Solutions

Exercise 1.

- (a) Select $\omega_1, \omega_2 \in \Sigma$ for words $\omega_1 \omega_2 ace$, $\omega_1 ace \omega_2$ and $ace \omega_1 \omega_2$, hence $5^2 \cdot 3 = 75$ words.
- (b) The letters can be arranged in 5! different ways, half of which satisfy the additional requirement, hence $\frac{5!}{2} = 60$ words.
- (c) Any word of length n in alphabetical order that ends in a letter ω can be obtained by
 - a word of length n-1 in alphabetical order that ends in
 - $-\omega$ or
 - any letter that comes before ω in the lexicographic order.

The following table follows the rule $n_{row,col} = n_{1,col-1} + n_{2,col-1} + \dots + n_{row,col-1}$

word length	1	2	3	$\mid 4 \mid$	5
words ending in a	1	1	1	1	1
words ending in c	1	2	3	4	5
words ending in e	1	3	6	10	15
words ending in n	1	4	10	20	35
words ending in s	1	5	15	35	70
sum					126

Exercise 2. Base case: $P(A_1) = P(A_1)$

Inductive step:

$$\begin{array}{ll} P((A_1\cap A_2\cap\ldots\cap A_n)\cap A_{n+1}) & \text{by def. of cond. probab.} \\ &= P(A_{n+1}\mid A_1\cap\ldots\cap A_n)\cdot P(A_1\cap\ldots\cap A_n) & \text{by def. of cond. probab.} \\ &= P(A_{n+1}\mid A_1\cap\ldots\cap A_n)\cdot P(A_1)\cdot P(A_2\mid A_1)\cdot \cdots P(A_n\mid A_1\cap\ldots\cap A_{n-1}) & \text{by ind. hyp.} \end{array}$$

Exercise 3. Let Urn_i denote the event that the *i*-th urn was selected and TR the event of two red marbles being drawn.

$$P(TR \mid Urn_{1}) = 0 ; \quad P(TR \mid Urn_{2}) = \frac{3}{7} \cdot \frac{2}{6} ; \quad P(TR \mid Urn_{3}) = \frac{2}{4} \cdot \frac{1}{3}$$

$$P(TR \cap Urn_{1}) = 0 ; \quad P(TR \cap Urn_{2}) = (\frac{3}{7} \cdot \frac{2}{6}) \cdot \frac{1}{3} ; \quad P(TR \cap Urn_{3}) = (\frac{2}{4} \cdot \frac{1}{3}) \cdot \frac{1}{3}$$

$$P(TR) = P(TR \cap Urn_{1}) + P(TR \cap Urn_{2}) + P(TR \cap Urn_{3}) = \frac{13}{126}$$

$$P(Urn_{2} \mid TR) = \frac{P(TR \cap Urn_{2})}{P(TR)} = \frac{126}{21 \cdot 13} \approx 0.4615$$

Exercise 4.

(a) Let p = P(HTH comes first). Consider the (recursive) tree of possible outcomes:

$$\begin{array}{ccc} HHH & loss \\ HHTH & win \\ HHTT & p \\ HTH & win \\ HTT & p \\ T & p \end{array}$$

Therefore, $p = \frac{1}{16} + \frac{1}{16}p + \frac{1}{8}p + \frac{1}{8}p + \frac{1}{2}p$; hence $p = \frac{3}{5}$

(b) This is obviously symmetric, so the probability must be $\frac{1}{2}$.