Adversarial Search

Tian-Li Yu

Taiwan Evolutionary Intelligence Laboratory (TEIL)
Department of Electrical Engineering
National Taiwan University
tianliyu@ntu.edu.tw

Readings: AIMA Chapter 5 with 5.6 sketched and 5.7 skipped

Outline

- Types of Games
 - Formulation of games
- Perfect-Information Games
 - Minimax and Negamax search
 - $\alpha \beta$ pruning
 - Pruning more
 - Imperfect decision
 - Zobrist hashing
- Stochastic Games
 - ExpectiMiniMax
- Monte-Carlo Simulation
 - Multi-armed bandit
- 5 Partially Observable Games
 - Nash equilibrium

Types of Games

- Adversarial search considers multi-agent and competitive environments.
- Game theory consider both competitive and cooperative environments.
- Most common games are deterministic, turn-taking, two-player, zero-sum games with perfect information.
 - Let's focus on this type of games for a while until told otherwise.

	Deterministic	Stochastic
Perfect Information	Chess, Checkers,	Backgammon,
	Go, Othello	Monopoly
Imperfect Information	Battleships, Bingo	Bridge, Poker

Symbols

- s₀: Initial state.
- PLAYER(s): The player in state s.
- ACTION(s): Returns the set of legal moves in state s.
- RESULT(s, a): The transition model, which returns the resulting state of a move a in state s.
- TERMINAL-TEST(s): TRUE/FALSE. States where the game has terminated are called terminal states.
- UTILITY(s, p): A utility function (also called objective or payoff).
 - UTILITY(s) for 2-player, zero-sum games.
 - Reason: UTILITY $(s, p_1) = -$ UTILITY (s, p_2)

Game Tree (of Tic-Tac-Toe)

Optimal Decision

```
 \begin{aligned} & \text{MINIMAX}(s) = \\ & \begin{cases} & \text{UTILITY}(s) & \text{if Terminal-Test}(s) \\ & \text{max}_{a \in Actions(s)} \text{ MINIMAX}(\text{Result}(s, a)) & \text{if Player}(s) = \text{max} \\ & \text{min}_{a \in Actions(s)} \text{ MINIMAX}(\text{Result}(s, a)) & \text{if Player}(s) = \text{min} \end{cases} \end{aligned}
```


Tian-Li Yu (NTUEE)

Negamax Search

- $\bullet \min\{a_0,\cdots,a_n\}=-\max\{-a_0,\cdots,-a_n\}$
- Such simplified implementation of MINIMAX is called NEGAMAX.
- Copying the whole state (line 5) is memory consuming. Practical implementation usually adopts s = BackTrack(s', a).

$\overline{\text{NegaMax}}(s)$

```
1 if TERMINAL-TEST(s)
2    return UTILITY(s, p)
3    result = -∞
4    for each a ∈ ACTION(s)
5        s' = RESULT(s, a)
6        result = max(result, -NEGAMAX(s'))
7    return result
```

Properties of Minimax (Negamax) Search

- Completeness: Yes, if tree is finite.
- Optimality: Yes, against an optimal opponent. Otherwise?
 - Risky moves that leads to complicated variations might be better to revert unfavored situations.
- Time Complexity: $O(b^m)$.
- Space Complexity: O(bm) (DFS); or O(m) if the algorithm generates actions one at a time.

For chess, $b \simeq 35$, $m \simeq 100 \Rightarrow$ optimal decision is practically intractable. Do we need to explore every path?

$\alpha - \beta$ Pruning

Not every node needs to be evaluated.

The value of root is independent of two unknown nodes x and y

MINIMAX(root) =
$$\max(\min(3, 12, 8), \min(2, x, y), \min(14, 5, 2))$$

= $\max(3, \min(2, x, y), 2))$
= 3

Tian-Li Yu (NTUEE)

$\alpha - \beta$ Pruning

- Keeping α (maximum lower bound) for the maximum utility for player MAX, initialized to $-\infty$.
- Keeping β (minimum upper bound) for the minimum utility for player MIN, initialized to ∞ .
- Only the moves within the $[\alpha, \beta]$ window are expanded; otherwise its branches are pruned.
- The pruning does NOT compromise solution quality.

Tian-Li Yu (NTUEE)

$\alpha - \beta$ Pruning Example

$\alpha - \beta$ Pruning Example (contd.)

Tian-Li Yu (NTUEE)

$\alpha - \beta$ Pruning Example (contd.)


```
AlphaBeta(s, \alpha, \beta)
     if Terminal-Test(s)
           return UTILITY(s)
 3
     if PLAYER(s) == MAX
 4
           v = -\infty
 5
          for each a \in Action(s)
 6
                v = \max(v, AlphaBeta(Result(s, a), \alpha, \beta))
                if v > \beta return v
 8
                \alpha = \max(\alpha, \nu)
 9
           return v
10
     else
11
           v = \infty
12
           for each a \in Action(s)
13
                v = \min(v, AlphaBeta(Result(s, a), \alpha, \beta))
14
                if \alpha \geq v return v
15
                \beta = \min(\beta, \nu)
16
           return v
```

Tian-Li Yu (NTUEE) Adversarial Search 14 / 41

Implementation of $\alpha - \beta$ Pruning

NEGAMAX + ALPHABETA = AB-NEGAMAX.

```
AB-NegaMax(s, \alpha, \beta)
   if Terminal-Test(s)
         return UTILITY(s, p)
   v = -\infty
   for each a \in Action(s)
5
        s' = \text{Result}(s, a)
         v = \max(v, -AB-NEGAMAX(s', -\beta, -\alpha))
         if v > \beta return v
        \alpha = \max(\alpha, \nu)
   return v
```

Main Idea of $\alpha - \beta$ Pruning

- If m is better than n for Player, n will never be reached in actual play.
- Once we have found enough about *n* to reach this conclusion, we can prune it.

Efficiency of $\alpha - \beta$ Pruning

- Highly depends on the order of moves.
- Worst case: no pruning $\rightarrow O(b^m)$.
- Best case: Always check the best move first.
 - Need to check every child for the first move.
 - Only need to check first child for other moves.
 - $O(b \cdot 1 \cdot b \cdot 1 \cdots) = O(b^{m/2})$

- Average case: $O(b^{3m/4})$
- Very simple ordering usually achieves $O(b^{m/2})$
 - Another good reason to adopt iterative deepening.
 - Reduce the effective branch factor to \sqrt{b} .
 - Make the search twice as deep as before.

Aspiration Windows

- Assume UTILITY is quite consistent.
- Then the old score means something.
- Original ALPHABETA searches at $[-\infty, \infty]$.
- We can try something like $[OLD_SCORE 30, OLD_SCORE + 30]$.
- If a move lies outside the window, we need to re-search with a wider window.
- Some fine tuning is needed to ensure speed-up.

NegaScout

- Assume UTILITY is integral.
- Aspiration search can be taken to extreme.
- If our ordering is quite good, it's highly possible that the first move is the best move.
- We then can make the search window from $[\alpha, \beta]$ to $[\alpha, \alpha + 1]$ (a null window).
- If our assumption is correct, the search speeds up.
- If our assumption is incorrect, hopefully the cutoff occurs very soon (α can actually be improved).
- We then search it properly (using the original $[\alpha, \beta]$ window).

Tian-Li Yu (NTUEE) Adversarial Search 19 / 41

NegaScout

```
NegaScout(s, \alpha, \beta)
    if Terminal-Test(s)
          return UTILITY(s, p)
    b = \beta //initial window is [-\beta, -\alpha]
    v = -\infty
 5
    for each a \in ACTION(s)
 6
          s' = \text{Result}(s, a)
          result = -NegaScout(s', -b, -\alpha)
          if \alpha < result < \beta and a is not first action
               result = -NEGASCOUT(s', -\beta, -\alpha)
                                                       //full re-search
10
     v = \max(v, result)
11
          if v \geq \beta return v
12
          \alpha = \max(\alpha, \nu)
13
          b = \alpha + 1 //set new null window
14
     return v
```

20 / 41

Tian-Li Yu (NTUEE) Adversarial Search

Performance of NegaScout

- Performance of NegaScout highly depends on the search order.
- For random order, NegaScout is usually worse than original alpha-beta.
- NegaScout outperforms original alpha-beta for good move ordering.

Example of α - β pruning.

Performance of NegaScout

- NegaScout tentatively tries [5,6] which prunes the node 3 (wasn't pruned in α - β).
- The returned value 4, which is outside the true window $[5, \infty]$, validates the pruning.

Example of NegaScout.

Tian-Li Yu (NTUEE)

MTD-f

- If we memorize the results from the previous search, not much harm to do more searches.
- Iteratively guessing the correct value.

```
function MTDF(root, f, d)
    g := f
    upperBound := +∞
    lowerBound := -∞
    while lowerBound < upperBound
        β := max(g, lowerBound+1)
        g := AlphaBetaWithMemory(root, β-1, β, d)
        if g < β then
            upperBound := g
    else
        lowerBound := g</pre>
```

Imperfect Real-Time Decisions

Use CUTOFF-TEST instead of TERMINAL-TEST

- Can be as simple as depth limit.
- Can adopt quiescence search to conquer the horizon effect.
- Yet another good reason to adopt iterative deepening. Return the current best move when time's up.

Use EVAL instead of UTILITY

- Usually maps state s into feature space fi
- Typically use linear combination of features: $\text{EVAL}(s) = \sum_i w_i f_i(s)$
- Need to fine tune weights for strong play.

→ロト→部ト→差ト→差 のQで

Heuristic Where Minimax May Go Wrong

- MINIMAX chooses the right branch.
- EVAL with an error with zero mean and standard deviation σ .
- $\sigma = 2$, the left branch is better 58% of the time.
- $\sigma = 5$, the left branch is better 71% of the time.

Forward Pruning

- ullet Forward pruning does compromise solution quality (so is using EVAL)
 - Some moves are pruned immediately without further consideration.
- Beam search is one way to forward pruning. Dangerous since the best move might be pruned.
- PROBCUT uses the scores from previous searches to estimate the probability that a node is outside the $[\alpha, \beta]$ window.

Search vs. Table Lookup

- For many games, deep search usually helps little at the beginning.
- Instead, fast table looking up, huge databases, and statistical analysis help more.
- Table lookup also helps a lot toward the end of games.
 - Moscov state university solves all 7-piece endgames in 2012.
 - Total number of 5×10^{12} positions.
 - Longest mate takes 549 moves!

ullet Finally, early exchange favors computers than humans o deeper search and more probable falls in lookup.

Handling Repeated States

- ullet We desire some BackTrack implementation instead of copying the whole board state.
- We desire to be able to identify repeated state very fast.
- We desire to store the scores of some recently-calculated states (transposition table).

Zobrist Hashing

Randomly generate Zobrist's keys (fixed) for each piece at each position. The hash key for a board state is then the $_{
m XOR}$ of these keys.

Zobrist Hashing

- The use of XOR makes BACKTRACK as easy as making a move (Result).
- h(s) are stored in a large hash table to make future search faster.
- For the same state, the heuristic estimation from a deeper search replace that from a shallower one. Similar idea (also like LRTA*) can be used to improve h.
- Length of keys
 - Shorter keys are faster.
 - Longer keys reduce the chance of collision.
 - For chess, roughly $12 \times 64 < 800$ keys are needed.
 - For Go, roughly $2 \times 361 < 800$ keys are needed.
 - Nowadays, 64-bit key implementation is standard. Collision is not severe, but still needs to be handled properly.

Tian-Li Yu (NTUEE) Adversarial Search 29 / 41

Stochastic Games

- Introduce CHANCE nodes into the minimax tree.
- Instead of searching for maximum/minimum values, we now search for expected maximum/minimum values.

EXPECTIMINIMAX

- EXPECTIMINIMAX gives perfect play. (in what sense?)
- Similar to MINIMAX, except we must also handle chance nodes.

```
EXPECTIMINIMAX(s) = \begin{cases} \text{UTILITY}(s) & \text{if Terminal-Test}(s) \\ \max_{a} \text{EXPECTIMINIMAX}(\text{Result}(s, a)) & \text{if Player}(s) == \max \\ \min_{a} \text{EXPECTIMINIMAX}(\text{Result}(s, a)) & \text{if Player}(s) == \min \\ \sum_{a} P(a) \text{EXPECTIMINIMAX}(\text{Result}(s, a)) & \text{if Player}(s) == \text{CHANCE} \end{cases}
```

31 / 41

Tian-Li Yu (NTUEE) Adversarial Search

Sensitivity to Heuristic

- As mentioned before, we rarely can actually use UTILITY in EXPECTIMINIMAX.
- Instead, we use heuristic.
- However, unlike in MINIMAX, actual values of heuristic matter now. (In MINIMAX, only relative order matters.)

Tian-Li Yu (NTUEE) Adversarial Search 32 / 41

Performance of ExpectiMiniMax

- $\alpha \beta$ pruning now does not apply to MAX/MIN nodes (why?).
- $\alpha \beta$ pruning now still applies to CHANCE nodes (why?).
- Time Complexity: $O(b^m) \to O(b^m n^m)$, where n is the number of distinct dice rolls.
- Causes ExpectiMiniMax impractical in many cases.
- Solution: Instead of checking every MAX/MIN node, adopts Monte Carlo simulation at CHANCE nodes.
- Using random dice rolls to check only a certain number (decided by quality/time limit) of paths.

Monte-Carlo Simulation

- Calculating π :
 - Uniformly random: $x \sim [0, 1], y \sim [0, 1].$
 - Check whether $x^2 + y^2 \le 1$.
 - The probability is $\pi/4$.

- Opinion polls.
- Mark and recapture.

Monte-Carlo Tree Search

- Selection: select the **most promising** leaf *L*.
- Expansion: create a node C from L.
- Simulation: random playout (or called rollout) from *C*.
- Backpropagation: back propagate the result from C to the root.

Multi-Armed Bandit Problem

- K arms (random variables) with distributions: $B = \{A_1, A_2, \dots, A_K\}$, where A_i are of unknown independent distributions (not necessarily identical).
- Unknown means: $\mu_i = E[A_i]$.
- Regret ρ_T after T rounds: $T \cdot \mu^* \sum_{t=1}^T \hat{r}_t$, where $\mu^* = \max_i \mu_i$ and \hat{r}_t is the reward at round t.
- The goal is to minimize the regret.
- Zero-regret strategy: $\lim_{T\to\infty} \frac{\rho_T}{T} = 0$.

◆ロト ◆問ト ◆意ト ◆意ト · 意 · から○

Zero-Regret Conditions

- Unbounded number of trials for each arm, given unbounded time.
- As time goes to infinity, the probability of choosing the current best arm tends to 1.

MAB Strategies

- ϵ -greedy (simple, not zero-regret): With probability of ϵ , pull an arm at random; otherwise, pull the current best arm.
- ϵ -decreasing (may be zero-regret): Same as ϵ -greedy, but ϵ decreases with time.
- UCB (upper confidence bound, zero-regret)
 Pull the arm with the highest UCB score.
 - UCB1: $\bar{x}_i + \sqrt{\frac{2 \ln n}{n_i}}$
 - UCB1-tuned: $\bar{x}_i + \sqrt{\frac{\ln n}{n_i} \min\left(\frac{1}{4}, \sigma_i^2 + \sqrt{\frac{2 \ln n}{n_i}}\right)}$

Partially Observable Games

- Different from stochastic games, unobservable parts are usually controlled by opponents, not probability.
- Examples: Cards held by other player in bridge, folded cards in poker, fogs in star craft.
- Different strategies may be applied and may all considered optimum against different opponents.
- If equilibrium exists, it's usually considered as optimum strategy.

Nash Equilibrium

 By John Nash — check out "A Beautiful Mind (2001)" if you want an informal introduction to him.

Information Definition

A set of strategies is a Nash equilibrium if no player can do better by unilaterally changing his or her strategy.

Prisoners' dilemma

	B stays silent	B confesses
A stays silent	Each serves 1 yr	A: 5 yrs; B: free
A confesses	A: free; B: 5 yrs	Each serves 3 yrs

Read Chapter 17 if you want to know more.

40 / 41

Summary

- MINIMAX search for zero-sum two-player games.
- Pruning techniques enable to search deeper.
- Due to time limit, heuristics are used to evaluate the "goodness" for a player.
- For stochastic games, we need to introduce chance nodes and search for expected maximum/minimum values.
- For stochastic games, $\alpha \beta$ pruning is much less efficient, Monte Carlo simulations are often adopted to speed up the search.
- With limited observation, optimality is usually not well defined. If equilibrium exists, strategies in equilibrium are often considered optimum.