7.8 Best Approximation and Least Squares

The minimum distance problem in \mathbb{R}^n

Given a subspace W and a vector \mathbf{b} in \mathbb{R}^n , find a vector $\hat{\mathbf{w}}$ in W that is closest to \mathbf{b} in the sense that $\|\mathbf{b} - \hat{\mathbf{w}}\| < \|\mathbf{b} - \mathbf{w}\|$ for every vector \mathbf{w} in W that is distinct from $\hat{\mathbf{w}}$. Such a vector $\hat{\mathbf{w}}$, if exists, is called a best approximation to \mathbf{b} from W.

Minimum distance problem

Theorem (Best approximation theorem)

If W is a subspace of \mathbb{R}^n , and **b** is a point in \mathbb{R}^n , then there is a unique best approximation to **b** from W, namely $\hat{w} = \text{proj}_W \mathbf{b}$.

Definition

If A is an $m \times n$ matrix and \mathbf{b} is a vector in \mathbb{R}^m , then a vector $\hat{\mathbf{x}}$ in \mathbb{R}^n is called a best approximate solution or a least squares solution of $A\mathbf{x} = \mathbf{b}$ if

$$\|\mathbf{b} - A\hat{\mathbf{x}}\| \le \|\mathbf{b} - A\mathbf{x}\|$$

for all \mathbf{x} in \mathbb{R}^n . The vector $\mathbf{b} - A\hat{\mathbf{x}}$ is called the least squares error vector, and the scalar $\|\mathbf{b} - A\hat{\mathbf{x}}\|$ is called the least squares error.

The solutions of $A\mathbf{x} = \text{proj}_{\text{col}(A)}\mathbf{b}$ are the least squares solutions of $A\mathbf{x} = \mathbf{b}$.

The least square solution of $A\mathbf{x} = \mathbf{b}$ are obtained by solving the equation $A^T A \mathbf{x} = A^T \mathbf{b}$, called the normal equation or normal system associated with $A\mathbf{x} = \mathbf{b}$.

Theorem

(a) The least squares solutions of a linear system $A\mathbf{x} = \mathbf{b}$ are the exact solution of the normal equation

$$A^T A \mathbf{x} = A^T \mathbf{b}.$$

(b) If A has full column rank, the normal equation has a unique solution, namely

$$\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}.$$

(c) If A does not have full column rank, then the normal equation has infinitely many solutions, but there is a unique solution in the row space of A. Moreover, among all solutions of the normal equation, the solution in the row space of A has the smallest norm.

Theorem

A vector $\hat{\mathbf{x}}$ is a least squre solution of $A\mathbf{x} = \mathbf{b}$ if and only if the error vector $\mathbf{b} - A\hat{\mathbf{x}}$ is orthogonal to the column space of A.

Example

Find the least squares solutions and least squares error for

$$3x_1 + 2x_2 - x_3 = 2$$

 $x_1 - 4x_2 + 3x_3 = -2$
 $x_1 + 10x_2 - 7x_3 = 1$

Fitting a curve to experimental data

Mathematical model

A common problem in experimental work is to obtain a mathematical relationship between two variables x and y by fitting a curve y = f(x) of a specified form to a set of points in the plane that correspond to experimentally determined values of x and y. The curve y = f(x) is called a mathematical model.

Least squares fit by linear functions

Linear models:

Least squares fit by linear functions

Example

Find the least squares line of best fit to the four points (0,1),(1,3),(2,4), and (3,4).

Least squares fit by higher-degree polynomials

$$f(x) = a_0 + a_1 x + \cdots + a_m x^m$$

Least squares fit by higher-degree polynomials

Example

According to Newton's second law of motion, a body near the surface of the Earth falls vertically downward according to the equation

$$y = y_0 + v_0 t + \frac{1}{2} g t^2.$$

Find the least squares estimates of y_0 , v_0 , and g from the data:

Time t	0.1	0.2	0.3	0.4	0.5
Displacement y	-0.18	0.31	1.03	2.48	3.73