# MTH349 - Homological methods in Algebraic Topology

```
Quizzes / assignments / presentations 20\%
Mid-sem 40\%
Final 40\%
```

```
Quizzes / assignments / presentations 20%

Mid-sem 40%

Final 40%
```

1. Algebraic Topology by Allen Hatcher

```
Quizzes / assignments / presentations 20%

Mid-sem 40%

Final 40%
```

- 1. Algebraic Topology by Allen Hatcher
- 2. Algebraic Topology by James Munkres

```
Quizzes / assignments / presentations 20%

Mid-sem 40%

Final 40%
```

- 1. Algebraic Topology by Allen Hatcher
- 2. Algebraic Topology by James Munkres
- 3. Algebraic Topology: An introduction by William S. Massey

```
Quizzes / assignments / presentations 20%

Mid-sem 40%

Final 40%
```

- 1. Algebraic Topology by Allen Hatcher
- 2. Algebraic Topology by James Munkres
- 3. Algebraic Topology: An introduction by William S. Massey
- 4. An introduction to Algebraic Topology by Joseph J. Rotman

```
Quizzes / assignments / presentations 20%

Mid-sem 40%

Final 40%
```

- 1. Algebraic Topology by Allen Hatcher
- 2. Algebraic Topology by James Munkres
- 3. Algebraic Topology: An introduction by William S. Massey
- 4. An introduction to Algebraic Topology by Joseph J. Rotman
- 5. Topology and Geometry by Glenn Bredon

```
Quizzes / assignments / presentations 20%

Mid-sem 40%

Final 40%
```

- 1. Algebraic Topology by Allen Hatcher
- 2. Algebraic Topology by James Munkres
- 3. Algebraic Topology: An introduction by William S. Massey
- 4. An introduction to Algebraic Topology by Joseph J. Rotman
- 5. Topology and Geometry by Glenn Bredon



1. 
$$X = S^2 \setminus p, Y = \mathbb{R}^2$$

1. 
$$X = S^2 \setminus p$$
,  $Y = \mathbb{R}^2$   
Yes. Stereographic projection.

1. 
$$X = S^2 \setminus p$$
,  $Y = \mathbb{R}^2$   
Yes. Stereographic projection.

2. 
$$X = S^2, Y = \mathbb{R}^2$$

- 1.  $X = S^2 \setminus p$ ,  $Y = \mathbb{R}^2$ Yes. Stereographic projection.
- 2.  $X = S^2$ ,  $Y = \mathbb{R}^2$ No. X is compact; Y is not

- 1.  $X = S^2 \setminus p$ ,  $Y = \mathbb{R}^2$ Yes. Stereographic projection.
- 2.  $X = S^2$ ,  $Y = \mathbb{R}^2$ No. X is compact; Y is not
- 3.  $X = S^2, Y = S^2 \setminus S^1$

- 1.  $X = S^2 \setminus p$ ,  $Y = \mathbb{R}^2$ Yes. Stereographic projection.
- 2.  $X = S^2$ ,  $Y = \mathbb{R}^2$ No. X is compact; Y is not
- 3.  $X = S^2$ ,  $Y = S^2 \setminus S^1$ No. X is connected; Y is not

- 1.  $X = S^2 \setminus p$ ,  $Y = \mathbb{R}^2$ Yes. Stereographic projection.
- 2.  $X = S^2$ ,  $Y = \mathbb{R}^2$ No. X is compact; Y is not
- 3.  $X = S^2$ ,  $Y = S^2 \setminus S^1$ No. X is connected; Y is not
- $4. X = \mathbb{R}, Y = \mathbb{R}^2$

- 1.  $X = S^2 \setminus p$ ,  $Y = \mathbb{R}^2$ Yes. Stereographic projection.
- 2.  $X = S^2$ ,  $Y = \mathbb{R}^2$ No. X is compact; Y is not
- 3.  $X = S^2$ ,  $Y = S^2 \setminus S^1$ No. X is connected; Y is not
- 4.  $X = \mathbb{R}, Y = \mathbb{R}^2$ No.  $X \setminus x$  is disconnected;  $Y \setminus f(x)$  is connected.

- 1.  $X = S^2 \setminus p$ ,  $Y = \mathbb{R}^2$ Yes. Stereographic projection.
- 2.  $X = S^2$ ,  $Y = \mathbb{R}^2$ No. X is compact; Y is not
- 3.  $X = S^2$ ,  $Y = S^2 \setminus S^1$ No. X is connected; Y is not
- 4.  $X = \mathbb{R}, Y = \mathbb{R}^2$ No.  $X \setminus x$  is disconnected;  $Y \setminus f(x)$  is connected.
- 5.  $X = \mathbb{R}^3, Y = \mathbb{R}^2$ ?

## Properties of homology

1. 
$$X = S^2 \setminus p$$
,  $Y = \mathbb{R}^2$   
Yes. Stereographic projection.

2. 
$$X = S^2$$
,  $Y = \mathbb{R}^2$   
No. X is compact; Y is not

3. 
$$X = S^2$$
,  $Y = S^2 \setminus S^1$   
No. X is connected; Y is not

4. 
$$X = \mathbb{R}, Y = \mathbb{R}^2$$
  
No.  $X \setminus x$  is disconnected;  $Y \setminus f(x)$  is connected.

5. 
$$X = \mathbb{R}^3, Y = \mathbb{R}^2$$
??

Properties of homology

Is X homeomorphic to Y?

X topological space

- 1.  $X = S^2 \setminus p$ ,  $Y = \mathbb{R}^2$ Yes. Stereographic projection.
- 2.  $X = S^2$ ,  $Y = \mathbb{R}^2$ No. X is compact; Y is not
- 3.  $X = S^2$ ,  $Y = S^2 \setminus S^1$ No. X is connected; Y is not
- 4.  $X = \mathbb{R}, Y = \mathbb{R}^2$ No.  $X \setminus x$  is disconnected;  $Y \setminus f(x)$  is connected.
- 5.  $X = \mathbb{R}^3, Y = \mathbb{R}^2$ ??

Is X homeomorphic to Y?

- 1.  $X = S^2 \setminus p$ ,  $Y = \mathbb{R}^2$ Yes. Stereographic projection.
- 2.  $X = S^2$ ,  $Y = \mathbb{R}^2$ No. X is compact; Y is not
- 3.  $X = S^2$ ,  $Y = S^2 \setminus S^1$ No. X is connected; Y is not
- 4.  $X = \mathbb{R}, Y = \mathbb{R}^2$ No.  $X \setminus x$  is disconnected;  $Y \setminus f(x)$  is connected.
- 5.  $X = \mathbb{R}^3, Y = \mathbb{R}^2$ ??

#### Properties of homology

X topological space

 $H_n(X)$  abelian group for n = 0, 1, 2, ...

Is X homeomorphic to Y?

- 1.  $X = S^2 \setminus p$ ,  $Y = \mathbb{R}^2$ Yes. Stereographic projection.
- 2.  $X = S^2$ ,  $Y = \mathbb{R}^2$ No. X is compact; Y is not
- 3.  $X = S^2$ ,  $Y = S^2 \setminus S^1$ No. X is connected; Y is not
- 4.  $X = \mathbb{R}, Y = \mathbb{R}^2$ No.  $X \setminus x$  is disconnected;  $Y \setminus f(x)$  is connected.
- 5.  $X = \mathbb{R}^3, Y = \mathbb{R}^2$ ?

#### Properties of homology

X topological space

 $H_n(X)$  abelian group for n = 0, 1, 2, ...

 $f: X \to Y$  continuous

Is X homeomorphic to Y?

- 1.  $X = S^2 \setminus p$ ,  $Y = \mathbb{R}^2$ Yes. Stereographic projection.
- 2.  $X = S^2$ ,  $Y = \mathbb{R}^2$ No. X is compact; Y is not
- 3.  $X = S^2$ ,  $Y = S^2 \setminus S^1$ No. X is connected; Y is not
- 4.  $X = \mathbb{R}, Y = \mathbb{R}^2$ No.  $X \setminus x$  is disconnected;  $Y \setminus f(x)$  is connected.
- 5.  $X = \mathbb{R}^3, Y = \mathbb{R}^2$ ?

#### Properties of homology

X topological space

 $H_n(X)$  abelian group for n = 0, 1, 2, ...

Is X homeomorphic to Y?

- 1.  $X = S^2 \setminus p$ ,  $Y = \mathbb{R}^2$ Yes. Stereographic projection.
- 2.  $X = S^2$ ,  $Y = \mathbb{R}^2$ No. X is compact; Y is not
- 3.  $X = S^2$ ,  $Y = S^2 \setminus S^1$ No. X is connected; Y is not
- 4.  $X = \mathbb{R}, Y = \mathbb{R}^2$ No.  $X \setminus x$  is disconnected;  $Y \setminus f(x)$  is connected.
- 5.  $X = \mathbb{R}^3, Y = \mathbb{R}^2$ ??

#### Properties of homology

X topological space

 $H_n(X)$  abelian group for n = 0, 1, 2, ...

1. 
$$(f \circ g)_* = f_* \circ g_*$$

Is X homeomorphic to Y?

- 1.  $X = S^2 \setminus p$ ,  $Y = \mathbb{R}^2$ Yes. Stereographic projection.
- 2.  $X = S^2$ ,  $Y = \mathbb{R}^2$ No. X is compact; Y is not
- 3.  $X = S^2$ ,  $Y = S^2 \setminus S^1$ No. X is connected; Y is not
- 4.  $X = \mathbb{R}, Y = \mathbb{R}^2$ No.  $X \setminus x$  is disconnected;  $Y \setminus f(x)$  is connected.
- 5.  $X = \mathbb{R}^3, Y = \mathbb{R}^2$ ??

#### Properties of homology

X topological space

 $H_n(X)$  abelian group for n = 0, 1, 2, ...

- 1.  $(f \circ g)_* = f_* \circ g_*$
- 2.  $(id_X)_* = id_{H_n(X)}$

Is X homeomorphic to Y?

- 1.  $X = S^2 \setminus p$ ,  $Y = \mathbb{R}^2$ Yes. Stereographic projection.
- 2.  $X = S^2$ ,  $Y = \mathbb{R}^2$ No. X is compact; Y is not
- 3.  $X = S^2$ ,  $Y = S^2 \setminus S^1$ No. X is connected; Y is not
- 4.  $X = \mathbb{R}, Y = \mathbb{R}^2$ No.  $X \setminus x$  is disconnected;  $Y \setminus f(x)$  is connected.
- 5.  $X = \mathbb{R}^3, Y = \mathbb{R}^2$ ?

#### Properties of homology

X topological space

 $\pi_1(X)$  abelian group

1. 
$$(f \circ g)_* = f_* \circ g_*$$

2. 
$$(id_X)_* = id_{\pi_1(X)}$$

Is X homeomorphic to Y?

- 1.  $X = S^2 \setminus p$ ,  $Y = \mathbb{R}^2$ Yes. Stereographic projection.
- 2.  $X = S^2$ ,  $Y = \mathbb{R}^2$ No. X is compact; Y is not
- 3.  $X = S^2$ ,  $Y = S^2 \setminus S^1$ No. X is connected; Y is not
- 4.  $X = \mathbb{R}, Y = \mathbb{R}^2$ No.  $X \setminus x$  is disconnected;  $Y \setminus f(x)$  is connected.
- 5.  $X = \mathbb{R}^3, Y = \mathbb{R}^2$ ??

#### Properties of homology

X topological space

 $H_n(X)$  abelian group for n = 0, 1, 2, ...

- 1.  $(f \circ g)_* = f_* \circ g_*$
- 2.  $(id_X)_* = id_{H_n(X)}$

X topological space

 $H_n(X)$  abelian group for n = 0, 1, 2, ...

 $f: X \to Y$  continuous  $\Longrightarrow f_*: H_n(X) \to H_n(Y)$  homomorphism

- 1.  $(f \circ g)_* = f_* \circ g_*$
- $2. (\mathrm{id}_X)_* = \mathrm{id}_{\mathrm{H}_n(X)}$

X topological space

 $H_n(X)$  abelian group for n = 0, 1, 2, ...

 $f: X \to Y$  continuous  $\Longrightarrow f_*: H_n(X) \to H_n(Y)$  homomorphism

- 1.  $(f \circ g)_* = f_* \circ g_*$
- $2. (\mathrm{id}_X)_* = \mathrm{id}_{\mathrm{H}_n(X)}$

## Injectivity

X topological space

 $H_n(X)$  abelian group for n = 0, 1, 2, ...

 $f: X \to Y$  continuous  $\Longrightarrow f_*: H_n(X) \to H_n(Y)$  homomorphism

- 1.  $(f \circ g)_* = f_* \circ g_*$
- $2. (\mathrm{id}_X)_* = \mathrm{id}_{\mathrm{H}_n(X)}$

## Injectivity

f injective

X topological space

 $H_n(X)$  abelian group for n = 0, 1, 2, ...

 $f: X \to Y$  continuous  $\Longrightarrow f_*: H_n(X) \to H_n(Y)$  homomorphism

- 1.  $(f \circ g)_* = f_* \circ g_*$
- $2. (\mathrm{id}_X)_* = \mathrm{id}_{\mathrm{H}_n(X)}$

### Injectivity

f injective  $\iff$  there is a g, such that  $g \circ f = \mathrm{id}$ 

X topological space

 $H_n(X)$  abelian group for n = 0, 1, 2, ...

 $f: X \to Y$  continuous  $\implies f_*: H_n(X) \to H_n(Y)$  homomorphism

- 1.  $(f \circ g)_* = f_* \circ g_*$
- $2. (\mathrm{id}_X)_* = \mathrm{id}_{\mathrm{H}_n(X)}$

### Injectivity

f injective  $\iff$  there is a g, such that  $g \circ f = \mathrm{id}$ 

f continuous injective  $\implies f_*$  injective???

X topological space

 $H_n(X)$  abelian group for n = 0, 1, 2, ...

 $f: X \to Y$  continuous  $\implies f_*: H_n(X) \to H_n(Y)$  homomorphism

- 1.  $(f \circ g)_* = f_* \circ g_*$
- $2. (\mathrm{id}_X)_* = \mathrm{id}_{\mathrm{H}_n(X)}$

#### Injectivity

f injective  $\iff$  there is a g, such that  $g \circ f = \mathrm{id}$ 

f continuous injective  $\Longrightarrow f_*$  injective???

Left inverse, g need not be continuous!!

X topological space

 $H_n(X)$  abelian group for n = 0, 1, 2, ...

 $f: X \to Y$  continuous  $\Longrightarrow f_*: H_n(X) \to H_n(Y)$  homomorphism

- 1.  $(f \circ g)_* = f_* \circ g_*$
- $2. (\mathrm{id}_X)_* = \mathrm{id}_{\mathrm{H}_n(X)}$

#### Injectivity

f injective  $\iff$  there is a g, such that  $g \circ f = id$ 

f continuous injective  $\Longrightarrow f_*$  injective???

Left inverse, g need not be continuous!!

#### Retract

Retract

 $r: X \to A \text{ (where, } A \subseteq X)$ 

X topological space

 $H_n(X)$  abelian group for n = 0, 1, 2, ...

 $f: X \to Y$  continuous  $\implies f_*: H_n(X) \to H_n(Y)$  homomorphism

1. 
$$(f \circ g)_* = f_* \circ g_*$$

2. 
$$(id_X)_* = id_{H_n(X)}$$

## Injectivity

f injective  $\iff$  there is a g, such that  $g \circ f = \mathrm{id}$  f continuous injective  $\implies$   $f_*$  injective???

Left inverse, g need not be continuous!!

Retract

 $r: X \to A$  (where,  $A \subseteq X$ ), is a retract

if r(a) = a when  $a \in A$ .

X topological space

$$H_n(X)$$
 abelian group for  $n = 0, 1, 2, ...$ 

$$f: X \to Y$$
 continuous  $\implies f_*: H_n(X) \to H_n(Y)$  homomorphism

1. 
$$(f \circ g)_* = f_* \circ g_*$$

2. 
$$(id_X)_* = id_{H_n(X)}$$

## Injectivity

f injective  $\iff$  there is a g, such that  $g \circ f = \mathrm{id}$  f continuous injective  $\implies$  f injective???

Left inverse, g need not be continuous!!

Retract

X topological space

 $H_n(X)$  abelian group for n = 0, 1, 2, ...

 $f: X \to Y$  continuous  $\Longrightarrow f_*: H_n(X) \to H_n(Y)$  homomorphism

 $r: X \to A \text{ (where, } A \subseteq X), \text{ is a retract}$  if  $r(a) = a \text{ when } a \in A.$ 

Equivalently,  $r \circ i = \mathrm{id}$ , where  $i : A \to X$  is the inclusion

- 1.  $(f \circ g)_* = f_* \circ g_*$
- $2. (\mathrm{id}_X)_* = \mathrm{id}_{\mathrm{H}_n(X)}$

## Injectivity

f injective  $\iff$  there is a g, such that  $g \circ f = \mathrm{id}$  f continuous injective  $\implies$  f injective???

Retract

X topological space

 $H_n(X)$  abelian group for n = 0, 1, 2, ...

 $f: X \to Y \text{ continuous } \Longrightarrow f_*: H_n(X) \to H_n(Y)$ homomorphism

1.  $(f \circ g)_* = f_* \circ g_*$ 

 $2. (\mathrm{id}_X)_* = \mathrm{id}_{\mathrm{H}_n(X)}$ 

 $r: X \to A$  (where,  $A \subseteq X$ ), is a retract if r(a) = a when  $a \in A$ .

Equivalently,  $r \circ i = \mathrm{id}$ , where  $i : A \to X$  is the inclusion Therefore,

**Lemma.**  $r: X \to A$  retract

# Injectivity

f injective  $\iff$  there is a g, such that  $g \circ f = \mathrm{id}$ f continuous injective  $\Longrightarrow f_*$  injective???

Retract

X topological space

 $H_n(X)$  abelian group for n = 0, 1, 2, ...

 $f: X \to Y \text{ continuous } \Longrightarrow f_*: H_n(X) \to H_n(Y)$ homomorphism

1.  $(f \circ g)_* = f_* \circ g_*$ 

2.  $(id_X)_* = id_{H_n(X)}$ 

 $r: X \to A$  (where,  $A \subseteq X$ ), is a retract if r(a) = a when  $a \in A$ .

Equivalently,  $r \circ i = \mathrm{id}$ , where  $i : A \to X$  is the inclusion Therefore,

**Lemma.**  $r: X \to A \ retract \implies i_* \ is \ injective$ 

# Injectivity

f injective  $\iff$  there is a g, such that  $g \circ f = \mathrm{id}$ f continuous injective  $\Longrightarrow f_*$  injective???

Retract

X topological space

 $H_n(X)$  abelian group for n = 0, 1, 2, ...

 $f: X \to Y \text{ continuous } \Longrightarrow f_*: H_n(X) \to H_n(Y)$ 

homomorphism

1.  $(f \circ g)_* = f_* \circ g_*$ 

2.  $(id_X)_* = id_{H_n(X)}$ 

 $r: X \to A$  (where,  $A \subseteq X$ ), is a retract if r(a) = a when  $a \in A$ .

Equivalently,  $r \circ i = \mathrm{id}$ , where  $i : A \to X$  is the inclusion Therefore,

**Lemma.**  $r: X \to A \ retract \implies i_* \ is \ injective$ 

Proof:  $r \circ i = id$ 

# Injectivity

f injective  $\iff$  there is a g, such that  $g \circ f = \mathrm{id}$ f continuous injective  $\Longrightarrow f_*$  injective???

Retract

X topological space

 $H_n(X)$  abelian group for n = 0, 1, 2, ...

homomorphism

 $f: X \to Y \text{ continuous } \Longrightarrow f_*: H_n(X) \to H_n(Y)$ 

1.  $(f \circ g)_* = f_* \circ g_*$ 

2.  $(id_X)_* = id_{H_n(X)}$ 

Equivalently,

if r(a) = a when  $a \in A$ .

 $r: X \to A$  (where,  $A \subseteq X$ ), is a retract

 $r \circ i = \mathrm{id}$ , where  $i : A \to X$  is the inclusion

Therefore,

**Lemma.**  $r: X \to A \ retract \implies i_* \ is \ injective$ 

Proof:  $(r \circ i)_* = id_*$ 

# Injectivity

f injective  $\iff$  there is a g, such that  $g \circ f = \mathrm{id}$ f continuous injective  $\Longrightarrow f_*$  injective???

Retract

if r(a) = a when  $a \in A$ .

 $r: X \to A$  (where,  $A \subseteq X$ ), is a retract

**Lemma.**  $r: X \to A \ retract \implies i_* \ is \ injective$ 

X topological space

 $H_n(X)$  abelian group for n = 0, 1, 2, ...

 $f: X \to Y \text{ continuous } \Longrightarrow f_*: H_n(X) \to H_n(Y)$ 

homomorphism

Equivalently,  $r \circ i = \mathrm{id}$ , where  $i : A \to X$  is the inclusion

Therefore,

1.  $(f \circ g)_* = f_* \circ g_*$ 

2.  $(id_X)_* = id_{H_n(X)}$ 

Proof:  $r_* \circ i_* = \mathrm{id}_*$ 

# Injectivity

f injective  $\iff$  there is a g, such that  $g \circ f = \mathrm{id}$ f continuous injective  $\Longrightarrow f_*$  injective???

- 1.  $(f \circ g)_* = f_* \circ g_*$
- $2. (\mathrm{id}_X)_* = \mathrm{id}_{\mathrm{H}_n(X)}$

**Lemma.**  $r: X \to A \ retract \implies i_* \ is \ injective$ 

1. 
$$(f \circ g)_* = f_* \circ g_*$$

$$2. (\mathrm{id}_X)_* = \mathrm{id}_{\mathrm{H}_n(X)}$$

$$r: X \to A$$
 (where,  $A \subseteq X$ ), is a retract if  $r(a) = a$  when  $a \in A$ .

**Lemma.**  $r: X \to A \ retract \implies i_* \ is \ injective$ 

#### Fixed points

Given  $f: B^2 \to B^2$ ,



1. 
$$(f \circ g)_* = f_* \circ g_*$$

$$2. (\mathrm{id}_X)_* = \mathrm{id}_{\mathrm{H}_n(X)}$$

**Lemma.**  $r: X \to A \ retract \implies i_* \ is \ injective$ 

#### Fixed points



1. 
$$(f \circ g)_* = f_* \circ g_*$$

$$2. (\mathrm{id}_X)_* = \mathrm{id}_{\mathrm{H}_n(X)}$$

**Lemma.**  $r: X \to A \ retract \implies i_* \ is \ injective$ 

#### Fixed points



1. 
$$(f \circ g)_* = f_* \circ g_*$$

$$2. (\mathrm{id}_X)_* = \mathrm{id}_{\mathrm{H}_n(X)}$$

**Lemma.**  $r: X \to A \ retract \implies i_* \ is \ injective$ 

#### Fixed points



1. 
$$(f \circ g)_* = f_* \circ g_*$$

$$2. (\mathrm{id}_X)_* = \mathrm{id}_{\mathrm{H}_n(X)}$$

**Lemma.**  $r: X \to A \ retract \implies i_* \ is \ injective$ 

#### Fixed points



1. 
$$(f \circ g)_* = f_* \circ g_*$$

$$2. (\mathrm{id}_X)_* = \mathrm{id}_{\mathrm{H}_n(X)}$$

**Lemma.**  $r: X \to A \ retract \implies i_* \ is \ injective$ 

#### Fixed points



1. 
$$(f \circ g)_* = f_* \circ g_*$$

$$2. (\mathrm{id}_X)_* = \mathrm{id}_{\mathrm{H}_n(X)}$$

**Lemma.**  $r: X \to A \ retract \implies i_* \ is \ injective$ 

#### Fixed points



1. 
$$(f \circ g)_* = f_* \circ g_*$$

$$2. (\mathrm{id}_X)_* = \mathrm{id}_{\mathrm{H}_n(X)}$$

**Lemma.**  $r: X \to A \ retract \implies i_* \ is \ injective$ 

#### Fixed points

Given  $f: B^2 \to B^2$ , If f has no fixed point



 $F: B^2 \to \partial B^2$  is a retract

1. 
$$(f \circ g)_* = f_* \circ g_*$$

$$2. (\mathrm{id}_X)_* = \mathrm{id}_{\mathrm{H}_n(X)}$$

**Lemma.**  $r: X \to A \ retract \implies i_* \ is \ injective$ 

#### Fixed points



$$F: B^2 \to \partial B^2$$
 is a retract  $(F(a) = a \text{ if } a \in \partial B^2)$ 

1. 
$$(f \circ g)_* = f_* \circ g_*$$

$$2. (\mathrm{id}_X)_* = \mathrm{id}_{\mathrm{H}_n(X)}$$

**Lemma.**  $r: X \to A \ retract \implies i_* \ is \ injective$ 

#### Fixed points

Given  $f: B^2 \to B^2$ , If f has no fixed point



 $F: B^2 \to \partial B^2$  is a retract

$$(F(a) = a \text{ if } a \in \partial B^2)$$

 $i_*: \mathrm{H}_1(\partial B^2) \to \mathrm{H}_1(B^2)$  should be injective

1. 
$$(f \circ g)_* = f_* \circ g_*$$

$$2. (\mathrm{id}_X)_* = \mathrm{id}_{\mathrm{H}_n(X)}$$

**Lemma.**  $r: X \to A \ retract \implies i_* \ is \ injective$ 

#### Fixed points

Given  $f: B^2 \to B^2$ , If f has no fixed point



 $F: B^2 \to \partial B^2$  is a retract

$$(F(a) = a \text{ if } a \in \partial B^2)$$

 $i_*: \underbrace{\mathrm{H}_1(\partial B^2)}_{\mathbb{Z}} \to \mathrm{H}_1(B^2)$  should be injective

1. 
$$(f \circ g)_* = f_* \circ g_*$$

$$2. (\mathrm{id}_X)_* = \mathrm{id}_{\mathrm{H}_n(X)}$$

**Lemma.**  $r: X \to A \ retract \implies i_* \ is \ injective$ 

#### Fixed points

Given  $f: B^2 \to B^2$ , If f has no fixed point



 $F: B^2 \to \partial B^2$  is a retract

$$(F(a) = a \text{ if } a \in \partial B^2)$$

 $i_*: H_1(\partial B^2) \to H_1(B^2)$  should be injective but is not.

trivial

1. 
$$(f \circ g)_* = f_* \circ g_*$$

$$2. (\mathrm{id}_X)_* = \mathrm{id}_{\mathrm{H}_n(X)}$$

**Lemma.**  $r: X \to A \ retract \implies i_* \ is \ injective$ 

#### Fixed points

**Theorem.** Any continuous  $f: B^2 \to B^2$  has a fixed point.



Proof:  $F: B^2 \to \partial B^2$  is a retract  $(F(a) = a \text{ if } a \in \partial B^2)$   $i_*: \underbrace{H_1(\partial B^2)}_{\mathbb{Z}} \to \underbrace{H_1(B^2)}_{\text{trivial}}$  should be injective but is not.

Euler characteristic:

Euler characteristic: V - E + F

Euler characteristic: V - E + F

### Simplex





## Image credit:

Euler characteristic: V - E + F

## Simplex





## Image credit:

Euler characteristic: V - E + F

## Simplex





## Image credit:

Euler characteristic: V - E + F

#### Simplex





#### Image credit:

Euler characteristic: V - E + F

## Simplex



## Image credit:

Euler characteristic: V - E + F

## Simplex



## Image credit:

Euler characteristic: V - E + F

### Simplex





## Image credit:

Euler characteristic: V - E + F

## Simplex





## Image credit:

Euler characteristic: V - E + F

## Simplex





## Image credit:

Euler characteristic: V - E + F

### Simplex





## Image credit:

Euler characteristic: V - E + F

### Simplex



**Definition.** Given "geometrically independent" points  $v_0, v_1, \ldots, v_n \in \mathbb{R}^N$ ,



Image credit:

Euler characteristic: V - E + F

#### Simplex



**Definition.** Given "geometrically independent" points  $v_0, v_1, \ldots, v_n \in \mathbb{R}^N$ , an n-simplex spanned by them is the convex hull of the points.



Image credit:

Euler characteristic: V - E + F

### Simplex



**Definition.** Given "geometrically independent" points  $v_0, v_1, \ldots, v_n \in \mathbb{R}^N$ , an n-simplex spanned by them is the convex hull of the points.

 $[v_0, v_1, \ldots, v_n]$  (oriented simplex) equal to  $[v_{i_0}, v_{i_1}, \ldots, v_{i_n}]$  if  $i_0, i_1, \ldots, i_n$  is an even permutation of  $1, 2, \ldots, n$ 



Image credit:

Euler characteristic: V - E + F

### Simplex



**Definition.** Given "geometrically independent" points  $v_0, v_1, \ldots, v_n \in \mathbb{R}^N$ , an n-simplex spanned by them is the convex hull of the points.

$$[v_0, v_1, \ldots, v_n]$$
 (oriented simplex) equal to  $[v_{i_0}, v_{i_1}, \ldots, v_{i_n}]$  if  $i_0, i_1, \ldots, i_n$  is an even permutation of  $1, 2, \ldots, n$ 

$$[v_0, v_1, \dots, v_n] = -[v_1, v_0, \dots, v_n]$$



Image credit:

# Informal sketch of simplicial homology Simplicial complex

Euler characteristic: V - E + F

Simplicial complex K: collection of simplices such that:

## Simplex



**Definition.** Given "geometrically independent" points  $v_0, v_1, \ldots, v_n \in \mathbb{R}^N$ , an n-simplex spanned by them is the convex hull of the points.

 $[v_0, v_1, \ldots, v_n]$  (oriented simplex) equal to  $[v_{i_0}, v_{i_1}, \ldots, v_{i_n}]$  if  $i_0, i_1, \ldots, i_n$  is an even permutation of  $1, 2, \ldots, n$ 

 $[v_0, v_1, \dots, v_n] = -[v_1, v_0, \dots, v_n]$ 

# Informal sketch of simplicial homology Simplicial complex

Euler characteristic: V - E + F

Simplicial complex K: collection of simplices such that:

## Simplex



**Definition.** Given "geometrically independent" points  $v_0, v_1, \ldots, v_n \in \mathbb{R}^N$ , an n-simplex spanned by them is the convex hull of the points.

 $[v_0, v_1, \ldots, v_n]$  (oriented simplex) equal to  $[v_{i_0}, v_{i_1}, \ldots, v_{i_n}]$  if  $i_0, i_1, \ldots, i_n$  is an even permutation of  $1, 2, \ldots, n$ 

$$[v_0, v_1, \dots, v_n] = -[v_1, v_0, \dots, v_n]$$

1. All faces of a simplex is in the collection

# Informal sketch of simplicial homology Simplicial complex

Euler characteristic: V - E + F

Simplicial complex K: collection of simplices such that:

## Simplex



**Definition.** Given "geometrically independent" points  $v_0, v_1, \ldots, v_n \in \mathbb{R}^N$ , an n-simplex spanned by them is the convex hull of the points.

 $[v_0, v_1, \ldots, v_n]$  (oriented simplex) equal to  $[v_{i_0}, v_{i_1}, \ldots, v_{i_n}]$  if  $i_0, i_1, \ldots, i_n$  is an even permutation of  $1, 2, \ldots, n$ 

$$[v_0, v_1, \dots, v_n] = -[v_1, v_0, \dots, v_n]$$

- 1. All faces of a simplex is in the collection
- 2. Intersection of two simplices is empty or a face

 $\partial_n[v_0,v_1,\ldots,v_n]=$ 

$$\partial_n[v_0, v_1, \dots, v_n] = \sum_{i=0}^n (-1)^i [v_0, v_1, \dots, \hat{v_i}, \dots, v_n]$$

$$\partial_n[v_0, v_1, \dots, v_n] = \sum_{i=0}^n (-1)^i [v_0, v_1, \dots, \hat{v_i}, \dots, v_n]$$

$$\partial_n[v_0, v_1, \dots, v_n] = \sum_{i=0}^n (-1)^i [v_0, v_1, \dots, \hat{v_i}, \dots, v_n]$$

$$Z_n(X) := \ker \partial_n$$

$$\partial_n[v_0, v_1, \dots, v_n] = \sum_{i=0}^n (-1)^i [v_0, v_1, \dots, \hat{v_i}, \dots, v_n]$$

$$Z_n(X) := \ker \partial_n$$

$$B_n(X) := \operatorname{Im} \partial_{n+1}$$

$$\partial_n[v_0, v_1, \dots, v_n] = \sum_{i=0}^n (-1)^i [v_0, v_1, \dots, \hat{v_i}, \dots, v_n]$$

$$Z_n(X) := \ker \partial_n$$

$$B_n(X) := \operatorname{Im} \, \partial_{n+1}$$

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$

$$\partial_n[v_0, v_1, \dots, v_n] = \sum_{i=0}^n (-1)^i [v_0, v_1, \dots, \hat{v_i}, \dots, v_n]$$

Extend linearly,  $\partial_n: C_n(X) \to C_{n-1}(X)$ 

$$Z_n(X) := \ker \partial_n$$

$$B_n(X) := \operatorname{Im} \partial_{n+1}$$

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$



$$\partial_n[v_0, v_1, \dots, v_n] = \sum_{i=0}^n (-1)^i [v_0, v_1, \dots, \hat{v_i}, \dots, v_n]$$

Extend linearly,  $\partial_n: C_n(X) \to C_{n-1}(X)$ 

$$Z_n(X) := \ker \partial_n$$

$$B_n(X) := \operatorname{Im} \partial_{n+1}$$

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$



$$\partial_n[v_0, v_1, \dots, v_n] = \sum_{i=0}^n (-1)^i [v_0, v_1, \dots, \hat{v_i}, \dots, v_n]$$

Extend linearly,  $\partial_n: C_n(X) \to C_{n-1}(X)$ 

$$Z_n(X) := \ker \partial_n$$

$$B_n(X) := \operatorname{Im} \partial_{n+1}$$

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$



$$\partial_n[v_0, v_1, \dots, v_n] = \sum_{i=0}^n (-1)^i [v_0, v_1, \dots, \hat{v_i}, \dots, v_n]$$

Extend linearly,  $\partial_n: C_n(X) \to C_{n-1}(X)$ 

$$Z_n(X) := \ker \partial_n$$

$$B_n(X) := \operatorname{Im} \, \partial_{n+1}$$

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$



$$\partial_n[v_0, v_1, \dots, v_n] = \sum_{i=0}^n (-1)^i [v_0, v_1, \dots, \hat{v_i}, \dots, v_n]$$

Extend linearly,  $\partial_n: C_n(X) \to C_{n-1}(X)$ 

$$Z_n(X) := \ker \partial_n$$

$$B_n(X) := \operatorname{Im} \, \partial_{n+1}$$

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$



## Example. Circle:

$$\partial_n[v_0, v_1, \dots, v_n] = \sum_{i=0}^n (-1)^i [v_0, v_1, \dots, \hat{v_i}, \dots, v_n]$$

Extend linearly,  $\partial_n: C_n(X) \to C_{n-1}(X)$ 

$$Z_n(X) := \ker \partial_n$$

$$B_n(X) := \operatorname{Im} \, \partial_{n+1}$$

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$



#### Example. Circle:

All cycles of the form:  $n(\sigma_1 + \sigma_2 + \sigma_2)$ 

• X orientable n-manifold without boundary

$$\partial_n[v_0, v_1, \dots, v_n] = \sum_{i=0}^n (-1)^i [v_0, v_1, \dots, \hat{v_i}, \dots, v_n]$$

Extend linearly,  $\partial_n: C_n(X) \to C_{n-1}(X)$ 

$$Z_n(X) := \ker \partial_n$$

$$B_n(X) := \operatorname{Im} \partial_{n+1}$$

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$



### Example. Circle:

All cycles of the form:  $n(\sigma_1 + \sigma_2 + \sigma_2)$ 

• X orientable n-manifold without boundary  $\implies H_n(X) = \mathbb{Z};$ 

$$\partial_n[v_0, v_1, \dots, v_n] = \sum_{i=0}^n (-1)^i [v_0, v_1, \dots, \hat{v_i}, \dots, v_n]$$

Extend linearly,  $\partial_n: C_n(X) \to C_{n-1}(X)$ 

$$Z_n(X) := \ker \partial_n$$

$$B_n(X) := \operatorname{Im} \, \partial_{n+1}$$

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$



#### Example. Circle:

All cycles of the form:  $n(\sigma_1 + \sigma_2 + \sigma_2)$ 

• X orientable n-manifold without boundary  $\implies H_n(X) = \mathbb{Z}$ ; otherwise, trivial

$$\partial_n[v_0, v_1, \dots, v_n] = \sum_{i=0}^n (-1)^i [v_0, v_1, \dots, \hat{v_i}, \dots, v_n]$$

Extend linearly,  $\partial_n: C_n(X) \to C_{n-1}(X)$ 

$$Z_n(X) := \ker \partial_n$$

$$B_n(X) := \operatorname{Im} \partial_{n+1}$$

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$



#### Example. Circle:

- X orientable n-manifold without boundary  $\implies H_n(X) = \mathbb{Z}$ ; otherwise, trivial
- X orientable n-manifold with boundary

$$\partial_n[v_0, v_1, \dots, v_n] = \sum_{i=0}^n (-1)^i [v_0, v_1, \dots, \hat{v_i}, \dots, v_n]$$

Extend linearly,  $\partial_n: C_n(X) \to C_{n-1}(X)$ 

$$Z_n(X) := \ker \partial_n$$

$$B_n(X) := \operatorname{Im} \, \partial_{n+1}$$

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$



#### Example. Circle:

- X orientable n-manifold without boundary  $\implies H_n(X) = \mathbb{Z}$ ; otherwise, trivial
- X orientable n-manifold with boundary  $\implies H_n(X, \partial X) = \mathbb{Z}; \text{ non-orientable } \implies \text{ trivial}$

$$\partial_n[v_0, v_1, \dots, v_n] = \sum_{i=0}^n (-1)^i [v_0, v_1, \dots, \hat{v_i}, \dots, v_n]$$

Extend linearly,  $\partial_n: C_n(X) \to C_{n-1}(X)$ 

$$Z_n(X) := \ker \partial_n$$

$$B_n(X) := \operatorname{Im} \partial_{n+1}$$

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$



### Example. Circle:

- X orientable n-manifold without boundary  $\implies H_n(X) = \mathbb{Z}$ ; otherwise, trivial
- X orientable n-manifold with boundary  $\implies H_n(X, \partial X) = \mathbb{Z}; \text{ non-orientable } \implies \text{ trivial}$
- X non-orientable n-manifold without boundary

$$\partial_n[v_0, v_1, \dots, v_n] = \sum_{i=0}^n (-1)^i [v_0, v_1, \dots, \hat{v_i}, \dots, v_n]$$

Extend linearly,  $\partial_n: C_n(X) \to C_{n-1}(X)$ 

$$Z_n(X) := \ker \partial_n$$

$$B_n(X) := \operatorname{Im} \partial_{n+1}$$

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$



Example. Circle:

- X orientable n-manifold without boundary  $\implies H_n(X) = \mathbb{Z}$ ; otherwise, trivial
- X orientable n-manifold with boundary  $\implies H_n(X, \partial X) = \mathbb{Z}; \text{ non-orientable } \implies \text{ trivial}$
- X non-orientable n-manifold without boundary  $\implies H_n(X; \mathbb{Z}/2) = \mathbb{Z}/2$ ; with boundary  $\implies$  trivial
- X non-orientable n-manifold with boundary

 $f: K_1 \to K_2$  simplicial map,

 $f: K_1 \to K_2$  simplicial map, then

 $f_*: H_n(K_1) \to H_n(K_2).$ 

 $f: K_1 \to K_2$  simplicial map, then  $f_*: H_n(K_1) \to H_n(K_2)$ .

**Theorem** (Simplicial approximation theorem). Every continuous map  $f: |K_1| \to |K_2|$ 

 $f: K_1 \to K_2$  simplicial map, then  $f_*: H_n(K_1) \to H_n(K_2)$ .

 $f: K_1 \to K_2$  simplicial map, then  $f_*: H_n(K_1) \to H_n(K_2)$ .

 $H_n(X) \oplus H_n(Y) \to H_n(X \cup Y)$ 

 $f: K_1 \to K_2$  simplicial map, then  $f_*: H_n(K_1) \to H_n(K_2)$ .

 $H_n(X \cap Y) \to H_n(X) \oplus H_n(Y) \to H_n(X \cup Y)$ 

$$f: K_1 \to K_2$$
 simplicial map, then  $f_*: H_n(K_1) \to H_n(K_2)$ .

$$H_n(X \cap Y) \to H_n(X) \oplus H_n(Y) \to H_n(X \cup Y) \to H_{n-1}(X \cap Y)$$

$$f: K_1 \to K_2$$
 simplicial map, then  $f_*: H_n(K_1) \to H_n(K_2)$ .

$$\cdots H_{n+1}(X \cup Y) \to H_n(X \cap Y) \to H_n(X) \oplus H_n(Y) \to H_n(X \cup Y) \to H_{n-1}(X \cap Y)$$

## Mayer Vietoris sequence

$$f: K_1 \to K_2$$
 simplicial map, then  $f_*: H_n(K_1) \to H_n(K_2)$ .

$$\cdots H_{n+1}(X \cup Y) \to H_n(X \cap Y) \to H_n(X) \oplus H_n(Y) \to H_n(X \cup Y) \to H_{n-1}(X \cap Y)$$

## Mayer Vietoris sequence

$$f: K_1 \to K_2$$
 simplicial map, then  $f_*: H_n(K_1) \to H_n(K_2)$ .

$$\cdots H_{n+1}(X \cup Y) \to H_n(X \cap Y) \to H_n(X) \oplus H_n(Y) \to H_n(X \cup Y) \to H_{n-1}(X \cap Y)$$

**Theorem** (Simplicial approximation theorem). Every continuous map  $f: |K_1| \to |K_2|$  has a "simplicial approximate",  $h: K_1 \to K_2$ .

## Relative exact sequence

$$\cdots \to H_{n+1}(X,A) \to H_n(A) \to H_n(X) \to H_n(X,A) \to H_{n-1}(A) \to \cdots$$

## Mayer Vietoris sequence

$$f: K_1 \to K_2$$
 simplicial map, then  $f_*: H_n(K_1) \to H_n(K_2)$ .

$$\cdots H_{n+1}(X \cup Y) \to H_n(X \cap Y) \to H_n(X) \oplus H_n(Y) \to H_n(X \cup Y) \to H_{n-1}(X \cap Y)$$

**Theorem** (Simplicial approximation theorem). Every continuous map  $f: |K_1| \to |K_2|$  has a "simplicial approximate",  $h: K_1 \to K_2$ .

## Relative exact sequence

$$\cdots \to H_{n+1}(X,A) \to H_n(A) \to H_n(X) \to H_n(X,A) \to H_{n-1}(A) \to \cdots$$

### In general

## Mayer Vietoris sequence

$$f: K_1 \to K_2$$
 simplicial map, then  $f_*: H_n(K_1) \to H_n(K_2)$ .

$$\cdots H_{n+1}(X \cup Y) \to H_n(X \cap Y) \to H_n(X) \oplus H_n(Y) \to H_n(X \cup Y) \to H_{n-1}(X \cap Y)$$

**Theorem** (Simplicial approximation theorem). Every continuous map  $f: |K_1| \to |K_2|$  has a "simplicial approximate",  $h: K_1 \to K_2$ .

## Relative exact sequence

$$\cdots \to H_{n+1}(X,A) \to H_n(A) \to H_n(X) \to H_n(X,A) \to H_{n-1}(A) \to \cdots$$

### In general

$$0 \to C_*(A) \to C_*(B) \to C_*(C) \to 0$$
 then,

## Mayer Vietoris sequence

$$f: K_1 \to K_2$$
 simplicial map, then  $f_*: H_n(K_1) \to H_n(K_2)$ .

$$\cdots H_{n+1}(X \cup Y) \to H_n(X \cap Y) \to H_n(X) \oplus H_n(Y) \to H_n(X \cup Y) \to H_{n-1}(X \cap Y)$$

**Theorem** (Simplicial approximation theorem). Every continuous map  $f: |K_1| \to |K_2|$  has a "simplicial approximate",  $h: K_1 \to K_2$ .

## Relative exact sequence

$$\cdots \to H_{n+1}(X,A) \to H_n(A) \to H_n(X) \to H_n(X,A) \to H_{n-1}(A) \to \cdots$$

### In general

$$0 \to C_*(A) \to C_*(B) \to C_*(C) \to 0$$
 then,  
 $\cdots \to H_{n+1}(C) \to H_n(A) \to H_n(B) \to H_n(C) \to H_{n-1}(A) \to \cdots$ 

 $f: X \to X$  has a fixed point if  $\Sigma(-1)^n \operatorname{trace} (f_*: H_n(X) \to H_n(X)) \neq 0$ 

# Lefschetz fixed point theorem

 $f: X \to X$  has a fixed point if  $\Sigma(-1)^n \operatorname{trace} (f_*: H_n(X) \to H_n(X)) \neq 0$ 

(i.e.  $\{\Sigma_i \lambda_i e_i \mid \Sigma_i \lambda = 1, 0 \le \lambda_i \le 1\} \subset \mathbb{R}^{n+1}$ )

(i.e. 
$$\{\Sigma_i \lambda_i e_i \mid \Sigma_i \lambda = 1, 0 \le \lambda_i \le 1\} \subset \mathbb{R}^{n+1}$$
)

$$e_i := (0, 0, \dots, 1, 0, \dots, 0)$$

 $\Delta_n$ : standard *n*-simplex (i.e.  $\{\Sigma_i \lambda_i e_i \mid \Sigma_i \lambda = 1, 0 \leq \lambda_i \leq 1\} \subset \mathbb{R}^{n+1}$ )  $e_i := (0, 0, \dots, 1, 0, \dots, 0)$ 

**Example.** 0-simplex:

 $\Delta_n$ : standard *n*-simplex (i.e.  $\{\Sigma_i \lambda_i e_i \mid \Sigma_i \lambda = 1, 0 \leq \lambda_i \leq 1\} \subset \mathbb{R}^{n+1}$ )  $e_i := (0, 0, \dots, 1, 0, \dots, 0)$ 

# **Example.** 0-simplex:

 $\sigma: \{e_0\} \to X$ 

 $\Delta_n$ : standard *n*-simplex (i.e.  $\{\Sigma_i \lambda_i e_i \mid \Sigma_i \lambda = 1, 0 \le \lambda_i \le 1\} \subset \mathbb{R}^{n+1}$ )  $e_i := (0, 0, \dots, 1, 0, \dots, 0)$ 

## **Example.** 0-simplex:

 $\sigma: \{e_0\} \to X$ (Set of 0-simplices of  $X \leftrightarrow X$ )

 $\Delta_n$ : standard *n*-simplex (i.e.  $\{\Sigma_i \lambda_i e_i \mid \Sigma_i \lambda = 1, 0 \le \lambda_i \le 1\} \subset \mathbb{R}^{n+1}$ )  $e_i := (0, 0, \dots, 1, 0, \dots, 0)$ 

#### Example. 0-simplex:

 $\sigma: \{e_0\} \to X$ (Set of 0-simplices of  $X \leftrightarrow X$ )

## Example. 1-simplex:

 $\Delta_n$ : standard *n*-simplex (i.e.  $\{\Sigma_i \lambda_i e_i \mid \Sigma_i \lambda = 1, 0 \le \lambda_i \le 1\} \subset \mathbb{R}^{n+1}$ )  $e_i := (0, 0, \dots, 1, 0, \dots, 0)$ 

#### Example. 0-simplex:

 $\sigma: \{e_0\} \to X$ (Set of 0-simplices of  $X \leftrightarrow X$ )

### Example. 1-simplex:

 $\sigma$ : convex span $\{e_0, e_1\} \to X$ (Set of 1-simplices of  $X \leftrightarrow set$  of paths of X)

 $\Delta_n$ : standard *n*-simplex (i.e.  $\{\Sigma_i \lambda_i e_i \mid \Sigma_i \lambda = 1, 0 \le \lambda_i \le 1\} \subset \mathbb{R}^{n+1}$ )  $e_i := (0, 0, \dots, 1, 0, \dots, 0)$ 

#### Example. 0-simplex:

 $\sigma: \{e_0\} \to X$ (Set of 0-simplices of  $X \leftrightarrow X$ )

### Example. 1-simplex:

 $\sigma: [0,1] \simeq \operatorname{convex} \operatorname{span}\{e_0,e_1\} \to X$ (Set of 1-simplices of  $X \leftrightarrow \operatorname{set}$  of paths of X)

 $\Delta_n$ : standard *n*-simplex
(i.e.  $\{\Sigma_i\}_{i\in I}$ ,  $\Sigma_i\}_{i=1}$ , 1,  $0 < \lambda_i$ 

(i.e. 
$$\{\Sigma_i \lambda_i e_i \mid \Sigma_i \lambda = 1, 0 \le \lambda_i \le 1\} \subset \mathbb{R}^{n+1}$$
)  
 $e_i := (0, 0, \dots, 1, 0, \dots, 0)$ 

## Example. 0-simplex:

 $\sigma: \{e_0\} \to X$ (Set of 0-simplices of  $X \leftrightarrow X$ )

### Example. 1-simplex:

 $\sigma: [0,1] \simeq \operatorname{convex} \operatorname{span}\{e_0,e_1\} \to X$ (Set of 1-simplices of  $X \leftrightarrow \operatorname{set}$  of paths of X)

 $\sigma: \Delta_n \to X$ : singular simplex in X

 $\Delta_n$ : standard *n*-simplex (i.e.  $\{\Sigma_i \lambda_i e_i \mid \Sigma_i \lambda = 1, 0 \le \lambda_i \le 1\} \subset \mathbb{R}^{n+1}$ )  $e_i := (0, 0, \dots, 1, 0, \dots, 0)$ 

### Example. 0-simplex:

 $\sigma: \{e_0\} \to X$ (Set of 0-simplices of  $X \leftrightarrow X$ )

#### Example. 1-simplex:

 $\sigma: [0,1] \simeq \operatorname{convex} \operatorname{span}\{e_0,e_1\} \to X$ (Set of 1-simplices of  $X \leftrightarrow \operatorname{set}$  of paths of X)

 $\sigma: \Delta_n \to X$ : singular simplex in X $C_n(X) := \{\Sigma_i n_i \sigma_i\}$ 

 $\Delta_n$ : standard *n*-simplex (i.e.  $\{\Sigma_i \lambda_i e_i \mid \Sigma_i \lambda = 1, 0 \le \lambda_i \le 1\} \subset \mathbb{R}^{n+1}$ )

 $e_i := (0, 0, \dots, 1, 0, \dots, 0)$ 

### Example. 0-simplex:

 $\sigma: \{e_0\} \to X$ (Set of 0-simplices of  $X \leftrightarrow X$ )

#### Example. 1-simplex:

 $\sigma: [0,1] \simeq \operatorname{convex} \operatorname{span}\{e_0,e_1\} \to X$ (Set of 1-simplices of  $X \leftrightarrow \operatorname{set}$  of paths of X)

 $\sigma: \Delta_n \to X$ : singular simplex in X $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$ 

 $\Delta_n$ : standard *n*-simplex (i.e.  $\{\Sigma_i \lambda_i e_i \mid \Sigma_i \lambda = 1, 0 \le \lambda_i \le 1\} \subset \mathbb{R}^{n+1}$ )  $e_i := (0, 0, \dots, 1, 0, \dots, 0)$ 

#### Example. $\theta$ -simplex:

 $\sigma: \{e_0\} \to X$ (Set of 0-simplices of  $X \leftrightarrow X$ )

#### Example. 1-simplex:

 $\sigma: [0,1] \simeq \operatorname{convex} \operatorname{span}\{e_0,e_1\} \to X$ (Set of 1-simplices of  $X \leftrightarrow \operatorname{set}$  of paths of X)

 $\sigma: \Delta_n \to X$ : singular simplex in X  $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$  (free abelian group generated by the simplices)

 $\Delta_n$ : standard *n*-simplex (i.e.  $\{\Sigma_i \lambda_i e_i \mid \Sigma_i \lambda = 1, 0 \le \lambda_i \le 1\} \subset \mathbb{R}^{n+1}$ )  $e_i := (0, 0, \dots, 1, 0, \dots, 0)$ 

#### Example. $\theta$ -simplex:

 $\sigma: \{e_0\} \to X$ (Set of 0-simplices of  $X \leftrightarrow X$ )

#### Example. 1-simplex:

 $\sigma: [0,1] \simeq \operatorname{convex} \operatorname{span}\{e_0,e_1\} \to X$ (Set of 1-simplices of  $X \leftrightarrow \operatorname{set}$  of paths of X)

 $\sigma: \Delta_n \to X$ : singular simplex in X  $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$  (free abelian group generated by the simplices)

 $\sigma^{(i)}$ : ith face

 $\Delta_n$ : standard *n*-simplex (i.e.  $\{\Sigma_i \lambda_i e_i \mid \Sigma_i \lambda = 1, 0 \le \lambda_i \le 1\} \subset \mathbb{R}^{n+1}$ )  $e_i := (0, 0, \dots, 1, 0, \dots, 0)$ 

### Example. 0-simplex:

 $\sigma: \{e_0\} \to X$ (Set of 0-simplices of  $X \leftrightarrow X$ )

#### Example. 1-simplex:

 $\sigma: [0,1] \simeq \operatorname{convex} \operatorname{span}\{e_0,e_1\} \to X$ (Set of 1-simplices of  $X \leftrightarrow \operatorname{set}$  of paths of X)

 $\sigma: \Delta_n \to X$ : singular simplex in X  $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$  (free abelian group generated by the simplices)

 $\sigma^{(i)}$ : ith face span $\{e_0, \dots, \hat{e_i}, \dots, e^n\} \xrightarrow{\sigma} X$ 

 $\Delta_n$ : standard *n*-simplex (i.e.  $\{\Sigma_i \lambda_i e_i \mid \Sigma_i \lambda = 1, 0 \le \lambda_i \le 1\} \subset \mathbb{R}^{n+1}$ )  $e_i := (0, 0, \dots, 1, 0, \dots, 0)$ 

### Example. 0-simplex:

 $\sigma: \{e_0\} \to X$ (Set of 0-simplices of  $X \leftrightarrow X$ )

### Example. 1-simplex:

 $\sigma: [0,1] \simeq \operatorname{convex} \operatorname{span}\{e_0,e_1\} \to X$ (Set of 1-simplices of  $X \leftrightarrow \operatorname{set}$  of paths of X)

 $\sigma: \Delta_n \to X$ : singular simplex in X  $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$  (free abelian group generated by the simplices)

 $\sigma^{(i)}$ : ith face span $\{e_0, \dots, e_{n-1}\} \to \operatorname{span}\{e_0, \dots, \hat{e_i}, \dots, e^n\} \xrightarrow{\sigma} X$ 

 $\Delta_n$ : standard *n*-simplex (i.e.  $\{\Sigma_i \lambda_i e_i \mid \Sigma_i \lambda = 1, 0 \le \lambda_i \le 1\} \subset \mathbb{R}^{n+1}$ )  $e_i := (0, 0, \dots, 1, 0, \dots, 0)$ 

### Example. $\theta$ -simplex:

 $\sigma: \{e_0\} \to X$ (Set of 0-simplices of  $X \leftrightarrow X$ )

#### Example. 1-simplex:

 $\sigma: [0,1] \simeq \operatorname{convex} \operatorname{span}\{e_0,e_1\} \to X$ (Set of 1-simplices of  $X \leftrightarrow \operatorname{set}$  of paths of X)

 $\sigma: \Delta_n \to X$ : singular simplex in X  $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$  (free abelian group generated by the simplices)

 $\sigma^{(i)}$ : ith face  $\operatorname{span}\{e_0, \dots, e_{n-1}\} \to \operatorname{span}\{e_0, \dots, \hat{e_i}, \dots, e^n\} \xrightarrow{\sigma} X$  $\partial_n : C_n(X) \to C_{n-1}(X)$  (boundary map)

$$\Delta_n$$
: standard *n*-simplex

$$\Delta_n$$
: standard *n*-simplex (i.e.  $\{\Sigma_i \lambda_i e_i \mid \Sigma_i \lambda = 1, 0 \leq \lambda_i \leq 1\} \subset \mathbb{R}^{n+1}$ )

$$e_i := (0, 0, \dots, 1, 0, \dots, 0)$$

$$\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$$

# **Example.** $\theta$ -simplex:

$$\sigma: \{e_0\} \to X$$

(Set of 0-simplices of 
$$X \leftrightarrow X$$
)

## Example. 1-simplex:

$$\sigma: [0,1] \simeq \operatorname{convex span}\{e_0,e_1\} \to X$$

(Set of 1-simplices of 
$$X \leftrightarrow set$$
 of paths of  $X$ )

$$\sigma: \Delta_n \to X$$
: singular simplex in X

$$C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$$
 (free abelian

group generated by the simplices)

$$\sigma^{(i)}$$
: ith face  
 $\operatorname{span}\{e_0, \dots, e_{n-1}\} \to \operatorname{span}\{e_0, \dots, \hat{e_i}, \dots, e^n\} \xrightarrow{\sigma} X$   
 $\partial_n : C_n(X) \to C_{n-1}(X)$  (boundary map)

$$\Delta_n$$
: standard *n*-simplex

(i.e. 
$$\{\Sigma_i \lambda_i e_i \mid \Sigma_i \lambda = 1, 0 \le \lambda_i \le 1\} \subset \mathbb{R}^{n+1}$$
)  
 $e_i := (0, 0, \dots, 1, 0, \dots, 0)$ 

$$\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$$

$$C_n(X) \xrightarrow{\partial_n} C_{n-1}(X)$$

# Example. 0-simplex:

$$\sigma: \{e_0\} \to X$$

(Set of 0-simplices of  $X \leftrightarrow X$ )

#### Example. 1-simplex:

$$\sigma: [0,1] \simeq \operatorname{convex} \operatorname{span}\{e_0,e_1\} \to X$$

(Set of 1-simplices of  $X \leftrightarrow set$  of paths of X)

$$\sigma: \Delta_n \to X$$
: singular simplex in X

$$C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$$
 (free abelian

group generated by the simplices)

$$\sigma^{(i)}$$
: ith face  
 $\operatorname{span}\{e_0, \dots, e_{n-1}\} \to \operatorname{span}\{e_0, \dots, \hat{e_i}, \dots, e^n\} \xrightarrow{\sigma} X$   
 $\partial_n : C_n(X) \to C_{n-1}(X) \text{ (boundary map)}$ 

$$\Delta_n$$
: standard *n*-simplex  
(i.e.  $\{\Sigma_i \lambda_i e_i \mid \Sigma_i \lambda = 1, 0 < \lambda_i < 1\}$ 

$$\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$$

(i.e. 
$$\{\Sigma_i \lambda_i e_i \mid \Sigma_i \lambda = 1, 0 \le \lambda_i \le 1\} \subset \mathbb{R}^{n+1}$$
)  
 $e_i := (0, 0, \dots, 1, 0, \dots, 0)$ 

$$C_n(X) \xrightarrow{\partial_n} C_{n-1}(X) \xrightarrow{\partial_{n-1}} C_{n-2}(X) \to \cdots$$

# Example. $\theta$ -simplex:

$$\sigma: \{e_0\} \to X$$
  
(Set of 0-simplices of  $X \leftrightarrow X$ )

# Example. 1-simplex:

$$\sigma: [0,1] \simeq \operatorname{convex} \operatorname{span}\{e_0,e_1\} \to X$$
  
(Set of 1-simplices of  $X \leftrightarrow \operatorname{set}$  of paths of  $X$ )

$$\sigma: \Delta_n \to X$$
: singular simplex in  $X$ 
 $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$  (free abelian group generated by the simplices)

$$\sigma^{(i)}$$
: ith face  
 $\operatorname{span}\{e_0, \dots, e_{n-1}\} \to \operatorname{span}\{e_0, \dots, \hat{e_i}, \dots, e^n\} \xrightarrow{\sigma} X$   
 $\partial_n : C_n(X) \to C_{n-1}(X)$  (boundary map)

 $\Delta_n$ : standard *n*-simplex (i.e.  $\{\Sigma_i \lambda_i e_i \mid \Sigma_i \lambda = 1, 0 \leq \lambda_i \leq 1\} \subset \mathbb{R}^{n+1}$ )

$$\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$$

 $\cdots \rightarrow C_{n+1}(X) \xrightarrow{\partial_{n+1}} C_n(X) \xrightarrow{\partial_n} C_{n-1}(X) \xrightarrow{\partial_{n-1}}$  $C_{n-2}(X) \to \cdots$ 

Example.  $\theta$ -simplex:

 $e_i := (0, 0, \dots, 1, 0, \dots, 0)$ 

 $\sigma: \{e_0\} \to X$ (Set of 0-simplices of  $X \leftrightarrow X$ )

Example. 1-simplex:

 $\sigma: [0,1] \simeq \operatorname{convex span}\{e_0,e_1\} \to X$ (Set of 1-simplices of  $X \leftrightarrow set$  of paths of X)

 $\sigma:\Delta_n\to X$ : singular simplex in X  $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$  (free abelian group generated by the simplices)

 $\partial_n \circ \partial_{n+1} = 0$ 

 $\sigma^{(i)}$ : ith face

 $\operatorname{span}\{e_0,\ldots,e_{n-1}\}\to\operatorname{span}\{e_0,\ldots,\hat{e_i},\ldots,e^n\}\xrightarrow{\sigma}X$  $\partial_n: C_n(X) \to C_{n-1}(X)$  (boundary map)

 $\Delta_n$ : standard *n*-simplex (i.e.  $\{\Sigma_i \lambda_i e_i \mid \Sigma_i \lambda = 1, 0 \leq \lambda_i \leq 1\} \subset \mathbb{R}^{n+1}$ )

$$\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$$

Example.  $\theta$ -simplex:  $\sigma: \{e_0\} \to X$ 

(Set of 0-simplices of  $X \leftrightarrow X$ )

Example. 1-simplex:

 $\sigma^{(i)}$ : ith face

 $e_i := (0, 0, \dots, 1, 0, \dots, 0)$ 

 $\sigma: [0,1] \simeq \operatorname{convex span}\{e_0,e_1\} \to X$ (Set of 1-simplices of  $X \leftrightarrow set$  of paths of X)

 $\operatorname{span}\{e_0,\ldots,e_{n-1}\}\to\operatorname{span}\{e_0,\ldots,\hat{e_i},\ldots,e^n\}\xrightarrow{\sigma}X$ 

 $\partial_n: C_n(X) \to C_{n-1}(X)$  (boundary map)

 $\sigma:\Delta_n\to X$ : singular simplex in X  $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$  (free abelian group generated by the simplices)

 $Z_n(X) := \ker \partial_n$ 

 $\Delta_n$ : standard *n*-simplex (i.e.  $\{\Sigma_i \lambda_i e_i \mid \Sigma_i \lambda = 1, 0 \leq \lambda_i \leq 1\} \subset \mathbb{R}^{n+1}$ )  $e_i := (0, 0, \dots, 1, 0, \dots, 0)$ 

$$\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$$

 $\cdots \rightarrow C_{n+1}(X) \xrightarrow{\partial_{n+1}} C_n(X) \xrightarrow{\partial_n} C_{n-1}(X) \xrightarrow{\partial_{n-1}}$  $C_{n-2}(X) \to \cdots$  $|\partial_n \circ \partial_{n+1} = 0|$ 

# (Set of 0-simplices of $X \leftrightarrow X$ )

# Example. 1-simplex: $\sigma: [0,1] \simeq \operatorname{convex span}\{e_0,e_1\} \to X$

Example.  $\theta$ -simplex:

 $\sigma: \{e_0\} \to X$ 

 $\sigma^{(i)}$ : ith face

(Set of 1-simplices of  $X \leftrightarrow set$  of paths of X)

 $\operatorname{span}\{e_0,\ldots,e_{n-1}\}\to\operatorname{span}\{e_0,\ldots,\hat{e_i},\ldots,e^n\}\xrightarrow{\sigma}X$ 

 $\partial_n: C_n(X) \to C_{n-1}(X)$  (boundary map)

 $\sigma:\Delta_n\to X$ : singular simplex in X  $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$  (free abelian group generated by the simplices)

 $Z_n(X) := \ker \partial_n$  $B_n(X) := \operatorname{Im} \partial_{n+1}$ 



 $\Delta_n$ : standard *n*-simplex (i.e.  $\{\Sigma_i \lambda_i e_i \mid \Sigma_i \lambda = 1, 0 \leq \lambda_i \leq 1\} \subset \mathbb{R}^{n+1}$ )

$$\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$$

 $\cdots \rightarrow C_{n+1}(X) \xrightarrow{\partial_{n+1}} C_n(X) \xrightarrow{\partial_n} C_{n-1}(X) \xrightarrow{\partial_{n-1}}$  $C_{n-2}(X) \to \cdots$ 

# Example. $\theta$ -simplex:

 $e_i := (0, 0, \dots, 1, 0, \dots, 0)$ 

 $\sigma: \{e_0\} \to X$ (Set of 0-simplices of  $X \leftrightarrow X$ )  $\partial_n \circ \partial_{n+1} = 0$ 

 $Z_n(X) := \ker \partial_n$  $B_n(X) := \operatorname{Im} \partial_{n+1}$  $\operatorname{Im} \partial_{n+1} \subset \ker \partial_n$ 

# Example. 1-simplex:

 $\sigma: [0,1] \simeq \operatorname{convex span}\{e_0,e_1\} \to X$ (Set of 1-simplices of  $X \leftrightarrow set$  of paths of X)

 $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$  (free abelian

 $\sigma:\Delta_n\to X$ : singular simplex in X group generated by the simplices)

$$\sigma^{(i)}$$
: ith face 
$$\operatorname{span}\{e_0, \dots, e_{n-1}\} \to \operatorname{span}\{e_0, \dots, \hat{e_i}, \dots, e^n\} \xrightarrow{\sigma} X$$

 $\partial_n: C_n(X) \to C_{n-1}(X)$  (boundary map)

 $\Delta_n$ : standard *n*-simplex (i.e.  $\{\Sigma_i \lambda_i e_i \mid \Sigma_i \lambda = 1, 0 \leq \lambda_i \leq 1\} \subset \mathbb{R}^{n+1}$ )  $e_i := (0, 0, \dots, 1, 0, \dots, 0)$ 

$$\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$$

 $\cdots \rightarrow C_{n+1}(X) \xrightarrow{\partial_{n+1}} C_n(X) \xrightarrow{\partial_n} C_{n-1}(X) \xrightarrow{\partial_{n-1}}$  $C_{n-2}(X) \to \cdots$ 

Example.  $\theta$ -simplex:  $\sigma: \{e_0\} \to X$ 

 $\sigma^{(i)}$ : ith face

(Set of 0-simplices of  $X \leftrightarrow X$ )

Example. 1-simplex:

 $\sigma: [0,1] \simeq \operatorname{convex span}\{e_0,e_1\} \to X$ (Set of 1-simplices of  $X \leftrightarrow set$  of paths of X)

 $\partial_n: C_n(X) \to C_{n-1}(X)$  (boundary map)

 $\sigma:\Delta_n\to X$ : singular simplex in X  $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$  (free abelian

group generated by the simplices)

 $\operatorname{span}\{e_0,\ldots,e_{n-1}\} \to \operatorname{span}\{e_0,\ldots,\hat{e_i},\ldots,e^n\} \xrightarrow{\sigma} X$ 

 $\partial_n \circ \partial_{n+1} = 0$ 

 $Z_n(X) := \ker \partial_n$  $B_n(X) := \operatorname{Im} \partial_{n+1}$  $B_n(X) = \operatorname{Im} \partial_{n+1} \subset \ker \partial_n$ 

 $\Delta_n$ : standard *n*-simplex (i.e.  $\{\Sigma_i \lambda_i e_i \mid \Sigma_i \lambda = 1, 0 \leq \lambda_i \leq 1\} \subset \mathbb{R}^{n+1}$ )

$$\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$$

 $\cdots \rightarrow C_{n+1}(X) \xrightarrow{\partial_{n+1}} C_n(X) \xrightarrow{\partial_n} C_{n-1}(X) \xrightarrow{\partial_{n-1}}$  $C_{n-2}(X) \to \cdots$ 

# Example. $\theta$ -simplex:

 $e_i := (0, 0, \dots, 1, 0, \dots, 0)$ 

 $\sigma: \{e_0\} \to X$ (Set of 0-simplices of  $X \leftrightarrow X$ )

# $\partial_n \circ \partial_{n+1} = 0$

 $Z_n(X) := \ker \partial_n$ 

 $B_n(X) := \operatorname{Im} \partial_{n+1}$  $B_n(X) = \operatorname{Im} \partial_{n+1} \subset \ker \partial_n = Z_n(X)$ 

# Example. 1-simplex:

 $\sigma: [0,1] \simeq \operatorname{convex span}\{e_0,e_1\} \to X$ (Set of 1-simplices of  $X \leftrightarrow set$  of paths of X)

 $\partial_n: C_n(X) \to C_{n-1}(X)$  (boundary map)

$$\sigma: \Delta_n \to X$$
: singular simplex in  $X$ 
 $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$  (free abelian group generated by the simplices)

group generated by the simplices)  $\sigma^{(i)}$ : ith face  $\operatorname{span}\{e_0,\ldots,e_{n-1}\} \to \operatorname{span}\{e_0,\ldots,\hat{e_i},\ldots,e^n\} \xrightarrow{\sigma} X$ 

$$\Delta_n$$
: standard *n*-simplex  
(i.e.  $\{\Sigma_i \lambda_i e_i \mid \Sigma_i \lambda = 1, 0 \le \lambda_i \le 1\} \subset \mathbb{R}^{n+1}$ )  
 $e_i := (0, 0, \dots, 1, 0, \dots, 0)$ 

$$\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$$

$$\cdots \to C_{n+1}(X) \xrightarrow{\partial_{n+1}} C_n(X) \xrightarrow{\partial_n} C_{n-1}(X) \xrightarrow{\partial_{n-1}} C_{n-2}(X) \to \cdots$$

$$\sigma: \{e_0\} \to X$$
(Set of 0-simplices of  $X \leftrightarrow X$ )

$$\partial_n \circ \partial_{n+1} = 0$$

$$Z_n(X) := \ker \partial_n$$
  
 $B_n(X) := \operatorname{Im} \partial_{n+1}$   
 $B_n(X) \subset Z_n(X)$ 

# Example. 1-simplex:

$$\sigma: [0,1] \simeq \operatorname{convex span}\{e_0,e_1\} \to X$$
  
(Set of 1-simplices of  $X \leftrightarrow \operatorname{set}$  of paths of  $X$ )

 $\partial_n: C_n(X) \to C_{n-1}(X)$  (boundary map)

$$\sigma: \Delta_n \to X$$
: singular simplex in  $X$ 
 $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$  (free abelian group generated by the simplices)

$$\sigma^{(i)}$$
: ith face 
$$\operatorname{span}\{e_0, \dots, e_{n-1}\} \to \operatorname{span}\{e_0, \dots, \hat{e_i}, \dots, e^n\} \xrightarrow{\sigma} X$$

 $\Delta_n$ : standard *n*-simplex (i.e.  $\{\Sigma_i \lambda_i e_i \mid \Sigma_i \lambda = 1, 0 \leq \lambda_i \leq 1\} \subset \mathbb{R}^{n+1}$ )  $e_i := (0, 0, \dots, 1, 0, \dots, 0)$ 

$$\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$$

$$\rightarrow$$
 (

Example.  $\theta$ -simplex:  $\sigma: \{e_0\} \to X$ 

$$\sigma: \{e_0\} \to X$$
(Set of 0-simplices of  $X \leftrightarrow X$ )



 $C_{n-2}(X) \to \cdots$ 

 $\partial_n \circ \partial_{n+1} = 0$ 

 $B_n(X) := \operatorname{Im} \partial_{n+1}$  $B_n(X) \subset Z_n(X)$ 

Example. 1-simplex:

$$\sigma: [0,1] \simeq \operatorname{convex} \operatorname{span}\{e_0, e_1\} \to X$$
  
(Set of 1-simplices of  $X \leftrightarrow \operatorname{set}$  of paths of  $X$ )

 $\operatorname{span}\{e_0,\ldots,e_{n-1}\}\to\operatorname{span}\{e_0,\ldots,\hat{e_i},\ldots,e^n\}\xrightarrow{\sigma}X$ 

 $H_n(X) := \frac{Z_n(X)}{B_n(X)}$ 

 $\sigma:\Delta_n\to X$ : singular simplex in X  $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$  (free abelian group generated by the simplices)

 $\partial_n: C_n(X) \to C_{n-1}(X)$  (boundary map)

$$C_n(z)$$
 grou

 $\sigma^{(i)}$ : ith face

 $\Delta_n$ : standard *n*-simplex

(i.e. 
$$\{\Sigma_i \lambda_i e_i \mid \Sigma_i \lambda = 1, 0 \le \lambda_i \le 1\} \subset \mathbb{R}^{n+1}$$
)  
 $e_i := (0, 0, \dots, 1, 0, \dots, 0)$ 

$$\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$$

 $C_{n-2}(X) \to \cdots$ 

 $\partial_n \circ \partial_{n+1} = 0$ 

 $Z_n(X) := \ker \partial_n$ 

 $B_n(X) := \operatorname{Im} \partial_{n+1}$ 

 $B_n(X) \subset Z_n(X)$ 

 $H_n(X) := \frac{Z_n(X)}{B_n(X)}$ 

 $\sigma \in Z_n(X), [\sigma] \in H_n(X)$ 

$$\left(\frac{\partial_{n}}{\partial n}\right)$$

 $\cdots \rightarrow C_{n+1}(X) \xrightarrow{\partial_{n+1}} C_n(X) \xrightarrow{\partial_n} C_{n-1}(X) \xrightarrow{\partial_{n-1}}$ 







Example.  $\theta$ -simplex:









 $\sigma^{(i)}$ : ith face

Example. 1-simplex:

$$\operatorname{span}\{e_0, \dots, e_{n-1}\} \to \operatorname{span}\{e_0, \dots, \hat{e_i}, \dots, e^n\} \xrightarrow{\sigma} X$$
$$\partial_n : C_n(X) \to C_{n-1}(X) \text{ (boundary map)}$$

group generated by the simplices)

 $\Delta_n$ : standard *n*-simplex

 $\sigma: \Delta_n \to X$ : singular simplex in X

 $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$ 

$$\sigma^{(i)}$$
: ith face

$$\partial_n : C_n(X) \to C_{n-1}(X)$$
 (boundary map)  
 $\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$ 

$$\partial_n \circ \partial_{n+1} = 0$$

$$Z_n(X) := \ker \partial_n$$

$$B_n(X) := \operatorname{Im} \partial_{n+1}$$

$$B_n(X) \subset Z_n(X)$$

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$

 $\Delta_n$ : standard *n*-simplex

 $\sigma: \Delta_n \to X$ : singular simplex in X

 $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$ 

 $\sigma^{(i)}$ : ith face

 $\partial_n: C_n(X) \to C_{n-1}(X)$  (boundary map)

 $\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$ 

$$\partial_n \circ \partial_{n+1} = 0$$

 $Z_n(X) := \ker \partial_n$ 

 $B_n(X) := \operatorname{Im} \partial_{n+1}$ 

 $B_n(X) \subset Z_n(X)$ 

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$

Example 1:  $H_n(pt)$ 

 $\Delta_n$ : standard *n*-simplex

 $\sigma: \Delta_n \to X$ : singular simplex in X

 $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$ 

 $\sigma^{(i)}$ : ith face

 $\partial_n : C_n(X) \to C_{n-1}(X)$  (boundary map)  $\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$ 

$$\partial_n \circ \partial_{n+1} = 0$$

 $Z_n(X) := \ker \partial_n$ 

 $B_n(X) := \operatorname{Im} \partial_{n+1}$ 

 $B_n(X) \subset Z_n(X)$ 

 $H_n(X) := \frac{Z_n(X)}{B_n(X)}$ 

Example 1:  $H_n(pt)$ 

 $C_n(pt) = \mathbb{Z}$ 

 $\Delta_n$ : standard *n*-simplex

 $\sigma: \Delta_n \to X$ : singular simplex in X

$$C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$$

 $\sigma^{(i)}$ : ith face

$$\partial_n : C_n(X) \to C_{n-1}(X)$$
 (boundary map)  
 $\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$ 

$$\partial_n \circ \partial_{n+1} = 0$$

$$Z_n(X) := \ker \partial_n$$

$$B_n(X) := \operatorname{Im} \partial_{n+1}$$

$$B_n(X) \subset Z_n(X)$$

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$

# Example 1: $H_n(pt)$

$$C_n(pt) = \mathbb{Z}$$
 (generated by constant functions)

 $\Delta_n$ : standard *n*-simplex

 $\sigma: \Delta_n \to X$ : singular simplex in X

 $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$ 

 $\sigma^{(i)}$ : ith face

$$\partial_n : C_n(X) \to C_{n-1}(X)$$
 (boundary map)  
 $\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$ 

$$\partial_n \circ \partial_{n+1} = 0$$

 $Z_n(X) := \ker \partial_n$ 

 $B_n(X) := \operatorname{Im} \partial_{n+1}$ 

 $B_n(X) \subset Z_n(X)$ 

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$

Example 1:  $H_n(pt)$ 

 $C_n(pt) = \mathbb{Z}$  (generated by constant functions)

 $\partial_n: C_n(pt) \to C_{n-1}(pt)$ 

 $\Delta_n$ : standard *n*-simplex

 $\sigma: \Delta_n \to X$ : singular simplex in X

 $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$ 

 $\sigma^{(i)}$ : ith face

$$\partial_n : C_n(X) \to C_{n-1}(X)$$
 (boundary map)  
 $\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$ 

$$\partial_n \circ \partial_{n+1} = 0$$

$$Z_n(X) := \ker \partial_n$$

$$B_n(X) := \operatorname{Im} \partial_{n+1}$$

$$B_n(X) \subset Z_n(X)$$

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$

# Example 1: $H_n(pt)$

 $C_n(pt) = \mathbb{Z}$  (generated by constant functions)

 $\partial_n: C_n(pt) \to C_{n-1}(pt)$ 

is constant 0 if n is even, otherwise id.

 $\Delta_n$ : standard *n*-simplex

 $\sigma: \Delta_n \to X$ : singular simplex in X

 $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$ 

 $\sigma^{(i)}$ : ith face

$$\partial_n : C_n(X) \to C_{n-1}(X)$$
 (boundary map)  
 $\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$ 

$$\partial_n \circ \partial_{n+1} = 0$$

$$Z_n(X) := \ker \partial_n$$

$$B_n(X) := \operatorname{Im} \partial_{n+1}$$

$$B_n(X) \subset Z_n(X)$$

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$

## Example 1: $H_n(pt)$

 $C_n(pt) = \mathbb{Z}$  (generated by constant functions)  $\partial_n : C_n(pt) \to C_{n-1}(pt)$ is constant 0 if n is even, otherwise id.

#### Case 1:

$$Z_n(pt) := 0$$

 $\Delta_n$ : standard *n*-simplex

 $\sigma: \Delta_n \to X$ : singular simplex in X

 $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$ 

 $\sigma^{(i)}$ : ith face

$$\partial_n : C_n(X) \to C_{n-1}(X)$$
 (boundary map)  
 $\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$ 

$$\partial_n \circ \partial_{n+1} = 0$$

$$Z_n(X) := \ker \partial_n$$

$$B_n(X) := \operatorname{Im} \partial_{n+1}$$

$$B_n(X) \subset Z_n(X)$$

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$

## Example 1: $H_n(pt)$

$$C_n(pt) = \mathbb{Z}$$
 (generated by constant functions)  
 $\partial_n : C_n(pt) \to C_{n-1}(pt)$   
is constant 0 if  $n$  is even, otherwise  $id$ .

Case 1: 
$$Z_n(pt) := 0$$

$$Z_n(pt) := \mathbb{Z}$$

 $\Delta_n$ : standard *n*-simplex

 $\sigma: \Delta_n \to X$ : singular simplex in X

 $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$ 

 $\sigma^{(i)}$ : ith face

$$\partial_n : C_n(X) \to C_{n-1}(X)$$
 (boundary map)  
 $\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$ 

$$\partial_n \circ \partial_{n+1} = 0$$

$$Z_n(X) := \ker \partial_n$$

$$B_n(X) := \operatorname{Im} \partial_{n+1}$$

$$B_n(X) \subset Z_n(X)$$

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$

# Example 1: $H_n(pt)$

 $C_n(pt) = \mathbb{Z}$  (generated by constant functions)  $\partial_n : C_n(pt) \to C_{n-1}(pt)$ is constant 0 if n is even, otherwise id.

#### Case 1:

$$Z_n(pt) := 0$$

$$B_n(pt) = 0$$

#### $\mathbf{Case}\ \mathbf{2}:$

$$Z_n(pt) := \mathbb{Z}$$

 $\Delta_n$ : standard *n*-simplex

 $\sigma: \Delta_n \to X$ : singular simplex in X

 $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$ 

 $\sigma^{(i)}$ : ith face

$$\partial_n : C_n(X) \to C_{n-1}(X)$$
 (boundary map)  
 $\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$ 

$$\partial_n \circ \partial_{n+1} = 0$$

$$Z_n(X) := \ker \partial_n$$

$$B_n(X) := \operatorname{Im} \partial_{n+1}$$

$$B_n(X) \subset Z_n(X)$$

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$

# Example 1: $H_n(pt)$

 $C_n(pt) = \mathbb{Z}$  (generated by constant functions)  $\partial_n : C_n(pt) \to C_{n-1}(pt)$ is constant 0 if n is even, otherwise id.

#### Case 1:

$$Z_n(pt) := 0$$

$$B_n(pt) = 0$$

#### $\mathbf{Case}\ \mathbf{2}:$

$$Z_n(pt) := \mathbb{Z}$$

$$B_n(pt) = \mathbb{Z}$$

 $\Delta_n$ : standard *n*-simplex

 $\sigma: \Delta_n \to X$ : singular simplex in X

 $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$ 

 $\sigma^{(i)}$ : ith face

$$\partial_n : C_n(X) \to C_{n-1}(X)$$
 (boundary map)  
 $\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$ 

$$\partial_n \circ \partial_{n+1} = 0$$

$$Z_n(X) := \ker \partial_n$$

$$B_n(X) := \operatorname{Im} \partial_{n+1}$$

$$B_n(X) \subset Z_n(X)$$

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$

# Example 1: $H_n(pt)$

 $C_n(pt) = \mathbb{Z}$  (generated by constant functions)

 $\partial_n:C_n(pt)\to C_{n-1}(pt)$ 

is constant 0 if n is even, otherwise id.

#### Case 1:

$$Z_n(pt) := 0$$

$$B_n(pt) = 0$$

$$H_n(pt) = 0$$

$$Z_n(pt) := \mathbb{Z}$$

$$B_n(pt) = \mathbb{Z}$$

 $\Delta_n$ : standard *n*-simplex

 $\sigma: \Delta_n \to X$ : singular simplex in X

 $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$ 

 $\sigma^{(i)}$ : ith face

$$\partial_n : C_n(X) \to C_{n-1}(X)$$
 (boundary map)  
 $\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$ 

$$\partial_n \circ \partial_{n+1} = 0$$

$$Z_n(X) := \ker \partial_n$$

$$B_n(X) := \operatorname{Im} \partial_{n+1}$$

$$B_n(X) \subset Z_n(X)$$

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$

# Example 1: $H_n(pt)$

$$C_n(pt) = \mathbb{Z}$$
 (generated by constant functions)

$$\partial_n: C_n(pt) \to C_{n-1}(pt)$$

is constant 0 if n is even, otherwise id.

#### Case 1:

$$Z_n(pt) := 0$$

$$B_n(pt) = 0$$

$$H_n(pt) = 0$$

$$Z_n(pt) := \mathbb{Z}$$

$$B_n(pt) = \mathbb{Z}$$

$$H_n(pt) = 0$$

 $\Delta_n$ : standard *n*-simplex

 $\sigma: \Delta_n \to X$ : singular simplex in X

 $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$ 

 $\sigma^{(i)}$ : ith face

$$\partial_n : C_n(X) \to C_{n-1}(X)$$
 (boundary map)  
 $\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$ 

$$\partial_n \circ \partial_{n+1} = 0$$

$$Z_n(X) := \ker \partial_n$$

$$B_n(X) := \operatorname{Im} \partial_{n+1}$$

$$B_n(X) \subset Z_n(X)$$

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$

# Example 1: $H_n(pt)$

 $C_n(pt) = \mathbb{Z}$  (generated by constant functions)

 $\partial_n: C_n(pt) \to C_{n-1}(pt)$ 

is constant 0 if n is even, otherwise id.

#### Case 1:

$$Z_n(pt) := 0$$

$$B_n(pt) = 0$$

$$H_n(pt) = 0$$

$$Z_n(pt) := \mathbb{Z}$$

$$B_n(pt) = \mathbb{Z}$$

$$H_n(pt) = 0$$

$$H_n(pt) = 0$$
 for any  $n$ 

 $\Delta_n$ : standard *n*-simplex

 $\sigma: \Delta_n \to X$ : singular simplex in X

 $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$ 

 $\sigma^{(i)}$ : ith face

$$\partial_n : C_n(X) \to C_{n-1}(X)$$
 (boundary map)  
 $\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$ 

$$\partial_n \circ \partial_{n+1} = 0$$

$$Z_n(X) := \ker \partial_n$$

 $B_n(X) := \operatorname{Im} \partial_{n+1}$ 

 $B_n(X) \subset Z_n(X)$ 

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$

# Example 1: $H_n(pt)$

 $C_n(pt) = \mathbb{Z}$  (generated by constant functions)

 $\partial_n:C_n(pt)\to C_{n-1}(pt)$ 

is constant 0 if n is even, otherwise id.

#### Case 1:

$$Z_n(pt) := 0$$

$$B_n(pt) = 0$$

$$H_n(pt) = 0$$

$$Z_n(pt) := \mathbb{Z}$$

$$B_n(pt) = \mathbb{Z}$$

$$H_n(pt) = 0$$

$$H_n(pt) = 0$$
 for any  $n > 0$ 

 $\Delta_n$ : standard *n*-simplex

 $\sigma: \Delta_n \to X$ : singular simplex in X

 $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$ 

 $\sigma^{(i)}$ : ith face

 $\partial_n: C_n(X) \to C_{n-1}(X)$  (boundary map)

 $\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$ 

$$\partial_n \circ \partial_{n+1} = 0$$

 $Z_n(X) := \ker \partial_n$ 

 $B_n(X) := \operatorname{Im} \partial_{n+1}$ 

 $B_n(X) \subset Z_n(X)$ 

 $H_n(X) := \frac{Z_n(X)}{B_n(X)}$ 

Example 2:  $H_0(X)$ 

 $\Delta_n$ : standard *n*-simplex

 $\sigma: \Delta_n \to X$ : singular simplex in X

 $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$ 

 $\sigma^{(i)}$ : ith face

 $\partial_n : C_n(X) \to C_{n-1}(X)$  (boundary map)  $\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$ 

$$\partial_n \circ \partial_{n+1} = 0$$

 $Z_n(X) := \ker \partial_n$ 

 $B_n(X) := \operatorname{Im} \partial_{n+1}$ 

 $B_n(X) \subset Z_n(X)$ 

 $H_n(X) := \frac{Z_n(X)}{B_n(X)}$ 

#### Example 2: $H_0(X)$

Any path  $\gamma:[0,1]\to X$  is a (singular) 1-simplex.

 $\Delta_n$ : standard *n*-simplex

 $\sigma: \Delta_n \to X$ : singular simplex in X

 $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$ 

 $\sigma^{(i)}$ : ith face

 $\partial_n : C_n(X) \to C_{n-1}(X)$  (boundary map)  $\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$ 

$$\partial_n \circ \partial_{n+1} = 0$$

 $Z_n(X) := \ker \partial_n$ 

 $B_n(X) := \operatorname{Im} \partial_{n+1}$ 

 $B_n(X) \subset Z_n(X)$ 

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$

#### Example 2: $H_0(X)$

Any path  $\gamma:[0,1]\to X$  is a (singular) 1-simplex.  $\partial\gamma=\gamma(1)-\gamma(0)$ 

 $\Delta_n$ : standard *n*-simplex

 $\sigma: \Delta_n \to X$ : singular simplex in X

 $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$ 

 $\sigma^{(i)}$ : ith face

$$\partial_n : C_n(X) \to C_{n-1}(X)$$
 (boundary map)  
 $\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$ 

$$\partial_n \circ \partial_{n+1} = 0$$

 $Z_n(X) := \ker \partial_n$ 

 $B_n(X) := \operatorname{Im} \partial_{n+1}$ 

 $B_n(X) \subset Z_n(X)$ 

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$

#### Example 2: $H_0(X)$

Any path  $\gamma:[0,1]\to X$  is a (singular) 1-simplex.  $\partial\gamma=\gamma(1)-\gamma(0)$ 

Therefore,  $[\Sigma_i n_i \sigma_i] = [(\Sigma_i n_i) \sigma_0]$ 

 $\Delta_n$ : standard *n*-simplex

 $\sigma: \Delta_n \to X$ : singular simplex in X

 $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$ 

 $\sigma^{(i)}$ : ith face

$$\partial_n : C_n(X) \to C_{n-1}(X)$$
 (boundary map)  
 $\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$ 

$$\partial_n \circ \partial_{n+1} = 0$$

 $Z_n(X) := \ker \partial_n$ 

 $B_n(X) := \operatorname{Im} \partial_{n+1}$ 

 $B_n(X) \subset Z_n(X)$ 

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$

#### Example 2: $H_0(X)$

Any path  $\gamma:[0,1]\to X$  is a (singular) 1-simplex.  $\partial\gamma=\gamma(1)-\gamma(0)$ 

Therefore,  $[\Sigma_i n_i \sigma_i] = [(\Sigma_i n_i) \sigma_0]$ 

 $[n\sigma_0] = [0]??$ 

 $\Delta_n$ : standard *n*-simplex

 $\sigma: \Delta_n \to X$ : singular simplex in X

 $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$ 

 $\sigma^{(i)}$ : ith face

$$\partial_n : C_n(X) \to C_{n-1}(X)$$
 (boundary map)  
 $\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$ 

$$\partial_n \circ \partial_{n+1} = 0$$

 $Z_n(X) := \ker \partial_n$ 

 $B_n(X) := \operatorname{Im} \partial_{n+1}$ 

 $B_n(X) \subset Z_n(X)$ 

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$

#### Example 2: $H_0(X)$

Any path  $\gamma:[0,1]\to X$  is a (singular) 1-simplex.  $\partial\gamma=\gamma(1)-\gamma(0)$ 

Therefore,  $[\Sigma_i n_i \sigma_i] = [(\Sigma_i n_i) \sigma_0]$ 

 $[n\sigma_0] = [0]$ ??, i.e.  $n\sigma_0 = \partial c$ ??

 $\Delta_n$ : standard *n*-simplex

 $\sigma: \Delta_n \to X$ : singular simplex in X

 $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$ 

 $\sigma^{(i)}$ : ith face

$$\partial_n : C_n(X) \to C_{n-1}(X)$$
 (boundary map)  
 $\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$ 

$$\partial_n \circ \partial_{n+1} = 0$$

 $Z_n(X) := \ker \partial_n$ 

 $B_n(X) := \operatorname{Im} \partial_{n+1}$ 

 $B_n(X) \subset Z_n(X)$ 

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$

#### Example 2: $H_0(X)$

Any path  $\gamma:[0,1]\to X$  is a (singular) 1-simplex.  $\partial\gamma=\gamma(1)-\gamma(0)$ 

Therefore,  $[\Sigma_i n_i \sigma_i] = [(\Sigma_i n_i) \sigma_0]$ 

 $[n\sigma_0] = [0]??$ , i.e.  $n\sigma_0 = \partial c??$  $\epsilon: C_0 \to \mathbb{Z}$ 

 $\Delta_n$ : standard *n*-simplex

 $\sigma: \Delta_n \to X$ : singular simplex in X

 $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$ 

 $\sigma^{(i)}$ : ith face

$$\partial_n : C_n(X) \to C_{n-1}(X)$$
 (boundary map)  
 $\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$ 

$$\partial_n \circ \partial_{n+1} = 0$$

$$Z_n(X) := \ker \partial_n$$

$$B_n(X) := \operatorname{Im} \partial_{n+1}$$

$$B_n(X) \subset Z_n(X)$$

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$

#### Example 2: $H_0(X)$

Any path  $\gamma:[0,1]\to X$  is a (singular) 1-simplex.  $\partial\gamma=\gamma(1)-\gamma(0)$ 

Therefore,  $[\Sigma_i n_i \sigma_i] = [(\Sigma_i n_i) \sigma_0]$ 

$$[n\sigma_0] = [0]$$
??, i.e.  $n\sigma_0 = \partial c$ ??

$$\epsilon: C_0 \to \mathbb{Z}$$

$$\epsilon(\Sigma_i n_i \sigma_i) = \Sigma_i n_i$$

 $\Delta_n$ : standard *n*-simplex

 $\sigma: \Delta_n \to X$ : singular simplex in X

 $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$ 

 $\sigma^{(i)}$ : ith face

$$\partial_n : C_n(X) \to C_{n-1}(X)$$
 (boundary map)  
 $\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$ 

$$\partial_n \circ \partial_{n+1} = 0$$

$$Z_n(X) := \ker \partial_n$$

$$B_n(X) := \operatorname{Im} \partial_{n+1}$$

$$B_n(X) \subset Z_n(X)$$

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$

#### Example 2: $H_0(X)$

Any path  $\gamma:[0,1]\to X$  is a (singular) 1-simplex.  $\partial\gamma=\gamma(1)-\gamma(0)$ 

Therefore,  $[\Sigma_i n_i \sigma_i] = [(\Sigma_i n_i) \sigma_0]$ 

$$[n\sigma_0] = [0]??$$
, i.e.  $n\sigma_0 = \partial c??$ 

 $\epsilon: C_0 \to \mathbb{Z}$ 

$$\epsilon(\Sigma_i n_i \sigma_i) = \Sigma_i n_i$$

 $\Delta_n$ : standard *n*-simplex

 $\sigma: \Delta_n \to X$ : singular simplex in X

 $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$ 

 $\sigma^{(i)}$ : ith face

$$\partial_n : C_n(X) \to C_{n-1}(X)$$
 (boundary map)  
 $\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$ 

$$\partial_n \circ \partial_{n+1} = 0$$

$$Z_n(X) := \ker \partial_n$$

$$B_n(X) := \operatorname{Im} \partial_{n+1}$$

$$B_n(X) \subset Z_n(X)$$

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$

## Example 2: $H_0(X)$

Any path  $\gamma:[0,1]\to X$  is a (singular) 1-simplex.  $\partial\gamma=\gamma(1)-\gamma(0)$ 

Therefore,  $[\Sigma_i n_i \sigma_i] = [(\Sigma_i n_i) \sigma_0]$ 

$$[n\sigma_0] = [0]$$
??, i.e.  $n\sigma_0 = \partial c$ ??

 $\epsilon: C_0 \to \mathbb{Z}$ 

$$\epsilon(\Sigma_i n_i \sigma_i) = \Sigma_i n_i$$

$$\epsilon \circ \partial = 0$$

 $\Delta_n$ : standard *n*-simplex

 $\sigma: \Delta_n \to X$ : singular simplex in X

 $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$ 

 $\sigma^{(i)}$ : ith face

$$\partial_n : C_n(X) \to C_{n-1}(X)$$
 (boundary map)  
 $\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$ 

$$\partial_n \circ \partial_{n+1} = 0$$

$$Z_n(X) := \ker \partial_n$$

$$B_n(X) := \operatorname{Im} \partial_{n+1}$$

$$B_n(X) \subset Z_n(X)$$

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$

#### Example 2: $H_0(X)$

Any path  $\gamma:[0,1]\to X$  is a (singular) 1-simplex.  $\partial\gamma=\gamma(1)-\gamma(0)$ 

Therefore,  $[\Sigma_i n_i \sigma_i] = [(\Sigma_i n_i) \sigma_0]$ 

$$[n\sigma_0] = [0]$$
??, i.e.  $n\sigma_0 = \partial c$ ??

 $\epsilon: C_0 \to \mathbb{Z}$ 

$$\epsilon(\Sigma_i n_i \sigma_i) = \Sigma_i n_i$$

$$\epsilon \circ \partial = 0$$

$$n\sigma_0 = \partial c$$

 $\Delta_n$ : standard *n*-simplex

 $\sigma: \Delta_n \to X$ : singular simplex in X

 $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$ 

 $\sigma^{(i)}$ : ith face

$$\partial_n : C_n(X) \to C_{n-1}(X)$$
 (boundary map)  
 $\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$ 

$$\partial_n \circ \partial_{n+1} = 0$$

$$Z_n(X) := \ker \partial_n$$

$$B_n(X) := \operatorname{Im} \partial_{n+1}$$

$$B_n(X) \subset Z_n(X)$$

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$

#### Example 2: $H_0(X)$

Any path  $\gamma:[0,1]\to X$  is a (singular) 1-simplex.  $\partial\gamma=\gamma(1)-\gamma(0)$ 

Therefore,  $[\Sigma_i n_i \sigma_i] = [(\Sigma_i n_i) \sigma_0]$ 

$$[n\sigma_0] = [0]$$
??, i.e.  $n\sigma_0 = \partial c$ ??

 $\epsilon: C_0 \to \mathbb{Z}$ 

$$\epsilon(\Sigma_i n_i \sigma_i) = \Sigma_i n_i$$

$$\epsilon \circ \partial = 0$$

$$n\sigma_0 = \partial c \implies \epsilon(n\sigma_0) = \epsilon(\partial c)$$

 $\Delta_n$ : standard *n*-simplex

 $\sigma: \Delta_n \to X$ : singular simplex in X

 $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$ 

 $\sigma^{(i)}$ : ith face

$$\partial_n : C_n(X) \to C_{n-1}(X)$$
 (boundary map)  
 $\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$ 

$$\partial_n \circ \partial_{n+1} = 0$$

$$Z_n(X) := \ker \partial_n$$

$$B_n(X) := \operatorname{Im} \partial_{n+1}$$

$$B_n(X) \subset Z_n(X)$$

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$

#### Example 2: $H_0(X)$

Any path  $\gamma:[0,1]\to X$  is a (singular) 1-simplex.  $\partial\gamma=\gamma(1)-\gamma(0)$ 

Therefore,  $[\Sigma_i n_i \sigma_i] = [(\Sigma_i n_i) \sigma_0]$ 

$$[n\sigma_0] = [0]$$
??, i.e.  $n\sigma_0 = \partial c$ ??

 $\epsilon: C_0 \to \mathbb{Z}$ 

$$\epsilon(\Sigma_i n_i \sigma_i) = \Sigma_i n_i$$

$$\epsilon \circ \partial = 0$$

$$n\sigma_0 = \partial c \implies \epsilon(n\sigma_0) = \epsilon(\partial c) \implies n = 0$$

 $\Delta_n$ : standard *n*-simplex

 $\sigma: \Delta_n \to X$ : singular simplex in X

 $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$ 

 $\sigma^{(i)}$ : ith face

$$\partial_n : C_n(X) \to C_{n-1}(X)$$
 (boundary map)  
 $\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$ 

$$\partial_n \circ \partial_{n+1} = 0$$

$$Z_n(X) := \ker \partial_n$$

$$B_n(X) := \operatorname{Im} \partial_{n+1}$$

$$B_n(X) \subset Z_n(X)$$

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$

## Example 2: $H_0(X)$

Any path  $\gamma:[0,1]\to X$  is a (singular) 1-simplex.  $\partial\gamma=\gamma(1)-\gamma(0)$ 

Therefore,  $[\Sigma_i n_i \sigma_i] = [(\Sigma_i n_i) \sigma_0]$ 

$$[n\sigma_0] = [0]$$
??, i.e.  $n\sigma_0 = \partial c$ ??

 $\epsilon: C_0 \to \mathbb{Z}$ 

$$\epsilon(\Sigma_i n_i \sigma_i) = \Sigma_i n_i$$

 $\epsilon$  is a homomorphism

$$\epsilon \circ \partial = 0$$

$$n\sigma_0 = \partial c \implies \epsilon(n\sigma_0) = \epsilon(\partial c) \implies n = 0$$

 $H_0(X) = \mathbb{Z}$  if X is path-connected

 $\Delta_n$ : standard *n*-simplex

 $\sigma: \Delta_n \to X$ : singular simplex in X

 $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$ 

 $\sigma^{(i)}$ : ith face

$$\partial_n : C_n(X) \to C_{n-1}(X)$$
 (boundary map)  
 $\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$ 

$$\partial_n \circ \partial_{n+1} = 0$$

$$Z_n(X) := \ker \partial_n$$

$$B_n(X) := \operatorname{Im} \partial_{n+1}$$

$$B_n(X) \subset Z_n(X)$$

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$

## Example 2: $H_0(X)$

Any path  $\gamma:[0,1]\to X$  is a (singular) 1-simplex.  $\partial\gamma=\gamma(1)-\gamma(0)$ 

Therefore,  $[\Sigma_i n_i \sigma_i] = [(\Sigma_i n_i) \sigma_0]$ 

$$[n\sigma_0] = [0]$$
??, i.e.  $n\sigma_0 = \partial c$ ??

 $\epsilon: C_0 \to \mathbb{Z}$ 

$$\epsilon(\Sigma_i n_i \sigma_i) = \Sigma_i n_i$$

 $\epsilon$  is a homomorphism

$$\epsilon \circ \partial = 0$$

$$n\sigma_0 = \partial c \implies \epsilon(n\sigma_0) = \epsilon(\partial c) \implies n = 0$$

 $H_0(X) = \mathbb{Z}$  if X is path-connected

 $H_0(X) = \mathbb{Z}^{n+1}$  if X has n connected components

 $\Delta_n$ : standard *n*-simplex

 $\sigma: \Delta_n \to X$ : singular simplex in X

 $C_n(X) := \{ \Sigma_i n_i \sigma_i \mid \sigma_i : \delta_n \to X, n_i \in \mathbb{Z} \}$ 

 $\sigma^{(i)}$ : ith face

$$\partial_n : C_n(X) \to C_{n-1}(X)$$
 (boundary map)  
 $\partial_n(\sigma) = \Sigma_i(-1)^i \sigma^{(i)}$ 

$$\partial_n \circ \partial_{n+1} = 0$$

$$Z_n(X) := \ker \partial_n$$

$$B_n(X) := \operatorname{Im} \partial_{n+1}$$

$$B_n(X) \subset Z_n(X)$$

$$H_n(X) := \frac{Z_n(X)}{B_n(X)}$$

## Example 2: $H_0(X)$

Any path  $\gamma:[0,1]\to X$  is a (singular) 1-simplex.  $\partial\gamma=\gamma(1)-\gamma(0)$ 

Therefore,  $[\Sigma_i n_i \sigma_i] = [(\Sigma_i n_i) \sigma_0]$ 

 $[n\sigma_0] = [0]$ ??, i.e.  $n\sigma_0 = \partial c$ ??

 $\epsilon: C_0 \to \mathbb{Z}$ 

$$\epsilon(\Sigma_i n_i \sigma_i) = \Sigma_i n_i$$

 $\epsilon$  is a homomorphism

$$\epsilon \circ \partial = 0$$

$$n\sigma_0 = \partial c \implies \epsilon(n\sigma_0) = \epsilon(\partial c) \implies n = 0$$

 $H_0(X) = \mathbb{Z}$  if X is path-connected

 $H_0(X) = \mathbb{Z}^{n+1}$  if X has n connected components (Exercise)



$$f:X\to Y$$

$$f: X \to Y$$



$$f:X\to Y$$

$$\Delta_n \to X \to Y$$

$$f: X \to Y$$

$$\sigma: \Delta_n \to X$$

$$\Delta_n \to Y$$

$$f: X \to Y$$

$$\sigma: \Delta_n \to X$$

$$f \circ \sigma: \Delta_n \to Y$$



$$f: X \to Y$$

$$\sigma: \Delta_n \to X$$

$$f \circ \sigma: \Delta_n \to Y$$

$$f_{\#}:C_n(X)\to C_n(Y)$$



$$f: X \to Y$$

$$\sigma: \Delta_n \to X$$

$$f \circ \sigma: \Delta_n \to Y$$

$$f_{\#}: C_n(X) \to C_n(Y)$$
 extended linearly



#### Chain level

$$f: X \to Y$$

$$\sigma: \Delta_n \to X$$

$$f \circ \sigma: \Delta_n \to Y$$

$$f_{\#}: C_n(X) \to C_n(Y)$$
 extended linearly

#### Exercise. Prove:

1. 
$$(Id_X)_{\#} = Id_{C_n(X)}$$

#### Chain level

 $f: X \to Y$ 

 $\sigma:\Delta_n\to X$ 

 $f \circ \sigma : \Delta_n \to Y$ 

 $f_{\#}: C_n(X) \to C_n(Y)$  extended linearly

#### Exercise. Prove:

- 1.  $(Id_X)_{\#} = Id_{C_n(X)}$
- 2.  $(f \circ g)_{\#} = f_{\#} \circ g_{\#}$

#### Chain level

 $f: X \to Y$   $\sigma: \Delta_n \to X$   $f \circ \sigma: \Delta_n \to Y$ 

 $f_{\#}: C_n(X) \to C_n(Y)$  extended linearly

#### Exercise. Prove:

1. 
$$(Id_X)_{\#} = Id_{C_n(X)}$$

2. 
$$(f \circ g)_{\#} = f_{\#} \circ g_{\#}$$

## Homology level

$$\partial \circ f_{\#} = f_{\#} \circ \partial$$

#### Chain level

$$f: X \to Y$$
$$\sigma: \Delta_n \to X$$

$$f \circ \sigma : \Delta_n \to Y$$

$$f_{\#}: C_n(X) \to C_n(Y)$$
 extended linearly

#### Exercise. Prove:

1. 
$$(Id_X)_{\#} = Id_{C_n(X)}$$

2. 
$$(f \circ g)_{\#} = f_{\#} \circ g_{\#}$$

## Homology level

$$\partial \circ f_{\#} = f_{\#} \circ \partial \text{ (Exercise!)}$$

### Chain level

 $f: X \to Y$   $\sigma: \Delta_n \to X$   $f \circ \sigma: \Delta_n \to Y$ 

 $f_{\#}: C_n(X) \to C_n(Y)$  extended linearly

### Exercise. Prove:

1. 
$$(Id_X)_{\#} = Id_{C_n(X)}$$

2. 
$$(f \circ g)_{\#} = f_{\#} \circ g_{\#}$$

$$\partial \circ f_{\#} = f_{\#} \circ \partial \text{ (Exercise!)}$$
  
 $f_{\#}(Z_n(X)) \subset Z_n(Y)$ 

### Chain level

$$f: X \to Y$$

$$\sigma:\Delta_n\to X$$

$$f \circ \sigma : \Delta_n \to Y$$

$$f_{\#}: C_n(X) \to C_n(Y)$$
 extended linearly

### Exercise. Prove:

1. 
$$(Id_X)_{\#} = Id_{C_n(X)}$$

2. 
$$(f \circ g)_{\#} = f_{\#} \circ g_{\#}$$

$$\partial \circ f_{\#} = f_{\#} \circ \partial \text{ (Exercise!)}$$
  
 $f_{\#}(Z_n(X)) \subset Z_n(Y) \text{ (Exercise!!)}$ 

### Chain level

 $f: X \to Y$   $\sigma: \Delta_n \to X$   $f \circ \sigma: \Delta_n \to Y$ 

 $f_{\#}: C_n(X) \to C_n(Y)$  extended linearly

### Exercise. Prove:

1. 
$$(Id_X)_{\#} = Id_{C_n(X)}$$

2. 
$$(f \circ g)_{\#} = f_{\#} \circ g_{\#}$$

$$\partial \circ f_{\#} = f_{\#} \circ \partial \text{ (Exercise!)}$$
  
 $f_{\#}(Z_n(X)) \subset Z_n(Y) \text{ (Exercise!!)}$   
 $f_{\#}(B_n(X)) \subset Z_n(Y)$ 

### Chain level

$$f: X \to Y$$

$$\sigma: \Delta_n \to X$$

$$f \circ \sigma: \Delta_n \to Y$$

$$f_{\#}: C_n(X) \to C_n(Y)$$
 extended linearly

### Exercise. Prove:

1. 
$$(Id_X)_{\#} = Id_{C_n(X)}$$

2. 
$$(f \circ g)_{\#} = f_{\#} \circ g_{\#}$$

$$\partial \circ f_{\#} = f_{\#} \circ \partial \text{ (Exercise!)}$$
  
 $f_{\#}(Z_n(X)) \subset Z_n(Y) \text{ (Exercise!!)}$   
 $f_{\#}(B_n(X)) \subset Z_n(Y) \text{ (Exercise!!!)}$ 

### Chain level

$$f: X \to Y$$

$$\sigma: \Delta_n \to X$$

$$f \circ \sigma: \Delta_n \to Y$$

 $f_{\#}: C_n(X) \to C_n(Y)$  extended linearly

#### Exercise. Prove:

1. 
$$(Id_X)_{\#} = Id_{C_n(X)}$$

2. 
$$(f \circ g)_{\#} = f_{\#} \circ g_{\#}$$

$$\partial \circ f_{\#} = f_{\#} \circ \partial \text{ (Exercise!)}$$
  
 $f_{\#}(Z_n(X)) \subset Z_n(Y) \text{ (Exercise!!)}$   
 $f_{\#}(B_n(X)) \subset Z_n(Y) \text{ (Exercise!!!)}$ 

$$f_*: H_n(X) \to H_n(Y)$$

### Chain level

$$f: X \to Y$$

$$\sigma: \Delta_n \to X$$

$$f \circ \sigma: \Delta_n \to Y$$

 $f_{\#}: C_n(X) \to C_n(Y)$  extended linearly

#### Exercise. Prove:

1. 
$$(Id_X)_{\#} = Id_{C_n(X)}$$

2. 
$$(f \circ g)_{\#} = f_{\#} \circ g_{\#}$$

$$\partial \circ f_{\#} = f_{\#} \circ \partial \text{ (Exercise!)}$$
  
 $f_{\#}(Z_n(X)) \subset Z_n(Y) \text{ (Exercise!!)}$   
 $f_{\#}(B_n(X)) \subset Z_n(Y) \text{ (Exercise!!!)}$ 

$$f_*: H_n(X) \to H_n(Y)$$
$$f_*([\sigma]) =$$

### Chain level

$$f: X \to Y$$

$$\sigma: \Delta_n \to X$$

$$f \circ \sigma: \Delta_n \to Y$$

$$f_{\#}: C_n(X) \to C_n(Y)$$
 extended linearly

#### Exercise. Prove:

1. 
$$(Id_X)_{\#} = Id_{C_n(X)}$$

2. 
$$(f \circ g)_{\#} = f_{\#} \circ g_{\#}$$

$$\partial \circ f_{\#} = f_{\#} \circ \partial \text{ (Exercise!)}$$
  
 $f_{\#}(Z_n(X)) \subset Z_n(Y) \text{ (Exercise!!)}$   
 $f_{\#}(B_n(X)) \subset Z_n(Y) \text{ (Exercise!!!)}$ 

$$f_*: H_n(X) \to H_n(Y)$$
  
 $f_*([\sigma]) = [f \circ \sigma]$ 

### Chain level

$$f: X \to Y$$

$$\sigma: \Delta_n \to X$$

$$f \circ \sigma: \Delta_n \to Y$$

$$f_{\#}: C_n(X) \to C_n(Y)$$
 extended linearly

### Exercise. Prove:

1. 
$$(Id_X)_{\#} = Id_{C_n(X)}$$

2. 
$$(f \circ g)_{\#} = f_{\#} \circ g_{\#}$$

$$\partial \circ f_{\#} = f_{\#} \circ \partial \text{ (Exercise!)}$$
  
 $f_{\#}(Z_n(X)) \subset Z_n(Y) \text{ (Exercise!!)}$   
 $f_{\#}(B_n(X)) \subset Z_n(Y) \text{ (Exercise!!!)}$ 

$$f_*: H_n(X) \to H_n(Y)$$
  
 $f_*([\sigma]) = [f \circ \sigma]$ 

$$\cdots \xrightarrow{\partial_{n+2}} C_{n+1}(X) \xrightarrow{\partial_{n+1}} C_n(X) \xrightarrow{\partial_n} C_{n-1}(X) \to$$

### Chain level

$$f: X \to Y$$

$$\sigma: \Delta_n \to X$$

$$f \circ \sigma: \Delta_n \to Y$$

$$f_{\#}: C_n(X) \to C_n(Y)$$
 extended linearly

### Exercise. Prove:

1. 
$$(Id_X)_{\#} = Id_{C_n(X)}$$

2. 
$$(f \circ g)_{\#} = f_{\#} \circ g_{\#}$$

$$\partial \circ f_{\#} = f_{\#} \circ \partial \text{ (Exercise!)}$$
  
 $f_{\#}(Z_n(X)) \subset Z_n(Y) \text{ (Exercise!!)}$   
 $f_{\#}(B_n(X)) \subset Z_n(Y) \text{ (Exercise!!!)}$ 

$$f_*: H_n(X) \to H_n(Y)$$
  
 $f_*([\sigma]) = [f \circ \sigma]$ 

$$\cdots \xrightarrow{\partial_{n+2}} C_{n+1}(X) \xrightarrow{\partial_{n+1}} C_n(X) \xrightarrow{\partial_n} C_{n-1}(X) \to$$

$$\cdots \xrightarrow{\partial_{n+2}} C_{n+1}(Y) \xrightarrow{\partial_{n+1}} C_n(Y) \xrightarrow{\partial_n} C_{n-1}(Y) \to$$

#### Chain level

$$f: X \to Y$$

$$\sigma: \Delta_n \to X$$

$$f \circ \sigma: \Delta_n \to Y$$

$$f_{\#}: C_n(X) \to C_n(Y)$$
 extended linearly

#### Exercise. Prove:

1. 
$$(Id_X)_{\#} = Id_{C_n(X)}$$

2. 
$$(f \circ g)_{\#} = f_{\#} \circ g_{\#}$$

$$\partial \circ f_{\#} = f_{\#} \circ \partial$$
 (Exercise!)  
 $f_{\#}(Z_n(X)) \subset Z_n(Y)$  (Exercise!!)  
 $f_{\#}(B_n(X)) \subset Z_n(Y)$  (Exercise!!!)

$$f_*: H_n(X) \to H_n(Y)$$
  
 $f_*([\sigma]) = [f \circ \sigma]$ 

$$\cdots \xrightarrow{\partial_{n+2}} C_{n+1}(X) \xrightarrow{\partial_{n+1}} C_n(X) \xrightarrow{\partial_n} C_{n-1}(X) \rightarrow \downarrow f_{\#} \qquad \downarrow$$

#### Chain level

$$f: X \to Y$$

$$\sigma: \Delta_n \to X$$

$$f \circ \sigma: \Delta_n \to Y$$

$$f_{\#}: C_n(X) \to C_n(Y)$$
 extended linearly

### Exercise. Prove:

1. 
$$(Id_X)_{\#} = Id_{C_n(X)}$$

2. 
$$(f \circ g)_{\#} = f_{\#} \circ g_{\#}$$

### Homology level

$$\partial \circ f_{\#} = f_{\#} \circ \partial$$
 (Exercise!)  
 $f_{\#}(Z_n(X)) \subset Z_n(Y)$  (Exercise!!)  
 $f_{\#}(B_n(X)) \subset Z_n(Y)$  (Exercise!!!)

$$f_*: H_n(X) \to H_n(Y)$$
  
 $f_*([\sigma]) = [f \circ \sigma]$ 

$$\cdots \xrightarrow{\partial_{n+2}} C_{n+1}(X) \xrightarrow{\partial_{n+1}} C_n(X) \xrightarrow{\partial_n} C_{n-1}(X) \rightarrow \downarrow f_{\#} \qquad \downarrow$$

#### Exercise. Prove:

1. 
$$(Id_X)_* = Id_{H_n(X)}$$

#### Chain level

$$f: X \to Y$$

$$\sigma: \Delta_n \to X$$

$$f \circ \sigma: \Delta_n \to Y$$

$$f_{\#}: C_n(X) \to C_n(Y)$$
 extended linearly

### Exercise. Prove:

1. 
$$(Id_X)_{\#} = Id_{C_n(X)}$$

2. 
$$(f \circ g)_{\#} = f_{\#} \circ g_{\#}$$

### Homology level

$$\partial \circ f_{\#} = f_{\#} \circ \partial \text{ (Exercise!)}$$
  
 $f_{\#}(Z_n(X)) \subset Z_n(Y) \text{ (Exercise!!)}$   
 $f_{\#}(B_n(X)) \subset Z_n(Y) \text{ (Exercise!!!)}$ 

$$f_*: H_n(X) \to H_n(Y)$$
  
 $f_*([\sigma]) = [f \circ \sigma]$ 

$$\cdots \xrightarrow{\partial_{n+2}} C_{n+1}(X) \xrightarrow{\partial_{n+1}} C_n(X) \xrightarrow{\partial_n} C_{n-1}(X) \rightarrow \downarrow f_{\#} \qquad \downarrow$$

#### Exercise. Prove:

1. 
$$(Id_X)_* = Id_{H_n(X)}$$

2. 
$$(f \circ g)_* = f_* \circ g_*$$

 $f_0, f_1: X \to Y$ 

 $f_0, f_1: X \to Y$  $F: X \times [0, 1] \to Y$ ,

 $f_0, f_1: X \to Y$   $F: X \times [0, 1] \to Y,$   $f_0(x) = F(x, 0)$ 

$$f_0, f_1: X \to Y$$

$$F: X \times [0, 1] \to Y,$$

$$f_0(x) = F(x, 0)$$

$$f_1(x) = F(x, 1)$$

```
f_0, f_1: X \to Y

F: X \times [0,1] \to Y, "homotopy"

f_0(x) = F(x,0)

f_1(x) = F(x,1)

"f_0 and f_1 are homotopic"
```

```
f_0, f_1: X \to Y

F: X \times [0,1] \to Y, "homotopy"

f_0(x) = F(x,0)

f_1(x) = F(x,1)

"f_0 and f_1 are homotopic", denoted: f \simeq g
```

Lemma.  $Id_{B^n} \simeq const$ 

 $f_0, f_1: X \to Y$   $F: X \times [0,1] \to Y$ , "homotopy"  $f_0(x) = F(x,0)$   $f_1(x) = F(x,1)$ " $f_0$  and  $f_1$  are homotopic", denoted:  $f \simeq g$ 

Lemma.  $Id_{B^n} \simeq const$ 

Proof. F(x,t) = tx...

Back to homology

 $f_0, f_1: X \to Y$   $F: X \times [0,1] \to Y$ , "homotopy"  $f_0(x) = F(x,0)$   $f_1(x) = F(x,1)$ " $f_0$  and  $f_1$  are homotopic", denoted:  $f \simeq g$ 

Lemma.  $Id_{B^n} \simeq const$ 

Proof. F(x,t) = tx...

 $f_0, f_1: X \to Y$   $F: X \times [0, 1] \to Y$ , "homotopy"  $f_0(x) = F(x, 0)$   $f_1(x) = F(x, 1)$ " $f_0$  and  $f_1$  are homotopic", denoted:  $f \simeq g$ 

Lemma.  $Id_{B^n} \simeq const$ 

Proof. F(x,t) = tx...

## Back to homology

Theorem.  $f_0 \simeq f_1$ 

$$f_0, f_1: X \to Y$$
  
 $F: X \times [0,1] \to Y$ , "homotopy"  
 $f_0(x) = F(x,0)$   
 $f_1(x) = F(x,1)$   
" $f_0$  and  $f_1$  are homotopic", denoted:  $f \simeq g$ 

Lemma.  $Id_{B^n} \simeq const$ 

Proof. 
$$F(x,t) = tx...$$

### Back to homology

**Theorem.** 
$$f_0 \simeq f_1 \implies f_* = g_*$$

Corollary. If, 
$$f: X \to Y$$

$$f_0, f_1: X \to Y$$
  
 $F: X \times [0,1] \to Y$ , "homotopy"  
 $f_0(x) = F(x,0)$   
 $f_1(x) = F(x,1)$   
" $f_0$  and  $f_1$  are homotopic", denoted:  $f \simeq g$ 

Lemma.  $Id_{B^n} \simeq const$ 

Proof. 
$$F(x,t) = tx...$$

### Back to homology

**Theorem.** 
$$f_0 \simeq f_1 \implies f_* = g_*$$

Corollary. If,  
$$f: X \to Y, g: Y \to X$$

$$f_0, f_1: X \to Y$$
  
 $F: X \times [0,1] \to Y$ , "homotopy"  
 $f_0(x) = F(x,0)$   
 $f_1(x) = F(x,1)$   
" $f_0$  and  $f_1$  are homotopic", denoted:  $f \simeq g$ 

Lemma.  $Id_{B^n} \simeq const$ 

Proof. 
$$F(x,t) = tx...$$

### Back to homology

Theorem. 
$$f_0 \simeq f_1 \implies f_* = g_*$$

Corollary. If,  

$$f: X \to Y, g: Y \to X,$$
  
 $f \circ g \simeq id_Y \text{ and } g \circ f \simeq id_X$ 

$$f_0, f_1: X \to Y$$
  
 $F: X \times [0,1] \to Y$ , "homotopy"  
 $f_0(x) = F(x,0)$   
 $f_1(x) = F(x,1)$   
" $f_0$  and  $f_1$  are homotopic", denoted:  $f \simeq g$ 

Lemma.  $Id_{B^n} \simeq const$ 

Proof. 
$$F(x,t) = tx...$$

### Back to homology

Theorem.  $f_0 \simeq f_1 \implies f_* = g_*$ 

$$f_0, f_1: X \to Y$$
  
 $F: X \times [0,1] \to Y$ , "homotopy"  
 $f_0(x) = F(x,0)$   
 $f_1(x) = F(x,1)$   
" $f_0$  and  $f_1$  are homotopic", denoted:  $f \simeq g$ 

Lemma.  $Id_{B^n} \simeq const$ 

Proof. 
$$F(x,t) = tx...$$

**Definition.** *If*,  $f: X \to Y$ 

## Back to homology

Theorem.  $f_0 \simeq f_1 \implies f_* = g_*$ 

 $f_0, f_1: X \to Y$   $F: X \times [0,1] \to Y$ , "homotopy"  $f_0(x) = F(x,0)$   $f_1(x) = F(x,1)$ " $f_0$  and  $f_1$  are homotopic", denoted:  $f \simeq g$ 

Lemma.  $Id_{B^n} \simeq const$ 

Proof. F(x,t) = tx...

**Definition.** If,  $f: X \to Y$ ,  $g: Y \to X$ 

## Back to homology

Theorem.  $f_0 \simeq f_1 \implies f_* = g_*$ 

$$f_0, f_1: X \to Y$$
  
 $F: X \times [0,1] \to Y$ , "homotopy"  
 $f_0(x) = F(x,0)$   
 $f_1(x) = F(x,1)$   
" $f_0$  and  $f_1$  are homotopic", denoted:  $f \simeq g$ 

Lemma.  $Id_{B^n} \simeq const$ 

Proof. 
$$F(x,t) = tx...$$

**Definition.** If,  $f: X \to Y$ ,  $g: Y \to X$ ,  $f \circ g \simeq id_Y$  and  $g \circ f \simeq id_X$ 

## Back to homology

Theorem.  $f_0 \simeq f_1 \implies f_* = g_*$ 

$$f_0, f_1: X \to Y$$
  
 $F: X \times [0,1] \to Y$ , "homotopy"  
 $f_0(x) = F(x,0)$   
 $f_1(x) = F(x,1)$   
" $f_0$  and  $f_1$  are homotopic", denoted:  $f \simeq g$ 

Lemma.  $Id_{B^n} \simeq const$ 

Proof. 
$$F(x,t) = tx...$$

**Definition.** If,  $f: X \to Y$ ,  $g: Y \to X$ ,  $f \circ g \simeq id_Y$  and  $g \circ f \simeq id_X$  then, X is homotopically equivalent to Y

### Back to homology

Theorem.  $f_0 \simeq f_1 \implies f_* = g_*$ 

$$f_0, f_1: X \to Y$$
  
 $F: X \times [0,1] \to Y$ , "homotopy"  
 $f_0(x) = F(x,0)$   
 $f_1(x) = F(x,1)$   
" $f_0$  and  $f_1$  are homotopic", denoted:  $f \simeq g$ 

Lemma.  $Id_{B^n} \simeq const$ 

Proof. 
$$F(x,t) = tx...$$

**Definition.** If,  $f: X \to Y$ ,  $g: Y \to X$ ,  $f \circ g \simeq id_Y$  and  $g \circ f \simeq id_X$  then, X is homotopically equivalent to Y

### Back to homology

Theorem.  $f_0 \simeq f_1 \implies f_* = g_*$ 

Corollary. If X is homotopically equivalent to Y then,  $H_n(X) \cong H_n(Y)$ 

 $f_0, f_1: X \to Y$   $F: X \times [0,1] \to Y$ , "homotopy"  $f_0(x) = F(x,0)$   $f_1(x) = F(x,1)$ " $f_0$  and  $f_1$  are homotopic", denoted:  $f \simeq g$ 

Lemma.  $Id_{B^n} \simeq const$ 

Proof. F(x,t) = tx...

**Definition.** If,  $f: X \to Y$ ,  $g: Y \to X$ ,  $f \circ g \simeq id_Y$  and  $g \circ f \simeq id_X$  then, X is homotopically equivalent to Y (Denoted:  $X \simeq Y$ )

## Back to homology

Theorem.  $f_0 \simeq f_1 \implies f_* = g_*$ 

 $f_0, f_1: X \to Y$   $F: X \times [0,1] \to Y$ , "homotopy"  $f_0(x) = F(x,0)$   $f_1(x) = F(x,1)$ " $f_0$  and  $f_1$  are homotopic", denoted:  $f \simeq g$ 

Lemma.  $Id_{B^n} \simeq const$ 

Proof. F(x,t) = tx...

**Definition.** If,  $f: X \to Y$ ,  $g: Y \to X$ ,  $f \circ g \simeq id_Y$  and  $g \circ f \simeq id_X$  then, X is homotopically equivalent to Y (Denoted:  $X \simeq Y$ )

Example.  $B^n \simeq pt$ 

### Back to homology

Theorem.  $f_0 \simeq f_1 \implies f_* = g_*$ 

 $f_0, f_1: X \to Y$   $F: X \times [0,1] \to Y$ , "homotopy"  $f_0(x) = F(x,0)$   $f_1(x) = F(x,1)$ " $f_0$  and  $f_1$  are homotopic", denoted:  $f \simeq g$ 

Lemma.  $Id_{B^n} \simeq const$ 

Proof. F(x,t) = tx...

**Definition.** If,  $f: X \to Y$ ,  $g: Y \to X$ ,  $f \circ g \simeq id_Y$  and  $g \circ f \simeq id_X$  then, X is homotopically equivalent to Y (Denoted:  $X \simeq Y$ )

Example.  $B^n \simeq pt$ 

Proof.  $i: pt \to B^n$ ,

Back to homology

Theorem.  $f_0 \simeq f_1 \implies f_* = g_*$ 

 $f_0, f_1: X \to Y$   $F: X \times [0,1] \to Y$ , "homotopy"  $f_0(x) = F(x,0)$   $f_1(x) = F(x,1)$ " $f_0$  and  $f_1$  are homotopic", denoted:  $f \simeq g$ 

Lemma.  $Id_{B^n} \simeq const$ 

Proof. F(x,t) = tx...

**Definition.** If,  $f: X \to Y$ ,  $g: Y \to X$ ,  $f \circ g \simeq id_Y$  and  $g \circ f \simeq id_X$  then, X is homotopically equivalent to Y (Denoted:  $X \simeq Y$ )

Example.  $B^n \simeq pt$ 

Proof.  $i: pt \to B^n, r: B^n \to pt$ ,

Back to homology

Theorem.  $f_0 \simeq f_1 \implies f_* = g_*$ 

 $f_0, f_1: X \to Y$   $F: X \times [0,1] \to Y$ , "homotopy"  $f_0(x) = F(x,0)$   $f_1(x) = F(x,1)$ " $f_0$  and  $f_1$  are homotopic", denoted:  $f \simeq g$ 

Lemma.  $Id_{B^n} \simeq const$ 

Proof. F(x,t) = tx...

**Definition.** If,  $f: X \to Y$ ,  $g: Y \to X$ ,  $f \circ g \simeq id_Y$  and  $g \circ f \simeq id_X$  then, X is homotopically equivalent to Y (Denoted:  $X \simeq Y$ )

Example.  $B^n \simeq pt$ 

Proof.  $i: pt \to B^n, r: B^n \to pt, r \circ i = Id_{pt}$ 

### Back to homology

Theorem.  $f_0 \simeq f_1 \implies f_* = g_*$ 

 $f_0, f_1: X \to Y$   $F: X \times [0,1] \to Y$ , "homotopy"  $f_0(x) = F(x,0)$   $f_1(x) = F(x,1)$ " $f_0$  and  $f_1$  are homotopic", denoted:  $f \simeq g$ 

Lemma.  $Id_{B^n} \simeq const$ 

Proof. F(x,t) = tx...

**Definition.** If,  $f: X \to Y$ ,  $g: Y \to X$ ,  $f \circ g \simeq id_Y$  and  $g \circ f \simeq id_X$  then, X is homotopically equivalent to Y (Denoted:  $X \simeq Y$ )

Example.  $B^n \simeq pt$ 

Proof.  $i: pt \to B^n, r: B^n \to pt, r \circ i = Id_{pt}$  $i \circ r$ 

## Back to homology

Theorem.  $f_0 \simeq f_1 \implies f_* = g_*$ 

# Digression: homotopy

 $f_0, f_1: X \to Y$   $F: X \times [0,1] \to Y$ , "homotopy"  $f_0(x) = F(x,0)$   $f_1(x) = F(x,1)$ " $f_0$  and  $f_1$  are homotopic", denoted:  $f \simeq g$ 

Lemma.  $Id_{B^n} \simeq const$ 

Proof. F(x,t) = tx...

**Definition.** If,  $f: X \to Y$ ,  $g: Y \to X$ ,  $f \circ g \simeq id_Y$  and  $g \circ f \simeq id_X$  then, X is homotopically equivalent to Y (Denoted:  $X \simeq Y$ )

Example.  $B^n \simeq pt$ 

Proof.  $i: pt \to B^n, r: B^n \to pt, r \circ i = Id_{pt}$  $i \circ r = const_{pt}$ 

## Back to homology

Theorem.  $f_0 \simeq f_1 \implies f_* = g_*$ 

Corollary. If  $X \simeq Y$  then,  $H_n(X) \cong H_n(Y)$ 

## Digression: homotopy

 $f_0, f_1: X \to Y$   $F: X \times [0,1] \to Y$ , "homotopy"  $f_0(x) = F(x,0)$   $f_1(x) = F(x,1)$ " $f_0$  and  $f_1$  are homotopic", denoted:  $f \simeq g$ 

#### Lemma. $Id_{B^n} \simeq const$

Proof. F(x,t) = tx...

**Definition.** If,  $f: X \to Y$ ,  $g: Y \to X$ ,  $f \circ g \simeq id_Y$  and  $g \circ f \simeq id_X$  then, X is homotopically equivalent to Y (Denoted:  $X \simeq Y$ )

### Example. $B^n \simeq pt$

Proof.  $i: pt \to B^n, r: B^n \to pt, r \circ i = Id_{pt}$  $i \circ r = const_{pt} \simeq Id$ 

## Back to homology

Theorem.  $f_0 \simeq f_1 \implies f_* = g_*$ 

Corollary. If  $X \simeq Y$  then,  $H_n(X) \cong H_n(Y)$ 

# Digression: homotopy

 $f_0, f_1: X \to Y$   $F: X \times [0,1] \to Y$ , "homotopy"  $f_0(x) = F(x,0)$   $f_1(x) = F(x,1)$ " $f_0$  and  $f_1$  are homotopic", denoted:  $f \simeq g$ 

#### Lemma. $Id_{B^n} \simeq const$

Proof. F(x,t) = tx...

**Definition.** If,  $f: X \to Y$ ,  $g: Y \to X$ ,  $f \circ g \simeq id_Y$  and  $g \circ f \simeq id_X$  then, X is homotopically equivalent to Y (Denoted:  $X \simeq Y$ )

### Example. $B^n \simeq pt$

Proof.  $i: pt \to B^n, r: B^n \to pt, r \circ i = Id_{pt}$  $i \circ r = const_{pt} \simeq Id$ 

## Back to homology

Theorem.  $f_0 \simeq f_1 \implies f_* = g_*$ 

Corollary. If  $X \simeq Y$  then,  $H_n(X) \cong H_n(Y)$ 

Corollary.  $H_k(B^n) = 0$  if n > 0

$$F: X \times [0,1] \to Y$$

$$F: X \times [0,1] \to Y$$
  
$$f_0(x) = F(x,0)$$

$$F: X \times [0,1] \to Y$$
  

$$f_0(x) = F(x,0)$$
  

$$f_1(x) = F(x,1)$$

$$F: X \times [0,1] \to Y$$
  

$$f_0(x) = F(x,0)$$
  

$$f_1(x) = F(x,1)$$

$$(f_1)_{\#}(c) - (f_0)_{\#}(c) = ???$$

$$F: X \times [0,1] \to Y$$

$$f_0(x) = F(x,0)$$

$$f_1(x) = F(x,1)$$

$$(f_1)_{\#}(c) - (f_0)_{\#}(c) = ???$$

$$\sigma:\Delta_n\to X$$



$$F: X \times [0,1] \to Y$$
  

$$f_0(x) = F(x,0)$$
  

$$f_1(x) = F(x,1)$$

$$(f_1)_{\#}(c) - (f_0)_{\#}(c) = ???$$

$$\sigma:\Delta_n\to X$$



$$F: X \times [0,1] \to Y$$
  

$$f_0(x) = F(x,0)$$
  

$$f_1(x) = F(x,1)$$

$$(f_1)_{\#}(c) - (f_0)_{\#}(c) = ???$$

$$\sigma:\Delta_n\to X$$

$$\sigma \times Id : \Delta_n \times [0,1] \to X \times [0,1]$$



$$F: X \times [0,1] \rightarrow Y$$

$$f_0(x) = F(x,0)$$

$$f_1(x) = F(x, 1)$$

$$(f_1)_{\#}(c) - (f_0)_{\#}(c) = ???$$

$$\sigma:\Delta_n\to X$$

$$\sigma \times Id : \Delta_n \times [0,1] \to X \times [0,1]$$



$$F: X \times [0,1] \to Y$$
  

$$f_0(x) = F(x,0)$$
  

$$f_1(x) = F(x,1)$$

$$(f_1)_{\#}(c) - (f_0)_{\#}(c) = ???$$

$$\sigma:\Delta_n\to X$$

$$\sigma \times Id : \Delta_n \times [0,1] \to X \times [0,1]$$



$$F: X \times [0,1] \to Y$$

$$f_0(x) = F(x,0)$$

$$f_1(x) = F(x,1)$$

$$(f_1)_{\#}(c) - (f_0)_{\#}(c) = ???$$

$$\sigma : \Delta_n \to X$$

$$\sigma \times Id : \Delta_n \times [0, 1] \to X \times [0, 1]$$

$$F \circ (\sigma \times Id) : \Delta_n \times [0, 1] \to Y$$



$$F: X \times [0,1] \to Y$$
  

$$f_0(x) = F(x,0)$$
  

$$f_1(x) = F(x,1)$$

$$(f_1)_{\#}(c) - (f_0)_{\#}(c) = ???$$
  
 $\sigma : \Delta_n \to X$ 

$$\sigma \times Id : \Delta_n \times [0,1] \to X \times [0,1]$$
  
$$F \circ (\sigma \times Id) : \Delta_n \times [0,1] \to Y$$

$$P(\sigma) = \dots$$



$$F: X \times [0,1] \to Y$$
  

$$f_0(x) = F(x,0)$$
  

$$f_1(x) = F(x,1)$$

$$(f_1)_{\#}(c) - (f_0)_{\#}(c) = ???$$

$$\sigma: \Delta_n \to X$$

$$\sigma \times Id: \Delta_n \times [0,1] \to X \times [0,1]$$

$$F \circ (\sigma \times Id) : \Delta_n \times [0,1] \to Y$$

$$P(\sigma) = \dots$$

$$P: C_n(X) \to C_{n+1}(Y)$$



$$F: X \times [0,1] \to Y$$

$$f_0(x) = F(x,0)$$

$$f_1(x) = F(x,1)$$

$$(f_1)_{\#}(c) - (f_0)_{\#}(c) =???$$

$$\sigma: \Delta_n \to X$$

$$\sigma \times Id: \Delta_n \times [0,1] \to X \times [0,1]$$

$$F \circ (\sigma \times Id): \Delta_n \times [0,1] \to Y$$

$$P(\sigma) = \dots$$

$$P: C_n(X) \to C_{n+1}(Y)$$



$$F: X \times [0,1] \to Y$$

$$f_0(x) = F(x,0)$$

$$f_1(x) = F(x,1)$$

$$(f_1)_{\#}(c) - (f_0)_{\#}(c) = \partial(P(c)) + \dots$$

$$\sigma: \Delta_n \to X$$

$$\sigma \times Id: \Delta_n \times [0,1] \to X \times [0,1]$$

$$F \circ (\sigma \times Id): \Delta_n \times [0,1] \to Y$$

$$P(\sigma) = \dots$$

$$P: C_n(X) \to C_{n+1}(Y)$$
  
 $\partial(P(\sigma))$ 



$$F: X \times [0,1] \to Y$$

$$f_0(x) = F(x,0)$$

$$f_1(x) = F(x,1)$$

$$(f_1)_{\#}(c) - (f_0)_{\#}(c) = \partial(P(c)) + \dots$$

$$\sigma: \Delta_n \to X$$

$$\sigma \times Id: \Delta_n \times [0,1] \to X \times [0,1]$$

$$F \circ (\sigma \times Id): \Delta_n \times [0,1] \to Y$$

$$P(\sigma) = \dots$$

$$P: C_n(X) \to C_{n+1}(Y)$$
$$\partial(P(\sigma)) = (f_1)_{\#}(\sigma)$$



$$F: X \times [0,1] \to Y$$

$$f_0(x) = F(x,0)$$

$$f_1(x) = F(x,1)$$

$$(f_1)_{\#}(c) - (f_0)_{\#}(c) = \partial(P(c)) + \dots$$

$$\sigma: \Delta_n \to X$$

$$\sigma \times Id: \Delta_n \times [0,1] \to X \times [0,1]$$

$$F \circ (\sigma \times Id): \Delta_n \times [0,1] \to Y$$

$$P(\sigma) = \dots$$

$$P: C_n(X) \to C_{n+1}(Y)$$
$$\partial(P(\sigma)) = (f_1)_{\#}(\sigma) - (f_0)_{\#}(\sigma)$$



$$F: X \times [0,1] \to Y$$

$$f_0(x) = F(x,0)$$

$$f_1(x) = F(x,1)$$

$$(f_1)_{\#}(c) - (f_0)_{\#}(c) = \partial(P(c)) + \dots$$

$$\sigma: \Delta_n \to X$$

$$\sigma \times Id: \Delta_n \times [0,1] \to X \times [0,1]$$

$$F \circ (\sigma \times Id): \Delta_n \times [0,1] \to Y$$

$$P(\sigma) = \dots$$

$$P: C_n(X) \to C_{n+1}(Y)$$
$$\partial(P(\sigma)) = (f_1)_{\#}(\sigma) - (f_0)_{\#}(\sigma) - P(\partial(\sigma))$$

If  $c \in Z_n(X)$ ,



$$F: X \times [0,1] \to Y$$
  

$$f_0(x) = F(x,0)$$
  

$$f_1(x) = F(x,1)$$

$$(f_1)_{\#}(c) - (f_0)_{\#}(c) = \partial(P(c)) + \dots$$

$$\sigma:\Delta_n\to X$$

$$\sigma \times Id : \Delta_n \times [0,1] \to X \times [0,1]$$

$$F \circ (\sigma \times Id) : \Delta_n \times [0,1] \to Y$$

$$P(\sigma) = \dots$$

$$P: C_n(X) \to C_{n+1}(Y)$$

$$\partial(P(\sigma)) = (f_1)_{\#}(\sigma) - (f_0)_{\#}(\sigma) - P(\partial(\sigma))$$



$$F: X \times [0,1] \to Y$$
  

$$f_0(x) = F(x,0)$$
  

$$f_1(x) = F(x,1)$$

 $P(\sigma) = \dots$ 

$$(f_1)_{\#}(c) - (f_0)_{\#}(c) = \partial(P(c)) + \dots$$

$$\sigma : \Delta_n \to X$$

$$\sigma \times Id : \Delta_n \times [0, 1] \to X \times [0, 1]$$

$$F \circ (\sigma \times Id) : \Delta_n \times [0, 1] \to Y$$

$$P: C_n(X) \to C_{n+1}(Y)$$
$$\partial(P(\sigma)) = (f_1)_{\#}(\sigma) - (f_0)_{\#}(\sigma) - P(\partial(\sigma))$$

If 
$$c \in Z_n(X)$$
,  
 $\partial(P(c)) = (f_1)_{\#}(c) - (f_0)_{\#}(c) - P(\partial(c))$ 



$$F: X \times [0,1] \to Y$$
  

$$f_0(x) = F(x,0)$$
  

$$f_1(x) = F(x,1)$$

$$(f_1)_{\#}(c) - (f_0)_{\#}(c) = \partial(P(c)) + (P(\partial c))$$

$$\sigma : \Delta_n \to X$$

$$\sigma \times Id : \Delta_n \times [0, 1] \to X \times [0, 1]$$

$$F \circ (\sigma \times Id) : \Delta_n \times [0, 1] \to Y$$

$$P(\sigma) = \dots$$

$$P: C_n(X) \to C_{n+1}(Y)$$
$$\partial(P(\sigma)) = (f_1)_{\#}(\sigma) - (f_0)_{\#}(\sigma) - P(\partial(\sigma))$$

If 
$$c \in Z_n(X)$$
,  
 $\partial(P(c)) = (f_1)_{\#}(c) - (f_0)_{\#}(c) - P(\partial(c))$ 



$$F: X \times [0,1] \to Y$$
  

$$f_0(x) = F(x,0)$$
  

$$f_1(x) = F(x,1)$$

$$(f_1)_{\#}(c) - (f_0)_{\#}(c) = \partial(P(c)) + (P(\partial c))$$

$$\sigma : \Delta_n \to X$$

$$\sigma \times Id : \Delta_n \times [0, 1] \to X \times [0, 1]$$

$$F \circ (\sigma \times Id) : \Delta_n \times [0, 1] \to Y$$

$$P(\sigma) = \dots$$

$$P: C_n(X) \to C_{n+1}(Y)$$
$$\partial(P(\sigma)) = (f_1)_{\#}(\sigma) - (f_0)_{\#}(\sigma) - P(\partial(\sigma))$$

If 
$$c \in Z_n(X)$$
,  
 $\partial(P(c)) = (f_1)_{\#}(c) - (f_0)_{\#}(c) - P(\partial(c))$ 



$$F: X \times [0,1] \to Y$$
  

$$f_0(x) = F(x,0)$$
  

$$f_1(x) = F(x,1)$$

$$(f_1)_{\#}(c) - (f_0)_{\#}(c) = \partial(P(c)) + (P(\partial c))$$

$$\sigma : \Delta_n \to X$$

$$\sigma \times Id : \Delta_n \times [0, 1] \to X \times [0, 1]$$

$$F \circ (\sigma \times Id) : \Delta_n \times [0, 1] \to Y$$

$$P(\sigma) = \dots$$

$$P: C_n(X) \to C_{n+1}(Y)$$
$$\partial(P(\sigma)) = (f_1)_{\#}(\sigma) - (f_0)_{\#}(\sigma) - P(\partial(\sigma))$$

If 
$$c \in Z_n(X)$$
,  
 $\partial(P(c)) = (f_1)_{\#}(c) - (f_0)_{\#}(c) - 0$ 



$$F: X \times [0,1] \to Y$$
  

$$f_0(x) = F(x,0)$$
  

$$f_1(x) = F(x,1)$$

$$(f_1)_{\#}(c) - (f_0)_{\#}(c) = \partial(P(c)) + (P(\partial c))$$

$$\sigma : \Delta_n \to X$$

$$\sigma \times Id : \Delta_n \times [0,1] \to X \times [0,1]$$

$$F \circ (\sigma \times Id) : \Delta_n \times [0,1] \to Y$$

$$P(\sigma) = \dots$$

$$P: C_n(X) \to C_{n+1}(Y)$$
$$\partial(P(\sigma)) = (f_1)_{\#}(\sigma) - (f_0)_{\#}(\sigma) - P(\partial(\sigma))$$

If 
$$c \in Z_n(X)$$
,  
 $\partial(P(c)) = (f_1)_{\#}(c) - (f_0)_{\#}(c)$ 



$$F: X \times [0,1] \to Y$$
  

$$f_0(x) = F(x,0)$$
  

$$f_1(x) = F(x,1)$$

$$(f_1)_{\#}(c) - (f_0)_{\#}(c) = \partial(P(c)) + (P(\partial c))$$

$$\sigma : \Delta_n \to X$$

$$\sigma \times Id : \Delta_n \times [0, 1] \to X \times [0, 1]$$

$$F \circ (\sigma \times Id) : \Delta_n \times [0, 1] \to Y$$

$$P(\sigma) = \dots$$

$$P: C_n(X) \to C_{n+1}(Y)$$
$$\partial(P(\sigma)) = (f_1)_{\#}(\sigma) - (f_0)_{\#}(\sigma) - P(\partial(\sigma))$$

If 
$$c \in Z_n(X)$$
,  
 $\partial(P(c)) = (f_1)_{\#}(c) - (f_0)_{\#}(c)$   
 $[(f_1)_{\#}(c)] = [(f_0)_{\#}(c)]$ 



$$F: X \times [0,1] \to Y$$
  

$$f_0(x) = F(x,0)$$
  

$$f_1(x) = F(x,1)$$

$$(f_1)_{\#}(c) - (f_0)_{\#}(c) = \partial(P(c)) + (P(\partial c))$$

$$\sigma : \Delta_n \to X$$

$$\sigma \times Id : \Delta_n \times [0, 1] \to X \times [0, 1]$$

$$F \circ (\sigma \times Id) : \Delta_n \times [0, 1] \to Y$$

$$P(\sigma) = \dots$$

$$P: C_n(X) \to C_{n+1}(Y)$$
$$\partial(P(\sigma)) = (f_1)_{\#}(\sigma) - (f_0)_{\#}(\sigma) - P(\partial(\sigma))$$

If 
$$c \in Z_n(X)$$
,  
 $\partial(P(c)) = (f_1)_{\#}(c) - (f_0)_{\#}(c)$   
 $[(f_1)_{\#}(c)] = [(f_0)_{\#}(c)]$   
 $(f_0)_{*}([c]) = (f_1)_{*}([c])$ 



$$F: X \times [0,1] \to Y$$
  

$$f_0(x) = F(x,0)$$
  

$$f_1(x) = F(x,1)$$

$$(f_1)_{\#}(c) - (f_0)_{\#}(c) = \partial(P(c)) + (P(\partial c))$$

$$\sigma : \Delta_n \to X$$

$$\sigma \times Id : \Delta_n \times [0, 1] \to X \times [0, 1]$$

$$F \circ (\sigma \times Id) : \Delta_n \times [0, 1] \to Y$$

$$P(\sigma) = \dots$$

$$P: C_n(X) \to C_{n+1}(Y)$$
$$\partial(P(\sigma)) = (f_1)_{\#}(\sigma) - (f_0)_{\#}(\sigma) - P(\partial(\sigma))$$

If 
$$c \in Z_n(X)$$
,  
 $\partial(P(c)) = (f_1)_{\#}(c) - (f_0)_{\#}(c)$   
 $[(f_1)_{\#}(c)] = [(f_0)_{\#}(c)]$   
 $(f_0)_{*} = (f_1)_{*}$ 



$$F: X \times [0,1] \to Y$$
  

$$f_0(x) = F(x,0)$$
  

$$f_1(x) = F(x,1)$$

$$(f_1)_{\#}(c) - (f_0)_{\#}(c) = \partial(P(c)) + (P(\partial c))$$

$$\sigma: \Delta_n \to X$$
  
 
$$\sigma \times Id: \Delta_n \times [0,1] \to X \times [0,1]$$

$$F \circ (\sigma \times Id) : \Delta_n \times [0,1] \to Y$$

$$P(\sigma) = \dots$$

$$P: C_n(X) \to C_{n+1}(Y)$$

$$\partial(P(\sigma)) = (f_1)_{\#}(\sigma) - (f_0)_{\#}(\sigma) - P(\partial(\sigma))$$

If 
$$c \in Z_n(X)$$
,  
 $\partial(P(c)) = (f_1)_{\#}(c) - (f_0)_{\#}(c)$   
 $[(f_1)_{\#}(c)] = [(f_0)_{\#}(c)]$   
 $(f_0)_{*} = (f_1)_{*}$ 

**Definition.**  $f, g: C_n(X) \to C_n(Y)$  chain maps,



$$F: X \times [0,1] \to Y$$
  

$$f_0(x) = F(x,0)$$
  

$$f_1(x) = F(x,1)$$

$$\sigma: \Delta_n \to X$$

$$\sigma \times Id: \Delta_n \times [0,1] \to X \times [0,1]$$

$$F \circ (\sigma \times Id): \Delta_n \times [0,1] \to Y$$

$$P(\sigma) = \dots$$

 $(f_1)_{\#}(c) - (f_0)_{\#}(c) = \partial(P(c)) + (P(\partial c))$ 

$$P: C_n(X) \to C_{n+1}(Y)$$

$$\partial(P(\sigma)) = (f_1)_{\#}(\sigma) - (f_0)_{\#}(\sigma) - P(\partial(\sigma))$$

If 
$$c \in Z_n(X)$$
,  
 $\partial(P(c)) = (f_1)_{\#}(c) - (f_0)_{\#}(c)$   
 $[(f_1)_{\#}(c)] = [(f_0)_{\#}(c)]$   
 $(f_0)_{*} = (f_1)_{*}$ 

**Definition.**  $f, g: C_n(X) \to C_n(Y)$  chain maps, the collection of maps  $\{P_n: C_n(X) \to C_{n+1}(Y)\}$ 



$$F: X \times [0,1] \to Y$$
  

$$f_0(x) = F(x,0)$$
  

$$f_1(x) = F(x,1)$$

$$\sigma:\Delta_n\to X$$

$$\sigma \times Id : \Delta_n \times [0,1] \to X \times [0,1]$$

 $(f_1)_{\#}(c) - (f_0)_{\#}(c) = \partial(P(c)) + (P(\partial c))$ 

$$F \circ (\sigma \times Id) : \Delta_n \times [0,1] \to Y$$
  
 $P(\sigma) = \dots$ 

$$P: C_n(X) \to C_{n+1}(Y)$$

If 
$$c \in Z_n(X)$$
,  
 $\partial(P(c)) = (f_1)_{\#}(c) - (f_0)_{\#}(c)$   
 $[(f_1)_{\#}(c)] = [(f_0)_{\#}(c)]$   
 $(f_0)_{*} = (f_1)_{*}$ 

$$f - g = \partial_{n+1} \circ P_n + P_{n-1} \circ \partial_n$$

$$f_0$$
 homotopic  $f_1$ 

$$\partial(P(\sigma)) = (f_1)_{\#}(\sigma) - (f_0)_{\#}(\sigma) - P(\partial(\sigma))$$



$$F: X \times [0,1] \to Y$$

$$f_0(x) = F(x,0)$$

$$f_1(x) = F(x,1)$$

 $P: C_n(X) \to C_{n+1}(Y)$ 

$$\sigma: \Delta_n \to X$$

$$\sigma \times Id: \Delta_n \times [0,1] \to X \times [0,1]$$

$$F \circ (\sigma \times Id): \Delta_n \times [0,1] \to Y$$

$$P(\sigma) = \dots$$

 $(f_1)_{\#}(c) - (f_0)_{\#}(c) = \partial(P(c)) + (P(\partial c))$ 

$$\partial(P(\sigma)) = (f_1)_{\#}(\sigma) - (f_0)_{\#}(\sigma) - P(\partial(\sigma))$$

If 
$$c \in Z_n(X)$$
,  
 $\partial(P(c)) = (f_1)_{\#}(c) - (f_0)_{\#}(c)$   
 $[(f_1)_{\#}(c)] = [(f_0)_{\#}(c)]$   
 $(f_0)_* = (f_1)_*$ 

$$f - g = \partial_{n+1} \circ P_n + P_{n-1} \circ \partial_n$$

$$f_0$$
 homotopic  $f_1 \implies (f_0)_{\#}$  chain homotopic  $(f_1)_{\#}$ 



$$F: X \times [0,1] \to Y$$

$$f_0(x) = F(x,0)$$

$$f_1(x) = F(x,1)$$

$$\sigma: \Delta_n \to X$$
  
 
$$\sigma \times Id: \Delta_n \times [0,1] \to X \times [0,1]$$

 $(f_1)_{\#}(c) - (f_0)_{\#}(c) = \partial(P(c)) + (P(\partial c))$ 

$$\sigma \times Id : \Delta_n \times [0,1] \to X \times [0,1]$$

$$F \circ (\sigma \times Id) : \Delta_n \times [0,1] \to Y$$

$$P(\sigma) = \dots$$

$$P: C_n(X) \to C_{n+1}(Y)$$
  
$$\partial(P(\sigma)) = (f_1)_{\#}(\sigma) - (f_0)_{\#}(\sigma) - P(\partial(\sigma))$$

If 
$$c \in Z_n(X)$$
,  
 $\partial(P(c)) = (f_1)_{\#}(c) - (f_0)_{\#}(c)$   
 $[(f_1)_{\#}(c)] = [(f_0)_{\#}(c)]$   
 $(f_0)_{*} = (f_1)_{*}$ 

$$f - g = \partial_{n+1} \circ P_n + P_{n-1} \circ \partial_n$$

$$f_0$$
 homotopic  $f_1 \implies (f_0)_\#$  chain homotopic  $(f_1)_\#$   $\implies f_* = g_*$ 



$$F: X \times [0,1] \to Y$$
  

$$f_0(x) = F(x,0)$$
  

$$f_1(x) = F(x,1)$$

$$(f_1)_{\#}(c) - (f_0)_{\#}(c) = \partial(P(c)) + (P(\partial c))$$

$$\sigma: \Delta_n \to X$$
  
 
$$\sigma \times Id: \Delta_n \times [0,1] \to X \times [0,1]$$

$$F \circ (\sigma \times Id) : \Delta_n \times [0,1] \to Y$$
$$P(\sigma) = \dots$$

$$P: C_n(X) \to C_{n+1}(Y)$$

$$\partial(P(\sigma)) = (f_1)_{\#}(\sigma) - (f_0)_{\#}(\sigma) - P(\partial(\sigma))$$

If 
$$c \in Z_n(X)$$
,  
 $\partial(P(c)) = (f_1)_{\#}(c) - (f_0)_{\#}(c)$   
 $[(f_1)_{\#}(c)] = [(f_0)_{\#}(c)]$   
 $(f_0)_{*} = (f_1)_{*}$ 

$$f - g = \partial_{n+1} \circ P_n + P_{n-1} \circ \partial_n$$

$$f_0$$
 homotopic  $f_1 \implies (f_0)_{\#}$  chain homotopic  $(f_1)_{\#}$   $\implies f_* = g_*$ 





























 $v_0, v_1, \dots, v_n \in \mathbb{R}^k$ 

$$v_0, v_1, \dots, v_n \in \mathbb{R}^k$$

convex span
$$\{v_0, v_1, \dots, v_n\} \xrightarrow{h} X$$

$$v_0, v_1, \dots, v_n \in \mathbb{R}^k$$

$$\Delta_n \xrightarrow{\theta} \operatorname{convex span}\{v_0, v_1, \dots, v_n\} \xrightarrow{h} X$$
  
where  $\theta : [e_0, e_1, \dots, e_n] \to [v_0, v_1, \dots, v_n]$ 

$$v_0, v_1, \dots, v_n \in \mathbb{R}^k$$

$$\Delta_n \xrightarrow{\theta} \text{convex span}\{v_0, v_1, \dots, v_n\} \xrightarrow{h} X$$
  
where  $\theta : [e_0, e_1, \dots, e_n] \to [v_0, v_1, \dots, v_n]$ 

$$h \upharpoonright_{[v_0,v_1,\ldots,v_n]} := h \circ \theta : \Delta_n \to X$$

$$v_0, v_1, \dots, v_n \in \mathbb{R}^k$$

$$\Delta_n \xrightarrow{\theta} \operatorname{convex span}\{v_0, v_1, \dots, v_n\} \xrightarrow{h} X$$
  
where  $\theta : [e_0, e_1, \dots, e_n] \to [v_0, v_1, \dots, v_n]$ 

$$h \upharpoonright_{[v_0,v_1,\ldots,v_n]} := h \circ \theta : \Delta_n \to X$$

$$v_0, v_1, \dots, v_n \in \mathbb{R}^k$$

$$\Delta_n \xrightarrow{\theta} \operatorname{convex span} \{v_0, v_1, \dots, v_n\} \xrightarrow{h} X$$
  
where  $\theta : [e_0, e_1, \dots, e_n] \to [v_0, v_1, \dots, v_n]$ 

$$h \upharpoonright_{[v_0,v_1,\ldots,v_n]} := h \circ \theta : \Delta_n \to X$$

$$v_0, v_1, \dots, v_n \in \mathbb{R}^k$$

$$\Delta_n \xrightarrow{\theta} \operatorname{convex span} \{v_0, v_1, \dots, v_n\} \xrightarrow{h} X$$
  
where  $\theta : [e_0, e_1, \dots, e_n] \to [v_0, v_1, \dots, v_n]$ 

$$h \upharpoonright_{[v_0,v_1,\ldots,v_n]} := h \circ \theta : \Delta_n \to X$$

 $v_0 - v_1$ 

$$v_0, v_1, \dots, v_n \in \mathbb{R}^k$$

$$\Delta_n \xrightarrow{\theta} \operatorname{convex span}\{v_0, v_1, \dots, v_n\} \xrightarrow{h} X$$
  
where  $\theta : [e_0, e_1, \dots, e_n] \to [v_0, v_1, \dots, v_n]$ 

$$h \upharpoonright_{[v_0,v_1,\ldots,v_n]} := h \circ \theta : \Delta_n \to X$$



$$v_0, v_1, \dots, v_n \in \mathbb{R}^k$$

$$\Delta_n \xrightarrow{\theta} \operatorname{convex span} \{v_0, v_1, \dots, v_n\} \xrightarrow{h} X$$
  
where  $\theta : [e_0, e_1, \dots, e_n] \to [v_0, v_1, \dots, v_n]$ 

$$h \upharpoonright_{[v_0,v_1,\ldots,v_n]} := h \circ \theta : \Delta_n \to X$$



$$v_0, v_1, \dots, v_n \in \mathbb{R}^k$$

$$\Delta_n \xrightarrow{\theta} \text{convex span}\{v_0, v_1, \dots, v_n\} \xrightarrow{h} X$$
  
where  $\theta : [e_0, e_1, \dots, e_n] \to [v_0, v_1, \dots, v_n]$ 

$$h \upharpoonright_{[v_0,v_1,\ldots,v_n]} := h \circ \theta : \Delta_n \to X$$

$$P(\sigma) := F \circ (\sigma \times Id) \upharpoonright_{[v_0, v_1, w_1]} + F \circ (\sigma \times Id) \upharpoonright_{[v_0, w_1, w_0]}$$



$$v_0, v_1, \dots, v_n \in \mathbb{R}^k$$

$$\Delta_n \xrightarrow{\theta} \operatorname{convex span} \{v_0, v_1, \dots, v_n\} \xrightarrow{h} X$$
  
where  $\theta : [e_0, e_1, \dots, e_n] \to [v_0, v_1, \dots, v_n]$ 

$$h \upharpoonright_{[v_0,v_1,\ldots,v_n]} := h \circ \theta : \Delta_n \to X$$

$$P(\sigma) := F \circ (\sigma \times Id) \upharpoonright_{[v_0, v_1, w_1]} - F \circ (\sigma \times Id) \upharpoonright_{[v_0, w_0, w_1]}$$



$$v_0, v_1, \dots, v_n \in \mathbb{R}^k$$

$$\Delta_n \xrightarrow{\theta} \text{convex span}\{v_0, v_1, \dots, v_n\} \xrightarrow{h} X$$
  
where  $\theta : [e_0, e_1, \dots, e_n] \to [v_0, v_1, \dots, v_n]$ 

$$h \upharpoonright_{[v_0,v_1,\ldots,v_n]} := h \circ \theta : \Delta_n \to X$$

$$P(\sigma) := F \circ (\sigma \times Id) \upharpoonright_{[v_0, v_1, w_1]} - F \circ (\sigma \times Id) \upharpoonright_{[v_0, w_0, w_1]}$$

$$\partial(P(\sigma)) = \partial F \circ (\sigma \times Id) \upharpoonright_{[v_0, v_1, w_1]} - \partial F \circ (\sigma \times Id) \upharpoonright_{[v_0, w_0, w_1]}$$



$$v_0, v_1, \dots, v_n \in \mathbb{R}^k$$

$$\Delta_n \xrightarrow{\theta} \text{convex span}\{v_0, v_1, \dots, v_n\} \xrightarrow{h} X$$
  
where  $\theta : [e_0, e_1, \dots, e_n] \to [v_0, v_1, \dots, v_n]$ 

$$h \upharpoonright_{[v_0,v_1,\dots,v_n]} := h \circ \theta : \Delta_n \to X$$



$$P(\sigma) := F \circ (\sigma \times Id) \upharpoonright_{[v_0, v_1, w_1]} - F \circ (\sigma \times Id) \upharpoonright_{[v_0, w_0, w_1]}$$

$$\partial(P(\sigma)) = F \circ (\sigma \times Id) \upharpoonright_{[v_1,w_1]} - F \circ (\sigma \times Id) \upharpoonright_{[v_0,w_1]} + F \circ (\sigma \times Id) \upharpoonright_{[v_0,v_1]} - \partial F \circ (\sigma \times Id) \upharpoonright_{[v_0,w_0,w_1]}$$

$$v_0, v_1, \dots, v_n \in \mathbb{R}^k$$

$$\Delta_n \xrightarrow{\theta} \text{convex span}\{v_0, v_1, \dots, v_n\} \xrightarrow{h} X$$
  
where  $\theta : [e_0, e_1, \dots, e_n] \to [v_0, v_1, \dots, v_n]$ 

$$h \upharpoonright_{[v_0,v_1,\ldots,v_n]} := h \circ \theta : \Delta_n \to X$$

$$egin{array}{c} w_0 \ \hline w_0 \ \hline \end{array}$$

$$P(\sigma) := F \circ (\sigma \times Id) \upharpoonright_{[v_0, v_1, w_1]} - F \circ (\sigma \times Id) \upharpoonright_{[v_0, w_0, w_1]}$$

$$\begin{array}{l} \partial(P(\sigma)) = F \circ (\sigma \times Id) \upharpoonright_{[v_1,w_1]} - F \circ (\sigma \times Id) \upharpoonright_{[v_0,w_1]} + F \circ (\sigma \times Id) \upharpoonright_{[v_0,v_1]} - F \circ (\sigma \times Id) \upharpoonright_{[w_0,w_1]} + F \circ (\sigma \times Id) \upharpoonright_{[v_0,w_1]} - F \circ (\sigma \times Id) \upharpoonright_{[v_0,w_0]} \end{array}$$

$$v_0, v_1, \dots, v_n \in \mathbb{R}^k$$

$$\Delta_n \xrightarrow{\theta} \text{convex span}\{v_0, v_1, \dots, v_n\} \xrightarrow{h} X$$
  
where  $\theta : [e_0, e_1, \dots, e_n] \to [v_0, v_1, \dots, v_n]$ 

$$h \upharpoonright_{[v_0,v_1,\ldots,v_n]} := h \circ \theta : \Delta_n \to X$$

$$P(\sigma) := F \circ (\sigma \times Id) \upharpoonright_{[v_0, v_1, w_1]} - F \circ (\sigma \times Id) \upharpoonright_{[v_0, w_0, w_1]}$$

$$\begin{array}{l} \partial(P(\sigma)) = F \circ (\sigma \times Id) \upharpoonright_{[v_1,w_1]} -F \circ (\sigma \times Id) \upharpoonright_{[v_0,w_1]} + \\ F \circ (\sigma \times Id) \upharpoonright_{[v_0,v_1]} -F \circ (\sigma \times Id) \upharpoonright_{[w_0,w_1]} \\ +F \circ (\sigma \times Id) \upharpoonright_{[v_0,w_1]} -F \circ (\sigma \times Id) \upharpoonright_{[v_0,w_0]} \end{array}$$



$$v_0, v_1, \dots, v_n \in \mathbb{R}^k$$

$$\Delta_n \xrightarrow{\theta} \text{convex span}\{v_0, v_1, \dots, v_n\} \xrightarrow{h} X$$
  
where  $\theta : [e_0, e_1, \dots, e_n] \to [v_0, v_1, \dots, v_n]$ 

$$h \upharpoonright_{[v_0,v_1,\dots,v_n]} := h \circ \theta : \Delta_n \to X$$

$$P(\sigma) := F \circ (\sigma \times Id) \upharpoonright_{[v_0, v_1, w_1]} - F \circ (\sigma \times Id) \upharpoonright_{[v_0, w_0, w_1]}$$

$$\begin{array}{l} \partial(P(\sigma)) \,=\, F \circ (\sigma \times Id) \upharpoonright_{[v_1,w_1]} \,+ F \circ (\sigma \times Id) \upharpoonright_{[v_0,v_1]} \\ - F \circ (\sigma \times Id) \upharpoonright_{[w_0,w_1]} - F \circ (\sigma \times Id) \upharpoonright_{[v_0,w_0]} \end{array}$$



$$v_0, v_1, \dots, v_n \in \mathbb{R}^k$$

$$\Delta_n \xrightarrow{\theta} \text{convex span}\{v_0, v_1, \dots, v_n\} \xrightarrow{h} X$$
  
where  $\theta : [e_0, e_1, \dots, e_n] \to [v_0, v_1, \dots, v_n]$ 

$$h \upharpoonright_{[v_0,v_1,\ldots,v_n]} := h \circ \theta : \Delta_n \to X$$

$$P(\sigma) := F \circ (\sigma \times Id) \upharpoonright_{[v_0, v_1, w_1]} - F \circ (\sigma \times Id) \upharpoonright_{[v_0, w_0, w_1]}$$

$$\begin{array}{l} \partial(P(\sigma)) = F \circ (\sigma \times Id) \upharpoonright_{[v_1,w_1]} + F \circ (\sigma \times Id) \upharpoonright_{[v_0,v_1]} - F \circ (\sigma \times Id) \upharpoonright_{[w_0,w_1]} - F \circ (\sigma \times Id) \upharpoonright_{[v_0,w_0]} \end{array}$$



$$v_0, v_1, \dots, v_n \in \mathbb{R}^k$$

$$\Delta_n \xrightarrow{\theta} \text{convex span}\{v_0, v_1, \dots, v_n\} \xrightarrow{h} X$$
  
where  $\theta : [e_0, e_1, \dots, e_n] \to [v_0, v_1, \dots, v_n]$ 

$$h \upharpoonright_{[v_0,v_1,\dots,v_n]} := h \circ \theta : \Delta_n \to X$$

$$P(\sigma) := F \circ (\sigma \times Id) \upharpoonright_{[v_0, v_1, w_1]} - F \circ (\sigma \times Id) \upharpoonright_{[v_0, w_0, w_1]}$$

$$\begin{array}{l} \partial(P(\sigma)) = F \circ (\sigma \times Id) \upharpoonright_{[v_1,w_1]} + (f_0)_{\#}(\sigma) - F \circ (\sigma \times Id) \upharpoonright_{[w_0,w_1]} - F \circ (\sigma \times Id) \upharpoonright_{[v_0,w_0]} \end{array}$$



$$v_0, v_1, \dots, v_n \in \mathbb{R}^k$$

$$\Delta_n \xrightarrow{\theta} \text{convex span}\{v_0, v_1, \dots, v_n\} \xrightarrow{h} X$$
  
where  $\theta : [e_0, e_1, \dots, e_n] \to [v_0, v_1, \dots, v_n]$ 

$$h \upharpoonright_{[v_0,v_1,\dots,v_n]} := h \circ \theta : \Delta_n \to X$$

$$P(\sigma) := F \circ (\sigma \times Id) \upharpoonright_{[v_0, v_1, w_1]} - F \circ (\sigma \times Id) \upharpoonright_{[v_0, w_0, w_1]}$$

$$\begin{array}{lll} \partial(P(\sigma)) &=& F \circ (\sigma \times Id) \upharpoonright_{[v_1,w_1]} + (f_0)_{\#}(\sigma) - \\ \underline{F \circ (\sigma \times Id) \upharpoonright_{[w_0,w_1]} - F \circ (\sigma \times Id) \upharpoonright_{[v_0,w_0]}} \end{array}$$



$$v_0, v_1, \dots, v_n \in \mathbb{R}^k$$

$$\Delta_n \xrightarrow{\theta} \text{convex span}\{v_0, v_1, \dots, v_n\} \xrightarrow{h} X$$
  
where  $\theta : [e_0, e_1, \dots, e_n] \to [v_0, v_1, \dots, v_n]$ 

$$h \upharpoonright_{[v_0,v_1,\dots,v_n]} := h \circ \theta : \Delta_n \to X$$

$$P(\sigma) := F \circ (\sigma \times Id) \upharpoonright_{[v_0, v_1, w_1]} - F \circ (\sigma \times Id) \upharpoonright_{[v_0, w_0, w_1]}$$

$$\partial(P(\sigma)) = F \circ (\sigma \times Id) \upharpoonright_{[v_1, w_1]} + (f_0)_{\#}(\sigma) - (f_1)_{\#}(\sigma) - F \circ (\sigma \times Id) \upharpoonright_{[v_0, w_0]} + (f_0)_{\#}(\sigma) - (f_0)_{\#}$$



$$v_0, v_1, \dots, v_n \in \mathbb{R}^k$$

$$\Delta_n \xrightarrow{\theta} \text{convex span}\{v_0, v_1, \dots, v_n\} \xrightarrow{h} X$$
  
where  $\theta : [e_0, e_1, \dots, e_n] \to [v_0, v_1, \dots, v_n]$ 

$$h \upharpoonright_{[v_0,v_1,\ldots,v_n]} := h \circ \theta : \Delta_n \to X$$

$$P(\sigma) := F \circ (\sigma \times Id) \upharpoonright_{[v_0, v_1, w_1]} - F \circ (\sigma \times Id) \upharpoonright_{[v_0, w_0, w_1]}$$

$$\partial(P(\sigma)) = P(\partial\sigma) + (f_0)_{\#}(\sigma) - (f_1)_{\#}(\sigma)$$



$$v_0, v_1, \dots, v_n \in \mathbb{R}^k$$

$$\Delta_n \xrightarrow{\theta} \operatorname{convex span} \{v_0, v_1, \dots, v_n\} \xrightarrow{h} X$$
  
where  $\theta : [e_0, e_1, \dots, e_n] \to [v_0, v_1, \dots, v_n]$ 

$$h \upharpoonright_{[v_0,v_1,\ldots,v_n]} := h \circ \theta : \Delta_n \to X$$

$$P(\sigma) := F \circ (\sigma \times Id) \upharpoonright_{[v_0, v_1, w_1]} - F \circ (\sigma \times Id) \upharpoonright_{[v_0, w_0, w_1]}$$



$$v_0, v_1, \dots, v_n \in \mathbb{R}^k$$

$$\Delta_n \xrightarrow{\theta} \operatorname{convex span} \{v_0, v_1, \dots, v_n\} \xrightarrow{h} X$$
  
where  $\theta : [e_0, e_1, \dots, e_n] \to [v_0, v_1, \dots, v_n]$ 

$$h \upharpoonright_{[v_0,v_1,\ldots,v_n]} := h \circ \theta : \Delta_n \to X$$

$$P(\sigma) := \Sigma_i(-1)^i F \circ (\sigma \times Id) \upharpoonright_{[v_0, v_1, \dots, v_i, w_i, \dots, w_n]}$$



$$v_0, v_1, \dots, v_n \in \mathbb{R}^k$$

$$\Delta_n \xrightarrow{\theta} \text{convex span}\{v_0, v_1, \dots, v_n\} \xrightarrow{h} X$$
  
where  $\theta : [e_0, e_1, \dots, e_n] \to [v_0, v_1, \dots, v_n]$ 

$$h \upharpoonright_{[v_0,v_1,\ldots,v_n]} := h \circ \theta : \Delta_n \to X$$

$$P(\sigma) := \Sigma_i(-1)^i F \circ (\sigma \times Id) \upharpoonright_{[v_0, v_1, \dots, v_i, w_i, \dots, w_n]}$$

**Exercise.** 
$$\partial(P(\sigma)) = (f_1)_{\#}(\sigma) - (f_0)_{\#}(\sigma) - P(\partial(\sigma))$$



$$\cdots \xrightarrow{\partial_{n+2}} C_{n+1}(X) \xrightarrow{\partial_{n+1}} C_n(X) \xrightarrow{\partial_n} C_{n-1}(X) \to$$

$$v_0, v_1, \dots, v_n \in \mathbb{R}^k$$

$$\Delta_n \xrightarrow{\theta} \text{convex span}\{v_0, v_1, \dots, v_n\} \xrightarrow{h} X$$
  
where  $\theta : [e_0, e_1, \dots, e_n] \to [v_0, v_1, \dots, v_n]$ 

$$h \upharpoonright_{[v_0,v_1,\ldots,v_n]} := h \circ \theta : \Delta_n \to X$$

$$P(\sigma) := \Sigma_i(-1)^i F \circ (\sigma \times Id) \upharpoonright_{[v_0, v_1, \dots, v_i, w_i, \dots, w_n]}$$

**Exercise.** 
$$\partial(P(\sigma)) = (f_1)_{\#}(\sigma) - (f_0)_{\#}(\sigma) - P(\partial(\sigma))$$



$$\cdots \xrightarrow{\partial_{n+2}} C_{n+1}(X) \xrightarrow{\partial_{n+1}} C_n(X) \xrightarrow{\partial_n} C_{n-1}(X) \to$$

$$\cdots \xrightarrow{\partial_{n+2}} C_{n+1}(Y) \xrightarrow{\partial_{n+1}} C_n(Y) \xrightarrow{\partial_n} C_{n-1}(Y) \to$$

$$v_0, v_1, \dots, v_n \in \mathbb{R}^k$$

$$\Delta_n \xrightarrow{\theta} \text{convex span}\{v_0, v_1, \dots, v_n\} \xrightarrow{h} X$$
  
where  $\theta : [e_0, e_1, \dots, e_n] \to [v_0, v_1, \dots, v_n]$ 

$$h \upharpoonright_{[v_0,v_1,\ldots,v_n]} := h \circ \theta : \Delta_n \to X$$

$$P(\sigma) := \Sigma_i(-1)^i F \circ (\sigma \times Id) \upharpoonright_{[v_0, v_1, \dots, v_i, w_i, \dots, w_n]}$$

**Exercise.** 
$$\partial(P(\sigma)) = (f_1)_{\#}(\sigma) - (f_0)_{\#}(\sigma) - P(\partial(\sigma))$$



$$\cdots \xrightarrow{\partial_{n+2}} C_{n+1}(X) \xrightarrow{\partial_{n+1}} C_n(X) \xrightarrow{\partial_n} C_{n-1}(X) \rightarrow \downarrow f_\#, g_\# \qquad \downarrow f_\#,$$

$$v_0, v_1, \dots, v_n \in \mathbb{R}^k$$

$$\Delta_n \xrightarrow{\theta} \text{convex span}\{v_0, v_1, \dots, v_n\} \xrightarrow{h} X$$
  
where  $\theta : [e_0, e_1, \dots, e_n] \to [v_0, v_1, \dots, v_n]$ 

$$h \upharpoonright_{[v_0,v_1,\ldots,v_n]} := h \circ \theta : \Delta_n \to X$$

$$P(\sigma) := \Sigma_i(-1)^i F \circ (\sigma \times Id) \upharpoonright_{[v_0, v_1, \dots, v_i, w_i, \dots, w_n]}$$

**Exercise.** 
$$\partial(P(\sigma)) = (f_1)_{\#}(\sigma) - (f_0)_{\#}(\sigma) - P(\partial(\sigma))$$



$$\cdots \xrightarrow{\partial_{n+2}} C_{n+1}(X) \xrightarrow{\partial_{n+1}} C_n(X) \xrightarrow{\partial_n} C_{n-1}(X) \rightarrow$$

$$\downarrow^{f_\#,g_\#} \qquad \downarrow^{f_\#,g_\#} \qquad \downarrow^{f_\#} \qquad \downarrow^{f_\#} \qquad \downarrow^{f_\#} \qquad \downarrow^{f_\#} \qquad \downarrow^{f_\#} \qquad \downarrow^{f_\#} \qquad \downarrow^$$