CHƯƠNG 4 KHÔNG GIAN EUCLIDE

I.1. Tích vô hướng của hai vector

Cho V – KGVT trên R. Ta gọi tích vô hướng của hai vectơ $u, v \in V$ là ánh xạ $<,>: V \times V \rightarrow R$ $(u,v) \rightarrow < u,v>$

Thỏa 4 tiên đề sau: $\forall u, v, w \in V, \forall k \in R$

- 1. $\langle u, v \rangle = \langle v, u \rangle$
- 2. $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$
- 3. < ku, v > = k < u, v >
- 4. $\langle u, u \rangle \ge 0, \langle u, u \rangle = 0 \Leftrightarrow u = \theta$

I.2. Không gian Euclide

🖎 Không gian Euclide là KGVT thực, có trang bị thêm một tích vô hướng

Kí hiệu:
$$Eu = (V, < | >)$$

Ví dụ 1: Trong KGVT R2, R3 các vectơ tự do trong mặt phẳng và không gian, ta xét tích vô hướng của 2 vectơ theo ý nghĩa thông thường:

$$\langle \vec{\mathbf{u}}, \vec{\mathbf{v}} \rangle = |\vec{\mathbf{u}}| \cdot |\vec{\mathbf{v}}| \cos(\vec{\mathbf{u}}, \vec{\mathbf{v}})$$

thì R2, R3 là các KG Euclide.

Ví dụ 2: Xét KGVT R^n với $u=(u_1,u_2,...,u_n), v=v_1,v_2,v_n)$, ta định nghĩa:

$$\langle u, v \rangle = u_1 v_1 + u_2 v_2 + ... + u_n v_n$$

 \longrightarrow (Rⁿ, < , >) là KGVT Euclide

I.3. Độ dài và góc trong không gian Euclide

1. Độ dài (môđun)

$$\succeq$$
 Cho KG Euclide $Eu = (V, < \mid >)$ Trên $\mathbb R$

Với mỗi u ∈ V ta định nghĩa và ký hiệu độ dài (môđun) hay chuẩn của u:

$$\|\mathbf{u}\| := \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}$$

Nếu || u || = 1 thì u được gọi là vectơ đơn vị.

Ví dụ : Trong R^n , $u = (u_1, u_2, ..., u_n)$, ta có:

$$||u|| = \sqrt{u_1^2 + u_2^2 + ... + u_n^2} = (u_1^2 + u_2^2 + ... + u_n^2)^{1/2}$$

I.3. Độ dài và góc trong không gian Euclide

1. Độ dài (môđun)

BDT Cauchy-Schwartz

$$|< u|v>| \le ||u||. ||v||, \forall u, v \in V$$

 $(d\tilde{a}u = x\dot{a}y ra khi và chỉ khi <math>u,v$ cùng phương)

Các tính chất của độ dài của vectơ:

1.
$$\|u\| \ge 0, \|u\| = 0 \iff u = \theta$$

2.
$$\|\mathbf{k}\mathbf{u}\| = |\mathbf{k}| \|\mathbf{u}\|$$

3.
$$\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$$

I.3. Độ dài và góc trong không gian Euclide

1. Độ dài (môđun)

Khoảng cách giữa 2 vector

$$d(u,v) = ||u - v|| = ||v - u|| = d(v,u)$$

Các tính chất của khoảng cách giữa 2 vectơ:

$$D1.d(u, v) \ge 0$$

D2.
$$d(u,v)=0 \Leftrightarrow u=v$$

D3.
$$d(u,v) = d(v,u)$$

D4.
$$d(u,v) \le d(u,w) + d(w,v)$$

(BĐT tam giác)

I.3. Độ dài và góc trong không gian Euclide

2. Góc giữa hai vector

Góc giữa hai vectơ $u,v \in V$ được cho bởi công thức:

$$cos(u,v) := \frac{\langle u,v \rangle}{\|u\|.\|v\|}$$

- \succeq Cho KG Euclide $Eu = (V, < \mid >)$ trên \mathbb{R}
- \cong Cho các vector $\alpha, \beta \in V$ và tập hợp $A, B \subset V$
 - Ta nói
 - a) $\alpha \perp \beta$ nếu $<\alpha \mid \beta>=0$
 - b) $\alpha \perp A$ nếu $\alpha \perp \gamma$, $\forall \gamma \in A$
 - c) $A \perp B$ nếu $\forall \gamma \in A, \forall \delta \in B$: $\gamma \perp \delta$
 - d) $A + B = \{ \gamma + \delta \mid \gamma \in A, \delta \in B \}$
 - e) $\alpha + A = {\alpha + \gamma \mid \gamma \in A}$

Định nghĩa

- ${}^{\succeq}$ Cho KG Euclide Eu = (V, < | >) trên $\mathbb R$
- Cho tập hợp S trên Eu
- Ta nói
 - a) S là tập hợp (hệ) trực giao nếu $\forall \alpha, \beta \in S : \alpha \perp \beta \ (\alpha \neq \beta)$
 - b) S là tập hợp (hệ) trực chuẩn nếu

 - + S là trực giao, + Độ dài mọi vector trong S đều =1 ($\|\alpha\|=1, \forall \alpha \in S$)

Mệnh đề

- \succeq Cho KG Euclide $Eu = (V, < \mid >)$ trên \mathbb{R}
- Cho tập hợp S trên Eu
- Ta nói
 - a) Nếu S là tập hợp trực giao và $O \notin S$ thì S là ĐLTT
 - b) Nếu S là tập hợp trực chuẩn thì S là ĐLTT
 - c) Nếu S là trực giao thì

$$\forall \alpha_1, \alpha_2, \dots, \alpha_m \in S$$
:

$$\|\alpha_1 + \alpha_2 + \dots + \alpha_m\|^2 = \|\alpha_1\|^2 + \|\alpha_2\|^2 + \dots + \|\alpha_m\|^2$$

(định lý Pythagore mơ rộng)

Cơ sở trực giao và trực chuẩn

- \succeq Cho KG Euclide $Eu=(V,<\mid >)$ trên $\mathbb R$ và một cơ sơ 'a
- Nếu a trực giao thì ta nói a là cơ sở trực giao
- Nếu a trực chuẩn thì ta nói a là cơ sơ trực chuẩn
- \searrow Ví dụ: Trên không gian Euclide (\mathbb{R}^3 , < | >) cho cơ sơ '

$$a = {\alpha_1 = (1,2,2), \alpha_2 = (-2,2,-1), \alpha_3 = (2,1,-2)}$$

Ta có
$$\alpha_1\perp\alpha_2$$
; $\alpha_2\perp\alpha_3$; $\alpha_1\perp\alpha_3$, do
$$<\alpha_1\mid\alpha_2>=0; <\alpha_2\mid\alpha_3>=0; <\alpha_1\mid\alpha_3>=0$$

Nên a là cơ sở trực giao

Cơ sở trực giao và trực chuẩn

➣ Ta thấy

$$\|\alpha_1\| = \|\alpha_2\| = \|\alpha_3\| = 3$$

Ta đặt
$$\beta_1 = \frac{1}{3}\alpha_1; \quad \beta_2 = \frac{1}{3}\alpha_2; \quad \beta_3 = \frac{1}{3}\alpha_3$$

thì lúc này $\beta = \{\beta_1, \beta_2, \beta_3\}$ là một cơ sơ trực chuẩn của \mathbb{R}^3

do
$$\beta_1 \perp \beta_2$$
; $\beta_2 \perp \beta_3$; $\beta_1 \perp \beta_3$

$$\|\beta_1\| = \|\beta_2\| = \|\beta_3\| = 1$$

Cơ sở trực giao và trực chuẩn

Định lý: Nếu P là một ma trận chuyển cơ sở từ một cơ sở trực chuẩn sang một cơ sở trực chuẩn khác trong một không gian Euclid n chiều thì P là ma trận trực giao, theo nghĩa:

$$P^TP = 1$$

Do đó:

$$P^{-1} = P^T$$

Trực giao & trực chuẩn hóa bằng pp Gram-Schmidt

$$Eu = (V_n, < \mid >)$$

 \succeq Cho KG Euclide $Eu = (V_n, < \mid >)$ và một cơ sở $a = \{\alpha_1, \alpha_2, ..., \alpha_n\}$

Dặt

$$\begin{cases} \beta_{1} = \alpha_{1} \\ \beta_{2} = \alpha_{2} - \frac{\langle \alpha_{2} | \beta_{1} \rangle}{\|\beta_{1}\|^{2}} \beta_{1} \end{cases}$$

$$\begin{cases} \beta_{3} = \alpha_{3} - \frac{\langle \alpha_{3} | \beta_{2} \rangle}{\|\beta_{2}\|^{2}} \beta_{2} - \frac{\langle \alpha_{3} | \beta_{1} \rangle}{\|\beta_{1}\|^{2}} \beta_{1} \end{cases}$$

$$\vdots \quad \vdots \quad \vdots$$

$$\beta_{n} = \alpha_{n} - \sum_{j=1}^{n-1} \frac{\langle \alpha_{n} | \beta_{j} \rangle}{\|\beta_{j}\|^{2}} \beta_{j}$$

Trực giao & trực chuẩn hóa bằng pp Gram-Schmidt

Đặt
$$\beta = \{\beta_1, \beta_2, ..., \beta_n\}$$
 thì β là một cơ sở trực giao của $Eu = (V_n, < | >)$

Đặt tiếp
$$\begin{cases} \gamma_1 = \frac{\beta_1}{\|\beta_1\|} \\ \gamma_2 = \frac{\beta_2}{\|\beta_2\|} \end{cases}$$
 thì $\zeta = \{\gamma_1, \gamma_2, \ldots, \gamma_n\}$ là cơ sở trực chuẩn của
$$\vdots \quad \vdots \quad Eu = (V_n, < | >)$$
 $\gamma_n = \frac{\beta_n}{\|\beta_n\|}$

Trực giao & trực chuẩn hóa bằng pp Gram-Schmidt

Ví dụ: Hãy trực chuẩn hóa hệ $S = \{u_1, u_2, ..., u_n\}$ trong R^3

•
$$\mathbf{v}_1 = \frac{\mathbf{u}_1}{\|\mathbf{u}_1\|} = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}),$$

•
$$\overline{v}_2 = u_2 - \langle u_2, v_1 \rangle v_1 = (-1, 1, 1) - \frac{1}{\sqrt{3}} (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}) = (-\frac{4}{3}, \frac{2}{3}, \frac{2}{3})$$

$$\|\overline{\mathbf{v}}_{2}\| = \frac{2\sqrt{6}}{3} \implies \mathbf{v}_{2} = \frac{\overline{\mathbf{v}}_{2}}{\|\overline{\mathbf{v}}_{2}\|} = (-\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}),$$

•
$$\overline{\mathbf{v}}_3 = \mathbf{u}_3 - \langle \mathbf{u}_3, \mathbf{v}_1 \rangle \mathbf{v}_1 - \langle \mathbf{u}_3, \mathbf{v}_2 \rangle \mathbf{v}_2 =$$

$$= (1,2,1) - \frac{4}{\sqrt{3}} \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right) - \frac{1}{\sqrt{6}} \left(-\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}} \right) = (0, \frac{1}{2}, -\frac{1}{2})$$

$$\|\overline{\mathbf{v}}_3\| = \frac{1}{\sqrt{2}} \Rightarrow \mathbf{v}_3 = \frac{\overline{\mathbf{v}}_3}{\|\overline{\mathbf{v}}_3\|} = (0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}).$$
 $\mathbf{V}\hat{\mathbf{a}}\mathbf{y} \ \mathbf{S}' = \{\mathbf{v}_1, \ \mathbf{v}_2, \ \mathbf{v}_3\}$

là hệ trực chuẩn hóa của hệ S.

Tọa độ vector theo cơ sở trực chuẩn

Cho KG Euclide $Eu = (V_n, < | >)$ và một cơ sơ 'trực chuẩn $a = \{\alpha_1, \alpha_2, ..., \alpha_n\}$

$$\text{ Lúc này } \forall \alpha \in V_n \text{ ta c\'o} \qquad \alpha = c_1 \alpha_1 + c_2 \alpha_2 + \cdots + c_n \alpha_n$$

với
$$c_1 = <\alpha \mid \alpha_1>; c_2 = <\alpha \mid \alpha_2>; \ldots; c_n = <\alpha \mid \alpha_n>$$

Kết luận
$$[\alpha]_a = \begin{pmatrix} <\alpha \,|\, \alpha_1> \\ <\alpha \,|\, \alpha_2> \\ \vdots \\ <\alpha \,|\, \alpha_n> \end{pmatrix}$$
 tọa độ vector theo cơ sở trực chuẩn

Tọa độ vector theo cơ sở trực chuẩn

 \sim Ví dụ: Trên không gian Euclide $(\mathbb{R}^3, < | >)$ cho cơ sơ trưc chuẩn

$$a = {\alpha_1 = \frac{1}{3}(1, 2, 2), \alpha_2 = \frac{1}{3}(-2, 2, -1), \alpha_3 = \frac{1}{3}(2, 1, -2)}$$

và vector $\alpha = (6, -7, 1) \in \mathbb{R}^3$

$$rac{1}{2}$$
 Tim $[\alpha]_a = ?$

Tọa độ vector theo cơ sở trực chuẩn

lpha Giải: Ta có $lpha=c_1lpha_1+c_2lpha_2+c_3lpha_3$

$$\begin{cases} c_1 = <\alpha \mid \alpha_1> = \frac{1}{3} \left\langle \begin{pmatrix} 6 \\ -7 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \right\rangle = -2 \\ c_2 = <\alpha \mid \alpha_2> = \frac{1}{3} \left\langle \begin{pmatrix} 6 \\ -7 \\ 1 \end{pmatrix} \begin{pmatrix} -2 \\ 2 \\ -1 \end{pmatrix} \right\rangle = -9 \\ c_3 = <\alpha \mid \alpha_3> = \frac{1}{3} \left\langle \begin{pmatrix} 6 \\ -7 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} \right\rangle = 1 \end{cases}$$

Như vậy

$$\alpha = (6, -7, 1) = -2\alpha_1 - 9\alpha_2 + 1\alpha_3$$

$$\Rightarrow [\alpha]_a = \begin{pmatrix} -2 \\ -9 \\ 1 \end{pmatrix}$$