Analyse des avis clients en assurance

Groupe: DIA2

Noms: RUNAVOT Paul, LEVALLOIS Patrick

Barème

- Nettoyage des données : 2 points (points négatifs si pas bien réalisés)
 - Mise en évidence des mots (et n-grammes) fréquents
- Résumé, traduction et génération : 2 points
 - Sortir un fichier propre avec plusieurs colonnes nettoyées et textes corrigés et traduits
- Correction d'orthographe : 2 points
- Détection de sentiments (multiclass, ou classification binaire): 2 points (points négatifs possibles)
- Topic modelling et listes des topics (travail collectif) : 2 points (points négatifs possibles)
- Embedding pour identifier des mots similaires et enrichir liste des thèmes : 2 points (points négatifs possibles)
 - Entraînement word2vec : 2 points, GloVe : 2 points
 - Visualisation des embedding avec matplotlib et Tensorboard : 2 points
 - Implémentation de la distance euclidienne ou cosine : 1 point
- Apprentissage supervisé, chaque modèle bien fait et bien présenté : 2 points (points négatifs possibles)
 - TF-IDF et ML classiques
 - Modèle basique avec une couche d'embedding (visualisation des embeddings avec Tensoboard : 1 point supplémentaire)
 - Modèle avec des embeddings pré-entraînés (visualisation des embeddings avec Tensoboard : 1 point supplémentaire)
 - USE (Universal Sentence Embedding) ou équivalents, RNN LSTM, CNN, BERT ou autres modèles sur Hugging Face
- Interprétation des résultats (points négatifs possibles)
 - Analyse des erreurs : 1 point
 - Détection de sentiments : 2 points
 - Modèles classiques avec les thèmes : 2 points
 - Modèles de deep learnig pour les mots : 2 points
- Clarté de la présentation : 2 points (points négatifs possibles)
- Post sur Linkedin et obtention de 2000 likes/commentaire (présentation des résultats intéressants) → 20 (à normaliser éventuellement)

Exemple de sommaire

1 | Présentation générale du projet et des données

- 1.1 | Présentation de la problématique
- 1.2 | Présentation des données
- 1.3 | Exploration et nettoyage des données

3 | Feature engineering et modélisation

- 2.1 | Création de nouvelles variables
- 2.2 | Construction des modèles prédictifs et comparaison

4 | Interprétation des résultats

- 3.1 | Importance des variables
- 3.3 | Conclusion sur l'utilisation des modèles

Objectif et contexte

Contexte:

 Les clients de différentes assurances et différents produits peuvent laisser des avis ainsi que des notes de 1 à 5 sur différents sites tel que opinion assurance ou trustpilot.

Objectifs:

- Identifier les thématiques dans les commentaires
- Comprendre l'impact des avis sur les notes données

Techniques utilisées :

- Réaliser une analyse exploratoire
- Embeddings
- identifier les thématiques
- Entrainement de modèles Tensorflow
- Analyse des erreurs

Présentation de la problématique et des données du projet

- Structure générale des fichiers
- Présentation des variables
- Analyse/présentation des variables

Présentation de la problématique

- La base de données est un datasets d'avis clients sur leurs assurances.
- Chaque ligne contient le nom de l'assurance, le produit, la date, un avis et une note associé.
- On cherche à analyser l'impact des avis sur les notes des usagers et performer des analyse de sentiments sur les avis

1.2 Présentation des données

Objectifs

- Comprendre les produits et les assureurs ainsi que leurs notes moyennes
- Visualisation l'évolution temporelle des notes

Présentation des données

Variables

- Auteur
- Date de publication
- Type de produit
- Assureur
- Avis client
- Traduction de l'avis en anglais
- Note associée

Exemples d'observations

- Fautes d'orthographe ou problèmes de format, ex (Bonjour,\n\nAprès des années)
- Absences de données dans certaines colonnes

```
Data columns (total 11 columns):
# Column
                     Non-Null Count Dtype
                     24184 non-null float64
                   32999 non-null object
                    33880 non-null object
                   33880 non-null object
    assureur
    produit
                    33000 non-null object
                     33880 non-null object
6 date publication 33000 non-null object
                     33000 non-null object
                     32998 non-null object
 9 avis cor
                     8 non-null
                                    float64
 18 avis cor en
                     8 non-null
                                    float64
dtypes: float64(3), object(8)
```

2 | Exploration/Transformation/ feature engineering

- Nettoyage des données
- Exploration simple et nettoyage
- Word embedding (self-supervisé)

2.1 Nettoyage des données

Objectifs

- Rendre le dataset clair et utilisable
- Corriger les fautes d'orthographe
- Supprimer les lignes incomplètes

Nettoyages simples

- Corrections des fautes d'ortographes en français et en anglais
- Suppression de la ponctuation et des stopwords
- Tokenisation
- Lemmatisation
- Analyse des n-grammes

Nettoyages réalisés

Ajout manuel de nouveaux stopwords dans la liste des stopwords a retirer

Nettoyages réalisés

Analyse des bigrames pour trouver des mots composés

```
('carte', 'grise')
( grise , seion )
('selon', 'explication')
('explication', 'lai')
('lai', 'envoyé')
('envoyé', 'courrier')
('courrier', 'simple')
('simple', 'non')
('non', 'recommander')
('recommander', 'peux')
('peux', 'rien')
('rien', 'prouvé')
('prouvé', 'laissé')
('laissé', 'roulé')
('roulé', 'sans')
('sans', 'prévenir')
('prévenir', 'correct')
('correct', 'niveau')
('niveau', 'prix')
('prix', 'assistance')
('assistance', 'téléphonique')
('téléphonique', 'bien')
('bien', 'espace')
('espace', 'client')
```

Remplacement des deux mots "carte" et "grise" cote à cote par "carte_grise"

Synthèse des nettoyages réalisés

Après nettoyage on passe d'environ 33000 ligne a environ 25000 et on ajoute 3 colonnes à notre fichiers.

2.2 Exploration des données

Objectifs

- Comprendre les produits et les assureurs ainsi que leurs notes moyennes
- Visualisation l'évolution temporelle des notes

Exploration globale des données

Répartitions très inégales pour l'assureur et les catégories d'assurance

Exploration globale des données

- Nombre d'avis et moyenne de note par produit, par assureur, par date, etc.
- Nombre de mots dans un avis, en fonction de la note
- Créer des modèles par produit éventuellement suite à l'exploration

2.3 Word embedding

Objectifs

- Création de word embeddings
- Visualisation
- Applications

Entrainement d'un modèle Word2vec

Entrainement d'un model d'embedding sur nos données puis visualisation des embeddings avec Tensorboard

Termes positifs opposés aux termes négatifs sur le plan

Création d'un outils de comparaison sémantique

Cette fonction retourne les x mots les plus proche sémantiquement du mots choisi

```
most_similar_words("voiture", model_fr)

[('vehicule', 0.8452456593513489),
   ('garage', 0.7874598503112793),
   ('lassistance', 0.7833312749862671),
   ('risque', 0.7790943384170532),
   ('panne', 0.7755792140960693)]
```

Celle ci retourne la similarité cosinus entre 2 mots.

```
cosine_similarity('assurance','voiture')
0.36168456
```

Modèles de machine learning/ Apprentissage non-supervisé Apprentissage supervisé

- Présentation des approches
- Topic modelling et segmentation
- Apprentissage supervisé
 - Prédiction de la note
 - Prédiction des thèmes

3.1 Présentation des approches

Objectifs

- Prédire les notes en fonctions des avis
- Analyser les différences de résultats en fonction des approches

Présentation des approches de modélisation

3.2 Topic modelling et segmentation

Objectifs

Identifier les topics et les mots-clés associés

Illustration LDA - Topic modeling - Français

Illustration LDA - Topic modeling - Anglais

3.4 Classification - prédiction des thèmes

Objectifs

- Comprendre le projet et son contexte
- Comprendre l'intérêt des modèles prédictifs

Approche méthodologique

- Dans la partie précédente, une liste de thèmes est définie avec des mots-clé associés. C'était une phase d'annotations de textes. Pour chaque commentaire, on peut alors détecter la présence de ce thème en vérifiant la présence des mots-clés. Mais il peut y avoir des faux positifs ou faux négatifs.
 - Faux positifs : un mot-clé ne suffit pas de détecter le thème
 - Faux négatifs : on n'a pas repéré les mots-clés associés pour détecter ce thème
- Pour remédier à ce problème, on peut entraîner un modèle avec la base labellisée, puis on réapplique ce modèle.
 - On pourra examiner les scores élevés pour lesquels le label était initialisée négatif. Après vérification, nous pourrons confirmer s'il s'agit des faux négatifs et ainsi changer son label.
 - On fait de même pour les classes positives avec scores faibles.
 - Pourquoi ce processus pourrait fonctionner ?

3.3 Prédiction de la note

Objectifs

- Comprendre le projet et son contexte
- Comprendre l'intérêt des modèles prédictifs

Sentiment analysis

Implémentation d'un modèle BERT d'analyse de sentiments multiclasse sur nos données Classification multi-label: Notes de 1 à 5

Sentiment analysis

Analyse des erreurs

Répartition des erreurs entre notes réelles et notes prédites par sentiment analysis

Accuracy: 0.49				
Classification	Report:			
	precision	recall	f1-score	support
	0.57	0.89	0.69	7074
	0.24	0.04	0.07	3629
	0.29	0.14	0.19	3288
	0.41	0.53	8.46	4768
	0.50	0.42	8.45	4739
accuracy			0.49	23498
macro avg	0.40	0.40	0.37	23498
weighted avg	9.43	0.49	8.43	23498

Model basique avec couche d'embedding

```
model = Sequential([
    Embedding(input_dim=max_words, output_dim=embedding_dim, input_length=max_sequence_length),
    Flatten(),
    Dense(64, activation='relu'),
    Dense(len(label_encoder.classes_), activation='softmax')
])
```

CIMPALI ICHCI	on Report:			
	precision	recall	f1-score	support
1.0	8.59	8.73	8.65	1441
2.8	8.26	8.18	8.21	691
3.0	8.25	8.15	8.19	665
4.8	8.42	0.48	8.45	
5.0	0.50	0.48	8.49	926
accuracy			8.47	4782
macro avg	8.48	0.41	8.48	4782
weighted avg	8.44	8.47	8.45	4782

Model avec embedding pré-entrainé (Glove)

		precision	recall	f1-score	support
	1.8	8.63	8.52	8.57	1441
	2.8	0.28	0.29	8.29	691
	3.8	8.22	8.24	0.23	665
	4.8	8.39	8.42	8.48	979
	5.8	8.46	8.51	8.48	926
accu	пасу			8.42	4782
macro	avg	8.48	8.48	8.39	4782
weighted	avg	8.44	8.42	0.43	4782

Model avec USE (Universal sentence embedding)

```
model = tf.keras.Sequential([
    tf.keras.layers.Input(shape=(512,)),
    tf.keras.layers.Dense(256, activation='relu'),
    tf.keras.layers.Dense(len(label_encoder.classes_), activation='softmax')
])
```

Classificatio	n Report:			
	precision	recall	f1-score	support
1.0	0.60	0.81	8.69	1441
2.0	8.29	8.16	8.21	691
3.0	0.33	8.11	8.17	665
4.8	8.48	8.33	8.36	979
5.0	0.47	0.69	8.56	926
accuracy			8.49	4782
macro avg	0.42	8.42	8.48	4782
weighted avg	0.45	8.49	8.45	4782

Les modèles ont des comportements similaire avec tout de mêmes des particularités.

On remarque notamment que les notes moyennes (3) ont beaucoup de mal à être prédites, les résultats pour cette classe sont proches de l'aléatoire

4 Application

 Application streamlit de sentiment analysis (prédit une note de 1 a 5)

Application streamlit

Analyse de Sentiment avec BERT (TensorFlow) Saisissez votre texte ici: Super assurance, je recommande! Sentiment prédit: 5 stars Confiance: 0.765633761882782 Modèle utilisé: nlptown/bert-base-multilingual-uncasedsentiment Ce modèle BERT a été pré-entraîné pour l'analyse de sentiment sur des textes multilingues. À propos de cette application Cette application utilise le modèle BERT avec TensorFlow pour prédire le sentiment d'un texte saisi par l'utilisateur. Plus d'informations sur le modèle Plus d'informations sur BERT