ToNy: Contextual embeddings for accurate multilingual of to the discourse segmentation of full documents

Philippe Muller, Chloé Braud and Mathieu Morey philippe.muller@irit.fr, chloe.braud@loria.fr, mathieu@datactivist.coop

Example Example

[President Bush insists] [it would be a great tool] [for curbing the budget deficit] [and slicing the lard out of government programs.]

President	BeginSeg=Yes
Bush	_
insists	_
it	BeginSeg=Yes
would	_
be	_
a	
great	
tool	_
for	BeginSeg=Yes
curbing	_
the	_
budget	_
deficit	_
and	BeginSeg=Yes
slicing	
the	_
lard	
out	_
()	

References

[Braud et al.(2017a)] Chloé Braud, Ophélie Lacroix, and Anders Søgaard. 2017a. Cross-lingual and cross-domain discourse segmentation of entire documents. In *Proceedings of ACL*.

[Devlin et al.(2018)] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: pre-training of deep bidirectional transformers for language understanding. NAACL 2019 arXiv:1810.04805.

[Gardner et al.(2017)] Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Peters, Michael Schmitz, and Luke S. Zettlemoyer. 2017. Allennlp: A deep semantic natural language processing platform. arXiv:1803.07640.

Acknowledgements

This work was supported partly by the french PIA project "Lorraine Université d'Excellence", reference ANR-15-IDEX-04-LUE.

Problem

- Segmentation is the first step in discourse analysis, crucial but neglected
- Locate arguments or connectives of discourse

Idea/Hypothesis

- Segmentation as BIO tagging
- Use only lexical information as given by contextual embedding
- No sentence pre-segmentation necessary?

DisRPT Shared Task Data

- Multilingual: 9 languages
- Multi-formalism: RST, SDRT, PDTB
- → #Documents in RST DTs and PDTBs

#Discourse Boundaries vs #Sentences

Focus: English discourse annotation

- English has different frameworks: better comparison of models;
- Compare language-specific or multi-lingual approach;
- Compare lexical embeddings: random, contextual or not, BERT/Elmo

	Rand50d	GloVe-50d	BERT-E	BERT-M	ELMo
PDTB	77.08	65.17	90.83	89.89	88.40
GUM	80.58	78.28	86.29	87.27	87.65
RSTDT	78.97	83.21	94.41	93.72	94.75
STAC	77.43	71.70	84.65	84.45	86.06

Model/Implementation

- Use AllenNLP library
- Very similar to NER task
- Contextual embedding = BERT, multilingual model
- Force segmentation for long text (BERT 512 subword limitation)

Code available at https://gitlab.inria.fr/andiamo/tony

Results / PDTB markers

input	corpus	P	R	F1
conll	eng.pdtb.pdtb tur.pdtb.tdb* zho.pdtb.cdtb	89.39 76.89 82.67	87.84 64 76.25	88.6 69.85 79.32
	mean	82.98	76.03	79.26
tok	eng.pdtb.pdtb tur.pdtb.tdb zho.pdtb.cdtb	91.32 84.06 81.64	87.84 86.74 71.07	89.54 85.37 75.99
	mean	85.67	81.88	83.63
* with preprocessing error				

Results / segmentation

input	corpus	P	R	F1
conll	deu.rst.pcc	95.22	94.76	94.99
	eng.rst.gum	95.84	90.74	93.21
	eng.rst.rstdt	95.29	96.81	96.04
	eng.sdrt.stac	94.34	96.22	95.27
	eus.rst.ert	89.77	82.87	86.18
	fra.sdrt.annodis	94.42	88.12	91.16
	nld.rst.nldt	97.9	89.59	93.56
	por.rst.cstn	92.78	93.06	92.92
	rus.rst.rrt	86.65	79.49	82.91
	spa.rst.rststb	92.03	89.52	90.74
	spa.rst.sctb	91.43	76.19	83.12
	zho.rst.sctb	87.07	76.19	81.27
	mean	92.73	87.80	90.11
tok	deu.rst.pcc	94.88	94.49	94.68
	eng.rst.gum	92.28	82.89	87.33
	eng.rst.rstdt	93.6	93.27	93.43
	eng.sdrt.stac	87.56	80.78	83.99
	eus.rst.ert	87.43	80.94	84.06
	fra.sdrt.annodis	94.31	89.15	91.65
	nld.rst.nldt	94.81	89.97	92.32
	por.rst.cstn	93.04	90.72	91.86
	rus.rst.rrt	83.37	78.44	80.83
	spa.rst.rststb	89.11	90.09	89.6
	spa.rst.sctb	87.16	76.79	81.65
	zho.rst.sctb	66.26	64.29	65.26
	mean	88.65	84.32	86.39

RST cross corpus segmentation

Cross corpus comparison with the same framework

- gold sentences;
- dev set;
- single run, different from official eval)

Train/Test	RSTDT	GUM
English RSTDT	93	73
English GUM	66	96