

Oscylator harmoniczny

- O1. Wahadło matematyczne wyprowadź wzór na okres T dla małych wychyleń.
 - Wzory (do wyprowadzenia z II zasady dynamiki dla ruchu obrotowego lub sił):
 - Siła przywracająca: $F_t = -mg\sin\theta$
 - Dla małych kątów $\sin heta pprox heta$
 - Ruch po łuku: x=L heta
 - ullet II Zasada Dynamiki: $ma_t=\overline{F_t} \implies mL\ddot{ heta}=-mg heta$
 - Równanie drgań harmonicznych: $\ddot{ heta} + rac{g}{L} heta = 0$
 - Częstość kołowa: $\omega = \sqrt{rac{g}{L}}$
 - Okres: $T=rac{2\pi}{\omega}=2\pi\sqrt{rac{L}{g}}$

• Wzory:

- ullet Siła tarcia: $F_{tarcia} = \gamma v(t)$
- Moc chwilowa tracona przez tarcie: $P_{tracona}(t) = F_{tarcia} \cdot v(t) = -\gamma v(t) \cdot v(t) = -\gamma v(t)^2$
- Prędkość z podanego położenia: $v(t)=rac{dx}{dt}=A_{rez}\omega\cos(\omega t+\phi)$, gdzie $A_{rez}=rac{f_0}{\sqrt{(\omega_0^2-\omega^2)^2+(2\alpha\omega)^2}}$
- Moc średnia: $\langle P
 angle = rac{1}{T} \int_0^T P(t) dt$
- Kwadrat kosinusa uśredniony po okresie: $\langle \cos^2(\omega t + \phi)
 angle = rac{1}{2}$
- Wyprowadzenie: $\langle P_{tracona} \rangle = \frac{1}{T} \int_0^T -\gamma [A_{rez}\omega \cos(\omega t + \phi)]^2 dt = -\gamma A_{rez}^2 \omega^2 \frac{1}{T} \int_0^T \cos^2(\omega t + \phi) dt = -\gamma A_{rez}^2 \omega^2 \cdot \frac{1}{2}$ Znak minus oznacza, że energia jest tracona.

TARCIE:

ZASADA ZACHONANIA ŚRODKA MASY:

WFI6 - praca

Wzory i Koncepcje Używane do Relatywistyki

1. Czynnik Lorentza (γ):

•
$$\gamma=rac{1}{\sqrt{1-rac{v^2}{c^2}}}$$

- Kluczowy dla wszystkich relatywistycznych zjawisk, takich jak dylatacja czasu, kontrakcja długości, wzrost masy i energii. v to prędkość względna, c to prędkość światła.
- 2. Masa relatywistyczna (masa zależna od prędkości):

•
$$m=\gamma m_0$$

- Gdzie m_0 to masa spoczynkowa (masa ciała mierzonego w układzie, w którym jest w spoczynku). Ten wzór pokazuje, jak masa ciała rośnie wraz z jego prędkością.
- 3. Energia całkowita relatywistyczna:

•
$$E=mc^2=\gamma m_0c^2$$

 Ten słynny wzór Einsteina pokazuje równoważność masy i energii. Całkowita energia ciała (wliczając jego masę spoczynkową) zależy od jego masy relatywistycznej.

4. Energia spoczynkowa:

•
$$E_0=m_0c^2$$

- Energia, jaką ciało posiada ze względu na swoją masę, gdy jest w spoczynku.
- 5. Energia kinetyczna relatywistyczna:

•
$$E_k = E - E_0 = (\gamma - 1)m_0c^2$$

 To jest energia ruchu ciała, różnica między jego całkowitą energią a energią spoczynkową.

6. Pęd relatywistyczny:

•
$$p = \gamma m_0 v$$

• Pęd ciała również wzrasta z prędkością, zgodnie z czynnikiem Lorentza.

7. Relacja energia-pęd (niezmiennik relatywistyczny):

- $E^2 = (pc)^2 + (m_0c^2)^2$
- Ten wzór łączy energię całkowitą, pęd i masę spoczynkową cząstki. Jest fundamentalny i prawdziwy dla każdej cząstki.
- 8. Transformacje Lorentza (dla czasu i położenia):

•
$$t' = \gamma(t - \frac{Vx}{c^2})$$

•
$$x' = \gamma(x - Vt)$$

- (oraz analogiczne dla y,z bez zmian, jeśli ruch jest wzd1uż X)
- ullet Te wzory opisują, jak współrzędne czasoprzestrzenne (czas i położenie) zmieniają się między dwoma inercjalnymi układami odniesienia, poruszającymi się względem siebie z prędkością V. Są one kluczowe do zrozumienia względności jednoczesności i dylatacji czasu.
- 9. Interwał czasoprzestrzenny (niezmiennik Lorentza):

•
$$ds^2 = c^2 dt^2 - dx^2 - dy^2 - dz^2$$

 Jest to wielkość, która pozostaje niezmienna we wszystkich inercjalnych układach odniesienia.

