	-						
${\mathfrak r}_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{6}{(3+4 k^2)^2 t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$-\frac{12ik}{(3+4k^2)^2t_1}$
$\tau_{1}^{\#1}_{+}\alpha\beta$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{ik}{(1+k^2)^2 t_1}$	$\frac{k^2}{(1+k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{1}{(1+k^2)^2 t_1}$	$-\frac{ik}{(1+k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\tau_1^{\#1} + \alpha \beta$	$\sigma_1^{\#2} + \alpha \beta$	$\tau_1^{\#_1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} + ^{\alpha}$	$\tau_1^{\#2} +^{\alpha}$

$f_{1^-}^{\#2}$	0	0	0	<u>i kt1</u> 3	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#2}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>†1</u> 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$\frac{9}{\mathbb{T}_{2}}$	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}\bar{l}kt_1$
$f_1^{\#1}$	$-\frac{i k t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#2}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$ u_1^{\#1} $	$-\frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0

 $\omega_{1}^{\#1} +^{\alpha}$

 $\omega_1^{\#2} +^{\alpha}$

	$\sigma_{2^{+}lphaeta}^{\!\#1}$	$ au_2^{\#1}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2^+}^{\sharp 1} \dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_{2^{+}}^{\#1}\dagger^{lphaeta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$

	$\omega_0^{\sharp 1}$	$f_{0}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^+}^{\sharp 1}$ †	0	0	0	0
$f_{0^{+}}^{#1}\dagger$	0	0	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	$k^2 r_2 - t_1$

 $\frac{1}{k^2 r_2 - t_1}$

0

SO(3) irreps	#
$\tau_{0^{+}}^{\#2} == 0$	1
$\tau_{0^{+}}^{\#1} == 0$	1
$\sigma_{0+}^{\#1} == 0$	1
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#1\alpha} == 0$	3
$\tau_1^{\#1\alpha} == 0$	3
$\sigma_{1}^{\#1\alpha} == \sigma_{1}^{\#2\alpha}$	3
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3
$\tau_{2+}^{\#1\alpha\beta} - 2\bar{\imath}k\sigma_{2+}^{\#1\alpha\beta} == 0$	5
Total #:	20

Source constraints

$\omega_{2^{-}}^{\#1} \alpha eta \chi$	0	0	1 1 2		
$\omega_2^{\#_1}$ $\omega_2^{\#_1}$ $\omega_2^{\#_1}$ $\omega_2^{\#_1}$	$-\frac{\bar{l}kt_1}{\sqrt{2}}$	$k^2 t_1$	0	$\sigma_{0^+}^{\sharp 1}$ †	Г
	$\frac{t_1}{2}$	$\frac{ikt_1}{\sqrt{2}}$	0	$\tau_{0^{+}}^{\#1}$ †	
'	$\omega_{2}^{\#1} + \alpha^{\beta}$	$f_2^{#1} +^{\alpha\beta}$	$\omega_{2}^{\#1} +^{lphaeta\chi}$	$\tau_{0^{+}}^{\#2} + \sigma_{0^{-}}^{\#1} +$	

? $J^P = 0^- /$?
?	?

	Massive particle			
? /	Pole residue:	$-\frac{1}{r_2} > 0$		
$J^P = 0^-$	Polarisations:	1		
$\overrightarrow{k^{\mu}}$	Square mass:	$\frac{t_1}{r_2} > 0$		
?	Spin:	0		
	Parity:	Odd		

Massive particle			
Pole residue:	$-\frac{1}{r_2} > 0$		
Polarisations:	1		
Square mass:	$\frac{t_1}{r_2} > 0$		
Spin:	0		
Parity:	Odd		
	Pole residue: Polarisations: Square mass: Spin:		

(No massless particles)