Teste de Análise Matemática I B

Duração: 2 horas 30.01.07

Exercício 1. Considere a função $f:]0, +\infty[\to \mathbb{R}$ definida por $f(x) = \frac{\operatorname{sen}(x^3)}{x^2}$.

- a) Calcule, caso existam, $\lim_{x \to +\infty} f(x)$ e $\lim_{x \to 0^+} f(x)$.
- b) Usando o teorema de Rolle, mostre que a equação f'(x) = 0 tem uma infinidade de soluções.
- c) Existe $\lim_{x\to +\infty} f'(x)$? Justifique.

Exercício 2.

- a) Calcule $\lim_{x\to 0} \frac{e^x \sin x x}{4x^2}$.
- b) Dada a função $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = \frac{1}{1 + |x + 1|}$, determine $f^{-1}(]\frac{1}{4}, +\infty[$).
- c) Mostre que $\forall x \in \mathbb{R}$ th² $x + \operatorname{sech}^2 x = 1$.

Exercício 3. Calcule os seguintes integrais:

- a) $\int \sin x \cos^2(\cos x) \, dx;$
- b) $\int x \operatorname{ch} x \, dx;$
- c) $\int \frac{x}{\sqrt[4]{1+x^2}} dx$, fazendo a mudança de variável $1+x^2=u^4$.

Exercício 4. Diga se são verdadeiras ou falsas as seguintes afirmações, justificando:

- a) a soma de duas funções de $\mathbb R$ em $\mathbb R$ monótonas é monótona;
- b) se $f: \mathbb{R} \longrightarrow \mathbb{R}$ é uma função contínua tal que o mínimo absoluto de f é zero e $\lim_{x \to -\infty} f(x) = +\infty$, então $f(\mathbb{R}) = [0, +\infty[$.

Exercício 5. Seja $P(x) = ax^3 + bx^2 + cx + d$, em que $a, b, c, d \in \mathbb{R}$ e a > 0.

- a) Indique $\lim_{x\to +\infty} P(x)$ e $\lim_{x\to -\infty} P(x)$.
- b) Mostre que $P(\mathbb{R}) = \mathbb{R}$.
- c) Mostre que se d > 0 e a + b + c + d < 0 então P tem três zeros.

FIM BOA SORTE

	1-b)												
1,5	1,5	1,5	1,5	1,5	1,5	2,0	2,0	2,0	1,0	1,0	1,0	1,0	1,0