Optimization of Parameters for Semiempirical Methods. III Extension of PM3 to Be, Mg, Zn, Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, and Bi

James J.P. Stewart

The Frank J. Seiler Research Laboratory, United States Air Force Academy, Colorado Springs, Colorado 80840

Received 21 May 1990; accepted 21 August 1990

Using a recently developed procedure for optimizing parameters for semiempirical methods, PM3 has been extended to a total of 28 elements. Average ΔH_f errors for the newly parameterized elements are Be: 8.6, Mg: 8.4, Zn: 5.8, Ga: 14.9, Ge: 11.4, As: 8.5, Se: 11.1, Cd: 2.6, In: 11.3, Sn: 9.0, Sb: 13.7, Te: 11.3, Hg: 6.8, Tl: 6.5, Pb: 7.4, and Bi: 10.9 kcal/mol. For some elements the paucity of data has resulted in a method, which, while highly accurate, is likely to be only poorly predictive.

INTRODUCTION

Until recently, the rate determining step for obtaining parameters for semiempirical methods was determined by the time taken to optimize the parameters. When a new method was developed, parameters were normally only determined initially for four elements: H, C, N, and O. A new automatic optimization procedure¹ has been developed which changes the rate determining step to the assembly of suitable experimental reference data. Using that procedure, parameters for 12 elements were simultaneously optimized. Average errors in heats of formation for 11 of the 12 elements are less² than those obtained using MNDO or AM1, AM1 aluminum being the exception.³

Here, the PM3 method has been extended to include 13 main group metals and three transition metals. The transition metals all have filled d shells, allowing them to be considered using only a *sp* basis set. A comparison of the chemistries of these elements is presented here.

In principle, parameters for all elements available within a given method should be optimized simultaneously. In practice, serial optimization has hitherto proved necessary, for two reasons. First, the computational requirements have precluded the simultaneous optimization of parameters for many elements. Second, once a set of parameters had been made generally available, it was considered important⁴ that their value should not be changed until significant improvement has been made. Although the first obstacle to large-scale optimization of parameters has been overcome, the second reason for not optimizing all parameters for all elements simultaneously is still valid. For this reason, parameters for the original 12 elements reported earlier

were held constant while the parameters for the 16 elements reported here were optimized.

For several metals the dearth of reference data resulted in an apparent paradox: the optimized parameters allow PM3 to accurately reproduce the reference data, but the parameters are so poorly defined that the method is likely to perform poorly when used as a predictive tool. Only when enough reference data are used to uniquely define the parameter set will the accuracy of prediction equal that of the set used in the optimization of the parameters.

METHOD

The basic technique used in optimizing the parameters for the elements reported here was similar to that used earlier. In the case of cadmium, the scarcity of experimental data precluded a unique definition of the minimum in parameter space. To allow cadmium to be studied, the Gaussian core-core terms were omitted from the theoretical framework of PM3.

The optimization was carried out in the following manner: parameters for each new element were optimized using all data available for that element, but excluding data involving the other 15 new elements. A subsquent optimization was then carried out for each element in which all compounds of that element, including compounds between the element being parameterized and one or more of the other new elements, were used. This optimization used as trial parameters for the new elements the optimized parameters which had been obtained as a result of the first step. The results of these optimizations are reported in Table I.

Table I. Optimized parameters for MNDO-PM3.

	Be	Mg	Zn	Ga	Ge	As
Uss	-17.264752	-14.623688	-18.532198	-29.855593	-35.467196	-38.507424
Upp	-11.304243	-14.173460	~11.047409	-21.875371	-31.586358	-35.152415
Zs	0.877439	0.698552	1.819989	1.847040	2.237353	2.636177
Zp	1.508755	1.483453	1.506922	0.839411	1.592432	1.703889
B(s)	-3.962053	-2.071691	-0.715578	-4.945618	-5.325002	-8.232165
B(p)	-2.780684	-0.569581	-6.351864	-0.407053	-2.250157	-5.017386
Gss	9.012851	6.694300	9.677196	8.458554	5.376963	8.789001
Gsp	6.576199	6.793995	7.736204	8.925619	10.209529	5.397983
Gpp	6.057182	6.910446	4.980174	5.086855	7.671865	8.287250
Gp2	9.005219	7.090823	4.669656	4.983045	6.924266	8.210346
Hsp	0.544679	0.543300	0.600413	2.051260	1.337020	1.951034
ALP	1.593536	1.329147	1.350126	1.605115	1.972337	1.794477
K1	1.631572	2.117050	-0.111234	-0.560179	0.963173	-0.460099
L1	2.672962	6.009477	6.001478	5.623273	6.012013	1.983115
Ml	1.791686	2.084406	1.516032	1.531780	2.163365	1.086793
K2	-2.110959	-2.547767	-0.132370	-0.272731	-0.959389	-0.088996
L2	1.968594	4.395370	1.995839	1.991843	5.749180	1.992944
M2 ·	1.755871	2.063674	2.519642	2.183864	2.169372	2.140058
	Se	Cđ	In	Sn	Sb	Te
Uss	-55.378135	-15.828584	-26.176205	-34.550192	-56.432196	-44.938036
Upp	-49.823076	8.749795	-20.005822	-25.894419	-29.434954	-46.314099
Zs	2.828051	1.679351	2.016116	2.373328	2.343039	4.165492
Zp	1.732536	2.066412	1.445350	1.638233	1.899992	1.647555
B(s)	-6.157822	-8.581944	-2.993319	-2.785802	-14.794217	-2.665146
B(p)	-5.493039	-0.601034	-1.828908	-2.005999	-2.817948	-3.895430
Gs s'	7.432591	9.206960	6.554900	10.190033	9.238277	10.255073
Gsp	10.060461	8.231539	8.229873	7.235327	5.277680	8.169145
Gpp	9.568326	4.948104	6.299269	5.673810	6.350000	7.777592
Gp2	7.724289	4.669656	4.984211	5.182214	6.250000	7.755121
Hsp	4.016558	1.656234	2.631461	1.033157	2.424464	3.772462
ALP	3.043957	1.525382	1.418385	1.699650	2.034301	2.485019
K1	0.047873		-0.343138	-0.150353	3.002028	0.033391
Ll	6.007400		1.994034	6.005694	6.005342	5.956379
M1	2.081717		1.625516	1.704642	0.853060	2.277575
K2	0.114720		-0.109532	-0.044417	-0.018892	-1.921867
L2 M2	6.008672 1.516423		5.683217 2.867009	2.257381 2.469869	6.011478	4.973219
MZ	1.310423		2.887009	2.409009	2.793311	0.524243
	Нд	Tl	Pb	Bi		
Uss	-17.762229	-30.053170	-30.322756	-33.495938		
Upp	-18.330751	-26.920637	-24.425834	-35.521026		
Zs	1.476885	6.867921	3.141289	4.916451		
Zp	2.479951	1.969445	1.892418	1.934935		
B(s)	-3.101365	-1.084495	-6.126024	-5.607283		
B(p)	-3.464031	-7.946799	-1.395430	-5.800152		
Gss	6.624720	10.460412	7.011992	4.989480		
Gsp	10.639297	11.223883	6.793782	6.103308		
Gpp	14.709283	4.992785	5.183780	8.696007		
Gp2	16.000740	8.962727	5.045651	8.335447		
Hsp	2.036311	2.530406	1.566302	0.599122		
ALP	1.529377	1.340951	1.620045	1.857431		
K1	1.082720	-1.361399	-0.122576	2.581693		
Ll	6.496598	3.557226	6.003062	5.094022		
Ml Wo	1.195146	1.092802	1.901597	0.499787		
K2	-0.096553	-0.045401	-0.056648	0.060320		
L2 M2	3.926281 2.627160	2.306995 2.965029	4.743705	6.001538 2.427970		
	Z. n Z / I h U	2.965UZ9	2.861879	7.477470		

RESULTS

Four properties were used in optimizing the parameters: the ΔH_f^{298} of the molecule in the gas phase, dipole moment, first ionization potential, and molecular geometry. Only results for those properties will be reported here.*

To allow comparison with MNDO 5 and AM1, 6 results for these methods are also presented. The specific parameter sets used are: MNDO—H 7 , C 7 , N 7 , O 7 , F 8 , Al 9 , Si 10 , P 8 , Si 11 , Cl 12 , Ge 13 , Br 14 , I 15 , and Pb 16 ; for

Am1—H 6 , C 6 , N 6 , O 6 , F 17 , Al 3 , Si 18 , P 19 , S 20 , Cl 17 , Zn 21 , Ge 13 , Br 17 , Sn 22 , and Hg 23 . Parameters for the first 12 PM3 elements are taken from the original PM3 work. 1 The AM1 parameter sets for S and Sn were those given in AMPAC 2.1. 24 No calculations reported here involve use of mixed parameter sets.

^{*}Caution. The accuracy of prediction of quantities such as vibrational frequencies, activation barriers, and higher ionization potentials is not known at this time. Until it is known how accurately the parameters reproduce these phenomena, extra care should be exercised when the parameters are used for such work.

STRUCTURE OF TABLES

As with the earlier work, the tables involved are quite large. Because of this, the tables have been structured to allow rapid location of any particular species. However, the large number of inorganic compounds made the Cox & Pilcher sequence²⁵ used earlier unsuitable here. Instead, the location of a particular species within a table is determined by the following rules. Each new element is presented in order of increasing atomic number. Within each set, the order of appearance of species is the same as that in the JANAF Thermochemical Tables. 26 This uses a modified Hill indexing system (J. Am. Chem. Soc., 22, 478 (1900)], and is purely alphabetic, based on the empirical formula. Compounds involving two new elements are cited for both elements: thus, germanium telluride will appear under germanium and under tellurium; however, in the statistical analysis each compound is counted only once.

HEATS OF FORMATION

Computed and observed heats of formation are presented in Table II. A summary of the average errors in ΔH_f for all species studied is given in Table III. In order to allow comparison with the first 12 PM3 elements parameterized, average errors for these elements are also presented in Table III. The averages reported in Table III are for all compounds reported here and in the earlier²⁷ work. Several faults in the earlier tables have been corrected, and about 100 more compounds have been surveyed; these additions and corrections are reflected in Table III.

The average error in ΔH_f for the newly parameterized elements is 9.6 kcal/mol, exactly the same as that for the first set of 12 elements. Preliminary attempts to determine parameters for the remaining main group elements (i.e., the alkaline metals and alkaline earths) indicate that average errors for these elements are likely to be larger than those reported here.

STATISTICAL GEOMETRIES

A comparison of experimental and computed geometries is given in Table IV, and a statistical summary of the errors in bond lengths is given in Table V. As with the ΔH_f , comparison with the original 12 elements is useful; average errors in bond lengths for the original 12 elements are also given in Table V. Average bond length and angle errors for all elements investigated are given in Table VI. With the exception of some magnesium and gallium compounds, most geometries are of useful accuracy.

DIPOLE MOMENTS AND IONIZATION POTENTIALS

Average errors (no. of compounds) in dipole moments are: PM3: 0.53D (77), MNDO: 0.75D (46), and AM1: 0.53D (42). For ionization potentials, the averages are: PM3: 0.90V (109), MNDO: 1.31 (59), and AM1 0.81 (40). The accuracy of prediction of dipole moments by PM3 is the same as that of AM1, while the prediction of ionization potentials is 11% inferior to AM1.

INDIVIDUAL ELEMENTS

Beryllium

Two possible geometries have been reported for dicyclopentadienylberyllium: a C_{5v} η^{10} 28 and an η^{1} - η^{5} structure. PM3 predicts a symmetric D_{5h} structure, although the beryllium atom is not rigidly held in place, the vibrational frequency for horizontal motion being only 126 cm⁻¹.

Magnesium

Four types of bonds are represented in the chemistry of magnesium: simple ionic bonds (MgF₂), covalent bonds (Mg(CH₃)₂), nonclassical bonds (η¹⁰-Cp₂Mg), and dative bonds (CH₃MgBr.(Et₂O)₂). All four types are reproduced by PM3.

Although all four magnesium dihalides are observed to be linear, 30 PM3 predicts the X-Mg-X angle to be 109.9° (fluoride), 154.9° (chloride), 165.8° (bromide) and 180.0° (iodide). An attempt was made to generate a set of magnesium parameters which would predict the observed angle; this was not successful, and further work is obviously needed. That a limited sp basis set should not only predict MgF $_2$ to be strongly bent, but also that it should remain bent despite efforts to make it linear, is unexpected, and may indicate a limitation in either the parameterization or the NDDO approximation.

Zinc

Most of zinc chemistry is relatively simple: zinc is almost always two coordinate, with the ligand-zinc-ligand angle being 180° . Some nonclassical structures do exist, however, examples being the pentahapto complexes involving cyclopentadienyl rings. Both PM3 and AM1 correctly predict the η^5 structure of cyclopentadienylmethylzinc, and the η^1 - η^5 structure of bis(pentamethylcyclopentadienyl)zinc, Figure 1.

Gallium

Average PM3 ΔH_f errors for gallium compounds are very large. No obvious reason for this is apparent,

although faulty optimization or inaccurate experimental data are the prime suspects.

Germanium

Of all metals reported here, the largest number of experimental reference data is available for germanium. It is likely that the predictive power of PM3 when applied to germanium compounds will be the

same as for the set reported here. A recent³¹ X-ray structure of 2,2,5,5-tetramethyl-1,3-diselena-2-ger-macyclohexane has been published. This structure is qualitatively reproduced by PM3 (Fig. 2). In it, both germanium and selenium have organometallic and intermetallic bonds. Of the compounds investigated, this had the most complicated structure.

The ground state of the germanium atom is incorrectly predicted by PM3 to be $4s^{1}4p^{3}$. Attempts

Table II. Comparison of experimental and calculated heats of formation.

Empirical			Formatio		fference		
Formula	Name	Exp.	Calc.	MNDO-PM3	MNDO	AM1	Ref
		BERYLLIUM					
Be	Beryllium, atom	77.0	77.0	0.0	0.0		a
BeBr	Beryllium bromide	28.7	22.5	-6.2	-0.1		ь
BeBr2	Beryllium dibromide	-54.8		1.3	11.8		þ
BeCl	Beryllium chloride	14.5			-10.8		b
BeCl2	Beryllium dichloride	-86.1		-0.4	-3.7		ь
BeF	Beryllium fluoride Beryllium difluoride	-41.8	-50.1		-10.9		C
BeF2	Beryllium diriuoride		252.9	2.4	-2.2		c
Вен Вен	Beryllium hydride (+) Beryllium hydride	276.4 75.6	82.8	-23.5 7.2	-37.8 -15.3		b
вен Вено		-27.4		1.1	1.2		c b
BeH2	Beryllium hydroxide Beryllium dihydride	30.0			-24.4		b
BeH2O2	Beryllium di-hydroxide		1 -141.5	20.3	25.4		b
BeI	Beryllium iodide	40 6	31 3	-9.3	1.3		b
BeI2	Beryllium diiodide	-15.3	-14.4	0.9	-8.6		b
BeO	Beryllium oxide	32.6	53.0	20.4	6.0		b
Be2	Bervllium, dimer	152.3	136.7	-15.6			b
Be2OF2	Be(OF)2	287 . 9	-278.2	9.7			b
Be2O	Beryllium oxide		-19.7	-4.7	40.5		b
Be303	Be 303	-251.9	-255.1	-3.2	71.8		b
		MAGNESIUM					
1gBr	Magnesium bromide	-8.4	-21.8	-13.4			b
1gBr 2	Magnesium dibromide		-67.8	4.6			b
ig2Br4	Magnesium dibromide, dimer	183.5	-181.2	2.3			b
:10MgH10	Magnesium dibromide, dimer Dicyclopentadienyl magnesium Magnesium chloride	32.6	31.6 31.6 3 -32.9 3 -82.4	-1.0			d
igCl	Magnesium chloride	-10.3	-32.9	-22.6			b
1gCl2	Magnesium chloride Magnesium dichloride	-93.8	82.4	11.4			b
1g2C14	magnesium dichtoride, dimer	-228.1	-232.1	-4.0			ь
igF	Magnesium fluoride			~14.7			þ
igF2	Magnesium difluoride	-173.0	-160.7	12.3			c
1g2F4	Magnesium difluoride, dimer	-410.7	-408.4	2.3			b
igH	Magnesium hydride	40.5 -135.0 -41.1	41.8	1.3			þ
1gH2O2	Magnesium di-hydroxide Magnesium diiodide	-135.0	-128.8	6.2 -3.5			b
1g I 2	Magnesium (++)		555.1	-6.2			c
ig ig	Magnesium (+)	213.1		4.8			c
1g 1 g	Magnesium, atom	35.0		0.0			c a
ig IgN	Magnesium nitride		104.0	35.0			a b
1g0	Magnesium oxide	14 ∩	12.1	-1.9			b
4qS	Magnesium sulfide	62.0		~19.6			b
1g2	Magnesium, dimer	68.8		1.3			c
		ZINC					
CZnH3	Methylzinc (+)	215.1	228.9	13.8	12.6	9.3	c
C2ZnH6	Dimethylzinc (+)	221.7	234.0	12.3	31.5	11.9	c
C2ZnH6	Dimethylzinc			-4.5	7.2	7.2	С
C4ZnH10	Diethylzinc	12.1		-6.5	0.9	2.1	C
C6ZnHl4	Di-n-propylzinc	-2.9		1.5	7.5	5.4	đ
C8ZnH18	Di-n-butylzinc	-11.9		0.4	7.2	0.8	đ
ZnCl2	Zinc dichloride (+)	207.7		0.2	28.6	11.7	C
ZnCl2	Zinc dichloride	-63.6		10.8	14.9	9.0	C
ZnH ZnC	Zinc hydride			2.5	-11.2	-3.4	a
ZnS	Zinc sulfide	48.3		3.2	18.2	30.0	f
ZnSe ZnMo	Zinc selenide	56.7		-2.2 -12.7			f
ZnTe	Zinc telluride	61.0 665.1			55 1	6 A A	f
Zn Zn	Zinc (++) Zinc (+)			-2.3 -14.1	55.1 -9.8	64.4 -5.2	c
Zn Zn	• •						a
Zn	Zinc, atom	31.2	31.2	0.0	0.0	0.0	

Table II. (Continued)

Empirical	Chemical	Heat of H			ference		
Formula	Name	Exp.	Calc.	MNDO-PH3	MNDO	AM1	Re
		GALLIUM					
aBr	Gallium bromide	-11.7	-31.6	-19.9			
C3GaH9	Trimethyl gallium Triethylgallium Tributylgallium	-10.8	-4.4	6.4			
C6GaH15	Triethylgallium	-14.7	-33.8	-19.1			
C12GaH27	Tributylgallium	-10.1	-/3.5	-20.5			
GaCl	Gallium chloride Gallium trichloride	-19.1	-70.7	-2.1 27.3			
GaCl3 GaH3NCl3	Gacl3-NH3	-150.1	-128 1	22.0			
Sanswers Sa2Cl6	Ga2C16	-233.1		-18.8			
SaF	Gallium fluoride		-46.2	14.0			
Ga	Gallium (+++)	1390.2	1387.4	-2.8			
Ga		680.5		18.4			
Sa .	Gallium (++) Gallium (+) Gallium, atom	205.9	205.5	-0.4			
Ga	Gallium, atom	65.4	65.4	0.0			
Sa	Gallium (~)	57.0	42.6	-14.4			
GaH	Gallium hydride	52.7	67.6	14.9			
SaHO	Gallium hydroxide	-27.4	-32.0	-4.6			
GaI	Gallium hydride Gallium hydroxide Gallium iodide Gallium oxide	6.9	-12.9	-19.8			
GaO	Gallium oxide Gallium, dimer	66.8	35.3	-31.5 -22.3			
Ga2 Ga216	Gaillum, dimer		82.6 -61.7				
Ga2S	Ga2S	5.0	40.2	35.2			
		GERMANIUM					
3GeH9Br	Trimethylbromogermane	-53.1		5.3	14.9	12.1	
eBr	Germanium bromide	56.3	42.9		-13.4	-13.0	
GeBr2	Germanium dibromide	-15.0	-4.1	10.9	75.2	5.5	
GeBr4	Germanium dibromide	-71.7	-66.7	5.0	37.7	2.3	
Ge	Germanium carbide	151.0	178.6	27.6	73.4	52.6	
	Trimethylchlorogermane	-63.8	-60.1	3.7	1.8	5.2	
C3GeH9	Trimethylgermanium (+)	165.0	1/0.5	11.5	-2.3	15.5 -3.8	
C3GeH9	Motromothyl dormanium	-22 0	-12.1	-14.3 -2.3	-2.4 -0.8	-3.8 5.8	
24Gen12 24GeH12O4	Tetramethylgermanium Tetramethoxygermanium Ethoxytrimethylgermane	-32.U -230 A	-245 0	-15.5	-3.1	-22.2	
75GeH140	Ethoxutrimethulgermane	-87 R	-91.3	-3.5	-0.4	-2.2	
C5GeH15N	Dimethylaminetrimethylgermane	-29.1	-41.4	-12.3	-3.9	1.2	
C6GeSnH18	Dimethylaminetrimethylgermane GeMe3-SnMe3	39.7	-32.2	7.5	10.3	24.2	
てんだん フロしゅ	CoMo3-CoMo3	-67 6	-52 N	10.5	38.6	21.3	
C6Ge2H18O	Bis(trimethylgermanium) oxide t-Butyltrimethylgermane Tetraethylgermanium Tetrapropylgermanium Tetraphenylgermanium	-127.0	-122.5	4.5	8.9	15.9	
C7GeH18	t-Butyltrimethylgermane	-55.7	-51.3	4.5		9.8	
C8GeH20	Tetraethylgermanium	-38.6	-55.9	-17.3		-21.9	
C12GeH28	Tetrapropylgermanium	-54.2	-78.3	-24.1		-33.2	
C24GeH20	Tetraphenylgermanium	106.5	113.2	6.7	-16.4	-	
GeC1	Germanium chloride	37.1 -42.0	27.7	-9.4	-19.7	-17.4	
GeCl2	Germanium dichloride	-42.0	-31.8	10.2	-8.5	-2.0	
GeCl4	Germanium tetrachloride (+) Germanium tetrachloride Germanium fluoride	130.0	-132.9	-23.9 -9.1	34.6	4.3 -20.2	
GeCl4 GeF	Cormanium fluoride	-110.5	-12/.0	4.7	-7.3 -8.4	-11.7	
GeF2	Germanium difluoride	-121.0	-107.6	13.4	-2.8	0.4	
GeF4	Germanium difluoride Germanium tetrafluoride	-284.4	-290.3	-5.9	10.2	21.1	
Ge .	Germanium, atom	89.5		-27.8	0.0	0.0	
GeH4	Germane	21.7	32.1	10.4	-8.2	7.3	
GeI2	Germanium diiodide	11.2	-3.5	-14.7	49.2	21.6	
GeI4	Germanium tetraiodide	-13.6	-6.7	6.9	70.7	17.3	
GeO	Germanium oxide	-11.0		5.2	11.9	20.3	
SeTe	Germanium telluride	42.0		25.0			
Ge 2	Germanium, dimer	113.1	95.3	-17.8	77.6	15.5	
Ge2H6 Ge3H8	Digermane	38.8 54.2		6.8 6.2	8.1 21.1	0.3 -12.4	
	•	ARSENIC					
\s	Arsenic (++)	731.3	720.3	-11.0			
As	Arsenic, atom	72.3		0.0			
AsBr3	Arsenic tribromide	-31.6	-20.3	11.3			
C3AsH9	Trimethylarsine		-14.9	-17.7			
	Trimethyl arsenite	-131.1		-8.2			
C6AsH15	Triethylarsine	13.4	-20.4	-33.8			
C6AsH1503	Triethyl arsenite Tri-n-propyl arsenite	-156.8 -173.7	-155.2	1.6			
C9AsH2103	Tri-n-propyl arsenite	-173.7	-171.0				
G101	Triphenylarsine	A = -		10.3			

Table II. (Continued)

Empirical Formula	Chemical Nam e	Heat of I Exp.		n Dif MNDO-PM3	ference MNDO AM1	Ref
		- ,			ratio And	
AsCl AsCl3	Arsenic chloride Arsenic trichloride	10.5 -62.5	15.7 -70.2	5.2 -7.7		l c
AsF3	Argenic trifluoride	-187 R	-190.2	-2.4		c
AsF5	Arsenic pentafluoride Arsine	-295.6		7.8		e
AsH3	Arsine		12.7	-3.2		С
AsI3	Arsenic triiodide	6.9	27.3	20.4		1
AsN	Arsenic nitride	46.9	70.2	23.2		С
AsS Asse	Arsenic sulfide Arsenic selenide	48.5 49.5	46.4 55.7	-2.1 6.2		e
Aste Aste	Arsenic telluride	54.7	61.1	6.4		e e
As 2	Arsenic, dimer	53.1		-7.5		c
As3	Arsenic, trimer	62.5	69.0	6.5		e
As4	Arsenic, tetramer	34.4		0.1		c
As 406	Arsenic trioxide	-289.0	-287.9	1.1		C
		SELENIUM				
AsSe	Arsenic selenide	49.5	55.7	6.2		е
BiSe	Bismuth selenide		54.9	12.9		C
SeBr2	Selenium dibromide BrSeSeBr	-5.0 6.9	-4.5 -14.2	0.5 -21.1		e 1
Se2Br2 CSe2	Carbon diselenide	61.4	64.9	3.5		d
C4SeH10	Diethylselenium	-13.7		23.8		đ
SeC12	Selenium dichloride	-8.0	-37.9	-29.9		e
SeOF2	Seleninyl difluoride	121.6	-134.3	-12.7		1
SeF4	Seleninyl dirluoride Selenium tetrafluoride Selenium texafluoride	~194.0	-209.0	~15.0		1
SeF6	Selenium hexafluoride	-267.0	-267.3	-0.3		k
SeH2 InSe	Hydrogen selenide Indium selenide	7.1 56.0	22.6 57.7	15.5 1.7		c
SeO	Selenium oxide	14.8	20.1	5.3		1
SeO2	Selenium dioxide	53.9	-30.0	23.9		k
Se	Selenium, atom	54.3	54.3	0.0		a
SeSi	Silicon selenide	48.5	62.3	13.8		e
SnSe	Tin selenide	28.9		20.2		e
ZnSe	Zinc selenide	56.7		-2.2		е
Se2 Se3	Selenium, dimer			3.0 -9.3		1 e
	·	CADMIUM				
C2CdH6	Dimethylcadmium (+)	223.2	218.2	-5.0		c
C2CdH6	Dimethylcadmium	25.8	30.6	4.8		đ
C4CdH10 Cd	Dimethylcadmium (+) Dimethylcadmium Diethylcadmium Cadmium, atom	25.5 26.7	25.9 26.7	0.4		d a
Cu	cadilitati, acom		20.7	0.0		a
: _		INDIUM				
InBr	Indium bromide	-13.6		-3.9		k
InBr3 C3InH9	Indium tribromide Trimethyl indium	-67.4 40.8		7.5 -27.6		c d
InCl	Indium chloride	-18.0		4.7		k
InCl3	Indium trichloride	89.4	-72.8	16.6		c
In2Cl3	In2Cl3	-103.6	-106.8	-3.2		С
InF	Indium fluoride	-48.6	-34.9	13.7		k
InH	Indium hydride	51.5	52.4	0.9		k
InI InI3	Indium iodide Indium triiodide	1.8	-7.2 -18.2	-9.0 10.6		k C
Inis	Indium (+++)		1256.6	-15.4		c
In	Indium (++)	624.0	653.0	29.0		c
In	Indium (+)	187.3		13.2		c
In	Indium, atom	58.0	58.0	0.0		a
InO	Indium oxide			-39.5		c
InSb	Indium antimonide	82.3		-2.2		C
InSb2 InSe	Indium diantimonide Indium selenide	75.0 56.0		-16.4 1.7		c
InSe In2	Indium, dimer	91.0	90.3	-0.8		e C
		TIN				
C3SnH9Br	Trimethyltin bromide	-33.6	-35.0	-1.4	8.6 6.9	m
	Tri-n-butyltin bromide			-10.9	0.9 -19.4	ď
SnBr	Tin bromide	24.0 -29.0		-9.4 -16.7	-7.8 -14.8 -9.2 -20.6	n n
SnBr 2 SnBr 4	Tin dibromide Tin tetrabromide	-29.0 -75.2		-16.7 14.9	44.7 -9.8	n c
						£
CSnH3C13	Methyltin trichloride	-99.8	-83.6	16.2	11.6 -5.0	1
CSnH3C13	Methyltin trichloride Dimethyltin dichloride	-99.8 -71.0	-83.6 -51.7	19.3	4.9 10.9	o f

Table II. (Continued)

Empirical			Formation		fferenc		
Formula	Name	Exp.	Calc.	MNDO-PM3	MNDO	AM1	Ref.
C2SnH8	Dimethylstannane	21.0	12.4	-8.6	-15.2	-1.2	С
C3SnH9C1	Trimethyltin chloride			6.5	2.3	7.3	g
C3SnH9I	Trimethyltin iodide	-46.4 -19.7	-20.5	-0.8	10.9	20.2	g
C3SnH10	Wrimathultin budrida	5.0	0.1	-4.9	-10.8	3.7	ć
C4SnH12	Diethyltin dihydride	11.0	4.8	-6.2	-13.8	-3.3	С
C4SnHl2	Tetramethyltin	-4 5	-12 R	-8.3	-12.3	2.0	C
C5SnH14	Ethyltrimethyltin	-7.0	-16.4	-9.4	-13.6	-1.5	f
C5SnH15N	Dimethylaminetrimethyltin Triethyltin chloride GeMe3-SnMe3	-4.3	-9.1	-4.8	7.1	16.5	g
C6SnH15Cl	Triethyltin chloride	-46.2	-50.4		-10.2		£
C6GeSnH18	GeMe3-SnMe3	39.7	-32.2	7.5	10.3	24.2	g
C6SnH16	Propyltrimethyltin t-Butyltrimethyltin Tetraethyltin Phenyltrimethylstannane Tetraphenyltin	-11.2	-21.5	-10.3	-14.1	-3.8	£
C7SnH18	t-Butyltrimethyltin	-16.0	-24.1	-8.1	0.1	1.4	f
C8SnH20	Tetraethyltin	-10.9	-27.2		-21.0	-15.6	c
C9SnH14	Phenyltrimethylstannane	26.7	23.5	-3.2	-6.7	2.6	£
C24SnH20	Tetraphenyltin	114.4	122.1	7.8	23.6	13.4	đ
SnC1	Tin chloride	16.0	7.6	-8.4	-21.6	-18.1	n
SnC12	Tin dichloride Tin tetrachloride Tin fluoride Tin difluoride	~56.4	~55.5	0.9	-25.7	-19.7	n
SnC14	Tin tetrachioride	-112.7	-101.2	11.5	12.7	-20.2	c
SnF	Tin difluoride	-9.0	-1/.5	-8.5	-11.4	4.6	n
SnF2	min budaida	IIO.U	-111.4		1.4	32.7 13.7	n
SnH	Tin nydride	49.0	63.3	14.3	0.7 -8.4		n
SnH4 SnI	Tin hydride Tin tetrahydride (stannane) Tin iodide	38.9	35.5 29.4	-3.4 -6.6	-8.4 0.4	3.2 4.3	c n
SnI2	Tin iodide Tin diiodide Tin oxide	30.0	-15 2	-17.2	3.4	10.3	n
SnO	min ovido	2.0	-15.2	0.9	9.6	27.6	C
SnS	Tin sulfide	28.5			-15.3	4.1	c
	Tin selenide	28.9		20.2	-13.3	7.1	e
Sn	Tin, atom	72.2		0.0	0.0	0.0	a
SnTe	Tin telluride	38.4		15.2	0.0	0.0	k
520		30	55.0				
		ANTIMONY					
SbBr 3	Antimony tribromide	-46.5	-36.5	-10.0			С
C3SbH9	Trimethylstibine	7.7	-0.3	-8.0			f
C6SbH15	Triethylstibine	10.4	-23.0	-33.4			f
C18SbH15	Triphenylstibine Antimony oxychloride	104.1	98.6	-5.5			f
SbOC1	Antimony oxychloride	-25.5	-7.1	18.4			С
SbC1				19.5			C
SbC12	Antimony chloride Antimony dichloride Antimony trichloride	-18.5	-34.3	-15.8			С
SbCl3	Antimony trichloride	75.0	-72.4	2.6			C
SbC15	Antimony trichloride Antimony pentachloride Antimony fluoride	-94.2	-91.6	2.6			C
SbF		-11.3	-0.7	10.6			С
SbH3	Stibine	34.7		23.4			C
InSb	Indium antimonide	82.3		-2.2			c
InSb2	Indium diantimonide Antimony nitride	75.0	58.6	-16.4			C
SbN		47.7		38.8 -11.8			C
SbO	Antimony oxide Antimony (++)	646.0		-29.2			c
Sb Sb	Antimony (++) Antimony (+)	263.5		Ω 5			c c
Sb	Antimony, atom	63.2		0.0			e
Sb2	Antimony, dimer	56.2	70.5	14.2			c
Sb4	Antimony, tetramer	49.0	51.5	2.5			c
							Č
		TELLURIUM					
TeAl	Aluminum telluride	63.9		-11.1			е
AsTe	Arsenic telluride	54.7		6.4			е
BiTe	Bismuth telluride	42.8		0.3			c
TeBr 2	Tellurium dibromide			-26.5			1
TeCl2	Tellurium dichloride	-27.0		-6.3			e
TeCl4	Tellurium tetrachloride	-49.5		-6.4			1
TeF TeF2	Tellurium fluoride Tellurium difluoride		-35.1 -110.6	-14.3			e
TeF2	Tellurium diriuoride Tellurium tetrafluoride		-110.6	-18.6 13.7			e 1
TeF6	Tellurium tetraliuoride		-334.1	-7.1			1
Te2F10	Te2F10	-554.4		10.7			ė
GeTe	Germanium telluride	42.0		25.0			k
TeH2	Hydrogen telluride	23.8		0.0			k
TeO	Tellurium oxide			18.7			ě
TeO2	Tellurium dioxide	-14.8		0.0			ì
Te202	Tellurium oxide dimer	-26.0		-18.4			ė
SnTe	Tin telluride	38.4		15.2			k
Te	Tellurium, atom	47.0		0.0			e
ZnTe	Zinc telluride	61.0	48.3	-12.7			e
Te2	Tellurium, dimer	38.0	52.6	14.6			e

Table II. (Continued)

Empirical Formula	Chemical Name	Heat of Exp.		n Di MNDO-PM3	fferenc	e AMl	Ref
			00.101				
		MERCURY					
CHgH3Br C2HgH5Br	Methylmercuric bromide	-7.2	-1.1 -7.7	3.3 -0.5	7.2 11.2	-6.6 -7.7	c
HgBr					-10.1	-28.4	p
HgBr 2	Mercury dibromide	-20.4	-26.9	-6.5	23.5	-23.5	p
CHgH3C1	Methylmercuric chloride	-12.5		9.1	-5.5	0.0	C
CHgH3 C2HgH5Cl	Methylmercury Ethylmercuric chloride	-15.0	45.9		-11.1 -1.7	-1.8	C
C2HgH5I	Ethylmercuric indide	2 3	-9.8 2.9	5.2 -0.4	11.1	-1.4 13.8	c
C2HqH6	Ethylmercuric iodide Dimethylmercury (+) Dimethylmercury	233.9	243.1	9.2	-3.7	-3.6	c
C2HgH6	Dimethylmercury	22.3	28.4	6.1	-10.1	-12.2	c
C2HgN2	Mercuric cyanide		93.1	2.1	-21.9	-6.7	c
C4HgH10	Diethylmercury	17.8	15.8	-2.0	-5.6	-6.1	C
C6HgH5Cl	Phenylmercuric chloride	24.8 9.7	32.3 2.7	7.5	5.0	1.6	b
C6HgHl4 C6HgHl4	Diisopropylmercury		5.6	-7.0 -2.6	13.2 -3.3	6.1 -0.4	d d
C8HgH18	Di-n-propylmercury Di-n-butylmercury	-7.8	-5.1	2.8	4.6	2.0	ď
C8HgH18	Diisobutylmercury	-9.2	-10.2	-1.0	19.4	9.9	a
C12HgH10	Diphenylmercury	93.8	98.4	4.6	7.8	7.4	ā
HgCl	Mercury chloride	20.1	4.9	-15.2		-22.8	C
HgCl2	Mercury dichloride	-35.0	-32.7	2.3	-2.0	-9.9	p
HgF	Mercury fluoride Mercury difluoride	1.0	-7.2		-25.5	-11.7	С
HgF2 HgH	Mercury hydride	57.2	-51.0 48.1	19.2	3.3 -19.4	16.0 -1.3	p
Hg	Mercury (++)	690.8	681.2	-9.7		-1.3 -5.5	c
Hg	Mercury (+)	256.8	271.5	14.7		-31.3	c
нg	Mercury, atom	14.7	14.7	0.0	0.0	0.0	a
HgI2	Mercury diiodide			-0.1		23.2	¢
Hg2	Mercury, dimer (+)	244.3			-27.6	-23.6	C
Hg2	Mercury, dimer	26.0	25.9	-0.1	4.2	2.0	c
		HALLIUM					
TlBr TlBr	Thallium bromide (+) Thallium bromide	203.3		11.5			С
TICL	Thallium chloride (+) Thallium chloride	-9.0 209.0		-10.1 2.6			c
TICI	Thallium chloride	-16.2		2.8			c
T12C12	Thallium chloride dimer	49.4	-48.6	0.8			c
TlI	Thallium iodide	1.7	-12.7	-14.4			c
Tl		1347.8		2.1			С
Tl	Thallium (++)	658.4		-1.5			C
Tl Tl	Thallium (+) Thallium, atom	185.9	205.1 43.5	19.2 0.0			c a
		LEAD		• • • • • • • • • • • • • • • • • • • •			_
PbBr	Lead bromide	17.0	7.0	-10.0	-10.9		b
PbBr2	Lead dibromide	-25.0	-30.7	-5.7	-8.9		b
СЗРЬН9	Trimethyllead (+)	200.1	209.9	9.9	11.8		i
СЗРЬН9	Trimethyllead	46.7	62.0	15.4	-10.8		i
C4PbH12	Tetramethyllead		30.0	-2.5	-6.4		c
C6Pb2H18 C7PbH18	Hexamethyldiplumbane t-Butyltrimethyllead	38.7 6.9	49.7 14.0	11.0 7.1	6.8 19.6		i i
C8PbH20	Tetraethyllead	26.2	8.6	-17.5	-15.5		ı C
PbC1	Lead chloride (+)	178.2	174.4	-3.8	-18.4		b
PbC1	Lead chloride	3.6	1.7	-1.9	-18.9		b
PbC12	Lead dichloride (+)	195.1	179.5	-15.6	-6.0		b
PbC12	Lead dichloride	-41.6	-39.7	1.9	-35.4		ь
PbF PbF2	Lead fluoride Lead difluoride	-19.2 -104.0	-21.0 -89.6	-1.8 14.4	-3.4 9.8		b
PbH PbH	Lead difluoride Lead hydride	56.5	-89.6 54.2	-2.3	9.8 -15.8		b p
PbH4	Lead tetrahydride (plumbane)	59.7	58.8	-0.9	3.4		q Q
PbI	Lead iodide	25.8	13.5	-12.3	0.4		b
PbI2	Lead diiodide	-0.8	-17.2	-16.5	9.5		b
	Lead oxide	16.8	21.3	4.5	12.3		r
Pb0		10.0					
Pb	Lead (+)	219.0	217.9	-1.1	-0.6		С
		219.0 46.6 31.5					

Table II. (Continued)

Empirical	Chemical	Heat of	Formation	n Dif	ference		
Formula	Name	Exp.	Calc.	WNDO-PM3	COMM	AM1	Ref.
	1	BISMUTH					
Ві	Bismuth (++)	606.1	588.8	-17.3			С
Bi	Bismuth (+)	219.1	237.9	18.8			C
Bi	Bismuth, atom	50.3	50.1	0.0			а
СЗВіН9	Trimethylbismuth	46.3	43.1	-3.0			d
C6BiH15	Triethylbismuth	51.6	25.6	-26.0			đ
C18BiH15	Triphenylbismuth	138.6	135.9	-2.7			đ
BiCl	Bismuth chloride	6.0	17.8	11.8			е
BiC13	Bismuth trichloride	-63.9	5 -42.6	20.9			c
BiF	Bismuth fluoride	-7.0	7.1	14.1			e
BiSe	Bismuth selenide	42.0	54.9	12.9			c
BiTe	Bismuth telluride	42.8	3 43.1	0.3			С
Bi2	Bismuth, dimer	52.5	5 55.2	2.7			c

References

```
a: "CRC Handbook of Chemistry and Physics," 60th Edition, R. C. Weast, (Ed.), CRC Press, Boca Raton, FL, 1980.
b: M. W. Chase, C. A. Davies, J. R. Downey, D. R. Frurip, R. A. McDonald,
    A. N. Syverud, JANAF Thermochemical Tables, Third Edition,
    J. Phys. Chem. Ref. Data 14, Suppl. 1 (1985).
C: D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow,
S. M. Bailey, K. L. Churney, R. L. Nuttall, J. Phys. Chem.
Ref. Data Suppl. 11, 2 (1982).
d: J. O. Cox, G. Pilcher, "Thermochemistry of Organic and Organometallic
    Compounds, " Academic Press, New York, N.Y., 1970.
e: I. Barin, O. Knacke, O. Kubaschewski, "Thermochemical Properties of
Inorganic Compounds", Springer-Verlag, Berlin, 1977.
f: G. M. Kolyakova, I. B. Rabinovich, E. N Zoria, Dokl. Akad. Nauk
    SSSR, 209, 616 (1973).
g: J. C. Baldwin, M. F. Lappert, J. B. Pedley, J. S. Poland,
    J. Chem. Soc., Dalton Trans., 1943 (1972).
h: J. B. Pedley, G. Rylance, "Sussex-N.P.L. Computer Analysed Thermochemical
    Data: Organic and Organometallic Compounds, "Sussex University, 1977.
i: M. F. Lappert, J. B. Pedley, J. Simpson, T. R. Spalding, J. Organomet.
    Chem., 29, 195 (1971).
j: CODATA, J. Chem. Thermod., 10, 903 (1978).
k: D. D. Wagman, W. H. Evans, V. B. Parker, T. Hawlow, S. M. Bailey, R. H. Schumm, Natl. Bur. Stand. (U.S.), Tech. Note, No 270-3 (1968) and "Errata in NBS Technical Note 270-8" (1981).
1: G. Ditter, U. Niemann, Philips J. Res., 37, 1 (1982).
m: H. A. Skinner, Adv. Organomet. Chem., 2, 49 (1964).
n: "Gmelins Handbuch der anorganischen Chemie", Zinn, Thiel Cl,
    Verlag Chemie, GMBH, Weinheim, 1972.
o: G. A. Nash, H. A. Skinner, W. F. Stack, Trans. Faraday Soc.,
61, 640 (1965).
p: D. R. Stull, H. Prophet, Natl. Stand., Ref. Data Ser. (U.S., Natl. Bur.
    Stand.) NSRDS-NBS 37, 1971.
q: F. E. Saalfeld, H. Svec, J. Inorg. Chem., 2, 46 (1963).
r: M. W. Chase, J. L. Curnutt, A. T. Hu, H. Prophet, A. N. Syverud, L. C. Walker,
    J. Phys. Chem. Ref. Data, 3, 311, (1974).
```

to force the configuration to $4s^24p^2$ resulted in a significant increase in error for the other species. The incorrect atomic configuration was preferred as the lesser of two evils.

Arsenic

With the exception of triethylarsine, the thermochemistry and steriochemistry of arsenic is predicted with satisfying accuracy. As with triethylphosphine and triethylstibine, the experimental ΔH_f of triethylarsine in unexpectedly large (13.4 kcal/mol) particularly when compared to the trimethylarsine (2.8 kcal/mol). PM3 predicts the triethyl derivative to be 5.5 kcal/mol more stable than the trimethyl. If this compound is ignored, the av-

erage error for arsenic compounds drops to 7.4 kcal/mol.

Selenium

Along with tellurium, selenium forms the widest range of types of bonds, bonding to 12 different elements, ranging from the highly ionic, $SeOF_2$, to the 100% covalent Se_2 . In addition, oxidation states from -2 (H_2Se) to +6 (SeF_6) are reproduced.

Cadmium

Because of the paucity of experimental data on cadmium compounds, the number of reference data available used is very small. As a result, the ensuing

Table III. Statistical analysis of ΔH_{ℓ} errors.

Element	No.	PM3	No.		MNDO	No.	AM1	
			First 12	PM3	elements (R	evised)		
н	570	6.9 (1.2) [13	-		(5.6) [26.	-		
С	558	6.4 (1.3) [9			(4.7) [24.			
N	156	9.0 (-2.5) [20			(9.6) [29.	-	12.2 (1.4)	
0	315	9.3 (-0.5) [14			(26.1) [70.		14.7 (5.9)	
F		9.3 (1.9) [13	7		(36.7) [88.	-	23.5 (7.7)	
Al		15.6 (0.9) [21			(3.3) [32.		13.5 (3.2)	
S <u>i</u>		10.1 (1.9) [14			(14.2) [35.		17.7 (7.1)	
P		14.8 (-3.1) [23	-		(24.7) [55.		22.1 (7.2)	
S		14.4 (1.6) [25			(37.7) [88.		21.4 (-6.9)	
C1		10.0 (-0.6) [15			(22.4) [96.	-	18.0 (3.6)	
Br		12.9 (2.5) [18			(16.6) [46.		21.8 (5.4)	
I	76 .	12.0 (-0.1) [17	.9] /6	31.6	(12.3) [62.	2] /6	26.0 (3.2)	[53.8
Totals:	886	9.6 (0.1) [17	.4] 886	23.7	(13.3) [55.	2] 886	14.2 (1.8)	[30.0
			Al	1 28	PM3 element:	3		
н	676	7.3 (1.0) [13	.0] 644	13.4	(4.9) [25.	6] 631	8.2 (0.7)	[14.6
Вe	19	8.6 (0.2) [11	.5] 19	15.8	(1.0) [24.	0]		-
С	643	6.8 (1.0) [9	.9] 620	13.3	(4.5) [23.	6] 614	8.3 (0.6)	[12.0
N	163	9.3 (-1.8) [20	.8] 159	19.4	(9.3) [29.	3] 159	12.1 (1.4)	[22.4
0	344	9.4 (-0.6) [14	.3] 326	31.8	(25.7) [69.	1] 319	14.7 (6.0)	[26.7
F	182	9.4 (1.7) [13	.5] 166	41.8	(33.8) [84.	9] 161	23.0 (7.7)	[50.8
Мg	20	. , .	•					
Al		15.5 (0.7) [21			(3.3) [32.		13.5 (3.2)	
Si		10.2 (2.1) [14			(14.2) [35.		17.7 (7.1)	
P		14.8 (-3.1) [23	•		(24.7) [55.	•	22.1 (7.2)	-
S		14.3 (1.8) [24			(36.8) [87.		21.3 (-6.5)	
C1		10.2 (-0.1) [15			(17.3) [86.		16.8 (2.2)	
Zn	15	5.8 (0.2) [7		15.8	(12.5) [21.	4] 13	12.3 (11.0)	[20.8
Ga		14.9 (-2.4) [18				71 04		
Ge		11.4 (-0.7) [13		20.5	(12.5) [30.	/] 34	13.8 (1.8)	[1/./
As		8.5 (0.4) [11 11.1 (2.1) [14						
Se Br		11.9 (0.4) [16		26 1	(15.4) [43.	61 04	20.5 (3.2)	[25]
Cđ	4	2.6 (0.0) [3		20.1	(13.4) (43.	3] 64	20.5 (3.2)	(33.1
In		11.3 (-0.5) [15						
Sn	37	9.0 (-0.1) [10		10 8	(-1.6) [13.	01 35	10.9 (1.0)	[12 8
Sb		13.7 (1.4) [17		10.0	(1.0) (13.	. 5 3 3 3 3	10.9 (1.0)	[13.0
Te		11.3 (-0.8) [13	•					
I		11.5 (-1.0) [16		29. R	(12.7) [59.	UJ 83	25.1 (4.3)	[5] A
Hq	29	6.8 (-0.2) [8	7		(-3.5) [15.	-	9.5 (-3.9)	
T1	10	7.4 (-0.7) [9		5	, 5.5, (25.	-1 -3	, (3.)	
Pb	23	7.3 (-1.5) [9		10.6	(-4.2) [13.	11		
Bi		10.9 (2.7) [13	_		,, ,	- 3		
Totals:	1201	9.6 (0.0) [16	31 1038	22 3	(11.7) [51.	61 996	13.9 (1.7)	[28 R

Errors are in kcal/mol.

Errors, in order, are: unsigned average, (signed average), [root mean square].

parameters allow the available data to be reproduced with unprecedented accuracy. An unfortunate consequence of the small number of reference data is that the parameter set could not be well defined, and it is highly likely that the predictive power of PM3 when applied to cadmium compounds will be very poor. Because of the small number of reference data, the Gaussian parameters for cadmium were omitted.

Indium

With the exception of the In-X-In angles for the oxide and selenide, all indium geometries are in good

agreement with experiment. PM3 predicts the In-X-In angles to be 180°. This fault does not occur in In₂Te, but does occur in Ga₂O.

Tellurium

Tellurium exhibits oxidation states of -2, 0, 1, 2, 3, 4, 5, and 6. Three hypervalent compounds are represented here: TeO₃, TeF₆, and Te₂F₁₀. Te₂F₁₀ is predicted as having a D_{4d} structure with an unusually long Te-Te bond (3.18 Å). The total bonding between the two TeF₅ groups is quite large: 0.943, composed of a bond³² of order 0.690 to the other tellurium, four bonds of order 0.053 to the nearer fluorine atoms,

and long distance bonds of order 0.039 to the distant axial fluorine.

Lead

An inconsistency in the reported value of the ΔH_f of PbCl₄ has been found. The JANAF tables give the

 $\Delta H_f(g)$ of PbCl₄ as -132.0 ± 20 kcal/mol,²⁶ while the National Bureau of Standards reports³³ a value of -78.7 kcal/mol for the $\Delta H_f(l)$. As heats of vaporization are always positive, the $\Delta H_f(g)$ must be more positive than -78.7 kcal/mol. PM3 predicts the $\Delta H_f(g)$ of PbCl₄ to be -61.8 Kcal/mol. This suggests that the NBS value is likely to be more accurate than the JANAF value.

Table IV. Comparison of experimental and calculated molecular geometries.

Empirical Formula		ometric riable	Exp.	Calc.	MNDO-PM3	Errors MNDO	AMl	Ref
		В	ERYLLIUM					
BeBr2	Beryllium dibromide	Be-Br	1.910	1.814	-0.096	0.102		a
C5BeH5C1	Cyclopentadienylberyllium chloride		1.090	1.084	-0.006	-0.005		b
	-1	Be-ring	1.485	1.683	0.198	0.068		
		Be-Cl	1.839	1.770	-0.069	0.118		
BeCl2	Beryllium dichloride	Be-C1	1.770	1.744	-0.026	0.143		a
BeF	Beryllium fluoride	Be-F	1.361	1.373	0.012	0.098		a
BeF2	Beryllium difluoride	Be-F	1.400	1.402	0.002	0.060		a
BeH	Beryllium hydride (+)	Be-H	1.312	1.273	-0.039	-0.065		a
BeH	Beryllium hydride	Be-H	1.343	1.307	-0.036	-0.054		a
BeI	Beryllium iodide	Be-I	2.132	2.223	0.091	0.023		a
BeI2	Beryllium diiodide	Be-I	2.120	2.069	-0.051	0.001		a
Be0	Beryllium oxide	Be-O	1.331	1.304	-0.027	0.004		a
BeS	Beryllium sulfide	Be-S	1.741	1.652	-0.089	-0.105		a
		M	AGNESIUM					
C10MgH250	EtMgBr.(Et20)2	Mg-Br	2.480	2.422	-0.058			С
		Mg-C	2.160	1.891	-0.269			
		C-Mg-Br	124.0 2.060	106.3 1.871	-17.7			
		Mg-O O-Mg-C	95.6	99.3	-0.189 3.7			
			2.030	1.871	-0.159			
		Mg-O O-Mg-Br	104.0	110.6				
MgBr	Magnesium bromide	Mg-Br	2.360	2.355	6.6 -0.005			2
MgBr2	Magnesium dibromide	Mg-Br	2.340	2.352	0.012			a a
MgCl	Magnesium chloride	Mg-Cl	2.199	1.875	-0.324			a
MgCl2	Magnesium dichloride	Mg-Cl	2.186	1.887	-0.299			ď
ngora	magnesium dieniolide	Cl-Mg-Cl	180.0	156.7	-23.3			u
MgF	Magnesium fluoride	Mg-F	1.750	1.754	0.004			a
MgF2	Magnesium difluoride	Mg-F	1.771	1.762	-0.009			ď
MgH	Magnesium hydride	Mg-H	1.730	1.687	-0.043			a
MgI2	Magnesium diiodide	Mg-I	2.520	2.421	-0.099			a
MgO	Magnesium oxide	Mg-O	1.749	1.780	0.031			a
MgS	Magnesium sulfide	Mg-S	2.143	2.358	0.215			a
Mg2	Magnesium, dimer	Mg-Mg	3.9	5.1	1.2			a
			ZINC					
ZnBr2	Zinc dibromide	Zn-Br	2.204	2.095	-0.109	0.031	-0.093	d
		Br-Zn-Br	180.0	180.0	0.0	0.0	0.0	
C2ZnH6	Dimethylzinc	Zn-C	1.930	1.937	0.007	-0.046	-0.031	e
		C-Zn-C	180.0	180.0	0.0	0.0	0.0	
C42nH10	Diethylzinc	Zn-C	1.950	1.965	0.015	0.000	-0.021	e
		C-C-Zn	114.5	100.5	-14.0	0.0	-0.6	
		C-Zn-C	180.0	180.0	0.0	0.0	0.0	
C6ZnH8	Cyclopentadienylmethylzinc	C-C	1.438	1.436	-0.002	0.080	0.000	f
		C-Zn	2.280	2.342	0.062	-0.359	0.078	
CC (7-11) A	Disasanalaina	Zn-C(H3)	1.903	1.946	0.043	-0.022	-0.023	_
C6ZnH14	Di-n-propylzinc	C-C-C	113.6	112.9	-0.7	1.8	-3.2	е
		Zn-C	1.952	1.972	0.020	-0.043	-0.019	
		Zn-C-C	114.5	101.0	-13.5	3.8	-1.1	
ZnCl2	Zinc dichloride	C-Zn-C	180.0	180.0	0.0	0.0	0.0	a
LIICIZ	Zinc dichioride	Zn-Cl Cl-Zn-Cl	2.062 180.0	2.064 180.0	0.002 0.0	0.053 0.0	0.005	d
ZnF2	Zinc difluoride	Zn-F	1.742	1.740	-0.002	-0.062	0.006	a
ZnI2	Zinc diiodide	F-Zn-F Zn-I	180.0 2.401	180.0 2.404	0.0 0.003	0.0 -0.019	0.0 -0.055	đ
	2 41.64.46	I-Zn-I	180.0	180.0	0.0	0.0	0.0	•
		C	GALLIUM					
GaBr	Gallium bromide	Ga-Cl	2.352	2.394	0.042			g
GaH3NBr3	Gallium tribromide-ammonia	Ga-N	2.081	1.845	-0.236			þ
		Ga-Br	2.288	2.302	0.014			
		Br-Ga-Br	116.1	116.0	-0.1			
Ga2Br6	Ga2Br6	Ga-Br(b)	2.450	2.434	-0.016			i
00-110-10	a. v. a. a. c. b.	Ga-Br(t)	2.250	2.234	-0.016			
CGaH3C13	GaMeCl3(-)	Ga-Cl	2.220	2.289	0.069			Ĵ
		Ga~C	1.930	1.813	-0.117			

Table IV. (Continued)

mpirical Formula		eometric Ariable	Exp.	Calc.	MNDO-PM3	Errors MNDO	AM1	Re
2GaH6Cl2	GaMe2C12(-)	Ga-Cl	2.280	2.355	0.075			
		Ga-C	1.980	1.826	-0.154			
3GaH9Cl	GaMe3C1(~)	Ga-Cl	2.380	2.404	0.024			
		Ga-C	2.050	1.857	-0.183			
aC1	Gallium chloride	Ga-Cl	2.202	2.307	0.105			
a2H4C12	Ga 2C1 2H4	Ga−Ga	3.241	3.824	0.583			
		Ga-Cl	2.349	2.407	0.058			
		Ga-H	1.559	1.598	0.039			
aH3NC13	Gallium trichloride-ammonia	Ga-N	2.057	2.417	0.360			
		Ga-Cl	2.142	2.375	0.233			
		Cl-Ga-Cl	116.4	120.3	3.9			
aCl4	GaC14(-)	Ga-Cl	2.170	2.216	0.046			
a2C16	Ga2C16	Ga-Cl(b)	2.300	2.360	0.060			
		Ga-Cl(t)	2.100	1.889	-0.211			
a F	Gallium fluoride	Ga-F	1.774	1.783	0.009			
aF3	Gallium trifluoride	Ga-F	1.725	1.713	-0.012			
aН	Gallium hydride	Ga-H	1.663	1.648	-0.015			
aΙ	Gallium iodide	Ga-I	2.575	2.539	-0.036			
a I3	Gallium triiodide	Ga-I	2.458	2.577	0.119			
a 20	Gallium(I) oxide	Ga-O	1.824	1.796	-0.028			
		Ga-O-Ga	142.9	180.0	37.1			
		GE	RMANIUM					
3GeH9Br	Bromotrimethylgermane	Ge-Br	2.323	2.362	0.039	0.051	-0.054	
	· y - y	Ge-C	1.936	1.948	0.012	-0.006	0.056	
		Br-Ge-C	106.3	106.4	0.1	0.6	4.2	
H3Br	Bromogermane	Ge-Br	2.297	2.333	0.036	0.070	-0.040	
	2101109011111110	Ge-H	1.527	1.503	-0.024	-0.050	0.026	
		H-Ge-Br	106.3	108.1	1.8	0.7	3.2	
Br2	Germanium dibromide	Ge-Br	2.337	2.323	-0.014	0.044	-0.123	
	Germaniam Cibiomide	Br-Ge-Br	101.2	112.5	11.3	9.8	9.2	
GeH3Br3	Tribromomethylgermane	Ge-C	1.889	1.936	0.047	0.037	0.133	
ensor s	11 1D10MOMethy1germane	Ge-Br	2.276	2.333	0.057	0.037	-0.010	
		C-Ge-Br	111.6	110.6				
		C-H	1.120		-1.0	-1.4	-5.9 -0.015	
Br 4	Germanium tetrabromide	Ge-Br	2.272	1.092	-0.028	-0.014	-0.015	
eH3Cl3		Ge-Bl Ge-Cl		2.315	0.043	0.130	-0.003	
enscis	Trichloromethylgermane		2.135	2.163	0.028	0.097	0.001	
eH5F	Mothulgormanium fluorido dibudrio	C-Ge-Cl	106.0	110.7	4.7	5.6	4.1	
ense	Methylgermanium fluoride dihydric		1.739	1.736	-0.003	0.003	-0.023	
		Ge-C	1.927	1.962	0.035	0.005	0.044	
		C-Ge-F	106.1	107.5	1.4	1.5	-1.8	
		Ge-H	1.523	1.510	-0.013	-0.038	0.016	
	- 163	C-Ge-H	113.9	109.7	-4.2	-2.4	-2.9	
eH3F3	Trifluoromethylgermane	Ge-C	1.904	1.950	0.046	0.032	0.065	
		Ge-F	1.714	1.714	0.000	0.024	-0.007	
		F-Ge-C	113.2	113.2	0.0	0.8	1.3	
eH3N	Cyanogermane	Ge-C	1.919	1.835	-0.084	-0.061	-0.031	
		C-N	1.155	1.158	0.003	0.011	0.008	
eH3NO	Germyl isocyanate	Ge−H	1.532	1.515	-0.017	-0.048	0.007	
		Ge-N	1.831	1.842	0.011	0.000	-0.028	
eH3NS	Germyl isothiocyanate	Ge-H	1.520	1.518	-0.002	-0.039	0.021	
		Ge-N	1.817	1.832	0.015	0.035	-0.010	
		H-Ge-N	106.9	110.0	3.1	0.9	1.3	
		C-N	1.144	1.213	0.069	0.049	0.054	
₽Н6	Methylgermane	Ge-C	1.945	1.955	0.010	-0.018	0.042	
		Ge-H	1.529	1.505	-0.024	-0.046	0.016	
		C-H	1.083	1.090	0.007	0.024	0.022	
SeH6Cl2	Dimethylgermanium dichloride	Ge-Cl	2.143	2.183	0.040	0.099	-0.004	
	• •	Cl-Ge-Cl	105.0	107.0	2.0	1.1	3.5	
		Ge-C	1.928	1.941	0.013	-0.002	0.053	
		C-Ge-C1	108.0	108.7	0.7	0.7	0.9	
GeH6F2	Dimethylgermanium difluoride	Ge-F	1.739	1.725	-0.014	0.004	-0.029	
		F-Ge-F	105.4	103.7	-1.7	-3.7	-4.2	
		Ge-C	1.928	1.956	0.028	0.008	0.038	
		C-Ge-F	107.4	109.7	2.3	2.4	1.8	
Бе Н8	Ethylgermane	Ge-C	1.949	1.957	0.008	-0.008	0.055	
	acil agermane	C-C	1.545	1.493	-0.052			
		Ge-C-C				-0.025	-0.056	
			112.2	105.2	-7.0 -0.016	5.0	-1.1	
		Ge-H	1.522	1.506	-0.016	-0.039	0.023	
		H-Ge-C	109.7	109.6	-0.1	0.2	-2.0	
				1.505	-0.027	-0.046	0.012	
JeH8	Dimethylgermane	Ge-H	1.532					
Зе Н8	Dimethylgermane	Ge-H H-Ge-H	108.7	108.8	0.1	0.6	5.3	
GeH8	Dimethylgermane	Gе−Н Н−Gе−Н Ge−C	108.7 1.950	108.8 1.957		0.6 -0.020	5.3 0.034	
Ge H8	Dimethylgermane	Ge-H H-Ge-H	108.7	108.8	0.1			
GeH8 GeH9C1	Dimethylgermane Trimethylchlorogermane	Gе−Н Н−Gе−Н Ge−C	108.7 1.950	108.8 1.957	0.1 0.007	-0.020	0.034	
		Ge-H H-Ge-H Ge-C C-Ge-C	108.7 1.950 110.0	108.8 1.957 109.4	0.1 0.007 -0.6	-0.020 0.8	0.034 -3.2	

Table IV. (Continued)

Empirical Formula	Chemical Name	Geometric Variable	Exp.	Calc.	MNDO-PM3	Errors MNDO	AMl	Ref
C3GeH10	Trimethylgermane	Ge-H Ge-C	1.522 1.947	1.504 1.959	-0.018 0.012	-0.033 -0.013	0.021 0.035	t
C4GeHl2	Tetramethylgermanium	H-Ge-C Ge-C	109.3 1.945	109.6 1.960	0.3 0.015	-0.5 -0.007	1.6 0.036	u
		C-H	1.120	1.090	-0.030	-0.013	-0.014	
C6Ge2H18O	Bis(trimethylgermanium) oxide	Ge-O Ge-O-Ge	1.770 141.0	1.786 125.1	0.016 -15.9	-0.016 39.2	0.079 -18.9	V
		Ge-C	1.980	1.975	-0.005	-0.038	-0.011	
C7GeSe2H1	Tetramethyldiselenagermacyclohex	ane Se-C Ge-Se	1.972 2.350	1.993 2.399	0.021 0.049			,
		Ge-Se-C	92.4	114.6	22.2			
		Se-Ge-Se Ge-C'	103.2 1.967	87.7 1.947	-15.5 -0.020			
		Ge-C"	1.953	1.962	0.009			
T-9201	Chlaratrifluoregormano	C'-Ge-C"	111.5 2.067	119.7 2.134	8.2	0.234	0.105	1
GeF3Cl	Chlorotrifluorogermane	Ge-Cl Ge-F	1.688	1.703	0.067 0.015	0.234	0.105	
		F-Ge-F	107.5	107.6	0.1	-0.3	-1.9	
GeH3Cl	Chlorogermane	Ge-Cl Ge-H	2.150 1.537	2.197 1.504	0.047 -0.033	0.099 -0.060	-0.018 0.010	1
		H-Ge-H	111.0	110.1	-0.9	0.8	1.0	
GeCl2	Germanium dichloride	Ge-Cl Cl-Ge-Cl	2.186 100.4	1.981 179.6	-0.205 79.2	0.028 4.4	-0.089 13.8	C
GeHC13	Trichlorogermane	Ge-Cl	2.114	2.153	0.039	0.155	0.015	t
GeC14	Germanium tetrachloride	Ge-Cl	2.113	2.149	0.036	0.158	0.023	3
GeF GeH3F	Germanium fluoride Fluorogermane	Ge-F Ge-F	1.749 1.734	1.711 1.738	-0.038 0.004	-0.016 0.025	-0.092 -0.019	} }
		Ge-H	1.523	1.513	-0.010	0.003	0.017	_
GeF2	Germanium difluoride	F-Ge-H Ge-F	106.0 1.732	109.9 1.695	3.9 -0.037	2.4 -0.017	2.4 -0.062	ć
Ger 2	Germanium diridoride	F-Ge-F	97.2	112.0	14.8	-2.0	-1.8	
GeH3PSF2	Difluoro(germylthio)phosphine	Ge-S	2.256	2.288	0.032	-0.047	0.057	h
		P-S Ge-S-P	2.115 99.0	2.104 125.2	-0.011 26.2	-0.160 32.6	-0.011 17.6	
		Ge-H	1.538	1.506	-0.032	-0.063	0.006	
		S-Ge-H P-F	110.0 1.590	113.4 1.555	3.4 -0.035	-3.6 -0.034	-1.2 -0.052	
		S-P-F	99.9	113.2	13.3	5.5	9.4	
Ge2H6P2F2	1,1-Difluoro-2,2-digermyldiphosp	haneP-F P-P	1.581 2.177	1.549 2.115	-0.032 -0.062	-0.028 -0.209	-0.052 -0.288	r
		P-P-F	98.9	107.1	8.2	7.1	0.5	
		Ge-P	2.320	2.210	-0.110	-0.141	-0.167	
		Ge-P-F Ge-P-Ge	95.7 98.6	129.2 111.1	33.5 12.5	31.8 20.0	30.3 12.4	
	_ ,	Ge-H	1.512	1.513	0.001	-0.035	0.018	
GeH3I GeH3N3	Iodogermane Germylazide	Ge-I Ge-H	2.508 1.497	2.472 1.515	-0.036 0.018	0.139 0.032	-0.075 0.056	t 2
	_	Ge-N	1.866	1.831	-0.035	0.058	-0.007	-
GeH4 GeH6Si	Germane Germylsilane	Ge-H Ge-Si	1.527 2.357	1.506 2.404	~0.021 0.047	-0.002 -0.016	0.019	a a
Genosi	Germyrstrane	Ge-H	1.529	1.497	-0.032	-0.047	0.020	-
	0	Si-H	1.483	1.488	0.005	-0.104	-0.026	
GeI4 GeO	Germanium tetraiodide Germanium oxide	Ge-I Ge-O	2.500 1.625	2.469 1.637	-0.031 0.012	0.108 -0.033	-0.091 -0.003	j
GeS	Germanium sulfide	Ge-S	2.012	1.973	-0.039	-0.048	0.020	ç
GeSe GeTe	Germanium selenide Germanium telluride	Ge-Se Ge-Te	2.135 2.340	1.927 2.002	-0.208 -0.338			Ł
Ge2H6	Digermane	GeGe	2.403	2.393	-0.010	2.242	-0.036	Ī
		GeH	1.541	1.502	-0.039	1.574	0.007	
Ge3H9P	Trigermylphosphine	HGeH P-Ge	106.4 2.306	110.3 2.235	3.9 -0.071	-15.8 -0.106	1.8 -0.204	t
		Ge-P-Ge	95.7	109.0	13.3	24.1	25.4	
		Ge-H P-Ge-H	1.490 110.3	1.506 116.0	0.016 5.7	0.034 -3.0	0.034 ~4.1	
			ARSENIC					
AsBr3	Arsenic tribromide	As-Br Br-As-Br	2.323	2.315	-0.008			ŀ
C3AsF9	Triperfluoromethylarsine	As-C	99.8 2.053	100.3 2.081	0.5 0.028			:
	_	C-As-C	100.0	99.5	-0.5			
C3AsH9	Trimethylarsine	As-C C-As-C	1.960 96.0	1.976 99.7	0.016 3.7			
C3AsN3	Arsenic tricyanide	As-C	1.900	1.868	-0.032			:
		C-As-C As-C-N	92.0 171.0	98.5 175.6	6.5			
AsC13	Arsenic trichloride	As-C-N As-Cl	2.161	175.6 2.163	4.6 0.002			j
				99.8				
AsF3	Arsenic trifluoride	Cl-As-Cl As-F	98.7 1.706	1.706	1.1 0.000			j

Table IV. (Continued)

Empirical Formula		Geometric Variable	Exp.	Calc.	MNDO-PM3	Errors MNDO	AM1	Ref.
AsP5	Arsenic pentafluoride	As-F(ax)	1.711	1.685	-0.026			р
AsH3	Arsine	As-F(eq) As-H	1.656 1.513	1.661 1.520	0.005 0.007			bb
N-110C1 2	Mainilulanning	H-As-H As-Si	92.1 2.353	94.2	2.1			_
AsH9Si3	Trisilylarsine	Si-As-Si	94.1	2.371 90.6	0.018 -3.5			h
AsI3	Arsenic triiodide	Si-H As-I	1.470 2.550	1.494	0.024			i
Vara	Alsenic trilodide	I-As-I	100.2	2.509 104.8	-0.041 4.6			•
			SELENIUM					
CSeF2	Selenocarbonyl difluoride	C=Se C-F	1.743 1.314	1.745 1.320	0.002 0.006			h
		F-C-F	107.5	105.3	-2.2			
CSeNOF5	Pentafluoro(isocyanato)selenium	Se-F	1.677	1.713	0.036			h
		Se-N N=C	1.789 1.260	1.840 1.267	0.051 0.007			
		Se-N=C	116.9	130.0	13.1			
		C=0	1.187	1.167	-0.020			
CSeHN	Isoselenocyanic acid (Se=C=N-H)	N=C=O Se=C	172.9 1.719	172.3 1.642	-0.6 ∸0.077			h
-		C=N	1.191	1.196	0.005			
		Se=C=N	175.0	175.0	0.0			
		N-H C=N-H	0.990 140.0	0.977 155.1	-0.013 15.1			
CSeH4	Methylselenium hydride	CSe	1.959	1.948	-0.011			P
		CH	1.088	1.093	0.005			
CSeS	Carbon sulfide selenide	SeH C-S	1.473 1.533	1.470 1.452	-0.003 -0.081			Ь
		C-Se	1.695	1.587	-0.108			
CSe	Selenium carbide	Se-C	1.676	1.592	-0.084			g i
C2SeF6	Diperfluoromethyl selenide	Se-C C-Se-C	1.960 104.0	2.008 101.6	0.048 -2.4			1
C2SeH6	Ethyl selanol (anti)	Se-H	1.440	1.466	0.026			cc
		Se-C	1.962	1.956	-0.006			
		H-Se-C Se-C-C	93.5 108.7	99.9 100.3	6.4 -8.4			
C2SeH6	Dimethylselenium	Se-C	1.943	1.948	0.005			dd
		C-Se-C	96.2	100.8	4.6			
C2Se2H6	Me-Se-Se-Me	Se-C . Se-Se	1.950 2.330	1.945 2.370	-0.005 0.040			i
		Se-Se-C	99.0	100.2	1.2			
C4SeH4	Selenophene	Se-C2	1.855	1.887	0.032			ь
		C5-Se-C2 C2-C3	87.8 1.369	88.0 1.344	0.2 -0.025			
		Se-C2-C3	111.6	110.1	-1.5			
		С2-Н	1.070	1.084	0.014			
C4SeH8	Tetrahydroselenophene	Se-C2-H2 Se-C2	121.7 1.963	121.2 1.959	-0.5 -0.004			b
0.000	10014, 01050100	C5-Se-C2	90.7	92.2	1.5			-
•		C2-C3	1.549	1.505	-0.044			
C7GeSe2H1	Tetramethyldiselenagermacyclohexar	Se-C2-C3 ne Se-C	104.0 1.972	103.6 1.993	-0.4 0.021			w
		Ge-Se	2.350	2.399	0.049			-
		Ge-Se-C	92.4	114.6	22.2			
		Se-Ge-Se Ge-C'	103.2 1.967	87.7 1.947	-15.5 -0.020			
		Ge-C*	1.953	1.962	0.009			
		C'-Ge-C"	111.5	119.7	8.2			
SeOC12	Selenyl chloride	Se=O Se-Cl	1.614 2.205	1.634 2.201	0.020 -0.004			h
		O=Se-Cl	106.0	103.0	-3.0			
0-010	Onlanium disklamida	C1-Se-C1	96.9	98.2	1.3			
SeC12	Selenium dichloride	Se-Cl Cl-Se-Cl	2.157 99.6	2.164 99.7	0.007 0.1			þ
SeHPF2	Difluorophosphine selenide	P=Se	2.026	2.089	0.063			h
		P-F	1.557	1.552	-0.005			
		Se=P-F P-H	116.8 1.422	115.9 1.264	-0.9 -0.158			
		Se=P-H	118.6	118.5	-0.1			
CAORO	Colonel fluo-13-	F-P-F	98.1	93.6	-4.5			_
SeOF2	Selenyl fluoride	SeO SeF	1.576 1.730	1.624 1.724	0.048 -0.006			Þ
		FSeO	104.8	101.5	-3.3			
		FSeF	92.2	94.6	2.4			

Table IV. (Continued)

Empirical Formula	Chemical Name	Geometric Variable	Exp.	Calc.	MNDO-PM3	Errors MNDO	AM1	Ref.
SeO2F2	Selenoyl fluoride	Se-F	1.685	1.705	0.020			h
		P-Se-P	94.1	95.0	0.9			
		Se-O O-Se-O	1.575	1.558 129.9	-0.017 3.7			
SeF4	Selenium tetrafluoride	SeF	126.2 1.770	1.736	-0.034			i
36£ 4	Delenium cecialisoiios	FSeF	169.2	140.3	-28.9			_
		SeF'	1.680	1.708	0.028			
		F'SF'	100.6	111.9	11.3			
SeF6	Selenium hexafluoride	SeF	1.685	1.690	0.005			ee
Se2OF10	Bis(pentafluoroselenium)oxide	Se-0	1.679	1.713	0.034			h
		Se-O-Se Se-F(eq)	142.4 1.683	132.3 1.687	-10.1 0.004			
		Se-F(ax)	1.665	1.696	0.031			
GeSe	Germanium selenide	Ge-Se	2.135	1.927	-0.208			b
SeH2	Hydrogen selenide	SeH	1.460	1.470	0.010			i
		HSeH	91.0	93.6	2.6			
SeH6Si2	Disilyl selenide	Se-Si	2.270	2.393	0.123			i
	11	Si-Se-Si	97.0	96.0	-1.0			h
In2Se	Indium(I) selenide	In-Se In-Se-In	2.650 113.0	2.579 179.8	-0.071 66.8			
SeO	Selenium oxide	Se-O	1.663	1.602	-0.061			ff
SeO2	Selenium dioxide	SeO	1.608	1.606	-0.002			g
		OSeO	113.8	106.6	-7.2			•
SeO3	Selenium trioxide	Se-O	1.688	1.538	-0.150			h
PbSe	Lead selenide	Pb-Se	2.402	2.360	-0.042			ь
SeSi	Silicon selenide	Se-Si	2.058	1.974	-0.084			ь
SnSe	Tin selenide	Sn-Se	2.326	2.326	0.000			b
		,	CADMIUM					
CdBr2	Cadmium dibromide	Cd-Br	2.394	2.360	-0.034			gg
C2CdH6	Dimethylcadmium	Cd-C	2.112	2.035	-0.077			b
C4CdN4S4	Cd(NCS)3(SCN) (=)	Cd-N	2.240	2.211	-0.029			hh
		Cd-S	2.570	2.569	-0.001			-
CdC12	Cadmium dichloride	Cd-Cl	2.210	2.225	0.015 -0.004			i
CdF2 Cd12	Cadmium difluoride Cadmium diiodide	Cd-F Cd-I	1.970 2.550	1.966 2.588	0.038			i
C012	Cadmina dirodide	00 1	INDIUM		0.000			_
				2 200	0.054			
InBr	Indium bromide	In-Br In-Cl	2.543 2.401	2.289 2.401	-0.254 0.000			g
InCl InF	Indium chloride Indium fluoride	In-EI In-F	1.985	1.985	0.000			g
InH	Indium hydride	In-H	1.838	1.733	-0.105			g
InI	Indium iodide	In-I	2.729	2.711	-0.018			ii
InI3	Indium triiodide	In-I	2.641	2.646	0.005			ď
In2O	Indium(I) oxide	In-O	2.020	1.999	-0.021			h
		In-O-In	145.0	180.1	35.1			
In2Se	Indium(I) selenide	In-Se	2.650	2.579	-0.071			h
	T-31(T) b-3313-	In-Se-In	113.0	179.8	66.8			h
In2Te	Indium(I) telluride	In-Te In-Te-In	2.840 99.0	2.836 104.9	-0.004 5.9			n
		111-16-111	TIN	104.9	3.9			
C3SnH9Br	Trimethyltin bromide	Sn-Br	2.490	2.449	-0.041	-0.074	-0.092	jj
	_, , , , , ,	Sn-C	2.170	2.114	-0.056	-0.105	-0.065	_
SnH3Br	Tin bromide trihydride	Sn-Br	2.469	2.453	-0.016	-0.068	-0.076	р
		Sn-H	1.767	1.693 114.0	-0.074 1.2	-0.177 -0.2	-0.147 -2.2	
SnBr 2	Tin dibromide	H-Sn-H Sn-Br	112.8 2.512	2.404	-0.108	-0.150	-0.137	đ
SHEL 2	IIII dibiomide	Br-Sn-Br	100.0	102.5	2.5	4.3	5.6	•
SnBr4	Tin tetrabromide	Sn-Br	2.440	2.440	0.000	-0.056	-0.063	kk
CSnH6	Methyltin trihydride	Sn-C	2.140	2.187	0.047	-0.083	-0.037	h
	-	Sn-H	1.708	1.701	-0.007	-0.122	-0.090	
		H-Sn-C	109.4	110.1	0.7	1.2	0.0	
C2SnH6C12	Dimethyltin dichloride	Sn-Cl	2.327	2.364	0.037	-0.020	-0.027	11
		Cl-Sn-Cl	106.2	105.8 2.108	-0.4 -0.001	-2.2 -0.034	-0.8 -0.018	
		Sn-C S-Sn-Cl	2.109 108.5	108.3	-0.001 -0.2	-0.034 -0.8	0.3	
C2SnH8	Dimethyltin dihydride	Sn-H	1.680	1.700	0.020	-0.092	-0.062	11
		Sn-C	2.150	2.177	0.027	-0.091	-0.046	
		H-Sn-C	108.0	109.7	1.7	1.2	1.1	
		C-Sn-C	104.8	109.4	4.6	7.6	5.6	
C3SnH9I	Trimethyltin lodide	Sn-I	2.720	2.668	-0.052	-0.168	-0.116	jj
C3SnH10	Trimethyltin hydride	Sn-H	1.705	1.697	-0.008	-0.116	-0.087	nun
		Sn-C	2.147	2.164	0.017	-0.086	-0.041	
CACOULO	Motromothultin	H-Sn-C	111.5	109.7	-1.8 0.014	-3.6 -0.071	-2.5 -0.026	nn
C4SnH12	Tetramethyltin	Sn-C	2.134	2.148	0.014 0.069	-0.071 -0.018	-0.026 -0.012	nn b
SnH3Cl	Tin chloride trihydride	Sn-Cl	2.327	2.396	V.009	-0.018	-0.012	Ü

Table IV. (Continued)

Empirical Formula	Chemical Name	Geometric Variable	Exp.	Calc.	MNDO-PM3	Errors MNDO	AM1	Ref
SnC12	Tin dichloride	Sn-Cl	2.346	2.340	-0.006	-0.075	-0.036	a
SnCl4	Tin tetrachloride	C1-Sn-C1 Sn-C1	99.0 2.280	98.9 2.354	-0.1	3.4	0.1	
SnH3I	Tin iodide trihydride	Sn-I	2.674	2.623	0.074 -0.051	0.003 -0.139	-0.020 -0.085	00 b
nH4	Tin tetrahydride (stannane)	Sn-H	1.701	1.701	0.000	-0.116	-0.084	pp
nI2	Tin diiodide	Sn-I	2.706	2.643	-0.063	-0.210	-0.120	ď
		I-Sn-I	103.8	109.5	5.7	3.3	2.0	
3nO	Tin oxide	SnO	1.833	1.839	0.006	-0.084	0.049	g
inS	Tin sulfide Tin selenide	SnS Sn-Se	2.209 2.326	2.137	-0.072	-0.205	-0.029	g
SnSe SnTe	Tin telluride	Sn-Te	2.523	2.326 2.572	0.000 0.049			b g
		ANT	LIMONA					
SbBr3	Antimony tribromide	Sb-Br	2.490	2.471	-0.020			i
		Br-Sb-Br	98.0	98.5	0.5			
3SbF9	Triperfluoromethylstibine	Sb-C	2.202	2.209	0.007			i
SbC13	Antimony trichloride	C-Sb-C Sb-Cl	100.0 2.323	99.2 2.320	-0.8 -0.003			h
,0013	And Inday discussing	Cl-Sb-Cl	97.1	97.0	0.1			"
SbC15	Antimony pentachloride	Sb-Cl(ax)	2.338	2.373	0.035			đ
		Sb-Cl(eq)	2.277	2.349	0.072			
выз	Stibine	Sb-H	1.707	1.701	-0.006			i
- LUCC: 2	Muinilulatibing	H-Sb-H	91.3	92.4	1.1			
bH9Si3	Trisilylstibine	Sb-Si Si-Sb-Si	2.555 89.0	2.533	-0.022			h
		Si-30-51 Si-H	1.470	95.0 1.488	6.0 0.018			
b2	Antimony, dimer	Sb-Sb	2.590	2.300	-0.290			qq
		TEL	LURIUM					
eBr2	Tellurium dibromide	Te-Br	2.510	2.511	0.001			i
		Br-Te-Br	98.0	99.4	1.4			
eBr4	Tellurium tetrabromide	Te-Br	2.680	2.532	-0.148			rr
TeNOF5	Pentafluoro(isocyanato)tellurium		1.826	1.824	-0.002			þ
		Te-N	1.859	1.813	-0.046			
0Tell 3DC	MeOPh-Te-S-P(S)(OMe)2	Te-N=C Te-C	126.5 2.114	179.4 2.092	52.9 -0.022			
.yrenists	MEOFII-1E-3-F(3)(OME)2	Te-S	2.444	2.613	0.169			SS
		C-Te-S	94.9	98.7	3.8			
		S-P	2.051	2.109	0.058			
		P-S-Te	103.3	94.3	-9.0			
		P=S	1.933	1.982	0.049			
eCl4	Tellurium tetrachloride	S=P-S Te-Cl	107.9	103.5	-4.4			
eF6	Tellurium hexafluoride	TeF	2.330 1.815	2.404 1.816	0.074 0.001			rr h
e2OF10	Bis(pentafluorotellurium)oxide	Te-O	1.832	1.775	-0.057			h
	(F ,,	Te-O-Te	145.5	155.9	10.4			•
		Te-Feq	1.820	1.811	-0.009			
		Te-Fax	1.799	1.814	0.015			
_		Fax-Te-Feq	89.9	94.3	4.4			
eTe	Germanium telluride	Ge-Te	2.340	2.002	-0.338			g
eH2	Hydrogen telluride	Te-H H-Te-H	1.658 90.3	1.675 88.3	0.017 -2.0			t.t
n2Te	Indium(I) telluride	In-Te	2.840	2.836	-0.004			h
		In-Te-In	99.0	104.9	5.9			•••
e02	Tellurium dioxide	Te-O	1.830	1.702	-0.128			h
bTe	Lead telluride	Pb-Te	2.595	2.738	0.143			b
nTe	Tin telluride	Sn-Te	2.523	2.572	0.049			g
e2	Tellurium, dimer	Te-Te	2.560	2.705	0.145			g
			RCURY					
HgH3Br	Methylmercuric bromide	Hg-C	2.062	2.090	0.028	-0.079	0.015	h
		Hg-Br C-H	2.405 1.095	2.290 1.087	-0.115 -0.008	-0.021	-0.137	
		Hg-C-H	109.6	109.5	-0.1	0.013 0.1	0.011 -2.2	
lgBr	Mercury bromide	Hg-Br	2.330	2.217	-0.113	0.038	-0.101	սս
gBr 2	Mercury dibromide	Hg-Br	2.440	2.225	-0.215	-0.077	-0.190	VV
HgH3C1	Methylmercuric chloride	Hg-C	2.052	2.111	0.059	-0.070	-0.002	ь
		Hg-Cl	2.285	2.254	-0.031	0.006	-0.031	
HgH3I	Methylmercuric iodide	Hg-C	2.069	2.077	0.008	-0.082	-0.016	h
2HgF6	Ditrifluoromethul meseus	Hg-I Hg-C	2.588	2.501	-0.087	-0.109	-0.094	
	Ditrifluoromethyl mercury	Hg-C	2.101	2.101 180.0	0.000 0.0	0.162 0.4	0.110 0.5	WW
.211gt 0		('-Ma-t'						
	Methylmercuric cvanide	C-Hg-C Hg-CN	180.0 2.082					ХX
	Methylmercuric cyanide	C-Hg-C Hg-CN Hg-CH3	2.082 2.051	2.027 2.107	-0.055 0.056	-0.148 -0.068	-0.070 -0.005	хx
2HgH3N	Methylmercuric cyanide	Hg-CN	2.082	2.027	-0.055	-0.148	-0.070	х×

Table IV. (Continued)

Empirical Formula	Chemical Name	Geometric Variable	Exp.	Calc.	MNDO-PM3	Errors MNDO	AM1	Ref
HgCl	Mercury chloride	Hg-Cl	2.230	2.194	-0.036	0.048	0.009	a
HgC12	Mercury dichloride	Hq-Cl	2.252	2.243	-0.009	0.016	-0.013	22
ig F	Mercury fluoride	Hq-F	1.890	1.900	0.010	-0.018	0.004	uu
gF2	Mercury difluoride	Hg-F	1.960	1.928	-0.032	-0.082	-0.052	uu
igΗ	Mercury hydride	нg-н	1.740	1.695	-0.045	-0.190	-0.070	a
ğΙ	Mercury iodide	Hg-I	2.490	3.001	0.511	-0.025	0.036	นบ
gI2	Mercury diiodide	Hq-I	2.554	2.474	-0.080	-0.079	-0.059	aaa
g0	Mercury oxide	нд-О	1.840	1.841	0.001	0.042	0.222	uu
		T	HALLIUM					
T102	T1-0-B-0	T1-0	2.420	2.395	-0.025			h
		T1-0-B	132.0	108.1	-23.9			
		B=O_	1.260	1.210	-0.050			
lBr	Thallium bromide	T1-Br	2.618	2.558	-0.060			b
5T1H5	Cyclopentadienyl thallium	T1-C	2.705	2.711	0.006			t
IC1	Thallium chloride	T1-C1	2.485	2.489	0.004			t
LF	Thallium fluoride (T1F)	T1-F	2.084	2.084	0.000			j
2F2	Thallium fluoride dimer	T1-F	2.290	2.286	-0.004			t
-	mballina isala	F-T1-F	90.0	113.4	23.4			,
lI	Thallium iodide	T1-I	2.814	2.724	-0.090			b
			LEAD					
Br	Lead bromide	Pb-Br	2.546	2.563	0.017	-0.080		а
Br2	Lead dibromide	Pb-Br	2.597	2.566	-0.031	-0.127		bbb
		Br-Pb-Br	99.2	102.7	3.5	2.7		
PbH12	Tetramethyllead	Pb-C	2.240	2.186	-0.054	-0.070		CCC
		С-н	1.080	1.093	0.013	0.021		
		H-C-Pb	104.6	110.6	6.0	4.5		
Pb2H18	Hexamethyldiplumbane	Pb-Pb	2.880	2.867	-0.013	-0.109		ddd
		Pb-C	2.250	2.200	-0.050	-0.073		
		Pb-Pb-C	109.5	112.4	2.9	2.2		
C1	Lead chloride	Pb-Cl	2.180	2.382	0.202	0.198		a
C12	Lead dichloride	Pb-Cl	2.444	2.458	0.014	-0.064		eee
		Cl-Pb-Cl	98.3	99.6	1.3	2.4		•••
C14	Lead tetrachloride	Pb-C1	2.430	2.275	-0.155	-0.049		a
o F	Lead fluoride	Pb-F	2.058	2.027	-0.031	-0.063		a
oF2	Lead difluoride	Pb-F	2.033	2.026	-0.007	-0.038		bbb
		F-Pb-F	97.2	88.9	-8.3	-5.9		
bН	Lead hydride	Pb-H	1.839	1.730	-0.109	-0.181		a
οI	Lead iodide	Pb-I	2.736	2.773	0.037	-0.154		á
012	Lead diiodide	Pb-I	2.804	2.778	-0.026	-0.206		bbt
-		I-Pb-I	99.7	107.9	8.2	4.3		שטעו
0	Lead oxide	Pb-0	1.920	1.936	0.016	-0.039		fff
oS	Lead sulfide	Pb-S	2.290	2.152	-0.138	-0.175		fff
oSe	Lead selenide	Pb-Se	2.402	2.360	-0.042	0.1/3		111
oTe	Lead telluride	Pb-Se Pb-Te	2.595	2.738	0.143			į.
		I	SISMUTH	•				
iBr3	Bismuth tribromide	Bi-Br	2.630	2.603	-0.027			i
,	213mgcii Cilbromide	Br-Bi-Br	100.0	98.7	-0.027			1
ЗВіН9	Trimethylbismuth	Bi-C	2.270	2.266	-0.004			i
	11 Inc chy 10 I shach	C-Bi-C	96.7	97.0	0.3			1
iC13	Bismuth trichloride	Bi-Cl	2.425	2.419	-0.006			z
1013	Diamoth tilthiolide	B1-C1	4.443	2.413	-0.006			đ

References

Cl-Bi-Cl

97.3

99.9

2.6

- a: M. W. Chase, C. A. Davies, J. R. Downey, D. R. Frurip, R. A. McDonald,
 - A. N. Syverud, JANAF Thermochemical Tables, Third Edition,

- A. N. Syverud, JANAF Thermochemical Tables, Third Edition,
 J. Phys. Chem. Ref. Data 14, Suppl. 1 (1985).
 b: M. D. Harmony, V. W. Laurie, R. L. Kuczkowsky, R. H. Schwendeman,
 D. A. Ramsay, F. J. Lovas, W. J. Lafferty, A. G. Maki, J. Phys. Chem. Ref. Data 8, 3 (1979).
 c: L. J. Guggenberger, R. E. Rundle, J. Am. Chem. Soc., 86, 5344 (1964).
 d: M. Hargittai, Coord. Chem. Rev., 91, 35 (1988).
 e: A. Almenningen, T. U. Halgaker, A. Haaland, S. Samdal,
 Acta Chem. Scand., Part A. A36, 159 (1982).
 f: A. Haaland, S. Samdal, R. Seip, J. Organomet. Chem., 153, 187 (1978).
 g: K. P. Huber, G. Herzberg, "Molecular Spectra and Molecular Structure,"
 IV. "Constants for Diatomic Molecules," Van Nostrand, Reinhold,
 New York, (1979).

- New York, (1979).
 h: J. H. Callomon, E. Hirota, T. Iijima, K. Ruchitsu, W. J. Lafferty,
 "Structure Data on Free Polyatomic Molecules," Landolt-Bornstein,
 New Series, Group II, Vol. 15, Springer, Berlin (1977).
 i: "Structural Inorganic Chemistry", A. F. Wells, Clarendon Press, Oxford, 1984.
 k: M. J. Goode, A. J. Downs, C. R. Pulham, D. W. H. Rankin, H. E. Robertson,
 J. Chem. Soc. Chem. Comm., 768 (1988).

Table IV. (Continued)

```
1: G. Schultz, J. Tremmel, I. Hargittai, N. D. Kagramanov, A. K. Maltsev,
  O. M. Nefedov, J. Mol. Struct., 82, 107 (1982).
m: G. G. B. Souza, J. D. Wieser, J. Mol. Struct., 25, 442 (1975).
  n: M. Hayashi, S. Kaminaka, M. Fujitake, S. Miyazaki, J. Mol. Spect.,
    135, 289 (1989).
  o: J. D. Murdoch, D. W. H. Rankin, B. Beagley, J. Mol. Struct.,
  31, 291, (1976).
p: J. H. Callomon, E. Hirota, K. Kuchitsu, W. J. Lafferty, A. G. Maki,
     C. S. Pote, "Structure Data on Free Polyatomic Molecules,"
      Landolt-Bornstein, New Series, Group II, Vol. 7, Springer, Berlin (1976).
  q: J. E. Drake, H. L. Hencher, Q. Shem, Can. J. Chem., 55, 1104 (1977).
  r: J. E. Drake, R. T. Hemmings, J. L. Hencher, F. M. Mustoe, Q. Shem,
      J. Chem. Soc., Dalton Trans., 394, (1976)
  s: J. Durig, M. M. Chen, Y. S. Li, J. Phys. Chem., 77, 227 (1973), and
E. C. Thomas, V. W. Laurie, J. Chem. Phys., 50, 3512 (1969).
  t: J. Durig, K. L. Hellams, J. Mol. Struct., 29, 349 (1975).
  u: J. L. Hencher, F. J. Mistoe, Can. J. Chem., 53, 3542 (1975).
v: L. V. Vilkov, N. A. Tarensenko, Zh. Strukt. Khim., 10, 102 (1969).
  w: S. Tomoda, M. Shimoda, M. Sanami, Y. Takeuchi, Y. Litaka, J. Chem. Soc.
     Chem. Comm., 1304 (1989).
  x: Y. Morino, Y. Nakamura, T. Iijima, J. Chem. Phys., 32, 643 (1960).
  y: S. Saito, Y. Endo, E. Hirota, J. Mol. Spect., 116, 499 (1986).
z: P. Groner, G. M. Attia, A. B. Mohamad, J. F. Sullivan,
     Y. S. Li, J. R. Durig, J. Chem. Phys., 91, 1434 (1989)
 aa: R. A. Eades, D. A. Dixon, J. Chem. Phys., 72, 3309 (1980).
 bb: G. A. McRae, M. C. L. Gerry, M. Wong, I. Ozier, E. A. Cohen, J. Mol.
 Spect., 123, 321 (1987).
cc: J. Nakagawa, H. Okutani, M. Hayashi, J. Mol. Spectrosc., 94, 410 (1982).
 dd: J. F. Beecher, J. Mol. Spectrosc., 21, 414 (1966).
 ee: L. S. Bartell, A. Jin, J. Mol. Struct., 118, 47 (1984)
 ff: E. H. Fink, K. D. Setzer, J. Mol. Spect., 125, 66 (1987).
 gg: V. M. Petrov, A. N. Utkin, G. V. Girichev, A. A. Ivanov, Zh. Strukt.
     Khim., 26, 52 (1985).
 hh: K. Ozutsumi, T. Takamuka, S. Ishiguko, H. Ohtaki, Bull. Chem. Soc. Japan,
     62, 1875 (1989).
 ii: S. N. Vempati, W. E. Jones, J. Mol. Spect., 127, 232 (1988)
 jj: H. A. Skinner, L. E. Sutton, Trans. Farad. Soc., 44, 164 (1944).
kk: E. Coop, L. E. Sutton, J. Chem. Soc., 1269 (1938).
 11: B. Beagley, K. McAloon, J. M. Freeman, Acta Crystallogr.,
     Sect. B, B30, 444 (1974).
 mm: H. C. Clark, S. G. Furnival, J. T. Kwon, Can. J. Chem., 41, 2889 (1963).
 nn: H. Fujii, M. Kimura, Bull. Chem. Soc. Japan, 44, 2643 (1970)
oo: H. Fujii, M. Kimura, Bull. Chem. Soc. Japan, 43, 1933 (1970)
 pp: G. R. Wilkinson, M. K. Wilson, J. Chem. Phys., 25, 784 (1956).
 qq: K. Balasubramanian, J. Li, J. Mol. Spect., 135, 169 (1989).
 rr: L.E. Sutton, "Tables of Interatomic Distances and Configurations in
     Molecules and Ions," Special Publication No. 11 + 18, Chem. Soc.,
 London (1958), (1965).
ss: S. Husebye, K. Maartmann-Moe, O. Mikalsen, Acta Chem. Scand., 43, 868 (1989).
 tt: N. K. Moncur, P. D. Willson, T. H. Edwards, J. Mol. Spectrosc., 52,
     380 (1974).
 uu: D. R. Stull, H. Prophet, Natl. Stand., Ref. Data Ser. (U.S., Natl. Bur.
     Stand.) NSRDS-NBS 37, 1971.
 vv: P. W. Allen, L. E. Sutton, Acta. Crystallogr. 3, 46 (1950).
 ww: H. Oberhammer, J. Mol. Struct., 48, 389 (1978).
 xx: N. Iwasaki, Bull. Chem. Soc. Japan, 49, 2735 (1976).
 yy: L. V. Vilikov, M. G. Anashkin, G. I. Mamaeva, J. Struct. Chem.
      (Engl. Transl.) 9, 310 (1968).
 zz: K. Kashiwabara, S. Konaka, N. M. Kimura, Bull. Chem. Soc. Japan,
      46, 410 (1973).
aaa: V. P. Spiridonov, A. G. Gershikov, B. S. Butayev,
J. Mol. Struct., 52, 53 (1979).
bbb: A. V. Demidov, A. G. Gershikov, E. Z. Zasorin, V. P. Spiridonov,
     A. A. Ivanov, J. Struct. Chem., 24, 9 (1983).
ccc: T. Oyamada, T. Iijima, M. Kimura, Bull. Chem. Soc. Japan, 44, 2638 (1971).
ddd: H. A. Skinner, L. E. Sutton, Trans. Farad. Soc., 36, 1209 (1940).
eee: I. Hargittai, J. Mol. Struct., 100, 129 (1983).
fff: F. J. Lovas, E. Tiemann, J. Phys. Chem. Ref. Data 3, 609 (1974).
```

Bismuth

As with the phosphorus, arsenic, and antimony analogues, triethylbismuth is predicted to have a heat of formation much lower than that observed. Since the ΔH_f of both the trimethyl and triphenyl derivatives are accurately reproduced, it is likely that the

experimental value for the ΔH_f of the triethyl derivative is incorrect.

General

The spectrum of errors in ΔH_f range from 39.5 (InO) to -37.8 kcal/mol (Sb³⁺); this is much less than that

Table V. Average errors in calculated bond lengths (Å).

Element	Pi	43	MNI	00	Al	MI
	No.	Average Error	No.	Average Error	No.	Average Error
		First	12 PM3	elements	only	
Hydrogen	101	0.015	101	0.041	101	0.026
Carbon	264	0.019	264	0.024	264	0.027
Nitrogen	66	0.041	66	0.063	66	0.060
Oxygen	75	0.026	75	0.052	75	0.045
Fluorine	68	0.041	68	0.071	68	0.058
Aluminum	12	0.077	12	0.105	12	0.104
Silicon	30	0.064	30	0.080	30	0.061
Phosphorus	36	0.055	36	0.064	36	0.065
Sulfur	68	0.057	68	0.109	68	0.093
Chlorine	40	0.051	40	0.052	40	0.077
Bromine	31	0.092	31	0.085	31	0.075
Iodine	16	0.134	16	0.139	16	0.119
		A11 2	8 PM3 e	lements		
Hydrogen	149	0.022	133	0.057	128	0.028
Beryllium	11	0.049	11	0.070		
Carbon	341	0.023	306	0.028	302	0.028
Nitrogen	80	0.045	72	0.060	72	0.057
Oxygen	97	0.031	82	0.050	80	0.048
Fluorine	111	0.042	84	0.065	80	0.054
Magnesium	15	0.193				
Aluminum	12	0.077	12	0.105	12	0.104
Silicon	38	0.060	32	0.079	32	0.058
Phosphorus	47	0.056	42	0.071	42	0.074
Sulfur	80	0.061	74	0.110	72	0.090
Chlorine	83	0.064	61	0.063	56	0.062
Zinc	10	0.030	10	0.068	10	0.047
Gallium	26	0.110				
Germanium	69	0.037	64	0.108	64	0.040
Arsenic	11	0.017	• •	0.100	٠.	0.0.0
Selenium	42	0.040				
Bromine	62	0.075	47	0.081	44	0.078
Cadmium	7	0.028	4,	0.001		0.070
Indium	ģ	0.053				
	26		24	0.098	24	0.065
Tin		0.040	24	0.098	24	0.065
Antimony	. 8	0.057				
Tellurium	18	0.076	20	0.104	25	0 105
Iodine	37	0.100	29	0.124	25	0.105
Mercury	20	0.077	20	0.072	20	0.063
Thallium	6	0.027		0.100		
Lead	17	0.063	15	0.108		
Bismuth	3	0.012				

of the first 12 elements (61.7 kcal/mol (Al⁺) to -142.1 (P²⁺). In a few instances, it is likely that the experimental data are of limited accuracy, the most important of which are the ΔH_f of the trialkyl-Group V compounds. Normally, ethyl derivatives are more stable than the corresponding methyl derivative;

however, in Group V that is true only for nitrogen (Table VII). In the case of phosphorus, experimental data are available for all the methyl and ethyl phosphines. From these, Figure 3, we see that the anomaly only appears in the case of triethylphosphine. If this effect is genuine, and is also found in the chem-

Table VI. Average errors in molecular geometries.

Geometric parameter	P 1	м3	M	TDO	Al	Ml
<u>-</u>	No. Error No. Error	No.	Error			
		First	: 12 PM3	element	s	
Bond lengths (angstroms)	460	0.037	460	0.055	460	0.051
Angles (degrees)	196	4.286	196	4.305	196	3.792
		All	28 PM3	elements		
Bond lengths (angstroms)	780	0.044	617	0.065	589	0.051
Angles (degrees)	324	5.480	256	4.426	250	3.904

Figure 1. Geometry predicted by PM3 for Cp₂Zn.

istries of arsenic, antimony and bismuth, then a theoretical explanation must be sought. At the PM3 level no such phenomenon is predicted.

Atoms

Isolated atoms are used in semiempirical methods in the definition of the zero of energy. Consequently, their ΔH_f should be independent of the parameters. In two instances, however, (Al and Ge) the error in the ΔH_f of isolated atoms is finite. For those atoms, the ground state of the atom, as calculated by PM3, is different from that observed experimentally.

Within the optimization, the option exists to force the correct electronic configuration. However, when this was done, the overall SSQ became considerably larger than when an incorrect atomic electronic configuration was allowed. Instead of forcing the correct configuration, the atoms involved were given the default weight, and the parameters optimized. In the case of germanium the atomic configuration predicted by PM3 is $4s^14p^3$, i.e., the same as in normal germanium chemistry.

Figure 2. X-ray and PM3 geometries for 2,2,5,5,-tetramethyl-1,3-diselena-2-germacyclohexane (A: PM3 geometry B: X-ray geometry³¹).

DISCUSSION

Predictive Power of MNDO/PM3

When the original 12 elements were parameterized, only about a third of the data reported²⁷ was used in the optimization calculation, the remainder being used in the surveys only. If a surveyed molecule was badly predicted, it was then added to the optimization set. This meant that, although a large number of data were "predicted," the manner in which the optimization was done predisposed the method to be as accurate in prediction as it was in reproducing the set used in the optimization. When parameters are being optimized there does not appear to be any way in which the resulting method can be demon-

Table VII. Experimental ΔH_f for group V trialkyl derivatives (kcal/mol).

Element	Trimethyl Derivative	Triethyl Derivative	Difference
Nitrogen	-5.7a	-22.la	-15.5
Phosphorus	-22.5a	-11.8a	+10.7
Arsenic	2.8a	13.4a	+10.6
Antimony	7.7a	11.6a	+3.9
Bismuth	46.la	51.6a	+5.5

a: J. O. Cox, G. Pilcher, "Thermochemistry of Organic and Organometallic Compounds," Academic Press, New York, N.Y., 1970.

Experimental ΔH_f of Phosphines

Figure 3. Experimental ΔH_{ℓ} for trialkylphosphines.

strated to have predictive power: if a trial method did not have predictive power in that poor predictions were made, then the method could be improved by making use of that poor prediction. An optimum method would thus implicitly involve all available data.

In extending the method to new elements the predictive power of the first set of elements becomes apparent. If the method was not predictive, then the errors for the next set of elements, even when fully optimized parameters were used, would be much larger than for the first set.

Examination of Table III shows that the predictive power of PM3 when applied to the first 12 elements is virtually the same as the accuracy: errors in ΔH_{ℓ} for seven elements became slightly larger, four became slightly smaller, and one was unchanged; similar effects are observed for the geometries, Tables V and VI. Obviously none of the compounds reported here could have been used in determining the parameters for the first set of 12 elements. Therefore it follows that the predictive accuracy of the first set of 12 elements is similar to the accuracy reported in the surveys. Differences between these tables and those in reported earlier²⁷ are due to various errors in the original work being corrected and, in the case of AM1, to new parameters being made available. No mixed parameter sets were involved in this work. A systematic error was found in the earlier work,27 which is corrected in Table V presented here.

The predictive accuracy of PM3 for the set of elements reported here is likely to be less than that of the surveys given here for cadmium and bismuth, but likely to be much better for tin, selenium, and germanium. Of course, the predictive power of the current set of elements could be determined by ex-

tending PM3 to compounds containing elements which have not yet parameterized.

At the present time there is no easy way to partition errors between those resulting from theoretical limitations in the computational method and those from experimental inaccuracies. However, computational errors tend to be systematic, whereas experimental errors are random. By making post hoc corrections to the computed values, very high accuracy results can be obtained. Thus for the n-alkanes with more than three carbon atoms, a correction to the PM3 values of the ΔH_f of -3.5 ± 0.56 times the number of carbon atoms results in predicted ΔH_f within 0.1 kcal/mol of experiment.

CONCLUSION

The PM3 method has been extended to a total of 28 elements with only minor loss of accuracy in geometry prediction. PM3 is based upon the NDDO³⁴ approximation, as in MNDO and AM1. In PM3, the NDDO approximation has been shown to be extremely robust, able to represent the chemistry of a large number of elements involved in a wide spectrum of bonds, ranging from purely covalent to highly ionic to the nonclassical bonds found in the cyclopentadienyl complexes to dative or donor-acceptor bonds.

In addition, PM3 has been shown that the NDDO approximation can accommodate a wide range of oxidation states, from -3 in, e.g., ammonia to +6 in such hypervalent systems as H_2SO_4 , H_3PO_4 , and TeF_6 .

The range of errors in ΔH_f is smaller than that found for the organic elements. This may be due to

the limited number of reference data available; if so, then, as more data become available, highly inaccurate predictions will be made. In particular, for Cd and Bi, the lack of data has resulted in a spuriously high accuracy, an accuracy which will certainly drop as more data are generated.

The parameters for the sixteen elements reported here were optimized simultaneously, but not in one large optimization of the type used for the first twelve elements. Each parameter set was optimized individually, using the previously optimized parameters and the current set of parameters for the other elements reported here. Although advocated earlier, a general optimization of all parameters for all elements being studied proved inefficient relative to the cyclic optimization used here. The main limitation of a general optimization was that a single faulty data-set could rapidly corrupt parameters for many elements, a disaster which would be avoided when serial or cyclic optimization was done. Irrespective of which scheme is used, the final parameters should be the same.

References

- 1. J.J.P. Stewart, J. Comp. Chem., 10, 209 (1989).
- 2. J.J.P. Stewart, J. Comp. Chem., 11, 543 (1990).
- 3. M.J.S. Dewar and A.J. Holder, *Organomet.*, **9**, 508 (1990).
- M.J.S. Dewar, E.F. Healy, A.J. Holder, and Y. Yuan, J. Comp. Chem., 11, 541 (1990).
- M.J.S. Dewar and W. Thiel, J. Am. Chem. Soc., 99, 4899 (1977)
- M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, and J.J.P. Stewart, J. Am. Chem. Soc., 107, 3902 (1985).
- M.J.S. Dewar and W. Thiel, J. Am. Chem. Soc., 99, 4907 (1977).
- M.J.S. Dewar and H.S. Rzepa, J. Am. Chem. Soc., 100, 777 (1978).
- 9. L.P. Davis, R.M. Guidry, J.R. Williams, M.J.S. Dewar, and H.S. Rzepa, J. Comp. Chem., 2, 433 (1981).
- 10. M.J.S. Dewar, E.F. Healy, J.J.P. Stewart, J.E. Friedheim, and G.L. Grady, *Organometallics*, **5**, 375 (1986).
- M.J.S. Dewar and C.H. Reynolds, J. Comp. Chem., 7, 140 (1986).

- M.J.S. Dewar and H.S. Rzepa, J. Comp. Chem., 4, 158 (1983).
- 13. M.J.S. Dewar and C. Jie, *Organometallics*, **8**, 1544 (1988).
- M.J.S. Dewar and E.F. Healy, J. Comp. Chem., 4, 542 (1983).
- M.J.S. Dewar, E.F. Healy, and J.J.P. Stewart, J. Comp. Chem., 5, 358 (1984).
- M.J.S. Dewar, M.K. Holloway, G.L. Grady, and J.J.P. Stewart, Organometallics, 4, 1973 (1985).
- M.J.S. Dewar and E.G. Zoebisch, J. Mol. Struct. (Theochem), 180, 1 (1988).
- M.J.S. Dewar and C. Jie, Organometallics, 6, 1486 (1987).
- M.J.S. Dewar and C. Jie, J. Mol. Struct. (Theochem) 187, 1 (1989).
- 20. M.J.S. Dewar and Y-C Yuan, *J. Inorg. Chem.*, submitted for publication.
- 21. M.J.S. Dewar and K.M. Merz, Organometallics, 7, 522 (1988)
- 22. M.J.S. Dewar, D.R. Kuhn, and E.F. Healy, to be published.
- 23. M.J.S. Dewar and C. Jie, Organometal., 8, 1547 (1989).
- 24. D.A. Liotard, E.F. Healy, J.M. Ruiz, and M.J.S. Dewar, *Quant. Chem. Prog. Exch. Bull.*, **9**, 123 (1989).
- J.O. Cox and G. Pilcher, Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970.
- M.W. Chase, C.A. Davies, J.R. Downey, D.R. Frurip, R.A. McDonald, and A.N. Syverud, JANAF Thermochemical Tables, Third Edition, J. Phys. Chem. Ref. Data, 14, Suppl. 1 (1985).
- 27. J.J.P. Stewart, J. Comp. Chem., 10, 221 (1989).
- A. Almeninngen, O. Bastiansen, and A. Haaland, J. Chem. Phys., 40, 3434, (1964). A. Haaland, Acta Chem. Scand., 22, 3030 (1968). D.A. Drew and A. Haaland, Acta Crystallogr., Sect. B, 28, 3671 (1972).
- 29. C.H. Wong, T.Y. Lee, K.J. Chao, and S. Lee, *Acta. Crystallogr.*, *Sect. B*, **28**, 1662 (1972).
- L. Lesiecki and J.W. Nibler, J. Chem. Phys. 64, 871 (1976).
- 31. S. Tomoda, M. Shimoda, M. Sanami, Y. Takeuchi, and Y. Litaka, J. Chem. Soc., Chem. Commun., 1304 (1989).
- 32. D.R. Armstrong, P.G. Perkins and J.J.P. Stewart, J. Chem. Soc., Dalton, 838 (1973).
- D.D. Wagman, W.H. Evans, V.B. Parker, R.H. Schumm, I. Halow, S.M. Bailey, K.L. Churney, and R.L. Nutall, J. Phys. Chem. Ref. Data Suppl., 11, 2 (1982).
- 34. J.A. Pople, D.P. Santry, and G.A. Segal, *J. Chem. Phys.*, **43**, S129 (1965).