

Eletrônica Digital I

Capítulo ISistema de Numeração

Aula A.2 - Sistema de Numeração e conversão de base binária, Octal e Hexadecimal para decimal

Prof. MSc. Bruno de Oliveira Monteiro Engenheiro de Telecomunicações

Assista essa aula no Youtube. Acesse:

Bruno de Oliveira Monteiro - Youtube

Obs: Utilize os vídeos para complementar os seus estudos. A participação em sala de aula é fundamental para o seu aprendizado.

- Passagem da base 10(decimal) para uma base qualquer:
- a) XY₍₁₀₎ → Base "b" (divide XY pela base "b" até o quociente virar um número entre os números presentes na base "b";

O número XY chama-se dividendo, "b" é o divisor, q é o quociente e r é o resto.

A divisão deverá ser feita até o quociente se tornar um número pertencente aos números da base:

Ex:

binário - 0 ou 1 Octal - 0, 1, 2, 3, 4, 5, 6 ou 7

Valor = $q_4 r_3 r_2 r_1 r_0$ (b)

Conversão de 18₍₁₀₎ para base 2 (binário)

Exercício:

a) $73_{(10)} = base 2$

b) $365_{(10)} = base 2$

c) $384_{(10)} = base 8$

d) $1999_{(10)} = base 16$

e) $384_{(10)}$ = base 16

f) $273_{(10)} = base 8$

Resposta

1001001(2)

101101101(2)

600(8)

7CF₍₁₆₎

180(16)

421(8)

 Conversão de números fracionários em decimais:

$$10,5_{(10)} = 1*10^{1} + 0 * 10^{0} + 5 * 10^{-1} = 10,5_{(10)}$$

$$101,101_{(2)} = 1*2^2 + 0*2^1 + 1*2^0 + 1*2^{-1} + 0*2^{-2} + 1*2^{-3} = 5,625_{(10)}$$

 Conversão de números decimais fracionários para outra base "b":

8,375₍₁₀₎ → base 2 (binário)

$$0.375 \times 2 = 0.75$$
 (MSB)

$$0.75 \times 2 = 1.5$$

$$0,5 \times 2 = 1$$
 (LSB)

1000,011 (2)

Conversão de "Binário" ←→ "Hexadecimal"

Conversão de "binário" para "hexadecimal"

 $10011101_{(2)} \rightarrow base 16$

O "D" é o nº 13 em hexadecimal

Conversão de "Binário" ←→ "Octal"

 $64_{(8)} \rightarrow base 2$

110 100 binário

 $101011_{(2)} \rightarrow base 8$

- Exercícios: Faça a conversão para as bases solicitadas abaixo.
- a) $1010_{(2)} \rightarrow \text{base } 16, \text{ base } 8, \text{ base } 10$
- b) AB9₍₁₆₎ \rightarrow base 2, base 10
- c) $00100110110_{(2)} \rightarrow \text{base } 16, \text{ base } 8, \text{ base } 10$
- d) $1985_{(10)} \rightarrow \text{base 2, base 16}$

Respostas

- a) $1010_{(2)} \rightarrow \text{base } 16, \text{ base } 8, \text{ base } 10$ Resp.: A₍₁₆₎, 12₍₈₎, 10₍₁₀₎
- b) AB9₍₁₆₎ → base 2, base 10 Resp.: 101010111001₍₂₎, 2745₍₁₀₎
- c) $00100110110_{(2)} \rightarrow \text{base } 16, \text{ base } 8, \text{ base } 10$ Resp.: $136_{(16)}, 466_{(8)}, 310_{(10)}$
- d) 1985₍₁₀₎ → base 2, base 16 Resp.: 11111000001₍₂₎, 7C1₍₁₆₎

Bons Estudos

Prof. MSc. Bruno de Oliveira Monteiro Engenheiro de Telecomunicações

