5.10 Equation 5.39 gives us:

$$\mathbf{v}^T \mathbf{H} \mathbf{v} = \sum_i c_i^2 \lambda_i$$

Substituting an eigenvector \mathbf{u}_j for \mathbf{v} , we get:

$$L.H.S = \mathbf{u}_j^T \mathbf{H} \mathbf{u}_j$$
$$= \mathbf{u}_j^T \lambda_j \mathbf{u}_j$$
$$= \lambda_j \mathbf{u}_j^T \mathbf{u}_j$$
$$= \lambda_j$$

If **H** is positive definite, then $\mathbf{u}_j^T \mathbf{H} \mathbf{u}_j > 0 \quad \forall j, \Longrightarrow \lambda_j > 0 \quad \forall j$, and all eigenvalues are positive.

Conversely, if all eigenvalues are positive, $\sum_i c_i^2 \lambda_i > 0$, $\Longrightarrow \mathbf{v}^T \mathbf{H} \mathbf{v} > 0$, and therefore \mathbf{H} is positive definite.