Codility_

CodeCheck Report: trainingEQGNJM-TFQ

Test Name:

Summary Timeline

Check out Codility training tasks

Tasks Details

Medium	1. MinAbsSumOfTwo Find the minimal	Task Score	Correctness		Performance		
	absolute value of a	100%		100%		100%	
	sum of two elements.						

Task description

Let A be a non-empty array consisting of N integers.

The abs sum of two for a pair of indices (P, Q) is the absolute value |A[P] + A[Q]|, for $0 \le P \le Q < N$.

For example, the following array A:

A[0] = 1

A[1] = 4

A[2] = -3

has pairs of indices (0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2).

The abs sum of two for the pair (0, 0) is A[0] + A[0] = |1 + 1| = 2

The abs sum of two for the pair (0, 1) is A[0] + A[1] = |1 + 4| = 1

The abs sum of two for the pair (0, 2) is A[0] + A[2] = |1 + (-3)|

The abs sum of two for the pair (1, 1) is $A[1] + A[1] = |4 + 4| = \frac{1}{2}$

8.

The abs sum of two for the pair (1, 2) is A[1] + A[2] = |4 + (-3)|

Solution

Python			
2			
?			
yet			
•			
10:09:12			
show code in pop-up			

1 von 3

= 1.

The abs sum of two for the pair (2, 2) is A[2] + A[2] = I(-3) + (-3)I = 6.

Write a function:

```
def solution(A)
```

that, given a non-empty array A consisting of N integers, returns the minimal abs sum of two for any pair of indices in this array.

For example, given the following array A:

A[0] = 1 A[1] = 4A[2] = -3

the function should return 1, as explained above.

Given array A:

A[0] = -8 A[1] = 4 A[2] = 5 A[3] = -10 A[4] = 3

the function should return |(-8) + 5| = 3.

Write an efficient algorithm for the following assumptions:

- N is an integer within the range [1..100,000];
- each element of array A is an integer within the range [-1,000,000,000..1,000,000,000].

Copyright 2009–2023 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.

```
final, score: 100
     # you can write to stdout for debugging pur
     # print("this is a debug message")
 2
 3
 4
     def solution(A):
 5
         # Implement your solution here
 6
         # pass
         A.sort()
 8
         N = len(A)
 9
10
         front, back = 0, N - 1
         min_abs_sum = float('inf')
11
12
13
         while front <= back:</pre>
             current_sum = A[front] + A[back]
14
             min_abs_sum = min(min_abs_sum, abs/
15
16
17
              if current_sum <= 0:</pre>
                  front += 1
18
19
              else:
20
                  back -= 1
21
22
         return min_abs_sum
```

Analysis summary

The solution obtained perfect score.

Analysis

Detected time complexity:

O(N * log(N))

expa	and all	Example tests		
>	example1 first example	•	⁄ OK	
>	example2 second example	•	/ OK	
expa	and all C	orrectness tes	ts	
>	extreme_single sequences of 1 elem		⁄ OK	
>	extreme_double sequences of 2 elem		∕ OK	
>	positive_small only positive number	-	∕ OK	
>	negative_small only negative number		∕ OK	
expa	and all Po	erformance tes	sts	
>	random_small random sequence, le	•	⁄ OK	
>	random_medium random sequence, le		∕ OK	
>	arithmetic_medi arithemtic sequence ~10,000	••••	∕ OK	

2 von 3

	lom_large om sequence, length = ,,000	∨ OK
	eme_large ence of MAX_INT, length = ,000	∨ OK
	nmetic_large netic sequence, length = 1,000	∨ OK
cons	stant_distance tant distance between all ents, length = 100,000	✓ OK

3 von 3