

IE1204 Digital Design:

CMOS Implementation of Boolean Logic

Ahmed Hemani KTH/ICT/ES hemani@kth.se

The Pull Up Primitives

Careful: The Pull Up Primitives invert the literals when used as inputs of the PMOS transistors Why? Because the PMOS transistor has a buit in inversion.

The Pull Down Primitives

Recipe for implementing arbitrary Boolean function in CMOS

Step 1: Simplify the function -f, so that it is composed of ONLY the serial and parallel Pull Up and Pull Down primitive A + B, $A \cdot B$, A' + B', $A' \cdot B'$,

Note that it is not allowed to complement products (NANDs) or complement sums (NORs). Though inversion of literals is OK. This restriction is because we want the function f to be expressed in terms of our Pull Up and Pull Down primitives that allows only the above four forms.

Let us call this simplified function as **fs**. Note that **f** and **fs** are functionally equivalent. They have the same truth table.

We create two versions of fs: fs_{ON} to implement the ON set and fs_{OFF} to implement the OFF set

Step 2: fs_{ON} is the same as fs. Just remember to invert the literals. This is done because fs_{ON} is implemented by Pull Up PMOS network. And PMOS has built in inversion of the literals.

Step 3: fs_{OFF} is created by inverting the fs and again ensuring that it is in terms of the primitives. This is done because by definition fs_{OFF} implements the complement of f – the OFF set.

NAND Gate derived by the Recipe

$$f = (A \cdot B)'$$

Step 1: Transform f to be in terms of the primitives. $f_s = A' + B'$

Step 2: Create fs_{ON} by inverting the literal when used as inputs to the gates of PMOS Pull Up Network \checkmark

Step 3: Create $fs_{\it OFF}$ by inverting f and again simplifying it in terms of the primitives. $fs_{\it OFF}$ is implemented by the Pull Down Network composed of NMOS transistors

$$fs_{OFF} = f' = A \cdot B$$

NOR Gate derived by the Recipe

$$f = (A + B)'$$

Step 1: Transform f to be in terms of the primitives. $f_s = A' \cdot B'$

Step 2: Create fs_{ON} by inverting the literal when used as inputs to the gates of PMOS Pull Up Network \checkmark

Step 3: Create $fs_{\it OFF}$ by inverting f and again simplifying it in terms of the primitives.

$$fs_{OFF} = f' = A + B$$

Recipe applied to arbitrary boolean function

$$f = [A \cdot (B + C)]'$$

Step 1: Transform f to be in terms of the primitives. $f_s = A' + (B' \cdot C')$

Step 2: Create fs_{ON} by inverting the literal when used as inputs to the gates of PMOS Pull Up Network Notice the fs has two primitives. One is a serial primitive $B \cdot C$ and the other is a parallel primitive combining $B \cdot C$ and A

Step 3: Create fs_{OFF} by inverting f and again simplifying it in terms of the Pull Down NMOS primitives. $fs_{OFF} = f = A \cdot (B + C)$

Recipe applied to XOR Gate

$$f = a' \cdot b + a \cdot b'$$

Step 1: Transform f to be in terms of the primitives. The XOR gate function is already in form of primitives $f_S = f$

Step 2: Create fs_{ON} by inverting the literal when used as inputs to the gates of PMOS Pull Up Network.

Notice the fs has three primitives. Two are serial primitives $a' \cdot b$ and $a \cdot b'$ the third is a parallel primitive combining the two serial primitives.

Step 3: Create $fs_{\it OFF}$ by inverting f and again simplifying it in terms of the Pull Down NMOS primitives.

$$fs_{OFF} = f' = a' \cdot b' + a \cdot b$$

Who provides the inverted literals?

CMOS Transmission Gates

CMOS Transmission Gates (TGs)

- 1. Transmission Gates are also constructed from PMOS and NMOS transistors
- 2. They act as a switch whose operation can be controlled by a signal s
- 3. When s = 1, both the NMOS and PMOS transistors are ON. y = x, i.e., y is connected to x or the resistance between y and x is negligibly low. We say x is transmitted to y or y is driven by x
- 4. When s = 0, y is disconnected from x, i.e., there is a high impedance between y and x. The voltage of y has no corelation to the voltage at x.
- 5. Why do we have two complementary transistors (NMOS and PMOS)? Because NMOS is good at transmitting 0 (0 V/GND) and PMOS is transmitting $1(V_{DD})$. If we had only one transistor PMOS or NMOS, it would still function as a switch but it will transmit 0 poorly or 1 poorly.

Transmission Gate Symbols

Multiplexor

- 1. It is a universal building block like NAND or NOR gate because any arbitrary boolean function can be built using Muxes. We will study this in a later lecture on combinatorial circuits
- 2. Multiplexor are often abbreviated to Mux, plural form Muxes

$$Z \le X$$
 when $S = 0$ ELSE Y;

X	Y	S	Z	
0	-	0	0	The upper TG is ON and passes X to Z
1	-	0	1	The lower TG is OFF and blocks Y
-	0	1	0	The lower TG is ON and passes Y to Z
-	1	1	1	The upper TG is OFF and blocks X

^{&#}x27;-' symbol means don't care.

The output *Z* is unaffected by what ever value of *X* or *Y* in the rows where their value is shown as '-'

Homework Exercise:

- 1. Draw the truth table of two to 1 multiplexor
- 2. Design the Multiplexor using NAND gates. Use Karnaugh Map
- 3. Draw the corresponding CMOS transistor schematic
- 4. Show the flow current for different rows of the truth table

Tri State

Section 3.8 and Section 3.9

- 1. All nodes (input and output) of digital logic occupy, ideally logic 1 or logic 0 state.
- 2. These states imply that the node in logic is driven by V_{DD} or connected to GND (logic 0)
- 3. However, in some cases, a node in the logic may be not connected to either V_{DD} or GND.
- 4. This may sound as an anomaly (abnormality), however in reality this is desirable and is very useful.
- 5. This *third state is often called the high impedance state* because there is a high impedance between the node and the VDD / GND
- 6. This third state is represented by **Z**
- 7. Logic gates that can intentionally drive its output to the Z state are called tri-stated

oe: output enable

X	oe	у	
Х	1	Х	y = x when oe = 1
-	0	Ζ	y = Z when oe = 0; y is disconnected from x

$$y = x \text{ when oe} = 1$$

$$else Z$$

Section 3.8 and Section 3.9

oe: output enable

	oe		
X	1	χ'	y = x' when oe = 1
-	0	Ζ	y = Z when oe = 0; y is disconnected from x

Tri State Variants

oe: output enable

X	oe	у
X	1	\overline{x}
-	0	Z

X	oe	у
Х	1	Х
-	0	Ζ

Section 3.8 and Section 3.9

X	oe	у
Х	0	\overline{x}
-	1	Z

$$y = x \text{ when oe} = 0$$

$$else Z$$

What are tri state buffers/drivers used for ?

- 1. Let us say two Memory Devices share a bus (a bundle of wires)
- 2. Both memory devices can read from the bus at the same time
- 3. Both memory devices cannot however write to the bus at the same time One could be wanting to write logic 1 and ther other could be wanting write logic 0. This would create a short circuit between VDD and GND
- 4. Tri-state buffers / drivers help because we can disable one of the driver, while the other is writing
- 5. Usually there is a device called arbiter that grants access to the bus before it can write to it.
- 6. If all devices can read, why do we need **read** tri-state drivers?
- 7. This is because if Mem 1 device is writing to the bus the read tri-state driver in Mem 1 is disabled. What Mem 1 is writing is meant for external devices.

Tri States are used when we need bi-directional connections When a device or a sub-system what to read and write from the same port

Only one device is allowed to drive, i.e., write to the bus. The output enable of only one output tri-state driver is activated at a time. All others are inactivate Multiple devices can read.