KALSELTENG 2 CFSPP(2x100MW) - Workshop and Warehouse

CALCULATION REF 4.0 FRAME ANALYSIS 4.1 **Modeling Geometry** 4.1.1 Frame Analysis Modeling Description (1) Program STAAD Pro V8i (2) Building Name Workshop & Warehouse (3) Structure Reinforced Concrete & Steel Structure (4) Lateral Load Resisting System Ordinary reinforced concrete moment frame Transverse Longitudinal Ordinary reinforced concrete moment frame (5) Building Size **Building Width** 20.0 **Building Length** 45.5 m **Building Height** 8.80 m 45.5 m

NO.	CALCULATION	REF												
1.0	DESIGN INFORMATION													
1.1	BUILDING DESCRIPTION													
	1) Location : The plant site is located on Asam Asam Village,													
	Jorong District, Tanah Laut Regency, South Kalimantan Province in Indonesia.													
	2) Structure Super Structure : Steel Structure													
	Sub Structure : Reinforced Concrete Structure													
	3) Intended Use : Workshop & Warehouse													
	4) Building Width : 45.5 m 5) Building Length : 20.0 m													
	6) Mean Roof Height : 8.80 m													
	7) Seismic Resisting system : :													
	Transverse: H. Steel system not specifically detailed : 3													
	for seismic resistance													
	Longitudinal: H. Steel system not specifically detailed : 3													
	for seismic resistance													
1.2	DESIGN CODES AND STANDARDS													
	1) Project Specification													
	2) Steel: AISC 14th editions, ASD method													
	Allowable stress design (ASD) method in accordance with AISC													
	3) Reinforced Concrete : Ultimate Strength Design, USD													
	① Ultimate strength design (USD) method in accordance with ACI 318M-14													
	4) Design Loads													
	① Design criteria for civil & building work (Doc. No. IKCP0-YYZ-04-0001)													
	② ANSI/ASCE 7-10 "Minimum design loads for buildings and other structures"													
1.3	MATERIAL SPECIFICATIONS													
	1) Steel Structure													
	① (Structural Steel) : JIS & KS SECTION													
	$-JIS G3101 SS400$: $F_y = 245 MPa_ (t \le 16)$													
	F _y = 235 MPa (t > 16)													
	Fu = 400 MPa													
	- JIS G3106 SM490 : $F_y = 325 \text{ MPa}$ ($t \le 16$)													
	$F_y = 315 \text{ MPa} (t > 16)$													
	Fu = 450 MPa													
	② Unit Weight : $w_s = 78.5 \text{ kN/m}^3$													
	3 Modulus of Elasticity : E _S = 200,000 MPa													
	Structural Bolt : JIS B1186 F8T or equivalent.													
	⑤ Anchor Bolt : ASTM F1554 Grade 36 or equivalent.													

CALCULATION REF

Floor	Member Name		Section	Member Number	Load Combination	Stress Ratio	Remark
	RB4	Н -	194 x 150 x 6 x 9	402	103	0.79	O.K.
	RG4	Н -	194 x 150 x 6 x 9	333	103	0.16	O.K.
Roof Floor	RB8	Н -	400 x 200 x 8 x 13	233	103	0.73	O.K.
	RG8	Н -	400 x 200 x 8 x 13	225	103	0.87	O.K.
	RG11	Н -	600 x 200 x 11 x 17	342	103	0.94	O.K.
Mezzanine	MB8	Н -	400 x 200 x 8 x 13	167	102	0.61	O.K.
Floor	MG8	Н-	400 x 200 x 8 x 13	178	102	0.81	O.K.
Crane	BG1	Н -	194 x 150 x 6 x 9	281	119	0.07	O.K.
Runway	BR1	Н -	600 x 200 x 11 x 17	277	102	0.38	O.K.
	WG1	Н-	194 x 150 x 6 x 9	191	103	0.32	O.K.
	CG4	Н -	194 x 150 x 6 x 9	107	102	0.39	O.K.
	C1	Н -	600 x 200 x 11 x 17	206	103	0.71	O.K.
	C2	Н -	250 x 250 x 9 x 14	110	102	0.67	O.K.
Column	C3	Н -	400 x 200 x 8 x 13	128	103	0.69	O.K.
	C4	Н -	200 x 200 x 8 x 12	317	103	0.60	O.K.
	C5	Н -	194 x 150 x 6 x 9	129	108	0.43	O.K.
	HBR1	2Ls -	100 x 100 x 10	358	103	0.92	O.K.
Brace	HBR2	2Ls -	100 x 100 x 10	223	118	0.13	O.K.
	VBR1	CT -	175 x 175 x 7 x 11	291	103	0.65	O.K.

CALCULATION REF 5.0 STEEL MEMBER DESIGN 5.2 **Design of Member** 5.2.1 C1 ------ START OF DESIGN OUTPUT OF MEMBER 206 ------MEMBER NO: 206 CRITICAL RATIO: 0.712(PASS) LOAD: 103 LOCATION (ft): 0.00 CONDITION: Eq. H1-1b SECTION: ST H600X200X11 (JAPANESE SECTIONS) UNIT: KIP FEET STRENGTH CHECKS: CRITICAL RATIO: 0.712(PASS) LOAD CASE: 103 LOCATION (ft): 0.00 CONDITION: Eq. H1-1b DESIGN FORCES: Fx: 42.27(C) Fy: 9.64 Fz: -0.03 My: 1.23E-01 Mx: 2.15E-04 Mz: 1.83E+02 SECTION PROPERTIES: AZZ: 7.027 AYY: 10.230 CW: 7182.915 S77· 153.780 SYY: 13.852 IZZ: 1816.297 IYY: 54 537 MATERIAL PROPERTIES: FYLD: 34.084 FU: 58.000 ACTUAL MEMBER LENGTH(ft): 9.514 PARAMETERS: KZ: 1.500 KY: 1.500 NSF: 1.000 SLF: 1.000 CSP: 1.000 SLENDERNESS: ACTUAL SLENDERNESS RATIO: 104.778 LOAD: 128 LOC.(ft): 0.000 ALLOWABLE SLENDERNESS RATIO: 200.000 Flanges of rolled I-shaped sections, plates projecting SECTION CLASS: FLANGE:/ 事: -ll-p: -|I|r: from rolled I-shaped sections, outstanding legs of pairs of angles WEB: connected with continuous contact, flanges of channels, COMPRESSION: Non-Slender 5.882 N/A 16 540 Slender 51.455 N/A 44.008 and flanges of tees Webs of doubly symmetric rolled and FLEXURE: Compact 5.882 11.223 29.535 h/tw Compact 51.455 111.053 168.352 built-up I-shaped sec-TENSION: FORCE: CAPACITY: RATIO: CRITERIA: LOAD CASE: LOCATION(ft): 0.000 YIELDING: 416.630 0.000 Eq. D2-1 101 0.000 RUPTURE: 0.000 591.993 0.000 Eq. D2-2 101 0.000 COMPRESSION: FORCE: CAPACITY: RATIO: CRITERIA: LOAD CASE: LOCATION(ft): MAJOR: 43.922 357.789 0.123 Eq. E7-1 103 9.514 E7.Members with MINOR: 43.922 244.324 0.180 Eq. E7-1 103 9.514 Slender Elements INTERMEDIATE: Ag: KL/r: Fcr: Fe: Pn: MAJOR: 50.086 597.507 19.723 29.270 116.979 MINOR: 20.414 104.778 19.988 26.730 408.021 FLEX TOR BUCK: FORCE: CAPACITY: RATIO: CRITERIA: LOAD CASE: LOCATION(ft): 43.922 351.644 0.125 Eq. E7-1 103 9.514 Pn: INTERMEDIATE: Ag: Fcr:

CALCULATION REF 19.792 28.767 587.245 SHEAR: FORCE: CAPACITY: RATIO: CRITERIA: LOAD CASE: LOCATION(ft): MAJOR(VZ): 0.047 86.044 0.001 Eq. G2-1 106 0.000 0.069 Eq. G2-1 0.000 MINOR(VY): 9.643 139.471 103 INTERMEDIATE: Aw: Cv: Kv: h/tw: Vn: MAJOR(VZ): 7.027 1.000 1.200 5.882 143.694 MINOR(VY): 10.230 1.000 0.000 51.455 209.207 UNIT: KIP FEET YIELDING: FORCE: CAPACITY: RATIO: CRITERIA: LOAD CASE: LOCATION(ft): MAJOR: -1.83E+02 3.01E+02 0.610 Eq. F2-1 103 0.000 MINOR: -3.51E-01 3.72E+01 0.009 Eq. F6-1 106 9.514 INTERMEDIATE: Mnr: My: Cb: MAJOR: 5.03E+02 0.00E+00 1.000 MINOR: 6.20E+01 0.00E+00 1.000 UNIT: KIP FEET LAT TOR BUCK: FORCE: CAPACITY: RATIO: CRITERIA: LOAD CASE: LOCATION(ft): MAJOR: -1.83E+02 2.81E+02 0.653 Eq. F2-2 103 INTERMEDIATE: Mn: Lp: Lr: Me: Cb: MAJOR: 4.70E+02 0.00E+00 1.000 7.080 21.587 9.514 UNIT: KIP FEET INTERACTION: RATIO: CRITERIA: LOAD CASE: LOCATION(ft): FLEXURE COMP: 0.160 Ea. H1-1b 108 6.343 FLEXURE TENS: 0.656 Eq. H1-1b 103 0.000 INTERMEDIATE: Mcx: Mcy: Mrx: Mry: Pc: FLEXURE COMP: 2.81E+02 3.72E+01 -3.02E+01 -1.23E-02 244.324 25 370 FLEXURE TENS: 2.81E+02 3.72E+01 -1.83E+02 1.23E-01 416.630 0.000 Chapter H. Design of Members for UNIT: KIP FEET Combined Forces and Torsion INTERACTION: RATIO: CRITERIA: LOAD CASE: LOCATION(ft): H1. Doubly and Signly Symmetric Members IN PLANE FLEX: 0.712 Eq. H1-1b 103 0.000 Subject to Flexure and Compression OUT PLANE FLEX: 0.670 Eq. H1-2 103 0.000 INTERMEDIATE: Pc: Pr: Mc: Mr: IN PLANE FLEX: 3.58E+02 4.23E+01 281.195 -183.481 OUT PLANE FLEX: 2.44E+02 4.23E+01 281.195 -183.481 ----- END OF DESIGN OUTPUT OF MEMBER 206 -----

NO. CALCULATION REF

3.7.2 LOAD COMBINATIONS

1) Load Combinations For Steel Member Design, Deflection, Soil bearing and Stability Check

) Load Combi	nation	s For	Stee	el Me	mbe	Des	ign,	Defle	ction	, Soil	bea	ring a	and S	itabil	ity Ci	neck	
Land	De	Dead		Live Crane			Wind				Seismic						
Load Combination	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Remark
	D	Е	Lr	L	Cd	Cv	Ct	CI	Wx+	Wx-	Wz+	Wz-	Ex+	Ex-	Ez+	Ez-	
LC #101	1.00	1.00															
LC #102	1.00	1.00		1.00		1.00	1.00	1.00									
LC #103	1.00	1.00	1.00			1.00	1.00	1.00									
LC #104	1.00	1.00	0.75	0.75		1.00	1.00	1.00									
LC #105	1.00	1.00				1.00			0.60								
LC #106	1.00	1.00				1.00				0.60							
LC #107	1.00	1.00				1.00					0.60						
LC #108	1.00	1.00				1.00						0.60					
LC #109	1.00	1.00				1.00	1.00		0.30								
LC #110	1.00	1.00				1.00	1.00			0.30							
LC #111	1.00	1.00				1.00	1.00				0.30						
LC #112	1.00	1.00				1.00	-1.00					0.30					
LC #113	1.00	1.00			1.00								0.70		0.21		
LC #114	1.00	1.00			1.00									0.70		0.21	
LC #115	1.00	1.00			1.00								0.21		0.70		
LC #116	1.00	1.00			1.00									0.21		0.70	
LC #117	1.00	1.00	0.75	0.75		0.75			0.45								
LC #118	1.00	1.00	0.75	0.75		0.75				0.45							
LC #119	1.00	1.00	0.75	0.75		0.75					0.45						
LC #120	1.00	1.00	0.75	0.75		0.75						0.45					
LC #121	1.00	1.00	0.75	0.75		0.75	0.75		0.23								
LC #122	1.00	1.00	0.75	0.75		0.75	0.75			0.23							
LC #123	1.00	1.00	0.75	0.75		0.75	0.75				0.23						
LC #124	1.00	1.00	0.75	0.75		0.75	-0.75					0.23					
LC #125	1.00	1.00		0.75	0.75								0.53		0.16		
LC #126	1.00	1.00		0.75	0.75									0.53		0.16	
LC #127	1.00	1.00		0.75	0.75								0.16		0.53		
LC #128	1.00	1.00		0.75	0.75									0.16		0.53	
LC #129	0.60	0.60							0.60								
LC #130	0.60	0.60								0.60							
LC #131	0.60	0.60									0.60						
LC #132	0.60	0.60										0.60					
LC #133	0.60	0.60											0.70		0.21		
LC #134	0.60	0.60												0.70		0.21	
LC #135	0.60	0.60											0.21		0.70		
LC #136	0.60	0.60												0.21		0.70	
	-				-												1

