MA2822: ADVANCED STATISTICS ECOLE CENTRALE PARIS

Regression Analysisis of Used Car Prices

Professor

Christine Keribin

Authors

Erik Bröte Patrick von Platen

1 Introduction

In this project we study the price of used cars based on a number of relevant charectaristics. Using regresion analysis tools implemented in the open source language R (which is widely used for statistical anlysis), we aim to model the sales price as well as detect correlations between factors. The dataset includes 172 observations of cars with a 12 charecteristics including the following: price, in thousands of Euros; age, in months; km, the total distance traveled in kilometers; TIA, the number of months untill the next vehicle inspection. The data also includes dummy variables (which are equal to 1 or 0 depending on whether the factor is true or false) such as ABS and SunRoof representing the presence of ABS-technology or a sunroof repsectively.

2 Charectaristics of and Correlations in the Data

Before procededing it is a good idea to get a general idea of the correlations between the variables. Figure 1 is a scatter plot showing the dependencies between the price, age, km, and TIA. It shows a relavitely strong postive correlation between price and age and some negative correlation between age and km as well as postitive correlation between price and km. These relationships are in accord with our existing knowledge of the used car market. TIA seems to explain the other variables in this model poorly.

Figure 1: Scatter plot of the variables price, age, km, and TIA.

In addition to this we can use boxplots to analyze whether the presence of ABS technology or a sunroof, represented here by the dummy variables ABS and SunRoof, have an effect on price. Figure 2 displays this analysis for each variable. To the left the boxplots for vehicles with and without ABS show a few perhaps expected charectaristics of the dataset. The median price of a car with ABS is significantly higher than their counterparties (compare 3 200 EUR to 2 625 EUR). Also, the variance of the price of cars having an ABS-technology is much lower than for those that without it. Since 50% of all "ABS" cars have a price that ranges between 2.6 and 4 with pretty much no "ABS" car having a price higher than 6, where as 50% of

all "Non-ABS" cars have a price that ranges between 2.5 and 4.5 and a maximum of 7. It can be concluded that the price is somewhat correlated to the dummy variable ABS, but not very strongly.

Figure 2: Pairs of boxplots of price of vehicles with and without ABS (left) and sunroofs (right).

A similar analysis can be done for the presence of a sunroof. The second set of boxplots in Figure 2 show values for vehicles with and without them. The medians are quite similar for "Non-OpenRoof" and "OpenRoof" cars. The "box range" around the median is smaller for cars with sunroofs, but apart from that they are no visible differences. The correlation between price and OpenRoof seems to be rather small; further analysis is needed to confirm this observed relationship.

3 Study of price as a function of the prescene of ABS-technology

As seen in Section 2 cars with ABS seem to generally have a higher price that cars without this technology. We will further analyze how well price can be explained by the ABS.

To better understand how the R software works we created two simple regression models with all variables provided with ABS as qualative and quantitative variable. In implementation qualitative means that the variable is given a numerical value, 1 representing the presence of ABS or 0 otherwise. The quantative variable is a logical data type meaning it can be either TRUE or FALSE. No difference can be seen in the summary function (which provides values and different significance metrics for each coefficient) between those two models. It may be pertinant remember that the logical variable cannot be calculated upon, e.g. we cannot calculate the it's mean value. This should not make a difference in the final model as regression requires that the logical variable be implemented as a dummy variable (i.e. qualitavitely) anyways.

The simplest of regressions can be a good way to analyze the explanatory power of ABS. We created a regression model of price as only a function of ABS corresponding to the following model.

$$price = \beta_0 + \beta_1 \times ABS + \epsilon \tag{1}$$

Here β_0 is the intercept and β_1 is the slope of the equation. Regression on our dataset resulted in the following estimations. $\hat{\beta}_0 = 3.45363$ and $\hat{\beta}_1 = -0.08321$. It is clear that the variable ABS does not account for any of the variance of the price, since it's coefficient of deterimination, R^2 is very low (0.00097). That means that the model does not do a very good job predicting the price. This fact is also reflected by the p-value for ABS, p = 0.686. the p-value is the probability of obtaining a result as more extreme given the null hypothisis (which in this case is that the coefficient $\beta_1 = 0$.) For these reasons it is clear that ABS on it's own explains the price very poorly. Arguably, the intercept alone would be a better model as the model would just create a nearly constant line.

4 Étude du prix en fonction du kilométrage