Lucerne University of Applied Sciences and Arts

HOCHSCHULE LUZERN

Technik & Architektur

ET+V

Elektrotechnik Vertiefung

HSLU T&A

Kapitel Kondensator 24.9.2015

Lernziele

- Sie kennen den Begriff Kapazität und können diese Grösse in einfachen geometrischen Anordnungen berechnen
- Sie können Kondensatornetzwerke umformen
- Sie k\u00f6nnen Ladungsmengen und Spannungen in Kondensatornetzwerken berechnen
- Sie können die im Kondensator gespeicherte Energie berechnen
- Sie können Feldgrössen im parallel geschichteten Dielektrikum berechnen.
- Sie kennen die Spannungs-Strombeziehung an einer Kapazität

Fragen zu Hausaufgaben?

Gegeben: Eine Anordnung von Punktladungen

E1-1: Elektrostatisches Feld und Kräfte

E2-1: Elektrostatisches Feld

FH Zentralschweiz

E1-1

Die Punktladungen Q_1 , Q_2 und Q_3 bilden die Eckpunkte eines rechtwinkligen Dreiecks.

Daten: $Q_1 = Q_2 = Q_3 = 0.5 \text{ nAs (positive Ladungen)}$ a = 2 cm $\varepsilon_T = 1$

- a) Berechnen Sie den Betrag der Kraft auf die Ladung Q_1 (2 Pt.) und zeichnen Sie den Vekto im oben dargestellten Bild ein.
- b) Bestimmen Sie den Ort, wo eine zusätzliche negative Ladung $Q_4 = -0.5$ nAs angeordnet werden muss, so dass auf Q_1 keine Kraft wirkt. Berechnen Sie den gesuchten Ort und zeichnen Sie ihn im oben dargestellten Bild ein.
- c) Zeichnen Sie (qualitativ) den Verlauf der Feldlinien im unten vorbereiteten Bild ein. (Feldlinien in der Ebene aufgespannt durch die drei Ladungen, ohne Q_4)

 $Q_1 \oplus Q_2$

Aufgabe 1: Elektrostatisches Feld und Kräfte

Drei Punktladungen sind gemäss Bild auf einer Linie angeordnet. (Medium: Luft)

Daten: |Q| = 1 nC a = 10 cm

- a) Bestimmen Sie die elektrischen Feldstärken in den Punkten A und B.
 (Betrag berechnen und Richtung in der Zeichnung eintragen)
- b) Zeichnen Sie die Feldlinien im Bild ein.

Repetitionsfragen

- Elektrostatisches Feld Ursache, Wirkung?
- 2. Begriffe
 - 1. Elektrische Feldstärke
 - 2. Verschiebungsdichte
- 3. Einfluss des Materials im Feldraum?
- 4. Satz von Gauss. Spielt die Form der Hüllfläche eine Rolle?
- 5. Elektrisches Feld um Punktladung?
- 6. Spielt der Integrationsweg für die Spannung eine Rolle?
- 7. Was wird inegriert?

Kondensator-1 (E6,S1)

- Bauelement oder Anordnung mit voneinander isolierten Metallelektroden. Isolation dazwischen gefüllt mit isolierendem Dielektrikum
- Kapazität C als charakteristischen Kennwert (Geometrie Elektroden, Material Dielektrikum) in F (Farad)

$$Q = C \cdot U$$
 $[C] = \frac{As}{V} = F (Farad)$

Allgemein gilt:
$$C = \frac{Q}{U} = \frac{\oint_A \vec{D} \cdot d\vec{A}}{\int_S \vec{E} \cdot d\vec{S}}$$

Kondensator-2 Berechnung von Kapazitäten (E6,S.2)

Strategie

1. Fläche
$$A$$
 mit $\Psi = Q$ und $\left| \vec{E} \right| = konst.$ um (unbek.) Ladung Q legen $Q = \int_{A} \vec{D} \cdot d\vec{A}$

2. Bestimmung von
$$\vec{D} = f(r)$$

3. daraus folgt
$$ec{E} = ec{D}/arepsilon$$

4. Bestimmung von
$$U = \int_{Elektrode 1} \vec{E} \cdot d\vec{s}$$

5. daraus folgt
$$C = Q/U$$

Kondensator-2 Berechnung von Kapazitäten (E6,S.3)

Beispiel: Kugel im Raum

Über den Satz von Gauss kann man Q bestimmen

$$Q = D \cdot \int_{A} dA$$

Wenn man als Hüllfläche gleich die Kugeloberfläche nimmt, ist $\int dA = A_{Kugel} = 4 \cdot \pi \cdot r_K^2$

$$Q = D \cdot 4 \cdot \pi \cdot r_K^2$$
 $\rightarrow \text{mit}$ $D = \varepsilon_0 \cdot E$

$$E = \frac{Q}{4 \cdot \pi \cdot \varepsilon_0 \cdot r^2}$$

$$U = \int_{-\infty}^{r_K} E \cdot ds = \int_{-\infty}^{r_K} \frac{Q}{4 \cdot \pi \cdot \varepsilon_0 \cdot s^2} \cdot ds = \frac{Q}{4 \cdot \pi \cdot \varepsilon_0} \int_{-\infty}^{r_K} \frac{1}{s^2} \cdot ds$$

$$U = \frac{Q}{4 \cdot \pi \cdot \varepsilon_0} \left[\frac{1}{s} \right]_{\infty}^{r_K} = \frac{Q}{4 \cdot \pi \cdot \varepsilon_0} \left(\frac{1}{r_K} - 0 \right) = \frac{Q}{4 \cdot \pi \cdot \varepsilon_0 \cdot r_K}$$

$$\underline{C} = \frac{Q}{U} = \frac{Q \cdot 4 \cdot \pi \cdot \varepsilon_0 \cdot r_K}{Q} = \underline{4 \cdot \pi \cdot \varepsilon_0 \cdot r_K}$$

Kondensator-2 Berechnung von Kapazitäten (E6,S.3)

Beispiel: Maximale Spannung

Über den Satz von Gauss kann man Q bestimmen

$$Q = D \cdot \int_{A} dA$$

Wenn man als Hüllfläche gleich die Kugeloberfläche nimmt, ist $\int dA = A_{Kugel} = 4 \cdot \pi \cdot r_K^2$

$$Q = D \cdot 4 \cdot \pi \cdot r_K^2$$
 $\rightarrow \text{mit}$ $D = \varepsilon_0 \cdot E$

$$E = \frac{Q}{4 \cdot \pi \cdot \varepsilon_0 \cdot r_K^2} \rightarrow Q = E \cdot 4 \cdot \pi \cdot \varepsilon_0 \cdot r_K^2$$

$$U = \int_{-\infty}^{r_K} E \cdot ds = \int_{-\infty}^{r_K} \frac{Q}{4 \cdot \pi \cdot \varepsilon_0 \cdot s^2} \cdot ds = \frac{Q}{4 \cdot \pi \cdot \varepsilon_0} \int_{-\infty}^{r_K} \frac{1}{s^2} \cdot ds$$

$$U = \frac{Q}{4 \cdot \pi \cdot \varepsilon_0} \left[\frac{1}{s} \right]_{\infty}^{r_K} = \frac{Q}{4 \cdot \pi \cdot \varepsilon_0} \left(\frac{1}{r_K} - 0 \right) = \frac{Q}{4 \cdot \pi \cdot \varepsilon_0 \cdot r_K}$$

$$U_{\max} = \frac{E_{\max} \cdot 4 \cdot \pi \cdot \varepsilon_0 \cdot r_K^2}{4 \cdot \pi \cdot \varepsilon_0 \cdot r_K} = E_{\max} \cdot r_K$$
Deshalb sind an
Hochspannungsanlagen
alle Teile abgerundet

Deshalb sind an alle Teile abgerundet

Kondensator-2 Berechnung von Kapazitäten (E6,S.3)

Beispiel: Zylinderkondensator

 r_i = Aussenrad. Innenelektrode

 r_a = Innenrad. Aussenelektrode

Kondensator-2 Kapazitäten (E6,S.3)

Weitere Beispiele

$$C = \frac{Q}{U} = \frac{\varepsilon \cdot A}{s}$$

Plattenkondensator Plattenabmessung, gross im Vergleich zu s

$$C \cong \frac{\pi \cdot \varepsilon \cdot l}{\ln(a/r)}$$

$$a\rangle\rangle r$$

Lange Paralleldrahtleitung

$$C \cong \frac{2\pi \cdot \varepsilon \cdot l}{\ln(2h/r)}$$

$$h\rangle\rangle r$$

Langer Einzelleiter über Erde

Praxisbezug: - mehrschichtige Dielektrika

Spannungsverteilung zwischen Erteilung zwischen Ert

seriegeschalteten Kondensatoren-2

Gleichgewichtszustand nach te

Masche $M : -U_q + U_1 + U_2 = 0$

Gleiche Ladungsmenge, da beide Kondensatoren wegen der Serieschaltung den gleichen Strom über die gleiche Ladezeit te haben

$$Q_1 = Q_2 \Leftrightarrow C_1 U_1 = C_2 U_2$$

Kapazitive Spannungsteilung

Masche M :
$$-U_q + U_1 + U_2 = 0$$
 (1)

Ladungsgleichheit :
$$Q_1 = Q_2 = U_1 \cdot C_1 = U_2 \cdot C_2(2)$$

$$U_1 = \frac{U_2 \cdot C_2}{C_1}$$

$$U_q = U_1 + U_2 = \frac{U_2 \cdot C_2}{C_1} + U_2$$

$$C_1 \cdot U_q = U_2 \cdot C_2 + C_1 \cdot U_2$$

$$U_2 = \frac{C_1 \cdot U_q}{C_2 + C_1}$$

Kondensator-3 Kondensatorschaltungen (E6,S.4)

Parallelschaltung $U_1 = U_2 = \cdots = U_n = U$

$$C = \frac{Q}{U} = \frac{Q_1 + Q_2 + \dots + Q_n}{U} = C_1 + C_2 + \dots + C_n$$

Serieschaltung

$$Q_1 = Q_2 = \dots = Q_n = Q$$

$$\frac{1}{C} = \frac{Q}{Q} = \frac{\frac{Q}{C_1} + \frac{Q}{C_2} + \dots + \frac{Q}{C_n}}{Q} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n}$$

$$\begin{array}{c|c} C_1 & & U_1 \\ \hline & C_2 & & U_2 \\ \hline & C_n & & U_n \end{array}$$

Bei 2 Kondensatoren
$$C = \frac{C_1 \cdot C_2}{C_1 + C_2}$$

Ersatzschaltung mit Kondensatoren für parallelgeschichtete Dielektrika

Beispiel mit 3 quaderförmigen Feldräumen

Leitende Platten

= Elektroden

Kondensator- 4 Energie im elektrostatischen Feld (E9,S.1)

Die Ladung dQ wird auf einen Kondensator gebracht:

$$dW_e = u \cdot dQ = u \cdot C \cdot du$$

Aufladung ausgehend von u = 0 bis U:

$$W_{e} = C \int_{0}^{U} u \cdot du = \frac{1}{2} C \cdot U^{2} = \frac{1}{2} Q \cdot U = \frac{1}{2} \frac{Q^{2}}{C} [Ws]$$

Energiedichte:

$$w_e = \frac{W_e}{Volumen} \left[\frac{W_S}{m^3} \right]$$
 3-5 Wh/kg bzw. 3.4-5. Vergleich Li-Ion-Akku

Beispiel 2010: Supercap 3-5 Wh/kg bzw. 3.4-5.7 kWh/m³

100 Wh/kg

Vergleich mit kinetischer Energie mv²/2 z.B aus Schwungrad

Kondensator-5 Strom-Spannungsbeziehung an der Kapazität

(E11,S.1)

$$\frac{1}{a}$$
 $\frac{da}{du}$ $\frac{du}{du}$

Differentialform
$$dq = C \cdot du$$
 $\frac{dq}{dt} = C \frac{du}{dt}$ $i = C \frac{du}{dt}$

Der Strom "durch" einen Kondensator ist mit einer Änderung der Spannung verbunden. Der Strom ist Null, wenn die Spannung konstant ist.

Integral form
$$du = \frac{1}{C}i \cdot dt$$
 $u = \frac{1}{C}\int_{0}^{i_{f}} i \cdot dt + U_{0}$

Die Spannung am Kondensator setzt sich zusammen aus der Anfangsspannung U0 und einem Anteil aus der im Zeitraum 0 bis tf zu- oder abgeflossenen Ladung.

Beispiel: Anstiegsgeschwindigkeit der Signale in einem Mikroprozessor-System

Wie lange dauert es, bis die Spannung zwischen den Leitern auf 3.4 V angestiegen ist? Wellenausbreitungs-Phenomen vernachlässigen. Zum Zeitnullpunkt herrsche zwischen den Leitern eine Spannung von 0.4V.

Bauformen von Kondensatoren

Gewollt:

Ungewollt: Kabel, Leitungskapazität

Praxisbezug

- Häufige Anwendung Kondensatoren
 - Filter
 - Bereitstellen von el. Leistung (Stützkondensatoren in elektronischen Schaltungen)
- Energiespeicherung in Kondensatoren (Fahrzeuge, Zwischenkreis)
- Netzwerke mit geschalteten Kondensatoren

Aufgaben – Phase der Studierenden Dozent hilft nach Möglichkeit individuell 1-2L

Gegeben: Ein Netzwerk von Kondensatoren mit bekannten Kapazitäten liegt an einer Spannungsquelle

Gesucht: Teilspannungen

E1-2:

E2-3:

E1-2

Aufgabe 2: Spannung an Kondensator

Daten:

$$U_{\rm q} = 12 \text{ V}$$

 $C_1 = 1.5 \,\mu\text{F}$ $C_2 = 1.5 \,\mu\text{F}$ $C_3 = 0.5 \,\mu\text{F}$
 $C_4 = 0.5 \,\mu\text{F}$ $C_5 = 1 \,\mu\text{F}$ $C_6 = 2.2 \,\mu\text{F}$

Die Spannungsquelle wird langsam hochgefahren, dabei werden die vorher spannungsfreien Kondensatoren aufgeladen.

Bestimmen Sie die Spannung U_5 .

E2-3

Aufgabe 3: Netzwerk mit Kondensatoren

Die abgebildete Kondensatorschaltung wird mit der Spannungsquelle $U_{\rm q}$ langsam aufgeladen. Zu Beginn waren alle Kondensatoren entladen.

- a) Welche Quellenspannung U_q muss eingestellt werden, damit für U_{C1} eine Spannung von 40 V gemessen wird?
- b) Für $U_{\rm q}$ wird 300 V eingestellt: Bestimmen Sie die Spannung $U_{\rm C5}$, die in der Schaltung total gespeicherte Ladung $Q_{\rm T}$ und die total gespeicherte Energie $W_{\rm T}$.