

Stripe Business Case

AI Data Architecture Design and

Deployment

⊖ Context

- Stripe: growing online payment processing platform
- Increasing complexity of data management across platforms
- Necessity to refactor the data infrastructure and pipelines
- Integration of the infrastructure with data sources and consumers

- Stripe: growing online payment processing platform
- Increasing complexity of data management across platforms
- Necessity to refactor the data infrastructure and pipelines
- Integration of the infrastructure with data sources and consumers

Tasks

- OLTP data model
- OLAP data model
- NoSQL data model
- Data integration architecture
- Security and compliance plan
- Machine learning integration
- Example SQL and NoSQL queries

Pipeline architecture

Reference Database

- Slowly changing/static data e.g., countries reference, merchants info, change rates
- Source of truth for OLTP/OLAP/NoSQL
- Updates propagated through Change Data Captures (CDC)
- Holds sensitive information
 - field-level encryption
 - encrypted transfer (TLS 1.3)
 - strict access control and logging

Online Transaction Processing (OLTP)

- Core transactional operations: payments processed through Stripe API High integrity, performance and reliability
- Normalized schema (3NF)
 Low redundancy, high consistency
- ACID properties
 Atomicity, Consistency, Isolation, Durability
- Propagate downstream through Change Data Captures (CDC)
- Holds sensitive information
 - field-level encryption
 - encrypted transfer (TLS 1.3)
 - strict access control and logging

Online Analytical Processing (OLAP)

- Analytical queries and BI
 High availability, fast queries
- Star schema architecture transactions fact table
- Pre-aggregations, views for performance optimization
- Connected to analytics and machine learning components
- Less-sensitive information
 - Anonymized data
 - Access control and logging

- Document-based for semi-structure and unstructured data Telemetry, customer feedback, logs, ML features
- Embedded documents
 for tightly coupled data (e.g. device info)
- Document referencing

 to link large documents
 (e.g. session data and customer feedback)
- No sensitive information stored
 - Anonymized data
 - Access control and logging

str

message

* + M2

date-time

date-time

date-time

old

old

arr

doc

str

str

doc

str

str

ipv4

Compliance

- Compliance with international regulations (PCI-DSS, GDPR, etc)
- Confidential information

 in Reference and OLTP databases
 Encryption, strict access policy and logging
- No sensitive data
 in OLAP and NoSQL databases
 Anonymous or tokenized data
- Creation of encrypted backups

- Compliance with international regulations (PCI-DSS, GDPR, etc)
- Confidential information

 in Reference and OLTP databases
 Encryption, strict access policy and logging
- No sensitive data
 in OLAP and NoSQL databases
 Anonymous or tokenized data
- Creation of encrypted backups

ML Integration

- Features extraction from
 OLAP and NoSQL databases
 Batch orchestration with Apache Airflow
- Model management with MLflow Traceability, version control
- Online inference through APIs
 e.g. for fraud scoring, queried by OLAP
- Deployment within Kubernetes
 High-availability infrastructure
- Monitoring with Evidently Data drift, performance degradation

Thanks!

