Конспект 09/09/19

Организационные вопросы

Разбалловка

- практика 70 баллов
- 2 теоретических опроса 10 баллов (даётся только если прийти на экзамен)
- экзамен 20 баллов

Литература

Учебник - Виноградов О.Л. "Курс математического анализа". Первый курс в этом учебнике вполне сходится, но лучше учить по конспектам/лекциям, т.к. порядок теорем важен - если сослаться на экзамене на теорему, которая идет позже в курсе, будут вопросы.

Множества

Способы задания множеств:

- Перечислением элементов: $\{1,2,3\}$
- Как подмножество: $\{x \in C :$ выполняется $ho(x)\}$

 $\mathbb U$ - универсум - максимально крупное множество. Если не указано, из какого множества рассматриваются элементы, то они из $\mathbb U$.

 \emptyset - пустое множество - нет элементов

Часто встречающиеся множества: $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$

Определение: $\mathbb{Z}_+ = \{n \in \mathbb{Z} : n \geq 0\}$

Определение: $\mathbb{R}_+ = \{n \in \mathbb{Z} : n \geq 0\}$

Определение (неформальное, т.к. отображения будут даны потом): Семейством называется такое множество A, в котором каждому "индексу" $i \in I$ сопоставлен ровно один элемент A. При этом каждый элемент A может соответствовать более чем одному индексу. В частности, семейство множеств содержит в себе множества. Обозначается: $(A_i)_{i \in I}$.

Определение: Упорядоченная пара - семейство из двух элементов. Обозначается: (a,b)

Определение: Декартово произведение двух множеств - множество всех упорядоченных пар элементов этих множеств. $A \times B = \{(a,b): a \in A, b \in B\}$. Аналогично определяется декартово произведение n множеств, например для n=3: $A \times B \times C = \{(a,b,c): a \in A, b \in B, c \in C\}$

Определение: $\mathbb{R}^2=\mathbb{R} imes\mathbb{R}$ - координаты на плоскости

Определения:

 $A \cup B = \{x : x \in A$ или $x \in B\}$ - объединение множеств

 $A\cap B=\{x:x\in A$ и $x\in B\}$ - пересечение множеств

 $igcup_{i \in I} A_i = \{x: \exists i \in I \; x \in A_i\}$ - объединение семейства множеств

 $igcap_{i \in I} A_i = \{x : orall i \in I \ x \in A_i\}$ - пересечение семейства множеств

Некоторые тривиальные свойства ${\mathcal O}$ и ${\mathbb U}$ для любого множества A:

$$\emptyset \cup A = A$$

$$\emptyset \cap A = \emptyset$$

$$\mathbb{U} \cup A = \mathbb{U}$$

$$\mathbb{U}\cap A=A$$

Определение: дополнением множества X в множестве Y называется множество $\{x\in Y:x\notin X\}$, если $X\subset Y$ (иначе дополнение не определено). Если множество Y опущено, вместо него используется $\mathbb U$, т.е. $A^c=\{x:x\notin A\}$

Определение: Разность множеств: $Y \setminus X = \{x \in Y : x \notin X\}$

Можно заметить, что разность множеств и их дополнение эквивалентны, если $X\subset Y$

Любопытный эксперимент: можно поменять обозначения операций над множествами:

 $\cup \leftrightarrow +$

 $\cap \leftrightarrow *$

 $\emptyset \leftrightarrow 0$

 $\mathbb{U} \leftrightarrow 1$ - не путать с числом 1.

Тогда:

(A+B)C=AC+BC - дистрибутивность умножения относительно сложения

(AB) + C = (A + C)(B + C) - дистрибутивность сложения относительно умножения

Эти свойства доказуемы кругами Эйлера, доказательство опущено.

Теорема: *закон де Моргана*. Пусть $(X_{lpha})_{lpha \in A}$ - семейство множеств, Y - множество. Тогда:

$$Y\setminus ig(igcup_{lpha\in A} X_lphaig)=igcap_{lpha\in A} ig(Y\setminus X_lphaig)$$
 ①

$$Y\setminus ig(igcap_{lpha\in A} X_lphaig)=igcup_{lpha\in A} ig(Y\setminus X_lphaig)$$
 ②

Доказательство

Примечание: Чтобы доказать, что A=B, можно доказать, что $A\subset B, B\subset A$. Воспользуемся этим методом, чтобы доказать 1

$$x \in Y; x \notin \bigcup X_{\alpha}$$

$$x \in Y; x \notin \{y : \exists \alpha : y \in X_{\alpha}\}$$

$$x \in Y; \forall \alpha \in A : x \notin X_{\alpha}$$

 $\triangleleft x \in$ правая часть (1)

$$\forall \alpha : x \notin Y \setminus X_{\alpha}$$

Из чего левая и правая части эквивалентны. Аналогично доказывается (2)

Другой вариант закона де Моргана:

$$Y\cap ig(igcup_{lpha\in A}X_lphaig)=igcup_{lpha\in A}ig(Y\cap X_lphaig)$$

$$Y \cup (igcap_{lpha \in A} X_lpha) = igcap_{lpha \in A} (Y \cup X_lpha)$$

Вещественные числа

Определение: Множество, в котором выполняются аксиомы I-IV, называется множеством вещественных чисел \mathbb{R} .

Примечание: использовать $\mathbb R$ в этих аксиомах не совсем корректно, т.к. $\mathbb R$ определяется через эти аксиомы.

I - аксиомы поля

В множестве $\mathbb R$ определены две операции, называемые сложением и умножением, действующие из $\mathbb R imes \mathbb R$ в $\mathbb R$ ($+, \cdot : \mathbb R imes \mathbb R \to \mathbb R$), удовлетворяющие следующим свойствам:

Аксиомы +

В разделе про аксиомы поля опущены $orall a \in \mathbb{R}, orall b \in \mathbb{R}, orall c \in \mathbb{R}.$

1.
$$a+b=b+a$$
 - коммутативность

2.
$$(a+b)+c=a+(b+c)$$
 - ассоциативность

3.
$$\exists 0 : 0 + a = a$$

4.
$$\exists a' : a + a' = 0$$

Примечание: 0 - единственный. Докажем это: пусть существуют различные 0_1 и 0_2 , удовлетворяющие условию 3. Тогда по этому условию $0_1+0_2=0_2$, $0_2+0_1=0_1$. Но по условию 1 эти выражения равны, поэтому $0_1=0_2$ - противоречие.

Аксиомы *

1. ab=ba - коммутативность

2. (ab)c = a(bc) - ассоциативность

3. $\exists 1
eq 0: orall a \in \mathbb{R}: a \cdot 1 = a$

4. $\forall a
eq 0: \exists ilde{a}: a \cdot ilde{a} = 1$

Аксиома комбинации + и *

1. (a+b)c=ac+bc - дистрибутивность

Определение: Поле - множество, в котором определены операции $+,\cdot$, удовлетворяющие группе аксиом I. Например, $\mathbb{R},\mathbb{Q},\mathbb{F}_3$

 $\mathbb{F}_{3}=\{0,1,2\}$, умножение и сумма определены как на \mathbb{R} , но по модулю 3.

Тождество Лагранжа

Пусть A, B - поля. Тогда:

$$\frac{1}{2} \sum_{(i,k) \in A \times B} (a_i b_k - a_k b_i)^2$$

$$\frac{1}{2} \sum_{(i,k) \in A \times B} (a_i^2 b_k^2 + a_k^2 b_i^2 - 2a_i a_k b_i b_k)$$

$$\frac{1}{2} \sum_{(i,k) \in A \times B} (a_i^2 b_k^2) + \frac{1}{2} \sum_{(i,k) \in A \times B} (a_k^2 b_i^2) - \sum_{(i,k) \in A \times B} (a_i b_i a_k b_k)$$

$$\frac{1}{2} \sum_{(i,k) \in A \times B} (a_i^2) \sum_{(i,k) \in A \times B} (b_k^2) + \frac{1}{2} \sum_{(i,k) \in A \times B} (a_i^2) \sum_{(i,k) \in A \times B} (b_k^2) - \sum_{(i,k) \in A \times B} (a_i b_i) \sum_{(i,k) \in A \times B} (a_k b_k)$$

$$\sum_{(i,k) \in A \times B} (a_i^2) \sum_{(i,k) \in A \times B} (b_k^2) - \sum_{(i,k) \in A \times B} (a_i b_i)^2$$

Следствие: $(\sum a_i b_i)^2 \leq (\sum a_i^2)(\sum b_k^2)$ (неравенство Коши-Буняковского)

Примечание автора: молитесь всем богам, которых знаете, чтобы этого не было на экзамене

II - Аксиомы порядка

Между элементами $\mathbb R$ определено отношение \leq со следующими свойствами:

1.
$$\forall x,y \in \mathbb{R}: x \leq y$$
 или $y \leq x$

2.
$$x \leq y; y \leq x \Rightarrow x = y$$

3.
$$x \leq y; y \leq z \Rightarrow x \leq z$$
 - транзитивность

4.
$$x \leq y \Rightarrow \forall z \in \mathbb{R} : x+z \leq y+z$$

5.
$$0 \le x$$
; $0 \le y \Rightarrow 0 \le xy$

Определение: упорядоченное поле - множество, для которого выполняются аксиомы групп I и II.

 \mathbb{F}_3,\mathbb{C} - не упорядоченные поля

 $\mathbb{R}, \mathbb{Q}, \mathcal{R}$ - упорядоченные поля

 \mathcal{R} - множество функций с вещественными коэффициентами $\dfrac{a_k x^k + a_{k-1} x^{k-1} + \ldots + a_0}{b_m X^m + \ldots + b_0}$. На \mathcal{R} операции $+,\cdot$ - умножение и сложение соответствующих многочленов. \leq на \mathcal{R} задано следующим образом: $f \leq g$, если при больших x > 0 $f(x) \leq g(x)$. Более формально: $\exists x_0: \forall x \geq x_0: f(x) \leq g(x)$. Например, $\frac{x+1}{x^2+1} \geq \frac{x^2+x+1}{x^10-x-1}$.

Определения:

$$[a,b]=x:a\leq x,x\leq b$$

$$[a,b) = x: a \leq x, x < b$$

$$[a, +\infty) = \{x : a \le x\}$$

< a,b> - любой тип краев ("[" или "(")

$$x < y$$
, если $x \leq y, x
eq y$

 $\overline{\mathbb{R}}=\mathbb{R}\cup\{+\infty,-\infty\}$ - расширенные вещественные числа

Свойства бесконечностей

Сложение

1.
$$\pm \infty + x = \pm \infty$$

2.
$$\pm \infty + \pm \infty = \pm \infty$$

3.
$$\pm \infty + \mp \infty = \Theta$$
 - не определено

Умножение

Здесь рассматирвается $x \in \mathbb{R}, x > 0$

1.
$$x \cdot \pm \infty = \pm \infty$$

2.
$$\pm \infty \cdot \pm \infty = +\infty$$

3.
$$\pm \infty \cdot \mp \infty = -\infty$$

4.
$$0\cdot(\pm\infty)=igotimes$$
 - не определено

III - Аксиома Архимеда

На самом деле теорема была впервые высказана Евдоксом

$$orall x,y>0:\exists n\in\mathbb{R}:nx>y$$

Следствие: существуют сколько угодно большие натуральные числа - $\forall y \in \mathbb{R}: \exists n \in \mathbb{N}: n>y$

Определение: Архимедовы поля - упорядоченные поля, в которых выполняется Аксиома Архимеда.

 ${\mathcal R}$ - не архимедово поле

 \mathbb{R},\mathbb{Q} - архимедовы поля

IV - Аксиома Кантора

В роли четвертой аксиомы могут выступать разные утверждения, но результирующие $\mathbb R$ равны.

Определение: $\{[a_b,b_n]\}_{n=1}^\infty$ - последовательность вложенных отрезков, если $a_n\leq a_{n+1}\leq b_{n+1}\leq b_n$

Аксиома Кантора: Для любой бесконечной последовательности вложенных отрезков их пересечение не пусто, т.е. $\bigcap_{n=1}^\infty [a_n,b_n] \neq \emptyset$

Замечание: аксиома Кантора не выполняется для последовательность вложенных промежутков, например: $(a_k,b_k)=(0,\frac{1}{k}).$ $\bigcap\limits_{n=1}^{\infty}(0,\frac{1}{k})=\emptyset$. Докажем это от противного пусть существует $\alpha>0$ (очевидно, что $\alpha\leq 0$ не подходит) такая, что $\alpha\in\bigcap\limits_{n=1}^{\infty}(0,\frac{1}{k}).$

$$orall k: lpha < rac{1}{k}$$

$$\forall k: k\alpha < 1$$

Это - противоречие по теореме Архимеда

 $\mathbb Q$ не удовлетворяет аксиоме IV, $\mathbb R$ удовлетворяет.

Теорема Кантора

$$orall lpha > 0: \exists [a_k,b_k]: b_k - a_k < lpha$$

Тогда
$$\exists ! c : c \in \bigcap [a_k, b_k]$$

Десятичная запись

$$\forall y \in \mathbb{R}, y > 0$$

Подберем $k \in \mathbb{Z}_+ : k < y < k+1$

Определение: k - целая часть y.

Таким образом выбирается цифра, которая пишется после запятой (в данном случае - 5), после чего рассматривается отрезок, в который попал y. Колесо сансары дает оборот.

При попадании на стык частей (т.е. число - конечная десятичная дробь) - либо рассматриваем левый промежуток, либо правый. Тогда запись будет оканчиваться на 999..., либо на 000... Эти записи - эквивалентны. Таким образом, каждому числу сопоставляется запись как десятичной дроби и наоборот.

Целые числа

Определение: $M\subset R$ - индуктивное множество, если: R - упорядоченное поле, $1\in M$, $x\in M\Rightarrow x+1\in M$

Пример:
$$R=\mathbb{R}, M=(0;+\infty)$$

Определение: $\mathbb N$ - наименьшее индуктивное множество над $\mathbb R$, т.е. $\mathbb N=\bigcap_{M:\mathrm{инд}}M$, где инд - множество всех индуктивных множеств над $\mathbb R$