1 Szenario

Ziel dieses Tutorials ist es zu zeigen wie man Rotationsmatrix, Eulerwinkeln(Yaw,Pitch,Roll) und Quaternionen ineinander Umwandeln kann, und warum eine Darstellung der Rotation durch Quaternionen sinnvoll ist.

2 Performance

In diesem kurzen Abschnitt über Performance werden Quaternion mit Matrizen in verschiedenen Aspekten verglichen:

- 1. notwendiger Speicherbedarf
- 2. Anzahl Rechenoperationen bei Rotation eines Vektors im \mathbb{R}^3
- 3. Anzahl Rechenoperationen bei Verkettung zweier Rotationen im \mathbb{R}^3

Ein Quaternion besteht bekannterweise aus einem 4-Tupel q_0, q_1, q_2, q_3 , daher müssen auch nur 4 Skalarwerte Zwischengespeichert werden. Der Quaternionrotationsoperator ist zwar definiert, als:

$$L_a(v) = q^* v q \tag{1}$$

Und da $q^* = q_0, -q_1, -q_2, -q_3$ genügt es auch eben diese 4 Skalarwerte zu speichern. Eine Rotationsmatrix R besitzt die Dimension 3×3 und es fallen daher 9 zu speichernde Skalare an. Hier überzeugt definitiv das Quaternion. Gemäß obiger Gleichung sind für die Rotation mit Hilfe eines Quaternions 2 Multiplikationen zwischen Quaternionen nötig. Insgesamt gilt:

	Quaternion	Matrix
Anzahl Additionen	12	6
Anzahl Multiplikationen	18	9

Hier sieht man das deutliche Plus der Matrizen. Wohingegen bei Verkettung zweier Rotationen wieder die Quaternionen punkten können:

	Quaternion	Matrix
Anzahl Additionen	12	18
Anzahl Multiplikationen	16	27

3 Umwandlungen

Zu den eigentlichen Umwandlungen gibt es nicht viel zu sagen, sie sollen mit jeweils einem Beispiel erklärt werden. Detaillierte Erklärungen findet man in der Dokumentation der Bibliothek.

```
Quaternion q(1,0,0,0) // Identity
Matrix3D Id =q.toRotationMatrix();//Identity
YPR y = q.toYPR(); // 0,0,0
```

Ähnlich gilt es auch für Rotationsmatrizen:

```
Matrix3D Id ;// Identity
Quaternion q = Id.toQuaternion();//[1,0,0,0]
YPR y = Id.toYPR(); // 0,0,0
```

Und Letztendlich gilt das auch für YPR-Eulerwinkel:

```
YPR y; // 0,0,0
Matrix3D Id = y.toMatrix3D();
Quaternion q = y.toQuaternion();
```

4 Hinweis

Die Nutzung von Quaternionen hat zudem noch den Vorteil, dass ein Auftreten von Singularitäten ausgeschlossen ist.