

Deep Learning (CS324)

Visualizing and Understanding Convolutional Networks

— Matthew D. Zeiler and Rob Fergus

Nie Yuhe

11911839

Content

- Background
- Motivation
- Methodology
- Convnet Visualization
- Experiments
- Q&A

Part I Background

30 hidden units

layer H2
12 x 16=192 H2.1

hidden units

layer H1 12 x 64 = 768

256 input units

fully connected ~ 300 links

fully connected

~ 40,000 links from 12 kernels

Previous Research — CNN

- Introduction of CNN LeCun et al.
 - LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. NeuralComput. 1(4), 541–551 (1989)
- Good Performance on NORB, CIFAAR-10 Data Sets Ciresan *et al.*Ciresan, D.C., Meier, J., Schmidhuber, J.: Multi-column deep neural networks for image classification. In: CVPR (2012)
- Good Performance on ImageNet2012 Krizhevsky et al.
 Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In NIPS (2012)

Good Performance on PASCAL VOC Data Sets Girshick et al.

Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. arXiv:1311.2524 (2014)

Related Work — Visualization

- Mostly limited to the 1st Layer
- Performing gradient descent in image space to minimize the unit's activation Erhan et al.

Erhan, D., Bengio, Y., Courville, A., Vincent, P.: Visualizing higher-layer features of a deep network. Technical report, University of Montreal (2009)

- Projecting back from the fully connected layers Simonyan et al.
 Le, Q.V., Ngiam, J., Chen, Z., Chia, D., Koh, P., Ng, A.Y.: Tiled convolutional neural networks. In: NIPS (2010)
- Visualization that identify patches that are responsible for strong activations at higher layer Girshick et al.

Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. arXiv:1311.2524 (2014)

Related Work — Feature Generalization

• Generalization Ability of CNN features Donahue & Girshick et al.

Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.:DeCAF: A deep convolutional activation feature for generic visual recognition.arXiv:1310.1531 (2013) Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. arXiv:1311.2524 (2014)

Part II Motivation

What's Inside CNN?

Part III Methodology

Architecture of Convnet

Similar to Krizhevsky ImageNet

Training Details

SGD batch size: 128

Learning Rate: 10⁻²

Momentum Term: 0.9

Dropout rate: 0.5

All weights are initialized to 10^{-2} and biases are set to 0

IM. GENET

2012 training set

1.3 million images

1000 different classes

Renormalize each filter in the convolutional layers whose RMS value exceeds a fixed radius of 10^{-1} to this fixed radius

70 epochs 12 days single GTX580 GPU

Architecture of Deconvnet

The deconvnet will reconstruct an approximate version of the convnet features from the layer beneath.

- Unpooling recording the locations of the maxima within each pooling region in a set of switch variables
- Rectification
 pass the reconstructed signal through ReLU
- Filtering
 transposed version of the same filters
 filpping each filter vertically and horizontally

Deconvnet: Unpooling

```
Layer Above Reconstruction

Switches

Max Pooling

Unpooled Maps

Rectified Feature Maps
```

```
class DPooling(object):
   def init (self, layer):
       self.layer = layer
       self.poolsize = layer.pool size
   def up(self, data, learning phase = 0):
       [self.up data, self.switch] = \
              self. max pooling with switch(data, self.poolsize)
       return self.up data
   def down(self, data, learning phase = 0):
       self.down data = self. max unpooling with switch(data, self.switch)
       return self.down data
 # Compute unpooled output using pooled data and switch
 def max unpooling with switch(self, input, switch):
     print('switch '+str(switch.shape))
     print('input '+str(input.shape))
     tile = np.ones((math.floor(switch.shape[1] / input.shape[1]),
         math.floor( switch.shape[2] / input.shape[2])))
     print('tile '+str(tile.shape))
     tile=numpy.expand dims(tile,axis=3)
     input=numpy.squeeze(input,axis=0)
                                                     Unpooling 1
     out = np.kron(input, tile)
     print('out '+str(out.shape))
    unpooled = out * switch
     unpooled=numpy.expand dims(unpooled,axis=0)
```

return unpooled

```
def max pooling with switch(self, input, poolsize):
    switch = np.zeros(input.shape)
    out shape = list(input.shape)
    row poolsize = int(poolsize[0])
    col poolsize = int(poolsize[1])
    print(row poolsize)
    print(col poolsize)
    out shape[1] = math.floor(out shape[1] / poolsize[0])
    out shape[2] = math.floor(out shape[2] / poolsize[1])
    print(out shape)
    pooled = np.zeros(out shape)
    for sample in range(input.shape[0]):
        for dim in range(input.shape[3]):
            for row in range(out shape[1]):
                for col in range(out shape[2]):
                     patch = input[sample,
                             row * row poolsize : (row + 1) * row poolsize,
                             col * col poolsize : (col + 1) * col poolsize,dim]
                     max value = patch.max()
                     pooled[sample, row, col,dim] = max value
                     max col index = patch.argmax(axis = 1)
                     \max \ cols = \operatorname{patch.max}(\operatorname{axis} = 1)
                     max row = max cols.argmax()
                     max col = max col index[max row]
                    switch[sample,
                             row * row poolsize + max row,
                             col * col poolsize + max col,
                           diml = 1
    return [pooled, switch]
```


Deconvnet: Rectification


```
def up(self, data, learning_phase = 0):
    self.up_data = self.up_func([data, learning_phase])
    self.up_data=np.squeeze(self.up_data,axis=0)
    self.up_data=numpy.expand_dims(self.up_data,axis=0)
    print(self.up_data.shape)
    return self.up_data

def down(self, data, learning_phase = 0):
    self.down_data = self.down_func([data, learning_phase])
    self.down_data=np.squeeze(self.down_data,axis=0)
    self.down_data=numpy.expand_dims(self.down_data,axis=0)
    print(self.down_data.shape)
    return self.down_data
```


Deconvnet: Filtering

```
class DConvolution2D(object):
   def init (self, layer):
       self.layer = layer
       weights = layer.get weights()
       W = weights[0]
       b = weights[1]
       filters = W.shape[3]
       up row = W.shape[0]
       up col = W.shape[1]
       input img = keras.layers.Input(shape = layer.input shape[1:])
       output=keras.layers.Conv2D(filters,(up row,up col),kernel initializer=tf.constant initializer(W),
                                  bias initializer=tf.constant initializer(b),padding='same')(input img)
       self.up func = K.function([input img, K.learning phase()], [output])
       # Deconv filter (exchange no of filters and depth of each filter)
       W = np.transpose(W, (0,1,3,2))
       # Reverse columns and rows
       W = W[::-1, ::-1,:,:]
       down filters = W.shape[3]
       down row = W.shape[0]
       down col = W.shape[1]
       b = np.zeros(down filters)
       input d = keras.layers.Input(shape = layer.output_shape[1:])
       output=keras.layers.Conv2D(down filters,(down row,down col),kernel initializer=tf.constant initializer(W),
                                  bias initializer=tf.constant initializer(b),padding='same')(input d)
       self.down func = K.function([input d, K.learning phase()], [output])
```



```
def up(self, data, learning_phase = 0):
    #Forward pass
    self.up_data = self.up_func([data, learning_phase])
    self.up_data=numpy.expand_dims(self.up_data,axis=0)
    self.up_data=numpy.expand_dims(self.up_data,axis=0)
    #print(self.up_data.shape)
    return self.up_data

def down(self, data, learning_phase = 0):
    # Backward pass
    self.down_data= self.down_func([data, learning_phase])
    self.down_data=numpy.expand_dims(self.down_data,axis=0)
    self.down_data=numpy.expand_dims(self.down_data,axis=0)
    #print(self.down_data.shape)
    return self.down_data
```


Part IV Convnet Visualization

Convnet Visualization

Convnet Visualization

Original image

Features detected in feature map 127 of convolutional layer 3 of block 3 of VGG16 model

Feature Evolution

The strongest activation (across all training examples) for a given feature map, projected down to pixel space using the deconvnet approach

A randomly chosen subset of features at epochs [1,2,5,10,20,30,40,64]

Architecture Selection

Krizhevsky et al.

- (i) reduced the 1st layer filter size from 11x11 to 7x7
- (ii) made the stride of the convolution 2, rather than 4

Adjust

improves the classification performance

Occlusion Sensitivity

the probability of the correct class drops significantly when the object is occluded

the visualization genuinely corresponds to the image structure that stimulates that feature map

Part V Experiments

Experiement Result - ImageNet2012

Change the Srchitecture

(i) reduced the 1st layer filter size from 11x11 to 7x7(ii) made the stride of the convolution 2, rather than 4

Error %	Val	Val Top-5	Test
Gunji et al. [12]	- -	- -	26.2
DeCAF [7]	-	-	19.2
Krizhevsky et al. [18], 1 convnet	40.7	18.2	
Krizhevsky et al. [18], 5 convnets	38.1	16.4	16.4
Krizhevsky et al. *[18], 1 convnets	39.0	16.6	
Krizhevsky et al. *[18], 7 convnets	36.7	15.4	15.3
Our replication of		1)-	
Krizhevsky et al., 1 convnet	40.5	18.1	
1 convnet as per Fig. 3	38.4	16.5	
5 convnets as per Fig. 3 – (a)	36.7	15.3	15.3
1 convnet as per Fig. 3 but with			
layers 3,4,5: 512,1024,512 maps - (b)	37.5	16.0	16.1
6 convnets, (a) & (b) combined	36.0	14.7	14.8
Howard [15]		40	13.5
Clarifai [28]	-	-	11.7

Experiement Result - ImageNet2012

Varying ImageNet Model Sizes

 overall depth of the model is important for obtaining good performance

A slight increase in error when only remove the fully connected layers/convolutionallayers

dramatically worse --->

increase the size of CNN layer will give a good performance

Changing the size of the fully connected layers makes little difference to performance

Error %	Train Top-1	Val Top-1	Val Top-5
Our replication of Krizhevsky et al. [18], 1 convnet	35.1	40.5	18.1
Removed layers 3,4	41.8	45.4	22.1
Removed layer 7	27.4	40.0	18.4
Removed layers 6,7	27.4	44.8	22.4
Removed layer 3,4,6,7	71.1	71.3	50.1
Adjust layers 6,7: 2048 units	40.3	41.7	18.8
Adjust layers 6,7: 8192 units	26.8	40.0	18.1
Our Model (as per Fig. 3)	33.1	38.4	16.5
Adjust layers 6,7: 2048 units	38.2	40.2	17.6
Adjust layers 6,7: 8192 units	22.0	38.8	17.0
Adjust layers 3,4,5: 512,1024,512 maps	18.8	37.5	16.0
Adjust layers 6,7: 8192 units and Layers 3,4,5: 512,1024,512 maps	10.0	38.3	16.9

Feature Generalization

0.00	The second second	Acc %
# Train		30/class
Bo <i>et al.</i> [3]	_	81.4 ± 0.33
Yang <i>et al.</i> [17]	73.2	84.3
Non-pretrained convnet	22.8 ± 1.5	46.5 ± 1.7
ImageNet-pretrained convnet	83.8 ± 0.5	86.5 ± 0.5

	Acc %	Acc %	Acc %	Acc %
# Train	15/class	30/class	45/class	60/class
Sohn <i>et al.</i> [24]	35.1	42.1	45.7	47.9
Bo <i>et al.</i> [3]	40.5 ± 0.4	48.0 ± 0.2	51.9 ± 0.2	55.2 ± 0.3
Non-pretr.	9.0 ± 1.4	22.5 ± 0.7	31.2 ± 0.5	38.8 ± 1.4
ImageNet-pretr.	$\textbf{65.7} \pm \textbf{0.2}$	$\textbf{70.6} \pm \textbf{0.2}$	$\textbf{72.7} \pm \textbf{0.4}$	$\textbf{74.2} \pm \textbf{0.3}$

Caltech-101

Caltech-256

Acc %	[22]	[27]	[21]	Ours	Acc %	[22]	[27]	[21]	Ours
Airplane	92.0	97.3	94.6	96.0	Dining table	63.2	77.8	69.0	67.7
Bicycle	74.2	84.2	82.9	77.1	Dog	68.9	83.0	92.1	87.8
Bird	73.0	80.8	88.2	88.4	Horse	78.2	87.5	93.4	86.0
Boat	77.5	85.3	60.3	85.5	Motorbike	81.0	90.1	88.6	85.1
Bottle	54.3	60.8	60.3	55.8	Person	91.6	95.0	96.1	90.9
Bus	85.2	89.9	89.0	85.8	Potted plant	55.9	57.8	64.3	52.2
Car	81.9	86.8	84.4	78.6	Sheep	69.4	79.2	86.6	83.6
Cat	76.4	89.3	90.7	91.2	Sofa	65.4	73.4	62.3	61.1
Chair	65.2	75.4	72.1	65.0	Train	86.7	94.5	91.1	91.8
Cow	63.2	77.8	86.8	74.4	Tv	77.4	80.7	79.8	76.1
Mean	74.3	82.2	82.8	79.0	# won	0	11	6	3

PASCAL 2012

Part VI Q&A

Thank You!