NETWORK ARCHITECTURE

UNIT - IV

NETWORKARCHITECTURE

- ARCHITECTURE AND DESIGN (/#/)
- COMPONENT ARCHITECTURES / REFERENCE ARCHITECTURE (##)
- ARCHITECTURE MODELS(/#/)
- SYSTEM AND NETWORK ARCHITECTURE
- ADDRESSING AND ROUTING ARCHITECTURE / FUNDAMENTALS
- ADDRESSING MECHANISMS
- ADDRESSING STRATEGIES / ROUTING STRATEGIES
- NETWORK MANAGEMENT ARCHITECTURE / MECHANISMS
- PERFORMANCE ARCHITECTURE / MECHANISMS
- SECURITY AND PRIVACY ARCHITECTURE / MECHANISMS

ARCHITECTURE & DESIGN

- Good network design is a process by which an extremely complex and nonlinear system is conceptualized.
- Network architecture and design development must be done in a systematic and reproducible manner.

- Component architecture is a description of how and where each function of a network is applied within that network.
- It consists of a set of mechanisms (HARDWARE AND SOFTWARE) by which that function is applied to the network.

- It explores four functions / Architectures
 - ADDRESSING/ROUTING(Forwarding) architecture.
 - NETWORK MANAGEMENT architecture.
 - PERFORMANCE architecture.
 - SECURITY architecture.

Function	Description of Capability	Example Subset of Mechanisms Used to Achieve Capability
Addressing/Routing	Provides robust and flexible connectivity between devices	 Addressing: Ways to allocate and aggregate address space Routing: Routers, routing protocols, ways to manipulate routing flows
Network Management	Provides monitoring, configuring, and troubleshooting for the network	Network management protocols Network management devices Ways to configure network management in the network
Performance	Provides network resources to support requirements for capacity, delay, RMA	Quality of Service Service-Level Agreements Policies
Security	Restricts unauthorized access, usage, and visibility within network to reduce the threat and effects of attacks	Firewalls Security policies and procedures Filters and access control lists

- To determine how performance will work for a network.
- To determine how each mechanism works, and how they work together to provide performance for the network.
- This picture bellow shows how
- QoS Quality of Service,
- SLA-Service Level Agreements and policies are applied.

Quality of service (QoS):

- It is the overall performance of a telephony or computer network,
- particularly the performance seen/measured by the users of the network.

Service Level Agreement

- A SERVICE LEVEL AGREEMENT is an important document that is used to define the level of a service between a service provider and their customer/service requester.
- It is a contract between a network service provider and a customer /service requester
- Aspects/Features of the service level agreement
 - scope, quality, responsibilities are agreed between the service provider and the service user/ service requester.

- Developing COMPONENT ARCHITECTURE requires input, sets of user(), application, and device requirements, estimated traffic flows, and architectural goals defined for each individual network.
- This input forms a common foundation for all network functions.

- To facilitate determining where each mechanism may be applied, the network is divided into regions.
- Commonly used regions include:
 - access (edge),
 - Distribution(service available for use by a consumer or business user.),
 - core (backbone / fundamental/sets), and
 - External interfaces(MATLAB) & DMZs

DMZs

- Demilitarized Zone (sometimes referred to as a PERIMETER NETWORK)
- It is a physical or logical sub-network that contains an organization's external-facing services.
- The characteristics of each region help to identify where mechanisms are applied.
- When mechanisms have been chosen and applied to the network and we want to know about the internal(mechanisms, locations) relationships between these mechanisms.

MATLAB (matrix laboratory)

- MATLAB (matrix laboratory).
- MATLAB allows matrix manipulations.
- It is a multi-paradigm Numerical Computing Environment .
- (4GL) Fourth-Generation programming language.

REFERENCE ARCHITECTURE

- A reference architecture is a description of the complete network architecture.
- It contains all functions of the component architectures (i.e., functions).
- Each component

ADDRESSING AND ROUTING

ADDRESSING

- a 32-bit number that uniquely identifies a host(system).
- Simply called IP address
- IP addresses are normally expressed in dotteddecimal format, with four numbers separated by periods,
- Ex: such as 192.168.123.132.

ROUTING

- Routing is the process of selecting best paths in a network.
- the process of moving a packet of data from source to destination.
- Routing is usually performed by a dedicated device called a router.
- Routing schemes differ in their delivery semantics:
- UNICAST delivers a message to a single specific node(FM/WTalkie).
- BROADCAST delivers a message to all nodes in the network(TV).
- MULTICAST delivers a message to a group of nodes that have expressed interest in receiving the message(email/teleconf/videoconf).
- ANYCAST delivers a message to anyone out of a group of nodes, typically the one nearest to the source(network addressing and routing methodology).
- GEOCAST delivers a message to a geographic area(ad-hoc networks)

UNICAST ADDRESSING MODE:

BROAD CAST ADDRESSING MODE

MULTI CAST ADDRESSING

ADDRESSING & ROUTING

- Addressing is applying identifiers (addresses) to devices at various protocol layers (e.g., data-link layers and network layer)
- Ex: class A, B, C, D

 While routing is learning about the connectivity within and between networks and applying this connectivity information to forward IP packets toward their destinations.

THE ADDRESSING/ROUTING DESCRIBES:

- how user and management traffic flows are forwarded through the network.
- How hierarchy(level), separation, and grouping of users and devices are supported.
- There are several addressing and routing mechanisms that could be considered.

ADDRESSING MECHANISMS

- Sub-netting & Super-netting,
- Variable-length Sub-netting,
- Dynamic Addressing,
- Private Addressing,
- Virtual Lans (Vlans),
- Ipv6, And
- Network Address Translation (Nat).

SUB-NETTING

• SUB-NETWORKING:

Dividing a network into two or more networks is called **sub-netting**.

- Subnet is a logical.
- visible subdivision of an IP Network.

SUPER-NETTING

- SUPER NETWORK.
- also called Classless Inter-Domain Routing (CIDR).
- It is a way to aggregate(form or group) multiple Internet addresses of the same class.
- Example:
 - 192.168.98.0
 - 192.168.99.0
 - 192.168.100.0
 - 192.168.101.0
 - **192.168.102.0**
 - 192.168.105.0

DYNAMIC ADDRESSING (DIP)

- DYNAMIC IP ADDRESSING:
 - It assigns a different IP address each time the ISP customer logs on to their computer.
 - Ex: 192.168.105.0
- STATIC IP ADDRESSING:
 - It is for one customer on one IP address.
- Ex: FTP, Interanet.

• PRIVATE - ADDRESSES:

Each IP node requires an IP address that is globally unique to the IP internetwork.

• PUBLIC - ADDRESSES:

 When the public addresses are assigned, routes are programmed into the routers of the Internet so that traffic to the assigned public addresses can reach their locations.

VIRTUAL LAN OR VLAN:

- which are mutually isolated so that packets can only pass between them via one or more routers.
- such a domain is referred to as a virtual local area network, virtual LAN or VLAN.

- Internet Protocol version 6 (IPv6) :
- It is the latest version of the Internet Protocol (IP), the communications protocol that provides an identification and location system for computers on networks and routes traffic across the Internet.
- Internet Protocol version 4 (IPv4):
- It is the fourth version in the development of the Internet Protocol (IP) Internet, and routes most traffic on the Internet.

IP Versions:

- ip v1 3 not formally assigned.
- ipv4 32 bit IP address. (Decimal)
- Example: 192.168.105.0
- Ipv5 streamed protocaol(ST). connection oriented internet level protocol
- IPv6 128 bit IP address(Hexa Decimal.)
- Example:
- **2**607:fodo:1002:0051:0000:0000:0000:0004

network address translation (NAT):

- provides a method of modifying network address information in Internet Protocol (IP).
- The purpose of remapping one IP address space into another one IP address space.

ROUTING MECHANISMS

- Switching And Routing,
- Classless Inter-Domain Routing (CIDR):
- Multicasts,
- Mobile IP,
- Route Filtering/Peering/Routing/policies
- Confederations(IGP, EGP)

HUB/SWITCHING / ROUTING

- HUB
 - A common CONNECTION POINT for devices in a network.
 - to connect segments of a LAN.
 - A HUB contains multiple ports.
 - Ex: anything that comes in one port is sent out to the others.

HUB/SWITCHING / ROUTING

- SWITCH:
- A switch does essentially what a hub does, but more efficiently.
- It is a device that filters and forwards packets between LAN segments.
- Types:
 - Circuit Switching
 - Packet Switching
 - Message Switching

ROUTER

- A device that forwards data packets along networks.
- A smartest and most complicated of the bunch.
- A router is connected to at least two networks, Or two LANs
- Especially use for MANs/WANs.
- Protocol) & Firewall.
 Prouters integrate the functions of switch, DHCP Server(Dynamic Host Configuration Protocol) & Firewall.
- ADV : Increases the bandwidth.

CLASSLESS INTER-DOMAIN ROUTING (CIDR):

- Super Networiking.
- It is a method for allocating IP addresses and routing Internet Protocol packets.
- Example:
 - 192.168.98.0
 - 192.168.99.0
 - 192.168.100.0
 - 192.168.101.0
 - 192.168.102.0
 - 192.168.105.0

MOBILEIP

- Mobile IP stands for Mobile Internet Protocol.
- A wireless connection to the Internet.
- Designed to support (GENERIC device)host mobility.
- Stay connected regardless of location without changing IP address.
- Provide confident access to the Internet anytime, anywhere.

MOBILEIP

- Mobile Node: A node/device that changes its point of attachment to the Internet
- Home Agent: A router in the home network that communicates with the mobile node
- Foreign Agent: A router in a foreign network that delivers information between mobile node and its home agent
- Care-of-Address: Mobile Node's current IP address
- Correspondent Node: Node/device that is communicating with the mobile node (i.e. web server)

MOBILEIP

- Each mobile node has two IP addresses
- Permanent home address
- Care-of Address(temporary IP address)
- Home Agent maintains a mobility binding table

Home Address	Care-of Address	Lifetime (in sec)
131.193.171.4	128.172.23.78	2 00
131.193.171.2	119.123.56.78	150

FILTERING/PEERING/POLICY

- ROUTE FILTERING:
 - Designed to exchange routing and reachability information between autonomous systems in the local route database.
 - (INPUT FILTERING OUTPUT FILTERING).
- ROUTE PEERING:
- it is a voluntary interconnection.
- the purpose is Exchanging Traffic between the users of each network.
- A POLICY:
 - It is a principle to guide decisions making and achieve quality outcomes.

Confederations (IGP, EGP)

- IGP confederation :
- An Interior Gateway Protocol (IGP):
- Interior Gateway Protocol (IGP) is a dynamic class routing protocol used by Autonomous System.
- It is a type of protocol used for exchanging routing information between gateways (commonly routers) within an Autonomous System
- (for example, a system of corporate local area networks).
- It can be used to route network-level protocols like IP.

BGP confederation:

- BGP: Border Gateway Protocol
- It is a protocol that is used between routers to convey this information.
- It is a standardized Exterior Gateway Protocol.
- It is a method to use Border Gateway Protocol (BGP) to subdivide a single autonomous system (AS) into multiple internal sub-Autonomous System.
- Designed to exchange routing information between Gateway Hosts on the Internet.

NETWORK MANAGEMENT

- Network management is providing functions to
 - control,
 - plan,
 - allocate,
 - deploy,
 - · coordinate, and
 - monitor network resources.
- Network management mechanisms include:
- Monitoring: Obtaining values for end-to-end, per link, and per-element network management characteristics.
- Instrumentation: Determining the set of tools and utilities needed to monitor and probe the network for management data.

NETWORK MANAGEMENT

- Configuration: Setting parameters in a network device for operation and control of that element.
- FCAPS components:
- The set of fault, configuration, accounting, performance, and security management components.
- It is the ISO Telecommunications Management Network model.
- Framework for network management.
- In-band and out-of-band management: Whether management data flow along the same path or have a separate path.

NETWORKMANAGEMENT

- Centralized and distributed management:
 - Whether the management system is in a single hardware platform or is distributed across the network among multiple platforms.(platform/language)
- Scaling(measure) network management traffic:
 - Determining how much network capacity should be reserved for network management.
- Checks and balances:
 - Using multiple mechanisms to verify that variables are represented correctly.

NETWORK MANAGEMENT

- Managing network management data:
 - Offloading old data, keeping track of storage availability for data, updating data types.
- MIB selection:
 - Determining which management information bases, and how much of each management information base, to use.
 - (MIB) is a database used for managing the entities in a communications network.
 - Associated with the Simple Network Management Protocol (SNMP).
- Integration into OSS:
 - How the management system will communicate with higher-level operations support system.

PERFORMANCE

- Performance consists of the set of mechanisms used to
- configure,
- operate,
- manage,
- provision, and
- account for resources in the networks.
- To allocate performance to users, applications, and devices.

PERFORMANCE

- This includes capacity planning and traffic engineering, as well as a variety of service mechanisms.
- how <u>network resources</u> will be allocated to user and management traffic flows.
- This consists of prioritizing, scheduling, and conditioning traffic flows
- mechanisms to correlate(mutual relationship or connection BW) user, application, and devices and quality of service, policies, and service-level agreements (SLAs).

QUALITY OF SERVICE

- It is the overall performance of a computer network, particularly the performance seen by the users of the network.
- QoS, is determining, setting, and acting upon priority levels for traffic flows.

SERVICE-LEVEL AGREEMENTS

- (SLAs) are informal or formal contracts between a Service - provider and Service -Requester.
- Policies are sets (formal or informal) of high-level statements about how network Resources / Services /Access Permissions are to be allocated among users.

- Security is a requirement to guarantee the confidentiality,
- integrity,
- availability of user,
- application, device, and network information and physical resources.
- it describes how system resources are to be protected from theft, damage, Denial Of Service (DOS(Hacker)/ACCESS Denied: attack is an attempt to make a machine or network resource unavailable) / unauthorized access.

- This consists of the mechanisms used to apply security, which may include such:
- ENCRYPTION,
- FIREWALLS,
- ROUTING FILTERS, AND
- NETWORK ADDRESS TRANSLATION (NAT) AND
- BIO-METRIC VERIFICATION(human characteristics
- Such as EYE RETINAS, FINGERPRINT, VOICE BASED, PATTERNS Etc..)

- Physical security and awareness:
 - The protection of devices from physical access
 - damage, and theft parts of the network from outside access)
 - getting users educated and involved with the day-today aspects of security in their network.
 - Helping them to understand the potential risks of violating security policies and procedures.

- The security mechanisms that were considered are:
- Security threat analysis:
 - The process to determine which components of the system need to be protected and the types of security risks (threats) they should be protected.
- Security policies and procedures:
 - Formal statements on rules & regulations for system/network.
 - Information access, in order to minimize exposure to security threats.

- Protocol and application security:
 - Securing management and network protocols(SNMP) and applications from unauthorized access and misuse.
- Encryption:
 - Making data unreadable if they are intercepted, by applying cipher algorithms together with a secret key(CRYTOGRAPHY).
- Network perimeter security:
 - Protecting the external interfaces between your network and external networks.

- Remote access security:
 - Securing network access based on traditional dial-in, point-to-point sessions, and virtual private network connections.
 - Ex: TEEM WEAVER.
 - REMOTE ADMINISTRATION TOOL (RAT).

ARCHITECTURAL MODELS

- THREE TYPES OF ARCHITECTURAL MODELS:
- topological models(LAN/MAN/WAN)
 - which are based on a geographical or topological arrangement.
- flow-based models(Peer to peer, Client-server, Hierarchical
 - which take particular advantage of traffic flows from the flow specification.
- functional models(service-provider, intranet/extranet, single-/multi-tiered performance, and end-to-end models.)
 which focus on one or more functions or features planned for in the network.

THANK YOU