Cryptography

Encryption modes

	ECB	CBC	CTR	OFB
secure?	X	У	У	У
encryption parallel?		x	у	x
decryption parallel?		у	у	x
random access decryption?		у	У	x

Length expansion

 \underline{if} dec. error \underline{then} return Error

 $\underline{\text{if}}$ dec. OK $\underline{\text{then}}$ $\underline{\text{return}} * - *$

Storage encryption

- where to store the IV or nonce?
- because expansion not possible: Enc $B^{512} \rightarrow B^{512}$
- \rightarrow use nonce derived from address ESSIV: where IV for sector i is IV := Enc(H(k),i) encrypted salt sector IV

9 Diffie-Hellman Key Agreement

Modular arithmetic

- Integer divisions: For $a, d \in \mathbb{Z}$ there exist a unique quotient q and a unique <u>remainder</u> r s.t.:

$$a=d\cdot q+r \qquad \qquad and \ \ 0\leq r \leq \mid d-1\mid$$

- Since q and r are unique:

$$q = a \underline{div} d$$
 $= \lfloor \frac{a}{d} \rfloor$
 $r = a \underline{mod} d$ $= a\%d$

- Relation "divides": $a \mid d$

Congruence relation

 $a \equiv b \pmod{m}$ or $a \equiv_m b \text{ if } m \mid (a-b)$ "Integers mod m": $\mathbb{Z}_m \stackrel{def.}{=} \{0, 1, ..., m-1\}$ Note: $\underbrace{a \equiv_m b}_{equivalence\ relation} \neq \underbrace{(a\ mod\ m\ =\ b\ mod\ m)}_{euquality\ over\ \mathbb{Z}}$ Rules: $(a+b)\ mod\ m = (((a\ mod\ m) + (b\ mod\ m))\ mod\ m)$

Cyclic groups

Definition

A group $\langle F, \cdot, 1 \rangle$ consists of a <u>set</u> G, an operation \cdot , and a <u>neutral element</u> 1

- 1. $\forall a, b \in G : (a \cdot b) \in G$
- $2. \ \forall a: 1 \cdot a = a \cdot 1 = a$
- 3. $\forall a \in G, \exists a^{-1} \in G : a \cdot a^{-1} = 1$
- 4. associative

Example

1.
$$\mathbb{Z}_m \stackrel{def}{=} \langle \mathbb{Z}_m, +, 0 \rangle$$

2.
$$\mathbb{Z}_p^{\star} \stackrel{def}{=} \langle \{1, 2, ..., p-1\}, \cdot, 1 \rangle$$

Definition

 $\mid G \mid$ denotes the number of elements in G

Definition

A finite group G is cyclic if some g called generator exists s.t. $G = \{g^0, g^1, g^2, ... g^{|G|-1}\}$ Notation: $\langle g \rangle = G$

Integers mod m: $\langle g \rangle_m \subset \mathbb{Z}_m^*$

Definition

If $\langle g \rangle_p = \mathbb{Z}_p^*$, then g is a primitive root.

Example

$$\mathbb{Z}_{11}^{\star}$$
 $\langle 1 \rangle_{11} = \{1\}$
 $\langle 2 \rangle_{11} = \{1, 2, 4, 8, 5, 10, 9, 7, 3, 6\}$
 $\langle 2 \rangle_{11} = \{1, 3, 9, 5, 4\}$

Definition

- The number of elements in G is also called the <u>order</u> of G
- The order of $a \in G$ is the smallest i s.t. $a^i = 1$ (in G) [smallest i s.t. $g^i \equiv_m 1$]

Lemma

For all primitive roots g:

$$g^a = g^b \Leftrightarrow a \equiv_{|G|} b$$

Example

- \mathbb{Z}_p^{\star} , $p \ prime : |\mathbb{Z}_p^{\star}| = p 1$
- \bullet For $q\mid (p-1),$ and q prime, there is a cyclic group of order q (q prime!), defined by multiplication modulo p

(think of:
$$p = 2 \cdot q + 1$$
)
 $safe\ prime$
 $p = m \cdot q + 1$, where $|p| = 2000$, but $q \approx 256$

Discrete Logarithms

Definition

In a cyclic group G, the discrete logarithm of $y \in G$ w.r.t a primitive root g is $x \in \mathbb{Z}_{|G|}$ s.t. $g^x = y$.

Definition

Discrete Logarithm Problem (DLP):

Given
$$y \leftarrow G$$
, compute x s.t. $g^x = y$

Group where the DLP is computationally hard:

- Prime-order subgroups of \mathbb{Z}_p^{\star} , p prime (DSA, DH)
- groups defined over points on alliptic curves (ECDSA...) [$|G| \ge 2^{256}$]

Diffie-Hellman Key Agreement

Goal

Claim:
$$Z_A = Z_B$$
: $Z_Y = Y^a = (g^b)^a = (g^a)^b = X^b = Z_B$

Security?

- If Eve can compute DLOG, then not secure
- Want that Z is pseudorandom

Definition

Protocol Π generates a key k in $\Pi.K$ and a transcript $T \in \{0,1\}^*$. $(T,k) \leftarrow EXEC(\Pi)$

K.A protocol Π is called <u>secure</u> if:

$$\frac{L_{ka-real}^{\Pi}}{\frac{\mathrm{QUERY}():}{(T,k)\leftarrow EXEC(\Pi)}} \approx \frac{L_{ka-rand}^{\Pi}}{\frac{\mathrm{QUERY}():}{(T,k)\leftarrow EXEC(\Pi)}} \\ \underset{\mathbf{return}}{\approx} \frac{L_{ka-rand}^{\Pi}}{\frac{\mathrm{QUERY}():}{(T,k)\leftarrow EXEC(\Pi)}} \\ \frac{k^{\star}\leftarrow \Pi.K}{\mathbf{return}\ (T,k^{\star})}$$