Facts about Rings of Fractions

Rafal Michalski

1 Introduction

Fact 1.1. If $0 \in S$, then $S^{-1}A$ is a trivial ring.

Proof. Any (a, s), (a', s') are related because $(as' - a's) \cdot 0 = 0$ with $0 \in S$.

Fact 1.2. A a PID, the equivalence relation in $A \times S$ is: $(a, s) \equiv (a', s')$ iff as' = a's. \square

Fact 1.3. For A a field, and $S = \{-1, 1\}, S^{-1}A \cong A$.

Proof. It is easily verified that the standard isomorphism from A to $S^{-1}A$ is 1-1 and onto. \Box

Fact 1.4. For A a field, and S a multiplicatively closed subset of A not containing zero, $S^{-1}A \cong A$.

Proof. The standard homomorphism $f: a \mapsto a/1$ of A into $S^{-1}A$ is injective: if a/1 = a'/1 then $a \cdot 1 = a1 \cdot 1$, then a = a'. It is surjective: $f(as^{-1}) = f(a)f(s^{-1}) = (a/1)(s^{-1}/1) = \ldots$, but $s^{-1}/1 = 1/s$ as $s^{-1}s = 1 \cdot 1$; continuing, $\ldots = (a/1)(1/s) = a/s$.

Fact 1.5. For A a field, the ring of fractions and the field of fractions are isomorphic.

Proof. For isomorphism of A with its field of fractions, see Math Exchange 79188. About the isomorphism with its ring of fractions, is the fact above.

Example 1.6. Some example.

Fact 1.7. The quotient ring A/I can be viewed as an A-module, and then the ring of fractions $T^{-1}(A/I)$, where T is the image of S in A/I, equals the module of fractions $S^{-1}(A/I)$.

Proof. On the left, the relation is in $(A/I) \times T$: $([a], [s]) \equiv ([a'], [s'])$ iff (ring notation) ([a][s']-[a'][s])[s''] = [0] iff [as's''-a'ss''] = [0]. On the right, the relation works in $(A/I) \times S$: $([a], s) \equiv ([a'], s')$ iff (module notation) s''(s'[a] - s[a']) = [0] iff [as's'' - a'ss''] = [0]. The conditions are identical so the classes must be in bijective correspondence. However, they are not identical as sets, so saying *equals* is too much.

Fact 1.8. What are pA_p and aA_p ?

In the Solutions by Y. P. Gaillard, the residue field is $A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}$, so the single maximal ideal of $A_{\mathfrak{p}}$ from the Example 1, p. 38 of ItCA must be just $\mathfrak{p}A_{\mathfrak{p}}$

$$\mathfrak{p}A_{\mathfrak{p}} = \{a/s : a \in \mathfrak{p}, s \notin \mathfrak{p}\}$$

Then $\mathfrak{a}A_{\mathfrak{p}}$ must be the generalization

$$\mathfrak{a}A\mathfrak{p} = \{a/s : a \in \mathfrak{a}, s \notin \mathfrak{p}\}$$

Fact 1.9. What is S^{-1} a?

It can be either an $S^{-1}A$ -module $S^{-1}\mathfrak{a}$, because \mathfrak{a} is an A-module, or the extension $S^{-1}\mathfrak{a} = \mathfrak{a} \, S^{-1}A$ in $S^{-1}A$ of the ideal \mathfrak{a} in A. In both cases elements of $S^{-1}\mathfrak{a}$ are written as a/s with $a \in \mathfrak{a}, s \in S$, but they come from different sets. In the first, module case, a/s is in the quotient of $\mathfrak{a} \times S$, in the second, extension ideal case, a/s is in the quotient of $A \times S$. We are talking of $S^{-1}A$ -modules, not rings, so there can only be A-module and $S^{-1}A$ -module isomorphism:

$$\mathbf{a} \times S / \sim_{\mathbf{a}} \ni a/s \mapsto a/s \in A \times S / \sim_A$$

Fact 1.10. What is $\mathfrak{s}_{\mathfrak{p}}$?

It is the A-module \mathfrak{a} localized at \mathfrak{p} . It is an $A_{\mathfrak{p}}$ -module. We also use this notation for the ideal $S^{-1}\mathfrak{a}$ of $S^{-1}A$, where $S = A \setminus \mathfrak{p}$. How are they isomorphic? $a/s \mapsto a/s$ with $a \in \mathfrak{a}, s \notin A$. Of what it is an isomorphism? Of A-modules, of $A_{\mathfrak{p}}$ -modules. They are not rings.

Fact 1.11. What is $S^{-1}\mathfrak{g}$ in case $S = A \setminus \mathfrak{p}$?

It can be either an $A_{\mathfrak{p}}$ -module $\mathfrak{a}_{\mathfrak{p}}$, because \mathfrak{a} is an A-module, or the extension $S^{-1}\mathfrak{a} = \mathfrak{a} A_{\mathfrak{p}}$ in $A_{\mathfrak{p}}$ of the ideal \mathfrak{a} in A. In both cases elements of $S^{-1}\mathfrak{a}$ are written as a/s with $a \in \mathfrak{a}$, $s \notin \mathfrak{p}$, but they come from different sets. In the first, module case, a/s is in the quotient of $\mathfrak{a} \times (A \setminus \mathfrak{p})$, in the second, extension ideal case, a/s is in the quotient of $A \times (A \setminus \mathfrak{p})$. We are talking of $A_{\mathfrak{p}}$ -modules, not rings, so there can only be an A-module and $A_{\mathfrak{p}}$ -module isomorphism:

$$\mathfrak{a} \times (A \setminus \mathfrak{p}) / \sim_{\mathfrak{A}} \ni a/s \mapsto a/s \in A \times (A \setminus \mathfrak{p}) / \sim_A$$

Fact 1.12. What is \mathfrak{p}_n ?

It is the A-module \mathfrak{p} localized at \mathfrak{p} . We also use this notation for the ideal $S^{-1}\mathfrak{p}$ of $S^{-1}A$, where $S = A \setminus \mathfrak{p}$, that is, the ideal $\mathfrak{p}A\mathfrak{p}$.

Fact 1.13. Case $\mathfrak{a} = \mathfrak{p}$, a prime ideal. What is $S^{-1}\mathfrak{p}$?

It can be either the $A_{\mathfrak{p}}$ -module $\mathfrak{p}_{\mathfrak{p}}$, because \mathfrak{p} is an A-module, or the extension $\mathfrak{p}A_{\mathfrak{p}}$ in $A_{\mathfrak{p}}$ of the ideal \mathfrak{p} in A, via the canonical $A \to A_{\mathfrak{p}} : a \mapsto a/s$. Looks like we don't have the \mathfrak{p} -instead-of- S^{-1} · notation in the ideal extension case, but then, the quotient notation $A_{\mathfrak{p}}/\mathfrak{p}_{\mathfrak{p}}$ is used, which makes sense only if $\mathfrak{p}_{\mathfrak{p}}$ is an ideal in $A_{\mathfrak{p}}$

$$\mathfrak{p}_{\mathfrak{p}} = \mathfrak{p}\,A_{\mathfrak{p}}$$

Fact 1.14. When $S = A \setminus \mathfrak{p}$, as $A_{\mathfrak{p}}$ -modules

$$S^{-1}\mathfrak{a}=\mathfrak{a}A\mathfrak{p}=\mathfrak{a}\mathfrak{p}$$

$$S^{-1}\mathfrak{p}=\mathfrak{p}A\mathfrak{p}=\mathfrak{p}\mathfrak{p}$$

Fact 1.15. How is $B_{\mathfrak{q}}$ an $A_{\mathfrak{p}}$ -module?

Let $g = \psi \circ f$ be the composition $A \to B \to T^{-1}B : a \to f(a) \to f(a)/1$. This composition sends $s \in S$ to a unit in $T^{-1}B$, as (f(s)/1)(1/f(s)) = 1/1, where $f(s) \in f(S) = f(A \setminus \mathfrak{p}) \subseteq B \setminus \mathfrak{q} = T$. Why the inclusion? If $a \notin \mathfrak{p} = f^{-1}(\mathfrak{q})$ then $f(a) \notin \mathfrak{q}$. By the universal property of the ring of fractions, g factorizes

$$\begin{array}{ccc}
A & \xrightarrow{\phi} S^{-1}A \\
\downarrow^f & \downarrow^h \\
B & \xrightarrow{\psi} T^{-1}B
\end{array}$$

where the recipe for h is given in **Proposition 3.1** of ItCA as $a/s \mapsto g(a)g(s)^{-1} = (f(a)/1)(1/f(s)) = f(a)/f(s)$.

Fact 1.16. What is $B_{\mathfrak{p}}$?

(For $f: A \mapsto B$ and \mathfrak{p} a prime ideal of A).

The ring B is an A-module by the restriction of scalars. We can localize it in the prime ideal \mathfrak{p} of A. The cartesian product is $B \times (A \setminus \mathfrak{p})$, the relation is

$$(b,s) \sim (b',s') \iff \exists t \notin \mathfrak{p} \ t(sb'-s'b) = 0$$

The condition reads

$$f(t)(f(s)b' - f(s')b) = 0$$

The obvious addition

$$\frac{b}{s} + \frac{b'}{s'} = \frac{s'b + sb'}{ss'} = \frac{f(s')b + f(s)b'}{ss'}$$

The obvious scalar multiplication

$$\frac{a}{s'} \cdot \frac{b}{s} = \frac{ab}{s's} = \frac{f(a)b}{s's}$$

And f is an A-module homomorphism:

$$f(a'a) = f(a')f(a) = a' \cdot f(a)$$

It gives rise to an $A_{\mathfrak{p}}$ -module homomorphism $S^{-1}f:A_{\mathfrak{p}}\to B_{\mathfrak{p}}$

$$a/s \mapsto f(a)/s$$

See how it is different from the map $A_{\mathbf{D}} \to B_{\mathbf{Q}}$

$$a/s \mapsto f(a)/f(s)$$

Fact 1.17. How is $B_{\mathfrak{p}}$ an $A_{\mathfrak{p}}$ -module ?

Definition of the $S^{-1}M$ as $S^{-1}A$ -module in the text. The multiplication by a scalar is

$$\frac{a}{s'}\frac{b}{s} = \frac{ab}{s's} = \frac{f(a)b}{s's}$$

Fact 1.18. How $(B \otimes_A M)_{\mathfrak{q}} = B_{\mathfrak{q}} \otimes_{A_{\mathfrak{p}}} M_{\mathfrak{p}}$?

$$\begin{split} (B \otimes_A M)_{\mathbf{q}} &= B_{\mathbf{q}} \otimes_B (B \otimes_A M) \\ &= B_{\mathbf{q}} \otimes_A M \\ &= (B_{\mathbf{q}} \otimes_{A_{\mathbf{p}}} A_{\mathbf{p}}) \otimes_A M \\ &= B_{\mathbf{q}} \otimes_{A_{\mathbf{p}}} (A_{\mathbf{p}} \otimes_A M) \\ &= B_{\mathbf{q}} \otimes_{A_{\mathbf{p}}} M_{\mathbf{p}} \end{split}$$

The first and the last equalities are applications of Proposition 3.5:

$$S^{-1}A \otimes_A M \cong S^{-1}M$$
$$A_{\mathfrak{p}} \otimes_A M \cong M_{\mathfrak{p}}$$
$$\frac{a}{s} \otimes m \mapsto \frac{am}{s}$$

Fact 1.19. $B_{\mathfrak{p}}$ is not a ring.

The multiplication

$$\frac{b}{s} \cdot \frac{b'}{s'} = \frac{bb'}{ss'}$$

fails to be distributive over the addition.

$$\begin{aligned} \frac{b''}{s''} \left(\frac{b'}{s'} + \frac{b'}{s'} \right) &= \frac{b''}{s''} \frac{sb' + s'b}{ss'} \\ &= \frac{b''(sb' + s'b)}{ss'} \\ &= \frac{sb''b' + s'b''b}{ss'} \\ &= \frac{sb''b'}{ss'} + \frac{s'b''b}{ss'} \end{aligned}$$

$$\begin{split} \frac{b''}{s''} \frac{b'}{s'} + \frac{b''}{s''} \frac{b}{s} &= \frac{b''b'}{s''s'} + \frac{s'b''b}{s''s} \\ &= \frac{s'sb''b' + s''s'b''b}{s''s's's} \\ &= \frac{f(s')f(s)b''b' + f(s'')f(s')b''b}{s''s's''s} \\ &= \frac{f(s')f(s)b''b'}{s''s's''s} + \frac{f(s'')f(s')b''b}{s''s's''s} \end{split}$$

and we cannot cancel here to make them equal.

Fact 1.20. $B_{\mathfrak{p}} \cong B_{\mathfrak{q}}$ as $A_{\mathfrak{p}}$ -modules.

By Exercise 4:
$$T = f(S)$$
 then $S^{-1}B \cong T^{-1}B$ since $f(\mathfrak{p}) = \mathfrak{q}$.

Fact 1.21. How is $B_{\mathfrak{q}}/\mathfrak{q}_{\mathfrak{q}} = B_{\mathfrak{q}}/\mathfrak{q}B_{\mathfrak{q}}$ an $A_{\mathfrak{p}}/\mathfrak{p}_{\mathfrak{p}}$ -module?

We know the map $A_{\mathfrak{p}} \to B_{\mathfrak{q}}: a/s \mapsto f(a)/f(s)$ from 1.15. The kernel of the composition $A_{\mathfrak{p}} \to B_{\mathfrak{q}} \to B_{\mathfrak{q}}/\mathfrak{q}B_{\mathfrak{q}}: a/s \mapsto f(a)/f(s) + \mathfrak{q}B_{\mathfrak{q}}$ contains $\mathfrak{p}A_{\mathfrak{p}}$: element of $\mathfrak{p}A_{\mathfrak{p}}$ is a/s where $a \in \mathfrak{p}, s \notin \mathfrak{p}$; it follow that $f(s) \notin \mathfrak{q}$ (otherwise $s \in f^{-1}(\mathfrak{q}) = \mathfrak{p}$); so the image in the first map of a/s is in $\mathfrak{q}B_{\mathfrak{q}}$, the kernel of the second map, then a/s is in the kernel of the composition. The composition then factors through $A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}} \to B_{\mathfrak{q}}/\mathfrak{q}B_{\mathfrak{q}}$: $a/s + \mathfrak{p}A_{\mathfrak{p}} \mapsto f(a)/f(s) + \mathfrak{q}B_{\mathfrak{q}}$. This is a ring homomorphism that makes $B_{\mathfrak{q}}/\mathfrak{q}_{\mathfrak{q}}$ an $A_{\mathfrak{p}}/\mathfrak{p}_{\mathfrak{p}}$ -module.

Fact 1.22. What is $\mathfrak{p}M_{\mathfrak{p}}$?

When $M_{\mathfrak{p}}$ is seen as an A-module, $\mathfrak{p}M_{\mathfrak{p}} = \{am/s : a \in \mathfrak{p}, m \in M, s \notin \mathfrak{p}\}$. When $M_{\mathfrak{p}}$ is seen as an $A_{\mathfrak{p}}$ -module, \mathfrak{p} is not even an ideal in $A_{\mathfrak{p}}$, but its extension, $\mathfrak{p}A_{\mathfrak{p}}$ is, and $(\mathfrak{p}A_{\mathfrak{p}})M_{\mathfrak{p}} = \{(a/s')(m/s) : a \in \mathfrak{p}, m \in M, s, s' \notin \mathfrak{p}\} = \{am/s : a \in \mathfrak{p}, m \in M, s \notin \mathfrak{p}\}$, the same set, which we write $\mathfrak{p}M_{\mathfrak{p}}$ for:

$$\mathfrak{p}M_{\mathfrak{p}}=(\mathfrak{p}A_{\mathfrak{p}})M_{\mathfrak{p}}$$

Fact 1.23. How

$$\frac{(B\otimes_A M)_{\mathbf{q}}}{\mathbf{q}(B\otimes_A M)_{\mathbf{q}}}\cong \frac{B_{\mathbf{q}}}{\mathbf{q}_{\mathbf{q}}}\otimes_B B\otimes_A M$$

?

Proposition 3.5 states, in the language of subscript- \mathfrak{p} , that $M_{\mathfrak{p}} \cong A_{\mathfrak{p}} \otimes_A M$ over $A_{\mathfrak{p}}$. Here $(B \otimes_A M)_{\mathfrak{q}} \cong B_{\mathfrak{q}} \otimes_B (B \otimes_A M)$. Then

$$\begin{split} \frac{B_{\mathbf{q}} \otimes_B (B \otimes_A M)}{(\mathbf{q} B_{\mathbf{q}})(B_{\mathbf{q}} \otimes_B (B \otimes_A M))} &\cong \frac{B_{\mathbf{q}}}{\mathbf{q} B_{\mathbf{q}}} \otimes_{B_{\mathbf{q}}} (B_{\mathbf{q}} \otimes_B (B \otimes_A M)) \\ &\cong \frac{B_{\mathbf{q}}}{\mathbf{q}_{\mathbf{q}}} \otimes_B B \otimes_A M \end{split}$$

In P. Y. Gaillard solution to ItCA Exercise 3.19 (viii).

Fact 1.24. The diagram

$$A_{\mathfrak{p}} \xrightarrow{\phi} A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}$$

$$\downarrow^{f} \xrightarrow{\eta} \downarrow^{h}$$

$$B_{\mathfrak{q}} \xrightarrow{\psi} B_{\mathfrak{q}}/\mathfrak{q}B_{\mathfrak{q}}$$

$$a/s \xrightarrow{\phi} a/s + \mathfrak{p}A_{\mathfrak{p}}$$

$$\downarrow^{f} \qquad \downarrow^{h}$$

$$f(a)/f(s) \xrightarrow{\psi} f(a)/f(s) + \mathfrak{q}B_{\mathfrak{q}}$$

is commutative.

All calculated on the diagram.

Now $\kappa_{\mathbf{q}} = B_{\mathbf{q}}/\mathfrak{q}B_{\mathbf{q}}$ is an $A_{\mathbf{p}}$ -module by $A_{\mathbf{p}} \to A_{\mathbf{p}}/\mathfrak{p}A_{\mathbf{p}} \to B_{\mathbf{q}}/\mathfrak{q}B_{\mathbf{q}}$ (with the formula as on the bottom diagram) and we may tensor over $A_{\mathbf{p}}$.

If a field K is an A-module for some ring A, can it be a zero A-module?

$$1_A 1_K = 1_k \neq 0_K$$

It cannot.

Now that $\kappa_{\mathbf{q}} \otimes_{A_{\mathbf{p}}} M_{\mathbf{p}}/\mathfrak{p} M_{\mathbf{p}} = 0$, both tensorands finitely generated, and $\kappa_{\mathbf{q}} \neq 0$, it must be $M_{\mathbf{p}}/\mathfrak{p} M_{\mathbf{p}} = 0$ by ItCA Exercise 2.3.

In solution of ItCA 3.19 (viii) by J. D. Taylor.

Fact 1.25. What is pB?

For $f:A\to B$, we can think in two ways. As we identify ab=f(a)b, $\mathfrak{p}B=\{ab=f(a)b: a\in\mathfrak{p},b\in B\}$ is the extension $f(\mathfrak{p})B$ of the ideal \mathfrak{p} . The second way is that B is an A-module, and \mathfrak{p} a prime ideal in A, so we can form $\mathfrak{p}B=\{\sum a_ib_i=\sum f(a_i)b_i\}$ with $a_i\in\mathfrak{p},\ b_i\in B$, getting the same set.

Fact 1.26. What is $\mathfrak{p}B_{\mathfrak{p}}$?

 $B_{\mathfrak{p}}$ is an A - module, \mathfrak{p} is a prime ideal of A, so $\mathfrak{p}B_{\mathfrak{p}}$ makes sense and consists of finite sums $\sum a_i(b_i/s)$ where $a_i \in \mathfrak{p}$, $b_i \in B$, and $s_i \in A \setminus \mathfrak{p}$. After bringing to common denominator, the sum becomes ab/s where $a \in \mathfrak{p}$, $b \in B$ and $s_i \in A \setminus \mathfrak{p}$ that is, b/s where $b \in \mathfrak{p}B$ and $s_i \in A \setminus \mathfrak{p}$.

Fact 1.27. How is $A_{\mathfrak{p}}$ an A-module ?

The canonical map $\phi: A \to A_{\mathfrak{p}}: a \mapsto \frac{a}{1}$ gives the multiplication by scalars from A

$$a'\frac{a}{s} = \phi(a')\frac{a}{s} = \frac{a'}{1}\frac{a}{s} = \frac{a'a}{s}$$

Fact 1.28. What is pA_p ?

As $A_{\mathbf{p}}$ is an A-module, we can multiply it by a prime ideal in A in a standard way

$$\sum a_i' \frac{a_i}{s_i} = \sum \frac{a'a_i}{s_i}$$

After bringing to a common denominator, this is

$$\frac{a}{s}$$

with $a \in \mathfrak{p}$, so $\mathfrak{p}A_{\mathfrak{p}}$ is the single maximal ideal of the local ring $A_{\mathfrak{p}}$.

Fact 1.29. What is $(\mathfrak{p}A_{\mathfrak{p}})B_{\mathfrak{p}}$?

As $B_{\mathfrak{p}}$ is an $A_{\mathfrak{p}}$ -module, and $\mathfrak{p}A_{\mathfrak{p}}$ is the single maximal ideal of the local ring $A_{\mathfrak{p}}$, Any element is, from the definition of the ideal-by-module and from the general element of $\mathfrak{p}A_{\mathfrak{p}}$ $(a \in \mathfrak{p})$

$$\sum_{i} \frac{a_i}{s_i'} \frac{b_i}{s_i} = \sum_{i} \frac{ab}{s's}$$

After bringing to a common denominator, this becomes

$$ab/s = f(a)b/s$$

where $a \in \mathfrak{p}$. Notice we got the general element of $\mathfrak{p}B_{\mathfrak{p}}$, so

$$(\mathfrak{p}A_{\mathfrak{p}})B_{\mathfrak{p}} = \mathfrak{p}B_{\mathfrak{p}}$$

Fact 1.30. How $B_{\mathfrak{p}}/\mathfrak{p}B_{\mathfrak{p}}=A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}\otimes_{A_{\mathfrak{p}}}B_{\mathfrak{p}}$?

Apply Exercise 2.2

$$A/\mathfrak{a}\otimes_A M\cong M/\mathfrak{a}M$$

to $M:=B\mathfrak{p},\,A:=A\mathfrak{p},\,\mathfrak{s}:=\mathfrak{p}A\mathfrak{p}$

$$A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}\otimes_{A_{\mathfrak{p}}}B_{\mathfrak{p}}=B_{\mathfrak{p}}/(\mathfrak{p}A_{\mathfrak{p}})B_{\mathfrak{p}}$$

now apply $(\mathfrak{p}A_{\mathfrak{p}})B_{\mathfrak{p}}=\mathfrak{p}B_{\mathfrak{p}}$.

Fact 1.31. How $A_{\mathfrak{p}} \otimes_A B \cong B_{\mathfrak{p}}$?

Apply Proposition 3.5: $S^{-1}A\otimes_A M\cong S^{-1}M$.

We now understand the isomorphisms in the solution of ItCA's 3.21(iv) by J D. Taylor.

$$\begin{split} B_{\mathfrak{p}}/\mathfrak{p}B_{\mathfrak{p}} &= A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}} \otimes_{A_{\mathfrak{p}}} B_{\mathfrak{p}} \\ &= K_{\mathfrak{p}} \otimes_{A_{\mathfrak{p}}} A_{\mathfrak{p}} \otimes_{A} B \\ &= K_{\mathfrak{p}} \otimes_{A} B \end{split}$$

2 Saturated

Fact 2.1. For saturated S, if f(a) is a unit in $S^{-1}A$, then $a \in S$.

Proof.

$$\frac{a}{1} \cdot \frac{b}{t} = \frac{1}{1}$$

$$\frac{ab}{t} = \frac{1}{1}$$

$$(ab,t) \equiv (1,1)$$

$$(ab - t)u = 0$$

$$abu=tu$$

$$abu \in S$$

As S is saturated, $a \in S$.