Projekt zaliczeniowy

Predykcja wartości opublikowanej wydajności względnej procesorów przy użyciu modelu regresji systemu ANFIS

Damian Gortych

1. Opis danych

Do mojego projektu użyłem danych na temat wydajności procesorów "Relative CPU Performance Data" pobranych ze strony UCI.

	vendor name	model	MCYT	MMIN	MMAX	CACH	CHMIN	CHMAX	PRP	ERP
0	adviser	32/60	125	256	6000	256	16	128	198	199
1	amdahl	470v/7	29	8000	32000	32	8	32	269	253
2	amdahl	470v/7a	29	8000	32000	32	8	32	220	253
3	amdahl	470v/7b	29	8000	32000	32	8	32	172	253
4	amdahl	470v/7c	29	8000	16000	32	8	16	132	132
204	sperry	80/8	124	1000	8000	0	1	8	42	37
205	sperry	90/80-model-3	98	1000	8000	32	2	8	46	50
206	sratus	32	125	2000	8000	0	2	14	52	41
207	wang	vs-100	480	512	8000	32	0	0	67	47
208	wang	vs-90	480	1000	4000	0	0	0	45	25

Zestaw danych składa się z następujących atrybutów:

- 1. "vendor name": nazwa producenta
- 2. "model": nazwa modelu
- 3. "MYCT": czas cyklu maszyny w nanosekundach (liczba całkowita)
- 4. "MMIN": minimalna pamięć główna w kilobajtach (liczba całkowita)
- 5. "MMAX": maksymalna pamięć główna w kilobajtach (liczba całkowita)
- 6. "CACH": pamięć podręczna w kilobajtach (liczba całkowita)
- 7. "CHMIN": minimalna liczba kanałów w jednostkach (liczba całkowita)
- 8. "CHMAX": maksymalna liczba kanałów w jednostkach (liczba całkowita)
- 9. "PRP": opublikowana wydajność względna (liczba całkowita)
- 10. "ERP": estymowana względna wydajność z oryginalnego artykułu (liczba całkowita)

2. Przetwarzanie wstępne oraz podstawowe statystyki.

Moim celem będzie predykcja wartości opublikowanej wydajności względnej "PRP".

Na początek usuwam ze zbioru zbędne atrybuty opisowe "vendor name" oraz "model" oraz atrybut "ERP".

Dla pozostałych danych obliczam podstawowe statystyki.

-	<pre>data = data.iloc[:,2:9] data.describe()</pre>									
:		MCYT	MMIN	MMAX	CACH	CHMIN	CHMAX	PRP		
co	ount	209.000000	209.000000	209.000000	209.000000	209.000000	209.000000	209.000000		
m	nean	203.822967	2867.980861	11796.153110	25.205742	4.698565	18.267943	105.622010		
	std	260.262926	3878.742758	11726.564377	40.628722	6.816274	25.997318	160.830733		
	min	17.000000	64.000000	64.000000	0.000000	0.000000	0.000000	6.000000		
2	25%	50.000000	768.000000	4000.000000	0.000000	1.000000	5.000000	27.000000		
	50%	110.000000	2000.000000	8000.000000	8.000000	2.000000	8.000000	50.000000		
7	75%	225.000000	4000.000000	16000.000000	32.000000	6.000000	24.000000	113.000000		
-	max	1500.000000	32000.000000	64000.000000	256.000000	52.000000	176.000000	1150.000000		

Sprawdzam brakujące dane.

```
In [13]: pd.isnull(data).mean()
Out[13]: MCYT
                 0.0
         MMIN
                 0.0
         MMAX
                 0.0
         CACH
                 0.0
         CHMIN
                 0.0
         CHMAX
                 0.0
         PRP
                 0.0
         dtype: float64
```

Następnie tworze macierz korelacji.

Na jej podstawie decyduje, że do mojej predykcji użyje trzech zmiennych z największą i zadowalającą korelacją ze zmienną na wyjściu czyli "MMIN", "MMAX', "CACH".

Dla pozostałych danych tworze pairplot.

Z powodu niewielkiej ilości danych, wykresy nie są idealne, natomiast można zauważyć liniową zależność.

Dodatkowo dołączam zakresy zmiennej wyjściowej dostępne wraz z pobranymi danymi.

0-20	31
21-100	121
101-200	27
201-300	13
301-400	7
401-500	4
501-600	2
above 600	4

3. Teoretyczny opis wykorzystywanego modelu ANFIS.

Wykorzystywany przeze mnie w kolejnych etapach model ANFIS czyli adaptacyjny system wnioskowania neuro-rozmytego jest rodzajem sztucznej sieci neuronowej bazujący na rozmytym wnioskowaniu Takagi-Surgeno.

Modele rozmyte cechują się mniejszą potrzebą otrzymywania informacji co jest ich istotną zaletą w porównaniu z metodami probabilistycznymi.

Wykorzystywane są one w wielu różnych dziedzinach takich jak ekonomia lub przetwarzanie obrazów w problemach klasyfikacyjnych i regresyjnych.

W mojej pracy posłuży mi do przewidzenia wartości wydajności

4. Stworzenie modeli ANFIS.

Wczytuje dane, a następnie dziele je na 4 zbiory testowe i treningowe, które posłużą mi do walidacji krzyżowej.

```
%% Wczytanie danych
close all;clear;clc;
data = readtable("data.csv");
data = table2array(data);
data(:,1) = [];
cv = cvpartition(size(data,1),'KFold',4);
idx1 = cv.test(1);
idx2 = cv.test(2);
idx3 = cv.test(3);
idx4 = cv.test(4);
% Separate to training and test data
dataTrain1 = data(~idx1,:);
dataTest1 = data(idx1,:);
dataTrain2 = data(~idx2,:);
dataTest2 = data(idx2,:);
dataTrain3 = data(~idx3,:);
dataTest3 = data(idx3,:);
dataTrain4 = data(~idx4,:);
dataTest4 = data(idx4,:);
```

1. Model 1

Typ funkcji: trójkątna

Liczba funkcji: 3 na każdym inpucie

Liczba reguł: 27

Minimal training RMSE = 24.6182

Wyniki walidacji krzyżowej:

RMSE test = 151.14 RMSE train = 24.91

W tym modelu otrzymaliśmy niezadowalające wyniki zarówno dla zbioru treningowego jak i testowego. Nie jest on optymalny dla naszych danych.

2. Model 2

Typ funkcji: gauss

Liczba funkcji: 6 na każdym inpucie

Liczba reguł: 216

Wyniki walidacji krzyżowej:

RMSE test = 98.11

RMSE train = 22.01

W tym modelu otrzymaliśmy najlepsze wyniki dla zbioru treningowego, jednakże model okazał się nieodpowiedni w predykcji zbioru testowego.

3. Model 3

Typ funkcji: trapez

Liczba funkcji: 5 na każdym inpucie

Liczba reguł: 125

Wyniki walidacji krzyżowej:

RMSE test = 27.92

RMSE train = 25.52

Model 3 okazał się najlepszy dla naszych danych, predykcja zarówno na zbiorze treningowym jak i testowym dała bliskie rezultaty.

5. Wnioski

Analizując różne modele największą obserwacją, był ich problem w przewidywaniu zbioru testowego, pomimo zadowalających wyników na zbiorze treningowym. Ostatecznie najlepszym modelem okazał się model 3, który najlepiej poradził sobie z problemem i uzyskał zadowalające wyniki.