I. Paketlaufzeiten

- Fiktiver Netztyp
- Verzehnfachte Datenrate
- ⇒ Auswirkung auf Paketlaufzeiten? Begründung.

I. 10-fache Datenrate → Paketlaufzeit

- 2 Aspekte:
- a) Ausbreitungsgeschwindigkeit unverändert
 - ⇒ Jedes einzelne Bit benötigt genauso lang
- b) Bittakt erhöht → Bits kürzer (Faktor 10)
 - ⇒ Bits werden schneller hintereinander abgesendet
 - ⇒ Vollständiges Paket früher da

vs. ||||||||

Gesamteffekt abhängig von Verhältnis a): b)

2. Asymmetrische Verschlüsselung

- Asymmetrische Verschlüsselung basiert auf Schlüsselpaaren
- a) Authentisierung (bzw. Integritätscheck):
 - auf Basis des geheimen Schlüssels des Senders
 - alle Empfänger besorgen sich/prüfen öffentlichen Schlüssel des Senders
 - ⇒ Kein Problem!

b) Geheimhaltung:

- auf Basis des öffentlichen Schlüssels des Empfängers
- klappt nicht bei einer Multicast-Verteilung, da für jeden
 Empfänger unterschiedliche Verschlüsselung erforderlich wäre.
- ⇒ Problem!

:

3. Multicast-Adressen

- IPv4-Multicast-Adresse vorgegeben: 228.058.214.102
 - a) Zugehörige Ethernetadresse?

:

3. Multicast-Adressen

- IPv4-Multicast-Adresse vorgegeben: 228.058.214.102
 - a) Zugehörige Ethernetadresse?

:

3. Multicast-Adressen

- IPv4-Multicast-Adresse vorgegeben: 228.058.214.102
 - a) Zugehörige Ethernetadresse?

3. Multicast-Adressen

- IPv4-Multicast-Adresse vorgegeben: 228.058.214.102
 - b) Warum Abbildung u.U. suboptimal
 - je 32 verschiedene IPv4-MC-Adressen haben dieselbe Ethernet-MC-Adresse
 - ggf. mehrere gleichzeitig in Nutzung

Wie damit umgehen?

 Pakete aller dieser Gruppen entgegennehmen und auf IP-Ebene ausfiltern