МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ «МИСиС»

Институт ИТАСУ Группа: **МПИ-20-4-2**

ОТЧЕТ

по лабораторной работе №3 по курсу «Нейронные сети»

Выполнил: Хабибулин М.И. группа МПИ-20-4-2

Проверил: Курочкин И.И.

Реализация:

В работе были использованы 3 метода кластеризации: K-Means, Spectral clustering и k-medoids clustering.

Расстояние подсчитывалось двумя методами:

1. Евклидово расстояние рассчитывается по формуле

$$d(p,q) = \sqrt{(p_1-q_1)^2 + (p_2-q_2)^2 + \cdots + (p_n-q_n)^2} = \sqrt{\sum_{k=1}^n (p_k-q_k)^2}.$$

 Γ де p, q — некоторые точки.

2. Манхэттенское расстояние рассчитывается по формуле

Манхэттенская метрика

$$t_{ij} = \left| x_i - x_j \right| + \left| y_i - y_j \right|$$

Метрики оценки качества кластеризации:

	1 '
True positive (TP)	False positive (FP)
False negative (FN)	True negative (TN)

В качестве показателей качества разделения были использованы:

1. Folkes and Mallows Index рассчитывается по формуле

$$ext{FMI} = rac{ ext{TP}}{\sqrt{(ext{TP} + ext{FP})(ext{TP} + ext{FN})}}$$

2. Rand index рассчитывается по формуле

$$ext{RI} = rac{a+b}{C_2^{n_{samples}}}$$

3. Adjusted Rand index рассчитывается по формуле

$$ext{ARI} = rac{ ext{RI} - E[ext{RI}]}{ ext{max}(ext{RI}) - E[ext{RI}]}$$

Также использовались Adjusted Mutual Information, V-measure и Индекс однородности. https://scikit-learn.org/stable/modules/clustering.html#spectral-clustering

Результат работы:

Пример 1.

Линейно разделимые множества (с расстоянием между группами в 10^3 раз больше, чем диаметр группы)

Сравнительная таблица 1.

- r				
Метрика	K-means	SpectralClustering	KMedoids(euc)	KMedoids(manh)
Fowlkes-	1.0	1.0	1.0	1.0
Mallows Index				
Rand Index	1.0	1.0	1.0	1.0
Adjusted Rand	1.0	1.0	1.0	1.0
index				
V-measure	1.0	1.0	1.0	1.0

Пример 2.

30 линейно разделимых класса, находящихся далеко друг от друга

Спавнительная таблица 2

Сравнительная таблица 2.				
Метрика	K-means	SpectralClustering	KMedoids(euc)	KMedoids(manh)
Fowlkes-	0.996	1.0	0.754	0.741
Mallows Index				
Rand Index	0.990	1.0	0.745	0.737
Adjusted Rand	0.994	1.0	0.639	0.624
index				
V-measure	0.990	1.0	0.800	0.784

Пример 3.

линейно неразделимое множество (средняя площадь пересечения классов 10-20%)

10 - 5 - 0 - 5 - 10 - 5 - 10

Сравнительная таблица 3.

Метрика	K-means	SpectralClustering	KMedoids	KMedoids(manh)
Fowlkes-	0.893	0.869	0.888	0.886
Mallows Index				
Rand Index	0.828	0.809	0.822	0.819
Adjusted Rand	0.858	0.825	0.851	0.849
index				
V-measure	0.828	0.811	0.822	0.819

Пример 4.

линейно неразделимое множество (средняя площадь пересечения классов 50-70%)

Сравнительная таблица 4.					
Метрика	K-means	SpectralClustering	KMedoids	KMedoids(manh)	

Fowlkes-	0.536	0.576	0.520	0.533
Mallows Index				
Rand Index	0.397	0.284	0.388	0.393
Adjusted Rand	0.381	0.314	0.386	0.376
index				
V-measure	0.398	0.375	0.390	0.394

Пример 5.

Car Evaluation Data Set https://archive.ics.uci.edu/ml/datasets/Car+Evaluation

Attribute Information:

Class Values:

unacc, acc, good, vgood

Attributes:

• buying: vhigh, high, med, low

• maint: vhigh, high, med, low.

• doors: 2, 3, 4, 5more.

• persons: 2, 4, more.

• lug_boot: small, med, big.

• safety: low, med, high.

Сравнительная таблица 4.

Метрика	K-means	SpectralClustering	KMedoids	KMedoids(manh)
Fowlkes-	0.372	0.369	0.374	0.388
Mallows Index				
Rand Index	0.011	0.010	0.012	0.013
Adjusted Rand	0.014	0.011	0.013	0.014
index				
V-measure	0.008	0.007	0.009	0.010

Во всех случая K-means показывает лучшие результаты. KMedoids показывает более низкие результаты, но догоняет K-means при большом смешение кластеров. Также стоит отметить, что алгоритм KMedoids обладает большей вычислительной сложностью: $O(k(n-k)^2)$

против O(nkl), где k – число кластеров, I – число итераций у K-means. Кластеризации методов на эталонном датасете Car Evaluation Data Set показали неудовлетворительный результат. Предположительно это связано с большим количеством признаков.