tess3r : un package R pour l'estimation de la structure génétique des populations spatialisées Étude du jeux de données *Arabidopsis thaliana* RegMap

Kevin Caye¹, Olivier Michel², Olivier Francois¹

¹ TIMC-IMAG, ² GIPSA-lab

23 juin 2016

Les données : Arabidopsis thaliana

Les données génétiques :

	chr : 1 pos : 657	chr : 1 pos : 3102	chr : 1 pos : 4648
02B6	1	1	1
09A3	1	0	1
12A1	1	1	1
13B5	0	0	0

Les données : Arabidopsis thaliana

Les données spatiales :

Figure 1 – Coordonnées spatiales de chaque plante *Arabidopsis thaliana*.

La structure génétique des populations

Hypothèses:

- ▶ le génome de chaque individu provient de K populations ancestrales
- deux individus proches dans l'espace se resemblent.

On yeut estimer:

- ▶ les fréquences de génotype dans les K populations ancestrales pour chaque locus
- les coefficients de métissage pour chaque individu.

Les coefficients de métissage

Figure 2 – Coefficients de métissage pour K=3 populations ancestrales.

Interpolation spatiale des coefficients de métissage

Figure 3 – Interpolation spatiale des coefficients de métissage.

Différence entre les populations ancestrales

Figure 4 – Manhattan plot pour K = 3 populations ancestrales.

Selection du nombre de populations ancestrales

On choisi K = 6 populations ancestrales.

Figure 5 - RMSE en fonction du nombre de populations ancestrales

Selection de l'echelle de l'autocorrelation spatiale

On choisi sigma = 1.5 pour le paramètre d'echelle de l'autocorrelation spatiale.

Figure 6 – Semi variogramme

Coefficients de métissage avec K = 6 et sigma = 1

Figure 7 – Interpolation spatiale des coefficients de métissage pour $\mathcal{K}=6$ populations ancestrales.

Détection de l'adaptation à l'environnement

Figure 8 – Manhattan plot pour K = 6 populations ancestrales.

Détection de l'adaptation à l'environnement

Figure 9 – Manhattan plot pour K = 6 populations ancestrales.

Merci de votre attention

Version beta disponible sur github :

```
devtools::install_github("cayek/TESS3_encho_sen@master")
```

Merci de votre attention!