Bursting (beta) rhythms

Instructor: Mark Kramer

Today

Model of the bursting (beta) rhythm

Beta rhythms

20-30 Hz

experiment

in vitro preparation

block synaptic transmission

record LFP

"bursts"

Record from one (IB) cell

10 ms

[Roopun et al., PNAS, 2006]

Our existing models (LIF, HH, ING, PING) do **not** burst

one timescale

two timescales

Q. Model this?

Mechanisms

- not synaptic
- another ion current?

Intuition: imagine injecting a modulated current I_* to I&F model

Idea: update HH model with <u>a new current</u> that acts like I_{st}

Remember HH

$$C \frac{dV}{dt} = I_{\text{input}}(t) - \bar{g}_{\text{K}} n^4 (V - V_{\text{K}}) - \bar{g}_{\text{Na}} m^3 h (V - V_{\text{Na}}) - \bar{g}_{\text{L}} (V - V_{\text{L}})$$

$$\frac{dn}{dt} = -\frac{n - n_{\infty}(V)}{\tau_n(V)}$$

$$\frac{dm}{dt} = -\frac{m - m_{\infty}(V)}{\tau_m(V)}$$

$$\frac{dh}{dt} = -\frac{h - h_{\infty}(V)}{\tau_h(V)}$$

Time constants are voltage dependent

The gate dynamics {n,m,h} are fast

- → V changes quickly (~ ms spike)
- → No slow dynamics in HH model

- **Q.** How do we add the slow dynamics?
- A. Add a new current

$$C\frac{dV}{dt} = I_{Na} + I_{K} + I_{L} + I_{inj} + I_{new}$$
 original HH new current (fast) (will set the slow timescale)

Q. What is I_{new} ?

Currents

- "fast" sodium & "fast" potassium → original HH model
- many others exist

... with V-dependent steady-states & time constants

TABLE A2. Ionic conductance kinetic parameters

Conductance Type	Steady-State Activation/Inactivation	Time Constant (ms)
$g_{\rm Na}$ -transient: activation	$1/\{1 + \exp[(-V - 34.5)/10]\};$	$0.025 + 0.14 \exp[(V + 26.5)/10] [V \le -26.5]$
$g_{\rm Na}$ -transient: inactivation $g_{\rm Na}$ -persistent: activation	$1/\{1 + \exp[(V + 59.4)/10.7]\};$ $1/\{1 + \exp[(-V - 48)/10]\};$	$0.02 + 0.145 \exp[(-V - 26.5)/10)] [V \ge -26.5]$ $0.15 + 1.15/\{1 + \exp[(V + 33.5)/15]\}$ $0.025 + 0.14 \exp[(V + 40)/10] [V \le -40]$
$g_{\rm K}$ -delayed rectifier: activation	$1/\{1 + \exp[(-V - 29.5)/10]\};$	$0.02 + 0.145 \exp[(-V - 40)/10] [V \ge -40]$ $0.25 + 4.35 \exp[(V + 10)/10] [V \le -10]$ $0.25 + 4.35 \exp[(-V - 10)/10] [V \ge -10]$
g_{K} -transient ("A"): activation g_{K} -transient ("A"): inactivation	$1/\{1 + \exp[(-V - 60)/8.5]\};$ $1/\{1 + \exp[(V + 78)/6]\};$	0.185 + 0.5/{exp[($V + 35.8$)/19.7] + exp[($-V - 79.7$)/12.7]} 0.5/ [$V \le -63$] {exp[($V + 46$)/5)] + exp[($-V - 238$)/37.5]} 9.5 [$V \ge -63$]
g_{K} -"K2": activation g_{K} -"K2": inactivation g_{Ca} -low-threshold: activation g_{Ca} -low-threshold: inactivation	$1/\{1 + \exp[(-V - 10)/17]\};$ $1/\{1 + \exp[(V + 58)/10.6]\};$ $1/\{1 + \exp[(-V - 56)/6.2]\};$ $1/\{1 + \exp[(V + 80)/4]\};$	$4.95 + 0.5/\{\exp[(V - 81)/25.6] + \exp[(-V - 132)/18]\}$ $60 + 0.5/\{\exp[(V - 1.33)/200] + \exp[(-V - 130)/7.1]\}$ $0.204 + 0.333/\{\exp[(V + 15.8)/18.2] + \exp[(-V - 131)/16.7]\}$ $0.333 \exp[(V + 466)/66.6] [V \le -81]$
Anomalous rectifier	$1/\{1 + \exp[(V + 75)/5.5]\};$	9.32 + 0.333 $\exp[(-V - 21)/10.5]$ [$V \ge -81$] 1/[$\exp(-14.6 - 0.086V) + \exp(-1.87 + 0.07V)$]
Conductance Type	Forward Rate Function (α)	Backward Rate Function (β)
g _K -Ca- & V-dependent ("C") (voltage-dependent term)	$0.053 \exp[(V + 50)/11 - (V + 53.5)/27]$ $[V \le -10]$ $2 \exp[(-V - 53.5)/27]$	$ 2 \exp[(V - 53.5)/27] - \alpha [V \le -10] 0 $
$g_{\rm K}$ -"M" $g_{\rm K}$ -AHP $g_{\rm Ca}$ -high-threshold	$[V \ge -10]$ $0.02/\{1 + \exp[(-V - 20)/5]\};$ $\min(10^{-4} \chi, 0.01);$ $1.6/\{1 + \exp[-0.072(V - 5)]\};$	$[V \ge -10]$ $0.01 \exp[(-V - 43)/18]$ 0.01 $0.02 (V + 8.9)/\{\exp[(V + 8.9)/5] - 1\}$

[Traub et al., J Neurophysiol, 2003]

Ignore details & assume 4 candidate currents

We know their steady-state functions $x_{\infty}[V]$ and time constants $\tau_{\chi}[V]$ \uparrow Note voltage dependent

Goal: Determine which current could produce bursting we observe

A process of elimination ...

Investigate the <u>time constants</u> $\tau_{\chi}[V]$

X, B, C, D}

Investigate the steady-state functions $x_{\infty}[V]$.

Q. Which one?

Two cases: Gate changes (slowly) during the burst

burst → a depolarized state

Gates:

(B, D)

"depolarization activated"

(C)

"depolarization **in**activated"

gates **open** during burst gates **close** during burst

(X, B, C, D)

Case 1: Gate opens (slowly) during the burst (B,D)

Each spike opens the gate a little bit

burst → a depolarized state

when gate is <u>open</u> enough, this current <u>halts</u> the spiking

(X, B, C, D)

Case 2: Gate closes (slowly) during the burst (C)

Each spike <u>closes</u> the gate a little bit

burst → a depolarized state

when gate is <u>closed</u> enough, this current <u>halts</u> the spiking

X B, C, D}

Case 1: Gate opens (slowly) during the burst (B,D)

Case 2: Gate closes (slowly) during the burst (C)

In either case, to halt spiking (end the burst), the type of ion that flows through the channel is critical.

Case 1: Gate opens (slowly) during the burst (B,D)

Q. What ion is gated?

We want the gate to open & halt bursting

Gate opens enough

K+ released from cell

hyperpolarize neuron

So (B,D) work if they're K+ currents

Case 2: Gate closes (slowly) during the burst (C)

Q. What ion is gated?

We want the gate to <u>close</u> & halt bursting

Gate closes enough
Na+ cannot enter cell
hyperpolarize neuron

So (C) works if it's Na+ (or Ca²⁺) currents

(X, B, C, **X)**

Summary

We learn:

B gates K+

C gates Na+

D gates Na+

Two options remain for I_{new}

B: slow, depolarization activated, outward K+ current

C: slow, depolarization inactivated, inward Na+ current

Sketch a model for B

$$HH + B$$

$$C \ \frac{dV}{dt} = I_{\rm input}(t) - \bar{g}_{\rm K} n^4 (V - V_{\rm K}) - \bar{g}_{\rm Na} m^3 h (V - V_{\rm Na}) - \bar{g}_{\rm L} (V - V_{\rm L}) \\ \frac{dn}{dt} = -\frac{n - n_{\infty}(V)}{\tau_n(V)} \\ \frac{dm}{dt} = -\frac{m - m_{\infty}(V)}{\tau_m(V)} \\ \text{linear (from lit.)} \ \text{K+ current}$$

$$\frac{dB}{dt} = \frac{B_{\infty}[V] - B}{\tau_B[V]}$$

where $B_{\infty}[V]$ and $au_B[V]$ plotted above

Note: model now has 5 variables {V, n, m, h, B}

- 1) During spike, $B_{\infty}[V] o 1$ so, B o 1 but slowly so, B increases a little
- (2) repeat for multiple spikes B \rightarrow 1 B opens enough to halt spiking
- (3) B decays \rightarrow 0 another burst starts

Summary

A procedure to classify the dynamic effects of a current on a neuron

3 questions

1. Is it fast or slow?

2. Is to depolarization activated or inactivated?

3. What ion is gated?

K+

Then, we know enough to predict dynamic behavior.

Python Homework