Bài 7 (SUM7.***): Tính tổng: $S = 1 - 2 + 3 - 4 + \dots + (-1)^{n+1}n$ Với $n \in \mathbb{Z}, n \ge 1$.

- **Dữ liệu vào:** Một dòng duy nhất chứa số nguyên dương n ($1 \le n \le 10^9$).
- **Dữ liệu ra:** Ghi trên một dòng số nguyên dương *S*.
- **Ví dụ:** Dữ liệu vào: n = 5. Dữ liệu ra: S = 3.
- Có 60% số test ứng với 60% số điểm của bài có $1 \le n \le 10^6$;

Bài 8 (SUM8.***): Tính tổng: $S = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$ Với $n \in \mathbb{Z}, n \ge 1$.

- **Dữ liệu vào:** Một dòng duy nhất chứa số nguyên dương: n ($1 \le n \le 10^6$).
- **Dữ liệu ra:** Ghi trên một dòng tổng *S* tìm được. Kết quả lấy đến 3 chữ số sau phần thập phân.
- **Ví dụ:** Dữ liệu vào: n = 3. Dữ liệu ra: S = 1.833.

Bài 9 (SUM9.***): Tính tổng: $S = 1 + \frac{1}{3} + \frac{1}{5} + \cdots + \frac{1}{2 \times n - 1}$ Với $n \in \mathbb{Z}, n \ge 1$.

- **Dữ liệu vào:** Một dòng duy nhất chứa số nguyên dương: $n \ (1 \le n \le 10^6)$.
- **Dữ liệu ra:** Ghi trên một dòng tổng *S* tìm được. Kết quả lấy đến 3 chữ số sau phần thập phân.
- **Ví dụ:** Dữ liệu vào: n = 3. Dữ liệu ra: S = 1.533.

Bài 10 (SUM10.*)**: Tính tổng: $S = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \cdots + \frac{1}{n^2}$ Với $n \in \mathbb{Z}, n \ge 1$.

- **Dữ liệu vào:** Một dòng duy nhất chứa số nguyên dương: n ($1 \le n \le 10^6$).
- **Dữ liệu ra:** Ghi trên một dòng tổng *S* tìm được. Kết quả lấy đến 3 chữ số sau phần thập phân.
- **Ví dụ:** Dữ liệu vào: n = 2. Dữ liệu ra: S = 1.250.

Bài 11 (SUM11.*)**: Tính tổng: $S = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \cdots + \frac{1}{n \times (n+1)}$

- **Dữ liệu vào:** Một dòng duy nhất chứa số nguyên dương: n ($1 \le n \le 10^9$).
- **Dữ liệu ra:** Ghi trên một dòng tổng *S* tìm được. Kết quả lấy đến 3 chữ số sau phần thập phân.
- **Ví dụ:** Dữ liệu vào: n = 4. Dữ liệu ra: S = 0.800.
- Có 60% số test ứng với 60% số điểm của bài có $1 \le n \le 10^6$;

Bài 12 (SUM12.***): Tính tổng: $S = 1 + \frac{1}{1+2} + \frac{1}{1+2+3} + \cdots + \frac{1}{1+2+\cdots+n}$ Với $n \in \mathbb{Z}, n \ge 1$.

- **Dữ liệu vào:** Một dòng duy nhất chứa số nguyên dương: n ($1 \le n \le 10^6$).
- **Dữ liệu ra:** Ghi trên một dòng tổng S. Kết quả lấy đến 3 chữ số sau phần thập phân.
- **Ví dụ:** Dữ liệu vào: n = 3. Dữ liệu ra: S = 1.500.