

DAA 2022/2023

Parte 2: Análise assintótica - conceitos

4. Indique, para cada par de expressões na tabela quais as ordens de relação válidas entre A e B (i.e., se A é da ordem $\{0, \Omega, \Theta\}$). Nota: c, k são valores constantes.

A	В	0	Ω	Θ
$(\log n)^k$	n^k			
n^k	c^n			
\sqrt{n}	n ^{sin n}			
2 ⁿ	$2^{n/2}$			
$n^{\log c}$	$c^{\log n}$			
log (n!)	$\log n^n$			

5. Ordene as seguintes expressões por ordem do *limite exato* dos crescimentos assintóticos:

$5 + 0.001 n^2 + 0.025 n$	n^2	
$200 n + 0.001 n^2$	n^2	4, 5 e 6
$0.01 n + 200 n^2$	n^2	
$n + n^{1.5}$	n^1.5	3.
$n + n^{0.5}$	n	2.
$\log_{10} n + \log_5 \log_5 n$	log10n	1.
$n^3 \log_2 n + n(\log_2 n)^3$	n^3	7.

- 6. Escolha a opção que indica a ordem de complexidade final da fórmula $T(n) = 100 \ n + 5 \ n^{1.6} + 500 \log n$
 - a) $O(n^3)$

e) O(n)

b) $O(n^2)$

- f) $O(n \log n)$
- c) $O(n^{1.6})$
- **g)** $O(n^{1.2})$
- **d)** $O(n^{1.5})$
- **h)** $O(\log n)$

DAA 2022/2023

7. Escolha a opção mais apropriada para o cálculo da ordem de complexidade do seguinte algoritmo. Assuma que n é o número de linhas de A.

```
ALGORITMO Mult(A, B)
//Input: A, B, matrizes quadradas
//Output: resultado da multiplicação A por B
Para i a variar de 1 a n:
    Para j a variar de 1 a n:
        Para k a variar de 1 a n:
             C[i, j] \leftarrow A[i, k] \cdot B[k, j]
Devolver matriz C
```

- \bigcirc a) $O(n^3)$
- e) $\Omega(n^2)$
- **b)** $O(n^2)$
- f) $\Omega(n)$
- **c)** O(n)
- \mathbf{g}) $\Theta(n^3)$
- d) $\Omega(n^3)$

- **h)** $\Theta(n^2)$
- 8. Sejam f(n) and g(n) duas funções positivas. Usando as definições de limite superior, inferior e exato, indique, justificando, se é verdadeira ou falsa cada uma das seguintes afirmações:
 - a) Se f(n) = O(g(n)) então, necessariamente, tem-se que g(n) = O(f(n)).
 - b) $f(n) + g(n) = \Omega(\min(f(n), g(n))).$
 - c) Se f(n) = O(g(n)) então tem-se que 2f(n) = O(2g(n)).
 - d) $f(n) = O(f(n)^2)$.