A* Algorithm.

for Search

→ uses heuristic function & h(n) & cost to reach the hode n from start state g(n).

→ finds shortest path through Search space.

The fives provides fast 2 optimal result.

Theuristic value f(n) = g(n) + h(n) (child node)

⇒cost of each nude

Algorithm :-

- (i) Enter starting hode in OPENI list
 - (ii) if open List is empty return FAIL
 - iii) Select node from OPEN Lut which has smallest value (9th)

L> if node = Goal return Success iv) Expand node in and generate all Successors

Lacompute (g+h) for each successor node

V) if node in is already in

OPEN/CLOSED, attached to back-pointer.

vi) go to (ii)

Advantages:-

- 1) Best searching algorithm
- 2) It is optimal & complete helps in a solving Complex problems.

Disadvantages:

- 1) Doesn't always produce shortest
 - 2) Complexity usues
 - 3) Requires memory.

$$S \rightarrow A$$
: $f(n)=g(n)+h(n)=1+6=7$
 $S \rightarrow B$: $f(n)=g(n)+h(n)=4+2=6$

So choose path $3 \rightarrow B$.

Explore $3 \rightarrow B$ path: - likeep $5 \rightarrow A$ in hold.

$$S \xrightarrow{A} B \xrightarrow{a} C : f(n) = g(n) + h(n)$$

$$S \xrightarrow{A} B \xrightarrow{B} C \xrightarrow{3} \stackrel{\textcircled{0}}{D} : f(n) = g(n) + h(n)$$

$$= (4+2+3) + 0$$

$$S \rightarrow B \rightarrow C \rightarrow D : 9$$

Exploring A paths

Sign Paths

Sign Paths

Sign Paths

Sign Paths

Sign Paths

$$S = f(n) = g(n) + h(n)$$

$$= (1+2) + 2$$

$$= 3 + 2$$

$$= 5$$

$$S = f(n) = g(n) + h(n)$$

$$= (1+5) + 1$$

$$= 6 + 1$$

$$= 7$$

$$S \Rightarrow A \Rightarrow D = f(n) = g(n) + h(n)$$

$$= (1+12) + 0$$

$$= 18$$

$$S \Rightarrow A \Rightarrow D : 13 \Rightarrow \emptyset$$

from $S \Rightarrow A \Rightarrow B : 5 < S \Rightarrow A \Rightarrow C : 7$
So take Smallest Cost

Explore != $S \rightarrow A \rightarrow B$ path G $S \xrightarrow{1} A \xrightarrow{3} B \xrightarrow{2} C : f(n) = g(n) + h(n)$ = (1+2+2)+1 = 5+1 = 6. $S \xrightarrow{1} A \xrightarrow{2} B \xrightarrow{2} C \xrightarrow{3} 0 : f(n) = g(n) + h(n)$ = [1+2+2+3]+0 = 8. $S \rightarrow A \rightarrow B \rightarrow C \rightarrow D : 8 \rightarrow G$

Now: Explore: $S \rightarrow P \rightarrow C$ $S \rightarrow P \rightarrow C$

 $S \xrightarrow{5} A \xrightarrow{5} C \xrightarrow{3} D = f(n) = g(n) + h(n)$ = [1+5+3] + D

 $S \rightarrow A \rightarrow B \rightarrow C \rightarrow D: 9 \rightarrow 4$ From ①,⑤,⑤ & Paths.

Optimal path is

 $S \rightarrow A \rightarrow B \rightarrow C \rightarrow D : 8$.

Example :- 2

State
$$h(n)$$

 $S \longrightarrow 5$
 $A \longrightarrow 3$
 $B \longrightarrow 4$
 $C \longrightarrow 2$
 $D \longrightarrow 6$
 $G \longrightarrow 0$

Start State: - S
Good State: Gr
Find Optimal Sol.
Using A*, Alg.
Search.