OCT 2 2 2001

SEQUENCE LISTING

Compared to the content of the content o

<120\ NOVEL SERINE PROTEASE BSSP5

<130> **VEMURA=**5

<140> 09/856,319 <141> 2001-05-21

<150> JP 10/347806 <151> 1998-11-20

<150> PCT JP99/06473

<151> 1999-11-19

<160> 32

<170> PatentIn version 3.1

<210> 1

<211> 1149 <212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (11)..(802)

<223>

<220>

<221> mat_peptide

<222> (110)..()

<223>

<400> 1

atctgccacg atg ttg ctg ctc agc ctg acc cta agc ctg gtt ctc ctc 49

Met Leu Leu Ser Leu Thr Leu Ser Leu Val Leu Leu
-30 -25

ggc tcc tcc tgg ggc tgc ggc att cct gcc atc aaa ccg gca ctg agc Gly Ser Ser Trp Gly Cys Gly Ile Pro Ala Ile Lys Pro Ala Leu Ser -20 -15 -5

ccc tgg cag gtg tcc ctg cag gac agc agc ggc ttc cac ttc tgc ggt 193
Pro Trp Gln Val Ser Leu Gln Asp Ser Ser Gly Phe His Phe Cys Gly
15 20 25

ggt tot oto ato ago cag too tgg gtg gtc act gct gcc cac tgc aat Gly Ser Leu Ile Ser Gln Ser Trp Val Val Thr Ala Ala His Cys Asn $30 \hspace{1cm} 35 \hspace{1cm} 40$

RECEIVED

MAR 1 4 2002

TECH CENTER 1600/2900

97

241

Uemura5.ST25.txt

gtc agc cct ggc Val Ser Pro Gly 45					er
tca aac gca gag Ser Asn Ala Glu					
cac cct agc tgg His Pro Ser Trp 80					
aag ctc gcc tcg Lys Leu Ala Ser 95					
ctg gca tcc tca Leu Ala Ser Ser 110					
acc ggc tgg ggt Thr Gly Trp Gly 125					.s
ctg cag cag gtg Leu Gln Gln Val					
tac tgg gac tca Tyr Trp Asp Ser 160					
ggt gcc tcc tcg Gly Ala Ser Ser 175					
aag gga aac aca Lys Gly Asn Thr 190					
aac tgc aat gtg Asn Cys Asn Val 205					ie
agc acc tgg atc Ser Thr Trp Ile				acc acaggco	ectc 822
cccagctcaa cccat	ttaaa ggacco	caggc cctgtc	ccat catgcat	tca tgtctgt	ctt 882
cctggctcag gagaa	agaag aggcto	gttga gggtcc	gact ccctact	tgg acttctg	gca 942
cagaaggggc tgagt	gactc cttgaq	gtagc agtggc	tctt cctagag	tag ccatgco	gtg 1002
gccggggccc ccacc	ecctcc tccago	ggcaa cccctt	ggtc ctacagc	aag aagccag	gaac 1062
tgttggaatg aatgg	gcagee eteett	tggag aggcag	cctg tttactg	aat acagagg	
cgtttacaaa aaaaa	aaaaa aaaaaa	aa			1149

<210> 2 <211> 264 <212> PRT

<213> Homo sapiens

<400> 2

Met Leu Leu Ser Leu Thr Leu Ser Leu Val Leu Gly Ser Ser -30 -25 -20

Trp Gly Cys Gly Ile Pro Ala Ile Lys Pro Ala Leu Ser Phe Ser Gln
-15 -10 -5

Arg Ile Val Asn Gly Glu Asn Ala Val Leu Gly Ser Trp Pro Trp Gln -1 1 5 10 15

Val Ser Leu Gln Asp Ser Ser Gly Phe His Phe Cys Gly Gly Ser Leu 20 25 30

Ile Ser Gln Ser Trp Val Val Thr Ala Ala His Cys Asn Val Ser Pro $35 \hspace{1cm} 40 \hspace{1cm} 45$

Gly Arg His Phe Val Val Leu Gly Glu Tyr Asp Arg Ser Ser Asn Ala 50 55 60

Glu Pro Leu Gln Val Leu Ser Val Ser Arg Ala Ile Thr His Pro Ser 65 70 75

Trp Asn Ser Thr Thr Met Asn Asn Asp Val Thr Leu Leu Lys Leu Ala 80 85 90 95

Ser Pro Ala Gln Tyr Thr Thr Arg Ile Ser Pro Val Cys Leu Ala Ser 100 105 110

Ser Asn Glu Ala Leu Thr Glu Gly Leu Thr Cys Val Thr Thr Gly Trp 115. 120 125

Gly Arg Leu Ser Gly Val Gly Asn Val Thr Pro Ala His Leu Gln Gln 130 135 140

Val Ala Leu Pro Leu Val Thr Val Asn Gln Cys Arg Gln Tyr Trp Asp 145 150 155

Ser Ser Ile Thr Asp Ser Met Ile Cys Ala Gly Gly Ala Gly Ala Ser 160 165 170 175

Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Gln Lys Gly Asn 180 185 190

Thr Trp Val Leu Ile Gly Ile Val Ser Trp Gly Thr Lys Asn Cys Asn 195 200 205

Val Arg Ala Pro Ala Val Tyr Thr Arg Val Ser Lys Phe Ser Thr Trp 210 215 220	
Ile Asn Gln Val Ile Ala Tyr Asn 225 230	
<210> 3 <211> 834 <212> DNA <213> Mus sp.	
<220> <221> mat_peptide <222> (132)() <223>	
<220> <221> CDS <222> (33)(824) <223>	
<400> 3 gaccatctca acaccattcc ttatttgtca ca atg cta ctg ctc agc cta acc Met Leu Leu Ser Leu Thr -30	53
ctt agc ctg gtc ctc ctt ggc tcc tcc tgg ggc tgt ggt g	101
atc acg cct gca ctg agc tac aat cag aga att gtc aac ggg gag aat Ile Thr Pro Ala Leu Ser Tyr Asn Gln Arg Ile Val Asn Gly Glu Asn -10 -5 -1 1 5	14,9
gca gtg cca ggc tcc tgg ccc tgg cag gtg tct ctc cag gat aac acc Ala Val Pro Gly Ser Trp Pro Trp Gln Val Ser Leu Gln Asp Asn Thr 10 15 20	197
ggc ttc cac ttc tgc ggt ggt tct ctc atc agt ccg aac tgg gtg gtc Gly Phe His Phe Cys Gly Gly Ser Leu Ile Ser Pro Asn Trp Val Val 25 30 35	245
acg gct gcc cac tgc caa gtc acg cct gga cgc cac ttt gtc gtt ttg Thr Ala Ala His Cys Gln Val Thr Pro Gly Arg His Phe Val Val Leu 40 45 50	293
gga gaa tat gac cga tct tcc aat gct gaa cct gtg cag gtc ctc tcg Gly Glu Tyr Asp Arg Ser Ser Asn Ala Glu Pro Val Gln Val Leu Ser 55 60 65 70	341
atc gca agg gcc atc aca cac cct aac tgg aac gcc aac acc atg aac Ile Ala Arg Ala Ile Thr His Pro Asn Trp Asn Ala Asn Thr Met Asn 75 80 85	389
aat gac ctg act ctc ctg aag ctt gcc tcg cca gcc cgg tac aca gca Asn Asp Leu Thr Leu Leu Lys Leu Ala Ser Pro Ala Arg Tyr Thr Ala 90 95 100	437

					tgc Cys											485
					acc Thr											533
					cgc Arg 140											581
					cag Gln											629
					tca Ser											677
					cag Gln											725
					aag Lys											773
		_	-	-	ttc Phe 220	-						-	_	-		821
aac Asn	taaa	actgt	cc													834
<210 <211 <212 <213	L> 2 2> E	l 264 PRT Jus s	sp.													
<400)> 4	1														
Met	Leu	Leu	Leu -30	Ser	Leu	Thr	Leu	Ser -25	Leu	Val	Leu	Leu	Gly -20	Ser	Ser	
Trp	Gly	Cys -15	Gly	Val	Pro	Ala	Ile -10	Thr	Pro	Ala	Leu	Ser -5	Tyr	Asn	Gln	
Arg -1	Ile 1	Val	Asn	Gly	Glu 5	Asn	Ala	Val ·	Pro	Gly 10	Ser	Trp	Pro	Trp	Gln 15	
Val	Ser	Leu	Gln	Asp 20	Asn	Thr	Gly	Phe	His 25	Phe	Cys	Gly	Gly	Ser 30	Leu	
Ile	Ser	Pro	Asn 35	Trp	Val	Val	Thr	Ala 40	Ala	His	Cys	Gln	Val 45	Thr	Pro	

GIY	Arg	50	rne	val	Val	Leu	55 55	GIU	ıyı	ASP	Arg	60	ser	ASII	Ala
Glu	Pro 65	Val	Gln	Val	Leu	Ser 70	Ile	Ala	Arg	Ala	Ile 75	Thr	His	Pro	Asn
Trp 80	Asn	Ala	Asn	Thr	Met 85	Asn	Asn	Asp	Leu	Thr 90	Leu	Leu	Lys	Leu	Ala 95
Ser	Pro	Ala	Arg	Tyr 100	Thr	Ala	Gln	Val	Ser 105	Pro	Val	Cys	Leu	Ala 110	Ser
Thr	Asn	Glu	Ala 115	Leu	Pro	Ser	Gly	Leu 120	Thr	Cys	Val	Thr	Thr 125	Gly	Trp
Gly	Arg	Ile 130	Ser	Gly	Val	Gly	Asn 135	Val	Thr	Pro	Ala	Arg 140	Leu	Gln	Gln
Val	Val 145	Leu	Pro	Leu	Val	Thr 150	Val	Asn	Gln	Cys	Arg 155	Gln	Tyr	Trp	Gly
Ala 160	Arg	Ile	Thr	Asp	Ala 165	Met	Ile	Cys	Ala	Gly 170	Gly	Ser	Gly	Ala	Ser 175
Ser	Cys	Gln	Gly	Asp 180	Ser	Gly	Gly	Pro	Leu 185	Val	Cys	Gln	Lys	Gly 190	Asn
Thr	Trp	Val	Leu 195	Ile	Gly	Ile	Val	Ser 200	Trp	Gly	Thr	Lys	Asn 205	Cys	Asn
Ile	Gln	Ala 210	Pro	Ala	Met	Tyr	Thr 215	Arg	Val	Ser	Lys	Phe 220	Ser	Thr	Trp
Ile	Asn 225	Gln	Val	Met	Ala	Tyr 230	Asn								
<210 <211 <212 <213	i> 9 2> [5 99 ONA Artif	icia	al Se	equer	nce									
<220> <223> Designed oligonucleotide to construct plasmid pSecTrypHis.															
<400> 5 aagcttggct agcaacacca tgaatctact cctgatcctt acctttgttg ctgctgctgt 6															
tgctgccccc tttgacgacg atgacaagga tccgaattc 9															

<210> 6 <211> 99 <212> DNA <213> Artificial Sequence	
<220> <223> Designed oligonucleotide to construct plasmid pSecTrypHis.	
<400> 6 gaattcggat ccttgtcatc gtcgtcaaag ggggcagcaa cagcagcagc aacaaaggta 60	
aggatcagga gtagattcat ggtgttgcta gccaagctt	
<210> 7 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Designed oligonucleotide primer to amplify neurosin-encoding seq	u
ence.	.5
<400> 7 ttggtgcatg gcgga	
<210> 8 <211> 27 <212> DNA <213> Artificial Sequence	
<223> Artificial Sequence <220> <223> Designed oligonucleotide primer to amplify neurosin-encoding se	qu
<223> Designed oligonucleotide prometer ence.	
<400> 8 tcctcgagac ttggcctgaa tggtttt	27
<210> 9 <211> 35	
<212> DNA <213> Artificial Sequence	
<220> <223> Designed oligonucleotide primer to amplify a portion of plasmi	d p
SecTrypHis/Neurosim	35
' <400> 9 gcgctagcag atctccatga atctactcct gatcc	
<210> 10 <211> 29	
<212> DNA <213> Artificial Sequence	445
<220> <223> Designed oligonucleotide primer to amplify a portion of plasm SecTrypHis/Neurosin.	ita b

```
<400> 10
                                                                       29
tgaagcttgc catggaccaa cttgtcatc
<210> 11
<211>
      26
<212>
      DNA
<213>
      Artificial Sequence
<220>
      Designed oligonucleotide primer to amplify a portion of plasmid p
<223>
       TrypHis.
<400> 11
                                                                       26
ccaagcttca ccatcaccat caccat
<210>
      12
<211>
      17
<212>
      DNA
<213>
      Artificial Sequence
<220>
<223>
       Designed oligonucleotide primer to amplify a portion of plasmid p
       TrySigTag.
<400> 12
gcacagtcga ggctgat
                                                                       17
<210>
      13
<211>
      17
<212>
      DNA
<213>
      Artificial Sequence
<220>
<223>
      Designed oligonucleotide primer to amplify a portion of plasmid p
       FBTrypSigTag.
<400> 13
                                                                       17
caaatgtggt atggctg
<210>
      14
<211>
      20
<212> DNA
<213> Artificial Sequence
<220>
<223>
      Designed oligonucleotide primer to amplify conserved region of se
       rin proteases-encoding sequence.
<220>
<221>
      misc_feature
<222>
      (9)...(9)
<223> n is a, c, g or t.
<220>
<221>
      misc_feature
<222>
      (12)..(12)
```

<223> n is a, c, g or t.

```
<400> 14
                                                                        20
  gtgctcacng cngcbcaytg
  <210> 15
  <211>
        20
  <212> DNA
  <213> Artificial Sequence
  <220>
  <223>
        Designed oligonucleotide primer to amplify conserved region of se
         rin proteases-encoding sequence.
  <220>
  <221> misc_feature
  <222>
        (12)...(12)
  <223> n is a, c, g or t.
  <220>
  <221>
        misc_feature
  <222>
        (15)..(15)
  <223> n is a, c, g or t.
  <400> 15
                                                                        20
  ccvctrwsdc cnccnggcga
  <210>
        16
  <211>
        20
  <212>
        DNA
  <213>
        Artificial Sequence
 <220>
  <223>
        Designed oligonucleotide primer for RACE for hBSSP5 (forward).
  <400> 16
                                                                        20
 tgtcagccct ggccgccatt
  <210>
        17
  <211>
        20
  <212> DNA
 <213> Artificial Sequence
<220>
 <223>
        Designed oligonucleotide primer for RACE for hBSSP5 (forward).
 <400> 17
 gcgagtatga ccgatcatca
                                                                        20
 <210>
        18
  <211>
        20
  <212>
        DNA
  <213>
        Artificial Sequence
  <220>
        Designed oligonucleotide primer for RACE for hBSSP5 (reverse).
  <223>
 <400>
        18
```

Page 9

cgccac	ctgc acagatcatg 20
<210> <211> <212> <213>	19 20 DNA Artificial Sequence
<220> <223>	Designed oligonucleotide primer for RACE for hBSSP5 (reverse).
<400> gaatcag	19 gtgc cggcagtact 20
<210><211><211><212><213>	20 20 DNA Artificial Sequence
<220> <223>	Designed oligonucleotide primer designated as hBSSP5F1 to amplify full length hBSSP5 (forward).
<400> tgccacq	20 gatg ttgctgctca 20
<210> <211> <212> <213>	21 20 DNA Artificial Sequence
<220> <223>	Designed oligonucleotide primer designated as hBSSP5F2 to amplify mature hBSSP5-encoding region (forward).
<400> attgtca	21 aacg gggagaatgc 20
<210> <211> <212> <213>	22 27 DNA Artificial Sequence
<220> <223>	Designed oligonucleotide primer designated as hBSSP5R1/E to ampli fy full length hBSSP5 (reverse).
<400> ggaatto	22 eggg tetttaatgg gttgage 27
<210><211><211><212><213>	23 18 DNA Artificial Sequence
<220> <223>	Designed oligonucleotide primer designated as hBSSP5R4 for RT-PCR (reverse).

<400> cctggc	23 cacga ggaggcac 18
<210><211><211><212><213>	
<220> <223>	Designed oligonucleotide primer designated as mBSSP5F1 for RACE f or mBSSP5 (forward).
<400> accatg	24 raaca atgacctgac 20
<210><211><211><212><213>	DNA
<220> <223>	Designed oligonucleotide primer designated as mBSSP5F2 for RACE f or mBSSP5 (forward)
<400> gaatca	25 gtgt cggcagt 17
<210> <211> <212> <213>	20 DNA
<220> <223>	Designed oligonucleotide primer designated as mBSSP5F3 to amplify full length mBSSP5 (forward).
<400> gaccat	26 ctca acaccattcc 20
<210> <211> <212> <213>	27 20 DNA Artificial Sequence
<220> <223>	Designed oligonucleotide primer designated as mBSSP5F mature to a mplify mature mBSSP5-encoding region (forward).
<400> attgtc	27 aacg gggagaatgc 20
<210><211><211><212><213>	28 20 DNA Artificial Sequence
<220> <223>	Designed oligonucleotide primer designated as mBSSP5R2 for RACE f

Page 11

or mBSSP5 (reverse). <400> 28 atggcatcgg taatgcgtgc 20 <210> 29 <211> 20 <212> DNA <213> Artificial Sequence <220> Designed oligonucleotide primer designated as mBSSP5R3/E to ampli <223> fy full length mBSSP5 (reverse). <400> 29 20 caggtgtttc ccttctggca <210> 30 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Designed oligonucleotide primer designated as mBSSP5R3/E to ampli dy full length mBSSP5 (reverse). <400> 30 ggaattcgga cagtttagtt gtaggcc 27 <210> 31 <211> 117 <212> DNA <213> Artificial Sequence <220> Designed oligonucleotide to construct plasmid pTrypHis. <223> <400> 31 aagettqqct aqcaacacca tqaatctact cctqatcctt acctttgttg ctqctqctgt 60 117 tgctgccccc tttcaccatc accatcacca tgacgacgat gacaaggatc cgaattc <210> 32 <211> 117 <212> DNA <213> Artificial Sequence <220> <223> Designed oligonucleotide to construct plasmid pTrypHis. <400>

61

gaattcggat ccttgtcatc gtcgtcatgg tgatggtgat ggtgaaaggg ggcagcaaca

gcagcagcaa caaaggtaag gatcaggagt agattcatgg tgttgctagc caagctt

60

117