Supercuspidals for GL(2).

Finn McGlade email: fmcglade@ucsd.edu

1 Set up

We study smooth representations, the stabilizers are open. F is a non-archimedean local field of residue characteristic p. \mathcal{O} denotes the ring of integers in F and \mathfrak{p} is the maximal ideal. G is the group $\mathrm{GL}_2(F)$ and $K=\mathrm{GL}_2(\mathcal{O})$. B is the group of upper triangular matrices in G and T is the group of diagonal matrices in G. Fix an additive character $\tau\colon F\to\mathbb{C}$. So τ is automatically unitary, i.e. if $x\in F$ then $|\tau(x)|=1$. If X is a topological space, write $\mathrm{Fun}(X,\mathbb{C})$ for the space of continuous functions $f\colon X\to\mathbb{C}$. So $\mathrm{Fun}(F,\mathbb{C})$ (resp. $\mathrm{Fun}(F^\times,\mathbb{C})$) are the locally constant functions on F (resp. F^\times). If space of Schwartz functions $\mathcal{S}(F)$ (resp. $\mathcal{S}(F^\times)$) is the space of compactly supported functions in $\mathrm{Fun}(F,\mathbb{C})$ (resp. $\mathrm{Fun}(F^\times,\mathbb{C})$). Let $\mathrm{d}x$ be the Haar measure of F, which is self dual relative to τ , meaning that if $f\in\mathcal{S}(F)$ and

$$\widehat{f}(y) := \int_{F} f(x)\overline{\tau}_{F}(xy)dx \qquad (y \in F)$$

then $f(x) = \int_F \widehat{f}(y)\tau_F(xy)\mathrm{d}y$ for all $x \in F$. The multiplicative Haar measure $\mathrm{d}^\times x$ is normalized so that the units \mathcal{O}^\times in \mathcal{O} have volume 1. We let $|\cdot|: F \to \mathbb{R}_{\geq 0}$ denote the normalized absolute value. If $\pi \in F$ is a uniformiser then $|\pi| = 1/q$ where q denotes the size of the residue field and $\mathrm{d}(cx) = |c|\mathrm{d}x$ for all $c \in F^\times$.

2 A First Look at Principal Series

Let B denote the set of upper triangular matrices in G. Let $\delta \colon B \to \mathbb{C}^{\times}$ be the modulus character

$$\delta \begin{pmatrix} t_1 & x \\ 0 & t_2 \end{pmatrix} = \begin{vmatrix} t_1 \\ t_2 \end{vmatrix} \qquad (t_1, t_2 \in F^{\times}, x \in F).$$

Lemma 2.1. Suppose $d_L b$ is a left invariant Haar measure on B. If $b_0 \in B$ then

$$d_L(b_0bb_0^{-1}) = \delta(b_0)d_Lb$$

and $d_R b := \delta(b) d_L b$ is a right invariant Haar measure on B.

Proof. One proves the existence and uniqueness of δ using the existence and uniqueness properties of Haar measure. The fact that $d_R b = \delta(b) d_L b$ is right invariant then follows from a formal computation. The measure

$$d_L \begin{pmatrix} \begin{pmatrix} t_1 & x \\ 0 & t_2 \end{pmatrix} \end{pmatrix} = |t_1|^{-1} dx d^{\times} t_1 d^{\times} t_2$$

is left invariant since if $b_0 = \begin{pmatrix} s_1 & y \\ 0 & s_2 \end{pmatrix} \in B$ then

$$d_{L} \begin{pmatrix} \begin{pmatrix} s_{1} & y \\ 0 & s_{2} \end{pmatrix} \begin{pmatrix} t_{1} & x \\ 0 & t_{2} \end{pmatrix} \end{pmatrix} = d_{L} \begin{pmatrix} \begin{pmatrix} s_{1}t_{1} & s_{1}x + yt_{2} \\ 0 & s_{2}t_{2} \end{pmatrix} \end{pmatrix}$$

$$= |s_{1}t_{1}|^{-1} d(s_{1}x + yt_{2}) d^{\times}(s_{1}t_{1}) d^{\times}(s_{2}t_{2})$$

$$= |s_{1}t_{1}|^{-1} |t_{2}| \frac{1}{|t_{2}|} d(s_{1}x + yt_{2}) d^{\times}t_{1} d^{\times}t_{2}$$

$$= |s_{1}t_{1}|^{-1} |t_{2}| d\left(\frac{s_{1}x}{t_{2}} + y\right) d^{\times}t_{1} d^{\times}t_{2}$$

$$= |s_{1}t_{1}|^{-1} |t_{2}| d\left(\frac{s_{1}x}{t_{2}}\right) d^{\times}t_{1} d^{\times}t_{2}$$

$$= |s_{1}t_{1}|^{-1} |s_{1}| dx d^{\times}t_{1} d^{\times}t_{2}$$

$$= |s_{1}t_{1}|^{-1} |s_{1}| dx d^{\times}t_{1} d^{\times}t_{2}$$

$$= d_{L} \begin{pmatrix} t_{1} & x \\ 0 & t_{2} \end{pmatrix}.$$

So d_L is left invariant. Since $b_0^{-1} = \begin{pmatrix} 1/s_1 & -y/(s_1s_2) \\ 0 & 1/s_2 \end{pmatrix}$,

$$d_L \begin{pmatrix} \begin{pmatrix} t_1 & x \\ 0 & t_2 \end{pmatrix} b_0^{-1} \end{pmatrix} = d_L \begin{pmatrix} \begin{pmatrix} t_1/s_1 & x/s_2 - yt_1/(s_1s_2) \\ 0 & t_2/s_2 \end{pmatrix} \end{pmatrix}$$

$$= |t_1s_1^{-1}|^{-1}d \begin{pmatrix} \frac{x}{s_2} - \frac{yt_1}{s_1s_2} \end{pmatrix} d^{\times}(t_1/s_1)d^{\times}(t_2/s_2)$$

$$= |s_1||t_1|^{-1}|s_2|^{-1}d \begin{pmatrix} x - \frac{yt_1}{s_2} \end{pmatrix} d^{\times}t_1d^{\times}t_2$$

$$= \delta(b_0)d \begin{pmatrix} \frac{x}{t_1} - \frac{y}{s_2} \end{pmatrix} d^{\times}t_1d^{\times}t_2$$

$$= \delta(b_0)d \begin{pmatrix} \frac{x}{t_1} \end{pmatrix} d^{\times}t_1d^{\times}t_2$$

$$= \delta(b_0)d_L \begin{pmatrix} \begin{pmatrix} t_1 & x \\ 0 & t_2 \end{pmatrix} \end{pmatrix}.$$

Definition. Let $\mu \colon B \to \mathbb{C}^{\times}$ be a smooth character. Define $(\rho_{\mu}, \mathcal{B}_{\mu})$ as the representation

$$\mathcal{B}_{\mu} = \left\{ \begin{array}{c} \text{locally constant functions} \\ f \colon G \to \mathbb{C} \end{array} : \begin{array}{c} \text{if } b \in B \text{ and } g \in G \text{ then} \\ f(bg) = \mu(b)\delta(b)^{1/2} f(g) \end{array} \right\}$$

with G acting by right translations i.e. if $x, g \in G$ then $\rho_{\mu}(g)f(x) = f(xg)$.

Theorem 2.2. ([God18, 1.8]), [Bum97, Theorem 2.6.1]) Suppose μ is a character of B. (i) The representations $(\rho_{\mu}, \mathcal{B}_{\mu})$ is smooth and admissible.

(ii) The pairing

$$\langle -, - \rangle \colon B_{\mu} \times B_{-\mu} \to \mathbb{C}, \qquad \langle \varphi, \psi \rangle = \int_{K} \varphi(k) \psi(k) dk, \quad (\varphi \in \mathcal{B}_{\mu}, \psi \in \mathcal{B}_{-\mu})$$

defines a non-degenerate pairing such that if $\varphi \in \mathcal{B}_{\mu}$, $\psi \in \mathcal{B}_{-\mu}$ and $g \in G$ then

$$\langle \rho_{\mu}(g)\varphi, \rho_{-\mu}(g)\psi \rangle = \langle \varphi, \psi \rangle.$$

In particular the representation $(\rho_{-\mu}, \mathcal{B}_{-\mu})$ is naturally isomorphic to the contragredient $(\rho_{\mu}^{\vee}, \mathcal{B}_{\mu}^{\vee})$ of $(\rho_{\mu}, \mathcal{B}_{\mu})$.

(iii) If μ is a unitary, i.e. $|\mu(b)| = 1$ for all $b \in B$, then the pairing

$$\langle \langle -, - \rangle \rangle \colon B_{\mu} \times B_{\mu} \to \mathbb{C}, \qquad \langle \langle \varphi, \psi \rangle \rangle = \int_{K} \varphi(k) \overline{\psi(k)} dk, \quad (\varphi, \psi \in \mathcal{B}_{\mu})$$

defines a natural positive definite ρ_{μ} -invariant Hermitian form on \mathcal{B}_{μ} and \mathcal{B}_{μ} is unitarilizable, i.e. if $\widehat{\mathcal{B}}_{\mu}$ denotes the Hilbert space completion of \mathcal{B}_{μ} with respect to $\langle \langle -, - \rangle \rangle$ then there is a natural unitary G-action on $\widehat{\mathcal{B}}_{\mu}$ such that the action map $G \times \widehat{\mathcal{B}}_{\mu} \to \widehat{\mathcal{B}}_{\mu}$ is continuous.

Proof. (i) To ease notation write $K = \operatorname{GL}_2(\mathcal{O})$ so that $K \subseteq G$ is a maximal compact subgroup. By the Iwasawa decomposition $G = B \cdot K$. So a function $f \in \mathcal{B}_{\mu}$ is determined by the restriction $f|_K$. One proves that $f \mapsto f|_K$ defines a K-equivariant isomorphism of complex vector spaces

$$\mathcal{B}_{\mu} \xrightarrow{\sim} \left\{ \begin{array}{c} \text{locally constant functions} \\ f \colon K \to \mathbb{C} \end{array} : \begin{array}{c} \text{if } b \in B \cap K \text{ and } k \in K \text{ then} \\ f(bk) = \mu(b)f(k) \end{array} \right\} =: I_{K \cap B}^{K}(\mu).$$

Since K is compact, the right hand side is spanned by characteristic functions. The smoothness follows. For admissibility, suppose $U \subseteq K$ is open. Then the functions stabilized by U define locally constant functions on K/U. Since $K = \varprojlim_n \operatorname{GL}_2(\mathbb{Z}/p^n\mathbb{Z})$ is profinite, K/U is finite. So the space of functions invariant under U is finite dimensional.

(ii) Let

$$L(G,P) = \{ \varphi \in \operatorname{Fun}(G,\mathbb{C}) \mid \text{if } b \in B \text{ and } g \in G \text{ then } \varphi(bg) = \delta(b)\varphi(g) \}$$

Then G acts on L(G, B) by right translations. If $\varphi \in \mathcal{B}_{\mu}$ and $\psi \in \mathcal{B}_{-\mu}$ then $\varphi \psi \in L(G, B)$. We prove the form

$$I: L(G,B) \to \mathbb{C}, \qquad f \mapsto \int_K f(k) dk$$

is G invariant. Let $C_c(G)$ denote the space of compactly supported, locally constant functions on G. For $\phi \in C_c(G)$ define $\Lambda \phi \colon G \to \mathbb{C}$ by

$$(\Lambda \phi)(g) = \int_{B} \phi(pg) d_{L}p \qquad (g \in G)$$

If $b \in B$ and $g \in G$ then

$$(\Lambda \phi)(bg) = \int_{B} \phi(pbg) d_{L}p = \int_{B} \phi(pbg) \delta^{-1}(p) d_{R}p$$

$$= \int_{B} \phi((pb^{-1})bg) \delta^{-1}(pb^{-1}) d_{R}(pb^{-1})$$

$$= \int_{B} \phi(pg) \delta(pb^{-1}) d_{R}p$$

$$= \int_{B} \phi(pg) \delta^{-1}(pb^{-1}) \delta(p) d_{L}p$$

$$= \delta(b) \int_{B} \phi(pg) d_{L}p$$

$$= \delta(b) (\Lambda \phi)(g).$$

So the functional $\Lambda \phi \in L(G, B)$ and if $h \in H$ then

$$I(\Lambda \phi) = \int_{K} \int_{B} \phi(pk) d_{L}p dk = \int_{G} \phi(g) dg$$
$$= \int_{G} \phi(gh) dg = \int_{K} \int_{B} \phi(pkh) d_{L}p dk$$
$$= I(\Lambda(h \cdot \phi))$$
$$= I(h \cdot \Lambda \phi).$$

We conclude that I is G-invariant on the elements of L(G,B) which are in the image of the map $\Lambda \colon \mathcal{C}_c(G) \to L(G,B)$. It remains to prove that Λ is surjective. First observe that the restriction of δ to $K \cap B$ is trivial, because $\delta(K \cap B)$ is a compact subgroup of $\mathbb{R}^{\times}_{>0}$. Thus if $f \in L(G,B)$ then $f|_K$ is constant on the cosets of $K \cap B$. Hence $f|_K$ descends to a continuous function on $(K \cap B) \setminus K$ and we get a linear map $L(G,B) \to \operatorname{Fun}((K \cap B) \setminus K, \mathbb{C})$. Since G = BK, an element $f \in L(G,B)$ is unquely determined by $f|_K$. So $L(G,B) \to \operatorname{Fun}((K \cap B) \setminus K, \mathbb{C})$ is injective. The surjectivity of Λ will follow from the proof that the composition

$$C_c(G) \xrightarrow{\Lambda} L(G, B) \hookrightarrow \operatorname{Fun}((K \cap B) \backslash K, \mathbb{C})$$

is surjective. Let $f \in \operatorname{Fun}((B \cap K) \setminus K, \mathbb{C})$ and

$$\phi_0 = \frac{\mathbf{1}_{B \cap K}}{\operatorname{Vol}(K \cap B)}$$

denote the indicator function $\mathbf{1}_{B\cap K}$ of $B\cap K$ renormalized so that $\int_G \phi_0 dg = 1$. Since G = PK, if $p \in P$ and $k \in K$ then the formula $\phi(pk) = \phi_0(p)f(k)$ gives a well defined element $\phi \in \mathcal{C}(G)$ and

$$(\Lambda \phi)(k) = \int_{B} \phi(pk) dp = \int_{B} \phi_0(p) f(k) dp = f(k) \int_{B} \phi_0(p) dp = f(k)$$

So $(-)|_K \circ \Lambda \colon \mathcal{C}(G) \to \operatorname{Fun}((K \cap B) \setminus K, \mathbb{C})$ is surjective. We conclude that Λ is surjective. In summary we have proven,

$$\langle \varphi, \psi \rangle = \int_K \varphi(k) \psi(k) dk$$

defines a bilinear pairing $\langle -, - \rangle \colon B_{\mu} \times B_{-\mu} \to \mathbb{C}$ such that if $\varphi \in \mathcal{B}_{\mu}$, $\psi \in \mathcal{B}_{-\mu}$, and $g \in G$ then

$$\langle \rho_{\mu}(g)\varphi, \rho_{-\mu}(g)\psi \rangle = \langle \varphi, \psi \rangle.$$

It remains to show that this is non-degenerate. Suppose $\varphi \in \mathcal{B}_{\mu}$ is non-zero. Since $K \cap B$ is profinite, $\mu|_K$ is unitary and $\overline{\mu(b)} = \mu(b)^{-1}$ for all $b \in K \cap B$. So if $k \in K$ and $b \in B \cap K$ then

$$\overline{\varphi(bk)} = \overline{\mu(b)\varphi(k)} = \mu(b)^{-1}\overline{\varphi(k)}$$

So $\overline{\varphi}|_K$ is an element in $I_{K\cap B}^K(-\mu)$ and $\overline{\varphi}|_K$ extends uniquely to and element in $\varphi^* \in \mathcal{B}_{\mu}$. Since

$$\langle \varphi, \varphi^* \rangle = \int_K \varphi(k) \overline{\varphi(k)} dk = \int_K |\varphi(k)|^2 dk \neq 0,$$

the pairing is non-degenerate.

(iii) Suppose μ is unitary, then $\overline{\varphi} \in \mathcal{B}_{-\mu}$ for all $\varphi \in \mathcal{B}_{\mu}$. So in the notation of (ii), if $\varphi, \psi \in \mathcal{B}_{\mu}$ then

$$\langle\langle\varphi,\psi\rangle\rangle = \int_K \varphi(k)\overline{\psi(k)}dk = \langle\varphi,\overline{\psi}\rangle.$$

Therefore $\langle \langle -, - \rangle \rangle$ is G-equivariant by the result of (ii). This proves that $\langle \langle -, - \rangle \rangle$ defines a ρ_{μ} -invariant Hermitian form on \mathcal{B}_{μ} . So the G action on \mathcal{B}_{μ} extends to a G-action on the Hilbert space completion $\widehat{\mathcal{B}}_{\mu}$ of \mathcal{B}_{μ} . To show that the G action on $\widehat{\mathcal{B}}_{\mu}$ is unitary, one must prove that the action map

$$G \times \widehat{\mathcal{B}}_{\mu} \to \widehat{\mathcal{B}}_{\mu}$$

is continuous when $\widehat{\mathcal{B}}_{\mu}$ is topologized via the Hilbert space topology. The details can be found in [Bum97, 2.6].

3 Supercuspidals

In this section π is an irreducible admissible representation of G on a vector space V.

3.1 Kirillov Models

Definition. A Kirillov model for π is an admissible representation (ρ, W) on a vector subspace $W \subseteq \operatorname{Fun}(F, \mathbb{C})$ such that:

- (i) $\pi \simeq \rho$ as representations of G.
- (ii) If $a, x \in F^{\times}$, $b \in F$ and $\xi' \in W$, then

$$\rho \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \xi'(x) = \tau_F(bx)\xi'(ax).$$

Let

$$V_0 = \left\{ \xi \in V \mid \text{there exists } n \in \mathbb{Z} \text{ such that } \int_{\mathfrak{p}^{-n}} \overline{\tau(x)} \pi \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \xi \mathrm{d}x = 0 \right\}.$$

The subspace $V_0 \subseteq V$ is G-stable and dim $(V/V_0) = 1$ [God18, 1.2 Lemma 6]. Fix an identification $V/V_0 = \mathbb{C}$ and let $K(\pi)$ denote the image of V under the map

$$V \to \operatorname{Fun}(F, \mathbb{C}), \quad \xi \mapsto \xi' \colon \xi'(t) := \pi \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \xi + V_0 \qquad (t \in F^{\times}).$$

This map is injective [God18, §1.2], so by transport of structure $K(\pi)$ gives a G-representation $(\pi_K, K(\pi))$ such that $(\pi_K, K(\pi))$ is isomorphic to (π, V) .

Theorem 3.1. ([God18, 1.2 Theorem 1])

- (i) The representation $(\pi_K, K(\pi))$ is the unique Kirillov model for π .
- (ii) $S(F^{\times}) \subseteq K(\pi)$ as a vector subspace with finite codimension.
- (iii) If

$$w = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

then
$$K(\pi) = \mathcal{S}(F^{\times}) + \pi(w)\mathcal{S}(F^{\times}).$$

3.2 Invariant Duality

Theorem 3.2. ([God18, 1.2 Theorem 2]) Write ω_{π} for the central character of π .

- (i) If π^{\vee} denotes the contragredient of π then $\pi^{\vee} \simeq \omega_{\pi}^{-1} \otimes \pi$.
- (ii) The vector space underlying the Kirillov model of π^{\vee} is

$$K(\pi^{\vee}) = \{ \xi^{\vee} \colon x \mapsto \omega_{\pi}(x)^{-1} \xi(x) \mid \xi \in K(\pi) \}.$$

(iii) If $\xi \in K(\pi) = \mathcal{S}(F^{\times}) + \pi(w)\mathcal{S}(F^{\times})$, $\eta \in K(\pi^{\vee})$ and $\xi_1, \xi_2 \in \mathcal{S}(F^{\times})$ satisfy $\xi = \xi_1 + \pi(w)\xi_2$ then

$$\langle \xi, \eta \rangle = \int \xi_1(x) \eta(-x) d^{\times} x + \int \xi_2(x) \cdot \pi^{\vee}(w) \eta(-x) d^{\times} x$$

defines a G-invariant bilinear form between $K(\pi)$ and $K(\pi^{\vee})$.

3.3 Supercuspidals Representations

Proposition 3.3. [God18, 1.8] If $K(\pi) \supseteq \mathcal{S}(F^{\times})$ then there exists μ such that π is isomorphic to a subrepresentation of ρ_{μ}

Proof. Suppose $K(\pi) \supseteq \mathcal{S}(F^{\times})$. The Borel subgroup $B \subseteq G$ decomposes as a product ZM where

$$M = \left\{ \begin{pmatrix} * & * \\ 0 & 1 \end{pmatrix} \right\}$$

and Z is the center of G. Since π is irreducible, Z acts on $K(\pi)$ via the central character of π . If $m = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$, $x \in F$ and $\xi \in K(\pi)$ then $m\xi(x) = \tau(ax)\xi(bx)$. So the action of B on $K(\pi)$ preserves the subspace $K(\pi) \subseteq \mathcal{S}(F^{\times})$. So B acts on the non-trivial finite dimensional quotient $K(\pi)/\mathcal{S}(F^{\times})$.

Since τ has a non-trivial conductor, if $\xi \in \mathcal{S}(F)$ and $b \in F$ then $x \mapsto (\tau(bx) - 1)\xi(x)$ is trivial on a ball of non-zero radius around 0. Hence the subgroup

$$U := \left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \right\}$$

operates trivially on $K(\pi)/\mathcal{S}(F^{\times})$. So B operates on $K(\pi)/\mathcal{S}(F^{\times})$ via the torus

$$T = \left\{ \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix} \right\} \simeq B/U.$$

So B operates on the finite dimensional space $K(\pi)/\mathcal{S}(F^{\times})$ by pairwise commuting linear operators. Hence the elements in B have a common eigenvector which spans a one-dimensional B-stable subspace W in $K(\pi)/\mathcal{S}(F^{\times})$. Hence there is a well defined projection $L\colon K(\pi)\to W=\mathbb{C}$ and a smooth character μ of B such that if $b\in B$ and $\xi\in K(\pi)$ then

$$L(\pi(b)\xi) = \mu(b)\delta(b)^{1/2}L(\xi).$$

The mapping $\xi \mapsto \varphi_{\xi} \colon \varphi_{\xi}(g) = L(\pi(g)\xi)$ is then an isomorphism of π onto a G-stable submodule of B_{μ} .

Definition. A supercuspidal representation π of G is a irreducible admissible representation of G such that

$$K(\pi) = \mathcal{S}(F^{\times}).$$

Theorem 3.4. [God18, 1.7] Let π be an irreducible admissible representation of G on a vector space V. The following conditions are equivalent.

- (i) π is supercuspidal.
- (ii) There exists $n \in \mathbb{Z}_{>0}$ such that if $\xi \in K(\pi)$ then the function

$$y \mapsto \int_{\mathfrak{p}^{-n}} \left(\pi \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \xi \right) (y) \mathrm{d}x$$

is identically zero.

(iii) The matrix coefficients of π are compactly supported, i.e., if $\xi \in V$ and $\eta \in V^{\vee}$ then the function $g \mapsto \langle \pi(g)\xi, \eta \rangle$ has compact support modulo the center Z of G.

Proof. (i) \iff (ii) Let \mathfrak{p}^{-d} denote the largest fractional ideal of F on which τ is trivial. If $y \in F$, $n \in \mathbb{Z}$ and $\xi \in K(\pi)$ then

$$\int_{\mathfrak{n}^{-n}} \tau(xy) \mathrm{d}x \neq 0$$

if and only if $y \in \mathfrak{p}^{n-d}$. So if $n \in \mathbb{Z}$ and $\xi \in K(\pi)$ then

$$y \mapsto \int_{\mathfrak{p}^{-n}} \left(\pi \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \xi \right) (y) dx = \xi(y) \int_{\mathfrak{p}^{-n}} \tau(xy) dx$$

is identically zero if and only if $\mathfrak{p}^{n-d} \subseteq F - \operatorname{supp}(\xi)$. There exists n such that $\mathfrak{p}^{n-d} \subseteq F - \operatorname{supp}(\xi)$ if and only if $\xi \in \mathcal{S}(F^{\times})$. So (i) and (ii) are equivalent.

(i) \Longrightarrow (iii) Assume π is supercuspidal. By Theorem 3.2, $K(\pi^{\vee})$ is obtained from π by multiplying the functions $\xi \in K(\pi) = \mathcal{S}(F^{\times})$ by the locally constant central character ω_{π} . Hence $K(\pi^{\vee})$ is supercuspidal. Theorem 3.2 says that the invariant duality between $K(\pi)$ and $K(\pi^{\vee})$ is given by the bilinear form

$$\langle \xi, \eta \rangle = \int_{F^{\times}} \xi(x) \eta(-x) d^{\times} x, \qquad (\xi, \eta \in \mathcal{S}(F^{\times})).$$

Fix $\xi \in K(\pi)$ and $\eta \in K(\pi^{\vee})$. Since G = KTK and K is compact, it suffices to show that the function

$$T \mapsto \mathbb{C}, \qquad t \mapsto \langle \pi(t)\xi, \eta \rangle$$

has compact support modulo Z. Since $T = Z \cdot \left\{ \begin{pmatrix} * & 0 \\ 0 & 1 \end{pmatrix} \right\}$, this is equivalent to showing

$$F^{\times} \to \mathbb{C}, \qquad t \mapsto \langle \pi \begin{pmatrix} t & 0 \\ 0 & 1 \end{pmatrix} \xi, \eta \rangle = \int_{F^{\times}} \xi(tx) \eta(-x) \mathrm{d}^{\times} x$$

has compact support. This is true because $\xi, \eta \in \mathcal{S}(F^{\times})$.

(i) \Leftarrow (iii) Assume (π, V) satisfies: if $\xi \in V$ and $\eta \in V^{\vee}$ then $g \mapsto \langle \pi(g)\xi, \eta \rangle$ has compact support modulo the center Z of G. We show that π is supercuspidal. We can assume $V = K(\pi)$ and $V^{\vee} = K(\pi^{\vee})$. Then $\mathcal{S}(F^{\times}) \subseteq V$ and we let $\xi \in \mathcal{S}(F^{\times})$ and $\eta \in K(\pi^{\vee})$. Our description of the invariant duality (Theorem 3.2) between $K(\pi)$ and $K(\pi^{\vee})$ yields

$$\left\langle \begin{pmatrix} t & 0 \\ 0 & 1 \end{pmatrix} \xi, \eta \right\rangle = \int \xi(tx) \eta(-x) d^{\times} x. \tag{3.1}$$

As we discussed in the previous implication, the matrix coefficients having compact support implies (3.1) is compactly support. Since $\xi \in \mathcal{S}(F^{\times})$ was arbitrary, it follows that $\eta \in \mathcal{S}(F^{\times})$. So $K(\pi^{\vee}) = \mathcal{S}(F^{\times})$ applying Theorem 3.2 we conclude $\mathcal{S}(F^{\times}) = K(\pi)$. So π is supercuspidal.

4 Simple Supercuspidals

We explain the construction of a **simple** class of supercuspidal representations for $GL_2(F)$. These representation were discovered by Mark Reeder [GR10, §8]. His construction can be applied to give very simple examples of irreducible supercuspidals quite generally (i.e for all simple, split, simply connected groups, Sp_{2n} , G_2 , E_8 , etc.). The case of GL(n) requires a minor modification to [GR10, §9] and is worked out, for example, in [KL15].

Fix a uniformizer $\varpi \in \mathcal{O}$ and a tamely ramified character $\omega \colon F^{\times} \to \mathbb{C}^{\times}$, i.e. a character ω such that $\omega(\mathcal{O}^{\times}) \neq 1$ but $\omega(1 + \varpi \mathcal{O}) = 1$. The construction will yield 2(q-1) non-isomorphic supercuspidal representation of $GL_2(F)$ with central character ω .

The pro-p Iwahori in GL(2) is

$$I^{+} = \left\{ \begin{pmatrix} 1 + \varpi a_1 & b \\ \varpi c & 1 + \varpi a_2 \end{pmatrix} \in \operatorname{GL}_2(F) \colon a_1, a_2, b, c \in \mathcal{O} \right\}.$$

So I^+ is the preimage of the upper triangular unipotent matrices in $GL_2(\mathcal{O}/\varpi)$ under the reduction map $GL_2(\mathcal{O}) \to GL_2(\mathcal{O}/\varpi)$. Let $\zeta \in \mu_{q-1}(F)$ be a (q-1)st root of unity and let χ_{ζ} be the affine generic character¹

$$\chi_{\zeta} \colon ZI^{+} \to \mathbb{C}^{\times}, \qquad \chi_{\zeta} \left(z \begin{pmatrix} 1 + \varpi a_{1} & b \\ \varpi c & 1 + \varpi a_{2} \end{pmatrix} \right) = \omega(z)\tau \left(b + \frac{c}{\zeta} \right)$$

where $z \in F^{\times}$, $\begin{pmatrix} 1 + \varpi a_1 & b \\ \varpi c & 1 + \varpi a_2 \end{pmatrix} \in I^+$, and $\tau \colon F \to \mathbb{C}^{\times}$ is a fixed non-trivial additive character. Since ω is tamely ramified and

$$I^+ \cap F^\times = 1 + \varpi \mathcal{O},$$

the character $\chi_{\zeta} \colon ZI^+ \to \mathbb{C}^{\times}$ is well defined. Write

$$\beta_{\zeta} = \begin{pmatrix} 0 & 1 \\ \zeta \varpi & 0 \end{pmatrix}$$
 so that $\beta_{\zeta}^2 = \zeta \varpi$.

Then β_{ζ} normalizes ZI^+ and if $k \in ZI^+$ then

$$\chi_{\zeta}(\beta_{\zeta}k\beta_{\zeta}^{-1}) = \chi_{\zeta}(k).$$

Hence if $\xi = \omega(\zeta \varpi)^{\frac{1}{2}}$ is square root of $\omega(\zeta \varpi)$ in \mathbb{C}^{\times} then

$$\chi_{\zeta}^{\xi} : \langle \beta_{\zeta} \rangle ZI^{+} \to \mathbb{C}^{\times}, \quad \beta_{\zeta}^{i}k \mapsto \xi^{i}\chi_{\zeta}(k), \qquad (i \in \mathbb{Z}, k \in ZI^{+})$$

is an extension of χ_{ζ} to $\langle \beta_{\zeta} \rangle ZI^{+}$, the product of ZI^{+} with the cyclic subgroup $\langle \beta_{\zeta} \rangle$.

Theorem 4.1. ([GR10, Proposition 9.3]) The compact induction

$$\pi_{\zeta,\xi} = \operatorname{ind}_{\langle \beta_{\zeta} \rangle ZI^{+}}^{G} \chi_{\zeta}^{\xi}$$
 is irreducible and supercuspidal

with central character ω . There are 2(q-1) choices for the pair $(\zeta,\xi) \in \mu_{q-1}(F) \times \mathbb{C}^{\times}$ such that $\xi^2 = \omega(\zeta \varpi)$. If (ζ_1, ξ_1) and (ζ_2, ξ_2) are two such choices then $\pi_{\zeta_1,\xi_1} \simeq \pi_{\zeta_2,\xi_1}$ if and only if $\zeta_1 = \zeta_2$ and $\xi_1 = \xi_2$.

As a C-vector space

$$\operatorname{ind}_{\langle\beta_{\zeta}\rangle ZI^{+}}^{G}\chi_{\zeta}^{\xi} = \left\{ f \in \operatorname{Fun}(G,\mathbb{C}) \colon \begin{array}{c} \text{The support of } f \text{ is compact modulo } Z \text{ and if} \\ k \in \langle\beta_{\zeta}\rangle ZI^{+} \text{ and } g \in G \text{ then } f(k \cdot g) = \chi_{\zeta}^{\xi}(k)f(g) \end{array} \right\}.$$

The group G acts on $\operatorname{ind}_{\langle\beta_{\zeta}\rangle ZI^{+}}^{G}\chi_{\zeta}^{\xi}$ by right translations, i.e if $f\in\operatorname{ind}_{\langle\beta_{\zeta}\rangle ZI^{+}}^{G}\chi_{\zeta}^{\xi}$ and $x,g\in G$ then $(g\cdot f)(x)=f(xg)$.

 $^{{}^1\}chi_{\zeta}|_{I^+}$ is non-trivial on a root subgroup U_{ψ} if and only if ψ is a simple affine root. This property of χ_{ζ} is the one which generalizes to other groups.

REFERENCES REFERENCES

References

[Bum97] Daniel Bump. Automorphic forms and representations, volume 55 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1997.

- [God18] Roger Godement. Notes on Jacquet-Langlands' theory, volume 8 of CTM. Classical Topics in Mathematics. Higher Education Press, Beijing, 2018. With commentaries by Robert Langlands and Herve Jacquet.
- [GR10] Benedict H. Gross and Mark Reeder. Arithmetic invariants of discrete Langlands parameters. *Duke Math. J.*, 154(3):431–508, 2010.
- [KL15] Andrew Knightly and Charles Li. Simple supercuspidal representations of GL(n). Taiwanese J. Math., 19(4):995–1029, 2015.