# Modélisation probabiliste des incertitudes

#### G. Perrin

guillaume.perrin@univ-eiffel.fr

Année 2022-2023















#### Plan de la séance

- Introduction
- Maximum d'entropie
- Méthode d'ajustement de familles de loi
- 4 Méthode à noyau

#### Introduction - Schéma général



#### Introduction - contexte de la séance

- On suppose s'intéresser à un système particulier, dont le comportement peut être décrit par  $d \ge 1$  paramètres scalaires regroupés dans le vecteurs  $\mathbf{x} = (x_1, \dots, x_d)$ .
- Ces entrées sont considérées incertaines, au sens où ils ne sont pas parfaitement connus.
- On peut distinguer deux types d'entrées incertaines :
  - → les variables stochastiques ↔ incertitude liée à une variabilité naturelle résultant de phénomènes aléatoires (fluctuations aléatoires dans un procédé de fabrication, vent,...),
  - → les variables épistémiques ↔ incertitude liée à un manque de connaissance pour des quantités déterministes (grandeurs physiques par ex.).
- Cette distinction est particulièrement importante lorsque l'on s'intéresse à des séries de systèmes.
- Dans la suite on modélise x comme un vecteur aléatoire de PDF  $f_x$  à déterminer.

## Introduction - problématique

#### Le choix de $f_x$ est **délicat** :

- un choix arbitraire peut significativement fausser les conclusions d'une quantification d'incertitude,
- l'information disponible est souvent partielle pour construire une loi de probabilité.
- $\Rightarrow$  comment construire  $f_x$  le moins subjectivement possible, à partir de la seule information disponible a priori?

#### Quelques approches classiques

- maximum d'entropie (avis d'expert sans observation),
- 2 lois paramétriques (avis d'expert + quelques observations),
- 3 méthode des noyaux (beaucoup d'observations).

- On cherche à dimensioner un barrage pour un site particulier.
- Un nouveau béton a été mis au point spécialement pour cet objectif, aux propriétés a priori "remarquables" (corrosion, rigidité, coût de fabrication, longévité...).





- On dispose d'une loi de comportement pour ce matériau (ex : élasto-plasticité), caractérisée par trois paramètres :
  - un module de Young E,
  - un coefficient de Poisson  $\nu$ ,
  - ullet une pression maximale  $P_{\max}$  à rupture en compression.
- $\Rightarrow$  Les valeurs de ces paramètres, regroupés dans  $\mathbf{x} = (E, \nu, P_{\text{max}})$ , sont a priori **inconnues**.
- ⇒ On aimerait disposer d'une loi pour **x** permettant de caractériser les valeurs qu'il peut vraisemblablement prendre.





- On prépare alors une série de N échantillons cubiques de ce même matériau, que l'on soumet à une **même** pression verticale lentement croissante  $f_s(t)$  (quasi-statique).
- On mesure les déplacements induits  $u^{(n)}(t)$ , ainsi que la pression  $P_{\text{max}}^{(n)}$  ayant conduit à la ruine du matériau,  $1 \le n \le N$ .



| Pente à l'origine $\times 10^{10}  \text{Pa}$ | $P_{\mathrm{max},n}^{\mathrm{mes}} \times 10^7 \mathrm{Pa}$ |
|-----------------------------------------------|-------------------------------------------------------------|
| $3.94 \pm 0.01$                               | $4.8 \pm 0.1$                                               |
| $3.96 \pm 0.01$                               | $4.8 \pm 0.1$                                               |
| $4.13 \pm 0.01$                               | $4.7 \pm 0.1$                                               |
| $3.96 \pm 0.01$                               | $5.0 \pm 0.1$                                               |
| $4.08 \pm 0.01$                               | $4.3 \pm 0.1$                                               |
| $3.76 \pm 0.01$                               | $5.8 \pm 0.1$                                               |
| $3.95 \pm 0.01$                               | $5.5 \pm 0.1$                                               |
| $3.90 \pm 0.01$                               | $5.2 \pm 0.1$                                               |
| $3.81 \pm 0.01$                               | $5.2 \pm 0.1$                                               |
| $4.06 \pm 0.01$                               | $4.8 \pm 0.1$                                               |
|                                               |                                                             |

#### $\Rightarrow$ A partir de ces N résultats, comment estimer $f_x$ ?

- Potentielle présence d'une double source d'incertitudes :
  - incertitudes de mesure  $\leftrightarrow \pm 0.1$  (Incertitude **épistémique** ou "réductible"),
  - variabilité "naturelle" ↔ {4.8, 4.8, 4.7, ...} (Incertitude aléatoire ou "irréductible").

#### Plan de la séance

- Introduction
- Maximum d'entropie
- Méthode d'ajustement de familles de loi
- Méthode à noyau

## Maximum d'entropie - principe

#### Information disponible

- Aucune observation de x.
- Un avis d'expert portant sur le support et/ou les moments statistiques de x (ex : moyenne, variance,...).

On suppose alors que cette information peut s'écrire sous la forme d'un sous ensemble  ${\cal A}$  à M+1 contraintes, tel que :

$$\mathcal{A} = \left\{ \int_{\mathbb{R}^d} f_{\mathbf{x}}(\mathbf{x}) d\mathbf{x} = 1, \quad \int_{\mathbb{R}^d} \mathbf{g}_i(\mathbf{x}) f_{\mathbf{x}}(\mathbf{x}) d\mathbf{x} = \mathbf{h}_i, \ 1 \leq i \leq M \right\}.$$

#### Principe

La loi  $f_x$  à construire est celle qui doit avoir la **plus grande "incertitude"** sur l'ensemble de toutes les PDFs qui vérifient les contraintes définies par l'information **disponible** (ou **utilisable**).

## Maximum d'entropie - formulation du problème

#### L'entropie statistique *S* comme mesure de l'incertitude

$$S(f_{\mathbf{x}}) = -\int_{\mathbb{R}^d} f_{\mathbf{x}}(\mathbf{x}) \log(f_{\mathbf{x}}(\mathbf{x})) d\mathbf{x} = -\mathbb{E}\left[\log(f_{\mathbf{x}}(\mathbf{x}))\right].$$

On peut notamment montrer que :

- $S(f_x) = -\infty \leftrightarrow \text{absence d'incertitude (fonction Dirac)}$ .
- Si  $f_x$  est à support compact K, alors  $f_x = \frac{1}{|K|} \mathbb{I}_K$  maximise S.
- Si X et Y sont dépendants, alors  $S(f_{XY}) \leq S(f_X) + S_N(f_Y)$ , et s'ils sont indépendants,  $S(f_{XY}) = S(f_X) + S(f_Y)$ .

Afin de maximiser l'incertitude (et donc de minimiser les biais potentiels, on cherche alors  $f_x$  comme solution de :

$$f_{\mathbf{x}} = \arg \max_{f \in \mathcal{A}} S(f).$$

#### Maximum d'entropie - solution

La **solution analytique** du problème précédent, pour une fonction à support sur K, s'écrit :

$$f_{\mathbf{x}}(\mathbf{x}) = \mathbb{I}_{K}(\mathbf{x}) \exp \left(-\lambda_{0} - \sum_{m=1}^{M} \langle \boldsymbol{\lambda}_{m}, \boldsymbol{g}_{m}(\mathbf{x}) \rangle \right),$$

où les M+1 multiplicateurs de Lagrange  $\lambda_0,\lambda_1,\ldots,\lambda_M$  sont à déterminer à partir des contraintes précédentes, ce qui peut se récrire sous la forme d'une minimisation d'une **fonctionnelle convexe** :

$$\begin{split} & \pmb{\Lambda} = \arg\min_{\pmb{\Lambda}} \left[ \langle \pmb{\Lambda}, \pmb{H} \rangle_{\mathbb{R}^D} + \int_{\mathcal{K}} \exp\left( - \langle \pmb{\Lambda}, \pmb{G}(\pmb{x}) \rangle \right) d\pmb{x} \right], \\ & \pmb{\Lambda} = (\lambda_0, \lambda_1, \dots, \lambda_M) \in \mathbb{R}^D, \quad \pmb{H} = (1, \pmb{h}_1, \dots), \quad \pmb{G} = (1, \pmb{g}_1, \dots). \end{split}$$

#### Maximum d'entropie - Résolution analytique en 1D

**1** Support compact [a, b] connu:

$$f_{\theta}(\theta) = \mathbb{I}_{[a,b]}(\theta).$$

**2** Support  $[0, +\infty[$  et moyenne  $m_{\theta}$  connus :

$$f_{ heta}( heta) = \mathbb{I}_{[0,+\infty[}( heta) rac{1}{m_{ heta}} e^{- heta/m_{ heta}}.$$

**3** Support  $\mathbb{R}$ , moyenne  $\mu$  et écart type  $\sigma$  connus :

$$f_{\theta}(\theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2}\left(\frac{\theta-\mu}{\sigma}\right)^2\right).$$

Les distributions classiques uniforme, exponentielle et gaussienne sont des solutions particulières du principe du maximum d'entropie.

## Maximum d'entropie - Résolution numérique en 1D

Contraintes : Support 
$$[-5,5]$$
,  $\mathbb{E}[\theta] = 1$ ,  $\mathbb{E}[(\theta - \mu)^2] = 1$ ,  $\mathbb{E}[((\theta - \mu)/\sigma)^3] = 2$ ,  $\mathbb{E}[((\theta - \mu)/\sigma)^4] = 10$ .



#### Plan de la séance

- Introduction
- 2 Maximum d'entropie
- Méthode d'ajustement de familles de loi
- Méthode à noyau

## Méthode d'ajustement de familles de loi - principe

#### Information disponible

- n réalisations indépendantes de  $\mathbf{x}$ , regroupées dans  $\mathcal{S}_n := \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ .
- Un avis d'expert supposant que  $f_{\mathbf{x}} \in \mathcal{P} := \{p_{\theta}, \ \theta \in \Theta \subset \mathbb{R}^q\}$ , ce qui revient à dire supposer qu'il existe  $\theta^*$  tel que  $f_{\mathbf{x}} = p_{\theta^*}$  (ex : lois uniformes, gaussiennes, de Poisson...).

#### Principe

Construire  $f_x$  revient à chercher la valeur de  $\theta^* \in \Theta$  la plus vraisemblable vis-à-vis de l'information disponible contenue dans  $S_n$ :

- → méthode des moments,
- → méthode du maximum de vraisemblance,
- → approches bayésiennes.

# Méthode d'ajustement de familles de loi - méthode des moments

- **①** Chercher une transformation F telle que  $\theta = \mathbb{E}_{\theta}[F(x)]$ .
- ② L'estimateur empirique de  $\theta$  s'écrit alors :  $\widehat{\theta} := \frac{1}{n} \sum_{i=1}^{n} F(x_i)$ .

Si  $\mathcal P$  est régulière vis-à-vis de  $\theta$ , et **si**  $f_{\mathsf x}$  **est bien dans**  $\mathcal P$ , alors  $p_{\widehat{\theta}}({\mathsf x}') \approx p_{\theta^\star}({\mathsf x}') + \frac{\partial p_{\theta^\star}}{\partial \theta}({\mathsf x}')(\widehat{\theta} - \theta^\star)$  et l'erreur quadratique moyenne est elle aussi en 1/n:

$$\begin{split} \mathcal{E} &= \mathbb{E} \left[ \int_{\mathbb{R}^d} (p_{\widehat{\boldsymbol{\theta}}}(\mathbf{x}') - p_{\boldsymbol{\theta}^*}(\mathbf{x}'))^2 d\mathbf{x}' \right] \\ &\approx \int_{\mathbb{R}^d} \frac{\partial p_{\boldsymbol{\theta}^*}}{\partial \boldsymbol{\theta}} (\mathbf{x}') \mathbb{E} \left[ (\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^*) (\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^*)^T \right] \left( \frac{\partial p_{\boldsymbol{\theta}^*}}{\partial \boldsymbol{\theta}} (\mathbf{x}') \right)^T d\mathbf{x}' \\ &\approx \frac{1}{n} \int_{\mathbb{R}^d} \frac{\partial p_{\boldsymbol{\theta}^*}}{\partial \boldsymbol{\theta}} (\mathbf{x}') \mathbf{R} \left( \frac{\partial p_{\boldsymbol{\theta}^*}}{\partial \boldsymbol{\theta}} (\mathbf{x}') \right)^T d\mathbf{x}', \quad \mathbf{R} := \mathsf{Cov}(F(\mathbf{x})). \end{split}$$

# Méthode d'ajustement de familles de loi - maximum de vraisemblance

On a juste heta pour que la log-vraisemblance soit maximale (en heta) :

$$L_n(\theta) := \prod_{i=1}^n p_{\theta}(\mathbf{x}_i), \quad \ell_n(\theta) := \log (L_n(\theta)),$$
 $f_{\mathbf{x}} \approx p_{\theta^{\mathsf{MV}}}, \quad \theta^{\mathsf{MV}} \in \arg \max_{\theta \in \Theta} \ell_n(\theta).$ 

- $\rightarrow$   $L_n(\theta)$  est la vraisemblance des données  $S_n$  sachant le paramètre  $\theta$  (qui s'écrit sous forme produit dans le cas de données indépendantes).
- → l'estimateur du maximum de vraisemblance peut exister et être unique, ne pas être unique, ou ne pas exister.
- $\rightarrow$  Sous des hypothèses de régularité sur  $\mathcal{P}$ ,  $\boldsymbol{\theta}^{\text{MV}}$  converge vers  $\boldsymbol{\theta}^{\star}$ , avec un risque quadratique en 1/n, est asymptotiquement normal et efficace (i.e. on ne peut pas faire mieux asymptotiquement).
- ightarrow Méthodes des moments et du max. de vrais. conduisent souvent à des

## Méthode d'ajustement de familles de loi - exemple

#### Exercice:

- On suppose que x suit une loi uniforme  $\mathcal{U}(0,\theta)$ .
- Proposer un estimateur de  $\theta$  par la méthode des moments et par le maximum de vraisemblance.
- Comparer les estimateurs obtenus en terme de risque quadratique.

# $X \sim \mathcal{U}(0,\theta)$ $(\theta = \pi \text{ pour l'illustration gaphique})$

• 
$$Z_n^{(1)} = \frac{n+1}{n} \max_{1 \le i \le n} X_i$$
,  $R(Z_n^{(1)}, \theta) = \frac{\theta^2}{n(n+2)}$   
•  $Z_n^{(2)} = 2\bar{X}_n$ ,  $R(Z_n^{(2)}, \theta) = \frac{\theta^2}{3n}$ .

• 
$$Z_n^{(2)} = 2\bar{X}_n$$
,  $R(Z_n^{(2)}, \theta) = \frac{\theta^2}{3n}$ .





(a) 
$$Z_n^{(1)}$$
,  $n = 10$ 

(b) 
$$Z_n^{(2)}, n = 10$$

# $X \sim \mathcal{U}(0,\theta)$ $(\theta = \pi \text{ pour l'illustration gaphique})$

• 
$$Z_n^{(1)} = \frac{n+1}{n} \max_{1 \le i \le n} X_i$$
,  $R(Z_n^{(1)}, \theta) = \frac{\theta^2}{n(n+2)}$   
•  $Z_n^{(2)} = 2\bar{X}_n$ ,  $R(Z_n^{(2)}, \theta) = \frac{\theta^2}{3n}$ .

• 
$$Z_n^{(2)} = 2\bar{X}_n$$
,  $R(Z_n^{(2)}, \theta) = \frac{\theta^2}{3n}$ 





(c) 
$$Z_n^{(1)}$$
,  $n = 100$ 

(d) 
$$Z_n^{(2)}, n = 100$$

# Méthode d'ajustement de familles de loi - approche bayésienne

- La méthode d'ajustement bayésienne est une extension de l'approche du max. de vrais. pour laquelle on suppose disposer d'une loi a priori sur  $\theta$ .
- $\Rightarrow$  on obtient alors un modèle **hiérarchique** (la loi de x suit une loi donnée, paramétrée par  $\theta$  qui suit lui même une loi donnée).

**Hypothèses** :  $x|\theta \sim p_{\theta}, \ \theta \sim f_{\theta}.$ 

#### Modèle déduit :

$$f_{\mathbf{x}}(\mathbf{x}) = \int_{\mathbf{\Theta}} p_{\theta}(\mathbf{x}) f_{\theta|\mathcal{S}_n}(\theta) d\theta,$$

 $f_{\theta|S_n}(\theta) \propto L_n(\theta) f_{\theta}(\theta)$  (formule de Bayes).



#### Plan de la séance

- Introduction
- 2 Maximum d'entropie
- Méthode d'ajustement de familles de loi
- 4 Méthode à noyau

## Méthode à noyau - principe

$$f_{\boldsymbol{X}}(\boldsymbol{x}) \approx \frac{1}{N} \sum_{n=1}^{N} K(\boldsymbol{x} - \boldsymbol{X}(\theta_n))$$

Même si les approches à noyaux sont qualifiées de non-paramétriques, leur efficacité résulte de la bonne adéquation du noyau K à la distribution  $f_X$ . Le noyau K doit ainsi être adapté au nombre de réalisations disponibles, N, ainsi qu'à la dimension de X, d.

Exercice : proposer des fonctions K pour la reproduction de  $f_X$  dans le cas où X est une v.a. :

- uniforme  $\mathcal{U}\{[0,1]\}$ ,
- gaussienne  $\mathcal{N}(0,1)$ .

## Méthode à noyau et fonction caractéristique

ullet Par définition de la fonction caractéristique, pour tout  $oldsymbol{t} \in \mathbb{R}^d$  :

$$\Phi_{\boldsymbol{X}}(\boldsymbol{t}) := \mathbb{E}\left[\exp(i\langle \boldsymbol{X}, \boldsymbol{t}\rangle_{d})\right],$$

$$= \int_{\mathbb{R}^{d}} \exp(i\langle \boldsymbol{x}, \boldsymbol{t}\rangle_{d}) f_{\boldsymbol{X}}(\boldsymbol{x}) d\boldsymbol{x},$$

On peut alors définir son approximation empirique :

$$\Phi_{\boldsymbol{X}}(\boldsymbol{t}) \approx \widehat{\Phi}_{\boldsymbol{X}}(\boldsymbol{t}) := \frac{1}{N} \sum_{n=1}^{N} \exp(i \langle \boldsymbol{X}(\omega_n), \boldsymbol{t} \rangle_d), \ \boldsymbol{t} \in \mathbb{R}^n.$$

## Méthode à noyau et fonction caractéristique

 $f_X$  étant la transformée de Fourier inverse de  $\Phi_X$ , l'idée des approches à noyaux repose sur l'approximation suivante :

$$f_{\mathbf{X}}(\mathbf{x}) \approx \widehat{f}_{\mathbf{X}}(\mathbf{x}; h, \mathcal{S}(N)),$$

$$\begin{split} \widehat{f}_{\boldsymbol{X}}(\boldsymbol{x};h,\mathcal{S}(N)) &\propto \int_{\mathbb{R}^d} \widehat{\Phi}_{\boldsymbol{X}}(\boldsymbol{t}) \exp\left(-\frac{1}{2}h^2 \boldsymbol{t}^T [\widehat{R}_{\boldsymbol{X}}] \boldsymbol{t}\right) \exp(-i \left\langle \boldsymbol{x}, \boldsymbol{t} \right\rangle_d) d\boldsymbol{t}, \\ &= \frac{1}{N} \sum_{n=1}^N \phi\left(\boldsymbol{x}; \boldsymbol{X}(\omega_n), h^2 [\widehat{R}_{\boldsymbol{X}}]\right). \end{split}$$

où h est un paramètre de lissage, et où  $\phi(\mathbf{x}; \boldsymbol{\mu}, [C])$  désigne la PDF gaussienne multidimensionnelle de moyenne  $\boldsymbol{\mu}$  et de covariance [C].

Exercice : montrer l'égalité précédente.



## Méthode à noyau - cas gaussien

$$f_{\mathbf{X}}(\mathbf{x}) \approx \widehat{f}_{\mathbf{X}}(\mathbf{x}; h, \mathcal{S}(N)) := \frac{1}{N} \sum_{n=1}^{N} \phi\left(\mathbf{x}; \mathbf{X}(\omega_n), h^2[\widehat{R}_{\mathbf{X}}]\right)$$

- Par construction,  $f_X$  est approchée comme une somme de N PDF gaussiennes centrées au niveau des réalisations de X.
- La covariance de ces N gaussiennes est égale à  $h^2 \times [\widehat{R}_{\mathbf{X}}]$ .

Exercice : commenter l'influence de h sur la construction de  $f_X$ .

## Méthode à noyau - propriété

Si,

- $[\widehat{R}_{\pmb{X}}]^{1/2}$  est une matrice symétrique telle que  $[\widehat{R}_{\pmb{X}}]^{1/2}[\widehat{R}_{\pmb{X}}]^{1/2}=[\widehat{R}_{\pmb{X}}]$ ,
- ullet Q est une v.a. uniformément distribuée sur  $\{1,\ldots,{\it N}\}$ ,
- ullet est un vecteur Gaussian centré réduit de composantes indépendantes,
- Q et  $\xi$  sont indépendants,

alors la PDF du vecteur

$$\widehat{\boldsymbol{X}}(Q, \boldsymbol{\xi}) := \boldsymbol{X}(\omega_Q) + h \times [\widehat{R}_{\boldsymbol{X}}]^{1/2} \boldsymbol{\xi}$$

est égale à  $\widehat{f}_{X}(\cdot; h, \mathcal{S}(N))$ .

Exercices : montrer la propriété précédente. En déduire comment générer des réalisations indépendantes de  $\widehat{X}(Q, \xi)$ .

#### Méthode à noyau - propriétés

$$\widehat{\boldsymbol{X}}(Q, \boldsymbol{\xi}) := \boldsymbol{X}(\omega_Q) + h \times [\widehat{R}_{\boldsymbol{X}}]^{1/2} \boldsymbol{\xi}$$

Exercice : calculer la moyenne et la covariance de  $\hat{\mathbf{X}}(Q, \boldsymbol{\xi})$ .

Si la PDF de  $\widetilde{\boldsymbol{X}}$  est

$$\widetilde{f}_{\boldsymbol{X}}(\cdot; h, \mathcal{S}(N)) := \frac{1}{N} \sum_{n=1}^{N} \phi(\boldsymbol{x}; \alpha \boldsymbol{X}(\omega_n) + \boldsymbol{\beta}, [Q]),$$

$$\alpha^2 := (1 - h^2) \frac{N}{N - 1}, \quad \boldsymbol{\beta} := (1 - \alpha) \widehat{\boldsymbol{\mu}}, \quad [Q] := h^2 [\widehat{R}_{\boldsymbol{X}}],$$

alors les moyenne et covariance de  $\widetilde{\pmb{X}}$  sont égales à  $\widehat{\pmb{\mu}}$  et  $[\widehat{R}_{\pmb{X}}]$  respectivement.

Exercice : montrer la propriété précédente.

• La valeur de h doit être optimisée pour minimiser la différence entre  $f_X$  and  $\widehat{f}_X(\cdot; h, \mathcal{S}(N))$ . Le critère basé sur l'erreur intégrée (MISE) est généralement utilisé pour caractériser cette différence :

$$\mathsf{MISE}(h;d,N) = \mathbb{E}_{\mathcal{S}(N)} \left[ \int_{\mathbb{R}^d} \left( f_{\mathbf{X}}(\mathbf{x}) - \widehat{f}_{\mathbf{X}}(\mathbf{x};h,\mathcal{S}(N)) \right)^2 d\mathbf{x} \right].$$

• Sous certaines conditions de régularité sur  $f_X$ , ce critère est remplacé par le critère asymptotique (AMISE) suivant :

MISE
$$(h; d, N) = AMISE(h; d, N) + o(h^4 + N^{-1}h^{-d}),$$
  
 $AMISE(h; d, N) = \frac{h^4}{4}f_1(f_X, [\nabla^2 f_X]) + \frac{h^{-d}}{Nd}f_2(f_X),$ 

où  $f_1$  et  $f_2$  sont deux fonctions qui ne dépendent pas de h mais dépendent de  $f_X$  et de sa matrice hessienne  $[\nabla^2 f_X]$ .

$$AMISE(h; d, N) = \frac{h^4}{4} f_1(f_{\mathbf{X}}, [\nabla^2 f_{\mathbf{X}}]) + \frac{h^{-d}}{Nd} f_2(f_{\mathbf{X}})$$

 En effet, le critère AMISE peut être explicitement minimisé par rapport à h :

$$h^{\text{AMISE}}(d, N) := \left(\frac{1}{N} \frac{f_2(f_{\mathbf{X}})}{f_1([\nabla^2 f_{\mathbf{X}}], f_{\mathbf{X}})}\right)^{1/(d+4)}$$

$$= \arg\min_{h>0} \text{AMISE}(h; d, N).$$

• Sous une hypothèse gaussienne pour  $f_X$ , on peut montrer que :

$$h^{\mathsf{AMISE}}(d,N) pprox h^{\mathsf{Silv}}(d,N) := \left(rac{1}{N}rac{4}{(d+2)}
ight)^{1/(d+4)},$$

où  $h^{Silv}(d, N)$  est appelée "longueur de bande de Silverman".

Exercice : calculer la limite de  $h^{Silv}(d, N)$  quand  $N = q \times d$  et d tend vers  $+\infty$ . Qu'implique une telle valeur pour la longueur de bande?

- La valeur de  $h^{Silv}(d, N)$  ne dépend que de d et N, et n'est plus véritablement adaptée à  $f_X$ .
- Pour des PDFs concentrées sur des sous espaces de  $\mathbb{R}^d$ , ou présentant des structures de dépendances particulières, cette valeur a souvent tendance à sur-évaluer la dispersion de  $f_X$ .

 $\Rightarrow$  d'autres approches, basées notamment sur la vraisemblance  $\mathcal{L}(\mathcal{S}(N)|h)$  de h pour expliquer  $\mathcal{S}(N)$ , ont ainsi été proposées,

$$\mathcal{L}(\mathcal{S}(N)|h) := \prod_{n=1}^{N} \widehat{f}_{\mathbf{X}}(\mathbf{X}(\omega_n); h, \mathcal{S}(N)) = \frac{1}{N^N} \prod_{n=1}^{N} \sum_{m=1}^{N} \phi_{n,m}(h),$$
$$\phi_{n,m}(h) := \phi\left(\mathbf{X}(\omega_n); \mathbf{X}(\omega_m), h^2[\widehat{R}_{\mathbf{X}}]\right), \quad 1 \leq n, m \leq N.$$

Problème : pour N fixé, calculer  $\lim_{h\to 0} \mathcal{L}(\mathcal{S}(N)|h)$ .



- La fonction  $\mathcal{L}(\mathcal{S}(N)|h)$  utilise deux fois la même information (pour calculer  $\widehat{f}_{\mathbf{X}}(\cdot; h, \mathcal{S}(N))$  et pour l'évaluer).
- Afin d'éviter ce phénomène, il est alors préférable de s'orienter vers une vraisemblance "LOO",  $\mathcal{L}^{LOO}(\mathcal{S}(N)|h)$ , telle que :

$$\mathcal{L}^{\mathsf{LOO}}(\mathcal{S}(N)|h) := \frac{1}{(N-1)^N} \prod_{n=1}^N \sum_{m \neq n} \phi_{n,m}(h).$$

• En se donnant cette approximation de la vraisemblance par validation croisée, et une distribution a priori pour h,  $f_h$ , on déduit :

$$f_h(h|\mathcal{S}(N)) \propto \mathcal{L}^{LOO}(\mathcal{S}(N)|h)f_h(h), \ h > 0.$$

• En pratique, la fonction  $\mathcal{L}^{\text{LOO}}(\mathcal{S}(N)|h)$  est souvent très piquée, et pour des valeurs de d>1, un bon compromis est donné par :

$$h^{\mathsf{MLE}}(d, N) := \arg \max_{h>0} \mathcal{L}^{\mathsf{LOO}}(\mathcal{S}(N)|h).$$

## Méthode à noyau - exemples

#### Illustration en 2D

- Points noirs : information disponible.
- Points rouges : nouveaux points générés.





## Méthode à noyau - exemples

#### Illustration en 3D

- Points noirs : information disponible.
- Points rouges : nouveaux points générés.





# Méthode à noyau - remarques finales

- La méthode à noyau peut être utilisé pour tout type de loi, mais il est particulièrement recommandé lorsqu'il est difficile d'intuiter une forme paramétrique pour les CDFs et surtout le copule de **X**.
- Pour être efficace, cette technique nécessite des valeurs de N relativement grandes devant d.
- L'approche par maximum de vraisemblance LOO peut être généralisée à n'importe quel noyau (ici seul le noyau gaussien a été détaillé).
- Lorsque d devient grand, il est souvent pertinent de chercher à diviser
   X en blocs indépendants avant d'effectuer cette modélisation.
- Cette approche peut être vue comme une généralisation continue des histogrammes, en optimisant non plus le nombre de seuils, mais les paramètres du noyau, pour maximiser l'objectivité de l'objet renvoyé.

#### Plan de la séance

- Introduction
- Maximum d'entropie
- Méthode d'ajustement de familles de loi
- Méthode à noyau