Натуральная дедукция (естественный вывод) для логики предикатов

Математическая логика и теория алгоритмов

Алексей Романов 31 октября 2024 г.

ТЕИМ

Правила для логики высказываний

• Для ∧:

 $\frac{A \quad B}{A \wedge B} \quad \wedge I \qquad \qquad \frac{A \wedge B}{A} \quad \wedge E \qquad \frac{A \wedge B}{B} \quad \wedge E$

• Для →:

 $\begin{array}{c} \vdots \\ \frac{B}{A \to B} \to I & \frac{A \to B \quad A}{B} \to E \end{array}$

• Для ¬ и ⊥:

• Для ∨:

• Остальные:

 $RAA \frac{A}{\Delta}$

2/12

Правила натуральной дедукции для кванторов

- Снова сохраняются правила из логики высказываний (на предыдущем слайде).
- Добавляются правила введения и исключения для кванторов.

Правила натуральной дедукции для кванторов

- Снова сохраняются правила из логики высказываний (на предыдущем слайде).
- Добавляются правила введения и исключения для кванторов.
- Начнём с простых: $\frac{\forall x \ A(x)}{A(t)} \ \forall E \$ и $\frac{A(t)}{\exists x \ A(x)} \$ $\exists I.$ Здесь t любой терм (обычно просто параметр).
- Эти правила аналоги типа γ в деревьях.

Правила натуральной дедукции для кванторов

- Снова сохраняются правила из логики высказываний (на предыдущем слайде).
- Добавляются правила введения и исключения для кванторов.
- Начнём с простых: $\frac{\forall x \ A(x)}{A(t)} \ \forall E \$ и $\frac{A(t)}{\exists x \ A(x)} \$ $\exists I.$ Здесь t любой терм (обычно просто параметр).
- Эти правила аналоги типа γ в деревьях.

Здесь a — новый параметр, как в δ .

Пояснения к правилам

• Смысл правила $\forall I$: чтобы доказать $\forall x \ A(x)$, нужно доказать A(a) для *произвольного а*. Произвольность как раз обеспечивается тем, что это новый параметр и о нём ничего неизвестно.

Пояснения к правилам

- Смысл правила $\forall I$: чтобы доказать $\forall x \ A(x)$, нужно доказать A(a) для *произвольного а*. Произвольность как раз обеспечивается тем, что это новый параметр и о нём ничего неизвестно.
- Смысл правила $\exists E$: мы временно даём название a тому объекту, существование которого утверждается. Правило немного аналогично $\vee E$.
- Удобно помечать подвывод, вводящий параметр, этим параметром.
- Есть упрощённый вариант ∃Е, не вводящий подвывод, но он усложняет определение контрмоделей для недоказумых секвенций и мы его не используем.

$$orall x(P(x) o Q(x)) dash \exists x P(x) o \exists x Q(x)$$

$$\begin{array}{c|c} 1 & \forall x(P(x) o Q(x)) & \text{Дано} \\ \vdots & \vdots & \\ n & \exists x P(x) o \exists x Q(x) \end{array}$$

$$orall x(P(x) o Q(x)) \vdash \exists x P(x) o \exists x Q(x)$$

1 $| \forall x(P(x) o Q(x)) |$ Дано
2 $| \exists x P(x) |$ Дано
 \vdots \vdots $n-1$ $| \exists x Q(x) |$ \Rightarrow I, 2 - $(n-1)$

$$\forall x(P(x) \rightarrow Q(x)) \vdash \exists x P(x) \rightarrow \exists x Q(x)$$

1 $\forall x(P(x) \rightarrow Q(x))$ Дано

2 $\exists x P(x)$ Дано

3 $\Rightarrow P(a)$ Дано

 \vdots $\Rightarrow x Q(x)$ Дано

 $\exists x Q(x)$ $\Rightarrow E, 2, 3-(n-2)$
 $\Rightarrow x P(x) \rightarrow \exists x Q(x)$ $\Rightarrow I, 2-(n-1)$

n

$$orall x(P(x)
ightarrow Q(x)) dash \exists x P(x)
ightarrow \exists x Q(x)$$

1 $| \forall x (P(x)
ightarrow Q(x)) |$ Дано

2 $| \exists x P(x) |$ Дано

4 $| P(a) |$ Дано

4 $| P(a)
ightarrow Q(a) |$ $\forall E, 1$

5 $| Q(a) |$ $\Rightarrow E, 3, 4$
 $n-2 | \exists x Q(x) |$ $\exists x Q(x) |$ $\exists E, 2, 3-(n-2)$

 \Rightarrow I, 2-(n - 1)

 $\exists x P(x) \rightarrow \exists x Q(x)$

• Докажем $\forall x \ P(x) \land Q(x) \vdash (\forall x \ P(x)) \land (\forall x \ Q(x))$:

• Можно ли оба раза использовать a₁?

• Докажем $\forall x \ P(x) \land Q(x) \vdash (\forall x \ P(x)) \land (\forall x \ Q(x))$:

• Можно ли оба раза использовать a_1 ? Да, так как подвыводы независимы. Но незачем.

Пример 3 в линейной записи

1	$\forall x \ P(x) \land Q(x)$		Дано
2	a ₁	$P(a_1) \wedge Q(a_1)$	∀E, 1
k-1		$P(a_1)$	∧E, 2
k	a ₂	$P(a_2) \wedge Q(a_2)$	∀E, 1
n – 3		$Q(a_2)$	∧E, <i>k</i>
n – 2	$\forall x P(x)$		\forall I, 2-($k-1$)
n-1	$\forall x \ Q(x)$		\forall I, <i>k</i> −(<i>n</i> − 3)
n	$\begin{vmatrix} \forall x P(x) \land Q(x) \\ a_1 & P(a_1) \land Q(a_1) \\ P(a_1) \end{vmatrix}$ $\begin{vmatrix} a_2 & P(a_2) \land Q(a_2) \\ Q(a_2) & \\ \forall x P(x) & \\ \forall x Q(x) & \\ (\forall x P(x)) \land (\forall x Q(x)) \end{vmatrix}$		\wedge I, $n-2$, $n-1$

или

Пример 3 в линейной записи

				1	$\forall x P(x) \wedge Q(x)$	Дано
				7	$P(a_1) \wedge Q(a_1)$	∀E, 1
1 $\forall x P(x) \land Q(x)$		Дано	5	$\begin{vmatrix} a_1 \end{vmatrix} P(a_1)$	∧E, 7	
_	VX 7 (X) /\ Q(X)		дано	6	$\begin{vmatrix} a_1 \end{vmatrix} Q(a_1)$	∧E, <i>k</i>
2	a ₁	$P(a_1) \wedge Q(a_1)$	∀E, 1	U		/\L, K
k – 1		$P(a_1)$	∧E, 2	3	$\forall x P(x)$	∀I, 5-5
			/ \ _ / _	4	$\forall x \ Q(x)$	∀I, 6-6
k	a ₂	$P(a_2) \wedge Q(a_2)$	∀E, 1	·	, , , , , , , , , , , , , , , , , , ,	, i, o o
				2	$(\forall x P(x)) \wedge (\forall x Q(x))$	∧I, 3, 4
n – 3		$Q(a_2)$	∧E, <i>k</i>		I	
n – 2	2 // 2(1)		VI 2 (k 1)	Здесь важно, что строка 7		
n-2	$\forall x P(x)$		$\forall I, 2-(k-1)$	появилась после 5 и 6,		
n-1	$\forall x \ Q(x)$		\forall I, <i>k</i> −(<i>n</i> − 3)			
				иначе в них нельзя		
n	$(\forall x \ P(x)) \land (\forall x \ Q(x))$		\wedge I, $n-2$, $n-1$	использовать a_1 . Если		
или			использовать параметры			

только внутри подвыводов, которые их вводят, эта проблема не возникает. 8/12

• Доказываем $\exists x \forall y \ P(x,y) \vdash \forall y \exists x \ P(x,y)$:

• Доказываем $\exists x \forall y \ P(x,y) \vdash \forall y \exists x \ P(x,y)$:

$$\frac{\exists x \forall y \ P(x,y)}{\exists x \ P(x,a_1)} \xrightarrow{\exists E \ P(x,a_1)} \xrightarrow{\exists E \ P(x,a_1)} \exists E \ P(x,x) \vdash \exists E \$$

Пример 4 в линейной записи

• Доказываем $\exists x \forall y \; P(x,y) \vdash \forall y \exists x \; P(x,y)$ в линейной записи:

1
$$\exists x \forall y \ P(x,y)$$
 Дано
2 $a_1 \begin{vmatrix} a_2 \end{vmatrix} \forall y \ P(a_2,y)$ Дано
3 $P(a_2,a_1)$ $\forall E, 2$
 $n-2 \begin{vmatrix} \exists x \ P(x,a_1) \end{vmatrix} \exists I, 3$
 $n-1 \begin{vmatrix} \exists x \ P(x,a_1) \end{vmatrix} \exists E, 1, 2-(n-2)$
 $n \forall y \exists x \ P(x,y)$ $\forall I, 2-(n-1)$

Построение контрмодели

- Если формулу или секвенцию доказать не получается, можно предположить, что она неверна и попробовать построить контрмодель.
- Для дерева с вынесенными посылками выбираем вершину, а для линейной записи — строку, на которых застряли.
- Все видимые посылки должны быть истинны, а сама выбранная формула ложна.
- Значения предикатов должны быть заданы на всех параметрах этих формул (если они все без параметров, то на одном параметре a_1).
- Может понадобиться добавить ещё параметры.

Дополнительное чтение

- Непейвода, 11.2.5 и 11.4.
- Гладкий, глава 10 (менее удобная система записи).