Math 335, Homework 7

Due Friday, April 2 (note extended deadline!)

1. Let

$$H = \{e, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)\} \subseteq S_4.$$

List all left cosets of H in S_4 , being sure to list each one only once..

Answer

There are $\frac{|S_4|}{|H|} = \frac{24}{4} = 6$ unique left cosets of H in S_4 .

	eH	(1,2)H	(1,3)H	(2,3)H	(1,2,3)H	(1,2,4)H
ſ	e	(1, 2)	(1, 3)	(2,3)	(1, 2, 3)	(1, 2, 4)
	(1,2)(3,4)	(3,4)	(1, 2, 3, 4)	(1,3,4,2)	(1, 3, 4)	(1, 4, 3)
	(1,3)(2,4)	(1,3,2,4)	(2,4)	(1, 2, 4, 3)	(2,4,3)	(1, 3, 2)
	(1,4)(2,3)	(1,4,2,3)	(1, 4, 3, 2)	(1,4)	(1, 4, 2)	(2, 3, 4)

2. Let $G = \langle g \rangle$ be a cyclic group with 30 elements. List all of the left cosets of $\langle g^4 \rangle$ in G, being sure to list each one only once.

Answer:

There are $\frac{|\langle g \rangle|}{|\langle g^4 \rangle|} = \frac{30}{15} = 2$ unique left cosets of $\langle g^4 \rangle$ in G. The two left cosets of $\langle g^4 \rangle$ in G are:

$$\begin{split} \langle g^4 \rangle &= \{g^2, g^4, g^6, g^8, g^{10}, g^{12}, g^{14}, g^{16}, g^{18}, g^{20}, g^{22}, g^{24}, g^{26}, g^{28}, g^{30}\} \\ g \cdot \langle g^4 \rangle &= \{g^1, g^3, g^5, g^7, g^9, g^{11}, g^{13}, g^{15}, g^{17}, g^{19}, g^{21}, g^{23}, g^{25}, g^{27}, g^{29}\} \end{split}$$

3. Let \mathbb{C}^* be the group of nonzero complex numbers (under multiplication). Recall that the *norm* of a complex numbers is defined as its distance from the origin in the complex plane; in other words, it's

$$|a+bi| := \sqrt{a^2 + b^2}.$$

Two facts about the norm, which you may assume for this problem, are

$$|z \cdot w| = |z| \cdot |w|$$
 and $\left| \frac{1}{z} \right| = \frac{1}{|z|}$.

Given this, let

$$H = \left\{ z \in \mathbb{C}^* \mid |z| = 1 \right\} \subseteq \mathbb{C}^*.$$

(The next page shows a picture of H, for your reference.)

(a) Prove that, for $v, w \in \mathbb{C}^*$, we have vH = wH if and only if |v| = |w|.

Proof. Let $v, w \in \mathbb{C}^*$. Suppose vH = wH and $x_1, x_2 \in H$ such that $vx_1 = wx_2$. With some algebraic manipulation, we can state that $vw^{-1} = x_2x_1^{-1}$. Using the properties of the norm, it can be asserted that

$$|x_2x_1^{-1}| = |x_2| \cdot |x_1^{-1}| = \frac{|x_2|}{|x_1|} = 1.$$

Notice that this also means that

$$|vw^{-1}| = |v| \cdot |w^{-1}| = \frac{v}{w} = 1,$$

which allows us to conclude that |v| = |w|.

Conversely, suppose that |v|=|w| for $v,w\in\mathbb{C}^*$. Then $\frac{|v|}{|w|}=1$ and by using the properties of the norm, we can conclude that $\left|vw^{-1}\right|=1$. Hence, $vw^{-1}\in H$ and vH=wH.

(b) Given part (a), draw a picture of the left coset 5H, and of the left coset (1+i)H. Answer:

- 4. Let G be a group with 8 elements.
 - (a) What are the possible orders of elements of G?

Answer

By corollary, the possible orders of elements of G are divisors of |G|, which are 1, 2, 4, and 8.

(b) Prove that G must have an element of order 2.

(**Hint**: Start by choosing a non-identity element of G at random. If it doesn't have order 2, try to cook up an element of order 2 out of it.)

Proof. Suppose $g \in G$ and $g \neq e$. If $\operatorname{ord}(g) = 8$, then $\operatorname{ord}(g^4) = 2$. Similarly, if $\operatorname{ord}(g) = 4$, then $\operatorname{ord}(g^2) = 2$. Hence, G must have an element of order 2. \square

5. Prove that a group with a prime number of elements must be cyclic.

Proof. Suppose that $\operatorname{ord}(G)$ is prime. Let $g \in G$ and $g \neq e$. Since G is a finite group, by corollary, $\operatorname{ord}(\langle g \rangle)$ divides |G|. Additionally, since $g \neq e$, $\operatorname{ord}(\langle g \rangle) \neq 1$. Since the only two divisors of a prime number are 1 and itself, $\operatorname{ord}(\langle g \rangle) = |G|$, and it follows that $\langle g \rangle = G$.