

Building a Naive Bayes classifier using Flux

by Team Magic

The Naive Bayes Algorithm

Naive Bayes classifiers are a family of simple "probabilistic classifiers" based on applying Bayes' theorem with strong (naïve) independence assumptions between the features.

Example: a fruit can be considered to be an apple if it is red, round, and about 10 cm in diameter. A naive Bayes classifier assumes each of these features contribute independently to the probability that this fruit is an apple, regardless of any possible correlations between the color, roundness, and diameter features.

A Great Example: Spam Filter

Spam Detector

"Buy" and "Cheap"

Spam Detector

Spam Detector

No spam

Naive Bayes Classifier

"Buy" and "Cheap" → 94.737%

Spam

No spam

Quiz: If an e-mail contains the words "buy" and "cheap", what is the probability that it is spam?

$$\frac{12}{12 + 2/3} = \frac{36}{38}$$
$$= 94.737\%$$

We chose flux to implement our classifier to illustrate it's unique, data-intensive capabilities

Building a simple classifier with simple data

Simple Data:

```
TrainingData = "
#datatype, string, long, string, string, dateTime: RFC3339, string
#group, false, false, true, true, true, false, false
#default, result, , , , ,
,result,table, measurement, field, Class, time, value
,,0,m1,f1,Yes,2018-12-19T22:13:30Z,A
,,0,m1,f1,Yes,2018-12-19T22:13:40Z,A
,,0,m1,f1,Yes,2018-12-19T22:13:50Z,A
,,0,m1,f1,Yes,2018-12-19T22:14:00Z,B
,,1,m1,f1,No,2018-12-19T22:14:10Z,A
,,1,m1,f1,No,2018-12-19T22:14:20Z,B
,,1,m1,f1,No,2018-12-19T22:13:30Z,B
,,1,m1,f1,No,2018-12-19T22:13:40Z,B
```

Feature	Class	Value
f1	Yes	А
f1	Yes	А
f1	Yes	А
f1	Yes	В
f1	No	А
f1	No	В
f1	No	В
f1	No	В

Building a simple classifier with simple data

Simple Classifier:

_value	Class	p_k	p_x	P_x_k	Probability
A	No	0.5	0.5	0.25	0.25
A	Yes	0.5	0.5	0.75	0.75
В	No	0.5	0.5	0.75	0.75
В	Yes	0.5	0.5	0.25	0.25

Question: The result occurs if A, what is the probability this statement is true?

$$P(Yes | A) = P(A | Yes) * P(Yes) / P(A) = P_x_k * p_k / p_x = 0.75 * 0.5 / 0.5 = 0.75$$

_value	Class	Probability
А	Yes	0.75

Probability an animal is airborne given its aquatic

Animal_name	P_x_k	Probability	_field_Probabilit	_field_r	_value
buffalo	0.5636363636363636	0.68888888888888888	aquatic	aquatic	
bear	0.56363636363636	0.6888888888888888	aquatic	aquatic	
boar	0.5636363636363636	0.6888888888888888	aquatic	aquatic	
calf	0.56363636363636	0.6888888888888888	aquatic	aquatic	
cavy	0.5636363636363636	0.6888888888888888	aquatic	aquatic	
cheetah	0.56363636363636	0.6888888888888888	aquatic	aquatic	
aardvark	0.56363636363636	0.6888888888888888	aquatic	aquatic	
chicken	0.5636363636363636	0.6888888888888888	aquatic	aquatic	
antelope	0.5636363636363636	0.6888888888888888	aquatic	aquatic	
clam	0.56363636363636	0.6888888888888888	aquatic	aquatic	
clam	0.7368421052631579	0.3111111111111106	aquatic	aquatic	
bear	0.7368421052631579	0.3111111111111106	aquatic	aquatic	
boar	0.7368421052631579	0.3111111111111106	aquatic	aquatic	
calf	0.7368421052631579	0.3111111111111106	aquatic	aquatic	
cavy	0.7368421052631579	0.311111111111106	aquatic	aquatic	
cheetah	0.7368421052631579	0.3111111111111106	aquatic	aquatic	
aardvark	0.7368421052631579	0.3111111111111106	aquatic	aquatic	
chicken	0.7368421052631579	0.3111111111111106	aquatic	aquatic	
antelope	0.7368421052631579	0.3111111111111106	aquatic	aquatic	
buffalo	0.7368421052631579	0.3111111111111106	aquatic	aquatic	
carp	0.436363636363634	0.8275862068965516	aquatic	aquatic	
crab	0.436363636363634	0.8275862068965516	aquatic	aquatic	
chub	0.43636363636363634	0.8275862068965516	aquatic	aquatic	
catfish	0.43636363636363634	0.8275862068965516	aquatic	aquatic	
bass	0.43636363636363634	0.8275862068965516	aquatic	aquatic	
carp	0.2631578947368421	0.17241379310344826	aquatic	aquatic	

Demo time!

Looking forwards, we'd like to...

- add more fields/features to our classifier to improve the accuracy of our results
- consider using non-binary data
- implement potential density functions (i.e. Gauss)
- use our algorithm to classify more relevant datasets (for example, slack incidents)
- create a graphic user interface that allows users to feed in training/test data

A huge thank you to Anais and Adam! We couldn't have done it without you!!!

