

TRUST/TrioCFD, démonstrateur CExA pour la DES

Pierre Ledac

DES/DM2S/SGLS/LCAN

TRUST/TrioCFD: Démonstrateur CExA pour la DES

TRUST Plateforme de thermohydraulique (DES/DM2S/SGLS/LCAN)

Application TRUST dédiée à la CFD

- Mécanique des fluides
 - Incompressible/faiblement compressible
 - Mono/Diphasique
 - Suivi d'interfaces
- Domaines d'application

Réacteur REP

Agitateur à effet vortex

Pile à combustible

C++, MPI, OpenSource https://github.com/cea-trust-platform

APPLICATIONS SUR TRUST

- TrioCFD : CFD monophasique + Front Tracking
- FLICA5 : code thermohydraulique diphasique niveau composant (code poreux)
- SympyToTRUST (STT) : code multiphysique pour la simulation (entre autres) des batteries et piles à combustible
- CATHARE3D: modélisation 3D du cœur réacteur couplée au système
- Trio-IJK: modélisation des écoulements diphasiques à l'échelle locale instantannée
- TrioMC: modélisation de la thermohydraulique du cœur des RNR
- GENEPI+ : modélisation de la thermohydraulique des GV
- PAREX+ : code de chimie 0D (pas de maillage)

TRUST/TrioCFD roadmap for GPU computing

2014 First use of GPU in TRUST (PETSc) Single node GPU, limited to one solver (GMRES/Jacobi) Test AmgX, Nvidia GPU library 2020 Multi-node GPU, more solvers available (CG/Multigrid) Port TRUST on ARM architecture Add AmgX library (Nvidia) to TRUST (1.8.3) 2021 **Nvidia Hackathon participation** Challenge TRUST team to evaluate OpenACC approach (parallel pragma directives) 2022 First study with a GPU partial accelerated TrioCFD (Jean-Zay) Partial port on AMD GPU with OpenMP on Adastra (GENCI contract) First run with a GPU fully accelerated TRUST (Topaze) 2023 Enable CExA (Kokkos framework for CEA) in TRUST/TrioCFD 2024 2025 French exascale supercomputer (ARM CPU/Nvidia GPU?)

Which strategy for TRUST computing on GPU?

Detect the most CPU expensive algorithms candidate to GPU

Benefit firstly from dedicated linear algebra libraries (e.g. AmgX for GPU NVIdia)

DNS simulation (TrioCFD 1.8.3) on Irene Joliot cluster (TGCC)

► 1.8x acceleration for the simulation

Which strategy for TRUST computing on GPU?

Detect the most CPU expensive algorithms candidate to GPU

- Benefit from dedicated linear algebra libraries (e.g. **AmgX** for Nvidia, **rocALUTION** for AMD)
- Introduce parallel directives (**OpenMP**) for the the most CPU expensive loops

18/09/2023

Avancement TRUST sur GPU (OpenMP)

MonoGPU (2.6M DDL)

MultiGPU (2.6M DDL)

MultiNoeud-MultiGPU (80.8M DDL)

Etat actuel du portage TRUST sur GPU

- 70 kernels OpenMP-target
- Jeu de 10 fonctions TRUST pour gérer:
 - données CPU ↔ GPU
 - lancements de Kernel
- Opérationnel sur:
 - PC (Nvidia A3000, A5000, A6000)
 - Jean-Zay (V100), Topaze (A100), Adastra (AMD MI250)
- Optimal (les données restent sur le device sauf CL et IO):

90% sur GPU 5% de copies H→D et D→H 5% IO/CPU

// Communications GPU-GPU implémentées

mais pas encore fiable

-30 à -70% sur le coût des communications MPI dans TRUST:

Plateforme TRUST 1.9.2 (06/2023)

Librairies externes Discretisations spatiales

Physiques

Composants HPC

MultiGPU: Nvidia 2xA5000, test de scalabilité forte

- Accélération x4 mais gain faible à utiliser 2 GPUs
 - Device sous utilisé

18/09/2023

Importance de faire travailler le GPU de façon intensive

- Sur GPU, l'efficacité augmente avec la taille du problème
- Règle pour definir les ressources en GPU: 2-3 MDDL par device ?
 - Dépend de la physique, du device, si communications directes, etc...

MultiNoeuds-MultiGPU, test de scalabilité forte

- A nombre de noeuds égal:
 - accélération nette sur noeuds GPU par rapport aux noeuds scalaires
 - tant que que le device est bien occupé (8 nodes: 2.5 MDDL/GPU)

topaze

Analyse "roofline" par profiler Nsight Compute (Nvidia A6000):

TRUST: comportement similaire des algorithmes sur CPU et GPU

- Performance limitée par la bande passante mémoire
- 15% de la puissance crête double précision du GPU seulement...
 - → Rematérialisation : recalculer au lieu de stocker les données

In CExA we trust!

TRUST sur GPU

18/09/2023

TRUST sur GPU

Apports de CExA à TRUST/TrioCFD

- Portage accéléré des algorithmes sur GPU
- Portabilité des performances
- Déploiement de l'application
- Force d'une communauté

Apports de TRUST/TrioCFD à CExA

- Retour d'expérience du portage GPU avec OpenMP
- Emulation: performance actuelle du code à atteindre/dépasser
- Equipé motivée !

Merci de votre attention