AFND Parte 2

• Algoritmo: "Obtenção de um autômato finito determinístico M2 a partir de um autômato finito não-determinístico M1 ."

- Entrada: um autômato não-determinístico M 1 = (Q1 , Σ , δ 1 , q01 , F1), com δ 1:Q1× Σ \rightarrow 2^{Q1} ;
- Saída: um autômato determinístico M2 = (Q2 , Σ , δ 2 , q02 , F2), com δ 2 : Q2× Σ \rightarrow Q2 , tal que:

$$L(M2) = L(M1);$$

• Ideia do algoritmo:

Situação não determinística original

Situação determinística equivalente

• Exemplo:

	δ	а	b	С
\longrightarrow	q_0	$\{q_1,q_2\}$		
←	q_1		$\{q_1,q_2\}$	
\leftarrow	q_2			$\{q_2\}$

	δ'	а	b	С
\longrightarrow	q_0	q_1q_2		
←	q_1		$q_{1}q_{2}$	
←	q_2			q_2
←	q_1q_2		q_1q_2	q_2

Novo exemplo:

	δ	а	b	c
\longrightarrow	q_0	$\{q_1,q_2\}$		$\{q_3\}$
←	q_1	$\{q_0\}$	$\{q_0,q_1\}$	
←	q_2			$\{q_2\}$
	q_3	$\{q_2\}$	$\{q_1\}$	

• Passo 1:

	δ	а	b	c
\longrightarrow	q_0	q_1q_2		q_3
←	q_1	q_0	$\{q_0,q_1\}$	
←	q_2			q_2
	q_3	q_2	q_1	
←	q_1q_2	q_0	$\{q_0,q_1\}$	q_2

• Passo 2:

	δ	а	b	c
\longrightarrow	q_0	q_1q_2		q_3
←	q_1	q_0	q_0q_1	
←	q_2			q_2
	q_3	q_2	q_1	
\leftarrow	q_1q_2	q_0	q_0q_1	q_2
←	q_0q_1	$\{q_1q_2,q_0\}$	q_0q_1	q_3

• Passo 3:

	δ	а	b	С
\longrightarrow	q_0	q_1q_2		q_3
←	q_1	q_0	q_0q_1	
\leftarrow	q_2			q_2
	q_3	q_2	q_1	
\leftarrow	q_1q_2	q_0	q_0q_1	q_2
←	q_0q_1	$q_0q_1q_2$	q_0q_1	q_3
←	$q_0q_1q_2$	$q_0q_1q_2$	q_0q_1	$\{q_2, q_3\}$

• Passo 4:

	δ	а	b	c
\longrightarrow	q_0	q_1q_2		q_3
←	q_1	q_0	q_0q_1	
←	q_2			q_2
	q_3	q_2	q_1	
\leftarrow	q_1q_2	q_0	q_0q_1	q_2
\leftarrow	q_0q_1	$q_0q_1q_2$	q_0q_1	q_3
←	$q_0q_1q_2$	$q_0q_1q_2$	q_0q_1	q_2q_3
<u></u>	q_2q_3	q_2	q_1	q_2

• Final:

Exercício

• Obter um autômato finito determinístico que seja equivalente ao autômato:

