浙江大学 2008 - 2009 学年春季学期 《 微积分 II 》课程期末考试试卷

注意:解题时应写出必要的解题过程。以下1~10题,每题6分;11~15题,每题8分.

1、(1)求直线 $L: \begin{cases} x-2y+z=1 \\ 2x+y+7z=12 \end{cases}$ 在 yOz 平面上的投影直线 l 的方程; (2) 求 l 绕 Oz 轴旋转一周生成的旋转曲面的方程.

- 2、一平行六面体示意图如图,已知坐标 A(1,0,0), B(5,9,2), A' D' B' C C(3,5,7), A'(1,-2,6) ,求该平行六面体的体积.
- 3、(1) 验证直线 L_1 : $\begin{cases} x+2y-2z=5\\ 5x-2y-z=0 \end{cases}$ 与直线 L_2 : $\frac{x+3}{2}=\frac{y}{3}=\frac{z-1}{4}$ 平行; (2) 求经过 L_1 与 L_2 的平面方程.
- 4、已知球面 $x^2 + y^2 + z^2 2ax + 2y 2z + a^2 2 = 0$ 与平面 x + 2y 2z + 7 = 0 相切,求正常数 a 的值.
- 5、已知 $|\vec{a}|=2$, $|\vec{b}|=3$, $|\vec{a}+\vec{b}|=\sqrt{19}$,求 $|\vec{a}-\vec{b}|$.
- 6、设 $z = (1 + xy)^{x^2 y}$, 求 $\frac{\partial z}{\partial x}$ 与 $\frac{\partial z}{\partial y}$.
- 7、设z = f(2x y) + g(x, xy),其中函数f(w)具有二阶导数,g(u, v)具有二阶连续偏导数,求 $\frac{\partial z}{\partial x}$ 与 $\frac{\partial^2 z}{\partial x \partial y}$.

8、设
$$z = f(x, y)$$
, $x = g(y, z)$ 均可微, 求 $\frac{\mathrm{d}z}{\mathrm{d}x}$ (设解答中出现的分母不为零).

9、求曲线
$$L$$
:
$$\begin{cases} 2x^2 + 3y^2 + z^2 = 9 \\ z^2 = 3x^2 + y^2 \end{cases}$$
 在点 $M(1, -1, 2)$ 处的切线方程.

10、计算
$$\int_{1}^{3} dx \int_{x-1}^{2} e^{y^{2}} dy$$
.

11、设
$$D = \{(x, y) | (x-1)^2 + (y-1)^2 \le 2, y \ge x\}$$
, 计算 $\iint_D (x-y) d\sigma$.

12、设
$$D = \{(x, y) | \frac{1}{2} \le x \le 2, \frac{1}{2} \le y \le 2\}$$
,计算 $\iint_D |xy - 1| d\sigma$.

13、以曲面
$$x^2 - y^2 - z + 8 = 0$$
 上的点(1, 1, 8)处的切平面为顶,以椭圆柱面 $4x^2 + y^2 = 4$ 为侧面,以平面 $z = 0$ 为底围成一个斜顶柱体,计算其体积.

14、(1) 已知函数
$$u=x+y+z$$
,球面 $S: x^2+y^2+z^2=1$,点 $P_0(x_0,y_0,z_0)\in S$,求 u 在点 P_0 处沿 S 的外法线方向的方向导数 $\frac{\partial u}{\partial n}$; (2) 命 P_0 在 S 上变动,求 P_0 的坐标,使 $\frac{\partial u}{\partial n}$ 达最大,并求此最大值.

15、(1) 证明下述二元函数 z = f(x, y) 在点 (x_0, y_0) 处可微的必要条件定理: 设 z = f(x, y) 在点 (x_0, y_0) 处可微,则两个偏导数 $f_x'(x_0, y_0)$ 与 $f_y'(x_0, y_0)$ 必存在;

(2) 考察例子:
$$f(x, y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & \exists (x, y) \neq (0, 0) \\ 0, & \exists (x, y) = (0, 0) \end{cases}$$
, 说明(1) 的逆定理不真.

参考解答:

1. (1) 消去
$$x$$
, 得投影直线方程: $l: y+z=2$, $x=0$

(2) *l* 绕
$$Oz$$
 轴的旋转曲面: $\pm \sqrt{x^2 + y^2} + z = 2$, 即 $x^2 + y^2 = (z - 2)^2$

2.
$$\overrightarrow{AB} = \{4, 9, 2\}, \overrightarrow{AD} = \{2, 5, 7\}, \overrightarrow{AA'} = \{0, -2, 6\}$$

$$V = |(\overrightarrow{AB} \times \overrightarrow{AD}) \cdot \overrightarrow{AA'}| = \begin{vmatrix} 4 & 9 & 2 \\ 2 & 5 & 7 \\ 0 & -2 & 6 \end{vmatrix} = 60$$

$$A' \xrightarrow{\overleftarrow{D}}$$

3. (1)
$$L_1$$
 的方向矢量: $\vec{v}_1 = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 2 & -2 \\ 5 & -2 & -1 \end{vmatrix} = -3\{2, 3, 4\} = -3\vec{v}_2$,

$$\therefore \vec{v}_1 / / \vec{v}_2$$
,则 $\vec{L}_1 / / \vec{L}_2$.

(2) 过
$$L$$
 的平面東方程: $(x+2y-2z-5)+\lambda(5x-2y-z)=0$,

代入
$$L_2$$
上的点 $(-3,0,1)$,得 $\lambda = -\frac{5}{8}$,得所求平面方程:
$$17x - 26y + 11z + 40 = 0$$

4. 球面方程化为
$$(x-a)^2 + (y+1)^2 + (z-1)^2 = 4$$
, 球心 $(a, -1, 1)$ 到平面 $x + 2y - 2z + 7 = 0$ 的距离 $d = \frac{1}{3}|a - 2 - 2 + 7| = 2$, $\therefore a = 3$

5.
$$19 = |\vec{a} + \vec{b}|^2 = (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = \vec{a} \cdot \vec{a} + 2\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b} = 13 + 2\vec{a} \cdot \vec{b}, \ \ \therefore \vec{a} \cdot \vec{b} = 3$$

 $|\vec{a} - \vec{b}|^2 = (\vec{a} - \vec{b}) \cdot (\vec{a} - \vec{b}) = 13 - 2\vec{a} \cdot \vec{b} = 7,$
 $\therefore |\vec{a} - \vec{b}| = \sqrt{7}.$

6.
$$\frac{\partial z}{\partial x} = x^2 y^2 (1 + xy)^{x^2 y - 1} + 2xy (1 + xy)^{x^2 y} \ln(1 + xy),$$
$$\frac{\partial z}{\partial y} = x^3 y (1 + xy)^{x^2 y - 1} + x^2 (1 + xy)^{x^2 y} \ln(1 + xy).$$

7.
$$\frac{\partial z}{\partial x} = 2f' + g'_1 + yg'_2$$
, $\frac{\partial^2 z}{\partial x \partial y} = -2f'' + xg''_{12} + g'_2 + xyg''_{22}$

8.
$$dz = f'_x dx + f'_y dy$$
, $dx = g'_y dy + g'_z dz$, 即
$$\begin{cases} g'_y dy + g'_z dz = dx \\ f'_y dy - dz = -f'_x dx, \end{cases}$$
解得 $\frac{dz}{dx} = \frac{f'_x g'_y + f'_y}{f'_y g'_z + g'_y}$

9. 曲线
$$L$$
:
$$\begin{cases} 2x^2 + 3y^2 + z^2 - 9 = 0 \\ 3x^2 + y^2 - z^2 = 0 \end{cases}$$
 在点 $M(1, -1, 2)$ 处的切矢量

$$\vec{v} /\!/ \vec{n}_1 \times \vec{n}_2 = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 4x & 6y & 2z \\ 6x & 2y & -2z \end{vmatrix}_M = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 4 & -6 & 4 \\ 6 & -2 & -4 \end{vmatrix} = 4 \{8, 10, 7\}$$

则切线方程: $\frac{x-1}{8} = \frac{y+1}{10} = \frac{z-2}{7}$.

$$\int_{1}^{3} dx \int_{x-1}^{2} e^{y^{2}} dy = \int_{0}^{2} dy \int_{1}^{y+1} e^{y^{2}} dx.$$
$$= \int_{0}^{2} y e^{y^{2}} dy = \frac{1}{2} e^{y^{2}} \Big|_{0}^{2} = \frac{1}{2} (e^{4} - 1)$$

11. 解 1: 利用极坐标: $x = r \cos \theta$, $y = r \sin \theta$,

$$\mathbb{E} (x-1)^2 + (y-1)^2 = 2 \Leftrightarrow r = 2(\sin\theta + \cos\theta), \frac{\pi}{4} \leq \theta \leq \frac{3\pi}{4}$$

$$\iint_D (x-y) d\sigma. = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} d\theta \int_0^{2(\sin\theta + \cos\theta)} (\cos\theta - \sin\theta) r^2 dr$$

$$=\frac{8}{3}\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}}(\sin\theta+\cos\theta)^3 \ d(\sin\theta+\cos\theta) = \frac{2}{3}(\sin\theta+\cos\theta)^4 \left|_{\frac{\pi}{4}}^{\frac{3\pi}{4}} = -\frac{8}{3}\right|_{\frac{\pi}{4}}^{\frac{3\pi}{4}}$$

解 2: 坐标变换:
$$x-1=r\cos\theta$$
, $y-1=r\sin\theta$, 圆: $r=\sqrt{2}$, $\frac{\pi}{4} \le \theta \le \frac{5\pi}{4}$

$$\iint\limits_{D} (x - y) d\sigma. = \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} d\theta \int_{0}^{\sqrt{2}} (\cos\theta - \sin\theta) r^{2} dr$$

$$= \frac{2\sqrt{2}}{3} \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} (\cos \theta - \sin \theta) d\theta = \frac{2\sqrt{2}}{3} (\sin \theta + \cos \theta) \Big|_{\frac{\pi}{4}}^{\frac{5\pi}{4}} = \frac{2\sqrt{2}}{3} (-2\sqrt{2}) = -\frac{8}{3}.$$

12. 积分区域分成二部分:
$$D = D_1(xy < 1) + D_2(xy > 1)$$
,
$$\iint_D |xy - 1| d\sigma = \iint_{D_1} (1 - xy) d\sigma + \iint_{D_2} (xy - 1) d\sigma$$

$$= \int_{\frac{1}{2}}^2 dx \int_{\frac{1}{2}}^{\frac{1}{2}} (1 - xy) dy + \int_{\frac{1}{2}}^2 dx \int_{\frac{1}{2}}^2 (xy - 1) dy = 2 \ln 2 + \frac{15}{64}$$

13. 曲面 $x^2 - y^2 - z + 8 = 0$ 在点(1, 1, 8) 处的法矢量: $\vec{n} = \{2x, -2y, -1\}_0 = \{2, -2, -1\}$ 切平面方程: 2(x-1) - 2(y-1) - (z-8) = 0 即 z = 2x - 2y + 8,

记 $D:4x^2+y^2\leq 4$, 则斜顶柱体的体积:

$$V = \iint_{D} (2x - 2y + 8) d\sigma = \iint_{D} 8 d\sigma = 8 \iint_{D} d\sigma = 8 \cdot \pi \cdot 1 \cdot 2 = 16\pi.$$

14. (1) S 在点 $P_0(x_0, y_0, z_0)$ 的外法线矢量: $\vec{n} = \{2x_0, 2y_0, 2z_0\}$, $\vec{n}^0 = \{x_0, y_0, z_0\}$

$$\text{III} \quad \frac{\partial u}{\partial n} = \{ \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z} \}_{P_0} \cdot \vec{n}^0 = \{1, 1, 1\} \cdot \{x_0, y_0, z_0\} = x_0 + y_0 + z_0.$$

(2) 令
$$F(x, y, z, \lambda) = x + y + z + \lambda(x^2 + y^2 + z^2 - 1)$$
, 由拉格朗日乘数法,
$$\frac{\partial F}{\partial x} = 1 + 2\lambda x = 0, \frac{\partial F}{\partial y} = 1 + 2\lambda y = 0, \frac{\partial F}{\partial z} = 1 + 2\lambda z = 0,$$

$$\frac{\partial F}{\partial \lambda} = x^2 + y^2 + z^2 - 1 = 0$$

由前 3 个方程得 x = y = z,代入第 4 个方程,解得 $x = y = z = \pm \frac{\sqrt{3}}{3}$,则 函数在 $P_0(\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2})$ 处取得最大值,且 $\max(\frac{\partial u}{\partial v}) = \sqrt{3}$.

15. (1) 略.

(2)
$$f'_x(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x - 0} = \lim_{x \to 0} \frac{0 - 0}{x} = 0$$
, $f'_y(0,0) = 0$,

即 f(x,y) 在 (0,0) 处两个偏导数存在,但是不可微,用反证法,若可微,则

$$\Delta f = f'_x(0,0)\Delta x + f'_y(0,0)\Delta y + o(\rho), \quad \rho = \sqrt{(\Delta x)^2 + (\Delta y)^2},$$

$$\text{EV} \quad \lim_{\Delta x \to 0 \atop \Delta y \to 0} \frac{\Delta f - [f_x'(0,0)\Delta x + f_y'(0,0)\Delta y]}{\rho} = \lim_{\Delta x \to 0 \atop \Delta y \to 0} \frac{\Delta x \Delta y}{(\Delta x)^2 + (\Delta y)^2} = 0$$

而上式极限不存在,因而f(x,y)在(0,0)处不可微.