Name: Arjun Singh Baghel

Roll Number - DDS1910090

Email ID: arjusingh89baghel@gmail.com

IIITB Email ID: arjunsinghbaghel.dds10@iiitb.net

GDP Analysis – Assignmment

Part I - B:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import glob

Data I-B

Reading data from all .csv files once.

```
path = r'/Users/ArjunSinghBaghel/Documents/Data_Science/Assignment/ Part_I-B_and_Part_II/DataSet_Part_I-B ' all_files = glob.glob(path + "/*.csv")

dataList = []

for filename in all_files:

    df = pd.read_csv(filename, index_col=None, header=0, encoding = 'unicode_escape')

    dataList.append(df)

mainDf = pd.concat(dataList, axis=0, ignore_index=True, sort=True)

mainDf['State']=sorted(['Andhra Pradesh','Arunachal
Pradesh','Assam','Bihar','Chattisgarh','Goa','Gujarat','Haryana','Himachal
Pradesh','Jharkhand','Karnataka','Kerala','Madhyapradesh','Maharastra','Manipur','Meghalaya','
Mizoram','Nagaland','Odisha','Punjab','Rajasthan','Sikkim','Tamil
Nadu','Telangana','Tripura','Uttarpradesh','Uttarakhand']*33)

MainDf
```

State	S.No.	Item	2016-17	2015-16	2014-15	2013-14	2012-13	2011-12	
Andhra Pradesh	1	Agriculture, forestry and fishing	NaN	NaN	15044394.0	14418664.0	13572561.0	11910650.0	0
Andhra Pradesh	1.1	Crops	NaN	NaN	7673441.0	8675414.0	8389344.0	7346942.0	1
Andhra Pradesh	1.2	Livestock	NaN	NaN	5356257.0	3962174.0	3523365.0	3113617.0	2
Andhra Pradesh	1.3	Forestry and logging	NaN	NaN	1956660.0	1738606.0	1622443.0	1416986.0	3
Andhra Pradesh	1.4	Fishing and aquaculture	NaN	NaN	58036.0	42470.0	37408.0	33105.0	4
Andhra Pradesh	2	Mining and quarrying	NaN	NaN	4069385.0	3716758.0	3395874.0	1841530.0	5
Andhra Pradesh	Total	Primary	NaN	NaN	19113780.0	18135422.0	16968435.0	13752181.0	6
Andhra Pradesh	3	Manufacturing	NaN	NaN	6552580.0	6015398.0	5627437.0	6666606.0	7
Andhra Pradesh	4	Electricity, gas, water supply & other utility	NaN	NaN	1122888.0	979452.0	1059921.0	763271.0	8
Andhra Pradesh	5	Construction	NaN	NaN	5353326.0	4965979.0	4568112.0	4359171.0	9
Andhra Pradesh	Total	Secondary	NaN	NaN	13028794.0	11960829.0	11255470.0	11789049.0	10
Andhra Pradesh	6	Trade, repair, hotels and restaurants	NaN	NaN	7297290.0	6201013.0	5241569.0	4374625.0	11
Andhra Pradesh	6.1	Trade & repair services	NaN	NaN	6942748.0	5878264.0	4943212.0	4097894.0	12
Andhra Pradesh	6.2	Hotels & restaurants	NaN	NaN	354543.0	322749.0	298357.0	276731.0	13
Andhra Pradesh	7	Transport, storage, communication & services r	NaN	NaN	3814461.0	3300711.0	2748068.0	2312809.0	14
Andhra Pradesh	7.1	Railways	NaN	NaN	464638.0	401763.0	336900.0	240962.0	15
Andhra Pradesh	7.2	Road transport	NaN	NaN	2121206.0	1906004.0	1636644.0	1410655.0	16
Andhra Pradesh	7.3	Water transport	NaN	NaN	0.0	0.0	0.0	0.0	17
Andhra Pradesh	7.4	Air transport	NaN	NaN	13469.0	10561.0	12715.0	6698.0	18
Andhra Pradesh	7.5	Services incidental to transport	NaN	NaN	47609.0	43300.0	37192.0	31956.0	19

Main Data Frame

Get data for 2014-15

columns = ['2014-15','Item', 'S.No.','State']
subMainDf = pd.DataFrame(mainDf, columns=columns)
SubMainDf

State	S.No.	Item	2014-15	
Andhra Pradesh	1	Agriculture, forestry and fishing	15044394.0	0
Andhra Pradesh	1.1	Crops	7673441.0	1
Andhra Pradesh	1.2	Livestock	5356257.0	2
Andhra Pradesh	1.3	Forestry and logging	1956660.0	3
Andhra Pradesh	1.4	Fishing and aquaculture	58036.0	4
Andhra Pradesh	2	Mining and quarrying	4069385.0	5
Andhra Pradesh	Total	Primary	19113780.0	6
Andhra Pradesh	3	Manufacturing	6552580.0	7
Andhra Pradesh	4	Electricity, gas, water supply & other utility	1122888.0	8
Andhra Pradesh	5	Construction	5353326.0	9
Andhra Pradesh	Total	Secondary	13028794.0	10
Andhra Pradesh	6	Trade, repair, hotels and restaurants	7297290.0	11
Andhra Pradesh	6.1	Trade & repair services	6942748.0	12
Andhra Pradesh	6.2	Hotels & restaurants	354543.0	13
Andhra Pradesh	7	Transport, storage, communication & services r	3814461.0	14
Andhra Pradesh	7.1	Railways	464638.0	15
Andhra Pradesh	7.2	Road transport	2121206.0	16
Andhra Pradesh	7.3	Water transport	0.0	17
Andhra Pradesh	7.4	Air transport	13469.0	18
Andhra Pradesh	7.5	Services incidental to transport	47609.0	19

2014-15 Data Frame

Plot the GDP per capita for all the states.

```
gdpPerCapitalAllStates = subMainDf['Item'] == "Per Capita GSDP (Rs.)"
gdpPerCapitalAllStatesDf = subMainDf[gdpPerCapitalAllStates] # Getting Per Capita GSDP (Rs.)
gdpPerCapitalAllStatesDf = gdpPerCapitalAllStatesDf.sort_values(by='2014-15',
ascending=False) #Sorting
plt.figure(figsize=(10,8))
sns.barplot(x=gdpPerCapitalAllStatesDf['2014-15'], y=gdpPerCapitalAllStatesDf.State)
plt.xlabel('GDP per capita')
plt.title('Plot of GDP per capita for all the states')
plt.show()
```


Plot of GDP per capital for all the states

Identify the top-5 states based on GDP per capita.

```
top5 = gdpPerCapitalAllStatesDf.head(5)
print(top5)
plt.figure(figsize=(10,8))
sns.barplot(x=top5.State, y=top5['2014-15'])
plt.title('Top 5 states based on GDP per capita')
plt.ylabel('GDP per capita')
plt.show()
```

```
2014-15
                               Item S.No.
                                               State
230 271793.0 Per Capita GSDP (Rs.)
                                       17
                                             Gujarat
692
    240274.0
              Per Capita GSDP (Rs.)
                                       17
                                           Rajasthan
560 164077.0 Per Capita GSDP (Rs.)
                                       17
                                             Mizoram
263 154778.0 Per Capita GSDP (Rs.)
                                             Haryana
                                       17
725 153076.0 Per Capita GSDP (Rs.)
                                       17
                                              Sikkim
```


Plot of top-5 states based on GDP per capital

Identify the bottom-5 states based on GDP per capita.

```
bottom5 = gdpPerCapitalAllStatesDf.tail(5)
print(bottom5)
plt.figure(figsize=(10,8))
sns.barplot(x=bottom5.State, y=bottom5['2014-15'])
plt.title('Bottom 5 states based on GDP per capita')
plt.ylabel('GDP per capita')
plt.show()
```

```
2014-15
                              Item S.No.
                                                  State
890 62091.0 Per Capita GSDP (Rs.)
                                     17
                                           Uttarpradesh
131 60621.0 Per Capita GSDP (Rs.)
                                      17
                                                 Bihar
    58442.0 Per Capita GSDP (Rs.)
                                      17
                                         Madhyapradesh
    49450.0 Per Capita GSDP (Rs.)
593
                                     17
                                               Nagaland
   33954.0 Per Capita GSDP (Rs.)
                                            Chattisgarh
```


Plot of bottom-5 states based on GDP per capital

Plot the percentage contribution of primary, secondary and tertiary sectors as a percentage of total GDP for all the states

```
# 'subMainDf' is only contain 2014-15 data.
primary = subMainDf['Item'] == "Primary"
secondary = subMainDf['Item'] == "Secondary"
tertiary = subMainDf['Item'] == "Tertiary"
gdp = subMainDf['Item'] == "Gross State Domestic Product"
perCapitaGSDP = subMainDf['Item'] == 'Per Capita GSDP (Rs.)'
new_Df = subMainDf[primary | secondary | tertiary | gdp | perCapitaGSDP]
new_Df
```

State	S.No.	Item	2014-15	
Andhra Pradesh	Total	Primary	19113780.0	6
Andhra Pradesh	Total	Secondary	13028794.0	10
Andhra Pradesh	Total	Tertiary	26015812.0	26
Andhra Pradesh	15	Gross State Domestic Product	61219447.0	30
Andhra Pradesh	17	Per Capita GSDP (Rs.)	84837.0	32
Arunachal Pradesh	Total	Primary	9133354.0	39
Arunachal Pradesh	Total	Secondary	9924001.0	43
Arunachal Pradesh	Total	Tertiary	28471410.0	59
Arunachal Pradesh	15	Gross State Domestic Product	51117765.0	63
Arunachal Pradesh	17	Per Capita GSDP (Rs.)	139035.0	65
Assam	Total	Primary	9009306.0	72
Assam	Total	Secondary	8989693.0	76
Assam	Total	Tertiary	12256258.0	92
Assam	15	Gross State Domestic Product	32197092.0	96
Assam	17	Per Capita GSDP (Rs.)	73979.0	98
Bihar	Total	Primary	5326697.0	105
Bihar	Total	Secondary	4033091.0	109
Bihar	Total	Tertiary	9307109.0	125
Bihar	15	Gross State Domestic Product	19809800.0	129
Bihar	17	Per Capita GSDP (Rs.)	60621.0	131

<u>Data Frame of Primary Secondary Tertiary GDP PerCapitaGSDP for 2014-15</u>

Set 'State' as a index and drop 'S.No' column

new_Df = new_Df.set_index('State')
new_Df.drop('S.No.',axis=1)

	2014-15	item
State		
Andhra Pradesh	19113780.0	Primary
Andhra Pradesh	13028794.0	Secondary
Andhra Pradesh	26015812.0	Tertiary
Andhra Pradesh	61219447.0	Gross State Domestic Product
Andhra Pradesh	84837.0	Per Capita GSDP (Rs.)
Arunachal Pradesh	9133354.0	Primary
Arunachal Pradesh	9924001.0	Secondary
Arunachal Pradesh	28471410.0	Tertiary
Arunachal Pradesh	51117765.0	Gross State Domestic Product
Arunachal Pradesh	139035.0	Per Capita GSDP (Rs.)
Assam	9009306.0	Primary
Assam	8989693.0	Secondary
Assam	12256258.0	Tertiary
Assam	32197092.0	Gross State Domestic Product
Assam	73979.0	Per Capita GSDP (Rs.)

2014-15

Item

Reshape the dataFrame

new_Df=pd.DataFrame(new_Df['2014-15'].values.reshape(27,5),columns=['Primary','Secondary','Tertiary','Gross State Domestic Product', 'Per Capita GSDP (Rs.)'],index=new_Df.index.unique())
new_Df

	Primary	Secondary	Tertiary	Gross State Domestic Product	Per Capita GSDP (Rs.)
State					
Andhra Pradesh	19113780.0	13028794.0	26015812.0	61219447.0	84837.0
Arunachal Pradesh	9133354.0	9924001.0	28471410.0	51117765.0	139035.0
Assam	9009306.0	8989693.0	12256258.0	32197092.0	73979.0
Bihar	5326697.0	4033091.0	9307109.0	19809800.0	60621.0
Chattisgarh	8019997.0	5984896.0	22179969.0	37391988.0	33954.0
Goa	616178.0	212361.0	992956.0	1841424.0	89607.0

Calculate percentage contribution of primary, secondary and tertiary sectors

pstDf = new_Df # Cipping new_Df for future use
pstDf['Primary'] = (pstDf['Primary'] / pstDf['Gross State Domestic Product']) * 100
pstDf['Secondary'] = (pstDf['Secondary'] / pstDf['Gross State Domestic Product']) * 100
pstDf['Tertiary'] = (new_Df['Tertiary'] / pstDf['Gross State Domestic Product']) * 100
pstDf = pstDf.drop(['Gross State Domestic Product', 'Per Capita GSDP (Rs.)'], axis=1)
PstDf

	Primary	Secondary	Tertiary
State			
Andhra Pradesh	31.221746	21.282116	42.495993
Arunachal Pradesh	17.867280	19.413996	55.697682
Assam	27.981738	27.920823	38.066351
Bihar	26.889201	20.359070	46.982347
Chattisgarh	21.448437	16.005825	59.317437
Goa	33.462038	11.532434	53.923268
Gujarat	7.681649	38.085628	42.778382
Haryana	12.337288	22.946744	56.413780
Himachal Pradesh	37.042942	20.840810	37.589312
Jharkhand	19.516529	23.363984	55.160550
Karnataka	27.239629	35.061805	32.295173
Kerala	42.774946	17.152064	37.696846

Plot heatmap

plt.figure(figsize=(15,8))
sns.heatmap(pstDf, cmap="YIGnBu")

plt.title('Plot of the percentage contribution of primary, secondary and tertiary sectors as a percentage of total GDP for all the states')

plt.show()

<u>Plot of the percentage contribution of Primary, secondary and tertiary sectors as a percentage</u> of total GDP for all the states

Categorise the states into four categories based on GDP per capita (C1, C2, C3, C4 - C1 would have the highest per capita GDP, C4 the lowest). The quantile values are (0.20,0.5, 0.85, 1), i.e. the states lying between the 85th and the 100th percentile are in C1, those between 50th and 85th percentile are in C2 and so on.

categoryDF = pd.DataFrame(new_Df.loc[:,'Per Capita GSDP (Rs.)'])
CategoryDF

Per Capita GSDP (Rs.)

State	
Andhra Pradesh	84837.0
Arunachal Pradesh	139035.0
Assam	73979.0
Bihar	60621.0
Chattisgarh	33954.0
Goa	89607.0
Gujarat	271793.0
Haryana	154778.0
Himachal Pradesh	62989.0
Jharkhand	97687.0
Karnataka	86860.0
Kerala	112718.0
Madhyapradesh	58442.0

Calculating quantile (0.20,0.5, 0.85, 1) on 'Per Capita GSDP (Rs.)'

categoryDF['Per Capita GSDP (Rs.)'].quantile([0.20,0.5, 0.85, 1])

0.20	65187.0					
0.50	104977.0					
0.85	153246.2					
1.00	271793.0					
Name:	Per Capita	GSDP	(Rs.),	dtype:	float64	

Adding 'Categorise' coloumn based on quantile

categoryGroupList = []

for perCapitaGSDPValue in categoryDF['Per Capita GSDP (Rs.)']:

if perCapitaGSDPValue > 153246.2 and perCapitaGSDPValue <= 271793.0: categoryGroupList.append('c1')

if perCapitaGSDPValue > 104977.0 and perCapitaGSDPValue <= 153246.2: categoryGroupList.append('c2')

if perCapitaGSDPValue > 65187.0 and perCapitaGSDPValue <= 104977.0: categoryGroupList.append('c3')

if perCapitaGSDPValue <=65187.0:
 categoryGroupList.append('c4')</pre>

categoryDF['Category'] = categoryGroupList

CategoryDF

Per Capita GSDP (Rs.) Category

State		
Andhra Pradesh	84837.0	с3
Arunachal Pradesh	139035.0	c2
Assam	73979.0	с3
Bihar	60621.0	c4
Chattisgarh	33954.0	c4
Goa	89607.0	с3
Gujarat	271793.0	c1
Haryana	154778.0	c1
Himachal Pradesh	62989.0	c4
Jharkhand	97687.0	с3
Karnataka	86860.0	с3
Kerala	112718.0	c2

Mapping Category to the main dataframe

```
subSectorsDF = mainDf
subSectorsDF = subSectorsDF.set_index('State')
subSectorsDF['Category']=
subSectorsDF.index.map(dict(zip(categoryDF.index,categoryDF['Category'])))
subSectorsDF = subSectorsDF.drop(['2011-12','2012-13','2013-14','2015-16','2016-17','S.No.'],axis=1)
subSectorsDF = subSectorsDF[subSectorsDF.Item != 'Primary']
subSectorsDF = subSectorsDF[subSectorsDF.Item != 'Secondary']
subSectorsDF = subSectorsDF[subSectorsDF.Item != 'Tertiary']
subSectorsDF
```

	2014-15	Item	Category
State			
Andhra Pradesh	15044394.0	Agriculture, forestry and fishing	c3
Andhra Pradesh	7673441.0	Crops	сЗ
Andhra Pradesh	5356257.0	Livestock	c3
Andhra Pradesh	1956660.0	Forestry and logging	с3
Andhra Pradesh	58036.0	Fishing and aquaculture	c3
Andhra Pradesh	4069385.0	Mining and quarrying	c3
Andhra Pradesh	6552580.0	Manufacturing	c3
Andhra Pradesh	1122888.0	Electricity, gas, water supply & other utility	c3
Andhra Pradesh	5353326.0	Construction	с3
Andhra Pradesh	7297290.0	Trade, repair, hotels and restaurants	c3
Andhra Pradesh	6942748.0	Trade & repair services	c3
Andhra Pradesh	354543.0	Hotels & restaurants	c3

Calculate group wise sum

new_subSectorsDF = subSectorsDF[subSectorsDF.loc[:,'Item']=='Gross State Domestic
Product'].groupby('Category').sum()

new_subSectorsDF

2014-15

Cat	Category				
	c1	101930677.0			
	c2	586380452.0			
	сЗ	177966387.0			
	c4	233252066.0			

Map the data according to category

new_subSectorsDF =
subSectorsDF['Category'].map(dict(zip(['c1','c2','c3','c4'],new_subSectorsDF['2014-15'].values
)))

 ${\sf new_subSectorsDF}$

State		
Andhra	Pradesh	177966387.0

Add 'Contribution %' column

subSectorsDF['Contribution %'] = (subSectorsDF['2014-15'] / new_subSectorsDF) *100
SubSectorsDF

	2014-15	Item	Category	Contribution %
State				
Andhra Pradesh	15044394.0	Agriculture, forestry and fishing	c3	8.453503
Andhra Pradesh	7673441.0	Crops	c3	4.311736
Andhra Pradesh	5356257.0	Livestock	c3	3.009701
Andhra Pradesh	1956660.0	Forestry and logging	c3	1.099455
Andhra Pradesh	58036.0	Fishing and aquaculture	c3	0.032611
Andhra Pradesh	4069385.0	Mining and quarrying	c3	2.286603
Andhra Pradesh	6552580.0	Manufacturing	с3	3.681920
Andhra Pradesh	1122888.0	Electricity, gas, water supply & other utility	c3	0.630955
Andhra Pradesh	5353326.0	Construction	с3	3.008055
Andhra Pradesh	7297290.0	Trade, repair, hotels and restaurants	c3	4.100375
Andhra Pradesh	6942748.0	Trade & repair services	c3	3.901157
Andhra Pradesh	354543.0	Hotels & restaurants	c3	0.199219

Filter only 'S.No.' is 'Int' value

```
item1 = subSectorsDF['Item'] == "Agriculture, forestry and fishing"
item2 = subSectorsDF['Item'] == "Mining and quarrying"
item3 = subSectorsDF['Item'] == "Manufacturing"
item4 = subSectorsDF['Item'] == "Electricity, gas, water supply & other utility services"
item5 = subSectorsDF['Item'] == "Construction"
item6 = subSectorsDF['Item'] == "Trade, repair, hotels and restaurants"
item7 = subSectorsDF['Item'] == "Transport, storage, communication & services related to broadcasting"
item8 = subSectorsDF['Item'] == "Financial services"
item9 = subSectorsDF['Item'] == "Real estate, ownership of dwelling & professional services"
item10 = subSectorsDF['Item'] == "Public administration"
item11 = subSectorsDF['Item'] == "Other services"
subSectorsDF = subSectorsDF[item1] item2 | item3 | item4 | item5 | item6 | item7 | item8 | item9 | item10 | item11]
```

subSectorsDF

Set 'Category' and 'Item' both as an index

subSectorsDF = subSectorsDF.set_index(['Category', 'Item'])
SubSectorsDF

Contribution %	2014-15		
		Item	Category
8.45350	15044394.0	Agriculture, forestry and fishing	с3
2.28660	4069385.0	Mining and quarrying	
3.68192	6552580.0	Manufacturing	
0.63095	1122888.0	Electricity, gas, water supply & other utility services	
3.00805	5353326.0	Construction	
4.10037	7297290.0	Trade, repair, hotels and restaurants	
2.143360	3814461.0	Transport, storage, communication & services related to broadcasting	
1.026830	1827413.0	Financial services	
3.625402	6451997.0	Real estate, ownership of dwelling & professional services	
1.38248	2460364.0	Public administration	
2.33992	4164287.0	Other services	
1.29463	7591501.0	Agriculture, forestry and fishing	c2
0.26294	1541853.0	Mining and quarrying	
1.08354	6353711.0	Manufacturing	
0.12215	716266.0	Electricity, gas, water supply & other utility services	
0.48671	2854024.0	Construction	
1.10757	6494607.0	Trade, repair, hotels and restaurants	
0.61474	3604741.0	Transport, storage, communication & services related to broadcasting	
0.51566	3023729.0	Financial services	
1.61650	9478839.0	Real estate, ownership of dwelling & professional services	
0.29183	1711265.0	Public administration	
0.70913	4158229.0	Other services	
3.60909	6422978.0	Agriculture, forestry and fishing	с3

Caculate sum groupby both 'Category' &'Item'

new_subSectorsDF = subSectorsDF
new_subSectorsDF = new_subSectorsDF.groupby(['Category', 'Item']).sum()
new_subSectorsDF

2014-15 Contribution %

Category	Item		
c1	Agriculture, forestry and fishing	14391809.0	14.119213
	Construction	11264451.0	11.051090
	Electricity, gas, water supply & other utility services	2000998.0	1.963097
	Financial services	3936489.0	3.861928
	Manufacturing	13758793.0	13.498187
	Mining and quarrying	588961.0	0.577805
	Other services	8059922.0	7.907258
	Public administration	3571292.0	3.503648
	Real estate, ownership of dwelling & professional services	14740245.0	14.461049
	Trade, repair, hotels and restaurants	13995159.0	13.730076
	Transport, storage, communication & services related to broadcasting	6818560.0	6.689409
c2	Agriculture, forestry and fishing	75209022.0	12.825977
	Construction	40653562.0	6.932967
	Electricity, gas, water supply & other utility services	13823378.0	2.357408
	Financial services	36296642.0	6.189947
	Manufacturing	109196530.0	18.622130

sort values according to both 'Category' & 'Contribution %'

new_subSectorsDF.sort_values(['Category','Contribution
%'],ascending=[True,False],inplace=True)

 $new_subSectorsDF$

		2014-15	Contribution %
Category	Item		
c1	Real estate, ownership of dwelling & professional services	14740245.0	14.461049
	Agriculture, forestry and fishing	14391809.0	14.119213
	Trade, repair, hotels and restaurants	13995159.0	13.730076
	Manufacturing	13758793.0	13.498187
	Construction	11264451.0	11.051090
	Other services	8059922.0	7.907258
	Transport, storage, communication & services related to broadcasting	6818560.0	6.689409
	Financial services	3936489.0	3.861928
	Public administration	3571292.0	3.503648
	Electricity, gas, water supply & other utility services	2000998.0	1.963097
	Mining and quarrying	588961.0	0.577805
c2	Manufacturing	109196530.0	18.622130
	Real estate, ownership of dwelling & professional services	92121446.0	15.710184
	Agriculture, forestry and fishing	75209022.0	12.825977
	Trade, repair, hotels and restaurants	61238862.0	10.443537

sub-sectors contribute to approx. 80% of the GDP'

Category C1

```
top_C1_index = sum(new_subSectorsDF.loc['c1']['Contribution %'].cumsum(axis = 0) < 80)+1
top_C1 = new_subSectorsDF.loc['c1'].iloc[:top_C1_index,1]
top_C1.name = 'C1'
top_C1</pre>
```

Category C2

```
top_C2_index = sum(new_subSectorsDF.loc['c2']['Contribution %'].cumsum(axis = 0) < 80)+1
top_C2 = new_subSectorsDF.loc['c2'].iloc[:top_C2_index,1]
top_C2.name = 'C2'
top_C2</pre>
```

Category C3

```
top_C3_index = sum(new_subSectorsDF.loc['c3']['Contribution %'].cumsum(axis = 0) < 80)+1
top_C3 = new_subSectorsDF.loc['c3'].iloc[:top_C3_index,1]
top_C3.name = 'C3'
top_C3</pre>
```

Category C4

```
top_C4_index = sum(new_subSectorsDF.loc['c4']['Contribution %'].cumsum(axis = 0) < 80)+1
top_C4 = new_subSectorsDF.loc['c4'].iloc[:top_C4_index,1]
top_C4.name = 'C4'
top_C4</pre>
```

Concat all categories C1, C2, C3, C4

```
topResultDf = pd.concat([top_C1,top_C2,top_C3,top_C4],axis=1,sort=False)
TopResultDf
```

	C1	C2	C3	C4
Real estate, ownership of dwelling & professional services	14.461049	15.710184	9.116395	10.365410
Agriculture, forestry and fishing	14.119213	12.825977	23.727451	24.323490
Trade, repair, hotels and restaurants	13.730076	10.443537	9.690206	11.783216
Manufacturing	13.498187	18.622130	12.383423	10.712459
Construction	11.051090	6.932967	8.826341	9.764521
Other services	7.907258	6.182617	7.201032	6.799089
Transport, storage, communication & services related to broadcasting	6.689409	5.755616	6.872918	6.941761
Financial services	NaN	6.189947	NaN	NaN
Mining and quarrying	NaN	NaN	6.088662	NaN

Plot the contribution of the sub-sectors as a percentage of the GSDP of each category.

plt.figure(num=None,figsize=(100,2000),dpi=60,facecolor='w',edgecolor='k')
ax=topResultDf.T.plot(kind='bar',stacked=True)
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
plt.show()

Data II

drop_out_rate_df =
pd.read_csv("/Users/ArjunSinghBaghel/Documents/Data_Science/Assignment/Part_IB_and_Part_II/DataSet_Part_II/rs_session243_au570_1.1.csv ")
drop_out_rate_df

	SI. No.	Level of Education - State	Primary - 2012- 2013	Primary - 2014- 2015	Primary - 2014- 2015.1	Upper Primary - 2012-2013	Upper Primary - 2013-2014	Upper Primary - 2014-2015	Secondary - 2012- 2013	Secondary - 2013- 2014	Secondary - 2014- 2015	Senior Secondary - 2012- 2013	Senior Secondary - 2013- 2014	Senior Secondary - 2014- 2015
0	1	A & N Islands	0.68	1.21	0.51	1.23	0.51	1.69	5.56	7.20	9.870	14.14	15.87	16.93
1	2	Andhra Pradesh	3.18	4.35	6.72	3.36	3.78	5.20	12.72	12.65	15.710	0.35	11.79	NaN
2	3	Arunachal Pradesh	15.16	10.89	10.82	7.47	5.59	6.71	12.93	14.49	17.110	5.11	17.07	18.42
3	4	Assam	6.24	7.44	15.36	7.20	7.05	10.51	26.77	30.43	27.060	4.69	7.24	NaN
4	5	Bihar	NaN	2.09	NaN	NaN	2.98	4.08	30.14	25.33	25.900	NaN	NaN	NaN
5	6	Chandigarh	NaN	NaN	NaN	0.10	1.08	0.44	NaN	NaN	NaN	13.65	11.28	10.55
6	7	Chhatisgarh	4.14	1.42	2.91	5.42	3.80	5.85	14.86	23.41	21.260	NaN	NaN	2.76
7	8	Dadra & Nagar Haveli	NaN	1.57	1.47	3.38	4.13	4.02	24.41	28.59	16.770	9.65	6.24	9.47

Set 'Level of Education - State' as index

```
dropIndexs = drop_out_rate_df.index[[0,-1]]
drop_out_rate_df = drop_out_rate_df.drop(dropIndexs)
drop_out_rate_df = drop_out_rate_df.set_index('Level of Education - State')
drop_out_rate_df
```

Maped drop_out_rate_df & categoryDF

```
drop_out_rate_df['per capita GDP']=
drop_out_rate_df.index.map(dict(zip(categoryDF.index,categoryDF['Per Capita GSDP (Rs.)'])))
drop_out_rate_df
```

Select Primary - 2014-2015, Upper Primary - 2014-2015, Secondary - 2014-2015 & per capita GDP

```
drop_out_rate_df = drop_out_rate_df[['Primary - 2014-2015','Upper Primary - 2014-2015',
'Secondary - 2014-2015', 'per capita GDP']]
drop_out_rate_df
```

evel of Education - State				
Andhra Pradesh	4.35	5.20	15.710	84837.0
Arunachal Pradesh	10.89	6.71	17.110	139035.0
Assam	7.44	10.51	27.060	73979.0
Bihar	2.09	4.08	25.900	60621.0
Chandigarh	NaN	0.44	NaN	NaN
Chhatisgarh	1.42	5.85	21.260	NaN
Dadra & Nagar Haveli	1.57	4.02	16.770	NaN
Daman & Diu	0.85	3.11	32.270	NaN
Delhi	NaN	0.76	11.810	NaN
Goa	0.20	0.07	11.150	89607.0
Gujarat	0.76	6.41	25.040	271793.0

drop all null values

drop out rate df = drop out rate df.dropna() drop out rate df

Plot for primary, upper primary and secondary education system with Per capita GDP of different states

Primary - 2014-2015

```
plt.figure(num=None,figsize=(50,10),dpi=60,facecolor='w',edgecolor='k')
fig, ax1 = plt.subplots()
color = 'tab:red'
ax1.set xlabel('per capita GDP',color=color)
ax1.set ylabel('Level of Education - State')
ax1.plot(drop out rate df['per capita GDP'],drop out rate df.index, color=color)
ax1.tick params(axis='x', labelcolor=color)
ax2 = ax1.twiny() # instantiate a second axes that shares the same x-axis
color = 'tab:blue'
ax2.set xlabel('Primary - 2014-2015', color=color) # we already handled the x-label with ax1
ax2.plot(drop_out_rate_df['Primary - 2014-2015'],drop_out_rate_df.index, color=color)
ax2.tick_params(axis='y', labelcolor=color)
fig.tight_layout() # otherwise the right y-label is slightly clipped
plt.show()
```


Upper Primary - 2014-2015

```
plt.figure(num=None,figsize=(50,10),dpi=60,facecolor='w',edgecolor='k')
fig, ax1 = plt.subplots()
color = 'tab:red'
ax1.set_xlabel('per capita GDP',color=color)
ax1.set_ylabel('Level of Education - State')
ax1.plot(drop_out_rate_df['per capita GDP'],drop_out_rate_df.index, color=color)
ax1.tick_params(axis='x', labelcolor=color)
ax2 = ax1.twiny() # instantiate a second axes that shares the same x-axis
color = 'tab:blue'
ax2.set_xlabel('Upper Primary - 2014-2015', color=color) # we already handled the x-label with
ax1
ax2.plot(drop_out_rate_df['Upper Primary - 2014-2015'],drop_out_rate_df.index, color=color)
ax2.tick_params(axis='y', labelcolor=color)
fig.tight_layout() # otherwise the right y-label is slightly clipped
plt.show()
```


Secondary - 2014-2015

```
plt.figure(num=None,figsize=(50,10),dpi=60,facecolor='w',edgecolor='k')
fig, ax1 = plt.subplots()
color = 'tab:red'
ax1.set_xlabel('per capita GDP',color=color)
ax1.set_ylabel('Level of Education - State')
ax1.plot(drop_out_rate_df['per capita GDP'],drop_out_rate_df.index, color=color)
ax1.tick_params(axis='x', labelcolor=color)
ax2 = ax1.twiny() # instantiate a second axes that shares the same x-axis
color = 'tab:blue'
ax2.set_xlabel('Secondary - 2014-2015', color=color) # we already handled the x-label with ax1
ax2.plot(drop_out_rate_df['Secondary - 2014-2015'],drop_out_rate_df.index, color=color)
fig.tight_layout() # otherwise the right y-label is slightly clipped
plt.show()
```


Other way to plot for more visualization

1- Primary - 2014-2015

sns.jointplot(x="Primary - 2014-2015", y="per capita GDP", data=drop_out_rate_df, kind='reg'); plt.show()

2- Upper Primary - 2014-2015

sns.jointplot(x="Upper Primary - 2014-2015", y="per capita GDP", data=drop_out_rate_df, kind='reg');

plt.show()

3- Secondary - 2014-2015

sns.jointplot(x="Secondary - 2014-2015", y="per capita GDP", data=drop_out_rate_df, kind='reg');

plt.show()

Question: Form at least one reasonable hypothesis for the observations from the data?

Answer: In Primary - 2014-2015 "Level of Education" state wise is very up and down and also not good as compare to "Upper Primary - 2014-2015" and "Secondary - 2014-2015", but in level of education in "Upper Primary - 2014-2015" growing batter than "Primary - 2014-2015" but not as much "Secondary - 2014-2015".

In Secondary - 2014-2015 Level of Education is good in almost all states and also "Secondary - 2014-2015" is the best among all three.

GDP for each section is same in all states but level of education is differ in each section and also we can see in some states if the GDP growing fast comparatively education level growing not much or just opposite.

Education level of Punjab, Himanchal Pradesh, Haryana, Gujarat, Goa, in 'Primary' section, Himanchal Pradesh, Goa in 'Upper Primary' section and Himanchal Pradesh, Punjab in 'Secondary' section is very low.

We need to focus more on education level in each section of Himanchal Pradesh.

In jointPlot we can see that there is positive or negative co-relation between per capital GDP and sub sectors . In Primary - 2014-2015 and Upper Primary - 2014-2015 points are more closer to the line it means highly corelated, but in Secondary - 2014-2015 points are not more closer to the line its shows per capital GDP and Secondary - 2014-2015 sub sector not much corelated.