	Función de la Medición	Ref.	<i>T</i> ₁ [°C]	T ₀ [°C]		Especificaciones	
4)	$R(T) = R(T_0)\alpha \cdot (T - T_0)$	X	42,5	20,034		T	0,5%+0,5°C
		σ	1,85	0,01817		ртс	$R(T_0) = 100\Omega$ $\alpha = 0,385\Omega/^{\circ}C$
		N	5	5			

$$R(T) = R(TO) \times (T_1 - TO)$$

TIPO A

$$y_0(T_0) = \frac{0.01817}{\sqrt{5}} = 8,125 \text{m°C}(A)$$
 $R(T) = 100 \Omega$. 0.385Ω $(42,5^{\circ}\text{C} - 20,034^{\circ}\text{C}) = 864.941 \Omega$

$$M(T1) = \frac{1.85}{\sqrt{5}} = 0,8273°C(B)$$

(Pareciera que alguna unidad no está del todo bien..)

TIPO B

TIPO B
$$48(T_0) = 0.57 + 0.5C = 0.10017 + 0.400.5C = 0.60017 + 0.5C = 0.60017 + 0.5C = 0.34650 (68%) (C)$$

$$4870 = 0.57 + 0.5C = 0.2125^{\circ}C + 0.5^{\circ}C = 0.7125^{\circ}C \Rightarrow 0.411362^{\circ}C (60\%)$$

$$4870 = 0.57 + 0.5C = 0.2125^{\circ}C + 0.5^{\circ}C = 0.7125^{\circ}C \Rightarrow 0.411362^{\circ}C (60\%)$$

$$M_{A}(T_{0}) = 8,125 \text{m°C}(A)$$
 $M_{B}(T_{0}) = 0,34650$ (68%) (C)
 $M_{A}(T_{1}) = 0,8273 \text{°C}(B)$ $M_{B}(T_{1}) = 0,411362 \text{°C}(60\%)$ (D)

Combino tipo A & tipo B

Combino tipo A & tipo B
$$4(+0) = \sqrt{44^2 + 46^2} = 0.3466^{\circ} (\mp)$$

$$4(-1) = \sqrt{44^2 + 46^2} = 0.92396^{\circ} (\mp)$$

$$4(-1) = \sqrt{44^2 + 46^2} = 0.92396^{\circ} (\mp)$$

$$R(T) = R(TO) \propto (T_1 - TO)$$

$$C_1 = \frac{dR(T)}{dT_1} = R(TO) \propto || (2 M|T_0)^2$$

$$R(T) = 864.941 \Omega$$

$$C_2 = \frac{dR(T)}{dT_0} = -R(TO) \propto || (2 M|T_0)^2$$

$$C_3 = \frac{dR(T)}{dT_0} = -R(TO) \propto || (2 M|T_0)^2$$

$$4/R4) = R(T0) \propto \sqrt{4/t_1}^2 + 4/t_0^2 = 38.5 s($$

$$M_{A}(T_{0}) = 8,125 \text{ m°C}(A)$$
 $M_{B}(T_{0}) = 0,34650$ (68%) (C)
 $M_{A}(T_{0}) = 0,8273 \text{ °C}(B)$ $M_{B}(T_{0}) = 0,411362 \text{ °C}(60\%)$ (D)

Combino tipo A & tipo B

Combino tipo A & tipo B
$$4(+0) = \sqrt{44^2 + 46^2} = 0.3466^{\circ} (\pm)$$

$$4(-1) = \sqrt{44^2 + 46^2} = 0.92396^{\circ} (\pm)$$

$$4(-1) = \sqrt{44^2 + 46^2} = 0.92396^{\circ} (\pm)$$

 $4(RJ) = \sqrt{(C_1.4(T_1))^2 + ((24(T_0))^2}$

$$R(\tau) = R(\tau_0) \propto (\tau_0 - \tau_0)$$

$$C_1 = \frac{dR(\tau)}{d\tau_0} = R(\tau_0) \propto |\eta| R + |\eta| R$$

R(TO) = (864,941 ± 75,98) so of 98%