Package 'predieval'

October 14, 2022

Type Package
Title Assessing Performance of Prediction Models for Predicting Patient-Level Treatment Benefit
Version 0.1.1
Date 2022-04-12
Author Orestis Efthimiou
Maintainer Orestis Efthimiou <oremiou@gmail.com></oremiou@gmail.com>
Description Methods for assessing the performance of a prediction model with respect to identifying patient-level treatment benefit. All methods are applicable for continuous and binary outcomes, and for any type of statistical or machine-learning prediction model as long as it uses baseline covariates to predict outcomes under treatment and control
License GPL (>= 2)
Depends R (>= 4.1)
Imports stats, Hmisc (>= 4.6-0), ggplot2 (>= 3.3.5), MASS (>= 7.3), Matching (>= 4.10-2)
Encoding UTF-8
<pre>URL https://github.com/esm-ispm-unibe-ch/predieval</pre>
LazyData true
RoxygenNote 7.1.2
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
NeedsCompilation no
Repository CRAN
Date/Publication 2022-04-19 12:20:02 UTC
R topics documented:
bencalibr

2 bencalibr

datcont.																					
expit																					
ogit																					
redieval.																					
nbinary																					
mcont																					

Index 10

bencalibr

Plotting calibration for benefit of a prediction model

Description

This function produces a plot to illustrate the calibration for benefit for a prediction model. The samples are split into a number of groups according to their predicted benefit, and within each group the function estimates the observed treatment benefit and compares it with the predicted one

Usage

```
bencalibr(
  data = NULL,
  Ngroups = 5,
  y.observed,
  treat,
  predicted.treat.0,
  predicted.treat.1,
  type = "continuous",
  smoothing.function = "lm",
  axis.limits = NULL
)
```

Arguments

data An optional data frame containing the required information.

Ngroups The number of groups to split the data.

y. observed The observed outcome.

treat A vector with the treatment assignment. This must be 0 (for control treatment)

or 1 (for active treatment).

predicted.treat.0

A vector with the model predictions for each patient, under the control treatment.

For the case of a binary outcome this should be probabilities of an event.

predicted.treat.1

A vector with the model predictions for each patient, under the active treatment.

For the case of a binary outcome this should be probabilities of an event.

type The type of the outcome, "binary" or "continuous".

datbinary 3

```
smoothing.function
```

The method used to smooth the calibration line. Can be "lm", "glm", "gam",

"loess", "rlm". More details can be found in https://ggplot2.tidyverse.org/reference/geom_smooth.html.

axis.limits

Sets the limits of the graph. It can be a vector of two values, i.e. the lower and upper limits for x and y axis. It can be omitted.

Value

The calibration plot

Examples

```
# continuous outcome
dat1=simcont(200)$dat
head(dat1)
lm1=lm(y.observed~(x1+x2+x3)*t, data=dat1)
dat.t0=dat1; dat.t0$t=0
dat.t1=dat1; dat.t1$t=1
dat1$predict.treat.1=predict(lm1, newdata = dat.t1) # predictions in treatment
dat1$predict.treat.0=predict(lm1, newdata = dat.t0) # predicions in control
bencalibr(data=dat1, Ngroups=10, y.observed, predicted.treat.1=predict.treat.1,
          predicted.treat.0=predict.treat.0, type="continuous", treat=t,
          smoothing.function = "lm", axis.limits = c(-1, 1.3))
# binary outcome
dat2=simbinary(500)$dat
head(dat2)
glm1=glm(y.observed^{(x1+x2+x3)*t}, data=dat2, family = binomial(link = "logit"))
dat2.t0=dat2; dat2.t0$t=0
dat2.t1=dat2; dat2.t1$t=1
dat2$predict.treat.1=predict(glm1, newdata = dat2.t1) # predictions in treatment
dat2$predict.treat.0=predict(glm1, newdata = dat2.t0) # predicions in control
bencalibr(data=dat2, Ngroups=6, y.observed, predicted.treat.1=expit(predict.treat.1),
          predicted.treat.0=expit(predict.treat.0), type="binary", treat=t,
          smoothing.function = "lm")
```

datbinary

Simulated dataset, binary outcome

Description

Simulated dataset, binary outcome

Usage

```
data(datbinary)
```

Format

An object of class data. frame with 1000 rows and 13 columns.

4 expit

Examples

```
data(datbinary)
head(datbinary)
```

datcont

Simulated dataset, continuous outcome

Description

Simulated dataset, continuous outcome

Usage

```
data(datcont)
```

Format

An object of class data. frame with 500 rows and 11 columns.

Examples

```
data(datcont)
head(datcont)
```

expit

Expit

Description

Calculates the expit of a real number

Usage

```
expit(x)
```

Arguments

Х

A real number

Value

```
\exp(x)/(1+\exp(x))
```

Examples

```
expit(2.3)
```

logit 5

logit

Description

Calculates the logit of a real number between 0 and 1

Logit

Usage

```
logit(x)
```

Arguments

Х

A real number between 0 and 1

Value

```
log(x/(1-x))
```

Examples

logit(0.2)

predieval

Calculating measures for calibration for benefit for a prediction model

Description

This function calculates a series of measures to assess decision accuracy, discrimination for benefit, and calibration for benefit of a prediction model.

Usage

```
predieval(
  repeats = 50,
  Ngroups = 10,
  X,
  treat,
  Y,
  predicted.treat.1,
  predicted.treat.0,
  type = "continuous",
  bootstraps = 500
)
```

6 predieval

Arguments

repeats The number of repetitions for the algorithm. The number of groups to split the data. **Ngroups** Χ A dataframe with patient covariates. treat A vector with the treatment assignment. This must be 0 (for control treatment) or 1 (for active treatment). The observed outcome. For binary outcomes this should be 0 or 1 predicted.treat.1 A vector with the model predictions for each patient, under the active treatment. For the case of a binary outcome this should be probabilities of an event. predicted.treat.0 A vector with the model predictions for each patient, under the control treatment. For the case of a binary outcome this should be probabilities of an event. type The type of the outcome, "binary" or "continuous". bootstraps The number of bootstrap samples to be used for calculating confidence intervals.

Value

A table with all estimated measures of performance.

Examples

```
# continuous outcome
dat0=simcont(500)$dat
head(dat0)
# Randomly shuffle the data
dat<-dat0[sample(nrow(dat0)),]</pre>
# Create random folds
dat$folds <- cut(seq(1,nrow(dat)),breaks=10,labels=FALSE)</pre>
# Obtain out-of-sample predictions
dat.out.CV<-list()</pre>
for (i in 1:10){
 dat.in.CV=dat[dat$folds!=i,]
 dat.out.CV[[i]]=dat[dat$folds==i,]
 dat1<-dat.out.CV[[i]]; dat1$t=1</pre>
 dat0<-dat.out.CV[[i]]; dat0$t=0</pre>
 m1=lm(data=dat.in.CV, y.observed~x1*t+x2*t)
 dat.out.CV[[i]]$predict.treat.1=predict(newdata=dat1, m1)# predictions in treatment
 dat.out.CV[[i]]$predict.treat.0=predict(newdata=dat0, m1)# predicions in control
dat.CV=dat.out.CV[[1]]
for (i in 2:10){ dat.CV=rbind(dat.CV,dat.out.CV[[i]])}
# assess model performance
predieval(repeats=20, Ngroups=c(5:10),
            X=dat.CV[,c("x1", "x2","x3")],
```

simbinary 7

```
Y=dat.CV$y.observed,
                                  predicted.treat.1 = dat.CV$predict.treat.1,
                                  predicted.treat.0 = dat.CV$predict.treat.0,
                                  treat=dat.CV$t, type="continuous")
# binary outcome
dat0=simbinary(500)$dat
head(dat0)
# Randomly shuffle the data
dat<-dat0[sample(nrow(dat0)),]</pre>
# Create random folds
dat$folds <- cut(seq(1,nrow(dat)),breaks=10,labels=FALSE)</pre>
dat.out.CV<-list()</pre>
for (i in 1:10){
     dat.in.CV=dat[dat$folds!=i,]
     dat.out.CV[[i]]=dat[dat$folds==i,]
     dat1<-dat.out.CV[[i]]; dat1$t=1</pre>
     dat0<-dat.out.CV[[i]]; dat0$t=0</pre>
     glm1=glm(y.observed~(x1+x2+x3)*t, data=dat.in.CV, family = binomial(link = "logit"))
     {\tt dat.out.CV[[i]]\$predict.treat.1=predict(newdata=dat1, ~glm1)\# ~predictions ~in ~treatment}
     \verb| dat.out.CV[[i]] \$ predict.treat.0 = predict(newdata = dat0, glm1) \# predictors in control to the state of the state o
}
dat.CV=dat.out.CV[[1]]
for (i in 2:10){ dat.CV=rbind(dat.CV,dat.out.CV[[i]])}
predieval(repeats=20, Ngroups=c(5:10), X=dat.CV[,c("x1", "x2","x3")],
                                  Y=dat.CV$y.observed,
                                  predicted.treat.1 = expit(dat.CV$predict.treat.1),
                                  predicted.treat.0 = expit(dat.CV$predict.treat.0),
                                  treat=dat.CV$t, type="binary",bootstraps = 50)
```

simbinary

Simulate data for a binary outcome

Description

This function generates a dataframe with 6 patient covariates and a binary outcome simulated from a model that uses the covariates.

Usage

```
simbinary(Npat = 100)
```

8 simcont

Arguments

Npat

Number of patients to simulate.

Value

The function returns a dataframe with:

x1, x2, x3, x4, x5, x6= patient covariates.

t= treatment assignment (0 for control, 1 for active).

logit.control= the logit of the probability of an outcome in the control treatment.

logit.active= the logit of the probability of an outcome in the active treatment.

benefit= treatment benefit in log odds ratio.

py=the probability of the outcome for each patient, under the treatment actually administered.

logit.py= the logit of py.

y.observed= the observed outcome

Examples

```
dat1=simbinary(100)$dat
head(dat1)
```

simcont

Simulate data for a prediction model of a continuous outcome

Description

This function generates a dataframe with 6 patient covariates and a continuous outcome simulated from a model that uses the covariates.

Usage

```
simcont(Npat = 100)
```

Arguments

Npat

Number of patients to simulate.

Value

The function returns a dataframe with:

x1, x2, x3, x4, x5, x6= patient covariates.

t= treatment assignment (0 for control, 1 for active).

y.control= the outcome if the patient takes the control treatment.

y.active= the outcome if the patient takes the active treatment.

benefit= the treatment benefit, i.e. y.active-y.control.

y.observed= the observed outcome.

simcont 9

Examples

dat1=simcont(100)\$dat
head(dat1)

Index