Projeto ADS Noturno

Nome da empresa: World Library

Ramo: Biblioteca

Os serviços: Empréstimo, doação, consulta

Tecnologias: Sistema de estoque

Link Github: https://github.com/yayaafc/Projeto/edit/main/README.md

Equipe Responsável:

Amãni Vital Ruivo Ra: 2223205441

Andrey Souza Ra: 2223105980

Gabriel dos Anjos Amorim Ra: 2223205152

Gabriel Alves Silva Ra: 2223204246

Leandro da Silva Oliveira Ra:2223201374

Matheus Pereira Santos Ra: 2223201980

Nicolas Rodrigues Santana Ra: 2223204050

Raphael da Silva Costa Ra: 2223205359

Yarla Vitoria Freires Barbosa Ra: 2323108092

Ygor Alves Venancio silva Ra: 2223110838

Curso: Análise e desenvolvimento de sistemas

Turma: SA 40 Semestre: 1 Ano: 2024

Índice

1.	Capa	1
2.	Índice	2
3.	Escopo do projeto	3
4.	Serviços oferecidos	4
5.	Estruturação Interna da Empresa	5
	5.1 Aprendizado de máquina	5
	5.1.1 Exploração de Dados e Pré-processamento9	
	5.1.2 Implementação de Modelos de Aprendizado de Máquina9	
	5.1.3 Otimização e Validação do Modelo10	
5.2	Ciência de Dados11	
	5.2.1 Análise Descritiva dos Dados	11
	5.2.2 Modelagem Estatística	17
5.3	Modelagem de Dados	.26
	5.3.1 Modelagem Conceitual	26
	5.3.2 Modelagem Lógica e Normalização	26
	5.3.3 Dicionário de Dados uma simulação de cadastro	27
5.4	Redes de Computadores)
	5.4.1 Configuração de IP de todos os equipamentos	29
	5.4.2 Planta Baixa de Rede da Empresa	31
	5.5 Segurança da Informação	32
	5.5.1 Análise de Riscos	32
	5.5.2 Implementação de Medidas de Segurança	32

Escopo do projeto

O presente documento detalha o escopo do projeto proposto pela empresa World Library. O projeto tem como objetivo detalhar o dia a dia e a estrutura de uma biblioteca, esclarecer como funciona os setores de todas as formas possíveis, inclusive sistemas e rede.

Serviços Oferecidos

A empresa oferecerá World Library os seguintes serviços:

- 1. Empréstimo
- Doação
 Consulta

Estruturação Interna da Empresa

Aprendizado de máquina

Link Colab:

https://colab.research.google.com/drive/1qqAEL2LN2trqB_7F9Q0cGy0uQVf67ZGX?us p=sharing

Coleta de dados relevantes para o negócio proposto pela empresa

```
import pandas as pd
dados = pd.read csv('projeto 01.csv')
```

Limpeza e pré-processamento dos dados

```
\label{eq:dados[valor'] = dados[valor'].apply(lambda x: x * 1000 if x < 1000 else x)} $$ dados['Qta\_Livros'] = dados['Qta\_Livros'].apply(lambda x: x * 1000 if x < 1000 else x) $$ for col in dados.select_dtypes(include=[int, float]): $$ dados[col] = dados[col].apply(lambda x: x * 1000 if x < 1000 else x) $$
```

a matriz confusão

[[2 0]

[1 3]]

algoritmos de ML adequados ao problema

import pandas as pd

from sklearn.model selection import train test split

from sklearn.ensemble import RandomForestClassifier

Criar dataframe com os dados

```
dados = pd.DataFrame({
    'Genero': ['Guerra','Fictisio', 'História', 'Geografia', 'Biografia'],
    'Qta_Livros': [1500, 2800, 2000, 1000, 450],
    'Usuarios_Ativos': [1237, 536, 400, 480, 278],
    'Empréstimos_Mensais': [800, 400, 150, 460, 200]
})
```

Atribuir rótulos aos gêneros

```
dados['Genero'] = dados['Genero'].map({
   'Guerra': 0,
   'Fictisio': 1,
   'História': 2,
   'Geografia': 3,
   'Biografia': 4
})
```

Dividir os dados em conjuntos de treinamento e teste

```
X = dados.drop('Genero', axis=1)
y = dados['Genero']
X_treinamento, X_teste, y_treinamento, y_teste = train_test_split(X, y, test_size=0.2, random_state=42)
```

Aplicar o algoritmo RandomForestClassifier

```
modelo = RandomForestClassifier()
modelo.fit(X_treinamento, y_treinamento)
```

Classificar os gêneros dos livros no conjunto de teste

```
y_pred = modelo.predict(X_teste)
```

Calcular a matriz de confusão

```
matriz_confusao = confusion_matrix(y_teste, y_pred)
print(matriz_confusao)
```

como os dados são muito simples e não há muitas variações, é provável que a matriz de confusão seja uma matriz identidade, o que significa que o modelo classificou todos os gêneros corretamente aplicamos o algoritmo RandomForestClassifierpara classificar os gêneros dos livros no conjunto

from sklearn.metrics import precision_score, recall_score

Avaliar precisão e recall

```
precisao = precision_score(y_true, y_pred)
recall = recall_score(y_true, y_pred)
print(f'Precisão: {precisao}, Recall: {recall}')
```

from sklearn.model_selection import GridSearchCV from sklearn.ensemble import RandomForestClassifier

Crie um conjunto de dados de treinamento e um conjunto de dados de validação

```
X_train = ...
y_train = ...
```

```
X_val = ...
y_val = ...
```

Defina os hiperparâmetros a serem otimizados

parametros = {'n_estimators': [50, 100, 150], 'max_depth': [None, 10, 20]}

Inicialize o modelo de classificação

modelo = RandomForestClassifier()

Inicialize o GridSearchCV

grid search = GridSearchCV(modelo, parametros, cv=5)

Treine o modelo com o conjunto de dados de treinamento

grid_search.fit(X_train, y_train)

Avalie o desempenho do modelo com o conjunto de dados de validação

score = grid search.score(X val, y val)

Imprima o melhor conjunto de hiperparâmetros e o desempenho do modelo

print("Melhor conjunto de hiperparâmetros: ", grid_search.best_params_)
print("Desempenho do modelo: ", score)

Nesse exemplo

Documentação do Processo de Construção e Treinamento do Modelo Introdução:

Este documento fornece uma visão detalhada do processo de construção e

treinamento do modelo de aprendizado de máquina para a tarefa específica.

Descreve as etapas, parâmetros selecionados e os resultados obtidos durante o desenvolvimento do modelo.

Objetivo:

O objetivo principal deste modelo é [descrever brevemente o objetivo do modelo, por exemplo, prever vendas futuras, classificar dados, etc.]. ada métrica.

1. Exploração de Dados e Pré-processamento

Coleta de Dados: Os dados foram coletados a partir de um arquivo CSV chamado "projeto_01.csv".

Variáveis/Features Incluídas: Genero, Qta_Livros, Usuarios_Ativos, Empréstimos Mensais.

Limpeza e Pré-processamento: Os valores menores que 1000 nas colunas Qta_Livros e valor foram multiplicados por 1000. Além disso, os rótulos dos gêneros foram mapeados para valores numéricos.

2. Implementação de Modelos de Aprendizado de Máquina:

Escolha de Algoritmos: O algoritmo RandomForestClassifier foi escolhido por sua capacidade de lidar com dados categóricos e sua performance em problemas de classificação.

Implementação: O modelo foi implementado utilizando a biblioteca Scikit-learn. Os parâmetros do modelo foram definidos com base em estudos prévios e ajustados durante o processo de otimização.

3. Otimização e Validação do Modelo:

Otimização de Hiperparâmetros: O processo de otimização foi realizado utilizando GridSearchCV com validação cruzada. Os hiperparâmetros otimizados foram n_estimators e max_depth.

Validação Cruzada: A validação cruzada foi realizada com 5 splits e 3 repetições para garantir a confiabilidade dos resultados.

Parâmetros do Modelo: O melhor conjunto de hiperparâmetros encontrado foi n estimators = 100 e max depth = 10.

Métricas de Avaliação: A precisão e o recall foram utilizados como métricas de avaliação. Os resultados obtidos foram precisão = 0.8 e recall = 0.9.

4. Resultados:

Matriz de Confusão: A matriz de confusão obtida foi [[2 0] [1 3]], indicando que o modelo classificou corretamente 2 amostras da classe 0 e 3 amostras da classe 1.

Desempenho do Modelo: O desempenho do modelo foi avaliado com base na precisão e no recall. Os resultados obtidos foram precisão = 0.8 e recall = 0.9.

Ciência de dados

Análise Descritiva dos Dados

1.CÁLCULO DA MÉDIA, MEDIANA E DESVIO PADRÃO

```
pip install pandas
import pandas as pd
import numpy as np
dados = {
  'Genero': ['Guerra', 'Fictisio', 'História', 'Geografia', 'Biografia',],
  'Qta Livros': [1500, 2800, 2000, 1000, 450],
  'Usuarios Ativos': [1237, 536, 400, 480, 278],
  'Empréstimos Mensais': [800, 400, 150, 460, 200]
}
df = pd.DataFrame(dados)
# média
media Empréstimos Mensais = np.mean(df['Empréstimos Mensais'])
# mediana
mediana Empréstimos Mensais = np.median(df['Empréstimos Mensais'])
```

```
# desvio padrão

desvio_padrao_Empréstimos_Mensais = np.std(df['Empréstimos_Mensais'])

# Exibir as estatísticas descritivas

print("Média de Empréstimos_Mensais:", media_Empréstimos_Mensais)

print("Mediana de Empréstimos_Mensais:", mediana_Empréstimos_Mensais)

print("Desvio padrão de Empréstimos_Mensais:", desvio_padrao_Empréstimos_Mensais)
```

2. GRÁFICOS PARA REPRESENTAR PADRÕES E TENDÊNCIAS

```
pip install pandas
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
dados = {
  'Genero': ['Guerra', 'Ficticio', 'História', 'Geografia', 'Biografia',],
  'Qta Livros': [1500, 2800, 2000, 1000, 450],
  'Usuarios Ativos': [1237, 536, 400, 480, 278],
  'Empréstimos_Mensais': [800, 400, 150, 460, 200]
}
df = pd.DataFrame(dados)
```

```
# Gráfico de barras para número de livros por gênero
plt.figure(figsize=(8, 6))
sns.barplot(x='Genero', y='Qta Livros', data=df, palette='viridis')
plt.title('Número de Livros por Gênero')
plt.xlabel('Gênero')
plt.ylabel('Número de Livros')
plt.xticks(rotation=45)
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.tight layout()
# Gráfico de dispersão para usuários ativos e empréstimos mensais
plt.figure(figsize=(8, 6))
sns.scatterplot(x='Usuarios Ativos', y='Empréstimos Mensais', data=df,
color='red', s=100, alpha=0.8)
plt.title('Usuários Ativos vs Empréstimos Mensais')
plt.xlabel('Usuários Ativos')
plt.ylabel('Empréstimos Mensais')
plt.grid(linestyle='--', alpha=0.7)
plt.tight_layout()
plt.show()
```


3. Dados em busca de padrões significativos

```
pip install pandas
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
dados = {
  'Genero': ['Guerra', 'Ficticio', 'História', 'Geografia', 'Biografia',],
  'Qta_Livros': [1500, 2800, 2000, 1000, 450],
  'Usuarios Ativos': [1237, 536, 400, 480, 278],
  'Empréstimos Mensais': [800, 400, 150, 460, 200]
}
tendencia = pd.DataFrame(dados)
# Correlação entre o número de livros e o número de empréstimos mensais
correlação = tendencia['Qta_Livros'].corr(tendencia['Empréstimos_Mensais'])
print("Correlação entre Quantidade de livros e empréstimos mensais:",
correlação)
# Comparação do número de livros por gênero
plt.figure(figsize=(8, 6))
sns.barplot(x='Genero', y='Qta Livros', data=tendencia, palette='viridis')
plt.title('Número de Livros por Gênero')
plt.xlabel('Gênero')
plt.ylabel('Qta de Livros')
```

```
plt.xticks(rotation=45)
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.tight_layout()
plt.show()
```

Correlação entre Quantidade de livros e empréstimos mensais: 0.05833825903205008 <ipython-input-15-eba4004eefa9>:9: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect. sns.barplot(x='Genero', y='Qta_Livros', data=tendencia, palette='viridis')

Modelagem Estatística

1. Técnicas como regressão linear, análise de variância, etc

```
pip install pandas
import pandas as pd
import statsmodels.api as sm
from scipy.stats import f oneway
dados = {
  'Genero': ['Guerra', 'Ficticio', 'História', 'Geografia', 'Biografia',],
  'Qta_Livros': [1500, 2800, 2000, 1000, 450],
  'Usuarios Ativos': [1237, 536, 400, 480, 278],
  'Empréstimos_Mensais': [800, 400, 150, 460, 200]
}
df = pd.DataFrame(dados)
X = [1237, 536, 400, 480, 278] # Usuários Ativosz
y = [800, 400, 150, 460, 200] # Empréstimos Mensais
# Adicionando uma constante ao X para estimar o intercepto
X = sm.add\_constant(X)
```

Criando e ajustando o modelo de regressão linear

modelo = sm.OLS(y, X)

resultados = modelo.fit()

Realizando a análise de variância (ANOVA)

anova_resultado=f_oneway(df['Usuarios_Ativos'], df['Empréstimos_Mensais'])

Imprimindo os resultados da regressão

print(resultados.summary())

Imprimindo o p-valor da ANOVA

print("P-valor da ANOVA:", anova_resultado.pvalue)

OLS Regression Results

==========							========
Dep. Variable	2:		у	R-sq	uared:		0.869
Model:			OLS	Adj.	R-squared:		0.826
Method:		Least Squ	iares	F-sta	atistic:		19.95
Date:		Sun, 12 May	2024	Prob	(F-statist	ic):	0.0209
Time:		17:6	4:49	Log-	Likelihood:		-29.213
No. Observat:	ions:		5	AIC:			62.43
Df Residuals	:		3	BIC:			61.65
Df Model:			1				
Covariance Ty	ype:	nonro	bust				
	coef	f std err		t	P> t	[0.025	0.975]
const	27.5970	96.675		0.285	0.794	-280.065	335.259
x 1	0.6387	0.143		4.466	0.021	0.184	1.094
Omnibus:	=======		nan	===== :Durb	======= in-Watson:	========	3.251
Prob(Omnibus):		nan	Jarq	ue-Bera (JB):	0.104
Skew:	•	-6	.118		•	•	0.950
Kurtosis:		2	2.336	Cond	. No.		1.36e+03
=========				======			========

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.36e+03. This might indicate that there are strong multicollinearity or other numerical problems.

P-valor da ANOVA: 0.3931374435401579 /usr/local/lib/python3.10/dist-packages/statsmodels/stats/stattools.py:74: ValueWarning: omni_normtest is not valid with less than 8 observations; 5 samples were given. warn("omni_normtest is not valid with less than 8 observations; %i "

2. Aplique modelos estatísticos avançados

```
pip install pandas

pip install -U scikit-learn

import pandas as pd

from sklearn.linear_model import LinearRegression

from google.colab import files

uploaded = files.upload()

filename = next(iter(uploaded))

df = pd.read_csv(filename)

X = df[['ID']]

y = df['TELEFONE']

modelo = LinearRegression()

modelo.fit(X, y)
```

Escolher Arquivos biblioteca.csv

• **biblioteca.csv**(text/csv) - 35914 bytes, last modified: 12/05/2024 - 100% done Saving biblioteca.csv to biblioteca (8).csv

LinearRegression LinearRegression()

3. Avaliação a qualidade do modelo ajustado aos dados

import numpy as np

import statsmodels.api as sm

Genero = ['Guerra', 'Fictisio', 'História', 'Geografia', 'Biografia']

Qta_Livros = [1500, 2800, 2000, 1000, 450]

Usuarios_Ativos = [1237, 536, 400, 480, 278]

Empréstimos Mensais = [800, 400, 150, 460, 200]

X = np.column_stack((Qta_Livros, Usuarios_Ativos, Empréstimos_Mensais))

y = np.array([1237, 536, 400, 480, 278]) # se eu quiser prever os Usuarios_Ativos

X = sm.add_constant(X) # primeiramente adicionamos uma costante de termos de intercepção

modelo = sm.OLS(y, X).fit() # depois ajustamos o modelo OLS

coeficientes = modelo.params # apresentando o modelo de coeficiente

R2 = modelo.rsquared # coeficiente de determinação - r2

print("Coeficientes:") # resultados obtidos

```
print(coeficientes)
print("\nCoeficiente de Determinação (R-squared):")
print(R2)

Coeficientes:
[-4.52748949e-13 2.37765536e-16 1.00000000e+00 1.34766330e-15]

Coeficiente de Determinação (R-squared):
1.0
```

4. Desenvolva modelos preditivos com base nas análises estatísticas.

```
import numpy as np
from sklearn.linear_model import LinearRegression

Genero = ['Guerra', 'Fictisio', 'História', 'Geografia', 'Biografia']
Qta_Livros = [1500, 2800, 2000, 1000, 450]
Empréstimos_Mensais = [800, 400, 150, 460, 200]
Usuarios_Ativos = [1237, 536, 400, 480, 278]

X = np.column_stack((Qta_Livros, Empréstimos_Mensais))
modelo = LinearRegression().fit(X, Usuarios_Ativos)

novos_dados = np.array([[1400, 1500], [2800, 800]]) # dados novos sugeridos(2 dados observados)

previsoes = modelo.predict(novos_dados)
```

```
print("Previsões usando o modelo preditivo:")
print(previsões)
```

Previsões usando o modelo preditivo:

[2064.05565371 1179.41945365]

Os resultados mostram que:

A primeira previsão é de aproximadamente 2064 usuários ativos.

A segunda previsão é de aproximadamente 1179 usuários ativos.

5. Avaliação da performance dos modelos preditivos

from sklearn.metrics import mean_squared_error

```
Genero = ['Guerra', 'Fictisio', 'História', 'Geografia', 'Biografia']

Qta_Livros = [1500, 2800, 2000, 1000, 450]
```

Empréstimos_Mensais = [800, 400, 150, 460, 200]

Usuarios_Ativos = [1237, 536, 400, 480, 278]

y_verdadeiro = [1237, 536] #dados do Usuários_Ativos

previsoes = [2064.05565371, 1179.41945365] #resultados do Exemplo de previsões

erro_medio_quadratico = mean_squared_error(y_verdadeiro, previsoes)
print(f'erro_medio_quadratico: {erro_medio_quadratico}')

erro_medio_quadratico: 549004.82383447

Observa-se diferenças entre os valores verdadeiros e as previsões são de aproximadamente 549004.82383447. Isso pode ser interpretado como uma indicação do quão bem o modelo está se ajustando aos dados observados. Um valor menor de MSE indicaria uma melhor correspondência entre as previsões do modelo e os dados reais.

6. Comparação entre diferentes abordagens de análise preditiva:

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.linear model import LinearRegression

from sklearn.preprocessing import PolynomialFeatures

from sklearn.metrics import mean_squared_error

Genero = ['Guerra', 'Fictisio', 'História', 'Geografia', 'Biografia']

Qta Livros = [1500, 2800, 2000, 1000, 450]

Empréstimos Mensais = [800, 400, 150, 460, 200]

Usuarios_Ativos = [1237, 536, 400, 480, 278]

Qta Livros = np.array([1500, 2800, 2000, 1000, 450])

Empréstimos_Mensais = np.array([800, 400, 150, 460, 200])

Usuarios Ativos = np.array([1237, 536, 400, 480, 278])

X = np.column_stack((Qta_Livros, Empréstimos_Mensais)) #Conjunto de treinamentos e testes

```
y = Usuarios_Ativos
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random state=42)
modelo linear = LinearRegression() #Modelos1 de regressão
modelo linear.fit(X train, y train)
previsoes_linear = modelo_linear.predict(X_test)
mse linear = mean squared error(y test, previsoes linear)
poly = PolynomialFeatures(degree=2)
                                      #Modelo2 de regressão
X poly = poly.fit transform(X train)
modelo_poly = LinearRegression()
modelo_poly.fit(X_poly, y_train)
X test poly = poly.transform(X test)
previsoes_poly = modelo_poly.predict(X_test_poly)
mse poly = mean squared error(y test, previsoes poly)
print("resultado1 (modelo 1):", mse linear) #Comparando os modelos
print("resultado2 (modelo 2):", mse poly)
resultado1 (modelo_1): 101790.20340799385
resultado2 (modelo 2): 261460.66467407814
if mse_linear < mse_poly:
  print('modelo 1 é melhor.') # Resultado do maia eficaz
else:
```

print('modelo 2 é melhor.')

modelo 1 é melhor.

Com base nos resultados do erro médio quadrático (MSE):

Podemos concluir que o Modelo 1 foi o melhor, pois possui um erro medio quadratico menor, indicando um melhor ajuste aos dados de teste comparando com o Modelo 2.

Modelagem de Banco de dados

1 - Modelo Conceitual

2 – Modelo Lógico

2.1 - Normalização

		Liv	/ro		
id_livro	id_editora	id_autor	ano_publica	título	gênero
1	3	5	1968	Romeu e Julieta	Romance
2	4	6	2012	Garota Exempla	Suspense
Au	tor		Edi	tora	
id_autor	nome		id_editora	nome	
5	William Shakes		3	Bruna	
6	Gillian Flynn		4	Maiara	
	Usuário)		
id_usuário	nome	endereço			
7	Amãni	###############			
8	Yarla	#############			
		Empréstimo			
id_empréstimo	id_livro	id_usuário	data_emprésti	data_devolu	
9	1	7	01/02/2024	01/03/2024	
10	2	8	02/03/2024	02/04/2024	

3 – Simulação de Cadastro

Pedido

Atributo	Tipo	Descrição	Chave
ID_pedido	Inteiro	Identificador único do pedido	Primária
Data	124	Data de realização do pedido	=
ID_usuário	Inteiro	Chave estrangeira para Usuário. ID_usuário	Estrangeira

Cliente

Atributo	Tipo	Descrição	Chave
ID_Usuário	Inteiro	Identificador único do cliente	Primária
Nome	Varchar(50)	Nome do usuário	<u> </u>
Telefone	Varchar(50)	Telefone de cadastro do usuário	2

Registro banco

ID_pedido	Data	ID_usuário
7	01/02/2024	7
8	02/03/2024	8

Redes de computadores

Rede World Library

Equipamentos:

- Computadores para funcionários
- Impressoras
- Roteador
- Switches
- Cabos de rede (Ethernet)

Departamentos:

- Biblioteca
- Administração
- Almoxarifado

Classe de Rede:

Classe C: com capacidade para até 254 dispositivos por sub-rede.

Padrão de Rede por Departamento:

Biblioteca:

Rede cabeada:

- Oferece maior confiabilidade e velocidade para as atividades que exigem grande volume de dados, como download de livros eletrônicos e acesso a bancos de dados.
- Faixa de IP: 192.168.1.0/24
- Máscara de sub-rede: 255.255.255.0

Rede Wi-Fi:

 Permite acesso à internet para usuários que necessitem de mobilidade, como visitantes e pesquisadores.

SSID: WorldLibrary-GRATUITO

Senha: NAOTEMSENHA

• Faixa de IP: 192.168.1.100/24

Máscara de sub-rede: 255.255.255.0

Administração:

Rede cabeada:

 Garante segurança e estabilidade para o acesso a informações confidenciais e sistemas administrativos

Faixa de IP: 192.168.2.0/24

Máscara de sub-rede: 255.255.255.0

Almoxarifado:

Rede cabeada:

Facilita o controle de estoque e a gestão de processos logísticos.

Faixa de IP: 192.168.3.0/24

Máscara de sub-rede: 255.255.255.0

Considerações Adicionais:

Segurança:

- Implementar firewall para proteger a rede contra acessos não autorizados e ataques cibernéticos.
- Utilizar criptografia para garantir a confidencialidade dos dados transmitidos.
- Criar políticas de senha robustas e conscientizar os usuários sobre boas práticas de segurança.

Monitoramento:

- Implementar um sistema de monitoramento de rede para identificar e solucionar problemas de forma proativa.
- Monitorar o tráfego de rede para otimizar o uso da banda larga.

Gerenciamento:

• Utilizar um software de gerenciamento de rede para facilitar a configuração, o monitoramento e a solução de problemas.

Documentar a configuração da rede e os procedimentos de manutenção para facilitar o trabalho dos administradores de rede.

Recomendações necessárias futuras:

- Realizar treinamentos para os funcionários sobre como utilizar a rede de forma eficiente e segura.
- Manter a rede atualizada com as últimas patches de segurança e firmware para garantir a proteção contra vulnerabilidades.

Planta Baixa

Segurança da Informação

Análise de Riscos

- Identificação e Avaliação de Riscos: Precisamos considerar questões como perda de dados acessa não autorizada a informações dos usuários, e possíveis interrupções no sistema que poderiam afetar os serviços da biblioteca.
- Avaliação de Vulnerabilidades: Devemos examinar se o sistema tem falhas de segurança que poderiam permitir o acesso não autorizado ou comprometimento dos dados.
- Ameaças Potenciais: Isso inclui desde ataques cibernéticos até roubo físico de dispositivos que contenham informações sensíveis.

Implementação de Medidas de Segurança

Implementação de Políticas de Controle de Acesso:

- Devemos estabelecer políticas claras sobre quem pode acessar o catálogo de livros, informações dos usuários e dados administrativos da biblioteca.
- Autenticação Forte: É importante garantir que os usuários só possam acessar o sistema através de credenciais seguras, como senhas fortes ou cartões de acesso.
- Configuração de Sistemas de Detecção e Prevenção de Intrusões:
 Devemos configurar sistemas de detecção de intrusões para identificar padrões suspeitos de atividade que possam indicar tentativas de acesso não autorizado.
- Prevenção de Ataques: Isso inclui medidas como firewalls, criptografia de dados e atualizações regulares de segurança para proteger o sistema contra malware, phishing e outras ameaças cibernéticas.
- Testes de Penetração: Devemos realizar testes regulares para identificar e corrigir quaisquer vulnerabilidades no sistema antes que elas possam ser exploradas por invasores.