302 Capstone Project

R&D

Complexity of Zero Trust Architecture measured on project management applications.

Frederick Rive

Date: 08/12/2023

Supervisory Team: Rouwa Yalda

Contents

MVP Production	3
Abstract	3
Development Log	3
Bug Report	5
Summary	6
Notion Link	12
GitHub Link	12
R&D Report	12
Introduction	12
Access Management	12
Logs	13
2-Factor Authentication	13
Backups	14
Conclusion	15
Supervisor Notes and Signature	16
Bibliography	16
Table of Figures	16

MVP Production

Abstract

For my Capstone Project, I continued my study into the complexity added to a Project Management application by the addition of Zero Trust security practises. My focus for this paper was on administrator role functions and privileges, as well as intrusion response systems. A security administrator role is necessary for an applications security system maintenance; however, it also poses a significant risk should it be infiltrated itself. Intrusion response systems are also an important part of any security system. Given that no method of intrusion prevention is perfect, it should be regarded as inevitable that an application will be attacked. Intrusion response systems exist to help identify the attack and the attacker, as well as repair any damages they may have caused to the application.

Development Log

Week	Date	Goals		Review
Week 1	9/10/2023	•	Set up Vue Project	Vue project set up,
		•	Create website frame	succeeded at creating
		•	Learn Vue concepts	basic frame, css and
				figuring out Vue v-for
				lists
Week 2	16/10/2023	•	Create login widget	Node script required some
		•	Create Kanban Board	reworks, as it wasn't made
		•	Connect Node script to Vue script,	to send JSON objects,
			allow for login and fetching tasks	instead sending strings
				that I would decode in
				C++. Once data is being
				imported, getting the login
				and kanban boards went
				smoothly, though each
				need more CSS styling
Week 3	23/10/2023	•	Complete Kanban Board	CSS styling for kanban
		•	Add Task Widget dragging	board completed. Logging
		•	Add logging system	system was added quickly.
		•	Add admin page, log viewing	Task widget dragging took

			most of the week, and is
			currently still very buggy.
			Since task dragging took
			longer than expected,
			admin page was not
			created
Week 4		Add adula acceptant	
week 4		Add admin page, log viewing	Admin page was created
		Add admin role	with logging, however
		 Add 2-factor authentication 	lacks user management.
		Add user management	Admin role added,
			without 2-factor
			authentication.
Week 5	30/10/2023	• Finish user management	Admin page has user
		 Bugfixes 	management added. Most
		• 2-Factor Authentication	of this week dedicated to
			fixing bugs from earlier
			systems. I couldn't get
			time to work on 2-factor
			authentication.
Week 6	6/11/2023	• Bugfixes	Got system backups
		 Backups 	working, along with 2-
		• 2-Factor Authentication	factor authentication and
		 Notifications 	notifications. More
			bugfixes.
Week 7	13/11/2023	• Bugfixes	Added encryption and
		• Encryption	hashing to the application,
		Write R&D Report	otherwise worked on
		Presentation	R&D report and
		2.000	presentation
Week 8	20/11/2023	Bugfixes	Presented, made progress
		Write R&D Report	on R&D report
Week 9	27/11/2023	Bugfixes	Worked on R&D Report
		Write R&D Report	and bugfixes
Week 10	4/12/2023	• Bugfixes	Finished R&D report
4/12/2023		Password Reset	
		Write R&D Report	

Bug Report

Week	Bug	File	Solution
Week 4	Kanban Widgets are not aligning	App.vue	Added an offset position
	with mouse when being dragged,		value, that is equal to the
	instead the widget snaps to have		relative position of the mouse
	the top left corner on the mouse		upon clicking the widget. All
			subsequent widget positions
			include this offset.
Week 4	Kanban dragging has made	App.vue	Kanban widgets will only be
	opening the kanban modal		changed into draggable form
	unreliable, and often closes it		after the user begins
	instantly after opening it		dragging, rather than
			immediately after clicking.
Week 5	Kanban dragging still unreliable,	App.vue	
	and the modal doesn't stick to		
	the		
Week 6	Data duplication occurs		Fixed by wiping the arrays
	whenever data is saved.		containing the data before
			reloading them
Week 7	Access is not being restricted	Mongoconnector.js	Permission check query was
	properly, regular users are being		returning an empty array,
	given access to all data.		however permissions were
			only restricted if it was
			returning null. Changed to
			restrict when returning empty
			array
Week 8	Decrypting fails on certain	App.vue &	Sending ciphers with a '+'
	ciphertexts	mongoconnector.js	across HTTP get requests
			causes the '+' to become a ' '
			(space), which naturally
			breaks the cipher. Currently
			creating new ciphertexts in a

	loop until the app creates one
	without a '+', hope to get a
	better fix in the future

Summary

For the first part of this project, I used Qt/C++ for the application development, Node.js for the backend, and MongoDB for the database. Since the Capstone Project paper had different requirements, I had to reconsider the tools I was using for the project. When choosing the tools and frameworks to use, I considered whether they fit with the project guidelines, my own familiarity with them, as well as any previous work I had done with them on the CS301 project.

I couldn't use Qt for the Capstone project, as the paper required a live website for its hand-in. Due to this, I have decided to replace Qt with Vue. Vue is a modern HTML/JavaScript framework used to create dynamic, responsive websites. I had very little experience with Vue, however I was interested in learning it and decided to use it in this project. I found Vue easy to learn and was able to develop new features relatively quickly, however my inexperience with the language caused me to make a lot of mistakes in early development, which caused a constant stream of bugs in later weeks. These bugs caused significant delays in the production of the application.

I continued to use Node.js and MongoDB, as I was familiar with these systems, they did not conflict with the goals of the project, and I had already created functional systems in these for the CS301 Project. Each required a small degree of reworking to fit with Vue, however this was not a significant factor during development.

The CS301 project had issues with its encryption. Initially, I had intended to use Crpyto++, a well-regarded encryption library for C++. Unfortunately, this library had become incompatible with Qt, forcing me to look for a replacement. Due to time restraints, I was forced to settle for SimpleCrypt which had been built in Qt and therefore could be added to my project in a short timeframe. This encryption library did not produce sufficiently secure ciphers, so I decided to replace it with a new encryption system for my Capstone Project.

When selecting a new encryption library, I ensured that the library would be compatible with the application I was using. Fortunately, the JavaScript package manager npm, which I was already using for Node.js and Vue, offered a JavaScript library called cryptojs that used AES cryptography procedures. Getting this library to work in the application was significantly easier than it was for the CS301 project.

For project management, I moved to Notion. Notion is an advanced note-taking application that can be used to create Work Breakdown structures and create kanban boards using these WBS. I was

unsatisfied with my previous project management application TeamGantt as I would often forget to check or update it. I was much more successful with Notion, which I already frequently checked for tasks at work.

For web hosting, I used Github Pages. GitHub Pages is a service offered by Git, best known for the version control service GitHub. GitHub Pages allows users to host websites they have uploaded to GitHub. This allowed me to update the live website with minimal extra effort, as the host was based on the GitHub uploads, I was already required to make.

In-action Screenshots

Username
Pessword

Log In Register

Figure 1: Login Page

Figure 2: Two-Factor Authentication Page

Figure 3: Two-Factor Authentication Email

Figure~4:~Two-Factor~Authentication~Failure

Figure 5: Kanban Board Page

Figure 6: Task Modal

Figure 7: Gantt Chart Page

Figure 8: Admin Page

Figure 9: User Modal

Figure 10: User Account in transit

```
[
{
    _id: new ObjectId("65722515d4bb63b5e0829c61"),
    username: 'U2FsdGVkX1/5SLweuv0pStcBLdX6esnRtXrK4EAoYe8=',
    perm: 1
},
{
    _id: new ObjectId("65725659ebd1fb6e91f9bff6"),
    username: 'U2FsdGVkX1/DCYUkh3auSG7Tj2xNA2uvPXa2J4CG8kc=',
    perm: 0
},
{
    _id: new ObjectId("65725667ebd1fb6e91f9bffe"),
    username: 'U2FsdGVkX1/8YiIB2gKRaqbCk3GEIRTPhFY1plArwj8=',
    perm: 0
}
```

\Figure 11:Array of usernames in transit

```
[
    _id: new ObjectId("657255c7ebd1fb6e91f9bfbb"),
    name: 'U2FsdGVkX19gg8BiUXZ43pOAMZnFx8uEkmZA7vFXDwQ=',
    description: 'U2FsdGVkX19yXdKcus+CO6Edx6QzkPRWmuDFkeM5A3A=',
    startDate: 2023-12-09T00:00:00.000Z,
    endDate: 2023-12-11T00:00:00.000Z,
    state: 'U2FsdGVkX18tWbZBEu+Q/fEpr8ioVPuL/A/Np/DRE88=',
    users: [
        new ObjectId("65722515d4bb63b5e0829c61"),
        new ObjectId("65725667ebd1fb6e91f9bffe")
    ]
}
```

Figure 12: Task in transit

```
_id: ObjectId('65722515d4bb63b5e0829c61')
username: "U2FsdGVkX1/5SLweuv0pStcBLdX6esnRtXrK4EAoYe8="
password: "a6818b8188b36c44d17784c5551f63accc5deaf8786f9d0ad1ae3cd8d887cbab4f7772..."
usernameHash: "7407946a7a90b037ba5e825040f184a142161e4c61d81feb83ec8c7f011a99b0d77f39..."
email: "U2FsdGVkX1/K03h5f0oX7NCZHJl/LDZQhXHTlu3Rdy7Xaps35d2E9by7wfmBvdNr"
resetrequired: false
```

Figure 13: User Account at rest

```
_id: ObjectId('65725575ebd1fb6e91f9bf5c')
name: "U2FsdGVkX1/s0xE/vGz2Hdtjs13t+Yvrbr2M9wfcHdY="
description: "U2FsdGVkX1/C0M0Kudh40lNncIilVKk8UhXrqQ89g9c="
startDate: 2023-12-01T00:00:00.000+00:00
endDate: 2023-12-04T00:00:00.000+00:00
state: "U2FsdGVkX1/aj2xJUnZphYR8WT4BpJgnT2wXlCgS3xs="
> users: Array (2)
```

Notion Link

GitHub Link

R&D Report

Introduction

For the Capstone project, my aims were to study the increase in the complexity of development added by using Zero Trust Architecture (ZTA) security practices. To do this, I created a project management application that employed certain ZTA practices. In the CS301 project, I found that the project's development was significantly slowed by the addition of these practices, notably due to the incompatibility of different software.

For this paper, I continued my study by adding an administrator role to the application, which can modify user access, force users to reset passwords, view activity logs and save/reload the state of the application. I also wanted to add multi-factor authentication to secure these users accounts. Alongside these security features, I would continue the development of the application by adding a Gantt chart and notifications.

Access Management

In the prior paper, I had set up an access control system that restricted task data to the user who had created it, that I was able to import directly to the website. For this paper, I expanded on the access management system by incorporating administrative management of user access. This means that I needed to add an admin role that a user could be assigned, and I needed to add functionality to allow these admin users to grant or revoke access to task data.

Adding functionality to allow access management was relatively straightforward. The system I was using to check for access was giving each task object an array of users that had access to it. MongoDB queries allow queries to be restricted based on the contents of an array. By adding the id of the current user to queries for tasks, we can restrict the results to tasks that the user has access to. This access control will restrict data at the database level, meaning the system will not send any data to the user's network unless they have access to it. And, by allowing administrators to add a user's id to the task array, they will be able to grant that user access to the task.

User Management

In occasions where an account's credentials have been compromised to a malicious entity, it will be necessary for an admin to modify the account to mitigate the damage and prevent the attacker from having free access to the project. Initially, I had planned to do this by giving the admin three options for user management: forced password resets, account deletion, and IP blocking. The first two options were developed into the application, and can be used by an administrator to respond to compromised accounts. When an account is flagged with a password reset, they will be incapable of logging into the account until they have completed it. Deleting an account will remove it from the database, making it impossible for either the intended user or the malicious actor to log in using it ever again.

I had intended for IP blocking to be included as well; however the feature would have been far more complex to add than I had initially thought. Given an already lagging production schedule, I chose to cut it from the application.

Logs

To give administrators a comprehensive understanding of their projects, they are going to need to know how their users are using the application. The most effective way of keeping them up to date is via logs.

I intended to add user login logs to track the times & locations that users log in from, along with activity logs to track how users interact with the application. These logs would be displayed to administrators, who could use them to help identify attacks and repair data.

I added activity logs by adding a new step to the database upload process. Before any data is uploaded, the application will create a log object that stores relevant information, including the action, user, and timestamp. These logs are stored before the action is performed.

Logs are also stored whenever a user logs in or registers.

2-Factor Authentication

Since the administrator is given access to all data in the project, it created a new security risk I needed to account for. Multi-factor authentication is a common method for increasing the difficulty for a malicious actor to break directly into user accounts. For this project, I used 2-factor authentication, with admins authenticating themselves first through a password, and then by accessing a randomly generated code sent to the admins mail.

Figure 15: Two Factor Authentication email

A code has be	een sent to your email address. Please enter it here to og-in
Email Code	370 088 218
	Confirm

Figure 16: Two Factor Authentication being input

Since users tend to only adopt multi-factor authentication when forced to (Cristofaro, Du, Freudiger, & Norcie, 2014), I decided to make this system mandatory for admin users. The random codes being sent contain 9 digits, allowing for 360,880 possible combinations of numbers. To protect against brute-force attacks, the application will only allow for 5 attempted entries before it requires the user to re-enter their username and password.

Backups

Backups serve as an intrusion response system, that can be used to undo damages after a cyberattack. The way MongoDB handles data is by grouping it into 'collections', which themselves are grouped into databases. The backups are copies of the 'collections' inserted into another database. These copies themselves can be copied back onto the main database to replicate the state of the database when it was saved.

This system is effective at protecting against vandalism caused by attacks on the application or network layers, however it provides little protection against an attack on the database itself. The MongoDB database is protected by its own multi-factor authentication; however, a breach of this system is not inconceivable. Ideally, a database backup would be stored in a separate physical storage device that the application owners possess, that they can restrict access too on their own. More common is the practice of purchasing a backup server from your cloud server provider. Neither of these options were available to me, given my limited resources.

Conclusion

Adding the administrator role has greatly inflated the complexity of the security systems. Not only has this required more rigorous authentication, but it has also forced me to modify all existing security systems to account for its existence.

Throughout this project, the tools and practices I have used have been primarily dictated by my own resources and skills. This has created limitations on all of the features I have added to the application. When laying out the plans for this project, I found that it was unreasonable to include many features of a true Zero Trust environment, either due to a lack of finances or skill on my part. As such, the finished product cannot be said to be Zero Trust and suffers from several vulnerabilities that Zero Trust principles could have prevented.

This is representative of an issue with implementing a Zero Trust security system: it requires many resources to implement. Application developers cannot apply all ZTA techniques without purchasing expensive software and employing trained professionals who specialize in this field. IBMs Security Intelligence and Event Management system 'QRadar' costs between \$1,370 and \$5,980 USD per month (IBM QRadar Pricing, 2023). The salary for a Security Analyst in New Zealand typically ranges from \$120k – \$200k, with chief security managers sometimes costing as much as \$500k per annum to employ (careers.govt.nz Security Analyst, n.d.) A steep cost of security provides an incentive for companies, particularly startups, to attempt to cut costs by cutting security. This is particularly true in cases where the true costs of a security breach are not with the software provider (Moore, 2010).

The current era of cybersecurity, dominated by Zero Trust principles, has continued the trend of cybersecurity towards a role in the software industry that requires specialised professionals to handle, as opposed to an aspect of development that can be handled by a generalist. I have found that the additional complexity added to application development by the inclusion of Zero Trust practices is very significant. A team of software developers intending to develop an application using these practices will require a team of professionals dedicated solely to this task.

Supervisor Notes and Signature

Date and Signature	Supervisor's notes with bullet points of the major tasks
08/12/2023	-
ROUSIVI	

Bibliography

- careers.govt.nz Security Analyst. (s.d.). Récupéré sur careers.govt.nz: https://www.careers.govt.nz/jobs-database/it-and-telecommunications/information-technology/security-analyst/
- Cristofaro, E. D., Du, H., Freudiger, J., & Norcie, G. (2014). A Comparative Usability Study of Two-Factor Authentication. *arXiv*, 1-10.
- IBM QRadar Pricing. (2023, December). Récupéré sur IBM: https://www.ibm.com/products/qradar-siem/pricing
- Moore, T. (2010). The Economics of Cybersecurity: Principles and Policy Options. *International Journal of Critical Infrastructure Protection, Volume 3, Issues 3-4*,, 103-117.
- Rive, F. (s.d.). *Project GitHub*. Récupéré sur https://github.com/Frederick-Rive/project-management-phase-2
- Rive, F. (s.d.). *Project Notion*. Récupéré sur https://www.notion.so/Project-Management-Phase-2-cb138b3dbc79437796ddb1bae98b6649

Table of Figures

Figure 1: Login Page	7
Figure 2: Two-Factor Authentication Page	7
Figure 3: Two-Factor Authentication Email	8
Figure 4: Two-Factor Authentication Failure	8
Figure 5: Kanban Board Page	8
Figure 6: Task Modal	9
Figure 7: Gantt Chart Page	9
Figure 8: Admin Page	10
Figure 9: User Modal	10

Figure 10: User Account in transit	10
Figure 11:Array of usernames in transit	11
Figure 12: Task in transit	11
Figure 13: User Account at rest	11
Figure 14: Task at rest	12