Baby Food		Dhysics Applications			ne	Integrals of Hyperbolic properties	
Бару	Physics Applications				integrals of Hyp	erbolic properties	
$\int_{a}^{b} c dx = c(b-a) \qquad \int_{a}^{b} x dx =$	$= \frac{b^2}{2} - \frac{a^2}{2} \qquad \int_a^b x^2 dx = \frac{b^3}{3} - \frac{a^3}{3}$	Work Done Along $W = \int_{a}^{b} F(x)dx$ $[W = force \times (x), given x]$	lx .		te's Law for Springs $W = \int_{a}^{b} kx dx$ $b = \Delta length(spring)$	$\int \sinh(u) = \cosh(u) + C$	$\int \cosh(u) = \sinh(u) + C$
Fundamental Theorems of Baby Food		Lifting Objects $W = \int_{0}^{b} weight \cdot (height - x) dx$		b	Pumping Liquid ht · (height - x) · ΔV olume dx	$\int tanh(u) = ln[cosh(u)] + C$	$\int coth(u) = ln[sinh(u)] + C$
Fund.Theorem.Calc.1 $F'(x) = \frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$	Fund.Theorem.Calc.2 $\int_{a}^{b} f(x) dx = F(b) - F(a)$	Fluid Force on Constant Surface		Fluid Force on a Vert Plate $W = \int_{0}^{b} weight \cdot (strip \ depth) \cdot$	$\int csch(u) = ln[tanh(\frac{u}{2})] + C$	$\int sec(u) = tan^{-1}[sinh(u)] + C$	
i		$F = weight \cdot height \cdot area$		$w = \int_{a}^{b} weight (strip depin)$ $(length of strip) dx$	$\int csch^2(u) = - \coth(u) + C$	$\int sech^2(u) = tanh(u) + C$	
Integrals of Trig		Center of Mass = $\frac{moment}{mass}$		Center of Mass = $\frac{manner}{mass}$	i		
$\int \sin(x) dx = -\cos(x) + C$	$\int \cos(x) dx = \sin(x) + C$	$\overline{X} = \frac{\int\limits_{a}^{b} (weight) \times (x) \times [f(x) - g(x)] dx}{\int\limits_{a}^{b} [f(x) - g(x)] dx} \qquad \overline{y} = \frac{\int\limits_{a}^{b} (weight) \times (\frac{1}{2}) \times [\frac{1}{2}]}{\int\limits_{a}^{b} [f(x) - g(x)] dx}$		$\frac{ight) \times (\frac{1}{2}) \times [f^2(x) - g^2(x)] dx}{\int_a^b [f(x) - g(x)] dx}$	$\int csch(u)coth(u) = -coth(u) + C$	$\int sech(u)tanh(u) = - sech(u) +$	
$\int t du (u) du = I_{n} \int du (u) \int du$	$\int \cot(x) dx = \ln \sin(x) + C$					$csch^{-1}(x) = sinh^{-1}(\frac{1}{x})$	$sech^{-1}(x) = cosh^{-1}(\frac{1}{x})$
$\int tan(x)dx = \ln \left sec(x) \right + C$	$\int col(x) dx = ln sin(x) + C$		In() properties		1.0	$coth^{-1}(x) = tanh^{-1}(\frac{1}{x})$	
$\int \sec^2(x) dx = \tan(x) + C$	$\int csc^2(x)dx = -cot(x) + C$	$ln(b \cdot a) = ln(b)$		ln(a)	= ln(b) - ln(a)	Darkert City	
		$ln(\frac{1}{x}) = -ln(x)$		$ln(x^r) = r \times ln(x)$			perbolic properties
$\int \sec(x) dx = \ln \left \sec(x) + \tan(x) \right $	$\int \csc(x) \ dx = -\ln \csc(x) + \cot(x) $	$\frac{d}{dx}ln(u) = \frac{1}{u}\frac{d}{dx}$	$\frac{d}{dx}ln(u) = \frac{1}{u}\frac{du}{dx}$ $\int \frac{1}{u}dx$		lu = ln u + C	$\frac{d}{dx}sinh^{-1}(u) = \frac{1}{\sqrt{1+u^2}}\frac{du}{dx}$	$\frac{d}{dx}cosh^{-1}(u) = \frac{1}{\sqrt{u^2 - 1}}\frac{du}{dx}$
$\int \sec(x)\tan(x) dx = \sec(x) + C$	$\int csc(x)cot(x) dx = -csc(x) + C$	$\int \frac{f'(x)}{f(x)} du = \ln f(x) + C$ $\int_{-1}^{x} \frac{1}{t} dt = \ln(x)$		$\int_{1}^{x} \frac{1}{t} dt = \ln(x)$	$\frac{d}{dx}tanh^{-1}(u) = \frac{1}{1-u^2}\frac{du}{dx}$	$\frac{d}{dx}coth^{-1}(u) = \frac{1}{1-u^2}\frac{du}{dx}$	
$\int \sec^2(x) dx = \tan(x) + C$		1		$\frac{d}{dx}csch^{-1}(u) = -\frac{1}{ u \sqrt{1+u^2}}\frac{du}{dx}$	$\frac{d}{dx}sech^{-1}(u) = -\frac{1}{u\sqrt{1-u^2}}\frac{du}{dx}$		
J sec (x) ax	= tan(x) + C	$\int_{a}^{b} ln(a)$	x)dx = USE Int	tegration b	y Parts		
Integrals of	Inverse Trig	Ma	vro o and In	() propo	r tion	integrals of inverse	Hyperbolic properties
		More e and In() properties				$\int \frac{1}{\sqrt{a^2 + u^2}} du = \sinh^{-1}(\frac{u}{a}) + C$	$\int \frac{1}{\sqrt{u^2 - a^2}} du = \cosh^{-1}(\frac{u}{a}) + C$
$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1}(\frac{x}{a}) + C$	$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} (\frac{x}{a}) + C$	$\frac{d}{dx}e^{u} = e^{u}\frac{du}{dx}$	e ^{ln (x)} :		$ln(e^x) = x$	$\int \frac{1}{a^2 - u^2} du = \frac{1}{a} \tanh^{-1} (\frac{u}{a}) + C$	$\int \frac{1}{a^2 - u^2} du = \frac{1}{a} \coth^{-1}(\frac{u}{a}) + C$
$\int \frac{1}{x\sqrt{x^2 - a^2}} dx = \frac{1}{a} sec^{-1} \frac{x}{a} + C$		$\int e^u \ du = e^u + C$	$e^{-x} =$	$e^{-x} = \frac{1}{e^x}$ a ralph b production		, , , , , , , , , , , , , , , , , , ,	
		$e^{x_1} \cdot e^{x_2} = e^{x_1 + x_2}$	$e^{x_1}/e^{x_2} =$	$e^{x_1 - x_2}$	$(e^{x_1})^{x_2} = e^{x_1 \cdot x_2}$	$\int \frac{1}{u\sqrt{a^2 + u^2}} du = -\frac{1}{a} csch^{-1} \Big _a^u + C$	$\int \frac{1}{u\sqrt{a^2-u^2}} du = -\frac{1}{a} \operatorname{sech}^{-1}(\frac{u}{a}) +$
Area Under Curve		$a^x = e^{x \cdot ln(a)}$	$\frac{d}{dx}a^u = a^u$	$ln(a)(\frac{du}{dx})$	$\int a^u du = \frac{a^u}{\ln(a)} + C$	Integration by Parts	
Top-to-bottom	Right-to-left				$\int u^{n} du = \frac{1}{\ln(a)} + C$	integration	on by Faits
$A(x) = \int_{a} [f(x) - g(x)] dx$	$A(y) = \int_{c} [f(y) - g(y)] dy$		10			$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x) dx$	
Vol. by Rotation (x-axis)	Vol. by Rotation (y-axis)		log() pro	perties		$\int u \times v' = uv - \int v \times du$	
$V = \int_{a} \pi \left[R(x) \right]^{2} dx$	$V = \int_{c} \pi \left[R(y) \right]^{2} dy$	$log_a(b \times x) = log_a(b)$	+ log _a (x)	$log_a(\frac{b}{x})$	$= log_a(b) - log_a(x)$		
Vol. by Washer Rotation Outer-inner (X-axis)	Vol. by Washer Rotation Outer-inner (Y-Axis)	$log_a(x^i) = -log_a(x) \qquad \qquad log_a(x^i) = r \times log_a(x)$ $\frac{d}{dx} log_a u = \frac{1}{ln(a)} \frac{1}{u} \frac{du}{dx} = \frac{1}{u \times ln(a)} \frac{du}{dx}$		$\int x^2 e^x dx.$			
$V(x) = \int_{a}^{b} \pi [R(x)]^{2} - [r(x)]^{2} dx$	$V(y) = \int_{a}^{b} \pi [R(y)]^{2} - [r(y)]^{2} dy$			$\frac{1}{n(a)} \frac{du}{dx}$	With $f(x) = x^2$ and $g(x) = e^x$, we list:		
Shell Method	Shell Method			$f(x)$ and its derivatives x^2	$g(x)$ and its integrals e^x		
About Y-Axis $V = \int_{0}^{b} 2\pi \left[Radius \right] \left[Height \right] dx$	About X-Axis $V = \int_{a}^{b} 2\pi \left[Radius \right] \left[Height \right] dx$	Hyperbolic propertie		es	$ \begin{array}{cccc} 2x & & & & & \\ 2 & & & & & \\ \end{array} $ $ \begin{array}{cccc} (+) & & & & \\ \end{array} $		
$V = \int_{a}^{b} 2\pi \left[x\right] [f(x)] dx$	$V = \int_{c}^{d} 2\pi \left[y \right] [f(y)] dx$	$sinh(x) = \frac{e^{x} - e^{-x}}{2}$ $cosh(x) = \frac{e^{x} + e^{-x}}{2}$	$tanh(x) = \frac{e}{e}$ $coth(x) = \frac{e}{e}$		$cosh(2x) = cosh^{2}(x) + sinh^{2}(x)$ sinh(2x) = 2sinh(x)cosh(x) $cosh^{2}(x) - sinh^{2}(x) = 1$	0	e ^x
	Arc Length	$cosh^{2}(x) = \frac{cosh(2x) + 1}{2}$	$tanh^2(x) = 1 -$		Good luck on	Integrating Power	rs of cos() and sin()
Arc Length $L(x) = \int_{a}^{b} \sqrt{1 + [f'(x)]^{2}} dx$	$L(y) = \int_{c}^{d} \sqrt{1 + [g'(y)]^{2}} dy$	$sinh^{2}(x) = \frac{\cosh(2x) - 1}{2}$	$coth^2(x) = 1 +$	csch²(x)	your exam!	integrating r owe	is or cos() and sin()

Message from creator: if you can memorize this sheet by heart, i can

1000% guarantee you will do fine in Calculus I. good luck. The name mother-calculator came from the person I learned from the most (my mom) and the thing I learned from the least (using my calculator).

Even Powers of Cos(x) and Sin(x) $sin^{2}(x) = \frac{1}{2} - \frac{1}{2}cos(2x)$ $cos^{2}(x) = \frac{1}{2} + \frac{1}{2}cos(2x)$

 $\mathsf{EX.}\ \int sin^4(x) dx \ = \ \int \ \left[sin^2(x) \right]^2 dx \ = \int \ \left[\ \tfrac{1}{2} \ - \ \tfrac{1}{2} cos(2x) \right]^2 dx$

More Integration Trig Properties

When integrating EVEN powers of sin() and cos(), use these $cos^{2}(\theta) = (\frac{1}{2})[1 + cos(2\theta)]$ **OR** $sin^{2}(\theta) = (\frac{1}{2})[1 - cos(2\theta)]$

When integrating ODD powers of sin() and cos(), use these $sin^2(x) + cos^2(x) = 1$

More Trig properties to remember					
$\sin^2(x) + \cos^2(x) = 1$	$tan^2(x) + 1 = sec^2(x)$	$\cot^2(x) + 1 = \csc^2(x)$			
$cos^{2}(x) = (\frac{1}{2})$ $sin^{2}(x) = (\frac{1}{2})$	For angle representation, convert the following				
$1 + \cos(x) = 1 + \cos(x)$	$\sqrt{a^2 + x^2} \text{ let } x = a \cdot tan(\theta)$ $\sqrt{a^2 - x^2} \text{ let } x = a \cdot sin(\theta)$				
$\cos^2(2x) = \frac{1}{2}$	$\sqrt{x^2 - a^2} \det x = a \cdot sec(\theta)$				
$sinh^{-1}(\frac{s}{a}) = l$	& use trig identities to solve integral				
$sin(ax) \times sin($	$bx)dx = \frac{1}{2}(\cos[(a-b)x])$	$-\cos[(a+b)x])$			

 $sin(ax) \times cos(bx)dx = \frac{1}{2}(sin[(a-b)x] + sin[(a+b)x])$ $sin(ax) \times sin(bx)dx = \frac{1}{2}(cos[(a-b)x] - cos[(a+b)x])$

Pythagorean Identities	Even/Odd Indentities	
$\sin^2\!\theta + \cos^2\!\theta = 1$	$sin(-\theta) = -sin\theta$ $cos(-\theta) = cos\theta$	
$sec^2\theta - tan^2\theta = 1$	$tan(-\theta) = -tan\theta$ $cot(-\theta) = -cot\theta$	
$csc^2\theta - cot^2\theta = 1$	$csc(-\theta) = -csc\theta$ $sec(-\theta) = sec\theta$	
Cofunction Identities	Sum/Difference Indentities	
$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta \qquad \cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$	$\sin(\theta \pm \phi) = \sin\theta \cos\phi \pm \cos\theta \sin\phi$	
$\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta \qquad \cot\left(\frac{\pi}{2} - \theta\right) = \tan\theta$	$\cos(\theta \pm \phi) = \cos\theta \cos\phi \mp \sin\theta \sin\phi$	
$\csc\left(\frac{\pi}{2} - \theta\right) = \sec\theta \qquad \sec\left(\frac{\pi}{2} - \theta\right) = \csc\theta$	$\tan(\theta \pm \phi) = \frac{\tan\theta \pm \tan\phi}{1 \mp \tan\theta \tan\phi}$	
$\frac{\pi}{2}$ radians = 90°		
Double Angle Identities	Half Angle Indentities	
$sin(2\theta) = 2 sin\theta cos\theta$ $cos(2\theta) = cos^2\theta - sin^2\theta$	$\sin^2\!\theta = \frac{1 - \cos(2\theta)}{2}$	
$\cos(2\theta) = 2\cos^2\theta - 1$	$\cos^2\theta = \frac{1 + \cos(2\theta)}{2}$	
$\cos(2\theta) = 1 - 2\sin^2\theta$	2 1 - cos(20)	
$\tan(2\theta) = \frac{2 \tan \theta}{1 - \tan^2 \theta}$	$\tan^2\theta = \frac{1 - \cos(2\theta)}{1 + \cos(2\theta)}$	
Sum to Product of Two Angles	Product to Sum of Two Angles	

Photo Credits: https://sciencenotes.org/trig-identities-study-sheet/

 $\sin\theta + \sin\phi = 2\sin\left(\frac{\theta + \phi}{2}\right)\cos\left(\frac{\theta - \phi}{2}\right)$

 $\sin\theta - \sin\phi = 2\cos\left(\frac{\theta + \phi}{2}\right)\sin\left(\frac{\theta - \phi}{2}\right)$

 $\cos\theta + \cos\phi = 2\cos\left(\frac{\theta + \phi}{2}\right)\cos\left(\frac{\theta - \phi}{2}\right)$

 $\cos\theta - \cos\phi = -2\sin\left(\frac{\theta + \phi}{2}\right)\sin\left(\frac{\theta - \phi}{2}\right)$

 $\sin\theta \sin\phi = \frac{[\cos(\theta - \phi) - \cos(\theta + \phi)]}{2}$

 $\cos\theta \cos\phi = \frac{[\cos(\theta - \phi) + \cos(\theta + \phi)]}{2}$

 $\sin\theta \cos\phi = \frac{[\sin(\theta + \phi) + \sin(\theta - \phi)]}{2}$

 $cosθ sinφ = \frac{[sin(θ + φ) + sin(θ - φ)]}{2}$

Welcome to Calculus III

Distance Between
$$P_1(x_1, y_1, z_1)$$
 & $P_2(x_2, y_2, z_2)$
$$\left| P_1 P_2 \right| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Standard Equation for a Sphere $(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = r^2$

Length / Magnitude of Vector v $|v| = \sqrt{v_1^2 + v_2^2 + v_3^2}$

> Direction of Vector $\frac{v}{|v|} = \frac{v_1 I + v_2 J + v_3 k}{\sqrt{v_1^2 + v_2^2 + v_3^2}}$

Math of Vectors

$$\begin{aligned} \mathbf{u} + \mathbf{v} &= \langle \ u_1 + v_1 \ , \ u_2 + v_3 , \ u_3 + v_3 \rangle \\ \mathbf{u} + \mathbf{v} &= \ u_1 v_1 + u_2 v_2 + u_3 v_3 \\ \mathbf{u} + \mathbf{v} &= \ |u| * |v| \cos \theta \end{aligned}$$

Proj of v onto u
$$proj_{U}V = \frac{u \cdot \mathbf{v}}{|U|^{2}} < U >$$

$$proj_{\mathbf{v}} \mathbf{u} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^{2}}\right) \mathbf{v}.$$

Applications of Cross Product

Cross Product

 $\mathbf{u} \times \mathbf{v} = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}.$

Triple Scalar Product

$$(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

A RALPH B PRODUCTION

Area of Parallelogram:

Magnitude (length) of the Cross Product of 2 vectors

Area of Triangle: Half the area of a parallelogram

Vector Perpendicular to plane(\hat{N}): coefficients of the plane. $< N_1, N_2, N_3 >$

$$\begin{array}{ll} & \text{Parametrization of a line:} \\ & \overline{P_0P} = t \, \overline{V} \\ < x - P_1, y - P_2, z - P_3> & = T < V_1, V_2, V_3> \end{array}$$

Distance from Line to Point $d = \frac{\left| \overrightarrow{PS} \times \mathbf{v} \right|}{\left| \mathbf{v} \right|}$

Distance from Plane to Point

$$d = \left| \overrightarrow{PS} \cdot \frac{\mathbf{n}}{|\mathbf{n}|} \right|$$

Angles between planes:

the angle between their normal vectors

Vector velocity and acceleration: derivatives of position vector

Stinky Trig properties

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x} = 0$$

Equation $(x-h)^2 + (y-k)^2 = r^2$ CIRCLE $Ax^2 + By^2 + Cx + Dy + F = O$ A = B (neither is zero)					
(0,0)	Center=(h,K) radius = r				
		VERTICAL			
PARABOLA	Equation $y = \frac{1}{4p}(x-h)^2 + K$	Equation $ X = \frac{1}{4p} (Y - K)^2 + h $			
, F	Vertex: (h,K) Focus: (h,K+p)	Vertex (h, K) Focus: (h+p, K) Directrix: X= h-p			
- Vertex	Directrix: y= K-P CONIC A=0 or B=0	Direction in 1			
ELLIPSE	Equation $\frac{(x-h)^2}{a^2} + \frac{(y-K)^2}{b^2} = 1$	same, but b>a			
M c M	center: (h, K) Foci: (h+ 1a2-b2, K) (h-1a2-b2, K)	Center: (h, K) Foci: $(h, K + \sqrt{b^2 - a^2})$ $(h, K - \sqrt{b^2 - a^2})$			
- Im	Major extrema: (h+a, K) (h-a, K)	Mejor: (h, K+b) (h, K-b)			
A+B but A>0	minor extrema: (h, K+b) (h, K-b)	minor: (h+a, K) (h-a, K)			
HYPERBOLA aspect	Equation 2 $\frac{(x-h)^2}{a^2} - \frac{(y-K)^2}{b^2} = 1$ Center: (h, K) Vertices: (h+a, K) (h-a, K) Foci: (h+a^4b^2, K) (h-a^2b^2, K)	$\frac{(y-k)^2}{b^2} \cdot \frac{(x-h)^2}{a^2}$ Center: (h,K) Vertices: $(h,K+b)$ $(h,K-b)$ Foci: $(h,K+\sqrt{a^2+b^2})$ $(h,K-\sqrt{a^2+b^2})$			
	Asymptotes: $y-K=\pm\frac{b}{a}(x-h)$	Asymptotes: $y-K=\pm \frac{a}{b}(x-h)$			

Photo credits:

https://www.cccti.edu/asc/Documents/ConicCheatSheet.pdf

Arc Length

Arc Length:
$$L = s = \int_{a}^{b} |v| dt$$
 or $ds = |v| dt$

Message from creator: At this point in Calc, we dive into complex problems that require proofs. Never be afraid to ask your professor for proofs in maths. Also, do not memorize these. If you understand how these work, then you will be golden. I did not include U-sub or Integration by parts, since these are "METHODS", not things you memorize. Know "HOW" they work, and use this sheet as a helper.

Applications of Derivatives and proofs

$$T_{Unit\ Tangent\ V\ ector} = \frac{v}{|v|} = \frac{dr}{ds} = \frac{dr}{dt} \cdot \frac{dt}{ds} = v \cdot \frac{1}{|v|}$$

$$\varkappa = \frac{|v \times a|}{|v|^3} \qquad \varkappa_{Curvature} = \left| \frac{dT}{ds} \right| = \left| \frac{dT}{dt} \cdot \frac{dt}{ds} \right| = \left| \frac{dT}{dt} \right| \cdot \frac{1}{|v|}$$

$$N_{Principal\ Unit\ V\ ector} = \frac{1}{\varkappa} \frac{dT}{ds} = \frac{\frac{dT}{ds}}{\left|\frac{dT}{ds}\right|} = \frac{\frac{dT}{ds} \cdot \frac{ds}{ds}}{\left|\frac{dT}{dt} \cdot \frac{ds}{ds}\right|} = \frac{\frac{dT}{ds}}{\left|\frac{dT}{dt} \cdot \frac{ds}{ds}\right|}$$

$$v = \frac{dr}{dt} = \frac{dr}{ds} \frac{ds}{dt} = T \frac{ds}{dt}$$

$$\begin{array}{ll} a = a_T T + a_N N & a = \frac{d}{dt} v \\ a_T = \frac{d^2 s}{dt^2} = \frac{d}{dt} |v| & = \frac{d}{dt} (T \frac{ds}{dt}) = \frac{d^2 s}{dt^2} T + \frac{ds}{dt} \frac{dT}{dt} \\ a_N = \varkappa (\frac{dt}{dt})^2 = \varkappa |v|^2 & = \frac{d^2 s}{dt^2} T + \frac{ds}{dt} (\frac{dT}{ds} \cdot \frac{ds}{dt}) \\ a_N = \sqrt{|a|^2 - a_T^2} & = \frac{d^2 s}{dt^2} T + \varkappa N (\frac{dt}{dt})^2 \end{array}$$

$$B = T \times N$$
 $B = \frac{r' \times r''}{|r' \times r''|}$

$$\frac{dB}{ds} = \frac{d}{ds}(T \times N) = -\frac{dB}{ds} \cdot N$$

$$\tau_{Torsion} = \begin{bmatrix} x & y & z \\ \ddot{x} & \ddot{y} & \ddot{z} \\ \hline \tau = -\frac{d\mathbf{B}}{ds} \cdot \mathbf{N}. \end{bmatrix} \qquad \tau = \frac{\begin{vmatrix} x & y & z \\ \ddot{x} & \ddot{y} & \ddot{z} \\ \hline |\mathbf{v} \times \mathbf{a}|^2 \end{bmatrix}$$

Some stuff

Chain Rule f(x,y):
$$\frac{\delta w}{\delta t} = \frac{\delta w}{\delta r} \frac{dr}{dt} + \frac{\delta w}{\delta v} \frac{dv}{dt}$$

Chain Rule f(x,y,z):
$$\frac{\delta w}{\delta t} = \frac{\delta w}{\delta x} \frac{dx}{dt} + \frac{\delta w}{\delta y} \frac{dy}{dt} + \frac{\delta w}{\delta z} \frac{dz}{dt}$$

Chain Rule f(x,y,z):

$$x = g(r, s), y = h(r, s), z = k(r, s)$$

$$\frac{\delta w}{\delta r} = \frac{\delta w}{\delta x} \frac{dx}{dr} + \frac{\delta w}{\delta y} \frac{dy}{dr} + \frac{\delta w}{\delta z} \frac{dz}{dr}$$

$$\frac{\delta w}{\delta x} = \frac{\delta w}{\delta x} \frac{dx}{dr} + \frac{\delta w}{\delta y} \frac{dy}{dr} + \frac{\delta w}{\delta z} \frac{dz}{dr}$$

$$\frac{\delta w}{\delta x} = \frac{\delta w}{\delta x} \frac{dx}{ds} + \frac{\delta w}{\delta y} \frac{dy}{ds} + \frac{\delta w}{\delta z} \frac{dz}{ds}$$

Implicit Differentiation:
$$\frac{dy}{dx} = -\frac{F_x}{F_y}$$

Gradient Vector:
$$grad(f) = \frac{\delta f}{\delta x} i + \frac{\delta f}{\delta y} j + \frac{\delta f}{\delta z} k$$

Directional Derivative:
$$D_{\overline{u}} f(x,y,z) = [grad(f)]_{P_0} \cdot \overline{u}$$

Largest
$$D_{\overline{u}}f(x,y,z)$$
 in direction of u: $\frac{\Delta f\left(x_{0},y_{0}\right)}{|\Delta f\left(x_{0},y_{0}\right)|}$

Smallest
$$D_{\overline{u}}f(x,y,z)$$
 in direction of u: $-\frac{\Delta f(x_0,y_0)}{|\Delta f(x_0,y_0)|}$

Tangent Line to The Level Curve:

$$f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0) = 0$$

Tangent Plane to Curve at point P

$$P_0(x_0,y_0,z_0) = f_x(P_0)(x-x_0) + f_y(P_0)(y-y_0) + f_z(P_0)(z-z_0) = 0$$

$$x = x_0 + f_x t.$$
 $y = y_0 + f_y t$ $z = z_0 + f_z$

Estimating the Change in f in the Direction of U

Plane Tangent to a Surface z = f(x, y) at $(x_0, y_0, f(x_0, y_0))$

The plane tangent to the surface z = f(x, y) of a differentiable function f at the

point $P_0(x_0, y_0, z_0) = (x_0, y_0, f(x_0, y_0))$ is

$$f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) - (z - z_0) = 0.$$

Linearization

$$L(x, y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$

First Derivative Test for Local Extreme Values

$$f_x(a,b) = 0 \ and f_y(a,b) = 0$$