МОП транзисторы

Лабораторная работа №206М

1.Задание к допуску

Ознакомиться с методикой создания проекта и моделирования электронных элементов в системе проектирования электронных схем OrCAD_10.5.

Получить от преподавателя номер набора МОП транзисторов. В папке FRTK\#Gr\NAME\ создать проект с именем данной лабораторной работы (см. Методику моделирования).

Подключить библиотеку PWRMOS.

- 1.1. Начертить в тетради схемы моделирования вольтамперных характеристик:
 - п-канального М1 (рис1.1,а) и
 - р-канального М2 (рис1.1,б) МОП транзисторов.

Рис. 1.1 Схемы моделирования вольтамперных характеристик МОП транзисторов

1.2. Начертить в тетради схему моделирования емкости затворов МОП транзисторов (рис.1.2)

Рис.1.2. Схема моделирования емкости затворов МОП транзисторов

1.3. Начертить в тетради схему моделирования переходных процессов полевых транзисторов (рис.1.3)

Рис.1.3. Схема моделирования переходных процессов МОП транзисторов

2.Задание к выполнению работы

2.1,п. Составить схему моделирования вольтамперных характеристик **n**-канального МОП транзистора (рис.1.1,а).

Установить напряжение источника V2 равным +1mV. В режиме **DC Sweep** получить зависимость тока стока ID(M1) от напряжения источника V1 в диапазоне от (1...3)V до 5V с шагом 0.01V для трех значений температуры: -40, 27 и 85 градусов. Определить масштаб проводимости вертикальной оси координат. По полученной зависимости определить U_0 (M1).

Перерисовать полученные зависимости проводимости в тетрадь.

2.1,р. Составить схему моделирования вольтамперных характеристик **р**-канального МОП транзистора (рис.1.1,б).

Установить напряжение источника V4 равным -1mV. В режиме **DC Sweep** получить зависимость тока стока -ID(J2) от напряжения источника V3 в диапазоне от -5V до -(1...3)V с шагом 0.01V для трех значений температуры: -40, 27 и 85 градусов. Определить масштаб проводимости вертикальной оси координат. По полученной зависимости определить U_0 (M2).

Перерисовать полученные зависимости проводимости в тетрадь.

2.2,п. Установить напряжение источника V2 равным +5V. Получить зависимость тока стока ID(M1) от напряжения источника V1 в диапазоне от U_0 (M1) до 5V с шагом 0.01V для трех значений температуры: -40, 27 и 85 градусов.

Перерисовать полученные зависимости тока в тетрадь.

2.2,р. Установить напряжение источника V4 равным -5V. Получить зависимость тока стока ID(M2) от напряжения источника V3 в диапазоне от -5V до U_0 (M2) с шагом 0.01V для трех значений температуры: -40, 27 и 85 градусов.

Перерисовать полученные зависимости тока в тетрадь.

2.3,n.1 Получить зависимость тока стока ID(M1) от напряжения источника V2 в диапазоне от 0V до +5V с шагом 0.01V с параметрическим изменением напряжения V1 на затворе от U_0 до +5V с шагом примерно равным (5V- U_0 (M1))/4.

Перерисовать полученные зависимости тока в тетрадь.

- 2.3,n.2. Повторить предыдущий пункт задания для трех значений напряжения V1 на затворе: 4.9V, 5V и 5.1V. Определить по полученным результатам $g_m(M1)$, $g_i(M1)$, $U_A(M1)$ и $M(M1) = g_m(M1)/g_i(M1)$.
- 2.3,n.3. Установить напряжение источника V1=+5V и получить зависимость тока стока ID(M1) от напряжения источника V2 в диапазоне от 0V до +5V с шагом 0.01V для трех значений температуры: -40, 27 и 85 градусов.

Перерисовать полученные зависимости тока в тетрадь.

2.3,п.4. Перевести задание на моделирование в режим первичного сканирования по температуре и при V3 =V4=+5V получить зависимость тока стока ID(M1) от температуры в диапазоне от -50 до +100 с шагом 1 градус.

Перерисовать полученную зависимость тока в тетрадь.

2.3,р.1. Получить зависимость тока стока ID(M2) от напряжения источника V4 в диапазоне от -5V до 0V с шагом 0.01V с параметрическим изменением напряжения V3 на затворе от -5V до U_0 (M2) с шагом примерно равным (5V+ U_0 (M2))/4.

Перерисовать полученные зависимости тока в тетрадь.

2.3,р.2. Повторить предыдущий пункт задания для трех значений напряжения V3 на затворе: -5.1v, -5V и -4.9V. Определить по полученным результатам $g_m(M2)$, $g_i(M2)$, $U_A(M2)$ и $M(M2) = g_m(M2)/g_i(M2)$.

Перерисовать полученную зависимость тока в тетрадь.

2.3,р.3. Установить напряжения источников V3=-5V и получить зависимость тока стока ID(M2) от напряжения источника V4 в диапазоне от -5V до 0V с шагом 0.01V для трех значений температуры: -40, 27 и 85 градусов.

Перерисовать полученные зависимости тока в тетрадь.

2.3,р.4. Перевести задание на моделирование в режим первичного сканирования по температуре и при V3 =V4=-5V получить зависимость тока стока ID(M2) от температуры в диапазоне от -50 до +100 с шагом 1 градус.

Перерисовать полученную зависимость тока в тетрадь.

2.4. Составить схему моделирования емкости затворов МОП транзисторов (рис.1.2).

Задание на моделирование (*Simulations Settings*) перевести в режим получения временных диаграмм (*Time Domain (Transient)*), установить *Run to Time* = 5us, *Start saving data after* = 5ns, *Maximum step size* = 1ns. Сопротивления резисторов нагрузки **R1**, **R2** сделать глобальным параметром {**RD**}, с номинальным значением **RD** = 100.

2.4.1. Получить временные диаграммы токов затворов IG(M1), IG(M2) для двух значений глобального параметра $\{RD\}$: 0.1 и 100. Определить масштаб вертикальной оси в единицах пикофарад.

Перерисовать полученные временные диаграммы емкостей в тетрадь.

2.4.2. При тех же значениях глобального параметра получить временные диаграммы напряжений на стоках UG(M1), UG(M2)

Перерисовать полученные временные диаграммы напряжений на стоках в тетрадь.

2.5. Составить схему моделирования переходных процессов МОП транзисторов (рис.1.3).

Проведя предварительное моделирование, подобрать для каждого МОП транзистора длительность (PW) импульса генератора так, чтобы она была соизмерима с длительностями фронтов и спадов напряжений на стоках.

Для каждого МОП транзистора установить **Run to Time** = (2...3)*PW, **Start saving data after** = 0, **Maximum step size** = 1ns.

- 2.5.1. Получить временные диаграммы токов стоков ID(M1), ID(M2) при трёх значениях глобального параметра $\{RD\}$: 1, 100 и 1k.
- 2.5.2. Получить временные диаграммы напряжений на стоках ID(M1), ID(M2) при номинальном значении глобального параметра $\{RD\}$ 100.

Перерисовать, полученные, для каждого транзистора временные диаграммы токов стоков ID(M1) и ID(M2) и напряжений на стоках UD(M1) и UD(M2) в тетрадь.

3.Задание к сдаче работы

- 3.1. Как изменятся результаты моделирования пунктов 2.1,n,p, если поменять знаки напряжений источников V2 и V4 в схемах рис.1.1n,p?
- 3.2. Как зависят результаты моделирования пунктов 2.1, п, р от температуры?
- 3.3. По результатам моделирования пунктов 2.1,n,p построить зависимости дифференциального сопротивления каналов МОР транзисторов от напряжения затвора.
- 3.4. Определить по результатам моделирования п.2.2.n,р. $g_m(J1,J2)$, сравнить с полученным данными в пунктах 2.3,n,р.
- 3.5. пределить по результатам моделирования п.2.3.n,р.1 g_{ko} (J1,J2) и g_i (J1,J2).
- 3.6. Как зависит $g_i(J1,J2)$ в области насыщения от напряжения исток затвор?

- 3.7. Определить по результатам моделирования п.2.3.n,р.1 $g_{\boldsymbol{ko}}$ (J1,J2) и $g_{\boldsymbol{i}}$ (J1,J2).
- 3.8. Как зависит от температуры g_{ko} (J1,J2)?
- 3.9. Как зависит от температуры $\mathbf{g}_{\mathbf{m}}$ (J1,J2)?
- 3.10. Как зависит от температуры $g_{i}(J1,J2)$?
- 3.11. Как зависит от температуры $U_{\pmb{\theta}}$ (J1,J2)?

Список литературы

- 1. В.П.Псурцев. Моделирование электронных схем.
- 2. Б.Н. Митяшев. Полупроводниковые приборы: Учебное пособие М.:изд. МФТИ, 1978.
- 3. А.С. Терентьев. Характеристики полевых транзисторов. М.:изд. МФТИ, 1980.

4.

Приложение 1

Наборы МОП транзисторов

Traceps World Transmerepes		
$\mathcal{N}_{\underline{0}}$	n-канальные	р-канальные
набора		
1	IRF120	IRF9130
2	IRF121	IRF9131
3	IRF122	IRF9132
4	IRF123	IRF9133
5	IRF130	IRF9140
6	IRF131	IRF9141
7	IRF132	IRF9142
8	IRF133	IRF9143
9	IRF331	IRF9230
10	IRF332	IRF9231
11	IRF333	IRF9232
12	IRFF120	IRF9530
13	IRFF121	IRF9531
14	IRFF122	IRF9532
15	IRFF123	IRF9533