

planetmath.org

Math for the people, by the people.

betweenness in rays

Canonical name BetweennessInRays
Date of creation 2013-03-22 15:33:05
Last modified on 2013-03-22 15:33:05

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 6

Author CWoo (3771)
Entry type Definition
Classification msc 51F20
Classification msc 51G05
Related topic Angle

Related topic
Related topic
Related topic
Defines

Let S be a linear ordered geometry. Fix a point p and consider the pencil $\Pi(p)$ of all rays emanating from it. Let $\alpha \neq \beta \in \Pi(p)$. A point q is said to be an *interior point* of α and β if there are points $s \in \alpha$ and $t \in \beta$ such that

- 1. q and s are on the same side of line \overrightarrow{pt} , and
- 2. q and t are on the same side of line \overrightarrow{ps} .

A point q is said to be between α and β if there are points $s \in \alpha$ and $t \in \beta$ such that q is between s and t. A point that is between two rays is an interior point of these rays, but not vice versa in general. A ray $\rho \in \Pi(p)$ is said to be between rays α and β if there is an interior point of α and β lying on ρ .

Properties

- 1. Suppose $\alpha, \beta, \rho \in \Pi(p)$ and ρ is between α and β . Then
 - (a) any point on ρ is an interior point of α and β ;
 - (b) any point on the line containing ρ that is an interior point of α and β must be a point on ρ ;
 - (c) there is a point q on ρ that is between α and β . This is known as the **Crossbar Theorem**, the two "crossbars" being ρ and a line segment joining a point on α and a point on β ;
 - (d) if q is defined as above, then any point between p and q is between α and β .
- 2. There are no rays between two opposite rays.
- 3. If ρ is between α and β , then β is not between α and ρ .
- 4. If $\alpha, \beta \in \Pi(p)$ has a ray ρ between them, then α and β must lie on the same half plane of some line.
- 5. The converse of the above statement is true too: if $\alpha, \beta \in \Pi(p)$ are distinct rays that are not opposite of one another, then there exist a ray $\rho \in \Pi(p)$ such that ρ is between α and β .
- 6. Given $\alpha, \beta \in \Pi(p)$ with $\alpha \neq \beta$ and $\alpha \neq -\beta$. We can write $\Pi(p)$ as a disjoint union of two subsets:
 - (a) $A = \{ \rho \in \Pi(p) \mid \rho \text{ is between } \alpha \text{ and } \beta \},$

(b)
$$B = \Pi(p) - A$$
.

Let $\rho, \sigma \in \Pi(p)$ be two rays distinct from both α and β . Suppose $x \in \rho$ and $y \in \sigma$. Then ρ, σ belong to the same subset if and only if \overline{xy} does not intersect either α or β .

References

- [1] D. Hilbert, Foundations of Geometry, Open Court Publishing Co. (1971)
- [2] K. Borsuk and W. Szmielew, Foundations of Geometry, North-Holland Publishing Co. Amsterdam (1960)
- [3] M. J. Greenberg, Euclidean and Non-Euclidean Geometries, Development and History, W. H. Freeman and Company, San Francisco (1974)