Realistic fire rendering

Garoe Dorta Perez

University of Bath Centre For Digital Entertainment

September, 2015

Overview

Introduction

Previous Work

Methodology

Implementation

Results

Conclusions

Outline

Introduction

Previous Work

Implementation

Result

Conclusion

Results

ts

Conclusions

Reference 000

H Introduction

- Create, edit and visualize fire in virtual scenes
 - Common phenomena: candles, stoves, camp fires, ...
 - Widely used in VFX, safety and engineering simulations, ...
 - Dangerous and expensive, difficult reproducibility

Fire scene the film industry, image courtesy of ${\sf ILM}^1$.

Diagram of light observed at p, image courtesy of Pharr and Humphreys (2004)

- Render fire realistically
 - Emission cannot be ignored
 - Heat transport
 - Multiphase flow
 - Chemical reactions
 - Fuel type

Real fire with paper as fuel, image courtesy of $FireImage^2$.

Outline

Previous Work

Previous work

- Ray-tracing-based
 - Physically based
 - Accurate
 - Slow

- Raster-based
 - Alpha blending
 - Many artefacts
 - Fast

Previous work: Results 1

Left, methane fire pool Pegoraro and Parker (2006); right, a dragon emits a flame Hong et al. (2007).

Previous work: Results 2

 $Left, a dragon \ emits \ a \ flame \ Jamriška \ et \ al. \ (2015); \ right, \ sparse \ flame \ reconstruction \ Okabe \ et \ al. \ (2015).$

Outline

Methodology

$$\boxed{(\nabla)L_{\mathbf{x}}} = -\sigma_{a}L_{\mathbf{x}} + \sigma_{a}L_{e} - \sigma_{s}L_{\mathbf{x}} + \sigma_{s}\int L_{i}\Phi d\omega_{i}$$

Differential of radiance over a segment for a wave number λ

$$(\nabla)L_{\mathbf{x}} = \boxed{-\sigma_{a}L_{\mathbf{x}}} + \sigma_{a}L_{e} - \sigma_{s}L_{\mathbf{x}} + \sigma_{s}\int L_{i}\Phi d\omega_{i}$$

Absorption, where σ_a is an absorption coefficient

$$(\nabla)L_{\mathbf{x}} = -\sigma_{\mathbf{a}}L_{\mathbf{x}} + \boxed{\sigma_{\mathbf{a}}L_{\mathbf{e}}} - \sigma_{\mathbf{s}}L_{\mathbf{x}} + \sigma_{\mathbf{s}}\int L_{i}\Phi d\omega_{i}$$

Emission

$$(\nabla)L_{\mathbf{x}} = -\sigma_{a}L_{\mathbf{x}} + \sigma_{a}L_{e}\left[-\sigma_{s}L_{\mathbf{x}}\right] + \sigma_{s}\int L_{i}\Phi d\omega_{i}$$

Out-scattering

$$(\nabla)L_{\mathbf{x}} = -\sigma_{a}L_{\mathbf{x}} + \sigma_{a}L_{e} - \sigma_{s}L_{\mathbf{x}} + \sigma_{s}\int L_{i}\Phi d\omega_{i}$$

In-scattering, where σ_s is a scattering coefficient, Φ a scattering function and ω_i is a incoming direction

Analytical solution

$$\begin{aligned} L_{\mathbf{x}} &= e^{-\sigma_t \|\Delta \mathbf{x}\|} L_{\mathbf{x} + \Delta \mathbf{x}} + \left(1 - e^{-\sigma_t \|\Delta \mathbf{x}\|}\right) \frac{\sigma_a L_e + \sigma_s \int L_i \Phi d\omega_i}{\sigma_t} \\ \sigma_t &= \sigma_a + \sigma_s \end{aligned}$$

Segment increment Δx

The model: Important quantities

- Fuel type $\Rightarrow \sigma_a(\mathbf{x}, \lambda), \ \sigma_s(\mathbf{x}, \lambda)$
 - Burning soot emission (Propane, Methane, ...)
 - Exotic chemicals (Copper, Lithium, ...)
- Black Body radiation $\Rightarrow L_e$
- Visual Adaptation $\Rightarrow L_{\mathsf{x}}$
- Refraction $\Rightarrow \Delta x$
- Scattering function $\Rightarrow \Phi$

Outline

Introductio

Previous Work

Methodology

Implementation

Result

Conclusion

Resi 000 lts (

Conclusions

Reference 000

Prior simplifications

$$L_{\mathsf{x}} = e^{-\sigma_t \|\Delta \mathsf{x}\|} L_{\mathsf{x} + \Delta \mathsf{x}} + \left(1 - e^{-\sigma_t \|\Delta \mathsf{x}\|}\right) rac{\sigma_{\mathsf{a}} L_{e} + \sigma_{\mathsf{s}} \int L_{i} \Phi d\omega_{i}}{\sigma_{t}}$$

Results

$$\begin{aligned} L_{\mathbf{x}} &= e^{-\sigma_t \|\Delta \mathbf{x}\|} L_{\mathbf{x} + \Delta \mathbf{x}} + \left(1 - e^{-\sigma_t \|\Delta \mathbf{x}\|}\right) \frac{\sigma_a L_e + \sigma_s \int L_i \Phi d\omega_i}{\sigma_t} \\ \sigma_s &= 0. \end{aligned}$$

Prior simplifications

$$\sigma_t = \sigma_a + \sigma_s$$

$$L_{\mathbf{x}} = e^{-\sigma_t \|\Delta \mathbf{x}\|} L_{\mathbf{x} + \Delta \mathbf{x}} + \left(1 - e^{-\sigma_t \|\Delta \mathbf{x}\|}\right) \frac{\mathbf{x}_{\mathbf{x}} L_e + \sigma_s}{\mathbf{x}_{\mathbf{x}}}$$

$$L_{\mathbf{x}} = e^{-\sigma_{\mathsf{a}} \|\Delta \mathbf{x}\|} L_{\mathbf{x} + \Delta \mathbf{x}} + \left(1 - e^{-\sigma_{\mathsf{a}} \|\Delta \mathbf{x}\|}\right) L_{\mathsf{e}}$$

Constant refraction indices

Implementation overview

- MentalRay shader in Maya
 - Ray marching divides the RTE into
 - ▶ Light Ray $\rightarrow L_e$
 - Shadow Ray $\rightarrow e^{-\sigma_a \|\Delta x\|} L_{x+\Delta x}$
 - Eye Ray $\rightarrow L_x = e^{-\sigma_a ||\Delta x||} L_{x+\Delta x} + L_e$
 - Light shader
 - Volume/Shadow shader
 - Utility scripts

Rays diagram for a sample intersection point.

Other details

- Large memory footprint
 - Sparse voxel dataset library OpenVDB
- Validation with more data
 - Uintah simulation framework
- Different fuel types
 - NIST atomic emission spectra database

Outline

Introduction

Previous Work

Methodology

Implementation

Results

Conclusion

The test scene.

Results II

Propane flame, left raw data.

Results III

Flame with copper fuel.

References 000

Results IV

Visual adaptation to the flame; left, no adaptation, right, fully adapted.

Results

Conclusions

ns References 000

Results V

A complex scene with several flames.

Introduc 00000 Previous Work

Methodolog

Implementation

Results

Conclusions 0000 References 000

Outline

Introduction

Previous Work

Methodology

Implementation

Result

Conclusions

Conclusions and Future Work

- Limitations
 - Difficult parametrization
 - Relies on tabulated data
 - Computationally intensive
 - Spherical particles
- Future work
 - Importance sampling, Mizutani and Iwasaki (2014); Wang et al. (2014)
 - Automatic parameter estimation

Parameter Estimation

- Image differencing
 - Search in the physical parameters
 - Gradient descent
 - Previous work Dobashi et al. (2012)
- Spectrum reconstruction
 - Under constrained
 - Prior knowledge: Camera spectral sensitivity
 - Previous work Smits (1999); Sun et al. (2001); Drew and Finlayson (2003)

Thank you

Questions?

- Dobashi, Y., Iwasaki, W., Ono, A., Yamamoto, T., Yue, Y., and Nishita, T. (2012). An inverse problem approach for automatically adjusting the parameters for rendering clouds using photographs. *ACM Trans. Graph.*, 31(6):145:1–145:10.
- Drew, M. S. and Finlayson, G. D. (2003). Multispectral processing without spectra. *J. Opt. Soc. Am. A*, 20(7):1181–1193.
- Hong, J.-M., Shinar, T., and Fedkiw, R. (2007). Wrinkled flames and cellular patterns. *ACM Trans. Graph.*, 26(3).
- Jamriška, O., Fišer, J., Asente, P., Lu, J., Shechtman, E., and Sýkora, D. (2015). Lazyfluids: Appearance transfer for fluid animations. *ACM Transactions on Graphics*, 34(4).

- Mizutani, K. and Iwasaki, K. (2014). Importance Sampling for Cloth Rendering under Environment Light. In *Mathematical Progress in Expressive Image Synthesis I*, pages 81–88.
- Okabe, M., Dobashi, Y., Anjyo, K., and Onai, R. (2015). Fluid volume modeling from sparse multi-view images by appearance transfer. *ACM Transactions on Graphics (Proc. SIGGRAPH 2015)*, 34(4):93:1–93:10.
- Pegoraro, V. and Parker, S. G. (2006). Physically-based realistic fire rendering. *Natural Phenomena*, pages 51–59.
- Pharr, M. and Humphreys, G. (2004). *Physically based rendering:* From theory to implementation. Morgan Kaufmann.
- Smits, B. (1999). An rgb-to-spectrum conversion for reflectances. *Journal of Graphics Tools*, 4(4):11–22.

Sun, Y., Fracchia, F. D., Drew, M. S., and Calvert, T. W. (2001). A spectrally based framework for realistic image synthesis. *The Visual Computer*, 17(7):429–444.

Wang, C., Xie, F., and Krishnamachari, P. (2014). Importance Sampling for a Microcylinder Based Cloth Bsdf. In *ACM SIGGRAPH 2014 Talks*, pages 41:1—-41:1.

¹http://www.ilm.com/

²https://en.wikipedia.org/wiki/File:Fire.JPG