Math 362: Mathematical Statistics II

Le Chen

le.chen@emory.edu chenle02@gmail.com

> Emory University Atlanta, GA

Last updated on Spring 2021 Last compiled on January 15, 2023

2021 Spring

Creative Commons License (CC By-NC-SA)

Chapter 6. Hypothesis Testing

- § 6.1 Introduction
- § 6.2 The Decision Rule
- § 6.3 Testing Binomial Data $H_0: p = p_0$
- § 6.4 Type I and Type II Errors
- § 6.5 A Notion of Optimality: The Generalized Likelihood Ratio

Chapter 6. Hypothesis Testing

§ 6.1 Introduction

§ 6.2 The Decision Rule

§ 6.3 Testing Binomial Data – $H_0: p = p_0$

§ 6.4 Type I and Type II Errors

§ 6.5 A Notion of Optimality: The Generalized Likelihood Ratic

Go over the example first....

Suppose our friend Jory claims that he has some magic power to predict the side of a randomly tossed fair-coin.

Jory claims that he could do more than 1/2 of the time on average.

Let's test Jory to see if we believe his claim.

We made Jory guess a repeatedly tossed coin for 100 times.

He guesses correctly 54 times.

Question:

Does this provide strong evidence that Jory has the proclaimed magic power?

If Jory is guessing randomly, the number of correct guesses would follow a binomial distribution with parameters n=100 and p=1/2.

What is probability that Jory gets 54 or more correct when guessing randomly?

$$\mathbb{P}\left(X \geq 54\right) = \sum_{n=54}^{100} \binom{100}{n} \left(\frac{1}{2}\right)^n \left(\frac{1}{2}\right)^{100-n} = \mathbf{0.2421}.$$

It is not unlikely to get this many correct guesses due to chance.

Conclusion:

There is No strong evidence that Jory has better than a 1/2 chance of correctly guessing the coin.

What is probability that Jory gets 60 or more correct when guessing randomly?

$$\mathbb{P}(X \ge 60) = \sum_{n=60}^{100} {100 \choose n} \left(\frac{1}{2}\right)^n \left(\frac{1}{2}\right)^{100-n} = 0.0284.$$

Either

Jory is purely guessing with probability of success of $\frac{1}{2}$, and we witnessed a very unusual event due to chance.

Or

Jory is truly having the magic power to guess the coin.

Conclusion:

We have strong evidence against Red Hypothesis

Or the test is in favor of Green Hypothesis

Before testing Jory, could you set up a threshold above which we will believe Jory's super power?

Find smallest m such that

We have just informally conducted a hypothesis test with the null hypothesis

$$H_0: p=rac{1}{2}$$

against the alternative hypothesis

$$H_1: p > \frac{1}{2}$$

under the significance level $\alpha=0.05$ which is equivalent to either

producing the critical region $m \ge 59$

or

comparing with the p-value.

► Test statistic: Any function of the observed data whose numerical value dictates whether *H*₀ is accepted or rejected.

- ► Critical region *C*: The set of values for the test statistic that result in the null hypothesis being rejected.
 - Critical value: The particular point in ${\cal C}$ that separates the rejection region from the acceptance region.

Level of significance α : The probability that the test statistic lies in the critical region C under H_0 .

Test Normal mean $H_0: \mu = \mu_0 \ (\sigma \ \text{known})$

Setup:

- Let Y₁ = y₁, · · · , Y_n = y_n be a random sample of size n from N(μ, σ²) with σ known.
- 2. Set $\bar{y} = \frac{1}{n}(y_1 + \dots + y_n)$ and $z = \frac{\bar{y} \mu_0}{\sigma/\sqrt{n}}$.
- 3. The level of significance is α .

Test:

$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu > \mu_0 \end{cases} \qquad \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu < \mu_0 \end{cases} \qquad \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0 \end{cases}$$
 reject H_0 if $z \geq z_\alpha$. reject H_0 if $z \leq -z_\alpha$.

- ► Simple hypothesis: Any hypothesis which specifies the population distribution completely.
- Composite hypothesis: Any hypothesis which does not specify the population distribution completely.

Conv. We always assume H_0 is simple and H_1 is composite.

Definition. The P-value associated with an observed test statistic is the probability of getting a value for that test statistic as extreme as or more extreme than what was actually observed (relative to H_1) given that H_0 is true.

Note: Test statistics that yield small P-values should be interpreted as evidence against H_0 .

E.g. Suppose that test statistic z = 0.60. Find P-value for

$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu > \mu_0 \end{cases} \qquad \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu < \mu_0 \end{cases} \qquad \begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0 \end{cases}$$

$$\mathbb{P}(|Z| \ge 0.60)$$

$$= 2 \times 0.2743$$

$$= 0.5486.$$