where F_i = the portion of the seismic base shear, V (kip or kN) induced at Level i.

12.14.8.3.1 Flexible Diaphragm Structures The seismic design story shear in stories of structures with flexible diaphragms, as defined in Section 12.14.5, shall be distributed to the vertical elements of the seismic force-resisting system using tributary area rules. Two-dimensional analysis is permitted where diaphragms are flexible.

12.14.8.3.2 Structures with Diaphragms That Are Not Flexible For structures with diaphragms that are not flexible, as defined in Section 12.14.5, the seismic design story shear, V_x (kip or kN), shall be distributed to the various vertical elements of the seismic force-resisting system in the story under consideration based on the relative lateral stiffnesses of the vertical elements and the diaphragm.

12.14.8.3.2.1 Torsion The design of structures with diaphragms that are not flexible shall include the torsional moment, M_t (kip-ft or KN-m) resulting from

eccentricity between the locations of center of mass and the center of rigidity.

12.14.8.4 Overturning

The structure shall be designed to resist overturning effects caused by the seismic forces determined in Section 12.14.8.2. The foundations of structures shall be designed for not less than 75 percent of the foundation overturning design moment, M_f (kip-ft or kN-m) at the foundation–soil interface.

12.14.8.5 Drift Limits and Building Separation

Structural drift need not be calculated. Where a drift value is needed for use in material standards, to determine structural separations between buildings or from property lines, for design of cladding, or for other design requirements, it shall be taken as 1 percent of structural height, h_n , unless computed to be less. All portions of the structure shall be designed to act as an integral unit in resisting seismic forces unless separated structurally by a distance sufficient to avoid damaging contact under the total deflection.