Definition! n- positive integn. Q(n)= { 0 < b < n | g.c.d. (e,n)=i} = no. of non-negative integers lus thom n and gulatively for in with n. Q(1)=1, Q(2)=1, Q(3)=2 etc. P. is a prime). Q(p)=p-1 (it Q(px)=px-px-1 = p<(1- 1/p) Note: - The Enter phi function is multiplicative. i.e., Q(mn) = Q(m) Q(n), Ohnnever gcd(m,n)=1. S={ j CZ, 0 ≤ j < mn / (i, mn)=1} Let S,= { j, EZ, 0 \ j, m \ (j, m) = 1}

$$S_{2}=\{j \in \mathbb{Z}, o \leq j \leq n | (j_{2}n)=1\}$$
 $|S|=Q(mn)$
 $|S_{1}|=Q(m)$ and $|S_{2}|=Q(n)$

For every pair of $(3_{1},3_{2})$

Chinuse Remainder Hurorem,

there is a unique of much

 $j=j_{1}(nnodn)$
 $j=j_{2}(nnodn)$

and $0 \leq j \leq m$, $0 \leq j \leq n$,

 $0 \leq j \leq n$

For any j , $0 \leq j \leq n$, $1 \leq n$
 $(j,mn)=1$ if and only id

$$(i, m) = 1$$
 and $(j, n) = 1$.

 $(j, m) = 1$ and $(j_2, n) = 1$.

Thus, by counting poinciple,

 $|S| = |S| \cdot |S_2|$
 $i.e.$ $Q(mn) = Q(m) Q(n)$.

 $The solution of the second of the se$

Moter-Let n bra positive integer, which is product of two distinct prime numbers. Then Knowledge of Q(n) is equivalent to knowledge of two prinny p and q, when n=pq. Froot: - If n is Inen => trivial. Thyact, let p=2 and q=2. $Q(n) = Q(9) = \frac{\gamma}{2} - 1$ It n is odd, then both P and q an odd. Q(n) = (p-1)(q-1) = n+1-(p+q)=) knowing pand q, we can find Q(n). Conversely, suppore we know no and Q(n), but not p or q.

Now,
$$p+q=n+1-Q(n)$$
.

$$= 2b(8ay) (even mumber)$$

$$x^2 - (p+q)x + (pq) = 0$$

$$= x^2 - 2bx + n = 0$$

$$= x = b + \sqrt{2-n}$$

$$= x = b + \sqrt{2-n}$$

$$= x = b + \sqrt{2-n}$$

$$= x = x + \sqrt{2-n}$$

$$= x$$