Теория:

1. Параллелизм и конкурентность.

Что такое параллелизм и что такое конкурентность? Что такое процесс и что такое поток? Организация параллелизма с использование процессов и с использованием потоков. В чём преемущества и недостатки этих подходов. Зачем нужен параллелизм?

2. Потоки. Kлаcc std::thread

Что такое поток? Создание нового потока в языке C++ с использованием объекта класса std::thread. Методы join и detach. Что произойдёт если выбросится исключение (в новом потоке, или в потоке, который создаёт новый поток)? Передача аргументов в функцию потока. Возврат данных из нового потока. Передача владения потоком. Создание произвольного количества потоков. Идентификация потоков.

3. Состояние гонки и мьютексы.

Что такое разделяемые данные? Что такое состояние гонки (race condition)? Проблематичные и безобидные состояния гонки. Что такое гонка данных (data race) и к чему она приводит? Защита разделяемых данных с помощью мьютекса. Класс std::mutex. Методы lock, unlock и try_lock. В чём недостатки класса std::mutex? Класс std::lock_guard. В чём преимущество std::lock_guard перед std::mutex? Класс std::unique_lock. В чём преимущества и недостатки std::unique_lock перед std::lock_guard? Взаимоблокировка (deadlock). Решение проблемы взаимоблокировки с помощью стандартной функции std::lock.

4. Механизмы синхронизации.

Условные переменные. Класс std::condition_variable и как им пользоваться? Методы wait, notify_one и notify_all. Ложные пробуждения (spurious wake). Запуск асинхронной задачи с помощью функции std::async. Возврат значения из фоновой задачи с помощью объекта класса std::future. Класс задачи – std::packaged_task. Зачем могут понадобиться объекты класса std::packaged_task? Методы класса std::packaged_task: get_future, operator(). Передача объекта класса std::packaged_task в другие функции и потоки. Класс std::promise. Методы класса std::promise: get_future, set_value и set_exception.

5. Потокобезопасные стек и очередь с блокировками.

Что такое потокобезопасная структура данных? Являются ли стандартные контейнеры STL потокобезопасными? Стандартный класс std::stack и его методы push, top и pop. Почему в стандартной библиотеке языка C++ стек реализован так, как он реализован? Что такое потокобезопасная структура данных с блокировками? Написание своего потокобезопасного стека с блокировками. Реализация методов push и pop такого стека. Потокобезопасная очередь с блокировками. Реализация методов push, try_pop и wait_and_pop такой очереди.

6. Атомарные типы и операции над ними.

Атомарные переменные. В чём отличие атомарных переменных от обычных переменных? Класс atomic_flag и его методы clear и test_and_set. Атомарные типы atomic<T> и методы load, store и compare_exchange. Упорядочение доступа к памяти. Упорядочения memory_order_seq_cst, memory_order_acquire, memory_order_release и memory_order_relaxed. Реализация спинлока (простейшего мьютекса) на основе атомарной переменной.