

Sistemas Gráficos e Interacção

Época de Recurso	2022-02-25
N.ºNome	
Duração da prova: 45 minutos	
Cotação de cada pergunta: assinalada com parêntesis rectos	
Perguntas de escolha múltipla: cada resposta incorrecta desconta 1/3 do valor da pergu	ınta

Parte Teórica 10%

- a. [3.3] As vulgares impressoras de jacto de tinta constituem exemplos de dispositivos
 - i. Matriciais
 - ii. Vectoriais
 - iii. Tensoriais
 - iv. Nenhuma das anteriores
- b. [3.3] Qual das seguintes matrizes representa o ponto 3D com coordenadas (4.0, -2.0, -1.0)?
 - i. $[4.0, -2.0, -1.0, 0.0]^T$
 - ii. $[2.0, -1.0, -0.5, 1.0]^T$
 - iii. $[8.0, -4.0, -2.0, 2.0]^T$
 - iv. Nenhuma das anteriores
- c. **[3.3]** Qual das seguintes transformações usaria para transformar o objecto A da Figura 1 no objecto B?
 - i. Rotação
 - ii. Escalamento
 - iii. Shearing
 - iv. Nenhuma das anteriores

Figura 1

- d. [3.3] Que técnica de representação de sólidos está ilustrada na Figura 2?
 - i. B-Rep
 - ii. CSG
 - iii. Octrees
 - iv. Nenhuma das anteriores

Figura 2

- e. [3.3] Nos modelos de iluminação locais, a intensidade da componente de reflexão difusa
 - i. Varia consoante a posição da fonte de luz
 - ii. Varia consoante a posição do observador
 - iii. Pode ser calculada de forma aproximada com o recurso ao vector halfway
 - iv. Nenhuma das anteriores
- f. [3.3] A função de mapeamento de texturas ilustrada na Figura 3 baseia-se numa parametrização

Figura 3

- i. Cúbica
- ii. Cilíndrica
- iii. Esférica
- iv. Nenhuma das anteriores

Sistemas Gráficos e Interacção

Epoca de Recurso	2022-02-25
N.ºNome	
Parte Teórico-Prática	20%

a. **[3.0]** Considere o polígono representado na Figura 4. Este está rodado de 45° em torno do eixo Z. Indique as componentes do vector normal unitário.

Normal:	 	,

b. [3.0] Considere um automóvel, localizado na posição car.position.x, car.position.y, car.position.z, seguindo na direcção car.rotation.z. Pretende-se colocar uma câmara a seguir o veículo, colocada na traseira deste a uma distância DIST e a uma altura ALT. Indique os argumentos dos seguintes métodos usados para configurar a câmara.

camera.position.set	,	,
		,);
camera.lookAt(,
		,);

- c. [1.4] Um objeto Sprite é definido usando
 - i. Geometry e Material
 - ii. Light e Scene
 - iii. Apenas Geometry
 - iv. Apenas Material
- d. [1.4] Numa PerspectiveCamera, o valor do parâmetro Near
 - i. Pode assumir qualquer valor real
 - ii. Tem de ser *Near* < 0.0
 - iii. Tem de ser *Near* > 0.0
 - iv. Tem de ser *Near > Far*
- e. [1.4] No Three.js, a orientação da face da frente de um polígono
 - i. É definida usando o parâmetro frontFace
 - ii. Fica sempre orientada para o z positivo
 - iii. É definida pela ordem em que se indicam os vértices do polígono
 - iv. Não existe, pois os polígonos não têm frente nem verso

iv.

RenderPass

Sistemas Gráficos e Interacção

Epo	ca de Recurso 2022-02-2
N.º	Nome
f.	[1.4] No Three.js, ao usar uma <i>DirectionalLight</i> , o cálculo das sombras é efectuado
	 i. Usando uma câmara Orthographic ii. Usando uma câmara Perspective iii. Usando 6 câmaras Perspective iv. Sem o recurso a câmaras auxiliares
g.	[1.4] Quando se usa uma <i>SpotLight</i> , que propriedades se utilizam para definir a orientação abertura do foco?
	 i. penumbra e decay ii. opening e orientation iii. sweep e position iv. angle e target
h.	[1.4] Para se realizar o mapeamento de texturas no Three.js, usa-se o atributo da BufferGeometr
	i. textureii. uviii. stiv. texmap
i.	[1.4] No Three.js, se se pretender aplicar numa textura o resultado de uma renderização
	 i. Deve-se usar o WebGLRenderTarget ii. Deve-se usar o RenderTolmage iii. Deve-se usar um Sprite iv. Não é possível
j.	[1.4] Para implementar <i>picking</i> no Three.js, é necessário usar
	 i. As coordenadas normalizadas do rato (ou local onde se pretende fazer picking) ii. A câmara que foi usada na renderização iii. Os objectos aos quais se pretende fazer picking iv. Todas as anteriores
k.	[1.4] Quando se activa o <i>Fog</i> no Three.js
	 i. Todo o canvas é afectado ii. Apenas as zonas do canvas com objectos é afectada iii. O Fog só afecta os objectos que são filhos do objecto Fog iv. Nenhuma das anteriores
l.	[1.4] Na técnica de pós-processamento usando <i>EffectComposer</i> , a primeira passagem tipicamente realizada usando
	i. InitPass ii. StartPass iii. GlitchPass