

Developing a Data Warehouse and Business Intelligence System

DUNKIN DONUTS

MIS 633-A Team-5 **Team Members:**

- Sai Mounish Ramisetti
- Vyshnavi Damulurii
- Pavan Kumar Muthyam
- Balu Aryan Bachu
- Javeed Shaik

Professor:Joseph Morabito

Introduction:

- ☐ Dunkin' Donuts is a global leader in the quick-service restaurant industry, with over 12,900 restaurants in 40 countries
- ☐ The company generates vast amounts of data from its various operations, including sales transactions, customer interactions, and inventory management.
- ☐ To effectively manage this data and derive actionable insights, Dunkin' Donuts is embarking on a project to develop a comprehensive data warehouse and business intelligence system.

Project Objectives

- ☐ Establish a centralized repository of Dunkin' Donuts data from disparate sources.
- ☐ Implement a robust data warehouse architecture to ensure data integrity, security, and scalability.
- ☐ Develop a business intelligence system to provide users with self-service access to data visualizations, dashboards, and reports.
- Enable data-driven decision-making across all levels of the organization.

Business Dimensional Lifecycle

Opportunity Matrix

Business Process / Event	Sales	Logistics / Delivery	Customer Service / Marketing	Operations / Finance
1. Walk-In Transactions			X	Х
2. Mobile Order Transactions		X		
3. Processing Walk-In Transactions	X			
4. Processing Supplier Transactions	X			
5. Restocking Inventory		×		×
6. Priority Customer Identification			Х	

High Level DW Bus Matrix

Business Process / Event	Date	Product	Payment Method	Timestamp	Promo Discount
1. Walk-In Transactions	Х	Х	Х	х	Х
2. Shipping Sales Transactions	Х	Х	Х		Х
3. Processing In-store Transactions	Х	Х	Х		Х
4. Processing Shipping Transactions	Х	Х	Х		Х
5. Restocking Inventory		Х	Х		
6. Priority Customer Identification				Х	

Confirmed Dimensions

Prioritization Grid

Data Transformation

After extraction, the information should be changed. For example, bringing together information types, managing spelling blunders, wiping out information uncertainty, and parsing into standard configurations. Information change is normally the most intricate part. It is additionally the longest advance in ETL improvement. The scope of information change is extremely wide. The interaction is to change the information from basic information type to very intricate information cleaning innovation.

(7) Data Transformation Rules:

- 1. Only specific data columns are loaded
- 2. Unified coding
- 3. Reordering improves query performance
- 4. Merge data sources and remove duplicates
- 5. Row column Transformation
- 6. Merge duplicate columns
- 7. Data validation

Logical Fact Diagram

High Level Data Model

Star Schema of Walk-In Orders Fact

Star Schema of Mobile Orders Fact

Dimension Attribute Description: Store Dimension

Name	Description	Cardinality	Slowly Changing Dimension Policy	Sample Values
Store id	ID number assigned for the store.	5678	No Update	1, 2, 3, 4, 5, 6, 7, 8, 9 5678.
Name	Name of the Store	5678	Type 2	Union 33, Hoboken Rail Station,
City	City where the store is located.	967	Type 2	Hoboken, Los Angeles,
State	State where the store is located.	12	Type 2	New Jersey, Florida,
Operating Hours	Opening and Closing time of the store.	8	Type 1	6:00 – 18:00, 8:00 – 20:00,
Manager Name	Name of the Store Manager.	3	Type 1	Michael Ross, Stuart Radley,
Employee Count	No. of employees working at the store.	х	Type 1	5,8,4

Conformed Dimensions

The Dimensions that are common between all the facts are called Confirmed Dimensions. In our Dunkin Donuts DW, the following are the confirmed Dimensions:

- ☐ Product
- □ Date
- □ Timestamp
- Mode of Payment
- ☐ Promo Discount

Conformed Dimensions (cont'd.)

Transformation Rules

A data transformation involves converting a collection of data values from the data format used by a source data system to the data format employed by a destination data system.

Rule Type	Paraphrased Description
Move	Copy data from source to destination without any transformation.
Transform	Convert data from source to match the destination format.
Default	Assign default values to destination fields when source values are missing.
Derive	Calculate destination values based on source data using arithmetic or other rules.
Drop	Exclude specific fields from the source data when loading into the destination.
Lookup	Enrich destination data by matching source values to a reference table.

OLAP MDDB Cube

Order Type, Product Type, and Payment Method.

OLAP MDDB Cube (cont.)

OLAP MDDB Cube (cont.)

Roll-Up

Slice

Business Intelligence

BI will enable Dunkin' Donuts to:

- ☐ Dunkin' Donuts uses BI to analyze sales data by menu item, location, and time of day to identify popular items and areas for potential expansion.
- ☐ By analyzing historical sales data and current demand trends, Dunkin' Donuts can optimize its inventory levels to reduce waste and ensure that products are always in stock.
- ☐ Dunkin' Donuts can use BI to analyze customer behavior and preferences to develop targeted marketing campaigns and personalize customer experiences.
- ☐ BI will help Dunkin' Donuts to streamline its operations, reduce costs, and improve customer service.

Executive Dashboard using Tableau

Types of products available in each store

Size indicates sales of the store

Sales comparison between Wednesday and Sunday

Size indicates sales of each store on sunday

Sales Manager Dashboard

Top 10 products by sales					
Sustainably Grown Organic Lg	Latte	Serenity Green Tea Lg	Ouro	Store 32-20 Broad	
Dark chocolate Lg	Jamaican Coffee River Lg			Street 122 E	
		Earl Grey	Rg	Broad	
Morning Sunrise Chai Lg	Brazilian Rg			175 8t Avenu	
morning barriot that Eg	braziliali ky	Traditiona	al Blend		
		Chai Rg		183 W Street	
				224 E	
				Street	
				604 Ui	

Top 3 products by sales in each store

Store Addre.	. Product		
32-20	Sustainably Grown		
Broadway	Dark chocolate Lg		
	Earl Grey Rg		
100 Church	Sustainably Grown		
Street	Dark chocolate Lg		
	Earl Grey Rg		
122 E	Sustainably Grown		
Broadway	Dark chocolate Lg		
	Earl Grey Rg		
175 8th	Sustainably Grown		
Avenue	Dark chocolate Lg		
	Earl Grey Rg		
183 W 10th	Sustainably Grown		
Street	Dark chocolate Lg		
	Earl Grey Rg		
224 E 57th	Sustainably Grown		
Street	Dark chocolate Lg		
	Earl Grey Rg		
604 Union	Dark chocolate Lg		
Street	Sustainably Grown		

Conclusion:

- •A data warehouse and business intelligence system can provide a number of benefits to an organization, including:
 - Improved decision-making
 - Increased efficiency
 - Reduced costs
 - Enhanced customer satisfaction
- •The success of a data warehouse and business intelligence system depends on several factors, including:
 - Careful planning and design
 - Data quality
 - User adoption
- •Organizations that are considering implementing a data warehouse and business intelligence system should carefully consider their needs and goals, and develop a comprehensive plan for success.

Thank you for your Time!!