

Theoretische Informatik D. Flumini, L. Keller, O. Stern

Lösung 2

Alphabete, Wörter, Sprachen und reguläre Ausdrücke

Lösung 1.

Mögliche Lösungen:

- (a) $(0|1)^*$
- (b) $(0^*(100)^*)^*$ oder auch $(0|(100))^*$
- (c) $1(1|0)(1|0)^*$
- (d) (1(1|0)*0)|0

Lösung 2.

Mögliche Lösungen:

- (a) $(v|uv^*u)^*$
- (b) (0|5)|((1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*(0|5))
- (c) (a|b)(a|b)(a|b)
- (d) (a|...|z)(a|...|z)(a|...|z)((a|...|z)((a|...|z)|(0|...|9))*

Lösung 3.

Mögliche Begründungen:

- (a) Die beiden regulären Ausdrücke ((U|V)T) und (U|(VT)) sind im Allgemeinen nicht äquivalent. Man definiere die regulären Ausdrücke als U=aa, V=bb und T=cc, dann stellt sich der Vergleich zwischen ((aa|bb)cc) und (aa|(bbcc)). Man sieht jedoch sehr schnell, dass der erste Ausdruck das Wort aacc beschreibt, der zweite jedoch nicht. Die Ausdrücke können also nicht äquivalent sein.
- (b) Die regulären Ausdrücke sind äquivalent. Der Ausdruck $(b((x^*)^*(b^*)^*)^*)^*$ kann sehr schnell zu $(b(x|b)^*)^*$ vereinfacht werden. Man stellt nun fest, dass das leere Wort oder jedes Wort mit dem Präfix b akzeptiert wird. Dies entspricht exakt dem zweiten Ausdruck $\varepsilon(b(x|b)^*)$.

Lösung 4.

Lösungen:

	w_1	w_2	w_3	w_4	w_5
R_1	Х	1	1	Х	Х
R_2	Х	1	1	1	1
R_3	Х	Х	Х	Х	Х
R_4	Х	1	Х	Х	Х

Lösung Zusatzaufgabe 1.

Eine mögliche Lösung: $(0^*(1(01^*0)^*1)^*)^*$