Differences Between Discrete and Continuous Distributions

- Probability masses in discrete distributions sum to 1, while probability densities in continuous distributions integrate to 1.
- Probability densities can be greater than 1 (yet they can still integrate to 1).
- The probability mass of any precise value (e.g., 1.000...) in a continuous distribution is always infinitely small.

Variance

Variance is the expectation of the squared deviation of a random variable from its mean.

$$Var(X) = \sigma^2(X) = E[(X - \mu)^2]$$

Variance (Standard Deviation)

Variance is the expectation of the squared deviation of a random variable from its mean.

$$Var(X) = \sigma^2(X) = E[(X - \mu)^2]$$

The standard deviation of a random variable is the square root of its variance.

$$\operatorname{sd}(X) = \sigma(X) = \sqrt{\operatorname{E}[(X - \mu)^2]}$$

Standard Deviation / Variance

https://en.wikipedia.org/wiki/Standard_deviation#/media/File:Comparison_standard_deviations.svg

Beta Distribution

Two Shape Parameters α and β

What is the effect of changing these parameter values?

What is the **support** of this distribution?

Beta Distribution

 $x \in (0, 1)$

Often used as a flexible distribution to model values between 0 and 1.

Gamma Distribution

Two Shape Parameters

Shape and Scale $k \text{ and } \theta$

Shape and Rate $\alpha \ \mathrm{and} \ \beta$

Gamma Distribution

Gamma Distribution

