AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Alexey Dosovitskiy*,†, Lucas Beyer*, Alexander Kolesnikov*, Dirk Weissenborn*, Xiaohua Zhai*, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby*,†

Google Research

Abstract

Vision Transformer (ViT)

- Transformer 구조 활용
- SOTA의 CNNs보다 비슷하거나 뛰어난 성능
- Large-scale(14M~300M) mid or small sized(ImageNet, CIFAR-100)

•

Inductive Bias

• Inductive bias : 새로운 데이터에 대해 좋은 성능을 내기 위해 모델에 사전적으로 주어 지는 가정

• CNN: Locality

• RNN: Sequentiality

Inductive Bias

- CNN: Locality → Global ↓
- Transformer: self-attention → inductive bias ↓

Vision Transformer (ViT)

Vision Transformer (ViT)

image $\mathbf{x} \in \mathbb{R}^{H \times W \times C}$

flattened 2D patches $\mathbf{x}_p \in \mathbb{R}^{N \times (P^2 \cdot C)}$

(H, W): resolution of the original image

(P, P): resolution of each image patch

 $N = HW/P^2$: resulting number of patches

latent vector size D

$$z_{0} = [x_{class}; x_{p}^{1}E; x_{p}^{2}E; \dots; x_{p}^{N}E] + E_{pos}, \quad E \in R^{(P^{2} \cdot C) \times D}, E_{pos} \in R^{(N+1) \times D}$$
$$x_{p}^{1} \in R^{1 \times (P^{2} \times C)}$$

Vision Transformer (ViT)

[CLS] Token

- 임베딩된 패치들의 sequence에 learnable embedding 추가 ($z_0^0 = x_{class}$)
- transformer encoder z_L^0 riangleq output state : $\mathbf{y} = LN(z_L^0)$

- patch의 위치정보
- 1D Position Embedding 사용

Vision Transformer (ViT)

Transformer Encoder

- layer Norm의 위치가 Transformer 학습에 중요한 역할

$$z'_{l} = MSA(LN(z_{l-1})) + z_{l-1}, \quad l = 1...L$$

$$z_l = MLP(LN(z'_l)) + z'_l, \quad l = 1...L$$

Vision Transformer (ViT)

Output

pre-training: one hidden layer

fine-tuning: one linear layer

$$y = LN(z_L^0)$$

Fine-Tuning & Higher Resolution

- pre-train ViT on large datasets, and fine-tune to (smaller) downstream tasks.
- Pre-training image resolution < Fine-tuning image resolution

SetUp

[Datasets]

- Pre-training ImageNet-1k(1.3 M), ImageNet-21k(14 M), JFT-18k(303M)
- Transfer Learning ImageNet, ReaL labels, CIFAR 10/100, Oxford-IIIT Pets, Oxford Flowers-102...

SetUp

[Model Variants]

Model	Layers	Hidden size D	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M

Table 1: Details of Vision Transformer model variants.

ViT-L/16: 'large' variant with 16x16 input patch size

ResNet(BiT): Batch Normalization → Group Normalization & Weight Standardization

SetUp

[Training]

- Optimizer : Adam($\beta_1 = 0.9, \;\; \beta_2 = 0.999$)

- Batch size: 4096

- Weight decay: 0.1

[Fine-Tuning]

- Optimizer : SGD

- Batch Size: 512

- Higher resolution: ViT-L/16-512, ViT-H/14: 518

COMPARISON TO SOTA

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21k (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	$88.4/88.5^*$
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	_
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	_
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

- pre-trained on the JFT-300M
- pre-trained on the smaller public ImageNet-21k

COMPARISON TO SOTA

Figure 2: Breakdown of VTAB performance in Natural, Specialized, and Structured task groups.

VTAB: Vision Task Adaptation Benchmark

Pre-training Data Requirements

Pre-training: ImageNet, ImageNet-21k,

JFT-300M

Fine-Tuning: ImageNet

Regularization:

weight decay, dropout, label smoothing

Small Dataset - Convolutional inductive bias 가 유리

But, 데이터가 많으면 데이터로부터 직접 패턴을 학습하는 것이 유리하다!

Scaling Study

- JFT-300M 데이터셋
- ViT는 아직 포화(saturate)되지 않음 → 향후 확장 가능성

Conclusion

- image-specific inductive bias < Large Dataset (JFT-300M)
- Pre-training 비용 저렴

Challenge

- detection 및 segmentation 분야에 적용
- pre-training method
- scaling 통한 추가적인 성능 향상

Thank You