IN1150 – Logiske metoder

Eksamen høsten 2023

Tid: Torsdag 23. november 2023 kl. 15:00-19:00

Om denne eksamen:

- Denne eksamen består av to deler. Begge deler må bestås for å bestå eksamen.
- Den første delen består av 70 små oppgaver av typen «sant/usant». Her er det ingen forskjell mellom ubesvart og feil svar; det betyr at det lønner seg å svare på alle oppgavene. Du vil få mellom 0 og 60 poeng her.
- Den andre delen består av åtte litt større oppgaver hvor du i større grad må skrive og resonnere. Her får du mellom null og ti poeng per oppgave. Denne delen er altså verdt noe mer enn den første delen; du kan få mellom 0 og 80 poeng her.
- Dersom det ikke er oppgitt i en oppgave, trenger du ikke å begrunne svaret ditt.
- Eksamen vil bli vurdert med en bokstavkarakter. Utgangspunktet for karaktergivningen er karakterskalaen til Universitetet i Oslo. Det legges stor vekt på at besvarelsene er oversiktlige og at forklaringene er gode.
- Det gis ikke kontinuasjonseksamen eller utsatt eksamen i dette kurset, fordi eksamen i dette emnet tilbys både vår og høst.
- En faglærer kommer til eksamenslokalet etter at eksamen har startet.

Kommentarer og tips:

- Det kanskje viktigste tipset er å lese oppgaveteksten og definisjonene svært nøye.
- Pass på at du svarer på nøyaktig det som oppgaven spør om.
- Pass på at du leser og forstår oppgaveteksten og alle definisjonene som er gitt.
- Pass på at det du leverer fra deg er klart, presist og enkelt å forstå, både når det gjelder form og innhold.
- Hvis du står fast på en oppgave, bør du gå videre til en annen oppgave først.

Små oppgaver [60 poeng]

Den første delen består av 70 små oppgaver av typen «sant/usant».

Større oppgaver [80 poeng]

1 Mengdelære

La $A = \{a, b\}$, $B = \{a, b, \{a, b\}\}\$ og $C = \{a, b, c, \{a, b, c\}\}\$.

- (a) [2 poeng] Er følgende påstander sanne eller usanne?
 - (1) $A \subset B$
- (2) B \subseteq C
- (3) $A \in B$
- $(4) B \in C$

- (b) [4 poeng] Regn ut:
 - (1) A \ B
- (2) B \ A
- $(3) A \cup B$
- $(4) B \cup C$

- (c) [2 poeng] Regn ut $\mathcal{P}(A) \cup B$.
- (d) [2 poeng] Skriv ned alle delmengdene til B.

2 Utsagnslogikk

La $M = \{P \rightarrow Q, \neg P \land Q\}.$

- (a) [2 poeng] Er M oppfyllbar? Hvis M er oppfyllbar, gi en valuasjon som oppfyller M; hvis ikke, forklar hvorfor M ikke er oppfyllbar.
- (b) [2 poeng] Er M falsifiserbar? Hvis M er falsifiserbar, gi en valuasjon som falsifiserer M; hvis ikke, forklar hvorfor M ikke er falsifiserbar.

Vi introduserer et nytt konnektiv ↑ hvor følgende tabell viser hvordan det nye konnektivet skal tolkes:

F	G	$(F \uparrow G)$
1	1	0
1	0	1
0	1	1
0	0	1

Du kan skrive! i besvarelsen din som et alternativ til symbolet ↑.

- (c) [2 poeng] Finn en formel som er ekvivalent med formelen $F \uparrow G$ og som kun bruker konnektivene \neg, \land, \lor og \rightarrow .
- (d) [2 poeng] Finn en formel som er ekvivalent med formelen ¬F og som kun bruker konnektivet ↑.
- (e) [2 poeng] Finn en formel som er ekvivalent med formelen $F \wedge G$ og som kun bruker konnektivet \uparrow .

3 Ordspill

La S være mengden av ord over alfabetet $\{a,b,c,d,e,f\}$ med lengde fire. I denne oppgaven skal du spille et spill hvor målet er å gjette et hemmelig løsningsord $L \in S$.

Du gjetter ved å velge et ord $G \in S$. Deretter får du oppgitt resultatet RES(G) av gjetningen. Resultatet RES(G) er en bitstreng av lengde fire der det er 1 på posisjoner hvor G og L er like, og 0 på posisjoner hvor G og L er ulike. Her er to eksempler på bruk av funksjonen RES, for to ulike løsningsord L:

- (a) [1 poeng] Hva er L dersom vi vet at RES(abba) = 1000 og RES(ccdc) = 0111?
- (b) [2 poeng] Hvor mange ord er det i S?
- (c) [2 poeng] Hvor mange ord i S bruker ikke samme bokstav mer enn én gang?
- (d) [2 poeng] Er res injektiv? Begrunn svaret ditt kort.
- (e) [2 poeng] Er res surjektiv? Begrunn svaret ditt kort.
- (f) [1 poeng] Er res bijektiv? Begrunn svaret ditt kort.

4 Min og Max

La MAX være funksjonen på naturlige tall som gir det største av de to tallene:

$$\max(x, y) = \begin{cases} x, & \text{hvis } x > y \\ y, & \text{ellers} \end{cases}$$

Og la міn være funksjonen på naturlige tall som gir det minste av de to tallene:

$$min(x, y) = \begin{cases} x, & \text{hvis } x < y \\ y, & \text{ellers} \end{cases}$$

- (a) [1 poeng] Regn ut MAX(MIN(10, 15), MIN(18, 11))
- (b) [2 poeng] Vis eller motbevis at følgende påstand holder for alle naturlige tall x og y:

$$x - min(x, y) = max(x, y) - y$$

(c) [2 poeng] La f være følgende funksjon på mengder av heltall:

$$f(M) = \{ \max(x, y) \mid x \in M, y \in M, x \neq y \}$$

Regn ut hva $f({1,2,3})$ blir.

- (d) [2 poeng] La g være funksjonen som tar en mengde N med heltall og returnerer mengden med det minste elementet i N. For eksempel vil $g(\{1,2,3\}) = \{1\}$. Definer g kun ved hjelp av mengdeoperasjoner (\cup, \cap, \setminus) og funksjonen f.
- (e) [3 poeng] Gitt en mengde N med heltall, la L_N være \leq -relasjonen på N. Dersom N = {1,2,3}, vil

$$L_{N} = \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 2, 2 \rangle, \langle 2, 3 \rangle, \langle 3, 3 \rangle\}.$$

Definer L_N ved å bruke en mengdebygger, funksjonene min og max og relasjonen \in .

5 Komplette grafer

La K_n være den komplette grafen med $n\geqslant 1$ noder hvor nodene er nummerert fra 1 til n. Grafene K_3 til K_7 er tegnet under.

- (a) [1 poeng] Oppgi mengden av kanter i K₃.
- (b) [1 poeng] Hva er graden til nodene i K_n ?
- (c) [1 poeng] Hvor mange kanter er det totalt i K_n ?
- (d) [1 poeng] For hvilke n er K_n et tre?
- (e) [3 poeng] For hvilke n har K_n en eulervei?
- (f) [3 poeng] Vis at det finnes nøyaktig 12 forskjellige hamiltonsykler i K₅.

6 Førsteordens logikk

Gitt følgende signatur $\langle o, n; B, L, I, H, = \rangle$, hvor

- Bx tolkes som «x er en by»,
- Lx tolkes som «x er et land»,
- Ixy tolkes som «x er inneholdt i y»,
- Hxy tolkes som «x er hovedstad i y» og
- tolkes som vanlig likhet.
- (a) [2 poeng] Skriv en førsteordens formel som uttrykker at o er en by, n er et land og o er inneholdt i n.
- (b) [2 poeng] Skriv en førsteordens formel som uttrykker at alt som er en hovedstad i noe er en by og alt som har en hovedstad er et land.
- (c) [2 poeng] Skriv en førsteordens formel som uttrykker at o er eneste hovedstad i n.
- (d) [2 poeng] Skriv en førsteordens formel som uttrykker at n inneholder minst to byer.
- (e) [2 poeng] Skriv en førsteordens formel som uttrykker at ingen land er inneholdt i et annet land.

I både denne og den neste oppgaven kan du bruke følgende alternativer, som er enklere å skrive, til de vanlige logiske symbolene:

Logisk symbol	Alternativ
$\overline{}$	/\
\vee	\/
∃	E
\forall	A
\neg	-
\rightarrow	->
=	=
\Rightarrow	=> <=>
\Leftrightarrow	<=>

7 Tolkning i modeller

Gitt signaturen $\langle e, u; P, PP, O \rangle$, hvor alle relasjonene har aritet to, og la A være følgende aksiomer:

- $(1) \ \forall x \forall y ((Pxy \land \neg Pyx) \to PPxy)$
- (2) $\forall x \forall y (PPxy \rightarrow (Pxy \land \neg Pyx))$
- (3) ∀xPxu
- (4) $\forall x \neg PPxe$
- (5) $\forall x \forall y (\exists z (Pzx \land Pzy) \rightarrow Oxy)$
- (6) $\forall x \forall y (Oxy \rightarrow \exists z (Pzx \land Pzy))$

- (a) [2 poeng] Lag en modell som oppfyller formlene i A.
- (b) [4 poeng] Vis at alle modeller M som oppfyller alle formlene i A, også oppfyller Peu. Beviset skal være detaljert og tydelig og anvende definisjonen av semantikk for første ordens logikk. Angi tydelig hva som følger fra hva i hvert steg.
- (c) [4 poeng] Vis at i alle modeller $\mathfrak M$ som oppfyller alle formlene i A, så er $O^{\mathfrak M}$ symmetrisk.

8 Reverserte strenger

La REV være funksjonen som *reverserer* strenger over alfabetet {0, 1}. Den er rekursivt definert slik:

$$rev(\Lambda) = \Lambda$$
$$rev(sx) = xrev(s)$$

 $der \ x \in \{0,1\} \ og \ s \in \{0,1\}^*.$

(a) [1 poeng] Bruk definisjonen av REV og vis alle steg i utregningen for følgende uttrykk:

$$REV(001) = 100$$

- (b) [2 poeng] Forklar hvorfor det første symbolet i en ikke-tom streng s vil være det siste symbolet i REV(s), altså at REV(xs) = REV(s)x for alle $x \in \{0, 1\}$ og for alle $s \in \{0, 1\}^*$.
- (c) [3 poeng] Vis ved strukturell induksjon at REV(REV(s)) = s for alle strenger $s \in \{0, 1\}^*$. Hint: Du kan bruke at REV(xs) = REV(s)x for alle $x \in \{0, 1\}$ og alle $s \in \{0, 1\}^*$.
- (d) [4 poeng] Vis at REV er bijektiv. *Hint:* Du kan bruke at REV(REV(s)) = s.