11. Umělá inteligence a expertní systémy

Stav, stavový prostor a prohledávání stavového prostoru

Stav v kontextu umělé inteligence reprezentuje aktuální konfiguraci systému, obvykle jako vektor hodnot, které popisují určitou situaci nebo systém v daném čase.

Stavový prostor je množina všech možných stavů, do kterých se může systém dostat v rámci řešení určitého problému. V mnoha úlohách Al je cílem najít cestu (tj. posloupnost akcí) z počátečního stavu do jednoho z cílových stavů.

Prohledávání stavového prostoru

Pro řešení problémů ve stavovém prostoru se využívají algoritmy prohledávání, které lze rozdělit na **neinformované** (slepé) a **informované** (heuristické) metody podle toho, zda využívají nějaké znalosti o cíli nebo prostředí.

Neinformované metody

Prohledávání do šířky (BFS): Tento algoritmus prozkoumává nejprve všechny možné přechody ze současného stavu (vrstvy), než se posune hlouběji. Zajišťuje nalezení nejkratší cesty (s minimálním počtem kroků), ale je náročný na paměť.

Prohledávání do hloubky (DFS): Postupuje vždy co nejdále v aktuální větvi, teprve po jejím vyčerpání se vrací zpět a zkouší jiné větve. Výhodou je nízká paměťová náročnost, nevýhodou riziko uvíznutí v nekonečné větvi.

Informované metody

Gradientní algoritmy (hill climbing, gradient descent): Využívají znalosti o tvaru cílové funkce, vždy postupují ve směru největšího zlepšení (gradientu). Jsou užitečné při optimalizaci, například při učení neuronových sítí.

Metoda větví a mezí (Branch and Bound): Kombinuje systematické rozdělování problému na menší části (větve) a používá mezí (hranice), aby eliminovala cesty, které nemohou vést k optimálnímu řešení.

A* algoritmus: Heuristický algoritmus, který hledá optimální cestu podle hodnotící funkce f(n) = g(n) + h(n), kde g(n) je aktuální cena cesty a h(n) je heuristický odhad nákladů do cíle. Najde optimální řešení, pokud je heuristika "admisibilní" (nepřeceňuje skutečné náklady).

Strojové učení: základní pojmy, příznakové a strukturální metody, regrese, klasifikace, shlukování

Strojové učení je disciplína, která umožňuje počítačům učit se ze zkušenosti (dat) bez explicitního naprogramování pravidel. Základní rozdělení metod je podle typu vstupních dat a cíle úlohy.

Příznakové a strukturální metody

Příznakové metody pracují s daty, která lze vyjádřit jako vektory příznaků (číselné hodnoty, kategorie) – typické například pro tabulková data.

Strukturální metody využívají komplexnější struktury dat, jako jsou grafy, stromy, sekvence či texty, a pracují i s vnitřními vztahy v těchto datech.

Regrese

Regrese je úloha, při které předpovídáme spojitou číselnou hodnotu na základě vstupních dat. Nejznámější je **lineární regrese**, která předpokládá lineární vztah mezi vstupy a výstupy. Cílem je najít takovou funkci, která co nejlépe vystihuje závislost mezi proměnnými.

Klasifikace

Klasifikace rozděluje objekty do diskrétních tříd na základě jejich příznaků. Hlavní metody:

- **k-NN (k nejbližších sousedů):** Objekt je zařazen do třídy, která je nejčastější mezi jeho k nejbližšími sousedy v trénovací množině.
- Rozhodovací stromy: Stromová struktura, kde vnitřní uzly reprezentují podmínky na hodnotu příznaků, větve možné hodnoty a listy konečné třídy. Výhodou je přehlednost, rychlost a odolnost k chybějícím hodnotám.
- **Naivní Bayesovský klasifikátor:** Pravděpodobnostní model, který předpokládá nezávislost příznaků a pomocí Bayesovy věty přiřazuje pravděpodobnost třídám.

Učení bez učitele (shlukování, clustering)

Učení bez učitele nevyužívá předem známé třídy. **Shlukování (clustering)** sdružuje objekty do skupin (shluků) podle jejich vzájemné podobnosti. Například **k-means** rozděluje data do k skupin tak, aby vzdálenost mezi body a středem skupiny byla minimální.

Neuronové sítě: model neuronu, vícevrstvý perceptron (MLP)

Neuronové sítě jsou matematické modely inspirované fungováním biologických mozků, skládající se ze vzájemně propojených umělých neuronů.

Matematický model neuronu

Umělý neuron přijímá několik vstupů x_1 , x_2 , ..., každý vynásobí vahou w_1 , w_2 , ..., výsledný součet sečte s biasem b a aplikuje aktivační funkci f. Výstup neuronu je:

```
y = f(\Sigma(w_i \cdot x_i) + b)
```

Typické aktivační funkce:

• **Sigmoid:** $f(x) = 1 / (1 + e^{(-x)})$

• **ReLU:** f(x) = max(0, x)

Vícevrstvý perceptron (MLP)

MLP je síť s minimálně jednou skrytou vrstvou neuronů mezi vstupní a výstupní vrstvou. Každý neuron v jedné vrstvě je propojen se všemi neurony ve vrstvě následující (plně propojená síť). MLP lze použít jak pro klasifikaci, tak pro regresi a učí se pomocí algoritmu **backpropagation** – zpětného šíření chyby, který postupně upravuje váhy, aby minimalizoval chybu na trénovacích datech.

Expertní systémy: složky, báze znalostí, báze pravidel, inferenční mechanismus

Expertní systémy jsou programy, které napodobují rozhodování odborníka v určité oblasti pomocí znalostní báze a inferenčního mechanismu. Cílem je řešit úlohy, které by jinak vyžadovaly zkušeného specialistu (diagnóza, plánování, interpretace apod.).

Složky expertního systému

Báze znalostí: Obsahuje fakta, pravidla a heuristiky potřebné k rozhodování.

Fakta: Objektivní informace o problému.

Pravidla: IF-THEN podmínky (například "Pokud má pacient teplotu > 37,5 °C, pak má horečku").

Heuristiky: Zkušenostní postupy a rady, které nejsou přesně formalizované.

Báze pravidel: Formálně zapsaná rozhodovací pravidla; podmnožina báze znalostí.

Inferenční mechanismus: "Mozek" systému, který na základě faktů a pravidel vyvozuje závěry (dopředné/zpětné řetězení, řešení konfliktů mezi pravidly).

Vysvětlovací modul: Umožňuje uživateli zjistit, jak a proč systém k závěru došel.

Komunikační modul: Rozhraní pro komunikaci s uživatelem.

Tvorba expertního systému a získávání znalostí od experta

Tvorba expertního systému je komplexní proces zahrnující:

- 1. **Analýzu problému:** Identifikace oblasti a typů úloh, pro které má být systém navržen.
- 2. Specifikaci systému: Definice požadavků, architektury a použitých technologií.
- 3. **Získávání znalostí:** Klíčová fáze, kdy znalostní inženýr sbírá znalosti od expertů pomocí rozhovorů, introspekce, pozorování, simulací nebo strukturovaných metod (například třídění karet, Repertory Grid, Matrix Analysis).
- 4. **Vývoj báze znalostí:** Získané znalosti se převádějí do formálního zápisu, často ve formě IF-THEN pravidel.
- 5. Implementaci systému: Kódování pravidel a logiky, vývoj uživatelského rozhraní.
- 6. **Testování a ladění:** Ověřování správnosti a efektivity systému, úpravy na základě zpětné vazby.
- 7. Údržbu a aktualizaci: Průběžná aktualizace báze znalostí podle nových poznatků.

Kvalita a úspěšnost expertního systému do značné míry závisí na efektivním získání a formalizaci znalostí od lidského experta.