

Chapter 14 - Cluster Analysis 聚类分析

Instructor: Zach Zhizhong ZHOU,

Shanghai Jiao Tong University

主讲教师: 周志中, 上海交通大学

Data Mining for Business Intelligence Shmueli, Patel & Bruce

© Galit Shmueli and Peter Bruce 2010

Clustering: The Main Idea 聚类主要思想

Goal: Form groups (clusters) of similar records 目标: 把类似的记录分组(聚类)

Used for segmenting markets into groups of similar customers 用在市场分割上,将类似的顾客归入几个组别中。

Example: Claritas segmented US neighborhoods based on demographics & income: "Furs & station wagons," "Money & Brains", ...

Other Applications 其他应用

- □ Classification of species 进行种属分类
- □ Grouping securities in portfolios 投资组合中的股票聚类
- □ Grouping firms for structural analysis of economy 将企业进行聚类以便对经济做结构性分析
- □ Army uniform sizes 军服大小

Example: Public Utilities

Goal: find clusters of similar utilities

Data: 22 firms, 8 variables

Fixed-charge covering ratio

Rate of return on capital

Cost per kilowatt capacity

Annual load factor

Growth in peak demand

Sales

% nuclear

Fuel costs per kwh

Company	Fixed_charge	RoR	Cost	Load	∆ Demand	Sales	Nuclear	Fuel_Cost
Arizona	1.06	9.2	151	54.4	1.6	9077	0	0.628
Boston	0.89	10.3	202	57.9	2.2	5088	25.3	1.555
Central	1.43	15.4	113	53	3.4	9212	0	1.058
Commonwealth	1.02	11.2	168	56	0.3	6423	34.3	0.7
Con Ed NY	1.49	8.8	192	51.2	1	3300	15.6	2.044
Florida	1.32	13.5	111	60	-2.2	11127	22.5	1.241
Hawaiian	1.22	12.2	175	67.6	2.2	7642	0	1.652
Idaho	1.1	9.2	245	57	3.3	13082	0	0.309
Kentucky	1.34	13	168	60.4	7.2	8406	0	0.862
Madison	1.12	12.4	197	53	2.7	6455	39.2	0.623
Nevada	0.75	7.5	173	51.5	6.5	17441	0	0.768
New England	1.13	10.9	178	62	3.7	6154	0	1.897
Northern	1.15	12.7	199	53.7	6.4	7179	50.2	0.527
Oklahoma	1.09	12	96	49.8	1.4	9673	0	0.588
Pacific	0.96	7.6	164	62.2	-0.1	6468	0.9	1.4
Puget	1.16	9.9	252	56	9.2	15991	0	0.62
San Diego	0.76	6.4	136	61.9	9	5714	8.3	1.92
Southern	1.05	12.6	150	56.7	2.7	10140	0	1.108
Texas	1.16	11.7	104	54	-2.1	13507	0	0.636
Wisconsin	1.2		148		3.5	7287	41.1	0.702
United	1.04	8.6	204	61	3.5	6650	0	2.116
Virginia	1.07	9.3	174	54.3	5.9	10093	26.6	1.306

Sales & Fuel Cost: 3 rough clusters can be seen

Extension to More Than 2 Dimensions

In prior example, clustering was done by eye 上面的例子中,我们通过观察得到聚类。

Multiple dimensions require formal algorithm with 对更高维度的记录进行聚类要求正式的算法,该算法包括

- ■A distance measure 距离的度量
- A way to use the distance measure in forming clusters 一种使用距离度量进行聚类的方法。

We will consider two algorithms: hierarchical and non-hierarchical 我们考虑2种算法: 层次和非层次算法

Hierarchical Clustering 层次聚类

Hierarchical Methods 层次聚类方法

Agglomerative Methods 凝聚法

- ■Begin with n-clusters (each record its own cluster) 从n个簇开始(每个记录视为一个簇)
- Keep joining records into clusters until one cluster is left (the entire data set) 不断将记录加入簇中直到剩下一个簇(整个数据集)
- Most popular 最流行

Divisive Methods 分裂法

- Start with one all-inclusive cluster 从一个包括所有记录的簇开始
- Repeatedly divide into smaller clusters 不断分割成更小的簇

A Dendrogram shows the cluster hierarchy 一个显示簇的层次的树状图

Dendrogram(Average linkage)

Measuring Distance 衡量距离

- □ Between records 记录之间的距离
- □ Between clusters 簇之间的距离

Measuring Distance Between Records

Distance Between Two Records

Euclidean Distance is most popular:

$$d_{ij} = \sqrt{(x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + \dots + (x_{ip} - x_{jp})^2}$$

Normalizing

Problem: Raw distance measures are highly influenced by scale of measurements

Solution: normalize (standardize) the data first

- Subtract mean, divide by std. deviation
- Also called z-scores

Example: Normalization

For 22 utilities:

Avg. sales = 8,914

Std. dev. = 3,550

Normalized score for Arizona sales:

(9,077-8,914)/3,550 = 0.046

For Categorical Data: Similarity

To measure the distance between records in terms of two 0/1 variables, create table with counts:

	0	1
0	а	b
1	С	d

Similarity metrics based on this table:

 \square Matching coef. = (a+d)/p, p=a+b+c+d

 \square Jaquard's coef. = d/(b+c+d)

Use in cases where a matching "1" is much greater evidence of similarity than matching "0" (e.g. "owns Corvette")

Other Distance Measures

- ☐ Correlation-based similarity
- ☐ Statistical distance (Mahalanobis)
- Manhattan distance (absolute differences)
- Maximum coordinate distance
- ☐ Gower's similarity (for mixed variable types: continuous & categorical)

Measuring Distance Between Clusters

Minimum Distance (Cluster A to Cluster B)

☐ Also called single linkage

 \square Distance between two clusters is the distance between the pair of records A_i and B_i that are closest

Maximum Distance(Cluster A to Cluster B)

☐ Also called complete linkage

 \Box Distance between two clusters is the distance between the pair of records A_i and B_j that are farthest from each other

Average Distance

☐ Also called average linkage

☐ Distance between two clusters is the average of all possible pair-wise distances

Centroid Distance

□ Distance between two clusters is the distance between the two cluster centroids.

☐ Centroid is the vector of variable averages for all records in a cluster

The Hierarchical Clustering Steps (Using Agglomerative Method)

- 1. Start with *n* clusters (each record is its own cluster)
- 2. Merge two closest records into one cluster
- 3. At each successive step, the two clusters closest to each other are merged

Dendrogram, from bottom up, illustrates the process

Table 15.1 Example of Single-Linkage Clustering

Original 5×5 distance matrix, with subsequent single-linkage clustering

$$\begin{array}{cccc}
(ace) & 0 & \\
b & 7 & 0 \\
d & 6 & 5 & 0
\end{array}$$

$$\begin{array}{c}
(ace) \\
(bd)
\end{array} \begin{bmatrix}
0 \\
\mathbf{6} \\
0
\end{bmatrix}$$

The numbers in bold face refer to the minimum distances.

Records 12 & 21 are closest & form first cluster

Dendrogram(Average linkage)

Reading the Dendrogram

See process of clustering: Lines connected lower down are merged earlier

■ 10 and 13 will be merged next, after 12 & 21

Determining number of clusters: For a given "distance between clusters", a horizontal line intersects the clusters that are that far apart, to create clusters

- ■E.g., at distance of 4.6 (red line in next slide), data can be reduced to 2 clusters -- The smaller of the two is circled
- At distance of 3.6 (green line) data can be reduced to 6 clusters, including the circled cluster

Dendrogram(Average linkage)

Validating Clusters

Interpretation

Goal: obtain meaningful and useful clusters

Caveats:

- (1) Random chance can often produce apparent clusters
- (2) Different cluster methods produce different results

Solutions:

- □ Obtain summary statistics
- ☐ Also review clusters in terms of variables not used in clustering
- □ Label the cluster (e.g. clustering of financial firms in 2008 might yield label like "midsize, sub-prime loser")

Desirable Cluster Features

Stability – are clusters and cluster assignments sensitive to slight changes in inputs? Are cluster assignments in partition B similar to partition A?

Separation – check ratio of between-cluster variation to within-cluster variation (higher is better)

Nonhierarchical Clustering: K-Means Clustering

K-Means Clustering Algorithm

- 1. Choose # of clusters desired, k
- 2. Start with a partition into k clusters

 Often based on random selection of k centroids
- 3. At each step, move each record to cluster with closest centroid
- 4. Recompute centroids, repeat step 3
- 5. Stop when moving records increases withincluster dispersion

K-means Algorithm: Choosing k and Initial Partitioning

Choose *k* based on the how results will be used e.g., "How many market segments do we want?"

Also experiment with slightly different k' s

Initial partition into clusters can be random, or based on domain knowledge

If random partition, repeat the process with different random partitions

XLMiner Output: Cluster Centroids

Cluster	Fixed_charge	RoR	Cost	Load_factor
Cluster-1	0.89	10.3	202	57.9
Cluster-2	1.43	15.4	113	53
Cluster-3	1.06	9.2	151	54.4

We chose k = 3

4 of the 8 variables are shown

Distance Between Clusters

Distance between	Cluster-1	Cluster-2	Cluster-3
Cluster-1	0	5.03216253	3.16901457
Cluster-2	5.03216253	0	3.76581196
Cluster-3	3.16901457	3.76581196	0

Clusters 1 and 2 are relatively well-separated from each other, while cluster 3 not as much

Within-Cluster Dispersion

Data summary (In Original coordinates)

Cluster	#Obs	Average distance in cluster
Cluster-1	12	1748.348058
Cluster-2	3	907.6919822
Cluster-3	7	3625.242085
Overall	22	2230.906692

Clusters 1 and 2 are relatively tight, cluster 3 very loose

Conclusion: Clusters 1 & 2 well defined, not so for cluster 3

Next step: try again with k=2 or k=4

Summary

definitive "real" clusters

☐ Cluster analysis is an exploratory tool. Useful only when it produces meaningful clusters ☐ Hierarchical clustering gives visual representation of different levels of clustering - On other hand, due to non-iterative nature, it can be unstable, can vary highly depending on settings, and is computationally expensive ■ Non-hierarchical is computationally cheap and more stable; requires user to set k ☐ Can use both methods ■ Be wary of chance results; data may not have