

AAF-603-N

Seat No. <u>1367</u>

B. C. A. (Sem. III) Examination

October / November - 2016

303: Statistics & Optimization Technique

e: 3 Hours	S]			ľ	Total N	Marks:	70
(a) Ans	wer the follo	owing que	estions :		•		8
(1)	The mean then find t						
7(2)	50% of th 32. Its me			a series	are m	ore than	l
(3)	List out th	e measur	es of di	spersio	n.		
(4)	Z-M=4	and $Z+I$	M = 60	then fi	nd $\overline{x} =$		
(5)	The variar		observa	tions is	1.69 t	hen S.D).
(6)	Write dow	n two exa	amples	of a dis	screte v	ariable.	
(7)	The value	of S.D. is	s always	S	•		
(8)	Define me	dian.					
(b) Atte	empt any two) :			1,23	٦	10
(1)	Find Mean	, Median	and M	ode :	-,	•	
Observation	on 1 2 5 6-	10 10 - 20	20-30	30 - 50	50 – 70	70 – 100	
Frequenc	v 3 4 10 2	3 20	20	15	3	2	

(2) Calculate the standard deviation for the following data:

Observation	50	60	70	80	90	100	110	120
Frequency	14	40	54	46	26	12	06	02

(c) The mean and standard deviations of observations of (17) items are 25 and 5 respectively; while calculating these measures, a measurement 53 was wrongly read as 35, correct this error and find out the correct standard deviations.

2	(a)	(1)	Define: Correlation.	
---	-----	-----	----------------------	--

- (2) If r = 0 then two variables are \circ 1.
- (4) If rank correlation r = +1 then $\sum d^2 = \underline{\delta}$.
- (5) Correlation between income and expenditure is termed as _____ correlation.
- (6) If one regression coefficient is 0.3 and correlation coefficient is 0.9 then find other regression coefficient.

(b) Attempt any two:

10

2

1

Find the correlation coefficient between x and y by Karl Pearson's method:

\boldsymbol{x}	100	101	102	100	99	97	98	96	95
y	98	99	99	95	92	95	94	90	91

- (2) The rank correlation coefficient between ranks in English and Economics of 10 students is 0.5; it was later on observed as the difference in rank of one student was taken as 3 instead of 7 then find correct value of rank correlation coefficient.
- (3) From the following data obtain the two regression equations.

x	0	20	40	60	80
y	54	65	75	85	96

Review town

- 3 (a) Answer the following:
 - (1) Explain the difference between PERT and CPM. 3
 - (2) Explain slack and surplus variable.

3

(3) Explain the following terms:

2

- (i) Activity
 - (ii) Event
- (b) Attempt any two:

10

(1) Use the Simplex method to solve the following L.P.P.

$$Maximize Z = 2x_1 + 3x_2$$

Sub. to
$$-x_1 + 2x_2 \le 4$$

$$x_1 + x_2 \le 6$$

$$x_1 + 3x_2 \le 9$$

and $x_1, x_2 \ge 0$.

(2) Solve the following L.P.P. using graphical method.

Max.
$$Z = 6x_1 + 8x_2$$

Sub. to $5x_1 + 10x_2 \le 60$

$$4x_1 + 4x_2 \le 40$$

and $x_1, x_2 \ge 0$.

Draw a network diagram for the following activity:

Activity	A	B	C	D	E	F	G
Predecessor	_	_	A	A, B	C,D	C,D	E,F
Activity							

- 4 (a) Answer the following:
 - (1) How assignment problem is a particular case of 3 transportation problem?
 - (2) What is unbalanced transportation problem? 4 How can it be balanced?
 - (b) Attempt any two:

10

(1) Obtain initial basic feasible solution for the given problem by NWCM, LCM and VAM.

	x	у	z	Supply
A	3	7	1	20
\overline{B}	2	9	12	30
\overline{C}	10	2	5	50
Demand	35	15	50	

(2) Find optimal solution.

	D_1	D_2	D_3	D_4	Supply
$\overline{S_1}$	19	30	50	10	7
S_2	70	30	40	60	9
S_3	40	8	7 0	20	18
Demand	5	8	7	14	34

(3) Determine the optimal assignment schedule for the following problem.

Jobs