Business Case: Target SQL

Submitted By:

Rahul Kumar Verma +91-8709530619 rahulvrm938@gmail.com

INDEX

Sr. No.	Question No.	Page No.
1	1.1. Data type of columns in a table	1
2	1.2. Time period for which the data is given	2
3	1.3. Cities and States covered in the dataset	3
4	2.1. Is there a growing trend on e-commerce in Brazil?	4-5
5	2.2. What time do Brazilian customers tend to buy	6
6	3.1. Get month on month orders by region, states	7-8
7	3.2. How are customers distributed in Brazil	9-10
8	4.1. Get % increase in cost of orders from 2017 to 2018	11
9	4.2. Mean & Sum of price and freight value by customer state	12
10	5. Analysis on sales, freight and delivery time	13-17
11	6.1. Month over Month count of orders for different payment types	18
12	6.2. Distribution of payment installments and count of orders	19
13	7. Actionable Insights	20-22
14	8. Recommendations	20-22

- 1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset.
- 1.1. Data type of columns in a table.

SELECT table_name,column_name,data_type FROM Target.INFORMATION_SCHEMA.COLUMNS

Quer	y results					
JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	AILS	EXECUTION GRAPH PREVIEW
Row	table_name	li.	column_name	11	data_type	
1	order_items		order_id		STRING	
2	order_items		order_item_id		INT64	
3	order_items		product_id		STRING	
4	order_items		seller_id		STRING	
5	order_items		shipping_limit_da	ate	TIMESTAM	P
6	order_items		price		FLOAT64	
7	order_items		freight_value		FLOAT64	
8	sellers		seller_id		STRING	

- 1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset.
- 1.2. Time period for which the data is given.

```
select min(order_purchase_timestamp) from `Target.orders`;
select max(order_purchase_timestamp) from `Target.orders`;
```


The data set is given for the time period : Sep'2016 to Oct'2018.

- 1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset.
- 1.3. Cities and States covered in the dataset.

WITH base AS
(SELECT c.customer_city AS city, c.customer_state AS state
FROM `Target.orders` o LEFT JOIN `Target.customers` c
ON c.customer_id=o.customer_id)

SELECT state, city FROM base group by 1,2 order by state;

Quer	y results					
JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DE	TAILS	EXECUTION GRAPH PREVIEW
Row	state	h	city	//		
1	AC		rio branco			
2	AC		brasileia			
3	AC		manoel urbano			
4	AC		cruzeiro do sul			
5	AC		xapuri			

2. In-depth Exploration:

2.1. is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

```
SELECT order_year, COUNT(*) AS ORDER_COUNT FROM
```

(SELECT *,EXTRACT(MONTH FROM order_purchase_timestamp) AS order_month, EXTRACT(YEAR FROM order_purchase_timestamp) AS order_year FROM `Target.orders`)base

GROUP BY order_year ORDER BY order_year;

Query results

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH PREVIEW
Row	order_year	ORDER_CO			
1	2016	329			
2	2017	45101			
3	2018	54011			

SELECT order_year,order_month, COUNT(*) AS ORDER_COUNT FROM

(SELECT *,EXTRACT(MONTH FROM order_purchase_timestamp) AS order_month, EXTRACT(YEAR FROM order_purchase_timestamp) AS order_year FROM `Target.orders`)base

GROUP BY 1,2 ORDER BY 1,2;

Query results

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH PREVIEW
Row	order_year	order_month	ORDER_CO		
1	2016	9	4		
2	2016	10	324		
3	2016	12	1		
4	2017	1	800		
5	2017	2	1780		
6	2017	3	2682		
7	2017	4	2404		
8	2017	5	3700		

```
SELECT order_month, COUNT(*) AS ORDER_COUNT
FROM
       (SELECT *, EXTRACT(MONTH FROM order_purchase_timestamp) AS order_month,
       EXTRACT(YEAR FROM order_purchase_timestamp) AS order_year
       FROM 'Target.orders')base
GROUP BY 1
ORDER BY 1;
```

Query results

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH PREVI
Row /	order_month	ORDER_CO			
1	1	8069			
2	2	8508			
3	3	9893			
4	4	9343			
5	5	10573			
6	6	9412			
7	7	10318			
8	8	10843			
9	9	4305			
10	10	4959			
11	11	7544			
12	12	5674			

SELECT * **FROM**

LIMIT 1

```
(SELECT order year, order month, COUNT(*) AS ORDER COUNT
       FROM
             (SELECT *, EXTRACT(MONTH FROM order_purchase_timestamp) AS order_month,
              EXTRACT(YEAR FROM order_purchase_timestamp) AS order_year
              FROM `Target.orders`)base
       GROUP BY 1,2
      )base_2
ORDER BY ORDER COUNT DESC
```

Query results

Quer	y results				
JOB IN	NFORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH PREVIEW
Row	order_year	order_month	ORDER_CO		
1	2017	11	7544		

Yes, there is growing trend in e-commerce in Brazil as year-over-year we can see increase in count of orders.

We can see the trends of getting more orders during May, August and November month as Mother's Day is celebrated in Brazil on the second Sunday of May. Brazilians celebrate their dads on the second Sunday of August. In November, sales are high due to Chinese Double 11 and Black Friday.

2. In-depth Exploration:

2.2. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

```
SELECT TIME_DURATION,SUM(order_count) as Total_order
FROM
      (SELECT order count, (CASE
      WHEN order hour BETWEEN O AND 5 THEN 'DAWN'
      WHEN order hour BETWEEN 6 AND 11 THEN 'MORNING'
      WHEN order_hour BETWEEN 12 AND 17 THEN 'AFTERNOON'
      WHEN order hour BETWEEN 18 AND 23 THEN 'NIGHT'
             END) AS TIME_DURATION
             FROM
                    (SELECT order hour, COUNT(*) AS order count
                    FROM
                           (SELECT *,EXTRACT(TIME FROM order purchase timestamp) AS order t
                           EXTRACT(HOUR FROM order purchase timestamp) AS order hour
                           FROM 'Target.orders')base
                    GROUP BY 1
                    ORDER BY 1)base_2
      )base_3
GROUP BY 1
ORDER BY Total order DESC;
```

Query results

JOB INFO	RMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH PREVIE
Row T	TIME_DURATION	//	Total_order		
1 A	AFTERNOON		38361		
2 N	NIGHT		34100		
3 N	MORNING		22240		
4 D	DAWN		4740		

I have defined Time Interval as mentioned below:

12:00:01 am - 05:59:59 am : DAWN

06:00:01 am - 11:59:59 am : MORNING

12:00:01 pm - 05:59:59 pm : AFTERNOON

06:00:01 pm - 11:59:59 pm : NIGHT

Mostly, Brazilian customers tends to buy products during <u>AFTERNOON</u> and <u>NIGHT</u>.

3. Evolution of E-commerce orders in the Brazil region:

3.1. Get month on month orders by region, states

WITH base AS

(SELECT c.customer_city AS city, c.customer_state AS state, o.order_id as order_id, EXTRACT(MONTH FROM o.order_purchase_timestamp) AS order_month, EXTRACT(YEAR FROM o.order_purchase_timestamp) AS order_year FROM `Target.orders` o LEFT JOIN `Target.customers` c ON c.customer_id=o.customer_id),

base_2 AS (SELECT state,order_year,order_month,COUNT(order_id) AS total_order FROM base group by 1,2,3)

SELECT DISTINCT * FROM base_2 order by state, order_year, order_month;

Query results

▲ SAVE RESULTS ▼

JOB IN	NFORMATION	RESULTS	JSON	EXECUTION DET	TAILS	EXECUTION GRAPH PREVIEW
Row	state	h	order_year	order_month //	total_order	//
1	AC		2017	1		2
2	AC		2017	2		3
3	AC		2017	3		2
4	AC		2017	4		5
5	AC		2017	5		8
6	AC		2017	6		4
7	AC		2017	7		5

WITH base AS

(SELECT c.customer_city AS city, c.customer_state AS state, o.order_id as order_id, EXTRACT(MONTH FROM o.order_purchase_timestamp) AS order_month, EXTRACT(YEAR FROM o.order_purchase_timestamp) AS order_year FROM `Target.orders` o LEFT JOIN `Target.customers` c ON c.customer_id=o.customer_id),

base_2 AS (SELECT city,order_year,order_month,COUNT(order_id) AS total_order FROM base group by 1,2,3)

SELECT DISTINCT * FROM base_2 order by city,order_year,order_month;

Query results

▲ SAVE RESULTS ▼

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	TAILS EX	RECUTION GRAPH PREVIEW
Row	city	11	order_year	order_month	total_order	4
1	abadia dos dourado	os	2017	9	1	
2	abadia dos dourad	os	2018	3	1	
3	abadia dos dourado	os	2018	7	1	
4	abadiania		2018	1	1	
5	abaete		2017	2	1	
6	abaete		2017	5	1	
7	abaete		2017	7	2	
8	abaete		2017	8	1	

WITH base AS

(SELECT c.customer_city AS city, c.customer_state AS state, o.order_id as order_id, EXTRACT(MONTH FROM o.order_purchase_timestamp) AS order_month, EXTRACT(YEAR FROM o.order_purchase_timestamp) AS order_year FROM `Target.orders` o LEFT JOIN `Target.customers` c ON c.customer_id=o.customer_id),

base_2 AS (SELECT state, city, order_year, order_month, COUNT(order_id) AS total_order FROM base group by 1,2,3,4)

SELECT DISTINCT * FROM base_2 order by state, city, order_year, order_month; Query results

≛ SAVE RESULTS ▼

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DET	AILS EXE	CUTION GRAPH	PREVIEW
Row	state	h	city	//	order_year	order_month	total_order
1	AC		brasileia		2017	2	1
2	AC		cruzeiro do sul		2017	12	2
3	AC		cruzeiro do sul		2018	5	1
4	AC		epitaciolandia		2017	10	1
5	AC		manoel urbano		2017	9	1
6	AC		porto acre		2017	4	1
7	AC		rio branco		2017	1	2
8	AC		rio branco		2017	2	2

3. Evolution of E-commerce orders in the Brazil region:

3.2. How are customers distributed in Brazil

WITH base AS

(SELECT c.customer_city AS city, c.customer_state AS state, o.order_id as order_id, EXTRACT(MONTH FROM o.order_purchase_timestamp) AS order_month, EXTRACT(YEAR FROM o.order_purchase_timestamp) AS order_year FROM `Target.orders` o LEFT JOIN `Target.customers` c ON c.customer_id=o.customer_id),

base_2 AS (SELECT state, COUNT(order_id) OVER(PARTITION BY state) AS total_order FROM base order by state, total_order desc)

select state,total_order from base_2 group by 1,2 order by total_order desc;

Query results

▲ SAVE RESULTS ▼

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH PREVIEW
Row	state	li	total_order		
1	SP		41746		
2	RJ		12852		
3	MG		11635		
4	RS		5466		
5	PR		5045		
6	SC		3637		
7	ВА		3380		
8	DF		2140		

WITH base AS

(SELECT c.customer_city AS city, c.customer_state AS state, o.order_id as order_id, EXTRACT(MONTH FROM o.order_purchase_timestamp) AS order_month, EXTRACT(YEAR FROM o.order_purchase_timestamp) AS order_year FROM `Target.orders` o LEFT JOIN `Target.customers` c ON c.customer_id=o.customer_id),

base_2 AS (SELECT city,COUNT(order_id) OVER(PARTITION BY city) AS total_order FROM base order by city,total_order desc)

select city, total order from base 2 group by 1,2 order by total order desc;

Query results

▲ SAVE RESULTS ▼

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETAILS	EXECUTION GRAPH PREVIE
Row	city	ſı.	total_order		
1	sao paulo		15540		
2	rio de janeiro		6882		
3	belo horizonte		2773		
4	brasilia		2131		
5	curitiba		1521		
6	campinas		1444		
7	porto alegre		1379		
8	salvador		1245		

WITH base AS

(SELECT c.customer_city AS city, c.customer_state AS state, o.order_id as order_id, EXTRACT(MONTH FROM o.order_purchase_timestamp) AS order_month, EXTRACT(YEAR FROM o.order_purchase_timestamp) AS order_year FROM `Target.orders` o LEFT JOIN `Target.customers` c ON c.customer_id=o.customer_id),

base_2 AS (SELECT state, city, COUNT(order_id) OVER(PARTITION BY state, city) AS total_order FROM base order by city, total_order desc),

base_3 AS (select DISTINCT state, city, total_order, ROW_NUMBER() OVER(PARTITION BY state, city ORDER BY total_order DESC) AS RANKER from base_2 order by 1,3 desc)

SELECT state, city, total order FROM base 3 where RANKER=1;

Query results

	SAV	/F	RESU	ILTS	•
100	SAI		INESC	LIS	

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	AILS EXE	ECUTION GRAPH PREVIEW
Row	state	//	city	//	total_order	
1	AC		rio branco		70	
2	AC		cruzeiro do sul		3	
3	AC		senador guioma	rd	2	
4	AC		xapuri		2	
5	AC		manoel urbano		1	
6	AC		brasileia	brasileia		
7	AC		epitaciolandia		1	
8	AC		porto acre		1	

During the period from 2016 to 2018, we have got maximum orders from <u>sao paulo</u> (Belongs to state of Sao Paulo). This is because it is having highest GDP & Per Capital Income and also densely populated city in Brazil.

```
11 | Page
```

4. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.

4.1. Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only)

```
WITH base AS (SELECT oi.price AS cost,
EXTRACT(MONTH FROM o.order_purchase_timestamp) AS order_month,
EXTRACT(YEAR FROM o.order purchase timestamp) AS order year
FROM `Target.order_items` oi JOIN `Target.orders` o ON o.order_id=oi.order_id),
base_2 AS (SELECT order_year, ROUND(sum(cost),2) AS total_cost FROM base
WHERE order_month BETWEEN 1 AND 8 group by order_year order by order_year),
base_3 AS (SELECT order_year,total_cost,
LEAD(total_cost,1,0) OVER(order by order_year ASC) AS next_year_total_cost FROM base_2
order by order_year asc)
SELECT order_year,total_cost,next_year_total_cost,(CASE
WHEN percent increase cost>=0 THEN percent increase cost
WHEN percent_increase_cost<0 THEN 0
END) AS yoy_increase_cost
FROM
       (SELECT *,
       ROUND(((next_year_total_cost-total_cost)/(total_cost))*100,2) AS percent_increase_cost FROM base_3);
  Query results
                                                                                    ≛ SAVE RESULTS ▼
  JOB INFORMATION
                      RESULTS
                                  JSON
                                            EXECUTION DETAILS
                                                                EXECUTION GRAPH PREVIEW
        order_year
                    total_cost
                                next_year_total_cost
                                                   yoy_increase_cost
    1
              2017
                     3113000.32
                                         7385905.8
                                                                 137.26
    2
              2018
                      7385905.8
                                              0.0
                                                                    0.0
```

4. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.

4.2. Mean & Sum of price and freight value by customer state.

```
WITH base AS (SELECT oi.price AS price,
oi.freight_value AS freight_value,oi.price+oi.freight_value as total_price,
c.customer_state AS state
FROM `Target.order_items` oi JOIN `Target.orders` o ON o.order_id=oi.order_id
JOIN `Target.customers` c on c.customer_id=o.customer_id)

SELECT state,ROUND(AVG(price),2) AS mean_price,
ROUND(AVG(freight_value),2) AS mean_freight_value,
ROUND(AVG(total_price),2) AS mean_total_price,
ROUND(SUM(price),2) AS sum_price,
ROUND(SUM(freight_value),2) AS sum_freight_value,
ROUND(SUM(total_price),2) AS sum_total_price
FROM base
GROUP BY 1 ORDER BY 1;
```

Query results

♣ save results

•

JOB IN	NFORMATI	ON RESU	ILTS JSON	EXECUTION DETAIL	S EXECU	UTION GRAPH PREVIE	w
Row	state	mean_price	mean_freight_value	mean_total_price	sum_price	sum_freight_value	sum_total_price
1	AC	173.73	40.07	213.8	15982.95	3686.75	19669.7
2	AL	180.89	35.84	216.73	80314.81	15914.59	96229.4
3	AM	135.5	33.21	168.7	22356.84	5478.89	27835.73
4	AP	164.32	34.01	198.33	13474.3	2788.5	16262.8
5	BA	134.6	26.36	160.97	511349.99	100156.68	611506.67
6	CE	153.76	32.71	186.47	227254.71	48351.59	275606.3
7	DF	125.77	21.04	146.81	302603.94	50625.5	353229.44
8	ES	121.91	22.06	143.97	275037.31	49764.6	324801.91

- 5. Analysis on sales, freight and delivery time
- 5.1 Calculate days between purchasing, delivering and estimated delivery

5.2 Create columns:

<u>time to delivery = order purchase timestamp-order delivered customer date</u>

<u>diff estimated delivery = order estimated delivery date-order delivered customer date</u>

5.3 Group data by state, take mean of freight value, time to delivery, diff estimated delivery

5.4 Sort the data to get the following:

Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5

Top 5 states with highest/lowest average time to delivery

Top 5 states where delivery is really fast/ not so fast compared to estimated date

5.1 & 5.2 >

SELECT order id,

DATE_DIFF(order_delivered_customer_date,order_purchase_timestamp, DAY) AS time_to_delivery, DATE_DIFF(order_delivered_customer_date,order_estimated_delivery_date, DAY) AS diff_estimated_delivery FROM `Target.orders`;

JOB IN	JOB INFORMATION RESULTS		JSON EXECUTION DETAILS		EXECUTION GRAPH PRE
Row	order_id	//	time_to_delivery	diff_estimated	
1	1950d777989f6a	877539f5379	30	12	
2	2c45c33d2f9cb8	ff8b1c86cc28	30	-28	
3	65d1e226dfaeb8	cdc42f66542	35	-16	
4	635c894d068ac3	37e6e03dc54e	30	-1	
5	3b97562c3aee8t	odedcb5c2e45	32	0	
6	68f47f50f04c4ck	6774570cfde	29	-1	
7	276e9ec344d3bf	029ff83a161c	43	4	

5.3>

WITH base AS (SELECT c.customer_state AS state,o.order_id AS order_id,oi.freight_value AS freight_value, DATE_DIFF(o.order_delivered_customer_date,o.order_purchase_timestamp, DAY) AS time_to_delivery, DATE_DIFF(o.order_delivered_customer_date,o.order_estimated_delivery_date, DAY) AS diff_estimated_delivery FROM `Target.customers` c JOIN `Target.orders` o ON o.customer_id=c.customer_id
JOIN `Target.order_items` oi ON oi.order_id=o.order_id)

Quary reculte

SELECT state, ROUND(AVG(freight_value),2) AS mean_freight_value, ROUND(AVG(time_to_delivery),2) AS mean_time_to_delivery, ROUND(AVG(diff_estimated_delivery),2) AS mean_diff_estimated_delivery FROM base GROUP BY 1 ORDER BY 1;

♣ CAVE DECITE ▼

♣ CAVE DECLITE ▼

Quei	y results				≛ 8	AVE RESULT
JOB IN	IFORMATION	RESULTS	JSON EXEC	UTION DETAILS E	XECUTION GRAPH PREVIEW	
Row	state	11	mean_freight_value	mean_time_to_delivery	mean_diff_estimated_delivery	
1	AC		40.07	20.33	-20.01	
2	AL		35.84	23.99	-7.98	
3	AM		33.21	25.96	-18.98	
4	AP		34.01	27.75	-17.44	
5	BA		26.36	18.77	-10.12	
6	CE		32.71	20.54	-10.26	
7	DF		21.04	12.5	-11.27	
8	ES		22.06	15.19	-9.77	

5.4.1>

Quary reculte

WITH base AS (SELECT c.customer_state AS state,o.order_id AS order_id,oi.freight_value AS freight_value, DATE_DIFF(o.order_delivered_customer_date,o.order_purchase_timestamp, DAY) AS time_to_delivery, DATE_DIFF(o.order_delivered_customer_date,o.order_estimated_delivery_date, DAY) AS diff_estimated_delivery, FROM `Target.customers` c JOIN `Target.orders` o ON o.customer_id=c.customer_id
JOIN `Target.order_items` oi ON oi.order_id=o.order_id)

SELECT state, ROUND(AVG(freight_value), 2) AS mean_freight_value, ROUND(AVG(time_to_delivery), 2) AS mean_time_to_delivery, ROUND(AVG(diff_estimated_delivery), 2) AS mean_diff_estimated_delivery FROM base GROUP BY 1 ORDER BY 2 ASC LIMIT 5;

Top 5 states with lowest average freight value

Quei	y results					SAVE RESULTS ¥
JOB IN	NFORMATION	RESULTS	JSON	EXECUTION DET	TAILS EXE	ECUTION GRAPH PREVIEW
Row	state	11	mean_freigh	mean_time //	mean_diff_e	
1	SP		15.15	8.26	-10.27	
2	PR		20.53	11.48	-12.53	
3	MG		20.63	11.52	-12.4	
4	RJ		20.96	14.69	-11.14	
5	DF		21.04	12.5	-11.27	

WITH base AS (SELECT c.customer_state AS state,o.order_id AS order_id,oi.freight_value AS freight_value, DATE_DIFF(o.order_delivered_customer_date,o.order_purchase_timestamp, DAY) AS time_to_delivery, DATE_DIFF(o.order_delivered_customer_date,o.order_estimated_delivery_date, DAY) AS diff_estimated_delivery, FROM `Target.customers` c JOIN `Target.orders` o ON o.customer_id=c.customer_id
JOIN `Target.order_items` oi ON oi.order_id=o.order_id)

SELECT state, ROUND(AVG(freight_value),2) AS mean_freight_value, ROUND(AVG(time_to_delivery),2) AS mean_time_to_delivery, ROUND(AVG(diff_estimated_delivery),2) AS mean_diff_estimated_delivery F ROM base GROUP BY 1 ORDER BY 2 DESC LIMIT 5;

Top 5 states with highest average freight value

Query results	
---------------	--

JOB IN	IFORMATION	RESULTS	JSON	EXECUTION DET	AILS EXE	ECUTION GRAPH PREVIEW
Row	state	11	mean_freigh	mean_time	mean_diff_e	,
1	RR		42.98	27.83	-17.43	
2	PB		42.72	20.12	-12.15	
3	RO		41.07	19.28	-19.08	
4	AC		40.07	20.33	-20.01	
5	PI		39.15	18.93	-10.68	

5.4.2>

WITH base AS (SELECT c.customer_state AS state,o.order_id AS order_id,oi.freight_value AS freight_value, DATE_DIFF(o.order_delivered_customer_date,o.order_purchase_timestamp, DAY) AS time_to_delivery, DATE_DIFF(o.order_delivered_customer_date,o.order_estimated_delivery_date, DAY) AS diff_estimated_delivery, FROM `Target.customers` c JOIN `Target.orders` o ON o.customer_id=c.customer_id
JOIN `Target.order_items` oi ON oi.order_id=o.order_id)

SELECT state, ROUND(AVG(freight_value),2) AS mean_freight_value, ROUND(AVG(time_to_delivery),2) AS mean_time_to_delivery, ROUND(AVG(diff_estimated_delivery),2) AS mean_diff_estimated_delivery FROM base GROUP BY 1 ORDER BY 3 ASC LIMIT 5;

Top 5 states with lowest average time to delivery

Query results Δ save results The same results

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DET	TAILS EXE	CUTION GRAPH PREVI
Row	state	ſı.	mean_freigh	mean_time //	mean_diff_e	
1	SP		15.15	8.26	-10.27	
2	PR		20.53	11.48	-12.53	
3	MG		20.63	11.52	-12.4	
4	DF		21.04	12.5	-11.27	
5	SC		21.47	14.52	-10.67	

WITH base AS (SELECT c.customer_state AS state,o.order_id AS order_id,oi.freight_value AS freight_value, DATE_DIFF(o.order_delivered_customer_date,o.order_purchase_timestamp, DAY) AS time_to_delivery, DATE_DIFF(o.order_delivered_customer_date,o.order_estimated_delivery_date, DAY) AS diff_estimated_delivery, FROM `Target.customers` c JOIN `Target.orders` o ON o.customer_id=c.customer_id
JOIN `Target.order_items` oi ON oi.order_id=o.order_id)

SELECT state, ROUND(AVG(freight_value),2) AS mean_freight_value, ROUND(AVG(time_to_delivery),2) AS mean_time_to_delivery, ROUND(AVG(diff_estimated_delivery),2) AS mean_diff_estimated_delivery FROM base GROUP BY 1 ORDER BY 3 DESC LIMIT 5;

Top 5 states with highest average time to delivery

Quer	ry results					
JOB IN	NFORMATION	RESULTS	JSON	EXECUTION DET	TAILS EXE	CUTION GRAPH PREVIEW
Row	state	//	mean_freigh	mean_time	mean_diff_e	
1	RR		42.98	27.83	-17.43	
2	AP		34.01	27.75	-17.44	
3	AM		33.21	25.96	-18.98	
4	AL		35.84	23.99	-7.98	
5	PA		35.83	23.3	-13.37	

5.4.3>

Query results

WITH base AS (SELECT c.customer_state AS state,o.order_id AS order_id,oi.freight_value AS freight_value, DATE_DIFF(o.order_delivered_customer_date,o.order_purchase_timestamp, DAY) AS time_to_delivery, DATE_DIFF(o.order_delivered_customer_date,o.order_estimated_delivery_date, DAY) AS diff_estimated_delivery, FROM `Target.customers` c JOIN `Target.orders` o ON o.customer_id=c.customer_id
JOIN `Target.order_items` oi ON oi.order_id=o.order_id)

SELECT state, ROUND(AVG(freight_value),2) AS mean_freight_value, ROUND(AVG(time_to_delivery),2) AS mean_time_to_delivery, ROUND(AVG(diff_estimated_delivery),2) AS mean_diff_estimated_delivery FROM base GROUP BY 1 ORDER BY 4 ASC LIMIT 5;

Top 5 states where delivery is fast compared to estimated date

▲ SAVE RESULTS ▼

JOB IN	NFORMATION	RESULTS	JSON	EXECUTION DET	AILS EXE	ECUTION GRAPH PREVIEW
Row	state	//	mean_freigh	mean_time	mean_diff_e	
1	AC		40.07	20.33	-20.01	
2	RO		41.07	19.28	-19.08	
3	AM		33.21	25.96	-18.98	
4	AP		34.01	27.75	-17.44	
5	RR		42.98	27.83	-17.43	

WITH base AS (SELECT c.customer_state AS state,o.order_id AS order_id,oi.freight_value AS freight_value, DATE_DIFF(o.order_delivered_customer_date,o.order_purchase_timestamp, DAY) AS time_to_delivery, DATE_DIFF(o.order_delivered_customer_date,o.order_estimated_delivery_date, DAY) AS diff_estimated_delivery, FROM `Target.customers` c JOIN `Target.orders` o ON o.customer_id=c.customer_id
JOIN `Target.order_items` oi ON oi.order_id=o.order_id)

SELECT state, ROUND(AVG(freight_value), 2) AS mean_freight_value, ROUND(AVG(time_to_delivery), 2) AS mean_time_to_delivery, ROUND(AVG(diff_estimated_delivery), 2) AS mean_diff_estimated_delivery FROM base GROUP BY 1 ORDER BY 4 DESC LIMIT 5;

Top 5 states where delivery is not so fast compared to estimated date

Query results ♣ save results •

JOB INFORMATION		RESULTS	JSON	EXECUTION DET	TAILS EXE	EXECUTION GRAPH PREVIEW	
Row	state	//	mean_freigh	mean_time	mean_diff_e		
1	AL		35.84	23.99	-7.98		
2	MA		38.26	21.2	-9.11		
3	SE		36.65	20.98	-9.17		
4	ES		22.06	15.19	-9.77		
5	BA		26.36	18.77	-10.12		

6. Payment type analysis:

6.1. Month over Month count of orders for different payment types.

WITH base AS (SELECT p.payment_type AS payment_type, EXTRACT(YEAR FROM o.order_purchase_timestamp) AS order_year, EXTRACT(MONTH FROM o.order_purchase_timestamp) AS order_month, o.order_id AS order_id Target.orders` o JOIN `Target.payments` p ON p.order_id=o.order_id)

SELECT payment_type,order_year,order_month,COUNT(order_id) FROM base GROUP BY 1,2,3 ORDER BY 1,2,3;

Query results SAVE RESULTS ▼ EXECUTION GRAPH PREVIEW JOB INFORMATION RESULTS JSON EXECUTION DETAILS payment_type order_year order_month 1 UPI 2016 10 63 2 UPI 2017 197 1 3 UPI 2017 2 398 4 UPI 2017 3 590 5 UPI 2017 4 496 6 UPI 2017 5 772 7 UPI 2017 707 6 7 2017 845 8 LIPI

We have observed an increase in payment year over year for <u>UPI, Credit Card and Debit Card</u>. This is because of the improvement in Fintech/Banking and ease of access to the Internet.

Results per page:

50 ▼

1 - 5

6. Payment type analysis:

6.2. Distribution of payment installments and count of orders.

WITH base AS (SELECT p.payment_type AS payment_type,

EXTRACT(YEAR FROM o.order_purchase_timestamp) AS order_year,

EXTRACT(MONTH FROM o.order_purchase_timestamp) AS order_month, o.order_id AS order_id,

p.payment_installments AS payment_installments

FROM `Target.orders` o JOIN `Target.payments` p ON p.order_id=o.order_id)

SELECT payment_installments,COUNT(order_id) FROM base GROUP BY 1 ORDER BY 1;

WITH base AS (SELECT p.payment_type AS payment_type,

EXTRACT(YEAR FROM o.order_purchase_timestamp) AS order_year,

EXTRACT(MONTH FROM o.order_purchase_timestamp) AS order_month, o.order_id AS order_id,
p.payment_installments AS payment_installments

FROM `Target.orders` o JOIN `Target.payments` p ON p.order id=o.order id)

SELECT payment_installments,COUNT(order_id) AS count_order FROM base GROUP BY 1 ORDER BY 2 desc;

Query results ▲ SAVE RESULTS ▼ JOB INFORMATION RESULTS JSON EXECUTION DETAILS EXECUTION GRAPH PREVIEW payment_installments

From the above table, we can conclude that <u>customers generally opt for less no. of installment</u>.

Sum of Orders

Insights:

- there is growing trend in e-commerce in Brazil as count of orders increased year-over-year.
- We can see the trends of getting more orders during May, August and November month as Mother's Day is celebrated in Brazil on the second Sunday of May. Brazilians celebrate their dads on the second Sunday of August. In November, sales are high due to Chinese Double 11 and Black Friday.
- During the period from 2016 to 2018, we have got maximum orders from sao paulo (Belongs to state of Sao Paulo). This is because it is having highest GDP & Per Capital Income and also densely populated city amongst Brazilian cities.
- We have observed an increase in payment year over year for UPI, Credit Card and Debit Card. This is because of the improvement in Fintech/Banking and ease of access to the Internet.
- States where delivery is not so fast as compared to estimated date are AL, MA, SE, ES & BA.

Recommendations:

- As we are having growing e-commerce market in Brazil, we need to increase product variety and no. of suppliers to meet the demand.
- As the demand is high in the months of May, August and November. Suppliers should be equipped with more stocks, and we can give discounts to attract more customers.
- As we are getting more orders from Sao Paulo, we can increase more sales by offering delivery within 2 days. For that we can increase warehouse/hub in that state.
- The cashless payment mode has had more influence. So, we roll out even our credit-card.
- The states where delivery is not so fast generally belongs to the Eastern Region. So, we need to set up hubs and need to find more suppliers for the Eastern Region.