Processamento de Transações

Prof. Rodrigo Salvador Monteiro

salvador@ic.uff.br

SQL – Tabelas Exemplo

Processamento de Transações

- □ Sistemas de processamento de transações
 - Sistemas que envolvem grandes bancos de dados e centenas de usuários executando transações concorrentemente
 - De acordo com o número de usuários acessando um SGBD, este pode ser classificado como monousuário ou multiusuário
 - SGBD multiusuários existem em função da multiprogramação, através da qual um sistema operacional pode executar diversos processos (aplicações) de forma concorrente
 - O SGBD deve estar preparado para receber comandos das diversas aplicações concorrentes, sem que um comando de uma aplicação afete os comandos de outras aplicações
 - » Execução paralela
 - » Execução entrelaçada

Processamento de transações concorrentes intercalado *versus* paralelo

Transações - Conceito

□ Definição

- unidade lógica de trabalho, que trata diversos comandos isolados (CRUD) como uma única operação
- Embutidas em uma aplicação ou de forma interativa (SQL)
- Podem ser somente de leitura

Transações - Propriedades

A - C - I - D

- Atomicidade: uma transação é atômica, indivisível
 - » todos os seus comandos são executados com sucesso ou nenhum comando é executado
 - » Se algum dos comandos da transação gerar um erro, todos os comandos são desfeitos e o banco de dados é restaurado para sua condição inicial
- Consistência: Uma transação sempre leva o SGBD de um estado consistente para outro estado consistente
 - » o banco de dados nunca fica em um estado intermediário de execução (inconsistente)
 - » Os estados intermediários de execução não são visíveis para outras transações e não afetam os dados armazenados
- Isolamento: Cada transação é tratada como se estivesse sendo executada de forma isolada, não concorrente
 - » A ordem de execução das transações determinada pelo SGBD não deve interferir no resultado
- Durabilidade: as alterações de uma transação sobre o estado de um banco de dados devem ser permanentes, duráveis, persistentes

Transações - Granularidade

- Transações realizam operações de leitura e escrita nos "itens de dados nomeados"
 - » Granularidade de um item de dado é variável: um campo de um registro, um registro, um bloco de disco, ...
 - » Read_item(X), write_item(X)
- O conjunto de dados lidos por uma transação é chamado de read-set, enquanto o conjunto de dados alterados é o write-set
- Outros comandos
 - » Begin_transaction, end_transaction, commit_transaction, abort (ou rollback)

Transações - exemplo

```
(a) T, (b) T_2

ler_item (X); escrever_item (X); X:=X-N; escrever_item (X); escrever_item (X); ler_item (Y); Y:=Y+N; escrever_item (Y);
```

Transações - Cenários exemplo

- Manutenção de uma tabela de estoque a partir de uma venda
 - Considere a venda de 3 unidades de um livro (IDLivro=267) em uma loja (IDLoja=12)
 - Após a inserção do registro da venda, o estoque do livro na loja deve ser atualizado
 - Se o registro da venda não for inserido...
 - o estoque não deve ser atualizado e vice-versa

```
BEGIN_TRANSACTION;

INSERT INTO TbVendaLivro (IDCliente, Data, IDLoja, IDLivro, Quantidade)
VALUES (343, '2004-10-03', 12, 267, 3);

UPDATE TbEstoqueLivros
SET Estoque = Estoque - 3
WHERE IDLoja = 12 AND IDLivro = 267;

COMMIT_TRANSACTION;
```

Transações e Concorrência

- □ Considere um cenário hipotético ...
 - Você consulta sobre a existência de um livro e o vendedor indica que existe apenas uma cópia
 - Enquanto você pensa se vai comprar o livro, um cliente consulta outro vendedor sobre o mesmo livro
 - Você decide comprar o livro e seu nome é associado à última unidade disponível do livro
 - O outro cliente também decide comprar e o vendedor, de acordo com o resultado da consulta anterior, associa o nome do cliente com a mesma unidade do livro
 - A última atualização sobreescreve seu nome ...
- Quem fica com o livro ?
 - Não sei, mas o banco de dados não deveria ter permitido esta operação ...
 - -Esta situação é conhecida como "Problema da Perda de Atualização"

Transações e Concorrência

□ Outro problema... "Leitura suja"

```
<u>Update College Set enrollment = enrollment + 1000</u>
Where <u>cName = 'Stanford'</u>
```

Concorrente com ...

Select Avg(enrollment) From College

Transações - Finalidades

- □ Finalidades de transações em ambientes multiusuário
 - Controle de concorrência
 - » fazer com que os comandos emitidos por um usuário não afetem os demais usuários
 - Recuperação de falha
 - » permitir que o banco de dados seja trazido para um estado consistente após uma falha

Execuções Concorrentes

- A questão chave é garantir consistência mesmo com a execução concorrente de transações.
- O problema é que mesmo que cada transação individual esteja correta, na execução concorrente a consistência pode não ser preservada.
- Escalonamento
 - descreve uma sequência de execução, ou seja, a ordem cronológica em que as instruções são executadas.
- Escalonamentos serial
 - Sem concorrência
- □ Escalonamento não serial (entrelaçado)
 - Quando diversas transações são executadas de forma concorrente
- O problema é que nem todos escalonamentos não serial levam o banco de dados a um estado consistente.

Controle de Concorrência

- □ Problemas que podem ocorrer quando transações são executadas de forma concorrente sem controle
 - 1. Problema da atualização perdida
 - 2. Problema da atualização temporária (ou leitura suja)
 - 3. Problema do sumário incorreto
 - 4. Problema da leitura não repetida

Problema da atualização perdida

- duas transações acessam um mesmo item no SGBD têm suas operações entrelaçadas.
- a atualização realizada por uma transação pode ser perdida em decorrência de uma escrita da segunda transação
- » R1 (X), R2 (X), U1 (X), W1 (X), U2 (X), W2 (X)

Problema da atualização temporária (ou leitura suja)

- uma transação atualiza e escreve um item do SGBD, falhando em seguida (abort).
- uma segunda transação lê o item atualizado pela primeira antes que seu valor original seja restaurado
- » R1 (X), U1 (X), W1 (X), R2 (X), A1, U2 (X), W2 (X)

Problema do sumário incorreto

- uma transação calcula uma função agregadora, tal como uma soma ou média, enquanto outras transações atualizam itens que participam da agregação.
- Ao fim da operação de agregação, seu resultado não reflete os valores atuais do SGBD

Problema da leitura não repetida

- uma transação lê duas vezes um item do SGBD e seu valor difere entre as duas leituras em decorrência de alterações promovidas por outras transações
- » R1 (X), R2 (X), U2 (X), W2 (X), R1 (X).

Implementação de Isolamento

- Diversos protocolos possíveis
 - » Bloqueios, timestamp, multiversão, etc...
- Bloqueio
 - » Bloqueio binário (locked/unlocked)
 - » Compartilhado/exclusivo
 - Exclusivo: somente um usuário pode acessar os dados dos registros afetados, utilizado em inserções, remoções e atualizações
 - compartilhado (shared): previne outras transações de aplicarem um locking exclusivo sobre um conjunto de dados, utilizados em consultas

Transações e Concorrência

Transações e Recuperação

- □ Conclusão da transação
 - Uma vez concluída uma transação, seus dados são registrados no SGBD de forma definitiva
 - Em sistemas modernos, os dados não serão perdidos mesmo que ocorra uma falha de disco ou memória em seguida
- Estratégia (informal) resumida para recuperação em um SGBD
 - Se houve falha catastrófica (ex: crash de disco) que causou grande perda no banco de dados então
 - » Recupere cópia anterior do banco (backup)
 - » A partir do backup do log, refaça as operações das transações confirmadas (committed) até o momento da falha
 - Se houve falha não catastrófica que causou inconsistência no banco de dados (sem perda física de dados) então
 - » A partir do log (on-line), desfaça operações das transações até o momento da falha

Log do banco de dados

- □ Para se recuperar de falhas, o sistema mantém um log
 - O log é utilizado para acompanhar as operações que afetam os itens do SGBD
 - O log também pode ser utilizado para fins de auditoria (controle de que usuário realizou determinada consulta ou atualização)
 - O log é mantido em disco para que uma falha de memória não afete o registro das operações
 - » Periodicamente copiado para backup (geralmente fita)
 - Cada entrada do log contém um ID da transação, o tipo de operação (escrita, leitura, abertura de transação, commit ou rollback) e seus parâmetros

```
» [start_transaction, T]

» [write_item, T, X, old_value, new_value]

» [read_item, T, X]

» [commit, T]

» [abort, T]
```

Transações - Recuperação

- As operações de uma transação podem não executar com sucesso devido a uma diversidade de falhas:
 - Falha do sistema computacional
 - » erros de hardware, sistema operacional, conexão de rede ou erros de acesso a mídia
 - Falha por operação inválida na transação
 - » erros internos nas operações (como divisão por zero ou overflow), devido a parâmetros errôneos ou erros de programação na transação
 - Exceções na transação
 - » ocorre devido a erros na lógica de negócio relacionada com a transação. Ex: saldo insuficiente em uma conta para realização de um saque
 - Interrupção da transação pelo controle de concorrência
 - » os mecanismos de controle de transações podem decidir abortar uma transação por detectar deadlock
 - Falhas no disco e problemas físicos
 - » falta de energia, roubo, sabotagem, incêndio, ...

Exercício

 Considere as seguintes sequências de operações sobre itens de dados em um SGBD, e faça o que se pede:

```
R1(X);R3(X);W1(X);R2(X);W3(X)
R1(X);R2(X);R3(Y);W1(Y);W3(X)
```

Quais problemas podem ocorrer em cada sequência de operações, caso não haja um controle de transações implementado?

 Considerando o SGBD PostgreSQL, o que é nível de isolamento de transações? Descreva e explique quais são os níveis de isolamento existentes neste SGBD.