Notes on Canonization for Resnets and Densenets

Alexander Binder

July 31, 2020

Credits

Code inspired by Philipp Seegerer (TU Berlin). With important ideas from Gregoire Montavon (TU Berlin), Philipp Seegerer and Sebastian Lapuschkin (Fraunhofer HHI).

Recap on LRP rules

understanding properties of rules: LRP- ϵ

LRP- ϵ :

$$R_{i\leftarrow k}(\mathbf{x}) \propto R_k h(w_i x_i)$$
 (1)

$$z = \sum_{i'} w_{i'} x_{i'} + b \tag{2}$$

$$R_{i \leftarrow k}(\mathbf{x}) = R_k \left(\frac{w_i x_i}{z + \epsilon \operatorname{sign}(z)} \right)$$
 (3)

- ▶ may produce $R_{i\leftarrow k}$ with $|R_{i\leftarrow k}| \gg |R_k|$
- no control over relevance scale!
- $ightharpoonup \epsilon$ dampens redistribution differences
- $ightharpoonup \epsilon
 ightarrow \infty$ convergence to flat redistribution

understanding properties of rules: LRP- β

LRP- β :

$$R_{i\leftarrow k}(\mathbf{x}) \propto R_k h(w_i x_i)$$
 (4)

$$R_{i \leftarrow k}(\mathbf{x}) = R_k \left((1+\beta) \frac{(w_i x_i)_+}{\sum_{i'} (w_{i'} x_{i'})_+ + b_+} - \beta \frac{(w_i x_i)_-}{\sum_{i'} (w_{i'} x_{i'})_- + b_-} \right)$$
(5)

- $ightharpoonup \beta$ controls ratio of negative to positive evidence.
- ▶ bounded relevance scale: $|R_{i\leftarrow k}| \leq (1+\beta)|R_k|$
- negative to positive evidence: $\frac{\beta}{1+\beta}$,
- ▶ negative to total evidence: $\frac{\beta}{1+2\beta} \rightarrow 0.5$, It is fixed independent of network inputs(!).

which rule for which layer?

Name	Formula	layers
$LRP\text{-}\epsilon$	$\sum_{k} R_{k} \left(\frac{x_{i} w_{ik}}{\sum_{i} x_{i} w_{ik} + b + \epsilon \operatorname{sign}(z)} \right)$	linear
$LRP\text{-}\beta = 0$	$\sum_{k} R_{k} \left(\frac{(x_{i}w_{ik})_{+}}{\sum_{i}(x_{i}w_{ik})_{+}(b)_{+}} \right)$	conv
$LRP\text{-}\alpha-\beta$	$\sum_{k} R_{k} \left(\frac{(1+\beta)(x_{i}w_{ik})_{+}}{\sum_{i}(x_{i}w_{ik})_{+} + (b)_{+}} \right \beta \frac{(x_{i}w_{ik})_{-}}{\sum_{i}(x_{i}w_{ik})_{-} + (b)_{-}} \right)$	conv
$LRP ext{-}z_eta$	$\sum_{k} R_{k} \left(\frac{x_{i}w_{ik} - l_{i}(w_{ij})_{+} + h_{i}(w_{ij})_{-}}{\sum_{i} x_{i}w_{ik} + b - l_{i}(w_{ij})_{+} + h_{i}(w_{ij})_{-}} \right)$	first conv
LRP-w ²	$\sum_{k} R_{k} \frac{w_{ik}^{2}}{\sum_{k} w_{ik}^{2}}$	same 1. conv
$LRP\text{-}\gamma$	$\sum_{k} R_{k} \frac{w_{ik}^{2}}{\sum_{i} w_{ik}^{2}} $ $\sum_{k} R_{k} \frac{x_{i} w_{ik} + \gamma(x_{i} w_{ik})_{+}}{\sum_{i} (x_{i} w_{ik} + b + \gamma(x_{i} w_{ik})_{+} \gamma(b)_{+})}$	conv

Biases in denominators can be omitted during the backward pass for better attributions

make model usable for custom backward explanations

- create a modified copy with parameters from trained source model
- technical issue: need to replace the + in a residual connection x + ConvConv(x) by an operator implementing +.
- ▶ LRP-issue: fuse Conv-BatchNorm chains into a Conv-Layer

The conv-BN fusion is due to an LRP-issue:

Adebayo et al: LRP is not implementation invariant.

Why conv-bn-fusion? Adebayo et al: LRP is not implementation invariant.

Why LRP then at all and not Gradient/Grad-CAM?

- Gradient estimates an often suboptimal measure: a single-pixel sensitivity instead of contributions which account for interactions between larger regions.
- ► Gradient: +high noise from gradient shattering in ReLU nets.
- For a comparison of gradients against guided back prop in a medical context see eg. Eitel et.al. MICCAI 2019 https: //link.springer.com/chapter/10.1007/978-3-030-33850-3_1 https://arxiv.org/abs/1909.08856
- for NLP: Poerner et al. ACL 2018, https://www.aclweb.org/anthology/P18-1032.pdf

Fail in Implementation-invariance can be managed.

Fail in measures u can?

manual step!

resnet: need to replace the + in a residual connection x + ConvConv(x) by an operator implementing +. Why we do not overload the backward passes for + in general?

Check the code example for copy_resnet_onlycopy_v2.py

- create a nn.Module-derived class sum_stacked2 ,
- create a derived bottleneck, basicblock, resnet classes (easy).
- replace the shortcut by sum_stacked2

▶ fuse Conv-BatchNorm chains into a Conv-Layer. Resnet has the following chain: Conv \rightarrow BN

conv-layer:
$$y = w_{conv} \cdot x + b_{conv,c}$$
 (6)

bn-layer:
$$z = w_c (y - \mu_{bn})/s_c + bn_c$$
, $s_c = (\sigma_{bn,c} + \epsilon_{bn})^{0.5}$ (7)

$$bn \to conv : z = w_c/s_c (y - \mu_{bn}) + bn_c$$
 (8)

$$= (w_c/s_c)(w_{conv} \cdot x + b_{conv,c} - \mu_{bn}) + bn_c$$
 (9)

$$=\alpha_{\mathbf{c}}\cdot\mathbf{x}+\beta_{\mathbf{c}}\tag{10}$$

$$\Rightarrow \alpha_c = (w_c/s_c)w_{conv} \tag{11}$$

$$\Rightarrow \beta_c = (w_c/s_c)(b_{conv,c} - \mu_{bn,c}) + bn_c \tag{12}$$

Check the code example for copy_resnet_onlycopy_v2.py

$$\alpha_c = (w_c/s_c)w_{conv} \tag{13}$$

$$\beta_c = (w_c/s_c)(b_{conv,c} - \mu_{bn,c}) + bn_c \tag{14}$$

```
def bnafterconv_overwrite_intoconv(conv,bn):
    s = (bn.running_var+bn.eps)**.5
    w = bn.weight
    b = bn.bias
   m = bn.running_mean
    conv.weight = torch.nn.Parameter(conv.weight * (w / s).reshape(-1, 1,
    if conv.bias is None:
      conv.bias = torch.nn.Parameter((0 - m) * (w / s) + b)
    else:
      conv.bias = torch.nn.Parameter(( conv.bias - m) * (w / s) + b)
   return conv
```

Alexander Binder

 $weight[c_{out}, c_{in}, h, w]$, bn-weight: $w[c_{out}]$

the .reshape (-1,1,1,1) due to the structure of the conv-weight as:

```
copy_resnet_onlycopy_v1.py
```

in derived class create routine for:

copy layers with parameters from pretrained model + process all layers

```
def copyfromresnet(self,net, ...):
```

- conv-bn-fusion:
 - if detect conv-layer, stash it (next will be a BN!).
 - if detect bn, (1) fuse bn into stashed conv, (2) overwrite stashed conv in model, (3) reset BN stats, so that it is the identity
- which layers need to be copied from the trained model?
 - Conv2d, BatchNorm(reset), nn.Linear

```
You got code for canonizing resnets. copy_resnet_onlycopy_v2.py
```

```
def copyfromresnet(self,net, ...):
```

TODO:

- verify that forward passes of original and canonized model are matching!
- which layers need to be wrapped for backward pass? (next step, when LRP rules are implemented)
 - Conv2d, BatchNorm(reset), nn.Linear + ReLU, adaptiveavgpool, maxpool

implementation principles: how to treat biases?

- bias as constant-value firing legitimate neuron?
- bias as nuisance term onto which relevance dissipates?

!!BUG: You absolutely must not zero out biases in the forward pass!!

- if you do that, you explain a different predictor than your original model
 - predicted class gets wrong.
 - inputs x_i used to distribute relevances towards layer inputs getting wrong
 - You can zero out biases in the LRP-backward pass

3.30 am random thought: pytorch is the communist movement in deep learning?

copy_densenet_onlycopy.py manual steps:

- create derived class
- replace in classifier head calls to F.function(...) by nn.Module equivalents in the derived class
 - adapt classifier head to use these equivalents: self.toprelu, self.toppool
- def copyfromdensenet(self,net): to copy trainable parameters from trained net
 - nn.Linear in the classifier head, nn.Conv2d at the start and denseblocks
 - canonization different from resnets!!
 - ightharpoonup have: BN ightharpoonup ReLU ightharpoonup Conv blocks. Need to deal with this structure

have: $BN \rightarrow ReLU \rightarrow Conv$ blocks.

- lacktriangle step 1: swap the BN ightarrow ReLU
- step 2: fuse BN → Conv.
- result: ThreshRELU → tensorbiasedConv. step 2 will result in a convolution layer which cannot be represented by nn.Conv2D anymore, because it will have a bias which is spatially varying.

step 1: swap the BN \rightarrow ReLU

A theorem

given
$$BN(x) = \frac{w_{bn}}{\sigma_{bn}}x - \frac{w_{bn}\mu_{bn}}{\sigma_{bn}} + b_{bn}$$
 (15)

The following commutation holds for any $w_{bn} \neq 0$:

$$ReLU(BN(x)) = BN(ThreshReLU(x))$$
 with (16)

$$ThreshReLU(x) = \begin{cases} x & \text{if } x - t > 0 \text{ and } w_{bn} > 0 \\ x & \text{if } x - t < 0 \text{ and } w_{bn} < 0 \\ t & \text{else} \end{cases}$$
 (17)

for
$$t = \mu_{bn} - \frac{b_{bn}\sigma_{bn}}{w_{bn}}$$
 (18)

$$= t + (x - t)\{\mathbf{1}[x - t > 0]\mathbf{1}[w_{bn} > 0] + \mathbf{1}[x - t < 0]\mathbf{1}[w_{bn} < 0]\} \quad (19)$$

- step 1: swap the BN \rightarrow ReLU \rightarrow Conv2d
 - ightharpoonup replace it by ThreshReLU ightarrow BN ightarrow Conv2d
 - code: get_clamplayer in the code computes the ThreshReLU
- step 2: now can fuse the BN into the Conv2d

step 2: now can fuse the BN into the Conv2d

$$conv(BN(x)) = conv[w](\alpha x + \beta) + b \qquad (20)$$

$$= conv[w\alpha](x) + conv[w](broadcast(\beta)) + b$$

$$conv.w.shape = (n_{out}, n_{in}, ksize, ksize), \ \alpha.shape = n_{in}$$

$$(w\alpha)[o, c, h, w] := w[o, c, h, w]\alpha[c] \text{ and}$$

$$broadcast(\beta).shape = (n_{in}, ksize, ksize)$$

$$broadcast(\beta)[c, h, w] = \beta[c]$$

$$conv[w](broadcast(\beta)).shape = (n_{out}, f, f)$$

The point here is: if conv is using any padding, then

- ightharpoonup conv(broadcast(β)) is not constant the spatial dimensions h, w in [:, h, w]
- for kernelsize = 3, pad = 1 the value on the fringe indices h = 0 and h = f 1 will be different from $h \in [1, f 2]$
- thats why defining the class tensorbiased_convlayer for densenets.

- step 2: now can fuse the BN into the Conv2d: def convafterbn_returntensorbiasedconv(conv,bn) implements this
- need a similar trick in the classifier head:

$$\mathsf{BN}(\mathsf{norm5}) {\to} \mathsf{relu}(\mathsf{toprelu}) {\to} \mathsf{adaptiveAvgPool}(\mathsf{toppool}) {\to} \mathsf{linear}(\mathsf{classifier})$$

- = ThresReLU \rightarrow BN \rightarrow adaptiveAvgPool(toppool) \rightarrow linear(classifier)
- = ThresReLU \rightarrow adaptiveAvgPool(toppool) \rightarrow BN \rightarrow linear(classifier)
- = ThresReLU \rightarrow adaptiveAvgPool(toppool) \rightarrow tensorbiasedlinear(classifier)