

$$\begin{split} l_{t_0}^{\langle\alpha\beta\rangle} &= \sqrt{\left(\Delta X_i^{\langle\alpha\beta\rangle}\right)^2} \\ l_{t_f}^{\langle\alpha\beta\rangle} &= \sqrt{\left(\lambda_{ij}^{\langle\alpha\beta\rangle}\Delta X_i^{\langle\alpha\beta\rangle}\right)^2} \end{split}$$

Intermediate $\underbrace{ l_t^{\langle \alpha\beta\rangle} }_{l_t \text{Quasistatic progression}}$

C

$$\underline{\underline{\lambda}} = \frac{\lambda}{\lambda} \tilde{\lambda} \left(e_r \otimes e_r \right) + \frac{\lambda}{\lambda} / \tilde{\lambda} \left(e_{\phi} \otimes e_{\phi} \right) + \frac{\lambda}{H} \left(e_h \otimes e_h \right)$$

C1

λ : Cell Area Changes

Initial State

 $A(\underline{X},t_0)$

 $rac{X}{t_0}$: Position t_f : Initial stage t_f : Final stage A: Mean cell area

 $\lambda = \sqrt{\frac{A(\underline{X}, t_f)}{A(\underline{X}, t_0)}}$

C2

 λ_H : Cell Thickness Change

Initial State

Final State

 \widehat{H} : Cell Height

$$\lambda_H = \frac{H(\underline{X}, t_f)}{H(\underline{X}, t_0)}$$

C3

$$\tilde{\lambda} = \tilde{\lambda}_Q \tilde{\lambda}_R$$

 $\tilde{\lambda}_Q$: Cell Elongation

Initial State

 $|Q|(\underline{X},t_0)$

Final State

 $|Q|(\underline{X},t_f)$

 $\tilde{\lambda}_Q = \frac{\exp(|Q|(\underline{X}, t_f))}{\exp(|Q|(\underline{X}, t_0))}$

C4

 $\tilde{\lambda}_R$: Cell Rearrangements

Initial State

Final State

(N: Cumulative Cell Number

k: Topological Ring Number

 $\tilde{\lambda}_R = 1 + \Delta_N \Delta_t k(\underline{X})$

 $\left|Q\right|$: Mean cell elongation