Lista de Exercícios no. 1

1) Considere a linha de transmissão sem perdas com $Z_0 = 75 \Omega$ e $v = 2 \times 10^8$ m/s, mostrada abaixo.

- a) Determine os coeficientes de reflexão na carga e no gerador.
- b) Esboce os gráficos cotados da tensão e da corrente em z = 0, em função do tempo.
- c) Esboce os gráficos cotados da tensão e da corrente em z = 20 m, em função do tempo.
- d) Determine os valores de regime da tensão e da corrente na linha.
- e) Esboce os gráficos cotados da tensão e da corrente em t = 150 ns, em função de z.

Para os seguintes valores de Z_g e Z_L:

i)
$$Z_g = 75 \Omega$$
; $Z_L = 75 \Omega$.

ii)
$$Z_g = 75 \Omega$$
; $Z_L = 150 \Omega$.

iii)
$$Z_g = 150 \Omega$$
; $Z_L = 75 \Omega$.

iv)
$$Z_g = 150 \Omega$$
; $Z_L = 25 \Omega$.

v)
$$Z_g = 25 \Omega$$
; $Z_L = 25 \Omega$.

2) Considere a linha de transmissão, sem perdas, com $Z_0 = 50 \Omega$ e $v = 2 \times 10^8$ m/s, mostrada abaixo

onde e(t) é um pulso retangular de amplitude 10 V e duração 100 ns:

- a) Determine os coeficientes de reflexão na carga e no gerador.
- b) Esboce os gráficos cotados da tensão e da corrente em z = 0, em função do tempo.
- c) Esboce os gráficos cotados da tensão e da corrente em z = 200 m, em função do tempo.
- d) Esboce os gráficos cotados da tensão e da corrente em z = 10 m, em função do tempo. Para os seguintes valores de Z_g e Z_L :

i)
$$Z_g = 50 \Omega$$
; $Z_L = 50 \Omega$.

ii)
$$Z_g = 50 \Omega$$
; $Z_L = 150 \Omega$.

iii)
$$Z_g = 150 \Omega$$
; $Z_L = 50 \Omega$.

iv)
$$Z_g = 150 \Omega$$
; $Z_L = 25 \Omega$.

v)
$$Z_g = 25 \Omega$$
; $Z_L = 25 \Omega$.

3) Uma linha de transmissão, sem perdas, de comprimento 30 m, é excitada por um degrau de tensão fornecido por um gerador de impedância interna (real) 100 Ω . A forma de onda da tensão observada na carga, $Z_L = 900 \Omega$, é:

- a) Determine a velocidade de propagação na linha. $(2.5 \times 10^8 \,\mathrm{m/s})$
- b) Determine os coeficientes de reflexão na carga e no gerador. (0,5; -0.5)
- c) Calcule Z_0 e a tensão em aberto do gerador. (300 Ω ; 16 V)
- d) Desenhe o gráfico da corrente na entrada da linha entre 0 e 0,72 μs e explicite qual o valor de regime dessa corrente. (16 mA)
- 4) Na geometria ilustrada todas as linhas possuem $Z_0 = 50 \Omega$, A=0 e B=4 ns/m.

Pede-se:

- a) Desenhar o gráfico da tensão na entrada (próximo ao gerador) até o instante $t = 1 \mu s$.
- b) Determinar o valor de regime da tensão na entrada. (3,33 V)
- c) Desenhar os gráficos das correntes nas cargas e na entrada até o instante $t = 1 \mu s$.
- d) Determinar os valores de regime das correntes nas cargas. (66,67 mA; 66,67 mA)
- e) Repetir os itens (a) a (d) no caso da linha de 50 m estar em aberto $(Z_{L2} = \infty)$. (5 V, 100 mA, 0)

5) A figura abaixo representa uma linha sem perdas, com $Z_0 = 50 \Omega$, e $v = 1.5 \times 10^8$ m/s, com 150 m de comprimento.

- a) Determine os gráficos cotados das tensões na entrada e na terminação da linha, em função do tempo. Verifique os valores de regime. (7,5 V)
- b) Quais os valores de L e C da linha (por metro) ? $(0.33 \mu H/m; 133.3 pF/m)$
- c) Qual a energia armazenada na linha ao final do transitório? (625 nJ)
- 6) A linha de transmissão mostrada abaixo é sem perdas, com $Z_0 = 75 \Omega$, e $v = 2 \times 10^8 \text{ m/s}$, sendo a chave fechada em t = 0.

- a) Determine o coeficiente de reflexão em z=20 m, $\rho_L(s)$.
- b) Esboce os gráficos cotados das tensões em *z*=0 e em *z*=20 m, em função do tempo. Indique o valor da constante de tempo.
- c) Determine o valor de regime da tensão e da corrente na linha. (5 V; 0,067 A)
- d) Determine L e C da linha, com unidades. $(0.375 \,\mu\text{H/m}; 66.7 \,\text{pF/m})$
- e) Calcule a energia armazenada total (na linha e no capacitor) após terminar o transitório. (46 nJ)
- 7) Considere a linha de transmissão sem perdas mostrada abaixo, onde um indutor, de valor 10 μ H, em série com um resistor de 50 Ω são usados para modelar a impedância de carga dessa linha. A linha tem $Z_0 = 50 \Omega$, e $v = 2 \times 10^8$ m/s, e está alimentada por um gerador do tipo degrau de tensão de amplitude 10 V, com impedância interna de 50 Ω .

- a) Determine a constante dielétrica, ε , do dielétrico usado nessa linha de transmissão, sabendo que ele tem $\mu = \mu_0$. (1,99 × 10⁻¹¹ F/m)
- b) Faça os gráficos, cotados, de $v_0(t)$ e $v_L(t)$ para $0 \le t \le 1.5 \,\mu s$.
- c) Determine os valores de regime de v_0 , v_L , i_0 e i_L . (5 V; 5 V; 0,1 A; 0,1 A)
- d) Calcule o valor da energia armazenada total (linha + indutor) após o transitório. (0,25 μJ; 0,05 μJ)

8) Considere a linha de transmissão mostrada abaixo, onde um capacitor, de valor 4 nF, foi colocado entre os dois condutores a uma distância de 50 m do gerador.

- a) Qual o valor da impedância, $Z_1(s)$, vista na entrada do segundo trecho de linha? Justifique. (75 Ω)
- b) Determine o valor da impedância, $Z_2(s)$, vista no final do primeiro trecho de linha e calcule o valor do coeficiente de reflexão nesse ponto, $\rho_2(s)$.
- c) A chave no início da linha é fechada no instante *t*=0, gerando um transitório que se propaga na linha de transmissão.
- d) Calcule a tensão no capacitor no domínio do tempo, $v_c(t)$, e faça seu gráfico para $0 < t < 1 \mu s$.
- e) Qual o valor de regime da tensão no capacitor? (5 V).
- 9) As linhas da figura abaixo, supostas sem perdas, têm velocidade de propagação $v = 2 \times 10^8 \,\text{m/s}$ e $Z_0 = 50 \,\Omega$. A chave é fechada em t=0. São dados $d_1 = 50 \,\text{m}$, $d_2 = 50 \,\text{m}$, $d_3 = 100 \,\text{m}$ e $E_g = 10 \,\text{V}$.

- a) Trace os gráficos das tensões $v_A(t)$, $v_B(t)$ e $v_C(t)$, para $0 < t < 0.8 \mu s$.
- b) Calcule os valores de L e C (por metro) das linhas. $(0.25 \mu H/m; 100 pF/m)$
- c) Substituindo-se, agora, todo o trecho de linha 3 por um capacitor de 10 nF, pede-se:
- d) Obtenha o gráfico de $v_A(t)$ para $0 \le t \le 1$ µs.
- e) Calcule a energia total armazenada ao final do transitório nas condições do item c.

10) Considere a linha de transmissão sem perdas com $Z_0 = 75 \Omega$, e $v = 2 \times 10^8 \,\mathrm{m/s}$.

- a) Determine os coeficientes de reflexão na carga e no gerador. (0,5; -0,2)
- b) Esboce os gráficos cotados da tensão e da corrente em z=0.
- c) Determine o valor da tensão no ponto z=10 m no instante $t=0,16\mu s$. (9V) Supondo, agora, que a linha tenha perdas, mas que seja sem distorção, com $Z_0 = 75 \Omega$, e $v = 2 \times 10^8$ m/s e atenuação A = 0,00527 Np/m:
- d) Escreva as expressões de $Z_0(s)$ e $\gamma(s)$ em função de R, L, G e C dessa linha (sem distorção) e calcule R e G. (R=0,395 Ω /m; G=7,027 × 10⁻⁵ S/m)
- e) Determine os valores de tensão nos pontos z=0 e z=20 m no instante t=0,21 μ s. (7,94 V; 8,1 V)
- 11) Um cabo de sinalização apresenta um defeito (curto) no ponto correspondente a z = 200 m. Suponha que o cabo tenha perdas desprezíveis com $Z_0 = 150 \Omega$, e $v = 2 \times 10^8$ m/s.

- a) Faça gráficos cotados de $v_1(t)$, $i_1(t)$ e $i_2(t)$, para $0 < t < 3,5 \mu s$. Verifique os valores de regime. (0 V; 0,8 A; 0,8 A)
- b) Explique, a partir dos resultados do item (a), como poderia ser localizada a posição de um defeito num cabo, bem como seu tipo (curto ou aberto).
- c) Calcule L e C por metro de cabo. $(0.75 \mu H/m; 33.33 pF/m)$
- d) Determine a permissividade do dielétrico do cabo (ϵ), sabendo que $\mu = \mu_0 (1.99 \times 10^{-11} \text{ F/m})$
- e) Ao final do transitório há energia armazenada no cabo? De que tipo?
- f) Se o cabo tivesse perdas não desprezíveis, com $\gamma(s)=A+s$ B, sendo e^{-200} A=0.81 e B=5 ns/m, determine o gráfico da tensão no ponto z=100 m, para 0 < t < 1.6 μ s. Sabe-se que $Z_0=150$ Ω .

12) Dado o circuito abaixo, em que a linha pode ser suposta sem perdas,

observou-se que $v_0(t)$ tinha o seguinte aspecto:

- a) Determine $d \in R_g$. (50 m; 50 Ω)
- b) Determine V_0 e Z_L . (10 V; ∞)

Supondo, agora, que $R_g = 50~\Omega$, d=50~m e $V_0 = 10~\text{V}$, liga-se, no lugar de Z_L , uma outra linha com $Z_0 = 100~\Omega$, e $v = 2 \times 10^8~\text{m/s}$, terminada em aberto, tendo 100 m de comprimento.

- c) Faça o gráfico da tensão na terminação da segunda linha, v_{L2} , em função do tempo, para $0 \le t \le 2 \,\mu s$.
- d) Calcule a tensão de regime na junção das linhas , v_{L1} . (10 V)
- e) Faça o gráfico da corrente na junção das linhas, i_{L1} , para $0 \le t \le 1,5 \ \mu s$.

Suponha, finalmente, que a segunda linha tenha perdas, sendo sem distorção, de modo que $Z_0 = 100 \Omega$, e $v = 2 \times 10^8 \,\text{m/s}$ e atenuação dada por $A = 0{,}001 \,\text{Np/m}$.

- f) Explique, sem utilizar nenhuma fórmula, o que significa linha sem distorção.
- g) Esboce o gráfico da tensão na terminação da segunda linha, v_{L2} , em função do tempo, para $0 \le t \le 0.8 \text{ µs}$.
- h) Determine a resistência por metro (R) da linha 2.

13) Dado o circuito abaixo, em que a linha pode ser suposta sem distorção e, inicialmente, sem perdas,

onde d=32 m, $R_g=150 \Omega$, $V_0=12$ V, $Z_L=75 \Omega$,

- a) Construa o diagrama do zig-zag de tensão para a linha mostrada acima, para $0 \le t \le 600$ ns.
- b) Trace o gráfico cotado da tensão na carga, v_L , para $0 \le t \le 600$ ns.
- c) Trace o gráfico cotado da corrente ao longo da linha (em função de z) no instante t=240 ns.
- d) Determine os valores de regime da corrente e da tensão em z=16 m. (4 V)

Observou-se, experimentalmente, que a amplitude da onda de tensão é atenuada de um fator 0,9 ao se propagar de um lado ao outro da linha. Utilizando, agora, essa informação:

- e) Determine o valor (em função de s) da constante de propagação $\gamma(s)=A+sB$, e explique o seu significado. O que aconteceria se B não fosse constante, mas dependesse de s.
- f) Trace o gráfico cotado da tensão ao longo da linha, em função de z, em t= 80 ns, considerando as perdas na linha.
- **14)** A linha da figura abaixo, suposta sem perdas, tem velocidade de propagação $v = 2 \times 10^8$ m/s e $Z_0 = 50 \Omega$. A chave é fechada em t=0.

- a) Desenhe os gráficos cotados de $i_A(t)$ e $v_B(t)$ para $0 \le t \le 1,5$ µs, explicitando os valores de regime.
- b) Calcule L e C por metro de linha e a constante ε do seu dielétrico, sabendo-se que $\mu = \mu_0$. (0,25 μ H/m; 100 pF/m)

Uma vez atingida a situação de regime, a chave é aberta e, em seguida, na terminação (ponto B) é conectado um resistor R_I =100 Ω .

- c) Determine o valor inicial (no instante da conexão) da corrente em R_L (0,427 A)
- d) Calcule a energia total dissipada nesse resistor. (6,144 μJ)

15) Considere a linha de transmissão sem perdas mostrada abaixo, onde a chave é comutada entre as posições 1 e 2 em t=0 (após ficar muito tempo na posição 1). R_1 = 150 Ω e R_2 = 50 Ω

a) Verifique que o modelo abaixo representa bem o sistema real para t>0, e determine o valor de I_1 (0,3 A)

- b) Determine $i_3(t)$ e $i_2(t)$.
- c) Calcule as energias dissipadas em R_2 e R_3 para t > 0 e identifique a origem dessa energia. Verifique. $(0,25 \,\mu\text{J}; 1 \,\mu\text{J})$
- **16)** A linha da figura abaixo, suposta sem perdas, tem ar como dielétrico e $Z_0 = 50 \Omega$. A chave encontra-se na posição 0 e a linha e o capacitor estão descarregados.

Inicialmente, em *t*=0, a chave é passada para a posição 1.

- a) Determine $v_0(t)$ e $v_L(t)$, justificando a solução e verificando os valores de regime.
- b) Calcule a energia total armazenada para t > 20 s.
- c) Se o valor de R_g fosse alterado para 150 Ω , como seria o comportamento de $v_0(t)$ em torno de $t = 0.2 \,\mu\text{s}$?

Estando a chave na posição 1 há muito tempo, ela é, então, passada à posição 2.

d) Determine $i_R(t)$ a partir desse instante.