Projections and Vector Components Handout

- 1. Let *C* be the unit circle in \mathbb{R}^2 . Find the following projections:
 - (a) $\operatorname{proj}_{\mathbb{C}} \begin{bmatrix} -1 \\ 0 \end{bmatrix}$
 - (b) $\operatorname{proj}_{C} \begin{bmatrix} 2 \\ 0 \end{bmatrix}$
 - (c) $\operatorname{proj}_{C}\begin{bmatrix}1\\1\end{bmatrix}$
 - (d) $\operatorname{proj}_{C} \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}$
 - (e) $\operatorname{proj}_{C} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
- 2. Let *S* be the set of convex linear combinations of the vectors $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Find the following projections:
 - (a) $\operatorname{proj}_{S} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 - (b) $\operatorname{proj}_{S} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$
 - (c) $\operatorname{proj}_{S} \begin{bmatrix} 2 \\ 0 \end{bmatrix}$
 - (d) $\operatorname{proj}_{S} \begin{bmatrix} -2\\ 0 \end{bmatrix}$
 - (e) $\operatorname{proj}_{S} \begin{bmatrix} 0 \\ 10 \end{bmatrix}$
 - (f) $\operatorname{proj}_{S} \begin{bmatrix} 0 \\ -10 \end{bmatrix}$
- 3. Let $\ell = \operatorname{span}\left\{\begin{bmatrix} 3 \\ 2 \end{bmatrix}\right\}$, $L = \operatorname{span}\left\{\begin{bmatrix} 3 \\ 2 \end{bmatrix}\right\} + \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, and let S be the set of convex linear combinations of $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 6 \\ 4 \end{bmatrix}$. Find the following projections for $\vec{v} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$:
 - (a) proj_ℓv̄
 - (b) proj_Lv
 - (c) $proj_S \vec{v}$
- 4. Let $\vec{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, and $\ell = \text{span}\{\vec{u}\}$. Find the following:
 - (a) $\operatorname{proj}_{\ell} \begin{bmatrix} -3 \\ 1 \end{bmatrix}$
 - (b) $\operatorname{vcomp}_{\vec{u}} \begin{bmatrix} -3 \\ 1 \end{bmatrix}$
 - (c) The angle between $\operatorname{proj}_{\ell} \begin{bmatrix} -3 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} -3 \\ 1 \end{bmatrix} \operatorname{vcomp}_{\tilde{\mathfrak{u}}} \begin{bmatrix} -3 \\ 1 \end{bmatrix}$

Solutions

Note that there are multiple ways to find the projection of a point onto a set. The solutions here are just sample answers. You may use a different technique than the ones used here and reach the same solution.

- 1. (a) The projection of a vector on C is the closest point in C to that vector. Notice that $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$ is a point in C, therefore, it is the closest point in C to itself! So we have $\operatorname{proj}_{C} \begin{bmatrix} -1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$.
 - (b) The projection of a vector on C is the closest point in C to that vector. Suppose $\vec{v} = \begin{bmatrix} x \\ y \end{bmatrix} \in C$ is the projection of $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$ on C. Then the distance $\left\| \begin{bmatrix} x \\ y \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} \right\|$, or equivalently, $\left\| \begin{bmatrix} x \\ y \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} \right\|^2$ is minimized. We can rewrite this expression as

$$\left\| \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} 2 \\ 0 \end{bmatrix} \right\|^2 = (x - 2)^2 + (y - 0)^2$$

$$= (x - 2)^2 + y^2$$

$$= x^2 - 4x + 4 + y^2$$

$$= (x^2 + y^2) - 4x + 4$$

$$= ||\vec{v}||^2 - 4x + 4$$

$$= 1 - 4x + 4$$

$$= 5 - 4x.$$

Since $\vec{v} \in C$, we know that $|x| \le 1$. To minimize the above expression, we choose the maximal value for x, so we should have x = 1. In this case, y = 0 (since $\vec{v} \in C$, so we must have $x^2 + y^2 = 1$). Therefore, $\vec{v} = \operatorname{proj}_C \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

(c) The projection of a vector on C is the closest point in C to that vector. We can solve this the same way we solved part(b), or we can solve it by drawing a picture. First, let's solve it using the same technique we used in part (b). Suppose $\vec{v} = \begin{bmatrix} x \\ y \end{bmatrix} \in C$ is the projection of $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ on C. Then the distance $\left\| \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\|$, or equivalently, $\left\| \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\|^2$ is minimized. We can rewrite this expression as

$$\left\| \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\|^2 = (x-1)^2 + (y-1)^2$$

$$= x^2 - 2x + 1 + y^2 - 2y + 1$$

$$= (x^2 + y^2) - 2x - 2y + 2$$

$$= ||\vec{v}||^2 - 2(x+y) + 2$$

$$= 1 - 2(x+y) + 2$$

$$= 3 - 2(x+y).$$

Since $\vec{v} \in C$, we know that $|x|, |y| \le 1$. To minimize the above expression, we choose the maximal value for x + y. Note that $x^2 + y^2 = 1$, so we have $y = \pm \sqrt{1 - x^2}$. Maximizing x + y is

equivalent to maximizing $x \pm \sqrt{1 - x^2}$. We know that maximizing x + y would give us positive x and y. So we can drop the \pm sign and try to maximize $x + \sqrt{1 - x^2}$. To find x that maximizes this expression, we need to differentiate and equate to zero. Now

$$\frac{d}{dx}(x+\sqrt{1-x^2}) = 1 + \frac{1}{2}(1-x^2)^{\frac{-1}{2}}(-2x)$$
$$= 1 + \frac{-x}{\sqrt{1-x^2}}.$$

Equating this to zero, we get

$$1 + \frac{-x}{\sqrt{1-x^2}} = 0$$

$$\frac{x}{\sqrt{1-x^2}} = 1$$

$$x = \sqrt{1-x^2}$$

$$x^2 = 1 - x^2$$

$$2x^2 = 1$$

$$x = \pm \sqrt{\frac{1}{2}} = \pm \frac{\sqrt{2}}{2}.$$

But we know that x should be positive, so we have $x = \frac{\sqrt{2}}{2}$, which means that $y = \frac{\sqrt{2}}{2}$ (since we know that y is also positive and $y = \sqrt{1 - x^2}$). Therefore $\operatorname{proj}_{\mathbb{C}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix}$.

Figure 1: Finding the projection of the point $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ onto the unit circle geometrically.

Another way to find the projection is geometrically (see Figure 1). If we draw C and the point $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, we can see that the closest point on C to $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, let's call it d, is the point of intersection of the circle C with the line segment connecting the origin with the point $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

This line segment makes a 45° angle with the *x*-axis, and we know that the radius of the circle (the length of the segment from the origin to the point *d*) is 1. If we drop a perpendicular line from *d* to the x - axis, we can use geometry to find the coordinates of the point *d*. If $d = \begin{bmatrix} x \\ y \end{bmatrix}$, then $x = \cos 45 = \frac{\sqrt{2}}{2}$ and $y = \sin 45 = \frac{\sqrt{2}}{2}$. So we get the same answer

as before,
$$\operatorname{proj}_{\mathbb{C}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix}$$
.

(d) We can solve this geometrically (see Figure 2) or algebraically in the same way we did part (c). The solution will be $\operatorname{proj}_{C} \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{bmatrix}$.

Figure 2: Finding the projection of the point $\begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}$ onto the unit circle geometrically.

- (e) Note that the distance between any point in C and the origin is 1. So, there is no 'closest' point in C to the origin and this projection $(\operatorname{proj}_C \begin{bmatrix} 0 \\ 0 \end{bmatrix})$ is undefined.
- 2. (a) Note that $S = \left\{ \alpha \begin{bmatrix} 0 \\ 1 \end{bmatrix} + (1 \alpha) \begin{bmatrix} 1 \\ 0 \end{bmatrix} | \alpha \in [0, 1] \right\} = \left\{ \begin{bmatrix} 1 \alpha \\ \alpha \end{bmatrix} | \alpha \in [0, 1] \right\}$. The projection of a vector on S is the closest point in S to that vector. Suppose $\vec{v} = \begin{bmatrix} 1 \alpha \\ \alpha \end{bmatrix} \in S$ is the projection of $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ on S. Then the distance $\left\| \begin{bmatrix} 1 \alpha \\ \alpha \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\|$, or equivalently, $\left\| \begin{bmatrix} 1 \alpha \\ \alpha \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\|^2$ is minimized. We can rewrite this expression as

$$\left\| \begin{bmatrix} 1 - \alpha \\ \alpha \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\|^2 = (1 - \alpha)^2 + \alpha^2$$
$$= 1 - 2\alpha + \alpha^2 + \alpha^2$$
$$= 1 - 2\alpha + 2\alpha^2.$$

To minimize this expression, we differentiate and equate it to zero. Now

$$\frac{d}{d\alpha}(1-2\alpha+2\alpha^2) = -2+4\alpha.$$

Equating this to zero, gives us $4\alpha-2=0$, and so $\alpha=\frac{1}{2}$, which is in [0,1]. Therefore, $\operatorname{proj}_S \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$.

(b) Since $\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \in S$, it is the closest point in S to itself. Therefore, $\operatorname{proj}_S \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$.

(c) The projection of a vector on S is the closest point in S to that vector. Suppose $\vec{v} = \begin{bmatrix} 1 - \alpha \\ \alpha \end{bmatrix} \in S$ is the projection of $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$ on S. Then the distance $\left\| \begin{bmatrix} 1 - \alpha \\ \alpha \end{bmatrix} - \begin{bmatrix} 2 \\ 0 \end{bmatrix} \right\|$, or equivalently, $\left\| \begin{bmatrix} 1 - \alpha \\ \alpha \end{bmatrix} - \begin{bmatrix} 2 \\ 0 \end{bmatrix} \right\|^2$ is minimized. We can rewrite this expression as

$$\left\| \begin{bmatrix} 1 - \alpha \\ \alpha \end{bmatrix} - \begin{bmatrix} 2 \\ 0 \end{bmatrix} \right\|^2 = (1 - \alpha - 2)^2 + \alpha^2$$
$$= (-1 - \alpha)^2 + \alpha^2$$
$$= 1 + 2\alpha + \alpha^2 + \alpha^2$$
$$= 1 + 2\alpha + 2\alpha^2$$

To minimize this expression, we differentiate and equate it to zero. Now

$$\frac{d}{d\alpha}(1+2\alpha+2\alpha^2)=2+4\alpha.$$

Equating this to zero, gives us $4\alpha + 2 = 0$, and so $\alpha = -\frac{1}{2}$, which is not in [0,1]. Therefore, the projection has to be one of the endpoints. Checking the distance between $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$, and each endpoint of the line segment S, we find that it is closer to the point $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$. And so, $\operatorname{proj}_{S} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

(d) The projection of a vector on S is the closest point in S to that vector. Suppose $\vec{v} = \begin{bmatrix} 1 - \alpha \\ \alpha \end{bmatrix} \in S$ is the projection of $\begin{bmatrix} -2 \\ 0 \end{bmatrix}$ on S. Then the distance $\left| \begin{bmatrix} 1 - \alpha \\ \alpha \end{bmatrix} - \begin{bmatrix} -2 \\ 0 \end{bmatrix} \right|$, or equivalently, $\left| \begin{bmatrix} 1 - \alpha \\ \alpha \end{bmatrix} - \begin{bmatrix} -2 \\ 0 \end{bmatrix} \right|^2$ is minimized. We can rewrite this expression as

$$\left\| \begin{bmatrix} 1 - \alpha \\ \alpha \end{bmatrix} - \begin{bmatrix} -2 \\ 0 \end{bmatrix} \right\|^2 = (1 - \alpha + 2)^2 + \alpha^2$$
$$= (3 - \alpha)^2 + \alpha^2$$
$$= 9 - 6\alpha + \alpha^2 + \alpha^2$$
$$= 9 - 6\alpha + 2\alpha^2.$$

To minimize this expression, we differentiate and equate it to zero. Now

$$\frac{d}{d\alpha}(9 - 6\alpha + 2\alpha^2) = -6 + 4\alpha.$$

Equating this to zero, gives us $4\alpha - 6 = 0$, and so $\alpha = \frac{3}{2}$, which is not in [0,1]. Therefore, the projection has to be one of the endpoints. Checking the distance between $\begin{bmatrix} -2 \\ 0 \end{bmatrix}$, and each endpoint of the line segment S, we find that it is closer to the point $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$. $\text{proj}_S \begin{bmatrix} -2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

- (e) Following the same strategy used in previous parts, we find that $\operatorname{proj}_{S} \begin{bmatrix} 0 \\ 10 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.
- (f) Following the same strategy used in previous parts, we find that $\operatorname{proj}_S \begin{bmatrix} 0 \\ -10 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

3. (a) Since $\ell = \text{span}\{\vec{u}\}$ is the span of one vector, where $\vec{u} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, the following equality holds, $\text{proj}_{\ell}\vec{v} = \text{vcomp}_{\vec{u}}\vec{v}$. Then

$$\begin{aligned} \text{proj}_{\ell} \vec{\mathbf{v}} &= \text{vcomp}_{\vec{\mathbf{u}}} \vec{\mathbf{v}} \\ &= \frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}} \vec{u} \\ &= \frac{\begin{bmatrix} 3 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 0 \end{bmatrix}}{\begin{bmatrix} 3 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 2 \end{bmatrix}} \begin{bmatrix} 3 \\ 2 \end{bmatrix} \\ &= \frac{6}{13} \begin{bmatrix} 3 \\ 2 \end{bmatrix} \\ &= \begin{bmatrix} \frac{18}{12} \\ \frac{12}{13} \end{bmatrix}. \end{aligned}$$

(b) Again, let $\vec{u} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, then $L = \operatorname{span}\{\vec{u}\} + \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$. So $\operatorname{proj}_L \vec{v} = t\vec{u} + \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, for some scalar t which minimizes the distance between L and \vec{v} . In particular, t minimizes $\left\| \begin{bmatrix} 2 \\ 0 \end{bmatrix} - \left(t \begin{bmatrix} 3 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) \right\|^2$. This expression can be written as

$$\left\| \begin{bmatrix} 2 \\ 0 \end{bmatrix} - \left(t \begin{bmatrix} 3 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) \right\|^2 = (2 - 3t - 1)^2 + (0 - 2t - 1)^2$$
$$= (1 - 3t)^2 + (-1 - 2t)^2$$
$$= (1 - 6t + 9t^2) + (1 + 4t + 4t^2)$$
$$= 2 - 2t + 13t^2.$$

To minimize this quantity, we differentiate it and equate to 0, to get

$$\frac{d}{dt}(2-2t+13t^2) = -2+26t.$$

Equating this to zero, we find that the quantity is minimized at $t = \frac{1}{13}$. Therefore,

$$proj_{L}\vec{v} = \frac{1}{13}\vec{u} + \begin{bmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} \frac{3}{13}\\\frac{2}{13} \end{bmatrix} + \begin{bmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} \frac{16}{13}\\\frac{15}{13} \end{bmatrix}.$$

We may also find the solution using a normal line. The closest point on L to \vec{v} lies on the line through \vec{v} that is normal to the line L. Denote this line through \vec{v} by L_2 , then L_2 has a direction vector that is orthogonal to \vec{u} , the direction vector of L. We may take the

direction vector of L_2 to be $\begin{bmatrix} -2 \\ 3 \end{bmatrix}$. We know that L_2 passes through \vec{v} , and so we can now express it in vector form,

$$L_2: \vec{x} = s \begin{bmatrix} -2 \\ 3 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 \end{bmatrix}.$$

The projection of \vec{v} onto L is the point of intersection between L and L_2 . To find this point, we equate the equations of the two lines making sure we use different symbols for the parameters. So we get

$$t\begin{bmatrix} 3 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} = s \begin{bmatrix} -2 \\ 3 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 \end{bmatrix}.$$

Rearranging this, we have

$$t\begin{bmatrix} 3 \\ 2 \end{bmatrix} + s\begin{bmatrix} 2 \\ -3 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

We can then express this vector equation as an augmented matrix,

$$\begin{bmatrix} 3 & 2 & : & 1 \\ 2 & -3 & : & -1 \end{bmatrix}.$$

We can row reduce the matrix above to reach the solution $t=\frac{1}{13}$, $s=\frac{5}{13}$. Substituting in the equations of L or L_2 gives the point of intersection as $\left[\frac{16}{13}\right]$, which is the same point we got before using the minimum distance method. In conclusion, we have $\operatorname{proj}_L \vec{\mathbf{v}} = \left[\frac{16}{13}\right]$.

- (c) Notice that in part(a), we found that the projection of \vec{v} onto $\ell = \operatorname{span}\left\{\begin{bmatrix}3\\2\end{bmatrix}\right\} = \left\{t\begin{bmatrix}3\\2\end{bmatrix} \mid t \in \mathbb{R}\right\} \text{ is } \frac{6}{13}\begin{bmatrix}3\\2\end{bmatrix}. \text{ But } S = \left\{t\begin{bmatrix}3\\2\end{bmatrix} \mid t \in [1,2]\right\} \text{ and so } S \subseteq \ell. \text{ Since proj}_{\ell}\vec{v} \text{ is not in } S, \text{ it follows that proj}_S\vec{v} \text{ is one of the endpoints of the line segment } S. \text{ Now calculating the distances between } \vec{v} \text{ and each endpoint of } S, \text{ we find that } \left|\left|\begin{bmatrix}3\\2\end{bmatrix} \begin{bmatrix}2\\0\end{bmatrix}\right|^2 = 1^2 + 2^2 = 5, \text{ while } \left|\left|\begin{bmatrix}6\\4\end{bmatrix} \begin{bmatrix}2\\0\end{bmatrix}\right|^2 = 4^2 + 4^2 = 32. \text{ Therefore, proj}_S\vec{v} = \begin{bmatrix}3\\2\end{bmatrix}.$
- 4. (a) Since ℓ is the span of one vector \vec{u} , the equality $\operatorname{proj}_{\ell}\vec{v} = \operatorname{vcomp}_{\vec{u}}\vec{v}$ holds for any vector \vec{v} . Let $\vec{v} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$, then

$$\begin{aligned} \operatorname{proj}_{\ell} \vec{\mathbf{v}} &= \operatorname{vcomp}_{\vec{\mathbf{u}}} \vec{\mathbf{v}} \\ &= \frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}} \vec{u} \\ &= \frac{\begin{bmatrix} 1 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} -3 \\ 1 \end{bmatrix}}{\begin{bmatrix} 1 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix}} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \\ &= \frac{-1}{5} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \\ &= \begin{bmatrix} \frac{-1}{5} \\ \frac{-2}{5} \end{bmatrix}. \end{aligned}$$

- (b) As explained in part(a), the equality $\operatorname{proj}_{\ell} \vec{v} = \operatorname{vcomp}_{\vec{u}} \vec{v}$ holds for any vector \vec{v} . And so, $\operatorname{vcomp}_{\vec{u}} \vec{v} = \begin{bmatrix} \frac{-1}{5} \\ \frac{-2}{5} \end{bmatrix}$, as in part(a).
- (c) The angle is 90° , because $\operatorname{proj}_{\ell} \begin{bmatrix} -3 \\ 1 \end{bmatrix} = \operatorname{vcomp}_{\vec{\mathbf{u}}} \begin{bmatrix} -3 \\ 1 \end{bmatrix}$, and $\operatorname{vcomp}_{\vec{\mathbf{u}}} \vec{\mathbf{v}}$ is always orthogonal to $\vec{v} \operatorname{vcomp}_{\vec{\mathbf{u}}} \vec{\mathbf{v}}$.