Общая теория движения жидких и газообразных сред

Верещагин Антон Сергеевич канд. физ.-мат. наук, старший преподаватель

Кафедра аэрофизики и газовой динамики ФФ НГУ

13 ноября 2018 г.

Аннотация

Модель баротропного течения идеального газа

Основные уравнения

$$\begin{split} \frac{\partial \rho}{\partial t} + \text{div}(\rho \vec{v}) &= 0, \\ \frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \vec{v} &= -\frac{1}{\rho} \nabla p + \vec{f}, \end{split}$$

где ρ , p, \vec{v} – плотность, давление и скорость среды, заданные в Эйлеровой системе координат (x, y, z); \vec{f} – вектор объёмных сил.

Определение

Течение называется баротропным, если между плотностью и давлением имеет место соотношение

$$p = p(\rho)$$
.

Примеры баротропных течений

• Изотермические течения

$$p = \rho RT$$

где R — газовая постоянная; T — заданная температура.

• Изоэнтропические течения политропного газа

$$p = A(S)\rho^{\gamma},$$

где S – энтропия; $\gamma = C_p/C_V$ – показатель политропы.

• Идеальная жидкость

$$\rho = const.$$

Преобразование конвективной части закона движения

Предпосылки Из формулы

$$\operatorname{grad}(\vec{a}\cdot\vec{b}) = (\vec{b}\cdot\nabla)\vec{a} + (\vec{a}\cdot\nabla)\vec{b} + \vec{b}\times\operatorname{rot}\vec{a} + \vec{a}\times\operatorname{rot}\vec{b}$$

следует, что

$$\operatorname{grad}\left(\frac{\vec{v}^2}{2}\right) = (\vec{v} \cdot \nabla)\vec{v} + \vec{v} \times \operatorname{rot} \vec{v}.$$

Модификация уравнений

$$\frac{\partial \vec{v}}{\partial t} + \operatorname{grad}\left(\frac{\vec{v}^2}{2}\right) + \operatorname{rot} \vec{v} \times \vec{v} = \vec{f} - \frac{1}{\rho} \operatorname{grad} p.$$

Функция давления $\mathscr{P}(p)$

Определение

Для баротропного течения, если существует $\rho=\rho(p)$, то определим

$$\mathscr{P}(p) = \int\limits_{p_0}^{p} \frac{dp}{\rho}.$$

Свойство Используя соотношения аналогичные

$$\frac{\partial}{\partial x}\mathscr{P}(p) = \frac{\partial\mathscr{P}}{\partial p}\frac{\partial p}{\partial x} = \frac{1}{\rho}\frac{\partial p}{\partial x},$$

получим

$$\operatorname{grad} \mathscr{P}(p) = \frac{1}{\rho} \operatorname{grad} p.$$

Форма Громеки-Ламба уравнения движения

Основные уравнения

Используя преобразование конвективной составляющей уравнения движения и введённую функцию давления получим уравнения движения в форме Громеки-Ламба

$$\frac{\partial \vec{v}}{\partial t} + \operatorname{grad} E + \vec{\Omega} \times \vec{v} = 0,$$

где

$$E = \frac{\vec{v}^2}{2} + \mathscr{P} + \Pi, \quad \vec{\Omega} = \operatorname{rot} \vec{v}.$$

Здесь Π – потенциал массовых сил $\vec{f} = -\operatorname{grad}\Pi$.

Определение

E – представляет собой полную приведённую механическую энергию системы, $\vec{\Omega}$ – вектор вихря.

Уравнение динамической возможности движения

Из уравнения в форме Громеки-Ламба следует, что

$$\frac{\partial \vec{v}}{\partial t} + \vec{\Omega} \times \vec{v} = -\operatorname{grad} E,$$

поэтому

$$\operatorname{rot}\left(\frac{\partial \vec{v}}{\partial t} + \vec{\Omega} \times \vec{v}\right) = 0.$$

Зная разложение для ротора векторного произведения, равного

$$rot(\vec{\Omega} \times \vec{v}) = (\vec{v} \cdot \nabla)\vec{\Omega} - (\vec{\Omega} \cdot \nabla)\vec{v} + \vec{\Omega}\operatorname{div}\vec{v} - \vec{v}\operatorname{div}\vec{\Omega},$$

получим, используя полную производную, уравнение динамической возможности движения

$$\frac{d\vec{\Omega}}{dt} = (\vec{\Omega} \cdot \nabla)\vec{v} - \vec{\Omega} \operatorname{div} \vec{v}.$$

Постоянство E вдоль линий тока и вихревых линий

Пусть $\frac{\partial \vec{v}}{\partial t}=0$, тогда, умножив уравнение движения в форме Громеки-Ламба скалярно на вектор скорости \vec{v} , получим

$$\vec{v} \cdot \operatorname{grad} E + \vec{v} \cdot (\vec{\Omega} \times \vec{v}) = 0.$$

Второе слагаемое равно нулю, в силу определения векторного произведения, а первое является производной от E вдоль линии тока $\vec{r} = \vec{r}(s)$, таких что $\frac{\partial \vec{r}}{\partial s} = \vec{v}$:

$$\operatorname{grad} E \cdot \vec{v} \cdot = \operatorname{grad} E \cdot \frac{\partial \vec{r}}{\partial s} = \frac{\partial E}{\partial s} = 0.$$

Аналогично, умножая уравнение движения скалярно на вектор $\vec{\Omega}$, можно показать, что функция E постоянна вдоль вихревых линий.

Интеграл Бернулли для баротропного стационарного течения идеального газа

Условия существования

$$p = p(\rho), \quad \frac{\partial \vec{v}}{\partial t} = 0.$$

Интеграл Бернулли

$$\frac{\vec{v}^2}{2} + \mathscr{P}(p) + \Pi = C(L),$$

где C(L) – константа вдоль линии тока или вихревой линии; $\mathscr{P}(p)$ – функция давления; Π – потенциал объёмных сил

$$\mathscr{P}(p) = \int\limits_{p_0}^{p} \frac{dp}{\rho}, \quad \vec{f} = -\nabla \Pi.$$

Существование интеграла Бернулли во всей исследуемой области

Пусть в исследуемой области $\vec{\Omega} \times \vec{v} = \vec{0}$ и движение стационарно, тогда автоматически выполняется условие

$$\frac{\vec{v}^2}{2} + \mathcal{P}(p) + \Pi = const$$

во всей области.

$$\vec{\Omega} \times \vec{v} = \vec{0}$$

- $ightarrow \vec{v} = 0$ покоящееся течение (гидростатика).
- $\rightarrow \ \vec{\Omega} = {\rm rot} \, \vec{v} = \vec{0}$ безвихревое или потенциальное течение.
- ightarrow $\vec{\Omega} \parallel \vec{v}$ вихревые линии совпадают с линиями тока (винтовое течение).

Баротропное безвихревое течение

Определение

Течение называется безвихревым или потенциальным, если

$$\vec{\Omega} = \operatorname{rot} \vec{v} = \vec{0}$$

или

$$\vec{\mathbf{v}} = \nabla \varphi$$
,

где $\varphi(\vec{x})$ – потенциал скорости.

Уравнение движения в форме Громеки-Ламба для потенциального течения

$$\operatorname{grad}\left(\frac{\partial \varphi}{\partial t} + \frac{(\nabla \varphi)^2}{2} + \mathscr{P} + \Pi\right) = 0,$$

Слагаемое $\vec{\Omega} \times \vec{v} = 0$ в силу того, что $\vec{\Omega} = \vec{0}$.

Интеграл Коши для баротропного потенциального течения идеального газа

Условия существования

$$p = p(\rho), \quad \vec{v} = \nabla \varphi.$$

Интеграл Коши

$$\frac{\partial \varphi}{\partial t} + \frac{(\nabla \varphi)^2}{2} + \mathscr{P} + \Pi = F(t),$$

где F(t) — постоянная функция во всей области, различающаяся в различные моменты времени; $\mathscr{P}(p)$ — функция давления; Π — потенциал объёмных сил

$$\mathscr{P}(p) = \int_{p_0}^{p} \frac{dp}{\rho}, \quad \vec{f} = -\nabla \Pi.$$

Кинетическая энергия безвихревого стационарного течения идеальной жидкости

Определение

Рассмотрим ограниченный односвязный объем ω , в котором реализуется потенциальное течение с потенциалом φ идеального жидкости ($\rho=const$). Тогда кинетическая энергия этого объёма будет задаваться формулой

$$T = \frac{1}{2} \int\limits_{\omega} \rho \vec{v}^2 d\omega = \frac{1}{2} \rho \int\limits_{\omega} \left(\left(\frac{\partial \varphi}{\partial x} \right)^2 + \left(\frac{\partial \varphi}{\partial y} \right)^2 + \left(\frac{\partial \varphi}{\partial z} \right)^2 \right) d\omega.$$

Кинетическая энергия безвихревого стационарного течения идеальной жидкости

Формула Грина

$$\int_{\omega} \left(\frac{\partial \varphi}{\partial x} \frac{\partial \varphi'}{\partial x} + \frac{\partial \varphi}{\partial y} \frac{\partial \varphi'}{\partial y} + \frac{\partial \varphi}{\partial z} \frac{\partial \varphi'}{\partial z} \right) d\omega = -\int_{S} \varphi \frac{\partial \varphi'}{\partial n} dS -$$

$$-\int_{S} \varphi \left(\frac{\partial^{2} \varphi'}{\partial x^{2}} + \frac{\partial^{2} \varphi'}{\partial y^{2}} + \frac{\partial^{2} \varphi'}{\partial z^{2}} \right) d\omega,$$

где S – поверхность ω ; \vec{n} – вектор внешней единичной нормали.

Уравнение неразрывности

Подставляя в уравнение неразрывности $\vec{v} = \nabla \varphi$ и $\rho = const$, получим

$$\Delta \varphi = \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2} = 0.$$

Кинетическая энергия безвихревого стационарного течения идеальной жидкости

Кинетическая энергия Используя формулу Грина и уравнение неразрывности получим

$$T = -\frac{1}{2}\rho \int_{S} \varphi \frac{\partial \varphi}{\partial n} dS.$$

Таким образом, кинетическая энергия объёма зависит только от значений потенциала и его производной на границе. Если на границе реализуется условие непротекания $\frac{\partial \varphi}{\partial n}=0$ или потенциал постоянен (а он определяется с точностью до константы), то жидкость внутри односвязного объёма покоится.

Теорема В. Томсона

Теорема

Кинетическая энергия несжимаемой жидкости, движущейся в односвязном объёме с потенциалом скоростей, меньше кинетической энергиии во всяком другом движении, при котором на границах объёма жидкость обладает движением, одинаковым с безвихревым, внутри же обладает вихрями.

Математическая формулировка

Рассмотрим два стационарных течения идеальной жидкости с плотностью ρ , одно безвихревое с потенциалом φ , другое — не потенциальное со скоростью \vec{v} . Рассмотрим односвязный объём ω с границей S, такой что на нем выполняется условие

$$\vec{v} \cdot \vec{n}|_{S} = \left. \frac{\partial \varphi}{\partial n} \right|_{S}.$$

Тогда T'>T, где T, T' - кинетическая энергия объема ω для потенциального и вихревого течений соответственно.

Теорема В. Томсона: доказательство

Литература

