

## 第六章 参数估计

言浬 特聘研究员 网络空间安全学院

2025年4月





## 什么是参数估计

参数通常是刻画总体某些概率特征的数量。

例如,正态分布  $N(\mu, \sigma^2)$  中的参数  $\mu$  就是该分布的均值,参数  $\sigma^2$  是该分布的方差。

当该参数未知时,从总体中抽取一个样本,用某种方法对该未知参数进行估计,这就是参数估计。

例如,假设总体  $X \sim N(\mu, \sigma^2)$ ,若参数  $\mu$  与  $\sigma^2$  未知。

先从该总体中抽样得到样本  $X_1, X_2, ..., X_n$ , 然后构造样本函数, 求出未知参数 $\mu$ 与  $\sigma^2$  的估计值或取值范围, 这就是参数估计。

假设总体  $X \sim F(x; \theta_1, \theta_2, ..., \theta_m)$ , 其中分布函数 F 的表达式已知,但参数  $\theta_1, \theta_2, ..., \theta_m$ 未知.

若记  $\theta = (\theta_1, \theta_2, ..., \theta_m)$  , 则总体分布可记为:  $X \sim F(x; \theta)$ 

参数 $\theta$  的取值范围称为参数空间,记为 $\Theta$ .

例如  $X \sim B(1, p)$ , p为未知参数,则参数空间为:

$$\Theta = \{ p \mid 0$$

又如  $X \sim N(\mu, \sigma^2)$ ,  $\mu$ ,  $\sigma^2$  为未知参数,则参数空间为:

$$\Theta = \{ (\mu, \sigma^2) \mid -\infty < \mu < \infty, \sigma^2 > 0 \}$$

## 点估计的思想

 $X_1, X_2, ..., X_n$  是来自总体  $X \sim F(x; \theta_1, ..., \theta_m)$  的一个样本, $\theta_1, ..., \theta_m$ 是未知参数。

构造 m 个:

随机变量 
$$\begin{cases} \hat{\theta}_1(X_1, X_2, \cdots, X_n) \\ \hat{\theta}_2(X_1, X_2, \cdots, X_n) \\ \vdots \\ \hat{\theta}_m(X_1, X_2, \cdots, X_n) \end{cases}$$

当把样本观测值  $x_1$ ,  $x_2$ , ...,  $x_n$ 代入上述统计量 里, 就得到 m 个数值:

数值 
$$\begin{cases} \hat{\theta}_1(x_1, x_2, \dots, x_n) \\ \hat{\theta}_2(x_1, x_2, \dots, x_n) \\ \vdots \\ \hat{\theta}_m(x_1, x_2, \dots, x_n) \end{cases}$$

称  $\hat{\theta}_k(X_1, X_2, \dots, X_n)$  为  $\theta_k$  的估计量  $(k=1,2,\dots,m)$ ; 称  $\hat{\theta}_k(x_1, x_2, \dots, x_n)$  为  $\theta_k$  的估计值  $(k=1,2,\dots,m)$ 。

- 问题 1) 如何构造统计量?
  - 2) 如何评价统计量?

● 常用的点估计方法

矩估计法 极大似然估计法 最小二乘估计法 贝叶斯方法



## 矩估计的思想

假设总体  $X \sim F(x; \theta_1, \theta_2, ..., \theta_m)$ , 参数  $\theta_1, \theta_2, ..., \theta_m$ 未知。 且总体的 m 阶矩存在:

$$\mu_k(\theta_1,\theta_2,\cdots,\theta_m)=E(X^k) \quad (k=1,2,\cdots,m)$$

设 $X_1, X_2, ..., X_n$  是来自总体 X 的一个样本,则由辛钦大数定律,有:

$$A_k = \frac{1}{n} \sum_{i=1}^n X_i^k \xrightarrow{P} \mu_k (\theta_1, \theta_2, \dots, \theta_m), \quad n \to \infty.$$

### 因此当n较大时有:

$$A_k = \frac{1}{n} \sum_{i=1}^n X_i^k \approx \mu_k(\theta_1, \theta_2, \dots, \theta_m). (k = 1, 2, \dots, m)$$

用样本矩心阶矩

其解  $\hat{\theta}_{\iota}(X_1, X_2, \dots, X_n)$  称为  $\theta_{\iota}$  的矩估计量 (k=1, 2, ..., m)

例  $X_1, X_2, ..., X_n$  是来自总体  $X \sim P(\lambda) (\lambda > 0)$  的一个样本,求未知参数  $\lambda$  的矩估计量。

解 因为总体  $X \sim P(\lambda)$ , 所以有

$$E(X) = \lambda$$

由矩估计原理,用样本一阶矩,即样本均值  $\bar{X}$  代替总体均值 E(X),得到

$$\bar{X} = \lambda \implies \hat{\lambda} = X$$

命题 不论总体 X 服从什么分布,若其期望  $\mu$  和方差  $\sigma^2$  的存在,则  $\mu$  和  $\sigma^2$  的矩估计量分别为:

$$\hat{\mu} = \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2 \triangleq \tilde{S}^2$$

例 设 $X_1$ ,  $X_2$ , ...,  $X_n$  是来自总体  $X \sim N(\mu, \sigma^2)$  的一个样本, 求未知参数  $\mu$ ,  $\sigma^2$  的矩估计量。

解 因为正态分布  $N(\mu, \sigma^2)$  的期望是  $\mu$ ,方差是  $\sigma^2$ ,所以由上命题得到  $\mu, \sigma^2$  的矩估计量分别为:

$$\hat{\mu} = \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2 \triangleq \tilde{S}^2$$

例 设 $X_1, X_2, ..., X_n$  是来自总体  $X \sim B(m, p)$  的一个样本,求未知参数 p 的矩估计量.

## 解 因为总体 $X \sim B(m, p)$ 的一阶矩为:

$$E(X) = mp$$

**\$** 

$$mp = \overline{X}$$

求得p 的矩估计量:  $\hat{p} = \frac{1}{m}\bar{X}$ 

i 问题 若 m, p 都未知, 如何求 m, p 的矩估计?

例 设 $X_1, X_2, ..., X_n$  是来自总体  $X \sim U(a, b)$  的一个样本, 求未知参数 a, b 的矩估计量。

$$\hat{a} = \overline{X} - \sqrt{3}\tilde{S}, \ \hat{b} = \overline{X} + \sqrt{3}\tilde{S}$$

#### 常用分布的特性

## 注 随机产生 U(0, 1) 的随机数40个:

```
0.4387, 0.3816, 0.7655, 0.7952, 0.1869, 0.4898, 0.4456, 0.6463, 0.7094, 0.7547, 0.2760, 0.6797, 0.6551, 0.1626, 0.1190, 0.4984, 0.9597, 0.3404, 0.5853, 0.2238, 0.7513, 0.2551, 0.5060, 0.6991, 0.8909, 0.9593, 0.5472, 0.1386, 0.1493, 0.2575 0.8407, 0.2543, 0.8143, 0.2435, 0.9293, 0.3500, 0.1966, 0.2511, 0.6160, 0.4733
```

算得:  $\bar{x} = 0.5059275$ ,  $\tilde{s} = 0.2573$ 

计算得到 a, b 的矩估计值:

$$\hat{a} = \overline{x} - \sqrt{3}\tilde{s} = 0.0602, \ \hat{b} = \overline{x} + \sqrt{3}\tilde{s} = 0.9516$$

#### 常用分布的特性

## 矩估计法小结

- 1) 原理直观;
- 2) 只用到总体矩,方法简单,若总体矩不存在,则无 法使用矩估计法;
- 3) 矩估计基于大数定律,所以通常在大样本情况下,才有较好的效果.

#### 常用分布的特性

例 设  $X_1, X_2, ..., X_n$  是来自总体 X 的样本,总体 X 服从 参数为  $\theta$  的 Cauchy 分布,其密度函数为:

$$f(x;\theta) = \frac{1}{\pi} \frac{1}{1 + (x - \theta)^2}, -\infty < x < \infty$$

则  $\theta$  的矩估计不存在。



## Fisher的极大似然思想

随机试验有多个可能结果,但在一次试验中,有且只有一个结果会出现。

如果在某次试验中,结果  $\omega$  出现了,则认为该结果(事件 $\{\omega\}$ )发生的概率 $P\{\omega\}$ 最大。

例如:字"鴏"读什么音?

**问题** 如何将Fisher的极大似然思想应用于参数估计?

假设总体 X 是离散型随机变量, 其分布律为:

$$P\{X = a_k\} = p_k(\theta) \ (k = 1, 2, ...)$$

其中  $\theta$  ( $\theta \in \Theta$ ) 是未知参数.

 $X_{1,}X_{2,}...,X_{n}$  是来自总体 X 的样本。

 $x_1, x_2, \dots, x_n$  是样本观测值。?

即事件  $\{X_1 = x_1, X_2 = x_2, ..., X_n = x_n\}$  发生了。

由 Fisher 的极大似然思想可以得到:

概率  $P\{X_1 = x_1, X_2 = x_2, ..., X_n = x_n\}$  最大。

$$P\{X_{1} = x_{1}, X_{2} = x_{2}, ..., X_{n} = x_{n}\}$$

$$=P\{X_{1} = x_{1}\}P\{X_{2} = x_{2}\}...P\{X_{n} = x_{n}\}$$

$$=P\{X = x_{1}\}P\{X = x_{2}\}...P\{X = x_{n}\} = \mathbf{L}(\boldsymbol{\theta})$$

$$\uparrow$$

$$P\{X = a_{k}\} = p_{k}(\boldsymbol{\theta}) \quad (k = 1, 2, ...)$$

**定义1** 设  $X_1, X_2, ..., X_n$  是来自总体 X 的样本, $x_1, x_2, ..., x_n$  是样本观测值。

1) 若 X 是离散型总体, 其分布律为:

$$P\{X = a_k\} = p_k(\theta) \ (k = 1, 2, ...)$$

2) 若 X 是连续型总体,其密度为 $f(x;\theta)$ 。

称  $L(\theta)$  为似然函数。

例 设  $X_1, X_2, ..., X_n$  是来自总体  $X \sim B(1, p)$  的样本,  $x_1, x_2, ..., x_n$  是样本观测值。试写出似然函数。

例 设  $X_1, X_2, ..., X_n$  是来自总体  $X \sim N(\mu, \sigma^2)$  的样本,  $x_1, x_2, ..., x_n$  是样本观测值。试写出似然函数。

**定义2** 设  $X_1, X_2, ..., X_n$  是来自总体 X 的样本,  $x_1, x_2, ..., x_n$  是 样本观测值。

 $L(\theta)$  ( $\theta \in \Theta$ ) 是似然函数。若存在统计量

$$\hat{\theta} = \hat{\theta}(x_1, x_2, \dots, x_n)$$

使得:

$$L(\hat{\theta}) = \sup_{\theta \in \Theta} L(\theta)$$

则称  $\hat{\theta} = \hat{\theta}(X_1, X_2, \dots, X_n)$  为  $\theta$  的极大似然估计量,简记

为MLE (Maximum Likelihood Estimate).

## 极大似然估计求解的一般过程

1) 根据总体分布的表达式,写出似然函数:

$$L(\theta_1, \theta_2, \dots, \theta_m) \quad (\theta = (\theta_1, \theta_2, \dots, \theta_m) \in \Theta)$$

- 2) 因为  $L(\theta_1, \theta_2, ..., \theta_m)$  与  $\ln L(\theta_1, \theta_2, ..., \theta_m)$  有相同的极值点,称  $\ln L(\theta_1, \theta_2, ..., \theta_m)$  为对数似然函数,记为  $l(\theta_1, \theta_2, ..., \theta_m)$ 。求出  $l(\theta_1, \theta_2, ..., \theta_m)$ .
- 3) 求出  $l(\theta_1, \theta_2, ..., \theta_m)$  的极大值点,  $\hat{\theta}_1, \hat{\theta}_2, ..., \hat{\theta}_m$  即为  $\theta_1, \theta_2, ..., \theta_m$  的 MLE.

## ● 关于 3) 的说明

若  $l(\theta_1, \theta_2, ..., \theta_m)$  关于  $\theta_i$  (i = 1, 2, ..., m) 可导,则称

$$\begin{cases} \frac{\partial l(\theta_{1}, \theta_{2}, \dots, \theta_{m})}{\partial \theta_{1}} = 0 \\ \frac{\partial l(\theta_{1}, \theta_{2}, \dots, \theta_{m})}{\partial \theta_{2}} = 0 \\ \vdots \\ \frac{\partial l(\theta_{1}, \theta_{2}, \dots, \theta_{m})}{\partial \theta_{m}} = 0 \end{cases}$$

为对数似然方程组。

例 设  $X_1, X_2, ..., X_n$  是来自总体  $X \sim B(1, p)$  的样本,  $x_1, x_2, ..., x_n$  是样本观测值。试求未知参数 p 的极大似然估计。

例 设  $X_1, X_2, ..., X_n$  是来自总体  $X \sim N(\mu, \sigma^2)$  的样本,  $x_1, x_2, ..., x_n$  是样本观测值。试求未知参数  $\mu, \sigma^2$  的极大似然估计。

例 设  $x_1, x_2, ..., x_n$  是来自总体  $X \sim f(x; \theta, c)$  的样本观测值,其中

$$f(x;\theta,c) = \begin{cases} \frac{1}{\theta} e^{-\frac{1}{\theta}(x-c)}, & x \ge c, \\ 0, & x < c \end{cases}$$

试求未知参数 $\theta$ , c 的极大似然估计。

## 解 似然函数为

$$L(\theta, c) = \prod_{i=1}^{n} f(x_i; \theta, c) = \prod_{i=1}^{n} \frac{1}{\theta} e^{-\frac{1}{\theta}(x_i - c)}$$
$$= \theta^{-n} e^{-\frac{1}{\theta}n(\overline{x} - c)}, \quad c \le x_{(1)}.$$

## 对数似然函数为

$$l(\theta,c) = \ln L(\theta,c) = -n \ln \theta - \frac{n}{\theta}(\overline{x} - c), \quad C \le x_{(1)}.$$

### 对数似然方程组为

$$\begin{cases} \frac{\partial l(\theta, c)}{\partial \theta} = -\frac{n}{\theta} + \frac{n}{\theta^2} (\overline{x} - c) = 0\\ \frac{\partial l(\theta, c)}{\partial c} = \frac{n}{\theta} = 0 \end{cases}$$

● 问题 怎么解上对数似然方程组?

$$\frac{\partial l(\theta,c)}{\partial c} = \frac{n}{\theta} > 0$$
 If  $l(\theta,c)$  关于  $c$  严格单调增加

似然函数

$$L(\theta,c) = \theta^{-n} e^{\frac{-1}{\theta}n(\overline{x}-c)}, c \le x_{(1)}$$

c 的极大似然估计为  $\hat{c} = x_{(1)}$ 

将c 的极大似然估计代入对数似然方程

$$\frac{\partial l(\theta, c)}{\partial \theta} = -\frac{n}{\theta} + \frac{n}{\theta^2} (\overline{x} - c) = 0$$

得到  $\theta$  的极大似然估计为  $\hat{\theta} = \bar{x} - x_{(1)}$ 

● 问题 未知参数的极大似然估计唯一吗?

例 设  $X_{1}, X_{2}, ..., X_{n}$  是来自总体  $X \sim U(\theta - 1, \theta + 1)$  的样本,  $x_{1}, x_{2}, ..., x_{n}$  是样本观测值。试求  $\theta$  的极大似然估计。

## 解 因为总体的密度函数为

$$f(x;\theta) = \begin{cases} \frac{1}{2}, & \text{if } \theta - 1 < x < \theta + 1, \\ 0, & \text{otherwise.} \end{cases}$$

## 似然函数为

$$L(\theta) = \prod_{i=1}^{n} f(x_i; \theta) = 2^{-n} \quad \theta \in ?$$

$$\theta - 1$$
  $x_i$   $\theta + 1$ 

## 解 因为总体的密度函数为

$$f(x;\theta) = \begin{cases} \frac{1}{2}, & \text{if } \theta - 1 < x < \theta + 1, \\ 0, & \text{otherwise.} \end{cases}$$

## 似然函数为

$$L(\theta) = \prod_{i=1}^{n} f(x_i; \theta) = 2^{-n} \quad x_{(n)} - 1 < \theta < x_{(1)} + 1$$

$$\theta - 1$$
  $x_i$   $\theta + 1$ 

即当  $x_{(n)} - 1 < \theta < x_{(1)} + 1$  时,似然函数  $L(\theta)$  取得最大值  $2^{-n}$  。

所以区间  $(x_{(n)}-1, x_{(1)}+1)$  内任一点都是  $\theta$  的极大似然估计。

## 极大似然估计的不变性

设 $\hat{\theta}$ 是 $\theta$ 的极大似然估计,  $u = u(\theta)$ 是 $\theta$ 的函数,

且有单值反函数:

$$\theta = \theta(u)$$

则  $u(\hat{\theta})$  是 u 的极大似然估计。

- 例 假设袋中有黑球和白球,其中白球所占比例为 p(0 未知。每次有放回地从袋中随机摸取 <math>1 个球出来观测其颜色后放回,共摸了 m 个球,其中白球个数记为X。共重复了 n 次这样的试验,得到样本观察值为 $x_1, x_2, ..., x_n$ ,试求
  - (1) p 的极大似然估计;
  - (2) 袋中白球和黑球数之比 R 的极大似然估计。

## $\mu$ (1) 先求p 的极大似然估计

因为总体  $X \sim B(m,p)$ , 所以似然函数为

$$L(p) = \prod_{i=1}^{n} P\{X_i = x_i\} = \prod_{i=1}^{n} {m \choose x_i} p^{x_i} (1-p)^{m-x_i}$$
$$= p^{n\overline{x}} (1-p)^{n(m-\overline{x})} \prod_{i=1}^{n} {m \choose x_i}$$

## 对数似然函数为

$$l(p) = \ln L(p) = n\overline{x} \ln p + n(m - \overline{x}) \ln(1 - p) + \ln \prod_{i=1}^{n} {m \choose x_i}$$

## 对数似然函数方程

$$\frac{dl(p)}{dp} = \frac{n\overline{x}}{p} - \frac{n(m - \overline{x})}{1 - p} = 0$$

解得未知参数 p 的极大似然估计为  $\hat{p} = \frac{x}{m}$ 

(2) 求白球和黑球数之比 *R* 的极大似然估计因为白球和黑球数之比

$$R = \frac{p}{1 - p}$$

所以由极大似然估计的不变性,有

$$\hat{R} = \frac{\hat{p}}{1 - \hat{p}} = \frac{\overline{x}}{m - \overline{x}}$$

● 问题 矩估计有不变性吗?



# 谢谢大家!

