Base 2

THE HEXADECIMAL BASE

xorpd.net

Objectives

- Introduction to base 16.
- You will understand the special relation between base 16 and base 2.
- You will learn about the importance of base 16.
- You will recognize when would be a good time to use base 16.

Base 16

- Base 16 is called the **Hexadecimal** base, or just hex.
- Base 16 contains 16 symbols:
 - o 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.
- Examples:
 - $010_{16} = 0 \cdot 16^0 + 1 \cdot 16^1 = 16_{10}$
 - \circ $2A_{16} = A \cdot 16^0 + 2 \cdot 16^1 = 10 \cdot 16^0 + 2 \cdot 16^1 = 42_{10}$
- Usually marked with a "0x" (Zero and x) prefix in high level programming languages.
 - \circ 0*x*10,0*x*2*a*

- How could we convert a hexadecimal number to a binary number?
- We could use the **Remainder Evaluation** method.
 - \circ Example: Convert $AB1C_{16}$ to base 2.

AB1C	0	AB1	1	AB	1	A	О
558E	0	558	0	55	1	5	1
2AC7	1	2AC	0	2A	0	2	0
1563	1	156	0	15	1	1	1

- How could we convert a hexadecimal number to a binary number?
- We could use the **Remainder Evaluation** method.
 - \circ Example: Convert $AB1C_{16}$ to base 2.

AB1C	0	AB1	1	AB	1	A	О
558E	О	558	0	55	1	5	1
2AC7	1	2AC	0	2A	0	2	О
1563	1	156	0	15	1	1	1

- How could we convert a hexadecimal number to a binary number?
- We could use the **Remainder Evaluation** method.
 - \circ Example: Convert $AB1C_{16}$ to base 2.

AB1 C o	AB 1 1	AB 1	A o
558E O	558 o	55 1	5 1
2AC7 1	2AC 0	2A 0	2 0
1563 1	156 o	15 1	1 1

- How could we convert a hexadecimal number to a binary number?
- We could use the **Remainder Evaluation** method.
 - Example: Convert $AB1C_{16}$ to base 2.

AB1 C o	AB1 1 ^	AB 1	A o ↑
558E O	558 o	55 1	5 1
2AC7 1	2AC O	2A 0	2 0
1563 1	156 o	15 1	1 1

$$C_{16} = 1100_2 \quad | 1_{16} = 0001_2 \quad | B_{16} = 1011_2 \quad | A_{16} = 1010_2$$

- How could we convert a hexadecimal number to a binary number?
- We could use the **Remainder Evaluation** method.
 - Example: Convert $AB1C_{16}$ to base 2.

$$C_{16} = 1100_2$$
 $A_{16} = 0001_2$ $A_{16} = 1011_2$ $A_{16} = 1010_2$

- $AB1C_{16} = (1010\ 1011\ 0001\ 1100)_2$
- Every Hex digit is represented by exactly 4 bits.

Hex to Binary (Cont.)

- Base 16 and Base 2 "Get along", because $2^4 = 16$.
 - There is a bonus lesson that explains this more rigorously.
- In order to convert hexadecimal number to a binary number, it is enough to convert every hex digit into 4 bits.
- Example:
 - \circ 0xAD5D = ?
 - $\times 0xA = 10_{10} = 1010_2$
 - $x 0xD = 13_{10} = 1101_2$
 - \times 0*x*5 = 5₁₀ = 0101₂
 - \circ So $0xAD5D = (1010\ 1101\ 0101\ 1101)_2$

Binary to Hex

- Example: Convert the number 101101011₂ to hexadecimal base.
 - We first divide the bits of the number into groups of 4 (beginning from the right): (1 0110 1011)₂.
 - The last set of bits might be of size less than 4. We could imagine that there are leading zeroes: (0001 0110 1011)₂.
 - We convert every quadruple of bits into one hex digit:
 - $\times 0001_2 = 0x1$
 - \times 0110₂ = 0*x*6
 - \times 1011₂ = 11₁₀ = 0*xB*
 - We get that $101101011_2 = 0x16B$

Bases that get along

- The same phenomenon of easy conversion happens for every two bases b, c Where $b = c^d$ for some d.
 - o In base 4, every digit is represented by exactly 2 bits.
 - o In base 8, every digit is represented by exactly 3 bits.
- Example:
 - Convert the number 1317₈ to binary.
 - $\times 1_8 = 001_2$
 - \times 3₈ = 011₂
 - \times 7₈ = 111₂
 - \circ So $1317_8 = (001\ 011\ 001\ 111)_2$

Why would I care about hex

- In order to talk to the processor, you have to understand binary.
- Binary numbers could sometimes be too long.
 - Many computers today work with groups of 32 bits or 64 bits.
- Hex numbers have more symbols, thus much shorter than their Binary equivalent.
 - Which one is easier to read?
 - × 1101111010101101101101111101111011111₂
 - \times 0xDEADBEEF
- Conversion between Hex and Binary is immediate.
 - Conversion is done digit wise (unlike the general method of conversion between bases).

Exercises

- Basic conversion exercises.
 - Use a pen and paper to solve. Use a calculator / Computer to check your answers.
- Interesting divisibility rules in base 16.
- Some more...

- Question: Why is every hex digit represented by 4 binary digits?
- Representation in base 16:

$$(...a_4a_3a_2a_1a_0)_{16} = a_0 \cdot 16^0 + a_1 \cdot 16^1 + a_2 \cdot 16^2 + a_3 \cdot 16^3 + \cdots$$

Representation in base 16:

$$(...a_4a_3a_2a_1a_0)_{16} = a_0 \cdot 16^0 + a_1 \cdot 16^1 + a_2 \cdot 16^2 + a_3 \cdot 16^3 + \cdots$$

We could represent each hex digit using 4 bits:

$$a_0 = \left(b_{3,0} b_{2,0} b_{1,0} b_{0,0} \right)_2$$

$$a_1 = (b_{3,1}b_{2,1}b_{1,1}b_{0,1})_2$$

$$a_2 = (b_{3,2}b_{2,2}b_{1,2}b_{0,2})_2$$

O ...

$$(\dots a_4 a_3 a_2 a_1 a_0)_{16} = a_0 \cdot 16^0 + a_1 \cdot 16^1 + a_2 \cdot 16^2 + a_3 \cdot 16^3 + \dots$$

$$a_0 = (b_{3,0}b_{2,0}b_{1,0}b_{0,0})_2$$

$$a_1 = (b_{3,1}b_{2,1}b_{1,1}b_{0,1})_2$$

$$a_2 = (b_{3,2}b_{2,2}b_{1,2}b_{0,2})_2$$

$$a_3 = (b_{3,3}b_{2,3}b_{1,3}b_{0,3})_2$$
...

$$(\dots a_4 a_3 a_2 a_1 a_0)_{16} = a_0 \cdot 16^0 + a_1 \cdot 16^1 + a_2 \cdot 16^2 + a_3 \cdot 16^3 + \dots$$

$$a_0 = (b_{3,0}b_{2,0}b_{1,0}b_{0,0})_2$$

$$a_1 = (b_{3,1}b_{2,1}b_{1,1}b_{0,1})_2$$

$$a_2 = (b_{3,2}b_{2,2}b_{1,2}b_{0,2})_2$$

$$a_3 = (b_{3,3}b_{2,3}b_{1,3}b_{0,3})_2$$
...

$$(\dots a_4 a_3 a_2 a_1 a_0)_{16} = (b_{3,0} b_{2,0} b_{1,0} b_{0,0})_2 \cdot 16^0 + (b_{3,1} b_{2,1} b_{1,1} b_{0,1})_2 \cdot 16^1 + (b_{3,2} b_{2,2} b_{1,2} b_{0,2})_2 \cdot 16^2 + (b_{3,3} b_{2,3} b_{1,3} b_{0,3})_2 \cdot 16^3 +$$

$$(\dots a_4 a_3 a_2 a_1 a_0)_{16} = a_0 \cdot 16^0 + a_1 \cdot 16^1 + a_2 \cdot 16^2 + a_3 \cdot 16^3 + \dots$$

$$a_0 = (b_{3,0}b_{2,0}b_{1,0}b_{0,0})_2$$

$$a_1 = (b_{3,1}b_{2,1}b_{1,1}b_{0,1})_2$$

$$a_2 = (b_{3,2}b_{2,2}b_{1,2}b_{0,2})_2$$

$$a_3 = (b_{3,3}b_{2,3}b_{1,3}b_{0,3})_2$$
...

$$(\dots a_4 a_3 a_2 a_1 a_0)_{16} = (b_{3,0} b_{2,0} b_{1,0} b_{0,0})_2 \cdot 16^0 + (b_{3,1} b_{2,1} b_{1,1} b_{0,1})_2 \cdot 16^1 + (b_{3,2} b_{2,2} b_{1,2} b_{0,2})_2 \cdot 16^2 + (b_{3,3} b_{2,3} b_{1,3} b_{0,3})_2 \cdot 16^3 +$$

$$(\dots a_4 a_3 a_2 a_1 a_0)_{16} = (b_{0,0} 2^0 + b_{1,0} \cdot 2^1 + b_{2,0} 2^2 + b_{3,0} 2^3) \cdot 16^0 + (b_{0,1} 2^0 + b_{1,1} \cdot 2^1 + b_{2,1} 2^2 + b_{3,1} 2^3) \cdot 16^1 + (b_{0,2} 2^0 + b_{1,2} \cdot 2^1 + b_{2,2} 2^2 + b_{3,2} 2^3) \cdot 16^2 + (b_{0,3} 2^0 + b_{1,3} \cdot 2^1 + b_{2,3} 2^2 + b_{3,3} 2^3) \cdot 16^3 +$$

```
 (\dots a_4 a_3 a_2 a_1 a_0)_{16} = 
 (b_{0,0} 2^0 + b_{1,0} \cdot 2^1 + b_{2,0} 2^2 + b_{3,0} 2^3) \cdot 16^0 + 
 (b_{0,1} 2^0 + b_{1,1} \cdot 2^1 + b_{2,1} 2^2 + b_{3,1} 2^3) \cdot 16^1 + 
 (b_{0,2} 2^0 + b_{1,2} \cdot 2^1 + b_{2,2} 2^2 + b_{3,2} 2^3) \cdot 16^2 + 
 (b_{0,3} 2^0 + b_{1,3} \cdot 2^1 + b_{2,3} 2^2 + b_{3,3} 2^3) \cdot 16^3 + 
 \dots
```

• We will use the fact that $2^4 = 16$!

$$(\dots a_4 a_3 a_2 a_1 a_0)_{16} = (b_{0,0} 2^0 + b_{1,0} \cdot 2^1 + b_{2,0} 2^2 + b_{3,0} 2^3) \cdot 16^0 + (b_{0,1} 2^0 + b_{1,1} \cdot 2^1 + b_{2,1} 2^2 + b_{3,1} 2^3) \cdot 16^1 + (b_{0,2} 2^0 + b_{1,2} \cdot 2^1 + b_{2,2} 2^2 + b_{3,2} 2^3) \cdot 16^2 + (b_{0,3} 2^0 + b_{1,3} \cdot 2^1 + b_{2,3} 2^2 + b_{3,3} 2^3) \cdot 16^3 +$$

$$(\dots a_4 a_3 a_2 a_1 a_0)_{16} = (b_{0,0} 2^0 + b_{1,0} \cdot 2^1 + b_{2,0} 2^2 + b_{3,0} 2^3) \cdot 2^0 + (b_{0,1} 2^0 + b_{1,1} \cdot 2^1 + b_{2,1} 2^2 + b_{3,1} 2^3) \cdot 2^4 + (b_{0,2} 2^0 + b_{1,2} \cdot 2^1 + b_{2,2} 2^2 + b_{3,2} 2^3) \cdot 2^8 + (b_{0,3} 2^0 + b_{1,3} \cdot 2^1 + b_{2,3} 2^2 + b_{3,3} 2^3) \cdot 2^{12} +$$

$$(\dots a_4 a_3 a_2 a_1 a_0)_{16} = (b_{0,0} 2^0 + b_{1,0} \cdot 2^1 + b_{2,0} 2^2 + b_{3,0} 2^3) \cdot 16^0 + (b_{0,1} 2^0 + b_{1,1} \cdot 2^1 + b_{2,1} 2^2 + b_{3,1} 2^3) \cdot 16^1 + (b_{0,2} 2^0 + b_{1,2} \cdot 2^1 + b_{2,2} 2^2 + b_{3,2} 2^3) \cdot 16^2 + (b_{0,3} 2^0 + b_{1,3} \cdot 2^1 + b_{2,3} 2^2 + b_{3,3} 2^3) \cdot 16^3 + \dots$$

$$(\dots a_4 a_3 a_2 a_1 a_0)_{16} = (b_{0,0} 2^0 + b_{1,0} \cdot 2^1 + b_{2,0} 2^2 + b_{3,0} 2^3) \cdot 2^0 + (b_{0,1} 2^0 + b_{1,1} \cdot 2^1 + b_{2,1} 2^2 + b_{3,1} 2^3) \cdot 2^4 + (b_{0,2} 2^0 + b_{1,2} \cdot 2^1 + b_{2,2} 2^2 + b_{3,2} 2^3) \cdot 2^8 + (b_{0,3} 2^0 + b_{1,3} \cdot 2^1 + b_{2,3} 2^2 + b_{3,3} 2^3) \cdot 2^{12} +$$

$$(\dots a_4 a_3 a_2 a_1 a_0)_{16} = b_{0,0} 2^0 + b_{1,0} \cdot 2^1 + b_{2,0} 2^2 + b_{3,0} 2^3 + b_{0,1} 2^4 + b_{1,1} \cdot 2^5 + b_{2,1} 2^6 + b_{3,1} 2^7 + b_{0,2} 2^8 + b_{1,2} \cdot 2^9 + b_{2,2} 2^{10} + b_{3,2} 2^{11} + b_{0,3} 2^{12} + b_{1,3} \cdot 2^{13} + b_{2,3} 2^{14} + b_{3,3} 2^{15} + \dots$$

```
 (\dots a_4 a_3 a_2 a_1 a_0)_{16} = b_{0,0} 2^0 + b_{1,0} \cdot 2^1 + b_{2,0} 2^2 + b_{3,0} 2^3 + b_{0,1} 2^4 + b_{1,1} \cdot 2^5 + b_{2,1} 2^6 + b_{3,1} 2^7 + b_{0,2} 2^8 + b_{1,2} \cdot 2^9 + b_{2,2} 2^{10} + b_{3,2} 2^{11} + b_{0,3} 2^{12} + b_{1,3} \cdot 2^{13} + b_{2,3} 2^{14} + b_{3,3} 2^{15} + \dots
```

$$(\dots a_4 a_3 a_2 a_1 a_0)_{16}$$

$$= (\dots b_{3,3} b_{2,3} b_{1,3} b_{0,3} b_{3,2} b_{2,2} b_{1,2} b_{0,2} b_{3,1} b_{2,1} b_{1,1} b_{0,1} b_{3,0} b_{2,0} b_{1,0} b_{0,0})_2$$

Every hex digit is represented by exactly 4 bits.