MIS 131: Information Systems Administration

Part V: IT Security

Section A: Controls

The Importance of Security

- The main purpose of computer operations is to ensure that the organization is provided with information that is
 - Accurate
 - Timely
 - Relevant
 - Reliable
 - Sufficient

The Importance of Security

- However, the achievement of those objectives are hampered by numerous threats such as
 - System failure
 - Poor system design
 - Insufficient and/or inaccurate data
 - Tampering of data (data diddling)
 - Viruses, worms, Trojan horses
 - Hackers and crackers
 - Fire, smoke, earthquake
 - Fraud (e.g. embezzlement)
 - Internal/external sabotage
- In short: "Acts of God and Acts of Man"

The Importance of Security

 Hence, IT security is essential to counter the above threats

Types of Threats

- Unintentional
 - Human errors: contribute to vast majority (about 55%) of security-related problems
 - Environmental hazards
 - Computer systems failures
- Intentional
 - Computer crimes

Unintentional Threats to Security

Intentional Threat = Computer Crime

- Computer as target of the crime
 - Example: The actual hardware may be stolen or destroyed
- Computer as medium or tool of attack
 - Example: Computer may be used to embezzle money
- Computer can be used to intimidate or deceive
 - Example: Stockbroker stole money by convincing clients of a software which will increase ROI by 60% per month

Defense Strategy and Its Objectives

- Selection of a specific defense strategy depends on objective of defense and perceived cost-benefit
- Major objectives
 - Prevention and deterrence
 - Detection
 - Limitation of damage
 - Recovery
 - Correction
 - Awareness and compliance

Controls

- Provide means of protecting IT
- Integrated during systems development
- Implemented once system is in operation
- Meant to protect all components of the system
 - Hardware
 - Software
 - Data
 - Network

The Challenge of Controls

To balance

 the need of the organization for information to assist in decision making

with

 the need to protect this information to ensure that it meet the organization's requirements

Characteristics of Good Controls

- Complete
- Effective
- Timely

Major Categories of Controls

- General controls
 - Established to protect the system regardless of the specific application
- Application controls
 - Safeguards intended to protect specific applications

Categories of General Controls

- Physical controls
 - Protection of computer facilities and resources
- Access controls
 - Restriction of unauthorized user access to a portion of a computer system or the entire system
- Data security controls
 - Protection of data from intentional or accidental disclosure or from unauthorized modification or destruction

Categories of General Controls

- Communications and network controls
 - Protection of network components due to the internet and proliferation of ecommerce
- Administrative controls
 - Deal with issuing guidelines and monitoring compliance with the guidelines

Physical Controls

- Prevention of physical damage due to natural and unnatural disasters such as
 - Earthquakes
 - Floods
 - Fire
 - Physical attack on the computer

Example of Physical Controls

- Against fire
 - Sprinkler system
 - Use of gas-based fire suppressants
- Against power outages
 - Use of uninterruptible power supply (UPS) preferably intelligent ones for servers
- Against lightning and other induced currents
 - Lightning rods
 - Surge protection for both power and network cables
 - Metal conduits for UTP cables especially those close to fluorescent lighting units and those located outside

Access Controls

- Physical access to a terminal
 - Use of coded key entry, swipe card, biometric controls
- Logical access to the system
 - Firewalls
 - Allows only authorized traffic into the network
 - Network
 - Require network log-in (log-in name and passwords)
 - Password aging password expires after some time
 - Password rotation password must be replaced a number of times before re-using
 - Log-in control account disabled after a number of consecutive unsuccessful log-ins
 - Database system log-in

Access Controls

- Access to specific system privileges
 - Based on user's ID, limit which data can be accessed
 - Limit what can be done with data read, update, delete, insert

A Two-Level Logical Access Model

Network Database User Control Control verifies user verifies user log-in identifies identify data password network that user can aging resources that access password user can rotation identify what

access

password

control

user can do

An Illustration of Access Controls

Data Security Controls

- Data security addresses the following
 - Confidentiality of data
 - Access control
 - Critical nature of data
 - Integrity of data
- Two basic principles should be reflected in data security
 - Minimal privilege
 - Ensures that only the required information is accessible to the user
 - Minimal exposure
 - Ensures that only those that require the information should obtain it

Network Controls

- Ensure that the network will continue to operate at an acceptable level
- This topic will be discussed in detail later under the Networks section of the course

Administrative Controls

- Deal with the issuance of guidelines and monitoring of their compliance
- Examples of administrative controls
 - Immediate revocation of access rights of terminated or resigned employees
 - Virus protection guidelines
 - Separation of duties divide sensitive duties among as many as economically feasible to decrease chance of intentional/unintentional damage
 - Periodic audit of information systems
 - Fostering company loyalty
 - Insurance for key employees

Other General Controls

- Programming controls
- Documentation controls
- System development controls

Programming Controls

- Aim to reduce errors in programming
- Causes include use of incorrect algorithm, carelessness, inadequate testing and configuration management, etc.
- Example of programming controls
 - Training
 - Establishing standards for testing and configuration management
 - Enforcing documentation standards

Documentation Controls

- Ensure that manuals are easy to read and understand and always up-todate
- Appropriate documentation controls include accurate writing, standardization updating, testing, etc.
- Use of CASE tools to document system

Documentation Controls

- Most common systems documents
 - System standards
 - Program specifications and actual code documentation
 - Data and database documentation
 - Operations manual
 - User's manual
 - Training manual
 - Conceptual, logical, and physical ERD

System Development Controls

- Ensure that a system is developed according to established policies and procedures
- Conformity with budget, timing, security measures, and quality as well as documentation requirements must be maintained

Application Controls

- Controls built into applications and are usually written as validation rules
- Ensure that all transactions are accurately recorded, classified, processed, and reported
- Subdivided into
 - Input controls
 - Processing controls
 - Output controls

Input Controls

- Designed to prevent data alterations or loss
- Very important because they prevent "garbage-in, garbage-out" situations
- Categories of input controls
 - Recording of transactions
 - Batching of transaction data
 - Conversion of transaction data
 - Editing of transaction data
 - Transmission of transaction data

Recording of Transactions

- Manual forms
 - Use well-structured, pre-numbered source documents
 - Provide space for necessary authorizations
 - Ensure blank forms are controlled and kept safe, preferably under lock and key
- Online forms
 - Use pre-formatted, menu-driven screens
 - Use standard readers (e.g. bar-code) to reduce input errors
 - Provide feedback mechanisms to approve transactions

Batching of Transaction Data

- Batch control totals help prevent data loss and erroneous posting of transactions
 - Amount control totals
 - Hash totals
 - Record count
- Use of batch control logs for batch number and totals

Conversion of Transaction Data

- Data conversion by keying, scanning, or copying from one source document to another
- All converted data must be verified either visually or by key verification

Editing of Transaction Data

- Use of edit tests (program validation routines) to compare incoming data with a standard
- Examples include:
 - Self-checking digit (check digit)
 - Range check
 - Limit check or reasonableness check
 - Format or data type check
 - Dependency or relationship check

Transmission of Transaction Data

- When data must be transmitted from point of origin to the processing center through data communications facilities, the following must be considered
 - Echo check
 - Sending data back to originating terminal for comparison with transmitted
 - Redundancy data check
 - Transmitting additional data to aid in verification process
 - Completeness check
 - Verifying that all required data have been entered and transmitted

Processing Controls

- Ensure that data are complete, valid, and accurate when being processed and that programs have been properly executed
- Examples of processing controls
 - Manual cross-checks
 - Processing logic checks
 - Run-to-run totals
 - File and program changes
 - Audit trail linkages

Output Controls

- Ensure that the results of computer processing are accurate, valid, complete and consistent
- Examples of output controls
 - Review of processing results
 - Controlled distribution of outputs