SEQUENCE LISTING

<110> FRANKARD, VALERIE MIRONOV, VLADIMIR <120> PLANTS HAVING MODIFIED GROWTH CHARACTERISTICS AND A METHOD FOR MAKING THE SAME <130> 4559-061539 <140> 10/580,085 <141> 2007-05-09 <150> PCT/EP2004/053030 <151> 2004-11-19 <150> 60/528.113 <151> 2003-12-09 <150> EP 03104280.7 <151> 2003-11-19 <160> 37 <170> PatentIn version 3.5 <210> 1 <211> 1428 <212> DNA <213> Nicotiana tabacum <220> <223> Seedyl coding sequence (CDS0689) atgagtgtgt tacaataccc agaagggatt gacccagcag atgttcagat atggaacaat 60 gcagcatttg ataatggaga ttctgaagat ttgtcttcgc tgaaacgttc ttggtctcct 120 ctgaaacccc tttcggttag gccatcagat tcctttgaat ctgatttgtc aagtaaggaa 180 aatcaaactc ctttatttga gaattcatct gttaatctct catctccgtt acccataaag 240 ccacttaacc ctaatggggc tctggaaaat tcaagactca agccgaacaa gcccaattcc 300 360 aaacaqaqtc ttqatqaqat qqcqqctaqa aaqaqcqqaa aqqqaaatqa tttccqtqat gagaagaaaa tagacgagga aattgaagaa attcagatgg agattagtag gttgagttca 420 480 agattagagg ctttgagaat tgaaaaggct gagaaaactg ttgctaagac tgttgaaaag cgaggaaggg ttgtggcagc aaagtttatg gagccaaaac aaagtgttat taagattgaa 540 qaqcqtatat caatqaqtqc aaqaacaaaq qtqqaqcaqa qaaqqqqtct taqtttaqqa 600 ccatctgaga tttttactgg aacgcggcgg cgagggttga gtatggggcc atcagatatt 660 ctagcaggga caacaaaggc acggcaattg ggaaagcaag agatgattat tactcctatt 720

cagccaatac	aaaacaggcg	aaagtcgtgt	ttttggaagc	ttcaagagat	tgaagaagag	780
ggaaaaagtt	caagccttag	tcctaaatca	agaaaaactg	ctgcaagaac	aatggttaca	840
acaaggcagg	cagttactac	aattgcatca	aagaagaatt	tgaaaaaaga	tgatggactt	900
ttgagttcag	ttcagccaaa	gaagttgttt	aaagatctcg	aaaagtctgc	tgctgctaat	960
aagaagcccc	agaggccggg	gagggttgtg	gctagtaggt	ataatcagag	tacaattcag	1020
tcatcagtag	tgagaaagag	gtctttacct	gaaaatgata	aggatgagag	taagagaaat	1080
gataagaaac	ggtcgttatc	tgtagggaaa	acgcgtgtgt	ctcaaactga	gagcaagaat	1140
ttgggtactg	aaagtagggt	gaaaaagaga	tgggaaattc	ctagtgagat	tgtagttcat	1200
ggaaacacag	agagtgagaa	atctccacta	agcattattg	tgaagcctga	tttgcttccg	1260
cgaattagga	ttgctcggtg	tgtgaatgag	actcttaggg	attctggacc	tgctaaaaga	1320
atgatagagt	tgataggcaa	gaaatcgttt	ttcagtagtg	atgaagataa	ggagccacct	1380
gtctgtcaag	ttttaagttt	tgcagaggaa	gatgctgaag	aggaataa		1428

<210> 2 <211> 475

<212> PRT

<213> Nicotiana tabacum

<220>

<223> Seedyl protein (CDS0689)

<400> 2

Met Ser Val Leu Gln Tyr Pro Glu Gly Ile Asp Pro Ala Asp Val Gln 1 $$ 10 $$ 15

Ile Trp Asn Asn Ala Ala Phe Asp Asn Gly Asp Ser Glu Asp Leu Ser 20 25 30

Ser Leu Lys Arg Ser Trp Ser Pro Leu Lys Pro Leu Ser Val Arg Pro 35 40 45

Ser Asp Ser Phe Glu Ser Asp Leu Ser Ser Lys Glu Asn Gln Thr Pro 50 55 60

Leu Phe Glu Asn Ser Ser Val Asn Leu Ser Ser Pro Leu Pro Ile Lys 65 70 75 80

Pro Leu Asn Pro Asn Gly Ala Leu Glu Asn Ser Arg Leu Lys Pro Asn 85 90 95

Lys	Pro	Asn	Ser 100	Lys	Gln	Ser	Leu	Asp 105	Glu	Met	Ala	Ala	Arg 110	Lys	Ser
Gly	Lys	Gly 115	Asn	Asp	Phe	Arg	Asp 120	Glu	Lys	Lys	Ile	Asp 125	Glu	Glu	Ile
Glu	Glu 130	Ile	Gln	Met	Glu	Ile 135	Ser	Arg	Leu	Ser	Ser 140	Arg	Leu	Glu	Ala
Leu 145	Arg	Ile	Glu	Lys	Ala 150	Glu	Lys	Thr	Val	Ala 155	Lys	Thr	Val	Glu	Lys 160
Arg	Gly	Arg	Val	Val 165	Ala	Ala	Lys	Phe	Met 170	Glu	Pro	Lys	Gln	Ser 175	Val
Ile	Lys	Ile	Glu 180	Glu	Arg	Ile	Ser	Met 185	Ser	Ala	Arg	Thr	Lys 190	Val	Glu
Gln	Arg	Arg 195	Gly	Leu	Ser	Leu	Gly 200	Pro	Ser	Glu	Ile	Phe 205	Thr	Gly	Thr
Arg	Arg 210	Arg	Gly	Leu	Ser	Met 215	Gly	Pro	Ser	Asp	Ile 220	Leu	Ala	Gly	Thr
Thr 225	Lys	Ala	Arg	Gln	Leu 230	Gly	Lys	Gln	Glu	Met 235	Ile	Ile	Thr	Pro	Ile 240
Gln	Pro	Ile	Gln	Asn 245	Arg	Arg	Lys	Ser	Cys 250	Phe	Trp	Lys	Leu	Gln 255	Glu
Ile	Glu	Glu	Glu 260	Gly	Lys	Ser	Ser	Ser 265	Leu	Ser	Pro	Lys	Ser 270	Arg	Lys
Thr	Ala	Ala 275	Arg	Thr	Met	Val	Thr 280	Thr	Arg	Gln	Ala	Val 285	Thr	Thr	Ile
Ala	Ser 290	Lys	Lys	Asn	Leu	Lys 295	Lys	Asp	Asp	Gly	Leu 300	Leu	Ser	Ser	Val
Gln 305	Pro	Lys	Lys	Leu	Phe 310	Lys	Asp	Leu	Glu	Lys 315	Ser	Ala	Ala	Ala	Asn 320
Lys	Lys	Pro	Gln	Arg 325	Pro	Gly	Arg	Val	Val 330	Ala	Ser	Arg	Tyr	Asn 335	Gln

S	er	Thr	Ile	Gln 340	Ser	Ser	Val	Val	Arg 345	Lys	Arg	Ser	Leu	Pro 350	Glu	Asn	
A	sp	Lys	Asp 355	Glu	Ser	Lys	Arg	Asn 360	Asp	Lys	Lys	Arg	Ser 365	Leu	Ser	Val	
G	ly	Lys 370	Thr	Arg	Val	Ser	Gln 375	Thr	Glu	Ser	Lys	Asn 380	Leu	Gly	Thr	Glu	
	er 85		Val	Lys	Lys	Arg 390		Glu	Ile	Pro	Ser 395	Glu	Ile	Val	Val	His 400	
G	ly	Asn	Thr	Glu	Ser 405	Glu	Lys	Ser	Pro	Leu 410	Ser	Ile	Ile	Val	Lys 415	Pro	
A	sp	Leu	Leu	Pro 420	Arg	Ile	Arg	Ile	Ala 425	Arg	Cys	Val	Asn	Glu 430	Thr	Leu	
A	rg	Asp	Ser 435	Gly	Pro	Ala	Lys	Arg 440	Met	Ile	Glu	Leu	Ile 445	Gly	Lys	Lys	
S	er	Phe 450	Phe	Ser	Ser	Asp	Glu 455	Asp	Lys	Glu	Pro	Pro 460	Val	Суз	Gln	Val	
	eu 65	Ser	Phe	Ala	Glu	Glu 470	Asp	Ala	Glu	Glu	Glu 475						
<	211)> 3 .> 13 ?> Di 3> Or	ΙA	sat:	iva												
	220		edy	L co	ding	seq	uence	e									
)> 3 gagga	agg i	accc	gete	at c	eeget	tggt	c cad	egte	gga	aca	acgc	ege (ette	gacgac	60
t	cct	cgt	gtt (ccag	atcg	gc t	tggc1	tece	c caa	aagco	eccg	ccg	tege	ggc (egte	egcaag	120
g	geç	jaca	agg i	agaa	tcac	eg e	eccga	aggt	t gti	gate	gtcg	ccg	ccgg	cta (cgac	gtcgag	180
g	ccc	gagat	.cg (geca	catc	ga g	gegga	agat	c ct	gege	etet	cgt	cccg	gct (ccac	catctc	240
c	gcc	gtete	cca i	agca	geeg	ga g	cccaa	accg	c gad	egac	jctc	cga	tggg	gga (gatg	gtcgcg	300
а	agg	gtgag	gge (eccg	geeg	ag ge	ggcct	tcag	e ete	eggge	ccc	tgg	atgt	gat (ctcc	atcgtc	360

aatcgtgaga	agcatecget	gcgcaccaag	cageeteegg	cgacgcgggg	cagggggctc	420
agcctcgggc	ccatggagat	cgccgcggcg	aaccctaggg	tgcccgcggc	ggcgcagcat	480
cagcaacagc	aacgcgctgg	cacggcgcgg	atcctgaagc	caatcaagga	gcctccggtg	540
cagcgtcgca	ggggcgtcag	cctcgggccg	ttggagatcc	accacggcgt	cggcagcaag	600
gcaccagegg	cggcgcgagc	caagccgttc	accaccaagc	tcaacgccat	tcgagaagaa	660
acccgaccct	ccaagcaatt	cgccgtcccc	gccaagccat	ggccgtcgag	caatacaagg	720
cagacactgg	actcgaggca	aggaacagca	gcaagtcgag	cgaaggcgag	gagcccgagc	780
cccaggccca	ggaggcaatc	caatggcaag	gctactgaca	caaggggagg	caacaaggtg	840
gtggatgagc	tcaagcccaa	aggtgcgtcg	tcaagtcaga	gcggcagcgc	cgccgccgcc	900
gccactgcca	agaggatggc	ggggagctcc	aagatgaggg	tcatcccgag	ccgctacagc	960
ctcactcctg	gcgcttccct	tggaagcagt	ggagcacagg	agaggcgacg	caagcagtct	1020
ctcccaggat	catcagggga	tgcgaaccag	aatgaggaaa	tcagagcgaa	ggtcatcgag	1080
ccttccaatg	atccactctc	tcctcaaacg	atctccaagg	ttgctgaaat	gctcccaaag	1140
atcaggacca	tgccgcctcc	tgacgagagc	cctcgcgatt	ccggatgcgc	caagcgggtt	1200
gccgaattgg	tcgggaagcg	ctcgttcttc	acggctgcag	ccgaggacgg	gcgggcgctc	1260
gacgtcgaag	cacccgaggc	ggtcgcagaa	gcttgagatg	aaccaccatg	gtttgatccg	1320
ttccttccat	cagctc					1336

<210> 4

<211> 431 <212> PRT

<213> Oryza sativa

<220>

<223> Seedyl protein

<400> 4

Pro Ala Val Ala Val Arg Lys Gly Asp Lys Glu Asn His Arg Pro $35 \hspace{1cm} 40 \hspace{1cm} 45$

Glu Val Val Asp Val Ala Ala Gly Tyr Asp Val Glu Ala Glu Ile Gly

50 55 60

His Ile Glu Ala Glu Ile Leu Arg Leu Ser Ser Arg Leu His His Leu 7.0 75 Arg Val Ser Lys Gln Pro Glu Pro Asn Arg Asp Asp Ala Pro Met Gly 85 90 Glu Met Val Ala Lys Val Arg Pro Arg Pro Arg Gly Leu Ser Leu Gly 105 Pro Leu Asp Val Ile Ser Ile Val Asn Arg Glu Lvs His Pro Leu Arg 115 120 Thr Lys Gln Pro Pro Ala Thr Arg Gly Arg Gly Leu Ser Leu Gly Pro 130 135 140 Met Glu Ile Ala Ala Ala Asn Pro Arg Val Pro Ala Ala Ala Gln His 150 155 Gln Gln Gln Gln Arg Ala Gly Thr Ala Arg Ile Leu Lys Pro Ile Lys 165 170 175 Glu Pro Pro Val Gln Arg Arg Gly Val Ser Leu Gly Pro Leu Glu 180 185 Ile His His Gly Val Gly Ser Lys Ala Pro Ala Ala Ala Arq Ala Lys 195 200 205 Pro Phe Thr Thr Lys Leu Asn Ala Ile Arg Glu Glu Thr Arg Pro Ser 210 215 Lys Gln Phe Ala Val Pro Ala Lys Pro Trp Pro Ser Ser Asn Thr Arg 225 230 235 Gln Thr Leu Asp Ser Arg Gln Gly Thr Ala Ala Ser Arg Ala Lys Ala 245 250 255 Arg Ser Pro Ser Pro Arg Pro Arg Gln Ser Asn Gly Lys Ala Thr 260

Ala Ser Ser Ser Gln Ser Gly Ser Ala Ala Ala Ala Ala Thr Ala Lys 290 295 300	
Arg Met Ala Gly Ser Ser Lys Met Arg Val Ile Pro Ser Arg Tyr Ser 305 310 315 320	
Leu Thr Pro Gly Ala Ser Leu Gly Ser Ser Gly Ala Gln Glu Arg Arg 325 330 335	
Arg Lys Gln Ser Leu Pro Gly Ser Ser Gly Asp Ala Asn Gln Asn Glu 340 345 350	
Glu Ile Arg Ala Lys Val Ile Glu Pro Ser Asn Asp Pro Leu Ser Pro 355 360 365	
Gln Thr Ile Ser Lys Val Ala Glu Met Leu Pro Lys Ile Arg Thr Met 370 380	
Pro Pro Pro Asp Glu Ser Pro Arg Asp Ser Gly Cys Ala Lys Arg Val 385 390 395 400	
Ala Glu Leu Val Gly Lys Arg Ser Phe Phe Thr Ala Ala Ala Glu Asp 405 410 415	
Gly Arg Ala Leu Asp Val Glu Ala Pro Glu Ala Val Ala Glu Ala 420 425 430	
<210> 5 <211> 1860 <212> DNA <213> Medicago trunculata	
<220> <223> Seedyl coding sequence	
<400> 5 aaaaacgtta aggactaaaa atataataaa atttaagtag ggattcataa tggaagca	cc 60
cctatttaca gggatcttaa atataattaa ccctaatatt tatgacagaa accctttt	ga 120
aatcacateg gagegtgtat gagtageegt tteacateea aeggeeagta agagegta	ac 180
tttatttett eeetetteaa teteeaaegg teacataate tetteeaaat acaaataa	tt 240
ccctctttca acctcactct tcatttcttc aacccaaacc caaaaaacta atcagatt	ct 300
tettaaatet tgaaacettt eteecaaaag caettaaata aaaaageact taaceatg	aa 360
taacacaaac aacaacaaca ttettettea tteeacacag gtteaagtgt ggaacaac	gc 420

480	aagagaatct	gattccatca	ttcatcttct	tegecatgaa	ggtgaagatt	agcattcgat
540	atgatgaaat	agaactattg	ttcaaacaaa	ttgttccttc	gcattcaaca	aaacccatcc
600	ttcgtgttga	ctggaattgc	aacttcgaag	ttaagcgatt	gaaagtgaaa	tgcggaaatt
660	ctggaagaat	ggaattggta	gcgtgttagt	cttctgaaaa	agaaaaatcg	aaaagctgaa
720	acggtgtcgt	ccgaaacgaa	aaacgttaca	aaccgaagaa	aagtttatgg	agtagcagcg
780	aatctagggt	gatacgccga	tgtcgtttcg	aacgaaacgg	gagacaccga	tttcaaggag
840	tgatggcacc	gccgggaaag	gatggagatt	gtttaggtcc	agagggatga	taattggaga
900	tetggaaace	aagtettgtt	gaatcggagg	cggcgacggt	acgattactc	gccggcgatg
960	ataggaggaa	gcgacggtga	gattactccg	tgccgtcggg	tgtgaagtaa	gcaggaaagt
1020	cgatttgcaa	cgaagaaaaa	tgaagaaaat	aagaaagttg	ttgaaacctc	atcttgtttt
1080	ttaagcgtgt	gttggatcga	taattctgcg	caaattcagt	aatttgaatt	accgaatttg
1140	aaggtgaaaa	aagctgtttg	tcaaccgaag	ttgctcaggt	gatgaagaaa	gaagaagaaa
1200	attccggtgg	agccggtata	aattgttgca	aacaaggtag	aaatcgttga	atcagtgaag
1260	tagggagtga	aataagggtt	ttcggagaat	aaagategtt	gatgcgagga	tggtggtggt
1320	gtggttttgt	gtggatgtga	aattgaagaa	gggagatacc	aagaagagat	aatcagggct
1380	attctggtgc	agtcctagag	tgttgatgag	caatgaggtt	aagatttcga	tatgttaccg
1440	aagatgagga	ttttgtgatg	aagatettae	tgaatggaaa	gttgctgaat	tgttaaaaga
1500	attttgctga	caggttttga	ttetgtttgt	aagaaggtgg	atggtggagg	ggagagagtg
1560	tggaattgat	ttgtggaaat	acaagggtaa	attatggtga	gatgatgatg	agatgatgat
1620	gcattttggt	tgattctttt	atgttctgct	ggaactggct	ggggttgtgt	ttgtttttgt
1680	ttatatgttt	ttggattggt	gcttgttaaa	aaaagtttat	agatgaggtg	gtgaaactaa
1740	tgtttgtttt	tatattgttt	ttaataattg	tgtgtcttgc	acaacaagca	tgaaataata
1800	agagagtttt	gtatgcattg	atataatata	tgtatacaca	ggatttaatt	ataatgatat
1860	tattttgttg	tagaagattg	tatctcattc	ttttagtgtt	ttcattctga	togttcagta

<210> 6

<211> 394

<212> PRT

<213> Medicago trunculata

<220>

<223> Seedyl protein

<400 Met		Asn	Thr	Asn 5	Asn	Asn	Asn	Ile	Leu 10	Leu	His	Ser	Thr	Gln 15	Val
	Val	Trp	Asn 20		Ala	Ala	Phe	Asp		Glu	Asp	Phe	Ala 30		Asn
Ser	Ser	Ser 35	Asp	Ser	Ile	Lys	Glu 40		Leu	Asn	Pro	Ser 45		Phe	Asn
Ile	Val		Ser	Ser	Asn	Lys 55		Thr	Ile	Asp	Asp 60		Ile	Ala	Glu
Ile 65		Ser	Glu	Ile	Lys		Leu	Thr	Ser	Lys 75		Glu	Leu	Leu	Arg 80
	Glu	Lys	Ala	Glu 85		Lys	Ile	Ala	Ser 90		Lys	Arg	Val	Ser	
Ile	Gly	Thr	Gly		Ile	Val	Ala	Ala		Phe	Met	Glu	Pro		Lys
Asn	Val	Thr	Pro	Lys	Arg	Asn	Gly 120	Val	Val	Phe	Lys	Glu 125		Thr	Pro
Lys	Arg 130	Asn	Gly	Val	Val	Ser 135	Asp	Thr	Pro	Lys	Ser 140	Arg	Val	Asn	Trp
Arg 145	Arg	Gly	Met	Ser	Leu 150	Gly	Pro	Met	Glu	Ile 155	Ala	Gly	Lys	Val	Met 160
Ala	Pro	Pro	Ala	Met 165	Thr	Ile	Thr	Pro	Ala 170	Thr	Val	Asn	Arg	Arg 175	Lys
Ser	Cys	Phe	Trp 180	Lys	Pro	Gln	Glu	Ser 185	Cys	Glu	Val	Met	Pro 190	Ser	Gly
Ile	Thr	Pro 195	Ala	Thr	Val	Asn	Arg 200	Arg	Lys	Ser	Cys	Phe 205	Leu	Lys	Pro
Gln	Glu 210	Ser	Cys	Glu	Glu	Asn 215	Arg	Arg	Lys	Thr	Ile 220	Cys	Lys	Pro	Asn
Leu 225	Asn	Leu	Asn	Ser	Asn 230	Ser	Val	Asn	Ser	Ala 235	Val	Gly	Ser	Ile	Lys 240

Arg Val Lys Lys Lys Asp Glu Glu Ile Ala Gln Val Gln Pro Lys Lys 245 250 Leu Phe Glu Gly Glu Lys Ser Val Lys Lys Ser Leu Lys Gln Gly Arg 260 265 Ile Val Ala Ser Arg Tyr Asn Ser Gly Gly Gly Gly Asp Ala Arg Lys Arg Ser Phe Ser Glu Asn Asn Lys Gly Leu Gly Ser Glu Ile Arg 290 295 300 Ala Lys Lys Arg Trp Glu Ile Pro Ile Glu Glu Val Asp Val Ser Gly 305 310 315 320 Phe Val Met Leu Pro Lys Ile Ser Thr Met Arg Phe Val Asp Glu Ser 325 330 Pro Arg Asp Ser Gly Ala Val Lys Arg Val Ala Glu Leu Asn Gly Lys 345 340 Arg Ser Tyr Phe Cys Asp Glu Asp Glu Glu Glu Arg Val Met Val Glu 360 365 Glu Glu Glv Glv Ser Val Cvs Gln Val Leu Asn Phe Ala Glu Asp Asp 370 375 380 Asp Asp Asp Asp Tyr Gly Glu Gln Gly 385 390 <210> 7 <211> 674 <212> DNA <213> Saccharum sp. <220> <223> Seedyl coding sequence (partial 5' end) <220> <221> modified base <222> (362)..(362) <223> a, c, t or g

<220>

<221> modified_base <222> (372)..(372)

```
<223> a, c, t or q
<220>
<221> modified base
<222> (674)..(674)
<223> a, c, t or q
<400> 7
cgcaccqcqa qtttcqaaaa accaacctat cgcqcctcag atcacqcqaq qacqcqaqqq
                                                                       60
qaaqcaqqaa teeeteeqet eecaqeeqee teeteeqete acceateqat eqateqteeq
                                                                       120
teeggteeag ggggetetee ggeggeggtg gegatggagg aggaceeget cateeegetg
                                                                       180
gtgcacqtct ggaacaacqc cqccttcqac cacqcctcct cctccqcqtq qcacqcccac
                                                                       240
                                                                       300
teccetqtqc ccqcqaqcqc acqtcqcqaq qcqqaqqqqq acaaqqaqaa ccaccqcccc
gaccccgacc ccgacgtcga ggcggagatc ggccacatcg aggcggagat cctgcgcctg
                                                                       360
tnetecegee tneaceacet tegeacetee aageagtegg ageegteeaa gegeggagag
                                                                       420
qtcqcqccq cqcccqcqqc qaaqqcqaaa qcqqcqqcqq cqqcqcqqct qcqqacqcqq
                                                                       480
qqqctcaqcc tqqqcccqct cqacqtcqcc qctqccqqta accccaaccc qctcaccacc
                                                                       540
qacaaccagc agcagcagcc qcqtqccqcq caqqqtctqa aqccqatcaa qcaqqccacq
                                                                       600
geggeggegg geaagggegt aagaettggg cecettegae atggteggeg egaaceetag
                                                                       660
                                                                        674
ggtccctccg cccn
<210> 8
<211> 166
<212> PRT
<213> Saccharum sp.
<223> Seedyl protein (partial N term)
<220>
<221> MOD RES
<222> (70)..(70)
<223> Any amino acid
<400> 8
Met Glu Glu Asp Pro Leu Ile Pro Leu Val His Val Trp Asn Asn Ala
Ala Phe Asp His Ala Ser Ser Ser Ala Trp His Ala His Ser Pro Val
            20
                                25
Pro Ala Ser Ala Arg Arg Glu Ala Glu Gly Asp Lys Glu Asn His Arg
```

45

Pro Asp Pro Asp Pro Asp Val Glu Ala Glu Ile Gly His Ile Glu Ala 50 60	
Glu Ile Leu Arg Leu Xaa Ser Arg Leu His His Leu Arg Thr Ser Lys 65 70 75 80	
Gln Ser Glu Pro Ser Lys Arg Gly Glu Val Ala Pro Ala Pro Ala Ala 85 90 95	
Lys Ala Lys Ala Ala Ala Ala Ala Arg Leu Arg Thr Arg Gly Leu Ser	
Leu Gly Pro Leu Asp Val Ala Ala Ala Gly Asn Pro Asn Pro Leu Thr 115 120 125	
Thr Asp Asn Gln Gln Gln Gln Pro Arg Ala Ala Gln Gly Leu Lys Pro 130 135 140	
Ile Lys Gln Ala Thr Ala Ala Ala Gly Lys Gly Val Arg Leu Gly Pro 145 150 155 160	
Leu Arg His Gly Arg Arg 165	
<210> 9 <211> 876 <212> DNA <213> Zea mays	
<220> <223> Seedyl coding sequence (partial 3' end)	
<220> <221> modified_base <222> (869)(869) <223> a, c, t or g	
<400> 9 ccacgcgtcc ggccgttcga gaggaggaag gccagcgttc caaggagcac gccgtccccg	60
ccagaccgtg gccatccagc aatgccagge acccactgga tgccaggcaa ggcaccgcag	120
caagcagagc caaggcgagg agcgggagca taagccccag caggttcagg aggcagtcca	180
cttccaaggc tgccgagaca agagcgggaa atgccaagcc tacagaggcg acgaggggag	240
ggagcgaagc ggtcaatcac accagcaatg tagccacgac gaagaggccg gcggggagct	300
ccaaggtcag ggttgtcccg agccgctaca gcatcccacc tggctcctcc ctagcagctg	360

tgacacaagg	caaccgatgc	aagcagtctc	teccaggate	ggctactgag	accagagtaa	420
atctcactga	gccgccgaac	gacgagttgt	ctcctgaaga	acttgccaag	gttgcagagc	480
tgctcccaag	gattaggacc	atgeegeett	ctgatgagag	cccgcgtgac	tegggatgtg	540
ccaagcgtgt	tgctgatttg	gtcgggaago	gateettett	cactgctgca	ggggacgatg	600
gcaatctcgt	tacgccctac	caggcacggg	tggttgaact	tgaatcaccc	gaggcagcag	660
cagaagaagc	agaagettga	gaagtttgto	tttgatcaat	tccgaagtgg	cttgcatctg	720
ggcgtggcct	ctttttgcag	tgtgtgctac	tacatagtct	actgttacat	tcatatcata	780
tcacatttcc	tatttttcc	cccttgagac	attgcttagt	acttttgtgt	tgccttgtga	840
aaagagagtg	gaaggttcat	ctgctgatno	cttgtt			876
<210> 10 <211> 224 <212> PRT <213> Zea r	nays					
<220> <223> Seedy	/1 protein	(partial C	term)			
<400> 10 Thr Arg Pro 1	Ala Val A 5	rg Glu Glu	Glu Gly Gln 10	Arg Ser Lys	Glu His 15	
Ala Val Pro	Ala Arg P 20	ro Trp Pro	Ser Ser Asn 25	Ala Arg His	s Pro Leu	
Asp Ala Aro	Gln Gly T	hr Ala Ala 40	Ser Arg Ala	Lys Ala Aro	g Ser Gly	

Glu Thr Arg Ala Gly Asn Ala Lys Pro Thr Glu Ala Thr Arg Gly Gly 65 70 75 80

Ser Glu Ala Val Asn His Thr Ser Asn Val Ala Thr Thr Lys Arg Pro

Ser Ile Ser Pro Ser Arg Phe Arg Arg Gln Ser Thr Ser Lys Ala Ala

55

50

Ser Giu Ala Val Ash His Thr Ser Ash Val Ala Thr Thr Lys Arg Pr 85 90 95

Pro Gly Ser Ser Leu Ala Ala Val Thr Gln Gly Asn Arg Cys Lys Gln

115 120 125

Ser	Leu 130	Pro	Gly	Ser	Ala	Thr 135	Glu	Thr	Arg	Val	Asn 140	Leu	Thr	Glu	Pro	
Pro 145	Asn	Asp	Glu	Leu	Ser 150	Pro	Glu	Glu	Leu	Ala 155	Lys	Val	Ala	Glu	Leu 160	
Leu	Pro	Arg	Ile	Arg 165	Thr	Met	Pro	Pro	Ser 170	Asp	Glu	Ser	Pro	Arg 175	Asp	
Ser	Gly	Cys	Ala 180	Lys	Arg	Val	Ala	Asp 185	Leu	Val	Gly	Lys	Arg 190	Ser	Phe	
Phe	Thr	Ala 195	Ala	Gly	Asp	Asp	Gly 200	Asn	Leu	Val	Thr	Pro 205	Tyr	Gln	Ala	
Arg	Val 210	Val	Glu	Leu	Glu	Ser 215	Pro	Glu	Ala	Ala	Ala 220	Glu	Glu	Ala	Glu	
<21:	0> 11 L> 12 2> DN 3> An	257 IA	dops:	is tl	nali	ana										
<220 <220		edy	l cod	ding	seq	uence	€									
)> 11 acato		ttgaç	ggcaa	ac a	gaaad	egeti	aad	egete	cctc	caaa	agcti	ca (gate	tggaa	c 60
aac	getge	ect ·	togad	egate	gg a	gatto	etca	aato	cacti	ccg	ccat	cgaa	age t	ttct	tettg	g 120
tct	cacct	ca	acgaa	atcai	t c	gatto	ccgai	tg1	agca	aagg	agaa	atcaç	gtt 1	teeg	atttc	g 180
gtti	ccto	ett (eget	caat	c c	tcagi	ctc	gato	cacco	gaag	ctc	egtea	agc a	aaaa	tccaa	g 240
acc	gtgaa	aga (ccaa	atcc	ge e	gcaga	atcg	g agt	aaaa	aagc	gaga	atato	cga i	tgca	gagat	c 300
gaaq	gaagt	ag :	agaaq	ggaga	at c	ggac	gatta	a to	gacga	aaat	tgga	gtc	gct (ccga	ttaga	g 360
aag	gegga	igc :	aaaco	egcaa	ag a	agcai	tgci	ata	acgt	ggaa	gaat	cgti	cc o	ggcg	aagtt	c 420
atg	gaato	at (etea	gaaa	ca a	gtgaa	aatto	gad	gati	cgt	gtti	taca	agg a	atcg	aaatc	a 480
aga	gccac	etc (gtaga	aggc	gt t	agtci	tgga	a cca	agcg	gaga	tati	caat	tc (cgcg	agaa	a 540
tct	gaaac	etg :	tgact	cct	et t	caato	caget	caq	gaato	egac	gcaa	agtet	tg t	tttc	tttaa	g 600
ctto	ectgo	jaa '	tcgaa	agaaq	gg t	caagi	gac	g aca	acga	ggta	aagg	gaaga	aac o	gagti	ttgag	t 660

ctgagtccga	gatctcgcaa	agcgaaaatg	acggcagctc	agaagcaagc	agctacgacg	720
gtggggtcaa	agagagctgt	gaagaaagaa	gaaggagttc	tcttaacaat	ccagcctaag	780
aggctattca	aagaagatga	aaagaatgtt	tctttaagga	aaccattgaa	accaggaaga	840
gttgtggcta	gtaggtacag	tcaaatgggt	aaaacgcaga	ctggagagaa	agatgttagg	900
aaaaggtcgt	tgcctgagga	tgaagagaaa	gagaatcata	agaggtcgga	gaagagaaga	960
gcttctgatg	aaagtaacaa	gagtgaaggg	agagtgaaga	agagatggga	gattccaagt	1020
gaagttgatc	tgtatagcag	tggtgagaac	ggtgacgagt	ctcctatagt	taaggagcta	1080
cctaagatca	gaacgcttcg	tcgtgtggga	gggagccctc	gtgattcagg	tgctgctaag	1140
agagttgcag	aattacaagc	caaggatcgt	aacttcactt	tttgccagct	tctgaagttt	1200
gaagaatgaa	tgatccgctt	atcaatttga	gtaaaatcca	caactcttgt	tgtggtt	1257

<220>

<223> Seedyl protein

<400> 12

Met Thr Ser Ile Glu Ala Thr Glu Thr Leu Asn Ala Pro Pro Lys Leu $1 \ 5 \ 10 \ 15$

Gln Ile Trp Asn Asn Ala Ala Phe Asp Asp Gly Asp Ser Gln Ile Thr $20 \\ \hspace*{1.5cm} 25 \\ \hspace*{1.5cm} 30$

Ser Ala Ile Glu Ala Ser Ser Trp Ser His Leu Asn Glu Ser Phe Asp \$35\$ \$40\$ \$45\$

Ser Asp Cys Ser Lys Glu Asn Gln Phe Pro Ile Ser Val Ser Ser Ser 50 60

Leu Gln Ser Ser Val Ser Ile Thr Glu Ala Pro Ser Ala Lys Ser Lys 65 70 75 80

Thr Val Lys Thr Lys Ser Ala Ala Asp Arg Ser Lys Lys Arg Asp Ile 85 90 95

Asp Ala Glu Ile Glu Glu Val Glu Lys Glu Ile Gly Arg Leu Ser Thr

<210> 12

<211> 402 <212> PRT

<213> Arabidopsis thaliana

		>					>		- 3	>		_,	- 1		
Lys	Leu	G1u 115	Ser	Leu	Arg	Leu	G1u 120	Lys	Ala	Glu	Gln	Thr 125	Ala	Arg	Ser
Ile	Ala 130	Ile	Arg	G1y	Arg	Ile 135	Val	Pro	Ala	Lys	Phe 140	Met	Glu	Ser	Ser
Gln 145	Lys	Gln	Val	Lys	Phe 150	Asp	Asp	Ser	Cys	Phe 155	Thr	Gly	Ser	Lys	Ser 160
Arg	Ala	Thr	Arg	Arg 165	Gly	Val	Ser	Leu	Gly 170	Pro	Ala	Glu	Ile	Phe 175	Asn
Ser	Ala	Lys	Lys 180	Ser	Glu	Thr	Val	Thr 185	Pro	Leu	Gln	Ser	Ala 190	Gln	Asn
Arg	Arg	Lys 195	Ser	Cys	Phe	Phe	Lys 200	Leu	Pro	Gly	Ile	Glu 205	Glu	Gly	Gln
Val	Thr 210	Thr	Arg	Gly	Lys	Gly 215	Arg	Thr	Ser	Leu	Ser 220	Leu	Ser	Pro	Arg
Ser 225	Arg	Lys	Ala	Lys	Met 230	Thr	Ala	Ala	Gln	Lys 235	Gln	Ala	Ala	Thr	Thr 240
Val	Gly	Ser	Lys	Arg 245	Ala	Val	Lys	Lys	Glu 250	Glu	Gly	Val	Leu	Leu 255	Thr
Ile	Gln	Pro	Lys 260	Arg	Leu	Phe	Lys	Glu 265	Asp	Glu	Lys	Asn	Val 270	Ser	Leu
Arg	Lys	Pro 275	Leu	Lys	Pro	Gly	Arg 280	Val	Val	Ala	Ser	Arg 285	Tyr	Ser	Gln
Met	Gly 290	Lys	Thr	Gln	Thr	Gly 295	Glu	Lys	Asp	Val	Arg 300	Lys	Arg	Ser	Leu
Pro 305	Glu	Asp	Glu	Glu	Lys 310	Glu	Asn	His	Lys	Arg 315	Ser	Glu	Lys	Arg	Arg 320
Ala	Ser	Asp	Glu	Ser 325	Asn	Lys	Ser	Glu	Gly 330	Arg	Val	Lys	Lys	Arg 335	Trp
Glu	Ile	Pro	Ser 340	Glu	Val	Asp	Leu	Tyr 345	Ser	Ser	Gly	Glu	Asn 350	Gly	Asp

Glu Ser Pro Ile Val Lys Glu Leu Pro Lys Ile Arg Thr Leu Arg Arg 355 360 365

Val Gly Gly Ser Pro Arg Asp Ser Gly Ala Ala Lys Arg Val Ala Glu 370 375 380

Leu Gln Ala Lys Asp Arg Asn Phe Thr Phe Cys Gln Leu Leu Lys Phe 385 390 395

Glu Glu

<21	.0>	13	

<211> 3074 <212> DNA

<213> Artificial Sequence

<223> Description of Artificial Sequence: Synthetic [PRO0090-CDS0689-terminator] expression cassette polynucleotide

<400> 13						
	ggcttaggtg	tagcaacacg	actttattat	tattattatt	attattatta	60
ttattttaca	aaaatataaa	atagatcagt	ccctcaccac	aagtagagca	agttggtgag	120
ttattgtaaa	gttctacaaa	gctaatttaa	aagttattgc	attaacttat	ttcatattac	180
aaacaagagt	gtcaatggaa	caatgaaaac	catatgacat	actataattt	tgtttttatt	240
attgaaatta	tataattcaa	agagaataaa	tccacatagc	cgtaaagttc	tacatgtggt	300
gcattaccaa	aatatatata	gcttacaaaa	catgacaagc	ttagtttgaa	aaattgcaat	360
ccttatcaca	ttgacacata	aagtgagtga	tgagtcataa	tattatttc	tttgctaccc	420
atcatgtata	tatgatagcc	acaaagttac	tttgatgatg	atatcaaaga	acatttttag	480
gtgcacctaa	cagaatatcc	aaataatatg	actcacttag	atcataatag	agcatcaagt	540
aaaactaaca	ctctaaagca	accgatggga	aagcatctat	aaatagacaa	gcacaatgaa	600
aatcctcatc	atccttcacc	acaattcaaa	tattatagtt	gaagcatagt	agtaatttaa	660
atcaactagg	gatatcacaa	gtttgtacaa	aaaagcaggc	tggtaccggt	ccggaattcc	720
cgggatatcg	tegacecacg	egteegetga	cgcgtgggtt	ccactacatc	aagacatcta	780
ctacactcat	cttttttgca	cttattgggt	gtaaattttt	gaaacccagt	tgagaaaaat	840
gagtgtgtta	caatacccag	aagggattga	cccagcagat	gttcagatat	ggaacaatgc	900
agcatttgat	aatggagatt	ctgaagattt	gtcttcgctg	aaacgttctt	ggtctcctct	960

gaaacccctt	teggttagge	catcagattc	ctttgaatct	gatttgtcaa	gtaaggaaaa	1020
tcaaactcct	ttatttgaga	attcatctgt	taatctctca	tctccgttac	ccataaagcc	1080
acttaaccct	aatggggctc	tggaaaattc	aagactcaag	ccgaacaagc	ccaattccaa	1140
acagagtett	gatgagatgg	cggctagaaa	gagcggaaag	ggaaatgatt	tccgtgatga	1200
gaagaaaata	gacgaggaaa	ttgaagaaat	tcagatggag	attagtaggt	tgagttcaag	1260
attagaggct	ttgagaattg	aaaaggctga	gaaaactgtt	gctaagactg	ttgaaaagcg	1320
aggaagggtt	gtggcagcaa	agtttatgga	gccaaaacaa	agtgttatta	agattgaaga	1380
gcgtatatca	atgagtgcaa	gaacaaaggt	ggagcagaga	aggggtctta	gtttaggacc	1440
atctgagatt	tttactggaa	cgcggcggcg	agggttgagt	atggggccat	cagatattct	1500
agcagggaca	acaaaggcac	ggcaattggg	aaagcaagag	atgattatta	ctcctattca	1560
gccaatacaa	aacaggcgaa	agtcgtgttt	ttggaagctt	caagagattg	aagaagaggg	1620
aaaaagttca	agccttagtc	ctaaatcaag	aaaaactgct	gcaagaacaa	tggttacaac	1680
aaggcaggca	gttactacaa	ttgcatcaaa	gaagaatttg	aaaaaagatg	atggactttt	1740
gagttcagtt	cagccaaaga	agttgtttaa	agatctcgaa	aagtctgctg	ctgctaataa	1800
gaagccccag	aggccgggga	gggttgtggc	tagtaggtat	aatcagagta	caattcagtc	1860
atcagtagtg	agaaagaggt	ctttacctga	aaatgataag	gatgagagta	agagaaatga	1920
taagaaacgg	tcgttatctg	tagggaaaac	gcgtgtgtct	caaactgaga	gcaagaattt	1980
gggtactgaa	agtagggtga	aaaagagatg	ggaaattcct	agtgagattg	tagttcatgg	2040
aaacacagag	agtgagaaat	ctccactaag	cattattgtg	aagcctgatt	tgcttccgcg	2100
aattaggatt	gctcggtgtg	tgaatgagac	tcttagggat	tctggacctg	ctaaaagaat	2160
gatagagttg	ataggcaaga	aatcgttttt	cagtagtgat	gaagataagg	agccacctgt	2220
ctgtcaagtt	ttaagttttg	cagaggaaga	tgctgaagag	gaataatgtg	taataaaggg	2280
agctgctaac	tcttttcatg	ctctttcaat	tttcaatcct	gccttttaat	ttttgttcat	2340
tcgtgccttt	taattgaatg	gggaagcatt	cttttgcttc	ctcaaactgg	tattctagct	2400
tctgaattac	attgtatggt	acaatatgaa	taaggttttg	tcttccggca	ggttgtccaa	2460
gttagttttt	agcttaaaat	agatgcggca	gcggccgctc	tagagtatcc	ctcgaggggc	2520
ccaagcttac	gcgtacccag	ctttcttgta	caaagtggtg	atatcacaag	cccgggcggt	2580
cttctaggga	taacagggta	attatatccc	tctagatcac	aagcccgggc	ggtcttctac	2640
gatgattgag	taataatgtg	tcacgcatca	ccatgggtgg	cagtgtcagt	gtgagcaatg	2700

acctgaatga acaattgaaa tgaaaagaaa aaaagtactc catctgttcc aaattaaaat	2760			
tcattttaac cttttaatag gtttatacaa taattgatat atgttttctg tatatgtcta	2820			
atttgttatc atccgggcgg tcttctaggg ataacagggt aattatatcc ctctagacaa	2880			
cacacaacaa ataagagaaa aaacaaataa tattaatttg agaatgaaca aaaggaccat	2940			
atcattcatt aactottoto catcoattto catttoacag ttogatagog aaaaccgaat	3000			
aaaaaacaca gtaaattaca agcacaacaa atggtacaag aaaaacagtt ttcccaatgc	3060			
cataatactc gaac	3074			
<210> 14 <211> 668 <212> DNA <213> Oryza sativa				
<220> <223> Prolamin RP6 promoter sequence				
<400> 14 ccttctacat cggcttaggt gtagcaacac gactttatta ttattattat tattattatt	60			
attattttac aaaaatataa aatagatcag tooctcacca caagtagago aagttggtga	120			
gttattgtaa agttctacaa agctaattta aaagttattg cattaactta tttcatatta	180			
caaacaagag tgtcaatgga acaatgaaaa ccatatgaca tactataatt ttgtttttat	240			
tattgaaatt atataattca aagagaataa atccacatag ccgtaaagtt ctacatgtgg	300			
tgcattacca aaatatatat agcttacaaa acatgacaag cttagtttga aaaattgcaa	360			
teettateae attgacaeat aaagtgagtg atgagteata atattatttt tettgetaee	420			
catcatgtat atatgatage cacaaagtta etttgatgat gatatcaaag aacattttta	480			
ggtgcaccta acagaatatc caaataatat gactcactta gatcataata gagcatcaag	540			
taaaactaac actctaaagc aaccgatggg aaagcatcta taaatagaca agcacaatga	600			
aaatcctcat catccttcac cacaattcaa atattatagt tgaagcatag tagtagaatc	660			
caacaaca	668			
<210> 15 <211> 12 <212> PRT <213> Artificial Sequence				

<220>

<223> Description of Artificial Sequence: Synthetic
 peptide

```
<220>
<221> MOD RES
<222> (1)..(2)
<223> Any amino acid
<220>
<221> MOD RES
<222> (3)..(3)
<223> Val, Leu or His
<220>
<221> MOD RES
<222> (4) .. (4)
<223> Gln or His
<220>
<221> MOD RES
<222> (5)..(5)
<223> Any amino acid
<220>
<221> MOD RES
<222> (7) ... (7)
<223> Any amino acid
<220>
<221> MOD RES
<222> (10)..(10)
<223> Ala or Pro
<220>
<221> MOD RES
<222> (11)..(11)
<223> Phe or Cvs
<220>
<223> See specification as filed for detailed description of
      substitutions and preferred embodiments
<400> 15
Xaa Xaa Xaa Xaa Trp Xaa Asn Ala Xaa Xaa Asp
<210> 16
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      Motif 2 CORE peptide
<220>
<221> MOD_RES
<222> (4)..(5)
<223> Any amino acid
```

```
<400> 16
Lys Glu Asn Xaa Xaa Pro
<210> 17
<211> 26
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<220>
<221> MOD RES
<222> (1)..(1)
<223> Ile, Val or Ala
<220>
<221> MOD RES
<222> (2) .. (2)
<223> Asp or Glu
<220>
<221> MOD RES
<222> (3)..(3)
<223> Any amino acid
<220>
<221> MOD RES
<222> (5)..(5)
<223> Ile or Met
<220>
<221> MOD RES
<222> (6)..(7)
<223> Any amino acid
<220>
<221> MOD_RES
<222> (8)..(8)
<223> Ile or Val
<220>
<221> MOD RES
<222> (9)..(9)
<223> Glu or Gln
<220>
<221> MOD RES
<222> (10)..(10)
<223> Any amino acid
<220>
<221> MOD RES
<222> (12)..(13)
```

```
<223> Any amino acid
<220>
<221> MOD RES
<222> (16)..(16)
<223> Any amino acid
<220>
<221> MOD RES
<222> (17)..(17)
<223> Ser, Thr, Leu, Ile or Ala
<220>
<221> MOD RES
<222> (18)..(18)
<223> Arg or Lys
<220>
<221> MOD RES
<222> (20)..(21)
<223> Any amino acid
<220>
<221> MOD RES
<222> (24)..(24)
<223> Leu, Val, Thr or Ile
<220>
<221> MOD RES
<222> (25)..(25)
<223> Any amino acid
<220>
<221> MOD RES
<222> (26)..(26)
<223> Lys or Gln
<220>
<223> See specification as filed for detailed description of
      substitutions and preferred embodiments
Xaa Xaa Xaa Glu Xaa Xaa Xaa Xaa Xaa Glu Xaa Xaa Arg Leu Xaa
                                   10
Xaa Xaa Leu Xaa Xaa Leu Arg Xaa Xaa Xaa
            20
                               25
<210> 18
<211> 29
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
```

```
<220>
<221> MOD RES
<222> (3)..(3)
<223> Arg or Lys
<220>
<221> MOD RES
<222> (5)..(5)
<223> Arg, Ser or Lys
<220>
<221> MOD RES
<222> (6) .. (6)
<223> Thr or Ile
<220>
<221> MOD RES
<222> (7)..(7)
<223> Met, Leu, Ala or Val
<220>
<221> MOD RES
<222> (8) .. (8)
<223> Pro or Arg
<220>
<221> MOD RES
<222> (9)..(10)
<223> Any amino acid
<220>
<221> MOD RES
<222> (11)..(11)
<223> Asp, Gln, Thr or Asn
<220>
<221> MOD RES
<222> (12)..(12)
<223> Glu or Gly
<220>
<221> MOD_RES
<222> (13)..(13)
<223> Ser or Thr
<220>
<221> MOD RES
<222> (14)..(14)
<223> Pro or Leu
<220>
<221> MOD RES
<222> (19)..(19)
<223> Cys, Pro or Ala
<220>
<221> MOD RES
<222> (20)..(20)
```

```
<223> Ala, Val or Ile
<220>
<221> MOD RES
<222> (23)..(23)
<223> Val, Gln, Asn or Ile
<220>
<221> MOD RES
<222> (24)..(24)
<223> Ala or Ile
<220>
<221> MOD RES
<222> (25)..(25)
<223> Asp or Glu
<220>
<221> MOD RES
<222> (26)..(26)
<223> Leu or Arg
<220>
<221> MOD RES
<222> (27)..(27)
<223> Val, Gln, Asn or Ile
<220>
<221> MOD RES
<222> (28)..(28)
<223> Gly or Ala
<220>
<223> See specification as filed for detailed description of
      substitutions and preferred embodiments
<400> 18
Leu Pro Xaa Ile Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Arq Asp
Ser Gly Xaa Xaa Lys Arg Xaa Xaa Xaa Xaa Xaa Lys
<210> 19
<211> 6
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      6xHis tag
<400> 19
His His His His His
```

```
<210> 20
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     primer
<400> 20
ttttttttt tttttttttttttttt
<210> 21
<211> 81
<212> PRT
<213> Arabidopsis thaliana
<400> 21
Met Met Glu Glu Asp Pro Leu Ile Pro Leu Val His Val Trp Thr Asn
Ala Ala Phe Asp Ser Ser Ser Ser Ser Ser Ala Trp His Ala His Ala
           20
Thr Pro Val Arg Arg Gly Glu Lys Glu Asn Arg Arg Pro Ala Glu Thr
        35
                           4.0
Asn Asp Ala Asp Ala Glu Ile Ala Arg Ile Glu Ala Glu Ile Leu Arg
    50
                        55
Leu Ser Ser Arg Leu His His Leu Arg Val Ser Lys Gly His Asp Ala
                    7.0
                                       75
Lys
<210> 22
<211> 84
<212> PRT
<213> Zea mays
<400> 22
Met Glu Glu Asp Pro Leu Ile Gln Leu Val His Val Trp Ser Asn Ala
Ala Cys Asp Asn Ala Ala Ala Ser Ser Ser Val Cys His Ala His Ser
           20
                              25
Pro Ala Pro Ala Ser Ala Arg Glu Gly Glu Gly Asp Lys Glu Asn Leu
        35
                           40
```

Ile Leu Arg Leu Ser Leu Arg Leu His His Leu Arg Thr Ser Gln Gln 65 70 75 80

Leu Gln Pro Pro

<210> 23

<211> 85

<212> PRT

<213> Saccharum sp.

<400> 23

Met Glu Glu Asp Pro Leu Ile Pro Leu Val His Val Trp Asn Asn Ala 1 $$ 5 $$ 10 $$ 15

Pro Phe Asp His Ala Ser Tyr Ser Ala Trp His Ala His Ser Pro Ala $20 \\ 25 \\ 30$

Pro Asp Pro Asp Pro Asp Val Glu Ala Glu Ile Gly His Ile Glu Ala 50 $\,$ 60 $\,$

Glu Ile Leu Arg Leu Ser Ser Arg Leu His His Leu Arg Thr Ser Lys 65 70 75 80

Gln Ser Glu Pro Pro 85

<210> 24

<211> 125

<212> PRT

<213> Brassica napus

<400> 24

Met Thr Ser Thr Glu His Thr Glu Thr Leu Asn Ala Pro Glu Leu Gln 1 $$ 5 $$ 10 $$ 15

Ile Trp Asn Asn Ala Ala Phe Asp Asp Gly Asp Ser Asn Leu Thr Ser $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Ala Ile Glu Ala Ser Trp Ser Asn Leu Asn Ala Ser Phe Asp Ser Asp

35 40 45

Cys Ser Lys Glu Asn Gln Ile Pro Val Ser Val Ser Ser Ser Leu Lys $50 \hspace{1.5cm} 55 \hspace{1.5cm} 60 \hspace{1.5cm}$

Ser Ser Val Ser Phe Ser Thr Asp Asp Pro Ile Arg Cys Gly Lys Val 65 70 75 80

Lys Glu Lys Pro His Lys Thr Gly Lys Val Arg His Gly Asp Ile Asp 85 90 95

Ala Glu Ile Glu Glu Val Glu Lys Glu Met Asn Arg Leu Ser Ile Arg $100 \hspace{1.5cm} 105 \hspace{1.5cm} 105 \hspace{1.5cm} 110 \hspace{1.5cm}$

Leu Glu Ser Leu Arg Leu Glu Lys Ala Glu Gln Ile Ala 115 120 125

<210> 25

<211> 86

<212> PRT

<213> Eschscholzia californica

<400> 25

Met Leu Glu Ile Ser Glu Thr Leu Asn Leu Pro Asp Leu Gln Thr Trp 1 $$ 5 $$ 10 $$ 15

Asn Asn Ala Ala Phe Asp Ser Gly Ser Thr Asp Asn His Thr Thr Ala 20 25 30

Ile Lys Ala Ser Ser Ser Pro Leu Lys Pro Ile Val Leu Asn Gln Ser 35 40 45

Ser Cys Cys Ile Ser Pro Val Arg Thr Lys Ser Pro Leu Pro Ile Lys 65 70 75 80

Pro Leu His Pro Asn Gly

<210> 26

<211> 144

<212> PRT

<213> Gossypium arboreum

<400> 26

Met Ser Ile Leu Gln Tyr Pro Asp Ser Phe Asn Val Pro Glu Leu Gln 10 15 Val Trp Asn Asn Ala Ala Phe Asp Asn Gly Asp Ser Glu Asp Thr Asn 2.5 Ala Ile Lys Asp Ser Trp Cys Asn Phe Asn Ser Gly Ser Val Asn Gln Ser Leu Glu Ser Asp Gly Ser Lys Glu Asn Gln Ser Pro Leu Trp Ile Lys Ser Pro Val Ser Phe Lys Ser Thr Ala Ser Val Val Lys Pro Leu 70 Ser Ser Lys Asn Val Thr Gly Asn Thr Arg Glu Pro Phe Ser Ala Lys 90 8.5 Met Lys Ser Gly Val Cys Lys Glu Glu Lys Lys Arg Asp Glu Lys Lys Ile Asp Met Glu Ile Glu Glu Ile Glu Lys Glu Val Ala Arg Leu Ser Ala Lys Leu Glu Ser Leu Arg Leu Glu Lys Pro Asn Ile Met Gln 130 135 140 <210> 27 <211> 75 <212> PRT <213> Populus tremula <400> 27 Met Ser Ser Ile Leu Gln Tyr Pro Asp Val Val Asp Ala Pro Glu Val 10 Gln Ile Trp Asn Asn Ala Ala Phe Asp Asn Gly Glu Ser Glu Gly Ser 20 25 30 Leu Asn Leu Lys Ser Ser Trp Trp Asn Gln Ser Leu Glu Ser Asp Ala 40 Ser Lys Glu Asn Leu Ser Pro Val Cys Glu Gln Ser Ser Pro Val Phe 50 55

Val Asn Ser Ser Lys Pro Ala Lys Pro Leu Gln

65 70 75

<210> 28

<211> 77 <212> PRT

<213> Plumbao zeylanica

<400> 28

Met Asn Glu Val Leu His Leu Gln Glu Ala Ala Arg Thr Asp Ser Ser 1 10 15

Thr Asp His Gln Ile Trp Asn Asn Ala Ala Phe Asp Ser Gly Glu Ser $20 \\ 25 \\ 30 \\$

Glu Asp Ser Pro Val Val Ile Asp Phe Ser Ala Pro Asn Leu Ser Gln 35 40 45

Ser Leu Leu Ser Asp Ser Ser Ile Lys Glu Asn Leu Ser Pro Ser Leu 50 55 60

Ala Glu Met Pro His Pro Ala Lys Ser Pro Met Gln Lys 65 70 75

<210> 29

<211> 139 <212> PRT

<213> Citrus sinensis

<400> 29

Met Ser Val Leu Gln Tyr Pro Asp Thr Leu Asn Gly Gln Glu Leu Gln $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ile Trp Asn Asn Ala Ala Phe Asp Asn Gly Glu Ser Glu Asp Ser Thr \$20\$

Ala Met Lys Gly Ser Trp Ala Asn Leu Lys Ser Val Tyr Met Asn Gln 35 40 45

Ser Leu Glu Ser Asp Cys Ser Lys Glu Asn Leu Ser Pro Arg Leu Asn 50 55 60

Lys Ser Pro Thr Ser Ser Leu Lys Ser Cys Val Pro Asn Lys Pro Leu 65 70 75 80

Gln Val Asn Ser Ser Val Lys Asn Ser Gln Met Lys Gln Leu Lys Ser

Val Ser Lys Glu Glu Glu Thr Arg Asp Glu Arg Lys Ile Asp Ile Glu 100 105 110

Ile Glu Glu Ile Glu Lys Glu Ile Ser Arg Leu Ser Ser Arg Leu Glu $115 \\ 120 \\ 125$

Ala Leu Arg Leu Glu Lys Ile Asp Ile Lys Thr 130 135

<210> 30

<211> 186

<212> PRT <213> Hordeum vulgare

V213/ HOIGEUM VUIGATE

<400> 30

Ile Ser Thr Ala Ser Thr Cys Arg Arg Pro Ala Gly Ser Ser Lys Val 1 $$ 5 $$ 10 $$ 15

Arg Val Val Pro Ser Arg Tyr Ser Leu Met Pro Gly Ala Ser Leu Gly 20 25 30

Ala Ala Thr Gln Asp Gly Arg Arg Lys Glu Ser Leu Pro Gly Ser Thr

Val Asp Asp Asp Leu Ser Pro Glu Ser Leu Asp Lys Val Ala Glu Leu 65 70 75 80

Leu Pro Arg Ile Arg Thr Met Pro Arg Pro Asn Glu Thr Pro Pro Asp 85 90 95

Ser Gly Cys Ala Lys Arg Ala Ala Asp Leu Val Gly Lys Arg Ser Phe $100 \hspace{1cm} 105 \hspace{1cm} 110 \hspace{1cm}$

Phe Ala Ala Ala Ala Gly Asp Gly Ser Ala Ile Ser Ser Tyr Gln
115 120 125

Ala Arg Val Leu Glu Ala Glu Ala Pro Glu Glu Ala Ala Ala Ala Gly 130 135 140

Ala Leu Ser Asp Glu Ala Ala Ala Ala Gly Ala Leu Ser Asp Glu Ala 145 150155160

Ala Ala Ala Ala Ala Ala Glu Ala Leu Ser Asp Glu Ala Ala Ala

165 170 175

Ala Glu Ala Leu Ser Asp Glu Ala Ala Ala 180 185

<210> 31

<211> 145

<212> PRT

<213> Triticum aestivum

<400> 31

Glu Arg Arg Lys Glu Ser Leu Pro Gly Ser Thr Gly Gly Ala Gly 20 \$25\$

Gln Lys Glu Glu Glu Ile Lys Ala Met Pro Thr Glu Pro Val Asp Asp 35 40 45

Asp Leu Ser Pro Glu Ser Leu Asp Lys Val Ala Glu Leu Leu Pro Arg 50 60

Thr Arg Thr Met Pro Pro Pro Asp Glu Thr Pro Arg Asp Ser Gly Cys 65 70 75 80

Ala Lys Arg Ala Ala Asp Leu Val Gly Lys Arg Ser Phe Phe Ala Ala 85 90 95

Ala Ala Ala Gly Asp Cys Ser Ala Ile Ser Ser Tyr Gln Ala Arg Val $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110 \hspace{1.5cm}$

Leu Glu Ala Glu Ala Pro Glu Glu Ala Ala Ala Ala Ala Glu Ala Leu 115 120 125

Gly Asp Glu Ala Ala Ser Ala Gly Glu Ala Leu Gly Asp Glu Ala Ala 130 $$135\$

Ala 145

<210> 32

<211> 32

<212> PRT

<213> Zea mays

<400> 32

Thr Ser Asn Val Ala Thr Thr Lys Arg Pro Ala Gly Ser Ser Lys Val 10 15 Arg Val Val Pro Ser Arg Tyr Ser Ile Pro Pro Gly Ser Ser Leu Ala Ala Val Thr Gln Gly Asn Arg Cys Lys Gln Ser Leu Pro Gly Ser Ala Thr Glu Thr Arg Val Asn Leu Thr Glu Pro Pro Asn Asp Glu Leu Ser Pro Glu Glu Leu Ala Lys Val Ala Glu Leu Leu Pro Arg Ile Arg Thr 70 7.5 Met Pro Pro Ser Asp Glu Ser Pro Arg Asp Ser Gly Cys Ala Lys Arg 8.5 90 9.5 Val Ala Asp Leu Val Gly Lys Arg Ser Phe Phe Thr Ala Ala Gly Asp 105 110 Asp Gly Asn Leu Val Thr Pro Tyr Gln Ala Arg Val Val Glu Leu Glu Ser Pro Glu Ala Ala Ala Glu Glu Ala Glu Ala 130 135 <210> 33 <211> 133 <212> PRT <213> Saccharum sp. <220> <221> MOD RES <222> (115)..(115) <223> Any amino acid <400> 33 Thr Ser Asn Ala Ala Thr Ala Lys Arg Pro Ala Gly Ser Ser Lys Val 15 Arg Val Val Pro Ser Arg Tyr Ser Ile Thr Pro Gly Ser Tyr Leu Ala 20 25

Ala Val Ser Gln Asp Lys Arg Ser Lys Gln Ser Leu Pro Gly Pro Ala

Ser Lys Asp Glu Leu Ser Pro Glu Thr Val Ala Lys Val Ala Glu Leu 65 70 75 80

Leu Pro Arg Ile Lys Thr Met Pro Ala Ser Asp Glu Ser Pro Arg Asp $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Ser Ser Cys Ala Lys Arg Val Ala Asp Leu Val Gly Lys Arg Ser Phe $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110 \hspace{1.5cm}$

Phe Thr Xaa Ala Ala Glu Asp Gly Asn Phe Val Thr Pro Tyr Gln Ala 115 120 125

Pro Val Gly Glu Leu 130

<210> 34

<211> 98 <212> PRT

<213> Pinus taeda

<220>

<221> MOD RES

<222> (1)..(1)

<223> Any amino acid

<220>

<220>

<221> MOD_RES <222> (77)..(78)

<223> Any amino acid

<220>

<221> MOD RES

<222> (93)..(93)

<223> Any amino acid

<220>

<221> MOD_RES <222> (96)..(98)

<223> Any amino acid

<400> 34

Xaa Glu Ala Arg Ile Val Phe Gly Thr Gly Asn Ser Ala Ile Met Ala 1 $$ 5 $$ 10 $$ 15

Gly Gly Thr Lys Ala Pro Asp Thr Leu Glu Arg His Lys Met Lys Leu 20 25 30

```
Pro Lys Ile Lys Thr Val Arg Phe Thr Thr Glu Ser Pro Arg Asp Ser
Gly Cys Ile Lys Arg Glu Ile Asp Arg Ile Gly Lys Lys Ser Phe Phe
    50
                                            60
Ala Pro Asp Gly Ile Thr Ser Thr Pro Ser Ile Asp Xaa Xaa Asp Ala
Gly Lys Pro Leu Arg Arg Glu Ser Val His Glu Ile Xaa His Ala Xaa
                                   90
Xaa Xaa
<210> 35
<211> 7
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      Motif 1 CORE peptide
<220>
<221> MOD RES
<222> (2)..(2)
<223> Anv amino acid
<220>
<221> MOD RES
<222> (5), (6)
<223> Any amino acid
<400> 35
Trp Xaa Asn Ala Xaa Xaa Asp
<210> 36
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     Motif 3 (coiled core) CORE peptide
<220>
<221> MOD RES
<222> (2)..(7)
```

```
<223> Any amino acid and this region may encompass 1 to
     6 residues
<220>
<221> MOD RES
<222> (9)..(10)
<223> Any amino acid
<220>
<221> MOD_RES
<222> (13)..(15)
<223> Any amino acid
<220>
<221> MOD RES
<222> (17)..(18)
<223> Any amino acid
<400> 36
Glu Xaa Xaa Xaa Xaa Xaa Glu Xaa Xaa Arg Leu Xaa Xaa Xaa Leu
Xaa Xaa Leu Arg
           20
<210> 37
<211> 29
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      Motif 4 CORE peptide
<220>
<221> MOD RES
<222> (3)..(3)
<223> Any amino acid
<220>
<221> MOD RES
<222> (5)..(14)
<223> Any amino acid and this region may encompass 1 to
     10 residues
<220>
<221> MOD RES
<222> (19)..(20)
<223> Any amino acid
<220>
<221> MOD RES
<222> (23)..(28)
<223> Any amino acid and this region may encompass 1 to
     6 residues
```