First order optimality conditions

Instructor: Jin Zhang

Department of Mathematics
Southern University of Science and Technology
Spring 2024

Contents

- Lagrange multiplier rule: Thm 7.1.1/2
- History of KKT conditions Thm 7.2.1/2/3
- KKT conditions under the regularity condition

Lagrange multiplier rule

Consider an optimization problem with some equality constriants.

min
$$f(x)$$

s.t. $h_i(x) = 0, i = 1,..., m,$

where the functions are differentiable. Let $L(x, \lambda) = f(x) + \sum_{i=1}^{m} \lambda_i h_i(x)$ be the Lagrange function. Is it always true that at all local minimizers x^* ,

$$0 = \nabla L(x, \lambda)$$

for some Lagrange multiplier λ ? The answer is negative.

counter-example

Consider the following simple example.

$$\begin{array}{ll}
\min & x \\
s.t. & x^2 \le 0.
\end{array}$$

The only feasible solution is x = 0 and hence the optimal solution is $x^* = 0$. However it is easy to see that there is no scalar λ such that

$$0 = f'(x^*) + \lambda h'(x^*).$$

The difficulty of deriving a necessary optimality condition is with the constraints.

Eliminate the constraints, then the problem will become a unconstrained problem.

One way to eliminate the constraints is to use implicit function theorem.

Implicit function theorem

Theorem (Implicit function theorem) Let $F_1, \dots, F_m: \mathbf{R}^{m+n} \to \mathbf{R}$ be C^1 functions. Consider the system of equations

$$F_1(y_1, \cdots, y_m, x) = c_1$$

$$\vdots$$

$$F_m(y_1, \cdots, y_m, x) = c_m$$

as possibly defining y_1, \cdots, y_m as implicit functions of x. Suppose that (y^*, x^*) is a solution of the above system of equations. If the determinant of the Jacobian of F with respect to y, i.e., the $m \times m$ matrix

$$D_y F(y,x) = \begin{pmatrix} \frac{\partial F_1}{\partial y_1} & \cdots & \frac{\partial F_1}{\partial y_m} \\ \vdots & & \vdots \\ \frac{\partial F_m}{\partial y_1} & \cdots & \frac{\partial F_m}{\partial y_m} \end{pmatrix}$$

evaluated at (y^*, x^*) is nonzero,

then there exist C^1 functions

$$y_1 = f_1(x)$$

$$\vdots \qquad \vdots$$

$$y_m = f_m(x)$$

defined on a ball B about x^* such that

$$F_1(f_1(x), \dots, f_m(x), x) = c_1$$

$$\vdots$$

$$F_m(f_1(x), \dots, f_m(x), x) = c_m$$

for all x in B and

$$y_1^* = f_1(x^*)$$

$$\vdots \qquad \vdots$$

$$y_m^* = f_m(x^*)$$

Corollary: Let $F_1, \cdots, F_m: \mathbf{R}^n \to \mathbf{R}$ be C^1 functions. Consider the system of equations

$$F_1(x_1, \dots, x_n) = -t$$

$$\vdots$$

$$F_m(x_1, \dots, x_n) = 0$$

as possibly defining x_1, \dots, x_n as implicit functions of t. Suppose that (x^*0) is a solution of the above system of equations. If the Jacobian matrix F at x^* has rank m, then there exist C^1 functions $x_i(t)$ defined on an open interval B about 0 such that

$$F_1(x_1(t), \cdots, x_n(t)) = -t$$

$$\vdots \qquad \vdots$$

$$F_m(x_1(t), \cdots, x_n(t)) = 0$$

for all t in B and $x(0) = x^*$.

Illustrate how to implicit function theorem

Consider the following case where there are two variables and one equality constraint in the optimization problem.

min
$$f(x_1, x_2)$$

s.t. $h(x_1, x_2) = 0$.

Let $x^* = (x_1^*, x_2^*)$ be a local solution of the above problem. There are two possible cases.

Case 1: If
$$\nabla h(x_1^*, x_2^*) = 0$$
, then $0 = 0 \cdot \nabla f(\boldsymbol{x}^*) + \nabla h(\boldsymbol{x}^*)$.

Continue the Process

<u>Case 2</u>: If $\nabla h(x_1^*, x_2^*) \neq 0$, without loss of generality we may assume that $\frac{\partial h}{\partial x_2}(\boldsymbol{x}^*) \neq 0$. Then by the implicit function theorem, since $\frac{\partial h}{\partial x_1}dx_1 + \frac{\partial h}{\partial x_2}dx_2 = 0$ and $\frac{\partial h}{\partial x_2}(\boldsymbol{x}^*) \neq 0$, there is a C^1 function $a(x_1)$ such that $x_2 = a(x_1)$ near \boldsymbol{x}^* . Then x_1^* is a local minimum of $f(x_1, a(x_1))$. By the chain rule we have

$$0 = \frac{\partial f}{\partial x_1}(\boldsymbol{x}^*) + \frac{\partial f}{\partial x_2}(\boldsymbol{x}^*)a'(x_1^*).$$

But $h(x_1, x_2) = 0$ and $x_2 = a(x_1)$, so applying the chain rule we have

$$0 = \frac{\partial h}{\partial x_1}(\boldsymbol{x}^*) + \frac{\partial h}{\partial x_2}(\boldsymbol{x}^*)a'(x_1^*).$$

Continue the Process

If $\frac{\partial f}{\partial x_1} = \frac{\partial f}{\partial x_2} = 0$, then $0 = \nabla f(\boldsymbol{x}^*) + 0 \cdot \nabla h(\boldsymbol{x}^*)$. It is easy to see that it is not possible to have $\frac{\partial f}{\partial x_1} \neq 0$ and $\frac{\partial f}{\partial x_2} = 0$. If $\frac{\partial f}{\partial x_1} = 0$ and $\frac{\partial f}{\partial x_2} \neq 0$, then $a'(x_1^*) = 0$ and hence $\frac{\partial h}{\partial x_1} = 0$. So for $\lambda = \frac{\partial f}{\partial x_2}$, we have

$$\begin{cases} 0 = \lambda \cdot 0 \\ \frac{\partial f}{\partial x_2}(\boldsymbol{x}^*) = \lambda \frac{\partial h}{\partial x_2}(\boldsymbol{x}^*) \end{cases} \iff \begin{cases} \frac{\partial f}{\partial x_1}(\boldsymbol{x}^*) = \lambda \frac{\partial h}{\partial x_1}(\boldsymbol{x}^*) \\ \frac{\partial f}{\partial x_2}(\boldsymbol{x}^*) = \lambda \frac{\partial h}{\partial h}(\boldsymbol{x}^*) \end{cases} \iff \nabla f(\boldsymbol{x}^*) + \lambda \nabla h(\boldsymbol{x}^*) = 0.$$

Finally, if $\frac{\partial f}{\partial x_1} \neq 0$ and $\frac{\partial f}{\partial x_2} \neq 0$, then $\frac{\frac{\partial h}{\partial x_1}}{\frac{\partial f}{\partial x_1}} = \frac{\frac{\partial h}{\partial x_2}}{\frac{\partial f}{\partial x_2}} := -\lambda$. So

$$\begin{cases} \frac{\partial f}{\partial x_1}(\boldsymbol{x}^*) = \lambda \frac{\partial h}{\partial x_1}(\boldsymbol{x}^*) \\ \frac{\partial f}{\partial x_2}(\boldsymbol{x}^*) = \lambda \frac{\partial h}{\partial x_2}(\boldsymbol{x}^*) \end{cases} \iff \nabla f(\boldsymbol{x}^*) + \lambda \nabla h(\boldsymbol{x}^*) = 0.$$

Fritz John condition

Combining cases 1 and 2, there exists $\lambda_0 \geq 0$ and λ , not all zero, such that $0 = \lambda_0 \nabla f(\boldsymbol{x}^*) + \lambda \nabla h(\boldsymbol{x}^*)$. This is called the Fritz John condition \boldsymbol{x}^* . It holds without any further assumptions!

Theorem: Fritz John condition with equality constraints only

Theorem 7.1.1 Let x^* be a local optimal solution of the problem

min
$$f(x)$$

s.t. $h_i(x) = 0, i = 1,..., m.$

Then there exists $\lambda_0 \geq 0, \lambda_i, i = 1, ..., m$ not all zero such that

$$0 = \lambda_0 \nabla f(x^*) + \sum_{i=1}^m \lambda_i \nabla h_i(x^*).$$

Proof of Fritz John condition (equality constraints only)

Proof. Case 1: If $\nabla h_1(\boldsymbol{x}^*), \dots, \nabla h_m(\boldsymbol{x}^*)$ are linearly dependent, then there exist $\lambda_i, i = 1, \dots, m$ not all equal to zero such that $0 = \sum_{i=1}^m \lambda_i \nabla h_i(\boldsymbol{x}^*)$. Let $\lambda_0 = 0$, then $\lambda_i, i = 0, \dots, m$ are not all equal to zero and $0 = \sum_{i=0}^m \lambda_i \nabla h_i(\boldsymbol{x}^*)$. So the Fritz John condition holds.

Case 2

<u>Case 2:</u> Suppose $\nabla h_1(\mathbf{x}^*), \dots, \nabla h_m(\mathbf{x}^*)$ are linearly independent. If $\nabla f(\mathbf{x}^*), \nabla h_i(\mathbf{x}^*)$ are linearly dependent then we are done. Otherwise suppose that $\nabla f(\mathbf{x}^*), \nabla h_i(\mathbf{x}^*)$ are linearly independent. Consider the system of m+1 equations with n+1 variables

$$f(x) - f(x^*) = -\varepsilon$$

$$h_1(x) = 0$$

$$\vdots$$

$$h_m(x) = 0.$$

Since the Jacobian at x^* has a maximal rank, by the implicit function theorem (Corollary 1.4.1), for small $\varepsilon > 0$, there exists a solution x^*_{ε}

$$f(x_{\varepsilon}^*) - f(x^*) = -\varepsilon$$

$$h_1(x_{\varepsilon}^*) = 0$$

$$\vdots$$

$$h_m(x_{\varepsilon}^*) = 0$$

It follows by combining cases 1 and 2 that there exist $\lambda_i, i = 0, 1, \dots, m$ not all zero such that

$$0 = \lambda_0 \nabla f(x^*) + \sum_{i=1}^m \lambda_i \nabla h_i(x^*).$$

<ロ > < 部 > < き > くき > き の < で

Theorem 7.1.2 Let x^* be a local optimal solution of the problem

min
$$f(x)$$

s.t. $h_i(x) = 0, i = 1,..., m.$

If the gradient vectors $\nabla h_1(x^*), \dots, \nabla h_m(x^*)$ are linearly independent, then there exists Lagrange multipliers $\lambda_i, i = 1, \dots, m$ such that

$$0 = \lambda_0 \nabla f(x^*) + \sum_{i=1}^m \lambda_i \nabla h_i(x^*).$$

History of KKT conditions

Theorem 7.2.1 (Fritz John Necessary Optimality Condition) Suppose that x^* is a local optimal solution of the following problem:

min
$$f(x)$$

s.t. $g_i(x) \le 0$ $i = 1, ..., m$

where f, g are differentiable functions. Then there exist $\lambda_i, i = 0, 1, ..., m$ not all zero such that

$$0 = \lambda_0 \nabla f(x^*) + \sum_{i=1}^m \lambda_i \nabla g_i(x^*)$$
$$0 = \lambda_i g_i(x^*), \quad \lambda_i \ge 0 \quad i = 0, 1, \dots, m.$$

NNAMOCQ and PLICQ

Let x^* be a feasible solution. We say that the no nonzero abnormal constraint qualification (NNAMCQ) holds at x^* if there is no nonzero abnormal multipliers.

On the other hand, we call the condition (7.1) Positive Linear Independence Constraint Qualification (PLICQ) if

$$0 = \sum_{i=1}^{p} \lambda_i \nabla g_i(x^*)
0 = \lambda_i g_i(x^*) \quad i = m, \dots, p
\lambda_i \ge 0, i = m, \dots, p$$

$$\implies \lambda_1 = \lambda_2 = \dots = \lambda_p = 0$$
(7.1)

NNAMCQ is the same as PLICQ.

Theorem 7.2.2 (KKT condition under the NNAMCQ (PLICQ)) Suppose that x^* is a local optimal solution of the following problem:

min
$$f(x)$$

s.t. $g_i(x) = 0$ $i = 1, ..., m-1$
 $g_i(x) \le 0$ $i = m, ..., p$

where f, g are differentiable functions. Suppose that NNAMCQ or equivalently PLICQ holds at x^* . Then there exist $\lambda_i, i = 1, ..., p$ not all zero such that

$$0 = \nabla f(x^*) + \sum_{i=1}^{p} \lambda_i \nabla g_i(x^*)$$
$$\lambda_i \ge 0, 0 = \lambda_i g_i(x^*) \quad i = m, \dots, p.$$

The following theorem will be useful for interpreting the NNAMCQ in an equivalent way.

Theorem 7.2.3 (Motzkin's Theorem of Alternative) Given matrices $A_{p\times n}$ which is nonvacuous and $D_{m\times n}$. One and only one of the following systems has a solution.

- (I) $Ax < 0, Dx = 0, x \in \mathbb{R}^n$
- (II) $A^T y + D^T z = 0, y \ge 0 \text{ and } y \ne 0 \quad (y \in \mathbb{R}^p, z \in \mathbb{R}^m).$

Let x^* be feasible and denote the set of active constraints (binding constrains) by

$$I(x^*) := \{i = m, \dots, p : g_i(x^*) = 0\}.$$

$$\nabla g_1(x^*), \dots, \nabla g_{m-1}(x^*)$$
 are linear independent and system I
$$\begin{cases} \nabla g_i(x^*)^T d = 0 & i = 1, \dots, m-1 \\ \nabla g_i(x^*)^T d < 0 & i \in I(x^*) \end{cases}$$
 has a solution.d.

The above condition is called Mangasarian Fromovitz constraint qualification (MFCQ).

KKT conditions under the regularity condition

Theorem 7.3.1 (KKT condition with inequality constraints) Let x^* be a local optimal solution of the problem

min
$$f(x)$$

s.t. $g_i(x) \le 0, i = 1, ..., m$.

Suppose that x^* is a regular point then the KKT condition holds at x^* .

Proof. Without loss of generality we suppose that only g_1, \ldots, g_e are active at x^* . That is,

$$g_1(x^*) = 0, \dots, g_e(x^*) = 0$$

 $g_{e+1}(x^*) < 0, \dots, g_m(x^*) < 0.$

Then x^* being a regular point means that the $e \times n$ Jacobian matrix

$$Dg_E(x^*) = \begin{pmatrix} \nabla g_1(x^*) \\ \nabla g_2(x^*) \\ \nabla g_e(x^*) \end{pmatrix}$$

has rank e. We want to prove that there exist $\lambda_1, \ldots, \lambda_e$ nonnegative such that

$$0 = \nabla f(x^*) + \sum_{i=1}^{e} \lambda_i \nabla g_i(x^*).$$

Since g_i are continuous functions, there is an open ball $B=B_r(x^*)$ of radius r>0 about x^* such that $g_i(x)<0$ for all $x\in B, j=e+1,\ldots,m$. So with respect to local solutions, inactive constraints can be deleted and the active inequality constraints become equality constraints. By the KKT condition for the equality case, there exist $\lambda_1,\ldots,\lambda_e$ such that

$$0 = \nabla f(x^*) + \sum_{i=1}^{e} \lambda_i \nabla g_i(x^*). \tag{7.2}$$

Now we only need to prove that $\lambda_i \geq 0, i = 1, \dots, e$. Consider the system of e equations in n+1 variables:

$$g_1(x_1,...,x_n) = -t$$

 $g_i(x_1,...,x_n) = 0$ $i = 2,...,e$.

Since $Dg_E(x^*)$ has rank e by the implicit function theorem Corollary 1.4.1, there $\varepsilon > 0$ and C^1 functions $x_1(t), \ldots, x_n(t)$ defind for $t \in [0, \varepsilon)$ such that $x(0) = x^*$ and for all $t \in [0, \varepsilon)$,

$$g_1(x_1(t), \dots, x_n(t)) = -t$$

 $g_i(x_1(t), \dots, x_n(t)) = 0 \quad \forall i = 2, \dots, e.$

Let v = x'(0). Applying the chain rule we conclude that

$$\nabla g_1(x^*) \cdot v = -1$$

$$\nabla g_i(x^*) \cdot v = 0 \quad \forall i = 2, \dots, e.$$

Since x(t) lies in the constraint region for all t and x^* minimizes f in the constraint region. $t \to f(x(t))$ attains minimum at the left boundary point t = 0. Therefore

$$\frac{d}{dt}f(x(t))|_{t=0} = \nabla f(x^*) \cdot v \ge 0.$$

By (7.2), $\nabla f(x^*) \cdot v = -\sum_{i=1}^e \lambda_i \nabla g_i(x^*) \cdot v = \lambda_1$ and hence $\lambda_1 \geq 0$. Similarly we can show that $\lambda_i \geq 0$ $i=2,\ldots,e$.

Sufficient optimality conditions

Consider the following optimization problem:

$$(P) \qquad \min \quad f(x)$$
 s.t.
$$g_i(x) = 0 \quad i = 1, \cdots, m-1$$

$$g_i(x) \le 0 \quad i = m, \cdots, p$$

$$x \in C.$$

Let x^* be a feasible point of problem (P). Denote by

$$I(x^*) := \{i = m, \dots, p : g_i(x^*) = 0\}$$

the index set of all active inequalities and

$$J(x^*) = I(x^*) \cup \{1, \cdots, m-1\}$$

the index set of all active constraints.

Definition (Quasiconvex function)

The function $f:\mathbb{R}^n\to\mathbb{R}$ is said to be quasiconvex if for each $x,y\in\mathbb{R}^n$, the following inequality is true:

$$f(\lambda x + (1 - \lambda)y) \le \max\{f(x), f(y)\}$$
 for each $\lambda \in (0, 1)$.

f is quasiconcave if and only -f is quasiconvex.

Proposition 4.4.1 Let $f: C \to R$ where C is a nonempty convex set in \mathbb{R}^n . The function f is quasiconvex if and only if the sublevel set

$$C_{\alpha} = \{ x \in C : f(x) \le \alpha \}$$

is convex for each real number α .

Proof. Suppose that f is quasiconvex, and let $x_1, x_2 \in C_\alpha$. Therefore $x_1, x_2 \in C$ and $\max\{f(x_1), f(x_2)\} \leq \alpha$. Let $\lambda \in (0,1)$ and let $x = \lambda x_1 + (1-\lambda)x_2$. By the convexity of C, $x \in C$. Furthermore by the quasiconvexity of f, $f(x) \leq \max\{f(x_1), f(x_2)\} \leq \alpha$. Hence $x \in C_\alpha$ and thus C_α is convex. Conversely, suppose that C_α is convex for some real number α . $x_1, x_2 \in C$. Let $\lambda \in (0,1)$ and let $x = \lambda x_1 + (1-\lambda)x_2$. Observe that $x_1, x_2 \in C_\alpha$ with $\alpha = \max\{f(x_1), f(x_2)\}$. By assumption, C_α is convex, so that $x \in C_\alpha$. Therefore, $f(x) \leq \alpha = \max\{f(x_1), f(x_2)\}$. Hence f is quasiconvex and the proof is complete.

Definition 4.4.2 (Strict quasiconvex function) Let $C \subset \mathbb{R}^n$ be a convex set and $f: C \to \mathbb{R}$. The function f is said to be strictly quasiconvex if, for each $x_1, x_2 \in C$ with $f(x_1) \neq f(x_2)$, the following inequality is true:

$$f(\lambda x_1 + (1-\lambda)x_2) < \max\{f(x_1), f(x_2)\} \quad \text{ for each } \lambda \in (0,1).$$

 $f\ is\ strictly\ quasiconcave\ if\ and\ only\ if\ -f\ is\ strictly\ quasiconvex.$

- **Theorem 4.4.1** (a) If f and g are quasiconvex functions on a convex set C in \mathbb{R}^n , then the sum f(x) + g(x) may not be a quasconvex function.
 - (b) If f(x) is a quasiconvex (resp. strictly quasiconvex) function defined on a convex set C in \mathbb{R}^n and if α is a positive number, then $\alpha f(x)$ is quasiconvex (resp. strictly quasiconvex) on C.
 - (c) If f(x) is a quasiconvex (resp. strictly quasiconvex) function defined on the convex set C in \mathbb{R}^n , and if g(y) is an increasing (resp. strictly increasing) function defined on the range of f(x) in \mathbb{R} , then the composite function g(f(x)) is quasiconvex (resp. strictly quasiconvex) on C.
 - (d) Let $g: R^m \to R$ be a quasiconvex function, and let $h: R^n \to R^m$ be an affine function of the form h(x) = Ax + b, where A is an $m \times n$ matrix and b is an $m \times 1$ vector. Then the composite function $f: R^n \to R$ defined as f(x) = g[h(x)] is a quasiconvex function.

Proposition 4.4.2 Let $g: D \to R$ and $h: D \to R$ where D is a nonempty convex subset of R^n . If

- (a) g is convex on D and $g(x) \ge 0 \forall x \in D$
- (b) h is concave on D and $h(x) > 0 \forall x \in D$,
- then f(x) = g(x)/h(x) is quasiconvex. If
 - (a) g is convex on D and $g(x) \le 0 \forall x \in D$
- (b) h is concave on D and $h(x) > 0 \forall x \in D$, then f(x) = g(x)h(x) is quasiconvex.

Theorem 4.4.2 Let $f: R^n \to R$ be strictly quasiconvex. Consider the problem to minimize f(x) subject to $x \in C$, where C is a nonempty convex set in R^n . If \bar{x} is a local optimal solution, then \bar{x} is also a global optimal solution.

Proof. Assume, on the contrary, that there exists an $\hat{x} \in C$ with $f(\hat{x}) < f(\bar{x})$. By the convexity of C, $\lambda \hat{x} + (1 - \lambda)\bar{x} \in C$ for each $\lambda \in (0, 1)$. Since \bar{x} is a local minimum by assumption, then $f(\bar{x}) \leq f(\lambda \hat{x} + (1 - \lambda)\bar{x})$ for all small enough $\lambda \in (0, 1)$. But because f is strictly quasiconvex, and $f(\hat{x}) < f(\bar{x})$, $f(\lambda \hat{x} + (1 - \lambda)\bar{x}) < f(\bar{x})$ for each $\lambda \in (0, 1)$. This contradicts the local optimality of \bar{x} , and the proof is complete.

Definition 4.4.3 (Pseudoconvex function) Let $C \subset \mathbb{R}^n$ and $\bar{x} \in C$. A differentiable function $f: C \to R$ is pseudoconvex at \bar{x} provided that for any $x \in C$,

$$\nabla f(\bar{x})^T(x - \bar{x}) \ge 0 \Longrightarrow f(x) \ge f(\bar{x}),$$

or equivalently

$$f(x) < f(\bar{x}) \Longrightarrow \nabla f(\bar{x})^T (x - \bar{x}) < 0.$$

The function f is said to be pseudoconvex on C if it is pseudoconvex at each point of C. We say that f is pseudoconcave if and only if -f is pseudoconvex.

Proposition 4.4.3 Let $c_1, c_2 \in R^n$ be nonzero vectors. $\alpha_1, \alpha_2 \in R$ and $D = \{x \in R^n : c_2^t x + \alpha_2 > 0\}$. Then $f(x) : D \to R$ defined by $f(x) = \frac{c_1^t x + \alpha_1}{c_2^t x + \alpha_2}$ is both pseudoconvex and pseudoconcave.

Theorem 4.4.3 Let C is a convex set and $f:C\to R$ be pseudoconvex. Then \bar{x} is a global minimum of f if and only if

$$\nabla f(\bar{x})^T (x - \bar{x}) \ge 0 \quad \forall x \in C.$$

Theorem 4.4.4 Let $f: C \to R$ be a differentiable convex function defined on an open convex set $C \subset \mathbb{R}^n$. Then f is both strictly quasiconvex and quasiconvex.

Proof. Since a differentiable function must be continuous and a continuous strictly quasiconvex function is quasiconvex. We only need to show that a pseudoconvex function f must be strictly quasiconvex. By contradiction, suppose that there exist $x_1, x_2 \in C$ such that $f(x_1) \neq f(x_2)$ and $f(x') \geq \max\{f(x_1), f(x_2)\}$ where $x' = \lambda x_1 + (1 - \lambda)x_2$, for some $\lambda \in (0, 1)$. Without loss of generality, assume that $f(x_1) < f(x_2)$, so that

$$f(x') \ge f(x_2) > f(x_1) \tag{4.10}$$

which implies, by the pseudoconvexity of f, that

$$\nabla f(x')^T (x_1 - x') < 0.$$

Now by $\nabla f(x')^T(x_1 - x') < 0$ and $x_1 - x' = -(1 - \lambda)(x_2 - x')/\lambda$ we have

$$\nabla f(x')^T (x_2 - x') > 0;$$

and, hence, by the pseudoconvexity of f, we must have $f(x_2) \ge f(x')$. Therefore by (4.10), we get $f(x_2) = f(x')$. Also since the directional derivative $f'(x'; x_2 - x') = \nabla f(x')^T (x_2 - x') > 0$, there exists a point $\hat{x} = \mu x' + (1 - \mu)x_2$ with $\mu \in (0,1)$ such that

$$f(\hat{x}) > f(x') = f(x_2)$$

Again by the pseudoconvexity of f, we have $\nabla f(\hat{x})^T(x_2 - \hat{x}) < 0$. Similarly, $\nabla f(\hat{x})^T(x' - \hat{x}) < 0$. Summarizing, we must have

$$\nabla f(\hat{x})^T (x_2 - \hat{x}) < 0$$
$$\nabla f(\hat{x})^T (x' - \hat{x}) < 0$$

Note that $x_2 - \hat{x} = \mu(\hat{x} - x')(1 - \mu)$ and, hence, by the above two inequalities are not compatible. This contradiction shows that f is strictly quasiconvex.

Theorem 8.0.1 (First order KKT sufficient condition) Let $x^* \in C$ be a feasible point of problem (P) where f, g_i are C^1 . Suppose that KKT condition holds at x^* , i.e., there exists $\lambda_i, i = 1, \ldots, p$ such that

$$\langle \nabla f(x^*) + \sum_{i=1}^p \lambda_i \nabla g_i(x^*), x - x^* \rangle \ge 0 \quad \forall x \in C$$
$$\lambda_i \ge 0, 0 = \lambda_i g_i(x^*) \quad i = m, \dots, p.$$

Suppose that C is a convex set, f is pseudoconvex at x^* on C, g_i is quasiconvex for all $i \in I(x^*)$, $g_i(i = 1, ..., m - 1)$ is both quasiconvex and quasiconcave. Then x^* is a global optimal solution to (P).

Proof. Let x^* be any feasible solution to problem (P).

Then for $i \in I(x^*)$ and any feasible solution $x, g_i(x) \leq g_i(x^*)$. By the quasiconvexity of g_i at x^* , it follows that

$$g_i(x^* + \lambda(x - x^*)) = g_i(\lambda x + (1 - \lambda)x^*) \le \max\{g_i(x), g_i(x^*)\} = g_i(x^*) \quad \forall \lambda \in (0, 1).$$

Dividing the above inequality by λ and take $\lambda \downarrow 0$, one has

$$\langle \nabla g_i(x^*), x - x^* \rangle \le 0 \quad \forall i \in I(x^*).$$
 (8.1)

Similarly since $g_i(i=1,\ldots,m-1)$ are both quasiconvex and quasiconcave, we have

$$\langle \nabla g_i(x^*), x - x^* \rangle = 0 \quad \forall i = 1, \dots, m - 1.$$
(8.2)

Multiplying (8.1) and (8.2) by $\lambda_i \geq 0 (i \in I(x^*))$ and $\lambda_i (i = 1, ..., m-1)$ respectively and adding, we get

$$\langle \sum_{i \in J(x^*)} \lambda_i \nabla g_i(x^*), x - x^* \rangle \le 0 \qquad x \in C.$$

By assumption the KKT condition holds at x^* . Therefore

$$\langle \nabla f(x^*), x - x^* \rangle \ge -\langle \sum_{i \in J(x^*)} \lambda_i \nabla g_i(x^*), x - x^* \rangle \ge 0 \quad \forall x \in C.$$

By the pseudoconvexity of f at x^* , we must have $f(x) \ge f(x^*)$, and the proof is complete.

◆□▶ ◆御▶ ◆巻▶ ◆巻▶ ○巻 ○夕○○

Proposition 8.0.1 Let f be a C^1 function on R^n and C is a convex subset of R^n . Let $\bar{x} \in C$. Suppose that f is a quasiconcave at on C and $\nabla f(\bar{x}) \neq 0$. Then f is pseudoconcave at \bar{x} on C.

Proof. By the definition of pseudoconcavity at \bar{x} , it suffices to show that for all $x \in C$

$$f(x) > f(\bar{x}) \Longrightarrow \nabla f(\bar{x}) \cdot (x - \bar{x}) > 0.$$

Since $f(x) > f(\bar{x})$, one can find $\alpha > 0$ very small such that

$$f(x - \alpha \nabla f(\bar{x})) > f(\bar{x}).$$

Since by assumption f is a quasiconcave at on C, for all $\lambda \in (0,1)$,

$$f(\lambda(x-\alpha\nabla f(\bar x))+(1-\lambda)\bar x)\geq \min\{f(x-\alpha\nabla f(\bar x)),f(\bar x)\}=f(\bar x).$$

That is,

$$f(\bar{x} + \lambda(x - \alpha \nabla f(\bar{x}) - \bar{x})) - f(\bar{x}) \ge 0.$$

Dividing the above inequality by λ and let λ approach zero, we have

$$\nabla f(\bar{x})\cdot(x-\alpha\nabla f(\bar{x})-\bar{x})\geq 0.$$

Since $\nabla f(\bar{x}) \neq 0$, the above inequality implies that

$$\nabla f(\bar{x}) \cdot (x - \bar{x}) \ge \alpha \|\nabla f(\bar{x})\|^2 > 0.$$

Hence the proof is complete.

Theorem 8.0.1 Let $x^* \in C$ be a feasible point of the maximization problem

$$(P_{max}) \qquad \max \qquad f(x)$$

$$s.t. \qquad g_i(x) = 0 \quad i = 1, \dots, m-1$$

$$g_i(x) \le 0 \quad i = m, \dots, p$$

$$x \in C.$$

where f, g_i are C^1 . Suppose that KKT condition holds at x^* , i.e., there exists $\lambda_i, i = 1, \ldots, p$ such that

$$\langle \nabla f(x^*) + \sum_{i=1}^p \lambda_i \nabla g_i(x^*), x - x^* \rangle \le 0 \quad \forall x \in C$$
$$\lambda_i \ge 0, 0 = \lambda_i g_i(x^*) \quad i = m, \dots, p.$$

Suppose that C is a convex set, f is quasiconcave on C and $\nabla f(x^*) \neq 0$, g_i is quasiconvex for all $i \in I(x^*)$, $g_i(i = 1, ..., m - 1)$ is both quasiconvex and quasiconcave. Then x^* is a global optimal solution to (P_{max}) .

Theorem (second order KKT sufficient condition) Let $x^* \in \operatorname{int}(C)$ be feasible to (P), where f, g_i are of class C^2 . Suppose that KKT condition holds at x^* , then for any direction $v \neq 0$ with

$$\nabla f_i(x^*)^T v \le 0; \nabla g_i(x^*)^T v = 0, \forall i = 1, 2, \dots, m-1; \nabla g_i(x^*)^T v \le 0, \forall i \in I(x^*) \quad (**)$$

there exists λ of KKT multipliers such that

$$v^{T} \nabla_{x}^{2} L\left(x^{*}, \lambda\right) v > 0.$$

Then x^* is a strict local optimal solution to (P).

Proof: Suppose the conclusion does not hold. Then $\exists \left\{x^k\right\} \to x^*$ of feasible points such that $f\left(x^k\right) \leq f(x^*)$. Denote $v^k = \left(x^k - x^*\right) / \left\|x^k - x^*\right\|$, then extracting a subsequence if necessary, we can assume that $v^k \to \bar{v}$ with $\|\bar{v}\| = 1$. Then

(1.) \bar{v} satisfies (**).

Actually, by the Taylor expansion, there exists $\tilde{x}^k \in [x^*, x^k]$ such that

$$f(x^{k}) = f(x^{*}) + (x^{k} - x^{*})^{T} \nabla f(\tilde{x}^{k})$$

$$g_{i}(x^{k}) = g(x^{*}) + (x^{k} - x^{*})^{T} \nabla g_{i}(\tilde{x}^{k}) \forall i = 1, 2, \dots, m - 1$$

$$g_{i}(x^{k}) = g(x^{*}) + (x^{k} - x^{*})^{T} \nabla g_{i}(\tilde{x}^{k}) \forall i \in I(x^{*})$$

Recall that $f(x^k) \le f(x^*)$, $g_i(x^k) = 0$ for $i = 1, 2, \dots, m-1$ and $g_i(x^k) \le 0 = g(x^*)$ for $i \in I(x^*)$. We have

$$0 \ge \frac{f(x^k) - f(x^*)}{\|x^k - x^*\|} = \left(v^k\right)^T \nabla f\left(\tilde{x}^k\right)$$
$$0 = \left(v^k\right)^T \nabla g_i\left(\tilde{x}^k\right), \quad \forall i = 1, 2, \cdots, m - 1$$
$$0 \ge \frac{g(x^k)}{\|x^k - x^*\|} = \left(v^k\right)^T \nabla g_i\left(\tilde{x}^k\right), \quad \forall i \in I(x^*).$$

Taking the limit,

$$0 \ge \bar{v}^T \nabla f(x^*); \quad 0 = \bar{v}^T \nabla g_i(x^*), \forall i = 1, 2, \dots, m-1; \ 0 \ge \bar{v}^T \nabla g_i(x^*), \forall i \in I(x^*).$$

(2.) However for all λ of KKT multipliers, we have $\bar{v}^T \nabla_x^2 L\left(x^*,\lambda\right) \bar{v} \leq 0$. Notice that

$$\begin{split} f\left(x^{k}\right) \geq & f(x^{k}) + \sum_{i=1}^{p} \lambda_{i} g_{i}(x^{k}) \\ = & f(x^{*}) + \sum_{i=1}^{p} \lambda_{i} g_{i}(x^{*}) + \left(x^{k} - x^{*}\right)^{T} \left(\nabla f(x^{*}) + \sum_{i=1}^{p} \lambda_{i} \nabla g_{i}(x^{*})\right) \\ & + \frac{1}{2} \left(x^{k} - x^{*}\right)^{T} \left(\nabla^{2} f(y^{k}) + \sum_{i=1}^{p} \lambda_{i} \nabla^{2} g_{i}(y^{k})\right) \left(x^{k} - x^{*}\right) \\ = & f(x^{*}) + \frac{1}{2} \left(x^{k} - x^{*}\right)^{T} \left(\nabla^{2} f(y^{k}) + \sum_{i=1}^{p} \lambda_{i} \nabla^{2} g_{i}(y^{k})\right) \left(x^{k} - x^{*}\right), \end{split}$$

where $y^k \in [x^*, x^k]$ and the last equality holds since λ is a KKT multiplier.

Recall $f(x^k) \leq f(x^*)$, we have

$$0 \ge \frac{f(x^k) - f(x^*)}{\|x^k - x^*\|^2} = \frac{1}{2} (v^k)^T \nabla_x^2 L(y^k, \lambda) v^k.$$

Taking the limit,

$$0 \ge \bar{v}^T \nabla_x^2 L(x^*, \lambda) \, \bar{v},$$

which gives a contradiction.