stanford university machine learning

$MODULE 1 \cdot INTRODUCTION$

SUPERVISED LEARNING

UNSUPERVISED LEARNING

LINEAR REGRESSION WITH ONE VARIABLE

MODEL AND COST FUNCTION

MODEL REPRESENTATION

COST FUNCTION

COST FUNCTION - INTUITION I

COST FUNCTION - INTUITION II

PARAMETER LEARNING

GRADIENT DESCENT

GRADIENT DESCENT INTUITION

GRADIENT DESCENT FOR LINEAR REGRESSION

LINEAR ALGEBRA REVIEW

MATRICES AND VECTORS

ADDITION AND SCALAR MULTIPLICATION

MATRIX VECTOR MULTIPLICATION

MATRIX MATRIX MULTIPLICATION

MATRIX MULTIPLICATION PROPERTIES

INVERSE AND TRANSPOSE

MODULE2 · LINEAR REGRESSION WITH MULTIPLE VARIABLES

MULTIVARIATE LINEAR REGRESSION

MULTIPLE FEATURES

GRADIENT DESCENT FOR MULTIPLE VARIABLES

GRADIENT DESCENT IN PRACTICE I - FEATURE SCALING

GRADIENT DESCENT IN PRACTICE II - LEARNING RATE

FEATURES AND POLYNOMIAL REGRESSION

COMPUTING PARAMETERS ANALYTICALLY

NORMAL EQUATION

NORMAL EQUATION NONINVERTIBILITY

OCTAVE MATLAB TUTORIAL

BASIC OPERATIONS

MOVING DATA AROUND COMPUTING ON DATA

PLOTTING DATA

CONTROL STATEMENTS: FOR, WHILE, IF STATEMENT

VECTORIZATION

MODULE3 · LOGISTIC REGRESSION

CLASSIFICATION AND REPRESENTATION

CLASSIFICATION

HYPOTHESIS REPRESENTATION

DECISION BOUNDARY

LOGISTIC REGRESSION MODEL

COST FUNCTION

SIMPLIFIED COST FUNCTION AND GRADIENT DESCENT

ADVANCED OPTIMIZATION

MULTICLASS CLASSIFICATION

MULTICLASS CLASSIFICATION: ONE-VS-ALL

REGULARIZATION

SOLVING THE PROBLEM OF OVERFITTING

THE PROBLEM OF OVERFITTING

COST FUNCTION

REGULARIZED LINEAR REGRESSION

REGULARIZED LOGISTIC REGRESSION

MODULE4 · NEURAL NETWORKS: REPRESENTATION

MOTIVATIONS

NONLINEAR HYPOTHESIS

NEURONS AND THE BRAIN

NEURAL NETWORKS

MODEL REPRESENTATIONS I

MODEL REPRESENTATIONS II

APPLICATION

EXAMPLES AND INTUITIONS I

EXAMPLES AND INTUITIONS II

MULTICLASS CLASSIFICATION

MODULE5 · NEURAL NETWORKS: LEARNING

COST FUNCTION AND BACKPROPOGATION

COST FUNCTION

BACKPROPAGATION ALGORITHM

BACKPROPOGATION INTUITION

BACKPROPOGATION IN PRACTICE

IMPLEMENTATION NOTE: UNROLLING PARAMETERS

GRADIENT CHECKING

RANDOM INITIALIZATION

PUTTING IT TOGETHER

APPLICATION OF NEURAL NETWORKS

AUTONOMOUS DRIVING

MODULE 6 · ADVICE FOR APPLYING MACHINE LEARNING

EVALUATION A LEARNING ALGORITHM

DECIDING WHAT TO TRY NEXT

EVALUATING A HYPOTHESIS

MODEL SELECTION AND TRAIN/VALIDATION/TEST SETS

BIAS VS VARIANCE

DIAGNOSING BIAS VS VARIANCE

REGULARIZATION AND BIAS/VARIANCE

LEARNING CURVES

DECIDING WHAT TO DO NEXT REVISITED

MACHINE LEARNING SYSTEM DESIGN

BUILDING A SPAM CLASSIFIER

PRIORITIZING WHAT TO WORK ON

ERROR ANALYSIS

HANDLING SKEWED DATA

ERROR METRICS FOR SKEWED CLASSES

TRADING OFF PRECISION AND RECALL

USING LARGE DATA SETS

DATA FOR MACHINE LEARNING

MODULE 7 · SUPPORT VECTOR MACHINES

LARGE MARGIN CLASSIFICATION

OPTIMIZATION OBJECTIVE

LARGE MARGIN INTUITION

MATHEMATICS BEHIND LARGE MARGIN CLASSIFICATION

KERNELS

KERNELS I

KERNELS II

SVMS IN PRACTICE

USING AN SVM

MODULE8 · UNSUPERVISED LEARNING

CLUSTERING

UNSUPERVISED LEARNING: INTRODUCTION

K-MEANS ALGORITHM

OPTIMIZATION OBJECTIVE

RANDOM INITIALIZATION

CHOOSING THE NUMBER OF CLUSTERS

DIMENSIONALITY REDUCTION

MOTIVATION

MOTIVATION I: DATA COMPRESSION

MOTIVATION II: VISUALIZATION

PRINCIPAL COMPONENTS ANALYSIS

PRINCIPAL COMPONENTS ANALYSIS PROBLEM FORMULATION

PRINCIPAL COMPONENTS ANALYSIS ALGORITHM

APPLYING PCA

RECONSTRUCTION FROM COMPRESSED REPRESENTATION CHOOSING THE NUMBER OF PRINCIPAL COMPONENTS

ADVICE FOR APPLYING PCA

MODULE9 · ANOMALY DETECTION

DENSITY ESTIMATION

PROBLEM MOTIVATION

GAUSSIAN DISTRIBUTION

ALGORITHM

BUILDING AN ANOMALY DETECTION SYSTEM

DEVELOPING AND EVALUATION AN ANOMALY DETECTION SYSTEM

ANOMALY DETECTION VS SUPERVISED LEARNING

CHOOSING WHAT FEATURES TO USE

MULTIVARIATE GAUSSIAN DISTRIBUTION

MULTIVARIATE GAUSSIAN DISTRIBUTION

ANOMALY DETECTION USING THE MULTIVARIATE GAUSSIAN DISTRIBUTION

RECOMMENDER SYSTEMS

PREDICTING MOVIE RATINGS

PROBLEM FORMULATION

CONTENT BASED RECOMMENDATIONS

COLLABORATIVE FILTERING

COLLABORATIVE FILTERING

COLLABORATIVE FILTERING ALGORITHM

LOW RANK MATRIX FACTORIZATION

VECTORIZATION: LOW RANK MATRIX FACTORIZATION

IMPLEMENTATION DETAIL: MEAN NORMALIZATION

MODULE 10 · LARGE SCALE MACHINE LEARNING

GRADIENT DESCENT WITH LARGE DATASETS

LEARNING WITH LARGE DATASETS

STOCHASTIC GRADIENT DESCENT

MINI-BATCH GRADIENT DESCENT

STOCHASTIC GRADIENT DESCENT CONVERGENCE

ADVANCED TOPICS

ONLINE LEARNING

MAP REDUCE AND DATA PARALLELISM

$\mathsf{MODULe} 11 \cdot \mathsf{APPLICATION}$ EXAMPLE: PHOTO OCR

PHOTO OCR

PROBLEM DESCRIPTION AND PIPELINE

SLIDING WINDOWS

GETTING LOTS OF DATA AND ARTIFICIAL DATA

CEILING ANALYSIS: WHAT PART OF THE PIPELINE TO WORK ON NEXT