Blatt 7 Abgabe: Mo 11.12.2017, 10:00 Uhr

▶ In der Vorlesung wird Ihnen der Gebrauch der freien Software Sage zur Lösung mathematischer Probleme nahegebracht. Diese Software lässt sich hier www.sagemath.org/download kostenlos herunterladen. Auf den folgenden Übungsblättern befindet sich nun jeweils eine Sage-Aufgabe. Diese Aufgabe lösen Sie indem Sie Ihren Programmcode und Ihre Berechnungen ausdrucken und an Ihre Abgabe heften.

Aufgabe 7.1 4 Punkte

Fig. 1 zeigt die Bilder der Vektoren $\binom{4}{0}$ und $\binom{0}{4}$ unter der Abbildung $f: \mathbb{R}^2 \to \mathbb{R}^2$ mit $x \mapsto A \cdot x$ (wobei A eine Matrix ist).

- a) Rekonstruieren Sie die Matrix A.
- b) Zeichnen Sie das Bild von $\binom{-2}{5}$ unter f ein
- c) Beschreiben Sie, was die Abbildung f für ein $x \in \mathbb{R}^2$ tut.

Fig. 1

Aufgabe 7.2 4 Punkte

Für den \mathbb{R}^2 seien L_1 und L_2 die folgenden linearen Abbildungen $L_i: \mathbb{R}^2 \to \mathbb{R}^2$.

- ▶ L_1 ist die Rotation um 180° (Bogenmaß: π) mit dem Uhrzeigersinn und
- ▶ L_2 die Spiegelung an der x_1 -Achse.

Gesucht sind die Darstellungsmatrizen von

- a) L_1 b) L_2 c) $L_1 \circ L_2$ d) $L_2 \circ L_1$
- e) Wie kann man $L_1 \circ L_2$ und $L_2 \circ L_1$ geometrisch beschreiben?

Tipp: Bestimmen Sie die Bilder $L_i\left(e^{(j)}\right)$ der Einheitsvektoren des \mathbb{R}^2 und machen sich eine Skizze.

Aufgabe 7.3 4 Punkte

Seien

$$A = \begin{pmatrix} 11 & 5 & 71 \\ -1 & 97 & 37 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & -16 & 14 \\ -1 & 8 & -7 \end{pmatrix}$$

Bestimmen Sie die Dimensionen der Kerne und Bilder der Matrizen A und B.

Aufgabe 7.4 4 Punkte

Seien V und W Vektorräume über \mathbb{R} . Sei $f:V\to W$ eine lineare Abbildung. Zeigen oder widerlegen sie:

- a) Das Bild einer linear unabhängigen Teilmenge von V unter f ist eine linear unabhängige Teilmenge in W.
- b) Das Bild einer linear abhängigen Teilmenge von V unter f ist eine linear abhängige Teilmenge in W.

Homepage der Veranstaltung: http://tinygu.de/MatheInfo1718 Blatt 7

Aufgabe 7.5 4 Punkte

Gegeben sei die Matrix A:

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}.$$

Zeigen Sie mithilfe von vollständiger Induktion, dass $A^n = \begin{pmatrix} a_{n+1} & a_n \\ a_n & a_{n-1} \end{pmatrix}$ für alle $n \geq 1$, wobei a_n definiert ist durch $a_0 = 0$, $a_1 = 1$ und $a_{n+1} = a_n + a_{n-1}$. Man nennt die Folge a_n auch die Fibonacci-Folge.

Schreiben Sie mithilfe von Sage ein Programm, welches $a_{\mathbf{2^n}}$ für $n \geq 1$ mit n Matrixmultiplikationen berechnet. (Hinweis: $A^2 = A \cdot A$, $A^4 = A^2 \cdot A^2$, $A^8 = A^4 \cdot A^4$, ...).