Homework 13

Due on: Monday, April 27

Problem 1.

Show that the property of an irrep of a Lie algebra being real, pseudoreal or complex is preserved by similarity transformations.

Problem 2.

What are the reality properties of the irreps of USp(2N)? What can you say about the reality properties of irreps of SU(N)? Use the isomorphisms $USp(2) \simeq SU(2)$, $USp(4) \simeq SO(5)$ and $SU(4) \simeq SO(6)$ to check your results.

Problem 3.

Derive the CG series for the following direct products of the spinorial irreps

$$SO(5): \times \otimes \times$$

 $SO(6): \times \otimes \times \text{ and } \times \otimes +.$ (3.1)

First show that the product of two spinors ψ^{α} and χ^{β} of SO(2N+1) can be expanded in terms of the complete set of Dirac matrices as

$$\psi^{\alpha} \chi^{\beta} = \sum_{k} c_{k} \left(\gamma^{\mu_{1} \cdots \mu_{k}} C^{-1} \right)^{\alpha \beta} \left(\psi^{T} C \gamma^{\mu_{1} \cdots \mu_{k}} \chi \right). \tag{3.2}$$

Problem 4.

We found that the spinorial irreps of all SO(2N+1) were either real or pseudoreal, but never complex. Was that an accident? We claim that for complex spinorial irreps of SO(2N) the s and c spinorial irreps are similar to the complex conjugate of each other. Is that an accident?