Correlated Errors

 Estimated regression coefficients are still unbiased, but they are no longer MLEs.

$$E[(X'X)^{-1}X'Y] = (X'X)^{-1}X'E[Y] = \beta.$$

- MSE may seriously underestimated the variance of the error terms.
- § Standard errors are too small \rightarrow *t*-statistics too large \rightarrow false positives.
- Onfidence intervals not large enough.

(Statistics 203) March 9, 2010

Housing Starts

 H_t : housing starts (millions). P_t Size of the 22 to 44 year population group (millions).

$$H_t = \beta_0 + \beta_1 P_t + \epsilon_t$$

(Statistics 203) March 9, 2010

Housing Starts

Standard residuals from ordinary least squares.

(Statistics 203) March 9, 2010

Housing Starts

Standard residuals after including mortagage availability index.

(Statistics 203) March 9, 2010

Consumer Expenditure

How does consumer expenditure depend on the price of money? Y is the consumer expenditure, X is the stock of money, both in billions of current dollars for the United States.

(Statistics 203) March 9, 2010

Consumer Expenditure

Standardized residuals from ordinary least squares:

(Statistics 203) March 9, 2010

Consumer Expenditure

After Cochran Orcutt procedure:

(Statistics 203) March 9, 2010 7 / 8

Summary

- The simplest kind of correlation in the errors is autocorrelation.
 Often, it is works as a first approximation.
- The Durbin Watson Test can be used to detect autocorrelation.
- Sometimes, autocorrelation is caused by a seasonal variable being missing from the model (e.g. Housing Starts data).
- When autocorrelation can not be removed from the data, the Cochran-Orcutt procedure can be used to correct for it.

(Statistics 203) March 9, 2010