

Ionic Bonding

Nonpolar Covalent Bonding

Polar Covalent Bonding

Electronegativity and Bond Type

Electronegativity Difference (≤EN)	Bond Type	Example
zero (0–0.4)	pure covalent	Cl_2
intermediate (0.4–2.0)	polar covalent	HF
large (2.0+)	ionic	NaCl

Lewis Structures

- 1. Write skeletal structure for the molecule.
 - More electropositive atoms in the center, H atoms are always terminal, take into account symmetry.
- 2. Calculate the total number of electrons by adding the valance electrons of the atoms.
 - For polyatomic ion, add one electron for each negative charge, or subtract one electron for each positive charge.
- 3. Distribute the electrons among the atoms giving octets (or duets for H) to as many atoms as possible.
 - Begin by placing the bonding electrons, then, give lone pairs to terminal atoms.
- 4. If any atom lacks an octet, form double or triple bonds as necessary to give them octets.

Exceptions to the Octet Rule

- Molecules and polyatomic ions:
 - containing an odd number of electrons.

$$\ddot{N} = \ddot{O}$$
 and $\ddot{N} = \ddot{O}$

in which an atom has fewer than an octet of valence electrons.:F:

- in which an atom has more than an octet of valence electrons. :Ci: ...