

Machine Learning

Linear Regression with multiple variables

Multiple features

Multiple features (variables).

Size (feet ²)	Price (\$1000)	
$\rightarrow x$	$y \leftarrow$	
2104	460	
1416	232	
1534	315	
852	178	

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multiple features (variables).

7	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
	\times_1	×s	×3	*4	9
	2104	5	1	45	460
نــ	7 1416	3	2	40	232 + M = 47
	1534	3	2	30	315
	852	2	1	36	178
			•••		
No	tation:	大	7	1	$\chi^{(z)} = \begin{bmatrix} 1416 \\ 3 \end{bmatrix}$
$\rightarrow n$ = number of features $n = 4$					
$\rightarrow x^{(i)}$ = input (features) of i^{th} training example.					
$\rightarrow x_j^{(i)}$ = value of feature <u>j</u> in <u>i</u> th training example. \checkmark $=$ $=$ $?$					

Hypothesis:

Previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$h_{\Theta}(x) = \Theta_{0} + \Theta_{1}x_{1} + \Theta_{2}x_{2} + \Theta_{3}x_{3} + \Theta_{4}x_{4}$$

$$E.g. h_{\Theta}(x) = 80 + 0.1x_{1} + 0.01x_{2} + 3x_{3} - 2x_{4}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
Cinc

Andrew Ng

$$\rightarrow h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

For convenience of notation, define $x_0 = 1$. $(x_0^{(i)} = i)$

For convenience of notation, define
$$x_0 = 1$$
. $(x_0) = 1$. $(x_0) =$

Multivariate linear regression.

Machine Learning

Linear Regression with multiple variables

Gradient descent for multiple variables

Hypothesis:
$$h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Parameters:
$$\theta_0, \theta_1, \dots, \theta_n$$
 \bigcirc n+1 - director

Cost function:

$$\frac{J(\theta_0, \theta_1, \dots, \theta_n)}{J(\Theta)} = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Repeat
$$\{$$
 $\Rightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n)$ \exists (simultaneously update for every $j = 0, \dots, n$)

Gradient Descent

Previously (n=1):

$$\theta_0 := \theta_0 - o \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\begin{bmatrix} \frac{\partial}{\partial \theta_0} J(\theta) \end{bmatrix}$$

$$i=1$$
(simultaneously undate \hat{H}_0 , \hat{H}_1)

(simultaneously update $\hat{\theta}_0, \theta_1$)

New algorithm $(n \ge 1)$:

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$
 (simultaneously update θ_j for

$$j=0,\ldots,n$$
)

$$\theta_{0}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) \underline{x^{(i)}} = \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) \underline{x^{(i)}}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_2^{(i)}$$

Andrew Ng

Machine Learning

Linear Regression with multiple variables

Gradient descent in practice I: Feature Scaling

Feature Scaling

Idea: Make sure features are on a similar scale.

E.g. $x_1 = \text{size } (0-2000 \text{ feet}^2) \leftarrow$ x_2 = number of bedrooms (1-5) \leftarrow

$$\Rightarrow x_1 = \frac{\text{size (feet}^2)}{2000}$$

$$\rightarrow x_2 = \frac{\text{number of bedrooms}}{5}$$

Feature Scaling

Get every feature into approximately a

$$\underbrace{-1 \leq x_i \leq 1}_{\text{range.}}$$

Mean normalization

Replace \underline{x}_i with $\underline{x}_i - \mu_i$ to make features have approximately zero mean (Do not apply to $\overline{x}_0 = 1$).

E.g.
$$\Rightarrow x_1 = \frac{size - 1000}{2000}$$

$$x_2 = \frac{\#bedrooms - 2}{5}$$

$$\Rightarrow \begin{bmatrix} -0.5 \le x_1 \le 0.5 \\ -0.5 \le x_2 \le 0.5 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_1 \\ y_2 \end{bmatrix}$$

$$x_2 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_3 \end{bmatrix}$$

$$x_3 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_2 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_2 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_2 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_2 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_3 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_4 \end{bmatrix}$$

$$x_1$$

Machine Learning

Linear Regression with multiple variables

Gradient descent in practice II: Learning rate

Gradient descent

$$\rightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

- "Debugging": How to make sure gradient descent is working correctly.
- How to choose learning rate α .

Making sure gradient descent is working correctly.

Example automaticconvergence test:

Declare convergence if $J(\theta)$ decreases by less than 10^{-3} in one iteration.

Making sure gradient descent is working correctly.

- For sufficiently small lpha, J(heta) should decrease on every iteration.
- But if lpha is too small, gradient descent can be slow to converge.

Summary:

- If α is too small: slow convergence.
- If α is too large: $J(\theta)$ may not decrease on every iteration; may not converge. (Slow converge where α

To choose α , try

$$\dots, \underbrace{0.001}_{1}, \underbrace{0.003}_{2}, \underbrace{0.01}_{1}, \underbrace{0.03}_{1}, \underbrace{0.1}_{1}, \underbrace{0.3}_{1}, \underbrace{1}_{1}, \dots$$

Machine Learning

Linear Regression with multiple variables

Features and polynomial regression

•

Housing prices prediction

$$h_{\theta}(x) = \theta_{0} + \theta_{1} \times frontage + \theta_{2} \times depth$$

Area

 $\times = frontage \times depth$
 $h_{\theta}(x) = \Theta_{0} + \Theta_{1} \times depth$

Tland crea

Polynomial regression

Choice of features

Machine Learning

Linear Regression with multiple variables

Normal equation

Gradient Descent

Normal equation: Method to solve for θ analytically.

Intuition: If 1D $(\theta \in \mathbb{R})$

$$J(\theta) = a\theta^2 + b\theta + c$$

$$\frac{\partial}{\partial \phi} J(\phi) = \frac{\sec^2 \phi}{\cos^2 \phi}$$
Solve, for ϕ

$$\frac{\theta \in \mathbb{R}^{n+1}}{\frac{\partial}{\partial \theta_j} J(\theta)} = \frac{J(\theta_0, \theta_1, \dots, \theta_m)}{\frac{\partial}{\partial \theta_j} J(\theta)} = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Solve for $\theta_0, \theta_1, \dots, \theta_n$

Examples: m = 4.

J	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
$\rightarrow x_0$	x_1	x_2	x_3	x_4	y
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	_1	_36	178
	$X = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	$2104 5 1$ $1416 3 2$ $1534 3 2$ $852 2 1$ $M \times (n+i)$	2 40 2 30 1 36	$\underline{y} = $	460 232 315 178

m examples $(x^{(1)},y^{(1)}),\ldots,(x^{(m)},y^{(m)})$; n features.

$$\underline{x^{(i)}} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1}$$

$$(\text{design} \\ \text{Mothan})$$

$$(\text{Mesign} \\ \text{Mothan})$$

$$(\text{Mesign} \\ \text{Max} \text{(At1)}$$

$$(\text{Mesign} \\ \text{Mesign} \text{(At1)}$$

$$(\text{Mesign} \\ \text{Mesign} \text{(At1)}$$

$$(\text{Mesign} \\ \text{Mesign} \text{(At1)} \text{(At1)}$$

$$(\text{Mesign} \\ \text{Mesign} \text{(At1)} \text{(At1)} \text{(At1)}$$

$$(\text{Mesign} \\ \text{Mesign} \text{(At1)} \text{(At1)}$$

Andrew Ng

$$\theta = (X^T X)^{-1} X^T y$$

 $(X^TX)^{-1}$ is inverse of matrix X^TX .

m training examples, n features.

Gradient Descent

- \rightarrow Need to choose α .
- → Needs many iterations.
 - Works well even when n is large.

Normal Equation

- \rightarrow No need to choose α .
- Don't need to iterate.
 - Need to compute

• Slow if n is very large.

Machine Learning

Linear Regression with multiple variables

Normal equation and non-invertibility (optional)

Normal equation

$$\theta = (X^T X)^{-1} X^T y$$

- What if X^TX is non-invertible? (singular/ degenerate)
- Octave: pinv(X'*X)*X'*y

What if X^TX is non-invertible?

Redundant features (linearly dependent).

E.g.
$$x_1 = \text{size in feet}^2$$
 $x_2 = \text{size in m}^2$
 $x_1 = (3.28)^2 \times 2$
 $x_2 = (3.28)^2 \times 2$

Too many features (e.g. $m \le n$).

- Delete some features, or use regularization.