COMP2610/6261 - Information Theory Assignmenture Peroposition Theory Assignmenture Peroposition Theory

https://Robert C. Williamson powcoder.com

8 October, 2018

Assignment Project Exam Help

- ² Compliting Capacities powcoder.com
- ³ Summaydd WeChat powcoder

Channels: Recap

Source di va WeChat powcoder

Channel: Analogue telephone line

Decoder: Telephone handset

Destination: Mark

Channels: Recap

A discrete channel Q consists of:

Assignment Project Exam Help

- an output alphabet $\mathcal{Y} = \{b_1, \dots, b_J\}$
- transition positive powcoder.com

The channel Q can be expressed as a matrix $\underbrace{Add}_{Q_{j,i}} \underbrace{P(y=b_j|x=a_i)}_{P(y=b_j|x=a_i)} \underbrace{powcoder}_{Q_{j,i}}$

This represents the probability of observing b_i given that we transmit a_i

The Binary Noiseless Channel

One of the simplest channels is the **Binary Noiseless Channel** The probability of error, hence noiseless.

Add WeChat powcoder

The Binary Symmetric Channel

Ash symbol three a being "flipped" to its counterpart $(0 \rightarrow 1; 1 \rightarrow 0)$

The Z Channel

Assignment Projects Exam Help

Inputs
$$\mathcal{X} = \{0, 1\}$$
; Outputs $\mathcal{Y} = \{0, 1\}$;

https://powerometriceom

$$Q = \begin{bmatrix} 1 & f \\ 0 & 1 - f \end{bmatrix}$$
Add WeChat powcoder

Communicating over Noisy Channels

Suppose we know we have to communicate over some channel Q and we was Sull Call Property tool of the College of

Reliability is measured via **probability of error** — that is, the probability of incorrectly decading sow given smass input:

incorrectly decading we given small input:
$$P(\mathbf{s}_{out} \neq \mathbf{s}_{in}) = \sum_{\mathbf{s}} P(\mathbf{s}_{out} \neq \mathbf{s}_{in} | \mathbf{s}_{in} = \mathbf{s}) P(\mathbf{s}_{in} = \mathbf{s})$$

Assignment Project Exam Help

- ² Compliting Capacities powcoder.com
- ³ Summaydd WeChat powcoder

Mutual Information for a Channel

A lexplicating unance of a learner is the control of the learner inputs X and outputs Y:

 $\begin{array}{c} I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) \\ \hline \text{This measures low much what was received } \\ If the example of the example$

This requires we specification to particular production of the pro

A channel is only specified by its transition matrix!

Mutual Information for a Channel: Example

Assignment Project Exam Help

```
For noiseless channel H(X|Y) = 0 so I(X;Y) = H(X).

https://powcoder.com

If \mathbf{p}_X = (0.9, 0.1) then I(X,Y) = 0.47 bits.
```

Add WeChat powcoder

Mutual Information for a Channel: Example

For binary symmetric channel with
$$f = 0.15$$
 and $\mathbf{p}_{X} = (0.9, 0.1)$ we have
$$\begin{array}{c} \mathbf{ASSIgnment} & \mathbf{Project} & \mathbf{Exam} & \mathbf{Help} \\ p(Y = 1) = p(Y = 1 \mid X = 1) \cdot p(X = 1) + p(Y = 1 \mid X = 0) \cdot p(X = 0) \\ = (1 - f) \cdot 0.1 + f \cdot 0.9 \\ \mathbf{help} & \mathbf{help} &$$

and so
$$H(Y) = 0.76$$

Further, $H(Y \mid X = 0) = H(Y \mid X = 1) = H(0.15) = 0.61$.

So,
$$I(X; Y) = 0.15$$
 bits

Mutual Information for a Channel: Example

Assignment Project Exam Help

```
For Z channel with f = 0.15 and same \mathbf{p}_X we have H(Y) = 0.42, H(Y|X) 1006158. Proof of the constant of the constan
```

Add WeChat powcoder

Channel Capacity

The mutual information measure for a channel depends on the choice of

input distribution \mathbf{p}_X . If H(X) is small then $I(X;Y) \leq H(X)$ is small. Assignment Project Exam Help The largest possible reduction in uncertainty achievable across a channel

is its capacity.

Channel Galasts://powcoder.com

The capacity C of a channel Q is the largest mutual information between its input and output for any choice of input ensemble. That is,

Add WeChat powcoder

Later, we will see that the capacity determines the rate at which we can communicate across a channel with arbitrarily small error.

Assignment Project Exam Help

- 2 Compliting Capacities powcoder.com
- SummAdd WeChat powcoder

Definition of capacity for a channel Q with inputs A_X and ouputs A_Y :

Assignment Project Exam Help How do we actually calculate this quantity?

- Compute the mutual information I(X; Y) for a general p_X
 Determine MShi ghoto O MA (n) is E(X; O)
- Use that maximising value to determine C

Binary Symmetric Charnet Charnet by Coder We first consider the binary symmetric channel with $A_X = A_Y = \{0, 1\}$ and flip probability f. It has transition matrix

$$Q = \begin{bmatrix} 1 - f & f \\ f & 1 - f \end{bmatrix}$$

Binary Symmetric Channel - Step 1

The mutual information can be expressed as I(X; Y) = H(Y) - H(Y|X). We therefore need to compute two terms: H(Y) and H(Y|X) so we need ASSTIGNATION FOR EXAMT HELP

Computing H(Y):

- P(y) | P(y) |

In general, $\mathbf{q} := \mathbf{p}_Y = Q\mathbf{p}_X$, so above calculation is just

Add WeChat powcoder

Using
$$H_2(q) = -q \log_2 q - (1-q) \log_2 (1-q)$$
 and letting $q = q_1 = P(y=1)$ we see the entropy

$$H(Y) = H_2(q_1) = H_2(f \cdot p_0 + (1 - f) \cdot p_1)$$

Binary Symmetric Channel - Step 1

Computing H(Y|X):

and similarly,

$$H(Y|X=1) = H_2(P(y=1|X=1)) = H_2(Q_{0,1}) = H_2(f)$$

So, $https://powcoder.com$

$$H(Y|X) = \sum_{x=1}^{\infty} H(Y|x)P(x) = \sum_{x=1}^{\infty} H_2(f)P(x) = H_2(f)\sum_{x=1}^{\infty} P(x) = H_2(f)$$

$\underset{\text{computing } I(X;Y):}{\underbrace{Add}} WeChat \ powcoder$

Putting it all together gives

$$I(X; Y) = H(Y) - H(Y|X) = H_2(f \cdot p_0 + (1 - f) \cdot p_1) - H_2(f)$$

Binary Symmetric Channel - Steps 2 and 3

Binary Symmetric Channel (BSC) with flip probability $f \in [0, 1]$:

Assignment Project Exam Help

Examples:

$$I(X; Y), f = 0.15$$

Maximise I(X; Y): Since I(X; Y) is symmetric in p_1 it is maximised when $p_0 = p_1 = 0.5$ in which case C = 0.39 for BSC with f = 0.15.

Channel Capacity: Example

Add WeChat powcoder

where equality of the last line holds for **uniform** \mathbf{p}_X

Symmetric Channels

Assignment Project Examy Help

Symmetric Channel

A channel with input A_{γ} and outputs A_{γ} and matrix Q is **symmetric** if A_{γ} can be partitioned into subsets $Y \subseteq Y$ so that each sub-matrix Q'containing only rows for outputs Y' has:

- Columns that are all permutations of each other
 Row that are all permutations of each other

Symmetric Channels: Examples

$$A_X = A_Y = \{0, 1\}$$
 $A_X = \{0, 1\}, A_Y = \{0, ?, 1\}$ $A_X = A_Y = \{0, 1\}$

Symmetric

Not Symmetric

Subset https://posts.com

If one of our partitions has just one row, then every element in that must be equal for the educations of achother oder $\ensuremath{\mathsf{Coder}}$

Simplest case: all rows and columns are permutations of each other

But this is not a requirement

Channel Capacity for Symmetric Channels

Assignment Project Exam Help For symmetric channels, the optimal distribution for the capacity has a

For symmetric channels, the optimal distribution for the capacity has a simple form:

Theorem https://powcoder.com

If Q is symmetric, then its capacity is achieved by a uniform distribution over \mathcal{X} .

Exercise And Madwe Chat powcoder

Computing Capacities in General

What can we do if the channel is not symmetric?

As we grating each P_T or a great house P_T is more challenging

What to do once we know I(X; Y)?

- 1(x; https://powscoder.com
- For binary inputs, just look for stationary points (not for $|\mathcal{A}_X| > 2$) i.e., where $(x)^d (x)^d (x)^$
- In general, need to consider distributions that place 0 probability on one of the inputs

Computing Capacities in General

Example (Z Channel with
$$P(y = 0 | x = 1) = f$$
):

$$H(Y) = H_2(P(y = 1)) = H_2(0p_0 + (1 - f)p_1)$$

$$Assignme(nt^f) Project Exam Help$$

$$= p_0 H_2(P(y = 1 | x = 0)) + p_1 H_2(P(y = 0 | x = 1))$$

$$= p_0 H_2(0) + p_1 H_2(f)$$

$$https://powcoder.com$$

Computing Capacities in General

Example (Z Channel):

Showed earlier that $I(X; Y) = H_2((1 - f)p) - pH_2(f)$ so solve

Assignment
$$Project(1Exam Help)$$

https://poweoder.com
$$p = \frac{1 - (1 - f)p}{1 / (1 - f)} = 2^{H_2(f)/(1 - f)}$$

$$\Leftrightarrow p = \frac{1 / (1 - f)}{1 + 2^{H_2(f)/(1 - f)}}$$

For
$$f = 6.500$$
 get $V = 0.85$ at 0.400 WCOCCT $C = H_2(0.38) - 0.44H_2(0.15) \approx 0.685$

Homework: Show that $\frac{d}{dp}H_2(p) = \log_2 \frac{1-p}{p}$

Why Do We Care?

We have a template for computing channel capacity for generic channels

Aut what does this tell us? Project Exam Help Hower at all, does it relate to the error probability when decoding?

 What, if anything, does it tell us about the amount of redundancy we can get away with when encoding?

can get away with when encoding? https://powcoder.com

We will see next time that there is a deep connection between the capacity and the best achievable rate of transmission

Rates abore the capacity car not be achieved white ensuring arbitrarily small error probabilities

Summary and Conclusions

Mutual information between input and output should be large

Depends on input distribution

Assignment Project Exam Help Capacity of the maximal possible mutual information

Can compute easily for symmetric channels

• Can compute explicit porgeners channels. COM

Add WeChat powcoder