MAT135H1F – Quiz 3

TUT0201

June 4, 2015

FAMILY	NAME	GIVEN NAME:
PAMILLI	IN A IVILLA.	 GIVEN NAME:

Mark your lecture and tutorial sections:

STUDENT ID:

L0101	L5101	T0101	T0201	T5101	T5102

You have 25 minutes to solve the problems below! Each problem is worth 1 point. Good luck!

Question 1. What is the slope of the tangent to $f(x) = \arcsin(1-2x)$ at $x = \frac{1}{2}$?

- (a) 2
- (b) -2
- (c) 1
- (d) -1

Answer: (b) -2. First we determine f'(x). Using the chain rule and our knowledge of differentiating arcsin, we obtain $f'(x) = -2\frac{1}{\sqrt{1-(1-2x)^2}} = \frac{-2}{\sqrt{4x-4x^2}} = \frac{-1}{\sqrt{x(1-x)}}$. The slope of the line tangent to f at $x = \frac{1}{2}$ is given by $f'(\frac{1}{2}) = \frac{-1}{\sqrt{\frac{1}{4}}} = -2$.

Question 2. Let g'(2) = 4. What is $\frac{d}{dx}g(x^4+1)$ at x=1?

- (a) 4
- (b) 16
- (c) 32
- (d) 2

Answer: (b) 16. Differentiating $g(x^4 + 1)$ with the chain rule gives $\frac{d}{dx}g(x^4 + 1) = 4x^3g'(x^4 + 1)$. Thus, evaluating at x = 1 gives 4g'(2) = 16.

Question 3. Let $x+x^2y+y^2=1$. Find y' by implicit differentiation when x=1 and y=0.

- (a) -1
- (b) 1
- (c) $-\frac{2}{3}$
- (d) $\frac{2}{3}$

Answer: (a) -1. First we differentiate both sides of the equation using the chain rule and the product rule on the left side. We obtain $1 + 2xy + x^2 \frac{dy}{dx} + 2y \frac{dy}{dx} = 0$. This implies $\frac{dy}{dx}(x^2 + 2y) = -1 - 2xy$ which gives $\frac{dy}{dx} = \frac{-1-2xy}{x^2+2y}$. Lastly, we evaluate at (x,y) = (1,0). We have $\frac{dy}{dx}\Big|_{(1,0)} = \frac{-1}{1} = -1$

Question 4. Where is the horizontal tangent of $f(x) = x2^x$?

- (a) At $x = \frac{-1}{\ln(2)}$
- (b) At $x = \frac{1}{\ln(2)}$
- (c) At ln(2)
- (d) At $-\ln(2)$

Answer: (a) at $x = \frac{-1}{\ln 2}$. We solve for f'(x) using logarithmic differentiation. We have $\ln(f(x)) = \ln(x2^x) = \ln(x) + x \ln 2$ which we differentiate implicitly to obtain $\frac{1}{f(x)}f'(x) = \frac{1}{x} + \ln 2$. Solving for f'(x) gives $f'(x) = f(x)(\frac{1}{x} + \ln 2) = x2^x(\frac{1}{x} + \ln 2) = 2^x(1 + x \ln 2)$ where $x \neq 0$. Horizontal lines have a slope of 0, so we solve f'(x) = 0. Since $2^x > 0$ for all $x \in \mathbb{R}$, we must have $1 + x \ln 2 = 0$ so $x = \frac{-1}{\ln 2}$.

Question 5. What is $\frac{d}{dx} \frac{1}{\ln(x)}$ at x = e?

- (a) $-\frac{1}{e}$
- (b) 1
- (c) -1

(d)
$$\frac{1}{e}$$

Answer: (a) $-\frac{1}{e}$. We differentiate $(\ln(x))^{-1}$ using the chain rule. We have $\frac{d}{dx}(\ln(x))^{-1}=-(\ln(x))^{-2}\frac{1}{x}=\frac{-1}{(x)(\ln(x))^2}$. At x=e, we obtain $\frac{-1}{e(\ln(e))^2}=-e^{-1}$.

Question 6. What is $\frac{d^2}{dx^2}\cos(2x)$ at $x = \pi$?

- (a) -2
- (b) 4
- (c) -4
- (d) 2

Answer: (c) -4. First, we differentiate with the chain rule to obtain $\frac{d}{dx}\cos(2x) = -2\sin(2x)$. Differentiating again gives $\frac{d^2}{dx^2}\cos(2x) = \frac{d}{dx}(-2\sin(2x)) = -4\cos(2x)$. Then we evaluate the second derivative at $x = \pi$ which is $-4\cos(2\pi) = -4$.