Entailment: A entail B means that in every model A is true, B is also true.

$$T \models T$$
, $T \not\models F$, $F \models everything$

If
$$(A \land B \Rightarrow C) = F$$
, $(A \land B \Rightarrow C) \vDash everything$

If
$$(A \land B \Rightarrow C) = T$$

If
$$A \wedge B = F$$
, $(A \Rightarrow C) = T$ OR $(B \Rightarrow C) = T$, $(A \wedge B \Rightarrow C) \models (A \Rightarrow C) \lor (B \Rightarrow C)$
If $A \wedge B = T$, $(A \Rightarrow C) = T$ AND $(B \Rightarrow C) = T$, $(A \wedge B \Rightarrow C) \models (A \Rightarrow C) \lor (B \Rightarrow C)$

$$\mathbf{g}.\ (C \vee (\neg A \wedge \neg B)) \equiv ((A \ \Rightarrow \ C) \wedge (B \ \Rightarrow \ C)).$$

True

$$C \vee (\neg A \wedge \neg B) \qquad \equiv (\neg A \vee C) \wedge (\neg B \vee C)$$
$$\equiv (A \Rightarrow C) \wedge (B \Rightarrow C)$$

$$\mathbf{h}.\ (A\vee B)\wedge (\neg C\vee \neg D\vee E)\models (A\vee B).$$

$$LHS = T \ iff \ (A \lor B) = T$$
, thus if $LHS = T$ then $RHS = T$, $T \models T$

i.
$$(A \lor B) \land (\neg C \lor \neg D \lor E) \models (A \lor B) \land (\neg D \lor E)$$
.

False

If
$$A = T$$
, $B = T$, $C = F$, $D = T$, $E = F$ then LHS = T and RHS = F, but $T \not\models F$

j. $(A \lor B) \land \neg (A \Rightarrow B)$ is satisfiable.

True, when A = T and B = F

k. $(A \Leftrightarrow B) \land (\neg A \lor B)$ is satisfiable.

True, when (A = B = T) or (A = B = F)

1. $(A \Leftrightarrow B) \Leftrightarrow C$ has the same number of models as $(A \Leftrightarrow B)$ for any fixed set of proposition symbols that includes A, B, C.

False

Α	В	С	Α	В
Т	Т	Т	Т	Т
F	F	Т	F	F
Т	F	F		
F	Т	F		

 $(A \Leftrightarrow B) \Leftrightarrow C \text{ has 4 models}$

 $(A \Leftrightarrow B)$ has 2 models

 $4 \neq 2$

7.5 Prove each of the following assertions:

$$A \Leftrightarrow B \equiv (A \Rightarrow B) \land (A \Leftarrow B)$$

a. α is valid if and only if $True \models \alpha$.

 α is valid, hence $\alpha = T$ is all models

$$\alpha = T \ \Rightarrow T \vDash \alpha$$

 $T \vDash \alpha \Rightarrow \alpha = T$

Hence α is valid

b. For any α , $False \models \alpha$.

True by the definition of entailment. False entails everything

c. $\alpha \models \beta$ if and only if the sentence $(\alpha \Rightarrow \beta)$ is valid.

$$(\alpha \vDash \beta) \Rightarrow (\alpha \Rightarrow \beta)$$

If
$$(\alpha \models \beta) = F$$
 then $(\alpha \models \beta) \Rightarrow$ everything

If
$$(\alpha \models \beta) = T$$
 then $(\alpha = F)$ or $(\alpha = T \text{ and } B = T)$

If
$$\alpha = F$$
 then $(\alpha \Rightarrow \beta = T)$ and $(\alpha \models \beta) \Rightarrow (\alpha \Rightarrow \beta)$

If
$$(\alpha = T \text{ and } B = T) \text{ then } (\alpha \Rightarrow \beta = T) \text{ and } (\alpha \models \beta) \Rightarrow (\alpha \Rightarrow \beta)$$

$$(\alpha \Rightarrow \beta) \Rightarrow (\alpha \vDash \beta)$$

$$\text{If } (\alpha \Rightarrow \beta) = F \text{ then } (\alpha \Rightarrow \beta) \Rightarrow \text{everything}$$

$$\text{If } (\alpha \Rightarrow \beta) = T \text{ then } (\alpha = F) \text{ or } (\alpha = T \text{ and } B = T)$$

$$\text{If } \alpha = F \text{ then } (\alpha \vDash \beta = T) \text{ and } (\alpha \Rightarrow \beta) \Rightarrow (\alpha \vDash \beta)$$

$$\text{If } (\alpha = T \text{ and } B = T) \text{ then } (\alpha \vDash \beta = T) \text{ and } (\alpha \Rightarrow \beta) \Rightarrow (\alpha \vDash \beta)$$

Hence, $(\alpha \models \beta) \Leftrightarrow (\alpha \Rightarrow \beta)$

d. $\alpha \equiv \beta$ if and only if the sentence $(\alpha \Leftrightarrow \beta)$ is valid.

$$\alpha \equiv \beta \ means \left((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha) \right)$$

$$((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)) \Rightarrow (\alpha \Leftrightarrow \beta)$$

$$\text{If } ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)) = F, then ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)) \Rightarrow everything$$

$$\text{If } ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)) = T, then (\alpha = B = T) OR (\alpha = B = F)$$

$$\text{If } (\alpha = T \text{ and } B = T), then (\alpha \Leftrightarrow \beta = T) \text{ and } ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)) \Rightarrow (\alpha \Leftrightarrow \beta)$$

$$\text{If } (\alpha = F \text{ and } B = F), then (\alpha \Leftrightarrow \beta = T) \text{ and } ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)) \Rightarrow (\alpha \Leftrightarrow \beta)$$

$$(\alpha \Leftrightarrow \beta) \Rightarrow ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$$

$$\text{If } (\alpha \Leftrightarrow \beta) = F, then (\alpha \Leftrightarrow \beta) \Rightarrow everything$$

$$\text{If } (\alpha \Leftrightarrow \beta) = T, then (\alpha = \beta = T) OR (\alpha = B = F)$$

If
$$(\alpha = T \text{ and } B = T)$$
, then $((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha) = T)$ and $(\alpha \Leftrightarrow \beta) \Rightarrow$ $((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$
If $(\alpha = F \text{ and } B = F)$, then $((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha) = T)$ and $(\alpha \Leftrightarrow \beta) \Rightarrow$

If
$$(\alpha = F \text{ and } B = F)$$
, then $((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha) = T)$ and $(\alpha \Leftrightarrow \beta) \Rightarrow ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$

Hence $(\alpha \equiv \beta) \Leftrightarrow (\alpha \Leftrightarrow \beta)$

e. $\alpha \models \beta$ if and only if the sentence $(\alpha \land \neg \beta)$ is unsatisfiable.

 $(\alpha \land \neg \beta)$ cannot be True (unsatisfiable) means $(\neg(\alpha \land \neg \beta) = (\neg \alpha \land \beta) = (\alpha \Rightarrow \beta))$ must be True. Reduces to proving $(\alpha \models \beta) \Leftrightarrow (\alpha \Rightarrow \beta)$, same as c)

- **7.6** Prove, or find a counterexample to, each of the following assertions:
- **a.** If $\alpha \models \gamma$ or $\beta \models \gamma$ (or both) then $(\alpha \land \beta) \models \gamma$

True

If
$$(\alpha \land \beta) = F$$
, $(\alpha \land \beta) \models \gamma$
If $(\alpha \land \beta) = T$ then $(\alpha = \beta = T)$ and $(\alpha \models \gamma)$ or $(\beta \models \gamma)$ ensures $\gamma = T$

b. If $\alpha \models (\beta \land \gamma)$ then $\alpha \models \beta$ and $\alpha \models \gamma$.

True

If
$$\alpha = F$$
, then $\alpha \models anything$

If
$$\alpha = T$$
, then $(\beta \land \gamma) = T$, $\beta = \gamma = T$. $\alpha \models \beta$ and $\alpha \models \gamma$

c. If $\alpha \models (\beta \lor \gamma)$ then $\alpha \models \beta$ or $\alpha \models \gamma$ (or both).

True

If
$$\alpha = F$$
, then $\alpha \models anything$

If
$$\alpha = T$$
, then $(\beta \lor \gamma) = T$, $\beta = T \lor \gamma = T$, $\alpha \vDash \beta \lor \alpha \vDash \gamma$

7.10 Decide whether each of the following sentences is valid, unsatisfiable, or neither. Verify your decisions using truth tables or the equivalence rules of Figure 7.11 (page 249).

Valid: Always True (always satisfiable)

Unsatisfiable: Always False (never satisfiable)

Neither: Sometimes True and sometimes False

a. $Smoke \Rightarrow Smoke$

Valid

S	S	
Т	F	Satisfied
F	F	Satisfied

b. $Smoke \Rightarrow Fire$

Neither

S	F	
Т	Т	Satisfied
Т	F	Not satisfied
F	Т	Satisfied
F	F	Sarisfied

c.
$$(Smoke \Rightarrow Fire) \Rightarrow (\neg Smoke \Rightarrow \neg Fire)$$

Neither

$$(LHS = (S \Rightarrow F)) \Rightarrow (RHS = (\neg S \Rightarrow \neg F))$$

LHS	S	F	RHS	Not S	Not F	
T	Т	Т	T	F	F	Satisfied
F	Т	F	Т	F	Т	Satisfied
Т	F	Т	F	Т	F	Not satisfied
Т	F	F	T	Т	Т	Satisfied

d. $Smoke \lor Fire \lor \neg Fire$

Valid

$$S \vee F \vee \neg F = S \vee T = T$$

e.
$$((Smoke \land Heat) \Rightarrow Fire) \Leftrightarrow ((Smoke \Rightarrow Fire) \lor (Heat \Rightarrow Fire))$$

Valid

LHS:
$$((S \land H) \Rightarrow F) \equiv \neg (S \land H) \lor F) \equiv \neg S \lor \neg H \lor F$$

RHS:
$$((S \Rightarrow F) \lor (H \Rightarrow F)) \equiv (\neg S \lor F) \lor (\neg H \lor F) \equiv \neg S \lor \neg H \lor F$$

$$((S \land H) \Rightarrow F) \equiv ((S \Rightarrow F) \lor (H \Rightarrow F))$$

f.
$$(Smoke \Rightarrow Fire) \Rightarrow ((Smoke \land Heat) \Rightarrow Fire)$$

Valid

When
$$H = T$$
, $(S \Rightarrow F) \Rightarrow (S \Rightarrow F)$

When
$$H = F$$
, $((S \land H) \Rightarrow F) = T$, $(S \Rightarrow F) \Rightarrow T$

g.
$$Big \lor Dumb \lor (Big \Rightarrow Dumb)$$

Valid

$$(B \lor D \lor (B \Rightarrow D) \equiv (B \lor D \lor (\neg B \lor D) \equiv D \lor T \equiv T$$

- **7.14** According to some political pundits, a person who is radical (R) is electable (E) if he/she is conservative (C), but otherwise is not electable.
- a. Which of the following are correct representations of this assertion?
 - (i) $(R \wedge E) \iff C$
 - (ii) $R \Rightarrow (E \iff C)$
 - (iii) $R \Rightarrow ((C \Rightarrow E) \lor \neg E)$

English: If they're radical, they're electable if they're conservative but otherwise not electable.

R	E	С
Т	Т	T
Т	F	F
F	*	*

i: If they're conservative, they must be both radical and electable. False, does not match

R	E	С
Т	Т	T
Т	F	F
F	*	F

ii: If they're radical, they're electable if they're conservative but otherwise not electable. True, matches

R	E	С
Т	Т	Т
Т	F	F
F	*	*

iii: If they're radical they might be not electable, but they also might be. False, does not match

R	E	С
Т	Т	*
Т	F	*
F	*	*