

# Regression

| <ul><li>Created</li></ul> | @September 29, 2024 6:34 PM           |
|---------------------------|---------------------------------------|
|                           | Supervised Learning with scikit-learn |

Introduction to Regression in Supervised Learning

Prerequisites

**Key Details** 

Regression Overview

Definition

**Data Preparation** 

Linear Regression Model

Model Fitting

Visualization

Mathematical Formulation of Linear Regression

Key Takeaways

**Understanding Linear Regression** 

Prerequisites

Key Details

**Linear Regression Fundamentals** 

Simple Linear Regression

Error Function (Loss/Cost Function)

Multiple Linear Regression

Implementation with scikit-learn

Model Evaluation Metrics

R-squared (Coefficient of Determination)

Mean Squared Error (MSE) and Root Mean Squared Error (RMSE)

Mathematical Formulation

Ordinary Least Squares (OLS)

R-squared

**RMSE** 

Key Takeaways

Cross-Validation in Machine Learning

Prerequisites

Key Details

The Problem with Simple Train-Test Splits

Cross-Validation Technique

Types of Cross-Validation

Mathematical Representation

R-squared Calculation

Confidence Interval Calculation

Trade-offs

Implementing k-fold CV in scikit-learn

Key Takeaways

Regularization in Regression

Prerequisites

Key Details

Loss Function in Regression

Ridge Regression

**Key Concepts** 

Impact of Alpha  $\alpha$ :

Code Example: Ridge Regression

Choosing Alpha:

Lasso Regression

**Key Concepts** 

Impact of Alpha  $\alpha$ :

Feature Selection:

Code Example: Lasso Regression

Feature Importance:

**ElasticNet Regression** 

**Key Concepts** 

Code Example: ElasticNet

Summary of Regularization Techniques

Ridge Regression:

Lasso Regression:

ElasticNet Regression:

**Practical Considerations** 

# Introduction to Regression in Supervised Learning

## **Prerequisites**

• We'll be using diabetes dataset.

## **Key Details**

Focus: Regression for predicting continuous target variables

## **Regression Overview**

#### **Definition**

 Predicts continuous target variables (e.g., GDP, house prices, blood glucose levels)

#### **Data Preparation**

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression

# Load and prepare data
df = pd.read_csv('womens_health_data.csv')
X = df.drop('blood_glucose', axis=1).values
y = df['blood_glucose'].values

# Using single feature (BMI) for simplicity
X_bmi = X[:, 3].reshape(-1, 1)
```

## **Linear Regression Model**

## **Model Fitting**

```
reg = LinearRegression()
reg.fit(X_bmi, y)
```

```
# Generate predictions
predictions = reg.predict(X_bmi)
```

#### Visualization

```
plt.scatter(X_bmi, y)
plt.plot(X_bmi, predictions, color='black')
plt.xlabel('Body Mass Index')
plt.ylabel('Blood Glucose Level')
plt.show()
```

## **Mathematical Formulation of Linear Regression**

Linear regression models the relationship between a dependent variable y and one or more independent variables X:

$$y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_n X_n + \epsilon$$

Where:

- y is the dependent variable (target)
- $X_1, X_2, ..., X_n$  are independent variables (features)
- $\beta_0$  is the y-intercept
- $\beta_1, \beta_2, ..., \beta_n$  are the coefficients
- $\epsilon$  is the error term

For simple linear regression (one feature):

$$y = \beta_0 + \beta_1 X + \epsilon$$

The goal is to find  $eta_0$  and  $eta_1$  that minimize the sum of squared residuals:

$$\min_{\beta_0,\beta_1} \sum_{i=1}^n (y_i - (\beta_0 + \beta_1 x_i))^2$$

## **Key Takeaways**

Regression predicts continuous target variables

- Linear regression fits a straight line to the data
- Data preparation involves separating features (X) and target (y)
- Scikit-learn requires 2D array for features, even with single feature
- Visualizing data and model predictions helps in understanding relationships
- Linear regression shows a weak-to-moderate positive correlation between BMI and blood glucose levels in this example

# **Understanding Linear Regression**

## **Prerequisites**

• We'll be using advertising\_and\_sales dataset.

## **Key Details**

- Focus: Mechanics of linear regression and model evaluation
- Concepts: Simple and multiple linear regression, loss functions, model performance metrics

## **Linear Regression Fundamentals**

#### **Simple Linear Regression**

- Equation: y = ax + b
  - $\circ$  y: target variable
  - x feature
  - a: slope (coefficient)
  - b: intercept

#### **Error Function (Loss/Cost Function)**

- Goal: Minimize vertical distance between fit line and data points
- Residual: Vertical distance between observation and fitted line

- ullet Residual Sum of Squares (RSS):  $\sum_{i=1}^n (y_i (ax_i + b))^2$
- Method: Ordinary Least Squares (OLS)

## **Multiple Linear Regression**

```
• Equation: y=a_1x_1+a_2x_2+...+a_nx_n+b
• x_1,x_2,...,x_n: features
• a_1,a_2,...,a_n: coefficients for each feature
```

## Implementation with scikit-learn

```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

# Split data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# Create and fit model
model = LinearRegression()
model.fit(X_train, y_train)

# Make predictions
y_pred = model.predict(X_test)
```

#### **Model Evaluation Metrics**

#### R-squared (Coefficient of Determination)

- Measures the proportion of variance in the target variable explained by the features
- Range: 0 to 1 (1 indicates perfect fit)
- Calculation:

```
r_squared = model.score(X_test, y_test)
print(f"R-squared: {r_squared:.2f}")
```

## Mean Squared Error (MSE) and Root Mean Squared Error (RMSE)

- MSE: Average of squared residuals
- RMSE: Square root of MSE (in original units of target variable)
- Calculation:

```
from sklearn.metrics import mean_squared_error

rmse = mean_squared_error(y_test, y_pred, squared=False)
print(f"RMSE: {rmse:.2f}")
```

#### **Mathematical Formulation**

#### **Ordinary Least Squares (OLS)**

Minimize:

$$\sum_{i=1}^{n} (y_i - (a_1x_{1i} + a_2x_{2i} + ... + a_nx_{ni} + b))^2$$

#### R-squared

$$R^2 = 1 - rac{\sum_{i=1}^{n} (y_i - \hat{y}i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$

Where  $\hat{y}_i$  are predicted values and  $ar{y}$  is the mean of observed values.

#### **RMSE**

$$RMSE = \sqrt{rac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2}$$

## **Key Takeaways**

• Linear regression fits a line to data by minimizing the sum of squared residuals

- Simple linear regression uses one feature, multiple linear regression uses two or more
- R-squared measures the proportion of variance explained by the model
- RMSE provides an interpretable measure of model error in the original units of the target variable
- In the example, the model explains about 35% of blood glucose level variance
- The average prediction error is around 24 mg/dL for blood glucose levels

# **Cross-Validation in Machine Learning**

## **Prerequisites**

We'll be using advertising\_and\_sales dataset.

## **Key Details**

- · Cross-validation mitigates dependence on random train-test splits
- Provides a more robust estimate of model performance
- Assesses model's ability to generalize to unseen data

## The Problem with Simple Train-Test Splits

- R-squared on test set depends on specific data points in that split
- May not be representative of model's true generalization ability

## **Cross-Validation Technique**

- 1. Split dataset into k groups or folds (e.g., 5 folds)
- 2. Iterative process:
  - Set aside one fold as test set
  - Fit model on remaining folds
  - Predict on test set

- Compute performance metric (e.g., R-squared)
- 3. Repeat for each fold as test set
- 4. Result: k performance metric values

## **Types of Cross-Validation**

- 5-fold CV: dataset split into 5 folds
- 10-fold CV: dataset split into 10 folds
- k-fold CV: dataset split into k folds

## **Mathematical Representation**

Let D be the full dataset, and  $D_i$  be the  $i^{th}$  fold of the data.

For k-fold cross-validation:

$$D = \bigcup_{i=1}^k D_i$$

Where 
$$D_i \cap D_j = \emptyset$$
 for  $i 
eq j$ 

For each iteration i:

- Test set:  $D_i$
- Training set:  $D \setminus D_i$

The cross-validation estimate of the performance metric is:

$$CV_k = rac{1}{k} \sum_{i=1}^k M_i$$

Where  $M_i$  is the performance metric (e.g., R-squared) for the  $i^{th}$  fold.

## **R-squared Calculation**

R-squared for each fold is calculated as:

$$R^2 = 1 - rac{\sum_{i=1}^{n} (y_i - \hat{y}i)^2}{\sum_{i=1}^{n} (y_i - ar{y})^2}$$

Where:

- ullet  $y_i$  are the true values
- $\hat{y}_i$  are the predicted values

•  $ar{y}$  is the mean of the true values

#### **Confidence Interval Calculation**

95% Confidence Interval:

$$CI_{95\%} = [ar{M} - 1.96 \cdot rac{s}{\sqrt{k}}, ar{M} + 1.96 \cdot rac{s}{\sqrt{k}}]$$

#### Where:

- ullet  $ar{M}$  is the mean of the k performance metrics
- ullet is the standard deviation of the k performance metrics
- *k* is the number of folds

#### Trade-offs

- More folds: More computationally expensive
- · Reason: More fitting and predicting iterations

## Implementing k-fold CV in scikit-learn

```
from sklearn.model_selection import cross_val_score, KFold
from sklearn.linear_model import LinearRegression
import numpy as np

# Create KFold object
kf = KFold(n_splits=6, shuffle=True, random_state=42)

# Instantiate model
model = LinearRegression()

# Perform cross-validation
cv_results = cross_val_score(model, X, y, cv=kf)

# Print results
print(cv_results)
```

```
# Calculate statistics
mean_score = np.mean(cv_results)
std_score = np.std(cv_results)
confidence_interval = np.quantile(cv_results, [0.025, 0.975])

print(f"Mean R-squared: {mean_score}")
print(f"Standard deviation: {std_score}")
print(f"95% Confidence Interval: {confidence_interval}")
```

## **Key Takeaways**

- Cross-validation provides multiple performance metrics
- Allows calculation of mean, median, and confidence intervals
- More robust than single train-test split
- Helps assess model's ability to generalize
- Tradeoff between number of folds and computational cost
- Scikit-learn provides easy implementation with <a href="mailto:cross\_val\_score">cross\_val\_score</a> and <a href="mailto:KFold">KFold</a>

# **Regularization in Regression**

## **Prerequisites**

• We'll be using diabetes dataset.

## **Key Details**

- **Regularization** is a technique used to prevent overfitting by penalizing large coefficients in regression models.
- Overfitting occurs when the model fits the training data too well, capturing noise instead of general patterns.

#### **Loss Function in Regression**

• Fitting a linear regression model typically involves minimizing a loss function:

$$\mathrm{Loss} = \sum (y_{\mathrm{true}} - y_{\mathrm{pred}})^2$$

 In regularized regression, the loss function is altered to include a penalty for large coefficients.

## **Ridge Regression**

#### **Key Concepts**

 Ridge regression adds a penalty term based on the sum of the squared values of the coefficients:

Ridge Loss = 
$$\sum (y_{\text{true}} - y_{\text{pred}})^2 + \alpha \sum \beta_i^2$$

- $\circ \ \ lpha$  is a hyperparameter controlling the strength of regularization.
- $\circ$   $eta_i$  represents the coefficients of the regression model.

#### Impact of Alpha $\alpha$ :

- When  $\alpha=0$ , ridge regression behaves like ordinary least squares (**OLS**) regression, leading to possible **overfitting**.
- A high  $\alpha$  penalizes large coefficients, which can result in **underfitting**.

## **Code Example: Ridge Regression**

```
from sklearn.linear_model import Ridge
from sklearn.model_selection import train_test_split
from sklearn.datasets import make_regression

# Create synthetic data
X, y = make_regression(n_samples=100, n_features=2, noise=0.
```

```
1, random_state=42)

# Split the data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Initialize Ridge regression with alpha=1.0
ridge_model = Ridge(alpha=1.0)
ridge_model.fit(X_train, y_train)

# Predict and display coefficients
y_pred = ridge_model.predict(X_test)
print("Ridge coefficients:", ridge_model.coef_)
```

#### **Choosing Alpha:**

- $\alpha$  is a hyperparameter that balances model complexity.
  - $\circ$  A small  $\alpha$  leads to minimal regularization (closer to OLS).
  - $\circ~$  A large  $\alpha$  increases regularization, reducing overfitting but risking underfitting.

## **Lasso Regression**

#### **Key Concepts**

 Lasso (Least Absolute Shrinkage and Selection Operator) regression modifies the loss function by adding the absolute values of the coefficients:

Lasso Loss = 
$$\sum (y_{\text{true}} - y_{\text{pred}})^2 + \alpha \sum |\beta_i|$$

 Lasso can shrink some coefficients to zero, effectively performing feature selection.

#### Impact of Alpha $\alpha$ :

- Similar to Ridge,  $\alpha$  controls the strength of regularization.
  - A large  $\alpha$  can result in **underfitting** by shrinking too many coefficients to zero.

#### **Feature Selection:**

 Lasso is useful for identifying important features in a dataset by zeroing out less important coefficients.

#### **Code Example: Lasso Regression**

```
from sklearn.linear_model import Lasso

# Initialize Lasso with alpha=0.1
lasso_model = Lasso(alpha=0.1)

# Fit model to the entire dataset
lasso_model.fit(X, y)

# Extract coefficients
lasso_coef = lasso_model.coef_
print("Lasso coefficients:", lasso_coef)

# Plotting coefficients
import matplotlib.pyplot as plt
plt.bar(range(len(lasso_coef)), lasso_coef)
plt.show()
```

#### **Feature Importance:**

• In the example, Lasso regression helps determine the most important predictor for blood glucose levels. The most important feature is whether an individual has **diabetes**, which aligns with expectations.

## **ElasticNet Regression**

#### **Key Concepts**

• ElasticNet combines the penalties of both Ridge and Lasso regression:

ElasticNet Loss = 
$$\sum (y_{\text{true}} - y_{\text{pred}})^2 + \alpha_1 \sum \beta_i^2 + \alpha_2 \sum |\beta_i|$$

 ElasticNet strikes a balance between Ridge's squared penalty and Lasso's absolute value penalty.

## **Code Example: ElasticNet**

```
from sklearn.linear_model import ElasticNet

# Initialize ElasticNet with specific alpha parameters
elasticnet_model = ElasticNet(alpha=0.1, l1_ratio=0.5)

# Fit the model and make predictions
elasticnet_model.fit(X_train, y_train)
y_pred = elasticnet_model.predict(X_test)
```

## **Summary of Regularization Techniques**

#### **Ridge Regression:**

- Penalizes the squared values of the coefficients.
- Effective for datasets where **all features are relevant**, but overfitting needs control.

#### **Lasso Regression:**

- Penalizes the absolute values of the coefficients.
- Performs feature selection by shrinking irrelevant coefficients to zero.

## **ElasticNet Regression:**

- Combines both Ridge and Lasso penalties.
- Useful for cases where **some features** are important, but **feature selection** is needed.

#### **Practical Considerations**

- Regularization techniques are essential when dealing with high-dimensional data where overfitting is a concern.
- Tuning the \(\alpha\) parameter is critical to finding the right balance between underfitting and overfitting.