Université Hassiba Benbouali de Chlef

Faculté des Sciences Exactes & Informatique

Département de Mathématiques



# Théorie des Opérateurs

Cours et exercices

Par

Dr. Aissa NASLI BAKIR

Première Année Master

Année Universitaire : 2018/2019

# Chapitre 1

# Espaces de Hilbert

# 1.1 Espaces pré-Hilbertiens

### 1.1.1 Produit scalaire

**Définition 1.1.** (Rappel) Soit E un espace vectoriel sur le corps  $\mathbb{C}$ .

Une application  $f: E \times E \to \mathbb{C}$  est dite bilinéaire si pour tous  $x, x', y, y' \in E$ , et tout  $\lambda \in \mathbb{C}$ :

$$f(\lambda x + x', y) = \lambda f(x, y) + f(x', y)$$

et

$$f(x, \lambda y + y) = \lambda f(x, y) + f(x, y')$$

**Définition 1.2.** Soit E un  $\mathbb{C}$ -espace vectoriel. Un produit scalaire sur E, est une application bilinéaire  $\langle .,. \rangle : E \times E \to \mathbb{C}$  et vérifiant :

- i.  $\forall x \in E : \langle x, x \rangle \ge 0$  (Positivité)
- ii.  $\forall x \in E : \langle x, x \rangle = 0 \Leftrightarrow x = 0$  (Séparation)
- iii.  $\forall x,y \in E : \overline{\langle x,y \rangle} = \langle y,x \rangle$  (Anti-symétrie)
- iv.  $\forall x,y \in E, \forall \lambda \in \mathbb{C}: \langle \lambda x,y \rangle = \lambda \, \langle x,y \rangle$  (Homogénéité)

$$v. \ \forall x, y, z \in E : \langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$$

**Définition 1.3.** Un espace vectoriel muni d'un produit scalaire est dit espace pré-Hilbertien.

**Exemples** 1.  $E = \mathbb{C}^n$ . L'application  $(x,y) \mapsto \langle x,y \rangle = \sum_{i=1}^n x_i \overline{y_i}$  pour tous  $x = (x_i)_{i=1}^n, y = (y_i)_{i=1}^n \in E$ , définit bien un produit scalaire sur E.  $(E,\langle \cdot, \cdot \rangle)$  est donc un espace pré-Hilbertien.

### 2. Considérons l'espace

$$\ell_2 := \left\{ x = (x_n)_n \subset \mathbb{C} : \sum_{n=1}^{+\infty} |x_n|^2 < +\infty \right\}$$

et l'application  $\langle .,. \rangle$  sur  $\ell_2 \times \ell_2$  définie par

$$\langle x, y \rangle = \sum_{i=1}^{+\infty} x_i \overline{y_i}, \ x = (x_i)_{i=1}^{+\infty}, \ y = (y_i)_{i=1}^{+\infty} \in \ell_2$$

Cette application est bien définie sur  $\ell_2$ . En effet, si  $x=(x_i)_{i=1}^n, y=(y_i)_{i=1}^n \in \ell_2$ , alors

$$\left| \langle x, y \rangle \right| = \left| \sum_{i=1}^{+\infty} x_i \overline{y_i} \right| \le \sum_{i=1}^{+\infty} \left| x_i \overline{y_i} \right| \le \frac{1}{2} \left( \sum_{i=1}^{+\infty} \left| x_i \right|^2 + \sum_{i=1}^{+\infty} \left| y_i \right|^2 \right) < +\infty$$

car  $x, y \in \ell_2$ . Il est facile de montrer que  $\langle ., . \rangle$  est un produit scalaire sur  $\ell_2$ , et  $(\ell_2, \langle ., . \rangle)$  est donc un espace pré-Hilbertien.

### 3. De même pour l'espace

$$E = L_2([a, b], \mathbb{C}) = \left\{ f \colon [a, b] \to \mathbb{C} : \int_a^b |f(t)|^2 dt < +\infty \right\}$$

muni de l'application  $\langle ., . \rangle$  où

$$\langle f, g \rangle = \int_{a}^{b} f(t) \overline{g(t)} dt, \ f, g \in E$$

.

**Exercice** Montrer que dans un espace pré-Hilbertien  $(E, \langle ., . \rangle)$ :

$$\langle x, \lambda y \rangle = \overline{\lambda} \, \langle x, y \rangle$$

pour tous  $x, y \in E$  et tout  $\lambda \in \mathbb{C}$ .

## 1.1.2 Inégalité de Cauchy-Bunyakowski-Schwartz

**Théorème 1.1.** Soit  $(E, \langle ., . \rangle)$  un espace pré-Hilbertien, et soient  $x, y \in E$ . Alors,

$$|\langle x, y \rangle| \le \sqrt{\langle x, x \rangle} \cdot \sqrt{\langle y, y \rangle} \tag{1.1}$$

**Preuve.** Si  $\langle x,y\rangle=0$ , l'inégalité (1.1) est triviale. On suppose que  $\langle x,y\rangle\neq0$ . Soit  $\lambda\in\mathbb{C}.$  On a

$$0 \le \langle x - \lambda y, x - \lambda y \rangle = \langle x, x \rangle - 2Re(\lambda \langle y, x \rangle) + |\lambda|^2 \langle y, y \rangle$$
 (1.2)

Pour  $\lambda = \frac{\langle x, x \rangle}{\langle y, x \rangle}$ , on aura dans (1.2)

$$\langle x, x \rangle - 2 \langle x, x \rangle + \frac{\langle x, x \rangle^2}{\left| \langle y, x \rangle \right|^2} \langle y, y \rangle \ge 0$$

Comme  $\langle x, x \rangle \ge 0$ ,

$$\frac{\langle x, x \rangle}{\left| \langle y, x \rangle \right|^2} \left\langle y, y \right\rangle - 1 \ge 0$$

et l'inégalité (1.1) est vérifiée.

## 1.1.3 Norme associée à un produit scalaire

**Proposition 1.1.** Soit  $(E, \langle ., . \rangle)$  un espace pré-Hilbertien. L'application  $\|.\| : E \to \mathbb{R}_+$  définie par

$$||x|| = \sqrt{\langle x, x \rangle}, \ x \in E$$

est une norme sur E.

Preuve. En effet,

i. Si  $x \in E$  et ||x|| = 0, alors  $\sqrt{\langle x, x \rangle} = 0$ . Donc  $\langle x, x \rangle = 0$ . Par suite x = 0 (propriété du produit scalaie). De même,  $||0|| = \sqrt{\langle 0, 0 \rangle} = 0$ .

ii. Pour tous  $x \in E$  et tout  $\lambda \in \mathbb{C}$  :

$$\|\lambda x\| = \sqrt{\langle \lambda x, \lambda x \rangle} = \sqrt{\lambda \overline{\lambda} \langle x, x \rangle} = \sqrt{|\lambda|^2 \langle x, x \rangle} = |\lambda| \sqrt{\langle x, x \rangle}$$
$$= |\lambda| \|x\|$$

iii. Soient  $x, y \in E$ . Par l'inégalité de Cauchy-Schwartz, on aura

$$||x + y||^{2} = \langle x + y, x + y \rangle = ||x||^{2} + ||y||^{2} + 2Re \langle x, y \rangle$$

$$\leq ||x||^{2} + ||y||^{2} + 2|\langle x, y \rangle|$$

$$\leq ||x||^{2} + ||y||^{2} + 2\sqrt{\langle x, x \rangle}\sqrt{\langle y, y \rangle}$$

$$\leq ||x||^{2} + ||y||^{2} + 2||x|| ||y|| = (||x|| + ||y||)^{2}$$

$$\leq (||x|| + ||y||)^{2}$$

**Définition 1.4.** La norme  $\|.\|$  ainsi définie est dite norme associée au produit scalaire  $\langle .,. \rangle$  sur E. (Ou norme issue du produit scalaire)

**Exemples** Exprimer les normes associées aux produits scalaires sur les espaces définis dans les exemples 1,2 et 3 précédents.

### Conséquences

1. Soient  $x=(x_i)_{i=1}^{+\infty}, y=(y_i)_{i=1}^{+\infty}\in\ell_2$ . Pour  $a=(|x_i|)_{i=1}^{+\infty}, b=(|y_i|)_{i=1}^{+\infty}\in\ell_2$ , on aura par l'inégalité de Cauchy-Schwartz que

$$\sum_{i=1}^{+\infty} |x_i y_i| \le \left(\sum_{i=1}^{+\infty} |x_i|^2\right)^{\frac{1}{2}} \left(\sum_{i=1}^{+\infty} |y_i|^2\right)^{\frac{1}{2}}$$

i.e.

$$||ab||_1 \le ||a||_2 ||b||_2$$

Autrement dit, l'inégalité de Cauchy-Schwartz coïncide avec l'inégalité de Hölder.

2. Si  $x=(x_i)_{i=1}^n,y=(y_i)_{i=1}^n\in\mathbb{C}^n$ . Pour  $a=(|x_i|)_{i=1}^n,b=(|y_i|)_{i=1}^n\in\mathbb{C}^n$ , on pourra avoir toujours par l'inégalité de Cauchy-Schwartz que

$$\sum_{i=1}^{n} |x_i| \le \sqrt{n} \left(\sum_{i=1}^{n} |x_i|^2\right)^{\frac{1}{2}}$$

D'où,

$$\|x\|_1 \le \sqrt{n} \|x\|_2$$

# 1.2 Propriétés

Soit  $(E,\langle.,.\rangle)$  un espace pré-Hilbertien, et soit  $\|.\|$  la norme associée à son produit scalaie. Pour tous  $x,y\in E,$  on a

### 1. Identité du parallélogramme

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

2. **Identité de polarisation (** On suppose que le corps de E est  $\mathbb{R}$ )

$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 + \|x - y\|^2)$$

**Preuve.** Calcul direct.

## 1.2.1 Continuité du produit scalaire

**Proposition 1.2.** Soit  $(E, \langle ., . \rangle)$  un espace pré-Hilbertien. Le produit scalaire  $\langle ., . \rangle$  est une fonction continue sur  $E \times E$ .

**Preuve.** Soient  $(x_n)_n, (y_n)_n$  deux suites de E convergeant respectivement vers x, y dans E. On a donc

$$|\langle x_n, y_n \rangle - \langle x, y \rangle| \leq |\langle x_n, y_n - y \rangle| + |\langle x_n - x, y \rangle|$$
  
$$\leq ||x_n|| ||y_n - y|| + ||x_n - x|| ||y|| \underset{n \to +\infty}{\to} 0$$

$$\operatorname{car} \|x_n\| \to \|x\|, (n \to +\infty).$$

# 1.3 Espace de Hilbert

**Définition 1.5.** Une suite  $(x_n)_n$  d' un espace pré-Hilbertien E est dite de Cauchy dans E si

$$\forall \epsilon > 0, \exists N \in \mathbb{N} / \forall n, m \in \mathbb{N} : (n > N \land m > N) \Rightarrow (\sqrt{\langle x_n - x_m, x_n - x_m \rangle} < \epsilon)$$

**Définition 1.6.** La suite  $(x_n)_n$  est dite convergente vers un élément  $x \in E$ , si

$$\lim_{n \to +\infty} ||x_n - x|| = 0$$

i.e., si

$$\forall \epsilon > 0, \exists N \in \mathbb{N} / \forall n \in \mathbb{N} : (n \ge N) \Rightarrow (\|x_n - x\| < \epsilon)$$

et l'on écrit

$$\lim_{n \to +\infty} x_n = x$$

**Définition 1.7.** Soit E un espace pré-Hilbertien. Si toute suite de Cauchy dans E est convergente dans E, l'espace E est dit complet.

**Définition 1.8.** *Un espace pré-Hilbertien complet est dit espace de Hilbert.* <sup>1</sup>

**Exemples** 1. Les espaces  $\mathbb{C}^n$ ,  $n \geq 1$  et  $L_2([a,b],\mathbb{C})$  sont des espaces de Hilbert.

2. Montrons que l'espace  $\ell_2$  est de Hilbert. Soit donc

$$x_n = (\xi_1^{(n)}, \xi_2^{(n)}, \xi_3^{(n)}, \dots, \xi_n^{(n)}, \dots) \in \ell_2$$

une suite de Cauchy. Pour k fixé, on a

$$\left|\xi_k^{(n)} - \xi_k^{(m)}\right| \le \|x_n - x_m\| \to 0$$
 (1)

quand  $n, m \to +\infty$ . La suite  $\left(\xi_k^{(n)}\right)_{n\geq 1}$  est donc de Cauchy dans  $\mathbb C$ . Elle est donc convergente. Soit  $\xi_k = \lim_{n \to +\infty} \xi_k^{(n)}$ , et posons  $x = (\xi_1, \xi_2, ... \xi_n, ...)$ . Montrons que  $x \in \ell_2$ , et que  $\lim_{n \to +\infty} x_n = x$ .

Pour tout entier  $j, j \ge 1$ , on a

$$\sum_{k=1}^{j} |\xi_k|^2 = \lim_{n \to +\infty} \sum_{k=1}^{j} |\xi_k^{(n)}|^2$$
 (2)

et

$$\sum_{k=1}^{j} \left| \xi_k^{(n)} \right|^2 \le \|x_n\|^2 \qquad (3)$$

De plus,  $\sup_{n\geq 1}\|x_n\|=M<+\infty$  car

$$|||x_n|| - ||x_m||| \le ||x_n - x_m|| \to 0, n, m \to +\infty$$

1. David Hilbert (1862-1943) est un grand mathématicien allemand, connu par ses 23 fameux problèmes en Analyse mathématique présentés en 1900, et dits Hilbert Open Problems.

Il s'ensuit donc de (2) et (3) que

$$\sum_{k=1}^{+\infty} \left| \xi_k^{(n)} \right|^2 \le M^2$$

, i.e.,  $x \in \ell_2$ . D'autre part, pour  $\epsilon > 0$ , il existe  $N_{\epsilon} \in \mathbb{N}$  tel que pour tous n, m, n > N et  $m > N_{\epsilon}$ , et tout  $p \in \mathbb{N}$ :

$$\sum_{k=1}^{p} \left| \xi_k^{(n)} - \xi_k^{(m)} \right|^2 \le \|x_n - x_m\|^2 < \epsilon \tag{4}$$

Fixons  $n \geq N_{\epsilon}$  et faisons tendre m vers  $+\infty$ . De (1) et (4), on obtiendra pour tout p

$$\sum_{k=1}^{p} \left| \xi_k^{(n)} - \xi_k \right|^2 = \lim_{m \to +\infty} \sum_{k=1}^{p} \left| \xi_k^{(n)} - \xi_k^{(m)} \right|^2 \le \epsilon$$

Par conséquent,

$$||x_n - x||^2 = \sum_{k=1}^{+\infty} |\xi_k^{(n)} - \xi_k|^2 \le \epsilon$$

A. Nasli Bakir 9 2018/2019

## 1.4 Exercices

### Exercice 1.1.

i. Soit  $E = \mathbb{R}[X]$ , l'espace vectoriel des polynômes de la variable réelle X et à coefficients réels. Les applications suivantes définissent-elles des produits scalaires sur E?

$$\langle P, Q \rangle = \int_{0}^{1} P(x)Q(x)dx, \quad P, Q \in \mathbb{R}[X]$$
$$\langle P, Q \rangle = P(1)Q'(0) + P'(0)Q(1), \quad P, Q \in \mathbb{R}[X]$$

### Exercice 1.2.

Soit  $(\mathcal{H}, \langle ., . \rangle)$  un espace de Hilbert sur  $\mathbb{R}$ .

a. Montrer l'identité de polarisation

$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2), \ x, y \in \mathcal{H}$$

b. Une application linéaire  $u \colon \mathcal{H} \to \mathcal{H}$  est dite une isométrie si u conserve la norme, i.e.

$$\forall x \in \mathcal{H} : ||u(x)|| = ||x||$$

où  $\|.\|$  est la norme issue du produit scalaire sur  $\mathcal{H}$ . Montrer que u est une isométrie si et seulement si u conserve le produit scalaire, c-à-d

$$\forall x, y \in \mathcal{H} : \langle u(x), u(y) \rangle = \langle x, y \rangle$$

N.B. Pour  $(\Rightarrow)$ , utiliser l'identité de polarisation ,et pour  $(\Leftarrow)$ , le développement de  $\|u(x+\lambda y)-u(x)-\lambda u(y)\|^2$  pour  $x,y\in\mathcal{H}$  et  $\lambda\in\mathbb{R}$ .

#### Exercice 1.3.

Montrer que l'espace vectoriel  $\mathcal{E} = \mathcal{C}^0\left(\left[-1,1\right],\mathbb{R}\right)$  des fonctions réelles continues sur  $\left[-1,1\right]$ , muni du produit scalaire

$$\langle f, g \rangle = \int_{-1}^{1} f(t)g(t)dt, \ f, g \in \mathcal{E}$$

n'est pas de Hilbert. Utiliser la suite  $(f_n)_{n\geq 1}$  où

$$f_n(t) = \begin{cases} 0, & -1 \le t \le \frac{-1}{n} \\ nt + 1, & \frac{-1}{n} \le t \le 0 \\ 1 & 0 \le t \le 1 \end{cases}, (n \ge 1)$$

#### Exercice 1.4.

Dans l'espace  $\mathcal{M}_n(\mathbb{R})$  des matrices carrées d'ordre  $n, (n \geq 1)$  et à coefficients réels, on définit la trace d'une matrice  $\mathcal{A} = (a_{ij})_{1 \leq i,j \leq n}$  par  $tr(\mathcal{A}) = \sum_{i=1}^{n} a_{ii}$ .

1. Montrer que

$$\langle \mathcal{A}, \mathcal{B} \rangle = tr(\mathcal{A}^t \mathcal{B}), \ \mathcal{A}, \mathcal{B} \in \mathcal{M}_n(\mathbb{R})$$

définit un produit scalaire sur  $\mathcal{M}_n(\mathbb{R})$ , où  $\mathcal{A}^t$  est la matrice transposée de la matrice A.

2. Montrer que la norme associée à ce produit scalaire vérifie

$$\|\mathcal{A}\mathcal{B}\| \leq \|\mathcal{A}\| \|\mathcal{B}\|, \, \mathcal{A}, \mathcal{B} \in \mathcal{M}_n(\mathbb{R})$$

3. En déduire que  $\|\mathcal{A}^p\| \leq \|\mathcal{A}\|^p$ ,  $\mathcal{A} \in \mathcal{M}_n(\mathbb{R})$ ,  $p \in \mathbb{N}$ ,  $p \geq 1$ .

#### Exercice 1.5.

(Produit scalaire sur  $\mathbb{R}[X]$  et  $\mathbb{R}_n[X]$ )

a. Montrer que la relation

$$\langle P, Q \rangle = \int_{0}^{1} P(x)Q(x)dx, \ P, Q \in \mathbb{R}[X]$$

définit un produit scalaire sur  $\mathbb{R}[X]$  et sur  $\mathbb{R}_n[X]$  pour tout  $n \in \mathbb{N}$ .

- b. Montrer que  $(\mathbb{R}_n[X], \langle .,. \rangle)$  est un espace de Hilbert.
- c. 1. Soit  $P_n(x) = \sum_{k=0}^n \frac{x^k}{k!}, x \in \mathbb{R}$ . Montrer que la suite  $(P_n)_n$  converge uniformément sur [0,1] vers la fonction  $x \mapsto \exp(x)$ .
- 2. En déduire que  $P_n$  converge vers la fonction  $x\mapsto \exp(x)$  pour la norme associée au produit scalaire.
  - 3. En déduire que  $(\mathbb{R}[X], \langle .,. \rangle)$  n'est pas un espace de Hilbert.