Numerical Methods

V. Leclère (ENPC)

April 26th, 2022

Contents

- 1 Where we got
 - System optimum
 - Wardrop equilibrium
- Optimization methods
 - Miscellaneous
 - Unidimensional optimization
- Conditional gradient algorithm
- 4 Algorithm for computing User Equilibrium
 - Heuristics algorithms
 - Frank-Wolfe for UE

The set-up

- \bullet G = (V, E) is a directed graph
- x_e for $e \in E$ represent the flux (number of people per hour) taking edge e
- $\ell_e: \mathbb{R} \to \mathbb{R}^+$ the cost incurred by a given user to take edge e
- We consider K origin-destination vertex pair $\{o^k, d^k\}_{k \in [1, K]}$, such that there exists at least one path from o^k to d^k .
- r_k is the rate of people going from o^k to d^k
- \mathcal{P}_k the set of all simple (i.e. without cycle) path form o^k to d^k
- We denote f_p the flux of people taking path $p \in \mathcal{P}_k$

Some physical relations

People going from o^k to d^k have to choose a path

$$r^k = \sum_{p \in \mathcal{P}^k} f_p.$$

People going through an edge are on a simple path taking this edge

$$x_e = \sum_{p \ni e} f_p.$$

The flux are non-negative

$$\forall p \in \mathcal{P}, \quad f_p > 0, \quad \text{and} \quad \forall e \in E, \quad x_e > 0$$

Some physical relations

People going from o^k to d^k have to choose a path

$$r^k = \sum_{p \in \mathcal{P}^k} f_p.$$

People going through an edge are on a simple path taking this edge

$$x_e = \sum_{p \ni e} f_p.$$

The flux are non-negative

$$\forall p \in \mathcal{P}, \quad f_p > 0, \quad \text{and} \quad \forall e \in E, \quad x_e > 0$$

Some physical relations

People going from o^k to d^k have to choose a path

$$r^k = \sum_{p \in \mathcal{P}^k} f_p.$$

People going through an edge are on a simple path taking this edge

$$x_e = \sum_{p \ni e} f_p.$$

The flux are non-negative

$$\forall p \in \mathcal{P}, f_p > 0, \text{ and } , \forall e \in E, x_e > 0$$

System optimum problem

The system optimum consists in minimizing the sum of all costs over the admissible flux $x = (x_e)_{e \in E}$

- Given x, the cost of taking edge e for one person is $\ell_e(x_e)$.
- The cost for the system for edge e is thus $x_e \ell_e(x_e)$.
- Thus minimizing the system costs consists in solving

$$\min_{x,f} \quad \sum_{e \in E} x_e \ell_e(x_e) \tag{SO}$$

$$s.t. \quad r_k = \sum_{p \in \mathcal{P}_k} f_p \qquad k \in [1, K]$$

$$x_e = \sum_{p \ni e} f_p \qquad e \in E$$

$$f_p > 0 \qquad p \in \mathcal{T}$$

System optimum problem

The system optimum consists in minimizing the sum of all costs over the admissible flux $x = (x_e)_{e \in E}$

- Given x, the cost of taking edge e for one person is $\ell_e(x_e)$.
- The cost for the system for edge e is thus $x_e \ell_e(x_e)$.
- Thus minimizing the system costs consists in solving

$$\min_{x,f} \sum_{e \in E} x_e \ell_e(x_e)$$

$$s.t. \quad r_k = \sum_{p \in \mathcal{P}_k} f_p$$

$$k \in [1, K]$$

$$x_e = \sum_{p \ni e} f_p$$

$$e \in E$$

$$f_p > 0$$

$$p \in \mathcal{T}$$

System optimum problem

The system optimum consists in minimizing the sum of all costs over the admissible flux $x = (x_e)_{e \in E}$

- Given x, the cost of taking edge e for one person is $\ell_e(x_e)$.
- The cost for the system for edge e is thus $x_e \ell_e(x_e)$.
- Thus minimizing the system costs consists in solving

$$\min_{x,f} \quad \sum_{e \in E} x_e \ell_e(x_e)$$

$$s.t. \quad r_k = \sum_{p \in \mathcal{P}_k} f_p$$

$$k \in [1, K]$$

$$x_e = \sum_{p \ni e} f_p$$

$$e \in E$$

$$f_p \ge 0$$

$$p \in \mathcal{P}$$

- We can reformulate the (SO) problem only using path-intensity $f = (f_p)_{p \in \mathcal{P}}$.
- Define $x_e(f) := \sum_{p \ni e} f_p$, and $x = (x_e)_{e \in E}$.
- Define the loss along a path $\ell_p(f) = \sum_{e \in p} \ell_e (\sum_{\substack{p' \ni e \\ x_e(f)}} f_{p'})$
- The total cost is thus

$$C(f) = \sum_{p \in \mathcal{P}} f_p \ell_p(f) = \sum_{e \in F} x_e \ell_e(x_e(f)) = C(x(f)).$$

- We can reformulate the (SO) problem only using path-intensity $f = (f_p)_{p \in \mathcal{P}}$.
- Define $x_e(f) := \sum_{p \ni e} f_p$, and $x = (x_e)_{e \in E}$.
- Define the loss along a path $\ell_p(f) = \sum_{e \in p} \ell_e (\sum_{\substack{p' \ni e \\ x_e(f)}} f_{p'})$
- The total cost is thus

$$C(f) = \sum_{p \in \mathcal{P}} f_p \ell_p(f) = \sum_{e \in F} x_e \ell_e(x_e(f)) = C(x(f)).$$

- We can reformulate the (SO) problem only using path-intensity $f = (f_p)_{p \in \mathcal{P}}$.
- Define $x_e(f) := \sum_{p \ni e} f_p$, and $x = (x_e)_{e \in E}$.
- Define the loss along a path $\ell_p(f) = \sum_{e \in p} \ell_e (\sum_{\substack{p' \ni e \\ x_o(f)}} f_{p'})$
- The total cost is thus

$$C(f) = \sum_{p \in \mathcal{P}} f_p \ell_p(f) = \sum_{e \in F} x_e \ell_e(x_e(f)) = C(x(f)).$$

- We can reformulate the (SO) problem only using path-intensity $f = (f_p)_{p \in \mathcal{P}}$.
- Define $x_e(f) := \sum_{p \ni e} f_p$, and $x = (x_e)_{e \in E}$.
- Define the loss along a path $\ell_p(f) = \sum_{e \in p} \ell_e (\sum_{\substack{p' \ni e \\ x_o(f)}} f_{p'})$
- The total cost is thus

$$C(f) = \sum_{p \in \mathcal{P}} f_p \ell_p(f) = \sum_{e \in F} x_e \ell_e(x_e(f)) = C(x(f)).$$

Path intensity problem

$$\min_{f} \quad \sum_{p \in \mathcal{P}} f_p \ell_p(f)$$
 (SO)
 $s.t. \quad r_k = \sum_{p \in \mathcal{P}_k} f_p$ $k \in [1, K]$
 $f_p \ge 0$ $p \in \mathcal{P}$

Contents

- Where we got
 - System optimum
 - Wardrop equilibrium

Optimization methods

- Optimization methods
 - Miscellaneous
 - Unidimensional optimization
- 3 Conditional gradient algorithm
- 4 Algorithm for computing User Equilibrium
 - Heuristics algorithms
 - Frank-Wolfe for UE

Equilibrium definition

John Wardrop defined a traffic equilibrium as follows. "Under equilibrium conditions traffic arranges itself in congested networks such that all used routes between an O-D pair have equal and minimum costs, while all unused routes have greater or equal costs."

Equilibrium definition

Optimization methods

John Wardrop defined a traffic equilibrium as follows. "Under equilibrium conditions traffic arranges itself in congested networks such that all used routes between an O-D pair have equal and minimum costs, while all unused routes have greater or equal costs."

A mathematical definition reads as follows.

Definition

A user flow f is a User Equilibrium if

$$\forall k \in [1, K], \quad \forall (p, p') \in \mathcal{P}_k^2, \qquad f_p > 0 \implies \ell_p(f) \leq \ell_{p'}(f).$$

A new cost function

We are going to show that a user-equilibrium f is defined as a vector satisfying the KKT conditions of a certain optimization problem.

Let define a new edge-loss function by

$$L_e(x_e) := \int_0^{x_e} \ell_e(u) du.$$

The Wardrop potential is defined (for edge intensity) as

$$W(f) = W(x(f)) = \sum_{e \in F} L_e(x_e(f))$$

A new cost function

We are going to show that a user-equilibrium f is defined as a vector satisfying the KKT conditions of a certain optimization problem.

Let define a new edge-loss function by

$$L_e(x_e) := \int_0^{x_e} \ell_e(u) du.$$

The Wardrop potential is defined (for edge intensity) as

$$W(f) = W(x(f)) = \sum_{e \in F} L_e(x_e(f)).$$

User optimum problem

Theorem

A flow f is a user equilibrium if and only if it satisfies the first order KKT conditions of the following optimization problem

$$egin{array}{ll} \min_{x,f} & W(x) \ s.t. & r_k = \sum_{p \in \mathcal{P}_k} f_p & k \in \llbracket 1, K
rbracket \ & x_e = \sum_{p \ni e} f_p & e \in E \ & f_p \geq 0 & p \in \mathcal{P} \end{array}$$

Convex case: equivalence

If the loss functions (in edge-intensity) are non-decreasing then the Wardrop potential W is convex.

Theorem

Assume that the loss function ℓ_e are non-decreasing for all $e \in E$. Then there exists at least one user equilibrium, and a flow f is a user equilibrium if and only if it solves (UE)

Contents

- 1 Where we got
 - System optimum
 - Wardrop equilibrium
- Optimization methods
 - Miscellaneous
 - Unidimensional optimization
- 3 Conditional gradient algorithm
- 4 Algorithm for computing User Equilibrium
 - Heuristics algorithms
 - Frank-Wolfe for UE

Descent methods

Consider the unconstrained optimization problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} \quad f(\mathbf{x}). \tag{2}$$

A descent direction algorithm is an algorithm that constructs a sequence of points $(x^{(k)})_{k \in \mathbb{N}}$, that are recursively defined with:

$$x^{(k+1)} = x^{(k)} + t^{(k)}d^{(k)}$$
(3)

where

- $x^{(0)}$ is the initial point,
- $d^{(k)} \in \mathbb{R}^n$ is the descent direction.
- $t^{(k)}$ is the step length.

11 / 32

Descent methods

Consider the unconstrained optimization problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} \quad f(\mathbf{x}). \tag{2}$$

A descent direction algorithm is an algorithm that constructs a sequence of points $(x^{(k)})_{k \in \mathbb{N}}$, that are recursively defined with:

$$x^{(k+1)} = x^{(k)} + t^{(k)}d^{(k)}$$
(3)

where

- $x^{(0)}$ is the initial point,
- $d^{(k)} \in \mathbb{R}^n$ is the descent direction.
- $t^{(k)}$ is the step length.

11 / 32

Descent methods

Consider the unconstrained optimization problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} \quad f(\mathbf{x}). \tag{2}$$

A descent direction algorithm is an algorithm that constructs a sequence of points $(x^{(k)})_{k \in \mathbb{N}}$, that are recursively defined with:

$$x^{(k+1)} = x^{(k)} + t^{(k)}d^{(k)}$$
(3)

where

- $x^{(0)}$ is the initial point,
- $d^{(k)} \in \mathbb{R}^n$ is the descent direction.
- $t^{(k)}$ is the step length.

Video explanation

https://www.youtube.com/watch?v=n-YOSDSOfUI

Descent direction

For a differentiable objective function f, $d^{(k)}$ will be a descent direction iff $\nabla f(x^{(k)}) \cdot d^{(k)} \leq 0$, which can be seen from a first order development:

$$f(x^{(k)} + t^{(k)}d^{(k)}) = f(x^{(k)}) + t\langle \nabla f(x^{(k)}), d^{(k)} \rangle + o(t).$$

The most classical descent direction is $d^{(k)} = -\nabla f(x^{(k)})$, which correspond to the gradient algorithm.

Descent direction

For a differentiable objective function f, $d^{(k)}$ will be a descent direction iff $\nabla f(x^{(k)}) \cdot d^{(k)} \leq 0$, which can be seen from a first order development:

$$f(x^{(k)} + t^{(k)}d^{(k)}) = f(x^{(k)}) + t\langle \nabla f(x^{(k)}), d^{(k)} \rangle + o(t).$$

The most classical descent direction is $d^{(k)} = -\nabla f(x^{(k)})$, which correspond to the gradient algorithm.

Step-size choice

The step-size $t^{(k)}$ can be:

- fixed $t^{(k)} = t^{(0)}$, for all iteration,
- optimal $t^{(k)} \in \underset{t \geq 0}{\operatorname{arg \, min}} f(x^{(k)} + td^{(k)}),$
- a "good" step, following some rules (e.g Armijo's rules).

Finding the optimal step size is a special case of unidimensional optimization (or linear search).

Step-size choice

The step-size $t^{(k)}$ can be:

- fixed $t^{(k)} = t^{(0)}$, for all iteration.
- optimal $t^{(k)} \in \arg\min f(x^{(k)} + td^{(k)})$.
- a "good" step, following some rules (e.g Armijo's rules).

Finding the optimal step size is a special case of unidimensional optimization (or linear search).

Contents

- Where we got
 - System optimum
 - Wardrop equilibrium
- Optimization methods
 - Miscellaneous
 - Unidimensional optimization
- 3 Conditional gradient algorithm
- 4 Algorithm for computing User Equilibrium
 - Heuristics algorithms
 - Frank-Wolfe for UE

Unidimensional optimization

We assume that the objective function $J: \mathbb{R} \to \mathbb{R}$ is strictly convex.

We are going to consider two types of methods:

- interval reduction algorithms: constructing $[a^{(l)}, b^{(l)}]$ containing the optimal point;
- successive approximation algorithms: approximating J and taking the minimum of the approximation.

Numerical Methods April 26th, 2022 15 / 32

Bisection method

We assume that J is differentiable over [a, b]. Note that, for $c \in [a, b]$, t* < c iff J'(c) > 0. From this simple remark we construct the bisection method.

```
while b^{(l)} - a^{(l)} > \varepsilon do  c^{(l)} = \frac{b^{(l)} + a^{(l)}}{2} ;  if J'(c^{(l)}) > 0 then  | a^{(l+1)} = a^{(l)} ; b^{(l+1)} = c^{(l)} ;  else if J'(c^{(l)}) < 0 then  | a^{(l+1)} = c^{(l)} ; b^{(l+1)} = b^{(l)} ;  else  | return interval [a^{(l)}, b^{(l)}]   | l = l + 1
```

Note that $L_I = b^{(I)} - a^{(I)} = \frac{L_0}{2^I}$.

Golden section

Consider $a < t_1 < t_2 < b$, we are looking for $t^* = \underset{t \in [a,b]}{\operatorname{arg \, min}} J(t)$

Note that

- if $J(t_1) < J(t_2)$, then $t^* \in [a, t_2]$;
- if $J(t_1) > J(t_2)$, then $t^* \in [t_1, b]$;
- if $J(t_1) = J(t_2)$, then $t^* \in [t_1, t_2]$.

Hence, at each iteration the interval $[a^{(l)}, b^{(l)}]$ is updated into $[a^{(l)}, t_2^{(l)}]$ or $[t_1^{(l)}, b^{(l)}]$.

Golden section

Consider $a < t_1 < t_2 < b$, we are looking for $t^* = \underset{t \in [a,b]}{\operatorname{arg \, min}} J(t)$

Note that

- if $J(t_1) < J(t_2)$, then $t^* \in [a, t_2]$;
- if $J(t_1) > J(t_2)$, then $t^* \in [t_1, b]$;
- if $J(t_1) = J(t_2)$, then $t^* \in [t_1, t_2]$.

Hence, at each iteration the interval $[a^{(l)}, b^{(l)}]$ is updated into $[a^{(l)}, t_2^{(l)}]$ or $[t_1^{(l)}, b^{(l)}]$.

Golden section

We now want to know how to choose $t_1^{(I)}$ and $t_2^{(I)}$. To minimize the worst case complexity we want equity between both possibility, hence $b^{(I)} - t_1^{(I)} = t_2^{(I)} - a^{(I)}$. Now assume that $J(t_1^{(I)}) < J(t_2^{(I)})$. Hence $a^{(I+1)} = a^{(I)}$, and $b^{(I+1)} = t_2$. We would like to reuse the computation of $J(t_1^{(I)})$ by defining $t_1^{(k+1)} = t_2^{(I)}$.

In order to satisfy this constraint we need to have

$$\begin{cases} L_2 + L_1 = L \\ \frac{L_2}{L} = \frac{L_1}{L_2} =: R \end{cases}$$
 (4)

where $L = b^{(I)} - a^{(I)}$, $L_1 = t_1^{(I)} - a^{(I)}$ and $L_2 = t_2^{(I)} - a^{(I)}$. This implies

$$1 + R = \frac{1}{R} \tag{5}$$

Golden section

Where we got

We now want to know how to choose $t_1^{(l)}$ and $t_2^{(l)}$. To minimize the worst case complexity we want equity between both possibility, hence $b^{(1)} - t_1^{(1)} = t_2^{(1)} - a^{(1)}$. Now assume that $J(t_1^{(1)}) < J(t_2^{(1)})$. Hence $a^{(l+1)} = a^{(l)}$, and $b^{(l+1)} = t_2$. We would like to reuse the computation of $J(t_1^{(l)})$ by defining $t_1^{(k+1)} = t_2^{(l)}$. In order to satisfy this constraint we need to have

$$\begin{cases} L_2 + L_1 = L \\ \frac{L_2}{L} = \frac{L_1}{L_2} =: R \end{cases}$$
 (4)

where $L = b^{(1)} - a^{(1)}$, $L_1 = t_1^{(1)} - a^{(1)}$ and $L_2 = t_2^{(1)} - a^{(1)}$.

$$1 + R = \frac{1}{R} \tag{5}$$

Golden section

Where we got

We now want to know how to choose $t_1^{(l)}$ and $t_2^{(l)}$. To minimize the worst case complexity we want equity between both possibility, hence $b^{(1)} - t_1^{(1)} = t_2^{(1)} - a^{(1)}$. Now assume that $J(t_1^{(1)}) < J(t_2^{(1)})$. Hence $a^{(l+1)} = a^{(l)}$, and $b^{(l+1)} = t_2$. We would like to reuse the computation of $J(t_1^{(l)})$ by defining $t_1^{(k+1)} = t_2^{(l)}$. In order to satisfy this constraint we need to have

$$\begin{cases} L_2 + L_1 = L \\ \frac{L_2}{L} = \frac{L_1}{L_2} =: R \end{cases}$$
 (4)

where $L = b^{(1)} - a^{(1)}$, $L_1 = t_1^{(1)} - a^{(1)}$ and $L_2 = t_2^{(1)} - a^{(1)}$. This implies

$$1 + R = \frac{1}{R} \tag{5}$$

$$R = \frac{\sqrt{5} - 1}{2}.\tag{6}$$

Finally, in order to satisfy equity and reusability it is enough to set

$$t_1^{(I)} = a^{(I)} + (1 - R)(b^{(I)} - a^{(I)})$$

$$t_1^{(I)} = a^{(I)} + R(b^{(I)} - a^{(I)})$$

The same happens for the $J(t_1^{(l)}) > J(t_2^{(l)})$ case.

Golden section algorithm

```
a^{(0)} = a. b^{(0)} = b:
t_1^{(0)} = a + (1 - R)b, \quad t_2^{(0)} = a + Rb;
J_1 = J(t_1^{(0)}), \quad J_2 = J(t_2^{(0)});
while b^{(l)} - a^{(l)} > \varepsilon do
      if J_1 < J_2 then
            a^{(l+1)} = a^{(l)} : b^{(l+1)} = t_2^{(l)} :
            t_1^{(l+1)} = a^{(l+1)} + (1-R)b^{(l+1)} : t_2^{(l+1)} = t_1^{(l)} :
           J_2 = J_1:
            J_1 = J(t_1^{(l+1)}):
      else
            a^{(l+1)} = t_1^{(l)} : b^{(l+1)} = b^{(l)} :
           t_1^{(l+1)} = t_2^{(l)}; \ t_2^{(l+1)} = a^{(l+1)} + Rb^{(l+1)}:
           J_1=J_2;
        J_2 = J(t_2^{(l+1)});
      I = I + 1
```

Note that $L_I = R^I L_0$.

V. Leclère Numerical Methods

20 / 32

Video explantion

Golden section

https://www.youtube.com/watch?v=6NYp3td3cjU

Curve fitting: Newton method

If J is twice-differentiable (with non-null second order derivative) is to determine $t^{(k+1)}$ as the minimum of the second order Taylor's of I at $t^{(k)}$.

$$t^{(l+1)} - t^{(l)} = \underset{t}{\arg\min} J(t^{(l)}) + J'(t^{(l)})t + \frac{t^2}{2}J''(t^{(l)})$$
$$= (J''(t^{(l)}))^{-1}J'(t^{(l)})$$

This is the well known, and very efficient, Newton method.

We address an optimization problem with convex objective function f and compact polyhedral constraint set X, i.e.

$$\min_{x \in X \subset \mathbb{R}^n} f(x)$$

where

$$X = \{x \in \mathbb{R}^n \mid Ax \le b, \tilde{A}x = \tilde{b}\}$$

It is a descent algorithm, where we first look for an admissible descent direction $d^{(k)}$, and then look for the optimal step.

It is a descent algorithm, where we first look for an admissible descent direction $d^{(k)}$, and then look for the optimal step. As f is convex, we know that for any point $x^{(k)}$,

$$f(y) \ge f(x^{(k)}) + \nabla f(x^{(k)}) \cdot (y - x^{(k)})$$

It is a descent algorithm, where we first look for an admissible descent direction $d^{(k)}$, and then look for the optimal step. As f is convex, we know that for any point $x^{(k)}$,

$$f(y) \ge f(x^{(k)}) + \nabla f(x^{(k)}) \cdot (y - x^{(k)})$$

The conditional gradient method consists in choosing the descent direction that minimize the linearization of f over X.

The conditional gradient method consists in choosing the descent direction that minimize the linearization of f over X. More precisely, at step k we solve

$$y^{(k)} \in \underset{y \in X}{\operatorname{arg \, min}} \quad f(x^{(k)}) + \nabla f(x^{(k)}) \cdot (y - x^{(k)})$$

$$y^{(k)} \in \underset{y \in X}{\operatorname{arg \, min}} \quad f(x^{(k)}) + \nabla f(x^{(k)}) \cdot (y - x^{(k)}).$$

- This problem is linear, hence easy to solve.
- By the convexity inequality, the value of the linearized Problem is a
- As $v^{(k)} \in X$. $d^{(k)} = v^{(k)} x^{(k)}$ is a feasable direction, in the sense
- If $y^{(k)}$ is obtained through the simplex method it is an extreme
- If $y^{(k)} = x^{(k)}$ then we have found an optimal solution.
- We also have $y^{(k)} \in \arg\min \nabla f(x^{(k)}) \cdot y$, the lower-bound being

$$y^{(k)} \in \underset{y \in X}{\operatorname{arg \, min}} \quad f(x^{(k)}) + \nabla f(x^{(k)}) \cdot (y - x^{(k)}).$$

- This problem is linear, hence easy to solve.
- By the convexity inequality, the value of the linearized Problem is a lower bound to the true problem.
- As $v^{(k)} \in X$. $d^{(k)} = v^{(k)} x^{(k)}$ is a feasable direction, in the sense
- If $y^{(k)}$ is obtained through the simplex method it is an extreme
- If $v^{(k)} = x^{(k)}$ then we have found an optimal solution.
- We also have $y^{(k)} \in \arg\min \nabla f(x^{(k)}) \cdot y$, the lower-bound being

$$y^{(k)} \in \underset{y \in X}{\operatorname{arg \, min}} \quad f(x^{(k)}) + \nabla f(x^{(k)}) \cdot (y - x^{(k)}).$$

- This problem is linear, hence easy to solve.
- By the convexity inequality, the value of the linearized Problem is a lower bound to the true problem.
- As $v^{(k)} \in X$. $d^{(k)} = v^{(k)} x^{(k)}$ is a feasable direction, in the sense that for all $t \in [0, 1]$, $x^{(k)} + td^{(k)} \in X$.
- If $v^{(k)}$ is obtained through the simplex method it is an extreme
- If $v^{(k)} = x^{(k)}$ then we have found an optimal solution.
- We also have $y^{(k)} \in \arg\min \nabla f(x^{(k)}) \cdot y$, the lower-bound being

$$y^{(k)} \in \underset{y \in X}{\operatorname{arg \, min}} \quad f(x^{(k)}) + \nabla f(x^{(k)}) \cdot (y - x^{(k)}).$$

- This problem is linear, hence easy to solve.
- By the convexity inequality, the value of the linearized Problem is a lower bound to the true problem.
- As $v^{(k)} \in X$. $d^{(k)} = v^{(k)} x^{(k)}$ is a feasable direction, in the sense that for all $t \in [0, 1]$, $x^{(k)} + td^{(k)} \in X$.
- If $v^{(k)}$ is obtained through the simplex method it is an extreme point of X, which means that, for t > 1, $x^{(k)} + td^{(k)} \notin X$.
- If $y^{(k)} = x^{(k)}$ then we have found an optimal solution.
- We also have $y^{(k)} \in \arg\min \nabla f(x^{(k)}) \cdot y$, the lower-bound being

$$y^{(k)} \in \underset{y \in X}{\operatorname{arg \, min}} \quad f(x^{(k)}) + \nabla f(x^{(k)}) \cdot (y - x^{(k)}).$$

- This problem is linear, hence easy to solve.
- By the convexity inequality, the value of the linearized Problem is a lower bound to the true problem.
- As $v^{(k)} \in X$. $d^{(k)} = v^{(k)} x^{(k)}$ is a feasable direction, in the sense that for all $t \in [0, 1]$, $x^{(k)} + td^{(k)} \in X$.
- If $v^{(k)}$ is obtained through the simplex method it is an extreme point of X, which means that, for t > 1, $x^{(k)} + td^{(k)} \notin X$.
- If $v^{(k)} = x^{(k)}$ then we have found an optimal solution.
- We also have $y^{(k)} \in \arg\min \nabla f(x^{(k)}) \cdot y$, the lower-bound being

$$y^{(k)} \in \underset{y \in X}{\operatorname{arg \, min}} \quad f(x^{(k)}) + \nabla f(x^{(k)}) \cdot (y - x^{(k)}).$$

- This problem is linear, hence easy to solve.
- By the convexity inequality, the value of the linearized Problem is a lower bound to the true problem.
- As $v^{(k)} \in X$. $d^{(k)} = v^{(k)} x^{(k)}$ is a feasable direction, in the sense that for all $t \in [0, 1]$, $x^{(k)} + td^{(k)} \in X$.
- If $v^{(k)}$ is obtained through the simplex method it is an extreme point of X, which means that, for t > 1, $x^{(k)} + td^{(k)} \notin X$.
- If $v^{(k)} = x^{(k)}$ then we have found an optimal solution.
- We also have $y^{(k)} \in \arg\min \nabla f(x^{(k)}) \cdot y$, the lower-bound being $x \in X$ obtained easily.

Frank Wolfe algorithm

```
Data: objective function f, constraints, initial point x^{(0)}, precision \varepsilon
Result: \varepsilon-optimal solution x^{(k)}, upperbound f(x^{(k)}), lowerbound f
f=-\infty;
k=0:
while f(x^{(k)}) - f > \varepsilon do
     solve the LP \min_{y \in Y} f(x^{(k)}) + \nabla f(x^{(k)}) \cdot (y - x^{(k)});
     let v^{(k)} be an optimal solution, and f the optimal value;
     set d^{(k)} = v^{(k)} - x^{(k)}:
     solve t^{(k)} \in \underset{t \in [0,1]}{\arg\min} f\left(x^{(k)} + td^{(k)}\right);
     update x^{(k+1)} = x^{(k)} + t^{(k)}d^{(k)}:
      k = k + 1:
```

Contents

- 1 Where we got
 - System optimum
 - Wardrop equilibrium
- Optimization methods
 - Miscellaneous
 - Unidimensional optimization
- 3 Conditional gradient algorithm
- 4 Algorithm for computing User Equilibrium
 - Heuristics algorithms
 - Frank-Wolfe for UE

All-or nothing

A very simple heuristic consists in:

- \bullet Set k=0.
- 2 Assume initial cost per edge $\ell_e^{(k)} = \ell_e(x_e^{ref})$.
- **Solution** For each origin-destination pair (o_i, d_i) find the shortest path associated with $\ell^{(k)}$
- \bullet Associate the full flow r_i to this path, which form a flow of user $f^{(k)}$
- **5** Deducing the travel cost per edge is $\ell_e^{(k+1)} = \ell_e(f^{(k)})$.
- **o** Go to step 3.

All-or nothing

A very simple heuristic consists in:

- **1** Set k = 0.
- 2 Assume initial cost per edge $\ell_e^{(k)} = \ell_e(x_e^{ref})$.
- **3** For each origin-destination pair (o_i, d_i) find the shortest path associated with $\ell^{(k)}$.
- **4** Associate the full flow r_i to this path, which form a flow of user $f^{(k)}$.
- **5** Deducing the travel cost per edge is $\ell_e^{(k+1)} = \ell_e(f^{(k)})$.
- **o** Go to step 3.

This method is simple and requires only to compute the shortest path in a fixed cost graph.

However it is not converging as it can cycle

All-or nothing

A very simple heuristic consists in:

- \bullet Set k=0.
- 2 Assume initial cost per edge $\ell_e^{(k)} = \ell_e(x_e^{ref})$.
- **Solution** For each origin-destination pair (o_i, d_i) find the shortest path associated with $\ell^{(k)}$
- \bullet Associate the full flow r_i to this path, which form a flow of user $f^{(k)}$
- **5** Deducing the travel cost per edge is $\ell_e^{(k+1)} = \ell_e(f^{(k)})$.
- **o** Go to step 3.

This method is simple and requires only to compute the shortest path in a fixed cost graph.

However it is not converging as it can cycle.

Smoothed all-or-nothing

The all-or-nothing method can be understood as follow: each day every user choose the shortest path according to the traffice on the previous day. We can smooth the approach by saying that only a fraction ρ of user is going to update its path from one day to the next.

- 2 Assume initial cost per arc $\ell_e^{(k)} = \ell_e(x_e^{ref})$.

- **6** Compute the new flow $f^{(k)} = (1 \rho)f^{(k-1)} + \rho \tilde{f}^{(k)}$.
- **6** Deducing the travel cost per arc as $\ell_e^{(k+1)} = \ell_e(f^{(k)})$.

Smoothed all-or-nothing

The all-or-nothing method can be understood as follow: each day every user choose the shortest path according to the traffice on the previous day. We can smooth the approach by saying that only a fraction ρ of user is going to update its path from one day to the next.

Hence the smoothed all-or-nothing approach reads

- \bullet Set k=0.
- 2 Assume initial cost per arc $\ell_e^{(k)} = \ell_e(x_e^{ref})$.
- **Solution** For each pair origin destination (o_i, d_i) find the shortest path associated with $\ell^{(k)}$
- Associate the full flow r_i to this path, which form a flow of user $\tilde{f}^{(k)}$
- **5** Compute the new flow $f^{(k)} = (1 \rho)f^{(k-1)} + \rho \tilde{f}^{(k)}$.
- **1** Deducing the travel cost per arc as $\ell_e^{(k+1)} = \ell_e(f^{(k)})$.
- Go to step 3.

Contents

- Where we got
 - System optimum
 - Wardrop equilibrium
- Optimization methods
 - Miscellaneous
 - Unidimensional optimization
- Conditional gradient algorithm
- 4 Algorithm for computing User Equilibrium
 - Heuristics algorithms
 - Frank-Wolfe for UE

28 / 32

UE problem

Recall that, if the arc-cost functions are non-decreasing finding a user-equilibrium is equivalent to solving

$$egin{array}{ll} \min_{f\geq 0} & W(x(f)) \ s.t. & r_k = \sum_{p\in \mathcal{P}_k} f_p & k\in \llbracket 1,K
rbracket \end{array}$$

where

$$W(f) = W(x(f)) = \sum_{e \in E} L_e(x_e(f)),$$

with

$$L_e(x_e) := \int_0^{x_e} \ell_e(u) du,$$

and

$$x_{e}(f) = \sum_{p \ni e} f_{p}.$$

V. Leclère Numerical Methods April 26th, 2022

Where we got

Let's compute the linearization of the objective function. Consider an admissible flow $f^{(\kappa)}$ and a path $p \in \mathcal{P}_i$. We have

$$\frac{\partial W \circ x}{\partial f_p}(f^{(\kappa)}) = \frac{\partial}{\partial f_p} \left(\sum_{e \in E} L_e(\sum_{p' \ni e} f_{p'}^{(\kappa)}) \right)$$
$$= \sum_{e \in p} \frac{\partial}{\partial x_e} L_e(x_e(f^{(\kappa)}))$$
$$= \sum_{e \in p} \ell_e(x_e(f^{(\kappa)})) = \ell_p(f^{(\kappa)}).$$

$$egin{array}{ll} \min & \sum_{p \in \mathcal{P}} y_p \ell_p(f^{(\kappa)}) \ s.t & r_k = \sum_{p \in \mathcal{P}_k} y_p \end{array} \qquad k \in \llbracket 1, K
brace .$$

Let's compute the linearization of the objective function. Consider an admissible flow $f^{(\kappa)}$ and a path $p \in \mathcal{P}_i$. We have

$$\frac{\partial W \circ x}{\partial f_p}(f^{(\kappa)}) = \frac{\partial}{\partial f_p} \left(\sum_{e \in E} L_e(\sum_{p' \ni e} f_{p'}^{(\kappa)}) \right)$$
$$= \sum_{e \in p} \frac{\partial}{\partial x_e} L_e(x_e(f^{(\kappa)}))$$
$$= \sum_{e \in p} \ell_e(x_e(f^{(\kappa)})) = \ell_p(f^{(\kappa)}).$$

Hence, the linearized problem around $f^{(k)}$ reads

$$\begin{aligned} \min_{\left\{y_{p}\right\}_{p\in\mathcal{P}}} & & \sum_{\rho\in\mathcal{P}} y_{\rho}\ell_{\rho}(f^{(\kappa)}) \\ s.t & & r_{k} = \sum_{\rho\in\mathcal{P}_{k}} y_{\rho} & k \in \llbracket 1, K \rrbracket \end{aligned}$$

Where we got

$$egin{array}{ll} \min & \sum_{p \in \mathcal{P}} y_p \ell_p(f^{(\kappa)}) \ & s.t \quad r_k = \sum_{p \in \mathcal{P}_k} y_p & k \in \llbracket 1, K
rbracket \ & y_p \geq 0 & p \in \mathcal{P} \end{array}$$

Note that this problem is an all-or-nothing iteration and can be solved (o, d)-pair by (o, d)-pair by solving a shortest path problem.

Where we got

$$\min_{\left\{y_{p}\right\}_{p\in\mathcal{P}}} \sum_{p\in\mathcal{P}} y_{p} \ell_{p}(f^{(\kappa)})$$

$$s.t \quad r_{k} = \sum_{p\in\mathcal{P}_{k}} y_{p} \qquad k \in \llbracket 1, K \rrbracket$$

$$y_{p} \geq 0 \qquad p \in \mathcal{P}$$

Note that this problem is an all-or-nothing iteration and can be solved (o, d)-pair by (o, d)-pair by solving a shortest path problem. As the cost $t_{\alpha}^{k} := \ell_{e}(f^{(\kappa)})$ is non-negative we can use Dijkstra's algorithm to solve this problem.

aving found $y^{(\kappa)}$, we now have to solve

$$\min_{t\in[0,1]}J(t):=W\Big((1-t)f^{(\kappa)}+ty^{(\kappa)})\Big).$$

As J is convex, the bisection method seems adapted. We have

$$J'(t) = \nabla W \left((1-t)f^{(\kappa)} + ty^{(\kappa)} \right) \cdot \left(y^{(\kappa)} - f^{(\kappa)} \right)$$
$$= \sum_{p \in \mathcal{P}} (y_p^{(\kappa)} - f_p^{(\kappa)}) \ell_p \left((1-t)f^{(\kappa)} + ty^{(\kappa)} \right)$$

hence the bisection method is readily implementable.

Frank Wolfe is a smoothed all-or-nothing

```
Data: cost function \ell, constraints, initial flow f^{(0)}
Result: equilibrium flow f^{(\kappa)}
W=-\infty:
\kappa = 0:
compute starting travel time c_e^{(0)} = \ell_e(x(f^{(\kappa)})):
while W(x^{(\kappa)}) - W > \varepsilon do
     foreach pair origin-destination (o_i, d_i) do
           find a shortest path p_i from o_i to d_i for the loss c^{(\kappa)};
     deduce an auxiliary flow y^{(\kappa)} by setting r_i to p_i;
     set descent direction d^{(\kappa)} = v^{(\kappa)} - f^{(\kappa)}:
     find optimal step t^{(\kappa)} \in \arg\min W(x^{(\kappa)} + td^{(\kappa)});
     update f^{(k+1)} = f^{(\kappa)} + t^{(\kappa)} d^{(\kappa)}:
      \kappa = \kappa + 1:
```