9 Schlüsseleinigung, Schlüsselaustausch

Ziel: Sicherer Austausch von Schlüsseln über einen unsicheren Kanal

- initiale Schlüsseleinigung für erste sichere Kommunikation
- Schlüsselerneuerung für weitere Kommunikation Forward Secrecy: Brechen eines alten Schlüssels soll folgende Nachrichten nicht kompromittieren

Hybridverfahren

- \bullet A will B eine vertrauliche Nachricht m übermitteln
- B besitzt ein Schlüsselpaar (pk, sk) (z.B. für das RSA-Verfahren)
- \bullet A vertraut dem öffentlichen Schlüssel pk (weiß, dass dieser B gehört)

Eigenschaften:

- Für jede Kommunikaiton neuer symmetrischer Schlüssel
- ullet Keine Forward Secrecy: Brechen von sk führt zur Kompr. aller Schlüssel

Diffie-Hellman-Schlüsseleinigungsverfahren

Entwickelt von Diffie, Hellman und Merkle 1976 Sicherheit beruht auf Diskreten Logarithmusproblems Also:

- \bullet Wir rechnen in $\mathbb{Z}_p^*,\,p$ sehr große Primzahl
- Wir benötigen einen Erzeuger $g \in \mathbb{Z}_p^*$ (um kleine Untergruppen auszuschließen)

A Parameter (g, p)		$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
choose random x		
compute $X = g^x \mod p$	\xrightarrow{X}	
		choose random y
	\leftarrow	compute $Y = g^y \mod p$
$comp. Y^x = (g^y)^x = g^{xy} \bmod p$		comp. $X^y = (g^x)^y = g^{xy} \mod p$

Abbildung 2: Diffie-Hellman-Schlüsseleinigungsverfahren (DH)

Aus g^{xy} lassen sich z.B. Schlüssel für Secure Messaging ableiten:

- $k_E := \text{Hash}(g^{xy}||0x00)$ Schlüssel für Verschlüsselung
- $k_A := \text{Hash}(g^{xy}||0x01)$ Schlüssel für MAC

Sicherheit des Diffie-Hellman-Schlüsseleinigungsverfahrens

Angreifer kennt Parameter (g, p) und sieht $g^x \mod p$ und $g^y \mod p$ **Ziel:** Bestimmung von g^{xy} (das gemeinsame Geheimnis)

• Einzige derzeit bekannte Möglichkeit: Bestimme x oder y (d.h. berechne $\log_q g^x$ oder $\log_q g^y$)

Forward Secrecy, wenn immer neue Zufallszahlen x, y gewählt werden

- Umgesetzt in tls (siehe Kapitel Internetsicherheit)
- Kürzel DHE (E für ephemral (flüchtig))

Aber folgender Angriff möglich:

A		O (Angreifer)		B
choose random x		choose random z		
$X = g^x \bmod p$	\xrightarrow{X}	$Z = g^z \bmod p$	\xrightarrow{Z}	choose random y
	$\stackrel{Z}{\longleftarrow}$		\leftarrow	$Y = g^y \bmod p$
$Z^x = g^{xz} \bmod p$		$X^z = g^{xz} \bmod p$		
		$Y^z = g^{yz} \bmod p$		$Z^y = g^{yz} \bmod p$

Abbildung 3: Man-in-the-Middle Angriff

Nicht A und B berechnen Geheimnis, sondern A mit O und B mit O

Lösung: Authentisierung der Schlüsselanteile (MAC, Signatur, Passwort)

Übung: Geben Sie ein sicheres Schlüsselaustauschprotokoll unter Nutzung von Diffie-Hellman und Signaturverfahren an.

SPEKE (Simple Password Exponential Key Exchange)

Beispiel für ein Password-Authenticated Key Agreement Protocol.

- Parameter: q prim mit p := 2q + 1 prim und Hashfunktion H.
- A und B haben gemeinsames Passwort π .

A Parameter
$$(p, H, \pi)$$
B Parameter (p, H, π) Berechne $g = H(\pi)^2 \mod p$
choose random x
compute $X = g^x \mod p$ Berechne $g = H(\pi)^2 \mod p$ $X \rightarrow C$
choose random X
choose random X
choose random X
choose random X
compute $X = g^x \mod p$
comp. $X^x = (g^x)^x = g^{xy} \mod p$

Abbildung 4: Simple Password Exponential Key Exchange (SPEKE)

- Wahl von p=2q+1 prim: $\mathbb{Z}_p^*=\{1,\ldots,p-1\}$ hat genau 2 Untergruppen
 - Eine der Ordnung 2, eine der Ordnung q
 - Ordnungen von Untergruppen teilen Ordnung der großen Gruppe Da $|\mathbb{Z}_p^*| = p 1 = 2q$ und q prim, gibt es nur die Teiler 2 und q
 - $-g=H(\pi)^2 \bmod p$: gist Erzeuger der großen Untergruppe (Übung)

Needham-Schroeder-Protokoll

- Datenaustausch in dezentralen Netzen
- Schlüsselaustausch und Authentisierung
- Umgesetzt in Kerberos

Zwei Versionen: symmetrisch und asymmetrisch.

Symmetrische Version:

- \bullet Es wird ein Authentifizierungsserver AS benötigt
- A und B haben jeweils symmetrische Schlüssel K_A und K_B (z.B. für AES, diese sind AS bekannt)

Abbildung 5: Needham-Schroeder-Protokoll

Eigenschaften:

- \bullet A, B nutzen den von AS generierten Schlüssel K zur Kommunikation
- K wird verschlüsselt ausgetauscht (mit dem nur A, AS bzw. B, AS bekannten Schlüssel K_A bzw. K_B)
- \bullet A und B wissen, mit wem sie kommunizieren
 - Nur A und B können SchlüsselKentschlüsseln
 - Identitäten (d.h. A und B) werden mit verschlüsselt
 Damit kein MitM-Angriff möglich
- Replay-Attacken werden durch Nutzung von Nonces verhindert
 - Replay-Attacke: Einspielen einer zuvor abgehörten Verbindung
 - Nonce: number only used once
 - Beide nutzen Nonces (beide schließen Replay-Attacke aus)
 - * Nur A und AS können T_A generieren
 - * Nur A und AS können T_{AB} generieren

Kritik: Nur in der Vorlesung

Übung: Beschreiben Sie die asymmetrische Version des Protokolls. Beschreiben Sie den von Lowe gefundenen Angriff auf diese Version¹.

 $^{^1}$ Gavin Lowe, An Attack on the Needham-Schroeder Public-Key Authentication Protocol (1995) (http://web.cs.wpi.edu/ cs564/f12/papers/lowe95.pdf)