Министерство образования и науки Российской Федерации

Калужский филиал федерального государственного бюджетного образовательного учреждения высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

И.И. Кручинин (к.т.н. доцент)

лабораторная работа № 4 по курсу «Методы машинного обучения»

Логические методы классификации многомерных объектов пересекающихся классов приложение

Калуга 2018

Варианты заданий

Таблица с перечнем из номенклатурного списка **супермаркета** «**Но-вая Эра**»

Код	Наименование	Категория	Эталонная
			цена
001	Кока-Кола	Напитки	60
002	Спрайт	Напитки	70
003	Добрый Палпи	Напитки	50
004	Сила Фруктов	Напитки	45
005	Кофе Лебо		250
	Голд		
006	Чай Гринфилд		110
007	Чай Липтон		115
008	Пиво Хейнекен		80
009	Пиво Холсен		90
010	Пиво Балтика		60
011	Чипсы Лэйс		70
012	Чипсы Эстрел-		83
	ла		
013	Чипсы Принглс		160
	Пиво Бад		75
014	Лимонад Аква-		44
	лайн		
015	Лимонад		47
	Лайман		
016	Сок Вико		70
017	Сок Джей 7		110
018	Пюре Агуша		60
019	Грудинка Сто-		140
	личная		
020	Балык Дарниц-		154
	кий		
021	Колбаса Кра-		52
	ковская		
022	Сервелат Ста-		200
	рорузский		
023	Колбаса Док-		350

	торская			
024	Ветчина Мяс-		165	
024	ная		103	
025	Сосиски Папа		125	
023	Может		123	
026	Сосиски Пре-		140	
020	миум		140	
027	Йогурт Вкусно-		85	
027	теево		83	
028	Ряженка Домик		84	
020	в Деревне		04	
030	Сливки Про-		126	
	стоквашина		120	
031	Йогурт Чудо		42	
	Детки		-	
032	Йогурт Данон		35	
033	Творожок Чудо		83	
034	Пломбир Ва-		45	
	нильный			
035	Мороженое 48		81	
	копеек			
036	Сыр Брест		176	
	Литовск			
037	Сыр Чеддер		186	
038	Майонез Про-	Продукты	67	
	вансаль Олив-			
	ковый			
039	Майонез Про-	Продукты	73	
	вансаль Ряба			
040	Пицца Ресто-	Продукты	264	
	ранте			
041	Пельмени Мяс-	Продукты	127	
	нушки		200	
042	Кофе Черная		300	
0.42	Карта		7.0	
043	Чай Акбар		76	
044	Кофе Амбасса-		231	
0.45	дор		240	
045	Кофе Милагро	Потического	240	
046	Чай Ахмад	Деликатесы	280	

047	Кофе Якобс	Деликатесы	386	
048	Чай Тесс	Деликатесы	88	
049	Конфеты Вдох-	Деликатесы	250	
	новение			
050	Сайра Тихо-	Морепродукты	98	
	океанская			

Каждый пункт номенклатурного списка характеризуется коэффициентом дня недели (от понедельника до воскресенья), сезонным коэффициентом времени года и температурным коэффициентом. Кп- коэф. понедельника, Кв – коэф. вторника, Кс – к-т среды, Кч – к-т четверга, Кп- к-т пятницы, Ксб- к-т субботы, Квс – к-т воскресенья, Кз – зимний коэфф., Кл – летний коэф., Ко- к-т осени, Кт – температурный коэффициент. Эталонная цена умножается на характеристические коэффициенты и так рассчитывается значение скидки на товар в выбранный день недели. В задании лабораторной работы надо классифицировать полученную скидку выбранных товаров в определенный день по категориям: «Скидки - Нет» 0-4 %, «Скидка-мини» 5-25 %, «Выгодная Скидка» 26-40%, «Супер Скидка» 50-70%.

Вариант 1

Разработать логический классификатор с использованием алгоритмов «**Кора»**, «**ID3»**, «**CART»**, «**Бэггинг»**, «**Бустинг»**, **генетического алгоритма** для классификации товаров супермаркета по категориям «Скидки - Нет» 0-4 %, «Скидка-мини» 5-25 %, «Выгодная Скидка» 26-40%, «Супер Скидка» 50-70% за пять дней.

Код	Кп	Кв	Кс	Кч	Кп	Ксб	Квс	Кз	Квн	Кл	Ко	Кт	
001	1	0.11	0.21	0.88	0.32	0.85	1	0.95	0.67	0.73	0.98	1	
002	0.4	1	0.25	0.89	0.42	0.94	0.43	1	0.63	0.21	0.97	1	
003	0.7	0.34	1	0.76	0.51	0.67	1	0.85	1	0.18	0.96	0.1	
004	0.5	0.45	0.38	1	0.74	1	0.49	0.74	0.59	1	0.95	0.2	
005	0.6	0.29	0.37	0.43	1	0.63	0.51	1	0.35	0.95	1	0.3	
006	0.2	0.78	0.71	1	0.81	1	0.56	0.28	1	0.63	0.89	1	
007	0.1	0.94	1	0.65	0.97	0.35	1	0.19	0.26	1	0.87	0.9	
008	0.9	1	0.17	0.68	0.99	0.26	0.64	1	0.17	0.29	0.58	1	
009	1	0.21	0.54	1	0.11	1	0.77	0.21	1	0.39	1	0.8	
010	0.8	0.86	0.33	0.94	1	0.17	0.89	0.73	0.76	1	0.48	0.7	

Фактическая стоимость каждого товара рассчитывается по формуле: Стоимость Факт = Стоимость Эталон * Коэфф Дня * Коэфф Время Года * Коэфф Температура

Итак, пять дней в году: 02.01.2017 (понедельник - зима), 14.02.2017 (вторник - зима), 08.03.2017 (среда - весна), 21.07.2017 (пятница - лето), 29.10.2017 (воскресенье - осень).

Код	02.01.2017	14.02.2017	08.03.2017	21.07.2017	29.10.2017	Эталон
001	57,00	6,27	8,44	14,02	58,80	60
002	28,00	70,00	11,03	6,17	29,20	70
003	2,98	1,45	5,00	0,46	4,80	50
004	3,33	3,00	2,02	6,66	4,19	45
005	45,00	21,75	9,71	71,25	38,25	250
006	6,16	24,02	78,10	56,13	54,82	110
007	1,97	18,49	26,91	100,40	90,05	115
008	72,00	80,00	2,31	22,97	29,70	80
009	15,12	3,18	38,88	3,09	55,44	90
010	24,53	26,37	10,53	42,00	17,94	60

Код	Кп	Кз	Кт	Эталон	02.01.2017
1	1,000	0,950	1,000	60,000	57,00
2	0,400	1,000	1,000	70,000	28,00
3	0,700	0,850	0,100	50,000	2,98
4	0,500	0,740	0,200	45,000	3,33
5	0,600	1,000	0,300	250,000	45,00
6	0,200	0,280	1,000	110,000	6,16
7	0,100	0,190	0,900	115,000	1,97
8	0,900	1,000	1,000	80,000	72,00
9	1,000	0,210	0,800	90,000	15,12

10	0,800	0,730	0,700	60,000	24,53
----	-------	-------	-------	--------	-------

Код	Кв	Кз	Кт	Эталон	14.02.2017
1	0,11	0,950	1,000	60,000	<mark>6,27</mark>
2	1	1,000	1,000	70,000	<mark>70,00</mark>
3	0,34	0,850	0,100	50,000	<mark>1,45</mark>
4	0,45	0,740	0,200	45,000	<mark>3,00</mark>
5	0,29	1,000	0,300	250,000	<mark>21,75</mark>
6	0,78	0,280	1,000	110,000	<mark>24,02</mark>
7	0,94	0,190	0,900	115,000	<mark>18,49</mark>
8	1	1,000	1,000	80,000	80,00
9	0,21	0,210	0,800	90,000	<mark>3,18</mark>
10	0,86	0,730	0,700	60,000	<mark>26,37</mark>

Код	Кс	Квн	Кт	Эталон	08.03.2017
1	0,21	0,67	1,000	60,000	8,44
2	0,25	0,63	1,000	70,000	11,03
3	1	1	0,100	50,000	5,00
4	0,38	0,59	0,200	45,000	2,02
5	0,37	0,35	0,300	250,000	9,71
6	0,71	1	1,000	110,000	78,10
7	1	0,26	0,900	115,000	26,91
8	0,17	0,17	1,000	80,000	2,31
9	0,54	1	0,800	90,000	38,88
10	0,33	0,76	0,700	60,000	10,53

Код	Кпт	Кл	Кт	Эталон	21.07.2017
1	0,32	0,73	1,000	60,000	14,02
2	0,42	0,21	1,000	70,000	6,17
3	0,51	0,18	0,100	50,000	0,46
4	0,74	1	0,200	45,000	6,66
5	1	0,95	0,300	250,000	71,25
6	0,81	0,63	1,000	110,000	56,13
7	0,97	1	0,900	115,000	100,40
8	0,99	0,29	1,000	80,000	22,97
9	0,11	0,39	0,800	90,000	3,09
10	1	1	0,700	60,000	42,00

Код	Квс	Ко	Кт	Эталон	29.10.2017
1	1	0,98	1,000	60,000	58,80
2	0,43	0,97	1,000	70,000	29,20
3	1	0,96	0,100	50,000	4,80
4	0,49	0,95	0,200	45,000	4,19
5	0,51	1	0,300	250,000	38,25
6	0,56	0,89	1,000	110,000	54,82
7	1	0,87	0,900	115,000	90,05
8	0,64	0,58	1,000	80,000	29,70
9	0,77	1	0,800	90,000	55,44
10	0,89	0,48	0,700	60,000	17,94

по категориям «Скидки - Нет» 0-4 %, «Скидка-мини» 5-25 %, «Выгодная Скидка» 26-40%, «Супер Скидка» 50-99% за пять дней.

База знаний. Условия достижения результата. Конъюнкции

^{1 .}Пф =0

^{2.} $\Pi \dot{\Phi} > 0$

- 3. Пф < 4
- 4. $\Pi \phi = 4$
- 5. Πφ =5
- 6. $\Pi \phi > 5$
- 7. $\Pi \dot{\Phi} = 50$
- 8. $\Pi \phi < 50$
- 9. Пф =51
- 10. $\Pi \dot{\varphi} < 51$
- 11. $\Pi \dot{\Phi} = 95$
- 12. $\Pi \dot{\Phi} < 95$
- 13. $\Pi \phi = 96$
- 14. $\Pi \phi < 96$
- 15. $\Pi \phi = 100$
- 16. $\Pi \phi > 4$
- 17. $\Pi \phi < 5$
- 18. $\Pi \dot{\Phi} > 50$
- 19. $\Pi \phi > 96$
- 20. $\Pi \dot{\Phi} > 95$
- 21. $\Pi \dot{\Phi} > 51$
- 22. $\Pi \dot{\Phi} = 100$

Переведем фактическую стоимость в проценты от Эталонной стоимости:

$\Pi \phi = C \phi * 100 / Сэп$

Процент1	Процент2	Процент3	Процент4	Процент5
95,00	10,45	14,07	23,37	98,00
40,00	100,00	15,76	8,81	41,71
5,96	2,90	10,00	0,92	9,60
7,40	6,67	4,49	14,80	9,31
18,00	8,70	3,88	28,50	15,30
5,60	21,84	71,00	51,03	49,84
1,71	16,08	23,40	87,30	78,30
90,00	100,00	2,89	28,71	37,13
16,80	3,53	43,20	3,43	61,60
40,88	43,95	17,55	70,00	29,90

```
КЛАСС 1 – "Скидки – нет» (96% - 100%) (13,14,15,19,22) 
КЛАСС 2 – «Мини - Скидка» (51% - 95 %) (=51, >51, <95, = 95) (9,10,11,12,20,21) 
КЛАСС 3 – «Выгодная» (5% - 50%) (=5, >5, <50, =50) (5,6,7,8,17,18) 
КЛАСС 4 – «Супер» (0 % - 4 %) (=0, > 0, <4, =4) (1,2,3,4)
```

Пример программного кода. Генетический анализ конъюнкций.

```
rm(list = ls())
#library(genalg)
#library(ggplot2)
source = data.frame(read.table("logic0401.txt", header = TRUE, sep = ""))
names(source)[1] <- "code"
print("Исходные данные")
print(source)
bz = data.frame(read.table("bz.txt", header = TRUE, sep = ""))
names(bz)[1] <- "NN"
print("База конъюнкций")
print(bz)
rw = data.frame(read.table("rows.txt", header = TRUE, sep = ""))
names(rw)[1] <- "NN"
print("Список ранжирования")
print(rw)
resday1 \le matrix(0:0, nrow=24, ncol=10)
ranj <- matrix(0:0, nrow=8, ncol=3)
for (i in 1:length(source$code)) {
  for (j in 1:length(rw$NN))
  if (source$PR1[i] < rw$DT[i]) {
     rani[i,1] = 1
 }
```

```
m < -1
 for (n in 1:length(rw$NN)) {
     resday1[m,i] = ranj[n,1]
        m = m + 3
 ranj <- matrix(0:0, nrow=8, ncol=3)
}
for (i in 1:length(source$code)) {
  for (j in 1:length(rw$NN))
  if (sourcePR1[i] == rwDT[j]) {
     ranj[j,2] = 1 }
  }
 m < -2
  for (n in 1:length(rw$NN)) {
     resday1[m,i] = ranj[n,2]
        m = m + 3
  ranj \le matrix(0:0, nrow=8, ncol=3)
for (i in 1:length(source$code)) {
  for (j in 1:length(rw$NN))
  if (sourcePR1[i] > rwDT[j]) {
     ranj[j,3] = 1 }
  }
 m < -3
 for (n in 1:length(rw$NN)) {
     resday1[m,i] = rani[n,3]
        m = m + 3
  ranj \le matrix(0:0, nrow=8, ncol=3)
resday1
```

```
resday2 \le matrix(0:0, nrow=24, ncol=10)
ranj <- matrix(0:0, nrow=8, ncol=3)
for (i in 1:length(source$code)) {
  for (i in 1:length(rw$NN))
  if (sourcePR2[i] < rwDT[j]) {
     rani[i,1] = 1 
  }
  m < -1
 for (n in 1:length(rw$NN)) {
     resday2[m,i] = ranj[n,1]
        m = m + 3
 ranj <- matrix(0:0, nrow=8, ncol=3)
for (i in 1:length(source$code)) {
  for (j in 1:length(rw$NN))
  if (sourcePR2[i] == rwDT[i]) {
     rani[i,2] = 1 }
  }
  m < -2
  for (n in 1:length(rw$NN)) {
     resday2[m,i] = ranj[n,2]
        m = m + 3
  ranj <- matrix(0:0, nrow=8, ncol=3)
for (i in 1:length(source$code)) {
  for (j in 1:length(rw$NN))
  if (sourcePR2[i] > rwDT[j]) {
     rani[i,3] = 1 }
 m < -3
```

```
for (n in 1:length(rw$NN)) {
     resday2[m,i] = ranj[n,3]
        m = m + 3
  ranj <- matrix(0:0, nrow=8, ncol=3)
resday2
resday3 <- matrix(0:0, nrow=24, ncol=10)
ranj <- matrix(0:0, nrow=8, ncol=3)
for (i in 1:length(source$code)) {
  for (j in 1:length(rw$NN))
  if (source PR3[i] < rw DT[j]) {
     ranj[j,1] = 1
  }
 m < -1
  for (n in 1:length(rw$NN)) {
     resday3[m,i] = ranj[n,1]
        m = m + 3
 ranj <- matrix(0:0, nrow=8, ncol=3)
for (i in 1:length(source$code)) {
  for (j in 1:length(rw$NN))
  if (sourcePR3[i] == rwDT[i]) {
     ranj[j,2] = 1 }
  }
  m < -2
  for (n in 1:length(rw$NN)) {
     resday3[m,i] = ranj[n,2]
        m = m + 3
```

```
ranj <- matrix(0:0, nrow=8, ncol=3)
for (i in 1:length(source$code)) {
  for (j in 1:length(rw$NN))
  if (sourcePR3[i] > rwDT[j]) {
     rani[i,3] = 1
  }
  m < -3
 for (n in 1:length(rw$NN)) {
     resday3[m,i] = ranj[n,3]
        m = m + 3
  ranj <- matrix(0:0, nrow=8, ncol=3)
resday3
resday4 <- matrix(0:0, nrow=24, ncol=10)
ranj <- matrix(0:0, nrow=8, ncol=3)
for (i in 1:length(source$code)) {
  for (j in 1:length(rw$NN))
  if (sourcePR4[i] < rwDT[j]) {
     rani[i,1] = 1
  }
  m < -1
  for (n in 1:length(rw$NN)) {
     resday4[m,i] = ranj[n,1]
        m = m + 3
 ranj <- matrix(0:0, nrow=8, ncol=3)
for (i in 1:length(source$code)) {
```

```
for (j in 1:length(rw$NN))
  if (sourcePR4[i] == rwDT[j]) {
     ranj[j,2] = 1 }
  }
  m < -2
  for (n in 1:length(rw$NN)) {
     resday4[m,i] = ranj[n,2]
        m = m + 3
  ranj <- matrix(0:0, nrow=8, ncol=3)
for (i in 1:length(source$code)) {
  for (j in 1:length(rw$NN))
  if (sourcePR4[i] > rwDT[j]) {
     ranj[j,3] = 1
  }
  m < -3
  for (n in 1:length(rw$NN)) {
     resday4[m,i] = ranj[n,3]
        m = m + 3
  ranj <- matrix(0:0, nrow=8, ncol=3)
resday4
resday5 \le matrix(0:0, nrow=24, ncol=10)
ranj <- matrix(0:0, nrow=8, ncol=3)
for (i in 1:length(source$code)) {
  for (j in 1:length(rw$NN))
  if (source PR5[i] < rw DT[j]) {
     ranj[j,1] = 1
```

```
}
  m < -1
 for (n in 1:length(rw$NN)) {
     resday5[m,i] = ranj[n,1]
        m = m + 3
  ranj <- matrix(0:0, nrow=8, ncol=3)
for (i in 1:length(source$code)) {
  for (j in 1:length(rw$NN))
  if (source PR5[i] == rw DT[j]) {
     ranj[j,2] = 1 }
  }
  m < -2
 for (n in 1:length(rw$NN)) {
     resday5[m,i] = ranj[n,2]
        m = m + 3
  ranj <- matrix(0:0, nrow=8, ncol=3)
for (i in 1:length(source$code)) {
  for (j in 1:length(rw$NN))
  if (sourcePR5[i] > rwDT[j]) {
     ranj[j,3] = 1 }
  }
  m < -3
 for (n in 1:length(rw$NN)) {
     resday5[m,i] = ranj[n,3]
        m = m + 3
  ranj <- matrix(0:0, nrow=8, ncol=3)
resday5
```

```
total w \le matrix(0:0, nrow=24, ncol=1)
for (i in (1:24)) {
 for (j in (1:10)) {
    if (resday1[i,j] == 1) {
        total w[i] = total w[i] +1
    if (resday2[i,j] == 1) {
        total w[i] = total w[i] +1
    if (resday3[i,j] == 1) {
        total w[i] = total w[i] +1
    if (resday4[i,j] == 1) {
        total w[i] = total w[i] +1
    if (resday5[i,j] == 1) {
        total w[i] = total w[i] +1
   }
}
write.table(total w, file="summs.txt")
total w
ga chrom <- matrix(0:0, nrow=25, ncol=10)
for (i in 1:10) {
 for (j in 1:24) {
   ga\_chrom[j,i] = sample(0:1,1)
  }
ga chrom
for (i in 1:10) {
```

```
for (j in 1:24) {
   if (ga \ chrom[j,i] == 1) {
      for (n in 1:10) {
          ga chrom[25,i] = ga chrom[25,i] + resday1[i,n]
          ga chrom[25,i] = ga chrom[25,i] + resday2[i,n]
          ga chrom[25,i] = ga chrom[25,i] + resday3[i,n]
          ga chrom[25,i] = ga chrom[25,i] + resdav4[i,n]
          ga chrom[25,i] = ga chrom[25,i] + resday5[i,n]
                 }
 }
ga chrom
gamin1
c(ga chrom[25,1],ga chrom[25,2],ga chrom[25,3],ga chrom[25,4],ga chrom
[25,5],ga chrom[25,6],ga chrom[25,7],ga chrom[25,8],ga chrom[25,9],ga ch
rom[25,10])
gamax 1
c(ga chrom[25,1],ga chrom[25,2],ga chrom[25,3],ga chrom[25,4],ga chrom
[25,5],ga chrom[25,6],ga chrom[25,7],ga chrom[25,8],ga chrom[25,9],ga ch
rom[25,10])
gamin <- min(gamin1)
gamax < -max(gamax1)
gamin
gamax
# GA standart
library(genalg)
#layout (matrix (c(1,2,3,4,5,6,7,8),2,4))
layout (matrix (c(1,2,3,4,5,6,7,8,9,10),2,5))
#evaluate <- function(string=c()) {
\#returnVal = 1 / sum(string);
#returnVal
#}
```

```
#rbga.results = rbga.bin(size=10, mutationChance=0.01, zeroToOneRatio=0.5,
#evalFunc=evaluate)
#plot(rbga.results)
#plot(rbga.results, type="hist")
# optimize two values to match pi and sqrt(50)
#evaluate <- function(string=c()) {
#returnVal = NA;
\#if(length(string) == 2) {
\#returnVal = abs(string[1]-pi) + abs(string[2]-sqrt(50));
#} else {
#stop("Expecting a chromosome of length 2!");
#}
#returnVal
#}
#monitor <- function(obj) {
# plot the population
\#x\lim = c(obj\$stringMin[1], obj\$stringMax[1]);
#ylim = c(obj\$stringMin[2], obj\$stringMax[2]);
#plot(obj$population, xlim=xlim, ylim=ylim,
#xlab="pi", ylab="sqrt(50)");
#}
\#rbga.results = rbga(c(1, 1), c(5, 10), monitorFunc=monitor,
#evalFunc=evaluate, verbose=TRUE, mutationChance=0.01)
#plot(rbga.results)
#plot(rbga.results, type="hist")
#plot(rbga.results, type="vars")
evaluate <- function(string=c()) {
returnVal = NA;
if (length(string) == 2) {
returnVal = abs(string[1]) + abs(string[2]);
} else {
stop("Expecting a chromosome of length 2!");
returnVal
monitor <- function(obj) {
# plot the population
```

```
x \lim = c(obj\$stringMin[1], obj\$stringMax[1]);
ylim = c(obj\$stringMin[2], obj\$stringMax[2]);
plot(obj$population, xlim=xlim, ylim=ylim,
xlab="X", ylab="Y");
rbga.results = rbga(c(1,gamin), c(1,gamax), iters = 5, monitorFunc=monitor,
evalFunc=evaluate, verbose=TRUE, mutationChance=0.01)
plot(rbga.results)
#plot(rbga.results, type="hist")
#plot(rbga.results, type="vars")
1). Для алгоритма Кора: выбрать частоту встречаемости конъюнкций Міп-
Num = 3
Представленный ниже скрипт выполняет перебор всех возможных ком-
бинаций столбцов xi, i=1,...,m=16 по 2, 3 и maxKSize = 4 с использова-
нием функции combn(). Для каждой комбинации столбцов перебирают-
ся все возможные варианты событий (х i = 0 или х i = 1). Для сокра-
щения объема вычислений подмножества исходной матрицы трансфор-
мировались в векторы символьных бинарных переменных, а комбина-
ции значений хі выражались наборами "битовых масок" (например,
"000", "001", "010", "011", "100", "101", "110", "111").
В ходе перебора конъюнкции, отобранные по совокупности условий,
будем сохранять в трех глобальных объектах класса list, для чего ис-
пользуем оператор глобального присваивания <<-. Определим предва-
рительно несколько функций:
# Преобразование числа в набор битов (5 -> "0101")
number2binchar <- function(number, nBits) {</pre>
  paste(tail(rev(as.numeric(intToBits(number))), nBits),
     collapse = "")
}
```

Поиск конъюнкций по набору битовых масок MaskCompare <- function(Nclass, KSize, BitMask,

nK <- sapply(BitMask, function(x) {
 if (sum(x == vec neg) > 0) return (0)

vec pos, vec neg, ColCom) {

if (minNum > (countK = sum(x == vec pos))) return(0)

```
# Сохранение конъюнкции в трех объектах list
     Value.list[[length(Value.list) + 1]] <<-
       list(Nclass = Nclass, KSize = KSize,
          countK = countK, Bits = x)
    ColCom.list[[length(ColCom.list) + 1]] <<- list(ColCom)
    RowList.list[[length(RowList.list) + 1]] <<-
       list(which(vec pos %in% x))
    return(countK) } )
Зададим минимальную частоту встречаемости конъюнкций minNum =
4 (т.е. \tau = 50\%) и выполним формирование всех логических правил для
рассматриваемого примера:
DFace <- read.delim(file = "data/Faces.txt",
            header = TRUE, row.names = 1)
maxKSize <- 4
minNum <- 4
# Списки для хранения результатов
Value.list <- list() # Nclass, KSize, BitMask, countK
ColCom.list <- list() # Наименования переменных ColCom
RowList.list <- list() # Номера индексов строк RowList
# Перебор конъюнкций разной длины
for (KSize in 2:maxKSize) {
  BitMask \leq- sapply(0:(2^KSize - 1),
             function(x) number2binchar(x, KSize))
  cols <- combn(colnames(DFace[, -17]), KSize)
  for (i in 1:ncol(cols)) {
    SubArr <- DFace[, (names(DFace) %in% cols[, i])]
    vec1 <- apply(SubArr[DFace$Class == 1, ],1,
             function(x) paste(x, collapse = ""))
    vec2 <- apply(SubArr[DFace$Class == 2,], 1,
             function(x) paste(x, collapse = ""))
     MaskCompare(1, KSize, BitMask, vec1, vec2, cols[, i])
    MaskCompare(2, KSize, BitMask, vec2, vec1, cols[, i])
  }
# Создание результирующей таблицы
DFval = do.call(rbind.data.frame, Value.list)
nrow = length(Value.list)
```

```
DFvar <- as.data.frame(matrix(NA, ncol = maxKSize + 1, nrow = nrow,
                  dimnames = list(1:nrow, c(
                    paste("L", 1:maxKSize, sep = "").
                    "Объекты:"))))
for (i in 1:nrow) {
  Varl <- unlist(ColCom.list[[i]])</pre>
  DFvar[i, 1:length( Varl)] <- Varl
  Objl <- unlist(RowList.list[[i]])
  DFvar[i, maxKSize + 1] <- paste(Objl, collapse = " ")
DFvar[is.na(DFvar)] <- " "
DFout <- cbind(DFval, DFvar)
# Вывод результатов
print("Конъюнкции класса 1")
## [1] "Конъюнкции класса 1"
DFout[DFout$Nclass == 1, ]
print("Конъюнкции класса 2")
## [1] "Конъюнкции класса 2"
DFout[DFout$Nclass == 2, ]
Результат, содержащий логические высказывания для каждого класса
(Nclass) выглядит стандартным образом, где KSize - длина коньюнк-
ции, Bits - ее битовая маска, L1-L4 - наименования исходных перемен-
ных, countK - встречаемость конъюнкции на объектах своего класса.
```

Существует возможность использовать сгенерированные конъюнкции для экзамена тестируемых примеров по принципу голосования. Чтобы классифицировать новое наблюдение х , подсчитывается число отобранных конъюнкций Lk , характерных для каждого k -го класса, которые верны для тестируемого бинарного вектора. Если Lk является максимальным из всех, то принимается решение о принадлежности объекта k -му классу.

```
rm(list = ls())

source = data.frame(read.table("logic0401.txt", header = TRUE, sep = ""))
names(source)[1] <- "code"
print("Исходные данные")
print(source)
```

```
bz = data.frame(read.table("bz.txt", header = TRUE, sep = ""))
names(bz)[1] <- "NN"
print("База конъюнкций")
print(bz)
rw = data.frame(read.table("rows.txt", header = TRUE, sep = ""))
names(rw)[1] <- "NN"
print("Список ранжирования")
print(rw)
resday1 <- matrix(0:0, nrow=24, ncol=10)
resday1
ranj <- matrix(0:0, nrow=8, ncol=3)
for (i in 1:length(source$code)) {
  for (j in 1:length(rw$NN))
  if (source PR1[i] < rw DT[j]) {
     ranj[j,1] = 1
  }
  m < -1
  for (n in 1:length(rw$NN)) {
     resday1[m,i] = ranj[n,1]
        m = m + 3
 ranj <- matrix(0:0, nrow=8, ncol=3)
}
for (i in 1:length(source$code)) {
  for (j in 1:length(rw$NN))
  if (sourcePR1[i] == rwDT[j]) {
     ranj[j,2] = 1 }
  }
  m < -2
 for (n in 1:length(rw$NN)) {
     resdav1[m,i] = rani[n,2]
```

```
m = m + 3
  ranj \le matrix(0:0, nrow=8, ncol=3)
}
for (i in 1:length(source$code)) {
  for (j in 1:length(rw$NN))
  if (sourcePR1[i] > rwDT[j]) {
     rani[i,3] = 1 }
  }
  m < -3
  for (n in 1:length(rw$NN)) {
     resday1[m,i] = rani[n,3]
        m = m + 3
  ranj \le matrix(0:0, nrow=8, ncol=3)
}
resday1
# for 10 items (products) of 1 day
krosklas1 <- matrix(0:0, nrow=4, ncol=6)
i < -1
for (i in 1:length(bz$NN)) {
if (bz KS[i] == 1) {
     krosklas1[1,j] = bz$NN[i]
 j=j+1 }
j < -1
for (i in 1:length(bz$NN)) {
if (bz KS[i] == 2) {
     krosklas1[2,j] = bz$NN[i]
 j=j+1 }
i < -1
for (i in 1:length(bz$NN)) {
if (bz$KS[i] == 3) {
     krosklas1[3,j] = bz$NN[i]
```

```
j=j+1
j < -1
for (i in 1:length(bz$NN)) {
if (bz KS[i] == 4) {
     krosklas1[4,j] = bz$NN[i]
 j=j+1 }
krosklas1[1,5] = 1
krosklas1[1,6] = 24
krosklas1
klasday1 <- matrix(0:0, nrow=4, ncol=10)
# for all products of day number 1
# product 1
resklas1 < -matrix(0:0, nrow=4, ncol=6)
for (i in 1:6) {
 if (resday1[krosklas1[1,i],1] == 1) {
   resklas1[1,i] = 1
for (i in 1:6) {
 if (resday1[krosklas1[2,i],1] == 1) {
   resklas1[2,i] = 1
for (i in 1:6) {
 if (resday1[krosklas1[3,i],1] == 1) {
   resklas1[3,i] = 1
for (i in 1:6) {
 if (resday1[krosklas1[4,i],1] == 1) {
   resklas1[4,i] = 1 }
}
resklas1
```

```
M11=0
M12=0
M13=0
M14=0
M15=0
M16=0
DD1=0
DD2=0
KK1=0
for (j in 1:4) {
  if (resklas1[j,1] == 1) \{ M11 = 1 \}
  if (resklas1[j,2] == 1) { M12 = 1
  if (resklas1[j,3] == 1) { M13 = 1
  if (resklas1[j,4] == 1) { M14 = 1
  if (resklas1[j,5] == 1) { M15 = 1
  if (resklas1[j,6] == 1) { M16 = 1
  if ((M11 == 1) || (M12 == 1)) {
            DD1=1
  if ((M13 == 1) || (M14 == 1)) {
            DD2=1
  if ((M15 == 1) && (M16 == 1)) {
            KK1=1
  if(KK1 == 1) {
    klasday1[j,1] = source$PR1[1]
  if ((DD1 == 1) && (DD2 == 1)) {
    klasday1[j,1] = source$PR1[1]
```

```
M11=0
   M12=0
   M13=0
   M14=0
   M15=0
   M16=0
   DD1=0
   DD2=0
   KK1=0
  }
# product 2
resklas1 <- matrix(0:0, nrow=4, ncol=6)
for (i in 1:6) {
 if (resday1[krosklas1[1,i],2] == 1) {
  resklas1[1,i] = 1
for (i in 1:6) {
 if (resday1[krosklas1[2,i],2] == 1) {
   resklas1[2,i] = 1
for (i in 1:6) {
 if (resday1[krosklas1[3,i],2] == 1) {
   resklas1[3,i] = 1
for (i in 1:6) {
 if (resday1[krosklas1[4,i],2] == 1) {
  resklas1[4,i] = 1
                    }
}
resklas1
M11=0
M12=0
M13=0
M14=0
M15=0
```

```
M16=0
DD1=0
DD2=0
KK1=0
for (j in 1:4) {
  if (resklas1[j,1] == 1) \{ M11 = 1 \}
  if (resklas1[j,2] == 1) { M12 = 1
  if (resklas1[j,3] == 1) { M13 = 1
  if (resklas1[j,4] == 1) { M14 = 1
  if (resklas1[j,5] == 1) { M15 = 1
  if (resklas1[j,6] == 1) \{ M16 = 1 \}
  if ((M11 == 1) || (M12 == 1)) {
            DD1=1
  if ((M13 == 1) || (M14 == 1)) {
            DD2=1
  if ((M15 == 1) & & (M16 == 1)) {
            KK1=1
   if(KK1 == 1) {
    klasday1[j,2] = source$PR1[2]
   if ((DD1 == 1) & (DD2 == 1)) {
    klasday1[j,2] = source$PR1[2]
   M11=0
   M12=0
   M13=0
   M14=0
   M15=0
```

```
M16=0
   DD1=0
   DD2=0
   KK1=0
  }
# product 3 of day 1
for (i7 in 3:length(source$code)) {
resklas1 <- matrix(0:0, nrow=4, ncol=6)
for (i in 1:6) {
 if (resday1[krosklas1[1,i],i7] == 1) {
   resklas1[1,i] = 1
for (i in 1:6) {
 if (resday1[krosklas1[2,i],i7] == 1) {
   resklas1[2,i] = 1
for (i in 1:6) {
 if (resday1[krosklas1[3,i],i7] == 1) {
   resklas1[3,i] = 1
for (i in 1:6) {
 if (resday1[krosklas1[4,i],i7] == 1) {
   resklas1[4,i] = 1
                    }
}
resklas1
M11=0
M12=0
M13=0
M14=0
M15=0
M16=0
DD1=0
DD2=0
```

```
KK1=0
```

```
for (j in 1:4) {
  if (resklas1[j,1] == 1) \{ M11 = 1 \}
  if (resklas1[j,2] == 1) { M12 = 1
  if (resklas1[j,3] == 1) { M13 = 1
  if (resklas1[j,4] == 1) { M14 = 1
  if (resklas1[j,5] == 1) { M15 = 1
  if (resklas1[j,6] == 1) \{ M16 = 1 \}
  if ((M11 == 1) || (M12 == 1)) {
            DD1=1
  if ((M13 == 1) || (M14 == 1)) {
            DD2=1
  if ((M15 == 1) && (M16 == 1)) {
            KK1=1
   if(KK1 == 1) {
    klasday1[j,i7] = source$PR1[i7]
  if ((DD1 == 1) & (DD2 == 1)) {
    klasday1[j,i7] = source$PR1[i7]
   M11=0
   M12=0
   M13=0
   M14=0
   M15=0
   M16=0
  DD1=0
   DD2=0
```

```
KK1=0
  }
}
klasdav1
layout (matrix (c(1,2,3,4,5,6,7,8),2,4))
#layout.show(1)
attach(source)
plot(code.PR1)
abline(lm(code~PR1))
detach(source)
class3 <- c(klasday1[3,9], klasday1[3,2], klasday1[3,3], klasday1[3,4], klas-
day1[3,5], klasday1[3,6], klasday1[3,10])
class2 <- c(klasday1[2,1], klasday1[2,2], klasday1[2,3], klasday1[2,4], klas-
day1[2,5], klasday1[2,6], klasday1[2,8])
class4 \leftarrow c(klasday1[4,1], klasday1[4,2], klasday1[4,3], klasday1[4,4], klas-
day1[4,5], klasday1[4,6], klasday1[4,7])
product <- c("Prod.1","Prod.2","Prod.3","Prod.4","Prod.5","Prod.6","Prod.7")
#layout.show(2)
plot(class3,type="b")
#layout.show(3)
plot(class2,class3,type="b")
#layout.show(4)
plot(product,class3,type="b", col="red")
lines(product,class2,type="b", col="blue")
lines(product,class4,type="b", col="green")
#layout.show(5)
pie(class3, labels = product, main="KLASS 3")
conto1=0
conto2=0
conto3=0
conto4=0
```

```
for (i in 1:10) {
 if (klasday1[1,i] > 0) {
     conto1=conto1+1
 if (klasday1[2,i] > 0) {
     conto2=conto2+1
 if (klasday1[3,i] > 0) {
     conto3=conto1+3
 if (klasday1[4,i] > 0) {
     conto4=conto4+1
}
resX <- c(conto1, conto2, conto3, conto4)
resY <- c("KLas 1","KLas 2","KLas 3","KLas 4")
#layout.show(6)
pie(resX, labels = resY, main=" TOTAL DAY N1")
pct <- round(resX/sum(resX)*100)</pre>
resY2 <- paste(resY, " ", pct, "%", sep="")
#layout.show(7)
pie(resX, labels=resY2, col=rainbow(4), main="RING DIAGRAM with %%
of DAY 1")
hist(resX, col="green")
2). Для генетического алгоритма выбрать: генную бинарную комбинацию
1001101
rm(list = ls())
#library(genalg)
#library(ggplot2)
# GA standart
```

```
library(genalg)
ramFo = data.frame(read.table("GA4pr.txt", header = TRUE, sep = ""))
print("Исходные данные")
print(ramFo)
\#ga \ chrom = sample(0:1,1)
alg <- matrix(0:0, nrow=150, ncol=4)
#resday1 <- matrix(0:0, nrow=24, ncol=10)
for (i in 1:150) {
 for (j in 1:4)
  alg[i,j] = sample(1:99,1)
}
write.table(alg, file="ga55.txt")
ramFo2 = data.frame(read.table("ga55.txt", header = TRUE, sep = ""))
ramFo3=cbind(ramFo2, ramFo$V5)
ramFo3
library(MASS)
X < cbind(scale(ramFo3[,1:4]), matrix(rnorm(36*150), 150, 36))
Y \leq ramFo3[,5]
ramFo3.evaluate <- function(indices) {</pre>
result = 1
if (sum(indices) > 2) {
huhn <- lda(X[,indices==1], Y, CV=TRUE)$posterior
result = sum(Y != dimnames(huhn)[[2]][apply(huhn, 1,
function(x)
which(x == max(x)))) / length(Y)
}
result
monitor <- function(obj) {
minEval = min(obj$evaluations);
plot(obj, type="hist");
woppa <- rbga.bin(size=40, mutationChance=0.05, zeroToOneRatio=10,
```

evalFunc=ramFo3.evaluate, verbose=TRUE, monitorFunc=monitor, iter = 11)

```
3).Для алгоритма CART в функции rpart выбрать параметр method =
"poisson"
# algorithm CART - package RPART
library(rpart)
frst = data.frame(read.table("IDCarttreesK.txt", header = TRUE, sep = ""))
print("Список Данных для CART")
print(frst)
   }
layout (matrix (c(1,2,3,4,5,6,7,8,9,10),2,5))
plot(frst$V2, frst$V14,
xlab = "Price", ylab = " <> 50")
mlowess < -function(x, y, ...)
keep \le !(is.na(x) | is.na(y))
lowess(x[keep], y[keep], ...)
with (frst, lines (mlowess (V2, V14, f = 0.5)))
\#z.auto \leftarrow rpart(V4 \sim V2+V29+V30, frst)
#summary(z.auto)
#fit <- rpart(V4 \sim V2 + V7 + V11, frst)
\#par(xpd = TRUE)
#plot(fit, compress = TRUE)
```

```
\#text(fit, use.n = TRUE)
fit \leftarrow rpart(V4 \sim V2+V29+V30, data = frst)
fit2 < -rpart(V4 \sim V2 + V29 + V30 + V11 + V12 + V7 + V8, data = frst)
\#parms = list(prior = c(0.65, 0.35), split = "information"))
\#fit3 <- rpart(V4 ~ V2 + V29 + V30, data = frst,
\#control = rpart.control(cp = 0.05))
\#par(mfrow = c(1,2), xpd = TRUE)
plot(fit)
text(fit, use.n = TRUE)
plot(fit2)
text(fit2, use.n = TRUE)
\#z.auto <- rpart(V4 ~ V2, frst)
\#meanvar(z.auto, log = 'xy')
fit <- rpart(V4 \sim V2 + V29 + V30,
data = frst, method = "anova")
plot(fit)
text(fit, use.n = TRUE)
summary(residuals(fit))
predict(fit)
\#z.auto \leftarrow rpart(V4 \sim V2+V29+V30, frst)
\#zp \le prune(z.auto, cp = 0.1)
#plot(zp) #plot smaller rpart object
4). Для алгоритма Bagging в функции RandomForest выбрать параметр
N.trees= 300, в функции train выбрать параметр method = "bagFDA"
rm(list = ls())
library(randomForest)
#library(ggplot2)
```

```
ramFo = data.frame(read.table("cleverK.txt", header = TRUE, sep = ""))
print("Исходные данные")
print(ramFo)
rf1 <- randomForest(V4 ~ .. ramFo, ntree=30, norm.votes=FALSE)
print(rf1)
getTree(randomForest(ramFo[,-4], ramFo[,4], ntree=17), 7, labelVar=TRUE)
rf2 <- randomForest(ramFo[,-4], ramFo[,4], ntree=12)
print(rf2)
ramFo.rf <- randomForest(ramFo[,-4], ramFo[,4], prox=TRUE)
ramFo.p <- classCenter(ramFo[,-4], ramFo[,4], ramFo.rf$prox)
plot(ramFo[.2].
                     ramFo[.5].
                                     pch=21.
                                                    xlab=names(ramFo)[2].
vlab=names(ramFo)[5].
bg=c("red", "blue", "green")[as.numeric(factor(ramFo$V4))],
main="Products Data with %%%")
points(ramFo.p[,2], ramFo.p[,5], pch=21, cex=2, bg=c("red", "blue", "green"))
5). Для алгоритма Boosting в функции gbm выбрать параметр N.trees =
400. параметр distribution = "laplace", параметр bag.Fraction = 0.5
rm(list = ls())
library(gbm)
#library(ggplot2)
ramFo = data.frame(read.table("cleverK.txt", header = TRUE, sep = ""))
print("Исходные данные")
#print(ramFo)
alg <- matrix(0:0, nrow=150, ncol=4)
```

```
for (i in 1:50) {
 for (j in 1:4)
  alg[i,j] = sample(5:50,1)
for (i in 51:100) {
 for (j in 1:4)
  alg[i,j] = sample(51:95,1)
}
for (i in 101:150) {
 for (j in 1:4)
  alg[i,j] = sample(1:4,1)
#alg
write.table(alg, file="GMB1.txt")
ramFo2 = data.frame(read.table("GMB1.txt", header = TRUE, sep = ""))
#C1 <- c("Выгодная")
ramFoT = data.frame(read.table("org.txt", header = TRUE, sep = ""))
ramFo2 <- cbind(ramFo2, ramFoT$V1)
ramFo2
layout (matrix (c(1,2,3,4,5,6,7,8,9,10),2,5))
library(MASS)
X < -cbind(scale(ramFo2[,1:4]), matrix(rnorm(36*150), 150, 36))
Y \leq ramFo2[,5]
ramFo2.evaluate <- function(indices) {</pre>
result = 1
if (sum(indices) > 2) {
```

```
huhn <- Ida(X[,indices==1], Y, CV=TRUE)$posterior
result = sum(Y != dimnames(huhn)[[2]][apply(huhn, 1,
function(x)
which(x == max(x)))) / length(Y)
result
monitor <- function(obj) {
minEval = min(obj$evaluations);
plot(obj, type="hist");
woppa <- rbga.bin(size=40, mutationChance=0.05, zeroToOneRatio=10,
evalFunc=ramFo2.evaluate, verbose=TRUE, monitorFunc=monitor, iter = 11)
ramFo2.mod
               <- gbm(ramFoT$V1 ~ ., distribution="multinomial",
data=ramFo2,
n.trees=2000, shrinkage=0.01, cv.folds=5,
verbose=FALSE, n.cores=1)
ramFo2.mod
gbm1 \le gbm(ramFoT$V1 \sim ... data = ramFo2,
distribution = "gaussian", n.trees = 100, shrinkage = 0.1,
bag.fraction = 0.5, train.fraction = 0.5,
n.minobsinnode = 10, cv.folds = 5,
verbose = FALSE, n.cores = 1)
# Check performance using the out-of-bag (OOB) error; the OOB error typi-
cally
# underestimates the optimal number of iterations
best.iter <- gbm.perf(gbm1, method = "OOB")
print(best.iter)
# Check performance using the 50% heldout test set
best.iter <- gbm.perf(gbm1, method = "test")
print(best.iter)
# Check performance using 5-fold cross-validation
best.iter <- gbm.perf(gbm1, method = "cv")
print(best.iter)
# Plot relative influence of each variable
par(mfrow = c(1, 2))
summary(gbm1, n.trees = 1) # using first tree
summary(gbm1, n.trees = best.iter) # using estimated best number of trees
```

```
# Compactly print the first and last trees for curiosity print(pretty.gbm.tree(gbm1, i.tree = 1)) print(pretty.gbm.tree(gbm1, i.tree = gbm1$n.trees)) plot(gbm1, i.var = 2:4, n.trees = best.iter)
```

Алгоритм RPART

```
rm(list = ls())
#library(genalg)
#library(ggplot2)
source = data.frame(read.table("logic0401.txt", header = TRUE, sep = ""))
names(source)[1] <- "code"
print("Исходные данные")
print(source)
bz = data.frame(read.table("bz.txt", header = TRUE, sep = ""))
names(bz)[1] \leftarrow "NN"
print("База конъюнкций")
print(bz)
trs = data.frame(read.table("trees.txt", header = TRUE, sep = ""))
print("Список Товаров")
print(trs)
tps = data.frame(read.table("topics.txt", header = TRUE, sep = ""))
print("Список Классов Классификации")
print(tps)
d1 = data.frame(read.table("rday1.txt", header = TRUE, sep = ""))
print("Список реализаций 1")
print(d1)
d2 = data.frame(read.table("rday2.txt", header = TRUE, sep = ""))
print("Список реализаций 2")
print(d2)
```

```
d3 = data.frame(read.table("rday3.txt", header = TRUE, sep = ""))
print("Список реализаций 3")
print(d3)
d4 = data.frame(read.table("rday4.txt", header = TRUE, sep = ""))
print("Список реализаций 4")
print(d4)
d5 = data.frame(read.table("rday5.txt", header = TRUE, sep = ""))
print("Список реализаций 5")
print(d5)
km1 = data.frame(read.table("rklasday1.txt", header = TRUE, sep = ""))
print("Разделение классов 1")
print(km1)
km2 = data.frame(read.table("rklasday2.txt", header = TRUE, sep = ""))
print("Разделение классов 2")
print(km2)
km3 = data.frame(read.table("rklasday3.txt", header = TRUE, sep = ""))
print("Разделение классов 3")
print(km3)
km4 = data.frame(read.table("rklasday4.txt", header = TRUE, sep = ""))
print("Разделение классов 4")
print(km4)
km5 = data.frame(read.table("rklasday5.txt", header = TRUE, sep = ""))
print("Разделение классов 5")
print(km5)
ranj <- matrix(0:0, nrow=50, ncol=30)
M=1
for (i in 1:5) {
 for (j in 1:10) {
 rani[M,1] = trs NN[i]
```

```
M=M+1
M=1
 for (j in 1:10) {
 ranj[M,2] = source PR1[j]
 ranj[M,3] = 1
  M=M+1
M = 11
 for (j in 1:10) {
 ranj[M,2] =source$PR2[j]
 ranj[M,3] = 2
  M=M+1
M = 21
 for (j in 1:10) {
 ranj[M,2] = source PR3[j]
 rani[M,3] = 3
  M=M+1
M = 31
 for (j in 1:10) {
 ranj[M,2] =source$PR4[j]
 ranj[M,3] = 4
  M=M+1
M = 41
 for (j in 1:10) {
 ranj[M,2] =source$PR5[j]
 ranj[M,3] = 5
 M=M+1
for (K in 1:4) {
```

```
if (km1$V1[K] > 0) {
  rani[1,4] = K
  ranj[1,29] = tps\$ST[K]
  ranj[1,30] = tps ED[K]
if (km1$V2[K] > 0) {
  ranj[2,29] = tps\$ST[K]
  ranj[2,30] = tps ED[K]
  ranj[2,4] = K }
if (km1$V3[K] > 0) {
  ranj[3,29] = tps ST[K]
  ranj[3,30] = tps ED[K]
   rani[3,4] = K
if (km1$V4[K] > 0) {
   rani[4,29] = tps\$ST[K]
  ranj[4,30] = tps ED[K]
   ranj[4,4] = K
if (km1$V5[K] > 0) {
  ranj[5,29] = tps\$ST[K]
  ranj[5,30] = tps ED[K]
   rani[5,4] = K
if (km1$V6[K] > 0) {
  ranj[6,29] = tps ST[K]
  ranj[6,30] = tps ED[K]
   rani[6,4] = K
if (km1$V7[K] > 0) {
   rani[7,29] = tps\$ST[K]
  ranj[7,30] = tps ED[K]
   ranj[7,4] = K
if (km1$V8[K] > 0) {
  ranj[8,29] = tps\$ST[K]
  ranj[8,30] = tps ED[K]
   ranj[8,4] = K }
if (km1$V9[K] > 0) {
  rani[9,29] = tps\$ST[K]
```

```
ranj[9,30] = tps ED[K]
     rani[9,4] = K
  if (km1$V10[K] > 0) {
    rani[10,29] = tps$ST[K]
    rani[10,30] = tps ED[K]
     ranj[10,4] = K
   }
for (K in 1:4) {
 if (km2$V1[K] > 0) {
    rani[11,29] = tps$ST[K]
    ranj[11,30] = tps ED[K]
    rani[11,4] = K
  if (km2$V2[K] > 0) {
    rani[12,29] = tps$ST[K]
    ranj[12,30] = tps\$ED[K]
     ranj[12,4] = K
  if (km2$V3[K] > 0) {
    ranj[13,29] = tps$ST[K]
    rani[13,30] = tps ED[K]
     ranj[13,4] = K
  if (km2$V4[K] > 0) {
    rani[14,29] = tps$ST[K]
    rani[14,30] = tps$ED[K]
     rani[14,4] = K
  if (km2$V5[K] > 0) {
    rani[15,29] = tps$ST[K]
    ranj[15,30] = tps ED[K]
     rani[15,4] = K
  if (km2$V6[K] > 0) {
    rani[16,29] = tps$ST[K]
    rani[16,30] = tps ED[K]
     rani[16,4] = K
```

```
if (km2$V7[K] > 0) {
    rani[17,29] = tps$ST[K]
    rani[17,30] = tps ED[K]
     ranj[17,4] = K
  if (km2$V8[K] > 0) {
    rani[18,29] = tps\$ST[K]
    rani[18,30] = tps ED[K]
     ranj[18,4] = K
  if (km2$V9[K] > 0) {
    ranj[19,29] = tps$ST[K]
    rani[19,30] = tps ED[K]
     ranj[19,4] = K
  if (km2$V10[K] > 0) {
    rani[20,29] = tps$ST[K]
    rani[20,30] = tps ED[K]
     ranj[20,4] = K
   }
for (K in 1:4) {
 if (km3$V1[K] > 0) {
    rani[21,29] = tps$ST[K]
    ranj[21,30] = tps$ED[K]
    ranj[21,4] = K
  if (km3$V2[K] > 0) {
    rani[22,29] = tps$ST[K]
    ranj[22,30] = tps$ED[K]
     ranj[22,4] = K
  if (km3$V3[K] > 0) {
    rani[23,29] = tps$ST[K]
    ranj[23,30] = tps ED[K]
     ranj[23,4] = K
  if (km3\$V4[K] > 0) {
    rani[24,29] = tps$ST[K]
    rani[24,30] = tps ED[K]
```

```
ranj[24,4] = K
  if (km3$V5[K] > 0) {
    ranj[25,29] = tps\$ST[K]
    rani[25,30] = tps ED[K]
     rani[25,4] = K
  if (km3$V6[K] > 0) {
    ranj[26,29] = tps$ST[K]
    ranj[26,30] = tps ED[K]
     ranj[26,4] = K
  if (km3$V7[K] > 0) {
    ranj[27,29] = tps\$ST[K]
    rani[27,30] = tps ED[K]
     ranj[27,4] = K
  if (km3$V8[K] > 0) {
    ranj[28,29] = tps\$ST[K]
    ranj[28,30] = tps$ED[K]
     ranj[28,4] = K
  if (km3$V9[K] > 0) {
    rani[29,29] = tps ST[K]
    rani[29,30] = tps ED[K]
     ranj[29,4] = K
  if (km3$V10[K] > 0) {
    rani[30,29] = tps\$ST[K]
    rani[30,30] = tps ED[K]
     ranj[30,4] = K
for (K in 1:4) {
 if (km4$V1[K] > 0) {
    rani[31,29] = tps$ST[K]
    ranj[31,30] = tps ED[K]
    rani[31,4] = K
```

```
if (km4$V2[K] > 0) {
  rani[32,29] = tps$ST[K]
  rani[32,30] = tps ED[K]
   ranj[32,4] = K
if (km4$V3[K] > 0) {
  rani[33,29] = tps\$ST[K]
  rani[33,30] = tps ED[K]
   ranj[33,4] = K
if (km4\$V4[K] > 0) {
  ranj[34,29] = tps$ST[K]
  rani[34,30] = tps ED[K]
   ranj[34,4] = K
if (km4\$V5[K] > 0) {
  rani[35,29] = tps$ST[K]
  rani[35,30] = tps ED[K]
   ranj[35,4] = K
if (km4\$V6[K] > 0) {
  rani[36,29] = tps$ST[K]
  rani[36,30] = tps ED[K]
   rani[36,4] = K
if (km4$V7[K] > 0) {
  ranj[37,29] = tps$ST[K]
  rani[37,30] = tps ED[K]
   ranj[37,4] = K
if (km4$V8[K] > 0) {
  rani[38,29] = tps$ST[K]
  rani[38,30] = tps ED[K]
   ranj[38,4] = K
if (km4\$V9[K] > 0) {
  ranj[39,29] = tps$ST[K]
  rani[39,30] = tps ED[K]
   ranj[39,4] = K
if (km4$V10[K] > 0) {
```

```
rani[40,29] = tps$ST[K]
    ranj[40,30] = tps$ED[K]
     ranj[40,4] = K
   }
for (K in 1:4) {
 if (km5$V1[K] > 0) {
    ranj[41,29] = tps$ST[K]
    ranj[41,30] = tps$ED[K]
    rani[41,4] = K
  if (km5$V2[K] > 0) {
    ranj[42,29] = tps\$ST[K]
    rani[42,30] = tps ED[K]
     ranj[42,4] = K
  if (km5$V3[K] > 0) {
    ranj[43,29] = tps$ST[K]
    rani[43,30] = tps ED[K]
     rani[43,4] = K
  if (km5$V4[K] > 0) {
    rani[44,29] = tps ST[K]
    rani[44,30] = tps ED[K]
     ranj[44,4] = K }
  if (km5$V5[K] > 0) {
    ranj[45,29] = tps\$ST[K]
    rani[45,30] = tps ED[K]
     ranj[45,4] = K
  if (km5$V6[K] > 0) {
    ranj[46,29] = tps$ST[K]
    rani[46,30] = tps ED[K]
     rani[46,4] = K
  if (km5$V7[K] > 0) {
    rani[47,29] = tps ST[K]
    rani[47,30] = tps ED[K]
```

```
ranj[47,4] = K
  if (km5$V8[K] > 0) {
    ranj[48,29] = tps\$ST[K]
    ranj[48,30] = tps$ED[K]
     ranj[48,4] = K
  if (km5$V9[K] > 0) {
    rani[49,29] = tps$ST[K]
    ranj[49,30] = tps ED[K]
     ranj[49,4] = K
  if (km5$V10[K] > 0) {
    rani[50,29] = tps$ST[K]
    ranj[50,30] = tps ED[K]
     ranj[50,4] = K
   }
N=5
for (i in 1:24) {
 ranj[1,N] = d1$V1[i]
 ranj[2,N] = d1$V2[i]
 rani[3,N] = d1$V3[i]
 ranj[4,N] = d1$V4[i]
 rani[5,N] = d1$V5[i]
 rani[6,N] = d1$V6[i]
 ranj[7,N] = d1$V7[i]
 rani[8,N] = d1$V8[i]
 rani[9,N] = d1$V9[i]
 rani[10,N] = d1$V10[i]
  N=N+1
}
N=5
for (i in 1:24) {
 ranj[11,N] = d2$V1[i]
 ranj[12,N] = d2$V2[i]
 rani[13,N] = d2$V3[i]
 ranj[14,N] = d2$V4[i]
 rani[15,N] = d2$V5[i]
 rani[16,N] = d2$V6[i]
```

```
rani[17,N] = d2$V7[i]
 ranj[18,N] = d2$V8[i]
 ranj[19,N] = d2$V9[i]
 ranj[20,N] = d2$V10[i]
  N=N+1
}
N=5
for (i in 1:24) {
 ranj[21,N] = d3$V1[i]
 ranj[22,N] = d3$V2[i]
 ranj[23,N] = d3$V3[i]
 ranj[24,N] = d3$V4[i]
 ranj[25,N] = d3$V5[i]
 ranj[26,N] = d3$V6[i]
 ranj[27,N] = d3$V7[i]
 ranj[28,N] = d3$V8[i]
 ranj[29,N] = d3$V9[i]
 ranj[30,N] = d3$V10[i]
  N=N+1
}
N=5
for (i in 1:24) {
 rani[31,N] = d4$V1[i]
 ranj[32,N] = d4$V2[i]
 ranj[33,N] = d4$V3[i]
 rani[34,N] = d4$V4[i]
 ranj[35,N] = d4$V5[i]
 rani[36,N] = d4$V6[i]
 rani[37,N] = d4$V7[i]
 ranj[38,N] = d4$V8[i]
 rani[39,N] = d4$V9[i]
 ranj[40,N] = d4$V10[i]
  N=N+1
}
N=5
for (i in 1:24) {
 rani[41,N] = d5$V1[i]
 rani[42,N] = d5$V2[i]
```

```
ranj[43,N] = d5$V3[i]
  ranj[44,N] = d5$V4[i]
 ranj[45,N] = d5$V5[i]
  ranj[46,N] = d5$V6[i]
  rani[47,N] = d5$V7[i]
 rani[48,N] = d5$V8[i]
 ranj[49,N] = d5$V9[i]
 rani[50,N] = d5$V10[i]
  N=N+1
}
ranj
write.table(ranj, file="IDCarttrees.txt")
sm = data.frame(read.table("summs.txt", header = TRUE, sep = ""))
print("Качество Конъюнкций:")
print(sm)
mxi \le matrix(0:0, nrow=4, ncol=1)
k1=1
for (i in 1:24) {
 if (sm$V1[i] > 45) {
    mxi[k1] = i+4
    k1=k1+1
     }
mxi
frst = data.frame(read.table("IDCarttrees.txt", header = TRUE, sep = ""))
n1 = 0
n2 = 0
n3 = 0
n4 = 0
n5 = 0
gu <- matrix(0:0, nrow=47, ncol=6)
for (i in 1:50) {
```

```
if (frst V7[i] == 1) {
   n2=1
     }
 if (frst V20[i] == 1) {
    n3 = 1
     }
 if (frst V23[i] == 1) {
    n4 = 1
 if (frst V26[i] == 1) {
    n5=1
     }
 if (n2+n3+n4+n5 >= 3) {
    n1 = n1 + 1
    gu[n1,1] = frstV1[i]
    gu[n1,2] = frst$V2[i]
    gu[n1,3] = frst$V3[i]
    gu[n1,4] = frst$V4[i]
    gu[n1,5] = frst$V29[i]
    gu[n1,6] = frst$V30[i]
   n2 = 0
   n3 = 0
   n4 = 0
   n5 = 0
gu
write.table(gu, file="clever.txt")
car47 = data.frame(read.table("cleverK.txt", header = TRUE, sep = ""))
car47
\#fit <- rpart(V4 ~ V2 + V5 + V6, car47, method = "poisson")
fit <- rpart(V4 \sim V2 + V5 + V6, car47)
par(xpd = TRUE)
plot(fit, compress = TRUE)
```

text(fit, use.n = TRUE)

6). Результаты визуализировать и сравнить.

Вариант 2

Разработать логический классификатор с использованием алгоритмов «**Кора»**, «**ID3»**, «**CART»**, «**Бэггинг»**, «**Бустинг»**, **генетического алгоритма** для классификации товаров супермаркета по категориям «Скидки - Нет» 0-4 %, «Скидка-мини» 5-25 %, «Выгодная Скидка» 26-40%, «Супер Скидка» 50-70% за пять дней.

Код	Кп	Кв	Кс	Кч	Кп	Ксб	Квс	Кз	Квн	Кл	Ко	Кт	
011	1							0.7	0.54	1	1	0.45	
012	0.77											1	
013													
014													
015													
016													
017													
018												0.15	
019	1		1				1			1		0.23	
020	0.58												

- 1).Для алгоритма Кора: выбрать частоту встречаемости конъюнкций Min-Num= 4
- 2). Для генетического алгоритма выбрать: генную бинарную комбинацию 1101101
- 3).Для алгоритма CART в функции грагt выбрать параметр method = "anova"
- 4).Для алгоритма Bagging в функции RandomForest выбрать параметр N.trees= 400, в функции train выбрать параметр method = "Adabag"
- 5).Для алгоритма Boosting в функции gbm выбрать параметр N.trees = 300, параметр distribution = "bernoully", параметр bag.Fraction = 0.47
- 6). Результаты визуализировать и сравнить.

Вариант 3

Разработать логический классификатор с использованием алгоритмов «Кора», «ID3», «CART», «Бэггинг», «Бустинг», генетического алго-

ритма для классификации товаров супермаркета по категориям «Скидки - Нет» 0-4 %, «Скидка-мини» 5-25 %, «Выгодная Скидка» 26-40%, «Супер Скидка» 50-70% за пять дней.

Код	Кп	Кв	Кс	Кч	Кп	Ксб	Квс	Кз	Квн	Кл	Ко	Кт	
021	1							0.7	0.54	1	1	0.45	
022	0.77											1	
023													
024													
025													
026													
027													
028												0.15	
029	1		1				1			1		0.23	
030	0.58												

- 1).Для алгоритма Кора: выбрать частоту встречаемости конъюнкций Min-Num= 5
- 2).Для генетического алгоритма выбрать: генную бинарную комбинацию 1101000
- 3).Для алгоритма CART в функции грагt выбрать параметр method = "class"
- 4).Для алгоритма Bagging в функции RandomForest выбрать параметр N.trees= 600, в функции train выбрать параметр method = "Treebag"
- 5).Для алгоритма Boosting в функции gbm выбрать параметр N.trees = 460, параметр distribution = "gussian", параметр bag.Fraction = 0.65
- 6). Результаты визуализировать и сравнить.

Вариант 4

Код	Кп	Кв	Кс	Кч	Кп	Ксб	Квс	Кз	Квн	Кл	Ко	Кт	
031	1							0.7	0.54	1	1	0.45	
032	0.77											1	
033													
034													
035													
036													

037								
038							0.15	
039	1	1		1		1	0.23	
040	0.58							

- 1).Для алгоритма Кора: выбрать частоту встречаемости конъюнкций Min-Num= 6
- 2).Для генетического алгоритма выбрать: генную бинарную комбинацию 1011001
- 3).Для алгоритма CART в функции грагt выбрать параметр method = "exp"
- 4).Для алгоритма Bagging в функции RandomForest выбрать параметр N.trees= 280, в функции train выбрать параметр method = "Logicbag"
- 5).Для алгоритма Boosting в функции gbm выбрать параметр N.trees = 380, параметр distribution = "adaBoost", параметр bag.Fraction = 0.39
- 6). Результаты визуализировать и сравнить.

Код	Кп	Кв	Кс	Кч	Кп	Ксб	Квс	Кз	Квн	Кл	Ко	Кт	
041	1							0.7	0.54	1	1	0.45	
042	0.77											1	
043													
044													
045													
046													
047													
048												0.15	
049	1		1				1			1		0.23	
050	0.58												

^{1).} Для алгоритма Кора: выбрать частоту встречаемости конъюнкций MinNum= 7

^{2).}Для генетического алгоритма выбрать: генную бинарную комбинацию 1011101

- 3).Для алгоритма CART в функции грагt выбрать параметр method = "poisson"
- 4).Для алгоритма Bagging в функции RandomForest выбрать параметр N.trees= 580, в функции train выбрать параметр method = "bagEarth"
- 5).Для алгоритма Boosting в функции gbm выбрать параметр N.trees = 630, параметр distribution = "coxPH", параметр bag.Fraction = 0.88
- 6). Результаты визуализировать и сравнить.

Код	Кп	Кв	Кс	Кч	Кп	Ксб	Квс	Кз	Квн	Кл	Ко	Кт	
011	1							0.7	0.54	1	1	0.45	
013	0.77											1	
015													
017													
019													
021													
023													
025												0.15	
027	1		1				1			1		0.23	
029	0.58												

- 1).Для алгоритма Кора: выбрать частоту встречаемости конъюнкций Min-Num= 5
- 2). Для генетического алгоритма выбрать: генную бинарную комбинацию 0011100
- 3).Для алгоритма CART в функции грагt выбрать параметр method = "anova"
- 4).Для алгоритма Bagging в функции RandomForest выбрать параметр N.trees= 430, в функции train выбрать параметр method = "Adabag"
- 5).Для алгоритма Boosting в функции gbm выбрать параметр N.trees = 720, параметр distribution = "poisson", параметр bag.Fraction = 0.72
- 6). Результаты визуализировать и сравнить.

Разработать логический классификатор с использованием алгоритмов «**Кора»**, «**ID3»**, «**CART»**, «**Бэггинг»**, «**Бустинг»**, **генетического алгоритма** для классификации товаров супермаркета по категориям «Скидки - Нет» 0-4 %, «Скидка-мини» 5-25 %, «Выгодная Скидка» 26-40%, «Супер Скидка» 50-70% за пять дней.

Код	Кп	Кв	Кс	Кч	Кп	Ксб	Квс	Кз	Квн	Кл	Ко	Кт	
020	1							0.7	0.54	1	1	0.45	
025	0.77											1	
030													
035													
040													
045													
050													
001												0.15	
003	1		1			·	1			1		0.23	
011	0.58												

- 1). Для алгоритма Кора: выбрать частоту встречаемости конъюнкций Min-Num= 8
- 2).Для генетического алгоритма выбрать: генную бинарную комбинацию 1010101
- 3).Для алгоритма CART в функции грагt выбрать параметр method = "class"
- 4).Для алгоритма Bagging в функции RandomForest выбрать параметр N.trees= 700, в функции train выбрать параметр method = "Treebag"
- 5).Для алгоритма Boosting в функции gbm выбрать параметр N.trees = 340, параметр distribution = "bernaully", параметр bag.Fraction = 0.81
- 6). Результаты визуализировать и сравнить.

Вариант 8

Разработать логический классификатор с использованием алгоритмов «Кора», «ID3», «CART», «Бэггинг», «Бустинг», генетического алгоритма для классификации товаров супермаркета по категориям «Скидки

- Нет» 0-4 %, «Скидка-мини» 5-25 %, «Выгодная Скидка» 26-40%, «Супер Скидка» 50-70% за пять дней.

Код	Кп	Кв	Кс	Кч	Кп	Ксб	Квс	Кз	Квн	Кл	Ко	Кт	
020	1							0.7	0.54	1	1	0.45	
025	0.77											1	
030													
035													
040													
045													
050													
001												0.15	
003	1		1				1		·	1		0.23	
011	0.58												

- 1).Для алгоритма Кора: выбрать частоту встречаемости конъюнкций Min-Num= 5
- 2).Для генетического алгоритма выбрать: генную бинарную комбинацию 1110111
- 3).Для алгоритма CART в функции грагt выбрать параметр method = "anova"
- 4).Для алгоритма Bagging в функции RandomForest выбрать параметр N.trees= 730, в функции train выбрать параметр method = "adabag"
- 5).Для алгоритма Boosting в функции gbm выбрать параметр N.trees = 590, параметр distribution = "laplace", параметр bag.Fraction = 0.48
- 6). Результаты визуализировать и сравнить.

Вариант 9

Код	Кп	Кв	Кс	Кч	Кп	Ксб	Квс	Кз	Квн	Кл	Ко	Кт	
020	1							0.7	0.54	1	1	0.45	
025	0.77											1	
030													
035													
040													
045													

050								
001							0.15	
003	1	1		1		1	0.23	
011	0.58							

- 1). Для алгоритма Кора: выбрать частоту встречаемости конъюнкций Min-Num
= 4
- 2).Для генетического алгоритма выбрать: генную бинарную комбинацию 0011101
- 3).Для алгоритма CART в функции грагt выбрать параметр method = "class"
- 4).Для алгоритма Bagging в функции RandomForest выбрать параметр N.trees= 620, в функции train выбрать параметр method = "Treebag"
- 5).Для алгоритма Boosting в функции gbm выбрать параметр N.trees = 540, параметр distribution = "adaboost", параметр bag.Fraction = 0.79
- 6). Результаты визуализировать и сравнить.

Код	Кп	Кв	Кс	Кч	Кп	Ксб	Квс	Кз	Квн	Кл	Ко	Кт	
020	1							0.7	0.54	1	1	0.45	
025	0.77											1	
030													
035													
040													
045													
050													
001												0.15	
003	1		1				1			1		0.23	
011	0.58												

- 1). Для алгоритма Кора: выбрать частоту встречаемости конъюнкций MinNum= 8
- 2).Для генетического алгоритма выбрать: генную бинарную комбинацию 1110101

- 3).Для алгоритма CART в функции грагt выбрать параметр method = "poisson"
- 4).Для алгоритма Bagging в функции RandomForest выбрать параметр N.trees= 300, в функции train выбрать параметр method = "adabag"
- 5).Для алгоритма Boosting в функции gbm выбрать параметр N.trees = 380, параметр distribution = "bernaully", параметр bag.Fraction = 0.55
- 6). Результаты визуализировать и сравнить.

Код	Кп	Кв	Кс	Кч	Кп	Ксб	Квс	Кз	Квн	Кл	Ко	Кт	
020	1							0.7	0.54	1	1	0.45	
025	0.77											1	
030													
035													
040													
045													
050													
001												0.15	
003	1		1				1			1		0.23	
011	0.58												

- 1).Для алгоритма Кора: выбрать частоту встречаемости конъюнкций Min-Num= 8
- 2). Для генетического алгоритма выбрать: генную бинарную комбинацию 0010100
- 3).Для алгоритма CART в функции грагt выбрать параметр method = "anova"
- 4).Для алгоритма Bagging в функции RandomForest выбрать параметр N.trees= 780, в функции train выбрать параметр method = "Treebag"
- 5).Для алгоритма Boosting в функции gbm выбрать параметр N.trees = 340, параметр distribution = "bernaully", параметр bag.Fraction = 0.81
- 6). Результаты визуализировать и сравнить.

Разработать логический классификатор с использованием алгоритмов «**Кора»**, «**ID3»**, «**CART»**, «**Бэггинг»**, «**Бустинг»**, **генетического алгоритма** для классификации товаров супермаркета по категориям «Скидки - Нет» 0-4 %, «Скидка-мини» 5-25 %, «Выгодная Скидка» 26-40%, «Супер Скидка» 50-70% за пять дней.

Код	Кп	Кв	Кс	Кч	Кп	Ксб	Квс	Кз	Квн	Кл	Ко	Кт	
020	1							0.7	0.54	1	1	0.45	
025	0.77											1	
030													
035	1												
040													
045													
050	1	0.73											
001												0.15	
003	1		1				1			1		0.23	
011	0.58												

- 1). Для алгоритма Кора: выбрать частоту встречаемости конъюнкций Min-Num= 8
- 2).Для генетического алгоритма выбрать: генную бинарную комбинацию 1110100
- 3).Для алгоритма CART в функции грагt выбрать параметр method = "poisson"
- 4).Для алгоритма Bagging в функции RandomForest выбрать параметр N.trees= 880, в функции train выбрать параметр method = "Treebag"
- 5).Для алгоритма Boosting в функции gbm выбрать параметр N.trees = 340, параметр distribution = "bernaully", параметр bag.Fraction = 0.81
- 6). Результаты визуализировать и сравнить.

Вариант 13

Разработать логический классификатор с использованием алгоритмов «Кора», «ID3», «CART», «Бэггинг», «Бустинг», генетического алго-

ритма для классификации товаров супермаркета по категориям «Скидки - Нет» 0-4 %, «Скидка-мини» 5-25 %, «Выгодная Скидка» 26-40%, «Супер Скидка» 50-70% за пять дней.

Код	Кп	Кв	Кс	Кч	Кп	Ксб	Квс	Кз	Квн	Кл	Ко	Кт	
020	1							0.7	0.54	1	1	0.45	
025	0.77											1	
030													
035													
040													
045													
050													
001												0.15	
003	1		1				1			1		0.23	
011	0.58												

- 1).Для алгоритма Кора: выбрать частоту встречаемости конъюнкций Min-Num= 5
- 2).Для генетического алгоритма выбрать: генную бинарную комбинацию 0100101
- 3).Для алгоритма CART в функции грагt выбрать параметр method = "exp"
- 4). Для алгоритма Bagging в функции RandomForest выбрать параметр N.trees= 710, в функции train выбрать параметр method = "Treebag"
- 5).Для алгоритма Boosting в функции gbm выбрать параметр N.trees = 340, параметр distribution = "coxph", параметр bag.Fraction = 0.61
- 6). Результаты визуализировать и сравнить.

Вариант 14

Код	Кп	Кв	Кс	Кч	Кп	Ксб	Квс	Кз	Квн	Кл	Ко	Кт	
020	1							0.7	0.54	1	1	0.45	
025	0.77											1	
030													
035													

040								
045								
050								
001							0.15	
003	1	1		1		1	0.23	
011	0.58							

- 1). Для алгоритма Кора: выбрать частоту встречаемости конъюнкций Min-Num= 7
- 2).Для генетического алгоритма выбрать: генную бинарную комбинацию 1010111
- 3).Для алгоритма CART в функции грагt выбрать параметр method = "class"
- 4).Для алгоритма Bagging в функции RandomForest выбрать параметр N.trees= 624, в функции train выбрать параметр method = "bagFDA"
- 5).Для алгоритма Boosting в функции gbm выбрать параметр N.trees = 340, параметр distribution = "bernoully", параметр bag.Fraction = 0.441
- 6). Результаты визуализировать и сравнить.

Разработать логический классификатор с использованием алгоритмов «Кора», «ID3», «CART», «Бэггинг», «Бустинг», генетического алгоритма для классификации товаров супермаркета по категориям «Скидки - Нет» 0-4 %, «Скидка-мини» 5-25 %, «Выгодная Скидка» 26-40%, «Супер Скидка» 50-70% за пять дней.

Код	Кп	Кв	Кс	Кч	Кп	Ксб	Квс	Кз	Квн	Кл	Ко	Кт	
050	1	1	0.9	0.7				0.7	0.54	1	1	0.45	
030	0.77											1	
034		0.1											
021													
014	1		1			1			1			1	
046													
036													
049												0.15	
009	1		1				1			1		0.23	
014	0.58												

1).Для алгоритма Кора: выбрать частоту встречаемости конъюнкций Min-Num= 8

- 2).Для генетического алгоритма выбрать: генную бинарную комбинацию 1110001
- 3).Для алгоритма CART в функции грагt выбрать параметр method = "exp"
- 4). Для алгоритма Bagging в функции RandomForest выбрать параметр N.trees= 200, в функции train выбрать параметр method = "bagEarth"
- 5).Для алгоритма Boosting в функции gbm выбрать параметр N.trees =
- 510, параметр distribution = "laplace", параметр bag. Fraction = 0.49
- 6). Результаты визуализировать и сравнить.