CORRECTION TO "ALGEBRAIC STRUCTURE OF SCHUR RINGS"

Wai-Chee Shiu (邵慰慈)

Abstract. More general statements of some results stated in [1] concerning the Schur subrings are shown.

The transitivity of the relation \mathcal{R} in [1. p. 58] is proved as a corollary of Theorem 1, this fills out a gap in [1, p. 59]. Furthermore, we show that Proposition 2.3 through Corollary 2.6 in [1] still hold whether subgroups H are normal or not.

Theorem 1. Suppose $G = (G; \{D_0, \dots, D_d\})$ is an S-ring over G. Let $H \leq G$ and the natural mapping $\nu : G \to G/H$ (here G/H is the set of left cosets of H in G). Then $(i,j) \in \mathcal{R}$ if and only if $\nu(D_i) \subseteq \nu(D_i)$.

Proof.

$$(i,j) \in \mathcal{R}$$

$$\Leftrightarrow D_i^{(-1)}D_j\cap H\neq\emptyset\Leftrightarrow D_iH\cap D_j\neq\emptyset$$

$$\Leftrightarrow \exists d_j \in D_j$$
 such that $d_j = d_i h$ for some $d_i \in D_i, h \in H$

 $[\]Leftrightarrow \overline{D_j}$ appears in the expression of $\overline{D}_i \overline{H}$ as a linear combination of \overline{D}_k 's

 $[\]Leftrightarrow \forall d_j \in D_j \ \exists d_i \in D_i \ \text{such that} \ d_j \in d_i H.$

Received May 21, 1993.

¹⁹⁹¹ Mathematics Subject Classification: 20C05, 05B99.

Key words and phrases: Schur ring (S-ring).

Corollary 2. $(i,j) \in \mathcal{R}$ if and only if $\nu(D_i) = \nu(D_j)$. Hence \mathcal{R} is an equivalence relation.

Corollary 3. Let [i] be an equivalence class of \mathcal{R} containing i. For $g \in G$, set $S(g) = \{j | gH \cap D_j \neq \emptyset \}$. Then [i] = S(g) for any $g \in D_i$.

Proof. For any fixed $g \in D_i$, suppose $j \in S(g)$ $\exists h \in H$ such that $gh \in D_j$. So we have $h \in g^{-1}D_j$ and $D_i^{(-1)}D_j \cap H \neq \emptyset$. Hence $(i,j) \in \mathcal{R}$ and $S(g) \subseteq [i]$. On the other hand, suppose $(i,j) \in \mathcal{R}$, then $j \in S(g)$ by Corollary 2. Hence [i] = S(g).

Corollary 4. If $H \leq G$, then $\nu(D_i)$ and $\nu(D_j)$ are either disjoint or identical.

Proof. Suppose $\nu(D_i) \cap \nu(D_j) \neq \emptyset$, then $D_i^{(-1)}D_j \cap H \neq \emptyset$. Thus $(i,j) \in \mathcal{R}$. The corollary follows easily.

References

1. W. C. Shiu, Algebraic structure of Schur ring, Chinese J. Math. 21 (1993), 55-71.

Department of Mathematics, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong.