FIT3155: Week 5 Tutorial - Answer Sheet

(Scribe: Dinithi Sumanaweera)

Question 1

Consider a disjoint set data structure involving 17 elements labeled $\{0....16\}$. Upon the given sequence of operations in the tutorial sheet,

(a) Union-by-size without path compression

The final resultant structure

(b) Union-by-height without path compression

The final resultant structure

(c) Union-by-height with path compression: SELF STUDY EXERCISE

Step-by-step parent array updates for (a) and (b)

(a) Union-by-size without path compression

PARENT_ARRAY	0	-	2	6	4	2	9	7	8	6	10	11	12	13	14	15	16
Initial	ī	-	1-	-	7	-	ī	1-	-1	1-	τ	ī	T	-	-	T	ī
Union (1,2)	1-1	-2	1	1-	1-	7	T	T	Т	T	7	T	Т	ī	7	7	T
Union (3,4)	1-	-2	-	-2	ო	Т	T	T	-	ī	T	ī	T	ī	т	7	7
Union (3,5)	ī	-2	-	-3	3	m	ī	ī	1-	ī	τ	7	T	ī	T	T	٢
Union (1,7)	-	-3	-	13	49	60)	ī	_	ī	1	ī	ī	ī	ī	τ	ī	7
Union (3,6)	ī	- 3	-	4-	69)	3	m	_	-	7	ī	ī	T	ī	ī	ī	-
Union (8,9)	ī	3	1	4-	9	m	*	-	-2	80	ī	1	T	ī	ī	τ	ī
Union (1,8)	-	-5	-	-4	ന	60	6)	-	-	00	ĩ	10	1-	T	7	ī	ĭ
Union (3, 10)	-1	-5	-	-5	9	m	69	-	-	60	3	ī	7	ī	10	ī	τ
Union (3, 11)	ī	51	-	9-	69	6	3	-	-	8	cO	co	-	1-	1-	7	1.
Union (3, 12)	ī	-5	-	++	ന	60	eŋ	_	_	do	m	3	3	ī	7	-	ī
Union (3, 13)	ī	-5	-	8-	m	60	60	-	-	do	3	m	er)	~	ī	T	ī
Union (14,15)	٢	-5	-	- 8	cn	60	m	-	_	80	49	m	en	8	-2	14	1-
Union (16,0)	91	-5	-	80	69	8	3	-	1	œ	e	8	3	3	4	14	-2
Union (14, 16)	91	-5	-	80	co	60	ത	-	-	00	ന	cO	80	8	4-	14	14
Union (1,3)	16	m	-	-13	m	8	m	-	+	80	8	3	~	3	4-	14	3
Union (1,14)	9	n	-	-	'n	m	m	-	-	do	m	m	40	n	ď	14	14

(b) Union-by-height without path compression

PARENT_ARRAY	0	-	2	3	4	2	9	7	80	6	10	11	12	13	14	15	16
Initial	-	T	7	7	1-	1	T	1-	ī	ī	ī	ī	T	7	7	T	T
Union (1,2)	Т	-2	-	Т	T	ī	-	1	-	T	T	7	٣	T	T	ī	Т
Union (3,4)	7	-2	-	1-2	3	ī	ĩ	ī	-		-	7	T	ī	1-	τ	1-
Union (3,5)	-	-2	1	-2	9	3	1-	1-	-	1-	-1	1	-	ī	τ	T	7
Union (1,7)	1	-2	-	4-	n)	n	ī	-	ī	ī	7	-	ī	-1	1-	Т	T
Union (3,6)	٢	- 2	-	-2	3	3	e)	-	ī	-	7	ī	٢	-	ī	τ	1
Union (8,9)	71	4	-	-2	40	cn	8	1	-2	00	ī	T	ī	-	٢	1	1
Union (1,8)	ī	9	_	-2	3	3	cn	1	-	8	-	7	T		7	ī	1
Union (3, 10)	ī	6-	-	7	20	3	n	-	1	œ	8	7	-1	-	T	-	1
Union (3, 11)	-	1 3	-	-2	m	on	60	_	1	œ	m	49		1	T	- 1-	1
Union (3, 12)	-11	-3	-	-2	3	60	~	1	-	Ø	3	e)	9	7	ī	7	1
Union (3, 13)	ĩ	g	-	7	ന	3	of	-	-	80	89	9)	3	3	- (7	7
Union (14, 15)	ī	-3	t	12	0	3	3	1	1	do	3	00	en	9)	-2	14	T
Union (16,0)	16	-3	-	4	m	W	60	1	_	do	3	60	8	97	-2	14	-2
Union (14,16)	16	61	-	-2	on	on	67	ı	ı	do	Ŋ	6)	8	89	- 3	14	14
Union (1,3)	16	80	-	-	m	6)	3	-	-	do	m	cn	8	8	-3	14	14
Union (1,4)	16	4	1	1	3	3	3	1	1	00	9)	60	3	60	-	14	4

Question 1 - ADDITIONAL NOTE for union by height with path compression

Suppose you have a new element 17 as a single node, and the set structure you have is obtained by a union-by-rank (union by height with path compression)

The corresponding parent array is:

Node: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 [16 -4 1 1 3 3 3 1 1 8 3 3 3 3 1 14 14 -1]

Now consider Union(0,17) with path compression. This involves find(0) and find(17).

find(17): returns the leader (root) of the set as itself.
find(0): involves going through node 16 and 14 to reach the leader
node (root) of the set: node 1, thus at each return call in
recursive function, the parent array[0], parent array[16], parent
array[14] is set to 1 (path compression). parent array[17] is set
to 1 to fulfill union operation.

Node: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

[1 -4 1 1 3 3 3 1 1 8 3 3 3 1 14 1 1]

The resultant set structure after Union(0,17) is:

Question 4

Design a disjoint set data structure that implements partial path compression during any find(x) operation, where every alternate node on the path from x to the leader/root node points to its grandparent.

A possible solution for partial path compression

```
find(a,c) {
   if(parent[a]<0) {
      return <a,a>
   }else{
      <root_a,grandparent_a> = find(parent[a],c+1)
      parent_a = parent[a]
      if (c%2==0) {
            parent[a] = root_a
      }else{
            parent[a] = grandparent_a
      }
      return <root_a, parent_a>
   }
}
```