Bigger GPUs and Bigger Nodes

Carl Pearson (pearson@illinois.edu)
PhD Candidate, advised by Professor Wen-Mei Hwu

Electrical & Computer Engineering COLLEGE OF ENGINEERING

Outline

Experiences from working with domain experts to develop GPU codes on Blue Waters

- Kepler and Volta GPUs
- HPC Kepler to Volta Speedup
- Blue Waters, Summit, Sierra
- Intra-Node Communication Performance

GPU Architecture Bird's Eye View (not to scale)

Kepler

	Number of SMs	Maximum Blocks / SM	Shared Memory / SM	Registers / SM	Single Precision Rate	Global Memory Bandwidth
K20X (Kepler)	15	16	48 KB	64 K	3.94 TFLOPS	250 GB/s
V100 (Volta)	80	32	96 KB	64 K	15 TFLOPS	900 GB/s

K20x to V100: Architectural Parameters

HPC Case Studies

AWP-ODC

ChaNGa

Tom Jordan, Yifeng Cui

Southern California Earthquake Center

University of Southern California

Tom Quinn

University of Washington

Anelastic Wave propagation

Charm N-body Gravity Solver

Solves a velocity-stress formulation of the 3D wave equation

Collisionless N-body simulations

AWP and ChaNGa V100 Speedup

	Vs. P100	Vs. K20x (Blue Waters)			
ChaNGa	3.28	4.73			
AWP	1.71	5.19			

AWP Detail

SP over p100	SP over K20X
1.711	5.188

	K2	!0x	V100		
	Kernel 1	Kernel 2	Kernel 1	Kernel 2	
GPU Time	72.4 %	27.5 %	70.1 %	29.3 %	
Mem BW	145.7 GB/s	136.1 GB/s	726.7 GB/s	600.2 GB/s	
	Latency-Limited		Bandwidth-Limited		

AWP Optimizations

Large Blocks to Capture Reuse

Reuse in fast memory

Blocks / SM limited by registers and SMs

Uneven Architectural Change

Many more SMs

More memory per SM

Same registers per SM

Unclear Tradeoff

Fine-grained parallelism: more work for GPU, less reuse

Takeaways

Laissez-faire Approach:

- 3-5x kernel speedup over optimized Kepler
- 3-5x interconnect speedup over optimized Kepler
- Larger problem to fill GPU

Redesign/Rewrite Approach:

- Finer-grained parallelism to fill GPU
- Harder to capture reuse (key to performance)

Nodes are Getting Bigger

	BW	Summit ¹ (ORNL)					
CPU	1x AMD64 32 threads 16 FP		POWER9 88 threads 22 FP		POWER9 88 threads 22 FP		
GPU	K20X 6 GB 4 TF	V100 16 GB 15 TF	V100 16 GB 15 TF	V100 16 GB 15 TF	V100 16 GB 15 TF	V100 16 GB 15 TF	V100 16 GB 15 TF
Accelerator Interconnect (unidirectional)	PCIe 2x16 8 GB/s	NVLink 2.0 x2 50 GB/s					
Memory	32GB	512 GB					

Blue Waters XK and Summit Intra-Node Interconnects

Blue Waters PCle 2.0 x16

System Performance Research

CUDA

Microbench: https://github.com/rai-project/microbench

Neural Networks

MLModelScope: http://ml-arc-minsky.netlify.com/

Future Directions:

Quick application-driven architecture design

Performance modeling of neural networks

Faster Interconnects

Unified Memory

Allocations accessible from CPU and GPU Implicit data transfer (no cudaMemcpy)

	GPU 0	GPU 1	CPU	
<pre>cudaSetDevice(0); cudaMallocManaged(&a,);</pre>				
a[page0] = 0; // gpu0				
a[page1] = 1; // gpu1		—		Page fault and migration
a[page2] = 2; // cpu	-		→ □	Page fault and migration
<pre>cudaMemAdvise(a, gpu1, cudaMemAdviseSetPreferredLocation); a[page1] = 1; // cpu</pre>				Write served over NVLink
<pre>cudaMemPrefetcAsync(a, gpu1);</pre>	_	→ 		Bulk page migration

P9 Unified Memory Performance

Coherence: 30% of explicit management

Prefetch: 50-80% of explicit

AMD64 Unified Memory Performance

Coherence: 30-70% of explicit management

Prefetch: 50-95% of explicit

Device Affinity

Data placement on big nodes can have a dramatic communication impact

MLModelScope: Neural Network Performance Data

http://ml-arc-minsky.netlify.com

```
    (model -- machine -- framework) triples
    ( AlexNet -- Jetson TX-1 -- Tensorflow )
    ( VGG19 -- AWS P2 X-large -- MxNet )
```

Neural-network performance primitive benchmarks

Thank You

https://cwpearson.github.io pearson@illinois.edu

Special thanks to

- Professor Wen-Mei Hwu
- John Larson, Simon Garcia de Gonzalo, Zaid Qureshi, Mert Hidayetoglu, Abdul Dakkak and Cheng Li (University of Illinois)
- Isaac Gelado (NVIDIA)
- Jinjun Xiong and I-Hsin Chung (IBM)
- The IBM-ILLINOIS Center for Cognitive Computing Systems Research (C3SR) a research collaboration as part of the IBM Cognitive Horizon Network.