Diagnóstico de hipertrofia ventricular izquierda mediante ML

HVI y ML. Datos

- 45 pacientes. Cada paciente es una estructura "Pt" en matlab con varios campos. Los campos de interés son:
- Pt.ECG: las 12 derivaciones de ECG de cada paciente
- Pt.fm: la frec de muestreo
- Pt.labels: la etiqueta de si es hipertrofico o no (0: sano, 1: hipertrofico)
- Pt.fiduciales: los puntos fiduciales del ECG (les puede servir para analizar complejo QRS por un lado y onda T por el otro). Descartar los registros que tengan menos de 10 puntos fiduciales por cada onda.

Consigna HVI y ML

- 1. Preprocesar los datos mediante filtros adecuados para el ECG
- 2. Detectar los complejos QRS de los registros
- 3. Extracción de características en complejos QRS y ondas T (sugerencia: pueden ser las amplitudes y las duraciones de cada onda)
- 4. Separación de las características mediante algoritmo de clustering Kmeans (lo vimos en clase) con K = 2 (un grupo hipertrófico y otro no)
- 5. Estadística de resultados sobre cada grupo. Para esto hagan graficos de cajas con las medias y duraciones de cada onda en cada grupo, y test de hipotesis (t-test por ej.) para saber si son significativamente diferentes, asi se podrá apreciar si el clustering logró separar las características efectivamente o no.
- 6. Clasificación de los grupos mediante un algoritmo supervisado. Armado de la matriz de características y labels. Permutacion de las mismas, separación en 70-30 para entrenamientotesteo. Obtención de la matriz de confusión.

Gráficos de cajas

PSB - Maria Paula Bonomini

9/6/2021

Matriz de confusión (Aprendizaje supervisado)

	Matriz de confusión		Estimado por el modelo			
			Negativo (N)	Positivo (P)		
		Negativo	a: (TN)	b: (FP)		
	Real	Positivo	c: (FN)	d: (TP)	Precisión ("precision") Porcentaje predicciones positivas correctas:	d/(b+d)
			Sensibilidad, exhaustividad ("Recall") Porcentaje casos positivos detectados	Especifidad (<i>Specifity</i>) Porcentaje casos negativos detectados	Exactitud ("accuracy") Porcentaje de predicciones correctas (No sirve en datasets poco equilibrados)	
			d/(d+c)	a/(a+b)	(a+d)/(a+b+c+d)	

PSB - Maria Paula Bonomini

Matriz de confusión (Aprendizaje supervisado)

	HVI_estim	NO HVI_estim
HVI_real		
NO HVI_real		

Presentar sensibilidad, especificidad, Exactitud y precisión