Algorytmy metaheurystyczne

Problem komiwojażera euklidesowego. Symulowane Wyżarzanie. Tabu Search. Karol Janic $16~{\rm grudnia}~2023$

Spis treści

1	Cel zadania	2
2	Opis algorytmów2.1 Symulowane wyżarzanie	2 2 2
3	Dane testowe	2
4	Strojenie parametrów 4.1 Symulowane wyżarzanie	3
5	Wnioski	4

1 Cel zadania

Celem zadania jest sprawdzenie skuteczności heurystyki symulowanego wyżarzania oraz tabu search na przykładzie euklidesowego problemu komiwojażera oraz zbadanie wpływu wyboru parametrów tych heurystyk, rozwiązania początkowego i metody generowania otoczenia na jakość rozwiązania.

2 Opis algorytmów

2.1 Symulowane wyżarzanie

Metaheurystyka polega na przeszukiwaniu przestrzeni rozwiązań w celu znalezienia rozwiązania optymalnego. W każdym kroku algorytmu wybierane jest rozwiązanie z otoczenia aktualnego rozwiązania. Jeżeli rozwiązanie to jest lepsze od aktualnego, to staje się ono aktualnym rozwiązaniem. W przeciwnym wypadku, rozwiązanie to staje się aktualnym rozwiązaniem z pewnym prawdopodobieństwem. Prawdopodobieństwo to maleje wraz z upływem czasu poprzez ustalnie aktualnej temperatury, która zmniejsza się w czasie. Zatem w początkowej fazie algorytmu prawdopodobieństwo wybrania gorszego rozwiązania jest większe, a w końcowej małe.

Początkowa temperatura ustalana jest jako $T := \alpha N$, gdzie N to liczba wierzchołków. Szukanie rozwiązania podzielone jest na epoki o ustalonej liczbie iteracji równej $S := \gamma T$. Po każdej epoce aktualna temperatura jest zmniejszana o ustalony czynnik: $T' := \beta T$. Rozwiązanie szukane jest do momentu gdy od ustalonej liczby iteracji $M := \delta N$ nie udało się znaleźć lepszego rozwiązania.

Rozważane są dwa sposoby generowania otoczenia: pełne(sprawdzenie wszystkich sąsiadów) oraz losowe(sprawdzenie N losowych sąsiadów). Rozważanym otoczeniem jest otoczenie INVERT. Sprawdzane są także dwa sposoby generowania rozwiązania początkowego: losowe oraz oparte o MST.

2.2 Tabu Search

Metaheurystyka polega na przeszukiwaniu przestrzeni rozwiązań w celu znalezienia rozwiązania optymalnego. W każdym kroku algorytmu wybierane jest takie rozwiązanie z otoczenia aktualnego rozwiązania aby było ono najlepsze spośród wszystkich rozwiązań w otoczeniu oraz nie znajdowało się na liście tabu. Jeżeli rozwiązanie to jest lepsze od aktualnego, to staje się ono aktualnym rozwiązaniem. Każde rozwiązanie dodawane jest do listy tabu na określoną liczbę iteracji. W ten sposób algorytm może wyjść z lokalnego minimum.

Maksymalna długość listy tabu ustalana jest jako $L := \alpha N$, gdzie N to liczba wierzchołków. Gdy lista tabu jest pełna, to usuwane jest z niej najstarsze rozwiązanie. Rozwiązanie szukane jest do momentu gdy od ustalonej liczby iteracji $M := \beta N$ nie udało się znaleźć lepszego rozwiązania.

Rozważane są dwa sposoby generowania otoczenia: pełne(sprawdzenie wszystkich sąsiadów) oraz losowe(sprawdzenie N losowych sąsiadów). Rozważanym otoczeniem jest otoczenie INVERT. Sprawdzane są także dwa sposoby generowania rozwiązania początkowego: losowe oraz oparte o MST.

3 Dane testowe

Opisane wyżej metaheurystyki zostały nastrojone oraz testowane na przykładach z https://www.math.uwaterloo.ca/tsp/vlsi/index.html.

4 Strojenie parametrów

Proces strojenia polegał na sprawdzenie wpływu zmiany poszczególnych parametrów na jakość rozwiązania. Został on przeprowadzony na kilku mniejszych przykładach. Wykresy poniżej prezentują minimalną wagę cyklu, średnią wagę cyklu oraz średni czas działania heurystyki dla jednej iteracji w zależności od wyboru parametrów. Zostały one wyznaczone na podstawie 10 uruchomień heurystyki dla każdej kombinacji parametrów.

- 4.1 Symulowane wyżarzanie
- 4.1.1 Wpływ zmiany temperatury początkowej
- 4.2 Tabu Search

	Suma wag	Suma wag	Suma wag	Suma wag	Suma wag	
Przykład	rozwiązania	kandydata	najlepszego	$_{ m najlepszego}$	najlepszego	
	optymalnego	opartego o MST	rozwiązania LS1	rozwiązania LS2	rozwiązania LS3	
xqf131	564	718	596	578	880	
xqg237	1019	1445	1067	1062	1676	
pma343	1368	1883	1436	1424	2312	
pka379	1332	1855	1398	1399	2271	
bcl380	1621	2319	1711	1728	3095	
pbl395	1281	1871	1351	1359	2390	
pbk411	1343	1935	1421	1426	2521	
pbn423	1365	1918	1453	1454	2473	
pbm436	1443	2119	1532	1535	2685	
xql662	2513	3691	2661	2707	4926	
xit1083	3558	5190	3803	3919	7256	
icw1483	4416	6754	4757	4839	9293	
djc1785	6115	8908	6477	6697	12617	
dcb2086	6600	9777	7107	7313	14780	
pds2566	7643	11427	8182	8506	17506	

	Rozwiązania LS1		Rozwiązania LS2			Rozwiązania LS3			
Przykład	ykład liczba suma wag		ıa wag	liczba suma wag		liczba suma wag		a wag	
	popraw	średnia	minimum	popraw	średnia	minimum	popraw	średnia	minimum
xqf131	28.8	601.9	596	133.3	612.4	578	111.9	1044.4	880
xqg237	37.0	1083.7	1067	260.5	1115.8	1062	225.2	2090.4	1676
pma343	75.8	1450.3	1436	403.5	1484.7	1424	366.3	2835.0	2312
pka379	78.9	1416.3	1398	448.7	1445.9	1399	408.9	2769.7	2271
bcl380	62.7	1749.3	1711	446.7	1817.5	1728	374.2	3827.0	3095
pbl395	80.0	1371.5	1351	458.8	1429.0	1359	387.4	2952.4	2390
pbk411	81.6	1437.9	1412	483.7	1488.5	1426	406.6	3162.3	2512
pbn423	72.3	1473.9	1453	497.0	1521.6	1454	419.8	3200.2	2473
pbm436	97.85	1562.5	1543	512.8	1612.0	1535	433.4	3363.1	2685
xql662	122.6	2690.4	2661	811.4	2813.3	2707	697.2	6035.1	4926
xit1083	191.6	3847.2	3803	1383.7	4021.2	3919	1212.0	9052.2	7256
icw1483	278.8	4809.8	4757	1929.4	4990.5	4839	1695.5	11436.9	9293
djc1785	382.6	6533.8	6477	2348.9	6872.1	6697	2065.4	15529.9	12617
dcb2086	390.9	7154.2	7107	2796.6	7457.8	7313	2457.2	17776.7	7107
pds2566	457.3	8271.4	8182	3485.9	8701.8	8506	3052.0	21375.1	17506

Tabela 1: Podsumowanie działania Local Search dla problemu komiwojażera.

5 Wnioski

- Rozwiązanie początkowego tworzone na podstawie MST skraca czas działania algorytmu w porównaniu do losowego rozwiązania początkowego
- Rozwiązanie początkowego tworzone na podstawie MST prowadzi do uzyskana lepszej średniej wyników w porównaniu do losowego rozwiązania początkowego
- Losowe rozwiązanie początkowe dla mniejszych danych prowadzi do znalezienia lepszego minumum w porównaniu do rozwiązanie początkowego tworzone na podstawie MST
- Algorytm Local Search przeglądający całe otoczenie invert "rozplątuje" skrzyżowania. Nie jest to prawdą, gdy rozpatrywana jest wyłącznie losowa część otoczenia
- Przeglądanie części otoczenia skraca czas działa algorytmu ale prowadzi do gorszych rezultatów