Fabrication of calcite-coated rough-surface titanium using calcium nitrate

Sample Preparation

Commercial pure Ti (bare Ti) plates squares with were used as the coating substrates. $Ca(NO_3)_2 \cdot 4H_2O$ was dissolved in 99.5% ethanol (EtOH) to obtain 0.5, 1.0, and 2.0 mol/L $Ca(NO_3)_2 \cdot 4H_2O$ -EtOH solution as the Ca source.

Acid etching is performed on the Ti plate and then washed in ethanol (70%) with ultrasonic treatment for 5 min and then washed in distilled water with ultrasonic treatment for 5 min. After washing, Etched Ti was dryed at RT.

For the heated treatement for caronation, 5 μ L of 0.5–2.0 mol/L Ca(NO₃)₂·4H₂O-EtOH solutions were dropped onto the of Etched Ti and evaporated to obtain precipitate on the Etched Ti surface.

After the treatment by the $Ca(NO_3)_2\cdot 4H_2O$ -EtOH solutions, Etched Ti and a control sample of Et Ti without treatment were placed into an electric urnace with a modified step controller and heated from RT to 550 °C at 3 °C/min and then maintained like that for 5 h with a CO_2 gas flow of 100 mL/min. Subsequently, the samples were cooled down inside the furnace.

Analytical Results

The intensity of the calcite peaks increased by increasing the concentration of the Ca(NO3)2·4H2O-EtOH treatment solutions. In addition, after the heating, the peaks of TiO₂ phases (i.e., rutile and anatase) appeared.

In conclusion, XRD demonstrate that a calcite coating is formed on the Ti scaffold after the heat carbonation treatment using calcium nitrate solution.

(b), Etched Ti with heating, without a $Ca(NO_3)_2 \cdot 4H_2O$ solution (c), with 0.5 mol/L $Ca(NO_3)_2 \cdot 4H_2O$ solution (d), with 1.0 mol/L $Ca(NO_3)_2 \cdot 4H_2O$ solution (e), and with 2.0 mol/L $Ca(NO_3)_2 \cdot 4H_2O$ (f). •: calcite, +: TiO₂ (rutile and anatase).

Normal XRD pattern of bare Ti (a), Etched Ti

Reference: Shia, R., Sugiuraa, Y., Tsurua, K., Ishikawaa, K., (2018), *Fabrication of calcite-coated rough-surface titanium using calcium nitrate*, Surface & Coatings Technology 356, 72-79