Usually & (attenuation constant) is expressed in units of cm'. For the purpose of optical fibre attenuation, with the large distances involved, it is more appropriate to use units of km'.

Due to alternation in an optical fibre, the output power decays exponentially with distance according to the relationship:

$$\frac{P_{\text{out}}}{P_{\text{in}}} = \exp(-\alpha L)$$

To look at the ratio of output power to input power in dB we take 10 log, or both sides

$$\Rightarrow -\frac{10}{L}\log_{10}\left(\frac{P_{\text{out}}}{P_{\text{in}}}\right) = \frac{10}{4.34} \times \left(\frac{100}{100} \times 10^{-10}\right)$$

This is of expressed in dB

is d

$$\mathcal{L}_{AB} = -\frac{10}{L} \log_{10} \left(\frac{P_{\text{out}}}{P_{\text{in}}} \right) = \frac{10}{L} \log_{10} \left(\frac{P_{\text{in}}}{P_{\text{out}}} \right)$$

* Rearrange
$$\Rightarrow L = \frac{10}{\alpha_{dR}} log_{10} \left(\frac{P_{in}}{P_{out}} \right)$$

If Pin is the total input power and Pout = receiver sensitivity, of has units of db km' and we assume zero link margin

Now take an example: If we assume (as a baseline) that $\alpha_{dB} = 2dB \, km^{-1}$, $P_m = 1 \, mN$ and $P_{out} = 0.001 \, mN \Rightarrow L_{max} = 15 \, km$.

If α_{dB} were reduced by a factor of $10 \Rightarrow \alpha_{dB} = 0.2dB \, km^{-1} \Rightarrow L_{max} = 150 \, km$.

If we had 10 times more input power $\alpha_{dB} = 10 \, mN$, $P_{out} = 0.001 \, mN$, $\alpha_{dB} = 2dB \, km^{-1}$. $\alpha_{dB} = 10 \, mN$, $\alpha_{dB} = 10 \, mN$, $\alpha_{dB} = 10 \, mN$, $\alpha_{dB} = 10 \, mN$.

If we had 10 times more receiver sensitivity => Pout = 0.0001 mW, Pin = 1 mW, ×d8 = 2dB km⁻¹ => Lmax = 20 km. Normal plane wave:

E-field

Nomalised olP Power

Pulse Spreading:

NRZ

Figure 1.1 Diagrams showing the variations of electron energy with wave number (momentum) in (a) Ge, (b) Si, and (c) GaAs along the [100] and [111] directions in k space. Electrons are located near the minimum of the conduction band, whereas holes are located near the maximum of the valence band. The band structures of Ge and Si are examples of indirect-gap semiconductors, whereas that of GaAs represents a direct bandgap semiconductor. Δ is the spin-orbit splitting (from S. Wang, Fundamentals of Semiconductor Theory and Device Physics, Prentice Hall, Englewood Cliffs, NJ, 1989).

Figure 1.2 Energy bandgap versus lattice constant for common elemental and compound semiconductors. The tie lines joining the binaries represent ternary compositions. The dashed lines represent indirect bandgap material. The vertical dashed line passing through the point representing InP contains the bandgaps for the lattice-matched InGaAlAs and InGaAsP quaternary systems.

TABLE 1.2 LATTICE CONSTANTS, NEAREST-NEIGHBOR DISTANCES AND COVALENT RADII OF ELEMENTAL AND COMPOUND SEMICONDUCTORS (adapted from M. Shur, *Physics of Semiconductor Devices*, Prentice Hall, Englewood Cliffs, NJ, 1990).

Material	Lattice constant, a (Å) at 25°C	Distance between nearest neighbors, $a\sqrt{3/4}(\text{Å})$	Sum of covalen radii (Å)	
. Si	5.4309	2.353	2.34	
Ge	5.6461	2.450	2.44	
A_{III}	$\cdot B_V$		m. 1 T	
ÁlAs	5.6611	2.430	2.44	
AIP	5.451	2,360	2.36	
AlSb	5.136	2.224	2.62	
BAs	4.776	2.068	2.06	
BN	3.615	4.565	1.58	
BP	4.538	1.965	1.98	
BSb	5.170	2.239	2.24	
GaAs	5,6532	2.448	2.44	
GaP	5.4495	2,360	2.36	
GaSb	6.095	2,639	2.62	
InAs	6.0584	2.623	2.62	
[u],	5.8687	2.540	2.54	
InSb	6.479	2.805	2.80	
$C_{II}E$) _V }		w.Sicr	
CdTe	6.482	2.807	2.95	
HgS	5.841			
HgSe	6.084			
flgTe	6.462	2.798	2.95	
ZnS	5.415			
ZnSe	5.653			
ZnTe	6.101	2.642	2.78	

(c) $a < a_0$

Figure 1.15 Accommodation of lattice of epitaxial layer with that of substrate for different cases:

(a) lattice-matched growth $(a = a_0)$.

(b) biaxial compressive strain $(a > a_0)$, and (c) biaxial tensile strain $(a < a_0)$.

TABLE 1.5 COMPOSITIONAL DEPENDENCE OF THE ENERGY GAP OF TERNARY III-V SEMICONDUCTORS AT 300°K° (from H. C. Casey and M. B. Panish, *Heterostructure Lasers*, Academic Press, New York, 1978).

Compound	Direct energy gap	Indirect energy gap, \mathcal{E}_g (eV)			
	\mathcal{E}_y (cV)	X minima	L minima		
AlviniarP	1.351 + 2.23x	manamentalan dak debagai sala-ang (mangril) ang andar dak dapan dahan pendamban dara dak ang ang ang ang ang d Manamen	нгуучга () 8 % 5 (байлуун уучунда башира Абаниятичкий туу буулгуучка магани (1944) (), (_т айгуу - Манаан		
$Al_xGa_{1\cdots x}As$	1.425 + 1.247x + 1.147	$1.900 \pm 0.125x \pm 0.143x^{2}$	1.708 + 0.6425		
	$\times (x - 0.45)^2$		l-woule.		
$Al_x ln_{t-x} As$	$0.360 + 2.012x + 0.698x^2$				
$Al_xGa_{1x}Sb$	$0.726 + 1.129 x + 0.368x^3$	$1.020 \pm 0.492x \pm 0.077^2$	$0.799 + 0.746x + 0.334e^{2}$		
$Al_3 \ln_{1-1} Sh$	$0.172 \pm 1.621x \pm 0.43x^2$				
$Ga_xIn_{1-x}P$	$1.351 + 0.643x + 0.786x^2$	* 1 Augustu	. to ringe		
$Ga_xIn_{1=x}Ax$	0.36 + 1.064x	t palyonida	remark.		
Ga _x In _{1-x} Sb	$0.172 + 0.139x + 0.415x^2$	man year.			
$GaP_xAs_{1\cdots x}$	$1.424 + 1.150x + 0.176x^2$	71.1345	18-34-1		
GaAs, Sbjx	$0.726 - 0.502x + 1.2x^2$	1.00%	44.000		
InP_xAs_{1x}	$0.360 + 0.891x + 0.101x^2$	South			
$InAs_xSb_{1\to x}$	$0.18 - 0.41x + 0.58x^2$	-Arman	Aaptilla		

Figure 1.20 Compositional dependence of the direct-energy gap Γ and indirect-energy gap X for GaP_xAs_{1-x} (from M. R. Lorenz and A. Onton, *Proc. Int. Conf. Phys. Semiconduct.*, 10th, Cambridge, MA (S. P. Keller, J. C. Hensel, and F. Stern, eds.), 444, U.S. Atomic Energy Comm., Washington, D.C., 1970).

TABLE 2.1 ENERGY GAPS AND TRANSVERSE AND LONGITUDINAL ELECTRON EFFECTIVE MASSES FOR SOME IMPORTANT III-V BINARY COMPOUNDS.

	\mathcal{E}_{Γ} (eV)	E (eV)	\mathcal{E}_X (eV)	$m_e^{\Gamma*}(m_o)^a$	$m_e^{L*}(m_o)^a$	$m_e^{X*}(m_o)^a$	$m_{hh}^{st}(m_o)^b$	$m_{lh}^*(m_o)^b$	$m_{sh}^*(m_o)^c$
GaP	2.24	2.75	2.38	0.126	1.493(1)	1.993(l)	0.79	0.14	0.24
					0.142(t)	0.250(t)		Ĕ,	
GaAs	GaAs 1,42	1.71	1.91	0.063	1.538(1)	1.987(1)	0.48	0.09	0.15
			fs,		0.127(t)	0.229(t)		8	
AlAs	2.95	2.67	2.20	0.149	1.386(I)	0.813(1)	0.76	0.15	•
InAs	0.35	1.45	2.14	0.031	1.565(l)	3.619(1)	0.60	0.03	0.089
					0.124(t)	0.271(t)		Ţ	
InP	1.35	2.0	2.3	0.082	1.878(1)	1.321(l)	0.85	0.09	0.17
					0.153(t)	0.273(t)			

^aM. V. Fischetti, *IEEE Trans. Electron Devices*, 38 (3), 634–649, 1991.

^bM. Shur, *Physics of Semiconductor Devices*, Prentice Hall, Englewood Cliffs, NJ, 1990.

^cSplit-off hole mass, from G. P. Agrawal and N. K. Dutta, Long Wavelength Semiconductor Lasers, Van Nostrand Reinhold, New York, 1986.

⁽l) and (t) denote longitudinal and transverse effective masses, respectively.

TABLE 1.3 ELECTRON EFFECTIVE MASSES IN $\ln_x \text{Ga}_{1-x} \text{As}$ GROWN PSEUDOMORPHICALLY ON GaAs AND $\ln_{0.53+x} \text{Ga}_{0.47-x} \text{AS}$ GROWN PSEUDOMORPHICALLY ON $\ln P$ (from M. Jaffe and J. Singh, Journal of Applied Physics, 65(1), 329, 1989).

X	and the same of the state of the state of the same of	$In_{x}Ga_{1-x}As$		$In_{0.594x}Ga_{0.47-x}As$			
	m* unstrained	$m^*_{\parallel strained}$	m [*] _streemed	m* unstrained	$\mathbf{m}^*_{\parallel strained}^*$	m* ±strainea	
0.00	0.066	0.066	0.066	().045	. Colored a present ϕ -species and ϕ ϕ ϕ and ϕ and ϕ and ϕ	derengte and water the second and analysis of manipulate manipus of plants of a research of the	
0.05	0.064	0.065	0.064		0.045	0.045	
0.10	0.062	0.064	0.063	0.044	0.044	0.045	
0.15	0.060	6.063		0.042	0.043	0.045	
0.20 - 1	0.058	0.062	0.063	0.040	0.041	0.044	
).25	0.056		0.062	0.037	0.039	0.044	
0.30		0.061	0.061	0.035	0.037	()_()44	
	0.054	0.060	0.061	0.033	0.035	0.043	
1.35	0.052	0.058	0.060	0.031	0.033	0.043	
).4()	0.050	0.057	0.060	0.028	0.030	0.043	

Figure 1.14 Compositional dependence of the direct (Γ) and indirect (X and L) conduction band minima in the $Al_rGa_{1-x}As$ mixed crystals.

Figure 1.35 Energy levels of impurities in GaAs (from S. M. Sze, *Physics of Semiconductor Devices*, 2nd ed., Copyright § 1981. Reprinted by permission of Wiley, New York).