

| Alinity c Creatinine-11                                                                                                                                  |                                                          |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--|--|--|
| Prepared by: Yusra Othman /Direct signature/title Reviewed by: Ordan Dilla signature/title Approved by: Signature/title signature/title BIENNIAL REVIEW: | Date: May/21/2024  Date: July 08 2024  Date: July 9 2024 |  |  |  |
| REVIEWED                                                                                                                                                 |                                                          |  |  |  |
| signature/title REVIEWED                                                                                                                                 | Date                                                     |  |  |  |
| signature/title  REVIEWED                                                                                                                                | Date                                                     |  |  |  |
| signature/title                                                                                                                                          | Date                                                     |  |  |  |
| REVIEWEDsignature/title                                                                                                                                  | Date                                                     |  |  |  |
| REVIEWEDsignature/title                                                                                                                                  | Date                                                     |  |  |  |
| REVIEWED                                                                                                                                                 | Date                                                     |  |  |  |
| REVISED                                                                                                                                                  |                                                          |  |  |  |
| signature/title REVISED                                                                                                                                  | Date/Page/Paragraph                                      |  |  |  |
| signature/title  REVISED                                                                                                                                 | Date/Page/Paragraph                                      |  |  |  |
| signature/title  REVISED                                                                                                                                 | Date/Page/Paragraph                                      |  |  |  |
| signature/title                                                                                                                                          | Date/Page/Paragraph                                      |  |  |  |
| REVISEDsignature/title                                                                                                                                   | Date/Page/Paragraph                                      |  |  |  |

# **INTENDED USE**

The Alinity c Creatinine assay is used for the quantitative determination of creatinine in human serum, plasma, or urine on the Alinity c analyzer.

# SUMMARY AND EXPLANATION OF THE TEST

Creatinine is eliminated from blood by glomerular filtration. Reduced renal function results in an increased serum creatinine concentration. Measurement of serum creatinine is used to diagnose and monitor acute and chronic renal disease, estimate glomerular filtration rate (GFR), or assess the status of renal dialysis patients. Urine creatinine analysis is used to

Version Number: 1.0 Page 1 of 20

calculate creatinine clearance, confirm completeness of 24 hour collections, or serve as a reference quantity for other analytes, such as in calculation of the albumin/creatinine ratio. 1

In 1886 Jaffe developed an assay for creatinine based upon the reaction between creatinine and sodium picrate. In 1904 Folin used this reaction for the quantitative determination of creatinine in urine. Kinetic procedures based on the observed reaction rates of various substances, including creatinine, with alkaline picrate have been proposed by Fabiny and Soldin. This improved Jaffe chemistry is a kinetic procedure which does not require deproteinization of the sample and is formulated to reduce the interference of serum proteins.

## PRINCIPLES OF THE PROCEDURE

At an alkaline pH, creatinine in the sample reacts with picrate to form a creatinine-picrate complex. The rate of increase in absorbance at 500 nm due to the formation of this complex is directly proportional to the concentration of creatinine in the sample.

#### Methodology: Kinetic Alkaline Picrate

For additional information on system and assay technology, refer to the Alinity ci-series Operations Manual, Section 3.

# REAGENTS

#### **Kit Contents**

Alinity c Creatinine Reagent Kit 07P99

| REF                                               | 07P9920         | 07P9930 |  |  |  |
|---------------------------------------------------|-----------------|---------|--|--|--|
| Tests per cartridge                               | 300             | 1200    |  |  |  |
| Number of cartridges per kit                      | 10              | 10      |  |  |  |
| Tests per kit                                     | 3000            | 12 000  |  |  |  |
| R1                                                | 11.2 mL         | 33.7 mL |  |  |  |
| R2                                                | 11.6 mL 36.4 mL |         |  |  |  |
| Active ingredients: Sodium hydroxide (0.8 mol/L). |                 |         |  |  |  |
| Active ingredients: Picric acid (24 mmol/L).      |                 |         |  |  |  |

# Warnings and Precautions

- . IVD
- · For In Vitro Diagnostic Use

Version Number: 1.0 Page 2 of 20

Rx ONLY

# **Safety Precautions**

**CAUTION:** This product requires the handling of human specimens. It is recommended that all human-sourced materials be considered potentially infectious and handled in accordance with the OSHA Standard on Bloodborne Pathogens. Biosafety Level 2 or other appropriate biosafety practices should be used for materials that contain or are suspected of containing infectious agents. 6, 7, 8, 9

| The following warnings and | l precautions apply to: 🖭                                                                                                        |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------|
|                            |                                                                                                                                  |
| DANGER                     | Contains sodium hydroxide.                                                                                                       |
|                            | ·                                                                                                                                |
| H314                       | Causes severe skin burns and eye damage.                                                                                         |
| H290                       | May be corrosive to metals.                                                                                                      |
| Prevention                 |                                                                                                                                  |
| P280                       | Wear protective gloves / protective clothing / eye protection.                                                                   |
| P260                       | Do not breathe mist / vapors / spray.                                                                                            |
| P264                       | Wash hands thoroughly after handling.                                                                                            |
| P234                       | Keep only in original container.                                                                                                 |
| Response                   |                                                                                                                                  |
| P301+P330+P331             | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.                                                                               |
| P305+P351+P338             | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |
| P303+P361+P353             | IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water / shower.                            |
| P310                       | Immediately call a POISON CENTER or doctor / physician.                                                                          |
| P390                       | Absorb spillage to prevent material damage.                                                                                      |
| Disposal                   |                                                                                                                                  |
| P501                       | Dispose of contents / container in accordance with local                                                                         |

Version Number: 1.0 Page 3 of 20

| regulations. |
|--------------|
|--------------|

| The following warnings and precautions apply to: R2 |  |  |
|-----------------------------------------------------|--|--|
| Contains picric acid.                               |  |  |
| EUH001 Explosive when dry.                          |  |  |

Picric acid is a flammable solid when wet as a paste (i.e., not less than 10% water), and explosive when dry. Prevent from forming crystals. Keep containers tightly sealed. Do not allow to dry out.

Safety Data Sheets are available at www.abbottdiagnostics.com or/and SDS folder.

For a detailed discussion of safety precautions during system operation, refer to the Alinity ci-series Operations Manual, Section 8.

#### **Reagent Handling**

- Upon receipt, place reagent cartridges in an upright position for 1 hour before use to allow bubbles that may have formed to dissipate.
- If a reagent cartridge is dropped, place in an upright position for 1 hour before use to allow bubbles that may have formed to dissipate.
- Reagents are susceptible to the formation of foam and bubbles. Bubbles may interfere with the detection of the reagent level in the cartridge and cause insufficient reagent aspiration that may adversely affect results.

For a detailed discussion of reagent handling precautions during system operation, refer to the Alinity ci-series Operations Manual, Section 7.

# **Reagent Storage**

|          | Storage<br>Temperature | Maximum<br>Storage Time | Additional Storage<br>Instructions                                                                                                                       |
|----------|------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unopened | 15 to 30°C             | Until expiration date   | Store in upright position.                                                                                                                               |
| Onboard  | System<br>Temperature  | 5 days                  |                                                                                                                                                          |
| Opened   | 15 to 30°C             | Until expiration        | Store in upright position.                                                                                                                               |
|          | date                   |                         | Do not reuse original reagent<br>caps or replacement caps due to<br>the risk of contamination and the<br>potential to compromise reagent<br>performance. |

Reagents may be stored on or off the system. If removed from the system, store reagents with new replacement caps in an upright position at 15 to 30°C. For reagents stored off the system, it is recommended that they be stored in their original trays or boxes to ensure they remain upright.

For information on unloading reagents, refer to the Alinity ci-series Operations Manual, Section 5.

## **Indications of Reagent Deterioration**

Deterioration of the reagents may be indicated when:

- · a calibration error occurs
- · a control value is out of the specified range

Associated test results are invalid, and samples must be retested. Assay recalibration may be necessary.

For troubleshooting information, refer to the Alinity ci-series Operations Manual, Section 10.

## INSTRUMENT PROCEDURE

The Alinity c Creatinine assay file must be installed on the Alinity c analyzer prior to performing the assay.

For detailed information on assay file installation and viewing and editing assay parameters, refer to the Alinity ci-series Operations Manual, Section 2.

For information on printing assay parameters, **refer to the Alinity ci-series Operations Manual, Section 5.** 

For a detailed description of system procedures, refer to the Alinity ci-series Operations Manual.

#### **Alternate Result Units**

Edit assay parameter "Result Units" to select an alternate unit.

Conversion formula:

(Concentration in Default result unit) x (Conversion factor) = (Concentration in Alternate result unit)

| Default Result Unit | Conversion Factor | Alternate Result Unit |  |
|---------------------|-------------------|-----------------------|--|
| mg/dL (Serum)       | 88.4              | μmol/L                |  |
| mg/dL (Urine)       | 0.0884            | mmol/L                |  |

# SPECIMEN COLLECTION AND PREPARATION FOR ANALYSIS

Alinity c Creatinine-11

CONTROLLED DOCUMENT

Version Number: 1.0 Page 5 of 20

# **Specimen Types**

The specimen types listed below were verified for use with this assay.

Other specimen types and anticoagulants have not been verified with this assay.

| Specimen Type                                                                                       | Collection Vessel                                      | <b>Special Conditions</b>                                                   |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------|
| Serum                                                                                               | Serum tubes (with or without gel barrier)              |                                                                             |
| Plasma                                                                                              | Collection tubes                                       |                                                                             |
|                                                                                                     | Acceptable anticoagulants are:                         |                                                                             |
|                                                                                                     | Lithium heparin (with or without gel barrier)          |                                                                             |
|                                                                                                     | EDTA                                                   |                                                                             |
|                                                                                                     | Sodium heparin                                         |                                                                             |
| Urine (random specimens or<br>timed specimens collected<br>over intervals shorter than<br>24 hours) | Clean plastic or glass container without preservatives |                                                                             |
| Urine (24 hour)                                                                                     | Clean plastic or glass container with preservatives    | The preferred preservatives are boric acid and hydrochloric acid. <u>10</u> |
|                                                                                                     |                                                        | Reference ranges are provided for 24 hours excretion.                       |

# **Specimen Conditions**

- · For accurate results, serum and plasma specimens should be free of fibrin, red blood cells, and other particulate matter. Serum specimens from patients receiving anticoagulant or thrombolytic therapy may contain fibrin due to incomplete clot formation.
- · For accurate results, plasma specimens should be free of platelets and other particulate matter. Ensure centrifugation is adequate to remove platelets.
- · To prevent cross contamination, use of disposable pipettes or pipette tips is recommended.

# **Preparation for Analysis**

· Follow the tube manufacturer's processing instructions for collection tubes. Gravity

Version Number: 1.0

- separation is not sufficient for specimen preparation.
- Specimens should be free of bubbles. Remove bubbles with an applicator stick before analysis. Use a new applicator stick for each specimen to prevent cross-contamination.

To ensure consistency in results, recentrifuge specimens prior to testing if

• they contain fibrin, red blood cells, or other particulate matter.

NOTE: If fibrin, red blood cells, or other particulate matter are observed, mix by low speed vortex or by inverting 10 times prior to recentrifugation.

# **Specimen Storage**

| Specimen Type | Temperature | Maximum Storage<br>Time      |
|---------------|-------------|------------------------------|
| Serum/Plasma  | 20 to 25°C  | 7 days <u>11</u>             |
|               | 2 to 8°C    | 7 days <u>11</u> , <u>12</u> |
|               | -20°C       | 3 months <u>11</u>           |
| Urine         | 20 to 25°C  | 2 days <u>11</u>             |
|               | 2 to 8°C    | 6 days <u>11</u> , <u>12</u> |
|               | -20°C       | 6 months <u>11</u>           |

Avoid multiple freeze/thaw cycles.

Guder et al. suggest storage of frozen specimens at -20°C for no longer than the time intervals cited above. 11

Stored specimens must be inspected for particulates. If present, mix with a low speed vortex or by inversion and centrifuge the specimen to remove particulates prior to testing.

# **Specimen Shipping**

Package and label specimens in compliance with applicable state, federal, and international regulations covering the transport of clinical specimens and infectious substances.

## **PROCEDURE**

#### **Materials Provided**

07P99 Alinity c Creatinine Reagent Kit

# **Materials Required but not Provided**

Version Number: 1.0 Page 7 of 20

- · Alinity c Creatinine assay file
- · 08P6001 Alinity c Multiconstituent Calibrator Kit
- · Commercially available controls containing creatinine
- · Saline (0.85% to 0.90% NaCl) for specimen dilution

For information on materials required for operation of the instrument, refer to the Alinity ciseries Operations Manual, Section 1.

For information on materials required for maintenance procedures, refer to the Alinity ciseries Operations Manual, Section 9.

# **Assay Procedure**

For a detailed description of how to run an assay, **refer to the Alinity ci-series Operations Manual, Section 5.** 

- · If using primary or aliquot tubes, refer to the Alinity ci-series Operations Manual, Section 4 to ensure sufficient specimen is present.
- To minimize the effects of evaporation, verify adequate sample cup volume is present prior to running the test.
- Minimum sample volume requirements:
  - · Sample volume for single test: 5.3 μL (Serum), 8 μL (Urine).
    - NOTE: This amount does not include the dead volume plus the additional over-aspiration volume. For total sample volume requirements, refer to the Alinity ciseries Operations Manual, Section 4.
- · Refer to the Multiconstituent Calibrator Kit package insert and commercially available control package insert for preparation and usage.
- For general operating procedures, refer to the Alinity ci-series Operations Manual, Section 5.
- For optimal performance, it is important to perform routine maintenance as described in the Alinity ci-series Operations Manual, Section 9. Perform maintenance more frequently when required by laboratory procedures.

## **Sample Dilution Procedures**

#### Serum/Plasma

Samples with creatinine value exceeding 37.00 mg/dL ( $3270.8 \,\mu\text{mol/L}$ ) are flagged with the code ">  $37.00 \,\text{mg/dL}$ " ( $3270.8 \,\mu\text{mol/L}$ ) and may be diluted with either the Automated Dilution Protocol or the Manual Dilution Procedure.

#### Urine

Urine samples are diluted 1:20 by the system using the Standard dilution option, then the system corrects the concentration by multiplying the result by the dilution factor. Urine samples with values exceeding 740.00 mg/dL (65.416 mmol/L) are flagged with the code "> 740.00 mg/dL" (> 65.416 mmol/L) and may be diluted with either the Automated Dilution

Protocol or the Manual Dilution Procedure.

#### **Automated Dilution Protocol**

#### Serum/Plasma

If using an automated dilution protocol, the system performs a dilution of the sample and automatically calculates the concentration by multiplying the result by the dilution factor. For details on configuring automated dilutions, refer to the Alinity ci-series Operations Manual, Section 2.

#### Urine

If using an automated dilution protocol, the system performs a dilution of the sample and automatically calculates the concentration by multiplying the result by the dilution factor. For details on configuring automated dilutions, refer to the Alinity ci-series Operations Manual, Section 2.

#### **Manual Dilution Procedure**

Dilute the sample with saline (0.85% to 0.90% NaCl).

The operator must enter the dilution factor in the Specimen or Control tab of the Create Order screen. The system will use this dilution factor to automatically calculate the concentration of the sample and report the result.

If the operator does not enter the dilution factor, the result must be manually multiplied by the appropriate dilution factor before reporting the result. If a diluted sample result is less than the lower value of the measuring interval of 0.20 mg/dL (17.68  $\mu$ mol/L) for the serum/plasma application, and 5.00 mg/dL (0.442 mmol/L) for the urine application, do not report the result. Rerun using an appropriate dilution.

For detailed information on ordering dilutions, refer to the Alinity ci-series Operations Manual, Section 5.

#### **Calibration**

For instructions on performing a calibration, refer to the Alinity ci-series Operations Manual, Section 5.

Calibration is stable for approximately **5 days** (**120 hours**), but is required with each change in reagent lot. Verify calibration with at least 2 levels of controls according to the established quality control procedure. If control results fall outside acceptable ranges, recalibration may be necessary.

This assay may require recalibration after maintenance to critical parts or subsystems or after service procedures have been performed.

# **Quality Control Procedures**

- · At least two levels of controls (normal and abnormal) are to be run every day testing performed.
- · If quality control results do not meet the acceptance criteria defined by the laboratory quality control procedure, sample results may be suspect. Follow the established quality control procedures to troubleshoot. Recalibration may be necessary. For troubleshooting

information, refer to the Alinity ci-series Operations Manual, Section 10.

· Review quality control results and acceptance criteria following a change of reagent or calibrator lot.

Commercial controls should be used according to the guidelines and recommendations of the control manufacturer. Concentration ranges provided in the control package insert should be used only for guidance.

For any control material in use, the laboratory should ensure that the matrix of the control material is suitable for use in the assay per the assay package insert.

#### **Quality Control Guidance**

Refer to "Basic QC Practices" by James O Westgard, Ph.D. for guidance on laboratory quality control practices. <u>13</u>

#### **Verification of Assay Claims**

For protocols to verify package insert claims, refer to Verification of Assay Claims in the Alinity ci-series Operations Manual.

#### RESULTS

#### Calculation

The Alinity c Creatinine assay utilizes the Linear data reduction method to generate a calibration and results.

For information on alternate result units, refer to the INSTRUMENT PROCEDURE, Alternate Result Units section of this package insert.

Creatinine Clearance = 
$$\frac{\text{(urine creatinine concentration) x (urine volume)}}{\text{(serum creatinine concentration) x (collection time)}} \times \frac{1.73}{BSA^*}$$

**NOTE:** Urine and serum creatinine concentrations must be expressed in the same units, urine volume must be expressed in mL, and urine collection time must be expressed in minutes or seconds.

Estimated GFR (eGFR) can be calculated using the four-parameter equation from the Modification of Diet in Renal Disease (MDRD) study. In the United States, the National Kidney Disease Education Program (NKDEP) provides guidelines for calculating and reporting eGFR. 15 Guidelines may vary in other countries.

#### **Flags**

<sup>\*</sup> BSA = body surface area in square meters

Some results may contain information in the Flags field. For a description of the flags that may appear in this field, **refer to the Alinity ci-series Operations Manual, Section 5**.

# **Measuring Interval**

Measuring interval is defined as the range of values in **mg/dL** (µmol/L) which meets the limits of acceptable performance for linearity, imprecision, and bias.

The measuring interval of the Alinity c Creatinine assay serum/plasma application is **0.20 to 37.00 mg/dL** (17.7 to 3270.8 µmol/L).

The measuring interval of the Alinity c Creatinine assay urine application is **5.00 to 740.00** mg/dL (0.442 to 65.416 mmol/L).

#### LIMITATIONS OF THE PROCEDURE

Refer to the SPECIMEN COLLECTION AND PREPARATION FOR ANALYSIS and SPECIFIC PERFORMANCE CHARACTERISTICS sections of this package insert.

# **EXPECTED VALUES**

#### 24-Hour Urinary Excretion, adjusted per kg body weight

To convert results from mg/dL to mg/kg/day (24-hour urinary excretion):

24-hour excretion =  $[(V \times c) \div (W \times 100)]$  mg/kg/day

Where:

V = 24-hour urine volume (mL)

c = analyte concentration (mg/dL)

W = body weight (kg)

To convert results from mmol/L to µmol/kg/day (24-hour urinary excretion):

24-hour excretion =  $[(V \times c) \div W] \mu mol/kg/day$ 

Where:

V = 24-hour urine volume (mL)

c = analyte concentration (mmol/L)

W = body weight (kg)

# 24-Hour Urinary Excretion, not adjusted per kg body weight

To convert results from mg/dL to mg/day (24-hour urinary excretion):

24-hour excretion =  $[(V \times c) \div 100)]$  mg/day

Where:

V = 24-hour urine volume (mL)

c = analyte concentration (mg/dL)

Version Number: 1.0

To convert results from mmol/L to mmol/day (24-hour urinary excretion):

24-hour excretion =  $[(V \times c) \div 1000]$  mmol/day

Where:

V = 24-hour urine volume (mL)

c = analyte concentration (mmol/L)

It is recommended that each laboratory determine its own reference range based upon its particular locale and population characteristics.

#### **Reference Range**

The serum/plasma reference ranges are from an Abbott Laboratories study of normal healthy adults, age 18 or older (120 males and 120 females). The urine reference ranges are based on the data of Junge et al. <u>14</u>

## Serum/Plasma

|               | Range (mg/dL) | Range (µmol/L) |
|---------------|---------------|----------------|
| Adult, Male   | 0.72 to 1.25  | 63.6 to 110.5  |
| Adult, Female | 0.57 to 1.11  | 50.4 to 98.1   |

Pediatrics refrence range will be adopted from Caliber study web site:

https://caliperdatabase.org/

#### Female Reference Intervals

| Age                 | Lower Limit | Upper Limit | Sample Size | Lower Confidence<br>Intervals | Higher Confidence<br>Intervals |
|---------------------|-------------|-------------|-------------|-------------------------------|--------------------------------|
| 0 to < 15 Days      | 0.42        | 1.05        | 158         | (0.32, 0.47)                  | (0.97, 1.06)                   |
| 15 Days to < 1 Year | 0.31        | 0.53        | 130         | (0.31, 0.33)                  | (0.51, 0.55)                   |
| 1 to < 4 Years      | 0.39        | 0.55        | 121         | (0.38, 0.41)                  | (0.54, 0.55)                   |
| 4 to < 7 Years      | 0.44        | 0.65        | 146         | (0.43, 0.45)                  | (0.62, 0.67)                   |
| 7 to < 12 Years     | 0.52        | 0.69        | 234         | (0.52, 0.53)                  | (0.67, 0.71)                   |
| 12 to < 15 Years    | 0.57        | 0.8         | 184         | (0.55, 0.58)                  | (0.80, 0.86)                   |
| 15 to < 17 Years    | 0.59        | 0.86        | 77          | (0.58, 0.61)                  | (0.83, 0.87)                   |
| 17 to < 19 Years    | 0.6         | 0.88        | 88          | (0.59, 0.61)                  | (0.86, 0.90)                   |

Version Number: 1.0 Page 12 of 20

## Male Reference Intervals

| Age                 | Lower Limit | Upper Limit | Sample Size | Lower Confidence<br>Intervals | Higher Confidence<br>Intervals |
|---------------------|-------------|-------------|-------------|-------------------------------|--------------------------------|
| 0 to < 15 Days      | 0.42        | 1.05        | 158         | (0.32, 0.47)                  | (0.97, 1.06)                   |
| 15 Days to < 1 Year | 0.31        | 0.53        | 130         | (0.31, 0.33)                  | (0.51, 0.55)                   |
| 1 to < 4 Years      | 0.39        | 0.55        | 121         | (0.38, 0.41)                  | (0.54, 0.55)                   |
| 4 to < 7 Years      | 0.44        | 0.65        | 146         | (0.43, 0.45)                  | (0.62, 0.67)                   |
| 7 to < 12 Years     | 0.52        | 0.69        | 234         | (0.52, 0.53)                  | (0.67, 0.71)                   |
| 12 to < 15 Years    | 0.57        | 0.8         | 184         | (0.55, 0.58)                  | (0.80, 0.86)                   |
| 15 to < 17 Years    | 0.65        | 1.04        | 68          | (0.63, 0.68)                  | (1.00, 1.08)                   |
| 17 to < 19 Years    | 0.69        | 1.1         | 86          | (0.66, 0.72)                  | (1.08, 1.13)                   |

## Urine14

|                                | Adult Male                                             | Adult Female              |  |  |
|--------------------------------|--------------------------------------------------------|---------------------------|--|--|
| Concentration Range*           | 63 to 166 mg/dL                                        | 47 to 110 mg/dL           |  |  |
|                                | (5.6 to 14.7 mmol/L)                                   | (4.2 to 9.7 mmol/L)       |  |  |
| 24 Hour Excretion <u>14</u>    | 12.1 to 28.9 mg/kg/day                                 | 10.7 to 26.0 mg/kg/day    |  |  |
|                                | (107 to 256 $\mu$ mol/kg/day)                          | (95 to 230 µmol/kg/day)   |  |  |
|                                | 950 to 2490 mg/day                                     | 710 to 1650 mg/day        |  |  |
|                                | (8.4 to 22.0 mmol/day)                                 | (6.3 to 14.6 mmol/day)    |  |  |
| Creatinine Clearance <u>14</u> | Adult Male: 66 to 163 mL/mir                           | n/1.73 m <sup>2</sup> BSA |  |  |
|                                | (1.10 to 2.72 mL/sec/1.73 m <sup>2</sup> BSA)          |                           |  |  |
|                                | Adult Female: 66 to 165 mL/min/1.73 m <sup>2</sup> BSA |                           |  |  |
|                                | (1.10 to 2.75 mL/sec/1.73 m <sup>2</sup> l             | BSA)                      |  |  |

<sup>\*</sup> Concentration is based on a daily urine output of 1.5 L.

National Kidney Disease Education Program (NKDEP) guidelines recommend that, for patients 18 and older, estimated GFR (eGFR) values greater than or equal to 60 mL/min/1.73  $m^2$  are reported as eGFR  $\geq$  60 mL/min/1.73  $m^2$ .15

Version Number: 1.0 Page 13 of 20

## SPECIFIC PERFORMANCE CHARACTERISTICS

Representative performance data are provided in this section. Results obtained in individual laboratories may vary.

The Alinity c analyzer and the ARCHITECT c System and AEROSET System utilized the same reagents and sample/reagent ratios.

Unless otherwise specified, all studies were performed on the Alinity c analyzer.

## **Precision**

## Within-Laboratory Precision

A study was performed based on guidance from CLSI EP05-A2. Testing was conducted using 1 lot of the Alinity c Creatinine Reagent Kit, 1 lot of the Alinity c Multiconstituent Calibrator Kit, and 1 lot of commercially available controls and 1 instrument. Three serum controls and 2 urine controls were assayed in a minimum of 2 replicates at 2 separate times per day on 20 different days. <u>16</u>

#### Serum/Plasma

|                 |     | Mean    | Within-Run<br>(Repeatability) |     | Within-Laboratory<br>(Total) <sup>a</sup> |     |
|-----------------|-----|---------|-------------------------------|-----|-------------------------------------------|-----|
| Sample          | n   | (mg/dL) | SD                            | %CV | SD                                        | %CV |
| Control Level 1 | 120 | 0.72    | 0.011                         | 1.5 | 0.014                                     | 1.9 |
| Control Level 2 | 120 | 2.00    | 0.025                         | 1.2 | 0.038                                     | 1.9 |
| Control Level 3 | 120 | 6.34    | 0.035                         | 0.6 | 0.102                                     | 1.6 |

<sup>&</sup>lt;sup>a</sup> Includes within-run, between-run, and between-day variability.

|                 |     | Mean     | Within-Run<br>(Repeatability) |     | Within-Laboratory<br>(Total) <sup>a</sup> |     |
|-----------------|-----|----------|-------------------------------|-----|-------------------------------------------|-----|
| Sample          | n   | (µmol/L) | SD                            | %CV | SD                                        | %CV |
| Control Level 1 | 120 | 63.6     | 0.95                          | 1.5 | 1.22                                      | 1.9 |
| Control Level 2 | 120 | 177.0    | 2.17                          | 1.2 | 3.34                                      | 1.9 |
| Control Level 3 | 120 | 560.3    | 3.09                          | 0.6 | 9.00                                      | 1.6 |

<sup>&</sup>lt;sup>a</sup> Includes within-run, between-run, and between-day variability.

Version Number: 1.0

|                 |     | Mean    | Within-Run<br>(Repeatability) |     | Within-Laboratory<br>(Total) <sup>a</sup> |     |
|-----------------|-----|---------|-------------------------------|-----|-------------------------------------------|-----|
| Sample          | n   | (mg/dL) | SD                            | %CV | SD                                        | %CV |
| Control Level 1 | 120 | 67.71   | 1.173                         | 1.7 | 1.371                                     | 2.0 |
| Control Level 2 | 120 | 122.93  | 1.896                         | 1.5 | 2.418                                     | 2.0 |

<sup>&</sup>lt;sup>a</sup> Includes within-run, between-run, and between-day variability.

|                 |     | Within-Run Within-La (Repeatability) (Tota |        |     |        | •   |
|-----------------|-----|--------------------------------------------|--------|-----|--------|-----|
| Sample          | n   | (mmol/L)                                   | SD     | %CV | SD     | %CV |
| Control Level 1 | 120 | 5.986                                      | 0.1038 | 1.7 | 0.1212 | 2.0 |
| Control Level 2 | 120 | 10.867                                     | 0.1677 | 1.5 | 0.2138 | 2.0 |

<sup>&</sup>lt;sup>a</sup> Includes within-run, between-run, and between-day variability.

# **Accuracy**

This study was performed on the ARCHITECT c System.

Representative data from studies using **IDMS** traceable **NIST SRM 967** are summarized below.

|                       | <b>SRM 967 Level 1</b> | <b>SRM 967 Level 2</b> |
|-----------------------|------------------------|------------------------|
|                       | (Target 0.753 mg/dL)   | (Target 3.916 mg/dL)   |
| N                     | 11                     | 11                     |
| Concentration (mg/dL) | 0.747                  | 3.810                  |
| Bias (mg/dL)          | -0.006                 | -0.106                 |
| %Bias                 | -0.84                  | -2.70                  |
| Total Error (%)*      | 10.74                  | 9.06                   |

<sup>\*</sup> Total Error = %Bias + 2 x %CV

Total error was calculated using the absolute %Bias from the target SRM 967 values and total imprecision (%CV) determined at creatinine concentrations within 1 mg/dL of the SRM 967 target values.

Total Error Level  $1 = 0.84\% + 2 \times 4.95\% = 10.74\%$ .

Total Error Level  $2 = 2.70\% + 2 \times 3.18\% = 9.06\%$ .

Version Number: 1.0 Page 15 of 20

## **Lower Limits of Measurement**

A study was performed based on guidance from CLSI EP17-A2. Testing was conducted using 3 lots of the Alinity c Creatinine Reagent Kit on each of 2 instruments over a minimum of 3 days. The Limit of Blank (LoB), Limit of Detection (LoD), and Limit of Quantitation (LoQ) values are summarized below. These representative data support the lower limit of the measuring interval. 17

#### Serum/Plasma

|                  | mg/dL | μmol/L |
|------------------|-------|--------|
| LoB <sup>a</sup> | 0.03  | 2.7    |
| $LoD^b$          | 0.06  | 5.3    |
| LoQ <sup>c</sup> | 0.10  | 8.8    |

<sup>&</sup>lt;sup>a</sup>The LoB represents the 95th percentile from  $n \ge 60$  replicates of zero-analyte samples.

#### Urine

|                     | mg/dL | mmol/L |
|---------------------|-------|--------|
| LoB <sup>a</sup>    | 1.38  | 0.122  |
| $LoD^b$             | 2.07  | 0.183  |
| LoQ <sup>c, d</sup> | 5.00  | 0.442  |

<sup>&</sup>lt;sup>a</sup>The LoB represents the 95th percentile from  $n \ge 60$  replicates of zero-analyte samples.

# Linearity

A study was performed based on guidance from CLSI EP06-A.18

#### Serum/Plasma

This assay is linear across the measuring interval of **0.20 to 37.00 mg/dL** (17.7 to 3270.8  $\mu$ mol/L).

Alinity c Creatinine-11

CONTROLLED DOCUMENT

<sup>&</sup>lt;sup>b</sup>The LoD represents the lowest concentration at which the analyte can be detected with 95% probability based on  $n \ge 60$  replicates of low-analyte level samples.

<sup>&</sup>lt;sup>c</sup>The LoO was determined from n > 60 replicates of low-analyte level samples and is defined as the lowest concentration at which a maximum allowable precision of 20 %CV was met.

<sup>&</sup>lt;sup>b</sup>The LoD represents the lowest concentration at which the analyte can be detected with 95% probability based on  $n \ge 60$  replicates of low-analyte level samples.

<sup>&</sup>lt;sup>c</sup>The LoQ is defined as the lowest concentration at which a maximum allowable precision of 20 %CV was met.

<sup>&</sup>lt;sup>d</sup>This value represents the observed LoQ on the ARCHITECT System. The LoQ observed on the Alinity c analyzer supports this LoQ.

#### Urine

This assay is linear across the measuring interval of **5.00 to 740.00 mg/dL** (0.442 to 65.416 mmol/L).

## **Interference**

This study was performed on the AEROSET System.

## Potentially Interfering Endogenous Substances and Potentially Interfering Drugs

Interference studies were conducted using an acceptance criteria of  $\leq 10\%$  of the target value. Interference effects were assessed by Dose Response and Paired Difference methods, at the medical decision level of the analyte.

Medical Decision Level 1

| Potentially              | Interfer             | ent Level           | Target Level | Recovery      |  |
|--------------------------|----------------------|---------------------|--------------|---------------|--|
| Interfering<br>Substance | <b>Default Units</b> | Alternate Units     | (mg/dL)      | (% of Target) |  |
| Bilirubin                | 30 mg/dL             | 30 mg/dL 513 μmol/L |              | 98            |  |
|                          | 60  mg/dL            | 1026 μmol/L         | 1.55         | 72            |  |
| Hemoglobin               | 1000  mg/dL          | 10 g/L              | 1.40         | 105           |  |
|                          | 2000  mg/dL          | 20 g/L              | 1.40         | 109           |  |
| Intralipid               | 750  mg/dL           | 7.5 g/L             | 1.43         | 99            |  |
|                          | 1000  mg/dL          | 10.0 g/L            | 1.43         | 98            |  |
| Ascorbate                | 1.5 mg/dL            | 85 μmol/L           | 1.52         | 99            |  |
|                          | 3.0  mg/dL           | 170 μmol/L          | 1.52         | 99            |  |
| Glucose                  | 300  mg/dL           | 16.5 mmol/L         | 1.52         | 107           |  |
|                          | 600 mg/dL            | 33 mmol/L           | 1.52         | 116           |  |
| Protein                  | 10.6 g/dL            | 106 g/L             | 1.54         | 108           |  |
|                          | 14.3 g/dL            | 143 g/L             | 1.54         | 115           |  |

Medical Decision Level 2

| Potentially<br>Interfering | Interfer             | rent Level             | Target Level | Recovery      |  |
|----------------------------|----------------------|------------------------|--------------|---------------|--|
| Substance                  | <b>Default Units</b> | <b>Alternate Units</b> | (mg/dL)      | (% of Target) |  |
| Bilirubin                  | 30 mg/dL             | 513 μmol/L             | 5.33         | 95            |  |
|                            | 60  mg/dL            | $1026 \ \mu mol/L$     | 5.33         | 75            |  |

Version Number: 1.0 Page 17 of 20

| Potentially<br>Interfering | Interfer             | ent Level              | Target Level | Recovery      |
|----------------------------|----------------------|------------------------|--------------|---------------|
| Interfering<br>Substance   | <b>Default Units</b> | <b>Alternate Units</b> | (mg/dL)      | (% of Target) |
| Hemoglobin                 | 1000 mg/dL           | 10 g/L                 | 4.70         | 102           |
|                            | 2000 mg/dL           | 20 g/L                 | 4.70         | 103           |
| Intralipid                 | 750  mg/dL           | 7.5 g/L                | 4.62         | 99            |
|                            | 1000 mg/dL           | 10.0 g/L               | 4.62         | 99            |
| Ascorbate                  | 1.5 mg/dL            | 85 μmol/L              | 5.23         | 100           |
|                            | 3.0  mg/dL           | $170~\mu mol/L$        | 5.23         | 100           |
| Glucose                    | 300  mg/dL           | 16.5 mmol/L            | 5.00         | 101           |
|                            | 600  mg/dL           | 33 mmol/L              | 5.00         | 103           |
| Protein                    | 10.8 g/dL            | 108 g/L                | 5.57         | 99            |
|                            | 14.7 g/dL            | 147 g/L                | 5.57         | 99            |

For the urine application, acetic acid (8.5 N) up to 6.25 mL/dL, ascorbate up to 200 mg/dL, boric acid up to 250 mg/dL, glucose up to 1000 mg/dL, hydrochloric acid (6 N) up to 2.5 mL/dL, nitric acid (6 N) up to 5.0 mL/dL, protein up to 50 mg/dL, sodium carbonate up to 1.25 g/dL, sodium fluoride up to 400 mg/dL, and sodium oxalate up to 60 mg/dL demonstrated less than 10% interference.

Interferences from medication or endogenous substances may affect results. 19

# **Method Comparison**

Alinity c Creatinine-11

A study was performed based on guidance from CLSI EP09-A3 using the Passing-Bablok regression method.<u>20</u>

|                                    |       | Units  | n   | Correlation<br>Coefficient | Intercept | Slope | Concentration<br>Range |
|------------------------------------|-------|--------|-----|----------------------------|-----------|-------|------------------------|
| Alinity c                          | Serum | mg/dL  | 138 | 1.00                       | 0.03      | 0.97  | 0.65 - 35.07           |
| Creatinine vs ARCHITECT Creatinine |       | μmol/L | 138 | 1.00                       | 2.29      | 0.97  | 57.1 - 3100.2          |
|                                    | Urine | mg/dL  | 68  | 1.00                       | 1.00      | 1.01  | 11.01 - 640.40         |
|                                    |       | mmol/L | 68  | 1.00                       | 0.09      | 1.01  | 0.973 - 56.612         |

#### BIBLIOGRAPHY

- 1. Thomas L. Clinical Laboratory Diagnostics: Use and Assessment of Clinical Laboratory Results. Frankfurt/Main, Germany: TH-Books Verlagsgesellschaft mbH; 1998:374–377.
- 2. Jaffe M. Ueber den Niederschlag, welchen Pikrinsaure in normalem Harn erzeugt und uber eine neue Reaction des Kreatinins. *Hoppe Seylers Z Physiol Chem* 1886;10:391–400.
- 3. Folin O. Beitrag zur Chemie des Kreatinins und Kreatins Im Harne. *Hoppe Seylers Z Physiol Chem* 1904;41:223–242.
- 4. Fabiny DL, Ertingshausen G. Automated reaction-rate method for determination of serum creatinine with the CentrifiChem. *Clin Chem* 1971:17:696–700.
- 5. Soldin S, Henderson L, Hill G. The effect of bilirubin and ketones on reaction rate methods for the measurement of creatinine. *Clin Biochem* 1978:82–86.
- 6. US Department of Labor, Occupational Safety and Health Administration, 29 CFR Part 1910.1030, Bloodborne pathogens.
- 7. US Department of Health and Human Services. *Biosafety in Microbiological and Biomedical Laboratories*. 5th ed. Washington, DC: US Government Printing Office; December 2009.
- 8. World Health Organization. *Laboratory Biosafety Manual*. 3rd ed. Geneva: World Health Organization; 2004.
- 9. Clinical and Laboratory Standards Institute (CLSI). *Protection of Laboratory Workers From Occupationally Acquired Infections; Approved Guideline—Fourth Edition.* CLSI Document M29-A4. Wayne, PA: CLSI; 2014.
- 10. Rabinovitch A, Sarewitz SJ, Woodcock SM, et al. *Urinalysis and Collection Transportation, and Preservation of Urine Specimens; Approved Guideline—Second Edition (GP16-A2)*. Wayne, PA: The National Committee for Clinical Laboratory Standards, 2001.
- 11. Guder WG, da Fonseca-Wollheim F, Heil W, et al. *The Quality of Diagnostic Samples*. Darmstadt, Germany: GIT Verlag; 2001:24–25, 50–51.
- 12. US Pharmacopeial Convention, Inc. General notices. In: *US Pharmacopeia National Formulary*, 1995 ed (USP 23/NF 18). Rockville, MD: The US Pharmacopeial Convention, Inc; 1994:11.
- 13. Westgard JO. *Basic QC Practices*. 3rd ed. Madison, WI: Westgard Quality Corporation; 2010.
- 14. Junge W, Wilke B, Halabi A, et al. Determination of reference intervals for serum creatinine, creatinine excretion and creatinine clearance with an enzymatic and a modified Jaffé method. *Clin Chim Acta* 2004;344:137–148.
- 15. NKDEP Resources Web Site. Suggestions for laboratories. Revised April 28, 2015. Available at: http://www.niddk.nih.gov/health-information/health-communication-programs/nkdep/lab-evaluation/gfr-calculators/Pages/gfr-calculators.aspx. Accessed June

- 9, 2016.
- 16. Clinical and Laboratory Standards Institute (CLSI). Evaluation of Precision Performance of Quantitative Measurement Methods; Approved Guideline—Second Edition. CLSI Document EP05-A2. Wayne, PA: CLSI; 2004.
- 17. Clinical and Laboratory Standards Institute (CLSI). Evaluation of Detection Capability for Clinical Laboratory Measurement Procedures; Approved Guideline—Second Edition. CLSI Document EP17-A2. Wayne, PA: CLSI; 2012.
- 18. Clinical and Laboratory Standards Institute (CLSI). Evaluation of the Linearity of Quantitative Measurement Procedures: A Statistical Approach; Approved Guideline. CLSI Document EP06-A. Wayne, PA: CLSI; 2003.
- 19. Young DS. *Effects of Drugs on Clinical Laboratory Tests*, 4th ed. Washington, DC: AACC Press; 1995:3-190–3-208.
- 20. Clinical and Laboratory Standards Institute (CLSI). *Measurement Procedure Comparison and Bias Estimation Using Patient Samples; Approved Guideline—Third Edition*. CLSI Document EP09-A3. Wayne, PA: CLSI; 2013.

Version Number: 1.0 Page 20 of 20