MAT02025 - Amostragem 1

Amostragem probabilística

Rodrigo Citton P. dos Reis citton.padilha@ufrgs.br

Universidade Federal do Rio Grande do Sul Instituto de Matemática e Estatística Departamento de Estatística

Porto Alegre, 2021

Teoria da amostragem

Teoria da amostragem

- O objetivo da teoria da amostragem é aperfeiçoar processos de seleção de amostras e de avaliação que proporcionem, aos menores custos possíveis, estimativas suficientemente precisas para os propósitos em vista.
- Para aplicar este princípio, devemos ser capazes de prever, para qualquer procedimento de amostragem que esteja sendo considerado, a precisão e o custo esperados.

- No que diz respeito à precisão, não podemos predizer exatamente o quão grande um erro estará presente em uma estimativa em qualquer situação específica, pois isso exigiria um conhecimento do verdadeiro valor para a população.
- Em vez disso, a precisão de um procedimento de amostragem é avaliada examinando a distribuição de frequência gerada para a estimativa¹ se o procedimento for aplicado repetidamente² à mesma população.
- Esta é a técnica padrão pela qual a precisão é avaliada na teoria estatística.

¹Também chamada de **distribuição amostral**, ou ainda, **distribuição de** aleatorização.

²Paradigma clássico: princípio da repetitibilidade.

- Uma simplificação adicional é introduzida: com amostras de tamanhos comuns na prática, muitas vezes há boas razões para supor que as estimativas da amostra são aproximadamente distribuídas de acordo com o modelo normal.
- Por exemplo, seja $\hat{\theta}$ um estimador para um parâmetro θ , então, sob certas condições, é razoável supor que $\hat{\theta} \dot{\sim} N\left(\mu_{\hat{\theta}}, \sigma_{\hat{\theta}}^2\right)$, ou seja,

$$f_{\hat{ heta}}(\hat{ heta}) = rac{1}{\sqrt{2\pi\sigma_{\hat{ heta}}^2}} \exp\left\{rac{1}{2\sigma_{\hat{ heta}}^2} \left(\hat{ heta} - \mu_{\hat{ heta}}
ight)^2
ight\}.$$

- Com uma estimativa normalmente distribuída, toda a forma da distribuição de frequência é conhecida se conhecermos a média e o desvio padrão (ou a variância).
- Uma parte considerável da teoria do levantamento por amostragem está preocupada em encontrar fórmulas para essas médias e variâncias.

- Existem duas diferenças entre a teoria padrão de levantamentos por amostragem e a teoria clássica de amostragem conforme ensinada em livros sobre estatística.
- Na teoria clássica, as medições que são feitas nas unidades de amostragem na população são geralmente assumidas seguir uma distribuição de frequência, por exemplo, a distribuição normal, de forma matemática conhecida, à parte de certos parâmetros populacionais, como a média e a variância cujos valores têm a ser estimado a partir dos dados da amostra³.

Exemplo

A altura da população segue uma distribuição normal com média μ e variância σ^2 desconhecidas.

³Inferência baseada no modelo.

- Na teoria e levantamentos por amostragem, por outro lado, a atitude tem sido assumir apenas informações muito limitadas sobre essa distribuição de frequência.
- Em particular, sua forma matemática não é considerada conhecida, de modo que a abordagem pode ser descrita como livre de modelo ou livre de distribuição⁴.

⁴Inferência baseada no delineamento.

- Uma segunda diferença é que as populações no trabalho de levantamento contêm um número finito de unidades.
- Os resultados são um pouco mais complicados quando a amostragem é de uma população finita em vez de infinita.
- Para fins práticos, essas diferenças nos resultados para populações finitas e infinitas podem frequentemente ser ignoradas.
- Casos em que não seja assim serão apontados.

Amostragem probabilística

Amostragem probabilística

Amostragem probabilística

- Dentre os vários processos existentes para a obtenção de amostras, a amostragem probabilística caracteriza-se por garantir, a priori, que todo elemento pertencente à população de estudo possua probabilidade, conhecida e diferente de zero, de pertencer à amostra sorteada.
- A identificação, direta ou indireta, dos elementos e o sorteio deles fundamentam as propriedades matemáticas desse tipo de processo.

- 1. Podemos definir o conjunto de amostras distintas, $S_1, S_2, \ldots, S_{\nu}$, que o procedimento é capaz de selecionar se aplicado a uma população específica.
 - ▶ Isso significa que podemos dizer exatamente quais unidades de amostragem pertencem a S_1 , a S_2 , e assim por diante.
 - Por exemplo, suponha que a população contenha seis unidades, numeradas de 1 a 6. Um procedimento comum para escolher uma amostra de tamanho 2 fornece três candidatos possíveis: $S_1 = (1,4); S_2 = (2,5); S_3 = (3,6)$. Observe que nem todas as amostras possíveis de tamanho 2 precisam ser incluídas.

- 2. A cada amostra possível, S_i , é atribuído uma probabilidade conhecida de seleção, π_i .
- 3. Selecionamos uma das S_i por um processo aleatório em que cada S_i recebe sua adequada probabilidade π_i de ser selecionada.
 - No exemplo, podemos atribuir **probabilidades iguais** às três amostras. Em seguida, o sorteio em si pode ser feito escolhendo um número **aleatório**⁵ entre 1 e 3. Se este número for ℓ , S_{ℓ} é a amostra retirada.

⁵Veja o material suplementar sobre números aleatórios no Moodle.

- **4.** O método para calcular a estimativa da amostra deve ser conhecido e deve levar a uma estimativa única para qualquer amostra específica.
 - Podemos declarar, por exemplo, que a estimativa deve ser a média das medidas nas unidades individuais da amostra

- Para qualquer procedimento de amostragem que satisfaça essas propriedades, podemos calcular a distribuição de frequência das estimativas que ele gera, se aplicado repetidamente à mesma população.
- ▶ Sabemos com que frequência qualquer amostra particular S_j será selecionada, e sabemos como calcular a estimativa a partir dos dados em S_j .
- Portanto, é evidente que uma teoria de amostragem pode ser desenvolvida para qualquer procedimento desse tipo, embora os detalhes do desenvolvimento possam ser complexos.
- O termo amostragem probabilística se refere a um método desse tipo.

- Na prática, raramente extraímos uma amostra probabilística escrevendo S_i e π_i conforme descrito acima.
- Isso é insuportavelmente trabalhoso com uma grande população, onde um procedimento de amostragem pode produzir bilhões de amostras possíveis.
- O sorteio é mais comumente feito especificando-se as probabilidades de inclusão para as unidades individuais, e sorteando as unidades, uma por uma ou em grupos, até que o tamanho e tipo de amostra desejados sejam construídos.
- Para os propósitos de uma teoria, é suficiente saber que podemos escrever o S_i e π_i se quiséssemos e tivéssemos tempo ilimitado.

Considere, a título de ilustração, uma população composta dos elementos (A, B, C, D, E, F) (Ana, Bruno, Carlos, Dorcina, Emília, Fernando), nos quais se observou a característica X (idade). Então, N=6 e X é uma variável discreta (idade em anos). Logo, i=1,2,3,4,5,6. Os valores podem ser vistos na tabela a seguir

Elementos	i	Xi
А	1	2
В	2	4
C	3	6
D	4	8
Е	5	10
F	6	12

Utilizando um sorteio **com reposição** de uma amostra de **dois elementos** dessa população, responda:

- 1. Liste as possíveis amostras. Qual o nome é dado a esta lista?
- 2. Qual a probabilidade de cada amostra ser selecionada? É preciso realizar alguma suposição para atribuição destas probabilidades?
- **3.** Calcule a média amostral de X ($\bar{x}_j = \frac{1}{2} \sum_{i \in S_i} X_i$) para cada amostra.
- 4. Faça o gráfico da distribuição de frequências da média amostral.

ĵ _j	Amostras	π_j	(x_1, x_2)	\bar{x}_j
1				
2				
3				
4				
5				
:				

S_j	Amostras	π_j	(x_1, x_2)	\bar{x}_j
1	(A, A)	1/36	(2, 2)	2
2	(B, A)	1/36	(4, 2)	3
3	(C, A)	1/36	(6, 2)	4
4	(D, A)	1/36	(8, 2)	5
5	(E, A)	1/36	(10, 2)	6
6	(F, A)	1/36	(12, 2)	7
7	(A, B)	1/36	(2, 4)	3
8	(B, B)	1/36	(4, 4)	4
9	(C, B)	1/36	(6, 4)	5
10	(D, B)	1/36	(8, 4)	6
11	(E, B)	1/36	(10, 4)	7
12	(F, B)	1/36	(12, 4)	8
13	(A, C)	1/36	(2, 6)	4
14	(B, C)	1/36	(4, 6)	5
15	(C, C)	1/36	(6, 6)	6
16	(D, C)	1/36	(8, 6)	7
17	(E, C)	1/36	(10, 6)	8
18	(F, C)	1/36	(12, 6)	9
19	(A, D)	1/36	(2, 8)	5
20	(B, D)	1/36	(4, 8)	6
21	(C, D)	1/36	(6, 8)	7

22	(D, D)	1/36	(8, 8)	8
23	(E, D)	1/36	(10, 8)	9
24	(F, D)	1/36	(12, 8)	10
25	(A, E)	1/36	(2, 10)	6
26	(B, E)	1/36	(4, 10)	7
27	(C, E)	1/36	(6, 10)	8
28	(D, E)	1/36	(8, 10)	9
29	(E, E)	1/36	(10, 10)	10
30	(F, E)	1/36	(12, 10)	11
31	(A, F)	1/36	(2, 12)	7
32	(B, F)	1/36	(4, 12)	8
33	(C, F)	1/36	(6, 12)	9
34	(D, F)	1/36	(8, 12)	10
35	(E, F)	1/36	(10, 12)	11
36	(F, F)	1/36	(12, 12)	12

Extras:

- 5. Onde você já viu este esquema de sorteio?
- **6.** Discuta de onde vem a distribuição de \bar{x} .
- 7. Imagine N = 26 e amostras de tamanho 4.

Amostragem não-probabilística

Amostragem não-probabilística

Alternativas à amostragem probabilística

Alguns tipos comuns de amostragem não-probabilística:

- Amostragem convencional: a amostra é restrita a uma parte da população que é facilmente acessível. Ex: uma amostra de carvão de um vagão aberto pode ser retirada da parte superior de 6 a 9 polegadas.
- 2. Amostragem acidental ou a esmo: a amostra é selecionada ao acaso. Ex: ao escolher 10 coelhos de uma grande gaiola em um laboratório, o investigador pode pegar aqueles em que suas mãos repousam, sem um planejamento consciente.
- 3. Amostragem por cotas: no caso de uma população pequena, mas heterogênea, o amostrador inspeciona o conjunto da população e escolhe uma pequena amostra de unidades "típicas" isto é, unidades que estão próximas de sua impressão da média da população.

Alternativas à amostragem probabilística

4. Amostragem de voluntários: a amostra é constituída essencialmente por voluntários, em estudos em que o processo de medição é desagradável ou incômodo para a pessoa que está sendo medida.

Para casa

Repita o exercício da aula, mas agora utilizando um sorteio sem reposição de uma amostra de dois elementos daquela população.

Próxima aula

Distribuição normal, viés e EQM.

Por hoje é só!

Bons estudos!

