WIRELESS WORLD RESEARCH FORUM®

Evaluating Customer Energy Invoice Calculation as a Service

Introduction

- Finnish Government act (2009) on installing remote readable energy meters to 80% of households by the end of 2013
- Smart Grids and Energy Markets (SGEM) project in Finland
- Using cloud computing as part of the smart grid infrastructure
 - Case: Customer energy invoice calculation as a service

Smart Grids – what are they?

WIRELESS WORLD RESEARCH FORUM®

- The next step of electricity networks
- Allows two-way flow of electricity between all the involved parties
- Both automated & Distributed electricity
- Allows consumers to provide energy to the network as well

Picture from: J. Popeanga, "Cloud Computing and Smart Grids," *Database Systems Journal*, vol. 3, no. 3, pp. 57-66, 2012.

WIRELESS WORLD RESEARCH FORUM

The aim of the Smart Grids and Energy Markets (SGEM)
research program is to develop international smart grid
solutions that can be demonstrated in a real environment
utilizing Finnish R&D infrastructure. At the same time, the
benefits of an interactive international research environment
will accumulate the know-how of world-leading ICT and smart
grid providers.

The main components of the research are:

- Smart grid architectures and distribution infrastructure
- Intelligent management and operation
 - Active resources
 - Market integration and new business models

Smart Meters

- Smart meters are the "backbone" of smart energy grids
- Installed at households, monitor the flow of energy

Case: Energy Invoice Calculation in the Cloud

- Customer energy consumption (and production) data is measured by the smart meters
- Meters create huge amounts of data, as consumption can be tracked even on a minute-byminute basis
- Matching current energy consumption to the actual energy price on the fluctuating markets, for every hour of every client with different contracts
 - What if this would be done in the cloud? Possible? Feasible? Costs?

Our Vision:

- "One community cloud that contains multiple private and public clouds.
- Multiple different application, processing and storage clouds each with their own specific
 tasks"

Issues of Cloud Computing

- Privacy, Security, (Legislations)
- Service Availability
 - Cloud provider blackouts?
- Cloud provider policy stability?
 - Risk of being locked to one provider
 - What if they decide to change terms or prices?

Comparing Amazon & WIRELESS WORLD **Microsoft**

Cloud Service	CPU Cores	Memory	Disk Space	I/O Perf	C o s t / Hour
Amazon Micro	Shared	613 Mb	None (EBS storage only)	Low	\$0.0035
Azure Extra Small	Shared	768 MB	20 GB	Low	\$0.02
Amazon Small	1	1.7 Gb	160 Gb	Moderate	\$0.091
Azure Small	1	1.75 GB	225 GB	Moderate	\$0.09
Amazon Medium	2	3.75 Gb	410 Gb	Moderate	\$0.182
Azure Medium	2	3.5 GB	490 GB	High	\$0.18
Amazon Large	4	7.5 Gb	2 x 420 Gb	High	\$0.364
Azure Large	4	7 GB	1,000 GB	High	\$0.36
Amazon Extra Large	8	15 Gb	4 x 420 Gb	High	\$0.728
Azure Extra Large	8	14 GB	2,040 GB	High	\$0.72

- Similar pricing, similar processing capabilities
 - The pricing has moved to match competition, used to be different

Storage and Data

- Basic cloud service focuses on computation
- Need to consider also communication and storage space
 - Communication costs around 100€ / TB (outgoing traffic)
 - Storage space from 50 to 100€ / TB
- Neither communication or storage are a limiting factor

Meter Information

Parameter	Explanation	Parameter Type	Example value	Size (in bytes)
StartDate	The start time of the meter reading	DateTime	15.1.2012 12:00	8
EndDate	The end time of the meter reading	DateTime	30.8.2012 7:59	8
Value	The value	Decimal	803 547	16
Unit	The unity type of the value	String	kWh	3
Status	Status of the reading (OK, missing, estimate)	String	Ok	2
Meteringld	The ID of the meter	Int32	1	4
Туре	Type of the measurement	String	TimeFrame	9
Money	The cost	Decimal	55 874	16
Total byte size				66

- Data received from smart meters, type and byte size (in C#)
- Rough estimates, more complex in reality (and larger in size)

Data transfer in reality

- Transferring already from meters to company database
- Tranferring again from company to cloud makes no sense?
- -> Store to cloud, less transfer and information always
 vailable

	300 000 customers	500 000 customers	1 000 000 customers
15 min timeframes	57.024 Gb	95.04 Gb	190.08 Gb
60 min timeframes	14.256 Gb	23.76 Gb	47.52 Gb

	1 Mbit/s	2 Mbit/s	5 Mbit/s	10 Mbit/s
47 520 Mb	4,40	2,20	0,88	0,44
	days	days	days	days
190 080 Mb	17,60	8,80	3,52	1,76
	days	days	days	days

Evaluating cloud

Parameter	Values
Measurement interval	15 min, 60 min
Price interval	1/day, 2/day, 24/day
Correct estimate percentage	40%, 60%, 80%, 100%
Number of processor cores	1, 4
Number of clients	1, 100 000, 1 000 000

- Evaluated performance of calculation with different parameters
 - Sequential vs. Parallel
 - Calculating a batch vs smaller pieces

Evaluating variable impact on calculation

ORIIM

Total runtimes of one customer

- Smart meter reading correctness has the most impact
 - Less recalculation -> faster

Invoice Calculation - comparison

- Batch processing sequentially takes over 2 days
- Parallel computation drops to a mere day
- When calculated once a week, the final batch is only 11 hours

Cost of of calculation

- Calculating in the cloud on-demand is quite cheap process
- However, requires that all data resides close (inside the same cloud or datacenter) to prevent idle use of resources
- However, running the same computer 24/7 is not a wise option

	4 Cores batch	4 Cores – Final Week
Microsoft Azure	\$10,4616	\$4,1436
Amazon AWS	\$10,5778	\$4,1896

	4 Core 24/7
Microsoft	\$262.08
Azure	
Amazon	\$292.2
AWS	

Conclusion

WIRELESS WORLD RESEARCH FORUM®

- Cloud services are scalable
- Cheap in terms of money, if real on-demand could be used
- Requires: Large community cloud with all the data accessible to different parties when required
 - Store all data to cloud -> only transfer data once to cloud,
 then use it inside
 - Processing jobs can be run on-demand
 - Scaling on-demand

Privacy? Security? Provider lockdown? Service Level Quality? Companies own policies?