12 Wednesday, March 2, 2011

S a multiplicative system

 $1 \in S$

 $0 \in S$

 $S_1, S_2 \in S \implies S_1 S_2 \in S$.

Ring of fractions A_S localized ring

 $A \hookrightarrow A_S$

 $(J^c)^e = J$

 $(A \cap J)A_S$

Localizing prime ideal (s...?)

I ideal of $A, I \cap S \neq \emptyset \implies I^e = \text{unit ideal of } A_S$

Proposition. P prime ideal of A. $P \cap S \neq \emptyset$. Then

- $(P^e)^c = P$
- P^e (= P_S) is a prime ideal of A_S

$$P^e = PA_S = \{s^{-1}x \mid x \in P\}$$

Proof. For any ideal P, $(P^e)^c \supset P$.

We want to show \subset . Let $z \in (P^e)^c$. Then $z = s^{-1}x$ for some $x \in P$, and $z \in A$. Then $sz = ss^{-1}x = x \in P$. Since P is prime, and $s \notin P$, $z \in P$, and so $(P^e)^c \subset P$.

18.721 Notes

Now we show that P^e is prime:

We have that $z_1z_2 \in P^e$ for $z_i \in A_S$. Then $z_1 = s_1^{-1}a_1$, $z_2 = s_2^{-1}a_2$. Then $z_1z_2 = (s_1s_2)^{-1}(a_1a_2) \in P^e$. Therefore $(s_1s_2)(z_1z_2) = a_1a_2 \in P^e$. Since $a_1a_2 \in A$, this is also in $(P^e)^c = P$. Since $a_1a_2 \in P$ and P prime, either $a_1 \in P$ or $a_2 \in P$, $s_1^{-1}a_1 \in P^e$ or $s_2^{-1}a_2 \in P^e$. \square

$$P\operatorname{Spec} A_S \longleftrightarrow \operatorname{subset} \operatorname{of} P\operatorname{Spec} A = \{P \mid P \cap S \neq \emptyset\}$$

Back to the case where P is a prime ideal of A and $S = A - P = \{s \in A \mid s \notin P\}$. Write A_P for A_S . If I is an ideal of A, $I_P = I_S$ extended ideal.

Proposition. P_P is a maximal ideal of A_P and it is the only maximal ideal of A_P .

Lemma. For a ring R, the following are equivalent:

- (1) R has a unique maximal ideal \mathfrak{M}
- (2) The elements of R that are not invertible form an ideal
- (P) of \Rightarrow (1) Suppose that the non-units form an ideal I. Then R/I is a field because every element is the residue of a unit, and therefore invertible. Thus I is a maximal ideal. Since any other element is a unit, we cannot include any other element without turning the ideal into the entire ring. Thus, this is maximal.
- (1) \Longrightarrow (2) Suppose there exists a unique maximal ideal \mathfrak{M} . Let $u \in R$. Then (u) = R if and only if u is a unit. If u is not a unit, then (u) < R, and so $(u) \subset$ some maximal ideal.² Then $(u) \subset \mathfrak{M}$.

¹Sorry if this proof is unclear. I was trailing behind Prof. Artin, and so wasn't understanding the proof well.

²If R is not noetherian, this requires Zorn's Lemma/The Axiom of Choice.

Then \mathfrak{M} contains all the non-invertible elements, and so the non-invertible elements of R form an ideal (in particular \mathfrak{M}).

Proposition above. $s^{-1}a \in A_P$, $s \notin P$.

If
$$a \in P$$
, then $s^{-1}a \in P_P$. If $a \notin P$, then $s^{-1}a$ is invertible, and so $a^{-1}s \in A_S$.

Definition. A (noetherian) ring R is *local* if it has a unique maximal ideal \mathfrak{M} . (Note that R/\mathfrak{M} is a field.)

Example. $A = \mathbb{C}[x,y]$. The prime ideals are

- (0)
- (f(x,y)) for f irreducible
- maximal ideal $\mathfrak{M}_{(a,b)} = (x-a,y-b) \longleftrightarrow (a,b) \in \mathbb{C}^2$

 $A_{(0)}$: fraction field $\mathbb{C}(x,y)$ of $\mathbb{C}[x,y]$

 $A_{\mathfrak{M}_{(a,b)}}\colon \ a\ local\ ring. \quad The\ prime\ ideals\ \mathrm{PSpec}\,A_{\mathfrak{M}} = \{P\,|\, P\cap S \neq \emptyset\} = \{P\,|\, P\subset \mathfrak{M}\} = \{0\}$ $\begin{cases} (0) \\ P = (f)\,|\, f(a,b) = 0 \\ \mathfrak{M}_{(a,b)} \end{cases}$

Lemma. Suppose I is an ideal of the ring A and M is a finite A-module such that M = IM. Then there exists a $z \in I$ such that (1-z)M = 0.

Proof. Say (x_1, \ldots, x_r) generate M. We can write x_i as a combination of $\{x_1, \ldots, x_r\}$ with coefficients in I:

$$x_i = \sum_j p_{ij} x_j \qquad p_{ij} \in I$$

$$X = PX \qquad P \text{ matrix } (p_{ij})$$

$$(\mathbb{Y} - P)X = 0$$

$$Q(\mathbb{Y} - P) = \delta \mathbb{Y}$$

where Q is the cofactor matrix for $\mathbb{F} - P$ with entries in A, and $\delta = \det(\mathbb{F} - P)$.

$$Q(\mathbb{W} - P)X = 0$$

$$\therefore \delta X = 0$$

$$\mathbb{W} - P = \begin{pmatrix} 1 - p_{11} & \cdots & \\ & \ddots & \\ & & 1 - p_{nn} \end{pmatrix}$$

$$\delta = 1 - z$$

Since the $p_{ij} \in I$, we have $z \in I$. Then (1-z)X = 0, so (1-z) kills M.

Lemma (Nakayama Lemma). Let A be a local ring with a maximal ideal \mathfrak{M} , and let M be a finite A-module. If $M = \mathfrak{M}M$, then M = 0.

Proof. Take $z \in \mathfrak{M}$. We have a z with (1-z)M=0. Since $1-z \notin \mathfrak{M}$, 1-z is invertible, and so M=0 (since we can multiply by $(1-z)^{-1}$).