Similarity Searching II

Algorithms, scoring matrices, statistics

Biol4230 Tues, Jan 31, 2017

Bill Pearson wrp@virginia.edu 4-2818 Jordan 6-057

Goals of today's lecture:

- · Quick overview of alignment algorithms
 - local vs global
 - dynamic programming
 - gaps and alignment graphs
 - non-overlapping local alignments
- Where scoring matrices come from
 - scoring matrices as log-odds matrices
 - short alignments, shallow matrices
 - shallow matrices, higher identity alignment
 - matrix "depth" and evolutionary look-back
- · Improving search performance local alignment statistics
 - the extreme value distribution
 - why database size matters
 - evaluating statistical accuracy

fasta.bioch.virginia.edu/biol4230

To learn more:

- Alignment algorithms:
 - Bioinformatics and Functional Genomics (BFG), Ch. 3 p 76 – 80
- Search sensitivity:
 - Sierk and Pearson (2005) "The limits of protein sequence comparison?" Curr Opin Struct Biol. 15:254-260.
- Statistical accuracy:
 - Sierk and Pearson (2005) Curr Opin Struct Biol. 15:254-260
 - BFG Ch. 3, pp 88 90
- Scoring matrices part I
 - BFG Ch. 3, pp. 57 76
 - Altschul (1991) J. Mol. Biol. 219:555-565
 - Pearson (2013) Curr Protocols Bioinformatics 3.5.1-3.5.9

fasta.bioch.virginia.edu/biol4230

Similarity searching II – algorithms, statistics, and scoring matrices

- Global and local alignments
 - Global alignments can be more sensitive for globally similar proteins
 - Local alignments are robust to partial sequences, domain homologies
- Local similarity scores are well described by the extreme value distribution
 - E()-value depends on similarity score AND database size
 - A 50 bit score is almost always significant
 - E()-values are not good measures of evolutionary distance
- Scoring matrices can be designed for long (deep) or short (shallow) evolutionary distances (large/small amounts of change)
 - "shallow" matrices provide more statistical significance for each aligned position, but require higher homologs
 - "deep" matrices can find more distant homologs, but require longer alignments

fasta.bioch.virginia.edu/biol4230

3

Algorithms for sequence alignment

· How do we get from this:

>ATP6_HUMAN ATP synthase a chain (ATPase protein 6)
MNENLFASFIAPTILGLPAAVLIILFPPLLIPTSKYLINNRLITTQQWLIKLTSKQMMTMHNTKGRTWSL
MLVSLIIFIATTNLLGLLPHSFTPTTQLSMNLAMAIPLWAGTVIMGFRSKIKNALAHFLPQGTPTPLIPM
LVIIETISLLIQPMALAVRLTANITAGHLLMHLIGSATLAMSTINLPSTLIIFTILILLTILEIAVALIQ
AYVFTLLVSLYLHDNT

And this:

>sp|P0AB98|ATP6_ECOLI ATP synthase subunit a
MASENMTPQDYIGHHLNNLQLDLRTFSLVDPQNPPATFWTINIDSMFFSVVLGLLFLVLFRSVAKKATSGV
PGKFQTAIELVIGFVNGSVKDMYHGKSKLIAPLALTIFVWVFLMNLMDLLPIDLLPYIAEHVLGLPALRVV
PSADVNVTLSMALGVFILILFYSIKMKGIGGFTKELTLQPFNHWAFIPVNLILEGVSLLSKPVSLGLRLFG
NMYAGELIFILIAGLLPWWSQWILNVPWAIFHILIITLQAFIFMVLTIVYLSMASEEH

To ...

fasta.bioch.virginia.edu/biol4230

Algorithms for sequence alignment

· To this:

```
>sp|POAB98|ATP6 ECOLI ATP synthase subunit a; ATP synthase F0 aubunit;
Length=271
Score = 47.9 bits (178), Expect = 3e-06
Identities = 55/199 (27%), Positives = 113/199 (56%), Gaps = 37/199 (18%)
           {\tt SFIAPTILGLPAAVLIILFPPLLIPTSKYLINNRLITTQQWLIKLTSKQMMTMHNTKGRTWSLML~72}
Ouery
                      ++++LF +
                 +LGL
                                       + ++ T + +I + + + M++ K + + +
           SMFFSVVLGL---LFLVLFRSVAKKATSG-VPGKFQTAIELVIGFVNGSVKDMYHGKSKLIAPLA 105
Sbjct 45
           VSLIIFIAT We need:
                                                          :PLWAGTVIMGFRSKI 121
Query 73
                                                          · ++ +++ F S
          LTIFVWVFL (1) Alignment algorithm
Sbjct 106
                                                          GVF---ILILFYSIK 167
     122 KNALAHFLP (2) Scoring Matrix
Query
                                                          GHLLMHLIGSATLAM 181
                                                          G L+ LI
           MKGIGGFTK (3) Statistical model
Sbjct 168
                                                          GELIFILIAGLLPWW 232
           STINLPSTLIIFTILILLTILEIAVALIQAYVFTLLVSLYL 222
Query
      182
                    IF ILI+
                                    +QA++F +L +YL
           SQWILNVPWAIFHILIIT-----LQAFIFMVLTIVYL 264
```

fasta.bioch.virginia.edu/biol4230

5

Local, global, and "glocal" alignments

- Global alignments go from include the entire length of both sequences (Needleman-Wunsch, 1970)
 - high global similarity = small sequence distance (100% identity = distance 0)
 - similarity scores can be negative
 - scores are (probably) normally distributed
 - single domain, approx. constant length proteins
 - GGSEARCH calculates "global" alignment scores
- Local alignments find the best match, regardless of the length of the match. (Smith-Waterman, 1981)
 - requires similarity scoring matrix with $E(s_{ij}) < 0.0$
 - all similarity scores are > 0.0
 - scores are extreme value distributed
 - good for partial sequences, homologous domains with sequences
 - BLASTP, FASTA, and SSEARCH generate "local" alignment scores
- "glocal" alignments are "global" in the query (e.g. a domain), but local in the subject
 - a domain within a protein
 - GLSEARCH

fasta.bioch.virginia.edu/biol4230

Dynamic programming for sequence alignment

- Sequence alignments can be global end-toend, or local
- The *Dynamic Programming Algorithm* allows one to examine 2²ⁿ alignments (n=100, 10⁷⁷) in O(n²) (n=100, O(n²)=10,000) time
- Local alignments can also be used to find duplicated domains in proteins

fasta.bioch.virginia.edu/biol4230

Algorithms for Global and Local Similarity Scores

```
Global: S(0,0) \leftarrow 0 for j \leftarrow 1 to N do S(0,j) \leftarrow S(0,j-1) + \sigma(\frac{-}{b_j}) for i \leftarrow 1 to M do [S(i,0) \leftarrow S(i-1,0) + \sigma(\frac{a_i}{-}) for j \leftarrow 1 to N do S(i,j) \leftarrow \max[S(i-1,j-1) + \sigma(\frac{a_i}{b_j}), S(i-1,j) + \sigma(\frac{a_i}{-}), S(i,j-1) + \sigma(\frac{-}{b_j})] write "Global similarity score is" S(M,N) [Sest \leftarrow 0] for j \leftarrow 1 to N do S(0,j) \leftarrow 0 for j \leftarrow 1 to N do [S(i,0) \leftarrow 0] for j \leftarrow 1 to N do [S(i,0) \leftarrow 0] for j \leftarrow 1 to N do [S(i,0) \leftarrow 0] for j \leftarrow 1 to N do [S(i,j) \leftarrow \max[0,S(i-1,j-1) + \sigma(\frac{a_i}{b_j}), S(i-1,j) + \sigma(\frac{a_i}{-}), S(i,j-1) + \sigma(\frac{-}{b_j})] best \leftarrow \max[S(i,j),best) [\max[S(i,j),best]] write "Local similarity score is" best
```


Scoring matrices

- Scoring matrices are derived from log-odds scores:
 - log(freq. of change in homolog/freq. alignment by chance)
- Scoring matrices can set the evolutionary look-back time for a search
 - Lower PAM (PAM10/VT10 ... PAM/VT40) for closer (10% ... 50% identity)
 - less evolution, lower frequency of change, higher freq. of identity
 - Higher BLOSUM for higher conservation (BLOSUM50 distant, BLOSUM80 conserved)
- Shallow scoring matrices for short domains/short queries (metagenomics)
 - Matrices have "bits/position" (score/position), 40 aa at 0.45 bits/position (BLOSUM62) means 18 bit ave. score (50 bits significant)
- Deep scoring matrices allow alignments to continue, possibly outside the homologous region

fasta.bioch.virginia.edu/biol4230

13

Where do scoring matrices come from?

Pan	า40						F	am	250					
I	R	N	D	E	I	L		Α	R	N	D	E	I	L
A 8	3						A	. 2						
R -9	12						F	-2	6					
N -4	-7	11					N	0	0	2				
D -4	-13	3	11				Ε	0	-1	2	4			
E - 3	-11	-2	4	11			E	0	-1	1	3	4		
I -6	-7	-7	-10	-7	12		I	-1	-2	-2	-2	-2	5	
T S	_11	_9	_16	_12	_1	1.0	Т	-2	-3	-3	-4	-3	2	6

$$\lambda S_{i,j} = \log_b(\frac{q_{i,j}}{p_i p_j})$$

 $\begin{array}{ll} q_{ij} : \text{replacement frequency at PAM40, } 250 \\ q_{R:N~(~40)} = 0.000435 & p_R = 0.051 \\ q_{R:N~(250)} = 0.002193 & p_N = 0.043 \\ \textbf{l}_2 ~S_{ij} = \textbf{lg}_2 ~(q_{ij}/p_ip_j) & \textbf{l}_e ~S_{ij} = \textbf{ln}(q_{ij}/p_ip_j) & p_{Ri}p_N = 0.002193 \\ \textbf{l}_2 ~S_{R:N(~40)} = \textbf{lg}_2 ~(0.000435/0.00219) = -2.333 \\ \textbf{l}_2 = 1/3; ~S_{R:N(~40)} = -2.333/\textbf{l}_2 = -7 \\ \textbf{l} ~S_{R:N(250)} = \textbf{lg}2 ~(0.002193/0.002193) = ~0 \end{array}$

fasta.bioch.virginia.edu/biol4230

PAM matrices and alignment length

Short domains require "shallow" scoring matrices
Altschul (1991) "Amino acid substitution matrices from an information theoretic perspective" J. Mol. Biol. 219:555-565

fasta.bioch.virginia.edu/biol4230

17

Empirical matrix performance (median results from random alignments)

	target % ident	bits/position	aln len (50 bits)
VT160 -12/-2	23.8	0.26	192
BLOSUM50 -10/-2	25.3	0.23	217
BLOSUM62* -11/-1	28.9	0.45	111
VT120 -11/-1	27.4	1.03	48
VT80 -11/-1	51.9	1.55	32
PAM70* -10/-1	33.8	0.64	78
PAM30* -9/-1	45.5	1.06	47
VT40 -12/-1	72.7	2.76	18
VT20 -15/-2	84.6	3.62	13
VT10 -16/-2	90.9	4.32	12

HMMs can be very "deep"

Pearson (2013) Curr Protoc.

Bioinfo 3.5.1-3.5.9 fasta.bioch.virginia.edu/biol4230

Scoring Matrices - Summary

- PAM and BLOSUM matrices greatly improve the sensitivity of protein sequence comparison – low identity with significant similarity
- PAM matrices have an evolutionary model lower number, less divergence – lower=closer; higher=more distant
- BLOSUM matrices are sampled from conserved regions at different average identity – higher=more conservation
- Shallow matrices set maximum look-back time
- Short alignments (domains, exons, reads) require shallow (higher information content) matrices

fasta.bioch.virginia.edu/biol4230

19

Improving Similarity Searching (Similarity Statistics)

- What gets missed? / What shouldn't be found
 - comparing sequence and structural similarity
 - what is a "non-homolog"?
- Homology from "significance" local alignment statistics
 - E()-values and bit-scores
- · Use protein databases
 - smaller
 - more sensitive
 - better statistics

fasta.bioch.virginia.edu/biol4230

How well does BLAST work?

Gold standard - homologous proteins ALWAYS share statistically significant structural similarity

- databases of structures: SCOP (structural classification of proteins)
- CATH (Class, Architecture, Topology, Homology)
 - · All "Homologs" are "homologous"
 - Some "Topologs" might be homologous
 - Architecture without similar topology, nonhomologous

fasta.bioch.virginia.edu/biol4230

21

How well are homologs identified?

- Structure comparison:
 - DALI, VAST, MATRAS, CE, STRUCTAL, SGM
- Pairwise sequence comparison:
 - SSEARCH

Improving sensitivity by improving statistical significance

- Local similarity scores follow the "extreme value distribution"
 - unrelated → random, thus:
 - not random → homologous
 - random == extreme value distribution
- improve sensitivity with smaller databases
- can we trust the statistics?

fasta.bioch.virginia.edu/biol4230

25

Smaller databases for more sensitive searches which database to search?

- Search the smallest comprehensive database likely to contain your protein
 - vertebrates human proteins (40,000)
 - fungi S. cerevisiae (6,000)
 - bacteria E. coli, gram positive, etc. (<100,000)
- Search a richly annotated protein set (SwissProt, 450,000)
- Always search NR (> 80 million) LAST
- Never Search "GenBank" (DNA)

fasta.bioch.virginia.edu/biol4230

Why smaller databases are better (more sensitive) statistics 10000- $S' = \lambda S_{raw} - ln K m n$ 8000 $S_{bit} = (\lambda S_{raw} - ln K)/ln(2)$ number of sequences $P(S'>x) = 1 - exp(-e^{-x})$ 6000 $P(S_{bit} > x) = 1 - exp(-mn2^{-x})$ E(S'>xID) = PD4000 2000 $P(B \text{ bits}) = m n 2^{-B}$ Z(σ) $P(40 \text{ bits}) = 1.5 \times 10^{-7}$ ₁₀ λS $E(40 \mid D=4000) = 6x10^{-4}$ $E(40 \mid D=80E6) = 12$ bit 25 15 normalized score fasta.bioch.virginia.edu/biol4230

Local similarity statistics

$$\begin{split} S' &= \lambda S_{raw} \text{ - ln K m n} \quad \text{m: query length, n: subj length} \\ S_{bit} &= (\lambda S_{raw} \text{ - ln K)/ln(2)} \\ P(S'>x) &= 1 \text{ - exp(-e^{-x})} \\ P(S'>x) &= e^{-x} \quad \text{(for P < 0.1)} \\ P(S_{bits} > \text{bits)} &= 1 \text{ -exp(-mn2-x)} \\ P(S_{bits} > \text{bits)} &= \text{mn2-bits} \quad \text{(for P < 0.1)} \\ E(S', S_{bits} \text{ ID)} &= P \text{ D} \\ E(S_{bits} \text{ ID)} &= D \text{ mn2-bits} \quad \text{Bonferroni correction} \\ dblength &= \sum n \text{ or (Dn)} \\ E(S_{bit}) &= \text{m dblength 2-bits} \quad \text{(BLAST formula)} \end{split}$$

BIMS6000 - Searching II

8

Bits and significance

- An alignment score is the maximum sum of s_{i,j} bit scores across the aligned residues. A 40-bit score is 2⁴⁰ more likely to occur by homology than by chance.
- How often should a score occur by chance? In a 400 * 400 alignment, there are ~160,000 places where the alignment could start by chance, so we expect a score of 40 bits would occur: P(S_{bit} > x) = 1 -exp(-mn2^{-x}) ~ mn2^{-x}

 $400 \times 400 \times 2^{-40} = 1.6 \times 10^{5} / 2^{40} (10^{13.3}) = 1.5 \times 10^{-7} \text{ times}$

Thus, the probability of a 40 bit score in ONE alignment is $\sim 10^{\text{-}7}$

 But we did not ONE alignment, we did 4,000, 40,000, 400,000, or 16 million alignments when we searched the database:

```
\begin{split} &E(S_{bit} \mid D) = p(40 \text{ bits}) \text{ x database size} \\ &E(40 \mid 4,000) = 10^{-7} \text{ x } 4,000 = 4 \text{ x } 10^{-4} \\ &E(40 \mid 40,000) = 10^{-7} \text{ x } 4 \text{ x } 10^4 = 4 \text{ x } 10^{-3} \\ &E(40 \mid 400,000) = 10^{-7} \text{ x } 4 \text{ x } 10^5 = 4 \text{ x } 10^{-2} \\ &E(40 \mid 16 \text{ million}) = 10^{-7} \text{ x } 1.6 \text{ x } 10^7 = 1.6 \end{split}  (not significant)
```

fasta.bioch.virginia.edu/biol4230

How many "bits" do I need? $E(p \mid D) = p(40 \text{ bits}) \times database size}$ $E(40 \mid 4,000) = 10^{-8} \times 4,000 = 4 \times 10^{-5}$ (significant) $E(40 \mid 40,000) = 10^{-8} \times 4 \times 10^{4} = 4 \times 10^{-4}$ (significant) $E(40 \mid 400,000) = 10^{-8} \times 4 \times 10^{5} = 4 \times 10^{-3}$ (not significant) To get E() $\sim 10^{-3}$: genome (10,000) $p \sim 10^{-3}/10^4 = 10^{-7}/160,000 = 40$ bits SwissProt (500,000) $p \sim 10^{-3}/10^6 = 10^{-9}/160,000 = 47$ bits Uniprot/NR (10⁷) $p \sim 10^{-3}/10^7 = 10^{-10}/160,000 = 50 \text{ bits}$ Color key for alignment scores <40 40 80 I 120 160 200 very significant 10⁻⁵⁰ significant 10-6 significant 10-3 not significant fasta.bioch.virginia.edu/biol4230 31

Should you trust the E()-value?? (what is the *control* for this *experiment*)

- The inference of homology from statistically significant similarity depends on the observation that unrelated sequences look like random sequences
 - Is this ALWAYS true?
 - How can we recognize when it is not true?
- If unrelated==random, then the E()-value of the highest scoring unrelated sequence should be E() ~ 1.0
- Statistical estimates can also be confirmed by searches against shuffled sequences

fasta.bioch.virginia.edu/biol4230

33

Smith-Waterman (ssearch)

```
The best scores are:
                                     s-w bits E(115640) % id alen
GTM1_MOUSE Glutathione S-trans ( 218) 1497 363.5 2e-100
                                                        1.000
GTM2_CHICK Glutathione S-trans ( 220) 958 234.9 1.1e-61
                                                        0.619
                                                                218
GTP_HUMAN Glutathione S-trans ( 210)
                                      356 91.2 1.8e-18
                                                        0.308
                                                                211
PGD2_MOUSE Glutathione-req. (199)
                                      262
                                           68.8 9.7e-12
                                                         0.319
                                                                204
GTA1 MOUSE Glutathione S-trans ( 223) 229 60.9 2.6e-09 0.284
                                                                225
SC1_OCTDO S-crystallin 1 OL1 ( 215) 228 60.7 3.0e-09 0.269
                                                                219
GTS_MUSDO Glutathione S-trans ( 241) 228 60.6 3.4e-09 0.264
                                                                201
GTS1_CAEEL Prob. Glut. S-trans ( 210) 220 58.8 1.1e-08 0.284
                                                                225
GTS_OMMSL Glutathione S-trans ( 203) 196
                                          53.0 5.5e-07
                                                        0.258
                                                                209
GTH3 ARATH Glutathione S-trans ( 215) 142 40.1 0.0045 0.310
                                                                126
GTT2_HUMAN Glutathione S-trans ( 244) 132
                                          37.7
                                                  0.027
                                                        0.257
                                                                167
GT24 DROME Glutathione S-trans (216) 131
                                           37.5
                                                  0.028 0.255
                                                                153
YFCG_ECOLI Hypothetical GST ( 215) 112 33.0
                                                 0.64
                                                        0.235
                                                               187
YJY1_YEAST hypothetical 30.5
                              (261)
                                      110
                                           32.4
                                                *1.1*
                                                         0.248
                                                                149
DCMA METS1 dichloromethane DM ( 267) 103
                                          30.8
                                                         0.214
YA42_HAEIN Hypothetical prot. (617) 108
GTO1_RAT Glutathione trans (241) 100
                                           31.7
                                                 *4.6*
                                                         0.283
                                                                120
GTO1 RAT Glutathione trans
                                                5.4
                                          30.1
                                                         0.234
                                                               158
DP41_BACHD DNA polymerase I
                                413) 104
                                           30.8 *5.4*
                                                         0.234
                                                                184
GTH1_WHEAT Glutathione S-trans ( 229)
                                       98
                                          29.6
                                                 7.0
                                                         0.246
                                                               171
LGUL_SOYBN Lactoylglutathione (219)
                                           29.4
                                                         0.200
                                                               190
VP2 AHSV3 outer capsid prot (1057)
                                      108
                                           31.5
                                                 *8.9*
                                                         0.205
                                                                200
GTH5 ARATH Glutathione S-trans (218)
                                       96 29.2
                                                         0.258
                                                  9.2
                                                                66
DCMA_METSP dichloromethane DM ( 288)
                                       98 29.5
                                                  9.3
                                                         0.195
                                                               200
GTXA_ARATH Glutathione S-trans ( 224)
                                       96
                                          29.1
                                                  9.5
                                                         0.248
                                                               125
SLT_HAEIN Putative soluble 1 (593) 103 30.5
                                                 *9.9*
                                                         0.227
```

Breaking the statistics: low complexity regions

```
Search with complete grou_drome:
The best scores are:
```

```
opt bits E(14548)
RGHUB1 GTP-binding regulatory protein beta-1 chai ( 341)
                                                         237
                                                              46.6
                                                                   3.5e-05
RGBOB1 GTP-binding regulatory protein beta-1 chai
                                                 (341)
                                                        237
                                                              46.6
                                                                   3.5e - 05
                                                 ( 341) 233 46.0 5.2e-05
RGHUB3 GTP-binding regulatory protein beta-3 chai
                                                 (341) 232
RGMSB4 GTP-binding regulatory protein beta-4 chai
                                                              45.8
PIHUPF salivary proline-rich glycoprotein precurs
                                                 (252)
                                                             44.5 *0.00010*
RGFFB GTP-binding regulatory protein beta chain
                                                 ( 347) 223 44.5 0.00014
PIRT3 acidic proline-rich protein precursor - rat ( 207) 199
                                                             40.8 *0.0011*
                                                              41.6 *0.0012*
PIHUB6 salivary proline-rich protein precursor PR ( 393) 203
CGBO2S collagen alpha 2(I) chain - bovine (fragme
                                                 (403)
                                                         195
                                                              40.5 *0.0027*
WMBEW6 capsid protein - human herpesvirus 1 (stra
                                                              40.2 *0.0051*
W4WLB5 E4 protein - human papillomavirus type 5b
                                                 (246) 170
                                                              36.6 *0.024*
                                                 ( 368) 172
                                                              37.1 *0.026*
OZZQMY circumsporozoite protein precursor - Plasm
FOMVME gag polyprotein - murine leukemia virus (s (537) 161 35.6 *0.10*
```

Search with seg-ed grou_drome: (low complexity regions removed)

The best scores are: opt bits E(14548) RGHUB3 GTP-binding regulatory protein beta-3 chai (341) 233 56.5 3.6e-08 RGMSB4 GTP-binding regulatory protein beta-4 chai (341) 232 56.3 4.1e-08 RGHUB2 GTP-binding regulatory protein beta-2 chai (341) 228 55.5 7.2e-08 RGBOB1 GTP-binding regulatory protein beta-1 chai (341) 225 54.9 1.1e-07 (347) 223 RGFFB GTP-binding regulatory protein beta chain 54.5 1.5e-07 BVBYMS MSI1 protein - yeast (Saccharomyces cerevi (423) 135 37.0 *0.033* ERHUAH coatomer complex alpha chain homolog - hum (1225) 134 37.1 *0.088* A28468 chromogranin A precursor - human (458) 122 34.4 *0.21* RGOOBE GTP-binding regulatory protein beta chain (342) 120 33.9 0.22

pseg removes low-complexity regions $\verb|>gi|17380405|sp|P16371|GROU_DROME Groucho protein (Enhancer of split M9/10)|$ 1-8 MYPSPVRH 9-19 paaggpppqgp IKFTIADTLERIKEEFNFLOAOYHSIKLEC 20-131 EKLSNEKTEMORHYVMYYEMSYGLNVEMHK QTEIAKRLNTLINQLLPFLQADHQQQVLQA VERAKQVTMQELNLIIGQQIHA 132-143 144-281 qqvpggppqpmg ALNPFGALGATMGLPHGPQGLLNKPPEHHR PDIKPTGLEGPAAAEERLRNSVSPADREKY RTRSPLDIENDSKRRKDEKLQEDEGEKSDQ DLVVDVANEMESHSPRPNGEHVSMEVRDRE SLNGERLEKPSSSGIKQE rppsrsgssssrstps 282-297 298-310 311-330 LKTKDMEKPGTPG akartptpnaaapapgvnpk 331-351 ${\tt qmmpqgpppagypgapyqrpa}$ 352-719 DPYQRPPSDPAYGRPPPMPYDPHAHVRTNG IPHPSALTGGKPAYSFHMNGEGSLOPVPFP PDALVGVGIPRHARQINTLSHGEVVCAVTI SNPTKYVYTGGKGCVKVWDISQPGNKNPVS QLDCLQRDNYIRSVKLLPDGRTLIVGGEAS NI.STWDI.ASPTPRTKAET.TSAAPACYALAT SPDSKVCFSCCSDGNIAVWDLHNEILVRQF QGHTDGASCIDISPDGSRLWTGGLDNTVRS WDLREGRQLQQHDFSSQIFSLGYCPTGDWL AVGMENSHVEVLHASKPDKYOLHLHESCVL SLRFAACGKWFVSTGKDNLLNAWRTPYGAS IFQSKETSSVLSCDISTDDKYIVTGSGDKK ATVYEVIY 35

E()-values when??

- E()-values (BLAST expect) provide accurate statistical estimates of similarity by chance
 - non-random -> not unrelated (homologous)
 - E()-values are accurate (0.001 happens 1/1000 by chance)
 - E()-values factor in (and depend on) sequence lengths and database size
- E()-values are NOT a good proxy for evolutionary distance
 - doubling the length/score SQUARES the E()-value
 - percent identity (corrected) reflects distance (given homology)

fasta.bioch.virginia.edu/biol4230

37

Similarity searching II – algorithms, statistics, and scoring matrices

- Global and local alignments
 - Global alignments can be more sensitive for globally similar proteins
 - Local alignments are robust to partial sequences, domain homologies
- Scoring matrices can be designed for long (deep) or short (shallow) evolutionary distances (large/small amounts of change)
 - "shallow" matrices provide more statistical significance for each aligned position, but require higher homologs
 - "deep" matrices can find more distant homologs, but require longer alignments
- Local similarity scores are well described by the extreme value distribution
 - E()-value depends on similarity score AND database size
 - A 50 bit score is almost always significant
 - E()-values are not good measures of evolutionary distance

fasta.bioch.virginia.edu/biol4230