МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №2
по дисциплине «Организация ЭВМ и систем»
Тема: Изучение режимов адресации и формирования исполнительного адреса(Вариант 5).

Студентка гр. 1383	Чернякова А.Д.
Преподаватель	Ефремов М.А.

Санкт-Петербург 2022

Цель работы.

Изучить режимы адресации и формирования исполнительного адреса

Задание.

Лабораторная работа 2 предназначена для изучения режимов адресации, использует готовую программу lr2_comp.asm на Ассемблере, которая в автоматическом режиме выполняться не должна, так как не имеет самостоятельного функционального назначения, а только тестирует режимы адресации. Поэтому ее выполнение должно производиться под управлением отладчика в пошаговом режиме.

В программу введен ряд ошибок, которые необходимо объяснить в отчете по работе, а соответствующие команды закомментировать для прохождения трансляции.

Ход работы.

- 1. Изменение набора значений исходных данных (массивов) vec1, vec2 и matr из файла lr2.dat, согласно своему варианту.
- 2. Трансляция программы с созданием файла диагностических сообщений. Объяснение обнаруженных ошибок и предупреждений и закомментирование операторов с ошибками в тексте программы.

• Ошибка lb2.asm(41): error A2052: Improper operand type (Неверный тип операнда)

Строка: mov mem3,[bx]

Нельзя одновременно читать из памяти и писать в память. Нужно сначала перенести данные из памяти в регистр, а уже потом из регистра в необходимый сегмент.

• Предупреждение lb2.asm(48): warning A4031: Operand types must match (Несоответствие типов операндов)

Строка: mov cx, vec2[di]

Типы операндов должны совпадать, а в данном случае, cx-1 слово, элемент vec2-1 байт.

• Предупреждение lb2.asm(52): warning A4031: Operand types must match (Несоответствие типов операндов)

Строка: mov cx, matr[bx][di]

Типы операндов должны совпадать, а в данном случае, cx-1 слово, элемент matr-1 байт.

• Ошибка lb2.asm(53): error A2055: Illegal register value (Незаконное использование регистра)

Строка: mov ax,matr[bx*4][di]

В данном случае используется базово-индексная адресация. В таких случаях в регистре хранится адрес начала структуры данных, а доступ осуществляется к какому-нибудь элементу этой структуры. При данном типе адресации надо сначала изменить значение регистра, а уже потом переводить информацию.

• Ошибка lb2.asm(72): error A2046: Multiple base registers (несколько базовых регистров)

Строка: mov ax,matr[bp+bx]

Регистры bp и bx базовые, поэтому сначала складываются значения регистров, а уже затем данные передается указателю одного из регистров. Таким образом, сначала нужно в регистр bp занести общую сумму, а потом производить смещение.

• Ошибка lb2.asm(73): error A2047: Multiple index registers (несколько индексных регистров)

Строка: mov ax,matr[bp+di+si]

Регистры di и si индексные, поэтому сначала складываются их значения, а потом данные передаются указателю из одного регистра. Сначала в регистр di заносится общая сумма, а потом производится смещение.

• Ошибка lb2.asm(80): error A2006: Phase error between passes Строка: Main ENDP

Данная ошибка свидетельствует о том, что в функции main содержатся ошибки.

3. Повторная трансляция программы и компоновка загрузочного модуля.

```
D:\>masm.exe lb2.asm
Microsoft (R) Macro Assembler Version 5.10
Copyright (C) Microsoft Corp 1981, 1988. All rights reserved.

Dbject filename [lb2.0BJ]:
Source listing [NUL.LST]: lb2
Cross-reference [NUL.CRF]:
lb2.asm(48): warning A4031: Operand types must match
lb2.asm(52): warning A4031: Operand types must match

47842 + 459418 Bytes symbol space free

2 Warning Errors
0 Severe Errors
```

4. Выполнение программы в пошаговом режиме под управлением отладчика с фиксацией содержимого используемых регистров и ячеек памяти до и после выполнения команды.

Изначальные значения:

SP = 0018

IP = 0000

DS = 19F5

CX = 00B0

A was a way way w	Символьный	ий 16-ричный код Содержимое pe		истров и ячеек памяти	
Адрес команды код команды		команды	До выполнения	После выполнения	
			(SP)=0018	(SP)=0016	
0000	PUSH DS	1E	(IP)=0000	(IP)=0001	
			STACK +0 = 0000	STACK +0 = 19F5	
0001	SUB AX, AX	2BC0	(IP)=0001	(IP)=0003	
0001	SUD AA, AA	ZDC0			
	PUSH AX	50	(SP) = 0016	(SP)=0014	
0003			(IP) = 0003	(IP) = 0004	
0003			STACK +0 = 19F5	STACK +0 = 0000	
			STACK +2 = 0000	STACK +2 = 19F5	
0004	0004 MOV AX, 1A07	B8071A	(AX)=0000	(AX)=1A07	
0004			(IP)=0004	(IP)=0007	
0007	MOV DS,AX	8ED8	(DS)=19F5	(DS)=1A07	

			(IP)= 0007	(IP)= 0009
0009	MOV AX, 01F4	B8F401	(AX)=1A07 (IP)=0009	(AX)= 01F4 (IP)= 000C
000C	MOV CX,AX	8BC8	(IP)=000C (CX)=00B0	(IP)=000E (CX)=01F4
000E	MOV BL,24	B324	(BX)=0000 (IP)=000E	(BX)=0024 (IP)=0010
0010	MOV BH,CE	B7CE	(BX)=0024 (IP)=0010	(BX)=CE24 (IP)=0012
0012	MOV [0002],FFCE	C7060200CEF F	(IP)=0012	(IP)=0018
0018	MOV BX,0006	BB0600	(BX)=CE24 (IP)=0018	(BX)=0006 (IP)=001B
001B	MOV [0000],AX	A30000	(IP)=001B	(IP)=001E
001E	MOV AL,[BX]	8A07	(AX)=01F4 (IP)=001E	(AX)=0105 (IP)=0020
0020	MOV AL, [BX+03]	8A4703	(IP) = 0020 $(AX) = 0105$	(IP)=0023 $(AX)=0108$
0023	MOV CX, [BX+03]	8B4F03	(CX) = 01F4 (IP) = 0023	(CX) = 0C08 (IP) = 0026
0026	MOV DI, 0002	BF0200	(DI) = 0000 (IP) = 0026	(DI) = 0002 (IP) = 0029
0029	MOV AL, [DI+ 000E]	8A850E00	(AX) = 0108 (IP) = 0029	(AX)=0114 (IP)=002D
002D	MOV CX, [000E+DI]	8B8D0E00	(IP) = 002D $CX = 0C0B$	(IP) = 0030 CX = 1E14
0031	MOV BX, 0003	BB0300	(IP) = 0031 $(BX) = 0006$	(IP) = 0034 $(BX) = 0003$

0024	MOV AL,	0 4 011 600	(AX) = 0114	(AX) = 0103
0034	[0016+BX+DI]	8A811600	(IP)=0034	(IP)= 0037
0038	MOV CX,	8B891600	(CX) = 0C0B	(CX) = 0203
0038	[0016+BX+DI]	0D071000	(IP) = 0038	(IP)= 003C
003C	MOV AX, 1A07	B8071A	(AX) = 0103	(AX)= 1A07
0030	1410 4 7424, 17407	D 00/111	(IP) = 003C	(IP) = 003F
			(ES) = 19F5	(ES)= 1A07
003F	MOV ES, AX	8EC0	(IP)=003F	(IP)=0041
				(11) 0011
	MOV AX,ES:		(IP)=0041	(IP)= 0044
0041	[BX]	268B07	AX = 0114	AX = 00FF
				7111 0011
0044	MOV AX,0000	8B80000	(IP)=0044	(IP)=0043
			AX = 00FF	AX = 0000
	MOVCV ES.		(CX) = 120E	(CX)= FFCE
0047	MOV CX, ES: [BX—01]	268B4FFF	(IP) = 0043	(IP)=0047
			(AX) = 0000	(AX) = FFCE
0047	XCHG AX, CX	91	(CX) =	(CX) = 0000
			FFCE	(IP)=0048
			(IP)=0047	
0047	MOV ES, AX	8EC0	(ES) = 1A07	(ES)=0000
0047			(IP)=0047	(IP)= 0049
				(IP) = 004A
0049	PUSH DS	1E	(IP) = 0049	(IF) = 004A
			(IP) = 004A	(IP) = 004B
004A	POP ES	07	ES = 0000	ES = 1A07
			ES = 0000 (IP) = 004B	ES - IAO / (IP) = 004F
004B	MOV CX,ES:	268B4FF	CX = 0203	CX = FFCE
U-U	[BX-01]	200DTIT	CA = 0203	CA - FFCE
			(IP) = 004F	(ID) 0050177
004F	XCHG AX,CX	91	AX = 0000	(IP) = 0050AX = FFCE
			AA = 0000	

0050	MOV DI,0002	BF0200	(IP) = 0050	(IP) = 0053
0053	MOX ES: [BX+DI],AX	268901	(IP) = 0053 B	(IP) = 0056
0056	MOV BP,SP	8BEC	(IP) = 0056 BP = 0000	(IP) = 0058 BBP = 0014
0058	PUSH[0000]	FF360000	(IP) = 0058 STACK + 0 000 +2 19F5 +4 0000 +6 0000	(IP) = 005C STACK +0 01F4 +2 0000 +4 19F5 +6 0000
005C	PUSH[0002]	FF36200	(IP) = 005C SP = 0012	(IP) = 0060 SP = 0010
0060	MOV BP,SP	8BEC	(IP) = 0060 $(BP) = 0014$	(IP) = 0062 BP = 0010
0062	MOV DX, [BP+02]	8B5602	(IP) = 0062 DX = 0000	(IP) = 0065 DX = 01F4
0065	RET	FAR 0002	(IP) = 0065 (CS) = 1A0A STACK +0 FFCE +2 01F4 +4 0000 +6 19F5	(IP) = 0068 (CS) = 01F4 STACK +0 19F5 +2 0000 +4 0000 +6 0000

Выводы.

В ходе выполнения лабораторной работы были изучены основные режимы адресации памяти.

Приложение А. Код программы lb2.asm

```
EOL EQU '$'
ind EOU 2
n1 EQU 500
n2 EQU -50
; Стек программы
AStack SEGMENT
STACK DW 12 DUP(?)
AStack ENDS
; Данные
программы DATA
SEGMENT
; Директивы описания данных
mem1 DW 0
mem2 DW 0
mem3 DW 0
vec1 DB 11,12,13,14,18,17,16,15
vec2 DB 10,20,-10,-20,30,40,-30,-4
matr
DB1,2,-4,-3,3,4,-2,-1,5,6,-8,-7,7,8,-6,-5
DATA ENDS
; Код
программы CODE
SEGMENT
ASSUME CS:CODE, DS:DATA, SS:AStack
; Головная
процедура Main PROC
FAR
push DS
sub AX, AX
push AX
mov
AX, DATA
mov DS, AX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая
адресация mov ax, n1
mov cx,ax
mov
```

bl,EOL
mov bh,n2

```
; Прямая
адресация mov
mem2, n2
mov bx, OFFSET
vec1 mov mem1,ax
; Косвенная
адресация mov
al,[bx]
;mov mem3,[bx]
; Базированная адресация
mov
al, [bx]+3
mov cx, 3[bx]
; Индексная
адресация mov di, ind
mov
al, vec2[di]
mov
cx, vec2[di]
; Адресация с базированием и
индексированием mov bx,3
mov
al, matr[bx][di]
mov
cx, matr[bx][di]
;mov ax,matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; ----- вариант
1 mov ax, SEG
vec2 mov es, ax
mov ax,
es:[bx] mov
ax, 0
; ----- вариант
2 mov es, ax
push ds
pop es
mov cx,
es:[bx-1] xchg
cx,ax
```

```
; ----- вариант
3 mov di,ind
mov es:[bx+di],ax
; ----- вариант 4
```

```
mov bp,sp
;mov ax,matr[bp+bx]
;mov ax,matr[bp+di+si]
; Использование сегмента
стека push mem1
push mem2
mov bp,sp
mov
dx,[bp]+2
ret 2
Main ENDP
CODE ENDS
END Main
```

Приложение Б. Листинг успешной трансляции программы с закомментированными ошибочными операторами

```
#Microsof (R) Macro Assembler Version 5.10

10/30/22
t
13:56:4
Page 1-1
```

```
EOL EQU '$'
0024
                       ind EQU 2
0002
                        n1 EQU 500
                        n2 EQU -50
01F4
                  ; Стек программы
                  AStack SEGMENT STACK
=-003
0000
0000
     000C
                     DW 12 DUP(?)
        ſ
      ???? ]
0018
                   AStack ENDS
                   ; Данные программы
0000
                   DATA SEGMENT
                   ; Директивы описания даннэ
                   ΚX
0000 0000
                        mem1 DW 0
0002 0000
                       mem2 DW 0
0004 0000
                       mem3 DW 0
0006 OB OC OD OE 12 11 vec1 DB 11,12,13,14,18,17,16,15
```

10 0F 000E 0A 14 F6 EC 1E 28 vec2 DB 10,20,-10,-20,30,40,-30,-40 E2 D8 0016 01 02 FC FD 03 04 matr DB1,2,-4,-3,3,4,-2,-1,5,6,-8,-7,7,8,-6,-

```
FE FF 05 06 F8 F9
       07 08 FA FB
 0026
                     DATA ENDS
                     ; Код программы
 0000
                     CODE SEGMENT
                     ASSUME CS:CODE, DS:DATA,
                     SS:AStack
                     ; Головная процедура
 0000
                    Main PROC FAR
 0000 1E
                    push DS
 0001 2B CO
                          sub AX, AX
 0003 50
                    push AX
 0004 B8 ---- R
                   mov AX, DATA
 0007 8E D8
                          mov DS, AX
                     ; ПРОВЕРКА РЕЖИМОВ АДРЕСАЙ
                     ¦ИИ НА УРОВНЕ СМЕЩЕНИЙ
                     ; Регистровая адресация
 0009 B8 01F4
                          mov ax, n1
 000C 8B C8
                          mov cx, ax
 000E B3 24
                          mov bl, EOL
 0010 B7 CE
                          mov bh, n2
                     ; Прямая
 адресация 0012 C7 06 0002 R FFCE
mov mem2, n2
 0018 BB 0006 R
                    mov bx, OFFSET vec1
 001B A3 0000 R
                    mov mem1,ax
                     ; Косвенная адресация
 001E 8A 07
                          mov al, [bx]
                     ;mov mem3,[bx]
                     ; Базированная адресация
#Microsoft (R) Macro Assembler Version 5.10
10/30/22 13:56:4
                                                            Page 1-2
                        mov al, [bx]+3
 0020 8A 47 03
                         mov cx, 3[bx]
 0023 8B 4F 03
                    ; Индексная адресация
 0026 BF 0002
                         mov di,ind
 0029 8A 85 000E R
                        mov al, vec2[di]
 002D 8B 8D 000E R
                        mov cx, vec2[di]
1b2.asm(48): warning A4031: Operand types must match
                     ; Адресация с базированиеЙ
                     ¼ и индексированием
 0031 BB 0003
                         mov bx,3
 0034 8A 81 0016 R
                          mov al, matr[bx][di]
 0038 8B 89 0016 R
                         mov cx,matr[bx][di]
1b2.asm(52): warning A4031: Operand types must match
                     ;mov ax,matr[bx*4][di]
                     ; ПРОВЕРКА РЕЖИМОВ АДРЕСАЙ
                     ¦ИИ С УЧЕТОМ СЕГМЕНТОВ
                     ; Переопределение
                     сегмент а
                     ; ----- вариант
 1 003C B8 ---- R
                     mov ax, SEG vec2
 003F 8E C0
                         mov es, ax
```

```
0041 26: 8B 07 mov ax, es:[bx]
0044 B8 0000
                 mov ax, 0
                 ; ----- вариант 2
0047 8E CO
                 mov es, ax
0049 1E
                 push
004A 07
                 ds pop
004B 26: 8B 4F F es
004F 91 F mov cx,
                 es:[bx-1] xchg cx,ax
                 ; ----- вариант 3 mov di,ind
0050 BF 0002
0053 26: 89 01
                 mov es:[bx+di],ax
                 ; ----- вариант 4
0056 8B EC
                  mov bp,sp
                 ;mov ax,matr[bp+bx]
                 ;mov ax,matr[bp+di+si]
                 ; Использование
                 сегмента
0058 FF 36
             R тека
     0000
                     push mem1
005C FF 36 R
                     push mem2
     0002
0060 8B EC
                     mov bp,sp
0062 8B 56 02
                     mov dx, [bp]+2
0065 CA 0002
                     ret 2
0068
                 Main ENDP
0068
                 CODE ENDS
                 END Main
```

Segments and Groups: Name Class ASTACK			A NONE	Combine 0018 PARA
Symbols:				
N a m e	Туре	Value	Attı	2
EOL		NUMBE R	0024	
IND		NUMBE R	0002	
MAIN		F PROC	0000	CODE Length = 0068
MATR	•	L BYTE	0016	DATA
MEM1	•	L WORD	0000	DATA
MEM2	•	L WORD	0002	DATA
MEM3	•	L WORD	0004	DATA
N1	•	NUMBE R	01F4	
N2	•	NUMBE R	-0032	2
VEC1	•	L BYTE	0006	DATA
VEC2	•	L BYTE	000E	DATA
@CPU		TEXT 010 TEXT 1b2 TEXT 510		

- 82 Source Lines
- 82 Total Lines
- 19 Symbols

47842 + 459418 Bytes symbol free space

- 2 Warning Errors
- O Severe Errors