TabuEdges

Guided Local Search for the Graph Coloring Problem

Cyril Grelier 1 - Olivier Goudet 2 - Jin-Kao Hao 2 ROADEF 2025

- 1 Université de Lorraine LORIA
- 2 Université d'Angers LERIA

Studied Problem

GCP - Graph Coloring Problem

Graph Coloring

Objective: find a legal coloring while minimizing the number of colors

Close to the k-coloring problem (fixed number of color)

Score:

- Number of colors k (legal)
- Number of conflicts |C| (illegal)
- Number of uncolored vertices |U| (partially legal)

NP-Hard problem

Applications:

- Scheduling problems
- Register allocation
- Sudoku

State of the Art

State of the Art - GCP/*k***-coloring**

- Local Search:
 - TabuCol Hertz et Werra [1987] : illegal, one-move
 - PartialCol Blöchliger et Zufferey [2008] : partial legal, grenade
 - ILS Chiarandini et Stützle [2002] : perturbations, acceptance criteria
- Memetic Algorithms :
 - HEA Galinier et Hao [1999] : GPX, TabuCol
 - **Evo-Div** Porumbel et al. [2010]: multi-parents crossover, distances
 - MACOL Lü et Hao [2010]: multi-parents crossover, distances
 - HEAD Moalic et Gondran [2018]: 2 individuals, GPX, TabuCol
 - DLMCOL Goudet et al. [2022]: +20 000, NN select crossover
 - AHEAD Grelier et al. [2024]: hyperheuristics to select <X,LS>
- Local Search for the WVCP (Weighted Vertex Coloring Problem) :
 - RedLS Wang et al. [2020]: illegal, weighted edges, perturbations

TabuEdges

TabuEdges Algorithm

- Color removing
- Tabu Management
- Neighborhood Exploration
- Guided Component

Color Removing

To decrease the number of colors when a legal solution is found

- Fusion: merge two colors groups
- Divide: separate vertices from a color group to multiple color groups

Low impact on the search

Tabu Strategy

Different solutions exists to manage the tabu aspect.

Let's consider the vertex v that move from the color c to another color

|V|: number of vertices in the graph

|C|: number of conflicts in the solution

- **Tabu List**: size |V| Hertz et Werra [1987] $tabu[v] = turn + random(0, 10) + \alpha * |C|$
- Tabu Matrix: size $|V|*k_{max}$ Moalic et Gondran [2018] $tabu[v][c] = turn + random(0, 10) + \alpha * |C|$
- Configuration Checking: size |V| Cai et al. [2011] tabu[v] = true $tabu[n] = false, \forall n \in neighbors(v)$

Neighborhood Exploration and Guided Component

Neighborhood:

1-opt / one-move : one vertex move to another color

Neighborhood Selection Strategy:

- 1. TabuCol, Hertz et Werra [1987]
 - select the best non tabu move (can degrade the solution)
 - aspiration critera to accept a tabu move that lead to a better solution
- 2. TabuEdges
 - 1. apply a non tabu and non degrading move
 - 2. if no move is found, penalize conflicting edges*
 - 3. then move a random vertex in conflict in the least degrading way
- 3. TabuDouble
 - alternate TabuEdges and TabuCol strategies

*Guided Component, Wang et al. [2020]:

- Increment weight (penality) of the edges in conflict
- Use the weight to compute penalty and delta while searching moves

Experimentations

Comparison between Tabu and Neighborhood Strategies

20 runs of 1h, 31 hardest GCP instances

Compare with Wilcoxon signed-rank, p-value < 0.001

- TabuCol's best tabu strategy is the Tabu Matrix
- TabuEdges's best tabu strategies are:
 - Tabu List (2 new best scores)
 - Tabu Matrix (1 new best score)
- TabuEdges better than TabuCol on more instances (12 againt 8) and reach more best scores
- TabuDouble (alternate between the two): better than TabuCol but not TabuEdges

Comparison with State of the Art

k-TabuCol, k-HEAD and k-AHEAD solve k-coloring (1h max to solve 1 color)

/31 instances	# BKS	# Best Score	# Best Mean
TabuCol TL	4	7	5
TabuCol TM	5	8	6
TabuCol CC	0	0	0
TabuEdge TL	14(2)	17	15
TabuEdge TM	15 (1)	18	11
TabuEdge CC	14	15	12
TabuDouble TL	14	15	10
TabuDouble TM	13	14	10
k-TabuCol	5	8	7
k-HEAD	7	17	14
k-AHEAD	11	19	12

TL: TabuList, TM: TabuMatrix, CC: Configuration Checking

BKS: Best Known Score

Results - State of the Art

instance BKS			Col TM		Edge TL		Edge TM		Double TL		buCol	l	EAD		HEAD
		best	time	best	time	best	time	best	time	best	time	best	time	best	time
C2000.5	145	164	2445	166	3290	166	3167	165	663	162	2564	150	3300	151	3273
C2000.9	404	413	3491	423	3418	421	3184	422	1525	412	2225	406	2527	406	3139
C4000.5	259	306	2821	319	3410	317	3499	307	540	304	2332	283	3492	284	3156
DSJC500.1	12	12	813	13	0	13	0	12	1449	12	58	12	107	12	103
DSJC500.5	47	49	239	50	430	50	751	49	2594	49	573	48	1239	48	1663
DSJC500.9	126	126	1033	127	149	126	819	127	2249	126	1975	126	1188	126	530
DSJC1000.1	20	21	2	21	193	21	366	21	16	21	0	21	1	20	2496
DSJC1000.5	82	88	2919	90	1362	90	2318	90	1315	88	1544	83	2811	83	2793
DSJC1000.9	222	224	1870	224	1894	223	2945	227	409	224	3296	223	2272	223	3079
flat300_28_0	28*	28	1608	28	2099	28	2584	28	620	30	1765	30	1605	30	1228
flat1000_50_0	50*	50	920	50	16	50	25	50	15	50	27	50	69	50	18
flat1000_60_0	60*	60	2845	60	1403	60	1327	60	1468	60	41	60	112	60	57
flat1000_76_0	76*	87	1994	89	2229	89	1728	89	1413	86	2678	82	3064	83	2280
latin_square_10	97	101	2692	101	1014	101	1238	101	3213	100	1014	101	2591	99	2859
le450_25c	25*	26	0	26	0	26	0	26	0	26	0	26	0	25	1328
le450_25d	25*	26	0	26	0	26	0	26	0	26	0	26	0	25	1655
DSJR500.5	122*	125	842	122	1	122	0	122	1	126	231	124	1869	124	1498
r250.5	65*	66	1095	65	0	65	0	65	0	67	129	65	2816	65	1556
r1000.1c	98	115	254	98	21	98	9	98	24	133	0	100	2306	101	1699
r1000.5	234	245	2383	234	49	234	41	234	44	245	1387	246	2545	244	1862
wap01a	41*	42	62	41	7	41	4	41	7	42	1069	42	219	41	2774
wap02a	40*	41	1462	40	7	40	4	40	7	41	231	41	26	40	2844
wap03a	43	47	2380	42	2143	42	2811	43	220	45	332	45	510	44	2008
wap04a	41	43	2036	41	2235	41	1486	42	138	42	755	43	1736	43	612
wap06a	40*	41	778	40	1	40	0	40	0	40	1616	40	1103	40	558
wap07a	41	42	1634	40	1296	41	19	41	27	42	442	42	1667	42	968
wap08a	40*	41	1046	40	130	40	150	40	68	41	915	42	107	41	1568
#BKS			5	14		15		14		5		7		11	
#Best			8		17		18	15		8		17		19	
#Best Avg			6		15		11		10		7	1	.4	1	12

Results - Heterogeneous vs Homogeneous Degree

instance BKS TabuCol TM TabuEdge TL TabuEdge TM TabuDouble TL k-TabuCol k-HEAD	k-AHEAD	
best time	best time	
C2000.5 145 164 2445 166 3290 166 3167 165 663 162 2564 150 3300	151 3273	
C2000.9 404 413 3491 423 3418 421 3184 422 1525 412 2225 406 2527	406 3139	
C4000.5 259 306 2821 319 3410 317 3499 307 540 304 2332 283 3492	284 3156	
DSJC500.1 12 12 813 13 0 13 0 12 1449 12 58 12 107	12 103	
DSJC500.5 47 49 239 50 430 50 751 49 2594 49 573 48 1239	48 1663	
DSJC500.9 126 126 1033 127 149 126 819 127 2249 126 1975 126 1188	126 530	
DSJC1000.1 20 21 2 21 193 21 366 21 16 21 0 21 1	20 2496	
DSJC1000.5 82 88 2919 90 1362 90 2318 90 1315 88 1544 83 2811	83 2793	
DSJC1000.9 222 224 1870 224 1894 223 2945 227 409 224 3296 223 2272	223 3079	
flat300_28_0 28* 28 1608 28 2099 28 2584 28 620 30 1765 30 1605	30 1228	
flat1000_50_0 50* 50 920 50 16 50 25 50 15 50 27 50 69	50 18	
flat1000_60_0 60* 60 2845 60 1403 60 1327 60 1468 60 41 60 112	60 57	
flat1000_76_0 76* 87 1994 89 2229 89 1728 89 1413 86 2678 82 3064	83 2280	
latin_square_10 97 101 2692 101 1014 101 1238 101 3213 100 1014 101 2591	99 2859	
le450_25c 25* 26 0 26 0 26 0 26 0 26 0 26 0	25 1328	
le450_25d 25* 26 0 26 0 26 0 26 0 26 0 26 0	25 1655	
DSJR500.5 122* 125 842 122 1 122 0 122 1 126 231 124 1869	124 1498	
r250.5 65* 66 1095 65 0 65 0 65 0 67 129 65 2816	65 1556	
r1000.1c 98 115 254 98 21 98 9 98 24 133 0 100 2306	101 1699	
r1000.5 234 245 2383 234 49 234 41 234 44 245 1387 246 2545	244 1862	
wap01a 41* 42 62 41 7 41 4 41 7 42 1069 42 219	41 2774	
wap02a 40* 41 1462 40 7 40 4 40 7 41 231 41 26	40 2844	
wap03a 43 47 2380 42 2143 42 2811 43 220 45 332 45 510	44 2008	
wap04a 41 43 2036 41 2235 41 1486 42 138 42 755 43 1736	43 612	
wap06a 40* 41 778 40 1 40 0 40 0 40 1616 40 1103	40 558	
wap07a 41 42 1634 40 1296 41 19 41 27 42 442 42 1667	42 968	
wap08a 40* 41 1046 40 130 40 150 40 68 41 915 42 107	41 1568	
#BKS 5 14 15 14 5 7	11	
#Best 8 17 18 15 8 17	19	
#Best Avg 6 15 11 10 7 14	12	

Heterogeneous vs Homogeneous Degree

link DSJR500.5

link DSJC500.5

Conclusion

Conclusion - TabuEdges

Cons

- Pretty bad results on graphs with homogeneous degree
- Doesn't work well on k-coloring

Pros

- Quite fast and very efficient on graphs with heterogeneous degree
- Works well on GCP

Other

- 2 new best scores (wap03a, wap07a)
- Optimal score for wap07a thanks to lower bound from Heule et al.
 [2022]

What's next?

Elements to explore

- Reduce weights or reset weights
- Guided Memetic Algorithm
- aspiration criteria for the weighted moves
- other tabu strategies
- impact of a swap move
- go toward an iterated local search framework where the weights on edges are used only during a perturbation phase

Thank you for your attention!

Questions?

Source code, results tables, articles:

https://cyril-grelier.github.io/

Bibliographie i

References

- Ivo Blöchliger and Nicolas Zufferey. A graph coloring heuristic using partial solutions and a reactive tabu scheme. Computers & Operations Research, 35(3):960–975, 2008.
- Shaowei Cai, Kaile Su, and Abdul Sattar. Local search with edge weighting and configuration checking heuristics for minimum vertex cover. Artificial Intelligence, 175(9-10):1672–1696, 2011.
- Marco Chiarandini and Thomas Stützle. An application of iterated local search to graph coloring problem. In *Proceedings of the* computational symposium on graph coloring and its generalizations, pages 112–125. Ithaca New York (USA), 2002.
- Philippe Galinier and Jin-Kao Hao. Hybrid evolutionary algorithms for graph coloring. *Journal of Combinatorial Optimization*, 3:379–397, 1999.
- Olivier Goudet, Cyril Grelier, and Jin-Kao Hao. A deep learning guided memetic framework for graph coloring problems. *Knowledge-Based Systems*, 258:109986, 2022.
- Cyril Grelier, Olivier Goudet, and Jin-Kao Hao. A memetic algorithm with adaptive operator selection for graph coloring. In Evolutionary Computation in Combinatorial Optimization: 24nd European Conference, EvoCOP 2024, Held as Part of EvoStar 2024, Aberystwyth, Wales, United Kingdom, April 3–5, 2024, Proceedings, pages x-x. Springer, 2024.
- Alain Hertz and D de Werra. Using tabu search techniques for graph coloring. Computing, 39(4):345-351, 1987.
- Marijn JH Heule, Anthony Karahalios, and Willem-Jan van Hoeve. From cliques to colorings and back again. In 28th International Conference on Principles and Practice of Constraint Programming (CP 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.
- Zhipeng Lü and Jin-Kao Hao. A memetic algorithm for graph coloring. European Journal of Operational Research, 203(1):241–250, 2010.
- Laurent Moalic and Alexandre Gondran. Variations on memetic algorithms for graph coloring problems. *Journal of Heuristics*, 24:1–24, 2018.
- Daniel Cosmin Porumbel, Jin-Kao Hao, and Pascale Kuntz. A search space "cartography" for guiding graph coloring heuristics. Computers & Operations Research, 37(4):769–778, 2010.
- Yiyuan Wang, Shaowei Cai, Shiwei Pan, Ximing Li, and Monghao Yin. Reduction and local search for weighted graph coloring problem. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 2433–2441, 2020.

Comparison between Tabu and Neighborhood Strategies

1 point/instance if the average is significantly better for the method on the line compared to the one in the column (Wilcoxon signed-rank, p-value < 0.001)

/31	72,	7	. ري ري	14	7 4	1 Lu		~ ~ ~	* 84S	ж Ж	* W *
TC L	-	3	21	5	6	7	5	6	4	15	9
TC M	15	-	31	8	8	9	6	9	5	16	14
TC CC	0	0	-	0	0	0	0	0	0	0	0
TE L	14	13	31	-	0	7	7	5	14(2)	21	19
TE M	14	12	31	2	-	7	6	3	15 (1)	22	14
TE CC	13	11	31	1	1	-	4	1	14	19	14
TD L	12	11	31	2	2	7	-	2	14	20	13
TD M	13	11	31	1	1	4	3	-	13	19	13

TC: TabuCol, TE: TabuEdges, TD: TabuDouble

L: TabuList, M: TabuMatrix, CC: Configuration Checking

BKS: Best Known Score

Comparison with State of the Art

1 point/instance if the average is significantly better for the method on the line compared to the one in the column (Wilcoxon signed-rank, p-value < 0.001)

/31	7CM	14	7 2	12	47	K-HEN	K-AMEAD	* BHS	*	* N *
TC M	-	8	8	6	0	1	0	5	8	6
TE L	13	-	0	7	11	11	10	14(2)	17	15
TE M	12	2	-	6	11	11	10	15 (1)	18	11
TD	11	2	2	-	11	11	10	14	15	10
k-TC	10	8	8	10	-	1	0	5	8	7
k-HEAD	15	8	8	9	12	-	1	7	17	14
k-AHEAD	18	9	9	10	14	1	-	11	19	12

TC: TabuCol, TE: TabuEdges, TD: TabuDouble

L: TabuList, M: TabuMatrix, CC: Configuration Checking

BKS: Best Known Score

k-: solve k-coloring problem, (GCP otherwise)