

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет «Информатика, искусственный и системы управления» Кафедра «Системы обработки информации и управления»

Отчет по Лабораторной работе №6 *«Анализ и прогнозирование временного ряда»*по дисциплине «Технология машинного обучения»

Выполнил: студент группы ИУ5-61Б И.А. Абуховский

> Проверил: Ю.Е. Гапанюк

```
In [7]:
          import numpy as np
          import pandas as pd
          from matplotlib import pyplot
          import matplotlib.pyplot as plt
 In [8]: df = pd.read_csv('births.csv', index_col = "Date", parse_dates = True)
 In [9]: df.head()
                     Births
 Out[9]:
                Date
          1959-01-01
                        35
          1959-01-02
                        32
          1959-01-03
                        30
          1959-01-04
                        31
          1959-01-05
                        44
In [10]: df.shape
          (365, 1)
Out[10]:
          fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5))
In [11]:
          fig.suptitle('Плотность вероятности распределения данных') df.plot(ax=ax, kind='kde', legend=False)
          pyplot.show()
```

Плотность вероятности распределения данных


```
In [12]: for i in range(1, 5):
    fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(5,4))
    fig.suptitle(f'Πατ πορядκα {i}')
    pd.plotting.lag_plot(df, lag=i, ax=ax)
    pyplot.show()
```


Лаг порядка 2

Лаг порядка 3

Лаг порядка 4


```
In [13]: fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5))
fig.suptitle('Автокорреляционная диаграмма')
pd.plotting.autocorrelation_plot(df, ax=ax)
pyplot.show()
```

Автокорреляционная диаграмма

In [14]: from statsmodels.graphics.tsaplots import plot_acf
plot_acf(df, lags=30)
plt.tight_layout()


```
In [15]: df.index = pd.to_datetime(df.index)

In [16]: # импортируем функцию seasonal_decompose из statsmodels from statsmodels.tsa.seasonal import seasonal_decompose

# задаем размер графика from pylab import rcParams rcParams['figure.figsize'] = 11, 9

# применяем функцию к данным decompose = seasonal_decompose(df) decompose.plot()

plt.show()
```



```
In [17]: # зададим размер графика
plt.figure(figsize = (15,8))

# поочередно зададим кривые (перевозки и скользящее среднее) с подписями и цветом
plt.plot(df, label = 'Рожденные люди', color = 'steelblue')
plt.plot(df.rolling(window = 30).mean(), label = 'Скользящее среднее', color = 'orange')

# добавим легенду, ее положение на графике и размер шрифта
plt.legend(title = '', loc = 'upper left', fontsize = 14)

# добавим подписи к осям и заголовки
plt.xlabel('Дата', fontsize = 14)
plt.ylabel('Количество людей', fontsize = 14)
plt.title('Рожденные люди', fontsize = 16)

# выведем обе кривые на одном графике
plt.show()
```



```
In [18]: # импортируем необходимую функцию
         from statsmodels.tsa.stattools import adfuller
         # передадим ей столбец с данными о перевозках и поместим результат в adf test
         adf_test = adfuller(df['Births'])
         # выведем p-value
         print('p-value = ' + str(adf_test[1]))
         p\text{-value} = 5.243412990149949e-05
In [19]: from statsmodels.tsa.holtwinters import ExponentialSmoothing
         from sklearn.metrics import mean squared error
         from statsmodels.tsa.arima.model import ARIMA
         xnum = list(range(df.shape[0]))
In [20]:
         Y = df['Births'].values
          train_size = int(len(Y) * 0.7)
         xnum train, xnum test = xnum[0:train size], xnum[train size:]
         train, test = Y[0:train_size], Y[train_size:]
In [21]: history arima = [x \text{ for } x \text{ in train}]
         history_es = [x for x in train]
In [22]: arima order = (6,1,0)
In [23]:
         predictions_arima = list()
          for t in range(len(test)):
              model arima = ARIMA(history arima, order=arima order)
             model_arima_fit = model_arima.fit()
             yhat_arima = model_arima_fit.forecast()[0]
              predictions_arima.append(yhat_arima)
             history arima.append(test[t])
In [24]: error arima = mean squared error(test, predictions arima, squared=False)
         predictions_es = list()
In [25]:
          for t in range(len(test)):
             model_es = ExponentialSmoothing(history_es)
              model_es_fit = model_es.fit()
             yhat es = model es fit.forecast()[0]
              predictions_es.append(yhat_es)
             history_es.append(test[t])
In [26]: error_es = mean_squared_error(test, predictions_es, squared=False)
In [29]:
         print("MSE ARIMA: ", error_arima)
         print("MSE HWES: ", error es)
         MSE ARIMA: 7.082306329654917
         MSE HWES: 7.217016868586756
In [37]: df['predictions_ARIMA'] = (train_size * [np.NAN]) + list(predictions_arima)
```

```
df['predictions_HWES'] = (train_size * [np.NAN]) + list(predictions_es)

In [40]: df['SMA'] = df['Births'].rolling(30, min_periods=1).mean()

In [41]: fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5))
    fig.suptitle('Предсказания временного ряда')
    df.plot(ax=ax, legend=True)
    pyplot.show()
```

Предсказания временного ряда


```
In [42]:
fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5))
fig.suptitle('Предсказания временного ряда (тестовая выборка)')
df[train_size:].plot(ax=ax, legend=True)
pyplot.show()
```

Предсказания временного ряда (тестовая выборка)

ARIMA и HWES близки к скользящему среднему

```
In [45]: from gplearn.genetic import SymbolicRegressor
```

%pip install gplearn

```
In [46]: function set = ['add', 'sub', 'mul', 'div', 'sin']
```

```
In [47]: est_gp.fit(np.array(xnum_train).reshape(-1, 1), train.reshape(-1, 1))
```

C:\anaconda3\lib\site-packages\sklearn\utils\validation.py:993: DataConversionWarning: A column-vector y was pa ssed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel(). y = column_or_1d(y, warn=True)

y =	column_or_1d	(y, warn=True)	3	, , , =, ,							
	Population	Average		Best Individual								
	1				000 5:+	T: 1 - £ +						
Gen	Length 263.65	Fitness 7.25395e+55	Length 26	Fitness 368.24	00B Fitness N/A	Time Left 1.93m						
0 1	168.80	3.08763e+11	190	137.664	N/A	57.31s						
2	187.17	1.23463e+10	190	137.64	N/A	54.87s						
3	126.69	3.36087e+22	14	63.3652	N/A	42.64s						
4	178.60	6.78824e+13	14	63.3685	N/A	53.37s						
5	123.38	1.01443e+14	10	58.1649	N/A	41.21s						
6	16.83	3.043e+14	25	57.1643	N/A	18.65s						
7	13.11	4.06308e+14	9	50.0916	N/A	19.34s						
8 9	15.99 15.88	4.05734e+14	22 10	50.0506 49.9905	N/A	18.61s 20.16s						
10	15.11	4.87469e+15 2.53812e+15	41	49.8642	N/A N/A	19.47s						
11	23.48	1.18829e+16	61	49.5823	N/A	19.32s						
12	26.29	2.84417e+15	19	49.2251	N/A	21.55s						
13	41.60	2.85776e+15	18	48.5365	N/A	22.46s						
14	52.15	7.12366e+15	29	48.4612	N/A	24.42s						
15	44.79	1.81606e+11	137	48.1081	N/A	22.79s						
16	38.99	37707.7	150	48.0293	N/A	21.36s						
17	57.33	5.89249e+06	59	47.2986	N/A	24.49s						
18	101.51	3.40558e+06	40	47.1072	N/A	34.02s						
19	97.39	1.701e+06	64	46.9361	N/A	28.80s						
20 21	67.71	30533.4	150	46.8244	N/A	24.79s						
22	73.77 85.94	59189.6 37425.4	79 113	46.2824 46.2358	N/A N/A	25.28s 26.47s						
23	97.07	1.30434e+06	61	45.8434	N/A	28.83s						
24	96.01	1.79859e+06	142	45.1803	N/A	26.86s						
25	108.38	686066	142	45.1803	N/A	28.56s						
26	130.18	1.06313e+06	154	44.8865	N/A	30.53s						
27	151.34	362193	152	44.7084	N/A	32.17s						
28	173.31	12847.7	256	44.563	N/A	37.23s						
29	170.85	708637	131	43.4877	N/A	34.96s						
30	164.65	18007.3	131	43.4877	N/A	32.21s						
31	159.97	7.12214e+06	204	43.0844	N/A	39.60s						
32	152.48	912883	204	43.0844	N/A	30.01s						
33 34	157.81 202.25	841393 2.11938e+06	296 321	42.874 42.627	N/A N/A	32.40s 33.46s						
35	247.06	951483	518	42.5981	N/A	36.35s						
36	252.69	22821.2	421	42.2247	N/A	36.23s						
37	276.74	245656	420	42.1337	N/A	39.97s						
38	347.55	11894.9	294	41.951	N/A	45.67s						
39	390.84	1.3304e+06	720	41.7752	N/A	48.72s						
40	410.14	254.802	762	41.7562	N/A	48.69s						
41	331.65	6379.31	466	41.0082	N/A	38.65s						
42	298.96	828984	552	40.4083	N/A	36.15s						
43	368.48	818223	551	39.8089	N/A	41.11s						
44 45	461.59 575.49	348617 23406.9	692 626	39.3182 39.2141	N/A N/A	45.53s 53.69s						
46	603.84	74068.7	693	38.3947	N/A	53.13s						
47	678.43	17712.6	716	38.1826	N/A	54.47s						
48	684.47	1933.23	755	37.9086	N/A	51.28s						
49	699.80	535678	755	37.7096	N/A	51.12s						
50	716.31	34874.9	741	37.7048	N/A	54.51s						
51	748.82	18785.5	808	37.4716	N/A	48.94s						
52	759.12	5933.17	1274	37.3378	N/A	47.11s						
53	747.69	34420.9	1193	36.9635	N/A	41.78s						
54	788.61	229922	1216	35.4431	N/A	40.50s						
55 56	845.38 1159.01	11874.9 11922.7	1236 1216	35.4172 34.917	N/A N/A	41.69s 52.82s						
57	1224.57	28908.2	1271	34.5268	N/A	51.30s						
58	1236.54	529802	1270	34.416	N/A	49.79s						
59	1233.49	214.684	1160	34.3678	N/A	41.83s						
60	1234.42	287984	1249	34.2335	N/A	39.51s						
61	1228.73	5863.85	1343	33.9161	N/A	35.58s						
62	1236.84	17811.7	1363	33.9147	N/A	31.66s						
63	1261.26	23379.8	1346	33.748	N/A	27.21s						
64	1277.07	16949.9	1346	33.2909	N/A	24.65s						
65 66	1274.63	17486.8	1335	33.2896	N/A	18.72s						
66 67	1289.95 1319.21	119.186 17531.2	1371 2614	33.1259 32.9963	N/A N/A	13.63s 9.42s						
68	1322.92	222.319	1437	33.0886	N/A N/A	9.42S 4.86s						
69	1329.79	295.903	1271	32.8986	N/A	0.00s						
	licRegressor(,							
-				'. 'mul'. 'div'. '	sin'l.	function set=['add', 'sub', 'mul', 'div', 'sin'].						

Out[47]: SymbolicRegressor(const_range=(-100, 100) function_set=['add', 'so

function_set=['add', 'sub', 'mul', 'div', 'sin'],
generations=70, init_depth=(4, 10), metric='mse',
population_size=500, random_state=0, stopping_criteria=0.01,
verbose=1)

Предсказания временного ряда (тестовая выборка)

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js