Moving Beyond Linearity

An Introduction to Statistical Learning

황성원

Nonlinear World!

비선형적 접근법 종류

단일 입력 변수 X - 출력 Y

- 1. 다항회귀
- 2. 조각별 상수함수
- 3. 회귀 스플라인
- 4. 평활 스플라인
- 5. 국소회귀

다중 입력 변수 X1, X2, ..., Xp – 출력 Y 6. 일반화가법모델

1. 다항회귀

(Polynomial Regression)

메인 아이디어 - 다항회귀

: 적합 모델 변경 : 1차 다항식 (선형) → 고차 다항식 (비선형)

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \ldots + \beta_d x_i^d + \epsilon_i$$

회귀에서...

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \dots + \beta_d x_i^d + \epsilon_i$$

분류에서...

임금이 250 이상(고소득자)일 확률을 가능도로 지정!

전체 표본 수(n) = 3,000명

고소득자 수 = 79명

따라서, 추정된 계수의 분산이 크고, 신뢰구간이 넓다.

$$\Pr(y_i > 250|x_i) = \frac{\exp(\beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_d x_i^d)}{1 + \exp(\beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_d x_i^d)}$$

SW

2. 조각별 상수함수

(Piecewise Constant)

계단함수 (Step Function)

$$u(t) = \begin{cases} 0, & t < 0 \\ 1, & t \ge 0 \end{cases}$$

메인 아이디어 - 조각별 상수함수

: 입력 X를 K개의 구간으로 조각 내어 상수 값으로 Fitting 한다!

조각 내는 방법 (계단함수 사용)

$$y_i = \beta_0 + \beta_1 C_1(x_i) + \beta_2 C_2(x_i) + \ldots + \beta_K C_K(x_i) + \epsilon_i$$

$$C_0(X) = I(X < c_1),$$

 $C_1(X) = I(c_1 \le X < c_2),$
 $C_2(X) = I(c_2 \le X < c_3),$
 \vdots
 $C_{K-1}(X) = I(c_{K-1} \le X < c_K),$
 $C_K(X) = I(c_K \le X),$

회귀 / 분류 결과

3. 회귀 스플라인

(Regression Spline)

기저함수 (Basis Function) 방법론

$$y_i = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \beta_3 b_3(x_i) + \dots + \beta_K b_K(x_i) + \epsilon_i$$

일반적인 X를 입력 변수로 쓰는 것이 아닌,

X에 어떠한 함수를 취한 것을 X로 쓴다!

기저벡터 (Basis Vector)

- 기저벡터 -

$$j = (0,1,0)$$

$$V = 4\vec{i} + 6\vec{j} - 2\vec{k}$$

$$\hat{k} = (0,0,1)$$

$$i = (1,0,0)$$

기저함수 (Basis Function) 예: 푸리에급수

$$f(x) = A_0 + A_1 \cos x + B_1 \sin x + A_2 \cos 2x + B_2 \sin 2x + \dots$$

$$= \frac{A_0}{2} + \sum_{n=1}^{\infty} \left[A_n \cos \frac{n\pi}{L} x + B_n \sin \frac{n\pi}{L} x \right]$$

여러 가지 기저 함수 적용 형태

다항회귀의 경우

$$b_j(x_i) = x_i^j$$

조각별 상수함수의 경우

$$b_j(x_i) = I(c_j \le x_i < c_{j+1})$$

조각별 상수가 아니라 조각별 다항식!

일반 3차 다항식

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \epsilon_i$$

c를 기준으로 조각난 3차 다항식

$$y_i = \begin{cases} \beta_{01} + \beta_{11}x_i + \beta_{21}x_i^2 + \beta_{31}x_i^3 + \epsilon_i & \text{if } x_i < c; \\ \beta_{02} + \beta_{12}x_i + \beta_{22}x_i^2 + \beta_{32}x_i^3 + \epsilon_i & \text{if } x_i \ge c. \end{cases}$$

조각별 상수가 아니라 조각별 다항식!

연속 조각별 다항식

- (1) f(a) 값이 존재
- (2) limf(x) 존재

$$\Leftrightarrow \lim_{x \to a \to 0} f(x) = \lim_{x \to a \to 0} f(x)$$

(3) $f(a) = \lim_{x \to a} f(x)$

불연속

f(x)는 x=a에서 불연속이 된다.

(1) f(0)=0(2) $\lim_{x\to 0} f(x) = \lim_{x\to 0} f(x) = 1$ (3) $f(0) \neq \lim_{x\to 0} f(x)$ 함수값과 극한값이 일치하지 않음

연속

연속 조각별 다항식

삼차 스플라인 (Cubic Spline)

자연 삼차 스플라인 (Natural Cubic Spline)

제한 조건이 많아지면,

자유도를 낮추고,

이는 분산 감소로

신뢰구간의 안정성 확보

따라서, 자연 삼차 스플라인이

좋다!

삼차 스플라인 + 끝자락 선형 가정 = 자연 삼차 스플라인

매듭 수와 위치 선택

Natural Cubic Spline

매듭이 많으면

유연성이 커지고,

계산량도 커진다.

매듭 수와 자유도

보통 매듭은 일정한 간격으로 하고, 개수를 설정하는 문제 → 교차검증(CV)으로!

다항회귀와 비교

경계부분에서

삼차 스플라인과는 신뢰구간 차이

Wage

다항회귀와는 값 자체의 차이

(15차 다항 VS. 15자유도 자연 삼차 스플라인)

4. 평활 스플라인

(Smoothing Spline)

목적 함수 = RSS + Penalty

2차 미분 = 1차 미분의 변동 = 기울기의 변동

2차 미분 값이 적으면 → 전 구간에 대한 기울기의 변동이 크지 않게 →

결론적으로, Smoothing (평활)하게 Fitting 한다!

평활 스플라인 적합 모습

5. 국소회귀

(Local Regression)

메인 아이디어: 부분적으로 적합!

Local Regression

알고리즘

Algorithm 7.1 Local Regression At $X = x_0$

s값에 따라 유연성 결정!

- 1. 특정 입력 X에 가까운 일부 s = k/n을 모은다.
- 2. 이웃의 각 점에 가중치 K를 할당한다. 여러 방법으로 가중치 배치 가능!

(예: 특정 입력 X에 가까우면 큰 값, 멀수록 작아지다가 0)

3. 앞의 가중치 적용하여 오른쪽 계수를 구한다.

선형 이외도 가능!

$$\sum_{i=1}^{n} K_{i0} (y_i - \beta_0 - \beta_1 x_i)^2$$

4. 각 지점에서의 적합된 모델이 다르므로, 추정값은 입력에 맞는 함수를 사용한 결과

s값에 따른 국소회귀 결과 비교

6. 일반화가법모델

(Generalized Additive Models)

메인 아이디어(회귀)

: 각각의 입력에 비선형 함수를 씌우고 그냥 합한다(가법)!

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + \epsilon_i$$

$$y_{i} = \beta_{0} + \sum_{j=1}^{p} f_{j}(x_{ij}) + \epsilon_{i}$$

$$= \beta_{0} + f_{1}(x_{i1}) + f_{2}(x_{i2}) + \dots + f_{p}(x_{ip}) + \epsilon_{i}$$

예시: 경력, 나이, 교육 정도에 따른 임금

wage = $\beta_0 + f_1(year) + f_2(age) + f_3(education) + \epsilon$

메인 아이디어(분류)

: 각각의 입력에 비선형 함수를 씌우고 그냥 합한다(가법)!

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + f_1(X_1) + f_2(X_2) + \dots + f_p(X_p)$$

정리

비선형적 접근법 종류

1. 다항회귀

2. 조각별 상수함수

3. 회귀 스플라인

4. 평활 스플라인

5. 국소회귀

다중 입력 변수 X1, X2, ..., Xp – 출력 Y 6. 일반화가법모델

단일 입력 변수 X - 출력 Y

Thank you!