Dynamic design analysis

For ECU 1:

> Draw a state machine diagram for each ECU component

- > Draw a state machine diagram for the ECU operation
- > Assume 20ms now

> Draw the sequence diagram for the ECU

- > Calculate CPU load for the ECU
- Hyperperiod = 20 ms
- The CPU Load
- CPU load = Total Execution Time During Hyperperiod / Hyperperiod For One Hyperperiod
 - Speed _Sensor = 4*30.47 us
 - Limit_Switch = 1*57.6 us
 - Door Sensor = 2*35.47 us
- > CPU Load = ((0.03047 * 4) + (0.03547 * 2) + (0.0576 * 1)) /20 = .25042 = 25.042%

For ECU 2:

> Draw a state machine diagram for each ECU component

> Draw the sequence diagram for the ECU

> Calculate CPU load for the ECU

- Hyperperiod = 20 ms
- The CPU Load
- CPU load = Total Execution Time During Hyperperiod / Hyperperiod For One Hyperperiod
 - main = 1000 * 10 us
- > CPU Load = (1000*.010) /20 = .50 =50%