Sudoku com simplex

sábado, 20 de março de 2021

Função objetivo: f(X)= 0

Restrições

- Variáveis binárias

_ Restrições de posições fixas

$$\times_{135} \le 1$$
, $\times_{135} > 1$
 $\times_{13k} \le 0$, $\times_{13k} > 0$ $\forall k \neq 5$
(exemplo para o valor 5 na
célula 1×3)

		(5)						3
1				4	6			
		7						2
	1				3		6	9
	4		6		9		5	
9	8		2				7	
2						9		
			8	1				
6	Y					4		

- Restrição de um único número em cada célula

$$\sum_{J}^{K=1} X^{!JK} \leqslant T \sum_{J}^{K=1} X^{!JK} \geqslant T \quad \forall j^{J} \downarrow$$

- Restrição de cada número uma única vez por linha e coluna

$$\sum_{J}^{\Delta=7} \times^{!2 \, K} \leqslant T \sum_{J}^{\Delta=7} \times^{!2 \, K} \gg T \quad \forall \, i^{2} \, K$$

$$\sum_{J}^{I=7} X^{!2K} \leqslant T \sum_{J}^{I=7} X^{!2K} \geqslant T \quad \forall L'K$$

uma única - Restrição de cada número

$$\sum_{i=1}^{j-1} \frac{2^{-j}}{2^{-j}} \times \frac{1}{2^{-j}} \times$$

Como encontrar a solução inicial?

Adicionar a variavel xo e subtrair Xo de todas as restrições

min Xo

sujeito a

$$(X_{135} \le 1, X_{135} > 1)$$

 $(X_{136} \le 0, X_{136} > 0)$ $\forall k \neq 5$ pera ceda tripla (i,j,k) fixa

$$= \sum_{i=1}^{i+2} \frac{J^{i}+2}{J^{i}} \times_{iJ} K - X_{0} \le -1 \quad \forall K \mid \forall i'J' \in \{1,4,7\}$$