

Accelerator hardware de criptare și decriptare implementat pe FPGA.

Absolvent: Tudusciuc Cristian-Rafael

Coordonator științific: ș.l. dr.ing. Monor Mircea-Călin

Domeniul și tema propusă

Proiectarea aplicției

Implementarea aplicației

Rezultate experimentale

Concluzii

1 Domeniul și tema propusă

Domeniul și tema propusă

Tema propusa: Dezvoltarea și implementarea unui dispozitiv pe FPGA pentru criptare și decriptare, superior soluțiilor software in cadrul aplicațiilor embedded.

Domeniul:

Proiectare digitală (digital design)

Mediu de verificare (design verification)

Criptografie light-weight

2 Proiectarea aplicției

Arhitectura sistemului criptografic

Descrierea algoritmului Present

Proiectarea aplicției

Calea de date a algoritmului Present

Funcția de substituție

	\boldsymbol{x}																
ĺ	S[x]	C	5	6	В	9	0	Α	D	3	Е	F	8	4	7	1	2

Strat de permutare

reset_n

, 1	_	1	0	9	4	-	0	7	0	_	10	11	10	10	1.4	1 1
i	U	1	2	3												15
P(i)	0	16	32	48	1	17	33	49	2	18	34	50	3	19	35	51
	16															
P(i)	4	20	36	52	5	21	37	53	6	22	38	54	7	23	39	55
i	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
P(i)	8	24	40	56	9	25	41	57	10	26	42	58	11	27	43	59
	48															
P(i)	12	28	44	60	13	29	45	61	14	30	46	62	15	31	47	63

Arhitectura înregului ansamblu

Arhitectura mediului de verificare prin UVM a modulelor de criptare/decriptare

Platforma hardware folosită

Împachetare AXI

Împărțirea pe interfețe

Comunicare Monitor-Scoreboard

Interfața grafică

Funcție pentru stabilirea cheii


```
void key_agreement(){
         uint8_t size = word_80 * 2;
 3
        uint32_t a[size];
         set_rand(a, size);
        uint32_t g[size];
        uint32_t p[size];
        set_zero(q, size);
        set_zero(p, size);
        q[0] = 2;
 9
10
        p[2] = 0x10000;
        p[0] = 0xd;
11
12
13
         pow_mod(g, a, p, size);
14
         send_hex(q,"A", size/2);
15
16
         recive_B(g, size/2);
17
         pow_mod(g, a, p, size);
18
19
         set_key(g);
20
```


Modul de operare cu numere mari

```
void multiply(uint32_t* a, uint32_t* b, uint8_t size) {
         uint32_t* ml = (uint32_t*) malloc(size * sizeof(uint32_t));
         uint32_t* mr = (uint32_t*)malloc(size * sizeof(uint32_t));
         cpy(ml, a, size);
         cpy(mr, b, size);
         set_zero(a, size);
         while (!is_zero(mr, size)) {
             // print (mr, "mr");
             if (mr[0] & 1) { addition(a, ml, size); }
10
             shift_left(ml, size);
11
             shift_right (mr, size);
12
13
         free (ml);
14
         free (mr);
15
```


Verificarea modulului de decriptare

Verificarea modulului de criptare

Rezultatele testelor pentru decriptare

```
UVM_INFO test_lib.sv(46) @ 46720: uvm_test_top [simple_test] ** UVM TEST PASSED **
UVM_INFO /apps/vcsmx/vcs/U-2023.03-SP2//etc/uvm-1.2/src/base/uvm_report_server.svh(904) @ 46720: reporter [UVM/REPORT/SERVER]
--- UVM Report Summary ---
** Report counts by severity
UVM_INFO: 556
UVM_WARNING : 0
UVM_ERROR : 0
UVM_FATAL : 0
** Report counts by id
[RNTST]
           1
[UVM/RELNOTES]
                 1
[scoreboard] 274
[simple_test]
[start_phase]
                 3
[uvm_test_top.env0.cmd_agt.monitor]
                                    212
[uvm_test_top.env0.ctrl_agt.monitor]
                                       2
[uvm_test_top.env0.out_agt.monitor]
$finish called from file "/apps/vcsmx/vcs/U-2023.03-SP2//etc/uvm-1.2/src/base/uvm_root.svh", line 527.
$finish at simulation time
                                        46720
          VCS Simulation Report
Time: 46720 ns
CPU Time:
              1.040 seconds;
                                  Data structure size: 0.4Mb
```


Rezultatele testelor pentru criptare

```
UVM_INFO test_lib.sv(46) @ 46720: uvm_test_top [simple_test] ** UVM TEST PASSED **
UVM_INFO /apps/vcsmx/vcs/U-2023.03-SP2//etc/uvm-1.2/src/base/uvm_report_server.svh(904) @ 46720: reporter [UVM/REPORT/SERVER]
--- UVM Report Summary ---
** Report counts by severity
UVM_INFO: 584
UVM_WARNING : 0
UVM_ERROR : 0
UVM_FATAL: 0
** Report counts by id
[RNTST]
[UVM/RELNOTES]
                  1
[scoreboard] 274
[simple_test]
[start_phase]
[uvm_test_top.env0.cmd_agt.monitor]
[uvm_test_top.env0.ctrl_agt.monitor]
                                       2
[uvm_test_top.env0.out_agt.monitor]
                                     89
$finish called from file "/apps/vcsmx/vcs/U-2023.03-SP2//etc/uvm-1.2/src/base/uvm_root.svh", line 527.
$finish at simulation time
                                        46720
          VCS Simulation Report
Time: 46720 ns
CPU Time:
              1.080 seconds;
                                  Data structure size: 0.4Mb
```


În concluzie, acest proiect demonstrează posibilitatea realizării unei arhitecturi hardware modulare capabile să efectueze operațiuni de criptare și decriptare, asigurând totodată funcționalitatea corectă prin intermediul unui mediu de verificare dedicat.

