Name	p	k	bias	Standard
float8	4	4	7	No
float16	11	5	15	IEEE754
bfloat16	8	8	127	No
float32	24	8	127	IEEE754
float64	53	11	1023	IEEE754
float128	113	15	16383	IEEE754
float256	237	19	262143	IEEE754

Table 1: IEEE 754 specification for bits allocation.

p: bits of fraction part (included implicit one),

k: bits of exponent part,

bias: exponent bias constant.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
S	S Exponent						Fraction								
+-	2^{7}	2^{6}	2^5	2^{4}	2^3	2^{2}	2^1	2^{0}	2^{-1}	2^{-2}	2^{-3}	2^{-4}	2^{-5}	2^{-6}	2^{-7}
	128	64	32	16	8	4	2	1	$\frac{1}{2}$	$\frac{1}{4}$	<u>1</u> 8	$\frac{1}{16}$	$\frac{1}{32}$	$\frac{1}{64}$	$\frac{1}{128}$

Table 2: bfloat16 bits subdivision, powers and actual factors.

7	6	5	4	3	2	1	0
S		Expo	onent	,	Fr	on	
+-	2^{3}	2^2	2^1	2^{0}	2^{-1}	2^{-2}	2^{-3}
	8	4	2	1	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$

Table 3: Fictional Float8 bits subdivision, powers and actual factors.

$$sign = bit_{(p+k-1)}$$

$$S = (-1)^{sign}$$

$$E = \sum_{n=0}^{k-1} bit_{(p-1+n)} \cdot 2^{n}$$

$$F = \sum_{n=1}^{p-1} bit_{(p-1-n)} \cdot 2^{-n}$$

$$value = S \cdot 2^{E-bias} \cdot (1+F)$$

$$sign = bit_{31}$$

$$S = (-1)^{sign}$$

$$E = \sum_{n=0}^{7} bit_{(23+n)} \cdot 2^{n}$$

$$F = \sum_{n=1}^{23} bit_{(23-n)} \cdot 2^{-n}$$

$$value = S \cdot 2^{E-bias} \cdot (1+F)$$

Equation 1: General formula.

$$S = (-1)^{(bit_0)}$$

$$E = bit_1 \cdot 2^3 + bit_2 \cdot 2^2 + bit_3 \cdot 2^1 + bit_4 \cdot 2^0$$

$$F = bit_5 \cdot 2^{-1} + bit_6 \cdot 2^{-2} + bit_7 \cdot 2^{-3}$$

$$V = S \cdot 2^{E-7} \cdot (1+F)$$

Equation 2: float32 formula.

Equation 3: Expanded formula for an imaginary 8-bit float type (p = 4, k = 4).

$$sign = bit_{31}$$

$$S = (-1)^{sign}$$

$$number = \sum_{n=1}^{p+k} bit_{n-1} \cdot 2^{n-p}$$

$$E = \lfloor number \rfloor$$

$$F = number \bmod 1$$

$$value = S \cdot 2^{E-bias} \cdot (1+F)$$