A. An Bian, Joachim M. Buhmann, Andreas Krause and Sebastian Tschiatschek

Problem Setting & Applications

Ground set $\mathcal{V} = \{1, ..., n\}$: all "experiments" in experimental design, all variables in continuous programs, all R.V.s in sparse approx. ...

Utility function $F(S): 2^{\mathcal{V}} \to \mathbb{R}_+$, monotone $(A \subseteq B \Rightarrow F(A) \leq F(B))$ But non-submodular/non-supermodular!

select a subset of items with budget k, Task $\max F(S)$: to maximize the utility F(S)

Class I [combinatorial objectives]: Bayesian experimental design [Chaloner '95, Krause '08], Sparse Gaussian processes [Lawrence '03], Column subset selection [Altschuler '16] ...

Class II [auxiliary set fn. in *continuous* opt. with sparsity constraints $\max_{|\sup p(x)| \le k} f(x) f(s) := \max_{\sup p(x) \le s} f(x) \to \max_{|s| \le k} f(s)$: Feature selection [Guyon '03], Sparse approx. [Das '08, Krause '10, Elenberg '16], Sparse recovery [Candes '03], Sparse M-estimation [Jain '14], LP with combinatorial constraints ...

Empirically, **Greedy** is used for *non-submodular* objectives.

The GREEDY Algorithm

Marginal gain: $\rho_{v}(S) \coloneqq F(S \cup \{v\}) - F(S)$

How Good is GREEDY?

Right fig: Bayesian A-optimality $F_A(S)$: reduction of variance in the posterior of parameters.

supermodular

non-submodular/non-

✓ Why GREEDY is So Good?

First tight guarantee for GREEDY on k-cardinality nonsubmodular maximization, combining two parameters (α, γ)

Bounding (α, γ) for non-trivial applications

Nemhauser, Wolsey, Fisher. An analysis of approximations for maximizing submodular set functions-i. Mathematical Programming, 1978.

Conforti, Cornuéjols. Submodular set functions, matroids and the greedy algorithm: tight worst-case bounds and some generalizations of the rado-edmonds theorem. Discrete Applied Mathematics, 1984.

Das, Kempe. Submodular meets spectral: Greedy algorithms for subset selection, sparse approximation and dictionary selection. ICML, 2011.

Approximation Guarantee

 $\alpha \in [0,1]$

 $\gamma \in [0,1]$

Generalized curvature: smallest scalar α s.t. $\forall \Omega, S \subseteq \mathcal{V}, i \in S \setminus \Omega$, $\rho_i(S\setminus\{i\}\cup\Omega) \ge (1-\alpha)\rho_i(S\setminus\{i\})$

Submodularity ratio: [Das et al. '11] largest scalar γ s.t. $\forall \Omega, S \subseteq \mathcal{V}$ $\sum_{\omega \in \Omega \setminus S} \rho_{\omega}(S) \ge \gamma \rho_{\Omega}(S)$

 $\mathfrak{S}F$ is supermodular iff $\alpha = 0$

 $\mathbf{\mathfrak{S}}F$ is submodular iff $\gamma=1$

How close *F* is from being supermodular

To what extent *F* has submodular property

 α and γ can be bounded for non-trivial applications

Synthetic

Results

Timing

Corollary: If *F* is supermodular ($\alpha = 0$, green line above), then approx. guarantee is γ . $(\lim_{\alpha \to 1} \alpha^{-1} (1 - e^{-\alpha \gamma}) = \gamma)$

Tightness Result

 $\forall \alpha \in [0,1], \gamma \in (0,1], \exists \text{ set functions}$ achieving the guarantee exactly

Construction: \mathcal{V} containts elements in $S := \{j_1, ..., j_k\}$, $\Omega \coloneqq \{\omega_1, ..., \omega_k\} \ (s \cap \Omega = \emptyset), \ \& \ n - 2k \text{ "dummy" elements}$

$$F(T) := \frac{f(|\Omega \cap T|)}{k} \left(1 - \alpha \gamma \sum_{i:j_i \in S \cap T} \xi_i\right) + \sum_{i:j_i \in S \cap T} \xi_i,$$
 where $\xi_i := \frac{1}{k} \left(\frac{k - \gamma \alpha}{k}\right)^{i-1}$, $i = 1, ..., k$, $f(x) := \frac{\gamma^{-1} - 1}{k - 1} x^2 + \frac{k - \gamma^{-1}}{k - 1} x$

F(T): monotone, has curvature α and submodularity ratio γ

Greedy outputs S (proof by induction), optimal solution: Ω $\frac{F(S)}{F(\Omega)} = \alpha^{-1} \left[1 - \left(\frac{k - \alpha \gamma}{k}\right)^{k}\right] \rightarrow \text{matching the bound}$

Bounding $\alpha \& \gamma$ for Applications

- Bayesian A-optimality: $\mathbf{y} = \mathbf{X}^{\mathrm{T}}\boldsymbol{\theta} + \boldsymbol{\epsilon}, \ \boldsymbol{\epsilon} \sim \mathcal{N}(0, \sigma^2 \mathbf{I}),$ $\boldsymbol{\theta} \sim \mathcal{N}(0, \beta^{-2}\mathbf{I}). F_A(\mathbf{S}) = \text{const} - \text{tr}\left(\left(\beta^2\mathbf{I} + \sigma^{-2}\mathbf{X}_{\mathbf{S}}\mathbf{X}_{\mathbf{S}}^{\mathrm{T}}\right)^{-1}\right)$ Assume normalized data $||x_i|| = 1, \forall i \in \mathcal{V}, ||\mathbf{X}|| < \infty$. $\gamma \ge \frac{\beta^2}{\|\mathbf{X}\|^2(\beta^2 + \sigma^{-2}\|\mathbf{X}\|^2)}$ $\alpha \le 1 - \frac{\beta^2}{\|\mathbf{X}\|^2(\beta^2 + \sigma^{-2}\|\mathbf{X}\|^2)}$
- Determinantal function of a square submatrix: sparse Gaussian process $F(S) = \det(\mathbf{I} + \mathbf{\Sigma}_S)$, $\mathbf{\Sigma}$: covariance matrix. F(S) is supermodular ($\alpha = 0$), γ is lower bounded
- Arr LP with combinatorial constraints, γ is lower bounded
 - → Details see paper & source code online

Experiments: Bayesian A-optimality (more see paper)

 $\alpha^{\text{total}} := 1 - \min_{i \in \mathcal{V}} \rho_i(\mathcal{V} \setminus \{i\}) / \rho_i(\emptyset)$, classical curvature for submodular fn. \bowtie less expressive than generalized curvature α

Real-World **Results**

Boston Housing data, n = 14 samples, 14 features

SDP: classical algorithm, but poor scalibility

0.95 0.9

 $\alpha^{\mathbf{G}}$, $\gamma^{\mathbf{G}}$: Greedy/refined version of α , γ . In definitions, restrict $S \to GREEDY$ trajectory, $|\Omega| = k$

n = 12 samples, 6 features, random observations from a multivariate Gaussian with different correlations (0.2 in figs below, 20 repetitions)

n: 200 n: 128 0.278 0.360 4.666 10.56 **GREEDY** 0.765 205.4 | 1741.2 | 3883.5 341.7 319.9 268.7 373.2

GREEDY is 2 orders of magnitude faster than SDP!