

Fakultät Fahrzeugtechnik

Elektronische Fahrzeugsysteme

Laborbericht zum Versuch Nr. 1

Motorkennlinie eines permanenterregten Gleichspannungsmotoren

Datum: 4. April 2019

Betreuer: Dipl.-Ing. Rolf Quednau

Elektronische Fahrzeugsysteme Labor 1

Inhaltsverzeichnis

Aufgabe 1. Ermitteln von Motordrehzahl und Motorstrom	1
Aufgabe 2. Bestimmung des Faktors $c\cdot \varphi$ und der Steigung a	2
Aufgabe 3. Berechnung der Drehmomente	3
Aufgabe 4. Darstellen der Drehzahl-Momenten-Kennlinien	4
Anhang	6

Quellenverzeichnis

Aufgabe 1. Ermitteln von Motordrehzahl und Motorstrom

Bei dem Versuch wurde die erste Messung zuerst ohne Last d.h. im Leerlauf durchgeführt. Die physikalischen Wiederstände werden bei diesem Versuch vernachlässigt. Um die Ankerspannung (U_d) und den Ankerstrom (I_A) zu ermitteln, wurden zwei Digitalmultimeter verwendet. Der Ankerstrom (I_A) konnte dann abgelesen und notiert werden. Die Drehzahl Messung erfolgte über einen induktiven Sensor und einem Digitalen Speicheroszilloskop. Die Frequenz konnte dann von dem DSO abgelesen werden. Da der Gleichstrommotor vier Dauermagneten besitzt, musste für eine vollständige Umdrehung des Motors die Periodendauer von vier Perioden gemessen werden. Bei der ersten Messung ergab sich einer Dauer von 26,4 ms. Mit folgender Formel konnte dann die Drehzahl in 1/min berechnet werden:

$$f = \frac{1}{T}$$

$$f = \frac{1 \cdot 60 \frac{\$}{min}}{26,4 \cdot 10^{-3} \$}$$

$$f = 2272.8 \cdot min^{-1}$$

				Unter Last R1 und R2				
		Leerlauf		Last R1 = 0,5 Ohm		Last R2= 1 Ohm		
Messwerte	Ud in V	n0 in 1/min.	IA0 in A	n1 in 1/min.	IA1 in A	n2 in 1/min.	IA2 in A	
1	8	2272,8	0,561	1796,4	2,502	1734,0	2,953	
2	8,5	2458,8	0,575	1960,8	2,564	1840,2	3,118	
3	9	2655,0	0,593	2083,2	2,772	1960,8	3,277	
4	9,5	2803,8	0,606	2222,4	3,060	2068,8	3,526	
5	10	3000,0	0,627	2400,0	3,252	2158,2	3,791	
6	10,5	3191,4	0,644	2521,2	3,327	2272,8	3,961	
7	11	3370,8	0,649	2631,6	3,530	2380,8	4,144	
8	11,5	3571,2	0,681	2752,2	3,699	2521,2	4,378	
9	12	3773,4	0,693	2912,4	3,939	2608,8	4,521	
10	12,5	3973,8	0,707	3000,0	4,110	2727,0	4,659	
11	13	4195,8	0,736	3154,8	4,264	2830,2	4,812	
12	13,5	4347,6	0,756	3261,0	4,335	2912,4	4,981	
13	14	4580,4	0,784	3448,2	4,612	3061,2	5,166	
14	-	-	-	-	-	-	-	

Tab. 1.1 Ermittelte Daten

Aufgabe 2. Bestimmung des Faktors $c \cdot \phi$ und der Steigung a

Um den Faktor c $\cdot \phi$ zu bestimmen, muss die Gleichung (6) verwendet und umgestellt werden:

$$n = \frac{U_d}{2\pi \cdot c \cdot \phi} \qquad Gl(6)$$

$$\Rightarrow c \cdot \phi (U_d; n) = \frac{U_d}{2\pi \cdot n}$$

$$c \cdot \phi \ (8V; 2272, 8/min) = \frac{8V}{2\pi \cdot 2272, 8\frac{1}{min}} \cdot 60 \frac{s}{min}$$

$$c \cdot \phi = 0.034 \, Vs$$

Anschließend berechnen wir die Steigung a der Geradengleichung mit folgender Formel:

$$a = \frac{1}{2\pi \cdot c \cdot \phi}$$

$$a = \frac{1}{2\pi \cdot 0.034Vs}$$

$$a = 4.68 (Vs)^{-1}$$

Aufgabe 3. Berechnung der Drehmomente

Zur Berechnung des Drehmomentes kann die Gleichung (1) verwendet werden. Dazu muss der Ankerstrom (I_A) aus der Tabelle 1.1 entnommen werden. $c \cdot \phi$ kann aus Aufgabe 2 entnommen werden.

$$M = c \cdot \phi \cdot I_A$$

Mit den Werten aus Messung 1 ohne Widerstand ergibt sich folgender Wert:

$$M = 0.034Vs \cdot 0.561 A$$

$$M=0.0191\,Nm$$

$$M = 1.91 \, Ncm$$

Die Rechnung wird mit allen werten aus Tab. 1.1 durchgeführt und in die Tabelle 1.2 eingetragen.

		Leerlauf		Unter Last R₁ und R₂			
Messwerte	U _d in V	N ₀ in 1/min.	m _{Leer} in Ncm	n ₁ in 1/min.	M _{Last1} in Ncm	n ₂ in 1/min.	M _{Last2} in Ncm
1	8	2272,8	1,91	1796,4	8,51	1734,0	10,04
2	8,5	2458,8	1,96	1960,8	8,72	1840,2	10,60
3	9	2655,0	2,01	2083,2	9,42	1960,8	11,14
4	9,5	2803,8	2,06	2222,4	10,40	2068,8	11,98
5	10	3000,0	2,13	2400,0	11,05	2158,2	12,88
6	10,5	3191,4	2,19	2521,2	11,31	2272,8	13,46
7	11	3370,8	2,21	2631,6	12,00	2380,8	14,08
8	11,5	3571,2	2,32	2752,2	12,57	2521,2	14,88
9	12	3773,4	2,36	2912,4	13,39	2608,8	15,37
10	12,5	3973,8	2,40	3000,0	13,97	2727,0	15,84
11	13	4195,8	2,50	3154,8	14,49	2830,2	16,36
12	13,5	4347,6	2,57	3261,0	14,73	2912,4	16,93
13	14	4580,4	2,67	3448,2	15,68	3061,2	17,56
14	-	-	-	-	-	-	-

Tab. 1.2 Berechnete Drehmomente

Aufgabe 4. Darstellen der Drehzahl-Momenten-Kennlinien

Mit den Werten aus Tab. 1.2 können drei Kennlinien für die Wiederstände $R_0=0\Omega$ (blau), $R_1=0.5\Omega$ (grau) und $R_2=1\Omega$ (orange) dargestellt werden. Die Kennlinien geben die Drehzahl in Abhängigkeit vom Drehmoment an. Für die 14 Volt Spannungskennlinie müssen alle Messpunkte mit der Betriebsspannung 14 Volt durch eine Gerade verbunden werden. Dies führen wir genauso für die Betriebsspannungen 12 Volt und 10 Volt durch.

Abbildung 1: Drehzahl-Momenten-Kennlinie

Zum Vergleich des Drehmomentes der Auswertung mit dem aus den Typenschild, muss eine Horizontale Linie bei einer Drehzahl von 3300 U/min gezogen werden. Bei dem Schnittpunkt mit der 12 Volt Linie, muss eine Vertikale Linie nach unten gezogen werden. Dabei kann ein Drehmoment von ca. 7,3 Ncm abgelesen werden, welches fast mit dem Wert des Typenschildes (6,5 Ncm) übereinstimmt. Die Abweichung von 0,8 Ncm kann auf Mess-, Rundungs- und Zeichenungenauigkeiten zurückzuführen sein.

Um die Haltemomente der drei Kennlinien zu bestimmen, muss folgende Formel verwendet werden:

$$y = m * x + b$$

Die Steigung m kann mit der Formel $m=\frac{\Delta y}{\Delta x}$ bewechnet werden. Δy und Δx können aus Abb. 1 entnommen werden. Da die Steigung der drei Kennlinien identisch ist, muss die Rechnung nur einmal durchgeführt werden. Den Schnittpunkt mit der y-Achse (b), der jeweiligen Kennlinien, wird ebenfalls aus der Abb. 1.1 entnommen.

$$m = \frac{-300}{3Ncm \cdot min} = -\frac{100}{Ncm \cdot min}$$

Die Werte werden in die allgemeine lineare Funktion eingesetzt und nach x umgestellt.

Für die 10 Volt Kennlinie:

$$y = -\frac{100}{Ncm \cdot min} \cdot x + 3250 \frac{1}{min}$$
=> $x(10V) = \frac{3250 \ Ncm \cdot min}{100 \ min}$
=> $x(10V) = 32,5 \ Ncm$

Die Haltemomente aller Kennlinie:

Haltemoment 10 Volt = 32,5 Ncm

Haltemoment 12 Volt = 40,0 Ncm

Haltemoment 14 Volt = 49,0 Ncm

Elektronische Fahrzeugsysteme Labor 1

Anhang

1. Laborunterlagen mit den Messwerten