Noi.ac 模拟赛

 $cz_xuyixuan$

July 5, 2020

题目名称	黑白沙漠	荒野聚餐	火星在住
目录	anticipate	allocation	accompany
可执行文件名	anticipate	allocation	accompany
输入文件名	anticipate.in	allocation.in	accompany.in
输出文件名	anticipate.out	allocation.out	accompany.out
每个测试点时限	2.0s	1.0s	3.0s
内存限制	1024MB	1024MB	1024MB
试题总分	100	100	100
测试点数目	7	6	20
每个测试点分值	N/A	N/A	5
是否有部分分	否	否	否
题目类型	传统型	传统型	传统型

提交的源程序文件名

对于 C++ 语言	anticipate.cpp	allocation.cpp	accompany.cpp
对于 C 语言	anticipate.c	allocation.c	accompany.c
对于 Pascal 语言	anticipate.pas	allocation.pas	accompany.pas

编译开关

对于 C++ 语言	-O2 -std=c++11	-O2 -std=c++11	-O2 -std=c++11
对于 C 语言	-O2 -std=c11	-O2 -std=c11	-O2 -std=c11
对于 Pascal 语言	-O2	-O2	-O2

1 黑白沙漠

1.1 题目背景

这是一片没有色彩的沙漠。

放眼望去,沙漠中枯萎的矮木、零星的仙人掌,以及远处的一条小河,一切景物都只有黑白两色。景物的线条大多十分简单,就像是用铅笔画出来的一样。

1.2 题目描述

Monoe 和 Monoko 正在黑白沙漠中玩捉迷藏。

黑白沙漠的河流可以看做一条长度有限的数轴,其两端的坐标分别为L,R。

由于植被稀疏,黑白沙漠常年刮着大风。黑白沙漠的河流边有着 N 栋建筑物,其中第 i 栋建筑物的坐标为 x_i ,且能够在大风中坚持 y_i 个单位时间。

初始时,区间 [L,R] 恰好是无风的。此后,无风的区间将会以每个单位时间 1 单位长度的速度逐渐缩小,直至缩小至一个在 [L,R] 中等概率生成的实数点 M 处。无风的区间的端点位置是关于时间线性的,也就是说,在整个过程中, $\frac{M-L}{B-M}$ 将会保持不变。

现在,Monoe 想要知道每一栋建筑物能够坚持到最后的概率 p_i 。

1.3 输入格式

从文件 anticipate.in 中读取数据。

第一行一个整数 Num ,表示测试点编号,以便选手方便地获得部分分,你可能不需要用到这则信息,样例中 Num 的含义为数据范围与某个测试点相同。

接下来一行 3 个整数 N, L, R,分别表示建筑物的栋数,初始时的无风区间的端点。

接下来一行 N 个整数, 第 i 个整数 x_i , 表示第 i 栋建筑物的坐标。

接下来一行 N 个整数, 第 i 个整数 y_i , 表示第 i 栋建筑物能够坚持的时间。

1.4 输出格式

输出到文件 anticipate.out 中。

输出 N 行,每行一个实数 p_i ,表示第 i 栋建筑物能够坚持到最后的概率。

你的答案将被认为是正确的,当且仅当其与标准答案的绝对误差在 10-9 以内。

1.5 样例 1 输入

2

2 0 9

2 5

0 0

1.6 样例 1 输出

- 0.333333333333
- 0.66666666667

1.7 样例 1 解释

若 M < 3 , 则第 1 栋建筑物能够坚持到最后;

若 M > 3 , 则第 2 栋建筑物能够坚持到最后。

1.8 样例 2 输入

3

3 0 10

1 8 9

5 8 7

1.9 样例 2 输出

- 0.183503419072
- 0.715476066494
- 0.101020514434

1.10 样例 3

见下发文件 ex_anticipate3.in, ex_anticipate3.out

1.11 数据范围与约定

对于所有测试数据,保证 $1 \le N \le 2 \times 10^5, -10^6 \le L < x_i < R \le 10^6, 0 \le y_i \le 10^6$ 。 保证 x_i 互不相同,且对于 $1 \le i < N$,均有 $x_i < x_{i+1}$ 。

详细的数据范围见下表。

子任务编号	分值	N	特殊性质
1	5	= 1	
2	17	=2	无
3	22	≤ 50	
4	13	$< 2 \times 10^{3}$	所有的 y_i 都相等
5	15	$\leq 2 \times 10$	无
6	5	$< 2 \times 10^5$	所有的 y_i 都相等
7	23	$\leq 2 \times 10$	无

2 荒野聚餐

2.1 题目背景

平坦的荒野中,遍布着高低不一枯木和草丛。荒芜干燥的土地上,细碎的沙石随处可见。沿着有着许多人为雕刻的巨石的方向看去,可以远远地看到一排矮小的紫色房屋,以及房屋间走动的居民,像是一个原始的村庄。

2.2 题目描述

鸟人们正在荒野中聚餐。

参与本次聚餐的共有 2N 只鸟人,其中 N 只是雄性鸟人,N 只是雌性鸟人。

对于雄性鸟人 i ,和雌性鸟人 j ,定义它们的亲和度为非负整数 $a_{i,j}$ 。

在聚餐之前,神速鸟人可以为每一只鸟人独立地选择它的开销 x , x 可以是任意的非负实数,此后,它在聚餐时的快乐程度即为 x 。作为鸟人们的领袖,神速鸟人应当保证,对于每一对异性鸟人,它们的快乐程度的总和不低于它们之间的亲和度。

此外,神速鸟人还可以选择在音乐设备上的花费 S , S 同样可以是任意的非负实数。此后,每一对鸟人对于快乐程度的要求都会降低 S ,其中 C 为音乐设备的价格。

由于音乐设备的价格是不确定的,神速鸟人希望你回答 Q 个询问。

对于每个询问,神速鸟人会给你整数 C ,表示音乐设备的价格,你需要帮助神速鸟人计算最小的,使得所有鸟人的要求得到满足的开销。

2.3 输入格式

从文件 allocation in 中读取数据。

第一行一个整数 Num,表示测试点编号,以便选手方便地获得部分分,你可能不需要用到这则信息,样例中 Num 的含义为数据范围与某个测试点相同。

接下来一行两个整数 N,Q ,表示鸟人的数量,和询问的个数。

接下来 N 行,每行 N 个整数,第 i 行第 j 个整数 $a_{i,j}$ 表示鸟人之间的亲和度。

接下来 Q 行,每行一个整数 C ,表示音乐设备的价格。

2.4 输出格式

输出到文件 allocation.out 中。

对于每个询问,输出一行一个实数 Ans ,保留 1 位小数,表示此时的最小开销。数据保证,Ans 的精确数值的小数点后第二位不是 4 或者 5 。

2.5 样例 1 输入

1

1 1

5

1

2.6 样例 1 输出

5.0

2.7 样例 1 解释

一种可行的方式是花费 5.0 的开销在音乐设备上。

2.8 样例 2 输入

2

3 3

3 0 0

4 5 0

0 4 3

1

2

5

2.9 样例 2 输出

5.0

8.0

11.0

2.10 样例 3

见下发文件 ex_allocation3.in, ex_allocation3.out

2.11 数据范围与约定

对于所有测试数据, $1 \le N \le 500, 1 \le Q \le 5 \times 10^3, 0 \le a_{i,j} \le 10^9, 1 \le C \le 10^9$ 。详细的数据范围见下表。

子任务编号	分值	N	Q	特殊性质
1	3	= 1	≤ 5	无
2	15	≤ 5		$a_{i,j}, C \le 5$
3	22	≤ 50	= 1	$C = 10^9$
4	25	<u> </u>	≤ 50	
5	12	≤ 200	$\leq 5 \times 10^3$	无
6	23	≤ 500		

3 火星在住

3.1 题目背景

窗外的红色星球一点点地放大着,星球地表连绵的山丘、起伏的高地和遍布的陨石坑逐渐变得清晰可见。对天文学知识略知一二的浅濑认出了眼前的星球,赫然是太阳系中的另一颗行星——「火星」。

3.2 题目描述

在先生熟练的操控下,飞船平稳地降落在了火星的一片平原上。

火星君居住的地下世界可以抽象为一棵 N 个节点,N-1 条边的无向图,其中,第 i 条边连接了第 x_i 和第 y_i 个节点,边权为 w_i ,这些边保证了图是连通的。

附窗子和浅濑想要各自选择一个大小为s的点集S,T,满足集合S,T不存在公共元素。此后,她们将会依次访问自己选定的第i个点,为火星君带来一些陪伴。为了不让两人分开太远,对于所有1 < i < s, S_i 和 T_i 需要由一条边权为 v_i 的边直接相连。

在此基础上,她们希望所选出的方案能够最大化

$$\sum_{i=1}^{s} v_i$$

由于她们还不确定想要选择的点集大小,你需要对每一个 $s \in [L, R]$,求出答案。

3.3 输入格式

从文件 accompany.in 中读取数据。

第一行一个整数 Num,表示测试点编号,以便选手方便地获得部分分,你可能不需要用到这则信息,样例中 Num 的含义为数据范围与某个测试点相同。

接下来一行三个整数 N, L, R,表示无向图的大小,以及 s 的范围。

接下来 N-1 行,每行三个整数 x_i, y_i, w_i ,表示图上的一条边。

3.4 输出格式

输出到文件 accompany.out 中。

输出一行 R-L+1 个整数 Ans,表示 s 取各个值时的答案。

特别地,如果不存在满足要求的选取方案,改为输出一个字符 - 。

3.5 样例 1 输入

1

5 1 4

1 2 3

2 3 5

2 4 4

3 5 2

3.6 样例 1 输出

5 6 - -

3.7 样例 1 解释

当 s=1 时,一种最优方案为 $S=\{2\}, T=\{3\}$ 。

当 s=2 时,一种最优方案为 $S=\{2,3\}, T=\{4,5\}$ 。

对于 $s \ge 3$ 的情况,可以证明,不存在符合要求的方案。

3.8 样例 2

见下发文件 ex_accompany2.in, ex_accompany2.out

3.9 样例 3

见下发文件 ex_accompany3.in, ex_accompany3.out

3.10 样例 4

见下发文件 ex_accompany4.in, ex_accompany4.out

3.11 数据范围与约定

对于所有测试数据,保证 $1 \le L \le R < N \le 2 \times 10^5, 1 \le x_i, y_i \le N, |w_i| \le 10^9$ 。 保证给定的图是一张连通图。

详细的数据范围见下表。

测试点编号	N	L,R	特殊性质
1	≤ 12		
2	≤ 12		
3		< N	
4	$\leq 2 \times 10^3$		
5			
6			
7	$\leq 2 \times 10^4$	≤ 100	
8			
9			
10		$R - L \le 5$	
11	$\leq 2 \times 10^5$		$x_i = i, y_i = i + 1$
12			$x_i = i, g_i = i + 1$
13			
14			
15			
16	$\leq 5 \times 10^4$	< N	
17			无
18			
19	$\leq 2 \times 10^5$		
20			