

Equation of motion can be determined by.
$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{x}}\right) - \frac{\partial L}{\partial x} = 0.$$

oc - position.

Figoly falling body - Example

 $a = -9.8 \text{m/s}^2$

x - velocity.

KE = jmx

PE = mgx

 $L = \frac{1}{2} m\dot{x} - mgx$

 $\frac{d}{dt}\left(\frac{dL}{dn}\right) = m\ddot{x}$

L= KE-PE

Equation of motion
$$m\ddot{x} - (-mg) = 0$$

$$m\dot{x} = -mg$$

$$\frac{1}{2} = -\frac{1}{3}$$

Simple Harmonic motion with Spring:

$$|\mathcal{L}| = \frac{1}{2} m \dot{\chi}^{2}$$

$$|\mathcal{L}| = \frac{1}{2} m \dot{\chi}^{2} - \frac{1}{2} k \dot{\chi}^{2}$$

$$|\mathcal{L}| = \frac{1}$$

$$\frac{d}{dt}\left(\frac{d}{dx}(L)\right) = m\dot{x}$$

$$\frac{d}{dt}\left(\frac{d}{dx}(L)\right) = m\dot{x}$$

$$\frac{d}{dx}\left(\frac{d}{dx}(L)\right) = m\dot{x}$$

$$\frac{d}$$

Modeling Spring Mars
(Vertical) Logan Ditel Video $\chi f = \frac{1}{2} m \dot{\chi}^2$ PE = PEman PEspong m Tx= D Tx= D $=-mgx+\frac{1}{2}bx^2$ PE of man occurs for a vertical system. T = KE-bE $L = \frac{1}{2} m \dot{x}^2 + m g x - \frac{1}{2} k x^2$

UDE de (dL) - dL =0. => d(5i) =

At g-Rex a (mx) - (mg - bx) =0 Solving this will it as function of time mx = mg - kxx = g - kx

Spring mans system: Horizontal _____ m (no elevation) KE = 1 mx L= KE -PE $PE = \frac{1}{2}kx^2 \qquad L = \frac{1}{2}mx^2 - \frac{1}{2}kx^2$ $\frac{d}{dL}\left(\frac{dL}{dx}\right) - \frac{dL}{dx} = 0$ $\frac{d}{dt}(m\dot{x}) - (-kx) = 0$.

 $\frac{d(m\dot{x}) - (-kx) = 0}{d(m\dot{x})} = -kx \rightarrow ODE$ Solve this for finding \dot{x} as function of time.

for left side m

 $\frac{\partial L}{\partial x_1} = kx_1 - kx_2 \qquad \frac{\partial L}{\partial x_2} = -kx_1 + kx_2 + kx_2$ for right side m

 $d(mx_1) = b(x_1 - x_2)$

 $\frac{d}{d}(m\dot{x}_2) = k(2\alpha_2 - \alpha_1)$

 $\frac{d(m_1\dot{x}_1) = -k_1x_1 + k_2(x_2 - x_1)}{dt}$ $\frac{d(m_2\dot{x}_2) = k_2(x_1 - x_2)}{dt}$

Two Yan, Two spring with walls (no elevation):

$$\frac{k_{1}}{m_{1}} = \frac{k_{2}}{m_{2}} = \frac{k_{2}}{m_{2}}$$

 $\frac{1}{1}(m_1\dot{x}_1) = -\beta_1(x_1 + \beta_2(x_2 - x_1))$ $\frac{d(m_1 \dot{x}_2) = -k_3 x_2 - k_2 (x_2 - x_1)}{1}$

 $\frac{d^{2} \left[m_{1} \chi_{1} \right]}{dt^{2} \left[m_{2} \chi_{2} \right]} = \left[\frac{-\left(k_{1} + k_{2} \right)}{k_{2}} - \left(k_{2} + k_{3} \right) \right] \left[\chi_{2} \right]$

 $m\dot{x} = Ax$

$$\frac{d^{2}}{dt^{2}}\begin{bmatrix}m_{1}\chi_{1}\\m_{2}\chi_{2}\end{bmatrix} = \begin{bmatrix}-(k_{1}+k_{2}) & k_{2}\\k_{2} & -(k_{2}+k_{3})\end{bmatrix}\begin{bmatrix}\chi_{1}\\\chi_{2}\end{bmatrix}$$

$$H = N \times N \text{ diagonal matrix of manes}$$

$$H = \begin{bmatrix}m_{1} & 0\\k_{2} & -N \times N\\m_{3} & -N \times N\\m_{4} & -N \times N\\m_{5} & -N \times N\\m_{5} & -N \times N\\m_{6} & -N \times N\\m_{7} &$$

$$0 \Rightarrow \text{M} \times = -\text{F} \times$$

$$\Rightarrow \text{JM} \times -\text{F} \times \Rightarrow \text{J} = -\frac{\text{F} \times}{\text{JM}}$$

$$A = \text{JM} - \text{J} + \text{JM} - \text{J} \times \text{J}$$

$$y' = -\text{JM} - \text{J} + \text{JM} - \text{J} \times \text{J}$$

$$y' = -\text{JM} - \text{J} + \text{JM} - \text{J} \times \text{J}$$

$$y' = -\text{JM} - \text{J} + \text{JM} - \text{J} \times \text{J}$$

$$y' = -\text{JM} - \text{J} + \text{JM} - \text{J} \times \text{J}$$

y(+) = [H2(+)

$$y = - \int M + X = \int M - I$$

$$= \int y = - A \int M X$$

$$= \int y = - A y$$

Using Schodinger equation caused problems

because of
$$-\sqrt{A}$$
. So

 $B = N \times \sqrt{M} \text{ matrix}$
 $BB^{\dagger} = A$, and

 $Approach 2$
 $Total evergy $\Rightarrow E = PE + kE$
 $E = \frac{1}{2} \text{ mix}_1^2 + \frac{1}{2} \text{ m}_2 x_2^2 + \frac{1}{2} \text{ } k_1 x_1^2 + \frac{1}{2} \text{ } k_2 x_2^2 + \frac{1}{2} \text{ } k_2 (x_2 - x_1)^2$

We want to map x_1, x_2, x_1, x_2 at any time t to x_1, x_2, x_1, x_2 and x_1, x_2, x_1, x_2 and x_2, x_3
 $Approach 2$
 $Approach 2$$

=by Eb get normalized | Th3 X2

incidence matrix B and so
$$A = BB^{\dagger}$$
 (Ben)

Let $H = -\int_{B}^{0} B$

Schndinger equation induced by His

 $|\psi(t)\rangle = -iH |\psi(t)\rangle$
 $= +i\int_{B}^{0} B$
 $\int_{B}^{+} O$
 $\int_{A_{2}}^{0} x_{2} x_{1}$
 $\int_{A_{2}}^{0} x_{2} x_{2}$
 $\int_{A_{2}}^{0} x_{2} x_{1}$
 $\int_{A_{2}}^{0} x_{2} x_{2}$

Laplacian
$$F$$

$$F = \begin{cases} k_1 + k_2 & -k_2 \\ -k_2 & k_2 + k_3 \end{cases}$$
Inciden φ matrix N

$$\frac{h'x}{N}$$
 N=2 manes

B= NXM.

$$M=3$$
 Springes(edger)

 k_1 k_2 k_3 Vertex V is incident upon edge k_1 k_2 k_3 k_4 k_5 k_6 k_6 k_6 k_7 k_8 k_9 k_9

$$B = \begin{bmatrix} k_{1} - k_{2} & 0 \\ 0 & k_{2} & -k_{3} \end{bmatrix} \qquad \begin{bmatrix} k_{1} & 0 \\ -k_{2} & k_{2} \\ 0 & -k_{3} \end{bmatrix}$$

$$BB^{\dagger} = \begin{bmatrix} k_{1}^{2} + k_{2}^{2} & -k_{2}^{2} \\ -k_{2}^{2} & k_{2}^{2} + k_{3}^{2} \end{bmatrix} := \begin{bmatrix} k_{1} & 0 \\ -k_{2} & k_{2}^{2} \\ -k_{2}^{2} & k_{2}^{2} + k_{3}^{2} \end{bmatrix}$$

$$B = \begin{cases} k_1 - k_2 & 0 \\ 0 & k_2 - k_3 \end{cases}$$

$$B^{\dagger}y(t) = \begin{cases} k_1 & 0 \\ -k_2 & k_2 \\ 0 & -k_3 \end{cases} = \begin{cases} k_1 y_1 \\ -k_2 y_1 + k_2 y_2 \\ -k_3 y_2 \end{cases}$$

$$3 \times 2^{2 \times 1}$$

$$1 \times (1+1)^2 = \frac{1}{\sqrt{2}} \begin{cases} y_1 \\ y_2 \\ y_3 \\ y_4 \end{cases}$$

$$2 \times \sqrt{m} y_1$$

$$2 \times \sqrt{m} y_2$$

$$3 \times \sqrt{m} y_3$$

Valid sol. for 3) 14(t)>= -14/4(t)>

(ight) =
$$e^{-itH}$$
 (ight) = e^{-itH} (ight

 $\sqrt{HB} = \begin{bmatrix} R_1 - R_2 & 0 \\ 0 & R_2 - R_3 \end{bmatrix}$

$$H \ge - \int O B$$

$$B^{\dagger} y(t) = B^{\dagger} \int W x(t)$$

$$H = - \begin{cases} 0 & 0 & k_1 - k_2 & 0 \\ 0 & 0 & k_1 - k_3 \\ k_1 & 0 & 0 & 0 \\ -k_2 & k_2 & 0 & 0 \\ 0 & -k_3 & 0 & 0 & 0 \end{cases}$$