Also published as:

因 DE4333006 (A1)

プDE4333006 (C2)

聞 EP0721584 (A1)

JP9503062 (T)

Cited documents:

US4259292 (A)

JP5045319 (A)

NITROGEN MONOXIDE NO AND AMMONIA NH3 DETECTOR

Publication number: WO9509361 (A1)

Publication date:

1995-04-06

Inventor(s):

PESCHKE MATTHIAS [DE]; MEIXNER HANS [DE]; SCHMELZ

HELMUT [DE]; RAMSTETTER ASBJOERN [DE]; SEIDL MONIKA [DE]; LEMIRE BERTRAND [DE]; FLEISCHER

MAXIMILIAN [DE]; DAHLHEIM CHRISTIAN [DE]

Applicant(s):

SIEMENS AG [DE]; PESCHKE MATTHIAS [DE]; MEIXNER

HANS [DE]; SCHMELZ HELMUT [DE]; RAMSTETTER

ASBJOERN [DE]; SEIDL MONIKA [DE]; LEMIRE BERTRAND [DE]; FLEISCHER MAXIMILIAN [DE]; DAHLHEIM CHRISTIAN

[DE]

Classification:

- international: G01N27/12; G01N33/00; F02B3/06; G01N27/12; G01N33/00;

F02B3/00; (IPC1-7): G01N33/00

- European:

G01N33/00D2D4A; G01N33/00D2D4K

Application number: WO1994DE01115 19940923 Priority number(s): DE19934333006 19930928

Abstract of WO 9509361 (A1)

The Nox emission of a Diesel engine may be substantially reduced by applying the SCR process. In this process, NH3 is injected into a catalyst through which the exhaust fumes are made to flow and in which the injected NH3 reacts with NO or NO2, forming nitrogen and water. As the exhaust fumes should not contain NO nor excess NH3, appropriate detectors are required to control NH3 leaks or to monitor or regulate the NH3 dosage. For that purpose, a nitrogen monoxide and ammonia detector contains an AIVO4 or FeVO4 thin layer as gas-sensitive element. The sensitivity to NO or NH3 of a vanadate layer produced by a special sputtering process is higher by several orders of magnitude than the transverse sensitivity to oxygen and hydrogen. The detector is not sensitive to methane, carbon monoxide and carbon dioxide.; No masking effects occur, i.e. the sensitivity to NO and NH3 of the detector is not affected by the presence of other gasses. The invention is suitable as an air quality sensor, as a NH3 leak monitor and as a sensor for regulating a DENOx catalyst.

Data supplied from the **esp@cenet** database — Worldwide

PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

Internationales Büro
INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCI)

(51) Internationale Patentklassifikation 6:

G01N 33/00

. .

(11) Internationale Veröffentlichungsnummer:

WO 95/09361

A1

(43) Internationales Veröffentlichungsdatum:

6. April 1995 (06.04.95)

(21) Internationales Aktenzeichen:

PCT/DE94/01115

(22) Internationales Anmeldedatum:

23. September 1994 (23.09.94)

(81) Bestimmungsstaaten: JP, KR, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL,

PT, SE).

(30) Prioritätsdaten:

P 43 33 006.1

28. September 1993 (28.09.93) DE

Veröffentlicht

Mit internationalem Recherchenbericht.

Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen.

(71) Anmelder (für alle Bestimmungsstaaten ausser US): SIEMENS AKTIENGESELLSCHAFT [DE/DE]; Wittelsbacherplatz 2, D-80333 München (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): PESCHKE, Matthias [DE/DE]; Hochrießstrasse 9a, D-85567 Grafing (DE). MEIXNER, Hans [DE/DE]; Max-Planck-Strasse 5, D-85540 Haar (DE). SCHMELZ, Helmut [DE/DE]; Rudolf-Sieck-Strasse 14, D-83209 Prien (DE). RAMSTETTER, Asbjöm [DE/DE]; Rübezahlstrasse 14, D-81739 München (DE). SEIDL, Monika [DE/DE]; Mitterfeldstrasse 26, D-80689 München (DE). LEMIRE, Bertrand [FR/DE]; Pegasusstrasse 12, D-85716 Unterschleißheim (DE). FLEISCHER, Maximilian [DE/DE]; Schloßangerweg 12, D-85635 Höhenkirchen (DE). DAHLHEIM, Christian [DE/DE]; Mörchlinger Strasse 52, D-14169 Berlin (DE).

(54) Title: NITROGEN MONOXIDE NO AND AMMONIA NH3 DETECTOR

(54) Bezeichnung: DETEKTOR ZUM NACHWEIS VON STICKSTOFFMONOXID NO UND AMMONIAK NH3

(57) Abstract

The Nox emission of a Diesel engine may be substantially reduced by applying the SCR process. In this process, NH3 is injected into a catalyst through which the exhaust fumes are made to flow and in which the injected NH3 reacts with NO or NO2, forming nitrogen and water. As the exhaust fumes should not contain NO nor excess NH3, appropriate detectors are required to control NH₃ leaks or to monitor or regulate the NH₃ dosage. For that purpose, a nitrogen monoxide and ammonia detector contains an AlVO4 or FeVO4 thin layer as gas-sensitive element. The sensitivity to NO or NH3 of a vanadate layer produced by a special sputtering process is higher by several orders of magnitude than the transverse sensitivity to oxygen and hydrogen. The detector is not sensitive to methane, carbon monoxide and

carbon dioxide. No masking effects occur, i.e. the sensitivity to NO and NH3 of the detector is not affected by the presence of other gasses. The invention is suitable as an air quality sensor, as a NH3 leak monitor and as a sensor for regulating a DENO $_x$ catalyst.

(57) Zusammenfassung

Detektor zum Nachweis von Stickstoffmonoxid und Ammoniak. Eine deutliche Verringerung der NO_x-Emission eines Dieselmotors läßt sich durch Anwendung des SCR-Verfahrens erreichen. Bei diesem Verfahren wird NH3 in einen vom Abgas durchströmten Katalysator eingespritzt, wo es mit NO bzw. NO2 zu Stickstoff und Wasser reagiert. Da das Abgas weder NO noch überschüssiges NH3 enthalten soll, benötigt man geeignete Detektoren zur Kontrolle des NH3-Sclupfes bzw. zur Überwachung oder Regelung der NH3-Dosierung. Der erfindungsgemäße Detektor enthält eine AlVO₄- oder Fe-VO₄-Dünnschicht als gasempfindliches Element. Die NO- bzw. NH3-Sensitivität der durch ein spezielles Sputterverfahren hergestellten Vanadatschicht liegt um mehrere Größenordnungen über der Querempfindlichkeit auf Sauerstoff und Wasserstoff. Auf Methan, Kohlenmonoxid und Kohlendioxid spricht der Detektor nicht an. Es treten auch keine Maskierungseffekte auf, d.h. die NO- und NH3-Sensitivität des Detektors wird durch die Anwesenheit anderer Gase nicht beeinflußt. Luftgütesensor, NH3-Schlupfwächter, Sensor zur Regelung eines DENO_x-Katalysators.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT	Österreich	GA	Gabon	MR	Mauretanien
ΑÜ	Australien	GB	Vereinigtes Königreich	MW	Malawi
BB	Barbados	GE	Georgien	NE	Niger
BE	Belgien	GN	Guinea	NL	Niederlande
BF	Burkina Faso	GR	Griechenland	NO	Norwegen
BG	Bulgarien	HU	Ungarn	NZ	Neuseeland
BJ	Benin	Œ	Irland	PL	Polen
BR	Brasilien	TT	Italien	PT	Portugal
BY	Belarus	JP	Japan	RO	Rumänien
CA	Kanada	KE	Kenya	RU	Russische Föderation
CF	Zentrale Afrikanische Republik	KG	Kirgisistan ·	SD	Sudan
CG	Kongo	KP	Demokratische Volksrepublik Korea	SE	Schweden
CH	Schweiz	KR	Republik Korea	SI	Slowenien
CI	Côte d'Ivoire	KZ	Kasachstan	SK	Slowakei
CM	Kamerun	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Мопасо	TT	Trinidad und Tobago
DK	Dänemark	MD	Republik Moldau	UA	Ukraine
ES	Spanien	MG	Madagaskar	US	Vereinigte Staaten von Amerika
FI	Finnland	ML	Mali .	UZ	Usbekistan
FR	Frankreich	MN	Mongolei	VN	Vietnam
FK	Frankicici	MIM	MOUROIET	AIA	AICHNIII

WO 95/09361 PCT/DE94/01115

1

Detektor zum Nachweis von Stickstoffmonoxid NO und Ammoniak NH3

Die Stickoxid- und Partikelemission (Staub) eines auf Leistung und Verbrauch optimierten Dieselmotors läßt sich durch verbrennungstechnische Maßnahmen nur noch unwesentlich verringern. Um auch die in Zukunft vom Gesetzgeber vorgeschriebenen Abgaswerte einhalten zu können, ist daher eine Nachbehandlung der dieselmotorischen Abgase unumgänglich.

Eine deutliche Verringerung der NO_X-Emission eines Motors mit

Luftüberschuß läßt sich durch Anwendung des sogenannten <u>S</u>elective-<u>C</u>atalytic-<u>R</u>eduction-Verfahrens erreichen. Beim SCRVerfahren wird gasförmiges Ammoniak NH₃, Ammoniak in wässriger Lösung oder Harnstoff als Reduktionsmittel in das Abgassystem eingespritzt, so daß an einem Katalysator insbesondere
die chemischen Reaktionen

$$4NO + 4NH_3 + O_2 \rightarrow 4N_2 + 6H_2O$$

 $2NO_2 + 4NH_3 + O_2 \rightarrow 3N_2 + 6H_2O$

25

30

35

5

10

ablaufen können. Zur vollständigen Reduktion von 1 Mol NO_X im dieselmotorischen Abgas benötigt man etwa 0,9 bis 1,1 Mol NH₃. Wird weniger Ammoniak NH₃ eingespritzt, arbeitet der Katalysator nicht mehr mit dem höchsten Wirkungsgrad. Eine Überdosierung ist ebenfalls zu vermeiden, da ansonsten unverbrauchtes Ammoniak NH₃ in die Atmosphäre gelangt. Von Vorteil wären daher Sensoren, mit denen man den NH₃-Schlupf messen bzw. die NH₃-Dosierung kontrollieren oder regeln könnte.

10

15

20

25

30

35

Seitens der Automobilindustrie besteht der Wunsch, Klimaanlagen und Lüftungssysteme so zu steuern, daß die Schadstoffkonzentration in der Fahrgastzelle eines PKW immer unterhalb einer für die Gesundheit des Menschen unbedenklichen Schwelle bleibt. Hierfür benötigt man beispielsweise einen Sensor für Stickoxide NO_{X} , der die Frischluftzufuhr ab einer bestimmten NO_{X} -Konzentration reduziert bzw. unterbricht und das Lüfungssystem in den Umluftbetrieb umschaltet. Ähnlich wie ein NH_3 -Sensor könnte ein auf Stickoxide ansprechender Detektor auch zur Regelung eines Dieselkatalysators herangezogen werden.

Aus /1/ ist ein NO_X -Detektor bekannt, dessen sensitives Element aus einer Mischung der Metalloxide Al_2O_3 und V_2O_5 besteht. Der bekannte Detektor spricht allerdings nicht auf Ammoniak NH_3 an. Außerdem bereitet es erhebliche Schwierigkeiten, die Stickoxide NO und NO_2 zu unterscheiden.

Ziel der Erfindung ist die Schaffung eines Detektors, mit dem sich sowohl Ammoniak NH3 als auch Stickstoffmonoxid NO in einem Gasgemisch nachweisen lassen. Ein Nachweis dieser Gase soll auch dann noch gewährleistet sein, wenn deren Konzentration im ppm-Bereich liegt. Außerdem soll ein Verfahren angegeben werden, mit dem sich hochempfindliche Vanadatschichten herstellen lassen. Diese Aufgaben werden erfindungsgemäß durch einen Detektor nach Patentanspruch 1 und ein Verfahren nach Patentanspruch 9 gelöst.

Der mit der Erfindung erzielbare Vorteil besteht insbesondere darin, daß man den Detektor auch bei den im Abgastrakt eines Dieselmotors herrschenden Temperaturen von 500 bis 600 °C noch problemlos betreiben kann, wobei die Empfindlichkeit der Sensorschicht auf Stickstoffmonoxid NO und Ammoniak NH3 um einige Größenordnungen über der Querempfindlichkeit auf Sauerstoff O2 und Wasserstoff H2 liegt. Auf Methan CH4, Kohlenmonoxid CO und Kohlendioxid CO2 spricht der Detektor nicht an. Es treten auch keine Maskierungseffekte auf, d. h. die Empfindlichkeit des Detektors auf NO und NH3 wird durch die

Anwesenheit der anderen Gase nicht verändert. Außerdem kann man zwischen den Stickoxiden NO und NO2 unterscheiden, sofern nur eines der beiden Gase im Meßgas vorhanden ist.

- Die abhängigen Ansprüche betreffen vorteilhafte Weiterbildun-5 gen Ausgestaltungen der im folgenden anhand der Zeichnungen erläuterten Erfindung. Hierbeit zeigt:
 - Fig. 1 und 2 den schematischen Aufbau des erfindungsgemäßen Detektors
 - Fig. 3 die Kammelektroden des Detektors

10

20

25

30

35

- Fig. 4 Verfahrensschritte zur Herstellung der Kammelektroden
- Fig. 5 die auf den Kammelektroden abgeschiedene Al₂O₃-V₂O₅-Sandwich-Struktur
- Fig. 6 bis 10 die Sensitivität der erfindungsgemäß herge-15 stellten AlVO4-Dünnschicht des Detektors auf Stickstoffmonoxid NO, Ammoniak NH3 und andere Gase
 - Die Figuren 1 und 2 zeigen einen erfindungsgemäßen Detektor, dessen Substrat 1 aus einem sehr gut elektrisch isolierenden Material wie Glas, Berylliumoxid BeO, Aluminiumoxid Al₂O₃ oder Silizium (mit Si3N4/SiO2-Isolation) besteht. Auf dem zwischen 0,1 und 2 mm dicken Substrat 1 sind zwei eine Interdigitalstruktur bildende Platinelektroden 2, 2', eine diese Elektroden leitend verbindende Vanadatschicht (AlVO4 oder FeVO₄) als NH₃-bzw. NO-empfindliches Element sowie ein Temperaturfühler 4 angeordnet. Die mit 5 bezeichnete Passivierungsschicht aus Siliziumoxid schirmt die den beiden Kammelektroden 2, 2' und dem Temperaturfühler 4 jeweils zugeordneten Anschlußleitung 6, 6' bzw. 7, 7' vor dem im Meßgas vorhandenen Sauerstoff ab.

Um die gewünschte Betriebstemperatur von bis zu 600 °C einstellen und unabhängig von äußeren Einflüssen konstant halten zu können, wird der Detektor mit Hilfe einer auf der Rückseite des Substrats 1 angeordneten Widerstandsschicht aktiv beheizt. Die in Fig. 2 mit 8 bezeichnete Widerstandsschicht

WO 95/09361 PCT/DE94/01115

4

besteht beispielsweise aus Platin Pt, Gold Au oder einer elektrisch leitfähigen Keramik und besitzt eine mäanderförmige Struktur. Dargestellt ist auch die etwa 10 bis 100 nm dicke und aus Titan Ti, Chrom Cr, Nickel Ni oder Wolfram W bestehende Metallschicht 9, die die Haftung zwischen dem Substrat 1 und den Platinelektroden 2, 2' verbessert.

Die Abmessungen der Kammelektroden 2 und 2' hängen vom spezifischen Widerstand der darüber aufgebrachten Sensorschicht 3 im gewünschten Temperaturbereich ab. So kann die Kammstruktur 2, 2' beispielsweise Dicken von 0,1 bis 10 μ m, Breiten von 1 bis 1000 μ m und Elektrodenabstände von 1 bis 100 μ m aufweisen. Für eine 1 μ m dicke AlVO₄-Schicht 3 führen die folgenden Abmessungen zu gut meßbaren spezifischen Widerständen im Temperaturbereich zwischen 500 und 600 °C: Elektrodendicke D = 1,5 μ m, Länge der Interdigitalstruktur L = 1 mm, Elektrodenabstand S = 50 μ m.

Die Figur 3 zeigt eine maßstabsgetreue Abbildung einer Interdigitalstruktur in Draufsicht. Als Temperaturfühler findet 20 bei diesem Ausführungsbeispiel eine aus Platin bestehende Widerstandsschicht 10 Verwendung. Zur Herstellung der Kammelektroden 2, 2' wird zunächst eine 1,5 µm dicke Platinschicht 11 auf dem beheizten Korundsubstrat 1 in einer Sputteranlage abgeschieden (s. Figur 4a, b). Die Strukturierung dieser 25 Schicht 11 erfolgt in einem positiv-Fotoschritt, bei dem man den Fotolack 12 am Ort der zu erzeugenden Elektroden aufbringt und durch eine Maske 13 belichtet (s. Figur 4c, d, e). Der entwickelte Fotolack 12 schützt die Platinschicht 11 während des nachfolgenden Ätzschritts (s. Figur 4f). Nach dem 30 Entfernen des Fotolacks 12 mit Azeton erhält man die gewünschten Kammelektroden 2 und 2' (s. Figur 4g) auf der anschließend die sensitive Vanadatschicht 3 abgeschieden wird (s. Figur 4h).

5

10

15

Die Verwendung von Gold Au anstelle von Platin Pt als Elektrodenmaterial hat keinen Einfluß auf die Gasempfindlichkeit der Vanadatschicht 3.

Die außergewöhnlichen Eigenschaften des erfindungsgemäßen Detektors beruhen auf dem Verfahren zur Herstellung der gassensitiven Schicht. Im Unterschied zu dem aus /1/ bekannten Calcinierungsverfahren wird die sensitive Schicht in einem speziellen Sputterverfahren aufgebracht und anschließend mehrere Stunden lang getempert. Die Beschichtung der Kammelektroden kann man beispielsweise in der Sputteranlage Z490 von Leybold vornehmen. Als Ausgangsmaterialien dienen metallisches Vanadium V und Aluminium Al, die reaktiv, d. h. in einem aus 80 % Argon und 20 % Sauerstoff bestehenden Plasma von entsprechenden Targets zerstäubt werden und sich auf dem beheizten Substrat niederschlagen. Durch abwechselndes Zerstäuben der beiden Targets baut sich die in Fig. 5 dargestellte Sandwich-Struktur 14 auf. Sie hat eine Dicke von etwa 1 um und besteht aus jeweils 60 bis 80 etwa 10 bis 15 nm dicken V₂O₅- bzw. Al₂O₃-Schichten, wobei der Al₂O₃-Anteil bei 50 % bis maximal 70 % liegt. Die Sputterparameter sind in der folgenden Tabelle angegeben.

25	Restgasdruck Sputtergasdruck	ca. $2 - 4 \times 10^{-6}$ mbar 4.2×10^{-3} mbar
20	Sputtergas	20% O ₂ /80% Ar
	DC-Potential	Al-Target: 155 V V-Target : 225 V
	Substrattemperatur	ca. 250°C

30

35

5

10

15

20

Um ein homogenes Mischoxid zu erzeugen, wird die Sandwich-Struktur 14 in einem Hochtemperaturofen an Luft etwa 5 bis 15 Stunden getempert. Die Ofentemperatur hat hierbei einen entscheidenden Einfluß auf die Topographie und die Phase der Al $_2O_3/V_2O_5$ -Schichten. Eine optimale Sensitivität für Ammoniak NH $_3$ und Stickstoffmonoxid NO zeigen Schichten, die bei Temperaturen T zwischen 550 °C \leq T \leq 610 °C getempert wurden und

PCT/DE94/01115

5

15

20

25

aus gleichen Anteilen von V_2O_5 und Al_2O_3 bestehen. Durch das Tempern entsteht das für die hohe Gasempfindlichkeit verantwortliche Aluminiumvanadat $AlVO_4$. Die maximale Arbeitstemperatur der Vanadatschicht liegt bei etwa 600 °C. Aluminiumvanadat $AlVO_4$ besitzt eine trikline Einheitszelle mit a=0.6471 nm, b=0.7742 nm, c=0.9084 nm, $\alpha=96.848$ Å, $\beta=105.825$ Å und $\chi=101.399$ Å, deren Volumen V=0.4219 nm³ beträgt.

10 Schichten mit einem Al₂O₃-Anteil von mehr als 50 % zeigen einen etwas kleineren Meßeffekt. Man kann sie allerdings auch noch bei höheren Temperaturen von bis zu 680 °C einsetzen.

Die folgenden Diagramme sollen die Empfindlichkeit bzw. Sensitivität der nach dem beschriebenen Verfahren hergestellten AlVO₄-Dünnschichten auf verschiedene Gase dokumentieren. Aufgetragen ist jeweils die Größe σ/σ_0 (σ_0 : Leitfähigkeit der sensitiven Schicht in synthetischer Luft (80 % N₂/20 % O₂)) in Abhängigkeit von der Zeit t bzw. der Konzentration des jeweiligen Gases.

Bereits die Anwesenheit kleinster Mengen von Stickstoffmonoxid NO und Ammoniak NH3 in trockener synthetischer Luft führt zu einem deutlichen Anstieg der Leitfähigkeit des Aluminiumvanadats AlVO₄ (s. Fig. 6 und 7). So ändert sich die Leitfähigkeit um ewta 75 %, wenn man der Luft 10 ppm Stickstoffmonoxid NO beimischt. Die Zugabe von 10 ppm Ammoniak NH3 hat eine Erhöhung der Leitfähigkeit um mehr als ein Faktor 6 zur Folge.

30

35

Wie die Fig. 8 zeigt, erhöht sich der spezifische Widerstand der $AlVO_4$ -Dünnschicht bei Anwesenheit von Stickstoffdioxid NO_2 . Da das Vanadat gegenüber Stickstoffmonoxid NO ein völlig anderes Verhalten zeigt (Verringerung des spezifischen Widerstandes, s. Fig. 6), kann man beide Stickoxide eindeutig voneinander unterscheiden.

WO 95/09361 PCT/DE94/01115

7

Außer auf Stickstoffmonoxid NO und Ammoniak NH $_3$ spricht die Vanadatschicht auch auf Änderungen des Sauerstoffpartialdrucks und Wasserstoff H $_2$ an (s. Fig. 9). Die Querempfindlichkeit auf Sauerstoff O $_2$ und Wasserstoff H $_2$ ist allerdings erheblich kleiner als die Reaktion auf Stickstoffmonoxid NO und Ammoniak NH $_3$. So haben 500 ppm Wasserstoff H $_2$ in Luft annähernd dieselbe Änderung der Leitfähigkeit zur Folge wie die Zugabe von 10 ppm Stickstoffmonoxid NO. Nicht nachweisbar sind die Gase Kohlenmonoxid CO (bis 1500 ppm), Methan CH $_4$ (bis 5000 ppm) und Kohlendioxid CO $_2$ (bis 1 %) bis zu den in den Klammern jeweils angegebenen Konzentrationen. In feuchter Luft (80 mbar H $_2$ O) beobachtet man eine deutliche Abnahme der NH $_3$ -Sensitivität; sie bleibt aber immer noch doppelt so groß wie die Empfindlichkeit für Stickstoffmonoxid NO (s. den rechten Teil der Fig. 9).

5

10

15

20

25

30

35

In Fig. 10 ist die Empfindlichkeit der AlVO₄-Dünnschicht in feuchter Luft (80 mbar H2O) bei 500 °C und einem NO-Anteil von 10 ppm dargestellt. Innerhalb der jeweils durch eine waagrechte Linie markierten Zeitintervallen wurde der feuchten Luft ein weiteres Gas in der angegebenen Konzentration beigemischt. Die Luft enthielt also beispielsweise zwischen der 80. Minute und der 110. Minute neben den 10 ppm Stickstoffmonoxid NO noch 1500 ppm Kohlenmonoxid CO. Wie die Meßergebnisse zeigen, wird die NO-Empfindlichkeit der AlVO4-Schicht durch die Anwesenheit von Kohlenmonoxid CO, Methan CH4 und Kohlendioxid CO2 nicht beeinflußt. Die Beimischung von Wasserstoff H2 bewirkt zwar keine Maskierung der NO-Sensitivität, es ist aber eine eindeutige Querempfindlichkeit festzustellen. Einen ähnlichen Effekt beobachtet man bei Sauerstoff O2, wenn sich dessen Konzentration von 20 % auf 2 % verringert.

Der erfindungsgemäße Detektor läßt sich beispielsweise als Luftgütesensor in einem Kraftfahrzeug verwenden. Seine Querempfindlichkeit auf Sauerstoff O2 und Wasserstoff H2 ist hierbei nicht von Nachteil, da Autoabgase keine größeren Was-

serstoffmengen enthalten und die Sauerstoffkonzentration der in Luft verdünnten Abgase nahezu konstant bleibt.

5 /1/ Sensors and Actuators 19 (1989) 259 - 265

Patentansprüche:

5

10

15

35

- 1. Detektor zum Nachweis von Stickstoffmonoxid und Ammoniak mit einer auf einem isolierenden Grundkörper (1) angeordneten Sensorschicht (3) und einem die Sensorschicht (3) kontaktierenden Elektrodenpaar (2, 2'), dad urch gekennzeich net , daß die Sensorschicht (3) aus einem Vanadat MeVO4 oder einem Beimischungen eines Metalloxids Me2O3 enthaltenden Vanadat MeVO4 besteht.
- 2. Detektor nach Anspruch 1, mit einer durch folgendes Verfahren hergestellten Sensorschicht:
- Abdecken des Elektrodenpaares (2, 2') und der dazwischenliegenden Oberfläche des Grundkörpers (1) mit mehreren Metalloxidschichten, so daß eine Schichtenfolge

 $Me_2O_3-V_2O_5-Me_2O_3-V_2O_5-usw$.

20 entsteht und

- Tempern der Metalloxidschichten.
- 3. Detektor nach Anspruch 2,
- 25 dadurch gekennzeichnet ,
 daß der Anteil des Metalloxids Me₂O₃ bei 50% bis maximal 70%
 liegt.
 - 4. Detektor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet
- daß die Sensorschicht (3) eine Dicke d < 10 μ m aufweist.
 - 5. Detektor nach einem der Ansprüche 1 bis 4, dad urch gekennzeich net , daß das dreiwertige Metall Me Aluminium oder Eisen ist.

20

30

- 6. Detektor nach einem der Ansprüche 1 bis 5,
 d a d u r c h g e k e n n z e i c h n e t ,
 daß das Elektrodenpaar (2, 2') als Interdigitalstruktur ausgebildet ist.
- 7. Detektor nach einem der Ansprüche 1 bis 6,
 d a d u r c h g e k e n n z e i c h n e t ,
 10 daß ein Temperaturfühler (4, 10) und/oder ein Heizelement (8)
 auf dem Grundkörper (1) angeordnet sind.
 - 8. Verfahren zur Herstellung eines Detektors zum Nachweis von Stickstoffmonoxid und Ammoniak bei dem
- eine aus einem elektrisch leitenden Material bestehende Schicht (11) auf einem isolierenden Grundkörper (1) abgeschieden wird,
 - mindestens ein nicht leitend miteinander verbundenes Elektrodenpaar (2, 2') durch Strukturierung der Schicht (11) erzeugt wird,
 - auf dem Elektrodenpaar (2, 2') und der dazwischenliegenden
 Oberfläche des Grundkörpers (1) mehrere Metalloxidschichten
 derart abgeschieden werden, daß eine Schichtenfolge

$$Me_2O_3 - V_2O_5 - Me_2O_3 - V_2O_5 - usw.$$

- entsteht, wobei Me ein dreiwertiges Metall bezeichnet und die Metalloxidschichten mehrere Stunden lang getempert werden, wobei die Temperatur so gewählt ist, daß sich Vanadat MeVO₄ bildet.
- 9. Verfahren nach Anspruch 8,
 d a d u r c h g e k e n n z e i c h n e t ,
 daß die Metalloxidschichten durch reaktive Kathodenzerstäubung in einer Argon-Sauerstoffatmosphäre oder durch reaktive
 Elektronenstrahlverdampfung erzeugt werden.

- 10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet daß jeweils mehr als 50 $\mathrm{Me_2O_3}$ - oder $\mathrm{V_2O_5}$ -Schichten abgeschieden werden.
- 11. Verfahren nach einem der Ansprüche 8 bis 10, gekennzeichnet dadurch das jeweils nur Schichten mit einer Dicke d < 20 nm erzeugt 10 werden.
- 12. Verfahren nach einem der Ansprüche 8 bis 11, gekennzeichnet dadurch daß der Metalloxid-Anteil im Bereich zwischen 50 % und 70 % 15 lieqt.
- 13. Verfahren nach einem der Ansprüche 8 bis 12, gekennzeichnet dadurch daß eine Schichtenfolge 20

$${\rm Al}_2{\rm O}_3$$
 - ${\rm V}_2{\rm O}_5$ - ${\rm Al}_2{\rm O}_3$ - ${\rm V}_2{\rm O}_5$ - usw.

erzeugt und bei einer im Bereich zwischen 550 °C und 640 °C liegenden Temperatur getempert wird.. 25

14. Verwendung eines Detektors nach einem oder mehreren der Ansprüche 1 bis 7 als Luftgütesensor oder NH3-Schlupfwächter. WO 95/09361 PCT/DE94/01115

1/6

PCT/DE94/01115

3/6

PCT/DE94/01115

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 G01N33/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 GO1N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
A	SENSORS AND ACTUATORS, vol.19, no.3, September 1989, LAUSANNE CH pages 259 - 265 T.ISHIHARA ET AL 'the mixed oxide A1203 -V2=5 as a semiconductor gas sensor for NO and NO2' cited in the application	1,8	
A	PATENT ABSTRACTS OF JAPAN vol. 17, no. 338 (P-1564) 25 June 1993 & JP,A,50 045 319 (NEW COSMOS ELECTRIC CORP) 23 February 1993 see abstract	1,8	
A	US,A,4 259 292 (N.ICHINOSE ET AL) 31 March 1981/	1,8	

X Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
*A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	To later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
10 February 1995	1 7. 02. 95
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer
NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Brock, T

Form PCT/ISA/210 (recond sheet) (July 1992)

' 1

		PC1/DE 94/01115			
	(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT				
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.			
A	JOURNAL DE PHYSIQUE IV , COLLOQUE C2 ,SUPP. AU JOURNAL DE PHYSIQUE II ,VOL I , SEPTEMBRE 1991, vol.2, September 1991, FRANCE pages C-2963 - C2-968 D.GUORUI 'a study of gas sensing properties of oxide multilayer thin films'	1,8			
	<u>.</u>				

imormation on patent tamily members

PCT/DE 94/01115

Patent document cited in search report	Publication date	Patent family member(s)	y Publication date	
US-A-4259292	31-03-81	JP-C- 155294 JP-A- 5309509 JP-B- 6306033 CA-A- 107801	7 19-08-78 9 24-11-88	
THE SET THE New York high spin carr year map said star year gave also seen		n cur sen ann aint illen bist inter sinn sinn ann bist sen sen sen ann ann ann aint ille ille ille sen ser i		

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 6 G01N33/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 6

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

I C.	ALS	WESENTLIC	H ANGESEHENE UNTER	LAGEN

Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	SENSORS AND ACTUATORS, Bd.19, Nr.3, September 1989, LAUSANNE CH Seiten 259 - 265 T.ISHIHARA ET AL 'the mixed oxide A1203 -V2=5 as a semiconductor gas sensor for NO and NO2' in der Anmeldung erwähnt	1,8
A	PATENT ABSTRACTS OF JAPAN vol. 17, no. 338 (P-1564) 25. Juni 1993 & JP,A,50 045 319 (NEW COSMOS ELECTRIC CORP) 23. Februar 1993 siehe Zusammenfassung	1,8
A	US,A,4 259 292 (N.ICHINOSE ET AL) 31. März 1981	1,8

X	Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen
---	---

X Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen
- "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- Veröffentlichung, die sich auf eine mündliche Offenbarung,
- eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *&" Verössentlichung, die Mitglied derselben Patentsamilie ist Absendedatum des internationalen Recherchenberichts

Datum des Abschlusses der internationalen Recherche

1 7. 02. 95

10. Februar 1995

Name und Postanschrift der Internationale Recherchenbehörde

Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Brock, T

1

	- 100 m	PUT/DE 94	7,01113			
C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN						
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kom	menden Teile	Betr. Anspruch Nr.			
A	JOURNAL DE PHYSIQUE IV , COLLOQUE C2 ,SUPP. AU JOURNAL DE PHYSIQUE II ,VOL I , SEPTEMBRE 1991, Bd.2, September 1991, FRANCE Seiten C-2963 - C2-968 D.GUORUI 'a study of gas sensing properties of oxide multilayer thin films'		1,8			

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

PCT/DE 94/01115

Im Recherchenbericht angeführtes Patentdokument	Datum der	Mitglied(er) der		Datum der
	Veröffentlichung	Patentfamilie		Veröffentlichung
US-A-4259292	31-03-81	JP-C- JP-A- JP-B- CA-A-	1552940 53095097 63060339 1078019	04-04-90 19-08-78 24-11-88 20-05-80