Exercices d'approfondissement sur TD2 et TD3

1 Données de loi inconnue

Exercice 1. Une entreprise de fabrication de pneus teste n de ses pneus. L'estimation ponctuelle du test donne que la durée de vie moyenne d'un pneu est de 43256km et que l'écart-type est de 1243km.

- 1. Calculer l'intervalle de confiance de la moyenne à 95% pour n=50.
- 2. Calculer l'intervalle de confiance de la moyenne à 95% pour n = 100.
- 3. Calculer l'intervalle de confiance de la moyenne à 95% pour n = 500.
- 4. Calculer l'intervalle de confiance de la moyenne à 95% pour n=1000.
- 5. Comment semble évoluer la taille de l'intervalle de confiance en fonction de n?
- 6. À l'aide des outils vus en S2, comment le démontreriez-vous?

Exercice 2. Une entreprise de fabrication de pneus teste 100 de ses pneus. L'estimation ponctuelle du test donne que la durée de vie moyenne d'un pneu est de 43256km et que l'écart-type est de 1243km.

- 1. Calculer l'intervalle de confiance de la moyenne à $\alpha = 80\%$.
- 2. Calculer l'intervalle de confiance de la moyenne à $\alpha = 90\%$.
- 3. Calculer l'intervalle de confiance de la moyenne à $\alpha = 95\%$.
- 4. Calculer l'intervalle de confiance de la moyenne à $\alpha=99\%$.
- 5. Comment semble évoluer la taille de l'intervalle de confiance en fonction de α ?
- 6. Comment le démontreriez-vous?

2 Données pourcentage ou données gaussiennes

Exercice 3. Un exercice pour voir la différence entre le $\hat{\sigma}$ obtenu via la formule $\sqrt{\frac{\sum_{i=1}^{n}(X_{i}-\hat{m})^{2}}{n-1}}$ et via la formule $\sqrt{\hat{p}(1-\hat{p})}$ dans le cas pourcentage.

Soit le tableau de données suivant

Résultat	0	1
Effectifs	210	290

- 1. Considérons le tableau de données comme une loi inconnue avec $n \geq 30$.
 - (a) Calculer \hat{m} pour ces données.
 - (b) Calculer $\hat{\sigma}$ via la formule $\sqrt{\frac{\sum_{i=1}^{n}(X_{i}-\hat{m})^{2}}{n-1}}$.
- 2. Considérons le tableau de données comme une loi bernoulli avec $n \geq 30$, i.e. sur 500 personnes interrogées, 290 ont répondu 1.
 - (a) Calculer \hat{p} (l'estimation du pourcentage des gens qui ont dit 1) pour ces données.
 - (b) Calculer $\hat{\sigma}$ via la formule $\sqrt{\hat{p}(1-\hat{p})}$.
- 3. Que constatez-vous pour les résultats obtenues via la question 1 et via la question 2.

4. De manière générique, c'est-à-dire en considérant la tableau de données suivants

Résultat	0	1
Effectifs	$n(1-\hat{p})$	$n\hat{p}$

- (a) établissez que $\hat{\sigma}_1 = \sqrt{\frac{n}{n-1}} \hat{\sigma}_2$ où $\hat{\sigma}_1$ est le $\hat{\sigma}$ calculé via la formule $\sqrt{\frac{\sum_{i=1}^n (X_i \hat{m})^2}{n-1}}$ et $\hat{\sigma}_2$ celui calculé via la formule $\sqrt{\hat{p}(1-\hat{p})}$.
- (b) Via le cours du S2, montrer que $f(n) = \sqrt{\frac{n}{n-1}}$ est positive et décroissante. [On considèrera que n est un nombre réel et on dérivera par rapport à n, puis on montrera que la dérivé est négative quand n > 0.]
- (c) En déduire que si n > 30, f(n) < 1.02 et donc que l'erreur commise entre les deux formules est de moins de 2%.
- 5. Remarquez que si vous vous trompez de formule dans le cas loi inconnue et $n \geq 30$ en prenant $\hat{\sigma} = \sqrt{\frac{\sum_{i=1}^{n}(X_i \hat{m})^2}{n}}$ au lieu de $\sqrt{\frac{\sum_{i=1}^{n}(X_i \hat{m})^2}{n-1}}$, alors la question 4 s'applique en prenant $\hat{\sigma}_2 = \sqrt{\frac{\sum_{i=1}^{n}(X_i \hat{m})^2}{n}}$ dans la question 4.

J. Casse 2 2023-2024