

ADVANCED GCE ELECTRONICS

F611

Unit F611: Simple Systems

OCR Supplied Materials: None

Other Materials Required:

Scientific calculator

Monday 18 May 2009 Morning

Duration: 1 hour 30 minutes

Candidate Forename				Candidate Surname					
Centre Number						Candidate N	umber		

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the bar codes.
- Write your answer to each question in the space provided, however additional paper may be used if necessary.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 90.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- Unless otherwise indicated, you can assume that:
 - op-amps are run off supply rails at +15V and -15V
 - logic circuits are run off supply rails at +5V and 0V
- You are advised to show all the steps in any calculations.
- This document consists of 16 pages. Any blank pages are indicated.

Data Sheet

Unless otherwise indicated, you can assume that:

- op-amps are run off supply rails at +15V and -15V
- logic circuits are run off supply rails at +5V and 0V.

resistance	$R = \frac{V}{I}$
nower	D = VI

power
$$P = VI$$

series resistors
$$R = R_1 + R_2$$

time constant
$$\tau = RC$$

monostable pulse time
$$T = 0.7 RC$$

relaxation oscillator period
$$T = 0.5 RC$$

frequency
$$f = \frac{1}{T}$$

Boolean Algebra
$$A.\overline{A} = 0$$

$$A + \overline{A} = 1$$

 $A.(B + C) = A.B + A.C$

$$\overline{A.B} = \overline{A} + \overline{B}$$

$$\overline{A + B} = \overline{A}.\overline{B}$$

$$A + A.B = A$$

$$A.B = \overline{A}.C = A.B + \overline{A}.C + B.C$$

Answer all the questions.

1 Fig. 1.1 shows a logic system.

Fig. 1.1

(a) Complete this truth table for the logic system.

В	Α	С	D	Q
0	0			
0	1			
1	0			
1	1			

[3]

(b) Use the truth table to write down a Boolean expression for Q in terms of B and A.

\sim	F41	ı
ચ =	 ַוין.	ı

(c) Show in the space below how a logic system made from only NAND gates can replace the circuit of Fig. 1.1.

[2]

(d) Use Boolean algebra or a truth table to justify your NAND gate circuit.

[2]

[Total: 8]

Turn over

2 The circuit of Fig. 2.1 is part of a sensor circuit.

Fig. 2.1

(a) The circuit contains a thermis

	(i)	Put a circle around the thermistor.	[1]
	(ii)	Describe the electrical properties of a thermistor.	
			[2]
(b)	A po	otentiometer is missing from the circuit of Fig. 2.1.	
	It all	lows the voltage at X to be varied from 0V to +15V.	
	(i)	On Fig. 2.1, show how the potentiometer should be connected.	[2]
	(ii)	Explain what happens to the voltage at Z when the voltage at X is slowly increased fr $0V$ to $+15V$.	rom
			[3]

(iii) On Fig. 2.1, show how a voltmeter should be connected to measure the voltage at Z. [1]

(c)		network of two resistors and a diode between the output of the op-amp and the NOT gate verts the signal at Z into logic 1 or logic 0.
	(i)	Explain why the diode can be ignored when Z is at +13V.
		[2]
	(ii)	Calculate the voltage at A when Z is at +13V.
	(iii)	$voltage = \dots V [3]$ State the voltage at A when Z is at -13V. Give a reason for your answer.
,	(111)	State the voltage at A when 2 is at -13 v. Give a reason for your answer.
		[3]
	(iv)	Use your answers to (ii) and (iii) to comment on the idea that this network provides logic 1 or logic 0 at A.
		[2]
		[Total: 19]

3 The circuit of Fig. 3.1 uses a relaxation oscillator to make a sound.

Fig. 3.1

(a) (i) Suggest values of resistor R and capacitor C which will make the period T of the oscillator $200\,\mu s$.

(ii) Calculate the frequency of the oscillator.

(b) A double-beam oscilloscope is connected to the circuit to monitor the signals at the input and output of the Schmitt trigger NOT gate. The screen of the double-beam oscilloscope is shown in Fig. 3.2.

Fig. 3.2

	(i)	The timebase is set to $50\mu s$ per division.	
		The vertical amplifier is set to 2V per division with 0V at the centre of the screen.	
		Draw on Fig. 3.2 to show the signal at the output of the NOT gate.	[3]
	(ii)	The screen of Fig. 3.2 also shows the signal at the input of the NOT gate.	
		The trip points of the Schmitt trigger NOT gate are +2.0V and +3.0V.	
		Draw on Fig. 3.2 to show the signal at the input of the NOT gate.	[3]
	(iii)	Show on Fig. 3.1 how the oscilloscope should be connected to monitor just the signathe input .	l at [2]
(c)	The	circuit of Fig. 3.1 contains a MOSFET.	
	(i)	Why is the MOSFET necessary?	
	(ii) (iii)	On Fig. 3.1, label the gate, drain and source of the MOSFET. Describe how the drain-source resistance of the MOSFET depends on the gate-sou voltage.	
(d)	Cald	culate the average power of the loudspeaker in Fig. 3.1.	[2]
		average power = W	[3]
		[Total:	20]

© OCR 2009 Turn over

4 The circuit of Fig. 4.1 contains a single logic gate.

(a) Fig. 4.1 is an incomplete block diagram for the circuit of Fig. 4.1.

Fig. 4.2

- (i) Complete the block diagram of Fig. 4.2.
- (ii) What do the arrows on a block diagram show?

.....

(b) (i) Complete the truth table for the circuit of Fig. 4.1.

switch X	switch Y	В	Α	Q	state of LED
open	open	0	0	0	off

[3]

	(ii)	Describe the behaviour of the circuit.
		[2]
(c)	The	LED is connected to the logic gate by a resistor.
	(i)	Explain why the resistor is necessary.
		[2]
	(ii)	The voltage drop across the LED is 1.7V when its power is 5.0 mW.
		Show that the current in the LED is about 3 mA.
		[1]
	(iii)	Calculate a suitable value for the resistor <i>R</i> .
	(,	Calculate a calcable value for the resister 71.
		R = Ω [2]
(d)		4.1 is a circuit diagram. Suggest why the supply rail connections to the logic gate have been shown.
		[1]
		[Total: 16]

5 Here is the truth table for a logic system. It has inputs C, B and A, and outputs P and Q.

С	В	Α	Р	Q
0	0	0	1	1
0	0	1	1	0
0	1	0	1	1
0	1	1	1	0
1	0	0	0	0
1	0	1	0	0
1	1	0	1	1
1	1	1	1	0

(a) (i) Write down a Boolean expression for **Q** in terms of C, B and A.

[3]

(ii) Use Boolean algebra to show that $Q = \overline{C}.\overline{A} + B.\overline{A}$.

[3]

(iii) Show in the space below how the circuit for Q can be assembled from NOT, AND and OR gates.

(b)	ΑВ	Soolean expression for P is $P = \overline{C} + B$.	
	(i)	Show in the space below how the circuit for P can be assembled from two NANE) gates.
	/ii\	Use Boolean algebra to justify your arrangement of NAND gates.	[2]
	(ii)	ose boolean algebra to justify your arrangement of NAND gates.	
			[2]
	(iii)	Explain the advantages of assembling a logic system using only NAND gates.	
			otal: 15]
		1]

© OCR 2009 Turn over

6 The circuit of Fig. 6.1 contains an RC network.

The table shows the behaviour of the logic gate.

signal at A	signal at Q
< 2.5 V	+5 V
> 2.5 V	0 V

Fig. 6.1

(a) Calculate the time constant of the RC network.

	time constant = s [2]
(b)	Explain why the lamp comes on as soon as the switch is pressed.
	[a]

(c)	Explain, in detail, what happens to the lamp when the switch is released.
	[4]
	Quality of Written Communication [3]

[Total: 12]

END OF QUESTION PAPER

14 BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

15 BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations, is given to all schools that receive assessment material and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

 $For queries \ or \ further \ information \ please \ contact \ the \ Copyright \ Team, \ First \ Floor, 9 \ Hills \ Road, \ Cambridge \ CB2 \ 1PB.$

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© OCR 2009