

# Digital Signal Processing

Module 9: Digital Communication Systems

#### Module Overview:



- ► Module 9.1: The analog channel
- ▶ Module 9.2: Meeting the bandwidth constraint
- ▶ Module 9.3: Meeting the power constraint
- ► Module 9.4: Modulation and demodulation
- ► Module 9.5: Receiver design
- ► Module 9.6: ADSL

9



# Digital Signal Processing

Module 9.1: Digital Communication Systems

### Overview:



- ▶ The many incarnations of a signal
- Analog channel constraints
- ► Satisfying the constraints

### Overview:



- ▶ The many incarnations of a signal
- Analog channel constraints
- ► Satisfying the constraints

### Overview:



- ▶ The many incarnations of a signal
- Analog channel constraints
- ► Satisfying the constraints

### Digital data throughputs



- Transatlantic cable:
  - 1866: 8 words per minute ( $\approx$ 5 bps)
  - 1956: AT&T, coax, 48 voice channels (≈3Mbps)
  - ullet 2005: Alcatel Tera10, fiber, 8.4 Tbps (8.4 imes 10<sup>12</sup> bps)
  - 2012: fiber, 60 Tbps
- Voiceband modems
  - 1950s: Bell 202, 1200 bps
  - 1990s: V90, 56Kbps
  - 2008: ADSL2+, 24Mbps

### Digital data throughputs



- Transatlantic cable:
  - 1866: 8 words per minute ( $\approx$ 5 bps)
  - 1956: AT&T, coax, 48 voice channels ( $\approx$ 3Mbps)
  - ullet 2005: Alcatel Tera10, fiber, 8.4 Tbps (8.4 imes 10<sup>12</sup> bps)
  - 2012: fiber, 60 Tbps
- Voiceband modems
  - 1950s: Bell 202, 1200 bps
  - 1990s: V90, 56Kbps
  - 2008: ADSL2+, 24Mbps

# Success factors for digital communications



- 1) power of the DSP paradigm:
  - ▶ integers are "easy" to regenerate
  - ▶ good phase control
  - adaptive algorithms













$$G[x(t)/G + \sigma(t)] = x(t) + G\sigma(t)$$





$$\hat{x}_1(t) = G\operatorname{sgn}[x(t) + \sigma(t)]$$

# Success factors for digital communications



- 2) algorithmic nature of DSP is a perfect match with information theory:
  - ► JPEG's entropy coding
  - CD's and DVD's error correction
  - ▶ trellis-coded modulation and Viterbi decoding

# Success factors for digital communications



- 3) hardware advancement
  - miniaturization
  - ► general-purpose platforms
  - power efficiency

# The many incarnations of a conversation





# The analog channel



#### unescapable "limits" of physical channels:

- ▶ bandwidth constraint
- power constraint

both constraints will affect the final *capacity* of the channel

### The analog channel



unescapable "limits" of physical channels:

- ► bandwidth constraint
- power constraint

both constraints will affect the final *capacity* of the channel

### The analog channel



unescapable "limits" of physical channels:

- ▶ bandwidth constraint
- power constraint

both constraints will affect the final capacity of the channel

# The analog channel's capacity



maximum amount of information that can be reliably delivered over a channel (bits per second)



- we want to transmit information encoded as a sequence of digital samples over a continuous-time channel
- lacktriangle we interpolate the sequence of samples with a period  $\mathcal{T}_s$
- ightharpoonup if we make  $T_s$  small we can send more info per unit of time...
- lacksquare ... but the bandwidth of the signal will grow as  $1/T_s$



- we want to transmit information encoded as a sequence of digital samples over a continuous-time channel
- ightharpoonup we interpolate the sequence of samples with a period  $T_s$
- $\blacktriangleright$  if we make  $T_s$  small we can send more info per unit of time...
- lacksquare ... but the bandwidth of the signal will grow as  $1/T_s$



- we want to transmit information encoded as a sequence of digital samples over a continuous-time channel
- ightharpoonup we interpolate the sequence of samples with a period  $T_s$
- ightharpoonup if we make  $T_s$  small we can send more info per unit of time...
- ightharpoonup ... but the bandwidth of the signal will grow as  $1/T_s$



- we want to transmit information encoded as a sequence of digital samples over a continuous-time channel
- ightharpoonup we interpolate the sequence of samples with a period  $T_s$
- ightharpoonup if we make  $T_s$  small we can send more info per unit of time...
- lacksquare ... but the bandwidth of the signal will grow as  $1/T_s$



#### another thought experiment:

- ▶ all channels introduce noise; at the receiver we have to "guess" what was transmitted
- suppose noise variance is 1
- ▶ suppose we are transmitting integers between 1 and 10: lots of guessing errors
- ▶ transmit only odd numbers: fewer errors but less information

).1



#### another thought experiment:

- ▶ all channels introduce noise; at the receiver we have to "guess" what was transmitted
- ▶ suppose noise variance is 1
- ▶ suppose we are transmitting integers between 1 and 10: lots of guessing errors
- ▶ transmit only odd numbers: fewer errors but less information



#### another thought experiment:

- ▶ all channels introduce noise; at the receiver we have to "guess" what was transmitted
- suppose noise variance is 1
- ▶ suppose we are transmitting integers between 1 and 10: lots of guessing errors
- ▶ transmit only odd numbers: fewer errors but less information

).1



#### another thought experiment:

- ▶ all channels introduce noise; at the receiver we have to "guess" what was transmitted
- suppose noise variance is 1
- ▶ suppose we are transmitting integers between 1 and 10: lots of guessing errors
- ▶ transmit only odd numbers: fewer errors but less information

).1







- ▶ from 530kHz to 1.7MHz
- ► each channel is 8KHz
- power limited by law:
  - daytime/nighttime
  - interference
  - health hazards



- ▶ from 530kHz to 1.7MHz
- ▶ each channel is 8KHz
- power limited by law:
  - daytime/nighttime
  - interference
  - health hazards



- ▶ from 530kHz to 1.7MHz
- ▶ each channel is 8KHz
- power limited by law:
  - daytime/nighttime
  - interference
  - health hazards



- ▶ from 530kHz to 1.7MHz
- ▶ each channel is 8KHz
- power limited by law:
  - daytime/nighttime
  - interference
  - health hazards



- ▶ from 530kHz to 1.7MHz
- ▶ each channel is 8KHz
- power limited by law:
  - daytime/nighttime
  - interference
  - health hazards



- ▶ from 530kHz to 1.7MHz
- ▶ each channel is 8KHz
- power limited by law:
  - daytime/nighttime
  - interference
  - health hazards

# Example: the telephone channel





## Example: the telephone channel



- ▶ one channel from around 300Hz to around 3000Hz
- power limited by law to 0.2-0.7V rms
- ▶ noise is rather low: SNR usually 30dB or more

## Example: the telephone channel



- ▶ one channel from around 300Hz to around 3000Hz
- power limited by law to 0.2-0.7V rms
- ▶ noise is rather low: SNR usually 30dB or more

## Example: the telephone channel



- ▶ one channel from around 300Hz to around 3000Hz
- power limited by law to 0.2-0.7V rms
- ▶ noise is rather low: SNR usually 30dB or more

## The all-digital paradigm



keep everything digital until we hit the physical channel



### Let's look at the channel constraints





## Converting the specs to a digital design





## Converting the specs to a digital design





## Converting the specs to a digital design







#### some working hypotheses:

- ightharpoonup convert the bitstream into a sequence of symbols a[n] via a mapper
- ightharpoonup model a[n] as a white random sequence (add a scrambler on the bitstream to make sure)
- $\triangleright$  now we need to convert a[n] into a continuous-time signal within the constraints

21



#### some working hypotheses:

- $\triangleright$  convert the bitstream into a sequence of symbols a[n] via a mapper
- ightharpoonup model a[n] as a white random sequence (add a scrambler on the bitstream to make sure)
- $\triangleright$  now we need to convert a[n] into a continuous-time signal within the constraints



#### some working hypotheses:

- $\triangleright$  convert the bitstream into a sequence of symbols a[n] via a mapper
- ightharpoonup model a[n] as a white random sequence (add a scrambler on the bitstream to make sure)
- $\triangleright$  now we need to convert a[n] into a continuous-time signal within the constraints



#### some working hypotheses:

- ightharpoonup convert the bitstream into a sequence of symbols a[n] via a mapper
- ightharpoonup model a[n] as a white random sequence (add a scrambler on the bitstream to make sure)
- $\triangleright$  now we need to convert a[n] into a continuous-time signal within the constraints



## First problem: the bandwidth constraint



$$P_a(e^{j\omega}) = \sigma_a^2$$



## First problem: the bandwidth constraint







# END OF MODULE 9.1



# Digital Signal Processing

Module 9.2: Controlling the Bandwidth

## Overview:



- ► Upsampling
- ► Fitting the transmitter's spectrum

## Overview:



- ▶ Upsampling
- ► Fitting the transmitter's spectrum

## Shaping the bandwidth



#### Our problem:

- ▶ bandwidth constraint requires us to control the spectral support of a signal
- ▶ we need to be able to "shrink" the support of a full-band signal
- ▶ the answer is *multirate* techniques

## Shaping the bandwidth



#### Our problem:

- ▶ bandwidth constraint requires us to control the spectral support of a signal
- ▶ we need to be able to "shrink" the support of a full-band signal
- ▶ the answer is *multirate* techniques

## Shaping the bandwidth



#### Our problem:

- ▶ bandwidth constraint requires us to control the spectral support of a signal
- ▶ we need to be able to "shrink" the support of a full-band signal
- ▶ the answer is *multirate* techniques

## Multirate signal processing



#### In a nutshell:

- ▶ increase or decrease the number of samples in a discrete-time signal
- equivalent to going to continuous time and resampling
- staying in the digital world is "cleaner"

## Multirate signal processing



#### In a nutshell:

- ▶ increase or decrease the number of samples in a discrete-time signal
- equivalent to going to continuous time and resampling
- staying in the digital world is "cleaner"

## Multirate signal processing



#### In a nutshell:

- ▶ increase or decrease the number of samples in a discrete-time signal
- equivalent to going to continuous time and resampling
- staying in the digital world is "cleaner"

## Upsampling via continuous time





















## **Upsampling**



As per usual, we can choose  $T_s = 1...$ 

$$x_c(t) = \sum_{m=-\infty}^{\infty} x[m] \operatorname{sinc}(t-m)$$

$$x'[n] = x_c(n/K)$$

$$= \sum_{m=-\infty}^{\infty} x[m] \operatorname{sinc}\left(\frac{n}{K} - m\right)$$

## Upsampling



As per usual, we can choose  $T_s = 1...$ 

$$x_c(t) = \sum_{m=-\infty}^{\infty} x[m] \operatorname{sinc}(t-m)$$

$$x'[n] = x_c(n/K)$$
  
=  $\sum_{m=-\infty}^{\infty} x[m] \operatorname{sinc}\left(\frac{n}{K} - m\right)$ 



















## Upsampling in the digital domain



#### what can we do purely digitally?

- $\blacktriangleright$  we need to "increase" the number of samples by K
- obviously  $x_U[m] = x[n]$  when m multiple of K
- ▶ for lack of a better strategy, put zeros elsewhere
- example for K = 3:

$$x_U[m] = \dots \times [0], 0, 0, \times [1], 0, 0, \times [2], 0, 0, \dots$$



#### what can we do purely digitally?

- ▶ we need to "increase" the number of samples by *K*
- obviously  $x_U[m] = x[n]$  when m multiple of K
- ▶ for lack of a better strategy, put zeros elsewhere
- ightharpoonup example for K=3:

$$x_U[m] = \dots \times [0], 0, 0, \times [1], 0, 0, \times [2], 0, 0, \dots$$



what can we do purely digitally?

- ▶ we need to "increase" the number of samples by K
- obviously  $x_U[m] = x[n]$  when m multiple of K
- ▶ for lack of a better strategy, put zeros elsewhere
- ightharpoonup example for K=3:

$$x_U[m] = \dots \times [0], 0, 0, \times [1], 0, 0, \times [2], 0, 0, \dots$$



what can we do purely digitally?

- ▶ we need to "increase" the number of samples by K
- obviously  $x_U[m] = x[n]$  when m multiple of K
- ▶ for lack of a better strategy, put zeros elsewhere
- ightharpoonup example for K=3:

$$x_U[m] = \dots \times [0], 0, 0, \times [1], 0, 0, \times [2], 0, 0, \dots$$

# Upsampling in the Time Domain





# Upsampling in the Time Domain







in the frequency domain

$$X_{U}(e^{j\omega}) = \sum_{m=-\infty}^{\infty} x_{U}[m]e^{-j\omega m}$$
$$= \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega nK}$$
$$= X(e^{j\omega K})$$



in the frequency domain

$$X_{U}(e^{j\omega}) = \sum_{m=-\infty}^{\infty} x_{U}[m]e^{-j\omega m}$$
$$= \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega nK}$$
$$= X(e^{j\omega K})$$



in the frequency domain

$$X_{U}(e^{j\omega}) = \sum_{m=-\infty}^{\infty} x_{U}[m]e^{-j\omega m}$$
$$= \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega nK}$$
$$= X(e^{j\omega K})$$





























#### back in time domain...

- ▶ insert K-1 zeros after every sample
- ideal lowpass filtering with  $\omega_c = \pi/K$

$$x'[n] = x_{U}(n) * \operatorname{sinc}(n/K)$$

$$= \sum_{i=-\infty}^{\infty} x_{U}[i] \operatorname{sinc}\left(\frac{n-i}{K}\right)$$

$$= \sum_{m=-\infty}^{\infty} x[m] \operatorname{sinc}\left(\frac{n}{K} - m\right)$$



back in time domain...

- $\blacktriangleright$  insert K-1 zeros after every sample
- ideal lowpass filtering with  $\omega_c = \pi/K$

$$x'[n] = x_U(n) * \operatorname{sinc}(n/K)$$

$$= \sum_{i=-\infty}^{\infty} x_U[i] \operatorname{sinc}\left(\frac{n-i}{K}\right)$$

$$= \sum_{m=-\infty}^{\infty} x[m] \operatorname{sinc}\left(\frac{n}{K} - m\right)$$

## Downsampling



• given an upsampled signal we can always recover the original:

$$x[n] = x_U[nK]$$

downsampling of generic signals more complicated (aliasing)

## Downsampling



▶ given an upsampled signal we can always recover the original:

$$x[n] = x_U[nK]$$

downsampling of generic signals more complicated (aliasing)

#### Remember the bandwidth constraint?







let  $W = F_{\text{max}} - F_{\text{min}}$ ; pick  $F_s$  so that:

- $F_s > 2F_{\text{max}}$  (obviously)
- $F_s = KW, K \in \mathbb{N}$



let  $W = F_{\text{max}} - F_{\text{min}}$ ; pick  $F_s$  so that:

- $F_s > 2F_{\text{max}}$  (obviously)
- $ightharpoonup F_s = KW, K \in \mathbb{N}$



let  $W = F_{\text{max}} - F_{\text{min}}$ ; pick  $F_s$  so that:

- $F_s > 2F_{\text{max}}$  (obviously)
- ▶  $F_s = KW$ ,  $K \in \mathbb{N}$

$$\omega_{\mathsf{max}} - \omega_{\mathsf{min}} = 2\pi \frac{W}{F_{\mathsf{s}}} = \frac{2\pi}{K}$$



let  $W = F_{\text{max}} - F_{\text{min}}$ ; pick  $F_s$  so that:

- $F_s > 2F_{\text{max}}$  (obviously)
- $ightharpoonup F_s = KW, K \in \mathbb{N}$

$$\omega_{\max} - \omega_{\min} = 2\pi \frac{W}{F_s} = \frac{2\pi}{K}$$

#### Data rates



- upsampling does not change the data rate
- ightharpoonup we produce (and transmit) W symbols per second
- ▶ W is sometimes called the Baud rate of the system and is equal to the available bandwidth

#### Data rates



- upsampling does not change the data rate
- ightharpoonup we produce (and transmit) W symbols per second
- ▶ *W* is sometimes called the Baud rate of the system and is equal to the available bandwidth

#### Data rates



- upsampling does not change the data rate
- ightharpoonup we produce (and transmit) W symbols per second
- ▶ *W* is sometimes called the Baud rate of the system and is equal to the available bandwidth

## Transmitter design, continued









































# Spectral shaping with raised cosine





# END OF MODULE 9.2



# Digital Signal Processing

Module 9.3: Controlling the Power

## Overview:



- ► Noise and probability of error
- ► Signaling alphabet and power
- QAM signaling

## Overview:



- ► Noise and probability of error
- Signaling alphabet and power
- QAM signaling

## Overview:



- ► Noise and probability of error
- Signaling alphabet and power
- QAM signaling



- ightharpoonup transmitter sends a sequence of symbols a[n]
- ▶ receiver obtaines a sequence  $\hat{a}[n]$
- even if no distortion we can't avoid noise:  $\hat{a}[n] = a[n] + \eta[n]$
- when noise is large, we make an error



- ightharpoonup transmitter sends a sequence of symbols a[n]
- ▶ receiver obtaines a sequence  $\hat{a}[n]$
- even if no distortion we can't avoid noise:  $\hat{a}[n] = a[n] + \eta[n]$
- when noise is large, we make an error



- ightharpoonup transmitter sends a sequence of symbols a[n]
- ▶ receiver obtaines a sequence  $\hat{a}[n]$
- even if no distortion we can't avoid noise:  $\hat{a}[n] = a[n] + \eta[n]$
- ▶ when noise is large, we make an error



- ightharpoonup transmitter sends a sequence of symbols a[n]
- ▶ receiver obtaines a sequence  $\hat{a}[n]$
- even if no distortion we can't avoid noise:  $\hat{a}[n] = a[n] + \eta[n]$
- ▶ when noise is large, we make an error



#### depends on:

- power of the noise wrt power of the signal
- decoding strategy
- ► *alphabet* of transmission symbols



#### depends on:

- power of the noise wrt power of the signal
- decoding strategy
- ► *alphabet* of transmission symbols



#### depends on:

- power of the noise wrt power of the signal
- decoding strategy
- ► *alphabet* of transmission symbols

## Signaling alphabets



- ▶ we have a (randomized) bitstream coming in
- ▶ we want to send some upsampled and interpolated samples over the channel
- ▶ how do we go from bitstream to samples?

## Signaling alphabets



- ▶ we have a (randomized) bitstream coming in
- ▶ we want to send some upsampled and interpolated samples over the channel
- ▶ how do we go from bitstream to samples?

## Signaling alphabets



- ▶ we have a (randomized) bitstream coming in
- ▶ we want to send some upsampled and interpolated samples over the channel
- ▶ how do we go from bitstream to samples?

## Mappers and slicers



#### mapper:

- split incoming bitstream into chunks
- ightharpoonup assign a symbol a[n] from a finite alphabet  $\mathcal A$  to each chunk

#### slicer:

- receive a value  $\hat{a}[n]$
- ▶ decide which symbol from A is "closest" to  $\hat{a}[n]$
- piece back together the corresponding bitstream



#### mapper:

- split incoming bitstream into single bits
- ▶ a[n] = G if the bit is 1, a[n] = -G if the bit is 0

#### slicer:















let's look at the probability of error after making some hypotheses:

- $\hat{a}[n] = a[n] + \eta[n]$
- ▶ bits in bitstream are equiprobable
- noise and signal are independent
- lacktriangle noise is additive white Gaussian noise with zero mean and variance  $\sigma_0$



$$\begin{split} P_{\mathsf{err}} &= P[\; \eta[n] < -G \; | \; \textit{n-th bit is 1} \;] P[\; \textit{n-th bit is 1} \;] + \\ &P[\; \eta[n] > G \; | \; \textit{n-th bit is 0} \;] P[\; \textit{n-th bit is 0} \;] \\ &= (P[\; \eta[n] < -G \;] + P[\; \eta[n] > G \;])/2 \\ &= P[\; \eta[n] > G \;] \\ &= \int_G^\infty \frac{1}{\sqrt{2\pi\sigma_0^2}} e^{-\frac{\tau^2}{2\sigma_0^2}} d\tau \\ &= Q(G/\sigma_0) = \frac{1}{2} \mathrm{erfc}((G/\sigma_0)/\sqrt{2}) \end{split}$$



$$\begin{split} P_{\text{err}} &= P[\; \eta[n] < -G \; \mid \; \textit{n-th bit is 1} \;] P[\; \textit{n-th bit is 1} \;] + \\ &P[\; \eta[n] > G \; \mid \; \textit{n-th bit is 0} \;] P[\; \textit{n-th bit is 0} \;] \\ &= (P[\; \eta[n] < -G \;] + P[\; \eta[n] > G \;])/2 \\ &= P[\; \eta[n] > G \;] \\ &= \int_G^\infty \frac{1}{\sqrt{2\pi\sigma_0^2}} e^{-\frac{\tau^2}{2\sigma_0^2}} d\tau \\ &= Q(G/\sigma_0) = \frac{1}{2} \text{erfc}((G/\sigma_0)/\sqrt{2}) \end{split}$$



$$P_{\text{err}} = P[\ \eta[n] < -G \ | \ n\text{-th bit is 1}\ ]P[\ n\text{-th bit is 1}\ ]+$$

$$P[\ \eta[n] > G \ | \ n\text{-th bit is 0}\ ]P[\ n\text{-th bit is 0}\ ]$$

$$= (P[\ \eta[n] < -G\ ] + P[\ \eta[n] > G\ ])/2$$

$$= P[\ \eta[n] > G\ ]$$

$$= \int_G^\infty \frac{1}{\sqrt{2\pi\sigma_0^2}} e^{-\frac{\tau^2}{2\sigma_0^2}} d\tau$$

$$= Q(G/\sigma_0) = \frac{1}{2} \text{erfc}((G/\sigma_0)/\sqrt{2})$$



$$\begin{split} P_{\mathsf{err}} &= P[\; \eta[n] < -G \; \mid \; n\text{-th bit is 1} \;] P[\; n\text{-th bit is 1} \;] + \\ & P[\; \eta[n] > G \; \mid \; n\text{-th bit is 0} \;] P[\; n\text{-th bit is 0} \;] \\ &= (P[\; \eta[n] < -G \;] + P[\; \eta[n] > G \;])/2 \\ &= P[\; \eta[n] > G \;] \\ &= \int_G^\infty \frac{1}{\sqrt{2\pi\sigma_0^2}} e^{-\frac{\tau^2}{2\sigma_0^2}} d\tau \\ &= Q(G/\sigma_0) = \frac{1}{2} \mathrm{erfc}((G/\sigma_0)/\sqrt{2}) \end{split}$$



$$\begin{split} P_{\mathsf{err}} &= P[\ \eta[n] < -G \ | \ n\text{-th bit is 1}\ ]P[\ n\text{-th bit is 1}\ ]+\\ &P[\ \eta[n] > G \ | \ n\text{-th bit is 0}\ ]P[\ n\text{-th bit is 0}\ ]\\ &= (P[\ \eta[n] < -G\ ] + P[\ \eta[n] > G\ ])/2\\ &= P[\ \eta[n] > G\ ]\\ &= \int_G^\infty \frac{1}{\sqrt{2\pi\sigma_0^2}} e^{-\frac{\tau^2}{2\sigma_0^2}} d\tau\\ &= Q(G/\sigma_0) = \frac{1}{2} \mathrm{erfc}((G/\sigma_0)/\sqrt{2}) \end{split}$$



transmitted power

$$\sigma_s^2 = G^2 P[n\text{-th bit is 1}] + G^2 P[n\text{-th bit is 0}]$$
  
=  $G^2$ 

$$P_{\text{err}} = Q(\sigma_s/\sigma_0) = Q(\sqrt{\text{SNR}})$$



transmitted power

$$\sigma_s^2 = G^2 P[n\text{-th bit is 1}] + G^2 P[n\text{-th bit is 0}]$$
  
=  $G^2$ 

$$P_{\text{err}} = Q(\sigma_s/\sigma_0) = Q(\sqrt{\text{SNR}})$$



transmitted power

$$\sigma_s^2 = G^2 P[n\text{-th bit is 1}] + G^2 P[n\text{-th bit is 0}]$$
  
=  $G^2$ 

$$P_{\mathsf{err}} = Q(\sigma_s/\sigma_0) = Q(\sqrt{\mathsf{SNR}})$$





## Lesson learned:



- ▶ to reduce the probability of error increase *G*
- ightharpoonup increases the power
- ▶ we can't go above the channel's power constraint!

## Lesson learned:



- ▶ to reduce the probability of error increase *G*
- ▶ increasing *G* increases the power
- ▶ we can't go above the channel's power constraint!

### Lesson learned:



- ▶ to reduce the probability of error increase *G*
- ▶ increasing *G* increases the power
- ▶ we can't go above the channel's power constraint!

## Multilevel signaling



- binary signaling is not very efficient (one bit at a time)
- ▶ to increase the throughput we can use multilevel signaling
- many ways to do so, we will just scratch the surface

## Multilevel signaling



- binary signaling is not very efficient (one bit at a time)
- ▶ to increase the throughput we can use multilevel signaling
- ▶ many ways to do so, we will just scratch the surface

# Multilevel signaling



- binary signaling is not very efficient (one bit at a time)
- ▶ to increase the throughput we can use multilevel signaling
- ▶ many ways to do so, we will just scratch the surface

### **PAM**



### mapper:

- ▶ split incoming bitstream into chunks of *M* bits
- lacktriangle chunks define a sequence of integers  $k[n] \in \{0,1,\ldots,2^M-1\}$
- ▶  $a[n] = G((-2^M + 1) + 2k[n])$  (odd integers around zero)

### slicer:

 $a'[n] = \arg\min_{a \in \mathcal{A}} [|\hat{a}[n] - a|]$ 

# PAM, M = 2, G = 1





- ightharpoonup distance between points is 2G
- using odd integers creates a zero-mean sequence

## PAM, M = 2, G = 1





- ▶ distance between points is 2*G*
- using odd integers creates a zero-mean sequence

## PAM, M = 2, G = 1





- ightharpoonup distance between points is 2G
- using odd integers creates a zero-mean sequence

## From PAM to QAM



- error analysis for PAM along the lines of binary signaling
- ▶ can we increase the throughput even further?
- ▶ here's a wild idea, let's use complex numbers

59

## From PAM to QAM



- error analysis for PAM along the lines of binary signaling
- can we increase the throughput even further?
- ▶ here's a wild idea, let's use complex numbers

### From PAM to QAM



- error analysis for PAM along the lines of binary signaling
- can we increase the throughput even further?
- ▶ here's a wild idea, let's use complex numbers



### mapper:

- ▶ split incoming bitstream into chunks of *M* bits, *M* even
- use M/2 bits to define a PAM sequence  $a_r[n]$
- use the remaining M/2 bits to define an independent PAM sequence  $a_i[n]$

### slicer:

 $a'[n] = \arg\min_{a \in \mathcal{A}} [|\hat{a}[n] - a|]$ 

# QAM, M = 2, G = 1





# QAM, M = 4, G = 1





9.3 62





3







































$$P_{\mathsf{err}} = 1 - P[|\operatorname{\mathsf{Re}}(\eta[n])| < G \ \land \ |\operatorname{\mathsf{Im}}(\eta[n])| < G]$$
  $= 1 - \int_{\mathcal{D}} f_{\eta}(z) \, dz$ 



$$P_{\mathsf{err}} = 1 - P[|\operatorname{\mathsf{Re}}(\eta[n])| < G \, \wedge \, |\operatorname{\mathsf{Im}}(\eta[n])| < G]$$
  $= 1 - \int_D f_\eta(z) \, dz$ 







 $P_{\mathsf{err}} pprox e^{-rac{G^2}{\sigma_0^2}}$ 



transmitted power (all symbols equiprobable and independent):

$$\sigma_s^2 = G^2 \frac{1}{2^M} \sum_{\mathbf{a} \in \mathcal{A}} |\mathbf{a}|^2$$
$$= G^2 \frac{2}{3} (2^M - 1)$$

$$P_{
m err} pprox e^{-rac{G^2}{\sigma_0^2}} pprox e^{-3\cdot 2^{-(M+1)}\,{
m SNF}}$$



transmitted power (all symbols equiprobable and independent):

$$\sigma_s^2 = G^2 \frac{1}{2^M} \sum_{a \in \mathcal{A}} |a|^2$$

$$= G^2 \frac{2}{3} (2^M - 1)$$

$$P_{\rm err} pprox {
m e}^{-{G^2 \over \sigma_0^2}} pprox {
m e}^{-3\cdot 2^{-(M+1)}\,{
m SNF}}$$



transmitted power (all symbols equiprobable and independent):

$$\sigma_s^2 = G^2 \frac{1}{2^M} \sum_{a \in \mathcal{A}} |a|^2$$

$$= G^2 \frac{2}{3} (2^M - 1)$$

$$P_{
m err} pprox e^{-rac{G^2}{\sigma_0^2}} pprox e^{-3\cdot 2^{-(M+1)}\,{
m SNR}}$$

# Probability of error





# Probability of error





# Probability of error







- $\triangleright$  pick a probability of error you can live with (e.g.  $10^{-6}$ )
- ▶ find out the SNR imposed by the channel's power constraint

$$M = \log_2\left(1 - \frac{3}{2} \frac{\mathsf{SNR}}{\mathsf{ln}(p_e)}\right)$$

▶ final throughput will be *MW* 



- $\triangleright$  pick a probability of error you can live with (e.g.  $10^{-6}$ )
- ▶ find out the SNR imposed by the channel's power constraint

$$M = \log_2 \left( 1 - \frac{3}{2} \frac{\mathsf{SNR}}{\mathsf{ln}(p_e)} \right)$$

▶ final throughput will be *MW* 



- $\triangleright$  pick a probability of error you can live with (e.g.  $10^{-6}$ )
- ▶ find out the SNR imposed by the channel's power constraint

$$M = \log_2 \left( 1 - \frac{3}{2} \frac{\mathsf{SNR}}{\mathsf{In}(p_\mathsf{e})} \right)$$

▶ final throughput will be *MW* 



- $\triangleright$  pick a probability of error you can live with (e.g.  $10^{-6}$ )
- ▶ find out the SNR imposed by the channel's power constraint

$$M = \log_2 \left( 1 - \frac{3}{2} \frac{\mathsf{SNR}}{\mathsf{ln}(p_e)} \right)$$

► final throughput will be *MW* 





- we know how to fit the bandwidth constraint
- ▶ with QAM, we know how many bits per symbol we can use given the power constraint
- we know the theoretical throughput of the transmitter

but how do we transmit complex symbols over a real channel?





- we know how to fit the bandwidth constraint
- ▶ with QAM, we know how many bits per symbol we can use given the power constraint
- we know the theoretical throughput of the transmitter

but how do we transmit complex symbols over a real channel?





- we know how to fit the bandwidth constraint
- ▶ with QAM, we know how many bits per symbol we can use given the power constraint
- we know the theoretical throughput of the transmitter

but how do we transmit complex symbols over a real channel?





- we know how to fit the bandwidth constraint
- ▶ with QAM, we know how many bits per symbol we can use given the power constraint
- we know the theoretical throughput of the transmitter

but how do we transmit complex symbols over a real channel?

# END OF MODULE 9.3



# Digital Signal Processing

Module 9.4: Modulation and Demodulation

#### Overview:



- ▶ Trasmitting and recovering the complex passband signal
- Design example
- ► Channel capacity

#### Overview:



- ▶ Trasmitting and recovering the complex passband signal
- ▶ Design example
- ► Channel capacity

#### Overview:



- ► Trasmitting and recovering the complex passband signal
- ► Design example
- ► Channel capacity

# QAM transmitter design





 $b[n] = b_r[n] + jb_i[n]$  is a complex-valued baseband signal

## QAM transmitter design





 $b[n] = b_r[n] + jb_i[n]$  is a complex-valued baseband signal





# The passband signal



$$s[n] = \text{Re}\{b[n] e^{j\omega_c n}\}$$

$$= \text{Re}\{(b_r[n] + jb_i[n])(\cos \omega_c n + j\sin \omega_c n)\}$$

$$= b_r[n] \cos \omega_c n - b_i[n] \sin \omega_c n$$

# The passband signal



$$s[n] = \text{Re}\{b[n] e^{j\omega_c n}\}$$

$$= \text{Re}\{(b_r[n] + jb_i[n])(\cos \omega_c n + j \sin \omega_c n)\}$$

$$= b_r[n] \cos \omega_c n - b_i[n] \sin \omega_c n$$

# The passband signal



$$s[n] = \text{Re}\{b[n] e^{j\omega_c n}\}$$

$$= \text{Re}\{(b_r[n] + jb_i[n])(\cos \omega_c n + j \sin \omega_c n)\}$$

$$= b_r[n] \cos \omega_c n - b_i[n] \sin \omega_c n$$









 $\equiv$ 

9.4 76





m

9.4 76





Ħ

9.4 76



let's try the usual method (multiplying by the carrier, see Module 5.5):

$$s[n] \cos \omega_c n = b_r[n] \cos^2 \omega_c n - b_i[n] \sin \omega_c n \cos \omega_c n$$

$$= b_r[n] \frac{1 + \cos 2\omega_c n}{2} - b_i[n] \frac{\sin 2\omega_c n}{2}$$

$$= \frac{1}{2} b_r[n] + \frac{1}{2} (b_r[n] \cos 2\omega_c n - b_i[n] \sin 2\omega_c n)$$



let's try the usual method (multiplying by the carrier, see Module 5.5):

$$s[n] \cos \omega_c n = b_r[n] \cos^2 \omega_c n - b_i[n] \sin \omega_c n \cos \omega_c n$$

$$= b_r[n] \frac{1 + \cos 2\omega_c n}{2} - b_i[n] \frac{\sin 2\omega_c n}{2}$$

$$= \frac{1}{2} b_r[n] + \frac{1}{2} (b_r[n] \cos 2\omega_c n - b_i[n] \sin 2\omega_c n)$$



let's try the usual method (multiplying by the carrier, see Module 5.5):

$$s[n] \cos \omega_c n = b_r[n] \cos^2 \omega_c n - b_i[n] \sin \omega_c n \cos \omega_c n$$

$$= b_r[n] \frac{1 + \cos 2\omega_c n}{2} - b_i[n] \frac{\sin 2\omega_c n}{2}$$

$$= \frac{1}{2} b_r[n] + \frac{1}{2} (b_r[n] \cos 2\omega_c n - b_i[n] \sin 2\omega_c n)$$



let's try the usual method (multiplying by the carrier, see Module 5.5):

$$s[n] \cos \omega_c n = b_r[n] \cos^2 \omega_c n - b_i[n] \sin \omega_c n \cos \omega_c n$$

$$= b_r[n] \frac{1 + \cos 2\omega_c n}{2} - b_i[n] \frac{\sin 2\omega_c n}{2}$$

$$= \frac{1}{2} b_r[n] + \frac{1}{2} (b_r[n] \cos 2\omega_c n - b_i[n] \sin 2\omega_c n)$$



DTFT  $\{b_r[n]\cos\omega_c n - b_i[n]\sin\omega_c n\}$ 



m



DTFT  $\{(b_r[n]\cos\omega_c n - b_i[n]\sin\omega_c n)\cos\omega_c n\}$ 





DTFT  $\{(b_r[n]\cos\omega_c n - b_i[n]\sin\omega_c n)\cos\omega_c n\}$ 









Ħ



- ▶ as a lowpass filter, you can use the same filter used in upsampling
- matched filter technique



- ▶ as a lowpass filter, you can use the same filter used in upsampling
- ► matched filter technique



#### similarly:

$$s[n] \sin \omega_c n = b_r[n] \cos \omega_c n \sin \omega_c n - b_i[n] \sin^2 \omega_c n$$
$$= -\frac{1}{2} b_i[n] + \frac{1}{2} (b_r[n] \sin 2\omega_c n - b_i[n] \cos 2\omega_c n$$



#### similarly:

$$s[n] \sin \omega_c n = b_r[n] \cos \omega_c n \sin \omega_c n - b_i[n] \sin^2 \omega_c n$$
$$= -\frac{1}{2} b_i[n] + \frac{1}{2} (b_r[n] \sin 2\omega_c n - b_i[n] \cos 2\omega_c n$$



#### similarly:

$$s[n] \sin \omega_c n = b_r[n] \cos \omega_c n \sin \omega_c n - b_i[n] \sin^2 \omega_c n$$
$$= -\frac{1}{2} b_i[n] + \frac{1}{2} (b_r[n] \sin 2\omega_c n - b_i[n] \cos 2\omega_c n)$$

# QAM transmitter, final design





# QAM receiver, idealized design







- ▶ analog telephone channel:  $F_{min} = 450$ Hz,  $F_{max} = 2850$ Hz
- usable bandwidth: W = 2400Hz, center frequency  $F_c = 1650$ Hz
- ▶ pick  $F_s = 3 \cdot 2400 = 7200$ Hz, so that K = 3
- $\sim \omega_c = 0.458\pi$



- ▶ analog telephone channel:  $F_{min} = 450$ Hz,  $F_{max} = 2850$ Hz
- lacktriangle usable bandwidth: W= 2400Hz, center frequency  $F_c=$  1650Hz
- ▶ pick  $F_s = 3 \cdot 2400 = 7200$ Hz, so that K = 3
- $\omega_c = 0.458\pi$



- ▶ analog telephone channel:  $F_{min} = 450$ Hz,  $F_{max} = 2850$ Hz
- lacktriangle usable bandwidth:  $W=2400{
  m Hz}$ , center frequency  $F_c=1650{
  m Hz}$
- ▶ pick  $F_s = 3 \cdot 2400 = 7200$ Hz, so that K = 3
- $\sim \omega_c = 0.458\pi$



- ▶ analog telephone channel:  $F_{min} = 450$ Hz,  $F_{max} = 2850$ Hz
- lacktriangle usable bandwidth:  $W=2400{
  m Hz}$ , center frequency  $F_c=1650{
  m Hz}$
- ▶ pick  $F_s = 3 \cdot 2400 = 7200$ Hz, so that K = 3
- ightharpoonup  $\omega_c = 0.458\pi$



- ▶ maximum SNR: 22dB
- ▶ pick  $P_{\text{err}} = 10^{-6}$
- ▶ using QAM, we find

$$M = \log_2\left(1 - \frac{3}{2} \frac{10^{22/10}}{\ln(10^{-6})}\right) \approx 4.186$$

so we pick M=4 and use a 16-point constellation

▶ final data rate is WM = 9600 bits per second



- maximum SNR: 22dB
- ▶ pick  $P_{\text{err}} = 10^{-6}$
- ▶ using QAM, we find

$$M = \log_2\left(1 - \frac{3}{2} \frac{10^{22/10}}{\ln(10^{-6})}\right) \approx 4.186$$

so we pick M=4 and use a 16-point constellation

• final data rate is WM = 9600 bits per second

### Example: the V.32 voiceband modem



- ▶ maximum SNR: 22dB
- pick  $P_{\rm err} = 10^{-6}$
- ▶ using QAM, we find

$$M = \log_2\left(1 - \frac{3}{2} \frac{10^{22/10}}{\ln(10^{-6})}\right) \approx 4.1865$$

so we pick M = 4 and use a 16-point constellation

▶ final data rate is WM = 9600 bits per second

### Example: the V.32 voiceband modem



- ▶ maximum SNR: 22dB
- pick  $P_{\text{err}} = 10^{-6}$
- ▶ using QAM, we find

$$M = \log_2\left(1 - \frac{3}{2} \frac{10^{22/10}}{\ln(10^{-6})}\right) \approx 4.1865$$

so we pick M = 4 and use a 16-point constellation

▶ final data rate is WM = 9600 bits per second



- we used very specific design choices to derive the throughput
- what is the best one can do?
- ► Shannon's capacity formula is the upper bound

$$C = W \log_2 (1 + SNR)$$

- ightharpoonup for instance, for the previous example Cpprox 17500 bps
- the gap can be narrowed by more advanced coding techniques



- we used very specific design choices to derive the throughput
- ▶ what is the best one can do?
- ► Shannon's capacity formula is the upper bound

$$C = W \log_2 (1 + SNR)$$

- ightharpoonup for instance, for the previous example Cpprox 17500 bps
- the gap can be narrowed by more advanced coding techniques



- we used very specific design choices to derive the throughput
- what is the best one can do?
- Shannon's capacity formula is the upper bound

$$C = W \log_2 (1 + SNR)$$

- ightharpoonup for instance, for the previous example C pprox 17500 bps
- ▶ the gap can be narrowed by more advanced coding techniques



- we used very specific design choices to derive the throughput
- what is the best one can do?
- ► Shannon's capacity formula is the upper bound

$$C = W \log_2 (1 + SNR)$$

- ightharpoonup for instance, for the previous example C pprox 17500 bps
- ▶ the gap can be narrowed by more advanced coding techniques



- we used very specific design choices to derive the throughput
- what is the best one can do?
- ► Shannon's capacity formula is the upper bound

$$C = W \log_2 (1 + SNR)$$

- ightharpoonup for instance, for the previous example C pprox 17500 bps
- ▶ the gap can be narrowed by more advanced coding techniques

**END OF MODULE 9.4** 



# Digital Signal Processing

Module 9.5: Receiver Design

### Overview:



- Adaptive equalization
- ► Timing recovery

### Overview:



- Adaptive equalization
- ► Timing recovery

### A blast from the past



### A blast from the past



- ▶ a sound familiar to anyone who's used a modem or a fax machine
- what's going on here?

# Graphically







if 
$$\hat{s}[n] = \cos((\omega_c + \omega_0)n)$$
:

$$\begin{aligned} b[n] &= \mathcal{H}\{\cos((\omega_c + \omega_0)n)\cos(\omega_c n) - j\cos((\omega_c + \omega_0)n)\sin(\omega_c n)\} \\ &= \mathcal{H}\{\cos(\omega_0 n) + \cos((2\omega_c + \omega_0)n) - j\sin((2\omega_c + \omega_0)n) + j\sin(\omega_0 n)\} \\ &= \cos(\omega_0 n) + j\sin(\omega_0 n) \\ &= e^{j\omega_0 n} \end{aligned}$$



if 
$$\hat{s}[n] = \cos((\omega_c + \omega_0)n)$$
:

$$\begin{split} \hat{b}[n] &= \mathcal{H}\{\cos((\omega_c + \omega_0)n)\cos(\omega_c n) - j\cos((\omega_c + \omega_0)n)\sin(\omega_c n)\} \\ &= \mathcal{H}\{\cos(\omega_0 n) + \cos((2\omega_c + \omega_0)n) - j\sin((2\omega_c + \omega_0)n) + j\sin(\omega_0 n)\} \\ &= \cos(\omega_0 n) + j\sin(\omega_0 n) \\ &= e^{j\omega_0 n} \end{split}$$



if 
$$\hat{s}[n] = \cos((\omega_c + \omega_0)n)$$
:

$$\begin{split} \hat{b}[n] &= \mathcal{H}\{\cos((\omega_c + \omega_0)n)\cos(\omega_c n) - j\cos((\omega_c + \omega_0)n)\sin(\omega_c n)\} \\ &= \mathcal{H}\{\cos(\omega_0 n) + \cos((2\omega_c + \omega_0)n) - j\sin((2\omega_c + \omega_0)n) + j\sin(\omega_0 n)\} \\ &= \cos(\omega_0 n) + j\sin(\omega_0 n) \\ &= e^{j\omega_0 n} \end{split}$$



if 
$$\hat{s}[n] = \cos((\omega_c + \omega_0)n)$$
:

$$\begin{aligned} \hat{b}[n] &= \mathcal{H}\{\cos((\omega_c + \omega_0)n)\cos(\omega_c n) - j\cos((\omega_c + \omega_0)n)\sin(\omega_c n)\} \\ &= \mathcal{H}\{\cos(\omega_0 n) + \cos((2\omega_c + \omega_0)n) - j\sin((2\omega_c + \omega_0)n) + j\sin(\omega_0 n)\} \\ &= \cos(\omega_0 n) + j\sin(\omega_0 n) \\ &= e^{j\omega_0 n} \end{aligned}$$

### In slow motion





- ▶ interference
- propagation delay
- ► linear distortion
- clock drifts



- ▶ interference
- propagation delay
- ► linear distortion
- clock drifts



- ▶ interference
- propagation delay
- ▶ linear distortion
- clock drifts



- ▶ interference
- propagation delay
- ▶ linear distortion
- clock drifts



- ► interference → handshake and line probing
- propagation delay
- ▶ linear distortion
- clock drifts



- ► interference → handshake and line probing
- ▶ propagation delay → delay estimation
- ▶ linear distortion
- clock drifts



- ▶ interference → handshake and line probing
- ▶ propagation delay → delay estimation
- ► linear distortion → adaptive equalization
- clock drifts



- ▶ interference → handshake and line probing
- ▶ propagation delay → delay estimation
- ► linear distortion → adaptive equalization
- ▶ clock drifts → timing recovery

## The two main problems





- ightharpoonup channel distortion  $D(j\Omega)$
- lacktriangle (time-varying) discrepancies in clocks  $T_s'=T_s$

## The two main problems





- channel distortion  $D(j\Omega)$
- lackbox (time-varying) discrepancies in clocks  $T_s'=T_s$

### The two main problems





- channel distortion  $D(j\Omega)$
- lacktriangle (time-varying) discrepancies in clocks  $T_s'=T_s$



- channel introduces a delay of d seconds
- lacktriangle we can write  $d=(b+ au)T_s$  with  $b\in\mathbb{N}$  and | au|<1/2
- ▶ b is called the bulk delay
- ightharpoonup au is the fractional delay



- channel introduces a delay of d seconds
- lacktriangle we can write  $d=(b+ au)T_s$  with  $b\in\mathbb{N}$  and | au|<1/2
- ▶ b is called the bulk delay
- ightharpoonup au is the fractional delay



- channel introduces a delay of d seconds
- lacktriangle we can write  $d=(b+ au)T_s$  with  $b\in\mathbb{N}$  and | au|<1/2
- ▶ *b* is called the *bulk delay*
- ightharpoonup au is the fractional delay



- channel introduces a delay of d seconds
- we can write  $d=(b+\tau)T_s$  with  $b\in\mathbb{N}$  and  $|\tau|<1/2$
- ▶ b is called the bulk delay
- ightharpoonup au is the fractional delay

# Offsetting the bulk delay ( $T_s = 1$ )





# Offsetting the bulk delay ( $T_s = 1$ )





# Offsetting the bulk delay ( $T_s = 1$ )





# Offsetting the bulk delay ( $T_s = 1$ )







- ightharpoonup transmit  $b[n]=\mathrm{e}^{\mathrm{j}\omega_0 n}$  (i.e.  $s[n]=\cos((\omega_c+\omega_0)n))$
- receive  $\hat{s}[n] = \cos((\omega_c + \omega_0)(n b \tau))$
- ▶ after demodulation and bulk delay offset:

$$\hat{b}[n] = e^{j\omega_0(n-\tau)}$$

$$\hat{b}[n]e^{-j\omega_0n}=e^{-j\omega_0n}$$



- ightharpoonup transmit  $b[n]=\mathrm{e}^{\mathrm{j}\omega_0 n}$  (i.e.  $s[n]=\cos((\omega_c+\omega_0)n))$
- receive  $\hat{s}[n] = \cos((\omega_c + \omega_0)(n b \tau))$
- ▶ after demodulation and bulk delay offset:

$$\hat{b}[n] = e^{j\omega_0(n-\tau)}$$

$$\hat{b}[n] e^{-j\omega_0 n} = e^{-j\omega_0 n}$$



- transmit  $b[n] = e^{j\omega_0 n}$  (i.e.  $s[n] = \cos((\omega_c + \omega_0)n)$ )
- receive  $\hat{s}[n] = \cos((\omega_c + \omega_0)(n b \tau))$
- ▶ after demodulation and bulk delay offset:

$$\hat{b}[n] = e^{j\omega_0(n- au)}$$

$$\hat{b}[n] e^{-j\omega_0 n} = e^{-j\omega_0 n}$$



- ightharpoonup transmit  $b[n]=\mathrm{e}^{\mathrm{j}\omega_0 n}$  (i.e.  $s[n]=\cos((\omega_c+\omega_0)n))$
- receive  $\hat{s}[n] = \cos((\omega_c + \omega_0)(n b \tau))$
- ► after demodulation and bulk delay offset:

$$\hat{b}[n] = e^{j\omega_0(n-\tau)}$$

$$\hat{b}[n] e^{-j\omega_0 n} = e^{-j\omega_0 \tau}$$



- $\hat{s}[n] = s(n-\tau)T_s$  (after offsetting bulk delay)
- we need to compute subsample values
- ▶ in theory, compensate with a sinc fractional delay  $h[n] = \text{sinc}(n + \tau)$
- ▶ in practice, use local Lagrange approximation



- $\hat{s}[n] = s(n-\tau)T_s$  (after offsetting bulk delay)
- we need to compute subsample values
- ▶ in theory, compensate with a sinc fractional delay  $h[n] = \text{sinc}(n + \tau)$
- ▶ in practice, use local Lagrange approximation



- $\hat{s}[n] = s(n-\tau)T_s$  (after offsetting bulk delay)
- we need to compute subsample values
- ▶ in theory, compensate with a sinc fractional delay  $h[n] = \text{sinc}(n + \tau)$
- ▶ in practice, use local Lagrange approximation



- $\hat{s}[n] = s(n-\tau)T_s$  (after offsetting bulk delay)
- we need to compute subsample values
- ▶ in theory, compensate with a sinc fractional delay  $h[n] = \text{sinc}(n + \tau)$
- ▶ in practice, use local Lagrange approximation









# Lagrange approximation (see Module 6.2)



as per usual, choose  $T_s = 1$ 

- we want to compute  $x(n+\tau)$ , with  $|\tau|<1/2$
- ▶ local Lagrange approximation around *n*

$$x_{L}(n;t) = \sum_{k=-N}^{N} x[n-k]L_{k}^{(N)}(t)$$

$$L_{k}^{(N)}(t) = \prod_{\substack{i=-N\\i\neq k}}^{N} \frac{t-i}{k-i} \qquad k = -N, \dots, N$$

 $\triangleright x(n+\tau) \approx x_L(n;\tau)$ 

# Lagrange approximation (see Module 6.2)



as per usual, choose  $T_s = 1$ 

- we want to compute  $x(n+\tau)$ , with  $|\tau| < 1/2$
- ► local Lagrange approximation around *n*

$$x_L(n;t) = \sum_{k=-N}^{N} x[n-k] L_k^{(N)}(t)$$

$$L_k^{(N)}(t) = \prod_{\substack{i=-N\\i\neq k}}^{N} \frac{t-i}{k-i} \qquad k = -N, \dots, N$$

 $\triangleright$   $x(n+\tau) \approx x_L(n;\tau)$ 

# Lagrange approximation (see Module 6.2)



as per usual, choose  $T_s = 1$ 

- we want to compute  $x(n+\tau)$ , with  $|\tau|<1/2$
- ▶ local Lagrange approximation around *n*

$$x_L(n;t) = \sum_{k=-N}^{N} x[n-k]L_k^{(N)}(t)$$
 $L_k^{(N)}(t) = \prod_{\substack{i=-N \ i \neq k}}^{N} \frac{t-i}{k-i} \qquad k = -N, \dots, N$ 

 $\triangleright x(n+\tau) \approx x_L(n;\tau)$ 































- $\rightarrow x(n+\tau) \approx x_L(n;\tau)$
- define  $d_{\tau}[k] = L_k^{(N)}(\tau), k = -N, \dots, N$
- ▶  $d_{\tau}[k]$  form a (2N+1)-tap FIR



- $\triangleright x(n+\tau) \approx x_L(n;\tau)$
- define  $d_{\tau}[k] = L_k^{(N)}(\tau)$ ,  $k = -N, \dots, N$
- $d_{\tau}[k]$  form a (2N+1)-tap FIR



- $\triangleright x(n+\tau) \approx x_L(n;\tau)$
- define  $d_{\tau}[k] = L_k^{(N)}(\tau)$ ,  $k = -N, \dots, N$
- $d_{ au}[k]$  form a (2N+1)-tap FIR



- $\triangleright x(n+\tau) \approx x_L(n;\tau)$
- define  $d_{\tau}[k] = L_k^{(N)}(\tau)$ ,  $k = -N, \dots, N$
- $d_{ au}[k]$  form a (2N+1)-tap FIR

## Example (N = 1, second order approximation)



$$L_{-1}^{(1)}(t) = t \frac{t-1}{2}$$
 $L_{0}^{(1)}(t) = (1-t)(1+t)$ 
 $L_{1}^{(1)}(t) = t \frac{t+1}{2}$ 

## Example (N = 1, second order approximation)



$$d_{0.2}[n] = \begin{cases} -0.08 & n = -1\\ 0.96 & n = 0\\ 0.12 & n = 1\\ 0 & \text{otherwise} \end{cases}$$

#### Delay compensation algorithm



- ightharpoonup estimate the delay au
- ightharpoonup compute the 2N+1 Lagrangian coefficients
- ▶ filter with the resulting FIR

#### Delay compensation algorithm



- ightharpoonup estimate the delay au
- ightharpoonup compute the 2N+1 Lagrangian coefficients
- ▶ filter with the resulting FIR

#### Delay compensation algorithm



- ightharpoonup estimate the delay au
- ightharpoonup compute the 2N+1 Lagrangian coefficients
- ▶ filter with the resulting FIR

# Compensating for the distortion





### Compensating for the distortion





#### Example: adaptive equalization





# Example: adaptive equalization



- ▶ in theory, E(z) = 1/D(z)
- but we don't know D(z) in advance
- $\triangleright$  D(z) may change over time

### Example: adaptive equalization



- ▶ in theory, E(z) = 1/D(z)
- but we don't know D(z) in advance
- $\triangleright$  D(z) may change over time

## Example: adaptive equalization



- ▶ in theory, E(z) = 1/D(z)
- but we don't know D(z) in advance
- $\triangleright$  D(z) may change over time

## Adaptive equalization





## Adaptive equalization: bootstrapping via a training sequence





## Adaptive equalization: bootstrapping via a training sequence





## Adaptive equalization: online mode







- ▶ how do we perform the adaptation of the coefficients?
- how do we compensate for differences in clocks?
- ▶ how do we recover from interference?
- ▶ how do we improve resilience to noise?



- ▶ how do we perform the adaptation of the coefficients?
- how do we compensate for differences in clocks?
- how do we recover from interference?
- ▶ how do we improve resilience to noise?



- ▶ how do we perform the adaptation of the coefficients?
- how do we compensate for differences in clocks?
- how do we recover from interference?
- ▶ how do we improve resilience to noise?



- ▶ how do we perform the adaptation of the coefficients?
- how do we compensate for differences in clocks?
- ▶ how do we recover from interference?
- ▶ how do we improve resilience to noise?



- ▶ how do we perform the adaptation of the coefficients?
- how do we compensate for differences in clocks?
- ▶ how do we recover from interference?
- ▶ how do we improve resilience to noise?



- ▶ how do we perform the adaptation of the coefficients?
- how do we compensate for differences in clocks?
- ▶ how do we recover from interference?
- ▶ how do we improve resilience to noise?

# END OF MODULE 9.5



# Digital Signal Processing

Module 9.6: ADSL

## Overview:



- ► Channel
- ► Signaling strategy
- ▶ Discrete Multitone Modulation (DMT)

## Overview:



- ► Channel
- ► Signaling strategy
- ▶ Discrete Multitone Modulation (DMT)

## Overview:



- Channel
- ► Signaling strategy
- ► Discrete Multitone Modulation (DMT)

## The telephone network today





## The telephone network today





#### The last mile



- copper wire (twisted pair) between home and nearest CO
- very large bandwidth (well over 1MHz)
- ▶ very uneven spectrum: noise, attenuation, interference, etc.

#### The last mile



- copper wire (twisted pair) between home and nearest CO
- very large bandwidth (well over 1MHz)
- ▶ very uneven spectrum: noise, attenuation, interference, etc.

#### The last mile



- copper wire (twisted pair) between home and nearest CO
- very large bandwidth (well over 1MHz)
- ▶ very uneven spectrum: noise, attenuation, interference, etc.

## The ADSL channel





## The ADSL channel





## Idea: split the band into independent subchannels





#### Subchannel structure



- ▶ allocate *N* subchannels over the total positive bandwidth
- ightharpoonup equal subchannel bandwidth  $F_{\text{max}}/N$
- equally spaced subchannels with center frequency  $kF_{\text{max}}/N$ ,  $k=0,\ldots,N-1$

#### Subchannel structure



- ▶ allocate *N* subchannels over the total positive bandwidth
- equal subchannel bandwidth  $F_{\text{max}}/N$
- equally spaced subchannels with center frequency  $kF_{\text{max}}/N$ ,  $k=0,\ldots,N-1$

#### Subchannel structure



- ▶ allocate *N* subchannels over the total positive bandwidth
- equal subchannel bandwidth  $F_{\text{max}}/N$
- ightharpoonup equally spaced subchannels with center frequency  $kF_{\max}/N$ ,  $k=0,\ldots,N-1$



- ▶ pick  $F_s = 2F_{\text{max}}$  ( $F_{\text{max}}$  is high now!)
- lacktriangle center frequency for each subchannel  $\omega_k = 2\pi \frac{kF_{\max}/N}{F_s} = \frac{2\pi}{2N}k$
- ▶ bandwidth of each subchannel  $\frac{2\pi}{2N}$
- lacktriangle to send symbols over a subchannel: upsampling factor  $K \geq 2N$



- ▶ pick  $F_s = 2F_{\text{max}}$  ( $F_{\text{max}}$  is high now!)
- center frequency for each subchannel  $\omega_k = 2\pi \frac{kF_{\rm max}/N}{F_{\rm s}} = \frac{2\pi}{2N}k$
- ▶ bandwidth of each subchannel  $\frac{2\pi}{2N}$
- lacktriangle to send symbols over a subchannel: upsampling factor  $K \geq 2N$



- ▶ pick  $F_s = 2F_{\text{max}}$  ( $F_{\text{max}}$  is high now!)
- center frequency for each subchannel  $\omega_k = 2\pi \frac{kF_{\text{max}}/N}{F_s} = \frac{2\pi}{2N}k$
- ▶ bandwidth of each subchannel  $\frac{2\pi}{2N}$
- ▶ to send symbols over a subchannel: upsampling factor  $K \ge 2N$



- ▶ pick  $F_s = 2F_{\text{max}}$  ( $F_{\text{max}}$  is high now!)
- ightharpoonup center frequency for each subchannel  $\omega_k=2\pi\frac{kF_{\max}/N}{F_s}=\frac{2\pi}{2N}k$
- ▶ bandwidth of each subchannel  $\frac{2\pi}{2N}$
- ▶ to send symbols over a subchannel: upsampling factor  $K \ge 2N$

# The digital design (N = 3)





# The digital design (N = 3)





# The digital design (N = 3)







- put a QAM modem on each channel
- decide on constellation size independently
- noisy or forbidden subchannels send zeros



- put a QAM modem on each channel
- decide on constellation size independently
- noisy or forbidden subchannels send zeros

# The digital design



- put a QAM modem on each channel
- decide on constellation size independently
- noisy or forbidden subchannels send zeros

#### The subchannel modem





#### The bank of modems





#### If it looks familiar...



#### check back Module 4.3, the DFT reconstruction formula:



#### DMT via IFFT



- ▶ we will show that transmission can be implemented efficiently via an IFFT
- ► Discrete Multitone Modulation

#### DMT via IFFT



- ▶ we will show that transmission can be implemented efficiently via an IFFT
- ► Discrete Multitone Modulation

# The great ADSL trick



instead of using a good lowpass filter, use the 2N-tap interval indicator:

$$h[n] = \begin{cases} 1 & \text{for } 0 \le n < 2N \\ 0 & \text{otherwise} \end{cases}$$

# Interval indicator signal (Module 4.7)





# DTFT of interval signal (Module 4.7)







# DTFT of interval signal (Module 4.7)





9.6

0

 $\pi/N$ 

#### Back to the subchannel modem





rate: *B* symbols/sec

2NB samples/sec

#### Back to the subchannel modem





rate: B symbols/sec 2NB samples/sec

#### Back to the subchannel modem



by using the indicator function as a lowpass:



# The bank of modems, revisited





# The complex output signal



$$c[n] = \sum_{k=0}^{N-1} a_k [\lfloor n/2N \rfloor] e^{j\frac{2\pi}{2N}nk}$$

$$= 2N \cdot \mathsf{IDFT}_{2N} \left\{ \begin{bmatrix} a_0[m] & a_1[m] & \dots & a_{N-1}[m] & 0 & 0 & \dots & 0 \end{bmatrix} \right\} \begin{bmatrix} n_1 \\ m_2 \\ m_3 \\ m_4 \end{bmatrix}$$

# The complex output signal



$$c[n] = \sum_{k=0}^{N-1} a_k [\lfloor n/2N \rfloor] e^{j\frac{2\pi}{2N}nk}$$

$$= 2N \cdot \mathsf{IDFT}_{2N} \left\{ \begin{bmatrix} a_0[m] & a_1[m] & \dots & a_{N-1}[m] & 0 & 0 & \dots & 0 \end{bmatrix} \right\} [n]$$

$$(m = \lfloor n/2N \rfloor)$$



- we are interested in  $s[n] = \text{Re}\{c[n]\} = (c[n] + c^*[n])/2$
- ▶ it is easy to prove (exercise) that:

$$\mathsf{IDFT} \left\{ \begin{bmatrix} x_0 & x_1 & x_2 & \dots & x_{N-2} & x_{N-1} \end{bmatrix} \right\}^* = \mathsf{IDFT} \left\{ \begin{bmatrix} x_0 & x_{N-1} & x_{N-2} & \dots & x_2 & x_1 \end{bmatrix}^* \right\}$$

- ▶  $c[n] = 2N \cdot \mathsf{IDFT} \{ [a_0[m] \ a_1[m] \ \dots \ a_{N-1}[m] \ 0 \ 0 \ \dots \ 0] \} [n]$
- ► therefore

$$s[n] = N \cdot \mathsf{IDFT} \left\{ \begin{bmatrix} 2a_0[m] & a_1[m] & \dots & a_{N-1}[m] & a_{N-1}^*[m] & a_{N-2}^*[m] & \dots & a_1^*[m] \end{bmatrix} \right\} \begin{bmatrix} n & n \\ n & n \end{bmatrix}$$



- we are interested in  $s[n] = \text{Re}\{c[n]\} = (c[n] + c^*[n])/2$
- ▶ it is easy to prove (exercise) that:

$$\mathsf{IDFT}\left\{ \begin{bmatrix} x_0 & x_1 & x_2 & \dots & x_{N-2} & x_{N-1} \end{bmatrix} \right\}^* = \mathsf{IDFT}\left\{ \begin{bmatrix} x_0 & x_{N-1} & x_{N-2} & \dots & x_2 & x_1 \end{bmatrix}^* \right\}$$

- ►  $c[n] = 2N \cdot IDFT \{ [a_0[m] \ a_1[m] \ \dots \ a_{N-1}[m] \ 0 \ 0 \ \dots \ 0] \} [n]$
- ► therefore

$$s[n] = N \cdot \mathsf{IDFT} \left\{ \begin{bmatrix} 2a_0[m] & a_1[m] & \dots & a_{N-1}[m] & a_{N-1}^*[m] & a_{N-2}^*[m] & \dots & a_1^*[m] \end{bmatrix} \right\} [n]$$



- we are interested in  $s[n] = \text{Re}\{c[n]\} = (c[n] + c^*[n])/2$
- ▶ it is easy to prove (exercise) that:

$$\mathsf{IDFT}\left\{ \begin{bmatrix} x_0 & x_1 & x_2 & \dots & x_{N-2} & x_{N-1} \end{bmatrix} \right\}^* = \mathsf{IDFT}\left\{ \begin{bmatrix} x_0 & x_{N-1} & x_{N-2} & \dots & x_2 & x_1 \end{bmatrix}^* \right\}$$

- ►  $c[n] = 2N \cdot \mathsf{IDFT} \{ [a_0[m] \ a_1[m] \ \dots \ a_{N-1}[m] \ 0 \ 0 \ \dots \ 0] \} [n]$
- ▶ therefore

$$s[n] = N \cdot \mathsf{IDFT} \left\{ \begin{bmatrix} 2a_0[m] & a_1[m] & \dots & a_{N-1}[m] & a_{N-1}^*[m] & a_{N-2}^*[m] & \dots & a_1^*[m] \end{bmatrix} \right\} [n]$$



- we are interested in  $s[n] = \text{Re}\{c[n]\} = (c[n] + c^*[n])/2$
- ▶ it is easy to prove (exercise) that:

$$\mathsf{IDFT}\left\{ \begin{bmatrix} x_0 & x_1 & x_2 & \dots & x_{N-2} & x_{N-1} \end{bmatrix} \right\}^* = \mathsf{IDFT}\left\{ \begin{bmatrix} x_0 & x_{N-1} & x_{N-2} & \dots & x_2 & x_1 \end{bmatrix}^* \right\}$$

- ►  $c[n] = 2N \cdot \mathsf{IDFT} \{ [a_0[m] \ a_1[m] \ \dots \ a_{N-1}[m] \ 0 \ 0 \ \dots \ 0] \} [n]$
- ▶ therefore

$$s[n] = N \cdot \mathsf{IDFT} \left\{ \begin{bmatrix} 2a_0[m] & a_1[m] & \dots & a_{N-1}[m] & a_{N-1}^*[m] & a_{N-2}^*[m] & \dots & a_1^*[m] \end{bmatrix} \right\} [n]$$

#### ADSL transmitter







- $F_{\text{max}} = 1104 \text{KHz}$
- N = 256
- ▶ each QAM can send from 0 to 15 bits per symbol
- ▶ forbidden channels: 0 to 7 (voice)
- ▶ channels 7 to 31: upstream data
- ► max theoretical throughput: 14.9Mbps (downstream)



- $F_{\text{max}} = 1104 \text{KHz}$
- ► *N* = 256
- ▶ each QAM can send from 0 to 15 bits per symbol
- ▶ forbidden channels: 0 to 7 (voice)
- ▶ channels 7 to 31: upstream data
- ► max theoretical throughput: 14.9Mbps (downstream)



- $F_{\text{max}} = 1104 \text{KHz}$
- ► *N* = 256
- each QAM can send from 0 to 15 bits per symbol
- ▶ forbidden channels: 0 to 7 (voice)
- ▶ channels 7 to 31: upstream data
- ► max theoretical throughput: 14.9Mbps (downstream)



- $F_{\text{max}} = 1104 \text{KHz}$
- ► N = 256
- each QAM can send from 0 to 15 bits per symbol
- ▶ forbidden channels: 0 to 7 (voice)
- ▶ channels 7 to 31: upstream data
- ▶ max theoretical throughput: 14.9Mbps (downstream)



- $F_{\text{max}} = 1104 \text{KHz}$
- ► *N* = 256
- each QAM can send from 0 to 15 bits per symbol
- ▶ forbidden channels: 0 to 7 (voice)
- ▶ channels 7 to 31: upstream data
- ▶ max theoretical throughput: 14.9Mbps (downstream)



- $F_{\text{max}} = 1104 \text{KHz}$
- ► *N* = 256
- each QAM can send from 0 to 15 bits per symbol
- ▶ forbidden channels: 0 to 7 (voice)
- ▶ channels 7 to 31: upstream data
- max theoretical throughput: 14.9Mbps (downstream)

# END OF MODULE 9.6

# END OF MODULE 9