ИСПОЛЬЗОВАНИЕ ИНСТРУМЕНТА НЕЙРОННЫХ СЕТЕЙ ДЛЯ ПРИОРИТЕТНОЙ ОБРАБОТКИ И ПЕРЕРАСПРЕДЕЛЕНИЯ ТРАФИКА МУЛЬТИСЕРВИСНЫХ СЕТЕЙ СВЯЗИ

Барташевич Павел Викторович, Семенов Евгений Сергеевич ГОУ ВПО «Волгоградский государственный университет»

Увеличение объема передаваемой информации и строгие требования к качеству обслуживания, порожденные ростом мультимедийного трафика и трафика, передаваемого в реальном режиме времени в сетях с коммутацией пакетов, потребовало использования новых механизмов и инструментов для приоритетной обработки разнородной информации на стороне сервис провайдеров. Динамично меняющаяся структура сети, рост числа абонентов и услуг являются основными критериями выбора инструмента нейронных сетей для разработки модели обработки трафика. Бурное развитие элементной базы и производительности микропроцессоров позволяет нейронной сети разработанные реализовать модель И использовать структуры на практике.

Обобщенная структура сети связи сервис провайдера

Современные сети связи с коммутацией пакетов в основном используют на сетевом уровне модели ВОС протокол IPv4, а в будущем протокол IPv6, в основе глобальной сети связи так же лежит протокол IP, поэтому модель обработки трафика с использованием инструмента нейронной сети базируется на основе протокола IP. Структура сети связи сервис провайдера представляется иерархической и делится на уровни:

- Уровень доступа представлен коммутаторами второго уровня модели ВОС;
- Уровень распределения представлен коммутаторами второго уровня с повышенной производительностью;
- Уровень магистрали представлен высокопроизводительными коммутаторами второго и третьего уровня модели ВОС.

Информация между различными подсетями и сетями в рамках сети связи с коммутацией пакетов передается с помощью маршрутизаторов деинкапсулирующих пакетов данных до третьего уровня модели ВОС. Аппарат нейронной сети применяется на сетевом уровне модели ВОС и использует заголовок IP-пакета для выделения информации и формирования входов нейронной сети. Обобщенная структура сети связи сервис провайдера с механизмом нейронной сети представлена на рис. 1.

Рис. 1. Обобщенная структура сети связи с аппаратом нейронной сети

Модель нейронной сети для обработки трафика

Модель нейронной сети для обработки трафика состоит из трех модулей:

- 1. модуль прогнозирования нейронной представлен сетью, осуществляющей изменения интерфейс прогноз нагрузки на маршрутизатора за определенный промежуток времени. Входами нейронной сети являются сведения из буфера накопления, временной интервал прогнозирования и индикатор интерфейса, для которого осуществляется прогноз; выходом нейронной сети является прогноз нагрузки на интерфейс в определенный временной интервал.
- 2. модуль накопления представлен таймером временных интервалов и буфером суммирования размеров IP-пакетов за определенный промежуток времени.

3. модуль приоритезации — представлен нейронной сетью, осуществляющей выбор интерфейса для пересылки пакета на основе сведений из заголовка IP-пакета и сведений, полученных от модуля прогнозирования. Входами сети являются IP-адрес отправителя, IP-адрес получателя, протокол транспортного уровня модели ВОС, тип сервиса, информация прогноза по интерфейсам, ассоциированным с данной сетью. Выходом сети является идентификатор интерфейса, в который будет направлен пакет.

Модель нейронной сети обработки трафика представлена на рис. 2.

Рис. 2. Модель нейронной сети обработки трафика

Принцип работы нейронной сети обработки трафика

Маршрутизаторы работают протоколе на определенном маршрутизации, наиболее распространенных протоколов среди маршрутизации выделяют протоколы RIP, OSPF, EIGRP. Принцип работы нейронной сети обработки трафика заключается в выборе приоритетного направления на основе входов сети, среди существующих направлений или выборе резервного маршрута. Маршрутизаторы в случае одинаковой стоимости маршрутов вне зависимости от протокола маршрутизации осуществляют балансировку маршрутов, отправляя один пакет на один интерфейс, а следующий пакет на другой интерфейс, нейронная сеть осуществляет выбор маршрута на основе целого ряда входных параметров и результатов прогнозируемой нагрузки на канал связи.

Выводы

Разработанная модель нейронной сети обработки трафика позволяет избежать перегрузок в сети, осуществлять перераспределение трафика и выбор наилучшего маршрута. Данная модель может применяться на узлах маршрутизации сервис провайдеров и реализовываться в виде программного обеспечения маршрутизатора или на основе нейропроцессоров.