5.1 (X, a)

A)
$$a,b$$
 $a \neq b$ $U_a \cap U_b = \emptyset$

$$d(a,b)$$

$$r = d(a,b)$$

$$U_a = B(a, \frac{r}{2})$$

$$24 = B(b, \frac{r}{2})$$

$$z \in U_a \cap U_b$$

$$r = d(x,y) \leq d(x,z) + d(z,y) < \frac{r}{2} + \frac{r}{2} = r$$

B) Subconjunto finito de
$$X$$
 es cerrado $S = \{x_1, ..., x_n\}$

Como la unión finita de cerrados es cerrado, basta ver que 1xip es cerrado

$$\int_{-\infty}^{\infty} dx = B(x, d(x_i x_i))$$
 no contiene a x_i

4) (E, 11.11) espacio vectorial normado

$$\overline{B(a_ir)} = C(a_ir)$$

$$\overline{B(a_ir)} = C(a_ir)$$

$$B(a_ir) \subseteq C(a_ir) \Rightarrow \overline{B(a_ir)} \subseteq \overline{C(a_ir)} = C(a_ir)$$

Si
$$p \in B(a,r)$$
 $x_n = p \forall n$
Si p , $||p-a|| = r$
 $a + (1 - \frac{1}{n})(p-a) = x_n$

$$||X_n - a|| = ||(1 - \frac{1}{n})(p - a)|| = (1 - \frac{1}{n})r < r \implies X_n \in B(a_1r)$$

 $\lim X_n = p$

Indicación para hacer el B. b. 4) $d(x,y) = min\{1, ||x-y||\}$ Abiertos de E, $||\cdot||$, E, d $B^{||\cdot||}(a,r) = B^d(a,r)$ cuando $r \le 1$ (uando r > 1, $B^d(a,r) = E$

b.2)
$$B(a,r) \neq C(a,r)$$

Si $r=1 \rightarrow C(a,1) = E$ y $B^{d}(a,1) = C^{11.11}(a,1) = E$

19. Sean (X,d) espacio métrico A,BCX
1) Supongamos ACB Demostrar que A es compacto en (X,d) si y solo si es compacto en el subespacio métrico (B,d).
Suponemos que A es compacto en (X,d) . Quiero ver que A es compacto en (B,d) . Tomo un recubrimiento de A por abiertos en B , $\{V_i\}_{i\in A}$
Vi = BO Oi, Oi abierto en X.
Sabemos que $A = U(B \cap O_i) = B \cap UO_i \Rightarrow i \in \Lambda$
=> A = U Oi, => {Oi} ien son un recubrimiento de
A por abiertos en $X \rightarrow \exists$ un subrecubrimiento finito
Ds,, On tal que $A \subseteq \overset{\circ}{U}O_i$ (compacidad de A en X)
$O_i \cap B_{i=1}^n = \{V_i\}_{i=1}^n \text{ y ahora } A \subseteq \bigcup_{i=1}^n V_i $ (?)
$A \subseteq \bigcup_{i=1}^{n} O_{i}$, $A \subset B$ por hipótesis $\Longrightarrow A \subset \bigcup_{i=1}^{n} O_{i} \cap B =$
$= \bigcup_{i=1}^{n} (O_i \cap B) = \bigcup_{i=1}^{n} \bigvee_{i} \longrightarrow A \subseteq \bigcup_{i=1}^{n} \bigvee_{i}$
os d'Vilier tenía un subrecubrimiento finito de A.
= Suponemos que A es compacto en (B,d) Quiero ver que A es compacto en (X,d)
omo quities recubrimiento abierto de A en X.
D dun Bfier recubrimiento A ya que A⊆B →
abiertos relativos en B

(F	3 U1 n B,.	, Un 1 B	O	fue recu	bren	A	→
=	Us,, Un	rembren	À	(porque	A	$\subseteq B$	•

2) Si A es corrado en
$$(X_1d)$$
 y B es compacto en (X_1d)
 \Rightarrow ANB es compacto en (X_1d) .

 $\{X_n\} \subseteq A \cap B$. En particular $\{X_n\} \subseteq B$ compacto \Rightarrow
 \Rightarrow $\exists \{X_n\}_{k=1}^{\infty}$ subsucesión convergente $(\lim_{K \to \infty} X_{n_K} = X_0 \in B)$.

Por otra parte $\{X_n\} \subset A$ cerrado \Rightarrow $X_0 \in \overline{A} = A$ $(X_0 \in A \cap B)$
 \Rightarrow \Rightarrow \Rightarrow ANB \Rightarrow ANB compacto.

4) Union de finites subconjuntes de X compactos en (X,d) es compacta en (X,d).

Ka,..., Kn compactos d'U Ki compacto? (Ui) ies recubinmiento por abiertos de UKi => => {Wi} ie 1 recubren cada kj j=4...,n. Ka compacto = D U1,..., Un subrecubrimiento que cubre a KA con todos

[22.]

A)
$$f(x) = \frac{1}{x}$$
 $x \in (0,1]$

Demostrar que no hay ninguna función continuo.

a. $[0,1] \longrightarrow \mathbb{R}$ tal que $g(x) = f(x)$ $x \in (0,1]$

 $g:[0,1] \longrightarrow \mathbb{R}$ tal que g(x) = f(x) $x \in (0,1)$ Si existiera g: [0,1] ---> IR tendría un máximo ya que

[0,1] es compacto $\Rightarrow |g(x)| \leq M \quad \forall x \in [0,1]$

pero g(1/n) = f(1/n) = n no acotado $\forall n$.

► También valdria demostrarlo con la definición de continuidad de toda la viola.

B) (X,d_1) y (Y,d_2) espacies métrices. ICC X.

 $f: \Omega \subset X \longrightarrow Y$ continue en Ω .

Demostrar que a lo sumo existe una función $F: \overline{\Omega} \subset X \longrightarrow Y$ continva en $\overline{\Omega}$ y tal que F(x) = f(x) en cada $x \in \Omega$.

Suponemos que existe F. $F(x) = \begin{cases} f(x) & x \in \Omega \\ (?) & x \in \Omega \end{cases}$ obligatorio por el enunciado

X₆∈ INI = FlXnt = I con lim Xn = Xo

xo pto. de adhérencie F continue

 $F(x_0) = F\left(\lim_{n\to\infty} X_n\right) = \lim_{n\to\infty} F(X_n) = \lim_{n\to\infty} f(X_n) = 0$

 $= \bigcirc (?) = \lim_{n \to \infty} f(X_n)$

la funcion f: 12 CX -> Y es uniformemente continua.

Demostrar: s) Si 1xn/n c se es ele Cauchy en (X,d1) =D => if (xn) in es de cauchy en (Y, dz) Sea E>0 $\exists S>0$ tal que si $d_{\Lambda}(X_{i}X_{0}) < S = 0$ =0 $d_2(f(x), f(x_0)) < \varepsilon$ (porque f es unif. continua). Como 1xn) es de Cauchy, FN tal que Vn, m > N, $d_1(x_n,x_m)<S \Rightarrow \forall n,m>N, d_2(f(x_n),f(x_m))<\varepsilon \Rightarrow$ =D { f(xn) } es de Cauchy.

2) $F: \overline{\Omega} \subset X \longrightarrow Y$

 $x \in \overline{\Omega}$, $F(x) = \lim_{n \to \infty} f(x_n)$ cuando $\{x_n\}_n \subset \Omega$ satisface $\lim_{n\to\infty} X_n = X.$

3) Demostrar que Festa bien definide en I y que F(x) = f(x) en cade $x \in \Omega$.

aniero ver que si $x_n \longrightarrow x$ y que si $y_n \longrightarrow x$, entonces $\lim_{n\to\infty} f(x_n) = \lim_{n\to\infty} f(y_n)$.

Z_{2n} = x_n | Z_n | lim Z_n = x -D | Z_n de Cauchy -D

=) {f(Zn)} de Cauchy (por el C.1) =)

=> lim f(Zn) existe porque (Y, dz) es completo =>

I lim $f(Z_n) = y_0 \implies \int \lim_{n \to \infty} f(x_n) = y_0$ porque subsuces.

de sucesión convergente tiene el mismo límite.

4) Demostrar que F es uniformemente continue eu 52. Tengo que ver que si E>O, Ff>O tal que d1(x,xo)< con $x, x_0 \in \Omega$, entonces $d_2(F(x), F(x_0)) < E/2$ Si x, xo ∈ se entonces el S de la f valdría, porque F(x) = f(x) y $F(x_0) = f(x_0)$. E > 0, $X_0 \in \overline{\Omega} \setminus \Omega$ $F(X_0) = \lim_{n \to \infty} f(X_n)$, $X_n \in \Omega$ $x \in \Omega$ $d_2(F(x_0), F(x)) = d_2(\lim_{n \to \infty} f(x_n), f(x)) =$ = lim dz (f(xn), f(x)) Parece que si d1(x0,x) < 8 = 0 d1(xn,x) < 8 \for N $=D d_2(f(x_n), f(x)) < \epsilon/2 = 0 \lim_{n \to \infty} d_2(f(x_n), f(x)) \leq \epsilon/2$ $d_z(f(x_0), f(x)) < \varepsilon$ corregido un error

21. $5^{1} = \frac{1}{x^{2}} = \frac{1}{x^{2}} = \frac{1}{x^{2}}$ $g: [-2,2] \longrightarrow S^1 \subseteq \mathbb{R}^2$ $g(t) = \begin{cases} (1+t)^{2}, & -2 \le t \le 0 \\ (1-t), & -\sqrt{1-(1-t)^{2}}, & 0 \le t \le 2 \end{cases}$

Si $(x,y) \in S^1, y \ge 0$, entonces g(x-1) = (x,y)(i) g es sobrejectiva Si $(x,y) \in S^1, y \in O$, entonces g(i-x) = (x,y)

1) Ninguna funcion continua f: 51 -> IR es inyectiva en 51 es compacto (porque es cerrado y acotado en \mathbb{R}^2), isí que si $f: S^1 \longrightarrow \mathbb{R}$ continua, entonces $f g \in S^1$ tal rue f(po) = max f

Supongamos po = (xo, yo), yo>0. En este caso, la función fog: [-2,0] -> R es continua, inyectiva, pero tiene un maximo en un $t_0 \in (-2,0)$, con $g(t_0) = p_0$. Eso es una contradicción.

El caso $P_0 = (X_0, Y_0)$, $Y_0 < 0$, se hace igual pero do a $\Gamma_0 = 7$ usando g: [0,2] ->> 51

Si yo=0, lo podemos hacer igual reemplazando g por $\widetilde{g}(t) = \begin{cases} (\sqrt{1-(1+t)^2}, 1+t), -2 \le t \le 0 \\ (\sqrt{1-(1-t)^2}, 1-t), 0 \le t \le 2 \end{cases}$

② Supongamos $h: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ continua, $Zo \in \mathbb{R}^2$. Todo entorno de Zo, contiene puntos p_1q con $p \neq q$, tales que $\|h(p)\|_2 = \|h(q)\|_2$ Sea U un entorno abierto de Zo

Sea $F: S^1 \rightarrow U \subseteq IR^2$ definida como $p \longmapsto Z_0 + rp$ Defino $f: S^1 \rightarrow IR$

Defino f: 51 -> R

p → || h o F(p)|| f no es injectiva por $Q \Rightarrow \exists p_1, p_2 \in S^1$ tales que $\|h(F(p_1))\|$:

= $\|hF(p_2)\|$ => $y_1 = F(p_1) \in U$ sirven como p_1q_2 $y_2 = F(\beta_2) \in U$

3) Considérese g définida solamente en le [-2,27. Demostrar qu g es continue e injectiva en [-2,0) pero su inversa no es (Frrata corregida) continua

- · g continua e inyectiva (inmediato)
- € g⁻¹ no es continua:

1st Solución: Si g-1 fuera continue, entonces [0,2) seria compacto, por serlo 51, ya que g seria biyectiva, continua con inversa continua (y recubrimientos V de S1 inducirian recubrimientos abiertos abiertos de [0,2) y viceversa).

$$2^{\frac{1}{2}}$$
 Solution: $\frac{2^{\frac{1}{2}}}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

Consideremos la sucesión de puntos:

$$P_{2n} = \left(-1 + \frac{1}{n}, \sqrt{1 - \left(-1 + \frac{1}{n}\right)^2}\right), g^{-1}(\rho_{2n}) = -2 + \frac{1}{n}$$

$$P_{2n+1} = \left(-1 + \frac{1}{n} , -\sqrt{1 - \left(-1 + \frac{1}{n}\right)^2}\right) \cdot g^{-1}(P_{2n+1}) = 2 - \frac{1}{n}$$

pero
$$g^{-1}(P_K)$$
 no converge, ya que $g^{-1}(P_K) \longrightarrow (-2)$ con K par

$$g^{-1}(P_K) \longrightarrow 2$$
 con K impar

$$|a^{\alpha} - b^{\alpha}| \leq |a - b|^{\alpha}$$

$$|a^{\alpha} + (b^{\alpha})| \leq |a^{\alpha}| + |-b^{\alpha}|$$

$$|a^{\alpha}| + |a^{\alpha}| + |a^{\alpha}| + |a^{\alpha}|$$

$$\begin{array}{c}
t & \Rightarrow t \\
(a+b)^{\alpha} \leq a^{\alpha} + b^{\alpha}
\end{array}$$

$$|a^{\alpha} - b^{\alpha}| \leq |a - b|^{\alpha}$$

$$|a^{\alpha} - b^{\alpha}| \leq (a - b)^{\alpha}$$

$$|a^{\alpha}-b^{\alpha}|=|b^{\alpha}-a^{\alpha}|\leq |a-b|^{\alpha}=|b-a|^{\alpha}$$

$$f(a) - f(b) \leq f(a-b)?$$

$$f: t \rightarrow t^{\alpha} con \alpha$$

$$(a+b)^{\alpha} \leq a^{\alpha} + b^{\alpha}$$

