A Multi-Parameter Methodology for Skin Factor Characterization: Applying Basic Statistics to Formation Damage Theory

Presented by

Alejandro Restrepo (BP)

Co Authors

Jorge Duarte (BP)

Yamile Sánchez (Nalco)

Background

· Different sources of water

Description of the Method

Skin Characterization Diagram_Cup Q6_Aug2007

Scale Index CaCO3 - Cumulative Frequency

1 Mineral Scaling Parameter, MSP

MSP1_Scale Index of CaCO3

MSP2 Scale Index of BaSO4

MSP3_Scale Index Iron Scales

MSP4_Calcium concentration on back flowed samples

MSP5_Barium concentration on back flowed samples

P90 = 6.2; **P50 = 1.8**; P10 = 0.6. Parameter = 15

P90 = 5.3; **P50 = 1.7**; P10 = 0.7. Parameter = 12

P90 = 4.0; P50 = 0.10; P10 = 0.05. Parameter = 26

P90 = 2200 ppm; **P50 = 1100 ppm**; P10 = 500 ppm. Parameter = 4400 ppm.

P90 = 26 ppm; **P50 = 8.0 ppm**; P10 = 5.2 ppm. Parameter = 46 ppm.

MSD ~ Scale Mass, Scale Tendency*

COMPOSITION OF A RECOVERED SCALE SAMPLE

Norm: CHS

2 Organic Scaling Parameter, OSP

OSP1_CII factor
OSP2_Chemical alterations factor
OSP3_Compositional factor
OSP4_Res P

P90 = 6.5; **P50 = 4.0**; P10 = 2.0. Parameter = 10.

P10 and P50 = 0; P90 = 300 bbl. Parameter = 550 bbl.

P90 = 176K MMSCF; P50 = 54K MMSCF; P10 = 8K MMSCF. Parameter = 260K MMSCF

P90 = 3300 d; **P50 = 2800 d**; P10 = 2300 d. Parameter = 4400 d.

OSD ~ (Asphaltene Stability) -1

$$CII = (Sat + As) / (Res + Ar)$$

As stability ~ P, Density
[CH1], ∆pH

But....precipitation does not necessarily implies deposition!

Norm: Petrophysics, CHS or Inhibition

Tracking of CII based on API / CII Correlation

3 Fines Blockage Parameter, FBP

FBP1_Aluminum Concentration on Produced Water
FBP2_Silicon Concentration on Produced Water
FBP3_Critical radius factor
FBP4_Mineralogical factor
FBP5_Crushed proppant factor

P90 = 0.62 ppm; P50 = 0.3 ppm; P10 = 0.05 ppm. Parameter = 2.0 ppm P90 = 38.5 ppm; **P50 = 20 ppm**; P10 = 6.0 ppm. Parameter = 50 ppm.

P90 = 10 ft; P50 = 3 ft; P10 = 0 ft. Parameter = 27 ft

Barco = 1.0; Mirador = 0.75; Guadalupe = 0.5

P90 = 14000 lb; P50 = 0 lb; P10 = 0 lb. Parameter = 27000 lb.

FD ~ Clays, V, Crushing

Norm: Petrophysics

4 Induced Damage Parameter, IDP

IDP1_Mud damage factor
IDP2_Polymer damage factor
IDP3_Invasion fluids factor

P90 = 720 ft; P50 = 340 ft; P10 = 110 ft. Parameter = 1200 ft. P90 = 2100 lb; P50 = 490 lb; P10 = 240 lb. Parameter = 3400 lb. P90 = 3700 bbl; **P50 = 1700 bbl**; P10 = 100 bbl. Parameter = 5600 bbl.

ID ~ Mud, Polymer & Fluids Invasion*

Vol of Mud Dynamic Losses

Bbl = 0.145* t (days) * netH (ft)

10 days, 150 ft = 215 bbl

Norm: Petrophysics, CHS, Velocity

*QAQC practices preventing sludge, emulsions and clay destabilization

5 Relative Permeability Parameter, KrP

KrP1_ Reservoir pressure
KrP2_Delta pressure from saturation pressure
KrP3_Water Intrusion factor

P90 = 3300 d; P50 = 2800 d; P10 = 2300 d. Parameter = 4400 d.

P90 = 1600 psi; **P50 = 950 psi**; P10 = 520 psi. Parameter = 1880 psi.

P90 = 3 MM bbl; P50 = 0.5 MM bbl; P10 = 0.2 MM bbl. Parameter = 20 MM bbl.

KrD ~ Phase saturations

Norm: CHS, Velocity, Petrophysics

5 Geomechanical Damage Parameter, GDP

GDP1_Fraction of Net Pay Exhibiting Natural Fractures GDP2_Drawdown Factor GDP3_kH from logs / kH from PBU Relationship GDP4_Permeability Module Factor

P90 = 0.8; P50 = 0.3; P10 = 0.1

P90 = 1200 psi; P50 = 3000 psi; P10 = 5900 psi

P90 = 1; P50 = 3; P10 = 20

P90 = 0.95; P50 = 0.3; P10 = 0.1

Average Skin Parameters per Field @ Jan 2007

Ranking of Wells according to the Organic Scale Parameter, OSP

Improved CHS Design

Back up

Scale Index CaCO3 - Cumulative Frequency

Scale Index Iron Related Scales

CII derived from SARA Analysis and API Correlation for all the Wells

Total Gas Produced

Total Gas Produced @ Jan 2007 (MMSCF)

Time Below Saturation Pressure (days)

Aluminum concentration derived from produced water analysis

Silicium concentration measured on produced water - all the wells

Calculated Critical Radiuses for all the wells

Frac Fines for all the Wells

Mud damage factor (associated to gross pay) - all the wells

Polymer Losses for all the Wells

Total Fluid Invading Formation (bbl)

Delta Pressure Below Saturation Pressure for all the Wells

QW for all the Wells

