MAT-206: Sesión 10, Propiedades asintóticas

Felipe Osorio

fosorios.mat.utfsm.cl

Departamento de Matemática, UTFSM

Definición 1 (Consistencia débil):

Una secuencia de estimadores $\{T_n\}$ para el parámetro $\gamma=g(\theta)$ es débilmente consistente, si T_n converge en probabilidad a γ , esto es, si para cualquier $\epsilon>0$ y para todo $\theta\in\Theta$,

$$\lim_{n \to \infty} \mathsf{P}_{\theta}(|T_n - g(\theta)| > \epsilon) = 0,$$

y escribimos $T_n \stackrel{\mathsf{P}}{\to} \gamma$.

Definición 2 (Consistencia fuerte):

Se dice que $\{T_n\}$ converge con probabilidad 1 o casi seguramente (a.s.) a γ , para todo $\theta \in \Theta$, esto es,

$$P_{\theta}\left(\lim_{n\to\infty}T_n=g(\theta)\right)=1,$$

es decir T_n es consistente fuerte, en cuyo caso anotamos $T_n \stackrel{\text{a.s.}}{\to} \gamma$.

Resultado 1 (Teorema del mapeo continuo):

Sea $\{S_n\}$ una secuencia de variables aleatorias, S_0 una variable aletoria y h una función continua.

i) Si $S_n \stackrel{\mathsf{P}}{\to} S_0$, entonces

$$h(S_n) \stackrel{\mathsf{P}}{\to} h(S_0).$$

ii) Si $S_n \stackrel{\text{a.s.}}{\to} S_0$, entonces

$$h(S_n) \stackrel{\mathsf{a.s.}}{\to} h(S_0).$$

Demostración:

Una prueba puede ser hallada en Gut (2005).1

¹Probability: A Graduate Course. Springer, New York.

Una herramienta importante para la verificación de consistencia es la desigualdad de Chebyshev. Para una variable aleatoria ${\cal Z}$ con media finita, tenemos

$$P(|Z - E(Z)| > \tau) \le \frac{var(Z)}{\tau^2}.$$

Ejemplo:

Sea $\{X_n\}$ una secuencia de variables aleatorias IID con función de distribución F. Entonces se tiene:

▶ La media aritmética converge a $\mathsf{E}_F(X) = \mu$, es decir, $\overline{X}_n \overset{\mathsf{P}}{\to} \mu$. En efecto, usando la desigualdad de Chebyshev y asumiendo $\sigma < \infty$, tenemos

$$\mathsf{P}(|\overline{X}_n - \mu| > \epsilon) \le \frac{\mathsf{var}(\overline{X}_n)}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2} \to 0,$$

para $n \to \infty$.

Ejemplo:

 \blacktriangleright La varianza empírica y la desviación estándar convergen a ${\rm var}_F(X)=\sigma^2$ y σ , respectivamente:

$$S_n^2 \xrightarrow{\mathsf{P}} \sigma^2, \qquad S_n \xrightarrow{\mathsf{P}} \sigma.$$

▶ La frecuencia relativa de un evento A converge a su probabilidad. Sea

$$Q_n(A) = \frac{1}{n} \sum_{i=1}^n I(X_i \in A),$$

donde $I(\cdot)$ denota la función indicadora. Entonces $Q_n(A) \stackrel{\mathsf{P}}{\to} \mathsf{P}(A)$.

ightharpoonup Si el j-ésimo momento $\mu_j = \mathsf{E}_F(X^j)$ existe, entonces los momentos empíricos

$$m_j = \frac{1}{n} \sum_{i=1}^n X_i^j,$$

son consistentes. Es decir, $m_j \stackrel{\mathrm{P}}{\to} \mu_j$. De ahí que, el estimador de momentos para $\gamma = h(\mu_1, \dots, \mu_r)$ es un estimador consistente (para h contínua).

Definición 3 (Convergencia en distribución):

Sea $\{X_n\}$ una secuencia de variables aleatorias y sea X otra variable aleatoria. Además, considere F_n la CDF de X_n y F la CDF de X. Se dice que X_n converge en distribución a X, en cuyo caso escribimos $X_n \overset{\mathsf{D}}{\to} X$ si

$$\lim_{n \to \infty} F_n(t) = F(t),$$

para todo t donde F es continua.

Resultado 2:

Sea $\{Z_n\}$ una secuencia de variables aleatorias y sea $M_n(t)$ la MGF de Z_n . Sea Z una variable aleatoria con MGF dada por M(t). Si

$$M_n(t) \to M(t)$$
, para todo $|t| < h, h > 0$.

Entonces, $Z_n \stackrel{\mathsf{D}}{\to} Z$.

Resultado 3 (Teorema de Slutsky):

Considere dos secuencias de variables aleatorias $\{X_n\}$, $\{Y_n\}$, una variable aleatoria X y una constante fija c. Suponga que $X_n \overset{\mathsf{D}}{\to} X$, y $Y_n \overset{\mathsf{P}}{\to} c$. Entonces:

- i) $X_n \pm Y_n \stackrel{\mathsf{D}}{\to} X \pm c$.
- ii) $X_n Y_n \stackrel{\mathsf{D}}{\to} cX$.
- iii) $X_n Y_n^{-1} \stackrel{\mathrm{D}}{\to} c^{-1} X$ siempre que $\mathrm{P}(Y_n = 0) = 0$ para todo n y $c \neq 0$.

Definición 4 (Normalidad asintótica):

Una secuencia de estimadores $\{T_n\}$ para el parámetro m-dimensional $\gamma=g(\theta)$ es asintóticamente normal si para todo $\theta\in\Theta$ la distribución de $\sqrt{n}(T_n-g(\theta))$ converge a una distribución normal con media cero y matriz de covarianza $\Sigma(\theta)$. Es decir,

$$\sqrt{n}(\boldsymbol{T}_n - \boldsymbol{g}(\boldsymbol{\theta})) \stackrel{\mathsf{D}}{\to} \mathsf{N}_m(\boldsymbol{0}, \boldsymbol{\Sigma}(\boldsymbol{\theta})).$$

Observación:

Un estimador es asintóticamente eficiente si este es asintóticamente normal, con

$$\boldsymbol{\Sigma}(\boldsymbol{\theta}) = \Big(\frac{\partial \boldsymbol{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}^{\top}}\Big) \boldsymbol{\mathcal{F}}^{-1}(\boldsymbol{\theta}) \Big(\frac{\partial \boldsymbol{g}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}^{\top}}\Big)^{\top},$$

donde $\mathcal{F}(\theta)$ es la matriz de información de la distribución subyacente.

Resultado 4 (Método Delta):

Suponga T_n un estimador de la forma $T_n = h(S_n)$ donde la secuencia $\{S_n\}$ es asintóticamente normal, esto es,

$$\sqrt{n}(\boldsymbol{S}_n - \boldsymbol{\mu}) \stackrel{\mathsf{D}}{\to} \mathsf{N}(\boldsymbol{0}, \boldsymbol{\Sigma}),$$

para $\mu \in \mathbb{R}^k$ y $\Sigma > 0$. Si $\partial h(\mu)/\partial \mu^ op$ es matriz de rango completo, entonces

$$\sqrt{n}(\boldsymbol{T}_n - \boldsymbol{h}(\boldsymbol{\mu})) \overset{\mathrm{D}}{\to} \mathsf{N}\Big(\boldsymbol{0}, \Big(\frac{\partial \boldsymbol{h}(\boldsymbol{\mu})}{\partial \boldsymbol{\mu}^\top}\Big) \boldsymbol{\Sigma} \, \Big(\frac{\partial \boldsymbol{h}(\boldsymbol{\mu})}{\partial \boldsymbol{\mu}^\top}\Big)^\top \Big).$$

Ejemplo:

Sean X_1,\ldots,X_n variables aleatorias IID con $\mathrm{E}(X_i)=\mu\neq 0$ y $\mathrm{var}(X_i)=\sigma^2<\infty$. El parámetro $\gamma=\log\mu$ es estimado por $\widehat{\gamma}_n=\log\overline{X}_n$. Este estimador es consistente y asintóticamente normal. En efecto,

$$\sqrt{n}(\overline{X}_n - \mu) \stackrel{\mathsf{D}}{\to} \mathsf{N}(0, \sigma^2).$$

Como $h(s) = \log s$ y h'(s) = 1/s, sigue que

$$\sqrt{n}(\log \overline{X}_n - \log \mu) \stackrel{\mathsf{D}}{\to} \mathsf{N}\Big(0, \frac{\sigma^2}{\mu^2}\Big).$$

Considere una secuencia de estimadores $\{\widehat{\pmb{\theta}}_n\}$ que converge en probabilidad a $\pmb{\theta}_0$ perteneciendo al interior de Θ , y suponga que

Supuesto A5:

La matriz

$$\boldsymbol{\mathcal{F}}_1(\boldsymbol{\theta}_0) = \mathsf{E}_{\boldsymbol{\theta}_0} \, \Big\{ - \frac{\partial^2 \log f(\boldsymbol{y}_1; \boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^\top} \Big\},$$

existe y es no singular.

Resultado 5 (Distribución asintótica del MLE):

Bajo las condiciones A1-A5 una secuencia de máximos locales de $\ell_n(\pmb{\theta})$ tiene distribución asintótica

$$\sqrt{n}(\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0) \overset{\mathsf{D}}{\to} \mathsf{N}_k(\mathbf{0}, \boldsymbol{\mathcal{F}}_1^{-1}(\boldsymbol{\theta}_0)).$$

Demostración:

Note que la secuencia $\{\widehat{\boldsymbol{\theta}}_n\}$ satisface las ecuaciones de verosimilitud, $\partial \ell_n(\boldsymbol{\theta})/\partial \boldsymbol{\theta} = \mathbf{0}$. Usando una expansión de Taylor del vector score en torno de $\boldsymbol{\theta} = \boldsymbol{\theta}_0$, resulta²

$$\frac{\partial \ell_n(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \frac{\partial \ell_n(\boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta}} + \frac{\partial^2 \ell_n(\boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^\top} (\boldsymbol{\theta} - \boldsymbol{\theta}_0) + o_{\mathsf{P}}(\mathbf{1}),$$

haciendo $oldsymbol{ heta} = \widehat{oldsymbol{ heta}}_n$, sigue que

$$\mathbf{0} = \frac{\partial \ell_n(\boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta}} + \frac{\partial^2 \ell_n(\boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^\top} (\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0) + o_{\mathsf{P}}(\mathbf{1}),$$

es decir

$$-\frac{\partial^2 \ell_n(\boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^\top} (\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0) = \frac{\partial \ell_n(\boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta}} + o_{\mathsf{P}}(\mathbf{1}).$$

²Si $Z_n \stackrel{\mathsf{P}}{\to} 0$ entonces anotamos $Z_n = o_{\mathsf{P}}(1)$.

Evidentemente,

$$\left(-\frac{1}{n}\frac{\partial^2 \ell_n(\boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^\top}\right) \sqrt{n} (\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0) = \frac{1}{\sqrt{n}} \frac{\partial \ell_n(\boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta}} + o_{\mathsf{P}}(\mathbf{1}).$$

Por otro lado, tenemos que

$$-\frac{1}{n}\frac{\partial^2 \ell_n(\boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^\top} = \frac{1}{n}\sum_{i=1}^n -\frac{\partial^2 \log f(\boldsymbol{Y}_i;\boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^\top}$$

converge casi seguramente a

$$\boldsymbol{\mathcal{F}}_1(\boldsymbol{\theta}_0) = \mathsf{E}_{\boldsymbol{\theta}_0} \, \Big(- \frac{\partial^2 \log f(\boldsymbol{Y}_i; \boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^\top} \Big),$$

debido a la ley fuerte de los grandes números. Lo anterior lleva a,

$$\boldsymbol{\mathcal{F}}_1(\boldsymbol{\theta}_0)\sqrt{n}(\widehat{\boldsymbol{\theta}}_n-\boldsymbol{\theta}_0) = \frac{1}{\sqrt{n}}\frac{\partial \ell_n(\boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta}} + o_{\mathsf{P}}(\mathbf{1}),$$

Note también que,

$$\begin{split} \frac{1}{\sqrt{n}} \frac{\partial \ell_n(\boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta}} &= \frac{1}{\sqrt{n}} \sum_{i=1}^n \frac{\partial \log f(\boldsymbol{Y}_i; \boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta}} \\ &= \frac{1}{\sqrt{n}} \sum_{i=1}^n \Big\{ \frac{\partial \log f(\boldsymbol{Y}_i; \boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta}} - \mathsf{E}_{\boldsymbol{\theta}_0} \left(\frac{\partial \log f(\boldsymbol{Y}_i; \boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta}} \right) \Big\}, \end{split}$$

converge en distribución a

$$\mathsf{N}_k(\mathbf{0},\mathsf{Cov}_{\theta_0}(\boldsymbol{U}_i(\boldsymbol{\theta}_0))) \overset{\mathsf{d}}{=} \mathsf{N}_k(\mathbf{0},\boldsymbol{\mathcal{F}}_1(\boldsymbol{\theta}_0)).$$

Premultiplicando por ${\cal F}_1^{-1}({m{ heta}}_0)$ sigue que

$$\sqrt{n}(\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}_0) = \frac{1}{\sqrt{n}} \boldsymbol{\mathcal{F}}_1^{-1}(\boldsymbol{\theta}_0) \boldsymbol{U}_n(\boldsymbol{\theta}_0) + o_{\mathsf{P}}(\mathbf{1}).$$

Usando que

$$\frac{1}{\sqrt{n}} \boldsymbol{\mathcal{F}}_1^{-1}(\boldsymbol{\theta}_0) \boldsymbol{U}_n(\boldsymbol{\theta}_0) \overset{\mathsf{D}}{\to} \mathsf{N}_k(\boldsymbol{0}, \boldsymbol{\mathcal{F}}_1^{-1}(\boldsymbol{\theta}_0) \boldsymbol{\mathcal{F}}_1(\boldsymbol{\theta}_0) \boldsymbol{\mathcal{F}}_1^{-1}(\boldsymbol{\theta}_0)),$$

sigue el resultado deseado.

Observación:

Bajo condiciones apropiadas el MLE es consistente, asintóticamente normal y eficiente (BUE). Además, este resultado permite el desarrollo de intervalos de confianza y test de hipótesis asintóticos.

