Machine Learning

5A - 3DJV

Bienvenue!

• Contact : pro@nicolasvidal.fr

Modalités

• Semaine thématique

• ≈ 12h de cours

• ≈ 15h de projet

Parlons du projet!

- Un environnement de développement de JV:
 - Unity
 - Unreal Engine
 - ... 5

• Contraintes :

- Visualisation 3D simple
- Pouvoir importer une dll C/C++
- .NET/Java dans le pire des cas (mais déconseillé)

• Un environnement de développement de JV:

Unity

• Unreal Engine

• ... 5

• Contraintes :

- Visualisation 3D simple
- Pouvoir importer une dll C/C++
- .NET/Java dans le pire des cas (mais déconseillé)

Pourquoi ???

- Un enviro
 - Unity
 - Unreal E
 - ... ?

- Contraintes
 - Visualisat
 - Pouvoir in
 - .NET/Java

- Un environnement de développement de JV:
 - Exemples
 - Unity
 - Unreal Engine
 - ... 5
 - Contraintes:
 - Visualisation 3D simple
 - Pouvoir importer une dll C/C++
 - .NET/Java dans le pire des cas (mais déconseillé)

- Un environnement de calcul scientifique et modélisation
 - Exemples
 - Mathematica (trial 15 days)
 - Anaconda (Python! ^③)
 - Octave (Matlab-like)
 - ... ?
 - Contraintes :
 - Pouvoir importer une dll C/C++
 - .NET/Java dans le pire des cas (mais déconseillé)
 - Plot / Génération de data aisée

- Un environnement de développement en C/C++
 - Exemples
 - Visual Studio
 - Build Essentials
 - ... 5
 - Contraintes:
 - Pouvoir créer une dll C/C++
 - .NET/Java dans le pire des cas (mais déconseillé)

• Le cours était un dilemme ...

• Le cours était un dilemme ...

Old School Machine Learning / Statistical Learning

• Le cours était un dilemme ...

• Vous faire implémenter votre propre toolbox de Machine Learning!

- Vous faire implémenter votre propre toolbox de Machine Learning!
- Vous faire implémenter votre propre toolbox de Machine Learning!

- Vous faire implémenter votre propre toolbox de Machine Learning!
- Vous faire implémenter votre propre toolbox de Machine Learning!

 Utiliser votre toolbox dans votre environnement de développement de JV préféré

 Acquérir une sensibilité à la problématique de l'apprentissage artificiel supervisé

1. Mettre en place le pipeline de développement

2. Création des cas de tests

Simple, linéairement séparable Réel, linéairement séparable Soft, non linéairement séparable

XOR

2. Création des cas de tests

Multi Class Hard

Real Dataset

- 3. Implémentation des algorithmes
 - 1. Modèles linéaires

Perceptron pour la Classification

Perceptron pour la Régression

- 3. Implémentation des algorithmes
 - 2. Perceptron Multi Couches

Perceptron multi couches pour la classification

Perceptron multi couches pour la régression

- 3. Implémentation des algorithmes
 - 3. Modèles non linéaires

- 4. Application a un dataset réel
 - 1. Trouver un dataset réel (ne soyez pas trop ambitieux ! 🙂)
 - https://archive.ics.uci.edu/ml/datasets/
 - http://grouplens.org/datasets/movielens
 - http://yann.lecun.com/exdb/mnist/
 - https://www.kaggle.com/
 - ... ?
 - 2. Etablir un protocole de test
 - 3. Entrainement du/des modèles
 - 4. Présentation et analyse des résultats

- Modalités pratiques
 - Groupes de 4/5
 - Répartition des tâches est à éviter pour l'implémentation
 - Evaluation intermédiaire Mercredi
 - Soutenance : 20 minutes (15 présentation + 5 questions)
 - Amusez-vous!

Intuition:

Découvrir (ou estimer) une fonction (ou une distribution) inconnue à partir d'un ensemble d'exemples

Apprentissage supervisé:

Apprentissage non supervisé :

Apprentissage semi supervisé :

Apprendre ...

• Apprendre par cœur ?

- Exemples (Input => Output)
 - {1, 2} => {3}
 - {4, 2} => {6}
 - {2, 2} => {4}
 - {8,13} => {21}

- Exemples (Input => Output)
 - {1, 2} => {3}
 - {4, 2} => {6}
 - {2, 2} => {4}
 - {8,13} => {21}
- Apprendre par cœur ?
 - Dictionnaire?

- Exemples (Input => Output)
 - {1, 2} => {3}
 - {4, 2} => {6}
 - $\{2, 2\} => \{4\}$
 - {8,13} => {21}
- Apprendre par cœur ?
 - Dictionnaire?
 - Aucune information sur le reste de l'espace d'entrée!

Apprendre ...

... n'a d'intérêt que si on généralise!

Qu'est-ce que généraliser ?

⇒Généraliser :

- ⇒Supposer qu'il existe une <u>fonction cible</u> qui a généré les exemples que nous avons à disposition.
- ⇒Essayer d'<u>approximer</u> les résultats de cette fonction cible à l'aide d'un modèle.
- ⇒Espérer © que si on approxime « bien » les résultats donnés sur les exemples étiquetés, on approximera « bien » sur l'ensemble de l'espace d'entrée

⇒Généraliser :

⇒Supposer qu'il existe une **fonction cible** qui a généré les exemples que nous avons à disposition.

⇒Essayer d'<u>approximer</u> les résultats de cette fonction cible à l'aide d'un modèle.

étiquetés, on approximera « bien » sur /! l'ensemble de l'espace d'entrée

⇒Contre exemple abstrait:

⇒Contre exemple abstrait:

⇒Contre exemple de l'arnaque à la prédiction

Quelles validations théoriques ?

https://work.caltech.edu/telecourse.html

Inégalité de Hoeffding :

soit μ: probabilité d'obtenir un échantillon bleu dans un ensemble

soit v: proportion d'échantillons bleus dans un échantillonnage

Si N est mon nombre d'échantillons et ϵ un réel :

$$P[|\nu - \mu| > \epsilon] \le 2e^{-2\epsilon^2 N}$$

Ce qui nous amène à :

soit E_{in} : l'erreur de classement d'une hypothèse sur les échantillons par rapport à la fonction cible.

soit E_{out} : l'erreur de classement d'une hypothèse l'ensemble des entrées possibles par rapport à la fonction cible.

soit g: mon hypothèse

soit M : L'ensemble des hypothèses possibles pour mon modèle

$$P[|E_{in}(g) - E_{out}(g)| > \epsilon] \le 2Me^{-2\epsilon^2 N}$$

Inégalité de Vapnik-Chervonenkis :

soit m_H : le nombre maximum de dichotomies réalisables sur un ensemble d'exemples par une classe d'hypothèse H.

$$P[|E_{in}(g) - E_{out}(g)| > \epsilon] \le 4m_H(2N)e^{-\frac{1}{8}\epsilon^2N}$$

Conclusion théorique :

- Généraliser est parfois possible
- Cela dépend :
 - Du nombre d'exemples étiquetés à disposition
 - De la qualité de la généralisation que l'on cherche
 - De la complexité du modèle utilisé pour générer nos hypothèses

- Règle générale, approximative mais pratique :
 - Ne pas espérer obtenir une bonne généralisation si le nombre d'exemple à disposition n'est pas supérieur à **10 fois** le nombre de paramètres du modèle utilisé.

Classification VS Régression

Classification:

• Appartenance d'un exemple à un ensemble fini :

Classification VS Régression

Régression:

• Prédire une (ou plusieurs) valeurs réelles :

• Retours sur le Perceptron

Retours sur le Perceptron

- Que l'on peut réécrire :
 - $out = Sign(\sum_{i=0}^{n} w_i x_i)$
- Ou sous forme matricielle :
 - $out = Sign(W^TX)$ en prenant soin d'ajouter le biais $(x_0 = 1)$

• Algorithmes d'apprentissages du perceptron pour la classification

• But du jeu : déterminer *W*

- Non supervisée
 - Règle de Hebb

- Supervisée
 - PLA ou Règle de Rosenblatt

- Perceptron Learning Algorithm (pour des sorties à -1 ou 1)
 - Initialiser W (randomf(-1,1) ou 0)
 - Répéter :
 - Prendre un exemple MAL classé (où $g(X^k) \neq Y^k$) au hasard et, mettre à jour W selon la règle :

$$W \leftarrow W + \alpha Y^k X^k$$

- Règle de Rosenblatt (pour des sorties à 0 ou 1)
 - Initialiser W (random(-1,1) ou 0)
 - Répéter :

$$W \leftarrow W + \alpha (Y^k - g(X^k))X^k$$

Avec:

- α le pas d'apprentissage
- X^k les paramètres de l'exemples k et le biais $x_0^k = 1$.
- Y^k la sortie attendue pour l'exemple k.
- $g(X^k)$ la sortie obtenue par le perceptron pour l'exemple k.

Régression linéaire

Minimiser le carré de l'erreur

• Notons
$$X = \begin{bmatrix} x_0^0 & \cdots & x_n^0 \\ \vdots & \ddots & \vdots \\ x_0^k & \cdots & x_n^N \end{bmatrix}$$
 et $Y = \begin{bmatrix} y_0^0 & \cdots & y_n^0 \\ \vdots & \ddots & \vdots \\ y_0^k & \cdots & y_n^N \end{bmatrix}$

- Supposons $n \leq N$
- Utilisation de la pseudo inverse pour calculer W en un coup :

$$W = ((X^T X)^{-1} X^T) Y$$

Exemples

Implémentation

• A vos claviers!