EXERCISES

- 1. $\sum_{n=0}^{\infty} (-1)^n x^{2n}$ is a geometric series.
 - (a) Does it converge pointwise in the interval -1 < x < 1?
 - (b) Does it converge uniformly in the interval -1 < x < 1?
 - (c) Does it converge in the L^2 sense in the interval -1 < x < 1? (*Hint:* You can compute its partial sums explicitly.)
- 2. Consider any series of functions on any finite interval. Show that if it converges uniformly, then it also converges in the L^2 sense and in the pointwise sense.
- 3. Let γ_n be a sequence of constants tending to ∞ . Let $f_n(x)$ be the sequence of functions defined as follows: $f_n(\frac{1}{2}) = 0$, $f_n(x) = \gamma_n$ in the interval $[\frac{1}{2} - \frac{1}{n}, \frac{1}{2})$, let $f_n(x) = -\gamma_n$ in the interval $(\frac{1}{2}, \frac{1}{2} + \frac{1}{n}]$ and let $f_n(x) = 0$ elsewhere. Show that:

 - (a) f_n(x) → 0 pointwise.
 (b) The convergence is not uniform.
 - (c) $f_n(x) \to 0$ in the L^2 sense if $\gamma_n = n^{1/3}$.
 - (d) $f_n(x)$ does not converge in the L^2 sense if $\gamma_n = n$.
- 4. Let

$$g_n(x) = \begin{cases} 1 \text{ in the interval } \left[\frac{1}{4} - \frac{1}{n^2}, \frac{1}{4} + \frac{1}{n^2} \right) & \text{for odd } n \\ 1 \text{ in the interval } \left[\frac{3}{4} - \frac{1}{n^2}, \frac{3}{4} + \frac{1}{n^2} \right) & \text{for even } n \\ 0 & \text{for all other } x \end{cases}$$

Show that $g_n(x) \to 0$ in the L^2 sense but that $g_n(x)$ does not tend to zero in the pointwise sense.

- 5. Let $\phi(x) = 0$ for 0 < x < 1 and $\phi(x) = 1$ for 1 < x < 3.
 - (a) Find the first four nonzero terms of its Fourier cosine series explic-
 - (b) For each x ($0 \le x \le 3$), what is the sum of this series?
 - (c) Does it converge to $\phi(x)$ in the L^2 sense? Why?
 - (d) Put x = 0 to find the sum

$$1 + \frac{1}{2} - \frac{1}{4} - \frac{1}{5} + \frac{1}{7} + \frac{1}{8} - \frac{1}{10} - \frac{1}{11} + \cdots$$

- 6. Find the sine series of the function $\cos x$ on the interval $(0, \pi)$. For each x satisfying $-\pi \le x \le \pi$, what is the sum of the series?
- 7. Let

$$\phi(x) = \begin{cases} -1 - x & \text{for } -1 < x < 0 \\ +1 - x & \text{for } 0 < x < 1. \end{cases}$$