EXAMEN STATISTIQUE - 1TR

Lundi 28 Novembre 2016

Partiel sans document (Une feuille A4 recto-verso autorisée)

Exercice 1: Test Statistique (8 points)

On considère n variables aléatoires $Y_1, ..., Y_n$ indépendantes de même loi normale $\mathcal{N}(0, \sigma^2)$ (σ^2 étant un paramètre connu) et on définit une suite de variable aléatoire X_i comme suit

$$X_i = ra_i + Y_i, \quad i = 1, ..., n$$

où $a = (a_1, ..., a_n)^T$ est un vecteur de paramètres connu (avec $a \neq 0$) et r est un paramètre inconnu dont on cherche à tester la valeur. On considère le test d'hypothèses simples

$$H_0: r = r_0, \quad H_1: r = r_1 \quad (\text{avec } r_1 > r_0).$$

- 1. Quelle est la loi de la variable aléatoire X_i ?
- 2. Montrer que le test de Neyman Pearson conduit à la statistique de test

$$T_n = \sum_{i=1}^n a_i X_i$$

et indiquer la région critique de ce test. Déterminer loi de T_n sous les deux hypothèses H_0 et H_1 .

3. On note

$$F(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right) du$$

la fonction de répartition d'une loi normale $\mathcal{N}(0,1)$ et F^{-1} son inverse. Déterminer la valeur du seuil K_{α} du test de Neyman Pearson en fonction de r_0, α, σ , des paramètres a_i et de F^{-1} .

4. Déterminer la puissance du test en fonction du seuil K_{α} , r_1 , σ , des paramètres a_i et F. Déterminer les courbes COR du test étudié dans cet exercice et tracer la forme de ces courbes pour différentes valeurs du couple (r_0, r_1) et pour différentes valeurs du paramètre σ . Comment ces courbes COR évoluent-elles en fonction des paramètres a_i ? Expliquer.

Exercice 2 : Une vraisemblance capricieuse (8 points)

On considère n variables aléatoires $X_1, ..., X_n$ indépendantes suivant la même loi continue de loi normale $\mathcal{N}(am, a^2\sigma^2)$ où m et σ^2 sont des paramètres connus et a est un paramètre inconnu.

- 1. En utilisant la valeur de $E[X_i]$, déterminer un estimateur des moments de a noté \widehat{a}_{Mo} . Déterminer le biais et la variance de cet estimateur. L'estimateur \widehat{a}_{Mo} est-il l'estimateur efficace de a?
- 2. Déterminer la vraisemblance associée à l'échantillon $(X_1,...,X_n)$ notée $L(x_1,...,x_n;a)$. Montrer que

$$\frac{\partial \ln L(x_1, ..., x_n; a)}{\partial a} = -\frac{n}{a^3 \sigma^2} \left[a^2 \sigma^2 + m a \overline{x} - S_n^2 \right]$$

avec

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
, et $S_n^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2$.

Etudier les variations de la fonction $\frac{\partial \ln L(x_1,\dots,x_n;a)}{\partial a}$ et montrer que la vraisemblance admet deux extrema locaux que l'on déterminera. Expliquer la méthode à utiliser pour déterminer l'estimateur du maximum de vraisemblance du paramètre a (on ne demande pas de le faire).

Exercice 3 : Test d'adéquation (4 points)

Pour tester si un dé est truqué ou pas, on le lance 60 fois et on observe le résultat du dé à chaque lancer. On regroupe ces observations dans le tableau suivant

Face du dé	1	2	3	4	5	6
Nombre d'observations	10	8	10	15	5	12

Pour décider si le dé est truqué ou pas, on effectue un test du χ^2 .

- 1. Calculer la statistique du test du χ^2 .
- 2. Déterminer le seuil du test du χ^2 en fonction de α et de l'inverse de la fonction de répartition d'une loi du χ^2 dont on précisera le nombre de degrés de liberté.
- 3. Pourquoi a-t-on $K_{0.05} < K_{0.01}$, où K_{α} est le seuil du test du χ^2 associé à un risque de première espèce α ?
- 4. Peut-on calculer la puissance du test? Pourquoi?

LOIS DE PROBABILITÉ CONTINUES ${\bf m}$: moyenne ${\bf \sigma}^2$: variance ${\bf F.~C.}$: fonction caractéristique

LOI	Densité de probabilité	m	σ^2	F. C.
Uniforme	$f(x) = \frac{1}{b-a}$ $x \in]a, b[$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{itb} - e^{ita}}{it(b-a)}$
Gamma $\Gamma\left(heta, u ight)$	$f(x) = \frac{\theta^{\nu}}{\Gamma(\nu)} e^{-\theta x} x^{\nu - 1}$ $\theta > 0, \ \nu > 0$ $x \ge 0$	$\dfrac{ u}{ heta}$	$rac{ u}{ heta^2}$	$\frac{1}{\left(1-i\frac{t}{\theta}\right)^{\nu}}$
Inverse gamma $\mathrm{IG}(\theta,\nu)$	$f(x) = \frac{\theta^{\nu}}{\Gamma(\nu)} e^{-\frac{\theta}{x}} \frac{1}{x^{\nu+1}}$ $\theta > 0, \ \nu > 0$ $x \ge 0$	$\frac{\theta}{\nu - 1} \text{ si } \nu > 1$	$\frac{\theta^2}{(\nu-1)^2(\nu-2)} \text{ si } \nu > 2$	(*)
Première loi de Laplace	$f\left(x\right) = \frac{1}{2}e^{- x }$	0	2	$\frac{1}{1+t^2}$
Normale $\mathcal{N}\left(m,\sigma^2 ight)$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}$	m	σ^2	$e^{imt-rac{\sigma^2t^2}{2}}$
Khi $_2$ $\chi^2_{ u}$ $\Gamma\left(\frac{1}{2},\frac{ u}{2}\right)$	$f(x) = ke^{-\frac{x}{2}}x^{\frac{\nu}{2}-1}$ $k = \frac{1}{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})}$ $\nu \in \mathbb{N}^*, \ x \ge 0$	ν	2ν	$\frac{1}{(1-2it)^{\frac{\nu}{2}}}$
Cauchy $c_{\lambda,lpha}$	$f(x) = \frac{1}{\pi \lambda \left(1 + \left(\frac{x - \alpha}{\lambda}\right)^2\right)}$ $\lambda > 0, \ \alpha \in \mathbb{R}$	(-)	(-)	$e^{i\alpha t - \lambda t }$
Beta	$f(x) = kx^{a-1} (1-x)^{b-1}$ $k = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}$ $a > 0, \ b > 0, \ x \in]0,1[$	$\frac{a}{a+b}$	$\frac{ab}{\left(a+b\right)^2\left(a+b+1\right)}$	(*)