数值代数实验报告 7

Chase Young

2023年12月27日

1 上机习题 1

1.1 问题描述

求实对称三对角阵的全部特征值和特征向量。

- (1) 用 C++ 编制利用过关 Jacobi 方法求实对称三对角阵全部特征值和特征向量的通用子程序。
- (2) 利用你所编制的子程序求 50, 60, 70, 80, 90, 100 阶矩阵

$$\mathbf{A} = \begin{pmatrix} 4 & 1 & 0 & 0 & \cdots & 0 \\ 1 & 4 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 4 & 1 & \cdots & 0 \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 4 & 1 \\ 0 & 0 & \cdots & 0 & 1 & 4 \end{pmatrix}$$

的全部特征值和特征向量。

1.2 程序介绍

本题主要使用过关 Jacobi 方法求解实对称三对角矩阵 A 的全部特征值和特征向量。主要实现的函数有:

- double nonDiagNorm(vector<vector<double> > A);
 计算方阵 A 的非对角 "范数", 其定义见教材 P211
- bool isPassed(vector<vector<double> > A, double delta, int& p, int& q); 判断过关 Jacobi 方法中, 当前矩阵是否"过关"; p, q 用于存储绝对值超过关值的非对角元所在平面,若不存在则置为 -1
- void rotateJacobi(vector<vector<double> > A, int p, int q, double& c, double& s); 计算 $J(p,q,\theta)$ 中的 $\cos\theta$ 和 $\sin\theta$,保存在 c, s 中
- vector<vector<double> > leftJacobiMul(vector<vector<double> > A, int p, int q, double c, double s);

用 Jacobi 矩阵 $J(p,q,\theta)$ 左乘矩阵 A, 返回计算结果

• vector<vector<double> > leftJacobiMul(vector<vector<double> > A, int p, int q, double c, double s);

用 Jacobi 矩阵 $J(p,q,\theta)$ 左乘矩阵 A, 返回计算结果

• vector<vector<double> > rightJacobiMul(vector<vector<double> > A, int p, int q, double c, double s);

用 Jacobi 矩阵 $J(p,q,\theta)$ 右乘矩阵 A, 返回计算结果

void passingJacobiMethod(vector<vector<double>> A, vector<double>& EigenValues,
 vector<vector<double>> & EigenVectors, double sigma);
 过关 Jacobi 方法求对称矩阵的全部特征值和特征向量

1.3 实验结果

n=50 时的运行结果截图如图 1 所示。

```
Please input the size of matrix:
50

N = 50, Iterations: 4887, Time consumed: 2165 ms

Eigenvalues:
3,9384 5,9962 2,2996 4, 0616 3,8155 4, 1845 2,0038 5,7620 2,0311 4,4279 2,0911 5,6324 2,0604 5,0000 3,4527 5,4780 3
8,7721 5,8649 2,6982 5,1047 2,1351 5,0959 3,2204 5,0959 2,2041 5,0959 2,0911 5,6324 2,0604 5,0000 3,4527 5,4780 3
8,915 2,3676 5,5582 2,6977 5,3012

Eigenvetors(Q_k):
0,1979 0,0122 0,1042 -0,1979 -0,1972 -0,1972 0,1122 -0,0937 -0,0243 0,1905 -0,1144 0,0483 0,1715 -0,1905 0,1334 0,1934 -0,0000 0,1144 0,0483 0,1715 -0,1905 0,1334 0,1934 -0,0000 0,1144 0,0483 0,1715 -0,1905 0,1334 0,1934 -0,0012 0,0014 0,0014 0,0014 0,0483 0,1715 -0,1905 0,1905 -0,1144 0,1504 0,0483 0,1715 -0,1905 0,1905 -0,1144 0,1504 0,0483 0,1715 -0,1905 0,1905 -0,1144 0,1504 0,0483 0,1715 -0,1905 0,1334 0,1905 -0,1044 0,1504 0,0483 0,1715 -0,1905 0,1334 0,1905 -0,1144 0,1504 0,0483 0,1715 -0,1905 0,1334 0,1905 -0,1144 0,1504 0,0483 0,1715 -0,1905 0,1334 0,1905 -0,1144 0,1504 0,0483 0,1715 -0,1905 0,1334 0,1905 -0,1144 0,1504 0,0483 0,1715 -0,1905 0,1334 0,1905 -0,1144 0,1504 0,0483 0,1715 -0,1905 0,1334 0,1905 -0,1144 0,1504 0,0483 0,1715 -0,1905 0,1334 0,1905 -0,1144 0,1504 0,0483 0,1715 -0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,1905 0,19
```

图 1: n = 50 时的运行结果 (图太大,未截完整)

其中迭代次数为 4887 次, 计算所用时间为 2.165s。

n=50,60,70,80,90,100 时的迭代次数和运行结果如表 1 所示,按照从小到大顺序排列的特征值如表 2、3、4、5、6、7 所示。其中迭代停止的关值为 $\delta=10^{-7}$ 。

1.4 结果分析

观察上述结果,可知随着矩阵 \boldsymbol{A} 的阶数的增加,过关 Jacobi 方法的迭代次数以二次函数的方式增加。 是当矩阵 \boldsymbol{A} 为 100 阶时,求解到 10^{-7} 精度所需的时间超过了 15s。

n	迭代次数	运行时间 (ms)
50	4887	2165
60	7964	3986
70	10548	5864
80	13391	8290
90	16607	11224
100	20784	15607

表 1: 不同 n 取值的迭代次数和运行时间

2.0038	2.0152	2.0341	2.0604	2.0941	2.1351	2.1831	2.2380	2.2996	2.3676
2.4418	2.5220	2.6077	2.6988	2.7947	2.8953	3.0000	3.1085	3.2204	3.3353
3.4527	3.5721	3.6932	3.8155	3.9384	4.0616	4.1845	4.3068	4.4279	4.5473
4.6647	4.7796	4.8915	5.0000	5.1047	5.2053	5.3012	5.3923	5.4780	5.5582
5.6324	5.7004	5.7620	5.8169	5.8649	5.9059	5.9396	5.9659	5.9848	5.9962

表 2: n = 50 时, \boldsymbol{A} 的特征值 (从小到大排列)

2.0027	2.0106	2.0238	2.0423	2.0659	2.0947	2.1286	2.1674	2.2110	2.2594
2.3124	2.3699	2.4318	2.4977	2.5677	2.6415	2.7188	2.7996	2.8835	2.9704
3.0600	3.1522	3.2465	3.3429	3.4410	3.5406	3.6414	3.7432	3.8456	3.9485
4.0515	4.1544	4.2568	4.3586	4.4594	4.5590	4.6571	4.7535	4.8478	4.9400
5.0296	5.1165	5.2004	5.2812	5.3585	5.4323	5.5023	5.5682	5.6301	5.6876
5.7406	5.7890	5.8326	5.8714	5.9053	5.9341	5.9577	5.9762	5.9894	5.9973

表 3: n = 60 时, \boldsymbol{A} 的特征值 (从小到大排列)

2.0020 2.0078 2.0176 2.0312 2.0487 2.0701 2.0952 2.1240 2.1565	2.1926
2.2323 2.2754 2.3219 2.3716 2.4246 2.4806 2.5396 2.6015 2.6661	2.7334
2.8031 2.8751 2.9493 3.0257 3.1039 3.1838 3.2654 3.3484 3.4327	3.5181
3.6044 3.6915 3.7792 3.8674 3.9558 4.0442 4.1326 4.2208 4.3085	4.3956
4.4819 4.5673 4.6516 4.7346 4.8162 4.8961 4.9743 5.0507 5.1249	5.1969
5.2666 5.3339 5.3985 5.4604 5.5194 5.5754 5.6284 5.6781 5.7246	5.7677
5.8074 5.8435 5.8760 5.9048 5.9299 5.9513 5.9688 5.9824 5.9922	5.9980

表 4: n = 70 时, \boldsymbol{A} 的特征值 (从小到大排列)

2.0015	2.0060	2.0135	2.0240	2.0375	2.0539	2.0733	2.0955	2.1206	2.1486
2.1793	2.2127	2.2489	2.2877	2.3290	2.3729	2.4192	2.4679	2.5189	2.5721
2.6275	2.6850	2.7444	2.8057	2.8688	2.9336	3.0000	3.0679	3.1372	3.2078
3.2796	3.3525	3.4264	3.5011	3.5766	3.6527	3.7293	3.8064	3.8837	3.9612
4.0388	4.1163	4.1936	4.2707	4.3473	4.4234	4.4989	4.5736	4.6475	4.7204
4.7922	4.8628	4.9321	5.0000	5.0664	5.1312	5.1943	5.2556	5.3150	5.3725
5.4279	5.4811	5.5321	5.5808	5.6271	5.6710	5.7123	5.7511	5.7873	5.8207
5.8514	5.8794	5.9045	5.9267	5.9461	5.9625	5.9760	5.9865	5.9940	5.9985

表 5: n = 80 时, \boldsymbol{A} 的特征值 (从小到大排列)

2.0012	2.0048	2.0107	2.0190	2.0297	2.0428	2.0581	2.0758	2.0958	2.1180
2.1425	2.1692	2.1981	2.2291	2.2622	2.2974	2.3347	2.3739	2.4150	2.4581
2.5030	2.5496	2.5980	2.6481	2.6998	2.7530	2.8077	2.8639	2.9214	2.9801
3.0401	3.1013	3.1635	3.2267	3.2908	3.3558	3.4215	3.4879	3.5550	3.6225
3.6905	3.7589	3.8276	3.8965	3.9655	4.0345	4.1035	4.1724	4.2411	4.3095
4.3775	4.4450	4.5121	4.5785	4.6442	4.7092	4.7733	4.8365	4.8987	4.9599
5.0199	5.0786	5.1361	5.1923	5.2470	5.3002	5.3519	5.4020	5.4504	5.4970
5.5419	5.5850	5.6261	5.6653	5.7026	5.7378	5.7709	5.8019	5.8308	5.8575
5.8820	5.9042	5.9242	5.9419	5.9572	5.9703	5.9810	5.9893	5.9952	5.9988

表 6: n = 90 时, \boldsymbol{A} 的特征值 (从小到大排列)

2.0010	2.0039	2.0087	2.0155	2.0241	2.0347	2.0472	2.0616	2.0779	2.0960
2.1159	2.1377	2.1613	2.1867	2.2138	2.2426	2.2732	2.3054	2.3392	2.3747
2.4117	2.4503	2.4904	2.5319	2.5748	2.6192	2.6648	2.7118	2.7600	2.8094
2.8599	2.9116	2.9643	3.0180	3.0727	3.1282	3.1846	3.2418	3.2997	3.3583
3.4176	3.4774	3.5376	3.5984	3.6595	3.7210	3.7827	3.8446	3.9067	3.9689
4.0311	4.0933	4.1554	4.2173	4.2790	4.3405	4.4016	4.4624	4.5226	4.5824
4.6417	4.7003	4.7582	4.8154	4.8718	4.9273	4.9820	5.0357	5.0884	5.1401
5.1906	5.2400	5.2882	5.3352	5.3808	5.4252	5.4681	5.5096	5.5497	5.5883
5.6253	5.6608	5.6946	5.7268	5.7574	5.7862	5.8133	5.8387	5.8623	5.8841
5.9040	5.9221	5.9384	5.9528	5.9653	5.9759	5.9845	5.9913	5.9961	5.9990

表 7: n = 100 时, \boldsymbol{A} 的特征值 (从小到大排列)

2 上机习题 2

2.1 问题描述

求实对称三对角阵的指定特征值及对应的特征向量。

- (1) 用 C++ 编制先利用二分法求实对称三对角阵指定特征值,再利用反幂法求对应特征向量的通用子程序。
- (2) 利用你所编制的子程序求 100 阶矩阵

$$\mathbf{A} = \begin{pmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & -1 & 2 & -1 \\ 0 & 0 & \cdots & 0 & -1 & 2 \end{pmatrix}$$

的最大和最小特征值及对应的特征向量。

要求输出迭代次数,用时,特征值和特征向量。

2.2 程序介绍

本题分为两部分:使用二分法求特定的特征值、使用反幂法求某一特征值对应的特征向量。主要实现的函数有:

- int changeSignNum(vector<vector<double> > A, double mu); 计算对称三对角矩阵 \boldsymbol{A} 在 mu 处的变号数 $s_n(\mu)$
- double bisectionMethod(vector<vector<double> > A, int m, double eps);
 使用二分法, 求矩阵 A 的第 m 小的特征值
- vector<double> inversePowerMethod(vector<vector<double> > A, double lambda, double eps);
 使用反幂法求解矩阵 A 的特征值 lambda 对应的特征向量

2.3 实验结果

运行结果截图如图 2 所示。

其中,求解最大特征值时,二分法迭代次数为 27 次;用时 27ms;求出的最大特征值为 3.99903;对应的特征向量如图。

求解最小特征值时,二分法迭代次数为 27 次;用时 22ms;求出的最小特征值为 0.0010;对应的特征向量如图。

```
■ Microsoft Visual Studio 调益
★ + ✓
Bisection Iterations: 27
Time consumed: 22 ms
Max Eigenvalue: 3.99903
Corresponding Eigenvector:
-0.0044 0.0088 -0.0131 0.0175 -0.0218 0.0261 -0.0304 0.0347 -0.0389 0.0431 -0.0472 0.0513 -0.0554 0.0594
-0.0044 0.0088 -0.0131 0.0175 -0.0218 0.0261 -0.0394 0.0347 -0.0389 0.0431 -0.0472 0.0313 -0.0534 -0.0534 0.0672 -0.0710 0.0747 -0.0784 0.0820 -0.0855 0.0890 -0.0923 0.0956 -0.0987 0.1018 -0.1048 0.1076 -0.1104 0.1131 -0.1156 0.1181 -0.1204 0.1226 -0.1247 0.1266 -0.1285 0.1302 -0.1318 0.1333 -0.1346 0.1358 -0.1369 0.1379 -0.13870 0.1393 -0.1399 0.1403 -0.1406 0.1407 -0.1406 -0.1403 0.1399 -0.1393 0.1387 -0.1379 0.1369 -0.1358 0.1346 -0.1333 0.1318 -0.1302 0.1285 -0.1266 0.1247 -0.1226 0.1204 -0.1181 0.1156 -0.1131 0.1164 -0.1076 0.1048 -0.10180 0.1393 0.1387 -0.1399 0.1403 -0.1076 0.1048 -0.10180 0.1399 -0.1399 0.1403 -0.1076 0.1048 -0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10180 0.10
.0987 -0.0956 0.0923 -0.0890 0.0855 -0.0820 0.0784 -0.0747 0.0710 -0.0672 0.0633 -0.0594 0.0554 -0.0513 0.0472 -0.0431 0.0389 -0.0347 0.0304 -0.0261 0.0218 -0.0175 0.0131 -0.0087 0.0044
Bisection Iterations: 27
Time consumed: 22.0000 ms
Min Eigenvalue: 0.0010
Min Eigenvalue: 0.9010
Corresponding Eigenvector:
0.0044 0.0088 0.0131 0.0175 0.0218 0.0261 0.0304 0.0347 0.0389 0.0431 0.0472 0.0513 0.0554 0.0594 0.0633 0
.0672 0.0710 0.0747 0.0784 0.0820 0.0855 0.0890 0.0923 0.0956 0.0987 0.1018 0.1048 0.1076 0.1104 0.1131 0
                                                                                                                                                                                                                                                                       0.1048
0.1358
0.1379
0.1104
                                                                                                                                                                                                 0.0956 0.0987 0.1018
0.1318 0.1333 0.1346
0.1399 0.1393 0.1387
                                                                                                                                                                                                                                                                                                                        0.1104
0.1379
0.1358
                                                                                                                                                                                                                                                                                                                                                0.1131 0
0.1387 0
0.1346 0
                       0.1399
                                              0.1403
                                                                       0.1406
                                                                                               0.1407
                                                                                                                        0.1407
                                                                                                                                                0.1406
                                                                                                                                                                        0.1403
                                                                                                                                                                                                                                                                                                 0.1369
   1393
                                                                                               0.1266
0.0855
                                                                                                                        0.1247
0.0820
                                                                                                                                                0.1226
0.0784
                       0.1318
                                              0.1302
                                                                       0.1285
                                                                                                                                                                        0.1204
                                                                                                                                                                                                 0.1181
                                                                                                                                                                                                                       0.1156
                                                                                                                                                                                                                                                0.1131
                                                                                                                                                                                                                                                                                                                       0.1048 0.1018 0
0.0513 0.0472 0
                                                                                                                                                                        0.0747
0.0131
                                                                                                                                                                                                 0.0710
  .0987
                       0.0956
                                              0.0923
                                                                       0.0890
                                                                                                                                                                                                                      0.0672 0.0633
                                                                                                                                                                                                                                                                      0.0594
                                                                                                                                                                                                                                                                                                  0.0554
                       0.0389
                                              0.0347
                                                                      0.0304
                                                                                               0.0261
                                                                                                                      0.0218
                                                                                                                                                0.0175
                                                                                                                                                                                                 0.0087
                                                                                                                                                                                                                        0.0044
E:\大三课程学习\2023秋 数值代数\Homework\Numerical_Algebra\x64\Debug\Numerical_Algebra.exe (进程 16424)已退出,代码为 0
.
按任意键关闭此窗口.
```

图 2: n = 100 时,最大、最小特征值以及对应的特征向量

2.4 结果分析

观察图 2 可知,在当前求解精度 (10^{-7}) 下,二分法迭代次数仅为 27 次。可见在求解实对称阵的指定特征值时,二分法是一种高效的方法。