

# Deck Builder Toolkit





# What is Magic?

- Magic is the oldest and the most popular trading card game ever
- It contains ~ 12.000 different cards
- Each player uses decks containing 60 to 75 cards
- Numerous strategies and card combinations.

#### Problem

- Deck building requires a certain skill level
- Major issue for new and inexperienced players
- Cards inside deck need to have synergy in order to perform well
- It is hard to find synergy among diverse number of cards

## Our goal

- Provide a deck-builder toolkit to help players
- Give insight on winning strategies in the current metagame
- What cards are relevant given the user's current cards
- Which cards should user add to get good synergy

# Methodology

#### Classification: Naïve Bayes

- We work with decks as collections of cards identified by their names
- Every deck is labeled with an "Archetype"
- We choose Naïve Bayes to classify collection of cards to certain "Archetype"
- We use predicted "Archetype" to narrow down dimensionality of data in order to identify synergies specific to user cards

#### Frequent Item Set mining

- We need to identify good synergies between cards in order to give recommendations
- Identifying synergies in Magic is very difficult due to cards complexity
- We seek to find frequent card combinations from training dataset in order to represent synergies
- We use Apriori algorithm to create combinations of 4 cards that are most played together
- We use item set confidence and winning-loosing ratio to score particular item set

#### Recommendation system

- We take users cards as input and first define "Archetype" in which he should play
- We recommend missing cards in user's collection to make best performing synergies
- We give top combinations based on user's pool of card
- Recommendation system is of great value for deck customization based on proven winning synergies

# Deck Builder Toolkit System



- We use Kimonolabs service to crawl more than 200 000 pages
- Crawler produces JSON files containing: player name, archetype and download link for decks containing a list of cards, an event reference, a player's score and format
- 1 Spellskite
  1 Sacred Foundry

  makoeyesX 4,0 4003084 Kiki
  Pod 1\$\$Temple Garden&&4\$\$Birds of
  Paradise&&1\$\$Mountain&&1\$\$QasaliPrid
  emage&&4\$\$Restoration
  Angel&&1\$\$Spellskite&&1\$\$Sacred
  Foundry&&1\$\$\$\$\$

  Pre-processing

// makeeyesX (4 - 0) // Modern Daily #4003064 on 2012-06-25

1 Temple Garden 4 Birds of Paradise 1 Mountain 1 Qasali Pridemage 4 Restoration Angel

- We use the provided JSON to download more than 200 000 deck lists
- We preprocess the downloaded files taking just the relevant information: player name, event reference, score, list of cards, format and archetype
- We finally merge the preprocessed data into one dataset in a format that can be used as an input training set



- We use Naïve Bayes classifier to classify the user's collection of cards to a certain "Archetype"
- We implement Naïve Bayes in a distributed fashion due to the size of our dataset
- We use Apache Flink as implementation platform





- We use Apriori algorithm to mine frequent cards combinations and to score its synergy performance
   We make four iterations to
- produce combinations of four cards
  For each frequent combination we provide confidence
- percentage and winningpercentageWe use Apache Flink as

implementation platform



 We use user collection of cards as input

We predict in which "Archetype"

- Player should play
   We map user cards to our
- We map user cards to our frequent item sets mined database
- We output cards that user should consider to add to personal collection in order to have good performing synergies
- We rate combinations so user can get cards with bigger chance to win

#### **Experiments**

#### Step 1. Input for the Classification

User has just 4 cards and want to build a deck:

User does not know in which "Archetype" can play









{Remand, Blood Moon, Vedalken Schackles, Snapcaster Mage}

#### Step 2. Classification output

With just 4 cards as an input (deck should have 60-75 cards), Classifier is able to predict correct "Archetype" for user input:

"Archetype" => "UR Delver"

#### Step 3. Generating frequent item set

Generated frequent item set for user's archetype "UR Delver"

| Card #1           | Card #2             | Card #3         | Card #4          | Support % | Winning ratio |
|-------------------|---------------------|-----------------|------------------|-----------|---------------|
| Burst Lightning   | Spellstutter Sprite | Steam Vents     | Vendilion Clique | 0.67      | 0.79          |
| Delver of Secrets | Electrolyze         | Faerie Conclave | Misty Rainforest | 0.62      | 0.78          |
| Electrolyze       | Faerie Conclave     | Mana Leak       | Mountain         | 0.62      | 0.78          |

## Step 4. Mapping user cards to generated frequent set

{Remand, <u>Blood Moon</u>, Vedalken Schackles, <u>Snapcaster Mage</u>}

{Blood Moon, Delver of Secrets, Lightning Bolt, Misty Rainforest} {Burst Lightning, Delver of Secrets, Lightning Bolt, Mana Leak} {Blood Moon, Electrolyze, Misty Rainforest, Snapcaster Mage} {Blood Moon, Electrolyze, Scalding Tarn, Spell Snare}

•

## Step 5. Recommend top combinations for user cards

Suggest which cards user can add to deck to perform good. Rank is combination of support and winning ratio.



# Results

- We crawled more than 200K pages from mtggoldfish.com, which contains deck lists from online daily events. We obtained ~ 25K different decks, each containing 60-75 cards. We focused on specific format "Modern" instead of taking 200K decks in order to provide meaningful data for players.
- Naïve Bayes classification accuracy is 71% with 17.5K decks for training and 7.5K decks for test.
- With Apriori algorithm, we choose to make frequent item sets with four cards. This give us more insight on card synergies instead of giving just a subset of an "Archetype".
- Manual analysis of the recommendations suggest that cards are coherent and have value to a player.

# Discussion

- Classification accuracy of 71% is not satisfying, and should be improved. The problem rely in small vocabulary (~1900 distinct card names), with large number of classes (more than 100 different "Archetypes")
- In order to provide reliable service for players, data needs to be updated frequently and mine new frequent item sets, since meta game is evolving
- Recommendations system provides the most played ones, thus can be of low interest for experienced players
  Future work would explore new ways to improve classification and overall performance of
  - system. Algorithms other than Apriori should be explored and tested

    To make system more valuable it should mine frequent item set on more than one
- To make system more valuable it should mine frequent item set on more than one "Archetype"

