5M 5M

B.Tech II Year I Semester (R20) Supplementary Examinations April/May 2024

COMPLEX VARIABLES & TRANSFORMS

(Common to EEE & ECE)

		(Common to EEE & ECE)	
Time: 3 hours Max. Mark			70
PART – A (Compulsory Question)			
1	(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)	Answer the following: $(10 \times 02 = 20 \text{ Marks})$ Show that $f(z) = z^3$ is analytic for all z . Prove that $u = x^2 - y^2 - 2xy - 2x + 3y$ is harmonic. State (i) Cauchy integral theorem, (ii) Liouvillies theorem. Determine the poles of the function $\frac{z}{cosz}$. Find: $L\{t^{3/2}\}$. If $f(t)$ is a periodic function then find $L\{f(t)\}$. State Dirichlet's conditions. Define Odd and Even function with an example each. State Fourier integral theorem. If $Z[f(n)] = F(z)$ then find $z[a^{-n}f(n)]$.	2M 2M 2M 2M 2M 2M 2M 2M 2M 2M 2M
PART – B (Answer all the questions: 05 X 10 = 50 Marks)			
2		Find the analytic function whose imaginary part is $e^x(xsiny + ycosy)$.	10M
3		Find the bilinear transformation which maps the points $z = 1$, i, -1 onto the points $w = i$, 0, -i. Also find the image of $ z < 1$.	10M
4	(a)	Using Cauchy's integral formula, evaluate $\int_c \frac{z}{(z-1)(z-2)^2} dz$.	5M
	(b)	Find the residue of $\frac{ze^{zt}}{(z-3)^2}$ at its poles.	5M
5		OR Using the method of contour integration, Prove that $\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2 + a^2)(x^2 + b^2)} = \frac{\pi}{a + b} \ a > 0, b > 0, a \neq b.$	10M
5		Using the method of contour integration, Prove that $\int_{-\infty}^{\infty} (x^2+a^2)(x^2+b^2) = \frac{1}{a+b} $ $a>0, b>0, a\neq b$.	TOIVI
6	(a) (b)	Find $L\{tsinat\}$. Find $L^{-1}\left\{\frac{s^2}{(s+1)(s+2+(s+3))}\right\}$.	5M 5M
7	(a) (b)	Using convolution theorem find $L^{-1}\left\{\frac{1}{(s+1)(s^2+4)}\right\}$.	5M 5M
8		Find a Fourier expansion for $f(x) = x + x^2$, $-\pi \le x \le \pi$ hence find $\sum_{n=1}^{\infty} \frac{1}{n^2}$.	10M
9		Find a Fourier sine series expansion of $f(x) = x(\pi - x)$, $0 < x < \pi$. Hence Find $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \cdots$	10M
10	(a)	Find the Fourier transform of $\frac{1}{x}$.	5M
		Find the Fourier Sine transform of e^{-ax} .	5M

(a) Find Z(2.3ⁿ + 5n) and deduce Z[2.3ⁿ⁺³ + 5(n+3)] using shifting theorem. (b) Find the inverse Z-transform of $\frac{Z}{(Z-1)(Z^2+1)}$.

B.Tech II Year I Semester (R20) Supplementary Examinations August/September 2023

COMPLEX VARIABLES & TRANSFORMS

(Common to EEE & ECE)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) Describe the harmonic function with suitable example.

2M

(b) Discuss the continuity of a complex function.

2M

(c) State the Taylor's series for a function f(z)

2M 2M

(d) Obtain the residue of $f(z) = \frac{z-3}{z(z^2+1)}$ at a simple pole z=0.

(e) Compute the Laplace transform of $f(t) = e^{3t} + \sin 5t$

2M

(f) Obtain the inverse Laplace transform of $F(s) = \frac{1}{s^2 - a^2}$

2M

(g) Write Dirichlet Conditions for the existence of Fourier series.

2M

(h) Write Fourier series for Even and Odd Numbers.

2M

(i) Define Z-transform and discuss the linear property.

2M

(j) State Fourier integral theorem of f(x).

2M

PART - B

(Answer all the questions: $05 \times 10 = 50 \text{ Marks}$)

Suppose $w = \phi + i\psi$ represents the complex potential function for an electric field and 10M $\psi = x^2 - y^2 + \frac{x}{x^2 - y^2}$. Determine the function ϕ .

ΩR

If f(z) is an analytic function with constant modulus then show that f(z) is constant.

10M

Evaluate $\frac{z-3}{z^2+2z+5} dz$ where 'c' is |z+1-i|=2 using Cauchy's integral formula.

10M

OR

5 Obtain the Taylors expansion of;

10M

$$(i) f(z) = \frac{1}{(z+1)^2}$$
 about the point $z = -i$.

$$(ii) f(z) = \frac{2z^3 + 1}{z^2 + z}$$
 about the point $z = i$.

Contd. In Page 2

6 Find the Laplace transform of $f(t) = \frac{\cos at - \cos bt}{t} + t \sin at$. 10M

7 Solve by the method of transforms, the equation;

olve by the method of transforms, the equation;

$$y''' + 2y'' - y' - 2y = 0$$
, $y(0) = y'(0) = 0$ and $y''(0) = 6$.

Find the Fourier series for the function: 8

10M

$$f(x) = -\pi$$
, $-\pi < x < 0$;
= x, $0 < x < \pi$.

- Find the Fourier series expansion of $f(x) = -x^{\frac{2}{3}}$ $-\pi \le x \le \pi$. Deduce the series 9 $1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{\pi^2}{12}.$
- 10M

10M

Find the Fourier transform f(x) given by 10

$$f(x) = \begin{cases} 1 - x^2, & |x| \le 1 \\ 0, & |x| > 1 \end{cases}$$
 Hence evaluate
$$\int_0^\infty \frac{x \cos x - \sin x}{x^3} \cos \frac{x}{2} dx.$$

Determine the inverse Z-transform of $\frac{2z}{(z-1)(z^2+1)}$ 11 10M