

CTK Co., Ltd.
386-1, Ho-dong, Cheoin-gu, Yongin-si, Gyeonggi-do, 449-100, Korea
Tel: +82-31-339-9970 Fax: +82-31-339-9855 www.e-ctk.com

APPENDIX B - MPE CALCULATION

CTK Co., Ltd.

386-1, Ho-dong, Cheoin-gu, Yongin-si, Ĝyeonggi-do, 449-100, Korea Tel: +82-31-339-9970 Fax: +82-31-339-9855 www.e-ctk.com

** MPE Calculations **

The EUT will only be used with a separation of 20 centimeters or greater between the antenna and the body of the user. The MPE calculation for this exposure is shown below.

EIRP = P + G	Where,	
EIRP = 14.50 dBm	P = Power input to the antenna (mW)	
	G = Power gain of the antenna (dBi)	

The numeric gain(G) of the antenna with a gain specified in dB is determined by:

 $G = Log^{-1}$ (dB antenna gain / 10)

 $G = Log^{-1} (4 / 10)$

G = 2.51

Power density at the specific separation:

$S = PG/(4R^2\pi)$	Vhere,
$S = (11.22 * 2.51) / (4 * 20^2 * \pi)$ $S = 0.0056 \text{ mW/cm}^2$	S = Maximum power density (mW/cm²) P = Power input to the antenna (mW) G = Numeric power gain of the antenna R = Distance to the center of the radiation of the antenna (20cm = limit for MPE)

The Maximum permissible exposure (MPE) for the general population is 1 $\rm mW/cm^2$. The power density at 20cm does not exceed the 1 $\rm mW/cm^2$ limit.

Estimated safe separation:

$R = \sqrt{(PG / 4\pi)}$	Where,
$R = \sqrt{(11.22 * 2.51 / 4\pi)}$	P = Power input to the antenna (mW) G = Numeric power gain of the antenna R = Distance to the center of the radiation of the
R = 1.50 cm	antenna (20cm = limit for MPE)

CTK Co., Ltd.

386-1, Ho-dong, Cheoin-gu, Yongin-si, Ĝyeonggi-do, 449-100, Korea Tel: +82-31-339-9970 Fax: +82-31-339-9855 www.e-ctk.com

** CO-LOCATED MPE CALCULATIONS **

For multiple co-located transmitters operating simultaneously the total power density can be calculated by summing the Power * Gain product (in linear units) of each transmitter.

LIMITS

From FCC $\S1.1310$ Table 1 (B), the maximum value of S = 1.0 mW/cm²

RESULTS

Mode	Band	Output Power (dBm)	Antenna Gain (dBi)	MPE Distance (cm)	Power Density (mW/cm²)	Results
RFID	914.5 MHz	29.52	6.39			
WLAN	2.4 GHz	10.50	4.00			
Co	ombined			20	0.781	Complies

S =
$$(P1*G1 + P2*G2) / (4R^2\pi)$$

= $(3899.42 + 28.18) / (4 * 20^2 * \pi) = 0.781$

* Note.

 $S = Power Density in mW/cm^2$

Px = Power of transmitter x in mW

Gx = Numeric gain of antenna x

R = distance in cm