Lecture 1: Machine Learning Basics

Siddharth Garg

sg175@nyu.edu

This Course...

Social network deanonymization

Browser

fingerprinting

Automated Evasion

Growing use of ML techniques in cybersecurity application

Spam filtering

→ Biometrics

Malware detection

Network intrusion detection

This Course...

What is Machine Learning?

Ability for machines to learn without being explicitly programmed

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E." --- Mitchell, T. (1997). Machine Learning. McGraw Hill. p. 2.

- Why not use user knowledge, experience or expertise?
 - Are humans always able to explain their expertise?
 - Can machines outperform humans?
- What kinds of experiences (E), tasks (T) and performance measures (P)?

Example: MNIST Digit Recognition

Task (T):

• Given gray-scale images $x \in [0,255]^{28\times28}$ and $y \in [0,9]$ find a function $f: x \to y$

https://www.npmjs.com/package/mnist

Experience (E):

 A "training dataset" a set of correctly labeled images

Performance (P):

Accuracy on a "test dataset"

"Supervised Learning (Classification)"c

Example: Spam Classification

Task (T):

• Emails $x \in \text{all possible emails and } y \in \{spam, non_spam\}$ find

Experience (E):

 A "training dataset" a emails marked as "spam" or "non_spam"

Performance (P):

Spam detection accuracy

"Supervised Learning (Classification)"

Some Challenges

Representing Data (or Feature Extraction)

- How to represent $x \in$ all possible emails *mathematically*
- One example is "bag of words" representation: # times each word in the dictionary occurs
 - What do you lose?
 - What do you gain?
 - How can we compress this representation further?

What kind of classifier?

- What does the function f look like?
- And how do we learn it's parameters?

Example: Clustering

Task (T): "Cluster" a set of documents into k or groups such that "similar" documents appear in the same group

Experience (E):

• A "training dataset" of documents without "labels"

Performance (P):

Average distance to cluster center

"Unsupervised Learning"

Example: Anomaly Detection

Task (T):

Which of these is like the others?

Experience (E):

Unlabeled samples

Performance (P):

Anomaly detection accuracy

"Unsupervised Learning"

Regression

Task (T):

• Given $x \in \mathbb{R}$ and $y \in \mathbb{R}$ find a *linear* function

[S. Rangan, EL-GY-9123 Lec 2]

$$f: x \to y$$

Experience (E):

• Training data: Points $(x_i, y_i), i \in [1, N]$

Performance (P):

 Least squares fit: minimize mean square error between prediction and ground-truth

"Supervised Learning (Regression)"

$$y = f(x) = \beta_1 x + \beta_0$$

• How do we find the values (β_1, β_0) ?

$$\min_{\beta_1,\beta_0} \sum_{i=1}^N (y_i - \widehat{y_i})^2$$

$$\widehat{y_i} = \beta_1 x_i + \beta_0 \quad \forall i \in [1, N]$$

$$y = f(x) = \beta_1 x + \beta_0$$

• How do we find the values (β_1, β_0) ?

$$g(\beta_1, \beta_0)$$

$$\min_{\beta_1,\beta_0} \sum_{i=1}^N (y_i - \widehat{y_i})^2$$

$$\widehat{y}_i = \beta_1 x_i + \beta_0 \quad \forall i \in [1, N]$$

$$\min_{\beta_1,\beta_0} \sum_{i=1}^{N} (y_i - \beta_1 x_i - \beta_0)^2$$

$$\frac{\partial g}{\partial \beta_1} = 0 \qquad \frac{\partial g}{\partial \beta_0} = 0$$

$$y = f(x) = \beta_1 x + \beta_0$$

• How do we find the values (β_1, β_0) ?

Residual Sum Squares (RSS) $g(\beta_1, \beta_0)$

$$\min_{\beta_1,\beta_0} \sum_{i=1}^{N} (y_i - \beta_1 x_i - \beta_0)^2$$

$$\frac{\partial g}{\partial \beta_0} = \sum_{i=1}^{N} -2(y_i - \beta_1 x_i - \beta_0) = 0$$

Sample mean

$$\frac{\partial g}{\partial \beta_1} = 0 \qquad \frac{\partial g}{\partial \beta_0} = 0$$

$$\beta_0 = \frac{\sum_{i=1}^{N} (y_i - \beta_1 x_i)}{N} = (\bar{y}) - \beta (\bar{x})$$

Are you surprised?

• How do we find the values (β_1, β_0) ?

$$\min_{\beta_{1},\beta_{0}} \sum_{i=1}^{N} (y_{i} - \beta_{1}x_{i} - \beta_{0})^{2}$$

$$\frac{\partial g}{\partial \beta_1} = 0 \qquad \frac{\partial g}{\partial \beta_0} = 0$$

$$\frac{\partial g}{\partial \beta_1} = \sum_{i=1}^{N} -2x_i(y_i - \beta_1 x_i - \beta_0) = 0$$

$$\sum_{i=1}^{N} x_i((y_i - \bar{y}) - \beta_1(x_i - \bar{x})) = 0$$
Sample covariance
$$\beta_1 = \frac{\bar{x}\bar{y} - \bar{x}\bar{y}}{\bar{x}^2 - \bar{x}^2}$$

Sample variance

Auto Example

• Python code


```
xm = np.mean(x)
ym = np.mean(y)
syy = np.mean((y-ym)**2)
syx = np.mean((y-ym)*(x-xm))
sxx = np.mean((x-xm)**2)
beta1 = syx/sxx
beta0 = ym - beta1*xm
```

Regression line:

$$mpg = \beta_0 + \beta_1 horsepower$$

Linear Least Squares (Multivariate)

• Now consider input: $x \in \mathbb{R}^M$ and output $y \in \mathbb{R}$ the goal is to learn

$$y = f(x) = \beta_M x_M + ... + \beta_1 x_1 + \beta_0$$

• Given training dataset $X \in \mathfrak{R}^{ ext{N} imes ext{M}}$ and $Y \in \mathfrak{R}^{ ext{N}}$

$$\hat{Y} = X\beta$$

column of 1s

Linear Least Squares (Multivariate)

$$RSS = \sum (y - \hat{y})^2 = (Y - \hat{Y})^T \times (Y - \hat{Y}) = (Y - X\beta)^T \times (Y - X\beta)$$

Objective:
$$\min_{\beta} (Y - X\beta)^T \times (Y - X\beta)$$

Solution:
$$\beta^* = (X^T X)^{-1} X^T Y$$

Polynomial Fitting

- Last lecture: polynomial regression
- Given data (x_i, y_i) , i = 1, ..., N
- Learn a polynomial relationship: $y = \beta_0 + \beta_1 x + \dots + \beta_d x^d + \epsilon$
 - *d* = degree of polynomial. Called model order
 - $\beta = (\beta_0, \dots, \beta_d)$ = coefficient vector
- Given d, can find β via least squares
- How do we select d from data?
- This problem is called model order selection.

Example Question

- You are given some data.
- Want to fit a model: $y \approx f(x)$
- Decide to use a polynomial: $f(x) = \beta_0 + \beta_1 x + \cdots$

- What model order d should we use?
- Thoughts?

Synthetic Data

- Previous example is synthetic data
- x_i : 40 samples uniform in [-1,1]
- $y = f(x) + \epsilon$,
 - $f(x) = \beta_0 + \beta_1 x + \dots + \beta_d x^d =$ "true relation"
 - d=3, $\epsilon \sim N(0,\sigma^2)$
- Synthetic data useful for analysis
 - Know "ground truth"
 - Can measure performance of various estimators


```
# Import useful polynomial library
import numpy.polynomial.polynomial as poly

# True model parameters
beta = np.array([1,0.5,0,2])  # coefficients
wstd = 0.2  # noise
dtrue = len(beta)-1  # true poly degree

# Independent data
nsamp = 40
xdat = np.random.uniform(-1,1,nsamp)

# Polynomial
y0 = poly.polyval(xdat,beta)
ydat = y0 + np.random.normal(0,wstd,nsamp)
```

Fitting with True Model Order

- Suppose true polynomial order, d=3, is known
- Use linear regression
 - numpy.polynomial package


```
d = 3
beta_hat = poly.polyfit(xdat,ydat,d)
# Plot true and estimated function
xp = np.linspace(-1,1,100)
vp = poly.polyval(xp,beta)
yp hat = poly.polyval(xp,beta hat)
plt.xlim(-1,1)
plt.ylim(-1,3)
plt.plot(xp,yp,'r-',linewidth=2)
plt.plot(xp,yp hat,'g-',linewidth=2)
# Plot data
plt.scatter(xdat,ydat)
plt.legend(['True (dtrue=3)', 'Est (d=3)', 'Data'], loc='upper left')
plt.grid()
plt.xlabel('x')
plt.ylabel('y')
```

But, True Model Order not Known

• Suppose we guess the wrong model order?

d=1 "Underfitting"

d=10 "Overfitting"

How Can You Tell from Data?

- Is there a way to tell what is the correct model order to use?
- Must use the data. Do not have access to the true d?
- What happens if we guess:
 - *d* too big?
 - d too small?

Using RSS on Training Data?

- Simple (but bad) idea:
 - For each model order, d, find estimate
 - Compute predicted values on training

$$\hat{y}_i = \widehat{\boldsymbol{\beta}}^T \boldsymbol{x}_i$$

• Compute RSS $RSS(d) = \sum_{i} (y_i - \hat{y}_i)^2$

- Find d with lowest RSS
- This doesn't work
 - RSS(d) is always decreasing (Question Why?)
 - Minimizing RSS(d) will pick d as large possible
 - Leads to overfitting
- What went wrong?
- How do we do better?

Model Class and True Function

- Analysis set-up:
 - Learning algorithm assumes a model class: $\hat{y} = f(x, \beta)$
 - But, data has true relation: $y = f_0(x) + \epsilon$, $\epsilon \sim N(0, \sigma_{\epsilon}^2)$
- Will quantify three key effects:
 - Irreducible error
 - Under-modeling
 - Over-fitting

Output Mean Squared Error

- To evaluate prediction error suppose we are given:
 - A parameter estimate $\widehat{\beta}$ (computed from the learning algorithm)
 - A test point x_{test}
 - Test point is generally different from training samples.
- Predicted value: $\hat{y} = f(x_{test}, \hat{\beta})$
- Actual value: $y = f_0(x_{test}) + \epsilon$
- Output mean squared error:

$$MSE_{y}(\mathbf{x}_{test}, \widehat{\boldsymbol{\beta}}) \coloneqq E[y - \widehat{y}]^{2}$$

• Expectation is over noise ϵ on the test sample.

Irreducible Error

Rewrite output MSE:

$$MSE_y(\mathbf{x}_{test}, \widehat{\boldsymbol{\beta}}) \coloneqq E[y - \widehat{y}]^2 = E[f_0(\mathbf{x}_{test}) + \epsilon - f(\mathbf{x}_{test}, \widehat{\boldsymbol{\beta}})]^2$$

• Since noise on test sample is independent of $\widehat{\pmb{\beta}}$ and \pmb{x}_{test} :

$$MSE_{y}(\mathbf{x}_{test}, \widehat{\boldsymbol{\beta}}) := [f_{0}(\mathbf{x}_{test}) - f(\mathbf{x}_{test}, \widehat{\boldsymbol{\beta}})]^{2} + E(\epsilon^{2})$$
$$= [f_{0}(\mathbf{x}_{test}) - f(\mathbf{x}_{test}, \widehat{\boldsymbol{\beta}})]^{2} + \sigma_{\epsilon}^{2}$$

- Define irreducible error: σ_{ϵ}^2
 - Lower bound on $MSE_y(x_{test}, \widehat{\beta}) \geq \sigma_{\epsilon}^2$
 - Fundamental limit on ability to predict y
 - Occurs since y is influenced by other factors than x

Under-Modeling

• Definition: A true function $f_0(x)$ is in the model class $\hat{y} = f(x, \beta)$ if:

$$f_0(\mathbf{x}) = f(\mathbf{x}, \boldsymbol{\beta}_0)$$
 for all \mathbf{x} for some parameter $\boldsymbol{\beta}_0$.

- β_0 called the true parameter
- Under-modeling: When $f_0(x)$ is not in the model class

Sample Question

- For each pair, state if the true function is in the model class or not
 - That is, is there under-modeling or not?
 - If true function is in the model class, state the true parameter

Examples:

- True function: $f_0(x) = 2 + 3x$ Model class: $f(x, \beta) = \beta_0 + \beta_1 x + \beta_2 x^2$
- True function: $f_0(x) = 2 + 3x + 4x^2$ Model class: $f(x, \beta) = \beta_0 + \beta_1 x$
- True function: $f_0(x) = \sin(2\pi(5)x + 7)$ Model class: $f(x,\beta) = \beta_0 \sin(2\pi(5)x) + \beta_1 \cos(2\pi(5)x)$
- True function: $f_0(x) = \sin(2\pi(8)x + 7)$ Model class: $f(x,\beta) = \beta_0 \sin(2\pi(5)x) + \beta_1 \cos(2\pi(5)x)$

Solutions in class

Analysis of Under-Modeling: Noise-Free Case

- Assume true relation has no noise: $y = f_0(x)$
 - Can model noise, but requires more probability theory
- Get training data: $(x_i, y_i), i = 1, ..., n$
- Fit model parameter from least-squares:

$$\widehat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \sum_{i=1}^{n} (y_i - f(\boldsymbol{x}_i, \boldsymbol{\beta}))^2$$

$$= \arg\min_{\boldsymbol{\beta}} \sum_{i=1}^{n} (f_0(\boldsymbol{x}_i) - f(\boldsymbol{x}_i, \boldsymbol{\beta}))^2$$

- Conclusions: With no noise
 - Fitting finds best least squares fit of the true functions in the model class
 - If there is a unique true parameter, then $\hat{\beta} = \beta_0$. Estimator identifies correct parameter

Bias: Noise-Free Case

- Let x_{test} = some test point
 - Can be different from the training data set
- Definition: When there is no noise, the bias at a test point x_{test} is:

$$Bias(\mathbf{x}_{test}) := f_0(\mathbf{x}_{test}) - f(\mathbf{x}_{test}, \widehat{\boldsymbol{\beta}})$$

- Measures difference true and estimated relation in absence of noise
- Previous analysis shows:
 - Bias is small when true function is close to model class
 - When there is no under-modeling, $Bias(x_{test}) = 0$ and true parameter found.

Bias Visualized

Analysis with Noise (Advanced)

- Now assume noise: $y = f_0(x) + \epsilon, \epsilon \sim N(0, \sigma_{\epsilon}^2)$
- Get training data: $(x_i, y_i), i = 1, ..., n$
- Fit a parameter:

$$\widehat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \sum_{i=1}^{n} (y_i - f(\boldsymbol{x}_i, \boldsymbol{\beta}))^2$$

- $\widehat{\beta}$ will be random.
- Depends on particular noise realization.
- Take a new test point x_{test} (not random)
- Compute mean and variance of estimated function $f(x_{test}, \widehat{\beta})$
- Define:
 - Bias: Difference of true function from mean estimate
 - Variance: Variance of estimate around its mean

Bias and Variance Illustrated

- Polynomial ex
- Mean and std dev of estimated functions
- 100 trials

Bias-Variance Tradeoff

- Optimal model order depends on:
 - Amount of samples available
 - Underlying complexity of the relation

Cross Validation

- Concept: Need to test fit on data independent of training data
- Divide data into two sets:
 - N_{train} training samples, N_{test} test samples
- For each model order, p, learn parameters $\hat{\beta}$ from training samples
- Measure RSS on test samples.

$$RSS_{test}(p) = \sum_{i \in test} (\widehat{y}_i - y_i)^2$$

• Select model order p that minimizes $RSS_{test}(p)$

Polynomial Example: Training Test Split

• Example: Split data into 20 samples for training, 20 for test


```
# Number of samples for training and test
ntr = nsamp // 2
nts = nsamp - ntr

# Training
xtr = xdat[:ntr]
ytr = ydat[:ntr]

# Test
xts = xdat[ntr:]
yts = ydat[ntr:]
```

Finding the Model Order

• Estimated optimal model order = 3

RSS test minimized at d=3RSS training always decreases

```
dtest = np.array(range(0,10))
RSStest = []
RSStr = []
for d in dtest:
   # Fit data
   beta hat = poly.polyfit(xtr,ytr,d)
    # Measure RSS on training data
   # This is not necessary, but we do it just to show the training error
   yhat = poly.polyval(xtr,beta hat)
   RSSd = np.mean((yhat-ytr)**2)
    RSStr.append(RSSd)
    # Measure RSS on test data
   yhat = poly.polyval(xts,beta_hat)
   RSSd = np.mean((yhat-yts)**2)
    RSStest.append(RSSd)
plt.plot(dtest,RSStr,'bo-')
plt.plot(dtest,RSStest,'go-')
plt.xlabel('Model order')
plt.ylabel('RSS')
plt.grid()
plt.ylim(0,1)
plt.legend(['Training','Test'],loc='upper right')
```

Problems with Simple Train/Test Split

- Test error could vary significantly depending on samples selected
- Only use limited number of samples for training
- Problems particularly bad for data with limited number of samples

K-Fold Cross Validation

- K-fold cross validation
 - Divide data into *K* parts
 - Use K-1 parts for training. Use rer
 - Average over the *K* test choices
 - More accurate, but requires K fits of

- Leave one out cross validation (LOOCV)
 - Take K=N so one sample is left out $\frac{From}{http://blog.goldenhelix.com/goldenadmin/cross-$
 - Most accurate, but requires N model fittings -for-genomic-prediction-in-svs/

Polynomial Example

- Use sklearn Kfold object
- Loop
 - Outer loop: Over K folds
 - Inner loop: Over model order
 - Measure test error in each fold
 - Can be time-consuming

```
# Create a k-fold object
nfold = 20
kf = sklearn.model selection.KFold(n splits=nfold,shuffle=True)
# Model orders to be tested
dtest = np.arange(0,10)
nd = len(dtest)
# Loop over the folds
RSSts = np.zeros((nd,nfold))
for isplit, Ind in enumerate(kf.split(xdat)):
    # Get the training data in the split
   Itr, Its = Ind
   xtr = xdat[Itr]
   ytr = ydat[Itr]
   xts = xdat[Its]
   vts = vdat[Its]
    for it, d in enumerate(dtest):
        # Fit data on training data
        beta_hat = poly.polyfit(xtr,ytr,d)
        # Measure RSS on test data
        yhat = poly.polyval(xts,beta_hat)
        RSSts[it,isplit] = np.mean((yhat-yts)**2)
```

Classification

Task (T):

• Emails $x \in \text{all possible emails and } y \in \{spam, non_spam\}$ find

Experience (E):

 A "training dataset" a emails marked as "spam" or "non_spam"

Performance (P):

Spam detection accuracy

"Supervised Learning (Classification)"

Binary Classification

Binary Classification Task (T):

• Simplest example where $x \in \Re$ and

Dataset of ICLR'18 review scores vs. accept/reject decisions

Hyperedge2vec Distributed		_	eview_1	review	decision	conf_3	conf_2	conf_1	authors	authorids	abstract	_bibtex	TL;DR
5.0 Representations for	5.	5.0	5.0	5.000000	Reject	4.0	3.0	3.0	[Ankit Sharma, Shafiq Joty, Himanshu Kharkwal,	[sharm170@umn.edu, srjoty@ntu.edu.sg, himanshu	Data structured in form of overlapping or non	@article{\nsharma2018hyperedge2vec:,\ntitle= {H	None
Exploring the 7.0 Space of Black-box Attacks on De	7.	6.0	5.0	6.000000	Reject	4.0	3.0	4.0	[Arjun Nitin Bhagoji, Warren He, Bo Li, Dawn S	[abhagoji@princeton.edu, _w@eecs.berkeley.edu,	Existing black-box attacks on deep neural netw	@article{\nnitin2018exploring,\ntitle={Explori	Query-based black-box attacks on deep neural n
Learning Weighted 7.0 Representations for Generali	7.	8.0	5.0	6.666667	Reject	4.0	3.0	3.0	[Fredrik D. Johansson, Nathan Kallus, Uri Shal	[fredrikj@mit.edu, kallus@cornell.edu, urish22	Predictive models that generalize well under d	@article{\nd.2018learning,\ntitle={Learning We	A theory and algorithmic framework for predict
Understanding Deep Learning Generalization by	6.	3.0	2.0	3.666667	Reject	2.0	3.0	3.0	[Guanhua Zheng, Jitao Sang, Changsheng Xu]	[zhenggh@mail.ustc.edu.cn, jtsang@bjtu.edu.cn,	Deep learning achieves remarkable generalizati	@article{\nzheng2018understanding,\ntitle= {Und	We prove that DNN is a recursively approximate

Logistic Regression

Binary Classification Task (T):

Pr{Decision=Accept|Score}

• Instead, let's compute and plot $p = Pr\{y = 1 \mid x\}$

 Idea: Linear regression to fit p as a function of x

$$p = \beta_1 x + \beta_0$$

- Is this a good idea?
 - Probability p is always bounded between [0,1]

Logistic Regression

Binary Classification Task (T):

"Logits" Function

• Consider the following function $g = \log(g)$

• What is the range of *g*?

$$g \in [-\infty, \infty]$$

 Logistic Regression: fit logits function using a linear model!

$$g = \log(\frac{p}{1-p}) = \beta_1 x + \beta_0$$

X

Note: the linear fit is illustrative only. How to determine the best linear fit will be discussed next!

Logistic Regression

Pr{Decision=Accept|Score}

$$g = \log(\frac{p}{1-p}) = \beta_1 x + \beta_0$$

$$g = \log(\frac{p}{1-p}) = \beta_1 x + \beta_0$$

$$p = \frac{1}{1+e^{-(\beta_1 x + \beta_0)}}$$

What is Pr{Decision=Reject | Score}

$$1 - p = \frac{e^{-(\beta_1 x + \beta_0)}}{1 + e^{-(\beta_1 x + \beta_0)}}$$

How do we find the model parameters β_1 and β_0 ?

Model Estimation

- We will use an approach referred to as Maximum Likelihood Estimation (MLE)
 - Let's assume that the model(i.e., β_1 and β_0) is magically known. Consider the training dataset below. What is the likelihood that the dataset came from our model?

#	X	Y	$Likelihood = \frac{e^{-(\beta_1 x_1 + \beta_0)}}{(\beta_1 x_1 + \beta_0)} * \frac{1}{(\beta_1 x_1 + \beta_0)} * \dots \frac{1}{(\beta_1 x_1 + \beta_0)}$
1	$x_1 = 3$	$y_1 = 0$	$1_{1} = (p_1 x_1 + p_0) + 1_{1} = (p_1 x_2 + p_0) + 1_{1} = (p_1 x_M + p_0)$
2	$x_2 = 8$	$y_2 = 1$	
N	$x_N = 6$	$y_N = 1$	

Model Estimation

- We will use an approach referred to as Maximum Likelihood Estimation (MLE)
 - Let's assume that the model(i.e., β_1 and β_0) is magically known. Consider the training dataset below. What is the likelihood that the dataset came from our model?

#	X	Y	$Likelihood = \frac{e^{-(3\beta_1 + \beta_0)}}{(3\beta_1 + \beta_0)} * \frac{1}{(3\beta_1 + \beta_0)} * \dots \frac{1}{(3\beta_1 + \beta_0)}$
1	$x_1 = 3$	$y_1 = 0_{\downarrow}$	1 . $-(3D_1+D_0)$ 1 . $-(8D_1+D_0)$ 1 . $-(9D_1+D_0)$
2	$x_2 = 8$	$y_2 = 1$	
N	$x_N = 6$	$y_N = 1$	

Model Estimation

• We will use an approach referred to as Maximum Likelihood Estimation (MLE)

• Let's assume that the model(i.e., β_1 and β_0) is magically known. Consider the training dataset below. What is the likelihood that the dataset came from

our model?

#	X	Υ
1	$x_1 = 3$	$y_1 = 0$
2	$x_2 = 8$	$y_2 = 1$
N	$x_N = 6$	$y_N = 1$

$$Log - Likelihood = \log(\frac{e^{-(3\beta_1 + \beta_0)}}{1 + e^{-(3\beta_1 + \beta_0)}}) + \log(\frac{1}{1 + e^{-(8\beta_1 + \beta_0)}}) + ...\log(\frac{1}{1 + e^{-(6\beta_1 + \beta_0)}})$$

 $g(\beta_1,\beta_0)$ Function of model parameters only

Find eta_1 and eta_0 that maximize g (or minimize the "loss" –g)

$$Loss(\beta_1, \beta_0) = -g(\beta_1, \beta_0)$$

We Won't Worry About How (Phew!)


```
from sklearn import linear_model

#Instantiate an LR object
logreg = sklearn.linear_model.LogisticRegression(C=1e5);

#Recall: your training data must have a column of ones for the constant term
xd = np.ones((numPapers,2));
xd[:,0] = np.append(rscores,ascores)

yd = np.append(rlabels,alabels);

logreg.fit(xd,yd);

#Plot Pr{Accept|Score}
rv = np.ones((len(revRange),2));
rv[:,0] = revRange;
prpredict=logreg.predict_proba(rv)
```

From regression to classification: if probability of Accept > 0.5, then output Accept.

Logistic Regression: Multi-Variate Case

UCI Spam Dataset:

https://archive.ics.uci.edu/ml/datasets/Spambase

Attribute Information:

The last column of 'spambase.data' denotes whether the e-mail was considered spam (1) or not (0), i.e. unsolicited commercial e-mail. Most of the attributes indicate whether a particular word or character was frequently occurring in the e-mail. The run-length attributes (55-57) measure the length of sequences of consecutive capital letters. For the statistical measures of each attribute, see the end of this file. Here are the definitions of the attributes:

48 continuous real [0,100] attributes of type word_freq_WORD

= percentage of words in the e-mail that match WORD, i.e. 100 * (number of times the WORD appears in the e-mail) / total number of words in e-mail. A "word" in this case is any string of alphanumeric characters bounded by non-alphanumeric characters or end-of-string.

6 continuous real [0,100] attributes of type char freq CHAR]

- = percentage of characters in the e-mail that match CHAR, i.e. 100 * (number of CHAR occurences) / total characters in e-mail
- 1 continuous real [1,...] attribute of type capital_run_length_average
- = average length of uninterrupted sequences of capital letters
- 1 continuous integer [1,...] attribute of type capital run length longest
- = length of longest uninterrupted sequence of capital letters
- 1 continuous integer [1,...] attribute of type capital_run_length_total
- = sum of length of uninterrupted sequences of capital letters
- = total number of capital letters in the e-mail
- 1 nominal {0,1} class attribute of type spam
- = denotes whether the e-mail was considered spam (1) or not (0), i.e. unsolicited commercial e-mail.

- 57 Real or integer valued features
- Binary output class

$$p_{spam} = \frac{1}{1 - (\sum_{i=1}^{M} \beta_i x_i + \beta_0)}$$

$$1 + e^{-(\sum_{i=1}^{M} \beta_i x_i + \beta_0)}$$

LR on Spam Database: Results

90% of samples used for training, remaining 10% used for test

Prediction probabilities for all "SPAM" emails in the test set


```
#Instantiate an LR object
logreg = sklearn.linear_model.LogisticRegression(C=1e5);

#Recall: your training data must have a column of ones for the constant term
xd = np.ones((numPapers,2));
xd[:,0] = np.append(rscores,ascores)

yd = np.append(rlabels,alabels);

logreg.fit(xd,yd);

#Plot Pr{Accept|Score}
rv = np.ones((len(revRange),2));
rv[:,0] = revRange;
prpredict=logreg.predict_proba(rv)
```

Which emails are mis-predicted?

Accuracy on test set: ~92%

Which Features Matter?

Our Model:

$$p_{spam} = \frac{1}{1 - (\sum_{i=1}^{M} \beta_i x_i + \beta_0)}$$

$$1 + e^{-(\sum_{i=1}^{M} \beta_i x_i + \beta_0)}$$

Reasonable hypothesis: features with larger absolute values of β matter more.

What does β_i =0 imply about feature i?

Feature Selection

Retrain and predict using only the top-k features

Can we explicitly train the parameters so as to prioritize a "sparser" model?

Why?

Low model complexity prevents overfitting!!

Recall that during training we were seeking to minimize:

$$\hat{\beta} = \min_{\beta} Loss(\beta)$$

How should this objective function change?

Regularization

$$L_p$$
 Norm of a vector \mathbf{x} $\|\mathbf{x}\|_p = (\sum |\mathbf{x}_i|^p)^{1/p}$

p	L _p Norm	Interpretation
0	$ x _0 = (\sum x_i ^0)^{1/0}$	Number of Non-zero Entries
1	$ x _1 = (\sum x_i)$	Sum of absolute values
2	$ x _2 = (\sum x_i ^2)^{0.5}$	Root mean square
∞	$\ x\ _{\infty} = (\sum x_i ^{\infty})^0$	Max. value

"Regularized" loss

$$\hat{\beta} = \min_{\beta} \{ Loss(\beta) + c \|\beta\|_{0} \}$$

c controls the relative importance of the regularization penalty

Regularization In Practice

LO Regularization

$$\hat{\beta} = \min_{\beta} \{ Loss(\beta) + c \|\beta\|_{0} \}$$

Hard "combinatorial" optimization problem!

Instead, the following regularization functions are commonly used:

L1 Regularization (LASSO)

$$\hat{\beta} = \min_{\beta} \{ Loss(\beta) + c \|\beta\|_{1} \}$$

We are penalizing "large" coefficients.

L2 Regularization (Ridge)

$$\hat{\beta} = \min_{\beta} \{ Loss(\beta) + c \|\beta\|_{2} \}$$

But why?

LASSO and Ridge Regularization

Regularization for Spam Classification

Logistic Regression (aka logit, MaxEnt) classifier.

In the multiclass case, the training algorithm uses the one-vs-rest (OvR) scheme if the 'multi_class' option is set to 'ovr', and uses the cross- entropy loss if the 'multi_class' option is set to 'multinomial'. (Currently the 'multinomial' option is supported only by the 'lbfgs', 'sag' and 'newton-cg' solvers.)

This class implements regularized logistic regression using the 'liblinear' library, 'newton-cg', 'sag' and 'lbfgs' solvers. It can handle both dense and sparse input. Use C-ordered arrays or CSR matrices containing 64-bit floats for optimal performance; any other input format will be converted (and copied).

The 'newton-cg', 'sag', and 'lbfgs' solvers support only L2 regularization with primal formulation. The 'liblinear' solver supports both L1 and L2 regularization, with a dual formulation only for the L2 penalty.

Read more in the User Guide.

Parameters: penalty: str, 'l1' or 'l2', default: 'l2'

Used to specify the norm used in the penalization. The 'newton-cg', 'sag' and 'lbfgs' solvers support only I2 penalties.

New in version 0.19: I1 penalty with SAGA solver (allowing 'multinomial' + L1)

C: float, default: 1.0

Inverse of regularization strength; must be a positive float. Like in support vector machines, smaller values specify stronger regularization.

Which regularization function to use?

How should we select *c*?

Impact of C

Errors in Binary Classification

- Two types of errors:
 - Type I error (False positive / false alarm): Decide $\hat{y} = 1$ when y = 0
 - Type II error (False negative / missed detection): Decide $\hat{y} = 0$ when y = 1
- Implication of these errors may be different
 - Think of breast cancer diagnosis
- Accuracy of classifier can be measured by:

•
$$TPR = P(\hat{y} = 1 | y = 1)$$

•
$$FPR = P(\hat{y} = 1 | y = 0)$$

predicted→ real↓	Class_pos	Class_neg
Class_pos	TP	FN
Class_neg	FP	TN

TPR (sensitivity) =
$$\frac{TP}{TP + FN}$$

FPR (1-specificity) =
$$\frac{FP}{TN + FP}$$

Hard Decisions

- Logistic classifier outputs a soft label: $P(y = 1|x) \in [0,1]$
 - $P(y = 1|x) \approx 1 \Rightarrow y = 1$ more likely
 - $P(y = 0 | x) \approx 1 \Rightarrow y = 0$ more likely
- Can obtain a hard label by thresholding:
 - Set $\hat{y} = 1 \Leftrightarrow P(y = 1|x) > t$
 - t = Threshold
- How to set threshold?
 - Set $t = \frac{1}{2} \Rightarrow$ Minimizes overall error rate
 - Increasing $t \Rightarrow$ Decreases false positives
 - Decreasing $t \Rightarrow$ Decreases missed detections

ROC Curve

- Varying threshold obtains a set of cla
- Trades off FPR and TPR
- Can visualize with ROC curve
 - Receiver operating curve
 - Term from digital communications

```
from sklearn import metrics
yprob = logreg.predict_log_proba(Xtr)
fpr, tpr, thresholds = metrics.roc_curve(ytr,yprob[:,1])
plt.loglog(fpr,1-tpr)
plt.grid()
plt.xlabel('FPR')
plt.ylabel('TPR')
```


Multi-Class Logistic Regression

- Suppose $y \in 1, ..., K$
 - K possible classes (e.g. digits, letters, spoken words, ...)
- Multi-class regression:
 - $W \in R^{K \times d}$, $w_0 \in R^M$ Slope matrix and bias
 - $z = Wx + w_0$: Creates M linear functions
- Then, class probabilities given by:

$$P(y = k | \mathbf{x}) = \frac{e^{z_k}}{\sum_{\ell=1}^{K} e^{z_\ell}}$$

Softmax Operation

Consider soft-max function:

$$g_k(\mathbf{z}) = \frac{e^{z_k}}{\sum_{\ell=1}^K e^{z_\ell}}$$

- K inputs $\mathbf{z} = (z_1, ..., z_K), K$ outputs $f(\mathbf{z}) = (f(\mathbf{z})_1, ..., f(\mathbf{z})_K)$
- Properties: $f(\mathbf{z})$ is like a PMF on the labels [0,1,...,K-1]
 - $g_k(\mathbf{z}) \in [0,1]$ for each component k
 - $\bullet \ \Sigma_{k=1}^K g_k(\mathbf{z}) = 1$
- Softmax property: When $z_k \gg z_\ell$ for all $\ell \neq k$:
 - $g_k(\mathbf{z}) \approx 1$
 - $g_{\ell}(\mathbf{z}) \approx 0$ for all $\ell \neq k$
- Multi-class logistic regression: Assigns highest probability to class k when z_k is largest

$$z_k = \boldsymbol{w}_k^T \boldsymbol{x} + \boldsymbol{w}_{0k}$$