Essential Maths for DTC DPhil Students

Michaelmas Term 2020

Problem Sheet 2: indices, logarithms, exponentials Introductory problems

- 1. Simplify:
 - a) $\frac{a^{10}}{a^{-3}}$
 - $b) \ \frac{(\sqrt{x})^8}{x^4}$
 - c) $\frac{y^{\frac{1}{4}}}{y^{-\frac{2}{4}}}$
 - d) $\frac{10^{-2/3} \times 10^7 \times 10^{-16} \times x^{1/2} \times y^4 \times z^{-1/3}}{10^{-19} \times 10^{43} \times 10^{2/3} \times z^{-1/3} \times y^{1/4} \times x^{5/2}}$
- 2. Evaluate the following expressions without using a calculator:
 - a) 2^{-4}
 - b) $36^{\frac{1}{2}} + 64^{\frac{2}{3}}$
 - c) $\left(\frac{1}{3}\right)^{-2}$
 - d) $\left(\frac{81}{9}\right)^{\frac{3}{2}}$
- 3. Express the following in logarithmic form:
 - a) $5^3 = 125$
 - b) $8^{-\frac{1}{3}} = \frac{1}{2}$
 - c) $x^y = 4$
- $4.\,$ Evaluate the following expressions without using a calculator:
 - a) $\log_4(64)$
 - b) $\log_{\pi}(1)$
 - c) $\log_b(b^a)$
 - d) $6^{\log_6(\pi)}$
- 5. Solve the following equations for x:
 - a) $e^x = 4$
 - b) $e^{-x} = 2$

One of your solutions should be exactly -2 times the value of your other solution. Why?

- 6. Simplify:
 - a) $\ln\left(e^3\right)$
 - b) $\ln\left(\frac{1}{2e}\right)$
 - c) $e^{\ln x^4}$
 - d) $e^{3+\ln x}$

Main problems

1. In an experiment, the mass, m grams, of a reaction product is measured at various times, t minutes. It is believed that m and t are related by a law of the form:

$$m = At^n$$

The results are shown in the table below:

time (min)	1	2	3	4	5	6	7	8	12
mass (g)	0.5	0.63	0.72	0.8	0.85	0.9	0.95	0.99	1.0

- a) Confirm this postulate graphically. There is one result that does not conform to this law. Which?
- b) Find appropriate values of A and n, and in this context, explain the meaning of n. What are the units of A?
- c) Explain, with reasons, whether you would use these results to predict the mass when t = 15.
- 2. These problems deal with pH:
 - a) What is the pH of 130ml of a solution containing 4.7mg HCl, assuming that HCl is completely ionised in solution, and its molecular mass is 36.46?
 - b) What would be the pH if the concentration of HCl were tripled?
- 3. Express in terms of $\log(a)$, $\log(b)$, $\log(c)$ and $\log(d)$:
 - a) $\log\left(\frac{b}{ac}\right)$
 - b) $\log(a^2bc^3d^4)$
 - c) $\log \left(\sqrt{\frac{cd}{ab}} \right)$
- 4. Simplify:
 - a) $\log(8) + \log(3) \log(6)$
 - b) $\log(x^2-1) \log(x^2+1)$
 - c) $3\log_a(4) + \log_a(5) 2\log_a(9)$
 - d) $\log(x^9) \log(x^6)$
- 5. This problem gives you a chance to use the identity $\log_a(b) = \frac{1}{\log_b(a)}$.

Consider the equation $\log_3(x) + 4\log_x(3) = 5$:

- a) Verify that x = 3 satisfies this equation
- b) There is one other value of x that also satisfies this equation. Find it.
- 6. Solve the following equations for x:

a)
$$2(2^{2x}) - 5(2^x) + 2 = 0$$

b)
$$3^{2x+1} - 28(3^x) + 9 = 0$$

c)
$$16 = \log_2(x)$$

d)
$$\left(2\sqrt{3}\log(x)\right)^2 - 7\log(x^2) + 2 = 0$$

7. Write an expression for x or y without using logarithms:

a)
$$\log(x) = \log(3r) - 5\log(s) + 3\log(t) - 3$$

b)
$$3^{2x+1} - 28(3^x) + 9 = 0$$

c)
$$\log(2y) = 5 + 5\log(4^3) - 15\log(\frac{2}{x}) - 6\log(y)$$

8. Write x in terms of y for each of the following:

a)
$$y = 2e^{4x}$$

b)
$$\ln y = 3 + 2\ln x$$

9. Express as a sum or difference of logarithms:

a)
$$\ln \sqrt{\left(\frac{x-1}{x+1}\right)}$$

10. Express as a single logarithm:

a)
$$1 - \ln 4x$$

b)
$$3 \ln x - \frac{1}{2} \ln (5 - x^2)$$