

Redes Neuronales Recurrentes

Julio Waissman Vilanova

Mayo, 2024

Recordando las redes neuronales

Capas densas

Dense Layer
$$\longrightarrow z^{[i]} = W^{[i]}a^{[i-1]}$$

ReLU Layer
$$g(z^{[i]}) = \max(0, z^{[i]})$$

Redes recurrentes sencillas

$$h_t = f(W_x x_t + W_h h_{t-1} + b_h)$$

$$y_t = g(W_y h_t + b_y)$$

Arquitectura de una res recurrente sencilla

Tipos de problemas a resolver con RNN

Aprendizaje en redes neuronales

Cross Entropy Loss

K - classes or possibilities

$$J = -\sum_{j=1}^{K} y_j \log \hat{y}_j$$

Looking at a single example (x, y)

Generalización a una RNN

Cross Entropy Loss

$$h^{} = g(W_h[h^{}, x^{}] + b_h)$$
$$\hat{y}^{} = g(W_{yh}h^{} + b_y)$$

$$J = -\frac{1}{T} \sum_{t=1}^{T} \sum_{j=1}^{K} y_j^{} \log \hat{y}_j^{}$$

Average with respect to time

Aprendizaje en una RNN: BPTT

Aprendizaje en una RNN: BPTT

Backpropagation through time

Length of the product proportional to how far **k** is from **t**

$$\frac{\partial h_t}{\partial h_{t-1}} \frac{\partial h_{t-1}}{\partial h_{t-2}} \frac{\partial h_{t-2}}{\partial h_{t-3}} \frac{\partial h_{t-3}}{\partial h_{t-4}} \frac{\partial h_{t-4}}{\partial h_{t-5}} \frac{\partial h_{t-5}}{\partial h_{t-6}} \frac{\partial h_{t-6}}{\partial h_{t-7}} \frac{\partial h_{t-7}}{\partial h_{t-8}} \frac{\partial h_{t-8}}{\partial h_{t-9}} \frac{\partial h_{t-9}}{\partial h_{t-10}} \frac{\partial h_{t-10}}{\partial W_h}$$

Contribution of hidden state **t-10**

Aprendizaje en una RNN: BPTT

Backpropagation through time

Length of the product proportional to how far **k** is from **t**

Partial derivatives >1	Contribution goes to infinity	Exploding Gradient
Partial derivatives <1	Contribution goes to 0	Vanishing Gradient

LSTMs: Una solución memorable

- Aprende cuando recordar u cuando olvidar
- Se compone de:
 - Un estado de celda (cell state)
 - Un estado oculto (hidden state)
 - Multiples compuertas

Las compuertas evitan que explote o desvanezca el gradiente en BPTT

$$i_{t} = \sigma(w_{i}[h_{t-1}, x_{t}] + b_{i})$$

$$f_{t} = \sigma(w_{f}[h_{t-1}, x_{t}] + b_{f})$$

$$o_{t} = \sigma(w_{o}[h_{t-1}, x_{t}] + b_{o})$$

$$\tilde{c_t} = tanh(w_c[h_{t-1}, x_t] + b_c)$$

$$c_t = f_t * c_{t-1} + i_t * \tilde{c_t}$$

$$h_t = o_t * tanh(c^t)$$

Candidate Cell State

New Cell State

New Cell state

Add information from the candidate cell state using the forget and input gates

New Hidden State

New Hidden State

Select information from the new cell state using the output gate

The **Tanh** activation could be omitted

Arquitectura GRU

Redes recurrentes bidireccionales: Motivación

Le marqué, pero ____ no contesta el teléfono. Yo creo que a Elaine no le gusta que le hablen"

- Necesidad de conocer el texto completo para resolver el problema.
- El problema es secuencial, pero se puede asumir un conocimiento de la secuencia completa de entrada.

Redes recurrentes bidireccionales

Modelos Seq2seq

Modelos Seq2seq

DeepAR

Entrenamiento

Inferencia

DeepAR

TCN

TCN

Temporal convolutional networks and data rebalancing for clinical length of stay and mortality prediction