Elementos de complejidad algorítmica

Relaciones de recurrencia

Verónica E. Arriola-Rios

Facultad de Ciencias, UNAM

22 de agosto de 2024

Definición

Definición

Definición

•0000

Recursión doble

OOO

Bibliografía

Referencias

Definición matemática

Definición

Definición (Relación de recurrencia)

Una relación de recurrencia para una sucesión $\{\alpha_n\}_{n=0}^{\infty} = \{\alpha_0, \alpha_1, \alpha_2, \alpha_3, ...\}$ es una fórmula que expresa cada término α_n , a partir de cierto $n_0 \in \mathbb{N}$, en función de uno o más de los términos que le preceden.

- Los valores de los términos necesarios para empezar a calcular se llaman condiciones iniciales.
- Una **solución** de la relación de recurrencia es una sucesión cuyos términos (a partir de α₂) verifiquen la relación.
- **Resolver** una recurrencia (que liga los términos de una sucesión $\{a_n\}$) significa hallar una fórmula explícita *algebráica* en la que al sustituir n obtengamos al término a_n . Fernández Gallardo y Fernández Pérez 2018

Ejemplos básicos

Ejemplos:

Definición

00000

• Progresión aritmética: $a_n = a_{n-1} + d$. Ejemplar:

$$a_0 = 3$$

 $\{a_n\} = \{3, 10, 17, 24, 31, 38, 45, 52, 59, 66, 73\}$

Solución: $a_n = a_0 + dn$.

• Progresión geométrica: $a_n = ra_{n-1}$ Eiemplar:

$$\begin{aligned} \alpha_0 &= 3 \\ \{\alpha_n\} &= \{3, 15, 75, 375, 1875, 9375, 46875, 234375\} \end{aligned}$$

Solucion: $a_n = a_0 r^n$

d=7

r = 5

Sucesión de Fibonacci.

$$\begin{aligned} \alpha_0 &= \alpha_1 = 1 \\ \alpha_n &= \alpha_{n-1} + \alpha_{n-2} \\ \{\alpha_n\} &= \{1,1,2,3,5,8,13,21,34\} \end{aligned} \quad \forall n \geqslant 2$$

Solución:

$$a_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$$

• Lineales homogéneas de orden m

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_m a_{n-m}$$

Definición

00000

- Las relaciones de recurrencia se utilizan en forma natural para estimar la complejidad en tiempo de algoritmos recursivos.
- Para el cálculo, cada llamada recursiva se sustituye por el número de pasos que toma evaluarla.

```
public static long Factorial(long n)

{
    if (n < 0) throw new ArgumentException();  // O(1)
    if (n == 0 || n == 1) return 1;  // O(1)
    else return n * Factorial(n - 1);  // c + Tf(n-1)
}</pre>
```

$$T_{factorial}(n) = \Theta(1) + Tf(n-1)$$
 ¡Es la progresión aritmética!
$$= O(n)$$

Recursión doble

- Recursión doble

```
public static long Pascal(long n, long m)

if (n < 0 || m < 0 || m < n)
    throw new ArgumentException();

if (n == 0 || n == m) return 1;

else return Pascal(n - 1, m - 1) + Pascal(n - 1, m);

}</pre>
```

Orden de complejidad para el Triángulo de Pascal

$$\begin{split} T_p(n) &= \Theta(1) + 2T_p(n-1) \\ &= \Theta(1) + 2(\Theta(1) + 2T_p(n-2)) \\ &= (1+2)\Theta(1) + 2^2T_p(n-2) \\ &= (1+2+2^2)\Theta(1) + 2^3T_p(n-3) \\ &\cdots \\ &= \left(\frac{2^{n-1}-1}{2-1}\right)\Theta(1) + 2^n\Theta(1) \\ &= \Theta(2^n) \end{split}$$

Bibliografía

- Bibliografía

Definición Recursión doble Bibliografía Referencias

0000 0 0 0

Bibliografía I

Fernández Gallardo, Pablo y José Luis Fernández Pérez (2018). «El discreto encanto de la matemática». En: cap. Recurrencias. URL: http://verso.mat.uam.es/~pablo.fernandez/cap8-dic18.pdf.

Preiss, Bruno (1999). Data Structures and Algorithms with Object-Oriented Design Patterns in Java. John Wiley & Sons.

Licencia

Creative Commons Atribución-No Comercial-Compartir Igual

