Praca Domowa Termodynamika i Fizyka Statystyczna R 2021/2022

Kacper Cybiński

7 kwietnia 2022

1 Zadanie 1

Studnia kwantowa. Rozwaź pojedynczą cząstkę w nieskończonej studni kwantowej o szerokości L. Znajdź sumę statystyczną (Z) takiego układu. Pokaż, że w granicy niskich temperatur, $kT \ll \frac{\hbar^2}{2mL^2}$ dostajemy

$$\log Z = \log x + x^3 + \dots$$

gdzie $x=e^{-\frac{\hbar^2\pi^2}{2mL^2kT}}$. Znajdź średnią energię (U) układu w tym przybliżeniu oraz jego ciepło właściwe przy stałej długości, $C_L=\left(\frac{\partial U}{\partial T}\right)_L$ Jak zachowuje się C_L w granicy $T\to 0$? Znajdź następnie równanie stanu układu wiązaące p,L i T, pamiętając o tym, że $p=-\left(\frac{\partial F}{\partial L}\right)_T$. Wreszcie wyraź p poprzez U i L.

Następnie rozważ granicę wysokich temperatur, $kT\gg \frac{\hbar^2}{2mL^2}$. Uzasadnij, że wtedy sumę statystyczną można zastąpić całką

$$Z = \int_0^\infty e^{-\frac{\hbar^2 \pi^2 n^2}{2mL^2 kT}} dn$$

oraz znajdź U, C_L oraz równanie stanu w tej granicy.

2 Rozwiązanie

Rozważmy pojedynczą cząstkę w studni kwantowej o szerokości L. Stany stacjonarne cząstki w takim układzie w reprezentacji położeniowej dane są wzorem:

$$\Psi_n(x) = \sqrt{\frac{2}{L}}\sin\left(k_{\rm n}x\right)$$

Jako że funkcja falowa musi znikać na brzegach studni to k_n jest postaci $k_n = \frac{n\pi}{L}.Z$ drugiej strony z równania Schroedingera bez czasu dostajemy, że $k_n = \sqrt{\frac{2mE_n}{\hbar^2}}$. Stąd energie stanów stacjonarnych są postaci:

$$E_n = \frac{\hbar^2 \pi^2}{2mL^2} n^2$$

gdzie n wszędzie jest indeksem n-tego stanu stacjonarnego. Stąd suma statystyczna Z jest postaci:

$$Z = \sum_{n=1}^{\infty} \exp\left(-\beta \frac{\hbar^2 \pi^2}{2mL^2} n^2\right)$$

gdzie $\beta = \frac{1}{kT}$. Wartość tego szeregu wyrazić można przy pomocy funkcji theta Jacobiego, jednak do dalszej części zadania lepiej jest zostawić ją w takiej formie.

Jeśli przyjmiemy, że $kT \ll \frac{\hbar^2}{2mL^2}$ to łatwo zauważyć, że kolejne eksponensy bardzo szybko zblizają się do 0 (poniewaz samo $\beta \frac{\hbar^2 \pi^2}{2mL^2}$ jest bardzo duze, a dodatkowo przemnażamy je przez n^2 , które tym

bardziej go powiększa nawet dla małych n). Zapiszmy wiecc Z w trochę innej formie wyciągając poza sumę dwa pierwsze wyrazy:

$$Z = \exp\left(-\beta \frac{\hbar^2 \pi^2}{2mL^2}\right) + \exp\left(-4\beta \frac{\hbar^2 \pi^2}{2mL^2}\right) + \sum_{n=3}^{\infty} \exp\left(-\beta \frac{\hbar^2 \pi^2}{2mL^2}n^2\right)$$

Wprowadźmy oznaczenie:

$$x = \exp\left(-\beta \frac{\hbar^2 \pi^2}{2mL^2}\right)$$

Wówczas:

$$Z = x + x^4 + O\left(x^9\right)$$

Działając na to wyrażenie obustronnie logarytmem dostaniemy:

$$\log Z = \log (x + x^4 + O(x^9)) = \log (x (1 + x^3 + O(x^8))) = \log x + \log (1 + x^3 + O(x^8))$$

Jako że x jest małe, to możemy drugi logarytm rozwinąć wokół 0:

$$\log (1 + x^3 + O(x^8)) = x^3 + O(x^8) + \frac{1}{2} (x^3 + O(x^8))^2 = x^3 + \dots$$

Podstawiając to do równania na $\log Z$ dostajemy wzór, którego oczekiwano w treści zadania:

$$\log Z = \log x + x^3 + \dots$$

Podstawiajacc za x eksponensa dostaniemy:

$$\log Z = -\beta \frac{\hbar^2 \pi^2}{2mL^2} + \exp\left(-3\beta \frac{\hbar^2 \pi^2}{2mL^2}\right)$$

Obliczmy teraz energię wewnętrzną układu. Wyraża się ona wzorem:

$$U = -\frac{\partial \log Z}{\partial \beta}$$

$$U = \frac{\hbar^2 \pi^2}{2mL^2} + 3\frac{\hbar^2 \pi^2}{2mL^2} \exp\left(-3\beta \frac{\hbar^2 \pi^2}{2mL^2}\right)$$

Policzmy teraz ciepło właściwe dla tego układ przy stałej długości studni:

$$C_L = \left(\frac{\partial U}{\partial T}\right)_L = \left(\frac{\partial U}{\partial \beta}\frac{\partial \beta}{\partial T}\right)_L$$

$$C_L = -\frac{1}{kT^2} \left(\frac{\partial U}{\partial \beta}\right)_L = \frac{1}{kT^2} \left(3\frac{\hbar^2 \pi^2}{2mL^2}\right)^2 \exp\left(-3\frac{\hbar^2 \pi^2}{2mL^2kT}\right)$$

W granicy $T\to 0$ dostajemy, że $C_L\to 0$. Na koniec znajdźmy równanie stanu. Wiadomo, że ciśnienie wyraża się wzorem:

$$p = -\left(\frac{\partial F}{\partial L}\right)_T$$

gdzie F to energia swobodna dana wzorem $F = -kT \log Z$. Czyli ciśnienie wyraża się wzorem:

$$p = kT \left(\frac{\partial \left(-\frac{1}{kT} \frac{\hbar^2 \pi^2}{2mL^2} + \exp\left(-3 \frac{\hbar^2 \pi^2}{2mL^2 kT} \right) \right)}{\partial L} \right)_T$$
$$p = \frac{\hbar^2 \pi^2}{mL^3} + \frac{3\hbar^2 \pi^2}{mL^3} \exp\left(-3 \frac{\hbar^2 \pi^2}{2mL^2 kT} \right)$$

Korzystając ze wzoru na energię wewnętrzną układu wzór na ciśnienie można wyrazić tylko poprzez U i L:

$$p = \frac{2}{L} \left(\frac{\hbar^2 \pi^2}{2mL^2} + \frac{3\hbar^2 \pi^2}{2mL^2} \exp\left(-3 \frac{\hbar^2 \pi^2}{2mL^2 kT} \right) \right) = \frac{2U}{L}$$

Rozważmy teraz granicę wysokich temperatur $kT\gg\frac{\hbar^2}{2mL^2}$. Wprowadźmy ponownie oznaczenie $x=\exp\left(-\beta\frac{\hbar^2\pi^2}{2mL^2}\right)$. Rozważmy teraz ile wynosi w tej granicy różnica między kolejnymi wyrazami szeregu opisującego Z. Wybierzmy w tym celu dowolne k. Wówczas różnica między k-tym, a (k+1)-ym wyrazem szeregu wyraża się wzorem:

$$\Delta x = x^{k^2} - x^{(k+1)^2} = x^k \left(1 - x^{2k+1} \right)$$

Skoro $kT\gg \frac{\hbar^2}{2mL^2}$, to wykładnik eksponensa dąży do 0 , więc $x\to 1$. Skoro tak, to $\Delta x\to 0$. Zatem dla dowolnego naturalnego k różnica między kolejnymi wyrazami jest bliska zeru, więc rozkład uciągla się i sumę można zastąpić całką. W granicy wysokich temperatur suma statystyczna jest więc dana wzorem:

$$Z = \int_0^\infty \exp\left(-\beta \frac{\hbar^2 \pi^2}{2mL^2} n^2\right) dn$$
$$Z = \frac{1}{2} \sqrt{\frac{2mL^2}{\hbar^2 \pi^2 \beta}}$$

W tej granicy energia wewnętrzna U dana jest wzorem:

$$U = -\frac{\partial \log Z}{\partial \beta} = \frac{1}{\beta} = \frac{kT}{2}$$

Natomiast C_L dane jest wzorem:

$$C_L = \left(\frac{\partial U}{\partial T}\right)_L = \frac{k}{2}$$

Na koniec wyznaczmy równanie stanu poprzez wyznaczenie zależności na p. Ponownie jest ona dana wzorem:

$$p = -\left(\frac{\partial F}{\partial L}\right)_T$$

Natomiast F jest równe:

$$F = -kT \log \left(\frac{1}{2} \sqrt{\frac{2mL^2kT}{\hbar^2 \pi^2}} \right)$$

A stad p jest równe:

$$p = \frac{kT}{L}$$

Wyrażając ciśnienie poprzez U i L dostaniemy:

$$p = \frac{2U}{L}$$