Resilient Capacity-Aware Routing

Stefan Schmid¹, Nicolas Schnepf² and <u>Jiri Srba²</u>

- ¹ University of Vienna, Austria
- ² Aalborg University, Denmark

TACAS 2021

- Increasing demands on available and dependable networks.
- Networks must quickly adapt their routing in case of link failures.
- Connectivity of a network under failures is only a necessary condition.
- Resilient networks must also respect capacity constraints on links.

- Increasing demands on available and dependable networks.
- Networks must quickly adapt their routing in case of link failures.
- Connectivity of a network under failures is only a necessary condition.
- Resilient networks must also respect capacity constraints on links.

- Two flows: s_1 to t_1 and s_2 to t_2 , both with demand 1.
- All links have capacity 1 and weight 1.
- Shortest paths routing—Equal-Cost-Multipath Protocol (ECMP).

- Increasing demands on available and dependable networks.
- Networks must quickly adapt their routing in case of link failures.
- Connectivity of a network under failures is only a necessary condition.
- Resilient networks must also respect capacity constraints on links.

- Two flows: s_1 to t_1 and s_2 to t_2 , both with demand 1.
- All links have capacity 1 and weight 1.
- Shortest paths routing—Equal-Cost-Multipath Protocol (ECMP).

- Increasing demands on available and dependable networks.
- Networks must quickly adapt their routing in case of link failures.
- Connectivity of a network under failures is only a necessary condition.
- Resilient networks must also respect capacity constraints on links.

- Two flows: s_1 to t_1 and s_2 to t_2 , both with demand 1.
- All links have capacity 1 and weight 1.
- Shortest paths routing—Equal-Cost-Multipath Protocol (ECMP).

Studies Problem and Results

Question

Can traffic (set of flows) in a network with up to k failed links be forwarded along shortest paths without violating the capacity constraints?

Studies Problem and Results

Question

Can traffic (set of flows) in a network with up to k failed links be forwarded along shortest paths without violating the capacity constraints?

Our Contribution

- We introduce the pessimistic (P) and optimistic (O) routing policy.
- Consider both splittable (S) and nonsplittable (N) flows.
- A complete complexity characterization of deciding the existence of a routing policy without (k=0) and with (k>0) link failures.
- Develop an efficient strategic search algorithm and demonstrate its performance on a large number of datacenter and ISP networks.

Network with Capacities and Demands

Network with Capacities and Demands (NCD) is N = (V, C, D) where

- ullet V is a finite set of nodes (switches and routers),
- $C: V \times V \mapsto \mathbb{N}^0$ is the *capacity function*, and
- $D: V \times V \mapsto \mathbb{N}^0$ is the end-to-end *flow demand*.

- The routing of flow demands is the shortest paths (ECMP).
- Network operator defines the shortest path by weight assignment to links $W: V \times V \mapsto \mathbb{N} \cup \{\infty\}$.

Flow Assignment

A *flow assignment* f for $F \subseteq V \times V$ of failed links is a family of functions

$$f_{s,t}^F: SPaths^F(s,t) \mapsto [0,1]$$

for all $s, t \in V$ such that

$$\sum_{\pi \in SPaths^F(s,t)} f_{s,t}^F(\pi) = 1 .$$

• f is nonsplittable if $f_{s,t}^F(\pi) \in \{0,1\}$, otherwise it is splittable.

Flow Assignment

A *flow assignment* f for $F \subseteq V \times V$ of failed links is a family of functions

$$f_{s,t}^F: SPaths^F(s,t) \mapsto [0,1]$$

for all $s, t \in V$ such that

$$\sum_{\pi \in SPaths^F(s,t)} f_{s,t}^F(\pi) = 1 .$$

• f is nonsplittable if $f_{s,t}^F(\pi) \in \{0,1\}$, otherwise it is splittable.

A flow assignment f is *feasible* if for every link (v, v'):

$$\sum_{\substack{s,t \in V \\ \pi \in SPaths^F(s,t) \\ (v,v') \in \pi}} f_{s,t}^F(\pi) \cdot D(s,t) \le C(v,v') .$$

Problems Definition

Pessimistic Splittable/Nonsplittable (PS/PN)

Given a nonnegative integer k, is it the case that for *every* set F of failed links where $|F| \leq k$, the network remains connected and *every* splittable/nonsplittable flow assignment on N is feasible?

Problems Definition

Pessimistic Splittable/Nonsplittable (PS/PN)

Given a nonnegative integer k, is it the case that for *every* set F of failed links where $|F| \leq k$, the network remains connected and *every* splittable/nonsplittable flow assignment on N is feasible?

Optimistic Splittable/Nonsplittable (OS/ON)

Given a nonnegative integer k, is there a feasible splittable/nonsplittable flow assignment for every set of failed links F where $|F| \le k$?

Problems Definition

Pessimistic Splittable/Nonsplittable (PS/PN)

Given a nonnegative integer k, is it the case that for *every* set F of failed links where $|F| \leq k$, the network remains connected and *every* splittable/nonsplittable flow assignment on N is feasible?

Optimistic Splittable/Nonsplittable (OS/ON)

Given a nonnegative integer k, is there a feasible splittable/nonsplittable flow assignment for every set of failed links F where $|F| \le k$?

Complexity Results

k = 0	k=0 Pessimistic Opti	
Splittable	NL-complete	P-complete
Nonsplitable	NL-complete	NP-complete

Complexity Results

k = 0	Pessimistic Optimistic	
Splittable	NL-complete	P-complete
Nonsplitable	NL-complete	NP-complete

k > 0	Pessimistic	Optimistic	
Splittable	co-NP-complete	co-NP-complete	
Nonsplitable	co-NP-complete	Π_2^P -complete	

Π_2^P -Containment for ON-Problem

We want to check whether **for all** failure scenarios, **exists** a feasible nonsplittable flow assignment?

Existence of flow assignment for a fixed failure scenario by ILP.

$$\begin{split} 0 & \leq x^{s,t}(v,v') \leq 1 \quad \text{ for } s,t,v,v' \in V \\ & \sum_{v \in V} x^{s,t}(s,v) \cdot spg^{s,t}(s,v) = 1 \quad \text{ for } s,t \in V \\ & \sum_{v \in V} x^{s,t}(v,t) \cdot spg^{s,t}(v,t) = 1 \quad \text{ for } s,t \in V \\ & \sum_{v' \in V} x^{s,t}(v',v) \cdot spg^{s,t}(v',v) = \\ & \sum_{v' \in V} x^{s,t}(v,v') \cdot spg^{s,t}(v,v') \quad \text{ for } s,t,v \in V, v \notin \{s,t\} \end{split}$$

$$\sum_{v' \in V} x^{s,t}(v,v') \cdot D(s,t) \leq C(v,v') \quad \text{ for } v,v' \in V \end{split}$$

 $s,t \in V$

$$\exists x_1, x_2, x_3. (x_1 \lor x_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3)$$

$$\exists x_1, x_2, x_3. (x_1 \lor x_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3)$$

$$\forall y_1, y_2. \ \exists x_1, x_2, x_3. (x_1 \lor x_3 \lor y_1 \lor \overline{y}_1 \lor \overline{y}_2) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3 \lor y_2)$$

$$\exists x_1, x_2, x_3. (x_1 \lor x_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3)$$

k = 2

$$\forall y_1, y_2. \ \exists x_1, x_2, x_3. (x_1 \lor x_3 \lor y_1 \lor \overline{y}_1 \lor \overline{y}_2) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3 \lor y_2)$$

$$\exists x_1, x_2, x_3. (x_1 \lor x_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3)$$

$$\forall y_1, y_2. \ \exists x_1, x_2, x_3. (x_1 \lor x_3 \lor y_1 \lor \overline{y}_1 \lor \overline{y}_2) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3 \lor y_2)$$

$$\exists x_1, x_2, x_3. (x_1 \lor x_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3)$$

$$\forall y_1, y_2. \ \exists x_1, x_2, x_3. (x_1 \lor x_3 \lor y_1 \lor \overline{y}_1 \lor \overline{y}_2) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3 \lor y_2)$$

Solving the Capacity Problems by Brute-Force

```
1: Input: NCD N = (V, C, D) with weight assignment W, a number
  k > 0 and type of the capacity problem \tau \in \{PS, PN, ON, OS\}
2: Output: true if the answer to the \tau-problem is positive, else false
3:
4: for all F \subseteq V \times V s.t. |F| \leq k do
      construct network {\cal N}^F by removing from {\cal N} the failed links F
5:
      switch \tau do
6:
          case OS: use LP to solve N^F for k=0
7:
          case ON: use ILP to solve N^F for k=0
8:
          case PS/PN: use NL-algorithm to solve N^F for k=0
9:
      if the answer to the \tau-problem on N^F is negative then return false
10:
11: endfor
12: return true
```

Strategic Search Algorithm

Main idea of strategic search algorithm: reduce the number of explored failure scenarios by skipping the "uninteresting" ones.

Precedence relation on failure scenarios

We write $F \prec F'$ if for all $s, t \in V$:

- \bullet $F \subseteq F'$ and
- $SPaths^F(s,t) \cap SPaths^{F'}(s,t) \neq \emptyset$.

Strategic Search Algorithm

Main idea of strategic search algorithm: reduce the number of explored failure scenarios by skipping the "uninteresting" ones.

Precedence relation on failure scenarios

We write $F \prec F'$ if for all $s, t \in V$:

- $F \subseteq F'$ and
- $SPaths^F(s,t) \cap SPaths^{F'}(s,t) \neq \emptyset$.

$$\{e_1\} \prec \{e_1, e_3\}$$
 however $\{e_1\} \not\prec \{e_1, e_2\}$ and $\{e_1, e_2\} \not\prec \{e_1, e_2, e_3\}$

Observations Useful for Strategic Search

Lemma (pessimistic cases)

Let $F \prec F'$. A positive answer to the PS/PN problem for the network N^F implies a positive answer to the PS/PN problem for the network $N^{F'}$.

It is enough to explore only the minimum failure scenarios w.r.t. \prec .

Observations Useful for Strategic Search

Lemma (pessimistic cases)

Let $F \prec F'$. A positive answer to the PS/PN problem for the network N^F implies a positive answer to the PS/PN problem for the network $N^{F'}$.

It is enough to explore only the minimum failure scenarios w.r.t. \prec .

Lemma (optimistic cases)

Let $F \prec F'$. A positive answer to the OS/ON problem for the network $N^{F'}$ implies a positive answer to the OS/ON problem for the network N^F .

It is enough to explore only the maximum failure scenarios w.r.t. \prec .

Observations Useful for Strategic Search

Lemma (pessimistic cases)

Let $F \prec F'$. A positive answer to the PS/PN problem for the network N^F implies a positive answer to the PS/PN problem for the network $N^{F'}$.

It is enough to explore only the minimum failure scenarios w.r.t. \prec .

Lemma (optimistic cases)

Let $F \prec F'$. A positive answer to the OS/ON problem for the network $N^{F'}$ implies a positive answer to the OS/ON problem for the network N^F .

It is enough to explore only the maximum failure scenarios w.r.t. \prec .

Identification of minimum/maximum failure scenarios

To find minimum/maximum failure scenarios w.r.t. \prec , we find minimum s-t cuts that disconnet the source s and target t.

Experimential Evaluation

- Python implementation with reproducibility package.
- Experiments on a benchmark of real-world wide-area topologies (Topology Zoo) and three different datacenter network topologies (fat-tree, BCube and Xpander).
- Benchmarking: brute-force search vs. strategic search.
- Two hours timeout and 16 GB memory limit on AMD EPYC 7551 processors at 2.55 GHz.

Median Results

Topology	Problem	Brute-force (s)	Strategic (s)	Speedup
BCube	ON	79.5	1.7	47.1
BCube	OS	348.2	125.1	2.8
BCube	PS/PN	170.0	0.1	4684.0
Fat-tree	ON	59.4	1.2	47.6
Fat-tree	OS	2.0	0.2	8.5
Fat-tree	PS/PN	562.6	0.1	66976.3
Xpander	ON	407.3	3.0	137.7
Xpander	OS	124.1	1.6	78.0
Xpander	PS/PN	>7200.0	5.4	>1340.6
Topology Zoo	ON	59.6	4.6	12.9
Topology Zoo	OS	35.3	2.6	13.4
Topology Zoo	PS/PN	4.3	0.1	82.7

Pessimistic Scenario: ISP (left) Datacenter (right)

- Several orders of magnitude speed up.
- Datacenters have high path diversity and multiple shortest paths, and more opportunities for skipping of "uninteresting failures".

Optimistic Scenario: ISP (left) Datacenter (right)

- A few orders of magnitude speed up.
- Optimistic strategic search explores all the maximum failure scenarios, there are many of them in the highly connected datacenter topologies.

Conclusion

- Problem of finding feasible routings for multiple flows in network.
- Capacity-aware and accounting for multiple link failures.
- Introduced pessimistic and optimistic scenaria.
- Complexity overview for both splittlable and nonsplittable flows.
- Efficient strategic search algorithm and experiments.

Conclusion

- Problem of finding feasible routings for multiple flows in network.
- Capacity-aware and accounting for multiple link failures.
- Introduced pessimistic and optimistic scenaria.
- Complexity overview for both splittlable and nonsplittable flows.
- Efficient strategic search algorithm and experiments.

Future work

- Improve the performance of the optimistic strategic search.
- Study net reductions to reduce the number of minimum cuts.
- Parallel implementation.