

Franco Malerba, The Oxford Handbook of Innovation, 2009

Sectoral Systems: How and Why Innovation Differs across Sectors

May Myat Thwe, maymyatthwe@kaist.ac.kr

Graduate School of Science and Technology Policy Korea Advanced Institute of Science and Technology (KAIST)

2022.10.11

OUTLINE

- 1. Introduction
 - A. Innovation System
 - B. Sectoral Innovation System
- 2. Background
 - A. Previous Literature on Sector Differences in Innovation
- 3. Proposed Framework
 - A. Overall Proposed Framework
 - B. Detailed Factors
- 4. Example of sectoral transformation
- 5. Implications
- 6. Conclusion

Introduction Background Proposed Framework Example Implications Conclusion

Sectoral Systems of Innovation

Innovation

• the process involving interactions of actors for generating and exchange of knowledge relevant to innovation and commercialization.

Innovation Systems

- Different actors interacts to promote creation of technological innovations
 Pharmaceutical
- Facilitates diffusion or applications of technological innovations

Sectoral Innovation Systems

- Innovation takes place in different sectoral environments
- Focus on certain sectors of the economy

Differences across sectors

- Innovation differs across sectors in terms of characteristics, sources, actors involved, organization of innovative activities
- Dimensions to understand innovation and its differences
 - Knowledge base
 - Actors involved
 - Links and relationships among actors
 - Institutions

How is it possible to analyze these differences and their effects on sectoral growth and performance?

- International studies by OECD, EU and international organizations
 - High R&D-intensive (electronics, drugs)
 - Low R&D-intensive (textiles, shoes)
- Schumpeterian legacy [1,2]
 - Focus on differences in market structure and industrial dynamics

Schumpeter Mark I: creative destruction

- New entrants and new technologies displace previously dominant firms
- E.g., Machinery, biotechnology

Schumpeter Mark II: creative accumulation

- Established firms gradually improve existing technologies
- E.g., Semiconductor, mainframe computers

- [1] Schumpeter of Theory of Economic Development (1911, "Schumpeter Mark I")
- [2] Capitalism, Socialism and Democracy (1942, "Schumpeter Mark II")

- Technological regimes by Malerba and Orsenigo (1996 and 1997)
 - Technological opportunity
 - Reflects likelihood of important technological innovations
 - Appropriability conditions
 - Possibilities of protecting innovations from imitation and obtaining profits
 - ▶ E.g., patents, secrecy
 - Degree of cumulativeness of technological knowledge
 - Properties that today's innovations lead to future innovations
 - Knowledge/cognitive factors, organizational or market factors
 - Technological knowledge base
 - Nature of knowledge underpinning firms' innovative activities
 - Degree of specificity, tacitness, complementarity, independence

- Scherer et al. (1982)
 - Net sources of R&D for other sectors
 - ▶ E.g., Computers and instruments
 - Net users of technology
 - ▶ E.g., Textiles and metallurgy
- Robson et al. (1988)
 - Core sectors: net sources of technology
 - ▶ E.g., Electronics, machinery, chemicals
 - Secondary sectors: secondary role in terms of sources of innovation for economy
 - ▶ E.g., Textiles and metallurgy
 - User sectors: services mainly absorb technology

• Pavitt et al. (1984) propose four types of sectoral pattern for innovative activities

Sectors	Example	Innovation focus	Source of innovation	Appropriability
Supplier-dominated	TextileServices	New componentsEquipments	Learning-by-doingLearning by-using	
Scale-intensive	AutosSteel	• Process	Internal R&Dlearning-by-doingexternal equipment producers	SecrecyPatents
Specialized suppliers	Equipment producers	Performance improvementReliabilityCustomization	Tacit knowledgeExperience of skilled techniciansUser-producer interaction	 Localized and interactive nature of knowledge
Science-based	PharmaceuticalsElectronics	High rate of product and process innovations	 Science Internal R&D Scientific research at universities & public research lab 	PatentsLead-timesLearning curvesSecrecy

Sectoral System Framework

- Propose dynamic view of innovation in sectors
- Three dimensions of sectors
 - Knowledge and technological domain
 - Actors and networks
 - Institutions

Knowledge and Technological Domain

Knowledge & Technological Regime

- Degrees of accessibility
 - Opportunities of gaining knowledge
 - Scientific breakthroughs in universities
 - Advancements in R&D, equipment, instrumentation
 - Suppliers or users
- Cumulativeness: generation of new knowledge based on current knowledge
 - Learning process and generate new knowledge
 - Firms and its organizational capabilities
 - Feedbacks from markets

Sectoral boundaries

- Affected by knowledge base and technologies
- May change rapidly over time due to
 - Dynamic processes related to transformation of knowledge
 - Evolution and convergence in demand
 - Changes in competition and learning by firms

Actors, Relationships and Networks

- Propose dynamic view of innovation in sectors
- Generate, adopt and use new technologies
- Have specific knowledge base, experience, learning process

 Support innovation, technological diffusion

 Role differs among sectoral systems

Non-firm organizations

- Universities
- Financial orgs
- Gov. agencies
- Local authorities

Demand from various actors drives innovation, and boundaries of sectoral system

Emergence of new actors over time based on industry life-cycle

Venture capital companies for start-ups in new high-tech sectors

Types and structures of relationships and networks different greatly in sectoral systems, based on knowledge base, learning processing, basic of technologies, characteristics of demand.

Institutions

- Affect the rate of technological change, organization of innovative activity and performance
 - Emerge as result of planned decision by firms or unpredicted consequences of agents' interaction
 - National institutions have different effects on sectors
 - Pharmaceuticals: National health systems and regulations have played major role in affecting the direction of technological change
 - Institutional Review Board (IRB) review and approval of research involving FDA-regulated product
 - > Software: standards, and standard organizations are important,
 - International Organization for Standardization (ISO) for System and Software Quality Requirements

Introduction Background Proposed Framework **Example** Implications Conclusion

Dynamics and Transformation of Sectoral System

- Changes in knowledge base
- Technologies
- Market competition
- Market structure
- Behavior transformations
- Actors & relationships

Policy Implications

- Understanding following dimensions is a prerequisite for any policy addressed in specific sectors
 - Knowledge and boundaries, Heterogeneity of actors and networks, Institutions and transformation
- For fostering innovation and diffusion in a sector, technology and innovation policies may not be enough.
 - Supplemented by science policy, industrial policy, policies related to standards and IPR, etc.
- Policy has to consider coexistence of different geographical dimensions of sectoral systems
- Sectoral perspective provides a tool for policy makers to
 - understand the differences in innovation systems
 - identify specific actors that should be influenced by policy

Conclusion

Sectoral framework provides a way to examine innovation in sectors through different dimensions

Challenges

- Geographical boundaries to be considered in analyses of sectoral systems
 - Sectoral systems are highly localized and define specialization of local areas
- Differences across countries have affected countries international performance.
 - Cannot mimic the features of sectoral systems without appropriate set of actors, links and institutions

Future Work

- Coevolution of various elements of a sectoral system
- Analyses of relationship between presence and strength of elements of sectoral systems and international performance of countries to be developed

Thank You.

May Myat Thwe maymyatthwe akaist.ac.kr

Graduate School of Science and Technology Policy Korea Advanced Institute of Science and Technology (KAIST)

2022.10.11