Chapitre 13. Limites et continuité

1 Voisinage

Définition 1.1. Soit $a \in \overline{\mathbb{R}}$

Un voisinage de a :

- * Si $a \in \mathbb{R}$, est un ensemble qui contient $[a \delta, a + \delta]$, pour un certain $\delta > 0$
- * Si $a = +\infty$, est un ensemble $[A, +\infty[$ pour un certain $A \in \mathbb{R}$
- * Si $a = -\infty$, est un ensemble $]-\infty$, A] pour un certain $A \in \mathbb{R}$

Lemme 1.2. Soit V un voisinage de $+\infty$

Alors il existe une suite $(v_n)_{n\in\mathbb{N}}\in V^{\mathbb{N}}$ telle que $v_n\xrightarrow[x\to+\infty]{}+\infty$

Définition 1.3. Soit $f: I \to \mathbb{R}$ et $a \in \overline{\mathbb{R}}$

On dit qu'une propriété (de la fonction f) est vraie <u>au voisinage de a</u> s'il existe un voisinage V de a tel que la propriété soit vraie sur $V \cap I$

2 Notion de limite

<u>Cadre</u>: Dans cette section, $f: I \to \mathbb{R}$ est une fonction définie sur une partie I de \mathbb{R} et a est un élément de I ou $\pm \infty$. En pratique, I sera un intervalle et a un point ou une borne de l'intervalle.

2.1 Limites en $\pm \infty$

Définition 2.1. Soit I un ensemble non majoré et $f: I \to \mathbb{R}$ On dit que :

- * f converge vers $l \in \mathbb{R}$ en $+\infty$ si $\forall \varepsilon > 0$, $\exists H \in \mathbb{R} : \forall x \in I, x \geq H \implies |f(x) l| \leq \varepsilon$
- * f tend vers $+\infty$ en $+\infty$ si $\forall A \in \mathbb{R}$, $\exists H \in \mathbb{R} : \forall x \in I, x \geq H \implies f(x) \geq A$
- * f tend vers $-\infty$ en $+\infty$ si $\forall A \in \mathbb{R}$, $\exists H \in \mathbb{R} : \forall x \in I, x \geq H \implies f(x) \leq A$

2.2 Limites en un réel

Cadre : $a \in \overline{I}$

Définition 2.2. Soit $a \in \overline{I}$ et $f : I \to \mathbb{R}$

* On dit que \underline{f} tend vers $l \in \mathbb{R}$ en \underline{a} si

$$\forall \varepsilon > 0, \exists \lambda > 0 : \forall x \in I, |x - a| \le \delta \implies |f(x) - l| \le \varepsilon$$

* On dit que \underline{f} tend vers $+\infty$ en \underline{a} si

$$\forall A \in \mathbb{R}, \exists \lambda > 0 : \forall x \in I, |x - a| \leq \delta \implies f(a) \geq A$$

* On dit que f tend vers $-\infty$ en a si

$$\forall A \in \mathbb{R}, \exists \lambda > 0 : \forall x \in I, |x - a| \leq \delta \implies f(a) \leq A$$

Proposition 2.3. Soit $a \in I$

Si f admet une limite (dans $\overline{\mathbb{R}}$) en a, cette limite est nécessairement f(a)

2.3 Variantes

Définition 2.4. Soit $f: I \to \mathbb{R}$, J une partie de I et $a \in \overline{I} \cup \{\pm \infty\}$. On suppose que a est arbitrairement proche d'éléments de J (càd $a \in \overline{J}$ ou $(a = +\infty)$ et J n'est pas majoré) ou $(a = -\infty)$ et J n'est pas minoré)) On dit alors que $f(x) \xrightarrow[x \to a \\ x \in \overline{J}]$

$$\forall \varepsilon > 0, \exists \delta > 0 : \forall x \in J, |x - a| \le \delta \implies |f(x) - l| \le \varepsilon \quad (\cos a \in \mathbb{R})$$

$$\forall \varepsilon > 0, \exists H \in \mathbb{R} : \forall x \in J, x \geq H \implies |f(x) - l| \leq \varepsilon \quad (\cos a = +\infty)$$

etc...

Proposition 2.5. Soit J_1, J_2 deux parties de I, $a \in I \cup \{\pm \infty\}$ et $l \in \overline{R}$. On suppose que a est arbitrairement proche d'éléments de J_1 et de J_2

Alors

$$f(x) \xrightarrow[x \in J_1 \cup J_2]{x \to a} l \iff \begin{cases} f(x) \xrightarrow[x \to a]{x \to a} l \\ f(x) \xrightarrow[x \in J_2]{x \to a} l \end{cases}$$

3 Propriétés de la limite

3.1 Caractère local

Proposition 3.1. Soit $f,g:I\to\mathbb{R}$ et $a\in \overline{I}\cup\{\pm\infty\}$ arbitrairement proches d'éléments de I Si f et g coïncident au voisinage de a, alors f admet une limite en a ssi g en admet une. Dans ce cas, ces limites sont les mêmes.

3.2 Propriétés des fonctions convergentes

Proposition 3.2. Les fonctions convergentes sont localement bornés :

Soit
$$f: I \to \mathbb{R}$$
, $a \in \overline{I} \cup \{\pm \infty\}$ tel que $f(x) \xrightarrow[x \to a]{} l \in \mathbb{R}$

Alors f est bornée au voisinage de a.

Proposition 3.3 (\mathbb{R}_+^* est ouvert). Soit $f: I \to \mathbb{R}$ et $a \in \overline{I} \cup \{\pm \infty\}$ Si $f(x) \xrightarrow[x \to a]{} l \in \mathbb{R}_+^*$, alors f est > 0 au voisinage de a.

3.3 Caractérisation séquentielle de la limite

Théorème 3.4. Soit $f: I \to \mathbb{R}$ et $a \in \overline{I} \cup \{\pm \infty\}$. Soit $l \in \overline{\mathbb{R}}$ On a $f(x) \xrightarrow[x \to a]{} l$ si et seulement si, pour toute suite $(\xi_n)_{n \in \mathbb{N}} \in I^{\mathbb{N}}$ telle que $\xi_n \xrightarrow[x \to +\infty]{} a$, on a $f(\xi_n) \xrightarrow[x \to +\infty]{} l$

3.4 Composition des limites

Théorème 3.5 (À retenir mais mal énoncé). Si $f(x) \xrightarrow[x \to a]{} b$ et $g(y) \xrightarrow[y \to b]{} l$, alors $g(f(x)) \xrightarrow[x \to a]{} l$

Théorème 3.6 (Plus précis). Soit $f: I \to J$ et $a \in \overline{I} \cup \{\pm \infty\}$ et $b \in \overline{\mathbb{R}}$ tels que $f(x) \xrightarrow[x \to a]{} b$

- * Déjà, $b \in \overline{J} \cup \{\pm \infty\}$
- * Pour toute fonction $g: J \to \mathbb{R}$ telle que $g(y) \xrightarrow[y \to b]{} l \in \overline{\mathbb{R}}$, on a $g(f(x)) \xrightarrow[x \to a]{} l$

3.5 Théorème de la limite monotone

Théorème 3.7. Soit $f: I \to \mathbb{R}$ une fonction monotone.

- * Si *I* n'est pas majoré, *f* admet une limite $l \in \overline{\mathbb{R}}$ et $+\infty$
- * Si I n'est pas minoré, f admet une limite $l \in \overline{\mathbb{R}}$ en $-\infty$
- * Si a est un réel tel que $a \in \overline{I \cap]-\infty, a[}$, f admet une limite $l \in \overline{\mathbb{R}}$ à gauche de a
- * Si a est un réel tel que $a \in \overline{I \cap [a, +\infty[}$, f admet une limite $l \in \overline{\mathbb{R}}$ à droite de a

4 Continuité

4.1 Continuité en un point