Lösungen zu Übungsblatt 1.

Aufgabe 1 (Potenzmenge II - 10 Punkte). Seien A, B Teilmengen einer Menge C. Beweisen oder widerlegen Sie folgende Identitäten.

- (i) $P(A \cup B) = P(A) \cup P(B)$
- (ii) $P(A \cap B) = P(A) \cap P(B)$

Lösung zu Aufgabe 1. Seien A, B Teilmengen einer Menge C. Nach Definition wissen wir, dass

- $P(A) = \{D, D \subseteq A\}, P(B) = \{D, D \subseteq B\}, (2 \text{ Punkte})$
- $P(A) \cup P(B) = \{c \in C, c \in P(A) \text{ oder } c \in P(B)\}\ (1 \text{ Punkt})$
- $P(A) \cap P(B) = \{c \in C, c \in P(A) \text{ und } c \in P(B)\}\ (1 \text{ Punkt})$

Deshalb, (3 Punkte)

$$P(A \cap B) = \{D, D \subseteq A \cap B\}$$

$$= \{D, D \subseteq \{c \in C, c \in A \text{ und } c \in B\}\}$$

$$= \{D, D \subseteq A\} \cap \{D, D \subseteq B\}$$

$$= P(A) \cap P(B).$$

Aber $P(A \cup B) \neq P(A) \cup P(B)$ weil zum Beispiel $A = \{a\}$ und $B = \{b\}$, wir haben $P(A) = \{\emptyset, \{a\}\},$ $P(B) = \{\emptyset, \{b\}\},$ und $P(A \cup B) = \{\emptyset, \{x\}, \{y\}, \{x, y\}\}$ aber $P(A) \cup P(B) = \{\emptyset, \{x\}, \{y\}\}, \{y\}\}$. (3 Punkte)

Aufgabe 2 (8 Punkte). Bestimmen Sie die folgenden Mengen:

a) $(\{1,2\} \times \{3,4\}) \cup \{1,2,3\}$

c) $\bigcap_{i \in \{2,6\}} \left\{ \frac{i}{2}, i+1 \right\}$

b) $2^{\{1,2,3\}} \setminus 2^{\{1,2\}}$

d) $\bigcup_{n\in\mathbb{N}}\{n,n+1,2n\}$

Lösung zu Aufgabe 2. • (2 Punkte) Es gilt

$$\{1,2\} \times \{3,4\} = \{(1,3), (1,4), (2,3), (2,4)\}$$

und dann

$$(\{1,2\} \times \{3,4\}) \cup \{1,2,3\} = \{(1,3),(1,4),(2,3),(2,4),1,2,3\}.$$

• (2 Punkte) Es gilt

$$2^{\{1,2,3\}} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$$

und

$$2^{\{1,2\}} = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}.$$

Damit ergibt sich dann

$$2^{\{1,2,3\}} \setminus 2^{\{1,2\}} = \{\{3\},\{1,3\},\{2,3\},\{1,2,3\}\}.$$

• (2 Punkte) Für i=2 ist $\left\{\frac{i}{2},i+1\right\}=\{1,3\},$ für i=6 ist $\left\{\frac{i}{2},i+1\right\}=\{3,7\}.$ Daher

$$\bigcap_{i \in \{2,6\}} \left\{ \frac{i}{2}, i+1 \right\} = \{1,3\} \cap \{3,7\} = \{3\}.$$

• (2 Punkte) Für jede natürliche Zahl $n \in \mathbb{N}$ sind n, n+1 und 2n natürliche Zahlen, also $\{n, n+1, 2n\} \subset \mathbb{N}$. Gleichzeitig ist klarer Weise jede natürliche Zahl $n \in \mathbb{N}$ in mindestens einer der Mengen (derjenigen zum Index n) und somit der Vereinigung enthalten. Daher ist $\mathbb{N} \subset \bigcup_{n \in \mathbb{N}} \{n, n+1, 2n\}$ und somit

$$\bigcup_{n\in\mathbb{N}} \{n, n+1, 2n\} = \mathbb{N}.$$

a)
$$A \subset B \cap C \leftrightarrow (A \subset B) \land (A \subset C)$$
 c) $(\bigcap_{i \in I} D_i) \cap B = \bigcap_{i \in I} (D_i \cap B)$

b)
$$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$$

Hinweis: In der Logik steht \leftrightarrow für genau dann, wenn, \land für und (und \lor für oder).

Lösung zu Aufgabe 3. Ist eine logische Äquivalenz der Form $X \leftrightarrow Y$ ("X genau dann, wenn Y") zu zeigen, so können wir dies in die beiden Teilschritte $X \to Y$ ("aus X folgt Y") und $X \leftarrow Y$ ("X folgt aus Y" bzw. $Y \to X$ "aus Y folgt X") zerlegen. Ebenso, ist eine Mengengleichheit A = B zu zeigen, so nehmen wir die beiden Teilschritte $A \subset B$ und $A \supset B$ bzw. $B \subset A$.

• (4 Punkte) Wir teilen den Beweis in zwei Teile:

$$A \subset B \cap C \to (A \subset B) \land (A \subset C)$$
 und $A \subset B \cap C \leftarrow (A \subset B) \land (A \subset C)$

- \rightarrow Sei $A \subset B \cap C$, so gilt jedes Element a ebenfalls $a \in B \cap C$ und damit auch $a \in B$ und $a \in C$. Damit folgt also $A \subset B$ und $A \subset C$. (2 Punkte)
- \leftarrow Sei $A \subset B$ und $A \subset C$. Dann gilt für jedes $a \in A$ demnach, dass $a \in B$ und $a \in C$. Dann ist aber auch $a \in B \cap C$. Damit folgt $A \subset B \cap C$. (2 Punkte)

Beide Richtungen zusammen beweisen folglich $A \subset B \cap C \leftrightarrow (A \subset B) \land (A \subset C)$.

• (4 Punkte) Wir teilen den Beweis in zwei Teile:

$$A \setminus (B \cup C) \subset (A \setminus B) \cap (A \setminus C)$$
 und $A \setminus (B \cup C) \supset (A \setminus B) \cap (A \setminus C)$

- \subset Sei $x \in A \setminus (B \cup C)$, dann gilt also $x \in A$, aber $x \notin B \cup C$ und damit $x \notin B$ und $x \notin C$. Dann ist aber auch $x \in A \setminus B$ und $x \in A \setminus C$. Somit gilt dann auch $x \in (A \setminus B) \cap (A \setminus C)$. (2 Punkte)
- ⊃ Sei $x \in (A \setminus B) \cap (A \setminus C)$, dann gilt $x \in A \setminus B$ und $x \in A \setminus C$. Damit folgt $x \in A$, $x \notin B$ und $x \in A$, $x \notin C$. Dann ist also $x \in A$ und $x \notin B \cup C$ und somit $x \in A \setminus (B \cup C)$. (2 Punkte) Beide Richtungen zusammen beweisen folglich $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.
- (4 Punkte) Auch hier teilen wir den Beweis in zwei Richtungen.
 - \subset Sei $x \in (\bigcap_{i \in I} D_i) \cap B$, dann ist x also ein Element jeder Menge dieses Schnittes, also $x \in D_i$ für alle $i \in I$ und $x \in B$. Demnach ist aber auch $x \in D_i \cap B$ für alle $i \in I$ und so auch $x \in \bigcap_{i \in I} (D_i \cap B)$. (2 Punkte)
 - ⊃ Sei $x \in \bigcap_{i \in I} (D_i \cap B)$, so ist also $x \in D_i \cap B$ für jedes $i \in I$ und somit $x \in D_i$ und $x \in B$ für jedes $i \in I$. Dann ist aber auch $x \in (\bigcap_{i \in I} D_i) \cap B$. (2 Punkte)

Insgesamt also $(\bigcap_{i \in I} D_i) \cap B = \bigcap_{i \in I} (D_i \cap B)$.

Aufgabe 4 (10 Punkte). Bestimmen Sie für die folgenden Funktionen jeweils, ob diese surjektiv, injektiv und/oder bijektiv sind.

(i)
$$f_1: \mathbb{N} \to \mathbb{N}, \quad f_1(n) = n^2$$

(ii)
$$f_2 \colon \mathbb{Z} \to \mathbb{N}, \quad f_2(x) = |x|$$

(iii)
$$f_3: \mathbb{R} \to \mathbb{R}, \quad f_3(x) = \sin(x)$$

(iv)
$$f_4: \mathbb{R} \to \{x \in \mathbb{R} \mid -1 \le x \le 1\}, \quad f_4(x) = \sin(x)$$

(v)
$$f_5 \colon \mathbb{Z} \to \mathbb{N}$$
, $f_5(x) = \begin{cases} -2x - 1 & \text{falls } x < 0 \\ 2x & \text{sonst} \end{cases}$

Lösung zu Aufgabe 4. Bijektiv heißt sowohl injektiv als auch surjektiv. Wir werden sehen, dass nur f_5 bijektiv ist.

Lösung zu (i) (2 Punkte). Die Funktion f_1 ist injektiv, denn: Seien $n, m \in \mathbb{N}$, sodass $f_1(n) = f_1(m)$, dann ist also $n^2 = m^2$. Da $n, m \in \mathbb{N}$, also $n, m \geq 0$ sind, folgt durch Wurzelziehen $n^2 = |n| = n = m^2 = |m| = m$, also n = m. Die Funktion f_1 ist nicht surjektiv, denn: Es gibt kein $n \in \mathbb{N}$, sodass $f_1(n) = n^2 = 2$, aber $2 \in \mathbb{N}$ liegt im Bildbereich.

Lösung zu (ii) (2 Punkte). Die Funktion f_2 ist nicht injektiv, denn: Es gilt zum Beispiel $1, 1 \in \mathbb{Z}$ und $1 \neq 1$, aber $f_2(1) = 1 = f_2(1)$. Die Funktion f_2 ist surjektiv, denn: Zu jedem $n \in N$ im Bildbereich ist $n \in \mathbb{Z}$, $f_2(n) = n$.

Lösung zu (iii) (2 Punkte). Die Funktion f_3 ist nicht injektiv, denn: Es gilt zum Beispiel $0, \pi \in \mathbb{R}$ und $0 \neq \pi$ aber $f_3(0) = \sin(0) = 0 = \sin(\pi) = f_3(\pi)$. Die Funktion f_3 ist nicht surjektiv, denn: Zum Beispiel ist $2 \in \mathbb{R}$ im Bildbereich aber es gibt kein $x \in \mathbb{R}$, sodass $f_3(x) = \sin(x) = 2$.

Lösung zu (iv) (2 Punkte). Die Funktion f_4 ist nicht injektiv, siehe (iii)). Die Funktion ist surjektiv, denn: Der Sinus nimmt jeden Wert zwischen 1 und 1 an, also gibt es zu jedem $1 \le x \le 1$ im Bildbereich einen Wert $t \in \mathbb{R}$, sodass $f_4(t) = \sin(t) = x$.

Lösung zu (v) (2 Punkte). Die Funktion f_5 ist injektiv, denn: Ist x < 0, so ist $f_5(x) = -2x - 1$ eine ungerade Zahl; und ist x > 0, so ist $f_5(x) = 2x$ eine gerade Zahl. Sind also $x, x' \in \mathbb{Z}$ mit $f_5(x) = f_5(x')$ gegeben, so muss entweder x, x' < 0 oder x, x' > 0 gelten. Im ersten Falle ist $f_5(x) = -2x - 1 = -2x' - 1 = f_5(x')$, im zweiten Falle ist $f_5(x) = 2x = 2x' = f_5(x')$. In beiden Fällen folgt durch Umformen x = x'. Die Funktion f_5 ist surjektiv, denn: Jede gerade Zahl $n \in \mathbb{N}$ im Bildbereich lässt sich schreiben als n = 2k, wobei $k \in \mathbb{N}$. Dann ist $f_5(k) = 2k = n$, also liegen alle geraden Zahlen $n \in \mathbb{N}$ im Bild von f_5 . Ist $n \in \mathbb{N}$ ungerade, so können wir n = 2k + 1 schreiben für ein $k \in \mathbb{N}$. Das können wir umformen zu n = 2k + 1 = -2(-k - 1) - 1. Da $-k - 1 \in \mathbb{Z}$ eine ganze Zahl ist und -k - 1 < 0 gilt, ist also $f_5(-k - 1) = -2(-k - 1) - 1 = 2k + 1 = n$, und somit sind auch alle ungeraden Zahlen $n \in \mathbb{N}$ im Bild von f_5 .