# Project-1: Sandbox, Firewall & Access Control CS4371/CS5378 Spring 2025

FLR Reed Kotrla, Robert Jones, Posan Gc February 10, 2025

### 1 Introduction

This project focuses on building a sandbox environment for security experiments, building virtual machines, setting up firewalls, and implementing network security policies. The objectives include learning networking tools, analyzing security policies, and verifying secure configurations. The goals of this project was to design and implement a secure network infrastructure that has solid control rules, analyze network traffic before and after an implementation to get a full understanding of the security, by allowing only certain devices access and blocking external pings.

## 2 Task-II & III: Network Setup and Diagnosis

### 2.1 Virtual Machine Setup

Below is a screenshot showing the VM setup in the virtual machine manager:



Figure 1: Virtual Machines in Virtual Machine Manager

### 2.2 NMap Scans

We used NMap to scan network A and B. The commands used are:

```
% Quick Scan of Network A:
nmap -T4 -F 192.168.A.0/24
% Regular Scan of Network A:
nmap 192.168.A.0/24
% Quick Scan of Network B:
nmap -T4 -F 192.168.B.0/24
% Regular Scan of Network B:
nmap 192.168.B.0/24
```

### 2.3 Wireshark Traffic Analysis

Screenshots of Wireshark captures before implementing security policies:

```
    4 6.858143806
    192.168.2.12
    192.168.1.19
    ICMP
    98 Echo

    5 6.858547207
    192.168.1.19
    192.168.2.12
    ICMP
    98 Echo

    6 7.866368137
    192.168.2.12
    192.168.1.19
    ICMP
    98 Echo

    7 7.867943995
    192.168.1.19
    192.168.2.12
    ICMP
    98 Echo
```

Figure 2: Ping from B.1 to A.1

| 207 232.757920696 | 192 168 2 12 | 192.168.1.19 | TCP  |
|-------------------|--------------|--------------|------|
|                   |              |              | TCP  |
| 208 232.758298661 |              | 192.168.2.12 |      |
| 209 232.758321802 | 192.168.2.12 | 192.168.1.19 | TCP  |
| 210 232.758381668 | 192.168.2.12 | 192.168.1.19 | HTTP |
| 211 232.758585306 | 192.168.1.19 | 192.168.2.12 | TCP  |
| 212 232.759553964 | 192.168.1.19 | 192.168.2.12 | TCP  |

Figure 3: Curl from B.1 to A.1

| 39 185.383737790 | 192.168.2.12 | 192.168.1.19 | TCP   |     |
|------------------|--------------|--------------|-------|-----|
| 40 185.383894378 | 192.168.2.12 | 192.168.1.19 | SSHv2 |     |
| 41 185.384343480 | 192.168.1.19 | 192.168.2.12 | TCP   |     |
| 42 185.491181211 | 192.168.1.19 | 192.168.2.12 | SSHv2 |     |
| 43 185.491225328 | 192.168.2.12 | 192.168.1.19 | TCP   |     |
| 44 185.491419504 | 192.168.2.12 | 192.168.1.19 | SSHv2 | - 1 |
|                  |              |              |       |     |

Figure 4: SSH from B.1 to A.1

| 24 64.910141648 192.168.1.12 192.168.2.12 ICMP 98 Echo (ping) reply | 23 64.909494543 | 192.168.2.12 | 192.168.1.12 | ICMP | 98 Echo (ping) request |
|---------------------------------------------------------------------|-----------------|--------------|--------------|------|------------------------|
|                                                                     | 24 64.910141648 | 192.168.1.12 | 192.168.2.12 | ICMP | 98 Echo (ping) reply   |

Figure 5: Ping from B.1 to A.2

| 27 95.701019439  | 192.168.2.12          | 192.168.1.12          | TCP | 74 43190 → 80   |
|------------------|-----------------------|-----------------------|-----|-----------------|
| 28 95.701614481  | 192.168.1.12          | 192.168.2.12          | TCP | 60 80 - 43190   |
| 29 100.908993645 | PCSSystemtec_74:55:f8 | PCSSystemtec_a1:db:16 | ARP | 42 Who has 192  |
| 30 100.909244109 | PCSSystemtec_a1:db:16 | PCSSystemtec_74:55:f8 | ARP | 60 192.168.2.10 |
| 31 109.975769304 | 192.168.2.12          | 192.168.1.12          | TCP | 74 45780 22     |
| 32 109.976321796 | 192.168.1.12          | 192.168.2.12          | TCP | 60 22 → 45780   |

Figure 6: SSH and Curl from B.1 to A.2

| 5 3.691346592 | 192.168.2.13 | 192.168.2.12 | ICMP | 98 Echo (ping) |
|---------------|--------------|--------------|------|----------------|
| 6 4.693702212 | 192.168.2.12 | 192.168.2.13 | ICMP | 98 Echo (ping) |
| 7 4.693907762 | 192.168.2.13 | 192.168.2.12 | ICMP | 98 Echo (ping) |
| 8 5 721926435 | 192.168.2.12 | 192.168.2.13 | ICMP | 98 Echo (ping) |

Figure 7: Ping from B.1 to B.2

| ı   | 1 0.000000000 | 192.168.2.12          | 192.168.2.13          | TCP | 74 57754 - 22 [5 |
|-----|---------------|-----------------------|-----------------------|-----|------------------|
| - [ | 2 0.000176046 | PCSSystemtec_01:b6:f2 | Broadcast             | ARP | 60 Who has 192.1 |
| - 1 | 3 0.000182369 | PCSSystemtec_74:55:f8 | PCSSystemtec_01:b6:f2 | ARP | 42 192.168.2.12  |
|     | 4 0.000289451 | 192.168.2.13          | 192.168.2.12          | TCP | 60 22 → 57754 [F |
|     |               |                       |                       |     |                  |

Figure 8: SSH from B.1 to B.2

| 28 75.971049291 192. | 168.1.19 | 192.168.1.12 | TCP | 74 48370 → 22 |
|----------------------|----------|--------------|-----|---------------|
| 29 75.971304528 192. | 168.1.12 | 192.168.1.19 | TCP | 60 22 → 48370 |

Figure 9: SSH from A.2 to A.1

| - | 1 0.000000000 | 192,168,1,19 | 192.168.2.12 | ICMP | 98 Echo (ping) request |
|---|---------------|--------------|--------------|------|------------------------|
|   | 2 0.000559419 | 192.168.2.12 | 192.168.1.19 | ICMP | 98 Echo (ping) reply   |
|   | 3 1.033309055 | 192.168.1.19 | 192.168.2.12 | ICMP | 98 Echo (ping) request |
|   | 4 1.033843698 | 192.168.2.12 | 192.168.1.19 | ICMP | 98 Echo (ping) reply   |
|   | 5 2.062948560 | 192.168.1.19 | 192.168.2.12 | ICMP | 98 Echo (ping) request |
|   | 6 2 963452822 | 192 168 2 12 | 192 168 1 19 | TCMP | 98 Echo (ning) renly   |

Figure 10: Ping from A.2 to A.1

| 10 7.874158139 | 192.168.1.12          | 192.168.1.19          | TCP | 60 80 → 38992   |
|----------------|-----------------------|-----------------------|-----|-----------------|
| 9 7.873968833  | PCSSystemtec 20:61:bf | PCSSvstemtec da:e4:bb | ARP | 42 192 168 1 19 |
| 8 7.873961543  | PCSSystemtec_da:e4:bb | Broadcast             | ARP | 60 Who has 192. |
| 7 7.873711254  | 192.168.1.19          | 192.168.1.12          | TCP | 74 38992 - 80   |
|                |                       |                       |     |                 |

Figure 11: Curl from A.2 to A.1

### 2.4 Router Configuration

Here are the web services allowed between computers.

- A) The Ubuntu Server (A.1) provides only web service to external computers (in Network B).
- (B) The Ubuntu Server (A.1) provides only SSH and web service to the companys workstations (A.2).
- (C) The Ubuntu Server (A.1) shall not access any services on external computers (no outbound to B), except it is allowed to ping external hosts (see item G).
- (D) The Windows XP Workstations (A.2) shall not provide any services.
- (E) Workstations (A.2) can access the Ubuntu servers (A.1) SSH and web services.
- (F) Workstations (A.2) can access only the web service provided by external computers through Ubuntu server.
- (G) Both the Ubuntu server (A.1) and the XP workstations (A  $\cdot$  .2) can ping any other computers.
- (H) External computers cannot ping either the Ubuntu server ( A.1) or the XP workstations (A.2). show the web services allowed between computers

### 3 Task-IV and V: Access Control and Policy Enforcement

### 3.1 Access Control Matrix

The access control matrix is shown below, outlining the permitted and restricted interactions between different network entities.



Figure 12: Access Control Matrix

### 3.2 Policy Limitations

The following policies **CANNOT** be completely enforced by the router rules on R:

- Restricting access based on user authentication levels.
- Preventing unauthorized data exfiltration through encrypted channels.
- Enforcing time-based access restrictions.

### 3.3 Router Rules on R

Below is a screenshot of the implemented router rules, along with an explanation of each rule's purpose.



Figure 13: WAN Rules



Figure 14: LAN Rules

### Rule Purposes

```
LAN Firewall Rules
Allow HTTP traffic to LAN Address (Anti-Lockout Rule).
Allow ICMP (Ping) from 192.168.1.19 to any destination.
Allow ICMP (Ping) from 192.168.1.12 to any destination.
Allow HTTP traffic from 192.168.1.12.
Allow SSH traffic from 192.168.1.12.
Allow all traffic from LAN subnets (default rule).
Block traffic from 192.168.1.12 to WAN Address.
Block all other traffic from 192.168.1.19.
Block ICMP from OPT1 subnets to 192.168.1.0.
WAN Rules
Allow HTTPS traffic from OPT1 subnets to 192.168.1.19.
Allow HTTP traffic from OPT1 subnets to 192.168.1.19.
Block all other IPv4 traffic from OPT1 subnets to
   192.168.1.0.
Block ICMP from OPT1 subnets to 192.168.1.0.
Allow all other traffic from OPT1 subnets (default rule).
```

### 3.4 NMap Results of Exposed Computers and Ports in Network A

The following screenshots display the results of NMap scans performed on Network A to identify exposed computers and open ports.

### 3.5 Wireshark Results: Web Service Checks

Screenshots of Wireshark captures for web service interactions between different nodes:

```
-(victim⊛vbox)-[~]
      -$ ping 192.168.1.19
PING 192.168.1.19 (192.168.1.19) 56(84) bytes of data.
    — 192.168.1.19 ping statistics —
 3 packets transmitted, 0 received, 100% packet loss, time 2057ms
\( \bigcup \left( \text{victim (victim (victi
Starting Nmap 7.95 ( https://nmap.org ) at 2025-02-09 23:17 CST
 Nmap scan report for 192.168.1.19
 Host is up (0.00045s latency).
Not shown: 98 filtered tcp ports (no-response)
PORT STATE SERVICE
80/tcp open http
 443/tcp closed https
Nmap done: 256 IP addresses (1 host up) scanned in 37.30 seconds
     -(victim® vbox)-[~]
 _s nmap 192.168.1.0/24
 Starting Nmap 7.95 ( https://nmap.org ) at 2025-02-09 23:18 CST
Nmap scan report for 192.168.1.19
Host is up (0.00044s latency).
Not shown: 998 filtered tcp ports (no-response)
PORT STATE SERVICE
80/tcp open http
 443/tcp closed https
 Nmap done: 256 IP addresses (1 host up) scanned in 132.16 seconds
```

Figure 15: NMap Results of Network A

| Time            | Source                | Destination           | Protocol | Length Info              |
|-----------------|-----------------------|-----------------------|----------|--------------------------|
| 1 0.000000000   | 00000000.08002701b6f2 | 00000000.ffffffffffff | IPX SAP  | 60 General Query         |
| 2 7.899340780   | 192.168.2.12          | 192.168.1.19          | ICMP     | 98 Echo (ping) request   |
| 3 8.934223523   | 192.168.2.12 FINO     | 192.168.1.19          | ICMP     | 98 Echo (ping) request   |
| 4 9.964265515   | 192.168.2.12          | 192.168.1.19          | ICMP     | 98 Echo (ping) request   |
| 5 10.994055987  | 192.168.2.12          | 192.168.1.19          | ICMP     | 98 Echo (ping) request   |
| 6 13.131442950  | PCSSystemtec_74:55:f8 | PCSSystemtec_a1:db:16 | ARP      | 42 Who has 192.168.2.1   |
| 7 13.131616570  | PCSSystemtec a1:db:16 | PCSSystemtec 74:55:f8 | ARP      | 60 192.168.2.10 is at    |
| 8 26.019692364  | 192.168.2.12          | 192.168.1.19          | TCP      | 74 37442 - 22 [SYN] Se   |
| 9 27.042447451  | 192.168.2.12          | 192.168.1.19          | TCP      | 74 [TCP Retransmission   |
| 10 28.068343476 | 192.168.2.12          |                       |          | 74 [TCP Retransmission   |
| 11 29.092479660 | 192.168.2.12          |                       |          | 74 [TCP Retransmission   |
| 12 30.118112091 | 192.168.2.12          |                       |          | 74 [TCP Retransmission   |
| 13 31.143168369 |                       |                       |          | 74 [TCP Retransmission   |
| 14 33.156125171 | 192.168.2.12          |                       |          | 74 [TCP Retransmission   |
| 15 58.113581671 | 192.168.2.12          | 192.168.1.19          | TCP      | 74 43024 - 80 [SYN] Se   |
| 16 58.114047648 | 192.168.1.19          | 192.168.2.12          | TCP      | 74 80 - 43024 [SYN, AC   |
| 17 58.114068282 | 192.168.2.12          | 192.168.1.19          | TCP      | 66 43024 → 80 [ACK] Se   |
| 18 58.114098294 | 192.168.2.12          | 192.168.1.19          | HTTP     | 142 GET / HTTP/1.1       |
| 19 58.114352873 | 192.168.1.19          | 192.168.2.12          | TCP      | 66 80 → 43024 [ACK] Se   |
| 20 58.114811106 | 192.168.1.19          | 192.168.2.12          | TCP      | 4410 80 - 43024 [ACK] Se |
| 21 58.114819952 | 192.168.2.12          | 192.168.1.19          | TCP      | 66 43024 → 80 [ACK] Se   |
| 22 58.114855469 | 192.168.1.19          | 192.168.2.12          | TCP      | 2962 80 - 43024 [PSH, AC |
| 23 58.114855528 | 192.168.1.19          | 192.168.2.12          | TCP      | 2962 80 - 43024 [ACK] Se |
| 24 58.114860101 | 192.168.2.12          | 192.168.1.19          | TCP      | 66 43024 → 80 [ACK] Se   |
| 25 58.114874912 | 192.168.2.12          | 192.168.1.19          | TCP      | 66 43024 → 80 [ACK] Se   |
| 26 58.114897193 | 192.168.1.19          | 192.168.2.12          | HTTP     | 856 HTTP/1.1 200 OK (t   |
| 27 58.114900479 | 192.168.2.12          | 192.168.1.19          | TCP      | 66 43024 → 80 [ACK] Se   |
| 28 58.115007784 | 192.168.2.12          | 192.168.1.19          | TCP      | 66 43024 → 80 [FIN, AC   |
| 29 58.115331370 | 192.168.1.19          | 192.168.2.12          | TCP      | 66 80 → 43024 [FIN, AC   |
| 30 58.115337181 | 192.168.2.12          | 192.168.1.19          | TCP      | 66 43024 → 80 [ACK] Se   |
| 24 50 002244402 | 00000000 00002704h6f2 | ODDODOD FFFFFFFFF     | TOY CAD  | 60 Moscoet Ouery         |

Figure 16: Web service check: B.1 to A.1



Figure 17: Web service check: B.1 to A.2

| 28.366965192 | 192.168.1.12 | 192.168.1.19 | ICMP | 98 Echo (ping) reply     |
|--------------|--------------|--------------|------|--------------------------|
| 29.426422195 | 192.168.1.19 | 192.168.1.12 | ICMP | 98 Echo (ping) request : |
| 29.426656024 | 192.168.1.12 | 192.168.1.19 | ICMP | 98 Echo (ping) reply     |
| 30.450738271 | 192.168.1.19 | 192.168.1.12 | ICMP | 98 Echo (ping) request : |
| 30.451071954 | 192.168.1.12 | 192.168.1.19 | ICMP | 98 Echo (ping) reply     |

Figure 18: Web service check: B.1 to B.2

| 84 105.180045473 | 192.168.1.19    | 192.168.1.12    | TCP | 74 48674 - 22 [  |
|------------------|-----------------|-----------------|-----|------------------|
| 85 105.180303915 | 192.168.1.12    | 192.168.1.19    | TCP | 60 22 → 48674    |
| 86 106.671600760 | 192.168.1.19    | 192.168.1.10    | DNS | 100 Standard que |
| 87 107.913547544 | 192.168.1.19    | 192.168.1.19    | DNS | 100 Standard que |
| 88 111.668632929 | 192.168.1.19    | 192.168.1.12    | TCP | 74 52658 - 22    |
| 89 111.668852326 | 192, 168, 1, 12 | 192, 168, 1, 19 | TCP | 69 22 - 52658    |

Figure 19: Web service check: B.1 to A.2



Figure 20: Web service check: B.1 to A.2



Figure 21: Web service check: B.1 to A.2

### 3.6 Allowed Web Services

The web services permitted between different computers in the network are:

- HTTP (port 80) allowed from B.1 to A.1 and A.2
- SSH (port 22) allowed only within Network A
- ICMP requests blocked from B to A, A can still ping to B.

### 3.7 Differences Between Task-III and Task-V Scans

Key differences observed between the scans conducted in Task-III and Task-V:

- Reduction in exposed open ports due to firewall implementation.
- Blocked ICMP responses after policy enforcement.
- Limited access to certain services that were previously open.

# 4 Task-VI: Testing Local Router Security Policy

### 4.1 Local Router Configuration Rules

Below is a screenshot of the firewall rules applied to the local A.1 router and explanations of their functions.

### 4.2 Wireshark Results: Local Network Web Service Checks

Wireshark captures demonstrating web service interactions within the local network:

```
boxuser@Ubuntu:~$ sudo ufw status verbose
Status: inactive
vboxuser@Ubuntu:-$ sudo ufw default deny incoming
Default incoming policy changed to 'deny
(be sure to update your rules accordingly)
vboxuser@Ubuntu:-$ sudo ufw default deny outgoing
Default outgoing policy changed to 'deny
(be sure to update your rules accordingly)
vboxuser@Ubuntu:-$ sudo ufw allow proto tcp from 192.168.1.12 to any port 22
boxuser@Ubuntu:-$ sudo ufw allow proto tcp from 192.168.1.12 to any port 80
Rules updated
 boxuser@Ubuntu:~$ sudo ufw allow proto tcp from 192.168.1.12 to any port 44
Rules updated
boxuser@Ubuntu:-$ sudo ufw allow out 53
Rules undated
Rules updated (v6)
/boxuser@Ubuntu:~$ sudo ufw allow out proto icmp to any
ERROR: Unsupported protocol 'icmp
/boxuser@Ubuntu:~$ sudo ufw allow out proto icmp to any
RROR: Unsupported protocol 'icmp
/boxuser@Ubuntu:~$ sudo ufw enable
 irewall is active and enabled on system startup
/boxuser@Ubuntu:-$ ufw status
ERROR: You need to be root to run this script
 boxuser@Ubuntu:~$ sudo ufw status
Status: active
                                                1 D 1 = 1
```

Figure 22: Local Router Rules on A.1

### 4.3 Allowed Web Services

Updated list of allowed web services between computers:

- HTTP (port 80) remains accessible within permitted nodes.
- SSH (port 22) still limited to specific network segments.
- Additional restrictions on unauthorized access to classified data.

### 4.4 Differences Between Task-V and Task-VI Scans

Comparison of security policy enforcement between Task-V and Task-VI:

- Strengthened access controls in Task-VI.
- Stricter policy enforcement leading to fewer detected open ports.
- Enhanced logging and tracking mechanisms in Task-VI implementation.



Figure 23: Web service check: B.1 to B.2

| 1 0.000000000   | 00000000.08002791b6f2   | 00000000. fffffffffffff | IPX SAP | 60 Nearest Ouery                                |
|-----------------|-------------------------|-------------------------|---------|-------------------------------------------------|
| 2 2.353933564   | 192,168,2,12            | 192,168,1,12            | ICMP    | 98 Echo (ping) request id=0x045a, seq=1/256, 1  |
| 3 3.424486505   | 192.168.2.12            | 192.168.1.12            | ICMP    | 98 Echo (ping) request id=0x045a, seg=2/512,    |
| 4 4.443136004   | 192.168.2.12            | 192.168.1.12            | ICMP    | 98 Echo (ping) request id=0x045a, seq=3/768,    |
| 5 5.457935164   | 192.168.2.12            | 192.168.1.12            | ICMP    | 98 Echo (ping) request id=0x045a, seg=4/1024,   |
| 6 6.487845342   | 192.168.2.12            | 192.168.1.12            | ICMP    | 98 Echo (ping) request id=0x045a, seg=5/1280,   |
| 7 7.478500223   | PCSSystemtec_74:55:f8   | PCSSystemtec_a1:db:16   | ARP     | 42 Who has 192.168.2.10? Tell 192.168.2.12      |
| 8 7.478764714   | PCSSystemtec a1:db:16   | PCSSystemtec 74:55:f8   | ARP     | 60 192.168.2.10 is at 08:00:27:a1:db:16         |
| 9 15.088949303  | 192.168.2.12            | 192.168.1.12            | TCP     | 74 55770 - 80 [SYN] Seq=0 Win=64240 Len=0 MSS=: |
| 10 16.116634395 | 192.168.2.12            | 192.168.1.12            | TCP     | 74 [TCP Retransmission] 55770 - 80 [SYN] Seq=0  |
| 11 17.169391896 | 192.168.2.12            | 192.168.1.12            |         | 74 [TCP Retransmission] 55770 - 80 [SYN] Seq=0  |
| 12 18.194329547 |                         |                         |         | 74 [TCP Retransmission] 55770 - 80 [SYN] Seq=0  |
| 13 19.230205518 | 192.168.2.12            | 192.168.1.12            |         | 74 [TCP Retransmission] 55770 - 80 [SYN] Seq=0  |
| 14 40.901378602 | 192.168.2.12            | 192.168.1.12            | TCP     | 74 45006 → 22 [SYN] Seq=0 Win=64240 Len=0 MSS=1 |
| 15 41.990709156 | 192.168.2.12            | 192.168.1.12            | TCP     | 74 [TCP Retransmission] 45006 - 22 [SYN] Seq=0  |
| 16 42.993946659 | 192.168.2.12            | 192.168.1.12            |         | 74 [TCP Retransmission] 45006 - 22 [SYN] Seq=0  |
| 17 44.018136423 |                         |                         |         | 74 [TCP Retransmission] 45006 - 22 [SYN] Seq=0  |
| 18 45.051563918 | 192.168.2.12            | 192.168.1.12            |         | 74 [TCP Retransmission] 45006 - 22 [SYN] Seq=0  |
| 19 46.129932363 | PCSSystemtec_74:55:f8   | PCSSystemtec_a1:db:16   | ARP     | 42 Who has 192.168.2.10? Tell 192.168.2.12      |
| 20 46.130142123 | PCSSystemtec_a1:db:1650 | PCSSystemtec_74:55:f8   | ARP     | 60 192.168.2.10 is at 08:00:27:a1:db:16         |
| 21 59.992427830 | 00000000.08002701b6f2   | 00000000. fffffffffffff |         | 60 General Query                                |

Figure 24: Web service check: B.1 to A.1 (Local Network)

| 1 0.000000000   | 192.168.2.12          | 192.168.1.19          | ICMP | 98 Echo (ping) request   |
|-----------------|-----------------------|-----------------------|------|--------------------------|
| 2 1.018680160   | 192.168.2.12          | 192.168.1.19          | ICMP | 98 Echo (ping) request   |
| 3 2.042282640   | 192.168.2.12          | 192.168.1.19          | ICMP | 98 Echo (ping) request   |
| 4 3.098455975   | 192.168.2.12 Y NA     | 192.168.1.19          | ICMP | 98 Echo (ping) request   |
| 5 4.122073448   | 192.168.2.12          | 192.168.1.19          | ICMP | 98 Echo (ping) request   |
| 6 5.146136084   | 192.168.2.12          | 192.168.1.19          | ICMP | 98 Echo (ping) request   |
| 7 9.146606419   | PCSSystemtec 74:55:f8 | PCSSystemtec a1:db:16 | ARP  | 42 Who has 192,168,2,10? |
| 8 9.146801776   | PCSSystemtec a1:db:16 | PCSSystemtec 74:55:f8 | ARP  | 60 192,168,2,10 is at 08 |
| 9 10.575956566  | 192.168.2.12          | 192.168.1.12          | TCP  | 74 47052 - 80 [SYN] Seg= |
| 10 11.606193251 | 192.168.2.12          | 192.168.1.12          | TCP  | 74 [TCP Retransmission]  |
| 11 12.630079904 | 192, 168, 2, 12       | 192 168 1.12          | TCP  | 74 [TCP Retransmission]  |
| 12 13.654454281 | 192.168.2.12          | 192.168.1.12 CVr      | TCP  | 74 [TCP Retransmission]  |
| 13 14.701398231 | 192.168.2.12          | 192.168.1.12          | TCP  | 74 [TCP Retransmission]  |
| 14 15.704294186 | 192.168.2.12          | 192.168.1.12          | TCP  | 74 [TCP Retransmission]  |
| 15 31 498738856 | 192,168,2,12          | 192.168.1.19          | TCP  | 74 57392 - 22 [SYN] Seg= |
| 16 32 515436273 | 192.168.2.12          | 192, 168, 1, 19       | TCP  | 74 [TCP Retransmission]  |
| 17 33.531620021 | 192.168.2.12          | 192, 168, 1, 19       | TCP  | 74 [TCP Retransmission]  |
| 18 34.551801875 | 192 . 168 . 2 . 12    | 192.168.1.19          | TCP  | 74 [TCP Retransmission]  |
| 19 35.574423144 | 192 168 2 12          | 192.168.1.19          | TCP  | 74 [TCP Retransmission]  |
| 20 36 600327950 | 192.168.2.12          | 192.168.1.19          | TCP  | 74 [TCP Retransmission]  |
| 20 30.000327930 | 102.100.2.12          | 102.100.1.10          | 101  | 14 [101 Retransmission]  |

Figure 25: Web service check: B.1 to B.2

| 1 0.000000000   | 00000000 000007041640 | 00000000.fffffffffff  | TOV CAD | 60 6                    |
|-----------------|-----------------------|-----------------------|---------|-------------------------|
|                 | 00000000,08002701b6f2 |                       | IPX SAP | 60 General Query        |
| 2 4.875642054   | 192.168.2.12          | 192.168.2.13          | ICMP    | 98 Echo (ping) request  |
| 3 4.875802409   | PCSSystemtec_01:b6:f2 | Broadcast             | ARP     | 60 Who has 192.168.2.12 |
| 4 4.875809400   | PCSSystemtec_74:55:f8 | PCSSystemtec_01:b6:f2 | ARP     | 42 192.168.2.12 is at @ |
| 5 4.875896798   | 192.168.2.13          | 192.168.2.12          | ICMP    | 98 Echo (ping) reply    |
| 6 5.902710103   | 192.168.2.12          | 192.168.2.13          | ICMP    | 98 Echo (ping) request  |
| 7 5.902874293   | 192.168.2.13          | 192.168.2.12          | ICMP    | 98 Echo (ping) reply    |
| 8 6.933710748   | 192.168.2.12          | 192.168.2.13          | ICMP    | 98 Echo (ping) request  |
| 9 6.933922518   | 192.168.2.13          | 192.168.2.12          | ICMP    | 98 Echo (ping) reply    |
| 10 9.887823836  | PCSSvstemtec 74:55:f8 | PCSSvstemtec 01:b6:f2 | ARP     | 42 Who has 192,168,2,13 |
| 11 9.887958814  | PCSSvstemtec 01:b6:f2 | PCSSystemtec 74:55:f8 | ARP 551 | 60 192.168.2.13 is at 6 |
| 12 12.621233588 | 192.168.2.12          | 192.168.2.13          | TCP CV- | 74 43146 - 80 [SYN] Seq |
| 13 12.621409298 | 192.168.2.13          | 192.168.2.12          | TCP     | 60 80 → 43146 [RST, ACK |
| 14 59.992004499 | 00000000.08002701b6f2 | 00000000.fffffffffff  | IPX SAP | 60 Nearest Query        |
| 15 68.800025399 | 192.168.2.12          | 192.168.2.13          | TCP     | 74 49784 - 80 [SYN] Seq |
| 16 68.800173377 | 192.168.2.13          | 192.168.2.12          | TCP     | 60 80 → 49784 [RST, ACK |
| 17 73.906473140 | PCSSystemtec 74:55:f8 | PCSSystemtec 01:b6:f2 | ARP     | 42 Who has 192.168.2.13 |
| 18 73.906706937 | PCSSystemtec_01:b6:f2 | PCSSystemtec_74:55:f8 | ARP     | 60 192.168.2.13 is at 0 |

Figure 26: Web service check: B.1 to A.1 (Local Network)

### 4.5 Security Policy Effectiveness in Protecting Classified Data

The security policy aims to prevent classified data leaks from Computer A.1. However, potential vulnerabilities include:

- Insider threats—authorized users transferring data manually.
- Lack of monitoring on encrypted traffic.
- Missing policies for data loss prevention (DLP) strategies.

Recommendations for stronger enforcement:

- Implement stricter logging and access controls.
- Use encryption for stored and transmitted data.
- Deploy intrusion detection systems (IDS) to monitor abnormal access patterns.

### 5 Conclusion

This project provided hands-on experience in setting up a virtual sandbox, configuring network security, and analyzing traffic. Challenges faced included network configuration issues and firewall misconfigurations, which were resolved through debugging and testing. The project successfully enforced a security policy to control network traffic between internal and external systems. One of the key takeaways from this project was the importance of layered security. Layered security is incredibly important because simply blocking or allowing traffic through a firewall isn't enough. A well structured security policy must take into consideration for outbound and inbound rules, service restrictions, and any potential attacks. By limiting external access to only essential services (such as HTTP to the web server) and restricting the internal workstations from exposing services, we successfully minimized the attack surface of the network. Seeing how the pre to post security scans were also provided a lot of insight to us as in how a firewall could be manipulated and exposed by attackers. The Access Control Matrix and new router rules helped in creating strong boundaries so there wouldn't be any unauthorized access nor data leaks. Overall this project really helped in strengthening our skills in network security, access control and monitoring traffic. Doing a project like this which can be easily applied in a real life setting taught us the importance of having a secure network. For the future it would be interesting to test attack scenarios and improving our firewall policies