

Roteiro de hoje!

- Definição
- Representação
- + Funcionamento
- Atividade

Random Forests

Definição

- Combina simplicidade das árvores de decisão com a flexibilidade e aleatoriedade para melhorar a precisão.
- Constrói conjuntos (ensembles) de árvores de decisão, melhorando o desempenho de generalização, manipulando instâncias e atributos de entrada.
- Utiliza uma amostra de boostrap diferente de treinamento de dados para aprender a partir de árvores de decisões.
- Para cada nodo, o melhor critério de divisão é escolhido entre um pequeno conjunto de atributos selecionados aleatoriamente. (BOOTSTRAP)

Random Forests - Representação

Training dataset

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	Y
a1	b1	c1	d1	1
a2	b2	c2	d2	2
a3	b3	c3	d3	1
a4	b4	c4	d4	1
a5	b5	c5	d5	2

Bootstrap

<i>X</i> 3	<i>X</i> ₄	Y
c1	d1	1
c2	d2	2
c5	d5	2
	c1 c2	c1 d1 c2 d2

<i>X</i> 3	<i>X</i> ₄	Y
c1	d1	1
c3	d3	1
c4	d4	1
(c1 c3	d1 d1 d3

<i>X</i> ₁	X2	Y
a2	b2	2
a3	b3	1
a5	b5	2

Ensemble of trees

8	8	8	8

	X
	ጎ
	~ `
	X

Aggregation

Majority decision

- Passo 1: criação do bootstrap dataset
 - Considere o seguinte dataset:

Dor no peito	Boa circulação sanguínea	Arterias bloqueadas	Peso	Doença cardiaca
Sim	Não	Sim	125	Sim
Não	Sim	Não	180	Não
Não	Não	Sim	210	Não
Sim	Não	Sim	130	Sim

- Passo 1: criação do bootstrap dataset
 - → Geração de diferentes subsets de forma aleatória a partir do dataset original.

Dor no peito	Boa circulação sanguínea	Arterias bloqueadas	Peso	Doença cardiaca
Sim	Não	Sim	125	Sim
Não	Sim	Não	180	Não
Não	Não	Sim	210	Não
Sim	Não	Sim	130	Sim

Dor no peito	Boa circulação sanguínea	Arterias bloqueadas	Peso	Doença cardiaca
Não	Sim	Não	180	Não
Sim	Não	Sim	130	Sim
Sim	Não	Sim	125	Sim

Bootstrap Dataset (Bagging)

- → Passo 2: criação das árvores de decisão
 - ♦ A partir de cada subset seleciona um número X de atributos aleatoriamente.

Boa circulação sanguínea	Arterias bloqueadas
Sim	Não
Não	Sim
Não	Sim

Dor no peito	Boa circulação sanguínea	Arterias bloqueadas	Peso	Doença cardiaca
Não	Sim	Não	180	Não
Sim	Não	Sim	130	Sim
Sim	Não	Sim	130	Sim

Bootstrap Dataset (Bagging)

- Passo 2: criação das árvores de decisão
 - As árvores são construídas considerando apenas os subconjuntos de atributos selecionados.
 - Cada árvore tem um tamanho distinto pois foi escolhido um conjunto de atributos diferentes, sendo esse o objetivo da "floresta aleatória".
 - Gera modelos distintos e a combinação deles vai tornar um modelo mais robusto e assertivo

- ◆ Passo 3: classificação dos dados de teste/predição
 - ◆ Consulta todas as árvores da floresta para classificar (Sim/Não)
 - ◆ Comparação com cada nó de cada árvore da floresta.

- Passo 3: classificação dos dados de teste/predição
 - ♦ Árvore 1: Percorre toda a árvore até o seu nodo folha para descobrir a classe.

- ◆ Passo 3: classificação dos dados de teste/predição
 - Árvore 2: Começa pelo atributo que está no nodo raiz.

Doença cardiaca		
Sim	Não	
0	1	

- → Passo 3: classificação dos dados de teste/predição
 - ♦ Árvore 2: Percorre toda a árvore até o seu nodo folha para descobrir a classe.

- Passo 3: classificação dos dados de teste/predição
 - Árvore 3: Começa pelo atributo que está no nodo raiz.

Doença cardiaca		
Sim	Não	
1	1	

- ◆ Passo 3: classificação dos dados de teste/predição
 - Classe doença cardíaca mais votada: Não
 - Votação majoritária (bagging)

Doença cardiaca		
Sim	Não	
1	2	

Random Forests

♦ Vantagem

- Maior robustez
- Menos propenso a sofrer *overfitting* em comparação com uma única árvore de decisão

Random Forests

Desvantagem

- → Exige um maior poder de processamento devido a sua robustez
- O processo de classificação de novas amostras pode ser lento (no caso quando estiver em produção).

Referências

- Breiman, L., Freidman, J., Olshen, R. e Stone, C. (1984). Classification and Regression Trees.
 Wadsworth International Group., USA.
- Faceli, K.; Lorena, A.C.; Gama, J.; de Carvalho, A.C.P.L.F. Inteligência Artificial: Uma abordagem de aprendizado de máquina. LTC, Rio de Janeiro, 2011.
- Quilan, R. (1979). Discovering rules by induction from large collections of examples. In:
 Michie, D. (Ed.) Expert Systems in the Microelectronic Age, p. 168-201. Edinburgh
 University Press.
- Quilan, J.R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers
 Inc., San Mateo, CA, USA.
- ♦ TAN, P-N; STEINBACH, M.; KUMAR, V. *Introduction to Data Mining.* Pearson, 2006.

