Comentarios de las Actividades

Bloque 4 Actividad 3

- 1. Potencia es la cantidad de trabajo que desarrolla un dispositivo eléctrico durante un periodo, es decir, la rapidez con que transforma o transfiere energía.
- 2. Porque una de las dos máquinas tiene capacidad para realizar más rápido su trabajo.

3.

Aparato	Potencia (W)	Tiempo de uso (s)	Energía (J) <i>E</i> = <i>Pt</i>
Licuadora	350	10 min al día	E = (350 W)(600 s) = 210,000 J
Estéreo	75	4 h al día	E = (75 W)(14,400 s) = 1'080,000, J
TV 32 – 40"	250	6 h al día	E = (250 W)(21,600 s) = 5'400,000 J
Lavadora	400	20 min al día	E = (400 W)(1200 s) = 480,000 J
Computadora	300	4 h al día	E = (300 W)(14,400 s) = 4'320,000 J
Refrigerador	250	8 h al día	E = (250 W)(28,800 s) = 7'200,000 J
Ocho focos de 60 W cada uno	480 W	5 h al día	E = (480 W)(18,000 s) = 8'640,000 J

4.

a)

Datos	Fórmula y despejes	Sustitución
P = ¿? T = 750 J T = 6 s	$P = \frac{T}{}$	$P = \frac{750 J}{6 s}$

Resultado: P = 125 W

Comentarios de las Actividades

b)

Datos	Fórmula y despejes	Sustitución
P = ¿? m = 600 kg h = 2 m t = 15 s	$P = \frac{1}{t}$ E = mgh	$(600 \text{ kg})(9.81 \text{ m/s}^2)(2 \text{ m}) = 11772 \text{ J}$ $\frac{11772 \text{ J}}{15 \text{ s}} = 784.8 \text{ W}$

Resultado: *P* = 784.8 W

c)

Datos	Fórmula y despejes	Sustitución
v = ¿? m = 1500 kg P = 25 hp	P = Fv F = mg v = P	$F = (1500 \text{ kg})(9.81 \text{ m/s}^2) = 14715 \text{ N}$ $P = 25 \text{ hp} \left(\frac{745.7 \text{ W}}{1 \text{ hp}}\right) = 18642.5 \text{ W}$ $V = \frac{18642.5 \text{ W}}{14715 \text{ N}}$

Resultado: v = 1.27 m/s

d)

Datos	Fórmula y despejes	Sustitución
T = ;? P = 250 W t = 30 min = 1,800 s	<i>P</i> = - <i>Pt</i> = T <i>T</i> = Pt	T = (250 W)(1800 s)

Resultado: *T* = 450,000 J