Security Day 构建增强云端环境指导手册 (二)

2021年3月12日

目录

实验介绍及准备	3
实验架构	4
环境部署	5
确认部署结果	7
网络配置	8
VPC 路由配置	8
配置 Central VPC 中转网关路由	
配置 Central VPC 公共子网路由	
配置 Inspect VPC 中转网关子网路由	
配置 Inspect VPC 防火墙子网路由	
配置 Business VPC 中转网关子网路由	
配置 Business VPC 私有子网路由	10
TGW 路由配置	11
配置 Spoke 路由	
配置 NFW 路由	
测试验证	
南北向防护	13
实验有状态规则	14
东西向防护	18
实验无状态规则	
参考资料	20

实验介绍及准备

AWS 在 2020 年底的 Re:Invent 大会上发布了新的安全产品的管理服务 Network Firewall (网络防火墙),客户可以通过使用它来对外网进行隔离(也叫南北向),也可以用于内网之间进行隔离(也叫东西向,如同一个区域的不同 VPC 之间,不同区域的不同 VPC 之间,云和 IDC 之间等),实现基于规则的检测和防护。它支持有状态的规则,也支持无状态的规则,可以灵活的配置。

AWS Network Firewall (网络防火墙) 提供常见的网络威胁保护的能力,它可以合并流量的上下文,如跟踪连接和协议识别,匹配对应策略进行处理,防止未经授权的访问。

图例: Network Firewall 工作原理

AWS Network Firewall 支持有状态的规则(最大规则组容量 30,000),也支持无状态的规则(最大规则组容量 10,000)。

无状态规则优先于有状态规则执行,且按配置的顺序执行,支持 pass, drop 和 forward 到有状态的规则三种处理方式。

假如无状态规则配置有冲突,按优先级匹配执行;有状态的规则如果有冲突(例如某个规则设置了允许 ssh,另外一个规则设置了禁止 ssh),它是合并后再统一匹配执行,优先级为 pass > drop > alert,所以只要有一个 pass 的设置,其他的非 pass 设置全部会失效,所以我们在设置规则时要明确具体。

其执行流程如下图所示:

图例: Network Firewall 规则处理顺序

实验架构

这是我们设计的中心部署网络架构图,云上环境 VPC 之间通过中转网关(Transit Gateway TGW)连通,云上环境的内网(东西向)和外网(南北向)有网络防火墙隔离。所有外网流量经 Central VPC 统一控制。

环境部署

首先通过 CloudShell 创建用于 SSH 登陆的密钥(点击这里)

输入 ssh-keygen 命令后, 按三次回车键

将生成的密钥导入实验区域并修改执行权限

aws ec2 import-key-pair --key-name "nfwlab" --public-key-material fileb://~/.ssh/id_rsa.pub chmod 400 ~/.ssh/id_rsa

通过 CloudFormation 模版,创建实验环境。实验区域为弗吉尼亚(us-east-1)。

可以根据需要,调整参数,如果修改默认网段参数,请确保同一个 VPC 的不同子网包含在 VPC 的网段定义里。确定参数后,拉到页面底部,点击"Next"进入下一步。

实验文档步骤中未截图,或未特别说明的地方,取默认值。连续点击"Next","Create stack"开始创建堆栈。模版执行完成大概需要 5 分钟。

部署完成后(请确保没有任何错误输出),点击 Outputs,可以看到三台测试服务器的 IP 地址,之后的实验会用到。

确认部署结果

主要部署的资源和环境包括:

A.四个 VPC, 八个子网,每个子网都有自己单独的路由表 (点击这里)

- 一个专门用于检测流量的 VPC (Inspect VPC) , 配置两个子网:
 - 一个防火墙所在子网
 - 一个中转网关所在子网
- 一个用作中心路由控制的 VPC (Central VPC), 配置两个子网:
 - 一个公共子网(部署 NAT 网关,以及需要面向公网的服务,如 EC2)
 - 一个中转网关所在子网

两个业务 VPC (Business VPC 1 和 Business VPC 2) ,每个 VPC 配置两个子网:

- 一个私有子网(纯内网环境)
- 一个中转网关所在子网

查看子网列表 (点击这里)

B.一个中转网关(点击这里)

C.一个 Network Firewall (点击这里)

一个网络防火墙已关联配置了无状态和有状态规则组。

D.三台测试 EC2 服务器 (点击这里)

一台面向公网的服务器,两台私有服务器。

网络配置

通过模版生成基础架构需要的各个组件,但路由链路尚未配置,接下来将对每个子网的路由表(已关联未配置条目)添加相应的路由条目,并借助 TGW 连通各个 VPC。

VPC 路由配置

打开 VPC 路由表控制台(点击此处), 找到相应路由表, 依次进行配置。

配置 Central VPC 中转网关路由

选中 central-rtb-tgw 路由表,配置如下路由

配置 Central VPC 公共子网路由

选中 central-rtb-pub 路由表,配置如下路由

配置 Inspect VPC 中转网关子网路由

选中 inspect-rtb-tgw 路由表,配置如下路由

配置 Inspect VPC 防火墙子网路由

选中 inspect-rtb-fw 路由表,配置如下路由

配置 Business VPC 中转网关子网路由

以 Business VPC 1 为例,选中 biz-vpc1-rtb-tgw 路由表,配置如下路由

类似的配置 Business VPC 2 中转网关子网路由。

配置 Business VPC 私有子网路由

以 Business VPC 1 为例,选中 biz-vpc1-rtb-pri 路由表,配置如下路由

类似的配置 Business VPC 2 私有子网路由。

TGW 路由配置

前面已经完成 4 个 VPC,8 个子网的路由配置,下面通过配置 TGW 路由表来实现跨 VPC 连通并进行流量控制。打开 TGW 路由表控制台(<u>点击此处</u>),找到相应路由表,依次进行配置。

配置 Spoke 路由

选中 rtb-spoke 路由表,添加 0.0.0.0/0 指向 inspect-vpc

配置 NFW 路由

选中 rtb-spoke 路由表,添加如下规则:

- 0.0.0.0/0 指向 central-vpc
- 10.11.0.0/16 指向 biz-vpc1
- 10.12.0.0/16 指向 biz-vpc2

测试验证

回到 CloudShell 界面,将之前生成 SSH 密钥上传到 Public Server。

scp ~/.ssh/id rsa ec2-user@3.236.134.17:~/.ssh/id rsa

登录到公共测试机后,可以通过它再跳转到位于业务子网的私有服务器。

先登录到 public server:

ssh ec2-user@3.236.134.17

再跳转到 private server:

ssh ec2-user@10.11.20.16

南北向防护

找到 inspect-nfw (点击这里) 防火墙,点击查看防火墙明细。

可以看到关联了一个无状态规则组 stateless-lab-rules,如果关联的无状态规则组没有匹配到,默认是转发到有状态规则组。这里实验配置的南北向规则放在有状态规则组 stateful-lab-rules。点击查看规则明细如下:

我们配置的南北向防火墙策略是允许访问 https, 但是不允许 http。

登录到任意一台 Private server,如 BizVpc2PriServer(注意先登录公共测试机):

ssh ec2-user@10.12.20.251 curl https://www.baidu.com curl http://www.baidu.com

测试如下图所示(curl http 会一直卡在这里)

实验有状态规则

首先创建一个新的有状态规则组(点击这里)

创建完成后,回到 CloudShell 界面,查看规则组明细。

aws network-firewall describe-rule-group --type STATEFUL --rule-group-name stateful-domain-rules --region us-east-1

记录下来 UpdateToken,后面更新需要用到。

export NFW_UPDATE_TOKEN=92d6cdcd-5e3a-495a-8949-c383528f1ec7 export ACCOUNT_NUMBER=`aws sts get-caller-identity --query Account --output text`

默认 NFW 在 domain name filtering 规则中只会检查来源于 nfw 所在 vpc cidr 的流量,来源于 nfw 所在 vpc 外部的其它流量均不会进行过滤,需要设置这个 HOME_NET 将需要检查流量的 CIDR 添加进去。创建 variables.json 文件。

```
cat > variables.json <<EOF
{
  "RuleVariables": {
    "IPSets": {
      "HOME NET": {
         "Definition": [
           "10.10.0.0/16",
           "10.11.0.0/16",
           "10.12.0.0/16"
        ]
      }
    }
  },
  "RulesSource": {
    "RulesSourceList": {
      "Targets": [
        ".baidu.com"
      "TargetTypes": [
         "HTTP_HOST",
         "TLS_SNI"
      ],
      "GeneratedRulesType": "DENYLIST"
    }
  }
}
EOF
```

通过 AWS CLI 更新规则组

```
aws network-firewall update-rule-group \
--rule-group-arn arn:aws:network-firewall:us-east-1:$ACCOUNT_NUMBER:stateful-
rulegroup/stateful-domain-rules \
--update-token $NFW_UPDATE_TOKEN \
--rule-group file://variables.json \
--region us-east-1
```

```
[cloudshell-user@ip-10-1-51-165 ~]$ aws network-firewall update-rule-group \
> --rule-group-arn arn:aws:network-firewall:us-east-1:$ACCOUNT_NUMBER:stateful-rulegroup/stateful-domain-rules \
> --update-token $NFW_UPDATE_TOKEN \
> --rule-group file://variables.json \
> --region us-east-1
{
    "UpdateToken": "d47fff94-41c1-46ce-89fc-bdbb51e15332",
    "RuleGroupResponse": {
        "RuleGroupArn": "arn:aws:network-firewall:us-east-1:651663872994:stateful-rulegroup/stateful-domain-rules",
        "RuleGroupName": "stateful-domain-rules",
        "RuleGroupId": "09c26ecd-0a4e-4b9e-a8c9-f218c8b94291",
        "Type": "STATEFUL",
        "Capacity": 100,
        "RuleGroupStatus": "ACTIVE",
        "Tags": []
    }
}
[cloudshell-user@ip-10-1-51-165 ~]$ []
```

将新创建的规则组绑定到防火墙策略,(<u>点击这里</u>),选中防火墙查看明细,并添加有状态规则组。

有状态规则校验是合并所有的组,取并集,只要有一条符合条件就放行,故这里校验需要先移除 stateful-lab-rules

再次验证,首先尝试未被明确禁用的域名,例如 zhihu:然后尝试访问百度。

```
us-east-1

[ec2-user@ip-10-12-20-251 ~]$ curl https://www.zhihu.com

Redirecting to <a href="//www.zhihu.com/signin?next=%2F">//www.zhihu.com/signin?next=%2F</a>.[ec2-user@ip-10-12-20-251 ~]$

[ec2-user@ip-10-12-20-251 ~]$

[ec2-user@ip-10-12-20-251 ~]$ curl https://www.baidu.com
```

可以看到,知乎可以正常访问,但是现在 curl 百度就会卡住不动,达到了实验预期的效果。

东西向防护

实验配置的南北向规则放在无状态规则组 stateless-lab-rules。点击查看规则明细如下:

我们配置的东西向防火墙策略是不允许访问 ping。

可以在 CloudShell 里新开一个 Tab, 点击 Actions->New Tab。

登录到任意一台 Private server,例如 BizVpc1PriServer: ssh ec2-user@10.11.20.16 (注意先登录到公共测试机) 尝试 ping 另一个 Business VPC 里的测试机 10.12.20.251 ping 10.12.20.251

可以看到当前规则下,无法 ping 通。

实验无状态规则

放开 ping(将 Action 由 Drop 改为 Pass),按下图截图操作:

重新测试 ping,可以看到现在可以 ping 通了:

参考资料

Deployment models for AWS Network Firewall

通过 AWS Network Firewall 实现南北向资源和服务的有效防护

通过 AWS Network Firewall 实现东西向资源和服务的有效防护

通过 AWS Network Firewall 实现混合云环境下资源和服务的有效防护