

Allied Vision GigE 接口工业相机 操作简明指南

尊敬的用户, 您好!

欢迎使用 Allied Vision Technologies 的产品,为方便您快速的使用我们的 GigE 接口工业相机,提供以下快速使用说明,本说明包含四个部分:

第一部分: 安装相机的 SDK 软件包 Vimba

第二部分: 关于硬件的连接

第三部分: Vimba Viewer 使用方法

第四部分: 常见问题 Q&A

第一部分:安装 Allied Vision SDK 软件包 Vimba

1.1 软件下载地址(免费下载安装,无需注册)

https://china.alliedvision.com/cn/%E4%BA%A7%E5%93%81/%E8%BD%AF%E4%BB%B6.html

C, C++, .NET, and Python APIs

联系我们的专家获取建议

VIMBA 4.0——ALLIED VISION相机软件开发工具包(SDK)

Vimba是Allied Vision推出的极具前瞻性的独立软件开发工具包(SDK),适于所有配备GigE Vision、USB3 Vision、IEEE 1394和Camera Link接口的Allied Vision相机。通过Vimba,您可以轻松控制Allied Vision相机、即刻获取图像,并为复杂的视觉应用独立编程或连接第三方资源库。

(图1)

1.2 根据您的操作系统环境,选择对应的软件版本下载(图2)

免费下载Vimba

所有 Vimba 相关的下载都是免费的,包括编程样例和用户手册。您可以立即免费下载并使用 Vimba。

Downloads

下载 Windows 版:

Vimba 4.0 Windows, Release Notes

下载 Linux x86/x64 版:

Vimba v4.0 Linux, Release Notes

下载 ARMv7 32-bit 版:

Vimba ARM32 v4.0, Release Notes

下载 ARMv8 64-bit 版:

Vimba ARM64 v.4.0, Release Notes

(图2)

1.3 Vimba 支持的相机种类和操作系统要求(图 3)

支持的相机:

- Allied Vision GigE Vision 相机
- Allied Vision 1394 相机 (仅 Windows 版本)
- Allied Vision USB3 相机
- Allied Vision Camera Link 相机(仅 Windows 版本)

操作系统:

Windows

Windows 7 (32位和 64位), Windows 10 (32位和 64位)

Linux

兼容基于 Intel-32位和 64位以及**ARMv7** 处理器的标准PC 上运行的Linux系统。 目前仅支持 GigE Vision与USB3 Vision 传输层,适用于Linux系统。已测试的发行版:

- Ubuntu 18.04 LTS (Intel-32位和 64位以及ARMv7 处理器的标准PC)
- Debian 10
- Debian 9
- Linux for ARMv7 (32-bit hard-float) 和 ARMv8 (64-bit hard-float) 兼容的嵌入式系统, 例如, Odroid XU4和NVIDIA Jetson TX2。经过测试的版本:
 - Ubuntu 18.04 LTS (图 3)

1.4 在 Windows 环境下安装 Vimba,双击下载的可执行文件,出现安装界面(图 4)选择不同的安装模式,对于初次使用的用户,建议选择 Application Development 安装 Linux For X86/ARM 的安装方式,采用自动化脚本,操作方法请参考软件附带的安装说明。

1.5 安装完成后,请确保 Install Vimba Drivers 复选框打钩的前提下(图 5),退出安装程序,此时会进行驱动程序的安装,驱动安装完成后即完成全部安装过程。

1.6 部分比较老的 Windows 7 64bit 操作系统,由于缺少补丁,可能导致安装失败,请联系 Allied Vision 技术/销售人员,提供相应的补丁包;

第二部分:关于硬件部分的连接

2.1 为确保工业相机传输的可靠性和带宽, GigE 接口的工业相机请连接到千兆网卡或者千兆网交换机上, 我司推荐网卡及交换机型号如下(图 6)

GigE network interface cards

The network interface card is the most critical system component, and for maximum performance we highly recommend using one of the following PCI/PCI-E cards.

Manufacturer	Model	PCI-32	PCI-Ex 1	PCI-Ex 4
Intel Corporation	Intel® PRO/1000 GT Desktop Adapter	~		
Intel Corporation	Intel® PRO/1000 PT Desktop Adapter		~	
Intel Corporation	Intel® CT		✓	
Intel Corporation	Intel® PRO/1000 PT Dual Port			✓
Intel Corporation	Intel® ET2 Server Quad Port			✓
Intel Corporation	Intel® I340-T4 Server Quad Port			✓
Intel Corporation	Intel® I350-T2 Server Dual Port			✓

GigE switches

We recommend that you work with manufacturers to select switches to satisfy your requirements. It is not possible to test a majority of new and existing GigE switches. The primary consideration when selecting a switch should be system capacity. These include things like: RAM, flash memory, packet buffer memory, switch fabric speed, switching capacity and maximum bandwidth in packets per second.

Manufacturer	Model	Number of ports
Dell	PowerConnect 28xx Series	8*
*24 port available		

(图6)

当多个相机通过千兆交换机,连接到一个网口时,多相机共享一个千兆网带宽,需要对每个相机的传输带宽做限制,确保不会发生数据冲突现象

2.2 电源连接,Mako 系列的电源接口为 8PIN 接头,Manta 和 GT 系列的电源接口为 12PIN 接头,请根据相机型号选择对应的电源;对于支持 PoE 的型号,可以不需要电源,通过网线给相机供电,我司推荐 PoE 网卡及 PoE 交换机型号如下(图 7)。

GigE host adapter/frame grabber PoE+ cards

Manufacturer	Model	Form factor
ADLINK	PCIe-GIE72 Dual port with PoE+ support	PCI Express x4 compliant
ADLINK	PCIe-GIE74 Quad port with PoE+ support	PCI Express x4 compliant

GigE switches with PoE/PoE+ support

Manufacturer	Model	Number of ports	PoE/PoE+
Allied Telesis	AT-GS950/8POE	8	PoE
Allied Telesis	AT-GS950/10PS	10	PoE/PoE+
Cisco	SRW2008MP	8	PoE
HP Networking	NJ2000G IntelliJack Switch	4 + 2 pass-through	PoE/PoE+
HP Networking	V1905-10G-PoE Switch	10	PoE
Linksys	LGS308P	8	PoE/PoE+
Linksys	LGS108P	8	PoE/PoE+
NETGEAR	GS510TP	8	PoE/PoE+

(图7)

PoE 模式下,需要连接的网卡也具有相应的 PoE 功能,或者使用 PoE Injector 的方式

2.3 网卡巨帧设置,为保证工业相机的传输效率最优,需要开启千兆网卡的巨帧设置(Jumbo Packet 或 Jumbo Frame),在控制面板中,找到当前网络连接,鼠标右键弹出菜单,进入属性页面,在网卡属性页面中,切换到高级选项卡,可以看到 Jumbo Packet 的设置(图 8),把 Jumbo Packet 设置为 9014 Byte 或者 9K Byte 即可。

第三部分: Vimba Viewer 的使用方法

介绍一下相机调试工具 Vimba Viewer, 双击图标启动软件(图 9)。

3.1 在画面左侧的相机列表中,会出现当前连接的相机,连接 GigE 相机时,相机的型号会出现在 GigE 总线下(图 **10**)。

3.2 初次使用 GigE 相机时,通常需要配置相机的 IP 地址与主机 IP 地址在同一个网段内,请鼠标右键点击相机名称(图 11),在弹出的菜单里选择 Open CONFIG,进入 IP 配置界面。

3.3 相机的 IP 可以根据需要设置为固定 IP (Persistent) 和自动获取 IP (DHCP) 两种模式:

在 Persistent 模式下,先把 IP Configuration Mode 选择为 Persistent,接下来设置网关, IP 地址,子网掩码,并确保这些和主机的 IP 地址在同一个网段内,最后执行 IP Configuration Apply 后面的【COMMAND】命令一次,完成设置;

在 DHCP 模式下,把 IP Configuration Mode 选择为 DHCP,执行 IP Configuration Apply 后面的【COMMAND】命令一次,主机会为相机自动分配一个 IP 地址,完成设置(图 12)。

3.4 相机的 IP 配置完成后,关闭 IP 配置界面,用鼠标右键弹出菜单的 Open FULL ACCESS 或者双击鼠标左键,即可打开相机的运行界面(图 13)。

(图13)

3.5 工具栏上的工具按钮依次为:①开始/停止采集 ②保存图像 ③读取配置到相机 ④保存配置到主机 ⑤打开直方图窗口 ⑥画面填充整个界面 ⑦画面向左旋转 90° ⑧画面向右旋转 90° ⑨放大图像,默认比例 ,缩小图像 ⑩调出 Docking 窗口。

(图 14)

3.6【参数区-亮度相关】控制图像的亮度值,包括以下主要参数:

Exposure【曝光值】,单位微秒;

Exposure Auto【自动曝光】,可以选择关闭,单次和连续三种模式;

Gain【增益】,单位 db;

Gain Auto【自动增益】,可以选择关闭,单次和连续三种模式;

Intensity Controller Target 【亮度控制目标值】: 使用自动功能时设置的目标值;

Black Level【黑底】:调整相机的底噪;

Gamma【Gamma】:调整图像的 Gamma 值:

(图15)

3.7【参数区-ROI 相关】控制图像的有效区域,包括以下主要参数:

Pixel Format【像素格式】: 选择输出的像素格式,需要在停止采集状态下修改;

ROI【有效区域】: 更改相机输出的有效区域大小和位置,需要在停止采集状态下修改;

(图16)

3.8【参数区-自动功能 ROI】: 指定自动曝光、自动增益等自动功能的有效区域,需要在停止采集状态下修改;

(图17)

3.9【参数区-触发&I/O】

Trigger Source【触发源】:选择触发相机的方式为软触发或者外部触发;

Trigger Actv. 【有效沿】:选择外触发信号的有效边沿;

Trigger Selector【触发选择】:选择触发信号的作用点;

Trigger Mode【模式】: 打开或者关闭触发功能;

Acquisiton Mode【采集模式】:选择单帧、多帧、连续三种不同的采集方式;

Exp. Mode【曝光模式】: 定时曝光;

(图18)

3.10【参数区-全部参数】: 包含了相机的全部参数,按照参数所属功能分类,可通过过滤器进行关键字搜索快速定位;

(图19)

3.11【状态栏】显示当前的采集状态,图像高度,宽度,像素格式,累计采集的帧数,当前的 Rec 帧率,Cam 帧率,Dis 帧率

Rec 帧率表示 SDK 收到的帧率

Cam 帧率表示相机发出的帧率

Dis 帧率表示显示帧率,最大30fps左右

3.12 常用的相机工作模式设置方法:

3.12.1 【设置连续自由采集】:

【Trigger Source】选择为 Software

【Trigger Mode】 选择为 Off

【Trigger Selector】 选择为 FrameStart

【Acquisiton Mode 】 选择为 Continuous

单击工具栏上的开始采集, 相机将开始连续的自由采集

3.12.2 【设置软件触发采集】:

【Trigger Source】选择为 Software

【Trigger Mode】 选择为 On

【Trigger Selector】 选择为 FrameStart

【Acquisiton Mode 】 选择为 Continuous

单击工具栏上的开始采集

单击 SW Trigger 按钮一次,相机将采集一次

3.13.3 【设置硬件触发采集】:

【Trigger Source】选择为 Line0

【Actvx.】 选择为需要的有效边沿类型

【Trigger Mode】 选择为 On

【Trigger Selector】 选择为 FrameStart

【Acquisiton Mode 】 选择为 Continuous

单击工具栏上的开始采集

Line0 有效激活一次,相机将采集一次

第四部分:常见问题 Q&A

Q1. 如何保存当前参数和配置到相机,重新掉电后自动加载?

A1.相机本身可以保存 4 组用户设置: Default, UserSet1, UserSet2, UserSet3, 其中 Default 为出厂默认配置,如果用户需要保存自己参数,请先指定 Default 以外的设置,比如 UserSet1, 点击 UserSetSave [COMMAND] 完成参数的保存,在 UserSetDaultSelector 中选中 UserSet1, 作为相机上电后自动运行的设置组即可。

Q2. 相机连续采集时无法达到最高的帧率?

A2. 相机默认的带宽设置是 115000000, 对于千兆网接口来说,此带宽最大可以设置为 125000000,通过修改此参数,可以让相机达到最大帧率采集。

Q3. 如何保存拍摄的图像?

A3. 对于单张图像,可以在采集停止时,鼠标右键点击显示区,调出 Save Image...对话框进行保存;

对于保存多张图像,需要在采集前指定保存的张数,保存地址,命名规则等信息,以上信息可以在菜单栏 File 中的 Image Serial Option 里设置,设置完成后开始采集,当采集的帧数超过设置的保存张数时,停止采集,点击工具栏上的 Save Images 按钮即可完成批量保存;

Q4. 我想通过 SDK 对相机进行开发,如何获得例程和文档?

A5. VIMBA 安装时,会自动安装开发环境及开发文档到主机,请通过 Windows 的开始菜单,找到 Allied Vision Vimba 文件夹,在此文件夹下,针对不同的语言,有对应的开发 API 手册:

《Vimba C API Mannual》《Vimba C++ API Mannual》《Vimba C# API Mannual》《Vimba Python API Mannual》

例子请参考 Vimba Examples Folder,同样按照不同的语言,进行了分类(图 25);

Images	8/3/2020 10:32 AM	File folder
VimbaC_Examples	8/3/2020 10:32 AM	File folder
VimbaCPP_Examples	8/3/2020 10:32 AM	File folder
■ VimbaCPP_Source	8/3/2020 10:32 AM	File folder
VimbaNET_Examples	8/3/2020 10:32 AM	File folder
VimbaPython_Examples	8/3/2020 10:32 AM	File folder
VimbaPython_Source	8/3/2020 10:32 AM	File folder
ExamplesOverviewWin64	4/29/2020 3:39 PM	HTML Application

(图 25)