Kibur College

Computer Vision and Image Processing

By:
Girmay G.
girmay_2008@yahoo.com

Chapter 1: Introduction to Computer Vision and Image Processing

What is a Digital Image?

• A digital image is a representation of a twodimensional image as a finite set of digital values, called picture elements or pixels

Cont..

- •Pixel values typically represent gray levels, colours, heights, opacities etc
- Remember digitization implies that a digital image is an approximation of a real scene

Cont..

Common image formats include:

- 1 sample per point (B&W or Grayscale)
- 3 samples per point (Red, Green, and Blue)
- 4 samples per point (Red, Green, Blue, and
- "Alpha", a.k.a. Opacity)

For most of this course we will focus on greyscale images

What is Digital Image Processing?

- •Digital image processing focuses on two major tasks
 - Improvement of pictorial information for human interpretation
 - Processing of image data for storage, transmission and representation for autonomous machine perception
- •Some argument about where image processing ends and fields such as image analysis and computer vision start

Overview: Digital Imaging

Definition of computer imaging:

- Acquisition and processing of visual information by computer.
- Why is it important?
 - —Human primary sense is visual sense.
 - —Information can be conveyed well through images (one picture worth a thousand words).
 - —Computer is required because the amount of data to be processed is huge.

Overview: Digital Imaging

- Computer imaging can be divided into two main categories:
 - —Computer Vision: applications of the output are for use by a computer.
 - —Image Processing: applications of the output are for use by human.
- These two categories are not totally separate and distinct.

Overview: Computer Imaging

• They overlap each other in certain areas.

COMPUTER IMAGING

Computer Vision

Does not involve human in the visual loop.

• One of the major topic within this field is image analysis next Chapter.

Image analysis involves the examination of image data to facilitate in solving a vision problem.

Computer Vision...

Image analysis process involves two other topics:

- Feature extraction: acquiring higher level image info (shape and color)
- Pattern classification: using higher level image information to identify objects within image.

Computer Vision...

Most computer vision applications involve tasks that:

- —Are tedious for people to perform.
- —Require work in a hostile environment.
- —Require a high processing rate.
 - Require access and use of a large database of information.

Computer Vision...

- Examples of applications of computer vision:
 - —Quality control (inspect circuit board).
 - —Hand-written character recognition.
 - —Biometrics verification (fingerprint, retina, DNA, signature, etc).
 - —Satellite image processing.
 - —Skin tumor diagnosis.
 - —And many, many others.

Image Processing

- Processed images are to be used by human.
 - —Therefore, it requires some understanding on how the human visual system operates.

Image Processing Fields

Input /	Image	Description
Output		
Image	Image	Computer
	Processing	Vision
Description	Computer	AI
	Graphics	

Sometimes, Image Processing is defined as "a discipline in which both the input and output of a process are images

But, according to this classification, trivial tasks of computing the average intensity of an image would not be considered an image processing operation

Image Processing...

- Image restoration:
 - The process of taking an image with some know, or estimated degradation, and restoring it to its original appearance.
 - —Done by performing the reverse of the degradation process to the image.
 - —Examples: correcting distortion in the optical system of a telescope.

Image Processing

An Example of Image Restoration

Image Processing...

Image enhancement:

- —Improve an image visually by taking an advantage of human visual system's response.
- —Example: improve contrast, image sharpening, and image smoothing.

Image Processing

An Example of Image Enhancement

Image Processing

- Image compression:
 - —Remove the amount of data required to represent an image by:
 - Removing unnecessary data that are visually unnecessary.
 - Taking advantage of the redundancy that is inherent in most images.
 - —Example: JPEG, MPEG, etc.

- Computer imaging systems comprises of both hardware and software.
- The hardware components can be divided into three subsystems:
 - —The computer
 - Image acquisition: camera, scanner, video recorder.

Image display: monitor, printer, film, video player.

- The software is used for the following tasks:
 - —Manipulate the image and perform any desired processing on the image data.
 - Control the image acquisition and storage process.
- s The computer system may be a generalpurpose computer with a frame grabber or image digitizer board in it.

Frame grabber is a special purpose piece of hardware that digitizes standard analog video signal.

Digitization of analog video signal is important because computers can only process digital data.

- Digitization is done by sampling the analog signal or instantaneously measuring the voltage of the signal at fixed interval in time.
- The value of the voltage at each instant is converted into a number and stored.
- The number represents the brightness of the image at that point.

- The "grabbed" image is now a digital image and can be accessed as a two dimensional array of data.
 - —Each data point is called a *pixel* (picture element).
- The following notation is used to express a digital image:
 - -I(r, c) = the brightness of the image at point (r, c) where r = row and c = column.

Human Visual Perception

Human perception encompasses both the physiological and psychological aspects.

We will focus more on physiological aspects, which are more easily quantifiable and hence, analyzed.

Human Visual Perception

- Why study visual perception?
 - —Image processing algorithms are designed based
 - on how our visual system works.
 - In image compression, we *need* to know what information is not perceptually important and can be ignored.
 - —In image enhancement, we need to know what types of operations that are likely to improve an image visually.

- The Human Visual System
 The human visual system consists of two primary components—the eye and the brain, which are connected by the optic nerve.
 - —Eye —receiving sensor (camera, scanner).
 - —Brain —information processing unit (computer
 - system).
 - —Optic nerve —connection cable (physical wire).

- This is how human visual system works:
 - —Light energy is focused by the lens of the eye into sensors and retina.
 - The sensors respond to the light by an electrochemical reaction that sends an electrical signal to the brain (through the optic nerve).
 - —The brain uses the signals to create neurological patterns that we perceive as images.

- The visible light is an electromagnetic wave with wavelength range of about 380 to 825 nanometers.
 - However, response above 700 nanometers is minimal.
- We cannot "see" many parts of the electromagnetic spectrum.

• The visible spectrum can be divided into three bands: —Blue (400 to 500 nm). \rightarrow ?r=rn (500 to 600 nm). —Red (600 to 700 nm). e The sensors are distributed across retina.

- There are two types of sensors: rods and cones.
- Rods:
 - —For night vision.
 - —See only brightness (gray level) and not color.
 - —Distributed across retina.
 - —Medium and low level resolution.

• Cones:

- —For daylight vision.
- —Sensitive to color.
- —Concentrated in the central region of eye.
- —High resolution capability (differentiate small changes).

Rlind spot:

- —No sensors.
- —Place for optic nerve.
- —We do not perceive it as a blind spot because the brain fills in the missing visual information.
- s Why does an object should be in center field of vision in order to perceive it in fine detail?
 - —This is where the cones are concentrated.

- Cones have higher resolution than rods because they have individual nerves tied to each sensor.
- Rods have multiple sensors tied to each nerve.
- Rods react even in low light but see only a single spectral band. They cannot distinguish color.

- There are three types of cones. Each responding to dinerent wavelengths of light energy.
- The colors that we perceive are the combined result of the response of the three cones.

b. Cones raact only to high lighl intensities; the three types enable us fa see cobrs.