Московский физико-технический институт (государственный университет) Факультет общей и прикладной физики

Вопрос по выбору в 4 семестре (Общая физика: оптика)

Модовый состав лазерного излучения

Работу выполнил: Иванов Кирилл, 625 группа

г. Долгопрудный 2018 год

1. Введение

Лазер — источник квазимонохроматического и узконаправленного высококогерентного потока излучения, работающий за счёт квантово-механического эффекта вынужденного (индуцированного) излучения.

Главными элементами лазера являются **оптический резонатор** и расположенная в нём **активная среда**, способная усиливать проходящее через неё излучение.

Рис. 1: Схема лазера

1.1 Квантово-механическое введение

В силу выхода квантовой физики и связанных с ней явлений за рамки нашего курса мы не будем подробно останавливаться на квантово-механических принципах работы лазера.

Если вкратце, то из-за **спонтанного** (самопроизвольного) излучения электронами фотонов с энергией $E=\hbar\omega$ появившиеся частицы света возбуждают атомы, заставляя их переходить на следующий энергетический уровень $E_1=E_0+\hbar\omega$. После взаимодействия других фотонов с уже возбужденными электронами происходит **вынужденное** излучение, после чего атом возвращается в основное состояние. В результате этих процессов возникает электромагнитная волна с частотой $\omega=\frac{E_1-E_0}{\hbar}$, которая усиливается за счёт взаимодействия с активной средой.

Конечно, нужно понимать, что в реальности такие волны являются не монохроматическими с бесконечно узкой линией поглощения/излучения ω , а обладают конечной шириной $\Delta \omega$, которая называемся шириной спектра усиления активной среды лазера (спектра генерации). Она определяется из квантовых и иных характеристик атомов и активной среды.

Вывод показывает, что зависимость интенсивности излучения от частоты имеет форму гауссовой функции со спектром в интервале $\omega \pm \Delta \omega$.

1.2 Роль резонатора

Простейший резонатор представляет собой **интерферометр Фабри**—**Перо**, состоящий из двух плоских зеркал с высокими коэффициентами отражения, размещённых параллельно друг другу на фиксированном расстоянии. Благодаря наличию активной среды, в резонаторе многократно усиливаются волны, распространяющиеся вдоль оси системы и набирающие за один полный проход резонатора фазу, кратную 2π (т.е. на оптической длине резонатора укладывается целое число полуволн, в системе при этом образуются **стоячие волны**). Таким образом, резонатор обеспечивает создание положительной обратной связи в лазере и превращает его в

генератор излучения. Также в резонаторе происходит накопление энергии излучения и отбор узких резонансных линий из спектра излучения, рождающегося в среде. Одно из зеркал резонатора обычно имеет несколько меньший коэффициент отражения, что позволяет выпускать через него часть излучения в виде узконаправленного высокомонохроматического пучка.

2. Модовый состав лазерного излучения

Модами называют стационарные типы колебаний электромагнитного поля в резонаторе, различающиеся частотой и пространственным распределением амплитуды поля.

Рассмотрим моды в открытом резонаторе Фабри–Перо с плоскими зеркалами, расстояние между которыми равно L. Будем считать, для простоты, что активная среда заполняет весь резонатор и имеет показатель преломления n=1.

2.1 Продольные моды

Будем рассматривать **продольные моды**, т.е. волны, бегущие вдоль оси системы (пусть это будет x). В результате отражения от зеркал мы получаем стоячие волны (см. рис. 2). Они задаются формулой $E \propto \sin \omega t \sin kx$.

Рис. 2: Стоячие волны в плоскопараллельном резонаторе Фабри-Перо

В случае металлических (проводящих) зеркал, электрическое поле на них (т.е. на границе системы, в точках x=0, x=L) обращается в ноль. Из этого условия и формулы выше мы получаем $\sin kx=0 \Rightarrow kL=\pi m$, где m, конечно же, пробегает значения $m=1,2,3,\ldots$. Подставляя волновое число $k=\frac{2\pi}{\lambda}$, мы получаем условие на длину волны:

$$\frac{\lambda}{2} = \frac{L}{m} \tag{1}$$

Тогда нетрудно найти частоты, удовлетворяющие (1). Так как частота световой волны $\omega=2\pi\nu=2\pi\frac{c}{\lambda}$, получаем

$$\omega_m = m \frac{\pi c}{L} \tag{2}$$

Таким образом, мы получаем, что из всей ширины спектра генераций резонатор выделяет дискретный набор узких спектральных линий ω_m , соответствующих колебаниям продольных мод. Эти частоты также называются **собственными**.

2.2 Ширина спектральных линий

Рис. 3: Спектральная ширина собственных частот

Важно заметить, что эти линии не являются монохроматическими, а содержат в себе узкий спектр в интервале $\omega_m \pm \Delta \Omega$, где полуширина резонансного пика $\Delta \Omega$ согласно теории колебаний определяется через добротность системы: $\Delta \Omega \sim \frac{\omega_m}{O}$.

В силу определения добротности резонатора Фабри-Перо, мы получаем

$$Q \sim \frac{2\pi L}{\lambda} \frac{1}{1-\rho} \Rightarrow \Delta\Omega \sim \frac{\omega_m}{Q}$$

График распределения интенсивности мод от частоты представлен на рис. 3. Заметим, что ввиду наличия усиления в активной среде, реальная ширина генерируемых лазером спектральных линий может быть и значительно меньше полученной нами ширины линии пропускания резонатора.

Обратим внимание на то, что из-за квантово-механических эффектов существует такое понятие как **уровень потерь**. Помещая полученные нами спектральные линии под гауссову кривую, упомянутую в пункте 1.1, мы оставляем лишь те их них, которые больше этого уровня (рис. 4).

Рис. 4: Многомодовый спектр излучения лазера

Такой спектр излучения лазера достаточно типичен и называется **многомодовым**. Количество генерируемых мод зависит от соотношения усиления и потерь. Если усиление лишь немного выше уровня потерь, то возможна ситуация, когда будет возбуждена только центральная линия и режим работы лазера будет **одномодовым**. Также одномодовый режим можно получить и иначе, о чем пойдет речь в дальнейшем.

3. Экспериментальный подсчет числа мод

Используем результаты выполненной в семестре **лабораторной работы № 4.5.2** («Интерференция **лазерного излучения»)** для экспериментальной оценки числа продольных мод в гелий-неоновом лазере с длиной резонатора порядка $0.2 \div 1$ м и средней длиной волны $\lambda = 632.8$ нм.

3.1 Теоретическая подводка

Используя результат (2), нетрудно получить для $\nu_m = \frac{\omega_m}{2\pi}$ расстояние между модами:

$$\Delta \nu = \nu_{m+1} - \nu_m = \frac{c}{2L} \tag{3}$$

Явление интерференции в лазерном свете объясняется описанным выше многомодовым характером излучения. Между волнами происходят биения с частотой, равной разнице частот между модами, максимальная часто- та биений — это разность частот между крайними модами, то есть фак- тически полная ширина спектра излучения лазера.

С другой стороны, поскольку излучение в лазере последовательно распространяется по резонатору от зеркала к зеркалу, его характеристики (амплитуда и соотношение фаз между модами) должны в точности повторяться с периодом, равным времени полного обхода резонатора. Поэтому мы должны ожидать, что при геометрических задержках, кратных удвоенной длине резонатора, интерференция пучков должна восстанавливаться.

Схема установки. З, З₁, З₂, З₃ — зеркала. П₁ и П₂ — поляроиды. Б₁ и Б₂ — блоки № 1 и 2. ДК — делительный кубик, РФ — ромб Френеля. ФД — фотодиод, Э — экран, ПК — пьезокерамика, Л — линза

Рис. 5: Экспериментальная установка в работе 4.5.2

Схема установки показана на рис. 5. Смещая блок B_2 вдоль штанги, мы создаем геометрическую разность хода, вызывающую интерференцию. С помощью фотодиода мы снимаем с осциллографа показания видности интерференционной картины. Ее можно получить как

$$V_2 = \frac{1}{N} \frac{\sin\frac{\pi l}{2L}N}{\sin\frac{\pi l}{2L}} \tag{4}$$

Таким образом, главные максимумы должны наблюдаться при l=0 и при l=2L. Это позволяет подсчитать базу интерферометра L. Между главными могут быть промежуточные максимумы и минимумы (обращение видности в ноль), что, однако, не дает нам точных значений числа мод из-за неравности их амплитуд.

Кроме того, при уменьшении видности картины в 2 раза мы можем замерить соответствующую координату $l_{1/2}$ и подсчитать время когерентности $\tau_{\rm k} = l_{1/2}/c$. Тогда из принципа неопределённости $\tau_{\rm k} \Delta f \sim 1$ мы можем получить ширину спектра генерации $\Delta f = \frac{\Delta \omega}{2\pi}$. С учетом более точного анализа кривых, определяемых (4), можно уточнить формулу для Δf и получить интересующую нас формулу подсчета числа мод в виде

$$\Delta f \approx 0.6 \frac{c}{l_{1/2}}, \qquad N \approx 1 + \frac{\Delta f}{\Delta \nu} = 1 + 1.2 \frac{L}{l_{1/2}}$$
 (5)

3.2 Экспериментальные результаты

Построим график зависимости V_2 от разности хода x.

Рис. 6: Многомодовый спектр излучения лазера

Видно, что у нас наблюдается 2 максимума по краям области измерения и некоторые колебания в промежуточной области. А именно, максимумы в области $x_1 \approx (10 \pm 2)$ см и в области $x_2 \approx (75 \pm 2)$ см, откуда получаем следующий результат:

$$L = \frac{1}{2}(x_2 - x_1) = (32.5 \pm 1.4) \text{ cm}$$

Отсюда нетрудно получить и значение $\Delta \nu$ из формулы (3):

$$\Delta \nu = \frac{c}{2L} \approx (4.6 \pm 0.2) \cdot 10^8$$
 Гц

Оценим $l_{1/2} \approx 18-10=8\pm 2$ см, откуда по формуле (5) получаем

$$\Delta f = 0.6 \frac{c}{l_{1/2}} \approx (22.5 \pm 5.6) \cdot 10^8 \ \Gamma$$
ц

Тогда для числа генерируемых лазером продольных мод можно провести оценку:

$$N \approx 1 + 1.2 \frac{L}{l_{1/2}} \approx 6 \pm 1$$

4. Селекция продольных мод

5. Заключение

Использованная литература

- Звелто «Принципы лазеров
- Лабник