Logit and Probit Models for Categorical Response Variable Objective:

- Introduction to Generalized Linear Models: Logit and Probit are special cases of GLMs.
- Importance and usage of qualitative response variable with qualitative and quantitative regressors.

Dichotomous Data

- An example is for instance the Chilean plebiscite of yes and no vote for the military government to be ousted.
- Conditional average $E(Y|x_i)$ is the proportion of 1s ie the conditional probability of sampling a yes.
- Collection of conditional proportion for Y represents sample non parametric regression of dichotomous Y on X.
- For continuous X (here support for status quo) value local averaging can be used.

- Notice at low levels of support for status quo the proportion of yes variables is close to 0 and at high levels of support for status quo the proportion of yes is close to 1.
- In the middle areas the non parametric regression is elongated S curve.

Linear Probability Model

- The non parametric model can be used but we can also formulate as a linear regression model it using the generic regression assumptions:
- Since π_i is a conditional probability therefore the aforementioned model is called the **Linear Probability Model**.

- Since Yi can take values of 0 or 1 the errors ε_i are also dichotomous. The error distribution is not normally distributed but if the sample size is large enough by central limit theorem the assumption of normality is not required.
- When $Y_i=1$
 - $\varepsilon_i = 1 E(Y_i) = 1 \pi_i$ subtract 3 from 4......5
- When $Y_i=0$

$$\varepsilon_i = 0 - E(Y_i) = 0 - \pi_i = -\pi_i$$
 subtract 3 from 4.....6

• The variance of ε is not constant

The heteroscedasticity of the errors creates problems at the boundaries where π_i gets close to 0 or 1

 π_i can only lie in the interval [0,1] as the probabilities cannot be less than 0 or more than 1.

If we have a broad X range we can confine the X range for probabilities between 0 and 1. This one solution. It is called the Constrained Linear Model. The abrupt change of slope at 0 and 1 provides statistical properties that cannot be derived due to discontinuities at these points.

Transformation of π : Logit and Probit

- By transformation we will ensure that π will be constrained in the interval [0,1].
- We will use a positive monotone (non decreasing) function that maps the linear predictor $\eta = \alpha + \beta X$ into unit interval.
- $\pi_i = P(\eta_i) = P(\alpha + \beta X_i)$8 Where the CDF P(.) is chosen before-hand and then parameters α and β can be estimated.
- Where P^{-1} is the inverse CDF.

The transformation P(.) is usually chosen as cdf of normal distribution N(0,1):

$$\phi(z) = \frac{1}{\sqrt{2\pi}} \int_{z_1}^{z_2} \exp(-\frac{1}{2}Z^2) dZ$$
10

or Logistic distribution:

$$\Lambda(z) = \frac{1}{1 + e^{-z}} \dots 11$$

With the normal distribution $\phi(.)$ creates linear probit model:

$$\pi_i = \phi(\alpha + \beta X_i) \dots 12$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\alpha + \beta X_i} \exp(-\frac{1}{2}Z^2) dZ \dots 13$$

With the logistic distribution $\phi(.)$ creates linear logit model:

$$\pi_i = \Lambda(\alpha + \beta X_i) \dots 14$$

$$\pi_i = \frac{1}{1 + \exp[-(\alpha + \beta X_i)]} \dots 15$$

Can be written as

$$\pi_i = \frac{\exp[(\alpha + \beta X_i)]}{1 + \exp[(\alpha + \beta X_i)]}$$

Logit and probit are functions give very similar as they are both linear on the range π_i =.2 and π_i = .8. They can only be distinguished by a large data. See how logit and probit are superimposed for the Chile plebiscite data.

Comparing logit and probit:

- The logistic CDF ($\Lambda(z) = \frac{1}{1+e^{-z}}$) is very simple while the normal CDF($\phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} \exp(-\frac{1}{2}Z^2) dZ$) has a unevaluated integral. For the dichotomous data we get good approximations of normal CDF but for polytomous data logit model is better.
- Transforming equation 15 to obtain:

$$\frac{\pi_i}{1-\pi_i} = \exp(\alpha + \beta X_i) \dots 16$$

$$\frac{\pi_i}{1-\pi_i}$$
 is the odds of Y_i=1 voting to say yes.

Taking log of both sides:

$$\log_e \frac{\pi_i}{1-\pi_i} = \alpha + \beta X_i \dots 17$$

By equation 14 $\pi_i = \Lambda(\alpha + \beta X_i)$ therefore $\Lambda^{-1}(\pi_i) = \alpha + \beta X_i$

Now 17 can be transformed as

$$\log_{e} \frac{\pi_{i}}{1-\pi_{i}} = \Lambda^{-1}(\pi_{i})$$
 The inverse transformation is called logit of π

Probability π	$\frac{Odds}{\pi}$ $\frac{\pi}{1-\pi}$	$\log_{e} \frac{\pi}{1 - 1}$
.01	1/99 = 0.0101	-4.60
.05	5/95 = 0.0526	-2.94
.10	1/9 = 0.1111	-2.20
.30	3/7 = 0.4286	-0.85
.50	5/5 = 1	0.00
.70	7/3 = 2.3333	0.85
.90	9/1 = 9	2.20
.95	95/5 = 19	2.94
.99	99/1 = 99	4.60

Here if we have odds that are even ie equal to 1 corresponding to $\pi_i = .5$ then logit =0. The logit is symmetric about 0. Therefore it is a good candidate for the response variable in a linear model.

By the equation $\frac{\pi_i}{1-\pi_i} = \exp(\alpha + \beta X_i)$ the model obtained is an additive model for log odds.

This is also a multiplicative model since:

$$\frac{\pi_i}{1-\pi_i} = e^{\alpha} (e^{\beta})^{X_i} \dots 18$$

By increasing X by 1 changes the logit by β since by 17

$$\log_e \frac{\pi_i}{1 - \pi_i} = \alpha + \beta X_i$$

And the odds increases by a factor of e^{β} using equation 18 Alternatively to interpret β :

Considering the relationship between π and X in equation

$$\pi_i = \frac{1}{1 + \exp[-(\alpha + \beta X_i)]}$$

The slope found by $\frac{d\pi}{dX_i} = \beta \pi (1 - \pi)$

The slope is maximum when $\pi = 1/2$

$$\beta\pi(1-\pi) = \beta\frac{1}{2}(1-\frac{1}{2}) = \frac{\beta}{4}$$

π	$\beta\pi(1-\pi)$
.01	β×.0099
.05	β×.0475
.10	β×.09
.20	β×.16
.50	$\beta \times .25$
.80	β×.16
.90	β×.09
.95	β×.0475
.99	β×.0099

We can see that the relationship between π and $\beta\pi(1-\pi)$ is nearly linear between π =.2 and π =.8

http://web.stanford.edu/class/psych252/tutorials/Tutorial_LogisticRegression.html