Цель работы.

Исследование точностных свойств систем управления.

Исследование системы с астатизмом нулевого порядка.

Исследуемая система: $W(s) = \frac{2}{0.5s^2 + s + 2}$

Рис. 1: Система с астатизмом нулевого порядка.

а) g(t) = A – стационарный режим работы. A = 2. Y(t) и e(t) при $K{=}1$

Рис. 2: График переходного процесса.

Рис. 3: График ошибки переходного процесса.

$$\epsilon = \frac{A}{1+k} = 2/(1+1) = 1$$

ходные процессы Y(t) и e(t) при K=5

 $\epsilon = \frac{A}{1+k} = 2/(1+1) = 1$ Из графика видно, что предельное значение установившейся ошибки $\epsilon_y(t)=1$. Это значение равно значению, полученному аналитическим расчетом. Рассмотрим пере-

Рис. 4: График переходного процесса.

Рис. 5: График ошибки переходного процесса.

Из графика видно, что предельное значение установившейся ошибки $\epsilon_y(t) = 0.33.$

Это значение подтверждается аналитиическим расчетом: $\epsilon = \frac{A}{1+k} = 2/(1+5) = 0.33$

$$\epsilon = \frac{A}{1+k} = 2/(1+5) = 0.33$$

Рис. 6: График переходного процесса.

Рис. 7: График ошибки переходного процесса.

Из графика видно, что предельное значение установившейся ошибки $\epsilon_y(t)=0.2$

Это значение очень близко к значению, полученному аналитическим расчетом: $\epsilon = \frac{A}{1+k} = 2/(1+10) = 0.18$

K	1	5	10
ϵ	1	0.33	0.18

Таблица 1: Зависимость коэффициента от ошибки

б) g(t) = Vt – движение с постоянной скоростью. V=2 Рассмотрим переходные процессы Y(t) и e(t) при $K{=}1$

Рис. 8: График переходного процесса.

Рис. 9: График ошибки переходного процесса.

Рассмотрим переходные процессы Y(t) и e(t) при $K{=}5$

Рис. 10: График переходного процесса.

Рис. 11: График ошибки переходного процесса.

Рассмотрим переходные процессы Y(t) и e(t) при $K{=}10$

Рис. 12: График переходного процесса.

Рис. 13: График ошибки переходного процесса.

$$\epsilon_y(t)=\lim_{s\to 0} s\frac{1}{1+W(s)}\frac{V}{s^2}=\lim_{s\to 0}\frac{1}{1+k}\frac{V}{s}=\infty$$
 Во всех случаях $\epsilon\to\infty$

Вывод. СУ с нулевым порядком астатизма неспособна отработать изменяющееся задающее воздействие без ошибок, причем с течением времени ошибка увеличивается.

1 Исследование системы с астатизмом первого порядка.

$$W(s) = \frac{s+2}{0.5s^2 + s + 2}$$

Рис. 14: Система с астатизмом первого порядка.

а) g(t) = A – стационарный режим работы. A = 2. Рассмотрим переходные процессы Y(t) и e(t) при K=1

Рис. 15: График переходного процесса.

Рис. 16: График ошибки переходного процесса.

Из графика видно, что предельное значение установившейся ошибки $\epsilon_y(t)=0.$

Это значение подтверждается аналитическим расчетом:

$$\epsilon_y(t) = \lim_{s \to 0} \frac{s}{s+k} A = 0$$

Рассмотрим переходные процессы Y(t) и e(t) при K=5

Рис. 17: График переходного процесса.

Рис. 18: График ошибки переходного процесса.

$$\epsilon_y(t)=0$$
Рассмотрим переходные процессы Y(t) и e(t) при K=10

Рис. 19: График переходного процесса.

Рис. 20: График ошибки переходного процесса.

$$\epsilon_y(t) = 0$$

Во всех трех случаях $\epsilon=0$

Вывод. СУ с астатизмом первого порядка (и выше) отрабатывает постоянное задающее воздействие с нулевой установившейся ошибкой.

б) g(t)=Vt – движение с постоянной скоростью. $V=2; \epsilon=\frac{V}{K}$ Рассмотрим переходные процессы Y(t) и e(t) при K=1

Рис. 21: График переходного процесса.

Рис. 22: График ошибки переходного процесса.

Из графика видно, что предельное значение установившейся ошибки $\epsilon_y(t) = 2.$

Это значение подтверждается аналитическим расчетом:

$$\epsilon_y(t) = \lim_{s \to 0} \frac{s}{s+k} V = \frac{V}{k} = 2$$

 $\epsilon_y(t)=\lim_{s\to 0} rac{s}{s+k}V=rac{V}{k}=2$ Рассмотрим переходные процессы Y(t) и e(t) при $K{=}5$

Рис. 23: График переходного процесса.

Рис. 24: График ошибки переходного процесса.

Из графика видно, что предельное значение установившейся ошибки $\epsilon_{\nu}(t) = 0.4$.

Это значение подтверждается аналитическим расчетом:

$$\epsilon_y(t) = \lim_{s \to 0} \frac{s}{s+k} V = \frac{V}{k} = 0.4$$

 $\epsilon_y(t)=\lim_{s\to 0} \frac{s}{s+k}V=\frac{V}{k}=0.4$ Рассмотрим переходные процессы Y(t) и e(t) при K=10

Рис. 25: График переходного процесса.

Рис. 26: График ошибки переходного процесса.

Из графика видно, что предельное значение установившейся ошибки $\epsilon_y(t)=0.2.$

Это значение подтверждается аналитическим расчетом: $\epsilon_y(t)=\lim_{s\to 0} \frac{s}{s+k}V=\frac{V}{k}=0.2$

K	1	5	10
ϵ	2	0.4	0.2

Таблица 2: Зависимость коэффициента от ошибки

Вывод. У системы управления (СУ) с первым порядком астатизма при линейно изменяющимся задающем воздействии (Vt) установившаяся ошибка равна $\epsilon = V/K$

в) $g(t)=at^2/2$ – движение с постоянным ускорением. Рассмотрим переходные процессы ${
m Y}(t)$ и ${
m e}(t)$ при ${
m K}{=}1$

Рис. 27: График переходного процесса.

Рис. 28: График ошибки переходного процесса.

Рассмотрим переходные процессы Y(t) и e(t) при K=5

Рис. 29: График переходного процесса.

Рис. 30: График ошибки переходного процесса.

Рис. 31: График переходного процесса.

Рис. 32: График ошибки переходного процесса.

2 Исследование влияния внешних возмущений.

$$f_1 = 2$$

$$f_2 = 0.5$$

Рис. 33: Схема моделирования влияния внешних возмущений.

Положим $f_2(t) = 0, g(t) = 1(t)$

Рис. 34: График переходного процесса.

Рис. 35: График ошибки переходного процесса.

Положим $f_1(t) = 0, g(t) = 1(t)$

Рис. 36: График переходного процесса.

Рис. 37: График ошибки переходного процесса.

Из графика видно, что предельное значение установившейся ошибки $e_y(t) = -0.5$

Это значение подтверждается аналитическим расчетом: $e_y(t) = F_2 = -0.5$

3 Исследование установившейся ошибки при произвольном входном воздействии.

$$H(s) = 1;$$

$$W(s) = \frac{2}{0.5s^2 + s + 2};$$

$$g(t) = 2 + 0.1t^2;$$

Рис. 38: Схема моделирования произвольного входного воздействия.

Рис. 39: График переходного процесса.

Рис. 40: График ошибки переходного процесса.

 $e_y(t) \to \infty$, т.к. СУ с астатизмом нулевого порядка не может отработать линейно нарастающее задающее воздействие.

$$e_y(t) = c_0 g(t) + c_1 \frac{d}{dt} g(t) + \frac{c_2}{2!} \frac{d^2}{dt^2} g(t) + \dots$$
 где постоянные c_i - коэффициенты ошибок.

 $\Phi_e(s) = \frac{1}{1+W(s)}$, где W(s) – передаточная функция разомкнутой системы, $\Phi_e(s)$ – передаточная функция замкнутой системы по ошибке слежения

(относительно задающего воздействия).

$$W(s) = \frac{2}{0.5s^2 + s + 2};$$

$$\Phi_e(s) = \frac{0.5s^2 + s + 2}{0.5s^2 + s + 4}$$

$$c_0 = \Phi_e(s)|_{s=0} = 0.5$$

 $c_1 = 0.125$

 $c_2 = 0.375$

$$e_y(t) = 0.5(2 + 0.1t^2) + 0.125 * 0.1t + 0.125 * 0.1$$

Рис. 41: Схема моделирование. Ряд Тейлора.

При
$$t = 0, e_s(t) = 0.125$$

Рис. 42: График ошибки переходного процесса.

4 Выводы.

В данной работе мы по передаточной функции системы рассчитывали установившуюся ошибку системы и сравнивали ее со значением, полученным аналитически: результаты совпали. Проведенные нами исследования показали, что факт наличия или отсутствия установившейся ошибки должен быть определен для каждого действующего на систему возмущения на основе анализа соответствующих передаточных функций от возмущения к ошибке, вне зависимости от порядка астатизма системы по задающему воздействию.