$J/\psi(1S)$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

$J/\psi(1S)$ MASS

<i>VALUE</i> (MeV)	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
3096.900±0.006 OUR AVE	RAGE				
$3096.900 \pm 0.002 \pm 0.006$					$e^+e^- o$ hadrons
3096.89 ± 0.09	502				$e^+e^- o$ hadrons
$3096.91 \pm 0.03 \pm 0.01$		³ ARMSTRONG			
$3096.95 \pm 0.1 \pm 0.3$	193	BAGLIN	87	SPEC	$\overline{p}p \rightarrow e^+e^-X$
• • • We do not use the fo	ollowing d	ata for averages, fits	s, lim	its, etc.	• • •
$3096.66 \pm 0.19 \pm 0.02$	6.1k	⁴ AAIJ	15 BI	LHCB	$pp o J/\psi X$
$3096.917 \pm 0.010 \pm 0.007$		AULCHENKO	03	KEDR	$e^+e^- o$ hadrons
3097.5 ± 0.3		GRIBUSHIN	96	FMPS	$515~\pi^-\mathrm{Be} o ~2\mu X$
3098.4 ± 2.0	38k	LEMOIGNE	82	GOLI	185 π^- Be \rightarrow
3096.93 ±0.09	502	⁵ ZHOLENTZ	80		e^+e^-
3097.0 ± 1		⁶ BRANDELIK	79 C	DASP	e^+e^-

¹ Supersedes AULCHENKO 03.

$J/\psi(1S)$ WIDTH

VALUE (keV)	EVTS	DOCUMENT ID		TECN	COMMENT
92.6 ± 1.7	OUR AVERAGE	Error includes scale	facto	r of 1.1.	
92.45 ± 1.40	± 1.48	¹ ANASHIN			
$96.1 ~\pm~ 3.2$	13k	² ADAMS	06A	CLEO	$e^+e^- ightarrow \mu^+\mu^-\gamma$
$84.4\ \pm\ 8.9$		BAI			
91 ± 11	± 6	³ ARMSTRONG	93 B	E760	$\overline{p}p \rightarrow e^+e^-$
$85.5 \begin{array}{c} + & 6.1 \\ - & 5.8 \end{array}$		⁴ HSUEH	92	RVUE	See Υ mini-review
• • • We do	not use the follow	ving data for averages	s, fits,	limits, e	etc. • • •
92.94± 1.83		^{5,6} ANASHIN	18A	KEDR	e^+e^-
$94.1 ~\pm~ 2.7$		⁷ ANASHIN	10	KEDR	$3.097 e^{+}e^{-} \rightarrow$
93.7 ± 3.5	7.8k	² AUBERT	04	BABR	3.097 $e^{+}e^{-} \rightarrow e^{+}e^{-}, \mu^{+}\mu^{-}$ $e^{+}e^{-} \rightarrow \mu^{+}\mu^{-}\gamma$

 $^{^{}m 1}$ Based on the same dataset as ANASHIN 18A and correlated to the values reported there

 $^{^2}$ Reanalysis of ZHOLENTZ 80 using new electron mass (COHEN 87) and radiative corrections (KURAEV 85).

 $^{^3}$ Mass central value and systematic error recalculated by us according to Eq.(16) in ARMSTRONG 93B, using the value for the $\psi(2S)$ mass from AULCHENKO 03.

⁴ From a sample of $\eta_c(1S)$ and J/ψ produced in b-hadron decays. Systematic uncertainties not estimated.

not estimated. 5 Superseded by ARTAMONOV 00.

⁶ From a simultaneous fit to e^+e^- , $\mu^+\mu^-$ and hadronic channels assuming $\Gamma(e^+e^-)$ = $\Gamma(\mu^+\mu^-)$.

² Calculated by us from the reported values of $\Gamma(e^+e^-)\times B(\mu^+\mu^-)$ using $B(e^+e^-)=(5.94\pm0.06)\%$ and $B(\mu^+\mu^-)=(5.93\pm0.06)\%$.

$J/\psi(1S)$ DECAY MODES

Mode	$\begin{array}{ccc} & & \text{Scale factor/} \\ \text{Fraction } \left(\Gamma_{\pmb{i}} / \Gamma \right) & & \text{Confidence level} \end{array}$
$\begin{array}{lll} \Gamma_1 & \text{hadrons} \\ \Gamma_2 & \text{virtual} \gamma \rightarrow \text{hadrons} \\ \Gamma_3 & \textit{ggg} \\ \Gamma_4 & \gamma \textit{gg} \\ \Gamma_5 & e^+e^- \\ \Gamma_6 & e^+e^- \gamma \\ \Gamma_7 & \mu^+\mu^- \end{array}$	$(87.7 \pm 0.5)\%$ $(13.50 \pm 0.30)\%$ $(64.1 \pm 1.0)\%$ $(8.8 \pm 1.1)\%$ $(5.971 \pm 0.032)\%$ [a] $(8.8 \pm 1.4) \times 10^{-3}$ $(5.961 \pm 0.033)\%$

Decays involving hadronic resonances							
Γ ₈	$\rho\pi$		•			,	S=2.4
	$ ho^0 \pi^0$		•			$) \times 10^{-3}$	
	$a_2(1320)\rho$		(1.09				
	$\eta \pi^+ \pi^-$		•			$) \times 10^{-4}$	
Γ_{12}	$\eta \pi^+ \pi^- \pi^0$		(1.17			,	
Γ ₁₃	$\eta \pi^{+} \pi^{-} 3\pi^{0}$					$) \times 10^{-3}$	
	ηho					$) \times 10^{-4}$	
Γ ₁₅	$\eta \phi(2170) ightarrow \eta \phi f_0(980) ightarrow$		(1.2	\pm	0.4	$) \times 10^{-4}$	
	$\eta \phi \pi^+ \pi^-$						
Γ_{16}	$\eta \phi(2170) \rightarrow$		< 2.52			$\times 10^{-4}$	CL=90%
	$\eta K^*(892)^0 \overline{K}^*(892)^0$						
	$\etaK^{\pm}K^0_{S}\pi^{\mp}$	[<i>b</i>]	(2.2	\pm	0.4	$) \times 10^{-3}$	
	$\eta K^*(892)^0 \overline{K}^*(892)^0$					$) \times 10^{-3}$	
	$\rho \eta'(958)$		(8.1	\pm	8.0	$) \times 10^{-5}$	S=1.6
	$ ho^{\pm} \pi^{\mp} \pi^{+} \pi^{-} 2\pi^{0}$		(2.8				
Γ_{21}	$\rho^{+}\rho^{-}\pi^{+}\pi^{-}\pi^{0}$		(6	\pm	4	$) \times 10^{-3}$	
Γ_{22}	$ ho^{\mp} K^{\pm} K_S^0$		(1.9	\pm	0.4	$) \times 10^{-3}$	
Γ_{23}	$\rho(1450)\pi$						
Γ_{24}	$ ho(1450)\pi ightarrow \pi^+\pi^-\pi^0$		(2.3	\pm	0.7	$) \times 10^{-3}$	
Γ ₂₅	$ ho(1450)^{\pm}\pi^{\mp} ightarrow~K^0_SK^{\pm}\pi^{\mp}$		(3.5	\pm	0.6	$) \times 10^{-4}$	
Γ ₂₆	$ ho(1450)^0 \pi^0 \to K^+ K^- \pi^0$					$) \times 10^{-4}$	
	$ ho$ (1450) η' (958) $ ightarrow$					$) \times 10^{-6}$	
	$\pi^{+}\pi^{-}\eta'(958)$		`			,	
Γ ₂₈	$\rho(1700)\pi$						
Γ ₂₉	$\rho(1700)\pi \to \pi^{+}\pi^{-}\pi^{0}$		(1.7	\pm	1.1	$) \times 10^{-4}$	

 $^{^3}$ The initial-state radiation correction reevaluated by ANDREOTTI 07 in its Ref. [4].

⁴ Using data from COFFMAN 92, BALDINI-CELIO 75, BOYARSKI 75, ESPOSITO 75B,

Using Gata from COFFMAN 92, BALDINI-CELIO 73, BOTAKSKI 73, ESPOSITO 738, BRANDELIK 79C. 5 Using $\Gamma(e^+e^-)$ from ANASHIN 18A and $B(J/\psi(1S) \rightarrow e^+e^-) = (5.971 \pm 0.032)\%$ from PDG 16. 6 Superseded by ANASHIN 20 that is based on the same dataset . 7 Assuming $\Gamma(e^+e^-) = \Gamma(\mu^+\mu^-)$ and using $\Gamma(e^+e^-)/\Gamma_{\text{total}} = (5.94 \pm 0.06)\%$.

```
(7.4 \pm 0.8) \times 10^{-4}
\Gamma_{99}
          \phi\eta
                                                                                                                          S = 1.5
\Gamma_{100} \phi \eta'(958)
                                                                              (4.6 \pm 0.5) \times 10^{-4}
                                                                                                                          S = 2.2
\Gamma_{101} \phi \eta \eta'
                                                                              (2.32 \pm 0.17) \times 10^{-4}
\Gamma_{102} \phi f_0(980)
                                                                              (3.2 \pm 0.9) \times 10^{-4}
                                                                                                                          S = 1.9
\Gamma_{103} \quad \phi f_0(980) \to \phi \pi^+ \pi^-
                                                                             (2.60 \pm 0.34) \times 10^{-4}
              \phi f_0(980) \to \phi \pi^0 \pi^0
\Gamma_{104}
                                                                              (1.8 \pm 0.5) \times 10^{-4}
\Gamma_{105} \ \phi \pi^0 f_0(980) \rightarrow \ \phi \pi^0 \pi^+ \pi^-
                                                                             (4.5 \pm 1.0) \times 10^{-6}
\Gamma_{106} \ \phi \pi^0 f_0(980) \rightarrow \ \phi \pi^0 p^0 \pi^0
                                                                              (1.7 \pm 0.6) \times 10^{-6}
\Gamma_{107} \phi f_0(980) \eta \rightarrow \eta \phi \pi^+ \pi^-
                                                                              (3.2 \pm 1.0) \times 10^{-4}
\Gamma_{108} \ \phi a_0(980)^0 \to \ \phi \eta \pi^0
                                                                              (4.4 \pm 1.4) \times 10^{-6}
\Gamma_{109} \phi f_2(1270)
                                                                              (3.2 \pm 0.6) \times 10^{-4}
\Gamma_{110} \phi f_1(1285)
                                                                              (2.6 \pm 0.5) \times 10^{-4}
         \phi f_1(1285) \rightarrow \phi \pi^0 f_0(980) \rightarrow
                                                                              (9.4 \pm 2.8) \times 10^{-7}
\Gamma_{111}
                    \phi \pi^{0} \pi^{+} \pi^{-}
              \phi f_1(1285) \to \phi \pi^0 f_0(980) \to
                                                                              (2.1 \pm 2.2) \times 10^{-7}
\Gamma_{112}
                    \phi 3\pi^0
\Gamma_{113} \phi \eta(1405) \rightarrow \phi \eta \pi^+ \pi^-
                                                                              (2.0 \pm 1.0) \times 10^{-5}
\Gamma_{114} \phi f_2'(1525)
                                                                                         \pm 4
                                                                                                      ) \times 10^{-4}
                                                                              (8
                                                                                                                          S = 2.7
\Gamma_{115} \phi X(1835) \rightarrow \phi p \overline{p}
                                                                            < 2.1
                                                                                                        \times 10^{-7} CL=90%
\Gamma_{116} \phi X(1835) \rightarrow \phi \eta \pi^+ \pi^-
                                                                           < 2.8
                                                                                                        \times 10^{-4}
                                                                                                                      CL=90%
\Gamma_{117} \ \phi X(1870) \rightarrow \ \phi \eta \pi^+ \pi^-
                                                                                                        \times 10^{-5}
                                                                                                                      CL=90%
                                                                           < 6.13
\Gamma_{118} \phi K K
                                                                           (1.77 \pm 0.16) \times 10^{-3}
                                                                                                                          S = 1.3
         \phi f_0(1710) \rightarrow \phi K \overline{K}
\Gamma_{119}
                                                                             (3.6 \pm 0.6) \times 10^{-4}
\Gamma_{120}
              \phi K^+ K^-
                                                                              (8.3 \pm 1.1) \times 10^{-4}
\Gamma_{121} \phi K_s^0 K_s^0
                                                                              (5.9 \pm 1.5) \times 10^{-4}
\Gamma_{122} \quad \phi K^{\stackrel{1}{\pm}} K^{\stackrel{0}{5}}_{S} \pi^{\mp}
                                                                      [b] (7.2 \pm 0.8) \times 10^{-4}
\Gamma_{123} \phi K^*(892) K + \text{c.c.}
                                                                              (2.18 \pm 0.23) \times 10^{-3}
\Gamma_{124} \quad b_1(1235)^{\pm} \pi^{\mp}
                                                                      [b] (3.0 \pm 0.5) \times 10^{-3}
\Gamma_{125} b_1(1235)^0 \pi^0
                                                                              (2.3 \pm 0.6) \times 10^{-3}
\Gamma_{126} f_2'(1525)K^+K^-
                                                                              (1.06 \pm 0.35) \times 10^{-3}
                                                                                                        \times 10^{-4} CL=90%
\Gamma_{127} \Delta(1232)^{+}\overline{p}
                                                                           < 1
\Gamma_{128} \ \Delta(1232)^{++} \overline{p} \pi^{-}
                                                                           (1.6 \pm 0.5) \times 10^{-3}
\Gamma_{129} \quad \Delta(1232)^{++} \, \overline{\Delta}(1232)^{--}
                                                                           (1.10 \pm 0.29) \times 10^{-3}
\Gamma_{130} \ \overline{\Sigma} (1385)^0 p K^-
                                                                             (5.1 \pm 3.2) \times 10^{-4}
\Gamma_{131} \Sigma (1385)^{0} \overline{\Lambda} + \text{c.c.}
                                                                                                        \times 10^{-6} CL=90%
                                                                           < 8.2
\Gamma_{132} \quad \Sigma(1385)^{-} \overline{\Sigma}^{+} (or c.c.)
                                                                      [b] (3.1 \pm 0.5) \times 10^{-4}
\Gamma_{133} \quad \Sigma(1385)^{-} \overline{\Sigma}(1385)^{+} \text{ (or c.c.)}
                                                                      [b] (1.16 \pm 0.05) \times 10^{-3}
\Gamma_{134} \quad \Sigma(1385)^0 \overline{\Sigma}(1385)^0
                                                                              (1.07 \pm 0.08) \times 10^{-3}
\Gamma_{135} \Lambda(1520)\Lambda + c.c. \rightarrow \gamma \Lambda \Lambda
                                                                           < 4.1
                                                                                                        \times 10^{-6} CL=90%
                                                                                                        \times 10^{-3} CL=90%
\Gamma_{136} \Lambda(1520) \Lambda + \text{c.c.}
                                                                           < 1.80
\Gamma_{137} \equiv^0 \overline{\Xi}^0
                                                                           (1.17 \pm 0.04) \times 10^{-3}
\Gamma_{138} \Xi(1530)^{-}\overline{\Xi}^{+}+\text{c.c.}
                                                                           (3.18 \pm 0.08) \times 10^{-4}
\Gamma_{139} \equiv (1530)^0 \overline{\pm}{}^0
                                                                              (3.2 \pm 1.4) \times 10^{-4}
```

	Citation: R.L. Workman et al. (Particle Data Group)), Prog.Theor.Exp.Phys. 2022 , 00	33C01 (2022)
Γ ₁₄₀	$\Theta(1540) \overline{\Theta}(1540) ightarrow \ K_S^0 p K^- \overline{n} + \mathrm{c.c.}$	[c] < 1.1 ×	10 ⁻⁵ CL=90%
Γ ₁₄₁	$\Theta(1540) K^{-} \overline{n} \rightarrow K_{S}^{0} p K^{-} \overline{n}$	[c] < 2.1 ×	10^{-5} CL=90%
		[c] < 1.6 ×	10^{-5} CL=90%
	$\overline{\Theta}(1540)K^{+}n \rightarrow K_{S}^{0}\overline{p}K^{+}n$	$[c] < 5.6 \times$	10^{-5} CL=90%
	<u> </u>	• •	10^{-5} CL=90%
	Decays into sta	able hadrons	
Γ_{145}	$2(\pi^+\pi^-)\pi^0$	(3.71 ± 0.28) %	S=1.3
Γ_{146}	$3(\pi^{+}\pi^{-})\pi^{0}$	$(2.9 \pm 0.6)\%$,)
Γ_{147}	$\pi^{+}\pi^{-}3\pi^{0}$	$(1.9 \pm 0.9)\%$,)
Γ_{148}	$\pi^{+}\pi^{-}4\pi^{0}$	(6.5 ± 1.3) $ imes$	10^{-3}
Γ_{149}	$ ho^{\pm}\pi^{\mp}\pi^{0}\pi^{0}$	(1.41 ± 0.22) %	,)
Γ_{150}	$\rho^{+}\rho^{-}\pi^{0}$	(6.0 \pm 1.1) \times	10^{-3}
Γ_{151}	$\pi^{+}\pi^{-}\pi^{0}$	(2.10 ± 0.08) %	S=1.6
Γ_{152}	$2(\pi^{+}\pi^{-}\pi^{0})$	(1.61 ± 0.20) %	,)
	$\pi^+\pi^-\pi^0$ K^+K^-	(1.20 ± 0.30) %	,)
Γ_{154}	$\pi^+\pi^-$	(1.47 \pm 0.14) $ imes$	10^{-4}
	$2(\pi^+\pi^-)$	(3.57 ± 0.30) $ imes$	10^{-3}
	$3(\pi^+\pi^-)$	(4.3 \pm 0.4) \times	10^{-3}
	$2(\pi^{+}\pi^{-})3\pi^{0}$	$(6.2 \pm 0.9)\%$,)
Γ_{158}	$4(\pi^{+}\pi^{-})\pi^{0}$	(9.0 \pm 3.0) \times	10^{-3}
	$2(\pi^+\pi^-)\eta$	($2.29~\pm~0.28$) \times	
	$3(\pi^{+}\pi^{-})\eta$	(7.2 \pm 1.5) \times	
Γ_{161}	$2(\pi^{+}\pi^{-}\pi^{0})\eta$	(1.6 \pm 0.5) $ imes$	10^{-3}

```
\Gamma_{178} \quad K_{S}^{0} K_{S}^{0} \pi^{+} \pi^{-}
                                                                                  (1.68 \pm 0.19) \times 10^{-3}
\Gamma_{179} \quad K^{\mp} K_S^{0} \pi^{\pm} \pi^{0}
                                                                                  (5.7 \pm 0.5) \times 10^{-3}
\Gamma_{180} K^+ K^- 2(\pi^+ \pi^-)
                                                                                 (3.1 \pm 1.3) \times 10^{-3}
\Gamma_{181} K^+ K^- \pi^+ \pi^- \eta
                                                                                 (4.7 \pm 0.7) \times 10^{-3}
\Gamma_{182} \ 2(K^+K^-)
                                                                                  (7.2 \pm 0.8) \times 10^{-4}
\Gamma_{183} \quad K^+ K^- K_S^0 K_S^0
                                                                                  (4.2 \pm 0.7) \times 10^{-4}
\Gamma_{184} p \overline{p}
                                                                                  (2.120\pm\ 0.029)\times10^{-3}
\Gamma_{185} p \overline{p} \pi^0
                                                                                  (1.19 \pm 0.08) \times 10^{-3}
                                                                                                                                 S=1.1
\Gamma_{186} p \overline{p} \pi^+ \pi^-
                                                                                  (6.0 \pm 0.5) \times 10^{-3}
                                                                                                                                 S = 1.3
\Gamma_{187} p \overline{p} \pi^+ \pi^- \pi^0
                                                                         [d] (2.3 \pm 0.9) \times 10^{-3}
                                                                                                                                 S=1.9
\Gamma_{188} p \overline{p} \eta
                                                                                  (2.00 \pm 0.12) \times 10^{-3}
                                                                                              \times 10^{-4}
\Gamma_{189} p \overline{p} \rho
                                                                               < 3.1
                                                                                                                            CL=90%
\Gamma_{190} p \overline{p} \omega
                                                                                  (9.8 \pm 1.0) \times 10^{-4}
                                                                                                                                 S=1.3
\Gamma_{191} p \overline{p} \eta'(958)
                                                                                  (1.29 \pm 0.14) \times 10^{-4}
                                                                                                                                 S = 2.0
\Gamma_{192} p \overline{p} a_0(980) \rightarrow p \overline{p} \pi^0 \eta
                                                                                 (6.8 \pm 1.8) \times 10^{-5}
\Gamma_{193} p \overline{p} \phi
                                                                                  (5.19 \pm 0.33) \times 10^{-5}
\Gamma_{194} p \overline{n} \pi^-
                                                                                  (2.12 \pm 0.09) \times 10^{-3}
                                                                                  (2.09 \pm 0.16) \times 10^{-3}
\Gamma_{195} n\overline{n}
\Gamma_{196} \quad n \overline{n} \pi^+ \pi^-
                                                                                              \pm 4 ) × 10<sup>-3</sup>
\Gamma_{197} nN(1440)
                                                                                   seen
\Gamma_{198} \quad n \, N(1520)
                                                                                   seen
\Gamma_{199} \quad n \, N(1535)
                                                                                   seen
\Gamma_{200} \Lambda \overline{\Lambda}
                                                                                  (1.89 \pm 0.09) \times 10^{-3}
                                                                                                                                 S = 2.8
\Gamma_{201} \Lambda \overline{\Lambda} \pi^0
                                                                                  (3.8 \pm 0.4) \times 10^{-5}
\Gamma_{202} \Lambda \overline{\Lambda} \pi^+ \pi^-
                                                                                  (4.3 \pm 1.0) \times 10^{-3}
\Gamma_{203} \Lambda\Lambda\eta
                                                                                  (1.62 \pm 0.17) \times 10^{-4}
\Gamma_{204} \Lambda \overline{\Sigma}^- \pi^+ \text{ (or c.c.)}
                                                                          [b] (8.3 \pm 0.7) \times 10^{-4}
                                                                                                                                S=1.2
\Gamma_{205} pK^{-}\overline{\Lambda}+c.c.
                                                                                  (8.6 \pm 1.1) \times 10^{-4}
\Gamma_{206} pK^{-}\overline{\Sigma}^{0}
                                                                                  (2.9 \pm 0.8) \times 10^{-4}
\Gamma_{207} \overline{\Lambda} n K_S^0 + \text{c.c.}
                                                                                  (6.5 \pm 1.1) \times 10^{-4}
\Gamma_{208} \Lambda \overline{\Sigma} + \text{c.c.}
                                                                                  (2.83 \pm 0.23) \times 10^{-5}
\Gamma_{209} \Sigma^{+} \overline{\Sigma}^{-}
                                                                                  (1.07 \pm 0.04) \times 10^{-3}
\Gamma_{210} \quad \Sigma^0 \overline{\Sigma}{}^0
                                                                                  (1.172 \pm 0.032) \times 10^{-3}
                                                                                                                                 S = 1.4
\Gamma_{211} = \overline{\Xi}^+
                                                                                  (9.7 \pm 0.8) \times 10^{-4}
                                                                                                                                S = 1.4
                                                      Radiative decays
\Gamma_{212} \quad \gamma \eta_c(1S)
                                                                                  (1.7 \pm 0.4)\%
                                                                                                                                S = 1.5
                                                                                  (3.8 + 1.3 - 1.0) \times 10^{-6}
\Gamma_{213} \qquad \gamma \eta_c(1S) \rightarrow 3\gamma
                                                                                                                                 S=1.1
\Gamma_{214} \qquad \gamma \eta_c(1S) \rightarrow \ \gamma \eta \eta \eta'
                                                                                  (4.9 \pm 0.8) \times 10^{-5}
\Gamma_{215} 3\gamma
                                                                                  (1.16 \pm 0.22) \times 10^{-5}
\Gamma_{216} 4\gamma
                                                                                                          \times 10^{-6} CL=90%
                                                                                < 9
\Gamma_{217} 5\gamma
                                                                                                             \times 10^{-5} CL=90%
                                                                                < 1.5
\Gamma_{218} \gamma \pi^0
                                                                                  (3.56 \pm 0.17) \times 10^{-5}
\Gamma_{219} \quad \gamma \pi^0 \pi^0
                                                                                  (1.15 \pm 0.05) \times 10^{-3}
```

Page 7

Created: 8/11/2022 09:37

https://pdg.lbl.gov

```
\Gamma_{220} \quad \gamma \, 2\pi^{+} \, 2\pi^{-}
                                                                                  (2.8 \pm 0.5) \times 10^{-3}
                                                                                                                                 S = 1.9
\Gamma_{221} \qquad \gamma \, f_2(1270) \, f_2(1270)
                                                                                  (9.5 \pm 1.7) \times 10^{-4}
              \gamma f_2(1270) f_2(1270) (non reso-
                                                                           (8.2 \pm 1.9) \times 10^{-4}
\Gamma_{223} \quad \gamma \pi^+ \pi^- 2\pi^0
                                                                                  (8.3 \pm 3.1) \times 10^{-3}
\Gamma_{224} \gamma K_S^0 K_S^0
                                                                                  (8.1 \pm 0.4) \times 10^{-4}
\Gamma_{225} \gamma (\overline{K}\overline{K}\pi) [J^{PC} = 0^{-+}]
                                                                                  (7 \pm 4) \times 10^{-4}
                                                                                                                                 S = 2.1
\Gamma_{226} \gamma K^{+} K^{-} \pi^{+} \pi^{-}
                                                                                  (2.1 \pm 0.6) \times 10^{-3}
\Gamma_{227} \quad \gamma K^*(892) \overline{K}^*(892)
                                                                                 (4.0 \pm 1.3) \times 10^{-3}
\Gamma_{228} \quad \gamma \, \eta
                                                                                  (1.085 \pm 0.018) \times 10^{-3}
\Gamma_{229} \gamma \eta \pi^0
                                                                                  (2.14 \pm 0.31) \times 10^{-5}
\Gamma_{230} \quad \gamma f_0(500) \rightarrow \quad \gamma \pi \pi
\Gamma_{231} \gamma f_0(500) \rightarrow \gamma K K
\Gamma_{232} \quad \gamma f_0(500) \rightarrow \quad \gamma \eta \eta
\Gamma_{233} \qquad \gamma a_0 (980)^0 \rightarrow \gamma \eta \pi^0
                                                                            < 2.5 \times 10^{-6} \text{ CL}=95\%
\Gamma_{234} \quad \gamma a_2 (1320)^0 \rightarrow \gamma \eta \pi^0
                                                                               < 6.6 \times 10^{-6} \text{ CL}=95\%
\Gamma_{235} \ \gamma \eta \pi \pi
                                                                               (6.1 \pm 1.0) \times 10^{-3}
\Gamma_{236} \qquad \gamma \eta_2(1870) \rightarrow \ \gamma \eta \pi^+ \pi^-
                                                                               (6.2 \pm 2.4) \times 10^{-4}
\Gamma_{237} \quad \gamma \, \eta'(958)
                                                                                  (5.25 \pm 0.07) \times 10^{-3}
                                                                                                                             S=1.3
\Gamma_{238} \gamma f_0(980) \rightarrow \gamma \pi \pi
\Gamma_{239} \quad \gamma f_0(980) \rightarrow \gamma K K
                                                                                  (4.5 \pm 0.8) \times 10^{-3}
\Gamma_{240} \gamma \rho \rho
\Gamma_{241} \gamma \rho \omega
                                                                                < 5.4 \times 10^{-4} \text{ CL}=90\%
                                                                                                           \times 10^{-5} CL=90%
\Gamma_{242} \ \gamma \rho \phi
                                                                                < 8.8
\Gamma_{243} \gamma \omega \omega
                                                                               (1.61 \pm 0.33) \times 10^{-3}
\Gamma_{244} \gamma\phi\phi
                                                                                 (4.0 \pm 1.2) \times 10^{-4}
                                                                                                                                S = 2.1
\Gamma_{245} \ \gamma \eta (1405/1475) \rightarrow \ \gamma K \overline{K} \pi
                                                                               (2.8 \pm 0.6) \times 10^{-3}
                                                                                                                                S = 1.6
\Gamma_{246} \quad \gamma \eta (1405/1475) \rightarrow \gamma \gamma \rho^0
                                                                               (7.8 \pm 2.0) \times 10^{-5}
                                                                                                                                 S=1.8
\Gamma_{247} \ \gamma \eta (1405/1475) \rightarrow \gamma \eta \pi^{+} \pi^{-}
                                                                               (3.0 \pm 0.5) \times 10^{-4}
\Gamma_{248} \ \gamma \eta (1405/1475) \rightarrow \ \gamma \rho^0 \rho^0
                                                                               (1.7 \pm 0.4) \times 10^{-3}
                                                                                                                                 S = 1.3
                                                                                                         \times 10^{-5} CL=95%
\Gamma_{249} \quad \gamma \eta (1405/1475) \rightarrow \gamma \gamma \phi
                                                                                < 8.2
\Gamma_{250} \quad \gamma \, \eta(1405) \rightarrow \quad \gamma \, \gamma \, \gamma
                                                                                                           \times 10^{-6} CL=90%
                                                                                < 2.63
\Gamma_{251} \quad \gamma \eta(1475) \rightarrow \gamma \gamma \gamma
                                                                                < 1.86
                                                                                                          \times 10^{-6} CL=90%
                                                                              (1.3 \pm 0.9) \times 10^{-4}
\Gamma_{252} \quad \gamma \eta(1760) \rightarrow \gamma \rho^0 \rho^0
\Gamma_{253} \quad \gamma \eta(1760) \rightarrow \gamma \omega \omega
                                                                               (1.98 \pm 0.33) \times 10^{-3}
\Gamma_{254} \quad \gamma \eta(1760) \rightarrow \gamma \gamma \gamma
                                                                                < 4.80
                                                                                                           \times 10^{-6} CL=90%
                                                                                 ( 3.14 \ ^{+} \ ^{0.50} _{-} \ ) \times 10^{-4}
\Gamma_{255} \quad \gamma \, \eta(2225)
\Gamma_{256} \gamma f_2(1270)
                                                                                  (1.64 \pm 0.12) \times 10^{-3}
                                                                                  ( 2.58 \ ^{+} \ 0.60 \ ) \times 10^{-5}
\Gamma_{257} \qquad \gamma f_2(1270) \to \gamma K_S^0 K_S^0
\Gamma_{258} \quad \gamma f_1(1285)
                                                                                  (6.1 \pm 0.8) \times 10^{-4}
\Gamma_{259} \gamma f_0(1370) \rightarrow \gamma \pi \pi
\Gamma_{260} \quad \gamma f_0(1370) \rightarrow \gamma K K
                                                                                 (4.2 \pm 1.5) \times 10^{-4}
\Gamma_{261} \quad \gamma f_0(1370) \rightarrow \gamma K_S^0 K_S^0
                                                                            (1.1 \pm 0.4) \times 10^{-5}
```

Γ ₂₆₃ Γ ₂₆₄ Γ ₂₆₅	$ \gamma f_0(1370) \rightarrow \gamma \eta \eta $ $ \gamma f_0(1370) \rightarrow \gamma \eta \eta' $ $ \gamma f_1(1420) \rightarrow \gamma K K \pi $ $ \gamma f_0(1500) \rightarrow \gamma \pi \pi $	$(7.9 \pm 1.3) \times 10^{-4}$ $(1.09 \pm 0.24) \times 10^{-4}$	
I ₂₆₆	$\gamma f_0(1500) \rightarrow \gamma \eta \eta$	$(1.7 + 0.6 - 1.4) \times 10^{-5}$	
Γ ₂₆₇	$\gamma f_0(1500) \rightarrow \gamma K_S^0 K_S^0$	(1.59 $^+$ 0.24) \times 10 ⁻⁵	
	$\gamma f_0(1500) \rightarrow \gamma \eta \eta'$,	
	$\gamma f_1(1510) \rightarrow \gamma \eta \pi^+ \pi^-$	$(4.5 \pm 1.2) \times 10^{-4}$	C 1 =
	$\gamma f_2'(1525)$	$(5.7 \begin{array}{c} + 0.8 \\ - 0.5 \end{array}) \times 10^{-4}$	S=1.5
Γ ₂₇₁	$\gamma f_2'(1525) \rightarrow \gamma K_S^0 K_S^0$	$(8.0 + 0.7 \\ -0.5) \times 10^{-5}$	
	$\gamma f_2'(1525) \rightarrow \gamma \eta \eta$	$(3.4 \pm 1.4) \times 10^{-5}$	
	$\gamma f_2(1640) \rightarrow \gamma \omega \omega$	$(2.8 \pm 1.8) \times 10^{-4}$	
	$\gamma f_0(1710) \rightarrow \gamma \pi \pi$	$(3.8 \pm 0.5) \times 10^{-4}$	
	$\gamma f_0(1710) \rightarrow \gamma K \overline{K}$	$(9.5 + 1.0 \ -0.5) \times 10^{-4}$	S=1.5
	$\gamma f_0(1710) \rightarrow \gamma \omega \omega$	$(3.1 \pm 1.0) \times 10^{-4}$	
	$\gamma f_0(1710) \rightarrow \gamma \eta \eta$	$(2.4 + 1.2 \ -0.7) \times 10^{-4}$	
	$\gamma f_0(1710) \rightarrow \gamma \eta \eta'$	(25 26) 10-4	
	$\gamma f_0(1710) \rightarrow \gamma \omega \phi$	$(2.5 \pm 0.6) \times 10^{-4}$	
I ₂₈₀	$\gamma f_0(1750) \rightarrow \gamma K_S^0 K_S^0$	$(1.11 \ ^{+} \ ^{0.20} _{-}) \times 10^{-5}$	
Γ ₂₈₁	$\gamma f_2(1810) \rightarrow \gamma \eta \eta$	$(5.4 + 3.5 \atop -2.4) \times 10^{-5}$	
	$\gamma f_2(1910) \rightarrow \gamma \omega \omega$	$(2.0 \pm 1.4) \times 10^{-4}$	
Γ ₂₈₃	$\gamma f_2(1950) \rightarrow \gamma K^*(892) \overline{K}^*(892)$	$(7.0 \pm 2.2) \times 10^{-4}$	
Γ ₂₈₅	$\gamma f_0(2020) \rightarrow \gamma \pi \pi$ $\gamma f_0(2020) \rightarrow \gamma K \overline{K}$ $\gamma f_0(2020) \rightarrow \gamma \eta \eta$		
	$\gamma f_4(2050)$	$(2.7 \pm 0.7) \times 10^{-3}$	
Γ ₂₈₈	$\gamma f_0(2100) \rightarrow \gamma \eta \eta$	$(1.13 \ ^{+} \ 0.60 \) \times 10^{-4}$	
	$\gamma f_0(2100) \rightarrow \gamma K \overline{K}$		
	$\gamma f_0(2100) \rightarrow \gamma \pi \pi$	$(6.2 \pm 1.0) \times 10^{-4}$	
	$\gamma f_0(2200)$ $\gamma f_0(2200) \rightarrow \gamma K \overline{K}$	$(5.9 \pm 1.3) \times 10^{-4}$	
		· · ·	
	$\gamma f_0(2200) \rightarrow \gamma K_S^0 K_S^0$	$(2.72 + 0.19 \atop -0.50) \times 10^{-4}$	
	$\gamma f_0(2200) \rightarrow \gamma \pi \pi$ $\gamma f_0(2200) \rightarrow \gamma \eta \eta$		
	$\gamma f_{J}(2220)$		
Γ_{297}	$\gamma f_J(2220) \rightarrow \gamma \pi \pi$	$< 3.9 \times 10^{-5}$	
Γ ₂₉₈	$\gamma f_J(2220) \rightarrow \gamma K \overline{K}$	$< 4.1 \times 10^{-5}$	CL=90%

			_	
Γ ₂₉₉	$\gamma f_J(2220) \rightarrow \gamma \rho \overline{\rho}$	(1.5 ± 0.8	$) \times 10^{-5}$	
Γ_{300}	$\gamma f_0(2330) \rightarrow \gamma K_S^0 K_S^0$	(4.9 ± 0.7	$) \times 10^{-5}$	
	$\gamma f_0(2330) \rightarrow \gamma \pi \pi$	`	,	
	$\gamma f_0(2330) \rightarrow \gamma \eta \eta$			
		. 0.4	_	
Γ ₃₀₃	$\gamma f_2(2340) \rightarrow \gamma \eta \eta$	(5.6 + 2.4)	$) \times 10^{-5}$	
_	((2242) ((2)40)		5	
I ₃₀₄	$\gamma f_2(2340) \rightarrow \gamma K_S^0 K_S^0$	$(5.5 + 4.0 \\ -1.5$	$) \times 10^{-3}$	
г	$\gamma X(1835) \rightarrow \gamma \pi^+ \pi^- \eta'$	(2.7 + 0.6 - 0.8)) , 10-4	C 16
1 305	$\gamma \times (1000) \rightarrow \gamma \times \times \times \gamma$	(2.7 - 0.8)) × 10	3=1.0
T306	$\gamma X(1835) \rightarrow \gamma p \overline{p}$	$(7.7 + 1.5 \\ - 0.9$	$) \times 10^{-5}$	
		0.5		
Γ_{307}	$\gamma X(1835) \rightarrow \gamma K_S^0 K_S^0 \eta$	$(3.3 + 2.0 \\ -1.3$	$) \times 10^{-5}$	
	$\gamma X(1835) \rightarrow \gamma \gamma \phi(1020)$	1.5		
		2.56	10-6	CL 000/
	$\gamma X(1835) \rightarrow \gamma \gamma \gamma$	< 3.56		CL=90%
Γ ₃₁₀	$\gamma X(1835) \rightarrow \gamma 3(\pi^+\pi^-)$	$(2.4 + 0.7 \\ - 0.8$	$) \times 10^{-5}$	
Гэ11	$\gamma X(2370) \rightarrow \gamma K^+ K^- \eta'$	(1.8 ± 0.7	$) \times 10^{-5}$	
	$\gamma X(2370) \rightarrow \gamma K_S^0 K_S^0 \eta'$	(1.2 ± 0.5)		
				CI 000/
	$\gamma X(2370) \rightarrow \gamma \eta \eta \eta'$	< 9.2		CL=90%
	$\gamma p \overline{p}$	$(3.8 \pm 1.0$		
I ₃₁₅	$\gamma \rho \overline{\underline{p}} \pi^+ \pi^-$		\times 10 ⁻⁴	
Г ₃₁₆	$\gamma \Lambda \overline{\Lambda}$	< 1.3		CL=90%
Γ ₃₁₇	$\gamma A \rightarrow \gamma$ invisible	[e] < 1.7		CL=90%
Γ ₃₁₈	$\gamma A^0 \rightarrow \gamma \mu^+ \mu^-$	[f] < 5	$\times 10^{-6}$	CL=90%
	D.P.	l		
_	Dalitz o	•	7	
	$\pi^0 e^+ e^-$	$(7.6\pm1.4$		
Γ ₃₂₀	$\eta\mathrm{e^+e^-}$	(1.42 ± 0.08)	$) \times 10^{-5}$	
Γ_{321}	$\eta'(958)e^+e^-$	(6.59 ± 0.18	$) \times 10^{-5}$	
Γ ₃₂₂	$\eta U \rightarrow \eta e^+ e^-$	[g] < 9.11		CL=90%
T323	$\eta'(958) U \to \eta'(958) e^+ e^-$	[g] < 2.0	$\times 10^{-7}$	CL=90%
	ϕe^+e^-	< 1.2		CL=90%
1 324	φε ε	1.2	× 10	CL-3070
	Weak d	lecays		
Γ_{325}	$D^-e^+\nu_e^{}+$ c.c.	< 7.1	$\times 10^{-8}$	CL=90%
T226	$\overline{D}{}^0e^+e^-+$ c.c.	< 8.5		CL=90%
	$D_{s}^{-}e^{+}\nu_{e}+\text{c.c.}$	< 1.3		CL=90%
				CL=90%
	$D_s^{*-}e^+\nu_e + \text{c.c.}$	< 1.8		
I ₃₂₉	$D^{-}\pi^{+}$ + c.c.	< 7.5		CL=90%
Γ ₃₃₀	$\overline{D}^0 \overline{K}^0 + \text{c.c.}$	< 1.7		CL=90%
Γ ₃₃₁	$\overline{D}^0\overline{K}^{*0}+\text{c.c.}$	< 2.5	$\times 10^{-6}$	CL=90%
	$D_{s}^{-}\pi^{+}$ + c.c.	< 1.3	$\times10^{-4}$	CL=90%
	$D_{s}^{-}\rho^{+}$ + c.c.	< 1.3		CL=90%
. 233	- s P 0.0.	` 1.5	A 10	CL-30/0

Charge conjugation (C), Parity (P), Lepton Family number (LF) violating modes

Γ_{334} $\gamma\gamma$	С	< 2.7	$\times10^{-7}$	CL=90%
Γ_{335} $\gamma \phi$	С	< 1.4	$\times 10^{-6}$	CL=90%
Γ_{336} $e^{\pm}\mu^{\mp}$	LF	< 1.6	× 10 ⁻⁷	CL=90%
Γ_{337} $e^{\pm} au^{\mp}$	LF	< 7.5	$\times 10^{-8}$	CL=90%
Γ_{338} $\mu^{\pm}\tau^{\mp}$	LF	< 2.0	$\times 10^{-6}$	CL=90%
$\Gamma_{339} \Lambda_c^+ e^- + \text{c.c.}$		< 6.9	× 10 ⁻⁸	CL=90%

Other decays

 Γ_{340} invisible < 7 \times 10⁻⁴ CL=90%

- [a] For $E_{\gamma} > 100$ MeV.
- [b] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [c] $\Theta(1540)$ is a hypothetical pentaquark state of 1.54 GeV/c² mass and a width of less than 25 MeV/c².
- [d] Includes $p\overline{p}\pi^+\pi^-\gamma$ and excludes $p\overline{p}\eta$, $p\overline{p}\omega$, $p\overline{p}\eta'$.
- [e] For a narrow state A with mass less than 960 MeV.
- [f] For a narrow scalar or pseudoscalar A^0 with mass 0.21–3.0 GeV.
- [g] For a dark photon U with mass between 100 and 2100 MeV.

$J/\psi(1S)$ PARTIAL WIDTHS

Γ(hadrons)					Γ ₁
VALUE (keV)	DOCUMENT ID		TECN	COMMENT	
81.37± 1.36±1.30	¹ ANASHIN	20	KEDR	e^+e^-	
ullet $ullet$ We do not use the following	ng data for average	es, fits,	limits, e	etc. • • •	
74.1 ± 8.1	BAI	95 B	BES	e^+e^-	
59 ± 24	BALDINI	75	FRAG	e^+e^-	
59 ± 14	BOYARSKI	75	MRK1	e^+e^-	
50 ± 25	ESPOSITO	75 B	FRAM	e^+e^-	
4					

 $^{^{}m 1}$ Based on the same dataset as ANASHIN 18A and correlated to the values reported there

 $\Gamma(e^+e^-)$ VALUE (keV) EVTS DOCUMENT ID TECN COMMENT

5.53 ±0.10 OUR AVERAGE				
$5.550 \pm 0.056 \pm 0.089$	1,2 ANASHIN	18A	KEDR	e^+e^-
$5.36 \begin{array}{c} +0.29 \\ -0.28 \end{array}$	³ HSUEH	92	RVUE	See γ mini-review
• • We do not use the follo	wing data for avera	σes fi	ts limits	etc • • •

ullet ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

$5.58 \pm 0.05 \pm 0.08$		⁴ ABLIKIM	16Q BES3	$3.773 e^+e^- \rightarrow \mu^+\mu^-\gamma$
5.71 ± 0.16	13k	⁵ ADAMS	06A CLEO	$e^+e^- ightarrow \mu^+\mu^-\gamma$
5.57 ± 0.19	7.8k	⁵ AUBERT	04 BABR	$e^+e^- \rightarrow \mu^+\mu^-\gamma$

https://pdg.lbl.gov Page 11 Created: 8/11/2022 09:37

5.14	± 0.39	BAI	95 B	BES	e^+e^-
4.72	± 0.35	ALEXANDER	89	RVUE	See γ mini-review
4.4	± 0.6	³ BRANDELIK	7 9C	DASP	e^+e^-
4.6	± 0.8	⁶ BALDINI	75	FRAG	e^+e^-
4.8	± 0.6	BOYARSKI	75	MRK1	e^+e^-
4.6	±1.0	ESPOSITO	75 B	FRAM	e^+e^-
- 1					

¹ From the cross sections of $e^+e^- \rightarrow e^+e^-$ and $e^+e^- \rightarrow$ hadrons near the $J/\psi(1S)$ peak.

⁶ Assuming equal partial widths for e^+e^- and $\mu^+\mu^-$.

$\Gamma(\mu^+\mu^-)$						Γ ₇
VALUE (keV)		DOCUMENT ID		TECN	COMMENT	
• • • We do not use the	following o	data for averages	s, fits,	limits, e	etc. • • •	
5.13 ± 0.52		BAI	95 B	BES	e^+e^-	
4.8 ± 0.6		BOYARSKI	75	MRK1	e^+e^-	
5 ± 1		ESPOSITO	75 B	FRAM	e^+e^-	
$\Gamma(\gamma\gamma)$						Γ ₃₃₄
VALUE (eV)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<5.4	90	BRANDELIK	79 C	DASP	e^+e^-	

$J/\psi(1S) \Gamma(i)\Gamma(e^+e^-)/\Gamma(total)$

This combination of a partial width with the partial width into e^+e^- and with the total width is obtained from the integrated cross section into channel(I) in the e^+e^- annihilation.

 $4.884 \pm 0.048 \pm 0.078$ 1.2 ANASHIN 18A KEDR e^+e^- 4 ± 0.8 3 BALDINI-... 75 FRAG e^+e^-

$$\Gamma(e^+e^-) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$$
 $\Gamma_5\Gamma_5/\Gamma_{\text{total}}$
 $\Gamma_5\Gamma_5/\Gamma_{\text{total}}$
 $\Gamma_5\Gamma_5/\Gamma_{\text{total}}$
 $\Gamma_5\Gamma_5/\Gamma_{\text{total}}$

• • • We do not use the following data for averages, fits, limits, etc. • •

https://pdg.lbl.gov Page 12 Created: 8/11/2022 09:37

²Based on the same dataset as ANASHIN 20 and correlated to the values reported there.

³ From a simultaneous fit to e^+e^- , $\mu^+\mu^-$, and hadronic channels assuming $\Gamma(e^+e^-)$ = $\Gamma(\mu^+\mu^-)$.

⁴Using B($J/\psi \to \mu^+\mu^-$) = (5.973 \pm 0.007 \pm 0.037)% from ABLIKIM 13R.

⁵ Calculated by us from the reported values of $\Gamma(e^+e^-)\times B(\mu^+\mu^-)$ using $B(\mu^+\mu^-)=(5.93\pm0.06)\%$.

⁴ ± 0.8 3 BALDINI-... 75 FRAG e^+e^- 3.9 ± 0.8 3 ESPOSITO 75B FRAM e^+e^-

¹ From the cross sections of $e^+e^- \rightarrow e^+e^-$ and $e^+e^- \rightarrow$ hadrons near the $J/\psi(1S)$ peak.

²Based on the same dataset as ANASHIN 20 and correlated to the values reported there.

³Data redundant with branching ratios or partial widths above.

$332.3 \pm 6.4 \pm 4.8$	ANASHIN	10 KEDR	$3.097~e^+e^-\rightarrow~e^+e^-$
350 ± 20	BRANDELIK	79c DASP	e^+e^-
320 ± 70	³ BALDINI	75 FRAG	e^+e^-
340 ± 90	³ ESPOSITO	75B FRAM	e^+e^-
360 ± 100	³ FORD	75 SPEC	e^+e^-

¹ From the cross sections of $e^+e^- \rightarrow e^+e^-$ and $e^+e^- \rightarrow$ hadrons near the $J/\psi(1S)$ peak.

$\Gamma(\mu^+\mu^-) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$

 $\Gamma_7\Gamma_5/\Gamma$

//	· · · · · · · · · · · · · · · · · · ·			,
EVTS	DOCUMENT ID		TECN	COMMENT
/ERAGE				
	ABLIKIM	16Q	BES3	$3.773 e^+e^- \rightarrow \mu^+\mu^-\gamma$
	ANASHIN	10	KEDR	$3.097 \ e^+e^- o \ \mu^+\mu^-$
13k	ADAMS	06A	CLEO	$e^+e^- ightarrow \ \mu^+\mu^-\gamma$
7.8k	AUBERT	04	BABR	$e^+e^- ightarrow \ \mu^+\mu^-\gamma$
the followi	ing data for avera	ages, 1	fits, limit	ts, etc. • • •
	DASP	75	DASP	e^+e^-
	¹ ESPOSITO	75 B	FRAM	e^+e^-
	/ERAGE 13k 7.8k the followi	/ERAGE ABLIKIM ANASHIN 13k ADAMS 7.8k AUBERT the following data for avera	/ERAGE ABLIKIM 16Q ANASHIN 10 13k ADAMS 06A 7.8k AUBERT 04 the following data for averages, to the following data for averages, the following data for averages.	/ERAGE ABLIKIM 16Q BES3 ANASHIN 10 KEDR 13k ADAMS 06A CLEO 7.8k AUBERT 04 BABR the following data for averages, fits, limit

¹ Data redundant with branching ratios or partial widths above.

$\Gamma(\eta \pi^+ \pi^-) \times \Gamma(e^+ e^-)/\Gamma_{\text{total}}$

 $\Gamma_{11}\Gamma_{5}/\Gamma$

2.3 ± 0.4 OUR AVE	ERAGE		
$2.34\!\pm\!0.43\!\pm\!0.16$	49	LEES	18 BABR $e^+e^- o \eta \pi^+\pi^- \gamma$
$2.22\!\pm\!0.96\!\pm\!0.02$	9	$^{ m 1}$ AUBERT	07AU BABR 10.6 e $^+$ e $^- ightarrow ~\eta \pi^+ \pi^- \gamma$

 $^{^1}$ AUBERT 07AU reports $[\Gamma(J/\psi(1S)\to\eta\pi^+\pi^-)\times\Gamma(J/\psi(1S)\to e^+e^-)/\Gamma_{\rm total}]\times[B(\eta\to\pi^+\pi^-\pi^0)]=0.51\pm0.22\pm0.03$ eV which we divide by our best value $B(\eta\to\pi^+\pi^-\pi^0)=(23.02\pm0.25)\times10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\eta \pi^+ \pi^- \pi^0) \times \Gamma(e^+ e^-)/\Gamma_{\text{total}}$

 $\Gamma_{12}\Gamma_5/\Gamma$

VALUE (eV)	EVTS	DOCUMEI	NT ID	TECN	COMMENT		
64.8±11.1±0.4	200	¹ LEES	210	BABR	$e^+e^- \rightarrow$	$\gamma_{ISR}(\pi^+\pi^-$	4π ⁰)
1 .	- /		. 0		,	1 .	_

¹LEES 21C reports $[\Gamma(J/\psi(1S) \to \eta \pi^+ \pi^- \pi^0) \times \Gamma(J/\psi(1S) \to e^+ e^-)/\Gamma_{\text{total}}] \times [B(\eta \to 3\pi^0)] = 21.1 \pm 1.7 \pm 3.2$ eV which we divide by our best value $B(\eta \to 3\pi^0) = (32.57 \pm 0.21) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$$\Gamma(\eta \pi^+ \pi^- 3\pi^0) \times \Gamma(e^+ e^-)/\Gamma_{
m total}$$

 $\Gamma_{13}\Gamma_5/\Gamma$

²Based on the same dataset as ANASHIN 20 and correlated to the values reported there.

³ Data redundant with branching ratios or partial widths above.

¹ LEES 21C reports $[\Gamma(J/\psi(1S) \to \eta \pi^+ \pi^- 3\pi^0) \times \Gamma(J/\psi(1S) \to e^+ e^-)/\Gamma_{total}] \times [B(\eta \to 2\gamma)] = 10.6 \pm 1.6 \pm 1.6$ eV which we divide by our best value $B(\eta \to 2\gamma) = (39.36 \pm 0.18) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\eta K^{\pm} K_{S}^{0} \pi^{\mp})$ VALUE (eV)	•	•	TECN	Γ ₁₇ Γ _ξ	5/Γ
7.3±1.4±0.4		LEES		$e^+e^- ightarrow \kappa_S^0 \kappa^{\pm} \pi^{\mp} \pi$	$\overline{0_{\gamma}}$
$\Gamma(\rho^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$	-2π ⁰) × Γ	$-(e^+e^-)/\Gamma_{ m total}$		Γ ₂₀ Γ _ξ	
VALUE (eV)	EVTS	DOCUMENT ID		MENT	
$155 \pm 26 \pm 36$	14k	LEES 21	BABR 10.	$6 e^+ e^- \rightarrow 2(\pi^+ \pi^-) 3\pi^0$	σ_{γ}
$\Gamma(ho^+ ho^-\pi^+\pi^-$ VALUE (eV)	,	(e ⁺ e ⁻)/Γ _{total}	TECN CON	Γ ₂₁ Γ _ξ	5/Γ
32±13±15	14k			$6 e^+ e^- o 2(\pi^+ \pi^-) 3\pi^0$	$\overline{0_{\gamma}}$
			<i>D</i> 7. <i>D</i> 1.		
$\Gamma(\rho^{\mp} K^{\pm} K_{S}^{0})$	•	•		Γ ₂₂ Γ ₅	-
VALUE (eV)		DOCUMENT ID	<u>TECN</u>	$e^+e^- ightarrow \kappa_S^0 \kappa^\pm \pi^\mp \pi_S^0 \kappa^\pm \pi^\mp \pi^\mp $	
$10.4 \pm 1.0 \pm 1.9$	130	LEES	17D BABR	$e^+e^- \rightarrow K_S^0 K^{\pm} \pi^+ \pi$	σ_{γ}
$\Gamma(\omega\pi^+\pi^-)$ ×	•			Γ ₃₅ Γ ₅	5/Г
VALUE (eV)				COMMENT	
$53.6 \pm 5.0 \pm 0.4$				$10.6 e^+e^- \rightarrow \omega \pi^+\pi^-$,
$ imes$ [B(ω (782) $ ightarrow$ B(ω (782) $ ightarrow$	$\rightarrow \pi^+\pi^-\pi^-$ $\pi^+\pi^-\pi^0$)	$[\tau^0)] = 47.8 \pm 3.1 = (89.2 \pm 0.7) >$	\pm 3.2 eV whi 10^{-2} . Our f	$(J/\psi(1S) ightarrow e^+e^-)/\Gamma_{ m to}$ ch we divide by our best variest error is their experimeting our best value.	alue
$\Gamma(\omega\pi^0\pi^0)$ ×			TECN	Γ ₃₆ Γ ₅	₅ /Γ
VALUE (eV) 27.8±3.5±0.2				$\frac{\text{COMMENT}}{10.6 \text{ e}^+ \text{ e}^- \rightarrow \pi^+ \pi^- 3\pi}$	0 0
$ ext{B}(\omega(782) ightarrow B(\omega(782) ightarrow$	$\pi^{+}\pi^{-}\pi^{0}$ $\pi^{+}\pi^{-}\pi^{0}$)] = $24.8 \pm 1.8 =$ = $(89.2 \pm 0.7) >$	\pm 2.5 eV whic 10^{-2} . Our f	$e(1S) ightarrow e^+e^-)/\Gamma_{ ext{total}}$ h we divide by our best values error is their experimental ing our best value.	alue
$\Gamma(\omega 3\pi^0) \times \Gamma$	(e ⁺ e ⁻)/Γ ₁	total		Γ ₃₇ Γ ₅	5/Γ
VALUE (eV)			TECN C	OMMENT	
$10.5 \pm 3.1 \pm 0.1$	89	¹ LEES 2	1C BABR e	OMMENT $^{+}$ $_{e}^{-}$ $_{\rightarrow}$ $\gamma_{ISR}(\pi^{+}\pi^{-}$ 47	τ^0)
$[B(\omega(782) ightarrow B(\omega(782) ightarrow$	eports $[\Gamma(J/\tau)]$ $\pi + \pi - \pi^0$ $\pi + \pi - \pi^0$	$egin{array}{ll} \psi(1S) & ightarrow & \omega 3\pi^{ m C} \)] &= 9.4\pm2.3\pm \ &= (89.2\pm0.7) ightarrow \end{array}$	$\Gamma(J/\psi) \times \Gamma(J/\psi) \times 1.5 \text{ eV which} \times 10^{-2} \cdot \text{Our f}$	$e^{(1S)} ightarrow e^+ e^-)/\Gamma_{ m total}$ in we divide by our best variest error is their experimental ting our best value.] × alue
$\Gamma(\omega\pi^+\pi^-\pi^0)$				Γ ₄₀ Γ ₅	-,
$VALUE~(10^{-2}~\text{keV})$	EVTS	DOCUMENT ID	TECN	COMMENT	
2.2±0.3±0.2	170	AUBERT	O6D BABR	COMMENT 10.6 $e^+e^- o \omega \pi^+\pi^-\pi$	0^{-}

Citation: R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) $\Gamma(\omega \eta) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$ $\Gamma_{39}\Gamma_5/\Gamma$ VALUE (eV) 21c BABR $e^+e^- \to \gamma_{ISR}(\pi^+\pi^-4\pi^0)$ ¹ LEES $16.9 \pm 7.6 \pm 0.2$ ¹ Different final state as in AUBERT 06. LEES 21C reports $[\Gamma(J/\psi(1S)
ightarrow \omega \eta) imes 1$ $\Gamma(J/\psi(1S) \rightarrow e^+e^-)/\Gamma_{\text{total}}] \times [B(\eta \rightarrow 3\pi^0)] \times [B(\omega(782) \rightarrow \pi^+\pi^-\pi^0)] = 4.9 \pm 6.9 \pm 6.9$ 2.1 ± 0.7 eV which we divide by our best values B($\eta\to 3\pi^0$) = $(32.57\pm0.21)\times 10^{-2}$, $B(\omega(782) \to \pi^+\pi^-\pi^0) = (89.2 \pm 0.7) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values. $\Gamma(\omega \pi^0 \eta) \times \Gamma(e^+ e^-) / \Gamma_{\text{total}}$ $\Gamma_{41}\Gamma_{5}/\Gamma$ VALUE (eV) 18E BABR 10.6 $e^+e^- \to \pi^+\pi^-\pi^0\pi^0\eta\gamma$ ¹ LEES $1.90\pm0.96\pm0.01$ ¹LEES 18E reports $[\Gamma(J/\psi(1S) \rightarrow \omega \pi^0 \eta) \times \Gamma(J/\psi(1S) \rightarrow e^+e^-)/\Gamma_{total}] \times$ $[B(\omega(782) \rightarrow \pi^+\pi^-\pi^0)] = 1.7 \pm 0.8 \pm 0.3$ eV which we divide by our best value $B(\omega(782) \rightarrow \pi^+\pi^-\pi^0) = (89.2 \pm 0.7) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. $\Gamma(\omega \pi^+ \pi^- 2\pi^0) \times \Gamma(e^+ e^-)/\Gamma_{\text{total}}$ BABR 10.6 $e^+e^- \rightarrow 2(\pi^+\pi^-)3\pi^0\gamma$ $185 \pm 30 \pm 1$ ¹LEES 21 reports $[\Gamma(J/\psi(1S) \rightarrow \omega \pi^+ \pi^- 2\pi^0) \times \Gamma(J/\psi(1S) \rightarrow e^+ e^-)/\Gamma_{\mathsf{total}}]$ \times [B($\omega(782) \rightarrow \pi^{+}\pi^{-}\pi^{0}$)] = 165 \pm 9 \pm 25 eV which we divide by our best value $B(\omega(782) \rightarrow \pi^+\pi^-\pi^0) = (89.2 \pm 0.7) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(\omega K \overline{K}) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$ $\Gamma_{53}\Gamma_5/\Gamma$ VALUE (eV)

3.70±1.98±0.03 $\Gamma_{53}\Gamma_5/\Gamma$ PAURE TO THE OTHER TO THE PROPERTY OF AUBERT OF

 1 AUBERT 07AU reports $[\Gamma(J/\psi(1S)\to\omega\,K\,\overline{K})\times\Gamma(J/\psi(1S)\to e^+\,e^-)/\Gamma_{\text{total}}]\times[B(\omega(782)\to\pi^+\pi^-\pi^0)]=3.3\pm1.3\pm1.2$ eV which we divide by our best value $B(\omega(782)\to\pi^+\pi^-\pi^0)=(89.2\pm0.7)\times10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(K^+K^*(892)^- + c.c.) \times \Gamma(e^+e^-)/\Gamma_{total}$ VALUE (eV) DOCUMENT ID TECN COMMENT29.0±1.7±1.3

AUBERT

OSS BABR 10.6 $e^+e^- \rightarrow K^+K^*(892)^- \gamma$

 $\Gamma(K^+K^*(892)^- + \text{c.c.} \rightarrow K^+K^-\pi^0) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$ $\Gamma_{62}\Gamma_{5}/\Gamma_{\text{total}}$ $\Gamma_{62}\Gamma_{5}/\Gamma_{\text{total}}$

 $\Gamma(K^+K^*(892)^- + \text{c.c.} \rightarrow K^0K^{\pm}\pi^{\mp} + \text{c.c.}) \times \Gamma(e^+e^-)/\Gamma_{\text{total}} \qquad \Gamma_{63}\Gamma_5/\Gamma_{\text{total}} \qquad \Gamma_{63}\Gamma_5/\Gamma_{\text$

 $\Gamma(K^{0}\overline{K}^{*}(892)^{0} + \text{c.c.}) \times \Gamma(e^{+}e^{-})/\Gamma_{\text{total}} \qquad \Gamma_{64}\Gamma_{5}/\Gamma_{\text{total}}$ $\underline{VALUE} \text{ (eV)} \qquad \underline{DOCUMENT \ ID} \qquad \underline{TECN} \qquad \underline{COMMENT}$ $26.6 \pm 2.5 \pm 1.5 \qquad \text{AUBERT} \qquad 088 \quad \text{BABR} \quad 10.6 \text{ e}^{+}e^{-} \rightarrow K^{0}\overline{K}^{*}(892)^{0}\gamma$

https://pdg.lbl.gov

Page 15

•			c.c.) $\times \Gamma(e^+e^-)/\Gamma_{\text{total}}$	$\Gamma_{65}\Gamma_5/\Gamma$
			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\kappa^0 \kappa^{\pm} \pi^{\mp} \gamma$
				J
$\Gamma(\overline{K}^*(892)^0K^+)$	π^- + c.c.	.) × Γ(e ⁺ e ⁻	$)/\Gamma_{total}$	$\Gamma_{66}\Gamma_{5}/\Gamma$
VALUE (eV)	EVTS	DOCUMENT	$\frac{1D}{17D} \frac{TECN}{BABR} \frac{COMMENT}{e^{+}e^{-} \rightarrow R}$	0 1 0
				$K_S^0 K^{\pm} \pi^{\mp} \pi^0 \gamma$
$^{ m 1}$ Dividing by $1/6$	to accour	nt for B(<i>K</i> *(892	$()^0 \to \kappa_S^0 \pi^0) = 1/6.$	
Γ(<i>K</i> *(892) [±] <i>K</i> [∓]				$\Gamma_{67}\Gamma_5/\Gamma$
VALUE (eV)	<u>EVTS</u>	DOCUMENT	ID TECN COMMENT	
22.8±2.8±6.8	80	¹ LEES	17D BABR $e^+e^- o P$	$K_S^0 K^{\pm} \pi^{\mp} \pi^0 \gamma$
$^{ m 1}$ Dividing by $1/4$	to accour	nt for B(<i>K</i> *(892	$(S)^{\pm} \to K_S^0 \pi^{\pm}) = 1/4.$	
$\Gamma(K^*(892)^+K_S^0$	π^- + c.c	$(a) \times \Gamma(e^+e^-)$	-)/F _{total}	$\Gamma_{68}\Gamma_{5}/\Gamma$
VALUE (eV)		DOCUMENT	ID TECN COMMENT	
11.0±2.8 OUR AVI		¹ LEES		<0 <+ = 0
9.2±1.2±3.2 14.8±4.8±1.2				
				π $\kappa_{S}^{\circ}\kappa_{S}^{\circ}\gamma$
¹ Dividing by 1/2	to take in	ito account $B(K)$	$K^*(892)^{\pm} \to K^{\pm}\pi^{\mp}) = 1/2.$	
² Dividing by 1/4	to take ir	nto account B(<i>K</i>	$K^*(892) \to K_S^0 \pi) = 1/4.$	
			-	
$\Gamma(K^*(892)^+ K_S^0$	π^- + c.c	$. \to K_S^0 K_S^0 \pi^0$	$^{+}\pi^{-}) \times \Gamma(e^{+}e^{-})/\Gamma_{ m total}$	Γ ₆₉ Γ ₅ /Γ
*	EVTS	DOCUMENT	ID TECN COMMENT	
*	EVTS	DOCUMENT	, ,	
VALUE (eV) 3.7±1.2±0.3	53	DOCUMENT LEES	$\frac{D}{14H} \frac{TECN}{BABR} \frac{COMMENT}{e^+e^- \rightarrow \pi}$	
$VALUE (eV)$ 3.7±1.2±0.3 $\Gamma(K^*(892)^0 K_S^0 7^0)$	53 Γ⁰) × Γ	$\frac{DOCUMENT}{LEES}$	$rac{D}{D} rac{TECN}{TECN} rac{COMMENT}{TECN}$ 14H BABR $e^+e^- ightarrow \pi$	
$VALUE (eV)$ 3.7±1.2±0.3 $\Gamma(K^*(892)^0 K_5^0 T_6^0 T_$	53 r ⁰) × Γ EVTS	$\frac{DOCUMENT}{\text{LEES}}$ $\left(e^{+}e^{-}\right)/\Gamma_{\text{tota}}$ $\frac{DOCUMENT}{\text{COCUMENT}}$	$\frac{D}{14H} \frac{TECN}{BABR} \frac{COMMENT}{e^+e^- \rightarrow \pi}$	$-+_{\pi}^{-}\kappa_{S}^{0}\kappa_{S}^{0}\gamma$
VALUE (eV) 3.7±1.2±0.3 Γ(Κ*(892) ⁰ Κ ⁰ ₅ τ VALUE (eV) 3.60±0.75±2.25	53 r ⁰) × Γ EVTS 34	$\frac{DOCUMENT}{\text{LEES}}$ $(e^+e^-)/\Gamma_{\text{tota}}$ $\frac{DOCUMENT}{1}$ 1 LEES	$rac{1D}{1} rac{TECN}{1} rac{COMMENT}{1}$ $14H$ BABR $e^+e^- ightarrow \pi$	$\Gamma^{+}\pi^{-}K^{0}_{S}K^{0}_{S}\gamma$
$VALUE (eV)$ 3.7±1.2±0.3 $\Gamma(K^*(892)^0 K_5^0 T_5^0 VALUE (eV)$ 3.60±0.75±2.25 1 Dividing by 2/3 $\Gamma(K^*(892)^0 \overline{K}^*(892)^0 \overline{K}^*(892)^0 \overline{K}^*(892)^0 \overline{K}^*(892)^0$	$ \frac{EVTS}{53} $ $ \mathbf{r}^{0}) \times \mathbf{\Gamma} $ $ \frac{EVTS}{34} $ to accourage 892^{0}	DOCUMENT LEES $(e^+e^-)/\Gamma_{\text{tota}}$ $\frac{DOCUMENT}{1}$ LEES at for B(K^* (892) $(\Gamma(e^+e^-)/\Gamma$	14H BABR $e^+e^- \rightarrow \pi$ 14H BABR $e^+e^- \rightarrow \pi$ 17D BABR $e^+e^- \rightarrow K$ 17D $e^+e^- \rightarrow K$ 17D $e^+e^- \rightarrow K$	$ \frac{\Gamma_{71}\Gamma_{5}/\Gamma_{5}}{\Gamma_{71}\Gamma_{5}/\Gamma_{5}} $ $ \frac{\Gamma_{71}\Gamma_{5}/\Gamma_{5}}{\Gamma_{73}\Gamma_{5}/\Gamma_{5}} $
$VALUE (eV)$ 3.7±1.2±0.3 $\Gamma(K^*(892)^0 K_5^0 T_5^0 VALUE (eV)$ 3.60±0.75±2.25 1 Dividing by 2/3 $\Gamma(K^*(892)^0 \overline{K}^*(892)^0 \overline{K}^*(892)^0 \overline{K}^*(892)^0 \overline{K}^*(892)^0$	$ \frac{EVTS}{53} $ $ \mathbf{r}^{0}) \times \mathbf{\Gamma} $ $ \frac{EVTS}{34} $ to accourage 892^{0}	DOCUMENT LEES $(e^+e^-)/\Gamma_{\text{tota}}$ $\frac{DOCUMENT}{1}$ LEES at for B(K^* (892) $(\Gamma(e^+e^-)/\Gamma$	14H BABR $e^+e^- \rightarrow \pi$ 14H BABR $e^+e^- \rightarrow \pi$ 17D BABR $e^+e^- \rightarrow K$ 17D $e^+e^- \rightarrow K$ 17D $e^+e^- \rightarrow K$	$ \frac{\Gamma_{71}\Gamma_{5}/\Gamma_{5}}{\Gamma_{71}\Gamma_{5}/\Gamma_{5}} $ $ \frac{\Gamma_{71}\Gamma_{5}/\Gamma_{5}}{\Gamma_{73}\Gamma_{5}/\Gamma_{5}} $
VALUE (eV) 3.7±1.2±0.3 Γ(Κ*(892) ⁰ Κ ⁰ ₅ τ VALUE (eV) 3.60±0.75±2.25 ¹ Dividing by 2/3 Γ(Κ*(892) ⁰ κ̄*(3) VALUE (eV) 1.28±0.34±0.07	$EVTS$ 53 r^0) × Γ $EVTS$ 34 to account $892)^0$) > $EVTS$ 7 ± 12	DOCUMENT LEES $(e^+e^-)/\Gamma_{\text{tota}}$ DOCUMENT 1 LEES at for B(K^* (892 $(e^+e^-)/\Gamma_{\text{DOCUMENT ID}}$ 1 LEES 126	14H BABR $e^+e^- \rightarrow \pi$ 14H BABR $e^+e^- \rightarrow \pi$ 17D BABR $e^+e^- \rightarrow K$ 17D BABR $e^+e^- \rightarrow K$ 17D $e^+e^- \rightarrow K$ 17D BABR $e^+e^- \rightarrow K$ 17D BABR $e^+e^- \rightarrow K$ 17D $e^+e^- \rightarrow K$	$ \frac{\Gamma_{71}\Gamma_{5}/\Gamma_{5}}{\Gamma_{71}\Gamma_{5}/\Gamma_{5}} $ $ \frac{\Gamma_{71}\Gamma_{5}/\Gamma_{5}}{\Gamma_{73}\Gamma_{5}/\Gamma_{5}} $
VALUE (eV) 3.7±1.2±0.3 Γ(Κ*(892) ⁰ Κ ⁰ ₅ π VALUE (eV) 3.60±0.75±2.25 ¹ Dividing by 2/3 Γ(Κ*(892) ⁰ κ̄*(8 VALUE (eV) 1.28±0.34±0.07 4 • • • We do not us	$EVTS$ 53 T^0) \times Γ $EVTS$ 34 T^0 T	DOCUMENT LEES $(e^+e^-)/\Gamma_{tota}$ DOCUMENT LEES Int for B(K^* (892 $K \Gamma(e^+e^-)/\Gamma$ DOCUMENT ID LEES LEES 128 Dowing data for a	14H BABR $e^+e^- \rightarrow \pi$ 14H BABR $e^+e^- \rightarrow \pi$ 17D BABR $e^+e^- \rightarrow K$ 17D BABR $e^+e^- \rightarrow K$ 17D $e^+e^- \rightarrow K$ 18D $e^+e^- \rightarrow K$ 18D $e^+e^- \rightarrow K$ 19D $e^+e^- \rightarrow K$ 19D $e^+e^- \rightarrow K$ 10D $e^+e^- \rightarrow \pi^-$ 10D $e^+e^- \rightarrow \pi^-$ 11D $e^+e^- \rightarrow \pi^-$ 11D $e^+e^- \rightarrow \pi^-$ 12D $e^+e^- \rightarrow \pi^-$ 12D $e^+e^- \rightarrow \pi^-$ 13D $e^+e^- \rightarrow \pi^-$ 14D $e^+e^- \rightarrow \pi^-$ 15D $e^+e^- \rightarrow \pi^-$ 15D $e^+e^- \rightarrow \pi^-$ 16D $e^+e^- \rightarrow \pi^-$ 17D $e^-e^- \rightarrow \pi^-$ 17D	$\Gamma_{71}\Gamma_{5}/\Gamma$ $\Gamma_{71}\Gamma_{5}/\Gamma$ $\Gamma_{73}\Gamma_{5}/\Gamma$ $\Gamma_{73}\Gamma_{5}/\Gamma$ $\Gamma_{73}\Gamma_{5}/\Gamma$
VALUE (eV) 3.7 \pm 1.2 \pm 0.3 $\Gamma(K^*(892)^0 K_S^0 \pi^* K_$	$EVTS$ 53 T^0) \times T^0 $EVTS$ 34 10 accounts $EVTS$ 17 ± 12 12 13 14 15 15 15 17 15 17 15 17 17 17 17 17 17 17 17	DOCUMENT LEES $(e^+e^-)/\Gamma_{tota}$ DOCUMENT LEES Int for B(K^* (892 $K^-(e^+e^-)/\Gamma$ DOCUMENT ID LEES LEES LEES LEES LEES LEES LEES AUBERT DOCUMENT ID AUBERT AUBERT DOCUMENT ID DOCUMENT ID AUBERT DOCUMENT ID DOCUMENT ID AUBERT DOCUMENT ID DOCUMENT ID DOCUMENT ID AUBERT DOCUMENT ID DOCUMENT	14H BABR $e^+e^- \rightarrow \pi$ 14H BABR $e^+e^- \rightarrow \pi$ 17D BABR $e^+e^- \rightarrow K$ 17D BABR $e^+e^- \rightarrow K$ 17D BABR $e^+e^- \rightarrow K$ 18D $E^0 \rightarrow K^+\pi^- = 2/3$. 100 $E^0 \rightarrow K^+\pi^- = 2/3$. 101 $E^0 \rightarrow K^+\pi^- = 2/3$. 102 $E^0 \rightarrow K^+\pi^- = 2/3$. 103 $E^0 \rightarrow K^+\pi^- = 2/3$. 104 $E^0 \rightarrow K^+\pi^- = 2/3$. 105 $E^0 \rightarrow K^+\pi^- = 2/3$. 106 $E^0 \rightarrow K^+\pi^- = 2/3$. 107 $E^0 \rightarrow K^+\pi^- = 2/3$. 108 $E^0 \rightarrow K^+\pi^- = 2/3$. 109 $E^0 \rightarrow K^+\pi^- = 2/3$. 109 $E^0 \rightarrow K^+\pi^- = 2/3$. 100 $E^0 \rightarrow K^+\pi^- = 2/3$. 110 $E^0 \rightarrow K^+\pi^- = 2/3$. 110 $E^0 \rightarrow K^+\pi^- = 2/3$. 111 $E^0 \rightarrow K^+\pi^- = 2/3$. 111 $E^0 \rightarrow K^+\pi^- = 2/3$. 112 $E^0 \rightarrow K^+\pi^- = 2/3$. 113 $E^0 \rightarrow K^+\pi^- = 2/3$. 114 $E^0 \rightarrow K^+\pi^- = 2/3$. 115 $E^0 \rightarrow K^+\pi^- = 2/3$. 115 $E^0 \rightarrow K^+\pi^- = 2/3$. 115 $E^0 \rightarrow K^+\pi^- = 2/3$. 116 $E^0 \rightarrow K^+\pi^- = 2/3$. 117 $E^0 \rightarrow K^+\pi^- = 2/3$. 117 $E^0 \rightarrow K^+\pi^- = 2/3$. 118 $E^0 \rightarrow K^+\pi^- = 2/3$. 118 $E^0 \rightarrow K^+\pi^- = 2/3$. 119 $E^0 \rightarrow K^+\pi^- = 2/3$. 110 $E^0 \rightarrow K^+\pi^- = 2/3$. 111 $E^0 \rightarrow K^+\pi^- = 2/3$. 112 $E^0 \rightarrow K^+\pi^- = 2/3$. 113 $E^0 \rightarrow K^+\pi^- = 2/3$. 114 $E^0 \rightarrow K^+\pi^- = 2/3$. 115 $E^0 \rightarrow K^+\pi^- = 2/3$. 116 $E^0 \rightarrow K^+\pi^- = 2/3$. 117 $E^0 \rightarrow K^+\pi^- = 2/3$. 117 $E^0 \rightarrow K^+\pi^- = 2/3$. 118 $E^0 \rightarrow K^+\pi^- = 2/3$. 118 $E^0 \rightarrow K^+\pi^- = 2/3$.	$\Gamma_{71}\Gamma_{5}/\Gamma$ $\Gamma_{71}\Gamma_{5}/\Gamma$ $\Gamma_{73}\Gamma_{5}/\Gamma$ $\Gamma_{73}\Gamma_{5}/\Gamma$ $\Gamma_{73}\Gamma_{5}/\Gamma$ $\Gamma_{73}\Gamma_{5}/\Gamma$ $\Gamma_{73}\Gamma_{5}/\Gamma$
VALUE (eV) 3.7±1.2±0.3 Γ($K^*(892)^0 K_5^0 \pi$ VALUE (eV) 3.60±0.75±2.25 ¹ Dividing by 2/3 Γ($K^*(892)^0 \overline{K}^*(8)$ VALUE (eV) 1.28±0.34±0.07 4 • • • We do not us 1.28±0.40±0.11 2 ¹ Dividing by (2/3 $K\pi$).	$EVTS$ 53 T^0) × T^0 $EVTS$ 34 to accound $892)^0$) > $EVTS$ 47 ± 12 See the following 25 ± 8 $1,5$ 25 ± 8 $1,5$ 25 ± 8 25 ± 8 25 ± 8 25 ± 8	DOCUMENT LEES $(e^+e^-)/\Gamma_{tota}$ DOCUMENT LEES Int for B(K^* (892 K $\Gamma(e^+e^-)/\Gamma$ DOCUMENT ID LEES 121 2 AUBERT 2 AUBERT 2 twice into acco	14H BABR $e^+e^- \rightarrow \pi$ 14H BABR $e^+e^- \rightarrow \pi$ 17D BABR $e^+e^- \rightarrow K$ 17D BABR $e^+e^- \rightarrow K$ 17D $e^+e^- \rightarrow K$ 18D $e^+e^- \rightarrow K$ 18D $e^+e^- \rightarrow K$ 19D $e^+e^- \rightarrow K$ 19D $e^+e^- \rightarrow K$ 10D $e^+e^- \rightarrow \pi^-$ 10D $e^+e^- \rightarrow \pi^-$ 11D $e^+e^- \rightarrow \pi^-$ 11D $e^+e^- \rightarrow \pi^-$ 12D $e^+e^- \rightarrow \pi^-$ 12D $e^+e^- \rightarrow \pi^-$ 13D $e^+e^- \rightarrow \pi^-$ 14D $e^+e^- \rightarrow \pi^-$ 15D $e^+e^- \rightarrow \pi^-$ 15D $e^+e^- \rightarrow \pi^-$ 16D $e^+e^- \rightarrow \pi^-$ 17D $e^-e^- \rightarrow \pi^-$ 17D	$\Gamma_{71}\Gamma_{5}/\Gamma$ $\Gamma_{71}\Gamma_{5}/\Gamma$ $\Gamma_{73}\Gamma_{5}/\Gamma$ $\Gamma_{73}\Gamma_{5}/\Gamma$ $\Gamma_{73}\Gamma_{5}/\Gamma$ $\Gamma_{73}\Gamma_{5}/\Gamma$ $\Gamma_{73}\Gamma_{5}/\Gamma$
VALUE (eV) 3.7 \pm 1.2 \pm 0.3 $\Gamma(K^*(892)^0 K_5^0 7_5^0 K_5^0 7_5^0 K_5^0 7_5^0 K_5^0 7_5^0 K_5^0 7_5^0 K_5^0 K_5^$	$EVTS$ 53 T^0) × T^0 $EVTS$ 34 to accound $892)^0$) > $EVTS$ 47 ± 12 See the following 25 ± 8 $1,5$ 25 ± 8 $1,5$ 25 ± 8 25 ± 8 25 ± 8 25 ± 8	DOCUMENT LEES $(e^+e^-)/\Gamma_{tota}$ DOCUMENT LEES Int for B(K^* (892 K $\Gamma(e^+e^-)/\Gamma$ DOCUMENT ID LEES 121 2 AUBERT 2 AUBERT 2 twice into acco	14H BABR $e^+e^- \rightarrow \pi$ 14H BABR $e^+e^- \rightarrow \pi$ 17D BABR $e^+e^- \rightarrow K$ 17D BABR $e^+e^- \rightarrow K$ 17D BABR $e^+e^- \rightarrow K$ 18D $E^0 \rightarrow K^+\pi^- = 2/3$. 100 $E^0 \rightarrow K^+\pi^- = 2/3$. 101 $E^0 \rightarrow K^+\pi^- = 2/3$. 102 $E^0 \rightarrow K^+\pi^- = 2/3$. 103 $E^0 \rightarrow K^+\pi^- = 2/3$. 104 $E^0 \rightarrow K^+\pi^- = 2/3$. 105 $E^0 \rightarrow K^+\pi^- = 2/3$. 106 $E^0 \rightarrow K^+\pi^- = 2/3$. 107 $E^0 \rightarrow K^+\pi^- = 2/3$. 108 $E^0 \rightarrow K^+\pi^- = 2/3$. 109 $E^0 \rightarrow K^+\pi^- = 2/3$. 109 $E^0 \rightarrow K^+\pi^- = 2/3$. 100 $E^0 \rightarrow K^+\pi^- = 2/3$. 110 $E^0 \rightarrow K^+\pi^- = 2/3$. 110 $E^0 \rightarrow K^+\pi^- = 2/3$. 111 $E^0 \rightarrow K^+\pi^- = 2/3$. 111 $E^0 \rightarrow K^+\pi^- = 2/3$. 112 $E^0 \rightarrow K^+\pi^- = 2/3$. 113 $E^0 \rightarrow K^+\pi^- = 2/3$. 114 $E^0 \rightarrow K^+\pi^- = 2/3$. 115 $E^0 \rightarrow K^+\pi^- = 2/3$. 115 $E^0 \rightarrow K^+\pi^- = 2/3$. 115 $E^0 \rightarrow K^+\pi^- = 2/3$. 116 $E^0 \rightarrow K^+\pi^- = 2/3$. 117 $E^0 \rightarrow K^+\pi^- = 2/3$. 117 $E^0 \rightarrow K^+\pi^- = 2/3$. 118 $E^0 \rightarrow K^+\pi^- = 2/3$. 118 $E^0 \rightarrow K^+\pi^- = 2/3$. 119 $E^0 \rightarrow K^+\pi^- = 2/3$. 110 $E^0 \rightarrow K^+\pi^- = 2/3$. 111 $E^0 \rightarrow K^+\pi^- = 2/3$. 112 $E^0 \rightarrow K^+\pi^- = 2/3$. 113 $E^0 \rightarrow K^+\pi^- = 2/3$. 114 $E^0 \rightarrow K^+\pi^- = 2/3$. 115 $E^0 \rightarrow K^+\pi^- = 2/3$. 116 $E^0 \rightarrow K^+\pi^- = 2/3$. 117 $E^0 \rightarrow K^+\pi^- = 2/3$. 117 $E^0 \rightarrow K^+\pi^- = 2/3$. 118 $E^0 \rightarrow K^+\pi^- = 2/3$. 118 $E^0 \rightarrow K^+\pi^- = 2/3$.	$\Gamma_{71}\Gamma_{5}/\Gamma$ $\Gamma_{71}\Gamma_{5}/\Gamma$ $\Gamma_{73}\Gamma_{5}/\Gamma$ $\Gamma_{73}\Gamma_{5}/\Gamma$ $\Gamma_{73}\Gamma_{5}/\Gamma$ $\Gamma_{73}\Gamma_{5}/\Gamma$ $\Gamma_{73}\Gamma_{5}/\Gamma$
VALUE (eV) 3.7±1.2±0.3 Γ($K^*(892)^0 K_5^0 \pi$ VALUE (eV) 3.60±0.75±2.25 ¹ Dividing by 2/3 Γ($K^*(892)^0 \overline{K}^*(8)$ VALUE (eV) 1.28±0.34±0.07 4 • • • We do not us 1.28±0.40±0.11 2 ¹ Dividing by (2/3 $K\pi$). ² Superseded by $K^*(892)^{\pm} K^*(892)^{\pm} K^*(892)$	$EVTS$ 53 T^0) × Γ $EVTS$ 34 55 57 ± 12 55 57 ± 12 56 57 ± 12 56 57 ± 12 57 ± 12 57 ± 12 59 59 59 59 59 59 59 59	DOCUMENT LEES $(e^+e^-)/\Gamma_{\text{tota}}$ $\frac{DOCUMENT}{1}$ LEES Int for B(K^* (892) $(F(e^+e^-)/\Gamma)$ $\frac{DOCUMENT}{1}$ LEES 121 Dowing data for a 2 AUBERT 2 AUBERT 3 AUBERT 4 twice into acco	14H BABR $e^+e^- \rightarrow \pi$ 14H BABR $e^+e^- \rightarrow \pi$ 17D BABR $e^+e^- \rightarrow K$ 17D BABR $e^+e^- \rightarrow K$ 17D BABR $e^+e^- \rightarrow K$ 18D $e^+e^- \rightarrow K$ 19D $e^+e^- \rightarrow K$ 17D BABR $e^+e^- \rightarrow K$ 18D $e^+e^- \rightarrow K$ 19D $e^-e^- \rightarrow K$	
VALUE (eV) 3.7±1.2±0.3 Γ($K^*(892)^0 K_5^0 \pi$ VALUE (eV) 3.60±0.75±2.25 ¹ Dividing by 2/3 Γ($K^*(892)^0 \overline{K}^*(8)$ VALUE (eV) 1.28±0.34±0.07 4 • • • We do not us 1.28±0.40±0.11 2 ¹ Dividing by (2/3 $K\pi$). ² Superseded by $K^*(892)^{\pm} K^*(892)^{\pm} K^*(892)$	$EVTS$ 53 T^0) × Γ $EVTS$ 34 55 57 ± 12 55 57 ± 12 56 57 ± 12 56 57 ± 12 57 ± 12 57 ± 12 59 59 59 59 59 59 59 59	DOCUMENT LEES $(e^+e^-)/\Gamma_{\text{tota}}$ $\frac{DOCUMENT}{1}$ LEES Int for B(K^* (892) $(F(e^+e^-)/\Gamma)$ $\frac{DOCUMENT}{1}$ LEES 121 Dowing data for a 2 AUBERT 2 AUBERT 3 AUBERT 4 twice into acco	14H BABR $e^+e^- \rightarrow \pi$ 14H BABR $e^+e^- \rightarrow \pi$ 17D BABR $e^+e^- \rightarrow K$ 17D BABR $e^+e^- \rightarrow K$ 17D BABR $e^+e^- \rightarrow K$ 18D $e^+e^- \rightarrow K$ 19D $e^+e^- \rightarrow K$ 17D BABR $e^+e^- \rightarrow K$ 18D $e^+e^- \rightarrow K$ 19D $e^-e^- \rightarrow K$	
VALUE (eV) 3.7±1.2±0.3 Γ($K^*(892)^0 K_S^0 \pi$ VALUE (eV) 3.60±0.75±2.25 1 Dividing by 2/3 Γ($K^*(892)^0 \overline{K}^*(8)^0 \overline{K}$	$EVTS$ 53 T^0) × T^0 $EVTS$ 34 $10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 =$	DOCUMENT LEES $(e^+e^-)/\Gamma_{tota}$ DOCUMENT 1 LEES Int for B(K^* (892 • $\Gamma(e^+e^-)/\Gamma$ DOCUMENT ID 1 LEES 12 Dowing data for a 2 AUBERT 2 AUBERT • twice into acco • $\Gamma(e^+e^-)/\Gamma$ DOCUMENT 1 LEES	14H BABR $e^+e^- \rightarrow \pi$ 14H BABR $e^+e^- \rightarrow \pi$ 17D BABR $e^+e^- \rightarrow F$ 17D BABR $e^- \rightarrow F$	$ \frac{\Gamma_{71}\Gamma_{5}}{\Gamma_{71}\Gamma_{5}/\Gamma} $ $ \frac{\Gamma_{71}\Gamma_{5}}{\Gamma_{71}\Gamma_{5}/\Gamma} $ $ \frac{\Gamma_{73}\Gamma_{5}}{\Gamma_{73}\Gamma_{5}/\Gamma} $ $ \frac{\Gamma_{73}\Gamma_{5}}{\Gamma_{73}\Gamma_{5}/\Gamma} $ $ \frac{\Gamma_{74}\Gamma_{5}}{\Gamma_{74}\Gamma_{5}/\Gamma} $ $ \frac{\Gamma_{74}\Gamma_{5}}{\Gamma_{74}\Gamma_{5}/\Gamma} $

 1 Dividing by 1/4 to take into account B(K*(1430) $\to~$ K $_S^0\,\pi) =$ 1/4 B(K*(1430) $\to~$ K $\pi).$

² LEES 14H reports $[\Gamma(J/\psi(1S) \to K_2^*(1430)^+ K_S^0 \pi^- + \text{c.c.}) \times \Gamma(J/\psi(1S) \to e^+ e^-)/\Gamma_{\text{total}}] \times [B(K_2^*(1430) \to K\pi)] = 10.0 \pm 4.8 \pm 0.8 \text{ eV}$ which we divide by our best value $B(K_2^*(1430) \to K\pi) = (49.9 \pm 1.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\overline{K}_{2}^{*}(1430)^{0}K^{*}(892)^{0} + \text{c.c.}) \times \Gamma(e^{+}e^{-})/\Gamma_{\text{total}}$

 $\Gamma_{85}\Gamma_5/\Gamma$

VALUE (eV) EVTS DOCUMENT ID TECN COMMENT

25.8 \pm 1.4 \pm 0.6 710 1,2,3 LEES 12F BABR 10.6 e⁺e⁻ $\rightarrow \pi^+\pi^-K^+K^-\gamma$ • • • We do not use the following data for averages, fits, limits, etc. • •

33 ± 4 ± 1 317 2,4 AUBERT 07AK BABR 10.6 $e^+e^- \rightarrow \pi^+\pi^- K^+ K^- \gamma$ LEES 12F reports $[\Gamma(J/\psi(1S) \rightarrow \overline{K}_2^*(1430)^0 K^*(892)^0 + \text{c.c.}) \times \Gamma(J/\psi(1S) \rightarrow e^+e^-)/\Gamma_{\text{total}}] \times [B(K_2^*(1430) \rightarrow K\pi)] = 12.89 \pm 0.54 \pm 0.41$ eV which we divide by our best value $B(K_2^*(1430) \rightarrow K\pi) = (49.9 \pm 1.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best

² Dividing by 2/3 to take into account that B($K^{*0} \rightarrow K^+\pi^-$) = 2/3 B($K^{*0} \rightarrow K\pi$).

³ The $K_2^*(1430)$ cannot be distinguished from the $K_0^*(1430)$.

⁴ Superseded by LEES 12F. AUBERT 07AK reports $[\Gamma(J/\psi(1S) \to \overline{K}_2^*(1430)^0 \, K^*(892)^0 + \text{c.c.}) \times \Gamma(J/\psi(1S) \to e^+ \, e^-)/\Gamma_{\text{total}}] \times [B(K_2^*(1430) \to K\pi)] = 16.4 \pm 1.1 \pm 1.4$ eV which we divide by our best value $B(K_2^*(1430) \to K\pi) = (49.9 \pm 1.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(K_2^*(1430)^-K^*(892)^+ + \text{c.c.}) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$

Γ₈₆Γ₅/Ι

Created: 8/11/2022 09:37

VALUE (eV)EVTSDOCUMENT IDTECNCOMMENT18.6±16.1±0.4 8 ± 8 1,2 LEES14HBABR $e^+e^- \rightarrow \pi^+\pi^- \kappa_S^0 \kappa_S^0 \gamma$

¹ Dividing by $(1/4)^2$ to take into account B($K^*(892) \rightarrow K^0_S \pi$) = 1/4 and B($K^*(1430) \rightarrow K^0_S \pi$) = 1/4 B($K^*(1430) \rightarrow K \pi$).

² LEES 14H reports $[\Gamma(J/\psi(1S) \to K_2^*(1430)^- K^*(892)^+ + \text{c.c.}) \times \Gamma(J/\psi(1S) \to e^+ e^-)/\Gamma_{\text{total}}] \times [B(K_2^*(1430) \to K\pi)] = 9.28 \pm 8.0 \pm 0.32 \text{ eV}$ which we divide by our best value $B(K_2^*(1430) \to K\pi) = (49.9 \pm 1.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(K_2^*(1430)^-K^*(892)^+ + \text{c.c.} \rightarrow K^*(892)^+K_S^0\pi^- + \text{c.c.}) \times \Gamma(e^+e^-)/\Gamma_{total}$

¹ Dividing by 1/4 to take into account B($K^*(892) \rightarrow K_S^0 \pi$) = 1/4.

 $\Gamma(\phi\pi^+\pi^-)$ × $\Gamma(e^+e^-)/\Gamma_{\text{total}}$ $\Gamma_{96}\Gamma_5/\Gamma$ <u>VALUE (eV)</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> **4.48±0.35 OUR AVERAGE** 4.46±0.49±0.05 181 ¹ LEES 12F BABR 10.6 $e^+e^- \rightarrow$

4.46 \pm 0.49 \pm 0.05 181 ¹ LEES 12F BABR 10.6 $e^+e^- \rightarrow K^+K^-\pi^+\pi^- \gamma$ 4.51 \pm 0.48 \pm 0.05 254 \pm 23 ² SHEN 09 BELL 10.6 $e^+e^- \rightarrow K^+K^-\pi^+\pi^- \gamma$

• • • We do not use the following data for averages, fits, limits, etc. • • •

¹ Dividing by 2/3 to take into account that B($K^{*0} \rightarrow K^{+}\pi^{-}$) = 2/3.

5.3 \pm 0.7 \pm 0.1 103 ³ AUBERT,BE 06D BABR 10.6 $e^+e^- \rightarrow K^+K^-\pi^+\pi^-\gamma$

¹ LEES 12F reports $[\Gamma(J/\psi(1S) \to \phi\pi^+\pi^-) \times \Gamma(J/\psi(1S) \to e^+e^-)/\Gamma_{\text{total}}] \times [B(\phi(1020) \to K^+K^-)] = 2.19 \pm 0.23 \pm 0.07$ eV which we divide by our best value $B(\phi(1020) \to K^+K^-) = (49.1 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

²SHEN 09 reports 4.50 \pm 0.41 \pm 0.26 eV from a measurement of $[\Gamma(J/\psi(1S) \rightarrow \phi\pi^+\pi^-) \times \Gamma(J/\psi(1S) \rightarrow e^+e^-)/\Gamma_{total}] \times [B(\phi(1020) \rightarrow K^+K^-)]$ assuming $B(\phi(1020) \rightarrow K^+K^-) = (49.2 \pm 0.6) \times 10^{-2}$, which we rescale to our best value $B(\phi(1020) \rightarrow K^+K^-) = (49.1 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

³ Superseded by LEES 12F. AUBERT,BE 06D reports $[\Gamma(J/\psi(1S) \to \phi\pi^+\pi^-) \times \Gamma(J/\psi(1S) \to e^+e^-)/\Gamma_{\text{total}}] \times [B(\phi(1020) \to K^+K^-)] = 2.61 \pm 0.30 \pm 0.18$ eV which we divide by our best value $B(\phi(1020) \to K^+K^-) = (49.1 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(\phi\pi^0\pi^0) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$

 $\Gamma_{97}\Gamma_5/\Gamma$

Created: 8/11/2022 09:37

 $3.13 \pm 0.88 \pm 0.03$ 23 ² AUBERT,BE 06D BABR 10.6 $e^{+}e^{-} \rightarrow K^{+}K^{-}\pi^{0}\pi^{0}\gamma^{0}$

¹LEES 12F reports $[\Gamma(J/\psi(1S) \to \phi\pi^0\pi^0) \times \Gamma(J/\psi(1S) \to e^+e^-)/\Gamma_{\text{total}}] \times [B(\phi(1020) \to K^+K^-)] = 1.36 \pm 0.27 \pm 0.07$ eV which we divide by our best value $B(\phi(1020) \to K^+K^-) = (49.1 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² Superseded by LEES 12F. AUBERT,BE 06D reports $[\Gamma(J/\psi(1S) \to \phi\pi^0\pi^0) \times \Gamma(J/\psi(1S) \to e^+e^-)/\Gamma_{\text{total}}] \times [B(\phi(1020) \to K^+K^-)] = 1.54 \pm 0.40 \pm 0.16$ eV which we divide by our best value $B(\phi(1020) \to K^+K^-) = (49.1 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

```
\Gamma(\phi 2(\pi^+\pi^-)) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}
                                                                                                                                                                                                                                                                   \Gamma_{08}\Gamma_{5}/\Gamma
 VALUE (10^{-2} \text{ keV})
                                                                                                                                                       06D BABR 10.6 e^+e^- \to \phi 2(\pi^+\pi^-)\gamma
0.96 \pm 0.19 \pm 0.01
                                                                                               <sup>1</sup> AUBERT
       ^{1}\, \text{AUBERT 06D reports} \left[ \Gamma \big( J/\psi(1S) \, \rightarrow \, \phi \, 2(\pi^{+}\,\pi^{-}) \big) \, \times \, \Gamma \big( J/\psi(1S) \, \rightarrow \, \, e^{+}\,e^{-} \big) / \Gamma_{\text{total}} \right]
              \times [B(\phi(1020) \to K^+K^-)] = (0.47 \pm 0.09 \pm 0.03) \times 10^{-2} keV which we divide by
             our best value B(\phi(1020) \rightarrow K^+K^-) = (49.1 \pm 0.5) \times 10^{-2}. Our first error is their
             experiment's error and our second error is the systematic error from using our best value.
\Gamma(\phi\eta) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}
                                                                                                                                                                                                                                                                   \Gamma_{99}\Gamma_{5}/\Gamma
 VALUE (eV)
                                                                                                                                                                          07AU BABR 10.6 e^+e^- \rightarrow \phi n\gamma
6.1\pm2.7\pm0.4
       <sup>1</sup> AUBERT 07AU quotes \Gamma^{J/\psi}_{ee} \cdot \mathsf{B}(J/\psi \to \phi \eta) \cdot \mathsf{B}(\phi \to K^+K^-) \cdot \mathsf{B}(\eta \to 3\pi) =
            0.84 \pm 0.37 \pm 0.05 eV.
\Gamma(\phi f_0(980) \rightarrow \phi \pi^+ \pi^-) \times \Gamma(e^+ e^-)/\Gamma_{\text{total}}
                                                                                                                                                                                                                                                                \Gamma_{103}\Gamma_5/\Gamma
1.44±0.19 OUR AVERAGE
                                                                                             <sup>1</sup> LEES
                                                                                                                                                            BABR 10.6 e^+e^- \rightarrow \pi^+\pi^-K^+K^-\gamma
1.40 \pm 0.25 \pm 0.02 57 \pm 9
                                                                                             <sup>2</sup> SHEN
                                                                                                                                                            BELL 10.6 e^+e^- \to K^+K^-\pi^+\pi^-\gamma
                                                                                                                                       09
1.48 \pm 0.27 \pm 0.09 \ 60 \pm 11
 • • • We do not use the following data for averages, fits, limits, etc. • •
1.02 \pm 0.24 \pm 0.01 20 \pm 5 <sup>3</sup> AUBERT 07AK BABR 10.6 e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}K^{+}K^{-}\gamma
        <sup>1</sup>LEES 12F reports [\Gamma(J/\psi(1S) \rightarrow \phi f_0(980) \rightarrow \phi \pi^+ \pi^-) \times \Gamma(J/\psi(1S) \rightarrow e^+ e^-)/
             \Gamma_{\text{total}}] \times [B(\phi(1020) \rightarrow K^+K^-)] = 0.69 \pm 0.11 \pm 0.05 eV which we divide by our
            best value B(\phi(1020) \rightarrow K^+K^-) = (49.1 \pm 0.5) \times 10^{-2}. Our first error is their experiment's error and our second error is the systematic error from using our best value.
       <sup>2</sup> Multiplied by 2/3 to take into account the \phi\pi^+\pi^- mode only. Using B(\phi\to K^+K^-)
             = (49.2 \pm 0.6)\%.
        ^3 Superseded by LEES 12F. AUBERT 07AK reports [\Gamma(J/\psi(1S) 
ightarrow \phi f_0(980) 
ightarrow
            \phi \pi^+ \pi^-) \times \Gamma(J/\psi(1S) \to e^+ e^-)/\Gamma_{\text{total}}] \times [B(\phi(1020) \to K^+ K^-)] = 0.50 \pm 0.11 \pm 0.00 \pm 0.
            0.04 eV which we divide by our best value B(\phi(1020) \to K^+K^-) = (49.1 \pm 0.5) \times 10^{-2}.
             Our first error is their experiment's error and our second error is the systematic error from
             using our best value.
 \Gamma(\phi f_0(980) \rightarrow \phi \pi^0 \pi^0) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}
                                                                                                         DOCUMENT ID TECN COMMENT
                                                                   16 \pm 4 LEES
                                                                                                                                             12F BABR 10.6 e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}K^{+}K^{-}\gamma
 • • • We do not use the following data for averages, fits, limits, etc. • •
0.96 \pm 0.40 \pm 0.01 7.0 \pm 2.8 <sup>2</sup> AUBERT 07AK BABR 10.6 e<sup>+</sup> e<sup>-</sup> \rightarrow \pi^0 \pi^0 K^+ K^- \gamma
       <sup>1</sup>LEES 12F reports [\Gamma(J/\psi(1S) \rightarrow \phi f_0(980) \rightarrow \phi \pi^0 \pi^0) \times \Gamma(J/\psi(1S) \rightarrow e^+e^-)/
            \Gamma_{\text{total}}] \times [B(\phi(1020) \rightarrow K^+K^-)] = 0.48 \pm 0.12 \pm 0.05 \text{ eV} which we divide by our
            best value B(\phi(1020) \rightarrow~ K<sup>+</sup>K<sup>-</sup>) = (49.1 \pm~ 0.5) \times~ 10<sup>-2</sup>. Our first error is their
             experiment's error and our second error is the systematic error from using our best value.
        ^2 Superseded by LEES 12F. AUBERT 07AK reports [\Gamma(J/\psi(1S) 
ightarrow \phi f_0(980) 
ightarrow
            \phi \pi^0 \pi^0 × \Gamma(J/\psi(1S) \to e^+ e^-)/\Gamma_{\text{total}}] \times [B(\phi(1020) \to K^+ K^-)] = 0.47 \pm 0.19 \pm 0
            0.05 eV which we divide by our best value B(\phi(1020) \to K^+K^-) = (49.1 \pm 0.5) \times 10^{-2}.
```

using our best value.

Our first error is their experiment's error and our second error is the systematic error from

 $\Gamma(\phi f_2(1270)) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$

 $\Gamma_{109}\Gamma_5/\Gamma$

VALUE (eV)

 $1.79 \pm 0.32 ^{+0.02}_{-0.06}$

61 ^{1,2,3} LEES

12F BABR 10.6 $e^+e^- \rightarrow \pi^+\pi^-K^+K^-\gamma$

• • • We do not use the following data for averages, fits, limits, etc. • •

 $4.08\pm0.73^{\,+\,0.04}_{\,-\,0.14}$

44 2,4 AUBERT 07AK BABR 10.6 $e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}K^{+}K^{-}\gamma$

 1 LEES 12F reports [Γ($J/\psi(1S) \rightarrow \phi f_2(1270)) \times \Gamma(J/\psi(1S) \rightarrow e^+e^-)/\Gamma_{\mbox{total}}] \times [B(f_2(1270) \rightarrow \pi\pi)] = 1.51 \pm 0.25 \pm 0.10$ eV which we divide by our best value $B(f_2(1270) \rightarrow \pi\pi) = (84.2^{+2.9}_{-0.9}) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² Using B($\phi \to K^+K^-$) = (48.9 \pm 0.5)%.

 3 Using $\pi^+\pi^-$ invariant mass between 1.1 and 1.5 GeV. May include other sources such as $f_0(1370)$.

 4 Superseded by LEES 12F. AUBERT 07AK reports $[\Gamma(J/\psi(1S)
ightarrow \phi f_2(1270)) imes f_2(1270)]$ $\Gamma(J/\psi(1S) \to e^+e^-)/\Gamma_{\sf total}] \times [B(f_2(1270) \to \pi\pi)] = 3.44 \pm 0.55 \pm 0.28 \text{ eV}$ which we divide by our best value B($f_2(1270) \rightarrow \pi\pi$) = $(84.2^{+2.9}_{-0.9}) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(\phi f_2'(1525)) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$

 $8.2 \pm 3.2 \pm 0.2$

¹ Dividing by 1/4 to take into account B($f_2'(1525) \rightarrow K_S^0K_S^0$) = 1/4 B($f_2'(1525) \rightarrow K_S^0K_S^0$) \overline{KK}) and using B($\phi \rightarrow K^+K^-$) = (48.9 \pm 0.5)%.

 2 LEES 14H reports $[\Gamma(J/\psi(1S)
ightarrow \phi f_2'(1525)) imes \Gamma(J/\psi(1S)
ightarrow e^+e^-)/\Gamma_{ ext{total}}]$ imes [B($f_2'(1525) o K\overline{K}$)] = 7.2 \pm 2.8 \pm 0.3 eV which we divide by our best value $B(f_2'(1525) \rightarrow K\overline{K}) = (87.6 \pm 2.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(\phi K^+ K^-) \times \Gamma(e^+ e^-)/\Gamma_{\text{total}}$

 $4.60\pm0.62\pm0.05$

163

¹ LEES

TECN COMMENT

12F BABR 10.6 $e^+e^- \rightarrow K^+K^-K^+K^-\gamma$

 1 LEES 12F reports $[\Gamma(J/\psi(1S)
ightarrow \phi K^+ K^-) imes \Gamma(J/\psi(1S)
ightarrow e^+ e^-)/\Gamma_{ ext{total}}] imes$ $[B(\phi(1020)
ightarrow K^+K^-)] = 2.26 \pm 0.26 \pm 0.16$ eV which we divide by our best value $B(\phi(1020) \rightarrow K^+K^-) = (49.1 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(\phi K_S^0 K_S^0) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$

 $\Gamma_{121}\Gamma_5/\Gamma$

 $3.26 \pm 0.84 \pm 0.04$

¹ LEES

14H BABR $e^+e^-
ightarrow K^0_5 K^0_5 K^+ K^- \gamma$

Created: 8/11/2022 09:37

 1 LEES 14H reports $[\Gamma(J/\psi(1S)
ightarrow \phi K_S^0 K_S^0) imes \Gamma(J/\psi(1S)
ightarrow e^+e^-)/\Gamma_{ ext{total}}] imes \Gamma(J/$ $[{\sf B}(\phi(1020)
ightarrow~{\it K}^+{\it K}^-)]=1.6\pm0.4\pm0.1$ eV which we divide by our best value $B(\phi(1020) \rightarrow K^+K^-) = (49.1 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

```
\Gamma(f_2'(1525)K^+K^-) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}
                                                                 14H BABR e^+e^- \rightarrow K_S^0 K_S^0 K^+ K^- \gamma
5.8 \pm 1.9 \pm 0.1
   ^1 Dividing by 1/4 to take into account B(f_2'(1525) 
ightarrow ~K_S^0 K_S^0) = 1/4 B(f_2'(1525) 
ightarrow
   <sup>2</sup> LEES 14H reports [\Gamma(J/\psi(1S) \rightarrow f_2'(1525)K^+K^-) \times \Gamma(J/\psi(1S) \rightarrow e^+e^-)/\Gamma_{	ext{total}}]
      \times [B(f_2'(1525) \rightarrow K\overline{K})] = 5.12 \pm 1.68 \pm 0.20 eV which we divide by our best value
     B(f_2'(1525) \rightarrow K\overline{K}) = (87.6 \pm 2.2) \times 10^{-2}. Our first error is their experiment's error
     and our second error is the systematic error from using our best value.
\Gamma(2(\pi^+\pi^-)\pi^0) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}
                                                                                                              \Gamma_{145}\Gamma_{5}/\Gamma
                                         DOCUMENT ID
                                                                       TECN COMMENT
                                                               07AU BABR 10.6 e^+e^- \to 2(\pi^+\pi^-)\pi^0\gamma
303 \pm 5 \pm 18
                                         AUBERT
\Gamma(\pi^+\pi^-3\pi^0) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}
                                                                                                              \Gamma_{147}\Gamma_{5}/\Gamma
                             EVTS
                                                                    TECN COMMENT
                 OUR AVERAGE Error includes scale factor of 4.3.
                                         <sup>1</sup> LEES
                                                                    BABR 10.6 e^+e^- \rightarrow 2(\pi^+\pi^-)3\pi^0\gamma
 55.4 \pm 15.9 \pm 0.5
                              14k
                                                             18E BABR 10.6 e^+e^- \to \pi^+\pi^- 3\pi^0 \gamma
150.0 \pm 4.0 \pm 15.0
                             2.3k
                                            LEES
   <sup>1</sup>LEES 21 reports [\Gamma(J/\psi(1S) \rightarrow \pi^+\pi^-3\pi^0) \times \Gamma(J/\psi(1S) \rightarrow e^+e^-)/\Gamma_{total}] \times
     [\Gamma(\psi(2S)
ightarrow\ J/\psi(1S)\pi^+\pi^-)/\Gamma_{	ext{total}}]=19.2\pm4.5\pm3.2 eV which we divide by our
     best value \Gamma(\psi(2S) \to J/\psi(1S)\pi^+\pi^-)/\Gamma_{\mbox{total}} = 0.3468 \pm 0.0030. Our first error is their experiment's error and our second error is the systematic error from using our best
\Gamma(\pi^+\pi^-4\pi^0) \, 	imes \, \Gamma(e^+e^-)/\Gamma_{
m total}
                                                                                                              \Gamma_{148}\Gamma_{5}/\Gamma
                                                               21c BABR e^+e^- \to \gamma_{ISR}(\pi^+\pi^-4\pi^0)
35.8 \pm 4.4 \pm 5.4
                          340
                                         LEES
\Gamma(
ho^{\pm}\pi^{\mp}\pi^{0}\pi^{0}) \times \Gamma(e^{+}e^{-})/\Gamma_{\text{total}}
                                                                                                              \Gamma_{149}\Gamma_{5}/\Gamma_{149}
VALUE (eV)
                                            DOCUMENT ID
                                                                         TECN COMMENT
                                                                  18E BABR 10.6 e^+e^- \rightarrow \pi^+\pi^- 3\pi^0 \sim
78.0 \pm 9.0 \pm 8.0
                                            LEES
\Gamma(\rho^+\rho^-\pi^0) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}
                                                                                                              \Gamma_{150}\Gamma_5/\Gamma
                                            DOCUMENT ID
                                                                 18E BABR 10.6 e^+e^- \to \pi^+\pi^-3\pi^0
33.0 \pm 5.0 \pm 3.3
                             529
                                            LEES
\Gamma(\pi^+\pi^-\pi^0) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}
                                                                                                              \Gamma_{151}\Gamma_5/\Gamma
VALUE (keV)
                                              DOCUMENT ID
                                                                   21B BABR 10.5 e^+e^- \to \pi^+\pi^-\pi^0\gamma^-
0.1248 \pm 0.0019 \pm 0.0026
                                              LEES
• • We do not use the following data for averages, fits, limits, etc.
                                                                    04N BABR 10.6 e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}\gamma
0.122 \pm 0.005 \pm 0.008
                                              AUBERT, B
\Gamma(2(\pi^+\pi^-\pi^0)) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}
                                                                                                              \Gamma_{152}\Gamma_5/\Gamma
VALUE (10^{-2} \text{ keV}) EVTS
                                         DOCUMENT ID
                                                                       TECN COMMENT
                                                               06D BABR 10.6 e^+e^- \to 2(\pi^+\pi^-\pi^0)\gamma
8.9 \pm 0.5 \pm 1.0
                          761
                                         AUBERT
```

```
\Gamma(\pi^{+}\pi^{-}\pi^{0}K^{+}K^{-}) \times \Gamma(e^{+}e^{-})/\Gamma_{\text{total}}
                                                                                                               \Gamma_{153}\Gamma_{5}/\Gamma
                                                        07AU BABR 10.6 e^{+}e^{-} \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}\gamma
107.0 \pm 4.3 \pm 6.4
                         768
                                      AUBERT
\Gamma(2(\pi^+\pi^-)) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}
                                                                                                               \Gamma_{155}\Gamma_5/\Gamma
                                              DOCUMENT ID
VALUE (eV)
                                                                           TECN COMMENT
                                                                    12E BABR 10.6 e^+e^- \rightarrow 2\pi^+2\pi^-\gamma
20.4 \pm 0.9 \pm 0.4
                                              LEES
• • • We do not use the following data for averages, fits, limits, etc. •
                                           <sup>1</sup> AUBERT
                                                                    05D BABR 10.6 e^+e^- \rightarrow 2(\pi^+\pi^-)\gamma
19.5 \pm 1.4 \pm 1.3
                              270
   <sup>1</sup>Superseded by LEES 12E.
\Gamma(3(\pi^+\pi^-)) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}
                                                                                                               \Gamma_{156}\Gamma_{5}/\Gamma
VALUE (10^{-2} \text{ keV}) EVTS
                                              DOCUMENT ID
                                                                           TECN COMMENT
                                                                    06D BABR 10.6 e^+e^- \rightarrow 3(\pi^+\pi^-)\gamma
2.37 \pm 0.16 \pm 0.14
                                              AUBERT
\Gamma(2(\pi^+\pi^-)3\pi^0) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}
                                                                                                               \Gamma_{157}\Gamma_5/\Gamma
VALUE (eV)
                                            DOCUMENT ID
                                                                     TECN COMMENT
                                                                     BABR 10.6 e^+e^- \rightarrow 2(\pi^+\pi^-)3\pi^0\gamma
                                                             21
345 \pm 10 \pm 50
                                            LEES
\Gamma(2(\pi^+\pi^-)\eta) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}
                                                                                                               \Gamma_{159}\Gamma_5/\Gamma
                                           DOCUMENT ID
                                                                      TECN COMMENT
                                                                 07AU BABR 10.6 e^+e^- \to 2(\pi^+\pi^-)n\gamma
13.1\pm2.4\pm0.1
   ^{1} AUBERT 07AU reports [ \Gamma(J/\psi(1S) \rightarrow 2(\pi^{+}\,\pi^{-})\eta) \times \Gamma(J/\psi(1S) \rightarrow e^{+}\,e^{-})/\Gamma_{\rm total}] \times [{\rm B}(\eta \rightarrow 2\gamma)] = 5.16 \pm 0.85 \pm 0.39 eV which we divide by our best value {\rm B}(\eta \rightarrow 2\gamma)
     (2\gamma) = (39.36 \pm 0.18) \times 10^{-2}. Our first error is their experiment's error and our second
     error is the systematic error from using our best value.
\Gamma(2(\pi^+\pi^-\pi^0)\eta) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}
                                                                                                               \Gamma_{161}\Gamma_5/\Gamma
                            EVTS
                                                                     TECN COMMENT
                                                                     BABR 10.6 e^+e^- \rightarrow 2(\pi^+\pi^-)3\pi^0\gamma
9.1\pm2.6\pm1.4
                             14k
                                            LEES
                                                             21
\Gamma(\pi^{+}\pi^{-}\pi^{0}\pi^{0}\eta) \times \Gamma(e^{+}e^{-})/\Gamma_{\text{total}}
                                                                                                               \Gamma_{162}\Gamma_5/\Gamma
                           EVTS
                                            DOCUMENT ID
                                                                     TECN COMMENT
VALUE (eV)
13.1 ± 2.7 OUR AVERAGE
                                                              21 BABR 10.6 e^+e^- \rightarrow 2(\pi^+\pi^-)3\pi^0\gamma
                                          <sup>1</sup> LEES
26.1 \pm 17.9 \pm 0.3
                             14k
                                                             18E BABR 10.6 e^+e^- \to \pi^+\pi^-\pi^0\pi^0\pi^0
12.8 \pm 1.8 \pm 2.0
                             203
   <sup>1</sup>LEES 21 reports [\Gamma(J/\psi(1S) \rightarrow \pi^+\pi^-\pi^0\pi^0\eta) \times \Gamma(J/\psi(1S) \rightarrow e^+e^-)/\Gamma_{\text{total}}]
     	imes [B(\eta 	o \pi^+\pi^-\pi^0)] = 6 \pm 4 \pm 1 eV which we divide by our best value B(\eta 	o
     \pi^{+}\pi^{-}\pi^{0}) = (23.02 \pm 0.25) \times 10^{-2}. Our first error is their experiment's error and our
     second error is the systematic error from using our best value.
\Gamma(\rho^{\pm}\pi^{\mp}\pi^{0}\eta) \times \Gamma(e^{+}e^{-})/\Gamma_{\text{total}}
                                                                                                               \Gamma_{163}\Gamma_5/\Gamma
VALUE (eV)
                                                    DOCUMENT ID
                                                                                 TECN COMMENT
                                                                          18E BABR 10.6 e^+e^-_{\pi^+\pi^-\pi^0\pi^0\eta\gamma}
10.5 \pm 4.1 \pm 1.6
                                     168
                                                    LEES
```

$\Gamma(K^+K^-) \times \Gamma(K^+K^-) \times \Gamma(K^-K^-) \times \Gamma(K^$	• ,		- ID	TECN	COMMENT	$\Gamma_{164}\Gamma_5/\Gamma$
<i>VALUE</i> (eV) • • • We do not us		DOCUMENT data for ave				
$1.78 \pm 0.11 \pm 0.05$	462	¹ LEES	15 J	BABR	$e^+e^- \rightarrow$,
$1.94 \pm 0.11 \pm 0.05$	462	² LEES ³ LEES			$e^+e^- \rightarrow$	
$1.42\pm0.23\pm0.08$ $\frac{1}{2}\sin\phi > 0.$ $\frac{2}{3}\sin\phi < 0.$ $\frac{3}{3}$ Interference with	51 n non-resonant				$e^+e^- ightarrow$ into accoun	,
$\Gamma(K_S^0 K_L^0 \pi^0) \times VALUE (eV)$			- ID	TECN	COMMENT	$\Gamma_{170}\Gamma_5/\Gamma$
11.4±1.3±0.6	182	LEES	17A	BABR	$e^+e^- \rightarrow$	$\kappa_S^0 \kappa_I^0 \pi^0 \gamma$
$\Gamma(K^*(892)^0\overline{K}^0+$	- c.c. $\rightarrow K_S^0$	$\mathcal{K}^0_L\pi^0ig)$ $ imes$ [$-(e^+e^-)$	$/\Gamma_{ ext{total}}$		Γ ₁₇₁ Γ ₅ /Γ
VALUE (eV) 6.7±0.9±0.4	<i>EVTS</i> 106	DOCUMENT	1D	PARD	comment	$K_S^0 K_I^0 \pi^0 \gamma$
						KSKL ^{m-y}
$\Gamma(K_2^*(1430)^0\overline{K}^0)$	$+ \text{c.c.} \rightarrow K_{0}^{0}$	$_{5}^{0}K_{L}^{0}\pi^{0}) \times$	$\Gamma(e^+e^-$	·)/Γ _{tota}	al	$\Gamma_{172}\Gamma_5/\Gamma$
	EVTS					0 0 0
$2.4 \pm 0.7 \pm 0.1$	37	LEES	17A	BABR	$e^+e^- \rightarrow$	$\kappa_S^0 \kappa_L^0 \pi^0 \gamma$
$\Gamma(K^+K^-\pi^+\pi^-)$ VALUE (eV)	•	•	TECN (COMMEN [*]	Т	$\Gamma_{173}\Gamma_5/\Gamma$
37.94±0.81±1.10						$\pi^- K^+ K^- \gamma$
• • • We do not us						
36.3 $\pm 1.3 \pm 2.1$ 33.6 $\pm 2.7 \pm 2.7$ ¹ Superseded by L ² Superseded by A	233 ² AU .EES 12F.	BERT 05D				
						<i>-</i>
$\Gamma(K^+K^-\pi^0\pi^0)$ VALUE (eV)	XI(e'e <u>EVTS</u> <u>DO</u>)/ 	TECN (COMMEN	Τ	Γ ₁₇₄ Γ ₅ /Γ
11.75±0.81±0.90 • • • We do not us	388 LE	ES 12F	BABR 1	10.6 e+	$e^- ightarrow \pi^0 \tau$	$\tau^0 K^+ K^- \gamma$
	203 ¹ AU					$\tau^0 \kappa^+ \kappa^- \gamma$
¹ Superseded by L		5	. 27.21.		, , ,	,
$\Gamma(K_S^0K_I^0\pi^+\pi^-)$	χ Γ(e ⁺ e ⁻	·)/[Γ ₁₇₅ Γ ₅ /Γ
VALUE (eV)	•	, .	TE	CN CC	OMMENT	,
20.8±2.3±2.1	248	LEES	14H BA	${e^{+}}$	$e^- \rightarrow \pi^+$	$\pi^- \kappa_S^0 \kappa_I^0 \gamma$
$\Gamma(K^0_SK^0_L\pi^0\pi^0)$	× Γ(e ⁺ e ⁻)	$/\Gamma_{ ext{total}}$				Γ ₁₇₆ Γ ₅ /Γ
VALUE (eV) 10.3±2.3±0.5	EVTS	DOCUMENT ID	<u> </u>	ECN C	OMMENT	
10.3±2.3±0.5	47	LEES	17a B	ABR e	$^+e^- o K$	$S K_L^0 \pi^0 \pi^0 \gamma$

$\Gamma(K_S^0K_L^0\eta) \times \Gamma$ VALUE (eV)	$(e^+e^-)/ $		Г ID <u>1</u>	ECN (COMMENT	$\Gamma_{177}\Gamma_5/\Gamma$
8.0±1.8±0.4	45	LEES				$\kappa_S^0 \kappa_L^0 \eta \gamma$
$\Gamma(K_S^0K_S^0\pi^+\pi^-)$ VALUE (eV)	•	e ⁻)/Γ _{total} <u>DOCUMENT ID</u>		I <u>COM</u>		Γ ₁₇₈ Γ ₅ /Γ
$9.3 \pm 0.9 \pm 0.5$	133	LEES	14H BAB	R e+e	$\mathrm{e^-} ightarrow ~\pi^-$	$^{+}\pi^{-}\kappa_{S}^{0}\kappa_{S}^{0}\gamma$
$\Gamma(K^{\mp}K_{S}^{0}\pi^{\pm}\pi^{0})$ VALUE (eV)	•	e ⁻)/Γ _{total} DOCUMENT ID				Γ ₁₇₉ Γ ₅ /Γ
31.7±1.9±1.8	393	LEES	17D BAB	R e ⁺ ε	$e^- o K_s^0$	$S^{0} K^{\pm} \pi^{\mp} \pi^{0} \gamma$
$\Gamma(K^+K^-2(\pi^+\pi^-))$ VALUE (10 ⁻² keV)	,	(e ⁺ e ⁻)/Γ _{tota}		ECN (COMMENT	Γ ₁₈₀ Γ ₅ /Γ
$2.75 \pm 0.23 \pm 0.17$	205	AUBERT	06D E	BABR 1	10.6 e ⁺ e	$\stackrel{-}{\rightarrow}$
					K ' K	$^{-}2(\pi^{+}\pi^{-})\gamma$
$\Gamma(K^+K^-\pi^+\pi^-)$ VALUE (eV) EV	,	"+e ⁻)/Γ _{total}	TECN COM	1MENT		$\Gamma_{181}\Gamma_5/\Gamma$
25.9±3.9±0.1		BERT 07AU				$K^{-}\pi^{+}\pi^{-}\eta\gamma$
1 AUBERT 07AU $\Gamma_{ ext{total}}] imes [B(\eta 2\gamma) = (39.36 \pm 2000)]$ error is the syst	$(0.18) \times 10^{-1}$	$J/\psi(1S) ightarrow \kappa^+ \ 0.2 \pm 1.3 \pm 0.8 \ e^{-2}$. Our first error using our	or is their ex	$\eta) \; imes \; \Gamma$ divide $\mathfrak b$	$J(J/\psi(1S))$ by our bes	$) ightarrow e^+e^-)/$ t value B $(\eta ightarrow$
$\Gamma(2(K^+K^-))$ ×	κ Γ(e ⁺ e ⁻ `	$)/\Gamma_{total}$				$\Gamma_{182}\Gamma_{5}/\Gamma$
VALUE (eV)	•	DOCUMENT IL) TECN	СОММ	ENT	
$4.00\pm0.33\pm0.29$		LEES				$2(K^+K^-)\gamma$
• • • We do not u	se the follow					
$4.11 \pm 0.39 \pm 0.30$ $4.0 \pm 0.7 \pm 0.6$ ¹ Superseded by	38	¹ AUBERT ² AUBERT				
² Superseded by 1		AK.				
$\Gamma(K^+K^-K^0_5K^0_5)$) × Γ(e ⁺	$e^{-})/\Gamma_{\text{total}}$				Γ ₁₈₃ Γ ₅ /Γ
VALUE (eV)			TECN	СОММ	ENT	
$2.3 \pm 0.4 \pm 0.1$	29	DOCUMENT ID LEES	14H BABR	e^+e^-	$\rightarrow \kappa_S^0$	$\kappa_S^0 \kappa^+ \kappa^- \gamma$
$\Gamma(p\overline{p}) \times \Gamma(e^+e^-)$ VALUE (eV)	EVTS	DOCUMENT	T ID 7	ECN (COMMENT	$\Gamma_{184}\Gamma_5/\Gamma$
11.9±0.6 OUR AV	ERAGE Er			8. See	the ideog	ram below.
$11.3\!\pm\!0.4\!\pm\!0.3$	821	¹ LEES	130 E		$e^+e^- \rightarrow$	
$12.9\!\pm\!0.4\!\pm\!0.4$	918	² LEES	13Y E	BABR 6	$e^+e^- ightarrow$	$p\overline{p}\gamma$
9.7 ± 1.7	.1 6 11		ONG 93B E			e [—]
• • • We do not u						
$12.0 \pm 0.6 \pm 0.5$	438	⁴ AUBERT	06в Е	BABR 6	$e^+e^- ightarrow$	$p \overline{p} \gamma$

$$\Gamma(p\overline{p}) \times \Gamma(e^+e^-)/\Gamma_{\text{total}} \text{ (eV)}$$

$\Gamma(\Lambda\overline{\Lambda}) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$				$\Gamma_{200}\Gamma_{5}/\Gamma$
VALUE (eV)	DOCUMENT I	ID TECI	<u>COMMENT</u>	
$10.7 \pm 0.9 \pm 0.7$	AUBERT	07BD BAE	BR 10.6 e ⁺ e ⁻	$\rightarrow \Lambda \overline{\Lambda} \gamma$
$\Gamma(\Sigma^{0}\overline{\Sigma}^{0}) imes \Gamma(e^{+}e^{-})/\Gamma_{ m tot}$	tal			$\Gamma_{210}\Gamma_{5}/\Gamma$
VALUE (eV)	DOCUMENT ID	TECN	COMMENT	
$6.4 \pm 1.2 \pm 0.6$	AUBERT	07BD BABR	10.6 $e^+e^- \rightarrow$	$\Sigma^0 \overline{\Sigma}{}^0 \gamma$

$J/\psi(1S)$ BRANCHING RATIOS

For the first four branching ratios, see also the partial widths, and (partial widths) $\times \Gamma(e^+e^-)/\Gamma_{total}$ above.

$\Gamma(\text{hadrons})/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.877 ± 0.005 OUR AVERAGE					
0.878 ± 0.005	BAI		BES		
0.86 ± 0.02	BOYARSKI	75	MRK1	e^+e^-	
$\Gamma(\text{virtual}\gamma \to \text{hadrons})/\Gamma_{\text{total}}$					
VALUE	DOCUMENT ID		TECN	COMMENT	
0.135±0.003	^{1,2} SETH	04	RVUE	e^+e^-	
https://pdg.lbl.gov	Page 25		Creat	ed: 8/11/2022	09:37

 $^{^{1}}$ ISR photon reconstructed in the detector 2 ISR photon undetected 3 Using $\Gamma_{total}=85.5^{+6.1}_{-5.8}$ MeV.

⁴ Superseded by LEES 130 $\Gamma(p\overline{p}) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$ (eV)

• • • We do not use the following data for averages, fits, limits, etc. • • •

 0.17 ± 0.02 BOYARSKI 75 MRK1 e^+e^-

 $\Gamma(ggg)/\Gamma_{\text{total}}$ Γ_3/Γ

VALUE (units 10^{-2})EVTSDOCUMENT IDTECNCOMMENT**64.1±1.0**6 M 1 BESSON08CLEO $\psi(2S) \rightarrow \pi^{+}\pi^{-}+$ hadrons

 $\Gamma(\gamma gg)/\Gamma_{\text{total}}$ Γ_4/Γ

VALUE (units 10^{-2})EVTSDOCUMENT IDTECNCOMMENT8.79±1.05200 k 1 BESSON08CLEO $\psi(2S) \rightarrow \pi^{+}\pi^{-}\gamma$ + hadrons

 $\Gamma(\gamma gg)/\Gamma(ggg)$ Γ_4/Γ_3

$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
13.7±0.1±0.7	6 M	BESSON	08	CLEO	$\overline{\psi(2S)} \rightarrow \pi^+\pi^-J/\psi$

$\Gamma(e^+e^-)/\Gamma_{\text{total}}$ Γ_5/Γ

$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
5.971±0.032 OUR AVI	ERAGE				
$5.983 \pm 0.007 \pm 0.037$	720k	ABLIKIM	13 R	BES3	$\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$
$5.945 \pm 0.067 \pm 0.042$	15k	LI	05 C	CLEO	$\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$
$5.90\ \pm0.05\ \pm0.10$		BAI	98 D	BES	$\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$
6.09 ± 0.33		BAI	95 B	BES	e^+e^-
$5.92 \ \pm 0.15 \ \pm 0.20$		COFFMAN	92	MRK3	$\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$
6.9 ± 0.9		BOYARSKI	75	MRK1	e^+e^-

$$\Gamma(e^+e^-\gamma)/\Gamma_{\text{total}}$$
 Γ_6/Γ

VALUE (units 10^{-3})DOCUMENT IDTECNCOMMENT8.8±1.3±0.41 ARMSTRONG 96E760 $\overline{p}p \rightarrow e^+e^-\gamma$

 1 For $E_{\gamma}~>100$ MeV.

$\Gamma(\mu^+\mu^-)/\Gamma_{ ext{total}}$ Γ_7/Γ

VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
5.961±0.033 OUR AVE	RAGE	·			
$5.973 \pm 0.007 \pm 0.038$	770k	ABLIKIM	13 R	BES3	$\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$
$5.960 \pm 0.065 \pm 0.050$	17k	LI	05 C	CLEO	$\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$
$5.84 \pm 0.06 \pm 0.10$		BAI	98 D	BES	$\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$

https://pdg.lbl.gov Page 26 Created: 8/11/2022 09:37

¹ Included in $\Gamma(\text{hadrons})/\Gamma_{\text{total}}$.

 $^{^2}$ Using B(J/ $\psi\to\ell^+\ell^-)=$ (5.90 \pm 0.09)% from RPP-2002 and R = 2.28 \pm 0.04 determined by a fit to data from BAI 00 and BAI 02C.

¹ Calculated using the value $\Gamma(\gamma gg)/\Gamma(ggg)=0.137\pm0.001\pm0.016\pm0.004$ from BESSON 08 and the PDG 08 values of B($\ell^+\ell^-$), B(virtual $\gamma\to$ hadrons), and B($\gamma\eta_c$). The statistical error is negligible and the systematic error is partially correlated with that of $\Gamma(\gamma gg)/\Gamma_{\rm total}$ measurement of BESSON 08.

 $^{^1}$ Calculated using the value $\Gamma(\gamma g g)/\Gamma(g g g)=0.137\pm0.001\pm0.016\pm0.004$ from BESSON 08 and the value of $\Gamma(g g g)/\Gamma_{\text{total}}$. The statistical error is negligible and the systematic error is partially correlated with that of $\Gamma(g g g)/\Gamma_{\text{total}}$ measurement of BESSON 08.

6.08	± 0.33	BAI	95 B	BES	e^+e^-
5.90	$\pm 0.15 \ \pm 0.19$	COFFMAN	92	MRK3	$\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$
6.9	±0.9	BOYARSKI	75	MRK1	e^+e^-

 $\Gamma(e^+e^-)/\Gamma(\mu^+\mu^-)$ Γ_5/Γ_7

TECN COMMENT 1.0016 ± 0.0031 OUR AVERAGE ¹ AULCHENKO 14 KEDR 3.097 $e^+e^- \rightarrow e^+e^-, \mu^+\mu^ 1.0022 \pm 0.0044 \pm 0.0048$ 13R BES3 $\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$ ² ABLIKIM $1.0017 \pm 0.0017 \pm 0.0033$ 10 KEDR 3.097 $e^+e^- \rightarrow e^+e^-, \mu^+\mu^-$ ³ ANASHIN $1.002 \pm 0.021 \pm 0.013$ 05C CLEO $\psi(2S) \rightarrow J/\psi \pi^+ \pi^ 0.997 \pm 0.012 \pm 0.006$

• • • We do not use the following data for averages, fits, limits, etc. • • •

1.011	$\pm 0.013\ \pm 0.016$	BAI	98 D	BES	$\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$
1.00	±0.07	BAI	95 B	BES	e^+e^-
1.00	±0.05	BOYARSKI	75	MRK1	e^+e^-
0.91	± 0.15	ESPOSITO			
0.93	± 0.10	FORD	75	SPEC	e^+e^-

 $^{^{1}\,\}mathrm{From}$ 235.3k $J/\psi\to~e^{+}\,e^{-}$ and 156.6k $J/\psi\to~\mu^{+}\,\mu^{-}$ observed events.

— HADRONIC DECAYS -

 $\Gamma(\rho\pi)/\Gamma_{\text{total}}$ Γ_8/Γ

$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
1.69 ±0.15 OUR AV	ERAGE	Error includes scale	fact	or of 2.4.	See the ideogram below.
2.18 ± 0.19		^{1,2} AUBERT,B	04N	BABR	$10.6 \begin{array}{l} e^+e^- \\ \pi^+\pi^-\pi^0 \end{array} \rightarrow$
$2.184 \pm 0.005 \pm 0.201$	220k	2,3 BAI	04н	BES	$e^{+}e^{-} \xrightarrow{\pi} J/\psi \rightarrow \pi^{+}\pi^{-}\pi^{0}$
$2.091 \pm 0.021 \pm 0.116$		^{2,4} BAI	04н	BES	$\psi(2S) \rightarrow \pi^+\pi^- J/\psi$
1.21 ± 0.20		BAI	96 D	BES	$e^+e^- o ho\pi$
$1.42 \pm 0.01 \pm 0.19$		COFFMAN	88	MRK3	e^+e^-
1.3 ± 0.3	150	FRANKLIN	83	MRK2	e^+e^-
1.6 ± 0.4	183	ALEXANDER	78	PLUT	e^+e^-
1.33 ± 0.21		BRANDELIK	78 B	DASP	e^+e^-
1.0 ± 0.2	543	BARTEL	76	CNTR	e^+e^-
1.3 ± 0.3	153	JEAN-MARIE	76	MRK1	e^+e^-

¹ From the ratio of $\Gamma(e^+e^-)$ B($\pi^+\pi^-\pi^0$) and $\Gamma(e^+e^-)$ B($\mu^+\mu^-$) (AUBERT 04).

 $^{^2}$ Not independent of the corresponding measurements of $\Gamma(e+e-)/\Gamma_{total}$ and $\Gamma(mu+e-1)$

³ Not independent of the corresponding measurements of $\Gamma(e^+e^-) \times \Gamma(e^+e^-)/\Gamma_{total}$ and $\Gamma(\mu^+\mu^-) \times \Gamma(e^+e^-)/\Gamma_{total}$.

² Not independent of their B($\pi^+\pi^-\pi^0$).

³ From $J/\psi \rightarrow \pi^+\pi^-\pi^0$ events directly.

 $^{^4}$ Obtained comparing the rates for $\pi^+\,\pi^-\,\pi^0$ and $\mu^+\,\mu^-$, using J/ψ events produced via $\psi(2S) \to \pi^+ \pi^- J/\psi$ and with B $(J/\psi \to \mu^+ \mu^-) = 5.88 \pm 0.10\%$.

$\Gamma(\rho\pi)/\Gamma(\pi^+\pi^-\pi^0)$)					Γ_8/Γ_{151}
VALUE	EVTS	DOCUMENT	^I D	TECN	COMMENT	-
$1.142 \pm 0.011 \pm 0.026$	20k	¹ LEES	17 C	BABR	$J/\psi ightarrow c$	$_{\pi}^{+}$ $_{\pi}^{-}$ $_{\pi}^{0}$
\bullet \bullet We do not use the	ne followii	ng data for aver	ages, fits,	limits, e	etc. • • •	
1.331 ± 0.033	20k	² LEES	17 C	BABR	$J/\psi ightarrow c$	$_{\pi}^{+}$ $_{\pi}^{-}$ $_{\pi}^{0}$
¹ From a Dalitz plot	analysis ir	n an isobar mod	el			

 $^{^{\}rm 2}\,{\rm From}$ a Dalitz plot analysis in a Veneziano model.

$\Gamma(ho^0\pi^0)/\Gamma(ho\pi)$						Γ ₉ /Γ ₈
VALUE		DOCUMENT ID		TECN	COMMENT	
$0.328 \pm 0.005 \pm 0.027$		COFFMAN	88	MRK	$e^{+}e^{-}$	
• • • We do not use	the following	ng data for average	es, fits	, limits,	etc. • • •	
0.35 ± 0.08		ALEXANDER	78	PLUT	- _e + _e -	
0.32 ± 0.08		BRANDELIK	78 B	DASF	$e^{+}e^{-}$	
$0.39\ \pm0.11$		BARTEL	76	CNTF	R e ⁺ e ⁻	
0.37 ± 0.09		JEAN-MARIE	76	MRK	1 e ⁺ e ⁻	
$\Gamma(a_2(1320)\rho)/\Gamma_{\rm to}$	tal					Γ ₁₀ /Γ
$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT	
10.9 ± 2.2 OUR AVE	RAGE					
$11.7\!\pm\!0.7\!\pm\!2.5$	7584	AUGUSTIN	89	DM2	$J/\psi \rightarrow \rho^0 \rho^{\pm} \pi^{\mp}$ $e^+ e^- \rightarrow 2(\pi^+ \pi^{\mp})$	=
8.4 ± 4.5	36	VANNUCCI	77	MRK1	$e^+e^- \rightarrow 2(\pi^+\pi^-)$	$_{ au^{-})\pi^{0}}$

$\Gamma(\eta\pi^+\pi^-)/\Gamma_{total}$		Γ ₁₁ /Γ
VALUE (units 10^{-4})	VTS	DOCUMENT ID TECN COMMENT
3.78±0.68		ABLIKIM 19Q BES3 $e^+e^- \rightarrow J/\psi \rightarrow \eta \pi^+ \pi^-$
1 From an energy	scan of e	$^+e^- ightarrow \; J/\psi ightarrow \; \eta \pi^+\pi^-$ assuming PDG 16 values for
$\Gamma(e^+e^-)$, $\Gamma(\mu^+$		
$\Gamma(\eta ho)/\Gamma_{total}$		Γ ₁₄ /Γ
$VALUE$ (units 10^{-3})		DOCUMENT ID TECN COMMENT
0.193±0.023 OUR A		
$0.194 \pm 0.017 \pm 0.029$		JOUSSET 90 DM2 $J/\psi \rightarrow$ hadrons
$0.193\pm0.013\pm0.029$		COFFMAN 88 MRK3 $e^+e^- \rightarrow \pi^+\pi^-\eta$
$\Gamma(\eta \phi(2170) \rightarrow \eta \phi$	<i>∲ f</i> ₀ (980)	$ ightarrow \eta \phi \pi^+ \pi^-) / \Gamma_{\text{total}}$ Γ_{15} / Γ
VALUE (units 10 ⁻⁴)	VTS	DOCUMENT ID TECN COMMENT
$1.20 \pm 0.14 \pm 0.37$	471	ABLIKIM 15H BES3 ${ m e^+e^-} ightarrow { m J/\psi} ightarrow { m \phi} \eta \pi^+ \pi^-$
$\Gamma(\eta\phi(2170) \to \eta t$	K*(892) ⁰	$(\overline{K}^*(892)^0)/\Gamma_{\text{total}}$ Γ_{16}/Γ
VALUE	CL%	DOCUMENT ID TECN COMMENT
$<2.52 \times 10^{-4}$	90	ABLIKIM 10C BES2 $J/\psi \rightarrow \eta K^{+} \pi^{-} K^{-} \pi^{+}$
$\Gamma(\eta K^{\pm} K_S^0 \pi^{\mp})/\Gamma$		Γ ₁₇ /Γ
$VALUE$ (units 10^{-4})	EVTS	DOCUMENT ID TECN COMMENT
21.8±2.2±3.4	232 ± 23	ABLIKIM 08E BES2 $e^+e^- o J/\psi$
$\Gamma(\eta K^*(892)^0 \overline{K}^*($	892) ⁰)/Г	- _{total} Γ ₁₈ /Γ
VALUE (units 10^{-3})		DOCUMENT ID TECN COMMENT
		ABLIKIM 10C BES2 $J/\psi \rightarrow \eta K^+ \pi^- K^- \pi^+$
E/ //0E0}) /E		
$\Gamma(\rho\eta'(958))/\Gamma_{\text{tota}}$	al	Γ ₁₉ /Γ
	<u>EVTS</u>	DOCUMENT ID TECN COMMENT
8.1 \pm 0.8 OUR AV 7.90 \pm 0.19 \pm 0.49		Error includes scale factor of 1.6. 1 ABLIKIM 17AK BES3 $J/\psi \to \pi^+\pi^-\eta'$
$7.90 \pm 0.19 \pm 0.49$ $8.3 \pm 3.0 \pm 1.2$	3470 19	JOUSSET 90 DM2 $J/\psi \rightarrow \pi + \pi - \eta$
$11.4 \pm 1.4 \pm 1.6$	13	COFFMAN 88 MRK3 $J/\psi \rightarrow \pi^+\pi^-\eta'$
	ave analysi	s of the decay $J/\psi ightarrow \pi^+\pi^-\eta'$.
$\Gamma(\rho(1450)\pi \to \pi^{-1})$		
100 ±17 ±27	201	$rac{ extit{DOCUMENT ID}}{1 ext{ LEES}}$ $rac{ extit{TECN}}{1 ext{TCN}}$ $rac{ extit{COMMENT}}{ extit{BABR}}$ $J/\psi ightarrow \pi^+\pi^-\pi^0$
		ring data for averages, fits, limits, etc. \bullet \bullet
0.80 ± 0.27	20k	2 LEES 17C BABR $J/\psi ightarrow \pi^+\pi^-\pi^0$
		in an isobar model.
		in a Veneziano model.

From a Dalitz plot analysis in a Veneziano model.

https://pdg.lbl.gov

				Exp.Phys	. 2022 , 083C01 (2022)
$\Gamma(\rho(1450)^{\pm}\pi^{\mp} \rightarrow$	_	, , ,			Γ_{25}/Γ_{169}
VALUE (%) 6.3±0.8±0.6	EVTS	DOCUMENT IE)	TECN	COMMENT
$6.3 \pm 0.8 \pm 0.6$	4k	¹ LEES	17 C	BABR	$J/\psi \to K_S^0 K^{\pm} \pi^{\mp}$
¹ From a Dalitz plot	analysis i	n an isobar model.			
$\Gamma(\rho(1450)^0\pi^0\to F$	$K^+K^-\pi$	$^0)/\Gamma(K^+K^-\pi^0$	⁰)		Γ_{26}/Γ_{168}
VALUE (%)	EVTS	DOCUMENT ID)	TECN	COMMENT
$9.3\pm2.0\pm0.6$	2k	¹ LEES	17 C	BABR	$J/\psi ightarrow K^+ K^- \pi^0$
$^{ m 1}$ From a Dalitz plot	analysis i	n an isobar model.			
$\Gamma(ho(1450)\eta'(958)$ -	$\rightarrow \pi^+\pi^-$	$-\eta'(958))/\Gamma_{\text{tota}}$	ı		Γ ₂₇ /Γ
VALUE (units 10^{-6})	EVTS	DOCUMENT IE)	TECN	COMMENT
$3.28 \pm 0.55 \pm 0.44$	119	$^{ m 1}$ ABLIKIM	17A	KBES3	$J/\psi \rightarrow \pi^+\pi^-\eta'$
$^{ m 1}$ From a partial wav	ve analysis	of the decay ${\it J/\psi}$	$\rightarrow \pi^{+}$	$\pi^-\eta'$.	
$\Gamma(\rho(1700)\pi \to \pi^+$	$\pi^{-}\pi^{0})/$	$\Gamma(\pi^+\pi^-\pi^0)$			Γ_{29}/Γ_{151}
VALUE (units 10^{-3})	EVTS	DOCUMENT ID)	TECN	COMMENT
VALUE (units 10 ^{−3}) 8±2±5	20k	¹ LEES	17 C	BABR	$J/\psi \rightarrow \pi^+\pi^-\pi^0$
• • • We do not use t					
22±6	20k	² LEES	17 C	BABR	$J/\psi \rightarrow \pi^{+}\pi^{-}\pi^{0}$
$^{1}From$ a Dalitz plot $^{2}From$ a Dalitz plot	-				
$\Gamma(\rho(2150)\pi \to \pi^+$	$\pi^{-}\pi^{0})/$	$\Gamma(\pi^+\pi^-\pi^0)$			Γ_{31}/Γ_{151}
VALUE (units 10^{-4})	EVTS	DOCUMENT ID)	TECN	COMMENT
VALUE (units 10 ⁻⁴) 4± 1±20	20k	¹ LEES	17 C	BABR	$J/\psi \rightarrow \pi^{+}\pi^{-}\pi^{0}$
• • • We do not use t	he followi	ng data for averag	es, fits,	limits,	etc. • • •
600 ± 250	20k	² LEES	17 C	BABR	$J/\psi \rightarrow \pi^{+}\pi^{-}\pi^{0}$
¹ From a Dalitz plot					
² From a Dalitz plot	analysis i	n a Veneziano mo	del.		
$\Gamma(\rho_3(1690)\pi \to \pi^-$,	$/\Gamma(\pi^+\pi^-\pi^0)$			Γ_{32}/Γ_{151}
VALUE (units 10^{-3})	EVTS	DOCUMENT ID)	TECN	COMMENT
• • • We do not use t	he followi	ng data for averag	es, fits,	limits,	etc. • • •
4.0 ± 0.8	20k	¹ LEES	17 C	BABR	$J/\psi \rightarrow \pi^{+}\pi^{-}\pi^{0}$
$^{ m 1}$ From a Dalitz plot	analysis i	n a Veneziano mo	del.		
$\Gamma(\omega\pi^0)/\Gamma_{ m total}$					Γ ₃₃ /Γ
VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
0.45 ±0.05 OUR AV				r of 1.4.	See the ideogram below
$0.538 \pm 0.012 \pm 0.065$	2090	$^{ m 1}$ ABLIKIM			$J/\psi ightarrow \omega \pi^0$
$0.360 \pm 0.028 \pm 0.054$	222	JOUSSET	90	DM2	$J/\psi ightarrow ext{hadrons}$

 $0.482 \!\pm\! 0.019 \!\pm\! 0.064$

 $^{1}\,\mathrm{Using}\,\,\mathrm{B}(\omega\rightarrow~\pi^{+}\,\pi^{-}\,\pi^{0})=(89.1\pm0.7)\%.$

Created: 8/11/2022 09:37

COFFMAN

$\Gamma(\omega\pi^0 o \pi^+\pi^-\pi^0)$	$^{0})/\Gamma(\pi^{+})$	$\pi^-\pi^0)$			Γ_{34}/Γ_{151}
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
8±3±2	20k	¹ LEES	17 C	BABR	$J/\psi ightarrow \pi^+\pi^-\pi^0$

 $^{^{1}\,\}mathrm{From}$ a Dalitz plot analysis in an isobar model and significance 4.9 $\sigma.$

$\Gamma(\omega\pi^+\pi^-)/\Gamma_{ m to}$	tal			Γ ₃₅ /Γ
$VALUE$ (units 10^{-3})	_EVTS	DOCUMENT ID	TECN	COMMENT
7.2±1.0 OUR AVE	RAGE			
7.0 ± 1.6	18058	AUGUSTIN 89	DM2	$J/\psi \rightarrow 2(\pi^+\pi^-)\pi^0$
7.8 ± 1.6	215	BURMESTER 770	PLUT	e^+e^-
6.8 ± 1.9	348	VANNUCCI 77	MRK1	$e^{+}e^{-} \rightarrow 2(\pi^{+}\pi^{-})\pi^{0}$
$\Gamma ig(\omega \pi^0 \pi^0ig)/\Gamma_{ m tota}$	al			Γ ₃₆ /Γ
$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID	TEC	CN COMMENT
$3.4 \pm 0.3 \pm 0.7$	509	AUGUSTIN	89 DM	$12 J/\psi \rightarrow \ \pi^{+}\pi^{-}3\pi^{0}$
$\Gamma(\omega f_2(1270))/\Gamma$	total			Γ ₃₈ /Γ
$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID	TECN	COMMENT
4.3±0.6 OUR AVE	RAGE			
$4.3 \pm 0.2 \pm 0.6$	5860	AUGUSTIN 8	9 DM2	e^+e^-
4.0 ± 1.6	70	BURMESTER 7	7D PLU	Γ e ⁺ e ⁻
• • • We do not u	se the followi	ing data for averages	, fits, limi	ts, etc. • • •
1.9±0.8	81	VANNUCCI 7	7 MRK	1 $e^+e^- \to 2(\pi^+\pi^-)\pi^0$

https://pdg.lbl.gov

Page 31

 $\Gamma(\omega\eta)/\Gamma_{\text{total}}$ Γ_{39}/Γ

<i>VALUE</i> (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
1.74 ±0.20 OUR A	/ERAGE	Error includes scale	facto	r of 1.6.	See the ideogram below.
$2.352\!\pm\!0.273$	5k	$^{ m 1}$ ABLIKIM	06F	BES2	$J/\psi ightarrow \; \omega \eta$
$1.44 \pm 0.40 \pm 0.14$	13	² AUBERT	06 D	BABR	10.6 $e^+e^- \rightarrow \omega \eta \gamma$
$1.43 \pm 0.10 \pm 0.21$	378	JOUSSET	90	DM2	$J/\psi ightarrow \; hadrons$
$1.71 \pm 0.08 \pm 0.20$		COFFMAN	88	MRK3	$e^+e^- ightarrow 3\pi\eta$

WEIGHTED AVERAGE 1.74±0.20 (Error scaled by 1.6)

 $\begin{array}{l} \mbox{1 Using B}(\eta \to 2\gamma) = (39.43 \pm 0.26)\%, \ \mbox{B}(\eta \to \pi^+\pi^-\pi^0) = 22.6 \pm 0.4\%, \ \mbox{B}(\eta \to \pi^+\pi^-\gamma) = 4.68 \pm 0.11\%, \ \mbox{and B}(\omega \to \pi^+\pi^-\pi^0) = (89.1 \pm 0.7)\%. \\ \mbox{2 Using } \Gamma(J/\psi \to e^+e^-) = 5.52 \pm 0.14 \pm 0.04 \ \mbox{keV}. \\ \Gamma(\omega \eta)/\Gamma_{\mbox{total}} \ \mbox{(units } 10^{-3}) \end{array}$

 $\Gamma(\omega,\pi^{+}\pi^{+}\pi^{-}\pi^{-})/\Gamma_{\text{total}}$

$\Gamma(\omega\pi^+\pi^+\pi^-\pi^-)$	$/\Gamma_{ ext{total}}$				Γ ₄₂ /Γ
$VALUE$ (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
85±34	140	VANNUCCI	77	MRK1	$e^+e^- \to 3(\pi^+\pi^-)\pi^0$

$$\Gamma(\omega\eta'\pi^+\pi^-)/\Gamma_{ ext{total}}$$
 $VALUE (units 10^{-3})$
 $EVTS$
 $1.12\pm0.02\pm0.13$
 $EVTS$
 $1 ABLIKIM$
 1

¹Using the decays $\omega \to \pi^+\pi^-\pi^0$ and $\eta' \to \eta\pi^+\pi^-$.

$\Gamma(\omega\eta'(958))/\Gamma_{total}$					Γ ₄₅ /Γ
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
1.89 ± 0.18 OUR AVER	AGE				
$2.08\!\pm\!0.30\!\pm\!0.14$	137	$^{ m 1}$ ABLIKIM	17AK	BES3	$J/\psi \rightarrow \pi^+\pi^-\eta'$
2.26 ± 0.43	218	² ABLIKIM	06F	BES2	$J/\psi ightarrow \omega \eta'$
https://pdg.lbl.gov		Page 32		Creat	ted: 8/11/2022 09:37

```
1.8 \ ^{+1.0}_{-0.8} \ \pm 0.3
                                                   JOUSSET
                                                                         90 DM2 J/\psi \rightarrow \text{hadrons}
                                                                              MRK3 e^+e^- \rightarrow 3\pi \eta'
1.66 \pm 0.17 \pm 0.19
                                                   COFFMAN
                                                                         88
   <sup>1</sup> From a partial wave analysis of the decay J/\psi \rightarrow \pi^+\pi^-\eta'.
   <sup>2</sup> Using B(\eta' \to \pi^+ \pi^- \eta) = (44.3 \pm 1.5)%, B(\eta' \to \pi^+ \pi^- \gamma) = 29.5 \pm 1.0%, B(\eta \to \pi^+ \pi^- \gamma)
     (2\gamma) = 39.43 \pm 0.26\%, and B(\omega \to \pi^+ \pi^- \pi^0) = (89.1 \pm 0.7)\%.
\Gamma(\omega f_0(980))/\Gamma_{total}
                                                                                                                   \Gamma_{46}/\Gamma
VALUE (units 10^{-4})
                                                                         89 DM2 J/\psi \to 2(\pi^+\pi^-)\pi^0
                                                 <sup>1</sup> AUGUSTIN
1.41 \pm 0.27 \pm 0.47
   <sup>1</sup> Assuming B(f_0(980) \to \pi \pi) = 0.78.
\Gamma(\omega f_0(1710) \rightarrow \omega K \overline{K})/\Gamma_{\text{total}}
                                                                                                                   \Gamma_{47}/\Gamma
                                                   DOCUMENT ID
                                                                                TECN COMMENT
VALUE (units 10^{-4})
                                                                                          J/\psi 
ightarrow \,\, hadrons
4.8 \pm 1.1 \pm 0.3
                                                                              DM2
   <sup>1</sup> Includes unknown branching fraction f_0(1710) \rightarrow K\overline{K}.
   <sup>2</sup> Addition of f_0(1710) \rightarrow K^+ K^- and f_0(1710) \rightarrow K^0 \overline{K}^0 branching ratios.
\Gamma(\omega f_1(1420))/\Gamma_{\text{total}}
                                                                                                                   \Gamma_{48}/\Gamma
VALUE (units 10^{-4})
                                                   DOCUMENT ID
                                                                               TECN COMMENT
                             111^{+31}_{-26}
6.8^{+1.9}_{-1.6}\pm 1.7
                                                                         87 MRK3 e^+e^- \rightarrow \text{hadrons}
                                                   BECKER
\Gamma(\omega f_2'(1525))/\Gamma_{\text{total}}
                                           DOCUMENT ID
                                                                        TECN COMMENT
                                                                 77 MRK1 e^+e^- \rightarrow \pi^+\pi^-\pi^0 K^+K^-
                                        <sup>1</sup> VANNUCCI
                           90
• • • We do not use the following data for averages, fits, limits, etc. • • •
< 2.8 \times 10^{-4}
                                       <sup>1</sup> FALVARD
                           90
                                                                 88 DM2
                                                                                   J/\psi 
ightarrow 	ext{hadrons}
   <sup>1</sup>Re-evaluated assuming B(f_2'(1525) \rightarrow K\overline{K}) = 0.713.
\Gamma(\omega X(1835) \rightarrow \omega p \overline{p})/\Gamma_{\text{total}}
                                                                                                                   \Gamma_{50}/\Gamma
VALUE
 < 3.9 \times 10^{-6}
                                                                         13P BES3 J/\psi \rightarrow \gamma \pi^0 \rho \overline{\rho}
                                                   ABLIKIM
\Gamma(\omega X(1835), X \rightarrow \eta' \pi^+ \pi^-)/\Gamma_{\text{total}}
                                                                                                                   \Gamma_{51}/\Gamma
                                                   DOCUMENT ID
                                                                         TECN COMMENT
<6.2 \times 10^{-5}
                                                 <sup>1</sup> ABLIKIM
                                                                         19AC BES3 J/\psi \rightarrow \omega \eta' \pi^+ \pi^-
   <sup>1</sup>Using the decays \omega \to \pi^+\pi^-\pi^0 and \eta' \to \eta\pi^+\pi^-.
\Gamma(\omega K^{\pm} K_{S}^{0} \pi^{\mp})/\Gamma_{\text{total}}
                                                                                                                    \Gamma_{52}/\Gamma
VALUE (units 10^{-4})
                                                    DOCUMENT ID
                                                                                TECN COMMENT
34 ±5 OUR AVERAGE
                                                                          08E BES2 e^+e^- \rightarrow J/\psi
37.7 \pm 0.8 \pm 5.8
                             1972 \pm 41
                                                    ABLIKIM
                                                                          87 MRK3 e^+e^- \rightarrow \text{hadrons}
                             879 \pm 41
29.5 \pm 1.4 \pm 7.0
                                                    BECKER
\Gamma(\omega K \overline{K})/\Gamma_{\text{total}}
                                                                                                                    \Gamma_{53}/\Gamma
VALUE (units 10^{-4})
                                                   DOCUMENT ID
                                                                                 TECN COMMENT
19 \pm 4 OUR AVERAGE
                                                 <sup>1</sup> FALVARD
                                                                         88 DM2 J/\psi \rightarrow \text{hadrons}
19.8 \pm \ 2.1 \pm 3.9
                                                                                  Created: 8/11/2022 09:37
https://pdg.lbl.gov
                                                  Page 33
```

FELDMAN

22

 16 ± 10

77 MRK1 e⁺e⁻

1 Addition of ω K $^+$ K $^-$ a	nd $\omega K^0 \overline{K}{}^0$ branching ratios.
$\Gamma(\omega K^*(892)\overline{K} + \text{c.c.})/I$	- total Γ ₅₄ /Γ
VALUE (units 10^{-4}) EV	TS DOCUMENT ID TECN COMMENT
61 ± 9 OUR AVERAGE	
$62.0 \pm 6.8 \pm 10.6$ 899 ± 9	' ' S
$65.3 \pm 10.2 \pm 13.5$ $176 \pm 10.2 \pm 13.5$	'. '
53 ± 14 ± 14 530 ± 14	40 BECKER 87 MRK3 $e^+e^- o hadrons$
$\Gamma(\eta' K^{*\pm} K^{\mp}) / \Gamma_{ ext{total}}$	Γ ₅₅ /Γ
$VALUE$ (units 10^{-3})	DOCUMENT ID TECN COMMENT
1.48±0.13 OUR AVERAGE	
$1.50\pm0.02\pm0.19$	$\frac{1}{2}$ ABLIKIM 18AB BES3 $J/\psi o \eta' K^* \overline{K}$
$1.47 \pm 0.03 \pm 0.17$	² ABLIKIM 18AB BES3 $J/\psi \rightarrow \eta' K^* \overline{K}$
1 From $\eta^{\prime} {\it K}^{+} {\it K}^{-} \pi^{0}.$ 2 From $\eta^{\prime} {\it K}^{0}_{\it S} {\it K}^{\pm} \pi^{\mp}.$	
$\Gamma(\eta' K^{*0} \overline{K}^0 + \text{c.c.})/\Gamma_{\text{tot}}$	_{tal} Γ ₅₆ /Γ
$VALUE$ (units 10^{-3})	
1.66±0.03±0.21	$\frac{1}{1}$ ABLIKIM 18AB BES3 $J/\psi o \eta' K^* \overline{K}$
1 From η^{\prime} $K_{\mathcal{S}}^{0}$ K^{\pm} π^{\mp} .	
$\Gamma(\eta' h_1(1415) \rightarrow \eta' K^* \overline{h}$	$\overline{\zeta}$ + c.c.)/ Γ_{total} Γ_{57}/Γ
VALUE (units 10^{-4}) EVTS	DOCUMENT ID TECN COMMENT
2.16±0.12±0.29 1.1k	$1 \over ABLIKIM$ 18AB BES3 $J/\psi \to \eta' h_1 \to \eta' K^* \overline{K}$
1 From $\eta^\prime\kappa^0_{\mathcal{S}}\kappa^\pm\pi^\mp$.	, , , , , , , , , , , , , , , , , , ,
$\Gamma(\eta' h_1(1415) \rightarrow \eta' K^{*\pm}$	$(\kappa^{\mp})/\Gamma_{\text{total}}$ Γ_{58}/Γ_{58}
VALUE (units 10^{-4}) EVTS	DOCUMENT ID TECN COMMENT
1.51±0.09±0.21 1.0k	1 ABLIKIM 18AB BES3 $J/\psi ightarrow \eta' h_1 ightarrow \eta' K^* \overline{K}$
1 From $\eta' K^{+} K^{-} \pi^{0}$.	
$\Gamma(\overline{K}K^*(892)+c.c.\to K$	$(\Gamma_{S}^{0} K^{\pm} \pi^{\mp}) / \Gamma(K_{S}^{0} K^{\pm} \pi^{\mp})$ $\Gamma_{60} / \Gamma_{169}$
90.5±0.9±3.8	$rac{TS}{4 ext{k}}$ $rac{DOCUMENT~ID}{1$ LEES 17C BABR $J/\psi ightarrow K_{S}^{O} K^{\pm} \pi^{\mp}$
¹ From a Dalitz plot analy	3
$\Gamma(K^+K^*(892)^- + c.c.)$	$/\Gamma_{ ext{total}}$ Γ_{61}/Γ
$VALUE$ (units 10^{-3}) EV	TS DOCUMENT ID TECN COMMENT
$6.0 \ ^{+0.8}_{-1.0}$ OUR AVERAGE	Error includes scale factor of 2.9. See the ideogram below.
$8.07 \pm 0.04 {+0.38 \atop -0.61}$ 18.	, ,
$4.57 \pm 0.17 \pm 0.70$ 223	JOUSSET 90 DM2 $J/\psi ightarrow$ hadrons
$5.26 \pm 0.13 \pm 0.53$	JOUSSET 90 DM2 $J/\psi \rightarrow$ hadrons COFFMAN 88 MRK3 $J/\psi \rightarrow K^{\pm}K_{S}^{0}\pi^{\mp}$, $K^{+}K^{-}\pi^{0}$
https://pdg.lbl.gov	Page 34 Created: 8/11/2022 09:37

• • • We do not use the following data for averages, fits, limits, etc. • •

2.6 ± 0.6	24	FRANKLIN 8	33	MRK2 $J/\psi \rightarrow$	$\kappa^+\kappa^-\pi^0$
3.2 ± 0.6	48	VANNUCCI 7	77	MRK1 $J/\psi ightarrow$	$\kappa^{\pm}\kappa^{0}_{S}\pi^{\mp}$
4.1 + 1.2	39	BRAUNSCH 7	76	DASP $J/\psi \rightarrow$	κ^{\pm} X

WEIGHTED AVERAGE 6.0+0.8-1.0 (Error scaled by 2.9)

$\Gamma(K^+K^*(892)^- + \text{c.c.} \to K^+K^-$	$\pi^0)/\Gamma_{ m total}$
---	----------------------------

VALUE (units 10^{-3})EVTSDOCUMENT IDTECNCOMMENT2.69 \pm 0.01 $\stackrel{+}{-}$ 0.20183kABLIKIM19AQ BES $J/\psi \rightarrow K^+K^-\pi^0$

$$\Gamma(K^+K^*(892)^- + \text{c.c.} \rightarrow K^+K^-\pi^0)/\Gamma(K^+K^-\pi^0)$$
 Γ_{62}/Γ_{168} $\frac{VALUE\ (\%)}{92.4\pm1.5\pm3.4}$ $\frac{DOCUMENT\ ID}{1\ LEES}$ $\frac{TECN}{17C}$ $\frac{COMMENT}{1}$ $\frac{COMMENT}{1}$

$\Gamma(K^0\overline{K}^*(892)^0 + \text{c.c.})/\Gamma_{\text{total}}$

 Γ_{64}/Γ

Created: 8/11/2022 09:37

 Γ_{62}/Γ

VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
4.2 ±0.4 OUR AVERA	AGE				
$3.96\!\pm\!0.15\!\pm\!0.60$	1192	JOUSSET	90	DM2	$J/\psi ightarrow \; hadrons$
$4.33\!\pm\!0.12\!\pm\!0.45$		COFFMAN	88	MRK3	$J/\psi \rightarrow K^{\pm} K_{S}^{0} \pi^{\mp}$
• • • We do not use the	e following o				
$2.7\ \pm0.6$	45	VANNUCCI	77	MRK1	$J/\psi \to K^{\pm} K^0_S \pi^{\mp}$

¹ From a Dalitz plot analysis in an isobar model.

<u>VALUE</u>	-+ c.c.)/I	total <i>DOCUMENT ID</i>	T	ECN C	Γ ₆₆ /Γ
• • • We do not use	the following				
seen					$/\psi \to \overline{K}^*(892)^0 K^+ \pi^-$
¹ A $K_{\circ}^{*}(700)$ is	observed by				mass spectrum of the
					onding branching fraction
of the $J/\psi(1S)$ i	s not present	ted.	,		3
$\Gamma(K^*(892)^0 K_S^0 -$	$\rightarrow \gamma K_c^0 K_c^0$)/F _{total}			Γ ₇₀ /Γ
VALUE (units 10^{-6})	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	DOCUMENT ID)	TECN	COMMENT
$6.28^{+0.16}_{-0.17}^{+0.16}_{-0.52}$		ABLIKIM			$J/\psi \rightarrow \gamma K_S^0 K_S^0$
-0.17 - 0.52		ADEIMIN	IOAA	(DL33	$J/\psi \rightarrow \gamma \kappa_{S} \kappa_{S}$
$\Gamma(K^*(892)^{\pm}K^*(7)^{\pm}$	700) [∓])/Γ _{tc}	tal			Γ ₇₂ /Γ
VALUE (units 10^{-3})	- /-	DOCUMENT ID)	TECN	COMMENT
1.09±0.18 ^{+0.94}	655	ABLIKIM	105	BES2	$J/\psi \rightarrow K^{\pm} K_{S}^{0} \pi^{\mp} \pi^{0}$
= 0.54	033	ABEIRIN	101	DLJZ	$3/\psi$ / K K_S K K
$\Gamma(K^*(892)^0\overline{K}^*(8$	$92)^{0})/\Gamma_{tot}$	al			Γ ₇₃ /Γ
<i>VALUE</i> (units 10^{-4})	,,,	DOCUMENT ID	TE	CN CC	DMMENT
• • • We do not use	the following				
<5	90	VANNUCCI	77 M	RK1 <i>e</i> ⁻	$^+e^- ightarrow \pi^+\pi^-K^+K^-$
Γ(<i>K</i> *(892) [±] <i>K</i> *(8	0001∓) /⊏				Γ/Γ
	- ,			TECN	Γ ₇₄ /Γ
VALUE (units 10 ⁻³)		DOCUMENT ID			<u>COMMENT</u>
$1.00\pm0.19^{f +0.11}_{f -0.32}$	323	ABLIKIM	10E	BES2	$J/\psi \to K^{\pm} K_S^0 \pi^{\mp} \pi^0$
$\Gamma(K_1(1400)^{\pm}K^{\mp})$)/[_{****}				Γ ₇₅ /Γ
<i>VALUE</i> (units 10 ⁻³)	// · total	DOCUMENT ID)	TECN	COMMENT
3.8±0.8±1.2		¹ BAI	-	BES	e^+e^-
¹ Assuming B(K_1 (1400) → <i>K</i>			DLJ	
	1400) -> K	π)=0.9 4 ± 0.00			
. •		_ • • • •	•		
$\Gamma(K^*(1410)\overline{K}+c$					Γ_{77}/Γ_{168}
$\Gamma(K^*(1410)\overline{K}+c$					
Γ(K*(1410)K+c <u>VALUE (%)</u> 2.3±1.1±0.7	<i>EVTS</i> 2k	DOCUMENT ID 1 LEES	17C		Γ_{77}/Γ_{168} $COMMENT$ $J/\psi ightarrow \kappa^+ \kappa^- \pi^0$
$\Gamma(K^*(1410)\overline{K}+c$	<i>EVTS</i> 2k	DOCUMENT ID 1 LEES	17C		
$\Gamma(K^*(1410)\overline{K} + c)$ VALUE (%) 2.3±1.1±0.7 ¹ From a Dalitz plo	EVTS 2k ot analysis in	DOCUMENT ID 1 LEES an isobar model.	17C	TECN BABR	$J/\psi ightarrow K^+ K^- \pi^0$
$\Gamma(K^*(1410)\overline{K} + c)$ $VALUE(\%)$ 2.3±1.1±0.7 ¹ From a Dalitz plo $\Gamma(K^*(1410)\overline{K} + c)$	$\frac{EVTS}{2k}$ ot analysis in E.c. $\rightarrow K_S^0$	$\frac{DOCUMENT\ IE}{1}$ LEES an isobar model. $K^{\pm}\pi^{\mp})/\Gamma(K_S^0$	17C Κ±π	TECN BABR	$\frac{COMMENT}{J/\psi \rightarrow K^+K^-\pi^0}$
$\Gamma(K^*(1410)\overline{K} + c)$ $VALUE (\%)$ 2.3±1.1±0.7 ¹ From a Dalitz plo $\Gamma(K^*(1410)\overline{K} + c)$	$\frac{EVTS}{2k}$ ot analysis in E.c. $\rightarrow K_S^0$	$\frac{DOCUMENT\ IE}{1}$ LEES an isobar model. $K^{\pm}\pi^{\mp})/\Gamma(K_S^0$	17C Κ±π	TECN BABR	$\frac{COMMENT}{J/\psi \rightarrow K^+K^-\pi^0}$
$\Gamma(K^*(1410)\overline{K} + c)$ $VALUE (\%)$ 2.3±1.1±0.7 ¹ From a Dalitz plo $\Gamma(K^*(1410)\overline{K} + c)$	$ \frac{EVTS}{2k} $ 2k ot analysis in $ E.C. \rightarrow K_S^0 $ $ \frac{EVTS}{4k} $	DOCUMENT ID 1 LEES 1 an isobar model. $ K^{\pm}\pi^{\mp})/\Gamma(K_{S}^{0}) $ DOCUMENT ID 1 LEES	$17C$ $K^{\pm}\pi^{\mp}$	TECN BABR	$J/\psi ightarrow K^+ K^- \pi^0$
$Γ(K^*(1410)\overline{K} + c)$ VALUE (%) 2.3±1.1±0.7 ¹ From a Dalitz plot $Γ(K^*(1410)\overline{K} + c)$ VALUE (%) 1.5±0.5±0.9 ¹ From a Dalitz plot	$ \frac{EVTS}{2k} $ 2k of analysis in $ E.C. \rightarrow K_S^0 $ $ \frac{EVTS}{4k} $ of analysis in	$\frac{DOCUMENT\ IE}{1\ \text{LEES}}$ an isobar model. $\mathbf{K}^{\pm}\pi^{\mp})/\Gamma(\mathbf{K}^{0}_{\mathbf{S}})$ $\frac{DOCUMENT\ IE}{1\ \text{LEES}}$ an isobar model.	17c Κ ± π ³ 17c	TECN BABR F) TECN BABR	$COMMENT$ $J/\psi ightarrow K^+ K^- \pi^0$ F_{78}/Γ_{169} $COMMENT$ $J/\psi ightarrow K_S^0 K^\pm \pi^\mp$
$\Gamma(K^*(1410)\overline{K} + c)$ 2.3±1.1±0.7 ¹ From a Dalitz plot $\Gamma(K^*(1410)\overline{K} + c)$ VALUE (%) 1.5±0.5±0.9 ¹ From a Dalitz plot $\Gamma(K_2^*(1430)\overline{K} + c)$	$\frac{EVTS}{2k}$ ot analysis in E.c. $\rightarrow K_S^0$ $\frac{EVTS}{4k}$ ot analysis in E.c. $\rightarrow K^{\pm}$	$\frac{DOCUMENT\ ID}{1\ \text{LEES}}$ I an isobar model. $K^{\pm}\pi^{\mp})/\Gamma(K_{S}^{0})$ $\frac{DOCUMENT\ ID}{1\ \text{LEES}}$ I an isobar model. $K^{\mp}\pi^{0})/\Gamma(K^{+}\pi^{0})$	$K^{\pm}\pi^{\mp}$ 17c $K^{\pm}\pi^{\mp}$ 17c	TECN BABR F) TECN BABR	$\frac{\textit{COMMENT}}{J/\psi \rightarrow \ \textit{K}^+ \ \textit{K}^- \ \pi^0}$ $\frac{\Gamma_{78}/\Gamma_{169}}{J/\psi \rightarrow \ \textit{K}_S^0 \ \textit{K}^\pm \ \pi^\mp}$ Γ_{80}/Γ_{169}
$\Gamma(K^*(1410)\overline{K} + c)$ $VALUE(\%)$ 2.3±1.1±0.7 ¹ From a Dalitz plot $\Gamma(K^*(1410)\overline{K} + c)$ $VALUE(\%)$ 1.5±0.5±0.9 ¹ From a Dalitz plot $\Gamma(K_2^*(1430)\overline{K} + c)$	$\frac{EVTS}{2k}$ ot analysis in E.c. $\rightarrow K_S^0$ $\frac{EVTS}{4k}$ ot analysis in E.c. $\rightarrow K^{\pm}$	$\frac{DOCUMENT\ ID}{1\ \text{LEES}}$ I an isobar model. $K^{\pm}\pi^{\mp})/\Gamma(K_{S}^{0})$ $\frac{DOCUMENT\ ID}{1\ \text{LEES}}$ I an isobar model. $K^{\mp}\pi^{0})/\Gamma(K^{+}\pi^{0})$	$K^{\pm}\pi^{\mp}$ 17c $K^{\pm}\pi^{\mp}$ 17c	TECN BABR F) TECN BABR	$\frac{\textit{COMMENT}}{J/\psi \rightarrow \ \textit{K}^+ \ \textit{K}^- \ \pi^0}$ $\frac{\Gamma_{78}/\Gamma_{169}}{J/\psi \rightarrow \ \textit{K}_S^0 \ \textit{K}^\pm \ \pi^\mp}$ Γ_{80}/Γ_{169}
$\Gamma(K^*(1410)\overline{K} + c)$ $VALUE(\%)$ 2.3±1.1±0.7 ¹ From a Dalitz plot $\Gamma(K^*(1410)\overline{K} + c)$ $VALUE(\%)$ 1.5±0.5±0.9 ¹ From a Dalitz plot $\Gamma(K_2^*(1430)\overline{K} + c)$ $VALUE(\%)$ 3.5±1.3±0.9	$ \frac{EVTS}{2k} $ 2k of analysis in $ \frac{EVTS}{4k} $ 4k of analysis in $ \frac{EVTS}{4k} $ 2c. $\rightarrow K^{\pm}I$ $ \frac{EVTS}{2k} $	DOCUMENT ID 1 LEES 1 an isobar model. $K^{\pm}\pi^{\mp}$)/ $\Gamma(K_{S}^{0})$ DOCUMENT ID 1 LEES 1 an isobar model. $K^{\mp}\pi^{0}$)/ $\Gamma(K^{+})$ DOCUMENT ID 1 LEES	$ \begin{array}{c} $	TECN BABR F) TECN BABR	$COMMENT$ $J/\psi ightarrow K^+ K^- \pi^0$ F_{78}/Γ_{169} $COMMENT$ $J/\psi ightarrow K_S^0 K^\pm \pi^\mp$
$\Gamma(K^*(1410)\overline{K} + c)$ 2.3±1.1±0.7 ¹ From a Dalitz plot $\Gamma(K^*(1410)\overline{K} + c)$ 2.4 (%) 1.5±0.5±0.9 ¹ From a Dalitz plot $\Gamma(K_2^*(1430)\overline{K} + c)$	$ \frac{EVTS}{2k} $ 2k of analysis in $ \frac{EVTS}{4k} $ 4k of analysis in $ \frac{EVTS}{4k} $ 2c. $\rightarrow K^{\pm}I$ $ \frac{EVTS}{2k} $	DOCUMENT ID 1 LEES 1 an isobar model. $K^{\pm}\pi^{\mp}$)/ $\Gamma(K_{S}^{0})$ DOCUMENT ID 1 LEES 1 an isobar model. $K^{\mp}\pi^{0}$)/ $\Gamma(K^{+})$ DOCUMENT ID 1 LEES	$ \begin{array}{c} $	TECN BABR F) TECN BABR	$\frac{\textit{COMMENT}}{J/\psi \rightarrow \ \textit{K}^+ \ \textit{K}^- \ \pi^0}$ $\frac{\Gamma_{78}/\Gamma_{169}}{J/\psi \rightarrow \ \textit{K}_S^0 \ \textit{K}^\pm \ \pi^\mp}$ Γ_{80}/Γ_{169}

VALUE (%)	•	$K^{\pm}\pi^{\mp})/\Gamma(K_S^0)$		•	COMMENT	Γ_{81}/Γ_{169}
7.1±1.3±1.2	4k	1 LEES	17 C	BABR	$J/\psi \rightarrow K$	$0 K^{\pm} \pi^{\mp}$
¹ From a Dalitz plot	t analysis in				, ,	3
						Г., /
Γ(Κ *2(1430) <i>K</i> + c.4 /ALUE	,	DOCUMENT ID		TECN	COMMENT	Γ ₈₂ /
<40 × 10 ⁻⁴		VANNUCCI				$\kappa^0 \overline{K}^{*0}$
• • We do not use						2
$< 66 \times 10^{-4}$		BRAUNSCH				$\kappa^{\pm}\overline{\kappa}_{2}^{*\mp}$
Γ(<i>K</i> ₂ *(1430)+ <i>K</i> ⁻ -	+ c.c. → <i>F</i>	$\kappa^+ \kappa^- \pi^0)/\Gamma_{ m tot}$	tal			Г ₈₃ /
VALUE (units 10^{-4})		DOCUMENT ID		TECN	COMMENT	
$2.69\pm0.04^{+0.25}_{-0.19}$	183k	ABLIKIM		·		
Γ(Κ **(1430) ⁰ Κ*(8	92) ⁰ +cc)/[Γ ₈₅ /
/ALUE (units 10 ⁻³)		DOCUMENT ID	TECN	. COM	MENIT	- 65/
• • We do not use						
5.7 ± 2.6		VANNUCCI 77				- K+ K-
$\Gamma(K_2^*(1430)^0\overline{K}_2^*(1430)^0$,					Γ ₈₈ /
	<u>CL%</u>	DOCUMENT ID				
-20 10-4	00	VANDUICCI	77			
<29 × 10 ⁻⁴	90	VANNUCCI	77	MRK1	$e^+e^- ightarrow \pi^+\pi^- I$	K+ K-
				MRK1	$e^+e^{\pi^+\pi^-}$	
Γ(K ₂ *(1980)+ K ⁻ -	+ c.c. → <i>F</i>	$(\kappa^+ K^- \pi^0) / \Gamma_{to}$	tal			Γ ₉₀ /
Γ(K ₂ *(1980)+ K	+ c.c. → <i>F</i>	(+ K ⁻ π ⁰)/Γ _{to}	tal	<u>TECN</u>	COMMENT	Γ ₉₀ /
Γ(K ₂ *(1980)+ K	+ c.c. → <i>F</i>	$(\kappa^+ K^- \pi^0) / \Gamma_{to}$	tal	<u>TECN</u>	COMMENT	Γ ₉₀ /
T(K ₂ (1980)+K VALUE (units 10 ⁻⁵) 1.1±0.1+0.6 -0.1	+ c.c. → <i>f</i>	(+ K - π⁰)/Γ_{to} <u>DOCUMENT ID</u> ABLIKIM	tal 	<u>TECN</u>	COMMENT	Γ₉₀/ + _K - _π 0
$\Gamma(K_2^*(1980)^+K^ K_2)$ $1.1\pm 0.1_{-0.1}^{+0.6}$ $\Gamma(K_4^*(2045)^+K^ K_2)$	$+ \text{ c.c.} \rightarrow P$ $= \frac{EVTS}{183k}$ $+ \text{ c.c.} \rightarrow P$	$(+ K^- \pi^0)/\Gamma_{ ext{tot}}$ $\frac{DOCUMENT\ ID}{ABLIKIM}$ $(+ K^- \pi^0)/\Gamma_{ ext{tot}}$	tal 19AQ tal	TECN BES	$rac{ extit{COMMENT}}{ extit{J}/\psi ightarrow extit{K}}$	Γ₉₀/ + _K - _π 0
$(K_{2}^{*}(1980)^{+}K^{-} - K_{2}^{*}(1980)^{+}K^{-} - K_{2}^{*}(1980)^{+$	+ c.c. → <i>f</i> EVTS 183k + c.c. → <i>f</i> EVTS	$(+ K^- \pi^0)/\Gamma_{tot}$ $\frac{DOCUMENT\ ID}{ABLIKIM}$ $(+ K^- \pi^0)/\Gamma_{tot}$ $\frac{DOCUMENT\ ID}{DOCUMENT\ ID}$	19AQ	TECN BES	$\frac{\textit{COMMENT}}{\textit{J}/\psi ightarrow \textit{K}}$	Γ ₉₀ / + _K - _π 0 Γ ₉₁ /
$\Gamma(K_2^*(1980)^+K^ K_2)$ $1.1\pm 0.1_{-0.1}^{+0.6}$ $\Gamma(K_4^*(2045)^+K^ K_2)$ $\Gamma(K_4^*(2045)^+K^ K_4)$ $\Gamma(K_4^*(2045)^+K^ K_4)$ $\Gamma(K_4^*(2045)^+K^ K_4)$ $\Gamma(K_4^*(2045)^+K^ K_4)$	$+ \text{ c.c.} \rightarrow P$ $= \frac{EVTS}{183k}$ $+ \text{ c.c.} \rightarrow P$	$(+ K^- \pi^0)/\Gamma_{ ext{tot}}$ $\frac{DOCUMENT\ ID}{ABLIKIM}$ $(+ K^- \pi^0)/\Gamma_{ ext{tot}}$	19AQ	TECN BES	$rac{ extit{COMMENT}}{ extit{J}/\psi ightarrow extit{K}}$	Γ ₉₀ / + _K - _π 0 Γ ₉₁ /
$\Gamma(K_{2}^{*}(1980)^{+}K^{-} - K_{2}^{*}(1980)^{+}K^{-} - K_{2}^{*}(1.1\pm0.1_{-0.1}^{+0.6})$ $\Gamma(K_{4}^{*}(2045)^{+}K^{-} - K_{2}^{*}(1.1\pm0.7_{-1.4}^{+2.8})$ $\Gamma(K_{2}^{*}(1980)^{+}K^{-} - K_{2}^{*}(1980)^{+}K^{-} - K_{2}^{*}(1980)^{+}K^{-}$	$+ \text{ c.c.} \rightarrow P$ $= \frac{EVTS}{183 \text{k}}$ $+ \text{ c.c.} \rightarrow P$ $= \frac{EVTS}{183 \text{k}}$	$(+ K^- \pi^0)/\Gamma_{tot}$ $\frac{DOCUMENT\ ID}{ABLIKIM}$ $(+ K^- \pi^0)/\Gamma_{tot}$ $\frac{DOCUMENT\ ID}{DOCUMENT\ ID}$	19AQ	TECN BES	$\frac{\textit{COMMENT}}{\textit{J}/\psi ightarrow \textit{K}}$	$\frac{\Gamma_{90}/\Gamma_{90}}{\Gamma_{91}/\Gamma_{60}}$
$\Gamma(K_{2}^{*}(1980)^{+}K^{-} - \frac{1}{2}K^{*}L + \frac{1}{2}K^{*}L +$	+ c.c. $\rightarrow h$ EVTS 183k + c.c. $\rightarrow h$ EVTS 183k	$(+K^-\pi^0)/\Gamma_{tot}$ $\frac{DOCUMENT\ ID}{ABLIKIM}$ $(+K^-\pi^0)/\Gamma_{tot}$ $\frac{DOCUMENT\ ID}{ABLIKIM}$	19AQ tal	TECN BES TECN BES	$rac{ extit{COMMENT}}{J/\psi ightarrow extit{K}}$	$\frac{\Gamma_{90}/\Gamma_{90}}{\Gamma_{91}/\Gamma_{60}}$
$\Gamma(K_{2}^{*}(1980)^{+}K^{-} - \frac{1}{2}K^{*}LUE \text{ (units } 10^{-5})$ $1.1\pm0.1_{-0.1}^{+0.6}$ $\Gamma(K_{4}^{*}(2045)^{+}K^{-} - \frac{1}{2}K^{*}LUE \text{ (units } 10^{-6})$ $5.2\pm0.7_{-1.4}^{+2.8}$ $\Gamma(K_{1}(1270)^{\pm}K^{\mp})$	$+ \text{ c.c.} \rightarrow P$ $= \frac{EVTS}{183 \text{k}}$ $+ \text{ c.c.} \rightarrow P$ $= \frac{EVTS}{183 \text{k}}$	$(+ K^- \pi^0)/\Gamma_{tot}$ $DOCUMENT ID$ ABLIKIM $(+ K^- \pi^0)/\Gamma_{tot}$ $DOCUMENT ID$ ABLIKIM	19AQ	TECN BES TECN BES	$\frac{\textit{COMMENT}}{J/\psi ightarrow \textit{K}}$ $\frac{\textit{COMMENT}}{J/\psi ightarrow \textit{K}}$	$\frac{\Gamma_{90}/\Gamma_{90}}{\Gamma_{91}/\Gamma_{60}}$
$\Gamma(K_{2}^{*}(1980)^{+}K^{-} - \frac{1}{2}K^{*}LUE \text{ (units } 10^{-5})$ $1.1\pm0.1_{-0.1}^{+0.6}$ $\Gamma(K_{4}^{*}(2045)^{+}K^{-} - \frac{1}{2}K^{*}LUE \text{ (units } 10^{-6})$ $5.2\pm0.7_{-1.4}^{+2.8}$ $\Gamma(K_{1}(1270)^{\pm}K^{\mp})$ $\frac{1}{2}K^{*}LUE$ $<3.0 \times 10^{-3}$	+ c.c. \rightarrow / 183k + c.c. \rightarrow / 183k C.c. \rightarrow / 183k $\frac{EVTS}{183k}$ $\frac{CL\%}{90}$	$(+ K^- \pi^0)/\Gamma_{tot}$ $DOCUMENT ID$ ABLIKIM $(+ K^- \pi^0)/\Gamma_{tot}$ $DOCUMENT ID$ ABLIKIM $\frac{DOCUMENT ID}{1}$ BAI	19AQ	TECN BES TECN BES	$\frac{\textit{COMMENT}}{J/\psi ightarrow \textit{K}}$ $\frac{\textit{COMMENT}}{J/\psi ightarrow \textit{K}}$	$\frac{\Gamma_{90}/\Gamma_{90}}{\Gamma_{91}/\Gamma_{60}}$
$\Gamma(K_{2}^{*}(1980)^{+}K^{-} + K_{2}^{*}(1980)^{+}K^{-} + K_{2}^{*}(1980)^{$	$+ \text{ c.c.} \rightarrow \text$	$(+ K^- \pi^0)/\Gamma_{ ext{tot}}$ $DOCUMENT ID$ ABLIKIM $(+ K^- \pi^0)/\Gamma_{ ext{tot}}$ $DOCUMENT ID$ ABLIKIM $DOCUMENT ID$	19AQ	TECN BES TECN BES	$\frac{\textit{COMMENT}}{J/\psi ightarrow \textit{K}}$ $\frac{\textit{COMMENT}}{J/\psi ightarrow \textit{K}}$	Γ ₉₀ / + _K - _π 0 Γ ₉₁ / + _K - _π 0
$\Gamma(K_{2}^{*}(1980)^{+}K^{-} - \frac{1}{2}K^{*}(1980)^{+}K^{-} - \frac{1}{2}K^{*}(11\pm0.1^{+}0.6^{-})$ $\Gamma(K_{4}^{*}(2045)^{+}K^{-} - \frac{1}{2}K^{*}(11\pm0.7^{+}0.6^{-})$ $5.2\pm0.7^{+}2.8$ $\Gamma(K_{1}(1270)^{\pm}K^{\mp})$ $\frac{1}{2}K^{*}(1270)^{\pm}K^{\mp}$ $\frac{1}{2}K^{*}(1270)^{\pm}K^{*}(11\pm0.1^{+}0.6^{-})$ $\Gamma(K_{1}(1270)K^{0}_{5} \rightarrow K^{0}_{5})$	$+ \text{ c.c.} \rightarrow \text$	$(+ K^- \pi^0)/\Gamma_{ ext{tot}}$ $DOCUMENT ID$ ABLIKIM $(+ K^- \pi^0)/\Gamma_{ ext{tot}}$ $DOCUMENT ID$ ABLIKIM $DOCUMENT ID$	19AQ	TECN BES TECN BES	$\frac{\textit{COMMENT}}{J/\psi ightarrow \textit{K}}$ $\frac{\textit{COMMENT}}{J/\psi ightarrow \textit{K}}$	Γ ₉₀ / + _K - _π 0 Γ ₉₁ / + _K - _π 0
$\Gamma(K_{2}^{*}(1980)^{+}K^{-} - \frac{1}{2}K^{*}(1980)^{+}K^{-} - \frac{1}{2}K^{*}(11\pm0.1^{+}0.6^{-})$ $\Gamma(K_{4}^{*}(2045)^{+}K^{-} - \frac{1}{2}K^{*}(11\pm0.7^{+}0.6^{-})$ $5.2\pm0.7^{+}2.8$ $\Gamma(K_{1}(1270)^{\pm}K^{\mp})$ $\frac{1}{2}K^{*}(1270)^{\pm}K^{\mp}$ $\frac{1}{2}K^{*}(1270)^{\pm}K^{*}(11\pm0.1^{+}0.6^{-})$ $\Gamma(K_{1}(1270)K^{0}_{5} \rightarrow K^{0}_{5})$	$+ \text{ c.c.} \rightarrow \text$	$(+ K^- \pi^0)/\Gamma_{ ext{tot}}$ $DOCUMENT ID$ ABLIKIM $(+ K^- \pi^0)/\Gamma_{ ext{tot}}$ $DOCUMENT ID$ ABLIKIM $DOCUMENT ID$	19AQ tal 19AQ	TECN BES TECN BES	$COMMENT$ $J/\psi ightarrow K$ $COMMENT$ $J/\psi ightarrow K$ $COMMENT$ e^+e^-	Γ ₉₀ / + _K - _π 0 Γ ₉₁ / + _K - _π 0
$\begin{array}{c} NALUE \text{ (units } 10^{-5}) \\ 1.1 \pm 0.1 + 0.6 \\ -0.1 \\ \Gamma(K_{4}^{*}(2045) + K^{-} - K^{*}(2045) + K^{*}(204) + K^{*}(2045) + K^{*}(2045) + K^{*}(2045) $	$+ \text{ c.c.} \rightarrow \text$	$(+ K^- \pi^0)/\Gamma_{tot}$ $DOCUMENT ID$ ABLIKIM $(+ K^- \pi^0)/\Gamma_{tot}$ $DOCUMENT ID$ ABLIKIM $DOCUMENT ID$ $DOCUMENT $	19AQ	TECN BES TECN BES	$COMMENT$ $J/\psi ightarrow K$ $COMMENT$ $J/\psi ightarrow K$ $COMMENT$ e^+e^-	Γ ₉₀ / + _K - _π 0 Γ ₉₁ / - _K - _π 0 Γ ₉₂ /
$\Gamma(K_{2}^{*}(1980)^{+}K^{-} + \frac{1}{2}K^{*}(1980)^{+}K^{-} + \frac{1}{$	$+ \text{ c.c.} \rightarrow h$ $= \frac{EVTS}{183\text{k}}$ $+ \text{ c.c.} \rightarrow h$ $= \frac{EVTS}{183\text{k}}$ $/\Gamma_{\text{total}}$ $= \frac{CL\%}{90}$ $270) \rightarrow K$ $\gamma K_{\text{S}}^{\text{O}} K_{\text{S}}^{\text{O}}$	$(+ K - \pi^0)/\Gamma_{tot}$ $DOCUMENT ID$ ABLIKIM $(+ K - \pi^0)/\Gamma_{tot}$ $DOCUMENT ID$ ABLIKIM $DOCUMENT ID$	19AQ	TECN BES TECN BES	$\frac{\textit{COMMENT}}{J/\psi ightarrow \textit{K}}$ $\frac{\textit{COMMENT}}{J/\psi ightarrow \textit{K}}$ $\frac{\textit{COMMENT}}{e^+e^-}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$
$\Gamma(K_{2}^{*}(1980)^{+}K^{-} = \frac{VALUE \text{ (units } 10^{-5})}{1.1\pm0.1^{+0.6}_{-0.1}}$ $\Gamma(K_{4}^{*}(2045)^{+}K^{-} = \frac{VALUE \text{ (units } 10^{-6})}{1.2\pm0.7^{+2.8}_{-1.4}}$ $\Gamma(K_{1}(1270)^{\pm}K^{\mp})$ $\frac{VALUE}{4}$ $<3.0 \times 10^{-3}$ $^{1} \text{ Assuming } \text{B}(K_{1}(1270)^{+}K_{3}^{-})$ $\Gamma(K_{1}(1270)K_{3}^{0} \rightarrow \frac{VALUE \text{ (units } 10^{-7})}{1.20^{-2.13}}$ $\Gamma(a_{2}(1320)^{\pm}\pi^{\mp})/(a_{3}(1320)^{\pm}$	$+ \text{ c.c.} \rightarrow h$ $= \frac{EVTS}{183\text{k}}$ $+ \text{ c.c.} \rightarrow h$ $= \frac{EVTS}{183\text{k}}$ $/\Gamma_{\text{total}}$ $= \frac{CL\%}{90}$ $270) \rightarrow K$ $\gamma K_{\text{S}}^{\text{O}} K_{\text{S}}^{\text{O}}$	$(+ K - \pi^0)/\Gamma_{tot}$ $DOCUMENT ID$ ABLIKIM $(+ K - \pi^0)/\Gamma_{tot}$ $DOCUMENT ID$ ABLIKIM $DOCUMENT ID$ ABLIKIM	19AQ 19AQ 19AQ 19AQ	TECN BES TECN BES TECN BES	$COMMENT$ $J/\psi ightarrow K$ $COMMENT$ $J/\psi ightarrow K$ $COMMENT$ $e^+e^ COMMENT$ $J/\psi ightarrow \gamma V$	$\Gamma_{90}/$ $+_{K}{\pi}^{0}$ $\Gamma_{91}/$ $+_{K}{\pi}^{0}$ $\Gamma_{92}/$ $\Gamma_{93}/$ $\kappa_{S}^{0}\kappa_{S}^{0}$
$\Gamma(K_{2}^{*}(1980)^{+}K^{-} - \frac{1}{2}K^{*}LUE \text{ (units } 10^{-5})$ $1.1\pm0.1^{+}0.6$ $\Gamma(K_{4}^{*}(2045)^{+}K^{-} - \frac{1}{2}K^{*}LUE \text{ (units } 10^{-6})$ $5.2\pm0.7^{+}2.8$ $\Gamma(K_{1}(1270)^{\pm}K^{\mp})$ $\frac{1}{2}K^{*}LUE$ $<3.0\times10^{-3}$ $1 \text{ Assuming } \text{B}(K_{1}(1270)^{+}K^{0})$ $\Gamma(K_{1}(1270)K_{5}^{0} \rightarrow \frac{1}{2}K^{*}LUE \text{ (units } 10^{-7})$ $3.54^{+}1.07^{+}2.35$ $-1.20^{-}2.13$ $\Gamma(a_{2}(1320)^{\pm}\pi^{\mp})/(ALUE)$	$+ \text{ c.c.} \rightarrow h$ $= \frac{EVTS}{183\text{k}}$ $+ \text{ c.c.} \rightarrow h$ $= \frac{EVTS}{183\text{k}}$ $/\Gamma_{\text{total}}$ $= \frac{CL\%}{90}$ $270) \rightarrow K$ $\gamma K_{\text{S}}^{\text{O}} K_{\text{S}}^{\text{O}}$	$(+ K - \pi^0)/\Gamma_{tot}$ $DOCUMENT ID$ ABLIKIM $(+ K - \pi^0)/\Gamma_{tot}$ $DOCUMENT ID$ ABLIKIM $DOCUMENT ID$ 1 BAI $P(-1) = 0.42 \pm 0.06$ $DOCUMENT ID$ ABLIKIM $DOCUMENT ID$ ABLIKIM	19AQ 19AQ 19AQ	TECN BES TECN BES TECN BES3	$\frac{COMMENT}{J/\psi ightarrow K}$ $\frac{COMMENT}{J/\psi ightarrow K}$ $\frac{COMMENT}{e^+e^-}$ $\frac{COMMENT}{J/\psi ightarrow \gamma k}$	Γ ₉₀ / + _K - _π 0 Γ ₉₁ / - _K - _π 0 Γ ₉₂ /
$\Gamma(K_{2}^{*}(1980)^{+}K^{-} + \frac{1}{2}K^{*}LUE \text{ (units } 10^{-5})$ $1.1\pm0.1_{-0.1}^{+0.6}$ $\Gamma(K_{4}^{*}(2045)^{+}K^{-} + \frac{1}{2}K^{*}LUE \text{ (units } 10^{-6})$ $5.2\pm0.7_{-1.4}^{+2.8}$ $\Gamma(K_{1}(1270)^{\pm}K^{\mp})$ $VALUE$ $<3.0 \times 10^{-3}$ $^{1} \text{ Assuming } \text{B}(K_{1}(1270)^{\pm}K^{-2})$ $\Gamma(K_{1}(1270)K_{3}^{0} \rightarrow \frac{1}{2}K^{*}LUE \text{ (units } 10^{-7})$ $3.54_{-1.20}^{+1.07} + 2.35_{-1.20}^{-2.13}$	$ \begin{array}{c} + \text{ c.c.} \rightarrow K \\ & EVTS \\ \hline & 183k \\ + \text{ c.c.} \rightarrow K \\ \hline & EVTS \\ \hline & 183k \\ \hline & Ftotal \\ \hline & 270) \rightarrow K \\ \hline & \gamma K_S^0 K_S^0 \\ \hline & \Gamma_{total} \\ \hline & \Gamma_{total} \\ \hline & CL\% \\ \hline & \Gamma_{total} \\ \hline & CL\% \\ & CL\% $	$(+ K - \pi^0)/\Gamma_{tot}$ $DOCUMENT ID$ ABLIKIM $(+ K - \pi^0)/\Gamma_{tot}$ $DOCUMENT ID$ ABLIKIM $DOCUMENT ID$ ABLIKIM	19AQ 19AQ 19AQ	TECN BES TECN BES TECN BES3	$\frac{COMMENT}{J/\psi ightarrow K}$ $\frac{COMMENT}{J/\psi ightarrow K}$ $\frac{COMMENT}{e^+e^-}$ $\frac{COMMENT}{J/\psi ightarrow \gamma k}$	Γ ₉₀ / + κ-π ⁰ Γ ₉₁ / - κ ⁰ _S κ ⁰ _S

 $\Gamma(\phi\pi^0)/\Gamma_{
m total}$

The two different fit values of ABLIKIM 15K below have the same statistical significance of 6.4 σ and cannot be distinguished at this moment.

VALUE (units 10^{-6})	CL% EVTS	DOCUMENT I	D TECN	COMMENT
$2.94 \pm 0.16 \pm 0.16$	0.8k	¹ ABLIKIM	15K BES3	${ m e^+e^-} ightarrow~J/\psi ightarrow$
$0.124 \pm 0.033 \pm 0.030$	35 ± 9	² ABLIKIM	15к BES3	$e^+e^- ightarrow J/\psi ightarrow K^+K^-\gamma\gamma$

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

<6.4 90 3 ABLIKIM 05B BES2
$$e^+e^- \rightarrow J/\psi \rightarrow$$
 <6.8 90 COFFMAN 88 MRK3 $e^+e^- \rightarrow K^+K^-\pi^0$

³ Superseded by ABLIKIM 15K.

$\Gamma(\phi\pi^+\pi^-)/\Gamma_{\text{total}}$

 Γ_{96}/Γ

$VALUE$ (units 10^{-3}) E	VTS	DOCUMENT I	D	TECN	COMMENT
0.94±0.15 OUR AV	ERAGE	Error inclu	des scal	e factor	of 1.7.
$1.09\!\pm\!0.02\!\pm\!0.13$		ABLIKIM	05	BES2	$J/\psi \rightarrow \phi \pi^+ \pi^-$
$0.78\!\pm\!0.03\!\pm\!0.12$		FALVARD	88	DM2	$J/\psi ightarrow \;$ hadrons
2.1 ± 0.9	23	FELDMAN	77	MRK1	e^+e^-

$\Gamma(\phi 2(\pi^+\pi^-))/\Gamma_{\text{total}}$

 Γ_{98}/Γ

Created: 8/11/2022 09:37

VALUE (units 10^{-4})	DOCUMENT ID		TECN	COMMENT
$16.0 \pm 1.0 \pm 3.0$	FALVARD	88	DM2	$J/\psi ightarrow \;$ hadrons

 $\Gamma(\phi\eta)/\Gamma_{
m total}$

VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID		TECN	COMMENT
0.74 ±0.08 OUR AV	/ERAGE	Error includes sca	le fac	tor of 1.5	See the ideogram below.
$0.898 \pm 0.024 \pm 0.089$		ABLIKIM	05 B	BES2	$e^+e^- ightarrow~J/\psi ightarrow~$ hadr
$0.64\ \pm0.04\ \pm0.11$	346	JOUSSET	90	DM2	$J/\psi ightarrow ext{hadrons}$
0.661 + 0.045 + 0.078		COFFMAN	88	MRK3	$e^+e^- \rightarrow K^+K^-n$

¹ Corresponding to one of the two fit solutions with $\delta=(-95.9\pm1.5)^\circ$ for the phase angle between the resonant $J/\psi\to\phi\pi^0$ and non-phi $J/\psi\to K^+K^-\pi^0$ contributions.

² Corresponding to one of the two fit solutions with $\delta=(-152.1\pm7.7)^\circ$ for the phase angle between the resonant $J/\psi\to\phi\pi^0$ and non-phi $J/\psi\to K^+K^-\pi^0$ contributions.

$\Gamma(\phi\eta'(958))/\Gamma_{\text{total}}$

 Γ_{100}/Γ

$(\psi \eta) (330))/1$	total					' 100/'
VALUE (units 10^{-4})	CL% EVTS	DOCUMENT ID		TECN	COMMENT	
4.6 ±0.5 OUR	AVERAGE	Error includes sca	le fac	tor of 2.	2. See the ideogram	below.
$5.10\!\pm\!0.03\!\pm\!0.32$	31k	ABLIKIM	16 M	BES3	${ m e^+e^-} ightarrow~J/\psi ightarrow$	hadrons
$5.46 \pm 0.31 \pm 0.56$		ABLIKIM	05 B	BES2	$e^+e^- ightarrow J/\psi ightarrow$	hadrons
$4.1 \pm 0.3 \pm 0.8$	167	JOUSSET	90	DM2	$J/\psi ightarrow $ hadrons	
$3.08\!\pm\!0.34\!\pm\!0.36$		COFFMAN	88	MRK3	$e^+e^- ightarrow K^+K^-$	η'
ullet $ullet$ We do not	use the follo	owing data for ave	rages,	fits, lim	its, etc. • • •	
< 13	90	VANNUCCI	77	MRK1	e^+e^-	

$\Gamma(\phi\eta\eta')/\Gamma_{total}$					Γ ₁₀₁ /Γ
VALUE (units 10^{-4})	EVTS	DOCUMENT ID	TECN	COMMENT	
2 32±0 06±0 16	2 26	1 ARLIKIM	10AN RES3	a+a- \	I/a/s hadrons

¹ Including contributions from intermediate resonances. Evidence for an intermediate resonance at M \approx 2 GeV and Γ \approx 150 MeV decaying to $\phi\eta'$ with $J^P=1^+$ or $J^P=1^-$, and B $(J/\psi \to \eta X) \times B(X \to \phi\eta') \approx 10^{-4}$.

$\Gamma(\phi f_0(980))/\Gamma_{\text{total}}$ Γ_{102}/Γ

VALUE (units 10^{-4})EVTSDOCUMENT IDTECNCOMMENT3.2±0.9 OUR AVERAGEError includes scale factor of 1.9. $4.6\pm0.4\pm0.8$ 1 FALVARD88 DM2 $J/\psi \rightarrow \text{ hadrons}$ 2.6 ± 0.6 501 GIDAL81 MRK2 $J/\psi \rightarrow K^+K^-K^+K^-$

$$\Gamma(\phi\pi^0f_0(980) \rightarrow \phi\pi^0\rho^0\pi^0)/\Gamma_{total}$$
 $\Gamma_{106}/\Gamma_{total}$
 $\Gamma_{106}/\Gamma_{total}$

¹ Assuming B($f_0(980) \to \pi\pi$) = 0.78.

VALUE (units 10^{-4})	EV.T.C	/F _{total}		TECN	COMMENT	
3.23±0.75±0.73	<u>EV13</u> 52	<u>DOCUMENT ID</u> ABLIKIM	08F		$\frac{\textit{COMMENT}}{\textit{J}/\psi \rightarrow \ \eta \phi \textit{f}_0}$	(980)
	_				7 7 7 7 7 10	. ,
$\Gamma(\phi a_0(980)^0 \rightarrow \phi$	$\phi\eta\pi^{\circ})/1$ to					Γ ₁₀₈ /Ι
VALUE (units 10 ⁻⁶)		DOCUMENT ID			COMMENT	<u> </u>
4.37±1.35 • • • We do not us	o the followin	¹ ABLIKIM			$J/\psi ightarrow \phi \eta \pi^0$	J
$5.0 \pm 2.7 \pm 2.5$	e the followin				$J/\psi ightarrow \phi \eta \pi^0$)
$^{ m 1}$ Assuming consti	estructive into	erence between <i>a</i> ₀ erference gives a	(980) - value c	- f ₀ (980 of (4.93	0) mixing and el $\pm~1.77) imes 10^{-1}$	ectromag ·6 for thi
$\Gamma(\phi f_2(1270))/\Gamma_{to}$	otal					Γ ₁₀₉ /Ι
VALUE (units 10^{-3})		DOCUMENT ID	TE	ECN CO	OMMENT	1097
• • • We do not us			es, fits,	limits,	etc. • • •	
< 0.45	90	FALVARD 8			$/\psi ightarrow $ hadrons	
< 0.37	90	VANNUCCI	77 M	RK1 e	$+e^- \rightarrow \pi^+\pi^-$	- K ⁺ K ⁻
$\Gamma(\phi f_1(1285))/\Gamma_{to}$	otal					Γ ₁₁₀ /Ι
<u>VALUE</u> (units 10 ⁻⁴) <u>E</u> 2.6±0.5 OUR AVEF		OCUMENT ID	TECN	COMN	1ENT	
		BLIKIM 15H	BES3	e ⁺ e ⁻	$^- ightarrow ~J/\psi ightarrow ~\phi$	$_{bn\pi^{+}\pi^{-}}$
$3.2 \pm 0.6 \pm 0.4$		OUSSET 90	DM2		$\rightarrow \phi 2(\pi^+\pi^-)$	<i>r.</i>
$2.1 \pm 0.5 \pm 0.4$		OUSSET 90	DM2	, ,	$\rightarrow \phi \eta \pi^+ \pi^-$	
• • • We do not us	e the followir	ng data for averag	es, fits,	limits,	etc. • • •	
$0.6 \pm 0.2 \pm 0.1$	16 BE	ECKER 87	MRK3	$3 J/\psi$ -	$\rightarrow \phi K \overline{K} \pi$	
$= (1.20 \pm 0.6 \pm $	$0.14) \times 10^{-4}$ 10^{-2} . Our fierror from using	$\psi(1S) o \phi f_1(128)$ which we divide by irst error is their e ng our best value.	y our be xperime	est value ent's err	$B(f_1(1285) ightarrow or \ and \ our \ seco$	$\eta \pi^+ \pi^-$
the systematic e ² We attribute to bution at 1297 N	the $\mathit{f}_{1}(1285)$ MeV.	the signal observ	ea in t	ne n · n	η invariant m	nass distr
² We attribute to bution at 1297 N	MeV.	_			η invariant m	
² We attribute to bution at 1297 N $\Gamma(\phi f_1(1285) \rightarrow \phi f_1(1285)) \rightarrow \phi f_1(1285)$ VALUE (units 10 ⁻⁷)	MeV. ¹ φπ ⁰ f ₀ (980) <u>EVTS</u>	$\phi \pi^0 \pi^+ \pi^-$)/Γ _{tot}	al <u>TECN</u>	COMMENT	Γ ₁₁₁ /Ι
² We attribute to	MeV. ¹ φπ ⁰ f ₀ (980) <u>EVTS</u>	$\phi \pi^0 \pi^+ \pi^-$)/Γ _{tot}	al <u>TECN</u>	COMMENT	Γ ₁₁₁ /Ι
² We attribute to bution at 1297 N $\Gamma(\phi f_1(1285) \rightarrow \phi f_1(1285)) \rightarrow \phi f_1(1285) \rightarrow \phi f_1(1285)$ 9.36±2.31±1.54	MeV. ¹ φπ ⁰ f ₀ (980)) → φπ ⁰ π ⁺ π [−] <u>DOCUMENT ID</u> ABLIKIM)/Γ _{tot}	al <u>TECN</u>	COMMENT	Γ ₁₁₁ /Ι
² We attribute to bution at 1297 N $\Gamma(\phi f_1(1285) \rightarrow \phi f$	MeV. $\phi \pi^0 f_0(980)$ $\frac{EVTS}{78}$ $\phi \pi^0 f_0(980)$ $\frac{EVTS}{9}$	$\phi \pi^0 \pi^+ \pi^ \phi \pi^0 \pi^+ \pi^ \phi \pi^0 \pi^+ \pi^-$ ABLIKIM $\phi \phi \pi^0 / \Gamma_{tot}$ $\phi \pi^0 / \Gamma_{tot}$)/F _{tot}	TECN	$\frac{\textit{COMMENT}}{J/\psi o K^+ F}$	Γ ₁₁₁ /Ι (- _{3π} Γ ₁₁₂ /Ι
² We attribute to bution at 1297 N $\Gamma(\phi f_1(1285) \rightarrow \phi f$	MeV. $\phi \pi^0 f_0(980)$ $\frac{EVTS}{78}$ $\phi \pi^0 f_0(980)$ $\frac{EVTS}{9}$	$ ho ho \phi \pi^0 \pi^+ \pi^ ho ho CUMENT ID$ ABLIKIM $ ho ho \phi 3\pi^0 ho / \Gamma_{ m tot}$)/F _{tot}	TECN	$\frac{\textit{COMMENT}}{J/\psi o K^+ F}$	Γ ₁₁₁ / (-3π Γ ₁₁₂ /
² We attribute to bution at 1297 $\[\Gamma(\phi f_1(1285) \to \phi \\ VALUE \text{ (units } 10^{-7}) \]$ 9.36±2.31±1.54 $\[\Gamma(\phi f_1(1285) \to \phi \\ VALUE \text{ (units } 10^{-7}) \]$ 2.08±1.63±1.47 $\[\Gamma(\phi \eta(1405) \to \phi \\ VALUE(\phi \eta(1405) \to \phi \\$	MeV. $\phi \pi^0 f_0(980)$ $\frac{EVTS}{78}$ $\phi \pi^0 f_0(980)$ $\frac{EVTS}{9}$ $\phi \eta \pi^+ \pi^-)/$	$\phi \pi^0 \pi^+ \pi^ \phi \sigma^0 \pi^+ \pi^-$ ABLIKIM $\phi \phi 3\pi^0 / \Gamma_{tot}$ ABLIKIM ABLIKIM)/ \Gamma_tot	TECN BES3 TECN BES3	$\frac{\textit{COMMENT}}{J/\psi o K^+ K}$ $\frac{\textit{COMMENT}}{J/\psi o K^+ K}$	Γ ₁₁₁ /Γ ₁₁₂ /Γ ₁₁₃ /Γ
² We attribute to bution at 1297 $^{\circ}$ Γ ($\phi f_1(1285) \rightarrow \phi$ VALUE (units $^{\circ}$ 1.54 Γ ($\phi f_1(1285) \rightarrow \phi$ VALUE (units $^{\circ}$ 1.47 Γ ($\phi \eta (1405) \rightarrow \phi$	MeV. $\phi \pi^0 f_0(980)$ $\frac{EVTS}{78}$ $\phi \pi^0 f_0(980)$ $\frac{EVTS}{9}$ $\phi \eta \pi^+ \pi^-)/$	$\phi \pi^0 \pi^+ \pi^ \phi \sigma^0 \pi^+ \pi^-$ ABLIKIM $\phi \phi 3\pi^0 / \Gamma_{tot}$ ABLIKIM ABLIKIM)/ \Gamma_tot	TECN BES3 TECN BES3	$\frac{\textit{COMMENT}}{J/\psi o K^+ K}$ $\frac{\textit{COMMENT}}{J/\psi o K^+ K}$	Γ ₁₁₁ /Γ ₁₁₂ /Γ ₁₁₃ /Γ
² We attribute to bution at 1297 N $\Gamma(\phi f_1(1285) \rightarrow \phi)$ VALUE (units 10^{-7})	MeV. $\phi \pi^0 f_0(980)$ $\frac{EVTS}{78}$ $\phi \pi^0 f_0(980)$ $\frac{EVTS}{9}$ $\phi \eta \pi^+ \pi^-)/$	$\phi \pi^0 \pi^+ \pi^ \phi \sigma^0 \pi^+ \pi^-$ ABLIKIM $\phi \phi 3\pi^0 / \Gamma_{tot}$ ABLIKIM ABLIKIM)/ \Gamma_tot	TECN BES3 TECN BES3	$\frac{\textit{COMMENT}}{J/\psi o K^+ K}$ $\frac{\textit{COMMENT}}{J/\psi o K^+ K}$	Γ ₁₁₁ /Γ ₁₁₂ /Γ ₁₁₃ /Γ

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$<$$
 17 90 2 FALVARD 88 DM2 $J/\psi
ightarrow$ hadrons

$\Gamma(\phi f_2'(1525))/\Gamma_{\text{total}}$

 Γ_{114}/Γ

<i>VALUE</i> (units 10 ⁻⁴)	EVTS	DOCUMENT	ID	TECN	COMMENT
8 ±4 OUR AVE					
$12.3\!\pm\!0.6\!\pm\!2.0$	1	^{,2} FALVARD	88	DM2	$J/\psi ightarrow $ hadrons
4.8 ± 1.8	46	$^{ m 1}$ GIDAL	81	MRK2	$J/\psi \rightarrow K^+K^-K^+K^-$
1	D/d/4=0	-\ \			

¹Re-evaluated using B($f_2'(1525) \rightarrow K\overline{K}$) = 0.713.

$\Gamma(\phi X(1835) \rightarrow \phi p \overline{p})/\Gamma_{\text{total}}$

 Γ_{115}/Γ

VALUE CL% DOCUMENT ID TECN COMMENT

42.1 × 10⁻⁷ 90 1 ABLIKIM 16K BES3
$$J/\psi \rightarrow p\overline{p}K_S^0K_L^0$$
, $p\overline{p}K^+K^-$

 $\Gamma(\phi X(1835) \rightarrow \phi \eta \pi^+ \pi^-)/\Gamma_{\text{total}}$

 Γ_{116}/Γ

VALUE CL% DOCUMENT ID TECN COMMENT
$$e^+e^- \rightarrow J/\psi \rightarrow \phi \eta \pi^+ \pi^-$$

$$\Gamma(\phi X(1870) \to \phi \eta \pi^+ \pi^-)/\Gamma_{\text{total}}$$

$\Gamma(\phi K \overline{K})/\Gamma_{\text{total}}$

 Γ_{118}/Γ

VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID		TECN	COMMENT
17.7± 1.6 OUR A	VERAGE Er	ror includes scale fa	ctor	of 1.3. S	See the ideogram below.
$16.6 \pm 1.9 \pm 1.2$	163 ± 19	LEES	12F	BABR	$10.6 e^+e^- \rightarrow 2(K^+K^-)\gamma$
					$2(K^+K^-)\gamma$
$21.4 \pm 0.4 \pm 2.2$		ABLIKIM	05	BES2	$J/\psi \rightarrow \phi \pi^{+}\pi^{-}$
48 $^{+20}_{-16}$ ± 6	$9.0_{-3.0}^{+3.7}$	^{1,2} HUANG	03	BELL	$B^+ \rightarrow (\phi K^+ K^-) K^+$
$14.6 \pm 0.8 \pm 2.1$		³ FALVARD	88	DM2	$J/\psi ightarrow ext{hadrons}$
18 ± 8	14	FELDMAN	77	MRK1	e^+e^-

 $^{^1}$ We have multiplied K^+K^- measurement by 2 to obtain $K\overline{K}$.

¹With 3.6 σ significance.

² Includes unknown branching fraction $\eta(1405) \rightarrow \eta \pi \pi$.

² Including interference with $f_0(1710)$.

¹Upper limit applies to any $p\overline{p}$ mass enhancement near threshold.

² Using B($B^+ \to J/\psi K^+$) = (1.01 ± 0.05) × 10⁻³.

³ Addition of $\phi K^+ K^-$ and $\phi K^0 \overline{K}{}^0$ branching ratios.

$\Gamma(\phi f_0(1710) \rightarrow \phi K \overline{K})/\Gamma_{\text{total}}$

 Γ_{119}/Γ

	,.				-
<i>VALUE</i> (units 10^{-4})	DOCUMENT ID		TECN	COMMENT	
3.6±0.2±0.6	1,2 FALVARD	88	DM2	$J/\psi ightarrow {\sf hadrons}$	

4600

87

$\Gamma(\phi K^{\pm} K_S^0 \pi^{\mp})$	/Γ _{total}				Γ ₁₂₂ /Γ
$VALUE$ (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
7.2±0.8 OUR AVE	RAGE				
$7.4\!\pm\!0.6\!\pm\!1.4$	227 ± 19	ABLIKIM	08E	BES2	$\mathrm{e^+e^-} ightarrow ~J/\psi$
$7.4\!\pm\!0.9\!\pm\!1.1$		FALVARD	88	DM2	$J/\psi ightarrow ext{hadrons}$
$7 \pm 0.6 \pm 1.0$	163 ± 15	BECKER	87	MRK3	$e^+e^- o$ hadrons
$\Gamma(\phi K^*(892)\overline{K} +$	- c.c.)/Γ _{total}				Γ ₁₂₃ /Γ
$VALUE$ (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
21.8±2.3 OUR AV	ERAGE				
$20.8\!\pm\!2.7\!\pm\!3.9$	195 ± 25	ABLIKIM	08E	BES2	$J/\psi \rightarrow \phi K_S^0 K^{\pm} \pi^{\mp}$
$29.6 \pm 3.7 \pm 4.7$	238 ± 30	ABLIKIM	08E	BES2	$J/\psi \rightarrow \phi K_S^0 K^{\pm} \pi^{\mp}$ $J/\psi \rightarrow \phi K^{+} K^{-} \pi^{0}$
$20.7\!\pm\!2.4\!\pm\!3.0$		FALVARD	88	DM2	$J/\psi ightarrow $ hadrons
20 ± 3 ± 3	155 ± 20	BECKER	87	MRK3	$e^+e^- o$ hadrons
$\Gamma(b_1(1235)^{\pm}\pi^{\mp}$)/Γ _{total}				Γ ₁₂₄ /Γ
$VALUE$ (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
30±5 OUR AVER	AGE				

https://pdg.lbl.gov

 $31\!\pm\!6$

 $29\!\pm\!7$

Page 43

AUGUSTIN

Created: 8/11/2022 09:37

DM2

BURMESTER 77D PLUT e^+e^-

 $^{^1}$ Including interference with $f_2'(1525).$ 2 Includes unknown branching fraction $f_0(1710)\to\ K\overline{K}.$

$\Gamma(b_1(1235)^0\pi^0)/\Gamma$	total						Γ ₁₂₅ /Γ
VALUE (units 10^{-4})	EVTS	DOCUMEN	NT ID		TECN	COMMENT	
23±3±5	229	AUGUST	IN	89	DM2	e^+e^-	
$\Gamma(\Delta(1232)^{+}\overline{p})/\Gamma_{t}$	otal						Γ ₁₂₇ /Γ
VALUE	CL%	DOCUMEN	VT ID		TECN	<u>COMMENT</u>	
$\frac{\text{VALUE}}{\text{<0.1} \times 10^{-3}}$	90	HENRAF	RD	87	DM2	e^+e^-	
$\Gamma(\Delta(1232)^{++}\overline{p}\pi^{-}$)/Γ _{tota}	l					Γ ₁₂₈ /Γ
VALUE (units 10^{-3})	EVTS	DOCUMEN	NT ID		TECN	COMMENT	
$1.58 \pm 0.23 \pm 0.40$	332	EATON		84	MRK2	e^+e^-	
$\Gamma(\Delta(1232)^{++}\overline{\Delta}(1$	232)	$)/\Gamma_{ ext{total}}$					Γ ₁₂₉ /Γ
VALUE (units 10^{-3})	EVTS	DOCUMEN	VT ID		TECN	COMMENT	
$1.10\pm0.09\pm0.28$	233	EATON		84	MRK2	e ⁺ e ⁻	
$\Gamma(\overline{\Sigma}(1385)^0 p K^-)$	/Γ _{total}						Γ ₁₃₀ /Γ
VALUE (units 10^{-3})	EVTS	DOCUMEN	NT ID		TECN	COMMENT	
$0.51 \pm 0.26 \pm 0.18$	89	EATON		84	MRK2	e^+e^-	
$\Gamma(\Sigma(1385)^{0}\overline{\Lambda}+c.c$							Γ ₁₃₁ /Γ
VALUE						<u>COMMENT</u>	
<0.82 × 10 ⁻⁵	90						$\overline{p}\pi^+\pi^-\gamma\gamma$
• • • We do not use							
$< 0.2 \times 10^{-3}$	90	HENRAF	RD	87	DM2	e ⁺ e ⁻	
$\Gamma(\Sigma(1385)^{-}\overline{\Sigma}^{+}(c))$,	/F _{total}					Γ_{132}/Γ
VALUE (units 10^{-3})		DOCUMEN	NT ID		TECN	COMMENT	
0.31±0.05 OUR AVE		LIENDAE	20	07	DMO	$e^+e^- ightarrow$	- *-
	74 ± 8 77 ± 9	HENRAF HENRAF				$e^+e^- \rightarrow e^+e^-$	
$0.34 \pm 0.04 \pm 0.07$ $0.29 \pm 0.11 \pm 0.10$	77 ± 9 26	EATON	(D			$e^+e^- \rightarrow$	
$0.31 \pm 0.11 \pm 0.11$	28	EATON				$e^+e^- \rightarrow$	
$\Gamma(\Sigma(1385)^{-}\overline{\Sigma}(1385)^{-}$	85) ⁺ (or	c.c.))/ Γ_{total}					Γ ₁₃₃ /Γ
$VALUE$ (units 10^{-3})		DOCUMENT ID		TECN	СОМ	ΛΕΝΤ	
1.16 ±0.05 OUR A							
$1.096 \pm 0.012 \pm 0.071$	43k	ABLIKIM	16L	BES3	J/ψ	$\rightarrow \Sigma (1385)$	$^{-}\overline{\Sigma}(1385)^{+}$
$1.258 \pm 0.014 \pm 0.078$	53k	ABLIKIM	16L	BES3	J/ψ	$\rightarrow \Sigma (1385)$	$^{+}\overline{\Sigma}(1385)^{-}$
$1.23 \ \pm 0.07 \ \pm 0.30$	0.8k	ABLIKIM	12 P	BES2	J/ψ	\rightarrow $\Sigma(1385)$	$(1385)^{+}$
$1.50 \pm 0.08 \pm 0.38$	1k	ABLIKIM	12 P	BES2	J/ψ	\rightarrow Σ (1385	$)^{+} \overline{\Sigma}(1385)^{-}$
	0.6k	HENRARD				$^- o \Sigma^{*-}$	
	0.7k	HENRARD	87			$^- ightarrow \Sigma^{*+}$	
$0.86 \pm 0.18 \pm 0.22$	56	EATON	84			$^- ightarrow \Sigma^{*-}$	
$1.03 \pm 0.24 \pm 0.25$	68	EATON	84	MRK	2 e ⁺ e	$^- o \Sigma^{*+}$	

$\Gamma(\Sigma(1385)^{0}\overline{\Sigma}(1385)^{0}$	$(5)^0)/\Gamma_{total}$					Γ_{134}/Γ
$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT	
$1.071 \pm 0.009 \pm 0.082$	103k	ABLIKIM	17E	BES3	$e^+e^- ightarrow J/v$ hadrons	
$\Gamma(\Lambda(1520)\overline{\Lambda} + \text{c.c.} -$	<i>γΛ</i> Λ)/Γ	total				Γ ₁₃₅ /Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
$<4.1\times10^{-6}$	90	ABLIKIM	12 B	BES3	$J/\psi \rightarrow \Lambda \overline{\Lambda} \gamma$	
$\Gamma(\overline{\Lambda}(1520)\Lambda + c.c.)$	/Γ _{total}					Γ ₁₃₆ /Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	2007
<1.80 × 10 ⁻³	90	LU			$B^+ \rightarrow \overline{p} \Lambda K^-$	+ K+
$\Gamma(\overline{\Xi}^0\overline{\Xi}^0)/\Gamma_{total}$						Γ ₁₃₇ /Γ
VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT	
1.17 ±0.04 OUR AVE	ERAGE					
$1.165 \!\pm\! 0.004 \!\pm\! 0.043$	135k	ABLIKIM			$e^+e^- \rightarrow J/v$	
$1.20\ \pm0.12\ \pm0.21$	206	ABLIKIM	080	BES2	$e^+e^- ightarrow J/v$	þ
$\Gamma(\Xi(1530)^{-}\overline{\Xi}^{+}+c$	c.c.)/Γ _{total}					Γ ₁₃₈ /Γ
$VALUE$ (units 10^{-3})	-	DOCUMENT ID		TECN	COMMENT	
0.318±0.008 OUR AVE				·		
$0.317 \pm 0.002 \pm 0.008$	70k	ABLIKIM	20	BES3	$e^+e^- \rightarrow J/v$	b
$0.59 \pm 0.09 \pm 0.12$	75	HENRARD			e^+e^-	
-/-/\0 - 0\ /-						
$\Gamma(\Xi(1530)^0\overline{\Xi}^0)/\Gamma_{\rm t}$	otal					Γ ₁₃₉ /Γ
VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT	
$0.32 \pm 0.12 \pm 0.07$	24 ± 9	HENRARD	87	DM2	e^+e^-	
$\Gamma(\Theta(1540)\overline{\Theta}(1540)$	$\rightarrow K_{SP}^{0}$	$(-\overline{n}+c.c.)/\Gamma_{0}$	total			Γ ₁₄₀ /Γ
*	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
$< 1.1 \times 10^{-5}$		BAI	04 G	BES2	e^+e^-	
$\Gamma(\Theta(1540)K^{-}\overline{n}\rightarrow$	$K_S^0 p K^{-1}$	ī)/Γ _{total}				Γ_{141}/Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
$<2.1 \times 10^{-5}$	90	BAI	04G	BES2	e^+e^-	
$\Gamma(\Theta(1540)K_S^0\overline{p}\rightarrow$	$K^0_{\overline{D}}K^+_{\overline{D}}$) / [Γ ₁₄₂ /Γ
•	•	DOCUMENT ID		TECN	COMMENT	. 142/ .
<u>VALUE</u> <1.6 × 10 ^{−5}	<u>CL%</u> 90	BAI			e^+e^-	
<1.0 × 10	90	DAI	04 G	DLJZ	e · e	
$\Gamma(\overline{\Theta}(1540)K^+ n \rightarrow$	$K_c^0 \overline{p} K^+ r$	$_{1})/\Gamma_{\rm total}$				Γ_{143}/Γ
VALUE	•	DOCUMENT ID		TECN	COMMENT	145/
<5.6 × 10 ⁻⁵	90	BAI			e^+e^-	
	∠ 0	.) /⊏ .				F /F
$\Gamma(\overline{\Theta}(1540)K_S^0 p \rightarrow$	•	•			6014145::-	Γ_{144}/Γ
	<u>CL%</u>	DOCUMENT ID				
$<1.1\times10^{-5}$				DICO		
	90	BAI	04G	BE32	e · e	

STABLE HADRONS -

$\Gamma(2(\pi^+\pi^-)\pi^0)/\Gamma_{\text{total}}$

 Γ_{145}/Γ

VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
3.71 ± 0.28 OUR AVE	RAGE Erro	or includes scale fa	ctor o	f 1.3. S	ee the ideogram below.
$3.5 \pm 0.8 \pm 0.1$	14k	¹ LEES	21	BABR	10.6 $e^+e^- \to 0$
					$2(\pi^{+}\pi^{-})3\pi^{0}\gamma$
4.73 ± 0.44	228k	² ABLIKIM			$J/\psi \rightarrow 2(\pi^+\pi^-)\pi^0$
3.25 ± 0.49	46055	AUGUSTIN	89	DM2	$J/\psi \rightarrow 2(\pi^+\pi^-)\pi^0$
3.17 ± 0.42	147	FRANKLIN	83	MRK2	$e^+e^- o$ hadrons
3.64 ± 0.52	1500	BURMESTER	77 D	PLUT	e^+e^-
4 ± 1	675	JEAN-MARIE	76	MRK1	e^+e^-

WEIGHTED AVERAGE 3.71±0.28 (Error scaled by 1.3)

 1 LEES 21 reports $[\Gamma(J/\psi(1S)\to 2(\pi^+\pi^-)\pi^0)/\Gamma_{\rm total}]\times [\Gamma(\psi(2S)\to e^+e^-)]\times [B(\psi(2S)\to J/\psi(1S)\pi^0\pi^0)]=(14.8\pm 2.6\pm 2.2)\times 10^{-3}$ keV which we divide by our best values $\Gamma(\psi(2S)\to e^+e^-)=2.33\pm 0.04$ keV, $B(\psi(2S)\to J/\psi(1S)\pi^0\pi^0)=(18.24\pm 0.31)\times 10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best values. 2 From an energy scan of $e^+e^-\to J/\psi\to 2(\pi^+\pi^-)\pi^0$, assuming PDG 16 values

² From an energy scan of $e^+e^- oup J/\psi oup 2(\pi^+\pi^-)\pi^0$, assuming PDG 16 values for $\Gamma(e^+e^-)$, $\Gamma(\mu^+\mu^-)$, and $\Gamma(\text{total})$, and for a phase difference between strong and electromagnetic amplitudes of $(84.9 \pm 3.6)^\circ$. An alternative solution is $(4.85 \pm 0.45)\%$ with a phase of $(-84.7 \pm 3.1)^\circ$.

with a phase of $(-84.7 \pm 3.1)^{\circ}$. $\Gamma(2(\pi^{+}\pi^{-})\pi^{0})/\Gamma_{\rm total}$ (units 10^{-2})

$\Gamma(3(\pi^+$	$\pi^{-})\pi^{0}$	$)/\Gamma_{total}$
------------------	-------------------	--------------------

 Γ_{146}/Γ

(-(totai				T40/
VALUE	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT	
0.029 ± 0.006 OUR A	VERAGE			_	
0.028 ± 0.009	11	FRANKLIN 83	3 MRK	$(2 e^+e^- ightarrow had)$	drons
0.029 ± 0.007	181	JEAN-MARIE 70	6 MRK	$1 e^+ e^-$	
https://pdg.lbl.go	V	Page 46	Cre	ated: 8/11/202	22 09:37

DOCUMENT ID

$\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$

 Γ_{151}/Γ

COMMENT

VALUE (units 10)	LVIJ	DOCOMENT	D ILCN	COMMENT
21.0 ±0.8 OUR A	VERAGE	Error includes	scale factor of	1.6. See the ideogram below.
$21.37 \pm 0.04 {}^{+ 0.64}_{- 0.62}$				
$23.0 \pm 2.0 \pm 0.4$	256	³ AUBERT	07AU BABR	10.6 $e^+e^- \rightarrow J/\psi \pi^+\pi^- \gamma$
$21.84\!\pm\!0.05\!\pm\!2.01$	220k	^{1,4} BAI	04H BES	e^+e^-
$20.91\!\pm\!0.21\!\pm\!1.16$		^{4,5} BAI	04H BES	e^+e^-
15 ± 2	168	FRANKLIN	83 MRK2	e^+e^-

WEIGHTED AVERAGE 21.0±0.8 (Error scaled by 1.6)

¹ From $J/\psi \rightarrow \pi^+\pi^-\pi^0$ events directly.

$\Gamma(\pi^+\pi^-\pi^0K^+K^-)/\Gamma_{\text{total}}$

 Γ_{153}/Γ

•	,,					,
$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT	
1.2±0.3	309	VANNUCCI	77	MRK1	e^+e^-	

 $^{^2}$ The quoted systematic error includes a contribution of 1.23% (added in quadrature) from the uncertainty on the number of J/ψ events.

³AUBERT 07AU reports $[\Gamma(J/\psi(1S) \rightarrow \pi^+\pi^-\pi^0)/\Gamma_{total}] \times [\Gamma(\psi(2S) \rightarrow J/\psi(1S)\pi^+\pi^-) \times \Gamma(\psi(2S) \rightarrow e^+e^-)/\Gamma_{total}] = (18.6 \pm 1.2 \pm 1.1) \times 10^{-3}$ keV which we divide by our best value $\Gamma(\psi(2S) \rightarrow J/\psi(1S)\pi^+\pi^-) \times \Gamma(\psi(2S) \rightarrow e^+e^-)/\Gamma_{total} = 0.808 \pm 0.013$ keV. Our first error is their experiment's error and our second error is the systematic error from using our best value.

⁴ Mostly $\rho \pi$, see also $\rho \pi$ subsection.

⁵ Obtained comparing the rates for $\pi^+\pi^-\pi^0$ and $\mu^+\mu^-$, using J/ψ events produced via $\psi(2S) \to \pi^+\pi^-J/\psi$ and with B $(J/\psi \to \mu^+\mu^-) = 5.88 \pm 0.10\%$. $\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\rm total}$ (units 10^{-3})

$\Gamma(\pi^+\pi^-)/\Gamma_{\text{total}}$ Γ_{154}/Γ
VALUE (units 10 ⁻⁴) EVTS DOCUMENT ID TECN COMMENT
1.47±0.14 OUR AVERAGE
$1.47 \pm 0.13 \pm 0.13$ 140 ¹ METREVELI 12 $\psi(2S) \rightarrow 2(\pi^{+}\pi^{-})$
$1.58 \pm 0.20 \pm 0.15$ 84 BALTRUSAIT85D MRK3 e^+e^-
1.0 \pm 0.5 5 BRANDELIK 78B DASP $e^{+}e^{-}$
1.6 \pm 1.6 1 VANNUCCI 77 MRK1 e^+e^-
$^{ m 1}$ Obtained by analyzing CLEO-c data but not authored by the CLEO Collaboration.
$\Gamma(2(\pi^+\pi^-))/\Gamma_{\text{total}}$ Γ_{155}/Γ
VALUE (units 10 ⁻³) EVTS DOCUMENT ID TECN COMMENT
3.57 ± 0.30 OUR AVERAGE $3.53 \pm 0.12 \pm 0.29$ 1107 ¹ ABLIKIM 05H BES2 $e^+e^- \rightarrow \psi(2S) \rightarrow$
$3.53\pm0.12\pm0.29$ 1107 ¹ ABLIKIM 05H BES2 $e^+e^- ightarrow\psi(2S) ightarrow$ $J/\psi\pi^+\pi^-,J/\psi ightarrow$
$2(\pi^+\pi^-)$
4.0 ± 1.0 76 JEAN-MARIE 76 MRK1 e^+e^-
¹ Computed using B($J/\psi \to \mu^{+}\mu^{-}$) = 0.0588 \pm 0.0010.
$\Gamma(3(\pi^+\pi^-))/\Gamma_{\text{total}}$ Γ_{156}/Γ
VALUE (units 10 ⁻⁴) EVTS DOCUMENT ID TECN COMMENT
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$
40 \pm 20 32 JEAN-MARIE 76 MRK1 $e^{+}e^{-}$
$\Gamma(4(\pi^+\pi^-)\pi^0)/\Gamma_{ ext{total}}$
$VALUE (units 10^{-4})$ EVTS DOCUMENT ID TECH COMMENT
VALUE (units 10 ⁻⁴) EVTS DOCUMENT ID TECN COMMENT OO+30 IS NAME 76 MRK1 0+0-
90±30 13 JEAN-MARIE 76 MRK1 e ⁺ e ⁻
90±30 13 JEAN-MARIE 76 MRK1 e^+e^- $\Gamma(2(\pi^+\pi^-)\eta)/\Gamma_{\text{total}} \qquad \qquad \Gamma_{159}/\Gamma_{\text{total}}$ $\frac{VALUE \text{ (units }10^{-3})}{EVTS} \qquad \frac{DOCUMENT \text{ ID}}{EVTS} \qquad \frac{TECN}{EVTS} \qquad \frac{COMMENT}{EVTS}$
90±30 13 JEAN-MARIE 76 MRK1 e^+e^- $\Gamma(2(\pi^+\pi^-)\eta)/\Gamma_{\text{total}} \qquad \qquad \Gamma_{159}/\Gamma$ $\frac{VALUE \text{ (units }10^{-3})}{2.29\pm0.28} \frac{EVTS}{\text{OUR AVERAGE}} \qquad \frac{DOCUMENT \text{ ID}}{\text{DOCUMENT ID}} \qquad \frac{TECN}{\text{COMMENT}} \qquad \frac{COMMENT}{\text{COMMENT}}$
90±30 13 JEAN-MARIE 76 MRK1 $e^+e^ \Gamma(2(\pi^+\pi^-)\eta)/\Gamma_{\text{total}}$ Γ_{159}/Γ VALUE (units 10^{-3}) EVTS DOCUMENT ID TECN COMMENT 2.29±0.28 OUR AVERAGE 3.1 ±1.5 ±0.1 14k 1 LEES 21 BABR $10.6 \ e^+e^- \rightarrow 2(\pi^+\pi^-)3\pi^0 \gamma$
90±30 13 JEAN-MARIE 76 MRK1 e^+e^- $\Gamma(2(\pi^+\pi^-)\eta)/\Gamma_{\text{total}} \qquad \qquad \Gamma_{159}/\Gamma$ $\frac{VALUE \text{ (units }10^{-3})}{2.29\pm0.28} \frac{EVTS}{\text{OUR AVERAGE}} \qquad \frac{DOCUMENT \text{ ID}}{\text{DOCUMENT ID}} \qquad \frac{TECN}{\text{COMMENT}} \qquad \frac{COMMENT}{\text{COMMENT}}$
90±30 13 JEAN-MARIE 76 MRK1 $e^+e^ \Gamma(2(\pi^+\pi^-)\eta)/\Gamma_{\text{total}}$ Γ_{159}/Γ VALUE (units 10^{-3}) EVTS DOCUMENT ID TECN COMMENT 2.29±0.28 OUR AVERAGE 3.1 ±1.5 ±0.1 14k 1 LEES 21 BABR $10.6 e^+e^- \rightarrow 2(\pi^+\pi^-)3\pi^0 \gamma$ 2.26±0.08±0.27 4.8k ABLIKIM 05c BES2 $e^+e^- \rightarrow 2(\pi^+\pi^-)\eta$ 1 LEES 21 reports $[\Gamma(J/\psi(1S) \rightarrow 2(\pi^+\pi^-)\eta)/\Gamma_{\text{total}}] \times [\Gamma(J/\psi(1S) \rightarrow e^+e^-)] \times$
90±30 13 JEAN-MARIE 76 MRK1 $e^+e^ \Gamma(2(\pi^+\pi^-)\eta)/\Gamma_{\text{total}}$ Γ_{159}/Γ VALUE (units 10^{-3}) EVTS DOCUMENT ID TECN COMMENT 2.29±0.28 OUR AVERAGE 3.1 ±1.5 ±0.1 14k 1 LEES 21 BABR $10.6 e^+e^- \rightarrow 2(\pi^+\pi^-)3\pi^0 \gamma$ 2.26±0.08±0.27 4.8k ABLIKIM 05c BES2 $e^+e^- \rightarrow 2(\pi^+\pi^-)\eta$ 1 LEES 21 reports $[\Gamma(J/\psi(1S) \rightarrow 2(\pi^+\pi^-)\eta)/\Gamma_{\text{total}}] \times [\Gamma(J/\psi(1S) \rightarrow e^+e^-)] \times [B(\eta \rightarrow 3\pi^0)] = (5.6 \pm 2.6 \pm 0.8) \times 10^{-3}$ keV which we divide by our best values
90±30 13 JEAN-MARIE 76 MRK1 e^+e^- Γ(2($\pi^+\pi^-$) η)/Γ _{total} Γ ₁₅₉ /Γ VALUE (units 10^{-3}) EVTS 2.29±0.28 OUR AVERAGE 3.1 ±1.5 ±0.1 14k 1 LEES 21 BABR $10.6 e^+e^- \rightarrow 2(\pi^+\pi^-)3\pi^0 \gamma$ 2.26±0.08±0.27 4.8k ABLIKIM 05c BES2 $e^+e^- \rightarrow 2(\pi^+\pi^-)\eta$ 1 LEES 21 reports [Γ($J/\psi(1S) \rightarrow 2(\pi^+\pi^-)\eta$)/Γ _{total}] × [Γ($J/\psi(1S) \rightarrow e^+e^-$)] × [B($\eta \rightarrow 3\pi^0$)] = (5.6 ± 2.6 ± 0.8) × 10^{-3} keV which we divide by our best values Γ($J/\psi(1S) \rightarrow e^+e^-$) = 5.53 ± 0.10 keV, B($\eta \rightarrow 3\pi^0$) = (32.57 ± 0.21) × 10^{-2} .
90±30 13 JEAN-MARIE 76 MRK1 e^+e^- Γ(2($\pi^+\pi^-$) η)/Γ _{total} Γ ₁₅₉ /Γ VALUE (units 10^{-3}) EVTS DOCUMENT ID TECN COMMENT 2.29±0.28 OUR AVERAGE 3.1 ±1.5 ±0.1 14k 1 LEES 21 BABR $10.6 e^+e^- \rightarrow 2(\pi^+\pi^-)3\pi^0 \gamma$ 2.26±0.08±0.27 4.8k ABLIKIM 05c BES2 $e^+e^- \rightarrow 2(\pi^+\pi^-)\eta$ 1 LEES 21 reports [Γ($J/\psi(1S) \rightarrow 2(\pi^+\pi^-)\eta$)/Γ _{total}] × [Γ($J/\psi(1S) \rightarrow e^+e^-$)] × [B($\eta \rightarrow 3\pi^0$)] = (5.6 ± 2.6 ± 0.8) × 10^{-3} keV which we divide by our best values Γ($J/\psi(1S) \rightarrow e^+e^-$) = 5.53 ± 0.10 keV, B($\eta \rightarrow 3\pi^0$) = (32.57 ± 0.21) × 10^{-2} . Our first error is their experiment's error and our second error is the systematic error
90±30 13 JEAN-MARIE 76 MRK1 e^+e^- Γ(2($\pi^+\pi^-$) η)/Γ _{total} Γ ₁₅₉ /Γ VALUE (units 10^{-3}) EVTS 2.29±0.28 OUR AVERAGE 3.1 ±1.5 ±0.1 14k 1 LEES 21 BABR $10.6 e^+e^- \rightarrow 2(\pi^+\pi^-)3\pi^0 \gamma$ 2.26±0.08±0.27 4.8k ABLIKIM 05c BES2 $e^+e^- \rightarrow 2(\pi^+\pi^-)\eta$ 1 LEES 21 reports [Γ($J/\psi(1S) \rightarrow 2(\pi^+\pi^-)\eta$)/Γ _{total}] × [Γ($J/\psi(1S) \rightarrow e^+e^-$)] × [B($\eta \rightarrow 3\pi^0$)] = (5.6 ± 2.6 ± 0.8) × 10^{-3} keV which we divide by our best values Γ($J/\psi(1S) \rightarrow e^+e^-$) = 5.53 ± 0.10 keV, B($\eta \rightarrow 3\pi^0$) = (32.57 ± 0.21) × 10^{-2} .
90±30 13 JEAN-MARIE 76 MRK1 e^+e^- Γ(2($\pi^+\pi^-$) η)/Γ _{total} Γ ₁₅₉ /Γ VALUE (units 10^{-3}) EVTS DOCUMENT ID TECN COMMENT 2.29±0.28 OUR AVERAGE 3.1 ±1.5 ±0.1 14k 1 LEES 21 BABR $10.6 e^+e^- \rightarrow 2(\pi^+\pi^-)3\pi^0 \gamma$ 2.26±0.08±0.27 4.8k ABLIKIM 05c BES2 $e^+e^- \rightarrow 2(\pi^+\pi^-)\eta$ 1 LEES 21 reports [Γ($J/\psi(1S) \rightarrow 2(\pi^+\pi^-)\eta$)/Γ _{total}] × [Γ($J/\psi(1S) \rightarrow e^+e^-$)] × [B($\eta \rightarrow 3\pi^0$)] = (5.6 ± 2.6 ± 0.8) × 10^{-3} keV which we divide by our best values Γ($J/\psi(1S) \rightarrow e^+e^-$) = 5.53 ± 0.10 keV, B($\eta \rightarrow 3\pi^0$) = (32.57 ± 0.21) × 10^{-2} . Our first error is their experiment's error and our second error is the systematic error
90±30 13 JEAN-MARIE 76 MRK1 e^+e^- Γ(2($\pi^+\pi^-$) η)/Γ _{total} Γ ₁₅₉ /Γ VALUE (units 10^{-3}) EVTS DOCUMENT ID TECN COMMENT 2.29±0.28 OUR AVERAGE 3.1 ±1.5 ±0.1 14k 1 LEES 21 BABR $10.6 e^+e^- \rightarrow 2(\pi^+\pi^-)3\pi^0\gamma$ 2.26±0.08±0.27 4.8k ABLIKIM 05c BES2 $e^+e^- \rightarrow 2(\pi^+\pi^-)\eta$ 1 LEES 21 reports $[\Gamma(J/\psi(1S) \rightarrow 2(\pi^+\pi^-)\eta)/\Gamma_{total}] \times [\Gamma(J/\psi(1S) \rightarrow e^+e^-)] \times [B(\eta \rightarrow 3\pi^0)] = (5.6 \pm 2.6 \pm 0.8) \times 10^{-3}$ keV which we divide by our best values $\Gamma(J/\psi(1S) \rightarrow e^+e^-) = 5.53 \pm 0.10$ keV, $B(\eta \rightarrow 3\pi^0) = (32.57 \pm 0.21) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values. Γ(3($\pi^+\pi^-$) η)/Γ _{total}
90±30 13 JEAN-MARIE 76 MRK1 e^+e^- Γ(2(π ⁺ π ⁻)η)/Γ _{total} Γ ₁₅₉ /Γ ΛΑLUE (units 10 ⁻³) EVTS DOCUMENT ID TECN COMMENT 2.29±0.28 OUR AVERAGE 3.1 ±1.5 ±0.1 14k 1 LEES 21 BABR 10.6 $e^+e^- o 2(π^+π^-)3π^0 γ$ 2.26±0.08±0.27 4.8k ABLIKIM 05c BES2 $e^+e^- o 2(π^+π^-)η$ 1 LEES 21 reports $[Γ(J/ψ(1S) o 2(π^+π^-)η)/Γ_{total}] imes [Γ(J/ψ(1S) o e^+e^-)] imes [Β(η o 3π^0)] = (5.6 ± 2.6 ± 0.8) imes 10^{-3}$ keV which we divide by our best values $Γ(J/ψ(1S) o e^+e^-) = 5.53 \pm 0.10$ keV, $β(η o 3π^0) = (32.57 \pm 0.21) imes 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values. Γ(3(π ⁺ π ⁻)η)/Γ _{total}
90±30 13 JEAN-MARIE 76 MRK1 e^+e^- Γ(2(π+π-)η)/Γtotal Γ ₁₅₉ /Γ VALUE (units 10 ⁻³) EVTS DOCUMENT ID TECN COMMENT 2.29±0.28 OUR AVERAGE 3.1 ±1.5 ±0.1 14k LEES 21 BABR $10.6 e^+e^- \rightarrow 2(\pi^+\pi^-)3\pi^0 \gamma$ 2.26±0.08±0.27 4.8k ABLIKIM 05c BES2 $e^+e^- \rightarrow 2(\pi^+\pi^-)\eta$ LEES 21 reports $[\Gamma(J/\psi(1S) \rightarrow 2(\pi^+\pi^-)\eta)/\Gamma_{\text{total}}] \times [\Gamma(J/\psi(1S) \rightarrow e^+e^-)] \times [B(\eta \rightarrow 3\pi^0)] = (5.6 \pm 2.6 \pm 0.8) \times 10^{-3} \text{ keV which we divide by our best values}$ Γ($J/\psi(1S) \rightarrow e^+e^-$) = 5.53 ± 0.10 keV, $B(\eta \rightarrow 3\pi^0) = (32.57 \pm 0.21) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values. Γ(3(π+π-)η)/Γ _{total} Γ ₁₆₀ /Γ VALUE (units 10 ⁻⁴) EVTS DOCUMENT ID TECN COMMENT 7.24±0.96±1.11 616 ABLIKIM 05c BES2 $e^+e^- \rightarrow 3(\pi^+\pi^-)\eta$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $\Gamma(K_S^0 K_I^0)/\Gamma_{\text{total}}$ Γ_{165}/Γ

VALUE (units 10^{-4}) EVTSDOCUMENT ID TECN 1.95 ± 0.11 OUR AVERAGE Error includes scale factor of 2.4. See the ideogram below. 17AH BES3 $J/\psi \to K_S^0 K_L^0 \to \pi^+\pi^- X$ 12 $\psi(2S) \to \pi^+\pi^- K_S^0 K_L^0$ 04A BES2 $J/\psi \to K_S^0 K_L^0 \to \pi^+\pi^- X$ $1.93 \pm 0.01 \pm 0.05$ 110k **ABLIKIM** ¹ METREVELI $2.62 \pm 0.15 \pm 0.14$ 0.3k ² BAI $1.82 \pm 0.04 \pm 0.13$ 2.1k

• • • We do not use the following data for averages, fits, limits, etc. • •

 $1.18 \pm 0.12 \pm 0.18$ **JOUSSET** DM2 $J/\psi \rightarrow \text{hadrons}$ BALTRUSAIT...85D MRK3 $e^+e^ 1.01\pm0.16\pm0.09$

> WEIGHTED AVERAGE 1.95±0.11 (Error scaled by 2.4)

 1 Obtained by analyzing CLEO-c data but not authored by the CLEO Collaboration. 2 Using B($\mathcal{K}^0_{\mathcal{S}}\to~\pi^+\pi^-)=0.6868\pm0.0027.$

$$\begin{array}{ccc} & \text{2-Using B}(K_S^0 \to \pi^+ \pi^-) = 0.6868 \pm 0.0027. \\ & \text{-(4.0.40)} & \text{-(4.0.40)} \end{array}$$

$$\Gamma(\kappa_S^0 \kappa_L^0)/\Gamma_{\text{total}}$$

 Γ_{165}/Γ

 Γ_{166}/Γ

17AH BES3

• • We do not use the following data for averages, fits, limits, etc.

 $< 1 \quad \times \ 10^{-6}$ 95 1 BAI 04D BES

https://pdg.lbl.gov Created: 8/11/2022 09:37 Page 49

 $^{^{}m 1}$ Obtained by analyzing CLEO-c data but not authored by the CLEO Collaboration.

² Interference with non-resonant K^+K^- production not taken into account.

$< 5.2 \times 10^{-6}$	90	$^{ m 1}$ BALTRUSAIT.	85 C	MRK3	e^+e^-	
1 Forbidden by <i>CP</i> .						
$\Gamma(K\overline{K}\pi)/\Gamma_{total}$						Γ ₁₆₇ /Γ
VALUE (units 10 ⁻⁴)		DOCUMENT ID		TECN	COMMENT	
61 ±10 OUR AVER		ED ANIZUM	00	MELCO		$\kappa^+ \kappa^- \pi^0$
55.2 ± 12.0	25 126	FRANKLIN	83 77			
78.0 ± 21.0	126	VANNUCCI	77	MIKKI	e ' e →	$\kappa_S^0 \kappa^{\pm} \pi^{\mp}$
$\Gamma(K^+K^-\pi^0)/\Gamma_{ m tot}$	al					Γ ₁₆₈ /Γ
VALUE (units 10^{-3})	EVTS	DOCUMENT ID			COMMENT	
$2.88 \pm 0.01 \pm 0.12$	183k	ABLIKIM	19AG	BES	$J/\psi ightarrow K$	$K^+K^-\pi^0$
$\Gamma(K^+K^-\pi^0)/\Gamma(\pi^0)$	$+\pi^{-}\pi^{0}$					$\Gamma_{168}/\Gamma_{151}$
VALUE (%)	-	DOCUMENT ID		TECN	COMMENT	
$12.0\pm0.3\pm0.9$	23k	LEES	17 C	BABR	$J/\psi ightarrow h$	$+h-\pi^0$
$\Gamma(K_S^0 K^{\pm} \pi^{\mp})/\Gamma(\pi$	$+\pi^{-}\pi^{0}$					$\Gamma_{169}/\Gamma_{151}$
VALUE (%)		DOCUMENT ID		TECN	COMMENT	1037 131
26.5±0.5±2.1	24k	LEES	17 C	BABR	$J/\psi \rightarrow h^0$	$0_{h} + h^{-}$
$\Gamma(K^+K^-\pi^+\pi^-)/$	$\Gamma_{ m total}$					Γ ₁₇₃ /Γ
VALUE (units 10^{-3}) EV7		CUMENT ID TE	CN	COMMEN	Т	
• • • We do not use t	the following	g data for averages	s, fits,	limits, e	etc. • • •	
7.2±2.3 20	ι 5 \/Λ	NNUCCI 77 MF	21/1	+ -		
7.2 \(\perp 2.5\)	o va	NNUCCI // MI	KKI (e'e		
$\Gamma(K^+K^-2(\pi^+\pi^-))$		NNOCCI // IVI	KI (e'e		Γ ₁₈₀ /Γ
))/Γ _{total}	DOCUMENT ID			OMMENT	Γ ₁₈₀ /Γ
$\Gamma(K^+K^-2(\pi^+\pi^-))$))/Γ _{total}			ECN C		Γ ₁₈₀ /Γ
$\Gamma(K^+K^-2(\pi^+\pi^-))$ VALUE (units 10^{-4}) 31±13))/Γ _{total} <u>EVTS</u> 30	DOCUMENT ID		ECN C		
$\Gamma(K^{+}K^{-}2(\pi^{+}\pi^{-})^{-})$ $VALUE \text{ (units } 10^{-4})$ 31 ± 13 $\Gamma(2(K^{+}K^{-}))/\Gamma_{\text{tot}}$))/Γ _{total} EVTS 30	DOCUMENT ID VANNUCCI 7	<u>7</u>	ECN <u>C</u> IRK1 e	+ _e -	Γ ₁₈₀ /Γ
$\Gamma(K^+K^-2(\pi^+\pi^-))$ VALUE (units 10^{-4}) 31±13))/F _{total} EVTS 30 al EVTS	DOCUMENT ID VANNUCCI 7 DOCUMENT ID	<u>T.</u> 7 M	ECN <u>C</u> IRK1 e	+ _e -	
$\Gamma(K^{+}K^{-}2(\pi^{+}\pi^{-})^{-})$ $\frac{VALUE \text{ (units }10^{-4})}{31\pm13}$ $\Gamma(2(K^{+}K^{-}))/\Gamma_{\text{tot}}$ $\frac{VALUE \text{ (units }10^{-3})}{(1000000000000000000000000000000000000$))/F _{total} EVTS 30 al EVTS the following	DOCUMENT ID VANNUCCI 7 DOCUMENT ID g data for averages	77 M 7 TECN 5, fits,	ECN <u>C</u> OM IRK1 e ² V <u>COM</u> limits, e	++ e- <u>MENT</u> etc. • • •	Γ ₁₈₂ /Γ
$\Gamma(K^{+}K^{-}2(\pi^{+}\pi^{-})^{-})$ $\frac{VALUE \text{ (units }10^{-4}\text{)}}{31\pm13}$ $\Gamma(2(K^{+}K^{-}))/\Gamma_{\text{tot}}$ $\frac{VALUE \text{ (units }10^{-3}\text{)}}{\bullet \bullet \bullet \text{ We do not use to }}$))/ Γ_{total} EVTS 30 al EVTS the following 0+4.3 -3.5	DOCUMENT ID VANNUCCI 7 DOCUMENT ID g data for averages		ECN COM Imits, 6 L B+	$\begin{array}{c} + e^{-} \\ \hline MENT \\ \text{etc.} \bullet \bullet \bullet \\ \hline \rightarrow 2(K^{+}K) \end{array}$	Γ ₁₈₂ /Γ
Γ($K^+K^-2(\pi^+\pi^-)^{-1}$ $\frac{VALUE \text{ (units } 10^{-4})}{31\pm 13}$ Γ($2(K^+K^-)$)/Γ _{tot} $\frac{VALUE \text{ (units } 10^{-3})}{4000}$ • • • We do not use to $1.4^{+0.5}_{-0.4}\pm 0.2$ 11.0))/ Γ_{total} $\frac{EVTS}{30}$ al $\frac{EVTS}{5}$ the following $0^{+4.3}_{-3.5}$	DOCUMENT ID VANNUCCI 7 DOCUMENT ID g data for averages HUANG 03 VANNUCCI 77	TECN 5, fits, BEL MRN	ECN COM Imits, 6 L B+	$\begin{array}{c} + e^{-} \\ \hline MENT \\ \text{etc.} \bullet \bullet \bullet \\ \hline \rightarrow 2(K^{+}K) \end{array}$	Γ ₁₈₂ /Γ
Γ($K^+K^-2(\pi^+\pi^-)^{-1}$ $\frac{VALUE \text{ (units }10^{-4})}{31\pm13}$ Γ($2(K^+K^-)$)/Γ _{tot} $\frac{VALUE \text{ (units }10^{-3})}{0.7\pm0.3}$ • • • We do not use to the second secon))/ Γ_{total} $\frac{EVTS}{30}$ al $\frac{EVTS}{5}$ the following $0^{+4.3}_{-3.5}$	DOCUMENT ID VANNUCCI 7 DOCUMENT ID g data for averages HUANG 03 VANNUCCI 77	TECN 5, fits, BEL MRN	ECN COM Imits, 6 L B+	$\begin{array}{c} + e^{-} \\ \hline MENT \\ \text{etc.} \bullet \bullet \bullet \\ \hline \rightarrow 2(K^{+}K) \end{array}$	Γ ₁₈₂ /Γ
$\Gamma(K^+K^-2(\pi^+\pi^-)^{-1})$ 31±13 $\Gamma(2(K^+K^-))/\Gamma_{\text{tot}}$ VALUE (units 10 ⁻³) • • • We do not use to 1.4 $^+$ 0.5 $^+$ 0.2 11.0 0.7±0.3 1 Using B(B^+ \rightarrow D $\Gamma(p\overline{p})/\Gamma_{\text{total}}$))/ Γ_{total} $\frac{EVTS}{30}$ ital $\frac{EVTS}{30}$ the following $0^{+4.3}_{-3.5}$ 1 $1/\psi K^{+}) =$	$\frac{DOCUMENT\ ID}{VANNUCCI}$ 70 $\frac{DOCUMENT\ ID}{g\ data\ for\ averages}$ $\frac{1}{VANNUCCI}$ 77 $\frac{1}{VANNUCCI}$ 77 $\frac{1}{VANNUCCI}$ 77 $\frac{1}{VANNUCCI}$ 77	$\frac{T}{7}$ M $\frac{TECN}{8}$, fits, BEL MRN 0^{-3} .	$\frac{ECN}{IRK1} = \frac{COM}{IImits}$ $\frac{COM}{IImits} = \frac{ECN}{IImits}$ $\frac{ECN}{IImits} = \frac{ECN}{IImits}$ $\frac{ECN}{IImits} = \frac{ECN}{IImits}$	$+_e-$ MENT etc. • • • $\rightarrow 2(K^+K)$ $\rightarrow -$	Γ ₁₈₂ /Γ
$\Gamma(K^+K^-2(\pi^+\pi^-)^{-1})$ $\frac{VALUE \text{ (units }10^{-4})}{31\pm13}$ $\Gamma(2(K^+K^-))/\Gamma_{\text{tot}}$ $\frac{VALUE \text{ (units }10^{-3})}{0.7\pm0.3}$ • • • We do not use to the following $\Gamma(p\overline{p})/\Gamma_{\text{total}}$))/ Γ_{total} EVTS 30 Tal EVTS the following $0^{+4.3}_{-3.5}$ 1 $1/\psi K^{+}$) =	DOCUMENT ID VANNUCCI 7 DOCUMENT ID g data for averages HUANG 03 VANNUCCI 77	$\frac{T}{7}$ M $\frac{TECN}{8}$, fits, BEL MRN 0^{-3} .	$\frac{ECN}{IRK1} = \frac{COM}{IImits}$ $\frac{COM}{IImits} = \frac{ECN}{IImits}$ $\frac{ECN}{IImits} = \frac{ECN}{IImits}$ $\frac{ECN}{IImits} = \frac{ECN}{IImits}$	$+_e-$ MENT etc. • • • $\rightarrow 2(K^+K)$ $\rightarrow -$	Γ ₁₈₂ /Γ
$\Gamma(K^+K^-2(\pi^+\pi^-)^{2})$ $\frac{VALUE \text{ (units }10^{-4})}{31\pm13}$ $\Gamma(2(K^+K^-))/\Gamma_{\text{tot}}$ $\frac{VALUE \text{ (units }10^{-3})}{0.7\pm0.3}$ • • • We do not use to the second state of the second s))/ Γ_{total} EVTS 30 Tal EVTS the following $0^{+4.3}_{-3.5}$ 1 $1/\psi K^{+}$) =	DOCUMENT ID VANNUCCI 7 DOCUMENT ID g data for averages HUANG 03 VANNUCCI 77 $(1.01 \pm 0.05) \times 10$ DOCUMENT ID ABLIKIM	7 M 7 TECN 5, fits, BEL MRN 0-3.	ECN COM Imits, ϵ B^+ C E C E C E C E C E	$+e^{-}$ MENT etc. •• $\rightarrow 2(K^{+}K)$ e^{-} COMMENT $e^{+}e^{-}$	Γ ₁₈₂ /Γ -) κ ⁺
Γ($K^+K^-2(\pi^+\pi^-)$) NALUE (units 10^{-4}) 31±13 Γ($2(K^+K^-)$)/Γ _{tot} NALUE (units 10^{-3}) • • • We do not use to the second seco))/ Γ_{total} $\frac{EVTS}{30}$ The following $0^{+4.3}_{-3.5}$ 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} \underline{\textit{DOCUMENT ID}} \\ \text{VANNUCCI} & 7 \\ \hline \\ \underline{\textit{DOCUMENT ID}} \\ \text{g data for averages} \\ \text{HUANG} & 03 \\ \text{VANNUCCI} & 77 \\ \hline \\ (1.01 \pm 0.05) \times 16 \\ \hline \\ \underline{\textit{DOCUMENT ID}} \\ \\ \text{ABLIKIM} \\ 1 \\ \text{WU} \\ \end{array}$	77 M TECM s, fits, BEL MRM 0-3.	ECN COM Ilmits, 6 L B+ (1 e+6 TECN BES3 BELL	$\begin{array}{c} \text{MENT} \\ \text{etc.} \bullet \bullet \bullet \\ \rightarrow 2(K^+ K) \\ \text{e}^- \end{array}$ $\begin{array}{c} \text{COMMENT} \\ e^+ e^- \\ B^+ \rightarrow p_1^- \end{array}$	Γ ₁₈₂ /Γ -) κ ⁺ Γ ₁₈₄ /Γ
Γ($K^+K^-2(\pi^+\pi^-)$ $\frac{VALUE \text{ (units }10^{-4})}{31\pm 13}$ Γ($2(K^+K^-)$)/Γ _{tot} $\frac{VALUE \text{ (units }10^{-3})}{0.7\pm 0.4}$ 0.7±0.3 1 Using B($B^+\to D$) Γ($p\overline{p}$)/Γ _{total} $\frac{VALUE \text{ (units }10^{-3})}{0.7\pm 0.10}$ 2.120±0.029 OUR AV 2.112±0.004±0.031 2.17 ±0.16 ±0.04 2.26 ±0.01 ±0.14))/ Γ_{total} $EVTS$ 30 Tale $EVTS$ 5 5 5 5 5 5 5 5 5 5	$\begin{array}{c} \underline{\textit{DOCUMENT ID}} \\ \hline \textit{VANNUCCI} & 7 \\ \hline \\ \underline{\textit{DOCUMENT ID}} \\ \textit{g data for averages} \\ \hline \textit{HUANG} & 03 \\ \hline \textit{VANNUCCI 77} \\ \hline (1.01 \pm 0.05) \times 10 \\ \hline \\ \underline{\textit{DOCUMENT ID}} \\ \hline \\ \textit{ABLIKIM} \\ \textit{1} \\ \textit{WU} \\ \textit{BAI} \\ \end{array}$	7 M 7 TECN 5, fits, BEL MRN 0-3.	ECN COM IRK1 e IRK1 e	$\begin{array}{c} \text{MENT} \\ \text{etc.} \bullet \bullet \\ \rightarrow 2(K^+ K) \\ \text{etc.} \\ \text{e} \\ \text{e} \\ \text{e}^+ e^- \\ \text{e}^+ e^- \rightarrow \\ \end{array}$	Γ ₁₈₂ /Γ -) κ ⁺ Γ ₁₈₄ /Γ
Γ($K^+K^-2(\pi^+\pi^-)$) NALUE (units 10^{-4}) 31±13 Γ($2(K^+K^-)$)/Γtot NALUE (units 10^{-3}) • • • We do not use to $1.4^{+0.5}_{-0.4} \pm 0.2$ 11.0 0.7±0.3 1 Using B($B^+ \rightarrow D$) Γ($p\overline{p}$)/Γtotal NALUE (units 10^{-3}) 2.120±0.029 OUR AV 2.112±0.004±0.031 2.17 ±0.16 ±0.04 2.26 ±0.01 ±0.14 1.97 ±0.22))/ Γ_{total} $\frac{EVTS}{30}$ The following $0^{+4.3}_{-3.5}$ 1 1 1 1 1 1 1 1 1 1	DOCUMENT ID VANNUCCI 7 DOCUMENT ID g data for averages HUANG 03 VANNUCCI 77 $(1.01 \pm 0.05) \times 10$ DOCUMENT ID ABLIKIM WU BAI BALDINI	7 M 7 M 7 TECN 8, fits, BEL MRN 0-3. 12C 06 04E 98	ECN COM IRK1 e V COM Imits, e L B+ K1 e+ TECN BES3 BELL BES2 FENI	$\begin{array}{c} \text{MENT} \\ \text{etc.} \bullet \bullet \bullet \\ \rightarrow 2(K^+ K) \\ e^- \\ \\ \frac{COMMENT}{e^+ e^-} \\ e^+ e^- \rightarrow \\ e^+ e^- \rightarrow \\ e^+ e^- \end{array}$	Γ ₁₈₂ /Γ -) κ ⁺ Γ ₁₈₄ /Γ
Γ($K^+K^-2(\pi^+\pi^-)$ $\frac{VALUE \text{ (units }10^{-4})}{31\pm 13}$ Γ($2(K^+K^-)$)/Γ _{tot} $\frac{VALUE \text{ (units }10^{-3})}{0.7\pm 0.4}$ 0.7±0.3 1 Using B($B^+\to D$) Γ($p\overline{p}$)/Γ _{total} $\frac{VALUE \text{ (units }10^{-3})}{0.7\pm 0.10}$ 2.120±0.029 OUR AV 2.112±0.004±0.031 2.17 ±0.16 ±0.04 2.26 ±0.01 ±0.14))/ Γ_{total} $EVTS$ 30 Tale $EVTS$ 5 5 5 5 5 5 5 5 5 5	$\begin{array}{c} \underline{\textit{DOCUMENT ID}} \\ \hline \textit{VANNUCCI} & 7 \\ \hline \\ \underline{\textit{DOCUMENT ID}} \\ \textit{g data for averages} \\ \hline \textit{HUANG} & 03 \\ \hline \textit{VANNUCCI 77} \\ \hline (1.01 \pm 0.05) \times 10 \\ \hline \\ \underline{\textit{DOCUMENT ID}} \\ \hline \\ \textit{ABLIKIM} \\ \textit{1} \\ \textit{WU} \\ \textit{BAI} \\ \end{array}$	7 M 7 TECN 5, fits, BEL MRN 0-3.	ECN COM IRK1 e IRK1 e	$\begin{array}{c} \text{MENT} \\ \text{etc.} \bullet \bullet \bullet \\ \rightarrow 2(K^+ K) \\ e^- \\ \\ \frac{COMMENT}{e^+ e^-} \\ e^+ e^- \rightarrow \\ e^+ e^- \rightarrow \\ e^+ e^- \end{array}$	Γ ₁₈₂ /Γ -) κ ⁺ Γ ₁₈₄ /Γ
Γ($K^+K^-2(\pi^+\pi^-)$) NALUE (units 10^{-4}) 31±13 Γ($2(K^+K^-)$)/Γtot NALUE (units 10^{-3}) • • • We do not use to $1.4^{+0.5}_{-0.4} \pm 0.2$ 11.0 0.7±0.3 1 Using B($B^+ \rightarrow D$) Γ($p\overline{p}$)/Γtotal NALUE (units 10^{-3}) 2.120±0.029 OUR AV 2.112±0.004±0.031 2.17 ±0.16 ±0.04 2.26 ±0.01 ±0.14 1.97 ±0.22))/ Γ_{total} $EVTS$ 30 Tal EVTS The following $0^{+4.3}_{-3.5}$ 1 $1/\psi K^{+}$) = EVTS EVTS FERAGE 314k 317 63316 99	DOCUMENT ID VANNUCCI 7 DOCUMENT ID g data for averages HUANG 03 VANNUCCI 77 $(1.01 \pm 0.05) \times 10$ DOCUMENT ID ABLIKIM WU BAI BALDINI	7 M 7 M 7 TECN 8, fits, BEL MRN 0-3. 12C 06 04E 98	ECN COM IRK1 e IRK1 e	$\begin{array}{c} \text{MENT} \\ \text{etc.} \bullet \bullet \bullet \\ \rightarrow 2(K^+ K) \\ \text{etc.} \end{array}$ $\begin{array}{c} COMMENT \\ e^+ e^- \\ B^+ \rightarrow p_1^- \\ e^+ e^- \rightarrow e^+ e^- \\ e^+ e^- \\ e^+ e^- \end{array}$	Γ ₁₈₂ /Γ -) κ ⁺ Γ ₁₈₄ /Γ

$2.16 \pm 0.07 \pm 0.15$	1420	EATON	84	MRK2 e ⁺ e ⁻
2.5 ± 0.4	133	BRANDELIK	79 C	DASP e ⁺ e ⁻
2.0 ± 0.5				BONA e^+e^-
2.2 ± 0.2	331	² PERUZZI	78	MRK1 e ⁺ e ⁻
• • • We do not us	se the following	data for average	s, fits,	limits, etc. • • •
2.0 ± 0.3	48	ANTONELLI	93	SPEC e ⁺ e ⁻
				$g^{+} \rightarrow J/\psi(1S)K^{+})] = (2.21 \pm$
0.13 \pm 0.10) $ imes$	10^{-6} which v	ve divide by our	best v	value B($B^+ o J/\psi(1S)K^+$) =
				iment's error and our second error
is the systemati	c error from us	ing our best value	Э.	
² Assuming angul	ar distribution	$(1+\cos^2\theta)$.		

 $\Gamma(p\overline{p}\pi^{0})/\Gamma_{\text{total}}$ Γ_{185}/Γ

$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
1.19±0.08 OUR AVE	RAGE Erro	or includes scale fa	ctor c	of 1.1.	
$1.33\!\pm\!0.02\!\pm\!0.11$	11k	ABLIKIM	09 B	BES2	e^+e^-
$1.13\!\pm\!0.09\!\pm\!0.09$	685	EATON	84	MRK2	e^+e^-
1.4 ± 0.4		BRANDELIK	79C	DASP	e^+e^-
1.00 ± 0.15	109	PERUZZI	78	MRK1	e^+e^-

 $\Gamma(p\overline{p}\pi^+\pi^-)/\Gamma_{\text{total}}$ Γ_{186}/Γ

VALUE (units 10^{-3}) **EVTS** DOCUMENT ID TECN COMMENT 6.0 ± 0.5 OUR AVERAGE Error includes scale factor of 1.3. See the ideogram below. MRK2 $e^+e^ 6.46 \pm 0.17 \pm 0.43$ 1435 **EATON** $3.8\ \pm1.6$ 81 BONA e^+e^- 48 **BESCH** MRK1 $e^+e^ 5.5\ \pm0.6$ 78 533 **PERUZZI**

WEIGHTED AVERAGE 6.0±0.5 (Error scaled by 1.3)

https://pdg.lbl.gov

Page 51

$\Gamma(p\overline{p}\pi^{+}\pi^{-}\pi^{0})/\Gamma_{\text{tot}}$,				Γ ₁₈₇ /Γ
Including $p \overline{p} \pi^+ \pi^-$						
<u>VALUE (units 10⁻³)</u> 2.3 ±0.9 OUR AVERA	<u>EVTS</u> GF Frror i	DOCUMENT ID ncludes scale fac	ctor o	<i>TECN</i> f 1 0	COMMENT	
$3.36 \pm 0.65 \pm 0.28$	364	EATON	84	MRK2	e+e-	
1.6 ±0.6	39	PERUZZI				
$\Gammaig(p \overline{p} \eta ig) / \Gamma_{ ext{total}}$						Γ ₁₈₈ /Γ
VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT	
2.00±0.12 OUR AVERA		15111/114		5=66		
$1.91 \pm 0.02 \pm 0.17$	-	ABLIKIM		BES2		
$2.03 \pm 0.13 \pm 0.15$	826	EATON		MRK2		
2.5 ± 1.2	107	BRANDELIK		MRK1		
2.3 ±0.4	197	PERUZZI				
¹ From the combinatio	n of $p\overline{p}\eta$	$ ightarrow$ $p\overline{p}\gamma\gamma$ and $p\overline{p}$	$\bar{g}\eta \rightarrow$	$p\overline{p}\pi^{\top}$	$\pi^-\pi^0$ chan	nels.
$\Gamma(p\overline{p}\rho)/\Gamma_{\text{total}}$						Γ ₁₈₉ /Γ
	CL%	DOCUMENT ID		TECN	COMMENT	
$< 0.31 \times 10^{-3}$	90	EATON	84	MRK2	$e^+e^- \rightarrow$	$hadrons\gamma$
$\Gamma(p\overline{p}\omega)/\Gamma_{total}$						Γ ₁₉₀ /Γ
		DOCUMENT ID		TECN		
0.98±0.10 OUR AVERA					_	ram below.
	2670	ABLIKIM		BES3		
		ABLIKIM	80	BES2		
$1.10\pm0.17\pm0.18$ $1.6\ \pm0.3$	486 77	EATON PERUZZI		MRK2 MRK1		
WEIGHTED AV 0.98±0.10 (Erro	'ERAGE	1.3) ABL EAT	.IKIM .IKIM ⁻ ON RUZZI	08 84 78	4 MRK2	$\begin{array}{c} \chi^2 \\ 0.7 \\ 0.0 \\ 0.2 \\ 4.3 \\ \hline 5.3 \\ = 0.154) \end{array}$
0.5	1.5	0 05				,
0.5 1	1.5	2 2.5)	3		
$\Gamma(p\overline{p}\omega)/\Gamma_{\text{tot}}$	al (units 10) ⁻³)				

 ${\tt https://pdg.lbl.gov}$

Page 52

$\Gamma(\rho \overline{\rho} \eta'(958))/\Gamma_{\text{total}}$	al				Γ ₁₉₁ /Γ
$VALUE$ (units 10^{-3})	EVTS	DOCUMENT	ID	TEC	COMMENT
0.129 ± 0.014 OUR AV	ERAGE Er	ror includes scale	facto	r of 2.0.	
$0.126 \pm 0.002 \pm 0.007$	16k	$^{ m 1}$ ABLIKIM	1	L9N BES	63 e ⁺ e ⁻
$0.200 \pm 0.023 \pm 0.028$	265 ± 31	² ABLIKIM	()9 BE	$62 e^{+}e^{-}$
$0.68 \pm 0.23 \pm 0.17$	19	EATON			K2 e ⁺ e ⁻
1.8 ±0.6	19	PERUZZI	7		K1 e ⁺ e ⁻
				_	
² From the combinat	tion of $p\overline{p}\eta'$ tion of $p\overline{p}\eta'$		and <i>p</i> and <i>p</i>	$ \overline{p}\eta' \to \overline{p}\eta' \to \overline{p}\eta' \to \overline{p}\eta'$	$p\overline{p}\pi^+\pi^-\gamma$ channels. $p\overline{p}\gamma\rho^0$ channels.
$\Gamma(p\overline{p}a_0(980) \rightarrow p\overline{p}$	-	tal			Γ ₁₉₂ /Γ
VALUE (units 10^{-5})		DOCUMENT ID		TECN	COMMENT
$6.8 \pm 1.2 \pm 1.3$		ABLIKIM	14N	BES3	$e^+e^- o J/\psi$
$\Gamma(ho\overline{ ho}\phi)/\Gamma_{ m total}$					Γ ₁₉₃ /Γ
$VALUE$ (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
0.519±0.033 OUR AV					
$0.523 \!\pm\! 0.006 \!\pm\! 0.033$	14k	ABLIKIM	16K	BES3	$J/\psi \rightarrow p \overline{p} K_S^0 K_I^0$,
					$p\overline{p}K^+K^-$
$0.45\ \pm0.13\ \pm0.07$		FALVARD	88	DM2	$J/\psi ightarrow ext{hadrons}$
$\Gamma(p \overline{n} \pi^-)/\Gamma_{ ext{total}}$					Γ ₁₉₄ /Γ
$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
2.12±0.09 OUR AVER					
$2.36 \pm 0.02 \pm 0.21$	59k	ABLIKIM	06K	BES2	$J/\psi ightarrow p\pi^{-}\overline{n}$
$2.47 \pm 0.02 \pm 0.24$	55k	ABLIKIM	06K	BES2	$J/\psi \rightarrow \overline{p}\pi^+ n$
$2.02\!\pm\!0.07\!\pm\!0.16$	1288	EATON	84	MRK2	$e^+e^- ightarrow~ ho\pi^-$
$1.93 \pm 0.07 \pm 0.16$	1191	EATON	84	MRK2	$e^+e^- \rightarrow \frac{1}{p}\pi^+$
1.7 ± 0.7	32	BESCH	81	BONA	$e^+e^- ightarrow p\pi^-$
1.6 ± 1.2	5	BESCH	81		$e^+e^- ightarrow \frac{r}{\overline{p}}\pi^+$
2.16 ± 0.29	194	PERUZZI	78		$e^+e^- ightarrow p\pi^-$
2.04 ± 0.27	204	PERUZZI	78	MRK1	$e^+e^- ightarrow \frac{1}{p}\pi^+$
$\Gamma(n\overline{n})/\Gamma_{\text{total}}$					Γ ₁₉₅ /Γ
<i>VALUE</i> (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
2.09±0.16 OUR AVER					
$2.07 \pm 0.01 \pm 0.17$	36k	ABLIKIM	12C	BES3	e^+e^-
2.31 ± 0.49	79	BALDINI	98	FENI	e^+e^-
1.8 ± 0.9		BESCH	78		e^+e^-
• • • We do not use t	he following				
1.90 ± 0.55	40	ANTONELLI	93		e^+e^-
$\Gamma(n\overline{n}\pi^+\pi^-)/\Gamma_{\text{total}}$	l				Γ ₁₉₆ /Γ
VALUE (units 10^{-3})		DOCUMENT ID		TECN	
	<u>EVTS</u>	DOCUMENT ID	01	TECN	<u>COMMENT</u> + -
3.8±3.6	5	BESCH	81	RONA	e ⁺ e ⁻

 $\Gamma(\Lambda\overline{\Lambda})/\Gamma_{\text{total}}$ Γ_{200}/Γ

	EVTS	DOCUMENT ID		TECN	COMMENT
1.89 ± 0.09 OUR AV	ERAGE	Error includes scale	facto	r of 2.8.	See the ideogram below.
$1.943\!\pm\!0.003\!\pm\!0.033$	441k	ABLIKIM	17L	BES3	e^+e^-
$2.03 \pm 0.03 \pm 0.15$	8887	ABLIKIM	06	BES2	$J/\psi o \Lambda \overline{\Lambda}$
$1.96 \ ^{+0.47}_{-0.44} \ \pm 0.04$	46	¹ WU	06	BELL	$B^+ \to \Lambda \overline{\Lambda} K^+$
$1.08 \pm 0.06 \pm 0.24$	631	BAI	98G	BES	e^+e^-
$1.38 \pm 0.05 \pm 0.20$	1847	PALLIN	87	DM2	e^+e^-
$1.58 \ \pm 0.08 \ \pm 0.19$	365	EATON	84	MRK2	e^+e^-
2.6 ± 1.6	5	BESCH	81	BONA	e^+e^-
1.1 ± 0.2	196	PERUZZI	78	MRK1	e^+e^-

WEIGHTED AVERAGE 1.89±0.09 (Error scaled by 2.8)

 1 WU $_{06}$ reports $[\Gamma(J/\psi(1S)\to\Lambda\overline{\Lambda})/\Gamma_{total}]\times[B(B^{+}\to J/\psi(1S)K^{+})]=(2.00^{+0.34}_{-0.29}\pm0.34)\times10^{-6}$ which we divide by our best value $B(B^{+}\to J/\psi(1S)K^{+})=(1.020\pm0.019)\times10^{-3}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value. $\Gamma(\Lambda\overline{\Lambda})/\Gamma_{total}$ (units 10^{-3})

$\Gamma(\Lambda \overline{\Lambda} \pi^0)/\Gamma_{\rm total}$

 Γ_{201}/Γ

VALUE (units 10	⁻⁵) <i>CL%</i>	EVTS	DOCUMENT ID		TECN	COMMENT
3.78±0.27						$J/\psi \rightarrow p \overline{p} \pi^+ \pi^- \gamma \gamma$
• • • We do i	not use the f	following c	lata for averages,	fits, I	imits, et	C. ● ● ●
< 6.4	90		² ABLIKIM	07н	BES2	$e^+e^- ightarrow \psi(2S)$
23 ± 7	± 8	11	BAI	98G	BES	e^+e^-
			HENRARD			e^+e^-
1 Using B($\Lambda \to \pi^- p$) = 63.9% and B($\pi^0 \to \gamma \gamma$) = 98.8%. 2 Using B($\Lambda \to \pi^- p$) = 63.9%.						

$\Gamma(\Lambda \overline{\Lambda} \pi^+ \pi^-)/\Gamma_{\text{tota}}$	al					Γ_{202}/Γ
$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT	
$4.30\pm0.13\pm0.99$	2.4k	ABLIKIM	12 P	BES2	J/ψ	
$\Gamma(\Lambda \overline{\Lambda} \eta)/\Gamma_{\text{total}}$						Γ ₂₀₃ /Γ
VALUE (units 10^{-5})	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	
16.2±1.7 OUR AVE		¹ ABLIKIM	125	DECO	$J/\psi ightarrow p \overline{p}$	• +
$15.7 \pm 0.80 \pm 1.54$ $26.2 \pm 6.0 \pm 4.4$	454 44	² ABLIKIM			$e^+e^- \rightarrow$, ,
1 Using B($\Lambda ightarrow \pi^-$					e e —	$\psi(23)$
2 Using B($\Lambda \rightarrow \pi^{-}$						
			, — 33.	170.		- /-
$\Gamma(\Lambda \overline{\Sigma}^- \pi^+ \text{ (or c.c.)}$)/I total					Γ ₂₀₄ /Γ
$\frac{VALUE \text{ (units } 10^{-3})}{\text{0.83 } \pm \text{0.07 } \text{OUR AV}}$	EVTS	<u>DOCUMENT II</u> ror includes scale		TECN	COMMENT	
$0.770 \pm 0.051 \pm 0.083$	335	¹ ABLIKIM			$e^+e^ \rightarrow$	$\overline{\Lambda}\Sigma^{+}\pi^{-}$
$0.747 \pm 0.051 \pm 0.003$ $0.747 \pm 0.056 \pm 0.076$	254	¹ ABLIKIM		BES2		
$0.90 \pm 0.06 \pm 0.16$	225 ± 15	HENRARD		DM2		$\overline{\Lambda}\Sigma^{+}\pi^{-}$
$1.11 \pm 0.06 \pm 0.20$	342 ± 18	HENRARD		DM2		
$1.53 \ \pm 0.17 \ \pm 0.38$	135	EATON			$e^+e^- \rightarrow$	
$1.38 \pm 0.21 \pm 0.35$	118	EATON			$e^+e^- \rightarrow$	$\Lambda \Sigma^- \pi^+$
1 Using B($arLambda$ $ o$ π^-	p) = 63.9%	and B($\Sigma^+ ightarrow au$	$(^{0}p) =$	51.6%		
$\Gamma(\rho K^- \overline{\Lambda} + \text{c.c.})/\Gamma_t$	total					Γ ₂₀₅ /Γ
VALUE (units 10 ⁻³)		DOCUMENT ID		TECN	COMMENT	
0.86±0.11 OUR AVE		1				
$0.84^{+0.17}_{-0.15}\pm0.02$	45	¹ LU			$B^+ \rightarrow \overline{p}\Lambda$	K ⁺ K ⁺
$0.89\!\pm\!0.07\!\pm\!0.14$		EATON			e^+e^-	
1 LU 19 reports (8.	$32^{+1.63}_{-1.45} \pm$	$0.49) \times 10^{-4} \text{ fr}$	om a	measure	ement of [Γ	$\left(J/\psi(1\mathcal{S}) ight. ightarrow$
$pK^{-}\overline{\Lambda}+c.c.)/\Gamma_{to}$						
$=(1.026\pm0.031)$	$ imes 10^{-3}$, wh	ich we rescale to	our bes	st value	$B(B^+ \rightarrow J$	$J/\psi(1S)K^+)$
$= (1.020 \pm 0.019)$				perime	nt's error an	d our second
error is the system	atic error fro	m using our best	value.			
$\Gamma(pK^{-}\overline{\Sigma}^{0})/\Gamma_{\text{total}}$						Г ₂₀₆ /Г
$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT	
$0.29 \pm 0.06 \pm 0.05$		EATON				
$\Gamma(\overline{\Lambda}nK_S^0 + \text{c.c.})/\Gamma_1$	total					Γ ₂₀₇ /Γ
VALUE (units 10 ⁻⁴) 6.46±0.20±1.07	EVTS	DOCUMENT ID		TECN	COMMENT	
$6.46 \pm 0.20 \pm 1.07$	1058	$^{ m 1}$ ABLIKIM	08C	BES2	$e^{+}e^{-}\rightarrow$	J/ψ
1 Using B($\overline{\varLambda} ightarrow \ \overline{p} \pi$	⁺) = 63.9%	and B($K_{\mathcal{S}}^{0} ightarrow \pi$	·+π ⁻)	= 69.2	2%.	
$\Gamma(\Lambda \overline{\Sigma} + c.c.)/\Gamma_{tota}$	nl					Γ ₂₀₈ /Γ
VALUE (units 10^{-5})	CL% EV	/TS DOCUM	ENT ID		TECN COM	IMENT
2.83±0.23 OUR A	VERAGE					
$2.74 \pm 0.24 \pm 0.22$	234 ±	21 ^I ABLIKI	IM	12 B	BES3 J/ψ	$ ightarrow$ $\Lambda \overline{\Sigma}{}^{0}$
https://pdg.lbl.gov	,	Page 55		Creat	ed: 8/11/2	2022 09:37

² ABLIKIM 308 ± 24 12B BES3 $J/\psi \rightarrow \overline{\Lambda} \Sigma^0$ $2.92 \pm 0.22 \pm 0.24$ • • • We do not use the following data for averages, fits, limits, etc. • • • ² HENRARD $J/\psi \rightarrow \overline{\Lambda} \Sigma^0$ 87 DM2 <18 **PERUZZI** MRK1 $e^+e^- \rightarrow \Lambda X$ <15 ¹ ABLIKIM 12B quotes B($J/\psi \to \Lambda \overline{\Sigma}^0$) which we multiply by 2. 2 ABLIKIM 12B and HENRARD 87 quote results for B($J/\psi
ightarrow \overline{\Lambda} \Sigma^0$) which we multiply $\Gamma(\Sigma^{+}\overline{\Sigma}^{-})/\Gamma_{\text{total}}$ Γ_{209}/Γ VALUE (units 10⁻³) 1.07 ± 0.04 OUR AVERAGE $J/\psi \rightarrow p\pi^0 \overline{p}\pi^0$ $1.061 \pm 0.004 \pm 0.036$ 21AT BES3 87k **ABLIKIM** 080 BES2 $e^+e^- \rightarrow J/\psi$ $1.50 \ \pm 0.10 \ \pm 0.22$ 399 **ABLIKIM** $\Gamma(\Sigma^0\overline{\Sigma}^0)/\Gamma_{\text{total}}$ Γ_{210}/Γ VALUE (units 10^{-3}) **EVTS** DOCUMENT ID TECN COMMENT 1.172±0.032 OUR AVERAGE Error includes scale factor of 1.4. 17L BES3 $J/\psi o \Sigma^0 \overline{\Sigma}{}^0$ $1.164 \pm 0.004 \pm 0.023$ **ABLIKIM** 111k BES2 $J/\psi \rightarrow \Sigma^0 \overline{\Sigma}^0$ 06 $1.33 \pm 0.04 \pm 0.11$ 1.7kABLIKIM $e^{+}e^{-} \rightarrow \Sigma^{0}\overline{\Sigma}^{0}$ DM2 $1.06 \pm 0.04 \pm 0.23$ 884 **PALLIN** MRK2 $e^+e^-
ightarrow \Sigma^0 \overline{\Sigma}{}^0$ $1.58 \pm 0.16 \pm 0.25$ 90 **EATON** MRK1 $e^+e^- \rightarrow \Sigma^0 \overline{\Sigma}{}^0$ 78 1.3 ± 0.4 52 **PERUZZI** • • • We do not use the following data for averages, fits, limits, etc. • • • BONA $e^+e^- \rightarrow \Sigma^+\overline{\Sigma}^ 2.4 \pm 2.6$ 3 81 **BESCH** $\Gamma(\Xi^{-}\overline{\Xi}^{+})/\Gamma_{\text{total}}$ Γ_{211}/Γ VALUE (units 10^{-3}) **EVTS** DOCUMENT ID COMMENT TECN 0.97 ± 0.08 OUR AVERAGE Error includes scale factor of 1.4. See the ideogram below. $J/\psi \rightarrow \Xi^{-}\overline{\Xi}^{+}$ 16L BES3 $1.040 \pm 0.006 \pm 0.074$ 43k **ABLIKIM** 12P BES2 $J/\psi \rightarrow \Xi^{-}\overline{\Xi}^{+}$ $0.90 \pm 0.03 \pm 0.18$ 961 **ABLIKIM** DM2 $e^+e^-
ightarrow \, \varXi^-\, \overline{\varXi}{}^+$ $0.70 \ \pm 0.06 \ \pm 0.12$ **HENRARD** 132 MRK2 $e^+e^- \rightarrow \bar{\Xi}^- \bar{\Xi}^+$ $1.14 \pm 0.08 \pm 0.20$ 194 **EATON** MRK1 $e^+e^- \rightarrow \bar{\Xi}^- \bar{\Xi}^+$ 1.4 ± 0.5 **PERUZZI** 78 51

- RADIATIVE DECAYS ----

$\Gamma(\gamma \eta_c(1S))/\Gamma_{\text{total}}$

 $\Gamma_{212}/\Gamma_{212}$

I $(\gamma \eta_c(15))/$ I $_{ ext{total}}$					l ₂₁₂ /l
$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
1.7 ±0.4 OUR AVERAGE	Error i	ncludes scale facto	or of 1	.5.	
$2.00\pm0.31\pm0.02$		$^{ m 1}$ MITCHELL	09	CLEO	$e^+e^- o \gamma X$
1.27 ± 0.36		GAISER			
• • • We do not use the fo	ollowing d	ata for averages, f	its, lin	nits, etc	. • • •
seen		ANASHIN	14	KEDR	$J/\psi \rightarrow \gamma \eta_{C}$
0.79 ± 0.20 273	\pm 43	² AUBERT	06E	BABR	$B^{\pm} \rightarrow K^{\pm} X_{c} \overline{c}$
seen	16	BALTRUSAIT	84	MRK3	$J/\psi ightarrow 2\phi \gamma$
¹ MITCHELL 09 report	s (1.98	\pm 0.09 \pm 0.30)	× 10	$^{-2}$ from	m a measurement of
$[\Gamma(J/\psi(1S) \rightarrow \gamma \eta_C)]$	$(1\hat{S}))/\Gamma_{t}$	$_{\rm otal}$ \times [B(ψ (2 \dot{S}	\rightarrow	J/ψ ($(1S)\pi^+\pi^-)$] assuming
` .	,				0^{-2} , which we rescale
					$(30) \times 10^{-2}$. Our first
error is their experimen	t's error a	and our second err	or is t	he syste	ematic error from using
1				-	
² Calculated by the author	ors using a	in average of $B(J)$	$\psi \rightarrow$	$\gamma \eta_{\underline{c}}) \times$	$B(\eta_{C} \to K K \pi) \text{ from }$
BALTRUSAITIS 86, B	SELLO 9	 BAI 04 and B($\eta_c \rightarrow$	$K\overline{K}\pi$	$)=(8.5\pm1.8)\%$ from

$\Gamma(\gamma \eta_c(1S) \rightarrow 3\gamma)/\Gamma_{\text{total}}$

AUBERT 06E.

 Γ_{213}/Γ

$VALUE$ (units 10^{-6})	EVTS	DOCUMENT IE)	TECN	COMMENT		
3.8 ^{+1.3} OUR AVERAGE Error includes scale factor of 1.1.							
$4.5 \pm 1.2 \pm 0.6$	33 ± 9	ABLIKIM	131	BES3	$\psi(2S) \rightarrow \pi^+\pi^- J/\psi$		
$1.2^{+2.7}_{-1.1}\pm0.3$	$1.2^{+2.8}_{-1.1}$	ADAMS	80	CLEO	$\psi(2S) \rightarrow \pi^+\pi^- J/\psi$		

https://pdg.lbl.gov

Page 57

$\Gamma(\gamma\eta_c(1S) \to \gamma\eta\eta\eta$	')/Γ _{total}				Γ ₂₁₄ /Γ
VALUE (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT
4.86±0.62±0.45	137	ABLIKIM	210	BES3	$J/\psi(1S) \rightarrow \gamma \eta \eta \eta'$
$\Gamma(3\gamma)/\Gamma_{ ext{total}}$					Γ ₂₁₅ /Γ
VALUE (units 10 ⁻⁶) CL%	EVTS	DOCUMENT ID		TECN	COMMENT
11.6±2.2 OUR AVER	AGE				
$11.3 \pm 1.8 \pm 2.0$ 1	13 ± 18	ABLIKIM	131		$\psi(2S) \rightarrow \pi^+\pi^- J/\psi$
	$4.2^{+7.2}_{-6.0}$	ADAMS	80		$\psi(2S) \rightarrow \pi^+\pi^- J/\psi$
• • • We do not use the	e following o	data for averages	s, fits,	limits, e	etc. • • •
<55 90		PARTRIDGE	80	CBAL	e^+e^-
$\Gamma(4\gamma)/\Gamma_{ ext{total}}$					Γ ₂₁₆ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<9 × 10 ⁻⁶	90	ADAMS	80	CLEO	$\psi(2S) \to \pi^+\pi^- J/\psi$
$\Gamma(5\gamma)/\Gamma_{total}$					Γ ₂₁₇ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID			COMMENT
$<15\times10^{-6}$	90	ADAMS	80	CLEO	$\psi(2S) \rightarrow \pi^+\pi^- J/\psi$
$\Gamma(\gamma\pi^0)/\Gamma_{total}$					Γ ₂₁₈ /Γ
VALUE (units 10 ⁻⁵)	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
3.56±0.17 OUR AVERA		1 4 51 11714	10-	DECO	((a,c) + -
$3.59 \pm 0.20 \pm 0.03$	1.6k	1 ABLIKIM			$\psi(2S) \rightarrow \pi^{+}\pi^{-}\gamma\gamma\gamma$
$3.63 \pm 0.36 \pm 0.13$		PEDLAR	09		$J/\psi \rightarrow \pi^0 \gamma$
$3.13^{igoplus 0.65}_{igoplus 0.47}$	586	ABLIKIM			$J/\psi \rightarrow \pi^0 \gamma$
• • • We do not use the	e following o	data for averages	s, fits,	limits, e	etc. • • •
$3.6 \pm 1.1 \pm 0.7$		BLOOM	83		e^+e^-
7.3 ±4.7	10	BRANDELIK		DASP	
¹ ABLIKIM 180 reports $[\Gamma(J/\psi(1S) \rightarrow \gamma\pi^0)/\Gamma_{\text{total}}] \times [B(\pi^0 \rightarrow 2\gamma)] = (3.57 \pm 0.12 \pm 0.16) \times 10^{-5}$ from a measurement of $[\Gamma(J/\psi(1S) \rightarrow \gamma\pi^0)/\Gamma_{\text{total}}] \times [B(\pi^0 \rightarrow 2\gamma)] \times [B(\psi(2S) \rightarrow J/\psi(1S)\pi^+\pi^-)]$ assuming $B(\psi(2S) \rightarrow J/\psi(1S)\pi^+\pi^-) = (34.49 \pm 0.30) \times 10^{-2}$, which we rescale to our best values $B(\pi^0 \rightarrow 2\gamma) = (98.823 \pm 0.034) \times 10^{-2}$, $B(\psi(2S) \rightarrow J/\psi(1S)\pi^+\pi^-) = (34.68 \pm 0.30) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.					
$\Gamma(\gamma\pi^{f 0}\pi^{f 0})/\Gamma_{ m total}$					Γ ₂₁₉ /Γ
VALUE (units 10 ⁻³)		DOCUMENT ID		TECN	$\frac{\textit{COMMENT}}{J/\psi \rightarrow \ \gamma \pi^0 \pi^0}$
1.15 ± 0.05		$^{ m 1}$ ABLIKIM	15AE	BES3	$J/\psi ightarrow \gamma \pi^0 \pi^0$
$^{ m 1}$ The uncertainty is sy	stematic as	statistical is ne	tligible	е.	
$\Gamma(\gamma 2\pi^+ 2\pi^-)/\Gamma_{\text{total}}$					Γ ₂₂₀ /Γ
VALUE (units 10^{-3})	<u></u> -	DOCUMENT ID			
2.8 ±0.5 OUR AVERA		includes scale fa ¹ BISELLO			ee the ideogram below.
$4.32 \pm 0.14 \pm 0.73$		² BISELLO			$J/\psi ightarrow 4\pi\gamma \ J/\psi ightarrow 4\pi\gamma$
$2.08\pm0.13\pm0.35$ $3.05\pm0.08\pm0.45$		² BALTRUSAIT.			
3.03 ± 0.00 ± 0.43		DALI NOSAIT	000	IVIIIII	J/ψ / T/I
${\sf https://pdg.lbl.gov}$		Page 58		Creat	red: 8/11/2022 09:37

 $4.85 \pm 0.45 \pm 1.20$

³ BURKE

82 MRK2 e^+e^-

 $^1_{2}4\pi$ mass less than 3.0 GeV. $^2_{2}4\pi$ mass less than 2.0 GeV. $^3_{4\pi}$ mass less than 2.5 GeV. $\Gamma(\gamma 2\pi^+ 2\pi^-)/\Gamma_{\rm total} \ ({\rm units}\ 10^{-3})$

$\Gamma(\gamma f_2(1270) f_2(1270)) / \Gamma_{\text{total}}$

 Γ_{221}/Γ

	,	.,.	
VALUE (units	10^{-4})	Е	VTS
9.5±0.7±	1.6	646 ±	45

DOCUMENT ID	TECN	COMMENT
ABLIKIM	04м BES	$J/\psi \to \gamma 2\pi^+ 2\pi^-$

$\Gamma(\gamma f_2(1270)f_2(1270)(\text{non resonant}))/\Gamma_{\text{total}}$

 Γ_{222}/Γ

• • • • • • • •	.,		
VALUE (units 10^{-4})	DOCUMENT ID	TECN	COMMENT
8.2±0.8±1.7	¹ ABLIKIM 04M	BES	$J/\psi \rightarrow \gamma 2\pi^+ 2\pi^-$

¹ Subtracting contribution from intermediate $\eta_c(1S)$ decays.

$\Gamma(\gamma \pi^+ \pi^- 2\pi^0)/\Gamma_{\text{total}}$

 Γ_{223}/Γ

$VALUE$ (units 10^{-3})	
8.3±0.2±3.1	

 $1 ext{ DOCUMENT ID}$ $\frac{\textit{TECN}}{1 ext{ BALTRUSAIT...86B}}$ MRK3 $J/\psi ext{ } ext$

 1 $^{4\pi}$ mass less than 2.0 GeV.

 $\Gamma(\gamma K_S^0 K_S^0)/\Gamma_{\text{total}}$

 Γ_{224}/Γ

VALUE (units
$$10^{-4}$$
)

ABLIKIM 18AA BES3 $J/\psi
ightarrow \gamma K_S^0 K_S^0$

8.1±0.4

https://pdg.lbl.gov

Page 59

$\Gamma(\gamma(K\overline{K}\pi)[J^{PC}=$	o ^{– +}])/r	- total				Γ ₂₂₅ /Γ
$VALUE$ (units 10^{-3})		DOCUMENT ID		TECN	COMMENT	
0.7 ±0.4 OUR AVER	AGE Error	includes scale f	actor c	of 2.1.		
$0.58\!\pm\!0.03\!\pm\!0.20$		¹ BAI	00 D	BES	$J/\psi ightarrow \gamma K^{\pm}$	$K_{S}^{0}\pi^{\mp}$
$2.1 \pm 0.1 \pm 0.7$		² BAI	00 D	BES	$J/\psi \to \gamma K^{\pm}$ $J/\psi \to \gamma K^{\pm}$	$^{\pm}\kappa_{S}^{0}\pi^{\mp}$
1 For a broad structur 2 For a broad structur	e around 18 e around 20	800 MeV. 940 MeV.				
$\Gamma(\gamma K^+ K^- \pi^+ \pi^-)$	$\Gamma_{ ext{total}}$					Γ ₂₂₆ /Γ
<i>VALUE</i> (units 10 ⁻³)	<i>EVTS</i>	DOCUMENT ID		TECN	COMMENT	
	1516	BAI			$J/\psi \rightarrow \gamma K^+ K$	$(0_{\pi} + \pi -$
$\Gamma(\gamma K^*(892)\overline{K}^*(892)$))/F _{total}					Γ ₂₂₇ /Γ
VALUE (units 10^{-3})	•	DOCUMENT ID		TECN	COMMENT	-
4.0±0.3±1.3		BAI	00B I	BES	$\frac{\textit{COMMENT}}{\textit{J}/\psi \rightarrow \gamma \textit{K}^{+}\textit{F}}$	$(0_{\pi} + \pi^{-})$
$^{ m 1}$ Summed over all ch	arges.				, , ,	
$\Gamma(\gamma\eta)/\Gamma_{ m total}$						Γ ₂₂₈ /Γ
VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT	
1.085±0.018 OUR AVE				<u> </u>		
$1.067 \pm 0.005 \pm 0.023$	87.9k	ABLIKIM	21AI	мBES3	$e^+e^- ightarrow~J/$	ψ
$1.12 \pm 0.05 \pm 0.01$	18.6k	$^{ m 1}$ ABLIKIM	180	BES3	$\psi(2S) \rightarrow \pi^+$	$\pi^- \gamma \gamma \gamma$
$1.101 \pm 0.029 \pm 0.022$		PEDLAR	09	CLE3	$J/\psi ightarrow ~\eta \gamma$	
1.123 ± 0.089	11k	ABLIKIM	06E	BES2	${\it J}/\psi ightarrow ~\eta \gamma$	
• • • We do not use th	e following	data for average	es, fits,	, limits,	etc. • • •	
$0.88 \pm 0.08 \pm 0.11$		BLOOM	83	CBAL	e^+e^-	
$0.82\ \pm0.10$		BRANDELIK	79 C	DASP	e^+e^-	
1.3 ± 0.4	21	BARTEL	77	CNTR	$e^{+}e^{-}$	
¹ ABLIKIM 180 repor	ts $\Gamma(J/\psi(1$	$(S) \rightarrow \gamma \eta / \Gamma_{+}$	l ×	(B(n -	$\rightarrow 2\gamma)] = (4.42)$	± 0.04 ±
$0.18) \times 10^{-4} \text{ from}$						
$[B(\psi(2S) \to J/\psi($	1 (1) π ⁺ π ⁻)	1 assuming $R(y)$	·(25) -	- / (// → / //	$(15)_{\pi}+_{\pi}-)$	(34.40 +
0.30×10^{-2} , which	h we rescal	e to our best v	alues I	$B(n \to$	$(29) \times (39.36)$	+ 0 18) ×
10^{-2} , B($\psi(2S) \rightarrow$	$I/\psi(1S)\pi^{-}$	$+\pi^{-}) = (34.68)$	+ 0.3	$(0) \times 10$	$\frac{27}{100}$ Our first er	ror is their
experiment's error a	nd our secon	id error is the sys	stemat	ic error	from using our b	est values.
$\Gamma \left(\gamma \eta \pi^0 ight) / \Gamma_{ m total}$						Γ ₂₂₉ /Γ
$VALUE$ (units 10^{-6})	EVTS	DOCUMENT ID		TECN	$J/\psi ightarrow 5\gamma$	
21.4±1.8±2.5	596	ABLIKIM	16 P	BES3	$J/\psi ightarrow 5 \gamma$	
$\Gamma(\gamma a_0(980)^0 \rightarrow \gamma \eta \gamma)$	$(\tau^0)/\Gamma_{total}$					Γ ₂₃₃ /Γ
<u>VALUE</u> <2.5 × 10 ^{−6}	CL%	DOCUMENT ID		TECN	COMMENT	
$< 2.5 \times 10^{-6}$	95	ABLIKIM	16 P	BES3	${\it J/\psi} ightarrow {\it 5}\gamma$	
$\Gamma(\gamma a_2(1320)^0 \rightarrow \gamma \eta$	$(\pi^0)/\Gamma_{ m tota}$	al				Γ ₂₃₄ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
VALUE <6.6 × 10^{−6}	95	ABLIKIM	16 P	BES3	$J/\psi ightarrow 5 \gamma$	

 $\Gamma(\gamma\eta\pi\pi)/\Gamma_{ ext{total}}$ $VALUE ext{ (units } 10^{-3})$ $OCUMENT ext{ ID}$ $OCUMENT ext{ ID}$ OCUMENT

$VALUE$ (units 10^{-4})	DOCUMENT ID		TECN	COMMENT
6.2±2.2±0.9	BAI	99	BES	$J/\psi \to \gamma \eta \pi^+ \pi^-$

$\Gamma(\gamma\eta'(958))/\Gamma_{\text{total}}$

 Γ_{237}/Γ

VALUE (units 10 °)	EVIS	DOCUMENT ID		TECN	COMMENT
5.25±0.07 OUR AVE	RAGE	Error includes scale	factor	of 1.3.	See the ideogram below.
$5.27 \pm 0.03 \pm 0.05$	36k	ABLIKIM	19T	BES	$J/\psi ightarrow \gamma \eta'$
$5.43\pm0.23\pm0.09$	5.0k	¹ ABLIKIM	180	BES3	$\psi(2S) \rightarrow \pi^+\pi^-\gamma\gamma\gamma$
$4.77 \pm 0.22 \pm 0.06$		² ABLIKIM			$J/\psi ightarrow \ \eta' \gamma$
$5.24 \pm 0.12 \pm 0.11$		PEDLAR	09	CLE3	$J/\psi ightarrow \ \eta' \gamma$
5.55 ± 0.44	35k	ABLIKIM	06E	BES2	$J/\psi ightarrow \ \eta' \gamma$

• • We do not use the following data for averages, fits, limits, etc. • •

o o o vve do not d	se the following	data for averag	,05, 110	5, 111111115,	cic. o o
$4.50\!\pm\!0.14\!\pm\!0.53$		BOLTON	92 B	MRK3	$J/\psi \rightarrow \gamma \pi^+ \pi^- \eta, \eta \rightarrow$
$4.30\pm0.31\pm0.71$		BOLTON	92 B	MRK3	$J/\psi \rightarrow \gamma \pi^{+}\pi^{-}\eta, \eta \rightarrow$
$4.04 \pm 0.16 \pm 0.85$	622	AUGUSTIN	90		$J/\psi ightarrow \gamma \eta \pi^+ \pi^-$
$4.39\pm0.09\pm0.66$	2420	AUGUSTIN	90	DM2	$J/\psi \rightarrow \gamma \gamma \pi^+ \pi^-$
$4.1 \pm 0.3 \pm 0.6$		BLOOM	83	CBAL	$e^+e^- ightarrow 3\gamma + \text{ hadrons}$
2.9 ± 1.1	6	BRANDELIK	79c	DASP	$e^+e^- ightarrow~3\gamma$
2.4 ± 0.7	57	BARTEL	76	CNTR	$e^+e^- o 2\gamma ho$

 $^{^1}$ ABLIKIM 180 reports $[\Gamma(J/\psi(1S)\to \gamma\eta'(958))/\Gamma_{\rm total}]\times [{\rm B}(\eta'(958)\to \gamma\gamma)]=(1.26\pm0.02\pm0.05)\times 10^{-4}$ from a measurement of $[\Gamma(J/\psi(1S)\to \gamma\eta'(958))/\Gamma_{\rm total}]\times [{\rm B}(\eta'(958)\to \gamma\gamma)]\times [{\rm B}(\psi(2S)\to J/\psi(1S)\pi^+\pi^-)]$ assuming ${\rm B}(\psi(2S)\to J/\psi(1S)\pi^+\pi^-)=(34.49\pm0.30)\times 10^{-2},$ which we rescale to our best values ${\rm B}(\eta'(958)\to \gamma\gamma)=(2.307\pm0.033)\times 10^{-2},$ ${\rm B}(\psi(2S)\to J/\psi(1S)\pi^+\pi^-)=(34.68\pm0.30)\times 10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best values.

² ABLIKIM 11 reports $(4.84 \pm 0.03 \pm 0.24) \times 10^{-3}$ from a measurement of $[\Gamma(J/\psi(1S) \rightarrow \gamma \eta'(958))/\Gamma_{\text{total}}]$ / $[B(\eta'(958) \rightarrow \pi^+\pi^-\eta)]$ / $[B(\eta \rightarrow 2\gamma)]$ assuming $B(\eta'(958) \rightarrow \pi^+\pi^-\eta) = (43.2 \pm 0.7) \times 10^{-2}$, $B(\eta \rightarrow 2\gamma) = (39.31 \pm 0.20) \times 10^{-2}$, which we rescale to our best values $B(\eta'(958) \rightarrow \pi^+\pi^-\eta) = (42.5 \pm 0.5) \times 10^{-2}$, $B(\eta \rightarrow 2\gamma) = (39.36 \pm 0.18) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

$\Gamma(\gamma f_0(500) \rightarrow \gamma \pi \pi)/\Gamma_{\text{total}}$ Γ_{230}/Γ VALUE (units 10^{-4}) DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • SARANTSEV 21 RVUE $J/\psi(1S) \rightarrow \gamma(\pi\pi, K\overline{K}, \eta\eta, \omega\phi)$ 10.5 ± 2.0 $\Gamma(\gamma f_0(500) \rightarrow \gamma K \overline{K})/\Gamma_{\text{total}}$ Γ_{231}/Γ VALUE (units 10^{-5}) DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • SARANTSEV 21 RVUE $J/\psi(1S) \rightarrow \gamma(\pi\pi, K\overline{K}, \eta\eta, \omega\phi)$ 5 ± 5 $\Gamma(\gamma f_0(500) \rightarrow \gamma \eta \eta)/\Gamma_{\text{total}}$ Γ_{232}/Γ VALUE (units 10^{-5}) DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • SARANTSEV 21 RVUE $J/\psi(1S) \rightarrow \gamma(\pi\pi, K\overline{K}, \eta\eta, \omega\phi)$ 4 ± 3 $\Gamma(\gamma f_0(980) \rightarrow \gamma \pi \pi)/\Gamma_{\text{total}}$ Γ_{238}/Γ VALUE (units 10^{-5}) DOCUMENT ID TECN COMMENT ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ulletSARANTSEV 21 RVUE $J/\psi(1S) \rightarrow \gamma(\pi\pi, K\overline{K}, \eta\eta, \omega\phi)$ 1.3 ± 0.2 $\Gamma(\gamma f_0(980) \rightarrow \gamma K \overline{K})/\Gamma_{\text{total}}$ Γ_{239}/Γ VALUE (units 10^{-5}) DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • SARANTSEV 21 RVUE $J/\psi(1S) \rightarrow \gamma(\pi\pi, K\overline{K}, \eta\eta, \omega\phi)$ $0.8\!\pm\!0.3$

Page 62

https://pdg.lbl.gov

$\Gamma(\gamma\rho\rho)/\Gamma_{total}$						Γ ₂₄₀ /Γ
$VALUE$ (units 10^{-3})	CL%	DOCUMENT ID)	TECN	COMMENT	
4.5 ±0.8 OUR A	VERAGE					
$4.7 \pm 0.3 \pm 0.9$		¹ BALTRUSAI				
$3.75 \pm 1.05 \pm 1.20$		² BURKE			$J/\psi ightarrow 4\pi\gamma$	
• • • We do not use	the following	-	es, fits,	limits,	etc. ● ●	
< 0.09	90	³ BISELLO	89 B		$J/\psi ightarrow 4\pi\gamma$	
1 $^4\pi$ mass less than 2 $^4\pi$ mass less than 3 $^4\pi$ mass in the ra	2.0 GeV. \		$1.2 ho^0$ m	neasurer	ment by 3 to obt	cain $2 ho$.
$\Gamma(\gamma ho \omega)/\Gamma_{total}$						Γ ₂₄₁ /Γ
VALUE	CL%	DOCUMENT ID)	TECN	COMMENT	
<5.4 × 10 ⁻⁴	90	ABLIKIM	08A	BES2	$e^+e^- \rightarrow J/c$	ψ
$\Gamma(\gamma ho\phi)/\Gamma_{ m total}$						Γ ₂₄₂ /Γ
VALUE	CL%	DOCUMENT ID			•	
$< 8.8 \times 10^{-5}$	90	ABLIKIM	08A	BES2	$e^+e^- o J/c$	ψ
$\Gamma(\gamma\omega\omega)/\Gamma_{total}$						Γ ₂₄₃ /Γ
<i>VALUE</i> (units 10^{-3})	EVTS	DOCUMENT ID)	TECN	COMMENT	
1.61±0.33 OUR AVE	RAGE					
$6.0 \pm 4.8 \pm 1.8$		ABLIKIM			$J/\psi \rightarrow \gamma \omega \pi^+$	
	120 ± 17	BISELLO			e^+e^- , hadron	,
$1.76 \pm 0.09 \pm 0.45$		BALTRUSAI	Г85С	MRK3	$e^+e^- o$ had	$rons\gamma$
$\Gamma(\gamma\phi\phi)/\Gamma_{total}$						Γ ₂₄₄ /Γ
		DOCUMENT ID			OMMENT	
4.0±1.2 OUR AVER					_	elow.
$7.5 \pm 0.6 \pm 1.2$	168				$1/\psi \rightarrow \gamma 4K$	
	33 ± 7	¹ BISELLO			$V/\psi \rightarrow \gamma K^+ K^-$	
$3.1\pm0.7\pm0.4$		¹ BISELLO	86B D	M2 J	$V/\psi \rightarrow \gamma K^+ K^-$	- K+ K-

 $^1\,\phi\,\phi$ mass less than 2.9 GeV, $\eta_{\rm C}$ excluded. $\Gamma\big(\gamma\,\phi\,\phi\big)/\Gamma_{\rm total}$ (units $10^{-4})$

$\Gamma(\gamma\eta(1405/1475) \rightarrow \gamma K$	$(K\pi)/\Gamma_{total}$			Γ ₂₄₅ /Γ
$VALUE$ (units 10^{-3})	DOCUMENT ID		TECN	COMMENT
2.8 ±0.6 OUR AVERAGE	Error includes scale fa	ctor o	f 1.6. S	ee the ideogram below.
$1.66 \pm 0.1 \ \pm 0.58$	1,2 BAI	00 D	BES	$J/\psi \rightarrow \gamma K^{\pm} K_{S}^{0} \pi^{\mp}$
$3.8 \pm 0.3 \pm 0.6$	³ AUGUSTIN	90	DM2	$J/\psi \rightarrow \gamma K \overline{K} \pi$
$4.0 \pm 0.7 \pm 1.0$	³ EDWARDS	82E	CBAL	$J/\psi ightarrow K^+ K^- \pi^0 \gamma$
4.3 ± 1.7	^{3,4} SCHARRE	80	MRK2	e^+e^-
• • • We do not use the foll	owing data for average	s, fits,	limits, e	etc. • • •
$1.78 \!\pm\! 0.21 \!\pm\! 0.33$	^{3,5,6} AUGUSTIN	92	DM2	$J/\psi ightarrow \gamma K \overline{K} \pi$
$0.83 \pm 0.13 \pm 0.18$	^{3,7,8} AUGUSTIN	92	DM2	$J/\psi ightarrow \gamma K \overline{K} \pi$
$0.66^{+0.17+0.24}_{-0.16-0.15}$	3,6,9 BAI	90C	MRK3	$J/\psi \rightarrow \gamma K_S^0 K^{\pm} \pi^{\mp}$
$1.03 {}^{+ 0.21}_{- 0.18} {}^{+ 0.26}_{- 0.19}$	3,8,10 BAI	90C	MRK3	$J/\psi \rightarrow \gamma K_S^0 K^{\pm} \pi^{\mp}$
¹ Interference with the J/ψ		n to t	he broad	$K\overline{K}\pi$ pseudoscalar state

around 1800 is $(0.15 \pm 0.01 \pm 0.05) \times 10^{-3}$.

² Interference with $J/\psi \rightarrow \gamma f_1(1420)$ is $(-0.03 \pm 0.01 \pm 0.01) \times 10^{-3}$.

³ Includes unknown branching fraction $\eta(1405) \rightarrow K\overline{K}\pi$.

⁴ Corrected for spin-zero hypothesis for $\eta(1405)$.

⁵ From fit to the $a_0(980)\pi$ 0 $^-+$ partial wave.

 $^{^6\,}a_0(980)\,\pi\,$ mode.

⁷ From fit to the $K^*(892)K$ 0 $^{-+}$ partial wave.

 $^{{}^8\,}K^*\,K$ mode. ${}^9\,{\rm From}~a_0(980)\,\pi$ final state.

¹⁰ From $K^*(890) K$ final state.

$\Gamma(\gamma\eta(1405/1475) \rightarrow \gamma\gamma\rho^0)/\Gamma_{\text{total}}$

 Γ_{246}/Γ

$VALUE$ (units 10^{-4})	DOCUMENT ID		TECN	COMMENT
0.78±0.20 OUR AVERAGE	Error includes scale fa	actor c	of 1.8.	
$1.07\!\pm\!0.17\!\pm\!0.11$	1 BAI			$J/\psi \rightarrow \gamma \gamma \pi^+ \pi^-$
$0.64 \pm 0.12 \pm 0.07$	$^{ m 1}$ COFFMAN	90	MRK3	$J/\psi \to \gamma \gamma \pi^+ \pi^-$
1 Includes unknown branch	ing fraction n(1405)	, ₂ , ₀ C)	

Includes unknown branching fraction $\eta(1405) \rightarrow \gamma \rho^{0}$.

$\Gamma(\gamma\eta(1405/1475) \rightarrow \gamma\eta\pi^{+}\pi^{-})/\Gamma_{\text{total}}$

 Γ_{247}/Γ

COMMENT
$J/\psi \to \gamma \eta \pi^+ \pi^-$
$J/\psi \rightarrow \gamma \eta \pi^+ \pi^-$
C. ● ● ●
$J/\psi \rightarrow \gamma \eta \pi^+ \pi^-$

² Includes unknown branching fraction to $\eta \pi^+ \pi^-$.

$\Gamma(\gamma\eta(1405/1475) \rightarrow \gamma\rho^0\rho^0)/\Gamma_{\text{total}}$

 Γ_{248}/Γ

VALUE (units 10^{-3})	DOCUMENT ID	TECN	COMMENT
1.7 ±0.4 OUR AVERAGE	Error includes scale fac	or of 1.3.	
2.1 ± 0.4		MRK3	$J/\psi \rightarrow \gamma \pi^+ \pi^- \pi^+ \pi^-$
1.36 ± 0.38	^{1,2} BISELLO 89	B DM2	$J/\psi ightarrow 4\pi\gamma$

 $^{^{1}\,\}mathrm{Estimated}$ by us from various fits.

² Includes unknown branching fraction to $\rho^0 \rho^0$.

Γ(γη(1405/1475)	$) ightarrow \gamma \gamma \phi ig) / \Gamma$	total			Γ ₂₄₉ /Γ
$VALUE$ (units 10^{-6})	CL% EVTS	DOCUMEN [*]	ΓID	TEC	N COMMENT
<82	95	BAI	(04J BES	$52 J/\psi \rightarrow \gamma \gamma K^+ K^-$
• • • We do not use	e the following		es, fits,	limits, e	tc. • • •
$7.03 \pm 0.92 \pm 0.91$		¹ ABLIKIM			$3 J/\psi \to \gamma \gamma \phi (1020)$
$10.36 \pm 1.51 \pm 1.54$		² ABLIKIM			$3 J/\psi \to \gamma \gamma \phi (1020)$
to the $\gamma\phi$ invaria	ant mass. rference betwee				(1475) is assumed in a fit
$\Gamma(\gamma\eta(1405)\to\gamma$	$\gamma\gamma)/\Gamma_{\sf total}$				Γ ₂₅₀ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
$< 2.63 \times 10^{-6}$	90	ABLIKIM	180	BES3	$\psi(2S) \rightarrow \pi^+\pi^-\gamma\gamma\gamma$
$\Gamma(\gamma\eta(1475) \rightarrow \gamma$	$(\gamma\gamma)/\Gamma_{total}$				Γ ₂₅₁ /Γ
	<u>CL%</u>	DOCUMENT ID		<u>TECN</u>	COMMENT
$<1.86 \times 10^{-6}$	90	ABLIKIM	180	BES3	$\psi(2S) \rightarrow \pi^+\pi^-\gamma\gamma\gamma$
$\Gamma(\gamma\eta(1760) \rightarrow \gamma$	$(ho^0 ho^0)/\Gamma_{ m total}$				Γ ₂₅₂ /Γ
VALUE (units 10^{-3})		² BISELLO		TECN	COMMENT
0.13 ± 0.09	1	^{,2} BISELLO	89 B	DM2	$J/\psi ightarrow 4\pi \gamma$
1 Estimated by us 2 Includes unknow					
$\Gamma(\gamma\eta(1760)\to\gamma$	$\omega\omega)/\Gamma_{total}$				Γ ₂₅₃ /Γ
VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
$1.98\pm0.08\pm0.32$	1045	ABLIKIM	06н	BES	$J/\psi \rightarrow \gamma \omega \omega$
$\Gamma(\gamma\eta(1760) \rightarrow \gamma$	$(\gamma\gamma)/\Gamma_{total}$				Γ ₂₅₄ /Γ
<u>VALUE</u>	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
$<4.80 \times 10^{-6}$	90	ABLIKIM	180	BES3	$\psi(2S) \rightarrow \pi^+\pi^-\gamma\gamma\gamma$
$\Gamma(\gamma\eta(2225))/\Gamma_{\rm to}$	tal				Γ ₂₅₅ /Γ
VALUE (units 10^{-4})	<u>EVTS</u>	DOCUMENT ID		ECN CO	DMMENT
$3.14^{+0.50}_{-0.19}$ OUR AV	'ERAGE				
$2.40\pm0.10^{+2.47}_{-0.18}$	1,2	ABLIKIM	16n B	ES3 J/	$\psi \rightarrow \gamma K^+ K^- K^+ K^-$
$4.4 \pm 0.4 \pm 0.8$	196 ²	ABLIKIM (08ı B	$ES = J_{\ell}$	$\psi \rightarrow \gamma K^+ K^- K_c^0 K_L^0$
$3.3 \pm 0.8 \pm 0.5$			90B M	1RK3 J_{I}	$ \langle \psi \rightarrow \gamma K^+ K^- K^0_S K^0_L \rangle \langle \psi \rightarrow \gamma K^+ K^- K^+ K^- $
$2.7\ \pm0.6\ \pm0.6$	² I	BAI			$\psi \rightarrow \gamma K^+ K^- K_S^0 K_I^0$
$2.4 \begin{array}{c} +1.5 \\ -1.0 \end{array}$	3,4 _I	BISELLO	3 9 в D	M2 <i>J</i> /	$\psi \rightarrow 4\pi \gamma$
η (2100), 0 $^{-}$ +	phase space, f_0 ate $X(2500)$ (Normalized in branching fractions from various files)	$f_2(2100), \ f_2(2010), \ f_2$	$(0), f_2(0)$	2300), <i>f</i> ₂	significant signals for for (2340) , and a previously $(230 + 64 + 56 + 56) = 230 + 64 + 36 = 33 = 33 = 33 = 33 = 33 = 33 = 33$
		D 66		6	/

 $\Gamma(\gamma f_2(1270))/\Gamma_{\text{total}}$

 Γ_{256}/Γ

$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
1.64±0.12 OUR A	VERAGE	Error includes sca	ale fa	ctor of 1	.3. See the ideogram below.
$2.07\!\pm\!0.16 \!+\!0.02 \\ -0.07$	2.4k	^{1,2} DOBBS	15		$J/\psi ightarrow ho \gamma \pi \pi$
$1.63\!\pm\!0.26\!+\!0.02\\-0.06$		³ ABLIKIM	06V	BES2	$e^+e^- \rightarrow J/\psi \rightarrow \gamma \pi^+\pi^-$
$1.42\!\pm\!0.21\!+\!0.01\\-0.05$		⁴ ABLIKIM	06∨	BES2	$e^+e^- ightarrow J/\psi ightarrow \gamma \pi^0 \pi^0$
$1.33\!\pm\!0.05\!\pm\!0.20$		⁵ AUGUSTIN	87	DM2	$J/\psi \rightarrow \gamma \pi^+ \pi^-$
$1.36\!\pm\!0.09\!\pm\!0.23$					$J/\psi \rightarrow \gamma \pi^+ \pi^-$
$1.48 \pm 0.25 \pm 0.30$	178	EDWARDS			$e^+e^- ightarrow~2\pi^0\gamma$
2.0 ± 0.7	35	ALEXANDER		PLUT	
1.2 ± 0.6	30	⁶ BRANDELIK	78 B	DASP	$e^+e^- ightarrow \pi^+\pi^-\gamma$

WEIGHTED AVERAGE 1.64±0.12 (Error scaled by 1.3)

 $^{^{}m 1}$ Using CLEO-c data but not authored by the CLEO Collaboration.

² DOBBS 15 reports $[\Gamma(J/\psi(1S) \to \gamma f_2(1270))/\Gamma_{\text{total}}] \times [B(f_2(1270) \to \pi\pi)] = (1.744 \pm 0.052 \pm 0.122) \times 10^{-3}$ which we divide by our best value $B(f_2(1270) \to \pi\pi) = (84.2^{+2.9}_{-0.9}) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

³ ABLIKIM 06V reports $[\Gamma(J/\psi(1S) \rightarrow \gamma f_2(1270))/\Gamma_{\text{total}}] \times [B(f_2(1270) \rightarrow \pi\pi)] = (1.371 \pm 0.010 \pm 0.222) \times 10^{-3}$ which we divide by our best value $B(f_2(1270) \rightarrow \pi\pi) = (84.2^{+2.9}_{-0.9}) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

⁴ ABLIKIM 06V reports $[\Gamma(J/\psi(1S) \rightarrow \gamma f_2(1270))/\Gamma_{\text{total}}] \times [B(f_2(1270) \rightarrow \pi\pi)] = (1.200 \pm 0.027 \pm 0.174) \times 10^{-3}$ which we divide by our best value $B(f_2(1270) \rightarrow \pi\pi) = (84.2^{+2.9}_{-0.9}) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\gamma f_2(1270) \rightarrow \gamma K_S^0 K_S^0)/\Gamma_{\text{total}}$

 Γ_{257}/Γ

<i>VALUE</i> (units 10^{-5})	DOCUMENT ID	TECN	COMMENT
2.58 ^{+0.08} +0.59 -0.09-0.20	ABLIKIM	18AA BES3	$J/\psi \rightarrow \gamma K_S^0 K_S^0$

$\Gamma(\gamma f_1(1285))/\Gamma_{\text{total}}$

 Γ_{258}/Γ

$\langle {}^0_S \pi^{\mp}$
π^-
285)
π^-

¹ Assuming B($f_1(1285) \rightarrow \rho^0 \gamma$) = 0.055 ± 0.013.

$$B(J/\psi \to \gamma f_1(1285), f_1(1285) \to \pi \pi \pi \pi) = (1.44 \pm 0.39 \pm 0.27) \times 10^{-4};$$

 $B(J/\psi \to \gamma f_1(1285), f_1(1285) \to a_0(980) \pi, a_0(980) \to \eta \pi) = (3.90 \pm 0.42 \pm 0.87) \times 0^{-4}.$

$$B(J/\psi \to \gamma f_1(1285), f_1(1285) \to a_0(980)\pi, a_0(980) \to K\overline{K}) = (0.66 \pm 0.26 \pm 0.29) \times 10^{-4};$$

$$B(J/\psi \to \gamma f_1(1285), f_1(1285) \to \gamma \rho^0) = (0.25 \pm 0.07 \pm 0.03) \times 10^{-4}.$$

$\Gamma(\gamma f_0(1370) \rightarrow \gamma \pi \pi)/\Gamma_{\text{total}}$

 Γ_{259}/Γ

VALUE (units 10⁻⁵) DOCUMENT ID TECN COMMENT

 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

38 \pm 10 SARANTSEV 21 RVUE $J/\psi(1S)
ightarrow \gamma(\pi\pi, \ K\overline{K}, \ \eta\eta, \ \omega\phi)$

$\Gamma(\gamma f_0(1370) \rightarrow \gamma K \overline{K})/\Gamma_{\text{total}}$

 Γ_{260}/Γ

VALUE (units 10^{-4})	EVTS	DOCUMENT II	D	TECN	COMMENT
4.19±0.73±1.34	478	¹ DOBBS	15		$J/\psi \rightarrow \gamma K \overline{K}$
• • • We do not use th	e followin	g data for average	es, fits.	limits.	etc. • • •

ullet ullet ullet Ve do not use the following data for averages, fits, limits, etc. ullet ullet

1.3 \pm 0.4 SARANTSEV 21 RVUE $J/\psi(1S) \rightarrow \gamma (\pi \pi, K\overline{K}, \eta \eta, \omega \phi)$

$\Gamma(\gamma f_0(1370) \rightarrow \gamma K_S^0 K_S^0)/\Gamma_{\text{total}}$

 Γ_{261}/Γ

VALUE (units 10^{-5})	DOCUMENT ID	TECN	COMMENT		
1.07 ^{+0.08} +0.36 -0.07 ^{-0.34}	ABLIKIM	18AA BES3	$J/\psi \rightarrow \gamma K_S^0 K_S^0$		

https://pdg.lbl.gov

Page 68

⁵ Estimated using B($f_2(1270) \rightarrow \pi\pi$)=0.843 \pm 0.012. The errors do not contain the uncertainty in the $f_2(1270)$ decay.

⁶ Restated by us to take account of spread of E1, M2, E3 transitions. $\Gamma(\gamma f_2(1270))/\Gamma_{\text{total}}$ (units 10^{-3})

² Assuming $\Gamma(f_1(1285) \rightarrow K\overline{K}\pi)/\Gamma_{total} = 0.090 \pm 0.004$.

³ Assuming $\Gamma(\bar{f_1}(1285) \rightarrow \eta \pi \pi)/\Gamma_{\mathsf{total}} = 0.5 \pm 0.18$.

⁴ Obtained summing the sequential decay channels

⁵ Using B($f_1(1285) \rightarrow a_0(980)\pi$) = 0.37, and including unknown branching ratio for $a_0(980) \rightarrow \eta \pi$.

 $^{^{1}}$ Using CLEO-c data but not authored by the CLEO Collaboration.

E/ (/1070)	\/F					
$\Gamma(\gamma f_0(1370) \rightarrow \gamma$	•					
VALUE (units 10 ⁻⁵)	DOCUMENT ID TECN COMMENT					
	se the following data for averages, fits, limits, etc. • • •					
3.5 ± 1.0	SARANTSEV 21 RVUE $J/\psi(1S) ightarrow \gamma(\pi\pi, \ K\overline{K}, \ \eta\eta, \ \omega\phi)$					
$\Gamma(\gamma f_0(1370) \rightarrow \gamma$	$(\gamma \eta \eta')/\Gamma_{\text{total}}$ $\Gamma_{263}/\Gamma_{\text{total}}$					
$VALUE$ (units 10^{-5})	DOCUMENT ID TECN COMMENT					
• • • We do not us	se the following data for averages, fits, limits, etc. • •					
0.9 ± 0.3	SARANTSEV 21 RVUE $J/\psi(1S) ightarrow \gamma(\pi\pi, \ K\overline{K}, \ \eta\eta, \ \omega\phi)$					
$\Gamma(\gamma f_1(1420) \rightarrow \gamma$	$\gamma K \overline{K} \pi) / \Gamma_{\text{total}}$ $\Gamma_{264} / \Gamma_{\text{total}}$					
<i>VALUE</i> (units 10^{-3})	DOCUMENT ID TECN COMMENT					
0.79±0.13 OUR AV						
$0.68\!\pm\!0.04\!\pm\!0.24$	BAI 00D BES $J/\psi ightarrow \gamma K^{\pm} K_{S}^{0} \pi^{\mp}$					
$0.76\!\pm\!0.15\!\pm\!0.21$	1,2 AUGUSTIN 92 DM2 $J/\psi ightarrow \gamma K \overline{K} \pi$					
$0.87 \pm 0.14 ^{+0.14}_{-0.11}$	1 BAI 90C MRK3 $J/\psi ightarrow ~\gamma \kappa_{S}^{0} \kappa^{\pm} \pi^{\mp}$					
¹ Included unknov	wn branching fraction $f_1(1420) ightarrow \ \mathcal{K} \overline{\mathcal{K}} \pi.$					
	$K^*(892)K1^{++}$ partial wave.					
$\Gamma(\gamma f_0(1500) \rightarrow \gamma$	•					
VALUE (units 10 ⁻⁴) 1.09±0.24 OUR AV						
1.09 ± 0.24 OOR AV $1.21\pm0.29\pm0.24$	4					
$1.00 \pm 0.03 \pm 0.45$	² ABLIKIM 06V BES2 $e^+e^- \rightarrow J/\psi \rightarrow \gamma \pi^+\pi^-$					
$1.02 \pm 0.09 \pm 0.45$	² ABLIKIM 06V BES2 $e^+e^- \rightarrow J/\psi \rightarrow \gamma \pi^0 \pi^0$					
	se the following data for averages, fits, limits, etc. \bullet \bullet					
0.90 ± 0.17	SARANTSEV 21 RVUE $J/\psi(1S) ightarrow \gamma (\pi \pi, \ \kappa \overline{K},$					
5.7 ±0.8	$\eta\eta,\;\omega\phi)$ 3,4 BUGG 95 MRK3 $J/\psi o\gamma\pi^+\pi^-\pi^+\pi^-$					
	Hata but not authored by the CLEO Collaboration.					
2 Including unkno	wn branching fraction to $\pi\pi$.					
	wn branching ratio for $f_0(1500) \rightarrow \pi^+\pi^-\pi^+\pi^-$.					
⁴ Assuming that <i>t</i>	$f_0(1500)$ decays only to two <i>S</i> -wave dipions.					
_						
$\Gamma(\gamma f_0(1500) \rightarrow \gamma$	•					
VALUE (units 10 ⁻⁵)						
$1.65^{+0.26}_{-0.31}^{+0.51}_{-1.40}$	5.5k 1 ABLIKIM 13N BES3 $J/\psi ightarrow \gamma \eta \eta$					
	se the following data for averages, fits, limits, etc. • •					
1.1 ± 0.4	SARANTSEV 21 RVUE $J/\psi(1S) ightarrow \gamma \left(\pi\pi, \mathcal{K}, \eta\eta, \omega\phi ight)$					
¹ From partial wave analysis including all possible combinations of 0^{++} , 2^{++} , and 4^{++} resonances.						
$\Gamma(\gamma f_0(1500) \rightarrow \gamma$	$\gamma K_S^0 K_S^0) / \Gamma_{\text{total}}$ $\Gamma_{267} / \Gamma_{\text{total}}$					
<i>VALUE</i> (units 10^{-5})	DOCUMENT ID TECN COMMENT					
$1.59\pm0.16^{+0.18}_{-0.56}$	ABLIKIM 18AA BES3 $J/\psi ightarrow \gamma \kappa_S^0 \kappa_S^0$					
https://pdg.lbl.g	ov Page 69 Created: 8/11/2022 09:37					

```
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                            RVUE J/\psi(1S)
ightarrow ~\gamma ~(\pi\,\pi ,
0.7 \pm 0.3
                                                  SARANTSEV 21
                                                                                              K\overline{K}, \eta\eta, \omega\phi)
\Gamma(\gamma f_0(1500) \rightarrow \gamma \eta \eta')/\Gamma_{\text{total}}
                                                                                                               \Gamma_{268}/\Gamma
VALUE (units 10^{-5})
                                DOCUMENT ID
                                                           TECN COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                SARANTSEV 21 RVUE J/\psi(1S) \rightarrow \gamma(\pi\pi, K\overline{K}, \eta\eta, \omega\phi)
1.2 \pm 0.5
\Gamma(\gamma f_1(1510) \rightarrow \gamma \eta \pi^+ \pi^-)/\Gamma_{\text{total}}
VALUE (units 10^{-4})
4.5\pm1.0\pm0.7
                                                  BAI
\Gamma(\gamma f_2'(1525))/\Gamma_{\text{total}}
                                                                                                               \Gamma_{270}/\Gamma
VALUE (units 10^{-4}) CL\% EVTS
                                                      DOCUMENT ID
                                                                                  TECN COMMENT
   5.7 ^{+0.8}_{-0.5} OUR AVERAGE Error includes scale factor of 1.5. See the ideogram
below.
                                                 1,2 DOBBS
                                                                                             J/\psi \rightarrow \gamma K \overline{K}
                                       750
                                                                           15
   8.1 \pm 0.9 \pm 0.2
   3.85 \pm 0.17 {+1.91 \atop -0.73}
                                                   3<sub>BAI</sub>
                                                                           03G BES J/\psi \rightarrow \gamma K \overline{K}
   3.6 \ \pm 0.4 \ ^{+1.4}_{-0.4}
                                                   <sup>3</sup> BAI
                                                                                             J/\psi \rightarrow \gamma K^+ K^-
                                                                           96c BES
                                                   <sup>3</sup> AUGUSTIN
                                                                                  DM2 J/\psi \rightarrow \gamma K^+ K^-
   5.6 \pm 1.4 \pm 0.9
                                                                           88 DM2 J/\psi \rightarrow \gamma K_S^0 K_S^0
87 MRK3 J/\psi \rightarrow \gamma K^+ K^-
                                                   <sup>3</sup> AUGUSTIN
   4.5 \pm 0.4 \pm 0.9
                                                   <sup>3</sup> BALTRUSAIT...87
   6.8 \pm 1.6 \pm 1.4
• • We do not use the following data for averages, fits, limits, etc. •
                                                   <sup>4</sup> BRANDELIK 79C DASP e^+e^- \rightarrow \pi^+\pi^-\gamma
                                          4
                             90
                                                                                  PLUT e^+e^- \rightarrow K^+K^-\gamma
                                          3
 < 2.3
                             90
                                                      ALEXANDER 78
   <sup>1</sup>Using CLEO-c data but not authored by the CLEO Collaboration.
```

² DOBBS 15 reports $[\Gamma(J/\psi(1S) \to \gamma f_2'(1525))/\Gamma_{\text{total}}] \times [B(f_2'(1525) \to \kappa \overline{\kappa})] = (7.09 \pm 0.46 \pm 0.67) \times 10^{-4}$ which we divide by our best value $B(f_2'(1525) \to \kappa \overline{\kappa}) = (87.6 \pm 2.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

³ Using B($f'_{2}(1525) \to K\overline{K}$) = 0.888.

⁴ Assuming isotropic production and decay of the $f_2'(1525)$ and isospin.

$\Gamma(\gamma f_2'(1525) \rightarrow \gamma K_S^0 K_S^0)/\Gamma_{\text{total}}$

 Γ_{271}/Γ

VALUE (units 10^{-5})	DOCUMENT ID	TECN	COMMENT
$7.99 ^{+0.03}_{-0.04} ^{+0.69}_{-0.50}$	ABLIKIM	18AA BES3	$J/\psi \rightarrow \gamma K_S^0 K_S^0$
$\Gamma(\gamma f_2'(1525) \rightarrow \gamma \eta \eta)/\Gamma_{\text{total}}$			Γ ₂₇₂ /Γ

VALUE (units 10^{-5})EVTSDOCUMENT IDTECNCOMMENT $3.42^{+0.43}_{-0.51} + 1.30$ 5.5k 1 ABLIKIM13NBES3 $J/\psi \rightarrow \gamma \eta \eta$

$\Gamma(\gamma f_2(1640) \rightarrow \gamma \omega \omega)/\Gamma_{\text{total}}$

 Γ_{273}/Γ

VALUE (units 10^{-3})	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT
0.28±0.05±0.17	141	ABLIKIM 06	H BES	$J/\psi ightarrow \gamma \omega \omega$

$\Gamma(\gamma f_0(1710) \rightarrow \gamma \pi \pi)/\Gamma_{total}$

 Γ_{274}/Γ

VALUE (units 10 ⁻⁴) EVTS	DOCUMENT ID		TECN	COMMENT
3.8 \pm 0.5 OUR AVERAGE				
$3.72 \pm 0.30 \pm 0.43$ 483	¹ DOBBS	15		$J/\psi ightarrow ho \gamma \pi \pi$
$3.96 \pm 0.06 \pm 1.12$	² ABLIKIM	06V	BES2	$e^+e^- \rightarrow J/\psi \rightarrow \gamma \pi^+\pi^-$
$3.99 \pm 0.15 \pm 2.64$	² ABLIKIM	06V	BES2	$e^+e^- ightarrow~J/\psi ightarrow~\gamma\pi^0\pi^0$
• • • We do not use the following	owing data for ave	rages	, fits, lin	nits, etc. • • •
0.6 ± 0.2	³ SARANTSEV	21	RVUE	$J/\psi(1S) ightarrow \ \gamma \ (\pi\pi, \ K\overline{K},$
				$\eta \eta, \;\; \omega \phi)$

https://pdg.lbl.gov

Page 71

 $^{^{1}}$ From partial wave analysis including all possible combinations of 0^{++} , 2^{++} , and 4^{++} resonances

$$2.5 \pm 1.6 \pm 0.8$$

VALUE (units 10^{-4})

98H BES

DOCUMENT ID

 $J/\psi \rightarrow \gamma \pi^0 \pi^0$

TECN

COMMENT

$\Gamma(\gamma f_0(1710) \rightarrow \gamma K \overline{K})/\Gamma_{\text{total}}$

 Γ_{275}/Γ

9.5 +	1.0 0.5	OUR AVE	RAGE E	ror	includes scale fa	ctor c	of 1.5. S	ee the id	eogram
below.									
8.00+	0.12 0.08	3 + 1.24 3 - 0.40			¹ ABLIKIM	18AA	BES3	$J/\psi ightarrow$	$\gamma K_S^0 K_S^0$
$11.76\pm$	0.54	\pm 0.94	1.2k		² DOBBS	15		$J/\psi ightarrow$	$\gamma K \overline{K}$
9.62 ± 0.0	29	$+3.51 \\ -1.86$			³ BAI	03 G	BES	$J/\psi ightarrow$	$\gamma K \overline{K}$
5.0 ±	8.0	$^{+1.8}_{-0.4}$		1,	⁴ BAI	96 C	BES	$J/\psi ightarrow$	$\gamma K^+ K^-$
$9.2~\pm$	1.4	± 1.4			$^{ m 1}$ AUGUSTIN				
10.4 \pm	1.2	± 1.6			¹ AUGUSTIN	88	DM2	$J/\psi ightarrow$	$\gamma K_S^0 K_S^0$
9.6 \pm					$^{ m 1}$ BALTRUSAIT.	.87	MRK3	$J/\psi ightarrow$	
• • • We d	lo not	t use the fo	llowing dat	a f	or averages, fits,	limits	s, etc. •	• •	
$2.3~\pm$	0.8				⁵ SARANTSEV	21	RVUE	$J/\psi(1S)$	$ ightarrow \gamma$

$$2.3\ \pm\ 0.8$$

⁵ SARANTSEV 21 RVUE
$$J/\psi(1S) \rightarrow \gamma$$
 $(\pi \pi, K\overline{K},$

$$\eta\eta, \omega\phi)$$

$1,6$
 BAI 96C BES $J/\psi \rightarrow \gamma K^+ K^ ^{7}$ BISELLO 89B $J/\psi \rightarrow 4\pi \gamma$

⁸ BALTRUSAIT...87 MRK3
$$J/\psi
ightarrow \gamma \pi^{+} \pi^{-}$$

82D CBAL $e^{+}e^{-} \rightarrow \eta \eta \gamma$ ⁹ EDWARDS

WEIGHTED AVERAGE 9.5+1.0-0.5 (Error scaled by 1.5)

https://pdg.lbl.gov

Page 72

Created: 8/11/2022 09:37

 $[\]frac{1}{2}$ Using CLEO-c data but not authored by the CLEO Collaboration.

Including unknown branching fraction to $\pi\pi$.

 $^{^3}$ There is a further (2.4 \pm 0.8) \times 10 $^{-4}$ scalar contribution at 1765 MeV.

```
^1 Includes unknown branching fraction to K^+K^- or K^0_SK^0_S. We have multiplied K^+K^-
     measurement by 2, and K^0_S K^0_S by 4 to obtain K\overline{K} result.
   ^2 Using CLEO-c data but not authored by the CLEO Collaboration.
   ^3Includes unknown branching ratio to K^+K^- or K^0_SK^0_S.
   <sup>4</sup> Assuming J^P = 2^+ for f_0(1710).
   <sup>5</sup> There is a further (6 \pm 2) \times 10<sup>-4</sup> scalar contribution at 1765 MeV.
   <sup>6</sup> Assuming J^P = 0^+ for f_0(1710).
   <sup>7</sup> Includes unknown branching fraction to \rho^0 \rho^0.
   <sup>8</sup> Includes unknown branching fraction to \pi^+\pi^-.
   <sup>9</sup> Includes unknown branching fraction to \eta \eta.
J/\psi(1S) mass (units 10^{-4})
\Gamma(\gamma f_0(1710) \rightarrow \gamma \omega \omega)/\Gamma_{\text{total}}
                                                                                                              \Gamma_{276}/\Gamma
VALUE (units 10^{-3})
                                                  DOCUMENT ID
                                                                              TECN
0.31\pm0.06\pm0.08
                                                  ABLIKIM
                                                                       06H BES
\Gamma(\gamma f_0(1710) \rightarrow \gamma \eta \eta)/\Gamma_{\text{total}}
                                                                                                              \Gamma_{277}/\Gamma
VALUE (units 10^{-4})
                                                  DOCUMENT ID
                                                                              TECN
2.35_{-0.11-0.74}^{+0.13+1.24}
                                               <sup>1</sup> ABLIKIM
                                  5.5k
                                                                       13N BES3
                                                                                       J/\psi \rightarrow \gamma \eta \eta
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                               <sup>2</sup> SARANTSEV 21 RVUE J/\psi(1S) \rightarrow \gamma (\pi \pi,
1.2 \pm 0.4
                                                                                             K\overline{K}, \eta\eta, \omega\phi)
   <sup>1</sup> From partial wave analysis including all possible combinations of 0^{++}, 2^{++}, and 4^{++}
   <sup>2</sup> There is a further (0.7 \pm 0.1) \times 10^{-4} scalar contribution at 1765 MeV.
\Gamma(\gamma f_0(1710) \rightarrow \gamma \eta \eta')/\Gamma_{\text{total}}
                                                                                                              \Gamma_{278}/\Gamma
VALUE (units 10^{-5})
                                DOCUMENT ID
                                                           TECN COMMENT
ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet
                             <sup>1</sup> SARANTSEV 21 RVUE J/\psi(1S) \rightarrow \gamma(\pi\pi, K\overline{K}, \eta\eta, \omega\phi)
6.5 \pm 2.5
   ^{1} There is a further (2.5 \pm 1.1) \times 10^{-5} scalar contribution at 1765 MeV.
\Gamma(\gamma f_0(1710) \rightarrow \gamma \omega \phi)/\Gamma_{\text{total}}
                                                                                                              \Gamma_{279}/\Gamma
VALUE (units 10^{-4})
                                                  DOCUMENT ID
                                                                              TECN
2.5 \pm 0.6 OUR AVERAGE
2.00\pm0.08^{+1.38}_{-1.64}
                                                  ABLIKIM
                                                                       13J BES3
                                                                                         J/\psi \rightarrow \gamma \omega \phi
                                     95
                                                                       06J BES2 J/\psi 
ightarrow \gamma \omega \phi
2.61\!\pm\!0.27\!\pm\!0.65
                                                 ABLIKIM

    • • We do not use the following data for averages, fits, limits, etc.

                                               <sup>1</sup> SARANTSEV 21
                                                                              RVUE J/\psi(1S) \rightarrow \gamma (\pi \pi,
0.1 \pm 0.1
                                                                                             K\overline{K}, \eta\eta, \omega\phi)
   <sup>1</sup> There is a further (2.2 \pm 0.4) \times 10<sup>-4</sup> scalar contribution at 1765 MeV.
\Gamma(\gamma f_0(1750) \rightarrow \gamma K_S^0 K_S^0)/\Gamma_{\text{total}}
                                                                                                              \Gamma_{280}/\Gamma
VALUE (units 10^{-5}
                                                  DOCUMENT ID
                                                                              TECN COMMENT
1.11\pm0.06^{+0.19}_{-0.32}
                                                                       18AA BES3 J/\psi \rightarrow \gamma K_S^0 K_S^0
                                                  ABLIKIM
https://pdg.lbl.gov
                                                 Page 73
                                                                               Created: 8/11/2022 09:37
```

$\Gamma(\gamma f_2(1810) \rightarrow \gamma f_2(1810))$	$\eta\eta)/\Gamma_{total}$					Γ_{281}/Γ
VALUE (units 10^{-5})	EVTS	DOCUMENT IE)	СОММЕ	ENT	
$5.40^{m{+0.60}}_{m{-0.67}} + 3.42$	5.5k	¹ ABLIKIM	13N	J/ψ \rightarrow	$\gamma \eta \eta$	
¹ From partial wave resonances.	e analysis ind	cluding all possibl	e comb	inations	of 0 ⁺⁺ , 2 ⁺⁺	, and 4 ⁺⁺
$\Gamma(\gamma f_2(1910) \rightarrow \gamma e^{-1})$, -	I				Γ_{282}/Γ
VALUE (units 10^{-3})	<u>EVTS</u>	DOCUMENT ID)	TECN	COMMENT	
$0.20\pm0.04\pm0.13$	151	ABLIKIM	06н	BES	$J/\psi \rightarrow \gamma \omega \omega$	υ
$\Gamma(\gamma f_2(1950) \rightarrow \gamma$	K*(892)K	*(892))/Γ _{total}				Γ ₂₈₃ /Γ
VALUE (units 10^{-3})		DOCUMENT ID				
$0.7 \pm 0.1 \pm 0.2$		BAI	00в ВI	$ES = J_{j}$	$/\psi \rightarrow \gamma K^+ K$	$(0_{\pi} + \pi^{-})$
$\Gamma(\gamma f_0(2020) \rightarrow \gamma f_0(2020))$	$\pi\pi)/\Gamma_{tota}$					Γ ₂₈₄ /Γ
$VALUE$ (units 10^{-5})	DOCUMEN	IT ID TECN	CON	<i>MENT</i>		
• • • We do not use	the followin	g data for averag	es, fits,	limits,	etc. • • •	
42 ± 10	SARANT	SEV 21 RVU	$E \;\; J/\psi$	$\gamma(1S) \rightarrow$	$\gamma(\pi\pi, K\overline{K},$	$\eta\eta$, $\omega\phi$)
$\Gamma(\gamma f_0(2020) \rightarrow \gamma$	$(\overline{K})/\Gamma_{tot}$	al				Γ ₂₈₅ /Γ
$VALUE$ (units 10^{-5})	DOCUMEN	IT ID TECN	CON	1MENT		
• • • We do not use	the followin	g data for averag	es, fits,	limits,	etc. • • •	
55 ± 25	SARANT	SEV 21 RVU	$E \;\; J/\psi$	$\gamma(1S) \rightarrow$	$\gamma(\pi\pi, K\overline{K},$	$\eta\eta,\;\;\omega\phi)$
$\Gamma(\gamma f_0(2020) \rightarrow \gamma \gamma)$	$\eta\eta)/\Gamma_{total}$					Γ_{286}/Γ
$VALUE$ (units 10^{-5})	DOCUMEN	IT ID TECN	CON	<i>IMENT</i>		
• • • We do not use						
10 ± 10	SARANT	SEV 21 RVU	$E \;\; J/\psi$	$\gamma(1S) \rightarrow$	$\gamma(\pi\pi, KK,$	$\eta\eta, \;\;\omega\phi)$
$\Gamma(\gamma f_4(2050))/\Gamma_{tot}$	tal					Γ ₂₈₇ /Γ
VALUE (units 10 ⁻³)		DOCUMENT ID)	TECN	COMMENT	
2.7±0.5±0.5	·	¹ BALTRUSAI	Т87	MRK3	$J/\psi \rightarrow \gamma \pi^{+}$	\vdash_{π}
$^{ m 1}$ Assuming branchi	ing fraction	$f_4(2050) \rightarrow \pi \pi$	total =	= 0.167.		
$\Gamma(\gamma f_0(2100) \rightarrow \gamma)$	$nn)/\Gamma_{total}$					Γ ₂₈₈ /Γ
VALUE (units 10^{-4})	-	DOCUMENT IE)	TECN	COMMENT	2007
1.13 ^{+0.09+0.64} -0.10-0.28)
• • • We do not use						
1.8 ±1.5					$J/\psi(1S) ightarrow$	$\gamma (\pi \pi,$
$^{ m 1}$ From partial wave	e analysis inc				$K\overline{K}$, $\eta\eta$,	$\omega \phi$)
resonances.	\					
$\Gamma(\gamma f_0(2100) \rightarrow \gamma)$,					Г ₂₉₀ /Г
VALUE (units 10 ⁻⁴)		DOCUMENT ID)			
$6.24 \pm 0.48 \pm 0.87$	744	¹ DOBBS	15		$J/\psi \rightarrow \gamma \pi \tau$	τ
https://pdg.lbl.go	V	Page 74		Creat	ced: 8/11/20	022 09:37

```
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                 SARANTSEV 21 RVUE J/\psi(1S) \rightarrow \gamma (\pi \pi,
2.0 \pm 0.8
                                                                                            K\overline{K}, \eta\eta, \omega\phi)
   ^{
m 1} Using CLEO-c data but not authored by the CLEO Collaboration.
\Gamma(\gamma f_0(2100) \rightarrow \gamma K \overline{K})/\Gamma_{\text{total}}
                                                                                                             \Gamma_{289}/\Gamma
                                DOCUMENT ID
                                                       TECN COMMENT
VALUE (units 10^{-5})
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                SARANTSEV 21 RVUE J/\psi(1S) \rightarrow \gamma(\pi\pi, K\overline{K}, \eta\eta, \omega\phi)
32 \pm 20
\Gamma(\gamma f_0(2200))/\Gamma_{\text{total}}
                                                                                                             \Gamma_{291}/\Gamma
VALUE (units 10^{-4})
                                                 DOCUMENT ID
                                                                      TECN COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                      88 DM2 J/\psi \rightarrow \gamma K_S^0 K_S^0
                                               <sup>1</sup> AUGUSTIN
   <sup>1</sup> Includes unknown branching fraction to K_{\varsigma}^{0}K_{\varsigma}^{0}.
\Gamma(\gamma f_0(2200) \rightarrow \gamma \pi \pi)/\Gamma_{\text{total}}
                                                                                                             \Gamma_{294}/\Gamma
                                DOCUMENT ID
VALUE (units 10^{-5})
                                                        TECN COMMENT
ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet
                                SARANTSEV 21 RVUE J/\psi(1S) \rightarrow \gamma(\pi\pi, K\overline{K}, \eta\eta, \omega\phi)
5\pm2
\Gamma(\gamma f_0(2200) \rightarrow \gamma K \overline{K})/\Gamma_{\text{total}}
                                                                                                             \Gamma_{292}/\Gamma
VALUE (units 10^{-4})
                                               <sup>1</sup> DOBBS
5.86 \pm 0.49 \pm 1.20
                                   490
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                             RVUE J/\psi(1S) \rightarrow \gamma (\pi \pi,
                                                 SARANTSEV 21
0.5 \pm 0.5
                                                                                            K\overline{K}, \eta\eta, \omega\phi)
   ^{
m 1} Using CLEO-c data but not authored by the CLEO Collaboration.
\Gamma(\gamma f_0(2200) \rightarrow \gamma K_S^0 K_S^0)/\Gamma_{\text{total}}
                                                                                                             \Gamma_{293}/\Gamma
                                                                        TECN COMMENT
VALUE (units 10^{-4})
                                                 DOCUMENT ID
2.72^{igoplus 0.08}_{-0.06} + 0.17
                                                                      18AA BES3 J/\psi \rightarrow \gamma K_S^0 K_S^0
                                                 ABLIKIM
\Gamma(\gamma f_0(2200) \rightarrow \gamma \eta \eta)/\Gamma_{\text{total}}
                                                                                                             \Gamma_{295}/\Gamma
VALUE (units 10^{-5})
                                DOCUMENT ID
                                                     TECN COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                SARANTSEV 21 RVUE J/\psi(1S) \rightarrow \gamma(\pi\pi, K\overline{K}, \eta\eta, \omega\phi)
0.7 \pm 0.4
\Gamma(\gamma f_J(2220))/\Gamma_{\text{total}}
                                                                                                             \Gamma_{296}/\Gamma
VALUE (units 10^{-5}) CL\% EVTS
                                                   DOCUMENT ID
                                                                               TECN COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                 ^{1} BAI
                                                                         96B BES
                                                                                          e^+e^- \rightarrow \gamma \overline{p} p, K \overline{K}
>300
                                                 <sup>2</sup> HASAN
                                                                               SPEC \overline{p}p \rightarrow \pi^+\pi^-
                            99.9
>250
```

Page 75

Created: 8/11/2022 09:37

https://pdg.lbl.gov

```
Citation: R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022)
                                                       <sup>3</sup> AUGUSTIN
                                                                                         DM2 J/\psi \rightarrow \gamma K^+ K^-
 < 2.3
                                                       <sup>3</sup> AUGUSTIN
                                                                                 88 DM2 J/\psi \rightarrow \gamma K_c^0 K_c^0
 < 1.6
                                                       ^3 BALTRUSAIT...86D MRK3 J/\psi 
ightarrow \ \gamma \, \kappa_S^0 \, \kappa_S^0
    12.4^{+6.4}_{-5.2}\pm 2.8
      8.4^{+3.4}_{-2.8}\pm1.6
                                                       <sup>3</sup> BALTRUSAIT...86D MRK3 J/\psi \rightarrow \gamma K^{+}K^{-}
                                           93
   ^{1}\,\mathsf{Using}\,\,\mathsf{BARNES}\,\,93.
   <sup>2</sup> Using BAI 96B.
   <sup>3</sup> Includes unknown branching fraction to K^+K^- or K_5^0K_5^0.
\Gamma(\gamma f_J(2220) \rightarrow \gamma \pi \pi)/\Gamma_{\text{total}}
                                                                                                                           \Gamma_{297}/\Gamma
VALUE (units 10^{-5})
                                          1,2 DOBBS
                                                                        15
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                                        J/\psi 
ightarrow \gamma \pi^0 \pi^0 e^+ e^- 
ightarrow J/\psi 
ightarrow \gamma \pi^+ \pi^-
                                                                       98H BES
   14 \pm 8 \pm 4
                                                BAI
     8.4 \pm 2.6 \pm 3.0
                                                BAI
                                                                        96B BES
   ^1 Using CLEO-c data but not authored by the CLEO Collaboration. ^2 For \Gamma=20/50 MeV, the 90% CL upper limits for \pi^+\,\pi^- and \pi^0\,\pi^0 are 2.6/5.2\times 10^{-5}
      and 1.3/1.9 \times 10^{-5}, respectively.
```

 Γ_{298}/Γ

VALUE (units 10^{-5})	CL%	DOCUMENT II)	TECN	COMMENT
< 4.1	90	1,2 DOBBS	15		$J/\psi \rightarrow \gamma K \overline{K}$
\\/		fallandar data fan		E:4- I:	

We do not use the following data for averages, fits, limits, etc. ullet ullet

< 3.6			$e^+e^- \rightarrow J/\psi \rightarrow \gamma K^+K^-$
< 2.9	³ DEL-AMO-SA100	BABR	$e^+e^- \rightarrow J/\psi \rightarrow \gamma K_S^0 K_S^0$
$6.6\!\pm\!2.9\!\pm\!2.4$			$e^+e^- \rightarrow J/\psi \rightarrow \gamma K^+K^-$
$10.8 \pm 4.0 \pm 3.2$	BAI 96B	BES	$e^+e^- \rightarrow J/\psi \rightarrow \gamma K_S^0 K_S^0$

 $^{^{1}\,\}mbox{Using CLEO-c}$ data but not authored by the CLEO Collaboration.

$\Gamma(\gamma f_J(2220) \rightarrow \gamma p \overline{p})/\Gamma_{\text{total}}$

 Γ_{299}/Γ

VALUE (units 10^{-5})	DOCUMENT ID		TECN	COMMENT
$1.5 \pm 0.6 \pm 0.5$	BAI	96 B	BES	$e^+e^- o J/\psi o \gamma p \overline{p}$

$\Gamma\big(\gamma \, \mathit{f}_{0}(2330) \to \gamma \, \mathit{K}_{S}^{0} \, \mathit{K}_{S}^{0}\big) / \Gamma_{\mathsf{total}}$

 Γ_{300}/Γ

Created: 8/11/2022 09:37

VALUE (units 10 °)	DOCUMENT ID	<u> IECN</u>	COMMENT
4.95±0.21 ^{+0.66} -0.72	ABLIKIM	18AA BES3	$J/\psi \rightarrow \gamma K_S^0 K_S^0$

• • We do not use the following data for averages, fits, limits, etc.

0.6
$$\pm$$
0.1 SARANTSEV 21 RVUE $J/\psi(1S) \to \gamma (\pi \pi, K\overline{K}, \eta \eta, \omega \phi)$

 $[\]Gamma(\gamma f_J(2220) \rightarrow \gamma K \overline{K})/\Gamma_{\text{total}}$

 $^{^2}$ For $\Gamma=20/50$ MeV, the 90% CL upper limits for $K^+\,K^-$ and $K^0_S\,K^0_S$ are $1.7/3.1\times10^{-5}$ and $1.2/2.0 \times 10^{-5}$, respectively.

 $^{^3}$ For spin 2 and helicity 0; other combinations lead to more stringent upper limits.

```
\Gamma(\gamma f_0(2330) \rightarrow \gamma \pi \pi)/\Gamma_{\text{total}}
                                                                                                            \Gamma_{301}/\Gamma
VALUE (units 10^{-5})
                                DOCUMENT ID
• • • We do not use the following data for averages, fits, limits, etc. • •
                                                           RVUE J/\psi(1S) \rightarrow \gamma(\pi\pi, K\overline{K}, \eta\eta, \omega\phi)
4\pm2
                               SARANTSEV 21
\Gamma(\gamma f_0(2330) \rightarrow \gamma \eta \eta)/\Gamma_{\text{total}}
                                                                                                            \Gamma_{302}/\Gamma
VALUE (units 10^{-5})
                                DOCUMENT ID
                                                            TECN COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                SARANTSEV 21 RVUE J/\psi(1S) \rightarrow \gamma(\pi\pi, K\overline{K}, \eta\eta, \omega\phi)
1.5 \pm 0.4
\Gamma(\gamma f_2(2340) \rightarrow \gamma \eta \eta)/\Gamma_{\text{total}}
                                                                                                            \Gamma_{303}/\Gamma
VALUE (units 10^{-5})
                                                 DOCUMENT ID
                                                                            TECN COMMENT
5.60^{+0.62}_{-0.65}^{+2.37}_{-2.07}
                                               <sup>1</sup> ABLIKIM
                                  5.5k
                                                                      13N BES3 J/\psi \rightarrow \gamma \eta \eta
   <sup>1</sup> From partial wave analysis including all possible combinations of 0^{++}, 2^{++}, and 4^{++}
\Gamma(\gamma f_2(2340) \rightarrow \gamma K_S^0 K_S^0)/\Gamma_{\text{total}}
                                                                                                            \Gamma_{304}/\Gamma
VALUE (units 10^{-5})
                                                                          TECN COMMENT
                                                 DOCUMENT ID
5.54 + 0.34 + 3.82
-0.40 - 1.49
                                                                     18AA BES3 J/\psi \rightarrow \gamma K_S^0 K_S^0
                                                 ABLIKIM
\Gamma(\gamma X(1835) \rightarrow \gamma \pi^+ \pi^- \eta')/\Gamma_{\text{total}}
                                                                                                            \Gamma_{305}/\Gamma
VALUE (units 10^{-4})
                                                 DOCUMENT ID
                                                                             TECN
2.7 ^{+0.6}_{-0.8} OUR AVERAGE Error includes scale factor of 1.6.
3.93\pm0.38^{+0.31}_{-0.84}
                                                                      16J BES3 J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'
                                               <sup>1</sup> ABLIKIM
                                                                      05R BES2 J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'
                                                 ABLIKIM
2.2 \pm 0.4 \pm 0.4
                                   264

    • • We do not use the following data for averages, fits, limits, etc.

2.87 \pm 0.09 ^{+0.49}_{-0.52}
                                              <sup>2</sup> ABLIKIM
                                 4265
                                                                     11c BES3 J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'
   <sup>1</sup> From a fit of the measured \pi^+\pi^-\eta' lineshape that accounts for the abrupt distortion
     observed at the p\overline{p} threshold with a Flatte formula in addition to known backgrounds and
     contributors, as well as an ad hoc Breit-Wigner (M \approx 1919 MeV; \Gamma \approx 51 MeV) that is
     required for a good fit. Another explanation for the distortion provided by ABLIKIM 16J
     is that a second resonance near 1870 MeV interferes with the X(1835); fits to this
     possibility yield product branching fraction values compatible with that shown within the
     respective systematic uncertainties.
   <sup>2</sup> From a fit of the \pi^+\pi^-\eta' mass distribution to a combination of \gamma f_1(1510), \gamma X(1835),
     and two states \gamma X(2120) and \gamma X(2370), for M(\pi^+\pi^-\eta') < 2.8 GeV, and accounting
     for backgrounds from non-\eta' events and J/\psi \to \pi^0 \pi^+ \pi^- \eta'.
\Gamma(\gamma X(1835) \rightarrow \gamma p \overline{p})/\Gamma_{\text{total}}
                                                                                                            \Gamma_{306}/\Gamma
VALUE (units 10^{-4}) EVTS
                                                 DOCUMENT ID TECN COMMENT
0.77^{+0.15}_{-0.09} OUR AVERAGE
0.90 {}^{+\, 0.04 \, +\, 0.27}_{-\, 0.11 \, -\, 0.55}
                                               <sup>1</sup> ABLIKIM
                                                                      12D BES3 J/\psi \rightarrow \gamma p \overline{p}
1.14 ^{+\, 0.43\, +\, 0.42}_{-\, 0.30\, -\, 0.26}
                                              <sup>2</sup> ALEXANDER 10
                                                                             CLEO J/\psi \rightarrow \gamma p \overline{p}
                                   231
                                                                              Created: 8/11/2022 09:37
https://pdg.lbl.gov
                                                Page 77
```

 $0.70\pm0.04 {+\, 0.19 \atop -\, 0.08}$ 03F BES2 $J/\psi \rightarrow \gamma p \overline{p}$ $^{
m 1}$ From the fit including final state interaction effects in isospin 0 S-wave according to ² From a fit of the $p\overline{p}$ mass distribution to a combination of $\gamma X(1835)$, γR with M(R)= 2100 MeV and $\Gamma(R) = 160$ MeV, and $\gamma p \overline{p}$ phase space, for $M(p \overline{p}) < 2.85$ GeV. $\Gamma(\gamma X(1835) \rightarrow \gamma K_S^0 K_S^0 \eta) / \Gamma_{\text{total}}$ Γ_{307}/Γ TECN COMMENT *VALUE* (units 10^{-5}) DOCUMENT ID $3.31^{+0.33}_{-0.30}^{+1.96}_{-1.29}$ 15T BES3 $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta$ **ABLIKIM** $\Gamma(\gamma X(1835) \rightarrow \gamma \gamma \phi(1020))/\Gamma_{\text{total}}$ Γ_{308}/Γ *VALUE* (units 10^{-6}) DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ ABLIKIM 305 18I BES3 $J/\psi \rightarrow \gamma \gamma \phi$ (1020) $1.77 \pm 0.35 \pm 0.25$ ² ABLIKIM 1.3k $J/\psi \rightarrow \gamma \gamma \phi (1020)$ $8.09 \pm 1.99 \pm 1.36$ 1 Constructive interference between the X(1835) and $\eta(1405)/\eta(1475)$ is assumed in a fit to the $\gamma \phi$ invariant mass. ²Destructive interference between the X(1835) and $\eta(1405)/\eta(1475)$ is assumed in a fit to the $\gamma \phi$ invariant mass. $\Gamma(\gamma X(1835) \rightarrow \gamma \gamma \gamma)/\Gamma_{\text{total}}$ $< 3.56 \times 10^{-6}$ 180 BES3 $\psi(2S) \rightarrow \pi^+\pi^-\gamma\gamma\gamma$ 90 **ABLIKIM** $\Gamma(\gamma X(1835) \rightarrow \gamma 3(\pi^+\pi^-))/\Gamma_{\text{total}}$ Γ_{310}/Γ VALUE (units 10^{-5}) DOCUMENT ID TECN COMMENT $2.44\pm0.36^{+0.60}_{-0.74}$ 130 BES3 $J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$ 0.6k **ABLIKIM** $\Gamma(\gamma X(2370) \rightarrow \gamma K^+ K^- \eta')/\Gamma_{\text{total}}$ Γ_{311}/Γ VALUE (units 10^{-5}) DOCUMENT ID TECN $J/\psi \rightarrow \gamma K^+ K^- \eta'$ $1.79 \pm 0.23 \pm 0.65$ **ABLIKIM** $\Gamma(\gamma X(2370) \rightarrow \gamma K_S^0 K_S^0 \eta') / \Gamma_{\text{total}}$ Γ_{312}/Γ VALUE (units 10^{-5}) DOCUMENT ID TECN COMMENT 20Q BES3 $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta'$ $1.18 \pm 0.32 \pm 0.39$ **ABLIKIM** $\Gamma(\gamma X(2370) \rightarrow \gamma \eta \eta \eta')/\Gamma_{\text{total}}$ Γ_{313}/Γ VALUE (units 10^{-6}) DOCUMENT ID TECN COMMENT 21c BES3 $J/\psi(1S) \rightarrow \gamma \eta \eta \eta'$ <9.2 90 **ABLIKIM** $\Gamma(\gamma p \overline{p})/\Gamma_{\text{total}}$ Γ_{314}/Γ VALUE (units 10^{-3}) TECN COMMENT $0.38 \pm 0.07 \pm 0.07$ 84 • • We do not use the following data for averages, fits, limits, etc. • **PERUZZI** < 0.11 MRK1 e^+e^-

https://pdg.lbl.gov

Page 78

$\Gamma(\gamma p \overline{p} \pi^+ \pi^-)/\Gamma_{\text{tota}}$	I					Γ ₃₁₅ /Γ
<u>VALUE</u> <0.79 × 10 ^{−3}	CL%	DOCUMENT ID			COMMENT	
$< 0.79 \times 10^{-3}$	90	EATON	84	MRK2	e^+e^-	
$\Gamma(\gamma\Lambda\overline{\Lambda})/\Gamma_{total}$						Γ ₃₁₆ /Γ
	CL%	DOCUMENT ID		TECN	COMMENT	0107
<0.13 × 10 ⁻³	90	HENRARD	87	DM2	e^+e^-	_
• • • We do not use the	e following o	data for averages	s, fits,	limits, e	etc. • • •	
$< 0.16 \times 10^{-3}$	90	BAI	98 G	BES	e^+e^-	
$\Gamma(\gamma A \to \gamma \text{ invisible})$	Γ _{total}					Γ ₃₁₇ /Γ
VALUE CL%		DOCUMENT ID				
		¹ ABLIKIM			' ' '	$J/\psi \pi^+ \pi^-$
• • • We do not use the						
$<6.3 \times 10^{-6}$ 90	3.7M	² INSLER	10	CLEO	ψ (2 S) $ ightarrow$	$J/\psi \pi^+ \pi^-$
$^{ m 1}$ For a narrow state $^{ m A}$						
largest value of 1.7	< 10 ⁻⁶ at 1	2 GeV and bein	ıg 7.0	\times 10 ⁻⁷	for $m_A =$	0.
² The limit varies with	n mass m_A	of a narrow sta	ate A	and is	4.3×10^{-6}	for $m_A = 0$
,reaches its largest v = 960 MeV.	alue of 6.3	$ imes 10^{-6}$ at m_A	= 500) MeV, a	and is 3.6 $ imes$	10^{-6} at m_A
$\Gamma(\gamma A^0 \rightarrow \gamma \mu^+ \mu^-)/$	Γ _{total}					Γ ₃₁₈ /Γ
(narrow state A ⁰ wit		$' < m_{A0} < 3$	GeV)			
VALUE	CL%	DOCUMENT ID	,	TECN	COMMENT	
<0.5 × 10 ⁻⁵	90	1 ABLIKIM	16E	BES3	$J/\psi \rightarrow \gamma$	$\mu^{+}\mu^{-}$
• • • We do not use the						
$< 2.1 \times 10^{-5}$	90	² ABLIKIM	12	BES3	$J/\psi ightarrow \gamma$	$\mu^+\mu^-$
¹ For a narrow scalar measured 90% CL lii						
² For a narrow scalar of measured 90% CL lin	or pseudosc	alar, A^0 , with a	mass	in the ra	ange 0.21–3	3.00 GeV. The
-		DALITZ DECA	NY5			
$\Gamma(\pi^0 e^+ e^-)/\Gamma_{\text{total}}$						Γ ₃₁₉ /Γ
VALUE (units 10^{-7})	EVTS	DOCUMENT ID			COMMENT	
$7.56 \pm 1.32 \pm 0.50$	39	ABLIKIM	141	BES3	$J/\psi \rightarrow \pi$	$^{0}e^{+}e^{-}$
$\Gamma(\eta e^+ e^-)/\Gamma_{ m total}$						Γ ₃₂₀ /Γ
VALUE (units 10^{-5})	EVTS	DOCUMENT ID				
2 0.0 0.0.		² ABLIKIM			,	e^+e^-
• • • We do not use the	e following o	data for averages	s, fits,	limits, e	etc. • • •	
$1.16\!\pm\!0.07\!\pm\!0.06$	320	¹ ABLIKIM	141	BES3	$J/\psi ightarrow \eta$	e^+e^-
1 Using both $\eta o \gamma \gamma$ 2 Approximation of the and one-pole non-res GeV. Supersedes AB	transition from the transition of the transition	form factor squar	ed as	an incoh nass m(herent sum of Λ) = 2.56 :	of the $ ho$ -meson $\pm~0.04~\pm~0.03$
https://pdg.lbl.gov		Page 79		Creat	ed: 8/11 _/	/2022 09:37

$\Gamma(\eta'(958)e^+e^-)/\Gamma$	total					Γ ₃₂₁ /Γ
VALUE (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT	
6.59±0.07±0.17 • • • We do not use t	8.9k	¹ ABLIKIM				(958) e ⁺ e ⁻
$5.81\pm0.16\pm0.31$		^{1,2} ABLIKIM				(958) e ⁺ e ⁻
1 Using both $\eta' o ^2$ Superseded by ABI	$\gamma\pi^+\pi^-$ ai	nd $\eta' ightarrow \pi^+\pi^-$			-	()
$\Gamma(\eta U \to \eta e^+ e^-)/$						Γ ₃₂₂ /Γ
VALUE -	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<9.11 × 10 ⁻⁷						
¹ For a dark photon as a function of <i>m</i>					Obtained 90	% C.L. limits
$\Gamma(\eta'(958) U \rightarrow \eta'(958) U \rightarrow \eta'$						Γ ₃₂₃ /Γ
VALUE 7	<u>CL%</u>	DOCUMENT ID ABLIKIM		TECN	COMMENT	l
-						
¹ For a dark photon as a function of <i>m</i> on the branching for	U range fr	om $1.8 imes 10^{-8}$ t	o 2.0 ×	10^{-7} .	The corresp	onding limit
$\Gamma(\phi e^+ e^-)/\Gamma_{ m total}$						Γ ₃₂₄ /Γ
VALUE (units 10 ⁻⁷)	CL%	DOCUMENT ID		TECN	COMMENT	
0.30)%.	$(K^{-}) = (A$	$48.9\pm0.5)\%$ and	l Β(ψ(2	$(S) \rightarrow$	$\pi^+\pi^-J/\psi$) = (34.49 ±
		$+48.9 \pm 0.5)\%$ and		<i>(S)</i> →	$\pi^+\pi^-J/\psi$) = (34.49 ±
0.30)%.				$(S) \rightarrow$	_ π ⁺ π ⁻ J/ψ]	
0.30)%. $\Gamma(D^-e^+\nu_e^+ \text{c.c.})$ VALUE	/Γ _{total}	- WEAK DEC	AYS -	<u>TECN</u>	COMMENT	Γ ₃₂₅ /Γ
0.30)%. $\Gamma(D^{-}e^{+}\nu_{e}^{+}+\text{c.c.})_{NALUE}$ $<7.1 \times 10^{-8}$	/F _{total}	- WEAK DECA DOCUMENT ID ABLIKIM	AYS -	TECN BES3	$\frac{\textit{COMMENT}}{e^+e^- \rightarrow}$	Γ ₃₂₅ /Γ
0.30)%. $\Gamma(D^{-}e^{+}\nu_{e} + \text{c.c.})$ VALUE <7.1 × 10 ⁻⁸ • • • We do not use to the contract of the contr	/F _{total}	DOCUMENT ID ABLIKIM g data for average	21Q es, fits,	TECN BES3 limits,	$\frac{COMMENT}{e^+e^-} \rightarrow$ etc. • • •	Γ₃₂₅/Γ
0.30)%. $\Gamma(D^{-}e^{+}\nu_{e} + \text{c.c.})$ VALUE <7.1 × 10 ⁻⁸ • • • We do not use to $<1.2 \times 10^{-5}$	/F _{total} CL% 90 the followin	- WEAK DECA DOCUMENT ID ABLIKIM	21Q es, fits,	TECN BES3 limits,	$\frac{COMMENT}{e^+e^-} \rightarrow$ etc. • • •	Γ_{325}/Γ J/ψ
0.30)%. $\Gamma(D^{-}e^{+}\nu_{e} + \text{c.c.})$ (7.1×10^{-8}) • • • We do not use the contraction of the contra	/F _{total}	DOCUMENT ID ABLIKIM g data for average ABLIKIM	21Q es, fits, 06M	TECN BES3 limits, BES2	$\begin{array}{c} \underline{\text{COMMENT}} \\ e^+e^- \rightarrow \\ \text{etc.} \bullet \bullet \bullet \\ e^+e^- \rightarrow \end{array}$	Γ_{325}/Γ J/ψ J/ψ Γ_{326}/Γ
0.30)%. $\Gamma(D^{-}e^{+}\nu_{e} + \text{c.c.})_{A}$ VALUE <7.1 × 10 ⁻⁸ • • • We do not use the condition of the	/F _{total}	DOCUMENT ID ABLIKIM g data for average ABLIKIM	21Q es, fits, 06M	TECN BES3 limits, BES2	$\frac{\textit{COMMENT}}{e^{+}e^{-}} \rightarrow \\ \text{etc.} \bullet \bullet \\ e^{+}e^{-} \rightarrow \\ \\ \frac{\textit{COMMENT}}{}$	Γ ₃₂₅ /Γ <i>J/ψ</i> <i>J/ψ</i> Γ ₃₂₆ /Γ
0.30)%. $\Gamma(D^{-}e^{+}\nu_{e} + \text{c.c.})_{ALUE}$ $<7.1 \times 10^{-8}$ • • • We do not use the contraction of the	/F _{total}	DOCUMENT ID ABLIKIM g data for average ABLIKIM DOCUMENT ID ABLIKIM	21Q es, fits, 06M	TECN BES3 limits, BES2 TECN BES3	$\begin{array}{c} \underline{COMMENT} \\ e^{+}e^{-} \rightarrow \\ \text{etc.} \bullet \bullet \bullet \\ e^{+}e^{-} \rightarrow \\ \\ \underline{COMMENT} \\ e^{+}e^{-} \rightarrow \end{array}$	Γ ₃₂₅ /Γ <i>J/ψ</i> <i>J/ψ</i> Γ ₃₂₆ /Γ
0.30)%. $\Gamma(D^{-}e^{+}\nu_{e} + \text{c.c.})_{AUE}$ $<7.1 \times 10^{-8}$ • • • We do not use the contraction of the c	/F _{total} 90 the following 90 /F _{total} 2L% 90 the following 90 the following	DOCUMENT ID ABLIKIM g data for average ABLIKIM DOCUMENT ID 1 ABLIKIM g data for average ABLIKIM ABLIKIM	21Q es, fits, 06M	TECN BES3 limits, BES2 TECN BES3 limits, BES3	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \rightarrow \\ \text{etc.} \bullet \bullet \bullet \\ e^+e^- \rightarrow \\ \underline{COMMENT} \\ e^+e^- \rightarrow \\ \text{etc.} \bullet \bullet \bullet \\ e^+e^- \rightarrow \end{array}$	Γ_{325}/Γ J/ψ J/ψ Γ_{326}/Γ J/ψ
0.30)%. $\Gamma(D^{-}e^{+}\nu_{e} + \text{c.c.})$ (7.1×10^{-8}) • • • We do not use the condition of the conditio	/ Γ_{total} $\underline{CL\%}$ 90 the following 90 / Γ_{total} $\underline{CL\%}$ 90 the following 90 to $K^-\pi^+$,	- WEAK DECA DOCUMENT ID ABLIKIM g data for average ABLIKIM DOCUMENT ID 1 ABLIKIM g data for average ABLIKIM $K^-\pi^+\pi^0$, and $K^-\pi^+\pi^0$	21Q es, fits, 06M $\frac{17AF}{6}$ es, fits, 06M $\frac{17AF}{6}$	$\frac{TECN}{BES3}$ limits, BES2 $\frac{TECN}{BES3}$ limits, BES3 $\frac{TECN}{TECN}$ BES2 $\frac{TECN}{TECN}$	$ \frac{COMMENT}{e^+e^-} \rightarrow \text{etc.} \bullet \bullet \bullet \\ e^+e^- \rightarrow \\ \frac{COMMENT}{e^+e^-} \rightarrow \text{etc.} \bullet \bullet \bullet \\ e^+e^- \rightarrow \\ e^+e^- \rightarrow \\ $	Γ_{325}/Γ J/ψ J/ψ J/ψ J/ψ J/ψ Γ_{327}/Γ
0.30)%. $\Gamma(D^{-}e^{+}\nu_{e} + \text{c.c.})_{VALUE}$ $<7.1 \times 10^{-8}$ • • • We do not use the contraction of the	/ Γ_{total} $\underline{CL\%}$ 90 the following 90 / Γ_{total} $\underline{CL\%}$ 90 the following 90 to $K^-\pi^+$, / Γ_{total} $\underline{CL\%}$	The second process of	AYS $-$ 21Q es, fits, 06M 17AF es, fits, 06M $(-\pi + \pi)$	$TECN$ BES3 limits, BES2 $TECN$ BES3 limits, BES2 $\pi^+\pi^-$.	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \rightarrow \\ \text{etc.} \bullet \bullet \bullet \\ e^+e^- \rightarrow \\ \underline{COMMENT} \\ e^+e^- \rightarrow \\ \text{etc.} \bullet \bullet \bullet \\ e^+e^- \rightarrow \\ \end{array}$	Γ_{325}/Γ J/ψ Γ_{326}/Γ J/ψ J/ψ Γ_{327}/Γ
0.30)%. $\Gamma(D^{-}e^{+}\nu_{e} + \text{c.c.})_{ALUE}$ $<7.1 \times 10^{-8}$ • • • We do not use the contraction of the	/ Γ_{total} $CL\%$ 90 The following 90 / Γ_{total} $CL\%$ 90 The following 90 The following 90 The following $K^-\pi^+$, $K^-\pi^+$ $K^-\pi^+$ $K^-\pi^+$ $K^-\pi^+$	The second process of the second points of the sec	AYS $-$ 21Q es, fits, 06M 17AF es, fits, 06M $(-\pi + \pi)$	$\frac{TECN}{BES3}$ limits, BES2 $\frac{TECN}{\pi^+\pi^-}$.	$\begin{array}{c} \underline{COMMENT} \\ e^{+}e^{-} \rightarrow \\ \text{etc.} \bullet \bullet \bullet \\ e^{+}e^{-} \rightarrow \\ \\ \underline{COMMENT} \\ e^{+}e^{-} \rightarrow \\ \text{etc.} \bullet \bullet \bullet \\ e^{+}e^{-} \rightarrow \\ \\ \underline{COMMENT} \\ e^{+}e^{-} \rightarrow \\ \\ \end{array}$	Γ ₃₂₅ /Γ
0.30)%. $\Gamma(D^{-}e^{+}\nu_{e} + \text{c.c.})_{N}$ $VALUE$ $<7.1 \times 10^{-8}$ • • • We do not use the contraction of	/ Γ_{total} $CL\%$ 90 The following 90 Γ_{total} $CL\%$ 90 The following 90 $0 K^-\pi^+$ Γ_{total} $CL\%$ 90 The following 90 $0 K^-\pi^+$ $0 K^-$	POCUMENT ID ABLIKIM B data for average ABLIKIM DOCUMENT ID ABLIKIM ABLIKIM ABLIKIM $K = \pi + \pi^0$, and $K = \pi^0$ ABLIKIM B data for average	21Q es, fits, 06M $\frac{17AF}{(-\pi + \pi)^2}$ 14R es, fits,	TECN BES3 limits, BES2 $TECN$ BES3 limits, $TECN$ BES3 limits, $TECN$ BES3 limits,	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \rightarrow \\ \text{etc.} \bullet \bullet \\ e^+e^- \rightarrow \\ \\ \underline{COMMENT} \\ e^+e^- \rightarrow \\ \text{etc.} \bullet \bullet \\ e^+e^- \rightarrow \\ \\ \underline{COMMENT} \\ e^+e^- \rightarrow \\ \text{etc.} \bullet \bullet \\ \end{array}$	$\Gamma_{325}/\Gamma_{325}/\Gamma_{325}/\Gamma_{326}/\Gamma_{326}/\Gamma_{327}/\Gamma_{3$
0.30)%. $\Gamma(D^{-}e^{+}\nu_{e} + \text{c.c.})_{VALUE}$ $<7.1 \times 10^{-8}$ • • • We do not use the contraction of the	/ Γ_{total} $CL\%$ 90 The following 90 / Γ_{total} $CL\%$ 90 The following 90 The following 60	POCUMENT ID ABLIKIM g data for average ABLIKIM g data for average ABLIKIM $K = \pi + \pi^0$, and $K = \frac{DOCUMENT\ ID}{ABLIKIM}$ g data for average ABLIKIM $K = \pi + \pi^0$, and $K = \frac{DOCUMENT\ ID}{ABLIKIM}$ g data for average 1 ABLIKIM	21Q es, fits, 06M $\frac{17AF}{(-\pi + \pi)^2}$ 14R es, fits,	TECN BES3 limits, BES2 $TECN$ BES3 limits, $TECN$ BES3 limits, $TECN$ BES3 limits,	$\begin{array}{c} \underline{COMMENT} \\ e^+e^- \rightarrow \\ \text{etc.} \bullet \bullet \\ e^+e^- \rightarrow \\ \\ \underline{COMMENT} \\ e^+e^- \rightarrow \\ \text{etc.} \bullet \bullet \\ e^+e^- \rightarrow \\ \\ \underline{COMMENT} \\ e^+e^- \rightarrow \\ \text{etc.} \bullet \bullet \\ \end{array}$	Γ_{325}/Γ J/ψ J/ψ J/ψ J/ψ J/ψ J/ψ J/ψ

$\Gamma(D_s^{*-}e^+\nu_e+\text{c.c.})/$	$\Gamma_{ ext{total}}$				Γ ₃₂₈ /Γ
VALUE	CL%	DOCUMENT ID			
$<1.8 \times 10^{-6}$	90	ABLIKIM	14 R	BES3	$e^+e^- o J/\psi$
$\Gamma(D^-\pi^+ + \text{c.c.})/\Gamma_{\text{tot}}$	tal				Γ ₃₂₉ /Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$< 7.5 \times 10^{-5}$	90	ABLIKIM	U8J	BES2	$e^+e^- o J/\psi$
$\Gamma(\overline{D}^0\overline{K}^0 + \text{c.c.})/\Gamma_{\text{tot}}$	al				Γ ₃₃₀ /Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$<1.7 \times 10^{-4}$	90	ABLIKIM	U8J	BES2	$e^+e^- o J/\psi$
$\Gamma(\overline{D}^{0}\overline{K}^{*0}+\text{c.c.})/\Gamma_{to}$	tal				Γ ₃₃₁ /Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$< 2.5 \times 10^{-6}$	90	ABLIKIM	14K	BES3	$e^+e^- o J/\psi$
$\Gamma(D_s^-\pi^+ + \text{c.c.})/\Gamma_{tot}$	tal				Γ ₃₃₂ /Γ
	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
$<1.3 \times 10^{-4}$	90	ABLIKIM	08J		$e^+e^- o J/\psi$
$\Gamma(D_s^-\rho^+ + \text{c.c.})/\Gamma_{\text{tot}}$	·al				Г ₃₃₃ /Г
VALUE		DOCUMENT ID		TECN	
<1.3 × 10 ⁻⁵	90	ABLIKIM			$e^+e^- o J/\psi$
					/
CHA					
——— CHAI ——— LEPTON I					
	FAMILY N	IUMBER (<i>LF</i>) VIC	OLATIN	IG MODES ——— Γ ₃₃₄ /Γ
extstyle ext	FAMILY N	DOCUMENT ID) VIC	<u>TECN</u>	IG MODES — Γ ₃₃₄ /Γ
LEPTON I $\Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $\frac{VALUE}{< 2.7 \times 10^{-7}}$	EAMILY N - <u>CL%</u> 90	IUMBER (<i>LF</i> DOCUMENT ID ABLIKIM	14Q	TECN BES3	IG MODES Γ_{334}/Γ $COMMENT$ $\psi(2S) ightarrow \pi^{+}\pi^{-}J/\psi$
extstyle ext	EAMILY N - <u>CL%</u> 90	IUMBER (<i>LF</i> DOCUMENT ID ABLIKIM	14Q	TECN BES3	IG MODES Γ_{334}/Γ $COMMENT$ $\psi(2S) ightarrow \pi^{+}\pi^{-}J/\psi$
LEPTON I $\Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $\frac{VALUE}{< 2.7 \times 10^{-7}}$ • • • We do not use the $< 0.5 \times 10^{-5}$	- CL% 90 e following o	DOCUMENT ID ABLIKIM data for average ADAMS	14Q	TECN BES3 limits, o	IG MODES $\frac{\Gamma_{334}/\Gamma}{V(2S) \rightarrow \pi^{+}\pi^{-}J/\psi}$ etc. ••• $\psi(2S) \rightarrow \pi^{+}\pi^{-}J/\psi$
LEPTON I $\Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $\frac{VALUE}{< 2.7 \times 10^{-7}}$ • • • We do not use the $< 0.5 \times 10^{-5}$ $< 1.6 \times 10^{-4}$	- CL% 90 e following o	DOCUMENT ID ABLIKIM data for average ADAMS WICHT	14Q s, fits, 08 08	TECN BES3 limits, CLEO BELL	IG MODES
LEPTON I $\Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ VALUE < 2.7 × 10 ⁻⁷ • • • We do not use the condition of the condition o	- CL% 90 e following o	DOCUMENT ID ABLIKIM data for average ADAMS WICHT ABLIKIM	14Q s, fits, 08 07J	TECN BES3 limits, CLEO BELL BES2	IG MODES Γ_{334}/Γ $COMMENT$ $\psi(2S) \rightarrow \pi^{+}\pi^{-}J/\psi$ etc. • • • $\psi(2S) \rightarrow \pi^{+}\pi^{-}J/\psi$ $B^{\pm} \rightarrow K^{\pm}\gamma\gamma$ $\psi(2S) \rightarrow J/\psi\pi^{+}\pi^{-}$
LEPTON I $\Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $\frac{VALUE}{< 2.7 \times 10^{-7}}$ • • • We do not use the $< 0.5 \times 10^{-5}$ $< 1.6 \times 10^{-4}$	20% 90 e following of 90	DOCUMENT ID ABLIKIM data for average ADAMS WICHT	14Q s, fits, 08 07J	TECN BES3 limits, CLEO BELL	IG MODES Γ_{334}/Γ $COMMENT$ $\psi(2S) \rightarrow \pi^{+}\pi^{-}J/\psi$ etc. • • • $\psi(2S) \rightarrow \pi^{+}\pi^{-}J/\psi$ $B^{\pm} \rightarrow K^{\pm}\gamma\gamma$ $\psi(2S) \rightarrow J/\psi\pi^{+}\pi^{-}$
LEPTON I Γ($\gamma \gamma$)/Γ _{total} VALUE < 2.7 × 10 ⁻⁷ • • • We do not use the control of the con	FAMILY No. 2. $\frac{CL\%}{90}$ 90 90 90 90 $\frac{1}{90}$ 1	IUMBER (LF DOCUMENT ID ABLIKIM data for average ADAMS WICHT ABLIKIM BARTEL $\rightarrow \gamma \gamma / \Gamma_{\text{total}}$	14Q s, fits, 08 07J 77 × [B(TECN BES3 limits, of the control of	IG MODES Γ_{334}/Γ $\frac{COMMENT}{\psi(2S) \rightarrow \pi^{+}\pi^{-}J/\psi}$ etc. • • • $\psi(2S) \rightarrow \pi^{+}\pi^{-}J/\psi$ $B^{\pm} \rightarrow K^{\pm}\gamma\gamma$ $\psi(2S) \rightarrow J/\psi\pi^{+}\pi^{-}$ $e^{+}e^{-}$ $J/\psi(1S)K^{+})] < 0.16 \times$
LEPTON I Γ($\gamma \gamma$)/Γ _{total} VALUE < 2.7 × 10 ⁻⁷ • • • We do not use the control of the con	FAMILY No. 2. $\frac{CL\%}{90}$ 90 90 90 90 $\frac{1}{90}$ 1	IUMBER (LF DOCUMENT ID ABLIKIM data for average ADAMS WICHT ABLIKIM BARTEL $\rightarrow \gamma \gamma / \Gamma_{\text{total}}$	14Q s, fits, 08 07J 77 × [B(TECN BES3 limits, of the control of	IG MODES
LEPTON I $\Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $\frac{VALUE}{< 2.7 \times 10^{-7}}$ • • • We do not use the $< 0.5 \times 10^{-5}$ $< 1.6 \times 10^{-4}$ $< 2.2 \times 10^{-5}$ $< 50 \times 10^{-5}$ 1 WICHT 08 reports [Γ 10^{-6} which we divide $\Gamma(\gamma\phi)/\Gamma_{\text{total}}$	FAMILY No. 2015 - $\frac{CL\%}{90}$ - following of 90 - 90 - 90 - 90 - 90 - 90 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	DOCUMENT ID ABLIKIM data for average ADAMS WICHT ABLIKIM BARTEL $\rightarrow \gamma\gamma)/\Gamma_{\rm total}]$ est value B(B^+	14Q s, fits, 08 07J 77 × [B(→ J/	TECN BES3 Iimits, G CLEO BELL BES2 CNTR $(B^+ \rightarrow V)\psi(1S) F$	IG MODES
LEPTON I $\Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $\frac{VALUE}{< 2.7 \times 10^{-7}}$ • • • We do not use the $< 0.5 \times 10^{-5}$ $< 1.6 \times 10^{-4}$ $< 2.2 \times 10^{-5}$ $< 50 \times 10^{-5}$ 1 WICHT 08 reports [Γ 10^{-6} which we divide $\Gamma(\gamma\phi)/\Gamma_{\text{total}}$	FAMILY No. 2. $\frac{CL\%}{90}$ 90 90 90 90 $\frac{5}{90}$ 90 90 90 $\frac{5}{90}$ 90 90 $\frac{5}{90}$ 90 90 90 $\frac{5}{90}$ 90 90 90 $\frac{5}{90}$ 90 90 90 $\frac{5}{90}$ 90 90 90 90 90 90 90 90 90 90 90 90 90	DOCUMENT ID ABLIKIM data for average ADAMS WICHT ABLIKIM BARTEL $\rightarrow \gamma\gamma)/\Gamma_{\rm total}]$ est value B(B^+	14Q s, fits, 08 07J 77 × [B(→ J/	TECN BES3 Iimits, G CLEO BELL BES2 CNTR $(B^+ \rightarrow V)\psi(1S) F$	IG MODES
LEPTON I $\Gamma(\gamma\gamma)/\Gamma_{\text{total}}$ $\frac{VALUE}{< 2.7 \times 10^{-7}}$ • • • We do not use the $< 0.5 \times 10^{-5}$ $< 1.6 \times 10^{-4}$ $< 2.2 \times 10^{-5}$ $< 50 \times 10^{-5}$ 1 WICHT 08 reports [Γ 10^{-6} which we divide $\Gamma(\gamma\phi)/\Gamma_{\text{total}}$	FAMILY No. 2. $\frac{CL\%}{90}$ 90 90 90 90 $\frac{5}{90}$ 90 90 90 $\frac{5}{90}$ 90 90 $\frac{5}{90}$ 90 90 90 $\frac{5}{90}$ 90 90 90 $\frac{5}{90}$ 90 90 90 $\frac{5}{90}$ 90 90 90 90 90 90 90 90 90 90 90 90 90	DOCUMENT ID ABLIKIM data for average ADAMS WICHT ABLIKIM BARTEL $\rightarrow \gamma\gamma)/\Gamma_{\rm total}]$ est value B(B^+	14Q s, fits, 08 07J 77 × [B(→ J/	TECN BES3 Iimits, G CLEO BELL BES2 CNTR $(B^+ \rightarrow V)\psi(1S) F$	IG MODES Γ_{334}/Γ $\underline{COMMENT}$ $\psi(2S) \rightarrow \pi^{+}\pi^{-}J/\psi$ etc. • • • $\psi(2S) \rightarrow \pi^{+}\pi^{-}J/\psi$ $B^{\pm} \rightarrow K^{\pm}\gamma\gamma$ $\psi(2S) \rightarrow J/\psi\pi^{+}\pi^{-}$ $e^{+}e^{-}$ $J/\psi(1S)K^{+})] < 0.16 \times K^{+} = 1.020 \times 10^{-3}$
	FAMILY No. 2. $\frac{CL\%}{90}$ The following of $\frac{90}{90}$ The by our best $\frac{CL\%}{90}$	DOCUMENT ID ABLIKIM data for average ADAMS WICHT ABLIKIM BARTEL $\rightarrow \gamma \gamma)/\Gamma_{\text{total}}$ est value $B(B^+$ $DOCUMENT ID$ ABLIKIM	14Q s, fits, 08 07J 77 \times [B(\rightarrow $J/$	TECN BES3 limits, ϕ CLEO BELL BES2 CNTR ϕ	IG MODES Γ_{334}/Γ $COMMENT$ $\psi(2S) \rightarrow \pi^{+}\pi^{-}J/\psi$ etc. •• $\psi(2S) \rightarrow \pi^{+}\pi^{-}J/\psi$ $B^{\pm} \rightarrow K^{\pm}\gamma\gamma$ $\psi(2S) \rightarrow J/\psi\pi^{+}\pi^{-}$ $e^{+}e^{-}$ $J/\psi(1S)K^{+})] < 0.16 \times K^{+}$ $K^{+}) = 1.020 \times 10^{-3}$ Γ_{335}/Γ $COMMENT$ $\psi(2S) \rightarrow \pi^{+}\pi^{-}J/\psi$ Γ_{336}/Γ
	FAMILY No. 2. CL% 90 90 90 90 $(J/\psi(1S))$ de by our be $\frac{CL\%}{90}$	DOCUMENT ID ABLIKIM data for average ADAMS WICHT ABLIKIM BARTEL $\rightarrow \gamma\gamma)/\Gamma_{\rm total}]$ est value $B(B^+$ $DOCUMENT ID$ ABLIKIM	14Q s, fits, 08 07J 77 \times [B(\rightarrow $J/$	TECN BES3 limits, ϕ CLEO BELL BES2 CNTR $(B^+ \rightarrow \phi)(1S) P$ TECN BES3	IG MODES Γ_{334}/Γ $COMMENT$ $\psi(2S) \rightarrow \pi^{+}\pi^{-}J/\psi$ etc. • • • $\psi(2S) \rightarrow \pi^{+}\pi^{-}J/\psi$ $B^{\pm} \rightarrow K^{\pm}\gamma\gamma$ $\psi(2S) \rightarrow J/\psi\pi^{+}\pi^{-}$ $e^{+}e^{-}$ $J/\psi(1S)K^{+})] < 0.16 \times K^{+}$ $(+) = 1.020 \times 10^{-3}$ Γ_{335}/Γ $COMMENT$ $\psi(2S) \rightarrow \pi^{+}\pi^{-}J/\psi$ Γ_{336}/Γ $COMMENT$
	FAMILY No. 2. CL% 90 90 90 90 $= (J/\psi(1S))$ le by our be $= \frac{CL\%}{90}$ 90 $= \frac{CL\%}{90}$ 90 $= \frac{CL\%}{90}$ 90 $= \frac{CL\%}{90}$ 90 $= \frac{CL\%}{90}$	IUMBER (LF DOCUMENT ID ABLIKIM data for average ADAMS WICHT ABLIKIM BARTEL $\rightarrow \gamma \gamma)/\Gamma_{\text{total}}$ est value B(B+ DOCUMENT ID ABLIKIM DOCUMENT ID ABLIKIM	14Q s, fits, 08 08 07J 77 \times [B(\rightarrow J/	TECN BES3 limits, ϕ CLEO BELL BES2 CNTR $\mathcal{B}^+ \rightarrow \mathcal{A}^+ \psi(1S) \mathcal{A}^-$ BES3 TECN BES3	IG MODES Γ_{334}/Γ $COMMENT$ $\psi(2S) \rightarrow \pi^{+}\pi^{-}J/\psi$ etc. • • • $\psi(2S) \rightarrow \pi^{+}\pi^{-}J/\psi$ $B^{\pm} \rightarrow K^{\pm}\gamma\gamma$ $\psi(2S) \rightarrow J/\psi\pi^{+}\pi^{-}$ $e^{+}e^{-}$ $J/\psi(1S)K^{+})] < 0.16 \times K^{+}$ $K^{+} = 1.020 \times 10^{-3}.$ Γ_{335}/Γ $COMMENT$ $\psi(2S) \rightarrow \pi^{+}\pi^{-}J/\psi$ Γ_{336}/Γ $COMMENT$ $e^{+}e^{-} \rightarrow J/\psi$
	FAMILY No. 2.1. Page 1.2.	DOCUMENT ID ABLIKIM data for average ADAMS WICHT ABLIKIM BARTEL	14Q s, fits, 08 07J 77 \times [B(\rightarrow $J/$	TECN BES3 limits, ϕ CLEO BELL BES2 CNTR $(B^+ \rightarrow V)(1S)V$ TECN BES3 limits, ϕ	IG MODES Γ_{334}/Γ $COMMENT$ $\psi(2S) \rightarrow \pi^{+}\pi^{-}J/\psi$ etc. • • • $\psi(2S) \rightarrow \pi^{+}\pi^{-}J/\psi$ $B^{\pm} \rightarrow K^{\pm}\gamma\gamma$ $\psi(2S) \rightarrow J/\psi\pi^{+}\pi^{-}$ $e^{+}e^{-}$ $J/\psi(1S)K^{+})] < 0.16 \times K^{+}$ $K^{+} = 1.020 \times 10^{-3}$ Γ_{335}/Γ $COMMENT$ $\psi(2S) \rightarrow \pi^{+}\pi^{-}J/\psi$ Γ_{336}/Γ $COMMENT$ $e^{+}e^{-} \rightarrow J/\psi$ etc. • • •
	FAMILY No. 2. CL% 90 90 90 90 $= (J/\psi(1S))$ le by our be $= \frac{CL\%}{90}$ 90 $= \frac{CL\%}{90}$ 90 $= \frac{CL\%}{90}$ 90 $= \frac{CL\%}{90}$ 90 $= \frac{CL\%}{90}$	IUMBER (LF DOCUMENT ID ABLIKIM data for average ADAMS WICHT ABLIKIM BARTEL $\rightarrow \gamma \gamma)/\Gamma_{\text{total}}$ est value B(B+ DOCUMENT ID ABLIKIM DOCUMENT ID ABLIKIM	14Q s, fits, 08 07J 77 \times [B(\rightarrow $J/$	TECN BES3 limits, ϕ CLEO BELL BES2 CNTR $(B^+ \rightarrow V)(1S)V$ TECN BES3 limits, ϕ	IG MODES Γ_{334}/Γ $COMMENT$ $\psi(2S) \rightarrow \pi^{+}\pi^{-}J/\psi$ etc. • • • $\psi(2S) \rightarrow \pi^{+}\pi^{-}J/\psi$ $B^{\pm} \rightarrow K^{\pm}\gamma\gamma$ $\psi(2S) \rightarrow J/\psi\pi^{+}\pi^{-}$ $e^{+}e^{-}$ $J/\psi(1S)K^{+})] < 0.16 \times K^{+}$ $K^{+} = 1.020 \times 10^{-3}.$ Γ_{335}/Γ $COMMENT$ $\psi(2S) \rightarrow \pi^{+}\pi^{-}J/\psi$ Γ_{336}/Γ $COMMENT$ $e^{+}e^{-} \rightarrow J/\psi$

$\Gamma(e^{\pm}\tau^{\mp})$	/F _{tota}		DOCUMENT ID		TECN	COMMENT	Γ ₃₃₇ /Γ
<7.5 × 10 ⁻	-8		ABLIKIM				1/0/
•			ig data for average				$oldsymbol{\phi}$
<8.3 × 10 ⁻		90	¹ ABLIKIM				1/-/-
_				04	BES	$e \cdot e \rightarrow 0$	J/ψ
¹ Supersed	ded by	ABLIKIM 21M	l.				
$\Gamma(\mu^{\pm} au^{\mp})$	/Γ _{tota}	al					Γ ₃₃₈ /Γ
<u>VALUE</u>		<u>CL%</u>	DOCUMENT ID				
<2.0 × 10	- 0	90	ABLIKIM	04	BES	$e^+e^- ightarrow $.	J/ψ
$\Gamma(\Lambda_c^+ e^- +$	_	/Γ _{total}	DOCUMENT ID	7	ECN C	COMMENT	Γ ₃₃₉ /Γ
<u>VALUE</u> <6.9 × 10 [−]	-8		DOCUMENT ID			$f^+e^- o J/2$	
< 0.9 × 10	•	90	ABLIKIM 1	L9AF B	ES3 <i>e</i>	$pK^-\pi^+e^-$	*
						$p \kappa \pi' e$	(+ c.c.)
			- OTHER DECA	AYS -		_	
Γ(invisible							Γ_{340}/Γ_5
<u>VALUE</u> <6.6 × 10 [−]	2	<u>CL%</u>	DOCUMENT ID				
<6.6 × 10	= 2	90	LEES	131	BABR	$B \rightarrow K^{(*)}$	J/ψ
Γ(invisible	, . ,	•					Γ_{340}/Γ_{7}
<u>VALUE</u> <1.2 × 10 [−]	-2	<u>CL%</u>	DOCUMENT ID				+
< 1.2 × 10							
		90	ABLIKIM	08G	BES2	$\psi(2S) \rightarrow \pi$	π J/ψ
			$/\psi(1S)$ REFERE			$\psi(23) \rightarrow \pi$	J/ψ
ABLIKIM ABLIKIM ABLIKIM ABLIKIM ABLIKIM LEES LEES LEES SARANTSEV ABLIKIM	21AM 21AT 21C 21M 21Q 21 21B 21C 21 20 20K 20Q 20 19A 19AB 19AC 19AF 19AN 19AQ 19H 19N 19Q 19T 19 18AA	PR D104 092004 JHEP 2111 226 PR D103 012009 PR D103 112007 JHEP 2106 157 PR D103 092001 PR D104 112003 PR D104 112004 PL B816 136227 PR D101 012004 PR D101 112005 EPJ C80 746 JHEP 2007 112 PR D99 012006		al. al. al. al. l. l. et al.		(BESI (BESI (BESI (BESI (BABAI (BABAI (BABAI (BESI (BE	III Collab.)

ABLIKIM	180	PR D97 072014	M. Ablikim et al.	(BESIII Collab.)
ANASHIN	18A	JHEP 1805 119	V.V. Anashin <i>et al.</i>	(KEDR Collab.)
LEES	18	PR D97 052007	J.P. Lees <i>et al.</i>	(BABAR Collab.)
	-	PR D98 112015	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	18E			(DADAR Collab.)
ABLIKIM	17AF	PR D96 111101	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	17 A H	PR D96 112001	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	1/AK	PR D96 112012	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	17E	PL B770 217	M. Ablikim et al.	(BESIII Collab.)
	17L			
ABLIKIM		PR D95 052003	M. Ablikim <i>et al.</i>	(BESIII Collab.)
LEES	17A	PR D95 052001	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	17C	PR D95 072007	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	17D	PR D95 092005	J.P. Lees <i>et al.</i>	(BABAR Collab.)
ABLIKIM	16E	PR D93 052005	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	16J	PRL 117 042002	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	16K	PR D93 052010	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	16L	PR D93 072003	M. Ablikim et al.	(BESIII Collab.)
				(BLSIII Collab.)
ABLIKIM	16M	PR D93 072008	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	16N	PR D93 112011	M. Ablikim	(BESIII Collab.)
ABLIKIM	16P	PR D94 072005	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	16Q	PL B761 98	M. Ablikim et al.	(BESIII Collab.)
	16	CP C40 100001	C. Patrignani <i>et al.</i>	(PDG Collab.)
PDG				
AAIJ	15BI	EPJ C75 311	R. Aaij <i>et al.</i>	(LHCb Collab.)
ABLIKIM	15 A F	PR D92 052003	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	15H	PR D91 052017	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	15K	PR D91 112001	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	15P	PR D92 012007	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	15T	PRL 115 091803	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ANASHIN	15	PL B749 50	V.V. Anashin et al.	(KEDR Collab.)
DOBBS	15	PR D91 052006	S. Dobbs <i>et al.</i>	(NWES)
LEES	15J	PR D92 072008	J.P. Lees <i>et al.</i>	(BABAR Collab.)
ABLIKIM	14I	PR D89 092008	M. Ablikim et al.	`(BESIII Collab.)
ABLIKIM	14K	PR D89 071101	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	14N	PR D90 052009	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	14Q	PR D90 092002	M. Ablikim et al.	(BESIII Collab.)
				1
ABLIKIM	14R	PR D90 112014	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ANASHIN	14	PL B738 391	V.V. Anashin et al.	(KEDR Collab.)
	14	PL B731 227		
AULCHENKO			V.M. Aulchenko <i>et al.</i>	(KLDK Collab.)
LEES	14H	PR D89 092002	J.P. Lees <i>et al.</i>	(BABAR Collab.)
ABLIKIM	13F	PR D87 052007	M. Ablikim et al.	(BESIII Collab.)
				(DECILI Callah)
ABLIKIM	13I	PR D87 032003	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	13J	PR D87 032008	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	13L	PR D87 112007	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	13N	PR D87 092009	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	13P	PR D87 112004	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	13R	PR D88 032007	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	13U	PR D88 091502	M. Ablikim <i>et al.</i>	(BESIII Collab.)
LEES	13I	PR D87 112005	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	130	PR D87 092005	J.P. Lees <i>et al.</i>	(BABAR Collab.)
				(DADAR Collab.)
LEES	13Q	PR D88 032013	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	13Y	PR D88 072009	J.P. Lees <i>et al.</i>	(BABAR Collab.)
			M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	12	PR D85 092012		
ABLIKIM	12B	PR D86 032008	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	12C	PR D86 032014	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	12D	PRL 108 112003	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	12H	PL B710 594	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	12P	CP C36 1031	M. Ablikim et al.	(BES II Collab.)
LEES	12E	PR D85 112009	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	12F	PR D86 012008	J.P. Lees <i>et al.</i>	(BABAR Collab.)
METREVELI	12	PR D85 092007	Z. Metreveli <i>et al.</i>	(NWES, FLOR, WAYN+)
ABLIKIM	11	PR D83 012003	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	11C	PRL 106 072002	M. Ablikim et al.	(BESIII Collab.)
ABLIKIM	11D	PR D83 032003	M. Ablikim <i>et al.</i>	(BESIII Collab.)
ABLIKIM	10C	PL B685 27	M. Ablikim <i>et al.</i>	(BES II Collab.)
ABLIKIM	10E	PL B693 88	M. Ablikim et al.	(BES II Collab.)
ALEXANDER	10		J.P. Alexander <i>et al.</i>	`
		PR D82 092002		(CLEO Collab.)
ANASHIN	10	PL B685 134	V.V. Anashin <i>et al.</i>	(KEDR Collab.)
DEL-AMO-SA	. 100	PRL 105 172001	P. del Amo Sanchez et al.	(BABAR Collab.)
INSLER	10	PR D81 091101	J. Insler <i>et al.</i>	` /
				(CLEO Collab.)
ABLIKIM	09	PL B676 25	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	09B	PR D80 052004	M. Ablikim et al.	(BÈS II Collab.)
MITCHELL	09	PRL 102 011801	R.E. Mitchell <i>et al.</i>	(CLEO Collab.)
IVIII CIILLL	US	I NL 102 011001	N.L. WILLCHEII EL AL.	(CLLO Collab.)

PEDLAR SHEN ABLIKIM ABLIKIM ABLIKIM ABLIKIM ABLIKIM ABLIKIM ABLIKIM	09 09 08 08A 08C 08E 08F 08G	PR D79 111101 PR D80 031101 EPJ C53 15 PR D77 012001 PL B659 789 PR D77 032005 PRL 100 102003 PRL 100 192001 PL B662 330	T.K. Pedlar et al. C.P. Shen et al. M. Ablikim et al.	(CLEO Collab.) (BELLE Collab.) (BES Collab.)
ABLIKIM	08J	PL B663 297	M. Ablikim <i>et al.</i> M. Ablikim <i>et al.</i> G.S. Adams <i>et al.</i>	(BES Collab.)
ABLIKIM	08O	PR D78 092005		(BES Collab.)
ADAMS	08	PRL 101 101801		(CLEO Collab.)
AUBERT	08S	PR D77 092002	B. Aubert <i>et al.</i> D. Besson <i>et al.</i> C. Amsler <i>et al.</i>	(BABAR Collab.)
BESSON	08	PR D78 032012		(CLEO Collab.)
PDG	08	PL B667 1		(PDG Collab.)
WICHT	08	PL B662 323	J. Wicht et al. M. Ablikim et al. M. Ablikim et al.	(BÈLLE Collab.)
ABLIKIM	07H	PR D76 092003		(BES Collab.)
ABLIKIM ANDREOTTI AUBERT		PR D76 117101 PL B654 74 PR D76 012008	M. Andreotti <i>et al.</i> B. Aubert <i>et al.</i>	(BES Collab.) (Femilab E835 Collab.) (BABAR Collab.)
AUBERT Also AUBERT	07BD	PR D76 092005 PR D77 119902E (errat.) PR D76 092006	B. Aubert et al.	(BABAR Collab.) (BABAR Collab.) (BABAR Collab.)
ABLIKIM	06	PL B632 181	M. Ablikim <i>et al.</i> M. Ablikim <i>et al.</i> M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	06C	PL B633 681		(BES Collab.)
ABLIKIM	06E	PR D73 052008		(BES Collab.)
ABLIKIM	06F	PR D73 052007	M. Ablikim <i>et al.</i> M. Ablikim <i>et al.</i> M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	06H	PR D73 112007		(BES Collab.)
ABLIKIM	06J	PRL 96 162002		(BES Collab.)
ABLIKIM	06K	PRL 97 062001	M. Ablikim <i>et al.</i> M. Ablikim <i>et al.</i> M. Ablikim <i>et al.</i>	(BES II Collab.)
ABLIKIM	06M	PL B639 418		(BES Collab.)
ABLIKIM	06V	PL B642 441		(BES Collab.)
ADAMS	06A	PR D73 051103	G.S. Adams <i>et al.</i> B. Aubert <i>et al.</i> B. Aubert <i>et al.</i>	(ĈLEO Collab.)
AUBERT	06	PR D73 011101		(BABAR Collab.)
AUBERT	06B	PR D73 012005		(BABAR Collab.)
AUBERT	06D	PR D73 052003	B. Aubert <i>et al.</i> B. Aubert <i>et al.</i> B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	06E	PRL 96 052002		(BABAR Collab.)
AUBERT,BE	06D	PR D74 091103		(BABAR Collab.)
WU	06	PRL 97 162003	CH. Wu <i>et al.</i>	`(BELLE Collab.)
ABLIKIM	05	PL B607 243	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	05B	PR D71 032003	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	05C	PL B610 192	M. Ablikim et al. M. Ablikim et al. M. Ablikim et al. M. Ablikim et al.	(BES Collab.)
ABLIKIM	05H	PR D72 012002		(BES Collab.)
ABLIKIM	05R	PRL 95 262001		(BES Collab.)
AUBERT LI SIBIRTSEV	05D 05C 05A	PR D71 052001 PR D71 111103 PR D71 054010	B. Aubert <i>et al.</i> Z. Li <i>et al.</i> A. Sibirtsev, J. Haidenbauer	(BABAR Collab.) (CLEO Collab.)
ABLIKIM	04	PL B598 172	M. Ablikim <i>et al.</i> M. Ablikim <i>et al.</i> B. Aubert <i>et al.</i> B. Aubert <i>et al.</i>	(BES Collab.)
ABLIKIM	04M	PR D70 112008		(BES Collab.)
AUBERT	04	PR D69 011103		(BABAR Collab.)
AUBERT,B	04N	PR D70 072004		(BABAR Collab.)
BAI	04	PL B578 16	J.Z. Bai et al.	(BES Collab.)
BAI	04A	PR D69 012003	J.Z. Bai et al.	(BES Collab.)
BAI	04D	PL B589 7	J.Z. Bai et al.	(BES Collab.)
BAI	04E	PL B591 42	J.Z. Bai et al.	(BES Collab.)
BAI BAI BAI SETH	04G 04H 04J 04	PR D70 012004 PR D70 012005 PL B594 47 PR D69 097503	J.Z. Bai <i>et al.</i> J.Z. Bai <i>et al.</i> J.Z. Bai <i>et al.</i> K.K. Seth	(BES Collab.) (BES Collab.) (BES Collab.)
AULCHENKO BAI BAI BAI HUANG BAI ARTAMONOV	03 03D 03F 03G 03 02C 00	PL B573 63 PL B561 49 PRL 91 022001 PR D68 052003 PRL 91 241802 PRL 88 101802 PL B474 427	V.M. Aulchenko et al. J.Z. Bai et al. J.Z. Bai et al. J.Z. Bai et al. J.Z. Bai et al. HC. Huang et al. J.Z. Bai et al. A.S. Artamonov et al.	(KEDR Collab.) (BES Collab.) (BES II Collab.) (BES Collab.) (BELLE Collab.) (BES Collab.)
BAI	00	PRL 84 594	J.Z. Bai et al.	(BES Collab.)
BAI	00B	PL B472 200		(BES Collab.)
BAI	00D	PL B476 25		(BES Collab.)
BAI	99	PL B446 356		(BES Collab.)
BAI	99C	PRL 83 1918		(BES Collab.)

BAI	98D	PR D58 092006	J.Z. Bai <i>et al.</i>	(BES Collab.)
BAI	98G	PL B424 213	J.Z. Bai <i>et al.</i>	(BES Collab.)
BAI	98H	PRL 81 1179	J.Z. Bai <i>et al.</i>	(BES Collab.)
BALDINI	98	PL B444 111	R. Baldini <i>et al.</i>	(FENICE Collab.)
ARMSTRONG	96	PR D54 7067	T.A. Armstrong et al.	(E760 Collab.)
BAI	96B	PRL 76 3502	J.Z. Bai <i>et al.</i>	(BES Collab.)
BAI	96C	PRL 77 3959	J.Z. Bai <i>et al.</i>	(BES Collab.)
BAI	96D	PR D54 1221	J.Z. Bai <i>et al.</i>	(BES Collab.)
GRIBUSHIN	96	PR D53 4723	A. Gribushin et al.	(E672 and E706 Collab.)
HASAN	96	PL B388 376	A. Hasan, D.V. Bugg	(BRUN, LOQM)
				*
BAI	95B	PL B355 374	J.Z. Bai <i>et al.</i>	(BES Collab.)
BUGG	95	PL B353 378	D.V. Bugg <i>et al.</i>	(LOQM, PNPI, WASH)
ANTONELLI	93	PL B301 317	A. Antonelli et al.	(FENICE Collab.)
ARMSTRONG	93B	PR D47 772	T.A. Armstrong et al.	(FNAL E760 Collab.)
BARNES	93	PL B309 469	P.D. Barnes <i>et al.</i>	(PS185 Collab.)
AUGUSTIN	92	PR D46 1951	J.E. Augustin, G. Cosme	(DM2 Collab.)
BOLTON	92	PL B278 495	T. Bolton et al.	(Mark III Collab.)
BOLTON	92B	PRL 69 1328	T. Bolton et al.	(Mark III Collab.)
				` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
COFFMAN	92	PRL 68 282	D.M. Coffman et al.	(Mark III Collab.)
HSUEH	92	PR D45 2181	S. Hsueh, S. Palestini	(FNAL, TORI)
BISELLO	91	NP B350 1	D. Bisello et al.	(DM2 Collab.)
AUGUSTIN	90	PR D42 10	J.E. Augustin et al.	(DM2 Collab.)
BAI	90B		Z. Bai et al.	
		PRL 65 1309		(Mark III Collab.)
BAI	90C	PRL 65 2507	Z. Bai <i>et al.</i>	(Mark III Collab.)
BISELLO	90	PL B241 617	D. Bisello <i>et al.</i>	(DM2 Collab.)
COFFMAN	90	PR D41 1410	D.M. Coffman et al.	(Mark III Collab.)
JOUSSET	90	PR D41 1389	J. Jousset <i>et al.</i>	(DM2 Collab.)
ALEXANDER	89	NP B320 45	J.P. Alexander et al.	(LBL, MICH, SLAC)
AUGUSTIN	89	NP B320 1	J.E. Augustin, G. Cosme	(DM2 Collab.)
BISELLO	89B	PR D39 701	G. Busetto et al.	(DM2 Collab.)
AUGUSTIN	88	PRL 60 2238	J.E. Augustin et al.	(DM2 Collab.)
COFFMAN		PR D38 2695	D.M. Coffman et al.	
	88			(Mark III Collab.)
FALVARD	88	PR D38 2706	A. Falvard <i>et al.</i>	(CLER, FRAS, LALO+)
AUGUSTIN	87	ZPHY C36 369	J.E. Augustin <i>et al.</i>	(LALO, CLER, FRAS+)
BAGLIN	87	NP B286 592	C. Baglin et al.	(LAPP, ČERN, GENO, LYON+)
BALTRUSAIT		PR D35 2077	R.M. Baltrusaitis et al.	(Mark III Collab.)
				` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
BECKER	87	PRL 59 186	J.J. Becker <i>et al.</i>	(Mark III Collab.)
BISELLO	87	PL B192 239	D. Bisello <i>et al.</i>	(PADO, CLER, FRAS+)
COHEN	87	RMP 59 1121	E.R. Cohen, B.N. Taylor	(RISC, NBS)
HENRARD	87	NP B292 670	P. Henrard et al.	(CLER, FRAS, LALO+)
PALLIN	87	NP B292 653	D. Pallin <i>et al.</i>	(CLER, FRAS, LALO, PADO)
BALTRUSAIT		PR D33 629	R.M. Baltrusaitis et al.	(Mark III Collab.)
BALTRUSAIT	. 86B	PR D33 1222	R.M. Baltrusaitis <i>et al.</i>	(Mark III Collab.)
BALTRUSAIT	. 86D	PRL 56 107	R.M. Baltrusaitis	(CIT, UCSC, ILL, SLAC+)
BISELLO	86B	PL B179 294	D. Bisello et al.	(DM2 Collab.)
GAISER	86	PR D34 711	J. Gaiser <i>et al.</i>	(Crystal Ball Collab.)
BALTRUSAIT		PRL 55 1723	R.M. Baltrusaitis <i>et al.</i>	(CIT, UCSC+)
BALTRUSAIT	. 85D	PR D32 566	R.M. Baltrusaitis <i>et al.</i>	(CIT, UCSC+)
KURAEV	85	SJNP 41 466	E.A. Kuraev, V.S. Fadin	(NOVO)
		Translated from YAF 41	733.	,
BALTRUSAIT	84	PRL 52 2126	R.M. Baltrusaitis et al.	(CIT, UCSC+)
EATON	84	PR D29 804	M.W. Eaton et al.	(LBL, SLAC)
BLOOM	83	ARNS 33 143	E.D. Bloom, C. Peck	(SLAC, CIT)
EDWARDS	83B	PRL 51 859	C. Edwards <i>et al.</i>	(CIT, HARV, PRIN+)
FRANKLIN	83	PRL 51 963	M.E.B. Franklin et al.	` (LBL, SLAC)
BURKE	82	PRL 49 632	D.L. Burke <i>et al.</i>	(LBL, SLAC)
EDWARDS	82B	PR D25 3065	C. Edwards <i>et al.</i>	(CIT, HARV, PRIN+)
EDWARDS	82D	PRL 48 458	C. Edwards <i>et al.</i>	(CIT, HARV, PRIN+)
Also		ARNS 33 143	E.D. Bloom, C. Peck	(SLAC, CIT)
EDWARDS	82E	PRL 49 259	C. Edwards et al.	(CIT, HARV, PRIN+)
		PL 113B 509	Y. Lemoigne <i>et al.</i>	
LEMOIGNE	82		9	(SACL, LOIC, SHMP+)
BESCH	81	ZPHY C8 1	H.J. Besch <i>et al.</i>	(BONN, DESY, MAINZ)
GIDAL	81	PL 107B 153	G. Gidal <i>et al.</i>	(SLAC, LBL)
PARTRIDGE	80	PRL 44 712	R. Partridge et al.	(CIT, $HARV$, $PRIN+$)
SCHARRE	80	PL 97B 329	D.L. Scharre <i>et al.</i>	(SLAC, LBL)
ZHOLENTZ	80	PL 96B 214	A.A. Zholents <i>et al.</i>	`
	00			(NOVO)
Also		SJNP 34 814	A.A. Zholents <i>et al.</i>	(NOVO)
		Translated from YAF 34	14/1.	