Homework set #9 Based on lectures 15 - 17

- 1. Assume that X_1, \ldots, X_n are i.i.d. Gamma $(r, 1/\lambda)$, where r is known, i.e., $f(x|r,\lambda) = \frac{\lambda^r}{\Gamma(r)} x^{r-1} e^{-\lambda x}$. Find the posterior Bayes estimator of λ for the $\Gamma(l,k)$ prior.
- 2. Let X_1, \ldots, X_n be i.i.d. $N(\theta, \sigma^2)$, where σ^2 is known and θ is unknown.
 - (a) Find the posterior Bayes estimator for prior $\pi \sim N(a, b^2)$.
 - (b) Find the posterior Bayes estimator for prior $\pi(\theta) = 1, \ \theta \in \mathbb{R}$. (This is called an "improper prior".)
- 3. Let X_1, \ldots, X_n be i.i.d. Bernoulli(p). In what follows we will consider the loss function $L(p, a) = \frac{(p-a)^2}{p}$. (This is not the squared loss!)
 - (a) Find the Bayes rule for the loss function L(p,a) and $\text{Beta}(\alpha,\beta)$ prior. (Hint: Calculate the posterior risk $r = \int_0^1 L(p,a)\pi(p|\mathbf{x})dp$ and notice that this is a quadratic function in a. Then find a that minimizes r.)
 - (b) Find the MINIMAX estimator for this loss function.
- 4. Let X_1, \ldots, X_n be i.i.d. $\text{Exp}(\lambda)$. (Use the parametrization where $EX = \lambda^{-1}$). Find the MINIMAX estimator for the loss $L(a, \lambda) = \lambda^2 (a \lambda^{-1})^2$.
- 5. (a) Prove or disprove: Any admissible estimator with a flat risk is MINIMAX.
 - (b) Does a MINIMAX estimator have to be admissible?
- 6. From the book 7.23, 7.24, 7.26, (Hint: The calculations in this problem are complicated. Use of symbolic math package is recommended.), 7.65.