① ②
$$f'(x) = secx(secx + tanx)$$
, $f(0) = 3$

$$= sec^{2}x + sectanx$$

we know $\frac{1}{dx}tanx = sec^{2}x$ and $\frac{1}{dx}secx = secxtanx$

so:
$$f(x) = tanx + secx + C$$

$$f(0) = 3 = tan(0) + sec(0) + C$$

$$3 = 0 + 1 + C$$
so then $C = 2$
⑤ $V(+) = e^{+} - 1$, $s(0) = 5$

Recall $s'(+) = v(+)$ so then
$$S(+) = e^{+} - + + C$$

$$S(0) = 5 = e^{0} - 0 + C = 1 + C$$

$$S(+) = e^{+} - + + 4$$
ⓒ $f(x) = \frac{1}{2}x + \sqrt{x}$, $f(1) = 4$

we know $\frac{1}{2}x + \sqrt{x}$, $f(1) = 4$
we know $\frac{1}{2}x + \sqrt{x}$, $f(1) = 4$

$$f(x) = 2 \ln x + \frac{2}{3}x^{\frac{3}{2}} + C$$

$$f(1) = 4 = 2 \ln(1) + \frac{2}{3}(1)^{\frac{3}{2}} + C$$

$$f(x) = 2 \ln x + \frac{2}{3}x^{\frac{3}{2}} + C$$

$$f(x) = 2 \ln x + \frac{2}{3}x^{\frac{3}{2}} + C$$

$$f(x) = 2 \ln x + \frac{2}{3}x^{\frac{3}{2}} + C$$

$$f(x) = 2 \ln x + \frac{2}{3}x^{\frac{3}{2}} + C$$

$$f(x) = 2 \ln x + \frac{2}{3}x^{\frac{3}{2}} + C$$

$$f(x) = 2 \ln x + \frac{2}{3}x^{\frac{3}{2}} + C$$

$$f(x) = 2 \ln x + \frac{2}{3}x^{\frac{3}{2}} + C$$

$$f(x) = 2 \ln x + \frac{2}{3}x^{\frac{3}{2}} + C$$

$$f(x) = 2 \ln x + \frac{2}{3}x^{\frac{3}{2}} + C$$

$$f(x) = 2 \ln x + \frac{2}{3}x^{\frac{3}{2}} + C$$

$$f(x) = 2 \ln x + \frac{2}{3}x^{\frac{3}{2}} + C$$

$$f(x) = 2 \ln x + \frac{2}{3}x^{\frac{3}{2}} + C$$

$$f(x) = 2 \ln x + \frac{2}{3}x^{\frac{3}{2}} + C$$

$$f(x) = 2 \ln x + \frac{2}{3}x^{\frac{3}{2}} + C$$

$$f(x) = 2 \ln x + \frac{2}{3}x^{\frac{3}{2}} + C$$

$$f(x) = 2 \ln x + \frac{2}{3}x^{\frac{3}{2}} + C$$

$$f(x) = 2 \ln x + \frac{2}{3}x^{\frac{3}{2}} + C$$

$$f(x) = 2 \ln x + \frac{2}{3}x^{\frac{3}{2}} + C$$

$$f(x) = 2 \ln x + \frac{2}{3}x^{\frac{3}{2}} + C$$

$$f(x) = 2 \ln x + \frac{2}{3}x^{\frac{3}{2}} + C$$

$$f(x) = 2 \ln x + \frac{2}{3}x^{\frac{3}{2}} + C$$

$$f(x) = 2 \ln x + \frac{2}{3}x^{\frac{3}{2}} + C$$

$$f(x) = 2 \ln x + \frac{2}{3}x^{\frac{3}{2}} + C$$

$$f(x) = 2 \ln x + \frac{2}{3}x^{\frac{3}{2}} + C$$

(a)
$$a(t) = -32$$
 $v(0) = 2$ $s(0) = 5$

we know $a(t) = v'(t) = s''(t)$ so

 $v(t) = -32t + C$ and $v(0) = 2 = -32(0) + C$,

 $s_0[C_1 = 2]$

we know $\frac{1}{4}(16t^2) = -32t$ so then

 $s(t) = -16t^2 + 2t + C_2$ and $s(0) = 5 = -16 \cdot 0 + 2 \cdot 0 + C_2$
 $s_0[C_2 = 5]$