The exam will consist of two parts:

Part 1: 20 Multiple-Choice Questions (MCQs)

- Modules 1-12
- · Questions will be of the same level of complexity as the NetAcad checkpoints. Review them carefully.
- Excludes all CLI commands related to the configuration of Cisco devices

Part 2: Development Questions

- · up to 4 questions:
 - 1. CRC Encoding and decoding
 - 2. Checksum Simple calculation in HEX or binary, encoding or decoding
 - 3. Scenario-based: Subnetting a Class A,B or C address
 - 4. Scenario-based: Subnetting using CIDR notation

This will be a closed-book exam. An appendix will be provided with the format of the Ethernet, IPv4, IPv6, protocol data units.

CHECKSUM

Basic Theory:

Decoding

D1 10110000 1110 1010 solve for D7

CLASS.

255.0.0.0 255.255.0.0 255.255.255.0 24 Host 111111110.0.0 O. HOLDER O. D. THERE THE CO. D. THE THE PROPERTY OF THE PROPE GIVEN 1P 1 (Subnet OR User Amount) 4. [10 points] A Canadian company named MapleSys is assigned a Class B network address of 172.60.0.0. The company needs at least 128 usable hosts per subnet. What subnet mask should be used? 27= 128 but 2 are reserved Show the first 3 subnets created. Assign the first 5 usable IP addresses from subnet 2 to computers. % 28 (n=8) = 256 Show your calculations clearly. & we need First Octet -) 255.255.255.0 Classful All some Size 172.60.0.0 - 172.60.0.255 172.60.1.0 - 172.60.1.255 172.60.2.0 - 172.60.2.2ss(12 IP is Network IP /last is Broadcast) 172.60.0.1 172.60.0.2 172.60.0.3 172.60.0.4 172.60.0.5

CIASSLESS

5. [10 points]

A service provider is granted the address block 10.20.8.0/21. Allocate addresses as follows:

- Two organizations needing 300 addresses each
 - · Three organizations needing 100 addresses each
 - · Four organizations needing 30 addresses each

32 - 21 = 11 bits 80 total 2" Addresses

Answer the following:

- . What is the total number of addresses in the block?
- · Provide the range of addresses for each organization.
- · Indicate any remaining unallocated address blocks with their range.

1)
$$2 \times 300 = 600 \longrightarrow 2^n = 300 \quad 2^9 \quad 32 - 9 = /23$$

3)
$$4 \times 30 = 120$$
 $\Rightarrow 2^n = 30$ 2^5 $32 - 5$ $/27$

ORG	Network IP	It Range lower	upper	Broadcast IP	Subnet mask
300	16.20.8.0	10.20.8.1	10.20.9.254	10.20.9.255	/23
300	10.26.16.1	10.20.10.1	10.20.11.254	10.20.11.255	123
100	10.20.12.0	10.20.12.1	10.20.12.126	10.20.12.127	125
100	110.20.12.128	10.20.12.130	110.20,12,254	10 .20.12.265	125
100	10.20.13.0	10.20.13.1		10.20.13.127	125
30	10.20.13.128	10.20.13.130	10.20.13.158	10.20.13.159	V27
30	10,20,13,160	10.20.13.161	10.20-13,190	10.20.13.191	1/27
30	10.20.13.192	10.20, 13. 193	10.20.13.221	10,20,13,223	/27
30	10.20.13.224	10.20.13.225	10.20.13.254	10.20, 13, 255	/27

Range 300, 100, 30

FRAGMENTATION

(Tiven: Bytes, MTU, ID, OPTIONS?

Header = 20 + OPTIONS mod 4 = 0

3. [10 points] A TCP segment with 7400 bytes of pure data must be transoptions. The datagram has an Identification field of 0x1A2B.

7400 bytes

1) calc Header 20+8 = 28 mod 4 = 0 works

MTU 1480 bytes

2) calc Data

Header w 8 bytes

ID 0×1A2B

2) calc Data

1480 - 28 = 1452 /8 = 181.5 -> [18] x8

(we have to make it /8) = 1448

10	Flag	Offset	Data	Total Data
1A2B	1	0	1448	1449+28=1476
1A2B	1	181	1448	1476
1A2B	1	2.181	1448	1476
IA2B		3 - 181	1448	1476
1AZB	1	4.181	1448	1476
1A2B	0	5.181	160	160 +28 = 188
			•	

3) FIND how many segments

7400/1449 = 5.11 (Round UP) = 6

4) Calc last fragment 7400 - (5×1448) = 160