NTIN071 A&G: Tutorial 3 — Equivalent and minimal representations, automata homomorphism, nondeterminism, closure properties

Solve 1abc only for $A \mathcal{C}B$, 2, 3a (the rest is for practice).

Problem 1 (Equivalent and minimal representations). For the automata below:

- (a) Find and remove all unreachable states.
- (b) Determine the state equivalence (indistinguishability) relations. (Moreover, for any distinguishable pair of states find all minimal-length distinguishing words.)
- (c) Construct their reducts.
- (d) Are any two of the automata equivalent? Use the algorithm from the lecture.

		a	b			a	b			a	b
	$\rightarrow * 0$	1	2		$\rightarrow * 0$	0	5	-	$\rightarrow 1$	2	3
	1	3	0		1	1	3		2	2	4
A:	2	4	5		2	2	7		* 3	3	5
	3	0	2	B:	3	3	2	C:	4	2	7
	4	2	5		* 4	6	1	C:	* 5	6	3
	5	0	3		5	5	1		* 6	6	6
		'			* 6	4	2		7	7	4
					7	7	0		8	2	3
						•			9	9	4

Problem 2 (Automata homomorphism). Find DFA A, B such that:

- (a) Both are reduced and they are not isomorphic.
- (b) A is homomorphic onto B but they are not isomorphic.
- (c) They are equivalent but not isomorphic.
- (d) They are both homomorphic onto C but not isomorphic with it. Moreover, A is not homomorphic onto B and B is not homomorphic onto A.

$$C = (\{p,q\},\{0,1\},\{((p,0),q),((p,1),p),((q,0),p),((q,1),q)\},p,\{q\})$$

Problem 3 (Subset construction). Given a nondeterministic finite automaton with λ -transitions, construct an equivalent reduced DFA.

Problem 4 (Closure properties). Construct an automaton accepting the given language.