Assignment 5 MAT 315

Q3a: We will show that ev is a ring homomorphism in several steps. First we claim that it is a group homomorphism from additive group $(\mathbb{F}_p[x], +)$ to $(Fun(\mathbb{F}_p, \mathbb{F}_p), +)$. First, note that

$$ev([0(x)]_p)(c) = ev([0]_p)(c) = [0]_p(c) = \sum_{k=0}^n 0 \cdot c^k = [0]_p$$

Now we show that it preserves the structure of addition. Let $a(x), b(x) \in \mathbb{F}_p[x]$. We see that

$$ev(a(x) + b(x))(c) = ev(a + b)(c) = \sum_{k=0}^{n} (a_k + b_k)c^k = \sum_{k=0}^{n} a_k c^k + \sum_{k=0}^{n} b_k c^k = ev(a(x))(c) + ev(b(x))(c)$$

We now show that it sends the multiplicative identity to the multiplicative identity.

$$ev(1(x))(c) = ev(1)(c) = \sum_{k=0}^{n} 1 \cdot c^{0} = [1]_{p}$$

Finally it remains to show it preserves the structure of multiplication. Let $a(x), b(x) \in \mathbb{F}_p[x]$

$$ev(a(x) \cdot b(x))(c) = ev(a \cdot b)(c) = (a \cdot b)(c) = a(c) \cdot b(c) = ev(a(x))(c) \cdot ev(b(x))(c)$$

Therefore, ev is a ring homomorphism.

Q3b: Let $q(x) = x^p - x$. To show $\tilde{e}v$ is well defined it must be shown that if $[f(x)]_{q(x)} = [g(x)]_{q(x)}$, then $\tilde{e}v([f(x)]_{q(x)}) = \tilde{e}v([g(x)]_{q(x)})$. Suppose that $[f(x)]_{q(x)} = [g(x)]_{q(x)}$. Then by the euclidian algorithm for polynomials, there exists $p_1(x), p_2(x), r(x)$ such that $f(x) = p_1(x)q(x) + r(x)$ and $g(x) = p_2(x)q(x) + r(x)$. Therefore,

$$\widetilde{ev}([f(x)]_{q(x)})(c) = ev(r(x))(c) = \widetilde{ev}([g(x)]_{q(x)})$$

Hence this map is well defined. Note that it is also a ring homomorphism by almost the exact same reasoning as in 3a, since it is a field as well.

Q3c: Let $x^p - x = q(x)$ Suppose that $\widetilde{ev}([f(x)]_{q(x)}) = \widetilde{ev}([g(x)]_{q(x)})$. This is the same as saying that $\widetilde{ev}([f(x)]_{q(x)} - [g(x)]_{q(x)}) = 0$. By definition of \widetilde{ev} , we have that ev(f-g)(c) = 0 for all c. Therefore, $x, (x-1), \ldots (x-(p-1))$ each divide f(x) - g(x). We now claim that for $a \neq b, x-a$ is coprime to x-b. Indeed, we see that

$$(a-b)^{-1}(x-b) - (a-b)^{-1}(x-a) = 1$$

We further assert that if for some polynomials, $a_1(x) \dots a_n(x)$ mutually coprime, if $a_i(x)|p(x)$ then $a_1(x) \dots a_n(x)|p(x)$. We will prove this by induction. For the case when n=2, this is true by fact 3. Now suppose that it holds for n. We want to show that this is true for n+1. By assumption, $a_1(x) \dots a_n(x)|p(x)$. It is enough to show that $\gcd(a_1(x) \dots a_n(x), a_{n+1}) = 1$. We know that there exists $u_i(x), v_i(x)$ such that $u_i(x)a_i(x) + v_i(x)a_{n+1}(x) = 1$. Multiplying each of these equations together, get

$$1 = \prod_{i=1}^{n} (u_i(x)a_i(x) + v_i(x)a_{n+1}(x))$$
$$= P(x)a_1(x) \cdot \dots \cdot a_n(x) + Q(x)a_{n+1}(x)$$

For some polynomials P(x), Q(x). Therefore, they are coprime and the claim is proven. Therefore $x(x-1)\dots(x-(p-1))|f(x)-g(x)|$ and so $x^p-x|f(x)-g(x)|$. We can therefore conclude that $[f(x)]_{q(x)}=[g(x)]_{q(x)}$.

Q3d: It is sufficient to show the cardinalities of the domain and co-domain are equal. By A4Q3b, $|\mathbb{F}_p[x]/x^p - x\mathbb{F}_p[x]| = p^p$. We claim the cardinality of $Fun(\mathbb{F}_p, \mathbb{F}_p)$ is the same. Indeed, for $f \in Fun(\mathbb{F}_p, \mathbb{F}_p)$, it will have p possible inputs, and each input has p possible outputs. Therefore there are p^p possible functions. Therefore, we can conclude that \widetilde{ev} is a ring isomorphism.

Q3e: Since \widetilde{ev} is a bijection it has an inverse. Therefore, for any $g \in Fun(\mathbb{F}_p, \mathbb{F}_p)$, we can apply \widetilde{ev}^{-1} to g and get a polynomial in $\mathbb{F}_p[x]/q(x)\mathbb{F}_p[x]$