6.808 Mobile and Sensor Computing aka loT Systems

Lecture #5 (part 2)
Multi-Hop Routing

Wireless Network Architectures

There are 3 kinds of wireless network architectures

Single Path Routing

Represent the wireless network as a graph

- Two nodes have an edge if they can communicate (i.e., are within radio range)
- Each edge is labeled with a weight (where a smaller weight indicates a preferred edge)

Run shortest path algorithm on the graph (e.g., Dijkstra)

Produce the minimum weight path between every pair of nodes

How do you pick the edge weights?

• i.e., what metric should shortest path minimize?

Approach 1:

Assign all edges the same weight \rightarrow Minimize number of hops

Reasoning:

- Links in route share radio spectrum
- Extra hops reduce throughput

Pros? Cons?

Challenge: links are lossy and asymmetric

Different links have different loss rates
Further, the loss rate may be different in each direction

Approach 2: Maximize bottleneck throughput

Bottleneck throughput:

$$A-B-C = 50\%$$

 $A-D-C = 51\%$

Actual throughput:

$$\begin{cases} A-B-C : ABBABBABB = 33\% \\ A-D-C : AADDAADD = 25\% \end{cases}$$

Approach #3: Maximize end-to-end delivery ratio

End-to-end delivery ratio:

$$\begin{cases} A-B-C = 51\% \\ A-C = 50\% \end{cases}$$

Actual throughput:
$$\begin{cases} A-B-C : ABBABBABB = 33\% \\ A-C : AAAAAAA = \underline{50\%} \end{cases}$$

Approach #4: Wireless routing metric: ETX

Minimize total transmissions per packet (ETX, 'Expected Transmission Count')

Link throughput ≈ 1/ Link ETX

<u>Delivery Ratio</u>		<u>Link ETX</u>	Throughput
100%	\bigcirc \longrightarrow \bigcirc	1	100%
50%		2	50%
33%	→ *	3	33%

Calculating Link ETX

- Assuming 802.11 link-layer acknowledgments (ACKs) and retransmissions:
- P(TX success) = P(Data success) × P(ACK success)
- Link ETX = 1 / P(TX success)= 1 / [P(Data success) × P(ACK success)]
- Estimating link ETX:
- P(Data success) \approx measured fwd delivery ratio r_{fwd}
- P(ACK success) \approx measured rev delivery ratio r_{rev}
- Link ETX $\approx 1/(r_{\text{fwd}} \times r_{\text{rev}})$

Route ETX

Route ETX = Sum of link ETXs

	Route ETX	<u>Throughput</u>
\bigcirc \longrightarrow \bigcirc	1	100%
	2	50%
\bigcirc \longrightarrow \bigcirc	2	50%
	3	33%
) 5	20%

ETX Pros?

- ETX predicts throughput for short routes (1, 2, and 3 hops)
- ETX captures loss
- ETX captures asymmetry

ETX Caveats

- It is really hard to measure link quality/loss
 - Changes as a function of load
 - > Changes with time
- ETX ignores differences in bit-rate and packet size
 ETT = ETX *(pkt_size/link-bit-rate)
- ETX ignores spatial re-use (i.e., assumes all links interfere)

From ETX to Expected Transmission Time (ETT)

- Extending to wireless networks with multiple bit rates
- Take into account both the delivery rate and the **time** taken to transmit packet (i.e., time occupied on "air" by packet)
- Assume pkt size = 20

MIT Roofnet

