- 1. $A \subseteq B \longleftrightarrow \{x \in A \to x \in B\}$
 - So, $C \subseteq D \longleftrightarrow \{ x \in C \to x \in D \}$

We want to show $A \times C \subseteq B \times D$.

So, $(y, z) \in A \times C \rightarrow (y, z) \in B \times D$

 $(y, z) \in A \times C$ implies that $\{y \in A\} \land \{y \in C\}$

Which means $\{y \in B\} \land \{y \in D\}$ because $A \subseteq B$ and $C \subseteq D$

Therefore, it's proved that $A \times C \subseteq B \times D$

2. Venn Diagram of $(B - A) \cup (C - A)$

Venn Diagram for (B ∪ C) - A

3. $(B - A) \cup (C - A) = (B \cup C) - A$

Iff argument

Iff $(B - A) \cup (C - A)$

Iff $x \in (B - A) V x \in (C - A)$

Iff $(x \in B \cap x \in \overline{A}) \lor (x \in C \cap x \in \overline{A})$

Iff $(x \in B \ V \ x \in C) \cap x \in \overline{A}$

Iff $(x \in (B \lor C)) \cap x \in \overline{A}$

Iff $(B \cup C) - A$

<u>Logical equivalences</u>

 $(B \cup C) - A$

 $(B \cup C) \cap \bar{A}$

 $(B\cap \bar{A})\cap (C\cap \bar{A})$

 $(B-A) \cup (C-A)$

Definition of Union

Definition of intersection

Therefore, the statement is wrong because A - C and B - C both share the same elements but $A \neq B$.

(b) if
$$A \cap C = B \cap C$$
 then $A = B$
 $A = \{1, 2, 3\}$
 $B = \{2, 3, 4\}$
 $C = \{2, 3\}$
 $A \cap C = \{2, 3\}$
 $B \cap C = \{2, 3\}$

Therefore, the statement is wrong because $A \cap C$ and $B \cap C$ both share the same elements but $A \neq B$.

5. Prove that if A - C = B - C and $A \cap C = B \cap C$ then A = B.

To proof that A - C = B - C and $A \cap C = B \cap C$ then A = B. Let A and B be sets.

Let's try to prove that if $x \in B$, then $x \in A$. We can assume that $x \in B$, and to conclude that $x \in A$. There are two cases now which are either $x \in C$ or $x \notin C$.

Case 1

If $x \in C$, we assume that $x \in B$, $x \in B \cap C$. Since $A \cap C = B \cap C$ we can conclude that $x \in A \cap C$. Hence $x \in A$ and $x \in C$. Therefore, $x \in A$.

Case 2

If $x \notin C$, we assume that $x \in B$, $x \in B - C$. Since A - C = B - C we can conclude that $x \in A - C$. Hence $x \in A$ and $x \notin C$. Therefore, $x \in A$.

Both of these cases show that $x \in B \to x \in C$. Hence, $B \subseteq A$

Let's assume the other way, if $x \in A$, then $x \in B$. With the two cases now, which are either $x \in C$ or $x \notin C$.

Case 1

If $x \in C$, we assume that $x \in A$, $x \in A \cap C$. Since $A \cap C = B \cap C$ we can conclude that $x \in B \cap C$. Hence $x \in B$ and $x \in C$. Therefore, $x \in B$.

Case 2

If $x \notin C$, we assume that $x \in A$, $x \in A - C$. Since A - C = B - C we can conclude that $x \in B - C$. Hence $x \in B$ and $x \notin C$. Therefore, $x \in B$.

Both of these cases show that $x \in A \rightarrow x \in B$. Hence, $A \subseteq B$

We have shown that A = B, by the definition of equivalency which is If $x \in B \to x \in C$. (This proves $B \subseteq A$). If $x \in A \to x \in B$. (This proves $A \subseteq B$).

6.
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 $Assume \exists x (B \cap C)$
 $= x \in A V (x \in B \land x \in C)$
 $= (x \in A V x \in B) \land (x \in A V x \in C)$
 $= x \in (A \lor B) \land x \in (A \lor C)$
 $= x \in (A \cup B) \cap x \in (A \cup C)$
 $= x \in (A \cup B) \cap (A \cup C)$
 $= A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$ (1)
 $Assume \exists x ((A \cup B) \cap (A \cup C))$
 $= x \in (A \cup B) \cap (A \cup C)$
 $= x \in (A \cup B) \land (x \in A) \lor (x \in A) \lor (x \in C)$
 $= (x \in A) \lor (x \in B \land C)$
 $= (x \in A) \lor (x \in B \land C)$
 $= (x \in A) \cup (x \in B \cap C)$
 $= x \in (A \cup B) \cap (A \cup C)$
 $= (A \cup B) \cap (A \cup C) \subseteq (A \cup B) \cap (A \cup C)$ (2)
 $= A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$ (1) (2)
 $= A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$ (1) (2)
 $= A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$ (1) (2)

7.
$$f: Z^+ \rightarrow Z^+$$

 $f(n) = 5n + 12$
 $f(y) = 5y + 12$

$$f(n) = f(y)$$

$$5n + 12 = 5y + 12$$

$$5n = 5y$$

$$n = y$$

Therefore, it is one-to-one

$$f(n) = 5n + 12$$

Let
$$5n + 12 = 0$$

$$5n = -12$$

$$n = -\frac{12}{5}$$

Therefore, f is not onto because domain and co-domain supposed to be positive integers and n is not positive nor integer in this case.

8. f(m, n) = 3mn for $f: R \times R \rightarrow R$

$$a = 3mn$$

$$m = \frac{a}{3n}$$

$$a = 3\left(\frac{a}{3n}\right)n$$

$$a = a$$

Therefore, it is onto because inverse of it gives 1 value only

$$f(m, n) = 3mn$$

$$f(-2, -2) = 3(-2)(-2) = 12$$

$$f(2, 2) = 3(2)(2) = 12$$

f(-2, -2) and f(2, 2) both have different values of m and n but both the equations have the same result. There, it is not one-to-one.