(c)
$$ABCD' + A(BCD)' + (A+B+C+D)' = ABCD' + A(B'+C'+D') + A'B'C'D'$$

$$= ABCD' + AB' + AC' + AD' + A'B'C'D'$$

$$= AD' (BC+1) + AB' + AC' + A'B'C'D'$$

$$= AB' + AC' + AD' + A'B'C'D'$$

$$= AB' + AC' + D' (A+A'B'C')$$

$$= AB' + AC' + D' (A+B'C') \quad (:: Redundars) | au)$$

(A)									
	A٠	A.	B.	Bo	,	۲,	Υ,	Υ,	Υ.
	0	0	0	0		0	0	O	0
	o	b	o	T i		0	0	0	o
	ð	0	1	0		D	0	0	0
	0	0	1	1-		0	0	o	0
	0	1	Ō	0		Ď	o	O	0
	0	1	0	1		0	0	0	Ţ.
	0	ı	ι	0	1	,	0	t	•
	0	Ţ	i	1	1	0	0	4.1	1
	1	o	0	0		D	0	0	٥.
	t	0	0	1		0	0	1	0
	l -	0	l	0		0	1	0	0
	ι	0	t	110		0	-01	T.	0
	l	1	0	0		9	0	0	0
	ı	1	0	1		0	0	TIP	ţ
	ι	l	Ţ	0		0	T. T.	- (
						i	0	0	Ī

(B)		ı				
	A.A. B.B.		0 0	01	10	11
	0	0	0	0	0	6
	0		0	0	0	0
	١	1	0	0	0	t
	l	0	0	0	0	0
		Y3=	A, A. B	.B.		

A.A.	00	0 1	1.1	10
0 0	0	0	D	0
0 (0	0	0	0
1 (0	0	0	ı
0	0	0	1	1
,	,	,B,B.		-

= A, B, (A, +B,)

A	,A.				
B, B	0	00	0	11	10
0	D	0	D	0	6
0	1	6	0	1	1
1	(0	1	0	1
J	0	0	(1	O

B.B.	00	0	11	(0
00	0	o	0	0
0 1	0	1	(0
()	0	1	1	0
(0	0	0	0	0
	1			

 $Y_1 = A_1 \overline{B}_1 B_0 + A_1 \overline{A}_0 B_0 + \overline{A}_1 A_0 B_1 + A_0 B_1 \overline{B}_0$ = $A_1 B_0 (\overline{A}_0 + \overline{B}_1) + A_0 B_1 (\overline{A}_1 + \overline{B}_0)$ Y. = A.B.

- (D) (C)에서 크게 그은 선들이 critical path 다. 거체가는 게이트가 NOT, AND, OR MI 개이므로

 Tpd = tpd_NoT + tpd_AND + tpd_or 다.

 다른 Puth 들은 1개 한 2개의 게이트만을 지나므로 크게 그은 선물이 critical path 다.
- (E) 전화 지면 시간의 외생값이 최소가 되도록 레시스터는 삽입하면 클릭 위가 최와 됩니다.
 AND Gate 이전 백에 너지스터는 삽입합니다.

n -		01	
Quine-	Mc	Clus	skey

						_			1		
	(.	lum	n I	1	(lu	MN	I		Column	II
1	0	0	0 1	-	_	0	0	1	*	10	*
2	0	0	1 0) v	0	_	1	0	V	>+0	
4	0	1	0	0	_	0	1	0	٠٧	- 11 -	*
8.	1	0	0 0	, Y	0	- 1	-	O	*	>HE	
6	0	1	1	7 Y	1	0	0	-	*		
9	- 1	0	0	1 4	1	0	_	0	*		
lo	- 1	0	ı	0 "	0	1	١	-	V		
η	0	1	1	1 0	-	1	1	0	V		
13	- 1	1	0	1	1	_	0	1	*		
14	. 1	ı	- 1	0 v	1	-	1	0	٧		
15	I	1	1	1 "	-	1	١	1	Ų		
					1	1	_	١	*		
					11	١	ı	-	. V	A Secretary	

true	min term	00	10	1001	1101	11110
	-001			V		
	0 1-0	1	L FR			
	100-			Y		-
DI.	10_0		1		Ne.	
115	(-0)-			1		
ACD P	11-1		1		Ψ	W
./	E-10-		V			
CB E	-11-					Y

Y = ACD + CD

(B)

(B) State transition table

	Current State							Next state					
56	55	54	53	52	5,	5.	56	55'	54	53'	52 5	1 50	
l	0	0	0	0	0	0	0		0	0	0 0	0	
0	1	0	0	0	0	0	0	0	(0	0	0	
0		ı	0	0	ø	6	٥	0	0	- 1	0	0 0	
0	0	0	- 1	o	0	0	0	0	0	0	t	0 6	
•	o	0	o	1	0	0	0	0	0	0	0	10	
O	0	0	0	0	1	0	0	0	0	0	0	0 1	
Ð	0	0	0	0	٥	- 1	1	0	c	, ,	0	0 6	
							1						

State encoding table

output table

5 tate	Encoding							
50	1000000							
51	0100000.							
52	0010000							
53	0 0 0 1 0 0 0 .							
54	0 0 0 0 1 00							
55	0 0 0 0 0 10							
56	0 0 0 0 1							

LN	mont	st	ate				output.						
56	55	54	53	52	5,	5.	Y	Y5	Y4	Yo	Y.	۲,	T.
1	0	0	0	0	0	6	(o	0	0	0	0	0
0	1	0	0	0	o	0	0	ĺ	v	0	0	0	0
0		1		0	0	0	٥	0	Ì	D	0	0	0
Đ	D		1		0	o	0	0	0	l	0	0	0
0	0	0	0	1	c	0	0	0	D	0	ţ	0	0
	0	0	o			0	0	0	•	0	o	• (0
0			6			1	0	0	0	o		9	0 1

 $Y_n = S_n (n=0.1,2.3.4.5.6),$

36=50, 55=56, 54=55 53=54, 52=53, 51=52, 50=51 6. 劉舒 민국에서부터 f1, f2, f3 라고하자.

(A)
$$T_{L} = \frac{1}{110} \Delta S$$

tskow 4550ps

(C)
$$T_c = t_{peq} + 3t_{pd-cvB} + t_{setup}$$

 $T_c = (0.71 + 3 \times 0.49 + 0.51) \text{ ns}$
 $T_c = 2.69 \text{ ns}$
 $t_c = \frac{1}{T_c} \le \frac{1}{2.69} \text{ GHz} = 0.39 \text{ GHz}$

1. maximum: 0.376Hz

$$P_{v} = \frac{1}{3}e^{-\frac{1}{6.1}} = \frac{1}{3}e^{-16} = 0.4 \times 10^{-7}$$

L> 1 failure every 125 seconds ~ every 2 minutes.

ii) three flipflop synchronizer

$$P_{v} = \frac{1}{3}e^{-\frac{32}{0.1}} = \frac{1}{3}e^{-\frac{32}{3}} = 4.2 \times 10^{-15}$$

MTBF N 1.2 X 109 4 conds N more than 38 years.