Undergraduate Complexity Theory Lecture 10: Reductions

Marcythm

July 13, 2022

1 Lecture Notes

Theorem 1.1. If $SAT \in P$, then $4COL \in P$.

idea: given M_{SAT} solving SAT in poly-time, can build algo M_{4COL} solving $\mathsf{4COL}$ in poly-time, using M_{SAT} as a subroutine. The whole idea is denoted as $\mathsf{4COL} \leq^P \mathsf{SAT}$, which means $\mathsf{4COL}$ is at most polynomial slower than SAT .

Definition 1.2. Let A, B be languages, A has a poly-time **mapping reduction** to B, written $A \leq_m^P B$, if exists poly-time algo $R: \{0,1\}^* \to \{0,1\}^*$, s.t. $\forall x: x \in A \iff R(x) \in B$.

Theorem 1.3. If $A \leq_m^P B$, $B \in P$, then $A \in P$.

Proof. Given poly-time M_B for B, reduction R, $M_B(R(x))$ decides $x \in A$ in poly(|x|) time.

Theorem 1.4. \leq_m^P is transitive: if $A \leq_m^P B, B \leq_m^P C$, then $A \leq_m^P C$.

Definition 1.5. 4CHROMA = $\{\langle G \rangle : G$'s chromatic number is $4\}$.

Claim 1.6. 4CHROMA \leq_T^P SAT, where T stands for Turing, can use the subroutine many times.

Remark 1.7. Here can not use $\phi = \phi_4 \wedge \neg \phi_3$, since $\neg \phi_3$ is satisfiable can not imply ϕ_3 is not satisfiable.

Theorem 1.8. If $A \leq_T^P B$, $B \in P$, then $A \in P$.

Theorem 1.9. If $A \leq_m^P B$, $B \in NP$, then $A \in NP$.

Remark 1.10. This theorem seemingly false for \leq_T^P .

Theorem 1.11. CIRCUIT-SAT \leq_m^P FORMULA-SAT.

Theorem 1.12. CIRCUIT-SAT \leq_m^P 3-SAT.

upcoming: Cook-Levin Theorem

Theorem 1.13 (Cook-Levin Theorem). $\forall L \in \mathsf{NP} : L \leq_m^P \mathsf{CIRCUIT}\text{-}\mathsf{SAT}.$

2 Reading

2.1 Sipser 7.4 (NP-completeness)

- 1. poly-time reductions (mapping reduction)
- 2. Definition of NP-complete