BiBERT: Accurate Fully Binarized BERT

ACL 2023

Haotong Qin*^{1, 4}, Yifu Ding*^{1, 4}, Mingyuan Zhang*², Qinghua Yan¹, Aishan Liu¹, Qingqing Dang³, Ziwei Liu², Xianglong Liu¹

¹State Key Lab of Software Development Environment, Beihang University ²S-Lab, Nanyang Technological University ³Baidu Inc. ⁴Shen Yuan Honors College, Beihang University

Compact deep learning model

- Pre-trained language model
 - Great power in various natural language processing (NLP) tasks
 - BERT (Devlin et al., 2018) significantly improves the state-of-the-art performance,
 - Massive parameters hinder their widespread deployment on edge devices in the real world

Model compression

- Alleviate resource constraint issues
- Quantization, distillation, pruning, parameter sharing, etc.

Quantization

- Obtain compact model by compressing parameters to lower bit-width representation
- Representation limitation and optimization difficulties trigger severe performance drop

Knowledge distillation

- Common remedy in quantization as an auxiliary optimization approach to tackle the performance drop
- Encourages quantized model to mimic full-precision model to exploit knowledge in teacher's representation (Bai et al., 2020)

Quantization

- Convert continuous value to discrete value in certain interval
- Continuous value
 - IEEE 754 Format
 - FP32

Standard type for Training, High Resource, Slow Inference

• FP16

Standard type for Inference, Low Resource, Fast Inference

 $F\colon X\to Y$

 $\mathbb{R} o \mathbb{U}$

Uniform quantization function

Non-uniform quantization function

T. Chen. 'Seismic Data compression: a tutorial.' 1995.

Quantization

- Convert continuous value to discrete value in certain interval
- Discrete value
 - Uniform quantization
 - Non-uniform quantization

$$\{y \mid -128 \le y \le 127\}$$

$$f(x) = \begin{cases} 1, & \text{if } 0 \le x \le 1\\ 2, & \text{if } 1 \le x \le 10\\ 3, & \text{if } x \ge 10 \end{cases}$$

 $F\colon X\to Y$

 $\mathbb{R} o \mathbb{U}$

Uniform quantization function

Non-uniform quantization function

T. Chen. 'Seismic Data compression: a tutorial.' 1995.

Quantization

- Quantization target
 - Weight quantization, Activations quantization, Gradients quantization

Components	Benefits	Challenges					
Weight	Smaller model size Faster forward training & inference Less energy	BiBE	Hard to converge with quantization weights Require Approximate gradients Accuracy Degradation				
Activations	Smaller memory foot print during training Allows replacement of dot-product by bitwise operat Less energy	Gradient mismatch problem					
Gradients	Communication & memory savings	Convergence requirement					

Straight-through estimator (STE, 2013)

Analysis

- Direct binarization
 - Degradation of the information of attention weight
 - Invalidation of the selection ability for attention mechanism
 - Severe optimization direction mismatch since the non-neglectable error between the defacto and expected optimization direction

Mismatch Direction -2 -1 -0.45 -1 -0.45 -1 -0.60 -1 -0.6

Visualization of direction mismatch

Attention-head view (Vig, 2019)

Jesse Vig. A multiscale visualization of attention in the transformer model. ACL. 2019.

Part 2. Introduction

BiBERT (Fully binarized BERT baseline)

- Bi-Attention
 - Efficient structure based on information theory
 - Binarized representations with maximized information entropy, allowing the model to restore the perception of input contents
- Direction-matching Distillation (DMD)
 - Scheme to eliminate the direction mismatch in distillation
 - Appropriate activation and utilizes knowledge from constructed similarity matrices in distillation to optimize accurately
- Experiments on GLUE benchmark
 - Average accuracy of BiBERT exceeds 1-1-1 bit-width BinaryBERT, 2-8-8 bit-width Q2BERT
 - Impressive 56.3X and 31.2X saving on FLOPs and model size, respectively

Part 2. Introduction

Architecture Overview

Binarized Architecture

- Forward & backward propagation
 - Sign function is applied in the forward propagation
 - Straight-through estimator (STE) (Bengio et al., 2013) is used to obtain the derivative in the backward propagation
- Weight of binarized linear layers
 - Redistribute the weight to zero-mean for retaining representation information (Rastegari et al., 2016
 - Apply scaling factors to minimize quantization errors (Rastegari et al., 2016)

Binarized linear layers

Scaling factors for weight

bi-linear(
$$\mathbf{X}$$
) = $\alpha_{\mathbf{w}}(\operatorname{sign}(\mathbf{X}) \otimes \operatorname{sign}(\mathbf{W} - \mu(\mathbf{W}))), \quad \alpha_{\mathbf{w}} = \frac{1}{n} \|\mathbf{W}\|_{\ell 1}$

Matrix multiplication with bitwise xnor and bitcount

Binarized Architecture

- Multi-Head Attention (MHA) module & Feed-Forward Network (FFN)
 - Sign function is applied in the forward propagation
 - Straight-through estimator (STE) (Bengio et al., 2013) is used to obtain the derivative in the backward propagation

Binarized linear layers

$$\mathbf{Q} = \text{bi-linear}_Q(\mathbf{H}), \quad \mathbf{K} = \text{bi-linear}_K(\mathbf{H}), \quad \mathbf{V} = \text{bi-linear}_V(\mathbf{H})$$

Attention score

$$\mathbf{A} = \frac{1}{\sqrt{D}} \left(\mathbf{B}_{\mathbf{Q}} \otimes \mathbf{B}_{\mathbf{K}}^{\top} \right), \quad \mathbf{B}_{\mathbf{Q}} = \operatorname{sign}(\mathbf{Q}), \quad \mathbf{B}_{\mathbf{K}} = \operatorname{sign}(\mathbf{K})$$

Binarize the attention weight

$$\mathbf{B}_{\mathbf{A}}^{s} = \operatorname{sign}(\operatorname{softmax}(\mathbf{A}))$$

Bi-Attention For Maximum Information Entropy

- The average mutual information Z(X;Y) between input and output I(X;Y) = H(Y) H(Y|X) = H(Y) $p_k = \Pr\{Y_k\} = 1/N$.
- Maximum-Output Entropy (MOE) quantizer $D_{\theta} = \sum_{k=1}^{N} \int_{X_k}^{X_{k+1}} p(x)|x Y_k|^{\theta} dx$,
- An approximate relationship for the MAE quantizer $\int_{X_k}^{X_{k+1}} p^{1/(1+\theta)}(x) dx \cong \frac{2}{N} \int_0^{\infty} p^{1/(1+\theta)}(x) dx$.
- If p(x) is uniform or exponential in form (as the Gaussian or Laplacian distributions $p^{1/(1+\theta)}(x) = Ap^*(x)$, \longrightarrow $\int_{v}^{X_{k+1}} p^*(x) dx \cong 1/N$,
- \circ MAE quantizer is approximately same as MOE quantizer optimized with respect to p*(x).
- MOE quantizer is approximately MAE quantizer scaled by the constant multiplicative factor C^-1.

$$p^*(x) = C^{-1}p(x/C),$$

Bi-Attention For Maximum Information Entropy

 To Maximize information entropy of binarized representation zero-mean pre-binarized attention weight multiply Value

Theorem 1. Given $\mathbf{A} \in \mathbb{R}^k$ with Gaussian distribution and the variable $\hat{\mathbf{B}}^s_{\mathbf{A}}$ generated by $\hat{\mathbf{B}}^A_{\mathbf{w}} = \operatorname{sign}(\operatorname{softmax}(\mathbf{A}) - \tau)$, the threshold τ , which maximizes the information entropy $\mathcal{H}(\hat{\mathbf{B}}^s_{\mathbf{A}})$, is negatively correlated to the number of elements k.

Since the information entropy of sign(softmax $_{K+1}(A_1 - \tau_{K+1})$) is maximized, we have

$$\mathcal{H}(\mathbf{B}) = -\sum_{B} p(B) \log p(B), \quad \underbrace{\int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \prod_{i=1}^{K} p_{A_i}(a_i) [\operatorname{softmax}_K(a_1) \le \tau_K] \, da_i = 0.5,$$

Binarized attention score approximates the Gaussian distribution

$$A_{ij} = \sum_{l=1}^{D} B_{\mathbf{Q},il} \times B_{\mathbf{K},jl}, \qquad B_{\mathbf{Q},il} \times B_{\mathbf{K},jl} = \begin{cases} 1, & \text{if } B_{\mathbf{Q},il} \vee B_{\mathbf{K},jl} = 1\\ -1, & \text{if } B_{\mathbf{Q},il} \vee B_{\mathbf{K},jl} = -1. \end{cases}$$
$$p_{A}(2i - D) = C_{D}^{i} p_{e}^{i} (1 - p_{e})^{D-i} \simeq \frac{1}{\sqrt{2\pi D p_{e} (1 - p_{e})}} e^{-\frac{(i - D p_{e})^{2}}{2D p_{e} (1 - p_{e})}},$$

Bi-Attention For Maximum Information Entropy

- Binarize the attention score A can maximize the information entropy of representation
- **Theorem 2.** When the binarized query $\mathbf{B}_{\mathbf{Q}} = \operatorname{sign}(\mathbf{Q}) \in \{-1, 1\}^{N \times D}$ and key $\mathbf{B}_{\mathbf{K}} = \operatorname{sign}(\mathbf{K}) \in \{-1, 1\}^{N \times D}$ are entropy maximized in binarized attention, the probability mass function of each element \mathbf{A}_{ij} , $i, j \in [1, N]$ sampled from attention score $\mathbf{A} = \mathbf{B}_{\mathbf{Q}} \otimes \mathbf{B}_{\mathbf{K}}^{\top}$ can be represented as $p_A(2i D) = 0.5^D C_D^i$, $i \in [0, D]$, which approximates the Gaussian distribution $\mathcal{N}(0, D)$.
- $^\circ$ By applying bool function, the elements in attention weight with lower value are binarized to 0, thus trivially get that $\phi(au,{f A})=0$

$$\operatorname{bool}(x) = \begin{cases} 1, & \text{if } x \ge 0 \\ 0, & \text{otherwise} \end{cases} \qquad \frac{\partial \operatorname{bool}(x)}{\partial x} = \begin{cases} 1, & \text{if } |x| \le 1 \\ 0, & \text{otherwise}. \end{cases}$$

$$\mathbf{B}_{\mathbf{A}} = \operatorname{bool}(\mathbf{A}) = \operatorname{bool}\left(\frac{1}{\sqrt{D}}\left(\mathbf{B}_{\mathbf{Q}} \otimes \mathbf{B}_{\mathbf{K}}^{\mathsf{T}}\right)\right) \quad \operatorname{Bi-Attention}(\mathbf{B}_{\mathbf{Q}}, \mathbf{B}_{\mathbf{K}}, \mathbf{B}_{\mathbf{V}}) = \mathbf{B}_{\mathbf{A}} \boxtimes \mathbf{B}_{\mathbf{V}}$$

Bi-Attention For Maximum Information Entropy

- Apply bool function to obtain the binarized attention weights B with values of 0 and 1
- 1-bit matrix stored in the hardware is unified into the same form (with binary values of 1 and -1) and is supported by most existing hardware

Distillation For Binarized BERT

- Optimization approach to alleviate the performance drop of quantized BERT
- Loss function
 - Use mean squared errors (MSE)
 - Measure the difference between student and teacher networks

Attention Loss

Multi Head Attention Loss

$$\ell_{\text{att}} = \sum_{l=1}^{L} \text{MSE}(\mathbf{A}_l, \mathbf{A}_{Tl}), \quad \ell_{\text{mha}} = \sum_{l=1}^{L} \text{MSE}(\mathbf{M}_l, \mathbf{M}_{Tl}), \quad \ell_{\text{hid}} = \sum_{l=1}^{L} \text{MSE}(\mathbf{H}_l, \mathbf{H}_{Tl})$$

Hidden States Loss

$$\ell_{\text{hid}} = \sum_{l=1}^{L} \text{MSE}(\mathbf{H}_l, \mathbf{H}_{Tl})$$

Prediction Loss

$$\ell_{\mathrm{pred}} = \mathrm{SCE}\left(\mathbf{y}, \mathbf{y}_{T}\right)$$

Loss function

$$\ell_{distill} = \ell_{att} + \ell_{mha} + \ell_{hid} + \ell_{pred}$$

Loss function

Direction-matching Distillation

• Direction mismatch for optimization in the fully binarized BERT baseline

Direction-matching Distillation Loss

$$\mathbf{P}_{\mathbf{Q}} = \frac{\mathbf{Q} \times \mathbf{Q}^{\top}}{\|\mathbf{Q} \times \mathbf{Q}^{\top}\|} \quad \mathbf{P}_{\mathbf{K}} = \frac{\mathbf{K} \times \mathbf{K}^{\top}}{\|\mathbf{K} \times \mathbf{K}^{\top}\|} \quad \mathbf{P}_{\mathbf{V}} = \frac{\mathbf{V} \times \mathbf{V}^{\top}}{\|\mathbf{V} \times \mathbf{V}^{\top}\|} \quad \ell_{\mathrm{DMD}} = \sum_{l \in [1, L]} \sum_{\mathbf{F} \in \mathcal{F}_{\mathrm{DMD}}} \|\mathbf{P}_{\mathbf{F}l} - \mathbf{P}_{\mathbf{F}Tl}\|$$

Loss function

$$\ell_{\text{distill}} = \ell_{\text{att}} + \ell_{\text{mha}} + \ell_{\text{hid}} + \ell_{\text{pred}}$$

$$\ell_{\text{distill}} = \ell_{\text{DMD}} + \ell_{\text{hid}} + \ell_{\text{pred}}$$
16

Mismatched Direction

Theorem 4. Given the variables X and X_T follow $\mathcal{N}(0, \sigma_1), \mathcal{N}(0, \sigma_2)$ respectively, the proportion of optimization direction error is defined as $p_{error\ Q-bit} = p(\operatorname{sign}(X - X_T) \neq \operatorname{sign}(\operatorname{quantize}_Q(X) - X_T))$, where $\operatorname{quantize}_Q$ denotes the Q-bit symmetric quantization. As Q reduces from 8 to 1, $p_{error\ Q-bit}$ becomes larger.

Proof. Given the random variables $X \sim \mathcal{N}(0, \sigma_1)$ and $X_T \sim \mathcal{N}(0, \sigma_2)$, the Q-bit symmetric quantization function quantize_Q is expressed as (take X as an example)

$$\operatorname{quantize}_Q(X) = \begin{cases} -L, & \text{if } x < -L, \\ \lfloor \frac{(2^Q - 1)X}{2L} + 0.5 \rfloor \frac{2L}{2^Q - 1}, & \text{if } -L \le X \le L, \\ L, & \text{if } x > L, \end{cases} \tag{61}$$

where the $\lfloor \cdot \rfloor$ denotes the round down function, and the range [-L, L] is divided into $2^Q - 1$ inter. The optimization direction error occurs when $\operatorname{sign}(X - \hat{X}) = \operatorname{sign}(\operatorname{quantize}_Q(X) - X_T)$, i.e., $X > X_T$ and $\operatorname{quantize}_Q(X) < X_T$ or $X < X_T$ and $\operatorname{quantize}_Q(X) > X_T$.

Mismatched Direction

- $(1) \text{ When } -L < X < L, \lfloor \frac{(2^Q-1)X}{2L} \rfloor \frac{2L}{2^Q-1} < \text{quantize}_Q(X) < \lfloor \frac{(2^Q-1)X}{2L} + 1 \rfloor \frac{2L}{2^Q-1}.$
- a) If $X_T < \lfloor \frac{(2^Q-1)X}{2L} \rfloor \frac{2L}{2^Q-1}$, since $\lfloor \frac{(2^Q-1)X}{2L} \rfloor \frac{2L}{2^Q-1} < X$, we have $X_T < X$. And since $\lfloor \frac{(2^Q-1)X}{2L} \rfloor \frac{2L}{2^Q-1} < \text{quantize}_Q(X)$, $X_T < \text{quantize}_Q(X)$. Thus, the optimization direction is always right in this case.
- b) If $X_T > \lfloor \frac{(2^Q-1)X}{2L} + 1 \rfloor \frac{2L}{2^Q-1}$, since $\lfloor \frac{(2^Q-1)X}{2L} + 1 \rfloor \frac{2L}{2^Q-1} > X$, we have $X_T > X$. And since $\lfloor \frac{(2^Q-1)X}{2L} \rfloor \frac{2L}{2^Q-1} > \text{quantize}_Q(X)$, $X_T > \text{quantize}_Q(X)$. Thus, the optimization direction is always right in this case.
- c) If $\lfloor \frac{(2^Q-1)X}{2L} \rfloor \frac{2L}{2^Q-1} \le X_T \le \lfloor \frac{(2^Q-1)X}{2L} + 1 \rfloor \frac{2L}{2^Q-1}$, first, the probability of $X > X_T$ and quantize $Q(X) < X_T$ can be calculated as:

Mismatched Direction

$$p_{\text{error1 }Q} = \int_{-L}^{L} \int_{\lfloor \frac{(2^{Q}-1)X}{2L} + 0.5 \rfloor \frac{2L}{2^{Q}-1}}^{X} f_{X,X_{T}}(X, X_{T})$$
 (62)

$$\left[\left\lfloor \frac{(2^Q - 1)X}{2L} + 0.5 \right\rfloor < X \right] dX_T dX, \tag{63}$$

where $f_{X,X_T}(\cdot,\cdot)$ is the probability density function of the joint probability distribution for $\{X,X_T\}$, and $[\cdot]$ denotes the *Iverson bracket* as defined in Eq. (26).

Then we get the probability of $X < X_T$ and quantize_Q $(X) > X_T$ as

$$p_{\text{error2 }Q} = \int_{-L}^{L} \int_{X}^{\lfloor \frac{(2^{Q}-1)X}{2L} + 0.5 \rfloor \frac{2L}{2^{Q}-1}} f_{X,X_{T}}(X, X_{T})$$
 (64)

$$\left[\left\lfloor \frac{(2^Q - 1)X}{2L} + 0.5 \right\rfloor > X \right] dX_T dX. \tag{65}$$

Mismatched Direction

Since $f_{X,X_T}(X,X_T) \ge 0$ is constant established, $p_{\text{error1 }Q}$ and $p_{\text{error2 }Q}$ increases as Q becomes smaller.

- (2) When X > L, quantize_Q(X) = L. $X_T > X > L = \text{quantize}_Q(X)$ is constant established when $X_T > X$, and when $X_T < X$, the probability of $X_T > \text{quantize}_Q(X) = L$ is also constant based on the given distribution of X_T . Thus, the optimization direction is always right in this case.
- (3) When X < -L, quantize_Q(X) = -L. $X_T < X < -L = \text{quantize}_Q(X)$ is constant established when $X_T < X$, and when $X_T > X$, the probability of $X_T > \text{quantize}_Q(X) = -L$ is also constant based on the given distribution of X_T . Thus, the optimization direction is always right in this case.

Mismatched Direction

Table 4: Simulation of error proportion under the Q-bit

Bits (Q)	1	2	3	4	5	6	7	8
Proportion (%)	14.36%	6.42%	4.35%	3.30%	2.76%	2.56%	2.51%	2.49%

- It is difficult to directly give an analytical representation of the error proportion of Gaussian distribution input under Q-bit quantization
- Monte Carlo algorithm
 - Simulate the probability of directional error caused by Q-bit by the error proportion of the pre-quantized data $\mathbf{X} \in \mathbb{R}^{10000}$
 - ullet Each element in old X is sampled from the standard normal distribution
- Experimental Result
 - Probability of direction mismatch increases rapidly in 1-bit quantization

Part 4. Experiments

Comparison with SOTA Methods

- Baseline: BERT_BASE, TinyBERT6L, TinyBERT4L / Dataset: GLUE benchmark
- $\circ~50\%$: Maximize the information entropy by the 50% quantile thresholdBERT

Quant	#Bits	Size (MB)	FLOPs (G)	MNLI _{-m/mm}	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Avg.
Full Precision	32-32-32	418	22.5	84.9/85.5	91.4	92.1	93.2	59.7	90.1	86.3	72.2	83.9
Q-BERT	2-8-8	43.0	6.5	76.6/77.0	_	_	84.6	_	_	68.3	52.7	_
Q2BERT	2-8-8	43.0	6.5	47.2/47.3	67.0	61.3	80.6	0	4.4	68.4	52.7	47.7
TernaryBERT	2-2-8	28.0	6.4	83.3/83.3	90.1	_	_	50.7	_	87.5	68.2	_
BinaryBERT	1-1-4	16.5	1.5	83.9/84.2	91.2	90.9	92.3	44.4	87.2	83.3	65.3	79.9
TernaryBERT	2-2-2	28.0	1.5	40.3/40.0	63.1	50.0	80.7	0	12.4	68.3	54.5	45.5
BinaryBERT	1-1-2	16.5	0.8	62.7/63.9	79.9	52.6	82.5	14.6	6.5	68.3	52.7	53.7
TernaryBERT	2-2-1	28.0	0.8	32.7/33.0	74.1	59.3	53.1	0	7.1	68.3	53.4	42.3
Baseline	1-1-1	13.4	0.4	45.8/47.0	73.2	66.4	77.6	11.7	7.6	70.2	54.1	50.4
Baseline _{50%}	1-1-1	13.4	0.4	47.7/49.1	74.1	67.9	80.0	14.0	11.5	69.8	54.5	52.1
BinaryBERT	1-1-1	16.5	0.4	35.6/35.3	66.2	51.5	53.2	0	6.1	68.3	52.7	41.0
BinaryBERT _{50%}	1-1-1	13.4	0.4	39.2/40.0	66.7	59.5	54.1	4.3	6.8	68.3	53.4	43.5
BiBERT (ours)	1-1-1	13.4	0.4	66.1/67.5	84.8	72.6	88.7	25.4	33.6	72.5	57.4	63.2
Full Precision _{6L}	32-32-32	257	11.3	84.6/83.2	71.6	90.4	93.1	51.1	83.7	87.3	70.0	79.4
BiBERT _{6L} (ours)	1-1-1	6.8	0.2	63.6/63.7	83.3	73.6	87.9	24.8	33.7	72.2	55.9	62.1
Full Precision 4L	32-32-32	55.6	1.2	82.5/81.8	71.3	87.7	92.6	44.1	80.4	86.4	66.6	77.0
BiBERT _{4L} (ours)	1-1-1	4.4	0.03	55.3/56.1	78.2	71.2	85.4	14.9	31.5	72.2	54.2	57.7

22

Part 4. Experiments

Ablation Study

- Bi-Attention and DMD can improve the performance when used alone
- Improve BiBERT and close the performance gap between fully binarized BERT and fullprecision counterpart

					_	
Quant	#Bits	DA	SST-2	MRPC	CRTE	QQP
Full Precision	32-32-32	2 –	93.2	86.3	72.2	91.4
Baseline	1-1-1	X	77.6	70.2	54.1	73.2
Bi-Attention	1-1-1	X	82.1	70.5	55.6	74.9
DMD	1-1-1	X	79.9	70.5	55.2	75.3
BiBERT (ours)	1-1-1	X	88.7	72.5	57.4	84.8
Baseline	1-1-1	√	84.0	71.4	50.9	-
Bi-Attention	1-1-1	\checkmark	85.6	73.2	53.1	-
DMD	1-1-1	\checkmark	85.3	72.5	56.3	-
BiBERT (ours)	1-1-1	\checkmark	90.9	78.8	61.0	-

Part 4. Experiments

Analysis

- Information Performance
 - Take the first heads in layer 0 of each model
 - Information entropy of attention weight in BiBERT fluctuates in a small range and is almost maximized
- Loss function
 - Achieve faster convergence rate and higher accuracy

Part 5. Conclusion

• BiBERT (Fully binarized BERT baseline)

- Propose Bi-Attention and DMD in BiBERT to improve performance
- Outperforms existing BERT quantization methods, giving an impressive 56.3X FLOPs and 31.2X model size saving