- 3.2. Визначення належності функції f4 до п'яти передцповних класів
- f(1111) = 1 => функція зберігає одиницю
- f(0000) = 0 => функція зберігає нуль
- f(0011) = f(1100) = однакові=> функція не самодвоїста
- f(0001) > f(1110) => функція не монотонна
- функція нелінійна, оскільки її поліном Жегалкіна нелінійний

3.3. Мінімізація функції f4

Метод Квайна-Мак-Класкі

Виходячи з таблиці 2.2, запишемо стовпчик ДДНФ (КО), розподіливши терми за кількістю одиниць. Проведемо попарне склеювання між сусідніми групами та виконаємо поглинання термів (рисунок 4.4).

 KO
 K1

 0001 (1)
 00X1 (1)

 0011 (1)
 X001 (1)

 1000 (1)
 1111 (1)

Рисунок 4.4 Склеювання і поглинання термів

Одержані прості імпліканти запишемо в таблицю покриття (таблиця 4.3).

Таблиця 4.3 Таблиця покриття

	0001(F1)	0011(F1)	1001(F1)	1100(F1)	1111(F1)
1100 (1)				+	
1111 (1)					+
00X1 (1)	+	+			
X001 (1)	+		+		

Зм.	Арк.	№ докум.	Підп.	Дата

В ядро функції входять ті терми, без яких неможливо покрити хоча б одну імпліканту.

Ядро = {1100; 1111}

В МДНФ входять всі терми ядра, а також ті терми, що забезпечують покриття всієї функції з мінімальною ціною.

 $f_{4MHII\Phi}$ = (X4X3 $\overline{X}2\overline{X}1$) v (X4X3X2X1) v ($\overline{X}4\overline{X}3X1$) v ($\overline{X}3\overline{X}2X1$)

Метод невизначених коефіцієнтів

Ідея цього методу полягає у відкушанні ненульових коефіцієнтів при кожній імпліканті. Метод виконується у декілька етапів:

- 1. Рівняння для знаходження коефіцієнтів представляється у вигляді таблиці (таблиця 4.4).
- 2. Виконується відкреслення нульових рядків.
- 3. Викреслюються вже знайдені нульові коефіцієнти на залишившихся рядках.
 - 4. Імпліканти, що залишилися, поглинають імпліканти справа від них.

<i>X</i> ₄	<i>X</i> ₃	X2	X1	X_4X_3	X_4X_2	X_4X_1	X ₃ X ₂	X ₃ X ₁	X ₂ X ₁	$X_4X_3X_2$	$X_4X_3X_1$	$X_4X_2X_1$	X ₃ X ₂ X ₁	X ₄ X ₃ X ₂ X ₁	f_4
Ð	Đ	Đ	Đ	-00	-00	00	00	00	-00	-000	000	-000	000	0000	Ð
Ә	Ә	Ә	1	θθ	00	01	θθ	01	01	-000	001	<i>-001</i>	001	_0001	1
Ð	Ф	1	Ф	00	01	00	01	00	10	<i>-001</i>	<i>-000</i>	<i>-010</i>	<i>-010</i>	<i>-0010</i>	Ә
Ð	Ф	1	1	θθ	0 1	0 1	0 1	0 1	-1 1	<i>-001</i>	001	011	011	0011	1
Ф	1	Ф	Ф	01	00	00	10	10	00	<i>-010</i>	<i>-010</i>	000	-100	0100	Ф
Ð	1	Ф	1	01	00	01	10	-1 1	0 1	<i>-010</i>	011	<i>-001</i>	-101	<i>0101</i>	Ф
Ð	1	1	Ә	01	01	00	-1 1	10	10	011	<i>-010</i>	<i>010</i>	-110	<i>-0110</i>	Ә
Ð	1	1	1	01	0 1	01	-1 1	-1 1	-1 1	011	<i>011</i>	011	-111	<i>0111</i>	Ф
1	Ф	Ф	Ф	10	10	10	00	00	<i>-00</i>	-100	-100	-100	<i>-000</i>	1000	Đ
1	Ф	Ф	1	10	10	-1 1	00	01	01	-100	101	-101	001	_1001	1
1	Ф	1	Ф	10	-1 1	10	0 1	00	10	-101	-100	-110	<i>-010</i>	1010	Đ
1	Ф	1	1	10	-1 1	-1 1	0 1	0 1	-1 1	101	101	-111	011	1011	Ф
1	1	Ф	Ф	-1 1	10	10	10	10	00	-110	-110	-100	<i>-100</i>	1100	1
1	1	Ә	1	1 1	10	1 1	10	1 1	01	-110	111	101	101	-1101	Ә
1	1	1	Ә	1 1	-1 1	10	-1 1	10	10	-111	-110	-110	-110	-1110	θ
1	1	-1	1	-11	-1 1	-11	-11	-1 1	-11	-111	-111	-111	-111	1111	1

Таблиця 4.4 Метод невизначених коефіцієнтів

Зм.	Арк.	№ докум.	Підп.	Дата