UCBoost: A Boosting Approach to Tame Complexity and Optimality for Stochastic Bandits

Fang Liu¹, Sinong Wang¹, Swapna Buccapatnam² and Ness Shroff¹

The Ohio State University

²AT&T Labs Research

What is Stochastic Bandit?

• Repeated game between agent and environment with random rewards

Complexity vs Optimality

• Theoretical bounds

Regret/ $\log(T)$	$\left(\frac{a}{a} a_{kl}(\mu_a, \mu)\right)$	$O\left(\sum_{a} \frac{F^{\mu a}}{d_{kl}(\mu_a, \mu^*) - \epsilon}\right)$	$O\left(\sum_{a} \frac{\mu}{d_{kl}(\mu_a, \mu^*) - 1/e}\right)$	$O\left(\sum_{a} \frac{\mu}{2(\mu^* - \mu_a)^2}\right)$						
Complexity	unbounded	$O(\log(1/\epsilon))$	O(1)	O(1)						
 UCBoost connect the dots smoothly 										
A										
■ kl-UCB										
Doogting										
t	Boosting!									
X.										
[b]	\ 1	JCBoost	(ϵ)							
Ш	$\frac{1}{\text{Doosting}}$ $\frac{1}{\text{UCBoost}(\epsilon)}$									
Ŏ										
\cup										
		LICE	Boost(D)							
		UCI								
			• U	CB1						
				—						
Can to antimolity										
Gap to optimality										

UCBoost(D)

UCBoost

• UCB kernel is a distance function d $P(d): \max_{q \in \Theta} \ q$

$$s.t.$$
 $d(p,q) \leq \delta$

- UCBoost ensemble a set D of distance functions (i.e. UCBs) by taking the minimum.
- For each d in D, P(d) closed-form

Why taking the minimum?

Philosophy of voting:

- If the ordering is known, follow the leader. No majority vote.
- UCBoost takes the minimum, thus the tightest UCB.

UCB1 UCB2 UCB3 UCBoost

	CDI		CCDS	CCDCC
WIN WAS ARREST TOO TO THE PARTY OF THE PARTY	0.9	0.8	0.6	0.6
was abstract to Auto - 1000/3	0.8	0.75	0.7	0.7
weekenskoor 10000	0.2	0.2	0.3	0.2
decision	1	1	2	2

Geometric view of UCBoost:

• The kernel of UCBoost is $\max_{d \in D} d$

Numerical Results

• Bernoulli case

Computation time

Scenario	kl-UCB	$UCBoost(\epsilon)$ $\epsilon = 0.01(0.001)$	$UCBoost(\epsilon)$ $\epsilon = 0.05(0.005)$	$UCBoost(\epsilon)$ $\epsilon = 0.08$	$UCBoost(\{d_{bq}, d_h, d_{lb}\})$	UCB1
Bernoulli 1	$933\mu s$	$7.67\mu s$	$6.67 \mu s$	$5.78\mu s$	$1.67 \mu s$	$0.31\mu s$
Bernoulli 2	$986\mu s$	$8.76\mu s$	$7.96\mu s$	$6.27 \mu s$	$1.60 \mu s$	$0.30\mu s$
Beta	$907\mu s$	$8.33 \mu s$	$6.89 \mu s$	$5.89\mu s$	$2.01 \mu s$	$0.33\mu s$