

РЕКОМЕНДАТЕЛЬНЫЕ СИСТЕМЫ НА ПРАКТИКЕ

СЕЛЕЗНЕВ АРТЕМ

мы остановились....

СОВМЕСТНАЯ ФИЛЬТРАЦИЯ

UID	43	11	7
1	3	-	1
2	-	4	-
3	-	-	1

Вычисляем сходство между пользователем (UID1) и остальным

1
1
0
0.5

Сортируем по результату

Топ N (количество) Кластеризация Установить пороговое значение (качество)

R = среднее по Топ N

Выбираем диапазон ближайших, Вычисляем прогноз оценки

Моя прошла команда рассказывала мне про матрасные факторизации для рекомендаций. Что это за матрасы?

Матричная факторизация....

$$100 = 2 \times 2 \times 5 \times 5$$

Факторизация – декомпозиция (разделение) объекта

UID	43	11	7	99	3
1	3	-	1	-	-
2	5	3	-	2	2
3	3	5	3	_	1
4	-	4		-	_
5	-	-	1	-	4

R – матрица рейтингов						}	U – признаки пользователя		Sigm - веса		V признаки элементов			
UID	43	11	7	99	3	-								
1	3	-	1	-	-		u11 U12			-				
2	5	3	-	2	2	_	u21 u22 _*	<	Диагональная	*	v11 v12 v13 v14 v15			
3	3	5	3	-	1	_	u31 u32		матрица весов	•	v21 v22 v23 v24 v25			
4	-	4	-	-	-		u41 u42			-	VZ1 VZZ VZ3 VZ4 VZ3			
5	_	_	1	_	4		u51 u52							

R – матрица рейтингов				U – признаки пользователя			Sigm - веса						v признаки элементов			
UID	43	11	7	99	3	•					43	11	7	99	3	3
1	3	-	1	-	-		u11	U12		1	1	0	0	0	0)
2	5	3	-	2	2	_	u21	u22	*	2	0	3	0	0	0) * v11 v12 v13 v14 v15
3	3	5	3	-	1	_	u31	u32	·	3	0	0	5	0	0)
4	-	4	-	-	-		u41	u42		4	0	0	0	7	0	v21 v22 v23 v24 v25
5	-	-	1	-	4		u51	u52		5	0	0	0	0	9	

R – матрица рейтингов			,	Столбцы Sigm - веса				Строки							
UID	43	11	7	99	3	-				43	11	7	99	3	
1	3	-	1	-	-		u11 U12		1	1	0	0	0	0	0
2	5	3	-	2	2	_	u21 u22	*	2	0	3	0	0	0	0
3	3	5	3	_	1	_	u31 u32		3	0	0	5	0	0	* v11 v12 v13 v14 v15
4	-	4	-	-	_		u41 u42		_	0	0	0	7	0	0 v21 v22 v23 v24 v25
5	-	-	1	-	4	_	u51 u52		5	0	0	0	0	9	9_

Веса – особые значения, которые показывают вес (в информации) для всего набора данных

Так ваши матрицы можно сокращать? Т.е. считать будете быстрее теперь!

Можно сократить матрицу до размерности 2, но мы будем терять информацию....

Правило – 90% информации необходимо сохранить

UID	43	11	7	99	3
1	3	-	1	-	-
2	5	3	-	2	2
3	3	5	3	-	1
4	-	4	-	-	-
5	-	-	1	-	4

А была проблем, что пользователи без рейтингов не попадали в обучение. Что делаем теперь?

SVD позволяет добавлять новые данные...

ФАКТОРИЗАЦИЯ. НОВЫЙ ПОЛЬЗОВАТЕЛЬ

R – матрица рейтингов

ФАКТОРИЗАЦИЯ. НОВЫЙ ПОЛЬЗОВАТЕЛЬ

R6

UID	43	11	7	99	3	
1	3	-	1	-	-	
2	5	3	-	2	2	_
3	3	5	3	-	1	
4	-	4	-	-	-	
5	-	-	1	-	4	
6	-	-	1	-	-	

Sigm - веса

43 11 7 99 3 1 1 0 0 0 0 2 0 3 0 0 0 0 3 0 0 5 0 0 * 4 0 0 0 7 0 5 0 0 0 9

V признаки элементов

v11 v12 v13 v14 v15 v21 v22 v23 v24 v25

А как я объясню причины выбора алгоритма?

SVD не интуитивно понятен, это его большой минут.

Точного ответа дать нельзя.

SVD – не лучший вариант факторизации

У меня модель показывает или хорошие или очень плохие результаты!

Кажется с рейтингам что-то не то!

«Сырые рейтинги» подходят для первых экспериментов, попробуйте использовать:

- базисы, на основе глобального среднего...

КОРРЕКТИРОВКА РЕЙТИНГОВ В МАТРИЦЕ

Оценки не у всех одинаковые

UID	43	11	7	99	3
1	3	-	1	_	
2	5	3	-	2	2
3	3	5	3	-	1
4	-	1	-	5	-
5	-	-	1	-	4
				く フ	N

КОРРЕКТИРОВКА РЕЙТИНГОВ В МАТРИЦЕ

99	3	
-	_	2
2	2	3
-	1	3,2
5	-	3
-	4	2,5
3,5	2,3	
	3,5	3,5 2,3

Оценки в матрице необходимо скорректировать относительно глобального среднего

Отклонение пользователя = среднее по элементу - оценка пользователя

Оценка = среднее + отклонение пользователя + отклонение элемента

КОРРЕКТИРОВКА РЕЙТИНГОВ В МАТРИЦЕ

Почему так?

КОРРЕКТИРОВКА РЕЙТИНГОВ В МАТРИЦЕ + ВРЕМЯ

Пользователь может стать из позитивного человека в недовольного

Может у него период такой=)

Добавим время в оценку

)
UID	43	11	7	99	3	
1	3	-	1	-	-	2
2	5	3	-	2	2	3
3	3	5	3	-	1	3,2
4	-	1	-	5	-	3
5	-	-	1	-	4	2,5
	3,6	3	1,6	3,5	2,3	

Оценка (t) = среднее + отклонение пользователя (t) + отклонение элемента (t)

t – коэф. времени от 0,01 (позднее) до 1 (недавнее)

Рассмотрим на примере

ХОТИТЕ ИСПОЛЬЗОВАТЬ БОЛЬШЕ ИНФОРМАЦИИ?

Монолитные

Рекомендаторы, которые переиспользуют разные компоненты

Монолитные

Рекомендаторы, которые переиспользуют разные компоненты

Взять всё самое лучшее из доступного

Монолитные

Рекомендаторы, которые переиспользуют разные компоненты

Взять всё самое лучшее из доступного

UID	43	11	7	99	3
1	3	-	1	-	-
2	5	3	-	2	2
3	3	5	3	-	1
4	-	1	-	5	-
5	-	-	1	-	4
New	5	5	5	5	5

Добавление пользователя с оценками – укрепит связь

Смешанные

Смешать алгоритмы и получить общий скоринг

Ансамбли

Ансамбли

Ансамбли

Переключаемые

Ансамбли

Взвешенные

Ансамбли

Ансамбли

Метафункции из знаменитого соревнования Функция голосования моделей (регрессия)

Бинарная функция на основе целевой: - оценено более N/день

SVD на N факторах

Разные способы расчетов средней оценки

Набор стандартных отклонений

Журналы:
- даты оценок
- количество оценок
- корреляций

Наборы пользователей по разным параметрам и сегментам

Ансамбли

Рассмотрим на примере

Что-то стало очень сложно, можно сделать более привычными методами? Как на счет бустингов?

Рекомендации можно и бустингами

Рассмотрим GB

UID	43	11	7	99	3
1	3	-	1	-	-
2	5	3	-	2	2
3	3	5	3	-	1
4	-	1	-	5	-
5	-	-	1	-	4

UID	TARGET
1	1
2	1
3	1
4	0
5	0

UID	Фичи			
1	-	1	-	-
2	3	-	2	2
3	5	3	-	1
4	1	-	5	-
5	-	1	-	4

Рассмотрим GB

3	99	7	11	43	UID
-	-	1	-	3	1
 2	2	-	3	5	2
1	-	3	5	3	3
-	5	-	1	-	4
4	-	1	_	-	5

UID	В	C	D	TARGET
1	1	1	0	1
2	2	0	2	1
3	2	1	0	1
4	2	0	5	0
5	1	1	0	0

Решаем деревьями

UID	В	С	D	TARGET
1	1	1	0	1
2	2	0	2	1
3	2	1	0	1
4	2	0	5	0
5	1	1	0	0

Что есть целевая?

UID	В	C	D	TARGET
1	1	1	0	1
2	2	0	2	1
3	2	1	0	1
4	2	0	5	0
5	1	1	0	0

Что есть целевая?

TARGET	DIFF	
1	1 - 0.6	
1	1 - 0.6	Факт - Предик
1	1 - 0.6	
0	0 - 0.6	
0	0 - 0.6	

TARGET	DIFF	
1	1- Log(3/2)	
1	1- Log(3/2)	Log(1/0)
1	1- Log(3/2)	L0g(1/0)
0	0- Log(3/2)	
0	0- Log(3/2)	

Что есть целевая?

TARGETDIFF10.410.410.40- 0.60- 0.6

Факт - Предикт

Классификация

TARGET	DIFF	
1	0.6	
1	0.6	Log(1/0)
1	0.6	L09(1/0)
0	- 0.4	
0	- 0.4	

Что есть целевая?

 UID
 B
 C
 D
 TARGET

 1
 1
 1
 0
 1

 2
 2
 0
 2
 1

 3
 2
 1
 0
 1

 4
 2
 0
 5
 0

 5
 1
 1
 0
 0

 TARGET
 DIFF

 1
 0.4

 1
 0.4

 1
 0.4

 0
 - 0.6

 0
 - 0.6

Факт - Предикт

Классификация

Регрессия

TARGET	DIFF	_ Log(3/2)
1	0.6	
1	0.6	
1	0.6	0.4 == threshold
0	- 0.4	
0	- 0.4	

100% успех?

Learning rate

Learning rate

0.1

Learning rate

0.1

				<u> </u>	_	
UID	В	C	D	TARGET	DIFF	DIFF2
1	1	1	0	1	0.4	0.36
2	2	0	2	1	0.4	0.36
3	2	1	0	1	0.4	0.36
4	2	0	5	0	- 0.6	-0.54
5	1	1	0	0	- 0.6	-0.54

$$0.6 + (0.1 * 0.4) = 0.64$$

Предикт

UID	В	С	D	TARGET	DIFF	DIFF2
1	1	1	0	1	0.4	0.36
2	2	0	2	1	0.4	0.36
3	2	1	0	1	0.4	0.36
4	2	0	5	0	- 0.6	-0.54
5	1	1	0	0	- 0.6	-0.54

$$F(x) = F(x)t-1 + LR * = predict$$

Предикт

UID	В	C	D	TARGET	DIFF	DIFF2
1	1	1	0	1	0.4	0.36
2	2	0	2	1	0.4	0.36
3	2	1	0	1	0.4	0.36
4	2	0	5	0	- 0.6	-0.54
5	1	1	0	0	- 0.6	-0.54

UID	В	С	D	TARGET	DIFF
1	1	1	0	1	0.6
2	2	0	2	1	0.6
3	2	1	0	1	0.6
4	2	0	5	0	- 0.4
5	1	1	0	0	- 0.4

UID	В	С	D	TARGET	DIFF
1	1	1	0	1	0.6
2	2	0	2	1	0.6
3	2	1	0	1	0.6
4	2	0	5	0	- 0.4
5	1	1	0	0	- 0.4

UID	В	С	D	TARGET	DIFF
1	1	1	0	1	0.6
2	2	0	2	1	0.6
3	2	1	0	1	0.6
4	2	0	5	0	- 0.4
5	1	1	0	0	- 0.4

UID	В	С	D	TARGET	DIFF
1	1	1	0	1	0.6
2	2	0	2	1	0.6
3	2	1	0	1	0.6
4	2	0	5	0	- 0.4
5	1	1	0	0	- 0.4

UID	В	С	D	TARGET	DIFF	Gamma
1	1	1	0	1	0.6	0.83
2	2	0	2	1	0.6	0.83
3	2	1	0	1	0.6	0.83
4	2	0	5	0	- 0.4	-3.3
5	1	1	0	0	- 0.4	-3.3

UID	В	С	D	TARGET	DIFF	Gamma	Predict
1	1	1	0	1	0.6	0.83	0.483
2	2	0	2	1	0.6	0.83	0.483
3	2	1	0	1	0.6	0.83	0.483
4	2	0	5	0	- 0.4	-3.3	0,07
5	1	1	0	0	- 0.4	-3.3	0,07

ССЫЛКИ С ДОП.МАТЕРИАЛОМ

дополнительный материал