Main Board:

Power Tests:

1. TPS54226PWPR (3.3V Voltage Regulator)

- Apply 7.4V (Vsys) to battery terminals using a DC power supply
- ✓ Measure output voltage on TPS54226 using a multi

2. TPS7A4501DCQT (5V Voltage Regulator)

- Apply 7.4V (Vsys) to battery terminals using a DC power supply
- Measure output voltage on TPS7A4501 using a multimeter in voltage mode across the capacitor (C56)
- ☑ Result: Output voltage should be 5V +/- 0.1V

3. BQ25883RGER (USB Charger)

- ☑ Disconnect battery terminal (J10) and connect USB cable from PC to mainboard
- ☑ When USB is plugged, it can charge the battery and power the system (3.3V and 5V lines are active)

MCU Tests:

1. RP2040 (Main MCU)

2. MR25H40MDF (Flash storage)

- ✓ Install Circuitpython firmware on MCU

3. MAX706RESA+ (Circuit Watch Dog) Test 1:

- ✓ Write Circuitpython test script to enable Watch Dog Timer (WDT) by setting the WDT_EN pin high
- Mainboard resets within 1.6 seconds

Test 2:

- ✓ Write Circuitpython test script to toggle the WDT_WDI pin between high and low (pulse) every 0.5 seconds
- Mainboard should not reset

Device Tests:

1. SD Card

- Measure voltage across capacitor C32/C33, to be 3.3V +/- 0.05V
- ✓ Write circuitpython script to establish SPI connection. Script should not return errors.

2. BNO085 (IMU)

- ✓ Write circuitpython script to establish I2C connection. Script should not return errors.
- Accelerometer can respond to linear acceleration changes, and does not return null or invalid values
- ☑ Gyroscope can respond to the angular velocity changes and does not return null or invalid values
- ✓ Magnetometer can respond to magnetic fields changes and does not return null or invalid values

3. DS3231S (RTC)

- Measure voltage across capacitor (C34), to be
 3.3∨ +/- 0.05∨
- ✓ Write circuitpython script to establish I2C connection. Script should not return errors.
- ✓ Write circuitpython script to set RTC to correct time.
- Remove power to the mainboard
- ✓ Let RTC remain powered through button cell only for 15 minutes
- ☑ RTC time should be within 1 second of real time

Communications Tests:

1. E22-900M30S (LoRa)

- ☑ Write circuitpython script to establish SPI connection. Script should not return errors.
- □ Power consumption should be under 1W
- □ Power consumption should be under 0.25W

2. S1216V8 (GNSS Receiver)

- Measure voltage across capacitor (C51?), to be 3.3V +/- 0.05V
- Established UART communication

External Connector

Camera Board		
	Proper power connection	
	Successful RX/TX transmission	
	Successful I2C communication	
D 11		
Batte	e ry Board	
	Proper power connection	
	Successful I2C communication	
	Successful battery alert signal	
Jetse	on Board	
	Proper power connection	
	Successful I2C communication	
	Successful SPI communication	
	Proper slave select signal from RP2040	
VV7	Boards	
/ Z		
	Proper power connection	
	Successful I2C communication	

Battery Board:

Pre-test procedure:

- Use Power supply as a power source instead of Battery cells
- Apply 2 Power supplies in series (suggest):
 First one 3.7V->left bottom pad-> + (positive)
 ->Right up pad-> (negative)
 Second one 3.7V->Right up pad-> + (positive)
 ->Left up pad-> (negative)

Or

1 Power supply:

7.4V->left bottom pad-> + (positive)
->Left up pad-> - (negative)

Power Tests:

1. Battery Board 3.3V	(from main	board)
-----------------------	------------	--------

- ☐ Connect the Mainboard from the port J10
- □ Measure output voltage using a multimeter in voltage mode across the capacitor (C16)
- □ Result: Output voltage should be 3.3V +/- 0.1V

2. Output Power (J7)

 Measure output voltage using a multimeter in voltage mode (between SYSTEM_VDD and SYSTEM_VSS) Result: Output voltage should be 7.4V +/- 0.1V 	
Tresuit. Output voitage should be 7.4 v 1/- 0.1	V
Battery Monitor	
MAX17205G+	
 The voltage across C6 shall be 3.7 to 4.2V; Voltage across C5 shall be 3.7 to 4.2V. MCU can detect its I2C address Proper voltage readings and other information like the State of Charge sent through I2C Send Alert signal once bad things happen 	l
Battery Bus Protection	
 If the CHARGE_EN and DISCHARGE_EN are low, the SYSTEM_VDD should be approximatel equal to the battery voltage (BATT2). CHARGE_ACTIVE should only be high if charging, and DISCHARGE_ACTIVE should only be high if the battery discharges. When discharging, the U8 Gate-Ground should be 	

low. When charging, the U8 Gate-Ground should be low, and the U9 Gate-Ground should be high.

Battery Temperature Protection
BTS5090-1EJA
☐ C18 measures 7.4V.
It shall activate and deactivate based on the
signal from the IO Expander
It shall cut off the current if the temperature
exceeds a certain threshold.
Resistor Array
☐ Generate enough heat to warm up the
batteries
☐ The circuit can withstand the heat without
damaging itself
I/O Expander
PCA9536D
□ C16 is Properly powered by 3.3V
☐ Establish I2C connection and send out proper
signals

□ While discharging, successfully receive the CHARGE_ACTIVE and DISCHARGE_ACTIVE signals from IO0 and IO1
 □ While discharging, successfully send the HEATER_ENABLE signals from IO2 and IO3
 Pre-test procedure:

 • Remove the external power source
 • Use two 18650 batteries and load them on the battery holder

Battery Test:

- Measure output voltage using a multimeter in voltage mode
 - OV at BATT0
 - 3.7V to 4.2V at BATT1
 - 3.7V to 4.2V at BATT2
- No reverse charging between batteries (Each Battery should have approximately the same voltage)

Output Power (J7):

 Measure output voltage using a multimeter in voltage mode (between SYSTEM_VDD and SYSTEM_VSS) Result: Output voltage should be 7.4V +/- 0.1V
Pre-test procedure:
2 power sources (suggested):
One on the pad: left down + / left up -
One on J7: SYSTEM_VDD + / SYSTEM_VSS -
Battery Bus Detection:
1. S-8209AAA-T8T1U (Discharge/Over Power
Protection)
☐ Change the Pad power source to 8.4V
☐ Measure DISCHARGE_EN voltage using a
multimeter in voltage mode, It should be HIGH
☐ Measure the voltage between two sides of U4
to see if it is the same
2. S-8209AAA-T8T1U (Changing/Under Power
Protection)
☐ Change the Pad power source to 4.8V
☐ Measure CHARGE_EN voltage using a
multimeter in voltage mode, It should be HIGH

□ t	Measure the voltage between two sides of U6 o see if it is the same
3. LT	C4412xS6 (No need To test)
Inte	r faces
J10	
	Send out the correct alert signal
	Send proper I2C data
	Send 3.3V power
J7	
	Send out the correct VDD power
18	
	Send out the correct alert signal
	Send proper I2C data
	Send 3.3V power

X/Y Board:

Pre-test procedure:

☐ Connect with Deployables with J1, and
connect with Mainboard with J2.
☐ The mainboard should also connect to the
Batteryboard and follow the pre-test procedure
of the Batteryboard.
☐ Deployables should face the sun or artificial
sunlight for power generation.

Power Tests:

1. DRV8235RTER (Coil Driver)

- ☐ If the Solar Panel cannot support itself or sunlight isn't available, apply 7.4V (Vsys) to battery terminals using a DC power supply.
- ☐ Measure output voltage on DRV8235RTER using a multimeter in voltage mode across the capacitor (C26/C27)
- □ Result: Input voltage should be 7.4V +/- 0.1V

2. OPT4003DNPRQ1 (Light Sensor)

☐ If t	he Solar Panel cannot support itself or
sunli	ght isn't available, apply 7.4V (Vsys) to
	ery terminals using a DC power supply.
	easure input voltage on OPT4003DNPRQ1
	g a multimeter in voltage mode across the
	G
•	ncitor (C36).
⊔ Re	esult: Input voltage should be 3.3V +/- 0.05V
3. LTC31	130 (MPPT)
□ Me	easure the voltage generated (Vin) from the
deplo	oyable using a multimeter in voltage mode
acros	ss the capacitor (C13-C16).
	out voltage between Vin and Ground should
•	t least higher than 10V as a result of the
MPP	
	eally, the input voltage between Vin and
Grou	and should be about 16V as a result of the
MPP	°C.
	itput voltage between Vout and Ground
shou	lld be higher than 7.4V as a result of FB.
4 LTC44	112vS6 (Or ing)
	112xS6 (Or-ing)
	easure the voltage using a multimeter in
volta	ge mode across the capacitor (C1).

	Result: Input voltage should be ?V +/- ?V
□ M volt	11176-1ARMZ-R7 (Power Monitor) Measure the voltage using a multimeter in tage mode between R124 and the Ground. Result: Input voltage should be 7.4V +/- 0.1V
Devic	e Tests:
U (I the IF acc	8235RTER (Coil Driver) f needed) Switch PERI_3V3 to the ground, driver should be in low-power sleep mode. PROPI should increase and decrease cording to COIL_P and COIL_N. Vrite circuitpython script to establish I2C nection. Script should not return errors. etect address)
□ V cor □ C	4003DNPRQ1 (Light Sensor) Write circuitpython script to establish I2C nection. Script should not return errors. Complete/Partial/Not block the sensor, should a significant increases in lux value.

3. LTC3130 (MPPT)

☐ Write circuitpython script to establish I2C
connection. Script should not return errors.
☐ Input voltage between Vin and Ground should
be at least higher than 10V as a result of the
MPPC.
☐ Ideally, the input voltage between Vin and
Ground should be about 16V as a result of the
MPPC.
□ Output voltage between Vout and Ground

should be higher than 7.4V as a result of FB.

Solar Cell Tests:

1.

-Z Board:

Pre-test procedure: Connect with Mainboard with J1. The mainboard should also connect to the Batteryboard and follow the pre-test procedure of the Batteryboard. Tying the fishing line on the burn wires. **Power Tests:** 1. DRV8235RTER (Coil Driver) If the Solar Panel cannot support itself or sunlight isn't available, apply 7.4V (Vsys) to battery terminals using a DC power supply. Measure output voltage on DRV8235RTER using a multimeter in voltage mode across the capacitor (C10/C9) Result: Input voltage should be 7.4V +/- 0.1V 2. OPT4003DNPRQ1 (Light Sensor) If the Solar Panel cannot support itself or

sunlight isn't available, apply 7.4V (Vsys) to

battery terminals using a DC power supply.

Measure input voltage on OPT4003DNPRQ1 using a multimeter in voltage mode across the capacitor (C5).
☐ Result: Input voltage should be 3.3V +/- 0.05V
3. PCA9633DP2 (Burn Wire Controller)
☐ Measure input voltage on PCA9633DP2 using a multimeter in voltage mode across the capacitor (C13)
☐ Result: Input voltage should be 3.3V +/- 0.05V
4. IM11DGR (Power Relay)
 Measure input voltage on IM11DGR using a multimeter in voltage mode crossing C16. Result: Input voltage should be 3.3V +/- 0.05V Measure load on IM11DGR Pin 4 and Pin 5 using a multimeter in voltage mode. Result: The outcome should be 7.4V +/- 0.1V
Device Tests: 1. DRV8235RTER (Coil Driver)
(If needed) Switch PERI_3V3 to the ground, the driver should be in low-power sleep mode.

	PROPI should increase and decrease
acc	ording to COIL_P and COIL_N.
	Vrite circuitpython script to establish I2C
con	nection. Script should not return errors.
(De	etect address)
2. OPT	4003DNPRQ1 (Light Sensor)
	the Solar Panel cannot support itself or
sun	light isn't available, apply 7.4V (Vsys) to
batt	tery terminals using a DC power supply.
\square N	leasure input voltage on OPT4003DNPRQ1
	ng a multimeter in voltage mode across the acitor (C5).
□R	Result: Input voltage should be 3.3V +/- 0.05V
3. PCA	9633DP2 (Burn Wire Controller)
	Vrite circuitpython script to establish I2C
con	nection. Script should not return errors.
(De	etect address)
□В	y soldering or desoldering R11, R12, R13,
	R37, the detected address should change ording to the datasheet.
	Vrite circuitpython script to manipulate the put of LED0 to LED3 pins.

The signal output from LED0 to LED3 should correspond to circuitpython code.					
 4. IM11DGR (Power Relay) When the BURN_RELAY_A signal from LED3 pins of PCA9633DP2 is high, the switch shall move to pin4, driving VBURN_A_IN high. 					
 5. Burn Wire While the VBURN_A_IN is high, if the BURN_EN is low, the corresponding burn wire should be heated. Once the burn wire increases temperature, the fishing line should melt. 					
6. DXW21HN5011BL (Transformer)					
7. CGGBP.18.4.A.02 (GPS Antenna)					
+Z Board: Pre-test procedure:					

Mount all four sun sensor micro PCBs on each
edge at 45 degrees.
Connect with Mainboard with J1.
The mainboard should also connect to the
Batteryboard and follow the pre-test procedure
of the Batteryboard.
Power Tests:
1. DRV8235RTER (Coil Driver)
If the Solar Panel cannot support itself or
sunlight isn't available, apply 7.4V (Vsys) to
battery terminals using a DC power supply.
☐ Measure output voltage on DRV8235RTER
using a multimeter in voltage mode across the
capacitor (C11/C12)
☐ Result: Input voltage should be 7.4V +/- 0.1V
2. Micro PCBs (Sun Sensors)
If the Solar Panel cannot support itself or
sunlight isn't available, apply 7.4V (Vsys) to
battery terminals using a DC power supply.
 Measure output voltage on Micro PCBs using
a multimeter in voltage mode across the
capacitor (C8/C5/C6/C7).

		Result: Input voltage should be 3.3V +/- 0.05V
3.	LT	C3130 (MPPT)
	a □ b	Measure the voltage generated (Vin) from the eployable using a multimeter in voltage mode cross the capacitor (C18-C21). Input voltage between Vin and Ground should e at least higher than 10V as a result of the IPPC.
		Ideally, the input voltage between Vin and Ground should be about 16V as a result of the IPPC.
	□ sl	Output voltage between Vout and Ground hould be higher than 7.4V as a result of FB.
4.	LT	C4412xS6 (Or-ing)
		Measure the voltage using a multimeter in oltage mode across the capacitor (C10). Result: Input voltage should be ?V +/- ?V
5.	ΑD	M1176-1ARMZ-R7 (Power Monitor)
		Measure the voltage using a multimeter in
	V	oltage mode between R55 and the Ground.
		Result: Input voltage should be 7.4V +/- 0.1V

Device Tests:

1. DRV8235RTER (Coil Driver)
 (If needed) Switch PERI_3V3 to the ground, the driver should be in low-power sleep mode. IPROPI should increase and decrease according to COIL_P and COIL_N. Write circuitpython script to establish I2C connection. Script should not return errors. (Detect address)
 Micro PCBs (Sun Sensors) Write circuitpython script to establish I2C connection. Script should not return errors. Complete/Partial/Not block the sensor, should see significant increases in lux value.
3. LTC3130 (MPPT)
 Write circuitpython script to establish I2C connection. Script should not return errors. Input voltage between Vin and Ground should be at least higher than 10V as a result of the MPPC.

- ☐ Ideally, the input voltage between Vin and Ground should be about 16V as a result of the MPPC.
- ☐ Output voltage between Vout and Ground should be higher than 7.4V as a result of FB.

Solar Cell Tests:

1.