

# **Kafka Architecture and Usage**

## **K V Subramaniam**

**Computer Science and Engineering** 

#### **Kafka Overview**



- Need for data pipelines
- Kafka architecture
- Kafka components messaging model
- Communication and Routing
- Messages
- Scaling
- Fault Tolerance



**Kafka: Need for data pipelines** 

# The need for processing events



- Stream processing requires requires processing of events
- Think of an event as something that happens at a time
- Events are processed on the server
- For example
  - "Student with ID 23489 entered building"



Data pipelines starts like this.

# **What are Data Pipelines**



- Data sources are varied and
  - Stream data at varied rates
  - Are very lightweight and not capable of compute
- Analysis is done on servers
- Data has to be transferred from sources to the compute servers
- Point to point connection is a simple way to connect



Data pipelines starts like this.

# **Handling multiple sources**



- But sources are many
- We often have to read from multiple data sources
  - E.g: Multiple cameras connected to a central processing system
- We can connect multiple clients each over a pool of connections



# **Need for multiple backends**



- But we might have multiple servers
- On which to process the same data
- Use case: stock trading may have different analysts wanting to analyze the behavior



# The maze of connections

PES UNIVERSITY ONLINE

• Then it starts to look like this.



#### The maze of connections





With may be some of these.

• As Distributed systems and services increasingly become part of modern architecture, this makes for a fragile system.

# **Exercise 1 (5 minutes)**

PES UNIVERSITY

- Give an example of how datapipelines could be used
  - What are some examples of backends?



# **Exercise 1 (5 minutes)**

PES UNIVERSITY

- Give an example of how datapipelines could be used
  - What are some examples of backends?





# **Kafka architecture**

# Why Kafka?

PES UNIVERSITY ONLINE

- Can we have an intermediary that connects
  - Different sources
  - Multiple backends
- Decouple the pipeline so that producers and consumers do not need to know about each other



**Kafka Decouples Data Pipelines** 



# Kafka Components – Publish Subscribe Model

# **BIG DATA KAFKA components**

# PES UNIVERSITY ONLINE

# The Three essential Elements /Components:

- 1. Publisher
- 2. Subscriber
- 3. Communication Infrastruture



#### **Kafka Decouples Data Pipelines**

# BIG DATA KAFKA



#### **Publishers and Subscribers**

So,

Okay . So

- Q) What does a Publisher do ..?
- A. It publishes <u>messages</u> to the Communication Infrastructure.

- Q) What does a Subscriber do ..?
- A. It subscribes to a category of messages.

# BIG DATA KAFKA



# **The Routing Mystery**



What If I tell you
I am the Publisher
and
I have no idea about
the Subscriber.



What If I tell you
I am the Subscriber
and
I have no idea about
the Publisher.

# Role of a producer

PES UNIVERSITY ONLINE

- Defines what data it wants to send
- Packages that go into a message and..
- It publishes messages on the communication infrastructure
- Simplest part → called the publisher



**Kafka Decouples Data Pipelines** 

#### **Role of a Consumer**



- Tells the communication infrastructure
  - What type of messages it wants to receive
- Does not tell "who" to receive message from.
- Messages are delivered to the consumer by the communication infrastructure.
- Called the *subscriber*



**Kafka Decouples Data Pipelines** 



# **Kafka Communication and Routing**

# BIG DATA KAFKA

# Which Messages get Delivered to Each Subscriber?

- Topic based system
- Content-based system





#### The Communication infrastructure



- The most complex part
- Which messages are delivered to each subscriber
- Two models of Routing
  - Topic based systems
  - Content based systems



**Kafka Decouples Data Pipelines** 

# **Topic based routing**



- Publishers send messages with topic labels
- Subscribers subscribe to topics
  - And will receive all messages on that topic
- Example
  - Subscribe to all fire sensors in b block



**Kafka Decouples Data Pipelines** 

# **Content based routing**



- Subscribers define matching criteria
- And will receive all messages that match the criteria
- Example
  - Subscribe to advertisements that feature ViratKohli
  - This is not supported by Kafka
- Pattern based
  - Supports a simpler version called pattern based where we can give a wildcard expression for a topic
  - Get all topics that have ipl\*



Kafka Decouples Data Pipelines

# **Communication advantages/disadvantages**

# Pros

- No hard-wired connections between publishers and subscribers
- Flexible: Easy to add and remove publishers or subscribers

#### Cons

- Design and maintenance of topics
- Performance overhead due to communication infrastructure



# **Exercise 2 (5 minutes)**

- Consider a bookstore portal with various activities such as
  - Login
  - List books
  - Get book details
  - Buy book
  - Check status of order
  - Return book
  - Logout
- Assume we have 3 backend modules
  - Security
  - Order processing
  - Book information
- Would you use a topic-based or content-based system? What would be the topics / content..?





# **Exercise 2 (Solution)**

- Would you use a topic-based or content-based system? What would be the topics / content..?
  - Probably topic-based, since each message type can be a topic







# **Kafka Messages**

# **KAFKA Topics, Producers and Consumers**



# Topics, Producers and Consumers.



Topic name: "/shopping-cart-done", "/user-signups"

Topic: log data structure on disk

# **BIG DATA KAFKA Message**



# A Kafka Message





# **Kafka Scaling**

# BIG DATA KAFKA





- Partitions allow
  - Log greater than disk size
  - Throughput > single server
- Distributed over servers

- Publisher can load balance
  - Round-robin
  - Based on key
- Messages have an offset

## **Exercise 3**

PES UNIVERSITY ONLINE

- How can reliability be guaranteed in Kafka?
  - Hint: How does HDFS guarantee reliability?





# **Fault Tolerance in Kafka**

# **Fault-tolerance in Kafka (Replication)**



- Partitions can be replicated
  - Leader: all reads, writes
  - Follower replicates
  - New leader if leader fails
- Durability levels
  - Sync: after quorum writes
  - Async
    - 0 = leader only
    - -1 = no write
- Recommended
  - Replicas = 3
  - Quorum = 2



# Message delivery to consumers



Topic with 4 partitions



- Consumer group
  - Typically multiple instances of an application

- Partition delivers message to ONE of the group members
  - Load balancing

#### **Exercise 4**



Topic with 4 partitions



• In the above configuration, how is the load balanced over all the instances?

# **Exercise 4 (Solution)**





- Group A
  - C1 is assigned P0, P3
  - C2 is assigned P1, P2
- Group B
  - C3 is assigned P0
  - C4 is assigned P3
  - ...
- Each instance has the same number of partitions

#### **Exercise 5**



- Suppose we have a Kafka system
  - 1 topic
  - 3 servers
  - 3 partitions
  - 3 replicas per partition
  - Consumer group with 3 instances
- Draw a diagram showing
  - Servers
  - Partitions
  - Consumer instances
  - Partition assignments



# **Exercise 5 (Solution)**

PES UNIVERSITY ONLINE

- Suppose we have a Kafka system
  - 1 topic
  - 3 servers
  - 3 partitions
  - 3 replicas per partition
  - Consumer group with 3 instances
- Draw a diagram showing
  - Servers
  - Partitions
  - Consumer instances
  - Partition assignments





# **Kafka Performance**

#### **Kafka Performance**





- I/O
  - Sequential reads by consumers
  - Sequential writes by producers

- Zero Copy I/O
  - DMA
  - No copy from kernel to user
- Write batching

# BIG DATA KAFKA



# Who uses Kafka?

- *LinkedIn*: Activity data and Operational metrics.
- *Twitter*: Uses it as part of Storm stream Processing infrastructure.
- **Square**: Kafka as bus to move all system events to various Square data centers(logs, custom events, metrics, and so on). Outputs to Splunk, Gtaphite, Esper-like alerting systems.
- Spotify, Uber, Tumbler, Goldman Sachs, PayPal, Box, Cisco, Cloud Fatr, DataDog, LucidWorks, MailChimp, Netflix, etc.

#### Kafka at LinkedIn







- Multiple data centers
- System monitoring
  - 320,000,000 metrics/minute
  - 530 TB of disk space
  - > 210,000 metrics / service
- Analysis Hadoop, ...

# **Additional Reading**

P

- Introduction to Kafka
  - https://kafka.apache.org/intro
  - Watch the video on the introduction.
- Kafka in a nutshell
  - https://sookocheff.com/post/kafka/kafka-in-a-nutshell



# **THANK YOU**

K V Subramaniam, Usha Devi

Dept. of Computer Science and Engineering

subramaniamkv@pes.edu

ushadevibg@pes.edu