12th JAN

- 1. Sin(z) approximation (optional)
- 2. Worksheet question I
- 3. Worksheet question 2
- 1. Given an arbitrary function f(x), there are many ways to approximate it with simpler functions. One such method is to approximate f by polynomials at a point $x = x_0$

The polynomial $a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$ is the 11st order approximation of f at x_0 if its first g derivatives all agree with f at x_0 .

An "approximation" is "something similar to f".

Here we use "has the same derivatives" to

mean "smilar". Other metrics can be used to!

Given a function f, one can show that if $p(x) = f(x_0) + f'(x_0)(x-x_0)$, then p(x) is the line tangent to f at x_0 . In fact, p is the list order approximation to f, because $p(x_0) = f(x_0)$ and $p'(x_0) = f'(x_0)$.

More generally, $p(x) = f(x_0) + f'(x_0)(x - x_0)$ $+ f''(x_0) \frac{(x - x_0)^2}{2} + \cdots + f^{(n)}(x_0) \frac{(x - x_0)^n}{n!}$ is the <u>nth order</u> approximation to f.

What are the various approximations of sin(x), at x = 0? 1st order approximation of sin(x) at x = 0 is P(x) = sin(0) + sin'(0) xThis is why "sin(x) is approximately x" for x near 0. 2 nd order approximation? Also p(S') = x!

This means the "error" between p(x) = x and sin(x) is at worst cubic. This is confirmed by calculating the 3rd order approximation. $\rho(x) = \sin(0)x + \sin'(x)x + \sin''(x)x^{2} + \frac{\sin''(x)x^{3}}{2}$ $= \gamma c - \frac{\gamma c^3}{c}$ 2. What is the Limit $\lim_{x\to\infty} \frac{(2x-3)^{21}(3x-2)^{19}}{(2x-1)^{40}}$ Idea behaviour of a polynomial (as x > 00) is determined by the highest order term, so the limit should be $\lim_{x \to \infty} \frac{(2x)^{21} (3x)^{19}}{(2x)^{40}} = \lim_{x \to \infty} \frac{2^{21} 3^{19} x^{40}}{2^{40} x^{40}} = \frac{3^{19}}{2^{19}}.$

This is indeed the rase! Start by expanding the fraction: $\frac{(2x-3)^{21}(3x-2)^{19}}{(2x-1)^{40}} = \frac{\alpha_{40}x^{40} + \alpha_{39}x^{39} + \dots + \alpha_{1}x + \alpha_{0}}{b_{40}x^{40} + b_{39}x^{39} + \dots + b_{1}x + b_{0}}$ Det we know they exist! Became numerter and denominator are polynomrals. $= \frac{\alpha_{40} \chi^{40}}{b_{40} \chi^{40} + \cdots + b_{1} \chi^{+} b_{0}} + \frac{\alpha_{39} \chi^{39}}{b_{40} \chi^{40} + \cdots + b_{6}} + \frac{\alpha_{0}}{b_{40} \chi^{40} + \cdots + b_{0}}$ After expanding our expression, we find that the last 40 terms all go to zero as $x \to \infty$. This is because the numerator has a loner power of x than the denominator. For the first term, $\frac{a_{40} x^{40}}{b_{40} x^{40}} = \frac{a_{40}}{b_{40} x^{40}} = \frac{b_{1} + b_{2}}{x^{40} + b_{3} x^{40} + b_{3} x^{40}} = \frac{b_{1} + b_{2}}{x^{40} + b_{3} x^{40} + b_{4} x^{40}}$ by dividing all terms by x40. 000 Mist of the new terms go to 0 again! This leaves $\lim_{x\to\infty} \frac{(2x-3)^{2!}(3x-2)^{19}}{(2x-1)^{40}} = \frac{0.40}{b_{46}} = \frac{2^{21}3^{19}}{2^{40}}.$

Q1 continued. Parts 4 and 5: At $x = \frac{1}{2}$, $(2x-3)^{21}(3x-2)^{19}$ $(2x-1)^{37}$ Is undefined because $(2x-1)^{37} = 0$. On the other hand, $(2x-3)^{21}(3x-2)^{19}$ is a finite number. This means lim $(2x-3)^{1/2}(3x-2)^{1/2}$ $x \to \frac{1}{2}$ $(2x-1)^{3/7}$ could be ∞ , $-\infty$, or undefined. We figure this out with signs. If x is slightly larger than $\frac{1}{2}$, then the faction gives a positive value, so lum $(2x-3)^{21}(3x-2)^{19} = \infty$. If x is slightly less than $\frac{1}{2}$, then the numerator is the but the denominator is -ve, so the whole expression is -ve. This gives $\lim_{X \to \frac{1}{2}} \frac{(2x-3)^{21}(3x-2)^{19}}{(2x-1)^{37}} = -\infty.$ Overall $\lim_{x \to \frac{1}{2}^{+}} \neq \lim_{x \to \frac{1}{2}^{+}} so the limit of$ $\frac{(2x-3)^{21}(3x-2)^{19}}{(2x-1)^{37}} \text{ as } x \to \frac{1}{2} \quad 1 \quad \text{underwed}.$

Q2. L'Hopital's rule things. * Can be applied exactly when both numerator and denominator are O, or e.g. for the 4th one: $\lim_{x\to 0} \frac{\log(\cos(2x))}{\log(\cos(3x))} \left(\frac{2\sin(2x)}{\cos(2x)}\right) \left(\frac{3\sin(3x)}{\cos(2x)}\right)$ 2 511/2x) (05/3x) 3 Sin (3x) (05 (2x) $\frac{\text{Bod}}{\cos(2x)} \sim 1$ $514 (2x) \sim 2x$ SIn (3x)~ 3x Therefore lim log cos(2x)
x>0 log cos(3x) = l_{1} l_{2} l_{3} $l_$ 3 Sin (3x) (05 (2)x) lu 2·2x-1 3·3x·1