In the Claims:

The current status of all claims is listed below and supersedes all previous lists of claims.

Please cancel claims 1-29 and 31-40 without prejudice to their presentation in another application, and add new claims 41-63 as follows:

- 1-40. (cancelled).
- 41. (new) A compound of general formula (A)

in which:

 R^2 and R^3 are independently hydrogen, $(C_1\text{-}C_{12})$ alkyl, substituted $(C_1\text{-}C_{12})$ alkyl, or unsaturated $(C_2\text{-}C_{12})$ comprising one or more C=C bond or C=C bond, $(C_6$ or $C_{10})$ aryl or $(C_6$ or $C_{10})$ heteroaryl, or a combination thereof to form a linked or fused ring system, or $(C_1\text{-}C_{10})$ alkoxy, $(C_1\text{-}C_{10})$ thioalkoxy, hydroxyl, $(C_1\text{-}C_{10})$ hydroxylalkyl, halo, $(C_1\text{-}C_{10})$ haloalkyl, cyano, nitro, amino, amido, $(C_1\text{-}C_{10})$ alkylamino, $(C_1\text{-}C_{10})$ alkylcarbonyloxy, $(C_1\text{-}C_{10})$ alkoxycarbonyl, $(C_1\text{-}C_{10})$ alkylcarbonyl, $(C_1\text{-}C_{10})$ alkylsulfonylamino, aminosulfonyl, $(C_1\text{-}C_{10})$ alkylsulfinyl, or $(C_1\text{-}C_{10})$ alkylsulfonyl, in which the saturated or an unsaturated hydrocarbon chain is optionally interrupted by O, S, NR, CO, C(NR), N(R)SO₂, SO₂N(R), N(R)C(O)O, OC(O)N(R), N(R)C(O)N(R), OC(O), C(O)O, OSO₂, SO₂O, or OC(O)O, where R is independently hydrogen, $(C_1\text{-}C_{10})$ alkyl, $(C_1\text{-}C_{10})$ alkenyl, $(C_1\text{-}C_{10})$ alkynyl, $(C_1\text{-}C_{10})$ alkoxy, $(C_1\text{-}C_{10})$ hydroxylalkyl, hydroxyl, $(C_1\text{-}C_{10})$ halolalkyl, where each of the saturated or unsaturated hydrocarbon chains are optionally substituted with $(C_1\text{-}C_{10})$ alkyl, $(C_1\text{-}C_{10})$ alkenyl, $(C_1\text{-}C_{10})$

2

alkynyl, (C_1-C_{10}) alkoxy, hydroxyl, hydroxyl, (C_1-C_{10}) hydroxylalkyl, halo, (C_1-C_{10}) haloalkyl, amino, (C_1-C_{10}) alkylcarbonyloxy, (C_1-C_{10}) alkoxycarbonyl, (C_1-C_{10}) alkylcarbonyl, (C_1-C_{10}) alkylsulfonylamino, aminosulfonyl, or (C_1-C_{10}) alkylsulfonyl,

or R^2 and R^3 optionally form a (C_6 or C_{10}) aryl, (C_6 or C_{10}) arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, (C_3 - C_8) heterocycloalkenyl, (C_5 - C_8) cycloalkyl, (C_5 - C_8) heterocycloalkyl linked or fused ring system, optionally containing up to 3 heteroatoms, e.g. oxygen, nitrogen, sulphur or phosphorous,

n is equal to 0, 1 or 2,

X is hydroxyl (-OH), -OR, NHR, hydroxamate (-NHOH), NHOR, NROR, NRNHR, or SR,

where each group R is independently hydrogen, C₁-C₆ alkyl or substituted C₁-C₆ alkyl, and

Y is 0, 1 or 2 oxygen atoms, or NR where R is H, OH, OR or C, where R is C_1 - C_6 alkyl or substituted C_1 - C_6 alkyl,

in which V and W are as follows:

a single carbon-carbon bond,

V is CR and W is N, saturated or unsaturated,

V is N and W is CR, saturated or unsaturated,

a linkage of the form VW or WV = RRC-O or RRC-S,

wherein V and/or W are optionally substituted (C_1 - C_6) alkyl, C_6 aryl or heterocycle, and in which each group R is independently defined.

3

42. (new) A compound of general formula (**B1**)

$$\begin{array}{c|c}
X & O \\
X & X
\end{array}$$

$$\begin{array}{c|c}
R_3 & O \\
X & X
\end{array}$$

$$\begin{array}{c|c}
R_3 & O \\
X & O \\
X$$

in which:

 R^1 is $(C_6$ or $C_{10})$ aryl, $(C_6$ or $C_{10})$ arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, $(C_6$ or $C_{10})$ heteroaryl, (C_3-C_8) heterocycloalkenyl, (C_5-C_8) cycloalkene ring, (C_5-C_8) cycloalkyl, (C_5-C_8) heterocycloalkyl or a combination thereof to form a linked or fused ring system, the cyclic moiety being optionally substituted with (C_1-C_{10}) alkyl, (C_1-C_{10}) alkenyl, (C_1-C_{10}) alkoxy, (C_1-C_{10}) thioalkoxy, hydroxyl, (C_1-C_{10}) hydroxylalkyl, halo, (C_1-C_{10}) haloalkyl, amino, amido, (C_1-C_{10}) alkylamino, (C_1-C_{10}) alkylamino, (C_1-C_{10}) alkylamino, alkylamino, alkylamino, alkylamino, alkylamino, alkylamino, alkylamino, or (C_1-C_{10}) alkylamino, alkylamino, alkylamino, alkylamino, alkylamino, or (C_1-C_{10}) alkylamino, alkylamino, alkylamino, alkylamino, alkylamino, or (C_1-C_{10}) alkylamino, alk

 R^3 is hydrogen, (C_1-C_{12}) alkyl, substituted (C_1-C_{12}) alkyl, or unsaturated (C_2-C_{12}) comprising one or more C=C bond or C=C bond, $(C_6$ or $C_{10})$ aryl or $(C_6$ or $C_{10})$ heteroaryl, or a combination thereof to form a linked or fused ring system, or (C_1-C_{10}) alkoxy, (C_1-C_{10}) thioalkoxy, hydroxyl, (C_1-C_{10}) hydroxylalkyl, halo, (C_1-C_{10}) haloalkyl, cyano, nitro, amino, amido, (C_1-C_{10}) alkylamino, (C_1-C_{10}) alkylcarbonyloxy, (C_1-C_{10}) alkoxycarbonyl, (C_1-C_{10}) alkylcarbonyl, (C_1-C_{10}) alkylsulfonylamino, aminosulfonyl, (C_1-C_{10}) alkylsulfinyl, or (C_1-C_{10}) alkylsulfonyl, in which the saturated or an unsaturated hydrocarbon chain is optionally interrupted by O, S, NR, CO, C(NR), $N(R)SO_2$, $SO_2N(R)$, N(R)C(O)O, OC(O)N(R), N(R)C(O)N(R), OC(O), alkoyl, OC(O), OC(O), OC(O), alkoyl, OC(O), al

4

hydroxyl, hydroxyl, (C_1-C_{10}) hydroxylalkyl, halo, (C_1-C_{10}) haloalkyl, amino, (C_1-C_{10}) alkylcarbonyloxy, (C_1-C_{10}) alkoxycarbonyl, (C_1-C_{10}) alkylcarbonyl, (C_1-C_{10}) alkylsulfonyl, aminosulfonyl, or (C_1-C_{10}) alkylsulfonyl,

n is equal to 0, 1 or 2,

X is hydroxyl (-OH), -OR, NHR, hydroxamate (-NHOH), NHOR, NROR, NRNHR, or SR,

where each group R is independently hydrogen, C₁-C₆ alkyl or substituted C₁-C₆ alkyl, and

Y is 0, 1 or 2 oxygen atoms, or NR where R is H, OH, OR or C, where R is C_1 - C_6 alkyl or substituted C_1 - C_6 alkyl,

in which n is equal to zero, one or two, and Z is a two-atom linkage of varying combinations of atoms of C, O, N, S, SO, SO₂.

43. (new) A compound of claim 41, in which the compounds are of general formula (B2)

$$R_1R_2N$$
 (B2)

in which:

 R^1 is $(C_6$ or $C_{10})$ aryl, $(C_6$ or $C_{10})$ arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, $(C_6$ or $C_{10})$ heteroaryl, (C_3-C_8) heterocycloalkenyl, (C_5-C_8) cycloalkyl, (C_5-C_8) heterocycloalkyl or a combination thereof to form a linked or fused ring system, the cyclic moiety being optionally substituted with (C_1-C_{10}) alkyl, (C_1-C_{10})

5

alkenyl, (C_1-C_{10}) alkynyl, (C_1-C_{10}) alkoxy, (C_1-C_{10}) thioalkoxy, hydroxyl, (C_1-C_{10}) hydroxylalkyl, halo, (C_1-C_{10}) haloalkyl, amino, amido, (C_1-C_{10}) alkylamino, (C_1-C_{10}) alkylcarbonyloxy, (C_1-C_{10}) alkoxycarbonyl, (C_1-C_{10}) alkylcarbonyl, (C_1-C_{10}) alkylsulfonylamino, aminosulfonyl, (C_1-C_{10}) alkylsulfinyl, or (C_1-C_{10}) alkylsulfonyl,

 R^2 and R^3 are each independently hydrogen, (C_1-C_{12}) alkyl, substituted (C_1-C_{12}) alkyl, or unsaturated (C_2-C_{12}) comprising one or more C=C bond or C=C bond, $(C_6$ or $C_{10})$ aryl or $(C_6$ or $C_{10})$ heteroaryl, or a combination thereof to form a linked or fused ring system, or (C_1-C_{10}) alkoxy, (C_1-C_{10}) thioalkoxy, hydroxyl, (C_1-C_{10}) hydroxylalkyl, halo, (C_1-C_{10}) haloalkyl, cyano, nitro, amino, amido, (C_1-C_{10}) alkylamino, (C_1-C_{10}) alkylcarbonyloxy, (C_1-C_{10}) alkoxycarbonyl, (C_1-C_{10}) alkylcarbonyl, (C_1-C_{10}) alkylsulfonyl, or (C_1-C_{10}) alkylsulfonyl, in which the saturated or an unsaturated hydrocarbon chain is optionally interrupted by O, S, NR, CO, C(NR), N(R)SO₂, SO₂N(R), N(R)C(O)O, OC(O)N(R), N(R)C(O)N(R), OC(O), C(O)O, OSO₂, SO₂O, or OC(O)O, where R is independently hydrogen, (C_1-C_{10}) alkyl, (C_1-C_{10}) alkenyl, (C_1-C_{10}) alkynyl, (C_1-C_{10}) alkoxy, (C_1-C_{10}) haloalkyl, where each of the saturated or unsaturated hydrocarbon chains are optionally substituted with (C_1-C_{10}) alkyl, (C_1-C_{10}) alkenyl, (C_1-C_{10}) alkoxy, hydroxyl, hydroxyl, (C_1-C_{10}) hydroxylalkyl, halo, (C_1-C_{10}) haloalkyl, amino, (C_1-C_{10}) alkoxy, hydroxyl, hydroxyl, (C_1-C_{10}) alkoxycarbonyl, (C_1-C_{10}) alkylcarbonyl, (C_1-C_{10}) alkylsulfonylamino, aminosulfonyl, or (C_1-C_{10}) alkylsulfonyl,

or R^2 and R^3 optionally form a (C_6 or C_{10}) aryl, (C_6 or C_{10}) arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, (C_3 - C_8) heterocycloalkenyl, (C_5 - C_8) cycloalkyl, (C_5 - C_8) heterocycloalkyl linked or fused ring system, optionally containing up to 3 heteroatoms, e.g. oxygen, nitrogen, sulphur or phosphorous,

or R^1 and R^2 optionally form a (C_6 or C_{10}) aryl, (C_6 or C_{10}) arylalkyl, (C_6 or C_{10}) heteroaryl, (C_3 - C_8) heterocycloalkenyl, (C_5 - C_8) cycloalkene ring, (C_5 - C_8) cycloalkyl, (C_5 - C_8) heterocycloalkyl linked or fused ring system, optionally the ring formed is further substituted with a group R^1 as defined above, or the ring formed is fused to a further C_6 aryl group which is optionally

6

substituted with a group R¹ as defined above, or a group R¹R²N, with R¹ and R² as defined above,

n is equal to 0, 1 or 2,

X is hydroxyl (-OH), -OR, NHR, hydroxamate (-NHOH), NHOR, NROR, NRNHR, or SR,

where each group R is independently hydrogen, C₁-C₆ alkyl or substituted C₁-C₆ alkyl, and

Y is 0, 1 or 2 oxygen atoms, or NR where R is H, OH, OR or C, where R is C_1 - C_6 alkyl or substituted C_1 - C_6 alkyl,

in which n is equal to zero, one or two, Y is no atom present, O or O_2 or NR and Z = CR or N;

X = NHOH, OH, NROR, CRROH;

and Z is a one atom linkage of N or C, or a two-atom linkage of varying combinations of atoms of C, O, N, S, SO, SO₂, and in which each group R is independently defined.

44. (new) A compound of claim 41, in which the compounds are of general formula (C)

$$\begin{array}{c|c}
X & O \\
R_4 & N \\
R_5 & (C)
\end{array}$$

in which:

 $R^3 \ \text{is hydrogen, } (C_1\text{-}C_{12}) \ \text{alkyl, substituted } (C_1\text{-}C_{12}) \ \text{alkyl, or unsaturated } (C_2\text{-}C_{12}) \ \text{comprising one}$

or more C=C bond or C=C bond, $(C_6 \text{ or } C_{10})$ aryl or $(C_6 \text{ or } C_{10})$ heteroaryl, or a combination thereof to form a linked or fused ring system, or $(C_1\text{-}C_{10})$ alkoxy, $(C_1\text{-}C_{10})$ thioalkoxy, hydroxyl, $(C_1\text{-}C_{10})$ hydroxylalkyl, halo, $(C_1\text{-}C_{10})$ haloalkyl, cyano, nitro, amino, amido, $(C_1\text{-}C_{10})$ alkylamino, $(C_1\text{-}C_{10})$ alkylcarbonyloxy, $(C_1\text{-}C_{10})$ alkoxycarbonyl, $(C_1\text{-}C_{10})$ alkylcarbonyl, $(C_1\text{-}C_{10})$ alkylsulfonyl, in which the saturated or an unsaturated hydrocarbon chain is optionally interrupted by O, S, NR, CO, (NR), $(NR)SO_2$, (NR), (NR)C(O)O, (NR), (NR)C(O)N(R), (NR)C(O)N(

n is equal to 0, 1 or 2,

X is hydroxyl (-OH), -OR, NHR, hydroxamate (-NHOH), NHOR, NROR, NRNHR, or SR, where each group R is independently hydrogen, C₁-C₆ alkyl or substituted C₁-C₆ alkyl, and

Y is 0, 1 or 2 oxygen atoms, or NR where R is H, OH, OR or C, where R is C_1 - C_6 alkyl or substituted C_1 - C_6 alkyl,

and R^4 and R^5 are each independently hydrogen, unsubstituted or substituted C_1 - C_{10} alkyl, an unsaturated hydrocarbon chain of up to ten carbon atoms comprising one or more carbon-carbon double bonds, C_6 or C_{10} aryl, a 5- to 10-membered heterocyclic group, C_1 - C_{10} alkoxy, C_1 - C_{10} thioalkoxy, hydroxyl, halo, cyano, nitro, amino, amido, $(C_1$ - C_{10} alkyl)carbonyloxy, $(C_1$ - C_{10} alkyl)carbonyl, $(C_1$ - C_{10} alkyl)thiocarbonyl, $(C_1$ - C_{10} alkyl)suflonylamino, aminosulfonyl, C_1 - C_{10} alkylsulfinyl, C_1 - C_{10} alkylsulfonyl, or a saturated or unsaturated C_3 - C_{12} hydrocarbon chain interrupted by O, S, NR, CO, C(NR), $N(R)SO_2$, $SO_2N(R)$,

8

N(R)C(O)O, OC(O)N(R), N(R)C(O)N(R), OC(O), C(O)O, OSO₂, SO₂O or OC(O)O where R is as defined above and the saturated or unsaturated hydrocarbon chain is optionally substituted as defined above;

in which Y is equal to no atom, O or O_2 or NR and n is equal to zero, one or two and X is equal to NHOH, OH, NROR, CRROH, and in which each group R is independently defined.

- 45. (new) A compound as claimed in claim 41, in which R² and R³ are both Hydrogen.
- 46. (new) A compound as claimed in claim 41, in which R² is methyl (CH₃) and R³ is Hydrogen.
- 47. (new) A compound as claimed in claim 41, in which R² is Hydrogen and R³ is methyl (CH₃).
- 48. (new) A compound as claimed in claim 41, in which R² and R³ are both methyl (CH₃).
- 49. (new) A compound as claimed in claim 41, in which X is –OH, -OC₂H₅, -OCH₃, or NHOH.
- 50. (new) A compound as claimed in claim 41, in which Y is represented by one or two oxygen atoms.
- 51. (new) A compound as claimed in claim 41, in which R² and R³ are both Hydrogen (H), Y is equal to zero oxygen atoms, and n is equal to 1, R¹ is one of

9

DOCKET NO.: ASZN0077-101 (100164-2P US)

PATENT

and X is one of -OH, -OCH₃, -OC₂H₅ or NHOH.

52. (new) A compound as claimed in claim 41, in which R² and R³ are both Hydrogen (H), Y is equal to one oxygen atom, and n is equal to 1, R¹ is one of

and X is one of -OH, -CH₃, -OC₂H₅ or NHOH.

53. (new) A compound as claimed in claim 41, in which R² and R³ are both Hydrogen (H), Y is equal to two oxygen atoms and n is equal to 1, R¹ is one of

and X is one of -OH, -CH₃, -OC₂H₅ or NHOH.

54. (new) A compound as claimed in claim 41, in which R² and R³ are both methyl (CH₃), Y is equal to zero oxygen atoms, and n is equal to zero, R¹ is

and X is $-OCH_3$, $-OC_2H_5$ or -OH.

- 55. (new) A compound as claimed in claim 41, claim 42, claim 43 or claim 44 which is:
- 6-Phenylsulfanyl-hexa-2,4-dienoic acid (6a),
- 6-(4-Chloro-phenylsulfanyl)-hexa-2,4-dienoic acid methyl ester (6b),
- 6-Phenylsulfanyl-hexa-2,4-dienoic acid methyl ester (6c),
- 6-(4-Dimethylamino-phenylsulfanyl)-hexa-2,4-dienoic acid methyl ester (6d),
- 6-(4-Methoxy-phenylsulfanyl)-hexa-2,4-dienoic acid methyl ester (6e),
- 6-(4-Chloro-phenylsulfanyl)-hexa-2,4-dienoic acid hydroxyamide (7b),
- 6-(4-Dimethylamino-phenylsulfanyl)-hexa-2,4-dienoic acid hydroxyamide (7c),
- 6-Phenylsulfinyl-hexa-2,4-dienoic acid methyl ester (8a),
- 6-(4-Chloro-benzenesulfinyl)-hexa-2,4-dienoic acid methyl ester (8b),
- 6-(4-Methoxy-benzenesulfinyl)-hexa-2,4-dienoic acid methyl ester (8c),
- 6-Benzenesulfinyl-hexa-2,4-dienoic acid (8d),
- 6-(4-Chloro-benzenesulfinyl)-hexa-2,4-dienoic acid hydroxyamide (9a),
- 6-(4-Methoxy-benzenesulfinyl)-hexa-2,4-dienoic acid hydroxyamide (9b),
- 6-Benzenesulfonyl-hexa-2,4-dienoic acid (10a),
- 6-Benzenesulfonyl-hexa-2,4-dienoic acid methyl ester (10b),
- 6-Benzenesulfonyl-hexa-2,4-dienoic acid hydroxyamide (11a),
- 6-(Naphthalen-2-ylsulfanyl)-hexa-2,4-dienoic acid methyl ester (13b),
- 6-(Naphthalen-2-ylsulfanyl)-hexa-2,4-dienoic acid hydroxyamide (14a),
- 4-(4-Dimethylamino-phenylsulfanyl)-2-methyl-pent-2-enoic acid methyl ester (21b),
- 6-(4-Dimethylamino-phenylsulfanyl)-4-methyl-hepta-2,4-dienoic acid ethyl ester (24c),
- 6-(4-Dimethylamino-phenylsulfanyl)-4-methyl-hepta-2,4-dienoic acid hydroxyamide (25c),
- 6-(4-Chloro-phenylsulfanyl)-hexanoic acid methyl ester (28b),
- 7-(4-Chloro-phenylsulfanyl)-heptanoic acid ethyl ester (28c),
- 6-(4-Dimethylamino-phenylsulfanyl)-hexanoic acid methyl ester (28e),
- 6-(4-((4-Chlorobenzyl)-methylamino)-phenylsulfanyl)-hexanoic acid methyl ester (28f),
- 6-(4-(4-Chlorobenzenesulfonylamino)-phenylsulfanyl)-hexanoic acid methyl ester (28g),
- 6-(4-Bromo-phenylylsulfanyl)-hexanoic acid methyl ester (28h),
- 6-(4'-Chloro-biphenyl-4-ylsulfanyl)-hexanoic acid methyl ester (28i),
- 6-(4-Chloro-phenylsulfanyl)-hexanoic acid hydroxyamide (29b),

DOCKET NO.: ASZN0077-101 (100164-2P US)

PATENT

6-(4-Dimethylamino-phenylsulfanyl)-hexanoic acid hydroxamide (29c),

6-(4-(4-Chlorobenzenesulfonylamino)-phenylsulfanyl)-hexanoic acid hydroxamide (29g),

6-(4'-Chloro-biphenyl-4-ylsulfanyl)-hexanoic acid hydroxamide (29i),

6-(4-Chloro-benzenesulfinyl)-hexanoic acid methyl ester (30b),

7-(4-Chloro-benzenesulfinyl)-heptanoic acid ethyl ester (30c),

6-(4-Dimethylamino-benzenesulfinyl)-hexanoic acid methyl ester (30e),

6-(4-((4-Chlorobenzyl)-methylamino)-benzenesulfinyl)-hexanoic acid methyl ester (30f),

6-(4'-Chloro-biphenyl-4-ylsulfinyl)-hexanoic acid methyl ester (30i),

6-(4-Chloro-benzenesulfinyl)-hexanoic acid hydroxyamide (31a),

7-(4-Chloro-benzenesulfinyl)-heptanoic acid hydroxyamide (31c),

6-(4-Dimethylamino-benzenesulfinyl)-hexanoic acid hydroxyamide (31e),

6-(4-((4-Chlorobenzyl)-methylamino)-benzenesulfinyl)-hexanoic acid hydroxamide (31f),

6-(4'-Chloro-biphenyl-4-sulfinyl)-hexanoic acid hydroxyamide (31i),

(2E,4E)-5-(5-Dimethylamino-benzo[b]thiophen-2-yl)-penta-2,4-dienoic acid ethyl ester (41a),

(2E,4E)-5-(5-Dimethylaminobenzo[b]thiophen-2-yl)-penta-2,4-dienoic acid hydroxamide (42a),

(E)-3-(3-(4-Dimethylamino-phenylsulfanyl)-phenyl)-acrylic acid ethyl ester (51a.), or

(E)-3-(3-(4-Dimethylamino-phenylsulfanyl)-phenyl)-N-hydroxy-acrylamide (52a).

56. (new) A pharmaceutical composition comprising a compound of any one of claims 41 to 44, and optionally a pharmaceutically acceptable adjuvant and/or diluent.

57. (new) A compound of general formula (I):

$$\begin{array}{c|c}
Y & O \\
R_1 & R_2
\end{array}$$

in which:

R¹ is (C₆ or C₁₀) aryl, (C₆ or C₁₀) arylalkyl, a 6- or 10-membered ring system having one or more

heteroatoms in the ring, (C_6 or C_{10}) heteroaryl, (C_3 - C_8) heterocycloalkenyl, (C_5 - C_8) cycloalkene ring, (C_5 - C_8) cycloalkyl, (C_5 - C_8) heterocycloalkyl or a combination thereof to form a linked or fused ring system, the cyclic moiety being optionally substituted with (C_1 - C_{10}) alkyl, (C_1 - C_{10}) alkenyl, (C_1 - C_{10}) alkoxy, (C_1 - C_{10}) thioalkoxy, hydroxyl, (C_1 - C_{10}) hydroxylalkyl, halo, (C_1 - C_{10}) haloalkyl, amino, amido, (C_1 - C_{10}) alkylamino, (C_1 - C_{10}) alkylcarbonyloxy, (C_1 - C_{10}) alkoxycarbonyl, (C_1 - C_{10}) alkylsulfonyl, or (C_1 - C_{10}) alkylsulfonyl, or (C_1 - C_{10}) alkylsulfonyl,

 R^2 and R^3 are each independently hydrogen, (C_1-C_{12}) alkyl, substituted (C_1-C_{12}) alkyl, or unsaturated (C_2-C_{12}) comprising one or more C=C bond or C=C bond, $(C_6$ or $C_{10})$ aryl or $(C_6$ or $C_{10})$ heteroaryl, or a combination thereof to form a linked or fused ring system, or (C_1-C_{10}) alkoxy, (C_1-C_{10}) thioalkoxy, hydroxyl, (C_1-C_{10}) hydroxylalkyl, halo, (C_1-C_{10}) haloalkyl, cyano, nitro, amino, amido, (C_1-C_{10}) alkylamino, (C_1-C_{10}) alkylamino, (C_1-C_{10}) alkylarbonyloxy, (C_1-C_{10}) alkoxycarbonyl, (C_1-C_{10}) alkylarbonyl, (C_1-C_{10}) alkylarbonyl, (C_1-C_{10}) alkylsulfonyl, in which the saturated or an unsaturated hydrocarbon chain is optionally interrupted by O, S, NR, CO, C(NR), N(R)SO₂, SO₂N(R), N(R)C(O)O, OC(O)N(R), N(R)C(O)N(R), OC(O), C(O)O, OSO₂, SO₂O, or OC(O)O, where R is independently hydrogen, (C_1-C_{10}) alkyl, (C_1-C_{10}) alkenyl, (C_1-C_{10}) alkynyl, (C_1-C_{10}) alkoxy, (C_1-C_{10}) haloalkyl, where each of the saturated or unsaturated hydrocarbon chains are optionally substituted with (C_1-C_{10}) alkyl, (C_1-C_{10}) alkenyl, (C_1-C_{10}) alkoxy, hydroxyl, hydroxyl, (C_1-C_{10}) alkyloxylalkyl, halo, (C_1-C_{10}) haloalkyl, amino, (C_1-C_{10}) alkoxy, hydroxyl, hydroxyl, (C_1-C_{10}) alkoxycarbonyl, (C_1-C_{10}) alkylcarbonyl, (C_1-C_{10}) alkylsulfonylamino, aminosulfonyl, or (C_1-C_{10}) alkylsulfonyl,

or R^2 and R^3 optionally form a (C_6 or C_{10}) aryl, (C_6 or C_{10}) arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, (C_3 - C_8) heterocycloalkenyl, (C_5 - C_8) cycloalkyl, (C_5 - C_8) heterocycloalkyl linked or fused ring system, optionally containing up to 3 heteroatoms, e.g. oxygen, nitrogen, sulphur or phosphorous,

or R¹ and R² optionally form a (C₆ or C₁₀) aryl, (C₆ or C₁₀) arylalkyl, (C₆ or C₁₀) heteroaryl, (C₃-

 C_8) heterocycloalkenyl, (C_5 - C_8) cycloalkene ring, (C_5 - C_8) cycloalkyl, (C_5 - C_8) heterocycloalkyl linked or fused ring system, optionally the ring formed is further substituted with a group R^1 as defined above, or the ring formed is fused to a further C_6 aryl group which is optionally substituted with a group R^1 as defined above, or a group R^1 R²N, with R^1 and R^2 as defined above,

n is equal to 0, 1 or 2,

X is hydroxyl (-OH), -OR, NHR, hydroxamate (-NHOH), NHOR, NROR, NRNHR, or SR, where each group R is independently hydrogen, C_1 - C_6 alkyl or substituted C_1 - C_6 alkyl, and

Y is 0, 1 or 2 oxygen atoms, or NR where R is H, OH, OR or C, where R is C_1 - C_6 alkyl or substituted C_1 - C_6 alkyl,

Q represents

$$R_5$$
 or R_5

wherein m is an integer from 1 to 4; n is an integer from 1 to 8; and R^4 and R^5 each independently represents hydrogen, unsubstituted or substituted C_1 - C_{10} alkyl, an unsaturated hydrocarbon chain of up to ten carbon atoms comprising one or more carbon-carbon double bonds, C_6 or C_{10} aryl, a 5- to 10-membered heterocyclic group, C_1 - C_{10} alkoxy, C_1 - C_{10} thioalkoxy, hydroxyl, halo, cyano, nitro, amino, amido, $(C_1$ - C_{10} alkyl)carbonyloxy, $(C_1$ - C_{10} alkoxy)carbonyl, $(C_1$ - C_{10} alkyl)carbonyl, $(C_1$ - C_{10} alkyl)thiocarbonyl, $(C_1$ - C_{10} alkyl)suflonylamino, aminosulfonyl, C_1 - C_{10} alkylsulfinyl, C_1 - C_{10} alkylsulfonyl, or a saturated or unsaturated C_3 - C_{12} hydrocarbon chain interrupted by O, S, NR, CO, C(NR), $N(R)SO_2$, $SO_2N(R)$, N(R)C(O)O, OC(O)N(R), N(R)C(O)N(R), OC(O), C(O)O, OSO_2 , SO_2O or OC(O)O where R is as defined above and the saturated or unsaturated hydrocarbon chain is optionally substituted as

defined above;

or a pharmaceutically acceptable salt thereof.

- 58. (new) A method of treating cancer, cardiac hypertrophy, a haematological disorder, an auto-immune disease, a neurological condition, a genetic-related metabolic disorder, a peroxisome biogenesis disorder, adrenoleukodystrophy, stimulating hematopoietic cells *ex vivo*, ameliorating protozoal parasitic infection, accelerating wound healing, or protecting hair follicles in an individual comprising administering to said individual a compound of claim 57.
- 59. (new) The method of claim 58, in which the cancer is selected from the group consisting of breast cancer, colon cancer, colorectal cancer, esophageal cancer, glioma, lung small and non-small cell cancers, leukaemia neuroblastoma, prostate cancer, thoracic cancer, melanoma, ovarian cancer, cervical cancer and renal cancer.
- 60. (new) The method of claim 58 in which the haematological disorder is a hemoglobinopathy, thalessmia, or sickle cell anemia.
- 61. (new) The method of claim 58 in which the autoimmune disorder is arthritis or Huntingdon's disease.
- 62. (new) The method of claim 58 in which the neurological disease is Alzheimer's disease.
- 63. (new) The method of claim 58 in which the genetic-related metabolic disorder is cystic fibrosis.

15