

Техническое описание Когенерационная установка

JMS 420 GS-N.L with Island Operation сетевого кодеска нет

JMS 420

Электрическая выходная мощность

1501 кВт эл.

Тепловая выходная мощность

1539 кВт

Выбросы

NOx < 500 mg/Nm³ (5% O2)

0.01 Технические характеристики (модуля)	3
Габариты и вес (модуля)	4
Соединения	4
Мощность / расход топлива	4
0.02 Технические характеристики двигателя	5
Баланс тепловой энергии	5
Характеристики выхлопного газа	5
Данные воздуха горения	5
Уровень звукового давления	6
Уровень звуковой мощности	6
0.03 Технические характеристики генератора	7
Константы реактивности и времени (предельный)	7
0.04 Технические характеристики рекуперации тепла	8
Общие данные - контур горячей воды	8
Общие данные - контур охлаждающей воды	8
Теплообменник выхлопного газа	8
Вариант обвязки т/обменниками F	g

17.10.2017/A.Sm (5299) Техописание JMS420__.docx

0.01 Технические характеристики (модуля)

Топливный газ LHV		кВтч/Нм³		9,5		
				100%	75%	50%
Подведенная энергия топлива		кВт	[2]	3 459	2 665	1 871
Расход газа		Нм³/ч	*)	364	281	197
Механическая выходная мощность		кВт	[1]	1 540	1 155	770
Электрическая выходная мощность		кВт эл.	[4]	1 501	1 116	736
Полезная тепловая энергия						
~ Интеркулер смеси 1-ой ступени		кВт	[9]	400	219	71
~ Масло		кВт		205	178	149
~ Водяная рубашка		кВт		336	288	246
~ Выхлопного газа, охлажденного до 120 °C		кВт		598	512	393
Общая тепловая вых. мощность		кВт	[5]	1 539	1 197	859
Общая генерируемая выходная мощность		кВт общий		3 031	2 313	1 595
Отводимое тепло для рассеивания						
~ Интеркулер смеси 2-ой ступени		кВт		98	78	57
~ Масло		кВт		~	~	~
~ Излучаемое тепло повехностей	ca.	кВт	[7]	133	~	~
Уд.коэфф. потребления топлива эл.		кВтч/кВтч ЭЛ.	[2]	2,32	2,39	2,54
Уд.коэфф. потребления топлива		кВтч/кВтч	[2]	2,25	2,31	2,43
Расход смазочного масла	ca.	кг/ч	[3]	0,31	~	~
Электрический КПД		%		43,4%	41,9%	39,4%
Тепловой КПД		%		44,5%	44,9%	45,9%
Общий КПД		%	[6]	87,9%	86,8%	85,2%
Контур горячей воды:						
Температура прямой воды		°C		95,0	89,4	84,0
Температура обратной воды		°C		70,0	70,0	70,0
Расход горячей воды		м³/ч		52,9	52,9	52,9

^{*)} Приближенное значение для задания размеров монтажа трубопровода [_] Объяснения: см. 0.10 - Технические параметры

Указанные данные по теплу основаны на стандартных условиях эксплуатации согласно положению главы 0.10. Отклонения от стандартных условий могут привести к изменениям в тепловом балансе, которые необходимо учитывать при проектировании последовательности расположения охлаждающих теплообменников (газовоздушной смеси; аварийного;...). К общему отклонению ±8 % на отводимую тепловую мощность рекомендуется запланировать дополнительный расчетный резерв минимум +5 % для расчета параметров обратной охлаждающей мощности.

Габариты и вес (модуля)

Длина	ММ	~ 7 100
Ширина	ММ	~ 1 800
Высота	ММ	~ 2 200
Вес сухой	КГ	~ 18 800
Вес рабочий	КГ	~ 19 500

Соединения

Вход и выход горячей воды [А/В]	DN/PN	100/10
Выход выхлопного газа [D]	DN/PN	300/10
Топливный газ (модуля)	DN/PN	125/16
Дренаж воды ISO 228 (водогрейный контур)	G	1/2"
Отвод конденсата	DN/PN	50/10
Предохранительный клапан - водяная рубашка ISO 228	DN/PN	2x1½"/2,5
Предохранительный клапан - горячая вода	DN/PN	65/16
Пополнение смазочным маслом (трубопровод)	ММ	28
Дренаж отработанного масла (трубопровод)	ММ	28
Водяная рубашка - наполнение (гибкий трубопровод)	ММ	13
Вода интеркулера 1-ой ступени - вход/выход	DN/PN	100/10
Вода интеркулера 2-ой ступени - вход/выход	DN/PN	65/10

Мощность / расход топлива

кВт	1 540
бар	20,17
	Природный газ
мч d)	94 80
Epsilon	13,5
мбар	120 - 200 c)
%	± 10
мбар/сек	10
°C	40
кВтч/кВтч	2,25
г/кВтч	0,20
°C	85
°C	95
л	~ 437
	бар мч d) Epsilon мбар % мбар/сек °С кВтч/кВтч г/кВтч °С °С

c) Более низкое давление газа по запросу d) На основе подсчета метанового числа программным обеспечением AVL 3.2 (подсчет без учета N2 и CO2)

0.02 Технические характеристики двигателя

Производитель		GE Jenbacher
Тип двигателя		J 420 GS-B09
Принцип работы		4х тактный вн.сгорания
Конфигурация		V 70°
Количество цилиндров		20
Внутренний диаметр цилиндра	ММ	145
Ход поршня	ММ	185
Рабочий объем	л	61,10
Частота вращения КВ	об/мин	1 500
Средняя скорость поршня	м/с	9,25
Длина	ММ	3 750
Ширина	ММ	1 580
Высота	ММ	2 033
Вес сухой (дв-ля)	КГ	7 200
Вес рабочий	КГ	7 900
Момент инерции маховика	KΓM ²	11,64
Направление вращения (глядя на маховик)		против часовой
Уровень радиопомех VDE 0875		N
Мощность стартера	кВт	13
Напряжение стартера	В	24
Баланс тепловой энергии		
Подведенная энергия топлива	кВт	3 459
Интеркулер смеси	кВт	498
Масло	кВт	205
Водяная рубашка	кВт	336
Выхлопного газа, охлажденного до 180 °C	кВт	453
Выхлопного газа, охлажденного до 100 °C	кВт	646
Излучаемое тепло повехностей	кВт	71
Характеристики выхлопного газа		
Т-ра выхлопн. газа при полной нагрузке	°C [8]	362
Т-ра выхлопн. газа при bmpe= 15,1 [бар]	°C	~ 392
Т-ра выхлопн. газа при bmpe= 10,1 [бар]	°C	~ 422
Уд. массовый расход выхлопн. газа, влажного	кг/ч	8 054
Уд. массовый расход выхлопн. газа, сухого	кг/ч	7 516
Объем выхлопного газа, влажного	Нм³/ч	6 382
Объем выхлопного газа, сухого	Нм³/ч	5 712
Макс.допуст.противодавл. выхлопа на разветвление	мбар	60
трубопровода		
Данные воздуха горения		
Уд. массовый расход воздуха горения	кг/ч	7 814
Объем воздуха горения	Нм³/ч	6 047
Максимально допустимое падение давления в воздушном	мбар	10
фильтре		

Уровень звукового давления

<u> </u>	in of Justice Harmonian		
Агрегат	ra a)	dB(A) re 20μPa	97
31,5	Гц	дБ	79
63	Гц	дБ	87
125	Гц	дБ	98
250	Гц	дБ	95
500	Гц	дБ	91
1000	Гц	дБ	86
2000	Гц	дБ	88
4000	Гц	дБ	92
8000	Гц	дБ	89
Выхлог	ı b)	dB(A) re 20μPa	115
31,5	Гц	дБ	95
63	Гц	дБ	117
125	Гц	дБ	115
250	Гц	дБ	113
500	Гц	дБ	108
1000	Гц	дБ	105
2000	Гц	дБ	108
4000	Гц	дБ	109
8000	Гц	дБ	107
Урове	ень звуковой мощности		
Агрегат		dB(A) re 1pW	117
	дь измерения	M ²	110
Выхлог		dB(A) re 1pW	123
	·		

а) средн. уровень мощн. звука на поверхности на расстоянии 1 м (при пересчете на распостранение звука в свободном пространстве) в соответствии с DIN 45635, точность - класс 3.
b) средн. уровень мощн. звука на поверхности на расстоянии 1 м в соответствии с DIN 45635, точность - класс 2.

Площадь измерения

6,28

b) средн. уровень мощн. звука на поверхности на расстоянии 1 м в соответствии с DIN 45635, точность - класс 2. Диапазон действтелен для агрегатов до bmep =20 бар. (Добавить допуск на 1 дБ для всех значений при увеличении давления на 1 бар).

Допустимые отклонения при измерениях ± 3 dB

0.03 Технические характеристики генератора

Производитель		AVK e)
Тип		DIG 130 h/4 e)
Номинальная мощность данного типа	кВА	2 100
Приводная мощность	кВт	1 540
Номинальная мощность при p.f. = 1,0	кВт	1 492
Номинальная мощность при p.f. = 0,8	кВт	1 478
Номинальная выход. мощность при р.f. = 0,8	кВА	1 848
Номинальная реактивная мощность при р.f. = 0,8	кВАр	1 109
Номинальная сила тока при р.f. = 0,8	Α	102
Частота тока	Гц	50
Напряжение	кВ	10,5
Скорость вращения	об/мин	1 500
Предельное значение скорости вращения	об/мин	1 800
Коэффициент мощности (Запаздывающий - Опережающий)		0,8 - 1,0
КПД при cos phi = 1,0	%	96,9%
КПД при cos phi = 0,8	%	96,0%
Момент инерции маховика	KГM ²	85,00
Macca	КГ	6 300
Уровень радиопомех EN 55011 Class A (EN 61000-6-4)		N
Ik" начальный ток при симметричном коротком замыкании	кА	0,59
Is максимальный ток в асимметричной цепи короткого	кА	1,50
замыкания		
Класс изоляции		F
Класс нагрева под нагрузкой		F
Макс. температура окружающей среды	°C	40

Константы реактивности и времени (предельный)

хd продольная ось синхронная реактивность	p.u.	1,82
хd' продольная ось переходное реактивное сопротивление	p.u.	0,27
хd" продольная ось сверхпереходное реактивное	p.u.	0,17
сопротивление		
х2 реактивное сопротивление обратной последовательности	p.u.	0,17
x2 реактивное сопротивление обратной последовательности Td" постоянная времени сверхпереходного реакт. сопрот	р.u. мс	0,17 20
		-,

e) GE Jenbacher оставляет за собой право заменить поставщика и тип генератора. Указанные в Договоре параметры генератора изменяются при этом лишь в незначительной степени. Вырабатываемая электрическая мощность останется неизменной.

0.04 Технические характеристики рекуперации тепла

Общие данные - контур горячей воды

	T	,
Общая тепловая вых. мощность	кВт	1 539
Температура обратной воды	°C	70,0
Температура прямой воды	°C	95,0
Расход горячей воды	м³/ч	52,9
Давление в контуре горячей воды	PN	10
минимальное рабочее давление	бар	3,5
максимальное рабочее давление	бар	9,0
Падение давления при циркуляции воды	бар	1,20
Макс. отклонения тем-ры в обратном трубопроводе	°C	+0/-5
Макс. уровень колебаний тем-ры в обратном трубопроводе	°С/мин.	10

Общие данные - контур охлаждающей воды

Отводимое тепло для рассеивания	кВт	98
Температура обратной воды	°C	40
Расход холодной воды	м³/ч	20
Ном.давл-е контуре хол.воды	PN	10
минимальное рабочее давление	бар	0,5
максимальное рабочее давление	бар	5,0
Потеря давл-я контуре хол.воды	бар	~
Макс. отклонения тем-ры в обратном трубопроводе	°C	+0/-5
Макс. уровень колебаний тем-ры в обратном трубопроводе	°С/мин.	10

Теплообменник выхлопного газа

Тип	трубчаты	ый теплообменник			
ПЕРВИЧНЫЙ:					
Приблизит. падение давления выхлопного газа	бар	0,02			
Подсоединение выхлопного газа	DN/PN	300/10			
ВТОРИЧНЫЙ:					
Падение давления при циркуляции воды	бар	0,20			
Подсоединение горячей воды	DN/PN	100/10			

В случае заказа окончательная потеря давления определяется в ходе технических переговоров и отражается на технологической схеме.

Вариант обвязки т/обменниками F J 420 GS-B09

Контур горячей воды

Полезная тепловая энергия = 1 539 kW (±8 % дополн. расч. резерв +5 % резерв в системе охлажденя)______

Расход горячей воды = 52,9 m³/h

Контур холодной воды (содержанием гликоля 37%)

Отводимое тепло для рассеивания = 98 kW

(±8 % дополн.расч. резерв +5 % резерв в системе охлажденя)

Расход холодной воды = 20,0 m³/h

0.10 Технические параметры

Все данные в технической спецификации основаны на полной нагрузке двигателя (если не указано другое) при указанных температурах и метановом числе и могут изменяться в связи с техническим развитием и модификациями.

Все значения давления следует понимать как избыточное давление.

- (1) Постоянная стандартная мощность ISO ICFN при указанном номинальном числе оборотов и стандартных условиях в соответствии с DIN-ISO 3046 и DIN 6271
- (2) Согласно DIN-ISO 3046 и DIN в 6271 с +5 % допустимым отклонением. Указанный КПД соответствует новому двигателю. Соблюдение инструкций GEJ по обслуживанию будет предотвращать значительное снижение эффективности в течение эксплуатации установки.
- (3)Среднее значение между интервалами смены масла в соответствии с графиком технического обслуживания, без объема заменяемого масла
- (4) При cos.phi = 1,0 в соответствии с VDE 0530 REM / IEC 34.1 с соответствующими допустимыми отклонениями, все насосы, приводимые в действие напрямую, включены в комплект поставки
- (5) Как общая мощность с допустимым отклонением ±8 %
- (6) В соответствии с вышеуказанными параметрами с (1) по (5).
- (7) Действительно только для двигателя и генератора; модуль и детали установки не учитываются (При cos.phi = 0,8) ,(guiding value)
- (8) Температура выхлопного газа с допустимым отклонением ±8 %
- (9) Тепло интеркулера:
 - * Стандартные условия (Vxx) если турбонагнетатель спроектирован для темературы воздуха на сгорание >30°С без снижения мощности, тепло интеркулера первой ступени повышается на 2%/°С начиная с 25°С. Отклонения в диапазоне 25-30°С будут охватываться стандартной погрешностью.
 - * Условия стран с повышенной температурой окружающей среды (Vxxx) если турбонагнетатель спроектирован для темературы воздуха на сгорание >40°C без снижения мощности, тепло интеркулера первой ступени повышается на 2%/°C начиная с 35°C. Отклонения в диапазоне 35-40°C будут охватываться стандартной погрешностью.

Уровень радиопомех

Системой зажигания газовых двигателей соблюдается граничный показатель по уровню радиопомех по норме CISPR 12 (30-75 МГц, 75-400 МГц, 400-1000 МГц) и по норме EN 55011 класс В (30-230 МГц, 230-1000 МГц).

Определение мощности

- Постоянная номинальная мощность ISO-ICFN:
 - Определение мощности, которую, по заявлению изготовителя, постоянно способен выдавать двигатель при указанной частоте оборотов, при выполнении предписанного изготовителем технического обслуживания в период времени между определенными им интервалами для необходимого капитального ремонта двигателя. Мощность определяется при рабочих условиях испытательного стенда изготовителя и перерасчитывается под стандартные условия.
- Стандартные условия:

Барометрическое давление: 1000 мбар или 100 м над уров. моря

Температура воздуха: 25°C Относительная влажность: 30%

• Объёмные данные при нормальных условиях (топливный газ, воздух для горения, выхлопные газы):

Давление 1013 мбар

Температура 0°C

Снижение мощности для двигателей с турбонаддувом

Стандартные параметры двигателей рассчитаны для работы на высоте ≤ **0 м** и при температуре всасываемого воздуха ≤ **35 °C** (T1)

Максимальная температура в машинном зале: 50 °C (T2) -> ошибка с остановом

При снижении метанового числа ниже указанного, включается система антидетонационного регулирования, которая сначала изменяет момент зажигания при полной номинальной нагрузке, затем следует снижение номинальной мощности.

В случае превышения граничных параметров напряжения и частоты для генератора, приведенных в ІЕС 60034-1 зона А, производится понижение мощности.

Граничные условия для газовых двигателей GE Jenbacher

Системная установка сконструирована с амортизацией колебаний согласно стандарту ISO 8528-9 и соответствует приведенным в данном стандарте граничным значениям.

Производственные материалы и системные установки должны соответствовать предписанию № **ТА 1100-0110, ТА 1100-0111 и ТА 1100-0112**.

Для консервирования необходимо соблюдать ТА 1000-0004.

Следует избегать транспортировки с помощью рельсового транспорта (см. ТА 1000-0046).

Несоблюдение вышеупомянутых ТА может привести к повреждениям двигателя/агрегата и, следовательно, к утрате гарантии!

Граничные условия для коммутационного устройства и электрического оборудования

Относительная влажность воздуха 50%, максимальная температура +40°.

Размещение на высоте не более 2000 м над уровнем моря.