24 вопрос

Th: "Основная теорема алгебры"

Любой многочлен $f \in C[x]$ степени не меньше 1 имеет по крайней мере один комплексный корень.

Интерполяционный многочлен Лагранжа:

$$f = \sum_{j=0}^b y_j \cdot rac{(x-x_1) \ldots (x-x_{j-1}) (x-x_{j+1}) \ldots (x-x_n)}{(x_j-x_1) \ldots (x_j-x_{j-1}) (x_j-x_{j+1}) \ldots (x_j-x_n)}$$

Многочлен Лагранжа используются для интерполяции, а также для численного интегрирования.

Разложение многочлена на линейные множители:

Th: Всякий многочлен n-ой степени разлагается на n-линейных множителей вида (x-a) и множитель равный коэффициенту при x^n . Док-во:

Пусть f(x) - многочлен n-ой степени: $f(x) = A_0 x^n + A_1 x^{n-1} + \cdots + A_n$. Данный многочлен в силу "Основной теоремы алгебры" имеет по крайней мере один корень, обозначим черех a_1 , тогда по Th Безу \Rightarrow $f(x) = (x-a_1) \cdot f_1(x) \cdot f_1(x)$ - многочлен степени (n-1), многочлен $f_1(x)$ также имеет по крайне мере один корень, обозначим его a_2 . Получим, что $f_1(x) = (x-a_2) \cdot f_2(x) \cdot f_2(x)$ - многочлен степени (n-2). Он также имеет корень, обозначим черех $a_3 \Rightarrow f_2(x) = (x-a_3) \cdot f_3(x)$. Продолжая просцеес выделения множителей дойдем до соотношения $f_{n-1}(x) = (x-a_n) \cdot f_n(x) \cdot f_n(x)$ - многочлен 0 степени, т.е. константа и $f_n(x) = A_0$. Получим $f(x) = A_0(x-a_1)(x-a_2) \dots (x-a_n)$, где a_1, a_2, \dots, a_n - корни многочлена f(x), т.к. при $x = a_1$, $x = a_2$ и т.д. правая часть обращается в нуль.

Формулы Виета

 $\lhd f(x)$ - унитарный многочлен n-ой степени.

$$f(x) = x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n = (x-c_1)(x-c_2)\dots(x-c_n)$$

Раскрывая скобки в правой части м собирая коэффициенты при каждой стпени получаем

$$a_1 = -(c_1 + c_2 + c_3 + \cdots + c_n) \ a_2 = (c_1c_2 + c_1c_3 + \ldots c_{n-1}c_n) \ a_3 = (c_1c_2c_3 + c_1c_2c_4 + \ldots c_{n-2}c_{n-1}c_n) \ a_j = (-1)^j \cdot \sum_{1 \leq i_1 \leq i_2 \leq \cdots \leq i_n \leq n} c_{i_1}c_{i_2}c_{i_3} \ldots c_{i_j} \ a_n = (-1)^n c_1c_2c_3 \ldots c_n$$

Данные формулы называются формулами Виета

Если бы многочлен f(x) не был унитарным, т.е. имел старгий коэффициент $a_0 \neq_1$,

то формулы аналогичные давали бы выражения для отношения $\dfrac{a_j}{a_0}$