Основная теорема о рекурентных оценках.

Iусть $a\geqslant 1$ и b>1 — константы, f(n) — функция, T(n) определено при неотрицательных n формулой

$$T(n) = aT(n/b) + f(n),$$

где под n/b понимается либо $\lfloor n/b \rfloor$, либо $\lfloor n/b \rfloor$. Тогда:

- 1. Если $f(n) = O(n^{\log_b a \varepsilon})$ для некоторого $\varepsilon > 0$, то $T(n) = \Theta(n^{\log_b a})$.
 - 2. Ecau $f(n) = \Theta(n^{\log_b a}), mo\ T(n) = \Theta(n^{\log_b a} \lg n).$
- 3. Если $f(n) = \Omega(n^{\log_b a + \varepsilon})$ для некоторого $\varepsilon > 0$ и если $af(n/b) \le cf(n)$ для некоторой константы c < 1 и достаточно больших n, то $T(n) = \Theta(f(n))$.

1)
$$T(n) = 2T(n/2) + n^3$$

В этом случае:

$$a = 2$$
, $b = 2$, $f(n) = n^3$

$$n^{\log_b(a)} = n^{\log_2(2)} = n^1 = n.$$

$$f(n) = \Omega(n^{\log_2 2 + \epsilon})$$
 для $\epsilon = 2$

Для достаточно большого n:

$$af(n/b) = 2(n/2)^3 = n^3/4 \le cn^3$$
, для c=1

По 3 утверждению: $T(n) = \theta(n^3)$

2)
$$T(n) = 16T(n/4) + n^2$$

$$a = 16$$
, $b = 4$, $f(n) = n^2$

$$n^{\log_b^a} = n^{\log_4^{16}} = n^4$$

$$f(n) = O(n^{\log_4 16 - \epsilon})$$
, для $\epsilon = 2$

$$T(n) = \theta(n^4)$$

3)
$$T(n) = 7T(n/2) + n^2$$

$$a = 7$$
, $b = 2$, $f(n) = n^2$

$$n^{\log_b^a} = n^{\log_2^7} \approx n^{2.8}$$

$$f(n) = O(n^{\log_2 7 - \epsilon})$$
, для $\epsilon \approx 0.8$

По 3 утверждению: $T(n) = \theta(n^{2.8})$