

Definitions

- A graph, G=(V, E), consists of two sets:
 - a finite set of vertices(V), and
 - a finite, possibly empty set of edges(*E*)
 - V(G) and E(G) represent the sets of vertices and edges of G, respectively
- Undirected graph
 - The pairs of vertices representing any edge is *unordered*
 - e.g., (v_0, v_1) and (v_1, v_0) represent the same edge $(v_0, v_1) = (v_1, v_0)$
- Directed graph
 - Each edge as a directed pair of vertices <v0, v1>!= <v1,v0>
 - e.g. $\langle v_0, v_1 \rangle$ represents an edge, v_0 is the tail and v_1 is the head

Examples for Graph

complete graph

$$V(G_1)=\{0,1,2,3\}$$

$$V(G_2)=\{0,1,2,3,4,5,6\}$$

$$V(G_3)=\{0,1,2\}$$

$$E(G_1)=\{(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)\}$$

 $E(G_2)=\{(0,1),(0,2),(1,3),(1,4),(2,5),(2,6)\}$
 $E(G_3)=\{<0,1>,<1,0>,<1,2>\}$
complete undirected graph: $n(n-1)/2$ edges
complete directed graph: $n(n-1)$ edges

Complete Graph

A complete graph is a graph that has the maximum number of edges

- For undirected graph with n vertices, the maximum number of edges is n(n-1)/2
- ➤ for directed graph with n vertices, the maximum number of edges is n(n-1)

> example: G1 (previous slide) is a complete graph

Adjacent and Incident

- If (v₀, v₁) is an edge in an undirected graph,
 - Ovo and v1 are adjacent
 - OThe edge (v₀, v₁) is incident on vertices v₀ and v₁
- If <v₀, v₁> is an edge in a directed graph
 - Ovo is adjacent to v₁, and v₁ is adjacent from v₀
 - OThe edge <v₀, v₁> is incident on v₀ and v₁

*Figure 6.3:Example of a graph with feedback loops and a

multigraph (p.260)

Subgraph and Path

• A subgraph of G is a graph G' such that V(G') is a subset of V(G) and E(G') is a subset of E(G)

• A path from vertex v_p to vertex v_q in a graph G, is a sequence of vertices, v_p , v_{i1} , v_{i2} , ..., v_{in} , v_q , such that (v_p, v_{i1}) , (v_{i1}, v_{i2}) , ..., (v_{in}, v_q) are edges in an undirected graph

• The length of a path is the number of edges on it

Figure 6.4: subgraphs of G_1 and G_3 (p.261)

(b) Some of the subgraph of G_3

Simple Path and Cycle

- A simple path is a path in which all vertices, except possibly the first and the last, are distinct
- A cycle is a simple path in which the first and the last vertices are the same
- In an undirected graph G, <u>two vertices</u>, v_0 and v_1 , are connected if there is a path in G from v_0 to v_1
- An undirected $\underline{\textit{graph}}$ is connected if, for every pair of distinct vertices v_i , v_j , there is a path from v_i

connected

Degree of an undirected graph

- The degree d_i of vertex i is the number of edges incident on vertex i.
- In an undirected graph, if d_i is the degree of a vertex i, n is the number of vertices and e is the number of edges, then number of edges e is

$$e = (\sum_{i=0}^{n-1} d_i)/2$$

Degree of a directed graph

 $\underline{\text{in }}$ - degree of vertex $\underline{\text{i}}$: Let G be a digraph .The indegree d_i in of vertex i is the number of edges incident to i.

Out – degree of vertex i: The out- degree d_i^{out} of vertex i is the number of edges incident from this vertex.

$$e = \sum_{i=1}^{n} d_{i}^{in} = \sum_{i=1}^{n} d_{i}^{out}$$

degree

directed graph in-degree out-degree 1 in: 1, out: 2

2 in: 1, out: 0

G3

Graph representations

NSPIRED BY LIFE

15

- Adjacency matrices
- Adjacency lists

6-Nov-23 Dept Of I&CT

Graph representation – undirected

graph

Adjacency list

Adjacency matrix

graph

Adjacency list

Adjacency matrix

Adjacency Matrix

- Let G=(V,E) be a graph with n vertices.
- The adjacency matrix of G is a two-dimensional n by n array, say adj_mat
- If the edge (vi, vj) is in E(G), adj_mat[i][j]=1
- If there is no such edge in E(G), adj_mat[i][j]=0
- The adjacency matrix for an undirected graph is symmetric; the adjacency matrix for a digraph need not be symmetric

6-Nov-23 Dept Of I&CT ${f G4}$

19

Adjacency lists

Adjacency lists

Graph Operations

- Traversal
 Given G=(V,E) and vertex v, find all w∈V,
 such that w connects v.
 - ODepth First Search (DFS) preorder tree traversal
 - OBreadth First Search (BFS) level order tree traversal

Graph Traversals: DFS BFS

Some Graph Operations

- Traversal
 Given G=(V,E) and vertex v, find all w∈V,
 such that w connects v.
 - ODepth First Search (DFS) preorder tree traversal
 - OBreadth First Search (BFS) level order tree traversal

CHAPTER 6 24

Depth-first search

- A depth-first search (DFS)
 explores a path all the way to a
 leaf before backtracking and
 exploring another path
- For example, after searching A, then B, then D, the search backtracks and tries another path from B
- Node are explored in the order
 A B D E H L M N I O P C F G J K Q

DFS Algorithm

```
Mark all the n vertices as not visited.
insert source into stack and mark it visited
while(Stack is not empty)
delete Stack element into variable u
place all the adjacent (not visited) vertices of u into
Stack and also mark them visited
print u
```

```
void dfs(int a[20][20],int n, int source)
 int visited[10],u,v,i;
  for(i=1;i \le n;i++) visited[i]=0;
  int S[20],top=-1;
  S[++top]=source;
  visited[source]=1;
  while(top>=0)
  { u=S[top--];
    for(v=1;v<=n;v++)
    \{ if(a[u][v]==1 \&\& visited[v]==0) \}
         visited[v]=1; S[++top]=v;
    printf(" %d ",u);
```

Breadth first search

It is so named because

It discovers all vertices at distance k from s before discovering vertices at distance k+1.

Breadth-first search

- A breadth-first search (BFS)
 explores nodes nearest the
 root before exploring nodes
 further away
- For example, after searching A, then B, then C, the search proceeds with D, E, F, G
- Node are explored in the order
 A B C D E F G H I J K L M N O
 P Q

Algorithm BFS

```
Mark all the n vertices as not visited.
insert source into Q and mark it visited
while(Q is not empty)
      delete Q element into variable u
      place all the adjacent (not visited) vertices of u
into Q and also mark them visited
      print u
```

```
void bfs(int a[20][20],int n,int source)
int visited[10],u,v,i;
int Q[20],f=-1,r=-1;
  Q[++r]=source; visited[source]=1;
  while(f<r)
    u=Q[++f];
   for(v=1;v<=n;v++)
   { if(a[u][v]==1 && visited[v]==0)
       visited[v]=1;
       Q[++r]=v;
    printf(" %d ",u);
```

```
int main()
  int a[20][20], source, n,i,j;
  printf("Enter the no of vertices: ");
       scanf("%d",&n);
  printf("Enter the adjacency matrix: ");
  for(i=1;i \le n;i++)
       for(j=1;j<=n;j++)
               scanf("%d",&a[i][j]);
   printf("Enter the source vertex: ");
       scanf("%d",&source);
  printf("\n BFS: "); bfs(a,n,source);
  printf("\n DFS: "); dfs(a,n,source);
  return 1;
```

Spanning Tree (ST)

• A spanning tree is a minimal subgraph G', such that V(G')=V(G) and G' is connected. Spanning Tree is always acyclic.

