Министерство образования и науки Российской Федерации Московский физико-технический институт (государственный университет)

Физтех-школа прикла	адной математики	и информатики	
Кафедра вычислительных технологи	ий и моделирования	я в геофизике и	биоматематике

Выпускная квалификационная работа бакалавра

Блочные методы типа бисопряжённых градиентов

Автор:

Студент 101a группы Козлов Николай Андреевич

Научный руководитель:

н.с.,к.ф.-м.н. Желтков Дмитрий Александрович

Аннотация

Блочный BiCGStab и его друзья Kозлов Hиколай Aндреевич

Краткое описание задачи и основных результатов, мотивирующее прочитать весь текст.

Abstract

Block BiCGStab and his friends

Содержание

1	Введение	4
2	Крыловские методы решения систем уравнений	5
	2.1 Процедура Арнольди	5
	2.2 Симметричный алгоритм Ланцоша	5
	2.3 Метод сопряженных градиентов	6
	2.4 Процесс биортогонализации Ланцоша	8
	2.5 Метод бисопряженных градиентов	9
	2.6 Стабилизированный метод бисопряженных градиентов	9
	2.7 Блочный метод сопряженных градиентов	9
	2.8 Блочный метод бисопряженных градиентов	9
	2.9 Блочный стабилизированный метод бисопряженных градиентов	9
	2.9.1 Матричнозначные полиномы	9
	2.9.2 Алгоритм	9
	2.10 Блочный симметричный метод квазиминимальных невязок	9
3	Улучшения блочного метода стабилизированных бисопряженных гра-	
	диентов	10
	3.1 Реортогонализация для поддержания биортогональных соотношений	10
	3.2 Ортогонализация векторов направлений и проверочных невязок	11
	3.3 Выбор правых частей	12
	3.4 Алгоритм	12
	3.5 Проблемы	12
4	Модификация блочного симметричного метода квазиминимальных нев	-R
	зок	14
5	Численные эксперименты	17
6	Заключение	20

1 Введение

В ряде приложений возникают большие линейные системы с многими правыми частями. такую задачу можно записать в блочном виде:

$$AX = B$$
,

где A - $N \times N$ невырожденная разреженная матрица системы; B - $N \times s$ невырожденная матрица, столбцы - правые части; X - $N \times s$ матрица, столбцы - решения для соответствующих правых частей. Также еще предполагаем, что $s \ll N$. Такие задачи можно решать прямыми методами, однако они не подходят для больших задач из-за кубической сложности. Так что естественным является использование блочных крыловских методов.

В преимущества блочных крыловских методов входят: высокая производительность на вычислительных системах за счет блочных операций, Более быстрая сходимость, по сравнению с неблочными методами [DIANNE O'LEARY]; в задачах со структурированными системами (например МКЭ) БКМ не разрушают структуру, в отличие от прямых методов. Чрезвычайно большие системы, которые не помещаются целиком в оперативную память можно решать с помощью блочных крыловских методов.

<Рассказ про блочные крыловские методы.>

Для наших целей мы хотим построить крыловские методы, отвечающие следующим требованиям: методы должны находить решения систем общего вида, то есть, которые не обязательно являются эрмитовыми; методы не должны требовать сохранения всего крыловского пространства, то есть должны давать короткие итерационные соотношения;

2 Крыловские методы решения систем уравнений

Ключевым объектом в рассматриваемом классе методов является пространство Крылова, определим его.

Определение 1. Пусть A - матрица порядка N, v - вектор размерности N. Тогда линейная оболочка вида $K_m(A,v) \equiv \{v,Av,A^2v,...,A^{m-1}v\}$ называется подпространством Крылова, где m - натуральное число.

Все рассматриваемые в дальнейшем методы являются проекционными. В таких методах приближенное решение ищется в крыловском пространствепри этом решение на подпространстве ищется, как правило, на основе некоторого проекционного соотношения (которое и задаёт метод).

2.1 Процедура Арнольди

Процедура Арнольди - это алгоритм построения ортогонального базиса в крыловском подпространстве K_m . Алгоритм 1 представляет наиболее простую вариацию такого алгоритма в точной арифметике.

Алгоритм 1 Алгоритм Арнольди

```
1: Выберем v_1 = v/\|v\|_2, так что \|v_1\|_2 = 1
 2: for j = 1, 2, ..., m do
         for i = 1, 2, ..., j do
 3:
              h_{ij} \leftarrow (Av_j, v_i)
 4:
 5:
         w_j \leftarrow Av_j - \sum_{i=1}^j h_{ij}v_i
 6:
         h_{j+1,j} \leftarrow \|w_j\|_2
 7:
 8:
         if h_{j+1,j} = 0 then
              Stop
 9:
         end if
10:
         v_{j+1} \leftarrow w_j/h_{j+1,j}
11:
12: end for
```

Алгоритм на каждом шаге ортогонализует Av_j ко всем предыдущим v_i , применяя процедуру Грама-Шмидта.

Результат работы алгоритма можно записать в матричном виде: обозначим V_m - $N \times m$ матрицу со столбцами $v_1,...,v_m$; \overline{H}_m - $(m+1)\times(m)$ хессенбергова матрица с элементами h_{ij} из алгоритма 1; H_m - $m \times m$ матрица, получающаяся из \overline{H}_m путем удаления последней строки. Тогда, процедура Арнольди влечет следующие соотношения:

$$AV_m = V_m H_m + w_m e_m^T (1)$$

$$=V_{m+1}\overline{H}_m,$$
 (2)

$$V_m^T A V_m = H_m (3)$$

2.2 Симметричный алгоритм Ланцоша

Симметричный алгоритм Ланцоша - это частный случай процедуры Арнольди, когда матрица A - симметричная, при таком условии хессенбергова матрица H_m становится симметричной тридиагональной T_m . Это позволяет получить короткие рекуррентные соотношения, приведённые в Алгоритме 2

Алгоритм 2 Симметричный алгоритм Ланцоша

```
1: Выберем v_1 = v/\|v\|_2, так что \|v_1\|_2 = 1

2: \beta_1 \leftarrow 0, v_0 \leftarrow 0

3: for j = 1, 2, ..., m do

4: w_j \leftarrow Av_j - \beta_j v_{j-1}

5: \alpha_j \leftarrow (w_j, v_j)

6: w_j \leftarrow w_j - \alpha_j v_j

7: \beta_{j+1} \leftarrow \|w_j\|_2

8: if \beta_{j+1} = 0 then

9: Stop

10: end if

11: v_{j+1} \leftarrow w_j/\beta_{j+1}

12: end for
```

При этом матрица T_m имеет вид:

$$T_{m} = \begin{pmatrix} \alpha_{1} & \beta_{2} & & & \\ \beta_{2} & \alpha_{2} & \beta_{3} & & & \\ & \beta_{3} & \ddots & \ddots & & \\ & & \ddots & \alpha_{m-1} & \beta_{m} \\ & & & \beta_{m} & \alpha_{m} \end{pmatrix}$$
(4)

2.3 Метод сопряженных градиентов

Симметричный алгоритм Ланцоша можно использовать для итеративного решения систем линейных уравнений с симметричной положительно определенной матрицей.

Пусть задано начальное приближение x_0 , и векторы направлений из алгоритма Ланцоша v_i , i=1,...,m. На m-ом шаге алгоритма приближенное решение ищется в аффинном пространстве x_0+K_m , где $K_m\left(A,r_0\right)\equiv\{r_0,Ar_0,A^2r_0,...,A^{m-1}r_0\},\ r_0=b-Ax_0$. На невязки при этом налагается условие

$$b - Ax_m \perp K_m. (5)$$

Если взять $v_1 = r_0/\|r_0\|_2$ и обозначить $\beta = \|r_0\|_2$. Тогда $V_m^T A V_m = T_m$ из (3), а также $V_m^T r_0 = V_m^T (\beta v_1) = \beta e_1$. Разложим приближенное решение на m-ом шаге по базису из векторов $v_i, i=1,...,m$:

$$x_m = x_0 + V_m y_m. (6)$$

Это выражение эквивалентно равенству:

$$r_m = r_0 - AV_m y_m, (7)$$

домножим слева на V_m^T :

$$V_m^T r_m = V_m^T r_0 - V_m^T A V_m y_m. (8)$$

Из (5) следует, что $V_m^T r_m = 0$, учтём это в (8) и выразим y_m :

$$y_m = T_m^{-1} \beta e_1. (9)$$

Получим выражение дял r_m :

$$r_{m} = b - A(x_{0} + V_{m}y_{m})$$

$$= r_{0} - AV_{m}y_{m}$$

$$= \beta v_{1} - (V_{m}T_{m} + h_{m+1,m}v_{m+1}e_{m}^{T})y_{m}$$

$$= V_{m} \underbrace{(\beta e_{1} - H_{m}y_{m})}_{=0} - h_{m+1,m}e_{m}^{T}y_{m}v_{m+1}$$

$$r_{m} = -h_{m+1,m}e_{m}^{T}y_{m}v_{m+1}.$$
(10)

Из этого выражения следует, что $r_m \parallel v_{m+1}$, а значит, что невязки на каждом шаге ортогональны друг другу.

Получим короткие итерационные соотношения для обновления приближенного решения x_m . LU-разложение матрицы T_m :

$$T_{m} = L_{m}U_{m} = \begin{pmatrix} 1 & & & & \\ \lambda_{2} & 1 & & & \\ & \lambda_{3} & \ddots & & \\ & & \ddots & 1 & \\ & & & \lambda_{m} & 1 \end{pmatrix} \begin{pmatrix} \eta_{1} & \beta_{2} & & & & \\ & \eta_{2} & \beta_{3} & & & \\ & & \ddots & \ddots & \\ & & & \eta_{m-1} & \beta_{m} \\ & & & & \eta_{m} \end{pmatrix}$$

Введем обозначения

$$P_m \equiv V_m U_m^{-1},\tag{11}$$

$$z_m \equiv L_m^{-1} \beta e_1, \tag{12}$$

тогда приближенное решение выражается как

$$x_m = x_0 + P_m z_m. (13)$$

Используя равенство (11) получим формулу для обновления p_m -последнего столбца p_m матрицы P_m

$$P_m U_m = V_m \tag{14}$$

$$p_m \eta_m + \beta_m p_{m-1} = v_m \tag{15}$$

$$p_m = \eta_m^{-1} \left(v_m - \beta_m p_{m-1} \right) \tag{16}$$

Выразим элементы из последней строчки матрицы T_m с помощью LU-разложения:

$$\alpha_m = \lambda_m \beta_m + \eta_m \implies \eta_m = \alpha_m - \lambda_m \beta_m$$
$$\beta_m = \lambda_m \eta_{m-1} \implies \lambda_m = \beta_m / \eta_{m-1}$$

В силу вида матрицы L_m :

$$z_m = \begin{pmatrix} z_{m-1} \\ \zeta_m \end{pmatrix},$$
$$\zeta_m = -\lambda_m \zeta_{m-1}.$$

Как результат получаем формулу для обновления x_m :

$$x_m = x_{m-1} + \zeta_m p_m$$

Покажем, что столбцы P_m образуют А-ортогональную систему, т.е, что $(Ap_i,p_j)=0$, для $i\neq j$. Для этого нужно показать, что $P_m^TAP_m$ - диагональная матрица. Подставим определение P_m в это выражение:

$$P_m^T A P_m = U_m^{-T} V_m^T A V_m U_m^{-1} (17)$$

$$= U_m^{-T} T_m U_m^{-1} (18)$$

$$=U_m^{-T}L_m \tag{19}$$

 $U_m^{-T}L_m$ - нижнетреугольная матрица, но она также является и симметричной, так как $P_m^TAP_m$ - симметричная матрица. Таким образом, $U_m^{-T}L_m$ - диагональная матрица.

Следствием этого является то, что обновлять приближенное решение можно исходя из поддержания свойств ортогональности невязок и А-ортогональности векторов направлений p_i . В последующий выкладках вектора p_j будут нумероваться с нуля, а не с единицы, ка кэто было раньше. А также коэффициенты будут переименованы, чтобы соответствовать общепринятым обозначениям.

$$x_{j+1} = x_j + \alpha_j p_j \implies r_{j+1} = r_j - \alpha_j A p_j$$

$$\alpha_j = (r_j, r_j) / (A p_j, r_j)$$

Из уравнения (16) следует, что

$$p_{j+1} = r_{j+1} + \beta_j p_j$$

$$\beta_j = -(r_{j+1}, Ap_j)/(p_j, Ap_j) = \frac{1}{\alpha_j} (r_{j+1}, (r_{j+1} - r_j))/(Ap_j, p_j) = (r_{j+1}, r_{j+1})/(r_j, r_j)$$

Это выражение и A-ортогональность p_j в свою очередь можно использовать, чтобы преобразовать выражение для α_i :

$$(Ap_j, r_j) = (Ap_j, p_j - \beta_{j-1}p_{j-1}) = (Ap_j, p_j)$$

 $\alpha_j = (r_j, r_j)/(Ap_j, p_j)$

Теперь у нас есть всё, чтобы записать алгоритм.

Алгоритм 3 Метод сопряженных градиентов

```
1: r_{0} \leftarrow b - Ax_{0}, p_{0} \leftarrow r_{0}.

2: for j = 0, 1, ... do

3: \alpha_{j} \leftarrow (r_{j}, r_{j})/(Ap_{j}, p_{j})

4: x_{j+1} \leftarrow x_{j} + \alpha_{j}p_{j}

5: r_{j+1} \leftarrow r_{j} - \alpha_{j}Ap_{j}

6: \beta_{j} \leftarrow (r_{j+1}, r_{j+1})/(r_{j}, r_{j})

7: p_{j+1} \leftarrow r_{j+1} + \beta_{j}p_{j}

8: end for
```

Этот метод можно адаптировать и для систем общего вида, если домножить обе части уравнения Ax=b на A^T , и решать систему с симметричной положительно определенной матрицей A^TA , однако число обусловленности при этом возрастает в квадрат раз из-за чего данный вариант может давать плохие результаты. [1]

2.4 Процесс биортогонализации Ланцоша

Для несимметричных систем можно предъявить алгоритм похожий на симметричный алгоритм Ланцоша, но который будет строить не ортогональный базис в пространстве Крылова, а пару биортогональных базисов в пространствах $K_m(A, v_1) = span\{v_1, Av_1, ..., A^{m-1}v_1\}$ и $K_m(A^T, v_1) = span\{v_1, A^Tv_1, ..., (A^T)^{m-1}v_1\}$.

Алгоритм 4 Процесс биортогонализации Ланцоша

```
1: Выберем v_1, w_1 такие что (v_1, w_1) = 1.
  2: \beta_1 = \delta_1 \equiv 0, \ w_0 = v_0 \equiv 0
 3: for j = 1, 2, \dots, m do
              \alpha_i = (Av_i, w_i)
            \hat{v}_{j+1} = Av_j - \alpha_j v_j - \beta_j v_{j-1}
\hat{w}_{j+1} = A^T w_j - \alpha_j w_j - \delta_j w_{j-1}
\delta_{j+1} = |(\hat{v}_{j+1}, \hat{w}_{j+1})|^{1/2}
if \delta_{j+1} = 0 then
  8:
                     Stop
 9:
              end if
10:
             \beta_{i+1} = (\hat{v}_{i+1}, \hat{w}_{i+1})/\delta_{i+1}
11:
              v_{j+1} = \hat{v}_{j+1}/\beta_{j+1}
12:
              w_{j+1} = \hat{w}_{j+1}/\delta_{j+1}
14: end for
```

Введём обозначение

$$T_{m} = \begin{pmatrix} \alpha_{1} & \beta_{2} & & & \\ \delta_{2} & \alpha_{2} & \beta_{3} & & & \\ & \delta_{3} & \ddots & \ddots & & \\ & & \ddots & \alpha_{m-1} & \beta_{m} \\ & & & \delta_{m} & \alpha_{m} \end{pmatrix}$$

$$(20)$$

2.5 Метод бисопряженных градиентов

[1]

2.6 Стабилизированный метод бисопряженных градиентов

[2]

2.7 Блочный метод сопряженных градиентов

[3]

2.8 Блочный метод бисопряженных градиентов

[3]

2.9 Блочный стабилизированный метод бисопряженных градиентов

[4]

2.9.1 Матричнозначные полиномы

Проблемы со сходимостью метода из [4], демонстрация в 4 главе, решение проблемы в 3 главе.

2.9.2 Алгоритм

2.10 Блочный симметричный метод квазиминимальных невязок

3 Улучшения блочного метода стабилизированных бисопряженных градиентов

В данной главе предложены изменения, направленные на улучшение стабильности блочного метода бисопряженных градиентов.

3.1 Реортогонализация для поддержания биортогональных соотношений

Для построения базиса в крыловском пространстве и построения невязок алгоритм строится таким образом, чтобы поддерживать следующие соотношения ортогональности:

$$C(\mathbf{Q}_k \mathbf{R}_{k+1}) = 0, (21)$$

$$C^{(1)}(\mathbf{Q}_k \mathbf{P}_k) = 0. \tag{22}$$

Для построения процедуры реортогонализации эти полиномиальные соотношения необходимо перевести в матричный вид. Используя полиномиальное соотношение для \mathbf{R}_{k+1} , получаем:

$$\mathbf{Q}_k \mathbf{R}_{k+1} = \mathbf{Q}_k \mathbf{R}_k - t \mathbf{Q}_k \mathbf{P}_k \alpha_k \implies S_k = R_k - A P_k \alpha_k$$

Тогда выражение (21) можно представить в виде:

$$\tilde{R}_0^* S_k = 0. (23)$$

В точной арифметике это соотношение выполняется строго, однако при вычислениях на компьютере соотношение (23) выполняется с какой-то погрешностью. Для существенного уменьшения этой погрешности можно произвести ортогонализацию еще раз, взяв S_k в качестве блока, к которому производится ортогонализация:

$$S_k^r = S_k - AP_k \alpha_k^r. (24)$$

При этом мы стремимся поддерживать соотношение $\tilde{R}_0^*S_k^r=0$ с уточненным блоком S_k^r . Тогда, домножая обе части выражения (24) слева на \tilde{R}_0 , получим уравнение для поправки α_k^r :

$$(\tilde{R}_0^T A P_k) \alpha_k^r = \tilde{R}_0^T S_k.$$

Аналогичным образом рассмотрим (22). Используя полиномиальное соотношение для P_{K+1} , получаем следующее выражение:

$$t\mathbf{Q}_{k}\mathbf{P}_{k+1} = t\mathbf{Q}_{k}\mathbf{R}_{k+1} + t\mathbf{Q}_{k}\mathbf{P}_{k}.$$
(25)

Введем обозначение $W_k \equiv (t\mathbf{Q}_k\mathbf{R}_{k+1})(A) \circ R_0$. Тогда выражение (25) можно записать в матричном виде:

$$W_k = AS_k + AP_k\beta_k. (26)$$

Тогда выражение (22) можно представить в виде:

$$\tilde{R}_0^* W_k = 0. (27)$$

Аналогично получаем соотношения реортогонализации для (27):

$$W_k^r = W_k + AP_k\beta_k^r$$

Поправка β_k определяется уравнением:

$$(\tilde{R}_0^* A P_k) \beta_k^r = -\tilde{R}_0^* W_k$$

Следующим шагом получим формулу для вычисления P_{k+1} с учетом введённых обозначений

$$\mathbf{Q}_{k+1}\mathbf{P}_{k+1} = \mathbf{Q}_{k+1}(\mathbf{R}_{k+1} + \mathbf{P}_k\beta_k) =$$

$$= \mathbf{Q}_k\mathbf{R}_{k+1} - \omega_k t\mathbf{Q}_k\mathbf{R}_{k+1} + (1 - \omega_k t)\mathbf{Q}_k\mathbf{P}_k\beta_k =$$

$$= \mathbf{Q}_k\mathbf{R}_{k+1} - \omega_k t\mathbf{Q}_k\mathbf{P}_{k+1} + \mathbf{Q}_k\mathbf{P}_k\beta_k$$

В матричном виде это выражение записывается как:

$$P_{k+1} = S_{k+1} + P_k \beta_k - \omega_k W_k$$

Для дополнительной минимизации нормы невязки поддерживается следующее соотношение:

$$\langle AS_k, R_{k+1} \rangle_F = 0$$

Для этого выражения также можно выписать процедуру реортогонализации:

$$R_{k+1}^r = R_{k+1} - \omega_k^r T_k$$
$$\omega_k^r = \frac{\langle R_{k+1}, T_k \rangle_F}{\langle T_{k+1}, T_k \rangle_F}$$

3.2 Ортогонализация векторов направлений и проверочных невязок

В Алгоритме 5 приведён метод, предложенный в статье [4]. Красным отмечены все места где используется блок векторов направлений P_k . Легко видеть, что он везде входит в алгоритм вместе матрицей коэффициентов (α_k и β_k). Так что если сделать замену $P_k \leftarrow P_k U$, где U - $s \times s$ матрица, то изменятся лишь сами матрицы коэффициентов, в то время как сами выражения в алгоритме останутся неизменными. Так что

Алгоритм 5 Блочные стабилизированные бисопряженные градиенты

```
X_0 - начальное приближение R_0 = B - AX_0 P_0 = R_0 \tilde{R}_0 - произвольная N \times s матрица for k = 0, 1, 2, ... do решить \tilde{R}_0^T A P_k \alpha_k = \tilde{R}_0^T R_k S_k = R_k - A P_k \alpha_k T_k = AS_k \omega_k = \frac{\langle T_k, S_k \rangle_F}{\langle T_k, T_k \rangle_F} X_{k+1} = X_k + P_k \alpha_k + \omega_k S_k R_{k+1} = S_k - \omega_k T_k решить \tilde{R}_0^T A P_k \beta_k = -\tilde{R}_0^T T_k P_{k+1} = R_{k+1} + P_k \beta_k - \omega_k A P_k \beta_k end for
```

можно попробовать подобрать такую U, чтобы вычисления стали более устойчивыми. Например, можно сделать QR-разложение матрицы P_k :

$$P_k = Q_{P_k} R_{P_k},$$

и в качестве U взять R_k^{-1} . Такой выбор U повлечет ортогонализацию P_k , что должно улучшить стабильность операций проектирования на вектора направлений.

Как указано в алгоритме 5, \tilde{R}_0 - произвольная матрица, обычно ее выбирают равной R_0 . Аналогично для улучшения стабильности предлагается сделать QR-разложение матрицы R_0 :

$$R_0 = Q_R R_R$$

и сделать замену $\tilde{R}_0 \to Q_R$.

3.3 Выбор правых частей

Алгоритм перестает сходиться, если блок невязок становится почти вырожденным, поэтому предлагается на этапе инициализации алгоритма сделать RRQR-разложение блока правых частей, рассмотреть получившуюся перестановку, и выбрать несколько правых частей с номерами, соответствующим первым номерам в перестановке. Благодаря такому выбору рассматривается более линейно-независимый набор столбцов, что положительно сказывается на сходимости.

3.4 Алгоритм

Алгоритм 6 Регуляризованный блочный метод стабилизированных бисопряженных градиентов

```
X_0 - начальное приближение;
R_0 = B - AX_0;
P_0 = R_0;
R_0 = QU - QR-разложение R_0;
\tilde{R}_0 = \tilde{U};
for k = 0, 1, ... do
     P_k = QU - QR-разложение P_k;
     P_k \to P_k U^{-1};
     V_k = AP_k;
     решить (\tilde{R}_0^*V_k)\hat{\alpha}_k = \tilde{R}_0^*R_k;
     \hat{S}_k = R_k - V_k \hat{\alpha}_k;
     решить (\tilde{R}_0^* \tilde{V}_k) \alpha_k = \tilde{R}_0^* \hat{S}_k;
     S_k = \hat{S}_k - V_k \alpha_k;
     T_k = AS_k;
     \hat{\omega}_k = \langle S_k, T_k \rangle_F / \langle T_k, T_k \rangle_F;
     R_{k+1} = S_k - \hat{\omega}_k T_k;
     \omega_k = <\hat{R}_{k+1}, T_k>_F / < T_k, T_k>_F;
     R_{k+1} = R_{k+1} - \omega_k T_k;
     X_{k+1} = X_{\underline{k}} + P_{\underline{k}}(\hat{\alpha}_k + \alpha_k) + (\hat{\omega}_k + \omega_k)S_k;
     решить (\tilde{R}_0^* V_k) \hat{\beta}_k = -\tilde{R}_0^* T_k;
     W_k = T_k + V_k \hat{\beta}_k;
     решить (\tilde{R}_{0}^{*}V_{k})\beta_{k} = -\tilde{R}_{0}^{*}\hat{W}_{k};
     W_k = W_k + V_k \beta_k;
     P_{k+1} = S_k + P_k(\hat{\beta}_k + \beta_k) - (\hat{\omega}_k + \omega_k)W_k;
end for
```

3.5 Проблемы

В данном алгоритме возможны аварийные остановки, в случаях, когда матрица $\tilde{R}_0^*AP_k$ становится вырожденной. В такой ситуации авторы [4] предлагают провести рестарт с другой \tilde{R}_0 .

Но главным недостатком алгоритма [4] является выбор ω в виде скалярной матрицы, из-за этого чем больше размер блока мы берем для расчета, тем меньше по модулю становится ω , что в свою очередь ведет к стагнации алгоритма. Наша модификация алгоритма также страдает от этой проблемы. Была надежда, что получится обобщить метод на случай, когда ω_k - произвольная $s \times s$ матрица, но в ходе исследования выяснилось, что это невозможно из-за некоммутативности матричнозначных полиномов, которая не позволяет получить короткие итерационные формулы.

4 Модификация блочного симметричного метода квазиминимальных невязок

Один из ключевых элементов блочного симметричного метода квазиминимальных невязок [5] является процесс Грамма-Шмидта с квазискалярным произведением. Далее будет представлена модификация этого алгоритма, использующая настоящее QR-разложение. Благодаря этому невязка на шаге алгоритма окажется ближе к настоящей невязке. Немаловажжно и то, что квази-QR в некотором роде эквивалентно LL^T разложению матрицы V^TV , причём это разложение выполняется без выбора ведущего элемента. В отличие от разложения Холецкого, для которого из-за положительной определенности матрицы следует, что все ведущие миноры положительно определены и обусловлены не хуже, чем вся матрица, и поэтому для него выбор ведущего элемента не так существенен, здесь это является проблемой, поэтому важно модифицировать алгоритм, не использующим квази-QR-разложение. В дополнение ко всему вышесказанному, при этом становится возможным использование устойчивых реализаций QR-разложения и применение их библиотечных реализаций.

Блочный симметричный процесс Ланцоша приводит к следующему матричному соотношению:

$$A \begin{bmatrix} V_{1} & \dots & V_{k} & V_{k+1} \end{bmatrix} = \begin{bmatrix} V_{1} & \dots & V_{k} & V_{k+1} \end{bmatrix} \begin{bmatrix} \alpha_{1} & \delta_{1} & & & & & \\ \beta_{2} & \alpha_{2} & \delta_{2} & & & & & \\ & \beta_{3} & \ddots & \ddots & & & & \\ & & \ddots & \alpha_{k-1} & \delta_{k-1} & & & \\ & & & & \beta_{k} & \alpha_{k} & & \\ & & & & & \beta_{k+1} \end{bmatrix},$$
(28)

где $\delta_{i-1} = \beta_i^T$ в версии из статьи [5], в нашей модификации же получится другой вид для этой матрицы коэффициентов. Из (28) для k-го блока следует:

$$AV_k = V_{k-1}\delta_{k-1} + V_k\alpha_k + V_{k+1}\beta_{k+1}$$
(29)

При построении базиса в блочном крыловском пространстве, требуется выпонение следующего свойства:

$$V_i^T V_i = 0, i \neq j \tag{30}$$

Домножая слева выражение (29) на V_{k-1}^T и используя соотношение (30) получаем системы линейных уравнений на матрицу δ_{k-1} :

$$V_{k-1}^T V_{k-1} \delta_{k-1} = V_{k-1}^T A V_k. \tag{31}$$

Сделав замену в (29) вида $k \to k-1$ и учтя выражение (31) выразим δ_{k-1} через β_k :

$$V_{k-1}^{T} V_{k-1} \delta_{k-1} = \beta_k^T V_k^T V_k.$$

Введем обозначение $\gamma_k = V_k^T V_k$.

Тогда окончательный вид для δ_{k-1} :

$$\delta_{k-1} = \gamma_{k-1}^{-1} \beta_k^T \gamma_k. \tag{32}$$

Аналогично δ_{k-1} из (29) получим системы линейных уравнений на α_k :

$$\gamma_k \alpha_k = V_k^T A V_k.$$

И воспользовавшись свойством (30) преобразуем выражение для α_k :

$$\alpha_k = \gamma_k^{-1} V_k^T (A V_k - V_{k-1} \delta_{k-1}). \tag{33}$$

Выбор β_{k+1} является произвольным и определяется целями исследователя, в предлагаемой модификации β_{k+1} выбрано таким, чтобы выполнялось соотношение $V_{k+1}^*V_{k+1} = I$, где I - единичная $s \times s$ матрица. Этого можно достичь с помощью QR-разложения:

$$V_{k+1}, \beta_{k+1} \xleftarrow{QR} AV_k - V_{k-1}\delta_{k-1} - V_k\alpha_k. \tag{34}$$

Этот выбор обладает рядом преимуществ:

- 1. получение QR-разложения в сравнении с квази-QR-разложением является более устойчивой операцией,
- 2. на первой итерации алгоритм ведёт себя как обобщённый метод минимальных невязок, что обеспечивает на первой итерации достижение точного минимума невязки в построенном к этому моменту пространстве Крылова, что в свою очередь предотвращает большие скачки невязки на первых итерациях, как это наблюдается в алгоритме из статьи [5].

Однако с этими изменениями метод все еще не сходится в задаче электромагнитного рассеяния [6] в одинарной точности, поэтому необходимо получить более устойчивые формулы для рекуррентных соотношений.

Для этого можно производить квази-реортогонализацию для поддержания соотношения (30). Поправка к V_{k+1} :

$$V_{k+1} = V_{k-1}\tilde{\delta}_{k-1} + V_k\tilde{\alpha}_k + \tilde{V}_{k+1}\tilde{\beta}_{k+1}, \tag{35}$$

где \tilde{V}_{k+1} - более точно вычисленный блок V_{k+1} . Используя (30), получим формулы для поправок:

$$\tilde{\delta}_{k-1} = \gamma_{k-1}^{-1} V_{k-1}^T V_{k+1} \tag{36}$$

$$\tilde{\alpha}_k = \gamma_k^{-1} V_k^T V_{k+1} \tag{37}$$

$$\tilde{V}_{k+1}\tilde{\beta}_{k+1} \stackrel{QR}{\longleftarrow} V_{k+1} - V_{k-1}\tilde{\delta}_{k-1} - V_k\tilde{\alpha}_k \tag{38}$$

Подставим (35) в (29):

$$AV_{k} = V_{k-1}(\delta_{k-1} + \tilde{\delta}_{k-1}\beta_{k+1}) + V_{k}(\alpha_{k} + \tilde{\alpha}_{k}\beta_{k+1}) + \tilde{V}_{k+1}\beta_{k+1}\tilde{\beta}_{k+1}$$
(39)

Таким образом, матрицы коэффициентов после реортогонализации имеют вид:

$$\delta_{k-1}^r = \delta_{k-1} + \tilde{\delta}_{k-1}\beta_{k+1} \tag{40}$$

$$\alpha_k^r = \alpha_k + \tilde{\alpha}_k \beta_{k+1} \tag{41}$$

$$\beta_{k+1}^r = \beta_{k+1}\tilde{\beta}_{k+1} \tag{42}$$

Также предлагается перед рассмотренной квази-реортогонализацией провести реортогонализацию для QR-разложения (34) стандартным образом:

$$V_{k+1}, \beta_{k+1} \stackrel{QR}{\longleftarrow} AV_k - V_{k-1}\delta_{k-1} - V_k\alpha_k \tag{43}$$

$$V_{k+1}^r, \tilde{\beta}_{k+1} \xleftarrow{QR} V_{k+1} \tag{44}$$

$$\beta_{k+1}^r = \tilde{\beta}_{k+1}\beta_{k+1}.\tag{45}$$

Окончательный вид алгоритма, красным отмечена процедура реортогонализации:

Алгоритм 7 Модифицированный блочный симметричный метод квазиминимальных невязок

```
V_0 = P_0 = P_{-1} = 0_{N \times s}, N - размер матрицы A, s - количество правых частей.
c_0 = b_{-1} = b_0 = 0_{s \times s}
a_0 = d_{-1} = d_0 = I_{s \times s}
R_0 = B - AX_0
V_1, \, \beta_1 \stackrel{QR}{\longleftarrow} R_0
\gamma_0 = I_{s \times s}
\gamma_1 = V_1^T V_1
\tilde{\tau}_1 = \beta_1
for k = 1, ... do
         \delta_{k-1} = \gamma_{k-1}^{-1} \beta_k^T \gamma_k
         \tilde{V}_{k+1} = AV_k - V_{k-1}\delta_{k-1}
         \alpha_{k} = \gamma_{k}^{-1} V_{k}^{T} \tilde{V}_{k+1}
\tilde{V}_{k+1} = \tilde{V}_{k+1} - V_{k} \alpha_{k}
         V_{k+1}, \beta_{k+1} \stackrel{QR}{\longleftarrow} \tilde{V}_{k+1}
V_{k+1}, \tilde{\beta}_{k+1} \stackrel{QR}{\longleftarrow} V_{k+1}
         \beta_{k+1} \leftarrow \tilde{\beta}_{k+1} \beta_{k+1}
         \tilde{\alpha}_k = \gamma_k^{-1} V_k^T V_{k+1}
         \alpha_k \leftarrow \alpha_k + \tilde{\alpha}_k \beta_{k+1}
          V_{k+1} \leftarrow V_{k+1} - V_k \tilde{\alpha}_k
         \tilde{\delta}_{k-1} = \gamma_{k-1}^{-1} V_{k-1}^T V_{k+1}
         \delta_{k-1} \leftarrow \delta_{k-1} + \tilde{\delta}_{k-1} \beta_{k+1}
         V_{k+1} \leftarrow V_{k+1} - V_{k-1} \tilde{\delta}_{k-1}
         V_{k+1}, \ \tilde{\beta}_{k+1} \stackrel{QR}{\longleftarrow} V_{k+1}
         \beta_{k+1} \leftarrow \beta_{k+1} \beta_{k+1}
         \gamma_{k+1} = V_{k+1}^T V_{k+1}
         \theta_k = b_{k-2} \delta_{k-1}

\tilde{\eta}_k = a_{k-1}d_{k-2}\delta_{k-1} + b_{k-1}\alpha_k

          \begin{aligned} & \widetilde{\zeta}_k = c_{k-1} d_{k-2} \delta_{k-1} + d_{k-1} \alpha_k \\ & Q_k, \ \begin{bmatrix} \zeta_k \\ 0_{s \times s} \end{bmatrix} \underbrace{Q^R}_{} \begin{bmatrix} \widetilde{\zeta}_k \\ \omega_{k+1} \beta_{k+1} \end{bmatrix} 
          \begin{bmatrix} a_k & b_k \\ c_k & d_k \end{bmatrix} \leftarrow Q_k^*
          \tilde{V}_k = (\tilde{V}_k - P_{k-1}\eta_k - P_{k-2}\theta_k)\zeta_k^{-1}
          \tau_k = a_k \tilde{\tau}_k
         X_k = X_{k-1} + P_k \tau_k
         \tilde{\tau}_{k+1} = c_k \tilde{\tau}_k
end for
```

5 Численные эксперименты

Тесты производились на интересующей нас задаче — линейной системе с многими правыми частями, возникающей при решении задачи электромагнитного рассеяния методом интегральных уравнений [STAVTSEV]. Порядок системы - 14144, всего правых частей - 722. Каждая правая часть соответствует разным углам падения, а также первая половина правых частей отличается от правой типом поляризации.

- (a) Матрица системы в логарифмическом масштабе
- (b) первые 722 строки правой части в логарифмическом масштабе

Рис. 1

Рис. 2

Первый тест демонстрирует, что метод из статьи [4] не сходится с требуемой точно-

стью, в то время как версия с улучшениями, описанными в главе 3, сходится линейно без проблем. Эксперимент проводился в одинарной точности для четырех правых частей с номерами: 0, 90, 180, 270. Его результаты представлены на рис.2

15 правых частей, уменьшения числа итераций, считаем в двойной точности

Второй тест демонстрирует, что улучшения, описанные в главе 3 позволяют получить выгоду по количеству матвеков, по сравнению с решением систем с каждой правой частью в отдельности. Эксперимент проводился в двойной точности с 15 правыми частями, выбранными с помощью RRQR. Его результаты представлены на рис.3. По оси абцисс - количество иттераций, по оси ординат - относительная максимальная невязка в блоке. Фиолетовым изображено падение невязки при решении задачи с каждой правой частью в отдельности, синим - метод из статьи [4], красным - метод с улучшениями из главы 3. Для решения этой задачи стабилизированными бисопряженными градиентами было потрачено 2525 матвеков, для решения методом из статьи [GUENNOUNI] - 2535, модифицированный метод сошелся за 2235 матвеков, таким образом выгода составляет 12% по сравнению с неблочной версией.

более 30 правых частей, демонстрация отсутствия взрыва невязки

Рис. 4

6 Заключение

Результаты

Нерешенные проблемы редукции блока

Список литературы

- [1] Saad, Yousef. Iterative Methods for Sparse Linear Systems / Yousef Saad. 2nd edition. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2003.
- [2] van der Vorst, H. A. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems / H. A. van der Vorst // SIAM Journal on Scientific and Statistical Computing. 1992. Vol. 13, no. 2. Pp. 631–644. https://doi.org/10.1137/0913035.
- [3] O'Leary, Dianne P. The block conjugate gradient algorithm and related methods / Dianne P. O'Leary // Linear Algebra and its Applications. 1980. Vol. 29. Pp. 293—322. Special Volume Dedicated to Alson S. Householder. https://www.sciencedirect.com/science/article/pii/0024379580902475.
- [4] el Guennouni A., Jbilou K. Sadok H. A block version of BiCGSTAB for linear systems with multiple right-hand sides. / Jbilou K. Sadok H. el Guennouni, A. // ETNA. Electronic Transactions on Numerical Analysis [electronic only]. 2003. Vol. 16. Pp. 129–142. http://eudml.org/doc/124803.
- [5] Boyse, William E. A Block QMR Method for Computing Multiple Simultaneous Solutions to Complex Symmetric Systems / William E. Boyse, Andrew A. Seidl // SIAM Journal on Scientific Computing. 1996. Vol. 17, no. 1. Pp. 263–274. https://doi.org/10.1137/0917019.
- [6] Stavtsev, S. L. Application of Mosaic-Skeleton Approximations for Solving EFIE / S. L. Stavtsev, E. E. Tyrtyshnikov // Progress in Electromagnetics Research Symposium (PIERS) 2009 Proceedings. PIERS Proceedings. Moscow, Russia: The Electromagnetics Academy, 2009. Abstracts published in PIERS 2009 Moscow (ISBN 978-1-934142-09-7). https://piers.org/proceedings/piers2009proc.html.