Assessing model performance

Fraida Fund

February 3, 2020

Contents

In this lecture
Evaluating model performance
Classifier performance metrics
Binary classifier performance metrics
Error types
Confusion matrix
Accuracy
Balanced accuracy
More binary classifier metrics (1)
More binary classifier metrics (2)
More binary classifier metrics (3)
More binary classifier metrics (4)
Summary of binary classifier metrics
F1 score
Which metric?
Example: identifying key metrics
Soft decisions and thresholds
Soft decisions and performance metrics
Metrics depend on threshold
ROC curve
ROC curve example
Multi-class confusion matrix
Using scikit-learn to compute metrics
Function definitions
Function calls
What causes poor performance?
Evaluating models - not just performance
Bias in model output
Bias in the ML lifecycle
Causes of bias
Fairness metrics
Group fairness
Balance for positive/negative class
Predictive parity
Calibration
False positive error rate balance
False negative error rate balance
Equalized odds

	tisfying multiple fairness metrics	
Co	onditional use accuracy equality	
٥١	rerall accuracy equality	
	eatment equality	
Ca	usal discrimination	
Fa	irness through unawareness	
	ry - model fairness	

In this lecture

- · Performance metrics for classification
- · Case study: COMPAS
- · Fairness metrics for classification

Evaluating model performance

- Suppose we have a series of data points $\{(\mathbf{x_1},y_1),(\mathbf{x_2},y_2),\dots,(\mathbf{x_n},y_n)\}$ and there is some (unknown) relationship between $\mathbf{x_i}$ and y_i .
- We also have a black box model that, given some input x_i , will each produce as its output an estimate of y_i , denoted \hat{y}_i .
- The question we will consider in this lecture without knowing any details of the model is how can we judge the performance of the estimator?

Classifier performance metrics

Binary classifier performance metrics

Suppose in our example, the output variable y is constrained to be either a 0 or 1. The estimator is a binary classifier.

- a 1 label is considered a *positive* label.
- a 0 label is considered a *negative* label.

y is the actual outcome and \hat{y} is the predicted outcome.

Error types

A binary classifier may make two types of errors:

- Type 1 error (also called false positive or false alarm): Outputs $\hat{y}=1$ when y=0.
- Type 2 error (also called *false negative* or missed detection): Output $\hat{y} = 0$ when y = 1.

Confusion matrix

The number of *true positive* (TP) outputs, *true negative* (TN) outputs, false positive (FP) outputs, and false negative (FN) outputs, are often presented together in a *confusion matrix*:

$\overline{Real\downarrowPred. ightarrow}$	1	0
1	TP	FN
0	FP	TN

$$P = TP + FN$$
, $N = FP + TN$

Accuracy

A simple performance metric, accuracy, is defined as

$$\frac{TP + TN}{TP + FP + TN + FN}$$

i.e., the portion of samples classified correctly.

Balanced accuracy

With imbalanced classes (P>>N or P<< N), we get good accuracy by "predicting" all 1 or all 0! Balanced accuracy is more appropriate for highly imbalanced classes -

$$\frac{1}{2} \left(\frac{TP}{P} + \frac{TN}{N} \right)$$

gives the proportion of correct predictions in each class, averaged across classes.

More binary classifier metrics (1)

• True Positive Rate (TPR) also called recall or sensitivity:

$$TPR = \frac{TP}{P} = \frac{TP}{TP + FN} = P(\hat{y} = 1|y = 1)$$

• True Negative Rate (TNR) also called specificity:

$$TNR = \frac{TN}{N} = \frac{TN}{FP + TN} = P(\hat{y} = 0|y = 0)$$

More binary classifier metrics (2)

• Positive Predictive Value (PPV) also called precision:

$$PPV = \frac{TP}{TP \perp FP} = P(y = 1 | \hat{y} = 1)$$

• Negative Predictive Value (NPV):

$$NPV = \frac{TN}{TN + FN} = P(y = 0|\hat{y} = 0)$$

More binary classifier metrics (3)

• False Positive Rate (FPR):

$$FPR = \frac{FP}{N} = \frac{FP}{FP + TN} = 1 - TNR = P(\hat{y} = 1|y=0)$$

• False Discovery Rate (FDR):

$$FDR = \frac{FP}{FP + TP} = 1 - PPV = P(y = 0|\hat{y} = 1)$$

More binary classifier metrics (4)

• False Negative Rate (FNR):

$$FNR = \frac{FN}{FN + TP} = 1 - TPR = P(\hat{y} = 0|y = 1)$$

• False Omission Rate (FOR):

$$FOR = \frac{FN}{FN + TN} = 1 - TPR = P(y = 1|\hat{y} = 0)$$

Summary of binary classifier metrics

Selected classifier metrics

F1 score

Combines precision ($\frac{TP}{TP+FP}$) and recall ($\frac{TP}{TP+FN}$) in one metric:

$$F_1 = 2 \left(\frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}} \right)$$

Which metric?

Consider

- · class balance
- · relative cost of each kind of error

Example: identifying key metrics

Imagine a classifier for non-invasive prenatal testing that analyzes blood samples of pregnant women, to:

- · Identify whether the fetus is a boy or a girl.
- Identify women that should undergo more invasive diagnostic tests for possible fetal health problems.

Soft decisions and thresholds

Some classifiers give soft decisions:

- Hard decision: output is either a 0 or 1
- **Soft decision**: output is a probability, $P(y=1|\mathbf{x})$

We get a "hard" label from a "soft" classifier by setting a threshold: $\hat{y}=1$ if we estimate $P(y=1|\mathbf{x})>t$ for some threshold t.

Soft decisions and performance metrics

With a threshold, we can get a confusion matrix and compute the other performance metrics - but these all depend on choice of t.

Metrics depend on threshold

We could set t to maximize overall accuracy, set it higher to decrease FPR (but also decrease TPR), or set it lower to increase TPR (but also include FPR).

ROC curve

The ROC curve shows tradeoff between FPR and TPR for a specific classifier with varying t

- ullet Each point shows the FPR and TPR of the classifier for a different value of t
- Plot FPR on x-axis, TPR on y-axis

(ROC stands for receiver operating characteristic" - the term is from radar applications.)

ROC curve example

ROC curve - via bu.edu

AUC

Area under the [ROC] curve (AUC) is a performance metric for the overall classifier, independent of t

- · Higher AUC is better
- · Higher AUC means for a given FPR, it has higher TPR

Multi-class classifier performance metrics

Output variable $y \in 1, 2, \cdots, K$

- Accuracy: number of correct labels, divided by number of samples
- Balanced accuracy: direct extension of two-class version
- Other metrics: pairwise comparisons between one class and all others

Soft classifier: probability for each class.

Multi-class confusion matrix

Example via Cross Validated

Using scikit-learn to compute metrics

The scikit-learn library in Python includes functions to compute many performance metrics.

For reference, you can find these at: scikit-learn metrics.

Function definitions

```
sklearn.metrics.accuracy_score(y_true, y_pred,
    normalize=True, sample_weight=None, ...)
```

Function calls

```
from sklearn import metrics

# assuming you have the vectors y_true and y_pred...
acc = metrics.accuracy(y_true, y_pred)
```

What causes poor performance?

- Data (garbage in, garbage out)
- · Variability in observations, not explained by features
- · Incomplete coverage of the domain
- · Model error: too simple, too complicated

Evaluating models - not just performance

- Cost/time for training and prediction
- Interpretability
- Fairness/bias

Bias in model output

Many potential fairness issues when ML models are used to make important decisions:

- ML used for graduate admissions
- · ML used for hiring
- · ML used to decide which patients should be admitted to hospital
- Even ML used to decide which ads to show people...

Bias in the ML lifecycle

- Pre-existing: exists independently of algorithm, has origins in society
- Technical: introduced or exacerbated by the technical properties of the ML system
- Emergent: arises due to context of use

(Source: [Professor Julia Stoyanovich @NYU](https://dataresponsibly.github.io/rds/assets/1_Intro.pdf))

Causes of bias

- Models trained with less data for minority group, are less accurate for that group
- · Sampling issues: Street Bump example
- Inherent bias in society reflected in training data, carries through to ML predictions

- Target variable based on human judgment
- Lack of transparency exacerbates problem!

Fairness metrics

Suppose samples come from two groups: a and b

How can we tell whether the classifier treats both groups fairly?

Group fairness

(also called statistical parity). For groups a and b,

$$P(\hat{y} = 1|G = a) = P(\hat{y} = 1|G = b)$$

i.e. equal probability of positive classification.

Related: Conditional statistical parity (controlling for factor F)

$$P(\hat{y} = 1|G = a, F = f) = P(\hat{y} = 1|G = b, F = f)$$

Balance for positive/negative class

This is similar to *group fairness*, but it is for classifiers that produce soft output - applies to every probability S produced by the classifier.

The expected value of probability assigned by the classifier should be the same for both groups - For positive class balance,

$$E(S|y = 1, G = a) = E(S|y = 1, G = b)$$

For negative class balance,

$$E(S|y = 0, G = a) = E(S|y = 0, G = b)$$

Predictive parity

(also called outcome test)

$$P(y=1|\hat{y}=1,G=a) = P(y=1|\hat{y}=1,G=b)$$

Groups have equal PPV. Also implies equal FDR:

$$P(y=0|\hat{y}=1,G=a) = P(y=0|\hat{y}=1,G=b)$$

The prediction should carry similar meaning (w.r.t. probability of positive outcome) for both groups.

Calibration

(also called test fairness, matching conditional frequencies).

This is similar to *predictive parity*, but it is for classifiers that produce soft output - applies to every probability S produced by the classifier.

$$P(y = 1|S = s, G = a) = P(y = 1|S = s, G = b)$$

Well-calibration extends this definition to add that the probability of positive outcome should actually be s:

$$P(y = 1|S = s, G = a) = P(y = 1|S = s, G = b) = s$$

False positive error rate balance

(also called predictive equality)

$$P(\hat{y} = 1|y = 0, G = a) = P(\hat{y} = 1|y = 0, G = b)$$

Groups have equal FPR. Also implies equal TNR:

$$P(\hat{y} = 0|y = 0, G = a) = P(\hat{y} = 0|y = 0, G = b)$$

False negative error rate balance

(also called equal opportunity)

$$P(\hat{y} = 0|y = 1, G = a) = P(\hat{y} = 0|y = 1, G = b)$$

Groups have equal FNR. Also implies equal TPR:

$$P(\hat{y} = 1|y = 1, G = a) = P(\hat{y} = 1|y = 1, G = b)$$

This is equivalent to group fairness **only** if the prevalence of positive result is the same among both groups.

Equalized odds

(also called disparate mistreatment)

$$P(\hat{y} = 0|y = i, G = a) = P(\hat{y} = 0|y = i, G = b), i \in [0, 1]$$

Both groups should have equal TPR and FPR

Satisfying multiple fairness metrics

If the prevalence of (actual) positive result p is **different** between groups, then it is not possible to satisfy FP and FN error rate balance and predictive parity at the same time.

Conditional use accuracy equality

Groups have equal PPV and NPV

$$P(y = 1|\hat{y} = 1, G = a) = P(y = 1|\hat{y} = 1, G = b)$$

AND

$$P(y = 0|\hat{y} = 0, G = a) = P(y = 0|\hat{y} = 0, G = b)$$

Overall accuracy equality

Groups have equal overall accuracy

$$P(\hat{y} = y | G = a) = P((\hat{y} = y | G = b))$$

Treatment equality

Groups have equal ratio of FN to FP, $\frac{FN}{FP}$

Causal discrimination

Two samples that are identical w.r.t all features except group membership, should have same classification.

Fairness through unawareness

- Features related to group membership are not used in classification.
- Samples that are identical w.r.t all features except group membership, should have same classification.

Summary - model fairness

- A model can be biased with respect to age, race, gender, if those features are not used as input to the model.
- There are many measures of fairness, sometimes it is impossible to satisfy some combination of these simultaneously.
- · People are not necessarily more fair.