





Document: Datasheet Date: 1-Jul-09 Model #: 1141 Product's Page: www.sunrom.com/p-731.html

### **GPS Receiver with Active Antenna, RS232**

The ultra-sensitive GPS receiver can acquire GPS signals from 32 channels of satellites and generate fast position fixes with high accuracy in extremely challenging environments and under poor signal conditions due to its active antenna and high sensitivity. The bi-directional NMEA 0183 v3.0 protocol offers industry standard data



messages and a command set for easy interface to mapping software and embedded devices.

### **Features**

- High sensitivity -159dBm
- Searching up to 32 Channel of satellites
- Fast Position Fix with LED indication of status
- Low power consumption
- RTCM- in ready
- Built-in WAAS/EGNOS/MSAS Demodulator
- Supports NMEA0183 V 3.01 data protocol
- Real time navigation for location based services
- For Car Navigation, Marine Navigation, Fleet Management, AVL and Location-Based Services, Auto Pilot, Personal Navigation or touring devices, Tracking devices/systems and Mapping devices application

# **Applications**

- Automotive and Marine Navigation
- Automotive Navigator Tracking
- Emergency Locator
- Geographic Surveying
- Personal Positioning
- Sporting and Recreation
- Embedded applications

# **Specification**

| Parameter                 | Value                 | Unit                              |
|---------------------------|-----------------------|-----------------------------------|
| Operating Voltage         | 10-40 V (12V Typical) | V DC                              |
| Operating Current         | 150                   | mA                                |
| Sensitivity               | -159                  | dBm                               |
| Channels                  | 32                    | 32 channels all in view searching |
| Protocol output baud rate | 4800                  | bps no handshaking(8-N-1)         |

| Protocol format                      | NMEA0183 V 3.01          | GGA,GLL,GSA,GSV,RMC,VTG    |
|--------------------------------------|--------------------------|----------------------------|
| Output Voltage level                 | RS232 signals (+12/-12V) |                            |
| Frequency                            | 1,1575.42                | Mhz                        |
| C/A Code                             | 1.023                    | Mhz chip rate              |
| Accuracy in Position                 | 3                        | Meters                     |
| Accuracy in Velocity                 | 0.1                      | Meters/Second              |
| Accuracy in Time                     | 0.1                      | Microsecond. Sync GPS time |
| Datum                                | WGS84(Default)           | total 219 datum's          |
| Time to First Fix for first power on | 36                       | Second approx.             |
| Time to Reacquisition                | 1                        | Second                     |
| Update Rate                          | 1                        | Hz                         |
| Acceleration Limit                   | 4                        | G                          |
| Altitude Limit                       | 18,000                   | Meters                     |
| Velocity Limit                       | 515                      | Meters/Second              |
| Jerk Limit                           | 20                       | Meters/Second <sup>3</sup> |
| Operating Temperature                | -40 to +85               | Degree Celcius             |

## Software for monitoring GPS data

The NMEA data from GPS device can be monitored by a software.

Download GPS monitoring software

http://www.sunrom.com/files/TrimbleStudio-V1-00-1.exe



#### **NMEA Protocol**

This section provides a brief overview of the NMEA 0183 protocol, and describes both the standard and optional messages offered by the GPS Receiver.

NMEA 0183 is a simple, yet comprehensive ASCII protocol which defines both the communication interface and the data format. The NMEA 0183 protocol was originally established to allow marine navigation equipment to share information. Since it is a well established industry standard, NMEA 0183 has also gained popularity for use in applications other than marine electronics. The GPS receiver supports the latest release of NMEA 0183, Version 3.0 (July 1, 2000). The primary change in release 3.0 is the addition of the mode indicators in the GLL, RMC, and VTG messages.

For those applications requiring output only from the GPS receiver, the standard NMEA 0183 sentences are a popular choice. Many standard application packages support the standard NMEA output messages.

The standard NMEA output only messages are: GGA, GLL, GSA, GSV, RMC, VTC, and ZDA.

| NMEA RECORD | Description                            |
|-------------|----------------------------------------|
| GGA         | GPS fix data                           |
| GLL         | Geographic                             |
| GSA         | GNSS DOP and active satellite          |
| GSV         | GNSS Satellites in view                |
| RMC         | Recommended minimum specific GNSS data |
| VTG         | Course Over Ground and Ground Speed    |
| ZDA         | Time&Data                              |

# NMEA 0183 Message Format

The NMEA 0183 protocol covers a broad array of navigation data. The entire protocol encompasses over 50 messages, but only a sub-set of these messages apply to this GPS receiver. The NMEA message structure is described below.

\$IDMSG,D1,D2,D3,D4,.....,Dn\*CS[CR][LF]

| <b>"\$"</b> | The "\$" signifies the start of a message.                                                                                                          |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| ID          | The identification is a two letter mnemonic which describes the source of the navigation information. The GP identification signifies a GPS source. |
| MSG         | The message identification is a three letter mnemonic which describes the message content and the number and order of the data fields.              |
| دد بب<br>ب  | Commas serve as delimiters for the data fields.                                                                                                     |
| Dn          | Each message contains multiple data fields (Dn) which are delimited by commas. The length of the fields can be variable.                            |
| (f*1)       | The asterisk serves as a checksum delimiter.                                                                                                        |
| CS          | The checksum field contains two ASCII characters which indicate the hexadecimal value of the checksum.                                              |
| [CR][LF]    | The carriage return [CR] and line feed [LF] combination terminate the message.                                                                      |

NMEA 0183 standard messages vary in length, but each message is limited to 79 characters or less. This length limitation excludes the "\$" and the [CR][LF]. The standard message data field block, including delimiters, is limited to 74 characters or less.

### **Related links**

#### GPS - NMEA sentence information

http://home.mira.net/~gnb/gps/nmea.html

### AVR Library for parsing GPS Data

http://www.mil.ufl.edu/~chrisarnold/components/microcontrollerBoard/AVR/avrlib/docs/html/nmea\_8 c.html

#### Interface to GPS - Article

http://www.kronosrobotics.com/Projects/GPS.shtml

#### AVR Project and Source code

http://www.avrfreaks.net/index.php?module=Freaks%20Academy&func=viewItem&item\_id=1062&item\_type=project&timestamp=2007-08-19%2015:46:24