Induction term in spherical coordinates

Loren Matilsky

February 3, 2023

1 The problem with the traditional induction terms

We consider the ideal (resistance-free) magnetohydrodynamic (MHD) induction equation:

$$\frac{\partial \boldsymbol{B}}{\partial t} = \nabla \times (\boldsymbol{u} \times \boldsymbol{B}),\tag{1}$$

$$= \mathbf{B} \cdot \nabla \mathbf{u} - \mathbf{u} \cdot \nabla \mathbf{B} - (\nabla \cdot \mathbf{u}) \mathbf{B}, \tag{2}$$

where \boldsymbol{B} and \boldsymbol{u} are the vector magnetic and velocity fields, respectively. The three terms on the right-hand-side of Equation (2) are often interpreted as "shear," "advection," and "compression," respectively. However, this interpretation is problematic in general for two reasons:

- 1. The so-called shear and compression terms contain sub-terms that cancel; in particular, only velocity motions *perpendicular* to magnetic-field lines can shear or compress.
- 2. Solid-body rotation (which is a non-shearing motion that simply rotates the whole field configuration) shows up in the so-called shear and advection terms in a strange way.

Finally, even after these issues have been addressed, resolving the final terms into a particular curvilinear system (e.g., spherical coordinates) seems to present a major headache. Our goal here is to explain fully how these problems emerge and propose a tentative solution for the case of spherical coordinates.

2 Perpendicular shear and compression

To see how Problem 1 arises, we decompose the velocity field into components parallel and perpendicular to the local direction of B:

$$\boldsymbol{u} \coloneqq u_{\parallel} \hat{\boldsymbol{e}}_{\parallel} + \boldsymbol{u}_{\perp} \tag{3}$$

Obviously $\mathbf{B} = Bx_{\parallel}$, where $B = |\mathbf{B}|$. We denote the Cartesian distance along \mathbf{B} by x_{\parallel} . We also decompose \mathbf{u} into its parallel and perpendicular components:

$$\nabla \cdot \boldsymbol{u} = \frac{\partial u_{\parallel}}{\partial x_{\parallel}} + \nabla_{\perp} \cdot \boldsymbol{u}_{\perp} \tag{4}$$

We then calculate

$$\boldsymbol{B} \cdot \nabla \boldsymbol{u} - (\nabla \cdot \boldsymbol{u}) \boldsymbol{B} = B \frac{\partial}{\partial x_{\parallel}} (u_{\parallel} \hat{\boldsymbol{e}}_{\parallel} + \boldsymbol{u}_{\perp}) - \left(\frac{\partial u_{\parallel}}{\partial x_{\parallel}} + \nabla_{\perp} \cdot \boldsymbol{u}_{\perp} \right) B \hat{\boldsymbol{e}}_{\parallel}$$

$$= B \frac{\partial u_{\parallel}}{\partial x_{\parallel}} \hat{\boldsymbol{e}}_{\parallel} + B \frac{\partial \boldsymbol{u}_{\perp}}{\partial x_{\parallel}} - \frac{\partial u_{\parallel}}{\partial x_{\parallel}} B \hat{\boldsymbol{e}}_{\parallel} - (\nabla_{\perp} \cdot \boldsymbol{u}_{\perp}) B \hat{\boldsymbol{e}}_{\parallel}$$

$$= B \cdot \nabla \boldsymbol{u}_{\perp} - (\nabla_{\perp} \cdot \boldsymbol{u}_{\perp}) \boldsymbol{B}. \tag{5}$$

Thus, only motions perpendicular to the local field line (i.e., u_{\perp}) can shear or compress B.

3 Rigid rotation

To see how Problem 2 arises, we consider a velocity field due to rigid rotation at constant angular velocity Ω about the z-axis in a cylindrical coordinate system:

$$\Omega = \Omega \hat{e}_z = \text{constant} \tag{6a}$$

$$\boldsymbol{u} = \boldsymbol{\Omega} \times \boldsymbol{r} = \Omega \lambda \hat{\boldsymbol{e}}_{\phi} \tag{6b}$$

Here, λ is the cylindrical radius, ϕ the longitude, and z the axial coordinate. In general, $\hat{e}_{(\cdots)}$ denotes a unit vector in the direction of its subscript. We calculate:

$$\nabla \cdot \boldsymbol{u} = \nabla \cdot (\boldsymbol{\Omega} \times \boldsymbol{r})$$

$$= \boldsymbol{\Omega} \cdot \nabla \times \boldsymbol{r} - \boldsymbol{r} \cdot \nabla \times \boldsymbol{\Omega}$$

$$= 0 \quad \text{no compression for rigid rotation (obviously)}. \tag{7}$$

Then:

$$B \cdot \nabla u = (B \cdot \nabla)(\Omega \times r)$$

$$= \Omega \times [(B \cdot \nabla)(r)]$$

$$= \Omega \times B \quad \text{"shear" for rigid rotation.}$$
(8)

Finally:

$$-\boldsymbol{u} \cdot \nabla \boldsymbol{B} = -\Omega \lambda \hat{\boldsymbol{e}}_{\phi} \cdot \nabla \boldsymbol{B}$$

$$= -\Omega \frac{\partial}{\partial \phi} (B_{\lambda} \hat{\boldsymbol{e}}_{\lambda} + B_{\phi} \hat{\boldsymbol{e}}_{\phi} + B_{z} \hat{\boldsymbol{e}}_{z})$$

$$= -\Omega \sum_{\alpha} \left(\frac{\partial B_{\alpha}}{\partial \phi} \right) \hat{\boldsymbol{e}}_{\alpha} - \Omega \sum_{\alpha} B_{\alpha} \frac{\partial \hat{\boldsymbol{e}}_{\alpha}}{\partial \phi},$$

where the index α runs over the three cylindrical coordinates. Note that in the cylindrical coordinate system (or indeed any coordinate system with an axis of rotational symmetry), $\partial \hat{e}_{\alpha}/\partial \phi = \hat{e}_z \times \hat{e}_{\alpha}$ for each α . Thus,

$$-\Omega \sum_{\alpha} B_{\alpha} \frac{\partial \hat{e}_{\alpha}}{\partial \phi} = -\Omega \sum_{\alpha} B_{\alpha} \hat{e}_{z} \times \hat{e}_{\alpha}$$
$$= -\Omega \hat{e}_{z} \times \sum_{\alpha} B_{\alpha} \hat{e}_{\alpha}$$
$$= -\Omega \times \mathbf{B}$$

and so

$$-\boldsymbol{u} \cdot \nabla \boldsymbol{B} = -\Omega \sum_{\alpha} \left(\frac{\partial B_{\alpha}}{\partial \phi} \right) \hat{\boldsymbol{e}}_{\alpha} - \boldsymbol{\Omega} \times \boldsymbol{B} \quad \text{"advection" for rigid rotation.}$$
 (10)

Mathematically, in any coordinate system with a z-axis of rotational symmetry, the action of rigid rotation is as follows:

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times [(\mathbf{\Omega} \times \mathbf{r}) \times \mathbf{B}]$$

$$= \sum_{\alpha} \left(-\Omega \frac{\partial B_{\alpha}}{\partial \phi} \right) \hat{\mathbf{e}}_{\alpha} \tag{11a}$$

or
$$\left(\frac{\partial}{\partial t} + \Omega \frac{\partial}{\partial \phi}\right) B_{\alpha} = 0$$
 for each α . (11b)

If you think about it, this makes sense: All the rigid rotation does is rotate the whole field configuration around the z-axis at the rate Ω . If you decide to also rotate at Ω (so your personal Eulerian time derivative is $\partial/\partial t + \Omega \partial/\partial \phi$), then each component of the magnetic-field configuration should remain the same in your frame. Note that rotation does not advect the vector magnetic field (like the term $-\mathbf{u} \cdot \nabla \mathbf{B}$ viewed on its own would suggest), but rather advects the field components (as if they were scalars) in any coordinate system with an axis of rotational symmetry.

4 Solution for spherical coordinates

Resolving these issues fully for the spherical coordinate system seems complicated and I am not fully sure how to do it! In particular (for "full" resolution) we should, separately at each point (r, θ, ϕ) :

- 1. Form a local Cartesian coordinate system, say (x_1, x_2, x_3) , whose origin lies at the point (r, θ, ϕ) . At the origin, $(\hat{e}_1, \hat{e}_2, \hat{e}_3)$ will coincide with $(\hat{e}_r, \hat{e}_\theta, \hat{e}_\phi)$. But slightly away from the origin, $(\hat{e}_1, \hat{e}_2, \hat{e}_3)$ will stay fixed while $(\hat{e}_r, \hat{e}_\theta, \hat{e}_\phi)$ curve away.
- 2. Calculate the velocity-gradient tensor: $\partial u_1/\partial x_1$, $\partial u_2/\partial x_1$, $\partial u_3/\partial x_1$, etc. While calculating derivatives, be careful to differentiate along the Cartesian coordinates, not the curvilinear ones or along the actual \boldsymbol{B} -line). Express the final tensor components in spherical coordinates.
- 3. Rotate "into \boldsymbol{B} " to form a new primed coordinate system (such that $\hat{\boldsymbol{e}}'_1$ points along \boldsymbol{B}), calculate the $\partial u'_j/\partial x'_i$, and thus form $\partial u_{\parallel}/\partial x_{\parallel}$ and $\partial \boldsymbol{u}_{\perp}/\partial x_{\parallel}$ (note that $\nabla_{\perp} \cdot \boldsymbol{u}_{\perp} = \nabla \cdot \boldsymbol{u} \partial u_{\parallel}/\partial x_{\parallel}$). Note that the direction cosines $\hat{\boldsymbol{e}}'_1$ makes with $(\hat{\boldsymbol{e}}_1, \hat{\boldsymbol{e}}_2, \hat{\boldsymbol{e}}_3)$ are simply $B_r/|\boldsymbol{B}|$, $B_\theta/|\boldsymbol{B}|$, $B_\phi/|\boldsymbol{B}|$, respectively. Note that both unit vectors and vector components transform like $x'_1 = \sum_{j=1}^3 R_{1j}x_j$, where R_{1j} is the j^{th} direction cosine.
- 4. Subtract the part of u_{\perp} corresponding to solid-body rotation and put it in the form of Equation (11a).
- 5. Exult, because I haven't been able to do this!