

Art of Problem Solving

2009 USA Team Selection Test

USA Team Selection Test 2009

_		_
I)	\mathbf{av}	1

Let m and n be positive integers. Mr. Fat has a set S containing every rectangular tile with integer side lengths and area of a power of 2. Mr. Fat also has a rectangle R with dimensions $2^m \times 2^n$ and a 1×1 square removed from one of the corners. Mr. Fat wants to choose m + n rectangles from S, with respective areas $2^0, 2^1, \ldots, 2^{m+n-1}$, and then tile R with the chosen rectangles. Prove that this can be done in at most (m+n)! ways.

Palmer Mebane.

Let ABC be an acute triangle. Point D lies on side BC. Let O_B, O_C be the circumcenters of triangles ABD and ACD, respectively. Suppose that the points B, C, O_B, O_C lies on a circle centered at X. Let H be the orthocenter of triangle ABC. Prove that $\angle DAX = \angle DAH$.

Zuming Feng.

For each positive integer n, let c(n) be the largest real number such that

$$c(n) \le \left| \frac{f(a) - f(b)}{a - b} \right|$$

for all triples (f, a, b) such that

-f is a polynomial of degree n taking integers to integers, and -a, b are integers with $f(a) \neq f(b)$.

Find c(n).

Shaunak Kishore.

Day 2

3

Let ABP, BCQ, CAR be three non-overlapping triangles erected outside of acute triangle ABC. Let M be the midpoint of segment AP. Given that $\angle PAB = \angle CQB = 45^{\circ}, \ \angle ABP = \angle QBC = 75^{\circ}, \ \angle RAC = 105^{\circ}, \ \text{and} \ RQ^2 = 6CM^2, \ \text{compute} \ AC^2/AR^2.$

Zuming Feng.

Art of Problem Solving 2009 USA Team Selection Test

5	Find all pairs of positive integers (m, n) such that $mn - 1$ divides $(n^2 - n + 1)^2$.
	Aaron Pixton.
6	Let $N > M > 1$ be fixed integers. There are N people playing in a chess tournament; each pair of players plays each other once, with no draws. It turns out that for each sequence of $M+1$ distinct players $P_0, P_1, \ldots P_M$ such that P_{i-1} beat P_i for each $i=1,\ldots,M$, player P_0 also beat P_M . Prove that the players can be numbered $1,2,\ldots,N$ in such a way that, whenever $a \geq b+M-1$, player a beat player b .
	Gabriel Carroll.
Day 3	
7	Find all triples (x, y, z) of real numbers that satisfy the system of equations
	$\begin{cases} x^3 = 3x - 12y + 50, \\ y^3 = 12y + 3z - 2, \\ z^3 = 27z + 27x. \end{cases}$
	Razvan Gelca.
8	Fix a prime number $p > 5$. Let a, b, c be integers no two of which have their difference divisible by p . Let i, j, k be nonnegative integers such that $i + j + k$ is divisible by $p - 1$. Suppose that for all integers x , the quantity
	$(x-a)(x-b)(x-c)[(x-a)^{i}(x-b)^{j}(x-c)^{k}-1]$
	is divisible by p . Prove that each of i, j, k must be divisible by $p - 1$.
	Kiran Kedlaya and Peter Shor.
9	Prove that for positive real numbers x, y, z ,
	$x^{3}(y^{2}+z^{2})^{2}+y^{3}(z^{2}+x^{2})^{2}+z^{3}(x^{2}+y^{2})^{2} \ge xyz\left[xy(x+y)^{2}+yz(y+z)^{2}+zx(z+x^{2})^{2}+z^{2}(x+y$

www.artofproblemsolving.com/community/c4639

Zarathustra~(Zeb)~Brady.

Contributors: MellowMelon, rrusczyk

Art of Problem Solving 2009 USA Team Selection Test

These problems are copyright © Mathematical Association of America (http: //maa.org).

www.artofproblemsolving.com/community/c4639 Contributors: MellowMelon, rrusczyk