Portfolio Construction

Introduction

- Information analysis ignored real world issues.
- We now confront those issues directly, especially:
 - Constraints
 - Transactions costs
 - Things are much easier analytically if these issues didn't exist.
- We use portfolio construction in actual implementation, as well as backtesting of new investment strategies.

Objective Function/Approach

• We have focused on the objective function:

$$U = \alpha_P - \lambda \cdot \omega_P^2 \neq \mathbf{h}_{PA}^T \cdot \mathbf{\alpha} - \lambda \cdot \mathbf{h}_{PA}^T \cdot \mathbf{V} \cdot \mathbf{h}_{PA}$$

- Some investors have raised issues with this approach:
 - Sensitivity to errors in inputs: "error maximization"
- We will briefly discuss alternatives

Optimization and Data Errors

• How do estimation errors in α and V impact true ~ chue portfolio construction?

$$\alpha_{forecast} = \alpha_{true} + \varepsilon_{\alpha}$$

$$\sigma_{forecast}^{2} = \sigma_{true}^{2} + \varepsilon_{\sigma}$$
Five to the "true" solutions, we will:
$$\sigma_{forecast}^{2} = \sigma_{true}^{2} + \varepsilon_{\sigma}$$

- Relative to the "true" solutions, we will:
 - Overweight stocks with $\varepsilon_{\alpha} > 0$, $\varepsilon_{\sigma} < 0$.
 - Forecast higher alpha and lower risk than justified.
- This may still be the best construction approach.
- We can adjust expectations for size of the bias.

Muller's Portfolio Construction Test

- Muller (1993) tested four alternative methods in the following lab setting:
 - Follow S&P 500 stocks monthly from 1984 through 1987, with annual rebalance. (1987 treatment unusual)
 - Generate panels of alphas with fixed IC (0.10)

$$\alpha_n(t) = IC \cdot \left[IC \cdot \theta_n(t) + \sqrt{1 - IC^2} \cdot \omega_n \cdot Z_n(t) \right]$$

- What does this do?
- Forecast alpha is a combination of the actual residual return plus noise.
 - What is the correlation of this forecast with the residual return?
 - What is the volatility of the alpha forecast?

Muller's Portfolio Construction Test

$$\alpha_n(t) = IC \cdot \left[IC \cdot \theta_n(t) + \sqrt{1 - IC^2} \cdot \omega_n \cdot Z_n(t) \right]$$

- The four alternative methods:
 - Screen 1: Top N stocks, equal weighted
 - Screen 2: Top N stocks, cap weighted
 - Stratification: Top J stocks in each BARRA industry, match weight
 - Quadratic programming, long-only, no variance optimization optimization

Test Results: Observed IR's

	Risk				
Date	Aversion	SCREEN I	SCREEN II	STRAT	QP
	High	1.10	1.30	0.63	2.16
Jan-84	Medium	0.95	2.24	0.64	1.89
	Low	0.73	1.31	0.69	1.75
	High	0.78	1.47	1.98	0.98
Jan-85	Medium	0.74	-0.53	1.29	1.68
	Low	0.50	-0.15	0.83	1.49
	High	1.17	0.91	0.69	2.08
Jan-86	Medium	0.69	0.98	0.33	2.29
	Low	0.60	0.99	0.51	2.51
	High	1.43	2.04	2.82	2.14
May-87	Medium	1.01	1.48	2.60	1.76
•	Low	0.66	1.17	2.17	1.82
Average		0.86	1.10	1.27	1.88
Standard Deviation		0.27	0.79	0.89	0.40
Maximum		1.43	2.24	2.82	2.51
Minimum		0.50	-0.53	0.33	0.98
Millimin		0.50	-0.55	0.55	0.20

Compare *IR* results to theory (2.24 in absence of constraints)

Bias in Optimization

- Muller's analysis shows quadratic optimization superior to alternative methods in generating high realized *IR* portfolios.
- In addition, he estimated a typical risk bias of ~20% for his optimized portfolios. So if the predicted risk was 3%, the realized risk averaged about 3.6%.
- This depends on the portfolios of interest, and on the accuracy of the risk model.

Back to Quadratic Optimization

- While prior tests show this approach superior to others on average, it is still susceptible to errors in input variables.
- We can treat this problem in two ways:
 - Controlling alphas
 - Adding constraints.
- We tend to prefer controlling alphas over adding constraints, as this provides more transparency into what we are doing. Both approaches can lead to the same answer.

Controlling Alphas

- Trimming
 - Winsorization
- Scale
 - We can check the scale of the alphas by examining the intrinsic IR

$$IR = \sqrt{\boldsymbol{\alpha}^T \cdot \mathbf{V}^{-1} \cdot \boldsymbol{\alpha}}$$

- If input alphas are inconsistent with our expectations for *IR*, we can rescale them.
- Note: We can get a rough estimate for the scale of the alphas by using:

$$\alpha_{n} = IC \cdot \omega_{n} \cdot z_{n}$$

$$Std \{\alpha\} \sim IC \cdot \omega$$

If ws 25% ICs.05 Starks v 1.25%

And ignoring cross-sectional correlations and the variation of residual risk across stocks.

Neutralization

- Remove unintentional industry, sector, or market timing bets.
- This is different from scaling and trimming. Neutralization isn't always the right answer.
- What economic information does the signal contain?

Example: B/P ratios as alphas

Software - very low B/P

Utilitie very hyper B/P

(on average)

Insights into Neutralization

• We can think about neutralization in terms of alphas or portfolios. The connection:

$$\alpha = 2\lambda \cdot \mathbf{V} \cdot \mathbf{h}_{PA}$$

Examples

	Perspective		
	Alpha	Portfolio	
Benchmark Neutrality	$\alpha_B = \mathbf{h}_B^T \cdot \boldsymbol{\alpha} = 0$	$\beta_{PA} = \beta^T \cdot \mathbf{h}_{PA} = 0$	
Industry Neutrality	$\alpha_j = \mathbf{H}_j^T \cdot \boldsymbol{\alpha} = 0$	$x_{PA}(j) = \mathbf{X}_{j}^{T} \cdot \mathbf{h}_{PA} = 0$	

Insight into Neutralization

• Benchmark Neutrality: Here are two possible choices:

$$\alpha \Rightarrow \alpha - \alpha_{B} \cdot \mathbf{e}$$

$$\alpha \Rightarrow \alpha - \alpha_{R} \cdot \beta$$

- Both transformations guarantee that the benchmark has zero alpha.
 - How do they differ?
 - What is happening to the optimal portfolio in each case?

Understanding Neutralization

• Start with the relationship between alphas and portfolios:

$$\mathbf{\alpha} = 2\lambda \cdot \mathbf{V} \cdot \mathbf{h}_{PA}$$

• Now, what does this tell us about the hedging portfolio for one choice for benchmark neutrality?

$$\mathbf{\alpha} - \boldsymbol{\alpha}_{B} \cdot \mathbf{e} = 2\lambda \cdot \mathbf{V} \cdot \left(\mathbf{h}_{PA} - \mathbf{h}_{hedge}\right)$$

$$\alpha_{B} \cdot \mathbf{e} = 2\lambda \cdot \mathbf{V} \cdot \mathbf{h}_{hedge}$$

$$\mathbf{h}_{hedge} = \left(\frac{\alpha_B}{2\lambda}\right) \cdot \mathbf{V}^{-1} \cdot \mathbf{e}$$

Aside: An Interesting Portfolio

• The hedging portfolio just described is related to Portfolio C, the minimum variance, fully-invested portfolio:

$$Min\left\{\mathbf{h}_{C}^{T}\cdot\mathbf{V}\cdot\mathbf{h}_{C}\right\} \quad subject \ to \ \mathbf{h}_{C}^{T}\cdot\mathbf{e}=1$$

$$\mathbf{h}_{C}\Rightarrow\frac{\mathbf{V}^{-1}\cdot\mathbf{e}}{\mathbf{e}^{T}\cdot\mathbf{V}^{-1}\cdot\mathbf{e}}$$

- So we are hedging the beta of our original portfolio with a portfolio that has $\beta_C \neq 0$
- There has been considerable interest in "minimum variance" strategies over the past few years. They have delivered market-like returns with less than market risk.

Benchmark Neutralization

• Two choices: $\alpha \Rightarrow \alpha - \alpha_B \cdot \mathbf{e}$

$$\alpha \Rightarrow \alpha - \alpha_R \cdot \beta$$

- The first hedges beta with Portfolio C. The second hedges with the benchmark.
 - The benchmark seems a more intuitive portfolio to use for hedging beta.
 - And in fact, it leads to the lowest total risk for the hedged portfolio.
 - But any portfolio with non-zero beta can hedge beta.

Factor Neutralization

• Start with a factor model and factor portfolios:

$$\mathbf{r} = \mathbf{X} \cdot \mathbf{b} + \mathbf{u}$$

$$\mathbf{b} = \left[\mathbf{X}^{T} \cdot \mathbf{\Delta}^{-1} \cdot \mathbf{X} \right]^{-1} \cdot \mathbf{X}^{T} \cdot \mathbf{\Delta}^{-1} \cdot \mathbf{r} = \mathbf{H}^{T} \cdot \mathbf{r}$$

• Plus our optimal connection between alphas and portfolios:

$$\mathbf{\alpha} = 2\lambda \cdot \mathbf{V} \cdot \mathbf{h}_{PA} = 2\lambda \cdot \mathbf{X} \cdot \mathbf{F} \cdot \mathbf{x}_{PA} + 2\lambda \cdot \Delta \cdot \mathbf{h}_{PA}$$

Goal

• Separate α and h into common factor and specific components:

$$\alpha = \alpha_{CF} + \alpha_{SP}$$
 $\mathbf{h}_{PA} = \mathbf{h}_{CF} + \mathbf{h}_{SP}$

• Such that:

$$\mathbf{\alpha}_{CF} = 2\lambda \cdot \mathbf{V} \cdot \mathbf{h}_{CF} = 2\lambda \cdot \mathbf{X} \cdot \mathbf{F} \cdot \mathbf{x}_{PA}$$

$$\mathbf{\alpha}_{SP} = 2\lambda \cdot \mathbf{V} \cdot \mathbf{h}_{SP} = 2\lambda \cdot \Delta \cdot \mathbf{h}_{PA}$$

• Challenge: This separation isn't unique. There are an infinite number of portfolios with active factor exposures \mathbf{x}_{PA} .

Separating the Portfolio

• To uniquely define a separation, we stipulate that \mathbf{h}_{CF} is the minimum risk portfolio with factor exposures \mathbf{x}_{PA} . We construct this then from factor portfolios:

$$\mathbf{h}_{CF} = \mathbf{H} \cdot \mathbf{x}_{PA}$$

• We can then show that:

$$\mathbf{h}_{SP} = \mathbf{\Delta}^{-1} \cdot \left[\mathbf{I} - \mathbf{X} \cdot \mathbf{H} \right] \cdot \frac{\mathbf{\alpha}}{2\lambda}$$

• This approach can lead to pinpoint control over portfolio factor exposures.

Portfolio Construction

• Actual optimization isn't as simple as:

$$U = \mathbf{h}_{PA}^T \cdot \mathbf{\alpha} - \lambda \cdot \mathbf{h}_{PA}^T \cdot \mathbf{V} \cdot \mathbf{h}_{PA}$$

• We also have constraints:

- Full investment:
$$\mathbf{h}_{P}^{T} \cdot \mathbf{e} = 1, \quad \mathbf{h}_{PA}^{T} \cdot \mathbf{e} = 0$$

- Long-only
$$h_{P}(n) \ge 0, \forall n$$

- Position size:
$$|h_{PA}(n)| \le h_{PA}(n, \max)$$

- Factor exposure:
$$|x_{PA}(j)| \le x_{PA}(j, \max)$$

And transactions costs.

Observations on Constraints and Costs

- These are equivalent to alpha adjustments.
- Some can significantly impact the portfolio.
- Now we will develop our intuition for constraints by analyzing the surprisingly large impact of the long-only constraint.

Long-only Constraint

• This constraint involves the benchmark:

$$h_P(n) \ge 0 \Longrightarrow h_{PA}(n) \ge -h_B(n)$$

• Let's develop our intuition with a simple model:

$$\alpha_{n} = IC \cdot \omega_{n} \cdot z_{n} = \frac{IR \cdot \omega_{n} \cdot z_{n}}{\sqrt{N}}$$

$$h_{PA}(n) = \frac{IR \cdot z_{n}}{2\lambda \cdot \omega_{n} \cdot \sqrt{N}}$$

• We also know that: $\omega_P = \frac{IR}{2\lambda}$

Simple Model of Long-Only Constraint

Hence we have:

$$h_{PA}(n) = \frac{\omega_P \cdot z_n}{\omega_n \cdot \sqrt{N}}$$

• So for an *equally-weighted* benchmark:

$$h_{PA}(n) \ge -\frac{1}{N} \Longrightarrow z_n \ge \frac{-\omega_n}{\omega_P \cdot \sqrt{N}}$$

• The constraint is more binding, the higher the portfolio active risk, the lower the stock residual risk, and the more stocks in the benchmark

Minimum z-score

Sensitivity to Portfolio Active Risk

This isn't just about negative z-scores

- The long-only constraint interacts with the full investment constraint.
 - Active short positions fund active long positions.
- If we limit short positions, this will impact long positions too.
- Example: *N*=1,000
 - Compare long-only and long-short implementations.

Implications for Long Positions

Estimating More Realistic Impact

- We can only derive analytic results in overly simplified examples.
 - Inequality constraints don't lend themselves to analytic results.
 - The results depend on benchmark weights.
 Assuming equal weighting is not realistic.
 - We will now analyze the long-only constraint in more realistic detail. This will require simulations.

The Framework

- We will start with a more realistic N stock capweighted benchmark.
 - More on this shortly.
- We will generate random alphas according to:

$$\alpha_n = \frac{IR \cdot \omega \cdot z_n}{\sqrt{N}}$$

• for many choices of N and ω_P . For each such choice, we will generate 900 panels of alphas. We will then analyze subsequent ex ante portfolio alpha and risk on average over those 900 samples.

Realistic Benchmarks

- Capitalization Weighted
- Every one is different (S&P 500, Russell 1000, MSCI EAFE, ...)
- But they are typically not far from lognormally distributed.
- We will use the log-normal distribution, fit to typical benchmarks.

Constraint, Eshort < 30%

The = 100%

Constraint Return

Actual Rish

Actual Rish

Actual Rish