Fully Homomorphic Encryptions and Blind SNARKs

Cauchy Huang

The National University of Singapore kexi.huang@u.nus.edu

2025/05

Overview

Fully Homomorphic Encryptions (FHE)

Background

Blind Sumcheck

Cauchy Huang (NUS)

Different Types of HEs

- Partially HE (PHE). Supports only one type of operations (additions or multiplications), with no limitation on the depth of the operations. Eg. RSA, Paillier, ElGamal etc.
- SomeWhat HE (SWHE). Supports additions and multiplications, but supports only limited depth of operations.
- Leveled HE (LHE). Supports additions and multiplications with pre-fixed depth of operations.
- Fully HE (FHE). Supports additions and multiplications with no limitation on the depth of operations.

Scheme Definition of HEs

Definition (Homomorphic Encryption Schemes.)

- ullet KeyGen $(1^{\lambda})
 ightarrow s$
- $\mathsf{Enc}(1^\lambda,s,m) o c$
- $Dec(s, c) \rightarrow m$
- EvalKeyGen $(s, s') \rightarrow \text{evk}$
- Eval(op, $c_1, c_2, \text{evk}) \rightarrow c$

Hard Problems - (Ring) Learning With Errors

Definition (Ring Learning With Errors)

Fix a secret $s \in \mathcal{R}_q$. The RLWE distribution A_s^q is defined by first sampling $a \leftarrow \mathcal{U}_q, e \leftarrow \chi_{err}$ and then returning $(a, [a \cdot s + e]_q)$.

- (Decision version.) Given access to polynomially many samples from \mathcal{R}_q^2 , distinguish the distributions A_s^q and \mathcal{U}_q^2 .
- (Search version.) Given access to polynomially many samples from A_s^q , find the underlying s.

Assumption: Both variants of the RLWE problem are conjectured to be hard for appropriately chosen parameters.

Hard Problems - (Ring) Learning With Errors

Construction of BFV

Definition (BFV)

Given plaintext space \mathcal{R}_t and ciphertext space \mathcal{R}_q , define the scaling factor $\Delta = q/t$.

- KeyGen $(1^{\lambda}) \to s$ Sample $s \leftarrow \mathcal{R}_q$ and return s.
- Enc(1 $^{\lambda}$, s, m) \rightarrow (c₀, c₁): Sample a RLWE instance (i.e. sample $a \leftarrow \mathcal{R}_q$ and $e \leftarrow \chi_{err}$). Compute $c = [a \cdot s + \lceil \Delta \cdot m \rfloor + e]_q$ and return (c, -a).
- $\operatorname{Dec}(s,(c_0,c_1)) \to m$: Compute $m = \lceil (c_0 + c_1 \cdot s)/\Delta \rfloor$.

Construction of BFV

Definition (BFV (Addition))

• Eval(Add, $(c_0, c_1), (c_0', c_1')$) $\rightarrow (c_0'', c_1'')$: Return $(c_0 + c_0', c_1 + c_1')$.

Sketch of Proof:

$$c_0 + c_0' = a \cdot s + \lceil \Delta \cdot m \rfloor + e + a' \cdot \lceil \Delta \cdot m' \rfloor + e' = (a + a') \cdot s + \lceil \Delta \cdot (m + m') \rfloor + (e + e' + e_{round}).$$

$$c_1 + c_1' = -(a + a').$$

Which is the ciphertext of m + m'.

Construction of BFV

Definition (BFV (Multiplication))

• Eval(Mult, $(c_0, c_1), (c'_0, c'_1), \text{evk}) \rightarrow (c''_0, c''_1)$:

Underlying induction behind this multiplication:

- Given $c_0 = a \cdot s + \Delta \cdot m + e$ and $c_0' = a' \cdot s + \Delta \cdot m' + e'$, we are now willing to construct something like $aa' \cdot s + \Delta \cdot mm' + e''$.
- With quick observation, one may want to multiply c_0 and c_0' and divide Δ to obtain the term $\Delta \cdot mm'$:

$$c_0'' = c_0 c_0' / \Delta = (aa'/\Delta) \cdot s^2 + (am' + a'm) \cdot s + \Delta \cdot mm' + O(e)$$

• A straight attempt is to compute c_0c_1' (and for symmetry we also compute $c_0'c_1$), and obtain

$$c_1'' = (c_0c_1' + c_0'c_1)/\Delta = 2 \cdot (aa' \cdot \Delta) \cdot s + (am' + a'm) + O(e)$$

• Try $c_0'' + c_1'' \cdot s = -(aa'/\Delta) \cdot s^2 + \Delta \cdot mm' + O(e)$

Cauchy Huang (NUS) FHE & Blind SNARKs 2025/05 9 / 17

Central Technical Contribution of BFV - Key Switching

Lemma (Gadget Decomposition)

Define the gadget decomposition:

•
$$\mathcal{D}_{w,q}(a) = (a, \lceil \frac{a}{w} \rfloor, \lceil \frac{a}{w^2} \rfloor, \dots, \lceil \frac{a}{w^{\log_w(q)} - 1} \rfloor)^T$$

•
$$\mathcal{P}_{w,q}(a) = (a, a \cdot w, \dots, a \cdot w^{\log_w(q)-1})^T$$

Then we have $<\mathcal{D}_{w,q}(a),\mathcal{P}_{w,q}(a)>=a\cdot b \mod q\mathcal{R}$

Definition (Key Switching)

- EvalKeyGen $(s, s') \rightarrow$ evk: Sample $\vec{a} \leftarrow \mathcal{R}_q^{\log_w(q)}$ and $\vec{e} \leftarrow \chi_{err}^{\log_w(q)}$. Return evk $= (\mathcal{P}_{w,q}(s') + \vec{a} \cdot s + \vec{e}, -\vec{a})$.
- KeySwitch(c_0 , evk = $(\vec{r_0}, \vec{r_1})$) \rightarrow (c'_0, c'_1): Return ($<\vec{c}, \vec{r_0}>, <\vec{c}, \vec{r_1}>$).

Central Technical Contribution of BFV - Key Switching

Definition (Key Switching)

- EvalKeyGen $(s,s') \to \text{evk}$: Sample $\vec{a} \leftarrow \mathcal{R}_q^{\log_w(q)}$ and $\vec{e} \leftarrow \chi_{err}^{\log_w(q)}$. Return $\text{evk} = (\mathcal{P}_{w,q}(s') + \vec{a} \cdot s + \vec{e}, -\vec{a})$.
- KeySwitch $(c_0, \text{evk} = (\vec{r_0}, \vec{r_1})) \rightarrow (c'_0, c'_1)$: Return $(< \mathcal{D}_{w,q}(c), \vec{r_0} >, < \mathcal{D}_{w,q}(c), \vec{r_1} >)$.

Some verification on this key switching process:

$$\begin{split} &(<\mathcal{D}_{w,q}(c_0), \vec{r_0}>, <\mathcal{D}_{w,q}(c_0), \vec{r_1}>) \\ &=(<\mathcal{D}(c_0), \mathcal{P}(s')> + <\mathcal{D}(c_0), \vec{a}\cdot s + \vec{e}>, <\mathcal{D}(c_0), -\vec{a}>) \\ &=(c_0\cdot s' + <\mathcal{D}(c_0), \vec{a}\cdot s + \vec{e}>, <\mathcal{D}(c_0), -\vec{a}>) \end{split}$$

Note that, if we assign $s'=s^2$ and $c_0=aa'/\Delta$, we can obtain the ciphertext of $aa'/\Delta \cdot s^2$ under the key s.

<ロ > < @ > < 重 > < 重 > の < で

11 / 17

All Together

Definition (BFV (Multiplication))

- Eval(Mult, $(c_0, c_1), (c'_0, c'_1), \text{evk}) \rightarrow (c''_0, c''_1)$:
 - ullet Compute $c_0'''=c_0c_0'/\Delta$ and $c_1'''=(c_0c_1'+c_0'c_1)/\Delta$
 - Compute $c_{swicth} = \text{KeySwitch}(c_1c_1'/\Delta, \text{evk})$
 - Return Eval(Add, $(c_0''', c_1'''), c_{switch}$)

Verifiable Computation On Encrypted Data (vCOED)

The problem setting is when you want to delegate a complicated computation to a powerful third-party, while you still need to keep the input secret.

Current techniques that implement vCOED:

- Trusted Executive Environment (TEE):
 - Pros: Efficient, Low barrier for the users, Low invasion to codes
 - Cons: Rely on the trustness of Processor Manufacturers
- Multi-Party Computation
 - Pros: Support multi-party setting, Faster than FHE
 - Cons: Large computation/communication cost, Every party needs to be online
- Fully Homomorphic Encryption
 - Pros: Non-interactive, support all arithmetic circuits
 - Cons: Huge computation cost

Challenges & Contributions

Challenges when applying FHE to Sumcheck:

- Adaptation of fields: SNARKs typically uses large extension fields (> 120 bits) to ensure soundness, while FHE typically occurs on small fields (< 64 bits).
- Growing depth of multiplications: For natural BFV scheme, multiplications of pt-ct need to encrypt pt and perform mulitplication on ciphertext space.
- Instantiation of Encrypted oracles: In Spartan, the final verification in the sumcheck needs the help of an oracle, which is typically instantiated by Polynomial Commitment Schemes.

Challenges & Contributions

Our Contributions:

- Relying on the security property of FHEs, we prove that it is enough to sample random challenges on base fields (< 64 bits) to achieve the security requirement
- Transform the multiplication of pt-ct into a collection of ct sums, leading to a significant reduce in depth of ct-ct multiplications (With smaller error)
- Instantiation of Encrypted oracles (Ongoing)

Theorem

Given a plaintext $a \in F_p$ and a ciphertext $(c_0, c_1) \in F_q^2$, Eval(Mult, Enc(a), (c_0, c_1) , evk) and $(a_{\mathbb{Z}} \cdot c_0, a_{\mathbb{Z}} \cdot c_1)$ share the common underlying plaintext, where $a_{\mathbb{Z}}$ is the element in \mathbb{Z} . In the other words, F_q is viewed as the $\mathbb{Z}-$ module, and \cdot is the scalar multiplication on the module.

Blind Sumcheck Protocol

- Input:
 - **Public**: A plaintext $y \in \mathbb{F}_p$, claimed to be equal to $\sum_{\vec{x} \in B_n} f(\vec{x})$
 - Prover P: The coefficients of an encrypted multilinear
 polynomial { [[f_α]] }_{α∈B_n}, where [[f_i]] ∈ F²_q contains two
 elements from the ciphertext space.
 - **Verifier** \mathcal{V} : A multilinear polynomial $f(X_1, ..., X_n) = \sum_{\alpha \in B_n} f_\alpha \prod_{i=1}^n X_i^{\alpha_i}$.
- · Output: Verifier outputs accept or reject.

· Protocol:

- In the first round:
- • P sends the oracle of the encrypted multilinear polynomial
 [[f]] to
 • V.
- \mathcal{P} computes $\sum_{b_{[2]} \in B_{n-1}} [[f]](X, b_{[2:]})$ which is of the form $[a] \cdot X + [b]$.
- \mathcal{P} sends the full ciphertexts of $(c_0^a, c_1^a), (c_0^b, c_1^b)$ to \mathcal{V} .
- • V decrypts the plaintexts and obtains the line L₁(X) = a · X + b. V checks if L₁(0) + L₁(1) = y.
- • V samples a random challenge r₁ ←, and sends it to P.
- In the *i*-th round, $i \in [2, n]$:
 - \mathcal{P} computes $\sum_{b_{[i+1:]} \in B_{n-i}} \llbracket f \rrbracket (r_{[:i]}, X, b_{[i+1:]})$ which is of the form $\llbracket a \rrbracket \cdot X + \llbracket b \rrbracket$.
 - P sends the full ciphertexts of (c₀^a, c₁^a), (c₀^b, c₁^b) to V.
 - \mathcal{V} decrypts the plaintexts and obtains the line $L_i(X) = a \cdot X + b$. \mathcal{V} checks if $L_i(0) + L_i(1) = L_{i-1}(r_{i-1})$.
 - • V samples a random challenge r_i ← F_p. V sends r_i to
 • If this is not the last round.
- · Final verification:

The End