Цифровая связь, осенний семестр 2011/2012 уч. г.

Задачи для практического занятия по теме № 6 «Множественный доступ»

Задача 1

Рассматривается канал «вниз» системы связи с одной базовой станцией (БС) и двумя мобильными станциями (МС). Заданы следующие количественные параметры:

Предельная мощность, излучаемая базовой станцией: $P_0 = 10 \text{ Bt.}$ Ширина полосы частот, отведенной системе: $W = 100 к \Gamma$ ц. $k_1 = 8 \cdot 10^{-15}$ Коэффициент передачи по мощности от БС к МС₁: $k_2 = 4 \cdot 10^{-15}$. Коэффициент передачи по мощности от БС к МС₂:

 $N_0 = 10^{-19} \,\mathrm{Br}/\Gamma_{\mathrm{II}}.$ СПМ белого шума в приемнике каждой МС:

Воспользовавшись формулой Шеннона, рассчитать пары достижимых скоростей безошибочной передачи информации от БС к MC_1 и MC_2 (R_1 , R_2) для следующих ситуаций:

- 1. Все ресурсы БС (мощность и полоса частот) отданы каналу, адресованному МС₁.
- 2. Все ресурсы БС (мощность и полоса частот) отданы каналу, адресованному МС₂.
- 3. Используется временное разделение каналов, каждому из двух каналов выделено 50% времени, БС работает на полной мощности P_0 и занимает полную полосу частот W.
- 4. Используется частотное разделение каналов, каждому из двух каналов выделено 50% общей полосы частот, а общая мощность P_0 распределена между каналами следующим образом:
- а) Вся мощность направлена в канал, адресованный МС₁.
- б) Вся мощность направлена в канал, адресованный МС₂.
- в) Общая мощность P_0 делится между каналами для MC_1 и MC_2 поровну.
- 5. Используется кодовое разделение каналов, общая мощность P_0 делится между каналами для MC_1 и MC_2 поровну, а приемники MC используют следующие алгоритмы:
- а) Приемник каждой МС трактует мешающий сигнал как шум (считать этот шум белым и гауссовым).
- б) Приемник одной из МС трактует мешающий сигнал как шум (белый и гауссов), а приемник второй МС производит прием мешающего сигнала, его декодирование и вычитание (реализуя, таким образом, последовательное вычитание помех). Перед выполнением расчетов определить, какая МС какой алгоритм приема должна реализовывать.

Задача 2

Рассматривается канал «вверх» той же самой системы связи. Заданы следующие количественные параметры:

Мощность, излучаемая каждой из МС: $P_0 = 10 \text{ BT}.$

 $W = 100 к \Gamma$ ц. Ширина полосы частот, отведенной системе:

 $k_1 = 8 \cdot 10^{-15}$ Коэффициент передачи по мощности от МС₁ к БС:

 $k_2 = 4.10^{-15}$ Коэффициент передачи по мощности от МС₂ к БС:

 $N_0 = 10^{-19} \, \text{Br/}\Gamma_{\text{II}}.$ СПМ белого шума в приемнике БС:

Воспользовавшись формулой Шеннона, рассчитать пары достижимых скоростей

безошибочной передачи информации для MC_1 и MC_2 (R_1 , R_2) для следующих ситуаций:

- 1. Используется частотное разделение каналов, каждому из двух каналов выделено 50% общей полосы частот.
- 2. Используется кодовое разделение каналов. Приемник БС принимает сигнал МС2, трактуя сигнал MC_1 как шум; после этого сигнал MC_2 вычитается из суммарного принимаемого сигнала и производится прием очищенного сигнала МС1.
- 3. То же, что в п. 2, но с противоположным распределением способов приема сигналов MC_1 и MC_2 .