

WHAT IS CLAIMED IS:

1 1. A method for storing input groups of uncoded binary data on a storage
2 medium, comprising:

3 receiving a plurality of uncoded data blocks in a data stream;

4 generating one corresponding encoded data block for each uncoded data
5 block, wherein an encoded data stream obtained from concatenating successive
6 encoded blocks includes a predetermined bit pattern comprising a plurality of bits,
7 wherein the bit pattern always occurs within a first number of bits and two
8 occurrences of a "1" and "0" occur within a second number of bits; and
9 storing the encoded data stream on the storage medium.

1 2. The method of claim 1, wherein the first number is greater than the
2 second number.

1 3. The method of claim 1, wherein the predetermined bit pattern
2 represents a maximum amplitude peak in a constrained waveform that is guaranteed
3 to occur within the first number of bits.

1 4. The method of claim 1, wherein the encoded data blocks are generated
2 using an encoder table.

1 5. The method of claim 1, wherein decoding the encoded data block by
2 determining the decoded data block corresponding to the encoded data block.

1 6. The method of claim 1, wherein the encoding function is performed by
2 a finite state code.

1 7. The method of claim 6, wherein one encoded data block corresponds
2 to multiple uncoded data blocks, and wherein a value of at least one adjacent block is

- 3 used to determine the uncoded data block that corresponds to the encoded data block
4 corresponding to multiple uncoded data blocks.

1 8. The method of claim 1, wherein the predetermined bit pattern
2 comprises "010", each uncoded data block comprises eight bits, and each encoded
3 data block comprises nine bits.

1 9. The method of claim 8, wherein the first number comprises twelve and
2 the second number comprises six.

1 10. The method of claim 1, wherein the predetermined bit pattern
2 comprises "010", wherein each uncoded data block comprises sixteen bits and
3 wherein each encoded data block comprises seventeen bits.

1 11. The method of claim 10, wherein the first number comprises twenty
2 bits and the second number comprises fourteen bits.

1 12. The method of claim 10, wherein a correspondence of uncoded to
2 encoded data blocks comprises a finite state code scheme.

1 13. The method of claim 1, wherein the predetermined bit pattern
2 comprises "111", wherein each uncoded data block comprises nine bits and wherein
3 each encoded data block comprises ten bits.

1 14. The method of claim 13, wherein the first number is fourteen.

1 15. The method of claim 1, wherein the predetermined bit pattern
2 comprises "111", wherein each uncoded data block comprises sixteen bits, and
3 wherein each encoded data block comprises seventeen bits.

1 16. The method of claim 15, wherein the first number is twenty-one.

1 17. The method of claim 15, wherein a correspondence of uncoded to
2 encoded data blocks comprises a finite state code scheme.

1 18. The method of claim 1, wherein the predetermined bit pattern
2 comprises either "0100" or "0010", wherein each uncoded data block comprises nine
3 bits and wherein each encoded data block comprises ten bits.

1 19. The method of claim 18, wherein the first number is twelve.

1 20. The method of claim 1, wherein the predetermined bit pattern
2 comprises either "0100" or "0010", wherein each uncoded data block comprises
3 sixteen bits.

1 21. The method of claim 20, wherein each encoded data block comprises
2 seventeen bits and wherein the first number comprises nineteen bits.

1 22. The method of claim 20, wherein a correspondence of uncoded to
2 encoded data blocks comprises a finite state code scheme and wherein the first
3 number is fifteen.

1 23. The method of claim 1, wherein the encoded data block can be used in
2 partial response and extended partial response systems.

1 24. The method of claim 1, wherein the predetermined bit pattern is
2 included in one encoded data block or spans two encoded data blocks.

1 25. A system for storing input groups of uncoded binary data on a storage
2 medium, comprising:

3 means for receiving a plurality of uncoded data blocks in a data stream;
4 means for generating one corresponding encoded data block for each uncoded
5 data block, wherein an encoded data stream obtained from concatenating successive
6 encoded blocks includes a predetermined bit pattern comprising a plurality of bits,
7 wherein the bit pattern always occurs within a first number of bits and two
8 occurrences of a "1" and "0" occur within a second number of bits; and
9 means for storing the encoded data stream on the storage medium.

1 26. The system of claim 25, wherein the first number is greater than the
2 second number.

1 27. The system of claim 25, wherein the predetermined bit pattern
2 represents a maximum amplitude peak in a constrained waveform that is guaranteed
3 to occur within the first number of bits.

1 28. The system of claim 25, wherein the encoding function is performed
2 by a finite state code.

1 29. The system of claim 28, wherein one encoded data block corresponds
2 to multiple uncoded data blocks, and wherein a value of at least one adjacent block is
3 used to determine the uncoded data block that corresponds to the encoded data block
4 corresponding to multiple uncoded data blocks.

1 30. The system of claim 25, wherein the predetermined bit pattern
2 comprises "010", each uncoded data block comprises eight bits, and each encoded
3 data block comprises nine bits.

1 31. The system of claim 25, wherein the predetermined bit pattern
2 comprises "111", wherein each uncoded data block comprises nine bits and wherein
3 each encoded data block comprises ten bits.

1 32. The system of claim 25, wherein the predetermined bit pattern
2 comprises "111", wherein each uncoded data block comprises sixteen bits, wherein
3 each encoded data block comprises seventeen bits.

1 33. The system of claim 25, wherein the predetermined bit pattern
2 comprises either "0100" or "0010", wherein each uncoded data block comprises nine
3 bits and wherein each encoded data block comprises ten bits.

1 34. The system of claim 25, wherein the predetermined bit pattern is
2 included in one encoded data block or spans two encoded data blocks.

1 35. An article of manufacture including code for storing input groups of
2 uncoded binary data on a storage medium, wherein the code is capable of causing
3 operations comprising:
4 receiving a plurality of uncoded data blocks in a data stream;
5 generating one corresponding encoded data block for each uncoded data
6 block, wherein an encoded data stream obtained from concatenating successive
7 encoded blocks includes a predetermined bit pattern comprising a plurality of bits,
8 wherein the bit pattern always occurs within a first number of bits and two
9 occurrences of a "1" and "0" occur within a second number of bits; and
10 storing the encoded data stream on the storage medium.

1 36. The article of manufacture of claim 35, wherein the first number is
2 greater than the second number.

1 37. The article of manufacture of claim 35, wherein the predetermined bit
2 pattern represents a maximum amplitude peak in a constrained waveform that is
3 guaranteed to occur within the first number of bits.

1 38. The article of manufacture of claim 35, wherein the encoded data
2 blocks are generated using an encoder table.

1 39. The article of manufacture of claim 35, wherein decoding the encoded
2 data block by determining the decoded data block corresponding to the encoded data
3 block.

1 40. The article of manufacture of claim 35, wherein the encoding function
2 is performed by a finite state code.

1 41. The article of manufacture of claim 40, wherein one encoded data
2 block corresponds to multiple uncoded data blocks, and wherein a value of at least
3 one adjacent block is used to determine the uncoded data block that corresponds to
4 the encoded data block corresponding to multiple uncoded data blocks.

1 42. The article of manufacture of claim 35, wherein the predetermined bit
2 pattern comprises "010", each uncoded data block comprises eight bits, and each
3 encoded data block comprises nine bits.

1 43. The article of manufacture of claim 42, wherein the first number
2 comprises twelve and the second number comprises six.

1 44. The article of manufacture of claim 35, wherein the predetermined bit
2 pattern comprises "010", wherein each uncoded data block comprises sixteen bits and
3 wherein each encoded data block comprises seventeen bits.

1 45. The article of manufacture of claim 44, wherein the first number
2 comprises twenty bits and the second number comprises fourteen bits.

1 46. The article of manufacture of claim 44, wherein a correspondence of
2 uncoded to encoded data blocks comprises a finite state code scheme.

1 47. The article of manufacture of claim 35, wherein the predetermined bit
2 pattern comprises "111", wherein each uncoded data block comprises nine bits and
3 wherein each encoded data block comprises ten bits.

1 48. The article of manufacture of claim 47, wherein the first number is
2 fourteen.

1 49. The article of manufacture of claim 35, wherein the predetermined bit
2 pattern comprises "111", wherein each uncoded data block comprises sixteen bits,
3 and wherein each encoded data block comprises seventeen bits.

1 50. The article of manufacture of claim 49, wherein the first number is
2 twenty-one.

1 51. The article of manufacture of claim 49, wherein a correspondence of
2 uncoded to encoded data blocks comprises a finite state code scheme.

1 52. The article of manufacture of claim 35, wherein the predetermined bit
2 pattern comprises either "0100" or "0010", wherein each uncoded data block
3 comprises nine bits and wherein each encoded data block comprises ten bits.

1 53. The article of manufacture of claim 52, wherein the first number is
2 twelve.

1 54. The article of manufacture of claim 35, wherein the predetermined bit
2 pattern comprises either "0100" or "0010", wherein each uncoded data block
3 comprises sixteen bits.

1 55. The article of manufacture of claim 54, wherein each encoded data
2 block comprises seventeen bits and wherein the first number comprises nineteen bits.

1 56. The article of manufacture of claim 54, wherein a correspondence of
2 uncoded to encoded data blocks comprises a finite state code scheme and wherein the
3 first number is fifteen.

1 57. The article of manufacture of claim 35, wherein the encoded data
2 block can be used in partial response and extended partial response systems.

1 58. The article of manufacture of claim 35, wherein the predetermined bit
2 pattern is included in one encoded data block or spans two encoded data blocks.