- 21 -

CLAIMS

	 A system for web inspection of a web, the system comprising:
2	a plurality of smart cameras, each smart camera for detecting a plurality
	of web flaws from a streaming video signal, each smart camera
4	having means for generating flaw image data and flaw location
	data;
6	a host computer for controlling the low contrast web inspection system
	and for accepting and displaying the flaw image data and the flaw
8	location data; and
	an ethernet for connecting the plurality of smart cameras to the host
10	computer.
	2. The system of claim 1, wherein each smart camera of the plurality of smart
2	cameras comprises:
	a line scan camera for generating a pixel representation of a portion of
4	the web;
	a lighting uniformity and pixel sensitivity correction means for correcting
6	each pixel of the pixel representation and for providing a corrected
	pixel representation;
8	a web edge detector for detecting at least one edge of the web;
	a multi-pipeline pre-processor for filtering the corrected pixel
10	representation, the multi-pipeline preprocessor generating a
	prioritized data stream of potential flaws;
12	a run length encoder for generating location data regarding a location of
	each group of the potential flaws in a cross direction;
14	a blob detector for generating block data regarding the location of blocks
	of the potential flaws along a machine direction; and
16	an inspect/reject analyzer for determining actual flaw data from the
	prioritized data stream of potential flaws.

6

	3. The system of claim 2, wherein the multi-pipeline processor comprises:
2	a plurality of filters for averaging the corrected pixel representation over
	a distance of the web along a machine direction of the web;
4	a plurality of adaptive background subtraction channels connected to the
	plurality of filters;
6	a plurality of thresholders, each thresholder of the plurality of thresholders
	connected to an output of an adaptive background subtraction
8	channel of the plurality of adaptive background subtraction
	channels, each thresholder for grouping a subtracted pixe
10	representations; and
	a priority logic circuit for prioritizing the outputs of each of the plurality of
12	thresholders.
	4. The system of claim 3, wherein the plurality of filters comprises:
2	a background filter;
	a machine direction streak filter;
4	a cross direction streak filter; and
	a small flaw filter.
	5. The system of claim 3, wherein the plurality of thresholders comprises:
2	a single pixel flaw detector;
	a uniformity detector;
4	a machine direction streak detector;

a cross direction streak detector; and

a small flaw detector.

16

- 23 -

	6. The system of claim 1, wherein each smart camera of the plurality of smart
2	cameras detects the plurality of web flaws from the streaming video signal at a
	contrast approaching a signal noise level.
	7. A method for low contrast web inspection of a web, the method comprising
2	the steps of:
	providing at least on smart camera for inspecting at least a portion of the
4	web;
	generating flaw image data and flaw location data;
6	transmitting the flaw image data and flaw location data over an ethernet;
	displaying the flaw image data and flaw location data.
	8. The method of claim 7, wherein the step of generating flaw image data and
2	flaw location data comprises the steps of:
	generating a pixel representation of a portion of the web;
4	correcting the pixel representation for a lighting uniformity and a pixel
	sensitivity;
6	filtering the corrected pixel representation utilizing a plurality of filters;
	grouping the filtered corrected pixel representations to generate a
8	plurality of potential flaw data streams;
	generating a prioritized data stream from the plurality of potential flaw
10	data streams;
	generating cross direction location data regarding a location of the
12	prioritized data stream;
	generating block data regarding the location of blocks of the prioritized
14	data stream along a machine direction; and
	determining actual flaw data from the prioritized data stream of potential

flaws utilizing the cross direction location data and the block data.

- 24 -

	9. A method for generating a prioritized image data stream from a digitized
2	video stream of a web, the method comprising the steps:
	averaging the digitized video stream over a distance of the web to
4	generate an averaged background signal;
	averaging the digitized video stream over a distance of the web along a
6	machine direction of the web to generate a filtered machine
	direction signal ;
8	averaging the digitized video stream over a distance of the web along a
	cross direction of the web to generate a filtered cross direction
10	signal;
	subtracting the averaged background signal from the filtered machine
12	direction signal to generate a first pixel representation;
	subtracting the averaged background signal from the filtered cross
14	direction signal to generate a second pixel representation;
	grouping the first and second pixel representations to generate at least
16	two data streams of potential flaws; and
	prioritizing the at least two data streams of potential flaws to generate the
18	prioritized image data stream.