Book Note 1.6

Considering the eigenvalue problem for the eigenvalue λ and eigenvector \vec{x} :

$$A\vec{x} + \epsilon \vec{B}(\vec{x}) = \lambda \vec{x} \tag{1}$$

In order for this to qualify as an algebric equation, A has to be a linear operator matrix. Letting, $\epsilon \vec{B}(\vec{x})$ as small perturbation, $\vec{B}(\vec{x})$ does not have to be linear. Let the unperturbed eigensolution with eigenvalue a and eigenvector \vec{e} has the form:

$$A\vec{e} = a\vec{e} \tag{2}$$

If matrix A is not symmetric, its transpose will have different eigenvector, let say $\vec{e^t}$ with the same eigenvalue. As left eigenvector of any matrix is equal to the right eigenvector of A^T , it can be written:

$$\vec{e^t}A = a\vec{e^t} \tag{3}$$

Restricting attention to the case where a is a single root with only one independent eigenvector \vec{e} . Then $\vec{e^t}$ is orthogonal to all other eigenvectors of A. Applying expansion in the power of ϵ starting from the unperturbed eigensolution:

$$\vec{x}(\epsilon) = \vec{e} + \epsilon \vec{x}_1 + \epsilon^2 \vec{x}_2 + \dots \tag{4}$$

$$\lambda(\epsilon) = a + \epsilon \lambda_1 + \epsilon^2 \lambda_2 + \dots$$
 (5)

Considering expansion of coefficients of e^n from (4) and (5):

at e^0 : $\vec{x}(0) = \vec{e}$ and $\lambda(0) = a$ at e^1 : $\vec{x}(e) = \vec{e} + e\vec{x}_1$ and $\lambda(1) = a + e\lambda_1$ Then applying into equation (1):

$$A\vec{e} = a\vec{e} \tag{6}$$

and

$$A\vec{x}_1 + \vec{B}(\vec{e}) = a\vec{x}_1 + \lambda_1 \vec{e} \tag{7}$$

rearranging equation (7):

$$(A-a)\vec{x}_1 = \lambda_1 \vec{e} - \vec{B}(\vec{e}) \tag{8}$$

From the left side of equation (8):

$$\vec{e^t} \cdot (A-a)\vec{x_1} = [\vec{e^t}(A-a)] \cdot \vec{x_1} = (a-a)\vec{e^t} \cdot \vec{x_1} = 0$$

Which means there is no component in the direction of \vec{e} , then (8) becomes:

$$\vec{e^t} \cdot [\lambda_1 \vec{e} - \vec{B}(\vec{e})] = 0 \tag{9}$$

Then, first perturbation of eigenvalue:

$$\lambda_1 = \frac{\vec{e^t} \cdot \vec{B}(\vec{e})}{\vec{e^t} \cdot \vec{e}} \tag{10}$$

If $\vec{B}(\vec{e})$ is nonlinear, then the eigenvalue is not independent of the magnitude of the eigenvector. Applying this back to equation (8):

$$(A-a)\vec{x}_1 = -\vec{B}\vec{e} + \frac{\vec{e}^t \cdot \vec{B}(\vec{e})}{\vec{e}^t \cdot \vec{e}}\vec{e}$$
 (11)

In this equation, the second term refers to the part where $\vec{B}(\vec{e})$ is parallel to \vec{e} . Then equation (11) as a whole, refers to the part where $\vec{B}(\vec{e})$ is perpendicular to \vec{e} . So:

$$(A-a)\vec{x}_1 = -\vec{B}(\vec{e}) + \frac{\vec{e}^{t} \cdot \vec{B}(\vec{e})}{\vec{e}^{t} \cdot \vec{e}} \vec{e} = -\vec{B}(\vec{e})_{\perp}$$
 (12)

As the right side has no component in \vec{e} , (A-a) can be inverted to obtain solution for $\vec{x_1}$. But this will not be an unique solution as it is possible to add an arbitrary multiple of to without changing $(A-a)\vec{x_1}$, now the solution for $\vec{x_1}$ becomes:

$$\vec{x}_1 = -(A - a)^{-1} \vec{B}(\vec{e})_{\perp} + k_1 \vec{e}$$
 (13)

Where k_1 is any arbitrary scalar. Now equation (13) becomes:

$$\vec{x}_1 = -(A - a)^{-1} \left(-\vec{B}(\vec{e}) + \frac{\vec{e}^t \cdot \vec{B}(\vec{e})}{\vec{e}^t \cdot \vec{e}} \vec{e} \right) + k_1 \vec{e}$$
 (14)

Now, $-(A-a)^{-1}$ is restricted only in the orthogonal direction of \vec{e} . If the complete eigendecomposition of A is known, then writing x_1 as sum of all other eigenvectors $\vec{e}^{(j)}$, equation (14) becomes:

$$\vec{x}_1 = \sum_{j} \frac{\vec{e}^{(j)t} \cdot \vec{B}(\vec{e})}{(a - a^j)(\vec{e}^{(j)t} \cdot \vec{e}^{(j)})} \vec{e}^{(j)} + k_1 \vec{e}$$
 (15)

References

[1] Hinch, E. (1991). Perturbation Methods (Cambridge Texts in Applied Mathematics). Cambridge: Cambridge University Press. doi:10.1017/CBO9781139172189