Leçon 161. Distances et isométries d'un espace affine euclidien.

1. NOTATION. On considère un R-espace affine $\mathscr E$ de direction E.

1. Espaces affines euclidiens

1.1. Notions d'application affine, d'isométrie et de distance

2. DÉFINITION. L'espace affine $\mathscr E$ est euclidien si sa direction E est un espace vectoriel euclidien. On le munit de la distance $d\colon \mathscr E\times \mathscr E\longrightarrow \mathbf R_+$ définie par

$$AB := d(A, B) = \|\overrightarrow{AB}\|, \qquad A, B \in \mathscr{E}.$$

On suppose désormais que l'espace affine $\mathscr E$ est euclidien.

- 3. Exemple. L'espace affine \mathbb{R}^n est euclidien.
- 4. Proposition (point de Fermat). Soient A, B et C trois points non alignés du plan euclidien \mathbf{R}^2 . On suppose que les trois angles du triangle ABC sont strictement inférieurs à $2\pi/3$. Alors la fonction

$$f: \begin{vmatrix} \mathbf{R}^2 \longrightarrow \mathbf{R}, \\ M \longmapsto MA + MB + MC \end{vmatrix}$$

admet un unique point minimum.

5. DÉFINITION. Soient $\mathscr E$ et $\mathscr F$ deux espaces affines de directions respectives E et F. Une application $\varphi\colon \mathscr E\longrightarrow \mathscr F$ est affine s'il existe un point $O\in \mathscr E$ et une application linéaire $f\colon E\longrightarrow F$ tels que

$$\forall M \in \mathscr{E}, \qquad f(\overrightarrow{OM}) = \overline{\varphi(O)\varphi(M)}.$$

- 6. Proposition. Un telle application f ne dépend pas du point O et elle est unique. On la note $\vec{\varphi}$ et on l'appelle la partie linéaire de l'application affine φ .
- 7. Exemple. Les applications affines de $\mathbf R$ dans $\mathbf R$ sont celles de la forme $x \longmapsto ax+b$ avec $a,b \in \mathbf R$. Leurs parties linéaires sont les applications $x \longmapsto ax$.
- 8. DÉFINITION. Soient E et F deux espaces vectoriels euclidiens. Une isométrie vectorielle de E dans F est une application linéaire $f: E \longrightarrow F$ telle que

$$\forall x \in E, \qquad ||f(u)|| = ||u||.$$

- 9. Exemple. Les symétries orthogonales de E sont des isométries vectorielles.
- 10. DÉFINITION. Soient $\mathscr E$ et $\mathscr F$ deux espaces affines euclidiens. Une isométrie affine de $\mathscr E$ dans $\mathscr F$ est une application affine $\varphi\colon \mathscr E\longrightarrow \mathscr F$ telle que

$$\forall A, B \in \mathscr{E}, \qquad d(\varphi(A), \varphi(B)) = d(A, B).$$

- 11. PROPOSITION. Une application affine $\varphi \colon \mathscr{E} \longrightarrow \mathscr{F}$ est une isométrie si et seulement si l'application linéaire $\vec{\varphi}$ est une isométrie.
- 12. Théorème. L'ensemble $\mathcal{O}(E)$ des isométries vectorielles de E dans E est un groupe. L'ensemble $\mathcal{E}(E)$ des isométries affines de $\mathcal{E}(E)$ dans $\mathcal{E}(E)$ est un groupe.
- 13. DÉFINITION. Une translation de $\mathscr E$ est une application affine de $\mathscr E$ dans $\mathscr E$ de partie linéaire Id_E .
- 14. Proposition. Une translation φ de ${\mathscr E}$ vérifie

$$u := \overrightarrow{A\varphi(A)} = \overrightarrow{B\varphi(B)}, \qquad A, B \in \mathscr{E}.$$

On dit que l'application φ est la translation de vecteur u et on la note t_u .

1.2. Structure générale des isométries

15. PROPOSITION. Soient \mathscr{F} et \mathscr{G} deux sous-espaces affines de \mathscr{E} . On suppose que leurs directions F et G vérifient $F \oplus G = E$. Soit $s_F \colon E \longrightarrow E$ la symétrie orthogonale par rapport à F. Étant donné un point $O \in \mathscr{E}$, l'application $\sigma_{\mathscr{F}} \colon \mathscr{E} \longrightarrow \mathscr{E}$ définie par

$$\overrightarrow{O\sigma_{\mathscr{F}}(M)} = s_F(\overrightarrow{OM}), \qquad M \in \mathscr{E}$$

est une application affine ne dépend pas du choix du point O.

- 16. DÉFINITION. L'application $\sigma_{\mathscr{F}}$ est la symétrie orthogonale affine par rapport au sous-espace affine \mathscr{F} .
- 17. DÉFINITION. Une réflexion de E (respectivement de \mathscr{E}) est un symétrie orthogonale par rapport à un hyperplan de E (respectivement de \mathscr{E}).
- 18. Théorème. Soit E un espace vectoriel euclidien de dimension n. Toute isométrie de E peut s'écrire comme une composée de p réflexions avec $p \leq n$.
- 19. COROLLAIRE. Soit $\mathscr E$ un espace vectoriel affine de dimension n. Toute isométrie de $\mathscr E$ peut s'écrire comme une composée de p réflexions avec $p \le n+1$.
- 20. DÉFINITION. Un déplacement (respectivement un anti-déplacement) de \mathscr{E} est une isométrie $\varphi \in \text{Isom}(\mathscr{E})$ telle que det $\vec{\varphi} > 0$ (respectivement det $\vec{\varphi} < 0$).
- 21. Proposition. L'ensemble $\mathrm{Isom}^+(\mathscr{E})$ des déplacements de \mathscr{E} est un sous-groupe de $\mathrm{Isom}(\mathscr{E}).$
- 22. Proposition. Le nombre de réflexions décomposant une isométrie est pair si et seulement si cette dernière est un déplacement.
- 23. Proposition. Soient \mathscr{E} un espace affine euclidien et $\varphi \in \text{Isom}(\mathscr{E})$. Alors il existe une translation t_v et un isométrie ψ de \mathscr{E} telles que
 - l'espace ${\mathscr F}$ des points fixes de l'application ψ ne soit pas vide :
 - le vecteur v de la translation t_v appartienne à la direction de l'espace \mathscr{F} ;
 - on ait $\varphi = t_v \circ \varphi$.

De plus, le couple (v, ψ) est unique, les isométries t_v et ψ commutent et

$$F = \operatorname{Ker}(\vec{\varphi} - \operatorname{Id}_E).$$

2. Endomorphismes orthogonaux et matrices orthogonales

2.1. Définitions et premières propriétés

- 24. DÉFINITION. Soit $n \ge 1$ un entier. Une matrice $A \in \mathcal{M}_n(\mathbf{R})$ est orthogonale si elle vérifie ${}^{\mathrm{t}}AA = I_n$.
- 25. PROPOSITION. Une matrice $A \in \mathcal{M}_n(\mathbf{R})$ est orthogonale si et seulement si son endomorphisme canoniquement associé est une isométrie vectorielle de \mathbf{R}^n .
- 26. COROLLAIRE. Le groupe O(n) des matrices orthogonales de taille n est compact.
- 27. DÉFINITION. Une matrice orthogonale $A \in O(n)$ est *spéciale* si son déterminant est positif. L'ensemble SO(n) des matrices orthogonales de taille n est un groupe.

$$A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$
 avec $a, b \in \mathbf{R}, \ a^2 + b^2 = 1,$

c'est-à-dire qu'il existe un réel $\theta \in \mathbf{R}$ tels que

$$A = R(\theta) := \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

Autrement, le groupe SO(2) est isomorphe au groupe des complexes de module 1.

29. APPLICATION (notion d'angle dans un plan). Soient $u, v \in E$ deux vecteurs unitaires d'un plan vectoriel E. Alors il existe un et une seule isométrie $f \in O(E)$ telle que f(u) = v. Un réel $\theta \in \mathbf{R}$ tel que la matrice $R(\theta)$ représente l'isométrie f est appelée une mesure de l'angle du couple (u, v).

2.2. Structure du groupe orthogonal

30. Théorème. Soit $f \in O(E)$. Alors il existe une base orthonormée \mathcal{B} de E, trois entiers $r, s, t \in \mathbb{N}$ et des réels $\theta_1, \ldots, \theta_t \in \mathbb{R}$ tels que

$$\operatorname{Mat}_{\mathscr{B}}(f) = \operatorname{diag}(I_r, -I_s, R(\theta_1), \dots, R(\theta_r)).$$

31. Exemple. La symétrie orthogonale de ${\bf R}^3$ par rapport à ${\rm Vect}\{(1,0,0)\}$ a pour matrice dans la base canonique

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

32. COROLLAIRE. Soit $f \in SO(E)$. Alors il existe une base orthonormée \mathcal{B} de E, deux entiers $r, s \in \mathbf{N}$ et des réels $\theta_1, \ldots, \theta_s \in \mathbf{R}$ tels que

$$\operatorname{Mat}_{\mathscr{B}}(f) = \operatorname{diag}(I_r, R(\theta_1), \dots, R(\theta_s)).$$

- 33. COROLLAIRE. Le groupe $\operatorname{Isom}^+(\mathscr{E})$ est connexe par arcs.
- 34. COROLLAIRE. Le groupe SO(n) est connexe par arcs et le groupe O(n) admet deux composantes connexes par arcs que sont SO(n) et $O^-(n) := O(n) \setminus SO(n)$.

3. Étude des isométries en petites dimensions

3.1. Classification en dimension deux

- 35. Proposition. Les isométries d'un plan vectoriel sont exactement l'identité, les réflexions et les rotations.
- 36. DÉFINITION. Une symétrie glissée orthogonale de $\mathscr E$ est une application s'écrivant sous la forme $\psi \circ t_v$ pour un réflexion ψ et un vecteur v de E.
- 37. Théorème. Une isométrie d'un plan affine fait partie de l'un des quatre types suivants :
 - une translation (qui n'admet pas de point fixe);
 - une rotation (qui admet un unique point fixe);
 - une réflexion (qui admet une droite de points fixes);
 - une symétrie glissée (qui n'admet pas de point fixe).

3.2. Classification en dimension trois

- 38. Proposition. Soit $f \in \text{Isom}(E)$ une isométrie d'un espace euclidien E de dimension 3. Il existe une base (e_1, e_2, e_3) de E dans laquelle la matrice de l'isométrie f est de l'une des formes suivants :
 - -A = diag(1,1,-1): l'isométrie f est une réflexion;
 - $A = diag(1, R(\theta))$ ∈ SO(2) : l'isométrie f est une rotation d'axe Vect $\{e_1\}$ et d'angle θ .
 - $A = \text{diag}(-1, R(\theta))$ ∈ O⁻(2) : l'isométrie f est une anti-rotation d'axe Vect $\{e_1\}$ et d'angle θ .
- 39. DÉFINITION. Soit $\mathscr{D} \subset \mathscr{E}$ une droite affine. Un *visage* d'axe \mathscr{D} de \mathscr{E} est une application de la forme $\psi \circ t_v$ pour une rotation ψ d'axe \mathscr{D} et un vecteur v de E.
- 40. Théorème. Une isométrie $\varphi \in \text{Isom}(\varphi)$ d'un espace affine de dimension 3 fait partie de l'un des quatre types suivants :
 - une translation (qui n'admet pas de point fixe);
 - une réflexion (qui admet un unique point fixe);
 - une symétrie glissé (qui n'admet pas de point fixe)e;
 - une rotation (qui admet un point fixe);
 - un visage (qui n'admet pas de point fixe);
 - une application telle que sa partie linéaire φ soit un anti-rotation.

3.3. Isométries préservant un ensemble

41. DÉFINITION. Une isométrie $\varphi \in \text{Isom}(\mathscr{E})$ stabilise une partie $X \subset \mathscr{E}$ si $\varphi(X) \subset X$. On note Isom(X) le groupe des isométries de \mathscr{E} stabilisant X. Notons également

$$\operatorname{Isom}^+(X) := \operatorname{Isom}(X) \cap \operatorname{Isom}^+(\mathscr{E}).$$

- 42. DÉFINITION. L'enveloppe convexe d'une partie $S \subset \mathscr{E}$ est l'ensemble des barycentres de parties finies de S à coefficients positifs. On la note Conv S.
- 43. DÉFINITION. Soit $S \subset \mathscr{E}$. Un point $A \in X := \operatorname{Conv} S$ est extrémal s'il n'est pas un barycentre à coefficients positifs de points de $X \setminus \{A\}$.
- 44. Exemple. Les sommets du cube $C\subset {\bf R}^3$ sont ses points extrémaux.
- 45. PROPOSITION. Soit $X \subset \mathscr{E}$. On suppose que la partie X est l'enveloppe convexe d'une partie $S \subset \mathscr{E}$ et que les points de S sont extrémaux. Alors toute isométrie stabilisant X stabilise S, c'est-à-dire $Isom(X) \subset Isom(S)$.
- 46. Proposition. Soit $X\subset {\bf R}^3$ une partie finie possédant un centre de symétrie. Alors on dispose de morphismes de groupes

$$\operatorname{Isom}(X) \simeq \operatorname{Isom}^+(X) \times \mathbf{Z}/2\mathbf{Z}.$$

47. THÉORÈME. Les groupes d'isométries du cube $C \subset \mathbf{R}^3$ sont

$$\operatorname{Isom}^+(C) \simeq \mathfrak{S}_4$$
 et $\operatorname{Isom}(C) \simeq \mathfrak{S}_4 \times \mathbf{Z}/2\mathbf{Z}$.

Michèle Audin. Géométrie. EDP Sciences, 2006.

Philippe Caldero et Jérôme Germoni. Nouvelles histoires hédonistes de groupes et de géométries. T. Tome second. Calvage & Mounet, 2018.