Introduction

Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Univariate

Root finding

Stopping ar

Appendix (Mathematical

Details)

# Introduction to Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

#### Introduction to

Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Sate Univariate Methods:

Root finding

Stanning an

Appendix (Mathematical 1 Safe Univariate Methods:

2 Root finding

3 Stopping and Condition

4 Appendix (Mathematical Details)

Introduction to

Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Safe Univariate Methods:

Root finding

Stopping on

Appendix

cal

**Safe Univariate Methods:** 

## **Optimization Problem: Definition**

Introduction to Optimization and Nonlinear

Equations
Zeyu Lu &
Yugiu Yang

Safe Univariate Methods:

Root finding

Stopping and

Appendix (Mathematical Details) In mathematics, computer science and economics, an optimization problem is the problem of finding the best solution from all feasible solutions.—wiki

Such as finding the maximum/minimum value for a certain function that is defined on a discrete set/continuum

## **Optimization Problem: Examples**

Introduction to Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Safe Univariate Methods:

Root finding

Chamatan an

Appendix (Mathematical



# **Optimization Problem: Assumptions and efficiency**

Introduction

Optimization and Nonlinear Equations

Zeyu Lu & Yugiu Yang

Safe Univariate Methods:

Root finding

Stopping an Condition

Appendix (Mathemati cal Details) (1)Assumptions needed for each methods?

(2) which method is less restrictive?

(3) How to evaluate the efficiency of a method?

### **Lattice Search**

Introduction to Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Safe Univariate Methods:

Root finding

Stopping an

Appendix (Mathematical Finding the maximum of a unimodal function f on a discrete set of points 1, 2, ..., m a lattice

Unimodal function, A function f(x) is said to be unimodal function if for some value m is monotonically increasing for  $x \le m$  and monotonically decreasing for  $x \ge m$ .

## Lattice Search: Unimodal Function on Discrete Points

Introduction

Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Safe Univariate Methods:

Root finding

Stopping ar Condition

Appendix (Mathemati cal Graph for  $f(x) = -4x^2 + 24x$ , this is a unimodal function.



for x < 3, function value f(x) is monotonically increasing, and for  $x \ge 3$ , f(x) is monotonically decreasing.

## **Lattice Search: Optimal Strategy**

Introduction to Optimization and Nonlinear Equations

Zeyu Lu & Yugiu Yang

Safe Univariate Methods:

Root finding

Stopping and Condition

Appendix (Mathemati cal (i)Finding good end strategies for finding the mode on a small set of points

(ii)Employing backwards induction to start with the right strategy to match the optimal ending

Basically, optimal strategy means the fewest evaluations of the function f that will solve all problems that meet the specifications, here is any strictly unimodel function.

## Lattice Search: How to choose points to evaluate?

Introduction

Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Safe Univariate Methods:

Root finding

Stopping an

Appendix (Mathemati cal



If f(4) > f(1), then we immediately discard the points that are less than x = 1, otherwise it will violate the assumption of unimodality

## Lattice Search: How to choose points to evaluate?

Introduction

Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Safe Univariate Methods:

Root finding

Stopping an

Appendix (Mathemati cal



If f(4) > f(1), then we immediately drop the points that are less than x = 1, otherwise it will violate the assumption of unimodel function

## Lattice Search: How to choose points to evaluate?

Introduction to

Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Safe Univariate Methods:

Root finding

Stopping an

Appendix (Mathematical If the points are too far away from each other, then only a few portion of

points can be discarded in one step, which decreases the efficiency.

If the two points are close to center of the domain, it's difficult to reuse any of them in the next step, and even we hope to reuse them in the following steps.

## Lattice Search: How to choose points to evaluate?

Introduction to

Optimization and Nonlinear **Equations** 

Yuqiu Yang

Safe Univariate Methods:



## Lattice Search: Fibonacci Numbers

Introduction to Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

#### Safe Univariate Methods:

Root finding

Carrento o co

Condition

Appendix (Mathemati cal The optimal strategy is by applying Fibonacci numbers

$$F_n = \{1, 2, 3, 5, 8, 13, ..., F_n = F_{n-1} + F_{n-2}\}$$

Suppose we have a set of discrete points $\{1, 2, 3, ..., m = F_n - 1\}$ , and we begin the searching by evaluating at the points $F_{n-2}$  and  $F_{n-1}$ .

If  $f(F_{n-2}) < f(F_{n-1})$ , then the sub-problem is  $\{F_{n-2}+1,...,F_n-1\}$  with  $f(F_{n-1})$  has already been evaluated, thus a problem with  $F_n-1$  elements needs n-1 evaluations to solve.

## **Lattice Search: Fibonacci Numbers**

Introduction to Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Safe Univariate Methods:

Root finding

Stopping an Condition

Appendix (Mathematical



For  $m = F_6 - 1 = 12$ , 5 evaluations are enough to reach the maximal value.

after each step, we got a sub-problem with  $F_{n-1}-1$  points. <sup>15/59</sup>

## Lattice Search: Details

Introduction to Optimization and Nonlinear Equations

Yuqiu Yang

Safe Univariate Methods:

Root finding

Stopping an

Appendix (Mathematical (i)If the values of the function are the same at  $F_{n-2}$  and  $F_{n-1}$ , the mode must be between the two points according to our assumption, then it doesn't matter which part is discarded.

(ii)If the number of points m is not one fewer than a Fibonacci number, then add some points at one side. where the value of additional points is  $-\infty$ .

## **Golden Section Search**

Introduction

Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

#### Safe Univariate Methods:

Poot findi

Koot illialii§

Condition

(Mathemati cal Details) A more common problem is searching for the maximum on a continuum. so without losing generality, we set the interval (0,1).

Divided the interval and use lattice search by placing m points in the interval, the set is

$$\{0, \frac{1}{m-1}, \frac{2}{m-1}, ..., 1\}.$$

First two points

$$lim rac{F_{n-2}-1}{F_n-1}$$
 and  $lim rac{F_{n-1}-1}{F_n-1}$ 

## **Golden Section Search**

Introduction

Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Safe Univariate Methods:

Root finding

Stopping and Condition

Appendix (Mathemati cal And since we knew that the lattice search is defined by the first two evaluations, let m go to infinity, then

$$\mathsf{Set} \mathit{lim} \frac{F_{n-1}}{F_n} = \phi, \text{ so that } \mathit{lim} \frac{F_n}{F_{n-1}} = \frac{1}{\phi} = \mathit{lim} \frac{F_{n-2} + F_{n-1}}{F_{n-1}} = \phi + 1$$

$$\phi^2 + \phi + 1 = 0, \phi = \frac{\sqrt{5}-1}{2} \approx .0618$$

Which also known as the golden ratio. thus the starting points of the search are

$$X_1 = \phi^2 \approx 0.382, X_2 = \phi \approx 0.618$$

The limit of the lattice search is called the golden section search.

### **Golden Section Search**

Introduction to Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Safe Univariate Methods:

Root finding

Stopping an Condition

Appendix (Mathematical Dotails)



After the first step, the uncertainty of interval is  $(0,\phi)$  and the point  $\phi^2=0.382$  has already been evaluated. Noticed it is also the right point in the second step, which is very similar to lattice search, and we only need to evaluate one more point at  $\phi^3\approx 0.236$ .

## **Bisection**

Introduction to Optimization

and Nonlinear Equations Zevu Lu &

Yuqiu Yang

Safe Univariate Methods:

Root finding

Stopping and Condition

Appendix (Mathematical Cal Fibonacci search is less restrictive, since the derivative of the function f doesn't need to exist, but suppose the derivative of the function f is available, which would convert the problem from finding maximum of a unimodel function to finding the root of a monotone function g on the same interval.

Suppose g(x) is defined on interval (a,b), and let g(a) < 0 < g(b). with a single evaluation at  $g(\frac{a+b}{2})$ , the uncertainty of interval will be halved.

### **Bisection**

Introduction to Optimization and Nonlinear

Equations

Zeyu Lu &

Yuqiu Yang

Safe Univariate Methods:

Root finding

Stopping an

Appendix (Mathematical Details)



Thus, after the first step, we reset the right endpoint as  $\frac{a+b}{2}$ , and repeat this procedure to get the root.

## **Comparison: Golden Section and Bisection**

Introduction to Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Safe Univariate Methods:

Root finding

Stopping an

Appendix (Mathemati cal Details)

#### ■ Golden Section:

- Less restrictive, requiring only a strictly unimodel function.
- It reduces the interval of uncertainty to  $(0, \phi)$  in each iteration.
- 2 Bisection:
- More restrictive, requiring the derivative exist and be available.
- It halves the interval of uncertainty, that is  $\frac{1}{2}$ .

## Introduction to

Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Univariate Methods:

#### Root finding

Stopping and

Appendix (Mathemati-

Details)

## **Root finding**

## **Newton's Method: Iteration Formula**

Introduction to Optimization and Nonlinear Equations

Zeyu Lu & Yugiu Yang

Safe Univariate

Root finding

Stopping and Condition

Appendix (Mathemat cal Details) The more common problem is finding a root for a single nonlinear equation g(x) = 0.

For function g, set its derivative as g', we have

$$g_t(x) = g(x_{old}) + g'(x_{old})(x - x_{old})$$

$$g_t(x) = 0$$
 is at

$$x_{new} = x_{old} - \frac{g(x_{old})}{g'(x_{old})}$$

By using n, the iteration formula is:

$$x_{n+1} = x_n - \frac{g(x_n)}{g'(x_n)}$$

## **Newton's Method: Example**

Introduction to Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Safe Univariate Methods:

#### Root finding

Stopping and Condition

Appendix (Mathematical



| n  | ×n         | gn          |
|----|------------|-------------|
| 1  | 4.0000000  | 11.0000000  |
| 2  | -1.5000000 | -30.2500000 |
| 3  | 0.8269231  | -5.4145710  |
| 4  | 1.4756735  | -0.4208771  |
| 5  | 1.5353838  | -0.0035653  |
| 6  | 1.5358983  | -0.0000003  |
| 7  | 1.5358984  | 0.0000000   |
| 8  | 1.5358984  | 0.0000000   |
| 9  | 1.5358984  | 0.0000000   |
| 10 | 1.5358984  | 0.0000000   |
|    |            |             |

## Newton's Method: Quadratic Convergence

Introduction

Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Safe Univariate Methods:

Root finding

Condition

(Mathemati cal If we denote the root by c and the error at iteration n by  $e_n = x_n - c$ 

the relative error is  $d_n = \frac{e_n}{c} = \frac{(x_n - c)}{c}$ 

By using Taylor expansion:

$$g(c) = 0 = g(x_n) + (c - x_n)g'(x_n) + (c - x_n)^2 \frac{g''(t)}{2}$$

Where t lies between  $x_n$  and c.

## Newton's Method: Quadratic Convergence

Introduction

Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Safe Univariat

Root finding

Stopping an Condition

Appendix (Mathematical

Noticed 
$$e_{n+1} = x_{n+1} - c = x_n - \frac{g(x_n)}{g'(x_n)} - c$$

Substitute into the equation.

$$x_n - c - \frac{g(x_n)}{g'(x_n)} = (x_n - c)^2 \left[ \frac{g''(t)}{2g'(x_n)} \right]$$

$$e_{n+1} = e_n^2 \left[ \frac{g''(t)}{2g'(x_n)} \right]$$

This expression reveals the quadratic convergence of Newton's Method.

## Newton's Method: Steep or Flat?

Introduction to Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Safe Univariate Methods:

#### Root finding

Stopping a

Appendix (Mathematical



| n  | xn       | ratio   |
|----|----------|---------|
| 1  | 0.510    | 166.670 |
| 2  | -166.160 | -55.553 |
| 3  | -110.607 | -37.036 |
| 4  | -73.571  | -24.690 |
| 5  | -48.881  | -16.460 |
| 6  | -32.421  | -10.973 |
| 7  | -21.447  | -7.316  |
| 8  | -14.131  | -4.877  |
| 9  | -9.254   | -3.251  |
| 10 | -6.003   | -2.167  |

Noticed for a flat point, g'(x) could be very small so that the next point may leap far away from the true root.

## Newton's Method: Multivariate Case

Introduction

Optimization and Nonlinear Equations

Yuqiu Yang

Safe Univariat

Root finding

Stopping and Condition

(Mathemati

For the multivariate case, finding the tangent approximation  $\mathbf{g}_t(\mathbf{x})$  relies on the multivariate version.

$$\mathbf{g}_t(\mathbf{x}) = \mathbf{g}(\mathbf{x}_{old}) + \mathbf{J}_{\mathbf{g}}(\mathbf{x} - \mathbf{x}_{old})$$

$$\mathbf{x}_{new} = \mathbf{x}_{old} - \mathbf{J}_{\mathbf{g}}(\mathbf{x}_{old})^{-1}\mathbf{g}(\mathbf{x}_{old})$$

Which has the same form as the univariate case, and the convergence rate is also quadratic.

## **Newton's Method: Example**

Introduction to Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Safe Univariate Methods:

#### Root finding

Stopping and Condition

Appendix (Mathemati cal



| x1     | x2     | gn    |
|--------|--------|-------|
| 1.500  | 2.000  | 2.083 |
| -0.583 | 0.437  | 0.177 |
| -0.128 | -0.170 | 0.015 |
| 0.050  | -0.037 | 0.001 |
| 0.011  | 0.014  | 0.000 |
| -0.004 | 0.003  | 0.000 |
| -0.001 | -0.001 | 0.000 |
| 0.000  | 0.000  | 0.000 |
| 0.000  | 0.000  | 0.000 |
| 0.000  | 0.000  | 0.000 |
|        |        |       |

## **Newton's Method: Pros and Cons**

Introduction to Optimization and Nonlinear Equations

Yuqiu Yang

Safe Univariate Methods:

#### Root finding

Stopping an

Appendix (Mathematical Dotails)

- 1 Pros:
- Newton's method achieves the fastest rate of convergence(quadratic).
- 2 Cons:
- The derivative function must be available, and finding it can be tedious or impossible.

## The Secant Method

Introduction

Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Safe Univariate Methods:

Root finding

Stopping and Condition

(Mathematical If g' is hard or even impossible to find, we can approximate  $g'(x) \approx \frac{g(x+h) - g(x)}{h}$ .

The iteration formula now becomes

$$x_{n+1} = x_n - g(x_n) \frac{x_n - x_{n-1}}{g(x_n) - g(x_{n-1})}$$

Notice two initial points are required instead of one like the Newton's method.

# The Secant Method: Geometrical Interpretation

Introduction to Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Safe Univariate

Root finding

Stopping and Condition

Appendix (Mathematical





 $x_{n+1}$  is taken to be the abscissa of the point of intersection between the secant through  $(x_{n-1}, f(x_{n-1}))$  and  $(x_n, f(x_n))$  and the x-axis.

## The Secant Method: An Example

Introduction to Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Safe Univariate Methods:

#### Root finding

Stopping and

Appendix (Mathematical

| Let $f(x) = sin(x) - (\frac{x}{2})^2$<br>$x_0 = -1.5$ and $x_1 = 1.5$ |            |   |  |  |
|-----------------------------------------------------------------------|------------|---|--|--|
| 90                                                                    |            |   |  |  |
| 9° -                                                                  |            |   |  |  |
| 0.1-                                                                  |            |   |  |  |
| -2.0                                                                  |            |   |  |  |
| _                                                                     | -1 0 1 2 3 | _ |  |  |

| n  | xn                   | fn      |
|----|----------------------|---------|
| 0  | {-1.5,1.5}           | -1.5600 |
| 1  | {1.5,0.8459}         | 0.4350  |
| 2  | {0.8459,3.6128}      | 0.5697  |
| 3  | {3.6128,1.2136}      | -3.7169 |
| 4  | {1.2136,1.5319}      | 0.5687  |
| 5  | {1.5319,2.3731}      | 0.4125  |
| 6  | {2.3731,1.8403}      | -0.7128 |
| 7  | $\{1.8403, 1.9155\}$ | 0.1172  |
| 8  | {1.9155,1.9347}      | 0.0238  |
| 9  | {1.9347,1.9337}      | -0.0013 |
| 10 | {1.9337,1.9338}      | 0.0000  |
| 11 | {1.9338,NA}          | 0.0000  |

## The Secant Method: Order of Convergence

Introduction to Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Safe Univariate Methods:

Root finding

Condition

Appendix (Mathemati cal Dotails) Let the root the Secant Method approaches be c, then asymptotically, we will have

$$|\epsilon_{n+1}| = C|\epsilon_n||\epsilon_{n-1}|,$$

where 
$$\epsilon_n = c - x_n$$
 and  $C = \left| \frac{g''(c)}{2g'(c)} \right|$ .

Based on this relationship, we can find  $|\epsilon_n| = C|\epsilon_{n-1}|^{1.618}$ 

Since the exponent 1.618 lies between 1 (linear convergence) and 2 (quadratic convergence), the convergence rate of the Secant Method is called *superlinear*.

## The Secant Method: Pros and Cons

Introduction

Optimization and Nonlinear Equations

Yuqiu Yang

Safe Univariat Methods:

#### Root finding

Condition

Appendix (Mathematical Details)

- 1 Pros:
- Superlinear convergence
- No need to evaluate derivatives
- 2 Cons:
- Convergence is not guaranteed
- Not well behaved when g is relatively flat





## Regula Falsi: A Motivative Example

Introduction to Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Safe Univariate Methods:

#### Root finding

Stopping an

Appendix (Mathematical Borrowing the idea of the Bisection Method, what if we start with two points that straddle the root?

1st Iteration



## Regula Falsi: A Motivative Example

Introduction to Optimization and Nonlinear **Equations** 

Yugiu Yang

#### Root finding



In this case, since the slope of the secant used in the Secant Method is so close to 0, the root is out of our scope.

However, by straddling the root, the Regula Falsi makes sure that the new root is always between the previous two values.

## Regula Falsi

Introduction

to Optimization and Nonlinear Equations

Yuqiu Yang

Safe Univariate Methods:

Root finding

Stopping an

Appendix (Mathematical A variant of the Secant Method where instead of choosing the secant through  $(x_n, g(x_n))$  and  $(x_{n-1}, g(x_{n-1}))$ , one finds the secant through  $(x_n, g(x_n))$  and  $(x_{n'}, g(x_{n'}))$  where n' < n is the largest index for which  $g(x_n)g(x_{n'}) < 0$ .

#### Iterations



## Regula Falsi: Order of Convergence

Introduction to

Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Safe Univariate Methods:

#### Root finding

Stopping and Condition

Appendix (Mathematical Like the Bisection Method, the Regula Falsi is "safe". However, from the previous example, we see that this method is in general a first-order method.

Especially, if g(x) is convex on  $[x_0, x_1]$ , then

$$|\epsilon_{n+1}| \approx C|\epsilon_n||\epsilon_0| = C'|\epsilon_n|$$

where 
$$C = \frac{g''(c)}{2g'(c)}$$

The Regula Falsi Method tends to retain one end-point for several iterations. As a result, it can be a good "start" method or a part of a "hybrid" method, but it should not be used near a root.

## Illinois Algorithm: Building on Regula Falsi

Introduction to Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Safe Univariate Methods:

#### Root finding

Stopping an

Appendix (Mathematical Details) In the previous example, if we artificially create a shallower secant, then maybe the end-point will no longer be retained.



By dividing the function value at 2 by 8 and calculating the new secant, we find a new root on right of the root. In the next iternation, the new root 1.176 instead of 2 will be used.

## **Illinois Algorithm**

Introduction Optimization and Nonlinear **Equations** 

Zevu Lu & Yugiu Yang

Root finding

- 1 During the Regula Falsi procedure, once we find one end-point has been retained more than once, we half the function value at that point, find the secant line and the new root.
- 2 If the point still retains, we repeat Step 1.
- 3 Once the point changes, we proceed with the Regula Falsi

## Illinois Algorithm: An Example

Introduction to Optimization and Nonlinear Equations

Yuqiu Yang

Safe Univariate Methods:

Root finding

Stopping and Condition

Appendix (Mathemati cal Details)



Compared with the Regula Falsi Method, the Illinois Algorithm gets in a small neighborhood of the root in just 4 or 5 iterations.

## Illinois Algorithm: Order of Convergence

Introduction to Optimization and Nonlinear Equations

Yuqiu Yang

Safe Univariate Methods:

Root finding

Condition

(Mathemati

The order of convergence of the Illinois Algorithm is found based on the following two observations:

$$\epsilon_{n+1} = \frac{g''(c)}{2g'(c)} \epsilon_n \epsilon_{n-1}$$

and asymptotically, we will perform the Illinois step (halving the function value) once every third time.

The order of convergence is found to be approximately 1.44.

## **Successive Parabolic Interpolation**

Introduction

Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Safe Univariate Methods:

Root finding

Stopping and Condition

Appendix (Mathemat cal Dotails) Recall the Newton's Method for optimization can be written as

$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)}$$

The essence of Newton's Method is locally approximating a function via a sequence of parabolas.

If f' or f'' is hard to find, the Successive Parabolic Interpolation Method can be used to find the extremum.

In each iteration, we fit a parabola to 3 unique points and replace the "oldest" one with the extremum of the fitted parabola.

# Successive Parabolic Interpolation: vs. Newton's Method

Introduction to Optimization and Nonlinear Equations

Yuqiu Yang

Safe Univariate Methods:

#### Root finding

Stopping ar

Appendix (Mathemati cal



The parabola fitted in the Successive Parabolic Interpolation depends on the 3 points we chose.

In the next iteration, Newton's Method will fit a parabola based on the point 1.1481.

The Successive Parabolic Interpolation will fit a parabola based on 1.75, 1.5, and 1.2653.

# Successive Parabolic Interpolation: An Example

Introduction to Optimization and Nonlinear Equations

Zeyu Lu & Yugiu Yang

Safe Univariate

Root finding

Stopping an

Appendix (Mathematical



The Order of Convergence of the Successive Parabolic Interpolation is approximately 1.3.

## **Summary: Convergence Rates**

Introduction to

Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Safe Univariate Methods:

Root finding

Stonning a

Appendix (Mathemati cal

|             | Root Finding            | Optimization            |
|-------------|-------------------------|-------------------------|
| Linear      | Bisection, Regula Falsi | Golden Section          |
| Superlinear | Secant, Illinois        | Parabolic Interpolation |
| Quadratic   | Newton                  | Newton                  |

## Introduction to

Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Safe Univariate

Root finding

Stopping and Condition

Appendix (Mathemati-

Details)

## **Stopping and Condition**

## Three options for termination

Introduction

Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Safe Univariate Methods:

Root finding

Stopping and Condition

Appendix (Mathematical

- Too many steps
- Usually indicate a serious error in problem specification
- 2 No change in x or No change in the function values
- Need to check if a root or an extremum is being approached
- Root finding: in some cases, no x will produce g(x) "close" to 0
- Root finding: at some function value, there may appear to be multiple roots
- Both absolute change  $|x_{n+1} x_n| < \epsilon_x$  and relative change  $|x_{n+1} x_n| < |x_n|\epsilon_x$  can be used for x.
- For g only absolute change for root finding. Relative change is appropriate with optimization.

Introduction to

Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Univariate

Root finding

c. .

Appendix (Mathematical Details) **Appendix (Mathematical Details)** 

## **Newton's Method: Multivariate Case**

Introduction to Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Safe Univariate Methods:

Root finding

Appendix (Mathematical Details) For optimizing a function f of p variables  $\mathbf{x}$ , begin with

$$f_q(\mathbf{x}) = f(\mathbf{x}_{old}) + (\mathbf{x} - \mathbf{x}_{old})^T \nabla f(\mathbf{x}_{old}) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_{old})^T \nabla^2 f(\mathbf{t}_{old}) (\mathbf{x} - \mathbf{x}_{old})$$

The stationary point  $\mathbf{x}_{new}$  of  $f_q(\mathbf{x})$  is then given by

$$\mathbf{x}_{new} = \mathbf{x}_{old} - \mathbf{H}(\mathbf{x}_{old})^{-1} \nabla f(\mathbf{x}_{old})$$

Where  $\mathbf{H}(\mathbf{x}) = \nabla^2 f(\mathbf{x})$  is the Hessian matrix. If  $\mathbf{H}(\mathbf{x})$  is positive(resp., negative) definite at the stationary point, then a local minimum(resp., maximum) is found; if the Hessian is indefinite then a saddle point is found.

## The Secant Method: Several Definitions

Introduction to Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Safe Univariate Methods:

Root finding

rtoot illianie

Appendix (Mathematical Details) Given n + 1 distinct pairs  $\{(x_0, g(x_0)), (x_1, g(x_1)), \dots, (x_n, g(x_n))\}$ , we will define:

 $int(x_0,x_1,\ldots,x_n)$ : the smallest interval that contains  $x_0,\ldots,x_n$ 

The divided differences

$$g[x_0, x_1, \ldots, x_j, x] = \frac{g[x_0, x_1, \ldots, x_{j-1}, x] - g[x_0, x_1, \ldots, x_j]}{x - x_j}$$

, and

$$g[x_0, x] = \frac{g(x) - g(x_0)}{x - x_0}$$

## The Secant Method: Newton's Interpolation Formula

Introduction

Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Safe Univari

Root finding

Root illiality

Appendix (Mathematical Details) Given n+1 distinct pairs  $\{(x_0,g(x_0)),(x_1,g(x_1)),\ldots,(x_n,g(x_n))\}$ , we can interpolate these points using a polynomial q(x) of degree n. Specifically,

$$q(x) = g(x_0) + \sum_{j=1}^{n} g[x_0, x_1, \dots, x_j] \prod_{i=0}^{j-1} (x - x_i)$$

. with the remainder

$$g(x) - q(x) = \frac{g^{n+1}(\xi) \prod_{i=0}^{n} (x - x_i)}{(n+1)!}$$

, where  $\xi \in int(x_0, x_1, \dots, x_n, x)$ 

## The Secant Method: Order of Convergence

Introduction

to Optimization and Nonlinear **Equations** 

Yugiu Yang

Appendix (Mathematical Details)

Let  $int(x_0, x_1, \dots, x_n)$ : the smallest interval that contains  $X_0, \ldots, X_n$ 

According to Newton's interpolation formula, we have

$$g(x) = g(x_n) + (x - x_n)g[x_{n-1}, x_n] + \frac{1}{2}(x - x_n)(x - x_{n-1})g''(\xi)$$

where 
$$g[x_{n-1}, x_n] = \frac{g(x_n) - g(x_{n-1})}{x_n - x_{n-1}}$$
, and  $\xi \in int(x, x_n, x_{n-1})$ 

By the Secant Method, we have

$$x_{n+1} = x_n - g(x_n) \frac{x_n - x_{n-1}}{g(x_n) - g(x_{n-1})} \Rightarrow$$

$$0 = g(x_n) + (x_{n+1} - x_n)g[x_{n-1}, x_n]$$

## The Secant Method: Order of Convergence

Introduction

Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Safe Univariate Methods:

Root finding

Appendix (Mathematical Details) Let the root the Secant Method approaches be c, then

$$0 = g(c) - g(x_n) - (x_{n+1} - x_n)g[x_{n-1}, x_n] =$$

$$g[x_{n-1},x_n](c-x_{n+1})+\frac{1}{2}(c-x_n)(c-x_{n-1})g''(\xi)$$

By the mean value theorem, we have

$$g[x_{n-1}, x_n] = g'(\eta), \eta \in (x_{n-1}, x_n)$$

Let 
$$\epsilon_n = c - x_n$$
, we get  $0 = g'(\eta)\epsilon_{n+1} + \frac{1}{2}\epsilon_n\epsilon_{n-1}g''(\xi) \Rightarrow$ 

$$\epsilon_{n+1} = \frac{g''(\xi)}{2\sigma'(\eta)}\epsilon_n\epsilon_{n-1}$$

## The Secant Method: Order of Convergence

Introduction to Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Safe Univariate Methods:

Root finding

\_ . . .

Condition

Appendix (Mathematical Details) Now suppose the Secant Method converges, then when  $n \to \infty$ ,  $\xi \approx c$  and  $\eta \approx c$ . Let  $C = |\frac{g''(c)}{2\sigma'(c)}|$ , then  $|\epsilon_{n+1}| = C|\epsilon_n||\epsilon_{n-1}|$ 

To find the order of convergence, we find M and p such that  $|\epsilon_{n+1}| \approx M |\epsilon_n|^p$ , where p is the convergence order.  $M |\epsilon_n|^p = C(M |\epsilon_{n-1}|^p) |\epsilon_{n-1}| \Rightarrow |\epsilon_n| = C |\epsilon_{n-1}|^{(1+p)/p}$  This implies  $p = (1+p)/p \Rightarrow p = 1+\phi \approx 1.618$ 

Since the exponent 1.618 lies between 1 (linear convergence) and 2 (quadratic convergence), the convergence rate of the Secant Method is called *superlinear*.

## Illinois Algorithm: Order of Convergence

Introduction to

Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Safe Univariate Methods:

Root finding

Appendix (Mathematical

Details)

Recall the errors of the Secant Method satisfy:

$$\epsilon_{n+1} = \frac{g''(\xi)}{2g'(\eta)} \epsilon_n \epsilon_{n-1}.$$

If g'' is continuous, then when the Illinois Algorithm gets into a sufficient small neighborhood of the root c, we can assume g' and g'' have constant sign.

This implies that  $\frac{\epsilon_{n+1}}{\epsilon_n \epsilon_{n-1}}$  also has constant sign.

Since  $g_{n-1}g_n < 0 \Rightarrow \epsilon_{n-1}\epsilon_n < 0$ , we then necessarily have the sign of  $\epsilon_n$ 's follow one of the two schemes:

$$\cdots + - + + - + + - + \dots$$

or

$$\cdots + - - + - - + - - \dots$$

## Illinois Algorithm: Order of Convergence

Introduction to Optimization and Nonlinear Equations

Zeyu Lu & Yuqiu Yang

Safe Univariat

Root finding

Stopping an

Appendix (Mathematical Details) Previous analysis shows that asymptotically, an end-point will be retained twice in consecutive three iterations.

In other words, we will perform the Illinois step (halving the function value) once every third time.

Further asymptotic analysis shows that an Illinois step has  $\epsilon_{n+1}\approx -\epsilon_n$ 

Putting the pieces together, we have

$$\epsilon_n = -\epsilon_{n-1} \Rightarrow \epsilon_{n+1} = -C\epsilon_{n-1}^2 \Rightarrow \epsilon_{n+2} = C^2\epsilon_{n-1}^3$$

Via finding p such that  $|\epsilon_n| = M |\epsilon_{n-1}|^p$ , we get  $\frac{3}{p^2} = p \Rightarrow p \approx 1.44$