

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL

Faculdade de Matemática - Departamento de Matemática

Matemática Discreta - Profa. Ms. Vera Soeiro de Souza Nunes

Lista 2: Teoria de Conjuntos

1) Determina os conjuntos A e B tais que:

$$A' = \{ f, g, h, I \}, A \cap B = \{ d, e \} e A \cup B = \{ a, b, d, e, f \}.$$

- 2) Sejam A, B e C conjuntos. Prova que:
 - a) $A \subseteq B \rightarrow A \cap B = A$
 - b) A B = B' A'
 - c) $A \cup (B C) = (A \cup B) (C A)$
 - d) $(A B)' = A' \cup B$
- **3)** Sejam *A*, *B* e *C* conjuntos. Verifique se as proposições abaixo são verdadeiras ou falsas, justificando a sua resposta.
 - a) $A \cup (B A) = A \cup B$
 - b) $A \cap B = A \cap C \leftrightarrow B = C$
 - c) (A' \cup B')' = A \cap B
 - d) $(A \cup B) C = A \cup (B C)$
 - e) $A \cap B = \emptyset \rightarrow A \subseteq B'$
 - f) $A B = A C \leftrightarrow B = C$
 - g) $A \times B = B \times A \leftrightarrow A = B$
 - $h) (A \cup B) \cap C = A \cup (B \cap C)$
- **4)** Sejam A um conjunto qualquer não vazio e o produto cartesiano A x A . A afirmação verdadeira é:
 - a) $A \subset A \times A$ b) $A \times A \not\subset A \times A$ c) $A \times A \neq A$ d) $\emptyset \not\subset A \times A$ e) nenhuma
- **5)** Se A = $\{\emptyset\}$, então:
 - a) P (A) é um conjunto unitário b) P (A) é um conjunto vazio c) $\emptyset \notin P(A)$ d) P (A) é um conjunto par
 - e) P (A) = $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$
- **6)** Sendo $A = \{\{a\}, \{b\}, \{a,b\}\}$ pode-se afirmar que:
 - a) A é o conjunto das partes do conjunto {a,b}
 - b) b \in A c) $\{a\} \notin$ A d) $\{a\} \subset$ A e) $\{a,b\} \in$ A
- 7) Quando: A ⊆ B e A ≠ B, qual(ais) afirmativa(s) abaixo é(são) verdadeira(s)?
 - a) $A \cup B = B$ b) $A \cap B = B$ c) $A B = \emptyset$ d) $A \cap B = A$
- 8) Se A e B são subconjuntos de X, dentre as proposições seguintes a falsa é:
 - a) $(A \cap B) \subseteq A, \forall A, B \in P(X)$
 - b) $(A \cap B) \subseteq (A \cup B), \forall A, B \in P(X)$
 - c) $\emptyset \subseteq (A \cap B), \forall A, B \in P(X)$
 - d) B \subseteq (A \cap B), \forall A, B \in P(X)
 - e) $(A \cup A) \cap B = (B \cap B) \cap A, \forall A, B \in P(X)$

Exercícios complementares:

Referência: Menezes P. B. Matemática Discreta para Computação e Informática

Página	Exercícios
63	2, 3, 4, 5, 6, 7, 8 e 10

Respostas

1. $A = \{a, b, d, e\}, B = \{d, e, f\}$

2. a) Sejam A, B conjuntos tais que $A \subseteq B$. Seja $x \in A$.

Como A \subseteq B ,temos que x \in B.

Então $x \in A \land x \in B \Leftrightarrow x \in A \cap B$. Portanto, $A \subset A \cap B$.

Por outro lado, temos que: $x \in A \cap B \Rightarrow x \in A \land x \in B$. Portanto $x \in A$.

Temos então que A \cap B \subseteq A. Desta forma podemos concluir que A \cap B = A.

Logo, $A \subseteq B \Rightarrow A \cap B = A$.

b) Sejam A, B conjuntos quaisquer.

Então: B' - A'= $\{x \mid x \in B' \land x \notin A'\} = \{x \mid x \notin B \land x \in A\} = \{x \mid x \in A \land x \notin B\} = A - B$ Logo, A - B = B' - A'.

c) Sejam A, B, C conjuntos quaisquer. Então:

 $\forall x, \, x \in A \cup (\ B - C\) \Leftrightarrow x \in A \vee x \in (B - C) \Leftrightarrow x \in A \vee (\ x \in B \wedge x \notin C\) \Leftrightarrow \Leftrightarrow (\ x \in A \vee x \in B\) \wedge (\ x \in A \vee x \notin C\) \Leftrightarrow x \in (A \cup B) - (C - A)$ Logo, $A \cup (\ B - C\) = (A \cup B) - (C - A)$.

d) Sejam A, B conjuntos quaisquer.

 $\forall x, x \in (A - B)' \Leftrightarrow x \notin A - B \Leftrightarrow x \notin A \lor x \in B \Leftrightarrow x \in A' \cup B$ Logo, $(A - B)' = A' \cup B$.

3. a) A proposição é verdadeira. PROVA:

Sejám A e B conjuntos.

 $\forall x, x \in A \cup (B - A) \Leftrightarrow x \in A \vee (x \in B \land x \notin A) \Leftrightarrow (x \in A \vee x \in B) \land (x \in A \vee x \notin A) \Leftrightarrow \Leftrightarrow (x \in A \vee x \in B) \Leftrightarrow x \in A \cup B.$

Logo, A \cup (B - A) = A \cup B.

b) A proposição é falsa, PROVA:

Existem os conjuntos $A = \{1, 2\}, B = \{1, 3, 4\} e C = \{1, 5, 9\}$ tais que:

 $A \cap B = \{1\} \land A \cap C = \{1\}$, ou seja: $A \cap B = A \cap C$.

Mas B \neq C.

Logo, \neg (A \cap B = A \cap C \rightarrow B = C).

Logo, a proposição (A \cap B = A \cap C \leftrightarrow B = C) é falsa.

c) A proposição é verdadeira. PROVA:

Sejam A e B conjuntos. Então, usando uma das leis de De Morgan para conjuntos, temos:

 $(A' \cup B')' = (A')' \cap (B')' = A \cap B.$

Logo, $(A' \cup B')' = A \cap B$.

d) A proposição é falsa. PROVA:

Existem os conjuntos $A = \{ 1, 2, 3 \}, B = \{ 4, 5 \} e C = \{ 1, 5 \}$ tais que:

 $A \cup B = \{ 1, 2, 3, 4, 5 \} e$

 $(A \cup B) - C = \{2, 3, 4\}$

Mas:

 $B - C = \{4, 5\} - \{1, 5\} = \{4\}$

 $A \cup (B - C) = \{1, 2, 3, 4\}$

Então, neste caso, $(A \cup B) - C \neq A \cup (B - C)$.

Logo, a proposição é falsa.

e) A proposição é verdadeira. PROVA:

Sejam A e B conjuntos quaisquer tais que A \cap B = \emptyset . Então:

 $\forall \ x, \, x \in A \Rightarrow x \notin B, \, \text{pois } A \cap B = \varnothing.$

Mas: $x \notin B \Leftrightarrow x \in B'$.

Logo, $\forall x, x \in A \Rightarrow x \in B'$.

Conclusão : $A \subseteq B'$.

f) A proposição é falsa. PROVA: Existem os conjuntos A = $\{ 1, 2 \}$, B = $\{ 2, 3 \}$ e C = $\{ 2, 4 \}$ tais que A - B = $\{ 1 \}$ e A - C = $\{ 1 \}$ Mas B \neq C.

- **g)** A proposição é falsa. PROVA: Se escolhermos A = $\{ 1, 2 \}$ e B = \emptyset , teremos: A x B = \emptyset e B x A = \emptyset Porém A \neq B.
- **h)** A proposição é falsa. PROVA: Existem A = $\{ 1, 2 \}$ e B = $\{ 3, 4 \}$, C = $\{ 4, 5 \}$ onde A \cup B = $\{ 1, 2, 3, 4 \}$ e (A \cup B) \cap C = $\{ 4 \}$. B \cap C = $\{ 4 \}$ e A \cup (B \cap C) = $\{ 1, 2, 4 \}$. E então $\{ 4 \} \neq \{ 1, 2, 4 \}$.
- **4.** c
- **5.** d
- **6.** e
- 7. a, c, d
- **8.** d