

Universidade do Minho Departamento de Matemática Matemática das Coisas

Projeto 2,

EDFs & Aplicações em Finanças e Economia

Grupo 3:

Dong Xuyong, 92960, L.E.G.S.I Inês José, 88690, L.E Leandro Pereira, 90078, L.C.P Luís Zhou, 88608, L.E.A Ricardo Oliveira, 73055, M.I.E.E.I.C

Professora:

Ana Jacinta Soares

Conteúdo

1	Intr	rodução	4
	1.1	Objetivos de aprendizagem	4
	1.2	Ferramentas utilizadas	4
2	Mod	delo matemático	5
3	Esti	udo da equação diferencial ordinária	5
	3.1	Determinação dos pontos fixos	5
	3.2	Estabilidade e classificação dos pontos de equilíbrio	6
		3.2.1 Caso 1: $-1 < A < 0$	6
		3.2.2 Caso 2: $A = -1$	6
		3.2.3 Caso 3: $A < -1$	6
	3.3	Determinação da solução explícita	6
		3.3.1 Analiticamente	6
		3.3.2 Computacionalmente	6
4	Esti	udo dos preços de equilíbrio em casos específicos	7
	4.1	Caso 1: $m_s = 1, b_s = 2, m_d = 2, b_d = 14 \dots$	7
		4.1.1 No contexto normal e no contexto económico	7
		4.1.2 Diagrama de teia de aranha	8
		4.1.3 Diagrama de sucessões numéricas	8
	4.2	Caso 2: $m_s = m_d, b_s = 2, b_d = 10 \dots$	9
		4.2.1 No contexto normal e no contexto económico	9
		4.2.2 Diagrama de teia de aranha	10
		4.2.3 Diagrama de sucessões numéricas	10
	4.3	Caso 3: $m_s = 2, b_s = 3, m_d = 1, b_d = 15 \dots $	11
		4.3.1 No contexto normal e no contexto económico	11
		4.3.2 Diagrama de teia de aranha	12
		4.3.3 Diagrama de sucessões numéricas	12
5	Con	nclusão	13
\mathbf{A}	Crit	térios de estabilidade	14
	A.1		14
	A.2		14
	A.3		14
В	Cód	ligo usado na ferramenta Wolfram Mathematica	15
_		·	15
			15
			15
			15
			15

Projeto 2 - EDFs & Aplicações em Finanças e Economia

	B.1.5	Diagrama no contexto económico	15
	B.1.6	Diagrama das sucessões numéricas	5
B.2	Caso 2	!	6
	B.2.1	Variáveis	6
	B.2.2	Fórmulas	6
	B.2.3	Diagrama da Teia de aranha	6
	B.2.4	Diagrama no contexto normal	6
	B.2.5	Diagrama no contexto económico	6
	B.2.6	Diagrama das sucessões numéricas	6
B.3	Caso 3	6	17
	B.3.1	Variáveis	7
	B.3.2	Fórmulas	7
	B.3.3	Diagrama da Teia de aranha	7
	B.3.4	Diagrama no contexto normal	7
	B.3.5	Diagrama no contexto económico	7
	B.3.6	Diagrama das sucessões numéricas	17

Lista de Figuras

1	Diagrama no contexto normal para o caso 1
2	Diagrama no contexto económico para o caso 1
3	Diagrama de teia de aranha para o caso 1
4	Diagrama de sucessões numéricas para o caso 1
5	Diagrama no contexto normal para o caso 2
6	Diagrama no contexto económico para o caso 2
7	Diagrama de teia de aranha para o caso 2
8	Diagrama de sucessões numéricas para o caso 2
9	Diagrama no contexto normal para o caso 3
10	Diagrama no contexto económico para o caso 3
11	Diagrama de teia de aranha para o caso 3
12	Diagrama de sucessões numéricas para o caso 3

1 Introdução

1.1 Objetivos de aprendizagem

Os objetivos deste trabalho é aprofundar o nosso conhecimento sobre alguns modelos matemáticos com aplicações a área de Finanças e Economia.

Para tal, iremos estudar um produto agrícola está à venda num mercado de concorrência perfeita, e determinar um preço para qual a quantidade procurada é igual a quantidade oferta. Além disso estudamos estabilidade dos pontos de equilíbrio, com critério estudamos na aula e classificada estabilidade dos pontos equilíbrio nos diferentes casos. Posteriormente, iremos determinar soluções explícitas dos preços equilíbrios no tempo de condição inicial e 4 tempos seguintes. Também estudaremos a existência de limite nas equações de estabilidades.

Por fim iremos construir gráficos de lei de procura e oferta e bem como observar o ponto equilíbrio com o diagrama de teia de aranha.

1.2 Ferramentas utilizadas

- (1) Wolfram One [1] é uma plataforma de computação híbrida, integrando totalmente nuvem e desktop o ponto de partida ideal para usar todos os recursos das tecnologias Wolfram. Da análise de dados à modelagem (com nossos ou os seus dados selecionados), da publicação de uma API à uma apresentação ao vivo do seu último R&D, de notebooks instantâneos para programar rapidamente seu protótipo, Wolfram One é um produto fácil de usar da empresa de computação que é líder mundial.

 De formulários web básicos à análise de dados em larga escala, a tecnologia Wolfram inclui
 - De formulários web básicos à análise de dados em larga escala, a tecnologia Wolfram inclui a funcionalidade para qualquer tipo de tarefa computacional.
- (2) IATEX [2] é um sistema de preparação de documentos para composição tipográfica de alta qualidade. É mais frequentemente usado para documentos técnicos ou científicos de médio a grande porte, mas pode ser usado para quase qualquer forma de publicação.

 IATEXNão é um processador de texto! Em vez disso, o IATEXincentiva os autores a não se preocuparem muito com a aparência de seus documentos, mas a se concentrarem em obter o conteúdo certo.
- (3) Overleaf [3] é uma startup e empresa social que cria ferramentas modernas de autoria colaborativa para ajudar a tornar a ciência e a pesquisa mais rápidas, abertas e transparentes. A tecnologia de colaboração líder de mercado da Overleaf está agora em uso por mais de nove milhões de pesquisadores, estudantes e professores em instituições, laboratórios e indústrias em todo o mundo.
- (4) Matlab [4] é uma plataforma de programação projetada especificamente para engenheiros e cientistas analisarem e projetarem sistemas e produtos que transformam nosso mundo. O coração do Matlab é a linguagem Matlab, uma linguagem baseada em matriz que permite a expressão mais natural da matemática computacional.

2 Modelo matemático

Para um determinado produto vendido no mercado, sejam

- S(n) a oferta no período n, dada pelo número de unidades desse produto colocadas à venda no período n, tipicamente uma época ou um ano;
- D(n) a procura no período n, dada pelo número de unidades desse produto compradas no período n;
- p(n) o preço de cada unidade desse produto praticado no período n;

Por simplicidade, vamos admitir que S(n) e D(n) variam linearmente em função do preço do produto, de acordo com as seguintes equações às diferenças

$$\begin{cases}
S(n+1) = m_s p(n) + b_s \\
D(n) = -m_d p(n) + b_d
\end{cases}$$
(1)

onde m_s , m_d , b_s e b_d são constantes positivas. Em particular, m_s mede a sensibilidade do vendedor ao preço de mercado e m_d mede a sensibilidade do consumidor ao preço do mercado.

O preço praticado no mercado é aquele que corresponde a ter a oferta igual à procura, pelo que S(n+1) = D(n+1), resultando

$$p(n+1) = Ap(n) + B \tag{2}$$

com $A = -m_s/md$ e $B = (b_d - b_s)/m_d$, que constitui uma equação às diferenças, linear, de ordem 1, autónoma. A equação (2) descreve a evolução do preço de mercado do produto em causa ao longo de vários períodos de tempo.

3 Estudo da equação diferencial ordinária

Nesta secção vamos estudar a equação diferencial ordinária obtida em (2).

3.1 Determinação dos pontos fixos

Para determinar os pontos fixos da correspondente função de atualização, vamos considerar apenas equações diferenciais ordinárias autónomas de ordem 1, isto é a equações diferenciais ordinárias com a forma

$$x_{n+1} = f(x_n), \quad n = 0, 1, 2, ...$$

 x^* é um **ponto fixo** de **f**, se $x^* = f(x^*)$

Deduzindo a equação (2)

$$p(n+1) = Ap(n) + B \Leftrightarrow f(p_n) = Ap(n) + B$$
, como $p^* = f(p^*)$, então $p^* = Ap^* + B$

Simplificando a expressão

$$p^* = Ap^* + B \Leftrightarrow p^* - Ap^* = B \Leftrightarrow p^*(1 - A) = B \Leftrightarrow$$

$$p^* = \frac{B}{1 - A} \tag{3}$$

3.2 Estabilidade e classificação dos pontos de equilíbrio

A estabilidade é estudada através dos critérios de estabilidade presentes no anexo (A).

3.2.1 Caso 1: -1 < A < 0

$$f'(p) = A$$
, então $-1 < f'(p) < 0 \Leftrightarrow 1 > |f'(p)| > 0 \Leftrightarrow 0 < |f'(p)| < 1 \Leftrightarrow |f'(p)| < 1$

Aplicando o teorema 1 presente no anexo (A.1), então p^* é assimptoticamente estável.

3.2.2 Caso 2: A = -1

$$f'(p) = A$$
, então $f'(p) = -1 \Leftrightarrow |f'(p)| = 1$

Aplicando o teorema 1 presente no anexo (A.1), o caso é duvidoso.

$$f''(p^*) = 0 e f'''(p^*) = 0$$

Não é possível aplicar o teorema 2 presente no anexo (A.2), nem o teorema 3 presente no anexo (A.3).

3.2.3 Caso 3: A < -1

$$f'(p) = A$$
, então $f'(p) < -1 \Leftrightarrow |f'(p)| > 1$

Aplicando o teorema 1 presente no anexo (A.1), então p^* é instável.

3.3 Determinação da solução explícita

3.3.1 Analiticamente

$$p(n+1) = Ap(n) + B$$

$$p(0) = p_0$$

$$p(1) = Ap(0) + B$$

$$p(2) = Ap(1) + B = A^2p(0) + AB + B$$

$$p(3) = Ap(2) + B = A^{3}p(0) + AB + A^{2}B + B$$

3.3.2 Computacionalmente

Usando o seguinte comando no Wolfram Mathematica

$$RSolve[{p[n + 1] == a*p[n] + b, p[0] == p0}, p[n], n]$$

Obtemos

$$p[n] \to \frac{-b + a^n b - a^n p_0 + a^{1+n} p_0}{-1+a}$$

4 Estudo dos preços de equilíbrio em casos específicos

O código do estudo dos preços de equilíbrio está no anexo (B), para cada caso, respectivo.

4.1 Caso 1: $m_s = 1$, $b_s = 2$, $m_d = 2$, $b_d = 14$

4.1.1 No contexto normal e no contexto económico

Aplicando a equação (3), e substituindo os valores neste caso, então $p^* = 4$.

Figura 1: Diagrama no contexto normal para o caso 1.

Figura 2: Diagrama no contexto económico para o caso 1.

Observamos que o preço de equilíbrio e o preço de equilíbrio à luz desta definição são iguais $x^* = 4$, para quantidades diferentes $y^* = 4$ e $y^* = 6$.

4.1.2 Diagrama de teia de aranha

Figura 3: Diagrama de teia de aranha para o caso 1.

Podemos verificar que a teia de aranha é instável logo $x^* = 4$ como ponto de equilíbrio será instável.

4.1.3 Diagrama de sucessões numéricas

Figura 4: Diagrama de sucessões numéricas para o caso 1.

As sucessões tendem para o $\lim = 4$, isto é, o valor do preço de equilíbrio.

4.2 Caso 2: $m_s = m_d$, $b_s = 2$, $b_d = 10$

4.2.1 No contexto normal e no contexto económico

Aplicando a equação (3), e substituindo os valores neste caso, então $p^* = 2$.

Figura 5: Diagrama no contexto normal para o caso 2.

Figura 6: Diagrama no contexto económico para o caso 2.

Observamos que o preço de equilíbrio e o preço de equilíbrio à luz desta definição são iguais $x^*=2$, para quantidades diferentes $y^*=2$ e $y^*=6$.

4.2.2 Diagrama de teia de aranha

Figura 7: Diagrama de teia de aranha para o caso 2.

Podemos verificar que a teia de aranha é estável, logo $x^* = 2$, como ponto de equilíbrio, será estável.

4.2.3 Diagrama de sucessões numéricas

Figura 8: Diagrama de sucessões numéricas para o caso 2.

As sucessões deste caso não têm limite pois $\lim = +\infty$.

4.3 Caso 3: $m_s = 2$, $b_s = 3$, $m_d = 1$, $b_d = 15$

4.3.1 No contexto normal e no contexto económico

Aplicando a equação (3), e substituindo os valores neste caso, então $p^* = 4$.

Figura 9: Diagrama no contexto normal para o caso 3.

Figura 10: Diagrama no contexto económico para o caso 3.

Observamos que o preço de equilíbrio e o preço de equilíbrio à luz desta definição são iguais $x^* = 4$, para quantidades diferentes $y^* = 4$ e $y^* = 11$.

4.3.2 Diagrama de teia de aranha

Figura 11: Diagrama de teia de aranha para o caso 3.

Podemos verificar que a teia de aranha é instável logo $x^* = 4$, como ponto de equilíbrio, será instável.

4.3.3 Diagrama de sucessões numéricas

Figura 12: Diagrama de sucessões numéricas para o caso 3.

As sucessões deste caso não têm limite pois $\lim = +\infty$.

5 Conclusão

Uma característica importante de qualquer modelo económico é que ele é sempre subjetivo pois não podemos afirmar que há medidas objetivas de resultados económicos. A maioria dos modelos baseia-se em uma série de suposições irrealistas pois a realidade acaba sempre por ter de ser simplificada para pudermos fazer estimativas. Pode então concordar-se que há bons e maus modelos, mas não modelos errados ou certos.

Ao longo deste trabalho acreditamos ter concluído os objetivos de aprendizagem pretendidos o estudo dos potos de equilíbrios e outros diagramas como modelo dinâmico da Teia de Aranha, que permite descrever a formação de preços de um determinado produto com base na lei da oferta e procura, mas onde as expectativas dos produtores em relação ao preço são com base nas observações de preços anteriores[10].

Provamos também que achar o ponto de equilíbrio não comprova a sua estabilidade.

A Critérios de estabilidade

A estabilidade é estudada através dos seguintes critérios de estabilidade

A.1 Teorema 1

Seja x^* um ponto de equilíbrio da equação $x_n = f(x_n)$, com $F: I \subset \mathbb{R} \to \mathbb{R}$ derivável e f' contínua em x^* .

Consequentemente

- (1) Se $|f'(x^*)| < 1$, então x^* é assimptoticamente estável.
- (2) Se $|f'(x^*)| > 1$, então x^* é instável.
- (3) Se $|f'(x^*)| = 1$, o caso é **duvidoso**.

A.2 Teorema 2

Seja x^* um ponto de equilíbrio da equação $x_n = f(x_n)$, com $F: I \subset \mathbb{R} \to \mathbb{R}$ derivável e f' contínua em x^* e $f'(x^*) = 1$.

Consequentemente

- (1) Se $f''(x) \neq 0$, então x^* é **instável**.
- (2) Se f''(x) = 0, e $f'''(x^*) > 0$ então x^* é **instável**.
- (3) Se f''(x) = 0, e $f'''(x^*) < 0$ então x^* é assimptoticamente estável.

A.3 Teorema 3

Seja x^* um ponto de equilíbrio da equação $x_n = f(x_n)$, com $F: I \subset \mathbb{R} \to \mathbb{R}$ derivável e f' contínua em x^* e $f'(x^*) = -1$.

Consequentemente

- (1) Se $2f'''(x^*) + 3[f''(x^*)]^2 > 0$, então x^* é assimptoticamente estável.
- (2) Se $2f'''(x^*) + 3[f''(x^*)]^2 < 0$ então x^* é instável.

B Código usado na ferramenta Wolfram Mathematica

B.1 Caso 1

B.1.1 Variáveis

```
ms = 1
```

bs = 2

md = 2

bd = 14

B.1.2 Fórmulas

```
A = -(ms/md)
B = (bd - bs)/md
```

 $f[x_] := A*x + B$

ClearAll[CobwebPlot]

B.1.3 Diagrama da Teia de aranha

```
SetAttributes[CobwebPlot, HoldAll]
CobwebPlot[f_, start_?NumericQ,
    n_, {xrange : {xmin_, xmax_}}, yrange : {_, _}}] :=
Module[{cob, x, g1, coor}, cob = NestList[f, start, n];
    coor = Partition[Riffle[cob, cob], 2, 1];
    coor[[1, 2]] = 0;
```

coor[[1, 2]] = 0;
g1 = Graphics[{Red, Line[coor]}];

Show[{Plot[{x, f[x]}, {x, xmin, xmax},

PlotStyle -> {{Thick, Black}, Blue},

PlotRange -> {xrange, yrange}], g1}]]

CobwebPlot[f, 1, 7, {{0, 7}, {0, 7}}]

B.1.4 Diagrama no contexto normal

ResourceFunction["IntersectionPlot"][{x, f[x]}, {x, 0, 7}]

B.1.5 Diagrama no contexto económico

```
f1 = ms*x + bs;
f2 = -md*x + bd;
ResourceFunction["IntersectionPlot"][{f1, f2}, {x, 0, 7}]
```

B.1.6 Diagrama das sucessões numéricas

B.2 Caso 2

B.2.1 Variáveis

```
ms = 2
```

bs = 2

md = 2

bd = 10

B.2.2 Fórmulas

```
A = -(ms/md)
B = (bd - bs)/md
```

 $f[x_] := A*x + B$

B.2.3 Diagrama da Teia de aranha

```
ClearAll[CobwebPlot]
SetAttributes[CobwebPlot, HoldAll]
```

```
CobwebPlot[f_, start_?NumericQ,
```

```
n_, {xrange : {xmin_, xmax_}, yrange : {_, _}}] :=
Module[{cob, x, g1, coor}, cob = NestList[f, start, n];
coor = Partition[Riffle[cob, cob], 2, 1];
```

coor[[1, 2]] = 0;

g1 = Graphics[{Red, Line[coor]}];

Show[$\{Plot[\{x, f[x]\}, \{x, xmin, xmax\},$

PlotStyle -> {{Thick, Black}, Blue},
PlotRange -> {xrange, yrange}], g1}]]

CobwebPlot[f, 1, 7, {{0, 4}, {0, 4}}]

B.2.4 Diagrama no contexto normal

ResourceFunction["IntersectionPlot"][$\{x, f[x]\}, \{x, 0, 4\}$]

B.2.5 Diagrama no contexto económico

```
f1 = ms*x + bs;

f2 = -md*x + bd;
```

ResourceFunction["IntersectionPlot"][{f1, f2}, {x, 0, 4}]

B.2.6 Diagrama das sucessões numéricas

```
 R = RecurrenceTable[{x[n + 1] == A*x[n] + B, x[0] == 1}, x, {n, 0, 10}]   H = Interpolation[R]
```

 $Plot[H[x], \{x, 0, 10\}, PlotRange \rightarrow \{0, 6\}, PlotStyle \rightarrow \{Blue\}]$

B.3 Caso 3

B.3.1 Variáveis

```
ms = 2
```

bs = 3

md = 1

bd = 15

B.3.2 Fórmulas

```
A = -(ms/md)
```

B = (bd - bs)/md

f[x] := A*x + B

B.3.3 Diagrama da Teia de aranha

```
ClearAll[CobwebPlot]
```

```
SetAttributes[CobwebPlot, HoldAll]
```

```
CobwebPlot[f_, start_?NumericQ,
```

```
n_, {xrange : {xmin_, xmax_}, yrange : {_, _}}] :=
Module[{cob, x, g1, coor}, cob = NestList[f, start, n];
```

```
coor = Partition[Riffle[cob, cob], 2, 1];
```

coor[[1, 2]] = 0;

g1 = Graphics[{Red, Line[coor]}];

Show[{ $Plot[{x, f[x]}, {x, xmin, xmax},$

PlotStyle -> {{Thick, Black}, Blue},

PlotRange -> {xrange, yrange}], g1}]]

CobwebPlot[f, 1, 8, {{-500, 500}, {-500, 500}}]

B.3.4 Diagrama no contexto normal

ResourceFunction["IntersectionPlot"][{x, f[x]}, {x, 0, 8}]

B.3.5 Diagrama no contexto económico

```
f1 = ms*x + bs;
```

f2 = -md*x + bd;

ResourceFunction["IntersectionPlot"][{f1, f2}, {x, 0, 8}]

B.3.6 Diagrama das sucessões numéricas

```
R = RecurrenceTable[{x[n + 1] == A*x[n] + B, x[0] == 1}, x, {n, 0, 10}]
```

H = Interpolation[R]

 $Plot[H[x], \{x, 0, 10\}, PlotRange \rightarrow \{-800, 800\}, PlotStyle \rightarrow \{Blue\}]$

Referências

- [1] Wolfram One. https://www.wolfram.com/wolfram-one/
- [2] Project Latex. https://www.latex-project.org/about/
- [3] Overleaf. https://www.overleaf.com/about/
- [4] Matlab. https://www.mathworks.com/discovery/what-is-matlab.html/
- [5] Boyce & DePrima, Elementary Differential Equations and Boundary Value Problems
- [6] Ana Jacinta Soares, Cálculo (A e B), MIEEIC, MIECOM, 2007/2008: notas sobre a disciplina, Departamento de Matemática, Universidade do Minho, 2007.
- [7] Gaspar J. Machado, *Tópicos de Álgebra Linear e Geometria Analítica*, Departamento de Matemática e Aplicações, Universidade do Minho, 2014.
- [8] Jorgue Figueiredo e Carolina Ribeiro, Apontamentos de Equações Diferenciais (Complementos de Análise Matemática EE), Departamento de Matemática e Aplicações, Universidade do Minho, 2013.
- [9] A. Ismael F. Vaz, *Métodos Numéricos MATLAB*, Departamento de Produção e Sistemas, Escola de Engenharia, Universidade do Minho, 2016/2017.
- [10] Lopes, Guilherme. "O MODELO DINÂMICO DA TEIA DE ARANHA." (2017) http://dspace.nead.ufsj.edu.br/trabalhospublicos/bitstream/handle/123456789/76/GUILHERME