統計力学1第7回練習問題

カノニカル分布は「エネルギーの期待値を固定した際に、シャノンエントロピーを最大化する分布」としても導出する事ができる。これを Lagrange の未定乗数法を用いて導出したい。(ミクロカノニカルは状態 (確率変数) のエネルギーを固定して導出。)

- 1. 状態を x, その状態のエネルギーを $\epsilon(x)$ とした時に、状態確率分布 p(x) についての拘束条件を 2 つ書け。(確率分布の和が 1、そしてエネルギー期待値が E とする)
- 2. (1) の拘束条件について、Lagrange の未定乗数をそれぞれ α, β として、シャノンエントロピー $S(p) = -\int dx p(x) \log[p(x)]$ に取り入れた Lagrange 関数を書け。
- 3. (2) の Lagrange 関数から拘束条件下でシャノンエントロピーを最大にする状態確率分布 p(x) を、未定乗数 α, β を用いて表せ。また結果を拘束条件式に代入する事で α, β が満たすべき式を書け。ただし汎函数微分

$$\frac{\delta}{\delta p} \left(\int dx F(p(x)) \right) = 0 \Rightarrow \frac{\partial F(p)}{\partial p}(x) = 0 \Big(\forall x \Big)$$

を用いよ。

4. エネルギー ϵ の状態の状態密度を Ω_{ϵ} として、(3) で求めた p(x) を $p(\epsilon)$ に書き直せ。さらに多体極限で成り立つとされる近似

$$Z(\beta(E)) = \sum_{\epsilon} \Omega_{\epsilon} \exp[-\beta(E)\epsilon]$$

$$E = -\frac{\partial}{\partial \beta(E)} \log Z(\beta(E)) \simeq -\frac{\partial}{\partial \beta(E)} \log \left[\Omega_E \exp[-\beta(E)E] \right]$$

を用いる事で、Lagrange の未定乗数 β が (注目している系の) 逆温度である事を導け。

Ising 模型の真の平衡状態を表す確率分布 $p(\{s_i\})$ に対して、独立性を仮定した近似分布 $\tilde{p}(\{s_i\}) = \prod_i \tilde{p}(s_i)$ を導出したい。

1. この際 $p(\{s_i\})$ と $\tilde{p}(\{s_i\})$ は分布としてできるだけ近くなっていて欲しいので、確率分布 における (擬) 距離である Kullback-Leibler divergence

$$D_{KL}(\tilde{p}|p) = \sum_{\{s_i\}} \tilde{p}(\{s_i\}) \log[\tilde{p}(\{s_i\})/p(\{s_i\})]$$

を $\sum_{s_i} \tilde{p}(s_i) = 1$ の制約下で最小化する事を考える。 $p(\{s_i\})$ は Ising 模型の Hamiltonian

$$H = -J\sum_{\langle i,j\rangle} s_i s_j - h\sum_i s_i$$

が与えるカノニカル分布であるとして、近似分布 $\tilde{p}(s_i)$ を site j のスピンの期待値 $< s_j >$ を用いて表せ。またそこから $< s_i > = < s_j >$ として、 $< s_i >$ が満たすべき式を求めよ。(これは平均場近似で求めた式と一致する)