

BEST AVAILABLE COPY

CH-8233/RC-231
LUDGER HEILIGER ET AL
MICROGEL-CONTAINING THERMOPLASTIC ELASTOMER
COMPOSITION

Figure 1: Illustration of the composition from Example 4 (MG/TPE-U); not contrasted with OsO₄, magnification 20,000-fold

BEST AVAILABLE COPY

CH-8233/RC-231
LUDGER HEILIGER
MICROGEL-CONTAINING THERMOPLASTIC ELASTOMER
COMPOSITION

Figure 2: Illustration of a composition from Example 1 (MG/PP); not contrasted with OsO₄; magnification 30,000-fold

BEST AVAILABLE COPY

PO-8233/RC-231
LUDGER HEILIGER ET AL
MICROGEL-CONTAINING THERMOPLASTIC ELASTOMER
COMPOSITION

a) without phase mediator

a) with phase mediator

Figure 3: AFM photograph of a dynamically vulcanized TPV from Example 5 (NBR/PA) (70:30) with and without phase mediator

It can be clearly seen that in the examples according to the invention above the microgel domains, i.e. the domains of the elastomer phase, are orders of magnitude smaller and more uniform than the elastomer domains, formed by dynamic vulcanization, of conventional dynamically vulcanized TPVs, both with (> 5 to $30 \mu\text{m}$) and without a phase mediator (> 10 to $35 \mu\text{m}$, Fig. 3)

BEST AVAILABLE COPY

PO-8233/RC-231
LUDGER HEILIGER ET AL
MICROGEL-CONTAINING THERMOPLASTIC ELASTOMER
COMPOSITION

Storage of the test specimens in hot air at various temperatures

Storage at
RT:

Material M1

Material M7

Storage at
130 °C:

Material M1

Material M7

Storage at
150 °C:

Material M1

Material M7

Storage at
180 °C:

Material M1

Material M7

Figure 4: Storage tests on test specimens