A Book of Abstract Algebra (2nd Edition)

=	Chapter 27, Problem 3ED	Bookmark	Show all steps: ON	K 7 K 3
Problem				
<	Let F be any field. Prove part: If cd is algebraic over F , then c is algebraic over F , then c is algebraic over $F(d)$. If $c+d$ is algebraic over F , then c is algebraic over $F(d)$ (Assume $c \neq 0$ and $d \neq 0$.)			>
Step-by-step solution				
	Step 1 of 4 ^			
	If cd is algebraic over F , then c is algebraic over $F(d)$. If $c+d$ is algebraic over F , then c is algebraic over $F(d)$. (assume $c \neq 0$ and $d \neq 0$)			
	Comment			
	Step 2 of 4 ^			
	Since cd is algebraic over F , there exists a polynomial $f(x) \in F[x]$ such that $f(cd)$. We need to find a polynomial over $F(d)$ such that c is root of that polynomial.			
	Consider the polynomial $g(x) = f(xd)$ in $F(d)[x]$.			
	Then, $g(c) = f(cd) = 0.$			
	Therefore, c is also algebraic over $F(d)$.			
	Comment			
Step 3 of 4 ^				
	Now since $c, d \neq 0$ is algebraic over F , then t	here exists $f(x) \in F$	[x] such that $f(c+d)=0$	
	Consider $h(x) = f(x+d)$ in $F(d)$. Then,			
	h(c) = f(c+d) = 0 Therefore, c is also algebraic over $F(d)$.			
	Comment			
Step 4 of 4 ^				
	Comment			

2 4 B