Contents

Matrix Problems	1
Matrix by Vector Multiplication	. 2
Interchanging the Loops	. 2
Original with Caching	. 2
Matrix by Matrix Multiplication	. 3
Locality	3
Matrix by Vector Multiplication	. 3
Improving Locality	. 5
Matrix Multiplication	. 5
Matrix Problems • Matrices are very important for certain types of computationally-inte	ensive
problems - Mostly problems related to the simulation of physical systems	
 Wind tunnel simulation Nuclear weapons simulation Weather forecasting 	

- etc
- Matrices are commonly used to store the coefficients of variables in large sets of simultaneous equations
- Programs contain many operations on large matrices
 - Matrix multiplication
 - Matrix inversion
 - Gaussian elimination
 - etc
- $\bullet~$ Data sets for matrix problems are typically large
 - Huge matrices with billions of elements
- Simulation of physical systems can be done at different levels of detail
 - Usually want as much detail as possible
 - Amount of detail is limited by processing speed/memory
 - Faster computation allows more details

- Many matrix problems can be parallelised extremely well
 - Especially matrix multiplication
 - But also others
- Historically, parallel computing was almost entirely focused on executing large matrix problems in parallel

Matrix by Vector Multiplication

```
y = x * A

• x, y are vectors and A is a matrix

for(i = 0; i < N; i++) {
    y[i] = 0.0;
    for(j = 0; j < N; j++) {
        y[i] += x[j] * A[i][j];
    }
}</pre>
```

Interchanging the Loops

```
for(j = 0; j < N; j++) {
    y[i] = 0.0;
    for(i = 0; i < N; i++) {
        for(j = 0; j < N; j++) {
            y[j] += x[i] * A[j][i];
        }
    }
}</pre>
```

Original with Caching

```
// cache y[i] in a local variable
for(i = 0; i < N; i++) {
    sum = 0.0;
    for(j = 0; j < N; j++) {
        sum += x[j] * A[i][j];
    }
    y[i] = sum;
}</pre>
```

Matrix by Matrix Multiplication

```
C = A * B
```

• A, B and C are matrices

Locality

- A common pattern arises in matrix operations
 - Simple way to write the code is to scan over all the rows (or columns) with a single loop
 - But this can result in poor reuse of values in the arrays
- Array elements are pulled into the cache when first used
- If those elements will be reused by the algorithm, we want to reuse them from the cache
 - Want to avoid reloading data from memory
- Rewriting the code to reuse data usually involves
 - Reordering loop iterations or
 - Reordering data in memory

Matrix by Vector Multiplication

Halve number of times x must be loaded

```
for(i = 0; i < N; i+=2) {
    sum0 = 0.0;
    sum1 = 0.0;
    for(j = 0; j < N; j++) {
        sum0 += x[j] * A[i][j];
        sum1 += x[j] * A[i+1][j];
    }
    y[i] = sum0;
    y[i+1] = sum1;
}</pre>
```

Quarter number of times x must be loaded

```
for(i = 0; i < N; i+=4) {
   sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0;
   for(j = 0; j < N; j++) {</pre>
```

```
sum0 += x[j] * A[i][j];
        sum1 += x[j] * A[i+1][j];
        sum2 += x[j] * A[i+2][j];
        sum3 += x[j] * A[i+3][j];
    }
    y[i] = sum0;
    y[i+1] = sum1;
    y[i+2] = sum2;
    y[i+3] = sum3;
}
Reduce loading of x to cache by factor of k
for(i = 0; i < N; i+=k) {</pre>
    for(tmp = 0; tmp < k; tmp++) {</pre>
        sum[tmp] = 0.0;
    for(j = 0; j < N; j++) {
        for(tmp = 0; tmp < k; tmp++) {</pre>
             sum[tmp] += x[j] * A[i+tmp][j];
    }
    for(tmp = 0; tmp < k; tmp++) {</pre>
        y[i+tmp] = sum[tmp];
}
Make it work if N is not a multiple of k
for(i = 0; i < N; i+=k) {</pre>
    stop = (i+k < N) ? k : N-1;
    for(tmp = 0; tmp < stop; tmp++) {</pre>
        sum[tmp] = 0.0;
    }
    for(j = 0; j < N; j++) {
        for(tmp = 0; tmp < stop; tmp++) {</pre>
             sum[tmp] += x[j] * A[i+tmp][j];
        }
    }
    for(tmp = 0; tmp < stop; tmp++) {</pre>
        y[i+tmp] = sum[tmp];
}
```

Improving Locality

- This technique can be used to reduce cache misses on x a lot
 - i.e. close to the minimum possible
- However, the inner loop that does the "blocking" of the x vector accesses different elements of the y vector
 - If we keep increasing k (the "blocking factor") we will eventually get a lot of cache misses on accesses to the y vector
- So how big should k be?
- The "optimal" value of k will be one that keeps as much as feasible of x in cache
 - Obvious answer is as much as will fit in cache
- However
 - Cache is also used by other data
 - Multiple levels of cache
 - With k=4, we already achieve 75% of possible benefit
- \bullet Best choice of k is usually difficult to find analytically
- In practice auto-tuners are often used
 - An auto-tuner is a program that is used to tune another program
 - Auto-tuner tries out different values of constants that affect performance
 - * Compile, run, time, feedback, start again
 - Auto-tuners often use machine learning techniques
 - * Huge search space of possible solutions

Matrix Multiplication

- Matrix multiplication (matmul) is similar to matrix vector multiplication
 - Multiply two matrices to get a result which is a matrix
- For $\mathbb{N} \times \mathbb{N}$ matrices, there will be $O(\mathbb{N}^3)$ operations
 - Using the straightforward algorithm
 - More computationally internsive than matrix-vector multiplication
 - Large ratio of computation to memory ops

```
for(i = 0; i < N; i++) {
  for(j = 0; j < N; j++) {
    sum = 0;
    for(k = 0; k < N; k++) {</pre>
```

```
sum += a[i][k] * b[k][j];
}
c[i][j] = sum;
}
```