T0-Theory: Neutrinos

The Photon Analogy and Geometric Oscillations

Document 5 of the T0 Series

Johann Pascher

Department of Communication Technology
Higher Technical College (HTL), Leonding, Austria
johann.pascher@gmail.com

September 23, 2025

Abstract

This document addresses the special position of neutrinos in the T0 Theory. In contrast to established particles (charged leptons, quarks, bosons), neutrinos require a fundamentally different treatment based on the photon analogy with double ξ_0 -suppression. The neutrino mass is derived from the formula $m_{\nu} = \frac{\xi_0^2}{2} \times m_e = 4.54$ meV, and oscillations are explained by geometric phases based on $T_x \cdot m_x = 1$, where the quantum numbers (n, ℓ, j) determine the phase differences. A plausible target value for the neutrino mass $(m_{\nu} = 15 \text{ meV})$ is derived from empirical data (cosmological limits). The T0 Theory is based on speculative geometric harmonies without empirical basis and is highly likely to be incomplete or incorrect. Scientific integrity requires a clear separation between mathematical correctness and physical validity.

Contents

1	Preamble: Scientific Honesty
2	Neutrinos as "Almost Massless Photons": The T0 Photon Analogy
2.1	Photon-Neutrino Correspondence
2.2	The Double ξ_0 -Suppression
	Physical Justification of the Photon Analogy
3	Neutrino Oscillations
3.1	The Standard Model Problem
3.2	
3.3	Quantum Number Assignment for Neutrinos
	Experimental Assessment
4.1	Cosmological Limits
	Direct Mass Determination

4.3	Target Value Estimation	7
	Cosmological Implications	7
5.1	Structure Formation and Big Bang Nucleosynthesis	7
6	Summary and Critical Evaluation	8
6.1	The Central T0 Neutrino Hypotheses	8
6.2		
6.3		
7	Experimental Tests and Falsification	9
7.1		
7.2		
8	Limits and Open Questions	10
8.1	Fundamental Theoretical Problems	10
8.2		
9	Methodological Reflection	11
9.1		11
	Significance for the T0 Series	

1 Preamble: Scientific Honesty

Scientific Warning

CRITICAL LIMITATION: The following formulas for neutrino masses are **speculative extrapolations** based on the untested hypothesis that neutrinos follow geometric harmonies and all flavor states have equal masses. This hypothesis has **no empirical basis** and is highly likely to be incomplete or incorrect. The mathematical formulas are nevertheless internally consistent and correctly formulated.

Scientific integrity means:

- Honesty about the speculative nature of the predictions
- Mathematical correctness despite physical uncertainty
- Clear separation between hypotheses and verified facts

2 Neutrinos as "Almost Massless Photons": The T0 Photon Analogy

Speculative Hypothesis

Fundamental T0 Insight: Neutrinos can be understood as "damped photons". The remarkable similarity between photons and neutrinos suggests a deeper geometric kinship:

- **Speed:** Both propagate nearly at the speed of light
- Penetration: Both have extreme penetrability
- Mass: Photon exactly massless, neutrino quasi-massless
- Interaction: Photon electromagnetic, neutrino weak

2.1 Photon-Neutrino Correspondence

Photon Analogy

Physical Parallels:

Photon:
$$E^2 = (pc)^2 + 0$$
 (perfectly massless) (1)

Neutrino:
$$E^2 = (pc)^2 + \left(\sqrt{\frac{\xi_0^2}{2}}mc^2\right)^2$$
 (quasi-massless) (2)

Speed Comparison:

$$v_{\gamma} = c \quad \text{(exact)}$$
 (3)

$$v_{\nu} = c \times \left(1 - \frac{\xi_0^2}{2}\right) \approx 0.9999999911 \times c$$
 (4)

The speed difference is only 8.89×10^{-9} – practically immeasurable!

2.2 The Double ξ_0 -Suppression

Key Result

Neutrino Mass through Double Geometric Damping:

If neutrinos are "almost photons", then two suppression factors arise:

- 1. First ξ_0 Factor: "Almost massless" (like photon, but not perfect)
- 2. Second ξ_0 Factor: "Weak interaction" (geometric decoupling)

Resulting Formula:

$$m_{\nu} = \frac{\xi_0^2}{2} \times m_e = \frac{(\frac{4}{3} \times 10^{-4})^2}{2} \times 0.511 \text{ MeV}$$
 (5)

Numerical Evaluation:

$$m_{\nu} = 8.889 \times 10^{-9} \times 0.511 \text{ MeV} = 4.54 \text{ meV}$$
 (6)

2.3 Physical Justification of the Photon Analogy

Photon Analogy

Why the Photon Analogy is Physically Sensible:

1. Speed Comparison:

$$v_{\gamma} = c \quad \text{(exact)}$$
 (7)

$$v_{\nu} = c \times \left(1 - \frac{\xi_0^2}{2}\right) \approx 0.9999999911 \times c$$
 (8)

The speed difference is only 8.89×10^{-9} - practically immeasurable!

2. Interaction Strengths:

$$\sigma_{\gamma} \sim \alpha_{EM} \approx \frac{1}{137}$$
 (9)

$$\sigma_{\nu} \sim \frac{\xi_0^2}{2} \times G_F \approx 8.89 \times 10^{-9}$$
 (10)

The ratio $\sigma_{\nu}/\sigma_{\gamma} \sim \frac{\xi_0^2}{2}$ confirms the geometric suppression!

3. Penetrability:

• Photons: Electromagnetic shielding possible

• Neutrinos: Practically unshieldable

• Both: Extreme ranges in matter

3 Neutrino Oscillations

3.1 The Standard Model Problem

Scientific Warning

Neutrino Oscillations: Neutrinos can change their identity (flavor) during flight - a phenomenon known as neutrino oscillation. A neutrino produced as an electron neutrino (ν_e) can later be measured as a muon neutrino (ν_μ) or tau neutrino (ν_τ) and vice versa.

The oscillations depend on the mass squared differences $\Delta m_{ij}^2 = m_i^2 - m_j^2$ and the mixing angles. Current experimental data (2025) provide:

$$\Delta m_{21}^2 \approx 7.53 \times 10^{-5} \text{ eV}^2 \quad [\text{Solar}]$$
 (11)

$$\Delta m_{21} \approx 7.53 \times 10^{-4} \text{ eV}$$
 [Solar] (11)
 $\Delta m_{32}^2 \approx 2.44 \times 10^{-3} \text{ eV}^2$ [Atmospheric] (12)

$$m_{\nu} > 0.06 \text{ eV} \quad [\text{At least one neutrino, } 3\sigma]$$
 (13)

Problem for T0: The T0 Theory postulates equal masses for the flavor states $(\nu_e, \nu_\mu, \nu_\tau)$, which implies $\Delta m_{ij}^2 = 0$ and is incompatible with standard oscillations.

3.2 Geometric Phases as Oscillation Mechanism

Speculative Hypothesis

T0 Hypothesis: Geometric Phases for Oscillations

To reconcile the hypothesis of equal masses $(m_{\nu_e} = m_{\nu_\mu} = m_{\nu_\tau} = m_{\nu})$ with neutrino oscillations, it is speculated that oscillations in the T0 Theory are caused by geometric phases rather than mass differences. This is based on the T0 relation:

$$T_x \cdot m_x = 1$$
,

where $m_x = m_{\nu} = 4.54$ meV is the neutrino mass and T_x is a characteristic time or frequency:

$$T_x = \frac{1}{m_\nu} = \frac{1}{4.54 \times 10^{-3} \text{ eV}} \approx 2.2026 \times 10^2 \text{ eV}^{-1} \approx 1.449 \times 10^{-13} \text{ s.}$$

The geometric phase is determined by the T0 quantum numbers (n, ℓ, j) :

$$\phi_{\mathrm{geo},i} \propto f(n,\ell,j) \cdot \frac{L}{E} \cdot \frac{1}{T_x},$$

where $f(n,\ell,j) = \frac{n^6}{\ell^3}$ (or 1 for $\ell = 0$) are the geometric factors:

$$f_{\nu_e} = 1, \tag{14}$$

$$f_{\nu_{\mu}} = 64,$$
 (15)

$$f_{\nu_{\tau}} = 91.125.$$
 (16)

WARNING: This approach is purely hypothetical and without empirical confirmation. It contradicts the established theory that oscillations are caused by $\Delta m_{ij}^2 \neq 0$.

3.3 Quantum Number Assignment for Neutrinos

Neutrino Flavor	n	ℓ	j	$f(n,\ell,j)$
$\overline{ u_e}$	1	0	1/2	1
$ u_{\mu}$	2	1	1/2	64
$ u_{ au}$	3	2	1/2	91.125

Table 1: Speculative T0 Quantum Numbers for Neutrino Flavors

4 Experimental Assessment

4.1 Cosmological Limits

Experimental Assessment

Cosmological Neutrino Mass Limits (as of 2025):

1. Planck Satellite + CMB Data:

$$\Sigma m_{\nu} < 0.07 \text{ eV} \quad (95\% \text{ Confidence})$$
 (17)

2. T0 Prediction:

$$\Sigma m_{\nu} = 3 \times 4.54 \text{ meV} = 13.6 \text{ meV}$$
 (18)

3. Comparison:

$$\frac{13.6 \text{ meV}}{70 \text{ meV}} = 0.194 \approx 19.4\% \tag{19}$$

The T0 prediction is well below all cosmological limits!

4.2 Direct Mass Determination

Experimental Assessment

Experimental Neutrino Mass Determination:

1. KATRIN Experiment (2022):

$$m(\nu_e) < 0.8 \text{ eV} \quad (90\% \text{ Confidence})$$
 (20)

2. T0 Prediction:

$$m(\nu_e) = 4.54 \text{ meV} \tag{21}$$

3. Comparison:

$$\frac{4.54 \text{ meV}}{800 \text{ meV}} = 0.0057 \approx 0.57\% \tag{22}$$

The T0 prediction is orders of magnitude below the direct mass limits.

4.3 Target Value Estimation

Key Result

Plausible Target Value for Neutrino Masses:

From cosmological data and theoretical considerations, a plausible target value emerges:

$$m_{\nu}^{\text{Target}} \approx 15 \text{ meV}$$
 (23)

Comparison with T0 Prediction:

$$\frac{4.54 \text{ meV}}{15 \text{ meV}} = 0.303 \approx 30.3\% \tag{24}$$

The T0 prediction is about a factor of 3 below the plausible target value, which is acceptable for a speculative theory.

5 Cosmological Implications

5.1 Structure Formation and Big Bang Nucleosynthesis

Key Result

Cosmological Consequences of T0 Neutrino Masses:

- 1. Big Bang Nucleosynthesis:
 - Relativistic neutrinos at $T \sim 1$ MeV: Standard BBN unchanged
 - Contribution to radiation density: $N_{\text{eff}} = 3.046$ (Standard)

2. Structure Formation:

- Neutrinos with 4.5 meV become non-relativistic at $z\sim 100$
- Suppression of small-scale structure formation negligible

3. Cosmic Neutrino Background ($C\nu B$):

- Number density: $n_{\nu} = 336 \text{ cm}^{-3} \text{ (unchanged)}$
- Energy density: $\rho_{\nu} \propto \Sigma m_{\nu} = 13.6 \text{ meV}$
- Fraction of critical density: $\Omega_{\nu}h^2 \approx 1.5 \times 10^{-4}$

4. Comparison with Dark Matter:

- Neutrino contribution: $\Omega_{\nu} \approx 2 \times 10^{-4}$
- Dark matter: $\Omega_{DM} \approx 0.26$
- Ratio: $\Omega_{\nu}/\Omega_{DM} \approx 8 \times 10^{-4}$ (negligible)

6 Summary and Critical Evaluation

6.1 The Central T0 Neutrino Hypotheses

Key Result

Main Statements of the T0 Neutrino Theory:

- 1. **Photon Analogy:** Neutrinos as "damped photons" with double ξ_0 suppression
- 2. Uniform Mass: All flavor states have $m_{\nu} = 4.54 \text{ meV}$
- 3. **Geometric Oscillations:** Phases instead of mass differences as cause of oscillations
- 4. Speed Prediction: $v_{\nu} = c(1 \xi_0^2/2)$
- 5. Cosmological Consistency: $\Sigma m_{\nu} = 13.6$ meV below all limits

6.2 Scientific Assessment

Scientific Warning

Honest Scientific Evaluation:

Strengths of the T0 Neutrino Theory:

- Unified framework with other T0 predictions
- Elegant photon analogy with clear physical intuition
- Parameter freedom: No empirical adjustment
- Cosmological consistency with all known limits
- Specific, testable predictions

Fundamental Weaknesses:

- Contradiction to Oscillation Data: $\Delta m_{ij}^2 = 0$ vs. experimental evidence
- Ad hoc Oscillation Mechanism: Geometric phases not derived
- Missing QFT Foundation: No complete field theory
- Experimentally Indistinguishable: Same phenomenology as Standard Model
- Highly Speculative Basis: Photon analogy is an unproven assumption

Overall Evaluation: Interesting Hypothesis, but Highly Speculative and Unconfirmed

6.3 Comparison with Established T0 Predictions

Area	T0 Prediction	Experiment	Deviation	Status
Fine Structure Constant Gravitational Constant Charged Leptons Quark Masses	$\alpha^{-1} = 137.036$ $G = 6.674 \times 10^{-11}$ 99.0% Accuracy 98.8% Accuracy	137.036 6.674×10^{-11} Precisely Known Precisely Known	< 0.001% < 0.001% $\sim 1\%$ $\sim 2\%$	✓ Established ✓ Established ✓ Established ✓ Established
Neutrino Masses Neutrino Oscillations	$m_{\nu} = 4.54 \text{ meV}$ Geometric Phases	$< 100 \text{ meV}$ $\Delta m^2 \neq 0$	Unknown Incompatible?	!Speculative !Problematic

Table 2: T0 Neutrinos in Comparison to Established T0 Successes

7 Experimental Tests and Falsification

7.1 Testable Predictions

Experimental Assessment

Specific Experimental Tests of the T0 Neutrino Theory:

1. Direct Mass Determination:

- KATRIN: Sensitivity to ~ 0.2 eV (insufficient)
- Future Experiments: ~ 0.01 eV required
- T0 Prediction: 4.54 meV (factor 2 below limit)

2. Cosmological Precision Measurements:

- Euclid Satellite: Sensitivity $\sim 0.02 \text{ eV}$
- T0 Prediction: $\Sigma m_{\nu} = 13.6 \text{ meV (testable!)}$

3. Speed Measurements:

- Supernova Neutrinos: $\Delta v/c \sim 10^{-8}$ measurable
- T0 Prediction: $\Delta v/c = 8.89 \times 10^{-9}$ (marginal)

4. Oscillation Physics:

- Test for $\Delta m_{ij}^2 = 0$ (clearly falsifiable)
- Search for geometric phase effects

7.2 Falsification Criteria

The T0 Neutrino Theory would be falsified by:

1. Direct measurement of $m_{\nu} > 0.1 \text{ eV}$

- 2. Cosmological evidence for $\Sigma m_{\nu} > 0.1$ eV
- 3. Clear proof of $\Delta m_{ij}^2 \neq 0$ without geometric phases
- 4. Measurement of speed differences $\Delta v/c > 10^{-8}$
- 5. Proof that all three neutrino flavors have different masses

8 Limits and Open Questions

8.1 Fundamental Theoretical Problems

Scientific Warning

Unsolved Problems of the T0 Neutrino Theory:

- 1. Oscillation Mechanism: Geometric phases are ad hoc postulated
- 2. Quantum Field Theory: No complete QFT formulation
- 3. Experimental Distinguishability: Difficult to separate from Standard Model
- 4. Theoretical Consistency: Contradiction to established oscillation theory
- 5. Predictive Power: Only one measurable quantity (m_{ν})

8.2 Future Developments

- 1. **QFT Foundation:** Complete quantum field theory for geometric phases
- 2. Experimental Precision: Cosmological measurements with ~ 0.01 eV sensitivity
- 3. Oscillation Theory: Rigorous derivation of geometric phase effects
- 4. Unified Description: Integration into complete T0 framework

9 Methodological Reflection

9.1 Scientific Integrity vs. Theoretical Speculation

Key Result

Central Methodological Insights:

The neutrino chapter of the T0 Theory illustrates the tension between:

- Theoretical Completeness: Desire for unified description
- Empirical Anchoring: Necessity of experimental confirmation
- Scientific Honesty: Disclosure of speculative nature
- Mathematical Consistency: Internal self-consistency of formulas

Key Insight: Even speculative theories can be valuable if their limits are honestly communicated.

9.2 Significance for the T0 Series

The neutrino treatment shows both the strengths and limits of the T0 Theory:

- Strengths: Unified framework, elegant analogies, testable predictions
- Limits: Speculative basis, lack of experimental confirmation
- Scientific Value: Demonstration of alternative thinking approaches
- Methodological Importance: Importance of honest uncertainty communication

This document is part of the new T0 Series and shows the speculative limits of the T0 Theory

T0-Theory: Time-Mass Duality Framework

Johann Pascher, HTL Leonding, Austria