NEWS 1		Web Page for STN Seminar Schedule - N. America
NEWS 2	APR 02	CAS Registry Number Crossover Limits Increased to
		500,000 in Key STN Databases
NEWS 3	APR 02	PATDPAFULL: Application and priority number formats
		enhanced
NEWS 4	APR 02	DWPI: New display format ALLSTR available
NEWS 5	APR 02	New Thesaurus Added to Derwent Databases for Smooth
		Sailing through U.S. Patent Codes
NEWS 6	APR 02	EMBASE Adds Unique Records from MEDLINE, Expanding
		Coverage back to 1948
NEWS 7	APR 07	50,000 World Traditional Medicine (WTM) Patents Now
		Available in CAplus
NEWS 8	APR 07	MEDLINE Coverage Is Extended Back to 1947
NEWS 9	JUN 16	WPI First View (File WPIFV) will no longer be
		available after July 30, 2010
NEWS 10	JUN 18	DWPI: New coverage - French Granted Patents
NEWS 11	JUN 18	CAS and FIZ Karlsruhe announce plans for a new
110110 10	77777 1.0	STN platform
NEWS 12	JUN 18	IPC codes have been added to the INSPEC backfile (1969-2009)
NEWS 13	JUN 21	Removal of Pre-IPC 8 data fields streamline displays
		in CA/CAplus, CASREACT, and MARPAT
NEWS 14	JUN 21	Access an additional 1.8 million records exclusively
		enhanced with 1.9 million CAS Registry Numbers
		EMBASE Classic on STN
NEWS 15	JUN 28	Introducing "CAS Chemistry Research Report": 40 Year
		of Biofuel Research Reveal China Now Atop U.S. in
		Patenting and Commercialization of Bioethanol
NEWS 16	JUN 29	Enhanced Batch Search Options in DGENE, USGENE,
Suprae 4.5	**** 4.0	and PCTGEN
NEWS 17	JUL 19	Enhancement of citation information in INPADOC
		databases provides new, more efficient competitor
NIEWO 10	TTTT 0.0	analyses
NEWS 18	JUL 26	CAS coverage of global patent authorities has
NIPMO 10	SEP 15	expanded to 61 with the addition of Costa Rica MEDLINE Cited References provide additional
NEWS 19	5EF 13	revelant records with no additional searching.
NEWS 20	OCT 04	Removal of Pre-IPC 8 data fields streamlines
TATTAND S O	001 04	displays in USPATFULL, USPAT2, and USPATOLD.
NEWS 21	OCT 04	Precision of EMBASE searching enhanced with new
MEND EI	001 01	chemical name field
NEWS 22	OCT 06	Increase your retrieval consistency with new formats
<u> </u>	002 00	for Taiwanese application numbers in CA/CAplus.
NEWS 23	OCT 21	CA/CAplus kind code changes for Chinese patents
		increase consistency, save time
NEWS 24	OCT 22	New version of STN Viewer preserves custom
		highlighting of terms when patent documents are
		saved in .rtf format
NEWS 25	OCT 28	INPADOCDB/INPAFAMDB: Enhancements to the US national
		patent classification.
NEWS 26	NOV 03	New format for Korean patent application numbers in
		CA/CAplus increases consistency, saves time.

NEWS 27 NOV 04 Selected STN databases scheduled for removal on December 31, 2010

NEWS EXPRESS FEBRUARY 15 10 CURRENT WINDOWS VERSION IS V8.4.2,
AND CURRENT DISCOVER FILE IS DATED 07 JULY 2010.

NEWS HOURS STN Operating Hours Plus Help Desk Availability
NEWS LOGIN Welcome Banner and News Items

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN customer agreement. This agreement limits use to scientific research. Use for software development or design, implementation of commercial gateways, or use of CAS and STN data in the building of commercial products is prohibited and may result in loss of user privileges and other penalties.

FILE 'HOME' ENTERED AT 16:32:28 ON 15 NOV 2010

=> file embase medline biosis biotechds ca caba caplus lifesci scisear
COST IN U.S. DOLLARS SINCE FILE TOTAL
ENTRY
FULL ESTIMATED COST 0.22 0.22

0.22 0.22

FILE 'EMBASE' ENTERED AT 16:33:18 ON 15 NOV 2010 Copyright (c) 2010 Elsevier B.V. All rights reserved.

FILE 'MEDIINE' ENTERED AT 16:33:18 ON 15 NOV 2010

FILE 'BIOSIS' ENTERED AT 16:33:18 ON 15 NOV 2010 Copyright (c) 2010 The Thomson Corporation

FILE 'BIOTECHDS' ENTERED AT 16:33:18 ON 15 NOV 2010 COPYRIGHT (C) 2010 THOMSON REUTERS

FILE 'CA' ENTERED AT 16:33:18 ON 15 NOV 2010
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2010 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'CABA' ENTERED AT 16:33:18 ON 15 NOV 2010 COPYRIGHT (C) 2010 CAB INTERNATIONAL (CABI)

FILE 'CAPLUS' ENTERED AT 16:33:18 ON 15 NOV 2010
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2010 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'LIFESCI' ENTERED AT 16:33:18 ON 15 NOV 2010 COPYRIGHT (C) 2010 Cambridge Scientific Abstracts (CSA)

```
FILE 'SCISEARCH' ENTERED AT 16:33:18 ON 15 NOV 2010
Copyright (c) 2010 The Thomson Corporation
FILE 'CONFSCI' ENTERED AT 16:33:18 ON 15 NOV 2010
COPYRIGHT (C) 2010 Cambridge Scientific Abstracts (CSA)
FILE 'AGRICOLA' ENTERED AT 16:33:18 ON 15 NOV 2010
=> s neisseria group B
           24 NEISSERIA GROUP B
=> s neisseria (10a) group B
         2871 NEISSERIA (10A) GROUP B
=> s 12 and (vaccine or bactericidal or microbicidal or bacteriocidal)
         1484 L2 AND (VACCINE OR BACTERICIDAL OR MICROBICIDAL OR BACT
              L)
=> s 13 and bactericidal
          620 L3 AND BACTERICIDAL
L4
=> s 14 and (MenB919 or MenB 929)
            0 L4 AND (MENB919 OR MENB 929)
=> s 14 and (MenB919 or MenB 919)
L6
           0 L4 AND (MENB919 OR MENB 919)
=> s 14 and neisseria (5a) antigen?
  5 FILES SEARCHED...
  7 FILES SEARCHED...
           76 L4 AND NEISSERIA (5A) ANTIGEN?
=> dup rem 17
PROCESSING COMPLETED FOR L7
            29 DUP REM L7 (47 DUPLICATES REMOVED)
=> d bih ab 1-29
L8 ANSWER 1 OF 29 CA COPYRIGHT 2010 ACS on STN DUPLICATE 1
Text
AN 152:343487 CA
TΤ
    Outer membrane vesicle (OMV) vaccine comprising protein NMB0964 f
    Neisseria meningitidis
IN Bos, Martine Petronella; Poolman, Jan; Stork, Michiel; Tommassen,
    Petrus Maria; Wevnants, Vincent
PA GlaxoSmithKline Biologicals S.A., Belg.; Utrecht University
SO PCT Int. Appl., 43pp.
    CODEN: PIXXD2
DT Patent
LA English
FAN.CNT 1
```

															Page	4 of .	26
	PATEN	KIND		DATE			APPL	NO.	DAT								
PI	WO 20	100	259	64		A1	_	20100311			WO 2	009-	689		21	00	
	Į.	ī:	ΑE,	AG,	AL,	AM,	AO,	AT,	AU,	AZ,	BA,	BB,	BG,	BH,	BR,	BW,	В
			CA,	CH,	CN,	CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DO,	DZ,	EC,	EE,	Ε
			FI,	GB,	GD,	GE,	GH,	GM,	GT,	HN,	HR,	HU,	ID,	IL,	IN,	IS,	J
			KG,	KM,	KN,	KΡ,	KR,	ΚZ,	LA,	LC,	LK,	LR,	LS,	LT,	LU,	LY,	Μ
			ME,	MG,	MK,	MN,	MW,	MX,	MΥ,	ΜZ,	NA,	NG,	NΙ,	NO,	ΝZ,	OM,	Ρ
			PL,	PT,	RO,	RS,	RU,	SC,	SD,	SE,	SG,	SK,	SL,	SM,	ST,	SV,	S
			TM,	TN,	TR,	TΤ,	TZ,	UA,	UG,	US,	UZ,	VC,	VN,	ZA,	ZM,	zw	
	F	:W	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,	FI,	FR,	GB,	GR,	Η
			IE,	IS,	IT,	LT,	LU,	LV,	MC,	MK,	MT,	NL,	NO,	PL,	PT,	RO,	S
			SK,	TR,	BF,	ΒJ,	CF,	CG,	CI,	CM,	GA,	GN,	GQ,	GW,	ML,	MR,	N
			TD,	TG,	BW,	GH,	GM,	KE,	LS,	MW,	MZ,	NA,	SD,	SL,	SZ,	TZ,	U
			ZW,	AM,	ΑZ,	BY,	KG,	ΚZ,	MD,	RU,	ΤJ,	$_{\rm MT}$					
	AU 20	0.7	A1		2008	1231		AU 2	008-	2673	0.7		20	00			
	AU 20	092	2174	25		A1		2010	0325		AU 2	009-	2174	25		20	00
PRAI	GB 20	08-	-164	47		Α		2008	0908								
	WO 20	-EP5	2689	W 20090306													
AB	The r	res	sent	inv	enti.	on re	∍lat	es t	o imi	muno	aeni.	c co	mons		mori.	sina	n

The present invention relates to immunogenic compns. comprising n blebs with upregulated levels of the NMB0964 antigens such that bactericidal antibodies are generated against said antigen. It h found for the first time that this antigen's expression is zinc r and therefore methods are provided to upregulated expression thro removal of the zinc repression mechanism of the cell or promoter, through removal of zinc from the culture medium.

RE.CNT 5 THERE ARE 5 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

ANSWER 2 OF 29 BIOTECHDS COPYRIGHT 2010 THOMSON REUTERS on STN Full Text

DUPLICATE 2

AN 2010-08367 BIOTECHDS

TΙ Design and evaluation in mice of a broadly protective meningococ B native outer membrane vesicle vaccine:

> therapeutic composition comprising outer membrane vesicle vac containing synX, IpxL1 and IgtA gene disabled Neisseria menin useful as vaccine for treatment and prevention of meningitis

ΑU ZOLLINGER WD; DONETS MA; SCHMIEL DH; PINTO VB; LABRIE JE; MORAN BRANDT BL; IONIN B; MARQUES R; WU M; CHEN P; STODDARD MB; KEISER CS WRATR

Zollinger WD, WRAIR, Div Bacterial and Rickettsial Dis, 503 Robe Ave, Silver Spring, MD 20910 USA SO

VACCINE; (2010) 28, 31, 5057-5067 ISSN: 0264-410X

DΨ Journal

LA English

AB

AUTHOR ABSTRACT - A vaccine based on native outer membrane vesic (NOMV) that has potential to provide safe, broad based protectio group B strains of Neisseria meningitidis has been developed. Th antigenically diverse group B strains of N. meningitidis were chosen and genetically modified to improve safety and expression desirable antigens. Safety was enhanced by disabling three genes IpxL1, and IqtA. The vaccine strains were genetically configured

have three sets of antigens each with potential to induce protec antibodies against a wide range of group B strains. Preliminary immunogenicity studies with combined NOMV from the three strains confirmed the capacity of the vaccine to induce a broad based bactericidal antibody response. Analysis of the bactericidal act indicated that antibodies to the LOS were responsible for a majo of the bactericidal activity and that these antibodies may enhan bactericidal activity of anti-protein antibodies. (C) 2010 Elsev Ltd. All rights reserved. (11 pages)

L8 ANSWER 3 OF 29 CA COPYRIGHT 2010 ACS on STN DUPLICATE 3

- AN 152:141980 CA
- TI Immunoproteomic analysis of the development of natural immunity i subjects colonized by Neisseria meningitidis reveals potential **va** candidates
- AU Williams, Jeannette N.; Skipp, Paul J.; O'Connor, C. David; Christodoulides, Myron; Heckels, John E.
- CS Molecular Microbiology, Division of Infection, Inflammation and I Southampton General Hospital, University of Southampton Medical S Southampton, Solf 6YD, UK
- SO Infection and Immunity (2009), 77(11), 5080-5089 CODEN: INFIBR; ISSN: 0019-9567
- PB American Society for Microbiology
- DT Journal
- LA English
- The potential protective effect of existing vaccines against sero AB meningococci, based on outer membrane proteins, is limited by str restriction and apparent short duration of immune responses. In meningococcal colonization is known to stimulate the prodn. of cross-protective antibodies as defined by the development of seru bactericidal activity (SBA) against heterologous serogroup B stra In the current study, a resource of human serum samples and menin carriage strains from studies of longitudinal carriage has been s to immunoproteomic anal. to investigate the outer membrane protei antigens assocd. with the development of SBA to both homologous a heterologous meningococcal serogroup B strains. Proteins from ou membranes of homologous and heterologous strains were sepd. by two-dimensional electrophoresis and reacted with paired sera whic an increase in SBA following colonization. Individuals showed di patterns of reactivity upon colonization, with an increase in SBA assocd. with increases in the no. of spots detected before and af colonization and/or with increases in the intensity of individual Anal. of immunoreactive spots by mass spectrometry resulted in th identification of 43 proteins potentially assocd. with the develo SBA against both homologous and heterologous strains. The list o immunogens generated included not only well-established antigens novel proteins that represent potentially new candidates for incl defined, multicomponent serogroup B vaccines.
- OSC.G 3 THERE ARE 3 CAPLUS RECORDS THAT CITE THIS RECORD (3 CITI RE.CNT 60 THERE ARE 60 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

T.8 ANSWER 4 OF 29 CA COPYRIGHT 2010 ACS on STN DUPLICATE 4

153:171656 CA AN

- Neisseria meningitidis antigen NMB0088: sequence variability, pro TΙ topology and vaccine potential
- Sardinas, Gretel; Yero, Daniel; Climent, Yanet; Caballero, Evelin AU Karem; Niebla, Olivia
- Meningococcal Research Department, Division of Vaccines, Center f CS Genetic Engineering and Biotechnology, Havana, 10600, Cuba
- Journal of Medical Microbiology (2009), 58(2), 196-208 SO
- CODEN: JMMIAV; ISSN: 0022-2615 PB Society for General Microbiology
- DT Journal
- LA English
- AR The significance of Neisseria meningitidis serogroup B membrane p as vaccine candidates is continually growing. Here, the authors different aspects of antigen NMB0088, a protein that is abundant outer-membrane vesicle prepns. and is thought to be a surface pro The gene encoding protein NMB0088 was sequenced in a panel of 34 meningococcal strains with clin. and epidemiol. relevance. After anal., four variants of NMB0088 were identified; the variability confined to three specific segments, designated VR1, VR2 and VR3. Secondary structure predictions, refined with alignment anal. and modeling using FadL of Escherichia coli, revealed that almost all variable regions were located in extracellular loop domains. In the NMB0088 antigen was expressed in E. coli and a procedure for purified recombinant NMB0088 is described. The humoral immune re elicited in BALB/c mice was measured by ELISA and Western blottin the functional activity of these antibodies was detd. in a serum bactericidal assay and an animal protection model. After immuniz in mice, the recombinant protein was capable of inducing a protec response when it was administered inserted into liposomes. the authors' results, the recombinant NMB0088 protein may represe novel antigen for a vaccine against meningococcal disease. Howev results from the variability study should be considered for desig cross-protective formulation in future studies.
- OSC.G THERE ARE 3 CAPLUS RECORDS THAT CITE THIS RECORD (3 CITI RE.CNT 55 THERE ARE 55 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

T.8 ANSWER 5 OF 29 CA COPYRIGHT 2010 ACS on STN DUPLICATE 5

AN

149:126525 CA

- TΙ Sequences of Neisseria ORF2086 proteins as immunogenic compositio the prevention and treatment of meningococcal disease
- IN Zlotnick, Gary W.
- PA Wyeth, John, and Brother Ltd., USA
- SO PCT Int. Appl., 124pp.

CODEN: PIXXD2

DΤ Patent.

T.A English

FAN.CNT 1

															Page	/ of :	26
	PATENT NO.						D	DATE			APPL	NO.	DAT				
<u>PI</u>	WO 2008079372 WO 2008079372 WO 2008079372							0212		WO 2	238	200					
	WO.	W:	AE, CH, GB, KM, MG, PT, TR, AT, IS, BJ, GH,	AG, CN, GD, KN, MK, RO, TT, BE, IT, CF,	AL, CO, GE, KP, MN, RS, TZ, BG, LT, CG, KE,	AM, CR, GH, KR, MW, RU, UA, CH, LU, CI, LS,	AT, CU, GM, KZ, MX, SC, UG, CY, LV, CM, MW,	AU, CZ, GT, LA, MY, SD, US, CZ, MC, GA, MZ, TJ,	AZ, DE, HN, LC, MZ, SE, UZ, DE, MT, GN,	DK, HR, LK, NA, SG, VC, DK, NL, GQ, SD,	DM, HU, LR, NG, SK, VN, EE, PL, GW, SL,	DO, ID, LS, NI, SL, ZA, ES, PT, ML, SZ,	DZ, IL, LT, NO, SM, ZM, FI, RO, MR, TZ,	EC, IN, LU, NZ, SV, ZW FR, SE, NE,	EE, IS, LY, OM, SY, GB, SI, SN,	EG, JP, MA, PG, TJ, GR, SK, TD,	E K M P T H T
PRAI	AU 2007338690 CA 2673515 EP 2094294 R: AT, BE, BC IS, IT, L: JP 2010512792 MX 2009006760 CN 101631858 IN 2009DN04182 US 2006-876486P			BG, LI,	A1 A2 CH, T A A A	CY, LU,	2008 2009 CZ, LV, 2010 2009 2010 2010	AR 2007-105809 AU 2007-338690 CA 2007-2673515 EP 2007-853461 DK, EE, ES, FI, FR, GB, GR, MT, NL, PL, PT, RO, SE, SI, JP 2009-542957 MX 2009-6760 CN 2007-80047494 IN 2009-DN4182 20									

The present invention relates to Neisseria ORF2086 proteins, cros immunogenic proteins which can be isolated from neisserial strain prepd. recombinantly, including immunogenic portions thereof, bio thereof, antibodies that immunospecifically bind to the foregoing nucleic acid sequences encoding each of the foregoing, as well as of same in immunogenic compns. that are effective against infection Neisseria meningitidis serogroup B. A Neisserial membrane protei capable of eliciting bactericidal antibodies against heterologous strains was identified. Recombinant lipidated protein ORF2086 (R was cloned and purified. Antiserum against meningococcal strains produced.

L8 ANSWER 6 OF 29 CA COPYRIGHT 2010 ACS on STN DUPLICATE 6

AN 149:87223 CA

AB

TI A comparison of anionic nanoparticles and microparticles as **vacci** delivery systems

AU Wendorf, Janet; Chesko, James; Kazzaz, Jina; Ugozzoli, Mildred; V Michael; O'Hagan, Derek; Singh, Manmohan

CS Novartis Vaccines and Diagnostics, Inc., Emeryville, CA, USA

SO Human Vaccines (2008), 4(1), 44-49 CODEN: HVUAAK; ISSN: 1554-8600

PB Landes Bioscience

DT Journal

```
Page 8 of 26
LA
     English
AB
    The objective of this work was to conduct an in vivo comparison o
    nanoparticles and microparticles as vaccine delivery systems. Po
     (lactide-co-glycolide) (PLG) polymers were used to create nanopar
     size 110 nm and microparticles of size 800-900 nm. Protein antig
    then adsorbed to these particles. The efficacy of these delivery
     was tested with two protein antigens. A recombinant antigen from
     Neisseria meningitides type B (MenB) was administered i.m. (i.m.)
     intraperitonealy (i.p.). An antigen from HIV-1, env glycoprotein
    was administered intranasally (i.n.) followed by an i.m. boost.
     three studies, there were no differences between the nanoparticle
    microparticles formulations. Both particles led to comparable im
     responses in mice. The immune responses for MenB (serum bacteric
     activity and antibody titers) were equiv. to the control of alumi
     hydroxide. For the gp140, the LTK63 was necessary for high titer
     nanoparticles and microparticles are promising delivery systems.
OSC.G
           THERE ARE 4 CAPLUS RECORDS THAT CITE THIS RECORD (4 CITI
RE.CNT 32
            THERE ARE 32 CITED REFERENCES AVAILABLE FOR THIS RECORD
             ALL CITATIONS AVAILABLE IN THE RE FORMAT
L8
    ANSWER 7 OF 29 CA COPYRIGHT 2010 ACS on STN
                                                  DUPLICATE 7
AN
     147:116458 CA
    Vaccines for use in Neisseria meningitidis infection
TΙ
IN
    Tang, Christoph Marcel; Li, Yanwen
PA
    Imperial Innovations Limited, UK
SO
   PCT Int. Appl., 25 pp.
    CODEN: PIXXD2
DT
    Patent
LA
    English
FAN.CNT 2
     PATENT NO.
                       KIND DATE
                                         APPLICATION NO.
                        ----
    WO 2007072032
                        A2
                               20070628
                                           WO 2006-GB4877
    WO 2007072032
                         A3
                               20070907
```

```
DAT
       AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, C
        CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, G
        GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, K
        KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, M
        MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, P
        RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, T
        TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW
    RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, H
        IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR, B
        CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG, B
        GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, A
        KG, KZ, MD, RU, TJ, TM, AP, EA, EP, OA
WO 2006067518
                    A2
                          20060629 WO 2005-GB5113
                                                              200
WO 2006067518
                    A3
                          20061123
       AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, C
        CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, G
```

GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, K KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, M

```
MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, S
            SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, U
            VN, YU, ZA, ZM, ZW
        RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, H
            IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR, B
            CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG, B
            GM. KE, LS. MW. MZ. NA. SD. SL. SZ. TZ. UG. ZM. ZW. AM. A
            KG, KZ, MD, RU, TJ, TM
                               20070628
                                           AU 2006-328153
     AU 2006328153
                         A1
     CA 2634911
                         Α1
                                20070628
                                           CA 2006-2634911
     EP 1976556
                         A2
                               20081008
                                           EP 2006-831443
            AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, H
            IS, IT, LI, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, T
     JP 2009520491
                                           JP 2008-546628
                         T
                               20090528
     US 20080138357
                         A1
                                           US 2007-722690
                               20080612
     NO 2008002810
                         A
                               20080812
                                           NO 2008-2810
     MX 2008008330
                        A
                               20080820
                                           MX 2008-8330
                                                                  200
                                           KR 2008-7017965
     KR 2008090447
                        A
                              20081008
                                                                  200
     CN 101370514
                        A
                              20090218
                                           CN 2006-80051689
                                                                  200
     US 20090226479
                        A1
                               20090910
                                           US 2008-158919
                                                                  200
PRAI WO 2005-GB5113
                         A
                               20051223
     WO 2004-GB5441
                               20041223
                         Α
     WO 2006-GB4877
                         W
                               20061221
```

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

AB Disclosed are various polypeptides, variants or fragments thereof fusion proteins which are useful as vaccine for meningococcal dis The inventors used genetic screening for immunogens (GSI) to scre libraries of insertional mutants of N. meningitidis for strains w less susceptible to killing by bactericidal antibodies. GSI was screen a library of approx. 40,000 insertional mutants of MC58, a serogroup B isolate of N. meningitidis, with known complete genom sequence. Using this methodol. 14 new sequences were identified.

ANSWER 8 OF 29 CA COPYRIGHT 2010 ACS on STN L8 DUPLICATE 8 Full

```
Text
```

- AN 148:314817 CA
- ΤI The potency of the adjuvant, CpG oligos, is enhanced by encapsula PLG microparticles
- ΑU Malyala, Padma; Chesko, James; Ugozzoli, Mildred; Goodsell, Amand Fengmin; Vajdy, Michael; O'Hagan, Derek T.; Singh, Manmohan
- Novartis Vaccines and Diagnostics, Emeryville, CA, 94608, USA CS
- SO Journal of Pharmaceutical Sciences (2007), Volume Date 2008, 97(3
 - CODEN: JPMSAE; ISSN: 0022-3549
- PB Wiley-Liss, Inc.
- DT Journal
- LA English
- AB The objective of this work was to evaluate the potency of the CpG oligonucleotide encapsulated within poly(lactide-co-glycolide), a coadministered with antigen adsorbed to poly(lactide-co-glycolide microparticles (PLG particles). The formulations evaluated inclu added in sol. form, CpG adsorbed, and CpG encapsulated. The anti from Neisseria meningitidis serotype B (Men B) was used in these

studies. The immunogenicity of these formulations was evaluated Poly(lactide-co-glycolide) microparticles were synthesized by a w emulsification method in the presence of a charged surfactant for formulations. Neisseria meningitidis B protein was adsorbed to t microparticles, with binding efficiency and initial release measu was either added in the sol. or adsorbed or encapsulated form bas type of formulation. The binding efficiency, loading, integrity initial release of CpG and the antigen were measured from all the formulations. The formulations were then tested in mice for thei to elicit antibodies, bactericidal activity and T cell responses. Encapsulating CpG within PLG microparticles induced statistically significant higher antibody, bactericidal activity and T cell res when compared to the traditional method of delivering CpG in the

OSC.G 8 THERE ARE 8 CAPLUS RECORDS THAT CITE THIS RECORD (8 CITI RE.CNT 17 THERE ARE 17 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

T.8 ANSWER 9 OF 29 CA COPYRIGHT 2010 ACS on STN DUPLICATE 9

erferences 141:37593 CA AN

- ТΤ Multiple variants of meningococcal protein NMB1870
- TN Comanducci, Maurizio; Pizza, Mariagrazia
- PΆ Chiron S.r.l., Italy
- PCT Int. Appl., 77 pp. SO CODEN: PIXXD2
- Patent DΨ

F

DI	ratent																	
LA	English																	
FAN.	CNT 1																	
	PATENT	NO.			KIN:	D	DATE			APPL	DAT							
						_												
PI	WO 2004	0484	04		A2 2004061						200							
	WO 2004048404				A3		20040916											
	W:	ΑE,	AG,	AL,	AM,	AT,	AU,	AZ,	ΒA,	BB,	BG,	BR,	BW,	BY,	BZ,	С		
		CN,	CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	EG,	ES,	FΙ,	G		
		GE,	GH,	GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	KE,	KG,	KΡ,	KR,	K		
		LK,	LR,	LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	N		
		NZ,	OM,	PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,	SL,	S		
		TM,	TN,	TR,	TT,	TZ,	UA,	UG,	US,	UZ,	VC,	VN,	YU,	ZA,	ZM,	Z		
	RW:	BW,	GH,	GM,	KE,	LS,	MW,	MZ,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	Α		
		BY,	KG,	KZ,	MD,	RU,	TJ,	TM,	AT,	BE,	BG,	CH,	CY,	CZ,	DE,	D		
		ES,	FI,	FR,	GB,	GR,	HU,	IE,	IT,	LU,	MC,	NL,	PT,	RO,	SE,	S		
		TR,	BF,	BJ,	CF,	CG,	CI,	CM,	GA,	GN,	GQ,	GW,	ML,	MR,	NE,	S		
	CA 2507	009			A1		2004	0610		200								
	AU 2003	2886	81		A1		2004	0618		2	00							
	AU 2003	2886	81		В2		2009	0604										
	EP 1562	983			A2		2005	0817		EP 2	003-	7805	28		2	00		
	R:	AT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	IT,	LI,	LU,	NL,	SE,	М		
		IE,	SI,	LT,	LV,	FI,	RO,	MK,	CY,	AL,	TR,	BG,	CZ,	EE,	HU,	S		
	BR 2003	0165	01		A		2005	1004		BR 2	003-	1650	1		2	00		
	CN 1732				Α		2006	0208		CN 2	003-	8010	7687		2	00		
	CN 1003	8146	4		С		2008	0416										
	JP 2006	5217	82		T		2006	0928		JP 2	004-	5548	54		200			

													F	'age I	l of :	26			
	NZ 5402	0.6			Α		2006	1222		NZ 2	003-	5402	0.6		21	00			
	RU 2336				C2		2008	1020		RU 2	005-	1196	40		2	00			
	MX 2005	00544	2		Α		2005	0826		MX 2	005-	5442			2	00			
	US 2006				A1		2006	1109		US 2	S 2005-536215								
	HK 1088				A1		2009			HK 2						00			
	JP 2010	16203	8		Α		2010	0729		JP 2	010-	5991	5		2	01			
PRAI	GB 2002				Α		2002	1122											
	JP 2004	А3		2003	1121														
	WO 2003				M		2003	1121											
ASSI	GNMENT H	ISTOR	Y FC	R US	PA:	CENT	AVA	ILABI	LE I	N LS	US D	ISPL.	AY F	ORMA'	Г				
AB	The aut															at			
	eliciti																		
	across																		
	sequenc																		
	Serum r																		
	variant																		
	other t																		
	inter-v																		
	therefo																		
	1870.				0 0 .		00 111		• ••		0 2111 5								
osc.	.G 2	THE	RE A	RE 2	CAI	PLUS	REC	ORDS	THA	T CI	TE T	HIS :	RECO:	RD (2 CI	ΓI			
RE.C	CNT 3						REFE:												
		ALL	CIT	ATIO	NS A	IAVAI	LABL:	E IN	THE	RE	FORM	AT							
L8	ANSWER	10 OF	29	CA	COL	PYRI	GHT :	2010	ACS	on	STN	D'	UPLI	CATE	10				
	ull																		
************	ext ⊬lar																		
AN	140:362																		
TI	Sequenc																		
	making		nes	for	broa	ad p	rote	ction	n ag	ains	t hy	perv	irul	ent 1	meni	ng			
	lineage																		
IN	Pizza,																		
PA	Chiron																		
SO	PCT Int			53 p	p.														
	CODEN:	PIXXD	2																
DT	Patent																		
LA	English																		
FAN.	CNT 1																		
	PATENT				KINI		DATE			APPL						AΤ			
PI	WO 2004				A1		2004			WO 2						00			
	W:						ΑU,												
							DK,												
							IL,												
							MA,												
							RO,									Τ			
							UG,												
	RW:	GH,																	
		KG,	KZ,	MD,	RU,	TJ,	TM,						CZ,	DE,	DK,	Ε			

CA 2501812

AU 2003274511

AÚ 2003274511

20040422

20040504

20090604

Α1

Α1

В2

FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, S BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, T

CA 2003-2501812

AU 2003-274511

200

200

														ı	age 1	2 01	26
	EP	1549	338			A1	2005		EP	200		20					
		R:	ΑT,	BE,	CH,	DE,	DK, ES,	FR,	GB,	GF	, I	Τ,	LI,	LU,	NL,	SE,	M
			IE,	SI,	LT,	LV,	FI, RO,	MK,	CY,	. AI	, I	R,	BG,	CZ,	EE,	ΗU,	S
	BR	2003	0152	28		A	2006	0411		BR	200	3-	1522	8		2	00
	JP	2006	5124	02		T	2006	0413		JP	200	5-!	5010	0.8		2	00
	CN	1809	380			A	2006	0726		CN	200	3-1	3010	5896		2	00
	NZ	5629	98			A	2008	0530		NZ	200	3-5	5629	98		2	00
	RU 2333007						2008	0910		RU	200	5-	1143	66		2	00
	MX	2005	0038	63		A	2005	0908		MX	200	5-	3863			2	00
	US	US 20060171957				A1	2006	20060803			200	200					
	JP	2010	2156	28		A	2010	20100930			201	0-1	3906	1		2	01
PRAI	GB	2002	-237	41		A	2002	21011									
	GB	2003	-583	1		A	2003	0313									
	GB	2003	-911	5		A	2003	0422									
	JP	2005	-501	008		А3	2003	31002									
	WO	2003	-IB4	848		M	2003	31002									
																-	

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

- A small no. of defined antigens can provide broad protection agai meningococcal infection, and the invention provides a compn. whic administration to a subject, is able to induce an antibody respon that subject, wherein the antibody response is bactericidal again or three of hypervirulent lineages A4, ET 5 and lineage 3 of N.meningitidis serogroup B. Rather than consisting of a single an the compn. comprises a mixt. of 10 or fewer purified antigens, an not include complex or undefined mixts. of antigens such as outer vesicles. Five protein antigens are used in particular: (1) a 'N protein; (2) a '741' protein; (3) a '936' protein; (4) a '953' pr and (5) a '287' protein.
- OSC.G THERE ARE 7 CAPLUS RECORDS THAT CITE THIS RECORD (7 CITI THERE ARE 6 CITED REFERENCES AVAILABLE FOR THIS RECORD RE.CNT 6 ALL CITATIONS AVAILABLE IN THE RE FORMAT
- L8 ANSWER 11 OF 29 CA COPYRIGHT 2010 ACS on STN DUPLICATE 11

AN 142:21974 CA

- TΙ Development of immunity to serogroup B meningococci during carria Neisseria meningitidis in a cohort of university students
- Jordens, J. Zoe; Williams, Jeannette N.; Jones, Graeme R.; AU Christodoulides, Myron; Heckels, John E.
- CS Molecular Microbiology and Infection Group, Division of Infection Inflammation and Repair, University of Southampton Medical School Southampton, UK
- SO Infection and Immunity (2004), 72(11), 6503-6510 CODEN: INFIBR; ISSN: 0019-9567
- PB American Society for Microbiology
- DT Journal
- LA English
- AB Understanding the basis of protective immunity is a key requireme the development of an effective vaccine against infection with Ne meningitidis of serogroup B. The authors have conducted a longit study into the dynamics of meningococcal acquisition and carriage first-year university students. The detection of carriage of ser meningococci correlated with an increase in detection of serum

bactericidal activity (SBA) against both colonizing and heterolog serogroup B strains. Once induced, SBA remained high throughout study. Although students showed increases in antibodies reactive capsular polysaccharide and lipopolysaccharide (LPS), these antib responses were transitory, and their decline was not accompanied corresponding decline in SBA. In contrast, there was a significa correlation between the presence of antibodies to the PorA outer protein and SBA against both homologous and heterologous strains. induced by a PorA-neg. mutant confirmed the contribution of PorA heterologous activity. Increases in SBA against a range of serog strains were also obsd. in students in whom no meningococcal carr detected. This heterologous protection could not be assocd. with presence of antibodies reacting with capsule, LPS, PorA, PorB, Rm Opc, or pilin, demonstrating that other, as yet unidentified, ant contribute to the development of immunity to serogroup B meningoc Identification of such antigens with the ability to induce an eff cross-reactive bactericidal response to a range of strains would major step in the prodn. of a universally effective vaccine again infections caused by serogroup B meningococci.

THERE ARE 11 CAPLUS RECORDS THAT CITE THIS RECORD (11 CI OSC.G 1.1 RE.CNT 38 THERE ARE 38 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

ANSWER 12 OF 29 CA COPYRIGHT 2010 ACS on STN DUPLICATE 12

Full Text Peterences

140:373626 CA AN

- Protective Activity of Monoclonal Antibodies to Genome-Derived Ne TΤ Antigen 1870, a Neisseria meningitidis Candidate Vaccine
- Welsch, Jo Anne; Rossi, Raffaella; Comanducci, Maurizio; Granoff, AH Children's Hospital Oakland Research Institute, Oakland, CA, 9460 CS
- SO Journal of Immunology (2004), 172(9), 5606-5615 CODEN: JOIMA3; ISSN: 0022-1767
- PB American Association of Immunologists
- DT Journal
- LA
- English AB Genome-derived neisserial Aq (GNA) 1870 is a meningococcal vaccin candidate that can be subdivided into three variants based on ami sequence variability. Variant group 1 accounts for ~60% of disease-producing group B isolates. The Ag went unrecognized unt discovery by genome mining because it is expressed in low copy no strains. To investigate the relationship between Ab binding to G and complement-mediated protective functions, we prepd. a panel o murine IgG mAbs against rGNA1870 (variant 1) and evaluated their against nine genetically diverse encapsulated Neisseria meningiti strains expressing subvariants of variant 1 GNA1870. Based on fl cytometry with live encapsulated bacteria, surface accessibility epitopes recognized by the mAbs appeared to be low in most strain mAb concns. <1 to 5 ug/mL were sufficient to elicit bactericidal activity with human complement and/or activate C3b deposition on bacterial surface. Certain combinations of mAbs were highly bactericidal against strains that were resistant to bactericidal activity of the resp. individual mAbs. The mAbs conferred passiv

protection against bacteremia in infant rats challenged by strain

resistant to bacteriolysis, and the protective activity parallele ability of the mAb to activate C3b deposition. Thus, despite low surface exposure, anti-GNA1870 variant 1 Abs are bactericidal and elicit C3b deposition and confer protection against bacteremia ca encapsulated N. meningitidis strains expressing GNA1870 subvarian proteins. The data support GNA1870 as a promising vaccine candid prevention of meningococcal group B disease caused by GNA1870 var strains.

OSC.G 47 THERE ARE 47 CAPLUS RECORDS THAT CITE THIS RECORD (47 CI RE.CNT 40 THERE ARE 40 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

L8 ANSWER 13 OF 29 CA COPYRIGHT 2010 ACS on STN DUPLICATE 13

- AN 140:75593 CA
- TΙ Liposomal meningococcal B vaccination: Role of dendritic cell tar the development of a protective immune response
- ΑIJ Arigita, Carmen; Bevaart, Lisette; Everse, Linda A.; Koning, Gerb Hennink, Wim E.; Crommelin, Daan J. A.; van de Winkel, Jan G. J.; Vugt, Martine J.; Kersten, Gideon F. A.; Jiskoot, Wim
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical CS (UIPS), Utrecht University, Utrecht, Neth.
- SO Infection and Immunity (2003), 71(9), 5210-5218 CODEN: INFIBR; ISSN: 0019-9567
- American Society for Microbiology PB
- DT Journal
- LA English
- AB The effect of targeting strategies for improving the interaction liposomal PorA with dendritic cells (DC) on the immunogenicity of investigated. PorA, a major antigen of Neisseria meningitidis, w purified and reconstituted in different types of (targeted) lipos i.e., by using mannose or phosphatidylserine as targeting moietie with pos. charged liposomes. The authors studied the efficiency liposome uptake and its effect on the maturation of and interleuk (IL-12) prodn. by murine DC. Moreover, mice were immunized s.c. the localization and immunogenicity of PorA liposomes. Uptake of liposomes by DC was increased for targeted liposomes and resulted maturation of DC, but to various degrees. Maturation markers (i. CD86, MHC class II, and CD40) showed enhanced expression on DC in with targeted PorA liposomes relative to those incubated with non PorA liposomes. Moreover, only the uptake of targeted PorA lipos induced prodn. of IL-12 by DC, with levels similar to those produ lipopolysaccharide (LPS)-pulsed DC. Mannose-targeted PorA liposo administered s.c. had an increased localization in draining lymph compared to non-targeted PorA liposomes. Liposomes in draining l nodes interacted preferentially with antigen-presenting cells, an that was enhanced with targeted PorA liposomes. Immunization stu showed an improvement of the bactericidal antibody response (i.e. increased no. of responders) generated by targeted PorA liposomes to that generated by non-targeted ones or LPS-contg. outer membra vesicles. Thus, the use of targeted PorA liposomes results in an uptake by and activation of DC and an increased localization in d lymph nodes. These effects correlate with an enhanced immune res

toward the vaccine.

- OSC.G 24 THERE ARE 24 CAPLUS RECORDS THAT CITE THIS RECORD (24 CI RE.CNT 35 THERE ARE 35 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT
- L8 ANSWER 14 OF 29 EMBASE COPYRIGHT (c) 2010 Elsevier B.V. All rig

reserved on STN

DUPLICATE 14

- AN 2004003955 EMBASE
- TI Antibody to Genome-Derived Neisserial Antigen 2132, a Neisseria meningitidis Candidate Vaccine, Confers Protection against Bacter the Absence of Complement-Mediated Bactericidal Activity.
- AU Welsch, Jo Anne; Moe, Gregory R.; Rossi, Raffaella; Granoff, Dan (correspondence)
- CS Children's Hosp. Oakland Res. Inst., Oakland, CA, United States. dgranoff@chori.org
- AU Adu-Bobie, Jeannette; Rappuoli, Rino
- CS Immunobiological Res. Inst. of Siena, Chiron S.r.l., Siena, Italy
- AU Granoff, Dan M., Dr. (correspondence)
- CS Children's Hospital, Oakland Research Institute, 5700 Martin Luth Jr. Way, Oakland, CA 94609, United States. dgranoff@chori.org
- 50 Journal of Infectious Diseases, (1 Dec 2003) Vol. 188, No. 11, pp 1730-1740. Refs: 33
 - ISSN: 0022-1899 CODEN: JIDIAQ
- CY United States
- DT Journal; Article
- FS 026 Immunology, Serology and Transplantation
- 004 Microbiology: Bacteriology, Mycology, Parasitology and Vi
- LA English
- SL English
- ED Entered STN: 16 Jan 2004
 - Last Updated on STN: 16 Jan 2004
- AB Genome-derived neisserial antigen 2132 (GNA2132) is a novel vacci candidate that was identified during the Neisseria meningitidis g B strain MC58 genome-sequencing project. To assess the vaccine potential of GNA2132, we prepared antisera from mice immunized wi recombinant GNA2132 (gene from strain NZ394/ 98). Anti-GNA2132 a bound to the surface of live bacteria from all 7 capsular group B strains tested and elicited deposition of human C3b on the bacter surface. However, with human or infant-rat complement, anti-GNA2 no detectable bactericidal activity (titer, <1:4) against the nom strain, NZ394/98, and was bactericidal against only 2 of the othe strains tested. These differences between strains were unrelated GNA2132 amino acid sequence or level of protein expression. Desp of bactericidal activity, anti-GNA2132 antiserum passively protec infant rats against meningococcal bacteremia after challenge with resistant strains. GNA2132 is thus a promising vaccine candidate prevention of disease caused by N. meningitidis.
- L8 ANSWER 15 OF 29 CA COPYRIGHT 2010 ACS on STN DUPLICATE 15

- AN 139:51298 CA
- Serological correlates of protection against meningococci in a co TΙ university students, before and during an outbreak of serogroup C infection
- AU Williams, Jeannette N.; Jones, Graeme R.; Christodoulides, Myron; John E.
- CS Molecular Microbiology and Infection Group, University of Southam Medical School, Southampton, UK Journal of Infectious Diseases (2003), 187(9), 1433-1441 SO
- CODEN: JIDIAQ; ISSN: 0022-1899
- PB University of Chicago Press
- DT Journal
- LA English AB The assocn, between individual meningococcal antigens and the dev of protective immunity to both serogroup C and B meningococci was before and during an outbreak of serogroup C infection among univ students. Persons who became infected showed, in serum taken eit before infection or on admission to the hospital, low levels of bactericidal activity against the outbreak strain; patients who s infection developed bactericidal activity that correlated with pr antibodies to serogroup C capsular polysaccharide but not to eith lipopolysaccharide or major outer-membrane proteins. Uninfected classmates also showed a strong correlation between bactericidal activity and the presence of anti-capsular antibodies. In contra bactericidal activity against serogroup B did not correlate with presence of antibodies to capsular polysaccharide but did correla antibodies reacting with the porin proteins PorA and PorB. These support the introduction of conjugate MenC vaccines, validate str for prevention of serogroup B infection that are based on vaccine
- OSC.G THERE ARE 6 CAPLUS RECORDS THAT CITE THIS RECORD (6 CITI 6 RE.CNT 36 THERE ARE 36 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

PorA, and suggest that PorB may also be an important component of

L8 ANSWER 16 OF 29 CA COPYRIGHT 2010 ACS on STN DUPLICATE 16

Full Text

139:349440 CA AN

vaccines.

- TΙ Immune response to native NadA from Neisseria meningitidis and it expression in clinical isolates in Brazil
- ΑU Fukasawa, Lucila O.; Gorla, Maria Cecilia O.; Lemos, Ana Paula S. Schenkman, Rocilda P. F.; Brandileone, Maria Cristina C.; Fox, Ja Raw, Isaias; Frasch, Carl E.; Tanizaki, Martha M.
- CS Centro de Biotecnologia, Instituto Butantan, Sao Paulo, 05504-900
- SO Journal of Medical Microbiology (2003), 52(2), 121-125 CODEN: JMMIAV; ISSN: 0022-2615
- PB Lippincott Williams & Wilkins
- DT Journal
- LA English
- AB A mAb against the NadA protein from Neisseria meningitidis strain (serosubtype B:2b:P1.2:P5.2,8) demonstrated strong bactericidal a against Brazilian epidemic serogroup B strain N44/89 (B:4,7:P1.19,15:P5.5,7) and a serogroup C strain, IMC 2135 (C:2a:

but not against another serogroup C strain, N1002/90 (C:2b:P1.3:P The immunogenicity of native NadA in an outer-membrane vesicle (O prepn. was also tested. Serum from mice immunized with OMV from B strain N44/89, which contains the NadA protein, showed bacteric activity against serogroup B and C strains possessing NadA. In d anal. of 100 serogroup B and 100 serogroup C isolates from Brazil patients, the mAb to NadA recognized about 60 % of the samples fr serogroups. The mol. mass of the NadA protein from strain N44/89 mass spectrometry was 37 971 Da and the peptide sequences were id to those of NadA from N. meningitidis strain MC58.

OSC.G 7 THERE ARE 7 CAPLUS RECORDS THAT CITE THIS RECORD (7 CITI RE.CNT 24 THERE ARE 24 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

L8 ANSWER 17 OF 29 CA COPYRIGHT 2010 ACS on STN DUPLICATE 17

AN 136:133267 CA

- TI A novel mimetic **antigen** eliciting protective antibody to **Neisseri** meningitidis
- AU Granoff, Dan M.; Moe, Gregory R.; Giuliani, Marzia M.; Adu-Bobie, Jeannette; Santini, Laura; Brunelli, Brunella; Piccinetti, France Zuno-Mitchell, Patricia; Lee, Sharon S.; Neri, Paolo; Bracci, Lui Lozzi, Luisa; Rappuoli, Rino
- CS Children's Hospital Oakland Research Institute, Oakland, CA, 9460
- SO Journal of Immunology (2001), 167(11), 6487-6496 CODEN: JOIMA3; ISSN: 0022-1767
- PB American Association of Immunologists

meningococcal vaccine candidates.

- DT Journal
- LA English
- AB Mol. mimetic Ags are of considerable interest as vaccine candidat Yet there are few examples of mimetic Ags that elicit protective against a pathogen, and the functional activity of anti-mimetic A not been studied in detail. As part of the Neisseria meningitidi serogroup B genome sequencing project, a large no. of novel prote identified. Herein, we provide evidence that genome-derived Ag 3 (GNA33), a lipoprotein with homol. to Escherichia coli murein transqlycosylase, elicits protective Ab to meningococci as a resu mimicking an epitope on loop 4 of porin A (PorA) in strains with serosubtype P1.2. Epitope mapping of a bactericidal anti-GNA33 m using overlapping peptides shows that the mAb recognizes peptides GNA33 and PorA that share a QTP sequence that is necessary but no sufficient for binding. By flow cytometry, mouse antisera prepd. rGNA33 and the anti-GNA33 mAb bind as well as an anti-PorA P1.2 m surface of eight of nine N. meningitidis serogroup B strains test the P1.2 serosubtype. Anti-GNA33 Abs also are bactericidal for m P1.2 strains and, for susceptible strains, the activity of an ant mAb is similar to that of an anticapsular mAb but less active tha anti-P1.2 mAb. Anti-GNA Abs also confer passive protection again bacteremia in infant rats challenged with P1.2 strains. Thus, GN represents one of the most effective immunogenic mimetics vet des These results demonstrate that mol. mimetics have potential as
- OSC.G 38 THERE ARE 38 CAPLUS RECORDS THAT CITE THIS RECORD (38 CI

RE.CNT 43 THERE ARE 43 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

L8 ANSWER 18 OF 29 CA COPYRIGHT 2010 ACS on STN DUPLICATE 18

Full 1800 Text 1901 AN 123:141117 CA

OREF 123:25093a,25096a

- TI A linear B-cell epitope on the class 3 outer-membrane protein of Neisseria meningitidis recognized after vaccination with the Norw group B outer-membrane vesicle vaccine
- AU Delvig, Alexei A.; Wedege, Elisabeth; Caugant, Dominique a.; Dals Kolberg, Jan; Achtman, Mark; Rosenqvist, Einar
- CS National Institute of Public Health, Departments of Vaccines and Bacteriology, Oslo, N-0462, Norway
- SO Microbiology (Reading, United Kingdom) (1995), 141(7), 1593-600 CODEN: MROBEO; ISSN: 1350-0872
- PB Society for General Microbiology
- DT Journal
- LA English
- AB The class 3 outer-membrane protein (OMP) of Neisseria meningitidi potential target for bactericidal and opsonic antibodies in human Synthetic peptides spanning the class 3 OMP from the vaccine stra 44/76 (B:15:P1.7,16:L3,7) were synthesized on pins and screened w obtained from Norwegian adolescents immunized with a meningococca serogroup B outer-membrane vesicle (OMV) vaccine. A strong IgG r to a single peptide (19FHONGOVTEVTT30) located within loop 1 (VR1 stimulated after three doses of OMV vaccine in three vaccinees se on the basis of their antibody response to class 3 OMP. No clear B-cell epitopes were recognized by four different murine serotype 15-specific mAbs. A 23mer peptide (D63b2) contg. loop 1 of the c OMP was synthesized, and the IgG responses were measured in prepost-vaccination serum from 27 vaccinees. Specific IgG rose sign in 37% of vaccines 6 wk after the second dose and in 74% of the v 6 wk after the third dose of the OMV vaccine. Most immune sera r distinctly on immunoblots with denatured class 3 OMP, and the

immunoblotting reactivity correlated strongly with concn. of the antibodies specific for peptide D63b2. When added to a post-vacc serum from one vaccinee, peptide D63b2 competed efficiently with 3 OMP for specific antibody binding on immunoblots and in pin ELI results show that the significant part of the humoral response to meningococcal class 3 OMP elicited by vaccination with the Norweg vaccine was directed against a single continuous epitope.

OSC.G 14 THERE ARE 14 CAPLUS RECORDS THAT CITE THIS RECORD (14 CI

L8 ANSWER 19 OF 29 EMBASE COPYRIGHT (c) 2010 Elsevier B.V. All rig

reserved on STN

DUPLICATE 19

- AN 1995240219 EMBASE
- TI Surface antigen analysis of group B Neisseria meningitidis outer membrane by monoclonal antibodies: Identification of bactericidal antibodies to class 5 protein.
- AU Danelli, M.D.G.M. (correspondence); Batoreu, N.M.; Lacerda, M.D.;

- Ferreira, C.R.B.; Cardoso, J.D.; Peralta, J.M.; Frasch, C.E.
- Depto. Desenvolvimento Tecnologico, Fundacao Oswaldo Cruz, Insto. CS Tecnologia Immunobiologicos, Av. Brasil 4365, Rio de Janeiro, 210 RJ. Brazil.
- SO Current Microbiology, (1995) Vol. 31, No. 3, pp. 146-151. ISSN: 0343-8651 CODEN: CUMIDD
- CY United States
- DT Journal: Article
- FS Microbiology: Bacteriology, Mycology, Parasitology and Vi
- LA English
- SL English
- ED Entered STN: 30 Aug 1995
- Last Updated on STN: 30 Aug 1995
- Twenty-four monoclonal antibodies (mAbs) against group B Neisseri AB meningitidis surface antigens were analyzed by immunoenzymatic as and by a bactericidal test. Two mAbs were specific to polysaccha and one to lipopolysaccharide. The others were directed against membrane proteins ranging in molecular mass from 25 to 200 kDa. membrane protein epitopes recognized by the mAbs were not conform and were located on the outer surface of the microorganism. Line epitopes on the class 5 protein, exposed on the surface of the me were able to induce bactericidal antibodies to the homologous str The susceptibility of Neisseria meningitidis to these antibodies unchanged when this organism was cultivated under conditions of i depletion. These results demonstrate that peptides derived from proteins are potentially important in synthetic peptide or in rec protein vaccines containing linear bactericidal epitopes.

L8 ANSWER 20 OF 29 CA COPYRIGHT 2010 ACS on STN DUPLICATE 20

AN 122:7450 CA

OREF 122:1719a,1722a

- TΙ
- Immunization with a multiple antigen peptide containing defined B T-cell epitopes: production of bactericidal antibodies against gr B Neisseria meningitidis
- Christodoulides, Myron; Heckels, John E. AU
- CS Southampton General Hospital, Univ. Southampton, Southampton, SO1
- SO Microbiology (Reading, United Kingdom) (1994), 140(11), 2951-60 CODEN: MROBEO; ISSN: 1350-0872
- PB Society for General Microbiology
- DT Journal
- T.A English
- Previous anal. of the class 1 outer-membrane (OM) protein of Neis AB meningitidis has identified discrete epitopes to be potential tar immune attack. The conformation of these epitopes is important f inducing antibodies which can react with the native protein and p complement-mediated lysis of the meningococcus. The multiple ant peptide (MAP) system, which consists of an oligomeric branching 1 core to which are attached dendritic arms of defined peptide anti confers some conformational stability and also allows for the pre immunogens contg. both B-cell and T helper (Th)-cell epitopes. I study, MAPs were synthesized to contain (i) the subtype P1.16b meningococcal class 1 protein B-cell epitope (B-MAP), and (ii) th

epitope in tandem with a defined Th-cell epitope, chosen from tet toxin (BT-MAP). The B-MAP was non-immunogenic in animals. In co incorporation of the Th-cell epitope into BT-MAP induced a strong response towards the class 1 protein B-cell epitope. Antisera fr immunized mice and rabbits reacted in ELISA with synthetic peptid the B-cell epitope, and also cross-reacted with meningococcal OMs strains of subtype P1.16b and P1.16a. Murine and rabbit antisera similar reactivity and epitope specificity, but did not react wit denatured class 1 protein in Western blotting, indicating the pre of antibodies directed towards conformational epitopes. The anti rabbits immunized with BT-MAP promoted complement-mediated bacter killing not only of the homologous meningococcal subtype P1.16b s also of subtype P1.16a.

OSC.G 18 THERE ARE 18 CAPLUS RECORDS THAT CITE THIS RECORD (18 CI

L8 ANSWER 21 OF 29 CA COPYRIGHT 2010 ACS on STN DUPLICATE 21

Full Text

AN 113:4319 CA

OREF 113:879a,882a TI Antibodies to

- TI Antibodies to meningococcal H.8 (Lip) antigen fail to show ${\bf bacter}$ activity
- AU Bhattacharjee, Apurba K.; Moran, Elizabeth E.; Zollinger, Wendell CS Dep. Bact. Dis., Walter Reed Army Inst. Res., Washington, DC, 203 USA
- SO Canadian Journal of Microbiology (1990), 36(2), 117-22 CODEN: CJMIAZ; ISSN: 0008-4166
- DT Journal
- LA English
- Purified H9, (Lip) (for lipoprotein) antigen was coupled to AB tresyl-activated Sepharose 4B and used in affinity columns to pur anti-Lip antibodies from convalescent patient sera and from immun sera. Affinity-purified anti-Lip antibodies isolated from two convalescent patient sera contained 1000 and 1280 ELISA units of and included antibodies of IgG, IgA, and IgM isotypes. An anti-L monoclonal ascites (2-1-CA2) had 28 400 ELISA units of antibody. Bactericidal assays were performed using three different case str Neisseria meningitidis group B, namely 44/76, 8532, and 8047. Neither prepn. of purified human anti-Lip antibodies had detectab bactericidal activity against strains 44/76 and 8532, but one of had a titer of 1:4 against strain 8047. Anti-Lip antibodies that purified from immune rabbit serum and contained 1600 ELISA units anti-Lip antibodies also failed to show detectable bactericidal activity. The rabbits were immunized with purified Lip antigen a specific antibody levels of 2000-2200 units by ELISA, but even th unfractionated sera had little or no bactericidal activity agains test strains. The high titer mouse monoclonal ascites had no bactericidal activity against the test strains. The poor bacteri activity assocd, with monoclonal and polyclonal antibodies to the antigen suggest that in spite of other attractive properties it m
- OSC.G 5 THERE ARE 5 CAPLUS RECORDS THAT CITE THIS RECORD (5 CITI
- L8 ANSWER 22 OF 29 CA COPYRIGHT 2010 ACS on STN DUPLICATE 22

useful as a meningococcal vaccine.

```
Full Pater Rate An 111:37527 CA
```

OREF 111:6389a,6392a

- TI Unique intermolecular bactericidal epitope involving the homosialopolysaccharide capsule on the cell surface of group B Neisseria meningitidis and Escherichia coli K1
- AU Jennings, Harold J.; Gamian, Andrzej; Michon, Francis; Ashton, Fr CS Div. Biol. Sci., Natl. Res. Counc. Canada, Ottawa, ON, K1A OR6, C
- SO Journal of Immunology (1989), 142(10), 3585-91
- CODEN: JOIMA3; ISSN: 0022-1767
- DT Journal
- LA English
- AB The N-propionylated group B meningococcal polysaccharide mimics a bactericidal epitope on the surface of group B meningococci and Escherichia coli K1. This was confirmed when both the above orga

were able to absorb the bactericidal antibodies from a mouse-anti-N-propionylated group B meningococcal polysaccharide-t toxoid conjugate serum. By using affinity columns it was possibl divide the conjugate antiserum into 3 distinct populations of bot polysaccharide cross-reactive and non-cross-reactive antibodies, which contained most of the bactericidal activity. The cross-rea (IqG1) antibodies were absorbed by an affinity column in which th polysaccharide was linked to the solid support by a long spacer a thereby isolating a population of non-cross-reactive (IgG1) antib Surprisingly the above column also retained another population of non-cross-reactive (IgG2a) and (IgG2b) antibodies which contained the bactericidal activity. These latter antibodies were not abso a similar group B polysaccharide-affinity column in which a short arm was employed. The above expts. thus not only effected a sepn highly bactericidal antibodies but also provided evidence that th spacer arm is functional in the binding of the bactericidal antib to the affinity column. This indicates that the bactericidal epi mimicked by the group B polysaccharide in the presence of the lon

polysaccharide-assocd. and is probably intermol. in nature.
OSC.G 19 THERE ARE 19 CAPLUS RECORDS THAT CITE THIS RECORD (19 CI

arm, which supports the hypothesis that the epitope is

L8 ANSWER 23 OF 29 EMBASE COPYRIGHT (c) 2010 Elsevier B.V. All rig

Full Text

reserved on STN

DUPLICATE 23

- AN 1989215755 EMBASE
- TI Comparative evaluation of potential components for group B meningo vaccine by passive protection in the infant rat and in vitro bactericidal assay.
- AU Saukkonen, K.; Leinonen, M.; Abdillahi, H.; Poolman, J.T.
- CS National Public Health Institute, SF-00280 Helsinki, Finland.
- SO Vaccine, (1989) Vol. 7, No. 4, pp. 325-328. ISSN: 0264-410X CODEN: VACCDE
- CY United Kingdom
- DT Journal
- FS 037 Drug Literature Index
- 004 Microbiology: Bacteriology, Mycology, Parasitology and Vi

- LA English
- SL English
- ED Entered STN: 12 Dec 1991
 - Last Updated on STN: 12 Dec 1991
- AB Seventeen monoclonal antobodies to one of three main cell surface antigens of Neisseria meningitidis group B were tested for protective efficacy in the infant rat using as challenge seven st different class 2/3 protein serotypes, class 1 protein (P1) subty LPS immunotypes. Type-specific protection indicated both by a re of bacteraemia and meningitis and survival of the animals was reg obtained with antibodies to the P1 protein and to LPS. By contra one of seven antibodies to the serotype-specific class 2/3 protei protective, even though four of them were highly bactericidal. T animal protection test and in vitro bactericidal assay were other concordant. These data form important guidelines for the design vaccines to prevent group B meningococal infections.

L8 ANSWER 24 OF 29 CA COPYRIGHT 2010 ACS on STN DUPLICATE 24

OREF 107:1015a,1018a

- TI N-Propionylated **group B** meningococcal polysaccharide mimics a uni epitope on **group B Neisseria** meningitidis
- AU Jennings, Harold J.; Gamian, Andrzej; Ashton, Fraser E.
- CS Div. Biol. Sci., Natl. Res. Counc. Canada, Ottawa, ON, K1A OR6, C
- SO Journal of Experimental Medicine (1987), 165(4), 1207-11 CODEN: JEMEAV; ISSN: 0022-1007
- DT Journal
- LA English
- AB Antibodies induced in mice by the N-propionylated group B meningo polysaccharide (N-Pr-GBMP)-tetanus toxoid (TT) conjugate were bactericidal for GBM organisms independent of protein serotype. antisera contained 2 populations of N-Pr-GBMP-specific antibodies one of which cross-reacted with the GBMP. Particularly significa the fact that the bactericidal activity was mainly assocd. With t antibodies that did not cross-react with the GBMP. Thus, N-Pr-G mimics a unique epitope on the surface of GBM organisms that is n present on the exogenous GBMP.
- OSC.G 48 THERE ARE 48 CAPLUS RECORDS THAT CITE THIS RECORD (48 CI
- L8 ANSWER 25 OF 29 BIOSIS COPYRIGHT (c) 2010 The Thomson Corporati

Full Text

51N

- AN 1986:171713 BIOSIS
- DN PREV198681082129; BA81:82129
- TI HUMAN ANTIBODY RESPONSE TO A GROUP B SEROTYPE 2A MENINGOCOCCAL VA DETERMINED BY IMMUNOBLOTTING.
- AU WEDEGE E [Reprint author]; FROHOLM L O
- CS DEPARTMENT METHODOLOGY, NATIONAL INSTITUTE PUBLIC HEALTH, GEITMYR 75, 0462 OSLO 4, NORWAY
- SO Infection and Immunity, (1986) Vol. 51, No. 2, pp. 571-578. CODEN: INFIBR. ISSN: 0019-9567.

- DT Article
- FS BA LA ENGLISH
- ED Entered STN: 26 Apr 1986
 - Last Updated on STN: 26 Apr 1986
- AB The antibody responses of 30 volunteers vaccinated with a complex group B polysaccharide and outer membrane vesicles (OMV) from ser 2a Neisseria meningitidis and of 3 individuals who received a pla vaccine was determined by immunoblotting. OMV were separated by dodecyl sulfate-gel electrophoresis and electrotransferred to nitrocellulose filters. Binding of immunoglobulin G (IgG), IqA, antibodies in the human sera to OMV components was detected with class-specific peroxidase-conjugated antibodies. The immunoblott results were also related to the bactericidal activity of the ser the meningococcal carrier status of the volunteers. Before vacci weakly reactive bands in the molecular weight range of 140,000 to were observed on the blots. Sera from carriers showed more marke Individual patterns of increased reactivity were seen 6 weeks aft vaccination. The main immunoreactive components of OMV correspon molecular weight of 43,000 (class 1 protein), 30,000 (class 5 pro and 22,000. IgG antibodies in postvaccination sera of high bacte titers showed distinct binding to the 43,000-molecular-weight ant Meningococcal carriers had antibodies against an antigen of 22,00 molecular weight; in polyacrylamide gels this component did not s Coomassie brilliant blue or silver. The marked binding of IgG an to the class 5 proteins decreased considerably between weeks 6 an after vaccination. Periodate oxidation of OMV abolished the bind IgG antibodies to the class 5 proteins, whereas the antigenicity 43,000-molecular-weight (class 1 protein) and 22,000-molecular-we

L8 ANSWER 26 OF 29 EMBASE COPYRIGHT (c) 2010 Elsevier B.V. All rig

reserved on STN

DUPLICATE 25

- AN 1984113189 EMBASE
- TI Class-specific human bactericidal antibodies to capsular and nonc surface antigens of Neisseria meningitidis.
- AU Skevakis, L.; Frasch, C.E.; Zahradnik, J.M.; Dolin, R.
- CS Office of Biologics, National Center for Drugs and Biologics, US Drug Administration, Bethesda, MD 20205, United States.
- SO Journal of Infectious Diseases, (1984) Vol. 149, No. 3, pp. 387-3 ISSN: 0022-1899 CODEN: JIDIAO
- CY United States

antigens was unaffected.

- DT Journal; Article
- DI OCCULIAL, INCLOSE
- FS 026 Immunology, Serology and Transplantation
 - 004 Microbiology: Bacteriology, Mycology, Parasitology and Vi 008 Neurology and Neurosurgery
- LA English
- ED Entered STN: 10 Dec 1991
- Last Updated on STN: 10 Dec 1991
- AB **Bactericidal** and enzyme-linked immunosorbent assays were used to determine the immunoglobulin classes responsible for group- and type-specific immunity to **Neisseria** meningitidis among healthy,

unvaccinated individuals and persons who received group-B N meningitidis polysaccharide-serotype-2 protein vaccine. Bacteric antibodies to the group B polysaccharide were primarily IgM; only individuals had both IgM and IgG antibodies. IgG bactericidal antibodies were detected only in those individuals with high IgM-levels to group B meningococi. Increased levels of bactericidal antibodies to the group-B polysaccharide were infrequently found vaccines, possibly because of high prevaccination bactericidal-an levels. Bactericidal antibodies to the group-C polysaccharide we IgG, or both. Vaccine-induced antibodies to lipopolysaccharide we bactericidal for a group-C serotype-2 strain with the lipopolysac immunotype of the vaccine strain.

L8 ANSWER 27 OF 29 EMBASE COPYRIGHT (c) 2010 Elsevier B.V. All rig

reserved on STN

groups B. C. and Y.

DUPLICATE 26

- AN 1978306724 EMBASE
- TI Protection against group B meningococcal disease. III. Immunogeni serotype 2 vaccines and specificity of protection in a guinea pig AU Frasch, C.E.; Robbins, J.D.
- CS Bur. Biol., Bethesda, Md. 20014, United States.
- SO Journal of Experimental Medicine, (1978) Vol. 147, No. 3, pp. 629 ISSN: 0022-1007 CODEN: JEMEAV
- CY United States
- DT Journal; Article
- FS 026 Immunology, Serology and Transplantation
 - 004 Microbiology: Bacteriology, Mycology, Parasitology and Vi 008 Neurology and Neurosurgery
- LA English
- AB
- Protein vaccines were prepared from the serotype antigen of group Neisseria meningitidis strain M986. The detergents Triton X-100, Emulphogene BC-720, and deoxycholate were used to remove the toxi lipopolysaccharide (LPS) portion of the serotype antigen. The LP most preferentially solubilized by Emulphogene. Guinea pigs were immunized with one or two doses of vaccine given intramuscularly adjuvants and the antibody response quantitated by an enzyme-link immunosorbant assay. Immunization with graded doses of vaccine b 25 to 200 µg protein indicated a wide range of effective dosage a that a two-dose immunization schedule was superior to a single immunization. The vaccines elicited peak mean serum antibody lev approximately 30 µg/ml with bactericidal titers of 1:1,600-1:6,40 The peak antibody levels occurred 5-6 wk after immunization and p above preimmune levels for several months. To evaluate the prote effects of immunization, stainless steel springs were implanted subcutaneously into the guinea pigs. The resulting chambers, in unimmunized animals, could be infected with less than 100 type 2 organisms. A single 25-50 ug dose of vaccine protected 50% of animals from challenge by 5 x 105 type 2 meningococci, and as lit μg vaccine significantly reduced the severity of infection. A two-dose immunization schedule was best and provided nearly compl protection for at least 4 mo against type 2 strains of meningococ

T.8 ANSWER 28 OF 29 CA COPYRIGHT 2010 ACS on STN DUPLICATE 27

81:147147 CA AN OREF 81:22939a,22942a

- ТΙ Protein fraction with immunogenic potential and low toxicity isol the cell wall of Neisseria meningitidis group B
- ΑU Hill, James C.; Weiss, Emilio
- Dep. Microbiol., Nav. Med. Res. Inst., Bethesda, MD, USA CS
- Infection and Immunity (1974), 10(3), 605-15 SO CODEN: INFIBR; ISSN: 0019-9567
- DT Journal
- T.A English
- AB Several fractions were extd. from the cell envelope (CE) of N. meningitidis group B and characterized with regard to their morph antigenicity, protein compn., and toxicity. Whole bacterial cell suspended in a medium of low ionic strength and disrupted in a Fr pressure cell. The crude CE thus obtained was sepd. into cell me (CM)-enriched and cell wall (CW)-enriched fractions on sucrose gr In addn. CM and CW fractions were sepd. from CE on the basis of differential soly. in Triton X-100. The Triton-insol. fraction, primarily CW components, was further treated with a mixt. of Trit EDTA which removed addnl. protein and most of the lipopolysacchar Electron microscope examn. of the various fractions revealed typi membrane structures in the case of CM, or large, open segments in of CW. The Triton-insol./Triton-EDTA-insol. fractions consisted vesicular structures. All fractions, except the Triton-sol. frac when assayed byNa dodecyl sulfate-polyacrylamide gel electrophore contained 1 major protein component accounting for >50% of the to Sera from rabbits immunized with the various fractions formed pre lines in immunodiffusion tests against the homologous and some of heterologous fractions. High-titer bactericidal antibodies were demonstrated in these sera when tested against the homologous str Toxicity studies in rats sensitized with Pb(OAc)2 indicated that of contamination of Triton-insol./Triton-EDTA-insol. fractions wi lipopolysaccharide was significantly smaller than that of the oth fractions.

ANSWER 29 OF 29 CA COPYRIGHT 2010 ACS on STN DUPLICATE 28

OREF 78:2287a,2290a

- TΙ Classification of Neisseria meningitidis group B into distinct serogroups. IV. Preliminary chemical studies on the nature of t serotype antigen
- AU Frasch, Carl E.; Chapman, S. Stephen
- CS Med. Sch., Univ. Minnesota, Minneapolis, MN, USA
- SO Infection and Immunity (1972), 6(5), 674-81 CODEN: INFIBR; ISSN: 0019-9567
- Journal DΤ
- T.A English
- Group B N. meningitidis has been subdivided into 11 distinct sero AB a sensitive bactericidal inhibition technique. The antigens resp

for induction of **bactericidal** type-specific antibodies were found extractable from the group B cells with heating at 100 either by HCl in saline or by normal saline. These extd. serotype antigens detected by a capillary precipitin test. The development of meth extn. and assay of the serotype antigens permitted studies on the immunochemistry. The serotype antigens were distinct from the group-specific substance. Acid exts. contained abundant serotype but were devoid of group-specific substance. The identity of ser antigens as proteins was confirmed by their sensitivity to Pronas trypsin. The mol. wt. of these antigens as estd. by G-200 Sephad chromatog. and by electrophoresis in polyacrylamide gels is in ex 200,000 daltons. Saline exts. contg. the serotype antigen could fractionated into three distinct fractions with acetic acid: pH 4 3.5 pptd. fractions, and a pH 3.5 supernatant fraction. The pH 4 fraction contained the serotype antigen.

=> d his

```
(FILE 'HOME' ENTERED AT 16:32:28 ON 15 NOV 2010)
```

FILE 'EMBASE, MEDLINE, BIOSIS, BIOTECHDS, CA, CABA, CAPLUS, LIFES SCISEARCH, CONFSCI, AGRICOLA' ENTERED AT 16:33:18 ON 15 NOV 2010

L1 24 S NEISSERIA GROUP B

L2 2871 S NEISSERIA (10A) GROUP B
L3 1484 S L2 AND (VACCINE OR BACTERICIDAL OR MICROBICIDAL OR B

620 S L3 AND BACTERICIDAL

L5 0 S L4 AND (MENB919 OR MENB 929)

0 S L4 AND (MENB919 OR MENB 919)

76 S L4 AND NEISSERIA (5A) ANTIGEN?

29 DUP REM L7 (47 DUPLICATES REMOVED)

L4

L6

T.7