

 Doküman No:
 KL-0003

 Yayın Tarihi:
 31.05.2018

 Değ.No:
 0

 Değ.Tarihi:

T.C. GEBZE TEKNİK ÜNİVERSİTESİ

Bilgisayar Mühendisliği Bölümü

Görsel Özellikli Derin Öğrenmeye Dayalı T-shirt Tavsiye Sistemi

Değer MANDAL

Danışman Doç. Dr. Mehmet GÖKTÜRK

> Ocak, 2021 Gebze, KOCAELİ

 Doküman No:
 KL-0003

 Yayın Tarihi:
 31.05.2018

 Değ.No:
 0

 Değ.Tarihi:

T.C. GEBZE TEKNİK ÜNİVERSİTESİ

Bilgisayar Mühendisliği Bölümü

Görsel Özellikli Derin Öğrenmeye Dayalı T-shirt Tavsiye Sistemi

Değer MANDAL

Danışman Doç. Dr. Mehmet GÖKTÜRK

> Ocak, 2021 Gebze, KOCAELİ

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	_

Bu çalışma/200.. tarihinde aşağıdaki jüri tarafından Bilgisayar Mühendisliği Bölümü'nde Lisans Bitirme Projesi olarak kabul edilmiştir.

Bitirme Projesi Jürisi

Danışman Adı	Doç. Dr. Mehmet GÖKTÜRK	
Üniversite	Gebze Teknik Üniversitesi	
Fakülte	Mühendislik Fakültesi	
Jüri Adı	Yrd.Doç.Dr. Burcu Yılmaz	
Üniversite	Gebze Teknik Üniversitesi	
Fakülte	Mühendislik Fakültesi	_
Jüri Adı		
Üniversite		
Fakülte		

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	-

ÖNSÖZ

Bu kılavuzun ilk <u>taslaklarının hazırlanmasında emeği geçenlere, kılavuzun son halini almasında yol gösterici olan</u> Sayın Doç. Dr. Mehmet GÖKTÜRK hocama ve bu çalışmayı destekleyen Gebze Teknik Üniversitesi'ne içten teşekkürlerimi sunarım.

Ayrıca eğitimim süresince bana her konuda tam destek veren aileme ve bana hayatlarıyla örnek olan tüm hocalarıma saygı ve sevgilerimi sunarım.

Ocak, 2021 Değer MANDAL

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ Tarihi:	_

İÇİNDEKİLER

ONSOZ	4 -
İÇİNDEKİLER	5
ŞEKİL LİSTESİ	6
ÖZET	8
SUMMARY	8
1. GİRİŞ	9
1.1. PROJE TANIMI	9
1.2. PROJENİN NEDEN VE AMAÇLARI	10
2. ARA RAPOR İÇERİĞİ	11
2.1. PROJE GEREKSİNİMLERİ	11
2.2. MALZEME VE YÖNTEM	11
2.2.1. Obje Tespiti	11
2.2.2. Görsellerin Elde Edilmesi	14
2.2.3. Convolutional Neural Networks	15
2.2.4. Benzerlik Bulma Yöntemi	17
2.2.5. Eğitim ve Test Kümesi	18
2.3. BAŞARI KRİTERLERİ	18
3. PROJE GÖRSEL SONUÇLARI	19
4. TARTIŞMA VE SONUÇ	24
4.1. EĞİTİM SONUCU	24
4.2. PROJENÍN SONUCU	24
KAYNAKLAR	25

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	-

ŞEKİL LİSTESİ

Şekil 1 Projenin Genel Olarak Betimlenmiş Hali	10
Şekil 2 Faster R-CNN Sonuç Görseli	12
Şekil 3 Faster R-CNN Sonuç Grafikleri	12
Şekil 4 Encoder-Decoder Yapısı	13
Şekil 5 Semantic Segmentation Sonuçları	13
Şekil 6 Birinci Aşama Accuracy ve Loss Değerleri	14
Şekil 7 VGG16 Mimarisi	15
Şekil 8 Özellik Haritası	16
Şekil 9 L2 Norm	17
Şekil 10 İkinci Aşama Accuracy ve Loss Değerleri	18
Şekil 11 Man Long Girdi Görseli	19
Şekil 12 Man Long Tavsiye Çıktı Görselleri	19
Şekil 13 Woman Chiffon Top Girdi Görseli	20
Şekil 14 Woman Chiffon Top Tavsiye Çıktı Görselleri	20
Şekil 15 Woman V Neck Girdi Görseli	21
Şekil 16 Woman V Neck Tavsiye Çıktı Görselleri	21
Şekil 17 Woman Premium Scoop Girdi Görseli	22
Şekil 18 Woman Premium Scoop Tavsiye Çıktı Görselleri	22
Şekil 19 Man TriBlend Girdi Görseli	23
Sekil 20 Man TriBlend Taysive Cıktı Görselleri	23

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	-

KISALTMA LİSTESİ

 $\mbox{CNN:}$ CONVOLUTIONAL NEURAL NETWORK (KONVOLÜSYONEL SİNİR AĞI)

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	-

ÖZET

Bu proje ile birlikte e-ticaret kullanıcıları daha kolay bir şekilde istediği benzer veya aynı ürüne ulaşabilecektir. Ayrıca istenilen ürün e-ticaret sitesindeki hangi katalog sınıfına girdiği de kullanıcı tarafından bilinmesi gerekmektedir. Bu proje ile birlikte kullanıcı artık isteği benzer ürünü kataloglarda tek tek aramak yerine, görselini arama motoruna yüklediğinde direkt ulaşabilecektir. Projenin amacı, ürünün görseline göre büyük ölçekli görsel arama ve tavsiye sistemi oluşturmaktır.

İlk deneme olarak görseller obje tespiti ve image segmentation kullanılarak tanımlanmaya çalışılmıştır. Ama bunun sonucunda istenilen veriler elde edilememiştir. Bunun yerine VGG16 ile image classification yapılmıştır.

SUMMARY

With this project, e-commerce users will be able to access the same or the same product they want more easily. In addition, the user must know which catalog class the desired product falls into on the e-commerce site. With this project, the user will now be able to directly access the image when he uploads his image to the search engine, instead of searching the similar product one by one in the catalogs. The aim of the project is to create a large-scale visual search and recommendation system according to the image of the product.

As a first experiment, the visuals were tried to be defined using object detection and image segmentation. But as a result, the desired data could not be obtained. Instead, image classification has been made with VGG16.

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	1

1. GİRİŞ

Geleneksel e-ticaret arama motorları, yalnızca özellikler ve açıklamalar gibi ürünlerin metinsel verilerini kullanan metin tabanlı aramaları destekledikleri için bu konuda bir ürünü direk sunabilme konusunda eksiktir. İstenilen ürün ayrıca e-ticaret sitesindeki hangi katalog sınıfına girdiği de kullanıcı tarafından bilinmesi gerekmektedir. Bu da ürünü kolaylıkla ürünü sunabilmek için bir eksikliktir. Bu eksikliği giderebilmek için ürünün görsellerine göre büyük ölçekli görsel arama ve öneri sistemi oluşturulmuştur.

Bir ürünün görselini girdi olarak alan, tasarım özelliklerini evrişimli sinir ağını kullanarak analiz eden ve benzer stil unsurlarına sahip t-shirt kategorilerinde ürünler öneren bir proje geliştirilmiştir.

1.1. PROJE TANIMI

Bu çalışmada derin öğrenme teknikleri kullanılarak bir elektronik ticaret giyim mağazası portföyündeki ürünlere yönelik tavsiye motoru geliştirilmesi çalışması yapılmıştır. Özellikle çok sayıda ürünün sirkülasyonda olması geleneksel işbirlikçi filtreleme yöntemlerinin uygulanabilirliğini düşürmektedir. Bu çalışmadaki derin öğrenme tekniği ile görsel benzerlik yapısını hedef alan yapılan çalışmada başarılı sonuçlar alınmıştır. Projeyi betimleyen bir şekil Şekil 1'de betimlenmiştir.

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	-

Şekil 1 Projenin Genel Olarak Betimlenmiş Hali

1.2. PROJENİN NEDEN ve AMAÇLARI

E-ticaret sitelerinde insanların benzer ürünleri daha kolay ulaşılabilmesi için bu proje geliştirilmiştir. Şuan proje sorgu olarak verilen bir t-shirt görselinin rengine, şekline (t-shirt stili) ve desenine (üzerindeki desen) göre çıkarımlar yaparak özellik vektörü elde etmektedir. Bu özelliklere göre kategorimizdeki benzer ürünler kullanıcıya sunulmaktadır. İleriki aşamalarda herhangi bir e-ticaret sitesine entegre edilebilecek şekilde ilerlemek amaçlanmıştır.

Bu proje sayesinde:

- E-ticaret kullanıcıları daha kolay bir şekilde istediği benzer veya aynı ürüne ulaşabilecektir.
- Kullanıcı artık isteği benzer ürünü kataloglarda tek tek aramak yerine, görselini arama motoruna yüklediğinde direkt ulaşabilecektir.
- Önerilen ürünlerin rengine, şekline, desenine göre cevaplar verebilmek amaçlanmıştır.
- E-ticaret siteleri elindeki benzer ürünleri direkt olarak sunabilecek, müşterinin arama kabiliyetine bırakmayacaktır.

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	-

2. ARA RAPOR İÇERİĞİ

Geçmiş yıllarda görsel benzerlik bulma problemi klasik segmentasyon ve özniteliklerin sezgisel yöntemlerle ya da analitik yöntemlerle belirlendikten sonra bunların vektörel kıyaslaması ile çözülmekteyken, gelişen bilişim altyapısı ile yapay sinir ağları tabanlı yüksek hücre sayısına sahip ağlarla problemlerin daha başarılı olarak çözülmesi mümkün hale gelmiştir. "Back Propagation" temel prensiplerinin işlemci gücünün gelişmesi ile derin öğrenme tekniğine dönüşmesi ve gelişmesi, daha önce yapılamayan problemlerin ele alınmasını sağlamıştır.

2.1. PROJE GEREKSINIMLERI

Proje Google Colab üzerinde hazırlandığı için herhangi bir donanıma ihtiyaç duyulmamıştır.

Bu projede başarılması gerekenler:

- T-shirt görsellerinin elde edilmesi.
- Elde edilen t-shirt görsellerini sınıflandırılması.
- T-shirt görsellerinden gerekli özellik vektörlerini çıkarılması ve eğitilebilecek olan "Convolutional Neural Network" kullanılması.
- Sorgu görsel ile oluşturulan görsel veri kümesinin özellik vektörlerini karşılaştırılabilecek bir benzerlik metodunun kullanılması.

Bunların sağlanması için gerekli ihtiyaçlar:

- T-shirt Veri Kümesi
- Google Colab
- Python'ın Tensorflow, Keras gibi derin öğrenme kütüphaneleri

2.2. MALZEME VE YÖNTEM

2.2.1 Obje Tespiti

FASTER R-CNN

Tensorflow ve Faster RCNN V2 COCO modeli kullanılmıştır. Eğitim gerçekleştirilirken Google Colab kullanılmıştır.

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	_

Aşamalar:

- Resimleri toplama ve etiketleme (LabelImg)
- Eğitim verilerinin oluşturulması
- Bir label map oluşturma ve eğitimi yapılandırma
- Eğitim (Training)

Şekil 2 Faster R-CNN Sonuç Görseli

Şekil 3 Faster R-CNN Sonuç Grafikleri

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	-

Semantic Segmentation:

Segmentation kütüphanesi:

- segmentation_models

Modeller:

- U-net

Önceden yapılandırılmış çeşitli modeller ve backbonelar(resnet34) ile segmentasyon görevi kolaylaştırılabilir. (encoder = imagenet)

Şekil 4 Encoder-Decoder Yapısı

Şekil 5 Segmentation Sonuçları

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	-

Bu elde edilen sonuçlardan memnun kalınmamıştır. Bu yüzden yeni bir yöntem arayışına girilmiştir. VGG16 modeli kullanılarak herhangi bir obje tespitine ihtiyaç duyulmadan multi-label özelliği kullanılarak görselleri classlar halinde eğitilebileceği araştırılmıştır. Bunun sonucunda VGG16 modelinin transfer learning ve CNN ile modify edilerek projede kullanılmasına karar verilmiştir.

İlk aşamada toplam 2000 görsel kullanılarak eğitim gerçekleştirilmiştir. Ama elde edilen sonuçlar yeterli gelmemiştir.

Şekil 6 Birinci Aşama Accuracy ve Loss Değerleri

Sonuçlar yeterli gelmeyince görsel sayısını arttırabilmek için tekrardan scraping yapılmıştır.

2.2.2 Görsellerin Elde Edilmesi

Görseller, https://www.redbubble.com sitesinden scraping ile elde edilmiştir. Toplam 10 tane sınıf ve her birinden 400 tane görsel olmak üzere 4000 görsel üzerinde çalışılmıştır.

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	-

2.2.3 Convolutional Neural Networks

Görsel kitaplığını (Elde edilen görsel veriler) kullanarak, bir kullanıcı giriş görüntüsünün ait olduğu t-shirt kategorilerini sınıflandırmaya çalışan çok etiketli sınıflandırma görevini gerçekleştirmek için önceden eğitilmiş bir model olan VGG16'yı değiştirmek için Transfer Learning ile Evrişimsel Sinir Ağları kullanılmıştır. Bu işlem, VGG16'nın son üç yoğun katmanını yeni yoğun katmanlarla değiştirerek ve ağı kendi veri setimle yeniden eğiterek yaptım ve %99'luk bir accuracy değeri elde ettim. Evrişim sinir ağının katmanlarının bir görüntüyü nasıl temsil ettiği ve bu hesaplanmış gösterimi nasıl kullanabileceğimiz hakkında fikir edinmek için, özellik haritalarını özellik çıkarıcılar olarak kullandım. Eğer VGG16 mimarisine göz atmak gerekir ise:

Şekil 7 VGG16 Mimarisi

Görüntüden, her blokta değişen sayıda evrişim katmanına sahip 5 evrişim bloğu olduğunu bir referans olarak görebiliriz. İlk ikisinin iki evrişim katmanı ve son üçünün üç evrişim katmanı vardır. 1. evrişim katmanları bir 3x3 çekirdek kullanır ve 224x224x64 görüntü temsilini oluşturmak için 64 özellik haritasını eğitir.

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ Tarihi:	_

Aşağıdakine benzeyen örnek bir özellik haritası (Feature Map) görebiliriz:

Şekil 8 Özellik Haritası

Sığ katmanlardan daha derin katmanlara geçtikçe, gizli birimlerin gözlerimizin tanıyamayacağı daha karmaşık özellikleri tespit edebildiğini görebiliriz. Örneğin, 128 özellik haritasının çıktısını üreten 3. evrişim katmanını ele alalım. Bu 3. katmanda, bir V Neck t-shirtün boyun kısmını içeren bir görüntü bölümüne ve benzer bir şeyle karşılaştıklarında aktivasyon birimleri etkinleştirilebilen bir 'B' kanalına rastladıklarında aktive olan belirli bir 'A' kanalının olduğunu varsayabiliriz.

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	-

Bu kanalların her ikisi de aynı giriş için birlikte etkinleştirilirse, görüntünün bir V Neck t-shirt içermesi olasılığı yüksektir.

Feauture Maps

Evrişim sinir ağının katmanlarının bir görüntüyü nasıl temsil ettiği ve bu hesaplanmış gösterimi nasıl kullanabileceğimiz hakkında fikir edinmek için, özellik haritaları özellik çıkarıcılar olarak kullanılmıştır.

Özellik haritaları, temelde t-shirt stillerinin bir ölçüsü olarak davranacak olan özellik haritaları arasındaki korelasyon derecesini ölçen gram matrislerini hesaplamak için kullanılır. Bir t-shirt görselini en iyi temsil eden en göze çarpan özellikleri vurgulanacaktır.

2.2.4 Benzerlik Bulma Yöntemi

Özellik haritaları, temel olarak t-shirtü en iyi temsil eden en belirgin özellikleri vurgulamak için özellik haritaları arasındaki korelasyon derecesini ölçen gram matrislerini hesaplamak için kullanılır. Bu, stilin bir ölçüsü olarak hareket edecektir. Daha sonra bu gram matrislerinden bir tasarım özelliği kitaplığı oluşturabiliriz ve bir kullanıcı yeni bir t-shirtün görüntüsünü sağladığında, bir tasarım özellik vektörü benzer şekilde kodlanır. Tasarım özellik vektörü, benzerlik arama ölçümleri olarak L2 normunu hesaplamak için kullanılır ve en yakın Öklid mesafesine sahip t-shirtler tavsiye olarak döndürülür.

Şekil 9 L2 Norm

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	-

2.2.5 Eğitim ve Test Kümesi

4000 görselin 3200 tanesi "Training" için kullanılırken, 800 tanesi "Validation" için kullanılmıştır. Toplam 10 class şeklinde sınıflandırılıp eğitime verilmiştir:

'Man Active',

'Man Graphic',

'Man Long',

'Man TriBlend',

'Man VNeck',

'Woman Active',

'Woman ChiffonTop',

'Woman PremiumScoop',

'Woman TriBlend',

'Woman VNeck'

Şekil 10 İkinci Aşama Accuracy ve Loss Değerleri

2.3. BAŞARI KRİTERLERİ

- Minimum başarı oranının %60 olması
- Tek bir görsel için maximum 10 saniye içinde t-shirt tavsiyesi yapabilmesi.
- 300 görsel ve üzeri model eğitimi

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ Tarihi:	_

3. PROJE GÖRSEL SONUÇLAR

Projemi test ettiğimde aldığım sonuçlar aşağıdaki gibidir:

Man Long için proje çıktısı:

Şekil 11 Man Long Girdi Görseli

results similarities: [0.9840393 0.9486601 0.93813753 0.93702745 0.9365473 0.93492305 0.93488544 0.9344199 0.9324922 0.93132854 0.93047464]

Şekil 12 Man Long Tavsiye Çıktı Görselleri

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	-

Woman Chiffon Top için proje çıktısı:

Şekil 13 Woman Chiffon Top Girdi Görseli

results similarities: [0.93907446 0.93521416 0.934994 0.9339355 0.9331125 0.9327655 0.9326027 0.9299978 0.9283889 0.9282732 0.9278451]

Şekil 14 Woman Chiffon Top Tavsiye Çıktı Görselleri

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ Tarihi:	_

Woman V Neck için proje çıktısı:

Şekil 15 Woman V Neck Girdi Görseli

results similarities: [0.9942571 0.9812597 0.97604215 0.9758307 0.97266674 0.97096145 0.97063464 0.9681279 0.9680183 0.9676077 0.9674332]

Şekil 16 Woman V Neck Tavsiye Çıktı Görselleri

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	_

Woman Premium Scoop için proje çıktısı:

Şekil 17 Woman Premium Scoop Girdi Görseli

results similarities: [0.9174422 0.91207343 0.91104275 0.9091834 0.9072236 0.9042714 0.90377104 0.90373254 0.9033208 0.9025905 0.90252656]

Şekil 18 Woman Premium Scoop Tavsiye Çıktı Görselleri

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	-

Man TriBlend için proje çıktısı:

Şekil 19 Man TriBlend Girdi Görseli

results similarities: [0.9905343 0.9312658 0.92231107 0.91436315 0.91179687 0.90828776 0.9045427 0.90285534 0.8998606 0.89928293 0.899111]

Şekil 20 Man TriBlend Tavsiye Çıktı Görselleri

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	-

4. TARTIŞMA VE SONUÇ

4.1. EĞİTİM SONUCU

15 epoch olana kadar geçen süre yaklaşık olarak 20-25 dakika olarak görülmüştür. Alınan Accuracy sonuçları nerdeyse tüm ürünlerin doğru bir şekilde eğitildiği ve doğru bir şekilde feature extract edildiğini göstermektedir.

4.2 PROJENÍN SONUCU

Çalışma sonucunda elde edilen yaklaşım ile görsel benzerlik verileri sayesinde müşteriye ürün önerisi yapılabilecektir. E-ticaret firmaları çalışanlarının görsel özellikli tavsiye sistemleri hakkında yapmış olduğu akademik yayınlar mevcuttur. Dolayısı ile halihazırda büyük e-ticaret oyuncularının bu yöntemleri önemli ölçüde çalıştığı ve araştırmalarına devam ettiği ve alanın geliştirilmesi ile e-ticaret perakende giyim sektöründe ciddi kazanımların ve rekabet avantajlarının sağlanması mümkün görünmektedir.

Doküman No:	KL-0003
Yayın Tarihi:	31.05.2018
Değ.No:	0
Değ.Tarihi:	-

KAYNAKLAR

- [1] Tuinhof, Hessel, Clemens Pirker, and Markus Haltmeier. "Image-Based Fashion Product Recommendation with Deep Learning." In International Conference on Machine Learning, Optimization, and Data Science, pp. 472-481. Springer, Cham, 2018.
- [2] Liu, Jin-Hu, Tao Zhou, Zi-Ke Zhang, Zimo Yang, Chuang Liu, and Wei- Min Li. "Promoting cold-start items in recommender systems." PloS one 9, no. 12 (2014): e113457.
- [3] Li, Ruifan, Fangxiang Feng, Ibrar Ahmad, and Xiaojie Wang. "Retrieving real world clothing images via multi-weight deep convolutional neural networks." Cluster Computing 22, no. 3 (2019):7123-7134.
- [4]Russakovsky, Olga, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang et al. "Imagenet large scale visual recognition challenge." International journal of computer vision 115, no. 3 (2015): 211-252.
- [5]Yin, Ruiping, Kan Li, Jie Lu, and Guangquan Zhang. "Enhancing Fashion Recommendation with Visual Compatibility Relationship." In The World Wide Web Conference, pp. 3434-3440. ACM, 2019.
- [6] Sonie, Omprakash, Sudeshna Sarkar, and Surender Kumar. "Concept to code: learning distributed representation of heterogeneous sources for recommendation." In Proceedings of the 12th ACM Conference on Recommender Systems, pp. 531-532. ACM, 2018.