CMA202 B - Cálculo 2 - Física Noturno

XXXXXXXXXXX de 2018

Prova 2

Nome: ______ P: 10 10 20

Q:	1	2	3	4	5	6	Total
P:	10	10	20	30	10	20	100
N:							

	d_1	d_2	d_3	d_4	d_5	d_6	d_7	d_8
GRR								

Considere um retângulo com lados $a = (d_7 + 1)$ cm e $b = (d_8 + 1)$ cm. Determine a equação que aproxima o quanto a diagonal desse retângulo vai variar em função dos diferenciais dos lados.

Determine os pontos críticos de

- (a) $10 f(x,y) = e^{x^2 + y^2}$
- (b) $10 | f(x,y) = 5x^2 + 4xy + y^2 18x 8y + 10$

Calcule:

- (a) $15 \frac{\partial u}{\partial t} = \frac{\partial u}{\partial s}$ em t = 1 e s = -1, dado que $u = y \ln(x^2 + y^2)$, $x = (d_5 + 1)s + 3t$ e $y = (d_6 + 1)t 2s$, usando a regra da cadeia.
- (b) $15 \frac{dy}{dx}(3)$ dado que y(x) está definida implicitamente pela equação $e^y \sin(xy) = x + 2xy + 3$, e que y(3) = 0.

Mostre que $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2$ onde $z = f(x, y), x = r \cos \theta$ e $y = r \sin \theta$.

Considere f(x, y, z) = xy + xz + yz. Determine:

- (a) $\boxed{10}$ a derivada direcional para f(x,y,z) na direção de máximo crescimento.
- (b) 10 a direção $\vec{v} = (a, b, c)$ no qual a derivada direcional de f(x, y, z) no ponto $P(1, -1, d_7 + 1)$ é nula.