Implementation and Management of **Systems Security**

158.738

A/Prof. Julian Jang-Jaccard Massey University

PRIVACY

What is privacy?

- The state or condition of being free from public attention to the degree that you determine.
- Before the technology, it was relatively easy to choose the level of privacy
- · No longer possible. Data is automatically collected without user's knowledge or consent
- "Terms of condition" or "Privacy term" is too long or often difficult to understand

Cryptography

- · Often regarded as the best tool to protect privacy
- Comes from the Greek word "Kryptos" (meaning hidden) and "Graphia" (meaning writing)
- Science of protecting information by encoding it into an unreadable format
- Store and transmit data in a form that only those intended can read and process
- Effective way of protecting sensitive information

Steganography

- It conceals the existence of the message
- Hides secret message inside a cover-image so it cannot be seen.

- · What appears to be a harmless can contain hidden data
 - · Takes the data, divides into smaller sections, and hides it in unused portion of the file

Cryptography Terms

- Plaintext- directly read by humans (used to be text, now its bits and bytes)
- · Ciphertext- encrypted data
- A cipher (or cryptographic algorithm) mathematics or algorithm that turns ciphertext into plaintext (and vice-a-versa)
- · Encryption-process of "encipherment"
- Decryption-process of "decipherment"

Modern Cryptography

- Modern cryptography
 - After World War I/II
 - rely on mathematics and electronic computers
- One-Way encryption
 - Hash
- Two-way encryption
 - Symmetric Algorithms
 - Asymmetric Algorithms

Hash Function

- A hash algorithm creates a unique "digital fingerprint" (= message digest or hash)
- It's a ONE-WAY function
 - Content cannot be used to reveal the original data
 - · Takes a variable-length string as input
 - Returns a fixed-length string as output
- Even a small change in the input drastically changes the output
- Primarily for comparison purposes

Input Hash sum Fox Hash runction DFCD3454 The red fox function SZED679E The red fox sumbs series Hash 46042841 The red fox sumbs series Hash 46042841

Hash Characteristics

- Fixed Size.
 - Always produce the same fixed size output no matter how long the input is.
- · Unique.
 - Two different sets of data cannot produce the same digest
 - Known as a collision
- Original.
 - · Should not be possible to produce a desired or predefined hash
- Secure
- The resulting hash cannot be reserved in order to determine the original words

Hash functions

- Popular hash function MD5
 - Produce 128 bit ciphertext
 - E.g., b9b985cdc61c8db72289ce54f0937eb2 (32 hex)
 - Thoroughly broken
- Government standard SHA-1, SHA-2
 - SHA-1: 160 bit ciphertext
 - E.g., 4751031b69d5480dfb30023f72640dd45a3c5de (40 hex)
 - Theoretical weaknesses
- "NEW" cryptographic hash function SHA-3
 - Too new to fully evaluate
- Maybe good enough

Symmetric Algorithms

- Use the same single key to encrypt and decrypt
- The key being used must be kept private.
- Also known as a secrete key or private key algorithm

Stream vs. Block Cipher

- Stream Cipher (bit-by-bit encryption)
 - Converts one symbol of plaintext (1 bit or 1 byte)
- Different key for each symbol
- Block cipher (block-by-block encryption)
- Works on a given sized chunk of data at a time (fixed size)
- Different key for a different block
- Most of current ciphers use Block cipher

· Brute force: try all possible combinations until the correct key is

found
• Cryptanalytics

Short Keys Besides frequency analysis and other methods, can try to brute force it! (Brute force = try all combinations) How long should a key be? It depends upon the power of the attacker. GPUs can test 100s of millions of symmetric cryptographic systems per second | GPUs can test 100s of millions of symmetric cryptographic systems per second | GPUs can test 100s of millions of symmetric cryptographic systems per second | GPUs can test 100s of millions of symmetric cryptographic systems | GPUs can test 100s of millions of symmetric cryptographic systems | GPUs can test 100s of millions of symmetric cryptographic systems | GPUs can test 100s of millions of symmetric cryptographic systems | GPUs can test 100s of millions of symmetric cryptographic systems | GPUs can test 100s of millions of symmetric cryptographic systems | GPUs can test 100s of millions of symmetric cryptographic systems | GPUs can test 100s of millions of symmetric cryptographic systems | GPUs can test 100s of millions of symmetric cryptographic systems | GPUs can test 100s of millions of symmetric cryptographic systems | GPUs can test 100s of millions of symmetric cryptographic systems | GPUs can test 100s of millions of symmetric cryptographic systems | GPUs can test 100s of millions of symmetric cryptographic systems | GPUs can test 100s of millions of symmetric cryptographic systems | GPUs can test 100s of millions of symmetric cryptographic systems | GPUs can test 100s of millions of symmetric cryptographic systems | GPUs can test 100s of millions of symmetric cryptographic systems | GPUs can test 100s of millions of symmetric cryptographic systems | GPUs can test 100s of millions of symmetric cryptographic systems | GPUs can test 100s of millions of symmetric cryptographic systems | GPUs can test 100s of millions of symmetric cryptographic systems | GPUs can test 100s of millions of symmetric cryptographic systems | GPUs can test 100s of millions of symmetric cryptographic systems | GPUs can test 100s of millions of symmetric crypt

Number of Alternative Time Required at 10¹³ Time Required at 10⁵ Key size Keys decryptions/s decryptions/s Cipher (bits) DES ≈ 7.2 ↔10¹⁶ 255 ns = 1.125 years AES $2^{127} \text{ ns} = 5.3 \leftrightarrow 10^{21}$ 128 $2^{128} \approx 3.4 \leftrightarrow 10^{38}$ 5.3 ↔ 10¹⁷ years Triple DES $2^{167} \text{ ns} = 5.8 \leftrightarrow 10^{33}$ 168 $2^{168} \approx 3.7 \leftrightarrow 10^{50}$ 5.8 **↔**10²⁹ years 192 AES 2192 ≈ 6.3 ↔ 105 $2^{191} \text{ ns} = 9.8 \leftrightarrow 10^{40}$ 9.8 **↔**10³⁶ years 256 AES $2^{256} \approx 1.2 \leftrightarrow 10^{7}$ $2^{255} \text{ ns} = 1.8 \leftrightarrow 10^{60}$ 1.8 ↔ 10⁵⁶ years

Brute Force Attacks

Message Authentication Code

- message came from the state sender and has not changed during the transit
- Provides both message authentication and message integrity

Asymmetric Algorithms II

- · Key pairs.
 - Unlike symmetric algorithm that uses only one key, it requires a pair of keys
- · Public key.
 - By their nature are designed to be "public". Do not need to be protected.
 - · Can be freely given o anyone or posted on the Internet
- · Private key.
 - Must be kept confidential and never shared
- · Both directions.
 - Keys can work both directions

Cleartext cliphertext cliphertext cliphertext cliphertext cliphertext cliphertext cliphertext cliphertext bulls, world bulls, world

Digital Signatures

- A handwritten signature on a paper document serves as proof that the signer has read and agreed to the document
- A digital signature works same but more;
 - Verify the sender: confirm the identity of the person where the electronic message originated
 - Prevent the sender from denying (or disowning) the message: cannot claim the signature was forged.
 - Prove the integrity of the message: Message not altered since it was signed

Key comparison

Security Goal	Hash	MAC	Digital Signature
Integrity	Yes	Yes	Yes
Authentication	No	Yes	Yes
Non-repudiation	No	No	Yes
Key	None	Symmetric keys	Asymmetric keys

Non-repudiation: cannot deny the authenticity of the sender of the document.

Digital Certificate

- Problem: How to trust that a public key belong to whom it claims to be?
- · Solution: Use trusted third-party entity.
- They vouch that a public key belongs to a particular individual or organization
- Most common:
 - X.509 certificate

Public Key Infrastructure (PKI)

- Set of hardware, software, organizations, and policies to make Public Key Cryptography work on Internet
- · How to verify that the person sending the message
- Certificate Authority (CA)
 - A trusted organization that can vouch for the authenticity of the person or organization
- Certificate
 - A digital document verifying the identity of a digital signature's source
 - Contains the public key of an entity, signed by the CA
 - In other words, a certificate allows CA to vouch for an entity's identity in a verifiable manner.

Public Key Infrastructure (PKI)

- User registers with a CA (e.g. VeriSign) and requests for an X.509 certificate
 - a Certificate Signing Request (CSR) is sent to CA
 - · Must provide some proof of Identity
 - Levels of certification: simple email confirmation or background checks
- CA issues the digital certificate (signed by CA)
- User attaches the certificate to transactions (email, web, etc)
- Receiver authenticates transaction with CA's public key
 - · Contact CA to ensure the certificate is not revoked or expired

Secure Sockets Layer (SSL)

- · A protocol widely used on the Web
- Between the application and transport layers
- Operations of SSL
 - Encrypts outbound packets from transport layer
 - Negotiation for cryptographic parameters:
 - hash algorithm
 - signing algorithm
 - · encryption algorithm
 - Communications encrypted by using the keys negotiated

HTTP, FTP, SMTP

SSL

TCP

ΙP

Data Link

Physical

Transport Layer Security (TLS)

- Same thing as SSL
 - From SSL3.0, it is now called TLS for legal reason and marking purpose
- · Protocol most widely used on the Web
- Can be used with various applications
 - For example, if used with HTTP => HTTPS
 - If used with SMTP => SMTPS

END