Vysoké učení technikcé v Brně Fakulta informačních technologií

Počítačové komunikace a sítě Varianta OMEGA: Scanner síťových služeb

Peter Havan (xhavan00)

Obsah

1	Zadanie	2
2	Relevatné informácie 2.1 IPv4 a IPv6	3
3	Implementácia	5
4	Testovanie	6
5	Možnosti spustenia	6

1 Zadanie

Úlohou v projekte bolo vypracovanie aplikácie na skenovanie TCP a UDP portov. Práca na projekte pozostávala z podúloh:

- Štúdium protokolov IPv4, IPv6, TCP, UDP, ICMP
- \bullet Implementácia SYN a UDP port scanneru v jazyku C/C++ za použitia BSD Sockets a knižnice libpcap
- Vypracovanie dokumentácie/manuálu k projektu

2 Relevatné informácie

V tejto sekcií sa pozrieme na dôležitú teóriu, ktorá bola potrebná k vypracovaniu.

2.1 IPv4 a IPv6

Pre vytvorenie a odoslanie raw paketu je nutné vytvoriť a vyplniť IP hlavičku. Dôležité bolo štúdium jej formátu a najmä rozdiel medzi IPv4 a IPv6 hlavičkou.

0	1	2	3			
0 1 2 3 4 5 6 7 8 9	0 1 2 3 4 5 6 7 8 9	0 1 2 3 4 5 6 7	78901			
+-						
	e of Service					
+-+-+-+-+-+-+-+-	+-+-+-+-+-+-+-+-	+-+-+-+-+-+-+-	+-+-+-+			
Identifica	ition Flags	Fragment 01	ffset			
··						
Time to Live	Protocol	Header Checksu	ım [
+-						
Source Address						
······································						
Destination Address						
······						
1	Options	Pac	dding			
+-						

Obrázok 1: Formát hlavičky IPv4[1]

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
+-
+ Destination Address + H

Obrázok 2: Formát hlavičky IPv6[2]

2.2 TCP a SYN skenovanie

Podobne ako IP hlavičku bolo treba vytvoriť a vyplniť hlavičku TCP. SYN skenovanie narozdiel od TCP skenovania neprevádza kompletný 3-way-handsake. Reakcia na na SYN paket môže nadobúdať tri podoby:

1. Odpoveď paketom s nastavenými ACK a SYN flagom - port je otvorený

- 2. Odpoveď paketom s nastaveným RST flagom port je zatvorený
- 3. Žiadna odpoveď port považujeme za filtrovaný

0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8	2 3 4 5 6 7 8 9 8 1					
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-						
Source Port	Destination Port					
Sequence Number						

Acknowledgment Number						
Data	Window					
+-						
Checksum						
	Padding					
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-						

Obrázok 3: Formát hlavičky TCP[3]

2.3 UDP a UDP skenovanie

Keďže UDP nenaväzuje spojenie, nie je možné využiť postup ako pri SYN skenovaní. Namiesto toho využijeme fakt, že v prípade uzatvoreného portu, systém odpovedá ICMP správou 3 port unreachable. Porty, ktoré touto správou neodpovedajú považujeme za otvorené. Nedostatkom tejto metódy je fakt, že pokiaľ je port filtrovaný, ICMP správa sa neodošle a aplikácia teda mylne označí port za otvorený.

Obrázok 4: Formát hlavičky UDP[4]

3 Implementácia

Väčšina implementácie UDP aj SYN skenovania je podobná. Po spracovaní argumentov sa začína vytvárať IP hlavička. Na obrázku 1 a 2 môžeme vidieť, že hlavičky pre IPv4 a IPv6 sa značne líšia. Verzia protokolu je vybraná podľa verzie IP adresy na vstupe. Použité hlavičkové súbory sú definované v súboroch <netinet/ip.h> a <netinet/ip6.h>. V pamäti za IP hlavičku doplníme hlavičku UDP/TCP. Zaujímavou položkou v hlavičkách UDP/TCP je checksum. Presný výpočet tejto položky je popísaný v RFC 1071[5]. Pri implementácií bolo dôležité si dať pozor najme na rozdiel v pseudo hlavičkách medzi IPv4 a IPv6. Na obrázku 5 môžeme vidieť formát pseudo hlavičky pri IPv4 a na obrázku 6 formát pseudo hlavičky pri IPv6.

Obrázok 5: Formát pseudo hlavičky UDP/TCP IPv4[3]

Obrázok 6: Formát pseudo hlavičky UDP/TCP IPv6[2]

So správne vypočítaným checksum zaradíme TCP/UDP hlavičku za IP hlavičku a odošleme paket pomocou BSD sockets. Na zachytávanie odpovedí je využitá knižnica libpcap. Za využitia jej filtrov príjmame a analyzujeme prijaté pakety podľa teórie v v sekcií 2. Timeout pri opakovanom odosielaní paketov je riešený pomocou signálu SIGALRM.

4 Testovanie

Testovanie funkcionality prebiehalo pomocou nástroju Telnet, Wireshark, IPv6 Online Port Scanner (http://www.ipv6scanner.com/cgi-bin/main.py). Podstata testovania bola v zachytávaní provozu nástrojom Wireshark, sledovaní odoslaných paketov a overovanie ich správneho formátu a pozorovaní obdržaných paketov a následné porovnávanie zistení z Wiresharku s výsledkami našej aplikácie. Finálna fáza testovania spočívala vo využití nástroja IPv6 Online Port Scanner a porovnávaní jej výsledkov s našou aplikáciou. S dôvodou obmedzených prostriedkov bol testovaný takmer výhdradne localhost.

5 Možnosti spustenia

```
 \begin{tabular}{ll} \$ & ./ipk-scan $ \{-i < interface > \} $ -pu < port-ranges > -pt < port-ranges > [ < domain-name > | < IP-address > ] $ \end{tabular}
```

- -pt port-ranges skenované TCP porty
- -pu port-ranges skenované UDP porty
- domain-name IP-address doménové meno alebo IP adresa skenovaného stroja TCP porty
- -i interface identifikátor rozhrania

Príklad použitia:

Reference

- [1] REY, M. del. *INTERNET PROTOCOL*. [b.m.]: RFC Editor, September 1981. 1-45 s. RFC, 791. Dostupné na: https://tools.ietf.org/html/rfc791.
- [2] DEERING, S. a HINDEN, R. Internet Protocol, Version 6 (IPv6) Specification. [b.m.]: RFC Editor, Júl 2017. 1-42 s. RFC, 8200. Dostupné na: https://tools.ietf.org/html/rfc8200.
- [3] REY, M. del. TRANSMISSION CONTROL PROTOCOL. [b.m.]: RFC Editor, September 1981. 1-85 s. RFC, 793. Dostupné na: https://tools.ietf.org/html/rfc793.
- [4] POSTEL, J. USER DATAGRAM PROTOCOL. [b.m.]: RFC Editor, August 1980. 1-3 s. RFC, 768. Dostupné na: https://tools.ietf.org/html/rfc768.
- [5] Braden, R. a Borman, D. omputing the Internet Checksum. [b.m.]: RFC Editor, September 1988. 1-24 s. RFC, 1071. Dostupné na: https://tools.ietf.org/html/rfc1071.
- [6] Port scanner.
- [7] FYODOR. The Art of Port Scanning. Dostupné na: https://nmap.org/nmap_doc.html.
- [8] Population density (people per sq. km of land area). Dostupné na: < https://data.worldbank.org/indicator/EN.POP.DNST?end=2017&start=2017&type=points&view=map&year_high_desc=true>.
- [9] POSTEL, J. INTERNET CONTROL MESSAGE PROTOCOL. [b.m.]: RFC Editor, September 1981. 1-21 s. RFC, 792. Dostupné na: https://tools.ietf.org/html/rfc792.

Medzi ďaľšie využité zdroje patrili slajdy a example zdrojové súbory k predmetom IPK/ISA na $FIT\ VUT.$