XIII PHYSICS

MULTIPLE CHOICE QUESTIONS

COMPILED BY:

SIR DANISH AHMED

Follow us on:

https://www.facebook.com/sirdanishahmed/

EVEREST COACHING CENTRE

C-47 block 13 Gulistan-e-Jauhar Karachi. Contact: 0334 3400195

CH – 11: HEAT

[2003,2008] If the volume of a given mass of a gas is doubled without changing its temperature, the pressure of the a) Reduced to ½ of the initial value b) The same as the initial value c) Reduced to ¼ of the initial value d) Double of the initial value [2009] 2. Boyle's law is an example of: a) Latent heat process b) Isothermal process c) Adiabatic process d) Mechanical process [2007, 1996] The volume of a given gas at constant pressure becomes zero at: a) 273K b) 273°C c) -273K d) -273° 4. Absolute Zero is considered as that temperature at which: a) All liquids become gasses b) All gases become liquids c) Water freezes d) None of them [2003] According to Charles' Law: 5. b) V/T = Constant c) VT = Constant ca) PV = ConstantConstant [2001] Real gas molecules do not strictly obey gas law at: 6. b) Loss pressure and high temperature a) High pressure and low temperature d) None of the above c) Low pressure and high temperature [1988] The graph of pressure and volume of certain mass of a gas at constant temperature is a: 7. a) Parabola b) Hyperbola e Straight line d) None of these [2002] 8. The S.I. unit of heat is: a) Joule b) Calorie Centigrade d) Fahrenheit [2014] The average internal energy of an ideal gas is called: 9. a) Pressure b) Volume c) Temperature c) Heat [2013, 1988] The sum of the total energy of motion of all the particles measures the 10. b) Specific heat a) Temperature c) Quantity of heat d) None of these [2014, 2009] Heat energy cannot be measured in: 11. a) Joule/ b) Kelvin c) BTU d) Calories\ Heat is produced by: 12. b) By friction a) By rubbing c) By Mechanical d) All of these Something which flows from a hot body to a cold body is known as: 13. a) Specific heat b) Heat c) Internal energy d) Temperature [2007, 2003, ¶999] The temperature at which centigrade scale is equal to Fahrenheit scale is: b) -32° c) -40° $d) - 273^{\circ}$ a) [2006] 15. In Celsius scale 1°C in magnitude is equal to: a) 32° F b) 16°F c) 0°F d) 1.8°F [2010] 16. On Fahrenheit scale the temperature of 50°C will be: b) 10°F c) 122°F d) 105° [2005]

SII Da	IIISII Allilleu			Multiple Choice Questions
17.	The absolute temperature corresponding to 212	°F is:		
	a) 485K b) 373K	c) 161K		d) 100K
	u) 1031k	c) 1011 x		<i>a)</i> 1001
[2012,	2002]			
18.	The temperature on Fahrenheit scale correspon	ding to A	hsolute Zero is:	
10.	a) 32°F b) -180°F	c) – 460		d) 212°F
[2002]	a) 32 1 0) -100 1	c) – 400	1	u) 212 1
19.	Zero on the Celsius scale is equal to:			
19.	a) 273K b) 32K	c) 100K		d) 212K
[2007	2003, 2000]	C) 100K		d) 212K
20.	273 Kelvin corresponds to:			
20.	a) 273°C b) -32°F	c) 0°C		d) - 273°C
[2006,	•	C) U C		a) - 2/3 C
_				
21.	One cubic meter volume is equal to: a) 10^2 cm^3 b) 10^3 cm^3	c) 10 ⁶ cr	m ³	d) 10 ⁻³ cm ³
[2015		c) 10 ci	11	d) 10 cm
	2013, 2011, 2008]			
22.	The kinetic energy per mole of a ideal gas is:	-) 2/2 D	T	
F1000	a) 3/2 k T b) 2/3 k T	c) 3/2 R	1	() nRI
[1999,		_ •_		
23.	The average K.E. of a molecule of a perfect gas		T \	DN Cd
[2001]	a) 1/3 KT b) 3/2 KT	c) 2/3 K	1	d)None of these
[2001]	The IV E of the surface of an interest of the	.1		1111
24.	The K.E of the molecules of an idea gas at absorbed in the first state of the molecules of an idea gas at absorbed in the first state of the molecules of an idea gas at absorbed in the first state of the molecules of an idea gas at absorbed in the first state of the molecules of an idea gas at absorbed in the first state of the molecules of an idea gas at absorbed in the first state of the molecules of an idea gas at absorbed in the first state of the molecules			
[2007]	a) Infinite b) Zero	c) Very l	nigh \	d) Below zero
[2007]				
25.	According to kinetic theory of a gases the absorb			tect gas is
	a) Directly proportional to average translations			
	b) Directly proportional to both kinetic energy			
[1007]	c) Independent of the kinetic energy.	d) Invers	sely proportiona	l to kinetic energy.
[1997]			1.1	
26.	A gas exerts pressure on the walls of the contain			
	a) It possesses momentum	b)	-	iles collide with each other
	c) The gas has a finite volume	d)	None of these	
27.	The root mean square velocity of gas:			
27.	a) Directly proportional to the density	b)	Inversely propo	ortional to the density
	c) Directly proportional to the square root of the			ruonar to the density
	d) Inversely proportional to the square root of	the densit	V	
		the delisit	· y	
28.	The pressure exerted by the gas is:			
	a) Directly proportional to the velocity of mole			
	b) Directly proportional to the mean square ve			
	c) Directly proportional to the mean velocity of	of the mol	ecules	
	d) Inversely proportional to the mean velocity	of the mo	lecules	
29.	The volume of a constant mass of gas in cylind	ler is redu	ced at constant t	emperature.
	The pressure exerted by the molecules of the g	as increas	es because:	_
	a) The gas molecules speed up			density of the gas increases
	c) The gas molecules collides with each other	more ofte	n d) Non	e of these
[2005]	-		•	
30.	R.M.S velocity of a gas molecule at absolute ze	ero tempe	rature is:	
	a) $9 \times 10^6 \text{ m/sec}$ b) $3 \times 10^3 \text{ m/sec}$		73 m/sec	d) Zero
0.1	,	ŕ		,
31.	At same temperature gases of lighter molecular			
	a) Smaller rms speeds	b)	Larger rms spec	eds
	c) Same rms speeds	d)	None of these	
· <u></u>		Ρασα 2	·	

XII - Physics Multiple Choice Questions

32.	The average kinetic energy	y of the molecules of	a body determines:	
	a) Volume	b) Temperature	c) Pressure	d) Heat
[2002]	TT1 1.1	1 6 7	. 1:1 .00C: 11 1	
33.	The pressure exerted by a	b) 1cm ³	c) 1 atmosphere	: d) 1 N/m^2
[1988]	a) 1 litre	b) 1cm	c) i atmosphere	a) i N/m
34.	A substance expands on fr	reezing Increases of n	ressure the fre	ezing noint
<i>5</i>	a) Decreases	b) Increases	c) Does not change	d) None of these
[2008]	,	,	,	,
35.	A bimetallic thermostat we	orks on the principle of	of:	
	a) Linear expansion		b) Bulk expansion	
	c) Differential liner expans	sion	d) All of these	
36.	The two object are in them	mal equilibrium when	they have the same:	
	a) Kinetic energy	b) Temperature	c) Thermal energy	d) Potential energy
37.	A bimetallic strip can be u	sed to make a:		
	a) Thermometer	b) Barometer	c) Ammeter	Voltmeter
38.	A device which maintains	the temperature is:		
56.	a) Thermometer	b) Thermostat	c) Calorie meter	d) None of these
	u) memometer	o) memosuu	c) curone meter	a) I voice of these
39.	Bimetallic strip work on the	ne principle that differ	ent materials have:	
	a) Equal coefficient of l			nt of volume expansion
F20001	c) Different coefficient	of linear expansion	d None of these	
[2009] 40.	Thermostat is a device use	d to keen the		
40.	a) Temperature constant		c) Heat constant	d) Pressure constant
[2015]	a) Temperature constant	c) Endopy constant	Constant	a) Tressure constant
41.	The unit of co-efficient of	thermal expansion is:		
	a) m K b)	m/K c K^{-1}		d) K
[2008]	A .1 1 1			
42.	A thermodynamic process a) The work done by the s			is zero tells that: and by the system is zero.
	c) The work done by the s		d) None of the above	id by the system is zero.
[2007,			a) I tolle of the above	
43.	Two ends A & B of a rod	are at temperature -10	°C and -30°C. The heat	will flow from:
		will not flow at all	c) -10°C to -30°C	d) None of the above.
[2012,		//		
44.	The maximum work done		-	1) A 1: 1 - 2:
[2005]	a) Isobaric b)	Isochoric	c) Isothermal	d) Adiabatic
45.	A domestic pressure cooke	er is based on:		
10.		Isothermal process	c) Isobaric process	d) Isochoric process
[2005]		1	, 1	, 1
46.	The difference of molar sp		_	-
52004	-	Heat constant	c) Boltzman constant	d) Gas constant
[2004,	_	and the management of the	a valuma famuula af a a	aa ia aiwan huu
47.	During an Adiabatic chang a) PV = Const b)	ge, the pressure and the $PV^{\gamma} = Const$	c) $(PV)^{\gamma} = Const$	d) None of these
[2004]	a) FV = Collst 0,	rv – Collst	c) (FV) = Collst	d) None of these
48.	The unit of specific heat			
	a) J Kg ⁻¹ ⁰ C ⁻¹ b)	J Kg ⁻¹ K ⁻¹	c) J Kg ⁰ C	d) Both a and b
[2003]			-	
49.	The quantity of heat require	_	_	<u> </u>
	a) Specific Heat b)	Latent heat	c) Calorie	d) Joule
		I	Page 3	Contact: 0224 2400105

SII Da	msn Amneu			Multiple Choice Questions
[2003,	2001, 1999]			
50.	The internal energy in a	an Isothermal process:		
	a) Decreases	b) Increases	c) Become zero	d) Remains the same
[2003]	.,	,	,	.,
51.	If the volume of the sys	stem remains constant du	iring a process, it is call	led:
	a) Isochoric	b) Isothermal	c) Isobaric	d) Adiabatic
[2005,		-,	-,	
52.	_	quired for per degree rise	e in temperature of a bo	dy is called:
	a) Heat of vaporization		c) Specific heat capac	•
[2002]	u) 110 ut of vaporization	0) 11000 01 10001011	c) specific from cupue	
53.	The P-V diagram show	n in the figure is for:		
	a) An isothermal chang		b) An adiabatic chang	re
	c) An Isochoric change		d) None of these	(P))
	,		,	
[2002]				TV.
54.	The internal energy of a	•	\ T	
F20021	a) Pressure	b) Volume	c) Temperature	d) Entropy
[2002]	m 1 ' 1'		c 1:	
55.		ch no external work is p		
F10001	a) Isothermal	b) Isochoric	c) Isobaric	d) Adiabatic
[1998]	A .1 CL 1	1 7. 1 1	: 11 - 10.1	
56.		s not tea, It is snaken rap	oldly. If the teams consid	lered as the system, then its
	temperature will:	1 \ D'		
	a) Remain same	b) Rise	c) Fall	d) Have its internal energy changed.
57.	An amount of heat giver	n to a gas under isotherma	l conditions will be used	I for.
	a) A temperature rise		b) Doing external wor	
	c) Doing work and for a	a temperature rise	d) Increasing the inter	
7 0	_			
58.	In an adiabatic change			1.
	a) Takes heat from the		Gives heat to the su	•
	c) Exchange no heat wi	th the surroundings	a) Partly takes heat ar	nd partly leaves to the surroundings
59.	In an isothermal expans	sion of gases:		
	a) Temperature is lower		b) Temperature is rais	sed
	c) Temperature is unalt		d) Temperature become	
60	Y 11:1			
60.		internal energy of a system		1/ 1 1 .
	a) Isochoric	b) Adiabatic	c) Isothermal	d) Isobaric
61.	Gases have:			
	a) One specific heat	b) Two specific heats	c) Three specific heat	s d) No specific heat
<i>c</i> 2			•	•
62.				from 14.5°C to 15.5°C is known as:
	a) Specific heat	b) Latent heat	c) Calorie	d) Joule
63.	Quantity of heat require	ed to raise the temperatu	re of one kg of water fro	om 30°C to 40°C is
00.	a) 4201	b) 4200J	c) 42000J	d) 420000J
		,	,	3, 120000
64.	-	be carried out suddenly		
	a) Effect of friction is n			xchange energy with its surroundings
	c) Heat could be supplied	ed to the system without	losses d) More work co	ould be done
[2014]				
65.	-	enters or leaves the syste		
	a) Isochoric	b) Isobaric	e) adiabatic d	l) Isothermal
[2009]				
66.		out of a system, the prod		
	a) Isobaric	b) Isothermal	c) Isochoric	d) Adiabatic
			D 4	
			Page 4	
Follow	us: www.facebook.com/sir	danishahmed		Contact: 0334 3400195

Compiled By:Sir Danish Ahmed

XII - Physics
Multiple Choice Ouestions

SII Da	msn Anmeu			Multiple Choice Questions
67.	The molar heat ca	apacities of polyatomic gase	es as compared to the i	monatomic gases are:
	a) Greater	b) Smaller	c) Equal	d) Infinite
	•	,		,
[2011]				
68.	In adiabatic expan	nsion the internal energy of	the system	
	a) Remain the sar		c) Increases	d) Becomes zero
[2001]				
69.	Net change in ent	tropy of a system in a natur	al process is:	
	a) Zero	b) Infinite	c) Positive	d) Negative
[2008,		,	,	, ,
70.	-	d by an isothermal and an a	diabatic curve in a PV	diagram for a heat engine represents:
	a) Heat intake	b) Heat rejected	c) Work done	d) Total kinetic energy
[2006]	•	,	•	
71.	The efficiency of	a Carnot engine is given by	y:	
	a) $1 - T_2 / T_1$		c) $T_2 / T_1 - 1$	d) None of these
[2003]	,	·	, -	
72.	The maximum ef	ficiency of a heat engine is	obtained by:	
		temperature of hot and cold	•	
		e temperature of sink and in		
		e temperatures simultaneous		
[2015,	,	•	•	
73.	_	e of the cold is decreased th	ne efficiency of a Carno	ot engine will.
	a) Decreases	b) Increase		d) None of these
	,	,		
74.	_	e of the source is increased,		rnot engine:
	a) Decreases		b) Increases	
	c) Does not cha	ange	d) Equal to the eff	iciency of an ideal engine
75.		oor of refrigerator which is	~ \ ~	
	a) Cool the roo	om to a certain degree		perature of a refrigerator
	c) Warm the ro	oom slightly	Weither cool no	r warm the room
76.	The steam engine	es A & B have their sources	at 000K and 600K an	d their sinks at
70.	450K and 300K i)	d then shiks at
		uality efficient	b) A is more effici	ant than R
	a) They are equc) A is less effi			e cannot be determined
	c) A is less ein	cient than b	u) Then unference	e cannot be determined
77.	The netural directic	on of the heat flow between tw	uo racarvoire danande un	on
//.			b) Their heat conte	
	_		· · · · · · · · · · · · · · · · · · ·	
	c) Their pressu	ires	d) They are in the	solid, or gaseous state
70	Efficiency	notangina san ha 1000/1	if tamparatura of the -!	nk io
78.	11.11	not engine can be 100% only		
[2000]	a) 0°C	b) 0 K	c) 0° F	d) None of these
[2009]		11 64 1 1 1	1000/	
79.		and law of thermodynamics 1		it energy into work is
	a) Possible	11.1	b) Not possible	11.1
[0010]	c) Possible who	en condition are ideal	d) Possible when o	condition are not ideal
[2010]		4 1D1 11		20000
80.	•	es A and B have their source	ces at 600° C and 400° C	C and their sinks at 300°C and 200°C
	respectively:	1 00 1		
	a) They are equal			b) A is more efficient than B
	c) B is more effic	eient than A	d) If their sinks ar	e interchanged, their efficiencies will not change
[2008]				
81.		called the degree of disord		
		f the universe unchanged		the universe increase
	c) The entropy o	f the universe decreases	d) None of these	
			Page 5	
Follow	us: www.facebook.c	com/sirdanishahmed		Contact: 0334 3400195

[2006, 2003]

82. The change in disorder of the system is equal to:

a) $\Delta S = \Delta T/Q$

b) $\Delta S = \Delta Q/T$

c) $\Delta S = 1 / \Delta QT$

d) $\Delta S = \Delta Q.T$

[2006]

83. In C.G.S. system one calorie of heat is equal to:

a) 11.184 J

b) 2.184 J

c) 3.184 J

d) 4.184 J

84. When the temperature of source and sink of a heat engine becomes equal the entropy change will be

a) Maximum

b) Minimum

c) Zero

d) Negative

85. The entropy change (ΔS) is zero for

a) Adiabatic process

b) Isothermal process

c) Isochoric process

d) Isobaric process

[2002]

86. The entropy of universe:

a) Always remains constant

b) Always decreases

c) Either remains constant or increase

d) Always increases

87. The amount of heat which is absorbed during the change of state from solid to liquid without the rise in temperature is known as:

a) Specific heat

b) Latent heat of fusion

c) Latent heat of vaporization

d) Molar specific hear

88. The entropy of universe:

a) Always remains constant

b) Always decreases

c) Either remains constant or increase

d) Always increases

89. Entropy is called as "time arrow" because the entropy of the universe

a) Always increase

b) Always decreases

c) Remains constant

d) Sometimes increase and sometimes decreases

CH – 11	l: HEAT							ANSWI	ER KEYS
1) a	2) b	3) d	(A) (b)	5) b	6) a	7) b	8) a	9) c	10) c
11) b	12) d	13) b	14)6	15) d	16) c	17) b	18) c	19) a	20) c
21) c	22) c	23) b	24) b	25) a	26) a	27) d	28) b	29) b	30) d
31) b	32) b	33) c	/34) a	35) c	36) b	37) a	38) b	39) c	40) a
41) c	42) b	43) c	44) c	45) d	46) d	47) b	48) d	49) c	50) d
51) a	52) d	53)c	54) c	55) b	56) b	57) b	58) c	59) c	60) c
61) b	62) a	63) c	64) b	65) c	66) d	67) a	68) b	69) a	70) c
71) a	72) b	73) b	74) b	75) c	76) a	77) a	78) b	79) b	80) b
81) b	82) b	83) d	84) c	85) a	86) d	87) b	88) d	89) a	

d) Joule/Coulomb

Contact: 0334 3400195

$\overline{\text{CH}} - \overline{12}$: ELECTROSTATICS 1. When a glass rod is rubbed with silk the glass rod is positively charge because: b) Protons are transferred from silk to glass a) Electrons are transferred from silk to glass c) Electrons are transferred from glass to silk d) No transfer of electrons or proton has taken place 2. The unit of electric charge is the: a) Electron volt b) Coulomb c) Newton /sq. meter d) None of these [2005] The minimum electrical charge possible in isolated from is: 3. b) 1 x 10 ⁻¹² C a) 1.6 x10 ⁻¹⁹ C c) 1×10^{-6} C d) One Coulom! Coulomb's law for the force between electric charges most closed resembles. 4. b) Newton's second law of motion a) The law of conservation of energy d) the law of conservation of mass c) Newton's Law of gravitation 5. Two charges q_1 and q_2 are repel each other if b) $q_1 q_2 < 0$ c) $q_1 q_2 > 0$ d) None a) $q_1 q_2 = 0$ [2011] If an electrostatic force between two electron at a distance is "F" Newton, the electrostatic force between two 6. protons at the same distance is b) F/2 (c) F a) Zero d) 2F [2015] If the distance between two pint charges is halved then the electrostatic force between them become 7. b) Four times c) Twice a) Halved d) Remain same [2008] Two positive point charges repel with a force of 4 x 10⁻⁴ N when placed at distance of 1m:. If the distance 8. between them is increased by 2m, the force of repulsion will be: d) 4 x 10⁻⁴ N a) 1 x 10⁻⁴ N b) 8 x 10⁴ N c) $2 \times 10^{-4} \text{ N}$ Two unequal point charges repel each other with a force of 100M Dyne when they are 15 inch apart. Find the 9. force which each exertion the other when they are 5 inch apart b) 400MDyne a) 100MDyne c) 900MDyne d) 1000MDyne [2013] Number of electron contained in one coulomb of charge are: 10. a) 6.25×10^{18} e b) 2×10^{-19} e c) 2×10^{19} e d) 9×10^{18} e [2006] 11. The concept of the electric lines of force was introduced by a famous scientist called: a) Newton b) Einstein c) Coulomb d) Faraday **12.** The direction of the electric field intensity is: a) Away from all negative charges b) Toward all negative charges c) Same as direction of an electric force d) Dependent on the nature of a charge [2007,2002] Which of the following cannot be the unit of electric intensity:? **13.** a) N/ Coulomb c) Joule/ Cm

Page 7

b) Volt/ meter

XII - Physics

Multiple Choice Questions

[2014,	2007, 2010]				
14.	-	ing is not a scalar quantity?	•		
	a) Potential	b) Electromotive force	c) Electri	c flux	d) Electric intensity
15.	Two point charges e	each of 10 μ c are placed 10	Ocm apart i	n air, what is the electr	ric field intensity at the mid point
	on the line joining th	ne two like charges of same	magnitude	e is	
[2002]	a) $9 \times 10^9 \text{N}$	b) 1	c) Zero		d) None
16.	The force per unit ch	harge is known as:			
	a) Electric flux	b) Electric field intensity	c) Electric	potential	d) Electric current
17.	The magnitude of th	e electric field intensive do	es not depe	end upon:	
	a) the distance from		_	ture of medium	
	c) the magnitude of	• 1	,	ture of charge	
[2011]	,	C	,		
18.	The quantity - $\Delta V/\Delta$	ar represents:			
	a) Gauss's law	b) Electric flux	c) Poten	tial difference	d) Electric intensity
[2002]					
19.		ough a surface will be mini		n the angel between E	
	a) 90°	b) Zero	c) 45°		d) 60°
20	The floor through a c			Δ Δ Δ i a.	
20.	a) 0°	urface is maximum when the	c) 180°	tween E and ΔA is:	d) 45°
[2008]	<i>u)</i> 0	0) 70	CV 100		4) 43
21.	Electric flux through	n the surface of a sphere wh	ich contain	ns a charge at its centre	e depends :
	a) The radius of the		1 1	urface area of the spher	=
	c) The amount of ch	arge inside the sphere	\rightarrow d) The an	nount of charge outsid	e the
[2001]					
22.		ough a closed surface deper) D''	1 1
	c) The shape of the	charge enclosed by the surf		·	ge enclosed by the surface
	c) The shape of the	surrace	•	l) None of the above of	ption
23.	The flux through a cl	osed surface which does not	contain an	y charge is:	
	a) Infinite	b) Positive	c) Zero		d) Unity
24	IC 1 (C)	1 1	. 1	.1 . 1	C 41 C 311
24.		ontains two equal and oppo			
	a) 2σ	b) $1/2\sigma$	c) $2q/\sigma$		d) Zero
25.	Coulomb per square	meter is a unit of			
	a) Permittivity const		b) Dipole	e moment	
	c) Surface density of			density of charge	
[2004]					
26.		lectric Intensity between tw	o opposite	ly charged plates is:	
	a) $\frac{2\sigma}{\sigma}$	b) $\frac{\sigma}{2\epsilon_{o}}$	c) $\frac{\sigma}{3\epsilon_{o}}$		d) $\frac{\sigma}{\varepsilon_o}$
	$\epsilon_{\rm o}$	$^{'}2\epsilon_{ m o}$	$3\varepsilon_{\rm o}$		\mathcal{E}_o

c) 0.8

Page 9

d) Infinite

Contact: 0334 3400195

a) 1.0

Follow us: www.facebook.com/sirdanishahmed

b) 1.05

Sir Danish Ahmed

XII - Physics

Multiple Choice Questions

[2005]

43. A dielectric k = 2 is inserted between the plates of a $20\mu F$ capacitor. Its capacitance will become:

a) 10µ F

b) 18µ F

c) 22µ F

d) 40µ F

[2003]

44. If two capacitors of $5\mu F$ and $7\mu F$ are connected in parallel, their equivalent capacitance will be:

a) 0.12 μF

b) 12 μF

c) 0.34 µF

d) 2.9 µF

45. When two identical capacitor are connected in parallel the net capacitance will be:

a) Doubled

b) Unchanged

c) Halved

d) Zero

[2006, 2002, 2010]

46. If 4 μ F and 2 μ F capacitors are connected in series, the equivalent capacitance is:

a) 0.76 μF

b) 6 μF

c) 2 µF

d) 1/33 µl

[2014]

47. Two capacitors of 3 u F and 6 u F are connected in series. Their equivalent capacitance is:

a) 19µ F

b) 2 μF

c) $\frac{1}{2}\mu F$

 $d) 3\mu F$

48. When three capacitors are joined in series, the total capacitance is:

a) Less than the value of minimum capacitance

b) Equal to the sum of the capacitances

c) Greater than the value of maximum capacitance

d) None of these

49. Which of the following is a representation of electrostatic potential energy of a capacitor?

a) $\frac{1}{2}$ CV²

b) $\frac{1}{2}$ C²V

c) CV

d) $\frac{1}{2}$ (CV)²

CH – 12:	CH – 12: ELECTROSTATICS							ANSWE	R KEYS
1)	2)	3)	4)	5)(6)	7)	8)	9)	10)
11)	12)	13)	14)	(15)	16)	17)	18)	19)	20)
21)	22)	23)	24)	25)	26)	27)	28)	29)	30)
31)	32)	33)	34)	35)	36)	37)	38)	39)	40)
41)	42)	43)	44)	45)	46)	47)	48)	49)	

Cn	apter - 13:		CURR	RENT ELECTRICITY
[200	5]			
1.	The rate of transfer of char	ges through a circuit is cal	lled	
1,	a) Resistance	b) Current	c) Potential difference	d) all of these
	,	,	,	,
2.	Electrical conductor conta	ains.		
	a) Only free electrons	b) Only bound electron	sc) Resistance	d) All of these.
3.	Charge carrier in Metallic			
	a) Valence Shells	b) All shells	c) Excited States	d) Inner shells
4.	The current which flows to	from high notantial to lov	y notantial is called:	
→.	a) Pulsating current	b) Direct current	c) Alternating current	d) Conventional current
	a) I disating current	b) Direct current	c) Thermating current	as conventional current
5.	Free electrons in an electr	ric field:		
	a) Move from higher po	otential to lower potentia	l b) Ren	nain stationary
	, <u> </u>	tential to higher potentia	1 d) Rota	te in a circle
[200	=			
6.	In the relation $I = KV, K$		G : C 4	1) D 1 111
	a) Conductance	b) Resistively	c) Specific Resistance	d) Permeability
7.	Ohm's Law is applicable	only for		
, ·	a) Electrolytes	b) Metallic conductors	6) Semi conductors	d) All of these
	u) Electrolytes	o) inclume conductors	Service succession	a) The of these
8.	A wire of length L and re	sistance R is cut into four	r equal pieces. Resistance of each	h piece would be:
	(a) R (b) $R/$		(c) 2 R	(d) R / 4
[200]	7]			
9.	If a wire of a uniform are	ea of cross section is cut i	into two equal parts, the resistivit	ty of each part would be:
F201	(a) Doubled (b) Hal	lved	(c) Same	(d) None of these
[201		sistility a is swatched in	and a man that its diameter made	and to half of that of the
10.	original wire. The new	recietavity will be:	such a way that its diameter redu	ces to han of that of the
	a) halved b) dow		c) the same	d) four-fold
[201	3, 2008]		c) the same	u) Tour Tota
		-section area is cut into t	hree equal segments. The resistiv	vity 'p'of each segment
	a) 1/3 ρ b) Ren	nains same	c) 2/3 p	d) Three times
[201				
12.	Resistance of a wire does			
F 2 00		perature	c) Length	d) Electric current
[200	- ()			
13.	The power dissipated by a	resistance is given by. (b) $P = V^2/R$	(c) $P = I R^2$	(d) None of these
[2005	(a) $P = V/R$	$(0) \mathbf{r} - \mathbf{v} / \mathbf{K}$	(C) F = I K	(d) None of these
14.	The power dissipated in a 1	resistance is given by.		
,	(a) I V	(b) I ² R	(c) V^2/R	(d) All of these
[200		、		
15.	A resistor carries a curren	nt I. The power dissipate	d is P. the power dissipated of sa	ame resistor carries the current
	3I is:			
	(a) 9 P	(b) P / 3	(c) 3 P	(d) P
16	Daman diasir - 4 - 4 lin to	anias masistana la disa d	nuonoutional to 45 - 15	
16.	Power dissipated in two s (a) Resistances	(b) Current	proportional to their. (c) Potential differences	(d) All of these.
	(a) resistances	(b) Current	(c) I occurred differences	(a) in or mose.

Contact: 0334 3400195

Follow us: www.facebook.com/sirdanishahmed

J11 1	Danish Allincu			Multiple Gloree Questions
[200	9, 2010]			
17.		issipated as heat in a res		-
	a) $I^2 R$	b) I ² R t	c) $V^2 R$	d) $V^2 R t$
[201	-	D 1D		
18.		e R_1 and R_2 are connected	ed in a series in a circuit. If R_1 is	greater than R ₂ , the heating would
	be: a) More in R ₁	b) More in R ₂	c) Same in R ₁ and R ₂	d) All of these
[200	25,2002,2010]	b) Whole III \mathbf{K}_2	c) Same in K_1 and K_2	d) All of these
_	The commercial unit of	electrical energy is called	1.	
17.	(a) Joule	(b) Kilowatt	(c) Kilowatt hour	(d) Megawatt
[201	2, 07, 2003]	(-)	(0)	
_	1 KWh =			
	(a) $3.6 \times 10^{3} \text{ J}$	(b) $3.6 \times 10^{6} J$	(c) $3.6 \times 10^{9} \text{J}$	(d) 3.6 x 10^{12} J
[200	2]			
21.	Kilowatt hour is the unit			
	(a) Power	(b) conductivity	(c) Potential difference	(d) Energy
22.			in electrical circuits is called:	
	(a) Electric motor	(b) E.M.F	(c) Generator	(d) Thermocouple
22	The end of a service is		1 majetan an jeu	\searrow
23.		n the presence of interna		\langle (d) I R - I r
	(a) I R	(b) I r	(c) IR + Ir	$(\mathbf{u}) 1 \mathbf{K} - 1 1$
24.	FMF of a source in the	ne absence of internal re	esistance is:	
27.	(a) IR	(b) IR + Ir	(c) Tr	(d) $IR - Ir$
	(u) 11t	(6) 111 111		(6) 111
25.	Loss of Voltage in Elec	ctrical circuits is given b	oy:	
	(a) I R	(b) I r	(c) $IR + Ir$	(d) $IR - Ir$
[200	1]			
26.	The terminal potential d	ifference of a battery is e	qual to its e.m.f when its internal r	resistance is:
	(a) Zero	(b) Very high	(c) Very low	(d) None of these
[201				
27.			r). If a current (I) is drawn from it,	
F 2 00	(a) V = E - Ir	(b)V = E + Ir	(c) V = I R	(d) V = E r
-	01, 2008]		. 1: 11.1 :4.4	1 14 . 17
48.			re connected in parallel with the	
		ame potential difference	nce b) Different currents but the d) Different currents and di	
[200	·	ine potential difference	d) Different currents and diff	rrefent potential differences
29.		5 Q 7 Q and 9Q are cor	nnected in parallel. If the potentia	al difference across the 50
			ss 9 Ω resistance will be:	ar difference deress the 322
	a) 9 V	b) 5 V	c) 2.5 V	d) 1.5 V
[200		-,		,
30.		Ω and Ω are connected:	in parallel if 0.3 V be the p.d. betw	ween the ends of 3 Ω , resistor, the
	, ,	oss the other resistors is:	•	
	(a) $0.5V$	(b) 0.7V	(c) 1.2 V	(d) 0.3V
[201	3]			
31.		nd 7Ω are connected in μ	parallel. If the P.D. across 5Ω res	sistor is 6 volt, the P.D. across the
	other resistors is:			
	(a) 4 Volts	(b) 6 volts	(c) 8 volts	(d) 10 volts\
2.5				
32.	_	stors each of resistance	3 Ω could be connected with a 2	Ω resistor to have net resistance
	of 3 Ω :	(1) 1 11 1	() 1	(I) NI (
	(a) In series	(b) In parallel	(c) In complex network	(d) Not in any way
			Page 12	

Sir Danish Ahmed

XII - Physics

Multiple Choice Questions

[2008]

- A piece of wire of length 'L' and an area of cross-section 'A' has a resistance 'R'. Another piece of wire of the same material and the same length but twice the area of cross-section is connected end-to-end with the previous wire. The effective resistance is:
 - a) R
- b) 2R
- c) 1/3 R

d) 1/2 R

[2003]

- Total potential difference across the combination of three cells becomes maximum when 34.
 - (a) They are connected in parallel

- (b) They are connected in series.
- (c) Two cells connected in parallel and one in series
- (d) Two cells are connected in series and one in parallel,

[2009]

- **35.** The E.M.F. of three cell, each of 2 volts in parallel will be:
 - a) 6 V
- b) 8 V

d) Zero/

[2012]

- Resistance of 2 ohm, 3 ohm, 4 ohm and 5 ohm are connected in series. If the current **36.** flowing through 2 ohm resistor is one amp, the current through the other resistors will be
 - a) 4 ampere
- b) 1 ampere
- c) 14 ampere
- d) 0.1 ampere

[2015]

- 37. Resistors of 5Ω and 10Ω are connected in parallel. If the P.D across 5Ω resistor is 6 volts, the P.D across 10 Ω resistor will be:
 - (a) 3 Volts
- (b) 6 volts
- (c) 9 volts

(d) 12 volts

CH – 13:	CH – 13: CURRENT ELECTRICITY							ANSWE	R KEYS
1)	2)	3)	4)	5)	6)	7)	8)	9)	10)
11)	12)	13)	14)	15)	16)	(17)	18)	19)	20)
21)	22)	23)	24)	25)	26)	27)	28)	29)	30)
31)	32)	33)	34)	35)	36)	37)			

Compiled By: Sir Danish Ahmed

XII - Physics Multiple Choice Questions

Contact: 0334 3400195

Chapter - 14:

ELECTROMAGNETISM

[2006] 1.	Which is not a magnetic	c material?		
1.	a) Iron	b) Nickel	c) Cobalt	d) Silver
2.	Maximum force on a ch	arged particle moving in magnet	ic field is given by:	
	a) q v B	b) q v B Sinθ	c) B 1	d) B 1 Sinθ
[2003]	T			
3.	The force acting on a change 0^0	narged particle projected into a m b) 90°	agnetic. c) 60^0	d) 45 ⁰
[2008]	<i>a)</i> 0	0) 70	c) 00	d) 43
4.	A charged particle movi	ing in the magnetic field B exper		
	a) Proportional to the ki		b) In the direction of the	e field
[2015]	c) In the direction perpe	endicular to motion and field.	d) None of these	
5.	When an electron move	s in a magnetic field (B) with a v	velocity (V), the magnetic	force acting on it is
	perpendicular to:	-		
	a) V but not on B	b) B but not on V	c) Neither V nor B	d) Both V and B
[2002] 6.	If a straight conductor of	of length "l" carrying a current "I"	" is placed parellal to a p	onanatic field "P" the force
υ.	experienced by the cond	fuctor is:	is placed parallel to a li	haghetic field B, the force
	a) B 1 I	b) B I l Cos θ	c) Zero	d) Infinite
[2005]				
7.		h of a current- carrying conducto		
[2001]	a) I B 1 $\sin \theta$	b) IB1Cos θ	C I B Sin θ	d) I B Cos θ
8.	The maximum magnetic	c force will act on a current carry	ying conductor in a magr	netic field when it is placed.
F000 67	a) At 60° to the field	b) At 45° to the filed. c) Paral	llel to the field d) Perpen	dicular to the field
[2006] 9.	The S.I Unit of magneti	o fluv ic:		
9.	a) Tesla	b) Weber	c) Gauss	d) Ohm
[2003]	.,		-,	2, 5
10.	One Tesla is equal to:		2, 2	
[2009]	a) 1 weber/ metre ²	b) 2 weber/ metre	c)weber ² / metre ²	d) Newton/ ampere
11.	Which one is not a unit	of magnetic flux density?		
	a) N A ⁻¹ m ⁻¹	b) Wb / m ²	c) Tesla	d) VA ⁻¹ S
[2004]				
12.	The unit of B, is:			
	newtown	b) <u>newtown</u>	c)ampere	d) ampere x metre
	Coulomb x metre	ampere x metre	netwon x metre	netwon
[2002]				
13.	The deflecting torque or	n a current carrying coil placed in	n a magnetic field is max	imum when the angle
		led and the plane of the coil is:	\ 4. ~ 0	n =
	a) 90°	b) 60°	c)45°	d) Zero
14.	Which of the following	is not the unit of magnetic induc	tion?	
	a) Weber	b) Tesla	c) N / A m	d) Weber / m ²
_	2006 ,2005]	1. 4		
15. T	The path of neutron movi (a) A straight path	ng normal to the magnetic field i (b) A circular path	is: (c) An oval path	(d) A sinusoidal noth
	(a) A suaigin pani	(0) A circular paul	(c) Ali Ovai patii	(d) A sinusoidal path

Contact: 0334 3400195

Follow us: www.facebook.com/sirdanishahmed

		Page 15		
32.	The phenomenon of pro	oducing emf in the coil itself due (b) Self Induction	to varying current is call (c) Motional e.m.f.	ed: (d)Electromagnetic induction
31.	Weber per ampere is kn (a) Mutual inductance		(c) Induced e.m.f.	(d) A & B are correct
[2005] 30.	S.I. Unit of induction is (a) Tesla	(b) Henry	(c) Watt	(d) Weber
29.	Henry is equivalent to: (a) Weber / Ampere	(b) Weber / m ²	(c) Weber/ ampere meter	er d) Weber x meter
28.	Non-Inductive wiring is a) Conductance	s used to minimize: (b) Resistance	(c) Mutual Inductance	(d) Self Inductance
27.	The Current produced by (a) Direct current	moving the loop of wire across (b) Steady current	s the magnetic field is cal (c) Pulsating current	lled: (d) Induced current
26.	[2005] The maximum resistance (a) Capacitor	e in an A.C. circuit is offered by (b) Solenoid	: (c) Electromagnet	(d) Electric bulb
25.	[2013, 2005] The direction of induced (a) Ampere's Law	d current is given by: (b) Faraday's Law	(c) Lenz's Law	(d) Snell's Law
24.	(a) South pole	a bar magnet approaches the face (b) North and then south pole	e of a closed coil the face (c)North pole	e becomes; (d) No effect is observed.
	a) Do not affect each otherc) Repel each other	her b) Attra	e of these	
[2011] 23.	Two free parallel wires of	arrying current in the opposite di	rection:	
	(a) Directly proportiona	uction within the core of toroid f I to the square of the radius of tu al to the number of turns	rns. \ (b) Directly pro	rent portional to the radius of turns portional to number of turns.
21.	(a) The difference of ele	arrent carrying conductor is: ectric fields of protons and electrofields of protons and electrons	on.	(b) Zero (d) Negative
20. U	Jpon which of the follow (a) Permeability	ving magnetic field inside the solo (b) Current		(d) Diameter of solenoid
[2012, 1 19.	A steady current passing	g though a conductor produces (b) Magnetic filed only	(c) Both a & b	(d) None of these
18.	(a) Slow moving	ed particles of same masses will (b) Fast moving	deflect more in the same (c) Both	magnetic field: (d) None of these
[2002] 17.	If an electron and a prot (a) The electron will be (c) They will not be def		rpendicularly with the sa proton will be deflected h particles will be deflec	more.
[2002] 16.	When a charged particle (a) Spiral	e enters a uniform magnetic field (b) Circular	perpendicularly, its path (c) Parabolic	ı is (d) Straight line

Multiple Choice Questions

33.		law is satisfied by the Lenz's law		- Calama
	(a) Law of conservation(c) Faraday Law of indu		(b) Law of conservation(d) None of these	i of charge
34.	The current which flow	s in the coil to oppose the draggi	ng force on the coil is ca	lled:
	(a) Direct current	(b) Pulsating current	(c) Induced current	(d) Steady current.
35.	When the coil is moved	towards the magnetic poles then	:	
	(a) Light will appear	(b) Heat will produce	(c) No effect.	(d) emf will induce in the coil
36.	Cause of self inductance	e is:		
	(a) Change in current in		(b) Change in flux in th	
[2015]	(c) Both A and B are wi	rong	(d) Both A and B are co	orrect.
[2015, 2	_	a coil in doubled, its self inducta	nce will be	
011	a) Doubled	b) Halved	c) The same	d) Four-fold
[2003]	,	,		
38.	A transformer is used to	_		
[2010]	(a) Capacitance	(b) Frequency	(c)Voltage	(d) Power
[2010] 39.	Transformers are used i	n circuits containing		
.,,	a) d.c.alone	b) a.c.alone	c) both a.c. and d.c.	d) non-inductive winding
[2002]	,	_		,
40.	Transformer works on			(1) G
[2008]	(a) Ohm's Law	(b) Self induction	(c)Mutual Induction	(d) Gauss's Law
41.	In a conventional transf	Former:	\searrow	
		om primary to the secondary wir	dings without any chang	ge
	b) EMF is induced in th	e secondary by the changing mag	gnetic flux.	
	c) The heat is transferre	d from primary to secondary	d) Non	e of the above
42.	The core of a transform	er is made of soft iron because:		
	(a) Iron is cheaper than		(b) Iron is a good magn	etic substance
	(c) Iron is a good condu	actor of current	(d) Iron has high meltin	g point.
43.	The same of transformer	is weather limb the mimory soil to	o the secondary soil Wh	est type of link is this?
43.	(a) Thermal,	is used to link the primary coil to the control in	(c) Magnetic	(d) Mechanical.
[2013,	2012, 2009]		(0) 1/11/10/110/110	(6) 1/1001111111111
44.	- 1	n of the phenomenon of mutual i		
[2002]	a) A.C. generator	b) Transformer	c) Rectifier	d) Dynamo
[2003] 45.	In step down transforme	ar.		
73.	a) No No	(b) $N_s < N_p$	$(c)N_s = N_p$	(d) $N_s = N_p$
		V 2 P	(/ 3 P	(/ J P
46.	In step up transformer:			
	(a) $I_s > I_p$	(b) $I_s < I_p$	$(c)I_s = I_p$	(d) All of these
47.	Due to change of magn	netization some heat is produced	in the coils of transform	ner when alternating current is
-	supplied at its input. Th			
	(a) Drifting	(b) Rectification	(c) Hysterics	(d) Induction
[2011]	The core of a transferred	ar is laminated to made as the 1	of Engrave source d bear	
48.	a) NAφ [Flux leakage]	er is laminated to reduce the loss b) Eddy current	c) Heating	d) All of these
	, [1 mm leunuge]	-, <u> </u>	-,	-, · 01 mood

Sir Danish Ahmed

XII - Physics

Multiple Choice Questions

49. If "v" is the speed of a conductor of length "L" moving perpendicularly across the magnetic field B then the motional e.m.f is given by:

(a) v B L

(b) v / L B

(c) v B / L

(d) BL/v

[2010]

50. The motional e.m.f induced in a coil is independent of:

a) Change of flux

b) Number of turns

c) Time

d) Resistance

[2014,2013,2009]

51. A.C. Generator is converted into D.C generator by replacing :

a) Rectangular coil from circular coil

b) Commutator from slip rings (Split ring)

c) Armature from solenoid

d) None of these

52. A.C. generator works on the principle of:

(a) Self induction

(b) Mutual induction

(c) Motional emf

(d) A & B is correct.

53. In D.C generator which of the following is not present

(a) Armature

(b) Commutators

(c) Magnets

(d) Slip rings

54. The current which fluctuates from zero to maximum and maximum to zero is called:

(a) D.C

(b) A.C.

(c) Steady current

(d) Pulsating D.C

55. In electric motor commutator is used for:

(a) Pulsating D.C

(b) Increasing the current

(c) Steady current

(d) A.C.

[2007]

56. A Device which converts the electrical energy to mechanical energy connecting to it:

a) Transformer

b) Capacitor

c) Galvanometer

d) Electric motor

CH – 14:	CH – 14: ELECTROMAGNETISM ANSWER KEYS								ER KEYS
1)	2)	3)	4)	5)	6)	7)	8)	9)	10)
11)	12)	13)	14)	15)	16)	17)	18)	19)	20)
21)	22)	23)	24)	25)	26)	27)	28)	29)	30)
31)	32)	33)	34)	35)	36)	37)	38)	39)	40)
41)	42)	43)	447	45)	46)	47)	48)	49)	50)
51)	52)	53)	54)	55)	56)				

Multiple Choice Questions

CHAPTER – 15:

MEASURING DEVICES

Contact: 0334 3400195

[2007,2	003,2002,2001]			
1.		ries	a ammeter by connecting to it: (b) High resistances in series (d) Low resistance in parallel	
[2008] 2.		vanometer can be increase	•	(D. 111 C.)
[2006]	(a) Magnetic field	(b) Area of coil	(c) Number of turns	(d) All of them:
3.	$I = C / B N A \theta$ to incre (a) θ	ase the sensitivity of a ga (b) N	alvanometer, we must decrease the (c) B	ne value of:
4.	Sensitivity of Galvanon (a) CBAN	neter is given by: (b) 1/ CBAN	(c) C/ BAN	(d) BAN/C
5.	The process of reducing (a) Drifting	amplitude of vibration of (b) Shunting	of coil of galvanometer is called? (c) Doping	(d) Damping
6.	In a circuit voltmeter is (a) Series	always connected in: (b) Parallel	(c) Both A and B	(d) None of these
[2014] 7.	This is a high resistance a) Voltmeter	instrument: b) Ammeter	c) Galvanometer	d) Motor
[2012, 2	2002] AVO meter is used mea	sure.		
[2010]	(a) Current	(b) Voltage	(c) Resistance	(d) All of them
9.	Single device containing a) VTVM	g ammeter, voltmeter and b) CRO	d ohmmeter is called: c) Potentiometer	d) Multimeter
[2003] 10.	To increase the accuracy (a) A uniform wire of a (c) A uniform wire of a	y of potentiometer: large length should be us small length should be u	sed. (b) A non-uniform wire sed d) None of these	should be used.
11. [2003]	(a) P.O. Box	device is not used for me (b) Obnameter	easuring resistance. (c) Potentiometer	(d) Meter bridge
12. [2015]	Potentiometer is a device (a) P.D b/w two points		(c) Voltage b/w two points.	(d) All the above
13.	An instrument which ca (a) Potentiometer	n measure and compare j (b) Ohm meter	potentials without drawing any c (c) Voltmeter	urrent from the circuit is (d) Meter bridge
[2011] 14.	If the length of the wire a) Increases	of potentiometer is incre (b) Decreases	eased, the accuracy in the determ (c) Remains the same	ination of null point: (d) Becomes zero
[2002]		•	(c) Remains the same	(d) Decomes Zero
15.	A Meter Bridge is used (a) Voltage	to measure. (b) Inductance	(c) Capacitance	(d) Resistance
16.	The device which make (a) Ohm meter	use of Wheatstone bridg (b) Meter bridge	ge is: (c) Voltmeter	(d) Potentiometer
17.	P.O. Box is used to find (a) Current	: (b) emf	(c) Resistance	(d) All of these
18.	Balanced position of W (a) Zero	heatstone bridge is obtain (b) Different	ned when potential at the termina (c) Same	als of Galvanometer is. (d) None of these
		p	Page 18	

Sir Danish Ahmed

XII - Physics

Multiple Choice Questions

[2006]

19. In a Wheatstone bridge circuit we balance:

(a) Resistance

(b) Current

(c) Voltage

(d) All of these

[2003]

20. The principle of post office box is based on:

(a) Telegraph line

(b) Multi-meter

(c) Potential difference (d) Wheatstone bridge

CH – 15: MEASURING DEVICES							ANSW	ER KEYS	
1)	2)	3)	4)	5)	6)	7)	8)	9)	10)
11)	12)	13)	14)	15)	16)	17)	18)	19)	20)
									,

Contact: 0334 3400195

CHAPTER – 16:

Follow us: www.facebook.com/sirdanishahmed

ELECTROMAGNETIC WAVES & ELECTRONICS

[2007, 2	2003]			
1.	In P type semi conducto	ors the majority of the ch	arge carriers are:	
	(a) Electrons	(b) Protons	(c) Neutrons	(d) Holes
[2014]				
2.				
		b) Positron	c) helium nucleus	d) vacancy in the valence bond
_	_			
3.			(a) A martifian	(d) None of there
[2003 /		(b) An oscillator	(c) A recurrer	(d) None of these
_	=	V like Ge and Si can be	converted to n-type sem	ni conductors by
7.			1 1	~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
				ne of these.
[2002,2			()	
5.		ap between the valence b	and and the conduction	band in semi conductor is:
	(a) Fairly large	(b) Relatively narrow	(c)Zero	(d) Infinite
_				
6.				
				(d) None of them
[2007]		(b) Permittivity only	(C) Bolli oli Al aliu B	(d) None of them
_		magnetic waves is given	125.	
,.			^	(4) 1 / \(\sigma \)
	(a) $\sqrt{\mu_o} \in_o$	(b) $\mu_0 / \sqrt{\epsilon_0}$	$(\mathcal{O}_{\mathcal{N}})\mu_{o} \times \mathcal{F}_{o}$	(d) $1/\sqrt{\mu_o} \in \mathfrak{a}$
0	TT 1			
8.				(d) D tyme
	(a) Diode	(b) Transistor	(c)/Triode	(d) P-type
9.	The process of generating	ng the effect of Audio sig	gnal in electromagnetic v	wave is called:
	(a) Modulation	(b) Amplification	(c) Biasing	(d) Rectification
			-	
10.				
	(a) Modulation	(b) Rectification	(c) Doping	(d) Biasing
11		1)	1	11 1
1. In P type semi conductors the majority of the charge carriers are: (a) Electrons (b) Protons (c) Neutrons (d) Holes [2014] 2. Hole in a semi conductor is actually the: a) Electron b) Positron c) helium nucleus d) vacancy in the valence bond [2007, 2006, 2005, 2003, 2002] 3. A semi-conductor Diode is used as: (a) An amplifier (b) An oscillator (c) A rectifier (d) None of these [2003, 2001] 4. The elements of group IV, like Ge and Si can be converted to p-type semi conductors by (a) Adding impurity of group V elements (c) Adding impurity of group V and III elements (d) None of these. [2002, 2010] 5. The forbidden energy gap between the valence band and the conduction band in semi conductor is: (a) Fairly large (b) Relatively narrow (c) Zero (d) Infinite 6. [2002] The speed of electromagnetic waves depends on: (a) Permeability only (b) Permittivity only (c) Both on Aland B (d) None of them [2007, 2003] 7. The speed of the electromagnetic waves is given as: (a) $\sqrt{\mu_o} \in_o$ (b) $\mu_o / \sqrt{\epsilon_o}$ (c) $\sqrt{\mu_o} \in_o$ (d) $1 / \sqrt{\mu_o} \in_o$ 8. The three terminal devices, used as an amplifier is called. (a) Diode (b) Transistor (c) Triode (d) P-type 9. The process of generating the effect of Audio signal in electromagnetic wave is called: (a) Modulation (b) Amplification (c) Biasing (d) Rectification				
				uctor
	(c) Intrinsic semi condu	ctor	(d) None of these	
12.	The semi conductor dev	rice which increases the s	strength of weak input si	gnal at the output is a:
	(a) N-type semi conduc	tor	(b) P-N diode	
	(c) Transistor		(d) P-type semi conduc	tor
			• • • • • • • • • • • • • • • • • • • •	
13.	The process in which or	riginal signal is recovered	d . from modulated signa	al is called:
	-			
		. , .	• •	
14.	In frequency modulation	n, which one of the follo	wing of the original sign	al does not change:
	(a) Pitch	(b) Wave length	(c) Frequency	(d) Amplitude
	TD1 1 . 1 . 2 . 2	1' 1		1
15.	_			_
	(a) Keverse blasing	(U) Forward blasing	(c) Charging	(a) induction
		T	Page 20	

Sir Danish Ahmed

XII - Physics

Multiple Choice Questions

[2008]

16. In a semiconductor:

- (a) The electrons move in the conduction band while the holes move in the forbidden band.
- (b) The holes move in the conduction band and the electrons move in the forbidden band.
- (c) The electrons move in the conduction band and the holes move in the valence band.
- (d) The holes move in the conduction band and the electrons move in the valence band only.

[2012, 2002]

17. With the increase of temperature the resistance of a semi conductor.

(a) Increases

(b) Decreases

(c) Remain constant

(d) all of these

[2002]

18. The temperature coefficient of resistance of a semi conductor is :

(a) Positive

(b) Negative

(c) Zero

(d) None of these

[2015]

19. Donor impurities are:

a) Ge and Si

b) In and Ga

c) Sb and As

d) Li and G

[2011]

20. Pn-Junction Diode works as an insulator if connected:

a) to A.C. source

b) in forward bias

c) in reverse bias

d) all of these

[2011]

21. A photoelectric cell transforms light energy into:

a) Heat energy

b) Magnetic energy

c) Electrical energy

d) Sound energy

[2011] **22.**

Emitter Base junction is forward biased in:

a) PNP transistor

b) NPN transistor

c) Both a & b d) Rectifier

CH - 10	6: ELECT	TRONICS						ANS	WER KEYS
1)	2)	3)	4)	5)	6)	7)	8)	9)	10)
11)	12)	13)	14)	(15)	16)	17)	18)	19)	20)
21)	22)								

Contact: 0334 3400195

CHAPTER – 17:

Follow us: www.facebook.com/sirdanishahmed

ADVENT OF MODERN PHYSICS

1.	Galilean transformation (a) Stationary	ns are applicable to a frame (b) Moving	of reference of columns of column		(d) Non	-Inertial	
2.		al theory of relativity space g (b) Relative meaning		have: ctive meaning	(d) None	e of these	
3.	According to Einstein v (a) Increases	when the velocity of a parti (b) Decreases		uously increase ain same		es of the particle.	
4.	This is not the result of (a) Space-time transf (c) Length contraction		(b) Relat	tive mass e dilation			
5.	'c' is the velocity of lig with relative velocity (a) 2c	tht in free space. Then mass 7: (b) 4c	s of a parti (c) 0.866		ouble in a		ing
6.	According to Special T (a) Decreases	Theory of relativity, length (b) Increases		hen viewed from	n a movi (d) Zero		•
7.	(a) It is confined to in	propounded by Einstein, a nertial frames only ecial branch of physics	(b) It has	called the special for some special for above		y because:	
8.	The special theory of re (a) Correct only for (c) Correct for all ve		(b) Total	lly incorrect	ect for ve	elocity much smaller that	n c
9.	Which one of the follow (a) Mass, velocity, to (c) Length, time, velocity		(b) Mass	s, time, length			
10.	Energy librated due to (a) 3 x 10 ⁸	complete breaking of 1kg (b) 9 x 10 ¹⁶	of meter is (c) 9 x 1		(d) 3 x 1	10^{16}	
[2013 11.	Rest mass of photon is: (a) 9.11 x 10 ⁻³¹ Kg	(b) 1.67 x 10° 27 Kg	(c) Zero		(d) None	e of these	
12.	Special theory of relation (a) Objects moving (c) Objects at rest.	vity deals with: vith accelerated speed	(b) Obje (d) Both	cts moving with b and c.	n constan	nt speed	
13.	According to the specia (a) Its mass only (c) Velocity and time	al theory of relativity, the e	(b) Mon	n object depend nentum and posi s and velocity			
14.	Which one of the follow (a) It is in uniform m (c) Net force acting of			s zero accelerati	ion		
15.	Non inertial frame has (a) Constant velocity		((c) Acceleration	1	(d) None of these	
16.	The theory relativity sh (a) Wholly valid (c) Approximately valid	nows that Newtonian mechalid for all velocities	(· ·		ies up to the velocity of for small velocities also	-
17.	A perfect black body (a) Is a perfect absor (c) Is the most efficient	ber of radiation ent radiator	((b) Has a unit al	_	_	
			Page 22				

				<u> </u>			
18. [2010]	The expression λ_{max} x (a) Stefan's Law (c) Rayleigh- Jean's Fo	$\Gamma = \text{constant, represents:}$	(b) Wein's Displaceme (d) Planck's Law	ent Law			
19.	The rate of energy rac raised to power: (a) 4	diation from black body (emiss (b) 3	ive power) is proportion (c) 2	nal to its absolute temperature (d) 1			
20.	According to Wien's d	isplacement law thermal waveler	ngth is inversely proporti	onal to the:			
[2013, 21.	In black body radiation (a) longer wavelength		(b) Shorter wavelength				
	(c) similar wavelength		(d) lower frequency				
22.	The energy E given out (a) h λ / c	t in the form of quanta of energy (b) λ c / h	in the black body radiate (c) $h / \lambda c$	on is given as: (d) h c /X			
23.	Black Body radiations (a) Infra red and visible (c) Visible light and ult	e light	(b) All radiations (d) Ultraviolet and X-rays				
24.	Wein's displacement la (a) $\lambda_{max} T = constant$ (c) $\lambda_{min} / T = constant$		(b) λ_{max} T = constant (d) λ_{min} T = constant				
25.	Black body rations are (a) Temperature radiati (c) Communication rad	ons	(b) High energy radiations (d) Coherent radiations				
26.	According to Planck's (a) Photon	theory energy radiate form the b	ack body in the form of: (c) Quantum	(d) All of the above			
27.	Existence of photon wa (a) Compton	as confirmed by: (b) De' Broglie's	(c) Einstein	(d) Max Plank			
28.	Energy of photon is dir (a) Temperature	rectly proportional to its: (b) Frequency	(c) Wave length	(d) None of these.			
29.	Which of the following (a) Alpha rays	travel at the speed of light: (b) Beta rays	(c) Electrons	(d) Photons			
30.	The strength of the photo (a) Frequency of incide (c) Intensity of incident		(b) Angle of incidence(d) Distance between a	node and cathode			
31.	(a) Directly proportion	on the kinetic energy of the photo al to wave length of radiations al to intensity of incident radiation	(b) Directly proportion	al to frequency of radiations on any of the above factors			
32.	The study of photoelec (a) The quantum nature (c) Compton effect	tric effect is useful for under star e of light	nding: (b) Bohr's atomic mode (d) the nature of electron				
33.	The phenomenon of phenomenon o	notoelectric effect demonstrate th (b) Particle	at nature of light is: (c) Longitudinal	(d) Transverse			

Contact: 0334 3400195

34.	Increasing the intensity of the source of light the number (a) Increases (b) Decreases	of photo-electrons: (c) Remains the same	(d) Becomes finite
35.	Minimum amount of energy required to eject the photo e (a) Threshold frequency (c) K.E	electron is: (b) Work function (d) None of the above	
36.	The unit of the Plank's constant corresponds to: (a) Angular momentum (b) Energy (c) Mon	mentum	(d) Force
37.	In order to increase the kinetic energy of an ejected photoa) Wavelength of Radiation c) Intensity of Radiation	oelectron, there should be b) Frequency of Radiati d) Both Wavelength and	on
38.	Range of wavelength of visible light is: (a) $700A^0 - 1000A^0$ (c) $0.1nm - 1nm$	(b) 1nm – 100 nm (d) 4000A ⁰ – 7000A ⁰	
39.	The minimum light frequency required for photoelectric (a) Normal frequency (c) Threshold frequency	effect is called: (b) Cut Qff frequency (d) Natural frequency	
40.	Wave theory of light is unable to prove: (a) Black body radiation(c) Compton Effect	(b) Photoelectric effect (d) All of them.	
41.	Photoelectric effect cannot be produced by non metallic (a) They have work function of higher value (c) They haven't free electrons	surface because: (b) They have large nun (d) None of the above.	nber of free electrons.
42.	Maximum change in wavelength of x-rays photon could (a) Right angle (b) 1800	be obtained when x-rays (c) 45°	are scattered at: (d) 0°
	Dual nature of light is proved by: (a) Davisson & Germer experiment (c) Photon electric effect The frequency of the incident photon after Compton effect	(b) Black body radiation (d) Compton's effect	1
77.	(a) Increase (b) Decrease	(c) Remain same	(d) None of these
45.	In Compton's scattering process, wave length of scattere (a) Remains same (b) Increases	d X-rays. (c) Decrease	(d) None of these
46.	The De-Broglie's wave length of a body is inversely pro (a) Mass (b) Momentum	portional to its: (c) Velocity	(d) Energy
47. [20	A particle like electron can behave in a wave like manne (a) h/λ (b) λ/h 11]	r. Its momentum is: (c) hv	(d) h/v
_	Wave length λ of material particle of mass 'm' moving v	with the velocity v is give	en hv
-104	(a) hv/m (b) h/mv	(c) m/vh	(d) mv/h
49.	Davison and Germer experiment confirmed the:		
	(a) Equivalent of mass and energy	(b) Wave nature of light	t
	(c) Wave nature of matter	(d) Uncertainty principle	e
	Page 2A		

[2013]

50. The experimental evidence of Einstien's mass energy equation is:

(a) Photoelectric and Compton effect

(b) Elastic collision

(c) Pair production and annihilation of matter

(d) Radioactive emission

51. The materialization of a photon into an electron and a positron is known as:

(a) β-decay

(b) meson decay

(c) Pair production

(d) Annihilation

52. A positron has the same mass as that of:

(a) Electron

(b) Neutron

(c) Proton

(d) Meson

53. The particle whose mass is closest to that of the electron is:

(a) Positron

(b) Neutron

(c) Neutrinos

(d) Protor

54. The reverse process of pair production is known as:

(a) Annihilation

(b) Anti pair production

(c) Materialization of matter

(d) None of these

55. Annihilation is the process in which:

(a) Electron and proton combine to from a photon

(b) Electron and positron combine to form two photon

(c) Proton and electron combine to form high energy photon

(d) None of these

56. Which one is the lightest particle?

(a) Photon

(b) Electron

(c) Proton

(d) Neutron

[2010, 2011]

57. The phenomenon of pair production takes place when the energy of the incident photon is greater than or equal

(a) 0.51n MeV

(b) 1.02 MeV

(c) 0.051 MeV

(d) None of these

58. The photoelectric emission takes place if:

(a) $h v < \phi_o$

(b) $h v > \phi$

(c) $hv_0 > \phi_0$

 $(d) v_0 < \phi_0$

59. According to the Principle of Uncertainty

(a) $\Delta E / \Delta t \approx h$

(b) $\Delta E \approx \Delta t/h$

(c) $(\Delta E)(h) \approx \Delta t$

(d) $(\Delta E) (\Delta t) \approx h$

[2012]

60. A photoelectric cell transforms light energy into:

(a) Heat energy

(b) Magnetic energy

(c) Electrical energy

(d) Sound energy

61. According to Einstein's special theory of relativity if mass of particle moving with speed of light will become:

(a) zero//

(b) double

(c) infinite

(d) ten time

62. According to uncertainty principle:

(a) $(\Delta x)(\Delta t) \sim n$

(b) $(\Delta x)(\Delta p) \sim \hbar$

(c) $(\Delta E)(\Delta p) \sim \hbar$

(d) $(\Delta x)(\Delta E) \sim \hbar$

CH - 17	CH – 17: ADVENT OF MODERN PHYSICS							ANSV	WER KEYS
1)	2)	3)	4)	5)	6)	7)	8)	9)	10)
11)	12)	13)	14)	15)	16)	17)	18)	19)	20)
21)	22)	23)	24)	25)	26)	27)	28)	29)	30)
31)	32)	33)	34)	35)	36)	37)	38)	39)	40)
41)	42)	43)	44)	45)	46)	47)	48)	49)	50)
51)	52)	53)	54)	55)	56)	57)	58)	59)	60)
61)	62)								

Pa	ge	25

Sir Danish Ahmed

CHAPTER – 18:

THE ATOMIC SPECT	'R	ļ
------------------	----	---

1.	Radius of 1 st orbit of hydrogen atom is 0.53A°. Radius of fifth st (a) 20A° (b) 2.65A° (c) 13.24A°	ate of Hydrogen atoms is: (d) Infinite
2.	Ground state energy of Hydrogen atom is: (a) 3.45eV (b) 13.6Ev (c) Zero	(d) - 13.6eV
3.	According to the Bohr's theory angular momentum of electron is (a) h (b) h / 2 π (c) 2π / h	s integral multiple of: (d) h / π
4.	Frequency of Photon emitted from Bohr's theory is given by: (a) E $_{\rm f}$ - E $_{\rm i}$ / h (b) -13.6e V / ${\rm n}^2$ (c) E / h	(d) None of these
5.		nked by: antum number of state pital radius
6.	When electron jumps from ground state to excited state its energ (a) Remains same (b) Increases (c) Decreases	
7.	As we move to higher energy states in hydrogen atom. The difference orbits. (a) First increases then decreases (b) Decreases (c) Remains constant (d) Increases	creases
8.	In Balmer series electron falls into: (a) $n = 2$ (b) $n = 4$ (c) $n = 4$	(d) n = 3
9.	The first spectral line emitted in Lyman Series of Hydrogen atom (a) $n = 2$ (b) $n = 3$ (c) $n = 3$	
10.	The first spectral line emitted in Lyman Series of Hydrogen atom (a) $n = 2$ (b) $n = 3$ (c) $n = 3$	
11.	Paschen series is obtained due to transition of electron in hydrog (a) Ground state (b) Second state (c) This	en atom from any excited state to: rd state (d) Fifth state
12.	Spectral lines in the Balmer series of Hydrogen atom lies in the (a) Visible light (b) Infra red rays (c) Ultra	region of: raviolet rays (d) X-rays
13.	The wave length of lines emitted in Lyman series lies in the: (a) Visible region (b) Ultraviolet region (c) Infr	ared region (d) Micro wave region
14.	Brackett series of hydrogen atom spectrum lies in: (a) Ultraviolet region (b) Visible region (c) inf	rared region (d) All of these
15.	Hydrogen atom spectrum consists of lines in: (a) Ultraviolet region (b) Visible region (c) Inf	rared region (d) All of them
16.	Wave length of maximum radiant energy in Hydrogen atom spec (a) Balmer series (b) P-fund series (c) Lyr	etrum belongs to: nan series (d) Paschen series.
17.	Wave length of minimum radiant energy in hydrogen atom below (a) P-fund series (b) Balmer series (c) Pas	ngs to: chen series (d) Lyman series
18.	In Hydrogen atom spectrum longest wave length of radiations be (a) Paschen series (b) P - fund series (c) Bal	elongs to: mer series (d) Lyman series
19.		ergy levels are discrete ne of these

Multiple Choice Questions

(a) Energy Quantization (b) When an electron falls from the 3 rd orbit to the 1 rd orbit in the Hydrogen atom, the lines spectrum obtained below (a) Bracket Series (b) Lyman Series (c) Balmer Series (d) Paschen Series 22. When fast moving electrons are stopped by a substance of high atomic weight like tungsten it give rise to (a) X-rays (d) Paschen Series 23. The production of X-rays can be regarded as the inverse of: (a) Compton Effect (b) Photoelectric effect (c) Laser (d) Mass effect 24. X-ray are: (a) Stream of negatively charged particles (c) Electromagnetic waves (d) Non of the above 25. Range of wave length of X-rays is: (a) 100mm – 0.1000nm (b) 0.1nm – 1 nm (c) 400nm – 700nm (d) 700nm – 1000nm 26. X-rays are produced when: (a) Electron loses its energy in the nucleus (c) Electron falls to ground state 27. In Roentgen tube the intensity of X-ray depends upon: (a) Distance between anode and cathode (b) Warget nusherial (c) Accelerating voltage (d) Phanfort Current 28. Laser produces a) An electron beam b) A neutron beam c) A coherent beam of light d) none of these 29. Ruby is a crystal of: (a) CaCO ₃ with impurity of C1 ions (c) Al ₂ O ₃ with impurity of C1 ions (c) Al ₂ O ₃ with impurity of C7 ions 30. The process of collecting excited electrons from unstable state into stable state is called: (a) Induced absorption (b) Finited absorption (c) Population Inversion (d) De excitation 31. The most stable state of ruby is: (a) Meta State (b) Ground state (c) Excited state (d) Higher state 32. An atom can usually remains in an ordinary excited state for: (a) 10 rd second (b) 10 rd second (c) 10 rd second (d) 10 rd second 33. Usually the life of an electron in metastable is of the order of (a) 10 rd second (d) 10 rd second (e) 10 rd second (f) Half life of the element used CH = 18: THE ATOMIC SPECTRA ANSWER KEYS	Sir D	anish Ahmed		Multiple Choice Questions							
(a) Bracket Series (b) Lyman Series (c) Balmer Series (d) Paschen Series When fast moving electrons are stopped by a substance of high atomic weight like tungsten it give rise to (a) X-rays (b) β-rays (c) Gamma rays (d) Positive rays 23. The production of X-rays can be regarded as the inverse of: (a) Compton Effect (b) Photoelectric effect (c) Laser (d) Mass effect 24. X-ray are: (a) Stream of negatively charged particles (c) Electromagnetic waves (d) Non of the above 25. Range of wave length of X-rays is: (a) 100mm – 0.1000nm (b) 0.1nm – 1 nm (c) 400nm – 700nm (d) 700mm – 1000nm 26. X-rays are produced when: (a) Electron loses its energy in the nucleus (c) Electron falls to ground state (d) All of these 27. In Roentgen tube the intensity of X-ray depends upon: (a) Distance between anode and cathode (c) Accelerating voltage (d) Filament current 28. Laser produces a) An electron beam b) A neutron beam (e) A-coherent beam of light (d) none of these 29. Ruby is a crystal of: (a) CaCO ₃ with impurity of C1 ions (c) Al ₃ O ₃ with impurity of C1 ions (d) None of the above 30. The process of collecting excited electrons from unstable state into stable state is called: (a) Induced absorption (b) Emitted absorption (c) Population Inversion (d) De excitation 31. The most stable state of ruby is: (a) Meta State (b) Ground state (c) Excited state (d) Higher state 32. An atom can usually remains in an ordinary excited state for: (a) 10 ⁸ second (b) 10 ³ second (c) 10 ³ second (d) 10 ³ second 33. Usually the life of an electron in metastable is of the order of (a) 10 ⁸ second (d) 10 ³ second 34. The fife-time of an electron in the metastable state: (a) fire time of an electron in the metastable state: (a) fire time of an electron in the metastable state: (a) fire time of an electron in the metastable state: (a) fire time of an electron in the metastable state: (a) fire time of an electron in the metastable state: (a) fire time of an electron in the metastable state: (a) fire time of an electron in the m	20.	(a) Energy Quantization									
(a) X-rays (b) β-rays (c) Gamma rays (d) Positive rays The production of X-rays can be regarded as the inverse of: (a) Compton Effect (b) Photoelectric effect (c) Laser (d) Mass effect 24. X-ray are: (a) Stream of negatively charged particles (c) Electromagnetic waves 25. Range of wave length of X-rays is: (a) 100mm - 0.1000mm (b) 0.1nm - 1 nm (c) 400nm - 700nm (d) 700nm - 1000nm 26. X-rays are produced when: (a) Electron loses its energy in the nucleus (c) Electron falls to ground state (d) All of these 27. In Roentgen tube the intensity of X-ray depends upon: (a) Distance between anode and cathode (b) Target material (c) Accelerating voltage 28. Laser produces a) An electron beam b) A neutron beam (c) Accelerating voltage 29. Ruby is a crystal of: (a) CaCO ₃ with impurity of Cl ions (c) Al ₂ O ₃ with impurity of Cr ions (d) None of the above 30. The process of collecting excited electrons from unstable state into stable state is called: (a) Induced absorption (b) Famited absorption (c) Population Inversion (d) De excitation The most stable state of ruby is: (a) Meta State (b) Ground state (c) Excited state (d) Higher state 32. An atom can usually remains in an ordinary excited state for: (a) 10 ⁸ second (b) 10 ⁸ second (c) 10 ³ second (d) 10 ³ second 34. The fife time of an electron in metastable is of the order of (a) 10 ⁹ second (d) 10 ³ second (d) 10 ³ second 35. Lysually the life of an electron in the metastable state: (a) 1 smore than any ordinary excited state (e) Family ordinary excited state (d) Half life of the element used CH = 18: THE ATOMIC SPECTRA ANSWER KEYS	21.										
(a) Compton Effect (b) Photoelectric effect (c) Laser (d) Mass effect 24. X-ray are: (a) Stream of negatively charged particles (c) Electromagnetic waves (d) Non of the above 25. Range of wave length of X-rays is: (a) 100mm – 0.1000mm (b) 0.1nm – 1 nm (c) 400nm – 700nm (d) 700mm – 1000nm 26. X-rays are produced when: (a) Electron loses its energy in the nucleus (c) Electron falls to ground state (d) All of these 27. In Roentgen tube the intensity of X-ray depends upon: (a) Distance between anode and cathode (b) Varget material (c) Accelerating voltage (d) Flument current 28. Laser produces a) An electron beam b) A neutron beam c) A coherent beam of light d) none of these 29. Ruby is a crystal of: (a) CaCO ₃ with impurity of Cr ions (d) None of the above 30. The process of collecting excited-electrons from unstable state into stable state is called: (a) Induced absorption (b) Eintred absorption (c) Population Inversion (d) De excitation 31. The most stable state of ruby is: (a) Meta State (b) Ground state (c) Excited state (d) Higher state 32. An atom can usually remains in an ordinary excited state for: (a) 10 ³ second (b) 10 ³ second (c) 10 ³ second (d) 10 ³ second 33. Usually the life of an electron in metastable is of the order of (a) 10 ³ second (d) 10 ³ second (d) 10 ³ second 34. The life time of an electron in the metastable state: (a) 15 more than any ordinary excited state (b) Less than any ordinary excited state (d) Half life of the element used CH = 18: THE ATOMIC SPECTRA ANSWER KEYS	22.			-							
(a) Stream of negatively charged particles (c) Electromagnetic waves Range of wave length of X-rays is: (a) 100mm – 0.1000nm (b) 0.1nm – 1 nm (c) 400nm – 700nm (d) 700nm – 1000nm 26. X-rays are produced when: (a) Electron loses its energy in the nucleus (c) Electron falls to ground state (d) All of these 27. In Roentgen tube the intensity of X-ray depends upon: (a) Distance between anode and cathode (c) Accelerating voltage (d) Hument current 28. Laser produces a) An electron beam b) A neutron beam c) A coherent beam of light d) none of these 29. Ruby is a crystal of: (a) CaCO ₃ with impurity of Cl ions (c) Al ₂ O ₃ with impurity of Cr ions (d) None of the above 30. The process of collecting excited electrons from unstable state into stable state is called: (a) Induced absorption (b) Finitted absorption (c) Population Inversion (d) De excitation 31. The most stable state of ruby is: (a) Meta State (b) Ground state (c) Excited state (d) Higher state 32. An atom can usually remains in an ordinary excited state for: (a) 10 ⁸ second (b) 10 ⁸ second (c) 10 ³ second (d) 10 ⁸ second 33. Usually the life of an electron in metastable is of the order of (a) 10 ⁸ second (b) 10 ⁸ second (c) 10 ³ second (d) 10 ⁸ second 34. The fife time of an electron in the metastable state: (a) Is more than any ordinary excited state (b) Less than any ordinary excited state (c) Equal to any ordinary excited state (d) Half life of the element used	23.	-	_		(d) Mass effect						
(a) 100mm – 0.1000nm (b) 0.1nm – 1 nm (c) 400nm – 700nm (d) 100mm – 1000nm 26. X-rays are produced when: (a) Electron loses its energy in the nucleus (c) Electron falls to ground state (d) All of these 27. In Roentgen tube the intensity of X-ray depends upon: (a) Distance between anode and cathode (c) Accelerating voltage (d) Filament current 28. Laser produces a) An electron beam b) A neutron beam (e) Acoherent beam of light d) none of these 29. Ruby is a crystal of: (a) CaCO ₃ with impurity of Cl ions (b) NaCl with impurity of Ca ions (c) Al ₂ O ₃ with impurity of Cr ions (d) None of the above 30. The process of collecting excited electrons from unstable state into stable state is called: (a) Induced absorption (b) Emitted absorption (c) Population Inversion (d) De excitation 31. The most stable state of ruby is: (a) Meta State (b) Ground state (c) Excited state (d) Higher state 32. An atom can usually remains in an ordinary excited state for: (a) 10 ⁸ second (b) 10 ⁸ second (c) 10 ³ second (d) 10 ⁸ second 33. Usually the life of an electron in metastable is of the order of (a) 10 ⁸ second (b) 10 ³ second (c) 10 ³ second (d) 10 ⁸ second 34. The file time of an electron in the metastable state: (a) Is more than any ordinary excited state (b) Less than any ordinary excited state (c) Equal to any ordinary excited state (d) Half life of the element used	24.	(a) Stream of negatively									
(a) Electron loses its energy in the nucleus (c) Electron falls to ground state (d) All of these 27. In Roentgen tube the intensity of X-ray depends upon: (a) Distance between anode and cathode (c) Accelerating voltage (d) Flament current 28. Laser produces a) An electron beam b) A neutron beam c) A conterent beam of light d) none of these 29. Ruby is a crystal of: (a) CaCO ₃ with impurity of Cl ions (c) Al ₂ O ₃ with impurity of Cr ions (d) None of the above 30. The process of collecting excited electrons from unstable state into stable state is called: (a) Induced absorption (b) Britted absorption (c) Population Inversion (d) De excitation 31. The most stable state of ruby is: (a) Meta State (b) Ground state (c) Excited state (d) Higher state 32. An atom can usually remains in an ordinary excited state for: (a) 10 ⁸ second (b) 10 ⁸ second (c) 10 ³ second (d) 10 ³ second 33. Usually the life of an electron in metastable is of the order of (a) 10 ⁸ second (b) 10 ³ second (c) 10 ³ second (d) 10 ⁸ second 34. The life time of an electron in the metastable state: (a) Is more than any ordinary excited state (b) Less than any ordinary excited state (c) Excited state (d) Half life of the element used CH = 18: THE ATOMIC SPECTRA ANSWER KEYS	25.	_		(c) 400nm – 700nm	(d) 700nm – 1000nm						
(a) Distance between anode and cathode (b) Target material (c) Accelerating voltage (d) Pilament current 28. Laser produces a) An electron beam b) A neutron beam c) A coherent beam of light d) none of these 29. Ruby is a crystal of: (a) CaCO ₃ with impurity of Cl ions (c) Al ₂ O ₃ with impurity of Cr ions (d) None of the above 30. The process of collecting excited electrons from unstable state into stable state is called: (a) Induced absorption (b) Emitted absorption (c) Population Inversion (d) De excitation 31. The most stable state of ruby is: (a) Meta State (b) Ground state (c) Excited state (d) Higher state 32. An atom can usually remains in an ordinary excited state for: (a) 10 ⁸ second (b) 10 ⁻⁸ second (c) 10 ³ second (d) 10 ⁻⁸ second 33. Usually the life of an electron in metastable is of the order of (a) 10 ⁸ second (b) 10 ⁻³ second (c) 10 ³ second (d) 10 ⁻⁸ second 34. The life time of an electron in the metastable state: (a) Is more than any ordinary excited state (b) Less than any ordinary excited state (c) Equal to any ordinary excited state (d) Half life of the element used	26.	(a) Electron loses its ene	ergy in the nucleus		o higher state						
a) An electron beam b) A neutron beam c) A coherent beam of light d) none of these 29. Ruby is a crystal of: (a) CaCO ₃ with impurity of Cl ions (c) Al ₂ O ₃ with impurity of Cr ions 30. The process of collecting excited electrons from unstable state into stable state is called: (a) Induced absorption (b) Emitted absorption (c) Population Inversion (d) De excitation 31. The most stable state of ruby is: (a) Meta State (b) Ground state (c) Excited state (d) Higher state 32. An atom can usually remains in an ordinary excited state for: (a) 10 ⁸ second (b) 10 ⁻⁸ second (c) 10 ³ second (d) 10 ⁻⁸ second 33. Usually the life of an electron in metastable is of the order of (a) 10 ⁸ second (b) 10 ⁻³ second (c) 10 ³ second (d) 10 ⁻⁸ second 34. The life time of an electron in the metastable state: (a) Is more than any ordinary excited stable (c) Equal to any ordinary excited state (d) Half life of the element used CH – 18: THE ATOMIC SPECTRA ANSWER KEYS	27.	(a) Distance between an	node and cathode	(b) Target material							
(a) CaCO ₃ with impurity of Cl ions (c) Al ₂ O ₃ with impurity of Cr ions (d) None of the above 30. The process of collecting excited electrons from unstable state into stable state is called: (a) Induced absorption (b) Emitted absorption (c) Population Inversion (d) De excitation 31. The most stable state of ruby is: (a) Meta State (b) Ground state (c) Excited state (d) Higher state 32. An atom can usually remains in an ordinary excited state for: (a) 10 ⁸ second (b) 10 ⁻⁸ second (c) 10 ³ second (d) 10 ⁻³ second 33. Usually the life of an electron in metastable is of the order of (a) 10 ⁸ second (b) 10 ⁻³ second (c) 10 ³ second (d) 10 ⁻⁸ second 34. The life time of an electron in the metastable state: (a) Is more than any ordinary excited stable (b) Less than any ordinary excited state (c) Equal to any ordinary excited state (d) Half life of the element used	28.	_	b) A neutron beam (c) A	coherent beam of light	d) none of these						
(a) Induced absorption (b) Emitted absorption (c) Population Inversion (d) De excitation The most stable state of ruby is: (a) Meta State (b) Ground state (c) Excited state (d) Higher state 32. An atom can usually remains in an ordinary excited state for: (a) 10 ⁸ second (b) 10 ⁻⁸ second (c) 10 ³ second (d) 10 ⁻³ second 33. Usually the life of an electron in metastable is of the order of (a) 10 ⁸ second (b) 10 ⁻³ second (c) 10 ³ second (d) 10 ⁻⁸ second 34. The life time of an electron in the metastable state: (a) Is more than any ordinary excited stable (b) Less than any ordinary excited state (c) Equal to any ordinary excited state (d) Half life of the element used CH – 18: THE ATOMIC SPECTRA ANSWER KEYS	29.	(a) CaCO ₃ with impurity									
(a) Meta State (b) Ground state (c) Excited state (d) Higher state 32. An atom can usually remains in an ordinary excited state for: (a) 10 ⁸ second (b) 10 ⁻⁸ second (c) 10 ³ second (d) 10 ⁻³ second 33. Usually the life of an electron in metastable is of the order of (a) 10 ⁸ second (b) 10 ⁻³ second (c) 10 ³ second (d) 10 ⁻⁸ second 34. The life time of an electron in the metastable state: (a) Is more than any ordinary excited stable (b) Less than any ordinary excited state (c) Excited state (d) Higher state (d) Hore state (e) Equal to any ordinary excited state (d) Hore state (e) Hore state (d) Hore state (e) Equal to any ordinary excited state (d) Hore state (e) Equal to any ordinary excited state (d) Hore state (e) Equal to any ordinary excited state (d) Hore state (e) Equal to any ordinary excited state (e) Equal to any ordinary excited state	30.										
(a) 10 ⁸ second (b) 10 ⁻⁸ second (c) 10 ³ second (d) 10 ⁻³ second 33. Usually the life of an electron in metastable is of the order of (a) 10 ⁸ second (b) 10 ⁻³ second (c) 10 ³ second (d) 10 ⁻⁸ second 34. The life time of an electron in the metastable state: (a) Is more than any ordinary excited stable (b) Less than any ordinary excited state (c) Equal to any ordinary excited state (d) Half life of the element used CH – 18: THE ATOMIC SPECTRA ANSWER KEYS	31.			(c) Excited	state (d) Higher state						
(a) 10 ⁸ second (b) 10 ⁻³ second (c) 10 ³ second (d) 10 ⁻⁸ second 34. The life time of an electron in the metastable state: (a) Is more than any ordinary excited stable (b) Less than any ordinary excited state (c) Equal to any ordinary excited state (d) Half life of the element used CH – 18: THE ATOMIC SPECTRA ANSWER KEYS	32.			tate for: (c) 10 ³ second	(d) 10^{-3} second						
(a) Is more than any ordinary excited stable (b) Less than any ordinary excited state (c) Equal to any ordinary excited state (d) Half life of the element used CH – 18: THE ATOMIC SPECTRA ANSWER KEYS	33.				(d) 10 ⁻⁸ second						
		(a) Is more than any ordinary	inary excited stable y excited state		lement used						
	CH -	- 18: THE ATOMIC SP		5) 7)	ANSWER KEY						

CH – 18	: THE ATO	OMIC SPE	ECTRA					ANSW	ER KEYS
1)	2)	3)	4)	5)	6)	7)	8)	9)	10)
11)	12)	13)	14)	15)	16)	17)	18)	19)	20)
21)	22)	23)	24)	25)	26)	27)	28)	29)	30)
31)	32)	33)	34)						

	P	a٤	zе	2	7
--	---	----	----	---	---

Sir Danish Ahmed Multiple Choice Questions

CHA	APIEK – 19:		1	HE ATOMIC NUCLEUS
1.	Number of neutrons in (a) 9 2	1 ₉₂ U ²³⁵ is: (b) 1 4 6	(c) 2 3 5	(d) 1 4 3
2.		na particles by capturing e (b) None of the above		(d) Energy
3.	In an alpha decay, mas (a) Remain same	s number of parent nucle (b) Changes b	ei: y 2 units. (c) Decrease by 4	units (d) Increase by 4 units
4. [2009.3	The process of beta em (a) No change occurs 2006,2005]	nission from a nucleus in (b) Mass number	volves the change in: (c) Charge number	(d) Both b and c
5.		a radioactive element is (b) γ - radiation	increased as a result of: (c) β - Radiation	d) Pair production.
6.	In β ⁺ decay, a parent n (a) Alpha Particle.	ucleus converts into a da (b) Electron.	nughter nucleus accompanied (c) Beta particle	(d) Positron.
7. [2001]	(a) Charge number.	na emission from a nucle (b) Mass number	eus, which of the following w (c) No change occurs	vill change: (d) Both mass & charge no
8. [2006,	The nuclei having the (a)Isotopes	same mass number but d (b) Isobars	ifferent atomic numbers are (c) Isotones	called: (d) Isomers
9.	In the nuclear reaction (a) Proton	(b) Neutron	\rightarrow 80 17 + the missir	ng particle is (d) α- particle
10.	In periodic table most (a) Mass number is gre (c) Mass number lies b	eater then two	(b) Charge number is grea (d) Charge number lie betw	
[2013, 11.	2010, 2007, 2002] In radioactive decay la (a) Wave length	w, $N = N_0 e^{-\lambda t}$, λ rep (b) Half life	resents: (c) Decay constant	d) Mass Radioactive Sample
12. [2008]	Decay process in radio (a)Conditionally	nuclei takes place (b) Linearly	c) Exponentially	(d) Smoothly.
13.	The rate of decay of a (a) Increases with incre (c) remains constant w	easing time	(b) Decreases exponentiall(d) None of these	ly with the increasing time
14.	Activity of Radioactive (a) N/N _o	e nuclei is given by: (b) N $_{\rm o}/$ N	(c) λ / N	(d) λ N
15.	The rate of decrease of (a) Activity.	decay in parent nuclei i (b) Half life	s directly proportional to the (c) Relative activity	: (d) No of parent nuclei
16.	The time in which half (a) Life time	of parent nuclear decay (b) Time of decay.	is called: (c) Decay interval	(d) Half life
17.	Half life of radioactive (a) $0.693 / \lambda$	elements is given by: (b) 0.693	(c) 0.693λ	(d) $\lambda/0$.
			Page 28	
Follow	us: www.facebook.com/si	rdanishahmed	_	Contact: 0334 3400195

Sir Danish Ahmed

XII - Physics

Multiple Choice Questions

18. The half – life of radium is 1600 years. After 6400 years, the sample of the surviving radium would be its b) 1/8 c) 1/16 d) 1/2 [2005] 19. The energy equivalent to the mass reduced in the formation of a nucleus is called: (a) Nuclear energy (b) Binding energy (c) Fusion energy (d) Potential energy [2005] 20. One atomic mass unit is equal to:

(a) $1.6 \times 10^{-19} \text{ J}$ (b) $9.1 \times 10^{-27} \text{ kg}$

(c) $931 \times 10^6 \text{ eV}$

(d) $9 \times 10^9 \text{ eV}$

[2003, 2002]

The process of the splitting of a heavy nucleus into smaller fragments is called: 21.

(a) Fusion

(b) Fission

(c) Pair production

(d) Annihilation of matter

In nuclear fission, 92 U 235 is bombarded by: 22.

(a) Low energy neutron (b) Slow Neutron.

(c) High energy neutron

d) Fast neutron.

23. A material consisting of the fissionable isotopes of Uranium is called the:

(a) Reaction fuel.

(b) Nuclear fuel.

(c) Atom bomb fuel

(d) Atomic fuel.

Critical mass of fissionable isotope of Uranium is: 24.

(a) 7.2%

(b) 0.72%

(c) 0.072%

(d) 72 %

[2002]

Breeder Reactor is used to convert: 25.

(a) $_{92}U^{235}$ into $_{56}Ba^{144}$ and $_{36}Kr^{89}$ (c) $_{92}U^{238}$ into $_{94}Pu^{239}$

(b) 92U²³⁸ into and 36Kr89

The process of converting non-fissionable uranium into fissionable is called. 26.

(a) Disintegration.

(b) Breeding

(c) None of these

(d) Decay process

27. LMFBR is the abbreviation of:

(a) Liquid metal fast breeder reactor

(b) Lithium metal fission breeder reaction

(c) Lithium metal of fission and bomb radiation. (d) None of these

CH – 19: THE ATOMIC NUCLEUS							ANSWER KEYS			
1)	2)	3)	4)	5)	6)	7)	8)	9)	10)	
11)	12)	13)	14)	15)	16)	17)	18)	19)	20)	
21)	22)	23)	24)	25)	26)	27)				

CHAPTER-20:

NUCLEAR RADIATIONS

1.	Geiger – Mulle a) Argon and			ohol only	c) I	ons	d) Sup	er-cooled w	ater vapors		
2.	Electric field g (a) Ionization (c) Low vapor	of alcohol		due to:		(b) Low boiling point of alcohol(d) All of these					
3.	Study and discovery of radio isotopes is made easier by a device called: (a) G.M counter (b) Cloud chamber (c) Spectrometer (d) Tachometer										
4. [2002]	Path of track of (a) Random str	_	_	s in cloud ch lefinite strea		Continuous str	eak (d) Dis	scontinuous	streak		
5.	Wilson cloud (a) For the stud (c) To produce	dy of clouds.) To produ) To take p	ce x-rays	the track of h	nigh velocity	v ions		
6. [2015,	Cancer of the (a) ₁ H ³ 2003]	thyroid gland (b)	ls is treated logC ¹⁴	oy (c)) $_{53}I^{131}$		$\langle \rangle$ (d) $_{6}$ C	19			
7.	If a small quar (a) Kidneys		active iodine Brain		en in food, Thyroid		_	glands			
8. [2012, 9.	A modern tech (a) Tracer tech 2006, 2003] In treating loca (a) α -rays from (c) γ - rays from	anique (b) alized cancer m cobalt 60	Radiology	we use a ma	Molecula rrow bean β - rays f	r technique		lymerizatior	1		
10.	Radio active e (a) $_{53}I^{131}$ and $_6$	lements used	as tracer in of 12 and 53 I	medicine ar	e:) ₂₀ Ca ⁴² and	1_1 H^3	(d) ₆ C	14			
11.	2015,13] The rate of flo (a) 11Na ²⁴	w of blood is	determined 6C ¹⁴) Cobalt –	60	(d) ₅₃ I ¹	131			
12.	Ulceration, car (a) Viral disea		and cancer a Bacterial d		ples of:) Somatic	disease	(d) Ge	netic diseas	e		
13.	could be traced is called:										
14.	The age of the (a) Carbon det	specimen su	•	ody, wood,			measured by	acer technique C ¹⁴ called: dio carbon t			
	20: NUCLEA				I		1		CR KEYS		
1)	2)	3)	4)	5)	6)	7)	8)	9)	10)		

1)	2)	3)	4)	5)	6)	7)	8)	9)	10)
11)	12)	13)	14)						

	Page 30	
Follow us: www.facebook.com/sirdanishahmed		Contact: 0334 3400195