

Ministère de l'Education Nationale du préscolaire et des sports

Activité 1 Q. G. M.

Pour chaque cas, une ou plusieurs affirmations sont exactes. Lesquelles ?

		(A)	(B)	(C)	(D)
1	Le nombre 3582 est divisible par	2	3	5	9
2	La surface coloriée correspond à de la surface du disque.	<u>3</u> 5	<u>5</u> 3	<u>6</u> 10	4
3	$\frac{a}{b}$ et $\frac{c}{d}$ sont deux nombres $\frac{a}{b} = \frac{c}{d}$ signifie que	ac = bd	ad = bc	ab = cd	a = c et $b = d$
4	Le produit de deux nombres relatifs non nuls de même signe est	nul	positif	négatif	strictement positif
5	$(-9,2 \times 5) \div 2,5 = \dots$	-18	-18,4	8,4	18,4

Activité 2

Dans une classe de 42 élèves, il y a 16 filles.

- 1) Calculer la proportion des filles dans cette classe.
- 2) Calculer la proportion des garçons dans cette classe.

Activité 3

On considère la figure ci-contre.

- 1) Quelles sont les abscisses des points O, A, B et C?
- 2) Placer les points A'(-2,5), B'(1,7), E(-3,2) et $F\left(\frac{14}{5}\right)$ sur la droite graduée.

Recopier et compléter, à l'aide d'une calculatrice scientifique, le tableau ci-dessous.

а	12	-35	-3	1	-5	3	1
b	3	7	5	-8	-4	7	-3
$a \div b =$	•••	•••	•••		•••		•••
Nature du quotient $\frac{a}{b}$		décimal	•••			non décimal	

I. Nombre rationnel

Définition

Un nombre rationnel est

Exemples:

- 0,1 est un car 0,1 =
- 8,63 est un nombre rationnel car 8,63 =

Résultat :

Les nombres fractionnaires, les nombres entiers relatifs et les nombres décimaux relatifs sont des nombres

1. Déterminer le signe du nombre rationnel x dans chacun des cas suivants :

i)
$$5x = -28$$

ii)
$$-3x=20$$

$$iii)$$
 $5x=2$.

2. Recopier et compléter le tableau suivant en utilisant les nombres : $\frac{15}{3}$, $\frac{6}{-0.25}$, $\frac{-2}{-9}$, $-\frac{4}{10}$ et $-\frac{3}{-0.1}$

Nombres rationnels positifs	
Nombres rationnels négatifs	

II. Signe d'un nombre rationnel

Le nombre rationnel $\frac{a}{b}$ est si les nombres a et b sont

Le nombre rationnel $\frac{a}{b}$ est si $\frac{a}{b}$ est $\frac{b}{b}$ sont

Exemples:

• Les nombres
$$\frac{-5}{2}$$
; $-\frac{3.9}{2}$ et $\frac{7}{4}$ sont

$$\frac{a}{b}$$
 est un nombre rationnel, on a : $\frac{-a}{b} = ---=$ et $\frac{-a}{-b} =$

Donner le signe de chacun des nombres suivants :

$$\frac{-52}{423}$$
; $\frac{12}{-21}$; $\frac{-89}{45}$; $-\frac{12}{13}$; $-\frac{11}{-52}$

- 1) a) Effectuer les produits $(-861) \times 143$ et $(-91) \times 1353$.
 - b) Est-ce-que les nombres rationnels suivants sont égaux : $\frac{-861}{1353}$ et $\frac{-91}{143}$.
- 2) a) Effectuer les produits $(-365) \times (-85)$ et 268×102 .
 - b) Est-ce-que les nombres rationnels suivants sont égaux : $\frac{-365}{268}$ et $\frac{102}{-85}$.

III. Égalité de nombres rationnels rationnel

$$\frac{a}{b} = \frac{x}{y}$$
 sont deux nombres rationnels.
$$\frac{a}{b} = \frac{x}{y}$$
 signifie que

Exemples:
$$\frac{-20}{15} = \frac{8}{-6} \text{ car ...} \times ... = ... \times ...$$

$$\frac{12}{45} \neq \frac{2}{9} \text{ car ...} \times ... \neq ... \times ...$$

Résultat :

$$\frac{a}{b}$$
 est un nombre rationnel, on a :

•
$$\frac{-a}{-b}$$
 =

•
$$\frac{a}{-b}$$
 =

et s'écrit aussi

$$\frac{a}{b}$$
 est un nombre rationnel et m est un entier relatif non nul.

$$\frac{a \times m}{b \times m} =$$

Exemple:

On a
$$\frac{-140}{80} =$$
Donc $\frac{-140}{80} =$

Application

1) Écrire chacun des nombres suivants sous forme d'un nombre rationnel de dénominateur égal à 36 :

$$\frac{-2.5}{6}$$
; $\frac{-9.5}{2}$; $\frac{-3.4}{1.2}$; $\frac{1.5}{-9}$; $\frac{1.5}{3}$

2) Rendre irréductible chacun des nombres suivants :

$$\frac{63}{42}$$
; $\frac{-20}{28}$; $\frac{10}{40}$; $\frac{126}{-144}$

Réduire 3) chacune des expressions suivantes:

a)
$$\frac{(-33)\times(-4)}{24\times(-11)}$$
 b) $\frac{(-7)\times(-3)\times(-2)\times3}{21\times6}$

4) Trouver la valeur de x dans les deux cas suivants: $\frac{x}{4} = \frac{-5}{2}$ et $\frac{15}{27} = \frac{-x}{9}$.

Activité 1 Q. G. M.

Pour chaque cas, une ou plusieurs affirmations sont exactes. Lesquelles ?

		(A)	(B)	(C)	(D)
1	Le nombre $\frac{1,4}{2,4}$ est égal à	$\frac{7}{9,6}$	$\frac{14}{24}$	$\frac{7}{12}$	$\frac{2}{3}$
2	La différence $\frac{3}{4} - \frac{1}{2}$ est égale à	<u>1,5</u>	$\frac{1}{2}$	$\frac{1}{4}$	1
3	Un multiple commun de 12 et 8 est	12	96	24	4
4	Le produit $\frac{5}{7} \times \frac{2}{5}$ est égal à	$\frac{2}{5}$	$\frac{2}{7}$	10 35	25 35
5	t est un nombre non nul. Le produit $\frac{a}{t} \times t$ est égal à	а	t	at ²	$\frac{at}{t}$
6	1,5-(a+2)=	1,5-a+2	1,5-a - 3	-a + 3	1,5-a - 2

Activité 2

- 1) Écrire le nombre $\frac{2,1}{32,2}$ sous forme d'une fraction.
- 2) Écrire le nombre $\frac{2,1}{3,22}$ sous forme d'une fraction de dénominateur 23.

Activité 3

Calculer:

1)
$$(-2) \times (-1,5) + 8,4 \div (-4)$$

2)
$$(-10 \div 2,5)$$
 - $(-7 \times (-1,5)) \div (-4)$

1) Donner les nombres rationnels suivants, sous forme d'une écriture décimale :

$$\frac{-16}{10}$$
 ; $\frac{4}{10}$; $\frac{-12}{10}$; $\frac{-20}{10}$

2) Recopier et compléter les égalités suivantes :

$$\frac{4}{10} + \frac{-16}{10} = \frac{\dots}{10}$$
 et $\frac{-16}{10} - \frac{4}{10} = \frac{\dots}{10}$

I. Somme et soustraction de nombres rationnels

1. Somme et différence de deux nombres rationnels ayant le même dénominateur:

 $\frac{a}{c} et \frac{b}{c} \text{ sont deux nombres rationnels.} \qquad \text{On a } \frac{5}{-13} + \frac{41}{-13} = \qquad \text{On a } \frac{58}{7} - \frac{19}{7} =$ $On a : \frac{a}{5} + \frac{b}{1} = \qquad et \frac{a}{5} - \frac{b}{5} = \qquad \text{Donc } \frac{5}{7} + \frac{41}{7} = \qquad \text{Donc } \frac{58}{7} - \frac{19}{7} =$

On
$$a: \frac{a}{c} + \frac{b}{c} =$$

$$et \frac{a}{c} - \frac{b}{c} =$$

Exemples:

On a
$$\frac{5}{-13} + \frac{41}{-13} =$$

Donc
$$\frac{5}{-13} + \frac{41}{-13} =$$

On a
$$\frac{58}{7} - \frac{19}{7} =$$

Donc
$$\frac{58}{7} - \frac{19}{7} =$$

Effectuer les calculs suivants:

$$\frac{7}{4} + \frac{-3}{4}$$

$$\frac{-6}{9} + \frac{2}{9}$$

$$\frac{7}{4} + \frac{-11}{4}$$

$$\frac{-7}{13} - \frac{11}{13}$$

$$\frac{-6}{8} - \frac{-13}{8}$$
 $\frac{7}{2} - \frac{-2}{2}$

2. Somme et différence de deux rationnels de dénominateurs différents :

a, b, c et d sont des nombres entiers relatifs, b et d sont non nuls, on a:

•
$$\frac{a}{b} + \frac{c}{d} =$$

•
$$\frac{a}{b} - \frac{c}{d} =$$

Exemples:

On a
$$\frac{9}{2} - \frac{31}{3} =$$

Donc
$$\frac{9}{2} - \frac{31}{3} =$$

Alors
$$\frac{9}{2} - \frac{31}{3} =$$

On a
$$\frac{5}{13} + \frac{7}{-10} =$$

Donc
$$\frac{5}{13} + \frac{7}{-10} =$$

Alors
$$\frac{5}{13} + \frac{7}{-10} =$$

Remarque:

Toutes les propriétés de l'addition des nombres décimaux, sur les nombres rationnels.

Effectuer les calculs suivants:

$$\frac{11}{10} + \frac{6}{5}$$
 $\frac{6}{8} + \frac{-4}{12}$

$$\frac{13}{-5} + \frac{1}{7}$$
 $\frac{3}{15} + \frac{-1}{4}$

$$-\frac{7}{27} + \frac{-3}{6}$$
 $\frac{1}{4} - \frac{1}{5}$ $\frac{7}{13} + \frac{-4}{9}$ $\frac{16}{7} - \frac{2}{5}$

1) Écrire sous forme de nombre décimal relatif chacun des facteurs, puis calculer :

•
$$\frac{3}{4} \times \frac{9}{5}$$
 et $\frac{5}{2} \times \frac{-3}{4}$

•
$$\frac{3}{4} \times \frac{13}{2}$$
 et $\frac{5}{8} \times \frac{-3}{2}$

2) Écrire les résultats de la question précédente, sous forme de nombres rationnels et conclure.

II. Produit de deux nombres rationnels

1. Produit de deux nombres rationnels :

 $\frac{a}{b}$ et $\frac{c}{d}$ sont deux nombres rationnels. On a : $\frac{a}{b} \times \frac{c}{d} =$

Exemples:

On a
$$\frac{5}{2} \times \frac{-3}{7} =$$
Donc $\frac{5}{2} \times \frac{-3}{7} =$
Donc $\frac{-9}{11} \times 3 =$
Donc $\frac{-9}{11} \times 3 =$

Effectuer les calculs suivants:

1) Déterminer le signe de chacun des deux produits :

$$A = (-3) \times \left(-\frac{1}{2}\right) \times \frac{3}{2} \times \frac{5}{8} \times \frac{-3}{2}$$
 et $B = \left(-\frac{5}{2}\right) \times (-1) \times 2 \times \left(-\frac{1}{2}\right) \times \frac{3}{-4}$

2) Quand est ce que le produit de plusieurs nombres rationnels est positif ? et quand est ce qu'il est négatif ?

2. Signe du produit de deux nombres rationnels :

- Un produit de nombres rationnels est positif si le nombre de ses facteurs négatifs, est
- Un produit de nombres rationnels est négatif si le nombre de ses facteurs négatifs, est

Exemples:

- Le produit $\frac{3}{-5} \times \frac{13}{2.5} \times \frac{-7}{0.1}$ est
- Le produit $\frac{3}{-5} \times \frac{-13}{2.5} \times \frac{-17}{0.1}$ est

Déterminer le signe de chacun des produits suivants : $\frac{-2}{5} \times \frac{-6}{14} \times \frac{1}{2} \times \frac{1}{3}$ et $\frac{-10}{3} \times \frac{-5}{4} \times \frac{12}{15} \times \frac{7}{2}$

 $\frac{a}{b}$ est un nombre rationnel non nul. Calculer $\frac{a}{b} \cdot \frac{b}{a}$.

III. Quotient de deux nombres rationnels

1. Inverse d'un nombre rationnel:

Définition

rationnel

 $\frac{a}{b}$ est un nombre rationnel non nul. L'inverse du nombre rationnel $\frac{a}{h}$ est le nombre

Exemple:

L'inverse du nombre $\frac{-3}{2}$ est

Notation:

L'inverse du nombre rationnel x est noté

$$\left(\frac{-5}{7}\right)^{-1} =$$
; $10^{-1} =$

Propriété ____

x est un nombre rationnel non nul.

On a
$$x \times (x)^{-1} = \dots$$

Exemple:

$$\left(\frac{-3}{2}\right) \times \left(\frac{-4}{6}\right) = 1$$
 donc $\frac{-4}{6}$ est l'inverse de

On dit aussi que est l'inverse de

Recopier et compléter :

$$\dots \times \frac{2}{5} = 1$$
$$\left(-\frac{3}{4}\right) \times \dots = 1$$

$$... \times \frac{2}{5} = 1$$

$$\left(-\frac{3}{4}\right) \times ... = 1$$

$$\frac{21}{15} \times ... = 1$$

$$\frac{2}{7} \times ... = 1$$

$$... \times \frac{-11}{-16} = 1$$

$$\frac{1}{7}$$
 ... $\times \frac{-11}{-16} = 1$

1) Calculer et écrire sous forme d'un nombre rationnel :

$$\bullet \quad \frac{13}{4} \div \frac{-2}{5}$$

•
$$\frac{13}{4} \times \frac{-5}{2}$$

2) Conclure.

2. Quotient de deux nombres rationnels :

Règle 4

 $\frac{a}{b}$ et $\frac{c}{d}$ sont deux nombres rationnels tel que $c \neq 0$.

On
$$a: \frac{a}{b} \div \frac{c}{d} =$$

Exemple:

$$\frac{-2}{3} \div \frac{5}{7} =$$

Remarque:

Toutes les propriétés de la multiplication des nombres décimaux sur les nombres rationnels.

Application

$$\begin{array}{c|ccccc}
\frac{11}{-5} \div \frac{-4}{9} & \frac{-2}{3} \div \frac{7}{6} & \frac{-2}{7} \div \frac{1}{2} \\
\frac{1}{-5} \div \frac{1}{7} & \frac{-12}{3} \div \frac{6}{9} & \frac{8}{-5} \div \frac{3}{5}
\end{array}$$

Activité 1 0 5 M

Pour chaque cas, une ou plusieurs affirmations sont exactes. Lesquelles ?

			(A)	(B)	(C)	(D)
1	On considère la figure suivante :	Les droites (AE) et (DF) sont	perpendiculaires	parallèles	sécantes	confondues
2	В	Les droites (AC) et (DF) sont	parallèles	perpendiculaires en F	perpendiculaires	sécantes en A
3	A F C	Les droites (AB) et (BC) sont	perpendiculaires	parallèles	sécantes	confondues
4		Les droites (AB) et (ED) sont	parallèles	perpendiculaires	confondues	sécantes
5	E	Les droites (AE) et (CD) sont	perpendiculaires	confondues	sécantes	parallèles
6	\ \dolsymbol{D}	Les droites (AF) et (AC) sont	parallèles	sécantes	perpendiculaires	confondues
7	Dans la figure ci-des alignés sont B E A	osous, les points D G F	B, E et F	C, E et F	A, J, E et D	B, C et G
8	La droite (D) est la 1 segment [AB], dans		(D)	(D)	(D)	(D) A

Activité 2

- 1) Tracer un segment [AB] de longueur 5 cm.
- 2) Placer I le milieu du segment [AB].
- 3) Construire le point C tel que le point B est le milieu du segment [AC].

Activité 3

A et B sont deux points tels que AB = 5 cm.

- 1) Tracer (C) le cercle de centre A et de rayon 3 cm et (C') le cercle de centre B et de rayon 3 cm
- 2) Les deux cercles (C) et (C') se coupent en M et N.

Que représente la droite (MN) pour le segment [AB] ? Justifier.

Activité d'introduction

- I. (D) est une droite du plan et A est un point n'appartenant pas à (D).
- 1) M et N sont deux points différents de (D). Construire le cercle de centre M et de rayon AM et le cercle de centre N et de rayon AN.
- 2) Les deux cercles se coupent en A et en un deuxième point A'. Que représente (D) pour le segment [AA']?
- II. (D) est une droite du plan. A, B et C sont trois points alignés.
- 1) Construire A', B' et C' les symétriques respectifs des points A, B et C par rapport à (D).
- 2) Que peut-on dire des points A', B' et C'?

Cours

I. Symétrique d'un point par rapport à un axe

Définition

(D) est une droite du plan et M est un point qui n'appartient pas à (D).

Le symétrique du point M par rapport à (D) est le point, tel que la droite (D)

est du segment [MM'].

Remarque:

- Si M est un point (D), le symétrique du point M par rapport à (D) est
- Si M'est le symétrique de M par rapport à (D), alors M est aussi de M' par rapport à (D). On dit que M et M' sont par rapport à (D).

Propriété

Exemple:

Sur la figure ci-contre les points A, B et C appartiennent à la même perpendiculaire à la droite (D).

A', B' et C' sont respectivement les symétriques des points A, B et C par rapport à la droite (D).

Les points A', B' et C' sont

C (D)

Application

On considère la figure suivante :

- 1) Construire à l'aide de l'équerre et du compas les symétriques des points A et C par rapport à la droite (D).
- 2) Construire à l'aide du compas les symétriques des points B et E par rapport à la droite (D).
- 3) Quel est le symétrique du point F par rapport à la droite (D) ? Justifier ta réponse.

BB'C'C est un rectangle et (D) la médiatrice du segment [BB'].

- 1) Déterminer les symétriques respectifs des points B et C par rapport à (D).
- 2) a) Quel est le symétrique du segment [BC] par rapport à (D)?
 - b) Comparer les distances BC et B'C'. Conclure.

Cours

II. Symétriques usuels

1. Symétrique d'un segment

Propriété_

Exemple:

A', M' et B' sont respectivement les symétriques des points A, M et B par rapport à la droite (D).

Conséquence:

Le symétrique d'une figure par rapport à une droite est

Exemple:

A'B'C' est le triangle symétrique du triangle ABC par rapport à une droite (D).

Le périmètre de *A'B'C'* estau périmètre de ABC.

 $(A'B'+\ldots +C'A'=\ldots +BC+\ldots).$

Application

- 1) Tracer un segment [AB] puis sa médiatrice (D).
- 2) Quel est le symétrique de A par rapport à (D) ?
- 3) Quel est le symétrique de B par rapport à (D) ?
- 4) Placer un point K sur (D) n'appartenant pas à [AB]. Quel est le symétrique de K par rapport à (D) ?
- 5) Que peut-on dire des longueurs KA et KB?
- 6) Que peut-on dire du triangle BAK?

Cours

2. Symétrique d'une droite

Propriété _

(D) est une droite du plan.

Le symétrique d'une droite (Δ) par rapport à

(D) est

Exemple:

Le symétrique d'une droite (D) par rapport à (D) est

Conséquence:

La droite (Δ ') est le symétrique de la droite (Δ) par rapport à la droite (D). On a :

Si (D) coupe (Δ) en un point I, alors la droite (Δ ') coupe (D) au même point I.

Si (D) et (Δ) sont parallèles, alors (Δ ') et (D) sont aussi parallèles.

Si (D) et (Δ) sont perpendiculaires, alors (Δ ') et (Δ) sont confondues.

3. Symétrique d'une demi-droite

Propriété _____

Le symétrique d'une demi-droite par rapport à une droite est

Exemple:

Dans la figure ci-contre;

- Le symétrique de la demi-droite [BA) par rapport à (D) est
- Le symétrique de la demi-droite [BC) par rapport à D est

Application

- (D) et (L) sont deux droites sécantes en un point O. A et B sont deux points distincts de (D) différents de O.
- 1) Construire [A'B'), le symétrique de la demi-droite [AB) par rapport à la droite (L).
- 2) Quel est le symétrique de la droite (D) par rapport à (L) ?
- 3) A' et B' sont les symétriques respectifs de A et B.

Montrer que les points A', O et B' sont alignés.

Activité d'introduction

ABC est un triangle isocèle en A.

- 1) Construire A', le symétrique de A par rapport à la droite (BC).
- 2) Quel est le symétrique de l'angle \widehat{BAC} par rapport à (BC)?
- 3) Montrer que $\widehat{BAC} = \widehat{BA'C}$.

Cour

4. Symétrique d'un angle

Propriété __

Exemple:

l'angle

ABC est un triangle tel que : AB = 6 cm, $\widehat{BAC} = 100^{\circ}$ et $\widehat{ABC} = 30^{\circ}$.

M est le milieu de [BC]. E est le symétrique de B par rapport à la droite (AM) et F est le symétrique de C par rapport à la droite (AM).

- 1) Construire la figure.
- 2) Calculer les mesures des angles du triangle AEF.

5. Symétrique d'un cercle

Propriété __

Le symétrique d'un cercle par rapport à une droite est

Exemple:

(E) est un cercle de diamètre [AB]. Le symétrique de (E) par rapport à la droite (AB) est

Application

- (D) est une droite et A est un point n'appartenant pas à (D). (E) est un cercle de centre A et de rayon 3 cm.
- 1) Construire une figure.
- 2) Construire (\mathcal{C}'), le symétrique de (\mathcal{C}) par rapport à (D).

6. Symétrie axiale et surface

Propriété_

Le symétrique d'une figure par rapport à une droite est

Exemple:

Le symétrique d'un disque par rapport à une droite (D) est

Quel est le nombre minimal de cases à colorer pour que le puzzle (grand carré) ait deux axes de symétrie?

Activité 1 Q G

Pour chaque cas, une ou plusieurs affirmations sont exactes. Lesquelles ?

		(A)	(B)	(C)	(D)
1	$\frac{3}{2} + \frac{7}{3} - \frac{3}{5} = \dots$	$\frac{97}{30}$	97 15	$\frac{7}{10}$	$\frac{23}{6} - \frac{3}{5}$
2	$\frac{7}{2} \times \left(-\frac{5}{3}\right) = \dots$	$\frac{21}{10}$	$\frac{35}{6}$	$-\frac{35}{6}$	$-\frac{21}{10}$
3	$\left(-\frac{1}{4}\right) \div \frac{9}{16} = \dots$	$\frac{4}{9}$	$-\frac{9}{64}$	$-\frac{4}{9}$	$-\frac{16}{36}$
4	3,02 =	$\frac{302}{100}$	$\frac{151}{50}$	$\frac{32}{10}$	$\frac{302}{10}$
5	La puissance 10^3 est égale à	1000	30	3000	13
6	Le produit $10^5 \times 10^3$ est égal à	10^{2}	108	1015	2015
7	$(10^5)^3 = \dots$	10^{8}	1015	10^{2}	$(10^3)^5$
8	$\frac{10^{11}}{10^7} = \dots$	10^{4}	10000000	10 ¹⁸	10000
9	Le produit $0,0025 \times 10^3$ est égal à	25	0,25	2,5	250

Activité 2

Déterminer le signe de chacun des nombres suivants :

 $(-20,21)^{13}$; $-(2,5)^{21}$; $(-100)^{16}$; $-(201)^{22}$.

Activité 3

Déterminer l'écriture scientifique de chacun des nombres suivants :

250000

45000000 ; $74 \times 10^5 \times 2,4 \times 10^3$.

Activité d'introduction

En utilisant une calculatrice scientifique, calculer:

- 1) $\frac{2}{5} \times \frac{2}{5} \times \frac{2}{5} \times \frac{2}{5}$ et $\left(\frac{2}{5}\right)^4$, puis comparer les deux résultats.
- 2) $\left(\frac{3,7}{-4}\right)^3$ et $\left(\frac{3,7}{-4}\right) \times \left(\frac{3,7}{-4}\right) \times \left(\frac{3,7}{-4}\right)$, puis comparer les deux résultats.

I. Puissance d'un nombre rationnel

1. Puissance à exposant positif d'un nombre rationnel :

x est un nombre rationnel et n est un nombre entier supérieur à 1. La puissance d'ordre n de x est $x^n = \underbrace{\dots \times \dots \times \dots \times \dots}_{n \text{ facteurs}}$

On $a \left(\frac{2}{3}\right)^4 =$ Alors $\left(\frac{2}{3}\right)^4$

Exemple

Conventions:

x est un nombre rationnel non nul. On a : $x^0 = 1$ et $x^1 = x$. La puissance d'ordre 2 de x est x^2 , se lit le carré de x. La puissance d'ordre 3 de x est x^3 , le cube de x.

$$Donc \left(\frac{2}{3}\right)^4 =$$

La puissance d'ordre 4 de $\frac{2}{3}$ est

Application

 4^3 ; $\left(\frac{15}{3}\right)^2$; $\left(\frac{4}{3}\right)^3$; $\left(\frac{5}{2}\right)^3$; $\left(\frac{3}{2}\right)^4$ 2^3 1) Calculer les puissances suivantes :

2) Écrire sous forme d'une puissance : 100 ; 1000000 ; 1 ; 10000 ; 10 ; 1000.

Activité d'introduction

Recopier et compléter le tableau suivant:

Écriture décimal	0,1	0,01	0,0001	0,000001	•••		
Écriture fractionnaire	$\frac{1}{10}$	$\frac{1}{100}$			•••		
Écriture sous la forme $\frac{1}{10^n}$, avec <i>n</i> un entier	$\frac{1}{10^1}$	$\frac{1}{10^2}$			$\frac{1}{10^3}$	•••	•••
Écriture sous la forme d'une puissance de 10	10 ⁻¹	10 ⁻²			•••	10 ⁻⁵	10 ⁻⁷

2. Puissance à exposant négatif d'un nombre rationnel

Définition

x est un nombre rationnel non nul et n est un nombre entier naturel.

La puissance de **x** à exposant négatif (-**n**) est

.....

On écrit : $x^{-n} =$

Exemples

On a $(-2)^{-3} =$

Alors $(-2)^{-3} =$

Donc $(-2)^{-3} =$

On a
$$\left(\frac{3}{5}\right)^{-1}$$
 =

Conséquence:

x est un nombre rationnel non nul. $x^{-n} =$

a est un nombre rationnel non nul.

Exemple:

On a
$$\left(\frac{5}{3}\right)^{-2} =$$

Donc
$$\left(\frac{5}{3}\right)^{-2} =$$

Règle 1

n est un nombre entier naturel.

$$10^{n} = 1 \underbrace{00 \dots 0}_{n \text{ zéros}} ; 10^{-n} = \frac{1}{10^{n}} = 0, \underbrace{0 \dots 0}_{(n-1) \text{ zéros}}$$

Exemples:

$$10^3 = 1000$$
; $10^{-6} = 0,00000$
3 zéros ; $10^{-6} = 0,00000$

Calculer les puissances suivantes : 3^{-2} ; 5^{-3} ; $\left(\frac{4}{3}\right)^{-3}$; $\left(\frac{15}{3}\right)^{-2}$; $\left(\frac{9}{7}\right)^{3}$; $\left(\frac{2}{5}\right)^{-4}$.

Activité d'introduction

1) Déterminer le signe de chacune des puissances suivantes :

$$\left(\frac{-1}{5}\right)^{-2}$$
, $\left(\frac{-1}{5}\right)^{2}$, $\left(-\frac{2}{5}\right)^{-3}$ et $\left(-\frac{3}{2}\right)^{5}$

2) Quand est-ce qu'une puissance est négative ? positive ?

3. Signe d'une puissance :

La puissance d'un nombre rationnel est négative uniquement lorsque

Exemples

- La puissance $\left(\frac{-1}{9}\right)^3$ est et

Application

Recopier et compléter le tableau suivant :

Puissance	$\left(\frac{-17}{4}\right)^{-2}$	$\left(-\frac{11}{3}\right)^{14}$	$\left(\frac{-147}{-5}\right)^{99}$	$\left(-\frac{-47}{-8}\right)^{21}$	$\left(\frac{5}{3}\right)^{2020}$
Signe de la puissance		positif	•••		

1) a est un nombre rationnel non nul. Écrire sous forme d'une puissance de a.

$$a^2 \times a^5$$
 , $(a^2)^3$ et $\frac{a^4}{a^7}$.

2) a et b sont deux nombres rationnels et b non nul. Écrire sous forme d'une seule puissance.

$$a^3 \times b^3$$
 et $a^5 \div b^5$.

II. Propriétés des puissances

1. Produit de deux puissances de même base :

Règle 3

x est un nombre rationnel non nul. m et n sont deux nombres entiers relatifs. On a:

$$x^m \times x^n =$$

Exemples:

$$\left(\frac{3}{7}\right)^3 \times \left(\frac{3}{7}\right)^5 = \qquad ; \left(\frac{-1}{5}\right)^{-3} \times \left(\frac{-1}{5}\right)^5 =$$

Application

Écrire sous forme d'une puissance.

$$5^{3} \times 5^{4} \quad ; \qquad (-2,5)^{-2} \times (-2,5)^{-4} \quad ; \quad \left(\frac{1}{4}\right)^{-4} \times \left(\frac{1}{4}\right)^{-9}; \quad \left(\frac{7}{5}\right)^{-6} \times \left(\frac{7}{5}\right)^{-11}; \quad \left(\frac{-5}{6}\right)^{16} \times \left(\frac{-5}{6}\right)^{-2}; \quad \left(\frac{3}{5}\right)^{-6} \times \left(\frac{3}{5}\right)^{-7}$$

2. Quotient de deux puissances de même base:

x est un nombre rationnel non nul. m et n sont deux nombres entiers relatifs. On a:

$$x^m \div x^n =$$

Exemples:

$$\left(\frac{8}{3}\right)^4 \div \left(\frac{8}{3}\right)^5 = \qquad ; \qquad \left(\frac{2}{3}\right)^6 \div \left(\frac{2}{3}\right)^{-2} =$$

Écrire sous forme d'une puissance.

$$2^{-5} \div 2^{-5} \quad ; \quad (9,1)^{-4} \div (9,1)^{-4} \quad ; \quad \left(\frac{1}{8}\right)^{-5} \div \left(\frac{1}{8}\right)^{-5} \quad ; \quad \left(\frac{7}{5}\right)^{-6} \div \left(\frac{7}{5}\right)^{-6} \quad ; \quad \left(\frac{-3}{8}\right)^{13} \div \left(\frac{-3}{8}\right)^{-7} ; \quad \left(\frac{13}{12}\right)^{9} \div \left(\frac{13}{12}\right)^{-3}$$

3. Puissance d'une puissance :

Règle 5 _

x est un nombre rationnel non nul. m et n sont deux nombres entiers relatifs. On a:

$$(x^m)^n =$$

Exemples:

$$\left[\left(\frac{-2}{11} \right)^2 \right]^{-3} = \qquad ; \quad \left[\left(\frac{-5}{3} \right)^{-4} \right]^{-7} =$$

Écrire sous forme d'une puissance.

$$(3^4)^5 \qquad ; \qquad ((-2)^3)^{-4} \qquad ; \qquad \left(\left(\frac{1}{3} \right)^4 \right)^{-7} \quad ; \quad \left(\left(\frac{2}{-3} \right)^{-4} \right)^5 \quad ; \quad \left(\left(\frac{-8}{10} \right)^3 \right)^{-5} \quad ; \quad \left(\left(\frac{7}{3} \right)^2 \right)^{-6}$$

4. Produit de deux puissances de même exposant ;

x et *y* sont deux nombres rationnels non nuls. m est un nombre entier relatif. On a :

$$x^m \times y^m =$$

Exemples:

$$\left(\frac{3}{5}\right)^{-2} \times \left(\frac{2}{13}\right)^{-2} = \qquad 5^{-7} \times \left(\frac{7}{3}\right)^{-7} =$$

$$\left(\frac{3}{5}\right)^{-2} \times \left(\frac{2}{13}\right)^{-2} = \qquad 5^{-7} \times \left(\frac{7}{3}\right)^{-7} =$$

Application

1) Écrire sous forme d'une puissance.

$$3^4 \times 5^4$$
 ; $(2,3)^5 \times (3,2)^5$; $\left(\frac{1}{5}\right)^3 \times \left(\frac{1}{4}\right)^3$; $\left(\frac{7}{3}\right)^8 \times \left(\frac{6}{21}\right)^5$; $\left(\frac{6}{4}\right)^3 \times \left(\frac{16}{12}\right)^3$; $\left(\frac{7}{2}\right)^8 \times \left(\frac{8}{14}\right)^6$

2) Écrire sous forme d'une puissance.

$$2^{-4} \times 3^{-4} \quad ; \quad (7,2)^{-3} \times (2,1)^{-3} \; ; \; \left(\frac{1}{4}\right)^{-5} \times \left(\frac{5}{3}\right)^{-5} \; ; \; \left(\frac{-20}{15}\right)^{-6} \times \left(\frac{25}{10}\right)^{-6} \; ; \; \left(\frac{14}{12}\right)^{-3} \times \left(\frac{36}{21}\right)^{-3} ; \; \left(\frac{-15}{13}\right)^{-2} \times \left(\frac{26}{15}\right)^{-2}$$

Cours

5. Quotient de deux puissances de même exposant

Règle 7

x et y sont deux nombres rationnels non nuls. m est un nombre entier relatif. On a :

$$x^m \div y^m =$$

Exemple:

On a
$$\left(\frac{-2}{7}\right)^{-3} \div \left(\frac{-5}{3}\right)^{-3} =$$

Donc
$$\left(\frac{-2}{7}\right)^{-3} \div \left(\frac{-5}{3}\right)^{-3} =$$

Donc
$$\left(\frac{-2}{7}\right)^{-3} \div \left(\frac{-5}{3}\right)^{-3} =$$

Application

1) Écrire sous forme d'une puissance.

$$12^{5} \div 6^{5} \quad ; \quad (3,2)^{4} \div (1,6)^{4} \quad ; \quad \left(\frac{-1}{5}\right)^{3} \div \left(\frac{1}{3}\right)^{3} \quad ; \quad \left(\frac{-2}{3}\right)^{4} \div \left(\frac{-4}{6}\right)^{4}; \quad \left(\frac{2}{5}\right)^{3} \div \left(\frac{-4}{10}\right)^{3}; \quad \left(\frac{4}{9}\right)^{5} \div \left(\frac{16}{18}\right)^{5}$$

2) Écrire sous forme d'une puissance

$$15^{-2} \div 3^{-2} \quad ; \quad (4,5)^{-3} \div (1,5)^{-3} \quad ; \quad \left(\frac{-1}{7}\right)^{-4} \div \left(\frac{1}{5}\right)^{-4} \quad ; \quad \left(\frac{-4}{6}\right)^{-5} \div \left(\frac{16}{-32}\right)^{-5} \quad ; \quad \left(\frac{-2}{9}\right)^{-3} \div \left(\frac{-4}{18}\right)^{-3} \quad ; \quad \left(\frac{-5}{7}\right)^{-2} \div \left(\frac{25}{21}\right)^{-2} \quad ; \quad \left(\frac{-2}{9}\right)^{-3} \div \left(\frac{-4}{18}\right)^{-3} \quad ; \quad \left(\frac{-5}{7}\right)^{-2} \div \left(\frac{25}{21}\right)^{-2} \quad ; \quad \left(\frac{-2}{9}\right)^{-3} \div \left(\frac{-4}{18}\right)^{-3} \quad ; \quad \left(\frac{-5}{7}\right)^{-2} \div \left(\frac{25}{21}\right)^{-2} \quad ; \quad \left(\frac{-2}{9}\right)^{-3} \div \left(\frac{-4}{18}\right)^{-3} \quad ; \quad \left(\frac{-5}{7}\right)^{-2} \div \left(\frac{25}{21}\right)^{-2} \quad ; \quad \left(\frac{-2}{9}\right)^{-3} \div \left(\frac{-4}{18}\right)^{-3} \quad ; \quad \left(\frac{-5}{18}\right)^{-2} \div \left(\frac{25}{21}\right)^{-2} \quad ; \quad \left(\frac{-5}{18}\right)^{-2} \div \left(\frac{25}{18}\right)^{-2} \quad ; \quad \left(\frac{-4}{18}\right)^{-2} \div \left(\frac{-4}{18}\right)^{-2} \quad ; \quad \left(\frac{-5}{18}\right)^{-2} \div \left(\frac{25}{18}\right)^{-2} \quad ; \quad \left(\frac{-4}{18}\right)^{-2} \div \left(\frac{-5}{18}\right)^{-2} \div \left(\frac{25}{18}\right)^{-2} \quad ; \quad \left(\frac{-4}{18}\right)^{-2} \div \left(\frac{-4}{18}\right)^{-2} \div \left(\frac{-5}{18}\right)^{-2} \quad ; \quad \left(\frac{-5}{18}\right)^{-2} \div \left(\frac{-5}{18}\right)^{-2} \div \left(\frac{-5}{18}\right)^{-2} \quad ; \quad \left(\frac{-5}{18}\right)^{-2} \div \left(\frac{-5}{18}\right)^{-2} \div$$

Activité d'introduction

Recopier et compléter par le nombre entier qui convient : $0,0042 \times 10^2 = 4,2 \times 10^{-6}$ et $891 \times 10^{-5} = 8,91 \times 10^{-6}$.

Cours

III. Écriture scientifique – Ordre de grandeur

1. Écriture scientifique :

Rèale 8

Un nombre décimal d positif, peut s'écrire sous la forme $a \times 10^n$ tel que : a est un nombre décimal compris entre 1 et 10 (1 inclus et 10 exclus) et n est un entier relatif.

 $a \times 10^n$ s'appelle l'écriture scientifique de d.

Exemples:

• 240000 = ×

L'écriture scientifique du nombre 240000 est \times

• $0,000000036 = \times$

L'écriture scientifique du nombre 0,000000036 est \times

Application

1) Exprimer chaque expression en notation scientifique :

 $A = 213 \times 10^8$; $B = 712 \times 10^4$

 $C = 94,45 \times 10^6$; $D = 641,25 \times 10^5$

2) Exprimer chaque expression en notation scientifique :

 $A = 0.0023 \times 10^{-4}$; $B = 0.062 \times 10^{-4}$

 $C = 0.000945 \times 10^{-2}$; $D = 0.00564 \times 10^{-5}$

Recopier et compléter le tableau suivant :

x	0,00178	0,0000123	380100000	63000000
Écriture scientifique : $x = a \times 10^n$	•••	•••	$3,801 \times 10^{8}$	•••
$b \times 10^n$, avec b l'entier le plus proche de a			4×10^{8}	

2. Ordre de grandeur

Définition

L'ordre de grandeur d'un nombre est

Exemples:

Ordre de grandeur de 1200000:

L'écriture scientifique de 1200000 est ... ×

1,2 ... 5, donc on remplace 1,2 par 1 dans l'écriture scientifique.

L'ordre de grandeur de 1200000 est

Ordre de grandeur de 0,0000000067:

L'écriture scientifique de 0,0000000067 est ... × 6,7 ... 5, donc on remplace 6,7 par 10 dans l'écriture

scientifique.

L'ordre de grandeur de 0,0000000067 est

Déterminer l'ordre de grandeur des nombres suivants : 348745 ; 782548 ; 9767 ; 124587

Activité 1 Q. G. M.

Pour chaque cas, une ou plusieurs affirmations sont exactes. Lesquelles ?

		(A)	(B)	(C)	(D)
1	Un parallélogramme est un quadrilatère	dont les diagonales se coupent en leur milieu	qui a un seul angle droit	dont les diagonales ont la même longueur	qui a deux côtés opposés parallèles et de même longueur.
2	ABCD est un parallélogramme, alors	(AB) // (CD) et AD = CB	(AB) // (CD) et AB = AC	[AD] et [BC] ont le même milieu	AC = BD
3	Le point J est le milieu du segment [AB] lorsque	AJ = JB	A et B sont symétriques par rapport à J	AB = 2AJ	J et B sont symétriques par rapport à A
4	On a $\frac{2x}{5} = \frac{7}{2}$, alors	$x = \frac{35}{4}$	<i>x</i> = 35	$x = \frac{14}{10}$	$x = \frac{5}{3}$
5	Dans la figure suivante :	$\frac{AB}{AC} = \frac{7}{2}$	2AB = 7AC	$\frac{AB}{AC} = \frac{2}{7}$	2AC = 7AB
6	Les rapports qui sont égaux sont	$\frac{5}{3}$ et $\frac{15}{9}$	$\frac{4,5}{5,4}$ et $\frac{5}{6}$	$\frac{3,6}{9}$ et $\frac{1,8}{6}$	$\frac{7,4}{3,6}$ et $\frac{10}{5}$

Activité 2

Sur la figure ci-contre, les deux droites (AM) et (MB) sont perpendiculaires.

- 1) Construire (d₁), la droite passant par le point A et parallèle à la droite (MB).
- 2) Montrer que (d₁) est perpendiculaire à la droite (AM).
- 3) Construire (d_2) , la droite passant par le point B et perpendiculaire à la droite (MB).
- 4) Montrer que (d₂) est parallèle à la droite (AM).

Activité 3

ABC est un triangle et O est le milieu du segment [AC].

- 1) Construire le point D, le symétrique du point B par rapport au point O.
- 2) Montrer que (AD) // (BC) et (AB) // (CD).
- 3) Déduire la nature du quadrilatère ABCD.

Activité d'introduction

Sur la figure ci-contre, ABC est un triangle, I est le milieu du segment [AB] et J est le milieu du segment [AC]. Le point K est le symétrique de I par rapport au point J.

- 2) Montrer que IBCK est un parallélogramme.
- 3) En déduire que les droites (IJ) et (BC) sont parallèles et que

$$IJ = \frac{1}{2}BC.$$

Cours

I. Droite passant par les milieux de deux côtés d'un triangle

1. Droite passant par les milieux de deux côtés d'un triangle :

i neoreme
Dans un triangle, la droite qui passe par les
milieux de deux côtés est

Exemple

Sur la figure ci-contre, ABC est un triangle rectangle en B, I est le milieu de [AB] et J est le milieu de [AC].
On a (IJ) ... (BC).

Application

A, B et C sont trois points non alignés. A' est le symétrique de C par rapport à A et B' est le symétrique de C par rapport à B.

1) Construire la figure.

.Théorème

2) Montrer que les droites (AB) et (A'B') sont parallèles.

Cours

2. Longueur d'un segment déterminé par les milieux de deux côtés d'un triangle :

Dans un triangle, la longueur du segment qui
joint les milieux de deux côtés est

Exemple

Sur la figure ci-contre, ABCD est un rectangle, I est le milieu de [AB] et J est le milieu de [AC].

On a IJ =

Remarque: IJ = $\frac{BC}{2}$ signifie aussi que $BC = ... \times ...$.

Application

ABC est un triangle tel que BC = 5 cm. I et J sont les milieux respectifs des segments [AB] et [AC]. Calculer la longueur IJ.

Activité d'introduction

Sur la figure ci-contre, ABC est un triangle et I est le milieu du segment [AB].

La droite (d₁) parallèle à (BC) et passant par I coupe [AC] en J.

La droite (d₂) passant par C et parallèle à la droite (AB) coupe la droite (IJ) au point D.

- 1) Déterminer la nature des quadrilatères IBCD et AICD.
- 2) Montrer que J est le milieu de [AC].

II. Droite passant par le milieu d'un côté et parallèle à un autre.

The	ore	me	-
Da	ns	un	t

riangle, la droite qui passe par le milieu d'un côté et est parallèle à un deuxième côté,

Exemple

Sur la figure ci-contre, ABCD est un rectangle, I est le milieu de [AB]. La droite parallèle à (BC) et passant par I, coupe (AC) en J. On a J est de [AC].

Application

ABC est un triangle rectangle en B, I est le milieu du segment [AC]. La perpendiculaire à (BC) passant par I coupe le segment [BC] en J.

- 1) Montrer que la droite (IJ) est parallèle à la droite (AB).
- 2) En déduire que J est le milieu du segment [BC].

Sur la figure ci-contre, ABC est un triangle et E est le milieu de [AB] et M est le milieu de [EB].

La droite parallèle à (BC) passant par E coupe (AC) en F.

La droite parallèle à (BC) passant par M coupe (AC) en N.

Les droites (BF) et (MN) se coupent en K.

1) Montrer que F, K et N sont respectivement, les milieux des segments [AC], [BF] et [FC].

3) Déterminer la valeur de
$$\frac{KN}{BC}$$
, puis en déduire que $\frac{MN}{BC} = \frac{3}{4}$.

4) En déduire que
$$\frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC}$$
.

II. Proportionnalité des longueurs dans un triangle.

Théorème.

ABC est un triangle, M est un point de [AB] et N est un point de [AC] tel que la droite (MN) est parallèle à la droite (BC). On a:

ExempleSur la figure ci-contre, les droites (MN) et (BC)

sont parallèles.

On donne AC = 5 cm, AN = 2 cm,

BC = 7 cm et AM = 3 cm.

On a

Donc

Donc $AB = \dots cm$ et $MN = \dots cm$.

Remarque: Les côtés du triangle ABC sont proportionnels aux côtés du triangle AMN.

Application

On considère la figure suivante telle que : AF = 2 , EF = 3, AC = 5 et (EF) // (BC). Calculer la distance BC.

Cours

IV. Partager un segment en parties égales. Exemple :

Partager le segment [AB] de 7 cm en trois parties égales.

1) On trace le segment [AB] de longueur 7 cm.

2) * 1^{ere} Etape:

On trace une demi-droite [AU) à support non parallèle à (AB).

* 2^{ème} Etape:

On prends un écartement quelconque du compas. Sur la demi-droite [AU), en partant de A on trace trois segments de même longueur, [AI], [IJ] et [JK].

* 3^{ème} Etape:

On trace la droite (KB). Puis on trace les parallèles à cette droite passant par chacun des deux autres points I et J.

Conclusion:

Les droites coupent le segment [AB] en trois points M, N et B qui découpent le segment [AB] en trois segments égaux.

Partager le segment [CD] de 9 cm en cinq parties égales.

Activité 1 Q. G. M.

Pour chaque cas, une ou plusieurs affirmations sont exactes. Lesquelles ?

		(A)	(B)	(C)
1	M est le milieu du segment [AB] signifie que	MA = MB	les points A, M et B sont alignés.	MA = MB et les points A, M et B sont alignés.
2	Le point D est le symétrique de A par rapport à K, signifie que	DK = AK	K est le milieu de [DA]	les points A, D et K sont alignés.
3	[AC] et [BD] sont de même milieu, donc	ABCD est un parallélogramme.	ABCD est un rectangle.	ABCD est un losange.
4	ABC est un triangle. I est le milieu de [AB] et J est le milieu de [AC], alors	(IJ) // (BC)	$IJ = \frac{1}{2} BC$	BC = IJ
5	Dans la figure ci-contre, la droite (D) est une du triangle ABC.	médiatrice	hauteur	bissectrice
6	Dans la figure ci-contre, la droite (D) est une du triangle ABC.	médiatrice	hauteur	bissectrice
7	Dans la figure ci-contre, la droite (D) est une du triangle ABC.	médiatrice	hauteur	bissectrice

Activité 2

[AB] est un segment. La droite (D) est la médiatrice du segment [AB]. M est un point de la droite (D).

- 1) Comparer MA et MB.
- 2) K est un point tel que KA = KB. Est-ce que K est un point de la droite (D) ? Justifier.

Activité 3

 \widehat{BAC} est un angle et [AI) sa bissectrice.

- 1) Comparer IH et IK.
- 2) J est un point tel que JM = JN. Est-ce que le point J appartient A. à la bissectrice [AI) ? Justifier.

A l'aide du logiciel GeoGebra:

- 1) Construire un triangle ABC.
- 2) Construire les trois médiatrices du triangle ABC, à l'aide de l'outil
- 3) Que remarque-t-on à propos des trois médiatrices ?
- 4) Si on déplace le sommet B, est ce qu'on obtient la même remarque ?
- 5) Conclure.

I. Propriété des médiatrices d'un triangle

Propriété_ Les trois médiatrices d'un triangle se coupent en un, appelé à ce triangle.

Exemple

Dans la figure ci-contre, les médiatrices du triangle ABC (rectangle en B) se coupent au point O.

Le point O est

..... au triangle ABC.

Application

Construire le centre circonscrit au triangle ABC isocèle en C.

A l'aide du logiciel GeoGebra:

- 1) Construire un triangle ABC.
- 2) Construire les trois bissectrices du triangle ABC, à l'aide de l'outil 🚣

4) Si on déplace le sommet B, est ce qu'on obtient la même remarque ?

-0.15x + 0.99y = 0.01

II. Propriété des bissectrices d'un triangle

3) Que remarque-t-on à propos des trois bissectrices ?

Propriété_

5) Conclure.

Les trois bissectrices d'un triangle se coupent en un, appelé centre du dans ce triangle.

Exemple

Dans la figure ci-contre, ABC et GBC sont deux triangles isocèles, du triangle ABC se coupent au point G. Le point G est dans le triangle ABC.

Construire le centre inscrit au triangle ABC équilatéral en C.

EFG est un triangle. Les points A, B et C sont respectivement les milieux de [FG],

[EG] et [EF].

1) Montrer que les droites (AB) et (EF) sont parallèles. Ainsi que les droites (AC) et (EG).

- 2) Une médiatrice du triangle EFG est-elle une hauteur du triangle ABC ? Justifier.
- 3) En déduire que les hauteurs du triangle ABC sont concourantes.

III. Propriété des hauteurs d'un triangle

Propriété _ Les trois hauteurs d'un triangle se coupent en, appelé de ce triangle.

Exemples

Dans chacune des deux figures ci-dessous, le point H est du triangle ABC.

Application

Construire l'orthocentre au triangle ABC rectangle en C.

ABC est un triangle. I est le milieu de [AB] et J est le milieu [AC].

G est le point d'intersection de [BJ] et [CI]. D est le symétrique de A par rapport à G.

- 1) Déterminer la nature du quadrilatère BDCG.
- 2) K est le milieu de [BC]. Montrer que K appartient à la droite (AG).
- 3) En déduire que les médianes d'un triangle sont concourantes.

IV. Médianes d'un triangle

Définition Dans un triangle, une médiane est

Exemple

ABC issue de A.

Dans la figure ci-contre, le point M est le milieu du segment [BC]. La droite (AM) est du triangle

Propriété 1 _____

Les trois médianes d'un triangle se coupent en
, appelé
du triangle.

Exemple

ABC coïncident avec ses médiatrices, qui se coupent au point G, donc les médianes de ABC se coupent au point G.

Dans la figure ci-contre ABC est un triangle équilatéral les médianes du triangle G est le centre de gravité du triangle ABC.

Application

Dans la figure ci-contre, [AB] et [DC] sont deux segments. M est le milieu de [AB] et N est le milieu de [DC].

Montrer que la droite (MN) est une médiane commune au deux triangles ANB et MDC.

Activité d'introduction

ABC est un triangle. G est le centre de gravité du triangle ABC. K est le milieu de [BC].

- 1) Exprimer la distance GK en fonction de AG.
- 2) En déduire AG en fonction de AK.

Propriété 2 _

ABC est un triangle de centre de gravité le point G et M est le milieu du côté [BC].

Exemple

ABDC est un parallélogramme de centre O tel que

AD = 6 cm.

M est le milieu de

[AB].

La droite (CM)

coupe (AD) en G.

G est

du triangle ABC.

On a
$$AG =$$
 et $AO = 3$ cm.

Donc
$$AG = \dots cm$$
.

ABC est un triangle de centre de gravité le point G. M est le milieu de [BC].

On a
$$GM =$$
.

Conséquence:

Application

Dans la figure ci-dessous, ABCD est un parallélogramme de centre O et M est le milieu de [DC].

La droite (BM) coupe la droite (AC) en I.

Montrer que :
$$BI = \frac{2}{3} MB$$
.

