

Low Input Current, Phototransistor Output, SOP-4, Mini-Flat Package

LINKS TO ADDITIONAL RESOURCES

DESCRIPTION

The 110 °C rated VOM617A has a GaAs infrared emitting diode emitter, which is optically coupled to a silicon planar phototransistor detector, and is incorporated in a 4 pin 100 mil lead pitch miniflat package. It features a high current transfer ratio, low coupling capacitance, and high isolation voltage.

These coupling devices are designed for signal transmission between two electrically separated circuits.

FEATURES

- Operating temperature from -55 °C to +110 °C
- SOP-4 mini-flat package
- Isolation test voltage, 3750 V_{RMS}
- Low saturation voltage
- · Fast switching times
- Low coupling capacitance
- End-stackable, 0.100" (2.54 mm) spacing
- CTR range 50 % to 600 %, I_F = 5 mA
- Material categorization: for definitions of compliance please see www.vishav.com/doc?99912

Pb-free

RoHS COMPLIANT

> HALOGEN FREE

<u>(5-2008)</u>

APPLICATIONS

- PLCs
- Telecommunication
- · Lighting control system
- Solar inverters
- AC drives

AGENCY APPROVALS

(All parts are certified under base model VOM617A)

- <u>UL1577</u>
- cUL
- DIN EN 60747-5-5 (VDE 0884-5), available with option 1
- CQC
- FIMKO

ORDERING	ORDERING INFORMATION									
V O M 6 1 7 A - # X O O 1 T # SOP-4 PART NUMBER CTR VDE OPTION TAPE AND REEL										
AGENCY CERTIFIED/				СТ	R (%)					
PACKAGE				5	mA					
UL, cUL, FIMKO, CQC	50 to 600	63 to 125	100 to 200	160 to 320	250 to 500	80 to 160	130 to 260	200 to 400		
SOP-4, mini-flat	VOM617AT	VOM617A-2T	VOM617A-3T	VOM617A-4T	VOM617A-6T	VOM617A-7T	VOM617A-8T	VOM617A-9T		
VDE, UL, cUL, FIMKO, CQC (option 1)	50 to 600	63 to 125	100 to 200	160 to 320	250 to 500	80 to 160	130 to 260	200 to 400		
SOP-4, mini-flat	VOM617A- X001T	VOM617A- 2X001T	VOM617A- 3X001T	VOM617A- 4X001T	VOM617A- 6X001T	VOM617A- 7X001T	VOM617A- 8X001T, VOM617A- 8X001T2 ⁽¹⁾	VOM617A- 9X001T		

Notes

- Available only on tape and reel
- (1) Product is rotated 180° in tape and reel cavity

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT			
INPUT	<u>.</u>						
DC forward current		I _F	60	mA			
Reverse voltage		V _R	6	V			
Power dissipation		P _{diss}	70	mW			
Surge forward current	t _p ≤ 10 μs	I _{FSM}	2.5	Α			
ОUТРUТ	<u>.</u>						
Collector emitter voltage		V _{CEO}	80	V			
Emitter collector voltage		V _{ECO}	7	V			
Collector current			50	mA			
	t _p ≤ 1 ms	I _C	100	mA			
Power dissipation		P _{diss}	150	mW			
COUPLER							
Total power dissipation		P _{tot}	170	mW			
Operating temperature range		T _{amb}	-55 to +110	°C			
Storage temperature range		T _{stg}	-55 to +150	°C			
Junction temperature		T _j	125	°C			
Soldering temperature (1)		T _{sld}	260	°C			

Notes

- Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not
 implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
 maximum ratings for extended periods of the time can adversely affect reliability
- (2) See "Assembly Instructions" for surface mounted devices (www.vishay.com/doc?80054)

Fig. 1 - Total Power Dissipation vs. Ambient Temperature

ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT		
INPUT								
Forward voltage	I _F = 5 mA	V_{F}	ı	1.1	1.6	V		
Reverse current	V _R = 6 V	I _R	-	0.01	10	μA		
Capacitance	$V_R = 0 V$, $f = 1 MHz$	Cj	-	9	-	pF		
OUTPUT								
Collector emitter leakage current	V _{CE} = 20 V	I _{CEO}	1	0.3	100	nA		
Collector emitter breakdown voltage	I _C = 100 μA	BV_{CEO}	80	-	-	V		
Emitter collector breakdown voltage	I _E = 10 μA	BV _{ECO}	7	-	-	V		
Collector emitter capacitance	V _{CE} = 5 V, f = 1 MHz	C _{CE}	-	2.8	-	pF		
COUPLER								
Coupling capacitance	f = 1 MHz	C _{IO}	-	0.3	-	pF		
Collector emitter saturation voltage	$I_F = 10 \text{ mA}, I_C = 2.5 \text{ mA}$	V _{CEsat}	-	0.12	0.4	V		
Cut-off frequency	$I_F = 10$ mA, $V_{CC} = 5$ V, $R_L = 100 \Omega$	f _{ctr}	-	110	-	kHz		

Note

 Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements

CURRENT TRANSFER RATIO (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT	
I _O /I _F		VOM617A	CTR	50	-	600	%	
		VOM617A-2	CTR	63	-	125	%	
		VOM617A-3	CTR	100	-	200	%	
		VOM617A-4	CTR	160	-	320	%	
	$I_F = 5 \text{ mA}, V_{CE} = 5 \text{ V}$	VOM617A-6	CTR	250	-	500	%	
		VOM617A-7	CTR	80	-	160	%	
		VOM617A-8	CTR	130	-	260	%	
		VOM617A-9	CTR	200	-	400	%	

SWITCHING CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT		
NON-SATURATED								
Rise and fall time		t _r	-	3	-	μs		
Fall time	$I_{C} = 2 \text{ mA}, V_{CC} = 5 \text{ V},$	t _f	-	3	-	μs		
Turn-on time	$R_L = 100 \Omega$	t _{on}	-	6	-	μs		
Turn-off time		t _{off}	-	4	-	μs		
SATURATED								
Rise and fall time		t _r	-	7	-	μs		
Fall time	$I_F = 1.6 \text{ mA}, V_{CC} = 5 \text{ V},$	t _f	-	12	-	μs		
Turn-on time	$R_L = 1.9 \text{ k}\Omega$	t _{on}	-	9	-	μs		
Turn-off time		t _{off}	-	15	-	μs		

Fig. 2 - Test Circuit

Fig. 3 - Test Circuit and Waveforms

SAFETY AND INSULATION RATINGS								
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT				
Climatic classification	According to IEC 68 part 1		55 / 110 / 21					
Pollution degree	According to DIN VDE 0109		2					
Comparative tracking index		CTI	175					
Maximum rated withstanding isolation voltage	According to UL1577, t = 1 min	V _{ISO}	3750	V_{RMS}				
Maximum transient isolation voltage	According to DIN EN 60747-5-5	V _{IOTM}	6000	V _{peak}				
Maximum repetitive peak isolation voltage	According to DIN EN 60747-5-5	V _{IORM}	565	V _{peak}				
Isolation resistance	V _{IO} = 500 V, T _{amb} = 25 °C	R _{IO}	≥ 10 ¹²	Ω				
Isolation resistance	V _{IO} = 500 V, T _{amb} = 100 °C	R _{IO}	≥ 10 ¹¹	Ω				
Output safety power		P _{SO}	300	mW				
Input safety current		I _{SI}	200	mA				
Input safety temperature		T _S	175	°C				
Creepage distance			≥ 5	mm				
Clearance distance			≥ 5	mm				
Insulation thickness		DTI	≥ 0.4	mm				

Note

• As per DIN EN 60747-5-5 (VDE 0884), § 7.4.3.8.2, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of protective circuits

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

Fig. 4 - Forward Voltage vs. Forward Current

Fig. 5 - Collector Current vs. Collector Emitter Voltage (non-saturated)

Fig. 6 - Leakage Current vs. Ambient Temperature

Fig. 7 - Collector Current vs. Collector Emitter Voltage (saturated)

Fig. 8 - Normalized Current Transfer Ratio (non-saturated) vs.

Ambient Temperature

Fig. 9 - Normalized Current Transfer Ratio (saturated) vs.
Ambient Temperature

Fig. 10 - Collector Emitter Voltage vs. Ambient Temperature (saturated)

Fig. 11 - Normalized CTR (non-saturated) vs. Forward Current

Fig. 12 - Normalized CTR (saturated) vs. Forward Current

Fig. 13 - F_{CTR} vs. Phase Angle

Fig. 14 - F_{CTR} vs. Collector Current

Fig. 15 - Switching Time vs. Load Resistance

PACKAGE DIMENSIONS in millimeters

PACKAGE MARKING (example of VOM617A-3X001T)

Notes

- Only option 1 is reflected in the package marking with the characters "X"
- Tape and reel suffix (T) is not part of the package marking

TAPE AND REEL DIMENSIONS in millimeters

Fig. 16 - Reel Dimensions (3000 units per reel)

Fig. 17 - Tape Dimensions

Fig. 18 - Tape Dimensions for 180° Rotation (T2)

SOLDER PROFILE

Fig. 19 - Lead (Pb)-free Reflow Solder Profile According to J-STD-020

HANDLING AND STORAGE CONDITIONS

ESD level: HBM class 2 Floor life: unlimited

Conditions: T_{amb} < 30 °C, RH < 85 %

Moisture sensitivity level 1, according to J-STD-020

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.