Dokumentation

Semesterprojekt 3. Semester

Gruppe 10 Vejleder: Søren Hansen Gruppemedlemmer:

Navn	Studienummer
Tonni Nybo Follmann	201504573
Stefan Nielsen	201508282
Mikkel Espersen	201507348
Halfdan Vanderbruggen Bjerre	20091153
Ahmad Sabah	201209619
Jacob Munkholm Hansen	201404796

Versions Historik

Version	Dato	${f ilde{E}}$ ndringer	Forfatter
1.0	02-10-2016	Første udkast efter sprint 2	Hele gruppen
1.1	09-10-2016	Udgave sendt til review, Applika- tionsmodeller tilføjet, layout rettet til mm.	Hele gruppen
1.2	30-10-2016	Rettelser skrevet ind efter review, Usecases updaterede, nye sekvensdiagram- mer for PSoC, tabel layout rettet til efter råd fra review gruppen	Hele gruppen.

Indhold

V	Versions Historik			
Indhold			ii	
1	•	tem Arkitektur	1	
	1.1	System Sekvens Diagrammer	1	
2	Har	rdware Arkitektur	3	
	2.1	Block Definition Diagram	3	
	2.2	Internal Block Diagram	6	
3		tware Arkitektur	9	
	3.1	CPU matrix	9	
	3.2	UC1: Åbn vinflaske	10	
	3.3	UC2: Planlæg åbning	14	
	3 4	UC3· Indstil tid	18	

Kapitel 1

System Arkitektur

1.1 System Sekvens Diagrammer

System Sekvens Diagram for use-case 1

Figur 1.1: System Sekvens diagram for UC 1

System Sekvens Diagram for use-case 2

Figur 1.2: System Sekvens diagram for UC 2 $\,$

Kapitel 2

Hardware Arkitektur

2.1 Block Definition Diagram

Vores system kaldet WinePrep, består af en embedded Linux-platform (Devkit-8000), hvor der er mulighed for bruger-input. Linux-platformen er forbundet til en PSoC5 (CY8CKIT-059) via SPI. PSoC platformen anvendes til at styrer positionerings- og åbnings-mekanismerne, som hver består af nogle aktuatorer og sensorer. Positioneringsmekanismen besår af de 3 akser (X,Y,Z) og steppermotorer til at styrer disse, åbningsmekanismen er så fastmonteret herpå, således denne kan positioneres i forhold til vinflasken, så aktuatorer på åbningsmekanismen kan anvendes til at trække proppen.

Figur 2.1: BDD for WinePrep

Blok beskrivelser

Her følger beskrivelser af de enkelte blokke på vores BDD, se side 4 Figur 2.1.

WinePrep blokken er det samlede system der består af underblokkende Embedded Linux Platform, PSoC 5 Platform, Åbningsmekanisme, Positioneringsmekanisme samt strømforsygning.

Embedded Linux Platform Dette er den blok der håndtere brugerens interaktion med systemet. Blokken består af et Devkit800 med touchskærm. Som styresystem på platformen anvendes der Linux distributionen Ångström. Her fra anvendes der QT til at lave den grafiske brugerflade der vises på touchskærmen til brugeren af systemet. Samtidig kommunikere Embedded Linux Platformen med vores PSoC 5 Platform via SPI standarden.

PSoC 5 Platform PSoC 5 baseret platform der står for styring af Motor og Sensor blokkene, samt kommunikere med blokken Embedded Linux Platform over SPI.

Strømforsyning Strømforsyning skal kunne modtage 230V fra dansk stikkontakt, og forsyne systemet med de nødvendige spændinger.

Positioneringsmekanisme Denne blok indeholder alt hvad vi bruger til at bevæge på vores sensorer når vi scanner flasken, og til at flytte på vores åbningsmekaniske i forhold til flaskens placering. Blokken består dermed af en motorstyrings blok samt en motor blok for hver af de 3 akser.

Åbningsmekanisme Åbningsmekanismen består af de to motorer som anvendes til at skrue proptrækker-skruen i vinflaskens prop, samt til at trække proppen ud af vinflasken, samt to motorstyrings blokke til disse motorer.

Motorstyring Motorstyrings blokken består af en CY8CKIT-059, som anvendes til at styrer én motor når der kommer signal fra PSOC5 platforms blokken om dette.

 $\bf Sensor1$ Afstandssensorer til detektering af vinflaskens placering samt størrelse, så åbningsmekanismen ud fra dette kan positioneres korrekt ved hjælp af motorer på X, Y , Z akserne.

Sensor2 Sensor til at detekterer når en akse kommer til et yderpunkt. Anvendes ved at kører aksen ud indtil sensoren aktiveres, og så indstille aksens position til en forud fastlagt værdi.

Motor Motorblokken er alle de motorer som anvendes i systemet til positionering og prop-træk. Denne blok skal eventuelt opdeles i flere forskellige blokke hvis vi får brug for at anvende andre typer motorer end steppermotorer.

Ting der først bliver fast besluttet på senere iterationer/sprints

Motor Valg er ikke 100% fastlagt, hvorfor det her i BDD modelleres med stepper motors, og portene er derfor heller ikke 100% korrekte da dette afhænger af motorstyringen.

Sensor typer og antal ligger kun delvist fast. Der vil være 2 afstandssensorer til detektering af vinflaskens placering, samt 3 sensorer af ikke nærmerer fastlagt type til at detekterer hvis en akse når til et yderpunkt. Afstands sensorer til detektering af vinflaskens position, bliver enten lys baserede eller lydbaserede, der vil give et analog output signal i form af en spænding der afhænger af afstanden. Sensorer til detektering på aksernes yderpunkter overvejes implementeret med en switch, eller eventuelt strain gauge.

2.2 Internal Block Diagram

Figur 2.2: IBD for WinePrep

Figur 2.3: IBD for Positionering

Figur 2.4: IBD for Åbningsmekanisme

PSoC'ene i figur 2.3 og 2.4 er medtaget heri for at simplificere koblingen til Positionerings og Åbningsmekanismens komponenter. Egentligt burde disse have stået udenfor i figur 2.2.

Signal Beskrivelser

Signal Type	Porte	Beskrivelse
Motor	motorX, motorY, motorZ1, motorZ2, motorS, motorP	0-5V firkant signal
Sensor	sensorX, sensorY, range	Analog spænding mellem 0-5V
Button	buttonX, buttonY, buttonZ, buttonP	Digitalt signal mellem 0-5V
Touch	touch	Kraftpåvirkning på skærmen
5VDC	5V	Analog spænding mellem 0-5V
$10 \mathrm{VDC}$	10V	DC signal på 10V
230VAC	230V	Analog spænding med RMS på 230V
Light	screen	Lys i varierende farver i det synlige spektrum
Lead	step	0-10V firkantsignal med varierende dutycycle.
Force	force	Motorkraft
Button	force	Trykkraft
SPI	master(1), slave, $master(2)$,	Serial Peripheral Interface
	DevKit8000	Bus industri standard; master(1) og slave er digitale signaler mellem 0-5V; master(2) og DevKit8000 er digitale signaler mellem 0-3.3V

Kapitel 3

Software Arkitektur

3.1 CPU matrix

Til brug for software arkitekturen er der udarbejdet en CPU Matrix som ses på tabel 3.1 side 9. Denne giver et overblik over hvilke CPUer der indgår i de enkelte usecases. Ud fra dette er der udarbejdet applikationsmodeller for de enkelte CPUer i systemet.

Tabel 3.1: CPU matrix

	PSoC5	Devkit8000
UC1	X	X
UC2	X	X
UC3		X

Alle diagrammerne for PSoC5 i dette kapitel er vedlagt som bilag i zip filen i mappen APPSoC, da de kan være meget svære at læse efter, at de er blevet skaleret ned til at passe i PDF filen. Her kan der ligeledes findes et sekvensdiagram for hver af de 2 use-cases, hvor der ikke benyttes ref-blokke til at simplificere dem.

Da sekvensdiagrammerne for PSoC 5 er meget store, er de opdelt i mindre bidder for at gøre de overordnede diagrammer mere overskuelige. Diagrammerne, der refereres til i sekvensdiagrammerne for UC1 og UC2, kan ses på side 20 ff.

3.2 UC1: Åbn vinflaske

Linux Platform / DevKit8000

Figur 3.1: Klassediagram ?? på DevKit8000

Figur 3.2: Sekvensdiagram $\ref{substantial}$ på Dev
Kit8000

PSoC 5

Figur 3.3: Klassediagram \ref{sol} på PSoC 5

Figur 3.4: Sekvensdiagram ?? på PSoC 5

3.3 UC2: Planlæg åbning

Linux Platform / DevKit8000

Enkelte extensions er udeladt på sekvensdiagrammet, da de blot resulterer i en terminering af use-case-sekvensen.

Figur 3.5: Klassediagram $\ref{substantial}$ på Dev
Kit
8000

Figur 3.6: Sekvensdiagram $\ref{eq:second}$ på Dev
Kit8000

PSoC 5

Figur 3.7: Klassediagram $\ref{eq:solution}$ på PSoC 5

ref Opening process

Figur 3.8: Sekvensdiagram $\ref{eq:solution}$ på PSoC 5

3.4 UC3: Indstil tid

Linux Platform / DevKit8000

Figur 3.9: Klassediagram ?? på DevKit8000

setTime():void

pushConfirmationButton():int

Figur 3.10: Sekvensdiagram $\ref{substantial}$ på Dev
Kit8000

Sekvensdiagrammer der anvendes i applikationsmodel for PSoC 5

Figur 3.11: Sekvensdiagram for funktionen findEdge

Figur 3.12: Sekvensdiagram for funktionen opening process

