Isothermal hydrodynamics

keppens@rijnh.nl

- ullet Combine mass ho conservation with momentum m=
 ho v conservation
 - \Rightarrow assume isothermal gas so that pressure $p=c_i^2\rho$ with constant c_i^2
 - $\Rightarrow c_i$ is the isothermal sound speed
 - ⇒ 1D isothermal hydrodynamics governed by

$$\begin{cases} \rho_t + (\rho v)_x = 0 \\ m_t + (m v + p)_x = 0 \end{cases}$$

• 1D dynamics of gas at uniform temperature

- ullet vector of conserved quantities $U = \left[egin{array}{c}
 ho \\ m \end{array} \right]$
 - \Rightarrow write as $U_t + (F(U))_x = 0$
 - ⇒ flux vector

$$F(U) = \begin{bmatrix} m \\ \frac{m^2}{\rho} + c_i^2 \rho \end{bmatrix}$$

• Manipulate to $U_t + F_U U_x = 0$ with flux Jacobian matrix

$$F_U \equiv \frac{\partial F}{\partial U} = \begin{bmatrix} 0 & 1\\ c_i^2 - \frac{m^2}{\rho^2} & \frac{2m}{\rho} \end{bmatrix}$$

• Determine (right) eigenvalues and eigenvectors

$$\Rightarrow F_U \mathbf{r} = \lambda \mathbf{r}$$

$$\Rightarrow \text{find } \lambda_1 = v - c_i \text{ and } \lambda_2 = v + c_i$$

- ullet Eigenvalue $\lambda_1=v-c_i$ has eigenvector ${f r}_1=egin{bmatrix}1\vletv-c_i\end{bmatrix}$
- ullet Eigenvalue $\lambda_2=v+c_i$ has eigenvector ${f r}_2=\left[egin{array}{c}1\vled v+c_i\end{array}
 ight]$
 - \Rightarrow introduce matrix R and Λ such that $F_UR = R\Lambda$ as

$$\begin{bmatrix} 0 & 1 \\ c_i^2 - v^2 & 2v \end{bmatrix} \begin{bmatrix} 1 & 1 \\ v - c_i & v + c_i \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ v - c_i & v + c_i \end{bmatrix} \begin{bmatrix} v - c_i & 0 \\ 0 & v + c_i \end{bmatrix}$$

⇒ reminiscent of linear hyperbolic systems

- Note conservation form of equations: $U_t + \nabla \cdot F(U) = 0$
 - \Rightarrow discrete equivalent for discontinuity traveling at speed s
 - ⇒ Rankine-Hugoniot conditions
 - \Rightarrow connect left state $U_l=\left[egin{array}{c}
 ho_l \ m_l \end{array}
 ight]$ and right state $U_r=\left[egin{array}{c}
 ho_r \ m_r \end{array}
 ight]$

$$F(U_l) - F(U_r) = s \left(U_l - U_r \right)$$

• given U_r : RH yields system of 2 equations for three unknowns s, ρ_l, m_l

$$\begin{cases} m_{l} - m_{r} &= s \left(\rho_{l} - \rho_{r} \right) \\ \frac{m_{l}^{2}}{\rho_{l}} - \frac{m_{r}^{2}}{\rho_{r}} + c_{i}^{2} \left(\rho_{l} - \rho_{r} \right) &= s \left(m_{l} - m_{r} \right) \end{cases}$$

 \Rightarrow Note obvious solution s=0 and $U_l=U_r$

- ullet Define Hugoniot locus for state U_r
 - \Rightarrow all states U_l that can be connected to U_r in accord with RH
 - ⇒ manipulate system to

$$\begin{cases} m_l = \frac{\rho_l}{\rho_r} m_r \pm \sqrt{\frac{\rho_l}{\rho_r}} c_i \left(\rho_l - \rho_r\right) \\ s = \frac{m_r}{\rho_r} \pm \sqrt{\frac{\rho_l}{\rho_r}} c_i \end{cases}$$

- \Rightarrow parametrize $\rho_l = \rho_r (1 + \xi)$, vary $\xi \in [-1, +\infty]$
- \Rightarrow plot for given state U_r as curves in $\rho-m$ plane

ullet Example Hugoniot loci for states $U_r=\left|egin{array}{c}1\\1\end{array}
ight|$ and $\left|egin{array}{c}1\\0\end{array}
ight|$

- ullet Graphically, solution to Riemann problem for given states U_l and U_r
 - ⇒ construct Hugoniot loci: intersect at 2 intermediate states

- \Rightarrow only one intersection physical: due to speed ordering $\lambda_1 < \lambda_2$
- \Rightarrow find state U_m which connects U_l 1-shock U_m 2-shock U_r
- \Rightarrow counts ok: 4 unknowns $U_m = \left[egin{array}{c}
 ho_m \\ m_m \end{array}
 ight]$, s_1 , s_2 for 4 equations (RH)
- unfortunately, we're not done yet . . .

Return to RH system

$$\begin{cases} m_{l} - m_{r} &= s \left(\rho_{l} - \rho_{r} \right) \\ \frac{m_{l}^{2}}{\rho_{l}} - \frac{m_{r}^{2}}{\rho_{r}} + c_{i}^{2} \left(\rho_{l} - \rho_{r} \right) &= s \left(m_{l} - m_{r} \right) \end{cases}$$

- \Rightarrow analyse stationary shock $s=0 \rightarrow m_l=m_r$
- ⇒ second equation can be manipulated to

$$v_l + \frac{c_i^2}{v_l} = v_r + \frac{c_i^2}{v_r} = 2c_i$$

- \Rightarrow latter equality holds at sonic point where $v = c_i$
- deduce $c_i^2 = v_r v_l$: Prandtl-Meyer relation
 - ⇒ shock separates subsonic from supersonic state
 - \Rightarrow Mach number $M_l\equiv rac{v_l}{c_i}$: find $M_l^2=rac{v_l}{v_r}$ and $rac{
 ho_l}{
 ho_r}=rac{1}{M_l^2}$
 - ⇒ density is lower in supersonic state than in subsonic state
 - \Rightarrow high p and ρ subsonic state, low p and ρ supersonic state

• similarly for shock at finite speed s: Galilean transformation

$$M_l^2 = \frac{v_l - s}{v_r - s} = \frac{\rho_r}{\rho_l}$$

 \Rightarrow as fluid goes through shock: sees shock coming supersonically, gets compressed and raised in p, v drops

- However: not all shocks from Hugoniot Locus are realizable
 - ⇒ remember from Burgers example:
 - \Rightarrow switch U_l and U_r does not lead to same solution
- in particular for previous case plotted: switch

⇒ will not be realized in practice: something is missing . . .

- Remember solution of advection equation:
 - \Rightarrow Contact Discontinuity (density jump advected at speed v)
 - \Rightarrow is this ingredient missing?
- Turns out that CD is not possible for 1D isothermal HD
 - \Rightarrow jump in density while constant $v \rightarrow$ jump in pressure
 - ⇒ non-equilibrium: pressure imbalance
 - ⇒ Does not satisfy RH conditions!

- Remember 'Rarefaction' solution from Burgers equation
 - \Rightarrow note solution is constant on rays $x = \xi t$
 - \Rightarrow generalize to 'similarity solutions': function of $x/t = \xi$ alone
- Rarefaction wave is similarity solution of form

$$U(x,t) = U(x/t) = \begin{cases} U_l & x \le \xi_1 t \\ W(x/t) & \xi_1 t < x < \xi_2 t \\ U_r & \xi_2 t \le x \end{cases}$$

 \Rightarrow where W(x/t) is smooth function with $\left\{ \begin{array}{l} W(\xi_1) = U_l \\ W(\xi_2) = U_r \end{array} \right.$

• graphically:

- If U(x,t)=W(x/t) then $U_t=-\frac{x}{t^2}W'(x/t)$ and $U_x=\frac{1}{t}W'(x/t)$
 - \Rightarrow equation $U_t + F_U U_x = 0$ yields $F_U W' = \frac{x}{t} W'$
 - $\Rightarrow W'$ is proportional to eigenvector \mathbf{r}_p of F_U
 - $\Rightarrow \frac{x}{t} = \xi$ will be eigenvalue λ_p
 - \Rightarrow write $W'=lpha(\xi)\mathbf{r}_p(W(\xi))$ and $\xi=\lambda_p(W(\xi))$
 - \Rightarrow differentiate to ξ and find

$$1 = \nabla \lambda_p \cdot W' = \nabla \lambda_p \alpha \mathbf{r}_p$$

- \Rightarrow hence $W' = \frac{1}{\nabla \lambda_p \cdot \mathbf{r}_p} \mathbf{r}_p$
- \Rightarrow note $\nabla \lambda_p = \left(rac{\partial \lambda_p}{\partial
 ho} \ rac{\partial \lambda_p}{\partial m}
 ight)$

• this gives the following system of ODEs for 1-rarefaction:

$$\begin{pmatrix} \rho' \\ m' \end{pmatrix} = \begin{pmatrix} -\frac{\rho}{c_i} \\ -\frac{m}{c_i} + \rho \end{pmatrix}$$

- \Rightarrow solution is $\rho = \rho_l e^{-(\xi \xi_1)/c_i}$
- \Rightarrow and momentum $m = [m_l + \rho_l (\xi \xi_1)] e^{-(\xi \xi_1)/c_i}$
- these equations define the integral curves for 1-rarefactions:
 - \Rightarrow eliminate ξ to get $m(\rho)$ for given ρ_l , m_l

$$\Rightarrow m = m_l \frac{\rho}{\rho_l} - c_i \rho \ln \frac{\rho}{\rho_l}$$

• similarly for integral curves for 2-rarefactions:

$$\Rightarrow m = m_l \frac{\rho}{\rho_l} + c_i \rho \ln \frac{\rho}{\rho_l}$$

- ullet plot integral curves for given ho_l , m_l
 - \Rightarrow note obvious solution $m=m_l$ and $\rho=\rho_l$
 - \Rightarrow parametrize $\rho = \rho_l(1+\xi)$ and plot in ρ -m plane

- Comparison Hugoniot Loci with Integral curves
 - \Rightarrow coincide locally, but different

- For solution to Riemann Problem
 - ⇒ which part of Hugoniot Locus and Integral curves permissable?
- Lax entropy condition: Jump in p-th field ok if

$$\lambda_p(U_l) > s > \lambda_p(U_r)$$

- ⇒ shock speed must lie in between characteristic speed of 2 states
- ⇒ Note: asymmetric in left versus right state!

- *p*-characteristics enter shock
 - ⇒ from every point on shock: travel along characteristics backward in time, not forward
 - ⇒ information reaches shock from past, not from future
 - \Rightarrow 'causality' and time-irreversibility \rightarrow 'entropy' condition

Analyse Hugoniot locus for isothermal case:

$$\Rightarrow$$
 first consider right state $U_r = \left(egin{array}{c}
ho_r \\ m_r \end{array}
ight)$ and 1-shock

 \Rightarrow recall $\lambda_1 = v - c_i$ and parametrized

$$U_l = \begin{pmatrix} \rho_l \\ m_l \end{pmatrix} = \begin{pmatrix} \rho_r (1+\xi) \\ m_r (1+\xi) \pm \sqrt{1+\xi} c_i \rho_r \mid \xi \mid \end{pmatrix}$$

 \Rightarrow associated shock speed $s = \frac{m_r}{\rho_r} \pm \sqrt{1+\xi}c_i \frac{|\xi|}{\xi}$

entropy condition becomes

$$\underbrace{\frac{m_r}{\rho_r} - c_i}_{\lambda_1(U_r)} < \underbrace{\frac{m_r}{\rho_r} \pm \sqrt{1 + \xi} c_i \frac{|\xi|}{\xi}}_{s} < \underbrace{\frac{m_r(1 + \xi) \pm \sqrt{1 + \xi} c_i \rho_r |\xi|}{\rho_r(1 + \xi)}}_{\lambda_1(U_l)} - c_i$$

- analyse for higher density left states $\xi > 0$
 - ⇒ impossible to satisfy simultaneously!
 - \Rightarrow right state U_r can not have S_1 -shock to higher density states!
- ullet analyse for lower density left states $-1 < \xi < 0$
 - ⇒ one sign combination allowed
 - \Rightarrow can connect right state to lower density left state via S_1 -shock
- situation is reversed for left state
- ullet similarly: can connect right state U_r to higher density state via S_2

Solution to RP: graphically

Form L-1-M-2-R

From intersections of

- \Rightarrow for shocks: gas gets compressed, ρ increases
- \Rightarrow for rarefactions: gas gets rarified, ρ drops

- 8 possibilities: to be verified numerically
- case $U_l = (1,0)$ and $U_r = (0.125,0)$, run till t = 0.15

 \Rightarrow emerging $U_m = (0.346, 0.367)$ state: agrees with theory!

• case $U_l = (0.445, 0.31061)$ and $U_r = (0.5, 0)$, run till t = 0.15

 \Rightarrow emerging $U_m = (0.667, 0.193)$ state: agrees with theory!

• case $U_l = (0.5, 0)$ and $U_r = (0.445, 0.31061)$, run till t = 0.15

 \Rightarrow emerging $U_m = (0.333, 0.136)$ state: agrees with theory!

 \bullet nomenclature: primitive variables $\begin{pmatrix} \rho \\ v \end{pmatrix}$ obey

$$\begin{pmatrix} \rho \\ v \end{pmatrix}_t + \begin{pmatrix} v & \rho \\ \frac{c_i^2}{\rho} & v \end{pmatrix} \begin{pmatrix} \rho \\ v \end{pmatrix}_x = 0$$

can be manipulated to

$$\begin{cases} (v - c_i \ln \rho)_t + (v - c_i) (v - c_i \ln \rho)_x = 0 \\ (v + c_i \ln \rho)_t + (v + c_i) (v + c_i \ln \rho)_x = 0 \end{cases}$$

- \Rightarrow Riemann Invariants $v \pm c_i \ln \rho$
- \Rightarrow constant along characteristics $dx/dt = v \pm c_i$

- Plot RI for case where $L R_1 M S_2 R$
 - \Rightarrow constant RI_2 through R_1 rarefaction

References

- R.J. LeVeque, Numerical Methods for Conservation Laws, 1990, Birkhäuser Verlag, Berlin
- R.J. Leveque et al., Computational Methods for Astrophysical Fluid Flow, Saas-Fee Advanced Course 27, 1998, Springer-Verlag, Berlin
- P. Wesseling, *Principles of Computational Fluid Dynamics*, 2001, Spinger-Verlag, Berlin (Chapter 9)