§9.2 Direction Fields and Euler's Method

In-class Activity 9.2

Dr. Jorge Basilio

gbasilio@pasadena.edu

Activity 1:

- (a) Sketch the slope field of the DE: $y' = x^2$ with $x \in \{-2, -1, 0, 1, 2\}$ and $y \in \{-2, -1, 0, 1, 2\}$
- (b) Use part (a), to sketch the graph of the particular solution passing through the origin.

Activity 2:

The slope field for the DE $y' = \tan\left(\frac{1}{2}\pi y\right)$ is given below:

- (a) Sketch the graph of particular solution that satisfies the initial conditions y(1)=3
- (b) Identify all **equilibrium solutions** (i.e. constant solutions)

Activity 3:

Consider the Initial Value Problem (IVP): y' = y; y(0) = 1

- (a) Use Euler's Method with step size 0.25 to find the equations of the tangent lines $L_0(x)$ and $L_1(x)$. Then use these compute the approximate y-values: $y_1 = L_0(x_1)$ and $y_2 = L_1(x_2)$
- (b) Keep going until you can approximate y(1) where y(x) represents the exact solution. That is, find $y_4 = L_3(x_4)$.
- (c) What is the significance of y_4 ?

Activity 4:

Consider the IVP: y' = y - x with $y(0) = \frac{1}{2}$.

- (a) Use Euler's Method with step size h=0.2 to approximate y(1) where y(x) is the exact solution.
- (b) Use the link above to approximate y(1) with step size h=0.1.
- (c) Compare the **errors** from parts (a) and (b) to the exact solution $y(x)=1+x-\frac{1}{x}e^x$