EfficientDet Scalable and Efficient Object Detection

Introduction

The large model sizes & expensive computation costs in many <u>real-world</u> applications such as robotics and self-driving cars model efficiency becomes increasingly important for object detection

build a scalable detection architecture

higher accuracy better efficiency from mobile devices to datacenters

Related Work

Multi-scale feature representations

aggregate features at different resolutions

feature pyramid network (FPN)

https://herbwood.tistory.com/18

Related Work

Multi-scale feature representations

aggregate features at different resolutions feature pyramid network (FPN)

Nearest Neighbor 1 1 2 2 1 1 2 2 3 4 3 4 4 3 3 4 4

Input: 2 x 2

Output: 4 x 4

http://koreascience.or.kr/article/JAKO202117457591215.pdf

$$P_7^{out} = Conv(P_7^{in})$$

 $P_6^{out} = Conv(P_6^{in} + Resize(P_7^{out}))$
...
 $P_3^{out} = Conv(P_3^{in} + Resize(P_4^{out}))$

two main challenges

efficient multi-scale feature fusion

✓ BiFPN

model scaling

Compound Scaling

Cross-Scale Connections

information flow

extra bottom-up path

neural architecture search

thousands of GPU hours

irregular

difficult to interpret or modify

Cross-Scale Connections

	mAP	#Params ratio	#FLOPS ratio
Top-Down FPN [16]	42.29	1.0x	1.0x
Repeated PANet [19]	44.08	1.0x	1.0x
NAS-FPN [5]	43.16	0.71x	0.72x
Fully-Connected FPN	43.06	1.24x	1.21x
BiFPN (w/o weighted)	43.94	0.88x	0.67x
BiFPN (w/ weighted)	44.39	0.88x	0.68x

Remove nodes

add an extra edge

that only have one input edge if they are at the same level

less contribution to feature network

fuse more features without adding much cost

Weighted Feature Fusion

a common way

resize the same resolution --> sum treat all input features equally

they contribute to the output feature unequally

weighted

add an additional weight for each input let the network to learn the importance of each input feature

Weighted Feature Fusion

$$P_7^{out} = Conv(P_7^{in})$$

 $P_6^{out} = Conv(P_6^{in} + Resize(P_7^{out}))$
...
$$P_3^{out} = Conv(P_3^{in} + Resize(P_4^{out}))$$

$$\begin{split} P_6^{td} &= Conv \left(\frac{w_1 \cdot P_6^{in} + w_2 \cdot Resize(P_7^{in})}{w_1 + w_2 + \epsilon} \right) \\ P_6^{out} &= Conv \left(\frac{w_1' \cdot P_6^{in} + w_2' \cdot P_6^{td} + w_3' \cdot Resize(P_5^{out})}{w_1' + w_2' + w_3' + \epsilon} \right) \end{split}$$

Weighted Feature Fusion

Unbounded fusion

$$O = \sum_i w_i \cdot I_i$$
 w_i : learnable weight

scalar weight is unbounded

training instability

Softmax-based fusion

$$O = \sum_{i} \frac{e^{w_i}}{\sum_{j} e^{w_j}} \cdot I_i$$

apply softmax to each weight normalized to be a probability with value range from 0 to 1

significant slowdown on GPU hardware

Weighted Feature Fusion

Fast normalized fusion

$$O = \sum_{i} \frac{w_i}{\epsilon + \sum_{j} w_j} \cdot I_i$$

 $w_i \geq \emptyset$ is ensured by applying a Relu after each w_i

ε = 0.0001 is a small value to avoid numerical instability

Model	Softmax Fusion mAP	Fast Fusion mAP (delta)	Speedup	
Model1	33.96	33.85 (-0.11)	1.28x	
Model2	43.78	43.77 (-0.01)	1.26x	
Model3	48.79	48.74 (-0.05)	1.31x	

very similar accuracy but runs up to 30% faster on GPUs

EfficientDet Architecture

ImageNet-pretrained EfficientNets

EfficientNet backbone

Input

Stage i	Operator $\hat{\mathcal{F}}_i$	Resolution $\hat{H}_i \times \hat{W}_i$	#Channels \hat{C}_i	#Layers \hat{L}_i	
1	Conv3x3	224×224	32	1	
2	MBConv1, k3x3	112×112	16	1	
3	MBConv6, k3x3	112×112	24	2	
4	MBConv6, k5x5	56×56	40	2	
5	MBConv6, k3x3	28×28	80	3	
6	MBConv6, k5x5	14×14	112	3	
7	MBConv6, k5x5	14×14	192	4	
8	MBConv6, k3x3	7×7	320	1	
9	Conv1x1 & Pooling & FC	7×7	1280	1	

fused features are fed to a class and box network

object class and bounding box predictions respectively

EfficientDet Architecture

Compound Scaling

Previous works

bigger backbone networks
larger input images
stacking more FPN layers

limited scaling dimensions

ineffective

Compound scaling

jointly scaling up all dimensions
of network width, depth, and input resolution

EfficientDet Architecture

Compound Scaling

simple compound coefficient φ

$$W_{bifpn} = 64 \cdot (1.35^{\phi}), \qquad D_{bifpn} = 2 + \phi$$

$$D_{box} = D_{class} = 3 + \lfloor \phi/3 \rfloor$$

$$R_{input} = 512 + \phi \cdot 128$$

	Input	Backbone	BiFP	Box/class		
	size	Network	#channels #layers		#layers	
	R_{input}		W_{bifpn}	D_{bifpn}	D_{class}	
D0 ($\phi = 0$)	512	B0	64	2	3	
D1 ($\phi = 1$)	640	B1	88	3	3	
D2 ($\phi = 2$)	768	B2	112	4	3	
D3 ($\phi = 3$)	896	В3	160	5	4	
D4 ($\phi = 4$)	1024	B4	224	6	4	
D5 ($\phi = 5$)	1280	B5	288	7	4	
D6 ($\phi = 6$)	1408	В6	384	8	5	
D7	1536	B6	384	8	5	

Conclusion

Model	mAP	#Params	Ratio	#FLOPS	Ratio	GPU LAT(ms)	Speedup	CPU LAT(s)	Speedup
EfficientDet-D0	32.4	3.9M	1x	2.5B	1x	16 ±1.6	1x	0.32 ±0.002	1x
YOLOv3 [26]	33.0	-	-	71B	28x	51 [†]	-	-	-
EfficientDet-D1	38.3	6.6M	1x	6B	1x	20 ±1.1	1x	0.74 ±0.003	1x
MaskRCNN [8]	37.9	44.4M	6.7x	149B	25x	92 [†]	-	-	-
RetinaNet-R50 (640) [17]	37.0	34.0M	6.7x	97B	16x	27 ±1.1	1.4x	2.8 ±0.017	3.8x
RetinaNet-R101 (640) [17]	37.9	53.0M	8x	127B	21x	34 ±0.5	1.7x	3.6 ±0.012	4.9x
EfficientDet-D2	41.1	8.1M	1x	11B	1x	24 ±0.5	1x	1.2 ±0.003	1x
RetinaNet-R50 (1024) [17]	40.1	34.0M	4.3x	248B	23x	51 ±0.9	2.0x	7.5 ±0.006	6.3x
RetinaNet-R101 (1024) [17]	41.1	53.0M	6.6x	326B	30x	65 ±0.4	2.7x	9.7 ±0.038	8.1x
NAS-FPN R-50 (640) [5]	39.9	60.3M	7.5x	141B	13x	41 ±0.6	1.7x	4.1 ± 0.027	3.4x
EfficientDet-D3	44.3	12.0M	1x	25B	1x	42 ±0.8	1x	2.5 ±0.002	1x
NAS-FPN R-50 (1024) [5]	44.2	60.3M	5.1x	360B	15x	79 ±0.3	1.9x	11 ±0.063	4.4x
NAS-FPN R-50 (1280) [5]	44.8	60.3M	5.1x	563B	23x	119 ±0.9	2.8x	17 ±0.150	6.8x
EfficientDet-D4	46.6	20.7M	1x	55B	1x	74 ±0.5	1x	4.8 ±0.003	1x
NAS-FPN R50 (1280@384)	45.4	104 M	5.1x	1043B	19x	173 ±0.7	2.3x	27 ±0.056	5.6x
EfficientDet-D5 + AA	49.8	33.7M	1x	136B	1x	141 ±2.1	1x	11 ±0.002	1x
AmoebaNet+ NAS-FPN + AA(1280) [37]	48.6	185M	5.5x	1317B	9.7x	259 ±1.2	1.8x	38 ±0.084	3.5x
EfficientDet-D6 + AA	50.6	51.9M	1x	227B	1x	190 ±1.1	1x	16±0.003	1x
AmoebaNet+ NAS-FPN + AA(1536) [37]	50.7	209M	4.0x	3045B	13x	608 ±1.4	3.2x	83 ±0.092	5.2x
EfficientDet-D7 + AA	51.0	51.9M	1x	326B	1x	262 ±2.2	1x	24 ±0.003	1x

Conclusion

Conclusion

Weighted bidirectional feature network

Customized compound scaling method

EfficientDet

achieve better accuracy and efficiency