1

LINEAR SYSTEMS AND SIGNAL PROCESSING GATE ASSIGNMENT 3

GANJI VARSHITHA - AI20BTECH11009

Download latex codes from

https://github.com/VARSHITHAGANJI/ EE3900_GATE_ASSIGNMENTS/blob/main/ GATE_ASSIGNMENT3/ GATE_ASSIGNMENT3.tex

QUESTION

GATE EC-2005 Question 31

In what range should Re(s) remain so that the Laplace transform of the function $e^{(a+2)t+5}$ exists?

- (a) Re(s) > a+2
- (b) Re(s) > a+7
- (c) Re(s) < 2
- (d) Re(s) > a+5

provided Re(s)>a+2.

We have

$$F(s) = e^5 G(s)$$
 (0.0.4)

$$= e^5 \left(\frac{1}{s - (a+2)} \right) \tag{0.0.5}$$

provided Re(s)>a+2.

:. Laplace transform of $e^{(a+2)t+5}$ exists for Re(s)>a+2.

Hence option (d) is correct.

SOLUTION

Lemma 0.1 (Laplace transform formula).

Time Function	Laplace transform of $f(t)$	ROC
$f(t) = \mathcal{L}^{-1} \{ F(s) \}$ $e^{\alpha t}$	$F(s) = \mathcal{L}\{f(t)\}\$	Re(s) >
e	$\overline{s-lpha}$	α

Given function is given by

$$f(t) = e^{(a+2)t+5}$$
 (0.0.1)

$$= e^5 e^{(a+2)t} (0.0.2)$$

Let g (t) = $e^{((a+2)t)}$ which is in the form of $e^{\alpha t}$ where $\alpha = a + 2$.

Let the Laplace transform of f(t) and g(t) be F(s) and G(s) respectively.

From Lemma 0.1 we have,

$$G(s) = \frac{1}{s - (a+2)}$$
 (0.0.3)