

Facoltà di Ingegneria dell'Informazione, Informatica e Statistica Dipartimento di Informatica

Progettazione di Algoritmi

Autore:

Simone Lidonnici

Indice

1	Teo	ria dei grafi
	1.1	Tipi di grafi
		1.1.1 Grafi diretti e non diretti
		1.1.2 Passeggiate e cammini
		1.1.3 Grafi connessi e fortemente connessi
		1.1.4 Grafi ciclici
	1.2	Rappresentare un grafo
		1.2.1 Matrici di adiacenza
		1.2.2 Liste di adiacenza
	1.3	Trovare il ciclo in un grafo
	1.4	DFS (Ricerca in profondità)
		1.4.1 DFS ottimizzata
		1.4.2 DFS ricorsiva
		1.4.3 DFS in grafi diretti
		1.4.4 Componenti e DFS con componenti
	1.5	Ordinare un grafo
		1.5.1 Trovare l'ordine topologico in grafi diretti
		1.5.2 Versione ottimizzata per trovare l'ordine topologico
	1.6	Intervalli di visita e tipi di archi
		1.6.1 Tipi di archi
		1.6.2 Algoritmo per controllare i tipi di archi
	1.7	Alberi di visita e cicli
		1.7.1 Grafi non diretti
		1.7.2 Grafi diretti
		1.7.3 Vettore dei padri
	1.8	Ponti
		1.8.1 Algoritmo per trovare i ponti
	1.9	Componenti fortemente connessi
		1.9.1 Contrazione di un componente
		1.9.2 Algoritmo per trovare i componenti
		1.9.3 Algoritmo di Tarjan
	1.10	BFS (Ricerca in ampiezza)
		1.10.1 Algoritmo della BFS
		1.10.2 Distanza fra insiemi di nodi
		1.10.3 Grafi pesati
		1.10.4 Calcolare distanze pesate (Dijkstra)
2	Algo	oritmi Greedy 26
	2.1	Alberi di copertura
		2.1.1 Algoritmo di Kruskal
	2.2	Grafi con pesi negativi
	2.3	Algoritmo di Prim

3	\mathbf{Alg}	oritmi	divide et impera	31
	3.1	Teorer	na principale	31
	3.2	Esercia	zi divide et impera	32
		3.2.1	Sottoarray di somma massima	32
		3.2.2	Valore singolo in un array	33
	3.3	Eleme	nto maggioritario in un array	34
4	Pro	gramn	nazione dinamica	35
	4.1	Esercia	zi di programmazione dinamica	36
		4.1.1	Ottimizzare lo spazio su un disco	36
		4.1.2	Cammini colorati su una scacchiera	37
		4.1.3	Ottimizzare il peso in uno zaino	38
		4.1.4	Cammino di peso massimo	39

1

Teoria dei grafi

Definizione di Grafo

Un **grafo** G è una coppia (V, E) in cui V è un insieme di nodi e E un insieme di archi che collegano due nodi. Un grafo si dice **semplice** se:

- Non ha cappi, cioè nessun nodo è collegato con se stesso
- Ogni coppia di nodi è collegata da massimo un arco

1.1 Tipi di grafi

1.1.1 Grafi diretti e non diretti

I grafi possono essere di due tipologie in base a se gli archi sono **orientati**, cioè partono da un nodo e arrivano ad un altro senza essere percorribili al contrario. Se il grafo ha archi orientati si dice **diretto**.

Grafo non diretto

Grafo diretto

1.1.2 Passeggiate e cammini

Nodi adiacenti

Due nodi collegati da un arco si dicono **adiacenti** (o vicini) e l'arco che li collega viene detto incidente. Per indicare che due nodi sono adiacenti scriviamo $x \backsim y$. Si definisce il grado di un nodo $\deg(x)$ come il numero dei suoi nodi adiacenti, uguale al numero di archi incidenti.

1. Teoria dei grafi 1.1. Tipi di grafi

Definizione di passeggiata

Una **passeggiata** su un grafo è una sequenza di archi e nodi:

$$v_0e_1v_1e_2\dots e_nv_n$$

In cui ogni arco e_i collega il nodo v_{i-1} al nodo v_i .

Un cammino è una passeggiata in cui non si ripetono i nodi.

1.1.3 Grafi connessi e fortemente connessi

Definizione di grafo connesso

Un grafo G si dice **connesso** se per qualsiasi coppia di nodi esiste un cammino che li collega:

$$\forall v_i, v_i \in V(G) \exists \text{cammino} | v_1 \to v_i \lor v_i \to v_i$$

Un grafo G si dice **fortemente connesso** se per qualsiasi coppia di nodi esiste un cammino che li collega partendo da entrambi i nodi:

$$\forall v_i, v_j \in V(G) \exists \text{cammino} | v_1 \to v_j \land v_j \to v_i$$

Nel caso di grafi non diretti ogni grafo connesso è anche fortemente connesso.

Grafo non connesso

Grafo connesso

Grafo fortemente connesso

Esiste un tipo specifico di passeggiata detta **passeggiata Euleriana** in cui si attraversano tutti i nodi una sola volta. Può esistere una passeggiata Euleriana in un grafo solo se il grafo è connesso e ci sono al massimo 2 nodi con grado dispari, che saranno inizio e fine.

1.1.4 Grafi ciclici

Definizione di grafo ciclico

Un grafo G è ciclico se esiste un sottogruppo connesso in cui ogni vertice ha grado ≥ 2 . Se nel grafo tutti i vertici hanno grado ≥ 2 allora il grafo è sicuramente ciclico.

$$\forall v \in V(G) \deg(v) \ge 2 \implies G \text{ ciclico}$$

In un grafo diretto se ogni nodo ha almeno un arco uscente allora il grafo è ciclico.

1.2 Rappresentare un grafo

1.2.1 Matrici di adiacenza

I grafi possono essere rappresentati con delle matrici di adiacenza in cui se v_i è adiacente a v_j la matrice conterrà 1 nella posizione (i, j) e nella posizione (j, i):

	v_1		v_i		v_j		v_n
v_1	0						
		0					
v_i			0		1		
				0			
v_{j}			1		0		
						0	
v_n							0

Costo per controllare se x è vicino di y: O(1)

Spazio necessario per l'archiviazione: $O(n^2)$

Nel caso di grafi diretti la matrice conterrà 1 nella posizione (i, j) se l'arco parte da i e arriva a j (non sarà più simmetrica).

1.2.2 Liste di adiacenza

Per rappresentare i grafi si può anche usare una lista di adiacenza in cui ogni nodo ha una lista contenente tutti i suoi vicini:

$$v_1$$
.neighbors = [...]
...
 v_n .neighbors = [...]

Nel caso di un grafo diretto, ogni nodo avrà due liste:

- v_i .neighbors_out che contiene i nodi collegati da archi uscenti da v_i
- v_i .neighbors_in che contiene i nodi collegati da archi entranti in v_i

Costo per controllare se x è vicino di y: O(n)

Spazio necessario per l'archiviazione: $O(n^2)$

Lunghezza della lista di vicini di un determinato nodo v_i : deg (v_i)

Grandezza totale delle liste:
$$O(n) + O(\sum_{i=1}^{n} \deg(v_i)) = O(n+m)$$

1.3 Trovare il ciclo in un grafo

Dato un grafo G in cui ogni vertice ha grado ≥ 2 , l'algoritmo per trovare il ciclo:

Algoritmo: Ricerca di un ciclo in un grafo G

Input:

• G: grafo

Output:

• C: nodi che formano il ciclo

def FindCiclo(G):

1.4 DFS (Ricerca in profondità)

La **DFS** (Depth first search) è un modo per visitare un grafo che consiste nel partire da un nodo e spostarsi in un vicino casuale non ancora visitato e nel caso tutti i vicini di un nodo siano già stati visitati ritornare al nodo precedente. Per implementare questo rollback si utilizza uno Stack. L'algoritmo ritorna tutti i nodi visitabili dal nodo di partenza, quindi nel caso di grafo non connesso, ritornerà solo i vertici nel sottografo contenente il nodo di partenza.

Dimostrazione per assurdo:

```
Supponiamo esista y|\exists \text{cammino } x \to y \text{ ma } y \notin \text{Vis e sia } i \text{ un indice per cui } v_i \in \text{Vis} \land v_{i+1} \notin \text{Vis.}
v_i \in \text{Vis} \implies \begin{cases} v_i \text{ è stato inserito in } S \\ v_i \text{ è stato tolto da } S \end{cases} \implies \text{ogni vicino di } v_i \text{ è stato inserito in Vis} \implies v_{i+1}
\text{è stato inserito in Vis}
```

1.4.1 DFS ottimizzata

L'algoritmo di base della DFS è poco ottimizzato per via del costo dell'if che richiede $O(\deg(y) \cdot n)$, per ottimizzarlo si cambia la struttura di Vis rendendolo un array lungo n in cui:

$$Vis[v] = \begin{cases} 0 & v \text{ non è stato visitato} \\ 1 & v \text{ è stato visitato} \end{cases}$$

Con questo cambiamento l'algoritmo diventa:

```
Algoritmo: DFS ottimizzata
 Input:
    • G: grafo
    • x: nodo di partenza
 def DFS_ott(G, x):
    Vis[x]=1
    Stack S=[x]
    while len(S)!=0:
       y=S.top()
       if Vis[y.neighbors[0]]==0 :
          z=y.neighbors[0]
          Vis[z]=1
          S.push(z)
       y.neighbors.remove(0)
       if len(y.neighbors)==0 and y==S.top() :
          S.pop()
    return Vis
```

Avendo tutto costo O(1) tranne il ciclo while con costo O(n+m), l'algoritmo ha costo complessivo O(n+m).

1.4.2 DFS ricorsiva

Della DFS si può fare anche una versione ricorsiva:

Il costo di questo algoritmo è O(n+m).

1.4.3 DFS in grafi diretti

Nel caso di grafi diretti bisogna cambiare l'algoritmo per controllare solo gli archi uscenti e non quelli entranti quando si cambia nodo:

1.4.4 Componenti e DFS con componenti

Definizione di componente

Un **componente** è l'insieme di nodi di un sottografo connesso, però non connesso al resto del grafo.

```
Comp[x] = nodi nello stesso componente che contiene x

Comp[x] = Comp[y] \iff x, y appartengono allo stesso sottografo
```

L'algoritmo che visita tutti i componenti è una modifica della DFS ricorsiva in cui:

$$Comp[v] = \begin{cases} 0 & v \text{ non è ancora stato visitato} \\ i & v \text{è nel componente } i \end{cases}$$

Si aggiunge inoltre una funzione per cambiare componente in cui si trova il nodo corrente:

```
Algoritmo: DFS per trovare componenti
 Input:
    • G: grafo
 def CComp(G):
    comp_count=0
    for x in V :
       if Comp[x] == 0:
          comp_count+=1
          DFS_ric_comp(G, x, Comp, comp_count)
    return Comp
 def DFS_ric_comp(G, x, Comp, comp_count):
    Comp[x]=comp_count
    for y in x.neighbors :
       if Comp[y] == 0:
          DFS_ric_comp(G, y, Comp, comp_count)
    return Comp
```

1.5 Ordinare un grafo

Un grafo diretto G ha un **ordine topologico** se esiste un ordine per cui ogni nodo ha archi uscenti che vanno solo verso nodi successivi nell'ordine e archi entranti solo da nodi precedenti nell'ordine. Inoltre:

```
G ciclico \iff   \sharp  ordine topologico
```

Corollario:

G non ciclico $\implies \exists v \in V | v$ non ha archi uscenti

1.5.1 Trovare l'ordine topologico in grafi diretti

Per trovare l'ordine topologico in grafi diretti si usa un algoritmo:

```
Algoritmo: DFS per trovare l'ordine topologico in grafi diretti
 Input:
    • G: grafo
 def DFS_ord(G):
    1=[]
    while len(G)!=0 : // O(n)
       x=no_archi(G)
       1.insert(x,0)
       elimina(G,x)
 def no_archi(G): // O(n)
    for v in V(G):
       if len(v.neighbors_out)==0 :
        return v
 def elimina(G,x): // O(m)
    for e in E(G):
       if x in e :
          E.remove(e)
```

Il ciclo while esegue n
 volte le funzioni no archi e elimina, quindi il costo dell'algoritmo sarà:
 O(n(n+m))

1.5.2 Versione ottimizzata per trovare l'ordine topologico

Una versione ottimizzata dell'algoritmo per trovare l'ordine topologico:

Questa versione ottimizzata dell'algoritmo ha costo O(n+m).

1.6 Intervalli di visita e tipi di archi

Dato un grafo G aggiungiamo un contatore C alla DFS, che parte da 1 e viene aumentato di uno ogni volta che si visita un nodo nuovo.

Ad ogni nodo $v \in V$ associamo:

- t(v): valore di C quando v viene visitato per la prima volta
- T(v): valore di C quando v viene rimosso dallo Stack
- $\operatorname{Int}(v) = [t(v), T(v)]$

Esempio:

Una possibile tabella contenente gli intervalli usando una DFS partendo da v_1 è:

v	t(v)	T(v)
v_1	1	5
v_2	2	5
v_3	3	5
v_4	5	5
v_5	4	4

Dalla tabella e dal grafico possiamo osservare che:

- $t(v_i) \neq t(v_j) \ \forall i, j$
- $t(v_i) \leq T(v_i)$
- $t(v_i) = T(v_i) \iff v_i$ non ha archi uscenti e non è radice
- v_i radice \iff Int $(v_i) = [1, n]$ con G che ha n nodi

Inoltre confrontando gli intervalli tra due nodi v_1 e v_2 ci sono 3 possibilità:

- $\operatorname{Int}(v_1) \subset \operatorname{Int}(v_2)$
- $\operatorname{Int}(v_1) \supset \operatorname{Int}(v_2)$
- $\operatorname{Int}(v_1) \cap \operatorname{Int}(v_2) = \emptyset$

1.6.1 Tipi di archi

Albero di visita

Un albero di visita è un sottografo connesso e aciclico composto solo dagli archi che sono stati usati per raggiungere i vertici visitati. Nel caso di grafi diretti viene detto arborescenza ed è un'albero con tutti gli archi orientati dalla radice verso le foglie.

Preso un'arborescenza A creata tramite una DFS su un grafo G, ogni arco $(v_i, v_j) \in E$ non in A può essere classificato in 3 categorie:

- 1. Arco all'indietro: se va da un discendente ad un antenato, cioè $\operatorname{Int}(v_i) \subset \operatorname{Int}(v_j)$
- 2. Arco in avanti: se va da un antenato a un discendente, cioè $Int(v_i) \supset Int(v_j)$
- 3. Arco di attraversamento: se i due nodi non hanno correlazioni, cioè $\operatorname{Int}(v_i) \cap \operatorname{Int}(v_j) = \emptyset$

Nei grafi non diretti non essendoci differenza tra gli archi (v_i, v_j) e (v_j, v_i) , l'unico caso possibile è che sia un arco all'indietro perché:

$$t(v_i) < t(v_j) \implies \operatorname{Int}(v_i) \subset \operatorname{Int}(v_j)$$

Esempio:

Gli archi non presenti nell'arborescenza A sono $(v_2, v_4), (v_4, v_1)$ e (v_4, v_5) . Questi archi sono classificati:

- (v_2, v_4) è in avanti perché $[2,5] \supset [4,5]$
- (v_4, v_1) è indietro perché $[5,5]\supset [1,5]$
- (v_4, v_5) è di attraversamento perché $[5,5] \cap [4,4] = \emptyset$

1.6.2 Algoritmo per controllare i tipi di archi

Per controllare i tipi di archi usiamo un algoritmo modificato della DFS che da in output 3 insiemi Back, Forward e Cross che contengono rispettivamente gli archi appartenenti alle tre categorie. Aggiungo un contatore C e anche due array t e T in cui segno gli intervalli dei vari nodi.

Algoritmo: DFS per classificare gli archi Input:

• G: grafo

• x: nodo di partenza

def DFS_archi(G, x):

```
C=1
Vis[x]=1
t[x]=1
Stack S=[x]
while len(S)!=0 :
   y=S.top()
   while len(y.neighbors_out)!=0 :
      z=y.neighbors_out[0]
      y.neighbors_out.remove(0)
      if Vis[z]==0 :
         C+=1
         t[z]=C
         Vis[z]=1
         S.push(z)
         break
      if t[z] < t[y] and T[z] == 0:
         Back.add((y,z))
      elif t[z] < t[y] and T[z]!=0:
         Cross.add((y,z))
      else :
         Forward.add((y,z))
   if y==S.top() :
      S.pop()
      T[y]=C
return Back, Cross, Forward
```

1.7 Alberi di visita e cicli

1.7.1 Grafi non diretti

Dato un grafo non diretto G connesso con un albero di visita T generato da una DFS, allora:

 \exists arco all'indietro \iff G ciclico

1.7.2 Grafi diretti

Dato un grafo diretto G con un'arborescenza T generata da una DFS, definiamo che:

- un nodo u è discendente di un altro nodo v se esiste un cammino $v \to u$, cioè $\mathrm{Int}(v) \subseteq \mathrm{Int}(v)$
- un nodo v è antenato di un altro nodo u se un arco (u, v) è un arco all'indietro. Gli antenati di u sono tutti i nodi nel cammino radice $\to u$

Anche in questo caso:

 \exists arco all'indietro \iff G ciclico

Esempio:

Un pozzo universale è un nodo x per cui:

- $\nexists(x,y) \in E \ \forall y \in V(G)$
- $\exists (y, x) \in E \ \forall y \in V(G)$

Scrivere un algoritmo con costo O(n) per stabilire se esiste un pozzo universale avendo in input il grafo come matrice di adiacenza. La matrice se ci fosse un pozzo x sarebbe:

	v_1		\boldsymbol{x}		v_n
v_1	0		1		
		0	1		
\boldsymbol{x}	0	0	0	0	0
			1	0	
v_n			1		0

Il codice dell'algoritmo:

Algoritmo: Ricerca di un pozzo

Input:

• M: matrice di adiacenza del grafo

def SearchPozzo(M):

```
pozzo=1
for i in range(2,n) :
    if M[pozzo][i]==1 :
        pozzo=i
for i in range(n) :
    if M[pozzo][i]==1 :
        return False
    if M[i][pozzo]==0 and i!=pozzo :
        return False
    return pozzo
```

1.7.3 Vettore dei padri

Un modo di salvare un albero di visita è il vettore dei padri, cioè un vettore P in cui P[v] = nodo tramite cui si è arrivati a v. Per la radice P[v] = v.

Esempio:

n questo caso partendo da v_6 il vettore dei padri sarebbe:

$$P = [6, 1, 5, 6, 1, 6, 5, 2]$$

Per trovare gli antenati di un nodo v si può usare un algoritmo con costo O(n):

Algoritmo: Trovare gli antenati di un nodo v

1. Teoria dei grafi 1.8. Ponti

1.8 Ponti

Definizione di ponte

Dato un grafo non diretto G, si dice **ponte** un arco che se tolto fa diventare il grafo non connesso:

Per controllare se un determinato arco (u, v) è un ponte lo elimino e controllo se esiste un altro cammino $u \to v$:

- esiste $\implies (u, v)$ non ponte
- non esiste $\implies (u, v)$ ponte

Se volessimo trovare tutti i ponti in un grafo controllando ogni arco il costo computazionale sarebbe O(m(n+m)).

Dato T l'albero di visita di una DFS su un grafo G:

(u,v)ponte $\iff \nexists$ arco all'indietro da T_v a fuori T_v

Dove T_v è l'insieme dei discendenti di v.

1.8.1 Algoritmo per trovare i ponti

Dato un grafo G per trovare tutti i ponti si usa un algoritmo che tiene segnato con Back[v] il punto più indietro che si può raggiungere da un determinato nodo v:

```
Algoritmo: DFS per trovare i ponti
 def Ponti(G):
    C=0
    V=V[0]
    DFS_ponte(G, v, t, C, Back, P)
    Ponti=set()
    for v in V(G):
       if Back[v] == t[v] and P[v]! = v:
         Ponti.add((P[v],v))
    return Ponti
 def DFS_ponte(G, v, t, C, Back, P):
    C += 1
    t[v]=C
    Back[v]=t[v]
    for u in v.neighbors :
       if t[u] == 0:
          P[u]=v
          DFS_ponte(G, u, t, C, Back, P)
          Back[v]=min(Back[v],Back[u])
       elif u!=P[v] :
          Back[v]=min(Back[v],t[u])
```

1.9 Componenti fortemente connessi

Definizione di componente fortemente connesso

In un grafo G un componente fortemente connesso è un sottografo massimale (con massimo numero di nodi) fortemente connesso. Due componenti fortemente connessi non hanno nodi in comune. Un nodo singolo non facente parte di nessun componente è anch'esso un componente perché si può raggiungere da solo.

Esempio:

In questo caso possiamo dividere il grafo in 3 componenti fortemente connessi:

- $H_1 = \{v_1, v_2, v_3, v_5, v_6\}$
- $H_2 = \{v_4\}$
- $H_3 = \{v_7\}$

1.9.1 Contrazione di un componente

Preso un grafo diretto G e un componente fortemente connesso H, possiamo contrarre H in n solo nodo ottenendo un grafo G/V(H). Il grafo dopo questo processo di contrazione conterrà:

- Nodi: $(V(G) V(H)) + v_H$
- Archi:
 - $\{(x,y) \in E(G) | x, y \notin V(H) \}$
 - $-\{(v_i, v_H) \text{ se } \exists (v_i, x) \in E(G) | x \in V(H) \land v_i \notin V(H) \}$
 - $\{(v_H, v_i) \text{ se } \exists (x, v_i) \in E(G) | x \in V(H) \land v_i \notin V(H) \}$

Esempio:

In questo grafo se contraiamo il componente $H_1 = \{v_1, v_2, v_3, v_5, v_6\}$ il grafo $G/V(H_1)$ diventa:

1.9.2 Algoritmo per trovare i componenti

Dato un grafo G con diverse componenti H_1, \ldots, H_k , comprimendo un determinato componente H_i , nel grafo risultante G/V(H) avrò le componenti H'_1, \ldots, H'_k tali che:

$$H'_{j} = \begin{cases} H_{j} & j \neq i \\ (H_{i}/V(H_{i})) \cap v_{H_{i}} & i = j \end{cases}$$

Questo passaggio di contrazione viene applicato in un algoritmo ricorsivo per trovare tutti componenti:

Algoritmo: Trovare i componenti fortemente connessi in un grafo

```
\begin{array}{c|c} \operatorname{def} \ \operatorname{CompFort}(\mathsf{G}) \colon \\ & \text{ if } \not\equiv \operatorname{ciclo in } \mathsf{G} \ \colon \\ & | \ \operatorname{return} \ \{\{v\}|v \in V(G)\} / / \ \operatorname{insieme \ di \ insiemi} \\ & \text{ else } \colon \\ & | \ C = \operatorname{ciclo} \\ & \mathsf{G} = \mathsf{G} / \mathsf{V}(\mathsf{C}) \\ & H_1, \ldots, H_k = \operatorname{CompFort}(\mathsf{G}) \\ & \text{ for i in range}(\mathsf{k}) \ \colon \\ & | \ \operatorname{if} \ v_C \notin H_i \ \colon \ / / \ v_C = \operatorname{nodo \ creato \ comprimendo \ } C \\ & | \ H_i' = H_i \\ & \text{ else } \colon \\ & | \ H_i' = (H_i - \{v_C\}) \cup V(C) \end{array}
```

Il costo di questo algoritmo è O(n(n+m)).

1.9.3 Algoritmo di Tarjan

Dato un grafo G con componente fortemente connesso C, definiamo come C-radice il nodo v appartenente a C che è stato visitato per primo dalla DFS.

Preso v nodo C-radice di un componente C e definendo T(v) l'insieme dei discendenti di v nell'arborescenza T e C(v) il componente in cui si trova v allora:

- 1. $C(v) \subseteq T(v)$
- 2. Prese $v_1, ..., v_k$ tutte le C-radici in T(v) allora $T(v) = C(v_1) \cup ... \cup C(v_k)$

Tramite queste proprietà possiamo usare un'altro algoritmo per trovare i componenti fortemente connessi:

```
Algoritmo: Trovare i componenti fortemente connessi in un grafo
```

```
def SCC(G):
   Stack C=[]
   for v in V(G)|Vis[v]==0:
     DFS_SCC(G, v, C, output)
def DFS_SCC(G, v, C, output):
   Vis[v]=1
   C.push(v)
   for u in v.neighbors_out|Vis[u] == 0 :
     DFS_SCC(G, u, C, output)
   if v è C-radice : // vedremo dopo come si fa
     X = []
     w=C.pop()
     X.append(w)
     while w!=v :
        w=C.pop()
        X.append(w)
      output.add(X)
   return output
```

Un nodo u non è C-radice se nella chiamata ricorsiva con radice u viene attraversato un arco (v, w) tale che w è stato già visitato ma il suo componente non ancora stabilito.

Esempio:

Se esiste (v, w) allora la C-radice z di C(w) deve essere un antenato di u e quindi $z, u, v, w \in C(w)$.

Per controllare se un nodo è una C-radice utilizziamo back per segnare il punto più indietro raggiungibile da un arco (v, w) in cui:

- $\bullet v$ un nodo dentro la chiamata di u
- \bullet w è un nodo già visitato ma con componente ancora non individuato

Inoltre utilizziamo un array CC in cui:

$$CC[u] = \begin{cases} 0 & \text{non visitato} \\ -t & \text{visitato al tempo } t \text{ ma con componente non identificato} \\ t & \text{componente a cui appartiene} \end{cases}$$

Date queste considerazioni possiamo riscrivere l'algoritmo precedente con costo O(n+m):

Algoritmo: Algoritmo di Tarjan

Input:

- G: grafo
- u: nodo radice
- CC: array per segnare i componenti
- S: Stack
- cont_n: contatore tempi di visita
- cont_comp: contatore componenti

```
def DFS_SCC(G, u, CC, S, cont_n, cont_comp):
```

```
cont_n+=1
CC[u] = -cont_n
S.push(u)
{\tt back=cont\_n}
for v in u.neighbors_out :
   if CC[v]==0 :
      b=DFS_SCC(G, v, CC, S, cont_n, cont_comp)
     back=min(b, back)
   elif CC[v] < 0:
      back=min(back,-CC[v])
if back==-CC[u] :
   cont_comp+=1
   w=S.pop()
   CC[w]=cont_comp
   while w!=u :
      w=S.pop()
      CC[w] = cont_comp
return back
```

1.10 BFS (Ricerca in ampiezza)

Distanza fra due nodi

La distanza fra due nodi x, y è definita come il minimo numero di archi in un cammino $x \to y$ e si scrive dist(x, y).

Esempio:

In questo caso dist(x, y) = 2.

1.10.1 Algoritmo della BFS

La BFS (breadth first search) è un metodo di visita di un grafo che consiste nel partire da un nodo e controllare prima tutti i nodi con distanza 1 (i vicini), poi tutti quelli con distanza 2 e così via. Con questo algoritmo siamo sicuri di sapere sempre la distanza minima di tutti i nodi dalla radice.

Viene implementato tramite un vettore dei padri inizializzato a -1 e usando un array Dist per segnare la distanza. Il costo dell'algoritmo è O(n+m).

```
Algoritmo: BFS
```

Dato un grafo G e due nodi x, y esiste sempre un nodo z vicino di y tale che:

$$dist(x, z) = dist(x, y) - 1$$

Se dist $(x,y) = 1 \implies z = x$

Esercizio esempio:

Modificare la BFS per contare anche il numero di cammini possibili $x \to y$ di lunghezza minima:

Algoritmo: Numero di cammini possibili tra due nodi di lunghezza minima

```
def BFS(G, x):
  nCamm[x]=1
   P[x]=x
   Queue Q
   Q.enqueue(x)
   while len(Q)!=0:
      v.dequeue()
      for w in v.neighbors :
         if P[w] == -1:
            Q.enqueue(w)
            Dist[w] = Dist[v] + 1
            P[w] = v
            nCamm[w]=1
         elif Dist[v] == Dist[w] -1 :
            nCamm[w]+=nCamm[v]
   return P, Dist, nCamm
```

1.10.2 Distanza fra insiemi di nodi

Se vogliamo trovare la distanza minima tra due insiemi di nodi X e Y dobbiamo trovare il minimo tra tutte le distanze che comprendano un nodo di X e uno di Y. Per fare ciò usiamo una versione modificata della BFS:

Algoritmo: Distanza tra insiemi di nodi

1.10.3 Grafi pesati

Definizione di peso

Un **grafo pesato** è un grafo in cui ogni arco ha associato un numero detto **peso**. Il peso è definito:

$$w: E(G) \to \mathbb{R}^+$$

Si definisce, al posto della distanza, il peso di un cammino scritto $\operatorname{dist}_w(x,y)$, cioè la somma tra i pesi di tutti gli archi percorsi in quel cammino, e la distanza diventa quindi il cammino con peso minimo.

Dato un cammino P il suo peso sarà:

$$w(P) = \sum_{e \in P} w(e)$$

Presi due nodi qualsiasi x, y vale che:

- 1. $dist_w(x, x) = 0$
- 2. $\operatorname{dist}_w(x,y) > 0 \iff x \neq y$
- 3. $\operatorname{dist}_w(x,y) \leq \operatorname{dist}_w(x,z) + \operatorname{dist}_w(z,y) \ \forall z \in V(G)$

Esempio:

In questo caso il cammino di peso minimo $\operatorname{dist}_w(x,y) = 1 + 3 + 4 = 8$.

1.10.4 Calcolare distanze pesate (Dijkstra)

Un problema con i grafi pesati è quello di non poter calcolare la distanza pesata tra due nodi, neanche se vicini perché potrebbe esserci un cammino con più archi ma peso minore.

Peso minimo

Dato un grafo pesato G e un nodo x, scriviamo $\alpha_i = w(x, v_i)$ per ogni nodo v_i vicino di x:

$$\min(\alpha_1, \dots, \alpha_k) = \alpha_i \iff \operatorname{dist}_w(x, v_i) = \alpha_i$$

Questa regola può essere generalizzata anche per un insieme per cui è nota la distanza da x, cioè dato un insieme R di vertici per cui è nota la distanza da x e (u,v) l'arco che minimizza $\operatorname{dist}_w(x,u)+w(u,v)$ con $e\in R \land v\notin R$ allora:

$$\operatorname{dist}_w(x,v) = \operatorname{dist}(x,u) + w(u,v)$$

In questo modo da un insieme R di nodi di cui è nota la distanza da un nodo x, si può sempre aggiungere a R un nodo vicino ad un qualsiasi nodo di R. Questo si può fare con un algoritmo chiamato Dijkstra:

Algoritmo: Dijkstra

La complessità è O(n(n+m)), ma può essere ottimizzato usando un min heap H per memorizzare gli archi:

Algoritmo: Dijkstra ottimizzato

```
def Dijkstra(G, x):
  Dist[x]=0
   R=set(x)
   for v in V(G):
      if v!=x:
      | H.insert(v, key=\infty)
      else :
        H.insert(v, key=0)
   while len(H)!=0:
      v=H.extract_min()// elimina anche da H
      Dist[v]=H.key(v)
      for u in v.neighbors :
         if u in H and Dist[u] > Dist[v] + w(v, u) :
            Dist[u] = Dist[v] + w(v, u)
            H.update_key(u, Dist[u])
   return Dist
```

Il costo di questa versione ottimizzata è di $O((n+m) \cdot \log n)$.

2

Algoritmi Greedy

Definizione di algoritmo Greedy

Un algoritmo greedy è un algoritmo che partendo da una soluzione non ottimale (solitamente vuota) controlla tutti i possibili passi che si possono fare per estendere la soluzione e per ogni passo se è fattibile viene aggiunto alla soluzione. Alla fine la soluzione trovata sarà sicuramente possibile ma va dimostrato che è ottimale.

Per dimostrare che la soluzione trovata è anche ottimale:

- 1. Dimostrare che la soluzione trovata rispetti le caratteristiche previste
- 2. Dimostrare che ogni istanza della soluzione (soluzione dopo ogni iterazione) è contenuta nella soluzione ottimale:
 - Supponendo che l'istanza Sol_k sia contenuta nella soluzione ottimale Sol^* bisogna dimostrare che anche l'istanza Sol_{k+1} sia contenuta in una soluzione ottimale. Di solito questa soluzione ottimale consiste in $(\operatorname{Sol}^* x) \cup y | x \in \operatorname{Sol}^* \wedge y \notin \operatorname{Sol}^*$
- 3. Dimostrare che la soluzione output dell'algoritmo sia uguale alla soluzione ottimale che la contiene

Esempio:

Dato un insieme I di intervalli $I_1, ..., I_n$ nella forma $I_i = [a_i, b_i]$, scrivere un algoritmo che trovi il numero massimo di intervalli disgiunti possibile.

Per farlo prima ordiniamo gli intervalli in base alla fine in modo crescente.

Algoritmo: Massimo numero di intervalli disgiunti

Input:

• I: insieme di intervalli

def max_int_disj(I):

```
I.sort(key= lambda x[b]:x)
Sol=set()
right_bound=-
for Int in I :
    if Int[a]>right_bound :
        Sol.add(Int)
        right_bound=Int[b]
return Sol
```

Dimostrazione:

- 1. La soluzione contiene sicuramente intervalli disgiunti, quindi rispetta le condizioni
- 2. Supponiamo esista una soluzione ottimale Sol^* per cui $Sol_k \subseteq Sol^*$:
 - Caso base: $Sol_0 = \emptyset \subset Sol^*$
 - Ipotesi induttiva: Supponiamo sia vero per qualsiasi soluzione precedente a Sol_k , dobbiamo dimostrare che $Sol_k \subseteq Sol^* \implies Sol_{k+1} \subseteq Sol^*$
 - Dimostrazione induttiva:

$$\mathrm{Sol}_{k+1} = \begin{cases} \mathrm{Sol}_k & \exists I_i \in \mathrm{Sol}_k | I_{k+1} \cap I_i \neq \emptyset \\ \mathrm{Sol}_k \cup I_{k+1} & \forall I_i \in \mathrm{Sol}_k \implies I_i \cap I_{k+1} = \emptyset \end{cases}$$

Nel primo caso $\operatorname{Sol}_{k+1} = \operatorname{Sol}_k \subseteq \operatorname{Sol}^*$ Nel secondo caso se $\operatorname{Sol}_{k+1} \not\subseteq \operatorname{Sol}^* \implies \exists I_j \in \operatorname{Sol}^* \wedge I_j \notin \operatorname{Sol}_k | I_j \cap I_{k+1} \neq \emptyset$, inoltre j > k+1 perché sennò I_j sarebbe già in Sol_k e quindi in $\operatorname{Sol}_k + 1$. Essendo j > k+1 nell'algoritmo verrà preso prima I_{k+1} di I_j quindi $(\operatorname{Sol}^* - I_j) \cup I_{k+1}$ è una soluzione ottimale che contiene Sol_{k+1} .

3. Supponendo che l'output dell'algoritmo Sol_n sia diverso dalla soluzione ottimale Sol^* allora $\exists I_i \in \operatorname{Sol}^* | I_i \notin \operatorname{Sol}_n$ ma per cui $I_i \cap I_j = \emptyset \ \forall I_j \in \operatorname{Sol}_n$ essendo $\operatorname{Sol}_n \subseteq \operatorname{Sol}^*$, ma allora alla i-esima iterazione, precedente alla fine dell'algoritmo, I_i dovrebbe essere in Sol_n quindi $\operatorname{Sol}_n = \operatorname{Sol}^*$

2.1 Alberi di copertura

Minimum Spanning Tree

Un albero di copertura in un grafo G è un sottografo T aciclico e tale che V(T) = V(G). Si chiama **Minimum Spanning Tree (MST)** un albero di copertura con peso minimo. Un qualsiasi sottografo connesso che contiene tutti i nodi e ha peso minimo è sempre un MST.

2.1.1 Algoritmo di Kruskal

L'algoritmo di Kruskal permette, dato un grafo connesso, di ottenere l'MST. Per farlo dobbiamo ordinare gli archi per peso crescente.

```
Algoritmo: Algoritmo di Kruskal
```

```
def Kruskal(G):
    E.sort(key= w(e):e)
    Sol=set()
    for e in E(G):
        | if Sol U e non contiene cicli:
        | Sol.add(e)
```

Dimostrazione:

- 1. G è connesso quindi $\forall v \in V(G)$ esiste almeno un arco che collega v preso dal ciclo, quindi $V(\operatorname{Sol}_m) = V(G)$. Per lo stesso principio Sol_m è anche connesso, quindi Sol_m è un albero di copertura di G.
- 2. Supponiamo che esista una soluzione ottimale Sol* per cui Sol_k \subseteq Sol*:
 - Caso base: $Sol_0 = \emptyset \subset Sol^*$
 - Ipotesi induttiva: Supponiamo sia vero per qualsiasi soluzione precedente a Sol_k , dobbiamo dimostrare che $Sol_k \subseteq Sol^* \implies Sol_{k+1} \subseteq Sol^*$
 - Dimostrazione induttiva:

$$\operatorname{Sol}_{k+1} = egin{cases} \operatorname{Sol}_k & \operatorname{Sol}_k \cup e_{k+1} \text{ contiene cicli} \\ \operatorname{Sol}_k + e_{k+1} & \operatorname{Sol}_k \cup e_{k+1} \text{ non contiene cicli} \end{cases}$$

Nel primo caso $\mathrm{Sol}_{k+1} = \mathrm{Sol}_k \subseteq \mathrm{Sol}^*$ Nel secondo caso se $\mathrm{Sol}_{k+1} \not\subseteq \mathrm{Sol}^* \implies \exists e_j \in \mathrm{Sol}^* \wedge e_j \notin \mathrm{Sol}_k | \mathrm{Sol}^* \cup e_j \rangle$ ciclico, ma visto che $e_j \notin \mathrm{Sol}_k$ ed essendo gli archi in ordine di peso, vuol dire che $w(e_{k+1}) \leq w(e_j)$ e quindi $(\mathrm{Sol}^* - e_j) \cup e_{k+1}$ è una soluzione ottimale che contiene Sol_{k+1} .

3. Esiste quindi una soluzione Sol^* che contiene l'output dell'algoritmo Sol_m ed essendo Sol_m un albero di copertura allora $Sol_m = Sol^*$.

2.2 Grafi con pesi negativi

Se consideriamo un grafo pesato G con pesi anche negativi, cioè:

$$w: E(G) \to \mathbb{R}$$

Per trovare un sotto-grafo connesso H che contiene tutti i vertici con peso minimo dobbiamo modificare l'algoritmo precedente:

```
Algoritmo: Algoritmo di Kruskal con pesi negativi def Kruskal_neg(G):
```

```
E.sort(key= w(e):e)
Sol=\{x \in E(G)|w(x) < 0\}
for (x,y) in E(G):
\begin{array}{c|c} & \text{if } \nexists \text{ cammino } (x \rightarrow y) \text{ in Sol :} \\ & & | & \text{Sol.add((x,y))} \\ & & \text{return Sol} \end{array}
```

2.3 Algoritmo di Prim

L'algoritmo di Prim permette, dato un grafo connesso, di ottenere l'MST. Per farlo dobbiamo ordinare gli archi per peso crescente.

Algoritmo: Algoritmo di Prim

Il costo computazionale di questo algoritmo è O(nm).

Dimostrazione:

- 1. G è connesso quindi $\forall v \in V(G)$ esiste almeno un arco che collega v preso dal ciclo, quindi $V(\operatorname{Sol}_m) = V(G)$. Per lo stesso principio Sol_m è anche connesso, quindi Sol_m è un albero di copertura di G.
- 2. Supponiamo che esista una soluzione ottimale Sol^* per cui $Sol_k \subseteq Sol^*$:
 - Caso base: $Sol_0 = \emptyset \subset Sol^*$
 - Ipotesi induttiva: Supponiamo sia vero per qualsiasi soluzione precedente a Sol_k , dobbiamo dimostrare che $Sol_k \subseteq Sol^* \implies Sol_{k+1} \subseteq Sol^*$
 - Dimostrazione induttiva:

$$\mathrm{Sol}_{k+1} = \begin{cases} \mathrm{Sol}_k & \nexists v | Vis[v] = 0 \\ \mathrm{Sol}_k + e_{k+1} & \exists e_{k+1} = (u,v) | Vis[v] = 0 \wedge Vis[u] = 1 \end{cases}$$

Nel primo caso $Sol_{k+1} = Sol_k \subseteq Sol^*$

Nel secondo caso se $\operatorname{Sol}_{k+1} \not\subseteq \operatorname{Sol}^* \Longrightarrow \exists e_j \in \operatorname{Sol}^* \land e_j \notin \operatorname{Sol}_k | e_j = (x, v)$ per un qualche nodo x, ma visto che $e_j \notin \operatorname{Sol}_k$ ed essendo gli archi in ordine di peso, vuol dire che $w(e_{k+1}) \leq w(e_j)$ e quindi $(\operatorname{Sol}^* - e_j) \cup e_{k+1}$ è una soluzione ottimale che contiene Sol_{k+1} .

3. Esiste quindi una soluzione Sol^* che contiene l'output dell'algoritmo Sol_m ed essendo Sol_m un albero di copertura allora $Sol_m = Sol^*$.

3

Algoritmi divide et impera

Gli algoritmi divide et impera consistono nel dividere il problema totale in sotto-problemi che vengono risolti ricorsivamente. Per calcolare il costo computazionale di questi problemi si utilizzano le equazioni di ricorrenza.

3.1 Teorema principale

Data un'equazione di ricorrenza nella forma:

$$T = \begin{cases} T(n) = aT(\frac{n}{b}) + f(n) \\ T(1) = \Theta(1) \end{cases}$$

Con $a \ge 1$ e b > 1.

Per risolverla ci sono vari casi:

$$T(n) = \begin{cases} \Theta(n^{\log_b a}) & \text{se } f(n) = O(n^{\log_b (a) - \epsilon}) \\ \Theta(n^{\log_b a} \cdot \log n) & \text{se } f(n) = \Theta(n^{\log_b a}) \\ \Theta(f(n)) & \text{se } f(n) = \Omega(n^{\log_b (a) + \epsilon}) \text{ e } a \cdot f(\frac{n}{b}) \leq c \cdot f(n) \end{cases}$$

3.2 Esercizi divide et impera

3.2.1 Sottoarray di somma massima

Preso un array in input composto da numeri interi, trovare in $\Theta(n \log n)$ il sottoarray di somma massima.

Soluzione:

```
Algoritmo: Sottoarray di somma massima
```

```
def max_subarray(A, a, b):
    if a==b:
        return A[a],0
    m=(a+b)//2
    sx=max_subarray(A, a, m)
    dx=max_subarray(A, m+1, b)
    somma, pref, suff=0
    for i in range(m, a):
        somma+=A[i]
        pref=max(pref, somma)
    somma=0
    for i in range(m+1, b):
        somma+=A[i]
        suff=max(suff, somma)
    return max(sx, dx, pref+suff)
```

Costo computazionale:

$$\begin{cases} T(n) = 2T(\frac{n}{2}) + \Theta(n) \\ T(1) = \Theta(1) \end{cases}$$

$$n^{\log_b a} = n^{\log_2 2} = n \implies f(n) = \Theta(n^{\log_b a}) \implies T(n) = \Theta(n \log n)$$

3.2.2 Valore singolo in un array

Dato un array ordinato di lunghezza dispari in cui ogni valore compare 1 o 2 volte, trovare in $\Theta(\log n)$ un valore che appare una sola volta.

Soluzione:

```
Algoritmo: Valore singolo in un array
```

```
def single(A, a, b):
  if a==b :
   | return A[a]
  m = (a+b)//2
  if A[m]!=A[m+1] and A[m]!=A[m-1]:
   return A[m]
  // nei 4 casi vado sempre dove la parte rimanente da controllare è
  dispari
  if A[m] == A[m+1] :
     if m\%2!=0:
     return single(A, a, m-1)
     else :
     | return single(A, m+2, b)
  elif A[m] == A[m-1]:
     if m\%2 == 0 :
      return single(A, a, m-2)
     else :
        return single(A, m+1, b)
```

Costo computazionale:

$$\begin{cases} T(n) = T(\frac{n}{2}) + \Theta(1) \\ T(1) = \Theta(1) \end{cases}$$

$$n^{\log_b a} = n^{\log_2 1} = n^0 = 1 \implies f(n) = \Theta(n^{\log_b a}) \implies T(n) = \Theta(\log n)$$

3.3 Elemento maggioritario in un array

Dato un array trovare in $\Theta(n \log n)$ un elemento che appare più di $\frac{n}{2}$ volte all'interno dell'array. Soluzione:

Algoritmo: Elemento maggioritario in un array

```
def major(A, a, b):
  if a==b :
   | return A[a]
  m = (a+b)//2
  sx=major(A, a, m)
  dx=major(A, m+1, b)
  count_sx, count_dx=0
  for i in range(a,b) :
     if sx!=None and A[i]==sx :
      count_sx+=1
     if dx!=None and A[i]==dx :
        count_dx+=1
  if count_sx>=m+1 :
   return sx
  if count_dx > = m+1:
   return dx
  return None
```

Costo computazionale:

$$\begin{cases} T(n) = 2T(\frac{n}{2}) + \Theta(n) \\ T(1) = \Theta(1) \end{cases}$$

$$n^{\log_b a} = n^{\log_2 2} = n \implies f(n) = \Theta(n^{\log_b a}) \implies T(n) = \Theta(n \log n)$$

4

Programmazione dinamica

La programmazione dinamica è un approccio algoritmico basato sulla risoluzione di un problema partendo da soluzioni dello stesso problema ma di dimensioni più piccole. A differenza dell'approccio divide et impera in cui il problema di solito si risolve tramite la ricorsione, nella programmazione dinamica si usano solitamente matrici per considerare tutti i casi possibili.

4.1 Esercizi di programmazione dinamica

4.1.1 Ottimizzare lo spazio su un disco

Dato un disco di capacità C e n file di dimensione $s_1, ..., s_n$, trovare l'insieme di file che ottimizza lo spazio del disco (occupa più spazio possibile).

Soluzione:

Definiamo una matrice T di grandezza $(n+1) \times (C+1)$ in cui:

- $T[k,\alpha]=$ capacità massima che si può riempire in un disco con capacità α e usando i primi k file
- $T[0, \alpha] = 0 \ \forall \alpha$
- $T[k,0] = 0 \ \forall k$

Gli altri valori della matrice verranno riempiti:

$$T[k,\alpha] = \begin{cases} \max(T[k-1,\alpha], T[k-1,\alpha-s_k] + s_k) & s_k \le \alpha \\ T[k-1,\alpha] & s_k > \alpha \end{cases}$$

Algoritmo: Ottimizzare lo spazio su un disco

Input:

- C: capacità del disco
- S: insieme contenente i pesi dei file

def DiskSpace(C, S):

Il costo dell'algoritmo è O(nC) ma l'input è $n\log(C)$ quindi l'algoritmo è esponenziale rispetto all'input.

4.1.2 Cammini colorati su una scacchiera

In una scacchiera $n \times n$ in cui ogni casella è colorata di rosso o di blu, cioè:

$$C[i,j] = \begin{cases} \text{rosso} \\ \text{blu} \end{cases}$$

Una pedina che parte da (0,0) deve arrivare a (n,n) potendo attraversare solo caselle blu e potendosi muovere solo in basso o a destra. Si vuole sapere il numero di cammini possibili.

Soluzione:

Definiamo una matrice T di grandezza $n \times n$ in cui:

- T[i,j] = numero di cammini possibili da (0,0) a (i,j)
- $T[0,j] = \begin{cases} 1 & T[0,j-1] = 1 \land C[0][j] = \text{blu} \\ 0 & \text{altrimenti} \end{cases}$

•
$$T[i,0] = \begin{cases} 1 & T[i-1,0] = 1 \land C[i][0] = \text{blu} \\ 0 & \text{altrimenti} \end{cases}$$

Gli altri valori della matrice verranno riempiti:

$$T[i,j] = T[i-1,j] + T[i,j-1]$$

Algoritmo: Cammini colorati su una scacchiera

```
def nCamm(C):
  n=len(C)
  T=n\times n// inizializzata a 0
  if C[0][0]==rosso :
   return 0
  else :
     T[0][0]=1
  for j in range(n) : // riempe la prima riga
     if T[0][j-1]==1 and [0][j]==blu:
        T[0][j]=1
     else :
        T[0][j]=0
  for i in range(n) : // riempe la prima colonna
     if T[i-1][0] == 1 and [i][0] == blu:
        T[i][0]=1
     else :
        T[i][0]=0
  for i in range(1,n):
     for j in range(1,n):
        T[i][j]=T[i-1][j]+T[i][j-1]
  return T[n][n]
```

4.1.3 Ottimizzare il peso in uno zaino

Dato uno zaino di capacità C e n oggetti di peso $p_1, ..., p_n$ e valore $v_1, ..., v_n$, trovare l'insieme di oggetti che massimizzano il valore senza superare la capacità dello zaino.

Soluzione:

Definiamo una matrice T di grandezza $(n+1) \times (C+1)$ in cui:

- $T[k,\alpha]$ = valore massimo ottenibile in uno zaino di peso α usando i primi k oggetti
- $T[0, \alpha] = 0 \ \forall \alpha$
- $T[k,0] = 0 \ \forall k$

Gli altri valori della matrice verranno riempiti:

$$T[k,\alpha] = \begin{cases} \max(T[k-1,\alpha], T[k-1,\alpha-p_k] + v_k) & p_k \le \alpha \\ T[k-1,\alpha] & p_k > \alpha \end{cases}$$

Algoritmo: Ottimizzare il peso in uno zaino

```
def OttZaino(C, P, V):
  n=len(P)
  T=(n+1)\times(C+1)// inizializzata a 0
  for i in range(1,len(V)) :
     for j in range(1,C):
        if P[i]>j :
         T[i][j]=T[i-1][j]
        else :
           T[i][j]=max(T[i-1][j],T[i-1][j-CP[i]]+V[i])
  col=C
  Sol=set()
  for k in range(n,2,-1):
     if T[k][col]!=T[k-1][col] :
        Sol.add(k)
        col=P[k]
  if T[1][col]!=0 :
     Sol.add(1)
  return Sol, T[n][C]
```

4.1.4 Cammino di peso massimo

Dato un grafo G diretto e aciclico, trovare il peso massimo di un cammino $x \to z$. Soluzione:

Definiamo una matrice T di grandezza $(n+1) \times n$ in cui:

• T[k,z]= peso massimo di un cammino $x\to z$ passando per massimo k archi

•
$$T[0,z] = \begin{cases} 0 & z=x \\ \text{None} & z \neq x \end{cases}$$

Gli altri valori della matrice verranno riempiti:

$$T[k, z] = \max(T[k-1, z], T[k-1, v_i] + w(v_i, z) \ \forall (v_i, z) \in E(G))$$

Algoritmo: Cammino di peso massimo

```
def CammMax(G, x, z):
  n=len(V(G))
  T=(n+1)\times n// inizializzata con None
  for v in V(G) :
     if v==z :
        T[0][v]=0
     else :
      T[0][v]=None
  for k in range(1,n-1):
     for v in V(G) :
        T[k][v]=T[k-1][v]
        for u in v.neighbors_in :
           T[k][v]=max(T[k][v],T[k-1][u]+w(u,v))
  peso=T[n-1][z]
  Sol=set()
  for z!=x:
     if T[k][z] == T[k-1][z]:
        k=1
        continue
     for u in z.neighbors_in :
        if T[k][z]=T[k-1][u]+w(u,v):
           Sol.add((u,v))
           z=u
           k=1
           break
  return Sol, peso
```