

Wi-Fi网络介绍

刘煜 西安中心

Wi-Fi

- 1. Wi-Fi是用来实现无线局域网(WLAN)的一系列无线电技术,基于IEEE 802.11协议族。
- 2. Wi-Fi是Wi-Fi联盟的认证商标,用于标识基于IEEE 802.11标准可以互相通信的网络设备。

OSI网络模型

■OSI和快递

IEEE 802.11 标准

IEEE (电气电子工程师学会) 802工作组负责局域网标准的制订,在1997年发布了802.11标准,定义了无线局域网的媒体访问控制层 (MAC层) 和物理层。 以太网和Wi-Fi采用的协议都属于IEEE 802协议集。其中,以太网使用802.3标准,而Wi-Fi使用802.11标准。

802.11的数据链路层由两个子层构成,逻辑链路控制层LLC(Logic Link Control)和媒体访问控制层MAC(Media Access Control)。 802.11使用和802.3完全相同的LLC子层和48位MAC地址,因此Wi-Fi网络和以太网之间的桥接非常方便。

IEEE 802.11版本

协议	802.11	802.11b	802.11a	802.11g	802.11n	802.11ac wave1	802.11ac wave2	802.11ax
(新命名)					Wi-Fi 4	1	Wi-Fi 5	Wi-Fi 6
提出时间	1997	1999	1999	2003	2009	2013	2015	2016年7月1.0 2019正式发布
频率范围	2.4GHz	2.4GHz	5GHz	2.4GHz	2.4GHz/ 5GHz	5GHz	5GHz	2.4GHz/5GHz 6GHz待讨论
支持带宽	NA	20MHz	20MHz	20MHz	20/40MHz	20/40/80M Hz	20/40/80/160M Hz , 80+80MHz	20/40/80/160MHz , 80+80MHz
信道 (20MHz)	NA	14个	24个	14个	14个/24个	24个	24个	24个
最高阶编码 方式	NA	DBPSK/ DQPSK	64QAM	QPSK	64QAM	256QAM	256QAM	1024QAM
最大物理层 速率	2Mbps	11Mbps	54Mbps	54Mbps	600Mbps	3.4Gbps	6.9Gbps	9.6Gbps
关键技术		DSSS	DSSS/ OFDM	DSSS/ OFDM	OFDM、 64QAM、4*4 MIMO	1	6QAM、DL MU- MIMO mforming	UL/DL OFDMA、 UL/DL 8*8 MU- MIMO、 1024QAM、 空间复用、 Bss-Color、 TWT节能

电磁波谱

ISM频段

ISM频段 (Industrial Scientific Medical Band) 是各国将无线电波的某一段 频段开放给工业,科学和医学机构使用。使用这些频段不需要许可证或费用,只需要遵守一定的发射功率(一般低于1W),并且不要对其它频段造成干扰即可。

应用:

- 1. Wi-Fi (2.4G/5G)
- 2. 蓝牙 (2.4G)
- 3. Zigbee (2.4G/900M)
- 4. 无线鼠标 (2.4G)
- 5. 遥控玩具 (2.4G)
- 6. 微波炉 (2.4G)

ISM Band Frequencies						
6.765 - 6.795 MHz						
13.553 - 13.567 MHz						
26.957 - 27.283 MHz						
40.66 - 40.70 MHz						
83.996 - 84.004 MHz						
167.992 - 168.008 MHz						
433.05 - 434.79 MHz						
886 - 906 MHz						
2.400 - 2.500 MHz						
5.725 - 5.875 MHz						
24.0 - 24.25 GHz						
61.0 - 61.5 GHz						
122 - 123 GHz						
244 - 246 GHz						

Wi-Fi 频谱

2.4Ghz无线WIFI网络设备一般都支持13/14个信道。它们的中心频率虽然不同,但是因为都占据一定的频率范围,所以会有一些相互重叠的情况。当路由器十分密集时,wifi信号之间互相干扰,导致网速变慢。

Wi-Fi **信号分析**

设备类型

802.11定义了两种类型的设备,一种是无线站(Station, STA),通常是手机或PC机。另一种称为无线接入点 (Access Point, AP),它的作用就像是无线网络的一个无线基站,将多个无线站连接起来,或者将无线站连接到有线网络。

【组网方式

Ad-hoc (自组网)

Infrastructure (基础网)

■ 基本服务集 (BSS) 和BSSID

基本服务集是802.11 LAN的基本组成模块。能互相进行无线通信的STA可以组成一个BSS(Basic Service Set)。如果一个站移出BSS的覆盖范围,它将不能再与BSS的其它成员通信。BSSID是一个BSS的标识,BSSID实际上就是AP的MAC地址,用来标识AP管理的BSS。

▮ 扩展服务集 (ESS)

多个BSS可以构成一个扩展网络,称为扩展服务集(ESS)网络,一个ESS网络内部的STA可以互相通信,是采用相同的SSID的多个BSS形成的更大规模的虚拟BSS。连接BSS的组件称为分布式系统(Distribution System, DS)。

SSID

SSID是一个ESS的网络标识(如:TP_Link_1201),在同一SS内的所有STA和AP必须具有相同的SSID,否则无法进行通信。在同一个AP内BSSID和SSID——映射。在一个ESS内SSID是相同的,但对于ESS内的每个AP与之对应的BSSID是不相同的。如果一个AP可以同时支持多个SSID的话,则AP会分配不同的BSSID来对应这些SSID。

Settings	Wi-Fi		
Wi-Fi			
CHOOSE A NE	TWORK		
network_	_name	₹ (i)	
Wi-Fi_ne	Wi-Fi_network		
Wi-Fi_se	cure	₽ ♦ (i)	
Other			

Wi-Fi连接过程

STA(工作站)启动初始化、开始正式使用AP传送数据帧前,要经过三个阶段才能够接入

- 1. 扫描(Scan)
- 2. 认证(Authentication)
- 3. 关联(Association)

Deauthor 攻击

伪造取消认证报文,让已连接AP的设备断开,促使设备重新建立与AP的连接,此时再伪造SSID相同的AP获取设备的Wi-Fi密码。

ESP8266 Deauther

https://github.com/spacehuhn/esp8266_deauther

▌智能硬件的联网方式选择

WiFi的优点:

- 不需要专门的网关设备,即可连接到互联网
- 覆盖范围大, 信号好

WiFi的缺点

- 功耗相对较大,不适合使用电池供电
- 星型网络结构,设备数量多了之后会造成AP负载较重
- 配置相对复杂
- 1) 插电的设备,用WiFi。
- 2) 电池供电的设备,用BLE,需要配套蓝牙网关使用。

海量视频 贴身学习

超多干货 实时更新

THANKS

谢谢