Documentation for Predictor.R with TidyModels

Apple Watch Data Predictor with Tidymodels

Programmed by: Arastoo Bozorgi & Glenn Tanjoh

1. Overview

This R script is designed to process Apple Watch data, perform feature engineering, train a predictive model using **Tidymodels**, and make predictions on activity levels. The goal is to improve model performance, speed, and efficiency by utilizing a structured workflow. The script also includes data preprocessing, model tuning, parallel processing, and model saving in an efficient format.

2. Script Structure

The script consists of several parts:

- Loading required libraries
- Setting environment variables
- Defining utility functions
- Loading and preprocessing data
- Tidymodels recipe creation
- Model training and evaluation
- Saving model objects and predictions

3. Setting Up the Environment

```
R
Copy code
rm(list = ls())
```

This clears the workspace, ensuring no previous variables interfere with the current session.

Required Libraries:

The script uses the

pacman package to load all necessary libraries, ensuring the environment is prepared for execution. The pacman::p_load() function checks if packages are installed, installing them if necessary, and then loads them.

4. Setting Time Zone and Arguments

```
R
Copy code
Sys.setenv(TZ = "America/St_Johns")
```

Sets the time zone for time-related calculations, ensuring consistency in date-time parsing.

Arguments Setup:

 The script takes five arguments specifying paths for data files, models, and directories. If the correct number of arguments is not provided, an error is raised to ensure proper execution.

```
R
Copy code
args <- c(
   "main_path", "model_path", "training_file", "file_name", "m
odel"
```

```
)
```

• These arguments help in organizing the file structure, making it easier to modify paths without altering the script.

5. Utility Function for Correlation Calculation

• This function calculates the Pearson correlation between two columns but handles cases where the standard deviation is zero to avoid errors.

```
R
Copy code
correlation <- function(x) { ... }
```

 This function is used later to calculate the correlation between heart rate and steps.

6. Loading and Preparing Data

The script reads the Apple Watch data from a CSV file using fread() and checks for missing columns, adding them if necessary to ensure consistent data structure.

Data Imputation:

 Missing values are filled using linear interpolation, applied separately to key variables like Heart, Calories, Steps, and Distance.

```
R
Copy code
applewatch_data <- applewatch_data %>%
  mutate(
    Heart = na_interpolation(Heart, option = "linear"), ...
)
```

7. Feature Engineering

- The script generates new features based on existing data, including entropy, resting heart rate, normalized heart rate, intensity calculation, and correlation.
- Feature engineering helps enrich the dataset, enabling the model to identify complex patterns in the data.

```
R
Copy code
applewatch_data <- applewatch_data %>%
    mutate(
    EntropyApplewatchHeartPerDay_LE = ...,
    NormalizedApplewatchHeartrate_LE = ...,
    ApplewatchIntensity_LE = ...
)
```

8. Using Tidymodels for Data Preprocessing

• The **Tidymodels recipe** defines the preprocessing steps in a modular way, covering imputation, normalization, and removal of zero-variance columns.

```
R
Copy code
applewatch_recipe <- recipe(activity_trimmed ~ ., data = appl
ewatch_data_sample) %>%
   step_rm(...) %>%
   step_impute_median(...) %>%
   step_normalize(...)
```

 This recipe is prepped and baked, creating a transformed dataset that's ready for modeling.

9. Model Training with Tidymodels

 A Random Forest model is defined using Tidymodels, setting parameters like the number of trees and the number of variables to consider at each split.

```
R
Copy code
rf_model <- rand_forest(mode = "classification", mtry = 3, tr
ees = 20) %>%
  set_engine("ranger")
```

• The model is added to a workflow that combines the recipe and model definition, ensuring a seamless training process.

10. Parallel Processing

• To speed up model training, the script uses **parallel processing** with the doparallel package.

```
R
Copy code
library(doParallel)
cl <- makeCluster(detectCores() - 1) # Use all but one core
registerDoParallel(cl)
rf_fit <- fit(rf_workflow, data = train_data)
stopCluster(cl)</pre>
```

 This improves model training speed by distributing computation across multiple CPU cores.

11. Model Evaluation and Predictions

 Predictions are made on the test set, and the accuracy is calculated to evaluate model performance.

```
R
Copy code
```

```
predictions <- predict(rf_fit, test_data, type = "class") %>%
  bind_cols(test_data)
accuracy <- mean(predictions$.pred_class == predictions$activ
ity_trimmed)</pre>
```

12. Measuring Execution Time and Memory Usage

• The script measures execution time and memory usage during prediction to ensure performance optimization.

```
R
Copy code
start_time <- Sys.time()
start_mem <- pryr::mem_used()
# Code for predictions
end_time <- Sys.time()
end_mem <- pryr::mem_used()</pre>
```

13. Saving the Model and Predictions

• The fitted model is saved as an RDS file using <code>saveRDS()</code>, making it easy to load and use later.

```
R
Copy code
saveRDS(fitted_rf_model, file = "Tidymodels_RFModel_AppleWatch.rds")
```

Predictions are saved as a CSV file for further analysis or deployment.

14. Conclusion and Usage

This script provides a complete workflow for predicting Apple Watch activity levels using **Tidymodels**. It is designed to be modular, flexible, and efficient, making it suitable for research and deployment.

15. Potential Enhancements

- Implement model tuning with cross-validation (tune_grid()) to optimize hyperparameters.
- Test other classifiers (e.g., SVM, Decision Tree) within the Tidymodels framework for potential performance improvement.
- Deploy the model using **TidyPredict** to integrate predictions into SQL databases or production environments.

Detailed Information:

1. Example Usage

• To run this script, ensure that all required files are in place and use the following command:

```
R
Copy code
Rscript AppleWatchDataPredictor.R <main_path> <model_path> <t
raining_file> <file_name> <model_type>
```

 For testing purposes, you can define the arguments directly in the script as shown.

2. Prerequisites

Before running this script, ensure the following:

Software Requirements:

• R version: 4.0.0 or higher

R packages:

• The script uses the pacman package for managing dependencies. If pacman is not installed, install it using:

```
R
Copy code
install.packages("pacman")
```

- The script requires the following R packages: imputers, lubridate, data.table, dplyr, tidymodels, pryr, ranger, caret, doParallel, zoo.
- These packages will be installed and loaded automatically using:

```
R
Copy code
pacman::p_load(imputeTS, lubridate, data.table, dplyr,
tidymodels, pryr, ranger, caret, doParallel, zoo)
```

Required Files:

The following files are necessary for execution:

- Training data file:
 - aggregated_fitbit_applewatch_jaeger.csv (or a similar file).
 - This file should contain historical data for model training.
- Test data file:
 - applewatch_data.csv (or a similar file).
 - This file should have Apple Watch data that is used for prediction and must be located at the specified file path.

Model Directory:

• An empty directory for saving model objects, specified by model_path.

3. Column Requirements

The input files should have the following columns:

Mandatory Columns:

- Heart rate data from Apple Watch.
- Calories: Calorie data from Apple Watch.
- Steps: Step count from Apple Watch.
- Distance: Distance covered, measured by Apple Watch.
- DateTime: The date-time field for each record, used for extracting timebased features.

Additional Features Created:

- Applewatch.Heart_LE: Heart rate with linear interpolation applied.
- Applewatch.Steps_LE: Step count with linear interpolation applied.
- Applewatch.Distance_LE: Distance with linear interpolation applied.
- Applewatch.Calories_LE: Calories with linear interpolation applied.
- EntropyApplewatchHeartPerDay_LE: Entropy of heart rate per day.
- EntropyApplewatchStepsPerDay_LE: Entropy of step count per day.
- RestingApplewatchHeartrate_LE: Resting heart rate, calculated as the 5th percentile of heart rate data.
- NormalizedApplewatchHeartrate_LE: Heart rate normalized by subtracting resting heart rate.
- ApplewatchIntensity_LE: Intensity, calculated using the Karvonen formula.
- SDNormalizedApplewatchHR_LE: Standard deviation of normalized heart rate.
- ApplewatchStepsXDistance_LE: Product of steps and distance.

• CorrelationApplewatchHeartrateSteps_LE: Rolling correlation between heart rate and steps over a window of 10 observations.

Data Checks:

 If any mandatory columns are missing, the script will create empty columns with NA values and issue a warning.

4. Script Structure

The code is divided into several components:

1. Load Required Libraries

• The pacman::p_load() function loads all necessary libraries. If any package is missing, it installs it automatically.

2. Set Time Zone and Arguments

- The script sets the time zone to "America/St_Johns" to ensure consistent timebased calculations.
- It accepts five arguments, which specify:
 - 1. main_path: Main directory for output files.
 - 2. model_path: Directory to save trained model objects.
 - 3. training_file: Path to the CSV file containing training data.
 - 4. file_name: Path to the CSV file containing data to predict.
 - 5. **model:** Model type, e.g., "randomForest".

3. Utility Function for Correlation

 A utility function is defined to compute the Pearson correlation, handling cases where the standard deviation is zero to prevent errors.

4. Load and Preprocess Data

 The script reads data from file_name, checks for missing mandatory columns, and fills them if absent.

- **Data Imputation:** Missing values in numeric columns (Heart, Calories, Steps, Distance) are filled using linear interpolation to ensure a complete dataset.
- **Feature Engineering:** Several new features are generated to enrich the data and enhance model accuracy.

5. Tidymodels Integration

• The code utilizes **Tidymodels** for creating a structured workflow, making it easier to preprocess data, train models, and make predictions.

Data Preparation with Tidymodels:

• Recipe Creation:

 The recipe includes steps to remove zero-variance predictors, impute missing values, remove remaining NAs, and normalize predictors.

```
R
Copy code
applewatch_recipe <- recipe(activity_trimmed ~ ., data = a
pplewatch_data_sample) %>%
   step_rm(...) %>%
   step_impute_median(...) %>%
   step_normalize(...)
```

Baking the Recipe:

- The prepared recipe is baked to apply transformations to the data before training.
- Checks for missing values ensure data integrity after transformations.

6. Model Training

- The script uses a Random Forest model within the Tidymodels framework for classification.
- It splits the preprocessed data into training and testing sets for validation.

• Parallel Processing:

Parallel processing is used to speed up model training, utilizing available
 CPU cores.

Example Code for Parallel Processing:

```
R
Copy code
cl <- makeCluster(detectCores() - 1)
registerDoParallel(cl)
rf_fit <- fit(rf_workflow, data = train_data)
stopCluster(cl)</pre>
```

7. Model Evaluation

- The trained model is tested on the test set, and accuracy is calculated to evaluate model performance.
- The script also measures execution time and memory usage to identify performance bottlenecks.

```
R
Copy code
accuracy <- mean(predictions$.pred_class == predictions$activ
ity_trimmed)
```

8. Saving the Model and Predictions

- The model is saved as an RDS file using saveRDS(), ensuring that only the model object is saved without any data.
- The predictions are saved as a CSV file in the specified output directory.

Example of Model Saving:

```
R
Copy code
saveRDS(fitted_rf_model, file = "Tidymodels_RFModel_AppleWatch.rds")
```

9. Output Files

The script generates the following output files:

- **Preprocessed Data:** preprocessed_data.csv Contains the cleaned and engineered data used for model training.
- **Predictions:** applewatch_data_predicted_TinyModels.csv Contains the predicted activity levels with relevant features.
- **Model Object:** Tidymodels_RFModel_AppleWatch.rds Contains the trained Random Forest model, saved separately for deployment.

12. Troubleshooting

- Missing Columns:
 - If any required columns are missing, the script will create empty columns and issue a warning.
- Permission Denied Errors:
 - If the script cannot save files, check the permissions for the specified directories.
- Inconsistent Data Types:
 - Ensure that input columns have consistent data types (e.g., numeric for heart rate, steps, etc.). Adjust preprocessing steps if necessary.