Teorema de la función implícita

Antes de enunciar el teorema usamos la siguiente convención: usamos letras negritas \mathbf{x} , \mathbf{z} para denotar vectores y letras normales, x, z para denotar escalares.

Teorema 1. Sea U un abierto de $\mathbb{R}^n \times \mathbb{R}^m$ que contenga al punto $(\mathbf{x}_0, \mathbf{z}_0)$ y sea $F: U \to \mathbb{R}^m$ una función de clase C^1 en U. Nota: a los puntos de primer \mathbb{R}^n los vamos a denotar \mathbf{x} y a los puntos del segundo \mathbf{R}^m los vamos a denotar \mathbf{z} .

Supongamos que $F(\mathbf{x}_0, \mathbf{z}_0) = 0$ y que la función lineal dada por

$$L(\mathbf{z}) = D_{(\mathbf{x}_0, \mathbf{z}_0)} F(0, \mathbf{z}), \mathbf{z} \in \mathbb{R}^m$$

es una función inyectiva, de \mathbb{R}^m a \mathbb{R}^m .

Entonces existe una vecindad de \mathbf{x}_0 en \mathbb{R}^n , denotada W y una función de clase C^1 , $G: W \to \mathbb{R}^m$ tal que $G(\mathbf{x}_0) = \mathbf{z}_0$ y, para toda $\mathbf{x} \in W$, $F(\mathbf{x}, G(\mathbf{x})) = 0$.

Notas

- 1. Este enunciado generaliza el Teorema del Marsden. En el caso del Marsden m=1 en para este caso la función L es simplemente multiplicar por $\partial_z F(\mathbf{x}_0, z_0)$, la cual es inyectiva si $\partial_z F(\mathbf{x}_0, z_0) \neq 0$.
- 2. La condición de que la transformación lineal $L(\mathbf{z}) = D_{(\mathbf{x}_0, \mathbf{z}_0)} F(0, \mathbf{z})$ sea inyectiva se puede reescribir usando un determinante, pero se necesita algo de notación.

Para $\mathbf{x} \in \mathbf{R}^n$ escribimos $\mathbf{x} = (x_1, \dots, x_n)$ y a los puntos $\mathbf{z} \in \mathbf{R}^m$ los escribimos $\mathbf{z} = (z_1, \dots, z_m)$. A las funciones coordenadas de F las escribimos $F = (f_1, \dots, f_m)$, así que cada función f_i se valua en $f_i(x_1, \dots, x_n, z_1, \dots, z_m)$.

La condición de que L sea inyectiva es equivalente a pedir que el determinante de la siguiente matriz sea distinto de cero

$$\begin{bmatrix} \partial_{z_1} f_1(\mathbf{x}_0, \mathbf{z}_0) & \cdots & \partial_{z_m} f_1(\mathbf{x}_0, \mathbf{z}_0) \\ \vdots & \ddots & \vdots \\ \partial_{z_1} f_m(\mathbf{x}_0, \mathbf{z}_0) & \cdots & \partial_{z_m} f_m(\mathbf{x}_0, \mathbf{z}_0) \end{bmatrix}$$

3. El teorema de la función implícita se puede leer de la siguiente forma. Sean f_1, \dots, f_m funciones clase C^1 , definidas en un abierto de $\mathbb{R}^n \times \mathbb{R}^m$ y supongamos que tenemos escalares $x_1^{(0)}, \dots, x_n^{(0)}, z_1^{(0)}, \dots, z_m^{(0)}$ que satisfacen el siguiente sistema de ecuaciones:

$$f_1(x_1^{(0)}, \dots, x_n^{(0)}, z_1^{(0)}, \dots, z_m^{(0)}) = 0$$

$$f_2(x_1^{(0)}, \dots, x_n^{(0)}, z_1^{(0)}, \dots, z_m^{(0)}) = 0$$

$$\vdots$$

$$f_m(x_1^{(0)}, \dots, x_n^{(0)}, z_1^{(0)}, \dots, z_m^{(0)}) = 0$$

Denotemos $\mathbf{x}_0 = (x_1^{(0)}, \dots, x_n^{(0)})$ y $\mathbf{z}_0 = (z_1^{(0)}, \dots, z_m^{(0)})$. Entonces, si

$$\det \begin{bmatrix} \partial_{z_1} f_1(\mathbf{x}_0, \mathbf{z}_0) & \cdots & \partial_{z_m} f_1(\mathbf{x}_0, \mathbf{z}_0) \\ \vdots & \ddots & \vdots \\ \partial_{z_1} f_m(\mathbf{x}_0, \mathbf{z}_0) & \cdots & \partial_{z_m} f_m(\mathbf{x}_0, \mathbf{z}_0) \end{bmatrix} \neq 0$$

entonces podemos resolver el siguiente sistema, de manera única, para las z's en términos de las x's:

$$f_1(x_1, \dots, x_n, z_1, \dots, z_m) = 0$$

 $f_2(x_1, \dots, x_n, z_1, \dots, z_m) = 0$
 \vdots
 $f_m(x_1, \dots, x_n, z_1, \dots, z_m) = 0$

para cuando las (x_1, \ldots, x_n) están cerca de \mathbf{x}_0 .