Contents

1	Problem 4	1
	1.1 Solution	1
	Problem 5 2.1 Solution	2
3	<2024-07-21 Sun> 3.1 problem 5	

1 Problem 4

Find the average of function $f(\sigma) = |a_1 - a_2| + |a_3 - a_4| + |a_5 - a_6| + |a_7 - a_8|$, where σ is a permutation of $(a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8)$.

1.1 Solution

Method is to count the number of different distances noted by $|a_i - a_j|$. If you write 1 to 8 literally as 1, 2, 3, 4, 5, 6, 7, 8, you will note that the distance is from 1 to 7. First let's count the number of distance 1.

distance 1 This is easy: pairs like (1,2), (2,3), ..., (7,8) are distance 1. There are 7 of them.

```
distance 2 (1,3),\ldots,(6,8). There are 6 of them.
```

distance 3 $(1,4),\ldots,(5,8)$. There are 5 of them.

distance 4 $(1,5), \ldots, (4,8)$. There are 4 of them.

distance 5 $(1,6),\ldots,3,8$). There are 3 of them.

distance 6 (1,7), (2,8). There are 2 of them.

distance 7 (1,7). There are 1 of them.

Each pair will appear exactly this many times: $P_6^6 \times 4 \times 2$. Explanation is: once you select a pair, e.g., (1,2), you can also flip them as (2,1). So that is for multiplier 2. And then you can place them in each of the 4 pairs location. And lastly, P_6^6 means once you fixed the selection of the pair, the remaining

6 digits will permutate this many times. So total sum of all permutations of $f(\sigma)$ is

 $P_6^6 * 4 * 2 * (1 * 7 + 2 * 6 + 3 * 5 + 4 * 4 + 5 * 3 + 6 * 2 + 7 * 1)$. Average is given by this number divided by $P_8^8 = 40320$, which is 12.

See also: problem4.cpp for brutal force calculation. This is to verify the above solution is correct. The output of the program is below

brutal force method: total = 483840, number of permutations = 40320, average = 12 analytical method: average = 12

2 Problem 5

Find all real x such that

$$log_{2x}(48\sqrt[3]{3}) = log_{3x}(162\sqrt[3]{2}) \tag{1}$$

2.1 Solution

$$\frac{\ln(48\sqrt[3]{3})}{\ln(2) + \ln(x)} = \frac{\ln(162\sqrt[3]{2})}{\ln(3) + \ln(x)} \tag{2}$$

$$\ln(x) = \frac{\ln(3) \cdot \ln(48\sqrt[3]{3}) - \ln(2) \cdot \ln(162\sqrt[3]{2})}{\ln(162\sqrt[3]{2}) - \ln(48\sqrt[3]{3})}$$
(3)

$$x = \exp\left[\frac{\ln(3) \cdot \ln(48\sqrt[3]{3}) - \ln(2) \cdot \ln(162\sqrt[3]{2})}{\ln(162\sqrt[3]{2}) - \ln(48\sqrt[3]{3})}\right]$$
(4)

$$= \exp\left[\frac{\ln(3) \cdot \ln(3) - \ln(2) \cdot \ln(2)}{2(\ln(3) - \ln(2))}\right]$$
 (5)

$$= \exp\left[\frac{\ln(6)}{2}\right] \tag{6}$$

$$x = \sqrt{6} \tag{7}$$

$3 < 2024-07-21 \ Sun >$

3.1 problem 5

In how many ways can 9 be written as the sum of one or more positive odd integers? (Order of the integers does not matter.)

$$(A)8 \quad (B)6 \quad (C)5 \quad (D)9 \quad (E)7$$

- [A] 8
- [B] 6
- [C] 5
- [D] 9
- [E] 7

3.1.1 Solution

 $9\ \mathrm{can}$ only be written as sum of odd number of positive odd integers, so we have several options.

- 9 = 9
- 9 = 3 + 3 + 3
- 9 = 1 + 3 + 5
- 9 = 1 + 1 + 1 + 3 + 3
- 9 = 1 + 1 + 1 + 1 + 5
- 9 = 1 + 1 + 1 + 1 + 1 + 1 + 3

So answer is (E)