

LFA0001 – Linguagens Formais e Autômatos Aula 04 Autômato Finito Não-Determinístico

Karina Girardi Roggia karina.roggia@udesc.br

Departamento de Ciência da Computação Centro de Ciências Tecnológicas Universidade do Estado de Santa Catarina

2016

Karina G. Roggia 2016 LFA0001 - Aula04 1 / 24

Sumário

Não Determinismo

Autômato Finito Não-Determinístico

Equivalência entre AFD e AFN

Exercícios

Não Determinismo

Caracteriza-se por escolhas no trajeto da computação

Em Autômatos Finitos

- a partir de um estado e de um símbolo, determina-se um conjunto de estados seguintes
- não aumenta o poder computacional

Não Determinismo

O Autômato Finito assumirá um conjunto de estados alternativos

- pode-se pensar como uma multiplicação da unidade de controle
- cada alternativa possuirá uma unidade de controle independente
- sem recursos compartilhados

Atenção: isto não é paralelismo de processamento.

Autômato Finito Não-Determinístico

Definição (Autômato Finito Não-Determinístico)

Um AFN é uma estrutura $M = \langle \Sigma, Q, \delta, q_0, F \rangle$ tal que

- ullet Σ é o alfabeto de símbolos de entrada
- Q é o conjunto finito de estados
- $\delta: Q \times \Sigma \to 2^Q$ é a função (parcial) de transição ou função programa
- $q_0 \in Q$ é o estado inicial
- $F \subseteq Q$ são os estados finais.

Portanto uma transição é dada como $\delta(q, a) = \{q_1, \dots, q_n\}.$

Autômato como Diagrama

Computação de um AFN

Sucessiva aplicação da função programa

- para cada símbolo da entrada
- mudam-se os possíveis estados do autômato
- até ocorrer uma condição de parada

Função Programa Estendida:

- entrada: conjunto finito de estados e palavra
- saída: conjunto finito de estados

Função Programa Estendida

Definição (Função Programa Estendida)

Dado $M=\langle \Sigma,Q,\delta,q_0,F\rangle$ um autômato finito não determinístico, sua função programa estendida

$$\delta^*: 2^Q \times \Sigma^* \to 2^Q$$

é definida indutivamente como segue, sendo $P\subseteq Q$, $a\in \Sigma$ e $w\in \Sigma^*$:

- $\delta^*(P,\varepsilon) = P$
- $\delta^*(P, aw) = \delta^*(\cup_{q \in P} \delta(q, a), w)$

Parada do Processamento

Aceita a entrada

 após processar o último símbolo da fita existe pelo menos um estado final dentre os estados resultantes

Rejeita a entrada

- após processar o último símbolo da fita todos os estados resultantes são não finais
- programa indefinido para todos os estados do argumento

Linguagem Aceita/Rejeitada

Definição (Linguagem Aceita/Rejeitada)

Dado $M = \langle \Sigma, Q, \delta, q_0, F \rangle$ um autômato finito não-determinístico, a **linguagem aceita** ou **linguagem reconhecida** por M é

$$L(M) = \mathsf{ACEITA}(M) = \{ w \mid \delta^*(\{q_0\}, w) \cap F \neq \varnothing \}$$

e a **linguagem rejeitada** por M é

REJEITA(
$$M$$
) = $\{w \mid \delta^*(\{q_0\}, w) \cap F = \emptyset \text{ ou } \delta^*(\{q_0\}, w) \text{ \'e indefinida}\}$

Exemplo

Sendo
$$\Sigma=\{a,b\}$$

$$L_5=\{w\,|\,w\,\, {\sf possui}\,\, aa\,\, {\sf ou}\,\, bb\,\, {\sf como}\,\, {\sf subpalavra}\}$$

$$M_5=\langle\{a,b\},\{q_0,q_1,q_2,q_f\},\delta_5,q_0,\{q_f\}\rangle$$

<i>0</i> 5	а	b
q_0	$\{q_0,q_1\}$	$\{q_0,q_2\}$
q_1	$\{q_f\}$	_
q_2	_	$\{q_f\}$
q_f	$\{q_f\}$	$\{q_f\}$

Exemplo

- ciclo em q_0 realiza uma varredura em toda a entrada
- ullet caminho $q_0-q_1-q_f$ garante a ocorrência de aa
- caminho $q_0 q_2 q_f$ garante a ocorrência de bb

Karina G. Roggia 2016 LFA0001 - Aula04 12 / 24

Exemplo

Sendo
$$\Sigma=\{a,b\}$$

$$L_6=\{w\ |\ w\ \text{possui}\ aaa\ \text{como}\ \text{sufixo}\}$$

$$M_6=\langle\{a,b\},\{q_0,q_1,q_2,q_f\},\delta_6,q_0,\{q_f\}\rangle$$

Equivalência entre AFD e AFN

Aparentemente, pode-se pensar que o não-determinismo pode acrescentar poder computacional ao autômato finito.
Porém a classe dos Autômatos Finitos Determinísticos é equivalente à classe dos Autômatos Finitos Não Determinísticos. Prova-se que:

- A partir de um AFN N, constrói-se um AFD N_D que aceita a mesma linguagem de N.
- A partir de um AFD M, constrói-se um AFN M_N que aceita a mesma linguagem de M.

AFN→AFD

- Estados do AFD simulam combinações de estados alternativos do AFN
- Prova da simulação: por indução no tamanho da palavra de entrada.

$AFN \rightarrow AFD$

Seja $N = \langle \Sigma, Q, \delta, q_0, F \rangle$ um AFN qualquer. Construiremos o AFD

$$N_D = \langle \Sigma, Q_D, \delta_D, \langle q_0 \rangle, F_D \rangle$$

onde:

- Q_D são todas as combinações de estados de Q
 - notação: (q₁ q₂ ... q_N)
 - ordem é indiferente: $\langle q_u q_v \rangle = \langle q_v q_u \rangle$
 - imagem de todos os estados alternativos de N
- $\delta_D: Q_D \times \Sigma \to Q_D$ $\delta_D(\langle q_1 \dots q_n \rangle, a) = \langle p_1 \dots p_m \rangle$ sse $\delta^*(\{q_1, \dots, q_n\}, a) = \{p_1, \dots, p_m\}$

Karina G. Roggia 2016 LFA0001 - Aula04 16 / 24

AFN→AFD

- $\langle q_0 \rangle$ é o estado inicial
- F_D é o conjunto de estados $\langle q_1q_2\dots q_n\rangle\in Q_D$ tal que $\exists q_i\in F$ para $i=1,2,\dots,n$

Prova da equivalência: mostrar que

$$\delta_D^*(\langle q_0 \rangle, w) = \langle q_1 \dots q_u \rangle$$
 sse $\delta^*(\{q_0\}, w) = \{q_1, \dots, q_u\}$

AFN→AFD

Base da indução |w| = 0. Portanto $w = \varepsilon$

$$\delta_D^*(\langle q_0 \rangle, \varepsilon) = \langle q_0 \rangle$$
 sse $\delta^*(\{q_0\}, \varepsilon) = \{q_0\}$

Verdadeiro, pela definição de função programa estendida.

$\mathsf{AFN}{ o}\mathsf{AFD}$

Hipótese de indução |w| = n e $n \ge 1$. Suponha que

$$\delta_D^*(\langle q_0 \rangle, w) = \langle q_1 \dots q_u \rangle \text{ sse } \delta^*(\{q_0\}, w) = \{q_1, \dots, q_u\}$$

Passo de indução |wa|=n+1 e $n\geq 1$

$$\begin{array}{l} \delta_{D}^{s}(\langle q_{0}\rangle,wa) = \\ \delta_{D}^{s}(\langle b_{D}^{s}(\langle q_{0}\rangle,w),a) = \\ \delta_{D}^{s}(\langle q_{1}\ldots q_{u}\rangle,a) = \\ \delta_{D}^{s}(\delta_{D}(\langle q_{1}\ldots q_{u}\rangle,a),\varepsilon) = \\ \delta_{D}^{s}(\langle p_{1}\ldots p_{v}\rangle,\varepsilon) = \\ \langle p_{1}\ldots p_{v}\rangle \text{ sse } \\ \{p_{1},\ldots,p_{v}\} = \\ \delta^{s}(\{q_{1},\ldots,q_{u}\},a) = \\ \delta^{s}(\{q_{0}\},wa) \end{array}$$

 $\begin{bmatrix} \text{definição } \delta_D^* \\ \text{[hipótese de indução]} \\ \text{[definição } \delta_D^* \\ \text{[definição } \delta_D^* \\ \text{[definição } \delta^* \\ \text{[definição } \delta^* \end{bmatrix}$ $\begin{bmatrix} \text{[definição } \delta^* \\ \text{[hipótese de indução]} \end{bmatrix}$

Equivalência entre AFD e AFN

Equivalência: AFN↔AFD

Fizemos AFN→AFD

Como mostrar AFD→AFN?

Exemplo: $AFN \rightarrow AFD$

Sendo $\Sigma = \{a, b\}$ e $L_6 = \{w \mid w \text{ possui } aaa \text{ como sufixo}\}$

$$M_6 = \langle \{a, b\}, \{q_0, q_1, q_2, q_f\}, \delta_6, q_0, \{q_f\} \rangle$$

$$M_{6_D} = \langle \{a, b\}, Q_D, \delta_{6_D}, \langle q_0 \rangle, F_D \rangle$$

$$Q_D = \{ \langle q_0 \rangle, \langle q_1 \rangle, \langle q_2 \rangle, \langle q_f \rangle, \langle q_0 q_1 \rangle, \langle q_0 q_2 \rangle, \dots, \langle q_0 q_1 q_2 q_f \rangle \}$$

$$F_D = \{ \langle q_f \rangle, \langle q_0 q_f \rangle, \langle q_1 q_f \rangle, \dots, \langle q_0 q_1 q_2 q_f \rangle \}$$

Karina G. Roggia 2016 LFA0001 - Aula04 21 / 24

Exemplo: AFN→AFD

AFN

AFD

$_{-}$	а	b
$\langle q_0 angle$	$\langle q_0q_1 angle$	$\langle q_0 angle$
$\langle q_0 q_1 angle$	$\langle q_0q_1q_2 \rangle$	$\langle q_0 \rangle$
$\langle q_0q_1q_2 angle$	$\langle q_0 q_1 q_2 q_f \rangle$	$\langle q_0 \rangle$
$\langle q_0q_1q_2q_f angle$	$\langle q_0 q_1 q_2 q_f \rangle$	$\langle q_0 angle$

Exemplo: AFN→AFD

Karina G. Roggia 2016 LFA0001 - Aula04 23 / 24

Exercícios

Para cada linguagem a seguir, todas sobre $\Sigma = \{a, b\}$, defina um autômato finito não-determinístico.

```
\begin{array}{l} L_{42} = \{w \mid \text{o sufixo de } w \text{ \'e } ba\} \\ L_{59} = \{w_1w_2w_1 \mid w_2 \in \{a,b\}^* \text{ e } |w_1| = 3\} \\ L_{731} = \{w \mid \text{o quarto símbolo da direita para a esquerda \'e } a\} \end{array}
```

Formalize a prova de que, dado um AFD, existe um AFN equivalente.