Laboratorio de Estructura de Computadores Curso 2015-2016

Práctica 6 (opcional): Periféricos para el MIPS

La entrega estará compuesta de un único fichero que incluya:

- Todos los ".vhd" y ".asm/.s" solicitados.
- Un fichero llamado "autores.txt" que contenga los nombres completos e identificadores de la pareja.

Todos estos ficheros deben entregarse en un único fichero comprimido cuyo nombre deberá seguir el formato establecido:

<<nº de grupo>>_<<nº de pareja (dos dígitos)>>_<<nº de práctica>>.[zip|rar]

Ej: grupo 2123, pareja 3 y práctica 2; su fichero será el 2123_03_2.rar

Los ejercicios deberán subirse a la actividad correspondiente de *Moodle*, identificada por el número de práctica. En caso de que ambos miembros de la pareja suban un fichero a *Moodle*, se corregirá sólo uno.

Todos los ficheros deberán contener en la cabecera los nombres de los autores y el identificador de la pareja. Asimismo, se recuerda que, los ficheros deberán estar correctamente comentados. Dado que no se entrega una memoria adicional, los comentarios de los ficheros deben ser claros y concisos. No atenerse a estas normas implicará una penalización en la nota.

El límite de entrega de esta práctica será el día <u>3 de mayo</u>. La actividad de *Moodle* se cerrará automáticamente y no permitirá subir ficheros pasado el plazo. Las parejas que no hayan entregado en plazo y forma no podrán ser evaluadas.

Criterio de corrección

Esta práctica es **OPTATIVA**. Además de la entrega electrónica, se hará una corrección oral y presencial de la misma con el profesor de prácticas.

Esta práctica permite obtener <u>hasta 1 punto adicional</u> en la nota final de prácticas. Para la obtención de alguna nota en esta práctica será requisito imprescindible, aunque no único, el correcto funcionamiento del micro con sus periféricos.

Ejercicio único

Diseñar en VHDL el microprocesador completo, basado en la CPU uniciclo del MIPS desarrollado en las prácticas anteriores, incluyendo un periférico con un puerto de entrada y otro de salida más las memorias de código y datos.

Junto a este enunciado, se aporta la entidad del micro completo, aunque sin la arquitectura.

El micro incluirá un periférico con un puerto de entrada de 32 bits y otro de salida, también de 32 bits. El mapa de memoria deberá ser el siguiente:

Bloque	Capacidad	Dirección inicial
PUERTO SALIDA	1 posición	00004LMN ₁₆
PUERTO ENTRADA	1 posición	00004XYZ ₁₆
ROM PROGRAMA	1 kBytes	0000000016
RAM DATOS	16 kBytes	0000000016

XYZ será igual al resultado de multiplicar por 4 el número constituido por los dos dígitos menos significativos del DNI o pasaporte del miembro más joven de la pareja. LMN será igual al resultado de multiplicar por 4 el número constituido por los dos dígitos menos significativos del DNI o pasaporte del miembro menos joven de la pareja. En caso de que XYZ sea igual a LMN, antes de multiplicar se sumará 1 al número que genera LMN.

Se realizará un código ensamblador que haga lo siguiente:

- Leer dos palabras de memoria de datos, restarlas y dejarlas en otra posición en la memoria. De esta forma se comprobará que la memoria de datos funciona correctamente.
- 2) Leer el puerto de entrada, sumará 10 al valor del puerto, y el resultado se enviará al puerto de salida. Esta funcionalidad se debe ejecutar indefinidamente en bucle infinito. De esta forma se comprobará que el periférico funciona correctamente.

Objetivo

Comprender el problema propuesto, diseñar e implementar una solución para dicho problema.

Entrega

Se deben entregar todos los ficheros VHDL (también *testbenchs*) y ensamblador necesarios para simular el micro completo.