

MATHEMATICAL METHODS (CAS) Teach Yourself Series

Topic 2: Curve Sketching 2 – Semicircles, Circles, Rectangular Hyperbolae, Truncus, Reciprocal Curves and Square Root Curves

A: Level 14, 474 Flinders Street Melbourne VIC 3000 T: 1300 134 518 W: tssm.com.au E: info@tssm.com.au

© TSSM 2011 Page 1 of 18

Contents

Curve Sketching 2	3
Square root graphs	3
As it appears in Unit 1	
As it appears in Unit 1	3
As it appears in Unit 1	
As it appears in Unit 1	5
As it appears in Unit 3	6 7
Solutions to Review Ouestions	12

Curve Sketching 2

Square root graphs

As it appears in Unit 1

The basic square root function is given by $f(x) = \sqrt{x}$.

Dom: $R^+ \cup \{0\}$ Ran: $R^+ \cup \{0\}$

Truncus graphs

As it appears in Unit 1

These are functions written in the form of $f(x) = \frac{1}{x^2}$, (x^{-2}) . The basic truncus looks like:

$$f(x) = \frac{1}{x^2}$$

Note that these functions also have vertical and horizontal asymptotes.

© TSSM 2011 Page 3 of 18

Hyperbolae

As it appears in Unit 1

The basic hyperbola has the equation $f(x) = \frac{1}{x}$, (x^{-1}) . There are special features on a hyperbola called asymptotes. Refer to the graph below:

$$f(x) = \frac{1}{x}$$

Dom: $R \setminus \{0\}$ Ran: $R \setminus \{0\}$

x = 0 is an asymptote.

y = 0 is an asymptote.

Circles

As it appears in Unit 1

The basic equation is $x^2 + y^2 = r^2$. This is a circle centered at the origin with a radius of r.

This equation can be translated in the x and y direction: $(x - h)^2 + (y - k)^2 = r^2$. This is a circle centered at (h,k) with a radius of r.

© TSSM 2011 Page 5 of 18

This equation can be transposed to make y the subject:

$$y = \pm \sqrt{r^2 - (x - h)^2} + k$$
.

This gives us semi circles:

Reciprocal Functions

As it appears in Unit 3

These are graphs that are written in the form of $y = \frac{1}{f(x)}$. To sketch these use the basic process of:

1. Sketch y = f(x) first.

2. Mark in vertical asymptotes. These are where f(x) = 0.

3. Now sketch $y = \frac{1}{f(x)}$ on all side of asymptotes. You need to take note of the reciprocal behaviour of the function.

Calculator skills

Graphing functions – setting up an appropriate window

Defining functions and evaluating them.

Factor

Prop Frac – to convert a hyperbola into a form that can be graphed.

Review Questions

1. State the maximal domain and the corresponding range of each of these functions: **a.** $f(x) = \sqrt{x} + 4$. **b.** $g(x) = \frac{1}{x-2}$. c. $h(x) = \frac{1}{(x+2)^2} + 3$. 2. Sketch the graphs of each of the following. Label all important features. State the maximal domain and range of each of the functions. **a.** $f(x) = \sqrt{x-4}$. **b.** f(x) =

© TSSM 2011 Page 7 of 18

c	f(r)	4	_1
c.	J(x) –	$\frac{4}{\left(x-3\right)^2}$	-4

e.
$$f(x) = \frac{5}{x+6}f$$
.

f.
$$f(x) = 6 + \sqrt{4x - 1}$$
.

a.	$x^2 + y^2 = 9$.
_	
_	
-	
_	
-	
-	
-	
b.	$x^2 + (y + 5)^2 = 25$.
_	
-	
-	
-	
-	
c.	$(x-7)^2 + (y+7)^2 = 49$.
-	
-	
-	
-	
-	

d.	$y = \sqrt{9 - x^2} - 3$
e.	$y = \sqrt{(25 - (x - 5)^2)}$.
lf	$f(x) = x^2 + 4$, Sketch $\frac{1}{f(x)}$.

© TSSM 2011 Page 11 of 18

Solutions to Review Questions

1.

- **a.** R^+ . Range is $[4, \infty)$
- **b.** $\mathbb{R}\setminus\{2\}$ Range is $\mathbb{R}\setminus\{0\}$
- c. $\mathbb{R}\setminus\{-2\}$ Range is $(3, \infty)$

Sketch a graph of each to work out domain.

2.

- a. Dom: $[4, \infty)$
 - Ran: $R^+ \cup \{0\}$

© TSSM 2011 Page 12 of 18

b. Dom: $(-\infty, 4]$ Ran: $R^+ \cup \{0\}$

c. Dom: R\{3} Ran: (-4, ∞)

© TSSM 2011 Page 13 of 18

d. Dom: R\{4} Ran: R\{3}

e. Dom: R\{-6} Ran: R\{0}

© TSSM 2011 Page 14 of 18

f. Dom:
$$\left[\frac{1}{4}, \infty\right)$$
 Ran: $[6, \infty)$

y (0.25,6)

a.

b.

Domain: [-5, 5]

Range: [-10,0]

c.

Domain: [0,14]

Range:[-14,0]

d.

Domain: [-3,3]

Range:[-3,0]

e.

Domain: [0,10]

Range:[-5,0]

4. If $f(x) = x^2 + 4$, Sketch $\frac{1}{f(x)}$

Sketch $y = x^2 + 4$ first.

Then reciprocate the y values.

5.

Sketch $x^2 + 6x + 8$ first, then reciprocate y values. x intercepts on first graph become vertical asymptotes.