SCAN CONVERTING

LINES and CIRCLES

LINE DRAWING

Description: Given the specification for a straight line, find the collection of addressable pixels which most closely approximates this line.

Goals (not all of them are achievable with the discrete space of a raster device):

- Straight lines should appear straight.
- Lines should start and end accurately, matching endpoints with connecting lines.
- Lines should have constant brightness.
- Lines should be drawn as rapidly as possible.

Problems:

- How do we determine which pixels to illuminate to satisfy the above goals?
- Vertical, horizontal, and lines with slope
 = +/- 1, are easy to draw.
- Others create problems: stair-casing/ jaggies/aliasing.
- Quality of the line drawn depends on the location of the pixels and their brightness

It is difficult to determine whether a pixel belongs to an object

Direct Solution:

Solve y=mx+b, where (0,b) is the y-intercept and m is the slope.

Go from x_0 to x_1 : calculate round(y) from the equation.

Take an example, b = 1 (starting point (0,1)) and m = 3/5.

```
Then x = 1, y = 2 = round(8/5)

x = 2, y = 2 = round(11/5)

x = 3, y = 3 = round(14/5)

x = 4, y = 3 = round(17/5)

x = 5, y = 4 = round(20/5)
```

For results, see next slide.

Ideal Case of a line drawn in a graph paper

Choice of pixels in the raster, as integer values

$$x = 1, y = 2 = round(8/5)$$

$$x = 2$$
, $y = 2 = round(11/5)$

$$x = 3$$
, $y = 3 = round(14/5)$

$$x = 4$$
, $y = 3 = round(17/5)$

$$x = 5$$
, $y = 4 = round(20/5)$

Using next highest

Using Round

Why is this undesired?

- ` * ´ and ` / ´ are expensive
- Round() function needed
- Can get gaps in the line (if slope > 1)

Take another example:

$$y = 10.x + 2$$

 $x=1, y=12;$
 $x=2, y=22.$

DDA - Digital Difference Analyzer

```
Incremental Algorithm.
     Based on y = (y_1 - y_0) / (x_1 - x_0) x + b
Assume x_1 > x_0 and |dx| > |dy|
    (can be easily modified for the other
    cases.)
                 dx = X_1 - X_0;
The Algorithm:
                 dy = y_1 - y_0;
                  m = dy/dx;
                  y = y_0;
                  for (x=x_0 \text{ to } x_1)
                     draw_point (x, round(y));
                     y=y+m;
                  end for
```

Problems:

Still uses floating point and round() inside the loop.

How can we get rid of these?

Octants covering the 2-D space

MIDPOINT LINE ALGORITHM

Incremental Algorithm (Assume first octant)

Given the choice of the current pixel, which one do we choose next: E or NE?

Equations:

1.
$$y = (dy/dx) * x + B$$

Rewrite as:

2.
$$F(x,y) = a*x + b*y + c = 0$$

Gives:
$$F(x,y) = dy*x - dx*y + B*dx = 0$$

$$=> a = dy, b = -dx, c = B*dx$$

Criteria:

Evaluate the mid-point, M, w.r.t. the equation of the line.

Choice: E or NE?

$$F(x,y) = dy*x - dx*y + B*dx = 0$$

F(x,y) > 0; if point below the line

F(x,y) < 0; if point above the line

Q is above M, hence select NE pixel as your next choice

Q is below M, hence select E pixel as your next choice

```
ALGO – for next choice:

If F(M) > 0 /*Q is above M */

then Select NE

/*M is below the line*/

else Select E;

/* also with F(M) = 0 */
```

Evaluate mid-point M using a decision variable d = F(X,Y);

$$d = F(X_p+1,Y_p+1/2) = a(X_p+1)+b(Y_p+1/2)+c;$$

at M,

Set
$$d_{old} = d$$
;

Based on the sign of d, you choose E or NE.

Case I. Chosen E:

$$d_{\text{new}} = F(X_p + 2, Y_p + 1/2)$$

$$= a(X_p + 2) + b(Y_p + 1/2) + c$$

$$(\Delta d)_E = d_{\text{new}} - d_{\text{old}} = a /* = dy */$$

$$d_{\text{new}} = F(X_p + 2, Y_p + 3/2)$$

$$= a(X_p + 2) + b(Y_p + 3/2) + c$$

$$(\Delta d)_{\text{NE}} = d_{\text{new}} - d_{\text{old}} = a + b /* = dy - dx */$$

Update using $d_{new} = d_{old} + \Delta d$

Midpoint criteria

d =
$$F(M) = F(X_p+1, Y_p+1/2)$$
;
if d > 0 choose NE
else /* if d <= 0 */choose E;

Case EAST:

increment M by 1 in x

$$d_{new} = F(M_{new}) = F(X_p + 2, Y + 1/2)$$

$$(\Delta d)_E = d_{new} - d_{old} = a = dy$$

$$(\Delta d)_E = dy$$

Case NORTH-EAST:

increment M by 1 in both x and y
$$d_{new} = F(M_{new}) = F(X_p + 2, Y_p + 3/2)$$

$$(\Delta d)_{NE} = d_{new} - d_{old} = a + b = dy - dx$$

$$(\Delta d)_{NE} = dy - dx$$

What is d_{start}?

$$d_{start} = F(x_0 + 1, y_0 + 1/2)$$

$$= ax_0 + a + by_0 + b/2 + c$$

$$= F(x_0, y_0) + a + b/2$$

$$= dy - dx/2$$

Let's get rid of the fraction and see what we end up with for all the variables:

$$d_{start} = 2dy - dx;$$

$$(\Delta d)_{E} = 2dy;$$

$$(\Delta d)_{NE} = 2(dy - dx);$$

The Midpoint Line Algorithm

$$x = x_0;$$
 $y = y_0;$ $dy = y_1 - y_0;$ $dx = x_1 - x_0;$

d =
$$2dy - dx$$
;
 $(\Delta d)_E = 2dy$;
 $(\Delta d)_{NE} = 2(dy - dx)$;

Plot_Point(x,y)

The Midpoint Line Algorithm (Contd.)

```
while (x < x_1)
        if (d <= 0) /* Choose E */
              d = d + (\Delta d)_{F};
                 /* Choose NE */
        else
              d = d + (\Delta d)_{NF};
              y = y + 1
        endif
       x = x + 1;
       Plot_Point(x, y);
end while
```

Example:

Starting point: (5, 8) Ending point: (9, 11)

Successive steps:

- d=2, (6, 9)
- d=0, (7, 9)
- d=6, (8, 10)
- d=4, (9, 11)

INIT: dy = 3; dx = 4; $d_{start} = 2$; $(\Delta d)_{F} = 6$; $(\Delta d)_{NF} = -2$;

We have considered lines in the first Quadrant only.

How do you generalize this to the other octants?

Octant	Change
1	none
2	Switch roles of x & y
3	Switch roles of x & y; Use (4)
4	Draw from P ₁ to P ₀ ; Use (8)
5	Draw from P ₁ to P ₀
6	Draw from P ₁ to P ₀ ; Use (2)
7	Switch roles of x & y; Use (8)
8	Use $y = y - 1$.

Draw from P_1 to P_0 :

swap(
$$P_0, P_1$$
).

Use
$$y = y - 1$$
; $dy = -dy$;

Switch Roles of X & Y:

Swap $(x_1, y_1);$

Swap (x_0, y_0) ;

Swap (dx, dy);

plot_point(y, x);

Issues: Staircasing, Fat lines, end-effects and end-point ordering.

ANTI-ALIASING

Intersection of a line with a vertical edge of the clip rectangle

No problem in this case to round off the starting point, as that would have been a point selected by mid-point criteria too.

Select P by rounding the intersection point coordinates at Q.

What about d_{start}?

If you initialize the algorithm from P, and then scan convert, you are basically changing "dy" and hence the original slope of the line.

Hence, start by <u>initializing from d(M), the mid-point in the next column</u>, (X_{min}+ 1), <u>after clipping</u>).

Intersection of a shallow line with a horizontal edge of the clip rectangle

Intersection of line with edge and then rounding off produces A, not B.

To get B, as a part of the clipped line:

Obtain intersection of line with $(Y_{min} - 1/2)$ and then round off, as

$$B = [round(X|_{Y_{min}-1/2}), Y_{min}]$$

CIRCLE DRAWING

CIRCLE DRAWING

Assume second octant

Now the choice is between pixels E and SE.

CIRCLE DRAWING

Only considers circles centered at the origin with integer radii.

Can apply translations to get non-origin centered circles.

Explicit equation: $y = +/- sqrt(R^2 - x^2)$

Implicit equation: $F(x,y) = x^2 + y^2 - R^2 = 0$

Note: Implicit equations used extensively for advanced modeling

(e.g., liquid metal creature from "Terminator 2")

Use of Symmetry: Only need to calculate one octant. One can get points in the other 7 octants as follows:

```
Draw_circle(x, y)
begin
   Plotpoint (x, y); Plotpoint (y, x);
   Plotpoint (x, -y); Plotpoint (-y, x);
   Plotpoint (-x, -y); Plotpoint (-y, -x);
   Plotpoint (-x, y); Plotpoint (-y, x);
end
```


MIDPOINT CIRCLE ALGORITHM

Will calculate points for the second octant.

Use draw_circle procedure to calculate the rest.

Now the choice is between pixels E and SE.

$$F(x, y) = x^2 + y^2 - R^2 = 0$$

F(x, y) > 0 if point is outside the circle

F(x, y) < 0 if point inside the circle.

Again, use
$$d_{old} = F(M)$$
;

$$F(M) = F(X_p + 1, Y_p - 1/2)$$

$$= (X_p + 1)^2 + (Y_p - 1/2)^2 - R^2$$

```
d >= 0 choose SE; next midpoint: M_{new};
 Increment + 1 in X_i -1 in y; which gives d_{new}.
 d < 0 choose E; next midpoint: M<sub>new</sub>;
 Increment + 1 in X; which gives = d_{new}.
(\Delta d)_{SE} = d_{new} - d_{old}
        = F(X_p + 2, Y_p - 3/2) - F(X_p + 1, Y_p - 1/2)
        = 2X_p - 2Y_p + 5;
(\Delta d)_E = d_{new} - d_{old}
       =F(X_p + 2, Y_p - 1/2) - F(X_p + 1, Y_p - 1/2)
       = 2X_{n} + 3;
d_{start} = F(X_0 + 1, Y_0 - 1/2) = F(1, R - 1/2)
      = 1 + (R - 1/2)^2 - R^2 = 1 + R^2 - R + 1/4 - R^2
     = 5/4 - R
```


To get rid of the fraction, Let $h = d - \frac{1}{4} = > h_{start} = 1 - R$

Comparison is: h < -1/4.

Since h is initialized to and incremented by integers, so we can just do with: h < 0.

The Midpoint Circle algorithm: (Version 1)

```
x = 0;
y = R;
h = 1 - R;
DrawCircle(x, y);
while (y > x)
    if h < 0 /* select E */
         h = h + 2x + 3;
```

```
else /* select SE */

h = h + 2(x - y) + 5;

y = y - 1;

endif
```

$$x = x + 1;$$

 $DrawCircle(x, y);$

end_while

Example:

R = 10;

Initial Values:

$$h = 1 - R = -9;$$

$$X = 0; Y = 10;$$

$$2X = 0;$$

2Y = 20.

	0	1	2	3	4	5	6	7	8
0									
9						9			
8									
7								O	
6									

K	1	2	3	4	5	6	7
h	-6	-1	6	-3	8	5	6
2X	0	2	4	6	8	10	12
2Y	20	20	20	20	18	18	16
X, Y	(1, 10)	(2, 10)	(3, 10)	(4, 9)	(5, 9)	(6, 8)	(7, 7)

Problems with this?

Requires at least 1 multiplication and 3 additions per pixel.

Why? Because $(\Delta d)_E$ and $(\Delta d)_{SE}$ are linear functions and not constants.

Solution?

All we have to do is calculate the differences for: $(\Delta d)_E$ and $(\Delta d)_{SE}$ (check if these will be constants). Say, $(\Delta d^2)_E$ and $(\Delta d^2)_{SE}$.

If we chose E, then we calculate $(\Delta d^2)_{E/E}$ and $(\Delta d^2)_{E/SE}$, based on this. Same if we choose SE, then calculate $(\Delta d^2)_{SE/E}$ and $(\Delta d^2)_{SE/SE}$.

If we chose E, go from (X_p, Y_p) to $(X_p + 1, Y_p)$

$$(\Delta d)_{E-old} = 2X_p + 3$$
, $(\Delta d)_{E-new} = 2X_p + 5$.
Thus $(\Delta d^2)_{E/E} = 2$.

$$(\Delta d)_{SE-old} = 2X_p - 2Y_p + 5,$$

$$(\Delta d)_{SE-new} = 2(X_p + 1) - 2Y_p + 5$$

$$Thus (\Delta d^2)_{E/SE} = 2.$$

If we chose SE, go from
$$(X_p, Y_p)$$
 to $(X_p + 1, Y_p - 1)$

$$(\Delta d)_{E-old} = 2X_p + 3, (\Delta d)_{E-new} = 2X_p + 5.$$

Thus $(\Delta d^2)_{SE/E} = 2.$

$$(\Delta d)_{SE-old} = 2X_p - 2Y_p + 5,$$

 $(\Delta d)_{SE-new} = 2(X_p + 1) - 2(Y_p - 1) + 5$
Thus $(\Delta d^2)_{SE/SE} = 4.$

So, at each step, we not only increment h, but we also increment $(\Delta d)_E$ and $(\Delta d)_{SE}$.

What are $(\Delta d)_{E-start}$ and $(\Delta d)_{SE-start}$?

$$(\Delta d)_{E-start} = 2*(0) + 3 = 3;$$

 $(\Delta d)_{SE-start} = 2*(0) - 2*(R) + 5$

The MidPoint Circle Algorithm (Version 2):

```
x = 0;
                 y = radius;
  h = 1 - R;
  deltaE = 3; deltaSE = -2*R + 5;
DrawCircle(x, y);
 while (y > x)
           if h < 0 /* select E */
                 h = h + deltaE;
                 deltaE = deltaE + 2;
                 deltaSE = deltaSE + 2
```

```
else /* select SE */
       h = h + deltaSE;
       deltaE = deltaE + 2;
       deltaSE = deltaSE + 4
       y = y - 1;
   endif
   x = x + 1;
DrawCircle(x, y);
end_while
```

Example:

R = 10;**Initial Values:**

$$X = 0; Y = 10;$$

$$h = 1 - R = -9;$$

$$\Delta_{\rm E} = 3$$
;

$$\Delta_{\rm E} = 3;$$

 $\Delta_{\rm SE} = -15;$

K	1	2	3	4	5	6	7
h	-6	-1	6	-3	8	5	6
$\Delta_{ m E}$	5	7	9	11	13	15	17
$\Delta_{ m SE}$	-13	-11	-9	-5	-3	1	5
X, Y	(1, 10)	(2, 10)	(3, 10)	(4, 9)	(5, 9)	(6, 8)	(7, 7)

Comparison of the solutions with two different methods

K	1	2	3	4	5	6	7
h	-6	-1	6	-3	8	5	6
$\Delta_{ m E}$	5	7	9	11	13	15	17
$\Delta_{ m SE}$	-13	-11	-9	-5	-3	1	5
X, Y	(1, 10)	(2, 10)	(3, 10)	(4, 9)	(5, 9)	(6, 8)	(7, 7)
K	1	2	3	4	5	6	7
K h	1 -6	2 -1	3 6	4 -3	5	6 5	7 6
h	-6	-1	6	-3	8	5	6