ACM ICPC Reference

University of Notre Dame

October 25, 2019

Contents

1	vimrc	2
2	hashify.sh	2
3	STL 3.1 Algorithms 3.2 Numeric 3.3 List 3.4 Unordered Map 3.5 Map 3.6 Set 3.7 Vector 3.8 Stack 3.9 Queue 3.10 Deque	2 2 2 3 3 3 4 4 4 5
4	Geometry 4.1 Base 4.2 Advanced 4.3 3D	5 5 7 9
5	Graphs 5.1 DFS 5.2 BFS 5.3 Dinic 5.4 MinCost MaxFlow 5.5 Cycle Cancelling 5.6 Hungarian 5.7 Bridges/Cut-Vertices 5.8 Strongly Connected Components 5.9 Stable Marraige Problem	11 11 12 12 14 15 15
6	6.1 Ordered Set	19 19 20
	7.2 Z-function	24 24
	0.2 omipicx	4 4

9	Number Theory9.1 Extended Euclidean Algorithm	26
10	Notes	27
	Notes 10.1 Modular Multiplicative Inverse	27
	10.2 Chinese Remainder Theorem	27
	10.3 Euler's Totient Function	27
	10.4 Möebius	27
	10.5 Burnside	27
	10.6 Catalan Number	28
	10.7 Landau	28
	10.8 Erdös-Gallai	28
	10.9 Gambler's Ruin	28
	10.10Extra	

1 vimrc

```
syntax on
colors evening
set ai si noet ts=4 sw=4 sta sm nu so=7 t_Co=8
imap {<CR> {<CR>}<Esc>0
```

2 hashify.sh

```
#!/bin/bash
while IFS=$'\n' read -r line; do
    trim=$(echo "$line" | tr -d "[:space:]")
    md5=$(echo -n "${trim%%\/\/*}" | md5sum)
    md5=${md5:0:4}
    [ "${trim:~0}" == "$" ] && md5="@$md5@"
    echo "$md5 $line"
done
```

3 STL

3.1 Algorithms

```
a102 #include <algorithm>
d41d // sort, search, array
1bf7 sort(startaddress, endaddress)
e416 binary_search(startaddress, endaddress, valuetofind)
0c81 reverse(first_iterator, last_iterator)
74d6 *max_element (first_iterator, last_iterator)
e4a8 *min_element (first_iterator, last_iterator)
5324 accumulate(first_iterator, last_iterator, initial value of sum) //summation of vector elements
7c96 count(first_iterator, last_iterator,x) //occurrences of x
d278 find(first_iterator, last_iterator, x) // points to last if not found
9ea6 lower_bound(first_iterator, last_iterator, x) //first element in range [first, last) which has a value not
    less than x
d45e upper_bound(first_iterator, last_iterator, x)
213f arr.erase(position to be deleted) // erased element in vector
5c35 arr.erase(unique(arr.begin(),arr.end()),arr.end()) // erases the duplicate occurrences in sorted vector in a
e161 next_permutation(first_iterator, last_iterator)
71d5 prev_permutation(first_iterator, last_iterator)
cc6d distance(first_iterator,desired_position) //very useful while finding the index.
f924 all_of(ar, ar+6, [](int x) { return x>0; }) ?//check every element for condition
3261 \ any\_of() \ // check \ if there is an element with condition
ba64 none_of() //check if none
5caa copy_n(source, size, dest) //copy one array into another
39d0 iota(ar, ar+6, 20); // ar = 20, 21, 22, 23, 24, 25
d41d
d41d // partition
5aca partition(beg, end, condition)
5896 is_partitioned(beg, end, condition)
67d6 stable_partition(beg, end, condition) //order is preserved
febd partition_point(beg, end, condition) //returns iterator pointing to partion point
8cba partition_copy(beg, end, beg1, beg2, condition) // separate between true and false
d41d
```

3.2 Numeric

```
646d #include<valarray>
d41d // apply and sum
5d32 valarray<int> varr = { 10, 2, 20, 1, 30 };
4ac0 valarray<int> varr1 = varr.apply([](int x){return x=x+5;});
e7f1 varr1.sum()
d41d // min and max
5d32 valarray<int> varr = { 10, 2, 20, 1, 30 };
```

```
a6d5 varr.max()
ed45 varr.min()
d41d // shift and cshift

5d32 valarray<int> varr = { 10, 2, 20, 1, 30 };
3f80 valarray<int> varr1 = varr.shift(2); // {20, 1, 30, 0, 0}

92e2 varr1 = varr.cshift(-3); // {20, 1, 30, 10, 2}
d41d // swap

5d32 valarray<int> varr = { 10, 2, 20, 1, 30};
043d valarray<int> varr1 = { 2, 29, 3, 1, 41};
31f0 varr.swap(varr1);
d41d
```

3.3 List

```
c702 #include<list>
148f list <int> list1;
a5b7 list1.push_back(element)
8ba1 list1.push_front(element)
142f list1.front()
8a25 list1.back()
9947 list1.pop_front()
d803 list1.pop_back()
141d list1.reverse()
3722 list1.sort()
ecef list1.rbegin() // reverse iterator last element
2a73 list1.rend() //reverse iterator beggining of list
eee2 list1.empty() //empty 1 or not 0
ef20 list1.insert(pos_iter, ele_num, ele) //insert ele_num elements ar position pos_iter of value ele
0e66 list1.erase() //remove element
a68f list1.assign(count, value) //assigns new elements by replacing current elements
3e16 list1.remove(position)
d4bd list1.size()
a460 list1.unique(function)
d41d
```

3.4 Unordered Map

```
efe5 #include <unordered_map>
9418 unordered_map<string, double> umap;
7cae umap.at()
4bf0 umap.begin()
7f7d umap.end()
1d78 umap.bucket(key)
c529 umap.bucket_count()
1bbc umap.count(key)
ea39 umap.equal_range() //can be used as search
d41d
```

3.5 Map

```
7306 #include <map>
59ab map<int, int> map1;
c79e map1.begin()
8aac map1.end()
f588 map1.size()
f503 map1.max_size()
2401 map1.empty()
512c map.insert({key, element})
18b2 map.erase(pos)
9286 map.erase(const g) //remove the key value g
47ff map.clear() //remove all elements
```

```
bd50 #include <set>
cb62 set <int, greater <int> > set1
c6c0 set1.begin()
12f9 set1.end()
00e1 set1.size()
66c6 set1.empty()
e375 set1.rbegin()
5a33 set1.rend()
70db set1.insert(const g)
75cf set1.erase(pos)
e9ef set1.erase(const g)
5a5b set1.clear()
4d8d set1.find(const g)
a286 set1.upper_bound(const g)
6b2c set1.lower_bound(const g)
ef74 set1.swap()
313a set1.emplace()
d41d
```

3.7 Vector

```
ee72 #include <vector>
82b2 vector<int> v1;
e483 v1.begin()
3e1a v1.end()
c689 v1.rbegin()
840a v1.rend()
4159 v1.size()
289d v1.max_size()
e09b v1.capacity()
7bea v1.resize(n)
c752 v1.empty() //whether is empty
cfe6 v1.shrink_to_fit(n) //reduce capacity and destroys all beyond
68ba v1.reserve(n) //capacity to be at least enough to contain n elements
e106 v1.at()
6345 v1.front()
cac5 v1.back()
026d v1.data()
49a3 v1.assign()
692a v1.push_back()
fa5e v1.pop_back()
8e7e v1.insert()
b498 v1.erase()
2ba5 v1.swap()
5434 v1.clear()
d5cf v1.emplace()
d41d
```

3.8 Stack

```
76cb #include <stack>
4ce3 stack <int> s;
161e s.empty()
e958 s.size()
d03c s.top()
b88a s.push(g)
cc35 s.pop()
```

3.9 Queue

```
1bba #include <queue>
26a5 queue <int> q;
5a9d queue <int> p;
2d70 q.empty()
439a q.size()
```

```
1e4e q.swap(p)
2a43 q.emplace()
3c63 q.front()
df4e q.back()
3be4 q.push(g)
a46b q.pop()
d41d
```

3.10 Deque

```
8467 #include <deaue>
1e15 deque <int> d;
fcfe d.insert()
ddcc d.rbegin()
c62e d.rend()
5d62 d.begin()
7cdf d.end()
828d d.assign()
73e7 d.resize()
6a9b d.push_front()
e1e8 d.push_back()
e22a d.pop_front()
623b d.pop_back()
fe45 d.front()
36b8 d.back()
9088 d.clear()
8fe7 d.erase()
8069 d.empty()
23a4 d.size()
d41d
```

4 Geometry

4.1 Base

```
d41d // typedef double cood; cood eps = 1e-8; // risky: XXX, untested: TODO
00a0 const double pi = acos(-1.);
ccb5 template<typename T> inline T sq(T x) { return x*x; }
87bc struct vec {
b86a \triangleright cood x, y;
6e4f \rightarrow vec () : x(0), y(0) {} vec (cood a, cood b) : x(a), y(b) {}
741a \rightarrow inline vec operator - (vec o) { return {x - o.x, y - o.y}; }
ff7e \triangleright inline vec operator + (vec o) { return \{x + o.x, y + o.y\}; \}
b6dd ⊳ inline vec operator * (cood o) { return {x * o, y * o}; }
2711 \triangleright inline vec operator / (cood o) { return \{x \ / \ o, \ y \ / \ o\}; \ \}
6ac9 ⊳ inline cood operator ^ (vec o) { return x * o.y - y * o.x; }
83dd > inline cood operator * (vec o) { return x * o.x + y * o.y; }
46ef ▶ inline cood cross (vec a, vec b) { return ((*this)-a) ^ ((*this)-b); } // |(this)a||(this)b|sen(angle)
cbad | inline cood inner (vec a, vec b) { return ((*this)-a) * ((*this)-b); } // |(this)a||(this)b|cos(angle)
cddd > inline double angle (vec a, vec b) { return atan2(cross(a,b),inner(a,b)); } // ccw angle from (this)a to
    (this)b in range [-pi,pi]
e4d3 \circ inline int ccw (vec a, vec b) { cood o = cross(a,b); return (eps < o) - (o < -eps); } // this is to the
    (1 left, 0 over, -1 right) of ab
2elf \circ inline int dir (vec a, vec b) { cood o = inner(a,b); return (eps < o) - (o < -eps); } // a(this) is to
    the (1 same, 0 none, -1 opposite) direction of ab
5d26 | inline cood sq (vec o = vec()) { return inner(o,o); }
e7cf > inline double nr (vec o = vec()) { return sqrt(sq(o)); } //$
4e72 | inline vec operator ~ () { return (*this)/nr(); }
f149 ⊳ inline vec proj (vec a, vec b) { return a + (b-a)*(a.inner((*this),b) / a.sq(b)); } // projects this onto
    line ab
1664 \triangleright inline vec rotate (double a) { return vec(cos(a) * x - sin(a) * y, sin(a) * x + cos(a) * y); } // ccw by
    a radians
3206 \rightarrow inline vec rot90 () { return vec(-y,x); } // rotate(pi/2)$
2810 \triangleright bool in_seg (vec a, vec b) { return ccw(a,b) == 0 && dir(a,b) <= 0; } // tips included
5e56 b double dist2_lin (vec a, vec b) { return a.sq(b) <= eps ? sq(a) : double(::sq(cross(a,b)))/a.sq(b); } //
    see cir.has_inter_lin
```

```
8831 b double dist2_seg (vec a, vec b) { return a.dir((*this),b) == (b.dir((*this),a)) ? dist2_lin(a,b) :
    min(sq(a),sq(b)); }
436b | inline bool operator == (const vec & o) const { return abs(x-o.x) <= eps && abs(y-o.y) <= eps; }
5522 \triangleright inline bool operator < (const vec & o) const { return (abs(x-o.x)>eps)?(x < o.x):(y > o.y); } // lex
    compare (inc x, dec y)
d41d ▷ // full ccw angle strict compare beginning upwards (this+(0,1)) around (*this)
d41d \triangleright // incresing distance on ties, this is the first
69ad ▶ bool compare (vec a, vec b) {
a482 \rightarrow f ((*this < a) != (*this < b)) return *this < b;
           int o = ccw(a,b); return o?o>0:((a == *this && !(a == b)) || a.dir(*this,b) < 0);
cbb1 ⊳ }
2145 }; //$
bafe struct lin { // line
6143 \triangleright vec p; cood c; // p*(x,y) = c
1105 \vdash lin () {} lin (vec a, cood b) : p(a), c(b) {}
d036 \rightarrow lin (vec s, vec t) : p((s-t).rot90()), c(p*s) {}
5c8b → inline lin parll (vec v) { return lin(p,v*p); }
1263 ▶ inline lin perp () { return lin(p.rot90(),c); }
3838 \rightarrow vec inter (lin o) { if (vec(0,0).ccw(p,o.p) == 0) throw 1; cood d = (p^o.p); return vec((c*o.p.y -
    p.y*o.c)/d,(o.c*p.x - o.p.x*c)/d); }
1375 ▶ bool contains (vec v) { return abs(p*v - c) <= eps; }
eda5 \triangleright vec at_x (cood x) { return vec(x,(c-p.x*x)/p.y); }
c0fb → vec at_y (cood y) { return vec((c-y*p.y)/p.x,y); }
elef b double sign_dist (vec v) { return double(p*v - c)/p.nr(); }
2145 }; //$
3236 struct cir { // circle
b6d3 ⊳ vec c; cood r;
126a \rightarrow cir () {} cir (vec v, cood d) : c(v), r(d) {}
c118 ⊳ cir (vec u, vec v, vec w) { // XXX untreated degenerates
Ofb6 \rightarrow vec mv = (u+v)/2; lin s(mv, mv+(v-u).rot90());
bf5f \triangleright vec mw = (u+w)/2; lin t(mw, mw+(w-u).rot90());
          c = s.inter(t); r = c.nr(u);
cbb1 ⊳ }//$
9e54 \triangleright inline bool contains (vec w) { return c.sq(w) <= sq(r) + eps; } // border included
0549 \rightarrow inline bool border (vec w) { return abs(c.sq(w) - sq(r)) <= eps; }
1cd6 • inline bool has_inter (cir o) { return c.sq(o.c) <= sq(r + o.r) + eps; } // borders included
376d \rightarrow inline bool has_border_inter (cir o) { return has_inter(o) && c.sq(o.c) + eps >= sq(r - o.r); }
8ab4 | inline bool has_inter_lin (vec a, vec b) { return a.sq(b) <= eps ? contains(a) : sq(c.cross(a,b)) <=
    sq(r)*a.sq(b) + eps; } // borders included XXX overflow
9bf7 | inline bool has_inter_seg (vec a, vec b) { return has_inter_lin(a,b) && (contains(a) || contains(b) ||
    a.dir(c,b)*b.dir(c,a) != -1); } // borders and tips included XXX overflow
7abe □ inline double arc_area (vec a, vec b) { return c.angle(a,b)*r*r/2; } // smallest arc, ccw positive
f967 ⊳ inline double arc_len (vec a, vec b) { return c.angle(a,b)*r; } // smallest arc, ccw positive$
771f ⊳ pair<vec, vec> tan (vec v) { // XXX low precision
84ec ▷ ▷ if (contains(v) && !border(v)) throw 0;
2894 ⊳ ⊳
           cood d2 = c.sq(v); double s = sqrt(d2 - r*r); s = (s==s)?s:0;
0f70 ⊳ ⊳
           double al = atan2(r,s); vec t = ((c-v));
3a69 ▷ ▷ return pair<vec, vec>(v + t.rotate(al)*s, v + t.rotate(-al)*s);
cbb1 ▷ }//$
c56f ⊳ pair<vec,vec> border_inter (cir o) {
c4d4 ⊳ ⊳
          if (!has_border_inter(o) || o.c == (*this).c) throw 0;
2b40 ⊳ ⊳
           double a = (sq(r) + o.c.sq(c) - sq(o.r))/(2*o.c.nr(c));
b647 ⊳ ⊳
           vec v = (o.c - c)/o.c.nr(c); vec m = c + v * a;
65b9 ⊳ ⊳
           double h = sqrt(sq(r) - sq(a)); h = h!=h?0:h;
440c ⊳ ⊳
           return pair<vec, vec>(m + v.rot90()*h, m - v.rot90()*h);
cbb1 ▷ }//$
5182 ⊳ pair<vec,vec> border_inter_lin (vec a, vec b) { // first is closest to a than second
c6e7 b if (a.sq(b) <= eps) { if (border(a)) return pair<vec,vec>(a,a); throw 0; }
40f6 ⊳ ⊳
           if (a.dir(b,c) == -1) swap(a,b);
45ab ⊳ ⊳
           if (!has_inter_lin(a,b)) throw 0;
5cb6 ⊳ ⊳
           double d2 = c.dist2_lin(a,b); vec p = (b-a)/a.nr(b);
           double h = sqrt(r*r - d2); h = h!=h?0:h;
0aca ⊳ ⊳
           double y = sqrt(c.sq(a) - d2); y = y!=y?0:y;
           return pair<vec, vec>(a + p*(y-h), a + p*(y+h));
cbb1 ▷ }//$
be35 ▶ double triang_inter (vec a, vec b) { // ccw oriented, this with (c,a,b)
53ba → if (c.sq(a) > c.sq(b)) return -triang_inter(b,a);
148a → if (contains(b)) return c.cross(a,b)/2;
7434 ▷ ▷ if (!has_inter_seg(a,b)) return arc_area(a,b);
```

4.2 Advanced

```
484c cir min_spanning_circle (vec * v, int n) { // n
flea srand(time(NULL)); random_shuffle(v, v+n); cir c(vec(), 0); int i,j,k;
b11a \vdash for (i = 0; i < n; i++) if (!c.contains(v[i]))
e5b6 \rightarrow for (c = cir(v[i],0), j = 0; j < i; j++) if (!c.contains(v[j]))
a47c \rightarrow for (c = cir((v[i] + v[j])/2,v[i].nr(v[j])/2), k = 0; k < j; k++) if (!c.contains(v[k]))
3dd3 \triangleright \triangleright \triangleright \triangleright \triangleright c = cir(v[i],v[j],v[k]);
807f ⊳ return c;
cbb1 }//$
d45c int convex_hull (vec * v, int n, int border_in) { // nlg | border_in (should border points stay?)
4f17 \triangleright swap(v[0], *min_element(v,v+n)); int s, i;
f37e \Rightarrow sort(v+1, v+n, [\&v] (vec a, vec b) { int o = b.ccw(v[0], a); return (o?o==1:v[0].sq(a)<v[0].sq(b)); });
a69c ⊳ if (border_in) {
9492 ⊳ ⊳
                  for (s = n-1; s > 1 \&\& v[s].ccw(v[s-1],v[0]) == 0; s--);
0bb0 ⊳ ⊳
                  reverse(v+s, v+n);
cbb1 ⊳ }
c497 \rightarrow for (i = s = 0; i < n; i++) if (!s || !(v[s-1] == v[i])) {
                  for (; s \ge 2 \& v[s-1].ccw(v[s-2],v[i]) \ge border_in; s--);
cea9 ⊳ ⊳
                  swap(v[s++],v[i]);
ceca ⊳ ⊳
cbb1 ⊳ }
0478 ⊳ return s;
cbb1 }//$
79b9 int monotone_chain (vec * v, int n, int border_in) { // nlg | border_in (should border points stay?)
5031 \triangleright vector<vec> r; sort(v, v+n); n = unique(v, v+n) - v;
d885 \rightarrow for (int i = 0; i < n; r.pb(v[i++])) while (r.size() >= 2 && r[r.size()-2].ccw(r.back(),v[i]) <=
       -border_in) r.pop_back();
dd80 > r.pop_back(); unsigned int s = r.size();
c19d \rightarrow for (int i = n-1; i >= 0; r.pb(v[i--])) while (r.size() >= s+2 && r[r.size()-2].ccw(r.back(),v[i]) <= s+2 && r[r.size()-2].ccw(r.back(),v[i]) <=
       -border_in) r.pop_back();
a255 \vdash return copy(r.begin(), r.end() - (r.size() > 1), v) - v;
cbb1 }//$
f80f double polygon_inter (vec * p, int n, cir c) { // signed area
2eae ⊳ return inner_product(p, p+n-1, p+1, c.triang_inter(p[n-1],p[0]), std::plus<double>(), [&c] (vec a, vec b)
       { return c.triang_inter(a,b); });
cbb1 }//$
3214 int polygon_pos (vec * p, int n, vec v) { // lg | p should be simple (-1 out, 0 border, 1 in)
6c2a ⊳ int in = -1; // it's a good idea to randomly rotate the points in the double case, numerically safer
6033 \rightarrow for (int i = 0; i < n; i++) {
                 vec a = p[i], b = p[i?i-1:n-1]; if (a.x > b.x) swap(a,b);
                  if (a.x + eps \le v.x && v.x < b.x + eps) { in *= v.ccw(a,b); }
c9e9 b
c3b1 ⊳ ⊳
                  else if (v.in_seg(a,b)) { return 0; }
cbb1 ⊳ }
091d ⊳ return in;
cbb1 }//$
271f int polygon_pos_convex (vec * p, int n, vec v) { // lg(n) | (-1 out, 0 border, 1 in) TODO
a868 \triangleright if (v.sq(p[0]) <= eps) return 0;
088f | if (n <= 1) { return 0; } if (n == 2) { return v.in_seg(p[0],p[1])?0:-1; }</pre>
2ceb   if  (v.ccw(p[0],p[1]) < 0 | | v.ccw(p[0],p[n-1]) > 0 ) return -1; 
fcfd b int di = lower_bound(p+1,p+n-1,v, [&p](vec a,vec v) { return v.ccw(p[0],a) > 0; }) - p;
adf3 \rightarrow if (di == 1) return v.ccw(p[1],p[2]) >= 0?0:-1;
cfa4 > return v.ccw(p[di-1],p[di]);
cbb1 }//$
d41d // v is the pointset, w is auxiliary with size at least equal to v's
bf98 cood closest_pair (vec * v, vec * w, int 1, int r, bool sorted = 0) { // nlg | r is exclusive TODO (AC on
       cf, no test)
```

```
91d7 \rightarrow if (1 + 1 >= r) return inf;
900b → if (!sorted) sort(v+1,v+r,[](vec a, vec b){ return a.x < b.x; });
89cd \rightarrow int m = (1+r)/2; cood x = v[m].x;
d046 \rightarrow merge(v+1,v+m,v+m,v+r,w+1,[](vec a, vec b){ return a.y < b.y; });
2dd0 \  \  \, \textbf{for (int } i = 1, \ s = 1; \ i < r; \ i++) \ \textbf{if } (sq((v[i] = w[i]).x - x) < res) \ \{
          for (int j = s-1; j >= 1 && sq(w[i].y - w[j].y) < res; <math>j--)
c3b1 ⊳ ⊳
          res = min(res, w[i].sq(w[j]));
1991 ⊳ ⊳
          w[s++] = v[i];
cbb1 ⊳ }
b505 ⊳ return res;
cbb1 }//$
ac2e double union_area (cir * v, int n) { // n^2lg | XXX joins equal circles TODO (AC on szkopul, no tests)
c765 \triangleright  struct I { vec v; int i; } c[2*(n+4)];
cf66 > srand(time(NULL)); cood res = 0; vector<bool> usd(n);
dd83 \rightarrow cood lim = 1./0.; for (int i = 0; i < n; i++) lim = min(lim, v[i].c.y - v[i].r - 1);
0b02 \rightarrow for (int i = 0, ss = 0; i < n; i++, ss = 0) {
dc37 ⊳ ⊳
          vec fp = v[i].c + vec(0,v[i].r).rotate(rand()); // rotation avoids corner on cnt initialization
6e87 ⊳ ⊳
           int cnt = 0, eq = 0;
           for (int j = 0; j < n; j++) {
578e ⊳ ⊳
             cnt += (usd[j] = v[j].contains(fp));
2311 ⊳ ⊳ ⊳
              if (!v[i].has_border_inter(v[j])) continue;
8daa ⊳ ⊳ ⊳
              if (v[i].c == v[j].c) eq++;
4e6b ⊳ ⊳ ⊳
              else {
e59e \triangleright \triangleright pair<vec, vec> r = v[i].border_inter(v[j]);
0782 ⊳ ⊳
                  c[ss++] = \{r.first, j\}; c[ss++] = \{r.second, j\};
cbb1 ⊳ ⊳
          ⊳ }
cbb1 ⊳ ⊳
d21b ⊳ ⊳
           vec d = vec(v[i].r,0); for (int k = 0; k < 4; k++, d = d.rot90()) c[ss++] = \{v[i].c + d, i\};
85d3 ⊳ ⊳
           int md = partition(c,c+ss,[v,i,fp](I a){return a.v.ccw(v[i].c,fp) > 0;}) - c;
19c7 ⊳ ⊳
           sort(c,c+md,[v,i](I a,I b)\{return a.v.ccw(v[i].c,b.v) < 0;\});
7430 ⊳ ⊳
           sort(c+md,c+ss,[v,i](I a,I b)\{return a.v.ccw(v[i].c,b.v) < 0;\});
56cd ⊳ ⊳
           for (int j = 0; j < ss; j++) {
2b5e ⊳ ⊳
          if (c[j].i != i) { cnt -= usd[c[j].i]; usd[c[j].i] = !usd[c[j].i]; cnt += usd[c[j].i]; }
b115 ⊳ ⊳
              vec a = c[j].v, b = c[(j+1)%ss].v;
7c4a ⊳ ⊳
              cood cir = abs(v[i].arc_area(a,b) - v[i].c.cross(a,b)/2), tra = abs((b.x-a.x)*(a.y+b.y-2*lim)/2);
e20b ⊳ ⊳
              cood loc = (a.x<b.x)?cir-tra:tra+cir; res += (cnt==eq)?loc/eq:0;</pre>
cbb1 ⊳ ⊳
           }
cbb1 ⊳ }
b505 ⊳ return res;
cbb1 }//$
4ede pii antipodal (vec * p, int n, vec v) { // lg(n) | extreme segments relative to direction v TODO
d41d \triangleright // po: closest to dir, ne: furthest from dir
3bd9 \rightarrow bool sw = ((p[1]-p[0])*v < 0);
d189 \rightarrow if (sw) v = vec(0,0) - v; // lower_bound returns the first such that lambda is false
0303 ⊳ int md = lower_bound(p+1, p+n, v, [p] (vec & a, vec v) { return (a-p[0])*v > eps; }) - p; // chain
    separation
25f1 \triangleright int po = lower_bound(p, p+md-1, v, [p,n] (vec & a, vec v) { return (p[(&a+1-p)\%n]-a)\*v > eps; }) - p; //
    positive
9dc9 int ne = (lower\_bound(p+md, p+n, v, [p,n] (vec & a, vec v) { return (p[(&a+1-p)%n]-a)*v <= eps; }) -
    p)%n; // negative
5703 ⊳ if (sw) swap(po,ne);
ef0b ⊳ return pii(po,ne);
cbb1 }//$
34e2 int mink_sum (vec * a, int n, vec * b, int m, vec * r) { // (n+m) | a[0]+b[0] should belong to sum, doesn't
    create new border points TODO
8d81 \triangleright if (!n || !m) { return 0; } int i, j, s; r[0] = a[0] + b[0];
de54 \triangleright for (i = 0, j = 0, s = 1; i < n || j < m; s++) {
1ab0 \rightarrow if (i >= n) j++;
1dc4 ⊳ ⊳
          else if (j >= m) i++;
4e6b ⊳ ⊳
          else {
          int o = (a[(i+1)\%n]+b[j\%m]).ccw(r[s-1],a[i\%n]+b[(j+1)\%m]);
              j += (o >= 0); i += (o <= 0);
e43c ⊳ ⊳
cbb1 ▷ ▷ }
f5b4 ⊳ ⊳
          r[s] = a[i%n] + b[j%m];
cbb1 ⊳ }
162b \triangleright return s-1;
cbb1 }//$
9e65 int inter_convex (vec * p, int n, vec * q, int m, vec * r) { // (n+m) | XXX
```

```
2d76 \rightarrow int \ a = 0, \ b = 0, \ aa = 0, \ ba = 0, \ inflag = 0, \ s = 0;
2a6c \rightarrow  while ((aa < n || ba < m) && aa < n+n && ba < m+m) {
           vec p1 = p[a], p2 = p[(a+1)%n], q1 = q[b], q2 = q[(b+1)%m];
35b2 ⊳ ⊳
           vec A = p2 - p1, B = q2 - q1;
1479 ⊳ ⊳
           int cross = vec(0,0).ccw(A,B), ha = p1.ccw(p2,q2), hb = q1.ccw(q2,p2);
c6e0 ⊳ ⊳
           if (cross == 0 \&\& p2.ccw(p1,q1) == <math>0 \&\& A*B < -eps) {
507b ⊳ ⊳
               if (q1.in_seg(p1,p2)) r[s++] = q1;
5e83 ⊳ ⊳
               if (q2.in_seg(p1,p2)) r[s++] = q2;
ce58 ⊳ ⊳
               if (p1.in\_seg(q1,q2)) r[s++] = p1;
          ⊳
               if (p2.in\_seg(q1,q2)) r[s++] = p2;
526a ⊳ ⊳
7b25 ⊳ ⊳
               if (s < 2) return s;

    inflag = 1; break;

e2a8 ⊳ ⊳
5e6d ⊳ ⊳
          } else if (cross != 0 && inter_seg(p1,p2,q1,q2)) {
           if (inflag == 0) aa = ba = 0;
f420 ⊳ ⊳
2b81 ⊳ ⊳
              r[s++] = lin(p1,p2).inter(lin(q1,q2));
37fd ⊳ ⊳
              inflag = (hb > 0) ? 1 : -1;
cbb1 ⊳ ⊳
5499 \rightarrow if (cross == 0 \& hb < 0 \& ha < 0) return s;
0872 ⊳ ⊳
          bool t = cross == 0 && hb == 0 && ha == 0;
           if (t ? (inflag == 1) : (cross >= 0) ? (ha <= 0) : (hb > 0)) {
9873 \rightarrow \rightarrow if (inflag == -1) r[s++] = q2;
1146 \triangleright \triangleright ba++; b++; b %= m;
9d97 ▷ ▷ } else {
5c98 \rightarrow f if (inflag == 1) r[s++] = p2;
5ecb ⊳ ⊳ ⊳
               aa++; a++; a %= n;
cbb1 ⊳ ⊳
           }
cbb1 ⊳ }
c1b2 \rightarrow if (inflag == 0) {
3880 ⊳ ⊳
          if (polygon_pos_convex(q,m,p[0]) >= 0) { copy(p, p+n, r); return n; }
115c ⊳ ⊳
           if (polygon_pos_convex(p,n,q[0]) >= 0) { copy(q, q+m, r); return m; }
cbb1 ⊳ }
fc37 \triangleright s = unique(r, r+s) - r;
2629 \rightarrow \mathbf{if} (s > 1 \& r[0] == r[s-1]) s--;
0478 ⊳ return s;
cbb1 }//$
03ae bool isear (vec * p, int n, int i, int prev[], int next[]) { // aux to triangulate
7630 \triangleright vec a = p[prev[i]], b = p[next[i]];
2d9f \rightarrow if (b.ccw(a,p[i]) \ll 0) return false;
578e \rightarrow for (int j = 0; j < n; j++) {
97eb ⊳ ⊳
           if (j == prev[i] || j == next[i]) continue;
           if (p[j].ccw(a,p[i]) >= 0 && p[j].ccw(p[i],b) >= 0 && p[j].ccw(b,a) >= 0) return false;
           int k = (j+1)\%n;
           if (k == prev[i] || k == next[i]) continue;
a537 ⊳ ⊳
           if (inter_seg(p[j],p[k],a,b)) return false;
cbb1 ⊳ }
8a6c ⊳ return true;
cbb1 }
1851 int triangulate (vec * p, int n, bool ear[], int prev[], int next[], int tri[][3]) { // 0(\hat{n}^2) | n >= 3
d14e \rightarrow int s = 0, i = 0;
78d0 \rightarrow for (int i = 0, prv = n-1; i < n; i++) { prev[i] = prv; prv = i; next[i] = (i+1)%n; ear[i] =
    isear(p,n,i,prev,next); }
6b3b \rightarrow for (int lef = n; lef > 3; lef--, i = next[i]) {
e7a9 ⊳ ⊳
           tri[s][0] = prev[i]; tri[s][1] = i; tri[s][2] = next[i]; s++; // tri[i][0],i,tri[i][1] inserted
           int c_prev = prev[i], c_next = next[i];
c354 ⊳ ⊳
           next[c_prev] = c_next; prev[c_next] = c_prev;
84b6 ⊳ ⊳
           ear[c_prev] = isear(p,n,c_prev,prev,next); ear[c_next] = isear(p,n,c_next,prev,next);
bc1d > tri[s][0] = next[next[i]]; tri[s][1] = i; tri[s][2] = next[i]; s++; // tri[i][0],i,tri[i][1] inserted
0478 ⊳ return s;
cbb1 }
```

4.3 3D

```
f61c const double pi = acos(-1);
d41d // typedef double cood; cood eps = 1e-6; // risky: XXX, untested: TODO
3f73 struct pnt { // TODO it's not tested at all :)
5e43 > cood x, y, z;
```

```
cf2f > pnt () : x(0), y(0), z(0) \{ \} pnt (cood a, cood b, cood c) : x(a), y(b), z(c) \{ \} \}
4e90 inline pnt operator - (pnt o) { return pnt(x - o.x, y - o.y, z - o.z); }
2b18 \rightarrow inline pnt operator + (pnt o) { return pnt(x + o.x, y + o.y, z + o.z); }
7470 | inline pnt operator * (cood o) { return pnt(x*o, y*o, z*o); }
8194 \triangleright inline pnt operator / (cood o) { return pnt(x/o, y/o, z/o); }
a269 ▶ inline cood operator * (pnt o) { return x*o.x + y*o.y + z*o.z; } // inner: |this||o|*cos(ang)
079c \rightarrow inline pnt operator ^ (pnt o) { return pnt(y*o.z - z*o.y, z*o.x - x*o.z, x*o.y - y*o.x); } // cross:
    oriented normal to the plane containing the two vectors, has norm |this||o|*sin(ang)
a2ea b inline cood operator () (pnt a, pnt b) { return (*this)*(a^b); } // mixed: positive on the right-hand
    rule (thumb=this,index=a,mid=b)
d41d
f500 ▶ inline cood inner (pnt a, pnt b) { return (a-(*this))*(b-(*this)); }
4114 b inline pnt cross (pnt a, pnt b) { return (a-(*this))^(b-(*this)); } // its norm is twice area of triangle
fa90 ▶ inline cood mixed (pnt a, pnt b, pnt c) { return (a-(*this))(b-(*this),c-(*this)); } // 6 times the
    oriented area of thetahedra
d41d
4f78 | inline cood sq (pnt o = pnt()) { return inner(o,o); }
113b > inline double nr (pnt o = pnt()) { return sqrt(sq(o)); }
6edf > inline pnt operator ~ () { return (*this)/nr(); }
11c0 | inline bool in_seg (pnt a, pnt b) { return cross(a,b).sq() <= eps && inner(a,b) <= eps; } // tips included
a6b7 ▶ inline bool in_tri (pnt a, pnt b, pnt c) { return abs(mixed(a,b,c)) <= eps && cross(a,b)*cross(b,c) >=
    -eps && cross(a,b)*cross(c,a) >= -eps; } // border included$
d41d
7c26 • inline pnt proj (pnt a, pnt b) { return a + (b-a)*a.inner(b,(*this))/a.sq(b); }
3a26 \rightarrow inline pnt proj (pnt a, pnt b, pnt c) { pnt n = a.cross(b,c); return (*this) - n*(n*((*this)-a))/n.sq(); }
d41d
8fbb → inline double dist2_lin (pnt a, pnt b) { return cross(a,b).sq()/a.sq(b); }
1880 ▶ inline double dist2_seg (pnt a, pnt b) { return a.inner(b,(*this))*b.inner(a,(*this)) <= eps ?
    min(sq(a),sq(b)) : dist2_lin(a,b); }
39c1 ▶ inline double dist_pln (pnt a, pnt b, pnt c) { return abs((~a.cross(b,c))*((*this)-a)); }
5bc2 | inline double dist2_tri (pnt a, pnt b, pnt c) { pnt p = proj(a,b,c); return p.in_tri(a,b,c) ? sq(p) :
    min({ dist2_seg(a,b), dist2_seg(b,c), dist2_seg(c,a) }); }
eb48 inline cood area (pnt a, pnt b, pnt c) { return abs(a.cross(b,c).nr()) / 2; }
a6c7 inline cood vol (pnt a, pnt b, pnt c, pnt d) { return abs(a.mixed(b,c,d)) / 6; } // thetahedra
084a pnt inter_lin_pln (pnt s, pnt t, pnt a, pnt b, pnt c) { pnt n = a.cross(b,c); return s +
    (t-s)*(n*(a-s))/(n*(t-s)); } //$
fabc struct sph { // TODO it's also not tested at all
af42 \triangleright pnt c; cood r;
390f > sph() : c(), r(0) \{ \} sph(pnt a, cood b) : c(a), r(b) \{ \}
baaf | inline pnt operator () (cood lat, cood lon) { return c + pnt(cos(lat)*cos(lon), sin(lon), sin(lat))*r; }
    // (1,0,0) is (0,0). z is height.
171a → inline double area_hull (double h) { return 2.*pi*r*h; }
60a4 | inline double vol_hull (double h) { return pi*h/6 * (3.*r*r + h*h); }
2145 };
```

5 Graphs

5.1 **DFS**

```
d41d // const int N = ;
a301 vector<int> adj[N]; // adj[i] is the adjacency list of vertex i
a692 bool visited[N]; // visited[i] is true iff vertex i was visited
d41d
58bf void add_edge(int u, int v) {
cc97 ⊳ adj[u].push_back(v);
d41d ▷ // if graph is undirected:
d41d ▷ // adj[v].push_back(u);
cbb1 }
d41d
9e49 void dfs_util(int u) {
2a95
       visited[u] = true;
895e ▶ for (int v : adj[u])
4373 ⊳ if (!visited[v])
9518 ⊳ ⊳
          dfs_util(v);
cbb1 }
```

5.2 BFS

```
d41d // const int N = ;
a301 vector<int> adj[N]; // adj[i] is the adjacency list of vertex i
a692 bool visited[N]; // visited[i] is true iff vertex i was visited
77e0 int dist[N]; // dist[i] is distance from start to vertex i
d41d
58bf void add_edge(int u, int v) {
cc97 ⊳ adj[u].push_back(v);
d41d ▷ // if graph is undirected:
d41d \triangleright // adj[v].push_back(u);
cbb1 }
d41d
a20b void bfs(int start) {
26a5
        queue<int> q;
7292
        q.push(start);
fe25
        visited[start] = true;
4c87 ⊳
        dist[start] = 0;
d41d
14d7
        while (!q.empty()) {
            int u = q.front(); q.pop();
be15
d41d
3722 ⊳ ⊳
            for (int v : adj[u]) {
451a ⊳ ⊳
              if (!visited[v]) {
           \triangleright
2a1e ⊳ ⊳
                   q.push(v);
                   visited[v] = true;
e758 ⊳ ⊳
           \triangleright
8a03 \triangleright \triangleright \triangleright \triangleright
                   dist[v] = dist[u] + 1;
cbb1 ⊳ ⊳ ⊳
               }
cbb1 ⊳ ⊳
            }
cbb1
cbb1 }
d41d
```

5.3 Dinic

```
d41d //typedef int num; const int N = ; const int M = * 2; const num eps = 0;
582d struct dinic {
656d b int hd[N], seen[N], qu[N], lv[N], ei[N], to[M], nx[M]; num fl[M], cp[M]; int en = 2; int when = 0;
1233 ⊳ bool bfs(int s, int t) {
876c \rightarrow seen[t] = ++when; lv[t] = 0; int ql = 0, qr = 0; qu[qr++] = t;
a872 ⊳ ⊳
                               while(ql != qr) {
036d \rightarrow d \rightarrow d = qu[ql++]; ei[t] = hd[t]; if(s == t) return true;
                                          9a44 ⊳ ⊳ ⊳
d4fb \quad \triangleright \quad \quad \triangleright \quad \quad \quad \triangleright
                                                    seen[to[e]] = when;
de5c ⊳ ⊳ ⊳
                                                    lv[to[e]] = lv[t] + 1;
f0ff ▷ ▷ ▷ ▷
                                                    qu[qr++] = to[e];
cbb1 ⊳ ⊳
                                         }
cbb1 ⊳ ⊳
                               }
d1fe ⊳ ⊳
                              return false;
cbb1 ⊳ }
a444 > num dfs(int s, int t, num f) {
f449 \rightarrow f(s == t) return f;
                               for(int \&e = ei[s]; e; e = nx[e]) if(ei[to[e]] \&\& seen[to[e]] == when \&\& cp[e] - fl[e] > eps \&\& cp[e] - fl[e] > eps &\& cp[e] - fl[e] > eps && cp[e] - fl[e] > 
           lv[to[e]] == lv[s] - 1)
7004 \rightarrow \rightarrow if(num rf = dfs(to[e], t, min(f, cp[e] - fl[e]))) {
805c ⊳ ⊳
                              ♭ ♭ fl[e] += rf;

    fl[e ^ 1] -= rf;
5226 ⊳ ⊳
```

```
2cb7 ▷ ▷ ▷ return rf;
cbb1 ▷ ▷ ▷ }
bb30 ⊳ return 0;
cbb1 ⊳ }
d41d ⊳ // public $
de22 > num max_flow(int s, int t) {
6cb2 \triangleright num fl = 0;
          while (bfs(s, t)) for(num f; (f = dfs(s, t, numeric_limits<num>::max())); fl += f);
1c5e ⊳ ⊳
e508 ⊳ ⊳
          return fl;
cbb1 ⊳ }
5a3f ⊳ void add_edge(int a, int b, num c, num rc=0) {
d03a \rightarrow to[en] = b; nx[en] = hd[a]; fl[en] = 0; cp[en] = c; hd[a] = en++;
2f94 ⊳ ⊳
          to[en] = a; nx[en] = hd[b]; fl[en] = 0; cp[en] = rc; hd[b] = en++;
cbb1 ⊳ }
7415 void reset_flow() { memset(fl, 0, sizeof(num) * en); }
ae0a b void init(int n=N) { en = 2; memset(hd, 0, sizeof(int) * n); } // resets all
2145 };
```

5.4 MinCost MaxFlow

```
d41d //typedef int val; // type of flow
d41d //typedef int num; // type of cost
d41d //const int N = , M = * 2; const num eps = 0;
1854 struct mcmf {
933f \rightarrow int es[N], to[M], nx[M], en = 2, par[N], seen[N], when, qu[N];
ef55 ⊳ val fl[M], cp[M], flow; num cs[M], d[N], tot;
d0cc ⊳ val spfa(int s, int t) {
104f \bowtie when++; int a = 0, b = 0;
          for(int i = 0; i < N; i++) d[i] = numeric_limits<num>::max();
e0c6 ⊳ ⊳
3518 ⊳ ⊳
          d[s] = 0; qu[b++] = s; seen[s] = when;
9841
          while(a != b) {
          int u = qu[a++]; if (a == N) a = 0; seen [u] = 0;
32d9 b
              for(int e = es[u]; e; e = nx[e]) if(cp[e] - fl[e] > val(0) && d[u] + cs[e] < d[to[e]] - eps) {
a86f ⊳ ⊳
                 d[to[e]] = d[u] + cs[e]; par[to[e]] = e^1;
                 if(seen[to[e]] < when) { seen[to[e]] = when; qu[b++] = to[e]; if(b == N) b = 0; }
85b7 ⊳ ⊳
cbb1 ▷ ▷ ▷ }
cbb1 ▷ ▷ }
8e2a > if(d[t] == numeric_limits<num>::max()) return false;
91fe ▷ ▷ val mx = numeric_limits<val>::max();
bf09 ⊳ ⊳
          for(int u = t; u != s; u = to[par[u]])
05dc \triangleright \triangleright mx = min(mx, cp[par[u] ^ 1] - fl[par[u] ^ 1]);
6de0 ⊳ ⊳
          tot += d[t] * val(mx);
bf09 ⊳ ⊳
          for(int u = t; u != s; u = to[par[u]])
ae7b ⊳ ⊳
          fl[par[u]] -= mx, fl[par[u] ^ 1] += mx;
b9aa ⊳ ⊳
          return mx;
cbb1 ⊳
d41d ⊳ // public $
8662 p num min_cost(int s, int t) {
3b69 \triangleright tot = 0; flow = 0;
e66e ⊳ ⊳
          while(val a = spfa(s, t)) flow += a;
126a ⊳ ⊳
          return tot:
cbb1 ⊳ }
457a ⊳ void add_edge(int u, int v, val c, num s) {
1d08 \rightarrow fl[en] = 0; cp[en] = c; to[en] = v; nx[en] = es[u]; cs[en] = s; es[u] = en++;
           fl[en] = 0; cp[en] = 0; to[en] = u; nx[en] = es[v]; cs[en] = -s; es[v] = en++;
8537 void reset_flow() { memset(fl, 0, sizeof(val) * en); }
451f ▶ void init(int n) { en = 2; memset(es, 0, sizeof(int) * n); } // XXX must be called
2145 };
```

5.5 Cycle Cancelling

```
d41d //typedef int val; // type of flow
d41d //typedef int num; // type of cost
d41d //const int N = ; const int M = * 2; const val eps = 0;
afb2 struct cycle_cancel {
```

```
e36d • int hd[N], seen[N], qu[N], lv[N], ei[N], to[M], nx[M], ct[N], par[N]; val fl[M], cp[M], flow; num cs[M],
    d[N], tot; int en = 2, n; int when = 0;
1233 ⊳ bool bfs(int s, int t) {
876c \rightarrow seen[t] = ++when; lv[t] = 0; int ql = 0, qr = 0; qu[qr++] = t;
a872 ⊳ ⊳
           while(ql != qr) {
036d ⊳ ⊳
           t = qu[ql++]; ei[t] = hd[t]; if(s == t) return true;
9a44 ⊳ ⊳
              for(int e = hd[t]; e; e = nx[e]) if(seen[to[e]] != when && cp[e ^{1}] - fl[e ^{1}] > eps) {
           \triangleright
d4fb ⊳ ⊳
           \triangleright
                  seen[to[e]] = when;
              \triangleright
           ⊳
de5c ⊳ ⊳
                  lv[to[e]] = lv[t] + 1;
              ⊳
                  qu[qr++] = to[e];
f0ff ⊳ ⊳
           \triangleright
cbb1 ⊳ ⊳
              }
cbb1 ⊳ ⊳
           }
d1fe ⊳ ⊳
          return false;
cbb1 ⊳ }
e4d9 ⊳ val dfs(int s, int t, val f) {
f449 \triangleright if(s == t) return f;
cebe | for(int &e = ei[s]; e; e = nx[e]) if(ei[to[e]] && seen[to[e]] == when && cp[e] - fl[e] > eps &&
    lv[to[e]] == lv[s] - 1)
9fe1 > | if(val rf = dfs(to[e], t, min(f, cp[e] - fl[e]))) {
805c \triangleright \triangleright \vdash fl[e] += rf;
5226 ▷ ▷ ▷ □ fl[e ^ 1] -= rf;
2cb7 ▷ ▷ ▷ ▷
                  return rf;
cbb1 ▷ ▷ ▷ }
bb30 ⊳ ⊳
          return 0:
cbb1 ⊳ }
5cbe ⊳ bool spfa() {
e2f3 \rightarrow when++; int a = 0, b = 0, u;
91bc ⊳ ⊳
           for(int i = 0; i < n; i++) { d[i] = 0; qu[b++] = i; seen[i] = when; ct[i] = 0; }
9841 ⊳ ⊳
           while(a != b) {
          u = qu[a++]; if(a == N) a = 0; seen[u] = 0;
b492 ⊳ ⊳
d627 ⊳ ⊳
              if(ct[u]++ >= n + 1) { a--; break; }
          ⊳
              for(int e = hd[u]; e; e = nx[e]) if(cp[e] - f1[e] > val(0) && d[u] + cs[e] < d[to[e]] - eps) {
          \triangleright
              d[to[e]] = d[u] + cs[e]; par[to[e]] = e ^ 1;
85b7 ⊳ ⊳
                  if(seen[to[e]] < when) { seen[to[e]] = when; qu[b++] = to[e]; if(b == N) b = 0; }
              }
cbb1 ⊳ ⊳
cbb1 ⊳ ⊳
          if(a == b) return false;
5c28 ⊳ ⊳
           val mn = numeric_limits<val>::max();
02he ⊳ ⊳
be15 ⊳ ⊳
           when++:
ef15 ⊳ ⊳
           for(; seen[u] != when; u = to[par[u]]) seen[u] = when;
           for(int v = u; seen[v] != when + 1; v = to[par[v]]) {
82c8 ⊳ ⊳
           \triangleright seen[v] = when + 1;
6e6b ⊳ ⊳
0f6a ⊳ ⊳
              mn = min(mn, cp[par[v] ^ 1] - fl[par[v] ^ 1]);
cbb1 ⊳ ⊳
cb73 ⊳ ⊳
           for(int v = u; seen[v] == when + 1; v = to[par[v]]) {
7618 ⊳ ⊳
           \triangleright
              seen[v] = 0;
c37c ⊳ ⊳
              fl[par[v]] -= mn;
           ⊳
              fl[par[v] ^ 1] += mn;
c905 ⊳ ⊳
cbb1 ⊳ ⊳
           }
8a6c ⊳ ⊳
          return true;
cbb1 ⊳ }
2b0e ⊳ val max_flow(int s, int t) {
e7a0 \rightarrow val fl = 0;
036d ⊳ ⊳
           while (bfs(s, t)) for(val f; (f = dfs(s, t, numeric_limits<val>::max())); fl += f);
e508 ⊳ ⊳
           return fl;
cbb1 ⊳ }
d41d ⊳ // public $
8662 p num min_cost(int s, int t) {
94a7 \rightarrow flow = max_flow(s, t);
6c9f ⊳ ⊳
          while(spfa());
ed25 \triangleright tot = 0;
112e \rightarrow for(int i = 2; i < en; i++)
b951 \triangleright \triangleright if(fl[i] > 0)
dae8 > > > tot += fl[i] * cs[i];
126a ⊳ ⊳
           return tot;
cbb1 ⊳ }
8537 ▶ void reset_flow() { memset(fl, 0, sizeof(val) * en); }
457a ⊳ void add_edge(int u, int v, val c, num s) {
d321 + fl[en] = 0; cp[en] = c; to[en] = v; nx[en] = hd[u]; cs[en] = s; hd[u] = en++;
```

5.6 Hungarian

```
d41d //const int N = ; typedef ll num; const num eps = ;
{
m d41d} // Solves minimum perfect matching in an n by n bipartite graph with edge costs in c
d41d // y and z will be such that y[i] + z[j] <= c[i][j] and sum of y and z is maximum
55ad struct hungarian {
2f6a b int n, MA[N], MB[N], PB[N], mn[N], st[N], sn; bool S[N], T[N];
6cc1 \rightarrow num c[N][N], d[N], y[N], z[N];
cd49 ⊳ bool increase(int b) {
03dd \triangleright \triangleright  for (int a = PB[b];;) {
9ae2 \triangleright \triangleright int n_b = MA[a];
1ba8 \triangleright \triangleright MB[b] = a; MA[a] = b;
8f2f \triangleright \triangleright \downarrow \mathbf{if}(n_b == -1) break;
5af0 \triangleright b \equiv n_b; a = PB[b];
cbb1 ⊳ ⊳ }
8a6c ⊳ ⊳
           return true;
cbb1 ⊳ }
3a3b ▶ bool visit(int a) {
cdb1 ⊳ ⊳
           S[a] = true;
f580 ⊳ ⊳
           for(int b = 0; b < n; b++) {
               if(T[b]) continue;
           ⊳
               if(c[a][b] - y[a] - z[b] < d[b] - eps) { d[b] = c[a][b] - y[a] - z[b]; mn[b] = a; }
e782 ⊳ ⊳
3f25 ⊳ ⊳
               if(c[a][b] - eps \le y[a] + z[b]) {
                   T[b] = true; PB[b] = a; st[sn++] = b;
b46d ⊳ ⊳
           \triangleright
                   if(MB[b] == -1) return increase(b);
f8ab ⊳ ⊳
           \triangleright
               }
cbb1 ⊳ ⊳
cbb1 ⊳ ⊳
           }
d1fe ⊳ ⊳
           return false;
cbb1 ⊳ }
415c ⊳ bool update_dual() {
2f63 \triangleright int mb = -1, b; num e;
f135 ⊳ ⊳
           for(b = 0; b < n; b++) if(!T[b] && (mb == -1 || d[b] < d[mb])) mb = b;
04ff ⊳ ⊳
           for(e = d[mb], b = 0; b < n; b++)
3c42 ⊳ ⊳

    if(T[b]) z[b] -= e;
6435 ⊳ ⊳
               else d[b] -= e;
a915 ⊳ ⊳
           for(int a = 0; a < n; a++)
cbbc ⊳ ⊳
           \rightarrow if(S[a]) y[a] += e;
eabc ⊳ ⊳
           PB[mb] = mn[mb];
           if(MB[mb] == -1) return increase(mb);
7dcf ⊳ ⊳
           st[sn++] = mb; T[mb] = true;
e309 b
d1fe ⊳ ⊳
           return false;
cbb1 ⊳
c4db ⊳ void find_path() {
2cc3 ⊳ ⊳
           int a; for(a = 0; MA[a] != -1; a++);
0351 ⊳ ⊳
           memset(S, 0, sizeof S); memset(T, 0, sizeof T);
e0c6 ⊳ ⊳
           for(int i = 0; i < N; i++) d[i] = numeric_limits<num>::max();
7160 ⊳ ⊳
           sn = 0; if(visit(a)) return;
6679 ⊳ ⊳
           while(true) {
1f3f ⊳ ⊳
               if(sn) { if(visit(MB[st[--sn]])) break; }
6656 ⊳ ⊳
               else if(update_dual()) break;
cbb1 ⊳ ⊳
cbb1 ⊳ }
7e1e ▶ void reset_all() {
52b4 \rightarrow for(int i = 0; i < n; i++) { y[i] = *min_element(c[i], c[i] + n); z[i] = 0; }
e517 ⊳ ⊳
           for(int i = 0; i < n; i++) MA[i] = MB[i] = -1;
cbb1 ⊳ }
d41d ⊳ // public $
957f \triangleright num min_match() { // set n and c then call this function}
b989 \triangleright reset_all(); num all = 0;
c13f ⊳ ⊳
          for(int i = 0; i < n; i++) find_path();</pre>
           for(int a = 0; a < n; a++) all += c[a][MA[a]];
64a8 ⊳ ⊳
           return all;
cbb1 ⊳ }
```

2145 };

5.7 Bridges/Cut-Vertices

```
d41d // Finds bridges and cut vertices
d41d // Receives:
d41d // N: number of vertices
d41d // l: adjacency list
d41d // Gives:
d41d // vis, seen, par (used to find cut vertices)
d41d // ap - 1 if it is a cut vertex, 0 otherwise
d41d // brid - vector of pairs containing the bridges
045d typedef pair<int, int> PII;
060e int N;
b087 vector <int> 1[MAX];
d7bf vector <PII> brid;
9938 int vis[MAX], seen[MAX], par[MAX], ap[MAX];
6d2f int cnt, root;
d41d
6c18 void dfs(int x){
6229 if(vis[x] != -1)
505b
       return;
7144
     vis[x] = seen[x] = cnt++;
d41d
1e7d
     int adj = 0;
724e
      for(int i = 0; i < (int)1[x].size(); i++){</pre>
bea7
       int v = 1[x][i];
       if(par[x] == v)
d1b9
5e2b
         continue;
3c6e
       if(vis[v] == -1){
062a
         adj++;
         par[v] = x;
20c6
6b41
         dfs(v);
1214
         seen[x] = min(seen[x], seen[v]);
5ec3
         if(seen[v] >= vis[x] && x != root)
927e
           ap[x] = 1;
d41c
         if(seen[v] == vis[v])
0818
           brid.push_back(make_pair(v, x));
cbb1
       }
4e6h
       else{
e09a
         seen[x] = min(seen[x], vis[v]);
         seen[v] = min(seen[x], seen[v]);
c943
cbb1
cbb1
63df
     if(x == root) ap[x] = (adj>1);
cbb1 }
d41d
ece6 void bridges(){
f342 brid.clear();
     for(int i = 0; i < N; i++){</pre>
faad
6939
       vis[i] = seen[i] = par[i] = -1;
628e
       ap[i] = 0;
cbb1 }
a018 cnt = 0;
9723
     for(int i = 0; i < N; i++)
       if(vis[i] == -1){
2bec
1c5a
         root = i;
1e5d
         dfs(i);
cbb1
       }
cbb1 }
```

5.8 Strongly Connected Components

```
bf05 struct SCC {
e1bd int V, group_cnt;
52c2 vector<vector<int> > adj, radj;
```

```
16c0
        vector<int> group_num, vis;
eac6
        stack<int> stk;
d41d
d41d
        // V = number of vertices
8aca
        SCC(int V): V(V), group_cnt(0), group_num(V), vis(V), adj(V), radj(V) {}
d41d
d41d
        // Call this to add an edge (0-based)
b873
        void add_edge(int v1, int v2) {
09e7
           adj[v1].push_back(v2);
eb77
           radj[v2].push_back(v1);
cbb1
d41d
f543
        void fill_forward(int x) {
efc4
           vis[x] = true;
4e75
           for (int i = 0; i < adj[x].size(); i++) {</pre>
720f
               if (!vis[adj[x][i]]) {
7306
                   fill_forward(adj[x][i]);
cbb1
cbb1
           }
b527
           stk.push(x);
        }
cbb1
d41d
4462
        void fill_backward(int x) {
h364
           vis[x] = false;
4dfa
           group_num[x] = group_cnt;
h46h
           for (int i = 0; i < radj[x].size(); i++) {</pre>
4b86
               if (vis[radj[x][i]]) {
e3ce
                   fill_backward(radj[x][i]);
cbb1
               }
cbb1
           }
cbb1
        }
d41d
d41d
        // Returns number of strongly connected components.
d41d
        // After this is called, group_num contains component assignments (0-based)
        int get_scc() {
26d6
e3e8
           for (int i = 0; i < V; i++) {
               if (!vis[i]) fill_forward(i);
4d29
cbb1
           }
a231
           group_cnt = 0;
07d1
           while (!stk.empty()) {
5862
               if (vis[stk.top()]) {
5c3a
                   fill_backward(stk.top());
0b14
                   group_cnt++;
cbb1
               }
f3f7
               stk.pop();
cbb1
           }
893h
           return group_cnt;
cbb1
2145 };
```

5.9 Stable Marraige Problem

```
d41d // Gale-Shapley algorithm for the stable marriage problem.
d41d // madj[i][j] is the jth highest ranked woman for man i.
d41d // fpref[i][j] is the rank woman i assigns to man j.
d41d // Returns a pair of vectors (mpart, fpart), where mpart[i] gives the partner of man i, and fpart is
d474 pair<vector<int>, vector<int> > stable_marriage(vector<vector<int> >& madj, vector<vector<int> >& fpref) {
6f98 \rightarrow int n = madj.size();
48a7 \triangleright \text{vector} < \text{int} > \text{mpart}(n, -1), \text{ fpart}(n, -1);
7789 \triangleright vector<int> midx(n);
c37b ⊳ queue<int> mfree;
6033 \rightarrow for (int i = 0; i < n; i++) {
1581 ⊳ ⊳
           mfree.push(i);
cbb1 ⊳ }
ca8c > while (!mfree.empty()) {
           int m = mfree.front(); mfree.pop();
ac1d ⊳ ⊳
           int f = madj[m][midx[m]++];
```

```
4777 ⊳ ⊳
          if (fpart[f] == -1) {
85a1 ⊳ ⊳
          mpart[m] = f; fpart[f] = m;
8862 ⊳ ⊳
          } else if (fpref[f][m] < fpref[f][fpart[f]]) {</pre>
fa31 ⊳ ⊳
          mpart[fpart[f]] = -1; mfree.push(fpart[f]);
85a1 ⊳ ⊳
             mpart[m] = f; fpart[f] = m;
         } else {
9d97 ⊳ ⊳
2b67 ⊳ ⊳
             mfree.push(m);
          ⊳
cbb1 ⊳
cbb1 ⊳
2a98 return make_pair(mpart, fpart);
cbb1 }
```

6 Structures

6.1 Ordered Set

6.2 Treap

```
d41d //const int N = ; typedef int num;
5463 num X[N]; int en = 1, Y[N], sz[N], L[N], R[N];
8b25 void calc (int u) { // update node given children info
d4c7 > sz[u] = sz[L[u]] + 1 + sz[R[u]];
d41d ⊳ // code here, no recursion
cbb1 }
234f void unlaze (int u) {
e39f ⊳ if(!u) return;
d41d \triangleright // code here, no recursion
ee5e void split_val(int u, num x, int &l, int &r) { // l gets <= x, r gets > x
754f \vdash unlaze(u); if(!u) return (void) (1 = r = 0);
4bc1 \rightarrow if(X[u] \le x) \{ split_val(R[u], x, 1, r); R[u] = 1; 1 = u; \}
81a7 \triangleright else { split_val(L[u], x, 1, r); L[u] = r; r = u; }
aaa8 ⊳ calc(u);
cbb1 }
9374 void split_sz(int u, int s, int &l, int &r) { // l gets first s, r gets remaining
754f \rightarrow unlaze(u); if(!u) return (void) (1 = r = 0);
e06d \rightarrow if(sz[L[u]] < s)  { split_sz(R[u], s - sz[L[u]] - 1, 1, r); R[u] = 1; 1 = u; }
f524 \triangleright else \{ split_sz(L[u], s, l, r); L[u] = r; r = u; \}
aaa8 ⊳ calc(u);
cbb1 }
c870 int merge(int 1, int r) { // els on 1 <= els on r
67f0 \vdash unlaze(l); unlaze(r); if(!l || !r) return l + r; int u;
7801 \rightarrow if(Y[1] > Y[r]) \{ R[1] = merge(R[1], r); u = 1; \}
ae90 \rightarrow else \{ L[r] = merge(1, L[r]); u = r; \}
Offd ⊳ calc(u); return u;
cbb1 }
500b void init(int n=N-1) { // XXX call before using other funcs
7d1c  for(int i = en = 1; i \le n; i++) { Y[i] = i; sz[i] = 1; L[i] = R[i] = 0; } 
8c5a \rightarrow random\_shuffle(Y + 1, Y + n + 1);
cbb1 }
```

6.3 Envelope

```
d41d // typedef ll num; const num eps = 0;
d41d // XXX double: indicates operations specific to integers, not precision related
```

```
d79f template<typename line> struct envelope {
5e0f \rightarrow deque < line > q; num lo,hi; envelope (num _lo, num _hi) : lo(_lo), hi(_hi) {}
Olca > void push_front (line 1) { // amort. O(inter) | l is best at lo or never
           if (q.size() && q[0](lo) < l(lo)) return;</pre>
89b8 ⊳ ⊳
           for (num x; q.size(); q.pop_front()) {
cc18 ⊳ ⊳
           x = (q.size() \le 1?hi:q[0].inter(q[1],lo,hi)-1); // XXX double (-1)
4202 ⊳ ⊳
               if (1(x) > q[0](x)) break;
cbb1 ⊳ ⊳
           q.push_front(1);
45bc ⊳ ⊳
cbb1 ⊳ }
f644 ▶ void push_back (line 1) { // amort. O(inter) | 1 is best at hi or never
           if (q.size() && q[q.size()-1](hi) <= 1(hi)) return;
           for (num x; q.size(); q.pop_back()) {
4e80 ⊳ ⊳
           x = (q.size() <= 1?lo:q[q.size()-2].inter(q[q.size()-1],lo,hi));
1747 ⊳ ⊳
               if (l(x) \ge q[q.size()-1](x)) break;
cbb1 ⊳ ⊳
5e56 ⊳ ⊳
           q.push_back(1);
cbb1 ⊳ }
e732 b void pop_front (num _lo) { for (lo=_lo; q.size()>1 && q[0](lo) > q[1](lo); q.pop_front()); } // amort.
    0(n)
218a \triangleright void pop_back (num _hi) { for (hi=_hi; q.size()>1 && q[q.size()-2](hi) <= q[q.size()-1](hi);
    q.pop_back()); } // amort. 0(n)
7155 \triangleright line get (num x) { // O(\lg(R))
e32f \rightarrow int lo, hi, md; for (lo = 0, hi = q.size()-1, md = (lo+hi)/2; lo < hi; md = (lo+hi)/2)
c1fb \mapsto if (q[md](x) > q[md+1](x)) \{ lo = md+1; \}
b029 ⊳ ⊳ ⊳
               else { hi = md; }
adf9 ⊳ ⊳
           return q[lo];
cbb1 ⊳ }
2145 };
b3a6 struct line { // inter = 0(1)
7bd4 ⊳ num a,b; num operator () (num x) const { return a*x+b; }
2417 ⊳ num inter (line o, num lo, num hi) { return
    abs(o.a-a) \le eps?((b<o.b)?hi+1:lo):min(hi+1,max(lo,(o.b-b-(o.b-b<0)*(a-o.a-1))/(a-o.a) + 1));
2145 };
16ed struct generic_line { // inter = O(lg(R))
7bd4 \triangleright num \ a,b; num \ operator () (num x) const { return } a*x+b; }
3cfe ⊳ num inter (generic_line o, num lo, num hi) { // first point where o strictly beats this
ca4f ⊳ ⊳
          for (num md = lo+((++hi)-lo)/2; lo < hi; md = lo+(hi-lo)/2) { // XXX double
               if ((*this)(md)<=o(md)) { lo = md+1; } // XXX double</pre>
760b ⊳ ⊳
b029 ⊳ ⊳
               else { hi = md; }
cbb1 ⊳ ⊳
          }
2532 ⊳ ⊳
           return lo;
cbb1 ⊳ }
2145 };
11a2 template<typename line> struct full_envelope { // XXX ties are broken arbitrarily
85c9 \triangleright vector<envelope<line> > v; full_envelope(envelope<line> c) : v({c}) {} // v.reserve(30);
6aed ▷ void add (line 1) { // amort. O(lg(n)*inter)
8cca ⊳ ⊳
           envelope<line> cur(v.back().lo,v.back().hi); cur.push_back(l);
bb4a ⊳ ⊳
           while (!v.empty() && v.back().q.size() <= cur.q.size()) {</pre>
ce29 ⊳ ⊳
               deque<line> aux; swap(aux,cur.q); int i = 0, j = 0;
           ⊳
31d2 ⊳ ⊳
               for (; i < aux.size(); i++) {</pre>
           \triangleright
542d ⊳ ⊳
                  for (; j < v.back().q.size() && v.back().q[j](cur.hi) > aux[i](cur.hi); j++)
           \triangleright
              \triangleright
0015 ⊳
           \triangleright
              \triangleright
                  cur.push_back(v.back().q[j]);
70a1 ⊳ ⊳
                  cur.push_back(aux[i]);
cbb1 ▷ ▷
a0e7 ⊳ ⊳
               for (; j < v.back().q.size(); j++) cur.push_back(v.back().q[j]);</pre>
deff ⊳ ⊳
               v.pop_back();
cbb1 ⊳ ⊳
           }
026e ⊳ ⊳
           v.push_back(cur);
cbb1 ⊳ }
7155 \triangleright line get (num x) { // O(\lg(n)\lg(R)) | pop_back/pop_front can optimize
9351 \triangleright line a = v[0].get(x);
           for (int i = 1; i < (int) v.size(); i++) {</pre>
ad67 ⊳ ⊳
           line b = v[i].get(x);
bcbe ⊳ ⊳
ad0f ⊳ ⊳ ⊳
               if (b(x) < a(x)) a = b;
cbb1 ⊳ ⊳
3f53 ⊳ ⊳
           return a;
cbb1 ⊳ }
2145 };
```

6.4 Centroid

```
0eca vector<int> adj[N]; int cn_sz[N], n;
c864 vector<int> cn_chld[N]; int cn_dep[N], cn_dist[20][N]; // removable
ace4 void cn_setdist (int u, int p, int depth, int dist) { // removable
989e ⊳ cn_dist[depth][u] = dist;
59dd \rightarrow for (int v : adj[u]) if (p != v && cn_sz[v] != -1) // sz = -1 marks processed centroid (not dominated)
4ce5 ▷ cn_setdist(v, u, depth, dist+1);
cbb1 }
e897 int cn_getsz (int u, int p) {
08c9 \triangleright cn_sz[u] = 1;
59dd \rightarrow for (int v : adj[u]) if (p != v && cn_sz[v] != -1)
b2f6 \rightarrow cn_sz[u] += cn_getsz(v,u);
37a9 ⊳ return cn_sz[u];
cbb1 }
912c int cn_build (int u, int depth) {
28a0 \rightarrow int siz = cn_getsz(u,u); int w = u;
0168 ⊳ do {
9847 \triangleright u = w;
a786 \rightarrow for (int v : adj[u]) if (cn_sz[v] != -1 && cn_sz[v] < cn_sz[u] && cn_sz[v] + cn_sz[v] >= siz)
              w = v;
06ba ⊳ } while (u != w); // u becomes current centroid root
094e ⊳ cn_setdist(u,u,depth,0); // removable, here you can iterate over all dominated tree
32c2 \triangleright cn_sz[u] = -1; cn_dep[u] = depth;
5cff \rightarrow for (int v : adj[u]) if (cn_sz[v] != -1) {
2e31 ▷ ▷ cn_chld[u].pb(w); // removable
cbb1 ⊳ }
03f4 ⊳ return u;
cbb1 }
```

6.5 Link Cut Tree

```
d41d //const int N = ; typedef int num;
8db1 int en = 1, p[N], sz[N], pp[N]; bool lzswp[N];
c7d4 int C[N][2]; // {left, right} children
fc41 inline void calc(int u) { // update node given children info
5665 \triangleright sz[u] = sz[C[u][0]] + 1 + sz[C[u][1]];
d41d \triangleright // code here, no recursion
cbb1 }
93d8 inline void unlaze(int u) {
e39f ⊳ if(!u) return;
a2c4 \rightarrow if(lzswp[u]) {
3550 \triangleright swap(C[u][0], C[u][1]);
20b7 ⊳ ⊳
            if(C[u][0]) lzswp[C[u][0]] ^= 1;
8917 ⊳ ⊳
            if(C[u][1]) lzswp[C[u][1]] ^= 1;
53e1 ⊳ ⊳
            lzswp[u] = 0;
cbb1 ⊳ }
cbb1 }
0584 int rotate(int u, int dir) { // pulls C[u][dir] up to u and returns it
05db \triangleright int v = C[u][dir];
5b77 \triangleright swap(pp[v], pp[u]);
2116 \triangleright C[u][dir] = C[v][!dir];
6c8a \triangleright if(C[u][dir]) p[C[u][dir]] = u;
ed1d \triangleright C[v][!dir] = u; p[v] = p[u];
b9c1 \rightarrow if(p[v]) C[p[v]][C[p[v]][1] == u] = v;
6967 \triangleright p[u] = v; calc(u); calc(v);
6dc7 ⊳ return v;
cbb1 }
3ca5 void unlz_back(int u) { if(!u) return; unlz_back(p[u]); unlaze(u); }
81a1 void splay(int u) { // pulls node u to root
c46d ⊳ unlz_back(u);
bdd0 ⊳ while(p[u]) {
2a84 \triangleright \triangleright int v = p[u], w = p[p[u]];
c76a \rightarrow int du = (C[v][1] == u);
```

```
448e ⊳ ⊳
           if(!w) { rotate(v, du); assert(!p[u]); }
4e6b ⊳ ⊳
           else {
d499 ⊳ ⊳
               int dv = (C[w][1] == v);
           ⊳
4780 ⊳ ⊳
               if(du == dv) { rotate(w, dv); assert(C[v][du] == u); rotate(v, du); }
e576 ⊳ ⊳
               else { rotate(v, du); assert(C[w][dv] == u); rotate(w, dv); }
cbb1 ⊳ ⊳
           }
cbb1 ⊳ }
cbb1 }
a7c2 int find_sz(int u, int s) { // returns s-th node (0-index)
d9d5 ⊳ unlaze(u);
3939 \triangleright \mathbf{while}(sz[C[u][0]] != s)  {
           if(sz[C[u][0]] < s) { s -= sz[C[u][0]] + 1; u = C[u][1]; }
afa2 ⊳ ⊳
           else u = C[u][0];
d9d5 - -
           unlaze(u);
cbb1 ⊳ }
49a4 ⊳ splay(u); return u;
cbb1 }
498d int new_node() {
a2cc \triangleright int i = en++; assert(i < N);
bea5 pp[i] = C[i][0] = C[i][1] = p[i] = 0;
0db4 > 1zswp[i] = 0; sz[i] = 1; return i;
cbb1 }
c538 int access(int u) {
10c3 ⊳ if(!u) return u;
6d13 \triangleright splay(u);
f206 \rightarrow if(int \ v = C[u][1]) \{ p[v] = 0; pp[v] = u; C[u][1] = 0; \}
aaa8 ⊳ calc(u);
566b ⊳ while(pp[u]) {
0068 ⊳ ⊳
          int w = pp[u]; splay(w);
           if(int v = C[w][1]) \{ p[v] = 0; pp[v] = w; \}
           C[w][1] = u; p[u] = w; pp[u] = 0; calc(w); splay(u);
cbb1 ⊳ }
03f4 ⊳ return u;
cbb1 }
0782 int find_root(int u) { // root o u's tree
29bf ⊳ access(u);
3980 \triangleright while(C[u][0]) { unlaze(u = C[u][0]); }
c607 ⊳ access(u); return u;
cbb1 }
4d88 int get_parent(int u) { // u's parent, rootify might change it
29bf ⊳ access(u);
c6f1 > if(!C[u][0]) return pp[u];
e123 \triangleright unlaze(u = C[u][0]);
323c \triangleright while(C[u][1]) unlaze(u = C[u][1]);
c607 ⊳ access(u); return u;
cbb1 }
c63a void link(int u, int v) { // adds edge from u to v, v must be root
961c → if(find_root(u) == find_root(v)) return;
78b9 ⊳ access(u); access(v);
612a \rightarrow assert(C[v][0] == 0 && pp[v] == 0 && sz[v] == 1); // v must be root
8e1a \triangleright C[u][1] = v; p[v] = u; calc(u);
d41d // XXX cut + rootify require get_parent, cut unlinks u from parent, rootify makes u root
e166 void cut(int u) { access(u); assert(C[u][0]); p[C[u][0]] = 0; C[u][0] = 0; calc(u); }
1cea void rootify(int u) { access(u); lzswp[u] = 1; access(u); }
b59a void init() { en = 1; } // XXX initialize
```

6.6 Binary Indexed Tree

```
d41d // Binary indexed tree supporting binary search.
7148 struct BIT {
1a88
        int n:
1160
        vector<int> bit;
d41d
        // BIT can be thought of as having entries f[1], \ldots, f[n]
d41d
        // which are 0-initialized
f6ad
        BIT(int n):n(n), bit(n+1) {}
d41d
        // \text{ returns } f[1] + ... + f[idx-1]
d41d
        // precondition idx <= n+1
```

```
f3df
        int read(int idx) {
a604
           idx--;
           int res = 0;
11e1
89ae
           while (idx > 0) {
8668
               res += bit[idx];
23b5
               idx -= idx & -idx;
cbb1
           }
b505
           return res;
cbb1
        }
d41d
        // returns f[idx1] + ... + f[idx2-1]
d41d
        // precondition idx1 <= idx2 <= n+1
c747
        int read2(int idx1, int idx2) {
a3a4
           return read(idx2) - read(idx1);
cbb1
        // adds val to f[idx]
d41d
d41d
        // precondition 1 <= idx <= n (there is no element 0!)</pre>
9c0d
        void update(int idx, int val) {
29b7
           while (idx \leq n) {
               bit[idx] += val;
eabd
ff79
               idx += idx \& -idx;
cbb1
cbb1
d41d
        // returns smallest positive idx such that read(idx) >= target
        int lower_bound(int target) {
72.4e
6182
           if (target <= 0) return 1;</pre>
c05c
           int pwr = 1; while (2*pwr <= n) pwr*=2;</pre>
           int idx = 0; int tot = 0;
b1a4
e438
            for (; pwr; pwr >>= 1) {
b489
               if (idx+pwr > n) continue;
4075
               if (tot + bit[idx+pwr] < target) {</pre>
1438
                   tot += bit[idx+=pwr];
cbb1
cbb1
            }
354e
           return idx+2;
cbb1
        }
        // returns smallest positive idx such that read(idx) > target
d41d
        int upper_bound(int target) {
855f
           if (target < 0) return 1;</pre>
a7a2
c05c
           int pwr = 1; while (2*pwr <= n) pwr*=2;</pre>
           int idx = 0; int tot = 0;
b1a4
e438
            for (; pwr; pwr >>= 1) {
               if (idx+pwr > n) continue;
b489
b0eb
               if (tot + bit[idx+pwr] <= target) {</pre>
1438
                   tot += bit[idx+=pwr];
cbb1
               }
cbb1
           }
354e
           return idx+2;
cbb1
2145 };
```

6.7 Segment Tree

```
d41d // This is set up for range minimum queries, but can be easily adapted for computing other quantities.
d41d // To enable lazy propagation and range updates, uncomment the following line.
d41d // #define LAZY
1a25 struct Segtree {
1a88 ⊳ int n;
1d95 ⊳ vector<int> data;
dea8 #ifdef LAZY
8cdd #define NOLAZY 2e9
b869 #define GET(node) (lazy[node] == NOLAZY ? data[node] : lazy[node])
c68a ⊳ vector<int> lazy;
8c16 #else
0458 #define GET(node) data[node]
f2ee #endif
c5b1 ⊳ void build_rec(int node, int* begin, int* end) {
c22b \triangleright if (end == begin+1) {
              if (data.size() <= node) data.resize(node+1);</pre>
```

```
4669 ▷ ▷ □ data[node] = *begin;
9d97 ▷ ▷ } else {
8e29 ⊳ ⊳
          int* mid = begin + (end-begin+1)/2;
409c ⊳ ⊳ ⊳
             build_rec(2*node+1, begin, mid);
3780 ⊳ ⊳ ⊳
              build_rec(2*node+2, mid, end);
807b ⊳ ⊳ ⊳
              data[node] = min(data[2*node+1], data[2*node+2]);
cbb1 ⊳ ⊳
          }
cbb1 ⊳ }
7a43 #ifndef LAZY
3167 void update_rec(int node, int begin, int end, int pos, int val) {
          if (end == begin+1) {
a677 ⊳ ⊳
          \triangleright
              data[node] = val;
          } else {
9d97 ⊳ ⊳
9685 ⊳ ⊳
          int mid = begin + (end-begin+1)/2;
6035 ⊳ ⊳
              if (pos < mid) {</pre>
1474 ⊳ ⊳
                 update_rec(2*node+1, begin, mid, pos, val);
          ⊳
9d97 ⊳ ⊳ ⊳
              } else {
                 update_rec(2*node+2, mid, end, pos, val);
a049 ⊳ ⊳ ⊳
cbb1 ▷ ▷ ▷ }
              data[node] = min(data[2*node+1], data[2*node+2]);
807b ⊳ ⊳ ⊳
cbb1 ▷ ▷ }
cbb1 ⊳ }
8c16 #else
dfc5 by void update_range_rec(int node, int tbegin, int tend, int abegin, int aend, int val) {
297c \rightarrow if (tbegin >= abegin && tend <= aend) {
1a83 ▷ ▷ ▷ lazy[node] = val;
3841 ⊳ ⊳ ⊳
              int mid = tbegin + (tend - tbegin + 1)/2;
7ef7 ⊳ ⊳
              if (lazy[node] != NOLAZY) {
          ⊳
2d31 ⊳ ⊳
                 lazy[2*node+1] = lazy[2*node+2] = lazy[node]; lazy[node] = NOLAZY;
          \triangleright
cbb1 ⊳ ⊳
          \triangleright
ca4d ⊳ ⊳
             if (mid > abegin && tbegin < aend)</pre>
          \triangleright
a566 ⊳ ⊳
                 update_range_rec(2*node+1, tbegin, mid, abegin, aend, val);
d7ab ⊳ ⊳
              if (tend > abegin && mid < aend)</pre>
f8e6 ⊳ ⊳
              update_range_rec(2*node+2, mid, tend, abegin, aend, val);
ef60 ⊳ ⊳
              data[node] = min(GET(2*node+1), GET(2*node+2));
cbb1 ⊳ ⊳
cbb1 ⊳ }
f2ee #endif
b241 bint query_rec(int node, int tbegin, int tend, int abegin, int aend) {
297c \triangleright if (tbegin >= abegin && tend <= aend) {
c377 ⊳ ⊳
          return GET(node);
9d97 ▷ ▷ } else {
dea8 #ifdef LAZY
7ef7 ▷ ▷ if (lazy[node] != NOLAZY) {
                 data[node] = lazy[2*node+1] = lazy[2*node+2] = lazy[node]; lazy[node] = NOLAZY;
04fe ⊳ ⊳
cbb1 ⊳ ⊳ ⊳
              }
f2ee #endif
3841 ⊳ ⊳ ⊳
             int mid = tbegin + (tend - tbegin + 1)/2;
a3e6 ⊳ ⊳
             int res = INT_MAX;
ca4d ⊳ ⊳ ⊳
             if (mid > abegin && tbegin < aend)</pre>
52fa ⊳ ⊳
             res = min(res, query_rec(2*node+1, tbegin, mid, abegin, aend));
          ⊳
d7ab ⊳ ⊳
              if (tend > abegin && mid < aend)</pre>
1071 ⊳ ⊳
             res = min(res, query_rec(2*node+2, mid, tend, abegin, aend));
b505 ⊳ ⊳
              return res;
cbb1 ⊳ ⊳
          }
cbb1 ⊳ }
d41d
d41d \sim // Create a segtree which stores the range [begin, end) in its bottommost level.
b5e6 ⊳ Segtree(int* begin, int* end): n(end - begin) {
db18 ▷ ▷ build_rec(0, begin, end);
dea8 #ifdef LAZY
c57d ▷ ▷ lazy.assign(data.size(), NOLAZY);
f2ee #endif
cbb1 ⊳ }
d41d
7a43 #ifndef LAZY
d41d ▷ // Call this to update a value (indices are 0-based). If lazy propagation is enabled, use
    update_range(pos, pos+1, val) instaed.
```

```
a69b b void update(int pos, int val) {
0f2e b p update_rec(0, 0, n, pos, val);
cbbl b }
8c16 #else
d41d b // Call this to update range [begin, end), if lazy propagation is enabled. Indices are 0-based.
ff71 b void update_range(int begin, int end, int val) {
52d3 b p update_range_rec(0, 0, n, begin, end, val);
cbbl b }
f2ee #endif
d41d b // Returns minimum in range [begin, end). Indices are 0-based.
cfb8 b int query(int begin, int end) {
c8b1 b p return query_rec(0, 0, n, begin, end);
cbbl b }
2145 };
```

7 Strings

7.1 Suffix Tree

```
4623 namespace sf {
d41d // const int NS = ; const int N = * 2;
1506 int cn, cd, ns, en = 1, lst;
f48b string S[NS]; int si = -1;
08ad vector<int> sufn[N]; // sufn[si][i] no do sufixo S[si][i...]
3c9e struct node {
a322 b int 1, r, si, p, suf;
d3ca ⊳ map<char, int> adj;
499b \rightarrow node() : 1(0), r(-1), suf(0), p(0) {}
2a9f \triangleright node(int L, int R, int S, int P) : l(L), r(R), si(S), p(P) {}
a577 \triangleright inline int len() { return r - 1 + 1; }
48b2 | inline int operator[](int i) { return S[si][1 + i]; }
9eae > inline int& operator()(char c) { return adj[c]; }
fbe2 } t[N];
ea71 inline int new_node(int L, int R, int S, int P) { t[en] = node(L, R, S, P); return en++; }
e33b void add_string(string s) {
9a02 \rightarrow s += '$'; S[++si] = s; sufn[si].resize(s.size() + 1); cn = cd = 0;
c5eb > int i = 0; const int n = s.size();
f90a \rightarrow for(int j = 0; j < n; j++)
fb3e > > for(; i <= j; i++) {
8d90 ⊳ ⊳
           if(cd == t[cn].len() && t[cn](s[j])) { cn = t[cn](s[j]); cd = 0; }
                if(cd < t[cn].len() && t[cn][cd] == s[j]) {
465b ⊳ ⊳
c4d2 ⊳ ⊳ ⊳ ⊳
                   cd++;
ce02 \rightarrow \rightarrow  \rightarrow  if(j < s.size() - 1) break;
4e6b ⊳ ⊳ ⊳
                   else {
aafd ▷ ▷ ▷ ▷
                       if(i) t[lst].suf = cn;
ac68 \triangleright \triangleright \triangleright \triangleright \triangleright
                        for(; i <= j; i++) { sufn[si][i] = cn; cn = t[cn].suf; }</pre>
cbb1 ▷ ▷ ▷ ▷
7 \operatorname{ced} \triangleright \triangleright \triangleright \}  else if(cd == t[cn].len()) {
0a2a \triangleright \triangleright \triangleright \quad sufn[si][i] = en;
0467 ⊳ ⊳ ⊳
                   if(i) t[lst].suf = en; lst = en;
aff4 ⊳ ⊳ ⊳ ⊳
                   t[cn](s[j]) = new_node(j, n - 1, si, cn);
02c2 ▷ ▷ ▷ ▷
                   cn = t[cn].suf; cd = t[cn].len();
9d97 \triangleright \triangleright } else {
                   int mid = new_node(t[cn].1, t[cn].1 + cd - 1, t[cn].si, t[cn].p);
f287 ▷ ▷ ▷ ▷
           \triangleright
               \triangleright
                   t[t[cn].p](t[cn][0]) = mid;
5201 ⊳ ⊳
                    if(ns) t[ns].suf = mid;
           \triangleright
0467 ⊳ ⊳
                   if(i) t[lst].suf = en; lst = en;
           \triangleright
0a2a ⊳ ⊳
                    sufn[si][i] = en;
cb00 ⊳ ⊳
                   t[mid](s[j]) = new_node(j, n - 1, si, mid);
7bfa ⊳ ⊳
                   t[mid](t[cn][cd]) = cn;
07fe ⊳ ⊳
                    t[cn].p = mid; t[cn].l += cd; cn = t[mid].p;
            \triangleright
                    int g = cn? j - cd : i + 1; cn = t[cn].suf;
5967 ⊳ ⊳
                    while(g < j \&\& g + t[t[cn](S[si][g])].len() <= j) {
c197 ⊳ ⊳
6fea ⊳ ⊳
                       cn = t[cn](S[si][g]); g += t[cn].len();
cbb1 ▷ ▷ ▷ ▷
                   if(g == j) { ns = 0; t[mid].suf = cn; cd = t[cn].len(); }
                    else { ns = mid; cn = t[cn](S[si][g]); cd = j - g; }
```

7.2 Z-function

```
2a61 void Z(char s[], int n, int z[]) { // z[i] = |lcp(s,s[i..n])|

fc15 ▷ for(int i = 1, m = -1; i < n; i++) {

d69b ▷ ▷ z[i] = (m != -1 && m + z[m] >= i)?min(m + z[m] - i, z[i - m]):0;

8a63 ▷ ▷ while (i + z[i] < n && s[i + z[i]] == s[z[i]]) z[i]++;

bbe8 ▷ ▷ if (m == -1 || i + z[i] > m + z[m]) m = i;

cbb1 ▷ }

cbb1 }
```

8 Math

8.1 Linear System Solver

```
d41d //const int N = ;
d41d
46cc double a[N][N];
3793 double ans[N];
d41d
d41d // sum(a[i][j] * x_j) = a[i][n] for 0 <= i < n
d41d // stores answer in ans and returns det(a)
c42a double solve(int n) {
f99b ⊳ double det = 1;
6033 \rightarrow for(int i = 0; i < n; i++) {
0268 \triangleright \triangleright int mx = i;
197a ⊳ ⊳
             for(int j = i + 1; j < n; j++)
b83d ⊳ ⊳
            if(abs(a[j][i]) > abs(a[mx][i]))
672f ⊳ ⊳
            \triangleright \qquad \triangleright \qquad \mathbf{mx} = \mathbf{j};
28c6 ▷ ▷ if(i != mx) {
            \rightarrow swap_ranges(a[i], a[i] + n + 1, a[mx]);
e83f ⊳ ⊳
0143 ⊳ ⊳
                 det = -det;
cbb1 ⊳ ⊳
997e ⊳ ⊳
            if(abs(a[i][i]) < 1e-6); // singular matrix</pre>
2f40 > det *= a[i][i];
94fe \rightarrow for(int j = i + 1; j < n; j++) {
12fe \rightarrow \rightarrow for(int k = i + 1; k \ll n; k++)
ea32 \quad \triangleright \quad \quad \triangleright \quad \quad a[j][k] \ \ \textbf{-=} \ \ (a[j][i] \ \ / \ \ a[i][i]) \ \ * \ \ a[i][k];
efbc ⊳ ⊳ ⊳
                 a[j][i] = 0;
cbb1 ⊳ ⊳
            }
cbb1 ⊳ }
45bd \rightarrow for(int i = n - 1; i >= 0; i--) {
7634 \triangleright ans[i] = a[i][n];
            for(int j = i + 1; j < n; j++)
197a ⊳ ⊳
            ans[i] -= a[i][j] * ans[j];
9b00 ⊳ ⊳
35e5 ⊳ ⊳
            ans[i] /= a[i][i];
cbb1 ⊳ }
7a32 ⊳ return det;
cbb1 }
```

8.2 Simplex

```
d41d //typedef long double dbl;
bec0 const dbl eps = 1e-6;
d41d //const int N = , M = ;
d41d
79ee struct simplex {
0643 > int X[N], Y[M];
6b50 > dbl A[M][N], b[M], c[N];
e268 > dbl ans;
14e0 > int n, m;
```

```
a00d ⊳ dbl sol[N];
d41d
c511 ⊳ void pivot(int x,int y){
eb91 \triangleright swap(X[y], Y[x]);
c057 ⊳ ⊳
           b[x] /= A[x][y];
8300 ⊳ ⊳
           for(int i = 0; i < n; i++)
7f61 ⊳ ⊳

    if(i != y)

d311 ⊳ ⊳
           3fa2 ⊳ ⊳
          A[x][y] = 1. / A[x][y];
94f7 ⊳ ⊳
           for(int i = 0; i < m; i++)
a325 ⊳ ⊳
           if(i != x && abs(A[i][y]) > eps) {
6856 ⊳ ⊳
              b[i] -= A[i][y] * b[x];
                  for(int j = 0; j < n; j++)
f90a ⊳ ⊳
           \triangleright
          ⊳⊳
6739 ⊳ ⊳

    if(j != y)

8c78 ⊳ ⊳ ⊳
                  e112 \triangleright \triangleright \triangleright \land A[i][y] = -A[i][y] * A[x][y];
cbb1 ▷ ▷ ▷ }
8c7e \Rightarrow ans += c[y] * b[x];
8300 \rightarrow for(int i = 0; i < n; i++)
7f61 ▷ ▷ if(i != y)
bec1 > > > c[i] -= c[y] * A[x][i];
0997 ⊳ ⊳
           c[y] = -c[y] * A[x][y];
cbb1 ⊳ }
d41d
d41d \triangleright // maximize sum(x[i] * c[i])
d41d _{\triangleright} // element a
d41d \rightarrow // sum(a[i][j] * x[j]) \leftarrow b[i] for 0 \leftarrow i < m (Ax \leftarrow b)
d41d \rightarrow // x[i] >= 0 \text{ for } 0 <= i < n (x >= 0)
d41d \triangleright // (n \text{ variables, m constraints})
d41d \triangleright // stores the answer in ans and returns optimal value
59d9 ⊳ dbl solve(int n, int m) {
1f59 \rightarrow this->n = n; this->m = m;
f1bf ⊳ ⊳
           ans = 0.;
b1c6 ⊳ ⊳
           for(int i = 0; i < n; i++) X[i] = i;
3e36 ⊳ ⊳
           for(int i = 0; i < m; i++) Y[i] = i + n;
6679 ⊳ ⊳
           while(true) {
           int x = min_element(b, b + m) - b;
ee39 b
           \triangleright if(b[x] >= -eps)
988b b
c2be ⊳ ⊳
              break;
           int y = find_if(A[x], A[x] + n, [](dbl d) { return d < -eps; }) - A[x];</pre>
49a2 ⊳ ⊳
6f8c \triangleright \triangleright \vdash if(y == n) throw 1; // no solution
7fb4 \triangleright \triangleright pivot(x, y);
cbb1 ▷ ▷ }
6679 ▶ while(true) {
f802 ⊳ ⊳
           int y = max_element(c, c + n) - c;
b7b6 ⊳ ⊳
               if(c[y] <= eps) break;</pre>
d6b5 ⊳ ⊳
               int x = -1;
06d7 ⊳ ⊳
              dbl mn = 1. / 0.;
94f7 ⊳ ⊳ ⊳
               for(int i = 0; i < m; i++)
          ⊳
              b if(A[i][y] > eps && b[i] / A[i][y] < mn)</pre>
5877 ⊳ ⊳
          \triangleright
832b ⊳ ⊳
                 b = mn = b[i] / A[i][y], x = i;
ff22 ⊳ ⊳
              if(x == -1) throw 2; // unbounded
7fb4 ⊳ ⊳
              pivot(x, y);
cbb1 ⊳ ⊳
d094 ⊳ ⊳
           memset(sol, 0, sizeof(dbl) * n);
94f7 ⊳ ⊳
           for(int i = 0; i < m; i++)
cff4 ⊳ ⊳
           \rightarrow if(Y[i] < n)
09d7 ⊳ ⊳
           ha75 ⊳ ⊳
           return ans:
cbb1 ⊳ }
2145 };
```

9 Number Theory

9.1 Extended Euclidean Algorithm

```
8273 b if (b == 0) return x = 1, y = 0, a;

98d1 b int xx, yy;

0c0d b int g = egcd(b, a % b, xx, yy);

512d b x = yy;

a9d0 b y = xx - (a / b) * yy;

96b5 b return g;

cbb1 }
```

9.2 Miller-Rabin

```
a288 llu llrand() { llu a = rand(); a<<= 32; a+= rand(); return a;}
0a9c int is_probably_prime(llu n) {
        if (n <= 1) return 0;
8dbf
2373
        if (n <= 3) return 1;
7de1
        llu s = 0, d = n - 1;
66b4
        while (d % 2 == 0) {
90f4
           d/= 2; s++;
cbb1
6b3a
        for (int k = 0; k < 64; k++) {
           llu \ a = (llrand() \% (n - 3)) + 2;
12c0
dc17
           llu x = exp_mod(a, d, n);
1181
           if (x != 1 \&\& x != n-1) {
f0ea
               for (int r = 1; r < s; r++) {
708d
                  x = mul_mod(x, x, n);
61d9
                   if (x == 1)
bb30
                      return 0;
68b2
                   if (x = n-1)
c2be
                      break;
cbb1
               if (x != n-1)
34bc
                  return 0;
bb30
cbb1
           }
cbb1
        }
6a55
        return 1;
cbb1 }
```

9.3 Diofantine

```
d41d // find all solutions in the form ax + by = c
080f void shift_solution(int & x, int & y, int a, int b, int cnt) {
526a
        x += cnt * b;
fdfb
        y -= cnt * a;
cbb1 }
d41d
f0f5 int find_all_solutions(int a, int b, int c, int minx, int maxx, int miny, int maxy) {
ede5
        int x, y, g;
7968
        if (!find_any_solution(a, b, c, x, y, g))
bb30
           return 0;
fe72
        a /= g;
ee2d
        b /= g;
d41d
0750
        int sign_a = a > 0 ? +1 : -1;
f8be
        int sign_b = b > 0 ? +1 : -1;
d41d
ab53
        shift_solution(x, y, a, b, (minx - x) / b);
5969
        if (x < minx)</pre>
8a96
           shift_solution(x, y, a, b, sign_b);
6bcc
        if (x > maxx)
bb30
           return 0;
57f8
        int 1x1 = x;
d41d
9870
        shift_solution(x, y, a, b, (maxx - x) / b);
6bcc
        if (x > maxx)
f6f8
           shift_solution(x, y, a, b, -sign_b);
eb5e
       int rx1 = x;
d41d
```

```
7672
        shift_solution(x, y, a, b, -(miny - y) / a);
a697
        if (y < miny)</pre>
bf53
           shift_solution(x, y, a, b, -sign_a);
a1de
        if (y > maxy)
bb30
           return 0;
        int 1x2 = x;
8e42
d41d
        shift_solution(x, y, a, b, -(maxy - y) / a);
e322
a1de
        if (y > maxy)
b156
           shift_solution(x, y, a, b, sign_a);
481c
        int rx2 = x;
d41d
        if (1x2 > rx2)
473e
           swap(1x2, rx2);
e723
2b9f
        int 1x = max(1x1, 1x2);
037c
        int rx = min(rx1, rx2);
d41d
f0c5
        if (lx > rx)
bb30
           return 0;
        return (rx - lx) / abs(b) + 1;
ebb8
cbb1 }
```

10 Notes

10.1 Modular Multiplicative Inverse

- If gcd(a, m) = 1, then let ax + my = gcd(a, m) = 1 (Bezout's Theorem). Then $ax \equiv 1 \pmod{m}$.
- If gcd(a, m) = 1, then $a \cdot a^{\phi(m)-1} \equiv 1 \pmod{m}$ (Euler's Theorem).
- If *m* is prime, then $\phi(m) = m 1$, so $a * a^{m-2} \equiv 1 \pmod{m}$.

10.2 Chinese Remainder Theorem

We are given $N = n_1 n_2 \cdots n_k$ where n_i are pairwise coprime. We are also given $x_1 \cdots x_k$ such that $x \equiv x_i \pmod{n_i}$. Let $N_i = N/n_i$. There exists M_i and m_i such that $M_i N_i + m_i n_i = 1$ (Bezout). Then, there is only one solution x, given by: $x = \sum_{i=1}^k a_i M_i N_i$

10.3 Euler's Totient Function

Positive integers up to a given integer n that are relatively prime to n. $\varphi(n) = n \prod_{p \mid n} \left(1 - \frac{1}{p}\right)$ where the product is over the distinct prime numbers dividing n.

10.4 Möebius

If
$$F(n) = \sum_{d|n} f(d)$$
, then $f(n) = \sum_{d|n} \mu(d)F(n/d)$.

10.5 Burnside

Let $A: GX \to X$ be an action. Define:

- w := number of orbits in X.
- $\bullet \ \ S_x := \{g \in G \mid g \cdot x = x\}$
- $F_g := \{x \in X \mid g \cdot x = x\}$

Then
$$w = \frac{1}{|G|} \sum_{x \in X} |S_x| = \frac{1}{|G|} \sum_{g \in G} |F_g|$$
.

10.6 Catalan Number

 C_n is solution for:

- Number of correct bracket sequence consisting of *n* opening and *n* closing brackets.
- The number of rooted full binary trees with n + 1 leaves (vertices are not numbered). A rooted binary tree is full if every vertex has either two children or no children.
- The number of ways to completely parenthesize n + 1 factors.
- The number of triangulations of a convex polygon with n + 2 sides (i.e. the number of partitions of polygon into disjoint triangles by using the diagonals).
- The number of ways to connect the 2n points on a circle to form n disjoint chords.
- The number of non-isomorphic full binary trees with *n* internal nodes (i.e. nodes having at least one son).
- The number of monotonic lattice paths from point (0,0) to point (n,n) in a square lattice of size $n \times n$, which do not pass above the main diagonal (i.e. connecting (0,0) to (n,n)).
- Number of permutations of length n that can be stack sorted (i.e. it can be shown that the rearrangement is stack sorted if and only if there is no such index i < j < k, such that $a_k < a_i < a_j$).
- The number of non-crossing partitions of a set of *n* elements.
- The number of ways to cover the ladder $1 \dots n$ using n rectangles (The ladder consists of n columns, where i^{th} column has a height i).

Recursive:

$$C_0 = C_1 = 1$$

$$C_n = \sum_{k=0}^{n-1} C_k C_{n-1-k}, n \ge 2$$

Analytical:

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

10.7 Landau

There is a tournament with outdegrees $d_1 \le d_2 \le ... \le d_n$ iff:

- $d_1 + d_2 + \ldots + d_n = \binom{n}{2}$
- $d_1 + d_2 + \ldots + d_k \ge {k \choose 2}$ $\forall 1 \le k \le n$.

In order to build it, let 1 point to 2, 3, ..., $d_1 + 1$ and repeat recursively.

10.8 Erdös-Gallai

There is a simple graph with degrees $d_1 \ge d_2 \ge ... \ge d_n$ iff:

- $d_1 + d_2 + ... + d_n$ is even
- $\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k) \quad \forall 1 \le k \le n.$

In order to build it, connect 1 with $2, 3, \dots, d_1 + 1$ and repeat recursively.

10.9 Gambler's Ruin

In a game in which we win a coin with probability p and lose a coin with probability q := 1 - p, the game stops when we win B ou lose A coins. Then $Prob(\text{win B}) = \frac{1 - (p/q)^B}{1 - (p/q)^{A+B}}$.

10.10 Extra

• Fib(x + y) = Fib(x + 1)Fib(y) + Fib(x)Fib(y - 1)