Name: Harsanjam Saini

Student Number: 1007360516

Part 2: Lack of Optimality of K-means

The dutaset is:

$$x_1 = 1$$
, $x_2 = 2$, $x_3 = 3$, $x_4 = 4$

We use
$$K=2$$
, and initialize centroids as:
 $M_1=2$, $M_2=4$

Distance of
$$X_1 = 1$$
: $|1-2| = 1$, $|1-4| = 3 \rightarrow assign to M_1$
Distance of $X_2 = 2$: $|2-2| = 0$, $|2-4| = 2 \rightarrow assign to M_1$

Distance of $X_3 = 3$: |3-2| = 1, $|3-4| = 1 \rightarrow \text{Tie, assign to smaller index, so assign to } \mathcal{M}_1$ Distance of $X_4 = 4$: |4-2| = 2, $|4-4| = D \rightarrow \text{assign to } \mathcal{M}_2$

Thus:
$$C_1 = \frac{6}{3} \cdot 1.2.33$$
 $C_2 = \frac{5}{4}$

$$C_1 = \{1, 2, 3\}$$

$$C_2 = \{4\}$$

Iteration 2: Update centroids

· For cluster C1 = 21,2,33: new centroid = 1+2+3 = 2

For cluster $\angle_2 = \{4\}$: new centroid = 4

So centroids remain: $\mathcal{M}_1 = 2 \quad \mathcal{M}_2 = 4$

This is a stuble solution (no change in assignments)

But is this globally optimal?

consider another partition:

 $C_1 = \{1, 2\}$, $C_2 = \{3, 4\}$ • Centroids: $M_1 = 1.5$, $M_2 = 3.5$

· Distortion:

 $(1-1.5)^2+(2-1.5)^2+(3-3.5)^2+(4-3.5)^2=0.25+0.25+0.25$

This is smaller than the 7 = 2 we got before

Explanation:

Since J=1 < Jconv=2, the solution found by k-means (with the given initialization) is not globally optimal.

k-means is an alternating minimization method that guarantees a non-increasing SSE at each step but only convergence to a local fixed point. Starting from $\mu_1 = 2$, $\mu_2 = 4$, the algorithm converges to the clustering $\{1, 2, 3\}$, $\{4\}$ with objective value Jconv = 2. The tie at x_3 causes it to be assigned to cluster 1, keeping the centroid at 2 and preventing movement to the globally optimal clustering $\{1, 2\}$, $\{3, 4\}$, which achieves J = 1.

This demonstrates that k-means can converge to a suboptimal local solution rather than the global optimum, due to its sensitivity to initialization and the nonconvexity of its objective.