COMP 8005: Final Project

Port Forwarding

Table of Contents

1	I	Introduct	tion	2		
2	ŀ	How to U	Jse	2		
3	(Operatin	g System	3		
4						
5	F	Pseudoco	ode	4		
6			h			
7						
	7.1		: 1 SSH			
	7.2	2 Test	2 HTTP	9		
	7.3	B Test	3 Echo Server Client	11		
	7.4	l Test	: 4 100 Clients	12		
	7.5	5 Test	: 5 500 Clients	14		
	7.6	5 Test	: 6 1000 Clients	16		
	7.7	' Test	7 1500 Clients	18		
	7.8	B Test	: 8 Simultaneous Two-way Traffic 100+100 Clients	19		
8	(Conclusions				
	8.1	Tabl	le Comparison between Forwarded and Non Forwarded	20		
	8.2	2 Bar	Graph Comparison	21		
	8	8.2.1	AvgTotalDuration	21		
	8	8.2.2	AvgResponseTime	22		

1 Introduction

This project is to create a program that port forwards any IP + port pair to another IP + port pair and to test its functionality such as performance and functions.

2 How to Use

Input the IP + port combinations to forward in **forward.txt** and interfaces to use for port forwarding in **forward.txt** then run the **portforward.py** on the Linux machine to be used as a port forwarder by using iptables rules to forward the rules to the computer.

Eg. forward.txt

srcIP srcDport dstIP dstDport

Forwards packets coming from 192.168.1.253 on dport 1001 to 192.168.1.252 dport 22 Forwards packets coming from 192.168.1.253 on dport 1002 to 192.168.1.252 dport 80 Forwards packets coming from 192.168.1.253 on dport 1003 to 192.168.1.252 dport 8000

Eg. interfaces.txt

Overwrites any packets coming out my wlp2s0 NIC interface as the port forward's IP, this is required for the port forwarder to work properly. You may need to use more than one interface if it is required to port forward to more than one network.

Example of how going from host 192.168.1.253:1001 to get forwarded to 192.168.1.252:22 by sending it to 192.168.1.250 on dport 1001.

3 Operating System

At minimum, the computer used as the port forwarder must be using any form of Linux distro that has iptables to use for port forwarding because this program creates iptables rules to do port forwarding.

4 Design

5 Pseudocode

```
Clear all iptables rules read interface.txt
```

for line in interface.txt

run ("iptables – A POSTROUTING -t nat -o " + line + " -j MASQUERADE")

read forward.txt

for line in forward.txt

run("iptables -A PREROUTING -t nat -s " + srcIP + " p tcp - dport " + srcDport + " -j DNAT -to-destination " + dstIP + ":" + dstDport)

6 Testbench

There is a list of 4 computers as hardware I use for this project to test the functionality of my port forwarder.

- 192.168.1.250 (i7 6500U 12GB RAM Laptop)
- 192.168.1.252 (Raspberry Pi 4)
- 192.168.1.253 (Ryzen 7 3800x 32GB RAM Desktop)
- 192.168.1.73 (i7 4790k 32GB RAM Desktop)

7 Tests

Tests were done with mostly the same computers however, for test 8 I used an RPI4 as port forwarder because it was unable to run my Epoll server code.

Rule #	Test Description	Tool Used	Expected Result	Pass/Fail
1	Send 192.168.1.253 dport 1001 to the forwarder to forward to 192.168.1.252 dport 22 for SSH. Client: 192.168.1.253 Forwarder: 192.168.1.250 Server: 192.168.1.252	SSH	The rule should forward the packet to 192.168.1.252 and behave like regular SSH	Pass
2	Send 192.168.1.253 dport 1002 to the forwarder to forward to 192.168.1.252 dport 80 for HTML. Client: 192.168.1.253 Forwarder: 192.168.1.250 Server: 192.168.1.252	IE Explorer	The rule should forward the packet to 192.168.1.252 and show the default apache page on 192.168.1.252	Pass
3	Send 192.168.1.253 dport 1003 to the forwarder to forward to 192.168.1.252 dport 8000 for echo server testing. Client: 192.168.1.253 Forwarder: 192.168.1.250 Server: 192.168.1.252	Echo Server Client	The rule should forward the packet 192.168.1.252 and return a message to 192.168.1.253	Pass
4	100 client load using epoll server on dport 1004>8000 Client: 192.168.1.253 Forwarder: 192.168.1.250 Server: 192.168.1.73	Epoll server	It should function normally but slightly slower than without the forwarder	Pass
5	500 client load using epoll server on dport 1004>8000 Client: 192.168.1.253 Forwarder: 192.168.1.250 Server: 192.168.1.73	Epoll server	It should function normally but slightly slower than without the forwarder	Pass
6	1000 client load using epoll server on dport 1004>8000 Client: 192.168.1.253 Forwarder: 192.168.1.250 Server: 192.168.1.73	Epoll server	It should function normally but slightly slower than without the forwarder	Pass
7	1500 client load using epoll server on dport 1004>8000 Client: 192.168.1.253 Forwarder: 192.168.1.250 Server: 192.168.1.73	Epoll server	It should function normally but slightly slower than without the forwarder	Fail
8	100+100 client two way traffic Host1: 192.168.1.250 Forwarder: 192.168.1.252 Host2: 192.168.1.73	Epoll server	It should be work but might be slow because RPI4 forwarder	Pass

7.1 Test 1 SSH

I was able to successfully be forwarded to 192.168.1.252 dport 22 by SSH 192.168.1.250 dport 1001. The **forward.txt** rule used to do this is **192.168.1.253 1001 192.168.1.252 22** which means to forward any packets from 192.168.1.253 going to my port forwarder on port 1001 will then be port forwarded to 192.168.1.252 22. Both client and server will communicate to 192.168.1.250 as the intermediary.

```
o pi@raspberrypi: ~
     IPv4 Address. . . . . . . . . : 192.168.1.253
     Subnet Mask . . . . . . . . . : 255.255.255.0
     Default Gateway . . . . . . . . : fe80::9e1e:95ff:feb6:8310%11
                                                       192.168.1.254
Ethernet adapter Bluetooth Network Connection:
    Media State . . . . . . . . . : Media disconnected Connection-specific DNS Suffix . :
 C:\Users\Yuiko>ssh -p 1001 pi@192.168.1.250
The authenticity of host '[192.168.1.250]:1001 ([192.168.1.250]:1001)' can't be established. ECDSA key fingerprint is SHA256:/qltOEMIX/DpPsxCMeqQBK2h3alUPgtIQe7mKLD2OGU.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '[192.168.1.250]:1001' (ECDSA) to the list of known hosts.
 pi@192.168.1.250's password:
 Linux raspberrypi 5.4.83-v7l+ #1379 SMP Mon Dec 14 13:11:54 GMT 2020 armv7l
 The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the individual files in /usr/share/doc/*/copyright.
 Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
 permitted by applicable law.
Last login: Mon Apr 5 02:07:07 2021 from 192.168.1.250
SSH is enabled and the default password for the 'pi' user has not been changed.
This is a security risk - please login as the 'pi' user and type 'passwd' to set a new password.
 SSH is enabled and the default password for the 'pi' user has not been changed.
 pi@raspberrypi: ~
                                                                                                                                                               Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent permitted by applicable law.
Last login: Mon Apr 5 02:07:07 2021 from 192.168.1.250
SSH is enabled and the default password for the 'pi' user has not been changed.
This is a security risk - please login as the 'pi' user and type 'passwd' to set a new password.
pi@raspberrypi:~ $ ifconfig
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
           inet 127.0.0.1 netmask 255.0.0.0
          inet6 ::1 prefixlen 128 scopeid 0x10<host>
loop txqueuelen 1000 (Local Loopback)
RX packets 446 bytes 49641 (48.4 KiB)
          RX errors 0 dropped 0 overruns 0 frame 0
TX packets 446 bytes 49641 (48.4 KiB)
           TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
wlan0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.1.252 netmask 255.255.255.0 broadcast 192.168.1.255
          inet6 2001:569:7da3:3400:961a:565b:d87f:2575 prefixlen 64 scopeid 0x0<global>inet6 fe80::4084:e67b:67aa:862c prefixlen 64 scopeid 0x20<link>
           ether dc:a6:32:88:5f:eb txqueuelen 1000 (Ethernet)
           RX packets 167038 bytes 84343244 (80.4 MiB)
          RX errors 0 dropped 0 overruns 0 frame 0
TX packets 15733 bytes 6463256 (6.1 MiB)
           TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
 i@raspberrypi:∼ 🖇 sudo su
root@raspberrypi:/home/pi#
```

Client

Server

Forwarder

As shown by the packet captures the forwarder is the one responsible for manging communications between both client and server by passing packets to eachother

7.2 Test 2 HTTP

I was able to successfully be forwarded to 192.168.1.252 dport 80 by HTML 192.168.1.250 dport 1002. The **forward.txt** rule used to do this is **192.168.1.253 1002 192.168.1.252 80** which means to forward any packets from 192.168.1.253 going to my port forwarder on port 1002 will then be port forwarded to 192.168.1.252 80. Both client and server will communicate to 192.168.1.250 as the intermediary.

Client

Server

Forwarder

As shown by the packet captures the forwarder is the one responsible for manging communications between both client and server by passing packets to eachother

7.3 Test 3 Echo Server Client

I was able to successfully be forwarded to 192.168.1.252 dport 8000 by HTML 192.168.1.250 dport 1003. The **forward.txt** rule used to do this is **192.168.1.253 1003 192.168.1.252 8000** which means to forward any packets from 192.168.1.253 going to my port forwarder on port 1003 will then be port forwarded to 192.168.1.252 8000. Both client and server will communicate to 192.168.1.250 as the intermediary.

```
E:\Homework\term6\8005\FinalProj\demoecho>python echo-client.py 192.
168.1.250
Received From Server: b'Echo => Hello TCP World'

pi@raspberrypi: ~

root@raspberrypi:/home/pi/Desktop# dir
echo-server.py epoll_svr.py testlsvr.pcap test2svr.pcap
root@raspberrypi:/home/pi/Desktop# python echo-server.py

('Client Connection:', ('192.168.1.250', 59594))
```

Client

Server

7.4 Test 4 100 Clients

The performance of the port forwarder with 100 clients coming from 192.168.1.253 is relavitely quick and successfully completes the test

Client

Server

The average total duration and average response time has increased by almost 3x when compared to having no forwarder

7.5 Test 5 500 Clients

The performance of the port forwarder with 500 clients coming from 192.168.1.253 is slower and successfully completes the test

Client

Server

The average total duration and average response time has increased by almost 3x when compared to having no forwarder

7.6 Test 6 1000 Clients

The performance of the port forwarder with 1000 clients coming from 192.168.1.253 is very slow and successfully completes the test

Client

Server

The average total duration and average response time has increased by almost 2.3x when compared to having no forwarder

7.7 Test 7 1500 Clients

The performance of the port forwarder with 1500 clients coming from 192.168.1.253 locks up for multiple minutes before I decided to end and say the test has failed

Client

Server

Forwarder

Because the test failed, I am unable to retrieve the excel spreadsheet of the client response times, I only have the server log which shows that about 500 connections did not finish.

7.8 Test 8 Simultaneous Two-way Traffic 100+100 Clients

The test of simultaneous two-way traffic between two computers by running both epoll server and echo server on both hosts and having them port forward their packets using the RPI4 as the port forwarder 192.168.1.252 worked successfully.

Host1

Host2

8 Conclusions

Using iptables to do port forwarding is very simplistic and I would very highly recommend it as it is only a few lines of code to get working. The speed difference between having a port forwarder and not having one between the client and epoll server is massive with about a speed penalty on both response and connection durations of about 3x.

8.1 Table Comparison between Forwarded and Non Forwarded

Connections	Status	Requests	Total Requests	AvgTotalDuration	AvgResponseTime
100	Success	100	10000	9.089017622	0.055820329
500	Success	100	50000	30.78561846	0.275657956
1000	Success	100	100000	39.37016189	0.345402948
1500	Fail				

Figure 1 Port Forwarded

Connections	Status	Requests	Data Transferred(Bytes)	Total Requests	Total Data Transferred(Bytes)	AvgTotalDuration	AvgResponseTime
100	Success	100	6400	10000	64000000	3.559877663	0.016237825
200	Success	100	6400	20000	128000000	4.786482978	0.028205156
500	Success	100	6400	50000	320000000	9.951934278	0.079521272
1000	Success	100	6400	100000	64000000	17.88672988	0.155839739
1500	Success	100	6400	150000	960000000	25.72535474	0.231552899
2000	Success	100	6400	200000	1280000000	31.70220095	0.298103087
2500	Success	100	6400	250000	1600000000	37.14167742	0.354454643
3000	Success	100	6400	300000	1920000000	42.67918426	0.406414569
4000	Fail						

Figure 2 Non Port Forwarded

As shown, the speed differences are huge, 3x is a massive loss. Although its only a few milliseconds when theres few connections, it easily adds up when increasing the number of connections.

8.2 Bar Graph Comparison

8.2.1 AvgTotalDuration

8.2.2 AvgResponseTime

