

<u>Gameboard</u>

Maths

Functions from Differential Equations 2ii

Functions from Differential Equations 2ii

The gradient of a curve is given by $\frac{dy}{dx}=6x-4$. The curve passes through the distinct points (2,5) and (p,5).

Part A Equation of curve

Find the equation of the curve.

The following symbols may be useful: x, y

Part B Find p

Find the value of p.

The following symbols may be useful: p

Used with permission from UCLES, A level, January 2010, Paper 4722, Question 2.

Gameboard:

STEM SMART Single Maths 13 - Using Integration

<u>Gameboard</u>

Maths

Functions from Differential Equations 1ii

Functions from Differential Equations 1ii

The gradient of a curve is given by $\frac{dy}{dx}=12\sqrt{x}$. The curve passes through the point (4, 50). Find the equation of the curve.

The following symbols may be useful: c, x, y

Used with permission from UCLES, A Level, June 2012, Paper 4722, Question 2

Home Gameboard N

Maths

Calculus Integration

Equation of Curve

Equation of Curve

A function
$$v(u)$$
 is such that $\dfrac{\mathrm{d} v}{\mathrm{d} u}=\dfrac{1}{3}u^{\frac{1}{3}}\left(1-\dfrac{1}{u}\right)$ and $v(8)=-1.$

Find the equation of the function v(u).

The following symbols may be useful: u, v

Created for isaacphysics.org by Julia Riley

Gameboard:

STEM SMART Single Maths 13 - Using Integration

<u>Gameboard</u>

Maths

Functions from Differential Equations 1i

Functions from Differential Equations 1i

A curve has an equation which satisfies $\frac{dy}{dx}=kx(2x-1)$ for all values of x. The point P(2,7) lies on the curve and the gradient of the curve at P is 9.

Part A Find k

Find the value of the constant k. Give your answer as an improper fraction.

The following symbols may be useful: k

Part B Equation of curve

Find the equation of the curve.

The following symbols may be useful: x, y

Used with permission from UCLES, A Level, January 2013, Paper 4722, Question 3

Gameboard:

STEM SMART Single Maths 13 - Using Integration

Gameboard

Maths

Calculus Integration

Integrating to Find An Area 1

Integrating to Find An Area 1

This question is about the use of integration to find the area of one or more regions between a curve and the x-axis.

Part A $\,\,\,\,\,\,\,\,\,\,$ Calculating the area under $y=x^2+1$

Figure 1: The graph of $y=x^2+1$

Figure 1 shows the curve $y=x^2+1$. The region between the curve and the x-axis, bounded by the lines x=0 and x=3, is labelled A. Calculate the area of A.

Figure 2: The graph of $y=x^2-1$

Figure 2 shows the curve $y=x^2-1$. The region between the curve and the x-axis, bounded by the lines x=-1 and x=1, is labelled B. Calculate the area of B.

Part C Integrating $5x(x^2-1)$

Calculate the value of the integral $\int_{-1}^{1} 5x(x^2-1) \mathrm{d}x$.

Part D $\,$ The region enclosed between $y=5x(x^2-1)$ and the x-axis

Figure 3: The graph of $y = 5x(x^2 - 1)$

Use **Figure 3** to explain why $\int_{-1}^{1} 5x(x^2-1) dx$ does not give the total area of the regions enclosed by the curve $y=5x(x^2-1)$ and the x-axis between x=-1 and x=+1. Drag and drop options into the spaces provided to complete your answer.

The curve $y=5x(x^2-1)$ intercepts the x-axis at $x=-1, \ x=0$ and x=1. For -1 < x < 0 the curve is the x-axis. Hence, the value of $\int_{-1}^0 5x(x^2-1)\mathrm{d}x$ is and equal to the area of region. However, for 0 < x < 1 the curve is the x-axis. Hence, the value of the integral $\int_0^1 5x(x^2-1)\mathrm{d}x$ is . The area of the region labelled is given by $-\int_0^1 5x(x^2-1)\mathrm{d}x$.

Thee total area of the shaded regions is $\int_{-1}^{0} 5x(x^2-1) dx - \int_{0}^{1} 5x(x^2-1) dx$. This is not the same as $\int_{-1}^{1} 5x(x^2-1) dx$, which has a value of 0 as the curve has symmetry and the contributions from the parts above and below the x-axis cancel out exactly.

Items:

 $oxed{above} oxedsymbol{C} oxed{ ext{reflective}} oxed{D} oxed{ ext{positive}} oxed{ ext{negative}} oxed{ ext{rotational}} oxed{ ext{below}}$

Part E $\hspace{1.5cm}$ Calculating an area for $y=5x(x^2-1)$

Calculate the area of the region enclosed between the curve $y=5x(x^2-1)$ and the x-axis for x between -1 and 1.

Created for isaacphysics.org by Jonathan Waugh

Gameboard:

STEM SMART Single Maths 13 - Using Integration

Gameboard

Maths

Integration and Area 1ii

Integration and Area 1ii

Figure 1 shows part of the curve $y=x^2-3x$ and the line x=5.

Figure 1: A graph of $y=x^2-3x$ and the line x=5

Part A Area of shaded regions

Which of the following expressions gives the total area of the regions shaded in **Figure 1**? Explain your choice.

$$\int_3^5 (x^2-3x)\,\mathrm{d} x - \int_0^3 (x^2-3x)\,\mathrm{d} x$$

$$\int_0^3 (x^2-3x)\,\mathrm{d} x + \int_3^5 (x^2-3x)\,\mathrm{d} x$$

Part B Find area

Use integration to find the total area of the shaded regions. Give your answer to 3 significant figures.

Used with permission from UCLES, A Level Maths, January 2012, OCR C2, Question 7

Gameboard:

STEM SMART Single Maths 13 - Using Integration

<u>Home</u> <u>Gameboard</u> Maths Calculus Integration Area Under a Curve 1

Area Under a Curve 1

A graph of the functions y=(x-2)(x+1) and y=x+1 is shown in **Figure 1**. Find the areas of the shaded regions labelled A and B. A is the region between P and Q enclosed by the curve y=(x-2)(x+1) and the x-axis; B is the region between Q and R below the curve y=(x-2)(x+1) and above the x-axis.

Figure 1: A graph of the functions y=(x-2)(x+1) and y=x+1. A is the region between P and Q enclosed by the curve y=(x-2)(x+1) and the x-axis; B is the region between Q and R below the curve y=(x-2)(x+1) and above the x-axis.

Part A Region A

Find the area of the region A. Give your answer in the form of an improper fraction.

Part B Region B

Find the area of the region B. Give your answer in the form of an improper fraction.

Created for isaacphysics.org by Julia Riley

Gameboard:

STEM SMART Single Maths 13 - Using Integration

Gameboard

Maths

Integration and Area 3i

Integration and Area 3i

Figure 1 shows the graph of $y=1-3x^{-\frac{1}{2}}$.

Figure 1: Graph of $y=1-3x^{-\frac{1}{2}}$.

Part A Find intersection with x-axis

Find the x-coordinate of the intersection of that curve with the x-axis.

The following symbols may be useful: x

Part B Find a

The region enclosed by the curve, the x-axis and the line x=a (where a>9) has an area equal to 4 square units, find the value of a.

The following symbols may be useful: a

Gameboard:

STEM SMART Single Maths 13 - Using Integration

<u>Home</u> <u>Gameboard</u> Maths Calculus

Integration Area Under a Curve 3

Area Under a Curve 3

A graph of the functions $y=\frac{1}{2\sqrt{x}}$ and $y=2x\sqrt{x}$ for $x\geq 0$ is shown in **Figure 1**. Find the area of the shaded region OPQR.

Figure 1: A graph of the functions $y=\frac{1}{2\sqrt{x}}$ and $y=2x\sqrt{x}$ for $x\geq 0$. The shaded region OPQR is bounded by the line x=0, the line y=1, the curve $y=\frac{1}{2\sqrt{x}}$ and the curve $y=2x\sqrt{x}$.

Part A The x coordinate of Q

Deduce the x coordinate of the point Q.

Part B The x coordinate of R

Find the \boldsymbol{x} coordinate of the point R.

Part C The area of OPQR

Find the area of the shaded region OPQR, giving your answer in an exact form.

Created for isaacphysics.org by Julia Riley