Rise of Virtualization

Virtualization is not new

- Mainframe virtualization in the 1960s
- Codified in 1970s by Popek and Goldberg's three properties
- Fidelity virtual environment should be identical to physical
- Isolation or Safety VMM must have control of system resources
- Performance little or no difference in performance
- An efficient VMM has all three properties

Rise of Windows

- Companies began using technology to achieve competitive advantages and save money (1970s)
- Proprietary solutions were expensive and inflexible
- Windows provided commodity platforms that drove down costs and defeated platform lock-in (1980s)
- Windows limitations often forced a 'one server, one application' policy.

Moore's Law

- Processing power doubles roughly every eighteen months.
- Originally, was coined around processing power.
- Today applies to many technologies

Rapid Data Center Growth

- Windows server growth drove datacenter growth
- Datacenter growth drove resource utilization
- Power, cooling, cables, square footage, staff, security
- Moore's Law made servers more powerful, but less efficient due to application deployment practices

Trends that accelerated virtualization

- Consolidation
- Running multiple workloads on a single host
- Containment
- Faster server provisioning
- Dynamic Load Balancing
- Faster development and test environment.
- OS Independence (Reduce vendor lock-in)

OS and Application Virtualization

OS Virtualization

- Virtual Workspaces An abstraction of an execution environment
- Virtualization decouples the application and operating system from HW
 - Allows consolidation
 - Enhances utilization
 - Replicated, moved, suspended quickly

OS Virtualization

- Allows same physical host to serve different workload and isolate each workload.
- Host OS runs on the host, with VMs (workloads) running on top
- These workload can run different OS
- Process isolation is provided by Kernel Host
- Each process have their own file system, processes memory, devices, etc.

Dedicated Server

Virtualized Server

Virtualization

- Hypervisor (VMM) abstracts all hardware resources
- Guest OS runs in user mode
- VMM runs in kernel mode
- VMM responsible for controlling physical platform resources and I/O mapping
- Advantage: Run multiple OSs on the same physical platform
- VMM allocate resources based upon the request.

Application Virtualization

Virtualized Servers

Containers (Docker)

Container

- Container abstracts OS Kernel
 - Hypervisor on abstracts the entire device.
- Container makes it easier to package and move program into different cloud environment
- Container uses shared operating system
 - VM provides more isolation with guaranteed resources

