Problem

Consider the language B = L(G), where G is the grammar given in Exercise 2.13. The pumping lemma for context free languages, Theorem 2.34, states the existence of a pumping length p for B. What is the minimum value of p that works in the pumping lemma? Justify your answer.

THEOREM 2.34

Pumping lemma for context-free languages If A is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces s = uvxyz satisfying the conditions

- **1.** for each $i \ge 0$, $uv^i xy^i z \in A$,
- **2.** |vy| > 0, and
- 3. $|vxy| \le p$.

When s is being divided into uvxyz, condition 2 says that either v or y is not the empty string. Otherwise the theorem would be trivially true. Condition 3 states that the pieces v, x, and y together have length at most p. This technical condition sometimes is useful in proving that certain languages are not context free.

Step-by-step solution

Step 1 of 3

Given:

The minimum value of the pumping length P for the language B = L(G)

Comment

Step 2 of 3

Finding minimum length of p:

The language B = L(G) is defined by the

Grammar $G = (V, \Sigma, R, S)$ where $V = \{S, T, U\}$; $\Sigma = \{0, \#\}$ and the given set of rules R:

$$S \to TT \mid U$$

$$T \rightarrow 0T \mid T0 \mid \#$$

$$U \rightarrow 0U00 \mid \#$$

Theorem 2.34 states that the pumping lemma P, for a context-free language A, is the minimum length of any string s in A such that it may be split into five pieces s = uvxyz. The string s will also fulfill the following three conditions:

- 1. For all $i \ge 0$, the string $uv^i x y^i z$ is a part of the context-free language A.
- 2. The strings which are pumped, which are v and y, cannot both be the empty string ε , that is |vy| > 0.
- 3. The combined length of the strings lying inside u and z must not be greater that the pumping length p. In other words $|vxy| \le p$.

The string s = uvxyz can be taken as ##0, with the substrings being as follows:

$$u = v = z = \varepsilon$$

$$x = ##$$

$$y = 0$$

Thus the pumping length $p_{is} |vxy| = |##0| = 3$

Since, $|vy| = |\varepsilon 0| = |0| = 1 > 0$, condition 2 of the theorem holds.

Condition 3 of Theorem 2.34 is also valid as $|vxy| = |\varepsilon\#0| = |\#0| = 3 \le p = 3$

To meet condition 1 it has to be proven that $uv^ixy^iz \in B_{\text{ for }}i \ge 0$.

The derivation for	the case when $i = 0$ is:
$S \Rightarrow TT \Rightarrow \#T =$	> ##
So the string $s = i$	uv^0xy^0z lies in the language B .
When $i > 0$ the string $s = uv^i x y^i z$ will also lie in B as the derivation will be:	
$S \Rightarrow TT \Rightarrow \#T =$	$\Rightarrow \#T0 \stackrel{*}{\Rightarrow} \#T0^{+} \Rightarrow \#\#0^{+}$
Condition 1 has be	een proven true as $uv^i x y^i z \in B \forall i \geq 0$.
Comment	
	Step 3 of 3
Conclusion:	
Thus the string sa	tisfies all three conditions of Theorem 2.34 for a context-free language. Therefore, the minimum value is 3 for the pumping lemma I
Comment	

The string $uv^i x y^i z$, where $u = \varepsilon$, $v = \varepsilon$, x = ##, y = 0, $z = \varepsilon$, can be expressed as the regular expression $\#\#0^i$.