MindSpore 训练模型推理精度报告

实现的模型

inceptionv4

提交结果

	Top1- Error	Top5- Error	Performance (单卡 +batchsize=32)
baseline	17.7%	3.8%	355.00ms/step
我们的实现(完整 50000 张图片)	17. 22%	3. 79%	200 46m-/-t (1.70 ft)
我们的实现(去 掉 blacklist 剩 下 48238 张图)	16. 59%	3. 45%	208.46ms/step (1.70 倍)

注 1:验证采用论文中用到的 144crop 的方法,实现方式参考 https://arxiv.org/pdf/1409.4842.pdf, 所使用的 4 个 resize 大小为 320、352、384、448,具体实现主要在 inceptionv4-ads1007-final/inceptionv4-ads1007-

final-eval/model.py 中

注 2: blacklist 参考 https://github.com/zjykzk/ai-practice/blob/master/ILSVRC2015_devkit/ILSVRC2015/devkit/data/ILSVRC2015_clsloc_validation_blacklist.txt

网络训练速度

	单卡实验		8卡实验	
	ms/step	samples/second	ms/step	samples/second
baseline	355	90	无	无
无优化	251 (cb)	127 (cb)	1128 (cb)	907 (cb)
开启数据 下沉	208	153	940 (cb)	1083 (cb)
MindRecord 加速数据读 取	待做	待做	待做	待做

注1: 8卡数据并行时每张卡 batchsize=128, 单卡训练时 batchsize=32

注 2: 每项实验重复 3 次,数据去除 warmup 的 3 个 epoch,取 10epoch 平均

注 3: 性能优化选项说明:

- 单卡无优化:包含完整模型和数据预处理部分
- 开启数据下沉: 开启 dataset sink mode 选项
- 转化数据格式: 预先将 images 数据处理为 mindspore record 格式
- (cb)表示训练中开启 checkpoint callback 的结果

网络模型脚本、网络训练脚本、网络推理脚本

训练超参

- 1. 8 卡数据并行,每张卡 batch size = 128
- 2. epoch 1-40: 前5个epoch的learning rate从0增加到0.2,之后每2个epoch, lr 乘以0.94
- 3. epoch 41 75: 前 2 个 epoch 的 learning rate 从 0 增加到 0.05, 之后每个 epoch, lr 乘以 0.95
- 4. epoch 76 95: 前 2 个 epoch 的 learning rate 从 0 增加到 0.002, 之后每个 epoch, lr 乘以 0.95
- 5. loss function: SoftmaxCrossEntropyWithLogits, sparse=True, smooth_factor= 0.1, reduction="mean", is grad=False
- 6. optimizer: RMSProp, decay=0.9, epsilon=1.0

精度报告

可以看出:训练过程中的 single crop 输出的 evaluation 准确度,我们已经收敛得比paper 中的结果更好了。论文中使用 single crop 在去掉 blacklist(剩下 48238 张图)的验证集上达到了 top1 80%, top5 95%的精度,而我们达到了 top1 81%, top5 95.5%。

checkpoint

obs://mindspore-res-commit-adsl/inceptionv4-adsl007-final-version.ckpt obs://mindspore-res-commit-adsl/inceptionv4-adsl007-final-version.meta

如何在 ModelArts 上复现训练

将 inceptionv4-ads1007-final/inceptionv4-ads1007-final-train 文件夹下的所有文件上传至 obs://togo-obs/inceptionv4_imagenet/(根据自己需要修改对应自己的 obs 桶名称)下,在 ModelArts 上提交任务,填写如下表所示的任务参数:

任务参数	配置信息
代码目录	/togo-obs/inceptionv4_imagenet/
启动文件	/togo-obs/inceptionv4_imagenet/train_inceptionv4_for_8_card.py
数据存储位置	/mindspore-dataset/cifar-10 (必填参数、随便填一个)

训练输出位置	/mindspore-dataset/output/
运行参数	实际训练根据"训练超参"中的说明来修改源程序中的配置
作业日志路径	/mindspore-dataset/log/
资源池	公共资源池
规格	Ascend:8*Ascend 910 CPU:192核 768GIB(或者单卡,将启动文件改为/togo-obs/inceptionv4_imagenet/train_inceptionv4_for_1_card.py)
计算节点个数	1

如何在 ModelArts 上复现推理

1. 144 crop 验证:将 inceptionv4-ads1007-final/inceptionv4-ads1007-final-eval 文件夹下的所有文件上传至 obs://togo-obs/inceptionv4_imagenet/(根据自己需要修改对应自己的 obs 目录)下,在 ModelArts 上提交任务,填写如下表所示的任务参数:

任务参数	配置信息
代码目录	/togo-obs/inceptionv4_imagenet/
启动文件	/togo-obs/inceptionv4_imagenet/evaluation_144_crop.py
数据存储位置	/mindspore-dataset/cifar-10 (必填参数、随便填一个)
训练输出位置	/mindspore-dataset/output/
运行参数	无,在源文件中指定需要验证的 checkpoint 路径和文件
作业日志路径	/mindspore-dataset/log/
资源池	公共资源池
规格	Ascend:1*Ascend 910 CPU:192核 768GIB
计算节点个数	1

注 1: 完整 144crop 需要跑大约 80 小时

2. Single crop 验证:将 inceptionv4-ads1007-final/inceptionv4-ads1007-final-train 文件夹下的所有文件上传至 obs://togo-obs/inceptionv4_imagenet/(根据自己需要修改对应自己的 obs 目录)下,在 ModelArts 上提交任务,填写如下表所示的任务参数:

任务参数	配置信息
------	------

代码目录	/togo-obs/inceptionv4_imagenet/
启动文件	/togo-obs/inceptionv4_imagenet/train_inceptionv4eval.py
数据存储位置	/mindspore-dataset/cifar-10 (必填参数、随便填一个)
训练输出位置	/mindspore-dataset/output/
运行参数	无,在源文件中指定需要验证的 checkpoint 路径和文件
作业日志路径	/mindspore-dataset/log/
资源池	公共资源池
规格	Ascend:1*Ascend 910 CPU:192 核 768GIB
计算节点个数	1