Análisis Léxico

Albert Rubio

Procesadores de Lenguajes, FdI, UCM

Doble Grado Matématicas e Informática

Análisis Léxico

1 Introducción

2 Expresiones regulares

3 Autómatas finitos

Contenidos

1 Introducción

2 Expresiones regulares

3 Autómatas finitos

Carácterísticas principales:

- Procesa uno a uno los caracteres del programa fuente.
- agrupar dichos caracteres en unidades más grandes llamadas unidades léxicas ("tokens") => analizador sintáctico

Analizador _lexico :
$$Char^* \rightarrow Token^*$$

Los tokens se agrupan en un número finito de clases.

Unidades léxicas

Ejemplos de clases de unidades léxicas:

- identificadores
- palabras reservadas (una clase por cada palabra). Por ejemplo while.
 No pueden ser identificadores.
- constantes literales (una clase por tipo de datos)
- símbolos (una clase por símbolo)
- operador infijo (como +, *, etc).

Reconocimiento de unidades léxicas

- Las UL se describen con un lenguaje regular, que se reconoce con un autómata finito.
- Para cada UL el analizadir devuelve su clase y cero o más atributos:
 - nombre del identificador o valor de la constante
 - número de línea y de columna donde aparece la UL
 - ...
- Puede procesar toda la entrada o ir token a token, pero no tiene información sobre la estructura del texto.
- Otras tareas del analizador léxico:
 - Pasar las constantes a su representación interna: "123" \rightarrow 123
 - Asociar una clave numérica única a cada clase.
 - Eliminar comentarios y separadores.
 - Detectar errores léxicos.

Características léxicas de los lenguajes

Juego de caracteres y su codificación: ASCII (7 bits), Unicode (UTF-8 o UTF-16), etc. Propiedades relevantes

- si los números y las letras tienen códigos consecutivos,
- relación entre la codificación de minúsculas y mayúsculas,
- codificación del carácter blanco
- ...

Decisiones a tomar:

- Distinción entre minúsculas y mayúsculas (case sensitive).
- Incio y caracteres permitidos en los identificadores. P.e. inicio letra o
- Relevancia de los blancos y otros separadores
- Formato comentarios. Linea // o bloque / * . . . * /. Anidamiento?

Contenidos

1 Introducción

2 Expresiones regulares

3 Autómatas finitos

Notación

La sintaxis para describir ERs puede variar "ligeramente" de una herramienta a otra pero siguen siempre un mismo patrón:

- Alfabeto finito de simbolos $\Sigma = \{a, b, c, \ldots\}$.
- La palabra vacía: ϵ
- Σ^* palabras usando Σ (incluida ϵ). $\overline{A} = \Sigma A$, con $A \subseteq \Sigma$.
- xy es la concatenación de las palabras x e y.
- x^n para concatenar n veces la misma palabra x

Un lenguaje sobre Σ es un subconjunto $L \subseteq \Sigma^*$. Operaciones:

- Unión: $L_1 \cup L_2$.
- Concatenación: $L_1L_2 = \{xy \mid x \in L_1, y \in L_2\}$
- Complementario: $\overline{L} = \Sigma^* L$.
- Repetición: $L^n = L \cdot \cdot \cdot \cdot L$. Estrella: $L^* = \bigcup_{n \ge 0} L^n$

Lenguajes regulares

Definición inductiva del lenguaje descrito con expresiones regulares sobre Σ .

- La ER ∅ denota el lenguaje vacio.
- **2** La ER ϵ denota el lenguaje $\{\epsilon\}$ y a el lenguaje $\{a\}$ con $a \in \Sigma$.
- **3** Si r_1 y r_2 son ER que describen L_1 y L_2 entonces
 - $r_1 \mid r_2$ es una ER que describe el lenguaje $L_1 \cup L_2$

PL

- $r_1 r_2$ es una ER que describe el lenguaje $L_1 L_2$
- r_1^* es una ER que describe el lenguaje L_1^*

Tomamos la precedencia * > concat > |

Un *lenguaje regular* es un lenguaje que puede ser definido por una expresión regular: L(r)

Si L es regular entonces \overline{L} también es regular.

Lenguajes regulares

Abreviaturas:

- $r^+ = rr^*$
- r? = $r \mid \epsilon$
- $[a..z] = a \mid \ldots \mid z$
- Si $L(r) = A \subseteq \Sigma$ entonces \overline{r} denota \overline{A} .

Ejemplos:

- (0 | 1)*
- (01)*
- 01*
- (0 | 1)*00(0 | 1)*, pero no se puede expresar que el prefijo y el sufijo son iguales.

ERs para definir ULs

```
\begin{array}{lll} \textit{digito} & \rightarrow & [0..9] \\ \textit{letra} & \rightarrow & [a..zA..Z] \\ \textit{literalEntero} & \rightarrow & [+ \mid -] \textit{digito}^+ \\ \textit{id} & \rightarrow & \textit{letra}(\textit{letra} \mid \textit{digito})^* \\ \textit{opRel} & \rightarrow & < \mid < = \mid > \mid > = \mid \mid = \mid \mid = \\ \textit{add} & \rightarrow & + \\ & \dots \\ \textit{sep} & \rightarrow & \textit{SP} \mid \textit{TAB} \mid \textit{CR} \mid \textit{NL} \\ \textit{seps} & \rightarrow & \textit{sep}^+ \\ \textit{comentario} & \rightarrow & //(\overline{\textit{CR}})^*\textit{CR} \end{array}
```

Contenidos

1 Introducción

2 Expresiones regulares

3 Autómatas finitos

Lenguajes regulares y autómatas finitos

Un lenguaje regular queda determinado por

- una expresión regular (ER)
- un autómata finito no determinista con transiciones vacías (AFN)
- un autómata finito determinista (AFD)

Pasaremos de una ER que describen las UL a un AFD que las reconoce:

$$\boxed{\mathsf{ER}} \longrightarrow \boxed{\mathsf{AFN}} \longrightarrow \boxed{\mathsf{AFD}}$$

Todos son equivalentes.

Autómata finito no determinista

$$M = \langle Q, \Sigma, q_0, \delta, F \rangle$$

- Q conjunto de estados (finito)
- Σ alfabeto (finito)
- $q_0 \in Q$ estado inicial
- $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$ relación de transición
- $F \subset Q$ estados finales

Autómata finito no determinista

Configuraciones de un autómata:

- (q,w) con $q\in Q$ y $w\in \Sigma^*$ es una *configuración*
- (q₀, w) es una configuración inicial
- (q_f, ϵ) con $q_f \in F$ es una configuración final
- $(q, aw) \vdash_M (p, w) \text{ con } a \in \Sigma \text{ si } \delta(q, a, p)$
- $(q, ww') \vdash_{M}^{*} (p, w')$ cierre reflexivo y transitivo de \vdash_{M}

 δ no es determinista: dados q y a puede haber varios p tal que $\delta(q, a, p)$. Además están las transiciones con ϵ

Lenguaje reconocido por M:

$$L(M) = \{ w \in \Sigma^* \mid (q_0, w) \vdash_M^* (q_f, \epsilon), q_f \in F \}$$

De ER a AFN

Dada una ER r simpre existe un AFN M tal que L(r) = L(M)

M se construye inductivamente a partir de r

- $r = \emptyset$: $M = \langle \{q_0, q_f\}, \Sigma, q_0, \emptyset, \{q_f\} \rangle$
- $r = \epsilon$: $M = \langle \{q_0, q_f\}, \Sigma, q_0, \{(q_0, \epsilon, q_f)\}, \{q_f\} \rangle$
- r = a: $M = \langle \{q_0, q_f\}, \Sigma, q_0, \{(q_0, a, q_f)\}, \{q_f\} \rangle$

y simplificar

Ejemplo de construcción

$$r = 1 (0 | 1)^*$$

Un posible AFN:

¿Cómo se obtiene?

Autómata finito determinista

$$M = \langle Q, \Sigma, q_0, \delta, F \rangle$$

donde $\delta: Q \times \Sigma \to Q$ es ahora una función (parcial) Notad que las transiciones con ϵ ya no se permiten!

• Dada una configuración (q, aw) existe a lo sumo una configuración (p, w) tal que $(q, aw) \vdash_M (p, w)$, es decir si $\delta(q, a) = p$

Lenguaje reconocido por M:

$$L(M) = \{ w \in \Sigma^* \mid (q_0, w) \vdash_M^* (q_f, \epsilon), q_f \in F \}$$

De AFN a AFD

Dado un AFN M siempre existe un AFD M' tal que L(M) = L(M')

• Es necesario el *cierre* $-\epsilon$ de los estados de M:

$$cierre - \epsilon(q) = \{p \mid (q, \epsilon) \vdash_{M}^{*} (p, \epsilon)\}$$

cierre
$$-\epsilon(q_1) = \{q_1\}$$

cierre $-\epsilon(q_2) = \{q_2, q_3, q_5\}$
cierre $-\epsilon(q_3) = \{q_3\}$
cierre $-\epsilon(q_4) = \{q_4, q_3, q_5\}$
cierre $-\epsilon(q_5) = \{q_5\}$

De AFN a AFD

Como funciona la transformación:

- Extendemos el *cierre* ϵ a conjuntos de estados: $cierre \epsilon(S) = \bigcup_{g \in S} cierre \epsilon(g)$
- Los estados de M' son subconjuntos de los estados de M (Q_{M'} ⊆ P(Q_M).
- Dos estados p y q de M estarán en el mismo estado de M' si existe una palabra w tal que $(q_0, w) \vdash_M (p, \epsilon)$ y $(q_0, w) \vdash_M (q, \epsilon)$. Computable.
- El estado inicial de M' es $cierre \epsilon(q_0)$
- Estado finales de M' son los estados S de M' que contienen algun estado final de M.

De AFN a AFD: ejemplo

De

Pasamos a

donde $q_1' = \{q_1\}, q_2' = \{\}, q_3' = \{q_2, q_3, q_5\}, q_4' = \{q_3, q_4, q_5\}$ PL

Minimización de AFDs

En general, el AFD resultante puede ser innecesariamente grandes

Se puede computar un AFD mínimo respecto a |Q|:

- Se separan inicialmente los estados en dos partes F y Q-F, ya que tienen comportamiento distinto.
- Se refina la partición iterativamente hasta que no hay ningún cambio: Cada partición se divide en subparticiones tales que todos sus estados se comporten igual para todas sus transiciones respecto a la partición anterior.

Minimización de AFDs

Ejemplo:

• Paso 1: $\{q'_1, q'_2\}$ y $\{q'_3, q'_4\}$

• Paso 2: refinamos $\{q'_1, q'_2\}$

Paso 3: No hay más cambios

Construcción de analizadores léxicos

Una vez especificadas las unidades léxicas con ERs, se puede construir el analizador léxico:

- Manualmente:
 - se obtiene el AFD (mínimo) y se programa explícitamente la función de transición y la generación de tokens aceptados. Se puede usar una tabla para δ e iterar sobre la entrada.
 - Hay que implementar el tratamiento de errores: reportar y recuperarse.
- Automáticamante:
 - toman como entrada la expresión regular y producen directamente un analizador dirigido por tabla y la tabla misma.
 - Permiten asociar acciones de algún lenguaje de alto nivel como C++ o Java al reconocimiento de cada unidad léxica.
 - Normalmente incluyen mecanismos para la gestión de errores.