Introduzione al linguaggio SQL

Giorgio Bar – giorgio.bar@to.infn.it

Scuola di Specializzazione in Fisica Medica – Università di Torino

Anno accademico 2023/2024 (anno solare 2024/2025)

Modifica dei dati in SQL

Modifica dei dati

- INSERT
 - Inserimento di nuove tuple in una tabella
- DELETE
 - Cancellazione di tuple da una tabella
- UPDATE
 - Aggiornamento degli attributi di una o più tuple

Istruzione INSERT

Consente di inserire una singola tupla all'interno di una tabella

```
INSERT INTO NomeTabella [ ListaAttributi ] VALUES ( ListaValori ) ;
```

- Omettere la lista degli attributi equivale a specificare tutti gli attributi, nell'ordine di creazione nella tabella (sconsigliato)
- Se non vengono specificati i valori di tutti gli attributi della tabella, agli attributi mancanti viene assegnato il valore di default o, in assenza di questo, il valore nullo

```
INSERT INTO FORNITORI ( CodF, NomeF, Rating, Sede )
VALUES ('F1', 'Atlante', 2, 'Torino');
```

 Esiste anche una seconda forma della INSERT che consente di inserire un insieme di tuple, estratte dalla base di dati con una istruzione SELECT.

Istruzione DELETE

 Consente di cancellare dalla tabella tutte le tuple che soddisfano la condizione indicata

```
DELETE FROM NomeTabella [ WHERE Condizione ] ;
```

- Se si omette la clausola WHERE vengono cancellate tutte le tuple dalla tabella (ma non la tabella).
- La condizione rispetta la sintassi della SELECT, al suo interno possono comparire interrogazioni nidificate che fanno riferimento ad altre tabelle.

Istruzione UPDATE

 Consente di aggiornare uno o più attributi delle tuple della tabella che soddisfano la condizione indicata

```
UPDATE NomeTabella
SET Attributo = Espressione { , Attributo = Espressione }
[ WHERE Condizione ] ;
```

- Se si omette la clausola WHERE la modifica viene eseguita su tutte le tuple della tabella
- L'espressione può far riferimento al valore corrente dell'attributo che verrà modificato.

```
UPDATE FORNITORI SET Rating = 2*Rating WHERE Sede = 'Torino');
```

DDL (Data Definition Language)

Gestione delle tabelle e vincoli di integrità

Creazione di una tabella

- Istruzione SQL DDL CREATE TABLE. Permette di
 - definire gli attributi (colonne) della tabella
 - definire vincoli di integrità sui dati della tabella

Creazione di una tabella

- Dominio
 - Definisce il tipo di dato dell'attributo
- Vincoli
 - Permette di specificare vincoli di integrità sull'attributo
- DEFAULT Valore
 - Permette di specificare il valore di default dell'attributo
 - DEFAULT < costante | NULL>
- AltriVincoli
 - Permette di specificare vincoli di integrità di tipo generale sulla tabella

Domini elementari (ANSI SQL)

- CHARACTER | CHAR [VARYING] [(Lunghezza)]
 - Stringhe di caratteri, anche di lunghezza variabile.
- NUMERIC | DECIMAL [(Precisione, Scala)]
 - Numerici esatti, in base decimale
 - Precisione indica il numero totale di cifre (digits)
 - Scala indica il numero di cifre dopo la virgola
 - 123.45 : la precisione è 5, la scala è 2
 - Per il dominio DECIMAL la precisione costituisce un requisito minimo, mentre per NUMERIC rappresenta un valore esatto.

Domini elementari (ANSI SQL)

INTEGER | INT | SMALLINT

 Numerici esatti, il numero di bit dipende dalla specifica implementazione di SQL.

FLOAT [(precisione)]

 Numerici approssimati, precisione indica il numero di bit utilizzati per memorizzare la mantissa del numero rappresentato in notazione scientifica.

REAL, DOUBLE PRECISION

Numerici approssimati, valori a singola o doppia precisione.
 La precisione dipende dalla specifica implementazione di SQL.

https://docs.oracle.com/database/121/SQLRF/sql_elements001.htm

Domini elementari (ANSI SQL)

DATE

Memorizza i valori che specificano anno, mese e giorno

o TIME

Memorizza i valori che specificano ora, minuti, secondi

- TIMESTAMP [(precisione)] [WITH TIME ZONE]
 - Memorizza i valori che specificano anno, mese, giorno, ora, minuti e secondi ed eventualmente la frazione di secondo
 - precisione indica il numero di cifre decimali utilizzate per memorizzare la frazione di secondo

Domini elementari

- BLOB | BINARY LARGE OBJECT (SQL:1999)
 - Memorizza qualsiasi dato che possa essere rappresentato come una sequenza di byte.
- CLOB | CHARACTER LARGE OBJECT (SQL:1999)
 - Memorizza sequenze di caratteri di elevate dimensioni (single-byte o multibyte character sets)

https://nils85.github.io/sql-compat-table/datatype.html

Creazione di una tabella

Creazione della tabella fornitori

```
Codf NomeF Rating Sede

CREATE TABLE FORNITORI (
    CodF VARCHAR(4) NOT NULL,
    NomeF VARCHAR(30) NOT NULL,
    Rating INTEGER,
    Sede VARCHAR(30)
);
```

Manca la definizione dei vincoli di integrità

Modifica della struttura

- Istruzione ALTER TABLE
 - Aggiunta di una nuova colonna

ALTER TABLE PRODOTTI ADD COLUMN TipoP INTEGER DEFAULT 42 NOT NULL;

Eliminazione di una colonna (attributo) esistente

ALTER TABLE PRODOTTI DROP COLUMN TipoP;

Definizione di un nuovo valore di default per una colonna (attributo)

ALTER TABLE PRODOTTI ALTER COLUMN Peso SET DEFAULT 0;

- Definizione di un nuovo vincolo di integrità
- Eliminazione di un vincolo di integrità

Cancellazione di una tabella

```
DROP TABLE NomeTabella [ RESTRICT | CASCADE ] ;
```

- Tutte le righe della tabella vengono eliminate insieme alla tabella
- RESTRICT (opzione di default)
 - La tabella non viene rimossa se è presente in qualche definizione di vincolo o vista
- CASCADE
 - Se la tabella compare in qualche definizione di vista, anche questa viene rimossa

https://dev.mysql.com/doc/refman/8.0/en/drop-table.html The RESTRICT and CASCADE keywords do nothing. They are permitted to make porting easier from other database systems.

Dizionario dei dati

- Il dizionario dei dati contiene i metadati (informazioni sui dati) di una base di dati relazionale:
 - Descrizione di tutte le strutture (tabelle, indici, viste) della base di dati
 - Stored procedure SQL
 - Privilegi degli utenti
 - Statistiche su tabelle, indici, viste e sulla crescita della base di dati
- Gestito direttamente dal DBMS relazionale, le informazioni sono memorizzate in tabelle della base dati (diverse per ogni DBMS).
- Può essere interrogato mediante istruzioni SQL

Integrità dei dati

- I dati all'interno di una base di dati sono corretti se soddisfano un insieme di regole dette vincoli di integrità
- Le operazioni di modifica dei dati definiscono un nuovo stato della base dati, non necessariamente corretto
- La verifica della correttezza della stato di una base di dati può essere effettuata
 - dalle procedure applicative, che effettuano tutte le verifiche necessarie
 - mediante la definizione di trigger
 - mediante la definizione di vincoli di integrità sulle tabelle

Procedure applicative

- Tutte le verifiche di correttezza necessarie sono previste all'interno di ogni applicazione
- Vantaggi
 - approccio efficiente
- Svantaggi
 - è possibile "aggirare" le verifiche interagendo direttamente con il DBMS
 - un errore di codifica può avere un effetto significativo sulla base di dati
 - la conoscenza delle regole di correttezza è "nascosta" nelle applicazioni

Trigger

- Procedure memorizzate nel dizionario dati del sistema, quando si verifica un evento di modifica dei dati sotto il controllo del trigger, la procedura viene eseguita automaticamente
- Vantaggi
 - permettono di definire vincoli di integrità di tipo complesso, vengono normalmente utilizzati insieme alla definizione di vincoli sulle tabelle
 - unico punto centralizzato di verifica
 - impossibilità di "aggirare" la verifica dei vincoli
- Svantaggi
 - applicativamente complessi
 - possono rallentare l'esecuzione delle applicazioni

Vincoli di integrità sulle tabelle

- Definiti nelle istruzioni CREATE o ALTER TABLE e memorizzati nel dizionario dati di sistema. Durante l'esecuzione di una qualsiasi operazione di modifica dei dati il DBMS verifica in modo automatico che i vincoli siano rispettati
- Vantaggi
 - definizione dichiarativa dei vincoli, la cui verifica è affidata al sistema
 - unico punto centralizzato di verifica
 - impossibilità di "aggirare" la verifica dei vincoli
- Svantaggi
 - possono rallentare l'esecuzione delle applicazioni
 - non è possibile definire tipologie arbitrarie di vincoli, ad esempio dei vincoli su dati aggregati

Vincoli di integrità

I vincoli di integrità possono essere specificati in modo dichiarativo, affidando al sistema la verifica della loro consistenza.

- Vincoli di tabella: restrizioni sui dati permessi nelle colonne di una tabella
- Vincoli di integrità referenziale: gestione dei riferimenti tra tabelle diverse
 - basati sul concetto di chiave esterna

https://www.postgresql.org/docs/9.3/ddl-constraints.html

Vincoli di tabella

- Sono definiti su una o più colonne di una tabella
- Sono verificati dopo ogni istruzione SQL che opera sulla tabella soggetta al vincolo (inserimento di nuovi dati o modifica del valore di colonne soggette al vincolo)
- Se il vincolo è violato, l'istruzione SQL che ha causato la violazione genera un errore di esecuzione
- Tipologie di vincolo
 - Chiave primaria
 - Ammissibilità del valore nullo
 - Unicità
 - Vincoli generali di tupla

Chiave primaria

- Insieme di attributi che identifica in modo univoco le righe di una tabella.
 Può essere specificata una sola chiave primaria per una tabella
- Definizione della chiave primaria

```
CREATE TABLE FORNITORI (
           VARCHAR(4) PRIMARY KEY,
    CodF
    NomeF
           VARCHAR(30),
    Rating INTEGER,
    Sede
                                            Se composta da
           VARCHAR(30)
                                            un solo attributo
CREATE TABLE ORDINI (
    CodF VARCHAR(4),
                                            Se composta da
    CodP VARCHAR(6),
                                            uno o più attributi
    Qta
           INTEGER,
    PRIMARY KEY ( CodF, CodP )
);
```

Ammissibilità del valore nullo

- Il valore NULL indica l'assenza di informazioni
- Il vincolo NOT NULL indica che è obbligatorio specificare sempre un valore per l'attributo

```
NomeAttributo Dominio NOT NULL

CREATE TABLE FORNITORI (
    CodF   VARCHAR(4) NOT NULL,
    NomeF   VARCHAR(30) NOT NULL,
    Rating INTEGER,
    Sede   VARCHAR(30),
    PRIMARY KEY ( CodF )
);
```

Unicità

- Vincolo UNIQUE. Un attributo o un insieme di attributi non può assumere lo stesso valore in righe diverse della tabella
- Ma è ammessa la ripetizione del valore NULL (considerato sempre diverso)
- Per un solo attributo

```
NomeAttributo Dominio UNIQUE
```

Per uno o più attributi

```
UNIQUE ( ElencoAttributi )
```

Vincoli generali di tupla

- Permettono di esprimere condizioni di tipo generale su ogni tupla
 NomeAttributo Dominio CHECK (Condizione)
- Possono essere indicati come condizione i predicati specificabili nella clausola WHERE, la base dati è corretta se la condizione è vera

```
CREATE TABLE FORNITORI (
   CodF   VARCHAR(4) NOT NULL,
   NomeF   VARCHAR(30) NOT NULL UNIQUE,
   Rating   INTEGER CHECK ( Rating > 0 ),
   Sede   VARCHAR(30),
   PRIMARY KEY ( CodF )
);
```

Vincoli di integrità referenziale

Permettono di gestire il legame tra tabelle mediante il valore degli attributi

```
FORNITORI (<a href="mailto:codf">codf</a>, NomeF, Rating, Sede)

ORDINI (<a href="mailto:codf">codf</a>, <a href="codf">codf</a>, <a href="mailto:Qta">Qta</a>)
```


- La colonna CodF di ORDINI può assumere solo valori presenti nella colonna CodF di FORNITORI
 - CodF in ORDINI: colonna referenziante (o chiave esterna)
 - CodF in FORNITORI: colonna referenziata (tipicamente una chiave primaria)

https://www.postgresql.org/docs/9.3/ddl-constraints.html

Definizione della chiave esterna

 La chiave esterna è definita nell'istruzione CREATE TABLE della tabella referenziante

```
FOREIGN KEY ( ElencoAttributiReferenzianti )
REFERENCES NomeTabella [ ( ElencoAttributiReferenziati ) ]
```

 Se gli attributi referenziati hanno lo stesso nome di quelli referenzianti, non è obbligatorio specificarli

```
CREATE TABLE ORDINI (
    CodF VARCHAR(4),
    CodP VARCHAR(6),
    Qta INTEGER,
    PRIMARY KEY ( CodF, CodP ),
    FOREIGN KEY (CodF) REFERENCES FORNITORI(CodF),
    FOREIGN KEY (CodP) REFERENCES PRODOTTI(CodP)
);
```

Politiche di gestione dei vincoli

- I vincoli di integrità sono verificati dopo ogni istruzione SQL che potrebbe causarne la violazione
- Non sono ammesse operazioni di inserimento e modifica sulla tabella referenziante che violino il vincolo, vale a dire attributi referenzianti con valori non presenti nella tabella referenziata

Politiche di gestione dei vincoli

```
FOREIGN KEY ( ElencoAttributiReferenzianti )
REFERENCES NomeTabella [ ( ElencoAttributiReferenziati ) ]
[ ON UPDATE < CASCADE | SET DEFAULT | SET NULL | NO ACTION > ]
[ ON DELETE < CASCADE | SET DEFAULT | SET NULL | NO ACTION > ]
```

- Operazioni di modifica o cancellazione sulla tabella referenziata causano sulla tabella referenziante:
 - CASCADE: propagazione dell'operazione di aggiornamento o cancellazione
 - SET NULL / SET DEFAULT: null o valore di default negli attributi referenzianti delle tuple che hanno valori non più presenti nella tabella referenziata
 - NO ACTION: non si esegue l'azione invalidante (opzione di default)

Politiche di gestione dei vincoli

```
CREATE TABLE ORDINI (
   Codf VARCHAR(4),
   CodP VARCHAR(6),
          INTEGER CHECK (Qta IS NOT NULL AND Qta >0),
    Qta
    PRIMARY KEY ( CodF, CodP ),
    FOREIGN KEY (Codf) REFERENCES FORNITORI(Codf)
           ON DELETE NO ACTION
           ON UPDATE CASCADE,
    FOREIGN KEY (CodP) REFERENCES PRODOTTI(CodP)
           ON DELETE NO ACTION
           ON UPDATE CASCADE
```

Per approfondire

Paolo Atzeni, Stefano Ceri, Piero Fraternali
 Basi di dati. Modelli e linguaggi di interrogazione
 McGraw-Hill Education
 ISBN: 8838668000

- Database SQL Language Reference https://docs.oracle.com/database/121/SQLRF/
- PostgreSQL 13.2 Documentation
 https://www.postgresql.org/docs/13/index.html

Per approfondire 37

Estensioni SQL per interrogazioni OLAP

- Nuove funzioni aggregate caratterizzate da:
 - finestra di calcolo, all'interno della quale specificare funzioni aggregate per la definizione di totali parziali e cumulativi e il calcolo della media mobile
 - possibilità di ricavare la posizione nell'ordinamento (ranking)
- Operatori per il calcolo di più raggruppamenti (GROUP BY) diversi nello stesso momento

https://www.oracle.com/database/technologies/olap.html

Estensioni SQL per interrogazioni OLAP

Finestra di calcolo caratterizzata da:

- partizionamento: divide le righe in gruppi, ma senza collassarle (a differenza della GROUP BY)
- ordinamento delle righe, separatamente all'interno di ogni partizione
- finestra di aggregazione: definisce il gruppo di righe su cui calcolare l'aggregato, per ciascuna riga della partizione.

```
SELECT Nazione, Mese, Importo,
AVG(Importo) OVER (PARTITION BY Nazione
ORDER BY Mese
ROWS 2 PRECEDING) AS MediaMobile
FROM Vendite;
```

Basi di dati spaziali

 Oracle's spatial database https://www.oracle.com/database/spatial/

PostGIS spatial database extender for PostgreSQL

https://postgis.net/