

Pengantar Sistem Komputer

- ✓ Organisasi Komputer,
- ✓ Arsitektur Komputer,
- ✓ Komponen Utama Sistem Komputer
- ✓ Struktur dan Fungsi

Tim pengampu

Sistem Komputer, Komunikasi dan Keamanan Data

T.A. 2020

How Computer Works?

Komputer bekerja dengan kombinasi input, storage, processing dan Output.

How Computer Works?

Semua bagian utama dari sistem komputer terlibat dalam 4 proses

- **Input**: contoh,keyboard dan Mouse, hanya sebagai input unit. Cara untuk memberikan informasi ke komputer yang akan diproses. dsb?
- Memory/storage: Tempat penyimpanan dokumen, HDD, RAM, FlashMemory, Flashdisk, dsb
- Processing: Prosesor komputer (CPU), berisi mikrochip, bekerja sangat sibuk, sehingga panas -> Overheat
- Output: Menampilkan informasi hasil proses, LCD, Printer dsb

Computer Organization & Architecture

Computer Organization

Ilmu yang memandang komputer dari sisi SOFTWARE, dan memberikan deskripsi tentang sistem dan prinsip kerja komputer.

#bagaimana mengelola eksekusi job di komputer

- Set instruksi, ukuran perintah dsb

Computer Architecture

Ilmu yang memandang komputer dari sisi HARDWARE, tentang bagaimana sistem diimplementasikan. #bagaimana interaksi antar komponen komputer saat mengeksekusi job

- Komponen apa saja yang harus ada, bagaimana fungsi masing2 komponen dsb

Architecture & Organization

Arsitektur komputer adalah serangkaian aturan dan metode yang menggambarkan fungsionalitas, organisasi, dan implementasi dari sistem komputer.

antara lain:

- Instruction set,
- Jml bit yg digunakan untuk representasi data
- Mekanisme I/O
- Teknik addressing.

MATA KULIAH

KOMPUTER

Gambar: www.wikipedia.com

Architecture & Organization

Organization adalah bagaimana fitur-fitu

- Control signals
- Interfaces
- Memory technology.

Computer Organization realisasi arsitektur. seperti register, jalur data atau koneksi ke memori dsb. Computer Organization adalah ALU, CPU dan memori dan organisasi memori.

Gambar: http://rockhopper.monmouth.edu/

Architecture & Organization

Pengukuran kecepatan CPU

Kecepatan CPU biasanya diukur berapa clock (siklus eksekusi perintah) dalam satu satuan waktu (detik) disebut *ClockSpeed* dan dilambangkang dengan satuan Hz (Mhz -Ghz).

Kecepatan komputer tidak hanya berdasarkan clockspeed saja, pada arsitektur yang berbeda, bisa jadi clockspeed rendah tetapi kenyataannya komputer dapat bekerja lebih cepat.

Faktor arsitektur komputer lain yang berpengaruh dalam kecepatan

- FrontSideBus (FSB)
- Chace

Teknologi MultiCore Satu chip terdapat beberapa CPU untuk mendongkrak performa

Abstraksi sistem komputer

Gambar: https://www.cs.utexas.edu/

Von Neumann Model

Gambar: Von Neumann model, Stalling

Structure & Function

Structure: bagaimana setiap komponen saling berhubungan **Function:** Operasi (fungsi) setiap komponen merupakan bagian

dari struktur

Fungsi Komputer

- Data processing
- Data storage
- Data movement
- Control

MATA KULIAH

KOMPUTER

ORGANISASI DAN ARSITEKTUR

Gambar : maps college

Fungsi Komputer

Data processing

Hanya ada beberapa metode dasar pemrosesan data tetapi komputer harus dapat memproses data dengan berbagai format instruksi.

Data storage

Komputer juga harus dapat menyimpan data, meskipun sebagian kecil, bahkan ketika komputer sedang memproses data. Proses penyimpanan harus dilakukan dengan cepat karena mungkin hasilnya akan digunakan untuk proses selanjutnya.

#Instruksi dan Data disimpan sementara saat proses eksekusi berlangsung RAM-Cache-Register

Fungsi Komputer

Data movement

Komputer harus dapat **memindah data** dan Instruksi antar komponen yang terlibat dalam eksekusi Job. Lingkungan OS terdiri dari perangkat yang berfungsi sebagai sumber atau tujuan data. Proses ini disebut *I/O*, perangkat disebut *peripheral*. Ketika data menempuh jarak yang panjang disebut *data communication*.

Control

Komputer harus dapat **mengontrol** lalu lintas data/instruksi dari ketiga fungsi ini. Berdasarkan instruksi yang diberikan, unit kontrol mengelola sumber daya komputer dan mengaturnya kinerja bagian fungsionalnya sebagai respons terhadap instruksi tersebut.

FAKULTAS ILMU KOMPUTER

Computer Structure (Top Level)

4 komponen Struktur Utama:

- CPU mengontrol operasi komputer dan melakukan fungsi pemrosesan data
- Main memory menyimpan data
- I/O memindah data antara komputer dan lingkungan external (internal cpu, antar peripheral,dg perangkat external)
- System interconnection Mekanisme yang menyediakan komunikasi antara CPU, main memory, and I/O. (system bus)

Computer Structure

Custom DIIC

System Bus = Data, Address, and Control Bus (set of wires, e.g. 32 wires each)
Typically multiple I/O buses, power bus, etc.

Computer Structure CPU

Komponen struktural CPU

- **CU** mengontrol operasi CPU
- ALU melakukan fungsi pemrosesan data
- Registers menyediakan penyimpanan internal di CPU
- CPU interconnection mekanisme komunikasi antara CU, ALU, dan register

arithmetic and logic unit (ALU)	computer organization control unit	processor registers
central processing unit (CPU) computer architecture	input-output (I/O) main memory	system bus

Referensi

 	_	_	_
 		л	^
	-	78	/
 	ıw	,	_

William Stalling, Computer Organization and organization 8th edition, Pearson Education, Inc,
Pearson Prentice Hall, 2010
Andrew S. Tanenbaum, Structured Computer Organization 4th Edition Pearson Prentice Hall, 2001
Mostafa Abd-El-Barr- Hesham El-Rewini, Fundamentals Of Computer Organization And Architecture
John Wiley & Sons, Inc, 2005

TAMBAHAN

□ http://www.computerhistory.org
 □ https://homepage.cs.uri.edu/faculty/wolfe/book/Readings/Reading04.htm
 □ https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/risccisc/
 □ https://www.electronics-tutorials.ws/binary/bin_2.html
 □ http://www.ict.griffith.edu.au/~johnt/1004ICT/lectures/

