Final review

Introduction to Model Theory

December 23, 2021

Section 1

Languages, structures, formulas, satisfaction

Languages

Definition

A language (or signature) consists of

- A set of function symbols
- ② A set of *relation symbols*
- A set of constant symbols
- A map assigning to each function symbol or relation symbol X a nonnegative integer called the arity of X.

A k-ary relation symbol or k-ary function symbol is a relation symbol or function symbol of arity k.

- Unary and binary mean 1-ary and 2-ary.
- The *language of orders* has one binary relation symbol \leq .
- The *language of rings* has binary function symbols $+, \times$, a unary function symbol -, and two constant symbols 0 and 1.

3/127

Structures

Fix a language *L*.

Definition

An L-structure M consists of

- A set *M*, sometimes called the *domain* of the structure, or the set of *elements*.
- For each constant symbol c in L, an element $c^M \in M$.
- For each k-ary relation symbol R in L, a subset $R^M \subseteq M^k$.
- For each k-ary function symbol f in L, a function $f^M: M^k \to M$.

If X is a symbol, then X^M is called the *interpretation* of X in M.

Structures can be empty.

Structures

Suppose L_{or} is the language of ordered rings $\{+,-,\times,0,1,\leq\}$. An L_{or} -structure is the following:

- A set *M*.
- Functions

$$+^{M}: M^{2} \rightarrow M$$
 $-^{M}: M \rightarrow M$
 $\times^{M}: M^{2} \rightarrow M$

- Elements $0^M \in M$ and $1^M \in M$.
- A relation $(\leq^M) \subseteq M^2$.

Usually we write $+^M, -^M, \times^M, 0^M, 1^M, \leq^M$ as $+, -, \times, 0, 1, \leq$.

An L_{or} -structure needn't be an ordered ring.

Terms

Fix a language L and a set of *variables*. The set of L-terms is generated by the following:

- Any variable is a term.
- Any constant symbol is a term.
- If f is a k-ary function symbol and s_1, \ldots, s_k are terms, then $f(s_1, \ldots, s_k)$ are terms.

Examples:

- In the language of rings, $+(x, \times (y, 1))$ is a term, and we usually write it as $x + (y \times 1)$ or just $x + y \cdot 1$.
- In the language of orders, the only terms are variables.

Terms: notation

- If we say " $t(x_1, ..., x_n)$ is a term," we mean that $t(x_1, ..., x_n)$ is a term in the variables $\{x_1, ..., x_n\}$
 - ▶ That is, the only variables appearing in $t(x_1,...,x_n)$ are $\{x_1,...,x_n\}$.
- We can do substitutions: we can replace one or more of the x_i with other terms.
 - ▶ In the language of rings, if t(x, y) is $x + y \cdot y$, then t(x, y + z) is $x + (y + z) \cdot (y + z)$.
- We often abbreviate a tuple of variables (x_1, \ldots, x_n) as \bar{x} .
 - ▶ The length *n* should be clear from context.

Formulas

The set of *L-formulas* is generated by the following:

- If t, s are terms, then "t = s" is a formula.
- ② If R is an n-ary relation symbol and t_1, \ldots, t_n are terms, then $R(t_1, \ldots, t_n)$ is a formula.
- **3** If φ is a formula, then $\neg \varphi$ is a formula.
- **1** If φ, ψ are formulas, then $\varphi \wedge \psi$ and $\varphi \vee \psi$ are formulas.
- \bullet \bot , \top are formulas.
- **1** If φ is a formula and x is a variable, then $\exists x \ \varphi$ and $\forall x \ \varphi$ are formulas.

Semantics of terms

Let M be an L-structure, $t(x_1, ..., x_n)$ be a term, and $\bar{a} \in M^n$. We define $t(\bar{a})^M$ recursively as follows:

- If $t(\bar{x}) = x_i$, then $t(\bar{a})^M = a_i$.
- If $t(\bar{x})$ is a constant symbol c, then $t(\bar{a})^M = c^M$.
- If $t(\bar{x})$ is $f(s_1(\bar{x}), \dots, s_k(\bar{x}))$ for some k-ary function symbol f, then $t(\bar{a})^M = f^M(s_1(\bar{a})^M, \dots, s_k(\bar{a})^M)$.

Idea

 t^{M} is obtained by replacing the symbols in t with their interpretations in M.

In an L_{or} -structure M, $(0+1\cdot a)^M=0^M+M^M1^M\cdot M$ a.

Semantics of formulas (\models)

Let M be an L-structure, $\varphi(x_1, \ldots, x_n)$ be a term, and $\bar{a} \in M^n$. We define $M \models \varphi(\bar{a})$ recursively:

- M ⊨ ⊤
- M ⊭ ⊥.
- $M \models t(\bar{a}) = s(\bar{a}) \iff t(\bar{a})^M = s(\bar{a})^M$
- $M \models R(t_1(\bar{a}), \ldots, t_n(\bar{a})) \iff (t_1(\bar{a})^M, \ldots, t_n(\bar{a})^M) \in R^M$
- $M \models \varphi(\bar{a}) \land \psi(\bar{a}) \iff (M \models \varphi(\bar{a}) \text{ and } M \models \psi(\bar{a}))$
- $M \models \varphi(\bar{a}) \lor \psi(\bar{a}) \iff (M \models \varphi(\bar{a}) \text{ or } M \models \psi(\bar{a}))$
- $\bullet \ M \models \neg \varphi(\bar{a}) \iff M \not\models \varphi(\bar{a})$
- $M \models \exists x \ \varphi(x, \bar{a}) \iff \exists b \in M \ (M \models \varphi(b, \bar{a}))$
- $M \models \forall x \ \varphi(x, \bar{a}) \iff \forall b \in M \ (M \models \varphi(b, \bar{a})).$

Semantics of formulas (\models)

Idea

" $M \models \varphi$ " is φ with the following changes:

- Each symbol in *L* is replaced with its interpretation in *M*.
- $\forall x$ becomes $\forall x \in M$
- $\exists x \text{ becomes } \exists x \in M$

Example

An L_{or} -structure satisfies $\exists x \ (x \cdot x \leq x)$ iff

$$\exists a \in M \ (a \cdot^M a \leq^M a).$$

Idea

 $M \models \varphi(a_1, \ldots, a_n)$ means that $\varphi(a_1, \ldots, a_n)$ is "true inside M."

L(M)

Suppose L is a language and M is an L-structure.

- L(M) is the language obtained by adding a new constant symbol for each element of M.
- We can regard M as an L(M)-structure by interpreting the each new symbol c as the corresponding element of M.

Idea

A formula or term in L(M) is a formula or term with parameters from M.

Remark

The map $(-)^M$ that evaluates terms is really a map from L(M)-terms (with no variables) to M.

The relation $M \models \varphi$ is really a relation between structures M and L(M)-sentences φ .

Constants and 0-ary functions

Constant symbols are equivalent to 0-ary function symbols.

- We can think of a constant symbol like 1 as a function 1() which takes no inputs, and output the value 1.
- In general, a k-ary function is $M^k \to M$.
- When k = 0, M^0 is a singleton $\{()\}$, where () is the tuple of length 0.
- A 0-ary (or "nullary") function is $\{()\} \to M$, which amounts to an element of M.
- So we don't *really* need constant symbols.

Section 2

Theories and models

Theories and models

Let L be a language.

- An L-theory is a set of L-sentences.
- If *M* is an *L*-structure and *T* is an *L*-theory, then

$$M \models T$$

means that $M \models \varphi$ for every $\varphi \in \mathcal{T}$.

• A model of T is an L-structure M such that $M \models T$.

Elementary equivalence

Definition

Two L-structures M_1 , M_2 are elementarily equivalent if

$$M_1 \models \varphi \iff M_2 \models \varphi$$

for any L-sentence φ .

This implies that $M_1 \models T \iff M_2 \models T$, for any theory T.

Logical implication

If T is an L-theory and φ is an L-sentence, then

$$T \vdash \varphi$$

means that every model of T satisfies φ :

$$M \models T \implies M \models \varphi.$$

Some authors write $T \models \varphi$ rather than $T \vdash \varphi$.

Fact (Gödel's completeness theorem)

 $T \vdash \varphi$ iff φ is provable from T.

Consistent theories

A theory *T* is *inconsistent* if the following equivalent conditions hold:

- T has no models.
- T ⊢ ⊥.
- There is a sentence φ such that $T \vdash \varphi$ and $T \vdash \neg \varphi$.

Otherwise, T is consistent.

Complete theories

A consistent theory *T* is *complete* if the following equivalent conditions hold:

- If $M_1, M_2 \models T$, then $M_1 \equiv M_2$.
- For any sentence φ , either $T \vdash \varphi$ or $T \vdash \neg \varphi$.

(Some authors use the stronger sense of "complete" where $\varphi \in \mathcal{T}$ or $\neg \varphi \in \mathcal{T}$.)

Remark

If T is complete and $M \models T$, then for any sentence φ ,

$$T \vdash \varphi \iff M \models \varphi$$
.

Logically equivalent theories

Two *L*-theories T_1 , T_2 are *logically equivalent* if the following equivalent conditions hold:

- T_1 and T_2 have the same models.
- $T_1 \vdash \varphi \iff T_2 \vdash \varphi$ for any φ .
- $\varphi \in T_1 \implies T_2 \vdash \varphi \text{ and } \varphi \in T_2 \implies T_1 \vdash \varphi$.

The complete theory of a structure

Let *M* be an *L*-structure.

- The *complete theory of M*, written Th(M), is the set of L-sentences φ such that $M \models \varphi$.
- $N \models \mathsf{Th}(M) \iff N \equiv M$.
- If $M \models T$ and T is complete, then T is logically equivalent to Th(M).

Elementary classes

An elementary class is a class of structures of the form

 $\{M: M \text{ is a model of } T\}$

for some theory T.

Warning

Some authors require T to be finite, but this is unusual in modern model theory.

Section 3

More about formulas

Atomic formulas

An atomic formula is a formula of one of the forms

- $t(\bar{x}) = s(\bar{x})$
- $R(t_1(\bar{x}),\ldots,t_n(\bar{x})).$

i.e., a formula built without the logical connectives \forall , \exists , \neg , \lor , \land , \top , \bot .

Quantifier-free formulas

A quantifier-free formula is a formula without quantifiers (\forall, \exists) .

- $(x + y \cdot y \le -z) \lor \bot$ is a quantifier-free formula.
- $\exists x \ (x \le x)$ is not quantifier-free.

Conjunctions

- The AND operation (∧) is called "conjunction."
- If $\varphi_1, \ldots, \varphi_n$ are formulas, their *conjunction* is

$$\varphi_1 \wedge \varphi_2 \wedge \cdots \wedge \varphi_n$$
.

- When n = 0, the conjunction is \top .
- The conjunction is often written $\bigwedge_{i=1}^n \varphi_i$.

Remark

 $M \models \bigwedge_{i=1}^n \varphi_i$ iff for every $i \in \{1, ..., n\}$, $M \models \varphi_i$. So $\bigwedge_{i=1}^n$ works a little like " $\forall i$."

Disjunction

- The OR operation (∨) is called "disjunction."
- If $\varphi_1, \ldots, \varphi_n$ are formulas, their disjunction is

$$\varphi_1 \vee \varphi_2 \vee \cdots \vee \varphi_n$$
.

- When n = 0, the disjunction is \perp .
- The disjunction is often written $\bigvee_{i=1}^n \varphi_i$.

Remark

 $M \models \bigvee_{i=1}^{n} \varphi_i$ iff there is $i \in \{1, ..., n\}$ such that $M \models \varphi_i$ So $\bigvee_{i=1}^{n}$ works a little like " $\exists i$."

Boolean combinations

Let S be a set of formulas.

- **1** Let S_1 be the smallest set of formulas containing S and closed under disjunction and conjunction (including \top, \bot). Formulas in S_1 are called *positive boolean combinations* of formulas in S.
- ② Let S_2 be the smallest set of formulas containing S and closed under disjunction, conjunction, and negation (\neg). Formulas in S_2 are called boolean combinations of formulas in S.

Quantifier-free formulas = boolean combinations of atomic formulas.

More logical symbols

• $\varphi \to \psi$ means " φ implies ψ ," i.e.,

$$\neg \varphi \lor \psi$$
.

- $\varphi \leftarrow \psi$ means $\psi \rightarrow \varphi$.
- $\quad \bullet \ \varphi \leftrightarrow \psi \ \text{means} \ "\varphi \ \text{iff} \ \psi"$

$$(\varphi \to \psi) \land (\psi \to \varphi).$$

"Every man is mortal" becomes $\forall x \ (Man(x) \rightarrow Mortal(x))$.

More logical symbols

• $\exists ! x \ \varphi(x)$ means "there is a unique x such that $\varphi(x)$ holds," i.e.,

$$(\exists x \ \varphi(x))$$

$$\land$$

$$\forall x, y \ (\varphi(x) \land \varphi(y) \to x = y))$$

Fewer logical symbols

Every formula is logically equivalent to a formula built from atomic formulas using

$$\neg, \exists, \land$$

i.e., not using $\forall, \lor, \top, \bot$. Why?

$$\varphi \lor \psi \equiv \neg(\neg \varphi \land \neg \psi)$$

$$\forall x \ \varphi(x) \equiv \neg \exists x \ \neg \varphi(x)$$

$$\top \equiv \forall x \ (x = x)$$

$$\bot \equiv \neg \top.$$

Definable sets

If $\varphi(x_1,\ldots,x_n)$ is an *L*-formula and *M* is an *L*-structure, then

$$\varphi(M^n) := \{\bar{a} \in M^n : M \models \varphi(\bar{a})\}.$$

- Sometimes $\varphi(M^n)$ is written $\varphi(M)$.
- Sets of the form $\varphi(M^n)$ are called \varnothing -definable or 0-definable sets.

In $(\mathbb{R},+,\cdot)$, the formula

$$\varphi(x,y) = \exists z \ (x+z \cdot z = y)$$

defines the relation \leq .

Definable sets

If
$$\varphi(x_1,\ldots,x_n,y_1,\ldots,y_m)$$
 is an L -formula and $\bar{b}\in M^m$, then
$$\varphi(M^n,\bar{b})=\{\bar{a}\in M^n:M\models\varphi(\bar{a},\bar{b})\}.$$

- Sets of the form $\varphi(M^n, \bar{b})$ are called *M-definable sets*.
- If $\bar{b} \in A^n$ for some $A \subseteq M$, we say the set is A-definable.
- "definable" by itself means M-definable or \varnothing -definable, depending on the author.

Section 4

Examples of theories

Equivalence relations

An equivalence relation is a model of the theory

$$\forall x (x \sim x)$$

$$\forall x, y (x \sim y \rightarrow y \sim x)$$

$$\forall x, y, z (x \sim y \land y \sim z \rightarrow x \sim z).$$

Partial orders

A partial order is a model of the theory

$$\forall x \ (x \le x)$$

$$\forall x, y \ (x \le y \ \land \ y \le x \to x = y)$$

$$\forall x, y, z \ (x \le y \ \land \ y \le z \to x \le z).$$

Example: the powerset $(P(X), \subseteq)$.

Linear orders

A linear order is a partial order satisfying

$$\forall x, y \ (x \leq y \ \lor \ y \leq z).$$

Example: (\mathbb{R}, \leq) .

Dense linear orders (DLO)

A dense linear order (without endpoints) is a linear order satisfying

$$\exists x \ (\top)$$

$$\forall x, y \ (x < y \to \exists z \ (x < z \land z < y))$$

$$\forall x \ \exists y \ x < y$$

$$\forall x \ \exists y \ y < x,$$

where x < y means $x \le y \land x \ne y$.

- Examples: (\mathbb{R}, \leq) , (\mathbb{Q}, \leq) .
- Non-examples: (\mathbb{Z}, \leq) , $([0, 1], \leq)$.

The theory of dense linear orders is usually denoted DLO.

Rings

A ring is a model of the theory

$$\forall x, y, z \ \left(x + y = y + x \ \land \ x \cdot y = y \cdot x \ \land \ x \cdot 1 = x \ \land \ x + 0 = x \right)$$

$$\land \ x + (-x) = 0 \ \land \ x + (y + z) = (x + y) + z$$

$$\land \ x \cdot (y \cdot z) = (x \cdot y) \cdot z \ \land \ x \cdot (y + z) = (x \cdot y) + (x \cdot z)$$

Examples: $\mathbb{R}, \mathbb{Q}, \mathbb{C}, \mathbb{Z}$, or the ring of polynomials R[x] for any ring R.

Fields

A field is a ring satisfying

$$0 \neq 1 \land \forall x \ (x \neq 0 \rightarrow \exists y \ (x \cdot y = 1)).$$

Examples: $\mathbb{R}, \mathbb{Q}, \mathbb{C}$, but not \mathbb{Z} .

Algebraically closed fields (ACF)

An algebraically closed field is a field satisfying the axioms

$$\forall y_0, y_1, \dots, y_n \ (y_n \neq 0 \to \exists x \ (y_n x^n + \dots + y_2 x^2 + y_1 x + y_0 = 0)$$

for each n = 1, 2, 3, ...

- The theory of algebraically closed fields is denoted ACF.
- $\mathbb{C} \models ACF$, but \mathbb{Q} and \mathbb{R} are not models.

ACF_0

ACF₀ is ACF plus the axiom schema

$$\underbrace{1+\cdots+1}_{n \text{ times}} \neq 0$$

for n = 1, 2, 3, ...

- ullet C is a model.
- Models of ACF₀ are called algebraically closed fields of characteristic
 0.
- ACF₀ is a complete theory.

The algebraic numbers

A complex number $z \in \mathbb{C}$ is algebraic if there are rational numbers a_0, \ldots, a_n with $a_n \neq 0$ and

$$a_n z^n + \cdots + a_2 z^2 + a_1 z + a_0 = 0.$$

- The set of algebraic numbers is denoted \mathbb{Q}^{alg} .
- \mathbb{Q}^{alg} is a field.
- $\mathbb{Q}^{alg} \models \mathrm{ACF}_0$, and $\mathbb{Q}^{alg} \equiv \mathbb{C}$. In fact, $\mathbb{Q}^{alg} \preceq \mathbb{C}$.

ACF_p

If $p = 2, 3, 5, 7, \ldots$, then ACF_p is ACF plus the axiom

$$\underbrace{1+\cdots+1}_{p \text{ times}}=0$$

- A model of ACF_p is called an algebraically closed field of characteristic p.
- ACF_p is consistent.
- ACF_p is a complete theory.
- The completions of ACF are exactly ACF₀, ACF₂, ACF₃, ACF₅, ...

Ordered fields

The theory of *ordered fields* is the theory of fields plus the theory of linear orders plus the axioms

$$\forall x, y, z \ (x \le y \to x + z \le y + z)$$

$$\forall x, y, z \ (x \le y \land 0 \le z \to xz \le yz).$$

 \mathbb{Q} and \mathbb{R} are ordered fields.

Real closed fields (RCF)

RCF is the theory of ordered fields plus the axiom schema

$$\forall w_0, \dots, w_n, x, y :$$

$$\begin{pmatrix} (w_n x^n + \dots + w_2 x^2 + w_1 x + w_0 < 0) \\ \wedge (w_n y^n + \dots + w_2 y^2 + w_1 y + w_0 > 0) \\ \wedge x < y \end{pmatrix}$$

$$\rightarrow \exists z (x < z \land z < y \land w_n z^n + \dots + w_1 z + w_0 = 0)$$

for each n.

- This is the intermediate value theorem for polynomials.
- $\mathbb{R} \models RCF$.
- RCF is complete.
- Models of RCF are called real closed fields.

Section 5

Partial elementary maps and embeddings

Partial elementary maps

Let M, N be L-structures. A partial elementary map is a partial function f, where

- $dom(f) \subseteq M$.
- $\operatorname{im}(f) \subseteq N$.
- If $a_1, \ldots, a_n \in \text{dom}(f)$ and $\varphi(x_1, \ldots, x_n)$ is an *L*-formula, then

$$M \models \varphi(a_1,\ldots,a_n) \iff N \models \varphi(f(a_1),\ldots,f(a_n)).$$

Example

Take $\varphi(x, y) = (x = y)$. Then

$$a = b \iff M \models a = b \iff N \models f(a) = f(b) \iff f(a) = f(b).$$

So partial elementary maps are injective, hence bijections from dom(f) to im(f).

Partial elementary maps and elementary equivalence

The following are equivalent for L-structures M and N:

- $M \equiv N$.
- ② \varnothing is a partial elementary map from M to N
- **1** There is a partial elementary map f from M to N.

Isomorphisms

Let *M*, *N* be *L*-structures.

- An isomorphism from M to N is a bijection $f: M \to N$ such that
 - If c is a constant symbol, then $g(c^M) = c^N$.
 - ▶ If g is an n-ary function symbol and $a_1, ..., a_n \in M$, then

$$f(g^{M}(a_{1},...,a_{n})) = g^{N}(f(a_{1}),...,f(a_{n})).$$

▶ If R is an n-ary relation symbol and $a_1, \ldots, a_n \in M$, then

$$(a_1,\ldots,a_n)\in R^M\iff (f(a_1),\ldots,f(a_n))\in R^N.$$

Isomorphism

M is isomorphic to N ($M \cong N$) if there is an isomorphism from M to N. This is an equivalence relation:

- $M \cong M$.
- If $M \cong N$ then $N \cong M$.
- If $M_1 \cong M_2$ and $M_2 \cong M_3$, then $M_1 \cong M_3$.

Isomorphisms

Let f be a bijection from M to N. Then the following are equivalent:

- f is an isomorphism.
- f is a partial elementary map.

Consequently, $M \cong N \implies M \equiv N$.

Substructures

Let *M* be an *L*-structure.

Definition

A set $A \subseteq M$ is a *substructure* if

- For every constant symbol $c \in L$, we have $c^M \in A$.
- For every function symbol $f \in L$, the set A is closed under f^M .

Then we can make A be an L-structure by defining

$$c^{A} = c^{M}$$

$$f^{A}(x_{1}, \dots, x_{n}) = f^{M}(x_{1}, \dots, x_{n})$$

$$R^{A}(x_{1}, \dots, x_{n}) \iff R^{M}(x_{1}, \dots, x_{n}).$$

So we can regard substructures as structures, not just sets.

Substructures

If M is an L-structure and $A \subseteq M$, then the substructure generated by A is

$$\langle A \rangle_M = \{ t(a_1, \dots, a_n) : t(x_1, \dots, x_n) \text{ is an L-term and } a_1, \dots, a_n \in A \}.$$

- This is the smallest substructure of M containing A.
- We say M is finitely generated if $M = \langle A \rangle_M$ for some finite set $A \subseteq M$.

If L has no function symbols or constant symbols, then "finitely generated" = "finite."

Embeddings

An embedding from M to N is a function $f: M \to N$ such that...

- If c is a constant symbol, then $g(c^M) = c^N$.
- If g is an n-ary function symbol and $a_1, \ldots, a_n \in M$, then

$$f(g^{M}(a_{1},...,a_{n}))=g^{N}(f(a_{1}),...,f(a_{n})).$$

• If R is an n-ary relation symbol and $a_1, \ldots, a_n \in M$, then

$$(a_1,\ldots,a_n)\in R^M\iff (f(a_1),\ldots,f(a_n))\in R^N.$$

Remark

An isomorphism is the same thing as a bijective embedding.

Embeddings and substructures

- If A is a substructure of M, then the inclusion $A \hookrightarrow M$ is an embedding.
- If $f: M \to N$ is an embedding, then f(M) is a substructure of N, and M is isomorphic to f(M).
- An embedding from M to N is the same thing as a substructure $A \subseteq N$ and an isomorphism $M \to A$.

Elementary substructures

A substructure $N \subseteq M$ is an elementary substructure if for any $\varphi(x_1, \ldots, x_n)$ and $\bar{a} \in N^n$,

$$N \models \varphi(\bar{a}) \iff M \models \varphi(\bar{a}).$$

Equivalently, this means that the inclusion $N \hookrightarrow M$ is a partial elementary map.

Remark

You can think of this as a technical tool which shows up throughout model theory.

Elementary extensions

- $M \leq N$ means that M is an elementary substructure of N.
- $M \succ N$ means $N \prec M$.
- We say M is an elementary extension of N if N is an elementary substructure of M.
- More generally, M is an extension of N if N is a substructure of M.

Elementary embeddings

An elementary embedding from M to N is a function $f: M \to N$ such that for any $\varphi(x_1, \ldots, x_n)$ and $\bar{a} \in M$,

$$M \models \varphi(a_1,\ldots,a_n) \iff N \models \varphi(f(a_1),\ldots,f(a_n)).$$

Equivalently, an elementary embedding from M to N is a partial elementary map f with dom(f) = M.

Elementary embeddings

- A substructure $M \subseteq N$ is an elementary substructure iff the inclusion $M \hookrightarrow N$ is an elementary embedding.
- If $f: M \to N$ is an elementary embedding, then $\operatorname{im}(f) = f(M)$ is an elementary substructure of N, and $M \cong f(M)$.
- An elementary embedding from M to N amounts to an elementary substructure $A \leq N$ and an isomorphism $M \cong A$.

A technicality

Suppose $f: M \to N$ is an elementary embedding.

• There is an isomorphism $N \to N'$ such that $N' \succeq M$ and the composition $M \to N \to N'$ is the inclusion $M \hookrightarrow N'$.

Idea

If $M \to N$ is an elementary embedding, then, up to isomorphism, N is an elementary extension of M.

The same holds if we delete the word "elementary" everywhere.

T(M)

If M is an L-structure, then T(M) (Poizat's notation) is the set of all L(M)-sentences true in M.

- This is usually called the elementary diagram of M.
- If $N \succeq M$, then $N \models T(M)$ by definition of \succeq .
- If $N \models T(M)$, then there is an elementary embedding $M \to N$ given by sending $c \in M$ to c^N .
 - ▶ Morally: if $N \models T(M)$, then $N \succeq M$ (up to isomorphism).

Tarski-Vaught test

Let M be an L-structure and $A \subseteq M$ be a subset.

Fact

 $A \leq M$ iff the following is true: for any formula $\varphi(x, y_1, ..., y_n)$ and any $a_1, ..., a_n \in A$, if $M \models \exists x \ \varphi(x, a_1, ..., a_n)$, then there is $b \in A$ such that $M \models \varphi(b, a_1, ..., a_n)$.

- In other words, if $\varphi(M, \bar{a})$ is non-empty, then $\varphi(M, \bar{a}) \cap A \neq \emptyset$.
- In other words, if $X \subseteq M$ is A-definable and non-empty, then $X \cap A \neq \emptyset$.
- A intersects every non-empty A-definable subset of M.

The other theorem of Tarski and Vaught

Definition

An elementary chain is a family $\{M_i\}_{i\in I}$, where (I, \leq) is a linear order, each M_i is a structure, and

$$i \leq j \implies M_i \leq M_j$$
.

Theorem (Tarski-Vaught)

Given an elementary chain $\{M_i\}_{i\in I}$, let $N=\bigcup_{i\in I}M_i$. Then $N\succeq M_i$ for any i.

In particular, we can add N to the end of the chain, and it's still an elementary chain.

Section 6

Compactness and ultraproducts

The compactness theorem

- T is satisfiable if it has a model.
- *T* is *finitely satisfiable* if every finite subset $T_0 \subseteq T$ is satisfiable.

Theorem (Compactness)

If T is finitely satisfiable, then T is satisfiable.

Elementary amalgamation

Theorem

If $M_1 \equiv M_2$, then there is a structure N and elementary embeddings

$$M_1 \rightarrow N$$
 $M_2 \rightarrow N$

Equivalently, there is N with elementary substructures isomorphic to M_1 and M_2 .

• Proof idea: use compactness to find a model of $T(M_1) \cup T(M_2)$.

Löwenheim-Skolem

Theorem

Let M be an infinite L-structure. Suppose $\kappa \geq |L|$. Then there is $N \equiv M$ with $|N| = \kappa$.

Corollary

If an L-theory T has an infinite model, then T has models of size κ for all $\kappa \geq |L|$.

Downward Löwenheim-Skolem

Theorem

Let M be an infinite L-structure. Suppose $|L| \le \kappa \le |M|$. Then there is an elementary substructure $N \le M$ with $|N| = \kappa$.

In fact,

Theorem

Let M be an infinite L-structure. Let A be a subset. There is an elementary substructure $N \leq M$ with $N \supseteq A$ and $|N| = \max(|A|, |L|)$.

Upward Löwenheim-Skolem

Theorem

Let M be an infinite L-structure. Suppose $\kappa \ge \max(|L|, |M|)$. Then there is an elementary extension $N \succeq M$ with $|N| = \kappa$.

κ -categoricity

Let κ be an infinite cardinal.

Definition

T is κ -categorical if there is a unique model of size κ , up to isomorphism.

Theorem (Łoś-Vaught test, aka Vaught's criterion)

Suppose T is κ -categorical and $\kappa \geq |L|$.

- Any two infinite models of T are elementarily equivalent.
- If all models of T are infinite, then T is complete.

DLO is \aleph_0 -categorical. ACF₀ is \aleph_1 -categorical.

The witness property

An L-theory T has the witness property (or is Henkinized) if the following holds:

• For any formula $\varphi(x)$, if $\exists x \ \varphi(x)$ is in T, then there is a constant symbol $c \in L$ such that $\varphi(c) \in T$.

Canonical models

Suppose

- T has the witness property.
- T is finitely satisfiable.
- T is complete in the strong sense that $\varphi \in T$ or $\neg \varphi \in T$ for any φ .

Then T has a "canonical model" M where every element of M is named by a constant symbol.

Remark

In fact, T is essentially T(M).

Compactness via Henkin's method

Theorem

Let T be a finitely satisfiable L-theory. Then there is a larger language $L' \supseteq L$ and a larger theory $T' \supseteq T$ such that

- T' has the witness property.
- T' is finitely satisfiable.
- For any φ , either $\varphi \in T'$ or $\neg \varphi \in T'$.

Then T' has a model M (the canonical model), and the reduct $M \upharpoonright L$ is a model of the original theory T.

Ultrafilters

Let I be a set.

Definition

A (proper) filter on I is a set $\mathcal{F} \subseteq P(I)$ such that...

- $I \in \mathcal{F}$ and $\emptyset \notin \mathcal{F}$.
- If $X \in \mathcal{F}$ and $X \subseteq Y \subseteq I$, then $Y \in \mathcal{F}$.
- If $X, Y \in \mathcal{F}$, then $X \cap Y \in \mathcal{F}$.

Ultrafilters

An *ultrafilter* on I is a filter $\mathcal{F} \subseteq P(I)$ satisfying the equivalent conditions:

- ullet \mathcal{F} is a maximal filter.
- For any $X \subseteq I$, either $X \in \mathcal{F}$ or $I \setminus X \in \mathcal{F}$.

Finite intersection property (FIP)

Definition

A family of sets $\mathcal{F} \subseteq P(I)$ has the *finite intersection property* (FIP) if for any $X_1, \ldots, X_n \in \mathcal{F}$, $\bigcap_{i=1}^n X_i \neq \emptyset$.

We let n = 0, in which case $\bigcap_{i=1}^{n} X_i = I$.

Fact

F has the FIP iff F is contained in an ultrafilter.

Principal and non-principal ultrafilters

If $a \in I$, there is a principal ultrafilter

$$\{X \subseteq I : a \in X\}$$

Other filters are called non-principal ultrafilters.

Ultraproducts

Let I be a set and M_i be an L-structure for each $i \in I$.

- The product $\prod_{i \in I} M_i$ is the set of functions $f: I \to \bigcup_{i \in I} M_i$ such that $f(i) \in M_i$ for all $i \in I$.
- If $I \in \{0, 1, 2, ..., \omega\}$, we can identify $\prod_{i \in I} M_i$ with the set of tuples of length I, where the jth element of the tuple comes from M_i .

Ultraproducts: the set

Let I be a set and M_i be an L-structure for each $i \in I$. Let \mathcal{U} be an ultrafilter on I.

• The *ultraproduct* $\prod_{i \in I} M_i$ is the quotient of $\prod_{i \in I} M_i$ by the equivalence relation where

$$a \sim b \iff \{i \in I : a(i) = b(i)\} \in \mathcal{U}.$$

We write the equivalence class of a as [a].

Ultraproducts: the structure

- If $c \in L$ is a constant symbol, we interpret c in the ultraproduct as [a], where $a(i) = c^{M_i}$ for all i.
- If $f \in L$ is an n-ary function symbol, we interpret f in the ultraproduct by

$$f([a_1],\ldots,[a_n])=b,$$

where $b(i) = f^{M_i}(a_1(i), ..., a_n(i))$.

- ▶ Idea: *f* is evaluated coordinate-by-coordinate.
- If $R \in L$ is an n-ary relation symbol, we interpret R in the ultraproduct by

$$R([a_1],\ldots,[a_n]) \iff \{i \in I : R^{M_i}(a_1(i),\ldots,a_n(i))\} \in \mathcal{U}.$$

Łoś's theorem

Theorem (Łoś)

Let N be an ultraproduct $\prod_{i \in I} M_i/\mathcal{U}$. Let $\varphi(x_1, \ldots, x_n)$ be a formula. Then

$$N \models \varphi([a_1], \ldots, [a_n]) \iff \{i \in I : M_i \models \varphi(a_1(i), \ldots, a_n(i))\} \in \mathcal{U}.$$

Corollary

If φ is a sentence, then

$$N \models \varphi \iff \{i \in I : M_i \models \varphi\} \in \mathcal{U}.$$

This can be used to give a proof of compactness.

Ultrapowers

An *ultrapower* is an ultraproduct of the form $\prod_{i \in I} M/\mathcal{U}$, i.e., with all the structures M_i being the same structure M. The ultrapower is also written M^I/\mathcal{U} or $M^\mathcal{U}$.

Fact

There is an elementary embedding $M \to M^I/\mathcal{U}$ given by sending $a \in M$ to [f], where f(i) = a for all i.

If the ultrapower is non-principal, this is usually a proper elementary extension.

Section 7

Types

Partial types

Let M be an L-structure, A be a subset, and x_1, \ldots, x_n be variables.

Definition

A partial n-type over A is a set Σ of L(A)-formulas in the variables x_1, \ldots, x_n that is finitely satisfiable in M: for any $\psi_1(\bar{x}), \ldots, \psi_n(\bar{x}) \in \Sigma$, there is $\bar{a} \in M$ such that $M \models \bigwedge_{i=1}^n \psi(\bar{a})$.

• We often write $\Sigma(x_1, \ldots, x_n)$ to indicate that Σ is a type in the variables x_1, \ldots, x_n .

Realizations of partial types

Theorem

Let $\Sigma(\bar{x})$ be a partial n-type over $A \subseteq M$. Then there is an elementary extension $N \succeq M$ and a tuple $\bar{a} \in N^n$ which realizes $\Sigma(\bar{x})$, in the sense that

$$\psi(\bar{x}) \in \Sigma(\bar{x}) \implies N \models \psi(\bar{a}).$$

We sometimes write this as $N \models \Sigma(\bar{a})$, or $\bar{a} \models \Sigma$.

The type of a tuple

Suppose $B \subseteq M \leq N$ and $\bar{a} \in N^n$. Then

$$\operatorname{tp}(\bar{a}/B) = \{\varphi(x_1, \dots, x_n) : \varphi \text{ is an } L(B)\text{-formula and } N \models \varphi(\bar{a})\}.$$

Then $tp(\bar{a}/B)$ is a partial *n*-type over *B*.

(Complete) types

Let $p(\bar{x})$ be an *n*-type over $A \subseteq M$. Then *p* is a *complete type* if the following equivalent conditions hold:

- $p = \operatorname{tp}(\bar{b}/A)$ for some *n*-tuple \bar{b} in an elementary extension $N \succeq M$.
- p is a maximal partial type.
- For any L(A)-formula $\varphi(x_1, \ldots, x_n)$, either $\varphi \in p$ or $\neg \varphi \in p$.

Complete types are also called types.

Remark

This is analogous to how if T is a consistent L-theory, then following are equivalent:

- T = Th(M) for some *L*-structure *M*.
- T is a maximal consistent theory.
- For any sentence φ , either $\varphi \in T$ or $\neg \varphi \in T$.

The space of *n*-types

 $S_n(A)$ is the space of (complete) *n*-types over A.

• $S_n(A) = \{ \operatorname{tp}(\bar{b}/A) : \bar{b} \in N^n, N \succeq M \}.$

Remark

 $S_n(A)$ has the structure of a topological space, but we didn't discuss this much in class.

How to think of types over \varnothing

If \bar{a} is an n-tuple in N_1 and \bar{b} is an n-tuple in N_2 , then the following are equivalent:

- $tp(\bar{a}) = tp(\bar{b})$
- For any formula $\varphi(x_1,\ldots,x_n)$,

$$N_1 \models \varphi(\bar{a}) \iff N_2 \models \varphi(\bar{b}).$$

• $\{(a_1, b_1), \dots, (a_n, b_n)\}$ is a partial elementary map.

Similarly, $\operatorname{tp}(\bar{a}/C)=\operatorname{tp}(\bar{b}/C)$ iff \bar{a} and \bar{b} satisfy the same L(C)-formulas.

Section 8

 κ -saturated models

κ -saturation

Definition

A structure M is κ -saturated if the following holds: for any $A \subseteq M$ with $|A| < \kappa$ and any $p \in S_1(A)$, the type p is realized in M.

Theorem

If M is κ -saturated and $A \subseteq M$ and $|A| < \kappa$ and $p \in S_n(A)$, then p is realized in M.

Consequences of κ -saturation

Suppose M is κ -saturated.

Theorem (κ -universality)

If $N \equiv M$ and $|N| \le \kappa$, then there is an elementary embedding $N \to M$. Equivalently, there is $N' \le M$ with $N \cong N'$.

Theorem (κ -compactness)

Let $\mathcal{F} \subseteq P(M^n)$ be a family of definable sets with the FIP. If $|\mathcal{F}| < \kappa$, then $\bigcap \mathcal{F} \neq \emptyset$.

Equivalently, if $\Sigma(\bar{x})$ is a partial type and $|\Sigma| \leq \kappa$, then Σ is realized in M.

Strong κ -homogeneity

Definition

A structure M is $strongly \ \kappa$ -homogeneous if the following holds: for any partial elementary map f from M to M with $|\operatorname{dom}(f)| = |\operatorname{im}(f)| < \kappa$, there is an automorphism $\sigma \in \operatorname{Aut}(M)$ extending f.

Consequences of strong κ -homogeneity

Definition

 $\operatorname{Aut}(M/A)$ is the set of automorphisms $\sigma \in \operatorname{Aut}(M)$ which fix A pointwise, in the sense that $\sigma(x) = x$ for all $x \in A$.

Suppose M is strongly κ -homogeneous.

Theorem

Suppose $A\subseteq M$ and $|A|<\kappa$. Let \bar{b},\bar{c} be n-tuples in M. Then the following are equivalent:

- $\operatorname{tp}(\bar{b}/A) = \operatorname{tp}(\bar{c}/A)$.
- There is $\sigma \in \operatorname{Aut}(M/A)$ such that $\sigma(\bar{b}) = \bar{c}$.

Idea (If you know group theory...)

If M is κ -saturated and strongly κ -homogeneous, and $A \subseteq M$ has $|A| < \kappa$, then $S_n(A)$ can be identified with the space of orbits of $\operatorname{Aut}(M/A)$ acting on M^n .

Existence

Theorem

Given M and κ , there is an elementary extension N \succeq M that is κ -saturated and strongly κ -homogeneous.

Theorem

If M is an infinite structure, then M is not κ -saturated for any $\kappa > |M|$.

Saturated models

Definition

Let M be an infinite structure of size κ .

- M is saturated if it is κ -saturated.
- *M* is *strongly homogeneous* if it is κ -saturated.

Theorem

If M is saturated, then M is strongly homogeneous.

Theorem

If T is a complete theory and κ is a cardinal, then T has at most one saturated model of size κ .

Saturated models

If T is a complete theory, then $S_n(T)$ denotes $S_n^M(\varnothing)$ for any $M \models T$. Equivalently,

$$S_n(T) = \{ \operatorname{tp}(\bar{a}) : \bar{a} \in M^n, M \models T \}.$$

Definition

A complete theory T is *small* if $S_n(T)$ is countable for all n.

Theorem

T has a countable saturated model iff T is small.

Beth's implicit definability theorem

Theorem

Let T be an L-theory. Let L(P) be L plus a new n-ary relation symbol P. Let T' be an L(P)-theory. Suppose that for every $M \models T$, there is a unique $P \subseteq M^n$ such that $(M,P) \models T'$. Then there is an L-formula $\varphi(x_1,\ldots,x_n)$ such that

$$M \models T \implies (M, \varphi(M^n)) \models T'.$$

Idea

T' is an "implicit definition" of P, and φ is an "explicit definition" of P.

The proof uses κ -saturated strongly κ -homogeneous models.

Section 9

Back-and-forth equivalence

Local isomorphisms

Let M, N be L-structures. A local isomorphism or 0-isomorphism is a partial map f where

- dom(f) is a finitely-generated substructure of M.
- im(f) is a finitely-generated substructure of N.
- f is an isomorphism from dom(f) to im(f).

If *L* has only relation symbols, then "finitely-generated substructure" means "finite subset."

Karpian families

A Karpian family between M and N is a set \mathcal{K} of local isomorphisms such that...

- If $f \in \mathcal{K}$ and $a \in M$, there is $g \in \mathcal{K}$ with $g \supseteq f$ and $a \in \text{dom}(g)$.
- If $f \in \mathcal{K}$ and $b \in N$, there is $g \in \mathcal{K}$ with $g \supseteq f$ and $b \in \text{im}(g)$.

Karpian families are usually called "back-and-forth systems."

Karpian families

Fact

If K is a Karpian family and $f \in K$, then f is a partial elementary map.

Fact

If $M, N \models \mathrm{DLO}$, then the set of all local isomorphisms is a Karpian family.

Fact

If M, N are ω -saturated, then the set of local isomorphisms that are partial elementary maps is a Karpian family.

∞ -equivalences

We didn't discuss it in class but...

- An ∞ -equivalence from M to N is a local isomorphism belonging to some Karpian family.
- The set of all ∞ -equivalences is a Karpian family.
 - ► (The union of all Karpian families is a Karpian family.)
- Two structures M,N are said to be ∞ -equivalent if there is an ∞ -equivalence between them (or equivalently, $\langle \varnothing \rangle_M \to \langle \varnothing \rangle_N$ exists and is an ∞ -equivalence).

Graded back-and-forth systems

A graded back-and-forth system between M and N is a sequence of classes S_0, S_1, S_2, \ldots of local isomorphisms such that

- If $f \in \mathcal{S}_{p+1}$ and $a \in M$, there is $g \in \mathcal{S}_p$ with $g \supseteq f$ and $a \in \text{dom}(g)$.
- If $f \in \mathcal{S}_{p+1}$ and $b \in N$, there is $g \in \mathcal{S}_p$ with $g \supseteq f$ and $b \in \text{im}(g)$.

ω -isomorphisms

Definition

A local isomorphism f is a p-isomorphism if $f \in \mathcal{S}_p$ for some graded back-and-forth system $(\mathcal{S}_0, \mathcal{S}_1, \mathcal{S}_2, \ldots)$.

Definition

A local isomorphism f is an ω -isomorphism if f is a p-isomorphism for all $p < \omega$.

This is Poizat's non-standard terminology; don't use it.

Fraïssé's theorem

Theorem

If f is an ω -isomorphism, then f is a partial elementary map.

Now, suppose *L* contains finitely many relation symbols and constant symbols, and no function symbols.

Theorem

Let f be a local isomorphism. Then the following are equivalent:

- f is an ω -isomorphism.
- f is a partial elementary map.

Back-and-forth in ω -saturated models

Fact

If M, N are ω -saturated, then the set of local isomorphisms that are partial elementary maps is a Karpian family.

If f is a local isomorphism, then the following are equivalent:

- 2 f is an ∞ -isomorphism
- **1** f is an ω -isomorphism.
- $(1)\Longrightarrow (2)$ is the Fact. $(2)\Longrightarrow (3)$ holds in general. $(3)\Longrightarrow (1)$ is the direction of Fraïssé's theorem that always holds.

Section 10

Quantifier-elimination

Quantifier-free types

- qftp(\bar{a}/B) is the set of quantifier-free L(B)-formulas satisfied by \bar{a} .
- Usually we're interested in the case $B = \emptyset$:
 - qftp(\bar{a}) is the set of quantifier-free L-formulas satisfied by \bar{a} .

Quantifier-free types

If $\bar{a} \in M^n$ and $\bar{b} \in N^n$, then the following are equivalent:

- $qftp(\bar{a}) = qftp(\bar{b})$
- For any quantifier-free *L*-formula $\varphi(x_1,\ldots,x_n)$,

$$M \models \varphi(\bar{a}) \iff N \models \varphi(\bar{b}).$$

• For any atomic *L*-formula $\varphi(x_1,\ldots,x_n)$,

$$M \models \varphi(\bar{a}) \iff N \models \varphi(\bar{b}).$$

- There is an isomorphism from $\langle \bar{a} \rangle_M$ to $\langle \bar{b} \rangle_N$ sending \bar{a} to \bar{b} .
- There is a local isomorphism from M to N extending $\{(a_1, b_1), \ldots, (a_n, b_n)\}.$

Quantifier elimination

A theory T has quantifier elimination if for any formula $\varphi(\bar{x})$, there is a quantifier-free formula $\psi(\bar{x})$ such that

$$T \vdash \forall \bar{x} \ (\varphi(\bar{x}) \leftrightarrow \psi(\bar{x})).$$

In other words, every formula is equivalent to a quantifier-free formula.

Quantifier elimination

Theorem

Let T be a theory. The following are equivalent:

- T has quantifier elimination.
- ② For any models $M, N \models T$ and n-tuples $\bar{a} \in M^n$ and $\bar{b} \in N^n$,

$$\mathsf{qftp}(\bar{a}) = \mathsf{qftp}(\bar{b}) \implies \mathsf{tp}(\bar{a}) = \mathsf{tp}(\bar{b}).$$

 $(1) \Longrightarrow (2)$ is trivial; $(2) \Longrightarrow (1)$ is non-trivial and uses compactness.

Idea

If $qftp(\bar{a})$ determines $tp(\bar{a})$, then the theory has quantifier elimination.

Quantifier elimination

The following are equivalent:

- T has quantifier-elimination.
- qftp(\bar{a}) determines tp(\bar{a}) in models of T.
- qftp(\bar{a}) determines tp(\bar{a}) in ω -saturated models of T.
- If M, N are ω -saturated models of T and f is a local isomorphism, then f is a partial elementary map.
- If M, N are ω -saturated models of T and f is a local isomorphism, then f is an ∞ -isomorphism.
- If M, N are ω -saturated models of T, then the set of all local isomorphisms is a Karpian family.

Quantifier elimination criterion

Theorem

T has quantifier elimination iff the following holds: if $M, N \models T$ and $\bar{a} \in M^n$ and $\bar{b} \in N^n$ and $qftp^M(\bar{a}) = qftp^N(\bar{b})$ and $\alpha \in M$, then there is $\beta \in N$ such that $qftp^M(\bar{a}, \alpha) = qftp^N(\bar{b}, \beta)$.

This criterion is useful in combination with

Fact

 $\operatorname{qftp}^M(\bar{a}) = \operatorname{qftp}^N(\bar{b})$ iff there is an isomorphism $\langle \bar{a} \rangle_M \to \langle \bar{b} \rangle_N$ sending \bar{a} to \bar{b} .

Important theories with QE

These theories have quantifier elimination:

- Algebraically closed fields (ACF), in the language of rings.
- Real closed fields (RCF), in the language of ordered rings.
- Dense linear orders (DLO), in the language of orders.

Discrete linear orders

Let T be the theory of discrete linear orders without endpoints, like \mathbb{Z} .

- T doesn't have quantifier elimination.
- ullet Two *n*-tuples $ar{a}$ and $ar{b}$ have the same type iff $\mathsf{qftp}(ar{a}) = \mathsf{qftp}(ar{b})$ and

$$\forall i,j \leq n : d(a_i,a_j) = d(b_i,b_j).$$

• Therefore T has quantifier elimination if we expand the language with binary relations $R_n(x,y)$ for $n<\omega$, where $M\models R_n(a,b)$ iff d(a,b)=n.

Consequences of quantifier elimination

Suppose T has quantifier elimination. If M, N are models of T, then the following are equivalent:

- $M \equiv N$.
- **2** $tp^{M}() = tp^{N}()$.
- $qftp^{M}() = qftp^{N}().$

Example

Two algebraically closed fields are elementarily equivalent iff they have the same characteristic. ACF_0 is a complete theory.

Similarly, DLO, RCF, and the theory of discrete linear orders are complete.

Consequences of quantifier elimination

Suppose T has quantifier elimination. Then every definable set is quantifier-free definable.

- Every definable set has the form $\varphi(M^n)$ for some quantifier-free φ .
- Every definable set is a boolean combination of sets defined by atomic formulas.

Example

If M is an algebraically closed field and $X \subseteq M$ is definable, then X is a finite set or the complement of a finite set.

(We only need to check sets defined by atomic formulas like P(x) = Q(x) for some polynomials P, Q over M. If P = Q this set is M; otherwise it's the finite set of roots of P - Q.)

Section 11

 ω -categoricity

Assumptions

- L is a countable language
- T is a complete L-theory
- The models of T are infinite

Isolated types

Work in a model M.

A type $p \in S_n(A)$ is isolated if there is an L(A)-formula $\varphi(x)$ such that

$$\operatorname{tp}^N(b/A) = p \iff N \models \varphi(b),$$

for $N \succeq M$.

Remark

This means that $\{p\}$ is open in the topology on $S_n(A)$.

Omitted and realized types

- A type $p \in S_n(A)$ is realized if there is $b \in M^n$ with $p = \operatorname{tp}(b/A)$.
- Otherwise, p is omitted (in M). We say that M omits the type p.

Theorem

If $p \in S_n(A)$ is isolated, then p is realized.

Omitting types theorem

Theorem

Let Π be a countable set of non-isolated types in $\bigcup_n S_n(T)$. Then there is a countable model M omitting every type in Π .

ω -categoricity

Definition

T is ω -categorical if T has a unique model of size ω .

Fix a complete theory T in a countable language, such that the models of T are infinite.

Theorem (Ryll-Nardzewski)

T is ω -categorical iff $S_n(T)$ is finite for all $n < \omega$.

Proof sketch

$$(1) \implies (2) \implies (3) \implies (4) \implies (5) \implies (6) \implies (7) \implies$$

- $(8) \implies (9)$
 - **1** $S_n(T)$ is finite for all $n < \omega$.
 - **2** $S_n(A)$ is finite if $n < \omega$ and A is finite.
 - **3** Every type in $S_n(A)$ is isolated.
 - Every type in $S_n(A)$ is realized.
 - **5** Every model is ω -saturated.
 - Every countable model is saturated.
 - $m{arphi}$ Any two countable models are isomorphic (ω -categoricity).
 - **1** No countable model omits any type in $S_n(T)$
 - **9** Every type in $S_n(T)$ is isolated.

From the proof...

If T is ω -categorical, then

- ullet Every model is ω -saturated.
- Every countable model is saturated.
- Every countable model is strongly homogeneous.

If T eliminates quantifiers, then

- Every local isomorphism is an ∞ -isomorphism.
- Every local automorphism on a countable model extends to an automorphism.