} mit dem Winkel 2ϕ

Vermutung bestätigen!

$$L_q(n) = n\cos(2\phi) + (\vec{u} \times \vec{n})\sin(2\phi)$$

Wir haben bereits gelernt wie man einen Vektor \vec{v} um einen gegebenen Vektor und einen gegebenen Winkel rotiert.

Vermutung bestätigen!

$$L_q(n) = n\cos(2\phi) + (\vec{u} \times \vec{n})\sin(2\phi)$$

Wir haben bereits gelernt wie man einen Vektor \vec{v} um einen gegebenen Vektor und einen gegebenen Winkel rotiert. \Rightarrow Rodrigues Rotationsformel.

Vermutung bestätigen!

$$L_q(n) = n\cos(2\phi) + (\vec{u} \times \vec{n})\sin(2\phi)$$

Wir haben bereits gelernt wie man einen Vektor \vec{v} um einen gegebenen Vektor und einen gegebenen Winkel rotiert. \Rightarrow Rodrigues Rotationsformel.

$$n_{Rot} = n\cos(2\phi) + (\vec{u} \times \vec{n})\sin(2\phi) + \vec{u}(\vec{u} \cdot \vec{n})(1 - \cos(2\phi))$$
$$= n \cdot \cos(2\phi) + (\vec{u} \times \vec{n})\sin(2\phi)$$

Wichtige Schlussfolgerung

Für jedes Einheitsquaternion $q=q_0+\vec{q}=\cos\phi+\vec{u}\sin\phi$ und für jeden Vektor $\vec{v}\in\mathbb{R}^3$, beschreibt der Quaternionrotationsoperator $L_q(v)=q\vec{v}q^*$ eine Rotation von \vec{v} um die Achse $\vec{u}=\frac{\vec{q}}{|\vec{q}|}$ mit dem Winkel 2ϕ .

Wichtige Schlussfolgerung

Für jedes Einheitsquaternion $q=q_0+\vec{q}=\cos\phi+\vec{u}\sin\phi$ und für jeden Vektor $\vec{v}\in\mathbb{R}^3$, beschreibt der Quaternionrotationsoperator $L_q(v)=q\vec{v}q^*$ eine Rotation von \vec{v} um die Achse $\vec{u}=\frac{\vec{q}}{|\vec{q}|}$ mit dem Winkel 2ϕ .

Analog soll im Folgenden der Operator $L_{q^*}=q^*\vec{v}q$ definiert sein als:

Für jedes Einheitsquaternion $q=q_0+\vec{q}=\cos\phi+\vec{u}\sin\phi$ und für jeden Vektor $\vec{v}\in\mathbb{R}^3$, beschreibt der Quaternionrotationsoperator $L_{q^*}=q^*\vec{v}\,q$ eine Rotation von \vec{v} um die Achse $\vec{u}=\frac{\vec{q}}{|\vec{q}|}$ mit dem Winkel -2ϕ .

Arten der Rotation

Es wurde nun festgestellt, dass eine Rotation über die Folgenden 2 Gleichungen ausgeführt werden kann:

$$\vec{w} = R \cdot \vec{v}$$

$$\vec{w} = q\vec{v}q^*$$

Arten der Rotation

Es wurde nun festgestellt, dass eine Rotation über die Folgenden 2 Gleichungen ausgeführt werden kann:

$$\vec{w} = R \cdot \vec{v}$$

$$\vec{w} = q\vec{v}q^*$$

Damit kann der Zusammenhang zwischen Quaternion und Rotationsmatrix ermittelt werden:

$$R \cdot \vec{v} = q \vec{v} q^*$$

es ist bereits bekannt, dass:

$$\vec{w} = qvq^*$$

$$= (2q_0^2 - 1)\vec{v} + 2(\vec{q} \cdot \vec{v})\vec{q} + 2q_0(\vec{q} \times \vec{v})$$

Betrachten wir davon nun jeden Summanden einzeln, so erhalten wir:

$$(2q_0^2-1)ec{v} = \left(egin{array}{ccc} (2q_0^2-1) & 0 & 0 & 0 \ 0 & (2q_0^2-1) & 0 & 0 \ 0 & 0 & (2q_0^2-1) \end{array}
ight) \left(egin{array}{c} v_1 \ v_2 \ v_3 \end{array}
ight) \ 2(ec{v}\cdotec{q})ec{q} = \left(egin{array}{ccc} 2q_1^2 & 2q_1q_2 & 2q_1q_3 \ 2q_1q_2 & 2q_2^2 & 2q_2q_3 \ 2q_1q_3 & 2q_2q_3 & 2q_3^2 \end{array}
ight) \left(egin{array}{c} v_1 \ v_2 \ v_3 \end{array}
ight) \ 2q_0(ec{q} imesec{v}) = \left(egin{array}{ccc} 0 & -2q_0q_3 & 2q_0q_2 \ 2q_0q_3 & 0 & -2q_0q_1 \ -2q_0q_2 & 2q_0q_1 & 0 \end{array}
ight) \left(egin{array}{c} v_1 \ v_2 \ v_3 \end{array}
ight) \ \end{array}$$

$$\begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} = \begin{pmatrix} 2q_0^2 - 1 + 2q_1^2 & 2q_1q_2 - 2q_0q_3 & 2q_1q_3 + 2q_0q_2 \\ 2q_1q_2 + 2q_0q_3 & 2q_0^2 - 1 + 2q_2^2 & 2q_2q_3 - 2q_0q_1 \\ 2q_1q_3 - 2q_0q_2 & 2q_2q_3 + 2q_0q_1 & 2q_0^2 - 1 + 2q_3^2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

$$\vec{w} = qvq^* = Qv$$

Haben wir nun eine Matrix der Form

$$\left(\begin{array}{ccc} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{array}\right)$$

Können wir beide Matrizen Gleichsetzen und erhalten 9 Gleichungen, aus denen wir Die Quaternionenelemente ermitteln:

$$\begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{pmatrix} = \begin{pmatrix} 2q_0^2 - 1 + 2q_1^2 & 2q_1q_2 - 2q_0q_3 & 2q_1q_3 + 2q_0q_2 \\ 2q_1q_2 + 2q_0q_3 & 2q_0^2 - 1 + 2q_2^2 & 2q_2q_3 - 2q_0q_1 \\ 2q_1q_3 - 2q_0q_2 & 2q_2q_3 + 2q_0q_1 & 2q_0^2 - 1 + 2q_3^2 \end{pmatrix}$$

$$\begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{pmatrix} = \begin{pmatrix} 2q_0^2 - 1 + 2q_1^2 & 2q_1q_2 - 2q_0q_3 & 2q_1q_3 + 2q_0q_2 \\ 2q_1q_2 + 2q_0q_3 & 2q_0^2 - 1 + 2q_2^2 & 2q_2q_3 - 2q_0q_1 \\ 2q_1q_3 - 2q_0q_2 & 2q_2q_3 + 2q_0q_1 & 2q_0^2 - 1 + 2q_3^2 \end{pmatrix}$$

Ideen?

erster Ansatz

• berechne die Spur der Matrix Q

$$Spur(Q) = 4q_0^2 - 3 + 2(q_0^2 + q_1^2 + q_2^2 + q_3^2) = 4q_0^2 - 1$$
$$q_0 = \frac{1}{2}\sqrt{m_{11} + m_{22} + m_{33} + 1}$$

erster Ansatz

• berechne die Spur der Matrix Q

$$Spur(Q) = 4q_0^2 - 3 + 2(q_0^2 + q_1^2 + q_2^2 + q_3^2) = 4q_0^2 - 1$$
$$q_0 = \frac{1}{2}\sqrt{m_{11} + m_{22} + m_{33} + 1}$$

Die anderen Komponenten lassen sich mit Hilfe von q_0 schnell ermitteln:

$$4q_0q_1 = m_{32} - m_{23}$$

$$4q_0q_2 = m_{13} - m_{31}$$

$$4q_0q_3 = m_{21} - m_{12}$$

erster Ansatz

• berechne die Spur der Matrix Q

$$Spur(Q) = 4q_0^2 - 3 + 2(q_0^2 + q_1^2 + q_2^2 + q_3^2) = 4q_0^2 - 1$$
$$q_0 = \frac{1}{2}\sqrt{m_{11} + m_{22} + m_{33} + 1}$$

Die anderen Komponenten lassen sich mit Hilfe von q_0 schnell ermitteln:

$$4q_0q_1 = m_{32} - m_{23}$$

 $4q_0q_2 = m_{13} - m_{31}$
 $4q_0q_3 = m_{21} - m_{12}$

Was könnte hier schief laufen?

- solange q_0 reell oder $\neq 0$ gibt es keine Probleme
- ullet Die Richtung Quaternion o Rotationsmatrix ist leicht

Doch unsere Lösungsstrategie versagt, falls einer der obigen Fälle eintritt.

Abhilfe schafft ein Verfahren, dass diese Fälle gesondert betrachtet.

Der Algorithmus zum Umwandeln Rotationsmatrix <-> Quaternion

```
Algorithmus 1: Ein Algorithmus zum Erstellen eines Quaternions aus einer Rota-
  tionsmatrix
   Eingabe : Eine Matrix Q
   Ausgabe : Ein Quaternion q = (q_0, q_1, q_2, q_3)
c_1 = 0.5 \cdot \sqrt{1 + q_{11} + q_{22} + q_{33}}
 c_2 = 0.5 \cdot \sqrt{1 + q_{11} - q_{22} - q_{33}}
c_3 = 0.5 \cdot \sqrt{1 - q_{11} + q_{22} - q_{33}}
 c_4 c_4 = 0.5 \cdot \sqrt{1 - q_{11} - q_{22} + q_{33}}
5 c = Max\{c_1, c_2, c_3, c_4\};
6 if (c == c_1) then
11 if (c == c_2) then
        q_1 = c
        q_2 = \frac{q_{21}+q_{12}}{4}
      (c == c_3) then
      (c == c_4) then
        q_0 = \frac{q_{21} - q_{12}}{l}
        q_3 = c
```

- durch einen ähnlichen Vergleich lässt sich der Zusammenhang zwischen Eulerwinkeln und Quaternionen errechnen
- Betrachte zunächst die YPR Sequenz mit Hilfe von Quaternionen

YPR-Sequenz

Die YPR Sequenz stellt eine Rotation um die z-Achse mit dem Winkel α , gefolgt von einer Rotation um die neue y-Achse mit Winkel β und anschließend eine Rotation um die neue x-Achse mit Winkel γ dar.

Oder etwas mathematischer

$$q_{ypr} = q_z q_y q_x$$

Oder etwas mathematischer

$$q_{ypr} = q_z q_y q_x$$

wobei zunächst eine Rotation um die z-Achse(k) mit α :

$$q_z = \cos(\frac{\alpha}{2}) + k\sin(\frac{\alpha}{2})$$

Oder etwas mathematischer

$$q_{ypr} = q_z q_y q_x$$

wobei zunächst eine Rotation um die z-Achse(k) mit α :

$$q_z = \cos(\frac{\alpha}{2}) + k\sin(\frac{\alpha}{2})$$

anschließend eine Rotation um die y-Achse(j) mit β (Pitch):

$$q_y = \cos(\frac{\beta}{2}) + j\sin(\frac{\beta}{2})$$

Oder etwas mathematischer

$$q_{ypr} = q_z q_y q_x$$

wobei zunächst eine Rotation um die z-Achse(k) mit α :

$$q_z = \cos(\frac{\alpha}{2}) + k\sin(\frac{\alpha}{2})$$

anschließend eine Rotation um die y-Achse(j) mit β (Pitch):

$$q_y = \cos(\frac{\beta}{2}) + j\sin(\frac{\beta}{2})$$

und letztendlich eine Rotation um die x-Achse(i) mit γ (Roll):

$$q_{x}=\cos(\frac{\gamma}{2})+i\sin(\frac{\gamma}{2})$$

$$\begin{aligned} q_{ypr} &= q_z q_y q_x = q_0 + i q_1 + j q_2 + k q_3 \quad \text{wobei} \\ q_0 &= \cos(\frac{\alpha}{2}) \cos(\frac{\beta}{2}) \cos(\frac{\gamma}{2}) + \sin(\frac{\alpha}{2}) \sin(\frac{\beta}{2}) \sin(\frac{\gamma}{2}) \\ q_1 &= \cos(\frac{\alpha}{2}) \cos(\frac{\beta}{2}) \sin(\frac{\gamma}{2}) - \sin(\frac{\alpha}{2}) \sin(\frac{\beta}{2}) \cos(\frac{\gamma}{2}) \\ q_2 &= \cos(\frac{\alpha}{2}) \sin(\frac{\beta}{2}) \cos(\frac{\gamma}{2}) + \sin(\frac{\alpha}{2}) \cos(\frac{\beta}{2}) \sin(\frac{\gamma}{2}) \\ q_3 &= \sin(\frac{\alpha}{2}) \cos(\frac{\beta}{2}) \cos(\frac{\gamma}{2}) - \cos(\frac{\alpha}{2}) \sin(\frac{\beta}{2}) \sin(\frac{\gamma}{2}) \end{aligned}$$

Zwischenstand

Was fehlt noch?

- Bestimmung der Eulerwinkel aus einer beliebigen Rotationsmatrix
- Bestimmung von Achse und Winkel aus einer beliebigen Rotationsmatrix
- Bestimmung der Eulerwinkel aus einem Quaternion
- Bestimmung der Achse und Winkel aus einem Quaternion
- Bestimmung von Achse und Winkel aus den Eulerwinkeln
- Bestimmung der Eulerwinkel aus Achse und Winkel

Vergleich von Quaternionen, Rotationsmatrizen , Achse-Winkel und Eulerwinkel Darstellung in:

Vergleich von Quaternionen, Rotationsmatrizen , Achse-Winkel und Eulerwinkel Darstellung in:

notwendiger Speicherbedarf

Vergleich von Quaternionen, Rotationsmatrizen , Achse-Winkel und Eulerwinkel Darstellung in:

- notwendiger Speicherbedarf
- $oldsymbol{Q}$ Anzahl Rechenoperationen bei Rotation eines Vektors im \mathbb{R}^3

Vergleich von Quaternionen, Rotationsmatrizen , Achse-Winkel und Eulerwinkel Darstellung in:

- notwendiger Speicherbedarf
- $oldsymbol{Q}$ Anzahl Rechenoperationen bei Rotation eines Vektors im \mathbb{R}^3
- $\ \, \textbf{3} \,$ Anzahl Rechenoperationen bei Verkettung zweier Rotationen im \mathbb{R}^3

Vergleich der Effizienz-Speicherbedarf

	Quaternion	Matrix	Achse-Winkel	Eulerwinkel
Anzahl Speicherbedarf	4	9	3	3

Vergleich der Effizienz-Rotation

	Quaternion	Matrix	Achse-Winkel	Eulerwinkel
Anzah∣ Additionen	12	6	16	-
Anzahl Multiplikationen	18	9	23	-

Vergleich der Effizienz-Sequenzen

	Quaternion	Matrix	Achse-Winkel	Eulerwinkel
Anzah∣ Additionen	12	18	-	-
Anzahl Multiplikationen	16	27	-	-

Danke an alle die es bis jetzt ausgehalten haben zuzuhören!