ANÁLISE DE ALGORITMOS: PARTE 4

Prof. André Backes

Relações de Recorrências

- 2
- □ Função recursiva
 - □ Função que chama a si mesma durante a sua execução
- □ Exemplo: fatorial de um número **N**.
 - □ Para **N** = **4** temos
 - **4!** = 4 * 3!
 - 3! = 3 * 2!
 - **■** 2! = 2 * 1!
 - 1! = 1 * O!
 - **■** 0! = 1

- □ Função recursiva
 - Matematicamente, o fatorial é definido como
 - N! = N * (N-1)!
 - 0! = 1
 - Implementação

```
int fatorial(int n) {
   if (n == 0)
       return 1;
   else
      return n * fatorial(n-1);
}
```

Relações de Recorrências

- □ Recorrência ou Relação de Recorrência
 - Expressão que descreve uma função em termos de entradas menores da função
 - Exemplo: definição de um função recursiva
 - Muitos algoritmos se baseiam em recorrência
 - □ Ferramenta importante para a solução de problemas combinatórios
- □ Relação de recorrência do fatorial
 - T(n) = T(n-1) + n

- □ Complexidade da recorrência
 - Uma recursão usualmente não utiliza estruturas de repetição, apenas comandos condicionais, atribuições etc
 - Podemos erroneamente imaginar que essa funções possuem complexidade O(1)

```
int fatorial(int n) {
   if (n == 0)
      return 1;
   else
      return n * fatorial(n-1);
}
```

Relações de Recorrências

- □ Complexidade da recorrência
 - Saber a complexidade da recursão envolve resolver a sua relação de recorrência
 - T(n) = T(n-1) + n

```
int fatorial(int n) {
   if (n == 0)
      return 1;
   else
      return n * fatorial(n-1);
}
```

7

- □ Complexidade da recorrência
 - Temos que encontrar uma fórmula fechada que nos dê o valor da função T(n) = T(n-1) + n em termos de seu parâmetro n
 - Geralmente obtido como uma combinação de polinômios, quocientes de polinômios, logaritmos, exponenciais etc.

```
int fatorial(int n) {
   if (n == 0)
      return 1;
   else
      return n * fatorial(n-1);
}
```

Relações de Recorrências

- □ Considere a seguinte relação de recorrência
 - T(n) = T(n-1) + 2n + 3
- \square Para $n \in \{2, 3, 4, ...\}$, existem inúmeras funções **T** que satisfazem a recorrência
 - □ Depende do **caso base, T(1)**
 - Exemplos
 - T(1) = 1

n	1	2	3	4	5
T(n)	1	8	17	28	41

T(1) = 5

n	1	2	3	4	5
T(n)	5	12	21	32	<i>4</i> 5

9

Problema

- □ Para cada valor i e o intervalo $n \in \{2, 3, 4, ...\}$ existe uma (e apenas uma) função T que tem caso base T(1) = i e satisfaz a recorrência
- \Box T(n) = T(n-1) + 2n + 3

n	1	2	3	4	5
T(n)	1	8	17	28	41
n	1	2	3	4	5

21

32

45

12

Relações de Recorrências

5

10

■ Solução

- Precisamos encontrar uma fórmula fechada para a recorrência
- □ Podemos expandir a relação de recorrência T(n)=T(n-1) + 2n + 3 até que se possa detectar um comportamento no seu caso geral

11

- □ Para entender essa técnica de expansão, considere a seguinte recorrência
 - T(n) = T(n-1) + 3
 - Essa relação de recorrência representa um algoritmo que possui 3 operações mais uma chamada recursiva

Relações de Recorrências

- □ Expandindo a recorrência **T(n) = T(n-1) + 3**
 - Se aplicarmos o termo T(n-1) sobre a relação T(n). Com isso, obtemos
 - T(n-1) = T(n-2) + 3
 - Se aplicarmos o termo T(n-2) sobre a relação T(n), teremos
 - T(n-2) = T(n-3) + 3

13

- □ Expandindo a recorrência T(n) = T(n-1) + 3
 - Se continuarmos esse processo, teremos a seguinte expansão
 - T(n) = T(n-1) + 3
 - T(n) = (T(n-2) + 3) + 3
 - T(n) = ((T(n-3) + 3) + 3) + 3
 - □ Perceba que a cada passo um valor 3 é somado a expansão e o valor de n é diminuído em uma unidade

Relações de Recorrências

- □ Expandindo a recorrência **T(n) = T(n-1) + 3**
 - Podemos resumir essa expansão para usando a seguinte equação
 - T(n) = T(n-k) + 3k
 - Resta saber quando esse processo de expansão termina
 - Isso ocorre no caso base

15

- □ Expandindo a recorrência T(n) = T(n-1) + 3
 - \square O caso base ocorre quando n-k = 1 ou seja, k=n-1
 - □ Substituindo, temos
 - T(n) = T(n-k) + 3k
 - T(n) = T(1) + 3(n-1)
 - T(n) = T(1) + 3n 3

Relações de Recorrências

1.6

- □ Expandindo a recorrência **T(n) = T(n-1) + 3**
- \square Obtemos T(n) = T(1) + 3n 3
 - □ T(1) é o caso base: recursão termina
 - □ Logo, seu custo é constante: O(1)
- □ Complexidade da recorrência
 - \Box T(n) = 3n 3 + O(1)
 - □ Ou seja, linear: O(n)

17

- Outro exemplo: considere a seguinte recorrência
 - T(n) = T(n/2) + 5
 - Essa relação de recorrência representa um algoritmo que possui 5 operações mais uma chamada recursiva que divide os dados sempre pela metade (n/2)

Relações de Recorrências

- Neste caso, a recorrência existe apenas para valores de n que representem uma potência de 2
 - $\ \ \ n \in \{2^1, 2^2, 2^3, \dots\}$
- □ Considerando n = 2^k, podemos reescrever a recorrência como
 - $T(2^k) = T(2^{k-1}) + 5$

19

- □ Expandindo a recorrência $T(2^k) = T(2^{k-1}) + 5$
 - \square Se aplicarmos o termo $T(2^{k-1})$ sobre a relação $T(2^k)$. Com isso, obtemos
 - $T(2^{k-1}) = T(2^{k-2}) + 5$
 - \square Se aplicarmos o termo $T(2^{k-2})$ sobre a relação $T(2^k)$, teremos
 - $T(2^{k-2}) = T(2^{k-3}) + 5$

Relações de Recorrências

- □ Expandindo a recorrência $T(2^k) = T(2^{k-1}) + 5$
 - Se continuarmos esse processo, teremos a seguinte expansão
 - $T(2^k) = T(2^{k-1}) + 5$
 - $T(2^k) = (T(2^{k-2}) + 5) + 5$
 - $T(2^k) = ((T(2^{k-3}) + 5) + 5) + 5$
 - □ Perceba que a cada passo um valor 5 é somado a expansão e o valor de k é diminuído em uma unidade

21

- □ Expandindo a recorrência $T(2^k) = T(2^{k-1}) + 5$
 - □ Ao final da expansão, teremos
 - $T(2^k) = T(2^{k-k}) + 5k$
 - $T(2^k) = T(2^0) + 5k$
 - $T(2^k) = T(1) + 5k$
 - Podemos resumir essa expansão usando a seguinte equação, a qual já considera o seu caso base
 - $T(2^k) = T(1) + 5k$

Relações de Recorrências

- □ Expandindo a recorrência $T(2^k) = T(2^{k-1}) + 5$
 - □ Temos que substituir o custo do caso base, O(1)
 - □ Complexidade da recorrência
 - $T(2^k) = O(1) + 5k$
 - Devemos lembrar que substituímos n por 2^k no início da expansão, de modo que $n = 2^k$

23

- □ Expandindo a recorrência $T(2^k) = T(2^{k-1}) + 5$
 - □ Aplicando o logaritmo em $n = 2^k$, temos que $k = log_2 n$
 - Substituindo, temos
 - $T(2^k) = O(1) + 5k$
 - $T(n) = O(1) + 5 \log_2 n$
- □ Complexidade da recorrência
 - $\Box T(n) = O(1) + 5 \log_2 n$
 - □ Ou seja, logarítmica: O(log₂ n)

Material Complementar

- Vídeo Aulas
 - Aula 99: Análise de Algoritmos
 - Aula 100: Análise de Algoritmos Contando Instruções
 - Aula 101: Análise de Algoritmos Comportamento Assintótico
 - Aula 102: Análise de Algoritmos Notação Grande-O
 - Aula 103: Análise de Algoritmos Tipos de Análise Assintótica
 - Aula 104: Análise de Algoritmos Classes de Problemas
 - Aula 122 Relações de Recorrência