Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ⁶ S.Lautaro Andres ³, V.Xavier ⁴

Resume

Marco Teorico

Multiresolucion

Resultad

Imagenes de prueba Parametros optimos Comparación de

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹ M.Santiago ² S.Lautaro Andres ³ V.Xavier ⁴

1-2-3-4 Universidad Nacional del Comahue Buenos Aires , Neuquen

Resume

Marco Teorico

Multiresolucion Umbralización

Resultado

Imagenes de prueba Parametros optimos Comparacion de filtros

1 Resumen

- 2 Marco Teorico
 - Analisis Multiresolucion
 - Umbralización
- 3 Resultados
 - Imagenes de prueba
 - Parametros optimos
 - Comparacion de filtros

Resumen

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago S.Lautaro Andres ³, V.Xavier ⁴

Resumen

Marco Teorico

Analisis Multiresolucion

Umbralización

Imagenes de prueb

Resumen del trabajo (alguna imagen que represente nuestro trabajo) Sugerencia usar a lenna

Análisis Multiresolución

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resumer

Marco Teorico

Analisis Multiresolucion

Resultado

Imagenes de prueba Parametros optimos Comparacion de filtros Un análisis multiresolución para $L^2(\mathbb{R})$ consiste en una secuencia de subespacios cerrados de $L^2(\mathbb{R})$, $\{V_j\}_{j\in\mathbb{Z}}$, una función una función $\phi\in V_0$ tal que se cumplan las siguientes condiciones:

i. Los espacios V_i están anidados, es decir:

$$...\subset V_{-1}\subset V_0\subset V_1...$$

ii.
$$\overline{\cup_{j\in\mathbb{Z}}V_j}=L^2(\mathbb{R})$$
 y $\cap j\in\mathbb{Z}V_j=0$

iii. Para todo
$$j \in \mathbb{Z}$$
, $V_{j-1} = D(V_j)$

iv.
$$f \in V_0 \rightarrow T_k f \in V_o$$
, $\forall k \in \mathbb{Z}$

v. $\{T_k\phi\}_{k\in\mathbb{Z}}$ es una base ortonormal de V_0

Análisis Multiresolución

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago S.Lautaro Andres ³, V.Xavier ⁴

Resumer

Marco Teorico

Multiresolucion Umbralización

Resultad

Imagenes de prueba Parametros optimos Comparacion de filtros Se define a W_j como el complemento ortogonal de V_j en V_{j-1}

$$V_{j-1} = V_j \oplus W_j \tag{1}$$

$$A_{j-1}(t) = A_j(t) + D_j(t)$$
 (2)

Por otro lado:

$$V_J = V_K \oplus W_K \oplus ... \oplus W_{J+1}, \ J < K \tag{3}$$

Finalmente:

$$x(t) = A_J(t) + \sum_{j=-\infty}^{J} D_j(t)$$
 (4)

Análisis Multiresolución

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resumei

Marco Teorico

Multiresolucion

Resultad

Imagenes de prueba Parametros optimos Comparación de filtros ightarrow Vemos ejemplo en el toolbox de Matlab Para continuar:

$$A_j(t) = \sum_{k \in \mathbb{Z}} \beta_{j,k} \phi_{j,k}(t)$$
 (5)

Donde:

$$\beta_{j,k} = \langle x(t), \phi_{j,k}(t) \rangle \tag{6}$$

$$D_{j}(t) = \sum_{k \in \mathbb{Z}} \alpha_{j,k} \psi_{j,k}(t)$$
 (7)

Donde:

$$\alpha_{j,k} = \langle x(t), \psi_{j,k}(t) \rangle \tag{8}$$

La función $\psi \in L^2(\mathbb{R})$ y $\{T_k\psi\}_{k\in\mathbb{Z}}$ son una base ortonormal de W_0

Umbralización

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resume

Marco Teoric

Analisis Multiresolucion

Umbralización

Imagenes de prueb

Figura: Modos de umbralización más utilizados

Umbralización

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resume

Marco Teorico

Umbralización

Resultado

Imagenes de prueba Parametros optimos Comparacion de filtros Algortimos para el cálculo del umbral τ :

- VisuShrink
- LevelShrink
- BayesShrink
- NormalShrink
- AWT(Adaptative Wavelet Treshholding)

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago S.Lautaro Andres ³, V.Xavier ⁴

Resume

Marco Teorico

A 11.1

Multiresolucio

Umbralización

Resultados

Imagenes de prueba

Comparacion de filtros

Imagenes con ruido gaussiano con $\sigma=0.3$

Comparacion de Niveles

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resume

Marco Teorico

Multiresolucion

Resultado

Parametros optimos
Comparación de

PSNR	noise	1	2	4	6
Lenna	17.65	23.92	27.03	22.29	22.29
House	19.87	22.90	25.58	24.57	23.51
Wave	18.63	23.34	26.70	24.71	24.65
SSIM	noise	1	2	4	6
Lenna	0.518	0.742	0.856	0.847	0.808
House	0.620	0.806	0.882	0.839	0.814
Wave	0.586	0.761	0.839	0.820	0.803

Comparacion de Niveles

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resume

Marco Teoric

Analisis Multiresolucion

Popultado

Imagenes de prueba Parametros optimos

Comparacion de modos

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resume

Marco Teorico

Multiresolució Umbralización

Resultados

Parametros optimos
Comparación de

PSNR	noise	soft	hard
Lenna	17.65	27.03	21.41
House	19.87	25.58	20.20
Wave	18.63	26.70	20.85
SSIM	noise	soft	hard
SSIM Lenna	noise 0.518	soft 0.856	0.757
Lenna	0.518	0.856	0.757

Comparacion de modos

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resume

Marco Teorico

Analisis Multiresolucion

Resultado

Imagenes de prueba
Parametros optimos
Comparación de

Comparacion de umbrales

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resume

Marco Teorico

Analisis

Multiresolucion

Resultado

Parametros optimos Comparación de filtros

	PSNR	noise	universal	bayes	level	normal	awt
	Lenna	17.65	25.86	25.71	25.40	27.03	25.24
	House	19.87	22.91	23.32	23.19	25.58	23.41
	Wave	18.63	26.74	26.70	26.86	26.70	25.56
•	SSIM	noise	universal	bayes	level	normal	awt
	Lenna	0.518	0.848	0.847	0.849	0.856	0.838
	House	0.620	0.851	0.850	0.857	0.882	0.849
	Wave	0.586	0.830	0.829	0.833	0.839	0.823

Comparacion de umbrales

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resumer

Marco Teorico

Multiresolucion

Resultad

Imagenes de prueba
Parametros optimos

Comparacion de la Wavelet madre

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resume

Marco Teorico

Multiresolucio

. . .

Imagenes de prueba Parametros optimos Comparación de

PSNR	noise	haar	db4	sym8
Lenna	17.65	23.44	25.19	27.03
House	19.87	26.38	24.78	25.58
Wave	18.63	24.67	26.87	26.70
SSIM	noise	haar	db4	sym8
Lenna	0.518	0.819	0.853	0.856
House	0.620	0.848	0.875	0.882
Wave	0.586	0.805	0.836	0.839

Comparacion de la Wavelet madre - db4

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resume

Marco Teorico

Multiresolucion

Resultados

Imagenes de prueba Parametros optimos

Comparacion de la Wavelet madre - haar

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago S.Lautaro Andres ³, V.Xavier ⁴

Resume

Marco Teoric

Multiresolucion

Resultados

Imagenes de prueba Parametros optimos

Comparacion de filtros

Comparacion de la Wavelet madre - sym8

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ⁶ S.Lautaro Andres ³, V.Xavier ⁴

Resume

Marco Teorico

Analisis Multiresolucion

Resultados

Imagenes de prueba
Parametros optimos
Comparación de

Parametros optimos

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resumer

Marco Teorico

Analisis Multiresolucion

Umbralización

Resultados

Parametros optimos

Comparacion de filtros

level	wavelet	mode	umbral
2	sym8	soft	normal

Resultado del filtrado

Filtrado de ruido en imagenes con transformada de Wavelet

G.Isaias ¹, M.Santiago ² S.Lautaro Andres ³, V.Xavier ⁴

Resume

Marco Teorico

Analisis

Multiresolucion Umbralización

Resultados

Imagenes de prueba

Comparacion de filtros