ME010101 Abstract Algebra

Jacob Antony

February 9, 2021

Table of Contents

- Isomorphism Theorems
 - First Isomorphism Theorem
 - Second Isomorphism Theorem
 - Third Isomorphism Theorem

Theorem

Let $\phi: G \to G'$ be a group homomorphism with kernel K. And let $\gamma_K: G \to G/K$ be the canonical homomorphism. Then there is a unique isomorphism $\mu: G/K \to \phi[G]$ such that $\phi(x) = \mu(\gamma_K(x))$.

Figure: First Isomorphism Theorem

Let G, G' be groups. And $\phi : G \rightarrow G'$ be a group homomorphism.

Let $g \in G$. Let $K = \ker(\phi)$.

That is, $\phi[K] = e'$ or $\forall k \in K, \ \phi(k) = e'$.

Then $\phi[gK] = \phi(g)$, since $\phi(gk) = \phi(g)\phi(k) = \phi(g)$.

Let $\gamma_K : G \to G/K$ be a canonical homomorphism.

Then $\mu: {\mathsf G}/{\mathsf K} o \phi[{\mathsf G}]$ defined by $\mu({\mathsf g}{\mathsf K}) = \phi({\mathsf g})$ is an isomorphism

Let G, G' be groups. And $\phi: G \to G'$ be a group homomorphism.

Let $g \in G$. Let $K = \ker(\phi)$.

That is, $\phi[K] = e'$ or $\forall k \in K, \ \phi(k) = e'$

Then $\phi[gK] = \phi(g)$, since $\phi(gk) = \phi(g)\phi(k) = \phi(g)$.

Let $\gamma_K : G \to G/K$ be a canonical homomorphism.

Then $\mu: G/K \to \phi[G]$ defined by $\mu(gK) = \phi(g)$ is an isomorphism

Let G, G' be groups. And $\phi: G \to G'$ be a group homomorphism.

Let $g \in G$. Let $K = \ker(\phi)$.

That is, $\phi[K] = e'$ or $\forall k \in K$, $\phi(k) = e'$.

Then $\phi[gK] = \phi(g)$, since $\phi(gk) = \phi(g)\phi(k) = \phi(g)$.

Let $\gamma_K: G \to G/K$ be a canonical homomorphism

Then $\mu: G/K \to \phi[G]$ defined by $\mu(gK) = \phi(g)$ is an isomorphism

Let G, G' be groups. And $\phi : G \to G'$ be a group homomorphism.

Let $g \in G$. Let $K = \ker(\phi)$.

That is, $\phi[K] = e'$ or $\forall k \in K, \ \phi(k) = e'$.

Then $\phi[gK] = \phi(g)$, since $\phi(gk) = \phi(g)\phi(k) = \phi(g)$.

Let $\gamma_K : G \to G/K$ be a canonical homomorphism.

Then $\mu: G/K \to \phi[G]$ defined by $\mu(gK) = \phi(g)$ is an isomorphism.

Second Isomorphism Theorem

Theorem

Let H be a subgroup of G and let N be a normal subgroup of G. Then $(HN)/N \simeq H/(H \cap N)$.

Lemma

Let N be a normal subgroup of G and let $\gamma:G\to G/N$ be the canonical homomorphism. Then the map ϕ from the set of normal subgroups of G containing N to the set of normal subgroup of G/N given by $\phi(L)=\gamma[L]$ is one-to-one and onto.

Lemma

If N is a normal subgroup of G, then $H \cap N = HN = NH$. Furthermore, if H is also normal in G, then HN is normal in G.

Lemma 1

Lemma

Let N be a normal subgroup of G and let $\gamma: G \to G/N$ be the canonical homomorphism. Then the map ϕ from the set of normal subgroups of G containing N to the set of normal subgroup of G/N given by $\phi(L) = \gamma[L]$ is one-to-one and onto.

Lemma 2

Lemma

If N is a normal subgroup of G, then $H \cap N = HN = NH$. Furthermore, if H is also normal in G, then HN is normal in G.

Theorem

Let H and K be normal subgroup of G with $K \leq H$. Then $G/H \simeq (G/K)/(H/K)$.

Figure: Third Isomorphism Theorem

G

....; ...;gH G/H

G

$$\Box \Box gK \qquad \vdots gK$$

$$G/H \qquad G/K$$

G