A compound proposition that is always true, no matter what the truth values of the propositional variables that occur in it, is called a <u>tautology</u>. The compound propositions p and q are called <u>logically equivalent</u> if $p \leftrightarrow q$ is a tautology. The notation $p \equiv q$ denotes that p and q are <u>logically equivalent</u>.

A compound proposition that is always false is called a **contradiction**.

A compound proposition that is neither a tautology nor a contradiction is called a **contingency**.

Example of a Tautology:

р	$\neg p$	$p ee \neg p$
7	F	T
F	T	+
	·	

Example of a Contradiction:

р	$\neg p$	$p \wedge \neg p$
T	F	F
F	+	F

Example: Show that $\neg (p \land q) \equiv \neg p \lor \neg q$

р	q	$p \wedge q$	$\neg(p \land q)$	$\neg p$	$\neg q$	$\neg p \lor \neg q$	$\neg (p \land q) \longleftrightarrow \neg p \lor \neg q$
T	7	T	F.	٢	٢	F.	
T	F	F	T '	F	+	T	T
F	T	F				T .	7
F	F	F	+	1	+	+	T

tautology! So $7(p \wedge q) = 7p \vee 7q$

Example: Show that $\neg (p \lor q) \equiv \neg p \land \neg q$

р	q	$p \lor q$	$\neg(p \lor q)$	$\neg p$	$\neg q$	$\neg p \wedge \neg q$	$\neg (p \lor q) \leftrightarrow \neg p \land \neg q$
7	T	7	F	F	F	F	7
T	F	T	F	F	T	F	T
F	T	T	F	T	F	F	7
F	F	F	+	7	+	T	

We just Proved:

De Morgan's Laws

$$\neg (p \land q) \equiv \neg p \lor \neg q$$

$$\neg (p \lor q) \equiv \neg p \land \neg q$$

Other Equivalences (from our book) Section 1.3

TABLE 7 Logical Equivalences **Involving Conditional Statements.**

$$p \rightarrow q \equiv \neg p \lor q$$
 Relation by Implication (RBI)

$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$
 Contraposition

$$p \vee q \equiv \neg p \rightarrow q$$

$$p \land q \equiv \neg(p \to \neg q)$$

$$\neg (p \to q) \equiv p \land \neg q$$

$$(p \to q) \land (p \to r) \equiv p \to (q \land r)$$

$$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$$

$$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$$

$$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$$

TABLE 8 Logical

Equivalences Involving Biconditional Statements.

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p) \text{ Biconditional}$$

$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg(p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

definition of xor

*

Other Equivalences (from our book)

To show that two compound propositions are logically equivalent:

- Prove it with a Truth Table
- Use Equivalence Rules to go from one to the other.

TABLE 6 Logical Equivalences.	
Equivalence	Name
$p \wedge \mathbf{T} \equiv p$ $p \vee \mathbf{F} \equiv p$	Identity laws
$p \lor \mathbf{T} \equiv \mathbf{T}$ $p \land \mathbf{F} \equiv \mathbf{F}$	Domination laws
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws
$\neg(\neg p) \equiv p$	Double negation law
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative laws
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws
$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws
$p \lor \neg p \equiv \mathbf{T}$ $p \land \neg p \equiv \mathbf{F}$	Negation laws

Example: Show that $p \to q \equiv \neg q \to \neg p$ (without a truth table)

Associativity (2+3)+5 = 2+3+5 = 2+(3+5)

Example: Show that $(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$ (without a truth table)

Relation by Implication (RBE)

Associativity

Commutativita

Idempotent

Associativity

$$\equiv P \rightarrow (q Vr)$$

RBI

Satisfiability

A compound proposition is <u>satisfiable</u> if there is an assignment of truth values to its variables that makes it true. If there is no such case then we say it is <u>unsatisfiable</u> (i.e. a contradiction)

<u>Example</u>: Show that $(p \lor \neg q) \land (\neg p \lor q) \land (\neg p \lor \neg q)$ is satisfiable. Suppose p is True, that requires q to be True. Suppose p is Felse, => 79 is True => 9 is False so if p = F, and q = F then the expression is satisfiable 7 p | 7 2 | p V 72 | 7 p V 72 |

Satisfiability

Example: Show that $(p \to q) \land (p \to \neg q) \land (\neg p \to q) \land (\neg p \to \neg q)$ is not satisfiable.

• Suppose p = T, impossible! Because q, $\neg q$ cannot both be True. $T \rightarrow F$ is F.

Suppose P = F. That implies that $\neg P = T$. Since q and $\neg q$ cannot both True and $T \rightarrow F = F$, both of $(\neg P \rightarrow q)$ and $(\neg P \rightarrow \neg q)$ cannot be T. Therefore, this compound proposition is not satisfiable.

Exercise: Show with a truth table.

Example: Sudoku puzzles can be written (and solved) as a satisfiability problems

Solving this:

- 1) First chain together the propositions with provided values: $p(1,1,5) \land p(1,2,3) \land p(1,5,7) \land \dots$
- 2) Assert that every row contains every number: $\bigwedge_{i=1}^{9} \bigwedge_{n=1}^{9} \bigvee_{i=1}^{9} p(i,j,n)$
- 3) Assert that every column contains every number:

$$\bigwedge_{j=1}^{9} \bigwedge_{n=1}^{9} \bigvee_{i=1}^{9} p(i,j,n)$$

4) Assert that every 3x3 block contains every number:

$$\bigwedge_{r=0}^{2} \bigwedge_{s=0}^{2} \bigwedge_{n=1}^{9} \bigvee_{i=1}^{3} \bigvee_{j=1}^{3} p(3r+i,3s+j,n)$$

		_		_		_	_	
5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Let p(i, j, n) denote the proposition that a number n is in the cell in row i and column j

9 rows, 9 columns, 9 numbers = 9 × 9 × 9 = 729 propositions 5) Assert that no cell contains more than one number:

$$\bigwedge_{i=1}^{9} \bigwedge_{j=1}^{9} \bigwedge_{n=1}^{9} \bigwedge_{m=1, m \neq n}^{9} (p(i, j, n) \to \neg p(i, j, m))$$

6) String 1-5 together with conjunctions

Good Read on this problem!

Extra Practice

Example 1: Work out the truth table to show $\neg (p \lor q) \equiv \neg p \land \neg q$

Example 2: Work out the truth table to show $p \rightarrow q \equiv \neg p \lor q$

Example 3: Show that $(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$

Example 4: Show that the following proposition is **not** satisfiable

$$(p \leftrightarrow q) \land (\neg p \leftrightarrow q)$$

Solutions

Example 1: Work out the truth table to show $\neg (p \lor q) \equiv \neg p \land \neg q$

Solution:

p	q	$\neg p$	$\neg q$	$p \lor q$	$\neg (p \lor q)$	$\neg p \land \neg q$
T	T	F	F	T	F	F
T	F	F	T	T	F	F
F	T	T	F	T	F	F
F	F	T	T	F	T	T

Example 2: Work out the truth table to show $p \rightarrow q \equiv \neg p \lor q$

p	q	$\neg p$	$p \rightarrow q$	$\neg p \lor q$
T	T	F	T	T
T	F	F	F	F
F	T	T	T	T
F	F	T	T	T

Example 1: Show that $(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$

Solution: This one is actually easier if we start from the second proposition

$$p \to (q \land r) \equiv \neg p \lor (q \land r) \quad (RBI)$$
$$\equiv (\neg p \lor q) \land (\neg p \lor r) \quad (distribution)$$
$$\equiv (p \to q) \land (p \to r) \quad (that one rule in reverse)$$

Example 1: Show that the following proposition is **not** satisfiable

$$(p \leftrightarrow q) \land (\neg p \leftrightarrow q)$$

Solution: OK, this ones pretty easy

- From the first conjunct we know that p and q must have the same truth values
- From the second conjunct we know that p and q must have different truth values
- This is a contradiction, thus the proposition is **not** satisfiable