§1. Set Theory

Math 4341 (Topology)

Sets and subsets

▶ Informally, we consider a set as a "collection of things".
These "things" will be referred to as the elements of the set.

Sets and subsets

- ▶ Informally, we consider a set as a "collection of things".
 These "things" will be referred to as the elements of the set.
- ▶ If A is a set and a is an element of A, we write $a \in A$. If b is not an element of A, then we write $b \notin A$.

Sets and subsets

- Informally, we consider a set as a "collection of things".
 These "things" will be referred to as the elements of the set.
- ▶ If A is a set and a is an element of A, we write $a \in A$. If b is not an element of A, then we write $b \notin A$.
- ▶ If B is another set which contains all the elements of A (that is, if $a \in A$ implies that $a \in B$), then we say that A is a *subset* of B and write $A \subset B$.

▶ We say that two sets A and B are equal (and write A = B), if they satisfy $A \subset B$ and $B \subset A$.

- ▶ We say that two sets A and B are equal (and write A = B), if they satisfy $A \subset B$ and $B \subset A$.
- ▶ If $A \subset B$ but $A \neq B$, we write $A \subsetneq B$ and say that A is a proper subset of B.

- ▶ We say that two sets A and B are equal (and write A = B), if they satisfy $A \subset B$ and $B \subset A$.
- ▶ If $A \subset B$ but $A \neq B$, we write $A \subsetneq B$ and say that A is a proper subset of B.
- Example 1.1: When a set contains only a few elements, we simply list them. For example if A contains only a, b and c, we write $A = \{a, b, c\}$. Then if $B = \{a, b, c, d\}$, we see that $A \subset B$ and since $d \in B$ but $d \notin A$, we have $A \subsetneq B$.

- ▶ We say that two sets A and B are equal (and write A = B), if they satisfy $A \subset B$ and $B \subset A$.
- ▶ If $A \subset B$ but $A \neq B$, we write $A \subsetneq B$ and say that A is a proper subset of B.
- Example 1.1: When a set contains only a few elements, we simply list them. For example if A contains only a, b and c, we write $A = \{a, b, c\}$. Then if $B = \{a, b, c, d\}$, we see that $A \subset B$ and since $d \in B$ but $d \notin A$, we have $A \subsetneq B$.
- Example 1.2: Sets are often given by the properties of their elements. For example, the set consisting of all odd numbers is written as

$$\{x \mid x \text{ is an odd integer}\},\$$

and is read as "x such that x is an odd integer".

Empty set and power set

We also consider the set which contains no elements at all; this set is called the empty set and is denoted ∅. Note that ∅ ⊂ X for any set X. Moreover, ∅ ≠ {∅}.

Empty set and power set

- We also consider the set which contains no elements at all; this set is called the empty set and is denoted ∅. Note that ∅ ⊂ X for any set X. Moreover, ∅ ≠ {∅}.
- ▶ Let X be any set. The *power set* of X, denoted $\mathcal{P}(X)$, is the set of all subsets of X. That is

$$\mathcal{P}(X) = \{U \mid U \subset X\}.$$

Note that elements of power sets are themselves sets.

Empty set and power set

- ▶ We also consider the set which contains no elements at all; this set is called *the empty set* and is denoted \emptyset . Note that $\emptyset \subset X$ for any set X. Moreover, $\emptyset \neq \{\emptyset\}$.
- ▶ Let X be any set. The *power set* of X, denoted $\mathcal{P}(X)$, is the set of all subsets of X. That is

$$\mathcal{P}(X) = \{U \mid U \subset X\}.$$

Note that elements of power sets are themselves sets.

Example 1.3: Some examples:

$$\mathcal{P}(\emptyset) = \{\emptyset\},\$$

$$\mathcal{P}(\{a\}) = \{\emptyset, \{a\}\},\$$

$$\mathcal{P}(\{a,b\}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\},\$$

$$\mathcal{P}(\{a,b,c\}) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{b,c\}, \{a,c\}, \{a,b,c\}\}.$$

Finite union and intersection

▶ Given two sets A and B, we define their union $A \cup B$ and intersection $A \cap B$ by

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\},\$$

$$A \cap B = \{x \mid x \in A \text{ and } x \in B\}.$$

Finite union and intersection

▶ Given two sets A and B, we define their union $A \cup B$ and intersection $A \cap B$ by

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\},\$$

$$A \cap B = \{x \mid x \in A \text{ and } x \in B\}.$$

▶ The sets *A* and *B* are called *disjoint* if $A \cap B = \emptyset$.

Difference and complement

▶ Given two sets A and B, we define the *difference* $A \setminus B$ by

$$A \setminus B = \{x \mid x \in A \text{ and } x \notin B\}.$$

Difference and complement

▶ Given two sets A and B, we define the difference $A \setminus B$ by

$$A \setminus B = \{x \mid x \in A \text{ and } x \notin B\}.$$

▶ If $A \subset X$, we define the *complement* of A in X, written A^c , as

$$A^c = X \setminus A$$
.

$$(1) \quad A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$$

$$(2) \quad A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

▶ Proposition 1.1 (De Morgan's laws):

$$(1) \quad A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$$

$$(2) \quad A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

▶ Proof of (1): We first prove $A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C)$.

- $(1) \quad A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$
- (2) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
- ▶ Proof of (1): We first prove $A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C)$.
 - Let $a \in A \cap (B \cup C)$. Then $a \in A$ and $a \in B \cup C$. The latter means that $a \in B$ or $a \in C$. Since $a \in A$, we have either $a \in A$ and $a \in B$, or $a \in A$ and $a \in C$.

- $(1) \quad A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$
- $(2) \quad A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$
- ▶ Proof of (1): We first prove $A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C)$.
 - ▶ Let $a \in A \cap (B \cup C)$. Then $a \in A$ and $a \in B \cup C$. The latter means that $a \in B$ or $a \in C$. Since $a \in A$, we have either $a \in A$ and $a \in B$, or $a \in A$ and $a \in C$.
 - ▶ Written in set notation, this says that $a \in (A \cap B) \cup (A \cap C)$.

$$(1) \quad A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$$

$$(2) \quad A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

- ▶ Proof of (1): We first prove $A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C)$.
 - ▶ Let $a \in A \cap (B \cup C)$. Then $a \in A$ and $a \in B \cup C$. The latter means that $a \in B$ or $a \in C$. Since $a \in A$, we have either $a \in A$ and $a \in B$, or $a \in A$ and $a \in C$.
 - ▶ Written in set notation, this says that $a \in (A \cap B) \cup (A \cap C)$.
- ▶ We now prove $(A \cap B) \cup (A \cap C) \subset A \cap (B \cup C)$.

- $(1) \quad A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$
- (2) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
- ▶ Proof of (1): We first prove $A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C)$.
 - ▶ Let $a \in A \cap (B \cup C)$. Then $a \in A$ and $a \in B \cup C$. The latter means that $a \in B$ or $a \in C$. Since $a \in A$, we have either $a \in A$ and $a \in B$, or $a \in A$ and $a \in C$.
 - ▶ Written in set notation, this says that $a \in (A \cap B) \cup (A \cap C)$.
- ▶ We now prove $(A \cap B) \cup (A \cap C) \subset A \cap (B \cup C)$.
 - Let $a \in (A \cap B) \cup (A \cap C)$. Then $a \in A \cap B$ or $a \in A \cap C$. This means that either $a \in A$ and $a \in B$, or $a \in A$ and $a \in C$. In both cases we have $a \in A$ and either $a \in B$ or $a \in C$.

- $(1) \quad A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$
- $(2) \quad A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$
- ▶ Proof of (1): We first prove $A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C)$.
 - ▶ Let $a \in A \cap (B \cup C)$. Then $a \in A$ and $a \in B \cup C$. The latter means that $a \in B$ or $a \in C$. Since $a \in A$, we have either $a \in A$ and $a \in B$, or $a \in A$ and $a \in C$.
 - ▶ Written in set notation, this says that $a \in (A \cap B) \cup (A \cap C)$.
- ▶ We now prove $(A \cap B) \cup (A \cap C) \subset A \cap (B \cup C)$.
 - Let $a \in (A \cap B) \cup (A \cap C)$. Then $a \in A \cap B$ or $a \in A \cap C$. This means that either $a \in A$ and $a \in B$, or $a \in A$ and $a \in C$. In both cases we have $a \in A$ and either $a \in B$ or $a \in C$.
 - ▶ Written in set notation, this says that $a \in A \cap (B \cup C)$.

Arbitrary union and intersection

▶ Notation: \forall means "for all", and \exists means "there exists".

Arbitrary union and intersection

- ▶ Notation: \forall means "for all", and \exists means "there exists".
- ▶ Let I be any set. Then a collection $\{A_i\}_{i\in I}$ of sets A_i is called a family of sets parametrized by I.

Arbitrary union and intersection

- ▶ Notation: \forall means "for all", and \exists means "there exists".
- ▶ Let I be any set. Then a collection $\{A_i\}_{i\in I}$ of sets A_i is called a family of sets parametrized by I.
- For such a family, define the union and the intersection by

$$\bigcup_{i \in I} A_i = \{x \mid \exists i \in I \text{ such that } x \in A_i\},$$

$$\bigcap_{i \in I} A_i = \{x \mid x \in A_i \ \forall i \in I\}.$$

$$(1) \quad X \setminus \bigcup_{i \in I} A_i = \bigcap_{i \in I} X \setminus A_i,$$

(2)
$$X \setminus \bigcap_{i \in I} A_i = \bigcup_{i \in I} X \setminus A_i$$
.

Proposition 1.2 (De Morgan's laws):

$$(1) \quad X \setminus \bigcup_{i \in I} A_i = \bigcap_{i \in I} X \setminus A_i,$$

$$(2) X \setminus \bigcap_{i \in I} A_i = \bigcup_{i \in I} X \setminus A_i.$$

▶ Proof of (1): We first prove $X \setminus \bigcup_{i \in I} A_i \subset \bigcap_{i \in I} X \setminus A_i$.

(1)
$$X \setminus \bigcup_{i \in I} A_i = \bigcap_{i \in I} X \setminus A_i$$
,
(2) $X \setminus \bigcap_{i \in I} A_i = \bigcup_{i \in I} X \setminus A_i$.

- ▶ Proof of (1): We first prove $X \setminus \bigcup_{i \in I} A_i \subset \bigcap_{i \in I} X \setminus A_i$.
 - Let $a \in X \setminus \bigcup_{i \in I} A_i$. Then $a \in X$ and $a \notin \bigcup_{i \in I} A_i$. The latter means that a is not in any of the A_i . Since $a \in X$, $\forall i \in I$ we have $a \in X \setminus A_i$. This exactly means that $a \in \bigcap_{i \in I} X \setminus A_i$.

(1)
$$X \setminus \bigcup_{i \in I} A_i = \bigcap_{i \in I} X \setminus A_i$$
,
(2) $X \setminus \bigcap A_i = \bigcup X \setminus A_i$.

- ▶ Proof of (1): We first prove $X \setminus \bigcup_{i \in I} A_i \subset \bigcap_{i \in I} X \setminus A_i$.
 - ▶ Let $a \in X \setminus \bigcup_{i \in I} A_i$. Then $a \in X$ and $a \notin \bigcup_{i \in I} A_i$. The latter means that a is not in any of the A_i . Since $a \in X$, $\forall i \in I$ we have $a \in X \setminus A_i$. This exactly means that $a \in \bigcap_{i \in I} X \setminus A_i$.
- ▶ We now prove $\bigcap_{i \in I} X \setminus A_i \subset X \setminus \bigcup_{i \in I} A_i$.

(1)
$$X \setminus \bigcup_{i \in I} A_i = \bigcap_{i \in I} X \setminus A_i$$
,
(2) $X \setminus \bigcap_{i \in I} A_i = \bigcup_{i \in I} X \setminus A_i$.

- ▶ Proof of (1): We first prove $X \setminus \bigcup_{i \in I} A_i \subset \bigcap_{i \in I} X \setminus A_i$.
 - ▶ Let $a \in X \setminus \bigcup_{i \in I} A_i$. Then $a \in X$ and $a \notin \bigcup_{i \in I} A_i$. The latter means that a is not in any of the A_i . Since $a \in X$, $\forall i \in I$ we have $a \in X \setminus A_i$. This exactly means that $a \in \bigcap_{i \in I} X \setminus A_i$.
- ▶ We now prove $\bigcap_{i \in I} X \setminus A_i \subset X \setminus \bigcup_{i \in I} A_i$.
 - ▶ Let $a \in \bigcap_{i \in I} X \setminus A_i$. Then $\forall i \in I$ we have $a \in X \setminus A_i$. This means that $\forall i \in I$ we have $a \in X$ and $a \notin A_i$. The latter implies $a \notin \bigcup_{i \in I} A_i$. Since $a \in X$, we obtain $a \in X \setminus \bigcup_{i \in I} A_i$.

▶ If A and B are two sets, then the Cartesian product $A \times B$ is the set of all pairs (a, b), where $a \in A$ and $b \in B$. That is

$$A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}.$$

▶ If A and B are two sets, then the Cartesian product $A \times B$ is the set of all pairs (a, b), where $a \in A$ and $b \in B$. That is

$$A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}.$$

▶ If A_1, \dots, A_n , the Cartesian product $A_1 \times \dots \times A_n$ is the set of all *n*-tuples (a_1, \dots, a_n) , where $a_i \in A_i$ for all $i = 1, \dots n$.

$$A_1 \times \cdots \times A_n = \{(a_1, \cdots, a_n) \mid a_i \in A_i \ \forall i = 1, \cdots, n\}.$$

▶ If A and B are two sets, then the Cartesian product $A \times B$ is the set of all pairs (a, b), where $a \in A$ and $b \in B$. That is

$$A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}.$$

▶ If A_1, \dots, A_n , the Cartesian product $A_1 \times \dots \times A_n$ is the set of all *n*-tuples (a_1, \dots, a_n) , where $a_i \in A_i$ for all $i = 1, \dots n$.

$$A_1 \times \cdots \times A_n = \{(a_1, \cdots, a_n) \mid a_i \in A_i \ \forall i = 1, \cdots, n\}.$$

Example 1.4: $\mathbb{R}^n = \mathbb{R} \times \cdots \times \mathbb{R}$ (*n* times).

▶ If A and B are two sets, then the Cartesian product $A \times B$ is the set of all pairs (a, b), where $a \in A$ and $b \in B$. That is

$$A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}.$$

▶ If A_1, \dots, A_n , the Cartesian product $A_1 \times \dots \times A_n$ is the set of all *n*-tuples (a_1, \dots, a_n) , where $a_i \in A_i$ for all $i = 1, \dots n$.

$$A_1 \times \cdots \times A_n = \{(a_1, \cdots, a_n) \mid a_i \in A_i \ \forall i = 1, \cdots, n\}.$$

- ▶ Example 1.4: $\mathbb{R}^n = \mathbb{R} \times \cdots \times \mathbb{R}$ (*n* times).
- ▶ In general, if $\{A_i\}_{i\in I}$ is a family of sets then the Cartesian product $\prod_{i\in I} A_i$ is the set of all functions $a:I\to \bigcup_{i\in I} A_i$ such that $a(i)\in A_i$ for all $i\in I$.

$$\prod_{i\in I}A_i=\left\{a:I\to\bigcup_{i\in I}A_i\mid a(i)\in A_i\;\forall i\in I\right\}.$$

Relations

A binary relation C on a set A is a subset $C \subset A \times A$. When $(x, y) \in C$, we will often write xCy.

Relations

- A binary relation C on a set A is a subset $C \subset A \times A$. When $(x, y) \in C$, we will often write xCy.
- Example 1.5: The subset of $\mathbb{R} \times \mathbb{R}$ given by $C = \{(x,y) \mid x \leq y\}$ is a relation on \mathbb{R} , and xCy iff $x \leq y$.

- A binary relation C on a set A is a subset $C \subset A \times A$. When $(x,y) \in C$, we will often write xCy.
- Example 1.5: The subset of $\mathbb{R} \times \mathbb{R}$ given by $C = \{(x,y) \mid x \leq y\}$ is a relation on \mathbb{R} , and xCy iff $x \leq y$.
- ▶ A relation $C \subset A \times A$ is called

- A binary relation C on a set A is a subset $C \subset A \times A$. When $(x, y) \in C$, we will often write xCy.
- Example 1.5: The subset of $\mathbb{R} \times \mathbb{R}$ given by $C = \{(x,y) \mid x \leq y\}$ is a relation on \mathbb{R} , and xCy iff $x \leq y$.
- ▶ A relation $C \subset A \times A$ is called
 - reflexive if xCx for all $x \in A$,

- A binary relation C on a set A is a subset $C \subset A \times A$. When $(x, y) \in C$, we will often write xCy.
- Example 1.5: The subset of $\mathbb{R} \times \mathbb{R}$ given by $C = \{(x,y) \mid x \leq y\}$ is a relation on \mathbb{R} , and xCy iff $x \leq y$.
- ▶ A relation $C \subset A \times A$ is called
 - reflexive if xCx for all $x \in A$,
 - ▶ symmetric if xCy implies that yCx for all $x, y \in A$,

- A binary relation C on a set A is a subset $C \subset A \times A$. When $(x, y) \in C$, we will often write xCy.
- Example 1.5: The subset of $\mathbb{R} \times \mathbb{R}$ given by $C = \{(x,y) \mid x \leq y\}$ is a relation on \mathbb{R} , and xCy iff $x \leq y$.
- ▶ A relation $C \subset A \times A$ is called
 - reflexive if xCx for all $x \in A$.
 - ▶ symmetric if xCy implies that yCx for all $x, y \in A$,
 - ▶ anti-symmetric if xCy and yCx implies x = y for all $x, y \in A$,

- A binary relation C on a set A is a subset $C \subset A \times A$. When $(x, y) \in C$, we will often write xCy.
- Example 1.5: The subset of $\mathbb{R} \times \mathbb{R}$ given by $C = \{(x,y) \mid x \leq y\}$ is a relation on \mathbb{R} , and xCy iff $x \leq y$.
- ▶ A relation $C \subset A \times A$ is called
 - reflexive if xCx for all $x \in A$,
 - ightharpoonup symmetric if xCy implies that yCx for all $x, y \in A$,
 - ▶ anti-symmetric if xCy and yCx implies x = y for all $x, y \in A$,
 - ▶ transitive if xCy and yCz implies that xCz for all $x, y, z \in A$,

- A binary relation C on a set A is a subset $C \subset A \times A$. When $(x, y) \in C$, we will often write xCy.
- Example 1.5: The subset of $\mathbb{R} \times \mathbb{R}$ given by $C = \{(x,y) \mid x \leq y\}$ is a relation on \mathbb{R} , and xCy iff $x \leq y$.
- ▶ A relation $C \subset A \times A$ is called
 - reflexive if xCx for all $x \in A$,
 - ightharpoonup symmetric if xCy implies that yCx for all $x, y \in A$,
 - ▶ anti-symmetric if xCy and yCx implies x = y for all $x, y \in A$,
 - ▶ transitive if xCy and yCz implies that xCz for all $x, y, z \in A$,
 - ▶ total if either xCy or yCx when $x, y \in A$.

- A binary relation C on a set A is a subset $C \subset A \times A$. When $(x, y) \in C$, we will often write xCy.
- Example 1.5: The subset of $\mathbb{R} \times \mathbb{R}$ given by $C = \{(x,y) \mid x \leq y\}$ is a relation on \mathbb{R} , and xCy iff $x \leq y$.
- ▶ A relation $C \subset A \times A$ is called
 - reflexive if xCx for all $x \in A$.
 - ightharpoonup symmetric if xCy implies that yCx for all $x, y \in A$,
 - ▶ anti-symmetric if xCy and yCx implies x = y for all $x, y \in A$,
 - transitive if xCy and yCz implies that xCz for all $x, y, z \in A$,
 - ▶ total if either xCy or yCx when $x, y \in A$.
- Example 1.6: The relation in Example 1.5 is reflexive, anti-symmetric, transitive, and total, but it is not symmetric.

▶ A relation *C* on a set *A* is called a *partial order* if it is reflexive, anti-symmetric, and transitive. The pair (*A*, *C*) is called a *poset*.

- ▶ A relation *C* on a set *A* is called a *partial order* if it is reflexive, anti-symmetric, and transitive. The pair (*A*, *C*) is called a *poset*.
 - ightharpoonup We often denote partial orders by the symbol \leq .

- ▶ A relation *C* on a set *A* is called a *partial order* if it is reflexive, anti-symmetric, and transitive. The pair (*A*, *C*) is called a *poset*.
 - ▶ We often denote partial orders by the symbol \leq .
 - ▶ If the partial order relation is also total, then it is called a *total* order, and (A, C) is called a *totally ordered set*.

- ▶ A relation *C* on a set *A* is called a *partial order* if it is reflexive, anti-symmetric, and transitive. The pair (*A*, *C*) is called a *poset*.
 - ▶ We often denote partial orders by the symbol \leq .
 - If the partial order relation is also total, then it is called a total order, and (A, C) is called a totally ordered set.
- **Example** 1.7: The pair (\mathbb{R}, \leq) is a totally ordered set.

- ▶ A relation *C* on a set *A* is called a *partial order* if it is reflexive, anti-symmetric, and transitive. The pair (*A*, *C*) is called a *poset*.
 - ▶ We often denote partial orders by the symbol \leq .
 - If the partial order relation is also total, then it is called a total order, and (A, C) is called a totally ordered set.
- **Example** 1.7: The pair (\mathbb{R}, \leq) is a totally ordered set.
- An *equivalence relation* is a relation which is reflexive, symmetric, and transitive.

- ▶ A relation *C* on a set *A* is called a *partial order* if it is reflexive, anti-symmetric, and transitive. The pair (*A*, *C*) is called a *poset*.
 - ightharpoonup We often denote partial orders by the symbol \leq .
 - If the partial order relation is also total, then it is called a total order, and (A, C) is called a totally ordered set.
- **Example** 1.7: The pair (\mathbb{R}, \leq) is a totally ordered set.
- An equivalence relation is a relation which is reflexive, symmetric, and transitive.
 - When C is an equivalence relation, we use the notation x ~ y for xCy and say that x is equivalent to y.

- ▶ A relation *C* on a set *A* is called a *partial order* if it is reflexive, anti-symmetric, and transitive. The pair (*A*, *C*) is called a *poset*.
 - ightharpoonup We often denote partial orders by the symbol \leq .
 - If the partial order relation is also total, then it is called a total order, and (A, C) is called a totally ordered set.
- **Example** 1.7: The pair (\mathbb{R}, \leq) is a totally ordered set.
- An equivalence relation is a relation which is reflexive, symmetric, and transitive.
 - When C is an equivalence relation, we use the notation $x \sim y$ for xCy and say that x is equivalent to y.
- Example 1.8: Fix $p \in \mathbb{N}$. Let $C \subset \mathbb{Z} \times \mathbb{Z}$ be the subset of pairs (m, n) such that m n is a multiple of p, i.e. m n = kp for some $k \in \mathbb{Z}$. Then C is an equivalence relation on \mathbb{Z} .

▶ Given any equivalence relation on a set A, it is possible to partition A into smaller sets consisting of elements that are equivalent to each other. More precisely, for $x \in A$ let

$$[x] = \{ y \mid y \sim x \}$$

be the equivalence class of x.

▶ Given any equivalence relation on a set A, it is possible to partition A into smaller sets consisting of elements that are equivalent to each other. More precisely, for $x \in A$ let

$$[x] = \{ y \mid y \sim x \}$$

be the equivalence class of x.

Note that $x \sim x$ by reflexivity so $x \in [x]$ for all $x \in A$.

▶ Given any equivalence relation on a set A, it is possible to partition A into smaller sets consisting of elements that are equivalent to each other. More precisely, for $x \in A$ let

$$[x] = \{ y \mid y \sim x \}$$

be the equivalence class of x.

- Note that $x \sim x$ by reflexivity so $x \in [x]$ for all $x \in A$.
- ▶ Lemma 1.3: Let \sim denote an equivalence relation on a set A. Then for two elements $x, x' \in A$, the equivalence classes [x] and [x'] are either disjoint or equal.

▶ Given any equivalence relation on a set A, it is possible to partition A into smaller sets consisting of elements that are equivalent to each other. More precisely, for $x \in A$ let

$$[x] = \{ y \mid y \sim x \}$$

be the equivalence class of x.

- Note that $x \sim x$ by reflexivity so $x \in [x]$ for all $x \in A$.
- ▶ Lemma 1.3: Let \sim denote an equivalence relation on a set A. Then for two elements $x, x' \in A$, the equivalence classes [x] and [x'] are either disjoint or equal.
- Proof: It is equivalent to show that if [x] and [x'] are not disjoint then [x] = [x'].

Suppose [x] and [x'] are not disjoint. Then there is a $z \in A$ such that $z \in [x]$ and $z \in [x']$. That is, $z \sim x$ and $z \sim x'$.

- ▶ Suppose [x] and [x'] are not disjoint. Then there is a $z \in A$ such that $z \in [x]$ and $z \in [x']$. That is, $z \sim x$ and $z \sim x'$.
- Showing $[x] \subset [x']$: Let $y \in [x]$. Then $y \sim x$, so $x \sim y$ (by symmetry). Since $z \sim x$, by transitivity, $z \sim y$. Thus $y \sim z$ (by symmetry). Since $z \sim x'$, by transitivity, $y \sim x'$. This means that $y \in [x']$. Hence $[x] \subset [x']$.

- ▶ Suppose [x] and [x'] are not disjoint. Then there is a $z \in A$ such that $z \in [x]$ and $z \in [x']$. That is, $z \sim x$ and $z \sim x'$.
- Showing $[x] \subset [x']$: Let $y \in [x]$. Then $y \sim x$, so $x \sim y$ (by symmetry). Since $z \sim x$, by transitivity, $z \sim y$. Thus $y \sim z$ (by symmetry). Since $z \sim x'$, by transitivity, $y \sim x'$. This means that $y \in [x']$. Hence $[x] \subset [x']$.
- ▶ Showing $[x'] \subset [x]$: similar.

▶ The set of equivalence classes on a set A with respect to an equivalence relation \sim is denoted A/\sim . That is,

$$A/\sim = \{[x] \mid x \in A\}.$$

▶ The set of equivalence classes on a set A with respect to an equivalence relation \sim is denoted A/\sim . That is,

$$A/\sim = \{[x] \mid x \in A\}.$$

Example 1.9: Consider the relation \sim from Example 1.8. The equivalence class of an integer $n \in \mathbb{Z}$ is the set of integers

$$[n] = {\ldots, n-2p, n-p, n, n+p, n+2p, \ldots}.$$

and we can write \mathbb{Z} as the union of p equivalence classes:

$$\mathbb{Z} = [0] \cup [1] \cup [2] \cup \cdots \cup [p-1].$$

Similarly,

$$\mathbb{Z}/\!\sim = \{[0], [1], \ldots, [p-1]\}.$$

