Newtonian gravitation from scratch, for C++ programmers

S. Halayka*

Sunday 8th December, 2024 19:32

Abstract

This paper contains a short introduction to Newtonian gravitation. The main focus is on some C++ code.

1 Introduction

In this paper, we focus on Newtonian gravitation [1]. We cover the following subjects:

- 1. Typedefs that can be used to specify the precision of the floating point variables.
- 2. A custom 3D vector class that is used to encapsulate the data and member functions using object-oriented paradigms.
- 3. Some constants that are used throughout the paper.
- 4. A brute force integer field line intersection count function.
- 5. A heuristic real field line intersection count function.
- 6. An application is demonstrated, where we model Mercury's orbit by using numerical integration. A full code is given.

The main goal is to acquaint the coder with the basic mathematics behind Mercury's orbit due to Newtonian gravitation.

The following two assumptions are made:

1. Like with the irradiance of light (e.g. WiFi strength) and the intensity of sound, we assume in this paper that the acceleration in Newton's gravity follows an inverse-square law:

$$g_N \propto \frac{1}{R^2}.$$
 (1)

See Fig. 1.

2. The other assumption that we make in this paper is that the gravitational field line count is given by the holographic principle [2,3], for lack of a better method.

^{*}sjhalayka@gmail.com

Figure 1: Inverse-square law visualized. The gravitational acceleration is $g_N \propto 1/R^2$.

2 Typedefs

In this tutorial, we leave the real number type up to the coder. For instance, we can use quad-precision long doubles (e.g. 16-byte floating point variables on Ubuntu):

```
typedef long double real_type;
```

On the other hand, we can use the Boost multiprecision library just as easily. Here we can use oct-precision variables (e.g. 32-byte floating point variables on all platforms):

```
#include <boost/multiprecision/cpp_bin_float.hpp>
using namespace boost::multiprecision;
typedef number<
        backends::cpp_bin_float <
                237.
                backends::digit_base_2,
                void,
                std::int32_t,
                -262142, // 2^18 = 262144
                262143 >,
        et_off > cpp_bin_float_oct;
        // 237 significand bits
        // + 18 exponent bits
        // + 1 sign bit =
        // 256 bits (32 bytes)
typedef cpp_bin_float_oct real_type;
```

3 Custom 3D vector class

The tutorial also makes use of a 3D vector class:

```
class vector_3
public:
        real_type x, y, z;
        // Overloaded operators go here
        real_type dot(const vector_3& rhs) const
                return x*rhs.x + y*rhs.y + z*rhs.z;
        real_type self_dot(void) const
                return x*x + y*y + z*z;
        real_type length(void) const
                return sqrt(self_dot());
        vector_3& normalize(void)
                const real_type len = length();
                if(len != 0)
                        x /= len;
                        y /= len;
                        z /= len;
                return *this;
};
```

4 Constants

The following constants will be used in this tutorial:

```
const real_type pi = 4.0 * atan(1.0); const real_type G = 6.67430e-11; // Newton's constant const real_type c = 299792458; // Speed of light in vacuum const real_type c2 = c * c; const real_type c3 = c * c * c * c; const real_type c4 = c * c * c * c * c; const real_type h = 6.62607015e-34; // Planck's constant const real_type hbar = h / (2.0 * pi);
```


Figure 2: The emitter is spherical. The n=1000 field line starting positions are placed pseudorandomly on a 2-sphere, and the n=1000 normals (e.g. field line directions) are calculated using the same positions.

```
{f const} real_type k = 1.380649e-23; // {\it Boltzmann} 's {\it constant}
```

5 Brute force: integer field line count

The main idea behind this tutorial is that there is a finite number of field lines n extending out from a gravitating body. See Fig. 2.

We use the field line intersection count to signify field strength, from which we can obtain the gradient.

Where r is the receiver radius, R is the distance from the centre of the emitter, β is the get intersecting line count function, and n is the field line count, the gradient (e.g. directional derivative) is:

$$\alpha = \frac{\beta(R+\epsilon) - \beta(R)}{\epsilon}.$$
 (2)

The gradient strength is:

$$g = \frac{-\alpha}{r^2}. (3)$$

```
return false;
        vector_3 v = location + normal;
        const real_type ratio = v.x / circle_origin.x;
        v.y = v.y / ratio;
        v.z = v.z / ratio;
        v.x = circle\_origin.x;
        vector_3 v2:
        v2.x = circle\_origin.x - v.x;
        v2.y = circle\_origin.y - v.y;
        v2.z = circle\_origin.z - v.z;
        if (v2.length() > circle_radius)
                return false;
        return true;
long long signed int get_intersecting_line_count_integer(
        const size_t n,
        const vector_3 sphere_location,
        const real_type sphere_radius)
        long long signed int count = 0;
        for (size_t i = 0; i < n; i++)
                vector_3 pos = RandomUnitVector();
                vector_3 normal = pos;
                if (circle_intersect(
                                 pos,
                                 normal,
                                 sphere_location.x,
                                 sphere_radius))
                         count++;
        }
        return count;
```

While this method works, it is processor intensive. This method is meant to be a stepping stone for the next section.

6 Heuristic: real field line count

We can instead use a heuristic approach to solve the problem from the previous section. This heuristic solution instead uses basic geometry to obtain the intersection count, making it orders of magnitude faster than the solution from the previous section.

Where r is the receiver radius, R is the distance from the centre of the emitter, β is the get intersecting line count function, and n is the field line count, the gradient is:

$$\alpha = \frac{\beta(R+\epsilon) - \beta(R)}{\epsilon}.$$
 (4)

Here we assume that the number of field lines is given by the holographic principle:

$$n = \frac{Akc^3}{4G\hbar \log 2}. (5)$$

The gradient strength, especially at large R, is:

$$g = \frac{-\alpha}{r^2} \approx \frac{n}{2R^3}.$$
(6)

From this we can get the Newtonian gradient strength, in terms of either n, g, A, or GM:

$$g_N = \frac{nc\hbar \log 2}{k4\pi MR^2} = \frac{gRc\hbar \log 2}{k2\pi M} = \frac{Ac^4}{16\pi GMR^2} = \frac{GM}{R^2}.$$
 (7)

We will use $g_N = GM/R^2$, the simplest version of g_N , in the next section.

For reference, if you know n, and you wish to know the emitter radius from that, then the equation is:

$$r_e = \sqrt{\frac{nG\hbar \log 2}{kc^3\pi}}. (8)$$

Using this radius, one can ensure that the results from this section match the results of the previous section, where n is relatively small anyway (e.g. $n = 10^7$).

```
int main(int argc, char** argv)
{
    const real_type receiver_radius = 1.0;
```

```
real_type emitter_radius =
        sqrt((10000000 * G * hbar * log(2.0))
                / (k * c3 * pi));
const real_type emitter_area =
        4.0 * pi * emitter_radius * emitter_radius;
// Field line count
// re: holographic principle:
const real_type n =
        (k * c3 * emitter_area)
        / (\log (2.0) * 4.0 * G * hbar);
const real_type emitter_mass = c2 * emitter_radius / (2.0 * G);
// 2.39545e47 is the 't Hooft-Susskind constant:
// the number of field lines for a black hole of
// unit Schwarzschild radius
//const\ real\_type\ G_{-}=
       (k * c3 * pi)
        / (log(2.0) * hbar * 2.39545e47);
const string filename = "newton.txt";
ofstream out_file(filename.c_str());
out_file << setprecision(30);
const real_type start_distance = 2*receiver_radius;
const real_type end_distance = 100.0;
const size_t distance_res = 1000;
const real_type distance_step_size =
        (end_distance - start_distance)
        / (distance_{res} - 1);
for (size_t step_index = 0; step_index < distance_res; step_index++)
{
        const real_type r =
                start_distance + step_index * distance_step_size;
        const vector_3 receiver_pos(r, 0, 0);
        const real_type epsilon = 1.0;
        vector_3 receiver_pos_plus = receiver_pos;
        receiver_pos_plus.x += epsilon;
        const real_type collision_count_plus =
                get_intersecting_line_count_real(
                        receiver_pos_plus,
                        receiver_radius);
```

```
const real_type collision_count =
                 get_intersecting_line_count_real(
                         receiver_pos,
                         receiver_radius);
        const real_type gradient =
                (static_cast < real_type > (collision_count_plus)
                - static_cast<real_type>(collision_count))
                / epsilon;
        const real_type gradient_strength =
                -gradient
                / (receiver_radius * receiver_radius);
        const real_type newton_strength =
                G * emitter_mass / pow(receiver_pos.x, 2.0);
        const real_type newton_strength_ =
                 gradient\_strength * receiver\_pos.x * c * hbar * log(2)
                / (k * 2 * pi * emitter_mass);
        cout << "r: " << r << " newton\ ratio: "
                << newton_strength / newton_strength_ << endl;</pre>
        out_file << r << " "
                << newton_strength / newton_strength_ << endl;</pre>
}
out_file.close();
return 0;
```

The code for this section and the previous section can be downloaded from:

https://github.com/sjhalayka/numerical_newtonian_gravity

This method is faster than the integer field count method. This method is meant to be a stepping stone for the next section.

7 Application: modeling Mercury's orbit using numerical integration

In essence, the numerical calculation of the Newtonian orbit of Mercury is as follows:

- 1. Place Mercury at the aphelion to start.
- 2. Calculate the orbit path by repeatedly taking steps in time.

The constant time step [4] is:

```
const real type dt = 10000; // 2.77777 hours
```


Figure 3: A diagram of the Euler integration of velocity.

The initial conditions are:

```
vector_3 Mercury_pos(0, 69817079000.0, 0); // Aphelion location vector_3 Mercury_vel(-38860, 0, 0); // Aphelion velocity
```

The orbit code is as follows. Here we use Eq. 7 (e.g. $g_N = GM/R^2$) to calculate the acceleration from Newtonian gravitation:

```
vector_3 Newtonian_acceleration(
    const real_type emitter_mass,
    const vector_3& pos, // Receiver pos
    const real_type G)
{
    // Sun's position is fixed at the origin
    vector_3 grav_dir = vector_3(0, 0, 0) - pos;
    const real_type distance = grav_dir.length();
    grav_dir.normalize();

    vector_3 accel = grav_dir * G * emitter_mass / pow(distance, 2.0);

    return accel;
}
```

Here we show the Euler integration [5], which is extremely simple. The acceleration is calculated, then it is added (e.g. integrated) to the velocity. Once that's done, the velocity is added to the position. See Figs. 3 and 4.

Figure 4: A diagram of the Euler integration of position.

```
G);

vel += accel * dt;

pos += vel * dt;
}
```

The passage of time is computed whenever the window manager (e.g. OpenGL/GLUT) is not busy drawing or processing input:

```
void idle_func(void)
{
         proceed_Euler(Mercury_pos, Mercury_vel, G, dt);
}
```

On the other hand, rather than using Euler integration, the 4th-order symplectic integration does a better job at conserving energy, but at a speed cost:

```
-cr2 / (2.0 - cr2),
        1.0 / (2.0 - cr2),
        0.0
};
pos += vel * c[0] * dt;
vel += Newtonian_acceleration(
                emitter_mass,
                pos,
                G) * d[0] * dt;
pos += vel * c[1] * dt;
vel += Newtonian_acceleration(
                emitter\_mass,
                pos,
                G) * d[1] * dt;
pos += vel * c[2] * dt;
vel += Newtonian_acceleration(
                emitter_mass,
                pos,
                G) * d[2] * dt;
pos += vel * c[3] * dt;
// last element d[3] is always 0
```

See Fig. 5.

A code that models the orbit of Mercury is at:

https://github.com/sjhalayka/mercury_orbit_glut

References

- [1] Misner et al. Gravitation. (1970)
- [2] 't Hooft. Dimensional reduction in quantum gravity. (1993)
- [3] Susskind. The World as a Hologram. (1994)
- [4] Fiedler. Fix Your Timestep! (2004)
- [5] Fiedler. Integration Basics. (2004)

Figure 5: Mercury in orbit around the Sun. Note that the orbit path is slightly elliptical.