組合賽局 - Hackenbush

夏誌陽

February 10, 2017

Hackenbush

定義 (Hackenbush)

Hackenbush 是一個圖上的兩人遊戲,圖中會有地面 (ground)、點(在地上或是在空中),以及紅色或藍色兩種邊連接在點之間·一個人當藍色,一個人當紅色,每次可以選擇一個自己顏色的邊刪掉,刪掉之後如果有無法跟地面連通的部分,那些邊跟點也會一起消失·兩人輪流操作,先不能動作的人輸·

先看圖1。

- 1 如果藍色先手,整張圖就消失,紅色輸。
- ② 如果藍色後手,紅色動完後藍色依然可以動作,紅色輸 · 所以這是個藍色一定贏的局面。

Figure: 例子

再看圖2, 這是張對雙方對稱的圖, 所以誰先手誰就輸·

Figure: 例子

再看圖3, 紅色不管先手後手都會贏·

由於 Hackenbush 是個非對稱的遊戲,所以並不能使用 SG Value 來分析他的勝負,我們該怎樣去計算每張 Hackenbush 的圖誰會 贏呢?

定義

對於一張 Hackenbush 的圖, 我們要給一個值 G, 使得:

- 1 如果藍色一定獲勝,則 G>0
- ② 如果誰先誰輸,則 G=0
- 3 如果紅色一定獲勝,則 G < 0

而且 |G| 越大代表贏得「越多」·

最簡單的想法是去看藍色紅色各自有多少條邊,然後 $E_{blue}-E_{red}$ 當做 G 值。

不過從圖1 可以知道這是不太正確的,該圖相減之後會是 0,但卻 是個藍色一定會贏的遊戲。

最主要的原因是各自動作會造成對方邊的消失,所以每條邊「權 重」並不相同。 我們同時會希望 G 有以下的好性質:

定義

對於兩張分開的 Hackenbush 有值 G_1 跟 G_2 ,希望他們的併在一起玩的值 G 為:

$$G = G_1 + G_2$$

這樣我們就可以把沒有連在一起的圖拆開來分開計算:

全藍全紅

對於那些全部只有藍邊或是紅邊的 Hackenbush, 我們設定:

- 1 只有 n 條藍邊的 Hackenbush 圖, G = n
- 2 只有 n 條紅邊的 Hackenbush 圖, G = -n

會發現任意數個這樣的圖合在一起玩就只是在比誰的邊比較多,剛剛好跟他們全部 G 的合正負號一樣·符合我們定義的要求,但是我們還是不會計算紅藍混雜的 Hackenbush 遊戲·

Figure: 一些 smaple

來嘗試算算看圖4a 應該要有怎樣的值呢? 因為在這張圖中藍色必勝,所以 G>0 而從圖 4b 可以知道加上一條紅邊之後就變成紅色必勝了,一條紅邊的遊戲已經被我們給予 -1 的値了,所以代表 G-1<0 最後看到圖 4c,經過嘗試之後可以知道,這是個先手輸的遊戲,所以我們可以反推出圖4a 的 $G=\frac{1}{2}$!

如果存在某種方式可以訂出一個好的 Hackenbush 值 G,滿足我們之前講過的兩種定義,我們可以發現什麼性質呢?對於藍色玩家先手時,當前盤面拿走任何一條藍邊都會獲得不同的子圖,假設這些子圖的值是 b_1,\cdots,b_m ,其中 $b_1\leq\cdots\leq b_m$.而假設紅色玩家先手時從當前盤面拿走一條紅邊之後,可以獲得子圖值有 r_1,\cdots,r_n ,其中 $r_1\geq\cdots\geq r_n$.

我們可以用

$$\{b_1,\cdots,b_m|r_1,\cdots,r_n\}$$

來代表這個 Hackenbush 的圖在不同玩家先手操作下可能的結果·如果現在 Hackenbush 的值真如我們所說,大小可以用來代表贏家的勝利程度,在兩個玩家都是理智的狀態下,其實我們只會有 b_m 跟 r_n 這兩個子圖出現。

所以我們其實可以用

$$\{b_m|r_n\}$$

來代表這個 Hackenbush 圖的值,也就是 $G = \{\max\{b_i\} | \min\{r_j\}\}$,我們希望利用這個符號來計算任何圖的值·

4日 → 4周 → 4 差 → 4 差 → 9 へ ○

引理

如果一個 Hackenbush 値 $G = \{a|b\}$, 那麼一定會有 a < b

這邊不特別證明這個 lemma,不過可以想說 G 值代表的是雙方有優勢的程度,每動一步自己的優勢就會下降,藍色動 G 就會減少,紅色動 G 就會上升,所以符號裡面左邊的數值會本原本的 G 值小,右邊的數值會比原本的 G 值大:

計算 general G 値

我們先討論一些邊界的 case:

- 1 對於 $\{|\}$ 來說,雙方先手時都沒有邊可以刪除,所以 $\{|\}=0$
- 2 對於 $\{n|\}$ 來說,只有藍色拿完後還有 n 的值,所以 $\{n|\}=n+1$
- 3 對於 $\{|-n\}$, 來說, 只有紅色拿完後還有 -n 的值, 所以 $\{|-n\} = -n-1$

定理

對於 $G = \{a|b\}, a < b$ 來說, 存在最小的 $i \in 0 \cup \mathbb{N}$, 使得存在 $j \in \mathbb{Z}$, 有

$$a < \frac{j}{2^i} < b$$

那麼就會有 $G = \frac{j}{2^i}$

由於篇幅的關係,所以不特別證明這個定理的結果,符號 $\{|\}$ 本身有另外一個名字叫做 Surreal number,有興趣可以研究,不少非對稱的遊戲也都可以轉成 Surreal number 做計算·

回到前面去計算之前的例子,圖1,我們可以知道

$$G = \{0|1\} = \frac{1}{2^1} = \frac{1}{2} \cdot$$

而圖3, 我們可以知道
$$G = \{-2|-1/2\} = \frac{-1}{20} = -1$$
 ·

這樣給定任意一張 Hackenbush 的圖,我們獲得了可以一個把 game tree 展開之後,再 DP 上來計算值然後判斷輸贏的做法,不 過這樣複雜度很巨大,如果邊數量是 E,那時間複雜度大概是 O(E!) 左右吧。

More for Surreal Number

在某些非對稱遊戲會遇到 b-a>1 的情況,這時候會需要以下的式子:

$$\{a|b\}=egin{cases}$$
大於 a 的第一個整數, $0\leq a< b$ $0, \qquad a< 0< b$ 小於 b 的第一個整數, $0\geq b>a$

巧克力

例題

一天小直跟小橫收到一片巧克力,這片巧克力是由 $A\times B$ 塊 1×1 的巧克力所組成的巧克力磚,他們想要把所有巧克力撥成 1×1 來吃 · 因為太無聊了所以他們決定玩個遊戲 · 兩人輪流從巧克力堆中選出一塊巧克力撥成兩半放回巧克力堆中,小直只能縱向的撥斷,小橫只能橫向的撥斷,最後挑不出巧克力來撥的人輸 · 例如小直可以把 4×2 的巧克力撥成 2 塊 4×1 的巧克力,而小橫可以把 4×2 的巧克力撥成 3×2 與 1×2 或是 2 塊 2×2 的巧克力·

請問兩人都在最佳策略下玩遊戲時,誰輸誰贏呢? 這裡 $1 \le A$, $B \le 300$ 。

- **1** $SR(1 \times 1) = 0$
- 2 $SR(1 \times N) = N 1$
- $SR(N \times 1) = -N + 1$
- 4 A×B, 像 Hackenbush 一樣計算 {··· |··· } 來獲得結果。

$$SR(3 \times 2) = \{2 \times SR(3 \times 1) | SR(2 \times 2) + SR(1 \times 2)\}$$

$$= \{2 \times -2 | 1\}$$

$$= \{-4 | 1\}$$

$$= 0$$

$$SR(4 \times 2) = \{2 \times SR(4 \times 1) | SR(3 \times 2) + SR(1 \times 2), 2 \times SR(2 \times 2)\}$$

$$= \{2 \times -3 | 0 + 1, 0\}$$

$$= \{-6 | 0\}$$

$$= -1$$

這樣就獲得一個 $O(n^3)$ 的做法。