课外练习题 3

- 1. 已知向量组 $\boldsymbol{\alpha}_1 = \begin{pmatrix} 2 \\ a \\ -1 \end{pmatrix}$, $\boldsymbol{\alpha}_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\boldsymbol{\alpha}_3 = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$ 线性相关,则 $a = \underline{1/3}$.
- 2. 设向量组 $\alpha_1 = (a,0,1), \alpha_2 = (b,1,0), \alpha_3 = (0,a,b)$ 线性无关,则 a,b 必满足关系式 $ab \neq 0$.
- 3. 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关, $\alpha_1 + 2\alpha_2, \alpha_2 \alpha_3, \alpha_1 + \alpha_2 + t\alpha_3$ 线性相关,则t = 1.
- 4. 向量组 $\boldsymbol{\alpha}_1 = (1,2,3,4)^T$, $\boldsymbol{\alpha}_2 = (1,3,4,5)^T$, $\boldsymbol{\alpha}_3 = (2,4,6,8)^T$, $\boldsymbol{\alpha}_4 = (2,6,7,7)^T$ 的一个极大 无关组为 $\alpha_1, \alpha_2, \alpha_4$. (或 $\alpha_2, \alpha_3, \alpha_4$)
- 5. 若矩阵 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 经初等行变换变为 $\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$, 那么向量组

 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 的一个极大无关组为 $\alpha_1, \alpha_2, \alpha_4$,其余向量由此极大无关组线性表示的关 系式为 $\alpha_3 = \alpha_1 - \alpha_2$.

- 6. 向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,则向量组 $\alpha_1, \alpha_1 + \alpha_2, \alpha_1 \alpha_3$ 的秩为_____3_____.
- 7. 设 3×2 矩阵 $\mathbf{A} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2), \mathbf{B} = (\boldsymbol{\beta}_1, \boldsymbol{\beta}_2)$, 其中 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\beta}_1, \boldsymbol{\beta}_2$ 是 3 维列向量,若 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2$ 线性 无关,则 $\boldsymbol{\beta}_1$, $\boldsymbol{\beta}_2$ 线性无关的充要条件是(\mathbf{C}).
 - (A) $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2$ 能由 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2$ 线性表示 (B) $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2$ 能由 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2$ 线性表示
 - (C) 矩阵 **A** 与 **B** 等价
- (D)向量组 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2$,与 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2$,等价
- 8. 已知向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 是线性无关向量组,则下列向量组中仍为线性无关向量组的是 (**D**).
 - (A) $\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_3 + \boldsymbol{\alpha}_4, \boldsymbol{\alpha}_4 + \boldsymbol{\alpha}_1$ (B) $\boldsymbol{\alpha}_1 \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_2 \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_3 \boldsymbol{\alpha}_4, \boldsymbol{\alpha}_4 \boldsymbol{\alpha}_1$

 - (C) $\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_3 \boldsymbol{\alpha}_4, \boldsymbol{\alpha}_4 \boldsymbol{\alpha}_1$ (D) $\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_3 + \boldsymbol{\alpha}_4, \boldsymbol{\alpha}_4 \boldsymbol{\alpha}_1$
- 10. 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,向量组 $\alpha_1, \alpha_2, \beta$ 线性相关,则(B).

(A) β 可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示, α_3 可由 $\alpha_1, \alpha_2, \beta$ 线性表示
(B) β 可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示, α_3 不可由 $\alpha_1, \alpha_2, \beta$ 线性表示
(C) $\boldsymbol{\beta}$ 不可由 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 线性表示, $\boldsymbol{\alpha}_3$ 可由 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\beta}$ 线性表示
(D) β 不可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示, α_3 不可由 $\alpha_1, \alpha_2, \beta$ 线性表示
11. 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,向量 β_1 能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示,向量 β_2 不能由 $\alpha_1, \alpha_2, \alpha_3$
线性表示,则必有 (C).
(A) $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\beta}_1$ 线性无关 (B) $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\beta}_1$ 线性相关
(C) $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\beta}_2$ 线性无关 (D) $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\beta}_2$ 线性相关
12. n 维向量组 $\alpha_1, \alpha_2, \dots, \alpha_m$ ($3 \le m \le n$) 线性无关的充要条件是(C).
(A) $\pmb{\alpha}_1, \pmb{\alpha}_2, \cdots, \pmb{\alpha}_m$ 中任意两个向量均线性无关
(B) 向量组 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_m$ 的秩小于 m
(C) $\alpha_1, \alpha_2, \cdots, \alpha_m$ 中任意一个向量均不能由其余 $m-1$ 个向量线性表示
(D) 方程组 $x_1 \alpha_1 + x_2 \alpha_2 + \cdots + x_m \alpha_m = 0$ 有非零解
13. 向量组 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s$ 线性无关的充分必要条件是(\mathbf{C})
(A) $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s$ 均不为零向量.
(B) $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s$ 中任意两个向量的分量不成比例.
(C) $\alpha_1, \alpha_2, \cdots, \alpha_s$ 中任意一个向量均不能由其余各向量线性表示
(D) $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s$ 中有一部分向量线性无关
14. 设 $\boldsymbol{\alpha}_1 = \begin{pmatrix} 0 \\ 0 \\ c_1 \end{pmatrix}$, $\boldsymbol{\alpha}_2 = \begin{pmatrix} 0 \\ 1 \\ c_2 \end{pmatrix}$, $\boldsymbol{\alpha}_3 = \begin{pmatrix} 1 \\ -1 \\ c_3 \end{pmatrix}$, $\boldsymbol{\alpha}_4 = \begin{pmatrix} -1 \\ 1 \\ c_4 \end{pmatrix}$, 其中 c_1, c_2, c_3, c_4 为任意常数,则下列
向量组线性相关的为(C)
(A) $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ (B) $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_4$ (C) $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4$ (D) $\boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4$
15. 设 A 为 3×4 矩阵,且 $R(A)=3$,则 A 的(B)

(A) 行向量组线性相关, 列向量组线性无关

(B) 行向量组线性无关, 列向量	量组线性相关
(C) 行、列向量组均线性相关	
(D) 行、列向量组均线性无关	
16. 设 n 阶矩阵 $\mathbf{A} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \dots, \boldsymbol{\alpha}_n)$), $\boldsymbol{B} = (\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \dots, \boldsymbol{\beta}_n)$, $\boldsymbol{A}\boldsymbol{B} = (\boldsymbol{\gamma}_1, \boldsymbol{\gamma}_2, \dots, \boldsymbol{\gamma}_n)$.记向量组
$\mathbf{I}: \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_n : \mathbf{II}: \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_n$	$oldsymbol{eta}_n$; \mathbf{III} : $oldsymbol{\gamma}_1,oldsymbol{\gamma}_2,\cdots,oldsymbol{\gamma}_n$,如果向量组 \mathbf{III} 线性相关,则(\mathbf{D})
(A) 向量组 I 线性相关	(B) 向量组 II 线性相关
	(D) 向量组 I 与 II 中至少有一个线性相关 日向量组 $II: m{eta}_1, m{eta}_2, \cdots, m{eta}_s$ 线性表出. 下列命题正确的是
(<u>B</u>).	
	性无关 (B) 若 $r > s$,则向量组 I 线性相关性无关 (D) 若 $r > s$,则向量组 II 线性相关
18. 设有向量组 $\alpha_1 = (1, -1, 2, 4)^T$,	$\alpha_2 = (0,3,1,2)^T$, $\alpha_3 = (3,0,7,14)^T$, $\alpha_4 = (1,-2,2,0)^T$,
则该向量组的极大线性无关组是	륃(B).
(A) α_1, α_2 (B) α_1, α_2	$,\alpha_4$ (C) $\alpha_1,\alpha_2,\alpha_3$ (D) $\alpha_1,\alpha_2,\alpha_3,\alpha_4$
19. 设 A 是 $m \times n$ 矩阵, C 是 n 阶则(C).	可逆矩阵,矩阵 \boldsymbol{A} 的秩为 \boldsymbol{r} ,矩阵 $\boldsymbol{B}=\boldsymbol{AC}$ 的秩为 $\boldsymbol{r_1}$,
(A) $r > r_1$. (B) $r < r_1$.	(C) $r = r_1$. (D) $r = r_1$ 的关系依 C 而定
20. 设向量组 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s$ 的秩为	r,则(D).
(A) 必有 r < s	
(B) 向量组中任意个数小于 r 的	的部分组必线性无关
(C) 向量组中任意 r 个向量必约	送性无关
(D) 若 $r < s$,则向量组中任意	r+1个向量必线性相关
21. 设 \boldsymbol{A} 为 $m \times n$ 矩阵, \boldsymbol{B} 为 $n \times k$	矩阵, $AB = O, B \neq O$,则下列命题中正确的是(A).
(A) A 的列向量组线性相关	(B) A 的行向量组线性相关
(C) A 的列向量组线性无关	(D) A 的行向量组线性无关
22. (6 分) 设 A 是 n×m 矩阵, B 量组线性无关	是 $m \times n$ 矩阵,其中 $n < m$.若 $AB = E$,证明 B 的列向

证明: 因 $R(B) \ge R(E) = n$, 又 $R(B) \le n$, 故R(B) = n, 从而B的列向量组线性无关.

- 23. (8 分) 已知向量组 α₁,α₂,α₃,α₄线性相关, α₁,α₂,α₃,α线性无关, 讨论 α₁,α₂,α₃,α₅-α₄的线性相关性.
- $m{\textbf{\textit{M}}}$: $m{\alpha}_1, m{\alpha}_2, m{\alpha}_3, m{\alpha}_5$ 线性无关 $\Rightarrow m{\alpha}_1, m{\alpha}_2, m{\alpha}_3$ 线性无关,又 $m{\alpha}_1, m{\alpha}_2, m{\alpha}_3, m{\alpha}_4$ 线性相关,故 $m{\alpha}_4$ 可由 $m{\alpha}_1, m{\alpha}_2, m{\alpha}_3$ 唯一线性表示,即 $m{\alpha}_4 = \lambda_1 m{\alpha}_1 + \lambda_2 m{\alpha}_2 + \lambda_3 m{\alpha}_3$ ($\lambda_1, \lambda_2, \lambda_3$ 为常数).

(法 1) 设有一组常数 k_1,k_2,k_3,k_4 ,使 $k_1\boldsymbol{\alpha}_1+k_2\boldsymbol{\alpha}_2+k_3\boldsymbol{\alpha}_3+k_4(\boldsymbol{\alpha}_5-\boldsymbol{\alpha}_4)=\boldsymbol{0}$,即

$$(k_1 - \lambda_1 k_4) \boldsymbol{\alpha}_1 + (k_2 - \lambda_2 k_4) \boldsymbol{\alpha}_2 + (k_3 - \lambda_3 k_4) \boldsymbol{\alpha}_3 + k_4 \boldsymbol{\alpha}_5 = \mathbf{0},$$

又 $\alpha_1, \alpha_2, \alpha_3, \alpha_5$ 线性无关,则有

$$\begin{cases} k_1 - \lambda_1 k_4 = 0 \\ k_2 - \lambda_2 k_4 = 0 \\ k_3 - \lambda_3 k_4 = 0 \end{cases} \Rightarrow \begin{cases} k_1 = 0 \\ k_2 = 0 \\ k_3 = 0 \end{cases} \Rightarrow \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_5 - \boldsymbol{\alpha}_4 \text{ \sharp th} \text{ \sharp th} \text{ \sharp th} \text{ \sharp th th} \text{ \sharp th $\text{$$

(法2)
$$(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_5 - \boldsymbol{\alpha}_4) \xrightarrow{c_4 + \lambda_1 c_1 + \lambda_2 c_2 + \lambda_3 c_3} (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_5)$$

则 $R(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_5 - \boldsymbol{\alpha}_4) = R(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_5) = 4$,故 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_5 - \boldsymbol{\alpha}_4$ 线性无关.

(法3)
$$(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{5} - \boldsymbol{\alpha}_{4}) = (\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{5}) \begin{pmatrix} 1 & 0 & 0 & -\lambda_{1} \\ 0 & 1 & 0 & -\lambda_{2} \\ 0 & 0 & 1 & -\lambda_{3} \\ 0 & 0 & 0 & 1 \end{pmatrix} = (\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{5})C$$

而 $|C|=1\neq 0$,所以 $\alpha_1,\alpha_2,\alpha_3,\alpha_5-\alpha_4$ 线性无关.

24. (12 分) 设向量组
$$\boldsymbol{\alpha}_1 = \begin{pmatrix} 2 \\ 1 \\ 2 \\ 1 \end{pmatrix}$$
, $\boldsymbol{\alpha}_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 2 \end{pmatrix}$, $\boldsymbol{\alpha}_3 = \begin{pmatrix} -1 \\ -2 \\ -2 \\ -3 \end{pmatrix}$, $\boldsymbol{\alpha}_4 = \begin{pmatrix} 1 \\ 1 \\ 3 \\ 3 \end{pmatrix}$, $\boldsymbol{\alpha}_5 = \begin{pmatrix} 2 \\ 4 \\ -1 \\ 1 \end{pmatrix}$, 求

 $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$ 的一个极大线性无关组,并将其余向量用该极大无关组线性表示.

解:
$$A = \begin{pmatrix} 2 & -1 & -1 & 1 & 2 \\ 1 & 1 & -2 & 1 & 4 \\ 2 & 0 & -2 & 3 & -1 \\ 1 & 2 & -3 & 3 & 1 \end{pmatrix}$$
 $\sim \begin{pmatrix} 1 & 1 & -2 & 1 & 4 \\ 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$, 故 $\mathbf{R}(\mathbf{A}) = 3$, $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_4$ 就是一个

极大无关组,又
$$\mathbf{A}$$
 \approx $\begin{pmatrix} 1 & 0 & -1 & 0 & 4 \\ 0 & 1 & -1 & 0 & 3 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$,所以 $\mathbf{\alpha}_3 = -\mathbf{\alpha}_1 - \mathbf{\alpha}_2$, $\mathbf{\alpha}_5 = 4\mathbf{\alpha}_1 + 3\mathbf{\alpha}_2 - 3\mathbf{\alpha}_4$.

25. (10分)设向量组:

$$\boldsymbol{\alpha}_1 = (1,1,2,-1)^T$$
, $\boldsymbol{\alpha}_2 = (1,2,-1,1)^T$, $\boldsymbol{\alpha}_3 = (2,3,-5,4)^T$, $\boldsymbol{\alpha}_4 = (1,-1,\lambda,-1)^T$.

当参数 λ 取何值时线性相关,相关时求其极大线性无关组,并将其余向量用该极大无关组线性表示。

解: (法 1)
$$|\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{4}| = \begin{vmatrix} 1 & 1 & 2 & 1 \\ 1 & 2 & 3 & -1 \\ 2 & -1 & -5 & \lambda \\ -1 & 1 & 4 & -1 \end{vmatrix} = 8 - 4\lambda, \quad \exists \lambda = 2$$
时向量组线性相关.
$$(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{4}) = \begin{pmatrix} 1 & 1 & 2 & 1 \\ 1 & 2 & 3 & -1 \\ 2 & -1 & -5 & 2 \\ 1 & 1 & 1 & 4 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

故极大无关组为 $\alpha_1,\alpha_2,\alpha_3$,且 $\alpha_4=2\alpha_1-3\alpha_2+\alpha_3$.

(法2)
$$(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = \begin{pmatrix} 1 & 1 & 2 & 1 \\ 1 & 2 & 3 & -1 \\ 2 & -1 & -5 & \lambda \\ -1 & 1 & 4 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 & 1 \\ 0 & 1 & 1 & -2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & \lambda - 2 \end{pmatrix}$$

当 $\lambda = 2$ 时 $R(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = 3$,向量组线性相关,故极大无关组为 $\alpha_1, \alpha_2, \alpha_3$.

进一步
$$(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4) \rightarrow \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
,所以 $\boldsymbol{\alpha}_4 = 2\boldsymbol{\alpha}_1 - 3\boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3$.

(或者极大无关组为 $\alpha_1,\alpha_2,\alpha_4$,且 $\alpha_3 = -2\alpha_1 + 3\alpha_2 - \alpha_4$.)