Name, group no:		

1. [10 points] Find the general solution of the differential equation y'' + 4y' + 5y = 10x + 23.

Name, group no:	

2. [10 points] Find the general solution of the difference equation $y_{t+2} - 6y_{t+1} + 9y_t = 8$.

Name, group no:	

	d	e	f
a b c	(5, 6) $(1, 1)$ $(2, 4)$	(1, 0) $(4, 4)$ $(2, 2)$	(2, 2) $(2, 2)$ $(1, 3)$

Name, group no:	

$$\begin{cases} 2x_1 + 2x_2 + 5x_3 \to \min \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \\ 3x_1 + 5x_2 + x_3 \ge 9 \\ 5x_1 + 3x_2 + x_3 \ge 8 \end{cases}.$$

Name, gre	oup no:					

5. [10 points] Expand the function $f(x) = \exp(1 - \cos^2(\ln(1+2x)))$ as a power series in terms up to x^5 . State the range for which your expansion is valid.

	Name, group	o no:		
6. [10 points] Sketch the set $Re(z \cdot (1+i)) + z\bar{z} = 0$ on the complex plane.	6. [10 points]	Sketch the set $Re(z \cdot 0)$	$(1+i)$) + $z\bar{z}$ = 0 on the complex plan	ne.

Name, group no:	

- 7. A firm with the production function $y = x_1x_2 + x_1 + x_2$ employs factors $x_1, x_2 \ge 0$.
- a) [15 points] Minimize the function $100x_1 + x_2$ subject to constraint $x_1x_2 + x_1 + x_2 \ge y$, where $y \ge 0$ is the output. Justify the found optimal bundle(s).
- b) [5 points] Find the total costs function TC(y).

Name, group no:	

- 8. Solve second-order differential equation xy'' (2x + 1)y' + 2y = 0 following hints:
- a) [5 points] Find a particular solution by substituting for y(x) a polynomial $\tilde{y}(x)$ with the undetermined coefficients starting with the smallest degree possible.
- b) [15 points] Let $\tilde{y}(x)$ be the solution found in a), introduce new function $z(x) = y(x)/\tilde{y}(x)$. Derive equation for z and solve it. Then find y.

Name, group no:	
1. [10 points] Find the ge	eneral solution of the differential equation $y'' + 4y' + 5y = 10x + 28$.

N.	Jame, group no:
2. [[10 points] Find the general solution of the difference equation $y_{t+2} - 6y_{t+1} + 9y_t = 12$.

Name, group no:	

	d	e	f
a b c	(4, 6) $(0, 1)$ $(1, 4)$	(0, 0) $(3, 4)$ $(1, 2)$	(1, 2) $(1, 2)$ $(0, 3)$

Name, group no:	

$$\begin{cases} 2x_1 + 2x_2 + 6x_3 \to \min \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \\ 3x_1 + 5x_2 + x_3 \ge 9 \\ 5x_1 + 3x_2 + x_3 \ge 8 \end{cases}.$$

Name, group n	10:	

5. [10 points] Expand the function $f(x) = \exp(1 - \cos^2(\ln(1+3x)))$ as a power series in terms up to x^5 . State the range for which your expansion is valid.

Name, group no:
6. [10 points] Sketch the set $Re(z \cdot (1+i)) + z\bar{z} = 0$ on the complex plane.

Name, group no:	

- 7. A firm with the production function $y = x_1x_2 + x_1 + x_2$ employs factors $x_1, x_2 \ge 0$.
- a) [15 points] Minimize the function $100x_1 + x_2$ subject to constraint $x_1x_2 + x_1 + x_2 \ge y$, where $y \ge 0$ is the output. Justify the found optimal bundle(s).
- b) [5 points] Find the total costs function TC(y).

Name, group no:	

- 8. Solve second-order differential equation xy'' (2x + 1)y' + 2y = 0 following hints:
- a) [5 points] Find a particular solution by substituting for y(x) a polynomial $\tilde{y}(x)$ with the undetermined coefficients starting with the smallest degree possible.
- b) [15 points] Let $\tilde{y}(x)$ be the solution found in a), introduce new function $z(x) = y(x)/\tilde{y}(x)$. Derive equation for z and solve it. Then find y.

Name, group no:	
1. [10 points] Find the general solution of the differential equation $y'' + 4y' + 5y = 10x + 10$	33

Name, group no:

2. [10 points] Find the general solution of the difference equation $y_{t+2} - 6y_{t+1} + 9y_t = 16$.

Name, group no:	

	d	e	f
a b c	(6, 6) (2, 1) (3, 4)	(2, 0) $(5, 4)$ $(3, 2)$	(3, 2) $(3, 2)$ $(2, 3)$

Name, group no:	

$$\begin{cases} 2x_1 + 2x_2 + 7x_3 \to \min \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \\ 3x_1 + 5x_2 + x_3 \ge 9 \\ 5x_1 + 3x_2 + x_3 \ge 8 \end{cases}.$$

Name, group no	

5. [10 points] Expand the function $f(x) = \exp(1 - \cos^2(\ln(1+4x)))$ as a power series in terms up to x^5 . State the range for which your expansion is valid.

Name, group no:
6. [10 points] Sketch the set $Re(z \cdot (1+i)) + z\bar{z} = 0$ on the complex plane.

Name, group no:	

- 7. A firm with the production function $y = x_1x_2 + x_1 + x_2$ employs factors $x_1, x_2 \ge 0$.
- a) [15 points] Minimize the function $100x_1 + x_2$ subject to constraint $x_1x_2 + x_1 + x_2 \ge y$, where $y \ge 0$ is the output. Justify the found optimal bundle(s).
- b) [5 points] Find the total costs function TC(y).

Name, group no:

- 8. Solve second-order differential equation xy'' (2x + 1)y' + 2y = 0 following hints:
- a) [5 points] Find a particular solution by substituting for y(x) a polynomial $\tilde{y}(x)$ with the undetermined coefficients starting with the smallest degree possible.
- b) [15 points] Let $\tilde{y}(x)$ be the solution found in a), introduce new function $z(x) = y(x)/\tilde{y}(x)$. Derive equation for z and solve it. Then find y.

Name, group no:	

1. [10 points] Find the general solution of the differential equation y'' + 4y' + 5y = 10x + 38.

Name, group no:	

2. [10 points] Find the general solution of the difference equation $y_{t+2} - 6y_{t+1} + 9y_t = 20$.

Name, group no:	

	d	e	f
a b c	(5, 7) (1, 2) (2, 5)	(1, 1) $(4, 5)$ $(2, 3)$	(2, 3) $(2, 3)$ $(1, 4)$

Name, group no:	

$$\begin{cases} 2x_1 + 2x_2 + 8x_3 \to \min \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \\ 3x_1 + 5x_2 + x_3 \ge 9 \\ 5x_1 + 3x_2 + x_3 \ge 8 \end{cases}.$$

Name, group n	10:	

5. [10 points] Expand the function $f(x) = \exp(1 - \cos^2(\ln(1+5x)))$ as a power series in terms up to x^5 . State the range for which your expansion is valid.

Name, group no:	
6. [10 points] Sketch the set $Re(z \cdot (1+i)) + z\bar{z} = 0$ on the complex plane.	

Name, group no:	

- 7. A firm with the production function $y = x_1x_2 + x_1 + x_2$ employs factors $x_1, x_2 \ge 0$.
- a) [15 points] Minimize the function $100x_1 + x_2$ subject to constraint $x_1x_2 + x_1 + x_2 \ge y$, where $y \ge 0$ is the output. Justify the found optimal bundle(s).
- b) [5 points] Find the total costs function TC(y).

Name, group no:	

- 8. Solve second-order differential equation xy'' (2x + 1)y' + 2y = 0 following hints:
- a) [5 points] Find a particular solution by substituting for y(x) a polynomial $\tilde{y}(x)$ with the undetermined coefficients starting with the smallest degree possible.
- b) [15 points] Let $\tilde{y}(x)$ be the solution found in a), introduce new function $z(x) = y(x)/\tilde{y}(x)$. Derive equation for z and solve it. Then find y.