VE215 RC4

Erdao Liang, Chongye Yang

UM-SJTU JI

June 29, 2023

From DC to AC

Begin our travel in alternating current circuits!

- ▶ Ch9: Introduce a new system to represent alternating signals
- ▶ Ch10: Analysis tools in AC context (with frequency ω fixed)
- ► Ch11: Analyze the how power is delivered in AC circuits
- ightharpoonup Ch14: Investigate the circuit behavior when frequency ω is changed

Overview

Sinusoids and Phasors

Sinusoidal Steady-State Analysis

Sinosoid

A sinusoid is a signal that has the form of sine or cosine function:

$$v(t) = V_m \sin(\omega t + \phi)$$

where V_m is the amplitude, ω is the frequency, and ϕ is the initial phase.

For $v_1(t) = V_m \sin(\omega t + \phi_1)$ and $v_2(t) = V_m \sin(\omega t + \phi_2)$,

- ▶ If $\phi_1 = \phi_2$, v_1 and v_2 are **in phase**
- ▶ If $\phi_1 > \phi_2$, v_1 and v_2 are **out of phase**, v_1 **leads** v_2 and v_2 **lags** v_1

Phasors

Motivation: want a neat and simple way to represent sinusoidal signals, instead of cos and sin.

Solution: use **phasor** to represent the V_m (amplitude) and ϕ (phase) of a sinusoid.

Introducing complex number systems, we have

$$v(t) = V_m \sin(\omega t + \phi) = Re(V_m e^{j(\omega t + \phi)}) = Re(V_m e^{j\phi} e^{j\omega t})$$

Then we let

$$\tilde{V} = V_m e^{j\phi} = V_m \angle \phi$$

This is the phasor representation of the sinusoid v(t). Note that it doesn't keep the information of frequency ω . We assume a fixed and known frequency from ch9 to ch13.

Phasors

Phasor representation:

- Polar form: z = x + jy
- ► Rectangular form: $z = |z| \angle \theta$
- ► Conversion between each other::

$$R = |Z|\cos\theta, X = |Z|\sin\theta$$
$$|Z| = \sqrt{R^2 + X^2}, \theta = \tan(X/R)$$

Phasor calculation:

Addition/subtraction more convenient in rectangular form:

$$z_1 \pm z_2 = (x_1 \pm x_2) + j(y_1 \pm y_2)$$

Multiplication/division more convenient in polar form:

$$z_1 z_2 = |z_1||z_2| \angle (\phi_1 + \phi_2)$$
$$\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} \angle (\phi_1 - \phi_2)$$

Phasor Relationships for Circuit Elements

We can express the I-V relationship of each type of circuit element in phasor context:

Element	Time domain	Phasor domain	Phase relationship
Resistor Inductor Capacitor	$v = Ri$ $v = L \frac{di}{dt}$ $i = C \frac{dv}{dt}$	$ \tilde{V} = R\tilde{I} \tilde{V} = j\omega L\tilde{I} \tilde{V} = \frac{1}{j\omega C}\tilde{I} $	I, V in phase I lags V I leads V

Impedance and Admittance

Impedance $Z = \tilde{V}/\tilde{I}$: a "generalized" version of resistance.

$$Z = R(\text{resistance}) + jX(\text{reactance}) = |Z| \angle \theta$$
 (unit in Ω , same as resistance R)

Resistor	Inductor	Capacitor
R	$j\omega L$	$\frac{1}{i\omega C}$
R	0	0
0	ω L	$-\frac{1}{\omega C}$
		R 0

Impedance and Admittance

Admittance Y = 1/Z: a "generalized" version of conductance.

$$Y = G(\text{conductance}) + jB(\text{susceptance}) = |Y| \angle \theta$$
 (Unit in S , same as conductance G)

Elements	Resistor	Inductor	Capacitor
Impedance $Y(S)$	1/R	$-\frac{j}{\omega L}$	jωC
Resistance $G(S)$	1/R	0	0
Reactance $B(S)$	0	$-\frac{1}{\omega L}$	ωC

Impedance Combination

Previous rules still apply, only generalized.

	Series connection	Parallel connection
Impedance $Z(\Omega)$ Admittance $Y(S)$	$Z_{eq} = \sum_{i=1}^{n} Z_i$ $\frac{1}{Z_{eq}} = \sum_{i=1}^{n} \frac{1}{Z_i}$	$\frac{1}{Y_{eq}} = \sum_{i=1}^{n} \frac{1}{Y_i}$ $Y_{eq} = \sum_{i=1}^{n} Y_i$

Capacitors and inductors are now treated similarly as resistors!

Exercise

Calculate Z_{ab} in the figure below.

Exercise

Calculate Z_{ab} in the figure below.

Answer: $Z_{ab} = 7.57 + j0.59 = 7.59 \angle 4.49^{\circ}(\Omega)$

Application: Phase Shifters

Goal: change the phase of the original signal, lagging or leading Solution: adopt an RC (or RL) circuit

Leading shifter	Lagging shifter	
V_o acorss resistor	V_o across capacitor	
V_i $R \neq V_o$	$ \begin{array}{c cccc} & & & & & \\ & & & & & \\ & & & & & \\ & & & &$	

Application: Phase Shifters

In a single shifter, $0<\Delta\theta<90^\circ$. Cascade shifters to achieve a $\geq 90^\circ$ phase shift.

TODO

Overview

Sinusoids and Phasors

Sinusoidal Steady-State Analysis

Sinusoidal Steady-State Analysis

Basically, all the laws and methods we learned in DC circuit can still be applied in AC circuit.

- Ohm's Law
- KCL & KVL
- Nodal & Mesh Analysis
- $\triangleright Y \Delta$ Transformation
- Superposition Theorem
- Source Transformation
- Thevenin & Norton Theorem
- Op-amp Circuits

Importance of Superposition Theorem

In a AC circuit, there might be sources operating at different frequencies. Analysis should be separate in each frequency, and added together with superposition theorem.

$$v_o = v_1(\omega = 0, DC) + v_2(\omega = 2) + v_3(\omega = 5)$$
 in time domain

Applications

Capacitance Multiplier

Small capacitance + op-amp to produce large capacitance

$$I_i/V_i = j\omega(1 + \frac{R_2}{R_1})C$$

 $Z_i = V_i/I_i = \frac{1}{j\omega(1 + R_2/R_1)C}$

Oscillator (Lab 7)

Produces an AC waveform as output when powered by a DC input

$$Z_p = R_2 \| rac{1}{j\omega C_2} \quad Z_s = R_1 + rac{1}{j\omega C_1}$$
 $ext{gain} = rac{V_2}{V_o} = rac{Z_p}{Z_p + Z_s} = rac{R_g}{R_f + R_g}$
Negative feedback

path to control gain

Exercise

Find current i(t) in the circuit below.

Exercise

Find current i(t) in the circuit below.

Answer: $I = 3.0 - j3.56 \rightarrow i(t) = 4.66 \cos(4t - 50.0^{\circ})$

References

- 1. 2023 Summer VE215 slides, Rui Yang
- 2. Fundamentals of Electric Circuits, 5th e, Sadiku, Matthew
- 3. 2022 Fall RC5, Yuxuan Peng
- 4. 2022 Fall RC6, Zhiyu Zhou

Thank you!