Course Code	DATA STRUCTURES AND ANALYSIS OF	Course Type	LTP
CSD3009	ALGORITHMS	Credits	4

Course Objectives:

- To understand the basic concepts of data structures and algorithms.
- To differentiate linear and non-linear data structures and the operations upon them.
- Ability to perform sorting and searching in a given set of data items.
- To comprehend the necessity of time complexity in algorithms.

Course Outcomes:

- Understanding the fundamental analysis and time complexity for a given problem.
- Articulate linear data structures and legal operations permitted on them.
- Articulate non-linear data structures and legal operations permitted on them.
- Applying a suitable algorithm for searching and sorting.
- Understanding graph algorithms, operations, and applications.
- Understanding the importance of hashing

Student Outcomes (SO): a, b, c, l

- a. Having an ability to apply mathematics and science in engineering applications.
- b. Having design thinking capability.
- c. Having an ability to design a component or a product applying all the relevant standards and with realistic constraints.
- d. Having problem solving ability- solving social issues and engineering problems.

Module No.	Module Description	No.of Hours	so
1	Introduction: Overview of Data Structures – A Philosophy of Data Structures – The Need for Data Structures – Cost and Benefits – Abstract Data Types - complexity analysis – Best, Worst, and Average Cases – Asymptotic Analysis - Arrays, Linked Lists and Recursion: Using Arrays – Lists – Array based List Implementation – Linked Lists – LL ADT – Singly Linked List – Doubly Linked List – Circular Linked List – recursion- linear, binary, and multiple recursions.		a, b, c
2	Stacks and Queues: Array- 1D and 2D array, Stack - Applications of stack: Expression Evaluation - Conversion of Infix to postfix and prefix expression, Tower of Hanoi. Stack ADT – Array based Stacks, Linked Stacks – Implementing Recursion using Stacks, Queues – ADT, Array based Queue, Linked Queue, Double ended queue, Circular queue.	7+ 2	a, b, c

3	Trees and Graphs: Trees: Binary tree, Binary search tree, threaded	7+2	a, b, f
	binary tree, Height balanced trees, Tries, Heaps, Hash tables. Graph		
	traversals: Breadth-First Search, Depth First Search, Shortest path:		
	Depth-first search in directed and undirected graphs. Union-find data		
	structure and applications. Directed acyclic graphs; topological sort.		
4	Searching and Sorting: Searching: Linear search, Binary search and	6+	a, b, f
	Hashing. Algorithms and data structures for sorting: Insertion Sort,	2	
	Bubble sort, Selection Sort, Merge sort, Quick Sort, Heap sort, Radix		
	sort, Bucket sort. Algorithm design techniques: Divide and conquer,		
	Greedy approach, dynamic programming.		
5	Graph Traversal: Breadth First Search (BFS), Depth First Search (DFS)	6+2	a, b, c
	- Minimum Spanning Tree: Prim's, Kruskal's- Single Source Shortest		
	Path: Dijkstra's Algorithm.		
5	Guest Lecture on Contemporary Topics		2
	Total Hours:		45

Mode of Teaching and Learning:

Teaching and Learning will be from a variety of books and articles, and will be made available on-line through Blackboard. Also through CALTech.

Mode of Evaluation and assessment:

The course grade will be based on homework assignments, a final group presentation, a final group paper, peer evaluation for group work, attendance, and class participation. Homework Assignments, Final Presentation, Final Paper, Attendance and Class Participation, Peer Evaluation etc

Text Book(s):

- 1. Data Structures and Algorithm Analysis in C++ Mark Allen Weiss Florida International University,2015.
- 2. E. Horowitz, S.Sahni and Dinesh Mehta, "Fundamentals of Data structures in C++", University Press, 2010.

References:

- 1. Data Structures, Algorithms, and Applications in C++ Book by Sartaj Sahni 2005.
- 2. Goodrich M. T., Tamassia R. and Michael H. Goldwasser, "Data Structures and Algorithms in Python++", Wiley publication, 2013
- Clifford A. Shaffer, "Data Structures and Algorithm Analysis", Third Edition, Dover Publications, 3. 2012.

Indicative List of Experiments

No.	Description of Experiment	SO
1	Write a program that uses functions to perform the following operations on singly linked	
	list i) Creation ii) Insertion iii) Deletion iv) Traversal.	
2	Write a program that uses functions to perform the following operations on doubly	
	linked list i) Creation ii) Insertion iii) Deletion iv) Traversal.	
3	Write a program that uses functions to perform the following operations on circular	l
	linked List i) Creation ii) Insertion iii) Deletion iv) Traversal.	

4	Sorting algorithm – insertion, bubble, selection, quick	
	Write a program to perform the following operations: a) Insert an element into a binary search tree. b) Delete an element from a binary search tree. c) Search for a key element in a binary search tree.	1
6	DFS, BFS	l
7	Minimum Spanning Tree – Prim's and Kruskal's	l

Recommendation by the Board of Studies on	
Approval by Academic council on	
Compiled by	Dr.R.Rakesh