Physics Reference Tables*

Contents:	
Table A. Metric Prefixes	
Table B. Physical Constants	2
Table C. Approximate Coëfficients of Friction	2
Table D. Quantities, Variables and Units	3
Table E. Mechanics Formulas and Equations	4
Table F. Moments of Inertia	4
Table G. Heat and Thermal Physics Formulas and Equations	5
Table H. Thermal Properties of Selected Materials	5
Table I. Electricity Formulas & Equations	6
Table J. Electricity & Magnetism Formulas & Equations	7
Table K. Resistor Color Code	
Table L. Symbols Used in Electrical Circuit Diagrams	
Table M. Resistivities at 20°C	7
Table N. Waves & Optics	_
Figure O. The Electcromagnetic Spectrum	8
Table P. Properties of Water and Air	9
Table Q. Absolute Indices of Refraction	_
Table R. Fluid Mechanics Formulas and Equations	10
Table S. Planetary Data	10
Table T. Sun & Moon Data	
Table U. Atomic & Particle Physics (Modern Physics)	
Figure V. Quantum Energy Levels	11
Figure W. Particle Sizes	12
Table X. The Standard Model	
Table Y. Geometry & Trigonometry Formulas	13
Table Z. Values of Trigonometric Functions	14
Table AA. Some Exact and Approximate Conversions	
Table BB. Greek Alphabet	15

Table A. Metric Prefixes			
Factor		Prefix	Symbol
1 000 000 000 000 000 000 000 000	10 ²⁴	yotta	Υ
1 000 000 000 000 000 000 000	10 ²¹	zeta	Z
1 000 000 000 000 000 000	10 ¹⁸	exa	E
1 000 000 000 000 000	10 ¹⁵	peta	Р
1 000 000 000 000	10 ¹²	tera	Т
1 000 000 000	10 ⁹	giga	G
1 000 000	10 ⁶	mega	М
1 000	10 ³	kilo	k
100	10 ²	hecto	h
10	10 ¹	deca	da
1	10 ⁰	_	_
0.1	10 ⁻¹	deci	d
0.01	10 ⁻²	centi	С
0.001	10 ⁻³	milli	m
0.000 001	10 ⁻⁶	micro	μ
0.000 000 001	10 ⁻⁹	nano	n
0.000 000 000 001	10 ⁻¹²	pico	р
0.000 000 000 000 001	10 ⁻¹⁵	femto	f
0.000 000 000 000 000 001	10 ⁻¹⁸	atto	а
0.000 000 000 000 000 000 001	10 ⁻²¹	zepto	Z
0.000 000 000 000 000 000 000 001	10 ⁻²⁴	yocto	у

^{*}Data from various sources, including: The University of the State of New York, The State Education Department. Albany, NY, Reference Tables for Physical Setting/Physics, 2006 Edition.http://www.p12.nysed.gov/apda/reftable/physics-rt/physics06tbl.pdf, SparkNotes: SAT Physics website. http://www.sparknotes.com/testprep/books/sat2/physics/, and College Board: Equations and Constants for AP Physics 1 and AP Physics 2.

Table B. Physical Constants					
Description	Symbol	Precise Value	Common Approximation		
universal gravitational constant	G	$6.67384(80) \times 10^{-11} \frac{\text{N-m}^2}{\text{kg}^2}$	$6.67 \times 10^{-11} \frac{\text{N·m}^2}{\text{kg}^2}$		
acceleration due to gravity on Earth's surface	g	$9.7639 \frac{m}{s^2}$ to $9.8337 \frac{m}{s^2}$ average value at sea level is $9.80665 \frac{m}{s^2}$	$9.8 \frac{m}{s^2}$ or $10 \frac{m}{s^2}$		
speed of light in a vacuum	с	299792458 m *	$3.00 \times 10^8 \frac{m}{s}$		
elementary charge (proton or electron)	е	±1.602176565(35)×10 ⁻¹⁹ C	±1.6×10 ⁻¹⁹ C		
1 coulomb (C)		6.24150965(16)×10 ¹⁸ elementary charges	6.24×10 ¹⁸ elementary charges		
(electric) permittivity of a vacuum	ε_{o}	$8.85418782 \times 10^{-12} \frac{A^2 \cdot s^4}{\text{kg·m}^3}$	$8.85 \times 10^{-12} \frac{A^2 \cdot s^4}{\text{kg·m}^3}$		
(magnetic) permeability of a vacuum	μ_{o}	$4\pi \times 10^{-7} = 1.25663706 \times 10^{-6} \frac{\text{T-m}}{\text{A}}$	1.26×10 ^{−6} T·m/A		
electrostatic constant	k	$\frac{1}{4\pi\varepsilon_0} = 8.9875517873681764 \times 10^9 \frac{\text{N·m}^2}{\text{C}^2} *$	$9.0 \times 10^9 \frac{\text{N·m}^2}{\text{C}^2}$		
1 electron volt (eV)		1.602176565(35)×10 ⁻¹⁹ J	1.6×10 ⁻¹⁹ J		
Planck's constant	h	6.62606957(29)×10 ⁻³⁴ J·s	6.6×10 ⁻³⁴ J·s		
1 universal (atomic) mass unit (u)		931494061(21) MeV/ c ² 1.660538921(73)×10 ⁻²⁷ kg	931MeV/ c^2 1.66×10 ⁻²⁷ kg		
Avogadro's constant	N_A	$6.02214129(27)\times10^{23}\mathrm{mol}^{-1}$	$6.02 \times 10^{23} \text{mol}^{-1}$		
Boltzmann constant	k _B	1.3806488(13)×10 ⁻²³ ^J _K	1.38×10 ⁻²³ ^J _K		
universal gas constant	R	8.3144621(75) J molK	8.31 J MOIK		
Rydberg constant	R _H	$\frac{m_e e^4}{8\varepsilon_o^2 h^3 c} = 10973731.6 \frac{1}{m}$	1.1×10 ⁷ m ⁻¹		
standard atmospheric pressure at sea level		101 325 Pa ≡ 1.01325 bar [*]	100 000 Pa ≡ 1.0 bar		
rest mass of an electron	m_e	9.10938215(45)×10 ⁻³¹ kg	$9.11 \times 10^{-31} \text{kg}$		
mass of a proton	m_p	1.672621777(74)×10 ⁻²⁷ kg	$1.67 \times 10^{-27} \text{kg}$		
mass of a neutron	m_n	1.674927351(74)×10 ⁻²⁷ kg	$1.67 \times 10^{-27} \text{kg}$		

*denotes an exact value (by definition)

Table C. Approximate Coëfficients of Friction						
Substance	Static (μ _s)	Kinetic (μ_k)	Substance	Static (μ _s)	Kinetic (μ_k)	
rubber on concrete (dry)	0.90	0.68	wood on wood (dry)	0.42	0.30	
rubber on concrete (wet)		0.58	wood on wood (wet)	0.2		
rubber on asphalt (dry)	0.85	0.67	wood on metal	0.3		
rubber on asphalt (wet)		0.53	wood on brick	0.6		
rubber on ice		0.15	wood on concrete	0.62		
steel on ice	0.03	0.01	Teflon on Teflon	0.04	0.04	
waxed ski on snow	0.14	0.05	Teflon on steel	0.04	0.04	
aluminum on aluminum	1.2	1.4	graphite on steel	0.1		
cast iron on cast iron	1.1	0.15	leather on wood	0.3-0.4		
steel on steel	0.74	0.57	leather on metal (dry)	0.6		
copper on steel	0.53	0.36	leather on metal (wet)	0.4		
diamond on diamond	0.1		glass on glass	0.9-1.0	0.4	
diamond on metal	0.1-0.15		metal on glass	0.5-0.7		

Table D. Quantities, Variables and Units				
Quantity	Variable	MKS Unit Name	MKS Unit Symbol	S.I. Base Unit
position	<i>x</i> x	meter*	m	m
distance/displacement, (length, height)	d , $\vec{m{d}}$,(ℓ , h)	meter*	m	m
angle	θ	radian, degree	-,°	_
area	Α	square meter	m [*]	m ²
volume	V	cubic meter, liter	m^{3},ℓ , L	m ³
time	t	second*	S	S
velocity	v v	meter/second	<u>m</u>	<u>m</u>
speed of light	С	meter/second	S	S
angular velocity	$ec{m{\omega}}$	radians/second	<u>1</u> s	<u>1</u> s
acceleration	ā		m	m
acceleration due to gravity	ġ	meter/second ²	$\overline{s^2}$	$\overline{s^2}$
mass		kilogram*	kg	kg
force	Ē	newton	N	kg·m s²
pressure	Р	pascal	Pa	
energy	Ε			
potential energy	U			kg·m²
kinetic energy	K	joule	J	$\frac{\text{kg} \cdot \text{m}^2}{\text{s}^2}$
heat	Q			
work	W	newton-meter	N·m	$\frac{\text{kg} \cdot \text{m}^2}{\text{s}^2}$
torque	τ	newton-meter	N·m	$\frac{\text{kg} \cdot \text{m}^2}{\text{s}^2}$
power	Р	watt	W	$\frac{\text{kg·m}^2}{\text{s}^3}$
momentum	ρ̈			kg-m
impulse		newton-second	N∙s	kg·m s
moment of inertia	I	kilogram-meter ²	kg·m²	kg·m²
angular momentum	Ĺ	newton-meter- second	N·m·s	kg·m² s
frequency	f	hertz	Hz	s ⁻¹
wavelength	λ	meter	m	m
period	T	second	S	S
index of refraction	n	_		
electric current	Ī	ampere*	Α	А
electric charge	q	coulomb	С	A·s
potential difference (voltage)				kg·m²
electromotive force (emf)	ε	volt	V	A·s ³
electrical resistance	R	ohm	Ω	$\frac{kg \cdot m^2}{A^2 \cdot s^3}$
capacitance	С	farad	F	$\frac{A^2 \cdot s^4}{m^2 \cdot kg}$
electric field	Ē	netwon/coulomb volt/meter	$\frac{N}{C}$, $\frac{V}{m}$	kg·m A·s³
magnetic field	B	tesla	Т	$\frac{kg}{A \cdot s^2}$
temperature	Т	kelvin*	K	К
amount of substance	n	mole*	mol	mol
luminous intensity	I_{ν}	candela*	cd	cd
Variables representing vector		uposet in hold italies	* = S.I. base unit	

Variables representing vector quantities are typeset in **bold italics**.

^{* =} S.I. base unit

Table E. Mec	hanics Formulas and Equations		Table F. Moments of
	$\vec{\boldsymbol{d}} = \Delta \vec{\boldsymbol{x}} = \vec{\boldsymbol{x}} - \vec{\boldsymbol{x}}_o$		Inertia
Kinematics	$\vec{\vec{v}} = \frac{\vec{d}}{t} = \frac{\Delta \vec{x}}{\Delta t} = \frac{\vec{v}_0 + \vec{v}}{2}$		• r m
(Distance,	ι Δι Ζ	$\Delta=$ change, difference	Point Mass:
Velocity & Acceler-	$\Delta \vec{\boldsymbol{v}} = \vec{\boldsymbol{v}} - \vec{\boldsymbol{v}}_O = \vec{\boldsymbol{a}}t$	$\Sigma = \operatorname{sum}$	$I = mr^2$
ation)	$\vec{\mathbf{x}} - \vec{\mathbf{x}}_o = \vec{\mathbf{d}} = \vec{\mathbf{v}}_o t + \frac{1}{2} \vec{\mathbf{a}} t^2$	d = distance (m)	m
	$\vec{\mathbf{v}}^2 - \vec{\mathbf{v}}_o^2 = 2\vec{\mathbf{a}}d$	d = displacement (m)	
	$s = r\Delta\theta$ $\vec{\mathbf{v}}_T = r\vec{\boldsymbol{\omega}}$ $\vec{\boldsymbol{a}}_T = r\vec{\boldsymbol{\alpha}}$	\vec{x} = position (m) s = arc length (m)	(r)) }
Circular	$a_c = \frac{v^2}{r} = \omega^2 r$	t = time (s)	
Motion	$u_c - \frac{1}{r} - w$	$\vec{\mathbf{v}} = \text{velocity}\left(\frac{\text{m}}{c}\right)$	Hollow Cylinder: $I = mr^2$
	$\theta - \theta_0 = \vec{\boldsymbol{\omega}}_0 t + \frac{1}{2} \vec{\boldsymbol{\alpha}} t^2$	$\frac{\vec{v}}{\vec{v}}$ = average velocity $\left(\frac{m}{c}\right)$	m
	$\sum \vec{F} = \vec{F}_{net} = m\vec{a}$ $\vec{F}_g = m\vec{g}$	(37	
Forces &	$F_f \leq \mu_s F_N \qquad F_f = \mu_k F_N$	\vec{a} = accelerati on $\left(\frac{m}{s^2}\right)$	{r • }
Dynamics	$\vec{F}_g = \frac{Gm_1m_2}{r^2}$	$f = \text{frequency}\left(\text{Hz} = \frac{1}{\text{s}}\right)$	Salid Calindan
		$a_c = \text{centripetal accelerati on } \left(\frac{\text{m}}{c^2}\right)$	Solid Cylinder:
	$x_{cm} = \frac{\sum m_i x_i}{\sum m_i}$	\vec{F} = force (N)	$I = \frac{1}{2}mr^2$
	<u> </u>	$F_f = $ forcedueto friction (N)	< -
Rotational	$I = \int_0^m r^2 dm = mr^2$	$\vec{F}_q = $ forcedue to gravity (N)	
Dynamics	$F_c = ma_c = \frac{mv^2}{r}$	$F_N = \text{normal force (N)}$	((+ r +)
	r	$F_c = \text{centripetal force (N)}$	
	$\vec{\tau} = \vec{r} \times \vec{F} \qquad \tau = rF \sin \theta = r_{\perp} F$	m = mass (kg)	m
	$\sum \vec{\mathbf{r}} = \vec{\mathbf{r}}_{net} = I \vec{\boldsymbol{\alpha}}$	\vec{g} = acceler ation due to gravity $\left(\frac{\text{m}}{c^2}\right)$	Hoop About Diameter:
	$T = \frac{2\pi}{c} = \frac{1}{f}$	(5)	$I = \frac{1}{2}mr^2$
Simple	$\lceil m \rceil$	$G = \text{gravitatio nal constant}\left(\frac{\text{N-m}^2}{\text{kg}^2}\right)$	m
Harmonic	$T_s = 2\pi \sqrt{\frac{m}{k}}$ $T_p = 2\pi \sqrt{\frac{L}{g}}$	r = radius (m)	
Motion	$\vec{F}_{\rm s} = -k\vec{x}$	\vec{r} = radius (vector)	((• -1))
	$U_s = \frac{1}{2}kx^2$	$\mu = \text{coefficient of friction } (dimensiondss)$	
	. 2	$\theta = \text{angle (°,rad)}$ $\omega = \text{angular velocity } \left(\frac{\text{rad}}{c}\right)$	Hollow Sphere:
	$\vec{\mathbf{p}} = m\vec{\mathbf{v}}$ $\Sigma m_i \vec{\mathbf{v}}_i = \Sigma m_f \vec{\mathbf{v}}_f$	()	$I = \frac{2}{3}mr^2$
	$\vec{J} = \Delta \vec{p} = \vec{F}_{net} \Delta t$	$k = \text{springconstant}\left(\frac{N}{m}\right)$	m
Momentum	$\vec{L} = \vec{r} \times \vec{p} = I\vec{\omega} L = rp \sin\theta = I\omega$	\vec{x} = displacement of spring (m) L = length of pendulum (m)	
		$\vec{\tau} = \text{torque (N·m)}$	(• •)
	$\Delta \vec{\boldsymbol{L}} = \vec{\boldsymbol{\tau}} \Delta t$	K = kinetic energy (J)	Solid Sphere:
	$W = \vec{F} \bullet \vec{d} = Fd \cos\theta = F_{ }d$	U = potential energy (J)	Solid Spriere: $I = \frac{2}{5}mr^2$
	$W = \tau \Delta \theta$	h = height (m)	$1-\frac{1}{5}m$
	$U_g = mgh = \frac{Gm_1m_2}{r}$	Q = heat (J)	←—L—→
	,	P = power (W) $W = work (N·m)$	m
Energy,	$K = \frac{1}{2}mv^2 = \frac{p^2}{2m}$	T = (time) period (Hz)	Rod About the Middle:
Work & Power	. 2111	$\vec{p} = \text{momentum (N·s)}$	$I = \frac{1}{12} mL^2$
	$K = \frac{1}{2}I\omega^2$	$\vec{J} = \text{impulse (N·s)}$	
	$E_{total} = U + E_k + Q$	$\vec{L} = \text{angular momentum } (N \cdot m \cdot s)$	
	$W = \Delta K + \Delta U$ $W \rightarrow$		Rod About the End:
	$P = \frac{W}{t} = \vec{F} \cdot \vec{v} = Fv \cos \theta = \tau \omega$		$I = \frac{1}{3}mL^2$
			3 ""

Table G. Heat and Th	nermal Physics Formulas and	l Equations
Temperature	°F=1.8(°C)+32 K=°C+273.15	$\Delta =$ change $^{\circ}F =$ Fahrenheit temperature ($^{\circ}F$)
Heat	$Q = mC \Delta T$ $Q_{melt} = m \Delta H_{fus}$ $Q_{boil} = m \Delta H_{vap}$ $C_p - C_v = R$ $\Delta L = \alpha L_i \Delta T$ $\Delta V = \beta V_i \Delta T$ $\frac{V_1}{T_1} = \frac{V_2}{T_2} \frac{Q}{\Delta t} = kA \frac{\Delta T}{L}$ $\frac{Q}{t} = -\frac{1}{R_i} A \Delta T$	°C = Celsius temperature (°C) K = Kelvin temperature (K) Q = heat (J, kJ) $m = \text{mass (kg)}$ $C = \text{specificheat capacity}\left(\frac{kJ}{\text{kg.°C}}\right) (C_p = \text{const. pressure}; C_v = \text{const. volume})$ $T = \text{temperature (K)}$ $t = \text{time (s)}$ $L = \text{length (m)}$ $k = \text{coëfficient of thermal conductivity}\left(\frac{J}{\text{m·s.°C}}, \frac{W}{\text{m·°C}}\right)$ $V = \text{volume (m³}$) $\alpha = \text{linear coëfficient of thermal expansion (°C-¹¹)}$
Thermodynamics	$\Delta U = \Delta Q + \Delta W$ $K = \frac{3}{2}k_BT$ $\Delta U = \frac{3}{2}Nk_B\Delta T = \frac{3}{2}nR\Delta T$ $W = -\Delta(PV)$	eta = volumetric coëfficient of thermal expansion (°C ⁻¹) R_i = "R" value of insulation R = gas constant $\left(\frac{J}{\text{molK}}\right)$ U = internal energy (J) W = work (N·m)

Table H. Thermal Properties of Selected Materials								
Substance	Melting Point	Boiling Point	Heat of Fusion ΔH _{fus}	Heat of Vaporization ΔΗ _{ναρ}	Specific Heat Capacity $C_p\left(\frac{\mathrm{kl}}{\mathrm{kg}^{\circ}\mathrm{C}}\right)$	Thermal Conductivity $k \left(\frac{J}{ms^\circ C} \right)$ at 25°C	Coefficients of Expansion at 20°C	
	(°C)	(°C)	$\left(\frac{kJ}{kg}\right)$	(kl/kg)	at 25°C		Linear α (°C ⁻¹)	Volumetric β (°C ⁻¹)
air (gas)	_	_	_	_	1.012	0.024	_	_
aluminum (solid)	659	2467	395	10460	0.897	250	2.3×10^{-5}	6.9×10^{-5}
ammonia (gas)	-75	-33.3	339	1369	4.7	0.024	-	_
argon (gas)	-189	-186	29.5	161	0.520	0.016	_	_
carbon dioxide (gas)	-7	78	57	74	0.839	0.0146	_	_
copper (solid)	1086	1187	134	5063	0.385	401	1.7×10^{-5}	5.1×10^{-5}
brass (solid)	_	_	_	_	0.380	120	1.9×10^{-5}	5.6×10^{-5}
diamond (solid)	3550	4827	10 000	30 000	0.509	2200	1×10^{-6}	3×10 ⁻⁶
ethanol (liquid)	-117	78	104	858	2.44	0.171	2.5×10^{-4}	7.5×10^{-4}
glass (solid)	_	_	_	_	0.84	0.96-1.05	8.5×10^{-6}	2.55×10 ⁻⁵
gold (solid)	1063	2660	64.4	1577	0.129	310	1.4×10^{-5}	4.2×10^{-5}
granite (solid)	1240	_	_	_	0.790	1.7-4.0		
helium (gas)	_	-269	_	21	5.193	0.142	1	_
hydrogen (gas)	-259	-253	58.6	452	14.30	0.168	_	_
iron (solid)	1535	2750	289	6360	0.450	80	1.18×10 ⁻⁵	3.33×10 ⁻⁵
lead (solid)	327	1750	24.7	870	0.160	35	2.9×10 ⁻⁵	8.7×10^{-5}
mercury (liquid)	-39	357	11.3	293	0.140	8	6.1×10^{-5}	1.82×10^{-4}
paraffin wax (solid)	46–68	~300	~210	_	2.5	0.25	_	_
silver (solid)	962	2212	111	2360	0.233	429	1.8×10 ⁻⁵	5.4×10 ⁻⁵
steam (gas) @			_	2260	2.080	0.016	_	_
water (liq.) @ 25°C	0	100	334	2200	4.181	0.58	6.9×10^{-5}	2.07×10 ⁻⁴
ice (solid) @ -10°C			334	_	2.11	2.18	_	_

Table I. Electricity Forr	nulas & Equations	
Electrostatic Charges & Electric Fields	$\vec{F}_e = \frac{kq_1q_2}{r^2} = \frac{1}{4\pi\varepsilon_o} \frac{q_1q_2}{r^2}$ $\vec{E} = \frac{\vec{F}_e}{q} = \frac{Q}{\varepsilon_o A} \qquad \vec{E} = \frac{1}{4\pi\varepsilon_o} \frac{q}{r^2} = \frac{\Delta V}{\Delta r}$ $W = q\vec{E} \cdot \vec{d} = qEd\cos\theta$ $V = \frac{W}{q} = \vec{E} \cdot \vec{d} = \frac{1}{4\pi\varepsilon_o} \frac{q}{r}$ $\Delta U_E = q\Delta V \qquad U_E = \frac{kq_1q_2}{r}$	$\Delta = \text{change}$ $\vec{F}_e = \text{forcedue} \text{to electric field (N)}$ $k = \text{electrostatic constant } \left(\frac{\text{N·m}^2}{\text{c}^2}\right)$ $q = \text{pointcharge (C)}$
Circuits	$I = \frac{\Delta Q}{\Delta t} = \frac{V}{R} \qquad V = IR$ $P = VI = I^{2}R = \frac{V^{2}}{R}$ $W = Q_{H} = Pt = VIt = I^{2}Rt = \frac{V^{2}t}{R}$ $R = \frac{\rho \ell}{A}$ $V = \frac{Q}{C}$ $C = k\varepsilon_{o} \frac{A}{d}$ $U_{capacitor} = \frac{1}{2}QV = \frac{1}{2}CV^{2}$	$Q = \operatorname{charge}(C)$ $\vec{E} = \operatorname{electric} \ \operatorname{field} \ \left(\frac{N}{C}, \frac{V}{m}\right)$ $V = \operatorname{voltage} = \operatorname{electric} \ \operatorname{potential} \ \operatorname{difference} \ (V)$ $W = \operatorname{work} \ (N \cdot m)$ $d = \operatorname{distance} \ (m)$ $r = \operatorname{radius}(m)$ $\vec{I} = \operatorname{current} \ (A)$ $t = \operatorname{time} \ (s)$ $R = \operatorname{resistance} \ (\Omega)$ $P = \operatorname{power} \ (W)$ $Q_H = \operatorname{heat} \ (J)$ $\rho = \operatorname{resistivity} \ (\Omega \cdot m)$ $\ell = \operatorname{length} \ (m)$
Series Circuits	$I = I_1 = I_2 = I_3 = \dots$ $V = V_1 + V_2 + V_3 + \dots = \sum V_i$ $R_{eq} = R_1 + R_2 + R_3 + \dots = \sum R_i$ $\frac{1}{C_{total}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots = \sum \frac{1}{C_i}$ $P_{total} = P_1 + P_2 + P_3 + \dots = \sum P_i$ $I = I_1 + I_2 + I_3 + \dots = \sum I_i$	$A = \text{cross-sectional area} \pmod{2}$ $\varepsilon_0 = \text{electric permittivity of free space}$ $U = \text{potential energy (J)}$ $C = \text{capacitance (F)}$ $\vec{v} = \text{velocity (of moving charge or wire)} \pmod{\frac{m}{s}}$ $\vec{B} = \text{magnetic field (T)}$ $\mu_0 = \text{magnetic permeability of free space}$ $r = \text{radius (distance) from wire}$
Parallel Circuits	$V = V_1 = V_2 = V_3 = \dots$ $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots = \sum \frac{1}{R_i}$ $C_{total} = C_1 + C_2 + C_3 + \dots = \sum C_i$ $P_{total} = P_1 + P_2 + P_3 + \dots = \sum P_i$	

Table J. Electricity & N	Table J. Electricity & Magnetism Formulas & Equations					
Magnetism	$\vec{F}_{M} = q (\vec{v} \times \vec{B}) \qquad F_{M} = q v B \sin \theta$ $\vec{F}_{M} = \ell (\vec{I} \times \vec{B}) \qquad F_{M} = \ell I B \sin \theta$ $V = \ell (\vec{v} \times \vec{B}) \qquad V = \ell v B \sin \theta$ $B = \frac{\mu_{o}}{2\pi} \frac{I}{r}$ $\Phi_{B} = \vec{B} \cdot \vec{A} = B A \cos \theta$ $\varepsilon = \frac{\Delta \Phi_{B}}{\Delta t} = B \ell v$	$\Delta = \text{change}$ $\vec{F}_M = \text{forcedue to magnetic field (N)}$ $k = \text{electrostatic constant } \left(\frac{\text{N-m}^2}{\text{C}^2}\right)$ $q = \text{pointcharge (C)}$ $V = \text{voltage} = \text{electric potential difference (V)}$ $\varepsilon = \text{emf} = \text{electromotive force(V)}$ $r = \text{radius (m)}$ $\vec{I} = \text{current (A)}$ $\ell = \text{length (m)}$ $t = \text{time (s)}$				
Electromagnetic Induction	$\frac{\#turns_{in}}{\#turns_{out}} = \frac{V_{in}}{V_{out}} = \frac{I_{out}}{I_{in}}$ $P_{in} = P_{out}$	$A = \text{cross-sectional area} \pmod{m^2}$ $\vec{v} = \text{velocity (of moving charge or wire)} \pmod{\frac{m}{s}}$ $\vec{B} = \text{magnetic field (T)}$ $\mu_0 = \text{magnetic permeability of free space}$ $\Phi_B = \text{magnetic flux}$				

Table K. Resistor Color Code				
Color	Digit	Multiplier		
black	0	× 10 ⁰		
brown	1	× 10 ¹		
red	2	× 10 ²		
orange	3	× 10 ³		
yellow	4	× 10 ⁴		
green	5	× 10 ⁵		
blue	6	× 10 ⁶		
violet	7	× 10 ⁷		
gray	8	× 10 ⁸		
white	9	× 10 ⁹		
gold	± 5%			
silver		± 10%		

Table L. Symbols Used in Electrical Circuit Diagrams				
Component	Symbol	Component Sym		
wire		battery	Ⅎℍ℮	
switch	-√ •-	ground	— GND	
fuse	-∞-	resistor	-₩₩ -	
voltmeter	- (V)-	variable resistor (rheostat, potentiometer, dimmer)		
ammeter	-A-	lamp (light bulb)		
ohmmeter	-R-	capacitor	⊣ ⊢	
		diode		

Conductors		Semi	iconductors		Insulators		
Substance	Resistivity $ig(oldsymbol{\Omega} \cdot \mathbf{m} ig)$	Substance Resistivity $(\Omega \cdot \mathbf{m})$ Substance		Substance	Resistivity $ig(oldsymbol{\Omega} \cdot oldsymbol{m} ig)$		
silver	1.59×10 ⁻⁸	germanium	0.001 to 0.5	deionized water	1.8×10 ⁵		
copper	1.72×10^{-8}	silicon	0.1 to 60	glass	1×10^9 to 1×10^{13}		
gold	2.44×10^{-8}	sea water	0.2	rubber, hard	$1 \times 10^{13} \text{ to } 1 \times 10^{13}$		
aluminum	2.82×10^{-8}	drinking water	20 to 2 000	paraffin (wax)	$1 \times 10^{13} \text{ to } 1 \times 10^{17}$		
tungsten	5.60×10^{-8}			air	1.3×10^{16} to 3.3×10^{16}		
iron	9.71×10^{-8}			quartz, fused	7.5×10 ¹⁷		
nichrome	1.50×10^{-6}						
graphite	3×10^{-5} to 6×10^{-4}						

Table N. Waves & 0	Table N. Waves & Optics						
Waves	$\lambda = \frac{v}{f}$ $f = \frac{1}{T}$ $v_{\text{wave on a string}} = \sqrt{\frac{F_T}{\mu}}$ $f_{\text{dopplershifted}} = f\left(\frac{v_{\text{wave}} + v_{\text{detector}}}{v_{\text{wave}} + v_{\text{source}}}\right)$	$v = \text{velocity of wave } \left(\frac{m}{s}\right)$ $f = \text{frequency (Hz)}$ $\lambda = \text{wavelength (m)}$ $T = \text{period (of time) (s)}$ $F_T = \text{tension(force)onstring (N)}$ $\mu = \text{elastic modulus of string } \left(\frac{kg}{m}\right)$					
Reflection, Refraction & Diffraction	$\theta_{i} = \theta_{r}$ $n = \frac{c}{v}$ $n_{1} \sin \theta_{1} = n_{2} \sin \theta_{2}$ $\theta_{c} = \sin^{-1} \left(\frac{n_{2}}{n_{1}}\right)$ $\frac{n_{2}}{n_{1}} = \frac{v_{1}}{v_{2}} = \frac{\lambda_{1}}{\lambda_{2}}$ $\Delta L = m\lambda = d \sin \theta$	$\begin{aligned} \theta_i &= \text{angle of incidence (°, rad)} \\ \theta_r &= \text{angle of reflection (°, rad)} \\ \theta_c &= \text{critical angle (°, rad)} \\ n &= \text{index of refraction } (dimensiondss) \\ c &= \text{speed of light in a vacuum } \left(\frac{\text{m}}{\text{s}}\right) \\ s_f &= \text{distance to the focus of a mirror or lens (m)} \\ r_c &= \text{radius of curvature of a spherical mirror (m)} \\ s_i &= \text{distance from the mirror or lens to the image (m)} \\ s_o &= \text{distance from the mirror or lens to the object (m)} \\ h_i &= \text{height of the image (m)} \end{aligned}$					
Mirrors & Lenses	$s_f = \frac{r_c}{2}$ $\frac{1}{s_i} + \frac{1}{s_o} = \frac{1}{s_f}$ $M = \frac{h_i}{h_o} = -\frac{s_i}{s_o}$	<pre>h_o = height of the object (m) M = magnification(dimensionless) d = separation(m) L = distancefrom the opening (m) m = an integer</pre>					

Table P.	Table P. Properties of Water and Air				
		Water	Air		
Temp. (°C)	$\frac{\text{Density}}{\binom{\text{kg}}{\text{m}^3}}$	Speed of Sound $\left(\frac{m}{s}\right)$	Vapor Pressure (Pa)	Density $\left(\frac{kg}{m^3}\right)$	Speed of Sound $\left(\frac{m}{s}\right)$
0	999.78	1 403	611.73	1.288	331.30
5	999.94	1 427	872.60	1.265	334.32
10	999.69	1 447	1 228.1	1.243	337.31
20	998.19	1 481	2 338.8	1.200	343.22
25	997.02	1 496	3 169.1	1.180	346.13
30	995.61	1 507	4 245.5	1.161	349.02
40	992.17	1 526	7 381.4	1.124	354.73
50	990.17	1 541	9 589.8	1.089	360.35
60	983.16	1 552	19 932	1.056	365.88
70	980.53	1 555	25 022	1.025	371.33
80	971.79	1 555	47 373	0.996	376.71
90	965.33	1 550	70 117	0.969	382.00
100	954.75	1 543	101 325	0.943	387.23

Table Q. Absolute Indices of Refraction					
Measured at $f = 5.09 \times 10^{14} \mathrm{Hz}$ (yellow light)					
Substance Index of Refraction		Substance	Index of Refraction		
air	1.000293	silica (quartz), fused	1.459		
ice	1.309	plexiglass	1.488		
water	1.3330	Lucite	1.495		
ethyl alcohol	1.36	glass, borosilicate (Pyrex)	1.474		
human eye, cornea	1.38	glass, crown	1.50-1.54		
human eye, lens	1.41	glass, flint	1.569-1.805		
safflower oil	1.466	sodium chloride, solid	1.516		
corn oil	1.47	PET (#1 plastic)	1.575		
glycerol	1.473	zircon	1.777-1.987		
honey	1.484-1.504	cubic zirconia	2.173-2.21		
silicone oil	1.52	diamond	2.417		
carbon disulfide	1.628	silicon	3.96		

Physics Reference Tables Page 10

Table R. Fluid Med	hanics Formulas and Equations	
Density & Pressure	$\rho = \frac{m}{V}$ $P = \frac{F}{A}$ $\frac{F_1}{A_1} = \frac{F_2}{A_2}$ $P = P_0 + \rho g h$ $A_1 v_1 = A_2 v_2$ $P_1 + \rho g h_1 + \frac{1}{2} \rho v_1^2 =$ $P_2 + \rho g h_2 + \frac{1}{2} \rho v_2^2$	$\Delta = \text{change}$ $\rho = \text{density}\left(\frac{\text{kg}}{\text{m}^3}\right)$ $m = \text{mass (kg)}$ $V = \text{volume (m}^3)$ $P = \text{presure (Pa)}$ $g = \text{accelerati on due to gravity }\left(\frac{\text{m}}{\text{s}^2}\right)$ $h = \text{height or depth (m)}$ $A = \text{area (m}^2)$ $v = \text{velocity (of fluid) }\left(\frac{\text{m}}{\text{s}}\right)$
Forces, Work & Energy	$F_{B} = \rho V_{d} g$ $PV = Nk_{B}T = nRT$ $\frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}}$ $E_{k (molecular)} = \frac{3}{2}k_{B}T$ $v_{rms} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3k_{B}T}{\mu}}$ $W = -P\Delta V$	$F = \text{force (N)}$ $n = \text{number of moles (mol)}$ $R = \text{gas constant } \left(\frac{J}{molK}\right)$ $N = \text{number of molecules}$ $k_B = \text{Boltzmann's constant } \left(\frac{J}{K}\right)$ $T = \text{temperature (K)}$ $M = \text{molar mass } \left(\frac{g}{mol}\right)$ $\mu = \text{molecular mass (kg)}$ $E_k = \text{kinetic energy (J)}$ $W = \text{work (N·m)}$

Table S. Planetary Data								
	Mercury	Venus	Earth	Mars	Jupiter	Saturn	Uranus	Neptune
Distance from Sun (m)	5.79 × 10 ¹⁰	1.08 × 10 ¹¹	1.50 × 10 ¹¹	2.28 × 10 ¹¹	7.78 × 10 ¹¹	1.43 × 10 ¹²	2.87 × 10 ¹²	4.50×10^{12}
Radius (m)	2.44 × 10 ⁶	6.05 × 10 ⁶	6.37 × 10 ⁶	3.39×10^{6}	6.99×10^{7}	5.82 × 10 ⁷	2.54 × 10 ⁷	2.46×10^{7}
Mass (kg)	3.30×10^{23}	4.87×10^{24}	5.97 × 10 ²⁴	6.42×10^{23}	1.90 × 10 ²⁷	5.68 × 10 ²⁶	8.68 × 10 ²⁵	1.02×10^{26}
Density $\left(\frac{kg}{m^3}\right)$	5430	5250	5520	3950	1330	690	1290	1640
Orbit (years)	0.24	0.62	1.00	1.88	11.86	84.01	164.79	248.54
Rotation Period (hours)	1408	5832	23.9	24.6	9.9	10.7	17.2	16.1
Tilt of axis	2°	177.3°	23.5°	25.2°	3.1°	26.7°	97.9°	29.6°
# of observed satellites	0	0	1	2	67	62	27	13

Table T. Sun & Moon Data				
Radius of the sun (m)	6.96 × 10 ⁸			
Mass of the sun (kg)	1.99 × 10 ³⁰			
Radius of the moon (m)	1.74 × 10 ⁶			
Mass of the moon (kg)	7.35×10^{22}			
Distance of moon from Earth (m)	3.84×10^{8}			

Physics Reference Tables

Table U. Atomic & Part	Table U. Atomic & Particle Physics (Modern Physics)					
Energy	$E_{photon} = hf = \frac{hc}{\lambda} = pc = \hbar\omega$ $E_{k,max} = hf - \phi$ $\lambda = \frac{h}{p}$ $E_{photon} = E_i - E_f$ $E^2 = (pc)^2 + (mc^2)^2$ $\frac{1}{\lambda} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$	$E = \text{energy (J)}$ $h = \text{Planck's constant (J·s)}$ $\hbar = \text{reduced Planck's constant} = \frac{h}{2\pi} \text{(J·s)}$ $f = \text{frequency (Hz)}$ $c = \text{speed of light } \left(\frac{m}{s}\right)$ $\lambda = \text{wavelength (m)}$ $p = \text{momentum (N·s)}$ $m = \text{mass (kg)}$ $E_k = \text{kinetic energy (J)}$ $\phi = \text{work function}$				
Special Relativity	$ \gamma = \frac{1}{\sqrt{1 - v^2/c^2}} $ $ \gamma = \frac{L_o}{L} $ $ \gamma = \frac{\Delta t'}{\Delta t} $ $ \gamma = \frac{m_{rel}}{m_o} $	$R_{H} = \text{Rydberg constant}(\frac{1}{\text{m}})$ $\gamma = \text{Lorentz factor } (dimensiondss)$ $L = \text{length in moving reference frame (m)}$ $L_{o} = \text{length in stationary reference frame (m)}$ $\Delta t' = \text{time in stationary reference frame (s)}$ $\Delta t = \text{time in moving reference frame (s)}$ $m_{o} = \text{mass in stationary reference frame (kg)}$ $m_{rel} = \text{apparent mass in moving reference frame (kg)}$ $v = \text{velocity } \left(\frac{\text{m}}{\text{s}}\right)$				

Physics Reference Tables Page 12

Physics Reference Tables Page 13

Table Y. Geometry & Trigo	Table Y. Geometry & Trigonometry Formulas						
Triangles	$A = \frac{1}{2}bh$ $c^{2} = a^{2} + b^{2} - 2ab\cos C$ $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$						
Right Triangles	$c^{2} = a^{2} + b^{2}$ $\sin \theta = \frac{a}{c} = \frac{\text{opposite}}{\text{hypotenuse}}$ $\cos \theta = \frac{b}{c} = \frac{\text{adjacent}}{\text{hypotenuse}}$ $\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{a}{b} = \frac{\text{opposite}}{\text{adjacent}}$ $b = c \cos \theta$ $a = c \sin \theta$	a,b,c = length of a side of a triangle θ = angle					
Rectangles, Parallelograms and Trapezoids	$A = \overline{b}h$	A = area $C =$ circumfere nce $S =$ surface area					
Rectangular Solids	$V = \ell wh$	V = volume					
Circles	$C = 2\pi r$ $A = \pi r^2$	b = base h = height					
Cylinders	$S = 2\pi r\ell + 2\pi r^2 = 2\pi r(\ell + r)$ $V = \pi r^2 \ell$	$\ell = \text{length}$ $w = \text{width}$					
Spheres	$S = 4\pi r^2$ $V = \frac{4}{3}\pi r^3$	<i>r</i> = radius					

Table Z. Va	alues of Trigo	nometric Fu	nctions						
degree	radian	sine	cosine	tangent	degree	radian	sine	cosine	tangent
0°	0.000	0.000	1.000	0.000					
1°	0.017	0.017	1.000	0.017	46°	0.803	0.719	0.695	1.036
2°	0.035	0.035	0.999	0.035	47°	0.820	0.731	0.682	1.072
3°	0.052	0.052	0.999	0.052	48°	0.838	0.743	0.669	1.111
4°	0.070	0.070	0.998	0.070	49°	0.855	0.755	0.656	1.150
5°	0.087	0.087	0.996	0.087	50°	0.873	0.766	0.643	1.192
6°	0.105	0.105	0.995	0.105	51°	0.890	0.777	0.629	1.235
7°	0.122	0.122	0.993	0.123	52°	0.908	0.788	0.616	1.280
8°	0.140	0.139	0.990	0.141	53°	0.925	0.799	0.602	1.327
9°	0.157	0.156	0.988	0.158	54°	0.942	0.809	0.588	1.376
10°	0.175	0.174	0.985	0.176	55°	0.960	0.819	0.574	1.428
11°	0.192	0.191	0.982	0.194	56°	0.977	0.829	0.559	1.483
12°	0.209	0.208	0.978	0.213	57°	0.995	0.839	0.545	1.540
13°	0.227	0.225	0.974	0.231	58°	1.012	0.848	0.530	1.600
14°	0.244	0.242	0.970	0.249	59°	1.030	0.857	0.515	1.664
15°	0.262	0.259	0.966	0.268	60°	1.047	0.866	0.500	1.732
16°	0.279	0.276	0.961	0.287	61°	1.065	0.875	0.485	1.804
17°	0.297	0.292	0.956	0.306	62°	1.082	0.883	0.469	1.881
18°	0.314	0.309	0.951	0.325	63°	1.100	0.891	0.454	1.963
19°	0.332	0.326	0.946	0.344	64°	1.117	0.899	0.438	2.050
20°	0.349	0.342	0.940	0.364	65°	1.134	0.906	0.423	2.145
21°	0.367	0.358	0.934	0.384	66°	1.152	0.914	0.407	2.246
22°	0.384	0.375	0.927	0.404	67°	1.169	0.921	0.391	2.356
23°	0.401	0.391	0.921	0.424	68°	1.187	0.927	0.375	2.475
24°	0.419	0.407	0.914	0.445	69°	1.204	0.934	0.358	2.605
25°	0.436	0.423	0.906	0.466	70°	1.222	0.940	0.342	2.747
26°	0.454	0.438	0.899	0.488	71°	1.239	0.946	0.326	2.904
27°	0.471	0.454	0.891	0.510	72°	1.257	0.951	0.309	3.078
28°	0.489	0.469	0.883	0.532	73°	1.274	0.956	0.292	3.271
29°	0.506	0.485	0.875	0.554	74°	1.292	0.961	0.276	3.487
30°	0.524	0.500	0.866	0.577	75°	1.309	0.966	0.259	3.732
31°	0.541	0.515	0.857	0.601	76°	1.326	0.970	0.242	4.011
32°	0.559	0.530	0.848	0.625	77°	1.344	0.974	0.225	4.331
33°	0.576	0.545	0.839	0.649	78°	1.361	0.978	0.208	4.705
34°	0.593	0.559	0.829	0.675	79°	1.379	0.982	0.191	5.145
35°	0.611	0.574	0.819	0.700	80°	1.396	0.985	0.174	5.671
36°	0.628	0.588	0.809	0.727	81°	1.414	0.988	0.156	6.314
37°	0.646	0.602	0.799	0.754	82°	1.431	0.990	0.139	7.115
38°	0.663	0.616	0.788	0.781	83°	1.449	0.993	0.122	8.144
39°	0.681	0.629	0.777	0.810	84°	1.466	0.995	0.105	9.514
40°	0.698	0.643	0.766	0.839	85°	1.484	0.996	0.087	11.430
41°	0.716	0.656	0.755	0.869	86°	1.501	0.998	0.070	14.301
42°	0.733	0.669	0.743	0.900	87°	1.518	0.999	0.052	19.081
43°	0.750	0.682	0.731	0.933	88°	1.536	0.999	0.035	28.636
44°	0.768	0.695	0.719	0.966	89°	1.553	1.000	0.017	57.290
45°	0.785	0.707	0.707	1.000	90°	1.571	1.000	0.000	∞

Table AA. Son	ne Exact and Approximate Co	nve	rsions		
Length	1 cm	~	width of a small paper	clip	
	1 inch (in.)	≡	2.54 cm		
	length of a US dollar bill	=	6.14 in.	=	15.6 cm
	12 in.	≡	1 foot (ft.)	≈	30 cm
	3 ft.	≡	1 yard (yd.)	≈	1 m
	1 m	=	0.3048 ft.	=	39.37 in.
	1 km	≈	0.6 mi.		
	5,280 ft.	≡	1 mile (mi.)	≈	1.6 km
			0.7		
Mass/	1 small paper clip	≈	0.5 gram (g)		
Weight	US 1¢ coin (1983–present)	=	2.5 g		
	US 5¢ coin	=	5 g		
	1 oz.	≈	30 g		2.6
	one medium-sized apple	≈ _	1 N	≈	3.6 oz.
	1 pound (lb.)	=	16 oz.	≈	454 g
	1 pound (lb.)	≈ _	4.45 N		0.0 ton==
	1 ton	=	2000 lb.	≈	0.9 tonne
	1 tonne	Ξ	1000 kg	≈	1.1 ton
Volume	1 pinch	=	≤ ¹ / ₈ teaspoon (tsp.)		
	1 mL	≈	10 drops		
	1 tsp.	≈	5 mL	≈	60 drops
	3 tsp.	≡	1 tablespoon (Tbsp.)	≈	15 mL
	2 Tbsp.	≡	1 fluid ounce (fl. oz.)	≈	30 mL
	8 fl. oz.	≡	1 cup (C)	≈	250 mL
	16 fl. oz.	=	1 U.S. pint (pt.)	≈	500 mL
	20 fl. oz.	=	1 Imperial pint (UK)	≈	600 mL
	2 pt.	=	1 U.S. quart (qt.)	≈	1 L
	4 qt. (U.S.)	≡	1 U.S. gallon (gal.)	≈	3.8 L
	4 qt. (UK) = 5 qt. (U.S.)	≡	1 Imperial gal. (UK)	≈	4.7 L
Speed	1 ^m / _s	~	2.24 ^{mi.} / _h		
	60 ^{mi.} / _h	≈	$100^{\text{km}}/_{\text{h}}$	≈	27 ^m / _s
Energy	1 cal	*	4.18 J		
	1 Calorie (food)	≡	1 kcal	≈	4.18 kJ
	1 BTU	≈	1.05 kJ		
Power	1 hp	≈	746 W		
1 2 1 2 0.	1 kW	≈	1.34 hp		
			· r		
Temperature	0 K	≡	−273.15°C	=	absolute zero
	0°F	≈	-18°C		
	32°F	=	0°C = 273.15 K	=	water freezes
	70°F	≈	21°C	≈	room temperature
	212°F	=	100°C	=	water boils
Speed of					
light	$300\ 000\ 000^{\text{m}}/_{\text{s}}$	≈	186 000 ^{mi.} / _s	≈	1 ft./ns

Tabl	e BB.	Greek Alphabet
A	α	alpha
В	β	beta
Γ	γ	gamma
Δ	δ	delta
Е	ε, ∈	epsilon
Z	ζ	zeta
Н	η	eta
Θ	θ	theta
I	ι	iota
K	κ	kappa
Λ	λ	lambda
M	μ	mu
N	ν	nu
Ξ	ξ	xi
0	0	omicron
П	π	pi
P	ρ	rho
Σ	σ	sigma
T	τ	tau
Υ	υ	upsilon
Φ	φ, φ	phi
X	χ	chi
Ψ	ψ	psi
Ω	ω	omega