Berechenbarkeit

Vorlesung 2: Grundlagen Turingmaschinen

17. April 2025

Termine — Modul Berechenbarkeit

ÜBUNGEN	Vorlesung
15.4. Übung 1 B-Woche	17.4. Turingmaschine I
22.4. Übung 1 A-Woche (Montag Feiertag)	24.4. Turingmaschine II (Übungsblatt 2)
29.4. Übung 2 B-Woche	1.5.
6.5. Übung 2 A-Woche	8.5. Loop-Programme (Übungsblatt 3)
13.5. Übung 3 B-Woche	15.5. While-Programme
20.5. Übung 3 A-Woche	22.5. Rekursion I (Übungsblatt 4)
27.5. Übung 4 B-Woche	29.5.

Übungen	Vorlesung
3.6. Übung 4	5.6. Rekursion II
A-Woche	(Übungsblatt 5)
10.6.	12.6.
Übung 5 B-Woche (Montag Feiertag)	Entscheidbarkeit
17.6.	19.6.
Übung 5	Unentscheidbarkeit
A-Woche	(Übungsblatt 6)
24.6.	26.6.
Übung 6	Spez. Probleme
B-Woche	
1.7.	3.7.
Übung 6	Klasse P
A-Woche	
8.7.	10.7.
Abschlussübung	NP-Vollständigkeit
beide Wochen	

§2.1 Definition (partielle Funktion; partial function)

Seien A, B Mengen. Relation $\rho \subseteq A \times B$ ist **partielle Funktion**, geschrieben $\rho \colon A \dashrightarrow B$, falls für jedes $a \in A$ höchstens ein $b \in B$ mit $(a, b) \in \rho$ existiert.

§2.1 Definition (partielle Funktion; partial function)

Seien A, B Mengen. Relation $\rho \subseteq A \times B$ ist **partielle Funktion**, geschrieben $\rho \colon A \dashrightarrow B$, falls für jedes $a \in A$ höchstens ein $b \in B$ mit $(a,b) \in \rho$ existiert.

Notizen

- Übliche Funktionsschreibweisen auch für partielle Funktionen
- Jede Funktion ist partielle Funktion

§2.1 Definition (partielle Funktion; partial function)

Seien A, B Mengen. Relation $\rho \subseteq A \times B$ ist **partielle Funktion**, geschrieben $\rho \colon A \dashrightarrow B$, falls für jedes $a \in A$ höchstens ein $b \in B$ mit $(a,b) \in \rho$ existiert.

Notizen

- Übliche Funktionsschreibweisen auch für partielle Funktionen
- Jede Funktion ist partielle Funktion
- **Definitionsbereich** partieller Funktion $f: A \longrightarrow B$ ist $f^{-1}(B)$ (Elemente des Vorbereiches A, für die f definiert ist)

$$f^{-1}(B) = \left\{ a \in A \mid \exists b \in B \colon f(a) = b \right\}$$

• $f^{-1}(B) = A$ für jede Funktion $f: A \to B$

Vereinbarungen

Beschränkung auf partielle Funktionen

```
f: \mathbb{N}^k \longrightarrow \mathbb{N} und g: \Sigma^* \longrightarrow \Delta^* (für Alphabete \Sigma, \Delta)
```

• 2 Kodierungen für natürliche Zahlen

Vereinbarungen

Beschränkung auf partielle Funktionen

```
f: \mathbb{N}^k \longrightarrow \mathbb{N} und g: \Sigma^* \longrightarrow \Delta^* (für Alphabete \Sigma, \Delta)
```

- 2 Kodierungen für natürliche Zahlen
 - Unäre Kodierung: $n \in \mathbb{N}$ repräsentiert durch $a^n = \underbrace{a \cdots a}_{n \text{ mal}}$

Aus
$$f: \mathbb{N}^k \longrightarrow \mathbb{N}$$
 wird $g: \{a, \#\}^* \longrightarrow \{a\}^*$ mit
$$g(a^{n_1} \# a^{n_2} \# \cdots \# a^{n_k}) = a^{f(n_1, \dots, n_k)}$$

Vereinbarungen

Beschränkung auf partielle Funktionen

```
f: \mathbb{N}^k \longrightarrow \mathbb{N} und g: \Sigma^* \longrightarrow \Delta^* (für Alphabete \Sigma, \Delta)
```

- 2 Kodierungen für natürliche Zahlen
 - Unäre Kodierung: $n \in \mathbb{N}$ repräsentiert durch $a^n = \underbrace{a \cdots a}_{n \text{ mal}}$

Aus
$$f: \mathbb{N}^k \longrightarrow \mathbb{N}$$
 wird $g: \{a, \#\}^* \longrightarrow \{a\}^*$ mit
$$g(a^{n_1} \# a^{n_2} \# \cdots \# a^{n_k}) = a^{f(n_1, \dots, n_k)}$$

• Binäre Kodierung: $n \in \mathbb{N}$ repräsentiert durch $bin(n) \in \{0,1\}^*$

Aus
$$f: \mathbb{N}^k \dashrightarrow \mathbb{N}$$
 wird $g: \{0, 1, \#\}^* \to \{0, 1\}^*$ mit $g(\text{bin}(n_1) \# \text{bin}(n_2) \# \cdots \# \text{bin}(n_k)) = \text{bin}(f(n_1, \dots, n_k))$

Kodierung von f(3,4) = 7

Unäre Kodierung

$$g(\underbrace{aaa}_{3} \# \underbrace{aaaa}_{4}) = \underbrace{aaaaaaaa}_{7}$$

Binäre Kodierung

$$g(\underbrace{11}_{2+1} \# \underbrace{100}_{4+0+0}) = \underbrace{111}_{4+2+1}$$

Kodierung von f(3,4) = 7

Unäre Kodierung

$$g(\underbrace{aaa}_{3} \# \underbrace{aaaa}_{4}) = \underbrace{aaaaaaaa}_{7}$$

Binäre Kodierung

$$g(\underbrace{11}_{2+1} \# \underbrace{100}_{4+0+0}) = \underbrace{111}_{4+2+1}$$

Andere berechenbare Kodierungen auch möglich

Dezimalkodierung: $g: \{0,1,\ldots,9,\#\}^* \longrightarrow \{0,1,\ldots,9\}^*$

Kodierung von Sprachen

§2.2 Definition (Sprachenkodierung)

Für jede Sprache $L \subseteq \Sigma^*$ ist $\mathrm{id}_L \colon \Sigma^* \dashrightarrow \Sigma^*$ gegeben durch

$$\mathsf{id}_L = \big\{ (w, w) \mid w \in L \big\}$$

Kodierung von Sprachen

§2.2 Definition (Sprachenkodierung)

Für jede Sprache $L \subseteq \Sigma^*$ ist $\mathrm{id}_L \colon \Sigma^* \dashrightarrow \Sigma^*$ gegeben durch

$$\mathsf{id}_L = \big\{ (w, w) \mid w \in L \big\}$$

Notizen

- 'undef' (oder ⊥) steht für nicht definierte Funktionswerte
- Alternative Definition

$$id_L(w) = \begin{cases} w & \text{falls } w \in L \\ \text{undef sonst} \end{cases}$$

• Also $\operatorname{id}_L^{-1}(\Sigma^*) = L$

Algorithmus = endliche & eindeutige Handlungsbeschreibung

§2.3 Definition (intuitive Berechenbarkeit; computability)

Funktion $f: \Sigma^* \dashrightarrow \Delta^*$ intuitiv berechenbar (computable), falls Algorithmus A_f existiert, so dass für jede Eingabe $w \in \Sigma^*$

- A_f produziert Ergebnis nach endlicher Zeit gdw. $w \in f^{-1}(\Delta^*)$
- A_f produziert Ergebnis f(w) falls $w \in f^{-1}(\Delta^*)$

Algorithmus = endliche & eindeutige Handlungsbeschreibung

§2.3 Definition (intuitive Berechenbarkeit; computability)

Funktion $f: \Sigma^* \dashrightarrow \Delta^*$ intuitiv berechenbar (computable), falls Algorithmus A_f existiert, so dass für jede Eingabe $w \in \Sigma^*$

- A_f produziert Ergebnis nach endlicher Zeit gdw. $w \in f^{-1}(\Delta^*)$
- A_f produziert Ergebnis f(w) falls $w \in f^{-1}(\Delta^*)$

Notizen

- $w \in f^{-1}(\Delta^*)$ bedeutet "f(w) definiert"
- A_f muss bei Eingabe $w \in f^{-1}(\Delta^*)$ Ergebnis f(w) liefern
- A_f darf bei Eingabe $w \in \Sigma^* \setminus f^{-1}(\Delta^*)$ <u>kein</u> Ergebnis liefern (Endlosschleife, Absturz, Exception, etc.)

Weitere Notizen

- Mathematische Existenz ausreichend
 (kann Funktion 2 Formen annehmen, also f = f₁ oder f = f₂, dann reicht intuitive Berechenbarkeit von f₁ und f₂)
- Beschreibungssprache beliebig (C++, Java, Pseudocode, etc.)
- Hardware irrelevant (Architektur, Ablaufmechanismus, etc.)
- Keine Zeit- oder Speicherbeschränkung (aber A_f muss bei Eingabe $w \in f^{-1}(\Delta^*)$ letztlich terminieren)

Erklärungsversuch

- E sei Eigenschaft der Welt und f: Σ* --→ Δ*
 (z.B. E = Gültigkeit der Goldbachschen Vermutung)
- Weiterhin gelten $E \to \mathsf{Berechenbar}(f)$ und $\neg E \to \mathsf{Berechenbar}(f)$

Erklärungsversuch

- E sei Eigenschaft der Welt und f: Σ* --→ Δ*
 (z.B. E = Gültigkeit der Goldbachschen Vermutung)
- Weiterhin gelten $E o \mathsf{Berechenbar}(f)$ und $\neg E o \mathsf{Berechenbar}(f)$

```
(E 	o Berechenbar(f)) \land (\neg E 	o Berechenbar(f))

\equiv (\neg E \lor Berechenbar(f)) \land (E \lor Berechenbar(f))

\equiv (\neg E \land E) \lor Berechenbar(f)

\equiv Berechenbar(f)
```

Also gilt Berechenbar(f)

- Addition: Funktion $+: \mathbb{N}^2 \to \mathbb{N}$ intuitiv berechenbar
 - Schulmethode
 - x_1 mal Erhöhung von x_2 für $x_1 + x_2$

- Addition: Funktion $+: \mathbb{N}^2 \to \mathbb{N}$ intuitiv berechenbar
 - Schulmethode
 - x_1 mal Erhöhung von x_2 für $x_1 + x_2$

• Format-Prüfung: Funktion id_L : $\{0,1,\#\}^* \dashrightarrow \{0,1,\#\}^*$ mit

$$L = \underbrace{1 (0 | 1)^* (\# 1 (0 | 1)^*)^*}_{}$$

(1, beliebig viele 0 und 1, # und weitere solche Blöcke)

intuitiv berechenbar

(L regulär)

$$\pi[n]=$$
 erste n Stellen in Dezimalbruchdarstellung von π für alle $n\in\mathbb{N}$

$$\pi[3] = 314$$

$$\pi[3] = 314$$
 $\pi[6] = 314159$

$$\pi[1] = 3$$

 $\pi[n] = \text{erste } n$ Stellen in Dezimalbruchdarstellung von π für alle $n \in \mathbb{N}$

$$\pi$$
[3] = 314

$$\pi[3] = 314$$
 $\pi[6] = 314159$ $\pi[1] = 3$

$$\pi[1] = 3$$

• Approximation π : Funktion $\pi: \{a\}^* \to \{0,1,\ldots,9\}^*$ mit

$$\pi(a^n) = \pi[n]$$

für alle $n \in \mathbb{N}$

 $\pi[n]=$ erste n Stellen in Dezimalbruchdarstellung von π für alle $n\in\mathbb{N}$

$$\pi[3] = 314$$
 $\pi[6] = 314159$ $\pi[1] = 3$

• Approximation π : Funktion π : $\{a\}^* \to \{0,1,\ldots,9\}^*$ mit

$$\pi(a^n) = \pi[n]$$

für alle $n\in\mathbb{N}$

intuitiv berechenbar

- Approximationsalgorithmus für π
- Ausgabe erste n Stellen sobald ausreichende Genauigkeit

• Teilstrings von π : Funktion $\operatorname{sub}_{\pi} \colon \{0,1,\ldots,9\}^* \longrightarrow \{0,1\}^*$ mit

$$\mathsf{sub}_\pi(w) = \begin{cases} 1 & \text{falls } w \text{ in } \pi \text{ vorkommt} \\ 0 & \text{sonst} \end{cases}$$
 für alle $w \in \{0, \dots, 9\}^*$

Intuitive Berechenbarkeit

$$sub_{\pi}(314) = 1$$
 $sub_{\pi}(15) = 1$ $sub_{\pi}(41) = 1$

• Teilstrings von π : Funktion $\operatorname{sub}_{\pi} \colon \{0,1,\ldots,9\}^* \longrightarrow \{0,1\}^*$ mit

$$\mathsf{sub}_\pi(w) = \begin{cases} 1 & \text{falls } w \text{ in } \pi \text{ vorkommt} \\ 0 & \text{sonst} \end{cases}$$

$$\text{für alle } w \in \{0, \dots, 9\}^*$$

Intuitive Berechenbarkeit unklar

$$sub_{\pi}(314) = 1$$
 $sub_{\pi}(15) = 1$ $sub_{\pi}(41) = 1$

• Teilstrings von π : Funktion $\operatorname{sub}_{\pi} \colon \{0,1,\ldots,9\}^* \dashrightarrow \{0,1\}^*$ mit

$$\mathsf{sub}_\pi(w) = \begin{cases} 1 & \mathsf{falls} \ w \ \mathsf{in} \ \pi \ \mathsf{vorkommt} \\ \mathsf{undef} & \mathsf{sonst} \end{cases}$$
 für alle $w \in \{0, \dots, 9\}^*$

Intuitive Berechenbarkeit

$$sub_{\pi}(314) = 1$$
 $sub_{\pi}(15) = 1$ $sub_{\pi}(41) = 1$

• Teilstrings von π : Funktion $\operatorname{sub}_{\pi} \colon \{0,1,\ldots,9\}^* \dashrightarrow \{0,1\}^*$ mit

$$\mathsf{sub}_\pi(w) = \begin{cases} 1 & \mathsf{falls} \ w \ \mathsf{in} \ \pi \ \mathsf{vorkommt} \\ \mathsf{undef} & \mathsf{sonst} \end{cases}$$
 für alle $w \in \{0, \dots, 9\}^*$

Intuitive Berechenbarkeit intuitiv berechenbar

$$sub_{\pi}(314) = 1$$
 $sub_{\pi}(15) = 1$ $sub_{\pi}(41) = 1$

• Länge von Nichtteilstrings von π : Funktion $\ell_{\pi} : \mathbb{N} \dashrightarrow \mathbb{N}$ mit

$$\ell_{\pi}(n) = egin{cases} n & ext{falls Sequenz der Länge } n ext{ existiert,} \\ & ext{die nicht in } \pi ext{ vorkommt} \\ & ext{undef} & ext{sonst} \end{cases}$$

für alle $n \in \mathbb{N}$

• Länge von Nichtteilstrings von π : Funktion $\ell_{\pi} \colon \mathbb{N} \dashrightarrow \mathbb{N}$ mit

$$\ell_{\pi}(n) = egin{cases} n & ext{falls Sequenz der Länge } n ext{ existiert,} \\ & ext{die nicht in } \pi ext{ vorkommt} \\ & ext{undef} & ext{sonst} \end{cases}$$

für alle $n \in \mathbb{N}$

Intuitive Berechenbarkeit intuitiv berechenbar

• Länge von Nichtteilstrings von π : Funktion $\ell_{\pi} \colon \mathbb{N} \dashrightarrow \mathbb{N}$ mit

$$\ell_{\pi}(n) = egin{cases} n & ext{falls Sequenz der Länge } n ext{ existiert,} \\ & ext{die nicht in } \pi ext{ vorkommt} \\ & ext{undef} & ext{sonst} \end{cases}$$

für alle $n \in \mathbb{N}$

Intuitive Berechenbarkeit intuitiv berechenbar

- Falls alle Sequenzen in π vorkommen, (Eigenschaft E) dann ℓ_{π} überall undefiniert & intuitiv berechenbar
- Sonst existiert kürzeste Sequenz der Länge k, die nicht in π vorkommt & ℓ_{π} intuitiv berechenbar, da

$$\ell_{\pi}(n) = f_k(n) = \begin{cases} n & \text{falls } n \ge k \\ \text{undef sonst} \end{cases}$$

$$(\neg E \to \exists k \big((\ell_{\pi} = f_k) \land \mathsf{Berechenbar}(f_k) \big) \text{ also } \neg E \to \mathsf{Berechenbar}(\ell_{\pi}))$$

• Wortproblem Sprache $L\subseteq \Sigma^*$: Funktion $\chi_L\colon \Sigma^* \to \{0,1\}^*$ mit

$$\chi_L(w) = egin{cases} 1 & ext{falls } w \in L \ 0 & ext{sonst} \end{cases}$$
 für alle $w \in \Sigma^*$

Intuitive Berechenbarkeit

• L kontextsensitiv:

• Wortproblem Sprache $L\subseteq \Sigma^*$: Funktion $\chi_L\colon \Sigma^* \to \{0,1\}^*$ mit

$$\chi_L(w) = egin{cases} 1 & ext{falls } w \in L \ 0 & ext{sonst} \end{cases}$$
 für alle $w \in \Sigma^*$

Intuitive Berechenbarkeit

• L kontextsensitiv: intuitiv berechenbar

• Wortproblem Sprache $L \subseteq \Sigma^*$: Funktion $\chi_L \colon \Sigma^* \to \{0,1\}^*$ mit

$$\chi_L(w) = egin{cases} 1 & ext{falls } w \in L \ 0 & ext{sonst} \end{cases}$$
 für alle $w \in \Sigma^*$

- L kontextsensitiv: intuitiv berechenbar
- Typ-0-Sprache L:

• Wortproblem Sprache $L \subseteq \Sigma^*$: Funktion $\chi_L \colon \Sigma^* \to \{0,1\}^*$ mit

$$\chi_L(w) = egin{cases} 1 & ext{falls } w \in L \ 0 & ext{sonst} \end{cases}$$
 für alle $w \in \Sigma^*$

- L kontextsensitiv: intuitiv berechenbar
- Typ-0-Sprache L: unklar/nicht intuitiv berechenbar

• Aufzählung Sprache $L\subseteq \Sigma^*$: Funktion $\rho_L\colon \Sigma^*\dashrightarrow \{0,1\}^*$ mit

$$\rho_L(w) = \begin{cases} 1 & \text{falls } w \in L \\ \text{undef} & \text{sonst} \end{cases}$$
 für alle $w \in \Sigma^*$

- L kontextsensitiv:
- Typ-0-Sprache L:

• Aufzählung Sprache $L \subseteq \Sigma^*$: Funktion $\rho_L \colon \Sigma^* \dashrightarrow \{0,1\}^*$ mit

$$\rho_L(w) = \begin{cases} 1 & \text{falls } w \in L \\ \text{undef} & \text{sonst} \end{cases}$$
 für alle $w \in \Sigma^*$

- L kontextsensitiv: intuitiv berechenbar
- Typ-0-Sprache L:

• Aufzählung Sprache $L \subseteq \Sigma^*$: Funktion $\rho_L \colon \Sigma^* \dashrightarrow \{0,1\}^*$ mit

$$\rho_L(w) = \begin{cases} 1 & \text{falls } w \in L \\ \text{undef} & \text{sonst} \end{cases}$$
 für alle $w \in \Sigma^*$

- L kontextsensitiv: intuitiv berechenbar
- Typ-0-Sprache *L*: intuitiv berechenbar

Intuitive Berechenbarkeit

Problem

 Wie argumentiert man "nicht intuitiv berechenbar"? (muss für beliebige Algorithmen funktionieren)

Intuitive Berechenbarkeit

Problem

 Wie argumentiert man "nicht intuitiv berechenbar"? (muss für beliebige Algorithmen funktionieren)

Ansatz der modellbezogenen Berechenbarkeit

- Festlegung Berechnungsmodell (Grammatik, Turingmaschine, etc.)
- Klärt Begriff 'Algorithmus'

Beispiel (§1.4)

Grammatik $G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$ mit Produktionen P

$$S \Rightarrow_G S'E \Rightarrow_G aS'aE \Rightarrow_G abS'baE \Rightarrow_G abEbaE$$

 $\Rightarrow_G abEBaE \Rightarrow_G abEaBE \Rightarrow_G abEaEb \Rightarrow_G abEAEb$
 $\Rightarrow_G abEEab \Rightarrow_G ab\varepsilon ab = abab$

Beispiel (§1.4)

Grammatik $G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$ mit Produktionen P

$$S oup S'E$$
 $S' oup aS'a$ $S' oup bS'b$ $S' oup E$
 $Ea oup EA$ $Aa oup aA$ $Ab oup bA$ $AE oup Ea$
 $Eb oup EB$ $Ba oup aB$ $Bb oup bB$ $BE oup Eb$
 $EE oup \varepsilon$

$$S \Rightarrow_G S'E \Rightarrow_G aS'aE \Rightarrow_G abS'baE \Rightarrow_G abEbaE$$

 $\Rightarrow_G abEBaE \Rightarrow_G abEaBE \Rightarrow_G abEaEb \Rightarrow_G abEAEb$
 $\Rightarrow_G abEEab \Rightarrow_G ab\varepsilon ab = abab$

Beispiel (§1.4)

Grammatik $G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$ mit Produktionen P

$$S oup S'E$$
 $S' oup aS'a$ $S' oup bS'b$ $S' oup E$ $Ea oup EA$ $Aa oup aA$ $Ab oup bA$ $AE oup Ea$ $Eb oup EB$ $Ba oup aB$ $Bb oup bB$ $BE oup Eb$ $EE oup \varepsilon$

$$S \Rightarrow_G S'E \Rightarrow_G aS'aE \Rightarrow_G abS'baE \Rightarrow_G abEbaE$$

 $\Rightarrow_G abEBaE \Rightarrow_G abEaBE \Rightarrow_G abEaEb \Rightarrow_G abEAEb$
 $\Rightarrow_G abEEab \Rightarrow_G ab\varepsilon ab = abab$

Beispiel (§1.4)

Grammatik $G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$ mit Produktionen P

$$S oup S'E$$
 $S' oup aS'a$ $S' oup bS'b$ $S' oup E$
 $Ea oup EA$ $Aa oup aA$ $Ab oup bA$ $AE oup Ea$
 $Eb oup EB$ $Ba oup aB$ $Bb oup bB$ $BE oup Eb$
 $EE oup \varepsilon$

$$S \Rightarrow_G S'E \Rightarrow_G aS'aE \Rightarrow_G abS'baE \Rightarrow_G abEbaE$$

 $\Rightarrow_G abEBaE \Rightarrow_G abEaBE \Rightarrow_G abEaEb \Rightarrow_G abEAEb$
 $\Rightarrow_G abEEab \Rightarrow_G ab\varepsilon ab = abab$

Beispiel (§1.4)

Grammatik $G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$ mit Produktionen P

$$S oup S'E$$
 $S' oup aS'a$ $S' oup bS'b$ $S' oup E$
 $Ea oup EA$ $Aa oup aA$ $Ab oup bA$ $AE oup Ea$
 $Eb oup EB$ $Ba oup aB$ $Bb oup bB$ $BE oup Eb$
 $EE oup \varepsilon$

$$S \Rightarrow_G S'E \Rightarrow_G aS'aE \Rightarrow_G abS'baE \Rightarrow_G abEbaE$$

 $\Rightarrow_G abEBaE \Rightarrow_G abEaBE \Rightarrow_G abEaEb \Rightarrow_G abEAEb$
 $\Rightarrow_G abEEab \Rightarrow_G ab\varepsilon ab = abab$

Beispiel (§1.4)

Grammatik $G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$ mit Produktionen P

$$S oup S'E$$
 $S' oup aS'a$ $S' oup bS'b$ $S' oup E$
 $Ea oup EA$ $Aa oup aA$ $Ab oup bA$ $AE oup Ea$
 $Eb oup EB$ $Ba oup aB$ $Bb oup bB$ $BE oup Eb$
 $EE oup \varepsilon$

$$S \Rightarrow_G S'E \Rightarrow_G aS'aE \Rightarrow_G abS'baE \Rightarrow_G abEbaE$$

 $\Rightarrow_G abEBaE \Rightarrow_G abEaBE \Rightarrow_G abEaEb \Rightarrow_G abEAEb$
 $\Rightarrow_G abEEab \Rightarrow_G ab\varepsilon ab = abab$

Beispiel (§1.4)

Grammatik $G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$ mit Produktionen P

$$S oup S'E$$
 $S' oup aS'a$ $S' oup bS'b$ $S' oup E$
 $Ea oup EA$ $Aa oup aA$ $Ab oup bA$ $AE oup Ea$
 $Eb oup EB$ $Ba oup aB$ $Bb oup bB$ $BE oup Eb$
 $EE oup \varepsilon$

$$S \Rightarrow_G S'E \Rightarrow_G aS'aE \Rightarrow_G abS'baE \Rightarrow_G abEbaE$$

 $\Rightarrow_G abEBaE \Rightarrow_G abEaBE \Rightarrow_G abEaEb \Rightarrow_G abEAEb$
 $\Rightarrow_G abEEab \Rightarrow_G ab\varepsilon ab = abab$

Beispiel (§1.4)

Grammatik $G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$ mit Produktionen P

$$S oup S'E$$
 $S' oup aS'a$ $S' oup bS'b$ $S' oup E$
 $Ea oup EA$ $Aa oup aA$ $Ab oup bA$ $AE oup Ea$
 $Eb oup EB$ $Ba oup aB$ $Bb oup bB$ $BE oup Eb$
 $EE oup \varepsilon$

$$S \Rightarrow_G S'E \Rightarrow_G aS'aE \Rightarrow_G abS'baE \Rightarrow_G abEbaE$$

 $\Rightarrow_G abEBaE \Rightarrow_G abEaBE \Rightarrow_G abEaEb \Rightarrow_G abEAEb$
 $\Rightarrow_G abEEab \Rightarrow_G ab\varepsilon ab = abab$

Beispiel (§1.4)

Grammatik $G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$ mit Produktionen P

$$S oup S'E$$
 $S' oup aS'a$ $S' oup bS'b$ $S' oup E$
 $Ea oup EA$ $Aa oup aA$ $Ab oup bA$ $AE oup Ea$
 $Eb oup EB$ $Ba oup aB$ $Bb oup bB$ $BE oup Eb$
 $EE oup \varepsilon$

$$S \Rightarrow_G S'E \Rightarrow_G aS'aE \Rightarrow_G abS'baE \Rightarrow_G abEbaE$$

 $\Rightarrow_G abEBaE \Rightarrow_G abEaBE \Rightarrow_G abEaEb \Rightarrow_G abEAEb$
 $\Rightarrow_G abEEab \Rightarrow_G ab\varepsilon ab = abab$

Beispiel (§1.4)

Grammatik $G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$ mit Produktionen P

$$S oup S'E$$
 $S' oup aS'a$ $S' oup bS'b$ $S' oup E$
 $Ea oup EA$ $Aa oup aA$ $Ab oup bA$ $AE oup Ea$
 $Eb oup EB$ $Ba oup aB$ $Bb oup bB$ $BE oup Eb$
 $EE oup \varepsilon$

$$S \Rightarrow_G S'E \Rightarrow_G aS'aE \Rightarrow_G abS'baE \Rightarrow_G abEbaE$$

 $\Rightarrow_G abEBaE \Rightarrow_G abEaBE \Rightarrow_G abEaEb \Rightarrow_G abEAEb$
 $\Rightarrow_G abEEab \Rightarrow_G ab\varepsilon ab = abab$

Analyse der Funktionsweise

- Ziel ww mit $w \in \{a, b\}^*$
- Erzeuge zunächst wEwRE

$$S \rightarrow S'E$$
 $S' \rightarrow aS'a$ $S' \rightarrow bS'b$ $S' \rightarrow E$

Analyse der Funktionsweise

- Ziel ww mit $w \in \{a, b\}^*$
- Erzeuge zunächst wEwRE

$$S \rightarrow S'E$$
 $S' \rightarrow aS'a$ $S' \rightarrow bS'b$ $S' \rightarrow E$

Symbol hinter linkem E direkt hinter rechtes E bewegen

$$Ea
ightarrow EA$$
 $Aa
ightarrow aA$ $Ab
ightarrow bA$ $AE
ightarrow Ea$ $Eb
ightarrow EB$ $Ba
ightarrow aB$ $Bb
ightarrow bB$ $BE
ightarrow Eb$

• Invertiert w^R ; liefert w und Satzform wEEw

Analyse der Funktionsweise

- Ziel ww mit $w \in \{a, b\}^*$
- Erzeuge zunächst wEwRE

$$S \rightarrow S'E$$
 $S' \rightarrow aS'a$ $S' \rightarrow bS'b$ $S' \rightarrow E$

Symbol hinter linkem E direkt hinter rechtes E bewegen

$$Ea
ightarrow EA$$
 $Aa
ightarrow aA$ $Ab
ightarrow bA$ $AE
ightarrow Ea$ $Eb
ightarrow EB$ $Ba
ightarrow aB$ $Bb
ightarrow bB$ $BE
ightarrow Eb$

- Invertiert w^R ; liefert w und Satzform wEEw
- Löschen Begrenzer *EE* mit Produktion $\mathit{EE} \to \varepsilon$

Notizen

- Beidseitig unbeschränktes Arbeitsband
- Endliche Kontrolle

(zustandsgesteuert)

Notizen

- Beidseitig unbeschränktes Arbeitsband
- Endliche Kontrolle
- Mobiler Lese- & Schreibkopf
- Eingabe auf Band; Symbole überschreibbar

(zustandsgesteuert)

(Speicher)

Alan Turing (* 1912; † 1954)

- Engl. Informatiker
- Brach dtsch. Enigma-Verschlüsselung
- Verurteilt wegen Homosexualität; akzeptierte Kastration; 2013 offiziell rehabilitiert

§2.4 Definition (Turingmaschine; Turing machine)

Turingmaschine ist Tupel $\mathcal{M}=(Q,\Sigma,\Gamma,\Delta,\square,q_0,q_+,q_-)$

- endl. Menge Q von Zuständen (states) mit $Q \cap \Gamma = \emptyset$
- endl. Menge ∑ von Eingabesymbolen (input symbols)
- endl. Menge Γ von Arbeitssymbolen (work symbols) mit $\Sigma \subseteq \Gamma$
- Übergangsrelation (transition relation)

$$\Delta \subseteq \Big((Q \setminus \{q_+, q_-\}) imes \Gamma \Big) imes \Big(Q imes \Gamma imes \{\triangleleft, \triangleright, \diamond\} \Big)$$

• Leersymbol (blank) $\square \in \Gamma \setminus \Sigma$

$$(\Gamma_{\mathcal{M}} = \Gamma \setminus \{\Box\})$$

- Startzustand (initial state) $q_0 \in Q$
- Akzeptierender Zustand (accepting state) $q_+ \in Q$
- Ablehnender Zustand (rejecting state) $q_- \in Q$

⊲ = gehe nach links; ▷ = gehe nach rechts; ◇ = keine Bewegung

Damit programmieren?

- Einfaches Modell (vereinfacht Beweise Nichtberechenbarkeit)
- Gleichmächtig wie gebräuchliche Programmiersprachen (C++, Java, Perl, Python, etc.)
- Nicht komfortabel

Damit programmieren?

- Einfaches Modell (vereinfacht Beweise Nichtberechenbarkeit)
- Gleichmächtig wie gebräuchliche Programmiersprachen (C++, Java, Perl, Python, etc.)
- Nicht komfortabel

(kein Direktzugriff)

Notation:
$$(q, \gamma) \rightarrow (q', \gamma', d) \in \Delta$$
 statt $((q, \gamma), (q', \gamma', d)) \in \Delta$

§2.5 Beispiel (Turingmaschine = TM)

TM $\mathcal{M} = \big(\{q_0,q,q_a,q_a',q_b,q_b',f,\bot\},\{a,b\},\{a,b,\Box\},\Delta,\Box,q_0,f,\bot\big)$ mit den Übergängen Δ

$$egin{aligned} (q_0,a) &
ightarrow (q_a,\Box,
hd) & (q_0,b)
ightarrow (q_b,\Box,
hd) & (q_0,\Box)
ightarrow (f,\Box,\diamondsuit) \ (q_a,a) &
ightarrow (q_a,a,
hd) & (q_a,b)
ightarrow (q_a,b,
hd) & (q_a,\Box)
ightarrow (q'_a,\Box,\vartriangleleft) \ (q_b,a) &
ightarrow (q_b,a,
hd) & (q_b,b)
ightarrow (q_b,b,
hd) & (q_b,\Box)
ightarrow (q'_b,\Box,\vartriangleleft) \ (q'_a,a) &
ightarrow (q,\Box,\vartriangleleft) & (q,b)
ightarrow (q,b,\vartriangleleft) & (q,\Box)
ightarrow (q_0,\Box,
hd) \end{aligned}$$

Notizen

- Übergang $(q, \gamma) \rightarrow (q', \gamma', d)$
 - Vorbedingungen
 - 1. Aktueller Zustand q
 - 2. Zeichen γ in Bandzelle, auf der der Kopf steht

Notizen

- Übergang $(q, \gamma) \rightarrow (q', \gamma', d)$
 - Vorbedingungen
 - 1. Aktueller Zustand q
 - 2. Zeichen γ in Bandzelle, auf der der Kopf steht
 - Konsequenzen
 - 1. TM wechselt in Zustand q'
 - 2. γ' überschreibt Inhalt aktueller Bandzelle (ersetzt γ)
 - 3. Kopf bewegt sich Richtung $d \in \{ \triangleleft, \triangleright, \diamond \}$

⊲ = gehe nach links; ▷ = gehe nach rechts; ◇ = keine Bewegung

Notizen

- Übergang $(q, \gamma) \rightarrow (q', \gamma', d)$
 - Vorbedingungen
 - 1. Aktueller Zustand q
 - 2. Zeichen γ in Bandzelle, auf der der Kopf steht
 - Konsequenzen
 - 1. TM wechselt in Zustand q'
 - 2. γ' überschreibt Inhalt aktueller Bandzelle (ersetzt γ)
 - 3. Kopf bewegt sich Richtung $d \in \{ \triangleleft, \triangleright, \diamond \}$
- Übergänge mit aktuellem Zustand $q \in \{q_+, q_-\}$ verboten (Übergänge aus Finalzustand heraus nicht erlaubt)
- ⊲ = gehe nach links; ▷ = gehe nach rechts; ◇ = keine Bewegung

1. Ausgangssituation

- Eingabe auf Band
- TM in Startzustand q₀
- Kopf auf erstem Symbol der Eingabe

(andere Zellen □)

(auf □ falls Eingabe leer)

26/35

- 1. Ausgangssituation
 - Eingabe auf Band

(andere Zellen □)

- TM in Startzustand q₀
- Kopf auf erstem Symbol der Eingabe (auf □ falls Eingabe leer)

2. Übergänge gemäß △

- 1. Ausgangssituation
 - Eingabe auf Band

(andere Zellen □)

- TM in Startzustand q_0
- Kopf auf erstem Symbol der Eingabe (auf □ falls Eingabe leer)
- 2. Übergänge gemäß △
- 3. Haltebedingung
 - Aktueller Zustand final; akzeptierend q_{+} oder ablehnend q_{-}
 - Kein passender Übergang \rightarrow TM hält <u>nicht</u> ordnungsgemäß (Ausnahme)

- 1. Ausgangssituation
 - Eingabe auf Band

(andere Zellen □)

- TM in Startzustand q₀
- Kopf auf erstem Symbol der Eingabe (auf □ falls Eingabe leer)
- 2. Übergänge gemäß △
- 3. Haltebedingung
 - ullet Aktueller Zustand final; akzeptierend q_+ oder ablehnend q_-
 - Kein passender Übergang \rightarrow TM hält <u>nicht</u> ordnungsgemäß (Ausnahme)

Akzeptanz Eingabe

Existenz Übergänge von Ausgangssituation in akzeptierenden Zustand

$$\mathsf{TM} \ \mathsf{M} = \big(\{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \to (q_a, \Box, \triangleright) \qquad (q_0, b) \to (q_b, \Box, \triangleright) \qquad (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, \Box) \to (q'_a, \Box, \triangleleft) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, \Box) \to (q'_b, \Box, \triangleleft) \\ (q'_a, a) \to (q, \Box, \triangleleft) \qquad (q'_b, b) \to (q, b, \triangleleft) \qquad (q, \Box) \to (q_0, \Box, \triangleright) \\ (q, a) \to (q, a, \triangleleft) \qquad (q, b) \to (q, b, \triangleleft) \qquad (q, \Box) \to (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \begin{pmatrix} \{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \} \\ (q_0, a) \to (q_a, \Box, \triangleright) & (q_0, b) \to (q_b, \Box, \triangleright) & (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) & (q_a, b) \to (q_a, b, \triangleright) & (q_a, \Box) \to (q'_a, \Box, \triangleleft) \\ (q_b, a) \to (q_b, a, \triangleright) & (q_b, b) \to (q_b, b, \triangleright) & (q_b, \Box) \to (q'_b, \Box, \triangleleft) \\ (q'_a, a) \to (q, \Box, \triangleleft) & (q'_b, b) \to (q, b, \triangleleft) & (q, \Box) \to (q_0, \Box, \triangleright) \\ (q, a) \to (q, a, \triangleleft) & (q, b) \to (q, b, \triangleleft) & (q, \Box) \to (q_0, \Box, \triangleright) \end{pmatrix}$$

$$\mathsf{TM} \ \mathcal{M} = \begin{pmatrix} \{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \} \\ (q_0, a) \to (q_a, \Box, \triangleright) & (q_0, b) \to (q_b, \Box, \triangleright) & (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) & (q_a, b) \to (q_a, b, \triangleright) & (q_a, \Box) \to (q'_a, \Box, \triangleleft) \\ (q_b, a) \to (q_b, a, \triangleright) & (q_b, b) \to (q_b, b, \triangleright) & (q_b, \Box) \to (q'_b, \Box, \triangleleft) \\ (q'_a, a) \to (q, \Box, \triangleleft) & (q'_b, b) \to (q, \Box, \triangleleft) \\ (q, a) \to (q, a, \triangleleft) & (q, b) \to (q, b, \triangleleft) & (q, \Box) \to (q_0, \Box, \triangleright) \end{pmatrix}$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \rightarrow (q_a, \Box, \triangleright) \quad (q_0, b) \rightarrow (q_b, \Box, \triangleright) \quad (q_0, \Box) \rightarrow (f, \Box, \diamond) \\ (q_a, a) \rightarrow (q_a, a, \triangleright) \quad (q_a, b) \rightarrow (q_a, b, \triangleright) \quad (q_a, \Box) \rightarrow (q'_a, \Box, \triangleleft) \\ (q_b, a) \rightarrow (q_b, a, \triangleright) \quad (q_b, b) \rightarrow (q_b, b, \triangleright) \quad (q_b, \Box) \rightarrow (q'_b, \Box, \triangleleft) \\ (q'_a, a) \rightarrow (q, \Box, \triangleleft) \quad (q'_b, b) \rightarrow (q, \Box, \triangleleft) \\ (q, a) \rightarrow (q, a, \triangleleft) \quad (q, b) \rightarrow (q, b, \triangleleft) \quad (q, \Box) \rightarrow (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \begin{pmatrix} \{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \} \\ (q_0, a) \to (q_a, \Box, \triangleright) & (q_0, b) \to (q_b, \Box, \triangleright) & (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) & (q_a, b) \to (q_a, b, \triangleright) & (q_a, \Box) \to (q'_a, \Box, \triangleleft) \\ (q_b, a) \to (q_b, a, \triangleright) & (q_b, b) \to (q_b, b, \triangleright) & (q_b, \Box) \to (q'_b, \Box, \triangleleft) \\ (q'_a, a) \to (q, \Box, \triangleleft) & (q'_b, b) \to (q, b, \triangleleft) & (q, \Box) \to (q_0, \Box, \triangleright) \\ (q, a) \to (q, a, \triangleleft) & (q, b) \to (q, b, \triangleleft) & (q, \Box) \to (q_0, \Box, \triangleright) \\ \end{pmatrix}$$

$$\begin{split} \mathsf{TM} \ \mathcal{M} &= \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ & (q_0, a) \to (q_a, \Box, \triangleright) \quad (q_0, b) \to (q_b, \Box, \triangleright) \quad (q_0, \Box) \to (f, \Box, \diamond) \\ & (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, \Box) \to (q_a', \Box, \triangleleft) \\ & (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, \Box) \to (q_b', \Box, \triangleleft) \\ & (q_a', a) \to (q, \Box, \triangleleft) \quad (q_b', b) \to (q, \Box, \triangleleft) \\ & (q, a) \to (q, a, \triangleleft) \quad (q, b) \to (q, b, \triangleleft) \quad (q, \Box) \to (q_0, \Box, \triangleright) \end{split}$$

$$\mathsf{TM} \ \mathcal{M} = \begin{pmatrix} \{q_0,q,q_a,q_a',q_b,q_b',f,\bot\},\{a,b\},\{a,b,\Box\},\Delta,\Box,q_0,f,\bot \end{pmatrix} \\ (q_0,a) \to (q_a,\Box,\triangleright) \qquad (q_0,b) \to (q_b,\Box,\triangleright) \qquad (q_0,\Box) \to (f,\Box,\diamond) \\ (q_a,a) \to (q_a,a,\triangleright) \qquad (q_a,b) \to (q_a,b,\triangleright) \qquad (q_a,\Box) \to (q_a',\Box,\lhd) \\ (q_b,a) \to (q_b,a,\triangleright) \qquad (q_b,b) \to (q_b,b,\triangleright) \qquad (q_b,\Box) \to (q_b',\Box,\lhd) \\ (q_a',a) \to (q,\Box,\lhd) \qquad (q_b',b) \to (q,b,\lhd) \qquad (q,c) \to (q_0,\Box,\triangleright) \\ (q,a) \to (q,a,\lhd) \qquad (q,b) \to (q,b,\lhd) \qquad (q,c) \to (q_0,\Box,\triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \rightarrow (q_a, \Box, \triangleright) \quad (q_0, b) \rightarrow (q_b, \Box, \triangleright) \quad (q_0, \Box) \rightarrow (f, \Box, \diamond) \\ (q_a, a) \rightarrow (q_a, a, \triangleright) \quad (q_a, b) \rightarrow (q_a, b, \triangleright) \quad (q_a, \Box) \rightarrow (q_a', \Box, \triangleleft) \\ (q_b, a) \rightarrow (q_b, a, \triangleright) \quad (q_b, b) \rightarrow (q_b, b, \triangleright) \quad (q_b, \Box) \rightarrow (q_b', \Box, \triangleleft) \\ (q_a', a) \rightarrow (q, \Box, \triangleleft) \quad (q_b', b) \rightarrow (q, \Box, \triangleleft) \\ (q, a) \rightarrow (q, a, \triangleleft) \quad (q, b) \rightarrow (q, b, \triangleleft) \quad (q, \Box) \rightarrow (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathsf{M} = \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \rightarrow (q_a, \Box, \triangleright) \quad (q_0, b) \rightarrow (q_b, \Box, \triangleright) \quad (q_0, \Box) \rightarrow (f, \Box, \diamond) \\ (q_a, a) \rightarrow (q_a, a, \triangleright) \quad (q_a, b) \rightarrow (q_a, b, \triangleright) \quad (q_a, \Box) \rightarrow (q_a', \Box, \triangleleft) \\ (q_b, a) \rightarrow (q_b, a, \triangleright) \quad (q_b, b) \rightarrow (q_b, b, \triangleright) \quad (q_b, \Box) \rightarrow (q_b', \Box, \triangleleft) \\ (q_a', a) \rightarrow (q, \Box, \triangleleft) \quad (q_b', b) \rightarrow (q, \Box, \triangleleft) \\ (q, a) \rightarrow (q, a, \triangleleft) \quad (q, b) \rightarrow (q, b, \triangleleft) \quad (q, \Box) \rightarrow (q_0, \Box, \triangleright)$$

$$\begin{split} \mathsf{TM} \ \mathcal{M} &= \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ & (q_0, a) \to (q_a, \Box, \triangleright) \quad (q_0, b) \to (q_b, \Box, \triangleright) \quad (q_0, \Box) \to (f, \Box, \diamond) \\ & (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, \Box) \to (q_a', \Box, \lhd) \\ & (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, \Box) \to (q_b', \Box, \lhd) \\ & (q_a', a) \to (q, \Box, \lhd) \quad (q_b', b) \to (q, \Box, \lhd) \\ & (q, a) \to (q, a, \lhd) \quad (q, b) \to (q, b, \lhd) \quad (q, \Box) \to (q_0, \Box, \triangleright) \end{split}$$

$$\mathsf{TM} \ \mathsf{M} = \big(\{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \to (q_a, \Box, \triangleright) \quad (q_0, b) \to (q_b, \Box, \triangleright) \quad (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, \Box) \to (q'_a, \Box, \triangleleft) \\ (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, \Box) \to (q'_b, \Box, \triangleleft) \\ (q'_a, a) \to (q, \Box, \triangleleft) \quad (q'_b, b) \to (q, b, \triangleleft) \\ (q, a) \to (q, a, \triangleleft) \quad (q, b) \to (q, b, \triangleleft) \quad (q, \Box) \to (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathsf{M} = \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \rightarrow (q_a, \Box, \triangleright) \quad (q_0, b) \rightarrow (q_b, \Box, \triangleright) \quad (q_0, \Box) \rightarrow (f, \Box, \diamond) \\ (q_a, a) \rightarrow (q_a, a, \triangleright) \quad (q_a, b) \rightarrow (q_a, b, \triangleright) \quad (q_a, \Box) \rightarrow (q_a', \Box, \triangleleft) \\ (q_b, a) \rightarrow (q_b, a, \triangleright) \quad (q_b, b) \rightarrow (q_b, b, \triangleright) \quad (q_b, \Box) \rightarrow (q_b', \Box, \triangleleft) \\ (q_a', a) \rightarrow (q, \Box, \triangleleft) \quad (q_b', b) \rightarrow (q, \Box, \triangleleft) \\ (q, a) \rightarrow (q, a, \triangleleft) \quad (q, b) \rightarrow (q, b, \triangleleft) \quad (q, \Box) \rightarrow (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \begin{pmatrix} \{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \} \\ (q_0, a) \to (q_a, \Box, \triangleright) & (q_0, b) \to (q_b, \Box, \triangleright) & (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) & (q_a, b) \to (q_a, b, \triangleright) & (q_a, \Box) \to (q'_a, \Box, \triangleleft) \\ (q_b, a) \to (q_b, a, \triangleright) & (q_b, b) \to (q_b, b, \triangleright) & (q_b, \Box) \to (q'_b, \Box, \triangleleft) \\ (q'_a, a) \to (q, \Box, \triangleleft) & (q'_b, b) \to (q, b, \triangleleft) & (q, \Box) \to (q_0, \Box, \triangleright) \\ \end{pmatrix}$$

$$\begin{split} \mathsf{TM} \ \mathcal{M} &= \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ & (q_0, a) \to (q_a, \Box, \triangleright) \quad (q_0, b) \to (q_b, \Box, \triangleright) \quad (q_0, \Box) \to (f, \Box, \diamond) \\ & (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, \Box) \to (q_a', \Box, \triangleleft) \\ & (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, \Box) \to (q_b', \Box, \triangleleft) \\ & (q_a', a) \to (q, \Box, \triangleleft) \quad (q_b', b) \to (q, \Box, \triangleleft) \\ & (q, a) \to (q, a, \triangleleft) \quad (q, b) \to (q, b, \triangleleft) \quad (q, \Box) \to (q_0, \Box, \triangleright) \end{split}$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \rightarrow (q_a, \Box, \triangleright) \quad (q_0, b) \rightarrow (q_b, \Box, \triangleright) \quad (q_0, \Box) \rightarrow (f, \Box, \diamond) \\ (q_a, a) \rightarrow (q_a, a, \triangleright) \quad (q_a, b) \rightarrow (q_a, b, \triangleright) \quad (q_a, \Box) \rightarrow (q'_a, \Box, \triangleleft) \\ (q_b, a) \rightarrow (q_b, a, \triangleright) \quad (q_b, b) \rightarrow (q_b, b, \triangleright) \quad (q_b, \Box) \rightarrow (q'_b, \Box, \triangleleft) \\ (q'_a, a) \rightarrow (q, \Box, \triangleleft) \quad (q'_b, b) \rightarrow (q, b, \triangleleft) \quad (q, \Box) \rightarrow (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathsf{M} = \big(\{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \rightarrow (q_a, \Box, \triangleright) \quad (q_0, b) \rightarrow (q_b, \Box, \triangleright) \quad (q_0, \Box) \rightarrow (f, \Box, \diamond) \\ (q_a, a) \rightarrow (q_a, a, \triangleright) \quad (q_a, b) \rightarrow (q_a, b, \triangleright) \quad (q_a, \Box) \rightarrow (q'_a, \Box, \triangleleft) \\ (q_b, a) \rightarrow (q_b, a, \triangleright) \quad (q_b, b) \rightarrow (q_b, b, \triangleright) \quad (q_b, \Box) \rightarrow (q'_b, \Box, \triangleleft) \\ (q'_a, a) \rightarrow (q, \Box, \triangleleft) \quad (q'_b, b) \rightarrow (q, \Box, \triangleleft) \\ (q, a) \rightarrow (q, a, \triangleleft) \quad (q, b) \rightarrow (q, b, \triangleleft) \quad (q, \Box) \rightarrow (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \rightarrow (q_a, \Box, \triangleright) \quad (q_0, b) \rightarrow (q_b, \Box, \triangleright) \quad (q_0, \Box) \rightarrow (f, \Box, \diamond) \\ (q_a, a) \rightarrow (q_a, a, \triangleright) \quad (q_a, b) \rightarrow (q_a, b, \triangleright) \quad (q_a, \Box) \rightarrow (q_a', \Box, \triangleleft) \\ (q_b, a) \rightarrow (q_b, a, \triangleright) \quad (q_b, b) \rightarrow (q_b, b, \triangleright) \quad (q_b, \Box) \rightarrow (q_b', \Box, \triangleleft) \\ (q_a', a) \rightarrow (q, \Box, \triangleleft) \quad (q_b', b) \rightarrow (q, b, \triangleleft) \quad (q, \Box) \rightarrow (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \rightarrow (q_a, \Box, \triangleright) \quad (q_0, b) \rightarrow (q_b, \Box, \triangleright) \quad (q_0, \Box) \rightarrow (f, \Box, \diamond) \\ (q_a, a) \rightarrow (q_a, a, \triangleright) \quad (q_a, b) \rightarrow (q_a, b, \triangleright) \quad (q_a, \Box) \rightarrow (q_a', \Box, \triangleleft) \\ (q_b, a) \rightarrow (q_b, a, \triangleright) \quad (q_b, b) \rightarrow (q_b, b, \triangleright) \quad (q_b, \Box) \rightarrow (q_b', \Box, \triangleleft) \\ (q_a', a) \rightarrow (q, \Box, \triangleleft) \quad (q_b', b) \rightarrow (q, \Box, \triangleleft) \\ (q, a) \rightarrow (q, a, \triangleleft) \quad (q, b) \rightarrow (q, b, \triangleleft) \quad (q, \Box) \rightarrow (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \begin{pmatrix} \{q_0,q,q_a,q_a',q_b,q_b',f,\bot\},\{a,b\},\{a,b,\Box\},\Delta,\Box,q_0,f,\bot \end{pmatrix} \\ (q_0,a) \to (q_a,\Box,\triangleright) \qquad (q_0,b) \to (q_b,\Box,\triangleright) \qquad (q_0,\Box) \to (f,\Box,\diamond) \\ (q_a,a) \to (q_a,a,\triangleright) \qquad (q_a,b) \to (q_a,b,\triangleright) \qquad (q_a,\Box) \to (q_a',\Box,\lhd) \\ (q_b,a) \to (q_b,a,\triangleright) \qquad (q_b,b) \to (q_b,b,\triangleright) \qquad (q_b,\Box) \to (q_b',\Box,\lhd) \\ (q_a',a) \to (q,\Box,\lhd) \qquad (q_b',b) \to (q,\Box,\lhd) \\ (q,a) \to (q,a,\lhd) \qquad (q,b) \to (q,b,\lhd) \qquad (q,\Box) \to (q_0,\Box,\triangleright)$$

$$\mathsf{TM} \ \mathsf{M} = \big(\{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \rightarrow (q_a, \Box, \triangleright) \quad (q_0, b) \rightarrow (q_b, \Box, \triangleright) \quad (q_0, \Box) \rightarrow (f, \Box, \diamond) \\ (q_a, a) \rightarrow (q_a, a, \triangleright) \quad (q_a, b) \rightarrow (q_a, b, \triangleright) \quad (q_a, \Box) \rightarrow (q'_a, \Box, \triangleleft) \\ (q_b, a) \rightarrow (q_b, a, \triangleright) \quad (q_b, b) \rightarrow (q_b, b, \triangleright) \quad (q_b, \Box) \rightarrow (q'_b, \Box, \triangleleft) \\ (q'_a, a) \rightarrow (q, \Box, \triangleleft) \quad (q'_b, b) \rightarrow (q, \Box, \triangleleft) \\ (q, a) \rightarrow (q, a, \triangleleft) \quad (q, b) \rightarrow (q, b, \triangleleft) \quad (q, \Box) \rightarrow (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \begin{pmatrix} \{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \} \\ (q_0, a) \to (q_a, \Box, \triangleright) & (q_0, b) \to (q_b, \Box, \triangleright) & (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) & (q_a, b) \to (q_a, b, \triangleright) & (q_a, \Box) \to (q'_a, \Box, \triangleleft) \\ (q_b, a) \to (q_b, a, \triangleright) & (q_b, b) \to (q_b, b, \triangleright) & (q_b, \Box) \to (q'_b, \Box, \triangleleft) \\ (q'_a, a) \to (q, \Box, \triangleleft) & (q'_b, b) \to (q, b, \triangleleft) & (q, \Box) \to (q_0, \Box, \triangleright) \\ (q, a) \to (q, a, \triangleleft) & (q, b) \to (q, b, \triangleleft) & (q, \Box) \to (q_0, \Box, \triangleright) \end{pmatrix}$$

$$\mathsf{TM} \ \mathcal{M} = \begin{pmatrix} \{q_0,q,q_a,q_a',q_b,q_b',f,\bot\},\{a,b\},\{a,b,\Box\},\Delta,\Box,q_0,f,\bot \end{pmatrix} \\ (q_0,a) \to (q_a,\Box,\triangleright) \qquad (q_0,b) \to (q_b,\Box,\triangleright) \qquad (q_0,\Box) \to (f,\Box,\diamond) \\ (q_a,a) \to (q_a,a,\triangleright) \qquad (q_a,b) \to (q_a,b,\triangleright) \qquad (q_a,\Box) \to (q_a',\Box,\lhd) \\ (q_b,a) \to (q_b,a,\triangleright) \qquad (q_b,b) \to (q_b,b,\triangleright) \qquad (q_b,\Box) \to (q_b',\Box,\lhd) \\ (q_a',a) \to (q,\Box,\lhd) \qquad (q_b',b) \to (q,\Box,\lhd) \\ (q,a) \to (q,a,\lhd) \qquad (q,b) \to (q,b,\lhd) \qquad (q,\Box) \to (q_0,\Box,\triangleright)$$

$$\mathsf{TM} \ \mathsf{M} = \big(\{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \rightarrow (q_a, \Box, \triangleright) \quad (q_0, b) \rightarrow (q_b, \Box, \triangleright) \quad (q_0, \Box) \rightarrow (f, \Box, \diamond) \\ (q_a, a) \rightarrow (q_a, a, \triangleright) \quad (q_a, b) \rightarrow (q_a, b, \triangleright) \quad (q_a, \Box) \rightarrow (q'_a, \Box, \triangleleft) \\ (q_b, a) \rightarrow (q_b, a, \triangleright) \quad (q_b, b) \rightarrow (q_b, b, \triangleright) \quad (q_b, \Box) \rightarrow (q'_b, \Box, \triangleleft) \\ (q'_a, a) \rightarrow (q, \Box, \triangleleft) \quad (q'_b, b) \rightarrow (q, \Box, \triangleleft) \\ (q, a) \rightarrow (q, a, \triangleleft) \quad (q, b) \rightarrow (q, b, \triangleleft) \quad (q, \Box) \rightarrow (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathsf{M} = \big(\{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \to (q_a, \Box, \triangleright) \quad (q_0, b) \to (q_b, \Box, \triangleright) \quad (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, \Box) \to (q'_a, \Box, \triangleleft) \\ (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, \Box) \to (q'_b, \Box, \triangleleft) \\ (q'_a, a) \to (q, \Box, \triangleleft) \quad (q'_b, b) \to (q, b, \triangleleft) \quad (q, \Box) \to (q_0, \Box, \triangleright)$$

$$\begin{split} \mathsf{TM} \ \mathcal{M} &= \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ & (q_0, a) \to (q_a, \Box, \triangleright) \quad (q_0, b) \to (q_b, \Box, \triangleright) \quad (q_0, \Box) \to (f, \Box, \diamond) \\ & (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, \Box) \to (q_a', \Box, \triangleleft) \\ & (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, \Box) \to (q_b', \Box, \triangleleft) \\ & (q_a', a) \to (q, \Box, \triangleleft) \quad (q_b', b) \to (q, \Box, \triangleleft) \\ & (q, a) \to (q, a, \triangleleft) \quad (q, b) \to (q, b, \triangleleft) \quad (q, \Box) \to (q_0, \Box, \triangleright) \end{split}$$

$$\begin{split} \mathsf{TM} \ \mathcal{M} &= \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ & (q_0, a) \to (q_a, \Box, \triangleright) \quad (q_0, b) \to (q_b, \Box, \triangleright) \quad (q_0, \Box) \to (f, \Box, \diamond) \\ & (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, \Box) \to (q_a', \Box, \triangleleft) \\ & (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, \Box) \to (q_b', \Box, \triangleleft) \\ & (q_a', a) \to (q, \Box, \triangleleft) \quad (q_b', b) \to (q, \Box, \triangleleft) \\ & (q, a) \to (q, a, \triangleleft) \quad (q, b) \to (q, b, \triangleleft) \quad (q, \Box) \to (q_0, \Box, \triangleright) \end{split}$$

$$\mathsf{TM} \ \mathcal{M} = \begin{pmatrix} \{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \} \\ (q_0, a) \to (q_a, \Box, \triangleright) & (q_0, b) \to (q_b, \Box, \triangleright) & (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) & (q_a, b) \to (q_a, b, \triangleright) & (q_a, \Box) \to (q'_a, \Box, \triangleleft) \\ (q_b, a) \to (q_b, a, \triangleright) & (q_b, b) \to (q_b, b, \triangleright) & (q_b, \Box) \to (q'_b, \Box, \triangleleft) \\ (q'_a, a) \to (q, \Box, \triangleleft) & (q'_b, b) \to (q, b, \triangleleft) & (q, \Box) \to (q_0, \Box, \triangleright) \\ \end{pmatrix}$$

$$\mathsf{TM} \ \mathsf{M} = \big(\{q_0,q,q_a,q_a',q_b,q_b',f,\bot\}, \{a,b\}, \{a,b,\Box\}, \Delta,\Box,q_0,f,\bot \big) \\ (q_0,a) \to (q_a,\Box,\triangleright) \quad (q_0,b) \to (q_b,\Box,\triangleright) \quad (q_0,\Box) \to (f,\Box,\diamond) \\ (q_a,a) \to (q_a,a,\triangleright) \quad (q_a,b) \to (q_a,b,\triangleright) \quad (q_a,\Box) \to (q_a',\Box,\lhd) \\ (q_b,a) \to (q_b,a,\triangleright) \quad (q_b,b) \to (q_b,b,\triangleright) \quad (q_b,\Box) \to (q_b',\Box,\lhd) \\ (q_a',a) \to (q,\Box,\lhd) \quad (q_b',b) \to (q,b,\lhd) \\ (q,a) \to (q,a,\lhd) \quad (q,b) \to (q,b,\lhd) \quad (q,\Box) \to (q_0,\Box,\triangleright)$$

$$\mathsf{TM} \ \mathsf{M} = \begin{pmatrix} \{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \} \\ (q_0, a) \to (q_a, \Box, \triangleright) & (q_0, b) \to (q_b, \Box, \triangleright) & (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) & (q_a, b) \to (q_a, b, \triangleright) & (q_a, \Box) \to (q'_a, \Box, \triangleleft) \\ (q_b, a) \to (q_b, a, \triangleright) & (q_b, b) \to (q_b, b, \triangleright) & (q_b, \Box) \to (q'_b, \Box, \triangleleft) \\ (q'_a, a) \to (q, \Box, \triangleleft) & (q'_b, b) \to (q, \Box, \triangleleft) \\ (q, a) \to (q, a, \triangleleft) & (q, b) \to (q, b, \triangleleft) & (q, \Box) \to (q_0, \Box, \triangleright) \\ \end{pmatrix}$$

$$\mathsf{TM} \ \mathcal{M} = \begin{pmatrix} \{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \} \\ (q_0, a) \to (q_a, \Box, \triangleright) & (q_0, b) \to (q_b, \Box, \triangleright) & (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) & (q_a, b) \to (q_a, b, \triangleright) & (q_a, \Box) \to (q'_a, \Box, \triangleleft) \\ (q_b, a) \to (q_b, a, \triangleright) & (q_b, b) \to (q_b, b, \triangleright) & (q_b, \Box) \to (q'_b, \Box, \triangleleft) \\ (q'_a, a) \to (q, \Box, \triangleleft) & (q'_b, b) \to (q, b, \triangleleft) & (q, \Box) \to (q_0, \Box, \triangleright) \\ \end{pmatrix}$$

$$\mathsf{TM} \ \mathsf{M} = \big(\{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \to (q_a, \Box, \triangleright) \quad (q_0, b) \to (q_b, \Box, \triangleright) \quad (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, \Box) \to (q'_a, \Box, \triangleleft) \\ (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, \Box) \to (q'_b, \Box, \triangleleft) \\ (q'_a, a) \to (q, \Box, \triangleleft) \quad (q'_b, b) \to (q, b, \triangleleft) \quad (q, \Box) \to (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \begin{pmatrix} \{q_0,q,q_a,q_a',q_b,q_b',f,\bot\},\{a,b\},\{a,b,\Box\},\Delta,\Box,q_0,f,\bot \end{pmatrix} \\ (q_0,a) \to (q_a,\Box,\triangleright) \qquad (q_0,b) \to (q_b,\Box,\triangleright) \qquad (q_0,\Box) \to (f,\Box,\diamond) \\ (q_a,a) \to (q_a,a,\triangleright) \qquad (q_a,b) \to (q_a,b,\triangleright) \qquad (q_a,\Box) \to (q_a',\Box,\lhd) \\ (q_b,a) \to (q_b,a,\triangleright) \qquad (q_b,b) \to (q_b,b,\triangleright) \qquad (q_b,\Box) \to (q_b',\Box,\lhd) \\ (q_a',a) \to (q,\Box,\lhd) \qquad (q_b',b) \to (q,b,\lhd) \qquad (q,c) \to (q_0,\Box,\triangleright) \\ (q,a) \to (q,a,\lhd) \qquad (q,b) \to (q,b,\lhd) \qquad (q,c) \to (q_0,\Box,\triangleright)$$

$$\mathsf{TM} \ \mathsf{M} = \big(\{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \to (q_a, \Box, \triangleright) \quad (q_0, b) \to (q_b, \Box, \triangleright) \quad (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, \Box) \to (q'_a, \Box, \triangleleft) \\ (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, \Box) \to (q'_b, \Box, \triangleleft) \\ (q'_a, a) \to (q, \Box, \triangleleft) \quad (q'_b, b) \to (q, b, \triangleleft) \quad (q, \Box) \to (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathsf{M} = \big(\{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \rightarrow (q_a, \Box, \triangleright) \quad (q_0, b) \rightarrow (q_b, \Box, \triangleright) \quad (q_0, \Box) \rightarrow (f, \Box, \diamond) \\ (q_a, a) \rightarrow (q_a, a, \triangleright) \quad (q_a, b) \rightarrow (q_a, b, \triangleright) \quad (q_a, \Box) \rightarrow (q'_a, \Box, \triangleleft) \\ (q_b, a) \rightarrow (q_b, a, \triangleright) \quad (q_b, b) \rightarrow (q_b, b, \triangleright) \quad (q_b, \Box) \rightarrow (q'_b, \Box, \triangleleft) \\ (q'_a, a) \rightarrow (q, \Box, \triangleleft) \quad (q'_b, b) \rightarrow (q, \Box, \triangleleft) \\ (q, a) \rightarrow (q, a, \triangleleft) \quad (q, b) \rightarrow (q, b, \triangleleft) \quad (q, \Box) \rightarrow (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \begin{pmatrix} \{q_0,q,q_a,q_a',q_b,q_b',f,\bot\},\{a,b\},\{a,b,\Box\},\Delta,\Box,q_0,f,\bot \end{pmatrix} \\ (q_0,a) \to (q_a,\Box,\triangleright) \qquad (q_0,b) \to (q_b,\Box,\triangleright) \qquad (q_0,\Box) \to (f,\Box,\diamond) \\ (q_a,a) \to (q_a,a,\triangleright) \qquad (q_a,b) \to (q_a,b,\triangleright) \qquad (q_a,\Box) \to (q_a',\Box,\lhd) \\ (q_b,a) \to (q_b,a,\triangleright) \qquad (q_b,b) \to (q_b,b,\triangleright) \qquad (q_b,\Box) \to (q_b',\Box,\lhd) \\ (q_a',a) \to (q,\Box,\lhd) \qquad (q_b',b) \to (q,b,\lhd) \qquad (q,c) \to (q_0,\Box,\triangleright) \\ (q,a) \to (q,a,\lhd) \qquad (q,b) \to (q,b,\lhd) \qquad (q,c) \to (q_0,\Box,\triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \begin{pmatrix} \{q_0,q,q_a,q_a',q_b,q_b',f,\bot\},\{a,b\},\{a,b,\Box\},\Delta,\Box,q_0,f,\bot \end{pmatrix} \\ (q_0,a) \to (q_a,\Box,\triangleright) \qquad (q_0,b) \to (q_b,\Box,\triangleright) \qquad (q_0,\Box) \to (f,\Box,\diamond) \\ (q_a,a) \to (q_a,a,\triangleright) \qquad (q_a,b) \to (q_a,b,\triangleright) \qquad (q_a,\Box) \to (q_a',\Box,\lhd) \\ (q_b,a) \to (q_b,a,\triangleright) \qquad (q_b,b) \to (q_b,b,\triangleright) \qquad (q_b,\Box) \to (q_b',\Box,\lhd) \\ (q_a',a) \to (q,\Box,\lhd) \qquad (q_b',b) \to (q,\Box,\lhd) \\ (q,a) \to (q,a,\lhd) \qquad (q,b) \to (q,b,\lhd) \qquad (q,\Box) \to (q_0,\Box,\triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \begin{pmatrix} \{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \} \\ (q_0, a) \to (q_a, \Box, \triangleright) & (q_0, b) \to (q_b, \Box, \triangleright) & (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) & (q_a, b) \to (q_a, b, \triangleright) & (q_a, \Box) \to (q'_a, \Box, \triangleleft) \\ (q_b, a) \to (q_b, a, \triangleright) & (q_b, b) \to (q_b, b, \triangleright) & (q_b, \Box) \to (q'_b, \Box, \triangleleft) \\ (q'_a, a) \to (q, \Box, \triangleleft) & (q'_b, b) \to (q, b, \triangleleft) & (q, \Box) \to (q_0, \Box, \triangleright) \\ \end{pmatrix}$$

$$\mathsf{TM} \ \mathcal{M} = \begin{pmatrix} \{q_0,q,q_a,q_a',q_b,q_b',f,\bot\},\{a,b\},\{a,b,\Box\},\Delta,\Box,q_0,f,\bot \end{pmatrix} \\ (q_0,a) \to (q_a,\Box,\triangleright) \qquad (q_0,b) \to (q_b,\Box,\triangleright) \qquad (q_0,\Box) \to (f,\Box,\diamond) \\ (q_a,a) \to (q_a,a,\triangleright) \qquad (q_a,b) \to (q_a,b,\triangleright) \qquad (q_a,\Box) \to (q_a',\Box,\lhd) \\ (q_b,a) \to (q_b,a,\triangleright) \qquad (q_b,b) \to (q_b,b,\triangleright) \qquad (q_b,\Box) \to (q_b',\Box,\lhd) \\ (q_a',a) \to (q,\Box,\lhd) \qquad (q_b',b) \to (q,b,\lhd) \qquad (q,c) \to (q_0,\Box,\triangleright) \\ \end{pmatrix}$$

$$\mathsf{TM} \ \mathsf{M} = \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \to (q_a, \Box, \triangleright) \quad (q_0, b) \to (q_b, \Box, \triangleright) \quad (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, \Box) \to (q_a', \Box, \lhd) \\ (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, \Box) \to (q_b', \Box, \lhd) \\ (q_a', a) \to (q, \Box, \lhd) \quad (q_b', b) \to (q, b, \lhd) \\ (q, a) \to (q, a, \lhd) \quad (q, b) \to (q, b, \lhd) \quad (q, \Box) \to (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \rightarrow (q_a, \Box, \triangleright) \quad (q_0, b) \rightarrow (q_b, \Box, \triangleright) \quad (q_0, \Box) \rightarrow (f, \Box, \diamond) \\ (q_a, a) \rightarrow (q_a, a, \triangleright) \quad (q_a, b) \rightarrow (q_a, b, \triangleright) \quad (q_a, \Box) \rightarrow (q'_a, \Box, \triangleleft) \\ (q_b, a) \rightarrow (q_b, a, \triangleright) \quad (q_b, b) \rightarrow (q_b, b, \triangleright) \quad (q_b, \Box) \rightarrow (q'_b, \Box, \triangleleft) \\ (q'_a, a) \rightarrow (q, \Box, \triangleleft) \quad (q'_b, b) \rightarrow (q, \Box, \triangleleft) \\ (q, a) \rightarrow (q, a, \triangleleft) \quad (q, b) \rightarrow (q, b, \triangleleft) \quad (q, \Box) \rightarrow (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \rightarrow (q_a, \Box, \triangleright) \quad (q_0, b) \rightarrow (q_b, \Box, \triangleright) \quad (q_0, \Box) \rightarrow (f, \Box, \diamond) \\ (q_a, a) \rightarrow (q_a, a, \triangleright) \quad (q_a, b) \rightarrow (q_a, b, \triangleright) \quad (q_a, \Box) \rightarrow (q'_a, \Box, \triangleleft) \\ (q_b, a) \rightarrow (q_b, a, \triangleright) \quad (q_b, b) \rightarrow (q_b, b, \triangleright) \quad (q_b, \Box) \rightarrow (q'_b, \Box, \triangleleft) \\ (q'_a, a) \rightarrow (q, \Box, \triangleleft) \quad (q'_b, b) \rightarrow (q, b, \triangleleft) \quad (q, \Box) \rightarrow (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathsf{M} = \begin{pmatrix} \{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \} \\ (q_0, a) \to (q_a, \Box, \triangleright) & (q_0, b) \to (q_b, \Box, \triangleright) & (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) & (q_a, b) \to (q_a, b, \triangleright) & (q_a, \Box) \to (q'_a, \Box, \triangleleft) \\ (q_b, a) \to (q_b, a, \triangleright) & (q_b, b) \to (q_b, b, \triangleright) & (q_b, \Box) \to (q'_b, \Box, \triangleleft) \\ (q'_a, a) \to (q, \Box, \triangleleft) & (q'_b, b) \to (q, b, \triangleleft) & (q, \Box) \to (q_0, \Box, \triangleright) \\ (q, a) \to (q, a, \triangleleft) & (q, b) \to (q, b, \triangleleft) & (q, \Box) \to (q_0, \Box, \triangleright) \end{pmatrix}$$

$$\mathsf{TM} \ \mathcal{M} = \begin{pmatrix} \{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \} \\ (q_0, a) \to (q_a, \Box, \triangleright) & (q_0, b) \to (q_b, \Box, \triangleright) & (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) & (q_a, b) \to (q_a, b, \triangleright) & (q_a, \Box) \to (q'_a, \Box, \triangleleft) \\ (q_b, a) \to (q_b, a, \triangleright) & (q_b, b) \to (q_b, b, \triangleright) & (q_b, \Box) \to (q'_b, \Box, \triangleleft) \\ (q'_a, a) \to (q, \Box, \triangleleft) & (q'_b, b) \to (q, b, \triangleleft) & (q, \Box) \to (q_0, \Box, \triangleright) \\ (q, a) \to (q, a, \triangleleft) & (q, b) \to (q, b, \triangleleft) & (q, \Box) \to (q_0, \Box, \triangleright) \end{pmatrix}$$

$$\mathsf{TM} \ \mathsf{M} = \big(\{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \rightarrow (q_a, \Box, \triangleright) \quad (q_0, b) \rightarrow (q_b, \Box, \triangleright) \quad (q_0, \Box) \rightarrow (f, \Box, \diamond) \\ (q_a, a) \rightarrow (q_a, a, \triangleright) \quad (q_a, b) \rightarrow (q_a, b, \triangleright) \quad (q_a, \Box) \rightarrow (q'_a, \Box, \triangleleft) \\ (q_b, a) \rightarrow (q_b, a, \triangleright) \quad (q_b, b) \rightarrow (q_b, b, \triangleright) \quad (q_b, \Box) \rightarrow (q'_b, \Box, \triangleleft) \\ (q'_a, a) \rightarrow (q, \Box, \triangleleft) \quad (q'_b, b) \rightarrow (q, \Box, \triangleleft) \\ (q, a) \rightarrow (q, a, \triangleleft) \quad (q, b) \rightarrow (q, b, \triangleleft) \quad (q, \Box) \rightarrow (q_0, \Box, \triangleright)$$

$$\begin{split} \mathsf{TM} \ \mathcal{M} &= \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ & (q_0, a) \to (q_a, \Box, \triangleright) \quad (q_0, b) \to (q_b, \Box, \triangleright) \quad (q_0, \Box) \to (f, \Box, \diamond) \\ & (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, \Box) \to (q_a', \Box, \triangleleft) \\ & (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, \Box) \to (q_b', \Box, \triangleleft) \\ & (q_a', a) \to (q, \Box, \triangleleft) \quad (q_b', b) \to (q, \Box, \triangleleft) \\ & (q, a) \to (q, a, \triangleleft) \quad (q, b) \to (q, b, \triangleleft) \quad (q, \Box) \to (q_0, \Box, \triangleright) \end{split}$$

$$\begin{split} \mathsf{TM} \ \mathcal{M} &= \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ & (q_0, a) \to (q_a, \Box, \triangleright) \quad (q_0, b) \to (q_b, \Box, \triangleright) \quad (q_0, \Box) \to (f, \Box, \diamond) \\ & (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, \Box) \to (q_a', \Box, \triangleleft) \\ & (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, \Box) \to (q_b', \Box, \triangleleft) \\ & (q_a', a) \to (q, \Box, \triangleleft) \quad (q_b', b) \to (q, \Box, \triangleleft) \\ & (q, a) \to (q, a, \triangleleft) \quad (q, b) \to (q, b, \triangleleft) \quad (q, \Box) \to (q_0, \Box, \triangleright) \end{split}$$

Satzform

- Globale Systemsituation als Wort (Arbeitsband, Position des Kopfes und interner Zustand)
- Kürzen von □ vom linken und rechten Rand, aber nicht unter Kopf

Satzform

- Globale Systemsituation als Wort (Arbeitsband, Position des Kopfes und interner Zustand)
- Kürzen von 🗆 vom linken und rechten Rand, aber nicht unter Kopf
- Satzform ist u q w
 - 1. Arbeitsbandbereich $u \in \Gamma^*$ links des Kopfes
 - 2. Zustand $q \in Q$
 - 3. Arbeitsbandbereich $w \in \Gamma^+$ unter und rechts des Kopfes
- Situation abb q aabba

§2.6 Definition (Ableitungsrelation — keine Bewegung)

$$\begin{array}{c} \textit{u} \; \textit{q} \; \gamma \textit{w} \; \vdash_{\textit{M}} \; \textit{u} \; \textit{q}' \; \gamma' \textit{w} \\ \mathsf{falls} \; (\textit{q}, \gamma) \to (\textit{q}', \gamma', \diamond) \in \Delta \end{array}$$

§2.6 Definition (Ableitungsrelation — Schritt nach links)

$$\begin{array}{cccc} \upsilon \ \textbf{\textit{q}} \ \gamma w \ \vdash_{\mathcal{M}} \begin{cases} \varepsilon \ \textit{\textit{q'}} \ \Box \gamma' w & \text{falls } \upsilon = \varepsilon \\ \upsilon' \ \textit{\textit{q'}} \ \gamma'' \gamma' w & \text{falls } \upsilon = \upsilon' \gamma'' \ \text{mit } \gamma'' \in \Gamma \end{cases}$$
 falls $(\textbf{\textit{q}}, \gamma) \rightarrow (\textit{\textit{q'}}, \gamma', \triangleleft) \in \Delta$

§2.6 Definition (Ableitungsrelation — Schritt nach rechts)

$$\begin{array}{cccc}
 u & \mathbf{q} & \mathbf{\gamma} w & \vdash_{\mathcal{M}} & \begin{cases}
 u \gamma' & q' & \square & \text{falls } w = \varepsilon \\
 u \gamma' & q' & w & \text{sonst}
\end{array}$$

falls
$$(q, \gamma) \rightarrow (q', \gamma', \triangleright) \in \Delta$$

§2.7 Definition (akzeptierte Sprache; accepted language)

Akzeptierte Sprache von TM $M = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$ ist

$$\mathit{L}(\mathit{M}) = \left\{ \mathit{w} \in \Sigma^* \mid \exists \mathit{u}, \mathit{v} \in \Gamma^* \colon \varepsilon \not\mid q_0 \not\mid w_\square \mid \vdash_{\mathit{M}}^* \mid \mathit{u} \mid q_+ \mid v \right\}$$

§2.7 Definition (akzeptierte Sprache; accepted language)

Akzeptierte Sprache von TM
$$M = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$$
 ist

$$L(M) = \left\{ w \in \Sigma^* \mid \exists u, v \in \Gamma^* \colon \varepsilon \ q_0 \ w \square \ \vdash_M^* \ u \ q_+ \ v \right\}$$

Akzeptanz Eingabe

- Ausgangssituation ε q_0 w für Eingabe w
- TM akzeptiert Eingabe w falls Übergänge von Ausgangssituation ε q_0 w in akzeptierenden Zustand q_+ existieren

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \rightarrow (q_a, \Box, \triangleright) \quad (q_0, b) \rightarrow (q_b, \Box, \triangleright) \quad (q_0, \Box) \rightarrow (f, \Box, \diamond) \\ (q_a, a) \rightarrow (q_a, a, \triangleright) \quad (q_a, b) \rightarrow (q_a, b, \triangleright) \quad (q_a, \Box) \rightarrow (q'_a, \Box, \triangleleft) \\ (q_b, a) \rightarrow (q_b, a, \triangleright) \quad (q_b, b) \rightarrow (q_b, b, \triangleright) \quad (q_b, \Box) \rightarrow (q'_b, \Box, \triangleleft) \\ (q'_a, a) \rightarrow (q, \Box, \triangleleft) \quad (q'_b, b) \rightarrow (q, \Box, \triangleleft) \\ (q, a) \rightarrow (q, a, \triangleleft) \quad (q, b) \rightarrow (q, b, \triangleleft) \quad (q, \Box) \rightarrow (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \begin{pmatrix} \{q_0,q,q_a,q_a',q_b,q_b',f,\bot\},\{a,b\},\{a,b,\Box\},\Delta,\Box,q_0,f,\bot \end{pmatrix} \\ (q_0,a) \to (q_a,\Box,\triangleright) \qquad (q_0,b) \to (q_b,\Box,\triangleright) \qquad (q_0,\Box) \to (f,\Box,\diamond) \\ (q_a,a) \to (q_a,a,\triangleright) \qquad (q_a,b) \to (q_a,b,\triangleright) \qquad (q_a,\Box) \to (q_a',\Box,\triangleleft) \\ (q_b,a) \to (q_b,a,\triangleright) \qquad (q_b,b) \to (q_b,b,\triangleright) \qquad (q_b,\Box) \to (q_b',\Box,\triangleleft) \\ (q_a',a) \to (q,\Box,\triangleleft) \qquad (q_b',b) \to (q,\Box,\triangleleft) \\ (q,a) \to (q,a,\triangleleft) \qquad (q,b) \to (q,b,\triangleleft) \qquad (q,\Box) \to (q_0,\Box,\triangleright)$$

Beispiel (§2.5)

$$\begin{split} \mathsf{TM} \ & \mathsf{M} = \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \square\}, \Delta, \square, q_0, f, \bot \big) \\ & (q_0, a) \to (q_a, \square, \triangleright) \quad (q_0, b) \to (q_b, \square, \triangleright) \quad (q_0, \square) \to (f, \square, \diamond) \\ & (q_a, a) \to (q_a, a, \triangleright) \quad (q_a, b) \to (q_a, b, \triangleright) \quad (q_a, \square) \to (q_a', \square, \triangleleft) \\ & (q_b, a) \to (q_b, a, \triangleright) \quad (q_b, b) \to (q_b, b, \triangleright) \quad (q_b, \square) \to (q_b', \square, \triangleleft) \\ & (q_a', a) \to (q, \square, \triangleleft) \quad (q_b', b) \to (q, \square, \triangleleft) \\ & (q, a) \to (q, a, \triangleleft) \quad (q, b) \to (q, b, \triangleleft) \quad (q, \square) \to (q_0, \square, \triangleright) \end{split}$$

 q_a

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \rightarrow (q_a, \Box, \triangleright) \quad (q_0, b) \rightarrow (q_b, \Box, \triangleright) \quad (q_0, \Box) \rightarrow (f, \Box, \diamond) \\ (q_a, a) \rightarrow (q_a, a, \triangleright) \quad (q_a, b) \rightarrow (q_a, b, \triangleright) \quad (q_a, \Box) \rightarrow (q_a', \Box, \triangleleft) \\ (q_b, a) \rightarrow (q_b, a, \triangleright) \quad (q_b, b) \rightarrow (q_b, b, \triangleright) \quad (q_b, \Box) \rightarrow (q_b', \Box, \triangleleft) \\ (q_a', a) \rightarrow (q, \Box, \triangleleft) \quad (q_b', b) \rightarrow (q, \Box, \triangleleft) \\ (q, a) \rightarrow (q, a, \triangleleft) \quad (q, b) \rightarrow (q, b, \triangleleft) \quad (q, \Box) \rightarrow (q_0, \Box, \triangleright)$$

Zusammenfassung

- Intuitive Berechenbarkeit
- Grundlagen Turingmaschinen

Erste Übungsserie bereits im Moodle