Day 12 Eigenvalue placement

AE353 Spring 2022 Bret1 The eigenvalues of a matrix are the roots of its characteristic polynomial

$$\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \times + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

$$u = -\begin{bmatrix} 20 & 9 \end{bmatrix} \times$$

$$= 5^{2} + 95 + 20 = (5+4)(5+5) = 51 = -4 = 52 = -5$$

A-BK = [0 1] - [0][20 9]

= [0]

Our way to place eigenvalues is to equate coefficients of the characteristic polynomial

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \times + \begin{bmatrix} 0 \\ 0 \end{bmatrix} u$$
 $\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \times + \begin{bmatrix} 0 \\ 0 \end{bmatrix} u$
 $\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \times + \begin{bmatrix} 0 \\ 0 & 0 \end{bmatrix} u$
 $\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \times + \begin{bmatrix} 0 \\ 0 & 0 \end{bmatrix} u$
 $\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \times + \begin{bmatrix} 0 \\ 0 & 0 \end{bmatrix} u$
 $\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \times + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} u$
 $\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \times + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} u$
 $\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \times + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} u$

What do we want?

 $\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \times + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} u$

What do we have?

 $\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \times + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} u$
 $\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \times + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} u$
 $\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \times + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} u$
 $\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \times + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} u$
 $\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \times + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \times + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} u$
 $\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \times + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \times + \begin{bmatrix} 0 & 1 \\ 0$

	—					• •	,					1		11	1						<u>ر</u>				. 1		1		_	_	4		
	叶	1<		PC	>55	<i>د</i> ۱ ه	اح	7	9	au.	tou	ЛОТ	2	+	عما	P	K O	ce	\$5	~	*	حا	3°	אצי	/œl	ue	Pl	عر	es	ue	M\		
			Se	e	· F	عر ا	the	~ ~	4	em	O																						
					_	ں																											