Estimación puntual de Parámetros

Juan Sosa, PhD

I - 2018

Estimadores

Objetivo

- $oldsymbol{\circ}$ Estamos interesados en un parámetro θ que toma valores en el espacio de parámetros Θ .
- ② Dado un modelo estadístico $\{F_{\theta}: \theta \in \Theta\}$, ¿cuál es una **aproximación razonable** para el parámetro θ basada en una muestra aleatoria X_1, \ldots, X_n de la población?

Estimador (estadístico)

Un estimador del parámetro θ es una función de la muestra aleatoria $\hat{\theta} = \hat{\theta}(X_1, \dots, X_n)$ que toma valores en el espacio de parámetros Θ .

Estimador vs. Estimación

Los estimadores son variables aleatorias (sobre las cuales es posible calcular probabilidades), mientras que las estimaciones son realizaciones particulares de los estimadores.

Estimadores de Máxima Verosimilitud (Fisher)

Función de verosimilitud

Sea X_1,\ldots,X_n una muestra aleatoria de una población X con función de densidad (o masa) $f_X(x;\theta)$. La **función de verosimilitud** de X_1,\ldots,X_n es

$$L(\theta) = \prod_{i=1}^{n} f_X(x_i; \theta)$$

La función de verosimilitud no es más que la función de densidad (o masa) conjunta de una muestra aleatoria, pero entendida como una función del parámetro dadas las observaciones.

Estimador de Máxima Verosimilitud (MLE)

El **estimador de máxima verosimilitud** de θ , denotado con $\hat{\theta}_{\text{MLE}}$, maximiza la función de verosimilitud, es decir,

$$\hat{\theta}_{\mathsf{MLE}} = \operatorname*{arg\,max}_{\theta \in \Theta} L(\theta)$$

Log-verosimilitud

La log-verosimilitud es el logaritmo (natural) de la función de verosimilitud:

$$\ell(\theta) = \log L(\theta)$$

Propiedades de estimadores

Estadístco Suficiente (definición informal)

Si $\log L(\theta)$ depende de x_1,\ldots,x_n unicamente a través de $t=T(x_1,\ldots,x_n)$, se dice que el estadístico $T=T(X_1,\ldots,X_n)$ es un **estadístico suficiente** para θ .

Si queremos decir algo sobre un el parámetro θ y la estadística T es suficiente para θ , entonces reportar la realización de T da tanta información acerca de θ como la realización de la muestra completa.

Estimador Insesgado

 $\hat{ heta}$ es un **estimador insesgado** de heta si $\mathbb{E}[\hat{ heta}] = heta.$

Observación

Existen más cracterísticas de los estimadores:

- Consistencia.
- Eficiencia
- Completez.

Estimadores de Máxima Verosimilitud (cont.)

Información Observada de Fisher

La información observada de Fisher se define como

$$\hat{I} = -rac{\partial^2}{\partial heta^2} \, \ell(heta) \Big|_{ heta = \hat{ heta}_{ exttt{MLE}}}$$

Teorema (distribución asintótica del MLE)

Sea X_1,\ldots,X_n una muestra aleatoria de una población X cuya distribución depende de un parámetro desconocido θ . Si el tamaño de la muestra es "grande", entonces bajo algunas condiciones de regularidad se tiene que

$$\hat{ heta}_{\mathsf{MLE}} \stackrel{\mathsf{A}}{\sim} \mathsf{N}\left(heta, \hat{I}^{-1}\right)$$

Intervalo de confianza

Un intervalo de confianza para $\hat{ heta}_{\sf MLE}$ usando una confiabilidad del 100(1-lpha)% es

$$\hat{\theta}_{\mathsf{MLE}} \pm z_{1-\alpha/2} \sqrt{\hat{I}^{-1}}$$

donde $\hat{ heta}_{ exttt{MLE}}$ es el MLE de heta, \hat{I} es la información observada de Fisher, y $z_{1-lpha/2}$ es el percentíl $100(1-\alpha/2)$ de la distribución Normal estándar.

5 / 5