

Mathematical Induction

Weak Induction:

- Verify that P(1) is true.
- Assume P(k) is true and show that P(k+1) is true.

Strong Induction:

- Verify that P(1) is true.
- Assume P(k) for all k = 1, 2, ..., n and show P(n + 1)

Argument: $P(1) \land P(2) \land ... \land P(k) \rightarrow P(k+1)$

Example: If n is a positive integer then it can be written as the sum of distinct Fibonacci numbers.

Example (continued1): If n is a positive integer then it can be written as the sum of distinct Fibonacci numbers.

Example (continued2): If n is a positive integer then it can be written as the sum of distinct Fibonacci numbers.

Example: For any integer $n \ge 1$ there exist numbers $a, b \ge 1$ such that $5^n = a^2 + b^2$

Example (continued1): For any integer $n \ge 1$ there exist numbers $a, b \ge 1$ such that $5^n = a^2 + b^2$

Example (continued2): For any integer $n \ge 1$ there exist numbers $a, b \ge 1$ such that $5^n = a^2 + b^2$

Example: It used to be that throughout the world McDonald's sold chicken nuggets in 4, 6, 9, and 20 piece boxes. Prove that back in the good old days, for any $n \ge 12$ you could buy exactly n nuggets.

Example (continued): It used to be that throughout the world McDonald's sold chicken nuggets in 4, 6, 9, and 20 piece boxes. Prove that back in the good old days, for any $n \ge 12$ you could buy exactly n nuggets.

Induction: bad examples

(Bad) Example: "Prove" that all Fibonacci numbers are even

Base case: Let n = 0. $F_0 = 0$, which is even \checkmark

Induction step: Assume that F_{ℓ} is even for all ℓ s.t. $0 \le \ell \le k$

To show: F_{k+1} is even

$$\Rightarrow F_{k+1} = F_k + F_{k-1}$$

- \Rightarrow By induction hypothesis, F_k and F_{k-1} are both even
- $\Rightarrow F_{k+1}$ is the sum of two evens, and therefore even " \checkmark "

Induction: bad examples

(Bad) Example: "Prove" that all Fibonacci numbers are even

Mistake: We only showed F_0 is even, but then we used $F_{k+1} = F_k + F_{k-1}$ in our proof

⇒ If you think of our "proof" as a line of dominoes, each domino falling in this case requires two previous ones to fall

⇒ Here, we only did one base case, so we only knocked over **one** domino

Rule of thumb: If your proof requires going back s steps, then you need s base cases.

Next up: Recursion!

