

Switch Scheduling via Reinforcement Learning

Dongyan (Lucy) Huo

Cornell ORIE

Joint Work with

Prof Yudong ChenWisconsin-Madison CS

Prof Jim DaiCornell ORIE
CUHK(Shenzhen) SDS

Prof Qiaomin XieWisconsin-Madison ISyE

Reinforcement Learning (RL) for Stochastic Network Control

- Stochastic network control problem is to find a policy for a given stochastic network that optimizes certain criteria
- RL is to automatically learn an algorithm to navigate through complex and unpredictable environments

- 1 Switch Scheduling Problem Formulation
- **2** Proximal Policy Optimization (PPO)
- 3 Atomic Action (AA) + PPO
- 4 AA + PPO + Neural Network Pruning

MDP Formulation of Switch Scheduling Problem

- N input ports × N output ports
- Virtual Output Queues (VOQ), $S = \{Q_{ij}\}_{1 \le i,j \le N} \subseteq \mathbb{N}^{N \times N}$
- Combinatorial matching problem, |A| = N!

MDP Formulation

- Find optimal matching to minimize long-run average cost (LRAC), hence smaller packet delay
- $c(S, \sigma) = \sum_{i,j} Q_{i,j}$

$$\min_{\pi} \lim_{k \to \infty} \frac{1}{k} \sum_{t=1}^{k} c(Q(t), \pi(Q(t)))$$

- *P*: induced by the arrival traffic
 - $A_{i,j} \sim Bernoulli(\lambda_{i,j})$

Challenges and Goals

- Unbounded state space: $S \subseteq \mathbb{N}^{N \times N}$
- Large action space: $|\mathcal{A}| = N!$ (10! $\approx 3.6 \times 10^6$)
- Goals: use RL to find a policy with low LRAC
 - Across different arrival traffic patterns
 - Especially when existing algorithms are known to be sub-optimal
- Compare with algorithms
 - MaxWeight(MW): best known and most well-studied algorithm
 - MW-alpha: conjectured to be asymptotically optimal under uniform traffic
 - Asymptotic in alpha decreasing to 0
 - Random d-Flip: low complexity [Jhunjhunwala-Maguluri' 21]

- 1 Switch Scheduling Problem Formulation
- **2** Proximal Policy Optimization (PPO)
- 3 Atomic Action (AA) + PPO
- 4 AA + PPO + Neural Network Pruning

Proximal Policy Optimization (PPO) Algorithm

- Proximal Policy Optimization Algorithms [Schulman-et-al' 17]
- State-of-the-Art
 - Continuous control, Atari games, etc.
- Designed for discounted reward
 - vs. LRAC in switch scheduling problem
- Actor-critic model
 - Value Function ApproximationPolicy Function Approximation

Neural Network

PPO Learning Near Optimal Policy

- Bottom-skewed arrival
- Load $\rho = 0.9$

$\frac{1}{6}\rho$	$\frac{1}{6}\rho$	$\frac{1}{6}\rho$
$\frac{1}{6}\rho$	$\frac{1}{6}\rho$	$\frac{1}{6}\rho$
$\frac{1}{6}\rho$	$\frac{1}{6}\rho$	$\frac{2}{3}\rho$

PPO Policy beating MW-α

PPO Learning Near Optimal Policy

- Uniform Traffic
- Load $\rho = 0.9$

$\frac{1}{3}\rho$	$\frac{1}{3}\rho$	$\frac{1}{3}\rho$
$\frac{1}{3}\rho$	$\frac{1}{3}\rho$	$\frac{1}{3}\rho$
$\frac{1}{3}\rho$	$\frac{1}{3}\rho$	$\frac{1}{3}\rho$

 MW-α as a near-optimal performance benchmark

- 1 Switch Scheduling Problem Formulation
- **2** Proximal Policy Optimization (PPO)
- 3 Atomic Action (AA) + PPO
- 4 AA + PPO + Neural Network Pruning

Atomic Action (AA) Decomposition

- Atomic action: sequential decision-making process
 - Successful application in ride-hailing [Feng-Gluzman-Dai' 21], and inpatient flow control [Shi-Dai' upcoming]
- $a_t \in \mathcal{A}, |\mathcal{A}| = N!$
- $a_t = (a_{t,1}, a_{t,1}, ..., a_{t,N}) \in \mathcal{A}$,
- $a_{t,k} = (i,j) \in \mathcal{A}', |\mathcal{A}'| = N^2$
- Problem-specific design
 - To satisfy matching constraint

AA PPO Scalable while Learning Good Policy

- Uniform traffic
- N² vs. N!
- AA PPO
 - outperforms the greedy policy
 - stays close to MW-1

AA PPO Picking up Traffic Patterns

- Diagonal traffic [Giaccone-Prabhakar-Shah' 02]
 - Favor 2 out of N! possible matchings
 - difficult to schedule with stochastic policies

$\frac{2}{3}\rho$	$\frac{1}{3}\rho$	
	$\frac{2}{3}\rho$	$\frac{1}{3}\rho$
$\frac{1}{3}\rho$		$\frac{2}{3}\rho$

- 1 Switch Scheduling Problem Formulation
- **2** Proximal Policy Optimization (PPO)
- 3 Atomic Action (AA) + PPO
- 4 AA + PPO + Neural Network Pruning

Neural Network (NN) Pruning

- Policy deployment: policy inferencing time matters
- NN pruning
 - deleting parameters from an existing NN [Han-et-al' 15]
 - Aim to keep the policy's performance while reducing its inferencing time

AA PPO policy is robust to NN pruning

Summary

PPO

Demonstrates the potential of RL in tackling challenging stochastic network control problems

AA + PPO

 Improves the scalability of the algorithm while maintaining policy performance

AA + PPO + NN Pruning

 Reduces policy inference time

Thank You