1 Area formula and coarea formula

Věta 1.1

Let (P_1, ϱ_1) , (P_2, ϱ_2) be metric spaces, s > 0, and $f : P_1 \to P_2$ be β -Lipschitz. Then $\varkappa^s(f(P_1)) \leqslant \beta^s \varkappa^s(P_1)$.

 $D\mathring{u}kaz$

Choose $\delta > 0$. Let $P_1 = \bigcup_{i=1}^{\infty} A_i$, diam $A_i < \delta$. Then we have $f(P_1) = \bigcup_{j=1}^{\infty} f(A_j)$, diam $f(A_i) < \beta \cdot \delta$.

$$\varkappa^{s}(f(P_{1}), \beta \cdot \delta) \leqslant \sum_{j=1}^{\infty} (\operatorname{diam} f(A_{j}))^{s} \leqslant \sum_{j=1}^{\infty} \beta^{s} \cdot (\operatorname{diam} A_{j})^{s} = \beta^{s} \cdot \sum_{j=1}^{\infty} (\operatorname{diam} A_{j})^{s}.$$

It holds for all possible choices of (A_j) , so we can take infimum:

$$\varkappa^{s}(f(P_{1})) \leftarrow \varkappa^{s}(f(P_{1}), \beta \cdot \delta) \leqslant \beta^{s} \inf_{(A_{j})} \sum_{j=1}^{\infty} (\operatorname{diam} A_{j})^{s} = \beta^{s} \varkappa^{s}(P_{1}, \delta) \to \beta^{s} \varkappa^{s}(P_{1}).$$

Lemma 1.2

Let $k, n \in \mathbb{N}$, $k \leq n$, and $L : \mathbb{R}^k \to \mathbb{R}^n$ be an injective linear mapping. Then for every λ_k -measurable set $A \subset \mathbb{R}^k$ it holds $H^k(L(A)) = \sqrt{\det(L^T L)\lambda_k(A)}$.

 $D\mathring{u}kaz \ (\dim L(\mathbb{R}^k) = k)$

We find linear isometry Q of \mathbb{R}^k onto $L(\mathbb{R}^k)$, from last semester

$$H^k(L(A)) = H^k(Q^{-1} \circ L(A)) = \lambda^k(Q^{-1} \circ L(A)) = |\det(Q^{-1}L)| \cdot \lambda_k(A).$$

$$(\det(Q^{-1}L))^2 = \det((Q^{-1}L)^T) \cdot \det(Q^{-1}L) = \det((Q^{-1}L)^T \cdot (Q^{-1}L)) = \det((\langle Q^{-1}Le^i, Q^{-1}L^Te^j \rangle)_{i,j}).$$

And because Q is isometry ($\Longrightarrow Q^{-1}$ is isometry), we can remove Q^{-1} from scalar product and we get $\det(L^T L)$.

Lemma 1.3

Let $k, n \in \mathbb{N}$, $k \leq n$, $G \subset \mathbb{R}^k$ be an open set, $\varphi : G \to \mathbb{R}^n$ be an injective regular mapping, $x \in G$, and $\beta > 1$. Then there exists a neighbourhood V of the point x such that

- the mapping $y \mapsto \varphi(\varphi'(x)^{-1}(y))$ is β -Lipschitz on $\varphi'(x)(V)$;
- the mapping $z \mapsto \varphi'(x)(\varphi^{-1}(z))$ is β -Lipschitz on $\varphi(V)$.

Důkaz

 x, β fixed. We know, that there exists $\eta > 0$ such that

$$\forall v \in \mathbb{R}^k : \|\varphi'(x)(v)\| \geqslant \eta \cdot \|v\|.$$

We find $\varepsilon \in (0, \frac{1}{2}\eta)$ such that $\frac{2\varepsilon}{\eta} + 1 < \beta$. We find a neighbourhood V of x such that $\forall y \in V : \|\varphi'(x) - \varphi'(y)\| \leq \varepsilon$.

We show that for every $u, v \in V$ we have

$$\|\varphi(u) - \varphi(v) - \varphi'(x)(u - v)\| \leqslant \varepsilon \|u - v\|.$$

Fix $v \in V$ and consider the mapping

$$g: w \mapsto \varphi(w) - \varphi(v) - \varphi'(x)(w - v).$$

For $w \in V$ we have $g'(w) = \varphi'(w) - \varphi'(x)$:

$$\|\varphi(u) - \varphi(v) - \varphi'(x)(u - v)\| = \|g(w) - g(v)\| \le \sup \{\|g'(w)\| \mid w \in V\} \cdot \|u - v\| \le \varepsilon \cdot \|u - v\|.$$

Further we show that for every $u, v \in V$ we have

$$\|\varphi(u) - \varphi(v)\| \geqslant \frac{1}{2}\eta \|u - v\|.$$

For $u - v \in V$ we compute

$$\|\varphi(u) - \varphi(v)\| \ge -\|\varphi(u) - \varphi(v) - \varphi'(x)(u - v)\| + \|\varphi'(x)(u - v)\| \ge -\varepsilon \|u - v\| + \eta \|u - v\| \ge \frac{1}{2}\eta \|u - v\|$$

"First point": TODO (řádek nebyl k přečtení)

$$\|\varphi(\varphi^{-1}(x)(a)) - \varphi(\varphi^{-1}(x)(b))\| = \|\varphi(u) - \varphi(v)\| \le$$

$$\le \|phi(u) - \varphi(v) - \varphi'(x)(u - v)\| + \|\varphi'(x)(u - v)\| \le$$

$$\le \varepsilon \cdot \|u - v\| + \|\varphi'(x)(y - v)\| \le \varepsilon \frac{1}{\eta} \|a - b\| + \|a - b\| = \left(\frac{\varepsilon}{\eta} + 1\right) \|a - b\| \le \beta \cdot \|a - b\|.$$

"Second point": $k, q \in \varphi(V)$. We find $u, v \in V$ such that $\varphi(u) = p$ and $\varphi(v) = q$:

$$\|\varphi'(x)(\varphi^{-1}(p)) - \varphi'(x)(\varphi^{-1}(q))\| = \|\varphi'(x)(u) - \varphi'(x)(v)\| =$$

$$= \|\varphi'(x)(u - v)\| \le \|\varphi(u) - \varphi(v) - \varphi'(x)(u - v)\| + \|\varphi(u) - \varphi(v)\| \le$$

$$\le \varepsilon \cdot \|u - v\| + \|p - q\| \le \frac{2\varepsilon}{\eta} \|\varphi(u) - \varphi(v)\| + \|p - q\| = \left(\frac{2\varepsilon}{\eta} + 1\right) \|p - q\| \le \beta \|p - q\|.$$