ANTI-MONEY LAUNDERING

DATA SCIENCE CASE STUDY

BY: KHALID KAHLOOT

PROBLEM STATEMENT

 Anti Money Laundering Refers To A Set Of Laws, Regulations, And Procedures Intended To Prevent Criminals From Disguising Illegally Obtained Funds As Legitimate Income.

 Though Anti-money-laundering Laws Cover A Relatively Limited Range Of Transactions And Criminal Behaviors, Their Implications Are Far-reaching.

PROBLEM STATEMENT

 Anti Money Laundering Refers To A Set Procedures Intended To Prevent Crit Obtained Funds As Legitimate Inc

 Though Anti-money-laundering Transactions And Criminal Beh

Inc.
The transactions are
Very Very
Very
Similar to each other
reaching.

ANOMALY

- Anomaly is a data point of interest in in this case it's something that stands out it's an unusual an unusual data point when a data generating process
- behaves and usually it results in an anomaly

FEATURES DESCRIPTION

desc	riptio

feature name

user_id Unique ID for the customer

request_id Unique ID for the transfer request

target_recipient_id Unique ID for recipient

date_user_created Date when user was created

addr_country_code Sender Address country code

addr_city Sender Address city

recipient_country_code Recipient country code

flag_personal_business Business payment vs personal

payment_type Payment method used to upload money

date_request_received Date at which we received the customer?s money

date_request_transferred Date at which we payed out to the recipient

FEATURES DESCRIPTION

payment_status Payment status

ccy_target Currency where the customer sends to

transfer_to_self Recipient type

sending_bank_name Sending bank name

sending_bank_country Sending bank country

payment_reference_classification Reason of the transfer if the customer has entered it

device Platform of the customer

transfer_sequence How many transfers has the customer made so far

days_since_previous_req Days since previous request

STATISTICS

Dataset info

Number of variables	28
Number of observations	100000
Total Missing (%)	9.3%
Total size in memory	21.4 MiB
Average record size in memory	224.0 B

Variables types

Numeric	4
Categorical	16
Boolean	1
Date	6
Text (Unique)	1
Rejected	0
Unsupported	0

STATISTICS

- addr city has a high cardinality: 16674 distinct values Warning addr country code has a high cardinality: 148 distinct values Warning date request cancelled has 77741 / 77.7% missing values Missing date_request_cancelled has a high cardinality: 20250 distinct values Warning date request received has 21386 / 21.4% missing values Missing date request transferred has 22624 / 22.6% missing values Missing days_since_previous_req has 15223 / 15.2% missing values Missing days_since_previous_req has 20883 / 20.9% zeros Zeros first_success_date has 4539 / 4.5% missing values Missing invoice value is highly skewed (y1 = 43.324) Skewed invoice value has 22263 / 22.3% missing values Missing invoice value cancel is highly skewed (y1 = 28.846) Skewed invoice value cancel has 77741 / 77.7% missing values Missing payment type has 18777 / 18.8% missing values Missing recipient country code has a high cardinality: 68 distinct values Warning sending bank name has a high cardinality: 824 distinct values Warning target_recipient_id has a high cardinality: 94774 distinct values Warning
- user_id has a high cardinality: 89436 distinct values Warning

transfer_sequence is highly skewed (y1 = 20.528) Skewed

STATISTICS - ADDR_CITY

Value	Count	Frequency (%)	
LONDON	19219	19.2%	
DUBLIN	980	1.0%	1
MADRID	962	1.0%	I
BRISTOL	845	0.8%	I
MANCHESTER	843	0.8%	I
EDINBURGH	793	0.8%	I
BERLIN	734	0.7%	
PARIS	683	0.7%	
TALLINN	636	0.6%	
NEW YORK	635	0.6%	
Other values (16663)	73668	73.7%	

STATISTICS - ADDR_COUNTRY_CODE

Value	Count	Frequency (%)	
GBR	52512	52.5%	
USA	8306	8.3%	
ESP	5631	5.6%	
DEU	5158	5.2%	
FRA	3609	3.6%	
AUS	2967	3.0%	
IRL	2216	2.2%	
NLD	1618	1.6%	
ITA	1487	1.5%	1
CHE	1351	1.4%	1
Other values (138)	15145	15.1%	

STATISTICS

ccy_send Categorical

Distinct count	20
Unique (%)	0.0%
Missing (%)	0.0%
Missing (n)	0

Toggle details

ccy_target Categorical

Distinct count	41
Unique (%)	0.0%
Missing (%)	0.0%
Missing (n)	0

STATISTICS - DATE_REQUEST_RECEIVED

STATISTICS - DEVICE

Value	Count	Frequency (%)	
Desktop Web	70187	70.2%	
iOS App	14325	14.3%	
Android App	8164	8.2%	
Mobile Web	7324	7.3%	

STATISTICS - PAYMENT_REFERENCE_CLASSIFICATION

Value	Count	Frequency (%)	
blank	49755	49.8%	
Other/unknown	28079	28.1%	
invoice	5378	5.4%	
monthly	3676	3.7%	
family	2068	2.1%	
rent	1542	1.5%	
generic	1407	1.4%	
self_transfer	1042	1.0%	
gift	841	0.8%	
house	807	0.8%	
Other values (15)	5405	5.4%	

STATISTICS - TRANSFER_TO_SELF

Value	Count	Frequency (%)	
Self-recipient: Email match	26385	26.4%	
Self-recipient: Exact name match	16435	16.4%	
N.A. Recipient Email Unknown	15433	15.4%	
Other Recipient	14278	14.3%	
N.A. Sender or Recipient is business	13246	13.2%	
Family (Last Matches, 1st name different)	10003	10.0%	
Self-recipient: Name match	4220	4.2%	

ANOMALY DETECTION

- Isolation Forest Algorithm
- I will use scikit-learn implementation, For large dataset,
- we can use spark implementation
- https://github.com/titicaca/spark-iforest
- Train Unsupervised Isolation Forest, No labels are used

ANOMALY DETECTION

Anomalous Transfers count

```
ds[ds['anomalous']==1]['anomalous'].count()
```

1500

Non-Anomalous Transfer count

```
ds[ds['anomalous']==0]['anomalous'].count()
```

98500

QUESTIONS TO ANSWER

1. Looking at the data, which customers would you deem risky in terms of Money

Laundering based on their behavior?

Sort the Transfers by there Anomalous Behavior

ds.sort_values(['anomalous_score'])[['user_id', 'addr_country_code', 'addr_city

	user_id	addr_country_code	addr_city	anomalous
57362	69fd02c4fbd5bfa6533f7a5eac3bd81c	FIN	HELSINKI	1
48695	69fd02c4fbd5bfa6533f7a5eac3bd81c	FIN	HELSINKI	1
5779	69fd02c4fbd5bfa6533f7a5eac3bd81c	FIN	HELSINKI	1
35815	69fd02c4fbd5bfa6533f7a5eac3bd81c	FIN	HELSINKI	1
47108	69fd02c4fbd5bfa6533f7a5eac3bd81c	FIN	HELSINKI	1
14917	69fd02c4fbd5bfa6533f7a5eac3bd81c	FIN	HELSINKI	1
15194	69fd02c4fbd5bfa6533f7a5eac3bd81c	FIN	HELSINKI	1
10023	69fd02c4fbd5bfa6533f7a5eac3bd81c	FIN	HELSINKI	1
34178	69fd02c4fbd5bfa6533f7a5eac3bd81c	FIN	HELSINKI	1
44262	69fd02c4fbd5bfa6533f7a5eac3bd81c	FIN	HELSINKI	1

QUESTIONS TO ANSWER

2. What kind of info would you like to acquire from/about these customers in order to trust our service to them or deny it? How would you go about getting this info?

Reporting the Missing features for those Customers

QUESTIONS TO ANSWER

```
69fd02c4fbd5bfa6533f7a5eac3bd81c
user id
addr country code
addr city
                                             HELSINKI
Name: 57362, dtype: object
missing values:
['date request cancelled', 'invoice value cancel']
                     69fd02c4fbd5bfa6533f7a5eac3bd81c
user id
addr country code
                                                  FIN
addr city
                                             HELSINKI
Name: 48695, dtype: object
missing values:
['date request cancelled', 'invoice value cancel']
user id
                     69fd02c4fbd5bfa6533f7a5eac3bd81c
addr country code
                                                  FIN
addr city
                                             HELSINKI
Name: 5779, dtype: object
missing values:
['date request cancelled', 'invoice value cancel']
                     69fd02c4fbd5bfa6533f7a5eac3bd81c
user id
addr country code
                                                  FIN
addr city
                                             HELSINKI
Name: 35815, dtype: object
missing values:
['date request cancelled', 'invoice value cancel']
```

SIMILAR TRANSFERS

Nearest neighbor Algorithm example of K nearest neighbor.

(a) 1-nearest neighbor

(b) 2-nearest neighbor

(c) 3-nearest neighbor

As an example of similarity, take the top anomalous transfer

Top 5 similar transfers to that instant

only the first one is anomalous

the top five similar transfers are comming from the same user_id

ds.iloc[similars[1][0]].head(5)

	user_id	request_id	target_recipient_id	anomalous_score	anomalous
57362	69fd02c4fbd5bfa6533f7a5eac3bd81c	8a0e22659ce2072497165a4ddefbe631	946bd1f5e726291c99dadd06a5189718	-0.014018	1
96952	69fd02c4fbd5bfa6533f7a5eac3bd81c	0ed6d004fbbdef3368ef24bddc199c02	86cafaba5ec5232913bc70eb24be2494	-0.007760	1
29164	69fd02c4fbd5bfa6533f7a5eac3bd81c	924c04a44f88568f9e43522b9c5dd299	d915efb5e361801178694fee0ecdf621	-0.012309	1
39007	69fd02c4fbd5bfa6533f7a5eac3bd81c	2a04354be989d9562b0c2c7e24208332	ca5c23f854fd03bd8cdb26522da7bd22	-0.007517	1
10440	69fd02c4fbd5bfa6533f7a5eac3bd81c	36d468dc36c6490edfcb16db5109639c	35d783e4ffc5042ce4d49e924e6a8448	-0.007837	1

the top five similar transfers are comming from the different user_id

ds.iloc[similars[1][0]][ds.user_id!='69fd02c4fbd5bfa6533f7a5eac3bd81c'].head(5)

C:\ProgramData\Anaconda34\envs\gpu_env\lib\site-packages\ipykernel_launcher.py:1: UserWarning
exed to match DataFrame index.

"""Entry point for launching an IPython kernel.

	user_id	request_id	target_recipient_id d	a anomalous_score	anomalous
94646	b78c8ce3f52611c3df21da6b9effe911	13336575f77b6bcf8150d4706dfe5f70	616592c92d5822778f6dbd24e8a8a9ce	0.00219	0
93843	b78c8ce3f52611c3df21da6b9effe911	7a1844430c4dbe11e5e45a736f84e1bd	d1da4339464786aae1e6a5f9a41541be	0.00219	0
95568	b78c8ce3f52611c3df21da6b9effe911	e04933e9c3f9810a5f57ad4996db4033	52afe70eb729ee853cbc47061ff70dd2	0.00219	0
22197	b78c8ce3f52611c3df21da6b9effe911	c203eac78b04e58eeb062e51c2612c73	65a97954685381c7ae12f4c2de002a7e	0.00219	0
81866	b78c8ce3f52611c3df21da6b9effe911	67f4f4c889a4e28b2244a7f2ce3bf7e1	1af8e6781d9e37b2f330dddeba4dedf0	0.00219	0

RISK ESTIMATOR

Imbalanced Dataset

```
ds['anomalous'].value_counts()
```

98500 1 1500

Name: anomalous, dtype: int64

RISK ESTIMATOR

We should do Over-sampling using **SMOTE** algorithm

•majority class samples • minority class samples • synthetic sample

RISK ESTIMATOR

Then fit another **supervised** Isolation Forest
Recall score is very important (score of catching the anomalous transfer)

Holdout dataset

_			
Tro	\in	dataset	
112	1111	Calasei	

		precision	recall	f1-score	support		precision	recall	f1-score	support
	0 1	0.00 0.01	0.00 1.00	0.00 0.03	9850 150	0 1	0.00 0.01	0.00 1.00	0.00 0.03	88650 1350
micro macro weighted	avg	0.01 0.01 0.00	0.01 0.50 0.01	0.01 0.01 0.00	10000 10000 10000	micro avg macro avg weighted avg		0.01 0.50 0.01	0.01 0.01 0.00	90000 90000 90000

FEATURES MPORTANCE Perturbation Ranking

FEATURES IMPORTANCE

Perturbation Ranking

evaluating a trained model's prediction with each of the features.

How much effecting the prediction if we perturb and shuffle a feature.

	importance	error
feature names		
sending_bank_name	1.000000	0.001230
ccy_send	0.983704	0.001210
flag_personal_business	0.873557	0.001075
device	0.857824	0.001055
payment_reference_classification	0.845600	0.001040
addr_country_code	0.834821	0.001027
recipient_country_code	0.833436	0.001025
addr_city	0.826150	0.001016
ccy_target	0.800726	0.000985
sending_bank_country	0.693585	0.000853
payment_status	0.548267	0.000674
payment_type	0.529567	0.000651
transfer_to_self	0.526118	0.000647
date_request_received_weekday	0.501783	0.000617
first_attempt_date_hour	0.500923	0.000616
days_since_previous_req	0.498219	0.000613
first_success_date_dayofweek	0.492112	0.000605
date_request_received_hour	0.486904	0.000599
first_success_date_weekday	0.484964	0.000597

Anomalous Transfer

negative payment_reference	Value	Feature
3.80 sending bank coun	12.00	payment_reference_classification
3.30 ccy_target > 1	13.00	sending_bank_country
2.89 ccy_send <=	33.00	ccy_target
2.59 addr country code <	7.00	ccy_send
1.93	43.00	addr_country_code
payment_status <=	1.00	device
date_request_cance	2.00	payment_status
flag_personal_busir	20249.00	date_request_cancelled
flag_transferred <=	1.00	flag_personal_business flag_transferred

negative	positiv
payment_reference_cl	
sending_bank_country	
ccy_target > 18.00 2.89	
ccy_send <= 7.00 2.59	
addr_country_code <=	
	device <= 1.00
payment_status <= 2.00 0.00	
date_request_cancelle 0.00	
flag_personal_busines 0.00	
flag_transferred <= 1.00 0.00	

	invoice_value	9416.22
	invoice_value_cancel	NaN
	flag_transferred	1
	transfer_sequence	8712
	days_since_previous_req	0
	date_user_created_dayofweek	2
	date_user_created_weekday	2
	date_user_created_hour	11
	date_user_created_minute	4
	date_user_created_day	26
	date_user_created_month	11
	date_request_submitted_dayofweek	0
	date_request_submitted_weekday	0
	date_request_submitted_hour	13
	date_request_submitted_minute	35
	date_request_submitted_day	31
	date_request_submitted_month	10
	date_request_received_dayofweek	0
	date_request_received_weekday	0
	date_request_received_hour	7
	date_request_received_minute	3
'	date_request_received_day	11
	date_request_received_month	1
	date_request_transferred_dayofweek	0
	date_request_transferred_weekday	0
	date_request_transferred_hour	15
	date_request_transferred_minute	16
	date_request_transferred_day	11
	date_request_transferred_month	1
	first_attempt_date_dayofweek	2
	first_attempt_date_weekday	2
	first_attempt_date_hour	11
	first_attempt_date_minute	5
	first_attempt_date_day	12
	first_attempt_date_month	2
	first_success_date_dayofweek	9
	first_success_date_weekday first_success_date_hour	8
	first_success_date_minute	1
	first_success_date_day	12
	first_success_date_month	5
	addr_country_code	FIN
	addr_city	HELSINKI
	recipient_country_code	NL
	flag_personal_business	Business
	payment_type	Bank Transfer
	date_request_cancelled	NaN
	payment_status	Transferred
	ccy_send	EUR
	ccy_target	SEK
	transfer_to_self	N.A. Sender or Recipient is business
	sending_bank_name	POHJOLA PANKKI OYJ (POHJOLA BANK PLC)
	sending bank country	FI
	payment_reference_classification	invoice
6	device	Desktop Web

Anomalous Transfer

nown sending bank country = Other/unknown ccy target = GBP payment reference classification = gift addr city = BERLIN addr country code = DEU date request received

Anomaly Threshold -0.0052

High

Feature value

