

République Algérienne Démocratique Et Populaire ECOLE Ministème De CL'enseigne mento Supérieur Et De UDIN

Département Génie des systèmes

La Recherche Scientifique

Filière IMSI: 4ème année ingénieur

Sécurité des systèmes d'information

DR F.KABLI

kablifatima47@g mail.com

ses applications Cryptographie à clé secrète partagée (i)

- Basée sur la clé symétrique
 - La clé privée ne s'inter change pas

• Elle est générée par chacun des utilisateurs d'extrémité de la manière suivante:

La cryptographie et ses applications

Cryptographie à clé secrète partagée (ii)

- Avantage
 - Rapide
 - Sécurisé : pas de clés inter changées
- Inconvénients
 - Utilisation de la même clé
 - ☐ risque de reconnaître cette clé
- Exemples d'algorithmes
 - Diffie-Hellman

ses applications Cryptographie par clé de session (i)

ses applications

Cryptographie par clé de session (ii)

- Avantages
 - Rapide
 - Sécurisé :
 - La clé de session est envoyée cryptée
 - Pour chaque session, on utilise une clé de session distincte

Exemples d'algorithmes

• SSL (Secure Socket Layer) : utilisé dans les serveurs Web sécurisés (https) ou dans les applications de e-commerce.

Fonction de hachage et Signature numérique :

A quoi ça sert une signature digitale?

- Permet au récepteur de vérifier l'identité de l'expéditeur
 - □ l'authentification
- Permet au récepteur de vérifier que l'information n'a pas été modifiée pendant son acheminement
 - ☐ l'intégrité
- La signature est générée à partir de:
 - La clé privée de l'expéditeur
 - L'expéditeur doit disposer d'une paire de clés privée et publique
 - La clé privée est employée pour générer la signature digitale
 - Ceci garantit l'authentification
 - Le message original
 - Au message original, s'applique une fonction de hachage (hash)
 - Le message haché est crypté avec la clé privée formant la signature digitale de l'expéditeur
 - Ceci garantit l'intégrité

ses applications

Vérification

ses applications

Message

Conditions de base d'une fonction de hachage :

- 1. L'entrée peut être de dimension variable.
- 2. La sortie doit être fixe.
- 3. H(m) doit être relativement facile à calculer.
- 4. H(m) doit être une fonction à sens unique.
- 5. H(m) doit être sans collision.

La cryptographie et ses applications

Exemples : Algorithmes de hachage

- MD5 (Message Digest 5).
- SHA1 (Secure Hash Algorithm 1)
- SHA 256-512
- SHA3 256-512
- Tiger
- Whirlpool

La cryptographie et ses applications

Préparation du message signé :

Un Emetteur (A) prépare le message signé, pour cela :

Il produit un résultat de hachage du message par la fonction de hachage choisie $\mathbf{H}(\mathbf{M})$;

Il chiffre ce résultat grâce à la fonction de chiffrement \mathbf{C} en utilisant sa clé privée K_{pr} . Le résultat obtenu est la signature du message : $\mathbf{S}_{\mathbf{M}} = \mathbf{C}(K_{pr}, \mathbf{H}(\mathbf{M}))$

Il prépare le message signé en plaçant le message en clair \mathbf{M} et la signature $\mathbf{S}_{\mathbf{M}}$ dans un conteneur quelconque : $\mathbf{M}_{\text{signé}} = (\mathbf{S}_{\mathbf{M}}, \mathbf{M})$.

(A) transmet $\mathbf{M}_{\mathbf{signé}}$, le message signé, à (B) par un canal non sécurisé

ses applications

Réception du message signé :

```
(B) réceptionne le message signé, pour vérifier l'authenticité du message : il produit un résultat de hachage du texte clair en utilisant la fonction de hachage : H(M); il déchiffre la signature en utilisant la fonction de déchiffrement D avec la clé publique K_{pb} soit : D_{sm} = D(K_{pb}, S_{M}); il compare D_{sm} avec H(M). Si D_{sm} et H(M) sont égaux alors la signature est valide D_{sm} = D(K_{pb}, S_{M}) = D(K_{pb}, C(K_{pr}, H(M))) = H(M).
```