Lipidomics Data Analysis Workshop

September 23, 2021

Outline

- Overview of lipidomics methods
 - Extraction considerations & internal standards
 - Two different HPLC-MS/MS methods
 - Polar lipids method
 - Neutral lipids method
- Data analysis workflow
 - MRM generation (before analysis)
 - View chromatograms in Analyst
 - Identifying correct TAG-FA MRM transitions
 - Integrating HPLC peaks in Multiquant
 - Formatting data table for R
 - Formatting R script for analysis
 - Troubleshooting

<u>Lipidomics Workflow — from extraction to analysis</u>

Extraction considerations & internal standards

- Which extraction protocol to use?
 - Either the MTBE or IPA/CHCl₃ (i.e. "Chapman method")
 - Some considerations:
 - Resuspend in CHCl₃/MeOH (1:1) solvent for Chapman method
 - Extract at room temperature for MTBE method
 - Possibility to normalize by protein concentration with MTBE method(?)
- Which internal standards and how much?
 - UltimateSPLASH ONE (Avanti Polar Lipids, ca. no. 330820)
 - 10 μL per ~10-50 mg tissue extracted
 - Conc. in mix = $25 150 \mu g/mL$
 - Amt. added = 0.3 1.5 ng (between 0.2 2 nmol)
 - If using other internal standards
 - Aim for similar amounts as above for the specific lipid class
 - Use at least 1 per lipid class of interest (ideally 2-3 covering different FA lengths and degrees of unsaturation)

Two different HPLC-MS/MS methods

- Solvents:
 - A) AcN / H₂O / Hex (92:6:2) + 2 mM NH₄Ac
 - B) AcN / H₂O (50:50) + 2 mM NH₄Ac
- Column: Phenomenex NH₂ Luna Column
 (3 μm, 100 Å, 150 x 4.6 mm)
- Lipid species: PC, PE, PI, PG, PS, lyso species, MGDG, DGDG, SQDG

<u>Neutral lipids</u>

- Solvents:
 - A) ACN / H_2O (60:40) + 10 mM NH_4COOH + 0.1% CHOOH
 - B) IPA / ACN / H₂O (90:10:1) + 10 mM NH₄COOH + 0.1% CHOOH
- Column: ThermoFisher Accucore Core-shell C30 silica (2.6 μm, 150 Å, 150 x 2.1 mm)
- Lipid species: MAG, DAG, TAG

Polar lipids method and parameters

Solvents: A) AcN / H₂O / Hex (92:6:2) + 2mM NH₄Ac

B) AcN / H_2O (50:50) + 2mM NH_4Ac

Column: Phenomenex NH₂ Luna Column

Temp: 25°C

Flow rate: 1 mL/min

Inj. vol.: 5 μL

Polarity: negative

Scan: scheduled MRM

Polar lipids general fragmentation and MRM transition

Parent ion (Q1): $[M - H]^{-}$ (exception PC and LPC as $[M + Ac]^{-}$)

Fragment ion (Q3): [FA – H]

Note: Only one of the FAs is detected

Neutral lipids method and parameters

Solvents: A) AcN / H₂O (60:40)

+ 10mM NH₄CHOOH + 0.1% CHOOH

B) IPA / AcN / H₂O (90:10:1)

+ 10mM NH₄CHOOH + 0.1% CHOOH

Column: ThermoFisher Accucore C30 Core Shell

Temp: 40°C

Flow rate: 0.35 mL/min

Inj. vol.: 5 μL

Polarity: positive

Scan: MRM

Neutral lipids general fragmentation and MRM transition

TAG

MRM generation and the loss of each potential FA in TAG

10 fatty acids = [16:0, 18:3, 18:2, 18:1, 18:0, 20:2, 20:1, 20:0, 22:1, 22:0]

Arabidopsis thaliana

$$P = \frac{(n+r-1)!}{r!(n-1)!}$$

P = possible combinations

n = number of FAs

r = number of FAs per molecule

220 possible molecular species

MRM generation and the loss of each *potential* FA in TAG

My first attempt...

A B	C	D	E	F	G	Н	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	AM	AN	AO	AP
Q1/Q3 TAG		Q3 FA		remaining			FA2						de	es 1										
C	des	C	des	C	des		16	18	20	22	24	26		0	1	2	3					overlap 1	overlap 2	overlap 3
TAG-50:3-FA16:3 50	3	16	3	34	()	28	26	14					0	-1				TAG-50:3					
TAG-50:3-FA16:2 50	3	16	2	34	1 1	L	218	26	14					<u>a</u>	0	-1			TAG-50:3			16:2/16:1/18:0		
TAG-50:3-FA16:1 50	3	16	1	34		2	218	26	14					2	<u>1</u>	0	-1		TAG-50:3		16:1/16:0/18:2		16:1/16:2/18:0	
TAG-50:3-FA16:0 50	3	16	0	34		3	13 13 16 16	26	14					8	2	Я	0		TAG-50:3			16:0/16:1/18:2	16:0/16:2/18:1	16:0/16:3/1
TAG-50:3-FA18:3 50	3	18	3	32	2 ()	26	14						0	-1				TAG-50:3		18:3/16:0/16:0			
TAG-50:3-FA18:2 50	3	18	2	32		L	26	14						2	0	-1			TAG-50:3		18:2/16:0/16:1			
TAG-50:3-FA18:1 50	3	18	1	32		2	26	14						2	2	0	-1		TAG-50:3			18:1/16:1/16:1		
TAG-50:3-FA18:0 50	3	18	0	32	2	3	16 18 18 18	14						8	2	£	0		TAG-50:3			18:0/16:1/16:2		
1 TAG-50:2-FA16:2 50	2	16	2	34)	218	26	14					0	-1				TAG-50:2		16:2/16:0/18:0			
2 TAG-50:2-FA16:1 50	2	16	1	34	1 1	L	28	26	14					a	0	-1			TAG-50:2			16:1/16:1/18:0		
TAG-50:2-FA16:0 50	2	16	0	34	1 2	2	28		14					2	<u>1</u>	0	-1.		TAG-50:2		16:0/16:0/18:2	16:0/16:1/18:1	16:0/16:2/18:0	
4 TAG-50:2-FA18:2 50	2	18	2	32)	26	14						0	-1				TAG-50:2		18:2/16:0/16:0			
TAG-50:2-FA18:1 50	2	18	1	32	2 1	L	16	14						£	0	-1			TAG-50:2	18:1	18:1/16:0/16:1			
TAG-50:2-FA18:0 50	2	18	0	32	2	2	26	14						2	2	0	-1.		TAG-50:2	18:0	18:0/16:0/16:2	18:0/16:1/16:1		
7 TAG-50:1-FA16:1 50	1	16	1	34	1 ()	28	26	14					0	-1				TAG-50:1	16:1	16:1/16:0/18:0			
8 TAG-50:1-FA16:0 50	1	16	0	34	1	L	16 18 18 16 16	26	14					£	0	-1			TAG-50:1	16:0	16:0/16:0/18:1	16:0/16:1/18:0		
TAG-50:1-FA18:1 50	1	18	1	32	2 ()	26	14						0	-1				TAG-50:1	18:1	18:1/16:0/16:0			
TAG-50:1-FA18:0 50	1	18	0	32	2 1	L	26	14						£	0	-1			TAG-50:1	18:0	18:0/16:0/16:1			
TAG-52:6-FA16:3 52	6	16	3	36	3	3	20	28	26	14				8	2	2	0		TAG-52:6	16:3	16:3/16:2/20:1	16:3/16:3/20:0	16:3/18:0/18:3	16:3/18:1/2
2 TAG-52:6-FA16:2 52	6	16	2	36	6	1	20	<u>18</u> 18	26	14					8	2	1		TAG-52:6	16:2	16:2/16:3/20:1	16:2/18:1/18:3	16:2/18:2/18:2	
TAG-52:6-FA16:1 52	6	16	1	36	5	5	20	28	26	14						8	2		TAG-52:6	16:1	16:1/18:2/18:3			
TAG-52:6-FA16:0 52	6	16	0	36	6	3	20	28	26	14							8		TAG-52:6	16:0	16:0/18:3/18:3			
TAG-52:6-FA18:3 52	6	18	3	34	1 3	3	20 20 20 20 18 18 18	26	14					8	2	IJ	0		TAG-52:6	18:3	18:3/16:0/18:3	18:3/16:1/18:2	18:3/16:2/18:1	18:3/16:3/1
TAG-52:6-FA18:2 52	6	18	2	34	1 4	1	13	26	14						8	2	£		TAG-52:6	18:2	18:2/16:1/18:3	18:2/16:2/18:2	18:2/16:3/18:1	
TAG-52:6-FA18:1 52	6	18	1	34		5	13	26	14							8	2		TAG-52:6	18:1	18:1/16:2/18:3	18:1/16:3/18:2		
TAG-52:6-FA18:0 52	6	18	0	34		3	98	26	14								ภ		TAG-52:6	18:0	18:0/16:3/18:3			

. . .

MRM generation and the loss of each *potential* FA in TAG

A better approach...

```
# TAG-FA MRM generator 2.0
import pandas as pd
fatty acids = ['16:0', '18:3', '18:2', '18:1', '18:0', '20:2', '20:1', '20:0', '22:1', '22:0'] # Arabidopsis https://plantfadb.org/datasets?plant id=17354
def mrm output(fa1):
    carbon = 12.000000
   hydrogen = 1.007825
   oxygen = 15.994915
    ammonium = 18.03382555
   fa carbon no = []
   fa desat no = []
        fa_carbon_no.append(int(i[:2]))
        fa desat no.append(int(i[-1]))
    tag carbon mass = []
   tag desat mass = []
    final tag carbon = []
    final tag desat = []
    fa carbon no 2 = [1]
    fa desat no 2 = []
   m = len(fa carbon no)
    n = len(fa desat no)
    while fa carbon no != []:
        for i in fa carbon no:
           tag carbon mass += [fa carbon no[0] + i]
        fa carbon no 2.append(fa carbon no[0])
        fa carbon no.remove(fa carbon no[0])
```


TAG 54:7

1: 18:2 / 18:2 / 18:3

2: 18:3 / 18:3 / 18:1

1st example (easy)
Record these TAG
molecular species and
FA combinations (RT is
also good to take down)

	A	В	C	D	E	
1	TG molec sp	FA comp	FA for quant	RT	notes	Note this value
31	tg-54:7	18:2/18:2/18:3	fa-18:2	12.25	/2 ←	will be divided
32	tg-54:7	18:3/18:3/18:1	fa-18:1	12.44		by 2

These indicate which MRM transitions to use for quantification:

TAG-54:7-FA18:2 TAG-54:7-FA18:1

TAG-54:7-FA18:3 is not used

TAG 56:4

1: 20:1 / 18:1 / 18:2

2: 20:0 / 18:2 / 18:2

3: 18:0 / 20:1 / 18:3

4: 18:1 / 20:0 / 18:3

2nd example (hard)

Record these TAG

molecular species and

FA combinations (RT is

also good to take down)

A	В	С	D	E	F	
¹ TG molec sp	FA comp	FA for quant	RT	notes		
⁴¹ tg-56:4	20:1/18:1/18:2	fa-18:1	18.19	1st peak		
⁴² tg-56:4	20:0/18:2/18:2	fa-18:2	18.79	/2; 2nd pe	ak	
⁴³ tg-56:4	18:0/20:1/18:3	fa-18:0	18.84	_		
44 tg-56:4	18:1/20:0/18:3	fa-20:0	18.99	/2 (second	half of pea	k)

MRM transitions used for quantification:

TAG-56:4-FA18:1

TAG-56:4-FA18:2

TAG-56:4-FA18:0

TAG-56:4-FA20:0

MRM transitions **NOT** used for quantification:

TAG-56:4-FA18:3

TAG-56:4-FA20:1

TAG-56:4-FA22:1

3rd step in data analysis: Using R/RStudio to quantify integated HPLC peaks

3rd step in data analysis: Using R/RStudio to quantify integated HPLC peaks

(in-person R/RStudio demonstration here)

<u>Lipidomics Workflow — from extraction to analysis</u>

metabolism

Other Resources

R: https://www.r-project.org/
RStudio: https://www.rstudio.com/products/rstudio/

R for Data Science (online ebook): https://r4ds.had.co.nz/index.html

Tidyverse library: https://www.tidyverse.org/

Data.Table library: https://cran.r-project.org/web/packages/data.table/vignettes/datatable-intro.html

W3: https://www.w3schools.com/r/default.asp

Anaconda: https://www.anaconda.com/

Visual Studio Code: https://code.visualstudio.com/

Python Data Science Handbook (online ebook): https://jakevdp.github.io/PythonDataScienceHandbook/

Numpy (included with Anaconda): https://numpy.org/ Pandas (included with Anaconda): https://pandas.pydata.org/

Matplotlib (included with Anaconda): https://matplotlib.org/

W3: https://www.w3schools.com/python/default.asp

mMass (viewing spectra/chromatogram from .txt file): http://www.mmass.org/

MarvinSketch (chemical drawing): https://chemaxon.com/products/marvin

Metaboanalyst (statistical analysis): https://www.metaboanalyst.ca/

AOCS Lipid Library: https://lipidlibrary.aocs.org/

ARALIP: The Arabidopsis Acyl-Lipid Metabolism Website:

http://aralip.plantbiology.msu.edu/about

Acyl-Lipid Metabolism: https://doi.org/10.1199/tab.0133

LIPID MAPS: https://www.lipidmaps.org/