Gabriel Barbosa da Silva

Professora Juliana

Métodos Numéricos

2º Lista de exercícios

1. Localize graficamente os zeros das funções a seguir fazendo um esboço das funções:

a)
$$f(x) = \frac{x}{2} - tg(x)$$

$$b) f(x) = 1 - x ln(x)$$

c)
$$f(x) = 2^x - 3x$$

d)
$$f(x) = x^3 + x - 1000$$

2. Determine intervalos que contenham soluções das seguintes equações e confirme se os intervalos possuem somente uma raiz.

a)
$$4x^2 - e^x = 0$$

(x) 4x2-ex		=8x-ex
The second secon		
0,5 -0,698721	2,351276	i. Pelo teorema da unicidade,
1,0 71,281718	5,281718	no intervalo [0,5;1] existe apenas
= k1 € [0,5; 1]		uma única taiz, pois, o sinal da f'(x)
		continuad a mermo.

b)
$$x^3 - 2x^2 - 4x + 3 = 0$$

b)	X3-2x2-4X	+3=0-Df'(x)=3x2-4X-4
X	$x^3 - 2x^2 - 4x + 3$	3x2-4x-4 Como foi achado uma
0,5	0,625	-5,25 raiz quando x é 3, a proxi-
	-2	-5 ma raiz deve estar no inter-
1,5	-4,125	Valo [0,5, L]. E pelo teotema da uni-
2	-5	cidade, no intervalo [0,5,1], a f(x)
2,5	-3,875	apresentou a mesmo signal. Lega, existe
3	9	apenas uma raiz no intervalo [0,5,1].

3. Utilize o método da Bisseção para encontrar aproximações das soluções com precisão de 10^{-4} para $x^3-7x^2+14x-6=0$.

	Primeire	itei	delimital	um interpalo:
X	F(x)	Itei	escolher a	intervale [0.5,1], pais ocotted
0.5	-0.625	uma t	toca de s	inal. Agora itei aplicat o teore-
1	2	ma da	unicidade 1	Pala obsetuat se temos mais de
1.5		uma te	aiz neste	intervalo, utilizando a
2	2	f'(x)	= 3 X2-10	1X+8
2.5	0,875	X	f'(x)	O sinal muda em x=0,85, entac
3	0		1,75	
3.2	-0,112	0.65	0,1675	
3.5	0.125	0.85	-1,7325	Agora itei aplicat a metado
		1	-3	
10	1165P1C	ao, mas	antes i	vei calculat a valot aproximado de
	200			
1461	acoes.		10,65-0,5	1-1-1x x 3,5507

	K	ak	bk	Xk	f(xk)	f(a).f(xk)
	0	0,5	0.65	0.575	0,024265625	0,046416016
	1	10.575	0.65	e. 1125	1-0,178689453	-0,013270424
	2	0.575	0.6125	2.59375	0,054046631	-0,004013807
	3	0.575	0.69375	0.584375	-0.009648346	0,00071654
	4	0.589375	0,59375	0.5890625	0.072314121	-0.000215294
	5	0.584375	0.5890625	0.58671875	0.006361671	-0.00006138
	6	0.584375	0.58691875	0.585546875	-0,001636137	0.000015486
	7	0.585546975	0.58871875	0.586132812	0.002364563	-0.000003869
	8	0.585546275	0.526132812	0.525839843	0.00036466	-0.000000 597
	9	0.565546675	0.585839143	0.585693359	-0.000 6356 26	0,00000104
	10	0.525693359	0.585839643	0.585766601	-0.000135955	0.000000086
	11	0.53576668	0.589639645	0.585203122	0.000113927	0.000000015
1	12	0.58546661	0.585893122	0.589764861	-0.000010766	0.00000001

X	(ficx)	Visto que f'(x) monteve o sinal, podemos continuat
3.2	-6,08	Itei direte para a calcula do método da bisserção.
3.3	-5,53	and prince as megal da bisselfag.
3.4	-4,92	
3.5	-4,25	

K	Qk .	bk .	XK	f(xx)	(6).f(xx)
0	3.2	3.5	3.35	-0.062125	0.006958
1	3.35	3.5	3.425	0.013015625	-0.00080859
2	3.35	3.425	3.3875	-0.029001953	0.001301946
3	3.3876	3.425	3.40625	-0.009124756	0.000264636
4	3.40625	3.425	3.415625	0.001660065	-0.000015142
5	3.40625	3.415625	3.4109375	-0.003803379	0.000034705
Ь	5.4109375	3.415629	3.41378175	-0.001089959	0.000004144
7	3.91328125	3.415625	3.414453125	0.000180851	-0.000000306
8	3,41326125	3.414453125	3.413867128	-0.000405414	0.000000442
9	5.413867188	3.924953175	3.414160157	-0.0000 bzss9	0.000000025
10	100000000000000000000000000000000000000	TETE SAIS			
11.	Ac toiTel	Phant	adas faram	R, (0.5857	24211

4. Encontre todos zeros da função $f(x)=x^3-2x^2-20x+30$, pelo método da Falsa Posição, com $\epsilon \leq 10^{-4}$.

Primeiro, vamos determinar os intervalos onde pode estar as raízes:

X	F(x)		
-4.5	-11,625		
-4	14		
-3.5	32,625		
-3	45		
-2.5	51,875		

-2	54
-1.5	52,125
-1	47
-0.5	39,375
0	30
1	9
1.5	-1,125
2	-10
2.5	-16,875
3	-21
3.5	-21,625
4	-18
4.5	-9,375
5	5

Após isso, podemos observar três intervalos onde devem estar as raízes, A[-4.5, -4], B[1, 1.5] e C[4.5, 5]. Para encontrá-las mais facilmente, elaborei um pequeno algoritmo em linguagem C visto a seguir.

```
printf("\nk | a | b | x \n");

for(i=0; (b-a)>precisao; i++){
    x = ( (a* (Fx(b)) ) - (b* (Fx(a)) ) ) /( (Fx(b))-(Fx(a)) );
    printf("%d | %lf | %lf | %lf \n", i, a, b, x);
    if( (Fx(a)*Fx(x))<0 ){
        b = x;
    }

else{
    a = x;
}

31
    }

32
    a = x;
}</pre>
```

O resultado para o intervalo A[-4.5, -4] foi:

```
De o inicio do intervalo:
-4.5

De o fim do intervalo:
-4

De a precisao:
0.0001

k | a | b | x
0 | -4.500000 | -4.000000 | -4.273171
1 | -4.500000 | -4.273171 | -4.289728
2 | -4.500000 | -4.289728 | -4.290673
3 | -4.500000 | -4.290673 | -4.290726
4 | -4.500000 | -4.290726 | -4.290729
5 | -4.500000 | -4.290729 | -4.290729
6 | -4.500000 | -4.290729 | -4.290729
7 | -4.500000 | -4.290729 | -4.290729
8 | -4.500000 | -4.290729 | -4.290729
9 | -4.500000 | -4.290729 | -4.290729
10 | -4.500000 | -4.290729 | -4.290729
11 | -4.500000 | -4.290729 | -4.290729
12 | -4.500000 | -4.290729 | -4.290729
13 | -4.500000 | -4.290729 | -4.290729
```

Chegando ao resultado final de x = -4.290729.

O resultado para o intervalo A[1, 1.5] foi:

```
De o inicio do intervalo:
1
De o fim do intervalo:
1.5
De a precisao:
0.0001

k | a | b | x
0 | 1.000000 | 1.500000 | 1.444444
1 | 1.000000 | 1.444444 | 1.442086
2 | 1.000000 | 1.442086 | 1.441990
3 | 1.000000 | 1.441990 | 1.441985
4 | 1.000000 | 1.441985 | 1.441985
5 | 1.000000 | 1.441985 | 1.441985
6 | 1.000000 | 1.441985 | 1.441985
7 | 1.000000 | 1.441985 | 1.441985
8 | 1.000000 | 1.441985 | 1.441985
9 | 1.000000 | 1.441985 | 1.441985
10 | 1.000000 | 1.441985 | 1.441985
11 | 1.000000 | 1.441985 | 1.441985
```

Chegando ao resultado final de x = 1.441985.

O resultado para o intervalo A[4.5, 5] teve uma resposta inesperada, o critério de parada não era atendido, então editei o código para utilizar o segundo critério de parada $|f(x_k)| \le \varepsilon$.

Com o critério de parada trocado, o resultado foi:

```
De o inicio do intervalo:
4.5
De o fim do intervalo:
5
De a precisao:
0.0001

k | a | b | x
0 | 4.500000 | 5.000000 | 4.826087
1 | 4.826087 | 5.000000 | 4.847419
2 | 4.847419 | 5.000000 | 4.848667
3 | 4.848667 | 5.000000 | 4.848740
4 | 4.848740 | 5.000000 | 4.848744
```