Distributed Optimization for Machine Learning

Lecture 5 - Unconstrained Optimization: Gradient Descent

Tianyi Chen

School of Electrical and Computer Engineering Cornell Tech, Cornell University

September 10, 2025

Differentiable unconstrained minimization

$$\min_{\mathbf{x}} f(\mathbf{x})$$
 subject to $\mathbf{x} \in \mathbb{R}^n$

• *f* (objective or cost function) is differentiable

Connecting abstract to concrete optimization

The notation $\min_{\mathbf{x}} f(\mathbf{x})$ can seem abstract. Let's explicitly map it to the machine learning training problem we've been discussing.

Model training problem

 Parameters: a huge set of weights and biases from all layers of our neural network.

$$\theta = \{W_1, b_1, W_2, b_2, \dots\}$$

■ Loss function: a measure of the average error over all data $L(\theta) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(\text{data}_i) - \text{label}_i)^2$

Generic optimization problem

 Variable: a (very) long vector containing all the parameters flattened together.

$$\mathbf{x} \in \mathbb{R}^n$$

 Objective function: a high-dimensional differentiable function to minimize f(x)

Training a model just means finding the variable \mathbf{x}^* that minimizes $f(\mathbf{x})$. The number of parameters n can be in the millions or billions!

Connecting abstract to concrete optimization

We have m data points. For each data point $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})$, the linear model predicts $\hat{y}^{(i)} = (\mathbf{x}^{(i)})^{\top} \boldsymbol{\theta}$. Our goal is to minimize the total squared error:

$$L(\boldsymbol{\theta}) = \sum_{i=1}^{m} \left((\mathbf{x}^{(i)})^{\top} \boldsymbol{\theta} - \mathbf{y}^{(i)} \right)^{2}$$

Data A (m \times n features)

Params x

Labels b (m samples)

$$\mathbf{A} = \begin{pmatrix} - (\mathbf{x}^{(1)})^{\top} - \\ - (\mathbf{x}^{(2)})^{\top} - \\ \vdots \\ - (\mathbf{x}^{(m)})^{\top} - \end{pmatrix} \qquad \mathbf{x} = \begin{pmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{pmatrix}$$

$$\mathbf{x} = \begin{pmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{pmatrix}$$

$$\mathbf{o} = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{pmatrix}$$

$$\mathbf{A}\mathbf{x} - \mathbf{b} = \begin{pmatrix} (\mathbf{x}^{(1)})^{\top} \boldsymbol{\theta} \\ \vdots \\ (\mathbf{x}^{(m)})^{\top} \boldsymbol{\theta} \end{pmatrix} - \begin{pmatrix} y^{(1)} \\ \vdots \\ y^{(m)} \end{pmatrix} = \begin{pmatrix} \text{error for sample 1} \\ \vdots \\ \text{error for sample m} \end{pmatrix}$$

Gradient descent (GD)

A building block of this course: gradient descent

$$\mathbf{x}^{t+1} = \mathbf{x}^t - \eta_t \nabla f(\mathbf{x}^t)$$

traced to Augustin Louis Cauchy '1847 ...

Table of Contents

Strongly convex and smooth problems

Convex and smooth problems

In-class interactive problems

Strongly convex and smooth problems

Now generalize quadratic minimization to a broader class of problems

$$\min_{\mathbf{x}} f(\mathbf{x})$$

Key assumption: $f(\cdot)$ is **strongly convex** and **smooth**.

■ a twice-differentiable function f is said to be μ -strongly convex and L-smooth if the Hessian $\nabla^2 f(\mathbf{x})$ satisfies

$$\mathbf{0} \leq \mu \mathbf{I} \leq \nabla^2 f(\mathbf{x}) \leq L \mathbf{I}$$
, for all \mathbf{x}

Strong convexity & smoothness in linear regression

To check the assumption, we first need to compute the Hessian matrix. The gradient is $\nabla f(\mathbf{x}) = \mathbf{A}^{\top}(\mathbf{A}\mathbf{x} - \mathbf{b})$. Taking the derivative again gives:

$$abla^2 \mathit{f}(\mathbf{x}) = \mathbf{A}^{ op} \mathbf{A}$$

The condition $\mu \mathbf{I} \preceq \nabla^2 f(\mathbf{x}) \preceq L \mathbf{I}$ means the eigenvalues of the Hessian are bounded between μ and L. For linear regression:

- **Strong convexity**: f is μ -strongly convex, where $\mu = \lambda_{\min}(\mathbf{A}^{\top}\mathbf{A})$, the smallest eigenvalue of $\mathbf{A}^{\top}\mathbf{A}$. We get strong convexity $(\mu > 0)$ if the data matrix \mathbf{A} has linearly independent columns.
- Smoothness: f is L-smooth, where $L = \lambda_{max}(\mathbf{A}^{\top}\mathbf{A})$, the largest eigenvalue of $\mathbf{A}^{\top}\mathbf{A}$. This is satisfied as long as our data is finite.

More on strong convexity

 $f(\cdot)$ is said to be μ -strongly convex if

(i)
$$f(\mathbf{y}) \ge \underbrace{f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x})}_{\text{first-order Taylor expansion}} + \frac{\mu}{2} ||\mathbf{x} - \mathbf{y}||_2^2, \text{ for all } \mathbf{x}, \mathbf{y}$$

(ii) equivalently, $\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \ge \mu ||\mathbf{x} - \mathbf{y}||_2^2$, for all \mathbf{x}, \mathbf{y}

More on smoothness

A convex function $f(\cdot)$ is said to be **L-smooth** if

(i)
$$f(\mathbf{y}) \leq \underbrace{f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x})}_{\text{first-order Taylor expansion}} + \frac{L}{2} ||\mathbf{x} - \mathbf{y}||_2^2, \text{ for all } \mathbf{x}, \mathbf{y}$$

(ii)
$$||\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})||_2 \le L||\mathbf{x} - \mathbf{y}||_2$$
, for all \mathbf{x}, \mathbf{y} (L-Lipschitz gradient)

Convergence rate for strongly convex and smooth problems

Theorem 1 (GD for strongly convex and smooth functions)

Let f be μ -strongly convex and L-smooth. If $\eta_t \equiv \eta = \frac{2}{\mu + L}$, then

$$||\mathbf{x}^t - \mathbf{x}^*||_2 \leq \left(\frac{\kappa - 1}{\kappa + 1}\right)^t ||\mathbf{x}^0 - \mathbf{x}^*||_2,$$

where $\kappa := L/\mu$ is condition number; \mathbf{x}^* is the minimizer.

generalization of quadratic minimization problems

• stepsize:
$$\eta = \frac{2}{\mu + L}$$
 (vs. $\eta = \frac{2}{\lambda_1(\mathbf{Q}) + \lambda_0(\mathbf{Q})}$)

• contraction rate: $\frac{\kappa-1}{\kappa+1}$ (vs. $\frac{\lambda_1(\mathbf{Q})-\lambda_n(\mathbf{Q})}{\lambda_1(\mathbf{Q})+\lambda_n(\mathbf{Q})}$)

Convergence rate for strongly convex and smooth problems

Theorem 1 (GD for strongly convex and smooth functions)

Let f be μ -strongly convex and L-smooth. If $\eta_t \equiv \eta = \frac{2}{\mu + L}$, then

$$||\mathbf{x}^t - \mathbf{x}^*||_2 \leq \left(\frac{\kappa - 1}{\kappa + 1}\right)^t ||\mathbf{x}^0 - \mathbf{x}^*||_2,$$

where $\kappa := L/\mu$ is condition number; \mathbf{x}^* is the minimizer.

• dimension-free: iteration complexity is $\mathcal{O}\left(\frac{\log \frac{1}{\epsilon}}{\log \frac{\kappa+1}{\kappa-1}}\right)$, which is independent of the problem size n if κ does not depend on n

Proof of Theorem 1

To mimic the analysis of quadratic case (cf. $\nabla f(\mathbf{x}^t) = \mathbf{Q}(\mathbf{x}^t - \mathbf{x}^*)$)

$$\mathbf{x}^{t+1} - \mathbf{x}^* = \mathbf{x}^t - \mathbf{x}^* - \eta_t \nabla f(\mathbf{x}^t) = (\mathbf{I} - \eta_t \mathbf{Q})(\mathbf{x}^t - \mathbf{x}^*)$$

$$\implies ||\mathbf{x}^{t+1} - \mathbf{x}^*||_2 \le ||\mathbf{I} - \eta_t \mathbf{Q}|| \cdot ||\mathbf{x}^t - \mathbf{x}^*||_2$$

for strongly convex cases, we have

$$||\mathbf{x}^{t+1} - \mathbf{x}^*||_2 = ||\mathbf{x}^t - \mathbf{x}^* - \eta \nabla f(\mathbf{x}^t)||_2.$$

We can "generate" $(\mathbf{x}^t - \mathbf{x}^*)$ from the fundamental theorem of calculus

$$\nabla f(\mathbf{x}^t) = \nabla f(\mathbf{x}^t) - \underbrace{\nabla f(\mathbf{x}^*)}_{=0} = \left(\int_0^1 \nabla^2 f(\mathbf{x}_\tau) d\tau\right) (\mathbf{x}^t - \mathbf{x}^*),$$

where $\mathbf{x}_{\tau} := \mathbf{x}^t + \tau(\mathbf{x}^* - \mathbf{x}^t)$ lies on a line segment between \mathbf{x}^t and \mathbf{x}^* .

Proof of Theorem 1 (cond't)

Building upon this connection, we have

$$\begin{split} ||\mathbf{x}^{t+1} - \mathbf{x}^*||_2 &= ||\mathbf{x}^t - \mathbf{x}^* - \eta \nabla f(\mathbf{x}^t)||_2 \\ &= \left| \left| \left(\mathbf{I} - \eta \int_0^1 \nabla^2 f(\mathbf{x}_\tau) d\tau \right) (\mathbf{x}^t - \mathbf{x}^*) \right| \right|_2 \\ &\leq \sup_{0 \leq \tau \leq 1} ||\mathbf{I} - \eta \nabla^2 f(\mathbf{x}_\tau)|| \cdot ||\mathbf{x}^t - \mathbf{x}^*||_2 \\ &\leq \frac{L - \mu}{L + \mu} ||\mathbf{x}^t - \mathbf{x}^*||_2 \end{split}$$

where we first choose the constant stepsize as $\eta=\frac{2}{\mu+L}$, and then use the fact that f be μ -strongly convex and L-smooth.

Repeat this argument for all iterations to conclude the proof.

Hint: The spectral norm of $\mathbf{I} - \eta \nabla^2 f(\mathbf{x}_{ au})$ is its largest eigenvalue.

Practically, one often performs line searches rather than adopting constant stepsizes. Most line searches in practice are, however, *inexact*.

A simple and effective scheme: backtracking line search

Armijo condition: for some $0 < \alpha < 1$

$$f(\mathbf{x}^t - \eta \nabla f(\mathbf{x}^t)) < f(\mathbf{x}^t) - \alpha \eta ||\nabla f(\mathbf{x}^t)||_2^2$$
 (5)

• $f(\mathbf{x}^t) - \alpha \eta ||\nabla f(\mathbf{x}^t)||_2^2$ lies above $f(\mathbf{x}^t - \eta \nabla f(\mathbf{x}^t))$ for small η

Algorithm 2 - Backtracking line search for GD

- 1: Initialize $\eta = 1$, $0 < \alpha \le 1/2$, $0 < \beta < 1$
- 2: while $f(\mathbf{x}^t \eta \nabla f(\mathbf{x}^t)) > f(\mathbf{x}^t) \alpha \eta ||\nabla f(\mathbf{x}^t)||_2^2$ do
- 3: $\eta \leftarrow \beta \eta$

Practically, backtracking line search often (but not always) provides good estimates on the **local Lipschitz constants** of gradients.

Convergence for backtracking line search

Theorem 2 (Boyd, Vandenberghe '04)

Let f be μ -strongly convex and L-smooth. With backtracking line search, the objective function satisfies

$$\mathit{f}(\mathbf{x}^t) - \mathit{f}(\mathbf{x}^*) \leq \left(1 - \min\{2\mu\alpha, \frac{2\beta\alpha\mu}{L}\}\right)^t \left(\mathit{f}(\mathbf{x}^0) - \mathit{f}(\mathbf{x}^*)\right)$$

where \mathbf{x}^* is the minimizer.

Table of Contents

Strongly convex and smooth problems

Convex and smooth problems

In-class interactive problems

Dropping strong convexity

What happens if we completely drop (local) strong convexity?

$$\min_{\mathbf{x}} f(\mathbf{x})$$

■ Key assumption: f(x) is convex and smooth

Dropping strong convexity

Without strong convexity, it may often be better to focus on objective improvement (rather than improvement on estimation error).

Example: consider f(x) = 1/x (x > 0). GD iterates $\{\mathbf{x}^t\}$ might never converge to $x^* = \infty$. In comparison, $f(\mathbf{x}^t)$ might approach $f(x^*) = 0$.

Objective improvement and stepsize

Question:

- **c** can we ensure reduction of the objective value (i.e. $f(\mathbf{x}^{t+1}) < f(\mathbf{x}^t)$) without strong convexity?
- what stepsizes guarantee sufficient decrease?

Key idea: majorization-minimization

• find a simple majorizing function of f(x) and optimize it instead

Objective improvement and stepsize

From the smoothness assumption,

$$f(\mathbf{x}^{t+1}) - f(\mathbf{x}^t) \leq \nabla f(\mathbf{x}^t)^{\top} (\mathbf{x}^{t+1} - \mathbf{x}^t) + \frac{L}{2} ||\mathbf{x}^{t+1} - \mathbf{x}^t||_2^2$$

$$= \underbrace{-\eta_t ||\nabla f(\mathbf{x}^t)||_2^2 + \frac{\eta_t^2 L}{2} ||\nabla f(\mathbf{x}^t)||_2^2}$$

majorizing function of objective reduction due to smoothness

(pick $\eta_t = 1/L$ to minimize the majorizing function)

$$= -\frac{1}{2L}||\nabla f(\mathbf{x}^t)||_2^2$$

Objective improvement

Fact 7 Suppose f is L-smooth. Then GD with $\eta_t = 1/L$ obeys

$$f(\mathbf{x}^{t+1}) \leq f(\mathbf{x}^t) - \frac{1}{2L}||\nabla f(\mathbf{x}^t)||_2^2$$

- lacksquare for η_t sufficiently small, GD results in improvement in the objective
- does NOT rely on convexity!

Make connections to ETA

■ How many miles I can drive per hour given the total distance?

A byproduct under additional curvature conditions

From the per-iteration objective improvement

$$f(\mathbf{x}^{t+1}) - f(\mathbf{x}^*) \stackrel{\text{(i)}}{\leq} f(\mathbf{x}^t) - f(\mathbf{x}^*) - \frac{1}{2L} ||\nabla f(\mathbf{x}^t)||_2^2$$

$$\stackrel{\text{(ii)}}{\leq} f(\mathbf{x}^t) - f(\mathbf{x}^*) - \frac{\mu}{L} (f(\mathbf{x}^t) - f(\mathbf{x}^*))$$

$$= \left(1 - \frac{\mu}{L}\right) (f(\mathbf{x}^t) - f(\mathbf{x}^*))$$

where (i) follows from Fact 7, and (ii) comes from the so-called Polyak-Lojasiewicz (PL) condition (implied by strong convexity)

$$||\nabla \mathit{f}(\mathbf{x})||_2^2 \geq 2\mu(\mathit{f}(\mathbf{x}) - \mathit{f}(\underbrace{\mathbf{x}^*}_{\text{minimizer}})), \quad \text{for all} \quad \mathbf{x}.$$

Apply it recursively to obtain the linear convergence of $f(\mathbf{x}^t) - f(\mathbf{x}^*)$.

Improvement in estimation accuracy

GD is not only improving the objective value, but is also dragging the iterates towards minimizer(s), as long as η_t is not too large.

 $||\mathbf{x}^t - \mathbf{x}^*||_2$ is monotonically nonincreasing in t

Treating f as 0-strongly convex, we can see from our previous analysis for strongly convex problems that

$$||\mathbf{x}^{t+1} - \mathbf{x}^*||_2 \le ||\mathbf{x}^t - \mathbf{x}^*||_2$$

Improvement in estimation accuracy

One can further show that $||\mathbf{x}^t - \mathbf{x}^*||_2$ is strictly decreasing unless \mathbf{x}^t is already the minimizer.

Fact 8 Let f be convex and L-smooth. If $\eta_t \equiv \eta = 1/L$, then

$$||\mathbf{x}^{t+1} - \mathbf{x}^*||_2^2 \le ||\mathbf{x}^t - \mathbf{x}^*||_2^2 - \frac{1}{L^2} ||\nabla f(\mathbf{x}^t)||_2^2$$

where \mathbf{x}^* is any minimizer of $f(\cdot)$.

Proof of Fact 8*

It follows that

$$\begin{split} ||\mathbf{x}^{t+1} - \mathbf{x}^*||_2^2 &= ||\mathbf{x}^t - \mathbf{x}^* - \eta(\nabla f(\mathbf{x}^t) - \underbrace{\nabla f(\mathbf{x}^*)})||_2^2 \\ &= ||\mathbf{x}^t - \mathbf{x}^*||_2^2 - 2\eta\langle\mathbf{x}^t - \mathbf{x}^*, \nabla f(\mathbf{x}^t) - \nabla f(\mathbf{x}^*)\rangle \\ &+ \eta^2 ||\nabla f(\mathbf{x}^t) - \nabla f(\mathbf{x}^*)||_2^2 \\ &\leq ||\mathbf{x}^t - \mathbf{x}^*||_2^2 - \underbrace{\frac{2\eta}{L}||\nabla f(\mathbf{x}^t) - \nabla f(\mathbf{x}^*)||_2^2}_{\geq \text{(smooth+cvx)}} + \eta^2 ||\nabla f(\mathbf{x}^t) - \nabla f(\mathbf{x}^*)||_2^2 \\ &= ||\mathbf{x}^t - \mathbf{x}^*||_2^2 - \frac{1}{L^2}||\nabla f(\mathbf{x}^t) - \underbrace{\nabla f(\mathbf{x}^*)}_{\circ}||_2^2 \quad \text{(since } \eta = 1/L) \end{split}$$

Monotonicity of gradient sizes

When $\eta_t = 1/L$, gradient sizes are also monotonically non-increasing.

Lemma 9 Let f be convex and smooth. If $\eta_t \equiv \eta = 1/L$, then GD obeys

$$||\nabla f(\mathbf{x}^{t+1})||_2 \le ||\nabla f(\mathbf{x}^t)||_2$$

As a result, GD enjoys at least 3 types of monotonicity as t grows:

- objective value $f(\mathbf{x}^t) \searrow$
- lacktriangle estimation error $||\mathbf{x}^t \mathbf{x}^*||_2 \searrow$
- lacksquare gradient size $||\nabla f(\mathbf{x}^t)||_2 \searrow$

Proof of Lemma 9

Recall that the fundamental theorem of calculus gives

$$\nabla f(\mathbf{x}^{t+1}) = \nabla f(\mathbf{x}^t) + \int_0^1 \nabla^2 f(\mathbf{x}_\tau) (\mathbf{x}^{t+1} - \mathbf{x}^t) d\tau$$

$$= \underbrace{\left(\mathbf{I} - \eta \int_0^1 \nabla^2 f(\mathbf{x}_\tau) d\tau\right)}_{=:\mathbf{B}} \nabla f(\mathbf{x}^t),$$

where $\mathbf{x}_{\tau} := \mathbf{x}^t + \tau(\mathbf{x}^{t+1} - \mathbf{x}^t)$. When $\eta \leq 1/L$, it is easily seen that

$$\mathbf{0} \preceq \mathbf{B} \preceq \mathbf{I} \implies \mathbf{0} \preceq \mathbf{B}^2 \preceq \mathbf{I}$$

We can thus derive

$$||\nabla \mathit{f}(\mathbf{x}^{t+1})||_2^2 - ||\nabla \mathit{f}(\mathbf{x}^t)||_2^2 = \nabla \mathit{f}(\mathbf{x}^t)^\top (\mathbf{B}^2 - \mathbf{I}) \nabla \mathit{f}(\mathbf{x}^t) \leq 0$$

Convergence rate for convex and smooth problems

However, without strong convexity, convergence is typically much slower than linear (or geometric) convergence.

Theorem 10 (GD for convex and smooth problems)

Let f be convex and L-smooth. If $\eta_t \equiv \eta = 1/L$, then GD obeys

$$f(\mathbf{x}^t) - f(\mathbf{x}^*) \leq \frac{2L||\mathbf{x}^0 - \mathbf{x}^*||_2^2}{t}$$

where \mathbf{x}^* is any minimizer of $f(\cdot)$.

■ attains ϵ -accuracy within $\mathcal{O}(1/\epsilon)$ iterations (vs. $\mathcal{O}(\log \frac{1}{\epsilon})$ iterations for linear convergence)

Proof of Theorem 10 (cont.)

From Fact 7,

$$f(\mathbf{x}^{t+1}) - f(\mathbf{x}^t) \le -\frac{1}{2L}||\nabla f(\mathbf{x}^t)||_2^2$$

To infer $f(\mathbf{x}^t)$ recursively, it is often easier to replace $||\nabla f(\mathbf{x}^t)||_2$ with simpler functions of $f(\mathbf{x}^t)$. Use convexity and Cauchy-Schwarz to get

$$f(\mathbf{x}^*) - f(\mathbf{x}^t) \ge \nabla f(\mathbf{x}^t)^\top (\mathbf{x}^* - \mathbf{x}^t) \ge -||\nabla f(\mathbf{x}^t)||_2 ||\mathbf{x}^t - \mathbf{x}^*||_2$$

$$\implies ||\nabla f(\mathbf{x}^t)||_2 \ge \frac{f(\mathbf{x}^t) - f(\mathbf{x}^*)}{||\mathbf{x}^t - \mathbf{x}^*||_2} \stackrel{\mathsf{Fact 8}}{\ge} \frac{f(\mathbf{x}^t) - f(\mathbf{x}^*)}{||\mathbf{x}^0 - \mathbf{x}^*||_2}$$

Setting $\Delta_t := \mathit{f}(\mathbf{x}^t) - \mathit{f}(\mathbf{x}^*)$ and combining the above bounds yield

$$\Delta_{t+1} - \Delta_t \le -\frac{1}{2L||\mathbf{x}^0 - \mathbf{x}^*||_2^2}\Delta_t^2 =: -\frac{1}{w_0}\Delta_t^2$$

Proof of Theorem 10 (cont.)

$$\Delta_{t+1} \leq \Delta_t - rac{1}{w_0} \Delta_t^2$$

Dividing both sides by $\Delta_t \Delta_{t+1}$ and rearranging terms give

$$\begin{split} \frac{1}{\Delta_{t+1}} &\geq \frac{1}{\Delta_t} + \frac{1}{w_0} \frac{\Delta_t}{\Delta_{t+1}} \\ \Longrightarrow \frac{1}{\Delta_{t+1}} &\geq \frac{1}{\Delta_t} + \frac{1}{w_0} \quad \text{(since } \Delta_t \geq \Delta_{t+1} \text{ (Fact 7))} \\ \Longrightarrow \frac{1}{\Delta_t} &\geq \frac{1}{\Delta_0} + \frac{t}{w_0} \geq \frac{t}{w_0} \\ \Longrightarrow \Delta_t &\leq \frac{w_0}{t} = \frac{2L||\mathbf{x}^0 - \mathbf{x}^*||_2^2}{t} \end{split}$$

as claimed.

Table of Contents

Strongly convex and smooth problems

Convex and smooth problems

In-class interactive problems

In-Class Lab: The nonconvex case - a bumpy road

Goal: See how the starting point leads to different local minima.

The Setup

- Our function: $f(x) = \frac{1}{4}x^4 2x^2$. This function has two minima.
- Its gradient: $f'(x) = x^3 4x$.
- The GD update rule: $x_{t+1} = x_t \eta \cdot f(x_t)$.
- We will use a learning rate of $\eta = 0.1$.

Figure: You will plot your GD steps on a graph like this.

Part 1: Starting at $x_0 = 3.0$

Instructions: The gradient values are provided. Calculate the 'Update' and the 'Next Point' for each step.

t	\mathbf{x}_{t}	Gradient $f(x_t)$ (Given)	Update $\eta \cdot f(x_t)$	Next Point x_{t+1}
-	3.0 1.5	15.0 -2.625	1.5	1.5

Questions

- 1. Plot your points $(x_0, x_1, x_2, ...)$ on the graph.
- 2. Which minimum does the path seem to be approaching (x = 2 or x = -2)?

Part 2: Starting at $x_0 = -3.0$

Instructions: Now, start from the left side and repeat the process.

t	x _t	Gradient $f(x_t)$ (Given)	Update $\eta \cdot f(x_t)$	Next Point x_{t+1}
-	-3.0	-15.0	-1.5	-1.5
2	-1.5	2.625		

The Final Question

Based on your two experiments, what is the most important factor in determining which minimum GD finds in a nonconvex problem?

Solutions: The Importance of Initialization

Part 1: Starting at $x_0 = 3.0$ t x_t $f'(x_t)$ $\eta \cdot f'(x_t)$ x_{t+1} 0 3.0 15.0 1.5 1.5

1 1.5 -2.625 -0.263 1.763

Part 2: Starting at $x_0 = -3.0$							
t	\mathbf{x}_{t}	$f^{\prime}(x_t)$	$\eta \cdot \mathbf{f}'(\mathbf{x_t})$	\mathbf{x}_{t+1}			
0	-3.0	-15.0	-1.5	-1.5			
1	-1.5	2.625	0.263	-1.763			
2	-1.763	1.565	0.157	-1.920			

$$\rightarrow$$
 Converges to $\mathbf{x} = \mathbf{2}$

-0 157

1.920

-1 565

$$\rightarrow$$
 Converges to $\mathbf{x} = -\mathbf{2}$

Key Takeaway

1 763

For nonconvex problems, the algorithm is only guaranteed to find a local minimum, and the one it finds is determined by the starting point.

Recap and fine-tuning

- What we have talked about today?
 - ⇒ How GD performs in strongly convex and smooth problems?
 - \Rightarrow Without strong convexity, the rate slows to **sublinear**, $\mathcal{O}(1/t)$.

Welcome anonymous survey!

