PATENT SPECIFICATION

(11) 1 502 144

(21) Application No. 20817/75 (22) Filed 16 May 1975 · (31) Convention Application No. 2 430 039

(32) Filed 22 June 1974 ·

(31) Convention Application No. 2 430 039

(32) Filed 18 April 1975 in

5

10

15

20

25

30

35

40

45

(33) Fed. Rep. of Germany (DE)

(44) Complete Specification published 22 Feb. 1978

(51) INT CL2 A61K 7/06, 7/48

(52) Index at acceptance A5B

(72) Inventors KARL HEINZ BÜCHEL and MANFRED PLEMPEL

5

10

15

20

25

30

35.

40

45

(54) AZOLE ANTIMYCOTICS IN COSMETICS

We, BAYER AKTIENGESELLSCHAFT, a body corporate organised under the laws of Germany, of Leverkusen, Germany, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:-

The present invention relates to the use of largely known azole antimycotics as cosmetics, especially as additives to hair toiletries.

The use of azole derivatives as medicaments is already known (compare, inter alia, Belgian Patent Specification 720,801, Belgian Patent Specification 741,310, alia, Belgian Patent Specification 720,801, Belgian Patent Specification 741,310, U.S. Patent 3,737,548, German Offenlegungsschrift (German Published Specification) 1,911,646, Belgian Patent Specification 750,724, German Offenlegungsschrift (German Published Specification) 2,016,839, German Offenlegungsschrift (German Published Specification) 2,044,621, German Offenlegungsschrift (German Published Specification) 2,053,080, Belgian Patent Specification 778,973, Belgian Patent Specification 804,092 and Arzneimittelforschung 2, volume 21/1971, page 256—257).

Further, various agents intended to combat cosmetically objectionable or

pathological changes in the scalp and hair are already known.

Thus, pyridone derivatives, such as 1-hydroxy-2-pyridones, are used as antidandruff agents (compare German Offenlegungsschrift (German Published Specification) 2,234,009) or salicyclic acid derivatives, such as the 2-ethyl-1,3hexanediol ester of salicyclic acid, are recommended for combating dandruff and seborrhoea (compare U.S. Patent 2,523,867).

An itch-suppressant action in seborrhoeic conditions has been described for crotonyl-N-ethyl-o-toluidine [compare O. Saipt, Wiener med. Wschr. 102, 413

F. Asbeck has reported on combating microsporiosis with triphenyl-dodecylphosphonium bromide [compare Z. Haut- and Geschlechtskrankheiten 14, 117

It is also known that colloidal sulphur is effective in cases of seborrhoea, dandruff, acne and infections [compare A. J. Wojwod, J. gen Microbiol. 10, 509]

The preparations comprising colloidal sulphur necessarily contain polythionic acids which according to clinical data are effective in cases of seborrhoea and acne [compare J. R. Delaney et al., J. Michigan St. Med. Soc. 50, 1236 (1951)].

However, a disadvantage of the polythionates is their great instability.

In addition, the effect of all agents against Pityrosporum ovale, a blastomycete which must be regarded as one of the principal causes of pathological changes in the skin, especially in the scalp, is not always satisfactory, or is even non-existent,

It has now been found that certain azole compounds extensively known as azole antimycotics show a powerful action against all the skin changes caused, or partially caused, by Pityrosporum ovale. Surprisingly, this action is far more powerful and intense than was to be expected from the state of the art.

According to the present invention we provide a hair or skin toiletry composition comprising at least one azole antimycotic which is active against skin changes wholly or partially caused by Pityrosporum ovale and which have the formula (I):-

Ŕ‴	
wherein Az is an optionally substituted imidazole or triazole group connected to the carbon atom by a nitrogen atom, and R', R" and R" are independently selected from hydrogen atoms, optionally substituted phenyl groups, optionally substituted heterocyclic groups having O, S or N as a hetero atom, optionally-substituted aliphatic	5
hydroxy, amido and amino groups or R' and R" together represent two optionally-substituted phenyl groups linked together by a bridging atom or group, or a salt thereof, dispersed in a dermatologically acceptable carrier which contains	10
The invention specifically provides a shampoo composition comprising at least one azole antimycotic of the formula (I) and a dermatologically acceptable detergent active compound. The compositions of the invention preferably contain from 0.05 to 5% by	15
up to 30% by weight of the detergent active compound. The basic skeleton of the azole compounds used in the present invention consists of a central carbon atom with an optionally substituted azole radical (imidazole or triazole). The remaining substituents on the carbon atom can be:	20
one another (for example via —(CH ₂) _n —, —CH=CH—, O or S, resulting, for example, in fluorene, dibenzocycloheptane or (thio)-xanthene derivatives); five-membered or six-membered, optionally substituted heterocyclic structures with N, O or S as the hetero-atom; aliphatic acyclic or alicyclic radicals; functional groups, such as, for example, ester, ether, alkinyl, alkenyl, keto, hydroxyl or amino groups. The following may be mentioned as examples of the active compounds used	25
	wherein Az is an optionally substituted imidazole or triazole group connected to the carbon atom by a nitrogen atom, and R', R" and R" are independently selected from hydrogen atoms, optionally substituted phenyl groups, optionally substituted heterocyclic groups having O, S or N as a hetero atom, optionally-substituted aliphatic groups, optionally-substituted alicyclic groups, ester, ether, alkinyl, keto, hydroxy, amido and amino groups or R' and R" together represent two optionally-substituted phenyl groups linked together by a bridging atom or group, or a salt thereof, dispersed in a dermatologically acceptable carrier which contains a detergent-active compound and/or a perfume. The invention specifically provides a shampoo composition comprising at least one azole antimycotic of the formula (I) and a dermatologically acceptable detergent active compound. The compositions of the invention preferably contain from 0.05 to 5% by weight of the azole antimycotic, and the shampoo compositions preferably contain up to 30% by weight of the detergent active compound. The basic skeleton of the azole compounds used in the present invention consists of a central carbon atom with an optionally substituted azole radical (imidazole or triazole). The remaining substituents on the carbon atom can be: optionally substituted phenyl, it being possible for two phenyl rings to be linked to one another (for example via —(CH ₂) _m —, —CH=CH—, O or S, resulting, for example, in fluorene, dibenzocycloheptane or (thio)-xanthene derivatives); fivemembered or six-membered, optionally substituted heterocyclic structures with N, O or S as the hetero-atom; aliphatic acyclic or alicyclic radicals; functional groups, such as for example, ester ether, alkinyl, alkenyl, keto, hydroxyl or amino groups.

Н	1
Φ	I
덩	İ
ัส	1
F	ı

	R1-G-R3 R1-G-R3 R2	**		
R^{1}	R ²	R ²	R ⁴	Melting point, ^O C
Phenyl	Phenyl	Phenyl	ш	226–227
p-Toluene	Phenyl	Phenyl	н	128
o-Chlorophenyl	Phenyl	Phenyl	н	140
m-Trifluoromethylphenyl	Phenyl	Phenyl	н	156
p-Nitrophenyl	Phenyl	Phenyl	н	160-170
p-Chlorophenyl	m-Fluorophenyl	Phenyl	н	116
4-Methylphenyl	2-Pyridyl	Phenyl	н	144-145
2-Ethoxyphenyl	2-Pyridyl	Phenyl	н	123-125
4-Chlorophenyl	2-Pyridyl	4-Fluorophenyl	н	138
Phenyl	4-Ėyridyl	Pheny1	cH_3	175-178
Phenyl	4-Pyridyl	Phenyl	н	217–218
Phenyl	4-Pyridyl	Phenyl	н	186-200 lactate
4-Chlorophenyl	Phenyl	l-Imidazolyl	H	140

Continuation of Table 1				
$^{\rm R1}$	R ²	R [.] 2	$^{\mathrm{R}^4}$	Melting point, ^o C
2-Fluorophenyl	4-Fluorophenyl	1-Imidazolyl	н	129
4-Fluorophenyl	4-Nitrophenyl	1-Imidazoly1	н	198
Phenyl	Phenyl	1-(2-Methyl)-imidazolyl	CH_{3}	193
4-Bromophenyl	Phenyl	1-(2-Ethyl)-imidazolyl	$c_{2^{ m H}5}$	128
4-Chlorophenyl	4-Chlorophenyl	1-(2-Methyl)-imidazolyl	CH ₂	220
2,3-Dichlorophenyl	Phenyl	Phenyl	н	128
2-Methyl-4-chlorophenyl	Phenyl	Phenyl	н	158-162
2-Chlorophenyl	Phenyl	2-Chlorophenyl	н	180
3,4-Dimethylphenyl	Phenyl	2-Pyridyl	н	96
2,6-Dimethylphenyl	Phenyl	2-Pyridyl	н	120 hydrochloride
2,3-Dimethylphenyl	Phenyl	4-Pyridyl	н	154

α	
ο	
질	
밁	

А	В	굕	X	Melting point, ^O Ĉ
Phenyl	1-Imidazolyl	н	ı	197–199
4-Bromophenyl	l-Imidazolyl	Ħ	ı	181-184
4-Chlorophenyl	1-Imidazolyl	н	$-(CH_2)_2$	216–218
Phenyl	1-Imidazoly1	H	þ	160-162
Phenyl	1-Imidazolyl	н	ا ا	179-181
Phenyl	1-Imidazolyl	н	-CH=CH-	208–211
3-Pyridyl	1-Imidazolyl	н	ı	80–85
3-Pyridyl	1-Imidazolyl	н	$-(CH_2)_2$	147-149
4-Fluorophenyl	1-Imidazolyl	н	$-(CH_2)_2$	Salicylate, 137-138
4-Methylthiophenyl	1-Imidazolyl	Ħ	1	Hydrochloride, from 90 onwards (decomposition
-cooch ₃	1-Imidazolyl	н	1	150
-cooch ₃	1-Imidazolyl	ij	i	205-210 (decomposition)
cooc ² H ² (n)	l-Imidazolyl	н	ı	85

Ą	В	R	Y	Melting point, ^o c
-cooch ₂	1-(1,2,4-Triazoly1)	Ħ	ı	140-145
-c0002H ²	1-(1,2,4-Triazoly1)	н	ı	133
-cooch ₂	1-(1,2,4-Triazoly1)	덩	ı	90 (decomposition)
⁶ н ⁷ 2002-	1-Imidazolyl	H	ı	Hydrochloride, 158 (decomposition)
-cH ₂	1-Imidazolyl	Ħ	ı	139
-CH(CH ₃) ₂	1-Imidazolyl	Ħ	t	125
-c ₂ H ₅	1-Imidazolyl	IJ	ı	Hydrochloride, 215
-cH ₂	l-Imidazolyl	ij	ı	130
-CH ₂	l-Imidazolyl	Ħ	-CH=CH-	188
-cH ₂ -cH=CH ₂	l-Imidazolyl	Ħ	-cH2-CH2-	$-CH_2-CH_2-$ Hydrochloride, 168

Continuation of Table 2

Table 3	A A		
A	В	X	Melting point, OC
4-Pyridyl	Cyclohexyl	Н	06
Phenyl	t-Butyl	4-cı	137
4-Chlorophenyl	t-Butyl	4-C1	Hydrochloride, 196
Phenyl	Allyl	н	80
Phenyl	t-Butyl	$2,5-(CH_3)_2$	112
Phenyl	Cyclopropyl	3-cH ₃	Hydrochloride, 136
4-Methylphenyl	1-Methylcyclohexyl	4-CH ₂	151
Phenyl	t-Butyl	3-CH ₃ , 4-Cl	95
Phenyl	2-Thienyl	4-F	144-145
Phenyl	3-(5-Methyl)-isoxazolyl	3-CF3	69
Phenyl	2-(1-Methyl)-imidazolyl	н	200
Phenyl	5-(3,4-Dichloro)-isothiazolyl	4-F	95
Phenyl	N N	Ħ	209

Continuation	ontinuation of Table 3		
A	В	X	Melting poin
Phenyl	$\bigvee_{N} \bigcup_{C1}^{C1}$	н	142-146

X Melting point, C	Н 142-146	н 198	20 of included the
В	$\bigvee_{N} \bigvee_{C1}^{C1}$	N N	
A	Pheny1.	Phenyl	4-Fluoronhenvl

4	1
a)	ı
H	l
Д	ı
تق	ı

			1	-(cH ₂) _m co	
		×	ᅿ		
æ	×	Y	Ħ	Melting point, ^o C	
Phenyl	н	och ₃	0	155	
Phenyl	Ħ	och ₃	0	Sulphate, 145	
2-Methylphenyl	н	och ₃	0	148	
Phenyl	н	$^{0C_{10}H_{21}}$	0	87	
Phenyl	н	$NH(CH_3)_2$	0	202	
Phenyl	н	$\binom{2}{2}$	0	Hydrochloride, 118	
Phenyl	н	N N-CH ₃	0	173	
4-Chlorophenyl	4-CJ	0 CH 2	0	132	
4-Methoxyphenyl	€HDO-+	och ₂	0	131	
Phenyl	н	0C_2H_5	Н	75	

								*		Melting point, ^o c	210	205	75	84	125
	Melting point, OC	Hydrochloride, 194					(¥	н	Ħ	4-CN	н	н
	Melting	Hydrochl	103	136	120					x ²	н	2-G1	4-F	4-01	2 - G1
	я	Н	0	0	0		X		×					Q	
	Y	0C2H5	cH_{2}	Phenyl	Phenyl					×	н	н	н	3-NO ₂	5-01
able 4	×	Ħ	н	н	н										
Continuation of Table	R	$cH(cH_3)_2$	Phenyl	4-Chlorophenyl	3-Methylphenyl	Table 5									

`	•
0	υ
_	1
2	3
C	Q
F	4

		B B		
ম	А	В	×	Melting point, ^o C
CH	Phenyl	Phenyl	ı.	173
CH	2'-(N'-Methylimidazolyl)	Phenyl	i	134
CH	Phenyl	Phenyl	- S	162-164
CH	Phenyl	Phenyl	-00-	131-135
CH	Phenyl	Phenyl	0	141-144
CH	1,5-Dimethylpyrazol-3-yl	Phenyl	0	09
CH	4-Chlorophenyl	4-Chlorophenyl	9	136
N	Phenyl	Phenyl	-k	137-139
×	2'-(N'-Methylimidazolyl)	Phenyl	ı	135

Table 7

Phenylazolyl-fatty acid derivatives

ထု
~
e
옏
50

	נז	1										
	Melting point, OC	144	74	128	132	87	187	148	140	138	148	154
	Ą	-0-	þ	þ	9	0	0	þ	þ	0	þ	0
R ² A—Y	_R 3	Ħ	Ħ	Ħ	Ħ	H	H	Ħ	Ħ	Ħ	CH ₃	н
	\mathbb{R}^2	Ħ	н	н	Ħ	н	Ħ	Ħ	Ħ	Ħ	$_{2}^{\mathrm{CH}_{3}}$	CHZ
R ²	~	Ħ	Ħ	H	Ħ	Ħ	Ħ	н	н	4-CJ	н	Ħ
M-O-Z	Y	н	сн ₃ -сн ₂ -со-	CI -CO-	$\frac{NO_2}{NO_3}$	- OD-HD=HD-()	CH3-SO2-	cH_3 \leftarrow so_2 $NH-co-$	CH3-NHCO-N-CO-			н
	×	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl

Continuation of Table 8

×	X	$^{\rm R}$	R^{1} R^{2} R^{3}	² 3 A	Melting point, ^o C
			(
Phenyl	н	Ħ			203
-c(cH ₂) ₃	н	Ħ	H	-0-	130
$-c(cH_3)_3$	сн ₃ -со-	Ħ	H	-0- H	70
Phenyl	C1 <	Ħ		H -S-	126
Phenyl	Phenyl Cl	H		-50S-	x CH ₃ COOH
Phenyl	CH2-CO-	Ħ	Ħ	-NH-	178

	Melting point, ^o C	103-104	87-87.5	94-44	0i1, n_{D}^{25} 1.6019	136	oil, $n_{ m D}^{25}$ 1.5755	oil, $n_{ m D}^{25}$ 1.5852	63–64	//0 KO
R1 - C = C - N - N - N - N - N - N - N - N - N -	R ²	Phenyl	4-Chlorophenyl	3-Ni trophenyl	$c(cH_3)_3$	Pheny1	Phenyl	CH ₂	Phenyl	ā
<u>able 9</u>	R^{1}	Phenyl	Phenyl	Phenyl	Phenyl	н	$cH_3-(cH_2)_4-$	$C_2^{H_5}$ 0- $C_{H_2}^{-2}$	ON-CH ₂ -	110 11 (11 0)

Tab

0	l
$\overline{}$	į
	ľ
Φ	
'-'	
മ	
ંત	i
نت	ı

	Melting point, ^o C	711	Hydrochloride, 82	161	Oil
G—A—X	X	-0CH ₂	-CN	$-con(cH_3)_2$	-0 -CHCH $_{\rm z}$ -CH $_{\rm 2}$ -N(CH $_{\rm z}$) $_{\rm 2}$
- S	A	-co-	-CH ₂ -	-cH ₂ -	-00-
	Я	Thienyl	Phenyl	4-Chlorophenyl	Thienyl

Table 11

.

(1
٩)
ָׁכ מ	-
Ë	•

R ¹ R ² R ³ Melting point, ^o C	(1) H 218	$c1$ \leftarrow $-c(cH2)3 H 135$	$\left\langle \begin{array}{c} \text{Cl} \\ \end{array} \right\rangle$ H Hydrochloride, 124	$c1 \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle$ c_{H_3} oil	
X	-00	-00-	-c(oh) ₂ -	-00-	
×	0	0	0	-0-	
п	0	0	0	0	
AZ	1-Imidazolyl	1-Imidazolyl	1-Imidazolyl	1-Imidazolyl	

	R ² R ³ Melting point, ^o C	$-c(cH_3)_3 \left(\begin{array}{c} \\ - \end{array} \right) - 98-102$	H Hydrochloride, 155		d(GH ₃) ₃ н 106	- $-G(GH_3)_3$ $\left(\begin{array}{c} \\ -\end{array}\right)$ Hydrochloride, 208	$-G(GH_3)_3$ H Hydrochloride, 127	301_201 H _(_HD)D_
	ж. Тж				Br		G1	F.
	¥	-00-	-с(он) ₂ -	-00-	-00-	-00-	-00-	-00-
e 12	×	þ	0	0-	0	-0-	0	0
of Table	д	0	0	0	o ·	0		₩
Continuation of Tabl	AZ	1-Imidazolyl	1-Imidazolyl	1-Imidazolyl	1-Imidazolyl	1-Imidazolyl	1-Imidazolyl	1-Imidazolyl

CI
12
υl
Table
.0
ଷ
=
님
ol
- 1
됭
ᆲ
1
اند
Ø
~1
킘
اند
C.
딍
~~!

Continuation of Table	n of Tab	1e 12					
					,	1	
Az	ц	×	¥	R. ¹	R ²	R ³	Melting point, ^o C
1-Imidazolyl	-	0	-00-		-c(cH ₃) ₃	н	Hydrochloride, 180-183
1-Imidazolyl	₩.	0	-00-	C1 CH2	-c(cH ₃) ₃	Ħ	Hydrochloride, 147-150
1-Imidazolyl	₩	·1 0	-00-		-c(cH ₃) ₃	Ħ	111-112
1-Imidazolyl	~	0	-00	CH2 OH	-c(cH ₂) ₃	Ħ	105-107
1-Imidazolyl	-	-0-	-00-	CH ₂	-c(cH ₃) ₃	æ	Hydrochloride, 135
1-Imidazolyl	~	0	-00	CH ₃ CH ₃	-c(cH ₃) ₃	æ	Hydrochloride, 143-147
1-Imidazolyl	τ	-0-	-00-	NO CITY OF THE PROPERTY OF THE	-c(cH ₃) ₃	Ħ	122-123

12	
Table	
of]	
tion	
inua	
Cont	

Continuation of Table 12	of Tab	1e 12					
Az	д	×	Y	F. H.	R ²	R ³	Melting point, ^o C
1-Imidazolyl	₩	-0-	-00-		H	н	Hydrochloride, 148-150
1-(1,2,4-Triazolyl)	0	0-	-00-	G1 (C1)	-01	Ħ	101-104
1-(1,2,4-Triazoly1)	0	o o	- 00-	C1 (14)	-c(cH ₃) ₃	н	96 -1 6
1-(1,2,4-Triazoly1)	0	0	-00-	02"	-c(cH ₃) ₃	Ħ	145
1-(1,2,4-Triazoly1)	0	0	-00		-c(cH ₃) ₃	ш	105-106
1-(1,2,4-Triazolyl)	0	9)c=NOH	02N	-c(cH ²) ³	Ħ	187
1-(1,2,4-Triazolyl)	0	0	C(OH)2	61,61	-c(cH ₃) ₃	Ħ	206–207

Continuation of Table 12	CA	ı
of Table	_	1
of	٠.	1
of		1
of	w	1
of	_	1
of	'~'	1
of	بدر	ı
of	ิส	ı
of	-	ı
- 1	٠.	1
- 1	_	1
- 1	ч	ı
- 1	0	ı
Continuation	_	1
Continuation		1
Continuation	_	ı
Continuation	\sim	1
Continuati	٧.	1
Continuat		1
Continua	¥	1
Continua	d	1
Continu	22	1
Contin	بر	ı
Conti	C	ı
Cont	.=	1
Cont	11	1
Col	┯.	1
ပ္ပါ	_	ł
ပါ	\sim	ı
O	-~	1
	U	ı

AZ	д	×	×	п1	_R 2	_В 3	Melting point, ^o	ပ
1-(1,2,4-Triazolyl)	0	-0-	-000-	01-	-с(сн ₃) ₃	н	Sulphate, 141	
1-(1,2,4-Triazolyl)	0	1	-00-		-c(cH ₃) ₃		66 .	
1-(1,2,4-Triazolyl)	0	 	-снон-	$(CH_3)_3C$	-c(cH ₂) ₃	Ħ	115-117	
1-(1,2,4-Triazolyl)	0	0	-сноно-	CE,	-c(cH ₃) ₃	Ħ	99-110	
1-(1,2,4-Triazolyl)	0	0	-снон-	CH ₃	-c(cH ₃) ₃	н	133-135	
1-(1,2,4-Triazolyl)	0	0	-ссн ₃ он-		-c(cH ₃) ₃	н	101-103	
1-(1,2,4-Triazolyl)	0	0	-но ² нээ-	01		Ħ	171-173	
1-(1,2,4-Triazolyl)	0	0	-снон		-c(cH ₃) ₃	н	142-144	

				,	0.		
ပ					190-21		
Melting point,	145–147	173-174	145-150	136-148	Hydrochloride, 190-210	()-159-160	77-24
R3	н	Ħ	н	斑	н		Ħ
R ²	-c(cH ₃) ₃	-c(cH ₃) ₃	-c(cH ₃) ₃	-c(cH ₂) ₃	-c(cH ₃) ₃	-c(cH ₂) ₃	-c(cH ₃) ₃
п1	01-	$\operatorname{Br}\left\langle \begin{array}{c} \\ - \end{array} \right\rangle$	$(cH_5)_5c$				CH ₃ ⟨)−
¥	ноно-	-снон-	ноно-	-снон-	-снон-	-снон-	-00-
×	-	o O	o O	0	0	0	0
д	0	0	0	0	0	0	7
Az n)	1-Imidazolyl	1-Imidazolyl	1-Imidazolyl	1-Imidazolyl	1-Imidazolyl	1-Imidazolyl	1-(1,2,4-Triazolyl)

Continuation of	of Ta	Table 12					
AZ	ជ	×	Y	п1	R ²	R3	Melting point, ^o C
1-(1,2,4-Triazolyl)	-	0	-00-	C1-(CH2)	-c(cH ₂) ₃	H	63-65
1-(1,2,4-Triazolyl)	←	0	-00	E C	-c(cH ₂) ₃	Ħ	73–74
1-(1,2,4-Triazolyl)	~	0	-00-		-c(cH ₂) ₃	Ħ	97–98
1-(1,2,4-Triazolyl)	←	0	-снон-		-c(cH ₂) ₃	н	106–108
1-(1,2,4-Triazolyl)	←	0	-снон-	CH ₂ CH ₂	-c(cH ₂) ₃	Ħ	132-134
1-(1,2,4-Triazolyl)		0-	-ноно-	F.	-c(cH ₂) ₃	Ħ	121-122
1-(1,2,4-Triazolyl)	←	0	-cch3oh-		-c(cH ₂) ₃	н	150

12	
Table	
of.	
Continuation	

AZ	ជ	×	¥	R.	R ²	R ³ Melting point, ^o C
1-Imidazolyl	-	9	-снон-	S E	-c(cH ₂) ₃	Н 162-163
1-Imidazolyl	~	0	-снон-		-c(cH ₃) ₃	н 163-164
1-Imidazolyl	**	0	-ссн ₂ он-		-c(cH ₂) ₃	H 155
1-Imidazolyl	-	0	H/D-'GHD)D-	-C(CH2-C/H-)OH C1-	-c(cH-)-	H 179-181

10

15

20

25

5

10

15

20

Table 13

R	Melting of point,
Н	110–112
-c(cH ₃) ₃	114-118
C1	152–154
—(н)	170–171
-сн-с ₂ н ₅	156–158

The active compounds used according to the invention exhibit a powerful action against Pityrosporum ovale. Pityrosporum ovale is a blastomycete which is only parasitic in the uppermost layers of human skin, particularly in excessively greasy skin. It is regarded as the cause of the following changes in skin, which are not regarded as skin diseases: 1) Pityriasis simplex, 2) Pityriasis oleosa and 3) Pityriasis circinata. It is also regarded as the cause of the following, which are considered to be skin diseases: seborrhoeic dermatitis and Acne vulgaris (as a coexistent germ).

All the skin changes caused, or partially caused, by Pityrosporum ovale are grouped under the generic term "seborrhoea".

Other coexistent germs found in seborrhoea are: Staph. albus and

corynebacteria, as well as Malassezia furfur. The latter are also known as the pathogens of erythrasma and of Pityriasis versicolor.

Seborrhoea is widespread and is frequently one of the causes of loss of hair and formation of scaly skin, especially on the scalp.

Seborrhoeic eczemas also occur very frequently on the face and are therefore objectionable and disturbing. The invention particularly provides a process for combating skin changes caused wholly or partially by *Pityrosporum ovale* which comprises applying to the skin a compound of the formula (I).

Pitvrosporum ovale was cultured and the MIC determinations were carried out with a large number of azole derivatives. The growth of Pityrosporum ovale is considerably slower than, for example, of species of Candida or Torulopsis—it takes 3 to 5 days. It requires Abbe's medium as a special nutrient medium.

25 Procedure: 1.) Setting up the dilution series of each preparation: 6.4 mg of preparation are

dissolved in 1 ml of analytical grade dimethylformamide and 9 ml of distilled water are added. 1 ml now contains 640 mcg (640 microgrammes) of preparation. If 2 ml are withdrawn and added to 2 ml of H₂O, the resulting concentration is 320 mcg/

	ml. If this is continued progressively, the following dilution series, in mcg/ml, is obtained: $640 - 320 - 160 - 80 - 40 - 20 - 10 - 5 - 2.5 - 1.25 - 0.625 - 0.313 - 0.156 - 0.078 - 0.039 - 0.02 - 0.01.$	
5	2.) Charging the test tubes: 0.5 ml portions of the particular dilution are introduced into test tubes.	5
	3.) Charging with nutrient medium: Abbe's medium is used.	
10	Recipe: 15.0 g of malt extract (Messrs. Diamalt) + 2.5 g of peptone (Messrs. BBL) + 10.0 g of ox bile (Messrs Merck) + 20.0 g of agar-agar (Messrs. Difco) + 100.0 g of Tween 40 mixture*) (TWEEN and DIFCO are Trade Marks) + 900.0 g of distilled water.	10
15	200 ml portions of Abbe's medium are introduced into nutrient medium flasks. For use, the previously calculated amount of Abbe's medium is liquefied in a steaming pot and cooled until only warm to the touch; 4.5 ml are then added to each test tube. A second person receives each test tube and twirls it between his hands, like a kitchen whisk. This achieves good mixing of the diluted preparation with the nutrient medium. Each test tube is then immediately brought into a	15
20	slanting position, in the same way as is usually employed to prepare agar slants. The final concentrations of the various preparations are then, in mcg/ml of test medium: $64 - 32 - 16 - 8 - 4 - 2 - 1 - 0.5 - 0.25 - 0.125 - 0.062 - 0.031 - 0.016 - 0.008 - 0.004 - 0.002 - 0.001.$	20
25	The culture control and the nutrient medium control are each 1 test tube in which 0.5 ml of H_2O is introduced in place of the preparation.	25
30	4.) Inoculation with Pityrosporum ovale: We used a culture which had been grown for 3 weeks in Benham's fluid medium at 28°C. Recipe for Benham's fluid medium: 1.0 g of KH ₂ PO ₄ 0.5 g of MgSO ₄ .7H ₂ O 1.25 g of asparagine 500 ml of distilled water 500 ml of 4% strength Tween 80 in H ₂ O bring to pH 6.4 with NaOH.	30
40	After the nutrient medium has solidified thoroughly in all the test tubes, 0.1 ml of culture is allowed to run over each slant, except for the test tube of the nutrient medium control. 0.1 ml of physiological NaCl solution is added to the latter. 5.) Incubation and readings: The incubation is carried out at 28°C. After 3 days, the culture control test tubes show germ growth, which reaches an optimum after 5 days. The MIC = minimum inhibitory concentration, and the PI = partial inhibition	40
45	(retardation of growth by about 90% relative to the control, that is to say only about 10% of the germs have grown) are read off in comparison to the control. Of course, all the work must—as is usual in microbiology—be carried out under sterile conditions, that is to say, using, for example, sterile test tubes, pipettes, nutrient media and the like. Table 14 which follows lists the MIC values = minimum inhibitory concentrations, and PI values = partial inhibitions of a representative selection of	45
50	the azole antimycotics claimed. According to these results, the active compounds according to the invention can very justifiably be used in combination with dermatologically acceptable carriers comprising detergent active compounds and/or perfumes to form hair and skin toiletry compositions particularly since the azole group is also active against	50
55	Staph, albus and corynebacteria at orders of magnitude of 2 mcg/ml.	55
	*) Tween mixture: 100 ml of Tween 40 (Messrs. Merck) + 400 ml of distilled water + 25 g of highest purity glycerol (Messrs. Merck) are mixed and then made up to	•

^{*)} Tween mixture: 100 ml of Tween 40 (Messrs. Merck) + 400 ml of distilled water + 25 g of highest purity glycerol (Messrs. Merck) are mixed and then made up to 1,000 ml with distilled water.

Table 14: MIC and PI

Compound (Example (1) C1 (2) C1 (4) C1 (5) C1 (5) C1	PI values of Pityrosporum ovale in the presence of various azole derivatives	Reading after Reading after 5 days	MIC PI*	-0-CH-CO-C(CH ₃) ₃ <1	C1 (N) <1 <1	Br-()-0_CH-CO-C(CH ₃) ₃ <1 <1		$c1 \leftarrow \begin{array}{ccccccc} & & & & & & & & & & & & & & & &$
α .	ol values of Pityrosporum	Compound (Example No.)		(1) C1 ()-0-CH-CO-C(CH ₃) ₃	ري دي	(3) Br-()-0-CH-CO-C	$(4) C1 \leftarrow \begin{pmatrix} \\ \\ \\ \\ \\ \\ \\ \end{pmatrix} \leftarrow \begin{pmatrix} \\ \\ \\ \\ \\ \\ \end{pmatrix} \leftarrow \begin{pmatrix} \\ \\ \\ \\ \\ \\ \\ \end{pmatrix} \leftarrow \begin{pmatrix} \\ \\ \\ \\ \\ \\ \end{pmatrix}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Continuation of Table 14

MIC and PI values of Pityrosporum ovale in the presence of various azole derivatives

Compound (Example No.)	Reading after 3 days	after 7s	Reading after 5 days	after s
	MIC mcg/ml	PI [#] mcg/ml	MIC mcg/ml	PI*
(6) $C1 \leftarrow C-CH-CO-C(CH_5)_5$ $C1 \leftarrow CH_2$ $C1 \leftarrow N$	2	<1	2	<1
(7) $\left(\begin{array}{c} \\ \\ \\ \end{array}\right)$	4	8	ω	α
(8) $\text{C1} \leftarrow \text{CH-CO-C}(\text{CH}_3)_3$ $\text{CH}_2 \times \text{HC1}$	4	8	ω	4
(6)	ω .	N	ω	4

Continuation of Table 14

Compound (Example No.) (Example No.) (Example No.) (Example No.) (10) HC=C-C-N Mic PI* (10) HC=C-C-N Mic Mi	MIC and PI values of Pityrosporum ovale in the presence of various azole derivatives	m ovale in the preser	nce of va	rious azo	le derivat	ives
HC≡C-C-N HC□ HC□ HC□ HC□ HC□ HC□ HC□ HC	Compound (Example No.)	Reading 3 day	g after ys PI	Reading 5 days MIC	after s PI*	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		mcg/ml	mcg/ml	mcg/ml	mcg/ml	
HC=C-C-N 8 (1 16 (16 (
COOCH ₃ COO	(10) HC=C-C-N N	ω	〈 1	16	۲٦	
COOCH ₃ COO	<u></u>					
C00CH ₃ C00CH ₃ C00CH ₃ C00CH ₃ C00CH ₃ C1	(11)	16	〈 1	16	(1	
S (1 8 (1)	(=)	-				
16 8 16			\ 1	ω	(1	
8 16					-	
8 16					-	
	(13) $C-N$ N	16	æ	16	ω	

Continuation of Table 14

MIC and PI values of Pityrosporum ovale in the presence of various azole derivatives

Reading after 3 days .	after s .	Reading after 5 days	after s
MIC mcg/ml	PI mcg/ml	MIC mcg/ml	mcg/ml
32	4	32	4
32	4	7 9	4
764	16	1 94	16
764	32	79<	32

Continuation of Table 14

MIC and PI values of Pityrosporum ovale in the presence of various azole derivatives

Compound (Example No.)	Reading after 3 days MIC PI**	s after rs PI**	Reading after 5 days MIC PI**	after Fr# mcg/ml
C.F.	79(32	79<	32
(19) $\text{C1} \leftarrow \bigcirc $	7	7 9	79<	79
(20)	5,	79	794	79
(21) CH3	*************************************		764	

Continuation of Table 14

MIC and PI values of Pityrosporum ovale in the presence of various azole derivatives

Compound (Example No.)	Reading after 3 days	after	Reading after 5 days	afters
	MIC mcg/ml	PI*	MIC mcg/ml	PI*
(22)	79(7 9(

at least + Partial inhibition was recorded if the growth of the cultures was reduced by

90% compared to the control

cosmetic preparations. The following hair toiletries and hairdressing preparations may be mentioned as examples of hair toiletry compositions of the invention: hair soaps, hair creams, hair lotions, hair tonics, hair oils, hair pomades, hair brilliantines and especially hair rinses and shampoos. The following may be mentioned as skin toiletry compositions of the invention: soaps, fluid creams and skin gels, skin oils, skin function oils, face lotions, astringents and deodorants. If the active compound preparations are shampoos, these may be a clear liquid, opaque liquid, gel, cream or powder.

In any interaction of the shampoos with the hair and skin or scalp a decisive The active compounds according to the invention can be used in many diverse

S

10

factor is whether the detergent-active compounds on which the shampoos are based are anionic or cationic or non-ionic surfactants or whether they are combinations of these substances. 10

The following may be mentioned as examples of such anionic detergent-active substances: C_{10} — C_{20} -alkyl-carboxylates and alkylene-carboxylates, alkyl-ether-carboxylates, fatty alcohol sulphates, fatty alcohol-ether sulphates, alkylolamide-sulphonates, fatty acid alkylolamide-polyglycol ether 15

J-T	1,502,144	
	sulphates, alkanesulphonates and hydroxyalkanesulphonates, olefinesulphonates,	
	acyl esters of isothionates, α -sulpho-fatty acid esters, alkylbenzenesulphonates, alkylphenol glycol ether-sulphonates, sulphosuccinates, sulphosuccinic acid half-	
	esters and diesters, fatty alcohol-ether phosphates, albumen-fatty acid	
5	condensation products, alkyl monoglyceride sulphates and sulphonates, alkyl	5
	glyceride-ether sulphonates, fatty acid methyltaurides, fatty acid sarcosinates and	
	sulphoricioleates. These compounds and their mixtures are used in the form of	
	their water-soluble or water-dispersible salts, for example the sodium, potassium,	
10	magnesium, ammonium, monoethanolammonium, diethanolammonium and triethanolammonium and analogous alkylolammonium salts.	10
10	Suitable cationic detergent-active compounds are, for example, quaternary	10
	ammonium salts such as di-(C ₁₀ —C ₂₄ -alkyl)-dimethylammonium chloride or	
	bromide, preferably di-(C ₁₂ —C ₁₈ -alkyl)-dimethylammonium chloride or bromide;	
	C_{10} — C_{24} -alkyl-dimethylethylammonium chloride or bromide; C_{10} — C_{24} -alkyl-	4.5
15	trimethylammonium chloride or bromide, preferably cetyl-trimethylammonium	15
	chloride or bromide and C_{20} — C_{22} -alkyl-trimethylammonium chloride or bromide; C_{10} — C_{24} -alkyl-dimethyl-benzylammonium chloride or bromide, preferably	
	C_{12} — C_{18} -alkyl-dimethyl-benzylammonium chloride; N- $(C_{10}$ — C_{18} -alkyl)-	
	pyridinium chloride or bromide, preferably N-(C ₁₂ —C ₁₆ -alkyl)-pyridinium chloride	
20	or bromide: N-(C ₁₀ —C ₁₈ -alkyl)-isoquinolinium chloride, bromide or monoalkyl-	20
	sulphate; N-(C ₁₂ —C ₁₈ -alkylolcolaminoformylmethyl)-pyridinium chloride; N-	
	(C ₁₂ —C ₁₈ -alkyl)-N-methyl-morpholinium chloride, bromide or monoalkyl-sulphate; N-(C ₁₂ —C ₁₈ -alkyl)-N-ethyl-morpholinium chloride, bromide or mono-	
	alkyl-sulphate; C_{16} — C_{18} -alkyl-pentaoxethyl-ammonium chloride; diisobutyl-	
25	phenoxyethyoxyethyldimethylbenzylammonium chloride; salts of N,N-diethyl-	25
	aminoethyl-stearylamide and -oleylamide with hydrochloric acid, acetic acid,	
	lactic acid, citric acid and phosphoric acid; N-acylamidoethyl-N,N-diethyl-N-	
	methylammonium chloride, bromide or monoalkyl-sulphate and N-acylamido-	
30	ethyl-N,N-diethyl-N-benzylammonium chloride, bromide or monoalkyl-sulphonate, wherein acyl is preferably stearyl or oleyl.	30
30	Non-ionic detergent active compounds can only be used with adjuvants since	30
	they have a low foaming power. They include lyophilic higher-molecular esters of	
	aliphatic polyhydric alcohols with aliphatic polycarboxylic acids, and polyglycol	
25	esters of fatty acids. The following may be mentioned as individual examples: fatty	25
35	alcohol ethoxylates (alkyl-polyethylene glycols); alkylphenol-polyethylene glycols; alkylmercaptan-polyethylene glycols; fatty amine ethoxylates (alkylamine-	35
	polyethylene glycols); fatty acid ethoxylates (acyl-polyethylene glycols);	
	polypropylene glycol ethoxylates (trade mark: Pluronic); fatty acid alkylolamides	
	(fatty acid amide-polyethylene glycols); sucrose esters; sorbitol esters and	
40	polyglycol ethers.	40
	Examples of amphoteric surfactants which can be added to the shampoos are:	
	N- $(C_{12}-C_{18}-alkyl)-\beta$ -aminopropionates and N- $(C_{12}-C_{18}-alkyl)-\beta$ -iminodi-propionates as alkali metal salts and mono-, di- and tri-alkylol-ammonium salts; N-	
	acyl-amidoalkyl-N,N-dimethyl-acetobetaine, preferably N-(C ₈ —C ₁₈ -acyl)-amido-	
45	propyl-N,N-dimethyl-acetobetaine; C_{12} — C_{18} -alkyl-dimethyl-sulphopropyl-	45
	betaine: amphoteric surfactants based on imidazoline (trade marks: Miranol,	
	Steinapon, preferably the sodium salt of 1-(\beta-carboxy-methyloxethyl)-1-(carboxy-	
	methyl)-2-lauryl-imidazolinium; amine oxides, for example C_{12} — C_{18} -alkyl-dimethylamine oxide and fatty acid amido-alkyl-dimethylamine oxide.	
50	The preparations according to the invention can, in addition to detergent-	50
	active compounds and/or perfumes contain other additives customary in cosmetics,	
	for example, dyestuffs, including those which at the same time dye or tint the hair,	
	solvents, opacifying agents or pearlescent agents, for example esters of fatty acids	
E E	with polyols, magnesium salts and zinc salts of fatty acids, dispersions based on	55
55	copolymers, thickeners such as sodium chloride, potassium chloride, ammonium	33
	chloride and sodium sulphate, fatty acid alkylolamides, cellulose derivatives, natural gums, plant extracts, albumen derivatives, collagen derivatives such as	
	gelatine, collagen hydrolysis products, natural or synthetic polypeptides, egg yolk,	
	legithin landlin and landlin derivatives, fats, oils, fatty alcohols, silicones,	60
60	deodorants, anti-microbial substances, other anti-seborrhoeic substances,	60
	materials having a keratolytic and keratoplastic action such as, for example,	
	sulphur, salicylic acid and enzymes. The abovementioned cationic surfactants can also be present in other	
	preparations, such as, for example, in hair rinses, hair tonics and hair regenerating	
65	agents and in anhydrous oily preparations, such as hair oil, hair pomade and hair	65
-	adained annual and annual and beat more and an arrange of the state of	

33	1,502,144		رد
-	brilliantine. The preparations of the antimycotically active as also be offered in the form of aqueous and aqueous-alcoholic setting lotions (hair fixatives), including such preparations in the setting lotions (hair fixatives), including such preparations in the setting lotions (hair fixatives).	hair lotions, wave- ne form of gels, and	
5	in the form of aerosols as hair sprays as well as in the form of and gels and hairdressing creams and gels. Ethanol and isopropanol are preferentially employed as These and all preparations already mentioned previously	alcohols.	5
10	manner which is in itself known by bringing together the indi with addition of the active compounds according to the inv processing the mixture appropriately to the type of preparat The various cosmetic preparations containing the according to the invention can be used in the customary ma	ention, and further ion concerned. active compounds	10
15	rubbing or massaging into the scalp. The active compounds according to the invention, especi (1) to (8) in Table 14, can preferably be present in the variconcentrations of between 0.1 to 1%. Within this range, the cospecial preparations depend on their intended use. Certain prefor example, concentrates which have to be diluted before us	ous preparations in oncentrations of the eparations, such as,	15
20	higher concentrations. The following preparations may be mentioned by way o		20
	Example A: Shampoo (liquid).		
	Sodium lauryl ether sulphate	50.0%	
	Coconut oil fatty acid diethanolamide	5.0%	
	Water	44.0%	
25	Azole antimycotic of formula (I)	1.0%	25
	Preservative, dyestuff, perfume	q.s.	
	Example B: Shampoo (liquid).		
	Monoethanol ammonium lauryl sulphate	50.0%	
	Oleic acid diethanolamide	3.5%	-
30	Water	45.5%	30
	Azole antimycotic of formula (I)	1.0%	
	Preservative, dyestuff, perfume	q.s.	
	Example C: Shampoo (cream).	-	
35	Sodium salt of the condensation product of saturated fatty acids of medium chain length and methyltaurine (approx. 30% content of active substance)	70.0%	35
40	Sodium salt of the condensation product of higher-molecular saturated fatty acids and methyllaurine (approx. 30% content of active substance)		40
	Fatty acid polyglycol ester (as an opacifying agent)	3.0%	
45	Sodium salt of the condensation product of saturated fatty acids of average chain length and sarcosine (approx. 65% content of active substance)	3.0%	45

36	1,502,144		36
	EXAMPLE cont'd.	-	
	Water	8.0%	
	Azole antimycotic of formula (I)	1.0%	
	Preservative, dyestuff, perfume	q.s.	
5	Example D: Shampoo (in aerosol form).		5
	Sodium lauryl-ether-sulphate (27—28% content of active substance)	55.0%	
	Sodium lauryl-sulphate (>90% content of active substance)	5.0%	
10	Coconut fatty acid diethanolamide	3.0%	10
	Azole antimycotic of formula (I)	1.0%	
	Water	36.0°%	
	Preservative, dyestuff, perfume	q.s.	
15	Packaged as: 92% of the shampoo of the above composi propellant mixture of dichlorodifluoromethane/1,1,2,2-tetrafluo(40:60)	tion and 8% of a prodichloroethane	15
	. Example E: Shampoo (powder).		
	Sodium oleyl-methyltauride (approx. 64% content of active substance)	32.0%	
20	Sodium tripolyphosphate or sodium hexameta- phosphate	3.0%	20
	Dried sodium sulphate	64.0%	
	Azole antimycotic of formula (I)	1.0%	
25	Anti-caking agent, for example calcium stearate on highly disperse amorphous silica or products base on CaO/P ₂ O ₃ /SiO ₂ , perfume oil and dyestuff	r d q.s.	25
	Example F: Hair lotion.		
	Isopropanol	50.0° _o	
	Vitamin H	0.2%	
30	Diisopropyl adipate	1.0%	30
	Perfume oil H + R	1.0%	
	Water	47.0%	
	Inositol	0.3%	
	Azole antimycotic of formula (I)	0.5%	

3/		1,302,144		31
		Example G: Hair fixative.		
		Copolymer of 50 parts of vinyl acetate and of N-vinylpyrrolidone (approx. 50% content active substance in isopropanol solution)	50 parts of 6.0%	
5		Isopropanol	45.0%	5
		Azole antimycotic of formula (I)	0.5%	
		Pentaoxethyl-stearyl-ammonium chloride (ap 20% content of active substance)	prox. 2.0%	
		Perfume oil	q.s.	
10		Water	ad 100.0	10
		Example H: Skin oil.	-	
		Oleic acid decyl ester	30.00%	
		Caprylic/capric acid triglyceride	30.00%	
15		1-(4-chlorophenoxy)-1-(1-imidazolyl)-3,3-dime 2-butanone (I)	thyl- 1.00%	15
		Paraffin, mobile	39.00%	
		Perfume oil according to requirements	-	
		Mix and warm to 90°C until (I) has dissolved.	red. Then stir	
20		Example J. Face solution.		20
	A	Cetyl stearyl alcohol with 12 moles of ethyle oxide	3.00%	
		Mixture of mono- and di-glyceride of palmit stearic acid	ic and 9.00%	
25		Caprylic/capric acid triglyceride	5.00% -	25
		Paraffin, mobile	3.00%	
		Azole antimycotic of Example H.	1.00%	
	В	Glycerol, anhydrous	8.00%	
		Water, demineralised	ad 100.00%	
30		Perfume and preserving agent according to r	equirements	30
	A:	Warm to 85° until antimycotic has dissolved, 70°	, then cool to	
	В:	Warm to 70°, then emulsify A into B and ho	omogenise	
		Example K: Cream.		
35	A	Cetyl stearyl alcohol with 12 moles of ethyler oxide	ne 3.00%	35
		Mixture of mono- and di-glycerides of palmit stearic acid	tic and 14.00%	

38		1,502,144		38
		EXAMPLE cont'd.		
		2-octyldodecanol	20.00%	
		Caprylic/capric acid triglyceride	8.00%	
		Azole antimycotic of Example H	1.00%	
5	В	1,2-propylene glycol	5.00%	5
		Water, demineralised	ad 100.00°°	
	A:	Warm to about 80°C until antimycotic l cool to 70°C	nas dissolved, then	
	B:	Warm to 75°C and emulsify A into B		
10		Example L:		10
	Α	Glycerol-sorbitan-fatty acid ester	8.00%	
		Paraffin oil, mobile	8.00°°	
		Caprylic/capric acid triglyceride	20.00%	
		Azole Antimycotic of Example H	1.00%	
15	В	Water, demineralised	ad 100.00%	15
		Perfume and preserving agent according	to requirements	
	A:	Warm to about 80°C until antimycotic cool to 70°C.	nas dissolved, then	
	B:	Warm to 75°C, then emulsify into A.		
20		Examples of the preparation of th	e chemicals.	20
		Example (I).		
		<u></u>		
		α-/\-\		
		- Ч н ч ээ		
0_	butan-2	arge: 15.25 g (0.05 mol) of [1-bromo]-[1-(4'-one and 12 g (0.18 mol) of imidazole.		
25	then he	e two components are dissolved in 120 ml of ated to the boil under reflux for 18 hours. At	ter distilling off the solvent in	2
	vacuo, addition	150 ml of water are added to the residue a nally treated three times with 30 ml of water	nd the aqueous phase is then at a time, and dried, and the	
30	of ligro	is distilled off in vacuo. After recrystallising in, 10.5 g (72% of theory) of [1-imidazolyl]	-[1-(4'-chloro)-phenoxy]-3-di-	30
	methyl- 1-B	butan-2-one of melting point 135°C are ob fromo-[1-(4'-chloro)-phenoxy]-3-dimethyl-bu	tained. tan-2-one used as the starting	
	materia bromina	l, is obtained from 4-chlorophenol and bu ation with bromine at 140°C (melting point	omopinacolone, followed by 80°C).	
35	The analogo	e compounds used in Examples (2) and (3) of Table 14 are prepared	3.

10

15

20

25

30

35

40

45

5

10

15

605 g (2 mols) of [1-(4'-(4"-chlorophenyl)-phenoxy]-3,3-dimethyl-butan-2-one are dissolved in 31 of methylene chloride. 170 ml (2.1 mols) of sulphuryl chloride are added dropwise at 40°C over the course of 2 to 3 hours and the mixture is then stirred for 15 hours at this temperature. Thereafter the solvent is distilled off in vacuo and the residue is dissolved in 1.51 of methyl ethyl ketone. This solution is added dropwise, with slight cooling, at 20°C, to a suspension of 280 g (4 mols) of imidazole and 280 g (2 mols) of powdered potassium carbonate in 3 l of methyl ethyl ketone. After stirring for 48 hours at room temperature, the solvent is distilled off. The residue is taken up in 31 of methylene chloride, washed with four times 11 of water and then dried over sodium sulphate, and the solvent is distilled off in vacuo. The oil which remains is recrystallised from 1 l of diisopropyl ether.

This crude base is dissolved in approx. 1.2 l methylene chloride. 550 ml of approx. 4 N hydrochloric acid in ether are added cautiously and the solvent is then distilled off. I I of ethyl acetate is then added to the oil which remains and the mixture is heated, whereupon spontaneous crystallisation occurs. After heating for ½ hour, the crystals are filtered off hot, washed with a little ethyl acetate and dried in vacuo. After two recrystallisations from acetone, 210 g (26% of theory) of [1-imidazolyl-(1)]-[1-(4'-'4''-chlorophenyl)-phenoxy]-3,3-dimethyl-butan-2-one

hydrochloride of melting point 148—150°C are obtained.

20

25

280 g (2 mols) of powdered potassium carbonate are suspended in 2 l of methyl ethyl ketone. 409 g (2 mols) of 4'-chloro-hydroxybiphenyl are added and the mixture is heated to the boil. Thereafter 260 g (2 mols) of α -chloropinacolone are added dropwise over the course of 1 hour and the mixture is heated under reflux for 15 hours. After cooling, the solid residue is filtered off, washed and recrystallised from ligroin. 513 g (79% of theory) of [1-(4'-(4''-chlorophenyl)-phenoxy]-3,3-dimethyl-butan-2-one of melting point 90°C are obtained.

Example (III).

30

35

40

45

29.1 g (0.1 mol) of 2-(2,4-dichlorophenoxy)-1-hydroxy-4,4-dimethyl-pentan-3-one are taken up in 200 ml of toluene, 10.2 g (0.14 mol) of imidazole are added dropwise thereto and the reaction solution is boiled for 3 hours under a water separator. Thereafter the solvent is distilled off in vacuo, 100 ml of water are added to the oil obtained and the mixture is extracted with twice 100 ml of methylene

The organic phase is washed with twice 50 ml of water and dried over sodium sulphate, and the solvent is distilled off in vacuo.

An oil is obtained which is taken up in 50 ml of ether, and 50 ml of ether saturated with dry hydrogen chloride are added. The solvent is distilled off in vacuo, the resulting oil is taken up in a mixture of 500 ml of ligroin and 300 ml of ethyl acetate and the mixture is heated to the boil under reflux. After carefully decanting the resulting solution, and cooling it, 18.5 g (49% of theory) of 2-(2,5-di-chlorophenoxy)-4,4-dimethyl-1-(1-imidazolyl)-pentan-3-one hydrochloride precipitate as colourless crystals which are isolated by filtration. Melting point: 118°C.

Starting material.

26.1 g (0.1 mol) of 1-(2,4-dichlorophenoxy)-3,3-dimethyl-butan-2-one are.

10

15

20

25

30

dissolved in 200 ml of ethanol and 20 g (0.24 mol) of 40% strength formaldehyde solution are added, followed by about 5 ml of 10% strength sodium hydroxide solution until the pH is 9. The reaction mixture is heated under reflux for 3 hours and the solvent is distilled off in vacuo. The resulting precipitate is filtered off and rinsed thoroughly with petroleum ether. The filtrate is concentrated in vacuo. An oil consisting of crude 2-(2,4-dichlorophenoxy)-1-hydroxy-4,4-dimethyl-pentan-3one remains.

5

WHAT WE CLAIM IS:-

1. A hair or skin toiletry composition comprising at least one azole antimycotic which is active against skin changes wholly or partially caused by Pityrosporum ovale and which has the formula (I):—

10

15

20

25

wherein Az is an optionally substituted imidazole or triazole group connected to the carbon atom by a nitrogen atom, and R', R'' and R''' are independently selected from hydrogen atoms,

optionally substituted phenyl groups, optionally substituted heterocyclic groups having O, S, or N as a hetero atom, optionally substituted aliphatic groups, optionally substituted alicyclic groups, ester, ether, alkenyl, alkinyl, keto, hydroxy, amido and amino groups or R' and R" together represent two optionally substituted phenyl groups

linked together by a bridging atom or group, or a salt thereof, dispersed in a dermatologically acceptable carrier which contains a detergent active compound and/or a perfume.

2. A shampoo composition comprising at least one azole antimycotic of the formula (I) and a dermatologically acceptable detergent active compound.

3. A composition according to claim 1 or claim 2 containing at least 30% by

weight of the detergent active compound.

4. A composition according to any one of claims 1 to 3 wherein the azole antimycotic is a compound of the formula

α-<__>-0-СH-Ф-С(СНЗ)З

30

5. A composition according to any one of claims 1 to 3 wherein the azole antimycotic is a compound of the formula

6. A composition according to any one of claims 1 to 3 wherein the azole antimycotic is a compound of the formula 35

35

7. A composition according to any one of claims 1 to 3 wherein the azole antimycotic is a compound of the formula

15

20

25

8. A composition according to any one of claims 1 to 3 wherein the azole antimycotic is a compound of the formula

9. A composition according to any one of claims 1 to 3 wherein the azole antimycotic is a compound of the formula

5

10. A composition according to any one of claims 1 to 3 wherein the azole antimycotic is a compound of the formula

10 11. A composition according to any one of claims 1 to 3 wherein the azole antimycotic is a compound of the formula

10

12. A composition according to any one of claims 1 to 3 wherein the active ingredient is any of the azole antimycotics specifically disclosed herein in Tables 1 to 13 and Examples 9, 10, 22 in Table 14.

15

13. A composition according to any one of claims 1 to 12 comprising from 0.05 to 5% by weight of the active ingredient.

14. A composition according to claim 13 comprising from 0.1 to 1.0% by weight of the active ingredient,

20

15. A composition substantially as hereinbefore described in any one of

Examples A to F. 16. A composition substantially as hereinbefore described in any one of

Examples H, J and K.

17. A process for combating skin changes wholly or partially caused by Pityrosporum ovale which comprises applying to the skin a compound as defined in any one of claims 1 and 3 to 11.

25

For the Applicants, CARPMAELS & RANSFORD, Chartered Patent Agents, 43 Bloomsbury Square, London, WC1A 2RA.

Printed for Her Majesty's Stationery Office by the Courier Press, Leamington Spa, 1978. Published by the Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.