1179: Probability Lecture 26 — Hoeffding's Inequality and Weak Law of Large Numbers

Ping-Chun Hsieh (謝秉均)

December 17, 2021

Markov's inequality: X, hon-hegative For any and = E[X] Chebyshev's inquality: X, M, o $P(|X-M|zt) \leq \frac{\sigma}{1+2}$ $X = \frac{1}{n} (X_1 + X_2 + \cdots + X_n), X_n \text{ i.i.d.}$ $P(|X-M|^2t) \leq \frac{\sigma}{t^2N!}$

This Lecture

1. Hoeffding's Inequality

2. Weak Law of Large Numbers (WLLN)

Reading material: Chapter 11.3-11.4

Review: Optimizing the Chernoff Bound

$$P(\chi_{7}a) = P(E\chi_{7}E) \leq (E'M\chi(t)), \text{ for any tro}$$

• Chernoff Bound: Let X be a random variable with MGF $M_X(t)$ Suppose $M_X(t)$ exists for all t in some set S. Then, for any t > 0 and $t \in S$, for any $a \in \mathbb{R}$, we have

$$P(X \ge a) \le e^{-\phi(a)},$$

where
$$\phi(a) = \max_{t>0, t \in S} (ta - \ln M_X(t))$$

Example: Chernoff Bound for Bernoulli R.V.s

- Example: Suppose $X \sim \text{Bernoulli}(p)$ $\begin{cases} \chi = 0 \ \text{w.p. } = 0 \end{cases}$
 - What is $M_X(t)$?

What is
$$M_X(t)$$
?

What is the Chernoff bound for X ? $(P(X \ge a) \le e^{-ta} \cdot M_X(t))$

$$M_X(t) = E[e^{t}] = (P)(e^{t}) + (I-P)(e^{t})$$

$$= P \cdot e^{t} + (I-P).$$

$$P(Xza) \leq \frac{-ta}{e} (p.e + (1-p)) = p.e + (1-p).e$$

Example: Optimizing Chernoff Bound for Bernoulli R.V.s

- Example: Suppose $X \sim \text{Bernoulli}(p)$
 - How to optimize the Chernoff bound for X? $(P(X \ge a) \le e^{-\phi(a)}, \phi(a) = \max (ta \ln M_X(t)))$

$$P(x7a) \le p \cdot e + (1-p) \cdot e$$

$$t>0, t\in S$$

$$f(1-a)$$

$$f$$

$$\frac{dg(t)}{dt} = (1-a)\cdot p \cdot e^{-a(1-p)} \cdot e^{-a(1-p)} \cdot e^{-a(1-p)} = 0$$

$$\Rightarrow e^{t} = \frac{\alpha(1-p)}{(1-\alpha)\cdot p}$$

$$\Rightarrow t = \frac{\alpha(1-p)}{\alpha(1-p)}$$

How about applying the Chernoff bound to "sum of independent random variables"?

Hoeffding's Inequality (Formally)

• Hoeffding's Inequality (For Bernoulli): Let X_1, \dots, X_n be a sequence of i.i.d. Bernoulli random variables with parameter

p. Define $\bar{X} = \frac{1}{n}(X_1 + \dots + X_n)$. Then, for any $\varepsilon > 0$, we have

$$P(|\bar{X} - p| \ge \varepsilon) \le 2\exp(-2n\varepsilon^2)$$

Proof of Hoeffding's Inequality (Positive Part)

$$P(X-p>2) \leq \frac{nt^2 - t \cdot n\xi}{g(t)}$$

$$g(t) = \frac{nt}{4} - n\xi = 0$$

$$\Rightarrow t = 4\xi$$

$$P(X-p>2) \leq \frac{n \cdot (4\xi)^2}{8} - 4\xi \cdot n \cdot \xi$$

$$P(X-p>2) \leq \frac{n \cdot (4\xi)^2}{8} - 4\xi \cdot n \cdot \xi$$

$$= e^{-2 \cdot n \cdot \xi}$$

Hoeffding's Lemma

► Hoeffding's Lemma: Let Z be a random variable with E[Z] = 0, and $Z \in [a,b]$ with probability 1. Then, for any t > 0, we have

$$(E[e^{tZ}]) \le \exp\left(\frac{t^2(b-a)^2}{8}\right)$$

• Question: If $Z \sim \operatorname{Bernoulli}(p)$, then $E[e^{t(Z-p)}] \leq \exp(\frac{t^2}{\lambda})$

$$Y = Z - P \Rightarrow E[Y] = 0$$

$$Y = [-L, L]$$

Proof of Hoeffding's Inequality (Negative Part)

$$P(\bar{X} - p \le -\varepsilon) \neq P(p - \bar{X} \ge \varepsilon) \le \exp(-2n\varepsilon^2)$$
• [Hint] Chernoff bound: $P(X \ge a) \le e^{-ta} \cdot M_X(t)$

$$P(p - \bar{X} \ge \varepsilon) \le$$

BJ 4

Weak Law of Large Numbers (WLLN)

Review: Chebyshev's and Sample Mean: $n \to \infty$

• Chebyshev's and Sample Mean: Let X_1, \dots, X_n be a sequence of independent and identically distributed (i.i.d.) random variables with mean μ and variance σ^2 . Define $S_n = (X_1 + \dots + X_n)$. Then, for any $\varepsilon > 0$, we have

$$P\left(\left|\frac{S_n}{n} - \mu\right| \ge \varepsilon\right) \le \frac{\sigma^2}{\varepsilon^2 n}$$

▶ What if we let $n \to \infty$?

$$\lim_{N \to \infty} P(|X - M| > 2) = 0, \text{ for any } 2 > 0$$

$$\lim_{N \to \infty} P(|X - M| > 2) = 0, \text{ for any } 2 > 0$$

$$\lim_{N \to \infty} P(|X - M| > 2) = 0, \text{ for any } 2 > 0$$

The Weak Law of Large Numbers (WLLN)

The Weak Law of Large Numbers (Khinchin's Law): Let X_1, \dots, X_n be a sequence of independent and identically distributed (i.i.d.) random variables with mean μ . Define $S_n = (X_1 + \dots + X_n)$. Then, for every $\varepsilon > 0$, we have

$$P\left(\left|\frac{S_n}{n} - \mu\right| \ge \varepsilon\right) \to 0 \text{ as } n \to \infty$$

Question: Any change in technical conditions (cf: Chebyshev's)?

Question: What does "convergence" mean here?

Convergence in Probability

• Convergence of a Deterministic Sequence: Let $a_1, a_2 \cdots$ be a sequence of real numbers. We say that a_n converges to a if for every $\varepsilon > 0$, there exists N_0 such that

$$|a_n - a| \le \varepsilon$$
 for all $n \ge N_0$

• Convergence to a <u>Scalar</u> in <u>Probability</u>: Let $Y_1, Y_2 \cdots$ be a sequence of random variables, and let a be a real number. We say that Y_n converges to a in probability if for every $\varepsilon > 0$,

Question: How to interpret this definition?

Recall: Random Variables Defined on Ω

• $Y_1, Y_2, \dots, Y_n, \dots$ are defined on the same sample space Ω

How about $\lim_{n\to\infty} P(\{\omega: |Y_n(\omega)-a|>\varepsilon\})=0$?

Example: Convergence in Probability

ightharpoonup Example: Consider a sequence of r.v.s Y_n

$$P(Y_n = y) = \begin{cases} 1 - \frac{1}{n} & \text{, if } y = 0\\ \frac{1}{n} & \text{, if } y = n^2\\ 0 & \text{, otherwise} \end{cases}$$

- For every $\varepsilon > 0$, can we find $P(|Y_n 0| > \varepsilon)$?
- How about $\lim_{n\to\infty} P(|Y_n 0| > \varepsilon)$?

How to Interpret WLLN?

- Let X_1, X_2, \cdots be a sequence of i.i.d. random variables with mean μ
- Define $Y_n = (X_1 + X_2 \dots, + X_n)/n$
- WLLN: $\lim_{n\to\infty} P(\{\omega: |Y_n(\omega) \mu| > \varepsilon\}) = 0, \forall \varepsilon > 0$

Sample space $\xrightarrow{Y_n(\cdot)}$ Real Numbers

 X_{ω} $Y_{1}(\omega)$ $Y_{2}(\omega)$

 $Y_{\nu}(\omega)$

• Question: What is an " ω "?

Rewriting WLLN (More Formally)

The Weak Law of Large Numbers (Khinchin's Law): Let X_1, \dots, X_n be a sequence of independent and identically distributed (i.i.d.) random variables with mean μ . Define $S_n = (X_1 + \dots + X_n)$. Then, for every $\varepsilon > 0$, we have

$$\lim_{n\to\infty} P\left(\left\{\omega: \left|\frac{S_n(\omega)}{n} - \mu\right| \ge \varepsilon\right\}\right) = 0$$

In short, we have
$$\frac{S_n}{n} \stackrel{p}{\rightarrow} \mu$$