STM32L5 - RTC

Real-time clock Revision 1.0

Overview 2

- The RTC provides an ultra-low-power hardware calendar with alarms, in all low-power modes
- It belongs to the Battery Backup Domain, so it is kept functional when the main supply is off and **VBAT** is present
- TrustZone®-aware peripheral with privilege access filtering

Application benefits

- Consumption drastically reduced for longer battery life
- Highly flexible security featuring individual isolation from non-secure or non-privilege processes
- Hardware BCD calendar to reduce software load

Key features 3

- Seconds, minutes, hours, week day, date, month, year in BCD format and sub-seconds in binary format
- "On the fly" programmable daylight savings compensation
- Two programmable alarms with wakeup interrupt function
- A periodic event with programmable resolution, triggering wakeup interrupt
- A reference clock source (50 or 60 Hz) can be used to enhance the calendar precision
- Digital calibration circuit to achieve 0.95 ppm accuracy
- Timestamp feature which can be used to save the calendar content with sub-second precision (one event)

Block diagram 4

RTC not affected by system reset when clocked by LSE

Consumption optimization modes 5

Longer battery life

- The RTC consumption can be minimized by reducing the sub-second resolution:
 - Sub-second register resolution is RTCCLK/(PREDIV_A+1)
 - $F_{CK APRE} = F_{RTCCLK} / (PREDIV_A + 1)$
 - Optimal consumption is with default configuration: $F_{CK APRE} = 256 \text{ Hz}$
 - With $F_{CK_APRE} = 2048 \text{ kHz} => + 30\text{nA}$
 - With $F_{CK APRE} = 8192 \text{ kHz} => + 130 \text{nA}$

Consumption optimization modes

Longer battery life

- The RTC consumption is drastically reduced by setting Calibration Lowpower Mode (LPCAL) mode
 - The LPCAL bit is ignored when (PREDIV_A+1) is not a power of 2
 - LPCAL=1: the whole RTC is clocked only by ck_apre instead of RTCCLK or ck_apre
 - Calibration window is 2²⁰ x PREDIV A x RTCCLK pulses (LPCAL=1) instead of 2²⁰ x RTCCLK pulses (LPCAL=0)

Security and Privilege protection

Hardware isolation between secure/non-secure privileged/unprivileged

- RTC can be globally protected against non-secure read and write accesses (DECPROT=0)
 - Calendar, security and privilege configuration registers are not read-protected
- Each RTC feature (Initialization, Calibration, Alarm A, Alarm B, Wakeup Timer, Timestamp) can be placed in its own hardware enforced security domain thanks to individual protection configuration against non-secure
- The same approach is used for privilege protection, either global or per RTC feature
 - A non-privilege access to a privilege-protected register is denied (write ignored, read as 0)
- 2 RTC interrupt vectors :
 - RTC (global non-secure feature interrupts)
 - RTC S (global secure feature interrupts)

Safe RTC initialization

- The RTC registers are write-protected to avoid possible parasitic write accesses
 - Disable Backup domain write Protection(DBP) bit must be set in the Power Controller control register (PWR_CR1) to enable RTC write access
 - A Key must be written in the RTC write protection register (RTC_WPR) register
- Specific software sequence to enter RTC initialization mode
 - Used for calendar registers and prescaler initialization

RTC calendar

Active in all low-power modes, VBAT and reset

Initialization done through shadow registers: Time and Date registers

Actual registers

Shadow registers

- Reading the calendar:
 - BYPSHAD = 0: Read shadow registers
 - Delay up to 1 RTCCLK cycles to update shadow registers when exiting Stop/Standby/Shutdown modes.
 - Reading either RTC SSR or RTC TR locks the values in the higher-order calendar shadow registers until RTC DR is read.
 - BYPSHAD = 1: Bypass shadow registers
 - Calendar read directly accesses the calendar counters
 - Software must read all calendar registers twice and compare the results to ensure that the data are coherent and correct.

RTC calendar features ___

- "Daylight savings" is managed by automatic addition or subtraction of 1 hour
- Calendar synchronization up to 1 s by adding/subtracting an offset with the subsecond resolution => Allows synchronization with remote clock
- Reference clock detection: A more precise second-source clock (50 or 60 Hz mains) can be used to enhance the long-term precision of the calendar:
 - The reference clock is automatically detected and used to enhance the calendar precision
 - The LSE clock is automatically used to update the calendar whenever the reference clock becomes unavailable

RTC calendar features

- Timestamp
 - Calendar value is saved in timestamp registers on external I/O event
 - Internal timestamp detection when a switch to VBAT occurs
 - Optional timestamp in case of tamper detection
- If a new timestamp event is detected while the timestamp flag (TSF) is already set, the timestamp overflow flag (TSOVF) flag is set

Smooth digital calibration 12

Crystal inaccuracy compensation

- Consists in masking/adding N (configurable) 32.768 kHz clock pulses, fairly well distributed in a configurable window
 - When LPCAL=1: the calibration clock is ck_apre
- Calibration value can be changed on the fly
- A 1 Hz output is provided to measure the crystal frequency and the calibration result

Calibration window	Accuracy	Total range
8 s	± 1.907 ppm	[-487.1 ppm, +488.5 ppm]
16 s	± 0.954 ppm	[-487.1 ppm, +488.5 ppm]
32 s	± 0.477 ppm	[-487.1 ppm, +488.5 ppm]

RTC programmable alarm 13

2 flexible alarms based on calendar value

- The Alarm flags are set if the calendar sub-seconds, seconds, minutes, hours or date match the value programmed in the alarm registers
- 2 alarms, which exit the device from all low-power modes
- Alarm event can also be routed to the specific output pin RTC_OUT, with configurable polarity
- Calendar sub-second, seconds, minutes, hours or date fields can be independently selected (masked or not masked)
 - Masks allow configuration of periodic alarm interrupts

Periodic auto-wakeup

Flexible periodic wakeup interrupt

- The periodic wakeup flag is generated by a 16-bit programmable binary autoreload down counter (can be extended to 17 bits)
- Able to exit the device from Stop/Standby/Shutdown modes

Wakeup timer (WUT) clock	Wakeup period	Resolution
RTCCLK divided by 2, 4, 8, 16	From 122 µs to 32 s when RTCCLK = 32.768 kHz	Down to 61 μs
ck_spre	From 1 s to 36 hours when ck_spre = 1 Hz	1s

Secure and non-secure interrupts 15

Interrupt event	Description
Alarm A	Set when the calendar value matches the Alarm A value
Alarm B	Set when the calendar value matches the Alarm B value
Wake-up timer	Set when the wakeup auto-reload timer reaches 0
Timestamp	Set when a timestamp event occurs

Low-power modes 16

Mode	Description
Run	Active
Sleep	Active RTC interrupts cause the device to exit Sleep mode
Low-power run	Active
Low-power sleep	Active RTC interrupts cause the device to exit Low-power sleep mode
Stop 0 / Stop 1/ Stop 2	Active when clocked by LSE or LSI RTC interrupts cause the device to exit Stop 0/Stop 1/Stop 2 mode
Standby	Active when clocked by LSE or LSI RTC interrupts cause the device to exit Standby mode
Shutdown	Active when clocked by LSE RTC interrupts cause the device to exit Shutdown mode

Debug information 17

• DBG_RTC_STOP bit: RTC counter stopped when core is halted

Related peripherals 18

- Refer to these peripheral trainings linked to the RTC
 - TrustZone (TRZ)
 - Tamper and backup registers (TAMP)
 - Reset and clock control (RCC)
 - Power control (PWR)
 - Extended interrupt controller (EXTI)

