Overview: Application Layer

17CS52 - CN: L10

Dr. Ram P Rustagi Sem V (2019-H2) Dept of CSE, KSIT rprustagi@ksit.edu.in

https://youtube.com/rprustagi

Resources Acknowledgement

Chapter 2 Application Layer

A note on the use of these Powerpoint slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a *lot* of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

© All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking: A Top Down Approach

7th edition
Jim Kurose, Keith Ross
Pearson/Addison Wesley
April 2016

Application Layer 2-1

Application Evolution in Network

- 1980s
 - Text based Email, File Transfer, Remote login, Newsgroup
- 1990s
 - Web surfing, web search, e-commerce
 - Killer Applications
 - P2P file sharing, instant messaging
- 2000s
 - Voice and Video applications (Skype),
 - Rich multimedia Apps, User generated video contents
- 2010s
 - Social computing apps, Video Streaming (NetFlix)
 - Multi-player games (SecondLife, WarCraft, ...)
 - Mobile Apps

Chapter 2: Application Layer

- Goals:
- Conceptual, implementation aspects of network application protocols
 - Transport-layer service models
 - Client-server paradigm
 - Peer-to-peer paradigm
 - Content DistributionNetworks

- Learn about protocols by examining popular application-level protocols
- HTTP
- SMTP / POP3 / IMAP
- DNS
- Creating network applications
- Socket API

Some network apps

- e-mail
- web
- text messaging
- remote login
- P2P file sharing
- multi-user network games
- streaming stored video (YouTube, Hulu, Netflix)

- voice over IP (e.g., Skype)
- real-time video conferencing
- social networking
- search
- •
- • •

Creating a network app

- write programs that:
- run on (different) end systems
- communicate over network
- e.g., web server software communicates with browser software
- no need to write software for network-core devices
- network-core devices do not run user applications
- applications on end systems allows for rapid app development, propagation

Application architectures

- possible structure of applications:
- client-server
- peer-to-peer (P2P)

Client-server architecture

server:

- always-on host
- permanent IP address
- data centers for scaling

clients:

- communicate with server
- may be intermittently connected
- may have dynamic IP addresses
- do not communicate directly with each other

Application Architecture Paradigm

- Client-Server architecture
 - -Client initiates requests to server
 - -Clients do not talk to each other
 - -server examples
 - Web server, FTP Server, Mail server,
 - -Applications typically provided by service provider
 - Gmail, Yahoo
 - Google, Bing
 - Amazon, EBay, Flipkart
 - Netflix, Redbox
 - WhatsApp
 - -Hosted in data centers

P2P architecture

- no always-on server
- arbitrary end systems directly communicate
- peers request service from other peers, provide service in return to other peers
 - self scalability new peers bring new service capacity, as well as new service demands
- peers are intermittently connected and change IP addresses
 - complex management

Application Architecture Paradigm

- Peer-to-peer architecture
 - -No reliance on dedicated servers
 - -Direct communication between pairs of hosts
 - Could be via intermittent hosts
 - Peers (desktop, PC, smartphones etc) not owned by service provider
 - -Self scalable
 - Each peer adds service capacity to the system
 - Application examples
 - BitTorrent
 - Skype

Peer to Peer Architecture

- Challenges to future applications
 - Asymmetric access to end user (ADSL)
 - P2P video will have issues
 - -Security
 - Being distributed in nature, how to secure them
 - Incentives to users
 - How to convince new users to join

App-layer protocol defines

- types of messages exchanged,
 - e.g., request, response
- message syntax:
 - what fields in messages
 & how fields are delineated
- message semantics
 - meaning of information in fields
- rules for when and how processes send & respond to messages

- open protocols:
- defined in RFCs
- allows for interoperability
- e.g., HTTP, SMTP
- proprietary protocols:
- e.g., Skype, WhatsApp

Transport service Needs of Appln

- Data Integrity, Timing, Throughput, Security
- data integrity
- some apps (e.g., file xfer, web transactions) require 100% reliable data transfer
- other apps (e.g., audio) can
 tolerate some loss
- timing
- some apps (e.g., Internet telephony, interactive games) require low delay to be "effective"

- throughput
- some apps (e.g., multimedia) need minimum amount of throughput to be "effective"
- other apps ("elastic apps") make use of whatever throughput they get
 - security
 - encryption, data integrity, ...

Transport service requirements: common apps

application	data loss	throughput	time sensitive
	no loco	-l4:-	
file transfer	no loss	elastic	no
e-mail	no loss	elastic	no
Web documents	no loss	elastic	no
real-time audio/video	loss-tolerant	audio:	yes, 100's
		5kbps-1Mbps	msec
stored audio/video	loss-tolerant	video:	
interactive games text messaging	loss-tolerant no loss	100kbps-5Mbps same as above few kbps up elastic	yes, few secs yes, 100's msec yes and no

Internet transport protocols services

TCP service:

- reliable transport
 between sending and
 receiving process
- flow control: sender won't overwhelm receiver
- congestion control: throttle sender when network overloaded
- does not provide: timing, minimum throughput guarantee, security
- connection-oriented: setup required between client and server processes

UDP service:

- unreliable data transfer between sending and receiving process
- does not provide:
 reliability, flow control,
 congestion control,
 timing, throughput
 guarantee, security, or
 connection setup,
- Q: why bother? Why is there a UDP?

Application layer protocols

- Applications/processes communication
 - via sockets
- Structure of communication
 - What are various fields
 - When to send messages
 - What kind of messages
- Application layer protocol defines
 - -Type of messages:
 - send, receive
 - -Syntax of various message types
 - Fields of messages
 - -Semantics of fields
 - -Rules for determining when to send msg

Application layer protocols

- Example applications
- Web Application
 - -Components
 - Web browser, server, HTML Page, HTTP protocol
 - -HTTP
 - Application layer protocol
- Email applications
 - -Components
 - Mail server, mail client, SMTP, POP3, IMAP
 - -SMTP, POP3, IMAP4
 - Application layer protocols

Internet apps: application, transport protocols

application	application layer protocol	underlying transport pro	
e-mail	SMTP [RFC 2821]	TCP	
mote terminal access	Telnet [RFC 854]	TCP	
Web	HTTP [RFC 2616]	TCP	
file transfer	FTP [RFC 959]	TCP	
streaming multimedia	HTTP (e.g., YouTube), TCP or UDP		
	RTP [RFC 1889]		
Internet telephony	SIP(RFC 3261), RTF)	
intorrior tolopriorry	proprietary (e.g., Sky		

Exercise 01

- List three applications that are
 - -Time sensitive
 - -Time insensitive
- List three applications that can
 - -Tolerate some data loss
 - -Can't tolerate any data loss
- Research on when TCP provides reliable service, why do we need UDP protocol at transport layer.

Summary

- Application architecture
 - -Client-Server
 - -Peer to Peer
- Service requirements from Transport layer
- Examples of application layer protocols