Modeling Irregular Time Series

Hongyuan Mei 2018—2021 Bloomberg Data Science Ph.D. Fellow Johns Hopkins University

Lecture Structure

• Lecture-1: concepts

- Lecture-1: concepts
 - Intensity, point process, MLE, thinning, ...

- Lecture-1: concepts
 - Intensity, point process, MLE, thinning, ...
- Lecture-2: fancy models

- Lecture-1: concepts
 - Intensity, point process, MLE, thinning, ...
- Lecture-2: fancy models
 - Hawkes, NHP, Neural ODE, ...

- Lecture-1: concepts
 - Intensity, point process, MLE, thinning, ...
- Lecture-2: fancy models
 - Hawkes, NHP, Neural ODE, ...
- Lecture-3: advanced topics

- Lecture-1: concepts
 - Intensity, point process, MLE, thinning, ...
- Lecture-2: fancy models
 - Hawkes, NHP, Neural ODE, ...
- Lecture-3: advanced topics
 - NCE, Datalog, marks, ...

- Lecture-1: concepts
 - Intensity, point process, MLE, thinning, ...
- Lecture-2: fancy models
 - Hawkes, NHP, Neural ODE, ...
- Lecture-3: advanced topics
 - NCE, Datalog, marks, ...
 - Useful techniques to other kind of data

stock movement
earning announcement
rating change
implied volatility spike

stock movement
earning announcement
rating change
implied volatility spike

Market

stock movement earning announcement rating change implied volatility spike

arrive stochastically!

Market

stock movement
earning announcement
rating change
implied volatility spike

arrive stochastically!

stock movement
earning announcement
rating change
implied volatility spike

arrive stochastically!

Market

X211.63 / 211.64 Z

_ 🗆 X

Message ★ C 🌣

Irregular Time Series

stock movement
earning announcement
rating change
implied volatility spike

arrive stochastically!

Market

2 weeks

_ 0 X

Market

Any Questions?

http://bburl/tpp-slides-p1

http://bburl/tpp-slides-p1 http://bburl/tpp-lab-p1

prob density p(t) of next event?

prob density p(t) of next event?

prob density p(t) of next event?

prob density p(t) of *next* event ? $p(t) = \lambda \exp(-\lambda (t - s))$

prob density p(t) of next event?

$$p(t) = \lambda \exp(-\lambda (t - s))$$

 $p(t) = \lambda \exp(-\lambda (t - s))$ $F(t) = \int_{s}^{t} p(t')dt' \in [0, 1]$ cumulative density function (CDF)

 $p(t) = \lambda \exp(-\lambda (t - s))$ $F(t) = \int_{s}^{t} p(t')dt' \in [0, 1]$ cumulative density function (CDF)

 $p(t) = \lambda \exp(-\lambda (t - s))$ $F(t) = \int_{s}^{t} p(t')dt' \in [0, 1]$ cumulative density function (CDF)

Let's write some code

http://bburl/tpp-lab-p1

http://bburl/tpp-slides-p1 http://bburl/tpp-lab-p1

$$\lambda \exp(-\lambda (t_1 - t_0))$$

$$\lambda \exp(-\lambda (t_1 - t_0))$$

$$x \lambda \exp(-\lambda (t_2 - t_1))$$

$$\lambda \exp(-\lambda (t_1 - t_0))$$

$$x \lambda \exp(-\lambda (t_2 - t_1))$$

$$x \lambda \exp(-\lambda (t_3 - t_2))$$

isity. MEL

$$\lambda \exp(-\lambda (t_1 - t_0))$$

$$x \lambda \exp(-\lambda (t_2 - t_1))$$

$$x \lambda \exp(-\lambda (t_3 - t_2))$$

$$x \lambda \exp(-\lambda (t_4 - t_3))$$

maximum log-likelihood estimation

$$\lambda \exp(-\lambda (t_1 - t_0))$$

$$x \lambda \exp(-\lambda (t_2 - t_1))$$

$$x \lambda \exp(-\lambda (t_3 - t_2))$$

$$x \lambda \exp(-\lambda (t_4 - t_3))$$

$$x = \exp(-\lambda (T - t_4))$$

$$\lambda \exp(-\lambda (t_1 - t_0))$$

$$x \lambda \exp(-\lambda (t_2 - t_1))$$

$$x \lambda \exp(-\lambda (t_3 - t_2))$$

$$x \lambda \exp(-\lambda (t_4 - t_3))$$

$$x = \exp(-\lambda (T - t_4))$$

=
$$\lambda^4 \exp(-\lambda (T - t_0))$$

$$\lambda \exp(-\lambda (t_1 - t_0))$$

$$x \lambda \exp(-\lambda (t_2 - t_1))$$

$$x \lambda \exp(-\lambda (t_3 - t_2))$$

$$x \lambda \exp(-\lambda (t_4 - t_3))$$

$$x = \exp(-\lambda (T - t_4))$$

$$= \lambda^4 \exp(-\lambda (T - t_0))$$

$$\operatorname{argmax}_{\lambda} \operatorname{log} \lambda^{4} \exp(-\lambda (T - t_{0}))$$

t₁

maximum log-likelihood estimation

 t_2

$$\lambda \exp(-\lambda (t_1 - t_0))$$

$$x \lambda \exp(-\lambda (t_2 - t_1))$$

₽t₀

$$x \lambda \exp(-\lambda (t_3 - t_2))$$

$$x \lambda \exp(-\lambda (t_4 - t_3))$$

$$x = \exp(-\lambda (T - t_4))$$

$$= \lambda^4 \exp(-\lambda (T - t_0))$$

$$\operatorname{argmax}_{\lambda} \log \lambda^4 \exp(-\lambda (T - t_0))$$

$$\operatorname{argmax}_{\lambda} 4 \log \lambda - \lambda (T - t_0)$$

 t_3

$$\lambda \exp(-\lambda (t_1 - t_0))$$

$$x \lambda \exp(-\lambda (t_2 - t_1))$$

$$x \lambda \exp(-\lambda (t_3 - t_2))$$

$$x \lambda \exp(-\lambda (t_4 - t_3))$$

$$x = \exp(-\lambda (T - t_4))$$

$$= \lambda^4 \exp(-\lambda (T - t_0))$$

$$\operatorname{argmax}_{\lambda} \log \lambda^4 \exp(-\lambda (T - t_0))$$

$$argmax_{\lambda} 4 log \lambda - \lambda (T - t_0)$$

$$\operatorname{argmax}_{\lambda} f(\lambda) \leftrightarrow \nabla_{\lambda} f(\lambda) = 0$$

$$\lambda \exp(-\lambda (t_1 - t_0))$$

$$x \lambda \exp(-\lambda (t_2 - t_1))$$

$$x \lambda \exp(-\lambda (t_3 - t_2))$$

$$x \lambda \exp(-\lambda (t_4 - t_3))$$

$$x = \exp(-\lambda (T - t_4))$$

$$= \lambda^4 \exp(-\lambda (T - t_0))$$

$$\operatorname{argmax}_{\lambda} \log \lambda^4 \exp(-\lambda (T - t_0))$$

$$argmax_{\lambda} 4 log \lambda - \lambda (T - t_0)$$

$$\operatorname{argmax}_{\lambda} f(\lambda) \leftrightarrow \nabla_{\lambda} f(\lambda) = 0$$

$$\nabla_{\lambda}(4 \log \lambda - \lambda (T - t_0)) = 0$$

Social
$$t_0$$
 t_1 t_2 t_3 t_4 t_4 t_7 t_8

$$\lambda \exp(-\lambda (t_1 - t_0))$$

$$x \lambda \exp(-\lambda (t_2 - t_1))$$

$$x \lambda \exp(-\lambda (t_3 - t_2))$$

$$x \lambda \exp(-\lambda (t_4 - t_3))$$

$$x = \exp(-\lambda (T - t_4))$$

=
$$\lambda^4 \exp(-\lambda (T - t_0))$$

$$\operatorname{argmax}_{\lambda} \log \lambda^4 \exp(-\lambda (T - t_0))$$

$$argmax_{\lambda} 4 log \lambda - \lambda (T - t_0)$$

$$\operatorname{argmax}_{\lambda} f(\lambda) \leftrightarrow \nabla_{\lambda} f(\lambda) = 0$$

$$\nabla_{\lambda}(4 \log \lambda - \lambda (T - t_0)) = 0$$

$$\lambda = 4 / (T - t_0)$$

maximum log-likelihood estimation

 t_2

$$\lambda \exp(-\lambda (t_1 - t_0))$$

$$x \lambda \exp(-\lambda (t_2 - t_1))$$

 t_0

$$x \lambda \exp(-\lambda (t_3 - t_2))$$

$$x \lambda \exp(-\lambda (t_4 - t_3))$$

$$x = \exp(-\lambda (T - t_4))$$

$$= \lambda^4 \exp(-\lambda (T - t_0))$$

$$\operatorname{argmax}_{\lambda} \log \lambda^4 \exp(-\lambda (T - t_0))$$

$$argmax_{\lambda} 4 log \lambda - \lambda (T - t_0)$$

 t_3

$$\operatorname{argmax}_{\lambda} f(\lambda) \leftrightarrow \nabla_{\lambda} f(\lambda) = 0$$

$$\nabla_{\lambda}(4 \log \lambda - \lambda (T - t_0)) = 0$$

$$\lambda = \frac{4}{T - t_0}$$

of events

maximum log-likelihood estimation

$$\lambda \exp(-\lambda (t_1 - t_0))$$

$$x \lambda \exp(-\lambda (t_2 - t_1))$$

$$x \lambda \exp(-\lambda (t_3 - t_2))$$

$$x \lambda \exp(-\lambda (t_4 - t_3))$$

$$x = \exp(-\lambda (T - t_4))$$

=
$$\lambda^4 \exp(-\lambda (T - t_0))$$

$$\operatorname{argmax}_{\lambda} \log \lambda^4 \exp(-\lambda (T - t_0))$$

$$argmax_{\lambda} 4 log \lambda - \lambda (T - t_0)$$

$$\operatorname{argmax}_{\lambda} f(\lambda) \leftrightarrow \nabla_{\lambda} f(\lambda) = 0$$

$$\nabla_{\lambda}(4 \log \lambda - \lambda (T - t_0)) = 0$$

$$4/(T-t_0)$$
 total time

of events

Any Questions?

http://bburl/tpp-slides-p1 http://bburl/tpp-lab-p1

 $\lambda_{\mathsf{social}}$

 $\lambda_{\mathsf{social}}$

λ_{social}	I		

λ_{social}		
λ_{music}		

λ_{social}	
λ_{music}	
	,

$$(\lambda_{\text{music}} + \lambda_{\text{social}}) \text{dt} = \text{prob of } \text{some event at t}$$

$$\lambda_{\text{social}}$$

$$\lambda_{\text{music}}$$

$$(\lambda_{music} + \lambda_{social})dt = prob of some event at t$$
 λ_{social} λ_{music}

$$\lambda_{\text{social}} \exp(-\lambda (t_1 - t_0))$$

- $\times \lambda_{\text{music}} \exp(-\lambda (t_2 t_1))$
- $\times \lambda_{\text{social}} \exp(-\lambda (t_3 t_2))$

• • • • • •

$$=\lambda_{\text{social}}^4 \lambda_{\text{music}}^3 \exp(-\lambda (T - t_0))$$

http://bburl/tpp-slides-p1 http://bburl/tpp-lab-p1

http://bburl/tpp-slides-p1 http://bburl/tpp-lab-p1

http://bburl/tpp-slides-p1 http://bburl/tpp-lab-p1

Other Modeling Designs

constant intensity

stochastic intensity e.g., Cox process

Any Questions?

http://bburl/tpp-slides-p1 http://bburl/tpp-lab-p1