

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master's Thesis in Quantum Computing

# Quantum and Classical Generative Modeling for Quantum States Preparation

Wiktor Jurasz





### TECHNISCHE UNIVERSITÄT MÜNCHEN

Master's Thesis in Quantum Computing

# Quantum and Classical Generative Modeling for Quantum States Preparation

### Quantenbasierte und klassische generative Modellierung zur Erzeugung von Quantenzuständen

Author: Wiktor Jurasz

Supervisor: Prof. Dr. Christian Mendl

Submission Date: 15.06.2021



| I confirm that this master's thesis in quant documented all sources and material used. | rum computing is my own work and I have |
|----------------------------------------------------------------------------------------|-----------------------------------------|
| Munich, 15.06.2021                                                                     | Wiktor Jurasz                           |
|                                                                                        |                                         |



## **Abstract**

## Kurzfassung

## **Contents**

| Ac  | knowledgments                                                              | iii              |
|-----|----------------------------------------------------------------------------|------------------|
| At  | ostract                                                                    | iv               |
| Κι  | ırzfassung                                                                 | v                |
| 1.  | Introduction  1.1. Problem Statement                                       | 1<br>1<br>1<br>2 |
| 2.  | Quantum Computing Introduction         2.1. Parametric Circuits            | <b>3</b>         |
| 3.  | Generative Adversarial Networks (GANs) Introduction 3.1. Standard GANs     | 4<br>4<br>4      |
| 4.  | Quantum Generative Adversarial Networks4.1. Standard Quantum GANs (SQGANs) | <b>5</b><br>5    |
| 5.  | Unknown Quantum State Generation5.1. Labeled State Generation              | <b>6</b> 6       |
| 6.  | Results                                                                    | 7                |
| 7.  | Conclusions                                                                | 8                |
| A.  | Appendix                                                                   | 9                |
| В.  | Figures                                                                    | 10               |
| Lis | st of Figures                                                              | 11               |
| Lis | List of Tables                                                             |                  |
| Bil | bliography                                                                 | 13               |

### 1. Introduction

#### 1.1. Problem Statement

Generative Modeling aims to learn a conditional probability P(X|Z=z), where X is some observable variable and Z is a target variable. With knowledge of this conditional probability, it is possible to generate new observations  $\bar{x} \in X$ . In general case, one would not try to obtain the probability P(X|Z) exactly, but learn an approximation. To do so a set of samples  $x \in X$  is necessary to train a generator function  $G: Z \to X$  which given a target variable  $z \in Z$  generates new observation  $x \in X$ .

In the generative framework, the variable X is a multidimensional vector, in particular it can be used to describe an arbitrary quantum state. With this setup, given a finite set of quantum states  $\mathcal{Q} = \{|\psi_i\rangle\}, |\psi_i\rangle \in X \forall i$  the generator function G prepares a new quantum state  $|\hat{\psi}\rangle$ . This new quantum state is expected to come from the same distribution as the samples in the input set  $\mathcal{Q}$ .

The only missing piece in the above description is the target variable Z. In the context of the function G, generating the quantum states, we can think about Z as a label of the generated state. That is, for a specific  $z \in Z$  the function G always generates the same  $|\hat{\psi}\rangle$ .

In this work we evaluate different approaches to find the probability P(X|Z=z) by learning the function G. We also address the limitations of the existing methods propose a new one that combines quantum and classical generative modeling.

#### 1.2. Previous Work

There exist many different types of generative models. In this work we focus on one particular type, namely Generative Adversarial Networks (GANs). First version of GANs was proposed bu Goodfellow et al. [1] (to which we refer as Standard GANs - SGANs), since then many different variations of GANs were invented [2][3][4]. In context of this work, particularly interesting are Wasserstein GANs (WGANs)[5] which minimize *Earth-Mover* distance between two probability distribution (see Chapter 3) instead of *Jensen–Shannon* divergence (see Chapter 3) as in SGANs.

In recent years there has been an increasing interest in realizing Generative Adversarial Networks in Quantum Computing (QC) realm. Dallaire-Demers et al. proposed QuGANs [6] - Quantum Generative Adversarial Networks where generator and discriminator are parametrized quantum circuits. Similarly Benedetti et al. proposed fully quantum GANs for pure state approximation [7], but with different (more suitable for NISQ [8]) learning method. Hybrid methods were also explored, Zoufal et al. build qGAN [9] - with parametrized

quantum circuit as the generator and classical neural network as the discriminator.

De Palma et al. proposed quantum equivalent of Wasserstein distance of order 1 [10] which made the Quantum Wasserstein GANs (QWGANs) [11] possible. This variation of quantum GANs consist of the parametrized quantum circuit as the generator and the classical linear program as the discriminator.

### 1.3. Our Contribution

There has been a substantial effort in the direction of bringing GANs into the quantum realm. Nevertheless, this is still very early stage and many more routs are yet to be explored. In this work we focus on building quantum GANs that can generate new, unseen before, quantum states. Majority of models proposed so far are only able to generate the states the has been a part of the training data. Only some architectures [6] account for random noise in the input that allows to generate unseen states. However, as we discuss later, those are mostly theoretical and do not seem to work well in practice.

We propose a new quantum-classical hybrid approach that allows to generate an unlimited number of unseen quantum states. We utilize the fully quantum and fully classical generative models that work together in one framework.

We proceed as follows. In Chapter 2 we introduce briefly the quantum computing concepts necessary to understand the problems we are solving. We also establish the quantum computing notation used in the reminder of this work. In Chapter 3 we give a general introduction to classical GANs. In Chapter 4 we combine the knowledge from the previous chapters to introduce the concept of quantum GANs and talk more about the different variations of quantum GANs and their limitations. In Chapter 5 we introduce and describe in depth about our concept of hybrid quantum-classical generative framework. In Chapter 6 we and analyse numerous experiments with the proposed framework. We empirically prove the quality of the states generated by the proposed framework. Finally, in Chapter 7 we conclude our finding and talk briefly about the possible future directions.

## 2. Quantum Computing Introduction

In this chapter we provide a very brief introduction to the key concepts of quantum computing and introduce the notation used in the rest of this paper.

### 2.1. Parametric Circuits

# 3. Generative Adversarial Networks Introduction

Generative Adversarial Networks (GANs)[1] is a machine learning framework designed to estimate generative models using adversarial process. At the core it consists of two models: the generative one G which is capable of learning the distribution of the provided data and discriminative model D that, given a data point, estimates whether it comes from input data or was generated by G. The models are set to compete with each other in a minmax game. D is trained to maximize the probability of correctly distinguishing between generated and real samples, while G is trained to minimize it.

#### 3.1. Standard GANs

### 3.2. Waserstein GANs (WGANs)

## 4. Quantum Generative Adversarial Networks

- 4.1. Standard Quantum GANs (SQGANs)
- 4.2. Wasserstein Quantum GANs (WQGANs)

## 5. Unknown Quantum State Generation

- 5.1. Labeled State Generation
- 5.2. Unlabeled State Generation

## 6. Results

## 7. Conclusions

## A. Appendix

## **B.** Figures

# **List of Figures**

## **List of Tables**

### **Bibliography**

- [1] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. *Generative Adversarial Networks*. 2014. arXiv: 1406.2661 [stat.ML].
- [2] M. Mirza and S. Osindero. *Conditional Generative Adversarial Nets*. 2014. arXiv: 1411.1784 [cs.LG].
- [3] T. Karras, S. Laine, and T. Aila. *A Style-Based Generator Architecture for Generative Adversarial Networks*. 2019. arXiv: 1812.04948 [cs.NE].
- [4] A. Radford, L. Metz, and S. Chintala. *Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks*. 2016. arXiv: 1511.06434 [cs.LG].
- [5] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein GAN. 2017. arXiv: 1701.07875 [stat.ML].
- [6] P.-L. Dallaire-Demers and N. Killoran. "Quantum generative adversarial networks". In: *Physical Review A* 98.1 (July 2018). ISSN: 2469-9934. DOI: 10.1103/physreva.98.012324. URL: http://dx.doi.org/10.1103/PhysRevA.98.012324.
- [7] M. Benedetti, E. Grant, L. Wossnig, and S. Severini. "Adversarial quantum circuit learning for pure state approximation". In: *New Journal of Physics* 21.4 (Apr. 2019), p. 043023. ISSN: 1367-2630. DOI: 10.1088/1367-2630/ab14b5. URL: http://dx.doi.org/10.1088/1367-2630/ab14b5.
- [8] J. Preskill. "Quantum Computing in the NISQ era and beyond". In: *Quantum* 2 (Aug. 2018), p. 79. ISSN: 2521-327X. DOI: 10.22331/q-2018-08-06-79. URL: http://dx.doi.org/10.22331/q-2018-08-06-79.
- [9] C. Zoufal, A. Lucchi, and S. Woerner. "Quantum Generative Adversarial Networks for learning and loading random distributions". In: *npj Quantum Information* 5.1 (Nov. 2019). ISSN: 2056-6387. DOI: 10.1038/s41534-019-0223-2. URL: http://dx.doi.org/10.1038/s41534-019-0223-2.
- [10] G. D. Palma, M. Marvian, D. Trevisan, and S. Lloyd. *The quantum Wasserstein distance of order* 1. 2020. arXiv: 2009.04469 [quant-ph].
- [11] B. T. Kiani, G. D. Palma, M. Marvian, Z.-W. Liu, and S. Lloyd. *Quantum Earth Mover's Distance: A New Approach to Learning Quantum Data*. 2021. arXiv: 2101.03037 [quant-ph].