2. Простейшие итерационные методы: метод секущих и метод Ньютона. Если уравнение f(x) = 0 имеет корень $x = \alpha$, а функция $\psi(x)$ непрерывна в окрестности $x = \alpha$, то уравнение

$$x = \varphi(x) \equiv x - \psi(x) f(x) \tag{17}$$

также имеет корень $x = \alpha$. Функцию $\psi(x)$ можно подобрать так, что итерационный процесс для уравнения (17) будет сходящимся.

Рассмотрим два классических метода, которые можно получить этим способом.

Пусть f(x) — действительная функция действительного переменного x, а $x=\alpha$ — действительный корень уравнения f(x)=0. Предположим, что в некоторой окрестности точки $x=\alpha$ функция f(x) вместе с f'(x) и f''(x) непрерывна, а f'(x) и f''(x) в этой окрестности не меняют знака. Это означает, что при переходе через $x=\alpha$ функция f(x) меняет знак и имеет точку $x=\alpha$ простым корнем. Пусть x_0 — точка рассматриваемой окрестности, в которой $f(x_0)f''(x_0)>0$. В (17) в качестве функции $\psi(x)$ возьмем функцию

$$\psi(x) \equiv \frac{x - x_0}{f(x) - f(x_0)}.$$

Тогда уравнение

$$x = \varphi(x) \equiv x - \frac{x - x_0}{f(x) - f(x_0)} f(x) = \frac{x_0 f(x) - x f(x_0)}{f(x) - f(x_0)}$$
(18)

также имеет корнем $x = \alpha$. За начальное приближение примем любую, достаточно близкую к α точку x_1 рассматриваемой окрестности, в когорой $f(x_1)$ имеет знак, противоположный знаку $f(x_0)$, а последующие приближения будем строить обычным способом:

$$x_n = \frac{x_0 f(x_{n-1}) - x_{n-1} f(x_0)}{f(x_{n-1}) - f(x_0)} \qquad (n = 2, 3, \ldots).$$
 (19)

Так как, с одной стороны,

$$\varphi'(\alpha) = \frac{[x_0 f'(\alpha) - f(x_0)] [f(\alpha) - f(x_0)] - f'(\alpha) [x_0 f(\alpha) - \alpha f(x_0)]}{[f(\alpha) - f(x_0)]^2} = \frac{f(x_0) + (\alpha - x_0) f'(\alpha)}{f(x_0)},$$

а с другой стороны, по формуле Тейлора

$$f(x) = f(\alpha) + (x - \alpha) f'(\alpha) + \frac{(x - \alpha)^2}{2!} f''(\xi),$$

где ξ заключено между α и x, то, полагая $x=x_0$, получим:

$$f(x_0) + (\alpha - x_0) f'(\alpha) = \frac{(x_0 - \alpha)^2}{2!} f''(\xi).$$

Следовательно.

$$\varphi'(\alpha) = \frac{(x_0 - \alpha)^2}{2} \frac{f''(\xi)}{f(x_0)}.$$

При x_0 , достаточно близком к $x=\alpha$, $\varphi'(\alpha)$ — малое число, и поэтому существует такая окрестность точки α , в которой будет иметь место неравенство

$$|\varphi'(x)| \leqslant K < 1$$
,

и если x_1 взято из этой окрестности, то последовательность (19) будет сходиться к $x=\alpha$.

Так как $f(x_n) = f(x_n) - f(\alpha) = f'(\xi)(x_n - \alpha)$, то, положив $m = \min_{x \in [x_0, x_1]} |f'(x)|$, будем иметь:

$$|x_n - \alpha| \leqslant \frac{|f(x_n)|}{m},\tag{20}$$

что позволяет на каждом шаге по значениям $f(x_n)$ следить за достигнутой точностью.

Геометрически этот метод состоит в том, что значение x_{n+1} есть абсцисса точки пересечения прямой, проходящей через точки $(x_0, f(x_0))$ и $(x_n, f(x_n))$, с осью x (рис. 8). Поэтому этот метод

называют методом секущих или методом линейной интерполяции, так как на каждом шаге за приближенное значение корня x_{n+1} принимается корень интерполяционного многочлена первой степени, построенного по значениям f(x) в точках x_0 и x_n .

Метод секущих является итерационным методом первого порядка. Второй классический метод решения уравнения f(x) = 0 — метод Ньютона — получим, если положить в (17)

$$\psi(x) \equiv \frac{1}{f'(x)}.$$

т. е. свести отыскание корня $x = \alpha$ уравнения f(x) = 0 к отысканию корня уравнения

 $x = x - \frac{f(x)}{f'(x)} \equiv \varphi(x). \tag{21}$

Будем предполагать, что на отрезке [a, b], содержащем единственный корень $x = \alpha$ уравнения f(x) = 0, функция f(x) имеет непрерывные производные f'(x) и f''(x), не обращающиеся в нуль на этом отрезке. В этом случае

$$\varphi'(x) = 1 - \frac{f'^{2}(x) - f(x)f''(x)}{f'^{2}(x)}$$

и $\varphi'(\alpha) = 0$. Это означает, что существует такая окрестность точки $x = \alpha$, что если начальное приближение $x = x_0$ взято из эгой окрестности, то последовательность

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}$$
 $(n = 1, 2, ...)$ (22)

будет сходиться к $x=\alpha$. Начальное приближение x_0 целесообразно выбирагь так, чтобы было

$$f(x_0) f''(x_0) > 0.$$
 (23)

Метод Ньютона применим не только для отыскания действительных корней уравнения f(x) = 0, но и комплексных корней, только нужно иметь в виду, что при отыскании комплексного корня в случае действительной функции f(x) начальное приближение x_0 нужно брать комплексным числом, а не действительным.

В случае, если $x=\alpha$ является действительным корнем уравнения f(x)=0, этот метод имеет простую геометрическую интерпретацию. Значение x_{n+1} есть абсцисса точки, пересечения касательной к кривой y=f(x) в точке $x=x_n$ с осью x (рис. 9). Поэтому метод Ньютона часто называют методом касательных.

Как видно из рис. 9 последовательные приближения к действительному корню в методе Ньютона сходятся к нему монотонно, приближаясь со стороны x_0 .

Если за начальное приближение в методе Ньютона взять точку x_0 , где $f(x_0) f''(x_0) < 0$, то, как видно из рис. 10, мы можем не прийти к корню $x = \alpha$, если только начальное приближение не очень хорошее.

Так как в методе Ньютона $\varphi'(\alpha) = 0$, а $\varphi''(\alpha)$, вообще говоря, не равна нулю, то метод Ньютона является итерационным методом второго порядка.

Скорость сходимости метода Ньютона можно оценить следующим образом. По формуле Тейлора

$$0 = f(\alpha) = f(x_n) + f'(x_n)(\alpha - x_n) + \frac{1}{2}f''(\xi)(\alpha - x_n)^2,$$

где ξ заключено между α и x_n . Отсюда

$$\frac{f(x_n)}{f'(x_n)} = x_n - \alpha - \frac{1}{2} \frac{f''(\xi)}{f'(x_n)} (\alpha - x_n)^2.$$

Следовательно,

$$x_{n+1} - \alpha = x_n - \alpha - \frac{f(x_n)}{f'(x_n)} = \frac{1}{2} \frac{f''(\xi)}{f'(x_n)} (\alpha - x_n)^2.$$

Если $m_1 = \min_{[a, \ b]} |f'(x)|$, а $M_2 = \max_{[a, \ b]} |f''(x)|$, где $[a, \ b]$ — отрезок, содержащий x_0 и α , на котором не меняют знака f'(x) и f''(x), то

$$|x_{n+1} - \alpha| \leq \frac{M_2}{2m_1} |x_n - \alpha|^2.$$
 (24)

Это указывает на быструю сходимость метода Ньютона.

Комбинируя метод секущих и метод Ньютона, можно получить нестационарный метод отыскания действительных корней уравнения f(x) = 0, преимущество которого заключается в том, что при прежних предположениях относительно f'(x) и f''(x) последовательные приближения x_n и x_{n+1} лежат по разные стороны от корня, и поэтому можно следить в процессе вычислений за достигнутой точностью, и в то же время он сходится значительно быстрей метода секущих.

Пусть на отрезке $\{a, b\}$ содержится единственный корень уравнения f(x) = 0, а f'(x) и f''(x) на эгом отрезке не меняют знаков. Если f(a) f''(a) > 0, то находим x_0 и x_1 по формулам:

$$x_0 = a - \frac{f(a)}{f'(a)}, \quad x_1 = \frac{af(b) - bf(a)}{f(b) - f(a)},$$
 (25)

а следующие приближения находим по формулам:

$$x_{2n} = x_{2n-2} - \frac{f(x_{2n-2})}{f'(x_{2n-2})}, \quad x_{2n+1} = \frac{x_{2n-2}f(x_{2n-1}) - x_{2n-1}f(x_{2n-2})}{f(x_{2n-1}) - f(x_{2n-2})}. \quad (26)$$

Если же f(b) f''(b) > 0, то x_0 и x_1 находим по формулам:

$$x_0 = b - \frac{f(b)}{f'(b)}, \quad x_1 = \frac{af(b) - bf(a)}{f(b) - f(a)},$$
 (25')

а следующие приближения — по тем же формулам (26). Как видно из рис. 11, последовательные приближения x_{2n} и x_{2n+1} всегда расположены по разные стороны от $x=\alpha$ и первые совпадающие знаки x_{2n} и x_{2n+1} и будут верными знаками для $x=\alpha$.

3. Метод Чебышева построения итераций высших порядков. В 1838 г. П. Л. Чебышев предложил метод отыскания действительных корней уравнения f(x) = 0, частными случаями которого явились многие, разработанные до него методы. В основе метода Чебышева лежит представление функции, обратной к функции f(x), по формуле Тейлора.

Пусть уравнение f(x)=0 на отрезке [a,b] имеет корень $x=\alpha$. Относительно функции f(x) предположим, что она непрерывна на отрезке [a,b] вместе с производными достаточно высокого порядка и $f'(x) \neq 0$ на [a,b]. При этих предположениях функция y=f(x) имеет обратную функцию x=F(y), определенную на отрезке [c,d], являющемся областью значений f(x) при $x \in [a,b]$. Функция F(y) имеет столько же непрерывных производных, сколько имеет и f(x). Так как

$$x \equiv F[f(x)] \quad (x \in [a, b]), \quad y \equiv f[F(y)] \quad (y \in [c, d]),$$
 (27)