As diferentes formas da Terra

- A determinação da forma da Terra é uma das principais tarefas da Geodesia:
- Quando se aborda a figura da Terra, esta é geralmente encarada como sendo rígida, pois as deformações temporais são estudadas em separado (Geodinâmica);
- Na Geodesia moderna são consideradas 5 figuras que representam a forma física da Terra:
 - A superfície Topográfica (forma física real);
 - O Geóide (forma física do campo gravítico terrestre);
 - O Elipsóide de referência (forma matemática aproximada);
 - O Teluróide (forma do campo gravítico à superfície);
 - O Quasi-geóide (teluróide reduzido ao nível médio do mar);

Geodesia Física - Aula 15

FCUL-EG

FORMA DA TERRA

1.1 Forma real da Terra

- A representação da superfície topográfica terrestre é feita com o recurso à cartografia analógica e/ou digital;
- Cerca de 72% da superfície da Terra está coberta por água, e só os restantes 28% são terrenos emersos:
- A Geodesia encarrega-se maioritariamente dos 28% da superfície sólida emersa, contudo, fornece técnicas e instrumentos à Hidrografia e Oceanografia, tornando-as capaz de cartografar o fundo dos mares e oceanos;
- Para descrever e representar matematicamente o terreno, escolhe um número finito de pontos (v. g.) e determina as suas posições num dado sistema de coordenadas;
- Estas redes geodésicas são, em 1ª aproximação, uma representação desta superfície;

Geodesia Física - Aula 15 FCUL-EG

1.1 Forma real da Terra

- A partir destas redes, a Cartografia, através da Fotogrametria (fotografia aérea e imagem de satélite) adensa ou propaga esta representação até ao pormenor;
- Tradicionalmente, estas redes geodésicas são divididas em 4 categorias, dependendo da forma como é definida a posição de cada e as grandezas associadas:
 - <u>redes altimétricas</u> ou de nivelamento definidas apenas por uma coordenada, altitude acima do nível médio do mar (H), com localização conhecida;
 - <u>redes planimétricas</u> ou bidimensionais definidas pelas suas posições horizontais (φ, λ) ;
 - redes tridimensionais ou espaciais definidas pelas 3 coordenadas (x,y,z) ou (ϕ,λ,h) ;
 - redes gravimétricas (g, ϕ , λ ,H) definidas sobre as redes geodésicas e as redes de nivelamento geométrico

Geodesia Física – Aula 15 FCUL-EG

3

FORMA DA TERRA

1.1.1 Rede de Nivelamento

 A partir de uma referência altimétrica (marégrafo) transportamse as altitudes para todo o território através de <u>linhas de</u> nivelamento geométrico de alta precisão

Geodesia Física - Aula 15

FCUL-E

FORMA DA TERRA 1.1.3 Rede Geodésica tridimensional • Usando a tecnologia mais avançada de posicionamento e navegação, o GNSS, observam-se redes tridimensionais de larga escala: | TREPOOS, Siles | TREPOOS, Siles | TREPOOS Valority Field | TREPO

1.2 A forma dada pelo Geóide

- De acordo com a ideia de Gauss, o geóide é encarado como uma representação da figura da Terra;
- O geóide é uma superfície com um significado físico preciso: a superfície equipotencial de referência;
- O geóide corresponde à superfície de um fluído homogéneo;
- Sendo o geóide muito próximo do nível médio do mar, o geóide representa em 72% a forma exacta da Terra;
- Dada a dinâmica e a heterogeneidade das águas oceânicas, a comparação entre o geóide e a superfície oceânica é feita por via de uma superfície estacionária – superfície média do mar;

Geodesia Fisica – Aula 15 FCUL-EG

9

FORMA DA TERRA

1.2 A forma dada pelo Geóide

- O NMM (MSS) serviu durante muito tempo (e ainda serve) como referência altimétrica, e como primeira aproximação da superfície do geóide;
- O nível instantâneo do mar pode variar até 20 m por dia, mas as médias mensais não variam mais do que 20-40 cm, já as médias anuais são estáveis na ordem dos 10 cm;
- <u>Sea surface height</u> SSH, é a altura da superfície do mar acima do elipsóide de referência, é determinada a partir da medição de um altímetro e pela altitude do satélite (Topex&Jason) acima do elipsóide (com GPS, SLR e DORIS);
- <u>Sea surface topography</u> SST, é dada pela diferença entre o geóide e a MSS, varia entre os cerca de -100 cm e os 120 cm;

Geodesia Física – Aula 15 FCUL-EG

1.2 A forma dada pelo Geóide

- <u>Sea surface height</u> SSH, é a altura da superfície do mar acima do elipsóide de referência, (h ≡ SSH);
- <u>Sea surface topography</u> SST, é dada pela diferença entre o geóide e a superfície média do mar (H ≡ SST)

Geodesia Fisica – Aula 15 FCUL-EG

11

FORMA DA TERRA

1.2 A forma dada pelo Geóide

1.2 A forma dada pelo Geóide

· Modelo de Geóide com a subida do NMM

 Supondo uma subida do NMM de 1 m, aumenta o semi-eixo maior (a) e elevase o GEÓIDE, diminui o potencial W0=U0 e aumentam os raios do ELIPSÓIDE.

Geodesia Física – Aula 15

17

FORMA DA TERRA

1.3 A forma dada pelo Elipsóide

- O <u>elipsóide de referência</u> é a definição de 1ª ordem da forma não esférica da Terra, definido por um elipsóide de revolução com raio equatorial a=6378.1363 km e um achatamento f=1/298.257;
- Tomando o valor de ondulação máxima do geóide, N=100m

$$\frac{N}{R} = 1.6 \times 10^{-5}$$

- Conclui-se que a aproximação do elipsóide em relação ao geóide é da ordem de 16 ppm, e consequentemente, R+N=R;
- Em relação a uma esfera, o geóide apresentaria ondulações da ordem dos 10.7 km, ou seja, 1.7x10⁻³R;
- O elipsóide é duas ordens de grandeza mais próximo do geóide do que a esfera;

Geodesia Física – Aula 15

FCUL-EG

1.3 A forma dada pelo Elipsóide

Geodesia Física - Aula 15

FCUL-EG

19

FORMA DA TERRA

1.3 A forma dada pelo Elipsóide

Elipsóide	a (km)	1/f	Obs
Eratóstenes	5950	∞	Forma esférica
Experiência Francesa (1785-95)	6376.568	310.3	Base da definição de 1 metro
Internacional 1927 (Hayford, 1909)	6378.388	297.0	Usado na Europa
Internacional 1967 (AIG,1967)	6378.160	298.247	Usado por várias instituições
Smithsonian (Gaposhkin,1973)	6378.140	298.256	
U.S. Defense (Sppelin, 1974)	6378.135	298.26	
GRS80 (IAG,1980)	6378.137	298.257	Usado internacionalmente

Geodesia Física – Aula 15

FCUL-EG

1.3 A forma dada pelo Elipsóide

Ondulação do geóide calculada sobre o GRS80

Geodesia Física - Aula 15

FCUL-EG

21

FORMA DA TERRA

1.4 O Teluróide

- A determinação do geóide implica a redução das anomalias observadas à superfície, sob a hipótese de um qualquer modelo de distribuição de densidades das massas exteriores;
- Para evitar este inconveniente, Molodensky em 1945 propôs uma nova abordagem – <u>resolver o problema de fronteira da</u> geodesia física directamente a partir dos valores de superfície;
- Apesar de não resolver o problema da geodesia geométrica, é um resultado de grande importância para a geodesia física teórica;
- O geóide é então substituído por uma superfície, designada primeiro por Molodensky de "geoid of the nonregularized earth", e depois por Hirvonen, de teluróide (terróide);
- Deste método resulta uma quantidade designada de anomalia de altitude - ζ, correspondente à distância vertical entre a superfície topográfica e o teluróide;

Geodesia Física - Aula 15

FCUL-EG

1.4 O Teluróide

 O teluróide é então a superfície que dista aproximadamente do elipsóide a mesma altitude que dista a superfície topográfica do geóide;

• É definido pela altitude normal H* acima do elipsóide

$$H^* = -\int_{W_0}^{W} \frac{dW}{\gamma} = \frac{C}{\bar{\gamma}} \qquad \qquad \zeta = h - H^*$$

Geodesia Física - Aula 15

FCUL-EG

23

FORMA DA TERRA

1.4 O Teluróide

- Rigorosamente, o teluróide é a superfície onde num qualquer ponto Q o potencial normal U é igual ao potencial gravítico W do correspondente ponto P da superfície topográfica (W_P=U_Q);
- O respectivo problema de fronteira corresponde à determinação do potencial perturbador T, tal que:

$$\begin{cases} \Delta T = 0 \\ -\frac{\partial T}{\partial r} - \frac{2}{r}T = \Delta g \end{cases}$$

- Onde $\Delta g = g_p \gamma_p$ são as anomalias ar-livre definidas à superfície da Terra e $T=W_p-U_p$;
- Resultando a seguinte solução aproximada após a fórmula de Bruns $\zeta = \zeta_0 + \frac{R}{4\pi\gamma} \iint_{\Gamma} G_1 S(\psi) d\sigma \quad G_1 = \frac{R^2}{2\pi} \iint_{\Gamma} \frac{h h_p}{1_0^3} \bigg(\Delta g + \frac{3\gamma}{2R} \zeta_0 \bigg) d\sigma$

Geodesia Física – Aula 15

FCUL-EG

1.5 O Quasi-Geóide

- Quando a anomalia da altitude, ζ, é medida a partir do elipsóide de referência, a superfície resultante é o <u>quasi-geóide</u>;
- A sua proximidade ao geóide confere-lhe o nome. No mar as duas superfícies são coincidentes, mas nas montanhas elas podem diferir até alguns metros;

Geodesia Física - Aula 15

FCUL-EG

25

FORMA DA TERRA

1.5 O Quasi-Geóide

- A desvantagem evidente do quasi-geóide, em relação ao geóide, é que este não possui um significado físico;
- É uma pura construção matemática e não uma superfície equipotencial;
- Como referência altimétrica o quasi-geóide não tem qualquer desvantagem;
- Nos países da ex-URSS e em muitos outros países do leste o datum altimétrico é o quasi-geóide e as altitudes usadas são as altitudes normais;

Geodesia Física – Aula 15

FCUL-EG

FCUL-EG

27

Geodesia Física - Aula 15

FORMA DA TERRA 1.6 EVRS – Diferentes Sistemas de Altitudes Várias altitudes utilizadas na Europa: Ortométricas (Portugal, Espanha, Itália, Suíça...) Normais (França, Alemanha,... Normais-Ortométricas (Áustria, Noruega,...) Kind of Heights normal heights no information orthometric heights no levelling heights normal orthometric heights UELN lines Geodesia Física - Aula 15 FCUL-EG

1.6 EVRS – Sistemas de Altitudes

 O EVRS é definido em termos geopotenciais (C), compatível com o sistema de altitudes normais (H*), relativas a um quasi-geóide, ou com o sistema de altitudes ortométricas (H) relativas a um geóide;

29

