The Virtual Learning Environment for Computer Programming

F002B. Vectors comprimits

P16175_ca

A vegades cal manipular vectors numèrics que tenen un 0 a la majoria de posicions. En aquests casos, es pot estalviar memòria i temps de càlcul usant la tècnica dels *vectors comprimits*, que consisteix a guardar només els valors diferents de 0, juntament amb la posició on es troben.

Per exemple, per representar el vector

$$v = (0,3,0,0,8,0,0,-3,5,0,0,0,0)$$

s'utilitza el vector comprimit amb quatre parells següent:

0	1	2	3
3;1	8;4	-3;7	5;8

Aquest vector comprimit indica que hi ha un 3 a la posició 1 del vector v, un 8 a la posició 4, un -3 a la posició 7, un 5 a la posició 8, i que a la resta de posicions hi ha un 0.

Fixeu-vos que en els vectors comprimits *només* es guarden les posicions que tenen un valor diferent de 0, i que la taula es troba ordenada creixentment segons les posicions.

Les definicions següents permeten utilitzar vectors comprimits d'enters:

Utilitzant aquestes definicions, implementeu la funció

```
Vec_Com suma(const Vec_Com& v1, const Vec_Com& v2);
```

que retorna la suma, component a component, de dos vectors comprimits v1 i v2 donats.

Implementeu també l'acció

```
void llegeix (Vec_Com& v);
```

que llegeix, d'acord amb el format dels exemples, un vector comprimit, i el desa a v.

El programa principal ja se us dóna implementat; no el canvieu. Aquest llegeix primer un natural k. Després llegeix k parelles de vectors comprimits, els suma i n'escriu el resultat. L'acció que escriu vectors comprimits també se us dóna implementada; *queda estrictament prohibit cambiar-la*. Fixeu-vos que tant a l'entrada com a la sortida apareix explícitament el nombre de valors diferents de 0 del vector. Fixeu-vos també que la llargada que tenia el vector original (no comprimit) és irrellevant en aquest problema.

Observació

Useu algun mètode eficient per implementar suma (). Altrament, el Jutge rebutjarà la vostra solució per ser massa lenta. Inspireu-vos en algun dels algorismes fonamentals vistos a classe.

Exemple d'entrada

```
4 3;1 8;4 -3;7 5;8
4 3;1 8;4 -3;7 5;8
3 4;0 8;5 6;6
2 3;0 -6;6
3 2;3 3;18 5;21
3 -2;3 -3;18 -5;21
1 1;1000000000
1 1000000000;1
1 999;666
```

Exemple de sortida

```
4 6;1 16;4 -6;7 10;8
2 7;0 8;5
0
2 1000000000;1 1;1000000000
1 999;666
```

Informació del problema

Autor : Professorat de P1 Generació : 2013-09-02 15:08:50

© *Jutge.org*, 2006–2013. http://www.jutge.org