

1000m급 수중글라이더 자율제어 기술 개발

해양복합연구단 BCA분야 (제10세부) -

2024. 09. 25 [수요일]

발표자 : 천 승 재

주관기관: 한국해양대학교

과제 개요

사업명	무인이동체 원천기술개발사업(내역사업 2 : 통합운용 기술실증기 개발)
과제명	무인수상선-수중자율이동체 복합체계 개발(해양복합연구단)
세부과제명	제10세부: 1000m급 수중글라이더 자율제어 기술 개발
연구목표	부력 제어를 통한 수중활강 운동체인 수중글라이더의 자율제어 기술 개발 - 1000m급 수중글라이더의 시스템 파라메터 분석 - 1000m급 수중글라이더의 형상 설계에 따른 유체력 계수 CFD 해석 - 1000m급 수중글라이더의 수중운동 및 항행 시뮬레이터 개발 - 1000m급 수중글라이더의 에너지 최적 운동제어 및 항법 알고리즘 개발 - 1000m급 수중글라이더의 실해역 운항 시험 및 데이터 취득
사업기간	총 연구기간 : 2020. 06. 01 ~ 2024. 12. 31(총 55개월) 당해(5차)년도 연구기간 : 2024. 01. 01 ~ 2024. 12. 31(12개월)
연구사업비	총 5.594억(국비 5.594억원, 기업 0억원)/당해 84,400천원
주관기관	한국해양대학교
참여기관	해당사항 없음

<u>과제 연구목표</u>

🔾 최종 목표

부력 제어를 통한 수중활강 운동체인 **수중글라이더의 자율제어 기술** 개발

○ 세부 목표

- 수중글라이더의 시스템 파라메터 분석
- 수중글라이더의 형상 설계에 따른 유체력 계수 CFD 해석
- 수중글라이더의 수중운동 및 항행 시뮬레이터 개발
- 수중글라이더의 에너지 최적 운동제어 및 항법 알고리즘 개발
- 수중글라이더의 실해역 운항실험 및 데이터 취득

과제 연차별 연구개발 목표

○ 연차별 연구목표

단계	연차	연구목표	세부목표
	1차년	수중글라이더의 시스템 파라메터 분석	① 설계사례 분석을 통하여 수중글라이더 구조 및 사양설계 ② 내압 해석을 통한 하우징의 최소 요구량 분석 ③ 부력제어 및 자세제어에 대한 정상상태 속도분석 ④ 유체 저항을 최소화할 수중글라이더의 선형 설계 ⑤ 설계 구조 안에 대한 수중글라이더 운동 모델링
1단계	2차년	수중글라이더의 형상 설계에 따른 유체 력 계수 CFD 해석	① 수중글라이더 운동모델링 CFD 유체력 계수 해석 ② 수중글라이더의 수중운동 시뮬레이터 개발 ③ 수중글라이더의 수중환경 시뮬레이터 개발
	3차년	수중글라이더의 에너지 최적 운동제어 및 항법 알고리즘 개발	① 수중글라이더의 최적 날개형상 연구 ② 수중글라이더의 에너지 최적 운동제어 알고리즘 개발 ③ 수중글라이더의 지형 참조 위치추정 알고리즘 개발
	4차년	수중글라이더의 수조실험 및 운동성능 테스트	① 수중글라이더의 운동 성능 실험 ② 운동 성능 실험 기반 제어 알고리즘 개선
2단계	5차년	수중글라이더의 실해역 운항실험 및 데 이터 취득	① 수중글라이더 수조 센서 테스트 ② 수중글라이더 실해역 실험 및 운용 테스트

시제 개발 범위

GigaRF PARTINE COMMENT COMMEN

과제 연구개발로드맵

단계		1단계			25	<u></u> 난계	
년도	2020	2021	2022	2023	2024	2025	2026~27
해양복합 연구단 (제10세부)	수중글라이 더 구조 및 선형 설계 6자유도 운동방정식 전개	유체력 계수 CFD 해석 자세제어 알고리즘 개발 운동성능 시물 수중환경 시뮬레이터 개발	날개 형상 해석 에너지 제어기법 개발 로레이터 개발 지형참조 위치추정 알고리즘 개발	싵	수중글라이더 실해역 실험 및 운동 테스트		

○ 수중글라이더의 시스템 파라메터 분석 (1차년도)

- ❖ 설계사례 분석, 구조 및 사양 설계 다양한 사례분석을 통한 구조 설계안 제시(날개형상, 위치, 구조배치 등)
- ❖ 내압 해석을 통한 하우징 최소 요구량 분석 내압 시뮬레이션 프로그램을 통한 1000m의 압력 하의 변형 해석
- ❖ 부력 및 자세제어에 대한 정상상태 속도 분석 부력 및 자세에 대한 활강속도 관계분석으로 구동 요구량 도출
- ❖ 유체 저항을 최소화할 형상 선형 설계 항력저항을 줄이기 위한 Myring Profile equation을 사용
- ❖ 설계 구조 안에 대한 운동 모델링 수중글라이더 6자유도 운동방정식 전개 (질량중심 및 부력중심 전개)

○ 수중글라이더 운동모델링 CFD 유체력계수 해석 (2차년도)

- ❖ 저항(Resistance)성능 해석 속도에 따른 저항값 계산
- ❖ 수직 정적사항(Vertical static drift)성능 해석 수중글라이더의 수직운동에 대한 조종유체력 미계수 분석
- ❖ 순수상하동요(Pure heave motion) 해석 수중글라이더의 상하방향으로의 부가질량력 분석
- ❖ 글라이더의 유체력 미계수 도출 CFD 해석을 통한 무차원 유체력 미계수 계산
- ❖ 주요 설계 파라미터 산출

Hull 지름: 230mm, Hull 총길이: 2111mm, Hull 유효길이: **1662mm**, 날개폭: **990mm**

❖ 운동해석 시뮬레이션 프로그램 설계 Matlab/Simulink를 이용한 GUI 프로그램 설계

○ 수중글라이더의 수중운동 및 항행 시뮬레이터 개발 (3차년도)

- ❖ 수중글라이더의 최적 날개형상 연구 유체저항 및 동적안정성 파악 및 구조적 실용적 날개형상 분석
- ❖ 유체력 미계수를 적용한 6자유도 운동방정식 전개 유체력 미계수의 적용으로 정확한 운동성능 및 제어성능을 계산
- ❖ 운동해석 시뮬레이션 프로그램 설계 운동 및 제어성능 해석용 프로그램 설계
- ❖ 에너지 최적 운동 제어기 설계 에너지 최적을 위한 PID 제어기를 적용(Layered PID 제어기)
- ❖ 제어방식에 따른 에너지 효율 비교

Layered PID 제어방식이 약 7% 에너지 절약효과

○ 수중글라이더의 에너지 최적 운동제어 및 항법 알고리즘 개발 (4차년도)

- ❖ 도식적으로 도출한 알고리즘 기반 운동 성능실험 시행
 - 수중글라이더 운동 시뮬레이터 조향제어기 추가 적용
- ❖ 도식적으로 도출한 알고리즘 기반 운동 성능실험 시행
 - 시뮬레이션을 통한 최대 속도 도출(1 knots)
 - 최대 타각(30도) 시 회전반경 도출(36.55m)
- ❖ 운동성능 실험을 통한 결과값을 바탕으로 제어알고리즘 수정 및 개선
 - 수조 시험을 통해서 선속, 선회반경 결과 값을 측정하여 시뮬레이션에 반영
- ❖ 수조 실험을 통한 제어알고리즘의 운항성능 및 운항데이터 분석
 - 1단계 연구를 통한 Layered PID 제어기 개발함, 제어기를 C-code화 적용함

1~4차년도 성과

○ 대표 산출물 (건수)

	기술		논	문		W TO		
시제품 기술 자료	국외논문	국외발표	국내논문	국내발표	출원	통	al TT	
1	1	1	_	3	3	_	-	

○ 대표 산출물 (리스트)

순번	시제품	기술자료	비고
1	시뮬레이션 프로그램	매뉴얼 1부	단계평가시 보고서 제출

당해(5차년) 연구개발 목표 및 내용

- ❖ 5차년도 연구목표
 - 수중글라이더 실해역 운항실험 및 데이터 취득
- ❖ 5차년도 연구내용
 - ① 수중글라이더 수조 센서 테스트 및 실해역 실험
 - 수중글라이더 의 수조 센서 테스트 진행
 - 수조 테스트 기반 실해역 실험을 통한 위치추정 알고리즘 검증 및 개선
 - 실해역 운용실험 및 데이터 취득 시행

당해(5차년) 추진체계

주요연구내용

- 수중글라이더의 육상 실험(제어알고리즘 개선)
- 수중글라이더의 수조 실험(센서장비 입출력 테스트)
- 수중글라이더의 실해역 실험 및 분석

수중글라이더의 실해역 운항실험 및 데이터 취득

육상 실험

- 실험용 수중글라이더 구성
- 제어알고리즘 운동성능 실험

김준영교수 윤 민교수

수조 실험

- 장착 센서의 입출력 테스트
- 제어알고리즘의 적용 실험
- 운용 시나리오 설계

이성욱교수 김준영교수

실해역 실험

- 실해역 실험으로 알고리즘 검증
- 데이터 취득 및 운용기술 확보

김준영교수 정우철교수

당해(5차년) 추진일정

년도/분기		1분기(2024)		2분기(2024)			3분기(2024)			4분기(2024)		
구 분	1	2	3	4	5	6	7	8	9	10	11	12
주요 일정					해복단 대한기계학 회 특별세션	해복단 착수회의	무인이동체 산업엑스포		사업단 워크샵	해복단 연차점검회의 (예정)	사업단 연차평가 (예정)	
실험용 수중글라이더 운동성능 실험 운항성능 및 운항데이터 분석												

○ BCA 세부기술 실증방안(1/4)

2단계 개발 항목	시험 기준/내용	시험/검증 방안	시험예상일자
	수중글라이더 수조 센서 테스트	수조 실험을 통한 운항관련 센서 데이터 분석	2024. 10.
(정성적 항목) 수중글라이더의 실해역 운항실험 및 데이터 취득	수중글라이더 실해역 실험 및 운용 테스트	실해역에서 직진운항 및 조향 운항 결과 데이터 취득 및 분석	2024. 11.
aivia II-	시뮬레이션 결과와 실험 데이터 분석	실해역 실험을 통한 다양한 운동성능 데이터 분석	2024. 11.

○ BCA 세부기술 실증방안(2/4)

수조 실험을 통한 운항관련 센서 데이터 분석 – 검증방안

- 수조 주행 시험

- ① 수조에서 원점으로 지정한 위치에서 수중글라이더 운항
- ② 1-cycle 잠항 명령(잠항 수심 5m, 조향타 각도 0°, 30°)을 입력
- ③ BCA 부상 후 통신(RF 또는 수중케이블)을 통해서 운항정보를 획득
- ④ 센서 데이터 분석을 통한 <u>주행 상태(</u>자세, 수심 센서 데이터 이용) 검증

● BCA 세부기술 실증방안(3/4)

실해역에서 직진 운항 및 조향운항 결과 데이터 취득 및 분석 - 검증방안

- 직진운항

- ① 운영 해역에서 수중글라이더를 진수
- ② 1-cycle 잠항 명령(잠항 수심 20~1000m, 조향타 각도 0°)을 입력
- ③ BCA 부상 후 통신(RF 또는 위성)을 통해서 운항정보를 획득
- ④ GPS 위치를 이용하여 **이동 속도** 검증

- 조향운항

- ① 운영 해역에서 수중글라이더를 진수
- ② 1-cycle 잠항 명령(잠항 수심 20~1000m, 조향타 각도 +30°또는 -30°)을 입력
- ③ BCA 부상 후 통신(RF 또는 위성)을 통해서 운항정보를 획득
- ④ Heading 각도와 수심 값을 이용하여 조향제어 성능 검증

GigaRF 한국도카메주식회사 GDSystem 상세론에스엔아이 N 트리크로모드 100 Note Spain -

● BCA 세부기술 실증방안(4/4)

실해역 실험을 통한 다양한 운동성능 데이터 분석 - 검증방안

- ① 운영 해역에서 수중글라이더를 진수
- ② BCA Waypoint 명령(잠항 수심 20~1000m, 통신간격)을 입력
- ③ BCA 부상 후 통신(RF 또는 위성)을 통해서 운항정보를 획득
- ④ 운항센서 데이터를 이용한 운동 성능 분석(구동기 제어에 따른 6-DOF 제어성능 분석)

성과 목표

○ 대표 산출물 (건수)

	기술		논	문	<u> </u>	WI TO		
시제품	기술 자료	국외논문	국외발표	국내논문	국내발표	출원	등	비고
	1			1	1			

○ 대표 산출물 (리스트)

순번	기술자료	비고
1	실해역 실험 측정 데이터 분석 보고서	

2024년도 무인이동체원천기술개발사업 통합기술워크샵

감사합니다.

