Financial Mathematics

MATH 5870/6870¹ Fall 2021

Le Chen

lzc0090@auburn.edu

Last updated on August 9, 2021

Auburn University Auburn AL

¹Based on Robert L. McDonald's *Derivatives Markets*. 3rd Ed. Pearson, 2013.

Chapter 9. Parity and other option relationships

Chapter 9. Parity and other option relationships

§ 9.1 Put-call parity

§ 9.2 Generalized parity and exchange options

§ 9.3 Comparing options with respect to style, maturity, and strike

§ 9.1 Put-call parity

§ 9.2 Generalized parity and exchange options

§ 9.3 Comparing options with respect to style, maturity, and strike

Chapter 9. Parity and other option relationships

§ 9.1 Put-call parity

§ 9.2 Generalized parity and exchange options

§ 9.3 Comparing options with respect to style, maturity, and strike

European options

$$C(K,T) - P(K,T) = PV_{0,T}(F_{0,T} - K)$$
$$= e^{-rT}(F_{0,T} - K)$$

Buying a call and selling a put with the strike both equal to the forward price (i.e., $K = F_{0,T}$) creates a synthetic forward contract and hence must have a zero price.

Parity generally fails for American options!

European options

$$C(K,T) - P(K,T) = PV_{0,T}(F_{0,T} - K)$$
$$= e^{-rT}(F_{0,T} - K)$$

Buying a call and selling a put with the strike both equal to the forward price (i.e., $K = F_{0,7}$) creates a synthetic forward contract and hence must have a zero price.

Parity generally fails for American options!

European options

$$C(K,T) - P(K,T) = PV_{0,T}(F_{0,T} - K)$$
$$= e^{-rT}(F_{0,T} - K)$$

Buying a call and selling a put with the strike both equal to the forward price (i.e., $K = F_{0,7}$) creates a synthetic forward contract and hence must have a zero price.

Parity generally fails for American options!

Parity for stocks

$$C(K,T) = P(K,T) + (S_0 - PV_{0,T}(Div)) - e^{-rT}K$$

Example 9.1-1 Suppose that the price of a non-dividend-paying stock is \$40, the continuously compounded interest rate is 8%, and options have 3 months to expiration. If a 40-strike European call sells for \$2.78, find the price for a 40-strike European put sells.

Solution. Let the price for put be *y*. Then

$$\$2.78 = y + \$40 - \$40e^{-0.08 \times 0.25}$$

Hence.

$$y = \$1.99.$$

Example 9.1-1 Suppose that the price of a non-dividend-paying stock is \$40, the continuously compounded interest rate is 8%, and options have 3 months to expiration. If a 40-strike European call sells for \$2.78, find the price for a 40-strike European put sells.

Solution. Let the price for put be y. Then

$$$2.78 = y + $40 - $40e^{-0.08 \times 0.25}$$

Hence,

$$y = $1.99.$$

Why is a call more expensive than a put?

When $S_0 = K$ and Div = 0, then

$$C(K,T) - P(K,T) = K\left(1 - e^{-rT}\right)$$

The difference of a call and put is the time value of money.

Why is a call more expensive than a put?

When $S_0 = K$ and Div = 0, then

$$C(K,T) - P(K,T) = K\left(1 - e^{-rT}\right)$$

The difference of a call and put is the time value of money.

Why is a call more expensive than a put?

When $S_0 = K$ and Div = 0, then

$$C(K,T) - P(K,T) = K\left(1 - e^{-rT}\right)$$

The difference of a call and put is the time value of money.

Example 9.1-2 Make the same assumptions as in Example 9.1-1, except suppose that the stock pays a \$5 dividend just before expiration. If the price of the European call is \$0.74, what would be the price of the European put?

Solution. Let the price for put be *y*. Then

$$\$0.74 = y + (\$40 - \$5e^{-0.08 \times 0.25}) - \$40e^{-0.08 \times 0.25}$$

Hence,

$$y = $4.85$$

Example 9.1-2 Make the same assumptions as in Example 9.1-1, except suppose that the stock pays a \$5 dividend just before expiration. If the price of the European call is \$0.74, what would be the price of the European put?

Solution. Let the price for put be y. Then

$$\$0.74 = \mathbf{y} + (\$40 - \$5\mathbf{e}^{-0.08 \times 0.25}) - \$40\mathbf{e}^{-0.08 \times 0.25}$$

Hence,

$$y = $4.85.$$

g

Synthetic securities

$$C(K,T) = P(K,T) + (S_0 - PV_{0,T}(Div)) - e^{-rT}K$$

► Synthetic stock

$$S_0 = C(K, T) - P(K, T) + PV_{0,T}(Div) + e^{-rT}K$$

$$C(K,T) = P(K,T) + (S_0 - PV_{0,T}(Div)) - e^{-rT}K$$

$$\underbrace{S_0 - C(K, T) + P(K, T)}_{\text{a conversion}} = \text{PV}_{0, T}(\text{Div}) + e^{-rT}K$$

Motivation

A hedged position that has no risk but requires investment T-bills are taxed differently than stocks.

$$C(K,T) = P(K,T) + (S_0 - PV_{0,T}(Div)) - e^{-rT}K$$

$$\underbrace{S_0 - C(K, T) + P(K, T)}_{\text{a conversion}} = \text{PV}_{0, T}(\text{Div}) + e^{-rT}K$$

Motivation:

A hedged position that has no risk but requires investment T-bills are taxed differently than stocks.

$$C(K,T) = P(K,T) + (S_0 - PV_{0,T}(Div)) - e^{-rT}K$$

$$\underbrace{S_0 - C(K, T) + P(K, T)}_{\text{a conversion}} = \text{PV}_{0, T}(\text{Div}) + e^{-rT}K$$

Motivation:

A hedged position that has no risk but requires investment.

T-bills are taxed differently than stocks

$$C(K,T) = P(K,T) + (S_0 - PV_{0,T}(Div)) - e^{-rT}K$$

$$\underbrace{S_0 - C(K, T) + P(K, T)}_{\text{a conversion}} = \text{PV}_{0, T}(\text{Div}) + e^{-rT}K$$

Motivation:

A hedged position that has no risk but requires investment. T-bills are taxed differently than stocks.

Synthetic securities

$$C(K,T) = P(K,T) + (S_0 - PV_{0,T}(Div)) - e^{-rT}K$$

Synthetic options

$$C(K, T) = P(K, T) + (S_0 - PV_{0,T}(Div)) - e^{-rT}K$$

$${\color{red} P(K,T)} = {\color{red} C(K,T)} - ({\color{red} S_0} - {\rm PV}_{0,T}({
m Div})) + {\color{red} e^{-rT}} K$$

§ 9.1 Put-call parity

 \S 9.2 Generalized parity and exchange options

§ 9.3 Comparing options with respect to style, maturity, and strike

Chapter 9. Parity and other option relationships

§ 9.1 Put-call parity

§ 9.2 Generalized parity and exchange options

§ 9.3 Comparing options with respect to style, maturity, and strike

Generalize the parity to apply to the case where the strike asset is not necessarily cash but could be any other asset.

We will skip this section and leave it for motivated students.

§ 9.1 Put-call parity

§ 9.2 Generalized parity and exchange options

 \S 9.3 Comparing options with respect to style, maturity, and strike

Chapter 9. Parity and other option relationships

§ 9.1 Put-call parity

§ 9.2 Generalized parity and exchange options

§ 9.3 Comparing options with respect to style, maturity, and strike

European versus American options

$$\textit{C}_{\mathrm{Amer}}(\textit{S},\textit{K},\textit{T}) \geq \textit{C}_{\mathrm{Eur}}(\textit{S},\textit{K},\textit{T})$$

$$P_{\mathrm{Amer}}(\mathcal{S},K,T) \geq P_{\mathrm{Eur}}(\mathcal{S},K,T)$$

Maximum and minimum option prices

$$S \geq \textit{C}_{\mathrm{Amer}}(\textit{S},\textit{K},\textit{T}) \geq \textit{C}_{\mathrm{Eur}}(\textit{S},\textit{K},\textit{T}) \geq \max\left(0,\mathrm{PV}_{0,\textit{T}}(\textit{F}_{0,\textit{T}}) - \mathrm{PV}_{0,\textit{T}}(\textit{K})\right)$$

$$\textit{K} \geq \textit{P}_{\mathrm{Amer}}(\textit{S},\textit{K},\textit{T}) \geq \textit{P}_{\mathrm{Eur}}(\textit{S},\textit{K},\textit{T}) \geq \max\left(0, \mathrm{PV}(\textit{K}) - \mathrm{PV}_{0,\textit{T}}(\textit{F}_{0,\textit{T}})\right)$$

Early exercise for American options

$$C_{\mathrm{Amer}} \geq C_{\mathrm{Eur}} > S_t - K$$

$$K - PV_{t,T}(K) > PV_{t,T}(Div)$$

See p. 277 for the proof of the first set of inequalities.

Unfinished...

§ 9.1 Put-call parity

§ 9.2 Generalized parity and exchange options

§ 9.3 Comparing options with respect to style, maturity, and strike

Chapter 9. Parity and other option relationships

§ 9.1 Put-call parity

§ 9.2 Generalized parity and exchange options

§ 9.3 Comparing options with respect to style, maturity, and strike

Problems: 9.1, 9.2, 9.3, 9.4, 9.8, 9.9, 9.15.

Due Date: TBA