Predicting IMDb scores

Phase 5:

Works Done in previous phase:

Phase 1:

Problem statement:

Develop a machine learning model to predict the IMDb scores of movies available on Films based on their genre, premiere date, runtime, and language. The model aims to accurately estimate the popularity of movies to assist users in discovering highly rated films that align with their preferences.

Problem Definition:

IMDb scores are determined By user ratings and can change over time as more Users rate the movie or show.

Phase 2:

Data source:

The data for analysis is taken from,

https://www.kaggle.com/datasets/luiscorter/netflix-original-films-imdb-scores

Design Thinking:

Design Thinking is a user-centered, iterative approach to problemsolving and innovation.

INNOVATION:

- Deep Learning and Sentiment Analysis
- Collaborative Filtering

- Contextual Recommendations
- Interactive Visualization
- Crowdsourced Predictions
- Incorporate Social Media Data

Phase 3:

Data=pd.read_csv("/kaggle/input/netflix-original-films-imdb-Scores/NetflixOriginals.csv",encoding = "ISO-8859-1") dataDate= data.copy() data.head()

Data Import:

Title	Genere	Premire	Runtime	IMDb	Language
				score	
Enter	Documentary	August 5,2019	58	2.5	English/japanese
the					
animie					
Dark	Thriller	August	81	2.6	Spanish
Forces		21,2020			
The	Science/Dramatic	December	79	2.6	Italian
app		26,2019			
The	Horror/Thriller	January 19,2018	94	3.8	English
open		-			
house					
Kaali	Mystery	October 30,	90	3.4	Hindi
khuuhi		2020			

Data Preprocessing:

- Data cleaning
- Handling Missing Data
- Train and split data
- Normalization and scaling
- Model specific preprocessoing

Different analysis:

Regression Analysis:

Datas can treat the IMDB scores as continuous values and perform Regression analysis to predict scores. Linear regression, decision trees, Random forests, or gradient boosting algorithms are commonly used.

Classification Analysis:

Convert IMDB scores into categories (e.g., low, medium, high) and useClassification algorithms like logistic regression, SVM, or deep learning Models to predict the class.

Deep Learning Models:

Utilize deep neural networks, such as recurrent neural networks (RNNs) For text data or convolutional neural networks (CNNs) for image data, To predict IMDB scores.

Data Modeling:

Create a data model if necessary, which may involve defining Relationships between different data tables.

Visualization Creation:

In Cognas we can create various types of visualizations, like bar charts, Line charts, or scatter plots. Choose the type of visualization that best Represents IMDb score prediction.

Find the 3 most used languages in the movies in the data set.

```
Df_lang = df['language'].value_counts()
Df_lang.head(3).plot(kind='bar')
Plt.show(block=True)
```

Output:

Scattered plot

Df[['title', 'runtime']].sort values('runtime', ascending=False).head(10).

Plot(x='title', y='runtime', kind='bar')

Plt.xlabel('Movie Title')

Plt.ylabel('Runtime')

Plt.show(block=True) df[['title', 'runtime']].sort_values('runtime', ascen

Ding=False).head(10).plot(x='title', y='runtime', kind='bar')

Plt.xlabel('Movie Title')

Plt.ylabel('Runtime')

Plt.show(block=True)

What are the top 10 movies with the highest 'runtime'? Visualize it.

Df[['title', 'runtime']].sort_values('runtime', ascending=False).head(10).

Plot(x='title', y='runtime', kind='bar')

Plt.xlabel('Movie Title')

Plt.ylabel('Runtime')

Plt.show(block=True:

Phase 4:

Support vector regression:

Support Vector Regression (SVR) is a machine learning technique used for regression tasks, including

Predicting IMDb scores. SVR works by finding a hyperplane that best fits the data, while also allowing

For some error within a margin.

From sklearn.svm import SVR

From sklearn.model_selection import train_test_split

Split data into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(features, imdb_scores, test_size=0.3, random_state=42)

Create and train the SVR model

Svr model = SVR(kernel='linear', C=1.0)

Svr_model.fit(X_train, y_train)

From sklearn.metrics import mean_squared_error, mean_absolute_error

Make predictions on the test set

Y_pred = svr_model.predict(X_test)

Calculate performance metrics

Mse = mean_squared_error(y_test, y_pred)

Rmse = np.sqrt(mse)

Mae = mean_absolute_error(y_test, y_pred)

Print("Mean Squared Error:", mse)

Print("Root Mean Squared Error:", rmse)

Print("Mean Absolute Error:", mae)

Output:

Mean Squared error: 1.311

Root Mean Squared error: 1.5621

Mean absolute error:1.3542

Hypothesis of given Dataset:

Import numpy as np

Import pandas as pd

Import seaborn as sns

Import scipy.stats

Import os

For dirname, _, filenames in os.walk('/kaggle/input'):

For filename in filenames:

Print(os.path.join(dirname, filename))

Sns.histplot(data=nf, x="IMDB Score", kde=True).set_title('IMDB Score Distribution')

T Test:

The t test tells you how significant the differences between groups are; In other words it lets you know if Those differences (measured in means) could have happened by chance.

Import seaborn as sns
Import matplotlib.pyplot as plt
Fig, ax = plt.subplots(1,1,figsize=(16, 8))
Sns.distplot(data['Runtime']

Exploratary data analysis:

Exploratory Data Analysis (EDA) is a crucial step when predicting IMDb scores or any other type of data analysis