

Pokok Bahasan : DERET TAK BERHINGGA

(INFINITE SERIES)

Sub Bahasan : - Uji Integral

Uji Perbandingan (*Ratio*)Uji Perbandingan Khusus

PUSTAKA RUJUKAN

1. Mary L. Boas, 1983. *Mathematical Methods in the Physical Sciences*. 2nd Edition. John Wiley & Sons

- 2. Hans J. Wospakrik, 1993. Dasar-Dasar Matematika Untuk Fisika. Departemen Pendidikan dan Kebudayaan, Jakarta
- 3. Roswati Mudjiarto dan Frans J. Krips, 1995, Matematika Fisika 1, Penerbit ITB, Bandung

Tujuan Pembelajaran, mahasiswa mampu

- menggunakan uji konvergensi : Uji Integral
- memahami konvergensi deret tak berhingga dengan uji Perbandingan (Ratio).
- melakukan uji konvergensi deret tak berhingga tertentu dengan Uji Perbandingan Khusus.

DERET TAK BERHINGGA (INFINITE SERIES)

1.4 Uji Integral

Uji Integral

Dari deret $\sum_{n=1}^{\infty} a_n$ dibentuk suatu formula $I = \int a_n \ dn$, dan jika :

a.
$$I = \int a_n \ dn$$
 terbatas, maka Σa_n konvergen

b.
$$I = \int a_n \ dn$$
 tak terbatas, maka Σa_n divergen

CONTOH

Tentukanlah apakah deret $\sum\limits_{n=1}^{\infty}rac{1}{n}$ konvergen atau divergen ?

Jawab:

$$\int_{1}^{\infty} a_{n} \ dn = \int_{1}^{\infty} \frac{1}{n} \ dn = \ln n \Big|_{1}^{\infty} = \infty \quad \to \quad \text{tak terbatas}$$

Maka $\sum_{n=1}^{\infty} \frac{1}{n}$ adalah deret divergen.

CONTOH

Ujilah deret $\sum_{n=1}^{\infty} \frac{1}{n^2}$ dengan menggunakan uji integral !,

Konvergen atau divergen?

Jawab:

$$\int_{1}^{\infty} a_{n} \ dn = \int_{1}^{\infty} \frac{1}{n^{2}} \ dn = -\frac{1}{n} \Big|_{1}^{\infty} = 0 + 1 = 1 \to \text{terbatas}.$$

Maka $\sum_{n=1}^{\infty} \frac{1}{n^2}$ adalah deret konvergen.

Uji Rasio 1.5 Uji Rasio

Dalam deret $\sum_{n=1}^{\infty} a_n$ didefinisikan suatu ratio :

$$\rho = \frac{a_{n+1}}{a_n} \tag{1.3}$$

dan

$$\rho_n = \left| \frac{a_{n+1}}{a_n} \right| \tag{1.4}$$

Kemudian diambil harga limit dari ρ_n yaitu :

$$\rho = \lim_{n \to \infty} \rho_n \tag{1.5}$$

Jika:

 \checkmark ρ < 1, maka deret konvergen

 \checkmark $\rho > 1$, maka deret divergen

 $\checkmark \rho = 1$, maka deret tidak dapat disimpulkan (menggunakan uji konvergensi yang lain).

CONTOH

Ujilah apakah deret $\sum \frac{1}{n!}$ konvergen atau divergen ?

Jawab:

$$\rho_n = \left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{1}{(n+1)!} : \frac{1}{n!} \right| = \left| \frac{n!}{n!(n+1)} \right| = \left| \frac{1}{n+1} \right|$$

$$\rho = \lim_{n \to \infty} \rho_n = \lim_{n \to \infty} \left| \frac{1}{n+1} \right| = 0 < 1, \text{ maka deret } \sum_{n=1}^{\infty} \frac{1}{n!} \text{ adalah}$$

deret konvergen.

CONTOH

Ujilah apakah deret $\sum_{n=1}^{\infty} \frac{1}{n}$ konvergen atau divergen ?

Jawab:

$$\rho_n = \left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{1}{n+1} : \frac{1}{n} \right| = \left| \frac{n}{(n+1)} \right|$$

$$\rho = \lim_{n \to \infty} \rho_n = \lim_{n \to \infty} \left| \frac{n}{n+1} \right| = 1 \quad \to \quad \mathsf{tidak} \quad \mathsf{dapat} \quad \mathsf{disimpulkan},$$

karena itu pakai uji lain (lihat lagi uji integral yang telah dijelaskan di atas).

Uji Perbandingan Khusus

1.6 Uji Perbandingan Khusus

Dalam hal ini, diberikan suatu deret yang sudah diketahui sifatnya.

- a. Jika Σ k_n adalah deret positif yang konvergen, untuk deret Σa_n yang ingin diketahui sifanya; bila $a_n \geq 0$ dan $\frac{a_n}{k_n}$ terbatas, maka Σ a_n adalah deret yang konvergen.
- b. Jika Σ d_n adalah deret positif yang divergen, untuk deret Σa_n yang ingin diketahui sifatnya, bila $a_n \geq 0$ dan $\frac{a_n}{d_n} > 0 \; \text{maka} \; \Sigma \; a_n \; \text{adalah deret yang divergen}.$

CONTOH

Tentukan apakah deret $\sum_{n=3}^{\infty} \frac{\sqrt{2n^3-5n+1}}{4n^3-7n^2+2}$ konvergen atau divergen.

Jawab:

Ambilah sebuah deret konvergen $\sum_{n=1}^{\infty} \frac{1}{n^2}$ sebagai pembanding $(\Sigma \ k_n)$.

$$\lim_{n \to \infty} \frac{a_n}{k_n} = \lim_{n \to \infty} \frac{\sqrt{2n^2 - 5n + 1}}{4n^3 - 7n^2 + 2} : \frac{1}{n^2}$$

$$= \lim_{n \to \infty} \frac{n^2 \sqrt{2n^2 - 5n + 1}}{4n^3 - 7n^2 + 2}$$

$$= \frac{\sqrt{2}}{4} \to \text{ terbatas.}$$

Maka dapat disimpulkan bahwa deret $\sum_{n=3}^{\infty} \frac{\sqrt{2n^3-5n+1}}{4n^3-7n^2+2}$ adalah deret konvergen.