1

Assignment:- 1

AI1110: Probability and Random Variables Indian Institute of Technology, Hyderabad

CS22BTECH11017

Dikshant Khandelwal 30 April, 2023

Exercise 12.13.1.10 A black and a red dice are rolled.

- (a) Find the conditional probability of obtaining a sum greater than 9, given that the black die resulted in a 5.
- (b) Find the conditional probability of obtaining the sum 8, given that the red die resulted in a number less than 4.

Solution. Let *X* and *Y* be the random variables denoting the number which comes up on black and red die respectively.

Let us define cumulative frequency distribution of some random variable A,

$$F_A(i) = \Pr(A \le i) \tag{1}$$

$$F_X(i) = F_Y(i) = \begin{cases} 0 & i < 1 \\ \frac{i}{6} & 0 < i \le 6 \\ 1 & i > 6 \end{cases}$$
 (2)

X and Y are independent random variables.

$$Pr(X = k, Y = r) = Pr(X = k) Pr(Y = r)$$
 (3)

∴
$$\Pr(X = k, Y = r) = \frac{1}{36}$$
 (4)

(a)

$$Pr(X + Y > 9|X = 5) = \frac{Pr(X + Y > 9, X = 5)}{Pr(X = 5)}$$
(5)

$$= \Pr(Y > 4) \tag{6}$$

$$= F_Y(6) - F_Y(4) \tag{7}$$

$$=1-\frac{4}{6}$$
 (8)

$$=\frac{1}{3}\approx 0.33\tag{9}$$

$$\therefore \Pr(X + Y > 9 | X = 5) = \frac{1}{3} \approx 0.33 \tag{10}$$

(b)
$$\Pr(X + Y = 8 | Y < 4) = \frac{\Pr(X + Y = 8, Y < 4)}{\Pr(Y < 4)}$$

Fig. 1. X + Y = 8|Y < 4

Probability of an event E, written as Pr(E)

$$Pr(E) = \frac{\text{Number of outcomes favourable to } E}{\text{Total Number of possible outcomes}}$$
(12)

Total number of (X, Y) such that $0 < X \le 6, 0 < Y \le 6$ is 36

In Fig(1), the blue region represent Y < 4 and the line is X + Y = 8, therefore red dots represent, X + Y = 8, Y < 4

$$Pr(Y < 4) = \frac{Number of (X, Y) in blue region}{36}$$
(13)

$$=\frac{18}{36}$$
 (14)

from (11),

$$Pr(X + Y = 8, Y < 4) = \frac{Number of red dots (X, Y)}{36}$$
(15)

$$=\frac{2}{36}$$
 (16)

$$\therefore \Pr(X + Y = 8 | Y < 4) = \frac{\left(\frac{2}{36}\right)}{\left(\frac{18}{36}\right)}$$

$$= \frac{1}{9} \approx 0.11$$
 (18)

$$=\frac{1}{9}\approx 0.11$$
 (18)