

Markov chain

- Named after mathematician Andrey Markov
- The aim of using Markov chains is to provide probabilities for the occurrence of future events.
- Markov chains are used in many fields:
 - Physics
 - Chemistry
 - Biology
 - Testing
 - Games
 - Music
 - Baseball
 - Text generation
 - And many more!

https://en.wikipedia.org/wiki/Markov_chain

Markov chain abstract example

- We describe the probability from 0-1, whereas 0 = 0% and 1 = 100%
- As shown in the image, we can have multiple states (E and A)
- All states needs to have a summed up probability of 1
 - E: 0.3 + 0.7
 - A: 0.4 + 0.6
- State E has a chance of 0.3 (=30%) to go to state E and a 70% chance to change the state to state A.

https://en.wikipedia.org/wiki/Markov_chain

Examples

https://twitter.com/markovtop100

Examples

 An automated Slack bot designed to debate against

https://github.com/414owen/TrumpBot

https://github.com/bubba/Hilary-bot

Examples

How?

Das ist ein Hund.

Das ist ein Haus.

Das kann nicht sein.

Das	ist	ein	Hund	•	Haus	kann	nicht	sein
ist	ein	Hund	•	Das	•	nicht	sein	•
ist	ein	Haus		Das				
kann								

Das	ist	ein	Hund	•	Haus	kann	nicht	sein
ist $(0.\overline{6})$	ein (1)	Hund (0.5)	. (1)	Das (1)	. (1)	nicht (1)	sein (1)	. (1)
kann $(0.\overline{3})$		Haus (0.5)						
1	1	1	1	1	1	1	1	1

How?

Tasks

- 1. Develop a Markov chain text generator and generate sentences based on the supplied shakespeare.txt
 - You most likely need to edit the file first (remove intro/outro)
 - You can use other .txt files
 - Save your generated text as images
 - https://p5js.org/reference/#/p5/loadStrings
 - Want to use another text-file? Discuss with me
- Develop an algorithm which generates a wordcloud from shakespeare.txt or any other large files with text.
 The wordcloud should show the most used n-words (5 < n < 100).</p>
 The words can overlap.

