

Перестановки

ЛИНЕЙНАЯ АЛГЕБРА И ГЕОМЕТРИЯ

ЛОНГРИД

НЕДЕЛЯ 4

Перестановки

1. ОТОБРАЖЕНИЯ МНОЖЕСТВ

Пусть X,Y — некоторые множества, а $\varphi\colon X\to Y$ — отображение. Тогда φ называется инъективным, если оно «не склеивает точки», а именно: для любых $x,y\in X$ из условия $x\neq y$ следует, что $\varphi(x)\neq \varphi(y)$. Отображение φ называется *сюръективным*, если в любой элемент что-то переходит, то есть для любого $y\in Y$ существует $x\in X$ такой, что $\varphi(x)=y$. Отображение φ называется *биективным*, если оно одновременно инъективно и сюръективно 13.

Свойства отображения можно подчеркивать видом стрелки. Например, инъективное отображение обычно обозначается $\varphi\colon X\hookrightarrow Y$, сюръективное — $\varphi\colon X\xrightarrow{\sim} Y$.

Для любого множества X отображение $\mathrm{Id}: X \to X$, заданное по правилу $\mathrm{Id}(x) = x$, называется *тождественным*. Пусть $\varphi\colon X \to Y$ — некоторое отображение. Тогда $\psi\colon Y \to X$ называется *левым обратным* (соответственно *правым обратным*) к φ , если $\psi\varphi=\mathrm{Id}$ ($\varphi\psi=\mathrm{Id}$)¹⁴. Левых и правых обратных для φ может быть много. Однако если есть оба обратных и ψ_1 — левый обратный, а ψ_2 — правый обратный, то они совпадают, так как $\psi_1=\psi_1(\varphi\psi_2)=(\psi_1\varphi)\psi_2=\psi_2$. Следовательно, совпадают все левые обратные со всеми правыми, и такой единственный элемент называют *обратным* и обозначают φ^{-1} , а φ называют *обратимым*. Легко проверить следующее.

УТВЕРЖДЕНИЕ

Пусть $\varphi\colon X\to Y$ — некоторое отображение. Тогда:

- 1. $\,$ инъективно тогда и только тогда, когда $\,$
- 2. φ сюръективно тогда и только тогда, когда φ обладает правым обратным;

2. ПЕРЕСТАНОВКИ

ОПРЕДЕЛЕНИЕ 2

Пусть $X_n = \{1, \dots, n\}$ — конечное множество из n занумерованных элементов^a. Перестановкой называется биективное отображение $\sigma \colon X_n \to X_n$. Множество всех перестановок на n элементном множестве будем обозначать через S_n .

Как задавать перестановки. Как только вам встречается новый объект, первый важный вопрос: как подобные объекты вообще задавать? Для перестановок есть три способа.

 $^{{}^{\}sigma}$ Формально говоря, это множество из n элементов и фиксированный линейный порядок на нём.

¹³В теории множеств: множества — это мешки с элементами, а отображения «сравнивают» эти мешки между собой. Биекция между множествами говорит, что это, по сути, одно и то же множество, но по-разному заданное. Поэтому на биекцию между X и Y можно смотреть не как на отображение между разными множествами, а как на правило, «переименовывающее» элементы на одном и том же множестве.

¹⁴Легко проверить, что существование левого обратного никак не связано с существованием правого обратного и наоборот.

1. Задать стрелками соответствие на элементах.

2. С помощью таблицы значений (графика). Здесь под каждым элементом пишется его образ:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 4 & 2 & 5 \end{pmatrix}.$$

3. Графически в виде действия на элементах.

Все эти виды записи однозначно задают перестановку. Самым популярным методом в литературе является второй способ. В общем виде для перестановки $\sigma \in S_n$ табличная запись выглядит следующим образом:

$$\begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}.$$

Заметим, что если записать элементы $1,\dots,n$ в другом порядке, скажем, i_1,\dots,i_n , то перестановка σ запишется в виде 15

$$\begin{pmatrix} i_1 & i_2 & \dots & i_n \\ \sigma(i_1) & \sigma(i_2) & \dots & \sigma(i_n) \end{pmatrix}.$$

Из однозначности табличной записи получаем следующее.

УТВЕРЖДЕНИЕ

Количество перестановок на n элементах есть n!, то есть $|S_n| = n!$.

3. ОПЕРАЦИЯ НА ПЕРЕСТАНОВКАХ

Так как перестановки являются отображениями, а на отображениях есть операция композиции, то и на перестановках появляется операция. Пусть $\sigma, \tau \in S_n$ — две произвольные перестановки, определим $\sigma \tau$ как композицию, а именно: $\sigma \tau(k) = \sigma(\tau(k))$. На языке диаграмм получаем следующее.

$$X_n \xrightarrow{\tau} X_n \xrightarrow{\sigma} X_n$$

Важно. Обратите внимание, что перестановки применяются к элементам справа налево. Это связано с тем, что они являются отображениями, а когда вы считаете композицию отображений, то вы сначала

¹⁵Заметим, что в этой записи можно произвольным образом перемешивать столбцы; это никак не изменит задаваемую перестановку.

применяете к аргументу самое правое, потом следующее за ним и так далее.

Давайте посмотрим, как выглядит произведение двух перестановок в табличной записи. Пусть даны перестановки

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} \text{ if } \tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}.$$

Тогда перестановки σau и $au \sigma$ имеют вид

$$\sigma\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix} \text{ if } \tau\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}.$$

Свойства умножения

- Если $\sigma, \tau, \rho \in S_n$ произвольные перестановки, то, как легко видеть по определению, $(\sigma \tau)\rho = \sigma(\tau \rho)$. Другими словами, в выражениях, составленных из перестановок и произведений, не важно, в каком порядке расставлять скобки. Поэтому скобки обычно опускаются.
- Умножение перестановок некоммутативно, то есть, вообще говоря, $\sigma \tau \neq \tau \sigma^{16}$.
- Тождественное отображение Id является нейтральным элементом для умножения перестановок в том смысле, что верно $Id \, \sigma = \sigma \, Id = \sigma$ для любой перестановки σ . В табличной записи Id имеет вид

$$\begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix}.$$

• Обратное отображение к σ будем обозначать через σ^{-1} . Оно будет обратным элементом относительно операции в том смысле, что $\sigma\sigma^{-1}=\sigma^{-1}\sigma=\mathrm{Id}$. В табличной записи обратное отображение можно записать так:

$$\begin{pmatrix} \sigma(1) & \sigma(2) & \dots & \sigma(n) \\ 1 & 2 & \dots & n \end{pmatrix}.$$

4. ПЕРЕИМЕНОВАНИЕ ЭЛЕМЕНТОВ

В нашем определении перестановка — это биекция на множестве X_n . Однако элементы X_n имеют конкретные имена — это числа от 1 до n. Что произойдёт, если мы сменим имена элементов? Как изменится табличная запись перестановки?

Вначале надо понять, что значит переименование элементов. Во-первых, у нас есть запас старых имён $\{1,\ldots,n\}$, во-вторых, у нас должен быть список новых имён, скажем, $\{1,\ldots,n\}$, и, в-третьих, у нас должно быть соответствие, которое по старым именам строит новые, то есть $\tau\colon\{1,\ldots,n\}\to\{1,\ldots,n\}$. Поэтому если мысленно убрать кавычки, то на переименование можно смотреть как на перестановку $\tau\colon X_n\to X_n$.

Пусть теперь у нас есть перестановка $\sigma\colon X_n\to X_n$. Её можно записать в табличном виде в старых и новых именах. Чтобы различать эти таблицы, мы будем использовать обозначения $\sigma_{\sf стар}$ и $\sigma_{\sf нов}$ для них

¹⁶Один пример мы уже видели, ещё один будет в разделе «Циклические перестановки».

соответственно. Тогда мы можем записать связь между ними с помощью следующей диаграммы.

$$\begin{array}{c|c} \{1,\ldots,n\} & \xrightarrow{\tau} \{1,\ldots,n\} \\ \sigma_{\mathsf{CTAP}} \Big| & & \Big| \sigma_{\mathsf{HOB}} \\ \{1,\ldots,n\} & \xrightarrow{\tau} \{1,\ldots,n\} \end{array}$$

Если вспомнить, что $\{1,\dots,n\}=\{ au(1),\dots, au(n)\}$, то действие σ_{HOB} в новых именах устроено так: мы берём произвольный элемент с новым именем au(k), находим его старое имя — k, на старом имени можем подействовать σ_{CTAD} , которое есть $\sigma(k)$, а теперь надо найти новое имя для образа, что есть $\tau(\sigma(k))$.

Подытожим: $\sigma_{\mathsf{HOB}} = au\sigma_{\mathsf{CTap}} au^{-1}$. В табличной записи перестановки выглядят так:

$$\sigma_{\mathsf{CTAP}} = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}, \quad \sigma_{\mathsf{HOB}} = \begin{pmatrix} \tau(1) & \tau(2) & \dots & \tau(n) \\ \tau(\sigma(1)) & \tau(\sigma(2)) & \dots & \tau(\sigma(n)) \end{pmatrix}.$$

Хорошо ещё иметь перед глазами следующую картинку.

Здесь в вершинах подписаны и старые, и новые имена, а перестановка одна и та же.

5. ЦИКЛЫ

Пусть $\sigma \in \mathbf{S}_n$ действует следующим образом: для некоторого множества i_1,\dots,i_k ($k\geqslant 2$) выполнено

$$\sigma(i_1) = i_2, \dots, \sigma(i_{k-1}) = i_k, \sigma(i_k) = i_1,$$

а все остальные элементы остаются на месте под действием σ . Тогда σ называется μ иклом длины k. Такая перестановка для краткости обозначается (i_1,\ldots,i_k) . Заметим, что такая запись не единственная: например, можно сказать, что $\sigma=(i_2,\ldots,i_k,i_1)^{17}$. Стоит отметить, что если в определении выше выбрать k=1, то перестановка, обозначаемая (i_1) , совпадает с тождественной перестановкой. Следовательно, циклов длины 1 просто не существует. Однако в некоторых случаях сама запись (i_1) является удобным обозначением для единообразия в формулах. Поэтому такие «циклы» принято называть тривиальными (подразумевая не цикл, а обозначение), а настоящие циклы — нетривиальными.

Таблицей цикл задаётся следующим образом:

$$\begin{pmatrix} i_1 & \dots & i_{k-1} & i_k & j_1 & \dots & j_{n-k} \\ i_2 & \dots & i_k & i_1 & j_1 & \dots & j_{n-k} \end{pmatrix},$$

¹⁷Как легко видеть, другой неоднозначности в записи цикла нет.

где $\{1,\dots,n\}=\{i_1,\dots,i_k\}\sqcup\{j_1,\dots,j_{n-k}\}$. Графически этот цикл выглядит так.

Цикл длины 2 называется *транспозицией*, то есть транспозиция (i,j) — это перестановка двух элементов i и j. Два цикла (i_1,\ldots,i_k) и (j_1,\ldots,j_m) называются *независимыми*, если множества $\{i_1,\ldots,i_k\}$ и $\{j_1,\ldots,j_m\}$ не пересекаются, а именно, множества действительно перемещаемых элементов не пересекаются. Заметим, что независимые циклы коммутируют друг с другом, а зависимые, вообще говоря, нет, как показывает следующий пример: (1,2)(2,3)=(1,2,3), а $(2,3)(1,2)=(3,2,1)^{18}$.

УТВЕРЖДЕНИЕ 8

Пусть $ho=(i_1,\ldots,i_k)\in \mathrm{S}_n$ — некоторый цикл длины k и $au\in \mathrm{S}_n$ — произвольная перестановка, тогда

$$\tau(i_1, \dots, i_k)\tau^{-1} = (\tau(i_1), \dots, \tau(i_k)).$$

ДОКАЗАТЕЛЬСТВО

Есть два способа понять это равенство. Первый — посмотреть на au как на переименование элементов. Тогда справа написан цикл по элементам с новыми именами, а слева — правило переименования.

Второй способ — проверка в лоб. Надо проверить, что и левая, и правая часть одинаково действуют на всех элементах вида $\tau(i)$. Возьмем элемент $\tau(i_1)$, тогда правая часть его переводит в $\tau(i_2)$. Посмотрим, что с ним делает левая часть. Вначале мы переходим в i_1 , потом в i_2 , а потом в $\tau(i_2)$. Получили то же самое. Аналогично проверяется, что $\tau(i)$ остаётся на месте, если i не совпадает ни с одним из i_s .

Теперь мы готовы доказать структурный результат о перестановках.

УТВЕРЖДЕНИЕ 9

Пусть $\sigma \in \mathbf{S}_n$ — произвольная перестановка. Тогда выходит следующее.

- 1. Перестановку σ можно представить в виде $\sigma=\rho_1\dots\rho_k$, где ρ_i независимые циклы, причём это представление единственное с точностью до перестановки сомножителей.
- 2. Пусть $\rho \in S_n$ произвольный цикл длины k, тогда его можно представить в виде $\rho = \tau_1 \dots \tau_{k-1}$, где τ_i транспозиции $^{\sigma}$.

ДОКАЗАТЕЛЬСТВО

(1) Пусть $i_1 \in X_n$ — произвольный элемент. Подействуем на него σ , получим $i_2 = \sigma(i_1)$ и так далее. Так

 $^{^{}a}$ Это представление уже не единственное.

¹⁸Проверьте это.

 $^{^{19}}$ Зависимые циклы могут коммутировать, например, (1,2) коммутирует с (1,2).

как X_n конечно, то мы в какой-то момент повторимся, например, $i_5=i_2$, как на рисунке ниже.

На этой картинке видно, что $\sigma(i_1)=\sigma(i_4)$, но σ инъективно, поэтому $i_1=i_4$. Тогда правильная картинка следующая.

Далее возьмём элемент, который не попал на этот цикл, и повторим рассуждение для него. Так найдём другой цикл и так далее. В итоге картинка будет приблизительно такая.

Значит, перестановка выше раскладывается в циклы $\sigma=(i_1,i_2,i_3)(i_4,i_5,i_6)(i_7,i_8)^{\sigma}$.

Единственность такого разложения следует из метода пристального взгляда на картинку и наше рассуждение. Если нужно формальное объяснение, то нужно делать так. Пусть $\sigma=\rho_1\dots\rho_k$ и пусть $\rho_1=(i_1,\dots,i_s)$. Подействуем σ на элемент i_1 . Так как циклы справа независимы, то только ρ_1 действует на i_1 , следовательно, $\sigma(i_1)=\rho_1\dots\rho_k(i_1)=i_2$, то есть i_2 однозначно определено. Продолжая в том же духе, мы видим, что все циклы однозначно определяются через σ .

(2) Пусть цикл σ действует по правилу, как на картинке ниже.

Чтобы получить цикл длины k, нам необходимо применить k-1 транспозиций. Другими словами, в нашем примере надо применить 4 транспозиции. Сделаем это следующим образом.

Тогда в общем случае $(1,2,\dots,k)=(1,2)(2,3)\dots(k-2,k-1)(k-1,k).$

Давайте поймём, почему представление во втором случае не единственное. Рассмотрим перестановку

 $[^]a$ Цикл (i_9) здесь не используется, так как он совпадает с тождественной перестановкой Id , как и любой другой цикл длины 1.

$$(1,2)(2,3)$$
. Тогда

$$(1,2)(2,3) = (1,2)(2,3)(1,2)^{-1}(1,2) = (1,3)(1,2).$$

Здесь в первом равенстве мы поделили и домножили на (1,2), а во втором воспользовались утверждением 8.

6. ЗНАК ПЕРЕСТАНОВКИ

Задача этого раздела — поделить все перестановки на два типа: «чётные» и «нечётные». При этом мы хотим, чтобы выполнялись обычные для чётности и нечётности правила при «умножении», а именно

Такое разделение можно сделать с помощью специальной функции, называемой знаком. Такая функция принимает на всех чётных перестановках значение 1, а на всех нечётных — -1:

$$\operatorname{sgn} \colon S_n \to \{\pm 1\}.$$

Чтобы выполнялось условие на поведение чётности и нечётности при произведении перестановок, нам достаточно потребовать следующее свойство:

$$\operatorname{sgn}(\sigma\tau) = \operatorname{sgn}(\sigma)\operatorname{sgn}(\tau)$$

для всех возможных $\sigma, \tau \in S_n$. Оказывается, что существует единственный способ разбить перестановки на чётные и нечётные с выполнением свойства на произведение. Однако мы не будем доказывать единственность. Вместо этого мы просто построим отображение sgn и научимся им пользоваться.

В этом случае такое отображение обозначается $\mathrm{sgn}\colon \mathrm{S}_n \to \{\pm 1\}$ и называется знаком. Значение $\mathrm{sgn}(\sigma)$ называется знаком перестановки $\sigma \in \mathrm{S}_n$. Перестановка называется чётной, если знак 1, и нечётной, если -1. Вначале определим вспомогательную характеристику $d(\sigma)$ следующим образом.

ОПРЕДЕЛЕНИЕ 3

Пусть $\sigma \in \mathbf{S}_n$ — некоторая перестановка и $i,j \in X_n$ — НЕупорядоченная пара различных элементов σ . Тогда эта пара называется *инверсией*, если « σ меняет характер монотонности», то есть i < j влечёт $\sigma(i) > \sigma(j)$, а i > j влечёт $\sigma(i) < \sigma(j)$. При использовании записи перестановки в виде

инверсия соответствует пересечению стрелок. Определим число $d_{ij}(\sigma)=1$, если пара i,j образует инверсию, и 0, если не образует. Тогда число всех инверсий для всевозможных пар — это $d(\sigma)=\sum_{i< j}d_{ij}(\sigma)$.

ОПРЕДЕЛЕНИЕ 4

 $^{^{}a}$ То есть пару i,j и j,i мы считаем одной и той же.

Пусть $\sigma\in \mathbf{S}_n$ — некоторая перестановка. Определим знак перестановки σ по правилу $\mathrm{sgn}(\sigma)==(-1)^{d(\sigma)}.$

Теперь покажем, что знак перестановки согласован с произведением.

УТВЕРЖДЕНИЕ 10

Пусть $\sigma, au \in \mathbf{S}_n$ — произвольные перестановки, тогда

$$\operatorname{sgn}(\sigma \tau) = \operatorname{sgn}(\sigma) \operatorname{sgn}(\tau).$$

ДОКАЗАТЕЛЬСТВО

Для доказательства нам надо показать, что

$$d(\sigma) + d(\tau) = d(\sigma\tau) \pmod{2}$$
.

Давайте зафиксируем пару i,j и докажем следующее равенство a

$$d_{ij}(\tau) + d_{\tau(i)\tau(j)}(\sigma) = d_{ij}(\sigma\tau) \pmod{2}.$$

Возможны следующие 4 случая.

Занесём результаты в таблицу.

$d_{ij}(au)$	0	1	0	1
$d_{\tau(i)\tau(j)}(\sigma)$	0	0	1	1
$d_{ij} + d_{\tau(i)\tau(j)}(\sigma)$	0	1	1	2
$d_{ij}(\sigma au)$	0	1	1	0

Это и доказывает равенство

$$d_{ij}(\tau) + d_{\tau(i)\tau(j)}(\sigma) = d_{ij}(\sigma\tau) \pmod{2}.$$

Теперь сложим его для всех пар i < j. Получим

$$\sum_{i < j} d_{ij}(\tau) + \sum_{i < j} d_{\tau(i)\tau(j)}(\sigma) = \sum_{i < j} d_{ij}(\sigma\tau) \pmod{2}.$$

Отсюда

$$d(\tau) + \sum_{i < j} d_{\tau(i)\tau(j)}(\sigma) = d(\sigma\tau) \pmod{2}.$$

Так как $\tau\colon X_n\to X_n$ — биекция, то, если (i,j) пробегает все разные пары, $(\tau(i),\tau(j))$ пробегает все разные пары. Значит, оставшаяся сумма равна $d(\sigma)$, что завершает доказательство.

Вычисление знака. Давайте вначале вычислим знаки в специальном случае.

УТВЕРЖДЕНИЕ 11

Следующие свойства знака выполнены:

- 1. sgn(Id) = 1;
- 2. $\operatorname{sgn}(\sigma) = \operatorname{sgn}(\sigma^{-1});$
- 3. для любой транспозиции au=(i,j) выполнено

$$\operatorname{sgn}(\tau) = -1;$$

4. для любого цикла $ho = (i_1, i_2, \dots, i_k)$ длины k верно

$$\operatorname{sgn}(\rho) = (-1)^{k-1}.$$

ДОКАЗАТЕЛЬСТВО

- 1. Ясно, что у тождественной перестановки нет инверсий, то есть $d(\mathrm{Id})=0$, а значит, $\mathrm{sgn}(\mathrm{Id})=1$.
- 2. По определению пара i,j образует инверсию в σ тогда и только тогда, когда пара $\sigma(i),\sigma(j)$ образует инверсию в σ^{-1} . Значит, $d(\sigma)=d(\sigma^{-1})$. Однако это доказательство не очень наглядное. Давайте я покажу, как это представлять себе графически. Давайте я возьму конкретный пример перестановки.

$$\sigma = \frac{1}{1} \frac{2}{2} \frac{3}{3} \frac{4}{4} \frac{5}{5} \frac{6}{6}$$

Тогда $d(\sigma)$ — количество пересечения стрелок в этом представлении. Например, в указанном примере всего 6 пересечений. Однако диаграмма для σ^{-1} получается лишь обращением стрелок.

Это значит, что у нас те же самые стрелки, которые обращены в другую сторону, следовательно, и количество пересечений будет такое же.

3. Вначале заметим, что для транспозиции (1,2)

 $^{^{}a}$ Указанное равенство по модулю 2 означает, что чётность левой и правой части равенства одинаковая.

значение d(1,2)=1. Отсюда получаем, что $\mathrm{sgn}(1,2)=-1$.

Теперь докажем, что для любой транспозиции (i,j) верно $\mathrm{sgn}(i,j)=-1$. Для этого выберем любую перестановку $\tau\in\mathrm{S}_n$ такую, что $\tau(1)=i$ и $\tau(2)=j$, а на остальных элементах она действует как угодно. Тогда из правила переименования имеем

$$(i,j) = \tau(1,2)\tau^{-1}.$$

Значит:

$$sgn(i,j) = sgn(\tau) sgn(1,2) sgn(\tau^{-1}) = sgn(\tau)(-1) sgn(\tau) = (-1) sgn(\tau)^2 = -1.$$

4. Если ρ — цикл длины k, то, по утверждению 9, он представляется в виде произведения k-1 транспозиций:

$$\rho = (i_1, i_2, \dots, i_k) = (i_1, i_2)(i_2, i_3) \dots (i_{k-1}, i_k).$$

Но тогда

$$\operatorname{sgn}(\rho) = \operatorname{sgn}(i_1, i_2) \operatorname{sgn}(i_2, i_3) \dots \operatorname{sgn}(i_{k-1}, i_k) = (-1)^{k-1},$$

что и требовалось доказать.

Для перестановки $\sigma \in S_n$ вычисление $d(\sigma)$ занимает $\frac{n(n-1)}{2}$ операций — это долго. Так вычислять знак стоит не всегда. Если воспользоваться утверждением 9, то можно разложить любую перестановку в произведение независимых циклов

$$\sigma = \rho_1 \cdot \ldots \cdot \rho_k$$

после чего знак σ вычисляется как произведение знаков её циклов. Однако знак цикла легко определяется по его длине, как сказано в предыдущем утверждении. Это на практике даёт более удобный способ вычислять знак.