AM & AI Predictive Performance in Additive Manufacturing

Contents

1. Introduction

Problem

Goal

AM & ML Roadmap

2. Process Optimization

Data

Feature Selection

Algorithm Selection

- 3. Codebase
- 4. References

Problem

- → What problem are we trying to solve?
 - Limitations in AM part performance
 - Expensive trial and error procedure
- → Why should we care?
 - Mass customization: design, geometries, material control, unique microstructures & properties, etc.
 - ◆ Shrink the supply chain
 - Applications in aerospace, defense, biomedical industries, others
- → How are we approaching the problem?
 - ◆ ML for AM roadmap

Goal

- Outline a standard that allows consistent, quality printing of metals using laser powder bed fusion with a focus on process parameter optimization
- → Scrape the internet for data and build high performing models that guide process parameter selection
- → Report findings
- → Validate models in the lab with actual builds (time and COVID-19 allowing)

AM & ML Roadmap

¹ C. Wang, X.P. Tan, S.B. Tor, C.S. Lim, "Machine learning in additive manufacturing: State-of-the-art and perspectives", Additive Manufacturing, Volume 36, 2020, 101538, ISSN 2214-8604, https://doi.org/10.1016/j.addma.2020.101538.

Data

- → NIST build data
 - Tensile strength tests
 - ASTM test standards
 - Data augmentation
- → Research papers
- → Outreach
- → AM organizations
- → Finite Element & <u>Simulation</u> techniques?

Feature Selection

Table 1NN application to build process–property–performance linkage.

AM technique	Processing parameters	Property/performance	Ref.
FDM	Layer thickness, orientation, raster angle, raster width, air gap	Compressive strength	[39]
FDM	Layer thickness, orientation, raster angle, raster width, air gap	Wear volume	[40]
FDM	Orientation, slice thickness	Volumetric error	[41]
FDM	Layer thickness, orientation, raster angle, raster width, air gap	Dimensional accuracy	[42]
FDM	Layer thickness, orientation, raster angle, raster width, air gap	Dimensional accuracy	[43]
BJ	Layer thickness, printing saturation, heater power ration, drying time	Surface roughness	[44]
BJ	Layer thickness, printing saturation, heater power ration, drying time	Shrinkage rate (Y-axis)	[44]
BJ	Layer thickness, printing saturation, heater power ration, drying time	Shrinkage rate (Z-axis)	[44]
SLS	Laser power, scan speed, scan spacing, layer thickness	Density	[45]
SLS	Laser power, scan speed, scan spacing, layer thickness	Dimension	[46]
SLS	Z height, volume, bounding box	Build time	[47]
SLS	Laser power, scan speed, hatch spacing, layer thickness, scan mode, temperature, interval time	Shrinkage ratio	[48]
SLS	Layer thickness, laser power, scan speed	Open porosity	[49]
SLS	Laser power, scan speed, hatch spacing, layer thickness, powder temperature	Tensile strength	[50]
SLS	Laser power, scan speed, hatch spacing, layer thickness, scan mode, temperature, interval time	Density	[51]
SL	Layer thickness, border overcure, hatch overcure, fill cure depth, fill spacing and hatch spacing	Dimensional accuracy	[52]
LMD	Laser power, scanning speed, powder feeding rate	Geometrical accuracy	[53]
EBM	Spreader translation speed, rotation speed	Volume, roughness	[54]
WAAM	Bead width, height, center distance of adjacent deposition paths	Offset distance	[55]

SL: stereolithography; LMD: laser metal deposition; WAAM: wire and arc additive manufacturing.

³ Xinbo Qi, Guofeng Chen, Yong Li, Xuan Cheng, Changpeng Li, "Applying Neural-Network-Based Machine Learning to Additive Manufacturing: Current Applications, Challenges, and Future Perspectives," Engineering, Volume 5, Issue 4, 2019, Pages 721-729, ISSN 2095-8099, https://doi.org/10.1016/j.eng.2019.04.012.

Algorithm Selection

- → Performance metric prediction
 - Regressions
 - Support vector machines
 - Recurrent Neural Network
- → Parameter Optimization
 - Genetic algorithm
- → Dynamic parameter adjustment
 - Reinforcement learning

² Francis Ogoke, Amir Barati Farimani, "Thermal control of laser powder bed fusion using deep reinforcement learning," Additive Manufacturing, Volume 46, 2021, 102033, ISSN 2214-8604, https://doi.org/10.1016/j.addma.2021.102033.

Codebase

References

- C. Wang, X.P. Tan, S.B. Tor, C.S. Lim, "Machine learning in additive manufacturing: State-of-the-art and perspectives," Additive Manufacturing, Volume 36, 2020, 101538, ISSN 2214-8604, https://doi.org/10.1016/j.addma.2020.101538.
- 2. Francis Ogoke, Amir Barati Farimani, "Thermal control of laser powder bed fusion using deep reinforcement learning," *Additive Manufacturing*, Volume 46, 2021, 102033, ISSN 2214-8604, https://doi.org/10.1016/j.addma.2021.102033.
- 3. Xinbo Qi, Guofeng Chen, Yong Li, Xuan Cheng, Changpeng Li, "Applying Neural-Network-Based Machine Learning to Additive Manufacturing: Current Applications, Challenges, and Future Perspectives," *Engineering*, Volume 5, Issue 4, 2019, Pages 721-729, ISSN 2095-8099, https://doi.org/10.1016/i.eng.2019.04.012.