Use of Yield Charts

		Vo	l%	W	t%	Den	sity	
H	2S			H2 Cor	rection			
Hydr	ogen			Fig :	10.7			
C1 -	+ C2			Fig	10.6			
C	3	Ratio		Fig	10.6	Pu	ire	
C4s	IC4	Fig 10 F	41.5%		Ratio		Pure	
C45	NC4	NC4 Fig 10.5 58.5%			Ratio		Pure	
C5+ Gasoline		Fig 10.4		Δ		Ra	tio	
Total				10	0%			

Notes:

- Y-axis of Fig 10.4 is C5+ gasoline yield
- Typically use the Watson K Factor of feed in Fig 10.4.

Gasoline Yield vs. Reformate Octane

Notes:

- Y-axis is C5+ gasoline yield
- Typically use the Watson K Factor of feed in Fig 10.4.

FIGURE 10.4 Catalytic reforming yield correlations.

Light Ends Production

FIGURE 10.5 Catalytic reforming yield correlations.

Notes:

• Typical C4 Split: iC4=41.5%, nC4 = 58.5%

FIGURE 10.7 Catalytic reforming yield correlations.

Updated: July 5, 2017 Copyright © 2017 John Jechura (jjechura@mines.edu)

Product Yields from Reformer

Operation Info: Target RON:

98.0

		Rates Yields on Oil Feed							Star	Watson		
Fraction	bbl/day	lb/day	mol/day	scf/day		vol%	wt%		°API	SpGr	lb/gal	K Factor
Feed	30,000	8,113,733							51.7	0.7724	6.439	11
H2S												
H2												
C1 + C2												
C3									147.6	0.5070	4.227	
Iso-butane (IC4)									119.9	0.5629	4.693	
n-butane (NC4)									110.8	0.5840	4.869	
C5+												
Total	0	0										

Uncorrected Yields	bbl/day	lb/day	mol/day	scf/day		vol%	wt%
Sulfur		8,114	253				
H2 (uncorrected)							
C4 (Total)					1		

Initialize calculations with specific data for the feedstock & characteristic properties for pure chemical species

Updated: July 5, 2017

Copyright © 2017 John Jechura (jjechura@mines.edu)

Sulfur wt%

Product Yields from Reformer 98.0 Operation Info: Target RON: Reproduction of Figure 10.4 Yields on Oil Fe Rates Lines are for Watson K Factor of Feed Fraction bbl/day lb/day mol/day scf/day vol% 90.0 Feed 30,000 8,113,733 H2S 86.0 H2 84.0 82.0 C1 + C2C3 Iso-butane (IC4) 11.7 n-butane (NC4) Feedstock Watson K = 11.8 \$ 80.0 24,265 80.88 -11.9 24.265 12.1 Uncorrected Yields bbl/day lb/day mol/day scf/day vol% Sulfur 8,114 253 H2 (uncorrected) C4 (Total) Reformate RON Clear

Determine the yield of reformate using Figure 10.4. Interpolate using feed's Watson K factor. Calculate actual volume.

Updated: July 5, 2017

Product Yields from Reformer 98.0 Operation Info: Target RON: Reproduction of Figure 10.5 Rates Yields on Oil Fe Total C4 Yield (iC4 = 41.5% & nC4 = 58.5%) Fraction bbl/day lb/day mol/day scf/day vol% Feed 30,000 8,113,733 H2S H2 C1 + C2% Total C4 6.0 C3 Iso-butane (IC4) n-butane (NC4) C5+ 24,265 80.88 Total 24,265 0 Uncorrected Yields bbl/day lb/day mol/day scf/day vol% Sulfur 8,114 253 H2 (uncorrected) C4 (Total) 2,002 6.67 Volume % C5+ Gasoline

Calculate total yield C_4 s using Figure 10.5.

Updated: July 5, 2017

Product Yields from Reformer 98.0 Operation Info: Target RON: Rates **Yields on Oil Feed** Standard Densities Watson Sulfur Fraction bbl/day lb/day mol/day scf/day vol% wt% °API SpGr lb/gal K Factor wt% Feed 30,000 8,113,733 0.7724 6.439 H2S H2 C1 + C2147.6 0.5070 4.227 Iso-butane (IC4) 831 163,755 2.77 119.9 0.5629 4.693 3.90 n-butane (NC4) 1.171 239,488 110.8 0.5840 4.869 24,265 80.88 Total 26,267 403,244 Uncorrected Yields bbl/day mol/day lb/day scf/day vol% wt% Sulfur 8,114 253 H2 (uncorrected) 6.67 C4 (Total) 2,002 Split the C₄s using the iC₄/nC₄ ratio of 41.5/58.5. Calculate mass rates.

Updated: July 5, 2017

Product Yields from Reformer 98.0 Operation Info: Target RON: **Yields on Oil Feed** Rates Standard Densities Watson Sulfur Fraction bbl/day lb/day mol/day scf/day vol% °API SpGr lb/gal K Factor wt% Feed 30,000 8,113,733 0.7724 6.439 H2S C1 + C2199,660 2.46 C3 265,569 3.27 147.6 0.5070 4.227 Iso-butane (IC4) 163,755 119.9 0.5629 4.693 3.90 110.8 0.5840 4.869 Reproduction of Figure 10.6 80.88 5.0 4.5 vol% wt% 4.0 3.5 6.67 **8** 3.0 2.5 Determine the amounts of gases ₹ 2.0 & C₃ using Figure 10.6. Calculate 1.5 **C3** 1.0 C₃ volumes using standard liquid C1 + C2density. 78 79 81 Volume % C5+ Gasoline

Updated: July 5, 2017 Copyright © 2017 John Jechura (jjechura@mines.edu)

Determine the uncorrected amount of H₂ from Figure 10.7

Updated: July 5, 2017

Product Yields from Reformer 98.0 Operation Info: Target RON: Rates **Yields on Oil Feed** Standard Densities Watson Sulfur Fraction bbl/day lb/day mol/day scf/day vol% wt% °API SpGr lb/gal K Factor wt% 8,113,733 0.7724 6.439 Feed 96,028 H2S 8,625 253 252,887 125,192 47,508,524 199,660 2.46 1,496 265,569 3.27 147.6 0.5070 4.227 Iso-butane (IC4) 831 163,755 2.77 119.9 0.5629 4.693 n-butane (NC4) 3.90 1,171 239,488 110.8 0.5840 4.869 24,265 80.88 C5+ 27,763 Total 1,129,984 Uncorrected Yields bbl/day lb/day mol/day scf/day vol% wt% Sulfur 8,114 253 H2 (uncorrected) 253,398 125,445 47,604,552 3.12 C4 (Total) 2,002 6.67 Reduce the amount of H₂ to

Updated: July 5, 2017

Copyright © 2017 John Jechura (jjechura@mines.edu)

accommodate sulfur as H₂S

Product Yields from Reformer

Operation Info:

Target RON:

98.0

		Ra	tes			Yields on	Oil Feed		Star	ndard Densi	ties		Watson	Sulfur
Fraction	bbl/day	lb/day	mol/day	scf/day		vol%	wt%		°API	SpGr	lb/gal		K Factor	wt%
Feed	30,000	8,113,733							51.7	0.7724	6.439		11.8	(
H2S		8,625	253	96,028										
H2		252,887	125,192	47,508,524										
C1 + C2		199,660					2.46							
C3	1,496	265,569					3.27		147.6	0.5070	4.227			
Iso-butane (IC4)	831	163,755				2.77			119.9	0.5629	4.693			
n-butane (NC4)	1,171	239,488			• •	3.90		• • •	110.8	0.5840	4.869	13		
C5+	24,265	6,983,748				80.88			40.7	0.8219	6.853	i		
Total	27,763	8,113,733						••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	•••		

Uncorrected Yields	bbl/day	lb/day	mol/day	scf/day	vol%	wt%
Sulfur		8,114	253			
H2 (uncorrected)		253,398	125,445	47,604,552		3.12
C4 (Total)	2,002				6.67	

Determine mass amount reformate from difference.
Calculate density from rates.

Updated: July 5, 2017

Product Yields from Reformer

Operation Info:

Target RON:

98.0

		Rat	tes		Yields on Oil Feed		Star	ndard Densi	ties	Watson	Sulfur
Fraction	bbl/day	lb/day	mol/day	scf/day	vol%	wt%	°API	SpGr	lb/gal	K Factor	wt%
Feed	30,000	8,113,733					51.7	0.7724	6.439	11.8	0.1
H2S		8,625	253	96,028							
H2		252,887	125,192	47,508,524							
C1 + C2		199,660				2.46					
C3	1,496	265,569				3.27	147.6	0.5070	4.227		
Iso-butane (IC4)	831	163,755			2.77		119.9	0.5629	4.693		
n-butane (NC4)	1,171	239,488			3.90		110.8	0.5840	4.869		
C5+	24,265	6,983,748			80.88		40.7	0.8219	6.853		
Total	27,763	8,113,733									

Uncorrected Yields	bbl/day	lb/day	mol/day	scf/day	vol%	wt%
Sulfur		8,114	253			
H2 (uncorrected)		253,398	125,445	47,604,552		3.12
C4 (Total)	2,002	·	·	·	6.67	·

Updated: July 5, 2017

