

FIG. 6

FIG. 7A

~

FIG. 7D

FIG. 8

تحساء

FIG. 9

تقيدم

2A 3A Mkr. 4A 6A

FIG. 10

ME.

FIG. 11

البعام

Nucleotide and Translated Amino Acid Sequence of PKS Cluster on Clone 3A

42
CAA
CTT
LLL
CCC
AGT
AAA
CAA
CCA
CAC
TAC
CAT
ACT
GAT GGA
GAT
Н

4
84
1
AAA
ď
ACA
.7
ACA
CGA
CAA
\ddot{c}
H
AAT
SG
$\overline{}$
CCA
_
TAA
H
딩
AAT
H
TTT
⊿.
TGA
_
GGT
\circ
CGC
บ
13

α	כ
_	4
٠ م	
T V	
כככ	נ נ
E	プンプ TTG プンプ TGT ワラン
נכנ	ر ر
Ø	4
Ø E E	ζ
בי כי כי	כככ
E Z	֚֚֚֡֝֝֜֜֜֝֜֜֝֜֜֜֝֜֜֜֝֟֜֜֜֜֜֓֓֓֓֜֜֜֝֜֜֜֝֓֓֓֜֜֝֓֓֜֜֜֜֓֓֓֜֜֡֡֜֜֜֜֡֓֜֜֡֓
\ C E	
ע כי E	ָרֶ בְּי
E A E	4
7	ביי ביי
FF	7 7 7
ر E E	י ר
101	77

252
LGG
$_{ m LLL}$
GGC
$_{ m LCL}$
CAA
CAC
CAG
CAT
TAT
IAT
CAG
GAC
GAA
\mathtt{TGA}
211

FIG 14B

CAA GCA TGC GTC GTA TCG TTT TAA GCA GAG TCA GAA ACA GAC 378 337

TTC ACC GGT GGG ACA GTG TTA GAT GCA AAC 420	SPOSASE ORF	
379 ATG AAA G <u>TA G</u> CT TTC A	< <transposase< td=""><td></td></transposase<>	

462 421 CCC GGG TCA GCT TTA AGT GCA ATT TGA AAA CCA ATG TGA TAA TRANSCription control sequences> -35 -10 transcription control Possible

504 ATA AAA AAA 463 Trg rgg cra aga rca Inverted repeat>

546 TCC ACG TTA AAA ATA CTA TAA ATA TGA AAT AAT TGA TGA 505

588 ATT TCA ACT TTA TTT TTG ATG GTC GTT GTT GAG GAA TTT TTT 547

PKS ORF START>>>

Possible SD sequence M V V V E E F F

630 GAA AAA GAT TTA CAG GCI TTG AAG ATT GAT Ω CGA TAT GTG AGT 589

672 ATA AAA AGA AAA TTA П AAG \mathtt{TAT} AAA GCT GAG GAA TTT AGT 631

GAT CGT GAA TTA D R E L CAT 耳 TTA AAT CGI CAG AAA TCA GAT AAA AAA 673

756		
TAC	×	
AAT	Z	
ы	Z	
GIG		
ATA	Н	
AAA	X	
CP	Д	
₹CG	H	
ATT A	Н	
AAT		
ATG	Σ	
ICG	W	
CGA	ద	
AAT	Z	
715		

798	
CGT	ద
CIC	П
GAA	
GAA	臼
TII	ᄄ
TTA	ы
CAT	出
GGT	
GGC	U
TTG	д
TTA	Н
GTA	>
TTA	Н
GGT	ט
757	

GAA AAT AAC N CCT GCT GCC AAC A A N AAA K TGG W GAA E

GAGE

GAG E

GAT

ATT I

AAT N

HGC C

ACG T

AAG

TAT

AAT N

TIC

GTC

TAC

CCC

1303

TTA L

GTC

GIC

GTC

GGT

വ്

CGA

CAT

GGT

AGT

GTC

CGC

ద

CAA

ATT I

1345

П

GAT

AGT

AAT N

CTG

යියිය ය

CAA

CAA

ATA I

CAT

GAG E

GGA

CCA P

CIC

ATG M

AAT N

1387

CAT

ATG M

TCG

CIG

GAA E

TTG

TAT Y

CGT R

0 0 0

GGA

GCC AAG A K

TTA L

1429

1302

CIG

GCA

TGG W

CAG Q

AAA K

CIC

CIC

GCA

CIT

AAG K

GAC

GAA E

CGA R

AGC S

1261

1260

JCC

GCA

TTG

GGT

TGT

9 9 9

GGT

ACA

GCG A

ACG

Ø

CAA

IIG L

1177

ACC

ტ ტ ტ

TAT

TGT

GTG

TGT

CAG

AAG K

TTA L

CGT

GCG A

CAG

1219

Ŋ

4,

CAT

GAT

AAC N

CAC

TCT

TTA

AAA K

GGA G

CGG R

GCA

TTT F

AGT

CAC

1134	
TAT	×
GTC	
ACC	⊢
GCG	Ø
$_{ m LLL}$	Ĺτι
GCI	ø
TTG	ᄓ
CCA	ф
TIC	Ľι
AGC	വ
$_{ m IGI}$	ט
$\frac{1}{2}$	Ø
GAT	Д
GAG	臼
1093	

Cont. The time of the second o

1554 AAT N ATC I ACC GTT TCC AAT N 1513

TTA L 9 9 9 CTG TTA CAA CAA O 1555

1596 ATG M CAA GCG A TTA L GTA TCT GGG F ATC TTT F 9 9 9 GAT GAT GGT AAG K

TCG S GTG ACC TCA S GTG TTA L GAT GGT TCA S GAA E ATT I TGG W TCC GTT V 1597

1680 TAT CGT TTA L GCG A GAA GGT ATC CAG GAT TTG CCG P TAT ATT I CGT 1639

1722 CAT AGT GTG GTT GIC AAA K GGT G ATA I CAT GAG ტტტ ტ GAA E TCT GTC 1681

GAC ATT TGT C CGC R CAG Q AGA R HGC C GAT ATG M ECCG D GAG ACA GCG A ACA 1723

ACA . T GCG Þ ACC TIG GCC GCG A ATG M CAA ტტტ ტ CAA AAG K TTG GTA AAT N 1765

1848 1807

GAC AAT N GTC GGT ACT GGT GGT G TGG W GTG CGG R AGC S AAA K GGA ტ ტ

The first first from the first first first from the first first first from the first first

TTG AAG K CCG TAT Y CAG 999 9 TCA S CTG GGT G ATT I GTG GCG ATA I 999 9 1891

1974

AAG

1933

GAG E

2017

AAG K

2059

TTG

2101

CCA P

2143

GAGE

2185

GAT

1975

2100 2016 2058 2184 GAA CCG ATA I CGA R TGT GAC GGA GAT TTA L TAT Y AGT ATG M IGI GAT TCG S GTG V ACG TTT F AGT CGT GCG A IGG AAA K TGT C GAA TCC TGG W ⋈ 口 CTA L CGC GAT GCG GGT GCA TTA L വ Ø ACC GAT ATG M ექე ტ GAA ATG AAT N ĮΉ GAC. CAG GCT AAG GAA E CGG R GAG TGG W GAG E CCT CCG CCT CCT TTA L ATA I TIG ATT I AAC N TTT F TCT TTT F GAG CCA ATA I ATT CAA GTT V TTA L GAG E TCA S ACG S GCG A GGT ტ<u>ტ</u>ტ CGG R TAC ATC I CIG ATG M TTT F CAA Q GCG A ACA TAT Y TGC C TGG W TTT CAG GAT D

2268	2310	2352	2394	2436	2478	2520	2562	2604
GCT A	AAG K	TCC S	ACC	AAT N	GGA	AGT	TTT F	ე ე
AGC S	ATG M	ATC I	GAT	TGT	GGT	$_{ m L}^{ m TIG}$	ACC	GIC
TAC	TTA L	CGA R	ATT I	TCG S	GCA	GGT G	H H H	GGT G
GAT	GAA E	GCA	GCG A	GAG	H L L	ATA I	H C C	GAG E
AAT N	CTC	TCT	CTT	GCC	GCG A	CAT H	CGC R	9 9 9
GCG A	AGT	TTA L	IGH C	ATT I	TI L L	TTA	GGT	CCT
GGT G	ACG	ATT I	CCT	GCC	GAC	TCC S	GAT	GTA V
G G G	TCA S	TCC	9 9 9	GTG V	AGT S	CCA	GTA V	TTT
ტ ტ	CAC	TCT	AAG K	TTA L	ACT	GGT	TCA	GGT
GTT V	AGC S	AAC	TTA L	TCA S	GGT G	CCA P	TTA L	AAC N
TTT	AGT S	AAC	AAT N	TCT S	TTG	ATG M	ATG M	GCC
GTA V	AAC	ე ე	TTA L	TCT	GTG V	CIG	GAA E	CGG R
999 9	ATG M	TTA	TTT H	HGH C	CTG L	H L L	GGA G	CAA
TGT	CTA	GAA E	TAC	GCA	AGT S	GTG V	CAT	GAC
2227	2269	2311	2353	2395	2437	2479	2521	2563

2646	2688	2730	2772	2814	2856	2898	2940	2982
GG G	CAG	GCG A	ATT I	9 9	GAA E	CTG	GCT	CAT H
GAT	AAT N	AAA K	AAT N	ACG	GCA A	GCT	GGT	CAG
CGT R	GIG V	TCA S	TTT	GGA G	TTG	TGT C	GTA V	TTG
GIG <	GGT	AGT	CGT R	CAC	GCA A	TAC	ტტტ ტ	$_{ m S}^{ m TCT}$
GCG A	TGG ≅	CCG P	CAA	GCA	GAG E	CAT H	TIG	TTA L
GAT	ტ ტ	GCG A	TAT Y	GAA E	GTC	CGT R	CAT	TTG L
ACG S	00 8	ACG T	GTT V	GTC	GAA E	AAG K	GGT G	GTA V
ATG M	ATA I	ATT I	GAG E	TTA L	ATA I	GAC	ATT I	AAA K
CGC R	GTG	GGT G	CAA	ACC	CCG P	ACG	AAT N	ACC
AAA K	GCA	AAT N	GAG E	ATT I	GAT	TAT Y	AGT S	GIG V
TTA L	CGT R	AGT S	CHG L	AGC S	GGT G	GIC	AAA K	9 9
TTG L	ATT I	AGA R	GCT	TCG	TTG	CGA R	GTA V	GCG A
GTC V	CCC	GGT G	AGT	CCA P	AAA K	T F F	TCG S	ATA I
GIT	GAT	GAT	CAA	GAT	ACC	HCG S	ტტტ ტ	ტტტ ტ
2605	2647	2689	2731	2773	2815	2857	2899	2941

3024	3066	3108	3150	3192	3234	3276	3318	3360
CCA P	GAA E	GCT A	CH	GAG E	TIG	ACG T	AAA K	TTA
AAC	ACG	CGG R	CAT	ATA I	CCT	CAA	GCT	GAT
GTA V	AAT N	CGA R	GCA	ACA T	ATT I	GCT	GAC	TTG L
GAT	ATC I	CCA P	AAT N	GGA G	ATT I	TAT Y	ACT	${ m TTG}$
GAG E	TAT Y	ATA I	ACC	ACA	GTT V	ACA	GTT V	CGC R
TGT C	H H H	AGT	GGT G	TCG S	ACA	TAC	CAG Q	TGT
CAT H	CCC	GAC	AGT S	CAC	AGT	TTA L	AGT S	GAA E
ATT I	AGC S	GGT	T T T	CCT	GCA	AGT S	CGT R	ATG M
ACG	GGT	T C I	GGA	CTT	CAT H	AAT N	AAA K	CAC H
CCG P	GAA E	CAG	TTT	TAT Y	AAT N	CAT H	TTA	GAT
CCA	TIG	TGG M	TCT	GAA E	GCG A	AGT S	TIT	ATA I
TTA L	GCG A	CCT	AGT S	GAG	GCT	AAA K	ATA I	ACA
ATG M	ATT I	AAG K	GTC	TIG	TII	GCG A	HHG F	ATC I
CGC R	CAG	$_{\rm L}^{\rm TTA}$	GGT	GTA V	TCG	TCA S	CTA	AAA K
2983	3025	3067	3109	3151	3193	3235	3277	3319

3402	3444	3486	3528	3570	3612	3654	3696	3738
CGG R	AAG K	IGI	ATT I	TG K	AGC S	TCA S	GCC A	GCG A
AAA K	GAA E	GAC	GAA E	AGC S	TGG M	CAC	T T T	AAC
GAC	GTG V	ACA T	ACA T	AAC N	GCC	ACC	CCC	$\mathtt{TAT}\\ \mathtt{Y}$
ATG M	CIC	ATA I	TCT	ATA I	GAA E	TAT Y	TAT Y	CGC R
GCA	GCA	ACT	CCG P	TTA L	GCC	CHC	ACG	CCA P
GAG E	CAA	AAG K	AAA K	GTA V	TTA	CTA L	CCC P	AAA K
CGC R	AAG K	GAA E	GAC	AAA K	AAA K	ACG	CIG	GAA E
GGT	ACA	AAG K	AGT	GAC	CAC	T M M	AGC S	CCA P
GIG <	AAC N	GAG E	GAT	GAT D	TAT Y	GAC	ATT I	CTA
CAA	GTC V	CTA	11 11 11	GAA E	CAA	ATC I	CGC R	TGG W
TIG	ATT I	T H H H	TTA L	GAC	AGT	GAT	GGT R	TAC
ACT	TTT	GCT	$_{\rm Y}^{\rm TAT}$	$ ext{TTA}$	CAA Q	CIC	CCT	CGC R
TAT Y	AGT S	AAT N	CAC H	CGT R	AGT S	GGA G	ACC	GAC
GCC	ATA I	CTA	TAC	TTC F	ATA I	CAA	TCA	AGA R
3361	3403	3445	3487	3529	3571	3613	3655	3697

3780	3822	3864	3906	3948	3990	4032	4074	4116
AAT N	GCC	TGG ™	TTA L	CAA	GAG	AAA K	H S S	CAT H
CAG	GTT V	CAA	GGA G	CGT R	CAT H	IG K	GAA E	AAG K
ACT	GTC	GAA E	ATG M	CTA L	∏GG M	GAA E	TCT	TAT Y
ACC	GAT D	CIG	CAT H	GCT	∏GG M	CTT	GAG E	GAG E
ACA	CAC	GAA E	CAA	ACC	CGC R	TAT Y	${ m TTG}$	ACG
CAA	GAT	CAG	THG L	GCG A	GAT	GGT G	GCA	AAC N
CAT H	ACG	CAA	CAA	ACA T	TAT Y	GCG A	CAG	H R M
AAC N	GAT D	CAT H	GTG V	GAG E	AAA K	GAT D	GCA A	CGA R
TCC S	ATT	ACA	TTT H	TTT F	GAT	CAG	GCC	AGC S
GTA V	GCC	AAG K	TIG	GTC V	GTT V	TI	GCC	TG ₹
CCG P	T T T	CAA	CIG	CGT R	ATC I	GTT V	GTA V	T K K
CAT H	GGC R	ATG M	AAA K	CAT	ე ტ	AGC S	AGC S	GCA
AAT N	TCA S	ATC I	TTA	CAA	GCA	TTA L	GAT	GAG E
GCT	CAC H	GAG	TTA L	T F F	AGT	TGT C	GAC	CAA
3739	3781	3823	3865	3907	3949	3991	4033	4075

4158	4200	4242	4284	4326	4368	4410	4452	4494
ATT	GAG	GAG E	TAT Y	GAA E	ATC	CIG	IGI	GAA E
TIG	GGT G	ATG M	GAT	ATT I	ATT I	GTG V	TAT Y	CAG
ATA I	AGT S	T S S	GCA	TTT F	CGG R	ATA I	ACG	GGA
GCG A	TTA	GGT G	ATT I	CAG	ATA I	GCG A	GAT	CAT H
TTA L	GTG V	AAT N	AGG R	GTC	AGG R	ACC	ATC I	ATG M
ACG	ტტტ ტ	CCC	AAT N	CTC	GCG A	ACC	CAT H	TTG
AAG K	CCA P	TIC	AAT N	CIG	AAT N	ე ე	GAT	T I I
AAA K	TTA L	ATT I	AAA K	GAC	GCC A	ტ ტ	CAG Q	GCC
GAA E	GCA	ATT I	TAT Y	GGA G	GAT	ACG T	TAT	AAA K
CCG P	CAG Q	GAT	TTA	GTT V	AGA R	GGT	GCC	TCC
GAT	TTA L	ACG	99 9	IGI C	TCA S	GCC A	CAA	GTT
AAT N	U U U	ATA I	GAA E	CAG	CHG	ტტტ ტ	TTA L	GAT
CAG	GAT	TTA L	ATG M	AAT N	CGT R	ATT I	ATG M	ACG
TAC	AAC N	CAA	AAA K	TGT	GCA A	GAA E	CCA P	TAT
4117	4159	4201	4243	4285	4327	4369	4411	4453

GGG TTA TAT CCT AAG CAG TGG CAA GCG GTA CTG GAG GCG TCG 4830 G L Y P K Q W Q A V L E A S

GGT TTT GGT GAC GTG GAA TTT CCG CTC CAT GAC GCT CGT GAG 4872 G F G D V E F P L H D A R E

4536	4578	4620	4662	4704	4746	4788
TGT	GGT G	ACG	H L L	AAA K	TGG ₹	CCA P
CTC	GTT V	GCC A	GCA	CAA	GGT G	AGC S
TGC C	AGC S	CAT H	CAG	AGC S	GAT D	999 9
TAT Y	ATC	TTA L	AGG R	H H H H	ATC	CCT
AGT S	GGA G	GTA V	GHG S	GAG E	H L L	ATT I
CTG L	CAA	AAT N	CAT	AAT N	G G G	CGT R
TAT Y	GCT	GCC A	AGC S	TTA L	H H H H	F H H
CCC	GTG V	GCA A	GIC	ATT I	ATA I	GGA G
TAC	TTA L	ATC I	ACG T	H H L	GIG <	ACG
CAA	GAC	GCG A	GAA E	TTA	AGT S	GAT
GAA E	CAG	ATT I	CAC H	GGT G	TCG S	GAA E
9 9	GAA E	GAT	ATA I	AAC N	H H H H	TCT
TAC	ATT I	TAT Y	AAT N	GCC	GTT	TTA L
CAC H	AAT N	GAT	CGG R	GCG A	AGC	GCC
4495	4537	4579	4621	4663	4705	4747

4 1 1	4956	4998	5040	5082	5124	5166	5208	5250
	CCC	GTG V	TIG	GAG E	TCC	CIG	TCG S	GAT
) (GCC A	AGA R	TH TH	AAT N	GAT	ACG	AGC S	GGT
ijн	CAT H	GAG E	CAG	ATG M	GTT	GAC	CAC	$_{\rm Y}^{\rm TAT}$
) (GAT	GAT	AAA K	GAT	GGT	AAT N	GAT	GAC
) {	ATT I	ATG M	GTC	CTG L	$_{\rm Y}^{\rm TAT}$	CTT	TTT F	TCT
) 	GTG V	AGC	TCG	AAA K	GAT D	CAG	TIG	TTA L
\$ \$ \$	T S S	GTC V	GCA	TTA L	GCC	CAA	TGT	CTG
р - П -	ACA	GAG E	AAG K	TCT	TTT H	ATT I	GTG V	TAT Y
) H	GCG A	GCC	ATG M	CAG	H S S	TTT	ACG	GCC A
) H	CIT	TCC S	ATG M	T S S	GAA E	AGT S	AAG K	ACG
g o	GAT	CCA P	GCC A	TTA L	GAC	GCT	TTA L	CIG
e o	AGC S	TT L	GAT	CAA Q	CCT	GGT G	ACT	CGA R
1 5 5	GCI	AGA R	CAT	GAG E	CAC H	ACC	CIG	AAC
5 1 1 1	$_{\rm V}^{\rm GTT}$	AAG K	AGC S	GTA V	ATT I	ATT I	ACA	GTA
48 / 3 5	4915	4957	4 9 9 9	5041	5083	5125	5167	5209

GTC

TTG

GAT

GTG

GGT G

CAG Q

GCA A

TTG L

CAG Q

CAA Q

TGG ™

TTT

GCG A

GAA E

5461

5544

TAC

TAC

ACT

GAG

GCG A

CAA

CCA P

ტ ტ ტ

TGG ₩

CGT R

TCA S

GCG A

CCC

GAA E

5503

5586

TTT

CIC

CCT

GAT

TTT

CAA

GAT

ATG M

AAG K

CIC

TTT

AGT S

9 9

5545

GAT Д

5460

CTG

AAC

GAA E

TCA S

GCG

GCG A

TTT F

CGG R

GGA G

AGC S

ATG M

GGT

ATT I

ATT

5419

5418

GCG A

ATA

TCG S

GAG E

CAG Q

CAA

GTT

CCC

TCA S

GAG

ATG M

TCG S

TTA

TCG S

5377

CCT

CCC

GTC

TCA S

CCT

TTG

CCC

AAG K

GCC

CAA

ACA

AGC S

GCA

CCA

5335

TCG S

AGG R

GAA

CCT

TTG

GTG <

CAG Q

AGT

GIC

GTC

AGT

CAG

CCA P

CAT

5293

5628

CAA O

CCG

GAC

ATG M

TAT

AGT S

GCG

GAA

GTG

GGT G

TCC

CIC

AAT N

TTT

5587

Ŋ

5292	
GAT	Д
GTT	>
TIG	H
GCG	ď
CCA	ᅀ
GCA	Æ
ACG	H
GCA	Ø
\mathtt{TTA}	Н
r ħ	M
CAG	Ø
GCG	ø
ATC	Н
GAT	Д
5251	

ا د د
8 K
ב ב
ţ
ا د د
Ç
Č
ر د د
ָר ק
Ę
E
E
Ę
ŕ
(

5670	5712	5754	5796	5838	5880	5922	5964	0009
AAT N	GGT G	다 다 다	AGT S	CAG	CIG	GAA E	ACC	
GAG E	TGT C	CHG	GCC A	CTT	TCT	GAT	CCA P	
CTG F	CGT R	CAA	AAT N	AAT N	AGT S	CIG	TAT Y	TAT Y
GCA A	AAG K	GCA A	ტ ტ ტ	TTA L	TCA S	CAC H	CTT	AGA R
AAT N	ე ე	TAC	₽ \$ \$	TAT	T U U	CTA	TCT	TGC C
T K K	GAA E	GAC D	I I I I	TAT Y	GCC	GCC	GTG V	TGG W
E S C	ATA I	GGT G	GCT A	GCC A	ACT	CAG Q	G G	GCG
GAA E	ე ე	TCC S	CAG Q	ATT I	GAT	TGC C	GGA G	TTT
GAG E	GAT	GTG V	CCC	0 8 8	GTG V	GCC	GCA	GIC
CIG	GGT G	TGC C	CCG P	GCC A	GCG A	TIG	H H L	TGA Z
H H H H	GTG V	GGT	GCC P	CCC	ACC	CAT	GCC	GTA V
IGI C	TAT Y	GCC	CAA	ATT I	GCT	GTG V	ATG M	ATT I
CGT R	GGT	TAT Y	GAC	ATT I	CCT	GCG A	GAG	ATC I
CAA	GCG A	ATT I	9 9	TCT	0 0 0	GTG V	ATG M	CCC
5629	5671	5713	5755	5797	5839	5881	5923	5965

Contig Sequences from Cosmid 6A

Contig 2

ANCAATTTATNACATCCNCGGGAAAANACGAACGGTCACCATNTAGGCAG GCATTGCGGCCAACGGTTATTTTTTTAAATGAGTTAACCAAAAAAGNGTT TTTGNAGTGTAAATTGGTTTGNCGANGGTTGGCCTTATTTAANANAGGGA TTGNGTATTCTTGAAACCCAGGGTTATTTCCTAACAGTGCAANCGGTACT GAGGCGTCGGNTTTGGTTACGTGAATTTCCGCTCCATGACGCTCGTGAGT TGGGTCAACAATCATCCTGGCAACCAACGCCCATGCGAACGTTGTAGCG ATCTTGCGACATCGGTGATTGATCATGCCCCCAAGAGATTGCCATCCGCC GAGGTCAGCATGGATAAAGAGTAGCCATGATGCCATGATGAAGGCATCGG TCAAACAGTTGTTGGTAGAGCAATTATCCCAGTCTTTAAAACTGGATATG AATGAGATTCACCCTGACGAATCCTTTGCCGATTATGGTGTTGATTCCAT TACCGGTGCTAGTTTTATTCAACAGCTTAATGACACGCTGACACTGAYTT KRAAGACKKTGTGTTTGCTTGATCACAGCTCGGTAAACCGACTGACGGCC TATCTGTTATCTGACTATGGTGATGATATCGCGCAGTGGTTAGCAACGGC AAAGGTCGCCAGCAAGCACAAGCCAAGCCCTTGCCTTCAGTCCCCCCT TCGTTATCGATGGAGTCACCCGTTCAACAGGAGTCGATAGCGATTATTGG TATGAGCGGACGGTTTGCGGCGTCAGAAAACCTGGAAGCGTTTTGGCAAC AGTTGGCACAGGGTGTGGATTTGGTCGAACCCGCGTCACGTTGGGGGCCA CAAGCGGAGACTTACTACGGCAGKTTYCTCAAGGATATGGATCAATTTGA TCCTCTCTTTTTAATCTCTCCGGTGTGGAAGCGAGTTATATGGACCCGC AACAACGTTGTTTTCTGGAGGAATCCTGGAATGCACTGGAGAATGCGGGT TATGTGGGTGATGGCATAGAAGGCAAGCGTTGTGGTATTTATGCCGGTTG CGTGTCCGGTGACTACGCACAACTGTTGGGCGACCAACCCCCGCCCCAGG ${\tt CTTTTTGGGGGCAATGCCAGTTCTATTATTCCCGCCCGGATTGCCTATTAT}$ TCTGGTGGCGGTGCATTTGGCCTGCCAGGCCCTACACCTGGATGAAATGG AGATGGCCTTGGCAGGAGGTGTCTCTTTATCCAACCCC: ATCATTGTA TGAGTCTTTGCGTGGTGCAGATATGCTCTCTTCGAGGGGGGCGTTGCCACA : GCTTTGATGCCTGTGCCSACGGTATCGTCATTKGTGAATGGGTGGGGGK GGTG: GG: GCTAAAACGCTTGTCGGCGGCATTTGGCCGGATGGC: AATCA TATTCACGGAGTGATTGCTGGCAGTGGTATCAA: TCAAAACGGTCGTAGT AAMTGGGAATACGGGCACCCAGTGCMCAAATSCAAAGAACGCTTGGWAAC GTTGGGTT: TATGATCGCTTTGDTGYYAACCTTKAGCAHATKAGCATGKT CGAAGGCCVDTGGACAGGGCACGRGDYTTAGGTGKACCCCARTTGAAYRT DAAACYTTAMACCCGGVGGTTTAGACACTWADACGSAATAAAGAAHAATD HTGVGCHATCGSGTCGGC: CAAAACCAATATGGGAMACYGGSACCATGGT WGGCTGGGTDTGGGGGGCTTGTKKGATTRTKKAAAG: TGGTGTTGTCGAT GCAACACCGGCAAAATACCTCCATCGCTACATTTTACTCAGGGCAATCCG

32/110

AATATTGACTTTGATCGCAGTCCTTTTTATGTGAACACCGAGCTTCGTGA TTGGTCGGTGGGTGAAGGAGACCCGTTGTGCGACGGTGAGCGCCTTTG GATTTAGTGGTACCAATGCCCATGCAGTGATAGAAGAAGCGCCGCCAGTC GTGCGCCAACATGAAGAGCAGCCGGGTTATTTAAGTGGTCTTATCGGCGC ATAGTGATGATCAATTACGGCAGCAAGGTTGAGAACTTTATGCGGGTTAT TGTGAGCATCACCCTGAGTTGGATGTGGGCAARTCYTGAGRTTATACCTT ATTG: TTGGG: TCGTCAACATTGG: TCGCATCGTCTGGCTGGTG: TGGCG T:GTGATCTTGAGGATTTGCGGCGGTCACTGGATCAGTGG:TTGGGTCAG GGTAAGGCTCCCCGAGTGTATGT:GTCT:GCA:TTGGCTGAGGGTGAACC AC: GTCTA: CAAGTTTCTCTACAGCACGTTGGTAATGAATGTATAAGAGC A: TGCAGTGAGTCCTGTTCTGCGAATCACTATGTGGACGCGTTATCGACG GTGGGGGAWTTATATGTTCAGGGTTATCCATTGGAGTATGGTGTTTTT TGSCCAKGGCWATRRWCKTWTTSSKTTKCCGAMCTAKSSGTTTSCWARKC AGCGTTGTTGGGTACCACAAACAATAAGCCACTCCACAGTGGATGCTATA TCACAGCATGCTTTTTTACATCCTTTGTTACATCGAAATACTTCGGACTT TTCATGTCAGCGTTTTAGCTCCACATTTAATGGGAGTGAATTTTTTCTTA CTGACCACCTTATTCTAGGCAAAAAGATATTGCCCGGAGCCGMTYMTTTC GAAATGGTCCGAGAGGCCATCAAACAAGCTTGTGGATTTTTTGGATAATTC TGAAGTTGTTATTCAGCTCAATGATATTGTATGGACAAAAGTGATTGCAG CAGTGAATCATGCTTAACGCATGAGTTTGATAGGCAAAACATATCGCTTA AAAATTATTCATAATCACSGCATGGTCACCTTGAGTTTCTTTGAATACAA CCGGAGGTTGTAGATCTTGATGAACTACSCMGCCMCTATAAATCAASCAA GTCTTANATGCTGAACAAATGTTATTTGGCGTTTGGAATCAATARGTGTT CAKWWTGGTGACAGGCMCCGATGTATARATACSGTWTATWTCGGTGAGCA TCAAGTATTARCMAAACTYTYTWTGCCAGAAATTGCAGGAGAWTTGGATA ARTSCTTTGTTTTGCACCCAGGCATGGTAGATTCTGCTTTACAGGCCACA TTGGGTATTACTTCTGATATCAATGATATCATGTTAGCCGATCGCCAAGC CGATTATATCTTGACCCCCAAGTCGACGCTTCCCTTTGCTCTKGWMAAAS TKKAAWTWAYYSGAAAAYGTWCAGATTCTATGTGGGTTTGGATTCKAAAT TCTTTATCGACAGACCASAAGTCTCCACGCTCAGCCCGTTAATGATATAC AACATCTCGACATTGATCTATTGGACGCTCAAGGAAAAGTATGTGTGCGA ATGCGAGGTTTCTTGTCTCGGGTTTTGCCCAAACAATGGTTAATTCACTA SCAGAAGAACCGTTTACAGCTTTGAATAACCAGCAAGCACC: TTACTTTT TCCAATCCCAGGTATGGCGTT: CGCCAGACTCTTATCCAAGTGGCCAATT AACCCTACCTTAAWTGATGCCCGGTCCATCCTTGGGGTTGTTGTACGNAT TTGAAATATGGACTTAATGTAGAAAATAGAAGGATGTAGAGGTTTATTGA CCTTACACTCCCAAACCACTTGGATTTACAGGATCGCTACTTGTGATATT TGCACTGCAGGTATTTGAAATTGTAAAANGACGTAATGATAGATAAATCC GTACAACCAGTACTGATTCAGTTGTTAGTTCCTAATGATGGAGAACAAGG

CCAAAGTGATTACACAATTAATTCAAGTACAATAGTCCCGCAAACCTCGC
AAAATTTACTACGGATTATCACTGAAAATAGTCATGATATAACACATGCA
GAAATTCGTTATCACTTGGNATCAACGTGAATGTTTGKTTTGGKAASCAG
TACCCAAATCTACAAAAACYTTACTCAACTCCCTGGAAATCTAACAGWGT
TTATYTCWTTMCGGGAGGKACCGGTGGAATTAGCGTCACAGTTTGTCAAA
GCGWTAGCAGTGAGTCCCACAAAATCGGTATTAATCTTKGTAGGKCSKTC
ACCACTCMATGRTGAAAAGAAATCTTAWTTAACTAGAACTGGRATCCGTT
GGGGGACCATTATTAAWTMCTATCARAACRGATGTAAGCCAACANGGATC
AAGTTAAAGCWTTGWTTAAARAAATTKTTCASCAWTMCGGTCAATTGAAW
GGKGKTTTSYATTGTGCAGGTATTGTCAACGACAATTTTATTCTCAAAAA
GTCCTCGACAGAATACAAAGAGGTATTGTTGTNTAAAGTATCNGGTNCTG
TCAATTTAGACCAGGCANCACANAGNATAGAGATGGATTTTTTTTATNNTA
NTAAAAACGTTATCTGCAGTATTCGGANNNACAGNACAGGGTNTTAGATA
ATNGTCCAAATACTTTTTCCAGGTGTTGGGTAAANGGGATTGGAANCCAA

Contig 5

GCNCTTNCCGCGGTGGCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTG ATGGATGAGTTTGCACGCTATCGTAATGCTCTGGTCAATCGCAAAGAGCG CTATGGTTTAACACTATCGATTAATTGGCCGTACTGGAGAGAAGGAGGTA TGAGTATTGAGGAAAATTTTGAAAATATAATGCAAGAGAATACCGGTATG TCCGCCCTGGAGACATCACAAGGTATTGAAGTATTACAAAGAGCTTGGCA GTTGCAGTACACGCAATTGTTGGTAATGGTCGGAGAGATGAAGCGAATGG AGAGCTTTTTGCACAAGCAGGGTTTCGAGCAGATTCCTGTGGTATCCGCC GATACTGTCAGCGAGAATAAAACCTCGACTATTGAGAATCTTTCAGCCGA TGTAGATACATTACCATTCATTGAGGTTCAGGCATACAATATGGAACAAA AAACCCTTGATTACTTAAAAAATGTATTTGCCACCACAACACAAATCCCC GAGAAAAATATTTATGTTCATGAAACATTGGATAAATACGGAGTTGATTC ATTGTTGGTGATGAAAATGACCAATCAATTGGAAAAAGTATTTGGAAAAT TATCTAAAACCCTATTTTTTGAATATCAAACCATTCGCGAACTGGGCGAT TATTTCCTGAAATTTCATGATGAAAAGTTAAGGGAGTTTTTTCAGATAGA TAGCAAACTATCTATGTTAAATAATCACGGAGAGATTGAAGTTCAAAAAA AAGGGGATGAACCATCGGTTGGAGACAGATATAAGTCAGCTGGATGCCGT GCCTATCTCGGTTTATATCGCCTGTGTCAGCAGTGAATCATCAACCAAAA AAATGTTAACAATGGTTCCMATANTCATCAGCCAGTAATGGGATATTGGC GAWTATTGGGTCTGAGKGGGTCGTTATTCCMCAAGCCTGAGAAATATNGG AGGGAATACTGGGGAAGAATTTGTGTCAANGGCAAGGGACTGGTATTAN CNGGAAANTTCCAAANGGAGCCGTTGGGGATTGGSAAGACTATTWYACMS MTNNNGATCCSTATTCAGCCMGGTGGGACATCGCAGTAAATNGGGGKGGT TTTATTCGGGATGTTGATAAGTTCGATCCGTTATTTTTAATATTTCCCC TAGKGRGGKGGAGCTYRCTSATCCTCAGGAAYKWTTATTTYCTAGRGTCC

GCGTKGGCTGCATTGGAAGACCCTGGAWATTGCCGGGNATTATTTGCAAA TGTTGTCATCAAGGACTAAATCTTCATTCTCGTCGGRAGATGTTGGTGTT TATGTGGRAGTRATGTCTTCAGAATATCAGTTGTTTGCTTTTGAACAGAA WTTACGTGGTCACCCCATATCCTCNGGTTGGGAGTTATGCCAGTATTGCT AMCCSGGTGTCTTATGTTTTARATCTACACNGGCCCAASCATGACAGTGG ATMCGATGTGKTCTARTTCGTTAACGACGCTWCACCTAGCATGKCAGGGA TTTAAAACTGGGKCGAAACTGACCYGGGTATTGKCGGKGGAGTTAAWATT ACCATTCACCCCMATAAATATYAGGCSCTGAGTCACGCYCAAATTATTTY TACTAGTGGTSGTTGCCAAARTTTTGGTGAACAGGGACAGGGTTATATCC CTGGTGAAGGAGTGGGTGCCATAATACTGAAGCGCTTGGTCGATGCCGAG CGTGACGGTGATCATATTTATGGTGTTGTTAAAGGCAGTGCCGTTAACCA TGGTGGTAAAACCAACGGCTATAACGTTCCTAATCCGAATGCACAACAGC AAGTGGTGAGTCGTGCACTACGAGAAGCCGCAGTAAACCCCCATCATGTG ACTTATATTGAGGCACATGGAACAGGAACCCAATTGGGTGACCCGATAGA AATTACTGKTCTRAMMAAAGCGTTCAATAGTTTGACCAATGAGCTTGGTT TAAGCGCTGTGSCCAAACMATYGKGTTTGATCGGSTCARKGAAGTCAAAA TATAGGGCATTGTGAGYCASCAAGCCGGTGTTGCAGCTATTAGCAAAGTA TTGTTACAAATGCAACACGGGTCAAATAGTCCCTTCTTTACATTCAAAAG CATTGAATCCCAATATTGATTTTACTGTGACTCCCTTTGTAGTAAACCAA GGGTTATTGGACTGGAAACGACTTGAAGTTGAAGGAAAGAGGGTRCCGAG AATKGCTKKYMWWWCKKYTTTTGGGGCCCGGTGGCTCAAATGCCCATGTAG TGATTGAGGAGTACGTTGCCAGCAATGAAAAGCAAGAGGATTTTCAAGGA AAAGTAATTATCCCTTTATCGGCWATAGACTTSKGATCARCTACAARAAA WARKGGATCGTTTGCTTAAGTTTATCRAAAAAAATGAAGCAAARAGGTAG GGAAWTKSGCTTAATTGWTYTTGCCGWAWACATTGCAACTTGGGCGCGAG GTCAATGARAGGAACGTCTGGNCMTTNGANTTGTAGGAATCNAATACCAA ATGCTTAANGGAAAGATTTTAGCAAAGGNTTTAAATACTCAGAAAATNGA TGCACANATTTTTCGGATACTTATCAAAAGRCATTTTATCGGGGTTCGTA CTAGACCTGGGTGCGTTGRATTTCGCTATTTTTTCTGAAGATGAAGAATA TGGCCAACACGCTTGATATTTTGGATTCAAAAAGGTAAATACTTTAAG: C TGGCGGAGCTTTGGGTAAAAGGTGTGACTATTGATTGGAATAAATGGTAT AACGCATTATTAACCCAGAATAAATATTTGAAACC:TCGTCGTATTAGTT TGCC: AAC: GTATCCTTTTTCCAGGGATCGTTATTGGATT: CC: AAGTGC TTTTCCACAA: CAAACATTTTCTACAGTAATTGAGGCAGACGCCAACCMA AACATTGAATGAGCTACTGTGTTTTGAAGAAAATGGCAGGTGCAATCGG AACTACATGACTCTGTTGCAGATCAATCTAATGTTATCAATACATTAATT ATTCCATAGCCCGAAAACACGATTGATTTTTATCAGCCAGGCTCAGGCTT ATGAGCAGTATTCATCAGATCACTATGCGGTTAATCCAGAAATAGGAAAG ACGTACCAACAGGCTTTTCAACACATTGTGAAAAGTATTCATAAAAGTGA TGTCACGGACATAATGTATTTATGGGCTCTAGAGGATGAACGCTGGATTA CGTCTCCTCTACCTATTGTATATCTTTTAAAAAGTATTGAGGTTTCTTTA

TTAAAACCARAAAATTACTATTTGTTGGAGAATTTAAGACAAGCTTAKC RRCGAYTGTYACYYKRAAKCCWRGKKGGGWTTYGMAMRWYCKKWAKSGTT DGTGCAACSGRATWTKRAGGTTGCGGTGTTATTARAGGCMRTGGAAGGTA CTYAATCCCATMCAGTGACAAAGCAAATGGATCTTTGGATAGAAAAATTG TGGTCGTCCTTAAAAGCCCAAAAAGTTCATAGTAGCTTATACCAAAATGG TCGTAGATATTTTCTGAAAACCCCAMCCGCTGCAANCTTGTCATGAACC AAAGTATTCAAATGCTTACAGGGRACTTTATTGATAACAGSTGSYTGTGR AGGACTGGGTTTTGTCTTYGCAGATTATTTTTCCAAGACATATAAAATTA ATCTGATATTGGTTGGGCGCTCTGATCTTGATAAAGAGAAAGSWWTCGSR RATWCRGRMTYKGKWWMAATCAGGTAGTCGAGTGGCTTATGTTCAGACGG ATATCTGCGATGAAAAGAATCTCCAATTGGAATTGGATATTGCCCAAAAA TATTGTGGCCCTATTCAGGGTGTCATTCATGCCGCGGGCATCATTGATCA GAAGACAATTTTTGAAAAAAGTCCTGAAAACTTTCAAGCAGTATTAGCCC NTAAAATTCAGGGTACATTGATTCTGGATAACGTATTGTCAGCGCAATCA CTGGATTTTATATGTTACTTTTCTTCAAGCTCGGCTCTATTAGGTGATGC AGGATCATGTGATTATGCAATGGCTAATCGATTTTTGATGGCCCATGCAC AGTATAGAAATACCTYGGTATCTGAARGAAAAMSCAAGGGRAAGACMCTG KTTWTTCATTGGCCCGCCTGGAATGTGAAAGGAATGGGATTGAATGGACT GGAATGAGAACGTGAAAMCARAGTTCTWTYTTAAGTCCAAGCGGGCAASG TCTATTGGACATAAAGGAAGGTTGTGAGGTTATTGAACACATTRCTGGCT CAGGATTATTYTCAGTGTCYTAWATTGGSTGGKAGGAAAAACCNGTATCW AACAATTTTTTGGGTCTCACACAAGATGTTTCTNACCTCACAAGTGAGT CAAGGGCAGGMAGTRAWGAACWWASRRSWKKMYKKRRASSKSYAMYAAAC GAGCTGAGATAGAAGACTTTAAGTGTTGAAGAATGTATTATTTTGGACTT AAAAACTCTGATTACAGAGCAACTTAAAATACCCATCAGCTCATCTGGAT GTAGAGAGTAATTTAGCAGATTTTGGTTTTGATTCGGTCAGTTTAGCAAA CTTTTCCCGTGSTTTAAGTATTCMCTATCATTYCAAWAWTACGCCRTSTK TATTTTTCGGATATCCTACCATAGAGCGTYTAARCCGTTATTTTTAAAA GAACMCMCTGCGSTTATGGAGGCGTTTTATCAGCAGAAAAAAACATYTWA TAGTAACAATACVCTGTCCG: TATAGTCCYTCATGTCAAAGAAAAGCCGW CAACTGATCTAATATCATCCARC: GCCTCT: CCTTTTATTGCAGATCCAT TGCCCCTCAGGSTATTGAGAGTATTGATGAGCCTATTGCCATTATTGGT ATGAGTGGTCGTTTTCCAGAAGCGCGTACGG: TTAAAGCAATGTGGGAGA TTTTATCCGAAGGTAAAAGTSYTGTGCAGGAGATTCCTATAGAGCGCTTT A: ATTGGCATGAATATTATGAACACCCATCGGATGATGTTYGAA: AA: DB TAATAGTAAATGGAGYGCCTGCATTCCTGGTATTAAAGAATTCGATCCAC AATTTTTCGAAATTTCTCCAAGAGAGGCAAAAAARCTGGACCCTCTTCAA CGGCWCTTATCACAGGAATCMTSGAATGCATTGGWAAATSCTGCTTATGK WWWMYWACRCWKWGMTMWTWARACRATGGGATAYKTKKATTGGTRTTGAW SMAGGKTWTTATMMRRRYMWGMTCAATKMRGWYGACSGCACACWTTWAWC CATMAKRMTATTTTRGCATACCMGTYTGSCAGTWYTYWTTARAKYTTAAT GGSCMWRSSATGGCWRTWAAWRCCGCWTGYTCCTCCGSYWTGGYYGCRMT

36/110

TCACCAMGCTKSCSYSAGTTTACKWCARCAAGCAATKYGAWRCGSCKAWK GWCSCGGCAGCWWWYTTRMWMWWYACRSSKSAWSWTKAWSTGGSCWTGAY SSAWGSGRGYMTGAKMYSACMWGAWGSYATAMYGAWAKACCKARNRTCAM CSYGCCAAKSGCRYAGTGMYTGGAKAGSMWGYTGWTGCARTCGTAYTGMA ACRWMTCTTKSGGGKTTTCCAAAAGGGGTTMMAAAT

Fig. 16.

5A Pst A2/F4/C2 Overlap Sequence

GNGATGAGATTGATGAGAATACTTAATTTGGTCGAANAGGCCATTACNTC TATGATTCTTGGTGAATTTATAAGCCAATTAACCNGTGATTTAGTTTGGA ATATGAAAGAACCCGTTTTATTTGACTATCNGAATATTAATACTTTATCG AATATGATCGAGAATGAACTCGAAGCTGTTGAGGTATAGTTATGTTAGAA GTTATTAATAGATACTGCCATGGATACGTATTCGTGCCAGTGGTATTGGC CNTAGAAGAAAAGGGTTTTTTGACCTTTTTACAAGGAATAGATACCTTA CATTTGAAAAAATAAAAACAGAATTAAATGCTAATAGTGGCCATCTTCAA GTAGCCTTACGCATGTTGCAGTCTGTTTCATGGATATCATGTGATGATAA AGGGTATGTACTAACAGATGCAGCGGACGAAAGAAATAAAATATCTAGTG ATTTTATAGAGCTTTTTAATTTCTCTATGAGTCGCTATTTAGAAAATATG GAAAGGCATGGATTAAAAAAATGGATAGATCAATCCGGAGATAACTGGGG TATTTCAAACCCTGTATTAACCGATTTTTTGGATGGTGTTTTAATTATTC CCTTATTACTAGAACTGAAGGAAAATGGTTATTTTGATGCGTTAAAAAAT GKWAATAGTCTAAATAAAAATTATTTTTAGGNTGATATCGAACAATCGG NTTCGCAAWGAAATTATTACACTATTTTAAACAAAAGAACTGGCTCCAAG AAGAATRAAGAGACGTTTTACTTCACAAAANTCTGGTCAATTTNAYCACT CAACGAATTTTTATTACCGCAATCCATTGCTTCTTATAAGCCCATGTTTA TCTCGGGATAACGGAATTAATGTTTGGTAATGCTAGGAGTATTTTTAAAA AGGGATTGCATGGAGAGGGAGAGCCATGTTGACCGAACCTTAAATGTTATT GGTAGTGGTTTTCAACATCAAAAGTACTTCGCTGATATCGAAGCGTTAGT CATTCAGTTATTTAATGATAMTTTKTACGATSRAYWSCCGAAATRKRTTS CRRATATGGGTTGTGGTGATGGGACTCTACTAAAAAATATTTACAATATT ATCAAGGAAAATCTGCACGAGGAAACGTGTTGAATCACTATCCCGTGGT ACTTATTGGTATTGATTATAATGAAGCCGCTTTGCAGGAAACTAACAATA CACTGGCAGGTGTTGATACAAGACACTATGTTTTAAAAGGCGATATTGGT GATCCTGAAGGAATGATAAGTGATCTATATGATTTAGGTATTAAAGATCC TGAGAATATATTGCATGTGCGTTCATTTCTGGATCATGATCGTCCTTATA TTGCACCCACAGAGGTGATGAATATTGAAGCACGTTCAAAGATATTTGAT CAGGGCGTGTATGTTGATTCAGAAGGTCAAGCAATATCGCCTGTGGTTAT GATACAAAGTCTGGTGGAACATTTTAAACGCTGGTCTTGTGTAAAGACGA AACATGGCTTGCTTATATTAGAAGTACATTCTCTTTAACCCTGAGGTTGTC AACCAATATTTGGATGAAAGTGAAAGTTTTGCATTTTGATGCCTATCATGG TTTTTCCTCTCAATATTTAGTATCGGCTGAGGATTTTCTAATATGTGCTG CAGAAGCTGGTTTATTTTCTAAACCTGATGTTTCTCAAAATTATCCAAGG AACTTACCTTTTACTCGAATTACCCTAAATTTTTTTGAAAAAAAGCCTTA TCAAATTCGTCACCCGAATGAAAATGATTTGTCTGCATTGATGGATTTAG AAAAAATTTGTCGACCTAATAATCAATGTTTATGCATTGATGACCTTCGC CAACGCATAGATGAATACCCAAAAGGTCAATGTGTTTTAGAATTAAACAA TACCATTGTTGCAGTGATTTATTCACAAAAGTGTATTAATAGAGTGTTAG GCACTGCTGCAGGTGTTTGGCARSWSWWTGSCMDHGGAATRTGBDWDCAC TATGCCATMCAATTATTACAGTTTATCTTCTATYTATCATGGTGTTCAWA ATGATGTTGAAGATGTTATKGGTATTGATGAATGTTATCAGTGCTTAAAT GAGAAAACGATACAAGCAGGCAGTTTTATGGAAAGTGAGTCAGTTGATGT TTTATATTCCAAGAGTAGAAAAACATATTGCTAAGTATCCCAATAGATAT TGGAGTAAATGCTCTGGATGCAGAGCAGGAAATGGGGTTGTTTGGTGCTA AGTGGTTACTATCTATTTTCAAAGCCAAGGAGTGATGAAAAAATCAGGT GAGTATTATCAAAAAGATCAATT: GAGGTTGATGTTAAATATTATTCCAA AATATTATCGATTATTTGAGTGCTTGCTACTCATATTT:GAAAAAAGAAA GCTTATTTCAATTCAAAAAAATAC: GGTGCAAACACTTTCCAATATTGAT GAATTTGCTCTTAACGATCCATTGGT:TGAGTTTGCTTCGT:TTAAGCGT ACGTTTTCCTCTCAATATGCTAGCCTTATGCCGWTTCTACGATTAATGGC ATCGTGCCTTTCTCGGTATTTGGAAATATTAACAGGCAAAATACAGGCGC ATGACATTATTTTCCAGAA: GGAGGGATGAATTTATTTGAAGGTATTTT TAAAGGCTATCAACTTTCAGACTATTTTAATCATATTCTCGCAGAGCTGA TTTATGAAAGGGCTA: ACGCTCTATCCGGTGGGTAATATGAA: TAAAACA ATTCGTATTTTAGAAATAAGGAGCAGGTACCTGGTGGTGCCAACAGAGTT TGTATT: GAATAG: AGCTTCMCCGCT: CTCGAATGGTTATAAGAGTTTTA C: TATACTGGATATCT: CGTCC: TCGTTCCTTCGTTATGGGAGAAAAGT: AGATTTTYCCGATAAATAT: CCCTGGT: TGCAATATAAGGTGTTAGATAT : TGAAAG: CAATTTAGA: TGCACAAGGGTTTTACCCTGATAGCTTTGATA TT:GTGTATGCATCTAATGTT:CTCCACGATACGAAAWTATATACAGTAT ACCCTTTCCCAAAGTGAGTCACATGCTAACGCAAAATGGC:TTGTTAATG TTGAATGAA: TTTACTC: GGATGAA: GGATTTGTTACTGTTTACCGGTGG TTTGTTAGATGGCCTTTGGTTATATGAAGACCCTACCAATCGATTGGATA ATGTCTGCTTGTTAAATGTTGATCAGTGGCGATCTATATTATTAAATCA GGCTTT: AAAAATGTTAAAGACTTTGTTTTTACCTTTTGAAAAACTTAATA TTGAGCAAAGTCAAAGTATTATTGTCTCTGAGTGGATTAATGAAGACCTG TCTAGTAATG: TTGAAAATGTGGTGAAAAATAATCA: TTGTTT: AGAAAT ACAAAATCACTC: TGAT: CCGATTACT: GTGGAG: AATAAAATTAG: TTA CAATT: AAAAGACAA: TCMCWTCGTTA: CACAATAGTATTGGAAGAAAAT ATTTTTATAAAATTTTAG: GGGGATAAAAAGAAAATTAT: GGATTTTTCT ${\tt CC:TAAACGCCCTTTGATTGGAGTTTATGGGTTGGATTCATATTCGAAC}$ CTAC: TTGGAA: TTAAAGATCATTACTCGGKRAGCMTTYTTCYATAAAAC TRGAASMTACTTTKKTMTKYMAWKATKRAAYRMTKSCKKMRSCTMTYTGW KWCMTCCSAYATSATTCMAGWTRASCYTSRWATTRTCGMTARAKWCCCTA TTACGGAAGAGATAATGACTGGAGGTACGTCAAGGGTAARAACAGGGCAA TCGAATSAKAATGAACCTATTGCGATTATTGGTATGTCYTGTTTATTTCC AGGTGAGGTTACGACAGTTGATGAGTTCTGGGAATTATTAATACAAGAAA GACATGCCRTTCAACCCTTACCTAAGGGACGTTGGCAATGGCCAKAAGGT GTTGATCCATCGGGAGCACAACTTGGCATTGATCAGGGTGGATTTCTGGA TGGTATTGATACCTTTGATGCCSACTTCTTTCGTATATCGAGAAAAGAAG

CGGAGTTWATGGACCCTCASCAAAGAAAACTACCTGGAATTAARTTGGCA
GGTCATASAGCATGCCGGATATAAACCCATCGGYTTTTTCTGGTCAAAGA
NATYGGYATCTATGTGGGGTGCTTTGTCACCGGTAATTTATATGGGAGTT
ATTTAACTAAAAGTGACCAAANGCCCTAAAAACCAACCGGNAAGGCCTAT
TTKCATGACCARGTARTANATTGTTGTTCGTYTTTMCCCCAATAANAATT
TTCCTATTTTNTATTAATTTTTTAAARGTGCCCMSCSTCCTCTWTCTGAT
WCCGNGCTTGTTCAARYAGTTTTAGGTTGCCTWTTTGACCCAANCARTTT
TATGCGNATTCAATTCGGGGNANGGNGTGAATCAGGCNTCTGGTGGGNTG
GGGAYCAATTWAATRTCCCCTCCSMRTGAWACCGGTTTCTTNATTAYYWA
GCAGGTNTGTTNTCAAAATCNGGGAATGTAAACCTTTNGATCCACCGCCC
GTTGGTTTTNTNCCTGGGNAAAGGGGGCGCTNTTCTTTTTTNAATCNTT
TTCTCANCCCNATTTTAAAANGATTGTTTTTTNGGGGTTTTTAAAAGGGGGG
AGATNAAAATNGGGGGCCAANCATTNNTTACGGCCCTAACCTNNG

5B PstI Fragment Overlap Sequences

5B PstA4/B1

GANGATTCCTNCCNCTNCCCATTGAAAAGAGGATGGATTNGANCATATGG GTGTGCCTGCAAGAAGATAAGTCAATATAATGTAACTCAGAAAAATCAAT TCCCAAAATGAATACCCCNCAATCWATACAAAAAWATTGAWAGATTTTT KGGTKGACATTACTAACTTTTTSGAGGCNAAGACATCMATCCMRGCMGGA TGCCTGGTGACTATGGTGKTGATTCCATTATTAGGTATGAGATTTYTTAA TCGAATTAACCYCCACCTTTAAWATAGAAGCTGATGCTTTATTACTAACA GAAGGAACGATTMACCAGTATATCTCATAAARKWCMTTCTTTTATTGTTG ATAAAAAAATTACCCAATGTTACCAAATTTTGGATTAGAAAATGATTCT AATAAAGAAAATAAAGGCTGGGTAAAGCCTTCTTTTATTGAATTTATTAA ATTTGAAATCAATCCTGAATATATAGAAAGCAGTACAAAAAATAAAGATT ACGCGATTCTTGAAAATCTAATAAATAATGGAGTTGGAGTTTGGAGAGAA AATAATCATCTATGTTTTGAGTTTTTTTTTTTGAAACTCATACAAATGAAAC AATTAAAAAAATAGTGTTTTCACCCGAAATACTTTTTAACTCTCTAGATA AAGGTAAACGATACTTTCCAAGTAGCTGCCAGCAAAAAAACAGTCTATAT CAAACGGAAGTTGAGAAGTTTCCATATAATCTTATTCAAGGATTTAGAGT GGAAATGCCAGTCAATATTGAAATTTTAAATAAAGCATTTAATCATTTGG TTAACACATATTCAATTTTCAGAACAAAAGCAATGTTGATCAATAAGCAA TGGATTCAGGTAATACATGATGGTTTATCAGTAAGATGCGAAGA: AATTA YATACGAAGGATTATCTGCAGGAAAAAGATTTTACGCAACAACTAAT: AG TATTTCAAAAAGAGCAAGGTAAAAAATTATTTGATATCGATAATCTGCCT TTATTAAAAATTTATTTTATCCATAATGGTAAAGACTTAGCAGCTATTTT AGAAAGAATTTCATGATACTTRTGAAAGTATTATRAACGGANTGGRRWAT CCGGAAACGKGTTCSAWAAAGTGATGGCTGAATATGGCCACTTTGCATTG TGTGAATATAATCCCAAAAACAAGGAGCTGACAAAAAACTGGCTTGATAA AATTCGAGATAAAAATTTTTCTTTAAAATTTAAAGATAAGAAAAGACTATG TCGGTCAACTGTCAAGTGGAGAAAAAATTATTGAGCTAGAAGTTTCTGTA AATATGCTGGAAAAATTAAGATTATTTAATGATGCGAATAATACCACACT GACGCAATTGCTATGTTGTGCTGTTGCAATTTTACTGTATCGCCTCTCGA GGCTACCAGTACCCTTGCAAATGGTCAACAGCCGTAGAGATAAAATAGAA TTTGAAATAATGATGGGTGATTTTGCATCAACTCTGCCCTATGGATTTTA GGAACCTTTCCAAAAGCATTTTCTCTATTCCNGGATGGTACCTTTTTTAA GTTATTGGAAAAANGGAAAAAGGCNTTNAATTNTCCCCCCNAGGATTTTT TNTTTCCAAAAAAAAAGGGGCCCCTTAAANTCCCCATTAAGGGAATTTT TTAAATTTTTTAATTTCCCGGGNAAAATTATTTNTTTAAATTCCGGAATT AAGGCCNAANTGGAATTAATTGGNAAAATTTCCANTTTGGGTTTTTAAAA AGGGGAAAAANCCCANNAATTTGGGTTTCCTTAAAAANAAAAAAAAAGGGG

5B PstD4/C1

ANCCGAAAAANACCNAAAGGGNNGCCGGCCCNTGTCCTNCGAGTGCATNA TAAAAAANCCAGTNATAAGNNGGNNACAATANTCATGCCCCGCGCCCCNCC GNAAGNAACCTNANTGGGTTNAAGGCTTCAAGGGCATCGGTCAAGGAACC TTTCGGCGGGCTTTTGCTGTGCGACAGGCTCACGTNTAAAAAGGAAATAA ATCATGGGTCATAAAATTATCACGTTGTCCGGGCGCGCGACGAATGTTC TGTATGCGCTGTTTTTCCGTGGCGCGTTGCTGTCTGGTGATCTGCCTTCT AAATCTGGCACAGCCGAATTGCGCGAGCTTGGTTTTGCTGAAACCAGACA CACAGCAACTGAATACCAGAAAGAAAATCACTTTACCTTTCTGACATCAG AAGGGCAGAAATTTGCCGTTGAACACCTGGTCAATACGCGTTTTGGTGAG CAGCAATATTGCGCTTCGATGACGCTTGGCGTTGAGATTGATACCTCTGC TGCACAAAAGGCAATCGACGAGCTGSRCYMSCRMAKTYGKGMCMCCGKMW CCTWMRARSTTWTTCSCAAWRRAGKKTYWTTMAWMAAGSMCSCYGSKRKY GSWWWTGGWRCTAWCCACGMARCSSMWWTYGAAAMACCKSRKCYGGNTKW CSRAWAWMWACMRSMYCASCCTTGGWAWMMARMRWSMTGASYYWGCKCWG AAMAAKGTWACCSTCRGKGCCGMTWWGKKCAAWKTTWMACCYSRWRWWRR YMCMAAMATTGARRCSTTGMYCGRAACCSCGMTGAAAAA::CGCTGH:TG :: AATGTRVGGCGT: TGGATGTCHCAAAGCAAATGGCASCAGACAA: GAA AGCGATGGATGAACT:::GGCTTCCTTATGTCCGCCCGGCCAKTCATGAT GGAATGTTTCCCCCSGGTGGTGTTATCTGGCACCAGTGCCGTCGATAG: T A:TGC:AA:TT:GA:TAA:TT:ATT:ATCATTT:G:CGGG:TCCTTT:CC GG: CGATCC: GCCTTGTTTACGGGGCGGCGACCTCG: CGGGTTTTCGCTA TTTATGAAAATTTTCCGGTTTAAGGCGTTTCCGTTCTTCTTCGTCATAAC TTAATGTTTTATTTAAAATACCCTCTGAAAAGAAAGGAAACGACAGGTG CGTGGAATGAACAATGGAAGTCAACAAAAAGCAGAGCTTATCGATGATAA GCGGTCAAACATGAGAATTCGCGGCCGCATAATACGACTCACTATAGGGA TCATATTTATGGTGTTATTAAAGGGAGTGCCATCAATCATGGTGGCAAAA CCAATGGCTATAGTGTGCCTAATCCGGATAAGCAACAGCGTGTCATTAGT GAGGCTTTGCAGCGGGCTCAAATAGCTCCTCATCAAGTCAGTTATGTAGA AGCGCATGGTGCGGGAAGCCGTTTAGGCGACCCAATAGAAATTACGGCTC TCAGCAAAGCATTTAACAATGTTAGTGCGCAATTTAATGTGAAAAGTGCA GCCAATCAATCGTGTTTTATTGGCTCGGTAAAATCCAATATAGGAAACTG TGAATCTGCAGCAGGGAC: TGCCAGTATTAGCAAAGTATTGCTACAAATG AAACATGGGCAAATAGTGCCGTCCTTGCATTCAAAAGAACTGAATCCCAA TATTGATTTTTCAGCAACTCCCTTTGTGGTTAACCAAGAACTGCGCGATT GGCAGAGACCGCTGATTGATGGAAAAACAGTGCCGAGAGTTGCGGGTGTC TTTTCATTTGGGGCAGGTGGTTCCAAT:GC:TTACGTGGTGATTGAAGAG

TATATTGCGAAGATACCGACAAATAACACCAGGGAATCTATAAACCATAG GTCTATTATTCCATTATCAGCACGAACTGCTGAGCAGTTGCGGCAAATTG CCAGTAGATTGCTGGCATTTATTGAAAAGAACAAGCAAGACAGCGTGGTT ACCCCCTTAATAGATATTGCTTATACATTGCAGGTAGGACGCGAAGCAAT GGATGAACGCTTGGGGTTTATTGTGAGTTCAACCCGATGAATTAGTCGAA GAACTACGAAGATATCTTCAAACACACGATGATATGGAAGAGCTTTATCG AGGTCAGGTTAATCGATATGAAGACACCTTTCTTACTATGGCGGCTGGAT GGAAGATCTCTCTTGAGGCTATCCCACCCATTTGGGATTAAAAAACGAAA AACTGGTCTTAAGTTTAATGCCAATTATTTGGGATTTAAAAGGGGTCTTT GTGGATTTAAWTTKGGGRKRAGWTATASSWTKKYTTMCCAAARGRKGWTW KTCCYCSGCRMATKARMKKAYTACCTRTCCYTTYGGCRGSMATATTTTTA RGWTKKTAMMSWTYRNMCCCTCWTWCCTYTTTKTGRCCCCAGGGNCCAAA TTTATTTTNGTTTGNGGGGAATTTNGTTTTAAAAAAGAATTCGGTTAANC CCACCTNCCNTTAAACTTTCATTTTGGGGGGGNAATGGGTTTTATTGGNAA CCCATTCCNAAAACCAAAAANGGGCCTTTTTTTTTTCCATTCCNAAAAAA GGAAAAATTNTTTTTAAAAAAA

5B PstC1/E1

NNNANNTTTCCNATTCCCTTGGGCGGAAATTTTTTGCCCAGGGNCCGNAT AACCAAAGGACCCTTTTCNGGCCCCTTAAAAAAACCCAATTTNCCCCNT TTAATCCCCCGAATAAAAGAACCTTTCCCAAAAAAAGGGNAANTTGAAN TGGGGGGNANCNTGGGAAATCCCAAGCCAAAAAAAAGGCCCAAYMTCGCCC WARAACRKKCCAWWAATSSSGAWAASMCYYCCAGAWARWATTKWTKRRWA MWRAWCYAGYWWMSCAMATCRGRTGTTWTATGGRRSSSRGWMYAWWTRAA AARYMYTCCAWYKTKTTKSSGRRTCAATKATGSSRKWTYYTCAAYMTTGG GACTCMCYYMTCMMMWWTTTGAAAACCMYWATTATAKKTRTAAGSGGGCC AAATAATCAATGTTGGATATGGTTAAMCCGATAAAAAAAAGCCTCAATAA ATTTTNCTGCCAACAACTAAGACAGCTCTACAATAAACATAAAAGCAATA ATGAGTCCCTGTGATTATTTCCCATGAAAAAAAAAACAATGGCATTTTAATAG ATAGATCTCATACTGAATCGAATATTGCCATTATAGGTATATCAGGGTGT TTTCCGGATGCAAAAAATGTTAATGAATTTTGGGAAAATTTAAAAAATGC TCGTCATAGTGTTAAAGAAATTCCCTATAACCGGTCTTGGGATATTGATA ATTACTTTGATACTTCTTCGCAAACACATGCACAGGAATATGTTAAACAA GGAGCATTTTTAGAAAATATCGATCTTTTTGATCCGCTGTTTTTTAATAT TTCTCCGGTGGAAGCAGAGCTTATGGATCCAACTGAACGATTTTTCCTTC AGGAATCCTGGAAAGCGATTGA: A: GATGCTGGTTATGATGCATCAAACT : TAAGTGGAAAACG: T: TGGGGGGGTATTTGCCTGTGCAAAGGGAGACTAC CATGCCATTATTCACAAGCAGGATAAAACTCGTATCATGACCACTGACTC TATGCCTCCTGCCAGGTTTGCTTATTTATTGAATTTG::TTAGGGCCTGC AGTTCACGTTGATA: C: GGCTTGTTCATC: GTCTTTGGCAGCAATTGCTT

ACGCATGTGATAGCCTCATTCTTAGAAATTGTGATGTTGCCATTGCAGGA GGTGGAAATATCAACTCAACTCCCAGCCTTTTGATCAGTTCAAGTCAACT TGGTTTGTTGTCAAAAGATGGCCGATGTTATGCCTTSDATCAACGTGCAA ACGGAACGGTATTAGGGGAGGCGGTASCATCGATTATTTTAAAACCCTTA GGGAATGAATCAARATGGAAAAACCAATGGTMTTACTGCTCCTAGTGTTA AGTCACAAATTCAKTTGGAAACGGATGTTTATCAAAAATTTATGATWAAT CCTGAACATATTACKATGGTTSMAGCCCATGGAACTGGGACTAAACTASG AGATCCCATTGAGGYTCAGGCATTAMCAGAAGCTTTTCASAAATATACTY AAAAAACAKGGTMTTGTGCACTAGNGTTCTTTRAAAARWAAATATTGGAC ATACNTTTTTCCCGCTGCTGGRAKTCKCTAGATGTTAATMAAGGGTTTTG TTGTCCATTTCWCANCATTYACMARGWTTCYYTYCRTARTTWWTAATTYW MAARSTATNAMTTWTTCAWWATTCCTATYGTNAAWWACCCYWATTTTKKW KTAAAAMCAGCYCATWWTTWWYYSSSKGTMATTWWNYYCCNCTTTWTTRW WMCCCMMYTTGCGRRCSGTTTTTTTCGTKKKTGTTTCRWCAKAGAATCTM MMSYCCTTTTYTYGCMMMMAANMRNNTTAAACMMMTWRCCTTTYTTTRGR KGGSGYCCCCCNCCCNGGGGGAANCCCCCAANTGGGTCCCCNNTTTTGGG GGGGGGGNTTTNGNNAANGNAAAATTTTTTTTTTCATGCCCNNANAAAAGG TCCTTCCGCAACCTTTTTTAAAAAATAANCCCNTCCCCNAAAAANTTGGG NATTTGGGANTGGGAATTAAAAAGGCCCCTTTTTTACCCCCCCGNGTTTA ATTTTAATTCCCCCCTTTTTTTGGTTCCGGGCC

5B PstE1/A3

NNACCAATTTTCCGAAACCCAAGNCATTTTGAAAGGGGTTTTTGGGGCCCC AAAATGGGTAAGGAACNCGCCCCCCCCCTTTGGAAAACCTTCCCCNAAAA AAAATAAAAGGCNTTTGGAATTTTTTAACNAAAATNNCGGGGGNTGGGC CNTTTAAANAACCCCCCCNTTTNCAAAAAATGCGARRGGKGGGYCTCCWR RNAYTYYAAWAWGRAMGSGKTAWYTMCCWAKTGRGGGGWNTTWTATCAWT AAAGGNSSGGGGKTYTAWKWTTTAWRAARRGGRAGCTTTAGRAAWAWAAW ARWCMGTKGKKTTTAARAGARATTKWWAARRRAACTGGRWTRAAKTWWWW RWRTTATWATANAAATRKKWAAKGGWWRTATAGAGGGAAAAAAATTTAAA GGATAAATGAARGAAACCCATCWCCATTTATTTTCCAAGASGACCAAAGA AATGATAGAAGTTGTTAAATTTATGGRTGCGTAAAAAGAAATTTTCCCAA AWTTTTAAWTYCTTTGGGTTAAAGGATTAAACMCTTGRTTGGAAGCAATT ATATGGTAAAGAACMTCCAGCTCGTATTAGTTTGCCAWGCTATCCTTTTG CCAAAGAGCGGTTATTGGTTGGATACTGATAAGTTAGTCGACGGTAGTTA TYTCAACCCTAGRCAAGAGGGAATWAATACAGATAGTGATAAGTTTGATG AAAAGCTTTATGAATCCTTGTTGGACAATCTTTTTTCCAAAACTATGACM CCTGATGAAGCTATTAAGTTAATGGAAGAGGAGGTATCATGAAAAAATTA ATTAAATTGATTTATGAAAAAGTTTTTGAAAATAAACTATCAAAATCAGA

AGCCTTGTCGTTGATTAGTGGATTGAAGGCGAGCAATACTACTATCCTTC TCAACTTTTTCTGGTAGAGAATTTTTCTTTCGGATAGATGCTAACCTTAA AAAAAGTGTATTATCTCCTGTAACATACCTTGAAATGGTTTATGCTGCAG CAACAAAGGCAATGGCTGGTGAGAAATTTTCAGCGCAAT: TTAAAAAAAAT TGAGTGGCAATATCCAGCTATTGTTCATGAAGAGTCGATAACAGTTCATA TTCGTTTTTTTAAAGATCCAAATACCTGGTTGGATACAAGTGAGGAGAAA TTTTTATGCTATCAAATTTACACAATTTCAAATAATCAAGAAACA: A: GC GATATTGTTCACAACCGGGGTGTAATAGATTATGATCATAAAAATAGTGA ATTAAGTCCACTTGATATTTTTTCACTACAAAAGCATATCAGTGAATATT TTCTAGACCCTAAAGAGGATAGTGATTTTTTTGAAAAGAGCGATAAAAGT AATGAGCCCTATTATCAGAGTATTGAATTGTTACATATTAATTTTCAGAA AGAAGCGCTTATAAAATTATCGTTTGATCACGTATCAGGATACATATAAC CATCAAGAGTCATTGGTTTTACATCCAGATATACTGGAGTTGGCTTTACA ATCCTGTAGCTTCTTATGCCTTGATATGGCAGATACTGGAATCTGAGTTT TTCGGGGGAGTTGCAGCCCAGTGAGTGGTAGATGCTTTTATCAAATNCAT GTCTCGGCTGGTCCAGGGACCTCAAATGGTGGGKTTTGGGTTACCGGCTT AACARSYTTCCATGGAAGGGTAGGGNTTAWATAGSCRCANTATTTGGCCY TKGGTGRTGGAATRAWRGTWATKCSKGGGGWCCWGSTAMWWAGGGTTGGG TTYTCAAAACCAWAWRAAMMSKGTTTYTTGRRKWWTTTTTTSSMMMMGCC SCNAAATTNGAACCCCCCNNNGNGTAAANCCCCNNGAAATTNNTNTTTTT TTTTTNCCCCGNNCCCCAANCNNAGAAANGAACCTTTNCGNGGTTTTGGG CAATTAAATTTAATTAGGGCAAACCCCCCNTTAATNGGAAGGGGGGNCCA NTTGGGNGGTTTTTTTNGGAAAAAGGAAGGGNAAATTGGGGNNAAAAAGG CCCCCCAAANTTNGGTTTTAAAAAGGGGAAAAAAAAATNAACCGTTTAA AAAAATTNNCCCCCAAANT

Fig. 18.

5B PstA7/5A T7 Sequence

GCACCGTTGGAACGTTATGGCATCGATTCATTGATTGTGATTCAGGTGAA TCAGGCGTTGGCGGCTATTTTTGATGCGCTGCCTAAAACACTGTTATTTG AATATCAAACGATAGACGCGGTCGTGGCTTACTTGGTTGAGCAGCACCGC CAGGCATGTAGGGTGTGGACGGGGTTAACGGCAACGGGTCAAGCTCAAAG AGAGGGTGTCATCTCCTCTACCTCATCAGCGGGTGTTGAACCTGTGACAC CGAGACAGAAAGAGGGTCATCCTATACAGAAAGACATCAAGTGCCGAGAA CACCCAGTGACAGACGAGCCTATAGCCATTATTGGTCTGAGTGGACATTA TCCGCAAGCGAATAGTTTGGATGCGTATTGGGAAAACTTGAAGGCAGGAA AAGATTGTATTCGTGAAATTCCCGATGACCGTTGGTCGCTAGACGGTTTT TTCCATGAAGATGTTGAAGAAGCGATTGCGCAAGGGAAAAGTTACAGTAA ATGGGGCGGTTTTTTAGAGGGATTTGCTGATTTTGACCCTCTCTTTTTTA TTACAGAGTGCGTGGGAAGCTGTGGAGGATGCCGGTTATCGCGTGCTCAG CTTGCTTCGCAGTTTAACAAGCGTGTGGGTGTATTTGCGGGTATTACCAA GACGGGTTTTGATTTTTATGGAATACAATCGGATCSAGCTSBTYT: YCGC WT: ATACTTCCT: TTACKCCAGGTTTAAAARGCCWMGWTCAGCT: TKTTT TSGGGTTTTTTAABTHHGCGGGKGGGTKTTTTKVSCCVWAT:AGCA:CSG DCGGTTTTTKMATTTTTTTAWTGGRAA:AC::CAATCGGGATCAAC:TCT $\verb|TT:TCCGCTTATACTTCCTTTAGCTCAGTGG::CT:AATCGTGTGTCTTT|$ ATTTTTTGGGTTTACAAGGCCCAAGTC: TGT: CTATTGATACCATGTGCT CCTCATCTTTGACGGCAATACATGAAGCCTGCGAGCATCTGCATCGCCAA $\tt CGATGTGAACTGGCTATTGCGGGGGGGGGGTGAATCTTTATTTG: CACCCTT$ CAACCTATATTAGATTGTGTACTTTACGGATGCTTTCCAAAGAGGGCCTG TGCAAAAGCTTTGGTTATGGTGGTAATGGGTTTGTACCGGGAG: AGGGGG TTGGCGCTGTGTTGTTGAAACCCTTG::TCTAGAGCCATTCAGGATCAGG ATAGTATATGCCATTATTAGAGGGAGTTGTGTTAATCATGGTGGCAAA ACCAATGGTTATACTGTGCCTAATCCACATTCTCA: AGGCGATCTTA: TT CGTGAAGCTTTGGA: TAAAGCTCA: G: GTTAA: TGCCCGTAT: GGTCAGT TATATAGAAGCC: CATGGTACA: GGTACAGAGTTGGGTGACC: CAATAGA GGTAAGAGGCTTAACGCAAGCCTT: TCAACAAGATACTGATGATGTTGGT TTTTGTGTAT: TGG: GTTCAGTTAAATCTA: ATATTGGTCATC: TGGAAG CTGCCGCTGGTATCGCTGGGCTGAGCA: AAGTTATTCTGCAGATGAAGTA TGAAAAAATAGTGGCAAGCCTACATGCAGAAAGACTGAATGCCAATATAA AGACCAAACCTTCATGTTAATGGAAAAATCAAAGAATATCCTAGGACCGC GGGGATCTCTTTTTGGTGCGGGAGGGACGAATGCACATATAATAATAC AGGAGTATATTCCAGAAGTCAGTCAGACACGACAATCAGAGGTCAGGAAT AAACCAGCTCACCCGGTGGCCATTCTGCTATCTGCGCATACTTCCGCTCA GTTACTGAAGATGGCCGAGGCACTTTTACTATTTATTCGTACCATAGTGA

AATGTAGCCTATACATTACAGGTTGGACGTGAAGCTATGCAGGAACGCCT GGGGTTTGTTGTGAATTCCCTGAGTGATATTGAAGTGAAACTACAAAAAT TTATTGATAAGGAAAATGATATTGAAGACTTTTATCGGGATCAAATCAAG ACTAAAAAAGAAATCTCAGCTCTATTTAATTCGGATGAAGATTTGCAGGA AGTGATTAAACAATGGATGCGACAAAAAAAACTATCCAGGCTTTTGTCAC TTTGGGTTAAGGGAGTTCACTGTGATTGGAACTTCTTGTATCAACATATG CGAACCAAACCTTATCGGTTACATTTACCAACGTACCCATTTGCTTATAA TCGATATTGGATTGATGATAATAATAAAAATCAATCGACTGTAGTTGAAA AAACCAACACTATTATTAAAGAGAGAAAAGAGCAAGTTAGATTAGAGCCG CTTGATTTTATGGAAAGGAAAAAACTTAATGTCCATGAAAAAAAGCCATT TCATTGTTCTTTATCAACTCAATCAGAGGCCTGGTCCGGGGCGAACACTC AGACATCCAGTGGTAAACAAAGACGATCTTATGTACAGGTGCTTAAACAA GACGATATATTAAGGGATCTTAAATCAGCGCTGCCTACAGCTGTTGAAGG TATGATACCAACATTAAATCGAACTGGTGTCATGACAGAAAGCTTAAGCT CCTACTCAGAAGCATTTGCAAACTATGCTGGTATGTGTGGTGGAGAAGTA TTGGACTTGGGGTGTGCCTATGGAATTGCAACGATTGCAGCGTTGGAGCG AGGGGCTCAAGTATTAGCCGTAGATATGGAGGCACAGCATCTGGAAATAT TATCAGACCGTATTCGGGATGAAGTGAAGTCGCGTTTATCGACACAAGTA GGCAAGTTGCTGGATCTTCATTTTGATCAAGAACGTTTTGCTGCGATCCA ACGGATACCCCTTATATGGGTTATTGGGCGAGCAAAGCAGGGGTTTATGA AACTCGTAAAGCAGCAGGGGATTTATGGCCAGGCTACATAGATAATGTTG GTTCTCACTTTAATACTAAAGAGATAGAAGGGGCCCCAACTCTGATCAAC CCGATGGACCCGGAAATACTGCATCGTGAATGCAAAAAATTTGGTTTTCA TGTAGAAGAGACTGTTTTTTTTGCAGGAGAAGCCTTTGCACTAAATAATA GTTTAGAAAAATCAGGTAGAGAGCATGTTGGTATAATAGCATTGAAGCCG GAATTGGAAGATTCCGACAGGCTTGAGAAATCGCTATTGCCAGTACGGAA AACTGAAACGGAGAATAAGGAAATTAGCCTACTGCAAATACAGACAATGC TTAGGGAGAGTCTTGAATTTGAATTGGATATAGAGCCCGGTATGTTGGAT GAGTTAAAACCTTTTACAGATTTAGGGTTGGACTCGATAAATGGAGTCAC CTGGATACGAAAAATCAATAGTCACTATGGATTATCTATGACTGCGACGA AAGTATATGATTACCCAAATATTATTGAGTTGGCAGAGTTTTTAAGAAAA CAAATTATTTCGAATGATGAAAAGCAGCATCAACCATCTATATCAACAAT ATTTCCCACTTCATTGGATGAATTATTGAAAAAAATACAAGAAGGTACTT TAGGGATTGAAGAAGCCGACCAATTAATTGATGAACTACCTGATTACCAT CTAGATATGGAACTCCATGAGTTGTTATAAGGGAAAGCGAGGTATTTTTG TGTCACACCGATGGATGGTAAAACCATTTTGGCTGAAAAGAATTTAGCTC AAATCGGCGCAGCTTTGCTGCGTCCGAGTGATTTGACTTGTTATGGTGAA CTCAACTATGCTTGTACGGCATTTCCTTACATAAGTAGGTGAAAAATGGA AACAATTAGTGTAAACCAATTTAGAGACAATTTGAAAAGTTTTGTAGAAC AAGCAGTTAGCACGCATGAGCCAATTAAAGTAACGCGCAGAGCCAGTGAG

GCTTTCGTCGTGATAAGTGCCGATGATTGGGAGCAAGAACAGGAAAGCCT TTATATTTTCAGAATAGTGATTTGATGCAACAAATTGCAGATTCGCTTG GTACGCATACTCAGGGCAAGGGATACAAACCAACGGATAATGAGTTGAAT GAAATCACTGGTGCTTGAAGGCCATACCTGGGAAAACTGGGAAAAGCTTT GCGAGCAAGATAAGCGGTTACACAAGGCGTTATGCAAACTACTCAAAGAA ATGCTTCACTCGGAAGATCTAACCTCCGGATTAGGTAAACCTGAGCCGCT TAAGCATAACTTATCTGGCTTATGGTCTCGGCGCATTTCGCAAAAAGACC GACTGATATATCGCTTTATTTTCGCTATCGGTGGTCACTACGATCAACAT TTAGTTGCCATAACGCCATAACAAGGGAAAATATGAAGCGCAGCGGAATC TTTTCCCTTGTGGTTACGCTTGTTATAAGGTTGTTTATTCATTTAGACTC KGGGCSRWTTTCAATGTGCTTGTTATACACTTAGATGTCCGAAAAKGRAA MCCAMCCMCCATTGTATATTTYTTTTAACTCAATGGATAAATGTTTTATA GCTAACTGTGAAGCTTCGATTGCCTGATTGAACTCACGATCATTTTTCTC TGATTTTTCATAAAAGGCGTTAGGTGAAAATGAAGCTGGTTCTGATTTTT TATGTACAGCTTTATTCCTGAATCTAATTAAAACTTTCATATATTGATAT GCTTGCTTTGATTTATCAATTTCTTTTCCAGTAATAATTCGTGTGCAAAC TAGCCATTTAGAAATAATATCTAATTTATCTAAGTGCTCAACAACCGTAT TTGTCAGACAAAATGACGAGCAGAAAAATCWTAGACTGTATATTCTTAAA TACWTAGAGGACAATTWTCMCACAAAAGATWTCTTGCCTCCACTGAGGCT ATTTCTTTYTTGKAATCTTTATCCCTAATATTTTCCCAGCTTAGTGACCA ATAATTTATATCATWMAGGTACTCTGTAAGCCGATAATACCTTTTGCTTA TATCCCAATAATTGGGACCAAAAAAGTGCAAAAGCGTGGGCGCAGATCG AGAAATTTATTCCGTTGYGGAATAGACTATTTGCATCAATTACTGCTCAA WGCCGCTGAAAATTTCTGCAAATTGGTAAGGGCTTTACGTGTTTTGTCTT GTACAWAGCTGTTCTATTCAGCAGGAGACAAACATGGATTAGCAAGTATG GGTGTAGTTATCACTKAAAGAAATCATTGGCAGTATAGTCAACTCATTGA AAGTCCTATATTAACGTCGCCGAAAGTTAAATAGTTTTTACGATGAGATG TAGGCATTGTGATAAATGTGCTGCACATCATCACAATCATTCAGCATATC CATAAACCTCTCGAACATCTTAACATCATCTCCCGTCACTGGAGTTGTTG TTTGAGGAATAAATTGGATTTCGTCGACATCRRACTGAAGCTTTTCAAAG GCTTCAGATAACGCTTGCTTGGCCTTAAAATATTCAGTATGAGGAACCAG TACGCTGATCTTACCGTTTTTTGCTTCAATATCGGTGACATCCACATTTT CCATCATTAATGTCTCCAATACGACTTCTTCGTCATTTCCAGTGAAAACA AGGATTGCACAATGATTAAACATATGGCTAACACTGCCTTGGGTACCAAT CTTGCTTTTGGTTAAAACAAATACGCACATCACCGAAGGTGCGAT

FIG. 19

Fig.20B

Fig.200

Fig.20D

Fig.20E

The first train when the first the first train for many the first train the first train the first first first train

SEQID	
60 120 180 240 300 315	
ctatacggac gggggtaggt gttaccaccg cttttatatc tggtgtcagt	
cgtttcgagt ttggtcattt agcatcgcat aaggtagccc cacgacgggc	
ttggcagaat aaaagtaata ttgtctttgc attgcgttgg gacggtatac	
agtcgagaca ggggtcggta caaagtattg aaacccacag gcagtctggt	
atccgataga actgtgctct cgggcgtgac gtgaggatgt taaagccttg tcagt	•
aaattgggtg aagcgtcatt gctgggatag acgattcatt aatacggaat)

FIG. 22)

SECUL																
· 09	120	200) (240	300	360	420) C	4α Ο α Τ	540	000		099	720	736)
atogathada adtogagaca ttqqcagaat cgtttcgagt ctatacggac 60 $N \epsilon Q U U$	gggggtaggt	בנית נית לאלי	ひしてないしないしの	cttttatatc	tggtgtcagt	traccaagta	100000	ייייייייייייייייייייייייייייייייייייייי	tctaaaaagc	attottagat			aaatactata	+220++4021	aaacaccyay cccaccoya	
cgtttcgagt	assactasta ttdatcattt qqqqqtaggt	10000	agcarcgcar greacease	aaggtagccc	cacqacqqqc		なななななない。	rgretally	tgttattttt	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ないこと	aacgagrrgc	tagaaaada			
ttggcagaat	a a a a c t a a t a		ttgtctttgc	asserting attacattag	gardatatac	54.40.45.44.05.44.04.45.44.40.45.40.40.40.40.45.40.40.40.40.40.40.40.40.40.40.40.40.40.		cagaacggtt	qtcqaacgac			gcgatgacaa	aatgcattta		tattagaara	
adticaadaca	455045588	99991C99Ca	caaagtattg	มมมการกรรมกลุด	100404040		caatgcacat	tacaaaatac tattttaccc	generalt apptacttat		aaaatattcc	cagtagggaa			ttgttadtac	
######################################	ないないないは、	actgractor	caddcatdac	7+7×77×77×77	9-94994-9-	Ladaycorry	tcagtggtac	tacaaaatac	1155700510	a constant	atacatataa	ccctccaggt	100147001	cayayıraar	atataaaagg	ctgatc
		aagcgtcatt			acgarroarr		tattttggtg		5+000000000000000000000000000000000000	gcaaaaaarg	addcaatccg	tradcatata	3	<u> ಇಇಇಇ</u> ೧೩೩೧೩೩	aaagcaagta	aatdaatcga

FIG. 220

SEQID NO:13		SEQID NO:15		SEQID 3VO:17
60 1120 1180 240 312	FIG. 22C	60 120 180 240 324	22D	60 1120 1180 3240 308
gggaacacaa ggatgttgct gttgcctccc ctttcatgtg tgtcagctcg	£1G	tgataactgg ctctgcggcc attagtagcg tttttatgtc ccgccgggct	#IG. 220	aggacgaaat ggaagcagcc gattccacag tctcgatttg aacagcgtcg
cgtttgagga ttggtcatct agcaccgttt aacaatcacc ttcgtgctgg		tgtatagagt ttggccatac agcatcgaca aacagtcgcc aagaaagccg		tctttggacg ttagtcacct agcatggcgt aacgtctgcc tcgcggctgt
ctctcgaagg aaatcaaata ttgtcgctgc atcaattttg ggtggaccac		ctggccgatg aaaagcaata ttatcgctta tttgattttc gagggactag		gcagctgccg aaagccaata ctggcaatgc atcccctgga gaagagcgga
attggcagca cggttcagta caagacagca caatcgggaa gcggggtcaa		actgcaagca cggctcggta caaggtgctg caatcaccac ggatcaagca cagt		attgacggct cggatcagta caaagcagta gagtcctcat gccggaaagt
atccaattga tttgcggtat ttggtctgat acgaagcacc tcacggagtg gt		accctattga cctgtgccct ctggtataca ttaatagcgc taaggccctg		atccaatgga gtttgctggt ctggactgat gcaaagaacc agactgtctg
cgattaggtg cgaaaacagt gctggagtcg acgatcaact attgatgaac tttggaattg		caattgggcg cgcaaaaaca tctggtgtggg agcctgcatt aatacccagc		gagtatggag cagaaaaatc gggggtattt caattacact gtacaagagc gattagcg

caacttggeg atgaaataga agttcgcgct ctgagtaaag tgtacggaga ttcacagtcc 60 %EQ/D NO:19 acgacatacc ttggtgctgt aaaaagcaac ataggtcatg ccaacgcagg agcgggcatt 120 gctggtttta ttaaaacggt gctgtctctt taccatggca aaattgcacc caatgcaggc 180 aataccgagc ccaatgcagc tttgaacctt gacgcgttc attttgcatt accaaaact 240 ttgcttacat ggccggagtg tgatgttcga cgggcagcga tcagctcact gggttttggt 300 ttgcttacat ggccggagtg tgatgttcga atcaaggcg tcagctcact gggttttggt 300 gcttgggtg atcctattga atttgggcgca atcaaggctg tgtatgggcc tggtcggtct 60 %EQ/D NO:21 tctccgctgg tgctcggtgc atcaaatcg aacatcgggc atttggaagc gactgcaggt 120 gttgcagctc tgattaaggc acttaaatcg aacatcgggc atttggaagc gactgcaggt 120 gttgcagctc tgattaaggc acttaaatcg atcgacggt tcaatgttgt gttcccgcag 240 cactgtcaca aattgaatcc gcttctggat atcgacggct tcaatgttgt gttcccgcag 240 tctgagaacc ccttgcacag ctacttggcg ggtatcagtt cgttcgggtt 300 tggt	SEQID NO:23	ateggate ttacagaate atttegatee etatacagaa 60 ateggta aaaageaata tegggeatet tttaacegeg 120 agtgtta etegettega aacataagea aettecaacet 180 tgagcat ateaacettg aggacagtee attttatate 240 agtateg gaaggtgagg etegeaggge egeagteage 300 314	acttggtgat ccctattgag gtggaaaaagaact actgtgcctc ggggggcggagtat ctggagtagt caastcctgtcatc tggtgaaaat caataatgcat taaagaaatg ggaatcgttggtt cagc
atgaaataga agttcgcgct ctgagtaaag tgtacggaga ttcacagtcc 60 ttggtgctgt aaaaagcaac ataggtcatg ccaacgcagg agcgggcatt 120 ttaaaacggt gctgtctctt taccatggca aaattgcacc caatgcaggc 180 ccaatgcagc tttgaacctt gacgcgttc attttgcatt accaaaaact 240 ggccggagtg tgatgttcga cgggcagcga tcagctcact gggttttggt 300 tgctcggtgc atttggcgca atcaaggctg tgtatgggcc tggttcggtct 60 tgctcggtgc acttaaatcg aacatcggc atttggaagc gactgcaggt 120 tgattaaggc agttttggtt cttcaacatg gcgtggctcc ggccaatttg 180 aattgaatcc gcttctggat atcgacggct tcaatgttgt gttcccgcag 240 ccttgcacag ctctttggcg ggtatcagtt ggtccgggtt 300 ccttgcacag ctcttggcg ggtatcagtt cgttcgggtt 300 ccttgcacag ctcttggcg ggtatcagtt cgttcgggtt 300	SEQID NO:23	ttacagaatc atttcgatcc ctatacagaa 60 aaaagcaata tcgggcatct tttaaccgcg 120 ctcgctttga aacataagca acttccacct 180	ccctattgag actgtgcctc ctggagtagt
atgaaataga agttcgcgct ctgagtaaag tgtacggaga ttcacagtcc 60 ttggtgctgt aaaaagcaac ataggtcatg ccaacgcagg agcgggcatt 120 ttaaaacggt gctgtctctt taccatggca aaattgcacc caatgcaggc 180 ccaatgcagc tttgaacctt gacgcgttc attttgcatt accaaaaact 240 ggccggagtg tgatgttcga cgggcagcga tcagctcact gggttttggt 300 ggccggagtg tgatgttcga atcaaaggctg tgtatgggcc tggtcggtct 60 tgctcggtgc acttaaaatcg aacatcgggc atttggaagc gactgcaggt 120 tgattaaagc agttttggtt cttcaacatg gcgttggt gttccgggtt 120 aattgaatcc gcttctggat atcgacggct tcaatgttgt gttcccgcag 240 ccttgcacag ctctctggcg ctacttggcg ggtatcagtt cgttccgggtt 300 ccttgcacag ctctctggcg ggtatcagtt cgttcgggtt 300		FIG. 22G	
atgaaataga agttcgcgct ctgagtaaag tgtacggaga ttcacagtcc 60 ttggtgctgt aaaaagcaac ataggtcatg ccaacgcagg agcgggcatt 120 ttaaaaacggt gctgtctctt taccatggca aaattgcacc caatgcaggc 180 ccaatgcagc tttgaacctt gacgcgtttc attttgcatt accaaaaact 240 ggccggagtg tgatgttcga cgggcagcga tcagctcact gggttttggt 300 atcctattga atttggcgca atcaaggctg tgtatgggcc tggtcggtct 60	,	aacatcgggc atttggaagc gactgcaggt 120 cttcaacatg gcgtggctcc ggccaatttg 180 atcgacggct tcaatgttgt gttcccgcag 240 ctacttggcg ggtatcagtt cgttcgggtt 300 304	tgattaaggc tgattaaggc aattgaatcc ccttgcacag
atgaaataga agttcgcgct ctgagtaaag tgtacggaga ttcacagtcc 60 ttggtgctgt aaaaagcaac ataggtcatg ccaacgcagg agcgggcatt 120 ttaaaaacggt gctgtctctt taccatggca aaattgcacc caatgcaggc 180 ccaatgcagc tttgaaacctt gacgcgtttc attttgcatt accaaaaact 240 ggccggagtg tgatgttcga cgggcagcga tcagctcact gggttttggt 300	SEQID NO:21	${\it FIG.22F}$ atcaaggctg tgtatgggcc tggtcggtct 60	atcctattga
	SEQID NO:19	ctgagtaaag tgtacggaga ttcacagtcc 60 ataggtcatg ccaacgcagg agcgggcatt 120 taccatggca aaattgcacc caatgcaggc 180 gacgcgttc attttgcatt accaaaaact 240 cgggcagcga tcagctcact gggttttggt 300	cg atgaaataga cc ttggtgctgt ta ttaaaacggt gc ccaatgcagc at ggccggagtg

	שני טש	Ē,					
	309						ggtttgggt
		acesocyces gttcttcatc gagttcgttt	agaatagtcc gtgccgcgtt			ttgaaacacc ttgaaacacc tgaaggattg	agcttgaatt cagacgaagc
	120	ggactcggct actgccgccg	ttggccatac agcatcgtca	aagacgaata atggcgatga	gggttcggtg caagatcgtc	actgcggact ctggacttct	gaacgtcaat gctggcattg
60 SEQID NO:27		gcacactcag	cctatcaagc	ctgacgaaag	ggtcgtggga	atccgattga	gtggtcggag
	FIG. 22I	FI					
	306						atoggt
	300	ttagtttgga	cgggcgtgag		caacggtgtt	attggaacac	accttgaaag
	240	tgtaaataca			gcagatcgat	ccccaatcc	cactttgaga
	120	ggcggctggc gcctagcttg	atgccgatac gtcagatacc	aacattggtc ctcaaggcgc	ggtgaagagc ggtgatggca	cgatagggtc tcatcaagac	aaatactgtg gtcgctggtc
60 SEQID NO:25		tcaaaagaaa	cttttgggac	ttaaaacagg	gatggcagca	acccaatcga	ccactcggcg

												U	U/ I	IV													
SEQID NO:29																0	0	0	0	0	0	0	0	0	0	0	0
0		087	4		360	420	480	540		099		780		900	9	$^{\circ}$	08	14	0	9	132(∞	4	50	56	$^{\circ}$	1680
tttaatta	cttattgc	cgg rgggg	C C C	ccgcgttatt	atcgttttaa	agatgcaaac	aagatcaata	ataaatatga	gagttatcga	taagt	attaaatcga	gggcggtcat	Q	acaaggttta	tcgtcaagtg	aggatcatca		ctatcacagt	gacaggtggc	gggacct	cttcaattat	tgtcgatgtc	agccaaggga	gtatgt	caataagggt		gttacgttat
cgcggtt	tcatcaga	rccctaaa	agtattatca	aagatgacca	catgcgtcgt	tg		at	aattttttgt	aagaggctaa	àt	tagtattatt	accctaaccc	ccttgtgtgt	cgggagtgat	ttgcgttcac	acgtggtacg	ttgcgaccgt	tacaaacggc	gtgtgtgtta	gaa	gtcatcgagg	tgaatagttt	acgaacctgt	tggggttact	tggatt	tcggtgaagc
cgtttctt	acgggcaa	rararccc	g	tggtgatgcc	cgaaaccaag	ttcaccggtg	ccaatgtgat	دب	ag	ttagttt	cgtttaaatc	aattacggtt	aaagctgcca	tttaccgata	tttgaagtat	gatgaagtta	cacaa	ccattggctt	catatcttga	ttaaagcagt	cagtgggcac	gt	caacaagggc	ttgttaacga	atcaatttac	aaat	ttggatcaga
caaaaaag	aaagcagc ಕನ್ನಾಣಕ	tgaacteg	gt	acagtgtgtt	gttcaatcat	gaaagtagct	aatttgaaaa	attatgatga	tttgatggtc	gaa	ผ	aatagtgaat	gagtgaatgg	cgccattagt	tgttccgggc	acacgtgggt	Ŋ	ctgtagcttc	tcacaacgat	gttggcgcgt	ctcctca	ggagattcaa	agagcatata	gatgcatgga	cgttcaaacc	tta	tatttatccg
ttaccacc	acgaacaa ಕಾಂತ್ರಕ್ಕಾಕ	raagrar	C C	aatgg	acgcatcatt	cagaca		'n	caactttatt	ttac	aagataaaa	ccaa	cgtc	מ	acat	accgact	gatgaat	ttgaggatgc	aattat	gcacttc	acaagcttgc	attgatg	ctcccag	gaactgt	ta	atcgggt	ccgtgtcgcg
atggaact	cagctaat atgestte	gragaria	tgatatt	ctgg	ŋ	gcagagtcag	gggtcag		aataatattt	gatattttga	ataaaaagaa	tcgatgaata	tatttgaag	tcage	catca	ggtgaacaca	m	atct	tttgcacggg	ttg	agccgagaag	acgtgc	ctt	ggccgttatt	tctgcgt	gatggc	t a

FIG. 22

1740	1800	9	1920	ω	4	0	16	22	∞	34	40	9	52	28	2640	70	76	82	88	94	0	9	$^{\circ}$	3180			3360
agagccgatg	ggccttgacc	accgtctcct	gtcaggccag	agtggattgc	aataccggaa	CC	acggttattt	gttatcccgt	tg	cattttatct	taccgcatgt	g	Oi	gccaac	tgcggtgcgt	gtaga	ttat	Ø	tacggacaag	tga	cgac	ttatatcaat	tgtcagttct	tcactcgaca	tttgtcagcg	aaaacgtagt	gttggattta
atacagcgac	ggcaaatggc	tcaatgacaa	tgattggtct	tagcggatgg	attactcgcc	gatt	acccacagca	accctaagat	ctc	acaactcttc	cgatt	Ď	cttacat	ttgaccaacg	gcatgtcgga	gaa	tggagcaaga		ttcgagtcta	tcatttg		gtagcccctt	g	aatatcttcc	tattat	tgatattttt	aatgtcgctt
gttgtgagtc	ttgaagcaag	ggtactggtg	gggatagcgg	tggcagaccc	ttagaagagt	gttttggagg	gaagtgatgg	cggg	aat	attag	gcccttgt	taatagt	caggtcc	gat	ttgttaaaac	ctggg	aagtgct	ttagtcgaag	agaatcg	gt	tttgcag	gttggaa	agtataccac	gtattggagg	aagt	caaacgctat	gatcacatgg
aggtaaagtc	tgacaatgta	ggtgtggggt	tttattggaa	ggagcaattt	tcgctggtcg	tggatggg	tcgggaagcg	tatagaggat	tgcg	taatgaa	aatttaaa	agtc	ţ	atggtcg	gcgttgt	agtgatacgg	ttcaaaagcg	gagcattacc	cgaggcattg	cggta	agtattgtta	cccacagatt	tctggtg	cacatct	cgaatca	cacatatgct	aatcacaata
gggagcatat	agcgctgtat	gaaaaagccg	tagaggagcg	cgaagacact	ttcctgctga	cgtattgtaa	cgatatctcc	gt	ţ	α t	cctacttttt	tagtggccat	aggtgga	tatcag	gagagggtgt	cattcgt	cggcgccgag	tgatccat	cgatagaagt	tgctctgg	gcgtgaccaa	aggatgtaaa	agccttggca	gtggtaccaa	gtcgtt	tta	acgctaaaaa
gtctctgaag	gattgcagac	aggg	ctgttg	σ	tctcaga	gggggtaaaa	ttgttttttg	tagaga	agtcgatgtg	agccactcaa	gcacgaatct	tcttcttcat	ttggcgttgg	atg	ttgt	atgg	aatggtatta	gtt	ttgggtgatc	atta	gag	ttcattgt	ggaatt	ttg	aacaat	aaagtcat	caggttactg

FIG. 22K(cont'd)

c 3420	48	54	c 3600	99	a 3720	t 3780	a 3840	390	c 3960	t 4020	g 4080	14	g 4200	426	$^{\circ}$	438	c 4440	c 4500	t 4560	g 4620	g 4680	t 4740	t 4800	t 4860	t 4920	c 4980	g 5040
tattgtcaa	ataac	ccgtttaga	caaattagc	ctcatcaac	gctaccaga	cactcagaa	gcaaaagac	gcaacatat	tgcaggcat	tgcgggttat	atcgcaaga	ggaaaaaaa	aagtggtga	aggcttata	cgtccagtt	aattggggcc	ggatcatat	aacacta	cttagtggct	acatgccacg	cggtttatt	tttgatcga	gttatatcct	tacgataca	gaacgttgc	cgccgaggt	acagttgtt
ggataagttt	agaaggaaaa	cagaaatttt	gtcaatatca	tctataccca	accgctactg	atcaaacaac	ccgagatcat	ttgtgcaatt	tacgtcaaag	ttttacagga	tggagtctga	agaatgatcc	caggggtgtt	agaaaatgga	gagacctgct	ggattatcga	aagcctatca	tgcatggaca	ttgaacagga	ccaatgtatt	tggcggccaa	tgatatttgg	gaagcccagg	acgtggaatt	acgcccatgc	gattgccatc	catcggtcaa
atggacaaac	gcttttctag	aaaccgtcta	ataagtcaaa	tggacgctac	tttgccagag	gtatccaacc	gatgtcgttg	aaactgttgt	gagacadata	tgtttaagcg	gcacaggcat	aagcattacc	caggcattac	ggttcgatgg	cagtgtgttg	gcgaggatac	ccaatgttac	gactttttga	ctctgtaata	gcgatcgcag	aggcaggcat	ttttcgagtg	cgtattcctg	ggttttggtg	ctggcaacca	gcccccaaga	atgatgaagg
tcgcgaggca	aaagctaaat	tgatagtgac	aaacagctgg	cgatatcgac	cacgtatccc	taatcatccg	tacggatcac	atggttatta	ctttgagaca	gcatga	cgtagccgcc	cacggagtat	cgattgctta	tttccccaat	ttattgtaat	agatgccaat	gatagtgctg	tgtttccaaa	gagttattgc	ttatgatatt	cagccatgtg	aaaaagcgtt	tacgggattg	ggaggcgtcg	acaaatcatc	gattgatcat	ccatgatgcc
tgcaagtggg	cactcgtgga	actatttatt	aagtattaat	gccaaggact	ttagcctgcc	ataacgcggc	ttgccattga	aactggaaca	aacatcgtgt		aagacgatag	gccgatggaa	tattgattaa	cggatattat	ggattgcaga	gtctgtcaag	gcaccaccgc	gttatacgga	accctatct	gcgttggtga	acgaaacggt	agtttagcca	tatctgaaga	aagcggtact	agttgggtca	cgacatcggt	agagagtgag
gcctatactt	acaaagcaag	actgttac	gaagatgaca	g	cctcgtcgca	gga	cactcacgct	מ	മ	ttgataaa	ttgaatgg	catggt	tagcg	ttaata	aataat	attgaagcac	gtacgggg	atacgta	ggcgaacaat	caaggaatca	cggaatatac	ttaaat	ggttgggcct	agcag	gctcgt	gcgat	catggat