

Sistemas Digitais (SD)

Circuitos Sequenciais Básicos: Latches

Aula Anterior

Na aula anterior:

▶ Unidade Lógica e Aritmética (ULA)

Planeamento

SEMANA	TEÓRICA 1	TEÓRICA 2	PROBLEMAS/LABORATÓRIO
17/Fev a 21/Fev	Introdução	Sistemas de Numeração	
24/Fev a 28/Fev	CARNAVAL	Álgebra de Boole	P0
02/Mar a 06/Mar	Elementos de Tecnologia Funções Lógicas		VHDL
9/Mar a 13/Mar	Minimização de Funções	Minimização de Funções	LO
16/Mar a 20/Mar	Def. Circuito Combinatório; Análise Temporal	Circuitos Combinatórios	P1
23/Mar a 27/Mar	Circuitos Combinatórios	Circuitos Combinatórios	L1
30/Mar a 03/Abr	Circuitos Sequenciais: Latches	Circuitos Sequenciais: Flip-Flops	P2
06/Abr a 10/Abr	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA
13/Abr a 17/Abr	Caracterização Temporal	Registos	L2
20/Abr a 24/Abr	Contadores	Circuitos Sequenciais Síncronos	P3
27/Abr a 01/Mai	Síntese de Circuitos Sequenciais Síncronos	Síntese de Circuitos Sequenciais Síncronos	L3
04/Mai a 08/Mai	Exercícios Tes	Memórias ste 1	P4
11/Mai a 15/Mai	Máq. Estado Microprogramadas: Circuito de Dados e Circuito de Controlo	Máq. Estado Microprogramadas: Microprograma	L4
18/Mai a 22/Mai	Circuitos de Controlo, Transferência e Processamento de Dados de um Processador	Lógica Programável	P5
25/Mai a 29/Mai	P6	P6	L5

ರ

Sumário

Tema da aula de hoje:

- Elementos básicos de memória
- Latches
 - Latch RS
 - Latch RS sincronizado
 - Latch D
- ▶ Flip-Flops

Bibliografia:

- M. Mano, C. Kime: Secções 5.1 a 5.2
- G. Arroz, J. Monteiro, A. Oliveira: Secções 6.1 a 6.3

TÉCNICO LISBOA **Elementos básicos de memória**

Realimentação

► Aproximação ao princípio do movimento perpétuo...

Elementos básicos de memória

Circuitos simples com realimentação

- 2 inversores em cascata:
 - Elemento básico de memória.
 - Posso armazenar um 1 (ou um 0) para sempre, mas não posso alterar o valor.
 - A entrada R permite forçar Q a 0 (mas não permite forçá-lo a 1).

- A entrada R permite forçar Q a 0.
- A entrada S permite forçar Q a 1.

Latch RS

$$R = 1 e S = 0 \rightarrow Q \text{ \'e forçado a } 0 \rightarrow \textbf{RESET}$$

$$R = 0 e S = 1 \rightarrow Q \text{ \'e forçado a } 1 \rightarrow SET$$

$$R = 0 e S = 0 \rightarrow mantém estado anterior$$

- O valor da saída do elemento de memória designa-se habitualmente por estado
- ▶ Um Latch tem 2 estados possíveis.

S	R	Q_{n+1}	$\overline{Q_{n+1}}$	
0	0	Q_n	$\overline{Q_n}$	HOLD
0	1	0	1	RESET
1	0	1	0	SET
1	1	U	U	Não Utilizada

Latch RS com portas NAND

S_L	R_L	Q_{n+1} _H	
0	0	U	Não Utilizada
0	1	1	SET
1	0	0	RESET
1	1	$Q_n _H$	HOLD

Quando o Latch é realizado com portas NAND, as entradas são activas a 0 (valor lógico que impõe o resultado da NAND).

Latch RS sincronizado / controlado

EN	S	R	Q _{n+1}	
1	0	0	Q_n	HOLD
1	0	1	0	RESET
1	1	0	1	SET
1	1	1	U	Não Utilizada
0	X	X	Q_n	HOLD

A entrada habilitadora ou **enable** (EN), permite controlar a aplicação das entradas de <u>Set</u> e de <u>Reset</u> ao latch.

Latches RS – Simbologia

▶ Latch Simples

A letra designa função:
 S = Set; R = Reset.

▶ Latch Sincronizado

- A entrada de sincronismo é habitualmente designada por relógio – Clock (C)
- A letra designa função:
 C = Clock; S = Set; R = Reset.
- O 1 à direita identifica a entrada
- O 1 à esquerda da letra implica dependência da entrada 1

Latch sincronizado – diagrama temporal

Exemplo:

Latch D (sincronizado)

EN	D	Q _{n+1}	
1	0	0	RESET
1	1	1	SET
0	X	Q_n	HOLD

- ▶ Um dos modos de eliminar o estado indefinido no latch RS consiste em assegurar que as entradas R e S são sempre complementares.
- ▶ Obtém-se, assim, o latch D, que tem apenas 2 entradas: D (Data) e C (Clock).

Símbolo

Circuitos síncronos

Os circuitos sequenciais síncronos utilizam um sinal de <u>relógio global</u> para controlar a actualização de <u>todos</u> os elementos de memória do circuito:

- ▶ Definições:
 - Período de relógio (ex: 20ns): T
 - Frequência (ex: 50 MHz): f = 1/T
 - **Duty-cycle** (ex: 50%): t_1/T

Circuitos síncronos

- ▶ O sinal de relógio permite definir 2 fases de funcionamento:
 - fase de cálculo dos sinais de entrada dos elementos de memória,
 - fase de actualização dos elementos de memória.
- ▶ Deve, também, garantir que:
 - os elementos de memória mantêm o mesmo valor durante a fase de cálculo dos valores seguintes,
 - os elementos de memória actualizam os valores todos ao mesmo tempo (sincronamente).

Latches vs. Flip-Flops

Os circuitos básicos de memória podem ser classificados em latches e flip-flops.

Latches:

- Se a entrada de activação (enable) de um latch sincronizado estiver ligada ao sinal de relógio, o seu estado está continuamente a ser actualizado enquanto o relógio estiver a 1.
- Como não é possível garantir que o estado dos latches se mantém estável durante a fase em que o sinal de relógio estiver a 1, não é também possível garantir que todos os latches mudem sincronamente num circuito complexo.
- Os latches têm aplicações muito específicas (menos complexos, mais rápidos), nomeadamente em <u>circuitos assíncronos</u>.

Latches vs. Flip-Flops

Os circuitos básicos de memória podem ser classificados em latches e flip-flops.

Flip-Flops:

- Os flip-flops mudam as saídas apenas quando há uma variação do relógio (diz-se que são sensíveis ao <u>flanco</u>).
- Este modo de funcionamento garante que o seu estado só é alterado uma única vez em cada período de relógio.
- Esta característica permite que se utilize quase todo o período de relógio para geração de novos valores nas entradas.
- Os <u>circuitos síncronos</u> utilizam, na grande maioria dos casos, flip-flops (sensíveis ao flanco).

Próxima Aula

Tema da Próxima Aula:

- ▶ Flip-Flops
 - Flip-flop master-slave
 - Flip-flop JK
 - Flip-flop edge-triggered
- ▶ Simbologia

Agradecimentos

Algumas páginas desta apresentação resultam da compilação de várias contribuições produzidas por:

- Nuno Roma
- Guilherme Arroz
- Horácio Neto
- Nuno Horta
- Pedro Tomás