Aurubis Buffalo Waiting Time Analysis For Coil Production

-Group 17

Xinyu Huang, Yuqi Hou, Li Zeng, Aijing Song, Fanglei Su

Data Cleaning & Handling

Dealing with Missing Values Calculating Waiting Time

Exploratory Data Analysis

Attributes Data Visualization Sanky Diagram

Waiting Time Model

Feature Engineering Model Building:

- Random ForestBayesian Ridge
- Neural NetworkLight GBM

- Linear RegressionK Nearest Neighbor

Model Selection

Conclusion

Part1: Data Cleaning

- Drop Unrelated Attributes with Waiting Time Model
 - o INMINL(Minor Location), INSTRN(Instruction)...
- Missing Value
 - Drop the attribute which have more than 50% missing value
 - Other: Listwise deletion if attributes are necessary after feature engineering
- Transform Data Type
 - Some categorical variables represented by number (INSNXU/next unit)
 - Separate categorical variables and numerical variables

Total number of missing values of each attribute & Percentage of missing values of each attribute in descending order

Part1: Calculating Waiting Time

- Only focus on IN status (INSNXO/Next Operation)
- Machine Waiting Time =
 Start timestamp of this IN operation (INSTMS of this row) –
 Finish timestamp of last IN operation (INFTMS of last row)

Order Perspective

	Wait Time (Hour)
Average	59.06
Max	4379.16
Upper Quartile	61.01
Median	38.145
Lower Quartile	22.195
Min	0

Order Wait Time Distribution

- Short wait time: wait time < lower quartile
- Medium wait time: lower quartile ≤ wait time ≤ upper quartile
- Long wait time: wait time > upper quartile

Order Perspective (Con'd)

I The wait time of on scheduled orders
I is almost half of wait time of delay
Orders

Analysis and prediction on wait time can help to solve order delay problem

Part2: Exploratory Data Analysis

Machine Perspective

Sum of Wait Time (Hours) for each Next Unit(Machine Number). Color shows details about aa or ba.

- Wait time for machine 78 is the longest
- Wait time for machine 22 and 44 is the shortest
- Average wait time for all machine is 58.5 hours

Part2: Exploratory Data Analysis

Process Analysis (Sankey Plot)

- Most of alloy type of coils are A-1, A-2, A-K and A-7 (alloy type)
- A-2 coils are more likely to go to the machine 143 (short wait)
- A-1 coils are more likely to go to the machine 46 (long wait)
- A-7 coils are more likely to go to machine 132 and 147 (short wait)
- A-K coils are more likely to go to machine 36 (long wait)

Part3: Target Encoding for Categorical Variables

How We Implement Target Encoding?

Advantages of Target Encoding

Why is Mean encoding Great for our Dataset?

- · Can embody the target in the label
- could prove to be a much simpler alternative
- tend to group the similar classes

Part3: New Feature Creation

Use the first digit → Much closer to the business meaning

Count Ignored Steps between Two 'IN' Status

Yield loss=(start weight-finish weight)/start weight

Adopt Three Methods for Feature Engineering

Filter Method

- Simplicity: uses ranking technique and rank ordering method for variable selection; not including any mining algorithm;
- Example: Pearson's Correlation, Anova;

Embeded Method

- Iterative: take care of each iteration of the model training process;
- Penalization: L1, L2;

- ML Based : needs one machine learning algorithm and uses its performance as evaluation criteria;
- **Example**: forward selection, backward elimination;

Comparison of Three Methods

Part3: Results from Three Methods and Final Feature Selection

11 relative attributes After Target Encoding

	INDENS	IN#PAS	INSGAG	INSPCS	INFACT	INFGAG	INFPCS	INHEAT	INALLY	INSNXU	INSSCL	INFSCL
2	0.317	0	0.0350	1	2.154609e+07	0.0350	1	140431.222222	2	8.408858e+06	2.673828e+05	8.405765e+06
4	0.317	2	0.0350	1	2.154609e+07	0.0163	1	140431.222222	2	5.901128e+06	6.691793e+06	4.602240e+06
6	0.317	0	0.0163	1	2.154609e+07	0.0163	1	140431.222222	2	1.720098e+07	1.016231e+07	8.405765e+06
10	0.317	0	0.0163	1	2.154609e+07	0.0163	1	140431.222222	2	1.720098e+07	6.691793e+06	8.405765e+06
12	0.317	0	0.0163	1	3.436142e+05	0.0163	1	140431.222222	2	3.335057e+05	6.691793e+06	8.405765e+06
273906	0.323	0	0.0120	1	3.436142e+05	0.0120	1	200894.777778	1	6.916634e+05	7.165718e+06	3.697288e+05
273913	0.323	0	0.0120	1	2.154609e+07	0.0120	1	200894.777778	1	2.431705e+05	6.691793e+06	3.697288e+05
273916	0.323	1	0.0120	1	2.154609e+07	0.0120	1	200894.777778	1	3.850504e+05	7.165718e+06	3.697288e+05
273918	0.323	0	0.0120	1	3.436142e+05	0.0120	1	200894.777778	1	6.916634e+05	7.165718e+06	3.697288e+05
273933	0.323	0	0.0100	1	2.154609e+07	0.0100	1	321797.000000	7	3.286763e+05	7.165718e+06	3.697288e+05

3 Metrics for Model Performance Evaluation

MEAN ABSOLUTE ERROR

Sum of absolute differences between our true waiting time and predicted value. Range= $[0, \infty]$ Lower MAE = model fits better

R SQUARED

Measure of how close our actual data are to the fitted regression line. Range=[0,1] Closer to 1 = model fits better

ROOT MEAN SQUARED ERROR

Square root of variance of residuals(prediction errors). Range= $[0, \infty]$ Lower RMSE = model fits better

- Linear Regression
- K-Nearest Neighbors
- Bayesian Ridge Regression
- LightGBM
- Random Forest
- Neural Network

Linear Regression

- Linear Regression is model based on supervised learning.
- In this case, it performs the task to predict waiting time of each coil based on given 11 attributes.

MAE	R2	RMSE
3772.11	0.98869	14963.68

K Nearest Neighbors Regression

 Store all available cases and predict average waiting time of K nearest neighbors based on a similarity measure with almost no learning process.

Distance functions

Euclidean
$$\sqrt{\sum_{i=1}^{k} (x_i - y_i)^2}$$

$$\sum_{i=1}^{\kappa} |x_i - y_i|$$

$$\left(\sum_{i=1}^{k} (|x_i - y_i|)^q \right)^{1/q}$$

KNN algorithm

MAE	R2	RMSE
1830.62	0.6235	167685.23

Bayesian Ridge Regression

- A Ridge regression formulated as Bayesian estimator.
- Self-adaptive capability avoiding overfitting
- 2 important hyperparameters: α & λ

MAE	R2	RMSE
3846.62	0.9889	14859.94

LightGBM

- A gradient boosting framework that uses tree-based learning algorithm
- High-Speed data processing

MAE	R2	RMSE
7860.36	-29268.17	181696.44

Random Forest

- An ensemble learning method for classification, regression and other tasks.
- In this case, it's possible to use random forests model to predict waiting time of each coil.

Mean Absolute Error	R2_Score	Root Mean Square Error
2106.16	0.9997	2110.09

Neural Network

Neural networks are a set of algorithms, modeled loosely after the human brain, that are designed to recognize patterns. We can use this method to predict waiting time because of its complexity and accuracy.

MAE	R2_Score	RMSE
1185.73	-4.99	140738.01

Model Performance Comparison

Model Name	MAE	R2_Score	RMSE
Linear Regression	3772.11	0.98869	14963.68
KNN	1830.62	0.6235	167685.23
Bayesian Model	3846.62	0.9889	14859.94
LightGBM	7860.36	-29268.17	181696.44
Random Forest	2106.16	0.9997	2110.09
Neural Network	1185.73	-4.99	140738.01

EDA

- Wait time for machine 78 is the longest and machine 22 and 44 is the shortest (0 Hour).
- The wait time of on-schedule orders is almost half of wait time of delay orders
- A1, AK(Alloy) coils are more likely go to the long wait machine

Predictive Model

 Random Forest model has the best performance and can be used in wait time prediction

Recommendation

- Buy more machine 78 if budget permits
- Some machine 22 and 44 may be unused in production since the wait time is 0
- Adjusting the delivery date according to the predictive wait time can reduce order delay

THANK YOU

Appendix - timeline

