Homework 6

1. (Although this question is just copying definitions, this is important to understand the whole concepts and I expect students should remember these definitions)

Write down the definition of the following:

- (a) W is a subspace of a vector space V
- (b) span $\{\mathbf{v}_1,, \mathbf{v}_n\}$.
- (c) $\mathbf{v}_1,, \mathbf{v}_n$ are linearly independent.
- (d) $\mathbf{v}_1,, \mathbf{v}_n$ are linearly dependent.
- (e) $\mathbf{v}_1,, \mathbf{v}_n$ forms a basis of V.
- (f) The dimension of a vector space V.

2. Determine if the following sets are subspaces of \mathbb{R}^3 . Justify your answer.

- (i) $W_1 = \{(x, y, z) : x = z + 2\}.$
- (ii) $W_2 = \{(x, y, z) : x = 3y \text{ and } z = -y\}.$
- (iii) $W_3 = \{(x, y, z) : z = x^2 + y^2\}$
- 3. For the following sets of vectors,
 - (i) $\mathbf{v_1} = (0, 1, 1), \mathbf{v_2} = (1, -1, 0) \text{ and } \mathbf{v_3} = (3, -1, 2).$
 - (ii) $\mathbf{v}_1 = (2, 1, 3), \mathbf{v}_2 = (1, -2, 1), \mathbf{v}_3 = (2, -3, 0) \text{ and } \mathbf{v}_4 = (0, -1, 4).$
 - (iii) $\mathbf{v}_1 = (1, 0, 2, 1), \ \mathbf{v}_2 = (-2, 3, -1, 1) \ \text{and} \ \mathbf{v_3} = (2, -2, 1, -1).$
- (a) Determine if the above set of vectors linearly dependent or linearly independent.
 - (b) For (i), determine if $\mathbf{w} = (1, 1, 1)$ lies in the span.
 - (c) For (ii), express \mathbf{v}_4 as a linear combination of $\mathbf{v}_1, \mathbf{v}_2$ and \mathbf{v}_3 .
- 4. Expand the kernel of the following matrices as span of vectors and then compute the dimension.

(a)
$$\begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}$$
, (b) $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$, (c) $\begin{bmatrix} 1 & -1 & -1 & 1 & 1 \\ -1 & 1 & 0 & -2 & 2 \\ 1 & -1 & -2 & 0 & 3 \\ 2 & -2 & -1 & 3 & 4 \end{bmatrix}$

5. Let $W = \{(x_1, x_2, x_3, x_4) : x_1 - x_2 + 2x_3 - x_4 = 0\}$. Find a basis for the subspace W.

5. Let $W = \left\{ (x_1, x_2, x_3, x_4) : \left\{ \begin{array}{l} x_1 + x_2 - x_3 + x_4 = 0, \\ 2x_1 + 2x_2 - 2x_3 + x_4 = 0, \end{array} \right\}$. Find a basis for the subspace W and what is its dimension?