0.1 H27 数学選択

1 (1) 略.

 $(2)\frac{1}{a+b\sqrt{5}}=\frac{a-b\sqrt{5}}{a^2-5b^2}$ より $a^2-5b^2=\pm 1$ なら逆元を持つ. $(2-\sqrt{5})(2+\sqrt{5})=-1$ である. $a_n+b_n\sqrt{5}=(2+\sqrt{5})^n$ とする. $\sigma(a+b\sqrt{5})=a-b\sqrt{5}$ は A 上の同型射像であるから $(2-\sqrt{5})^n=\sigma((2+\sqrt{5})^n)=a_n-b_n\sqrt{5}$ である. よって $a_n^2-5b_n^2=(a_n+b_n\sqrt{5})(a_n-b_n\sqrt{5})=(2+\sqrt{5})^n(2-\sqrt{5})^2=(-1)^n$ より A^\times は無限群.

	10 10	(, (,		, \		,			
	加法	0	1	$\sqrt{5}$	$1+\sqrt{5}$	乗法	[0]	[1]	$[\sqrt{5}]$	$[1+\sqrt{5}]$	
	0	0	1	$\sqrt{5}$	$1+\sqrt{5}$	[0]	[0]	[0]	[0]	[0]	
(3)	1	1	0	$1+\sqrt{5}$	$\sqrt{5}$	[1]	[0]	[1]	$[\sqrt{5}]$	$[1+\sqrt{5}]$	(1 +
	$\sqrt{5}$	$\sqrt{5}$	$1+\sqrt{5}$	0	1	$[\sqrt{5}]$	[0]	$[\sqrt{5}]$	[1]	$[1+\sqrt{5}]$	
	$1+\sqrt{5}$	$1+\sqrt{5}$	$\sqrt{5}$	1	0	$[1+\sqrt{5}]$	[0]	$[1+\sqrt{5}]$	$[1+\sqrt{5}]$	[0]	

 $\sqrt{5}$) $^2 = 0$ より整域でない. $(4)a + b\sqrt{5} \in A/J$ が逆元を持つ $\Leftrightarrow a^2 - 5b^2 \in (\mathbb{Z}/7\mathbb{Z})^{\times}$ である.

\overline{a}	$a^2 \pmod{7}$	$5a^2 \pmod{7}$
0	0	0
1	1	5
2	4	6
3	2	3
4	2	3
5	4	6
6	1	5

表より $a^2-5b^2=0$ となる (a,b) は (a,b)=(0,0) のみ. よって $(A/J)^\times=(A/J)\setminus\{0\}$ より A/J は体であり、|A/J|=49 である.

 $egin{align*} & egin{align*} & egin{align*} & egin{align*} & egin{align*} & B \end{align*} (1)(x^2-2)^2 = 3 \end{align*} \end{align*} & z = 3 \end{align*} \end{align*} \end{align*} \end{align*} & z = 3 \end{align*} \end{align*} \end{align*} & z = 3 \end{align*} \end{align*} & z = 3 \end{align*} \end{ali$

 $(2)\alpha$ の $\mathbb Q$ 上の共役は f(x)=0 をといて $\pm\sqrt{2\pm\sqrt{3}}$ である. $\sqrt{2+\sqrt{3}}\sqrt{2-\sqrt{3}}=1$ より $\mathbb Q(\alpha)\ni\sqrt{2-\sqrt{3}}$ より正規拡大. $\mathbb Q$ は完全体であるから $\mathbb Q(\alpha)/\mathbb Q$ は Galois 拡大.

 $(3)\sigma \ \in \ \mathrm{Gal}(\mathbb{Q}(\alpha)/\mathbb{Q}) \ \ \ \ \, \mathcal{C} \ \ \ \, \sigma(\sqrt{2+\sqrt{3}}) \ = \ \sqrt{2-\sqrt{3}} \ \ \ \ \, \mathcal{E} \ \ \ \, \mathcal{E} \ \ \mathcal{E} \ \ \mathcal{E} \ \ \mathcal{E} \ \ \, \mathcal{E} \ \ \mathcal{E} \ \ \, \mathcal{E} \ \ \mathcal{E} \ \mathcal{E} \ \mathcal{E} \ \ \mathcal{E} \ \ \mathcal{E} \ \ \mathcal{E} \ \mathcal{E} \ \ \mathcal{E} \ \ \mathcal{E} \ \mathcal{E} \ \ \mathcal{E} \ \ \mathcal{E} \ \mathcal$

位数 2 の元が 2 つ以上存在する位数 4 の群は $(\mathbb{Z}/2\mathbb{Z})^2$ のみである.

(4) $\mathbb{Q}(\alpha)$ に含まれる \mathbb{Q} の 2 次拡大は $(\mathbb{Z}/2\mathbb{Z})^2$ の真部分群に対応する。 $\langle \sigma \rangle$ の固定体は $\mathbb{Q}(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}})$ である。 $(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}})^2=6$ より $\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{6}$ である。 よって $\mathbb{Q}(\sqrt{6})$ が $\langle \sigma \rangle$ の固定体。 $\langle \tau \rangle$ の固定体は $\mathbb{Q}(\alpha^2)=\mathbb{Q}(\sqrt{3})$ である。

 $\langle \sigma \circ \tau \rangle$ の固定体は $\mathbb{Q}(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}})$ である. $(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}})^2=2$ より $\sqrt{2}+\sqrt{3}+\sqrt{2-\sqrt{3}}=\sqrt{2}$ である. よって $\mathbb{Q}(\sqrt{2})$ が $\langle \sigma \circ \tau \rangle$ の固定体.