





# Grundlagen der automatischen Spracherkennung

Aufgabe 10 – Fertigstellung des Erkenners und Bestimmung der Wortfehlerrate 31.01.2024

Wentao Yu





# Bestimmung des Erkennungsergebnisses in hmm.py

Mithilfe der Funktionen viterbi() und getTranscription() kann aus einer Matrix von posteriors (durch das DNN geschätzte Zustandswahrscheinlichkeiten) die Transkription berechnet und zurückgegeben werden:

```
def posteriors_to_transcription(posteriors):
...
```





## Test der posteriors\_to\_transcription() Funktion in uebung10.py

- 1. In der Zip-Datei Aufgabe10.zip liegt die Datei ./data/TEST-WOMAN-BF-7017049A.npy, die die Zustandswahrscheinlichkeiten für die Datei ./TIDIGITS-ASE/TEST/wav/TEST-WOMAN-BF-7017049A.wav enthält. Bitte kopieren Sie diese in Ihren data-Ordner.
- 2. Wenden Sie Ihre Funktion posteriors\_to\_transcription() auf diese Zustandswahrscheinlichkeiten an.
- 3. Nutzen Sie Ihr trainiertes DNN, um die Posterior-Matrix aus der Datei ./TIDIGITS-ASE/TEST/wav/TEST-WOMAN-BF-7017049A.wav mithilfe der Funktion wav\_to\_posteriors() zu berechnen. Anschließend wenden Sie die Funktion posteriors\_to\_transcription() auch auf Ihre selbst erstellten Zustandswahrscheinlichkeiten an.

Das korrekte Ergebnis ist für beide Fälle:

['SEVEN', 'OH', 'ONE', 'SEVEN', 'OH', 'FOUR', 'NINE']





#### Bestimmung der Wortfehlerrate

Berechnen Sie in

```
def test_model(datadir, hmm, model, parameters):
...
```

in uebung 10.py nun die Wortfehlerrate, zunächst für einige Dateien aus dem Testdatensatz (siehe dataset/test.json), und schließlich, wenn Ihre Funktionen getestet sind, für den gesamten Testdatensatz. Dazu benötigen Sie folgende Schritte:

1. Die WAV-Dateien liegen im Ordner ./TIDIGITS-ASE/TEST/wav Wenden Sie die Funktionen wav\_to\_posteriors() und posteriors\_to\_transcription() an, um die Transkriptionen (word\_seq) für alle WAV-Dateien zu berechnen.





### Bestimmung der Wortfehlerrate

- 2. Die Referenztranskriptionen liegen im Ordner ./TIDIGITS-ASE/TEST/lab. Laden Sie zu jeder Datei die entsprechende Referenztranskription (ref\_seq) mithilfe von open() und lesen Sie den Inhalt mit read() und split() ein.
- 3. Berechnen Sie die Anzahl der Deletions D, Insertions I, Substitutions S und die Gesamtzahl der Worte N für die jeweilige Datei mithilfe der Funktion

```
N, D, I, S = tools.needlemann_wunsch(ref_seq, word_seq)
```





#### Bestimmung der Wortfehlerrate

4. Berechnen Sie schließlich die Wortfehlerrate für den gesamten Testdatensatz mit

$$WER = 100 \cdot \left(\frac{D_{ges} + I_{ges} + S_{ges}}{N_{ges}}\right)$$

indem Sie die Ausgabe von tools.needlemann\_wunsch() jeweils in  $D_{ges}$ ,  $I_{ges}$ ,  $S_{ges}$ , und  $N_{ges}$  akkumulieren.





# Melden Sie sich gerne bei Fragen