

Verificación Funcional De Circuitos Integrados

Proyecto 2

Estudiantes

Ivannia Fernández Rodríguez 2020026764

Irán Medina Aguilar 2020146906

Profesor: Ronny García Ramírez

Semestre II 2023

La aleatorización del número de transacciones, de la terminal que envía, de la terminal que recibe, del dato a enviar, y del retardo se realizó en el agente. En el siguiente fragmento se puede ver como se aleatoriza el número de transacciones para que vaya en un rango entre 1 y la profundidad, y en el caso de lo demás se aleatoriza con la instrucción transaccion.randomize.

El parámetro de la profundidad de las fifos de entrada se aleatorizó en el testbench con el uso de my_package por lo que este es aleatorio pero una vez se definen para el resto de la prueba se mantienen fijos.

```
module generador parametros;
     class A;
          integer f;
          rand int unsigned ROWS;
          rand int unsigned COLUMNS;
          rand int unsigned PAKG SIZE;
          rand int unsigned FIFO DEPTH;
          constraint C0 { ROWS == 4;}
          constraint C1 { COLUMNS == 4;}
          constraint C2 { PAKG_SIZE == 32;}
          constraint C3 { FIFO DEPTH > 0; FIFO DEPTH < 17;}</pre>
          function void printPackage;
               f = $fopen("my_package.sv", "w");
              $fdisplay(f, "package my_package;");
$fdisplay(f, " parameter ROWS = %0d;", ROWS);
$fdisplay(f, " parameter COLUMNS = %0d;", COLUMNS );
              $fdisplay(f, " parameter PAKG_SIZE = %0d;", PAKG_SIZE );
$fdisplay(f, " parameter FIFO_DEPTH = %0d;", FIFO_DEPTH );
              $fdisplay(f, "endpackage");
          endfunction
     endclass
A a;
initial begin
     a = new();
     a.randomize();
     a.printPackage();
end
endmodule
```

Implementación de los escenarios de uso común

Los escenarios de uso común se implementaron en el agente de la siguiente forma:

 Envío de un solo paquete aleatorio por parte de cualquier dispositivo a cualquiera de los otros terminales dentro del rango aleatorio de terminales existentes.

 Envío de una cantidad aleatoria de paquetes aleatorios por parte uno o varios terminales cualesquiera a cualquiera de los otros terminales dentro de un rango aleatorio de terminales existentes.

 Llenado de todas las FIFOS de todos los dispositivos existentes con datos aleatorios.

```
llenado_fifos: begin //Caso en el que se llenan las FIFOS de todos los drivers disponibles

for(int i = 0; i < 16 ; i++)begin //For para recorrer todas las filas disponibles

for (int j = 0; j < FIFO_DEPTH; j++)begin//For para llenar una por una las FIFOS

    transaccion = new();
    transaccion.randomize(); //Vuelve aleatorios los valores de la transacción
    transaccion.tiempo_envio = $time;
    agente_drv_mbx[i].put(transaccion); //Envía la transacción al mailbox del agente al driver en la posición de la terminal de envío
    transaccion_copia = new();
    transaccion_copia = transaccion;
    agente_sb_mbx.put(transaccion_copia);
    end
end</pre>
```

Implementación de los escenarios de esquina

Los escenarios de esquina se implementaron en el agente de la siguiente forma:

 Reset antes del envío de una cantidad aleatoria de paquetes aleatorios por parte uno o varios terminales cualesquiera a cualquiera de los otros terminales dentro de un rango aleatorio de terminales existentes.

```
reset inicio: begin //Caso de esquina en el que se realiza un reset antes de que se envíe alguna transacción
 vif.rst i = '1;
 @(posedge vif.clk_i);
 vif.rst_i = '0;
 num_transacciones = $urandom_range(1, 32); //Define un número aleatorio de transacciones
   for(int i = 0; i< num_transacciones; i++)begin</pre>
       espera = 0;
       transaccion = new();
       transaccion.randomize();
       transaccion.fun_pckg;
       while (espera < transaccion.tiempo_retardo) begin
         @(posedge vif.clk_i)
           espera = espera +1;
       end
       transaccion.tiempo envio = $time;
       transaccion.print();
       agente_drv_mbx[transaccion.terminal_envio].put(transaccion);
       transaccion_copia = new();
       transaccion copia = transaccion;
       agente_sb_mbx.put(transaccion_copia);
   end
```

 Reset a la mitad del envío de una cantidad aleatoria de paquetes aleatorios por parte uno o varios terminales cualesquiera a cualquiera de los otros terminales dentro de un rango aleatorio de terminales existentes.

```
reset mitad: begin //Caso de esquina en el que se realiza un reset a la mitad del envío de las transacciones
 num_transacciones = $urandom_range(1,FIFO_DEPTH);
   for(int i = 0; i< num_transacciones/2; i++)begin</pre>
       espera = 0;
       transaccion = new();
       transaccion.randomize();
       transaccion.fun pckg;
       while (espera < transaccion.tiempo_retardo) begin</pre>
         @(posedge vif.clk_i)
           espera = espera +1;
       transaccion.tiempo_envio = $time;
       transaccion.print();
       agente_drv_mbx[transaccion.terminal_envio].put(transaccion);
       transaccion copia = new();
       transaccion_copia = transaccion;
       agente_sb_mbx.put(transaccion_copia);
   vif.rst i = '1;
   @(posedge vif.clk i);
   vif.rst_i = '0;
    for(int i = 0; i< num_transacciones/2; i++)begin</pre>
       espera = 0;
       transaccion = new();
       transaccion.randomize();
       transaccion.fun_pckg;
       while (espera < transaccion.tiempo_retardo) begin
         @(posedge vif.clk_i)
           espera = espera +1;
```

```
transaccion.tiempo_envio = $time;
transaccion.print();
agente_drv_mbx[transaccion.terminal_envio].put(transaccion);
transaccion_copia = new();
transaccion_copia = transaccion;
agente_sb_mbx.put(transaccion_copia);
end
```

 Reset después del envío de una cantidad aleatoria de paquetes aleatorios por parte uno o varios terminales cualesquiera a cualquiera de los otros terminales dentro de un rango aleatorio de terminales existentes.

```
reset_final: begin //Caso de esquina en el que se realiza un reset anteal final de que se envían las transacciones
 num_transacciones = $urandom_range(1,FIFO_DEPTH);
   for(int i = 0; i< num_transacciones/2; i++)begin</pre>
       espera = 0;
       transaccion = new();
       transaccion.randomize();
       transaccion.fun pckg;
       while (espera < transaccion.tiempo_retardo) begin</pre>
        @(posedge vif.clk_i)
           espera = espera +1;
       transaccion.tiempo_envio = $time;
       transaccion.print();
       agente drv mbx[transaccion.terminal envio].put(transaccion);
       transaccion_copia = new();
       transaccion_copia = transaccion;
       agente sb mbx.put(transaccion copia);
 vif.rst_i = '1;
 @(posedge vif.clk_i);
 vif.rst_i = '0;
```

 Envío de una cantidad aleatoria de paquetes aleatorios por parte de uno o varios terminales cualesquiera a cualquier dirección fuera de un rango aleatorio de terminales existentes.

Aserciones

Las aserciones se implementaron en el monitor donde las que se usaron fueron:

- Comprobar que el dato vaya hacia la fila correcta
- Comprobar que el dato vaya hacia la columna correcta
- Comprobar que si el pending está en cero entonces no haya ningún pop

A continuación se muestra la implementación de esto

```
assert(transaccion_checker.pckg[PAKG_SIZE-9 : PAKG_SIZE-12] == filas[id_terminal] )//Aserción para comprobar que el paquete se esté enviando a else $warning("El paquete se envió a una fila erronea");

assert(transaccion_checker.pckg[PAKG_SIZE-13 : PAKG_SIZE-16] == columnas[id_terminal] )//Aserción para comprobar que el paquete se esté enviar else $warning("El paquete se envió a una columna erronea");

if(vif.pndng[id_terminal] == 0) begin assert(vif.pop[id_terminal] == 0) //Aserción para comprobar que no haya un pop si el pending es cero else $warning("Hubo un pop cuando el pending estaba en cero"); end
```

Cobertura

Para la cobertura se creó una clase llamada de esta forma donde para la cobertura funcional se comprobaron las filas, las columnas, y los pop. A continuación se muestra la implementación:

```
class coverage #(parameter PAKG SIZE= 32);
   covergroup filas;
       coverpoint testbench.DUT.data_out[0][PAKG_SIZE-9:PAKG_SIZE-12] {bins fila = {[0:5]};}
       coverpoint testbench.DUT.data_out[1][PAKG_SIZE-9:PAKG_SIZE-12] {bins fila = {[0:5]};}
       coverpoint testbench.DUT.data_out[2][PAKG_SIZE-9:PAKG_SIZE-12] {bins fila = {[0:5]};}
       coverpoint testbench.DUT.data_out[3][PAKG_SIZE-9:PAKG_SIZE-12] {bins fila = {[0:5]};}
       coverpoint testbench.DUT.data_out[4][PAKG_SIZE-9:PAKG_SIZE-12] {bins fila = {[0:5]};}
       coverpoint testbench.DUT.data_out[5][PAKG_SIZE-9:PAKG_SIZE-12] {bins fila = {[0:5]};}
       coverpoint testbench.DUT.data_out[6][PAKG_SIZE-9:PAKG_SIZE-12] {bins fila = {[0:5]};}
       coverpoint testbench.DUT.data_out[7][PAKG_SIZE-9:PAKG_SIZE-12] {bins fila = {[0:5]};}
       coverpoint testbench.DUT.data_out[8][PAKG_SIZE-9:PAKG_SIZE-12] {bins fila = {[0:5]};}
       coverpoint testbench.DUT.data_out[9][PAKG_SIZE-9:PAKG_SIZE-12] {bins fila = {[0:5]};}
       coverpoint testbench.DUT.data_out[10][PAKG_SIZE-9:PAKG_SIZE-12] {bins fila = {[0:5]};}
       coverpoint testbench.DUT.data_out[11][PAKG_SIZE-9:PAKG_SIZE-12] {bins fila = {[0:5]};}
       coverpoint testbench.DUT.data_out[12][PAKG_SIZE-9:PAKG_SIZE-12] {bins fila = {[0:5]};}
       coverpoint testbench.DUT.data_out[13][PAKG_SIZE-9:PAKG_SIZE-12] {bins fila = {[0:5]};}
       coverpoint testbench.DUT.data out[14][PAKG SIZE-9:PAKG SIZE-12] {bins fila = {[0:5]};}
       coverpoint testbench.DUT.data out[15][PAKG SIZE-9:PAKG SIZE-12] {bins fila = {[0:5]};}
   endgroup
   covergroup columnas;
       coverpoint testbench.DUT.data_out[0][PAKG_SIZE-13:PAKG_SIZE-16] {bins columna = {[0:5]};}
       coverpoint testbench.DUT.data out[1][PAKG SIZE-13:PAKG SIZE-16] {bins columna = {[0:5]};}
       coverpoint testbench.DUT.data out[2][PAKG_SIZE-13:PAKG_SIZE-16] {bins columna = {[0:5]};}
       coverpoint testbench.DUT.data_out[3][PAKG_SIZE-13:PAKG_SIZE-16] {bins columna = {[0:5]};}
       coverpoint testbench.DUT.data_out[4][PAKG_SIZE-13:PAKG_SIZE-16] {bins columna = {[0:5]};}
       coverpoint testbench.DUT.data_out[5][PAKG_SIZE-13:PAKG_SIZE-16] {bins columna = {[0:5]};}
       coverpoint testbench.DUT.data_out[6][PAKG_SIZE-13:PAKG_SIZE-16] {bins columna = {[0:5]};}
       coverpoint testbench.DUT.data_out[7][PAKG_SIZE-13:PAKG_SIZE-16] {bins columna = {[0:5]};}
       coverpoint testbench.DUT.data_out[8][PAKG_SIZE-13:PAKG_SIZE-16] {bins columna = {[0:5]};}
       coverpoint testbench.DUT.data out[9][PAKG SIZE-13:PAKG SIZE-16] {bins columna = {[0:5]};}
       coverpoint testbench.DUT.data out[10][PAKG SIZE-13:PAKG SIZE-16] {bins columna = {[0:5]};}
       coverpoint testbench.DUT.data out[11][PAKG SIZE-13:PAKG SIZE-16] {bins columna = {[0:5]};}
       coverpoint testbench.DUT.data out[12][PAKG SIZE-13:PAKG SIZE-16] {bins columna = {[0:5]};}
```

```
coverpoint testbench.DUT.data out[13][PAKG SIZE-13:PAKG SIZE-16] {bins columna = {[0:5]};}
    coverpoint testbench.DUT.data out[14][PAKG SIZE-13:PAKG SIZE-16] {bins columna = {[0:5]};}
    coverpoint testbench.DUT.data_out[15][PAKG_SIZE-13:PAKG_SIZE-16] {bins columna = {[0:5]};}
endgroup
covergroup pops;
   coverpoint testbench.DUT.pop[0] {bins pop = {1};}
    coverpoint testbench.DUT.pop[1] {bins pop = {1};}
    coverpoint testbench.DUT.pop[2] {bins pop = {1};}
    coverpoint testbench.DUT.pop[3] {bins pop = {1};}
    coverpoint testbench.DUT.pop[4] {bins pop = {1};}
    coverpoint testbench.DUT.pop[6] {bins pop = {1};}
    coverpoint testbench.DUT.pop[7] {bins pop = {1};}
    coverpoint testbench.DUT.pop[8] {bins pop = {1};}
    coverpoint testbench.DUT.pop[9] {bins pop = {1};}
    coverpoint testbench.DUT.pop[10] {bins pop = {1};}
    coverpoint testbench.DUT.pop[11] {bins pop = {1};}
    coverpoint testbench.DUT.pop[12] {bins pop = {1};}
    coverpoint testbench.DUT.pop[13] {bins pop = {1};}
    coverpoint testbench.DUT.pop[14] {bins pop = {1};}
    coverpoint testbench.DUT.pop[15] {bins pop = {1};}
endgroup
function new();
    filas = new();
    columnas = new();
    pops = new();
endfunction
```

```
task run();
    forever begin
        #25
        filas.sample();
        columnas.sample();
        pops.sample();
        end
    endtask

function print_cobertura();

    $display("Cobertura de filas: %0.2f", filas.get_coverage(),$time);
    $display("Cobertura de columnas: %0.2f", columnas.get_coverage(),$time);
    $display("Cobertura de pops: %0.2f", pops.get_coverage(),$time);
    endfunction
```

Y los resultados fueron los siguientes:

```
Se cumplio el tiempo maximo de la prueba
Se imprimió el reporte
Cobertura de filas: 100.00 600605
Cobertura de columnas: 100.00 600605
Cobertura de pops: 26.67 600605
$finish called from file "test.sv", line 211.
$finish at simulation time 6006050000
```

Generación de datos

El retraso promedio en la entrega de paquetes por terminal y general en función de la cantidad de dispositivos y la profundidad de las fifos, el ancho de banda promedio máximo y mínimo en función de la cantidad de dispositivos y la profundidad de las fifos, y la generación del reporte de los paquetes enviados y recibidos en formato csv con el tiempo de envío, terminal de procedencia, terminal de destino, tiempo de recibido, y el retraso en el envío, se generaron en el scoreboard donde el código con lo anterior se encuentra a continuación.

```
while (test sb mailbox.num() > 0) begin
   //$display("Se recibio una transaccion de reporte desde el test");
   test_sb_mailbox.get(transaccion_test);
    if (transaccion_test == reporte) begin
       //$display("Se imprimirá el reporte");
       tiempo = 0;
        linea = "";
       linea agregar = "";
        informacion = {};
        for (int i=0; i < verificadas.size(); ++i) begin
            transaccion auxiliar = new();
            transaccion auxiliar = verificadas[i];
            tiempo = tiempo + transaccion auxiliar.latencia;
            $sformat(linea_agregar, "%h,%g,%g,%g,%g,%g,%g,%g\n",
                transaccion auxiliar.pckg,
                transaccion auxiliar.tiempo envio,
                transaccion auxiliar.tiempo recibido,
                transaccion auxiliar.terminal envio,
                transaccion auxiliar.terminal recibido,
                transaccion auxiliar.latencia,
                FIFO DEPTH
            );
            informacion.push back(linea agregar);
       archivo_1 = $fopen("Reporte_transacciones.csv", "a" );
```

```
end

$fclose(archivo_1);

tpromedio = tiempo / verificadas.size();

bw = PAKG_SIZE * 10e9 / (tpromedio);

archivo_2 = $fopen("Reporte_Anchos_de_banda_Tiempo_promedio.csv", "a" );

$sformat (linea, "\n%g,%g,%g,%g,%g,%g", ROWS, COLUMNS, FIFO_DEPTH, PAKG_SIZE, tpromedio, bw);

$fwrite(archivo_2, "%s", linea);

$fclose(archivo_2);

$display("Se imprimió el reporte");

end else begin

$display("Solicutud del test al scoreboard desconocido");

end

end
```

Resultados de las pruebas

Reporte de transacciones en .csv

1	Package	t_envio	t_recibido	emisor	receptor	latencia	p_fifo
	0004128d	105	525	9	3	420	16
	0004128d	105	525	9	3	420	16
	0002e120	100275	100355	2	1	80	16
5	0002ce61	100305	100615	8	1	310	16
	00011274	100395	100695	6	0	300	16
	0002ad23	100485	100915	8	1	430	16
	0004128d	105	525	9	3	420	16
	0002e120	100275	100355	2	1	80	16
10	0002ce61	100305	100615	8	1	310	16
11	00011274	100395	100695	6	0	300	16
12	0002ad23	100485	100915	8	1	430	16
13	00047501	200435	200475	3	3	40	16
14	00030062	200375	200595	14	2	220	16
15	000445cd	200455	200625	15	3	170	16
16	000344d6	200575	200805	13	2	230	16
17	0003c954	200495	200865	14	2	370	16
18	0004fb27	200755	200995	11	3	240	16
19	000116fc	200925	201015	1	0	90	16

111	00037ff3	165	385	14	2	220	23
112	00037ff3	165	385	14	2	220	23
113	0004843b	100375	100415	3	3	40	23
114	0004d309	100425	100525	3	3	100	23
115	00032ad0	100215	100535	5	2	320	23
116	000105e9	100375	100575	5	0	200	23
117	00025478	100235	100575	5	1	340	23
118	00035ecd	100295	100575	4	2	280	23
119	0003edcc	100555	100615	2	2	60	23
120	000118b7	100285	100695	11	0	410	23
121	0002a461	100455	100715	14	1	260	23
122	0001c51e	100665	100735	4	0	70	23
123	00048c35	100585	100745	13	3	160	23
124	00047062	100625	100785	1	3	160	23
125	0003df60	100635	100885	14	2	250	23
126	0002a983	100535	100895	10	1	360	23
127	00031b7d	100455	100925	7	2	470	23
128	00020348	100585	100935	8	1	350	23
129	0003b460	100755	101125	11	2	370	23

275	0004914b	115	575	6	3	460	3
276	0004914b	115	575	6	3	460	3
277	00031db6	100235	100335	12	2	100	3
278	0004e77e	100335	100475	14	3	140	3
279	0002564a	100235	100505	5	1	270	3
280	00048062	100355	100515	1	3	160	3
281	000405b2	100325	100615	2	3	290	3
282	00039208	100305	100665	9	2	360	3
283	0001ece5	100455	100715	8	0	260	3
284	0003054b	100615	100775	0	2	160	3
285	00018544	100395	100805	11	0	410	3
286	0002c608	100535	100845	9	1	310	3
287	000395d8	100555	100975	6	2	420	3
288	0002411a	100685	101055	10	1	370	3
289	00034271	100835	101145	10	2	310	3
290	0002332c	100785	101195	7	1	410	3
291	0001065f	100985	101215	12	0	230	3
292	0004b17c	100735	101235	6	3	500	3
293	00011e08	101055	101315	12	0	260	3

586	0001ac09	100275	100405	2	0	130	6
587	000418ea	100325	100555	0	3	230	6
588	0003ebe5	100385	100645	4	2	260	6
589	0001724e	100535	100795	3	0	260	6
590	00015dd8	100445	100835	11	0	390	6
591	0004f2e2	100625	100875	15	3	250	6
592	0001fad1	100645	100995	13	0	350	6
593	00010e47	100715	101235	11	0	520	6
594	00015b7e	125	245	2	0	120	6
595	0001ac09	100275	100405	2	0	130	6
596	000418ea	100325	100555	0	3	230	6
597	0003ebe5	100385	100645	4	2	260	6
598	0001724e	100535	100795	3	0	260	6
599	00015dd8	100445	100835	11	0	390	6
600	0004f2e2	100625	100875	15	3	250	6
601	0001fad1	100645	100995	13	0	350	6
602	00010e47	100715	101235	11	0	520	6
603	00032d44	200445	200565	1	2	120	6
604	0002403c	200435	200595	4	1	160	6

• Tiempo promedio y ancho de banda en .csv según la profundidad, el ancho, y los dispositivos

1	Rows	Colums	Profundidad	Pack_Size	Tiempo_promedio	Ancho de banda	Dispositivos
2	4	4	16	32	420	7.62E+08	16
3	4	4	16	32	308	1.04E+09	16
4	4	4	16	32	282	1.13E+09	16
5	4	4	16	32	291	1.10E+09	16
6	4	4	16	32	286	1.12E+09	16
7	4	4	23	32	220	1.45E+09	16
8	4	4	23	32	245	1.31E+09	16
9	4	4	23	32	232	1.38E+09	16
10	4	4	23	32	348	9.20E+08	16
11	4	4	23	32	341	9.38E+08	16
12	4	4	3	32	460	6.96E+08	16
13	4	4	3	32	367	8.72E+08	16
14	4	4	3	32	329	9.73E+08	16
15	4	4	3	32	321	9.97E+08	16
16	4	4	3	32	305	1.05E+09	16
17	4	4	6	32	120	-1.63E+09	16
18	4	4	6	32	278	1.15E+09	16
19	4	4	6	32	252	1.27E+09	16

20	4	4	6	32	273	1.17E+09	16
21	4	4	6	32	296	1.08E+09	16
22	4	4	4	32	340	9.41E+08	16
23	4	4	4	32	251	1.27E+09	16
24	4	4	4	32	235	1.36E+09	16
25	4	4	4	32	227	1.41E+09	16
26	4	4	4	32	244	1.31E+09	16
27	4	4	8	32	160	2.00E+09	16
28	4	4	8	32	246	1.30E+09	16
29	4	4	8	32	246	1.30E+09	16
30	4	4	8	32	237	1.35E+09	16
31	4	4	4	32	200	1.60E+09	16
32	4	4	4	32	326	9.82E+08	16
33	4	4	4	32	307	1.04E+09	16
34	4	4	4	32	326	9.82E+08	16
35	4	4	4	32	1326	2.41E+08	16
36	4	4	5	32	260	1.23E+09	16
37	4	4	5	32	310	1.03E+09	16
38	4	4	5	32	299	1.07E+09	16

Gráficas de retraso promedio y ancho de banda promedio en función de la profundidad de las fifos

