

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master's Thesis in Informatics

Formal Verification of an Earley Parser

Martin Rau

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master's Thesis in Informatics

Formal Verification of an Earley Parser Formale Verifikation eines Earley Parsers

Author: Martin Rau
Supervisor: Tobias Nipkow
Advisor: Tobias Nipkow
Submission Date: 15.06.2023

I confirm that this master's thesis in informatics is my own work and I have documented all sources and material used.				
Munich, 15.06.2023		Martin Rau		

Acknowledgments

TODO: Acknowledgments

Abstract

TODO: Abstract

Contents

A	Acknowledgments						
A۱	ostrac	ct	iv				
1	QUI	ESTIONS	1				
2	Snij	ppets	2				
	2.1	Earley	2				
	2.2	Jones	2				
	2.3	Scott	2				
3	Intr	oduction	3				
	3.1	Motivation	3				
	3.2	Structure	3				
	3.3	Related Work	3				
	3.4	Contributions	3				
	3.5	Isabelle/HOL	3				
4	Earl	ey's Algorithm	4				
	4.1	Draft	4				
	4.2	Background Theory	4				
	4.3	Earley Recognizer	6				
5	Earl	ey Formalization	7				
	5.1	Draft	7				
	5.2	Definitions	7				
	5.3	Wellformedness	10				
	5.4	Soundness	11				
	5.5	Monotonicity and Absorption	12				
	5.6	Completeness	13				
	5.7	Finiteness	15				
6	Dra	ft	16				

Contents

7	Earle	ey Recognizer Implementation	18
	7.1	Definitions	18
	7.2	Wellformedness	21
	7.3	List to set	23
	7.4	Soundness	24
	7.5	Set to list	24
	7.6	Main Theorem	26
8	Earle	ey Parser Implementation	27
	8.1	Draft	27
	8.2	Pointer lemmas	27
	8.3	Trees and Forests	28
	8.4	A single parse tree	29
	8.5	Parse trees	32
	8.6	A word on completeness	35
9	Exar	nples	36
	9.1	epsilon free CFG	36
	9.2	Example 1: Addition	36
		9.2.1 Example 2: Cyclic reduction pointers	37
10	Con	clusion	39
	10.1	Summary	39
	10.2	Future Work	39
11	Tem	plates	40
	11.1	Section	40
		11.1.1 Subsection	40
Lis	st of l	Figures	42
Lis	st of 7	Гables	43

1 QUESTIONS

- How much explain the proofs?
- How reference thm names?
- How to get rid of where?
- How to tum blau assumes shows fun ... keywords?

2 Snippets

- 2.1 Earley
- 2.2 Jones
- 2.3 Scott

3 Introduction

3.1 Motivation

some introduction about parsing, formal development of correct algorithms: an example based on earley's recogniser, the benefits of formal methods, LocalLexing and the Bachelor thesis.

work with the snippets, reformulate!

3.2 Structure

standard blabla

3.3 Related Work

see folder and bibliography

3.4 Contributions

what did I do, what is new

3.5 Isabelle/HOL

take closest pair paper section and add additional notation as needed, also discuss the different representations of lemmas and definitions (separate or within the text)

4 Earley's Algorithm

4.1 Draft

- Introduce background theory about CFG
- Introduce the Earley recognizer in the abstract set form with pointer, note the original error in Earley's algorithm
- Introduce the running example $S \rightarrow x \mid S + S$ for input x + x + x
- Illustrate the complete bins generated by the example
- Illustrate Initial S -> .alpha,0,0, Scan A -> alpha.abeta,i,j | A -> alpha.beta,i,j+1, Predict A -> alpha.Bbeta,i,j and B -> gamma | B -> .gamma,j,j, Complete A -> alpha.Bbeta,i,j and B -> gamma.j,k | A -> alphaB.beta,i,k
- Define goal: A -> alpha.beta,i,j iff A =>* s[i..j)beta which implies S -> alpha.,0,n+1 iff S =>* s

TODO: Add nicer syntax for derives

4.2 Background Theory

use snippets

type-synonym 'a rule = $'a \times 'a$ list

type-synonym 'a rules = 'a rule list

type-synonym 'a sentence = 'a list

```
datatype 'a cfg =
  CFG
   (\mathfrak{N}: 'a \ list)
   (\mathfrak{T}: 'a \ list)
   (\mathfrak{R}: 'a \ rules)
   (\mathfrak{S}: 'a)
definition disjunct-symbols :: 'a cfg \Rightarrow bool where
 disjunct-symbols cfg \longleftrightarrow set (\mathfrak{N} \ cfg) \cap set (\mathfrak{T} \ cfg) = \{\}
definition valid-startsymbol :: 'a cfg \Rightarrow bool where
 valid-startsymbol cfg \longleftrightarrow \mathfrak{S} cfg \in set (\mathfrak{N} cfg)
definition valid-rules :: 'a \ cfg \Rightarrow bool \ \mathbf{where}
 valid-rules cfg \longleftrightarrow (\forall (N, \alpha) \in set \ (\Re \ cfg).\ N \in set \ (\Re \ cfg) \land (\forall \ s \in set \ \alpha.\ s \in set \ (\Re \ cfg) \cup set \ (\Im \ cfg))
cfg)))
definition distinct-rules :: 'a cfg \Rightarrow bool where
 distinct-rules cfg = distinct (\Re cfg)
definition wf-cfg :: 'a \ cfg \Rightarrow bool where
 wf-cfg cfg \longleftrightarrow disjunct-symbols cfg \land valid-startsymbol cfg \land valid-rules cfg \land distinct-rules cfg
definition is-terminal :: 'a cfg \Rightarrow 'a \Rightarrow bool where
 is-terminal cfg s = (s \in set \ (\mathfrak{T} \ cfg))
definition is-nonterminal :: 'a \ cfg \Rightarrow 'a \Rightarrow bool where
 is-nonterminal cfg s = (s \in set \ (\mathfrak{N} \ cfg))
definition is-symbol :: 'a cfg \Rightarrow 'a \Rightarrow bool where
 is-symbol cfg \ s \longleftrightarrow is-terminal cfg \ s \lor is-nonterminal cfg \ s
definition wf-sentence :: 'a cfg \Rightarrow 'a sentence \Rightarrow bool where
 wf-sentence cfg s = (\forall x \in set \ s. \ is\text{-symbol cfg} \ x)
definition is-word :: 'a cfg \Rightarrow 'a sentence \Rightarrow bool where
 is-word cfg\ s = (\forall\ x \in set\ s.\ is\text{-terminal}\ cfg\ x)
definition derives1 :: 'a cfg \Rightarrow 'a sentence \Rightarrow 'a sentence \Rightarrow bool where
 derives1 \ cfg \ u \ v =
     (\exists x y N \alpha.
         u = x @ [N] @ y
       \wedge v = x @ \alpha @ y
       \land (N, \alpha) \in set (\Re cfg)
```

definition derivations1 :: 'a cfg \Rightarrow ('a sentence \times 'a sentence) set where derivations1 cfg = { $(u,v) \mid u \ v. \ derives1 \ cfg \ u \ v$ }

definition *derivations* :: 'a $cfg \Rightarrow ('a \ sentence \times 'a \ sentence)$ *set* **where** *derivations* $cfg = (derivations1 \ cfg)^*$

definition derives :: 'a $cfg \Rightarrow$ 'a sentence \Rightarrow 'a sentence \Rightarrow bool where derives cfg u $v = ((u, v) \in derivations \, cfg)$

4.3 Earley Recognizer

5 Earley Formalization

5.1 Draft

- explain the auxiliary definitions until earley_recognized, the small ones incorporated into text, the big ones as definitions
- explain Init, Scan, Predict, Complete REFERENCE and relate them back to the previous chapter
- explain fixpoint iteration REFERENCE and iteration over all bins
- illustrate the running example in this algorithm
- explain wellformedness proof
- explain soundness definitions and proof
- explain monotonicity and absorption proofs
- explain completeness proof, this one in great detail!
- explain finiteness proof

5.2 Definitions

```
fun slice :: nat \Rightarrow nat \Rightarrow 'a \ list \Rightarrow 'a \ list where slice - - [] = [] | slice - 0 (x\#xs) = []
```

```
| slice 0 (Suc b) (x#xs) = x # slice 0 b xs
| slice (Suc a) (Suc b) (x#xs) = slice a b xs
definition rule-head :: 'a rule \Rightarrow 'a where
 rule-head = fst
definition rule-body :: 'a rule \Rightarrow 'a list where
 rule-body = snd
datatype 'a item =
 Item
   (item-rule: 'a rule)
   (item-dot: nat)
   (item-origin: nat)
   (item-end: nat)
type-synonym 'a items = 'a item set
definition item-rule-head :: 'a item \Rightarrow 'a where
 item-rule-head x = rule-head (item-rule x)
definition item-rule-body :: 'a item \Rightarrow 'a sentence where
 item-rule-body x = rule-body (item-rule x)
definition item-\alpha :: 'a item \Rightarrow 'a sentence where
 item-\alpha x = take (item-dot x) (item-rule-body x)
definition item-\beta :: 'a item \Rightarrow 'a sentence where
 item-\beta x = drop (item-dot x) (item-rule-body x)
definition init-item :: 'a rule \Rightarrow nat \Rightarrow 'a item where
 init-item\ r\ k = Item\ r\ 0\ k\ k
definition is-complete :: 'a item \Rightarrow bool where
 is-complete x = (item-dot \ x \ge length \ (item-rule-body \ x))
definition next-symbol :: 'a item \Rightarrow 'a option where
 next-symbol x = (if is-complete x then None else Some ((item-rule-body x)! (item-dot x)))
definition inc-item :: 'a item \Rightarrow nat \Rightarrow 'a item where
 inc-item x k = \text{Item (item-rule } x) \text{ (item-dot } x + 1) \text{ (item-origin } x) k
definition bin :: 'a items \Rightarrow nat \Rightarrow 'a items where
 bin I k = \{ x \cdot x \in I \land item\text{-end } x = k \}
```

```
definition wf-item :: 'a cfg \Rightarrow 'a sentence => 'a item \Rightarrow bool where
 wf-item cfg inp x = (
   item-rule x \in set(\Re cfg) \land
   item-dot \ x \leq length \ (item-rule-body \ x) \land
   item-origin x \leq item-end x \wedge
   item-end x \leq length inp)
definition wf-items :: 'a cfg \Rightarrow 'a sentence \Rightarrow 'a items \Rightarrow bool where
 wf-items cfg inp I = (\forall x \in I. \text{ wf-item cfg inp } x)
definition is-finished :: 'a cfg \Rightarrow 'a sentence \Rightarrow 'a item \Rightarrow bool where
  is-finished cfg inp x \longleftrightarrow (
   item-rule-head x = \mathfrak{S} cfg \wedge
   item-origin x = 0 \land
   item-end x = length inp \land
   is-complete x)
definition earley-recognized :: 'a items \Rightarrow 'a cfg \Rightarrow 'a sentence \Rightarrow bool where
 earley-recognized I cfg inp = (\exists x \in I. is-finished cfg inp x)
definition Init :: 'a cfg \Rightarrow 'a items where
 \textit{Init cfg} = \{ \textit{init-item } r \; 0 \; | \; r. \; r \in \textit{set } (\mathfrak{R} \textit{ cfg}) \land \textit{fst } r = (\mathfrak{S} \textit{ cfg}) \; \}
definition Scan :: nat \Rightarrow 'a \ sentence \Rightarrow 'a \ items \Rightarrow 'a \ items \ where
  Scan k inp I =
   { inc-item x (k+1) | x a.
       x \in bin\ I\ k \land
       inp!k = a \land
       k < length inp \land
       next-symbol x = Some \ a  }
definition Predict :: nat \Rightarrow 'a \ cfg \Rightarrow 'a \ items \Rightarrow 'a \ items where
 Predict k cfg I =
   \{ init-item \ r \ k \mid r \ x. \}
       r \in set (\Re cfg) \land
       x \in bin\ I\ k \land
       next-symbol x = Some (rule-head r) }
definition Complete :: nat \Rightarrow 'a \text{ items} \Rightarrow 'a \text{ items} where
  Complete kI =
   \{ inc\text{-item } x k \mid x y. \}
       x \in bin\ I\ (item-origin\ y)\ \land
       y \in bin\ I\ k \land
```

```
is-complete y \land
       next-symbol x = Some (item-rule-head y) }
fun funpower :: ('a \Rightarrow 'a) \Rightarrow nat \Rightarrow ('a \Rightarrow 'a) where
 funpower f 0 x = x
| funpower f (Suc n) x = f (funpower f n x)
definition natUnion :: (nat \Rightarrow 'a set) \Rightarrow 'a set where
 natUnion f = \bigcup \{fn \mid n. True \}
definition limit :: ('a \ set \Rightarrow 'a \ set) \Rightarrow 'a \ set \Rightarrow 'a \ set where
 limit f x = natUnion (\lambda n. funpower f n x)
definition \pi-step :: nat \Rightarrow 'a \ cfg \Rightarrow 'a \ sentence \Rightarrow 'a \ items \Rightarrow 'a \ items where
  \pi-step k cfg inp I = I \cup Scan \ k inp I \cup Complete \ k \ I \cup Predict \ k cfg I
definition \pi :: nat \Rightarrow 'a \ cfg \Rightarrow 'a \ sentence \Rightarrow 'a \ items \Rightarrow 'a \ items where
  \pi k cfg inp I = limit (\pi-step k cfg inp) I
fun \mathcal{I} :: nat \Rightarrow 'a \ cfg \Rightarrow 'a \ sentence \Rightarrow 'a \ items \ where
 \mathcal{I} 0 cfg inp = \pi 0 cfg inp (Init cfg)
| \mathcal{I} (Suc n) cfg inp = \pi (Suc n) cfg inp (\mathcal{I} n cfg inp)
definition \mathfrak{I} :: 'a cfg \Rightarrow 'a sentence \Rightarrow 'a items where
 \Im cfg inp = \mathcal{I} (length inp) cfg inp
```

5.3 Wellformedness

```
lemma wf-Init:

assumes x \in Init cfg

shows wf-item cfg inp x

by definition

lemma wf-Scan-Predict-Complete:

assumes wf-items cfg inp I

shows wf-items cfg inp (Scan \ k \ inp \ I \cup Predict \ k \ cfg \ I \cup Complete \ k \ I)

by definition

lemma wf-\pi-step:

assumes wf-items cfg inp I

shows wf-items cfg inp (\pi-step k \ cfg inp I)

wf-Scan-Predict-Complete by definition
```

```
lemma wf-funpower:
 assumes wf-items cfg inp I
 shows wf-items cfg inp (funpower (\pi-step k cfg inp) n I)
  wf-\pi-step, by induction on n
lemma wf-\pi:
 assumes wf-items cfg inp I
 shows wf-items cfg inp (\pi k \text{ cfg inp } I)
  wf-funpower by definition
lemma wf-\pi 0:
 wf-items cfg inp (\pi \ 0 \ cfg \ inp \ (Init \ cfg))
  wf-Init wf-\pi by definition
lemma wf-\mathcal{I}:
 wf-items cfg inp (I n cfg inp)
  wf-\pi 0 wf-\pi by induction on n
lemma wf-3:
 wf-items cfg inp (\Im \ cfg \ inp)
  wf-\mathcal{I} by definition
5.4 Soundness
definition sound-item :: 'a cfg \Rightarrow 'a sentence \Rightarrow 'a item \Rightarrow bool where
 sound-item cfg inp x = derives cfg [item-rule-head x] (slice (item-origin x) (item-end x) inp @ item-\beta
x)
definition sound-items :: 'a cfg \Rightarrow 'a sentence \Rightarrow 'a items \Rightarrow bool where
 sound-items cfg inp I = (\forall x \in I. \text{ sound-item cfg inp } x)
lemma sound-Init:
 sound-items cfg inp (Init cfg)
lemma sound-item-inc-item:
 assumes wf-item cfg inp x sound-item cfg inp x
 assumes next-symbol x = Some \ a \ k < length \ inp \ inp!k = a \ item-end \ x = k
 shows sound-item cfg inp (inc-item x (k+1))
lemma sound-Scan:
 assumes wf-items cfg inp I sound-items cfg inp I
 shows sound-items cfg inp (Scan k inp I)
lemma sound-Predict:
 assumes sound-items cfg inp I
```

```
shows sound-items cfg inp (Predict k cfg I)
lemma sound-Complete:
 assumes wf-items cfg inp I sound-items cfg inp I
 shows sound-items cfg inp (Complete k I)
lemma sound-\pi-step:
 assumes wf-items cfg inp I sound-items cfg inp I
 shows sound-items cfg inp (\pi-step k cfg inp I)
lemma sound-funpower:
 assumes wf-items cfg inp I sound-items cfg inp I
 shows sound-items cfg inp (funpower (\pi-step k cfg inp) n I)
lemma sound-\pi:
 assumes wf-items cfg inp I sound-items cfg inp I
 shows sound-items cfg inp (\pi k \ cfg \ inp \ I)
lemma sound-\pi0:
 sound-items cfg inp (\pi \ 0 \ cfg \ inp \ (Init \ cfg))
lemma sound-I:
 sound-items cfg inp (\mathcal{I} k cfg inp)
lemma sound-3:
 sound-items cfg inp (\Im cfg inp)
theorem soundness:
 earley-recognized (3 cfg inp) cfg inp \Longrightarrow derives cfg [\mathfrak{S} cfg] inp
```

5.5 Monotonicity and Absorption

```
lemma \pi-idem:
 \pi k cfg inp (\pi k cfg inp I) = \pi k cfg inp I
lemma Scan-bin-absorb:
 Scan \ k \ inp \ (bin \ I \ k) = Scan \ k \ inp \ I
lemma Predict-bin-absorb:
 Predict k \ cfg \ (bin \ I \ k) = Predict \ k \ cfg \ I
lemma Complete-bin-absorb:
 Complete k (bin I k) \subseteq Complete k I
lemma Scan-Predict-Complete-sub-mono:
 assumes I \subseteq J
 shows Scan k inp I \subseteq Scan k inp J Predict k cfg I \subseteq Predict k cfg J Complete k I \subseteq Scomplete k J
lemma \pi-step-sub-mono:
 assumes I \subseteq J
 shows \pi-step k cfg inp I \subseteq \pi-step k cfg inp J
lemma funpower-sub-mono:
 assumes I \subseteq J
 shows funpower (\pi-step k cfg inp) n I \subseteq funpower (\pi-step k cfg inp) n J
lemma \pi-sub-mono:
 assumes I \subseteq J
```

```
shows \pi k cfg inp I \subseteq \pi k cfg inp J
lemma Scan-Predict-Complete-\pi-step-mono:
 Scan k inp I \cup Predict k cfg I \cup Complete k I \subseteq \pi-step k cfg inp I
lemma \pi-step-\pi-mono:
 \pi-step k cfg inp I \subseteq \pi k cfg inp I
lemma Scan-Predict-Complete-\pi-mono:
 Scan k inp I \cup Predict \ k \ cfg \ I \cup Complete \ k \ I \subseteq \pi \ k \ cfg \ inp \ I
lemma \pi-mono:
 I \subseteq \pi k cfg inp I
lemma Scan-bin-empty:
 assumes i \neq k i \neq k+1
 shows bin (Scan k inp I) i = \{\}
lemma Predict-bin-empty:
 assumes i \neq k
 shows bin (Predict k cfg I) i = \{\}
lemma Complete-bin-empty:
 assumes i \neq k
 shows bin (Complete kI) i = \{\}
lemma \pi-step-bin-absorb:
 assumes i \neq k i \neq k+1
 shows bin (\pi-step k cfg inp I) i = bin I i
lemma funpower-bin-absorb:
 assumes i \neq k i \neq k+1
 shows bin (funpower (\pi-step k cfg inp) n I) i = bin I i
lemma \pi-bin-absorb:
 assumes i \neq k i \neq k+1
 shows bin (\pi k \operatorname{cfg} \operatorname{inp} I) i = \operatorname{bin} I i
```

5.6 Completeness

```
lemma Scan-\mathcal{I}:
   assumes i+1 \le k \ k \le length inp x \in bin (\mathcal{I} \ k \ cfg inp) i
   assumes next-symbol x = Some a inp!i = a
   shows inc-item x (i+1) \in \mathcal{I} \ k \ cfg inp

lemma Predict-\mathcal{I}:
   assumes i \le k \ x \in bin (\mathcal{I} \ k \ cfg inp) i next-symbol x = Some \ N \ (N,\alpha) \in set \ (\Re \ cfg)
   shows init-item (N,\alpha) i \in \mathcal{I} \ k \ cfg inp

lemma Complete-\mathcal{I}:
   assumes i \le j \ j \le k \ x \in bin (\mathcal{I} \ k \ cfg inp) i next-symbol x = Some \ N \ (N,\alpha) \in set \ (\Re \ cfg)
   assumes i = item-origin y \ y \in bin (\mathcal{I} \ k \ cfg inp) j item-rule y = (N,\alpha) is-complete y
   shows inc-item x \ j \in \mathcal{I} \ k \ cfg inp

type-synonym 'a derivation = (nat \times 'a \ rule) list
```

```
definition Derives 1 :: 'a cfg \Rightarrow 'a sentence \Rightarrow nat \Rightarrow 'a rule \Rightarrow 'a sentence \Rightarrow bool where
 Derives 1 cfg u i r v =
    (\exists x y N \alpha.
        u = x @ [N] @ y
      \wedge v = x @ \alpha @ y
      \land (N, \alpha) \in set (\Re cfg)
      \wedge r = (N, \alpha) \wedge i = length x
fun Derivation :: 'a cfg \Rightarrow 'a sentence \Rightarrow 'a derivation \Rightarrow 'a sentence \Rightarrow bool where
 Derivation - a[]b = (a = b)
| Derivation cfg a (d#D) b = (\exists x. Derives1 cfg a (fst d) (snd d) x \land Derivation cfg x D b)
definition partially-completed :: nat \Rightarrow 'a \ cfg \Rightarrow 'a \ sentence \Rightarrow 'a \ items \Rightarrow ('a \ derivation \Rightarrow bool) \Rightarrow
bool where
 partially-completed k cfg inp IP = (
   \forall i j x a D.
    i \le j \land j \le k \land k \le length inp \land
    x \in bin\ I\ i \land next\text{-symbol}\ x = Some\ a \land
    Derivation cfg [a] D (slice i j inp) \land P D \longrightarrow
    inc-item x j \in I
 )
lemma fully-completed:
 assumes j \le k \ k \le length inp
 assumes x = Item(N,\alpha) dij x \in I wf-items cfg inp I
 assumes Derivation cfg (item-\beta x) D (slice j k inp)
 assumes partially-completed k cfg inp I (\lambda D'. length D' \leq length D)
 shows Item (N,\alpha) (length \alpha) i k \in I
lemma partially-completed-I:
 assumes wf-cfg cfg
 shows partially-completed k cfg inp (\mathcal{I} k cfg inp) (\lambda-. True)
lemma partially-completed-3:
 assumes wf-cfg cfg
 shows partially-completed (length inp) cfg inp (\Im cfg inp) (\lambda-. True)
theorem completeness:
 assumes derives cfg [\mathfrak{S} cfg] inp is-word cfg inp wf-cfg cfg
 shows earley-recognized (I cfg inp) cfg inp
corollary
 assumes wf-cfg cfg is-word cfg inp
 shows earley-recognized (3 cfg inp) cfg inp \longleftrightarrow derives cfg [\mathfrak{S} cfg] inp
```

5.7 Finiteness

lemma finiteness-UNIV-wf-item: finite $\{x \mid x. \text{ wf-item cfg inp } x \}$ **theorem** finiteness: finite $(\Im \text{ cfg inp})$

6 Draft

- introduce auxiliary definitions: filter_with_index, pointer, entry in more detail most everything else in text
- overview over earley implementation with linked list and pointers and the mapping into a functional setting
- introduce Init_it, Scan_it, Predict_it and Complete_it, compare them with the set notation and discuss performance improvements (Grammar in more specific form) Why do they all return a list?!
- discus bin(s)_upd(s) functions. Why bin_upds like this -> easier than fold for proofs!
- discuss pi_it and why it is a partial function -> only terminates for valid input and foreshadow how this is done in isabelle
- introduce remaining definitions (analog to sets)
- discuss wf proofs quickly and go into detail about isabelle specifics about termination and the custom induction scheme using finiteness
- outline the approach to proof correctness aka subsumption in both directions
- discuss list to set proofs
- discuss soundness proofs (maybe omit since obvious)

- discuss completeness proof focusing on the complete case shortly explaining scan and predict which don't change via iteration and order does not matter
- highlight main theorems

7 Earley Recognizer Implementation

7.1 Definitions

```
fun filter-with-index' :: nat \Rightarrow ('a \Rightarrow bool) \Rightarrow 'a \ list \Rightarrow ('a \times nat) \ list \ \mathbf{where}
 filter-with-index' - - [] = []
| filter-with-index' i P(x\#xs) = (
   if P x then (x,i) # filter-with-index' (i+1) P xs
   else filter-with-index' (i+1) P xs)
definition filter-with-index :: ('a \Rightarrow bool) \Rightarrow 'a \ list \Rightarrow ('a \times nat) \ list where
 filter-with-index P xs = filter-with-index ' 0 P xs
datatype pointer =
 Null
 | Pre nat
 | PreRed nat \times nat \times nat (nat \times nat \times nat ) list
datatype 'a entry =
 Entry
 (item: 'a item)
 (pointer: pointer)
type-synonym 'a bin = 'a entry list
type-synonym 'a bins = 'a bin list
definition items :: 'a bin \Rightarrow 'a item list where
 items b = map item b
definition pointers :: 'a bin \Rightarrow pointer list where
 pointers b = map pointer b
definition bins-eq-items :: 'a bins \Rightarrow 'a bins \Rightarrow bool where
 bins-eq-items bs0 bs1 \longleftrightarrow map items bs0 = map items bs1
definition bins-items :: 'a bins \Rightarrow 'a items where
 bins-items bs = \bigcup \{ set (items (bs!k)) | k. k < length bs \}
```

```
definition bin-items-upto :: 'a bin \Rightarrow nat \Rightarrow 'a items where
 bin-items-up to b i = \{ items \ b \mid j \mid j, j < i \land j < length (items b) \}
definition bins-items-upto :: 'a bins \Rightarrow nat \Rightarrow nat \Rightarrow 'a items where
 bins-items-upto bs k i = \bigcup \{ \text{ set (items (bs ! l))} \mid l. l < k \} \cup \text{ bin-items-upto (bs ! k) } i
definition wf-bin-items :: 'a cfg \Rightarrow 'a sentence \Rightarrow nat \Rightarrow 'a item list \Rightarrow bool where
 wf-bin-items cfg inp k xs = (\forall x \in set xs. wf-item cfg inp <math>x \land item-end x = k)
definition wf-bin :: 'a \ cfg \Rightarrow 'a \ sentence \Rightarrow nat \Rightarrow 'a \ bin \Rightarrow bool \ where
 wf-bin cfg inp k b \longleftrightarrow distinct (items b) \land wf-bin-items cfg inp k (items b)
definition wf-bins :: 'a cfg \Rightarrow 'a list \Rightarrow 'a bins \Rightarrow bool where
 wf-bins cfg inp bs \longleftrightarrow (\forall k < length bs. wf-bin cfg inp k (bs!k))
definition nonempty-derives :: 'a \ cfg \Rightarrow bool \ \mathbf{where}
 nonempty-derives cfg = (\forall N. N \in set (\mathfrak{N} cfg) \longrightarrow \neg derives cfg [N] [])
definition Init-it :: 'a cfg \Rightarrow 'a sentence \Rightarrow 'a bins where
 Init-it\ cfg\ inp = (
   let rs = filter(\lambda r. rule-head r = \mathfrak{S} cfg)(\mathfrak{R} cfg) in
   let b0 = map(\lambda r. (Entry(init-item r 0) Null)) rs in
   let bs = replicate (length inp + 1) ([]) in
   bs[0 := b0]
definition Scan-it :: nat \Rightarrow 'a sentence \Rightarrow 'a \Rightarrow 'a item \Rightarrow nat \Rightarrow 'a entry list where
 Scan-it k inp a \times pre = (
   if inp!k = a then
     let x' = inc-item x (k+1) in
     [Entry x' (Pre pre)]
   else [])
definition Predict-it :: nat \Rightarrow 'a \ cfg \Rightarrow 'a \Rightarrow 'a \ entry \ list where
 Predict-it k \operatorname{cfg} X = (
   let rs = filter(\lambda r. rule-head r = X)(\Re cfg) in
   map (\lambda r. (Entry (init-item r k) Null)) rs)
definition Complete-it :: nat \Rightarrow 'a \text{ item} \Rightarrow 'a \text{ bins} \Rightarrow nat \Rightarrow 'a \text{ entry list } \mathbf{where}
 Complete-it k y bs red = (
   let orig = bs! (item-origin y) in
   let is = filter-with-index (\lambda x. next-symbol x = Some (item-rule-head y)) (items orig) in
   map (\lambda(x, pre), (Entry (inc-item x k) (PreRed (item-origin y, pre, red) []))) is)
fun bin-upd :: 'a entry \Rightarrow 'a bin \Rightarrow 'a bin where
```

```
\mathit{bin}\text{-}\mathit{upd}\; e'\,[] = [e']
| bin-upd e'(e\#es) = (
   case (e', e) of
     (Entry\ x\ (PreRed\ px\ xs),\ Entry\ y\ (PreRed\ py\ ys)) \Rightarrow
      if x = y then Entry x (PreRed py (px\#xs@ys)) \# es
      else e # bin-upd e' es
      if item e' = item e then e # es
      else e # bin-upd e' es)
fun bin-upds :: 'a entry list \Rightarrow 'a bin \Rightarrow 'a bin where
 bin-upds [] b = b
| bin-upds (e\#es) b = bin-upds es (bin-upd e b)
definition bins-upd :: 'a bins \Rightarrow nat \Rightarrow 'a entry list \Rightarrow 'a bins where
 bins-upd bs k es = bs[k := bin-upds es (bs!k)]
partial-function (tailrec) \pi-it' :: nat \Rightarrow 'a cfg \Rightarrow 'a sentence \Rightarrow 'a bins \Rightarrow nat \Rightarrow 'a bins where
  \pi-it' k cfg inp bs i = (
   if i \ge length (items (bs!k)) then bs
   else
     let x = items (bs!k) ! i in
    let bs' =
      case next-symbol x of
        Some a \Rightarrow
          if is-terminal cfg a then
            if k < length inp then bins-upd bs (k+1) (Scan-it k inp a x i)
          else bins-upd bs k (Predict-it k cfg a)
       | None \Rightarrow bins-upd bs k (Complete-it k x bs i)
     in \pi-it' k cfg inp bs'(i+1)
definition \pi-it :: nat \Rightarrow 'a \ cfg \Rightarrow 'a \ sentence \Rightarrow 'a \ bins \Rightarrow 'a \ bins where
 \pi-it k cfg inp bs = \pi-it' k cfg inp bs 0
fun \mathcal{I}-it :: nat \Rightarrow 'a cfg \Rightarrow 'a sentence \Rightarrow 'a bins where
 I-it 0 cfg inp = \pi-it 0 cfg inp (Init-it cfg inp)
| \mathcal{I}-it (Suc n) cfg inp = \pi-it (Suc n) cfg inp (\mathcal{I}-it n cfg inp)
definition \Im-it :: 'a \ cfg \Rightarrow 'a \ sentence \Rightarrow 'a \ bins \ \mathbf{where}
 \mathfrak{I}-it cfg inp = \mathcal{I}-it (length inp) cfg inp
```

7.2 Wellformedness

```
lemma distinct-bin-upd:
 distinct (items b) \Longrightarrow distinct (items (bin-upd e b))
lemma distinct-bin-upds:
 distinct (items b) \implies distinct (items (bin-upds es b))
lemma distinct-bins-upd:
 distinct\ (items\ (bs\ !\ k)) \Longrightarrow distinct\ (items\ (bins-upd\ bs\ k\ ips\ !\ k))
lemma distinct-Scan-it:
 distinct (items (Scan-it k inp a x pre))
 sorry
lemma distinct-Predict-it:
 wf-cfg cfg \Longrightarrow distinct (items (Predict-it k cfg X))
lemma distinct-Complete-it:
 assumes wf-bins cfg inp bs item-origin y < length bs
 shows distinct (items (Complete-it k y bs red))
lemma wf-bin-bin-upd:
 assumes wf-bin cfg inp k b wf-item cfg inp (item e) \land item-end (item e) = k
 shows wf-bin cfg inp k (bin-upd e b)
lemma wf-bin-bin-upds:
 assumes wf-bin cfg inp k b distinct (items es)
 assumes \forall x \in set (items es). wf-item cfg inp x \land item-end x = k
 shows wf-bin cfg inp k (bin-upds es b)
lemma wf-bins-bins-upd:
 assumes wf-bins cfg inp bs distinct (items es)
 assumes \forall x \in set (items es). wf-item cfg inp x \land item-end x = k
 shows wf-bins cfg inp (bins-upd bs k es)
lemma wf-bins-Init-it:
 assumes wf-cfg cfg
 shows wf-bins cfg inp (Init-it cfg inp)
lemma wf-bins-Scan-it:
 assumes wf-bins cfg inp bs k < length bs x \in set (items (bs!k)) k < length inp next-symbol x \neq set
None
 shows \forall y \in set (items (Scan-it k inp a x pre)). wf-item cfg inp y \land item-end y = (k+1)
lemma wf-bins-Predict-it:
 assumes wf-bins cfg inp bs k < length bs k \leq length inp wf-cfg cfg
 shows \forall y \in set (items (Predict-it k cfg X)). wf-item cfg inp y \land item-end y = k
lemma wf-bins-Complete-it:
 assumes wf-bins cfg inp bs k < length bs y \in set (items (bs!k))
 shows \forall x \in set (items (Complete-it k y bs red)). wf-item cfg inp x \land item-end x = k
definition wellformed-bins :: (nat \times 'a cfg \times 'a sentence \times 'a bins) set where
 well formed-bins = \{
```

```
(k, cfg, inp, bs) \mid k cfg inp bs.
    k \leq length inp \land
    length bs = length inp + 1 \wedge
    wf-cfg cfg ∧
    wf-bins cfg inp bs
typedef 'a wf-bins = wellformed-bins::(nat \times 'a cfg \times 'a sentence \times 'a bins) set
lemma wellformed-bins-Init-it:
 assumes k \leq length inp wf-cfg cfg
 shows (k, cfg, inp, Init-it cfg inp) \in wellformed-bins
lemma wellformed-bins-Complete-it:
 assumes (k, cfg, inp, bs) \in wellformed-bins \neg length (items <math>(bs ! k)) \le i
 assumes x = items (bs!k)! i next-symbol x = None
 shows (k, cfg, inp, bins-upd bs k (Complete-it k x bs red)) \in wellformed-bins
lemma wellformed-bins-Scan-it:
 assumes (k, cfg, inp, bs) \in wellformed-bins \neg length (items <math>(bs ! k)) \le i
 assumes x = items (bs ! k) ! i next-symbol <math>x = Some \ a
 assumes is-terminal cfg a k < length inp
 shows (k, cfg, inp, bins-upd bs (k+1) (Scan-it k inp a x pre)) \in wellformed-bins
lemma wellformed-bins-Predict-it:
 assumes (k, cfg, inp, bs) \in wellformed-bins \neg length (items <math>(bs ! k)) \le i
 assumes x = items (bs!k)! i next-symbol x = Some a \neg is-terminal cfg a
 shows (k, cfg, inp, bins-upd bs k (Predict-it k cfg a)) \in wellformed-bins
fun earley-measure :: nat \times 'a cfg \times 'a sentence \times 'a bins \Rightarrow nat \Rightarrow nat where
 earley-measure (k, cfg, inp, bs) i = card \{ x \mid x. wf-item cfg inp x \land item-end x = k \} - i
lemma \pi-it'-induct:
 assumes (k, cfg, inp, bs) \in wellformed-bins
 assumes base: \bigwedge k cfg inp bs i. i \ge length (items (bs!k)) \Longrightarrow P k cfg inp bs i
 assumes complete: \bigwedge k cfg inp bs i \ x. \ \neg i \ge length (items (bs ! k)) \Longrightarrow x = items (bs ! k) ! i \Longrightarrow
          next-symbol x = None \Longrightarrow P \ k \ cfg \ inp \ (bins-upd \ bs \ k \ (Complete-it \ k \ x \ bs \ i)) \ (i+1) \Longrightarrow P \ k
cfg inp bs i
 assumes scan: \bigwedge k cfg inp bs i \times a. \neg i \ge length (items (bs \mid k)) \Longrightarrow x = items (bs \mid k) \mid i \Longrightarrow
          next-symbol x = Some \ a \Longrightarrow is-terminal cfg \ a \Longrightarrow k < length \ inp \Longrightarrow
          P k cfg inp (bins-upd bs (k+1) (Scan-it k inp a x i)) (i+1) \Longrightarrow P k cfg inp bs i
 assumes pass: \bigwedge k cfg inp bs i x a. \neg i \geq length (items (bs!k)) \Longrightarrow x = items (bs!k)! i \Longrightarrow
         next-symbol x = Some \ a \Longrightarrow is-terminal cfg \ a \Longrightarrow \neg \ k < length \ inp \Longrightarrow
         P \ k \ cfg \ inp \ bs \ (i+1) \Longrightarrow P \ k \ cfg \ inp \ bs \ i
 assumes predict: \bigwedge k cfg inp bs i x a. \neg i \geq length (items (bs!k)) \Longrightarrow x = items (bs!k)! i \Longrightarrow
          next-symbol x = Some \ a \Longrightarrow \neg is-terminal cfg \ a \Longrightarrow \neg is
          P k cfg inp (bins-upd bs k (Predict-it k cfg a)) (i+1) \Longrightarrow P k cfg inp bs i
 shows P k cfg inp bs i
```

```
lemma wellformed-bins-\pi-it':
 assumes (k, cfg, inp, bs) \in wellformed-bins
 shows (k, cfg, inp, \pi-it'k cfg inp bs i) \in wellformed-bins
lemma wellformed-bins-\pi-it:
 assumes (k, cfg, inp, bs) \in wellformed-bins
 shows (k, cfg, inp, \pi\text{-it } k cfg inp bs) \in wellformed-bins
lemma wellformed-bins-I-it:
 assumes k \le length inp wf-cfg cfg
 shows (k, cfg, inp, \mathcal{I}\text{-}it \ k \ cfg \ inp) \in wellformed\text{-}bins
lemma wellformed-bins-3-it:
 k \leq length \ inp \implies wf\text{-}cfg \ cfg \implies (k, cfg, inp, \Im\text{-}it \ cfg \ inp) \in wellformed\text{-}bins
lemma wf-bins-\pi-it':
 assumes (k, cfg, inp, bs) \in wellformed-bins
 shows wf-bins cfg inp (\pi-it' k cfg inp bs i)
lemma wf-bins-\pi-it:
 assumes (k, cfg, inp, bs) \in wellformed-bins
 shows wf-bins cfg inp (\pi-it k cfg inp bs)
lemma wf-bins-I-it:
 assumes k \le length inp wf-cfg cfg
 shows wf-bins cfg inp (\mathcal{I}-it k cfg inp)
lemma wf-bins-3-it:
 wf-cfg cfg \implies wf-bins cfg inp (\mathfrak{I}-it cfg inp)
```

7.3 List to set

```
lemma Init-it-eq-Init:
 bins-items (Init-it cfg inp) = Init cfg
lemma Scan-it-sub-Scan:
 assumes wf-bins cfg inp bs bins-items bs \subseteq I x \in set (items (bs!k))
 assumes k < length bs k < length inp
 assumes next-symbol x = Some a
 shows set (items (Scan-it k inp a x pre)) \subseteq Scan k inp I
lemma Predict-it-sub-Predict:
 assumes wf-bins cfg inp bs bins-items bs \subseteq I x \in set (items (bs!k)) k < length bs
 assumes next-symbol x = Some X
 shows set (items (Predict-it k cfg X)) \subseteq Predict k cfg I
lemma Complete-it-sub-Complete:
 assumes wf-bins cfg inp bs bins-items bs \subseteq I y \in set (items (bs!k)) k < length bs
 assumes next-symbol y = None
 shows set (items (Complete-it k y bs red)) \subseteq Complete k I
lemma \pi-it'-sub-\pi:
 assumes (k, cfg, inp, bs) \in wellformed-bins
 assumes bins-items bs \subseteq I
```

```
shows bins-items (\pi\text{-it}' k \ cfg \ inp \ bs \ i) \subseteq \pi \ k \ cfg \ inp \ I lemma \pi\text{-it}-sub-\pi:
assumes (k, cfg, inp, bs) \in wellformed\text{-bins}
assumes bins-items bs \subseteq I
shows bins-items (\pi\text{-it} \ k \ cfg \ inp \ bs) \subseteq \pi \ k \ cfg \ inp \ I lemma \mathcal{I}\text{-it}\text{-sub-}\mathcal{I}:
assumes k \le length \ inp \ wf\text{-}cfg \ cfg
shows bins-items (\mathcal{I}\text{-it} \ k \ cfg \ inp) \subseteq \mathcal{I} \ k \ cfg \ inp lemma \mathcal{I}\text{-it}\text{-sub-}\mathcal{I}:
wf\text{-}cfg \ cfg \implies bins\text{-items} \ (\mathcal{I}\text{-it} \ cfg \ inp) \subseteq \mathcal{I} \ cfg \ inp
```

7.4 Soundness

```
lemma sound-Scan-it:
 assumes wf-bins cfg inp bs bins-items bs \subseteq I x \in set (items (bs!k)) k < length bs k < length inp
 assumes next-symbol x = Some a wf-items cfg inp I sound-items cfg inp I
 shows sound-items cfg inp (set (items (Scan-it k inp a x i)))
lemma sound-Predict-it:
 assumes wf-bins cfg inp bs bins-items bs \subseteq I x \in set (items (bs!k)) k < length bs
 assumes next-symbol x = Some\ X sound-items cfg inp I
 shows sound-items cfg inp (set (items (Predict-it k cfg X)))
lemma sound-Complete-it:
 assumes wf-bins cfg inp bs bins-items bs \subseteq I y \in set (items (bs!k)) k < length bs
 assumes next-symbol y = None wf-items cfg inp I sound-items cfg inp I
 shows sound-items cfg inp (set (items (Complete-it k y bs i)))
lemma sound-\pi-it':
 assumes (k, cfg, inp, bs) \in wellformed-bins
 assumes sound-items cfg inp (bins-items bs)
 shows sound-items cfg inp (bins-items (\pi-it'k cfg inp bs i))
lemma sound-\pi-it:
 assumes (k, cfg, inp, bs) \in wellformed-bins
 assumes sound-items cfg inp (bins-items bs)
 shows sound-items cfg inp (bins-items (\pi-it k cfg inp bs))
```

7.5 Set to list

```
lemma impossible-complete-item:
   assumes wf-cfg cfg wf-item cfg inp x sound-item cfg inp x
   assumes is-complete x item-origin x = k item-end x = k nonempty-derives cfg
   shows False
lemma Complete-Un-eq-terminal:
   assumes next-symbol z = Some a is-terminal cfg a wf-items cfg inp I wf-item cfg inp z wf-cfg cfg
```

```
shows Complete k (I \cup \{z\}) = Complete k I
lemma Complete-Un-eq-nonterminal:
 assumes next-symbol z = Some a is-nonterminal cfg a sound-items cfg inp I item-end z = k
 assumes wf-items cfg inp I wf-item cfg inp z wf-cfg cfg nonempty-derives cfg
 shows Complete k (I \cup \{z\}) = Complete k I
lemma Complete-sub-bins-Un-Complete-it:
 assumes Complete k I \subseteq bins-items bs I \subseteq bins-items bs is-complete z wf-bins cfg inp bs wf-item cfg
inp z
 shows Complete k (I \cup \{z\}) \subseteq bins-items bs \cup set (items (Complete-it k z bs red))
lemma \pi-it'-mono:
 assumes (k, cfg, inp, bs) \in wellformed-bins
 shows bins-items bs \subseteq bins-items (\pi-it' k cfg inp bs i)
lemma \pi-step-sub-\pi-it':
 assumes (k, cfg, inp, bs) \in wellformed-bins
 assumes \pi-step k cfg inp (bins-items-upto bs k i) \subseteq bins-items bs
 assumes sound-items cfg inp (bins-items bs) is-word cfg inp nonempty-derives cfg
 shows \pi-step k cfg inp (bins-items bs) \subseteq bins-items (\pi-it' k cfg inp bs i)
lemma \pi-step-sub-\pi-it:
 assumes (k, cfg, inp, bs) \in wellformed-bins
 assumes \pi-step k cfg inp (bins-items-upto bs k 0) \subseteq bins-items bs
 assumes sound-items cfg inp (bins-items bs) is-word cfg inp nonempty-derives cfg
 shows \pi-step k cfg inp (bins-items bs) \subseteq bins-items (\pi-it k cfg inp bs)
lemma \pi-it'-bins-items-eq:
 assumes (k, cfg, inp, as) \in wellformed-bins
 assumes bins-eq-items as bs wf-bins cfg inp as
 shows bins-eq-items (\pi-it' k cfg inp as i) (\pi-it' k cfg inp bs i)
lemma \pi-it'-idem:
 assumes (k, cfg, inp, bs) \in wellformed-bins
 assumes i \le j sound-items cfg inp (bins-items bs) nonempty-derives cfg
 shows bins-items (\pi-it' k cfg inp (\pi-it' k cfg inp bs i) j) = bins-items (\pi-it' k cfg inp bs i)
lemma \pi-it-idem:
 assumes (k, cfg, inp, bs) \in wellformed-bins
 assumes sound-items cfg inp (bins-items bs) nonempty-derives cfg
 shows bins-items (\pi-it k cfg inp (\pi-it k cfg inp bs)) = \text{bins-items} (\pi-it k cfg inp bs)
lemma funpower-\pi-step-sub-\pi-it:
 assumes (k, cfg, inp, bs) \in wellformed-bins
 assumes \pi-step k cfg inp (bins-items-upto bs k 0) \subseteq bins-items bs sound-items cfg inp (bins-items bs)
 assumes is-word cfg inp nonempty-derives cfg
 shows funpower (\pi-step k cfg inp) n (bins-items bs) \subseteq bins-items (\pi-it k cfg inp bs)
lemma \pi-sub-\pi-it:
 assumes (k, cfg, inp, bs) \in wellformed-bins
 assumes \pi-step k cfg inp (bins-items-upto bs k 0) \subseteq bins-items bs sound-items cfg inp (bins-items bs)
 assumes is-word cfg inp nonempty-derives cfg
 shows \pi k cfg inp (bins-items\ bs) \subseteq bins-items\ (<math>\pi-it k cfg inp\ bs)
```

```
lemma \mathcal{I}-sub-\mathcal{I}-it:

assumes k \leq length inp wf-cfg cfg

assumes is-word cfg inp nonempty-derives cfg

shows \mathcal{I} k cfg inp \subseteq bins-items (\mathcal{I}-it k cfg inp)

lemma \mathcal{I}-sub-\mathcal{I}-it:

assumes wf-cfg cfg is-word cfg inp nonempty-derives cfg

shows \mathcal{I} cfg inp \subseteq bins-items (\mathcal{I}-it cfg inp)
```

7.6 Main Theorem

```
definition earley-recognized-it :: 'a bins \Rightarrow 'a cfg \Rightarrow 'a sentence \Rightarrow bool where earley-recognized-it I cfg inp = (\exists x \in set \ (items \ (I ! length \ inp)). is-finished cfg inp x) theorem earley-recognized-it-iff-earley-recognized: assumes wf-cfg cfg is-word cfg inp nonempty-derives cfg shows earley-recognized-it (\Im-it cfg inp) cfg inp \longleftrightarrow earley-recognized (\Im cfg inp) cfg inp corollary correctness-list: assumes wf-cfg cfg is-word cfg inp nonempty-derives cfg shows earley-recognized-it (\Im-it cfg inp) cfg inp \longleftrightarrow derives cfg [\Im cfg] inp
```

8 Earley Parser Implementation

8.1 Draft

8.2 Pointer lemmas

```
definition predicts :: 'a item \Rightarrow bool where
 predicts x \longleftrightarrow item\text{-}origin \ x = item\text{-}end \ x \land item\text{-}dot \ x = 0
definition scans :: 'a sentence \Rightarrow nat \Rightarrow 'a item \Rightarrow 'a item \Rightarrow bool where
 scans inp k \ x \ y \longleftrightarrow y = inc\text{-item} \ x \ k \land (\exists a. \ next\text{-symbol} \ x = Some \ a \land inp!(k-1) = a)
definition completes :: nat \Rightarrow 'a item \Rightarrow 'a item \Rightarrow 'a item \Rightarrow bool where
 completes k \ x \ y \ z \longleftrightarrow y = inc\text{-item} \ x \ k \land is\text{-complete} \ z \land item\text{-origin} \ z = item\text{-end} \ x \land
   (\exists N. next\text{-symbol } x = Some \ N \land N = item\text{-rule-head } z)
definition sound-null-ptr :: 'a entry \Rightarrow bool where
 sound-null-ptr e = (pointer \ e = Null \longrightarrow predicts \ (item \ e))
definition sound-pre-ptr :: 'a sentence \Rightarrow 'a bins \Rightarrow nat \Rightarrow 'a entry \Rightarrow bool where
 sound-pre-ptr inp bs k e = (\forall pre. pointer e = Pre pre \longrightarrow
   k > 0 \land pre < length (bs!(k-1)) \land scans inp k (item (bs!(k-1)!pre)) (item e))
definition sound-prered-ptr :: 'a bins \Rightarrow nat \Rightarrow 'a entry \Rightarrow bool where
 sound-prered-ptr bs k = (\forall p \text{ ps } k' \text{ pre red. pointer } e = \text{PreRed } p \text{ ps } \land (k', \text{pre, red}) \in \text{set } (p \text{\#ps}) \longrightarrow
   k' < k \land pre < length (bs!k') \land red < length (bs!k) \land completes k (item (bs!k'!pre)) (item e) (item
(bs!k!red)))
definition sound-ptrs :: 'a sentence \Rightarrow 'a bins \Rightarrow bool where
 sound-ptrs inp bs = (\forall k < length bs. \forall e \in set (bs!k).
   sound-null-ptr e \wedge
   sound-pre-ptr inp bs k \in \Lambda
   sound-prered-ptr bs k e)
definition mono-red-ptr :: 'a bins \Rightarrow bool where
 mono-red-ptr bs = (\forall k < length bs. \forall i < length (bs!k).
   \forall k' \text{ pre red ps. pointer } (bs!k!i) = PreRed (k', pre, red) \text{ ps} \longrightarrow red < i)
```

```
lemma sound-ptrs-bin-upd:
 assumes sound-ptrs inp bs k < length bs es = bs!k distinct (items es)
 assumes sound-null-ptr e sound-pre-ptr inp bs k e sound-prered-ptr bs k e
 shows sound-ptrs inp (bs[k := bin-upd \ e \ es])
lemma mono-red-ptr-bin-upd:
 assumes mono-red-ptr bs k < length bs es = bs!k distinct (items es)
 assumes \forall k' pre red ps. pointer e = PreRed(k', pre, red) ps \longrightarrow red < length es
 shows mono-red-ptr (bs[k := bin-upd \ e \ es])
lemma sound-mono-ptrs-bin-upds:
 assumes sound-ptrs inp bs mono-red-ptr bs k < length bs b = bs!k distinct (items b) distinct (items
es)
 assumes \forall e \in set \ es. \ sound-null-ptr \ e \land sound-pre-ptr \ inp \ bs \ k \ e \land sound-prered-ptr \ bs \ k \ e
 assumes \forall e \in set \ es. \ \forall k' \ pre \ red \ ps. \ pointer \ e = PreRed \ (k', pre, red) \ ps \longrightarrow red < length \ b
 shows sound-ptrs inp (bs[k := bin-upds es b]) \land mono-red-ptr <math>(bs[k := bin-upds es b])
lemma sound-mono-ptrs-\pi-it':
 assumes (k, cfg, inp, bs) \in wellformed-bins
 assumes sound-ptrs inp bs sound-items cfg inp (bins-items bs)
 assumes mono-red-ptr bs
 assumes nonempty-derives cfg wf-cfg cfg
 shows sound-ptrs inp (\pi-it'k \ cfg \ inp \ bs \ i) \land mono-red-ptr (\pi-it'k \ cfg \ inp \ bs \ i)
lemma sound-mono-ptrs-\pi-it:
 assumes (k, cfg, inp, bs) \in wellformed-bins
 assumes sound-ptrs inp bs sound-items cfg inp (bins-items bs)
 assumes mono-red-ptr bs
 assumes nonempty-derives cfg wf-cfg cfg
 shows sound-ptrs inp (\pi-it k cfg inp bs) \land mono-red-ptr (\pi-it k cfg inp bs)
lemma sound-ptrs-Init-it:
 sound-ptrs inp (Init-it cfg inp)
lemma mono-red-ptr-Init-it:
 mono-red-ptr (Init-it cfg inp)
lemma sound-mono-ptrs-I-it:
 assumes k \le length inp wf-cfg cfg nonempty-derives cfg wf-cfg cfg
 shows sound-ptrs inp (\mathcal{I}-it k cfg inp) \wedge mono-red-ptr (\mathcal{I}-it k cfg inp)
lemma sound-mono-ptrs-\Im-it:
 assumes wf-cfg cfg nonempty-derives cfg
 shows sound-ptrs inp (\mathfrak{I}-it cfg inp) \wedge mono-red-ptr (\mathfrak{I}-it cfg inp)
```

8.3 Trees and Forests

```
datatype 'a tree =
Leaf 'a
| Branch 'a 'a tree list
```

```
fun yield-tree :: 'a tree \Rightarrow 'a sentence where
 yield-tree (Leaf a) = [a]
| yield-tree (Branch - ts) = concat (map yield-tree ts)
fun root-tree :: 'a tree \Rightarrow 'a where
 root-tree (Leaf a) = a
| root-tree (Branch N -) = N
fun wf-rule-tree :: 'a cfg \Rightarrow 'a tree \Rightarrow bool where
 wf-rule-tree - (Leaf a) \longleftrightarrow True
| wf-rule-tree cfg (Branch N ts) \longleftrightarrow (
   (\exists r \in set \ (\Re \ cfg). \ N = rule-head \ r \land map \ root-tree \ ts = rule-body \ r) \land
   (\forall t \in set \ ts. \ wf-rule-tree \ cfg \ t))
fun wf-item-tree :: 'a cfg \Rightarrow 'a item \Rightarrow 'a tree \Rightarrow bool where
 wf-item-tree cfg - (Leaf a) \longleftrightarrow True
| wf-item-tree cfg x (Branch N ts) \longleftrightarrow (
   N = item-rule-head x \land map root-tree ts = take (item-dot x) (item-rule-body x) \land
   (\forall t \in set \ ts. \ wf-rule-tree \ cfg \ t))
definition wf-yield-tree :: 'a sentence \Rightarrow 'a item \Rightarrow 'a tree \Rightarrow bool where
 wf-yield-tree inp x \ t \longleftrightarrow yield-tree t = slice (item-origin x) (item-end x) inp
datatype 'a forest =
 FLeaf 'a
 | FBranch 'a 'a forest list list
fun combinations :: 'a list list \Rightarrow 'a list list where
 combinations [] = [[]]
| combinations (xs\#xss) = [x\#cs \cdot x < -xs, cs < -combinations xss]
fun trees :: 'a forest \Rightarrow 'a tree list where
 trees(FLeaf a) = [Leaf a]
| trees (FBranch N fss) = (
   let tss = (map (\lambda fs. concat (map (\lambda f. trees f) fs)) fss) in
   map (\lambda ts. Branch N ts) (combinations tss)
 )
```

8.4 A single parse tree

```
partial-function (option) build-tree' :: 'a bins \Rightarrow 'a sentence \Rightarrow nat \Rightarrow 'a tree option where build-tree' bs inp k i = ( let e = bs!k!i in (
```

```
case pointer e of
     Null \Rightarrow Some (Branch (item-rule-head (item e)) [])
   | Pre pre \Rightarrow (
      do {
        t \leftarrow build-tree' bs inp (k-1) pre;
        case t of
         Branch N ts \Rightarrow Some (Branch N (ts @ [Leaf (inp!(k-1))]))
        | - \Rightarrow None
      })
   | PreRed(k', pre, red) \rightarrow (
      do {
        t \leftarrow build-tree' bs inp k' pre;
        case t of
         Branch N ts \Rightarrow
           do {
             t \leftarrow build-tree' bs inp k red;
             Some (Branch N (ts @ [t]))
        | - \Rightarrow None
      })
 ))
definition build-tree :: 'a cfg \Rightarrow 'a sentence \Rightarrow 'a bins \Rightarrow 'a tree option where
 build-tree cfg inp bs = (
   let k = length bs - 1 in (
   case filter-with-index (\lambda x. is-finished cfg inp x) (items (bs!k)) of
     ] \Rightarrow None
   |(-,i)\#-\Rightarrow build-tree' bs inp k i
 ))
definition wellformed-tree-ptrs :: ('a bins \times 'a sentence \times nat \times nat) set where
 well formed-tree-ptrs = \{
   (bs, inp, k, i) \mid bs inp k i.
    sound-ptrs inp bs \wedge
    mono-red-ptr\ bs\ \land
    k < length bs \land
    i < length (bs!k)
 }
fun build-tree'-measure :: ('a bins \times 'a sentence \times nat \times nat) \Rightarrow nat where
 build-tree'-measure (bs, inp, k, i) = foldl (+) 0 (map length (take k bs)) + i
lemma wellformed-tree-ptrs-pre:
```

```
assumes (bs, inp, k, i) \in wellformed-tree-ptrs
 assumes e = bs!k!i pointer e = Pre pre
 shows (bs, inp, (k-1), pre) \in wellformed-tree-ptrs
lemma wellformed-tree-ptrs-prered-pre:
 assumes (bs, inp, k, i) \in wellformed-tree-ptrs
 assumes e = bs!k!i pointer e = PreRed(k', pre, red) ps
 shows (bs, inp, k', pre) \in wellformed-tree-ptrs
lemma wellformed-tree-ptrs-prered-red:
 assumes (bs, inp, k, i) \in wellformed-tree-ptrs
 assumes e = bs!k!i pointer e = PreRed(k', pre, red) ps
 shows (bs, inp, k, red) \in wellformed-tree-ptrs
lemma build-tree'-induct:
 assumes (bs, inp, k, i) \in wellformed-tree-ptrs
 assumes \land bs inp k i.
   (\land e \ pre. \ e = bs!k!i \Longrightarrow pointer \ e = Pre \ pre \Longrightarrow P \ bs \ inp \ (k-1) \ pre) \Longrightarrow
   (\bigwedge e \ k' \ pre \ red \ ps. \ e = bs! \ k! i \Longrightarrow pointer \ e = PreRed \ (k', pre, red) \ ps \Longrightarrow P \ bs \ inp \ k' \ pre) \Longrightarrow
   (\land e \ k' \ pre \ red \ ps. \ e = bs!k!i \Longrightarrow pointer \ e = PreRed \ (k', pre, red) \ ps \Longrightarrow P \ bs \ inp \ k \ red) \Longrightarrow
  P bs inp k i
 shows P bs inp k i
lemma build-tree'-termination:
 assumes (bs, inp, k, i) \in wellformed-tree-ptrs
 shows \exists N ts. build-tree' bs inp k i = Some (Branch N ts)
lemma wf-item-tree-build-tree':
 assumes (bs, inp, k, i) \in wellformed-tree-ptrs
 assumes wf-bins cfg inp bs
 assumes k < length bs i < length (bs!k)
 assumes build-tree' bs inp k i = Some t
 shows wf-item-tree cfg (item (bs!k!i)) t
lemma wf-yield-tree-build-tree':
 assumes (bs, inp, k, i) \in wellformed-tree-ptrs
 assumes wf-bins cfg inp bs
 assumes k < length bs i < length (bs!k) k \leq length inp
 assumes build-tree' bs inp k i = Some t
 shows wf-yield-tree inp (item (bs!k!i)) t
theorem wf-rule-root-yield-tree-build-tree:
 assumes wf-bins cfg inp bs sound-ptrs inp bs mono-red-ptr bs length bs = length inp + 1
 assumes build-tree cfg inp bs = Some t
 shows wf-rule-tree cfg t \land root-tree t = \mathfrak{S} cfg \land yield-tree t = inp
corollary wf-rule-root-yield-tree-build-tree-3-it:
 assumes wf-cfg cfg nonempty-derives cfg
 assumes build-tree cfg inp (\mathfrak{I}-it cfg inp) = Some t
 shows wf-rule-tree cfg t \land root-tree t = \mathfrak{S} cfg \land yield-tree t = inp
theorem correctness-build-tree-J-it:
 assumes wf-cfg cfg is-word cfg inp nonempty-derives cfg
```

shows $(\exists t. build-tree \ cfg \ inp \ (\Im-it \ cfg \ inp) = Some \ t) \longleftrightarrow derives \ cfg \ [\Im \ cfg] \ inp$

8.5 Parse trees

```
fun insert-group :: ('a \Rightarrow 'k) \Rightarrow ('a \Rightarrow 'v) \Rightarrow 'a \Rightarrow ('k \times 'v \ list) \ list \Rightarrow ('k \times 'v \ list) \ list where
 insert-group K V a [] = [(K a, [V a])]
| insert-group K V a ((k, vs) # xs) = (
   if K a = k then (k, V a \# vs) \# xs
   else (k, vs) # insert-group K V a xs
fun group-by :: ('a \Rightarrow 'k) \Rightarrow ('a \Rightarrow 'v) \Rightarrow 'a \text{ list} \Rightarrow ('k \times 'v \text{ list}) \text{ list where}
 group-by KV[] = []
| group-by \ K \ V \ (x\#xs) = insert-group \ K \ V \ x \ (group-by \ K \ V \ xs)
partial-function (option) build-trees' :: 'a bins \Rightarrow 'a sentence \Rightarrow nat \Rightarrow nat set \Rightarrow 'a forest list
option where
 build-trees' bs inp k i I = (
   let e = bs!k!i in (
   case pointer e of
     Null \Rightarrow Some ([FBranch (item-rule-head (item e)) []])
   | Pre pre \Rightarrow (
       do {
        pres \leftarrow build\text{-}trees' bs inp (k-1) pre \{pre\};
         those (map (\lambda f.
          case f of
            FBranch N fss \Rightarrow Some (FBranch N (fss @ [[FLeaf (inp!(k-1))]]))
          | - \Rightarrow None
        ) pres)
       })
   | PreRed p ps \Rightarrow (
       let ps' = filter(\lambda(k', pre, red). red \notin I)(p#ps) in
       let gs = group-by (\lambda(k', pre, red), (k', pre)) (\lambda(k', pre, red), red) ps' in
       map-option concat (those (map (\lambda((k', pre), reds)).
        do {
          pres \leftarrow build-trees' bs inp k' pre \{pre\};
          rss \leftarrow those \ (map \ (\lambda red. \ build-trees' \ bs \ inp \ k \ red \ (I \cup \{red\})) \ reds);
          those (map (\lambda f.
            case f of
              FBranch \ N \ fss \Rightarrow Some \ (FBranch \ N \ (fss @ [concat \ rss]))
            | - \Rightarrow None
          ) pres)
```

```
) gs))
definition build-trees :: 'a cfg \Rightarrow 'a sentence \Rightarrow 'a bins \Rightarrow 'a forest list option where
 build-trees cfg inp bs = (
  let k = length bs - 1 in
  let finished = filter-with-index (\lambda x. is-finished cfg inp x) (items (bs!k)) in
  map-option concat (those (map (\lambda(-, i). build-trees' bs inp k i \{i\}) finished))
definition wellformed-forest-ptrs :: ('a bins \times 'a sentence \times nat \times nat \times nat set) set where
 well formed-forest-ptrs = \{
   (bs, inp, k, i, I) \mid bs inp k i I.
    sound-ptrs inp bs \wedge
    k < length bs \land
    i < length (bs!k) \land
    I \subseteq \{0..< length\ (bs!k)\} \land
    i \in I
 }
fun build-forest'-measure :: ('a bins \times 'a sentence \times nat \times nat \times nat set) \Rightarrow nat where
 build-forest'-measure (bs, inp, k, i, I) = foldl (+) 0 (map length (take (k+1) bs)) - card I
lemma wellformed-forest-ptrs-pre:
 assumes (bs, inp, k, i, I) \in wellformed-forest-ptrs
 assumes e = bs!k!i pointer e = Pre pre
 shows (bs, inp, (k-1), pre, \{pre\}) \in wellformed-forest-ptrs
lemma wellformed-forest-ptrs-prered-pre:
 assumes (bs, inp, k, i, I) \in wellformed-forest-ptrs
 assumes e = bs!k!i pointer e = PreRed p ps
 assumes ps' = filter (\lambda(k', pre, red). red \notin I) (p#ps)
 assumes gs = group-by(\lambda(k', pre, red).(k', pre))(\lambda(k', pre, red). red) ps'
 assumes ((k', pre), reds) \in set gs
 shows (bs, inp, k', pre, \{pre\}) \in wellformed-forest-ptrs
lemma wellformed-forest-ptrs-prered-red:
 assumes (bs, inp, k, i, I) \in wellformed-forest-ptrs
 assumes e = bs!k!i pointer e = PreRed p ps
 assumes ps' = filter (\lambda(k', pre, red). red \notin I) (p#ps)
 assumes gs = group-by (\lambda(k', pre, red), (k', pre)) (\lambda(k', pre, red), red) ps'
 assumes ((k', pre), reds) \in set gs red \in set reds
 shows (bs, inp, k, red, I \cup \{red\}) \in wellformed-forest-ptrs
lemma build-trees'-induct:
 assumes (bs, inp, k, i, I) \in well formed-forest-ptrs
```

```
assumes \land bs inp k i I.
   (\land e \ pre. \ e = bs!k!i \Longrightarrow pointer \ e = Pre \ pre \Longrightarrow P \ bs \ inp \ (k-1) \ pre \ \{pre\}) \Longrightarrow
   (\land e \ p \ ps \ ps' \ gs \ k' \ pre \ reds. \ e = bs!k!i \Longrightarrow pointer \ e = PreRed \ p \ ps \Longrightarrow
    ps' = filter (\lambda(k', pre, red). red \notin I) (p#ps) \Longrightarrow
    gs = group-by (\lambda(k', pre, red). (k', pre)) (\lambda(k', pre, red). red) ps' \Longrightarrow
    ((k', pre), reds) \in set \ gs \Longrightarrow P \ bs \ inp \ k' \ pre \ \{pre\}) \Longrightarrow
   (\wedge e p p s p s' q s k' p r e red reds reds'. <math>e = b s! k! i \Longrightarrow p o inter e = P r e R e d p p s \Longrightarrow
    ps' = filter (\lambda(k', pre, red). red \notin I) (p#ps) \Longrightarrow
    gs = group-by \ (\lambda(k', pre, red). \ (k', pre)) \ (\lambda(k', pre, red). \ red) \ ps' \Longrightarrow
    ((k', pre), reds) \in set \ gs \Longrightarrow red \in set \ reds \Longrightarrow P \ bs \ inp \ k \ red \ (I \cup \{red\})) \Longrightarrow
   P bs inp k i I
 shows P bs inp k i I
lemma build-trees'-termination:
 assumes (bs, inp, k, i, I) \in wellformed-forest-ptrs
 shows \exists fs. build-trees' bs inp k i I = Some fs \land (\forall f \in set fs. \exists N fss. f = FBranch N fss)
lemma wf-item-tree-build-trees':
 assumes (bs, inp, k, i, I) \in wellformed-forest-ptrs
 assumes wf-bins cfg inp bs
 assumes k < length bs i < length (bs!k)
 assumes build-trees' bs inp k i I = Some fs
 assumes f \in set fs
 assumes t \in set (trees f)
 shows wf-item-tree cfg (item (bs!k!i)) t
lemma wf-yield-tree-build-trees':
 assumes (bs, inp, k, i, I) \in well formed-forest-ptrs
 assumes wf-bins cfg inp bs
 assumes k < length bs i < length (bs!k) k < length inp
 assumes build-trees' bs inp k i I = Some fs
 assumes f \in set fs
 assumes t \in set (trees f)
 shows wf-yield-tree inp (item (bs!k!i)) t
theorem wf-rule-root-yield-tree-build-trees:
 assumes wf-bins cfg inp bs sound-ptrs inp bs length bs = length inp + 1
 assumes build-trees cfg inp bs = Some fs f \in set fs t \in set (trees f)
 shows wf-rule-tree cfg t \land root-tree t = \mathfrak{S} cfg \land yield-tree t = inp
corollary wf-rule-root-yield-tree-build-trees-3-it:
 assumes wf-cfg cfg nonempty-derives cfg
 assumes build-trees cfg inp (\mathfrak{I}-it cfg inp) = Some fs f \in set fs t \in set (trees f)
 shows wf-rule-tree cfg t \land root-tree t = \mathfrak{S} cfg \land yield-tree t = inp
theorem soundness-build-trees-3-it:
 assumes wf-cfg cfg is-word cfg inp nonempty-derives cfg
 assumes build-trees cfg inp (\mathfrak{I}-it cfg inp) = Some fs f \in set fs t \in set (trees f)
 shows derives cfg [\mathfrak{S} cfg] inp
theorem termination-build-tree-3-it:
```

assumes wf-cfg cfg nonempty-derives cfg derives cfg $[\mathfrak{S} \ cfg]$ inp **shows** \exists fs. build-trees cfg inp $(\mathfrak{I}$ -it cfg inp) = Some fs

8.6 A word on completeness

9 Examples

9.1 epsilon free CFG

```
definition \varepsilon-free :: 'a cfg \Rightarrow bool where \varepsilon-free cfg \longleftrightarrow (\forall r \in set \ (\Re \ cfg). \ rule-body r \neq [])

lemma \varepsilon-free-impl-non-empty-deriv: \varepsilon-free cfg \Longrightarrow N \in set \ (\Re \ cfg) \Longrightarrow \neg \ derives \ cfg \ [N] \ []
```

9.2 Example 1: Addition

```
datatype t1 = x \mid plus
datatype n1 = S
datatype s1 = Terminal \ t1 \mid Nonterminal \ n1
definition nonterminals1 :: s1 list where
 nonterminals1 = [Nonterminal S]
definition terminals1 :: s1 list where
 terminals1 = [Terminal x, Terminal plus]
definition rules1 :: s1 rule list where
 rules1 = [
  (Nonterminal S, [Terminal x]),
  (Nonterminal S, [Nonterminal S, Terminal plus, Nonterminal S])
definition start-symbol1 :: s1 where
 start-symbol1 = Nonterminal S
definition cfg1 :: s1 cfg where
 cfg1 = CFG \ nonterminals1 \ terminals1 \ rules1 \ start-symbol1
definition inp1 :: s1 list where
 inp1 = [Terminal x, Terminal plus, Terminal x, Terminal plus, Terminal x]
lemma wf-cfg1:
```

```
wf-cfg cfg1
lemma is-word-inp1:
 is-word cfg1 inp1
lemma nonempty-derives1:
 nonempty-derives cfg1
lemma correctness1:
 earley-recognized-it (3-it cfg1 inp1) cfg1 inp1 \longleftrightarrow derives cfg1 [\mathfrak S cfg1] inp1
fun size-bins :: 'a bins <math>\Rightarrow nat where
 size-bins bs = fold (+) (map \ length \ bs) 0
value 3-it cfg1 inp1
value size-bins (3-it cfg1 inp1)
value earley-recognized-it (3-it cfg1 inp1) cfg1 inp1
value build-trees cfg1 inp1 (3-it cfg1 inp1)
value map-option (map trees) (build-trees cfg1 inp1 (3-it cfg1 inp1))
value map-option (foldl (+) 0 \circ map length) (map-option (map trees) (build-trees cfg1 inp1 (3-it cfg1
inp1)))
9.2.1 Example 2: Cyclic reduction pointers
datatype t2 = x
datatype n2 = A \mid B
datatype s2 = Terminal t2 \mid Nonterminal n2
definition nonterminals2 :: s2 list where
 nonterminals2 = [Nonterminal A, Nonterminal B]
definition terminals2 :: s2 list where
 terminals2 = [Terminal x]
definition rules2 :: s2 rule list where
 rules2 = [
  (Nonterminal B, [Nonterminal A]),
  (Nonterminal A, [Nonterminal B]),
   (Nonterminal A, [Terminal x])
definition start-symbol2 :: s2 where
 start-symbol2 = Nonterminal A
definition cfg2 :: s2 cfg where
 cfg2 = CFG nonterminals2 terminals2 rules2 start-symbol2
definition inp2 :: s2 list where
```

```
inp2 = [Terminal\ x]

lemma wf-cfg2:
wf-cfg\ cfg2

lemma is-word-inp2:
is-word\ cfg2\ inp2

lemma nonempty-derives2:
nonempty-derives\ cfg2

lemma correctness2:
earley-recognized-it\ (\Im-it\ cfg2\ inp2)\ cfg2\ inp2 \longleftrightarrow derives\ cfg2\ [\mathfrak S\ cfg2]\ inp2

value \Im-it\ cfg2\ inp2

value earley-recognized-it\ (\Im-it\ cfg2\ inp2)\ cfg2\ inp2

value earley-ecognized-earley-ecognized-earley-ecognized-earley-ecognized-earley-ecognized-earley-ecognized-earley-ecognized-earley-ecognized-earley-ecognized-earley-ecognized-earley-ecognized-earley-ecognized-earley-ecognized-earley-ecognized-earley-ecognized-earley-ecognized-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earley-earl
```

10 Conclusion

- 10.1 Summary
- 10.2 Future Work

11 Templates

11.1 Section

Citation test [latex].

11.1.1 Subsection

See Table 11.1, Figure 11.1, Figure 11.2, Figure 11.3.

Table 11.1: An example for a simple table.

A	В	C	D
1	2	1	2
2	3	2	3

Figure 11.1: An example for a simple drawing.

Figure 11.2: An example for a simple plot.

```
SELECT * FROM tbl WHERE tbl.str = "str"
```

Figure 11.3: An example for a source code listing.

List of Figures

11.1 Example drawing	40
11.2 Example plot	41
11.3 Example listing	41

List of Tables

11.1	Example table																															40
	LAUTIPIC TUDIC	 	•	•	•	•	 	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1