# Lecture 20: Backward stability of an algorithm



School of Mathematical Sciences, Xiamen University

# 1. Floating point number

• For given integers p and  $\beta$ , in the IEEE floating point standard (founded in 1985, updated in 2008, being undated again now), the elements of the floating point number system  $\mathbf{F}$  are the number 0 together with numbers of the form

$$x = \pm d_1.d_2 \cdots d_p \times \beta^e$$

where the integers  $d_i$ , e satisfy

$$0 \le d_i \le \beta - 1$$
,  $d_1 \ne 0$ ,  $e_{\min} \le e \le e_{\max}$ .

• One need to store sign bit  $(\pm)$ , exponent (e), and mantissa  $(d_1.d_2\cdots d_p)$ ; but not the base or radix  $(\beta \ge 2)$ . Floating point number system usually uses  $\beta = 2$  (10 sometimes, 16 historically).

| Precision   | $\beta$ | Bits        | p  | $e_{\min}$ | $e_{\max}$ | $\epsilon_{ m machine}$ |
|-------------|---------|-------------|----|------------|------------|-------------------------|
| Single (32) | 2       | 1+8+23      | 24 | -126       | 127        | $2^{-24}$               |
| Double (64) | 2       | 1 + 11 + 52 | 53 | -1022      | 1023       | $2^{-53}$               |

### 1.1. Limitations of digital representations

- Only a finite subset of the real numbers (or the complex numbers) can be represented. Therefore,
  - (i) the represented numbers cannot be arbitrarily large or small;
  - (ii) there are gaps between these numbers.

# 1.2. Floating point number machine accuracy

• In IEEE double precision arithmetic, the interval [1, 2] is represented by the discrete subset

1, 
$$1+2^{-52}$$
,  $1+2\times2^{-52}$ ,  $1+3\times2^{-52}$ ,  $\cdots$ , 2.

The interval [2,4] is represented by the same numbers multiplied by 2,

$$2, 2+2^{-51}, 2+2\times2^{-51}, 2+3\times2^{-51}, \cdots, 4.$$

In general, the interval  $[2^j, 2^{j+1}]$  is represented by the numbers for [1, 2] times  $2^j$ .

• For floating point number system, the machine accuracy, denoted by  $\epsilon_{\text{machine}}$ , is defined as: half the distance between 1 and the next larger floating point number. We have

$$\forall x \in [\theta, \Theta], \quad \exists x' \in \mathbf{F} \quad s.t., \quad |x - x'| \leqslant \epsilon_{\text{machine}}|x|.$$

In Matlab, eps =  $2\epsilon_{\text{machine}} = 2^{-52}$  in double precision.

• Let fl:  $\mathbb{R} \to \mathbf{F}$  denote the function giving the closest floating point approximation. We have

$$\forall x \in [\theta, \Theta], \quad \exists \epsilon \in \mathbb{R} \quad s.t., \quad |\epsilon| \leqslant \epsilon_{\text{machine}} \quad and \quad fl(x) = x(1+\epsilon).$$

Exercise. (James Demmel) Prove the following: If floating point numbers x and y satisfy  $2y \ge x \ge y \ge 0$ , then  $\mathrm{fl}(x-y) = x-y$ , i.e., x-y is an exact floating point number.

# 1.3. Floating point arithmetic

• \*  $(+, -, \times, \div)$  in  $\mathbb{R}$ ; \*  $(\oplus, \ominus, \otimes, \oplus)$  in  $\mathbf{F}$ ;  $x * y = \mathrm{fl}(x*y)$ .

### Fundamental Axiom of Floating Point Arithmetic

For all  $x, y \in \mathbf{F}$ , there exists  $\epsilon$  with  $|\epsilon| \leq \epsilon_{\text{machine}}$  such that

$$x \circledast y = (x * y)(1 + \epsilon).$$

### 1.4. Programming exercise

• TreBau Exercise 13.3 (Horner's rule for polynomial evaluation).

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0.$$

# **Algorithm** Horner's rule for $p(x) = \sum_{i=0}^{n} a_i x^i$ .

$$p = a_n$$
  
for  $i = n - 1 : -1 : 0$   
 $p = xp + a_i$ ;  
end

## 2. Algorithm

- Given a problem  $f: \mathbb{X} \to \mathbb{Y}$ . An algorithm for the problem f can be viewed as a map  $\tilde{f}: \mathbb{X} \to \mathbb{Y}$ .
- ullet More precisely, assume that a problem f, a computer with floating point system, and a program for solving the problem are fixed:
  - (1) given  $x \in \mathbb{X}$ , let f(x) be the corresponding floating point representation;
  - (2) input f(x) to the program and run it in the computer;
  - (3) the output (computed result) of the program belongs to  $\mathbb Y$  and is called  $\widetilde f(x)$ .
- A problem may have different algorithms (due to different programs). For example: the problem of sum of three numbers: a + b + c. Programs: (a + b) + c, a + (b + c), and (a + c) + b.
- What can happen for an ill-conditioned problem? Since x is perturbed to f(x), then  $\|\widetilde{f}(x) f(x)\|$  maybe large.

## 2.1. Accuracy

• An algorithm  $\widetilde{f}$  for a problem f is accurate if for each  $x \in \mathbb{X}$ ,

$$\frac{\|\widetilde{f}(x) - f(x)\|}{\|f(x)\|} = \mathcal{O}(\epsilon_{\text{machine}}).$$

• The meaning of  $\mathcal{O}(\cdot)$ :  $\phi(t) = \mathcal{O}(\psi(t))$  means there exists a positive constant C such that  $|\phi(t)| \leq C\psi(t)$  for all t sufficiently close to an understood limit (e.g.,  $t \to 0$  or  $t \to \infty$ ).

# 2.2. Stability

• An algorithm  $\widetilde{f}$  for a problem f is stable if for each  $x \in \mathbb{X}$ , there exists  $\widetilde{x} \in \mathbb{X}$ , such that

$$\frac{\|\widetilde{x} - x\|}{\|x\|} = \mathcal{O}(\epsilon_{\text{machine}}), \quad \frac{\|\widetilde{f}(x) - f(\widetilde{x})\|}{\|f(\widetilde{x})\|} = \mathcal{O}(\epsilon_{\text{machine}}).$$

## Remark 1

A stable algorithm gives nearly the right answer to nearly the right question.

# 2.3. Backward stability

• An algorithm  $\widetilde{f}$  for a problem f is backward stable if for each  $x \in \mathbb{X}$ , there exists  $\widetilde{x} \in \mathbb{X}$ , such that

$$\frac{\|\widetilde{x} - x\|}{\|x\|} = \mathcal{O}(\epsilon_{\text{machine}}), \quad \widetilde{f}(x) = f(\widetilde{x}).$$

### Remark 2

A backward stable algorithm gives exactly the right answer to nearly the right question.

### Remark 3

Backward stability obviously implies stability.

### Remark 4

Backward stability is both stronger and simpler than stability. Many algorithms of NLA are backward stable.

# 3. Backward error analysis

- The first step is to investigate the conditioning of the problem.

  The second step is to investigate the backward stability of the corresponding algorithm.
- Forward error ≤ Condition number × Backward error.



# Theorem 5 (Accuracy of a backward stable algorithm)

Suppose  $\widetilde{f}$  is backward stable for f. Let  $\kappa(f(x))$  denote the condition number of the problem f(x). Then the relative errors satisfy

$$\frac{\|\widetilde{f}(x) - f(x)\|}{\|f(x)\|} = \mathcal{O}(\kappa(f(x))\epsilon_{\text{machine}}).$$

### Proof.

By the definition of backward stability, we have there exists  $\tilde{x}$  such that

$$\frac{\|\widetilde{x} - x\|}{\|x\|} = \mathcal{O}(\epsilon_{\text{machine}}), \quad \widetilde{f}(x) = f(\widetilde{x}).$$

By the definition of  $\kappa(f(x))$ ,

$$\kappa(f(x)) = \lim_{\varepsilon \to 0^+} \sup_{\|\delta x\| \leqslant \varepsilon} \left( \frac{\|\delta f\|}{\|f(x)\|} / \frac{\|\delta x\|}{\|x\|} \right),$$

we have

$$\frac{\|\widetilde{f}(x) - f(x)\|}{\|f(x)\|} \leqslant (\kappa(f(x)) + o(1)) \frac{\|\widetilde{x} - x\|}{\|x\|},$$

where o(1) denotes a quantity that converges to zero as  $\epsilon_{\text{machine}} \to 0$ . Then the statement follows.

### 4. Examples

• Floating point arithmetic: The floating point operations  $\oplus, \ominus, \otimes, \oplus$  are all backward stable. Let  $x_1, x_2 \in \mathbb{R}$ . Consider the problem  $f(x_1, x_2) = x_1 * x_2$  and the corresponding algorithm  $\widetilde{f}(x_1, x_2) = \mathrm{fl}(x_1) \circledast \mathrm{fl}(x_2)$ . There exist  $|\epsilon_1|, |\epsilon_2|, |\epsilon_3| \leqslant \epsilon_{\mathrm{machine}}$  and  $|\epsilon_4|, |\epsilon_5| \leqslant 2\epsilon_{\mathrm{machine}} + \mathcal{O}(\epsilon_{\mathrm{machine}}^2)$  such that (except  $\otimes$  and  $\oplus$ )

$$\begin{split} \widetilde{f}(x_1, x_2) &= \mathrm{fl}(x_1) \circledast \mathrm{fl}(x_2) \\ &= ([x_1(1 + \epsilon_1)] * [x_2(1 + \epsilon_2)])(1 + \epsilon_3) \\ &= [x_1(1 + \epsilon_1)(1 + \epsilon_3)] * [x_2(1 + \epsilon_2)(1 + \epsilon_3)] \\ &= [x_1(1 + \epsilon_4)] * [x_2(1 + \epsilon_5)] \\ &= \widetilde{x}_1 * \widetilde{x}_2 = f(\widetilde{x}_1, \widetilde{x}_2). \end{split}$$

Backward stability follows from

$$\frac{|\widetilde{x}_1 - x_1|}{|x_1|} = \mathcal{O}(\epsilon_{\text{machine}}), \qquad \frac{|\widetilde{x}_2 - x_2|}{|x_2|} = \mathcal{O}(\epsilon_{\text{machine}}).$$

### • Inner product

 $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$ ,  $\alpha = \mathbf{x}^\top \mathbf{y}$ .  $\widetilde{\alpha}$  by  $\otimes$  and  $\oplus$ . Backward stable.

### Outer product

 $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$ ,  $\mathbf{A} = \mathbf{x}\mathbf{y}^{\top}$ .  $\widetilde{\mathbf{A}}$  by  $\otimes$ . Stable but not backward stable. Explanation: the matrix  $\widetilde{\mathbf{A}}$  will be most unlikely to have rank exactly 1, i.e., cannot be written as  $(\mathbf{x} + \delta \mathbf{x})(\mathbf{y} + \delta \mathbf{y})^*$ .

As a rule, for problems where the dimension of the space  $\mathbb{Y}$  is greater than that of the space  $\mathbb{X}$ , backward stability is rare.

• Compute f(x) = x + 1By  $\oplus$ ,  $\widetilde{f}(x) = \operatorname{fl}(x) \oplus 1$ . Stable but not backward stable. We have

$$\widetilde{f}(x) = f(x) \oplus 1 = (x(1+\epsilon_1)+1)(1+\epsilon_2)$$
$$= x(1+\epsilon_1+\epsilon_2+\epsilon_1\epsilon_2)+\epsilon_2+1.$$

Obviously,  $x(1 + \epsilon_1 + \epsilon_2 + \epsilon_1 \epsilon_2) + \epsilon_2$  is not small compared with  $x \to 0$ , i.e., for  $x \to 0$ ,

$$\frac{|x(1+\epsilon_1+\epsilon_2+\epsilon_1\epsilon_2)+\epsilon_2|}{|x|} \neq \mathcal{O}(\epsilon_{\text{machine}}).$$

Explanation: For  $x \approx 0$ ,  $\oplus$  introduces absolute errors of size  $\mathcal{O}(\epsilon_{\text{machine}})$ , which cannot be interpreted as caused by small relative perturbations in x. Therefore, not backward stable.

To show stability, for all x, let  $\tilde{x} = x(1 + \epsilon_1)$ . Note that

$$\frac{|\widetilde{f}(x) - f(\widetilde{x})|}{|f(\widetilde{x})|} = \frac{|\epsilon_2(x(1+\epsilon_1)+1)|}{|x(1+\epsilon_1)+1|} = |\epsilon_2| = \mathcal{O}(\epsilon_{\text{machine}}).$$

Then stability follows.

**Comparison**: Let  $x, y \in \mathbb{R}$ . Consider f(x, y) = x + y and the corresponding backward stable algorithm  $\widetilde{f}(x, y) = \mathrm{fl}(x) \oplus \mathrm{fl}(y)$ .

# **4.1.** Unitary matrix multiplication: (see also TreBau Exercise 16.1)

• In the rest of this lecture, for simplicity, we always assume that the given data are floating point numbers already if not explicitly stated.

### Theorem 6

Left and/or right unitary matrix multiplications are backward stable in the sense: Let  $\mathbf{Q}$  be a unitary matrix. The computed quantity  $\widetilde{\mathbf{B}}$  for  $\mathbf{B} = \mathbf{Q}\mathbf{A}$  or  $\mathbf{B} = \mathbf{A}\mathbf{Q}$  satisfies

$$\widetilde{\mathbf{B}} = \mathbf{Q}(\mathbf{A} + \delta \mathbf{A}), \quad \text{or} \quad \widetilde{\mathbf{B}} = (\mathbf{A} + \delta \mathbf{A})\mathbf{Q}, \qquad \frac{\|\delta \mathbf{A}\|}{\|\mathbf{A}\|} = \mathcal{O}(\epsilon_{\text{machine}}).$$

### Proof.

We only prove the real case. The complex case is similar. Consider the algorithm for the inner product  $\mathbf{q}^{\mathsf{T}}\mathbf{a}$ , then matrix-vector product  $\mathbf{Q}\mathbf{a}$ , and then matrix-matrix product  $\mathbf{Q}\mathbf{A}$ .

## 4.2. An unstable algorithm for computing eigenvalues

- Since z is an eigenvalue of **A** if and only if p(z) = 0, where p(z) is the characteristic polynomial  $\det(z\mathbf{I} \mathbf{A})$ , the roots of p(z) are the eigenvalues of **A**. This suggests the following algorithm:
  - (1). Find the coefficients of the characteristic polynomial.
  - (2). Find its roots.
- This algorithm is unstable due to the second step. Explanation: The problem of finding the roots of a polynomial, given the coefficients, is generally ill-conditioned. Therefore, although only small errors exist in the coefficients of the polynomials, the difference between their roots,  $||r(p) r(\tilde{p})||$ , maybe vastly larger than  $\epsilon_{\text{machine}}||r(p)||$ . Instability follows.
- See the discussion of TreBau's book Numerical linear algebra, page 110–111.

## 4.3. Backward stability of back substitution

• The solution of the nonsingular upper-triangular system

$$\begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1m} \\ & r_{22} & \ddots & \vdots \\ & & \ddots & \vdots \\ & & & r_{mm} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix},$$

can be obtained by the following back substitution algorithm

# Algorithm: Back substitution

$$x_{m} = b_{m}/r_{mm}$$

$$x_{m-1} = (b_{m-1} - x_{m}r_{m-1,m})/r_{m-1,m-1}$$

$$x_{m-2} = (b_{m-2} - x_{m-1}r_{m-2,m-1} - x_{m}r_{m-2,m})/r_{m-2,m-2}$$

$$\vdots$$

$$x_{j} = (b_{j} - \sum_{k=j+1}^{m} x_{k}r_{jk})/r_{jj}$$

### Theorem 7

Back substitution is backward stable in the sense that the computed solution  $\widetilde{\mathbf{x}} \in \mathbb{C}^m$  satisfies

$$(\mathbf{R} + \delta \mathbf{R})\widetilde{\mathbf{x}} = \mathbf{b},$$

for some upper-triangular  $\delta \mathbf{R} \in \mathbb{C}^{m \times m}$  with

$$\frac{\|\delta\mathbf{R}\|}{\|\mathbf{R}\|} = \mathcal{O}(\epsilon_{\text{machine}}).$$

Specifically, for each i, j,

$$\frac{|\delta r_{ij}|}{|r_{ij}|} \le m\epsilon_{\text{machine}} + \mathcal{O}(\epsilon_{\text{machine}}^2).$$

• Our task is to express every floating point error as a perturbation of the input.

(i) The case m=1:

$$\widetilde{x}_1 = b_1 \oplus r_{11} = \frac{b_1(1+\epsilon_1)}{r_{11}}, \quad |\epsilon_1| \leqslant \epsilon_{\text{machine}}$$

Set  $1 + \epsilon_1' = 1/(1 + \epsilon_1)$ . We have

$$\epsilon_1' = -\frac{\epsilon_1}{1+\epsilon_1} \Rightarrow \widetilde{x}_1 = \frac{b_1}{r_{11}(1+\epsilon_1')}, \quad |\epsilon_1'| \leqslant \epsilon_{\text{machine}} + \mathcal{O}(\epsilon_{\text{machine}}^2).$$

Therefore

$$(r_{11} + \delta r_{11})\widetilde{x}_1 = b_1; \quad \delta r_{11} = \epsilon'_1 r_{11}; \quad \frac{|\delta r_{11}|}{|r_{11}|} \leqslant \epsilon_{\text{machine}} + \mathcal{O}(\epsilon_{\text{machine}}^2).$$

(ii) The case m=2. The first step is the same as in m=1 case,

$$\widetilde{x}_2 = b_2 \oplus r_{22} = \frac{b_2}{r_{22}(1+\epsilon_1)}, \quad |\epsilon_1| \leqslant \epsilon_{\text{machine}} + \mathcal{O}(\epsilon_{\text{machine}}^2).$$

The second step: there exist  $|\epsilon_2|, |\epsilon_3|, |\epsilon_4| \leq \epsilon_{\text{machine}}$ ,

$$\widetilde{x}_{1} = (b_{1} \ominus (\widetilde{x}_{2} \otimes r_{12})) \oplus r_{11} = (b_{1} \ominus \widetilde{x}_{2} r_{12} (1 + \epsilon_{2})) \oplus r_{11} 
= (b_{1} - \widetilde{x}_{2} r_{12} (1 + \epsilon_{2})) (1 + \epsilon_{3}) \oplus r_{11} 
= \frac{(b_{1} - \widetilde{x}_{2} r_{12} (1 + \epsilon_{2})) (1 + \epsilon_{3})}{r_{11}} (1 + \epsilon_{4}).$$

Shift  $\epsilon_3$  and  $\epsilon_4$  to the denominator

$$\widetilde{x}_1 = \frac{b_1 - \widetilde{x}_2 r_{12} (1 + \epsilon_2)}{r_{11} (1 + \epsilon_3') (1 + \epsilon_4')},$$

or equivalently,

$$\widetilde{x}_1 = \frac{b_1 - \widetilde{x}_2 r_{12} (1 + \epsilon_2)}{r_{11} (1 + 2\epsilon_5)}, \quad |\epsilon_3'|, |\epsilon_4'|, |\epsilon_5| \leqslant \epsilon_{\text{machine}} + \mathcal{O}(\epsilon_{\text{machine}}^2).$$

Obviously,  $\tilde{x}_1$  is exactly correct if  $r_{22}$ ,  $r_{12}$  and  $r_{11}$  perturbed by factors  $(1 + \epsilon_1)$ ,  $(1 + \epsilon_2)$  and  $(1 + 2\epsilon_5)$ , respectively. Thus,

$$(\mathbf{R} + \delta \mathbf{R})\widetilde{\mathbf{x}} = \mathbf{b},$$

where the entries  $\delta r_{ij}$  of  $\delta \mathbf{R}$  satisfy

$$\begin{bmatrix}
\frac{|\delta r_{11}|}{|r_{11}|} & \frac{|\delta r_{12}|}{|r_{12}|} \\
\frac{|\delta r_{22}|}{|r_{22}|}
\end{bmatrix} = \begin{bmatrix} 2|\epsilon_5| & |\epsilon_2| \\ & |\epsilon_1| \end{bmatrix} \leqslant \begin{bmatrix} 2 & 1 \\ & 1 \end{bmatrix} \epsilon_{\text{machine}} + \mathcal{O}(\epsilon_{\text{machine}}^2).$$

The last formula guarantees  $\|\delta \mathbf{R}\|/\|\mathbf{R}\| = \mathcal{O}(\epsilon_{\text{machine}})$  in any norm. (iii) The case m = 3. The first two steps are the same as before:

$$\widetilde{x}_3 = b_3 \oplus r_{33} = \frac{b_3}{r_{33}(1+\epsilon_1)},$$

$$\widetilde{x}_2 = (b_2 \ominus (\widetilde{x}_3 \otimes r_{23})) \oplus r_{22} = \frac{b_2 - \widetilde{x}_3 r_{23} (1 + \epsilon_2)}{r_{22} (1 + 2\epsilon_3)},$$

where

$$\left[\begin{array}{cc} 2|\epsilon_3| & |\epsilon_2| \\ & |\epsilon_1| \end{array}\right] \leqslant \left[\begin{array}{cc} 2 & 1 \\ & 1 \end{array}\right] \epsilon_1 + \mathcal{O}(\epsilon_{\text{machine}}^2)$$

The third step:

$$\begin{split} \widetilde{x}_1 &= \left[ (b_1 \ominus (\widetilde{x}_2 \otimes r_{12})) \ominus (\widetilde{x}_3 \otimes r_{13}) \right] \oplus r_{11} \\ &= \left[ (b_1 - \widetilde{x}_2 r_{12} (1 + \epsilon_4)) (1 + \epsilon_6) - \widetilde{x}_3 r_{13} (1 + \epsilon_5) \right] (1 + \epsilon_7) \oplus r_{11} \\ &= \frac{\left[ (b_1 - \widetilde{x}_2 r_{12} (1 + \epsilon_4)) (1 + \epsilon_6) - \widetilde{x}_3 r_{13} (1 + \epsilon_5) \right] (1 + \epsilon_7)}{r_{11} (1 + \epsilon_8')} \\ &= \frac{b_1 - \widetilde{x}_2 r_{12} (1 + \epsilon_4) - \widetilde{x}_3 r_{13} (1 + \epsilon_5) (1 + \epsilon_6')}{r_{11} (1 + \epsilon_6') (1 + \epsilon_7') (1 + \epsilon_8')}, \end{split}$$

 $r_{13}$  has two perturbations of size at most  $\epsilon_{\text{machine}}$ ,  $r_{11}$  has three. Then we have  $(\mathbf{R} + \delta \mathbf{R})\tilde{\mathbf{x}} = \mathbf{b}$  with the entries  $\delta r_{ij}$  satisfying

$$\begin{bmatrix} \frac{|\delta r_{11}|}{|r_{11}|} & \frac{|\delta r_{12}|}{|r_{12}|} & \frac{|\delta r_{13}|}{|r_{13}|} \\ \frac{|\delta r_{22}|}{|r_{22}|} & \frac{|\delta r_{23}|}{|r_{23}|} \\ \frac{|\delta r_{33}|}{|r_{33}|} \end{bmatrix} \leqslant \begin{bmatrix} 3 & 1 & 2 \\ 2 & 1 \\ 1 \end{bmatrix} \epsilon_{\text{machine}} + \mathcal{O}(\epsilon_{\text{machine}}^2).$$

(iv) General m: Higher-dimensional cases are similar. For example,  $5 \times 5$  case:

$$\frac{|\delta \mathbf{R}|}{|\mathbf{R}|} \leqslant \begin{bmatrix} 5 & 1 & 2 & 3 & 4 \\ & 4 & 1 & 2 & 3 \\ & & 3 & 1 & 2 \\ & & & 2 & 1 \\ & & & & 1 \end{bmatrix} \epsilon_{\text{machine}} + \mathcal{O}(\epsilon_{\text{machine}}^2).$$

The entries of the matrix in this formula are obtained from three components. The multiplications  $\tilde{x}_k r_{jk}$  introduce  $\epsilon_{\text{machine}}$  perturbations in the pattern

$$\otimes: \widetilde{x}_k r_{jk} = \left[ egin{array}{ccccc} 0 & 1 & 1 & 1 & 1 \ & 0 & 1 & 1 & 1 \ & & 0 & 1 & 1 \ & & & 0 & 1 \ & & & & 0 \end{array} 
ight]. \quad ext{(inner level)}$$

The division by  $r_{kk}$  introduce perturbations in the pattern

$$\oplus$$
: divisions by  $r_{kk}$  
$$\begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 1 \\ & & & 1 \end{bmatrix}$$
. (outer level)

Finally, the subtractions also occur in the pattern for  $\otimes$ , and, due to the decision to compute from left to right, each one introduces a perturbation on the diagonal and at each position to the right. This adds up to the pattern

$$\ominus: \left[\begin{array}{cccccc} 4 & 0 & 1 & 2 & 3 \\ & 3 & 0 & 1 & 2 \\ & & 2 & 0 & 1 \\ & & & 1 & 0 \\ & & & & 0 \end{array}\right].$$

### Remark 8

Perturbations of order  $\epsilon_{machine}$  are composed additively and moved freely between numerators and denominators since the difference is of order  $\epsilon_{machine}^2$ .

### Remark 9

More than one error bound can be derived for a given algorithm. In the present case, we could have perturbed  $b_j$  as well as  $r_{ij}$ , avoiding the need for the trickery represented pattern for  $\ominus$ . On the other hand, a final result in which only  $\mathbf{R}$  is perturbed is appealing clean.

### Remark 10

We have done componentwise backward error bound. If  $r_{ij} = 0$ , this entry undergoes no perturbation at all:  $\delta \mathbf{R}$  has the same sparsity pattern as  $\mathbf{R}$ .