CIS 770: Formal Language Theory

Pavithra Prabhakar

Kansas State University

Spring 2015

Homomorphism

Definition

A homomorphism is function $h: \Sigma^* \to \Delta^*$ defined as follows:

- $h(\epsilon) = \epsilon$ and for $a \in \Sigma$, h(a) is any string in Δ^*
- For $a = a_1 a_2 \dots a_n \in \Sigma^* \ (n \ge 2), \ h(a) = h(a_1)h(a_2) \dots h(a_n).$
- A homomorphism h maps a string $a \in \Sigma^*$ to a string in Δ^* by mapping each character of a to a string $h(a) \in \Delta^*$
- A homomorphism is a function from strings to strings that "respects" concatenation: for any $x, y \in \Sigma^*$, h(xy) = h(x)h(y). (Any such function is a homomorphism.)

Example

$$h:\{0,1\} \to \{a,b\}^*$$
 where $h(0)=ab$ and $h(1)=ba$. Then $h(0011)=ababbaba$

Homomorphism as an Operation on Languages

Definition

Given a homomorphism $h: \Sigma^* \to \Delta^*$ and a language $L \subseteq \Sigma^*$, define $h(L) = \{h(w) \mid w \in L\} \subseteq \Delta^*$.

Example

Let
$$L = \{0^n 1^n \mid n \ge 0\}$$
 and $h(0) = ab$ and $h(1) = ba$. Then $h(L) = \{(ab)^n (ba)^n \mid n \ge 0\}$

Exercise: $h(L_1 \cup L_2) = h(L_1) \cup h(L_2)$. $h(L_1 \circ L_2) = h(L_1) \circ h(L_2)$, and $h(L^*) = h(L)^*$.

Closure under Homomorphism

Proposition

Regular languages are closed under homomorphism, i.e., if L is a regular language and h is a homomorphism, then h(L) is also regular.

Proof.

We will use the representation of regular languages in terms of regular expressions to argue this.

- Define homomorphism as an operation on regular expressions
- Show that L(h(R)) = h(L(R))
- Let R be such that L = L(R). Let R' = h(R). Then h(L) = L(R').

Homomorphism as an Operation on Regular Expressions

Definition

For a regular expression R, let h(R) be the regular expression obtained by replacing each occurrence of $a \in \Sigma$ in R by the string h(a).

Example

If
$$R = (0 \cup 1)^*001(0 \cup 1)^*$$
 and $h(0) = ab$ and $h(1) = bc$ then $h(R) = (ab \cup bc)^*ababbc(ab \cup bc)^*$

Formally h(R) is defined inductively as follows.

$$h(\emptyset) = \emptyset$$
 $h(R_1R_2) = h(R_1)h(R_2)$
 $h(\epsilon) = \epsilon$ $h(R_1 \cup R_2) = h(R_2) \cup h(R_2)$
 $h(a) = h(a)$ $h(R^*) = (h(R))^*$

Proof of Claim

Claim

For any regular expression R, L(h(R)) = h(L(R)).

Proof.

By induction on the number of operations in R

- Base Cases: For $R = \epsilon$ or \emptyset , h(R) = R and h(L(R)) = L(R). For R = a, $L(R) = \{a\}$ and $h(L(R)) = \{h(a)\} = L(h(a)) = L(h(R))$. So claim holds.
- Induction Step: For $R = R_1 \cup R_2$, observe that $h(R) = h(R_1) \cup h(R_2)$ and $h(L(R)) = h(L(R_1) \cup L(R_2)) = h(L(R_1)) \cup h(L(R_2))$. By induction hypothesis, $h(L(R_i)) = L(h(R_i))$ and so $h(L(R)) = L(h(R_1) \cup h(R_2))$ Other cases $(R = R_1R_2)$ and $R = R_1^*$ similar.

Nonregularity and Homomorphism

If L is not regular, is h(L) also not regular?

• No! Consider $L = \{0^n 1^n \mid n \ge 0\}$ and h(0) = a and $h(1) = \epsilon$. Then $h(L) = a^*$.

Applying a homomorphism can "simplify" a non-regular language into a regular language.

Inverse Homomorphism

Definition

Given homomorphism $h: \Sigma^* \to \Delta^*$ and $L \subseteq \Delta^*$, $h^{-1}(L) = \{ w \in \Sigma^* \mid h(w) \in L \}$

 $h^{-1}(L)$ consists of strings whose homomorphic images are in L

Inverse Homomorphism

Example

Let $\Sigma=\{a,b\}$, and $\Delta=\{0,1\}$. Let $L=(00\cup 1)^*$ and h(a)=01 and h(b)=10.

- $h^{-1}(1001) = \{ba\}, h^{-1}(010110) = \{aab\}$
- $h^{-1}(L) = (ba)^*$
- What is $h(h^{-1}(L))$? $(1001)^* \subseteq L$

Note: In general $h(h^{-1}(L)) \subseteq L \subseteq h^{-1}(h(L))$, but neither containment is necessarily an equality.

Closure under Inverse Homomorphism

Proposition

Regular languages are closed under inverse homomorphism, i.e., if L is regular and h is a homomorphism then $h^{-1}(L)$ is regular.

Proof.

We will use the representation of regular languages in terms of DFA to argue this.

Given a DFA M recognizing L, construct an DFA M' that accepts $h^{-1}(L)$

• Intuition: On input w M' will run M on h(w) and accept if M does.

Closure under Inverse Homomorphism

• Intuition: On input w M' will run M on h(w) and accept if M does.

Example

$$L = L((00 \cup 1)^*)$$
. $h(a) = 01$, $h(b) = 10$.

Closure under Inverse Homomorphism

Formal Construction

- Let $M=(Q,\Delta,\delta,q_0,F)$ accept $L\subseteq \Delta^*$ and let $h:\Sigma^*\to \Delta^*$ be a homomorphism
- Define $M' = (Q', \Sigma, \delta', q'_0, F')$, where
 - Q' = Q
 - $q_0' = q_0$
 - F' = F, and
 - $\delta'(q, a) = \hat{\delta}_M(q, h(a))$; M' on input a simulates M on h(a)
- M' accepts $h^{-1}(L)$
- Because $\forall w.\ \hat{\delta}_{M'}(q_0,w)=\hat{\delta}_M(q_0,h(w))$

Proving Non-Regularity

Problem

Show that $L = \{a^n b a^n \mid n \ge 0\}$ is not regular

Proof.

Use pumping lemma!

Alternate Proof: If we had an automaton M accepting L then we can construct an automaton accepting $K = \{0^n 1^n \mid n \ge 0\}$ ("reduction")

More formally, we will show that by applying a sequence of "regularity preserving" operations to L we can get K. Then, since K is not regular, L cannot be regular.

Proof (contd).

To show that by applying a sequence of "regularity preserving" operations to $L = \{a^nba^n \mid n \geq 0\}$ we can get $K = \{0^n1^n \mid n \geq 0\}$.

- Consider homomorphism $h_1: \{a, b, c\}^* \rightarrow \{a, b, c\}^*$ defined as $h_1(a) = a$, $h_1(b) = b$, $h_1(c) = a$.
 - $L_1 = h_1^{-1}(L) = \{(a \cup c)^n b(a \cup c)^n \mid n \ge 0\}$
- Let $L_2 = L_1 \cap L(a^*bc^*) = \{a^nbc^n \mid n \ge 0\}$
- Homomorphism $h_2: \{a,b,c\}^* \to \{0,1\}^*$ is defined as $h_2(a)=0,\ h_2(b)=\epsilon,$ and $h_2(c)=1.$
 - $L_3 = h_2(L_2) = \{0^n 1^n \mid n \ge 0\} = K$
- Now if L is regular then so are L_1, L_2, L_3 , and K. But K is not regular, and so L is not regular.

Proving Regularity

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Consider

 $L = \{w | M \text{ accepts } w \text{ and } M \text{ visits every state at least once on input } w\}$

Is L regular?

Note that M does not necessarily accept all strings in L; $L \subseteq L(M)$. By applying a series of regularity preserving operations to L(M) we

will construct L, thus showing that L is regular

Computations: Valid and Invalid

- Consider an alphabet Δ consisting of [paq] where $p, q \in Q$, $a \in \Sigma$ and $\delta(p, a) = q$. So symbols of Δ represent transitions of M.
- Let $h:\Delta o \Sigma^*$ be a homomorphism such that h([paq])=a
- $L_1 = h^{-1}(L(M))$; L_1 contains strings of L(M) where each symbol is associated with a pair of states that represent some transition
 - Some strings of L_1 represent valid computations of M. But there are also other strings in L_1 which do not correspond to valid computations of M
- We will first remove all the strings from L₁ that correspond to invalid computations, and then remove those that do not visit every state at least once.

Only Valid Computations

Strings of Δ^* that represent valid computations of M satisfy the following conditions

• The first state in the first symbol must be q_0

$$L_2 = L_1 \cap (([q_0 a_1 q_1] \cup [q_0 a_2 q_2] \cup \cdots \cup [q_0 a_k q_k])\Delta^*)$$

 $([q_0a_1q_1],\ldots[q_0a_kq_k]$ are all the transitions out of q_0 in M)

 The first state in one symbol must equal the second state in previous symbol

$$L_3 = L_2 \setminus (\Delta^*(\bigcup_{q \neq r} [paq][rbs])\Delta^*)$$

Remove "invalid" sequences from L_2 . Difference of two regular languages is regular (why?). So L_3 is regular.

 The second state of the last symbol must be in F. Holds trivially because L₃ only contains strings accepted by M

Example continued

So far, regular language $L_3 = \text{set of strings in } \Delta^*$ that represent valid computations of M.

- Let $E_q \subseteq \Delta$ be the set of symbols where q appears neither as the first nor the second state. Then E_a^* is the set of strings where q never occurs.
- We remove from L_3 those strings where some $q \in Q$ never occurs

$$L_4 = L_3 \setminus (\bigcup_{q \in Q} E_q^*)$$

• Finally we discard the state components in L_4

$$L = h(L_4)$$

Hence, L is regular.

Proving Regularity and Non-Regularity

Showing that L is not regular

- Use the pumping lemma
- Or, show that from L you can obtain a known non-regular language through regularity preserving operations.
- Note: Non-regular languages are not closed under the operations discussed.

Showing that L is regular

- Construct a DFA or NFA or regular expression recognizing L
- Or, show that L can be obtained from known regular languages $L_1, L_2, \ldots L_k$ through regularity preserving operations
- Note: Do not use pumping lemma to prove regularity!!

A list of Regularity-Preserving Operations

Regular languages are closed under the following operations.

- Regular Expression operations
- Boolean operations: union, intersection, complement
- Homomorphism
- Inverse Homomorphism

(And several other operations...)