UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

Facultad de Ingeniería Departamento de Física Ing. Bayron Cuyan

EJEMPLO ILUSTRATIVO MRUV

Un tren partió del reposo y se movió con aceleración constante. En un momento dado estaba viajando a 33.0 m/s, y 160 metros más adelante lo estaba haciendo a 54.0 m/s. Determine:

- a. La magnitud de la aceleración
- b. El tiempo requerido para recorrer los 160 m
- c. El tiempo requerido para que alcance la rapidez de 33.0 m/s
- d. La distancia recorrida desde el reposo hasta el momento en que alcanza los 33.0 m/s

SOLUCION:

Lo primero que debe observar es que no se especifica la dirección en la cual ocurre el movimiento; solamente se sabe que es en línea recta; por lo cual usted puede asumir la dirección que le parezca más conveniente, teniendo cuidado de expresar sus resultados en términos de magnitudes de los vectores.

PASO No 1: Asumiremos que el movimiento ocurre horizontalmente y que el tren se mueve hacia la derecha.

PASO No 2: Elegiremos como referencia el punto en el cual el tren alcanza los 33.0 m/s. (Recuerde que es una elección arbitraria).

INCISOS (a) y (b)

PASO No. 3: Elegimos como situación inicial el momento en el cual alcanza los 33.0 m/s y como situación final cuando logra 54.0 m/s.

PASO No. 4:

DATOS:

 X_0 = 0 m X_f = +160 m V_{0x} = +33.0 m/s V_{fx} = +54.0 m/s a_x =? t=?

PASO No. 5:

$$v_{fx}^2 = v_{0x}^2 + 2a_x(x_f - x_0)$$

Como X₀= 0 m, entonces
$$a_x = \frac{{\rm v_{fx}}^2 - {\rm v_{0x}}^2}{2{\rm X_f}}$$
 $a_x = \frac{(+54.0)^2 - (+33.0)^2}{2(+160)} = +5.71 \ m/s^2$

PASO No. 6:

R// La magnitud de la aceleración es de 5.71 m/s².

PASO No. 5:

$$v_{fx} = v_{0x} + a_x t$$

$$t = \frac{v_{fx} - v_{0x}}{a_x}$$

$$t = \frac{v_{fx} - v_{0x}}{a_x}$$
 $t = \frac{(+54.0) - (+33.0)}{(+5.71)} = 3.68 \text{ seg}$

O también:
$$X_{fx} = X_0 + v_{0x}t + \frac{1}{2}a_xt^2$$

$$X_{fx} = 0 + v_{0x}t + \frac{1}{2}a_xt^2$$

Como:
$$X_0 = 0$$
 m $X_{fx} = 0 + v_{0x}t + \frac{1}{2}a_xt^2$ $0 = \frac{1}{2}a_xt^2 + v_{0x}t - X_{fx}$

$$0 = \frac{1}{2}(+5.71)t^2 + (+33.0)t - (+160)$$

de donde obtenemos

 t_1 = 3.68 s & t_2 = - 15.2 (no existen tiempos negativos)

PASO No. 6:

R// El tiempo en el cual recorre los 160 metros es de 3.68 segundos.

INCISOS (c) y (d)

PASO No. 3: Elegimos como situación inicial el momento en el cual el tren parte del reposo y como situación final cuando alcanza los 33.0 m/s.

PASO No. 4:

DATOS:

 $X_0=?$ $X_f = 0 \text{ m}$ $V_{0x}=0$ m/s V_{fx} = +33.0 m/s $a_x = +5.71$ m/s (del inciso a)

PASO No. 5:

$$v_{fx} = v_{0x} + a_x t$$

t=?

$$t = \frac{v_{fx} - v_{0x}}{a_x}$$

$$v_{fx} = v_{0x} + a_x t$$
 $t = \frac{v_{fx} - v_{0x}}{a_x}$ $t = \frac{(+33) - (0)}{(+5.71)} = 5.78 s$

PASO No. 6:

R// Trascurren 5.78 segundos entre el momento en que parte del reposo y el momento en el cual alcanza los 33.0 m/s.

PASO No. 5:

$$X_{fx} = X_0 + v_{0x}t + \frac{1}{2}a_xt^2$$

Como
$$X_f = 0 \text{ m}$$
 & $V_{0x} = 0 \text{ m/s}$ entonces $X_0 = -\frac{1}{2}a_xt^2$ $X_0 = -\frac{1}{2}(+5.71)(5.78)^2 = -95.4 \text{ m}$

O también:
$$v_{fx}^2 = v_{0x}^2 + 2a_x(x_f - x_0)$$

Como
$$X_{f}=0 \text{ m} \& V_{0x}=0 \text{ m/s}$$

$$X_0 = -\frac{v_{fx}^2}{2a_x}$$

Como
$$X_{\rm f}$$
= 0 m & $V_{\rm 0x}$ = 0 m/s $X_0 = -\frac{v_{\rm fx}^2}{2a_{\rm x}}$ $X_0 = -\frac{(+33.0)^2}{2(+5.71)} = -95.4m$

PASO No. 6:

En este caso el resultado X_0 = - 95.4m. nos indica que cuando estaba en reposo, el tren se encontraba 95.4 m a la izquierda de punto de referencia que hemos tomado y como este punto coincide con el momento en el cual alcanza los 33.0 m/s. Entonces:

R// El tren recorre 95.4 m desde el reposo hasta el momento en que alcanza los 33.0 m/s.

SI CAMBIAMOS LA REFERENCIA LA SOLUCIÓN SERIA LA SIGUIENTE

INCISOS (a) y (b)

PASO No 1: Asumiremos que el movimiento ocurre horizontalmente y que el tren se mueve hacia la derecha.

PASO No 2: Elegiremos como referencia el punto en el cual el tren alcanza los 54 m/s. (Recuerde que es una elección arbitraria).

PASO No. 3: Elegimos como situación inicial el momento en el cual alcanza los 33 m/s y como situación final cuando logra 54 m/s

PASO No. 4:

DATOS:

 X_0 = -160 m X_f = +0 m V_{0x} = +33.0 m/s V_{fx} = +54.0 m/s a_x =? t=?

PASO No. 5:

$$v_{fx}^2 = v_{0x}^2 + 2a_x(x_f - x_0)$$

Como X_f= 0 m, entonces
$$a_x = -\left(\frac{{{{\mathbf{v}_{\rm fx}}}^2 - {{\mathbf{v}_{\rm 0x}}}^2}}{{2{{\mathbf{X}}_0}}}\right)$$
 $a_x = -\left(\frac{{(+54.0)^2 - (+33.0)^2}}{{2(-160)}}\right) = +5.71 \ m/s^2$

PASO No. 6:

R// La magnitud de la aceleración es de 5.71 m/s².

PASO No. 5:

$$v_{fx} = v_{0x} + a_x t$$

$$t = \frac{v_{fx} - v_0}{a_x}$$

$$v_{fx} = v_{0x} + a_x t$$
 $t = \frac{v_{fx} - v_{0x}}{a_x}$ $t = \frac{(+54) - (+33)}{(+5.71)} = 3.68 s$

O también:
$$X_f = X_0 + v_{0x}t + \frac{1}{2}a_xt^2$$

Como:
$$X_f = 0 \text{ m}$$
 $0 = X_0 + v_{0x}t + \frac{1}{2}a_xt^2$ $0 = \frac{1}{2}a_xt^2 + v_{0x}t + X_0$

$$0 = \frac{1}{2}(+5.71)t^2 + (+33.0)t + (-160)$$

de donde obtenemos t_1 = 3.68 s & t_2 = - 15.2 (no existen tiempos negativos)

PASO No. 6:

R// El tiempo en el cual recorre los 160 metros es de 3.68 segundos.

INCISOS (c) y (d)

PASO No. 3: Elegimos como situación inicial el momento en el cual el tren parte del reposo y como situación final cuando alcanza los 33 m/s.

PASO No. 4:

DATOS:

 $X_0=?$

 $X_{f} = -160 \text{ m}$

 $V_{0x}=0 \text{ m/s}$

 V_{fx} = +33.0 m/s

 $a_x = +5.71$ m/s (del inciso a)

t=?

PASO No. 5:

$$v_{fx} = v_{0x} + a_x t$$

$$t = \frac{v_{fx} - v_{0x}}{a_{-1}}$$

$$v_{fx} = v_{0x} + a_x t$$
 $t = \frac{v_{fx} - v_{0x}}{a_x}$ $t = \frac{(+33.0) - (0)}{(+5.71)} = 5.78 s$

PASO No. 6:

R// Trascurren 5.78 segundos entre el momento en que parte del reposo y el momento en el cual alcanza los 33.0 m/s.

PASO No. 5:

$$X_{fx} = X_0 + v_{0x}t + \frac{1}{2}a_xt^2$$

Como
$$V_{0x}=0$$
 m/s entonces $X_0=X_f-\frac{1}{2}a_xt^2$ $X_0=(-160)-\frac{1}{2}(+5.71)(5.78)^2=-255.4$ m

$$X_0 = (-160) - \frac{1}{2}(+5.71)(5.78)^2 = -255.4 \text{ m}$$

O también:
$$v_{fx}^2 = v_{0x}^2 + 2a_x(x_f - x_0)$$

$$X_0 = X_f - \frac{v_{fx}^2}{2a_{fx}}$$

Como
$$V_{0x}= 0$$
 m/s $X_0 = X_f - \frac{v_{fx}^2}{2a_x}$ $X_0 = (-160) - \frac{(+33.0)^2}{2(+5.71)} = -255.34m$

PASO No. 6:

En este caso el resultado X_0 = - 255.4m. nos indica que cuando estaba en reposo, el tren se encontraba a 255.4 metros a la izquierda de punto de referencia que hemos tomado; pero lo que se nos pregunta es la distancia recorrida desde que parte del reposo hasta el momento de alcanzar los 33.0 m/s, y esto ocurre cuando el tren se encuentra a 160 metros a la izquierda del punto que hemos tomado como referencia. Por lo tanto, la distancia recorrida es:

D=255.4 - 160 = 95.4 m

R// El tren recorre 95.4 m desde el reposo hasta el momento en que alcanza los 33 m/s.