Lecture overview

- Student Project Pitches
- Data Processing and Visualization Lecture
 - Knowledge discovery process
 - Data selection
 - Data processing
 - Data visualization
- Data Processing and Visualization Exercise

Typical Knowledge Discovery Diagram (KDD)

It is an exploratory and iterative process

Typical Knowledge Discovery Diagram (KDD)

Where does machine learning fit into the process?

Data mining does not always include machine learning, for example time-series analysis and geo-referenced data visualization

Typical Knowledge Discovery Diagram (KDD)

Leverage expertise through domain specific data source(s)

Typical Knowledge Discovery Diagram (KDD)

Data Structures

What is data in machine learning context?

- ML can process data in all imaginable ways like
 - Pictures, videos, Excel spreadsheets, SQL databases, ...
- When using machine learning, you will need to understand the basic data types to build your ML pipeline
 - Numerical data
 - Categorical data
 - Time series data
 - Text data

Numerical Data

Continuous

- Always numeric
- Can be any number, positive or negative
- Something that can be measured, e.g., temperature

Discrete

- Ordinal variable Survey ratings (0 5)
- Binary variables (0 /1)
- Something that can be counted, e.g., number of students

Numerical Data

Independent / Dependent

e.g.,
$$Y = mX + C$$

Value of Y depended on m, X, and C

Categorical Data

Qualitative data

- Subjective ratings excellent, good, fair, poor
- Meta data gender (male, female)
- Categorical data may derive from observations made of qualitative data
- Observations of quantitative data grouped within given intervals

https://image.freepik.com/free-vector/temperature-measurement-from-cold-hot_53562-2741.jpg

Time Series Data

- Time series data is a sequence of numbers collected at regular intervals over some period of time
- Is a sequence taken at successive equally spaced points in time, thus it is a sequence of discretetime data
- Can be applied to real-valued, continuous data, discrete numeric data, or discrete symbolic data

Ojha VK, Griego D, Kuliga S, Bielik M, Buš P, Schaeben C, Treyer L, Standfest M, Schneider S, König R, Donath D, Schmitt G (2018) Machine learning approaches to understand the influence of urban environments on human's physiological response, *Information Sciences*, Elsevier (pdf).https://archive.arch.ethz.ch/esum/data.html

Text Data

Text Mining:

- Process of deriving high-quality information from text
- Automation of extracting information of unknown text: websites, books, emails...
- Text analysis processes are
 - Sentiment analysis
 - Information retrieval
 - Dimensionality reduction

https://devopedia.org/images/article/105/8215.1532752754.png

Acquiring data for machine learning?

Limitations of collected data in AEC

Data Quality Control

Improving data quality

Data Collection

Improving data quality

Reference: Mónica Bobrowski, Martina Marré, Daniel Yankelevich, Measuring Data Quality, Report no.: 99-002, Pabellón 1 - Planta Baja - Ciudad Universitaria

Properties of a good dataset

Data Sources

https://miro.medium.com/max/3978/1*yPcYNnAVxcRWSDQIgKDUxg.png

Floor plans from the CVC-FP dataset http://dag.cvc.uab.es/resources/floorplans/

Fusion 360 Gallery Dataset - https://github.com/AutodeskAlLab/Fusion360GalleryDataset

Is the data usable? The not-so fun, but essential part of the process.

Typical Knowledge Discovery Diagram (KDD)

The not-so fun, but essential part of the process

"Everyone wants to do the model work, not the data work": Data Cascades in High-Stakes Al

Nithya Sambasivan, Shivani Kapania, Hannah Highfill, Diana Akrong, Praveen Paritosh, Lora Aroyo
[nithyasamba,kapania,hhighfill,dakrong,pkp,loraa]@google.com
Google Research
Mountain View, CA

https://ai.googleblog.com/2021/06/data-cascades-in-machine-learning.html

Improving Data Quality

Data cleaning

Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies

Data integration

Integration of multiple databases, data cubes, or files

Data transformation

Normalization and aggregation

Data reduction

Obtains reduced representation in volume but produces the same or similar analytical results

Data discretization

Part of data reduction but with particular importance, especially for numerical data

Reference: http://www.mimuw.edu.pl/~son/datamining/DM/4-preprocess.pdf

Data Cleaning

	Features (Variables)								
	Output featur Input features (Independent Variables) (dependent variable)								
Samples	Input V1	Input V2	Input V3	Input V4	Output V1				
Sample 1	2.3	0.25	Good	1.5	y_1				
Sample 2	4.5	43598.21	Good	1.8	y_2				
Sample 3	4.7	0.33	Excellent	1.9	y_3				
Sample 4	?	0.22	Good	3.9	y_4				
Sample 5	?	0.19	Average	1.2	${\cal Y}_5$				
:	6.7	0.88	Good	1.8	:				
Sample N	5.5	0.36	Bad	1.6	y_N				

Data Cleaning

Considered physiological signals

Fig Type 1

Fig Type 2

Fig Type 3

Fig Type 4

Discarded physiological signals

Fig Type 1: step function like signal

Fig Type 2: step function with major sensor loss

Fig Type 3: major sensor loss

Fig Type 4: insignificant observations

Ojha VK, Griego D, Kuliga S, Bielik M, Buš P, Schaeben C, Treyer L, Standfest M, Schneider S, König R, Donath D, Schmitt G (2018) Machine learning approaches to understand the influence of urban environments on human's physiological response, *Information Sciences*, Elsevier (pdf).https://archive.arch.ethz.ch/esum/data.html

Data Integration

Ojha VK, Griego D, Kuliga S, Bielik M, Buš P, Schaeben C, Treyer L, Standfest M, Schneider S, König R, Donath D, Schmitt G (2018) Machine learning approaches to understand the influence of urban environments on human's physiological response, *Information Sciences*, Elsevier (pdf).https://archive.arch.ethz.ch/esum/data.html

Data Transformation

	Features (Variables)							
	Input features Varia	Output feature (dependent variable)						
Samples	Input V1	Output V1						
Sample 1	2.3	0.25	y_1					
Sample 2	4.5	0.39	y_2					
Sample 3	4.7	0.33	y_3					
Sample 4	2.99	0.22	y_4					
Sample 5	3.18	0.19	${\mathcal Y}_5$					
:	6.7	0.36	:					
Sample N	5.5	0.88	y_N					

	Fea	es)	
	Input features (Variab	Output feature (dependent variable)	
Samples	Input V1	Output V1	
Sample 1	0.00	0.09	y_1
Sample 2	0.50	0.29	y_2
Sample 3	0.55	0.20	y_3
Sample 4	0.16	0.04	y_4
Sample 5	0.20	0.00	${\cal Y}_5$
:	1.00	0.25	:
Sample N	0.73	1.00	\mathcal{Y}_N

Data Reduction

	Features (Variables)							
		Output feature						
Samples	Input V1	Input V2	Input V4	Output V1				
Sample 1	2.3	0.25	1.5	y_1				
Sample 2	4.5	0.39	1.8	y_2				
Sample 3	4.7	0.33	1.9	y_3				
Sample 4	2.99	0.22	1.6	y_4				
Sample 5	3.18	0.19	1.2	y_5				
:	6.7	0.88	1.8	:				
Sample N	5.5	0.36	1.6	y_N				

Feature S

Extracted Features

	Features (Variables)							
		Output feature						
Samples	PCA 1	PCA 2		Output V1				
Sample 1	-1.97	0.06		y_1				
Sample 2	0.25	0.15		y_2				
Sample 3	0.45	0.22		y_3				
Sample 4	-1.28	0.09		\mathcal{Y}_4				
Sample 5	-1.14	-0.33		y_5				
:	2.48	-0.04		:				
Sample N	1.21	-0.15		y_N				

		Features (Variables)						
		Output feature						
Samples	Input V1		Input V4	Output V1				
Sample 1	2.3		1.5	y_1				
Sample 2	4.5		1.8	y_2				
Sample 3	4.7		1.9	y_3				
Sample 4	2.99		1.6	y_4				
Sample 5	3.18		1.2	y_5				
:	6.7		1.8	:				
Sample N	5.5		1.6	\mathcal{Y}_N				

The visualizations tell the final story. What do we want to know?

Typical Knowledge Discovery Diagram (KDD)

Data Visualization

Good data visualization helps to:

- make information easy to read and retain
- identify trends and patterns
- prove theories and answer questions
- control the focus and capture the audience's attention
- improves the impact of your message

Definitions- What is information visualization?

Information visualization represents data or information that is already somewhat understood

Visual representations of abstract data to reinforce human cognition

Map of the Energy Cities in Switzerland https://s.geo.admin.ch/8c096ea987

Definitions- What is data visualization?

Data visualization helps researchers find patterns and relationships from data by presenting information in a clear, efficient and meaningful way

It involves an **abstracted representation** of raw data, in form of graphs, charts and drawings, in order to **enhance comprehension** and **direct the focus**

Source: https://www.theguardian.com/guardian-masterclasses/2015/aug/07/data-visualisation-a-one-day-workshop-tobias-sturt-adam-frost-digital-course

What's the point?

Electricity and cooling demand of the ETL building, 15-21 August 2014

Elect.	Cooling												
15.08	8.2014	16.08	3.2014	17.08	3.2014	18.0	8.2014	19.08	.2014	20.0	8.2014	21.08.	2014
40.0	3 13.00	38.41	15.00	34.28	12.00	32.9	4 12.00	47.63	20.00	41.6	6 11.00	44.16	11.00
34.8		33.97	14.00	33.59		32.0	3 12.00	43.88	21.00	37.6	9 11.00	37.47	14.00
35.8	4 14.00	33.88	12.00	32.94	13.00	31.3	12.00	45.13	20.00	35.9	1 10.00	37.09	15.00
34.9	1 14.00	34.28	13.00	34.91	13.00	33.9	12.00	42.56	19.00	36.7	5 10.00	37.13	14.00
34.8	1 16.00	33.59	13.00	32.25	11.00	31.3	13.00	44.13	20.00	33.2	8 14.00	37.47	13.00
36.8	4 13.00	36.13	13.00	36.22	13.00	35.8	13.00	42.25	21.00	34.5	9 13.00	36.78	15.00
45.4°	7 34.00	34.91	13.00	34.19	12.00	41.2	33.00	45.44	23.00	42.5	0 35.00	44.13	35.00
67.4	7 18.00	35.19	12.00	36.84	12.00	61.1	6 16.00	70.06	24.00	68.5	6 28.00	65.97	34.00
82.9	7.00	36.78	14.00	36.47	12.00	82.2	6.00	102.44	26.00	95.6	3 12.00	94.09	8.00
91.4	7 15.00	37.47	13.00	37.75	13.00	98.2	18.00	115.84	25.00	110.7	2 18.00	103.00	11.00
112.0	6 23.00	46.06	48.00	47.03	63.00	107.8	28.00	119.31	30.00	116.8	4 26.00	112.03	24.00
112.0	0 22.00	48.66	15.00	47.09	16.00	110.7	5 29.00	119.38	29.00	116.7	8 21.00	108.81	32.00
98.50	6 25.00	37.75	5.00	40.63	2.00	97.9	1 31.00	117.13	31.00	105.5	6 22.00	104.94	32.00
96.9	4 23.00	39.34	9.00	39.03	7.00	95.8	33.20	120.31	26.00	109.4	4 23.00	110.41	24.00
97.6	3 18.00	42.91	7.00	39.63	8.00	95.2	26.80	123.50	29.00	115.1	9 26.00	116.16	29.00
95.6	3 22.00	39.38	10.00	38.78	9.00	94.7	28.00	113.66	31.00	113.6	6 28.00	125.41	32.00
94.09	9 27.00	48.28	24.00	46.41	65.00	90.9	1 20.00	103.34	26.00	107.1	9 28.00	112.03	27.00
80.9	7 26.00	49.97	23.00	46.38	13.00	79.9	7 19.00	88.00	27.00	104.3	1 25.00	82.84	24.00
60.4	7 28.00	37.75	12.00	38.72	7.00	68.5	20.00	75.47	23.00	89.6	3 25.00	69.16	20.00
50.9	1 24.00	37.09	12.00	35.84	10.00	65.2	16.00	61.16	20.00	64.0	0 19.00	56.34	19.00
37.78	8 16.00	34.56	11.00	32.63	11.00	54.7	5 13.00	46.72	14.00	49.5	6 19.00	44.47	18.00
36.7	5 14.00	33.59	14.00	32.97	11.00	51.5	8.00	43.84	13.00	47.7	2 18.00	40.31	18.00
44.8	4 15.00	36.84	14.00	37.44	10.00	57.8	12.00	47.38	13.00	47.9	7 25.00	46.09	21.00
42.19	9 14.00	33.56	13.00	32.97	8.00	53.8	21.00	45.09	13.00	45.4	4 14.00	38.03	12.00

What's the point?

Electricity and cooling demand of the ETL building, 15-21 August 2014

The point is ...

The human brain can capture an image in as little as 13 milliseconds!

Can you say the same about text or numbers?

"while the images are seen for only 13 milliseconds before the next image appears, part of the brain continues to process those images for longer than that"

Source: http://news.mit.edu/2014/in-the-blink-of-an-eve-0116

Selecting the right visualization

- Define a focus sentence that summarizes what you want to show
- Decide how many variables you want to show in a single chart
- Decide how many items you want to display for every variable
- Decide if values are spread or grouped
- Identify data types and choose representation styles
- Choose the appropriate chart type
- Check if the chart fulfils the requirements of the focus sentence.

Chart Suggestions—A Thought-Starter

www.ExtremePresentation.com © 2009 A. Abela — a.v.abela@gmail.com

Data types

Quantitative

Data that can be counted or measured; has numerical values

Qualitative / Categorical

Data that can be sorted in groups or categories

Continuous

Data that can take any value within a certain range, even if data points are missing

Discrete

Data with a finite number of possible values; countable

Data types

Quantitative

Data that can be counted or measured; has numerical values

Continuous

Data that can take any value within a certain range, even if data points are missing (interpolation)

Data types

Discrete

Data with a finite number of possible values; directly countable

Comparison

Between two or multiple items, with emphasis on the difference or ranking

Relationship

Between two or more parameters of a series of items

Distribution

Of one or more parameters over a series of categories, without emphasis on difference or ranking

Composition

Shows subsets of data as part of the "whole" for a series of items

Comparison

Between two or multiple items, with emphasis on the difference or ranking

Annual heating demand for office buildings in the AS Areal Zürich [kWh]

Distribution

No emphasis on difference or ranking. Order of horizontal categories has priority

Hourly Temperature vs. RH plot (1-10 June)

Relationship

Between two or more parameters of a series of items

Annual energy demand composition of office buildings in the AS Areal Zürich [kWh]

Composition

Shows subsets of data as part of the "whole" for a series of items

Select the right visualization – iterative process

Figure 2. *Left:* Pie charts showing the contribution of different countries in the production of different types of meat, which Bertin qualified as "useless". *Middle*: With a matrix visualization, high-level patterns become immediately visible. *Right*: Since countries and meats do not have a natural order, many other matrices can be produced, including this one, which is more effective. Thus, being able to try different orderings was essential. Drafts for the book *La Graphique* (Bertin, 1977) Courtesy of EHESS/AN ref. 20010291/36. All rights reserved.

Source: Charles Perin, "Jacques Bertin's Legacy in Information Visualization and the Reorderable Matrix"

Select the right visualization

Source: European Environment Agency-Chart dos and don'ts

Select the right visualization

Source: European Environment Agency-Chart dos and don'ts

Chart design

- Keep the design simple and elegant
- Limit the number of colours you use (use tones)
- Do not use the same colour palette for different categories
- Keep the colour scheme coherent in all your charts
- Consider a colour-blind colour scheme
- Use a legend only if necessary

Color resources to use in python

- Seaborn: https://seaborn.pydata.org/tutorial/color_palettes.html
- Matplotlib: https://matplotlib.org/stable/gallery/color/named_colors.html#sphx-glr-gallery-color-named-colors-py

Visualization Resources

For inspiration

https://datavizcatalogue.com/index.html

For implementation

https://www.python-graph-gallery.com/

Further Resources

Effective Graphics

https://youtu.be/Z0BCD6f9b4l

Sneak Peak: Data Processing and Visualization 2

"Understanding and exploring high dimensional data"

Dimensionality reduction

PCA, TSNE, UMAP, SOM

Immersion

Data representation: using more than visual sense, BabiaXR

Interaction

Interactive data visualization and annotation