Iteración	(x_n)		(x_{n+1} = g(x_n))	Error (%)
	0	0		1
	1	1	0.36787944	1 171.8281828
	2	0.367879441	0.69220062	8 46.85363946
	3	0.692200628	0.50047350	1 38.30914659
	4	0.500473501	0.60624353	5 17.44678968
	5	0.606243535	0.54539578	6 11.15662253
	6	0.545395786	0.57961233	5.903350814
	7	0.579612336	0.56011546	1 3.48086698
	8	0.560115461	0.57114311	5 1.930803931
	9	0.571143115	0.56487934	7 1.108868242
:	10	0.564879347	0.56842872	0.624419119

Nombre				
Matricula				
Materia				
Fecha entrega				
Parcial				
Metodo				

Andrés Gutiérrez Franco 747425 Metodos Numericos 01/05/25 1 Metodo Punto fijo

Comparacion

Desde el inicio, es evidente que el método del punto medio, aunque requiere menos iteraciones, tiende a ser más lento en cada paso y a demandar más cálculos. En contraste, el método de la secante, a pesar de necesitar más pasos en general, resulta más ágil en su ejecución.

Parar

No

$$f(x) = e^{-x} - x$$

Xo=0

Sí

Error= 1%

Metodo secante

Iterracion	(x_	_n)	(x_{n+1})	(f(x_n))	(f(x_{n+1})
	0	0	1	1	-0.63212
	1	1	0.6127	-0.63212	-0.07081
	2	0.6127	0.563838	-0.07081	0.005182

3

(x_{n+2}) Error (%)

0.6127 63.21206 0.563838 8.66586 0.56717 0.587472