Low-energy effective description of dark Sp(4) theories

S.Kulkarni, A.Maas, S.Mee M.Nikolic, J.Pradler, **F. Zierler**

based on [2202.05191]

Interdisciplinary research group: Strong DM

 Combining collider and astrophysical pheno with lattice field theory and direct detection searches

Outline

- 1. Dark Matter (DM): Motivation
- 2. Strongly Interacting Massive Particles
- 3. Mesonic spectrum Sp(4) and DM candidates
- 4. Effective theories and lattice constraints

Dark Matter

- Nature of Dark Matter (DM) unclear
- Only gravitational effects observed
- Hypothesis: Particle Dark Matter
 - At least one additional DM particle to SM
 - Coupling to the SM extremely weak
 - Stable over tens of billions of years

From WIMPs to SIMPs

(Strongly Interacting Massive Particles)

- WIMPs: DM as thermal relic from early universe
- ullet Decouple below certain temperature o freeze out
- Density distribution of DM constraints theories
- Constraint given by DM depletion process

WIMPs: $2\mathrm{DM} o 2\mathrm{SM} \ \Rightarrow m_D pprox \mathrm{TeV}$

SIMPs: $3\mathrm{DM} o 2\mathrm{DM} \Rightarrow m_D pprox \mathcal{O}(100)\mathrm{MeV}$ [1]

$\mathbf{3} o \mathbf{2}$ occurs in chiral effective theories!

- Spontaneous chiral symmetry breaking
 - \Rightarrow relatively light (pseudo-)Goldstone states
 - ≥ 5 pGoldstones: effective 5-point-interaction
- ullet In QCD this describes the $2K o 3\pi$ decay.

Idea: Non-Abelian gauge theory with 3
ightarrow 2 Goldstones as Dark Matter candidates + mediator

A model of SIMP Dark Matter

- ullet Strong, confining dark sector \Rightarrow dark hadrons
- Dark fermions no not carry any SM charge
- ullet Small coupling to the SM via Z'- γ -mixing

We have a model. We need predictions.

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{Sp(4)} + \mathcal{L}_{\mathrm{mediator}}$$

- ullet Dark Sp(4) confines into dark hadrons
- ullet DM canditates are bound states o non-perturbative
- Low energy effective theory (EFT) needed
- Combine the methods with lattice field theory
 - Derive low energy EFT for dark sector + mediator
 - o Low energy constants (LECs) from lattice
 - Use EFT for astro/collider/direct detection pheno

Constructing EFTs: Symmetries

$$\begin{array}{c|c} \mathbf{QCD} \text{ with } N_f = 2 \\ \hline U(2) \times U(2) \\ \text{axial anomaly } m_u = m_d = 0 \\ \hline SU(2) \times SU(2) \times U(1) \\ \text{chiral symmetry breaking } m_u = m_d = 0 \\ and/or \text{ explicit breaking } m_u = m_d \neq 0 \\ \hline SU(2) \times U(1) \\ \text{strong isospin breaking } m_u \neq m_d \\ \hline U(1) \times U(1) \\ \hline \end{array} \quad \begin{array}{c} \mathbf{Sp(4)_c} \text{ with } N_f = 2 \\ \hline U(4) \\ \hline SU(4) \\ \hline SU(4) \\ \hline m_u = m_d = 0 \\ and/or \text{ explicit breaking } \\ m_u = m_d \neq 0 \\ and/or \text{ explicit breaking } \\ \hline M_u \neq m_d \\ \hline \end{array} \quad \begin{array}{c} \mathbf{Sp(4)} \\ \hline Sp(4) \\ \hline \end{array} \quad \begin{array}{c} \mathbf{Sp(4)} \\ \hline \\ Sp(4) \\ \hline \end{array} \quad \begin{array}{c} \mathbf{Sp(4)} \\ \hline \\ Sp(4) \\ \hline \end{array} \quad \begin{array}{c} \mathbf{Sp(4)} \\ \hline \\ SU(2) \times SU(2) \\ \hline \end{array}$$

Symmetries of dark hadrons (without mediator)

- Global symmetries are enlarged compared to QCD
- New quark-quark and antiquark-antiquark states

Symmetries of dark hadrons (with Z^{\prime} mediator)

- Radiative corrections break symmetries differently
- ullet Depending on the charge assignment Q of fermions

Particle stability

- Only multiplets are protected by symmetry
- Singlets can decay
 - $\circ m_u{=}m_d$: Some charge assignments avoid singlets
 - $\circ m_u
 eq m_d$: Even without a Z' the π^C is a singlet
- For a viable DM candidate the decay of flavour singlets needs to be sufficiently supressed

Low Energy Constants from the lattice I

- Mass degenerate theory has been studied [1]
- Use **existing** data to constrain LEC κ in radiative pion mass splitting through vector meson ρ and dark photon V

U(1)' breaking parameter κ against dark photon mass m_V

- use existing lattice data [1]
- $oldsymbol{\cdot}$ constrains κ vs. m_V
- similar for many gauge groups

Low Energy Constants from the lattice II

- ullet New lattice results for isospin breaking $m_u
 eq m_d$
- Relevant LECs: Pion masses and decay constants
- We have bounds on EFT validity:

$$\left(rac{m_\pi}{m_
ho}
ight)_{deg} < 0.7 \qquad \left(rac{m_d}{m_u}
ight)_{
m PCAC} < 1.5$$

ullet For larger values LO χ PT breaks down

rough sketch of the validity of LO χPT in Δm_q

- data points: breakdown of LO $\chi {\rm PT}$ in Δm on the lattice
- $\frac{m_d}{m_u} = 1 + \Delta m$
- $ullet rac{m_\pi}{m_
 ho}$ fixed at degeneracy

Conclusion

- First results of the FG1 collaboration
- ullet Systematic development of strongly interacting dark matter theories for Sp(4)
 - o For degenerate fermions including mediator
 - For non-degenerate fermions in isolation
- Full paper: [2202.05191]

References: Global Symmetries

- [hep-ph/0001171] Kogut, Stephanov, Toublan, Verbaarschot, Zhitnitsky. Nucl. Phys. B 582, 2000
- [1205.4205] von Smekal. Nucl.Phys.B Proceedings Supplements 228, 2012

References: SIMPs

- [1402.5143] Hochberg, Kuflik, Volansky, Wacker. Phys.Rev.Lett. 113, 2014
- [1411.3727] Hochberg, Kuflik, Murayama, Volansky, Wacker. Phys.Rev.Lett. 115, 2015
- [1512.07917] Hochberg, Kuflik, Murayama. JHEP05, 2016

References: Lattice & Code

- [0805.2058]
 Del Debbio, Patella, Pica. Phys.Rev.D 81, 2010
- [1712.04220] Bennett, Hong, Lee, Lin, Lucini, Piai, Vadacchino. JHEP03, 2018
- [1909.12662] Bennett, Hong, Lee, Lin, Lucini, Piai, Rantaharju, Vadacchino. JHEP12, 2019