STOR 455 STATISTICAL METHODS I

Jan Hannig

Total Sum of Squares

- SSTO is the sum of squared deviations from this predictor, SSTO= $\Sigma(Y_i \overline{Y})^2$
 - SAS uses Corrected Total for SSTO
 - Uncorrected total: ΣY_i^2
 - "Corrected" means subtract the mean before squaring
- $df_{Total} = n-1$
- MST = SSTO/df_{Total} (sample variance)
 - MST measures the variability of Y if there are no explanatory variables

Regression Sum of Squares

- SSR = $\Sigma(\hat{Y}_i \overline{Y})^2$
- df_R = 1 (number of explanatory variable)
- SAS call it model sum of square (SSM)
- $MSR = SSR/df_R$

Error Sum of Squares

- SSE = $\Sigma (Y_i \hat{Y}_i)^2$
- $df_E = df_{Total} df_R = n-2$
- MSE = SSE/ df_E
- MSE is an estimate of the variance of residual e_i
- $MSE=s^2$

ANOVA Table

Source	df	SS	MS
Regression	1	$\Sigma (\hat{Y}_i - \overline{Y})^2$	SSR/df _R
Error	n-2	$\Sigma(Y_i - \hat{Y}_i)^2$	SSE/df _E

Total n-1 $\Sigma(Y_i - \overline{Y})^2$ SSTO/df_T

Expected Mean Squares

- MSR, MSE are random variables
- $E(MSR) = \sigma^2 + \beta_1^2 \Sigma (X_i \overline{X})^2$
- $E(MSE) = \sigma^2$
- When $H_0: \beta_1 = 0$ is true E(MSR) = E(MSE)

F test

- $F=MSR/MSE \sim F(df_R, df_E) = F(1, n-2)$
- When H_0 : β_1 =0 is false, MSR tends to be larger than MSE
- We reject H_0 when F is large $F \ge F(1-\alpha, df_R, df_E) = F(.95, 1, n-2)$
- In practice we use P values

Analysis of Variance

		Sum of	Mean			
Source	DF	Squares	Square	F	Value	Pr > F
Model	1	2599.53358	2599.533	58	45.6	7 < .0001
Error	14	796.90580	56.92184			
Corrected Total	15	3396.43938				

Root MSE 7.54466 R-Square 0.7654 Dependent Mean 83.34375 Adj R-Sq 0.7486 Coeff Var 9.05246

Parameter Estimates

Variable	DF		Standard Error t	Value 1	Pr > t	99% Confiden	ce Limits
Intercept	1	-21.79469	15.67190	-1.39	0.1860	-68.44747	24.85809
temp	1	2.35769	0.34888	6.76	<.0001	1.31913	3.39626

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1	76960	76960	???	??? ?
Error	43	3416.37702	79.45063		
Corrected Total	44	80377			

Root MSE 8.91351 R-Square 0.9575

Dependent Mean 76.26667 Adj R-Sq 0.9565

Coeff Var 11.68729

Parameter Estimates

	Par	ameter St	andard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	-0.58016	2.80394	-0.21	0.8371
X	1	15.03525	0.48309	31.12	<.0001

R² (Section 3.9)

- $R^2 = SSR/SSTO = 1 SSE/SSTO$
- 100*R² = percentage of variation in the response variable explained by the explanatory variable

Pearson Correlation

- r: the usual correlation coefficient
- A number between -1 and +1
- Measures the strength of the <u>linear</u> relationship between two variables

$$r = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum (X_i - \overline{X})^2 \sum (Y_i - \overline{Y})^2}}$$

R^2 and r^2

- We use R² when the number of explanatory variables is arbitrary (simple and multiple regression)
- r²=R² only for simple regression
- R² is often multiplied by 100 and thereby expressed as a percent

Toluca Example

- Toluca Company try to find out the relationship between lot size and labor hours needed to produce the lot
- Goal: determine the optimum lot size

Do it in SAS

```
data lot;
  infile 'CH01TA01.TXT';
  input size hours;
run;
proc print data=lot;
proc reg data=lot;
  model hours=size;
  plot hours*size;
run;
```


Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	252378	252378	105.88	<.0001
Error	23	54825	2383.71562		
Corrected Total	24	307203			

Root MSE 48.82331 R-Square ???
Dependent Mean 312.28000 Adj R-Sq 0.8138
Coeff Var 15.63447

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	l t Value	Pr > t
Intercept	1	62.36586	26.17743	2.38	0.0259
size	1	3.57020	0.34697	10.29	<.0001

Error in variables (Section 3.10)

- Sometimes the values of Y and X are observed with error (measured by some instrument – e.g., X is temperature)
 - $-Y_0=Y+\xi, X_0=X+\zeta$
 - errors assumed independent normal
- The measurement error in Y can be folded into the regression error
 - all estimators and CIs remain valid with exception of $\sigma_{\!\scriptscriptstyle Y}$ and $\,\rho_{\!\scriptscriptstyle Y|X}$
- The measurement error in X is more serious but still can be folded into the regression error for simple linear regression
 - Most estimators and CIs remain unaffected. No valid CIs exists for Y, $\mu_{Y}(x)$, σ_{Y} and $\rho_{Y|X}$
- A quantity cannot be estimated if no direct measurements are made or assumed.

Regression through the origin (Section 3.11)

- Assume that β_0 =0 (the regression line goes through [0,0]).
- The formulas are given in the book (page 210)
 - Notice that d.f.=n-1 (why?)
- In SAS use
 - model y =x / noint;
- DO NOT USE THIS WITHOUT A GOOD REASON
 - E.g., if the regression curve is not strictly linear but must go through the origin you should include intercept.

Why REGRESSION?

Remember in SLR

- $-b_1=SXY/SSX=r(SSY/SSX)^{1/2}=rS_Y/S_X$
- $-b_0 = \overline{Y} b_1 \overline{X}$
- The equation

$$\hat{Y} = b_0 + b_1 X = \bar{Y} + r \frac{S_y}{S_X} (X - \bar{X})$$

Remark

- If predictor is at the mean of X, response is predicted at the mean of Y
- If the predictor is 1 sd above the mean of X then the response is predicted r sd above the mean of Y
- Regression toward the mean

Studios Example

- Dwaine Studios currently operates in 21 medium size cities, specialized in portraits of children.
- They want to expand to other cities.
- Want to know: relationship between sales, young population, and disposable income

Generalize SLR to MLR:

- Y is sales in thousands of dollars
- X₁ is the target population
- X₂ is per capita disposable income
- More than one predictor variables correlated with response variable
- Need to generalize Simple Linear Regression to Multiple Linear Regression

Multiple Regression (Chapter 4)

- More than one predictor.
- Relationship still linear
- Questions
 - How to fit
 - How to spot departures from assumptions
 - How to select important predictors

Observables in MLR (Section 4.2)

- For each population item we observe p+1 variables Y, X₁, ...,X_p
 - Y is the response (only one response value per item)
 - $-X_1, ..., X_p$ are the predictors (multiple predictors per item)
- Two possible assumptions
 - $-(Y, X_1, ..., X_p)$ are jointly normal
 - $-X_1, ..., X_p$ are fixed and every subpopulation $Y|X_1, ..., X_p$ is normal

Graphical and numerical summaries for individual and pairs of observables

- Histogram (proc univariate)
- Scatter plot (SAS Macro scatter.sas)
- Mean, s.d., min, max (proc means)
- Correlation (proc corr)

Do It in SAS

```
*Data shown on page 237 of the OPTIONAL textbook - file CH06FI05.txt;
data studios;
  input x1 x2 y;
  x1x2=x1*x2;
  label x1='targtpop'
         x2='dispoinc';
cards;
  68.5 16.7 174.4
  45.2 16.8 164.4
  91.3 18.2 244.2
  52.3 16.0 166.5
run;
```

Do it in SAS

```
* Descriptive statistics;
proc means data=studios;
run;
* Check correlation;
proc corr data = studios;
run;
proc univariate data = studios
 noprint;
var y x1 x2;
histogram y x1 x2;
run;
```

Do it in SAS

```
* Making scatter
 plot using
 macro;
%include "T:\...
 \Macro
 \scatter.sas";
% scatter (data =
 studios, var = y
 x1 x2);
```

The SAS System

