1.8-1.9 Matrices and Linear Transformations

Jeremy Teitelbaum

Linear Transformations and Matrices

If A is an $n \times m$ matrix, and x is any vector in \mathbf{R}^m , then Ax is a vector in \mathbf{R}^n .

So we can define a function $T: \mathbf{R}^m \to \mathbf{R}^n$ by

$$T(x) = Ax$$
.

For example if

$$A = \begin{bmatrix} 0 & -4 \\ 4 & 1 \\ 3 & 3 \end{bmatrix} \text{ and } v = \begin{bmatrix} x \\ y \end{bmatrix}$$

then

$$T(v) = Av = \begin{bmatrix} -4y \\ 4x + y \\ 3x + 3y \end{bmatrix}$$

Function terminology

In general if $f:X\to Y$ is a function then f is a "rule" that associates exactly one element $y\in Y$ to each element $x\in X$. The y corresponding to x is called f(x). Furthermore:

- \blacktriangleright X is called the domain of f
- ightharpoonup Y is called the codomain of f
- ▶ the set of $y \in Y$ so that there is an $x \in X$ with f(x) = y is called the *range* of f.
- if f(x) = y, then y is called the *image* of x under f.

If A is an $n \times m$ matrix, then the domain of f(x) = Ax is \mathbf{R}^m and the codomain is \mathbf{R}^n .