5

20

CLAIMS

I claim:

sequence;

- A method for screening for a transdominant intracellular bioactive agent capable of altering the phenotype of a cell, said method comprising the steps:
 a) introducing a molecular library of randomized candidate nucleic acids into a plurality of cells, wherein each of said nucleic acids comprises a different nucleotide
 - b) screening said plurality of cells for a cell exhibiting an altered phenotype, wherein said altered phenotype is due to the presence of a transdominant bioactive agent.
- 2. A method according to claim 1 further comprising the step:
 - c) isolating said cell exhibiting an altered phenotype.
 - A method according to claim 2 further comprising the step:
 - d) isolating a candidate nucleic acid from said cell.
 - 4. A method according to claim 2 or 3 further comprising the step:
- e) isolating a target molecule using
 - i) a candidate nucleic acid; or
 - ii) the expression product of a candidate nucleic acid.
 - A method according to claim 1 wherein said randomized candidate nucleic acids are expressed in said cells to produce a plurality of randomized candidate expression products.
 - 6. A method according to claim 5 wherein said randomized candidate expression products are peptides.
 - 7. A method according to claim 5 wherein said randomized candidate expression products are nucleic acid transcripts.
- 8. A method according to claim 1 wherein said nucleic acids further comprise a presentation sequence capable of presenting said expression product in a

10

conformationally restricted form.

- A method according to claim 1 wherein said introducing is with retroviral vectors.
- 10. A method according to claim 1 wherein said cells are mammalian cells.
- 5 11. A method according to claim 1 wherein said library comprises at least 10⁴ different nucleic acids.
 - 12. A method according to claim 1 wherein said library comprises at least 10⁵ different nucleic acids.
 - 13. A method according to claim 1 wherein said library comprises at least 10⁶ different nucleic acids.
 - 14. A method according to claim 1 wherein said library comprises at least 10⁷ different nucleic acids.
 - A method according to claim 1 wherein said library comprises at least 10⁸ different nucleic acids.
- 15 16. A molecular library of retroviruses comprising at least 10⁴ different randomized nucleic acids.
 - 17. A molecular library of retroviruses according to claim 21 comprising at least 10⁵ different randomized nucleic acids.
- 20 18. A molecular library of retroviruses according to claim 21 comprising at least 10⁶ different randomized nucleic acids.
 - 19. A molecular library of retroviruses according to claim 21 comprising at least 10⁷ different randomized nucleic acids.
 - 20. A molecular library of retroviruses according to claim 21 comprising at least

108 different randomized nucleic acids.

- 21. A cellular library of mammalian cells containing a molecular library of retroviral constructs, said molecular library comprising at least 10⁴ different randomized nucleic acids.
- A cellular library according to claim 21 wherein said constructs are integrated into the cellular genome.