

Лабораторная работа 2-3. Алгоритмы на строках

А. Сравнения подстрок

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт

ввод: стандартный ввод вывод: стандартный вывод

Дана строка. Нужно уметь отвечать на запросы вида: равны ли подстроки [a..b] и [c..d].

Входные данные

Сперва строка S (не более 10^5 строчных латинских букв). Далее число M — количество запросов.

В следующих M строках запросы a,b,c,d. $0 \le M \le 10^5, 1 \le a \le b \le |S|, 1 \le c \le d \le |S|$

Выходные данные

М строк. Выведите Yes, если подстроки совпадают, и No иначе.

Пример

входные данные	Скопировать
trololo	
3	
1717	
3557	
1115	
выходные данные	Скопировать
Yes	
Yes	
No	
NO	

В. Префикс-функция

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт

ввод: стандартный ввод вывод: стандартный вывод

Постройте префикс-функцию для заданной строки S.

Входные данные

Первая строка входного файла содержит $S(1 \le |S| \le 10^6)$. Строка состоит из букв латинского алфавита.

Выходные данные

Выведите значения префикс-функции строки S для всех индексов 1, 2, ..., |S|.

Пример

входные данные	Скопировать
аааААА	
выходные данные	Скопировать
012000	

С. Z-функция

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод

вывод: стандартный вывод

Постройте Z-функцию для заданной строки S.

Входные данные

Первая строка входного файла содержит S ($1 \le |S| \le 10^6$). Строка состоит из букв латинского алфавита.

Выходные данные

Выведите значения Z-функции строки S для индексов 2, 3, ..., |S|.

Примеры Входные данные аааААА Выходные данные 21000 Входные данные аbacaba Выходные данные аbacaba Выходные данные 010301

D. Быстрый поиск подстроки в строке

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт

ввод: стандартный ввод вывод: стандартный вывод

Даны строки p и t. Требуется найти все вхождения строки p в строку t в качестве подстроки.

Входные данные

Первая строка входного файла содержит p, вторая — t ($1 \le |p|$, $|t| \le 10^6$). Строки состоят из букв латинского алфавита.

Выходные данные

В первой строке выведите количество вхождений строки p в строку t. Во второй строке выведите в возрастающем порядке номера символов строки t, с которых начинаются вхождения p. Символы нумеруются с единицы.

Пример

Пришор	
входные данные	Скопировать
aba abaCaba	
выходные данные	Скопировать
2 15	

Е. Поиск периода

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт

ввод: стандартный ввод вывод: стандартный вывод

Дана строка S. Требуется найти минимальную по длине строку t, такую что S представима в виде конкатенации одной или нескольких строк t.

Входные данные

Первая строка входного файла содержит S ($1 \le |S| \le 10^6$). Строка состоит из букв латинского алфавита.

Выходные данные

Выведите длину искомой строки t.

Примеры

Тримеры	
входные данные	Скопировать
abcabcabc	
выходные данные	Скопировать
3	
входные данные	Скопировать
abacaba	
выходные данные	Скопировать
7	

F. Подстроки-3

вывод: стандартный вывод

Даны K строк из маленьких латинских букв. Требуется найти их наибольшую общую подстроку.

Входные данные

В первой строке число K ($1 \le K \le 10$).

В следующих K строках — собственно K строк (длины строк от 1 до 10 000).

Выходные данные

Наибольшая общая подстрока.

Пример

входные данные	Скопировать
3 abacaba mycabarchive acabistrue	
выходные данные	Скопировать
cab	

G. Множественный поиск

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт

ввод: search4.in вывод: search4.out

Дан массив строк S_i и строка t. Требуется для каждой строки S_i определить, встречается ли она в t как подстрока.

Входные данные

Первая строка входного файла содержит целое число n — число элементов в S ($1 \le n \le 10^6$). Следующие n строк содержат по одной строке S_i . Сумма длин всех строк из S не превосходит 10^6 . Последняя строка входного файла содержит t ($1 \le t \le 10^6$). Все строки состоят из строчных латинских букв.

Выходные данные

Для каждой строки S_i выведите «YES», если она встречается в t и «NO» в противном случае. Строки нумеруются в порядке появления во входном файле.

Пример

входные данные	Скопировать
3 abc abcdr abcde xabcdef	
выходные данные	Скопировать
YES NO YES	

Н. Множественный поиск 2

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт

ввод: search5.in вывод: search5.out

Дан массив строк S_i и строка t. Требуется для каждой строки S_i определить, сколько раз она встречается в t как подстрока.

Входные данные

Первая строка входного файла содержит целое число n — число элементов в S ($1 \le n \le 10^6$). Следующие n строк содержат по одной строке S_i . Сумма длин всех строк из S не превосходит 10^6 . Последняя строка входного файла содержит t ($1 \le t \le 10^6$). Все строки состоят из строчных латинских букв.

Выходные данные

Для каждой строки S_i выведите одно число: сколько раз она встречается в t. Строки нумеруются в порядке появления во входном файле.

Пример

. I	
входные данные	Скопировать
3	
abc	

Скопировать

Множественный поиск 3

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 512 мегабайт

ввод: search6.in вывод: search6.out

Дан массив строк S_i и строка t. Требуется для каждой строки S_i найти самое левое и самое правое вхождение в t как подстроки.

Входные данные

Первая строка входного файла содержит целое число n — число элементов в S ($1 \le n \le 10^6$). Следующие n строк содержат по одной строке S_i . Сумма длин всех строк из S не превосходит 10^6 . Последняя строка входного файла содержит t ($1 \le t \le 10^6$). Все строки состоят из строчных латинских букв.

Выходные данные

Для каждой строки S_i выведите два числа: индексы самой левой и самой правой позиции, в которых она встречается в t. Если строка не встречается в t ни разу, выведите -1 - 1. Строки нумеруются в порядке появления во входном файле. Позиции нумеруются с 0.

Пример

входные данные	Скопировать
3 ab bcd abde	
abcdab	
выходные данные	Скопировать
0 4 1 1 -1 -1	

J. Суффиксный массив

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 512 мегабайт

ввод: стандартный ввод вывод: стандартный вывод

Постройте суффиксный массив для заданной строки *S*, для каждых двух соседних суффиксов найдите длину максимального общего префикса.

Входные данные

Первая строка входного файла содержит строку $S(1 \le |S| \le 400\,000)$. Строка состоит из строчных латинских букв.

Выходные данные

В первой строке выведите |S| различных чисел — номера первых символов суффиксов строки S так, чтобы соответствующие суффиксы были упорядочены в лексикографически возрастающем порядке. Во второй строке выведите |S| - 1 чисел — длины наибольших общих префиксов.

Пример

входные данные	Скопировать
ababb	
выходные данные	Скопировать
13524 2011	

К. Количество подстрок

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 512 мегабайт

ввод: стандартный ввод вывод: стандартный вывод

Входные данные

Единственная строка входного файла содержит строку $S(1 \le |S| \le 400\,000)$. Строка состоит из строчных латинских букв.

Выходные данные

Выведите одно число — ответ на задачу.

Пример

входные данные	Скопировать
ababb	
выходные данные	Скопировать
11	

L. Циклические сдвиги

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 512 мегабайт

ввод: стандартный ввод вывод: стандартный вывод

k-м μ иклическим с μ вигом строки μ называется строка, полученная перестановкой μ первых символов строки μ в конец строки.

Рассмотрим все различные циклические сдвиги строки S и отсортируем их по возрастанию. Требуется вычислить i-ю строчку этого массива.

Например, для строки abacabac существует четыре различных циклических сдвига: нулевой (abacabac), первый (bacabaca), второй (acabacab) и третий (cabacaba). После сортировки по возрастанию получится такой массив: abacabac, acabacab, bacabaca, cabacaba.

Входные данные

В первой строке входного файла записана строка S, длиной не более 100~000 символов с ASCII-кодами от 32 до 126. Во второй строке содержится единственное целое число $k~(1 \le k \le 100~000)$.

Выходные данные

В выходной файл выведите k-й по возрастанию циклический сдвиг строки S, или слово IMPOSSIBLE, если такого сдвига не существует.

Примеры

входные данные	Скопировать
abacabac 4	
выходные данные	Скопировать
cabacaba	
входные данные	Скопировать
abacabac 5	
выходные данные	Скопировать
IMPOSSIBLE	

М. Наибольшая общая подстрока

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 512 мегабайт

ввод: common.in вывод: common.out

Найдите наибольшую общую подстроку строк S и t.

Входные данные

Первая строка входного файла содержит строку S, вторая — t ($1 \le |S|$, $|t| \le 100$, 000). Строки состоят из строчных латинских букв.

Выходные данные

Выведите одну строку — наибольшую общую подстроку строк *S* и *t*. В случае, если ответ не единственный, выведите минимальный лексикографически.

Пример

Пример	
входные данные	Скопировать
bababb zabacabba	
выходные данные	Скопировать
aba	

Codeforces (c) Copyright 2010-2019 Михаил Мирзаянов Соревнования по программированию 2.0

Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js