Le sujet que vous avez failli avoir

Exercice 1.

Résoudre les équations suivantes dans $\mathbb{Z}/100\mathbb{Z}$:

a.
$$x^2 = \bar{0}$$

b.
$$3\bar{x} = \overline{11}$$

Exercice 2.

Dans $(\mathbb{Z}/100\mathbb{Z},+)$

Déterminer les ordres des éléments: $\overline{7}$, $\overline{40}$

Exercice 3.

On considère le groupe multiplicatif $(R_{100}, .)$

- a. Nombre d'éléments de $R_{\rm 100}$
- b. L'une des deux propositions suivantes est vraie

$$\forall x \in R_{100}, x^{40} = \bar{1} >$$

$$\forall x \in R_{100}, x^{99} = \bar{1} >$$

Justifier celle qui est vraie.

c. Soit l'application f de R_{100} vers R_{100} définie comme suit: $\forall x \in R_{100}$, $f(x)=x^{27}$, exprimez l'application f^{-1} .

Exercice 4.

On considère le corps $(F_2, +, .)$ et l'anneau de polynômes $(F_2[X], +, .)$.

- a. Déterminer le pgcd des deux polynômes $A(X)=X^3+X^2+X+1$ et $B(X)=X^3+X+1$ (attention: on calcule dans $F_2[X]$).
- b. Montrer que le polynôme B(X) est irréductible dans $F_2[X]$.
- c. Soit alors le corps $K=(F_2[X]/B(X),+,.)$

Déterminer le nombre d'éléments de K et leur liste (on désignera la classe de X par ω)

Montrer que chacun des éléments de K*=K\{0} peut s'écrire à la fois comme une puissance de ω et comme une combinaison linéaire de puissances de ω

d. Exprimer ω^{-1} comme une combinaison linéaire de puissances de ω .