Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted windows." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.

Transformer 주차별 계획

Swin Transformer: Hierarchical Vision Transforme using Shifted Windows

- Introduction + contributions
- Method
- 3 __ Experiments

Transformer

Introduction + contributions

- 1. ViT to Swin
- 2. contributions

Introduction + contributions Contribution

- 1. NLP 분야에서 사용하는 Transformer는 Vision분야에서 활용하기 어렵다.
- → 일정한 수의 pixel을 patch라고 정의하고 이 patch를 token처럼 최소 처리 단위로 정 의하여 해결
- 2. 영상은 텍스트에 비해 high-resolution이고 Vit의 연산량은 영상의 사이즈에 quadratic하게 증가
- → 계층적인 feature map을 이용하고 feature map의 window 내에서만 selfattention을 적용.
- 3. Window 내에서만 self-attention을 적용할 경우 윈도우 내에 속한 patch 간의 연관 성만 고려할 수 있고 다른 윈도우에 속한 patch간의 연관성을 파악할 수 없다.
- → Shifted window를 도입하여 해결
- 4. Vision problem에서 Vit보다 뛰어난 성능을 보여준다.

Transformer

2 Method

- 1. Window
- 2. Shifted Window
- 3. Overall Architecture

Metl	nod
Wind	dow

 $64 \times 64 = 4096$ **Self Attention**

 $16 \times 16 \times 4 = 1024$ **Self Attention**

Layer 1

Method

Shifted Window

1

Method Shifted Window

Figure 3. (a) The architecture of a Swin Transformer (Swin-T); (b) two successive Swin Transformer Blocks (notation presented with Eq. (3)). W-MSA and SW-MSA are multi-head self attention modules with regular and shifted windowing configurations, respectively.

Patch Partition

Patch Partition

Linear embedding

Patch Merging

Patch Merging

Ι

Method Overall Architecture

Swin transformer block

Transformer Encoder

$$\begin{split} &\hat{\mathbf{z}}^{l} = \text{W-MSA}\left(\text{LN}\left(\mathbf{z}^{l-1}\right)\right) + \mathbf{z}^{l-1}, \\ &\mathbf{z}^{l} = \text{MLP}\left(\text{LN}\left(\hat{\mathbf{z}}^{l}\right)\right) + \hat{\mathbf{z}}^{l}, \\ &\hat{\mathbf{z}}^{l+1} = \text{SW-MSA}\left(\text{LN}\left(\mathbf{z}^{l}\right)\right) + \mathbf{z}^{l}, \\ &\mathbf{z}^{l+1} = \text{MLP}\left(\text{LN}\left(\hat{\mathbf{z}}^{l+1}\right)\right) + \hat{\mathbf{z}}^{l+1}, \end{split}$$

ViT transformer encoder Swin transformer block

Transformer

3 _ Experiments

- 1. Model variants
- 2. Experiments results

Method Model variants

- Swin-T: C = 96, layer numbers = $\{2, 2, 6, 2\}$
- Swin-S: C = 96, layer numbers = $\{2, 2, 18, 2\}$
- Swin-B: C = 128, layer numbers = $\{2, 2, 18, 2\}$
- Swin-L: C = 192, layer numbers = $\{2, 2, 18, 2\}$

	downsp. rate (output size)	Swin-T	Swin-S	Swin-B	Swin-L
	4×	concat 4×4, 96-d, LN	concat 4×4, 96-d, LN	concat 4×4, 128-d, LN	concat 4×4, 192-d, LN
stage 1	(56×56)	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 96, head 3 \end{bmatrix} \times 2$	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 96, head 3 \end{bmatrix} \times 2$	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 128, head 4 \end{bmatrix} \times 2$	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 192, head 6 \end{bmatrix} \times 2$
	8×	concat 2×2, 192-d, LN	concat 2×2, 192-d, LN	concat 2×2, 256-d, LN	concat 2×2, 384-d, LN
stage 2 (28×28)	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 192, head 6 \end{bmatrix} \times 2$	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 192, head 6 \end{bmatrix} \times 2$	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 256, head 8 \end{bmatrix} \times 2$	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 384, head 12 \end{bmatrix} \times 2$	
	16×	concat 2×2, 384-d, LN	concat 2×2, 384-d, LN	concat 2×2, 512-d, LN	concat 2×2, 768-d, LN
stage 3	(14×14)	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 384, head 12 \end{bmatrix} \times 6$	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 384, head 12 \end{bmatrix} \times 18$	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 512, head 16 \end{bmatrix} \times 18$	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 768, head 24 \end{bmatrix} \times 18$
	32×	concat 2×2, 768-d, LN	concat 2×2, 768-d, LN	concat 2×2, 1024-d, LN	concat 2×2, 1536-d, LN
stage 4	(7×7)	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 768, head 24 \end{bmatrix} \times 2$	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 768, head 24 \end{bmatrix} \times 2$	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 1024, head 32 \end{bmatrix} \times 2$	$\begin{bmatrix} win. sz. 7 \times 7, \\ dim 1536, head 48 \end{bmatrix} \times 2$

Method **Experiments results**

(a) Regu	lar Im	ageNet-	1K train	ned models	
method	image	#param.	FLOPs	throughput	_
(COMMISSION)	SILC		12010	(image / s)	top-1 acc.
RegNetY-4G [48]	224 ²	21M	4.0G	1156.7	80.0
RegNetY-8G [48]	224 ²	39M	8.0G	591.6	81.7
RegNetY-16G [48]		84M	16.0G	334.7	82.9
EffNet-B3 [58]	300^{2}	12M	1.8G	732.1	81.6
EffNet-B4 [58]	380^{2}	19M	4.2G	349.4	82.9
EffNet-B5 [58]	456 ²	30M	9.9G	169.1	83.6
EffNet-B6 [58]	528 ²	43M	19.0G	96.9	84.0
EffNet-B7 [58]	600^{2}	66M	37.0G	55.1	84.3
ViT-B/16 [20]	384 ²	86M	55.4G	85.9	77.9
ViT-L/16 [20]	384 ²	307M	190.7G	27.3	76.5
DeiT-S [63]	224 ²	22M	4.6G	940.4	79.8
DeiT-B [63]	224 ²	86M	17.5G	292.3	81.8
DeiT-B [63]	384 ²	86M	55.4G	85.9	83.1
Swin-T	224 ²	29M	4.5G	755.2	81.3
Swin-S	224 ²	50M	8.7G	436.9	83.0
Swin-B	224 ²	88M	15.4G	278.1	83.5
Swin-B	384 ²	88M	47.0G	84.7	84.5
(b) ImageNet-22K pre-trained models					
method	image	#param.	EL ODe	throughput	ImageNet
method	size	#parain.	FLOPS	(image / s)	top-1 acc.
R-101x3 [38]	384 ²	388M	204.6G	-	84.4
R-152x4 [38]	480^{2}	937M	840.5G	-	85.4
ViT-B/16 [20]	384 ²	86M	55.4G	85.9	84.0
ViT-L/16 [20]	384 ²	307M	190.7G	27.3	85.2
Swin-B	224 ²	88M	15.4G	278.1	85.2
Swin-B	384 ²	88M	47.0G	84.7	86.4

384²

197M 103.9G

Swin-L

87.3

42.1

Method **Experiments results**

(a) Regu	lar In	ageNet-	1K traii	ned models	
method	image	#param.	FLOPs	throughput	
	size	param	12010	(image / s)	top-1 acc.
RegNetY-4G [48]	2242	21M	4.0G	1156.7	80.0
RegNetY-8G [48]	224 ²	39M	8.0G	591.6	81.7
RegNetY-16G [48]	224 ²	84M	16.0G	334.7	82.9
EffNet-B3 [58]	300^{2}	12M	1.8G	732.1	81.6
EffNet-B4 [58]	380^{2}	19M	4.2G	349.4	82.9
EffNet-B5 [58]	456 ²	30M	9.9G	169.1	83.6
EffNet-B6 [58]	528 ²	43M	19.0G	96.9	84.0
EffNet-B7 [58]	$ 600^{2} $	66M	37.0G	55.1	84.3
ViT-B/16 [20]	384 ²	86M	55.4G	85.9	77.9
ViT-L/16 [20]	384 ²	307M	190.7G	27.3	76.5
DeiT-S [63]	224 ²	22M	4.6G	940.4	79.8
DeiT-B [63]	224 ²	86M	17.5G	292.3	81.8
DeiT-B [63]	384 ²	86M	55.4G	85.9	83.1
Swin-T	224 ²	29M	4.5G	755.2	81.3
Swin-S	224 ²	50M	8.7G	436.9	83.0
Swin-B	224 ²	88M	15.4G	278.1	83.5
Swin-B	384 ²	88M	47.0G	84.7	84.5

Method **Experiments results**

Method	mini-val		test-dev		#moron	EI ODa
Method	AP ^{box}	AP ^{mask}	AP ^{box}	AP ^{mask}	#param.	FLOPS
RepPointsV2* [12]	-	_	52.1	-	_	-
GCNet* [7]	51.8	44.7	52.3	45.4	-	1041G
RelationNet++* [13]	-	-	52.7	-	-	-
SpineNet-190 [21]	52.6	-	52.8	-	164M	1885G
ResNeSt-200* [78]	52.5	-	53.3	47.1	-	-
EfficientDet-D7 [59]	54.4	-	55.1	1-1	77M	410G
DetectoRS* [46]	-	-	55.7	48.5	-	-
YOLOv4 P7* [4]	_	_	55.8	_	_	_
Copy-paste [26]	55.9	47.2	56.0	47.4	185M	1440G
X101-64 (HTC++)	52.3	46.0	-	-	155M	1033G
Swin-B (HTC++)	56.4	49.1	-	-	160M	1043G
Swin-L (HTC++)	57.1	49.5	57.7	50.2	284M	1470G
Swin-L (HTC++)*	58.0	50.4	58.7	51.1	284M	-

Table 2. Results on COCO object detection and instance segmentation. †denotes that additional decovolution layers are used to produce hierarchical feature maps. * indicates multi-scale testing.

ADE20K		val	test	#param.	EI ODe	EDC
Method	Backbone	mIoU	score	#paraiii.	FLOFS	FFS
DANet [23]	ResNet-101	45.2	-	69M	1119G	15.2
DLab.v3+ [11]	ResNet-101	44.1	-	63M	1021G	16.0
ACNet [24]	ResNet-101	45.9	38.5	-		
DNL [71]	ResNet-101	46.0	56.2	69M	1249G	14.8
OCRNet [73]	ResNet-101	45.3	56.0	56M	923G	19.3
UperNet [69]	ResNet-101	44.9	-	86M	1029G	20.1
OCRNet [73]	HRNet-w48	45.7	-	71M	664G	12.5
DLab.v3+[11]	ResNeSt-101	46.9	55.1	66M	1051G	11.9
DLab.v3+ [11]	ResNeSt-200	48.4	-	88M	1381G	8.1
SETR [81]	T-Large [‡]	50.3	61.7	308M	-	-
UperNet	DeiT-S [†]	44.0	-	52M	1099G	16.2
UperNet	Swin-T	46.1	-	60M	945G	18.5
UperNet	Swin-S	49.3	-	81M	1038G	15.2
UperNet	Swin-B [‡]	51.6	-	121M	1841G	8.7
UperNet	Swin-L [‡]	53.5	62.8	234M	3230G	6.2

Table 3. Results of semantic segmentation on the ADE20K val and test set. † indicates additional deconvolution layers are used to produce hierarchical feature maps. ‡ indicates that the model is pre-trained on ImageNet-22K.

감사합니다

Thank you

good slide