Automata and temporal logic

— a biased overview —

Stephan Merz

http://www.loria.fr/~merz/

INRIA Lorraine & LORIA, Nancy

Plan of this talk

• from tableaux to Büchi automata

alternating automata for LTL

branching-time logics

Plan of this talk

• from tableaux to Büchi automata

a crash course in pre-history

alternating automata for LTL

some innovations since the 1990s

branching-time logics

nice theory, but does it work?

Tableaux for modal logic

decomposition of formulas : top-down

• closure criteria : bottom-up, determine satisfiability

Tableaux for modal logic

closure criteria: bottom-up, determine satisfiability

Tableaux for modal logic

decomposition of formulas : top-down

rules reflect properties of accessibility relation

$$\frac{\Gamma, \Box A}{\Gamma, A} \quad \Box \text{ reflexive } \qquad \frac{\Gamma}{\Gamma, \Diamond \top} \quad \Box \text{ serial }$$

• closure criteria: bottom-up, determine satisfiability

$$\mathbf{G}\,\varphi \;\leftrightarrow\; \varphi \wedge \mathbf{X}\,\mathbf{G}\,\varphi \qquad \qquad \mathbf{F}\,\varphi \;\leftrightarrow\; \varphi \vee \mathbf{X}\,\mathbf{F}\,\varphi$$

$$\mathbf{F} \varphi \leftrightarrow \varphi \vee \mathbf{X} \mathbf{F} \varphi$$

$$\mathbf{G}\,\varphi \leftrightarrow \varphi \wedge \mathbf{X}\,\mathbf{G}\,\varphi \qquad \qquad \mathbf{F}\,\varphi \leftrightarrow \varphi \vee \mathbf{X}\,\mathbf{F}\,\varphi$$

$$\mathbf{F} \varphi \leftrightarrow \varphi \vee \mathbf{X} \mathbf{F} \varphi$$

LTL tableaux contain loops

$$\begin{array}{c}
\mathbf{GF}p \\
\hline
\mathbf{F}p, \mathbf{XGF}p \\
\hline
\mathbf{XF}p, \mathbf{XGF}p \\
\hline
\mathbf{F}p, \mathbf{GF}p
\end{array}$$

$$\mathbf{G}\,\varphi \;\leftrightarrow\; \varphi \wedge \mathbf{X}\,\mathbf{G}\,\varphi \qquad \qquad \mathbf{F}\,\varphi \;\leftrightarrow\; \varphi \vee \mathbf{X}\,\mathbf{F}\,\varphi$$

LTL tableaux contain loops

$$\begin{array}{c|c}
 & GFp \\
\hline
 & Fp, XGFp \\
\hline
 & p, XGp \\
\hline
 & Fp, XGFp \\
\hline
 & Fp, GFp \\
\hline
\end{array}$$

distinguish "good" from "bad" loops

$$\mathbf{G} \varphi \leftrightarrow \varphi \wedge \mathbf{X} \mathbf{G} \varphi$$

$$\mathbf{F}\, \varphi \; \leftrightarrow \; \varphi \lor \mathbf{X}\, \mathbf{F}\, \varphi$$

LTL tableaux contain loops

$$\begin{array}{c}
\mathbf{GF}p \\
\mathbf{F}p, \mathbf{XGF}p \\
\mathbf{XF}p, \mathbf{XGF}p \\
\mathbf{F}p, \mathbf{GF}p
\end{array}$$

distinguish "good" from "bad" loops

ω -automata

translation

$$\varphi \mapsto \mathcal{A}_{\varphi}$$

$$arphi \mapsto \mathcal{A}_{arphi} \qquad \mathcal{L}(\mathcal{A}_{arphi}) = ext{models of } arphi$$

emptiness checking
$$\mathcal{L}(\mathcal{A}) \stackrel{?}{=} \emptyset$$
 (efficient, if possible)

$$\mathcal{L}(\mathcal{A}) \stackrel{?}{=} \emptyset$$

ω -automata

separate concerns: logic + combinatorics

translation

$$\varphi\mapsto \mathcal{A}_{\varphi}$$

$$\varphi \mapsto \mathcal{A}_{\varphi} \qquad \mathcal{L}(\mathcal{A}_{\varphi}) = \text{models of } \varphi$$

emptiness checking

$$\mathcal{L}(\mathcal{A}) \stackrel{?}{=} \mathbb{Z}$$

 $\mathcal{L}(\mathcal{A}) \stackrel{?}{=} \emptyset$ (efficient, if possible)

(*T* transition system)

useful for satisfiability and model checking

$$\mathcal{T} \models \varphi$$

iff

every run of \mathcal{T} satisfies φ

iff

$$\mathcal{L}(\mathcal{T} \times \mathcal{A}_{\neg \varphi}) = \emptyset$$

Büchi automata

$$\Sigma$$
 alphabet

$$I \subseteq Q$$
 initial locations

$$\delta \subseteq Q \times \Sigma \times Q$$
 transition relation

$$F \subseteq Q$$
 accepting locations

• run of A over ω -word

$$q_0 \xrightarrow{a_0} q_1 \xrightarrow{a_1} q_2 \xrightarrow{a_2} \dots$$

initialization
$$q_0 \in I$$

consecution
$$(q_i, a_i, q_{i+1}) \in \delta$$

acceptance
$$q_i \in F$$
 for infinitely many i

Büchi automata: examples

• infinitely often 'a'

Büchi automata: examples

infinitely often 'a'

infinitely often 'ab'

Büchi automata: examples

infinitely often 'a'

infinitely often 'ab'

eventually only 'a'

no equivalent deterministic Büchi automaton

Büchi automata: results

emptiness checking

$$\mathcal{L}(\mathcal{A}) \neq \emptyset$$
 iff $q_0 \stackrel{\Sigma^*}{\Longrightarrow} q \stackrel{\Sigma^+}{\Longrightarrow} q$ for some $q_0 \in I, q \in F$

" \Rightarrow " any accepting run contains repetition of some $q \in F$

Büchi automata: results

emptiness checking

$$\mathcal{L}(\mathcal{A}) \neq \emptyset$$
 iff $q_0 \stackrel{\Sigma^*}{\Longrightarrow} q \stackrel{\Sigma^+}{\Longrightarrow} q$ for some $q_0 \in I, q \in F$

"\(='' \) obvious

"\(\Rightarrow'' \) any accepting run contains repetition of some $q \in F$

\(\sim \) decidable in linear time (NLOGSPACE)

Büchi automata: results

emptiness checking

$$\mathcal{L}(\mathcal{A}) \neq \emptyset$$
 iff $q_0 \stackrel{\Sigma^*}{\Longrightarrow} q \stackrel{\Sigma^+}{\Longrightarrow} q$ for some $q_0 \in I, q \in F$

"\(='' \) obvious

"\(\Rightarrow'' \) any accepting run contains repetition of some $q \in F$

\(\sim \) decidable in linear time (NLOGSPACE)

closure properties

```
union standard NFA construction intersection "marked" product complement difficult (Safra 1988: O(2^{n \log n}) locations)
```

Büchi automata: variants

• Generalized Büchi $\mathcal{A} = (\Sigma, Q, I, \delta, \{F_1, \dots, F_n\})$

acceptance infinitely many $q_i \in F_k$, for all k

intersection simple product construction

translate to Büchi automaton using counter \pmod{n}

Büchi automata: variants

• Generalized Büchi $\mathcal{A} = (\Sigma, Q, I, \delta, \{F_1, \dots, F_n\})$

acceptance infinitely many $q_i \in F_k$, for all k

intersection simple product construction

translate to Büchi automaton using counter \pmod{n}

• Muller automaton $\mathcal{A} = (\Sigma, Q, I, \delta, \mathcal{F})$

acceptance set of locations visited infinitely often $\in \mathcal{F}$

Streett automata exponentially more succinct than Büchi

From LTL to GBA

- basic insight
 - ullet let $\mathcal V$ be set of atoms containing those of formula φ
 - interpret temporal structure as ω -word over alphabet $2^{\mathcal{V}}$
 - models of φ define ω -language $\mathcal{L}(\varphi)$

From LTL to GBA

- basic insight
 - let \mathcal{V} be set of atoms containing those of formula φ
 - interpret temporal structure as ω -word over alphabet $2^{\mathcal{V}}$
 - models of φ define ω -language $\mathcal{L}(\varphi)$
- construct A_{φ} such that $\mathcal{L}(A_{\varphi}) = \mathcal{L}(\varphi)$

locations sets of "subformulas" of φ promised to be true

initial locations locations promising φ

transition relation non-temporal formulas: ensure satisfaction

temporal formulas: apply recursion laws

accepting locations defined from "eventualities" $\mathbf{F} \psi$, $\psi_1 \mathbf{U} \psi_2$

GBA for $GFp \wedge GF \neg p$

$$oxed{\mathbf{G}\,\mathbf{F}\,p\wedge\mathbf{G}\,\mathbf{F}\,
eg p}$$

GBA for $GFp \wedge GF \neg p$

GBA for $GFp \wedge GF \neg p$

tableau states yield locations of GBA

• follow paths in tableau to obtain GBA transitions

• acceptance conditions from formulas $\mathbf{F} p$ and $\mathbf{F} \neg p$

Practical considerations

- size of A_{φ} exponential in length of φ
 - minimizing Büchi automata is hard
 - analyze SCCs to reduce automaton size

[Gastin & Oddoux, 2001]

apply simulation relations to reduce automaton size

[Etessami et al, 2000, 2001]

worst-case complexity of LTL model checking

$$O(|\mathcal{T}| \cdot |\mathcal{A}_{\neg \varphi}|) = O(|\mathcal{T}| \cdot 2^{|\varphi|})$$

State explosion problem

- $\mathcal{T} \times \mathcal{A}_{\neg \varphi}$ is too big to be computed effectively
- problems start around $10^6 10^7$ states
- ullet partial remedies (mainly concerning \mathcal{T})

```
reduce ignore irrelevant parts of \mathcal{T} \times \mathcal{A}_{\neg \varphi}
```

on-the-fly interleave construction and verification

partial-order identify equivalent interleavings

compress construct compact representations of $\mathcal{T} \times \mathcal{A}_{\neg \varphi}$

abstract "coarser" representation of T

Extensions

Linear-time logics

PLTL straightforward variant [Lichtenstein&Pnueli, 1984]

NLTL doubly exponential [Laroussinie et al, 2002]

QPTL non-elementary [Sistla et al, 1987]

Branching-time logics

satisfiability similar theory around tree automata model checking tree automata introduce exponential blowup

Summing up

- mature theory and efficient implementations
- logic and combinatorics nicely decoupled
- disadvantages
 - somewhat clumsy construction
 - automaton generation can be bottleneck
 - branching-time model checking does not fit into framework

Alternating automata (for LTL)

$$\triangle$$
 $\mathcal{A} = (\mathcal{V}, \mathcal{Q}, q_0, \delta, \mathcal{F})$

 $q_0 \in Q$

 $\delta: Q \to \mathcal{B}^+(\overline{\mathcal{V}} \cup Q)$ transition function

finite set of atomic propositions

finite set of locations $(\mathcal{V} \cap Q = \emptyset)$

initial location

acceptance condition (e.g., Büchi)

Alternating automata (for LTL)

$$\triangle$$
 $\mathcal{A} = (\mathcal{V}, \mathcal{Q}, q_0, \delta, \mathcal{F})$

finite set of atomic propositions

finite set of locations $(V \cap Q = \emptyset)$

$$q_0 \in Q$$

initial location

$$\delta: Q \to \mathcal{B}^+(\overline{\mathcal{V}} \cup Q)$$
 transition function

acceptance condition (e.g., Büchi)

interpretation of transitions

$$\delta(q_1) = v \wedge \neg w \wedge q_2$$

$$\vee \neg v \wedge (q_4 \vee (q_1 \wedge q_3))$$

$$\vee \neg v \wedge w$$

Alternating automata: runs

• run of A over temporal structure $s_0s_1...$ is a dag

initialization dag rooted at initial location q_0

consecution current state and next dag slice satisfy transitions

Alternating automata: runs

• run of A over temporal structure $s_0s_1...$ is a dag

initialization dag rooted at initial location q_0 consecution current state and next dag slice satisfy transitions acceptance must hold for all infinite paths through the dag

• language: ω -words for which there is accepting dag

Alternating automata: results

- no more powerful than Büchi automata
 - subset construction for translation [Miyano&Hayashi 1984]
 - exponentially more succinct
 - offer both non-determinism and parallelism
- closure properties
 - union and intersection: change initial state
 - complement also simple:
 dualize transition relation and modify acceptance condition

Weak alternating automata

• ranking function on states $\rho: Q \to \mathbb{N}$

 $\rho(q') \le \rho(q)$ whenever q' occurs in $\delta(q)$

"limit rank" every infinite path eventually at constant rank

acceptance limit rank is even

Weak alternating automata

• ranking function on states $\rho: Q \to \mathbb{N}$

 $\rho(q') \le \rho(q)$ whenever q' occurs in $\delta(q)$

"limit rank" every infinite path eventually at constant rank

acceptance limit rank is even

From LTL to WAA

• construct A_{φ} such that $\mathcal{L}(A_{\varphi}) = \mathcal{L}(\varphi)$

locations a location ψ for every subformula ψ

initial location φ corresponding to φ

transitions non-temporal formulas: ensure satisfaction

temporal formulas: apply recursion laws

acceptance ensure odd rank for $\mathbf{F} \psi$, $\psi_1 \mathbf{U} \psi_2$

From LTL to WAA

• construct A_{φ} such that $\mathcal{L}(A_{\varphi}) = \mathcal{L}(\varphi)$

locations a location ψ for every subformula ψ

initial location φ corresponding to φ

transitions non-temporal formulas: ensure satisfaction

temporal formulas: apply recursion laws

acceptance ensure odd rank for $\mathbf{F} \psi$, $\psi_1 \mathbf{U} \psi_2$

location	δ	ρ
ψ non-temporal	ψ	0
$\mathbf{X}\psi$	ψ	$ ho(oldsymbol{\psi})$
$\mathbf{G}\psi$	$\delta(\pmb{\psi}) \wedge \mathbf{G}\pmb{\psi}$	$\geq ho(oldsymbol{\psi})$ even
$\mathbf{F}\psi$	$\delta(\pmb{\psi}) \vee \mathbf{F}\pmb{\psi}$	$\geq ho(oldsymbol{\psi})$ odd
$\psi_1 \stackrel{ extstyle \wedge}{ee} \psi_2$	$\delta(\psi_1) \stackrel{\wedge}{\vee} \delta(\psi_2)$	$\max(\rho(\psi_1), \rho(\psi_2))$

Examples

$\mathbf{GF}p$

Examples

$\mathbf{G}\mathbf{F}p$

$p \mathbf{U} (q \mathbf{U} r)$

Linear WAA

 \rightsquigarrow right-hand side: either strict subformulas of φ or $\mathbf{X} \varphi$

Linear WAA

- format of recursion laws for LTL $\varphi \equiv \dots$
 - \rightsquigarrow right-hand side: either strict subformulas of φ or $\mathbf{X} \varphi$
- linear WAA: graph has only trivial loops
 - $\Rightarrow q = q'$ holds whenever $q \Longrightarrow^+ q'$ and $q' \Longrightarrow^+ q$

Linear WAA

- format of recursion laws for LTL $\varphi \equiv \dots$
 - \rightsquigarrow right-hand side: either strict subformulas of φ or $\mathbf{X} \varphi$
- linear WAA: graph has only trivial loops
 - \Rightarrow q = q' holds whenever $q \Longrightarrow^+ q'$ and $q' \Longrightarrow^+ q$
- run dag contains no "rising edges"
 - → non-accepting infinite path must be trapped at odd state

Emptiness checking

• traditionally: transformation to Büchi automaton

[Gastin&Oddoux 2001, Fritz&Wilke 2003]

Emptiness checking

- traditionally: transformation to Büchi automaton
 [Gastin&Oddoux 2001, Fritz&Wilke 2003]
- direct non-emptiness criterion for linear WAA

Emptiness checking

- traditionally: transformation to Büchi automaton
 [Gastin&Oddoux 2001, Fritz&Wilke 2003]
- direct non-emptiness criterion for linear WAA

 $\Rightarrow s_0 s_1 (s_2 s_3 s_4)^{\omega}$ will be accepted by \mathcal{A}

Practical considerations

- prototype implementation
 - encoding of run dags for SAT solvers
 - direct search based on Tarjan's algorithm
- extension to model checking as for Büchi automata
- emptiness checking exponential in size of WAA
 - minimizing WAAs is hard (but automata are small)
 - simple ad-hoc optimizations
 - apply simulation relations

[Fritz&Wilke 2003]

• model checking problem $\mathcal{T} \models \varphi$ consider \mathcal{T} as a whole, not its computations

- model checking problem $\mathcal{T} \models \varphi$ consider \mathcal{T} as a whole, not its computations
- automata-theoretic approach

[Kupferman et al, 1999]

- lacksquare alternating tree automaton $\mathcal{A}_{\mathcal{D}, \varphi}$
 - \rightsquigarrow recognize the models of φ with out-degrees in $\mathcal D$

- model checking problem $\mathcal{T} \models \varphi$ consider \mathcal{T} as a whole, not its computations
- automata-theoretic approach

[Kupferman et al, 1999]

- alternating tree automaton $\mathcal{A}_{\mathcal{D},\varphi}$ \rightsquigarrow recognize the models of φ with out-degrees in \mathcal{D}
- alternating 1-letter word automaton $\mathcal{A}_{\mathcal{T}, \varphi} = \mathcal{T} \times \mathcal{A}_{\mathcal{D}, \varphi}$ \rightsquigarrow simulate run of \mathcal{T} over $\mathcal{A}_{\mathcal{D}, \varphi}$

- model checking problem $\mathcal{T} \models \varphi$ consider \mathcal{T} as a whole, not its computations
- automata-theoretic approach

[Kupferman et al, 1999]

- alternating tree automaton $\mathcal{A}_{\mathcal{D},\varphi}$ \rightsquigarrow recognize the models of φ with out-degrees in \mathcal{D}
- alternating 1-letter word automaton $\mathcal{A}_{\mathcal{T}, \varphi} = \mathcal{T} \times \mathcal{A}_{\mathcal{D}, \varphi}$ \rightsquigarrow simulate run of \mathcal{T} over $\mathcal{A}_{\mathcal{D}, \varphi}$
- either $\mathcal{L}(\mathcal{A}_{\mathcal{T},\varphi}) = \{\mathcal{T}\}$ or $\mathcal{L}(\mathcal{A}_{\mathcal{T},\varphi}) = \emptyset$ \rightsquigarrow decide emptiness problem for $\mathcal{A}_{\mathcal{T},\varphi}$

Branching time: results

- \bullet CTL and alternation-free μ -calculus

 - ullet size linear in $|\varphi|$ and $|\mathcal{T}|$
 - emptiness problem for 1-letter WAAs linear

Branching time: results

- ullet CTL and alternation-free μ -calculus
 - \bigcirc $\mathcal{A}_{\mathcal{D},\varphi}$ and $\mathcal{A}_{\mathcal{T},\varphi}$ are WAAs
 - ullet size linear in $|\varphi|$ and |T|
 - emptiness problem for 1-letter WAAs linear
- full μ -calculus
 - \triangle $\mathcal{A}_{\mathcal{D},\varphi}$ and $\mathcal{A}_{\mathcal{T},\varphi}$ are parity automata
 - ullet size linear in $|\varphi|$ and $|\mathcal{T}|$
 - emptiness problem for 1-letter parity automata in NP

Branching time: results

- \bullet CTL and alternation-free μ -calculus
 - \bigcirc $\mathcal{A}_{\mathcal{D},\varphi}$ and $\mathcal{A}_{\mathcal{T},\varphi}$ are WAAs
 - ullet size linear in $|\varphi|$ and $|\mathcal{T}|$
 - emptiness problem for 1-letter WAAs linear
- full μ -calculus
 - \triangle $\mathcal{A}_{\mathcal{D},\varphi}$ and $\mathcal{A}_{\mathcal{T},\varphi}$ are parity automata
 - ullet size linear in $|\varphi|$ and $|\mathcal{T}|$
 - emptiness problem for 1-letter parity automata in NP
- matches time complexity, tightens space complexity

Thank you — questions?