Synthesis of Digital Systems COL 719

Part 7: Field Programmable Gate Arrays

Preeti Ranjan Panda

Department of Computer Science and Engineering

Indian Institute of Technology Delhi

Field Programmable Gate Array

- "Field Programmable"
 - Customised by designer
 - vs. "Mask Programmable": customised by foundry
- Customisation process simple/cheap
- FPGA chips produced in bulk
 - independent of functionality

FPGA architecture

No mask layer is customized

Design turnaround time: few hours

Modern FPGA Architecture

Xilinx Zynq 7000 Series

FPGA Programming: SRAM

- Normal SRAM cell
- Programming: writing 0 or 1 into SRAM cell
 - this, in turn, causes
 selections, connections, etc.

SRAM-based FPGA

- Each logic block consists of an SRAM
- An SRAM with 2ⁿ bits can implement ANY function of n inputs
 - Use inputs as address
 - Store value in locations

Xilinx 7-Series Architecture

- 64-bit Look-up Tables (LUT)
 - All functions of 6 inputs
- What if we wanted 2 functions of 5 inputs instead?

Xilinx 7-Series Architecture

- 2 Functions of 5 inputs
 - Split into 2 banks
 - 2 functions of 5 inputs

A6 = 0: 2 functions O1 and O2 of 5 variables (A1-A5)

A6 = input variable: 1 function O1 of 6 variables (A1-A6)

Technology Mapping in FPGAs

- More complex "library cells"
- Library cells can be customised
 - cannot enumerate fully

Matching

- Matching is trivial
 - ANY function can be implemented
 - make sure number of inputs match

Covering for 4 i/p block

- Treat library cell as
 - Black Box with 4 inputs, 1 output
 - no need to decompose into NAND/INV
- Technology Mapping
 - Cover the network by sub-graphs of 4 inputs, 1 output

