M0 Categories

Robin Adams

September 16, 2022

Contents

1 Categories 1

1 Categories

Definition 1 (Category). A category consists of:

- a collection of *objects*.
- for any objects A and B, a collection of maps from A to B. We write $f: A \to B$ iff f is a map from A to B.
- for any object A, an identity map $1_A: A \to A$
- for any maps $f:A\to B$ and $g:B\to C$, a map $g\circ f:A\to C$

such that:

Identity Laws For any map $f: A \to B$, we have $1_B \circ f = f \circ 1_A = f: A \to B$

Associative Law For any maps $f: A \to B$, $g: B \to C$ and $h: C \to D$, we hav $h \circ (g \circ f) = (h \circ g) \circ f: A \to D$

Definition 2. A map $f: A \to B$ is monic or a monomorphism, $f: A \to B$, iff, for every object T and morphisms $x_1, x_2: T \to B$, if $f \circ x_1 = f \circ x_2$ then $x_1 = x_2$.

Definition 3. A map $f: A \to B$ is *epi* or an *epimorphism*, $f: A \to B$, iff, for every object T and morphisms $x_1, x_2: B \to T$, if $x_1 \circ f = x_2 \circ f$ then $x_1 = x_2$.

Definition 4 (Retraction, Section). Let $r: A \to B$ and $s: B \to A$. Then r is a retraction for s, and s is a section for r, iff $r \circ s = 1_B$.

The object A is a retract of B iff there exists a retraction $r: B \to A$, i.e. there exist maps $s: A \to B$ and $r: B \to A$ such that $r \circ s = 1_A$.

Proposition 5. If a map $f: A \to B$ has a section, then for any object T and any map $y: T \to B$, there exists a map $x: T \to A$ such that $f \circ x = y$.

PROOF: If $s: B \to A$ is a section of f, then we take $x = s \circ y$. We have $f \circ x = f \circ s \circ y = 1_B \circ y = y$. \square

Proposition 6. If a map $f: A \to B$ has a retraction, then for any object T and any map $g: A \to T$, there exists a map $t: B \to T$ such that $t \circ f = g$.

PROOF: If $r: B \to A$ is a section for f, then we take $t = g \circ r$. We have $t \circ f = g \circ r \circ f = g \circ 1_A = g.$

Proposition 7. Every section is monic.

PROOF: Let $r: B \to A$ be a retraction for f. Then, if $f \circ x_1 = f \circ x_2$, then $r \circ f \circ x_1 = r \circ f \circ x_2$ $\therefore 1_A \circ x_1 = 1_A \circ x_2$

Proposition 8. Every retraction is epi.

 $\therefore x_1 = x_2$

PROOF: Let $s: B \to A$ be a section for $f: A \to B$. Let T be any set and $t_1, t_2: T \to B$. Suppose $t_1 \circ f = t_2 \circ f$. Then

$$t_1 \circ f \circ s = t_2 \circ f \circ s$$

$$\therefore t_1 \circ 1_B = t_2 \circ 1_B$$

$$\therefore t_1 = t_2$$

Proposition 9. For any object A, the identity map 1_A is a section and a retraction of itself.

PROOF: The Unit Laws give $1_A \circ 1_A = 1_A$. \square

Corollary 9.1. Every object is a retract of itself.

Proposition 10. If $r_1: B \to A$ is a retraction of $s_1: A \to B$ and $r_2: C \to B$ is a retraction of $s_2: B \to C$ then $r_1 \circ r_2$ is a retraction of $s_2 \circ s_1$.

Proof:

$$r_1 \circ r_2 \circ s_2 \circ s_1 = r_1 \circ 1_B \circ s_1$$

= $r_1 \circ s_1$
= 1_A

Corollary 10.1. If the object A is a retract of B and B is a retract of C then A is a retract of C.

Theorem 11. If r is a retraction of f and s is a section of f then r = s.

PROOF: Let $f: A \to B$ and $r, s: B \to A$. Then $r = r \circ 1_B$ $= r \circ f \circ s$ $=1_A\circ s$ = s

Definition 12 (Isomorphism). A map $f: A \to B$ is an *isomorphism* or *invertible*, $f: A \cong B$, iff there exists a map $f^{-1}: B \to A$, the *inverse* for f, such that $f^{-1} \circ f = 1_A$ and $f \circ f^{-1} = 1_B$.

Two objects A and B are isomorphic, $A \cong B$, iff there exists an isomorphism between them.

Theorem 13. The inverse of an isomorphism is unique.

PROOF: From Theorem 11. \Box

Theorem 14. For any object A, the identity map $1_A : A \cong A$ is an isomorphism with $1_A^{-1} = 1_A$.

PROOF: We have $1_A \circ 1_A = 1_A$ by the Identity Laws. \square

Theorem 15. If $f: A \cong B$ then $f^{-1}: B \cong A$ and $(f^{-1})^{-1} = f$.

PROOF: Since $f \circ f^{-1} = 1_B$ and $f^{-1} \circ f = 1_A$ by the definition of inverse. \square

Theorem 16. If $f: A \cong B$ and $g: B \cong C$ then $g \circ f: A \cong C$ and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Proof: From Proposition 10. \Box

Proposition 17. Every monomorphic retraction is an isomorphism.

PROOF: Let $f: A \rightarrow B$ be a monomorphism with section $s: B \rightarrow A$. Then

$$f \circ s \circ f = f$$
$$\therefore s \circ f = 1_A$$

Thus s is also a retraction for f, hence an inverse. \square

Proposition 18. Every epimorphic section is an isomorphism.

Proof: Dual.

Definition 19 (Idempotent). A map $e: A \to A$ is idempotent iff $e \circ e = e$.

Definition 20 (Automorphism). An *automorphism* on an object A is an isomorphism $A \cong A$.