CS 5158/6058 Data Security and Privacy, Spring 2018 Homework 2

Instructor: Dr. Boyang Wang

Due Date: 02/13/2018 (Tuesday), 11:59pm.

Format: Please submit a pdf of your homework in Blackboard.

Total Points: 6 points

Problem 1 (CS5158 only, 1 point). Assume we use Shift Cipher, and the message space is $\mathcal{M} = \{aa, ab, bc\}$, where $\Pr[M = aa] = 0.3$, $\Pr[M = ab] = 0.2$, $\Pr[M = bc] = 0.5$. In addition, we assume the key space is $\mathcal{K} = \{0, 1, 2, ..., 25\}$ and it is uniformly distributed, i.e., $\Pr[K = k] = 1/26$, for any $k \in [0, 25]$. What is the probability of a ciphertext is XY?

Problem 1 (CS6058 only, 1 point). Assume we have Vigenere Cipher $\Pi = \{\text{KeyGen}, \text{Enc}, \text{Dec}\}$. Message space is $\mathcal{M} = \{\text{aaaa}, \text{faaa}\}$, and the key length could be 1, 2, 3, or 4, and it is uniformly distributed. In addition, assume an adversary \mathcal{A} plays a security game $\text{PrivK}_{\mathcal{A},\mathcal{H}}^{\text{eav}}$ as below:

- 1. \mathcal{A} chooses $m_0 = aaaa$ and $m_1 = faaa$, and gives m_0 and m_1 to challenger;
- 2. Challenger flips a fair coin, gets a bit b, computes $c_b \leftarrow \mathsf{Enc}_k(m_b)$, where $k \leftarrow \mathsf{KeyGen}(\cdot)$, and returns ciphertext c_b to \mathcal{A} .
- 3. Given $c_b = c_{b1}c_{b2}c_{b3}c_{b4}$, \mathcal{A} guesses b' = 0 if $c_{b1} = c_{b2}$, otherwise it guesses b' = 1
- 4. Outputs 1 if b' = b, and 0 otherwise; and we say \mathcal{A} wins the game if b' = b.

Prove that this adversary can win this game with a probability greater than 1/2.

Problem 2 (1 point). Describe the formal definition of perfect secrecy. Assume each key has θ bits in a one-time pad, prove this one-time pad is perfectly secure.

Problem 3 (1 point). Although one-time pad is perfectly secure, it has two major assumptions/limitations, which makes it impractical for real applications. Describe the two major limitations of one-time pad.

Problem 4 (1 point). Compared to an adversary in perfect security, what are the two main differences for an adversary in computational security?

Problem 5 (1 point). Explain what is a negligible function, and describe the properties of negligible functions.

Problem 6 (1 point). Describe the details of the security game/experiment for computational security, and formally explain what is (computationally) indistinguishable.