CALF: Categorical Automata Learning Framework

Gerco van Heerdt Matteo Sammartino Alexandra Silva

University College London

August 23, 2017

The L* algorithm (Angluin, 1987)

Finite alphabet A

System behaviour captured by a **regular language** $\mathcal{L} \subseteq A^*$

 L^\star learns *minimal* DFA for $\mathcal L$ assuming an *oracle* that answers

Membership queries

$$w \in \mathcal{L}$$
?

Equivalence queries

$$\mathcal{L}(H) = \mathcal{L}$$
?

Negative result ⇒ counterexample

Applications of L*

Through learning, verification methods for automata become available for black box systems

- Network protocols
- Devices such as smartcard readers
- Legacy software
- **>** . . .

Applications of L*

Through learning, verification methods for automata become available for black box systems

- Network protocols
- Devices such as smartcard readers
- Legacy software

Source: Automated Reverse Engineering using Lego®
Chalupar et al., WOOT 2014

Problem: ad hoc adaptations

Solution: category theory

Contributions

Deterministic automaton

Deterministic automaton: **set** *Q* with **functions**

Other automata

Nominal automaton: 1 nominal set Q with equivariant functions

Linear weighted automaton: vector space Q with linear maps

¹Learning Nominal Automata (POPL 2017); Joshua Moerman, Matteo Sammartino, Alexandra Silva, Bartek Klin, Michał Szynwelski

Categorical automaton

An automaton in a category ${\bf C}$ is an **object** ${\it Q}$ with **morphisms**

L* observation table

 L^* maintains $S, E \subseteq A^*$ inducing a table

L* observation table

 L^* maintains $S, E \subseteq A^*$ inducing a table

$$S \left\{ \begin{array}{c|ccc} & \varepsilon & \mathbf{a} \\ \hline \varepsilon & 1 & 0 \\ \mathbf{a} & 0 & 1 \\ \hline \mathbf{aa} & 1 & 0 \\ \hline \mathbf{aaa} & 0 & 1 \end{array} \right.$$

Prepend row label to column label and pose membership query

$$(s,e)\mapsto egin{cases} 1 & ext{if } se\in\mathcal{L} \ 0 & ext{if } se
ot\in\mathcal{L} \end{cases}$$

L* observation table

 L^* maintains $S, E \subseteq A^*$ inducing a table

$$S \left\{ \begin{array}{c|cccc} & \varepsilon & a & \\ \hline \varepsilon & 1 & 0 & \mathcal{L} = \{a^n \mid n \text{ is even}\} \\ \hline S \cdot A & aaa & 0 & 1 \\ \hline \end{array} \right.$$

Prepend row label to column label and pose membership query

$$(s,e)\mapsto egin{cases} 1 & ext{if } se\in\mathcal{L} \ 0 & ext{if } se
ot\in\mathcal{L} \end{cases}$$

L* hypothesis DFA

Hypothesis states are upper rows of the table; transitions append symbols to row labels

	ε	a
ε	1	0
a	0	1
aa	1	0
aaa	0	1

Requires properties closedness and consistency to be well-defined

L* hypothesis DFA

Hypothesis states are upper rows of the table; transitions append symbols to row labels

	ε	a		
ε	1	0		
а	0	1	\rightarrow $\begin{pmatrix} 1 & 0 \end{pmatrix}$	
arepsilon a aa	1	0		
aaa	0	1		

Requires properties closedness and consistency to be well-defined

L* hypothesis DFA

Hypothesis states are upper rows of the table; transitions append symbols to row labels

	ε	a
ε	1	0
a	0	1
aa	1	0
aaa	0	1

Requires properties closedness and consistency to be well-defined

L* algorithm overview

table updated using membership queries

- 1. Initialise $S = E = \{\varepsilon\}$
- 2. Satisfy closedness and consistency (by augmenting S and E)
- 3. Construct hypothesis
- 4. Pose equivalence query
- 5. On a counterexample, add its prefixes to S and repeat from 2

Main observation

The state space of the hypothesis is the image of the composition

M is the **target** of the algorithm **Select** states of M using S**Classify** states of M into 2^E

Wrapper

Wrapper for **target** T consists of objects S and P with morphisms

$$(S \xrightarrow{\sigma} T, T \xrightarrow{\pi} P)$$

- σ selects from T
- $\blacktriangleright \pi$ classifies T

Define the (unstructured) hypothesis as the image of

$$S \xrightarrow{\sigma} T \xrightarrow{\pi} P$$

Categorical setting uses a factorisation system

Additional structure

If T comes with a coalgebra $T \xrightarrow{f} FT$, we can wrap that as well:

$$S \xrightarrow{\sigma} T \xrightarrow{f} FT \xrightarrow{F\pi} FP$$

$$\Downarrow$$

f-closedness and f-consistency properties

compatible F-coalgebra on hypothesis

L* definitions recovered by $f = \delta \colon M \to M^A$

Recovering the target

$$S \xrightarrow{\sigma} T \xrightarrow{\pi} P$$

Conditions for a hypothesis isomorphic to the target:

- **Selecting everything:** σ surjective
- ▶ Classifying faithfully: π injective

Imply every notion of closedness and consistency

Isomorphism preserves resulting structures

Categorically, surjective/injective defined by factorisation system

Main correctness theorem

For certain automata, either of the following is sufficient:

- selecting everything and consistency
- classifying faithfully and closedness

CALF

Project: calf-project.org

Learning Automata with Side-Effects: https://arxiv.org/abs/1704.08055

Future work

- ▶ Describing non-trivial ad hoc automata as categorical ones
- Optimisations in categories other than Set
- Implementation
- ▶ Integrating testing into L*

Computing wrapped morphisms

The composition

$$S \longrightarrow A^* \longrightarrow M \longrightarrow 2^{A^*} \longrightarrow 2^E$$

is known because the $A^* o 2^{A^*}$ part depends only on ${\mathcal L}$

Reachability/language maps preserve transition structure:

Closedness and consistency

The wrapper is f-closed if there is a morphism close making the left triangle commute

It is *f-consistent* if there is a morphism cons making the right triangle commute

Structured hypothesis

If f-closedness and f-consistency hold, we have a coalgebra

$$\begin{array}{c}
S \xrightarrow{e} H \\
\text{close} \downarrow \xrightarrow{\theta} \downarrow \text{cons} \\
FH \xrightarrow{Fm} FP
\end{array}$$

which is compatible with f:

$$T \stackrel{\sigma}{\longleftarrow} S \stackrel{e}{\longrightarrow} H$$

$$f \downarrow \qquad \qquad \downarrow \theta$$

$$FT \stackrel{F\pi}{\longrightarrow} FP \stackrel{Fm}{\longleftarrow} FH$$