

LFSAB 1508 – Projet P4 MS1: debriefing

C. Craeye, C. Oestges, L. Vandendorpe

T. Feuillen, G. Monnoyer, M. Drouguet (EPL - ICTEAM/ELEN)

Trilatération

- Les positions des récepteurs sont connues
- Question 1: on souhaite localiser une cible en 2 dimensions (dans le plan)
 - \triangleright Q1.1: De combien de récepteurs ou de mesures d_i a-t-onbesoin ?
 - ➤ Q1.2: Appelant $\mathbf{z} = (x; y)$ la position de la cible à estimer, $\mathbf{z}_i = (x_i; y_i)$ les coordonnées du récepteur i, établissez les équations qui unissent les vecteurs \mathbf{z} , \mathbf{z}_i et les mesures (supposées idéales) d_i
 - Q1.3: Proposez une méthode de résolution de ces équations
 - Q1.4: Représentez graphiquement les lieux qu'on obtiendrait en présence de bruit (l'épaisseur du trait représentant l'amplitude de l'erreur)

Trilatération

Question 1 (suite):

- ➤ Q1.5: Sur base du schéma, quelles sont des situations favorables/défavorables de positionnement des récepteurs par rapport aux émetteurs ?
- Q1.6: Comment pourrait-on traiter le cas de mesures nonparfaites (c.-à-d. comment résoudre les équations dans ce cas) ?

Trilatération

Question 1 (suite):

Q1.5: Sur base du schéma, quelles sont des situations favorables/défavorables de positionnement des récepteurs par rapport aux émetteurs ? (bruit équivalent : 10 cm)

 Question 2: on souhaite (toujours) localiser une cible en 2 dimensions sur base des mesures de TDOA

ightharpoonup Q2.1: pour un au_{ij} donné (ou mesuré), que peut-on déduire de la localisation de la cible vis-à-vis des 2 récepteurs i et j? Autrement dit, quel est le lieu des points caractérisés par le fait qu'ils sont à même différence de temps ou de distance vis-à-vis

des 2 récepteurs ?

Question 2 (suite):

➤ Q2.2: De combien de différences de temps/distance d'arrivée doit-on disposer au minimum pour une localisation 2-D ?

→ 3 récepteurs sont suffisants!

- \triangleright Q2.3: Proposez une méthode de résolution des équations établies à la Q2.1 (ne pas résoudre!), en supposant que les mesures τ_{ij} soient parfaites
- Q2.3 Les équations mentionnées ci-dessus sont non-linéaires. Différentes méthodes s'offrent à nous. Il est possible d'isoler dans chaque équations y, afin d'obtenir un système de $y_i = f_i(x)$, soit à la main soit avec un solver symbolique. Il nous suffit alors de résoudre $f_i(x) = f_j(x)$ pour une seule combinaison de i, j avec $i \neq j$ car les TDOA sont supposés sans erreurs.

Une autre méthode consiste à employer un solver numérique.

- Question 3: en réalité, les TDOAs seront affectés d'une erreur
 - ➤ Q3.1: Sur base des données fournies (synthétiques et mesurées), quel est l'ordre de grandeur de cette erreur ? Cette erreur est-elle acceptable ?
 - ➤ Q3.2: Représentez graphiquement les lieux qu'on obtiendrait en présence de bruit (l'épaisseur du trait représentant l'amplitude de l'erreur)

 $\sigma = 0.33 \text{ ns} \rightarrow 10 \text{ cm}$

Gaussien? Ordre de grandeur 0.1 ns

Question 3 (suite):

Q3.3: Sur base du schéma, quelles sont des situations favorables/défavorables de positionnement des récepteurs par rapport aux émetteurs ?

Question 3 (suite):

- ➤ Q3.3: Sur base du schéma, quelles sont des situations favorables/défavorables de positionnement des récepteurs par rapport aux émetteurs ?
- ➤ Q3.4: Afin d'améliorer la précision, comment peut-on exploiter les TDOAs additionnels obtenus pour un émetteur de position connue ? Proposez une méthode de résolution des équations dans ce cas (avec la résolution) et illustrez vos résultats avec les données fournies
- → correction de l'erreur statique (biais) due aux differentes longueurs de câbles/connecteurs, ...

$$TDOA_{loc-ij-corr} = TDOA_{loc-ij-mes} - \overbrace{(TDOA_{cal-ij-mes} - TDOA_{cal-ij-exact})}^{biais}$$

· Utilisation des données fournies: donnés synthétiques

• Utilisation des données fournies: donnés mesurées

NT.	T.	D 1.41
Nom	Erreur	Description
Levenberg-Marquardt	9,3 cm.	Algorithme de résolution
		d'une système d'équation
		au sens des moindre carrés.
Centre de gravité, rayon de	22.74 cm.	Centre de gravité ou le
cercle		poids est le nombre de so-
		lution dans un rayon autour
		de celle-ci.
Centre de gravité, distance	36,15 cm.	Centre de gravité, le poids
min.		est défini comme la dis-
		tance minimale à une autre
		solution
Centre de gravité au carré	87,55 cm.	Idem que le précédent mais
		la distance est au carré
Centre de gravité	117,7 cm.	Centre de gravité des
		points, le poids est défini
		comme l'inverse de la
		somme des distances à
		toutes les autres solutions
MLE	170,76 cm.	Maximum likelihood

