Northeastern University, Department of Mathematics

MATH 5110: Applied Linear Algebra and Matrix Analysis. (Fall 2021)

• Instructor: He Wang Email: he.wang@northeastern.edu

§6 Inner product spaces

Contents

1. Inner Product Spaces

Recall that for vectors
$$\vec{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$ in \mathbb{R}^n , the **dot product** of \vec{u} and \vec{v} is

Theorem 1 (Properties of the dot Product). For vectors $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ and a scalar $c \in \mathbb{R}$, the following hold:

- (1.)
- (2.)
- (3.)
- (4.)
- (5.)

Definition 2 (Inner Product). Let V be a real vector space. An **inner product** on V is a binary function

$$\langle -, - \rangle : V \times V \to \mathbb{R}$$

such that for vectors $\vec{u}, \vec{v}, \vec{w} \in V$ and a scalar $c \in \mathbb{R}$, the following hold:

- $(1.) \langle \vec{u}, \vec{v} \rangle = \langle \vec{v}, \vec{u} \rangle.$
- (2.) $\langle \vec{u} + \vec{v}, \vec{w} \rangle = \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$.
- (3.) $\langle c\vec{u}, \vec{v} \rangle = c \langle \vec{u}, \vec{v} \rangle$.
- $(4.) \langle \vec{u}, \vec{u} \rangle \ge 0$
- (5.) $\langle \vec{u}, \vec{u} \rangle = 0$ if and only if $\vec{u} = \vec{0}$.

We call V an inner product space.

Example 3. (Weighted dot products) Let $c_1, ..., c_n$ be positive numbers. The weighted inner product on \mathbb{F}^n is

Example 4. Let $P_n(\mathbb{F})$ be the vector space of polynomials of degree at most n with coefficient in \mathbb{F} . An inner product on $P_n(\mathbb{R})$ can be defined as

Definition 5. Two vectors \vec{u} and \vec{v} are called **orthogonal** if

2. Norms

Definition 6 (Norm of a Vector). Let V be a inner product space over \mathbb{F} . The **length** or **norm** of a vector $\vec{v} \in V$, denoted by $||\vec{v}||$, is defined as

Proposition 7. For any vector $\vec{v} \in V$ and any scalar $c \in \mathbb{F}$ one obtains $||c \cdot \vec{v}|| = |c| \cdot ||\vec{v}||$.

Theorem 8 (Pythagorean Theorem). If two vectors $\vec{u}, \vec{v} \in V$ are orthogonal, then they satisfy the **Pythagorean Relation**

$$||\vec{u} + \vec{v}||^2 = ||\vec{u}||^2 + ||\vec{v}||^2.$$

Definition 9. Let $L = \text{Span}\{\vec{w}\}$ be the subspace in V spanned by $\vec{w} \in V$. For a given vector $\vec{y} \in V$, the **orthogonal projection of** \vec{y} **onto** L

Proposition 10. Let \vec{w} be a nonzero vector in V. Any vector $\vec{y} \in V$ can be uniquely written as the sum of a scalar product of $\vec{w} \in V$ and a vector orthogonal to \vec{w} .

 ${\bf Theorem~11~(Cauchy-Schwarz~inequality).}$

Proposition 12 (Triangle Inequality). Two vectors $\vec{u}, \vec{v} \in V$ satisfy $||\vec{u} + \vec{v}|| \le ||\vec{u}|| + ||\vec{v}||$.

Definition 13. (Angles Between Vectors) The angle between two nonzero vectors $\vec{u}, \vec{v} \in V$ is the the angle $0 \le \theta \le \pi$ satisfying

A vector space V with norm is called a **normed vector space**.

Definition 14. A **norm** on V is a map from V to \mathbb{F} such that

- (1) $||\vec{x}|| \ge 0$ for all $\vec{x} \in V$. $||\vec{x}|| = 0$ if and only if $\vec{x} = \vec{0}$.
- (2) $||c\vec{x}|| = c||\vec{x}||$ for all $\vec{x} \in V$ and $c \in \mathbb{F}$.
- (3) The triangle inequality $||\vec{u} + \vec{v}|| \le ||\vec{u}|| + ||\vec{v}||$ holds for all vectors in V.

Definition 15 (Distance Between Vectors). The **distance** $dist(\vec{u}, \vec{v})$ between vectors $\vec{u}, \vec{v} \in \mathbb{R}^n$ is defined as

$$dist(\vec{u}, \vec{v}) = ||\vec{u} - \vec{v}|| = \sqrt{(u_1 - v_1)^2 + \dots + (u_n - v_n)^2}.$$

Example 16. (l^p spaces) Let $1 \leq p < \infty$, it is natural to define l^p norms on \mathbb{F}^n

Example 17. $(l^{\infty} \text{ spaces})$ It is natural to define l^{∞} norms on \mathbb{F}^n

Example 18. (Norms on $\mathbb{F}^{m \times n}$ induced by norms on \mathbb{F}^n) Normed matrix vector spaces $\mathbb{F}^{m \times n}$. Using norms on \mathbb{F}^n , one can define norms on matrix vector spaces

Example 19. Infinity norm on $\mathbb{F}^{m \times n}$.

3. Orthogonal Projections and Orthonormal Bases

Definition 20 (Orthogonal Set). A set $\{\vec{u}_1, \ldots, \vec{u}_p\}$ of vectors in a inner vector space V is called **orthogonal** if

Proposition 21. • Orthogonal vectors are linear independent.

• Orthogonal vectors $\{\vec{u}_1, \ldots, \vec{u}_n\}$ in \mathbb{R}^n form a basis of \mathbb{R}^n .

Definition 22. • An **orthogonal basis** for a subspace W of an inner product space V is any basis for W which is also an orthogonal set.

• If each vector is a **unit** vector in an orthogonal basis, then it is an **orthonormal basis**.

Theorem 23 (Coordinates with respect to an orthogonal basis). Let $\mathscr{B} = \{\vec{u}_1, \ldots, \vec{u}_p\}$ be an **orthogonal** basis for a subspace W of an inner product space V, and let \vec{y} be any vector in W. Then

$$\vec{y} = \left(\frac{\langle \vec{y}, \vec{u}_1 \rangle}{\langle \vec{u}_1, \vec{u}_1 \rangle}\right) \vec{u}_1 + \dots + \left(\frac{\langle \vec{y}, \vec{u}_p \rangle}{\langle \vec{u}_p, \vec{u}_p \rangle}\right) \vec{u}_p$$

If $W = \mathbb{R}^n$, then the \mathscr{B} -coordinates of \vec{y} are given by:

$$[\vec{y}]_{\mathscr{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} \quad with \quad c_i = \frac{\langle \vec{y}, \vec{u}_i \rangle}{\langle \vec{u}_i, \vec{u}_i \rangle} = \frac{\langle \vec{y}, \vec{u}_i \rangle}{||\vec{u}_i||^2}$$

In particular, let $\mathscr{B} = \{\vec{u}_1, \dots, \vec{u}_p\}$ be an **orthonormal** basis for a subspace W of \mathbb{R}^n , and let \vec{y} be any vector in W. Then

$$\vec{y} = \langle \vec{y}, \vec{u}_1 \rangle \vec{u}_1 + \dots + \langle \vec{y}, \vec{u}_p \rangle \vec{u}_p$$

Theorem 24 (Orthogonal Decomposition). Let W be any subspace of V and let $\vec{y} \in V$ be any vector. Then there exists a unique decomposition

$$\vec{y} = \operatorname{proj}_W(\vec{y}) + \vec{y}^{\perp}$$

with $\operatorname{proj}_W(\vec{y}) \in W$ and \vec{y}^{\perp} is perpendicular to W.

Theorem 25 (Orthogonal Decomposition). If $\{\vec{u}_1, \ldots, \vec{u}_p\}$ is an orthogonal basis for W, then

$$\operatorname{proj}_{W}(\vec{y}) = \left(\frac{\langle \vec{y}, \vec{u}_{1} \rangle}{\langle \vec{u}_{1}, \vec{u}_{1} \rangle}\right) \vec{u}_{1} + \dots + \left(\frac{\langle \vec{y}, \vec{u}_{p} \rangle}{\langle \vec{u}_{p}, \vec{u}_{p} \rangle}\right) \vec{u}_{p}$$

and $\vec{y}^{\perp} = \vec{y} - \operatorname{proj}_W(\vec{y})$.

Definition 26 (Orthogonal Complements). Given a nonempty **subset** (finite or infinite) W of V, its **orthogonal complement** W^{\perp} is the set of all vectors $\vec{v} \in V$ orthogonal to W.

Theorem 29. Let A be an $m \times n$ matrix, then $(\operatorname{Row} A)^{\perp} = \ker(A) \quad and \quad (\operatorname{im} A)^{\perp} = \ker A^{T}.$ More over, $\mathbb{F}^{m} = \ker A^{T} \oplus \operatorname{im} A$

4. Gram-Schmidt process and QR-factorization

The **Gram-Schmidt process** is an algorithm that produces an orthogonal (or orthonormal) basis for any subspace W of V by starting with any basis for W.

Page 9

QR-Factorization.

QR-Factorization is the matrix version of Gram-Schmidt process for a subspace W of \mathbb{F}^n :

Basis
$$\mathscr{B} = \{\vec{b}_1, \dots, \vec{b}_p\} \xrightarrow{\text{orthogonalize}} \text{Orthogonal basis } \mathscr{V} = \{\vec{v}_1, \dots, \vec{v}_p\} \xrightarrow{\text{normalize}} \text{Orthonormal basis } \mathscr{U} = \{\vec{u}_1, \dots, \vec{u}_p\}.$$

Given a vector in W, let's compare their coordinates:

Each matrix defines an isomorphism. So, M = QR.

Here $M = [\vec{b}_1 \ \dots \ \vec{b}_p]$ and $Q = [\vec{u}_1, \dots, \vec{u}_p]$.

Theorem 32. Given a $n \times p$ matrix $M = [\vec{b}_1 \dots \vec{b}_p]$ with independent columns. There is a unique decomposition

$$M = QR$$

where, $Q = [\vec{u}_1, \dots, \vec{u}_p]$ has orthonormal columns and R is an $p \times p$ upper triangular matrix with

$$r_{ii} = ||\vec{v}_i|| \text{ for } i = 1, \dots, p \text{ and } r_{ij} = \langle \vec{u}_i, \vec{b}_j \rangle \text{ for } i < j.$$

Proof. Proof(for p = 3): From Gram-Schmidt process, write \vec{b}_i as linear combinations of \vec{u}_i .

$$\begin{split} \vec{b}_1 &= \vec{v}_1 = ||\vec{v}_1||\vec{u}_1 \\ \vec{b}_2 &= \vec{v}_2 + \frac{\langle \vec{b}_2, \vec{v}_1 \rangle}{||\vec{v}_1||^2} \vec{v}_1 = ||\vec{v}_2||\vec{u}_2 + \langle \vec{b}_2, \vec{u}_1 \rangle \vec{u}_1 \\ \vec{b}_3 &= \vec{v}_3 + \frac{\langle \vec{b}_3, \vec{v}_1 \rangle}{||\vec{v}_1||^2} \vec{v}_1 + \frac{\langle \vec{b}_3, \vec{v}_2 \rangle}{||\vec{v}_2||^2} \vec{v}_2 = ||\vec{v}_3||\vec{u}_3 + \langle \vec{b}_3, \vec{u}_1 \rangle \vec{u}_1 + \langle \vec{b}_3, \vec{u}_2 \rangle \vec{u}_2 \end{split}$$

So,

$$[\vec{b}_1 \ \vec{b}_2 \ \vec{b}_3] = [\vec{u}_1 \ \vec{u}_2 \ \vec{u}_3] \begin{bmatrix} ||\vec{v}_1|| & \langle \vec{u}_1, \vec{b}_2 \rangle & \langle \vec{u}_1, \vec{b}_3 \rangle \\ 0 & ||\vec{v}_2|| & \langle \vec{u}_2, \vec{b}_3 \rangle \\ 0 & 0 & ||\vec{v}_3|| \end{bmatrix}$$

5. Orthogonal Transformations and Orthogonal Matrices

Let V be a inner product space.

Definition 33. A linear transformation $T: V \to V$ is called **orthogonal** if $||T(\vec{x})|| = ||\vec{x}||$ for all $\vec{x} \in V$

that is, T preserves the length of vectors.

Example 34. Whether or not the following transformations are orthogonal.

(1.) Rotations $S: \mathbb{R}^2 \to \mathbb{R}^2$ are orthogonal transformations.

The matrix of rotation $S = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ is orthogonal.

(2.) Reflections $R: \mathbb{R}^2 \to \mathbb{R}^2$ are orthogonal transformations.

The matrix of reflection matrix $R = \begin{bmatrix} a & b \\ b & -a \end{bmatrix}$ with $a^2 + b^2 = 1$ is orthogonal.

(3.) Orthogonal projections $P: \mathbb{R}^2 \to \mathbb{R}^2$ are NOT orthogonal transformations.

The matrix of an orthogonal transformation $T: \mathbb{F}^n \to \mathbb{F}^n$ is called an **orthogonal** matrix.

Page 12

Theorem 35. Let U be an $n \times n$ orthogonal matrix and let \vec{x} and \vec{y} be any vectors in \mathbb{F}^n . Then

- (1) $||U\vec{x}|| = ||\vec{x}||$.
- (2) $\langle U\vec{x}, U\vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle$.
- (3) $\langle U\vec{x}, U\vec{y} \rangle = 0$ if and only if $\langle \vec{x}, \vec{y} \rangle = 0$.

Proposition 36. U is an orthogonal matrix if and only if $\langle U\vec{x}, U\vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle$ for any \vec{x} and \vec{y} in \mathbb{R}^n .

Using the geometric meaning of the orthogonal transformation, we have

Theorem 37. 1. If A is orthogonal, then A is invertible and A^{-1} is orthogonal. 2. If A and B are orthogonal, then AB is orthogonal.

Theorem 38. The $n \times n$ matrix U is orthogonal if and only if $\{\vec{u}_1, \ldots, \vec{u}_n\}$ is an orthonormal set.

Application to real matrix A.

Recall the transpose of a matrix: Given an $m \times n$ matrix A, we define the **transpose matrix** A^T as the $n \times m$ matrix whose (i, j)-th entry is the (j, i)-th entry of A. The dot product can be written as matrix product

$$\vec{v} \cdot \vec{w} = \vec{v}^T \vec{w}$$

Theorem 39. The $n \times n$ matrix A is orthogonal if and only if $A^T A = I_n$; if and only if $A^{-1} = A^T$.

Theorem 40. Let W be any subspace of \mathbb{R}^n with an orthonormal basis $\{\vec{u}_1, \ldots, \vec{u}_p\}$. Let $U = [\vec{u}_1 \ \vec{u}_2 \cdots \vec{u}_p]$. For any $\vec{y} \in \mathbb{R}^n$,

$$\operatorname{proj}_W(\vec{y}) = UU^T \vec{y}.$$

That is, the matrix of the projection onto W is

$$P = UU^T$$

Application to complex matrix A.

The **conjugate transpose** of a complex matrix A is $A^* := \overline{A}^T$

A complex matrix A is called **Hermiltian** if $A^* = A$.

6. The adjoint of a linear operator

An generalization of transpose of a real matrix and conjugate transpose of a complex is the joint operator.

Definition 41. Let $T: V \to W$ be a linear map between two inner product spaces. A **joint operator** of T is a linear map $T^*: W \to V$ such that

$$\langle T(\vec{v}), \vec{w} \rangle_W = \langle \vec{v}, T^*(\vec{w}) \rangle_V.$$

Theorem 42. Let $T: V \to W$ be a linear map between two inner product spaces. Then T has a unique joint operator T^* .

Theorem 43. Let $T: V \to W$ be a invertible linear map between two inner product spaces. Then its joint operator T^* is also invertible and $(T^*)^{-1} = (T^{-1})^*$.