Матрицы и векторы

Алексей Померанцев

Содержание

1	Введение										
2	Базо	Базовые сведения									
	2.1	Матрицы	5								
	2.2	Простейшие операции с матрицами	5								
	2.3	Умножение матриц	6								
	2.4	Квадратные матрицы	7								
	2.5	След и определитель	8								
	2.6	Векторы	10								
	2.7	Сложение и умножение векторов	11								
	2.8	Норма вектора и угол между векторами	12								
	2.9	Векторное представление матрицы	13								
	2.10	Линейно зависимые векторы	14								
	2.11	Ранг матрицы	14								
	2.12	Обратная и псевдообратная матрицы	15								
	2.13	Умножение вектора на матрицу	16								
2	п		18								
3	до п 3.1	Дополнительная информация									
	3.2	Системы линейных уравнений	18 18								
	3.3	Билинейные и квадратичные формы	19								
	3.4	Положительно определенные матрицы	19								
	3.5	Полярное разложение	19								
	3.6	Собственные векторы и значения	20								
	3.7	Собственные значения	20								
	3.8	Собственные векторы	21 22								
	3.9	Эквивалентные и подобные матрицы	23								
	3.10	Приведение матрицы к диагональному виду	23								
		Разложение по сингулярным значениям									
	3.12	Линейное пространство и базис	26								
		Геометрическая интерпретация	26								
		Множественность базисов	27								
		Подпространство	28								
	3.16	Проекция на подпространство	28								
4	Закл	т ючение	30								

1 Введение

В этом документе собраны основные сведения из алгебры матриц и векторов, которые используются в хемометрике. Приведенный текст не может служить учебником по матричной алгебре — он скорее является конспектом, справочником в этой области. Более глубокое и систематическое изложение может быть найдено в литературе.

Текст разбит на две части названные — "Базовые сведения" и "Дополнительная информация". В первой части изложены положения, минимально необходимые для понимания хемометрики, а во второй части — факты, которые необходимо знать для более глубокого постижения методов многомерного анализа. Изложение иллюстрируется примерами, выполненными в рабочей книге Excel, Matrix.xls, которая сопровождает этот документ.

Ссылки на примеры помещены в текст как объекты Excel. Эти примеры имеют абстрактный характер, они никак не привязаны к задачам аналитической химии. Реальные примеры использования матричной алгебры в хемометрике рассмотрены в других текстах, посвященных разнообразным хемометрическим приложениям.

Большинство измерений, проводимых в аналитической химии, являются не прямыми, а косвенными. Это означает, что в эксперименте вместо значения искомого аналита C (концентрации) получается другая величина x (сигнал), связанная, но не равная C, т.е. $x(C) \neq .$ Как правило, вид зависимости x(C) не известен, однако, к счастью, в аналитической химии большинство измерений пропорциональны. Это означает, что при увеличении концентрации в а раз, сигнал X увеличится на столько же., т.е. x(aC) = ax(C). Кроме того, сигналы еще и аддитивны, так что сигнал от пробы, в которой присутствуют два вещества с концентрациями C_1 и C_2 , будет равен сумме сигналов от каждого компонента, т.е. $x(C_1+C_2) = x(C_1)+x(C_2)$.

Пропорциональность и аддитивность вместе дают линейность. Можно привести много примеров, иллюстрирующих принцип линейности, но достаточно упомянуть два самых ярких примера — хроматографию и спектроскопию. Вторая особенность, присущая эксперименту в аналитической химии — это многоканальность. Современное аналитическое оборудование одновременно измеряет сигналы для многих каналов. Например, измеряется интенсивность пропускания света сразу для нескольких длин волн, т.е. спектр. Поэтому в эксперименте мы имеем дело со множеством сигналов $x_1, x_2,, x_n$, характеризующих набор концентраций $C_1, C_2, ..., C_m$ веществ, присутствующих в изучаемой системе.

Рис. 1.1. Спектры

Итак, аналитический эксперимент характеризуется линейностью и многомерностью. Поэтому удобно рассматривать экспериментальные данные как векторы и матрицы и манипулировать с ними, используя аппарат матричной алгебры. Плодотворность такого подхода иллюстрирует пример, показанный на Рис. 1, где представлены три спектра, снятые для 200 длин волн от 4000 до 4796 cm-1. Первый (x_1) и второй (x_2) спектры получены для стандартных образцов, в которых концентрация двух веществ A и B, известны: в первом образце [A] = 0.5, [B] = 0.1, а во втором образце [A] = 0.2, [B] = 0.6. Что можно сказать о новом, неизвестном образце, спектр которого обозначен x_3 ?

Рассмотрим три экспериментальных спектра x_1 , x_2 и x_3 как три вектора размерности 200. Средствами линейной алгебры можно легко показать, что $x_3 = 0.1x_1 + 0.3x_2$, поэтому в третьем образце очевидно присутствуют только вещества A и B в концентрациях $[A] = 0.5 \times 0.1 + 0.2 \times 0.3 = 0.11$ и $[B] = 0.1 \times 0.1 + 0.6 \times 0.3 = 0.19$.

2 Базовые сведения

2.1 Матрицы

Матрицей называется прямоугольная таблица чисел, например

Рис. 2.1. Матрица

Матрицы обозначаются заглавными полужирными буквами ($\bf A$), а их элементы — соответствующими строчными буквами с индексами, т.е. a_{ij} . Первый индекс нумерует строки, а второй — столбцы. В хемометрике принято обозначать максимальное значение индекса той же буквой, что и сам индекс, но заглавной. Поэтому матрицу $\bf A$ можно также записать как

$$a_{ij}$$
, $i=1,...,I$; $j=1,...,J$. Для приведенной в примере матрицы $I=4,J=3$ и $a_{23}=-7.5$.

Пара чисел I и J называется размерностью матрицы и обознается как $I \times J$. Примером матрицы в хемометрике может служить набор спектров, полученный для I образцов на J длинах волн.

2.2 Простейшие операции с матрицами

Матрицы можно умножать на числа. При этом каждый элемент умножается на это число. Например:

Рис. 2.2. Умножение матрицы на число

Две матрицы одинаковой размерности можно поэлементно складывать и вычитать. Например:

Рис. 2.3. Сложение матриц

В результате умножения на число и сложения получается матрица той же размерности.

Нулевой матрицей называется матрица, состоящая из нулей. Она обозначается \mathbf{O} . Очевидно, что $\mathbf{A} + \mathbf{O} = \mathbf{A}$, $\mathbf{A} - \mathbf{A} = \mathbf{O}$ и $\mathbf{O}\mathbf{A} = \mathbf{O}$.

Матрицу можно *транспонировать*. При этой операции матрица переворачивается, т.е. строки и столбцы меняются местами. Транспонирование обозначается штрихом, \mathbf{A}' или индексом \mathbf{A}^t . Таким образом, если $\mathbf{A} = \{a_{ii}, i=1,...,I; j=1,...,J\}$, то $\mathbf{A}^t = \{a_{ii}, j=1,...,J; i=1,...,J\}$. Например:

$$\mathbf{A} = \begin{vmatrix} 1.2 & -5.3 & 0.25 \\ 10.2 & 1.5 & -7.5 \\ 2.3 & -1.2 & 5.6 \\ 4.5 & -0.8 & 9.5 \end{vmatrix} \qquad \mathbf{A}^{l_{\pm}} = \begin{vmatrix} 1.2 & 10.2 & 2.3 & 4.5 \\ -5.3 & 1.5 & -1.2 & -0.8 \\ 0.25 & -7.5 & 5.6 & 9.5 \end{vmatrix}$$

Рис. 2.4. Транспонирование матрицы

Очевидно, что $(\mathbf{A}^t)^t = \mathbf{A}, (\mathbf{A} + \mathbf{B})^t = \mathbf{A}^t + \mathbf{B}^t.$

2.3 Умножение матриц

Матрицы можно перемножать, но только в том случае, когда они имеют соответствующие размерности. Почему это так, будет ясно из определения. Произведением матрицы \mathbf{A} , размерностью $I \times K$, и матрицы \mathbf{B} , размерностью $K \times J$, называется матрица \mathbf{C} , размерностью $I \times J$, элементами которой являются числа

$$c_{ij} = \sum_{k=1}^K a_{ik} b_{kj} = 1$$

Таким образом для произведения AB необходимо, чтобы число столбцов в левой матрице A было равно числу строк в правой матрице B. Пример произведения матриц:

Рис. 2.5. Произведение матриц

Правило перемножения матриц можно сформулировать так. Для того, чтобы найти элемент матрицы ${\bf C}$, стоящий на пересечении i-ой строки и j-ого столбца (c_{ij}) надо поэлементно перемножить i-ую строку первой матрицы ${\bf A}$ на j-ый столбец второй матрицы ${\bf B}$ и сложить все результаты. Так в показанном примере, элемент из третьей строки и второго столбца, получается как сумма поэлементных произведений третьей строки ${\bf A}$ и второго столбца ${\bf B}$.

Рис. 2.6. Элемент произведения матриц

Произведение матриц зависит от порядка, т.е. $AB \neq BA$, хотя бы по соображениям размерности. Говорят, что оно некоммутативно. Однако произведение матриц ассоциативно. Это означает, что ABC = (AB)C = A(BC). Кроме того, оно еще и дистрибутивно, т.е. A(B+C) = AB + AC. Очевидно, что AO = O.

2.4 Квадратные матрицы

Если число столбцов матрицы равно числу ее строк (I=J=N), то такая матрица называется $\kappa вадратной$. В этом разделе мы будем рассматривать только такие матрицы. Среди этих матриц можно выделить матрицы, обладающие особыми свойствами.

Единичной матрицей (обозначается I, а иногда E) называется матрица, у которой все элементы равны нулю, за исключением диагональных, которые равны 1, т.е.

$$\mathbf{I} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & 0 \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

Очевидно AI = IA = A.

Матрица называется ∂ иагональной, если все ее элементы, кроме диагональных (a_{ii}) равны нулю. Например

Рис. 2.7. Диагональная матрица

Матрица **A** называется *верхней треугольной*, если все ее элементы, лежащие ниже диагонали, равны нулю, т.е. $a_{ij}=0$, при i>j. Например

Рис. 2.8. Верхняя треугольная матрица

Аналогично определяется и нижняя треугольная матрица.

Матрица ${f A}$ называется cимметричной, если ${f A}^{
m t}={f A}$. Иными словами $a_{ij}=a_{ji}$. Например

Рис. 2.9. Симметричная матрица

Матрица \mathbf{A} называется *ортогональной*, если $\mathbf{A}^t \mathbf{A} = \mathbf{A} \mathbf{A}^t = \mathbf{I}$.

Матрица называется нормальной если $\mathbf{A}^t\mathbf{A} = \mathbf{A}\mathbf{A}^t.$

2.5 След и определитель

Следом квадратной матрицы A (обозначается ${\rm Tr}(A)$ или ${\rm Sp}(A)$) называется сумма ее диагональных элементов.

Например,

$$\begin{array}{c|cccc}
Sp & 1 & 5 & 3 \\
5 & 2 & -1 \\
3 & -1 & -4
\end{array} = -1$$

Рис. 2.10. След матрицы

Очевидно, что

$$Sp(\alpha \mathbf{A}) = \alpha Sp(\mathbf{A})$$

$$Sp(\mathbf{A} + \mathbf{B}) = Sp(\mathbf{A}) + Sp(\mathbf{B})$$

Можно показать, что

$$Sp(\mathbf{A}) = Sp(\mathbf{A}^{t}), Sp(\mathbf{I}) = N$$

а также, что

$$Sp(AB) = Sp(BA)$$

Другой важной характеристикой квадратной матрицы является ее определитель (обозначается $\det(\mathbf{A})$). Определение определителя в общем случае довольно сложно, поэтому мы начнем с простейшего варианта — матрицы \mathbf{A} размерностью (2 × 2). Тогда

$$\det(\mathbf{A}) = a_{11}a_{22} - a_{12}a_{21}$$

Для матрицы (3×3) определитель будет равен

$$\det(\mathbf{A}) = a_{11}a_{22}a_{33} - a_{13}a_{21}a_{31} + a_{12}a_{23}a_{31} - a_{12}a_{21}a_{33} + a_{13}a_{21}a_{31} - a_{11}a_{23}a_{32}$$

В случае матрицы $(N \times N)$ определитель вычисляется как сумма $1 \cdot 2 \cdot 3 \cdot ... \cdot N = N!$ слагаемых, каждый из которых равен

$$(-1)^r a_{1k_1} a_{2k_2} \dots a_{Nk_N}$$

Индексы $k_1, k_2, ..., k_N$ определяются как всевозможные упорядоченные перестановки r чисел в наборе (1, 2, ..., N). Вычисление определителя матрицы — это сложная процедура, которую на практике осуществляется с помощью специальных программ. Например,

Рис. 2.11. Определитель матрицы

Отметим только очевидные свойства:

$$det(\mathbf{I}) = 1, det(\mathbf{A}) = det(\mathbf{A}^{t})$$
$$det(\mathbf{AB}) = det(\mathbf{A})det(\mathbf{B})$$

2.6 Векторы

Если матрица состоит только из одного столбца (J=1), то такой объект называется вектором. Точнее говоря, вектором-столбцом. Например:

$$\mathbf{a} = \begin{bmatrix} 1.2 \\ 10.2 \\ 2.3 \\ 4.5 \end{bmatrix}$$

Можно рассматривать и матрицы, состоящие из одной строки, например:

$$\mathbf{b} = \begin{bmatrix} 1.2 & -5.3 & 0.25 \end{bmatrix}$$

Этот объект также является вектором, но вектором-строкой. При анализе данных важно понимать, с какими векторами мы имеем дело — со столбцами или строками. Так спектр, снятый для одного образца можно

рассматривать как вектор-строку. Тогда набор спектральных интенсивностей на какой-то длине волны для всех образцов нужно трактовать как вектор-столбец.

Размерностью вектора называется число его элементов.

Ясно, что всякий вектор-столбец можно превратить в вектор-строку транспонированием, т.е.

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \end{bmatrix}$$

В тех случаях, когда форма вектора специально не оговаривается, а просто говорится вектор, то имеют в виду вектор-столбец. Мы тоже будем придерживаться этого правила. Вектор обозначается строчной прямой полужирной буквой. Нулевым вектором называется вектор, все элементы которого раны нулю. Он обозначается **0**.

2.7 Сложение и умножение векторов

Векторы можно складывать и умножать на числа так же, как это делается с матрицами. Например,

$$\begin{vmatrix} 1.2 \\ 10.2 \\ 2.3 \end{vmatrix} + \begin{vmatrix} 2.3 \\ -1.2 \\ 5.6 \end{vmatrix} = \begin{vmatrix} 3.5 \\ 9 \\ 7.9 \end{vmatrix} \qquad 3 \quad * \begin{vmatrix} 2.3 \\ -1.2 \\ 5.6 \end{vmatrix} = \begin{vmatrix} 6.9 \\ -3.6 \\ 16.8 \end{vmatrix}$$

Рис. 2.12. Операции с векторами

Два вектора \mathbf{x} и \mathbf{y} называются *колинеарными*, если существует такое число α , что $\alpha \mathbf{x} = \mathbf{y}$.

Два вектора одинаковой размерности N можно перемножить. Пусть имеются два вектора $\mathbf{x} = (x_1, x_2, ..., x_N)^t$ и $\mathbf{y} = (y_1, y_2, ..., y_N)$ t. Руководствуясь правилом перемножения "строка на столбец", мы можем составить из них два произведения: $\mathbf{x}^t \mathbf{y}$ и $\mathbf{x} \mathbf{y}^t$.

Первое произведение:

$$\mathbf{x}^{\mathbf{t}}\mathbf{y} = \begin{bmatrix} x_1 & x_2 & \dots & x_N \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_N \end{bmatrix} = x_1y_1 + x_2y_2 + \dots + x_Ny_n$$

называется *скалярным* или *внутренним*. Его результат — это число. Для него также используется обозначение $(\mathbf{x}, \mathbf{y}) = \mathbf{x}^{\mathsf{t}} \mathbf{y}$. Например,

Рис. 2.13. Внутреннее (скалярное) произведение

Второе произведение:

$$\mathbf{x}\mathbf{y}^{t} = \begin{bmatrix} x_{1} \\ x_{2} \\ \dots \\ x_{N} \end{bmatrix} \begin{bmatrix} y_{1} & y_{2} & \dots & y_{N} \end{bmatrix} = \begin{bmatrix} x_{1}y_{1} & x_{1}y_{2} & \dots & x_{1}y_{N} \\ x_{2}y_{1} & x_{2}y_{2} & \dots & x_{2}y_{N} \\ \dots & \dots & \dots & \dots \\ x_{N}y_{1} & x_{N}y_{2} & \dots & x_{N}y_{N} \end{bmatrix}$$

называется внешним. Его результат — это матрица размерности $(N \times N)$. Например,

Рис. 2.14. Внешнее произведение

Векторы, скалярное произведение которых равно нулю, называются ортогональными.

2.8 Норма вектора и угол между векторами

Скалярное произведение вектора самого на себя называется скалярным квадратом. Эта величина

$$(\mathbf{x}, \mathbf{x}) = \mathbf{x}^{\mathsf{t}} \mathbf{x} = \sum_{n=1}^{N} x_n^2$$

определяет квадрат *длины* вектора х. Для обозначения длины (называемой также *нормой* вектора) используется обозначение

$$\|\mathbf{x}\| = \sqrt{(\mathbf{x}, \mathbf{x})}$$

Например,

Рис. 2.15. Норма вектора

Вектор единичной длины ($\|\mathbf{x}\|=1$) называется *нормированным*. Ненулевой вектор ($\mathbf{x}\neq 0$) можно нормировать, разделив его на длину, т.е. $\mathbf{x}=\|\mathbf{x}\|(\mathbf{x}\|\mathbf{x}\|)=\|\mathbf{x}\|\mathbf{e}$. Здесь $\mathbf{e}=\mathbf{x}/\|\mathbf{x}\|$ — нормированный вектор.

Скалярное произведение определяет и угол ϕ между двумя векторами **х** и **у**:

$$\cos \phi = \frac{(\mathbf{x}, \mathbf{y})}{\|\mathbf{x}\| \|\mathbf{y}\|}$$

Если вектора ортогональны, то $\cos \phi = 0$ и $\phi = \pi/2$, а если они колинеарны, то $\cos \phi = 1$ и $\phi = 0$.

Векторы называются ортонормированными, если все они нормированы и попарно ортогональны.

2.9 Векторное представление матрицы

Каждую матрицу **A** размера $I \times J$ можно представить как набор векторов:

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_J \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \dots \\ \mathbf{b}_I \end{bmatrix}$$

Здесь каждый вектор a_i является j-ым столбцом, а вектор-строка b_i является i-ой строкой матрицы **A**:

$$\mathbf{a}_{j} = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \dots \\ a_{Ij} \end{bmatrix}$$

$$\mathbf{b}_{i} = \begin{bmatrix} a_{i1} & a_{i2} & \dots & a_{iJ} \end{bmatrix}$$

2.10 Линейно зависимые векторы

Векторы одинаковой размерности (N) можно складывать и умножать на число, также как матрицы. В результате получится вектор той же размерности. Пусть имеется несколько векторов одной размерности: $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_K$ и столько же чисел α : $\alpha_1, \alpha_2, \dots, \alpha_K$. Вектор:

$$\mathbf{y} = \alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \dots + \alpha_K \mathbf{x}_K$$

называется линейной комбинацией векторов \mathbf{x}_k .

Если существуют такие ненулевые числа $\alpha_k \neq 0, k = 1, ..., K$, что $\mathbf{y} = 0$, то такой набор векторов \mathbf{x}_k называется линейно зависимым. В противном случае векторы называются линейно независимыми. Например, векторы $\mathbf{x}_1 = (2, 2)^t$ и $\mathbf{x}_2 = (-1, -1)^t$ линейно зависимы, т.к. $\mathbf{x}_1 + 2\mathbf{x}_2 = 0$.

2.11 Ранг матрицы

Рассмотрим набор из K векторов $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_K$ размерности N. Рангом этой системы векторов называется максимальное число линейно-независимых векторов. Например в наборе

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \mathbf{x}_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \mathbf{x}_4 = \begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix}$$

имеются только два линейно независимых вектора, например \mathbf{x}_1 и \mathbf{x}_2 , поэтому ее ранг равен 2.

Очевидно, что если векторов в наборе больше, чем их размерность (K > N), то они обязательно линейно зависимы.

Pангом матрицы (обозначается rank(\mathbf{A})) называется ранг системы векторов, из которых она состоит. Хотя любую матрицу можно представить двумя способами (векторы столбцы или строки), это не влияет на величину ранга, т.к.

$$rank(\mathbf{A}) = rank(\mathbf{A}^{t}).$$

2.12 Обратная и псевдообратная матрицы

Квадратная матрица ${\bf A}$ называется *невырожденной*, если она имеет единственную *обратную* матрицу ${\bf A}^{-1}$, определяемую условиями

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}.$$

Обратная матрица существует не для всех матриц. Необходимым и достаточным условием невырожденности является $\det(\mathbf{A}) \neq 0$ или $\mathrm{rank}(\mathbf{A}) = N$.

Обращение матрицы — это сложная процедура, для выполнения которой существуют специальные программы. Например:

Рис. 2.16. Обращение матрицы

Приведем формулы для простейшего случая — матрицы 2×2 .

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix},$$

$$\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} \begin{bmatrix} a_{11} & -a_{12} \\ -a_{21} & a_{22} \end{bmatrix}.$$

Если матрицы А и В невырождены, то

$$(AB)^{-1} = B^{-1}A^{-1}$$

Если матрица ${\bf A}$ вырождена и обратная матрица не существует, то в некоторых случаях можно использовать псевдообратную матрицу, которая определяется как такая матрица ${\bf A}^+$, что

$$AA^+A=A$$

Псевдобратная матрица— не единственная и ее вид зависит от способа построения. Например для прямоугольной матрицы можно использовать метод Мура-Пенроуза.

Если число столбцов меньше числа строк, то

$$\mathbf{A}^+ = (\mathbf{A}^{\mathsf{t}} \mathbf{A})^{-1} \mathbf{A}^{\mathsf{t}}$$

Например,

A =	1.2 1.1 2.3 -1.2	-1.1 1.5 -1.2 -0.8	0.3 0.8 -0.5 2.1	A'=	1.2 -1.1 0.3	1.1 1.5 0.8	2.3 -1.2 -0.5	-1.2 -0.8 2.1	A [†] A=	9.38 -1.47 -2.49	-1.47 5.54 -0.16	-2.49 -0.16 5.36
(A[†]A) ^{*1} =	0.13 0.04 0.06	0.04 0.19 0.02	0.06 0.02 0.22	A ⁺ =(A [†] A) ⁻¹ A ^l =	0.13 -0.16 0.10	0.24 0.34 0.27	0.22 -0.16 0.01	-0.06 -0.15 0.36	AA*A=	1.2 1.1 2.3 -1.2	-1.1 1.5 -1.2 -0.8	0.25 0.8 -0.5 2.1

Рис. 2.17. Псевдообращение матрицы

Если же число столбцов больше числа строк, то

$$\mathbf{A}^+ = \mathbf{A}^t (\mathbf{A} \mathbf{A}^t)^{-1}$$

2.13 Умножение вектора на матрицу

Вектор \mathbf{x} можно умножать на матрицу \mathbf{A} подходящей размерности. При этом вектор-столбец умножается справа $\mathbf{A}\mathbf{x}$, а вектор строка — слева $\mathbf{x}^t\mathbf{A}$. Если размерность вектора J, а размерность матрицы $I \times J$ то в результате получится вектор размерности I. Например,

Рис. 2.18. Умножение вектора на матрицу

Если матрица ${\bf A}$ — квадратная ($I \times I$), то вектор ${\bf y} = {\bf A}{\bf x}$ имеет ту же размерность, что и ${\bf x}$. Очевидно, что

$$\mathbf{A}(\alpha_1\mathbf{x}_1 + \alpha_2\mathbf{x}_2) = \alpha_1\mathbf{A}\mathbf{x}_1 + \alpha_2\mathbf{A}\mathbf{x}_2$$

Поэтому матрицы можно рассматривать как линейные преобразования векторов. В частности $\mathbf{I}\mathbf{x}=\mathbf{x}, \mathbf{O}\mathbf{x}=0.$

3 Дополнительная информация

3.1 Системы линейных уравнений

Пусть \mathbf{A} — матрица размером $I \times J$, а \mathbf{b} — вектор размерности J. Рассмотрим уравнение

$$Ax = b$$

относительно вектора \mathbf{x} , размерности I. По сути — это система из I линейных уравнений с J неизвестными $\mathbf{x}_1, \dots, \mathbf{x}_J$. Решение существует в том, и только в том случае, когда

$$rank(\mathbf{A}) = rank(\mathbf{B}) = R$$
,

где ${\bf B}$ — это расширенная матрица размерности $I \times (J+1)$, состоящая из матрицы ${\bf A}$, дополненной столбцом ${\bf b}$, ${\bf B}$ = $({\bf A}{\bf b})$. В противном случае уравнения несовместны.

Если R = I = J, то решение единственно

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$$

Если R < I, то существует множество различных решений, которые можно выразить через линейную комбинацию J - R векторов. Система однородных уравнений $\mathbf{A}\mathbf{x} = \mathbf{0}$ с квадратной матрицей \mathbf{A} $(N \times N)$ имеет нетривиальное решение $(\mathbf{x} \neq \mathbf{0})$ тогда и только тогда, когда $\det(\mathbf{A}) = 0$. Если $R = \operatorname{rank}(\mathbf{A}) < N$, то существуют N - R линейно независимых решений.

3.2 Билинейные и квадратичные формы

Если ${\bf A}-$ это квадратная матрица , а ${\bf x}$ и ${\bf y}-$ вектора соответствующей размерности, то скалярное произведение вида ${\bf x}^t{\bf A}{\bf y}$ называется билинейной формой, определяемой матрицей ${\bf A}$. При ${\bf x}={\bf y}$ выражение ${\bf x}^t{\bf A}{\bf x}$ называется квадратичной формой.

3.3 Положительно определенные матрицы

Квадратная матрица ${\bf A}$ называется *положительно определенной*, если для любого ненулевого вектора ${\bf x} \neq {\bf 0}$, ${\bf x}^t {\bf A} {\bf x} > 0$.

Аналогично определяются отрицательно ($\mathbf{x}^t \mathbf{A} \mathbf{x} < 0$), неотрицательно ($\mathbf{x}^t \mathbf{A} \mathbf{x} \ge 0$) и неположительно ($\mathbf{x}^t \mathbf{A} \mathbf{x} \le 0$) определенные матрицы.

3.4 Разложение Холецкого

Если симметричная матрица **A** положительно определена, то существует единственная треугольная матрица **U** с положительными элементами, для которой

$$\mathbf{A} = \mathbf{U}^{\mathsf{t}}\mathbf{U}$$

Например,

Рис. 3.1. Разложение Холецкого

3.5 Полярное разложение

Пусть ${\bf A}-$ это невырожденная квадратная матрица размерности $N\times N$. Тогда существует однозначное полярное представление

$$A = SR$$

где S- это неотрицательная симметричная матрица, а R- это ортогональная матрица. Матрицы S и R могут быть определены явно:

$$S = (AA^{t})^{1/2}$$

 $R = S^{-1}A = (AA^{t})^{-1/2}A.$

Например,

Рис. 3.2. Полярное разложение

Если матрица A вырождена, то разложение не единственно — а именно: S по-прежнему одна, а вот R может быть много. Полярное разложение представляет матрицу A как комбинацию сжатия/растяжения S и поворота R.

3.6 Собственные векторы и значения

Пусть \mathbf{A} — это квадратная матрица. Вектор \mathbf{v} называется собственным вектором матрицы \mathbf{A} , если

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$
,

где число λ называется *собственным значением* матрицы **A**. Таким образом преобразование, которое выполняет матрица **A** над вектором **v**, сводится к простому растяжению или сжатию с коэффициентом λ . Собственный вектор определяется с точностью до умножения на константу $\alpha \neq 0$, т.е. если **v** — собственный вектор, то и α **v** — тоже собственный вектор.

3.7 Собственные значения

У матрицы ${\bf A}$, размерностью $(N \times N)$ не может быть больше чем N собственных значений. Они удовлетворяют характеристическому уравнению

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0,$$

являющемуся алгебраическим уравнением N-го порядка. В частности, для матрицы 2×2 характеристическое уравнение имеет вид

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \det\left(\begin{bmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{bmatrix}\right) = (a_{11} - \lambda)(a_{22} - \lambda) - a_{12}a_{21} = 0$$

Например,

$$\mathbf{A} = \begin{vmatrix} 11 & -6 & 2 \\ -6 & 10 & -4 \\ 2 & -4 & 6 \end{vmatrix} \qquad \mathbf{I} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

$$\lambda_1 = 18 \qquad \mathbf{A} - \lambda_1 = \begin{vmatrix} -7 & -6 & 2 \\ -6 & -8 & -4 \\ 2 & -4 & -12 \end{vmatrix} \qquad \mathbf{det}(\mathbf{A} - \lambda_1) = 0$$

$$\lambda_2 = 6 \qquad \mathbf{A} - \lambda_1 = \begin{vmatrix} 5 & -6 & 2 \\ -6 & 4 & -4 \\ 2 & -4 & 0 \end{vmatrix} \qquad \mathbf{det}(\mathbf{A} - \lambda_1) = 0$$

$$\lambda_3 = 3 \qquad \mathbf{A} - \lambda_1 = \begin{vmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{vmatrix} \qquad \mathbf{det}(\mathbf{A} - \lambda_1) = 0$$

Рис. 3.3. Собственные значения

Набор собственных значений $\lambda_1, \dots, \lambda_N$ матрицы **A** называется *спектром* **A**.

Спектр обладает разнообразными свойствами. В частности

$$\det(\mathbf{A}) = \lambda_1 \times \cdots \times \lambda_N$$

$$Sp(\mathbf{A}) = \lambda_1 + \dots + \lambda_N$$

Собственные значения произвольной матрицы могут быть комплексными числами, однако если матрица симметричная (${f A}^t={f A}$), то ее собственные значения вещественны.

3.8 Собственные векторы

У матрицы \mathbf{A} , размерностью $(N \times N)$ не может быть больше чем N собственных векторов, каждый из которых соответствует своему собственному значению. Для определения собственного вектора \mathbf{v}_n нужно решить систему однородных уравнений

$$(\mathbf{A} - \lambda_n \mathbf{I}) \mathbf{v}_n = \mathbf{0}$$

Она имеет нетривиальное решение, поскольку $\det(\mathbf{A} - \lambda_n \mathbf{I}) = 0$.

Например,

$$\mathbf{A} = \begin{vmatrix} 11 & -6 & 2 \\ -6 & 10 & -4 \\ 2 & -4 & 6 \end{vmatrix} \qquad \mathbf{I} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

$$\lambda_1 = 18 \qquad \mathbf{v}_1 = \begin{vmatrix} 2 \\ -2 \\ 1 \end{vmatrix} \qquad \begin{vmatrix} -7 & -6 & 2 \\ -6 & -8 & -4 \\ 2 & -4 & -12 \end{vmatrix} \qquad \begin{vmatrix} 2 \\ -2 \\ 1 \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \\ 0 \end{vmatrix}$$

$$\lambda_2 = 6 \qquad \mathbf{v}_2 = \begin{vmatrix} 2 \\ 1 \\ -2 \end{vmatrix} \qquad \begin{vmatrix} 5 & -6 & 2 \\ -6 & 4 & -4 \\ 2 & -4 & 0 \end{vmatrix} \qquad \begin{vmatrix} 2 \\ 1 \\ -2 \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \\ 0 \end{vmatrix}$$

$$\lambda_3 = 3 \qquad \mathbf{v}_3 = \begin{vmatrix} 1 \\ 2 \\ 2 \end{vmatrix} \qquad \begin{vmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{vmatrix} \qquad \begin{vmatrix} 1 \\ 2 \\ 2 \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \\ 0 \end{vmatrix}$$

Рис. 3.4. Собственные векторы

Собственные вектора симметричной матрицы ортогональны.

3.9 Эквивалентные и подобные матрицы

Две прямоугольные матрицы ${\bf A}$ и ${\bf B}$ одной размерности $I \times J$ эквивалентны, если существуют такие квадратные матрицы ${\bf S}$, размерности $I \times I$, и ${\bf T}$, размерности $J \times J$, что:

$$B = SAT$$

Эквивалентные матрицы имею один и тот же ранг.

Две прямоугольные матрицы ${\bf A}$ и ${\bf B}$ одной размерности $N \times N$ подобны, если существует такая невырожденная матрица ${\bf T}$, что:

$$\mathbf{B} = \mathbf{T}^{-1} \mathbf{A} \mathbf{T}$$

Матрица Т называется преобразованием подобия.

Подобные матрицы имеют один и тот же ранг, след, определитель и спектр.

3.10 Приведение матрицы к диагональному виду

Нормальную (в частности симметричную) матрицу $\bf A$ можно привести к диагональному виду преобразованием подобия:

$$A = T\Lambda T^{-1}$$

Здесь $\Lambda = {\rm diag}(\lambda_1, \dots, \lambda_N)$ — это диагональная матрица, элементами которой являются собственные значения матрицы ${\bf A}$, а ${\bf T}$ — это матрица, составленная из соответствующих собственных векторов матрицы ${\bf A}$, т.е. ${\bf T} = ({\bf v}_1, \dots, {\bf v}_N)$.

Например,

$$\mathbf{A} = \begin{vmatrix} 11 & -6 & 2 \\ -6 & 10 & -4 \\ 2 & -4 & 6 \end{vmatrix} \qquad \mathbf{T} = \begin{vmatrix} 2 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & -2 & 2 \end{vmatrix} \qquad \mathbf{T}^{-1} = \begin{vmatrix} 0.22 & -0.2 & 0.11 \\ 0.22 & 0.11 & -0.2 \\ 0.11 & 0.22 & 0.22 \end{vmatrix}$$

$$\mathbf{A} = \begin{vmatrix} 18 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 3 \end{vmatrix} \qquad \mathbf{T} \mathbf{A} \mathbf{T}^{-1} = \begin{vmatrix} 11 & -6 & 2 \\ -6 & 10 & -4 \\ 2 & -4 & 6 \end{vmatrix}$$

Рис. 3.5. Приведение к диагональному виду

3.11 Разложение по сингулярным значениям

Пусть имеется прямоугольная матрица ${\bf A}$ размерностью $I \times J$ ранга R ($I \le J \le R$). Ее можно разложить в произведение трех матриц ${\bf P}_R$ ($I \times R$), ${\bf D}_R$ ($R \times R$) и ${\bf Q}_R$ ($J \times R$) —

$$\mathbf{A} = \mathbf{P}_R \mathbf{D}_R \mathbf{Q}_R^{\mathsf{t}}$$

так, чтобы -

$$\mathbf{P}_{R}^{\mathsf{t}}\mathbf{P}_{R} = \mathbf{Q}_{R}^{\mathsf{t}}\mathbf{Q}_{R} = \mathbf{I}_{R}$$

Здесь \mathbf{P}_R — матрица, образованная R ортонормированными собственными векторами \mathbf{p}_r матрицы $\mathbf{A}\mathbf{A}^t$, соответствующим R наибольшим собственным значениям λ_r :

$$\mathbf{A}\mathbf{A}^{\mathsf{t}}\mathbf{p}_{r}=\lambda_{r}\mathbf{p}_{r}$$

 \mathbf{Q}_R — матрица, образованная R ортонормированными собственными векторами \mathbf{q}_r матрицы $\mathbf{A}^t\mathbf{A}$:

$$\mathbf{A}^{\mathsf{t}}\mathbf{A}\mathbf{q}_{r}=\lambda_{r}\mathbf{q}_{r}$$

 ${f D}_R = {
m diag}(\sigma_1,\dots,\sigma_R) - {
m no}$ ложительно определенная диагональная матрица, элементами которой являются $\sigma_1 \geq \dots \geq \sigma_R \geq 0 - {\it cunry}$ лярные значения матрицы ${f A}$, равные квадратным корням из собственных значений матрицы ${f A}^t{f A}$:

$$\sigma_r = \sqrt{\lambda_r}$$

Пример,

	-0.588	0.8317	0.7892	0.6727			0.631	-0.403	-0.155	
	0.1017	0.0217	0.1092	0.0647		P _R =	0.0464	0.0908	0.2616	
	-0.118	0.2817	0.2192	0.2167			0.1948	-0.066	-0.145	
	0.1817	-0.138	-0.041	-0.067			-0.074	0.1395	0.2841	
	-0.738	-0.868	-0.671	-0.776			-0.579	-0.756	0.0623	
	0.0617	0.0917	-0.041	0.0357			0.021	0.0661	-0.294	
A=	-0.108	0.3417	0.2492	0.2597			0.2297	-0.049	-0.205	
	0.1017	0.1217	0.1592	0.1347			0.1048	0.104	0.1551	
	0.4517	-0.328	-0.601	-0.359			-0.358	0.3512	-0.59	
	0.2717	-0.158	-0.071	-0.08			-0.094	0.2152	0.2872	
	0.2017	-0.148	-0.211	-0.138			-0.14	0.1563	-0.115	
	0.1817	-0.048	0.1092	0.0377			0.0168	0.1509	0.4532	
·										
		/=	12			-0.588	0.8317	0.7892	0.6727	
		J=	4			0.1017	0.0217	0.1092	0.0647	
		R=	3		P n o L	-0.118	0.2817	0.2192	0.2167	
						0.1817	-0.138	-0.041	-0.067	
	-0.092	0.9865	0.1065			-0.738	-0.868	-0.671	-0.776	
	0.6136	0.002	0.0001						0.00571	
Ο=	0.0130	0.093	-0.662		P.D.O.'-	0.0617	0.0917	-0.041	0.0357	
Q _R =	0.5788	-0.055	0.7412		$\mathbf{P}_{\mathbb{R}}\mathbf{D}_{\mathbb{R}}\mathbf{Q}_{\mathbb{R}}^{I}=$	-0.108	0.0917	-0.041 0.2492	0.0357	
Q _R =		-0.055			$P_R D_R Q_R^{-1} =$					
Q _R =	0.5788	-0.055	0.7412		$P_R D_R Q_R^{t} =$	-0.108	0.3417	0.2492	0.2597	
Q _R =	0.5788	-0.055 0.1233 0	0.7412		$P_R D_R Q_R^{t} =$	-0.108 0.1017	0.3417 0.1217	0.2492 0.1592 -0.601	0.2597 0.1347	
Q _R =	0.5788 0.5291 2.1825 0	-0.055 0.1233	0.7412 -0.024		$P_R D_R Q_R =$	-0.108 0.1017 0.4517 0.2717 0.2017	0.3417 0.1217 -0.328 -0.158 -0.148	0.2492 0.1592 -0.601 -0.071 -0.211	0.2597 0.1347 -0.359	
	0.5788 0.5291 2.1825	-0.055 0.1233 0	0.7412 -0.024 0		$P_R D_R Q_R =$	-0.108 0.1017 0.4517 0.2717	0.3417 0.1217 -0.328 -0.158	0.2492 0.1592 -0.601 -0.071 -0.211	0.2597 0.1347 -0.359 -0.08	

Рис. 3.6. SVD разложение

Дополняя матрицы \mathbf{P}_R и \mathbf{Q}_R ортонормированными столбцами, а матрицу \mathbf{D}_R нулевыми значениями, можно сконструировать матрицы $\mathbf{P}(I \times J)$, $\mathbf{D}(J \times J)$ и $\mathbf{Q}(J \times J)$ такие, что

$$\mathbf{A} = \mathbf{P}_R \mathbf{D}_R \mathbf{Q}_R^{\mathsf{t}} = \mathbf{P} \mathbf{D} \mathbf{Q}^{\mathsf{t}}$$

Об использовании SVD рассказано в других пособиях MatLab. Руководство для начинающих и Метод главных компонент (PCA)

3.12 Линейное пространство и базис

Рассмотрим все возможные векторы размерности N. Это множество называется *пинейным пространством* размерности N и обозначается \mathbb{R}^N . Так как в \mathbb{R}^N включены все возможные векторы, то любая линейная комбинация векторов из \mathbb{R}^N будет также принадлежать этому пространству.

Любой набор из N линейно независимых векторов называется *базисом* в пространстве \mathbb{R}^N . Простейший пример базиса — это набор векторов

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ \dots \\ 0 \end{bmatrix}, \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ \dots \\ 0 \end{bmatrix}, \dots, \mathbf{e}_N = \begin{bmatrix} 0 \\ 0 \\ \dots \\ 1 \end{bmatrix}$$

в каждом из которых только один элемент равен 1, а остальные равны нулю. Тогда любой вектор $\mathbf{x}=(x_1,x_2,...,x_N)^{\mathsf{t}}$ может быть представлен как линейная комбинация $\mathbf{x}=x_1\mathbf{e}_1+x_2\mathbf{e}_2+\cdots+x_N\mathbf{e}_N$ базисных векторов.

Базис, составленный из попарно ортогональных векторов, называется *ортогональным*, а если базисные вектора еще и нормированы, то этот базис называется *ортонормированным*.

3.13 Геометрическая интерпретация

Линейному пространству можно дать удобную геометрическую интерпретацию. Представим себе N-мерное пространство, в котором базисные вектора задают направления осей координат. Тогда произвольный вектор $\mathbf{x}=(x_1,x_2,...,x_N)^{\mathrm{t}}$ можно изобразить точкой в этом пространстве с координатами $(x_1,x_2,...,x_N)$.

Рис. 3.7. Координатное пространство

3.14 Множественность базисов

В линейном пространстве могут быть неограниченное число базисов. Так, в пространстве \mathbb{R}^3 помимо обычного ортонормированного базиса

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \mathbf{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

можно установить и другой ортонормированный базис, например

$$\mathbf{b}_1 = \begin{bmatrix} \sqrt{0.5} \\ 0.5 \\ 0.5 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} -\sqrt{0.5} \\ 0.5 \\ 0.5 \end{bmatrix}, \mathbf{b}_3 = \begin{bmatrix} 0 \\ -\sqrt{0.5} \\ \sqrt{0.5} \end{bmatrix}$$

Каждый базис можно представить матрицей $\mathbf{B}=(\mathbf{b}_1,...,\mathbf{b}_N)$, составленной из базисных векторов. Переход от одного базиса к другому осуществляется с помощью невырожденной квадратной матрицы \mathbf{T} , т.е. $\mathbf{B}_2=\mathbf{T}\mathbf{B}_1$.

3.15 Подпространство

Пусть имеется набор из K линейно независимых векторов $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_K$ в пространстве \mathbb{R}^N . Рассмотрим все возможные линейные комбинации этих векторов

$$\mathbf{x} = \alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \dots + \alpha_K \mathbf{x}_K$$

О получившимся множестве Q говорят, что оно является *линейной оболочкой* или что оно *натянуто* на векторы $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_K$. По определению линейного пространства это множество Q само является линейным пространством размерности K. При этом оно принадлежит пространству \mathbb{R}^N , поэтому Q называется линейным подпространством \mathbb{R}^K в пространстве \mathbb{R}^N .

3.16 Проекция на подпространство

Рассмотрим подпространство \mathbb{R}^K , натянутое на векторы $\mathbf{X}=(\mathbf{x}_1,\mathbf{x}_2,\dots,\mathbf{x}_K)$ в пространстве \mathbb{R}^N . Матрица базиса \mathbf{X} имеет размерность $(N\times K)$. Любой вектор \mathbf{y} из \mathbb{R}^N может быть спроецирован на подпространство \mathbb{R}^K , т.е. представлен в виде

$$\mathbf{y} = \mathbf{y}^{\parallel} + \mathbf{y}^{\perp}$$

где вектор \mathbf{y}^{\parallel} принадлежит \mathbb{R}^{K} , а вектор \mathbf{y}^{\perp} ортогонален \mathbf{y}^{\parallel} .

Рис. 3.8. Проекция на подпространство

Проекцию \mathbf{y}^{\parallel} можно представить как результат действия проекционной матрицы \mathbf{P}

$$\mathbf{y}^{\parallel} = \mathbf{P}\mathbf{y}$$

Проекционная матрица определяется как

$$\mathbf{P} = \mathbf{X}(\mathbf{X}^{t}\mathbf{X})^{-1}\mathbf{X}^{t}$$

Пример:

$$\mathbf{y} = \begin{vmatrix} 2 \\ 0 \\ 1 \end{vmatrix} \qquad \mathbf{x}_{1} = \begin{vmatrix} 1 \\ 1 \\ 0 \end{vmatrix} \qquad \mathbf{x}_{2} = \begin{vmatrix} 2 \\ 2 \\ 1 \end{vmatrix} \qquad \mathbf{X} = \begin{vmatrix} 1 & 2 \\ 1 & 2 \\ 0 & 1 \end{vmatrix}$$

$$\mathbf{x}^{1}\mathbf{x} = \begin{vmatrix} 2 & 4 \\ 4 & 9 \end{vmatrix} \qquad \mathbf{x}^{2} = \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} \qquad \mathbf{x}^{2} = \begin{vmatrix} 4.5 & -2 \\ -2 & 1 \end{vmatrix}$$

$$\mathbf{p} = \begin{vmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0 & 0 & 1 \end{vmatrix} \qquad \mathbf{y}^{1} = \mathbf{P} = \begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix} \qquad \mathbf{y}^{1} = (\mathbf{I} - \mathbf{P}) \mathbf{y} = \begin{vmatrix} 1 \\ -1 \\ 0 \end{vmatrix}$$

$$(\mathbf{y}^{1}, \mathbf{y}^{1}) = 0 \qquad \mathbf{y}^{1} = \mathbf{x}_{2} \cdot \mathbf{x}_{1} = \begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix}$$

$$\mathbf{y}^{1} = \mathbf{y}^{1} + \mathbf{y}^{1} = \begin{vmatrix} 2 \\ 0 \\ 1 \end{vmatrix}$$

Рис. 3.9. Проекционное разложение

4 Заключение

Матричные методы активно используются при анализе данных, в том числе и хемометрическими методами.

Примеры приведены в пособиях

- Матричные операции в Excel
- Метод главных компонент (РСА)
- Калибровка
- Классификация
- Разрешение многомерных кривых

И в сопровождающих пособия книгах Excel.