DEPARTMENT OF MATHEMATICS, IIT - GUWAHATI

Odd Semester of the Academic year 2024 - 2025

MA 311M Assignment/Problem sheet 1

Instructor: Dr. J. C. Kalita

Due before the midnight of 8 August 2024

- 1. Here is a very easy one:
- (a) Perform the arithmetic $(9.4 \times 10^{-5}) + (3.6 \times 10^{4})$, expressing the answer in normalized scientific (exponential) notation.
- (b) Give the final answer if the representation allows only five significant digits, rounded.
- (c) Give the absolute error of part **b**.
- (d) Give the relative error of part **b**.
- 2. Show that $e^{\pi\sqrt{163}}$ is incredibly close to being the 18 digit integer 262537412640768744. (*Hint:* More than 30 decimal digits will be required to see any difference.)
- 3. Use three digit rounding arithmetic to perform the following calculations. Compute the absolute and relative errors with the exact value determined by the computer at double precision:
- (a) 133+0.921 (b) 122-0.499 (c) (121-0.327)-119 (d) (121-119)-0.327 (e) $\frac{\frac{13}{14} \frac{3}{4}}{2e 5.4}$
- (f) $\frac{\pi \frac{22}{7}}{\frac{1}{17}}$.

Repeat the exercise with four digit chopping arithmetic.

4. The first three nonzero terms of the Maclaurine series for $\tan^{-1} x$ are $x - \frac{1}{3}x^2 + \frac{1}{5}x^5$. Compute the relative and absolute errors in the following approximations of π using polynomials in place of \tan^{-1} function:

(a)
$$4\left[\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right)\right]$$
 (b) $16\tan^{-1}\left(\frac{1}{5}\right) - 4\tan^{-1}\left(\frac{1}{239}\right)$

5. The infinite series of $\sin x$ is give by

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

- (a) Obtain a decimal approximation for $\sin(2)$, truncating the infinite series in **two** terms. Give the error for this approximation.
- (b) Define five partial sum approximations for the above function. Graph $\sin x$ and the approximating functions. Evaluate the $\sin x$ and the approximating functions at $\frac{\pi}{6}$, $\frac{\pi}{4}$, $\frac{\pi}{2}$ and 3π , and compute the absolute and relative errors of these approximations.
- 6. The number e can be defined by $e = \sum_{n=0}^{\infty} \frac{1}{n!}$. Compute the relative and absolute errors in the following approximations of e:

(a)
$$e \simeq \sum_{n=0}^{5} \frac{1}{n!}$$
, (b) $e \simeq \sum_{n=0}^{10} \frac{1}{n!}$ and (c) $e \simeq \sum_{n=0}^{1000} \frac{1}{n!}$.

7. Verify that the observations made in connection with examples 4 and 5 of chapter 1.2 of **Burden and Fairs** (pages 23-26) were correct.