Advanced Methods in Biostatistics I Lecture 11

Martin Lindquist

October 3, 2017

Multivariate normality

- In order to perform inference on the linear model, we typically assume the response variable follows a multivariate normal distribution.
- Hence, it is important to understand the properties of this distribution.
- However, before discussing the multivariate normal distribution, let's briefly review the univariate normal distribution.

 A random variable z follows a standard normal distribution if its density is

$$f_z(z) = \frac{1}{\sqrt{2\pi}} \exp(-z^2/2)$$
 $-\infty < z < \infty$

- We say $z \sim N(0, 1)$,
- A standard normal random variable has mean 0 and variance 1.

• To obtain a normal random variable with arbitrary mean μ and and variance σ^2 we use the transformation:

$$\mathbf{y} = \mu + \sigma \mathbf{z}$$
.

• Here $E[y] = \mu$ and $Var(y) = \sigma^2$.

Conversely,

$$z = (y - \mu)/\sigma$$

is standard normal if y is a normal random variable with mean μ and standard deviation σ .

• The density for a normal random variable with mean μ and standard deviation σ is given by

$$f_{y}(y) = f_{z}\left(\frac{y-\mu}{\sigma}\right)/\sigma.$$

• We write that $y \sim N(\mu, \sigma^2)$.

Moment generating function

Theorem

If $y \sim N(\mu, \sigma^2)$ the moment generating function (m.g.f.) of y is given by

$$M_{y}(t) \equiv E[e^{ty}] = \exp\{\mu t + t^{2}\sigma^{2}/2\}.$$

- Suppose z₁, z₂,...z_p are independent identically distributed (i.i.d.) standard normal random variables.
- The joint density of $\mathbf{z} = (z_1, z_2, \dots z_p)'$ is then given by

$$f_{\mathbf{z}}(\mathbf{z}) = \prod_{i=1}^{p} \frac{1}{\sqrt{2\pi}} \exp(-z_i^2/2)$$

= $(2\pi)^{-p/2} \exp(-\mathbf{z}'\mathbf{z}/2)$

- This is the multivariate standard normal distribution for a random vector z with mean 0 and variance I.
- We write this as $\mathbf{z} \sim N_p(\mathbf{0}, \mathbf{I})$.
- Here p corresponds to the number of elements in y.

• To obtain a multivariate normal random variable with arbitrary mean μ and variance-covariance matrix Σ we use the transformation:

$$\mathbf{y} = \mu + \Sigma^{1/2} \mathbf{z}$$
.

where $\Sigma^{1/2}$ is the symmetric square root of Σ .

• Here $E[\mathbf{y}] = \mu$ and $Var(\mathbf{y}) = \Sigma^{1/2} \Sigma^{1/2} = \Sigma$, which is assumed to be positive definite.

Conversely,

$$z = \Sigma^{-1/2}(y - \mu).$$

is a multivariate standard normal random variable if y is a multivariate normal random variable with mean μ and variance-covariance matrix Σ .

 The density of the non-standard multivariate normal distribution is given by

$$(2\pi)^{-n/2}|\Sigma|^{-1/2}\exp\left\{-\frac{1}{2}(\mathbf{y}-\mu)'\Sigma^{-1}(\mathbf{y}-\mu)\right\}.$$

• In this setting, we say that $\mathbf{y} \sim N_p(\mu, \Sigma)$.

- Note that all full row rank linear transformations of the normal are also normal.
- That is, $\mathbf{a} + \mathbf{A}\mathbf{y}$ is normal if \mathbf{A} has full row rank.
- We will also show that all conditional and submarginal distributions of the multivariate normal are also normal.

Moment generating function

Theorem

If $\boldsymbol{y} \sim \textit{N}_{\textit{p}}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ the moment generating function (m.g.f.) of \boldsymbol{y} is

$$M_{\mathbf{y}}(\mathbf{t}) \equiv E[e^{\mathbf{t}'\mathbf{y}}] = \exp\{\mu'\mathbf{t} + \frac{1}{2}\mathbf{t}'\Sigma\mathbf{t}\}.$$

Moment generating function

Two important properties of moment generating functions:

- If two random vectors have the same moment generating function, they have the same density.
- Two random vectors are independent if and only if their joint moment generating function factors into the product of their two separate moment generating functions;

Properties

Properties

Let $\mathbf{y} \sim N_p(\mu, \Sigma)$, and let \mathbf{a} be a $p \times 1$ vector, \mathbf{b} a $k \times 1$ vector, and \mathbf{C} a $k \times p$ matrix with rank= $k \leq p$, then

- ullet $x=\mathbf{a}'\mathbf{y}\sim N(\mathbf{a}'oldsymbol{\mu},\mathbf{a}'\Sigma\mathbf{a}).$
- ullet $\mathbf{x} = \mathbf{C}\mathbf{y} + \mathbf{b} \sim N_{\rho}(\mathbf{C}\mu + \mathbf{b}, \mathbf{C}\Sigma\mathbf{C}').$

• Let $\mathbf{Z} = (Z_1, Z_2)' \sim N_2(\mathbf{0}, \mathbf{I})$, and let \mathbf{A} be the linear transformation matrix

$$\mathbf{A} = \left(\begin{array}{cc} 1/2 & -1/2 \\ -1/2 & 1/2 \end{array} \right).$$

• Let $\mathbf{Y} = (Y_1, Y_2)'$ be the linear transformation

$$\mathbf{Y} = \mathbf{AZ} = \left(egin{array}{c} (Z_1 - Z_2)/2 \ (Z_2 - Z_1)/2 \end{array}
ight).$$

• Now $\mathbf{Y} \sim \mathcal{N}(\mathbf{0}, \Sigma)$ where $\Sigma = \mathbf{A}\mathbf{A}'$.

Properties

Theorem

If $\mathbf{y} \sim N_p(\mu, \Sigma)$, then any $r \times 1$ subvector of \mathbf{y} has a r-variate normal distribution.

Properties

- It follows directly from this result that if $\mathbf{y} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ then $y_i \sim N(\mu_i, \sigma_i^2)$ for $i = 1, \dots p$.
- Thus, joint normality implies marginal normality.
- The converse is not necessarily true.

Partitioning

• Let $\mathbf{y} \sim N_n(\mu, \Sigma)$ be partitioned as follows:

$$\mathbf{y} = \left(\begin{array}{c} \mathbf{y}_1 \\ \mathbf{y}_2 \end{array}\right),$$

where \mathbf{y}_1 is $p \times 1$ and \mathbf{y}_2 is $q \times 1$ with p + q = n.

Partitioning

 Then, the mean and covariance matrix are correspondingly partitioned as

$$\mu = \left(egin{array}{c} \mu_1 \ \mu_2 \end{array}
ight)$$

and

$$\begin{split} \boldsymbol{\Sigma} &= \left(\begin{array}{cc} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{array} \right) \\ &= \left(\begin{array}{cc} \operatorname{var}(\boldsymbol{y}_1) & \operatorname{cov}(\boldsymbol{y}_1, \boldsymbol{y}_2) \\ \operatorname{cov}(\boldsymbol{y}_2, \boldsymbol{y}_1) & \operatorname{var}(\boldsymbol{y}_2) \end{array} \right). \end{split}$$

Marginal distribution

• The marginal distributions are $\mathbf{y}_1 \sim N_p(\mu_1, \Sigma_{11})$ and $\mathbf{y}_2 \sim N_q(\mu_2, \Sigma_{22})$.

Independence

Theorem

lf

$$\mathbf{y} = \left(\begin{array}{c} \mathbf{y}_1 \\ \mathbf{y}_2 \end{array} \right)$$

is $N_{p+q}(\mu, \Sigma)$, then \mathbf{y}_1 and \mathbf{y}_2 are independent if $\Sigma_{12} = \mathbf{0}$.

Independence

- However, if $\mathbf{y}_1 \sim N_p(\mu_1, \Sigma_{11})$ and $\mathbf{y}_2 \sim N_q(\mu_2, \Sigma_{22})$, and $\Sigma_{12} = \Sigma'_{21} = \mathbf{0}$, this does not necessarily mean that \mathbf{y}_1 and \mathbf{y}_2 are independent.
- We also need y to be jointly normal.

Independence

Corollary

If $\mathbf{y} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then any two individual variables y_i and y_j are independent if $\sigma_{ii} = 0$.

Orthogonal transformations

Theorem

Let $\mathbf{y} \sim N_p(\boldsymbol{\mu}, \sigma^2 \mathbf{I})$, and let **T** be an orthogonal constant matrix. Then $\mathbf{T}\mathbf{y} \sim N_p(\mathbf{T}\boldsymbol{\mu}, \sigma^2 \mathbf{I})$.

Orthogonal transformations

- The theorem states that mutually independent normal random variables with common variance remain mutually independent with common variance under orthogonal transformations.
- Orthogonal matrices correspond to rotations and reflections about the origin, i.e., they preserve the vector length:

$$||\textbf{T}\textbf{y}||^2 = (\textbf{T}\textbf{y})'(\textbf{T}\textbf{y}) = \textbf{y}'\textbf{T}'\textbf{T}\textbf{y} = \textbf{y}'\textbf{y} = ||\textbf{y}||^2.$$

Conditional distributions

• Suppose that \mathbf{y}_1 and \mathbf{y}_2 are jointly multivariate normal with $\Sigma_{12} \neq 0$, i.e.

$$\left(\begin{array}{c} \mathbf{y}_1 \\ \mathbf{y}_2 \end{array}\right) \sim N\left(\left(\begin{array}{c} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{array}\right), \left(\begin{array}{cc} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{array}\right)\right).$$

• Further assume that Σ_{11} is nonsingular.

Conditional distributions

• The conditional distribution of $\mathbf{y}_2 \mid \mathbf{y}_1$ is $N(\mu_{\mathbf{y}_2|\mathbf{y}_1}, \Sigma_{\mathbf{y}_2|\mathbf{y}_1})$, where

$$\begin{array}{lcl} \boldsymbol{\mu}_{\mathbf{y}_{2}|\mathbf{y}_{1}} & = & \boldsymbol{\mu}_{2} + \boldsymbol{\Sigma}_{21}\boldsymbol{\Sigma}_{11}^{-1}(\mathbf{y}_{1} - \boldsymbol{\mu}_{1}) \\ \\ \boldsymbol{\Sigma}_{\mathbf{y}_{2}|\mathbf{y}_{1}} & = & \boldsymbol{\Sigma}_{22} - \boldsymbol{\Sigma}_{21}\boldsymbol{\Sigma}_{11}^{-1}\boldsymbol{\Sigma}_{12}'. \end{array}$$

Suppose that y and x are jointly multivariate normal with

$$\left(\begin{array}{c} \mathbf{y} \\ \mathbf{X} \end{array}\right) \sim \mathbf{N} \left(\left(\begin{array}{cc} \mu_{\mathbf{y}} \\ \boldsymbol{\mu}_{\mathbf{x}} \end{array}\right), \left(\begin{array}{cc} \sigma_{\mathbf{y}}^2 & \boldsymbol{\Sigma}_{\mathbf{x}\mathbf{y}}' \\ \boldsymbol{\Sigma}_{\mathbf{x}\mathbf{y}} & \boldsymbol{\Sigma}_{\mathbf{x}} \end{array}\right) \right).$$

where y is a scalar and **X** is a $p \times 1$ vector.

- Consider now predicting y given $\mathbf{X} = \mathbf{x}$.
- A good estimate for this would be $E[y \mid \mathbf{X} = \mathbf{x}]$.

• Our results suggest that $\mathbf{y} \mid \mathbf{X} = \mathbf{x}$ is normal with mean:

$$\mu_{\mathbf{y}|\mathbf{x}} = \mu_{y} + \Sigma'_{xy} \Sigma_{x}^{-1} (\mathbf{x} - \mu_{x})$$

$$= \mu_{y} - \mu'_{x} \Sigma_{x}^{-1} \Sigma_{xy} + \mathbf{x}' \Sigma_{x}^{-1} \Sigma_{xy}$$

$$= \beta_{0} + \mathbf{x}' \beta$$

where

$$\beta_0 = \mu_y - \mu_x' \Sigma_x^{-1} \Sigma_{xy}$$

and

$$\beta = \Sigma_X^{-1} \Sigma_{XY}$$
.

- Consider the case of simple linear regression.
- Here,

$$\beta_1 = \frac{Cov(x,y)}{Var(x)} = \rho(x,y) \frac{\sqrt{Var(y)}}{\sqrt{Var(x)}}.$$

and

$$\beta_0 = \bar{y} - \bar{x}\beta_1.$$

- Hence, the conditional mean in this case mirrors the linear model.
- The slope is the inverse of the variance-covariance matrix of the predictors times the cross correlations between the predictors and the response.

- This example provides motivation for the linear model in cases when the joint normality of the predictor and response is conceptually reasonable.
- Though we note that such joint normality is not always reasonable, such as when the predictors are binary, even though the linear model remains well justified.