

Density Functional Embedding Theory (DFET)

Density Functional Embedding Theory (DFET)

- Wave Function Theory methods like MP2, CCSD(T), etc.
- Real Time Time Dependent Density Functional Theory (RT-TDDFT)

DFET in a nutshell

DFET in a nutshell

DFET is well suited for the study of ...

The region of interest is usually small

Lower level of theory: LDA/GGA - DFT

The region of interest is usually small

Lower level of theory: LDA/GGA - DFT

The region of interest is usually small

The region of interest is usually small

Periodic Boundary Conditions

Periodic Boundary Conditions → unrealistic surface coverages

Periodic Boundary Conditions \rightarrow unrealistic surface coverages

Density Functional Embedding Theory

$$E_{DFT}[
ho({f r})]=E_{gs}$$

Density Functional Embedding Theory

Density partition:

$$\rho^{\rm tot} = \rho^{\rm clu} + \rho^{\rm env}$$

Lower level of theory: DFT

 o^{env}

Density Functional Embedding Theory

$V_{ m emb}\left[ho^{ m clu}, ho^{ m env} ight]$ Strategies for Embedding Potential Construction

Model System

Strategies for Embedding Potential Construction $V_{\mathrm{emb}}\left[ho^{\mathrm{clu}}, ho^{\mathrm{env}} ight]$

Method 1 (approximate)

Strategies for Embedding Potential Construction $V_{\mathrm{emb}}\left[ho^{\mathrm{clu}}, ho^{\mathrm{env}} ight]$

Method 1 (approximate)

Strategies for Embedding Potential Construction $V_{\mathrm{emb}}[ho^{\mathrm{clu}}, ho^{\mathrm{env}}]$

$$\begin{split} V_{\text{emb}}^{\text{clu}}\left[\rho^{\text{clu}},\rho^{\text{env}}\right](\mathbf{r}) &= \frac{\delta E^{\text{int}}\left[\rho^{\text{clu}},\rho^{\text{env}}\right]}{\delta\rho^{\text{clu}}} \\ &= V_{\text{ne}}^{\text{env}}(\mathbf{r}) + \int \frac{\rho^{\text{env}}(\mathbf{r})}{|\mathbf{r}-\mathbf{r}'|} \mathrm{d}\mathbf{r}' + V_{\text{xc}}^{\text{tot}}(\mathbf{r}) - V_{\text{xc}}^{\text{clu}}(\mathbf{r}) + \underbrace{\delta T_{\text{s}}^{\text{nadd}}\left[\rho^{\text{clu}},\rho^{\text{env}}\right]}_{\delta\rho^{\text{clu}}} \\ &= Cluster \\ \text{(relaxed)} \\ \rho^{\text{clu}} \end{split}$$
 Environment (frozen) $\rho_{\text{iso}}^{\text{env}}$

Strategies for Embedding Potential Construction

 $V_{
m emb}ig[
ho^{
m clu},
ho^{
m env}ig]$

Method 2 (approximate)

Strategies for Embedding Potential Construction

 $V_{
m emb}\left[
ho^{
m clu},
ho^{
m env}
ight]$

Method 2 (approximate)

Strategies for Embedding Potential Construction V

 $V_{
m emb}[
ho^{
m clu},
ho^{
m env}]$

Method 2 (approximate)

Strategies for Embedding Potential Construction

$$V_{
m emb}ig[
ho^{
m clu},
ho^{
m env}ig]$$

Method 3 (exact)

Projection Operator based Embedding

Strategies for Embedding Potential Construction $V_{\rm emb} \left[\rho^{\rm clu}, \rho^{\rm env} \right]$

$$V_{
m emb}\left[
ho^{
m clu},
ho^{
m env}
ight]$$

$$\mathbf{V}_{\mathrm{emb}} = \mathbf{V}_{\mathrm{nuc}}^{\mathrm{env}} + \mathbf{J}_{\mathrm{elec}}^{\mathrm{env}} + \mathbf{X}_{\mathrm{nadd}} + \mathbf{P}_{\mathrm{B}}$$

Method 3 (exact)

Projection Operator

$$\mathbf{P}_{\mathrm{B}} = \mu \mathbf{S}^{\mathrm{AB}} \mathbf{D}^{\mathrm{B}} \mathbf{S}^{\mathrm{BA}} \quad \mathrm{with} \ \ \mu = 10^6$$

Projection Operator based Embedding

Strategies for Embedding Potential Construction

Results

Ground state properties with DFET

Molecule-in-molecule DFET

$$E_b = E_{tot} - E_A - E_B$$

System/Method	E _b (DFET) Method 1	E _b (DFET) Method 1 + F&T Supermolecular Basis	E _b (DFET) Method 3 + F&T Supermolecular Basis	E _b (DFT) Reference
$H_2O - H_2O$	-24.87	-22.39	-20.57	-20.57
HF - HF	-17.28	-18.59	-19.09	-19.09
CH ⁺ ₃ - CH ⁻ ₃	-619.32	-2412.84	-1521.84	-1521.84
Energies in k.l/mol		101		

$$E_b = E_{tot} - E_A - E_B$$

System/Method	E _b (DFET) Method 1	E _b (DFET) Method 1 + F&T Supermolecular Basis	E _b (DFET) Method 3 + F&T Supermolecular Basis	E _b (DFT) Reference
$H_20 - H_20$	-24.87	-22.39	-20.57	-20.57
HF - HF	-17.28	-18.59	-19.09	-19.09
CH ⁺ ₃ - CH ⁻ ₃	-619.32	-2412.84	-1521.84	-1521.84

$$E_b = E_{tot} - E_A - E_B$$

System/Method	E _b (DFET) Method 1	E _b (DFET) Method 1 + F&T Supermolecular Basis	E _b (DFET) Method 3 + F&T Supermolecular Basis	E _b (DFT) Reference
H ₂ 0 - H ₂ 0	-24.87	-22.39	-20.57	-20.57
HF - HF	-17.28	-18.59	-19.09	-19.09
CH ⁺ ₃ - CH ⁻ ₃	-619.32	-2412.84	-1521.84	-1521.84
Enorgies in k I/mol		1 10 1		

$$E_b = E_{tot} - E_A - E_B$$

System/Method	E _b (DFET) Method 1	E _b (DFET) Method 1 + F&T Supermolecular Basis	E _b (DFET) Method 3 + F&T Supermolecular Basis	E _b (DFT) Reference
H ₂ 0 - H ₂ 0	-24.87	-22.39	-20.57	-20.57
HF - HF	-17.28	-18.59	-19.09	-19.09
CH ⁺ ₃ - CH ⁻ ₃	-619.32	-2412.84	-1521.84	-1521.84

Results

Ground state properties with DFET

Periodic-in-periodic DFET

Periodic-in-periodic DFET

Ground state total energies (a.u.)

System/Method	DFT	$\Delta E = E_{DFET} - E_{DFT}$
Polyethylene 1D (32 x 1 x 1 k-mesh)	-78.457114	2 x 10 ⁻⁶
Neoprene 1D (10 x 1 x 1 <i>k</i> -mesh)	-614.9723856	1.2 x 10 ⁻⁶
Diamond 3D (10 x 10 x 10 <i>k</i> -mesh)	-304.3591154	2.1 x 10 ⁻⁶

- Polyethylene 1D periodic chain
- Labelled atoms treated as one subsystem

Details:

- Basis: def2-SVP
- PBE-in-PBE FDE
- with Projection operator and supermolecular basis
- 5 freeze-thaw cycles

Results

Ground state properties with DFET

Molecule-in-periodic DFET

Molecule-in-periodic DFET

Error in density wrt reference total DFT density e/A³ using Method 3

1000	Periodic-in-Periodic	Molecule-in-Periodic	Isolated Fragments
Max Abs. Error	0.0002	0.0026	0.0464
Mean Abs. Error	1.3E-05	0.000775	0.014105

Results

Ground state properties with DFET

Molecule-in-periodic DFET

coupled with CCSD(T)

Adsorption Energy : H_2 (molecule) on H_{10} (periodic)

H₂ (molecule)

 H_{10} (1D periodic chain)

Adsorption Energy : H_2 (molecule) on H_{10} (periodic)

Results

Excited state properties with DFET

Molecule-in-molecule DFET coupled with CC2

Solvated Molecules

First excitation energies (eV) from supermolecular second-order approximate coupled cluster singles and doubles (CC2) and the CC2-DFET errors

System/Method	CC2 Isolated	CC2 Supermolecular	CC2-DFET Method 1 ΔE	CC2-DFET Method 1 F&T ΔE	CC2-DFET Method 2 ΔE
Acrolein + water $n o \pi^*$	3.71	4.10	0.00	-0.10	-0.62
MCP + water $\pi o \pi^*$	4.61	5.15	0.03	-0.11	-0.03

Adenine-Thymine base pair

Lowest excitation energies (eV) for thymine-adenine pair and the CC2-DFET errors

Transiti	ion/Method	CC2 Isolated	CC2 Supermolecular	CC2-DFET Method 1 <i>AE</i>	CC2-DFET Method 1 F&T ΔE	CC2-DFET Method 2 ΔE
Thymine	$n o \pi^*$	5.20	5.34	0.00	-0.03	-0.16
Adenine	$\pi ightarrow \pi^*$	5.56	5.52	0.00	-0.03	-0.04
Adenine	$n o \pi^*$	5.38	5.58	0.02	-0.03	-0.02
Thymine	$\pi ightarrow \pi^*$	5.74	5.65	-0.05	-0.04	-0.08
Adenine	$\pi ightarrow \pi^*$	5.79	5.74	-0.03	-0.02	-0.04
Adenine	$n o \pi^*$	6.01	6.13	-0.01	-0.04	-0.11

Results

Excited state properties with DFET

Molecule-in-periodic DFET

coupled with CC2

Acetone-in-Water

3D Periodicity, 113 water molecules

First excitation energy (eV)

CC2 Isolated	CC2 Acetone+(H ₂ O) ₂₀	CC2 Acetone+(H ₂ 0) ₃₅	CC2 Acetone+(H ₂ O) ₄₈	CC2-DFET Method 3 Supermolecular basis	CC2-DFET Method 3 Supermolecular basis F&T
4.29	4.47	4.46	4.50	4.49	4.59

Results

Excited state properties with DFET Molecule-in-molecule DFET

coupled with RT-TDDFT

Test case: LiH (Excitations of H- uncoupled with Li+)

Method 1 (5 freeze-thaw cycles) and supermolecular basis

Parameters

XC: PBE; KEDF: LC94; Basis set: def2-TZVPPD Evolution Time: 700 au, Time step size: Δt =0.1 au, Damping: γ = 0.008 au, PC scheme for time integration, Electric field parameters: E_0 = 2 · 10⁻⁵ au, t_0 = 3 au, w = 0.2 au

Test case: LiH (Excitations of H- uncoupled with Li+)

Method 3 (5 freeze-thaw cycles) and supermolecular basis

Parameters

XC: PBE; KEDF: LC94; Basis set: def2-TZVPPD Evolution Time: 700 au, Time step size: Δt =0.1 au, Damping: γ = 0.008 au, PC scheme for time integration, Electric field parameters: E_0 = 2 · 10⁻⁵ au, t_0 = 3 au, w = 0.2 au

KEDF (5 freeze-thaw cycles) and supermolecular basis

Benzene-Fulvene Dimer at 4 Angs. separation

Parameters

XC: PBE; KEDF: LC94; Basis set: def2-TZVPPD Evolution Time: 1000 au, Time step size: Δt =0.1 au, Damping: γ = 0.004 au, PC scheme for time integration, Electric field parameters: E_0 = 2 · 10⁻⁵ au, t_0 = 3 au, w = 0.2 au

Projection Operator (5 freeze-thaw cycles) and supermolecular basis

Benzene-Fulvene Dimer at 4 Angs. separation

Parameters

XC: PBE; KEDF: LC94; Basis set: def2-TZVPPD Evolution Time: 1000 au, Time step size: Δt =0.1 au, Damping: γ = 0.004 au, PC scheme for time integration, Electric field parameters: E_0 = 2 · 10⁻⁵ au, t_0 = 3 au, w = 0.2 au

Summary

- DFET using Gaussian basis functions: useful to study Complex systems.
- Molecule-in-molecule, molecule-in-periodic and periodic-in-periodic DFET have been implemented using efficient techniques.
- DFET coupled with WFT methods offers a reasonably improved description of ground and excited state properties.
- DFET coupled with RT-TDDFT provides reasonably accurate absorption spectra.

Outlook

- Molecule-in-periodic DFET using **Projection operator** (Method 3) for strongly interacting systems.
- Couple **DFET with HHG** to investigate light-matter interactions of **functionalized surfaces**.
- Explore ways to circumvent the use of supermolecular basis.

Acknowledgement

My Supervisor: **Prof. Dr. Marek Sierka**

Otto Schott Institute of Materials Research FSU Jena

https://www.cmsg.uni-jena.de

https://www.noa.uni-jena.de

Thank you very much for your attention!