Stochastik

Katrin Strassen, Robert Kummer 2019

Inhaltsverzeichnis

1	σ -Algebra	1
2	Wahrscheinlichkeitsmaß	1
3	Wahrscheinlichkeitsraum	1
4	Messraum	2

1 σ -Algebra

Sei Ω eine nichtleere Menge und $\mathcal{P}(\Omega)$ die Potenzmenge dieser Menge. Eine Menge von Teilmengen $\mathcal{A} \subset \mathcal{P}(\Omega)$ (auch Mengensystem genannt) heißt σ -Algebra auf, oder über Ω , wenn sie die folgenden drei Bedingungen erfüllt:

- 1. \mathcal{A} enthält die Grundmenge, also: $\Omega \in \mathcal{A}$
- 2. \mathcal{A} ist stabil bezüglich der Komplementbildung. Ist also $A \in \mathcal{A}$, dann ist auch $A^{\mathrm{C}} \in \mathcal{A}$.
- 3. \mathcal{A} ist stabil bezüglich abzählbarer Vereinigungen. Sind also die Mengen A_1, A_2, A_3, \ldots in \mathcal{A} enthalten, so ist auch $\bigcup_{i=1}^{\infty}$ in \mathcal{A} enthalten.

2 Wahrscheinlichkeitsmaß

Gegeben sei eine Menge Ω , die Ergebnismenge und eine σ -Algebra Σ auf dieser Menge (das Ereignissystem).

Dann heißt eine Abbildung

$$P: \Sigma \to [0,1] \tag{1}$$

Wahrscheinlichkeitsmaß, wenn sie die folgenden Bedinungen erfüllt.

Normiertheit:

$$P(\Omega) = 1 \tag{2}$$

 $\sigma\text{-}\mathbf{Additivit\ddot{a}t}$: Für jede abzählbare Folge von paarweise disjunkten Mengen A_1,A_2,A_3,\dots aus Σ gilt

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i). \tag{3}$$

Es gilt also, dass die Wahrscheinlichkeit für die Vereinigung zweier Ereignisse gleich groß ist wie die Summe der Einzelwahrscheinlichkeiten der Ereignisse.

3 Wahrscheinlichkeitsraum

Sei Ω eine beliebige **Ergebnis**menge. Sie umfasst alle möglichen Ergebnisse von einem Zufallsvorgang. Beim Würfeln ergibt sich also beispielsweise $\Omega = \{1, 2, 3, 4, 5, 6\}$. Nun wird Σ als eine σ -Algebra über Ω definiert. Die Elemente von Σ werden auch Ereignisse genannt.

Als letztes wird ein Wahrscheinlichkeitsmaß $P:\Sigma\to [0,1]$ benötigt. Das Tripel (Ω,Σ,P) ist dann ein Wahrscheinlichkeitsraum.

4 Messraum

Ein Tupel (Ω,Σ) heißt Messraum, wenn Ω eine beliebige Grundmenge ist und Σ eine $\sigma\text{-Algebra "uber }\Omega$ ist.

In der Stochastik wird der Messraum auch Ereignisraum genannt und ist einfach ein Wahrscheinlichkeitsraum ohne Wahrscheinlichkeitsmaß.

- Für jedes $x \in \Omega_0$ ist $K(x, \cdot)$ ein Maß auf (Ω_1, Σ_1) . Für jedes $S \in \Sigma_1$ ist $K(\cdot, S)$ eine Σ_0 -messbare Abbildung.