Email: sasha@gruzberg.ru

Telegram: @alexgruzberg

Алгоритм быстрого итеративного уточнения разложения матрицы по сингулярным значениям

Напомним, что разложением матрицы $A \in \mathbb{R}^{m \times n}$ по сингулярным значениям (SVD) называется такое соотношение

$$A = U\Sigma V^T, \tag{1}$$

где $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ — ортогональные матрицы, составленные из левых сингулярных векторов $u_{(i)} \in \mathbb{R}^m$, i = 1, ..., m и правых сингулярных векторов $v_{(i)} \in \mathbb{R}^n$, i = 1, ..., n соответственно, а $\Sigma \in \mathbb{R}^{m \times n}$ — прямоугольная диагональная матрица, составленная из сингулярных значений $\sigma_i \in \mathbb{R}$, i = 1, ..., n (полагается, что $m \geq n$).

Авторы Yuki Uchino, Takeshi Terao и Katsuhisa Ozaki предлагают быстрый (по сравнению с иными описанными в [1]) алгоритм для полного разложения матрицы по сингулярным значениям. Здесь и далее полагается, что сингулярные значения удовлетворяют следующему соотношению:

$$\sigma_1 > \sigma_2 > \sigma_3 > \dots > \sigma_n$$

а их приближённые значения $\tilde{\sigma}_i$ таковы, что $\tilde{\sigma}_i \neq \tilde{\sigma}_j$ для $i \neq j$.

На вход алгоритма поступает матрица $A \in \mathbb{R}^{m \times n}$ и матрицы приближённых сингулярных векторов $\widehat{U} \in \mathbb{R}^{m \times m}$, $\widehat{V} \in \mathbb{R}^{n \times n}$. На выходе ожидается получение матриц уточнённых сингулярных векторов $\widetilde{U} \in \mathbb{R}^{m \times m}$, $\widetilde{V} \in \mathbb{R}^{n \times n}$ и матрицы уточнённых сингулярных значений $\widetilde{\Sigma} \in \mathbb{R}^{m \times n}$. Опишем алгоритм пошагово:

1. $P \leftarrow \left(A\hat{V}\right)_h$ //символ $(\cdot)_h$ означает вычисление с двойной точностью;

2.
$$Q \leftarrow \left(A^T \widehat{U}_1\right)_h //\widehat{U}_1 \in \mathbb{R}^{m \times n}$$
 – левый блок блочной матрицы $\left(\widehat{U}_1 \widehat{U}_2\right) = \widehat{U}$;

3.
$$r_{ii} \leftarrow (1 - (\hat{u}_{(i)})^T \hat{u}_{(i)})_h$$
, for $(1 \le i \le n)$;

4.
$$s_{ii} \leftarrow \left(1 - \left(\hat{v}_{(i)}\right)^T \hat{v}_{(i)}\right)_h$$
, for $(1 \le i \le n)$;

5.
$$t_{ii} \leftarrow ((\hat{u}_{(i)})^T \hat{p}_{(i)})_h$$
, for $(1 \le i \le n) // P = (p_{(1)}, p_{(2)}, ..., p_{(n)});$

6.
$$\tilde{\sigma}_i \leftarrow \left(\frac{t_{ii}}{1 - (r_{ii} + s_{ii})/2}\right)_h$$
, $for (1 \le i \le n)$;

7.
$$\tilde{\Sigma}_n \leftarrow diag(\tilde{\sigma}_1, \tilde{\sigma}_2, ..., \tilde{\sigma}_n);$$

8.
$$\tilde{\Sigma} \leftarrow \left(\tilde{\Sigma}_n, O_{n,m-n}\right)^T / O_{n,m-n} \in \mathbb{R}^{n \times (m-n)}$$
 — матрица нулей;

9.
$$C_{\gamma} \leftarrow (P - \widehat{U}_1 \widetilde{\Sigma}_n)_{h};$$

10.
$$C_{\delta} \leftarrow \left(Q - \hat{V}\tilde{\Sigma}_n\right)_h$$
;

11. $C_{\alpha} \leftarrow (\widehat{U}_{1}^{T} C_{\gamma})_{l}$ //символ $(\cdot)_{l}$ означает вычисление с одинарной точностью;

12.
$$C_{\beta} \leftarrow (\hat{V}^T C_{\delta})_l$$
;

13.
$$D \leftarrow (\tilde{\Sigma}_n C_{\alpha} + C_{\beta} \tilde{\Sigma}_n)_b // D = (d_{ij});$$

14.
$$E \leftarrow (C_{\alpha}\tilde{\Sigma}_n + \tilde{\Sigma}_n C_{\beta})_h // E = (e_{ij});$$

15.
$$\tilde{g}_{ij} \leftarrow \begin{cases} \left(\frac{d_{ij}}{\tilde{\sigma}_{j}^{2} - \tilde{\sigma}_{i}^{2}}\right)_{h}, (i \neq j) \\ \left(\frac{s_{ii}}{2}\right)_{h}, (otherwise) \end{cases}$$
, for $(1 \leq i, j \leq n)$;

16.
$$\tilde{f}_{ij} \leftarrow \begin{cases} \left(\frac{e_{ij}}{\tilde{\sigma}_{j}^{2} - \tilde{\sigma}_{i}^{2}}\right)_{h}, (i \neq j) \\ \left(\frac{r_{ii}}{2}\right)_{h}, (otherwise) \end{cases}$$
, for $(1 \leq i, j \leq n) // \tilde{F}_{11} = (\tilde{f}_{ij});$

17.
$$\tilde{F}_{12} \leftarrow \left(\tilde{\Sigma}_n^{-1} P^T \hat{U}_2\right)_h;$$

18.
$$\tilde{F}_{21} \leftarrow \left(\left(\widehat{U}_2^T C_{\gamma} \right)_l \widetilde{\Sigma}_n^{-1} \right)_h;$$

19.
$$\tilde{F}_{22} \leftarrow \left(\frac{1}{2} \left(I_{m-n} - \widehat{U}_2^T \widehat{U}_2\right)\right)_h /\!/ I_{m-n} \in \mathbb{R}^{(m-n) \times (m-n)}$$
 — единичная матрица;

20.
$$\widetilde{U} \leftarrow \left(\widehat{U} + \left(\widehat{U}\widetilde{F}\right)_{l}\right)_{h} /\!/\widetilde{F} = \begin{pmatrix} \widetilde{F}_{11} & \widetilde{F}_{12} \\ \widetilde{F}_{21} & \widetilde{F}_{22} \end{pmatrix}$$
 — блочная матрица, где $\widetilde{F}_{11} \in \mathbb{R}^{n \times n}$, $\widetilde{F}_{12} \in \mathbb{R}^{n \times (m-n)}$, $\widetilde{F}_{21} \in \mathbb{R}^{(m-n) \times n}$, $\widetilde{F}_{22} \in \mathbb{R}^{(m-n) \times (m-n)}$; 21. $\widetilde{V} \leftarrow \left(\widehat{V} + \left(\widehat{V}\widetilde{G}\right)_{l}\right)_{h} /\!/\widetilde{G} = (\widetilde{g}_{ij})$.

Общая «стоимость» алгоритма составляет $3m^3 + 2m^2n + 3mn^2 + 4n^3$ операций в лучшем случае и $4m^3 + 4mn^2 + 4n^3 -$ в худшем, где

- $2n^3$: $\hat{V}^T C_{\delta}$;
- $2mn^2$: $A\widehat{V}$, $A^T\widehat{U}_1$, $\widehat{U}_1^TC_{\gamma}$;
- $2mn(m-n): P^T \widehat{U}_2, \widehat{U}_2^T C_{\gamma};$
- $m(m-n)^2$ или $2m(m-n)^2$: $\widehat{U}_2^T\widehat{U}_2$;
- $2m^3$: $\widehat{U}\widetilde{F}$;
- $2n^3: \hat{V}\tilde{G}$.

Список литературы

 Uchino Yuki, Terao Takeshi, Ozaki Katsuhisa. 2022.08.05 – Acceleration of Iterative Refinement for Singular Value Decomposition. 10.21203/rs.3.rs-1931986/v1.