不可压缩曲面

崔嘉祺 华东师范大学

2025年1月7日

摘要

这是笔者 2024 秋季学期在华东师范大学修读的研究生课程《三维流形》的 final project. 这是对 John Hempel 的书 *3-MANIFOLDS* 的第六章的翻译和一些细节的补充.

在第二章我们证明了任意的闭三维流形都有 Heegaard 分解: 沿着 Heegaard 曲面分解成两个 handlebody. Heegaard 分解的好处是, 分解出的块 (handlebody) 很简单. 然而, 我们很难从嵌入的 Heegaard 曲面得到流形的内蕴信息. 另一方面, 这章我们将要研究的不可压缩曲面高度反应了流形的同伦性质, 在之后的发展和研究中起着关键作用. 这章我们将阐述关于不可压缩曲面的一些技术性引理.

本文所说的"曲面"是指紧连通的二维流形.

定义 1. 设 M 是一个三维流形, F 是其中的一个曲面. 假设 F 要么是恰当嵌入的, 要么包含于 M 的边界中. 我们称 F 在 M 中是不可压缩的, 如果以下的条件都不满足:

- 1. F 是一个球面, 并且在 M 中界定一个同伦的实心球.
- 2. F 是一个圆盘, 并且要么 $F \subset \partial M$, 要么存在一个同伦实心球 $X \subset M$, 使得 $\partial X \subset F \cup \partial M$.
- 3. 存在一个圆盘 $D \subset M$, 使得 $D \cap F = \partial D$ 并且 ∂D 在 F 中不可缩.

引理 2. 设 S 是三维流形 M 中的一个紧二维流形. 假设 S 的每一个连通分支要么是双侧恰当嵌入的,要么包含于 M 的边界中. 如果有 S 的连通分支 F 使得 $\ker([\pi_1(F) \to \pi_1(M)]) \neq 1$,则存在一个圆盘 $D \subset M$,使得 $D \cap S = \partial D$ 并且 ∂D 在 S 中不可缩.

证明. 首先, 选取一个一般位置的映射 $f: (B^2, \partial B^2) \to (M, F)$ 使得 $f|_{\partial B^2}$ 在 F 中是必要的 (不是零伦的). 由 S 的邻域上的乘积结构, 我们可以假设存在 ∂B^2 在 B^2 中的邻域 N, 使得 $f(N-\partial B^2)\cap S=\varnothing$. 从而 $f^{-1}(S)$ 的连通分支都是简单闭曲线. 设 f 是实现连通分支数最小的映射. 设 E 是一个 B^2 中的圆盘, 使得 $E\cap f^{-1}(S)=\partial E$, F' 是 S 的包含 $f(\partial E)$ 的连通分支. 在 B^2 中对 $f^{-1}(S)$ 用 inner most argument, 我们知道 $f|_{\partial E}$ 在 F' 中是必要的; 否则与 f 是实现连通分支数最小的假设矛盾.

由环路定理 (取 $N = \{1\}$), 我们就找到了所需的 D.

推论 3. 设 F 是三维流形 M 中的一个双侧不可压缩曲面, 则 $\ker([\pi_1(F) \to \pi_1(M)]) = 1$.

推论 3 中 F 是双侧的的条件是必要的:

引理 4. 设 M 是一个可定向的三维流形, 它包含一个欧拉示性数是奇数的闭曲面. 假设 F 是 M 中有最大的奇数欧拉示性数的闭曲面. 则 F 在 M 中是不可压缩的. 从而若 $F = \mathbb{P}^2$, 则 $\pi_1(M) = \mathbb{Z}_2 * G$ (其中 G 可以是平凡群).

证明. 反证法. 若 F 是可压缩的, 考虑 F 的压缩圆盘 D. 对 D 做手术:

1. 若 ∂D 分离 F, 则手术得到两个曲面 F', F'', 使得 $\chi(F') + \chi(F'') = \chi(F) + 2$.

2. 若 ∂D 不分离 F, 则手术得到曲面 F', 使得 $\chi(F') = \chi(F) + 2$.

无论如何, 我们得到了具有比 F 更大的奇欧拉示性数的闭曲面 F', 这就与 F 的选取矛盾.

由于 M 可定向, $F = \mathbb{P}^2$ 不可定向, 从而是单侧的, 它的一个正则邻域 (非平凡的区间丛) N 的边界 ∂N 是一个球面. 由 Van-Kampen 定理,

$$\pi_1(M) = \pi_1(N) *_{\pi_1(\partial N)} \pi_1(M - N) = \mathbb{Z}_2 * \pi_1(M - N).$$

又注意到,透镜空间 $L_{2k,q}$ 包含一个欧拉示性数为 2-k 的闭曲面 F: 由定义, 取粘合透镜空间的实心环的边界上的 (p,q)-曲线的合适的管状邻域即得. 可见 https://math.stackexchange.com/questions/268310 /problem-from-hempel-surfaces-in-lens-spaces?r=SearchResults. 由引理 4, 我们可以假设 F 是单侧不可压缩的. 而在第二章我们知道, $\pi_1(L_{2k,q}) = \mathbb{Z}_{2k}$ 是一个有限群. 但对足够大的 k, $\pi_1(F)$ 是一个无限群. 从而 $\pi_1(F) \to \pi_1(L_{2k,q})$ 不可能是单射.

定义 5. 对一个三维流形 M 与一个空间 X, 我们称两个映射 $f,g: M \to X$ 是 C-等价的, 若存在 M 到 X 的映射 $f_0 = f, f_1, \dots, f_n = g$, 使得要么 f_i 同伦于 f_{i-1} , 要么对一些同伦实心球 $B^3 \subset M$, 满足 $B \cap \partial M$ 是空集或者一个圆盘, f_i 与 f_{i-1} 在 M - B 上相等.

若 $\pi_3(X) = 0$,同伦实心球都是零伦的. 从而若第二种情况发生, 就有 f_i , f_{i-1} 在 M 去掉一个点处都相等, 从而同伦. 此时 C-等价的映射都是同伦的. 但是无论如何, 在取合适的基点变换和内自同构的意义下, C-等价的映射诱导相同的群同态 $\pi_1(M) \to \pi_1(X)$: 对情况二, 对 B 与 M-B 使用 Van-Kampen 定理即得.

引理 6. 设 M 是一个紧三维流形, X 是一个 k 维分段线性流形, 且 X 包含一个恰当嵌入的双侧 k-1 维分段线性子流形 Y, 使得 $\ker([\pi_1(Y) \to \pi_1(X)]) = 1$, $\pi_2(Y) = \pi_2(X - Y) = 0$. 设 $f: M \to X$ 是任意一个映射, 则存在映射 $g: M \to X$, 使得

- 1. g 与 f 是 C-等价的.
- 2. $q^{-1}(Y)$ 的每一个连通分支都是 M 中的恰当嵌入的双侧不可压缩曲面.
- 3. 存在合适的 $Y = Y \times 0 \subset X$ 的乘积邻域 $Y \times [-1,1]$ 与 $g^{-1}(Y) = g^{-1}(Y) \times 0 \subset M$ 的乘积邻域 $g^{-1}(Y) \times [-1,1]$, 使得对任意 $p \in g^{-1}(Y)$, g 将纤维 $p \times [-1,1]$ 同胚地映到纤维 $g(p) \times [-1,1]$.

证明. 首先我们取 X 的三角剖分,使得 Y 的乘积邻域 $Y \times [-1,1]$ 以乘积结构被三角化,即 $Y \times [-1,1]$ 中的任意一个单形都是由 $Y \times -1$ 中的一个单形和 $Y \times 1$ 中的一个单形连接出来的.

这样, $Y=Y\times 0$ 关于这个三角化是"横截的". 由单纯逼近定理, 我们可以首先将 f 同伦到一个从 M 的某个三角化到 X 的单纯映射. 此时, 由于 Y 是 X 的恰当嵌入的双侧余维数 1 的分段线性子流形, $f^{-1}(Y)$ 是一个恰当嵌入的双侧曲面 (取适当的 Morse 函数, 由正则值原像定理保证). 并且此时 (3) 在 $Y\times \left[-\frac{1}{2},\frac{1}{2}\right]$ 与 $f^{-1}\left(Y\times \left[-\frac{1}{2},\frac{1}{2}\right]\right)$ 上成立. 如果 $f^{-1}(Y)$ 的每一个连通分支都是不可压缩的, 将每一个纤维重新参数 化即得. 若否, 会出现以下三种情况:

- 1. 若 $f^{-1}(Y)$ 包含一个可压缩的球面 F, 则它在 M 中界定一个实心球 C. 由于 $\pi_2(Y) = 0$, 取 C 的一个 小正则邻域 U, 我们可以构造映射 $f_1 \colon M \to X$, 使得 $f_1|_{M-U} = f|_{M-U}$ 并且 $f_1(U) \subset Y \times [-1,1] Y$. 从而 f_1 与 f 是 C-等价的,并且 $f_1^{-1}(Y) \subset f^{-1}(Y) F$. 这样我们就消掉了 $f^{-1}(Y)$ 中的可压缩球面.
- 2. 若 $f^{-1}(Y)$ 包含一个压缩圆盘 F, 由定义, F 与 ∂M 共同界定一个实心球. 同理 (1), 我们可以消掉 $f^{-1}(Y)$ 中的压缩圆盘.
- 3. 若有压缩圆盘 $D \subset \int M$ 使得 $D \cap f^{-1}(Y) = \partial D$ 并且 ∂D 在 $f^{-1}(Y)$ 中不可缩, 我们取 D 在 M 中

的一个邻域 C 使得 $A = C \cap f^{-1}(Y)$ 是 C 中一个恰当嵌入的带子.

取 ∂C 中两个不交的圆盘 D_1, D_2 使得 $\partial A = \partial D_1 \cup \partial D_2$, 再取 C 中两个恰当嵌入的圆盘 E_1, E_2 使得 $\partial E_i = \partial D_i, i = 1, 2$.

构造 $f_1: M \to X$ 如下: 首先令 $f_1|_{M-\int C} = f|_{M-\int C}$. 由于 $\ker\left([\pi_1(Y) \to \pi_1(X)]\right) = 1$, 我们可以将 $f_1|_{\partial E_i}$ 延拓到 $E_i \to Y$. 这是因为,若否,存在一个圆盘 $D' \subset X - Y$,使得 $\partial D' \subset Y$,矛盾. 之后,由于 $\pi_2(X - Y) = 0$,同理 (1),我们可以把 $C - (E_1 \cup E_2)$ 中的三个实心球都消掉. 并且 $f_1^{-1}(Y)$ 也是 双侧的. 这样我们就消掉了 $f^{-1}(Y)$ 的压缩圆盘 D.

到此为止, 我们得到了与 $f \in C$ -等价的映射 f_1 , 满足引理条件 (2). 最后我们用正则邻域理论可以将 f_1 同伦到满足引理条件 (3) 的 g, 并且不改变 $f_1^{-1}(Y)$, 即为所求.

我们能注意到, 如果一个三维流形 M 包含一个恰当嵌入的双侧非分离曲面 F, 则 $H_1(M)$ 是无限阶的: 任意一个与 F 横截相交于一个孤立点的闭曲线就给出了 $H_1(M)$ 的一个无限阶元. 以下的两个引理给出这个观察一个很强的逆定理.

引理 7. 设 M 是一个紧三维流形, $H_1(M)$ 是无限阶的. 则 M 包含一个恰当嵌入的双侧非分离的不可压缩曲面.

证明. 由于 $H_1(M)$ 是无限阶的, 存在一个满同态 $H_1(M) \to \mathbb{Z}$. 这说明存在一个映射 $f: M \to S^1$, 它诱导一个满同态 $f_*: H_1(M) \to H_1(S^1)$. 由引理 6 (2), $\forall y \in S^1$, 我们可以假设 $f^{-1}(y)$ 的每一个连通分支都是M 中的恰当嵌入的双侧不可压缩曲面. 并且由于 f_* 是满射, $f^{-1}(y) \neq \varnothing$. 这样我们只需要在其中找一个非分离的分支.

由引理 6 (3), 我们可以取 $\pi_1(S^1)$ 的生成元 z, 使得对任意 M 中的与 $f^{-1}(y)$ 横截相交的环路 α , $f_*([\alpha]) = z^n$, 其中 n 是 α 与 $f^{-1}(y)$ 的定向相交数. 这是因为, 每一个相交处有纤维同胚于 $y \in S^1$ 的纤

维,它贡献了z的一次指数.

由于 f_* 是满射, 取环路 α 使得 $f_*([\alpha]) = z$. 这说明 α 与 $f^{-1}(y)$ 的某个连通分支 F 相较于奇数个点. 从 而 M - F 是连通的. 这是因为, 若否, 将 α 沿 F 切开得到一些线段, 每个线段的每个端点都会贡献一个相交数, 从而 α 与 F 的相交数为偶数, 矛盾. 这说明 F 是非分离的, 即为所求.

很多情况下, $|H_1(M)| = \infty$ 的条件是自然满足的. 例如:

引理 8. 设 M 是一个紧三维流形, 并且

- 要么 M 可定向, $\partial \widehat{M} \neq \emptyset$,
- 要么 M 不可定向, $\partial \widehat{M}$ 不包含射影平面 (允许 $\partial \widehat{M} = \emptyset$),

其中 \widehat{M} 表示将 M 的球面边界都粘上一个实心球所得到的流形. 则 $H_1(M)$ 是无限阶的.

证明. 对两种情形同时证明. 将两个 \widehat{M} 沿他们边界粘合,得到一个闭三维流形 $2\widehat{M}$. 考虑 $(2\widehat{M},\widehat{M}_1=\widehat{M},\widehat{M}_2=\widehat{M})$ 的 Mayer-Vietoris 序列可以得到 $\chi\left(2\widehat{M}\right)=2\chi\left(\widehat{M}\right)-\chi\left(\partial\widehat{M}\right)$. 由于 $2\widehat{M}$ 是闭可定向三维流形, $\chi\left(2\widehat{M}\right)=0$ (见 Hatcher 的代数拓扑 Cor 3.37). 并且由于 $\partial\widehat{M}$ 没有球面分支,我们有

$$\chi\left(\widehat{M}\right) = \frac{1}{2}\chi\left(\partial\widehat{M}\right) \le 0.$$

由于 \widehat{M} 是紧流形, 由 Poincaré 对偶,

$$H_3\left(\widehat{M}\right) = H^0\left(\widehat{M}\right) = 0.$$

故 $b_3\left(\widehat{M}\right)=0$. 最后由欧拉示性数与 Betti 数的关系

$$\chi = b_0 - b_1 + b_2 - b_3,$$

我们有

$$\dim H_1(M) = \dim H_1\left(\widehat{M}\right) = b_1\left(\widehat{M}\right) = b_0\left(\widehat{M}\right) + b_2\left(\widehat{M}\right) - b_3\left(\widehat{M}\right) - \chi\left(\widehat{M}\right) \ge 1 + b_2\left(\widehat{M}\right) \ge 1,$$
即 $H_1(M)$ 是无限阶的.

对带边的可定向流形, 引理 7 有更强的版本:

引理 9. 设 M 是一个紧可定向的三维流形, 它的边界 ∂M 包含一个正亏格的曲面. 则 M 包含一个恰当 嵌入的双侧不可压缩曲面 F, 使得 $0 \neq [\partial F] \in H_1(\partial M)$ (从而 $\partial F \neq 0$).

证明. 首先, 由于 M 是可定向的, 且 F 是双侧的, F 也是可定向的. 从而 F 的定向又诱导了 ∂F 的定向. 这说明 $[\partial F] \in H_1(\partial M)$ 是良定义的.

由引理 8, $|H_1(M)| = \infty$. 于是我们可以同理引理 7 的证明: 选取 $f: M \to S^1$, 使得对某个 $y \in S^1$, $f^{-1}(y)$ 的每个连通分支都是不可压缩的. 若结论不对, 即 $\partial F = \emptyset$ 或者 $[\partial F] = 0 \in H_1(\partial M)$, 则对任意 ∂M 中的环路 α , 它与 ∂F 的定向相交数是 0. 从而 $f_*([\alpha]) = z^0 = 0$. 这说明 $f_*(H_1(\partial M)) = 0 \in H_1(S^1) = \pi_1(S^1)$. 这样, 我们只需要取合适的 f 使得 $f_*(H_1(\partial M)) \neq 0$, 就避免了这种情况, 从而完成证明.

只需要证 $|\operatorname{im}([i_*: H_1(\partial M) \to H_1(M)])| = \infty$. 这样,由于 f_* 是满射,就一定有 $f_*(H_1(\partial M)) = \operatorname{im}(f_*i_*) \neq 0$. 若否,考虑 $\mathbb Q$ 系数的同调,我们有以下的相对同调 Mayer-Vietoris 正合序列:

$$0 \longrightarrow H_3(M, \partial M; \mathbb{Q}) \longrightarrow H_2(\partial M; \mathbb{Q}) \longrightarrow H_2(M; \mathbb{Q}) \longrightarrow H_2(M, \partial M; \mathbb{Q}) \longrightarrow H_1(\partial M; \mathbb{Q}) \longrightarrow 0.$$

它们的秩的交错和为 0. 又由 Alexander 对偶定理和万有系数定理,

$$H_2(M, \partial M; \mathbb{Q}) = H^1(M; \mathbb{Q}) = H_1(M; \mathbb{Q}).$$

从而

$$1 - b_2(\partial M) + b_2(M) - b_1(M) + b_1(\partial M) = 0,$$

其中 b_i 是有理 Betti 数. 于是, 由于 $b_3(M) = 0$ (见引理 8的证明),

$$\chi(M) = -b_3(M) + b_2(M) - b_1(M) + b_0(M) = 0 - 1 + b_2(\partial M) - b_1(\partial M) + b_0(M) = \chi(\partial M) - b_0(\partial M).$$

同理引理 8 的证明, 又有 $\chi(M) = \frac{1}{2}\chi(\partial M)$. 从而

$$\chi(\partial M) = 2b_0(\partial M) \ge 2$$

是一个正偶数. 这说明 ∂M 的每一个分支都是球面, 与假设 ∂M 含一个亏格为正的可定向曲面矛盾. \Box

- **注记 10.** 1. 引理 9 并不说明 ∂F 不能在 ∂M 中界定一个曲面, 除非 ∂F (由 F 的诱导定向) 不是 ∂M 中某个曲面的定向边界.
 - 2. 引理 8 对边界包含射影平面的不可定向三维流形不一定成立, 哪怕它的边界包含正亏格的可定向曲面.
 - 3. 如果 M 不可定向, $\partial \widehat{M} \neq \emptyset$, 我们不能得到 im $([H_1(\partial M) \to H_1(M)])$ 是无限阶的, 哪怕 ∂M 不包含射影平面.

以下是反例:

例 11. 设 M 是 Klein 瓶上的扭 I-丛. 它是可定向的. 如果 F 是 M 中的一个带边的双侧不可压缩曲面,由于 ∂M 是不可压缩的,并且 $\pi_1(M)$ 不包含非平凡的自由子群,F 一定是一个带子. 于是 ∂F 在 $\partial M = S^1 \times S^1$ 中界定两个带子 B_1, B_2 . 但是 $F \cup B_i$ 是一个 Klein 瓶,i = 1, 2. 这给出了注记 10 (1) 的反例.

例 12. 设 F 是一个可定向闭曲面, $r: F \to F$ 是一个对合($r^2 = \mathrm{id}$),有有限个不动点 x_1, \cdots, x_n ,使得 $r_*: H_1(F) \to H_1(F)$ 将每个元素映到它的逆. 比如,取 $F = S^1 \times S^1$, $r\left(\mathrm{e}^{\mathrm{i}\,\theta},\mathrm{e}^{\mathrm{i}\,\phi}\right) = \left(\mathrm{e}^{-\mathrm{i}\,\theta},\mathrm{e}^{-\mathrm{i}\,\phi}\right)$.定义 $\sigma: F \times [-1,1] \to F \times [-1,1]$, $\sigma(x,t) = (r(x),-t)$.取 $x_1 \times 0, \cdots, x_n \times 0$ 的领域(实心球) B_1, \cdots, B_n ,使得 $\sigma(B_i) = B_i$, $i = 1, \cdots, n$. 从而 σ 自由作用在 $F \times [-1,1] - \bigcup_{i=1}^n \mathrm{int}\, B_i$.考虑商空间 $M := (F \times [-1,1] - \bigcup_{i=1}^n \mathrm{int}\, B_i) / \sigma$.则 ∂M 包含 n 个射影平面(由 ∂B_i 生成)和一个 F(由 $F \times -1$ 和 $F \times 1$ 粘合而来). 容易看出 $H_1(M)$ 是有限阶的: 由 Van-Kampen 定理,

$$\pi_1(M) = \pi_1 \left(T^2 \right) *_{\pi_1(T^2) \oplus \pi_1(T^2)} \pi_1 \left(T^2 \right)$$

$$= \langle a, b, c, d : ab = ba, cd = dc, a = c^{-1}, b = d^{-1}, a = c, b = d \rangle = \mathbb{Z}_2^2.$$

从而这就给出了注记 10 (2) 的反例.

例 13. 如下图所示, 设 V 是一个实心 Klein 瓶, T 是 V 内部的一个实心环.

从而

$$\pi_1(V - \operatorname{int} T) = \langle a, b, c : aba^{-1} = b^{-1}, aca^{-1} = b^{-1}c \rangle.$$

另外, 选 ∂T 的一个纬线 λ , 它是 $a^2 \in \pi_1(V - \operatorname{int} T)$ 的一个代表元. 沿着 λ 给 $V - \operatorname{int} T$ 粘上一个 2-handle 得到流形 M. 此时, $\partial M = K^2 \cup S^2$, 从而 $\pi_1(\partial M) = \mathbb{Z} \times \mathbb{Z}_2$. 而注意到 $\partial M \hookrightarrow M$ 将同调中 \mathbb{Z}_2 的部分杀掉, 将 \mathbb{Z} 中 $\lambda = a^2$ 生成的部分杀掉, 即 $\ker ([H_1(\partial M) \to H_1(M)]) = 2\mathbb{Z} \times \mathbb{Z}_2$. 从而

$$\operatorname{im}\left(\left[H_1\left(\partial M\right)\to H_1(M)\right]\right)=H_1(\partial M)/\ker\left(\left[H_1\left(\partial M\right)\to H_1(M)\right]\right)=\mathbb{Z}_2.$$

这就给出了注记 10 (3) 的反例.