TI - TP: Sources lumineuses

François Lepan

2 février 2013

1 Affichage 3D d'une image

```
On récupère l'image dans une matrice 3D img = imread("ti-semaine-1-texte.png");

On récupère sa hauteur et largeur height = size(img, 1); width = size(img, 2);

On affiche l'image (cf Fig. 1) imshow(img);
```


FIGURE 1 – Image de base

On récupère les niveaux de gris de l'image sous forme de matrice imgG = im2double(img);

On récupère la ligne 44. ":" signifie que l'on prend le reste des colonnes afin de constituer la ligne (cf Fig. 2)

line44 = imgG(44,:);

FIGURE 2 – Ligne 44 de l'image de base

On Récupère une image de 100x100 de l'image initial (cf Fig. 1) img100100 = imgG(1:100,1:100);

On créer une image 3D de l'image 100x100 (cf Fig. 3) plot3d(1 :100,1 :100,img100100) ;

On voit bien avec le relief que 1 correspond au blanc et 0 au noir.

2 Éclairement d'une source ponctuelle isotrope

2.1 Commentaire du code

Définition des échantillons sur un axe

Créer un axe avec un pas de i = 100 / i + 5e-3 axe = [0:99] / 100 + 5e-3;

Définition des éléments de surface

Créer une matrice avec la matrice de 1 transposer * la matrice axe. x = ones (1:100)' * axe; Créer une matrice avec la matrice de axe transposer * la matrice 1. y = axe' * ones (1:100);

Position de la source de lumière

xs = 0.5;

ys = 0.5;

Calcule de la distance

 $d = sqrt((x - xs).^2 + (y - ys).^2);$

(x-xs).² \rightarrow Pour chaque valeur de la matrice x on lui soustrait xs (car un scalaire) et on l'élève au carré.

Si on voulais faire un produit matriciel on ferai juste 2 .

On calcule la distance entre les valeurs de la matrice x et celle de y.

 $d = sqrt ((x - xs).^2 + (y - ys).^2);$

```
Tracé de la fonction distance. (cf Fig. 4) plot3d (axe, axe, d);
```

2.2 Calcule des valeurs d'éclairement reçues par les éléments de la surface plane éclairée par la source ponctuelle isotrope

```
h = 0.5; // 50 cm
fluxEnerg = 100;
I = fluxEnerg / (2* %pi);
e0 = I / h^2;
eclairementISO = e0 * h^3 * ( h^2 + d.^2).^(-3/2);
plot3d (axe, axe, eclairementISO);
```

L'exécution du code précédent fournit la Fig. 5 qui est une représentation 3D du calcule des valeurs d'éclairement reçues par les éléments de la surface plane éclairée par la source ponctuelle isotrope.

3 Éclairement d'une source ponctuelle lambertienne

3.1 Calcule des valeurs d'éclairement reçues par les éléments de la surface plane éclairée par la source ponctuelle lambertienne

```
eclairementLAM = e0 * h^4 * ( h^2 + d.^2).^(-2);
plot3d (axe, axe, eclairementLAM);
```

L'exécution du code précédent fournit la Fig. 6 qui est une représentation 3D du des valeurs d'éclairement reçues par les éléments de la surface plane éclairée par la source ponctuelle lambertienne.

3.2 Calcule de la variation relative maximale obtenue sur la surface

3.2.1 Éclairée par la source ponctuelle isotrope

```
varRelMax = (max(eclairementISO) - min(eclairementISO)) / max(eclairementISO) * 100 Et on obtient 80.359674 \%
```

3.2.2 Éclairée par la source ponctuelle lambertienne

```
varRelMax = (max(eclairementLAM) - min(eclairementLAM)) / max(eclairementLAM) * 100
Et on obtient 88.583537 %
```

4 Éclairement d'une grille de sources ponctuelles

4.1 calcule de l'éclairement reçu par le carré dans ces conditions

```
// Calcule de la grille de 100x100 afin d'observer les résultat
axe = [0:99] / 100 + 5e-3;
x = ones (1:100), * axe;
y = axe' * ones (1:100);
// Calcule de la grille de 200x200 afin d'effectuer les calcule pour un carre de 2 mètres
axe200 = [0:199] / 100 + 5e-3;
x200 = ones (1:200), * axe200;
y200 = axe200' * ones (1:200);
// Calcule de l'éclairage à la verticale d'une source de lumière
h = 0.5;
fluxEnerg = 100;
I = fluxEnerg / (2* %pi);
e0 = I / h^2;
// nombre de lumière par ligne
num = 2;
// La distance entre chacune des lumières
dist = 2 / (num+1);
// Calcule d'une matrice de num*num contenant des nombres complexes
// partie réel = x, partie imaginaire = y
grilleLum = [1:num] * dist;
a = grilleLum';
b = (grilleLum * %i);
a = repmat(a,1,num);
b = repmat(b,num,1);
grille = a + b;
eclairement = [];
// addition des valeurs d'éclairement pour chaque lumière
for i = 1 : num
    for j = 1 : num
            xs = real(grille(i,j));
            ys = imag(grille(i,j));
            d = sqrt ((x200 - xs).^2 + (y200 - ys).^2);
            eclairementLAM = e0 * h^4 * (h^2 + d.^2).^(-2);
            eclairement = eclairement + eclairementLAM;
    end
```

```
// On récupère un carré de 1 mètre au centre de celui de 2 mètres
centre = eclairement(51:150,51:150);

// On l'affiche
plot3d (axe, axe, centre);

// On calcule la variation relative a l'éclairement reçu par la surface
varRelMaxLam = (max(centre) - min(centre)) / max(centre) * 100;
```

L'exécution du code précédent fournit la Fig. 7 qui est une représentation 3D du des valeurs d'éclairement reçues par les éléments de la surface plane éclairée par 4 sources lambertienne à distance égales.

4.2 calculer la variation relative de l'éclairement reçu par la surface

```
// On calcule la variation relative a l'éclairement reçu par la surface
varRelMaxLam = (max(centre) - min(centre)) / max(centre) * 100;
```

Et on obtient une valeur de 36.854445 %

4.3 Combien de sources faut-il utiliser pour avoir une variation inférieure à 1 pour-cent?

Afin d'avoir une variation relative inférieur a 1 pour-cent il faut mettre 12 lumières x 12 lumières mais il faut aussi augmenté la surface de la grille a au moins 4 mètres. Ceci est due au fait que si on augmente l'espacement des lumières la surface recevra plus de d'éclairement et donc la variation n'en sera que plus réduit.

4.4 Calcule de la fluctuation de l'éclairement de la surface par rapport à sa valeur moyenne

FIGURE 3 – affichage 3D de l'image $100 \mathrm{x} 100$

FIGURE 4 – tracer 3D de la fonction distance

FIGURE 5 – Représentation 3D de la source ponctuelle isotrope

FIGURE 6 – Représentation 3D de la source ponctuelle lambertien

FIGURE 7 – Représentation 3D de la source ponctuelle isotrope