Università degli Studi di Cagliari Corso di Laurea in Matematica

Una dimostrazione del Lemma di Zorn

Serena Pirina

Relatore: prof. Andrea Loi

Anno Accademico 2017/2018

Il lemma di Zorn

Lemma

Se X è un insieme non vuoto su cui è definita una relazione d'ordine parziale \leq tale che ogni sua catena C possiede un maggiorante in X, allora X contiene almeno un elemento massimale.

Il lemma di Zorn

L' importanza del lemma...

Il lemma di Zorn

L' importanza del lemma...

Grazie al lemma si possono infatti enunciare:

- Il teorema di Tychonoff in topologia per spazi compatti;
- L'esistenza di una base per ogni spazio vettoriale di dimensione infinita;
- L'esistenza di un ideale massimale per ogni anello.
- Il lemma di Zorn è inoltre equivalente all'assioma di scelta.

Relazione d'ordine parziale

Una relazione d'ordine \leq è parziale se gode della proprietá riflessiva, antisimmetrica e transitiva.

Relazione d'ordine parziale

Una relazione d'ordine \leq è parziale se gode della proprietá riflessiva, antisimmetrica e transitiva.

Catena

Un insieme $C \subseteq X$ è una catena se è un sottoinsieme totalmente ordinato, ovvero un insieme parzialmente ordinato in cui tutti gli elementi sono confrontabili.

Maggiorante

Sia (X, \leq) parzialmente ordinato e $S \subseteq X$, diremo che $x \in X$ è maggiorante di S se $y \leq x \ \forall y \in S$

Maggiorante

Sia (X, \leq) parzialmente ordinato e $S \subseteq X$, diremo che $x \in X$ è maggiorante di S se $y \leq x \ \forall y \in S$

Elemento massimale

Sia (X, \leq) parzialmente ordinato, diremo che $x \in X$ è massimale in X se $\forall x' \in X$ t.c. $x \leq x' \Rightarrow x = x'$

 Si suppone, per assurdo, che X non abbia un elemento massimale

- Si suppone, per assurdo, che X non abbia un elemento massimale
- ② Se $C \subseteq X$ è una catena di $X \Rightarrow$ per ipotesi C possiede un maggiorante \Rightarrow esiste il limite superiore u di C

- Si suppone, per assurdo, che X non abbia un elemento massimale
- ② Se $C \subseteq X$ è una catena di $X \Rightarrow$ per ipotesi C possiede un maggiorante \Rightarrow esiste il limite superiore u di C
- **3** Quindi se $x \in X$, x > u t.c. $y < x \ \forall y \in C$ $\Rightarrow x$ sará chiamato *limite superiore stretto di C*

- Si suppone, per assurdo, che X non abbia un elemento massimale
- ② Se $C \subseteq X$ è una catena di $X \Rightarrow$ per ipotesi C possiede un maggiorante \Rightarrow esiste il limite superiore u di C
- **3** Quindi se $x \in X$, x > u t.c. $y < x \ \forall y \in C$ $\Rightarrow x$ sará chiamato *limite superiore stretto di C*
- Usando l'assioma di scelta, si definisce una funzione f che assegna ad ogni catena $C \subseteq X$ il limite superiore stretto

Assioma di scelta

Sia $\{A_i\}_{i\in I}$ una famiglia di insiemi $\Rightarrow \exists f: I \to \bigcup A_i$ t.c. $f(i) \in A_i \forall i \in I$

Definizione(Sottoinsieme conforme)

Un insieme $A \subseteq X$, con (X, \leq) parzialmente ordinato, è conforme se valgono le seguenti condizioni:

- A è ben ordinato
- $\forall x \in A \text{ si ha } x = f(P(A, x))$ $P(A, x) = \{ y \in A, y < x \}$

Definizione(Sottoinsieme conforme)

Un insieme $A \subseteq X$, con (X, \leq) parzialmente ordinato, è conforme se valgono le seguenti condizioni:

- A è ben ordinato
- $\forall x \in A \text{ si ha } x = f(P(A, x))$ $P(A, x) = \{ y \in A, y < x \}$

Definizione(Segmento iniziale)

Dati A e B sottoinsiemi conformi di X, B è un segmento iniziale di A se B = P(A, x)

Definizione(Sottoinsieme conforme)

Un insieme $A \subseteq X$, con (X, \leq) parzialmente ordinato, è conforme se valgono le seguenti condizioni:

- A è ben ordinato
- $\forall x \in A \text{ si ha } x = f(P(A, x))$ $P(A, x) = \{y \in A, y < x\}$

Definizione(Segmento iniziale)

Dati $A \in B$ sottoinsiemi conformi di X, B è un segmento iniziale di A se B = P(A, x)

Proposizione

Se A e B sono sottoinsiemi conformi di X, $A \neq B$, allora A è un segmento iniziale di B, o B è un segmento iniziale di A

Dimostrazione proposizione

Per ipotesi
$$A \neq B \Rightarrow A \setminus B \neq \emptyset$$
 $\Rightarrow x = min(A \setminus B)$

Dimostrazione proposizione

Per ipotesi
$$A \neq B \Rightarrow A \setminus B \neq \emptyset$$
 $\Rightarrow x = min(A \setminus B)$
Verifichiamo che $P(A, x) = B$

Dimostrazione proposizione

Per ipotesi $A \neq B \Rightarrow A \setminus B \neq \emptyset$ $\Rightarrow x = min(A \setminus B)$ Verifichiamo che P(A, x) = B

•
$$P(A, x) \subseteq B$$

se $y \in P(A, x) \Rightarrow y \in A, y < x \Rightarrow y \in B$
se infatti $y \notin B \Rightarrow y \in A \setminus B$ e ci sarebbe un assurdo essendo $y < x$ e $x = min(A \setminus B)$

Dimostrazione proposizione

Per ipotesi $A \neq B \Rightarrow A \setminus B \neq \emptyset$ $\Rightarrow x = min(A \setminus B)$ Verifichiamo che P(A, x) = B

- $P(A, x) \subseteq B$ se $y \in P(A, x) \Rightarrow y \in A, y < x \Rightarrow y \in B$ se infatti $y \notin B \Rightarrow y \in A \setminus B$ e ci sarebbe un assurdo essendo y < x e $x = min(A \setminus B)$
- ② $B \subseteq P(A, x)$ supponiamo per assurdo che $(B \setminus P(A, x)) \neq \emptyset$ sia $y = min(B \setminus P(A, x)) \Rightarrow P(B, y) \subseteq P(A, x)$ infatti se $\xi \in P(B, y) \Rightarrow \xi \in B, \xi < y \Rightarrow \xi \in P(A, x)$

Dimostrazione proposizione

Per ipotesi $A \neq B \Rightarrow A \setminus B \neq \emptyset$ $\Rightarrow x = min(A \setminus B)$ Verifichiamo che P(A, x) = B

- $P(A, x) \subseteq B$ se $y \in P(A, x) \Rightarrow y \in A, y < x \Rightarrow y \in B$ se infatti $y \notin B \Rightarrow y \in A \setminus B$ e ci sarebbe un assurdo essendo y < x e $x = min(A \setminus B)$
- 2 $B \subseteq P(A, x)$ supponiamo per assurdo che $(B \setminus P(A, x)) \neq \emptyset$ sia $y = min(B \setminus P(A, x)) \Rightarrow P(B, y) \subseteq P(A, x)$ infatti se $\xi \in P(B, y) \Rightarrow \xi \in B, \xi < y \Rightarrow \xi \in P(A, x)$
 - sia $z = min(A \setminus P(B, y))$

Dimostrazione proposizione

Si puó affermare che P(A, z) = P(B, y):

Dimostrazione proposizione

Si puó affermare che P(A, z) = P(B, y):

Dimostrazione proposizione

Si puó affermare che P(A, z) = P(B, y):

- $P(A, z) \subseteq P(B, y)$ se $\gamma \in P(A, z) \Rightarrow \gamma \in A, \gamma < z \Rightarrow \gamma \in P(B, y)$
- $P(B,y) \subseteq P(A,z)$

Dimostrazione proposizione

Si puó affermare che P(A, z) = P(B, y):

- $P(B,y) \subseteq P(A,z)$

Lemma

Dato $u \in P(B, y)$ e $v \in A$ t.c. $v \le u \Rightarrow v \in P(B, y)$

Dimostrazione proposizione

Si puó affermare che P(A, z) = P(B, y):

- $P(A, z) \subseteq P(B, y)$ se $\gamma \in P(A, z) \Rightarrow \gamma \in A, \gamma < z \Rightarrow \gamma \in P(B, y)$
- $P(B, y) \subseteq P(A, z)$

Lemma

Dato $u \in P(B, y)$ e $v \in A$ t.c. $v \le u \Rightarrow v \in P(B, y)$

Dimostrazione.

Se
$$u \in P(B, y) \Rightarrow u \in B, u < y \Rightarrow v \le u < y \Rightarrow v < y$$

Inoltre $P(B, y) \subseteq P(A, x) \Rightarrow u \in P(A, x) \Rightarrow v \in P(A, x)$
Ma $P(A, x) \subseteq B \Rightarrow v \in B \Rightarrow v \in P(B, y)$

Dimostrazione proposizione

• Sia $u \in P(B, y) \Rightarrow u \in B, u < y$ Ma $P(B, y) \subseteq P(A, x) \Rightarrow u \in A \Rightarrow z \in A, u \in A$ $\Rightarrow u < z$ oppure $z \le u$

Dimostrazione proposizione

- Sia $u \in P(B, y) \Rightarrow u \in B, u < y$ Ma $P(B, y) \subseteq P(A, x) \Rightarrow u \in A \Rightarrow z \in A, u \in A$ $\Rightarrow u < z \text{ oppure } z \le u$
- Se $z \le u$ $\Rightarrow z \in P(B, y)$ per il lemma precedente ed è assurdo! $\Rightarrow u < z \Rightarrow P(B, y) \subseteq P(A, z)$ $\Rightarrow P(B, y) = P(A, z)$

Dimostrazione proposizione

- Sia $u \in P(B, y) \Rightarrow u \in B, u < y$ Ma $P(B, y) \subseteq P(A, x) \Rightarrow u \in A \Rightarrow z \in A, u \in A$ $\Rightarrow u < z$ oppure $z \le u$
- Se $z \le u$ $\Rightarrow z \in P(B, y)$ per il lemma precedente ed è assurdo! $\Rightarrow u < z \Rightarrow P(B, y) \subseteq P(A, z)$ $\Rightarrow P(B, y) = P(A, z)$
- Per ipotesi si ha che:
 - z = f(P(A, z)) = f(P(B, y)) = y $y \in B$ $\Rightarrow z = y \in B$ Ma $z \le x$ essendo $(A \setminus B) \subseteq (A \setminus P(B, y))$ con $x \in z$ i rispettivi minimi.

Ne segue che
$$z \in B$$
 $\Rightarrow z \neq x$ $\Rightarrow z < x$ $\Rightarrow z \in P(A, x)$
 $\Rightarrow y \in P(A, x) \Rightarrow \nexists y = min(B \setminus P(A, x))$ $\Rightarrow B = P(A, x)$

Da questa dimostrazione segue che: se A è un sottoinsieme conforme di X e $x \in A$, allora considerato un elemento $y \in X, y < x$, si avrá:

Da questa dimostrazione segue che: se A è un sottoinsieme conforme di X e $x \in A$, allora considerato un elemento $y \in X$, y < x, si avrá:

- $y \in A$ oppure
- 2 $y \notin a$ nessun sottoinsieme conforme di X

Da questa dimostrazione segue che: se A è un sottoinsieme conforme di X e $x \in A$, allora considerato un elemento $y \in X, y < x$, si avrá:

- $y \in A$ oppure
- 2 $y \notin a$ nessun sottoinsieme conforme di X

Possiamo quindi affermare che l'unione U di tutti i sottoinsiemi conformi di X è ancora conforme.

Se ne deduce che:

• Se x = f(U) dove U, unione di insiemi conformi, è una catena

Se ne deduce che:

• Se x = f(U) dove U, unione di insiemi conformi, è una catena $\Rightarrow U \cup \{x\}$ è conforme

Se ne deduce che:

• Se x = f(U) dove U, unione di insiemi conformi, è una catena $\Rightarrow U \cup \{x\}$ è conforme $\Rightarrow x \in U$

Se ne deduce che:

- Se x = f(U) dove U, unione di insiemi conformi, è una catena
 ⇒ U ∪ {x} è conforme
 ⇒ x ∈ U
- Ma se $x \in U \Rightarrow x$ non puó essere il limite superiore stretto

Se ne deduce che:

- Se x = f(U) dove U, unione di insiemi conformi, è una catena
 ⇒ U ∪ {x} è conforme
 ⇒ x ∈ U
- Ma se $x \in U \Rightarrow x$ non puó essere il limite superiore stretto
- Pertanto una catena non pu
 ó avere il limite superiore stretto, in contraddizione con la nostra ipotesi iniziale

Se ne deduce che:

- Se x = f(U) dove U, unione di insiemi conformi, è una catena
 ⇒ U ∪ {x} è conforme
 ⇒ x ∈ U
- Ma se $x \in U \Rightarrow x$ non puó essere il limite superiore stretto
- Pertanto una catena non pu
 ó avere il limite superiore stretto, in contraddizione con la nostra ipotesi iniziale
 - \Rightarrow X ha almeno un elemento massimale.

Grazie per la cortese attenzione