AMENDMENTS TO THE CLAIMS:

Please cancel claim 13 without prejudice or disclaimer of the subject matter thereof.

rewrite claim 14 in independent form, and amend claims 15, 16, 23, 24, and 50 as set forth

below.

This listing of claims will replace all prior versions and listings of claims in the

application:

1. (Original) An electrostatic discharge protection circuit, comprising:

a rectifier, having an anode and a cathode, including a first p-type portion, a first n-type

portion contiguous with the first p-type portion, a second p-type portion contiguous with the first

n-type portion, and a second n-type portion contiguous with the second p-type portion, wherein

the first p-type portion is coupled to the anode and the second n-type portion is coupled to the

cathode;

a first transistor having a first terminal, a second terminal and a gate terminal, wherein

the first terminal is coupled to the first n-type portion of the rectifier;

a second transistor having a first terminal, a second terminal and a gate terminal, wherein

the first terminal is coupled to the second terminal of the first transistor, and the second terminal

is coupled to the second n-type portion of the rectifier; and

a voltage coupling circuit having a first terminal, a second terminal, a third terminal, and

a fourth terminal, wherein the first terminal is coupled to the anode of the rectifier, the second

and the third terminals are respectively coupled to the gate terminals of the first and second

transistors, and the fourth terminal is coupled to the cathode.

HENDERSON FARABOW GARRETT & DUNNER LLP

FINNEGAN

1300 I Street, NW Washington, DC 20005 202.408.4000 Fax 202.408.4400

www.finnegan.com

-2-

2. (Original) The circuit as claimed in claim 1, wherein the voltage coupling circuit provides a first voltage signal to the gate of the first transistor and a second voltage signal to the gate of the second transistor to turn on the rectifier.

3. (Original) The circuit as claimed in claim 2, wherein the voltage coupling circuit includes a first capacitor coupled to the first terminal of the voltage coupling circuit and the gate terminal of the first transistor, and a second capacitor coupled to the first terminal of the voltage coupling circuit and the gate terminal of the second transistor.

4. (Original) The circuit as claimed in claim 3, wherein the voltage coupling circuit further includes a third transistor having a source, a drain and a gate, the drain of the third transistor coupled to the gate of the first transistor and the source of the third transistor coupled to the gate of the first transistor.

5. (Original) The circuit as claimed in claim 3, wherein the voltage coupling circuit further includes a clamping circuit, a first resistor and a second resistor, the clamping circuit coupled to the first resistor and the gate terminal of the first transistor, and the first resistor coupled to the clamping circuit and the cathode of the rectifier, and the second resistor coupled to the gate terminal of the second transistor and the cathode of the rectifier.

6. (Original) The circuit as claimed in claim 5, wherein the clamping circuit clamps the first voltage signal provided to the gate terminal of the first transistor, and the first and second

FINNEGAN HENDERSON FARABOW GARRETT & DUNNERLL

resistors, in conjunction with the first and second capacitors, control a time delay to turn on the rectifier.

- 7. (Original) The circuit as claimed in claim 5, wherein the clamping circuit comprises a transistor.
- 8. (Original) The circuit as claimed in claim 1, wherein the second p-type portion of the rectifier comprises a p-type semiconductor substrate.
- 9. (Original) The circuit as claimed in claim 1, wherein the first n-type portion of the rectifier comprises an n-well in a semiconductor substrate.
- 10. (Original) The circuit as claimed in claim 8, wherein the first n-type portion of the rectifier includes an n-well in the semiconductor substrate, and the first p-type portion of the rectifier includes a p-type diffused region inside the n-well.
- 11. (Original) The circuit as claimed in claim 10, wherein the second n-type portion of the rectifier comprises an n-type diffused region inside the semiconductor substrate and spaced apart from the first n-type portion.
- 12. (Original) The circuit as claimed in claim 5, wherein the voltage coupling circuit further includes a fourth transistor having a source, a drain and a gate, the drain coupled to the

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP

gate of the second transistor, the gate coupled to the drain of the third transistor, and the source coupled to the cathode.

13. (Canceled)

14. (Currently Amended) The circuit as claimed in claim 13 further comprising An integrated circuit, comprising:

a signal pad for receiving and outputting a signal;

a rectifier with an anode and a cathode including a first p-type portion, a first n-type portion contiguous with the first p-type portion, a second p-type portion contiguous with the first n-type portion, and a second n-type portion contiguous with the second p-type portion, wherein the anode of the rectifier is coupled to the signal pad;

a first transistor having a first terminal, a second terminal and a gate terminal, wherein the first terminal is coupled to the first n-type portion of the rectifier;

a second transistor having a first terminal, a second terminal and a gate terminal, wherein the first terminal is coupled to the second n-type portion of the rectifier, and the second terminal is coupled to the second terminal of the first transistor; and

a voltage coupling circuit coupled to the gate terminals of the first and second transistors.

15. (Currently Amended) The circuit as claimed in claim [[13]] 14, wherein the anode is coupled to the first p-type portion.

FINNEGAN HENDERSON FARABOW GARRETT & DUNNERLLP

16. (Currently Amended) The circuit as claimed in claim [[13]] 14, wherein the anode

cathode is coupled to the second n-type portion.

17. (Original) The circuit as claimed in claim 14, wherein the voltage coupling circuit

provides a first voltage signal to the gate of the first transistor and a second voltage signal to the

gate of the second transistor to turn on the rectifier.

18. (Original) The circuit as claimed in claim 14, wherein the voltage coupling circuit

includes a first capacitor coupled to the gate terminal of the first transistor and a second capacitor

coupled to the gate terminal of the second transistor.

19. (Original) The circuit as claimed in claim 18, wherein the first capacitor and the

second capacitor are coupled to the signal pad.

20. (Original) The circuit as claimed in claim 18, further comprising an output buffer

having a first terminal and a second terminal, wherein the first terminal is coupled to the signal

pad and the second terminal is coupled to the first capacitor and the second capacitor.

21. (Original) The circuit as claimed in claim 20, wherein the output buffer comprises a

transistor, wherein the second terminal is coupled to an n-well of the transistor.

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP

1300 I Street, NW Washington, DC 20005 202.408.4000 Fax 202.408.4400 www.finnegan.com

-6-

22. (Original) The circuit as claimed in claim 16, wherein the voltage coupling circuit further comprises a clamping circuit to clamp the first voltage signal provided to the gate terminal of the first transistor.

23. (Currently Amended) The circuit as claimed in claim [[13]] 14, wherein the second p-type portion of the rectifier comprises a p-type semiconductor substrate.

24. (Currently Amended) The circuit as claimed in claim [[13]] 14, wherein the first n-type portion of the rectifier comprises an n-well in a semiconductor substrate.

25. (Original) The circuit as claimed in claim 23, wherein the first n-type portion of the rectifier comprises an n-well in the semiconductor substrate, and the first p-type portion comprises a p-type diffused region inside the n-well.

26. (Original) An integrated circuit, comprising:

a signal pad for receiving and outputting a signal;

an output buffer having a first terminal and a second terminal, wherein the second terminal is coupled to the signal pad;

a rectifier, having an anode and a cathode, including a first p-type portion, a first n-type portion contiguous with the first p-type portion, a second p-type portion contiguous with the first n-type portion, and a second n-type portion contiguous with the second p-type portion, wherein the first p-type portion is coupled to the anode, the second n-type portion is coupled to the

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP

cathode, the anode is coupled to the first terminal of the output buffer, and the cathode is coupled to ground;

a first transistor having a first terminal, a second terminal and a gate terminal, wherein the first terminal is coupled to the first n-type portion of the rectifier;

a second transistor having a first terminal, a second terminal and a gate terminal, wherein the first terminal is coupled to the second terminal of the first transistor, and the second terminal is coupled to the second n-type portion of the rectifier; and

a voltage coupling circuit having a first terminal, a second terminal, a third terminal and a fourth terminal, wherein the first terminal is coupled to the anode of the rectifier, the second and the third terminals are respectively coupled to the gate terminals of the first and second transistor, and the fourth terminal is coupled to the cathode of the rectifier.

- 27. (Original) The circuit as claimed in claim 26, wherein the voltage coupling circuit provides a first voltage signal to the gate of the first transistor and a second voltage signal to the gate of the second transistor to turn on the rectifier.
- 28. (Original) The circuit as claimed in claim 27, wherein the voltage coupling circuit includes a first capacitor coupled to the first terminal of the voltage coupling circuit and the gate terminal of the first transistor, and a second capacitor coupled to the first terminal of the voltage coupling circuit and the gate terminal of the second transistor.

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP

29. (Original) The circuit as claimed in claim 28, wherein the voltage coupling circuit

further includes a third transistor having a source, a drain and a gate, the drain being coupled to

the gate and the source being coupled to the gate of the first transistor.

30. (Original) The circuit as claimed in claim 28, wherein the voltage coupling circuit

further includes a clamping circuit, a first resistor and a second resistor, the clamping circuit

coupled to the first resistor and the gate terminal of the first transistor, and the first resistor

coupled to the clamping circuit and the cathode of the rectifier, and the second resistor coupled

to the gate terminal of the second transistor and the cathode of the rectifier.

31. (Original) The circuit as claimed in claim 30, wherein the clamping circuit clamps

the first voltage signal provided to the gate terminal of the first transistor, and the first and

second resistors and the first and second capacitors control a time delay to turn on the rectifier.

32. (Original) The circuit as claimed in claim 30, wherein the clamping circuit comprises

a transistor.

33. (Original) The circuit as claimed in claim 26, wherein the second p-type portion of

the rectifier comprises a p-type semiconductor substrate.

34. (Original) The circuit as claimed in claim 26, wherein the first n-type portion of the

rectifier comprises an n-well in a semiconductor substrate.

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP

1300 I Street, NW Washington, DC 20005 202.408.4000 Fax 202.408.4400 www.finnegan.com

-9-

35. (Original) The circuit as claimed in claim 33, wherein the first n-type portion of the rectifier comprises an n-well in the semiconductor substrate, and the first p-type portion of the rectifier comprises a p-type diffused region inside the n-well.

36. (Original) The circuit as claimed in claim 35, wherein the second n-type portion of the rectifier comprises an n-type diffused region inside the semiconductor substrate and spaced apart from the first n-type portion.

37. (Original) The circuit as claimed in claim 30, wherein the voltage coupling circuit further includes a fourth transistor having a source, a drain and a gate, the drain coupled to the gate of the second transistor, the gate coupled to the drain of the third transistor, and the source coupled to the cathode.

38. (Original) An integrated circuit, comprising:

a signal pad for receiving and outputting a signal;

an output buffer having a first terminal and a second terminal, wherein the second terminal is coupled to the signal pad;

a rectifier with an anode and a cathode including a first p-type portion, a first n-type portion contiguous with the first p-type portion, a second p-type portion contiguous with the first n-type portion, and a second n-type portion contiguous with the second p-type portion, wherein the anode of the rectifier is coupled to the second terminal of the output buffer and the cathode of the rectifier is coupled to ground;

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP

a first transistor having a first terminal, a second terminal and a gate terminal, wherein

the first terminal is coupled to the first n-type portion of the rectifier;

a second transistor having a first terminal, a second terminal and a gate terminal, wherein

the first terminal is coupled to the second terminal of the first transistor, and the second terminal

is coupled to the second n-type portion of the rectifier; and

a voltage coupling circuit having a first terminal, a second terminal, a third terminal and a

fourth terminal, wherein the first terminal is coupled to the first terminal of the output buffer, the

second and the third terminals are respectively coupled to the gate terminals of the first and

second transistor, and the fourth terminal is coupled to the cathode of the rectifier.

39. (Original) The circuit as claimed in claim 38, wherein the voltage coupling circuit

provides a first voltage signal to the gate of the first transistor and a second voltage signal to the

gate of the second transistor to turn on the rectifier.

40. (Original) The circuit as claimed in claim 39, wherein the voltage coupling circuit

includes a first capacitor coupled to the first terminal of the voltage coupling circuit and the gate

terminal of the first transistor, and a second capacitor coupled to the first terminal of the voltage

coupling circuit and the gate terminal of the second transistor.

41. (Original) The circuit as claimed in claim 40, wherein the voltage coupling circuit

further includes a third transistor having a source, a drain and a gate, the drain coupled to the

gate and the source coupled to the gate of the first transistor.

FINNEGAN HENDERSON FARABOW GARRETT & DUNNERLLP

1300 I Street, NW Washington, DC 20005 202.408.4000 Fax 202.408.4400 www.finnegan.com

-11-

42. (Original) The circuit as claimed in claim 40, wherein the voltage coupling circuit further includes a clamping circuit, a first resistor and a second resistor, the clamping circuit coupled to the first resistor and the gate terminal of the first transistor, and the first resistor couple to the clamping circuit and the cathode of the rectifier, and the second resistor coupled to the gate terminal of the second transistor and the cathode of the rectifier.

43. (Original) The circuit as claimed in claim 42, wherein the clamping circuit clamps the first voltage signal provided to the gate terminal of the first transistor, and the first and second resistors and the first and second capacitors control a time delay to turn on the rectifier.

44. (Original) The circuit as claimed in claim 42, wherein the clamping circuit comprises a transistor.

- 45. (Original) The circuit as claimed in claim 38, wherein the second p-type portion of the rectifier comprises a p-type semiconductor substrate.
- 46. (Original) The circuit as claimed in claim 38, wherein the first n-type portion of the rectifier comprises an n-well in a semiconductor substrate.
- 47. (Original) The circuit as claimed in claim 45, wherein the first n-type portion of the rectifier comprises an n-well in the semiconductor substrate, and the first p-type portion of the rectifier comprises a p-type diffused region inside the n-well.

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP

48. (Original) The circuit as claimed in claim 47, wherein the second n-type portion of the rectifier comprises an n-type diffused region inside the semiconductor substrate and spaced apart from the first n-type portion.

49. (Original) The circuit as claimed in claim 42, wherein the voltage coupling circuit further includes a fourth transistor having a source, a drain and a gate, the drain coupled to the gate of the second transistor, the gate coupled to the drain of the third transistor, and the source coupled to the cathode.

50. (Currently Amended) A method for protecting an integrated circuit with a dual input/output pad from electrostatic discharge, comprising:

providing a rectifier having a first p-type portion, a first n-type portion contiguous with the first p-type portion, a second p-type portion contiguous with the first n-type portion, and a second n-type portion contiguous with the second p-type portion;

providing a first transistor having a first terminal, a second terminal and a gate terminal, wherein the first terminal is coupled to the first n-type portion of the rectifier; and

providing a second transistor having a first terminal, a second terminal and a gate terminal, wherein the first terminal is coupled to the second terminal of the first transistor, and the second terminal is coupled to the second n-type portion of the rectifier; and

providing a voltage coupling circuit coupled to the gate terminals of the first and second transistors.

FINNEGAN HENDERSON FARABOW GARRETT & DUNNERLLP

51. The method as claimed in claim 50, further comprising a step of providing a first voltage signal to the gate of the first transistor and a second voltage signal to the gate of the second transistor to turn on the rectifier.

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP

AMENDMENTS TO THE DRAWINGS:

The attached sheets of drawings include changes to Figs. 2 and 4-7. These sheets, which include Figs. 2 and 4-7, replace the original sheets including Figs. 2 and 4-7. Figs. 2 and 4-7 have been amended to include reference number 28.

Attachments: Replacement Sheets: 5 sheets, Figs. 2 and 4-7; Annotated Sheets Showing Changes

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP