PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-224809

(43)Date of publication of application: 21.08.1998

(51)Int.CI.

HO4N 9/07 HO4N 5/335

(21)Application number: 09-019147

(71)Applicant:

SANYO ELECTRIC CO LTD

(22)Date of filing:

31.01.1997

(72)Inventor:

WATANABE TORU

HAMADA MINORU

(54) SOLID-STATE IMAGE PICKUP DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To allow an output section of a CCD image sensor to synthesize information charges of a plurality of picture elements and to extract the synthesized charge and to reduce deterioration in the resolution of a reproduced image.

SOLUTION: A bit number of odd number columns differs from that of even number columns in a shift, register of a storage section 11s of an image sensor 11, picture elements of received light of the odd number columns and those of the even number columns are shared in the transfer process of the information charges from the storage section 11s to a horizontal transfer section 11h. Since the information charge i discharged by using a reset clock ϕr1 whose period is twice that of a horizontal clock ϕh at an output section 11d of the image sensor 11, two picture elements each of the information charge are synthesized. For a period when information charges corresponding to a specific color component are outputted, the synthesis of the information charges is stopped and the information charges by one picture element each is read.

LEGAL STATUS

[Date of request for examination]

03.09.1999

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted

registration]

[Date of final disposal for application]

[Patent number]

3485746

[Date of registration]

24.10.2003

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-224809

(43)公開日 平成10年(1998) 8月21日

(51) Int.Cl.6

H 0 4 N 9/07

5/335

識別記号

FΙ

H 0 4 N 9/07

225

A

5/335

P

審査請求 未請求 請求項の数4 OL (全 9 頁)

(21)出願番号

特願平9-19147

(71)出願人 000001889

三洋電機株式会社

(22)出願日 平成9年(1997)1月31日

大阪府守口市京阪本通2丁目5番5号

(72)発明者 渡辺 透

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

(72)発明者 浜田 稔

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

(74)代理人 弁理士 安富 耕二 (外1名)

(54) 【発明の名称】 固体撮像装置

(57)【要約】

【課題】 CCDイメージセンサの出力部で複数画素の情報電荷を合成して取り出せるようにすると共に、再生画面の解像度の劣化を少なくする。

【解決手段】 イメージセンサ11は、蓄積部11sのシフトレジスタが奇数列と偶数列とでビット数に差が設けられ、蓄積部11sから水平転送部11hへ情報電荷の転送過程で、奇数列の受光画素と偶数列の受光画素とを振り分ける。イメージセンサ11の出力部11dでは、水平クロックφhの2倍の周期のリセットクロックφr1によって情報電荷の排出が行われることにより、情報電荷が2画素ずつ合成される。この内、特定の色成分に対応する情報電荷が出力される期間には、情報電荷の合成を中止して1画素ずつ読み出せるようにする。

【特許請求の範囲】

【請求項1】 カラーフィルタの各セグメントにそれぞ れ対応付けられて行列配置される複数の受光画素が各列 毎に複数の垂直転送部に結合され、この複数の垂直転送 部の各出力が水平転送部の各ビットに結合されると共 に、この水平転送部の出力電荷量が出力部で電圧値に変 換されて出力される固体撮像素子と、上記複数の受光画 素に発生する情報電荷を上記複数の垂直転送部へ転送し た後、上記複数の垂直転送部から1水平ライン毎に上記 水平転送部へ転送し、さらに上記水平転送部から上記出 力部へ転送すると共に、上記出力部に蓄積される情報電 荷を上記水平転送部の転送動作に同期して排出する駆動 回路と、上記出力部から出力される電圧値を上記駆動回 路の排出動作に同期して取り出す検出回路と、を備え、 上記駆動回路は、上記固体撮像素子に対して、上記複数 の垂直転送部の奇数列と偶数列とで上記水平転送部へ交 互に情報電荷を転送すると共に、特定の色成分に対応付 けられた上記受光画素に対応して、選択的に上記出力部 の排出動作の周期を上記水平転送部の転送動作の周期の 整数倍に設定し、上記出力部に特定の色成分を示す複数 画素分の情報電荷を蓄積させて画像信号を得ることを特 徴とする固体撮像装置。

【請求項2】 上記駆動回路は、垂直走査及び水平走査 される上記固体撮像素子の各垂直走査期間あるいは各水 平走査期間に、上記出力部の排出動作のタイミングを上 記水平転送部の転送動作の1周期分ずつずらすことを特 徴とする請求項1に記載の固体撮像装置。

【請求項3】 上記駆動回路は、一定周期の基準クロックに基づいて動作し、上記垂直転送部の情報電荷を水平走査周期で1水平ライン毎に上記水平転送部へ転送する垂直クロック発生部と、上記垂直クロック発生部に同期して上記水平転送部の情報電荷を出力部へ転送する水平クロックを発生する水平クロック発生部と、上記水平クロック発生部に同期して上記出力部の情報電荷を排出するリセットクロックを発生するリセットクロック発生部と、上記リセットクロックを選択的に1/n(n:整数)に分周して上記出力部へ供給する分周回路と、を含むことを特徴とする請求項1に記載の固体撮像装置。

【請求項4】 上記駆動回路は、さらに、上記リセットクロック発生部の動作に対して一定の位相差を維持して上記検出回路で上記出力部の出力電圧値を取り込むサンプリングクロックを発生するサンプリングクロック発生部と、上記サンプリングクロックを選択的に1/n

(n:整数)に分周して上記検出部へ供給する分周回路と、を含むことを特徴とする請求項3に記載の固体撮像装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、CCDイメージセ

ンサにカラーフィルタを装着してカラー撮像を行うよう にした固体撮像装置に関する。

[0002]

【従来の技術】CCDイメージセンサを用いるテレビカメラ等の固体撮像装置においては、所定のテレビジョン方式に従う各種の同期信号に基づいて、イメージセンサの各走査タイミングが設定される。例えば、NTSC方式の場合、垂直走査期間が1/60秒に設定され、さらに水平走査期間が垂直走査期間の2/525に設定される。これにより、1画面分の映像情報が1水平ライン単位で連続する映像信号が出力される。

【0003】図10は、CCDイメージセンサを用いる 撮像装置の基本的な構成を示すブロック図で、図11 は、その動作を説明するタイミング図である。フレーム 転送型のCCDイメージセンサ1は、撮像部1i、蓄積 部1s、水平転送部1h及び出力部1dより構成され る。撮像部 1 i は、垂直方向に連続する互いに平行な複 数のCCDシフトレジスタからなり、そのシフトレジス タの各ビットがそれぞれ受光画素を構成し、撮像期間に 発生する情報電荷をそれぞれ蓄積する。蓄積部1gは、 撮像部1iのシフトレジスタに連続し、ビット数が一致 する複数のCCDシフトレジスタからなり、これらのシ フトレジスタの各ビットに撮像部1iの各受光画素から 転送出力される情報電荷をそれぞれ一時的に蓄積する。 水平転送部1hは、蓄積部1sの各シフトレジスタの出 力が各ビットに結合された単一のCCDシフトレジスタ からなり、蓄積部1sから1水平ライン単位で転送出力 される情報電荷を順次出力部1d側へ転送する。出力部 1 dは、水平転送部1 hの出力側で情報電荷を受ける容 量を含み、水平転送部1hから転送出力される情報電荷 を受けて電荷量に応じた電圧値を出力する。ここで出力 される電圧値の変化が画像信号Y0(t)となる。

【0004】駆動回路2は、フレームクロック発生部2 f、垂直クロック発生部2v、水平クロック発生部2 h、リセットクロック発生部2r及びサンプリングクロ ック発生部2sより構成される。フレームクロック発生 部2fは、フレームシフトタイミング信号FTに応答し てフレームクロックφfを発生し、撮像部1 i へ供給す る。これにより、撮像部1iの各受光画素に蓄積される 情報電荷は、垂直走査期間毎に蓄積部1sへ高速転送さ れる。垂直クロック発生部2vは、垂直同期信号VT及 び水平同期信号HTに応答して垂直クロック

øvを発生 し、蓄積部1sへ供給する。これにより、蓄積部1sで は、撮像部1iから転送出力される情報電荷が取り込ま れて一時的に蓄積されると共に、蓄積された情報電荷が 各水平走査期間に1水平ライン単位で水平転送部1 hへ 転送される。水平クロック発生部2hは、水平同期信号 HTに応答して水平転送クロックφhを発生し、水平転 送部1 hへ供給する。これにより、1水平ライン毎に蓄 積部1sから水平転送部1hへ取り込まれた情報電荷

は、順次出力部1d側へ転送出力される。リセットクロック発生部2rは、水平クロック発生部2hの動作に同期して出力部1dの情報電荷を順次排出するリセットクロックφrを発生し、出力部1dへ供給する。これにより、水平転送部1hから出力部1dへ出力される情報電荷は、1画素単位で蓄積されるようになる。そして、サンプリングクロック発生部2sは、リセットクロック発生部2rと同様に、水平クロック発生部2hの動作に同期して出力部1dから出力される画像信号YO(t)を順次サンプリングするサンプリングクロックφsを発生し、後述するサンプルホールド回路4へ供給する。

【0005】タイミング制御回路3は、一定周期の基準 クロックCLKに基づいて動作し、イメージセンサ1の 垂直走査及び水平走査の各タイミングを決定する垂直同 期信号VT及び水平同期信号HTを発生し、駆動回路2 へ供給する。同時に、垂直同期信号VTに一致する周期 でフレームシフトタイミング信号FTを発生し、駆動回 路2へ供給する。このタイミング制御回路3では、イメ ージセンサ1の露光状態を最適に保つようにするため、 撮像部1iに発生する情報電荷の量に対応して垂直走査 期間の途中で撮像部1iの情報電荷を排出させるシャッ 夕制御が行われる。即ち、シャッタ動作のタイミングを 早くすると、フレーム転送開始までの期間が長くなり、 撮像部 1 i でより長い期間情報電荷の蓄積が行われるよ うになる。逆に、シャッタ動作のタイミングを遅くする と、フレーム転送開始までの期間が短くなり、撮像部1 iでは短い期間で情報電荷の蓄積が行われるようにな る。撮像部1 i の情報電荷を排出するシャッタ動作につ いては、駆動回路2からイメージセンサ1に供給する駆 動クロックの作用によって実行される。

【0006】サンプルホールド回路4は、サンプリングクロック発生部2sから供給されるサンプリングクロックの生部2sから供給されるサンプリングすることにより、信号レベルを維持する画像信号Y1(t)を生成する。通常、出力部1dにおいては、リセットクロックのrに従い容量の充放電が繰り返されるため、出力部1dから得られる画像信号Y0(t)は、リセットレベルと、情報電荷量に応じた信号レベルとが交互に連続する。そこで、画像信号Y0(t)の内、信号レベルのみを取り出すようにサンプリングクロックの位相を設定している。従って、出力部1dに蓄積される情報電荷量に対応する信号レベルのみが連続する画像信号Y1(t)を得ることができる。

【0007】分周回路5は、必要に応じてリセットクロックかr及びサンプリングクロックかsを分周するものであり、出力部1 dのリセット動作を間欠的することにより、出力部1 dで複数画素の情報電荷を混合できるようにしている。例えば、図12に示すように、水平クロックかbと同一の周期で生成されるリセットクロックか70及びサンプリングクロックか80をそれぞれ1/2に分周

し、周期が水平クロックφhの2倍となったリセットクロックφr1及びサンプリングクロックφs1を出力部1d及びサンプルホールド回路4へ供給するように構成される。周期が2倍となったリセットクロックφr1では、出力部1iに2画素分の情報電荷が蓄積される毎に情報電荷がリセットされることから、約2倍のレベルの画像信号Y0(t)を得ることができる。

【0008】イメージセンサ1の撮像部1iでは、一画面分の情報電荷を蓄積する期間は最長で1垂直走査期間となるが、イメージセンサ1が撮らえる被写体が暗い場合、蓄積期間を最長に設定しても、露光不足を解消できないことがある。このような場合に、分周回路5を動作させ、出力部1dでの情報電荷のリセット動作を1/2に間引くことにより、2画素分の情報電荷を1画素分として取り出すようにしている。従って、暗い被写体に対しても、露光不足となることなく十分なレベルの画像信号Y1(t)を得られるようになる。

[0009]

【発明が解決しようとする課題】撮像装置でカラー撮像を行う場合、イメージセンサ1の撮像部1iに、各受光画素を所定の色成分と対応させるカラーフィルタが装着される。このカラーフィルタは、三原色またはその補色が各受光画素に対応するセグメントに所定の順序で規則的に割り当てられる。例えば、モザイクフィルタでは、奇数行のセグメントに白W及び緑Gが交互に割り当てられ、偶数行のセグメントにシアンCy及び黄Yeが交互に割り当てられる。

【0010】イメージセンサ1の撮像部1iに上述のようなカラーフィルタが装着されている場合、水平方向に 隣接する2 画素が、互いに異なる色成分に対応付けられるため、隣接する受光画素に蓄積される情報電荷も互い に異なる色成分を表すことになる。このため、2 画素の情報電荷を出力部で合成して画像信号Y0(t)を得るようにすると、色成分が混合され、後の信号処理において所望の色成分を正しく再生できなくなる。

【0011】また、2画素の情報電荷の合成が可能なようにカラーフィルタの色成分を配列したとしても、2画素の情報電荷を合成すれば、画像信号に含まれる情報料が1/2となるため、再生画像での解像度の劣化は避けられない。特に、カラー撮像においては、解像度の劣化と共に、細かい部分での色の再現性が低下するという問題を有している。

【0012】そこで本発明は、カラーフィルタが装着されたイメージセンサに対して複数の画素の情報電荷を合成して読み出すことができるようにすると共に、複数画素の情報電荷の合成による再生画面の画質の低下を抑制することを目的とする。

[0013]

【課題を解決するための手段】本発明は、上述の課題を 解決するために成されたもので、その特徴とするところ

は、カラーフィルタの各セグメントにそれぞれ対応付け られて行列配置される複数の受光画素が各列毎に複数の 垂直転送部に結合され、この複数の垂直転送部の各出力 が水平転送部の各ピットに結合されると共に、この水平 転送部の出力電荷量が出力部で電圧値に変換されて出力 される固体撮像素子と、上記複数の受光画素に発生する 情報電荷を上記複数の垂直転送部へ転送した後、上記複 数の垂直転送部から1水平ライン毎に上記水平転送部へ 転送し、さらに上記水平転送部から上記出力部へ転送す ると共に、上記出力部に蓄積される情報電荷を上記水平 転送部の転送動作に同期して排出する駆動回路と、上記 出力部から出力される電圧値を上記駆動回路の排出動作 に同期して取り出す検出回路と、を備え、上記駆動回路 は、上記固体撮像素子に対して、上記複数の垂直転送部 の奇数列と偶数列とで上記水平転送部へ交互に情報電荷 を転送すると共に、特定の色成分に対応付けられた上記 受光画素に対応して、選択的に上記出力部の排出動作の 周期を上記水平転送部の転送動作の周期の整数倍に設定 し、上記出力部に特定の色成分を示す複数画素分の情報 電荷を蓄積させて画像信号を得ることにある。

【0014】本発明によれば、固体撮像素子の各受光画素が1列おきに同一の色成分に対応付けられているとき、垂直転送部から水平転送部への転送を1列おきに行うようにしたことで、水平転送部には、同じ色成分に対応付けられた情報電荷が同時に転送されるようになる。そして、特定の色成分に限って選択的に複数の受光画素の情報電荷を合成するようにしたことで、再生画面の解像度に影響し易い色成分では各受光画素の情報電荷が独立に読み出されるようになる。

[0015]

【発明の実施の形態】図1は、本発明の固体撮像装置の 構成を示すブロック図で、図2は、本発明の固体撮像装 置に用いられるイメージセンサ11に装着されるモザイ ク型のカラーフィルタの構成を示す平面図である。フレ ーム転送型のCCDイメージセンサ11は、図10と同 様に、撮像部111、蓄積部11s、水平転送部11h 及び出力部11dより構成される。撮像部11iは、垂 直方向に連続する互いに平行な複数のCCDシフトレジ スタからなり、これらのシフトレジスタの各ビットがそ れぞれ受光画素を構成し、撮像期間に発生する情報電荷 をそれぞれ蓄積する。蓄積部11sは、撮像部11iの シフトレジスタに連続し、ビット数が一致する複数のC CDシフトレジスタからなり、これらのシフトレジスタ の各ビットに撮像部11iの各受光画素から転送出力さ れる情報電荷をそれぞれ一時的に蓄積する。この蓄積部 11sのシフトレジスタは、偶数列で水平転送部11h に接続される側が1ビットだけ多くなるように形成され る。水平転送部11hは、蓄積部11sの各シフトレジ スタの出力が各ビットに結合されたCCDシフトレジス タからなり、蓄積部11sから転送出力される情報電荷

を順次出力部11d側へ転送する。この水平転送部1h のシフトレジスタは、1ビットに撮像部11i及び蓄積 部11sのシフトレジスタの2列が対応付けられる。出 力部11 dは、水平転送部11 hの出力側で情報電荷を 受ける容量を含み、水平転送部11hから転送出力され る情報電荷を受けて電荷量に応じた電圧値を出力する。 【0016】このイメージセンサ11の撮像部11iに は、図2に示すようなモザイク型のカラーフィルタが装 着される。このカラーフィルタは、撮像部11iの各受 光画素に対応するように複数のセグメントCに分割さ れ、各セグメントCが、所定の色成分に対応付けられ る。例えば、白(W)、緑(G)、黄(Ye)及びシア ン(Cy)の4種類の色成分を用いたとき、W及びGが 奇数行のセグメントCに交互に対応付けられ、Ye及び Cyが偶数行のセグメントCに交互に対応付けられる。 従って、奇数行の受光画素には、各列毎にW成分に対応 する情報電荷とG成分に対応する情報電荷とが交互に蓄 積され、偶数行の受光画素には、各列毎にYe成分に対 応する情報電荷とCy成分に対応する情報電荷とが交互 に蓄積される。このようなカラーフィルタの場合、一般 的には、Yeフィルタ及びCyフィルタを重ねてG成分 を得るようにすると共に、何れのフィルタも配置しない ことでW成分を得るようにしている。このため、各成分 の受光感度は、G成分がYe成分及びCy成分より低 く、W成分がYe成分及びCy成分よりも高くなる。 【0017】駆動回路12は、フレームクロック発生部 12f、垂直クロック発生部12v、補助クロック発生 部12u、水平クロック発生部12h、リセットクロッ ク発生部12r及びサンプリングクロック発生部12s より構成される。フレームクロック発生部12fは、フ レームシフトタイミング信号FTに応答してフレームク より、撮像部1iの各受光画素に蓄積される情報電荷 は、各垂直走査期間毎に蓄積部18へ高速転送される。 このフレームクロック発生部12fは、図10の駆動回 路2と同一である。垂直クロック発生部12 vは、垂直 同期信号VT及び水平同期信号HTに応答して垂直クロ ック øvを発生し、蓄積部11sへ供給する。補助クロ ック発生部12uは、水平同期信号HTに応答し、垂直 クロックφhの1/2の周期の補助クロックφuを発生 し、蓄積部118の出力端部で偶数列に余分に設けられ るビットへ供給する。これにより、蓄積部11sでは、 撮像部11 i から転送出力される情報電荷が取り込まれ て一時的に蓄積されると共に、その情報電荷が水平走査 期間の1/2の期間毎に、奇数列と偶数列とで交互に1 /2ラインずつに水平転送部11hへ転送される。 【0018】水平クロック発生部12hは、水平同期信

号HTに応答して水平転送クロックøhを発生し、水平

転送部11hへ供給する。水平転送部11hは、シフト

レジスタのビット数が1/2に縮小されているため、こ

の水平転送部11hに取り込まれた情報電荷は、水平走 査期間の1/2の期間で出力部11dへの転送出力が完 了する。このような1/2の画素数の情報電荷の転送出 力が、1水平走査期間の間に2回繰り返されることによ り、1行分の情報電荷の転送出力が完了する。リセット クロック発生部12rは、水平クロック発生部12hの 動作に同期して出力部1 dの情報電荷を順次排出するリ セットクロックørを発生し、出力部11dへ供給す る。これにより、水平転送部11hから出力部11dへ 出力される情報電荷は、1 画素単位で排出されるように なる。そして、サンプリングクロック発生部12sは、 リセットクロック発生部12rと同様に、水平クロック 発生部12hの動作に同期して出力11dから出力され る画像信号Y0(t)を順次サンプリングするサンプリング クロックφsを発生し、後述するサンプルホールド回路 14へ供給する。

【0019】図2に示すようなモザイク型のカラーフィルタがイメージセンサ11の撮像部11iに接続されている場合、蓄積部11sから水平転送部11sへ1列おきに(奇数列と偶列とを別々に)情報電荷を転送すると、同じ色成分が水平走査期間の1/2の期間連続するようになる。タイミング制御回路13は、イメージセンサ11の垂直走査及び水平走査の各タイミングを決定する垂直同期信号VT及び水平同期信号HTを発生し、さらに、垂直同期信号VTに一致する周期でフレーム転送タイミング信号FTを発生し、それぞれ駆動回路12へ供給する。また、タイミング制御回路13では、水平走査のタイミングに同期して、特定の色成分に対応付けられる受光画素から情報電荷が転送出力される期間を指定する分周制御信号DCを生成し、後述する分周回路15へ供給する。

【0020】サンプルホールド回路14は、サンプリン グクロック発生部12sから供給されるサンプリングク ロックφsに応答してイメージセンサ11から出力され る画像信号Y0(t)をサンプリングする。通常、出力部1 1 dでは、リセットクロックφrに従うタイミングで容 量の充放電が繰り返されるため、出力部11dから得ら れる画像信号Y0(t)は、リセットレベルと、情報電荷量 に応じた信号レベルとが交互に連続する。そこで、画像 信号Y0(t)の内、信号レベルのみを取り出すようにサン プリングクロックørの位相を設定している。従って、 出力部1 dに蓄積される情報電荷量に対応する信号レベ ルのみが連続する画像信号Y1(t)を得ることができる。 【0021】分周回路15は、タイミング制御回路13 から供給される分周制御信号DCに応答してリセットク ロック ør及びサンプリングクロック øsをそれぞれ同じ 比率で分周する。分周制御信号DCは、イメージセンサ 11の撮像部11 i で受光感度が最も高くなる色成分に 対応する画素からの情報電荷が転送出力されるタイミン グに応じて立ち下げられ、分周回路15の分周動作を禁

止する。これにより、イメージセンサ11の出力部11 dでのリセット動作が特定の色成分に対応する期間で間 欠的となり、出力部11 d において複数の画素の情報電 荷が選択的に混合されるようになる。例えば、水平クロ ックφhと同一の周波数で生成されるリセットクロック φr0及びサンプリングクロックφs0をW成分に対応する 期間を除いて1/2に分周し、周期が水平クロック ϕ h の2倍となったリセットクロック ør1及びサンプリング クロック øs1を出力部 1 1 d 及びサンプルホールド回路 14へ供給するように構成される。また、分周回路15 は、1垂直動作期間毎に反転するフレーム識別信号FL Dに従い、各垂直走査期間で分周動作のタイミングを1 クロック周期ずつずらす。これにより、出力部11 dで 合成される画素の組み合わせが、各垂直走査期間で1画 素ずつずれるようになり、画素合成による解像度の劣化 が最小となるようにしている。

【0022】図3は、イメージセンサ11の蓄積部11 sと水平転送部11hとの接続部の構造の一例を示す平 面図である。複数の垂直転送チャネル21a、21b が、分離領域22により区画され、垂直方向(転送方 向)に互いに平行に延在する。垂直転送チャネル21 a、21bの出力端には、各垂直転送チャネル21a、 21 bに連続する水平転送チャネル23が、分離領域2 4により区画され、水平方向に延在する。複数の垂直転 送チャネル21a、21b上には、2層構造を有する複 数の転送電極25a~25dが、各列で共通となるよう に水平方向に延在し、それぞれ絶縁された状態で互いに 平行に配置される。これらの転送電極25a~25dに は、4相の垂直クロック øv1~ øv4が印加される。水平 転送チャネル23上には、2層構造を有する複数の転送 電極26a、26bが、垂直方向に延在して配置され る。これらの転送電極26a、26bは、隣り合う2本 が共通に接続され、2相の水平クロック øh1、 øh2が印 加される。この転送電極26a、26bの内、下層側 は、垂直転送チャネル21a、21bと水平転送チャネ ル23との接続部分を被うように、垂直転送チャネル2 1a、21b側まで延在されている。さらに、奇数列の 垂直転送チャネル21 aと水平転送チャネル23との接 続部分は、偶数列よりも1ビット分長く形成され、その 接続部分も転送電極26aにより被うようにしている。 【0023】垂直転送チャネル21a、21bの出力側 (水平転送チャネル23側)には、2層構造を有する補 助転送電極27a~27dが形成される。下層側の補助 転送電極276、27 dは、偶数列の垂直転送チャネル 21 b上にのみ設けられる。また、上層側の補助転送電 極27a、27cは、全ての垂直転送チャネル21a、 21 bを横切って配置されるが、奇数列の垂直転送チャ ネル21a上では、転送電極26aに重なり、偶数列の 垂直転送チャネル21bに対してのみ作用する。そし て、これらの補助転送電極27a~27dには、4相の

補助クロックφu1〜φu4が印加される。これにより、補助転送電極27a〜27dは、偶数列の垂直転送チャネル21bの出力端で1ビット分の補助ビットを形成し、蓄積部11sから水平転送部11hへ情報電荷が転送される過程で、偶数列の垂直転送チャネル21bで1画素分の情報電荷を一時的に蓄積できるようになる。

【0024】図4及び図5は、図3に示す固体撮像素子 の動作を説明するタイミング図であり、図4は水平走査 周期の動作、図5は水平クロック周期の動作をそれぞれ 示している。尚、実際には、垂直クロックφv及び補助 クロックφuが4相であり、水平クロックφhが2相であ るが、図面上では代表クロックのみを示している。図4 に示すように、垂直クロックøvは、水平同期信号HT に従う周期で転送電極25a~25dをクロックキング し、垂直転送チャネル21a、21b内の情報電荷を1 水平走査期間に1画素ずつ垂直方向へ転送する。補助ク ロックφuは、垂直クロックφvの1/2の周期を有し、 水平同期信号HTの1/2の周期で補助転送電極27a ~27dをクロックキングする。補助転送電極27a~ 27 dは、偶数列の垂直転送チャネル21 bに対しての み有効に作用するため、偶数列の垂直転送チャネル21 b内の情報電荷が、出力端部で1水平走査期間に2画素 ずつ垂直方向へされる。このとき、転送電極25a~2 5d部分から補助転送電極27a~27d部分へは、1 水平走査期間に1画素の情報電荷しか転送されないた め、実際に補助転送電極27a~27d部分では、1画 素おきに空転送となる。従って、奇数列の垂直転送チャ ネル21aと偶数列の垂直転送チャネル21bとでは、 1/2垂直走査期間だけずれたタイミングで1画素の情 報電荷が水平転送チャネル23へ転送される。

【0025】水平クロックφhは、垂直クロックφv及び補助クロックφuに対応して起動し、転送電極26a、26bを水平走査周期よりも十分に短い周期でクロッキングする。この水平クロックφhの周期は、水平転送チャネル23内にある情報電荷を水平走査期間の1/2の期間で全て転送出力でき、且つ、一定のブランキング期間を確保できるように設定される。これにより、各水平走査期間の前半期間に、奇数列の垂直転送チャネル21aからの情報電荷が転送出力され、後半期間に、偶数列の垂直転送チャネル21bからの情報電荷が転送出力される

【0026】図5に示すように、リセットクロックφのは、水平クロックφhに同期し、水平転送周期に一致する周期で、イメージセンサ11の出力部11dに蓄積される情報電荷を排出させる。分周リセットクロックφr1は、リセットクロックφr0を1/2に分周して生成され、水平転送周期の2倍の周期で、イメージセンサ11の出力部11dに蓄積される情報電荷を排出する。イメージセンサ11の出力部11dには、この分周リセットクロックφr1が供給される。これにより、イメージセン

サ11の出力部では、2画素分の情報電荷が同時に蓄積されるようになり、出力される画像信号Y0(t)は、分周リセットクロックør1で指定されるリセット期間の後、2段階で信号レベルを変化させる。

【0027】サンプリングクロックøs0は、リセットク ロック ϕ r0と同一周期で、リセットクロック ϕ r0のリセ ット期間の直前にサンプリングタイミングを有し、サン プルホールド回路 1 4 で画像信号 Y0(t)の信号レベルを サンプリングする。分周サンプリングクロックφs1は、 サンプリングクロックφs0を1/2に分周して生成さ れ、サンプルホールド回路14において、画像信号Y0 (t)をサンプリングクロック øs0の 2 倍の周期でサンプ リングする。画像信号YO(t)を受けるサンプルホールド 回路14には、この分周サンプリングクロック oslが供 給される。これにより、分周リセットクロックør1で指 定されるリセット期間の後に2段階で信号レベルを変化 させる画像信号Y0(t)の信号レベルがサンプリングさ れ、信号レベルが2クロック期間(水平クロックφhの 2周期分)維持される画像信号Y1(t)が生成される。 【0028】上述のイメージセンサ11では、図2に示 すようなモザイク型のカラーフィルタが装着されている 場合、各色成分が各水平走査期間の1/2の期間毎に連 続するようになる。例えば、W成分及びG成分が交互に 対応付けられる奇数行の受光画素に対応する水平走査期 間では、図6に示すように、前半期間でW成分が連続 し、後半期間でG成分が連続する。また、Cy成分及び Ye成分が交互に対応付けられる偶数行の受光画素に対 応する水平走査期間では、前半期間でCy成分が連続 し、後半期間でYe成分が連続する。このような画像信 号YO(t)に対して、分周制御信号DCは、W成分に対応 する期間、即ち、奇数行の受光画素に対応する水平走査 期間の前半期間で立ち下がるようにして生成される。こ れにより、イメージセンサ11の出力部11 dにおける

【0029】図2に示すように、W、G、Ye及びCyの各成分でモザイク型のカラーフィルタを構成した場合、画像信号Y0(t)の信号処理の過程においては、Ye成分とG成分との差から赤(R)成分が生成され、Cy成分とG成分との差から青(B)成分が生成される。そして、R成分及びB成分から輝度成分を差し引くようにして色差信号が生成される。また、W、G、Ye及びCyの各成分を所定の割合で合成することにより、輝度信号が生成される。例えば、目標画素に対して上下及び左右に隣接する4つの画素の情報を1/2ずつ目標画素の情報に加算すると共に、目標画素に対して左上、右上、左下及び右下に隣接する4画素の情報を1/4ずつ加算するようにしている。このような加算処理を図2に示すカラーフィルタにおいて行った場合、全ての画素において色成分がW+G+Ye+Cy(=2R+4G+2B)

2 画素の情報電荷の合成処理は、W成分に対応する期間

を除いて行われるようになる。

となる。各色成分の内、W成分については、複数画素の情報電荷が合成されたものではなく、1 画素ずつ独立に読み出されたものであるため、このW成分を含む輝度信号の情報量は多くなる。

. . . .

【0030】ところで、特定の色成分に対応する画素で情報電荷を合成して画像信号YO(t)を取り出すようにした場合、画素を合成しない場合に比べて情報量が少なくなるため、画質の劣化は避けられない。そこで、情報電荷を合成する2画素の組み合わせを垂直走査期間毎に反転させるようにして、擬似的なインタレース駆動とし、画質の劣化を最小限にすることが考えられる。

【0031】図7は、情報電荷を合成する2画素を奇数 番目の垂直走査期間(奇数フレーム)と偶数番目の垂直 走査期間(偶数フレーム)とで反転させるようにしたと きの動作を説明するタイミングである。分周リセットク ロックør1は、図7に示すように、奇数フレームと偶数 フレームとで分周のタイミング、即ち、パルスを間引く タイミングが1クロック期間ずれて設定される。同様 に、分周サンプリングクロックøs1も、図7に示すよう に、奇数フレームと偶数フレームとで分周のタイミング が1クロック期間ずれて設定される。従って、分周リセ ットクロックør1及び分周サンプリングクロックøs1 は、リセットクロックør0及びサンプリングクロックø s0に対して2倍の周期を有し、奇数フレームと偶数フレ ームとで互いに1/2周期の位相差を有する。このよう な分周リセットクロック ør1及び分周サンプリングクロ ックφs1により画像信号Y1(t)を得るようにすれば、イ メージセンサ11の出力部11 dで合成される2画素の 組み合わせが、奇数フレームと偶数フレームとで反転す るようになる。

【0032】図2に示すようなカラーフィルタがイメージセンサ11に装着された場合を考えると、1画素おきに情報電荷が合成される2画素の組み合わせは、図8に破線で示すように、奇数フレームと偶数フレームとで反転するようになる。即ち、G成分のみを考えると、奇数フレームで4n列(n:整数)と4n+2列とが合成されるのに対して、偶数フレームでは4n-2列と4n列とが合成されるようになる。この規則は、Ye成分及びCy成分でも成立する。従って、イメージセンサ11で水平方向に擬似的なインタレース走査が行われるようになり、水平方向の解像度の劣化を低減することができる。

【0033】尚、情報電荷を合成する2画素の組み合わせの反転は、垂直走査期間単位で行うようにする他、水平走査期間単位で行うようにしてもよい。即ち、図9に示すように、2行毎に合成する2画素の組み合わせを反転させることにより、同じ色成分に着目すれば、1行毎に合成する2画素の組み合わせが反転するようになる。この場合も、イメージセンサ11が、水平方向に擬似的にインタレース走査されることになるため、図8の場合

と同様に、水平方向の解像度の劣化を低減することができる。また、垂直走査期間単位での組み合わせの反転と 水平走査期間単位での組み合わせの反転とを組み合わせることにより、さらなる効果を期待できる。

【0034】以上の実施の形態においては、情報電荷を2画素単位で合成する場合を例示したが、3画素以上の情報電荷を合成するようにしてもよい。この場合、リセットクロックφr0及びサンプリングクロックφs0から分周リセットクロックφr1及び分周サンプリングクロックφs1を得る際の分周比率を変更することで容易に対応可能である。

【0035】

【発明の効果】本発明によれば、モザイク型のカラーフィルタを装着したイメージセンサでも、水平方向に2画素の情報電荷を合成して取り出すようにすることができる。この際、色成分の混合がないため、出力される画像信号に対する信号処理が的確に施される。また、再生画面の解像度を決定する輝度信号の生成に用いられる特定の色成分(W成分)について、複数の画素の情報電荷を合成せずに1画素毎に独立に出力するようにして、再生画面の解像度の劣化を抑制することができる。

【0036】従って、カラー撮像において、撮像装置の 感度を高くすると同時に、感度向上に伴う解像度の低下 を抑圧することで、高感度で且つ解像度の高い撮像装置 を実現することができる。

【図面の簡単な説明】

【図1】本発明の固体撮像装置の構成を示すブロック図である。

【図2】モザイク型のカラーフィルタの構成を示す平面 図である。

【図3】イメージセンサの蓄積部と水平転送部との接続。 部分の構造の一例を示す平面図である。

【図4】本発明の固体撮像装置の第1の動作を説明する タイミング図である。

【図5】本発明の固体撮像装置の第2の動作を説明する タイミング図である。

【図6】モザイク型のカラーフィルタが装着されたイメージセンサから出力される画像信号の色成分の配列を示すタイミング図である。

【図7】本発明の固体撮像装置の第3の動作を説明する タイミング図である。

【図8】2画素の情報電荷を合成する際の組み合わせの 第1の状態を示す模式図である。

【図9】2画素の情報電荷を合成する際の組み合わせの 第2の状態を示す模式図である。

【図10】従来の固体撮像装置の構成を示すブロック図である。

【図11】従来の固体撮像装置の第1の動作を説明する タイミング図である。

【図12】従来の固体撮像装置の第2の動作を説明する

タイミング図である。

【符号の説明】

1、11 イメージセンサ

1 i 、 1 1 i 撮像部

1s、11s 蓄積部

1h、11h 水平転送部

1d、11d 出力部

2、12 駆動回路

2f、12f フレームクロック発生部

2 v、12 v 垂直クロック発生部

2h、12h 水平クロック発生部

【図1】

2r、12r リセットクロック発生部

2s、12s サンプリングクロック発生部

3、13 タイミング制御回路

4、14 サンプルホールド回路

5、15 分周回路

12 u 補助クロック発生部

21a、21b 垂直転送チャネル

22、24 チャネル分離領域

23 水平転送チャネル

25a~25d、26a、26b 転送電極

27a~27d 補助電極

【図2】

【図9】

【図4】

【図5】

 ϕ so \bigcap

