

Energy demand model for CREEM

Wojciech Adaszynski

The problem

Finding good model for predicting energy consumption of building in the system.

Goals

- A method to calculate energy forecast.
- Efficient algorithm for retrieving and processing data from database.
 - Increase in accuracy of our predictions.

Current method

$$\delta = 17.25\%$$

Current method

$$\delta = 38\%$$

- 1) Find relevant patterns in the consumption
 - 2) Cluster data to smaller chunks
 - 3) Apply two-variable regression

How to divide our measurements?

Finding correlation.

$$X = [x : x = | Internal - temperature |]$$

$$Y = \{ y : y = consumption - Profile \}$$

How to improve our model?

- 1) Set division based on HDD/CDD
 - 2) Checking variables correlation
 - 3) Baseload?

Checking variables correlation

Pearson correlation coefficient throughout the day

Set division based on HDD/CDD

Final results

Before: $\delta = 23.3\%$

After: $\delta = 20.2\%$

Future improvements

- 1) Different correlation type (Fouriers 1st polymonial?)
 - 2) Subtracting baseload from consumption
 - 3) Decision analysis / removing outliers

Implementation

Links

https://github.com/wojciechAdaszynski/EnergyForecaster https://en.wikipedia.org