YNU 热点问题情感极性分析 ——基于云南大学校园集市

AngLee

2023 Spring MachineLearning Course YunNan University

开题报告 4.24

大纲

选题背景

校园集市概述 NLP 情感极性分析

模型构建

数据来源 模型选择 模型验证

项目创新

集成学习的使用 Attention 机制的使用 调整 prompt 验证模型

进度和难点

└校园集市概述

大纲

选题背景

校园集市概述

NLP 情感极性分析

模型构建

数据来源 模型选择 模型验证

项目创新

集成学习的使用 Attention 机制的使用 调整 prompt 验证模型

讲度和难点

校园集市概述

- ▶ 云南大学校园集市平台是云大师生进行求助和讨论的场所
- ▶ 通过对集市数据的分析,可以判断一段时间内学生的心理状况、监控对重大校园突发事件的舆论走向,即使发现心理问题,对于学生的心理健康和校园满意度有重大影响。

LNLP 情感极性分析

大纲

选题背景

校园集市概述

NLP 情感极性分析

模型构建

数据来源 模型选择 模型验证

项目创新

集成学习的使用 Attention 机制的使用 调整 prompt 验证模型

进度和难点

NLP 情感极性分析

- ▶ NLP 即自然语言处理,Sentiment Analysis(情感极性分析) 是自然语言处理的一个重要分支,通过分析文本信息,判断 个人对事件的主观倾向:积极/消极,实现舆情监控和风险 预警
- ► Sentiment Analysis 经过多年的发展,发展出数据字典、机器 学习、深度学习等多种分析方式

└─数据来源

大纲

选题背景

校园集市概述 NLP 情感极性分析

模型构建

数据来源

模型选择模型验证

项目创新

集成学习的使用 Attention 机制的使用 调整 prompt 验证模型

讲度和难点

数据来源

- ▶ 数据获取:通过网络爬虫的方式,爬取云南大学校园集市的 发帖信息,通过调用 Paddle 飞桨平台 PaddleNLP API 完成 数据标注,构建训练集
- ▶ 数据规模: 受限于服务器限制,集市平台仅保留近一周的发 帖数据,通过数据统计,近 5 天平均日发帖数量为 150 条, 以 30 天作为数据获取周期,本项目的数据规模为 4500 条

─模型选择

大纲

选题背景

校园集市概述 NLP 情感极性分析

模型构建

数据来源

模型选择

模型验证

项目创新

集成学习的使用

Attention 机制的使用 调整 prompt 验证模型

讲度和难点

模型选择

- 实现 Sentiment Analysis 的方法众多,本次分别使用情感辞典,集成学习和深度学习的方式完成训练
- ▶ 采用知网开源的情感辞典 Hownet 进行初步拟合
- ► 采用集成学习的方式,使用 adaboost 将 SVM 和朴素贝叶斯 两种弱分类器集成为强分类器,完成拟合
- ► 采用 LSTM 深度学习模型进行拟合。由于不同词语对情感 类别的影响不同,通过添加 attention 机制进行拟合

□模型验证

大纲

选题背景

校园集市概述 NLP 情感极性分析

模型构建

数据来源 模型选择

模型验证

项目创新

集成学习的使用 Attention 机制的使用 调整 prompt 验证模型

进度和难点

模型验证

▶ 基于 OpenAl gpt turbo 3.5 prompt 的模型验证

大纲

选题背景

校园集市概述 NLP 情感极性分析

模型构建

数据来源 模型选择 模型验证

项目创新

集成学习的使用

Attention 机制的使用 调整 prompt 验证模型

讲度和难点

集成学习的使用

传统情感分析中,研究方向有传统机器学习领域和深度学习 领域的两个方向,对于深度学习方向,新的成果层出不穷, 而传统机器学习方向则更多的关注于如何优化单一的分类器 以求得更好的效果,鲜有人使用继承学习的方式进行验证。

LAttention 机制的使用

大纲

选题背景

校园集市概述 NLP 情感极性分析

模型构建

数据来源 模型选择 模型验证

项目创新

集成学习的使用

Attention 机制的使用

调整 prompt 验证模型

讲度和难点

Attention 机制的使用

Attention 机制是 Transformer 的核心思量,而后者则是 GPT 模型的基础,受限于硬件设备和数据集,我们无法复 现 GPT 的训练过程,但通过在简单的情感分析任务中引入 类似的 Attention 机制,完成分类任务,是对其内核的一次 简单实践。

大纲

选题背景

校园集市概述 NLP 情感极性分析

模型构建

数据来源 模型选择 模型验证

项目创新

集成学习的使用 Attention 机制的使用

调整 prompt 验证模型

进度和难点

调整 prompt 验证模型

▶ 通过调用 OpenAl gpt turbo3.5, 拟合不同 prompt 对验证结果的影响

└─进度

大纲

选题背景

校园集市概述 NLP 情感极性分析

模型构建

数据来源模型选择模型验证

项目创新

集成学习的使用 Attention 机制的使用 调整 prompt 验证模型

进度和难点

进度

难点

进度

- ▶ 通过 Charles 抓包,初步分析了校园集市平台的 http 包交互逻辑,通过无头浏览区构建了相应的 header,抓取了简单的数据
- ▶ 对于 SVM、朴素贝叶斯等构建了相应的实现方式

大纲

选题背景

校园集市概述 NLP 情感极性分析

模型构建

数据来源 模型选择 模型验证

项目创新

集成学习的使用 Attention 机制的使用 调整 prompt 验证模型

进度和难点

进度

难点

难点

- ▶ 集市平台采用 Vue 架构,html 骨架和层叠样式表以及 javascript 的结构不熟悉,需要花费一定的时间解析
- ▶ 对于 LSTM 和 attention 机制的应用难度较大,需系统性的 研读相关论文

项目结构 I

```
8
    Sentiment Analysis
 9
10
         LICENSE
        README.md
11
       -requirements.txt
12
13
        main.py
14
         dataset
15
         src
         ___init__.py
16
17
         └─data_processing
18
         __sentiment_dictionary
19
         __machine_learning
20
         └─deep_learning
         -verification
21
22
         reoprt
```

图: 文件组织结构

https://github.com/anglee2002/SentimentAnalysis

