P U Canzania

DATA SCIENCE AND MACHINE LEARNING LIBRARIES

Bio

Zephania Reuben

The University of Dodoma

College of Informatics and Virtual Education

10th December, 2019

Introdution

Problem.

You need to predict how much user "A" will like a movie that she hasn't seen based on her ratings of movies that she has seen.

Traditional Methods

Machine Learning

Traditional Method

Traditional Method

Automatic pattern learning

Easy to maintain

Adopt to changes

More accurate

What Does it Mean to Learn?

In Machine Learning an important concept is the ability to generalize.

A computer program is said to learn from experience E with respect to some task T and some performance P, if its performance on T, as measured by P, improves with experience E.

- Tom Mitchell, 1997.

Checker Learning Problem

Task **T**: Playing Checker.

Experience E: Playing practice game against itself.

Performance Measure P: % of games won against opponents.

Types of Machine Learning

Supervised Machine Learning Algorithms

Training data includes the desired solutions called <u>labels</u>.

Supervised Machine Learning Algorithms.

Linear Regression

Neural Networks

Decision Trees

Logistic Regression

K-Nearest Neighbors

Naive Baye's

Regression

Classification

Unsupervised Machine Learning Algorithms

They only extracts pattern from the provided data during learning.

Unsupervised Machine Learning Algorithms

They only extracts pattern from the provided data during learning.

Clustering

Anomaly Detection

Dimensionality Reduction

Reinforcement Learning Algorithm

Python Libraries for DS and ML.

Types of Data

Text, Video, and Audio

Data Wrangling

Transforming raw data to a clean and organized format.

Common data structure used to "wrangle" data is "data frame".

Major Tasks in Data Processing

Data Cleaning

Why Data is "Dirty"?

Data cleaning

Types of Data Cleaning Methods

Missing Value

Fill in missing values.

- -Mean,
- -Median or Zero

Drop missing values.

- Ignore

Noisy Data

- Identify outliers.

Smooth out noisy data.

- Binning

Data Integration

Why Integarate Data

Schema Conflict

custom id and cust number, Use: Metadata)

Value conflict

"H" and "S", and 1 and 2 for pay type, (Metadata)

Redundant data

Use: Correlation and Chi-Square Test

Data Transformation

Ways of Transforming Data

Normalization

Min-Max Normalization Z-score Normalization

Attribute Engineering

Attribute Extraction Attribute Selection

Data Reduction

Data Discretization
Dimensionality Reduction

Training ML Algo's

Machine Learning Workflow

Evaluating a Model

Generalization Problems

Evaluating a Model

Generalization Problems

Model Selection

Optimizing Model Performance

THANK YOU

