보충자료

Theorem 3 a 와 d의 증명 과정. 이를 통해 Theorem 2는 자동으로 증명됨

Q1

Let A be an $n \times n$ real matrix with the property that $A^T = A$. Show that if $A\mathbf{x} = \lambda \mathbf{x}$ for some nonzero vector \mathbf{x} in \mathbb{C}^n , then, in fact, λ is real and the real part of \mathbf{x} is an eigenvector of A.

Proof

Since \mathbf{x} is an eigenvector of A, $\overline{\mathbf{x}}^T A \mathbf{x} = \overline{\mathbf{x}}^T (\lambda \mathbf{x}) = \lambda \overline{\mathbf{x}} \cdot \mathbf{x}$. $\overline{\mathbf{x}} \cdot \mathbf{x}$ is real and positive because $\overline{z}z$ is nonnegative for every complex number z. Since $\overline{\mathbf{x}}^T A \mathbf{x}$ is real, so is λ . Now, let $\mathbf{x} = \mathbf{u} + i \mathbf{v}$, where \mathbf{u} and \mathbf{v} are real vectors. Then $A \mathbf{x} = A \mathbf{u} + i A \mathbf{v}$ and $\lambda \mathbf{x} = \lambda \mathbf{u} + i \lambda \mathbf{v}$. The real part of $A \mathbf{x}$ is $A \mathbf{u}$ and the real part of $\lambda \mathbf{x}$ is $\lambda \mathbf{u}$ because the entries of A, \mathbf{u} , \mathbf{v} and λ are real. Since $A \mathbf{x}$ and $\lambda \mathbf{x}$ are equal, their real parts are also equal. Thus $A \mathbf{u} = \lambda \mathbf{u}$, which shows that the real part of \mathbf{x} is an eigenvector of A.

Proof of Theorem 3 a

By the proof of Q1, Theorem 3 a is proved.

O2

Let block matrix $G = \begin{bmatrix} A & X \\ 0 & B \end{bmatrix}$. Show that $\det G = (\det A)(\det B)$. From this, deduce that the characteristic polynomial of G is the product of the characteristic polynomials of A and B.

Proof

Let U and V be echelon forms of A and B, obtained with the number of r and s interchanges, respectively without scaling. Then $\det A = (-1)^r \det U$ and $\det B = (-1)^s \det V$ because row replacements do not change the determinants. When A is reduced to U, G is reduced in the form $G' = \begin{bmatrix} U & Y \\ 0 & B \end{bmatrix}$. Using the row operations that reduce B to V, G' can be further reduced to $G'' = \begin{bmatrix} U & Y \\ 0 & V \end{bmatrix}$. There were r+s row interchanges when G is reduced to G'', so $\det G = (-1)^{r+s} \det \begin{bmatrix} U & Y \\ 0 & V \end{bmatrix}$. Since U and V are upper triangular, so is

 $G'' = \begin{bmatrix} U & Y \\ 0 & V \end{bmatrix}$. Therefore, the determinant of G'' equals the product of the diagonal entries which equals $(\det U)(\det V)$. Thus $\det G = (-1)^{r+s}(\det U)(\det V) = (\det A)(\det B)$. For any scalar λ , $G - \lambda I = \begin{bmatrix} A - \lambda I & X \\ 0 & B - \lambda I \end{bmatrix}$ where I represents various identity matrices of appropriate sizes. Since $\det G = (\det A)(\det B)$, $\det(G - \lambda I) = (\det(A - \lambda I))(\det(B - \lambda I))$.

Q3

Schur factorization of an $n \times n$ matrix A is in the form of $A = URU^T$, where U is an orthogonal matrix and R is an $n \times n$ upper triangular matrix.

Let A be an $n \times n$ matrix with n real eigenvalues, counting multiplicities, denoted by $\lambda_1, \ldots, \lambda_n$. Show that A admits a Schur factorization.

Proof

Let \mathbf{u}_1 be a unit eigenvector corresponding to λ_1 , let $\mathbf{u}_2,...$, \mathbf{u}_n be any other vectors such that $\{\mathbf{u}_1,...,\mathbf{u}_n\}$ is an orthonormal basis for \mathbb{R}^n , and then let $U = [\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_n]$. Then, $AU = [\lambda_1 \mathbf{u}_1 \ A\mathbf{u}_2 \ \cdots \ A\mathbf{u}_n]$. Since \mathbf{u}_1 is a unit vector and $\mathbf{u}_2,...$, \mathbf{u}_n are orthogonal to \mathbf{u}_1 , the first column of U^TAU is

$$U^{T}(\lambda_{1}\mathbf{u}_{1}) = \lambda_{1}U^{T}\mathbf{u}_{1} = \lambda_{1}\mathbf{e}_{1}$$
(1.1)

Eq. (1.1) implies that $U^{T}AU$ has the form shown below.

$$U^{T}AU = \begin{bmatrix} \lambda_{1} & * & * & * & * \\ 0 & & & & \\ \vdots & & A_{1} & & \\ 0 & & & & \end{bmatrix}$$
 (1.2)

Viewing $U^T A U$ as a 2×2 block upper triangular matrix with A_1 as the (2,2) block. Then from the proof of Q2,

$$\det(U^T A U - \lambda I) = \left(\det(\lambda_1 - \lambda)\right) \left(\det(A_1 - \lambda I_{n-1})\right) = (\lambda_1 - \lambda) \det(A_1 - \lambda I_{n-1})$$
(1.3)

Eq. (1.3) shows that the eigenvalues of U^TAU , namely, $\lambda_1, \ldots, \lambda_n$, consist of λ_1 and the

eigenvalues of A_1 . Thus, the eigenvalues of A_1 are $\lambda_2, ..., \lambda_n$. Repeating Eqs.(1.1) to (1.3) for successively smaller matrices ($A_1, ...$) and then piecing together the results prove A admits a Schur factorization.

Q4

Suppose $A = PRP^{-1}$, where P is orthogonal and R is upper triangular. Show that if A is symmetric, then R is symmetric and hence is actually a diagonal matrix.

Proof

 $P^{-1}AP = R$. Since P is orthogonal, $R = P^TAP$. Hence $R^T = (P^TAP)^T = P^TA^TP^{TT} = P^TAP = R$, which shows that R is symmetric. Since R is upper triangular, its entries above the diagonal must be zeros to be symmetric. Thus R is a diagonal matrix.

Proof of Theorem 3 d

By Theorem 3 a, a symmetric matrix A has n real eigenvalues. By the proof of Q3, A can be factorized into the Schur form $A = PRP^{-1}$. By the proof of Q4, R is a diagonal matrix. Therefore, the symmetric matrix A is orthogonally diagonalizable.