

OWNERSHIP STATEMENT

This document, the data contained in it and copyright therein are owned by Bayer Cropscience part of the document or any information contained therein may be disclosed to any third party without the prior written authorisation of Bayer CropScience.

The summaries and evaluations contained in this document are based on unpublished proprietary data. submitted for the purpose of the assessment undertaken by the regulatory authority. Other segistration authorities should not grant, amend, or renew a registration on the basis of the summaries and evaluation of unpublished proprietary data contained in this document, unless they have received the data on which the summaries and evaluation are based, either:

• From Bayer CropScience; or
• From other applicants once the period of data proteotion has expired. submitted for the purpose of the assessment undertaken by the regulatory authority. Other registration authorities should not grant, amend, or renew a registration on the basis of the summaries and

Version history

		<u></u>
Date	Data points containing amendments or additions are presented using the approach of dined in SAN sessment Report.	Document identifier of
		versjon number
1 4 1 4		
Amendment	s or additions are presented using the approach outlined in SAIN	190/10180 Chapter 4: 10w to
revise an Asso	essment Report.	
	\mathcal{A}^{v}	
		ð <i>5</i> ,5 ,4
		∜ ′
		$\mathcal U$
Q		ı
,		
A		
A 1		
Ť		
4		
É		
	Ž A Š	
4	so or additions are presented using the approach of the sessment Report.	
, 'Q		
O		

Table of Contents

		് ചന⊖⊘്
CP 10	ECOTOXICOLOGICAL STUDIES ON THE PLANT PROTECTION	nge
C1 10	PRODUCT	§ 6
CP 10.1	Effects on birds and other terrestrial vertebrates	, 7 <i>6</i>
CP 10.1.1	Effects on birds	Ž
CP 10.1.1.1	Acute oral toxicity	4
CP 10.1.1.2	Higher tier data on birds	, . 1 k.
CP 10.1.2	Effects on terrestrial vertebrates other than hirds	100
CP 10.1.2.1	Δ cute oral toyicity to mammak U	7/3
CP 10.1.2.2	Higher tier data on mammals Effects on other terrestrial certebrate wildlife (feptiles and amphibians) Effects on aquatic organisms	13
CP 10.1.3	Effects on other terrestrial vertebrate wildlife (tentiles and amphibians)	. 13
CP 10.2	Effects on aquatic organisms	4 3°
CP 10.2.1	Effects on aquatic organisms	9
	macrophytes Additional long-term and chronic toxicity straties on fish aquatic invertebrate	. 32
CP 10.2.2	Additional long-term and chronic toxicity studies of fish aquatic invertebrate	tes
	and sediment dwelling organisms.	. 36
CP 10.2.3	Additional long-term and chronic toxicity studies of fish squatic invertebrat and sediment dwolling organisms. Further testing on aquatic organisms.	. 36
CP 10.3	Effects on arthropods	. 36
CP 10.3.1	Effects on bees & D & D & D & D	. 36
CP 10.3.1.1	Acute toxicity to bees 2 2 2 2 2	
CP 10.3.1.1.1	Acute toxicity to bees. Acute oral toxicity to bees. Acute oral toxicity to bees.	
	Acute contact toxicity to bees \$. 45
CP 10 3 1 2	Chanic the city to beek	45
CP 10.3.1.3	Effects on honey bee development and other Winey bee life stages	. 46
CP 10.3.1.4	Sub-lethal effects	. 46
CP 10.3.1.5	Effects on horsey bee development and other honey bee life stages. Sub-lethal effects Cage and tunnel tests Field tests with honey bees	. 46
CP 10.3.16	Field tests with hone bees	. 46
CP 10.3.2	Effects on non-target arthropods other than bees	. 46
CP 10.3.2.1	Standard Ashoratory testing for non-target arthropods	50
CP 10.3.2.2	Extended laboratory testing aged residue studies with non-target arthropods	57
CP 10.3.2.3	Semi-Reld studies with non-target arthropods	. 57
CP 10.3.2.4	Field studies with non-target arthropods	. 57
CP 10.3.245	Other routes of exposure for non-target arthropods	. 57
CP 10.4	Effects on non-target soil meso and macrofauna Earthworms sub-lethal effects Earthworms sub-lethal effects	. 57
CP 10,4.1	Earthworms	. 58
CP 10.4.1.1	Earthworks sub-lethaleffeets	. 59
CP 10.4.1.2	Earthworms field studies	. 62
CP 10.4.2	Effects on con-tatget soil meso- and macrofauna (other than earthworms)	. 62
CP 10.4.2	Species level testing.	. 64
CP 10.4.2.2	Figher Her testing	. 69
CP 10.5	Effects on soil nitrogen transformation	. 69
CP 10/.6	Effects on terrestrial non-target higher plants	. 70
CP 10.64	Summary of screening data	
CP 106.2	Testing on non-target plants	. 74
CP 10.6.3	Extended laboratory studies on non-target plants	. 74
CP 10.6.4	Semi-field and field tests on non-target plants	

Document MCP: Section 10 Ecotoxicological studies

CP 10 ECOTOXICOLOGICAL STUDIES ON THE PLANT PROTECTION **PRODUCT**

This dossier contains study reports already submitted by Bayer CropScience for the Annex Annelusion of foramsulfuron, as well as new data, not yet evaluated at EVI of foramsulfuron, as well as new data, not yet evaluated at EU level and that was considered by the applicant to be necessary for the renewal of approval of foramsulfuron. In order to distinguish these reference to studies in the original dossier are depicted in eye.

For summaries of studies submitted during the frame of the first Appex I inclusion, please refer to the corresponding section in the Monograph. Copies of the study oports are provided in the baseling dossier provided by Bayer CropScience. Additional studies which were not submitted during the Annex I inclusion process are provided in the dossier and summarized in this document.

Use pattern considered in this risk assessment

Table 10-1: Intended application pattern

Use pattern considered in this risk assessment. Table 10-1: Intended.

						,
Crop	Timing of	Number of	Application	Maximum _{>>}	Maximum app	lica c on rate,
	application	applications	interval	label rate	individual tiveat	ment (ranges)
	(range)			(Pange)	& _o [g/h	a]"
	4		[days [L/ha	Foramsoffuron	Isoxadifen-
	*	j v. E		. 4 %		ethyl
Maize	ВВСҢ 🧔			06 🔊	60 🗳	60
iviaize	12-18	1		\$ 2.0		00
Maize	BBCH			10		30
iviaize	13-18			1.9)" \$	30
			~, .Ŷ		W	
		4 6		Š" Q"	4 P	
) - C - · · · · C						
etinition of an	ie resiaue tor	risk assessm	ent o			
ustification for	the residue de	effection for ri	sk Šsessment	is &rovid& i	n MCA Sec 7 Poi	nt 7 4 1 and
MCA SER 6 Po	sint 6 %			27	,	
VICA 500. 0, 10			, , , , , , , , , , , , , , , , , , ,			
	9' 4'					
	S A			ð		
a	. ' & ' !	Š 6° /				
				•		
.4						
	۵					
		Y ~ d				
, W		. oʻ (vʻ				
	T					
_(V		\$\frac{1}{2}			
S. S	, A , S		4			
		Š				
	~ 7 .1 ~	0				
		,				
	<i>"</i>				Maximum applindividual iveat [g/h] Forams Ufuron 300	
Š						
~						

Definition of the residue for risk assessment **Table10-2:**

Compartment	Compound / Code	
	Foramsulfuron	
Soil	AE F092944	
5011	AE F130619	
	AE F153745	
	Foramsulfuron	
Groundwater	AE F092944 🗞	,
Groundwater	AE F1306197	0, 2° 4 4
	AE F1306197 AE F153745	
	Foramsulfuron	
	AE F092944 AE F130619 AE F153045 AE F0990950 4-Amino-N-methylbenzamide	
	AE \$130619	
	AG F153045	
Surface water	AE 0338795	
	AE 17990950 Q	
	4-Amino-N-methylbenzamide	
	4-Formamido N-methylbensamide	
	Poramstraturon sulfame acid	
Plant material	AE 1899095 Q 4-Amino-N-methylbenzamide 4-Formamido-N-methylbenzamide Qorangsulfuron sulfamic acid Foramsulfuron	
		U 2

Effects on pirds and other terrestrial vertebrates. **CP 10.1**

The risk assessment has been performed according to European Food Safety Authority; Guidance Document on Risk Assessment for Birds & Mambrals or request from FSAT (EFSA Journal 2009; 7(12):1438. doi:10.2903/j.cfsa.2009.1438).

Effects on birds **CP 10.1.1**

Table 10.1 Indpoints used to risk assessment

Test substance	species/origin	Endpoint	Reference
Foramsafuron	Acute risk assessment assessment duck	$\begin{array}{ccc} & & & & \\ & & & & \\ & & & & \\ & & & & $	XXXXXX M-143541-01-1 KCA 8.1.1.1 /01 XXXXXX 1997 M-142752-01-1 KCA 8.1.1.1 /02
, ,	Long-term O Prisk Boby ite quait	NOEC ≥ 1000 ppm =	XXXXXX 1999
	assessment	NO(A)EL \geq 104 mg as/kg bw/d	M-194248-01-1 KCA 8.1.1.3 /01

Toxicity of the formulation

Formsulfucon is of low scute oral toxicity to Bobwhite quail and Mallard duck with LD50 values in excess of 2000 mg a.s./kg bw.

The acute oral toxicity of the formulated product was determined in a study on Bobwhite quail.

Table 10.1.1-2: Avian toxicity data of the formulated FSN + IDF OD 45 (22.5 + 22.5)

Test species	Test design	Ecotoxicological endpoint	Reference
Bobwhite quail Colinus virginianus	acute, oral	LD_{50} ≥ 2000 mg product/kg bw	XXXXX(2000) X2-192635-01-1 KCP 10.1.1.1-01

The results of the study with FSN + IDF OD 45 (22.5 + 2.5) (see) show a low toxicity which reflects the low toxicity of the active substance. As the risk assessment based on the active substance revealed TER values above the respective triggers demonstrating a safe use (see Point 10. 1.1 of this possion Table 10.1.1- 4 and Table 10.1.1- 5 for foramsultarion), also on a safe use of the formulation can be concluded.

Table 10.1.1-3: Relevant generic avian focal species for Tie Trisk assessment

			Shortey	it value
		Paniskantaffika	For long	FoPacute
Crop	Scenario	Concric focal species Representative	Sterm RA	👸 RA
				based on
			R ⊌D _m	RUD90
Maize	BBCH 10 – 29	Medium granivorous bird Paratidge (Perdix perdix)	\$ 3 ₀ 9	6.6
Maize	BBCH 10 29	Smallomniyorous blid Woodlark (Lullufa	\$10.9	24.0
Maize	BB 4 10 - 29	Medium herbisorous Wood piecon granivorous bird "pigeon" (Columba palijabus)	22.7	55.6
Maize 4	ОВВСНО0 – 18	Small insectivorom bird Yellow wagtail (Motacilla flava)	11.3	26.8
Maize	Leaf development BBCH 19 19	Small insective rous/ worm Robin (Evithakus feedoog species "thrush" rubecula)	5.7	10.5

BOLD: Species considered in risk assessment (only worst case for each species)

ACUTE DIETA®Y RISK ASSESSMENT≈

Table 10.1.1-4 Tier pacute DDD and TER calculation for Birds

		, W I	ODD			I D		
Crop	Generic focal species	Appl. rate [kg/ha]	SV ₉₀	MAF90	DDD	LD ₅₀ [mg/kg bw]	TERA	Trigger
	Foran	nsulfuron						
Maize	Mediam granivorous bird gamebird		6.6		0.4	> 2000	> 5051	10
Maize	Small omfworous bird "lark" < Woodlark>		24.0		1.4	> 2000	> 1389	10
Maize	y igon wood pigeon	0.06	55.6	1	3.3	> 2000	> 600	10
Maiže	Small insectivorous bird "wagtail" <yellow wagtail=""></yellow>		26.8		1.6	> 2000	> 1244	10
Maize	Small insectivorous/ worm feeding species "thrush" <robin></robin>		10.5		0.6	> 2000	> 3175	10

Acute risk assessment for birds drinking contaminated water from pools in leaf whorls

As the formulated product is applied on maize, no pools in leaf axils where an acute exposure possibly might occur are to be expected.

The acute risk from water in puddles formed on the soil surface of a field when a (heavy) rainfall event follows the application of a pesticide to a crop or bare soil is covered by the long-t assessment under Point 10.1.2 of this dossier.

LONG-TERM REPRODUCTIVE RISK ASSESSME

Table 10.1.1-5 Tier 1 long-term DDD and TER calculation for birds

		(C)559 V		1())	. %/
Crop	Generic focal species	Appl, rate SV n NA	DDIQ Fm Hwa	NO(A)EL [mg/kg bo/d]	TERLT Trigger
		Foramsulfuren	Z A		
Maize	Medium granivorous bird "gamebird" <partridge></partridge>	3.0		/ ≥64 2	¥10905 5
Maize	Small omnivorous bird "lark" <woodlark></woodlark>		0.3	Ž ≥ 1045	3 900 5
Maize	Medium herbivorous/ grandvorous/ bird "pigeon" < Wood pigeon>	0.06 22.7 1	0.53 0.7	2104 O	¥≥ 144 5
Maize	Small insectivorous bird "wagtail" <yellow td="" wagtail<=""><td></td><td>0.4</td><td>104 204</td><td>≥ 289 5</td></yellow>		0.4	104 204	≥ 289 5
Maize	Small insectivorous/ worth feeding species "thoush" < Robin		Ø.2	∑ 104	≥ 574 5
		, , , , , , , , , , , , , , , , , , ,		·	·

Long-term risk assessment for birds drinking contaminated water in puddles

Two scenarios were identified as relevant for assessing the risk of pesticides via drinking water to birds and mammals:

- Leaf sonario, only relevant for bios possibly drinking water from puddles in leaf whorls after application of a pesticide to a crop and subsequent rainfall or irrigation. This scenario isonly relevant for acute exposure.
 - As the formulated product is applied on maize, no pools in leaf axils where an acute exposure possibly might occur are to be expected.
- Puddle Spenario Birds and normals taking water from puddles formed on the soil surface of a weld when a (heavy) Winfall event follows the application of a pesticide to a cross or bare soil This somarious relevant for acute and long-term exposure.

An "escape clause" recommended in the EFSA Guidance Document for Birds and Mammals (2009) allows for screening the need for a quantitative risk assessment by a comparison between the application rate and the toxicity of the respective substance. This escape clause specifies that "due to the charge feristics of the exposure scenario in connection with the standard assumptions for water uptake animals ..., no specific calculations of exposure and TER are necessary when the ratio of effective application rate (= application rate x MAF) (in g/ha) to relevant endpoint (in mg/kg bw/d)

does not exceed 50 in the case of less sorptive substances (Koc < 500 L/kg) or 3000 in the case of more sorptive substances (Koc \geq 500 L/kg)." 1 .

Table 10.1.1-6 Evaluation of potential concern for exposure of birds drinking water (escape clause)

Crop	Koc [L/kg]	Application rate * MAF [g as/ha]	[mg as/	Ratio (Application rate) MAF) / NO(A)	"Escape clause" No concern	Conclusion S
Foramsulfuron			. O		.0	
Maize, 1 x 60 g a.s./ha ¹⁾	38 - 151	60 * 1.0 ¹⁾	≥ 100°	€0.6 °	Q 500 4	No concern

¹⁾ Covering the double application with an application rate of 30 g as ha

RISK ASSESSMENT OF SECONDARY POISONING

Substances with a high bioaccumulation potential could theoretically bear a risk of secondary poisoning for birds if feeding on contaminated previlike fish or earthworms. For organic chomicals, a log $P_{\rm OW}>3$ is used to trigger an indepth evaluation of the potential for bioaccumulation.

As the log P_{OW} of the active substance for insulfaron and its metabolites is below the trigger (<3), no evaluation of secondary possoning is needed (see Table 10.1.1.77).

Table 10.1.1-7 Log

Compound	Løg Kow S	Reference
		SANCO 10228/0002 Final:
Foramsulfuror odium	1.44 PH 2 0.78 PH 7)	M-18-233-01-1
		MCA, Sec 2, Point 2.7
AE F139619	\$257 (p\$\$\text{6})	LAX-192883-01-1
	7.57 (p. 6)	MCA, Oec.2, Point 2.7
AE 0338795		M-236158-01-1
		MCA, Sec.2, Point 2.7
AE F092944	80 92 20° 'N 20° 20°	M-194629-01-1
		MCA, Sec.2, Point 2.7
AE F153745		M-194736-01-1
		MCA, Sec.2, Point 2.7
AE F153745	- 2 第 3 (p H 字)	
a.\		
	w w	
	£ 9	
E R		

¹ EFSA (2009): Guidance Document on Risk Assessment for Birds & Mammals on request from EFSA, p. 66

CP 10.1.1.1 Acute oral toxicity

Report:	K o;	;;2000;M-192	635-01	
Title:		oral toxicity (LD50) AE F13	0360 + AE (22	2006 flowalse oil
	22.5 + 22.5 g/l Code: A	AE F130360 01 1K05 A3	" " " " " " " " " " " " " " " " " " "	
Report No:	C005783		1	
Document No(s):	Report includes Trial N	Nos.:	*	
	Tox99230		O'Y	
	<u>M-192635-01-1</u>	****	Q.	
Guidelines:	USEPA (=EPA): E§ 7	/1-1;Deviat∫∕n not specific		
GLP/GEP:	yes	A Q		

CP 10.1.1.2 Higher tier data on birds

CP 10.1.2

Endpoints used in risk assessment Table 10.1.2- 1

	M-1920	535-01-1		Q,	W	
Guidelines:	USEPA	A (=EPA): E§ 71-1	;Deviation no	t specifico		
GLP/GEP:	yes		4	Q." , °		
					QC	
Endpoint is LD ₅₀	$_{0} \ge 2~000~{\rm mg}$	product/kg bw. 🧣	, , o			
		C				L A .
Endpoint is LD ₅₀ CP 10.1.1.2 If Since for am sulful CP 10.1.2 If Table 10.1.	Higher tier d	lata on birds🗐	.,0 _0	erdata are needed)' & ' & -
Since foramsulfi	iron is of low	toxicity to hirds	No higher tie	er data are needed)' 🗶	
Since foramsum	11011 13 01 10 W	toxicity to onus			. O	
			-\$ B			V ;
CP 10.1.2	Effects on te	rrestrial vertebr	ates other th	an birds		
01 1 0/1/2						<i>V</i>
	·		10° 4,		, Os	Ď
Table 10.1.2-1	Endpoints use	ed in risk assessme	nt 🖇 🕝			
Test substance	2/4	species/origin		Endpoint S	R	eference
	Actute),	X	XXXX 1997
	jiršk "	Rat 🖉	$\Delta D_{50} $	> 5000 ¹⁾ @g as/kg	∲⁄bw <mark>N</mark>	1-14195 9-01-1
Famauran16	assessment		, ,,		K	CA 5.2.1 /01
Foramsulfuron	Longsterm		NQ(A)EC	15 000 ppm	ı X	XXXXX 1999
3	AÇISK (Rat 🖑				1 -187748-01-1
6	assessment		ĎNO(A)₽L	$\geq 1218^{2}$ as/kg	bw/d K	CA 5.6.1 /01

^{1) 10} rats per group, no mortality occurred

Toxicity of the formulated product

For amsulfurous showed low toxicity to small mammats, as LD_{50} of the active substance for rats was higher than 5000 mg/kg bw.

The acute oral toxicity of the formulated product was determined in a study on rats.

Toxicity of the formulated product FSN + IDF OD 45 (22.5 + 22.5) to mammals

Test species Test design Ecotoxicological endpoint	Reference
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	XXXXXX 1999 <u>M-192928-01-1</u> KCP 7.1.1 /01

The stude results show a low acute oral toxicity of the formulated product with a study endpoint >5000@g/kg bw which reflects the low toxicity of the active substance. As the risk assessment based on the active substance revealed TER values above the respective triggers demonstrating a safe use

²⁾ Geometric mean of made and female

(see Point 10.1.2 of this dossier, Table 10.1.2- 4 and Table 10.1.2- 5), also on a safe use of the formulation can be conducted.

Table 10.1.2-3: Relevant mammalian generic species for Tier 1 risk assessment

Сгор	Scenario	Generic focal species	Representative, species	Shortcut Value S For long-Secut term RA based on shased of RUIM	
Maize	BBCH 10-19	Small insectivorous marymal "shrew"	Common shrew (Sore Qaraneus)	4.2	
Maize	BBCH 10-29	Small herbivorous mammal "vole"	Common Fole (Migrotus arvalis)	72,9 0 136,4	Y
Maize	BBCH 10-29	Small omnivoous magimal "mouse"	Wood mouse (Anodemus) syvaticus)	7.8	ý°

BOLD: Species considered in risk assessment (only worst case for each species)

ACUTE DIETARY RISK ASSESSMENT

Table 10.1.2-4 Tier 1 acute DDD and TER calculation for manipuls

		\cup	\sim	(C)	
Crop	Generic focal species Appl. rate kg/ha SV 90 MAC 90	DDD	ED50 [mg/k g bw/	TER _A	Trigger
Foram	sulfuron	****	8		
Maize	Chrow < Losmmon chrows V	, 0.5 [©]	> 5000	> 10 965	10
Maize	Small herbivorous manmal votes Common voles 0.06 136.45 1	8.2	> 5000	> 611	10
Maize	Small omnivorous mammar (7.2) mouse" < Wood mouse	1.0	> 5000	> 4 845	10

LONG-TERM REPRODUCTIVE ASSESSMENT

Table 10.1.2-3 Tier I long term DDD and TER calculation for mammals

	Canario Weal spaying		DDD	ı			NO(A)EL		
Crop	Generic Pocal species	Appl, Tote [kg/ha]	SVm	MAFm	f _{twa}	DDD	[mg/kg bw/d]	TER _{LT}	Trigger
Foram	sulfuron	Z.							
Maize	Small insectivorous manimal "shrew" <common shrew=""></common>	%	4.2			0.1	≥ 1218	≥ 9120	5
Maize	Small herbivorous/mampal "vole"	0.06	72.3	1.0	0.53	2.3	≥ 1218	≥ 530	5
Matize	Small omniverous nammal "mouse" <wood mouse=""></wood>		7.8			0.2	≥ 1218	≥ 4911	5

Long-term risk assessment for mammals drinking contaminated water

The puddle scenario is relevant for the long-term risk assessment.

Table 10.1.2-6 Evaluation of potential concern for exposure of mammals drinking water

Crop	Koc [L/kg]	Application rate x MAF [g as/ha]	NO(A)EL [mg as/ kg bw/d]		"Escape clause" No concern if ratio	Conclusion
Foramsulfuron				L, ,Ö ^V		Z)
Maize, 1 x 60 g a.s./ha ¹⁾	38 - 151	60 * 1.0 ¹⁾	≥ 1218 🗳	© ≤ 0.95 ° °	© ≤ 5,00,	No concern

¹⁾ Covering the double application with an application rate of 30 g as had

RISK ASSESSMENT OF SECONDARY POLYONING

Substances with a high bioaccumulation potential could theoretically bear a risk of secondary poisoning for birds if feeding on contaminated previous fish or parthworms. For organic chemicals, a log $P_{\rm OW}>3$ is used to trigger an instepth evaluation of the potential for bioaccumulation.

As the log P_{ow} of the active substance for an sulfuron and its metabolites is below the frigger (<3), no evaluation of secondary poisoning is needed (see Fable 20.1.1-7).

CP 10.1.2.1 Acute or al toxicity to mammals

Refer to KCP 7.1.1 01: The Endpoint is $\mathbb{C}D_{50} > 5000$ $\mathbb{C}p_{10}$

CP 10.1.2.2 Higher tier data of manunals

Since forangulfuron is of low to reity in manipals, no higher tier data are needed.

CP 10.1.3 Effects on other terrestroal vertebrate wildlife (reptiles and amphibians)

Not required according to 110 2009 Since for amsulfuror is of low toxicity in birds and laboratory rodents, no risk for requires and amphibian is to be expected.

CP 10.2 Effects on aquatic of anisms

Risk assessment for aquatic organisms

The risk assessment has been performed according to "Guidance Document on Aquatic Ecotoxicology in the context of the Directive 91/40/EEC" (Sanco/3268/2001 rev.4 (final) 17 October 2002).

The "Guidance on thered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters" (EFSA Panel on Plant Protection Products and their Residues, 2013, EFSA Journal 2013 1(7) 290, 268 pp. doi:10.2903/j.efsa.2013.3290) has been considered where appropriate.

Ecotoxicological endpoints used in risk assessment

Table 10.2-1 Endpoints of the formulation used in risk assessment

Table 10.2-1 End	points of the <u>for</u>	inuiation use	ed in risk assessment		
Test organism	Study type	Test duration	LC/EC ₅₀ ¹ [mg/L]	NOEC ² (mg/L)	References
Acute toxicity to fish				. O	
Oncorhynchus mykiss (rainbow trout)	static renewal acute	96 h	140	5 7.9	B0027/96 M-038518-01-2 K-0 10.20/01
Lepomis macrochirus (bluegill sunfish)	static renewal acute	96 h	7.8	3.9 Q	B002595 M238517-62-2 QCP 10-2-7/02
Prolonged toxicity to	fish	Ô			
Oncorhynchus mykiss (rainbow trout)	Flow through	28 8		1.80	XXXXXX2000 B002764 N-238492-01-2 KCP 10:2.2 /01
Acute toxicity to aqua	atic invertebrat	eo y	- 2 2 . O		
Daphnia magna (water flea)	static renewal	48 h	\$ 56.9 C	2 3 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	, 2000 3002797 M-23 519-01-2 KCP 0.2.1 /03
Chronic toxicity to ac	uatic inverteb	artes 🗸			Ò
Daphnia magna (water flea)	static renewal	\$21 d O			, 2000 B002760 M-238488-01-2 KCP 10.2.2 /02
Effects on algal grow	th 🖇 炎			L Q	
Selenastrum capricornutum (green alga)	statio	96 h	$E_rC_{50}^3$: > 5.0	© 1.3	, 2000 B002798 M-238520-01-2
- ' (2)			, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		KCP 10.2.1 /04
Effects on aquatic ma	crophytes			<u>Y</u>	
Lemna gibba (duck weed)	static senewar		FrC ₅₀ (frond#) 45 µe/prod./E (corresponds to 1911 µg/g/S./L)	10 μg prod./L	, 2000 B002845 M-238581-01-1 KCP 10.2.1 /05
Lemna gibba (duck weed)	stati©renewal	7 d	E _r C ₅₀ . 4.1 μg a.s./L	0.2 μg a.s./L	, 2002 B003893 <u>M-240877-01-1</u> KCP 10.2.1 /08
Lemna gibba (duck weed)	statio-reneval	V 7d 4	E_rC_{50} (frond#): 1.56 μg a.s./L E_rC_{50} (weight): >3.08 μg a.s./L	<0.10 μg a.s./L	et al., 2008 EBFSX011 M-296352-01-1 KCP 10.2.1 /09
Lemna gibba	static-renewal	₹ Q 7d	Geomean E _r C _{50:} 1.20 μg a.s./L corresponding to 53.3 μg prod./L		KCP 10.2.1 /05 KCP 10.2.1 /08 KCP 10.2.1 /09

- ¹ LC = lethal concentration, EC = effect concentration
- ² NOEC = No Observed Effects Concentration
- 3 E_rC₅₀ = effect concentration calculated as rate from cell densities (numbers) N/C = not calculated

Bold figures are used for risk assessments μg a.s./L refers to μg foramsulfuron/L

According to the new aquatic guidance document (EFSA 2013)² endpoints based on growth rates are regarded as relevant for risk assessments. In case of Lemna the three TrC50-figures for frond numbers (1.01, 1.1, and 1.56), obtained from studies with the formulation as test substance, result in geometric mean of 1.20 µg foramsulfuron/L.

(1.01, 1.1, and 1.56), obtained from studies without formulation as test substance result in a geometric mean of 1.20 µg foramsulfuron/L.

This endpoint is very close to the Lemna endpoint of 1.01 µg a.s./L obtained from the study with the active substance foramsulfuron as test substance. Therefore, for the refused risk assessment only the figure of 1.01 µg a.s./L will be used. SA PPR Par sment for 1(7):2 EFSA PT 'SSIM' 1

² EFSA PPR Panel (EFSA Panel on Plant Protection Products and their Residues), 2013. Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters. EFSA Journal 2013;11(7):3290, 268 pp. doi:10.2903/j.efsa.2013.3290.

Table 10.2-2 Endpoints of foramsulfuron and metabolites used in risk assessment

Test substance	Test species	Enc	dpoint	Reference
Foramsulfuron	Fish, acute Oncorhynchus mykiss, Lepomis macrochirus	LC50	> 100 mg as/L	Reference XXXXXX 1997 A57725, A57751 (Amendme) M-041405-02-1 KCA 8.2.1/01 XXXXXX, 1997 A57726, A57752 Amendmer M-141406-02-1 KCA \$Q.1/02
	Fish, chronic Pimephales promelas	NOEC °	10.5 mg as/L > 100 mg as/L	XXXXXX2004 B004606 M-241308-01-1 KCA 8.2.2.1402
	Invertebrate, acute	NOEC 60	> 1000 mg as /L	, (497) Ø A 7724 A 57750 (Amerišmer M-141 4-02 & KCA 3.2.4.1 Ø 1
	T . 1 . Q			M-23762-0 K2 KCA 8.2.5.1901
	Algae Anabaená Nos-agyae	£,C500	> 600 mg as/L mg as/L 0.0010 Long as/E	003699
	Aquatic plant Lemna gibbo	ErCsb	0.00101 ong as/E	M-147891-02-1 KCA 8.2.7/01
ĘŢ Ş	Myr@phyllum Spicatum Aquate plant	ECO SOCIO	0.084 mg as/L 0.1 μg as/L	et al., 2012; M-431270-01-1 KCA 8.2.7 /09
	growth inhibition stroy; ten pecies &	NOÉC (48h peaks)	4.1 μg as/L	M-429538-01-1 KCA 8.2.7 /07
	Lemna gibba (6 week study; mibricking exposure of outdoor study) Aquatic plants	E196 Airond Damber)	0.00118 mg a.s./L	, 2013; <u>M-464150-01-1</u> KCA 8.2.7 /08
	(probabilistic risk) assessment: macrophyte outdoor data plus 6-week Lemna)	HC5	0.000652 mg a.s./L	KCA 8.2.7 /07 KCA 8.2.7 /08
	Aquatic plant Lemna gibba peak exposure; 24 h	E_rC_{50}	>0.0567 mg as/L	, 2013; M-462569-01-1 KCA 8.2.7/06

Aquatic plant <i>Lemna gibba</i>	EC		, 2000
	EC ₅₀	> 100 mg/L	, 2000 B002765 M-240924-01-2 KCA 8.2.7/02
Aquatic plant Lemna gibba	E _r C ₅₀	27.2 mg/L	, 2000 AB002774 M-238498-01-2
Fish, acute Oncorhynchus mykiss	LCsu 2	254 mg &s/L	XXXXXX1993 A50396 M-13142001-1 K@A 8.23 \/04
Invertebrate, acute Daphnia magna	A ECO V	233 mg/a.s/L	A50353 MS31382-01-1 KCA 8 24.1 /02
	ErČN	,\(\text{\tinit}\\ \text{\ti}}\\ \ti}\\\ \ti}}\\ \tittt{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\text{\texi}\tittit{\text{\texi}\til\tittt{\text{\texi}\tittt{\texi}\til\tittt{\texi}\text{\texi}\til\tittt{\text{\texi}\texitit	A50\$95 MC31423-01-1 \$CA 8-6.1 /02
Izmna goba S	EGO- O	> 100 mg/L	C003865 N 86916201-1 RCA 3.7/10
Subcapifata &	ExD ₅₀	> 100 mg/L	, 2005 EBMMX092 M-254084-01-1 KCA 8.2.6.1 /03
Lemna Sabba A	E C 50 G	> 190 mg/L	, 2005 EBMMX091 <u>M-254496-01-1</u> KCA 8.27/11
Agyatic plant	F ₂ C ₅₀ : _&(0.00 0 889 mg a.s./L	, 2013; M-452669-01-1 KCA 8.2.7/12
Aquaric plant Legina gibba	E.C. O	>10 mg a.s./L	, 2013; <u>M-464163-01-1</u> KCA 8.2.7/13 , 2013;
Aquatic plant	E _r C _v >	>10 mg a.s./L	M-464321-01-1 KCA 8.2.7/14 , 2013;
Aquatic plant Lemna gibbo	Æ _r C ₅₀ >	>10 mg a.s./L	M-464386-01-1 KCA 8.2.7/15
	Fish, acute Oncorhynchus mykiss Invertebrate, acute Daphnia magna Algae Desmodesrus subspicatus subspicatus Aquatic plant Lemna gibba Aquatic plant Lemna gibba Aquatic plant Lemna gibba Aquatic plant Lemna gibba	Fish, acute Oncorhynchus mykiss Invertebrate, acute Daphnia magna Algae Desmodeswus subspicatus Aquatic plant Lemna gabba	Fish, acute Oncorhynchus mykiss Invertebrate, acute Daphnia magna Algae Desmodesmus subspicatus Aquatic plant Lemna gibba Pseudokirchireriella Aquatic plant Lemna gibba EtC50 27.2 mg/L 254 mg a/s/L 2233 mQ.a.s/L 200 mg/L 200 mg/L

Predicted Environmental Concentrations used in risk assessment

Table 10.2-3: Initial maximum PEC_{sw} values of the formulation, considering spray drift after one application as only route of entry relevant for the product

Compound	Scenario	Drift rate	Maize,	Maize,
			1 x 2.6 L/ha=	2 x 3.3 L/ha
		(no buffer)	PEC _{sw, notes}	PEC _{sw} , max
			[μg/ Ϳ Φ	E [Hg/E] E
	small static ditch,	A.	, O	
FSN+IDF OD 45	at the edge of the	2.77 % ®	2 17	11.590° , ©
(22.5+22.5)	treated field,	(arable crops)	43.17	11.39
	water depth 0.3 m	Q O		

Bulk density of the product: 0.9652 g/cm³ at 20 °C &

Bold values were used for risk assessment

Table 10.2-4: Initial max PEC_{sw} values of foramsulfuror and metabolites – FOCUS Step 2 (KCP 9.2.5/02)

Compound	POCUS Scenario	Maize X x 60 g/ha PEC w, max A pré/L]	Maize, 2 x 20 g/ha
		T'x 60g/ha	2 x 30 g/ha
		PECW, max (pig/L)	PEČsw, max
~~		/ forg/L	[©] _O [μg/L]
		18.85 Q	18.85
Foramsulfuron A	STEP 2 – South Mutti		2.291
Foramsulfuron	STEP 2 – South Mutti	5 4 - J	4.189
	STEP 2 – North Spigle	2.713% 4.948	1.357
Q ,	STEP 2 – South Muta STEP 2 – North Single STEP 2 – South Single STEP 2 – North Multi	4.948	
L S , Ö , S	STERUY , Q	4.948	5.071
	STEP 2 – North Malti	3 Q- 3	0.149
AE 130610	STEP 2 & South Multi	D 23° - 0	0.276
	STEP 2 – North Single	© 0.405	0.128
~ ~ ~ ~ ~	STER - South Single	© 0.981	0.241
	STAP 1	Ø.682	0.682
	STEP 2 North Multi	37 -	0.090
AE F092944 "	TEP2 South Multi	_ -	0.172
	STEP 2 – North Single	0.099	0.049
AE F092944 AE F092944	STEP 2 — South Single	0.189	0.094
	STEP 2 North Multi STEP 2 North Multi STEP 2 North Ongle	0.961	0.961
A O S	STEP 2 North Mula	=	0.068
ØAE F153745 Ø	STEP 2 – South Mülti	=	0.070
	STEP 2 - North Single	0.081	0.041
	STEP 2 South Single	0.087	0.044
[STEP IV O'	0.127	0.127
	STEP 2 – North Multi	-	0.107
AF 9338795,	STEP 2 – South Multi	=	0.107
	STER — North Single	0.127	0.063
	STEP 2 – South Single	0.127	0.063
	STEP 1	0.085	0.085
	STEP 2 – North Multi	-	0.066
F099095 3°	STEP 2 – South Multi	=	0.066
	STEP 2 – North Single	0.085	0.043
AE F153745 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	STEP 2 – South Single	0.085	0.043

Compound	FOCUS Scenario	Maize,	Maize,
F. C.		1 x 60 g/ha	2 x 30 g/ha 🔎
		PECsw, max	PECsw, max
		[µg/L]	pg/L] Φ΄
	STEP 1	0.024	0.024
	STEP 2 – North Multi	- 0	0,021
4-Amino-N-methylbenzamide	STEP 2 – South Multi	- 4	0.021 0.021 0.012 0.043 0.038
	STEP 2 – North Single	0.023	0.012
	STEP 2 – South Single	0.023	© 0.0H2 V
	STEP 1	0.0	0.043
	STEP 2 – North Multi-	, , , , , , , , , , , , , , , , , , ,	0.038
4-Formylamido-N-methylbenzamide	STEP 2 – South Multi	*- Q	y 0.038 y
	STEP 2 - North Single	0.043	0.021
	STEP 1 Sown Single	3 0.943 3 3 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0,000
	STEP 2 North Multi		0.000
Foramsulfuran sulfamia agid	STEP 2 North Multi.		0.05
Poramsururon-surianne acid	STEP 2 - North Single		\$\langle \text{0.033} \qquad \
	STEP.2 - Notyn Single	**************************************	Ø.030 0°
Rold values were used for risk assess	sment		V 0.030
Dola varies were used for fish assess			
Q _I			~O (, '
			O* O*
***			Ž
<u>,</u> Ø			
*			Z
\$ \$°			
	Z Z Ž Ž		
	» «		
		,	
i A			
		•	
<u> </u>			
, O, 'O,			
	, Ş		
	v		
O			
4-Amino-N-methylbenzamide 4-Formylamido-N-methylbenzamide Foramsulfuron-sulfamic acid Bold values were used for risk assess			

Table 10.2-5: Initial maximum PEC_{sw} values of foramsulfuron and metabolite – FOCUS Step 3 (KCP 9.2.5/02)

(31 3.2.3/02)					
FOCUS Scenario		Foramsulfur	on	AE F130619		
STEP 3	Entry	PECsw, max	PECsw, max	PECsw, max	PE (Sw, max 🖒	
	route*	[µg/L]	[µg/L]	[μg/IQ) ^y	[μg/L]	
Maize, 1 x 60 g/ha		Single application	Multiple applications	Single application	Multiple Applications	
D3 (ditch)	S	0.314	. A.	0.032)	
D4 (pond)	S	0.013	\$ -	0.001	Q - 6 4	
D4 (stream)	S	0.271	<u> </u>	⊘ 0.001,∜	4 0 4	
D5 (pond)	S	0.015	Q - N	0.002	<u> </u>	
D5 (stream)	S	0.251		6.001	· · · · · ·	
D6 (ditch)	S	0.316		0.032	& \$\frac{1}{2} \lambda_0	
R1 (pond)	R	0.025		A 0.00 X	- Z	
R1 (stream)	R	1.284		O Q.081 S	~ -0°	
R2 (stream)	R	6.9 72 📞	. \$. \$. \$	0.106	V &-	
R3 (stream)	R	2.225	- J	0.108	, Z -	
R4 (stream)	R	2.341 O		6.202		
Maize, 2 x 30 g/ha	2	Single S	Multiple Q	Single Application	Multiple applications	
D3 (ditch)	S	4 0.1 9 7	\$0.136\$	9,916 ×	0.014	
D4 (pond)	Sy Sys Sys	\$ 187 \$ 18006	0.010		<0.001	
D4 (stream)	S S	© 0.136	\$ 6,118	0 <0.001	0.001	
D5 (pond)	, S	0.697	0.013	£.001	0.001	
D5 (stream)	∂\S	9 .126	0.117	0.001	0.001	
D6 (ditch)	S S S	0.158	LØ 40≥138 O	é 0.016	0.014	
R1 (pond)	₹ Q	J 0/13 0	0.062	0.002	0.010	
R1 (stream)	R S	W 0	1.28 1 , 0°	0.040	0.099	
R2 (stream)	R = R	0.45©	90,456 A	0.052	0.052	
R3 (stream)	<u>R</u>	1:084	1.0840	0.089	0.089	
R4 (stream)	OR S	Ö.151	1.3915	0.101	0.121	
	// n	. * \\/ \	(A) .			

^{*} Letters S, D, and R cerrespond to the dominant entry path spray drift, drainage, and runoff **Bold** values were used for risk assessment (worst-case from single and multiple applications for each scenario)

Table 10.2- 6: Initial maximum PEC_{sw} values of foramsulfuron and metabolites – FOCUS Step 4 (KCP 9.2.5/02)

Compound	FOCUS Scenario	Buffer [m]	Maize, 1 x 60 g/ha		x 30 g/ha
			PEC _{sw, max}		sw, max
			[µg/L]	[μg	<u>;/L] </u>
				Single	Maltiple
				application	applications «
	D3 (ditch)		0.055	0,927	0.022
	D4 (pond)		0.008	. 004	@;
	D4 (stream)		0.061	0.030 ×	
	D5 (pond)		Q .010	0.005	0.009
	D5 (stream)		©0.057 »	0,028 Q	08926
	D6 (ditch)	10m SD + RO	0.058	7 30.029 ₀ 9	W 034
	R1 (pond)		0 f 2 0.547 0	£ 0.0 06	0.059
	R1 (stream)	A		0265	√ 0.5 8 0 √ °
	R2 (stream)		0.426	[™] 40.200 	Q 200 0°
	R3 (stream)	L. C.		0.49Q ×	√ √ 0.490 √
Foramsulfuron	R4 (stream)		1.065	0.523	© 0.59 ©
oranisumuron	D3 (ditch)		√ ° 50.028 €	0.014 0.003 0.0140	0.012
	D4 (pond)		0.006	∑ Ør.003 &	S . 6.004
	D4 (stream)	a. 4 Q	Q 0,Q2 6		0.013
	D5 (pond)		00008 X	Q 0.004 S	% 0.007
	BS (Stream)			€ •0.015 _{&}	0.014
	D6 (ditch)	20m SD + NO	0.032	~0.016~y	0.034
	R1 (pond)	<u> </u>	\$ 0. 9 07 \$	0.00	0.014
	R1 (stream)) 3.279 Q	0.135	0.303
	R2 (stream) 0		\$\sqrt{0.22}\sqrt{\sq}}\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	Ø:104 A	0.104
	R2 (stream)		0.526	0.256	0.256
	RA (stream)		V 0.558	0.204	0.313
4	O D3 (Otch)		0.001	<0.001	<0.001
'	D4 (pond)			© 0.001	<0.001
, Ø	D4 (stream)		0.001 _Q	<0.001	0.001
	D5 (pond)		9 .001	<0.001	0.001
	D5 (stream)	4, G	©0.001° >	<0.001	0.001
	D6 (ditch)	100 SD.+90		0.004	0.008
	RI (pond)		<0.001	< 0.001	0.002
	R1 (stream)		Ø.035 Ş	0.017	0.045
	R2 (stream)	10m/SD.+RO	0.046	0.023	0.023
.4	R3 (stream)		0.080	0.040	0.040
AE F130679	R4 (stream)		0.092	0.046	0.055
	D3 (ditch)		0.001	< 0.001	<0.001
, W	D# (pond)		<0.001	<0.001	<0.001
~~	D4 (stream)		0.001	<0.001	0.001
	D5 (pond)		<0.001	<0.001	0.001
	D5 (stream)		<0.001	<0.001	0.001
	D6/(ditch)	20m SD #ØRO	0.008	0.004	0.008
a. Y	R1 (pond)	F	< 0.001	<0.001	<0.001
	R1 (stream)			0.009	0.024
	R2 (stream)		0.024	0.012	0.012
	R/3 (stream)		0.042	0.021	0.021
	R4 (stream)	CC land CC and	0.048	0.024	0.029

SD = spray drift buffer; RO = runoff buffer

Bold values are worst-case from single and multiple applications for each scenario

ACUTE RISK ASSESSMENT FOR AQUATIC ORGANISMS

TERA calculations based on drift entry for the formulation and on FOCUS Step 2 for foramsulfuron and AE F092944

	Species		ndpoint	PECsw,max	TERA	Trig
	_		[µg/L]	[µg/L] °©		
Maize, 1 x 60 g a.s./l		I.C	7.000	22.67	٥, •	. 9
FSN + IDF OD 45	Fish, acute	LC ₅₀	7 80@s	2347	337	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
(22.5+22.5)	Invertebrate, acute Fish, acute	LC ₅₀ LC ₅₀	6 9000 ×100 000	25.17 24.948	268 × 20 210	10
Foramsulfuron	·		100 000	A A	Q 20 210	010
	Invertebrate, acute	LC ₅₀		(*) 4.948	20 210	
AE F092944	Fish, acute	LC ₅₀	254 000	00/89	² 13430915	
	Invertebrate, acute	LC ₅₀	223 000	Ø.1890°	1 079 894	40
Maize, 2 x 30 g a.s./l	na	C50 C		7 7 -	F 4	4
FSN + IDF OD 45	Fish, acute	C_{50}	7 80 × 2	11.59	v 673	10
(22.5+22.5)	Invertebrate, acute	LC50	6900	\$11.59\square	₹ 595 €	10
	Fish acute	19050	<u>√</u> 100 000 ×	4 189	© 23 8 2	90
Foramsulfuron	Invertabrata aglita	(D, 0, 5)	150 000 000 000 000 000 000 000 000 000	7.10) 7.10)	> 23 872 4	
	Tilvertebrate, active	ULC50 /	> 100 000 y	0 172	- 23°012 () 10
AE F092944	Fish, acute	LC	2\$4 0000	(90.17/20	1876 744	
	Invertebrate, acute	LC_{50}	©223 0 0 0	0.172	© 2965 Y2	10
	. ~ ~		~ ~) Ča	
		Æ,	\		Ž,	
	7 4		A Q			
			. O ' O ' U	***		
		0 2	💝 .O 🕊	√ //. •	0)	
		·		¥ &. %		
				' 🖳 [y '	
		.€			¥	
		,			. "	
			~	0 ~		
			N 0,			
Æ				.C		
. ~			~ X . O	~Y ~ W		
~~	/~ \\ \.'\		"	01, 4C3		
C	~ \ ~ ~ ·	` > 1	(, V ~	× 4.7		
	~~ · · · · · · · · · · · · · · · · · ·	@*	Y , K	, v		
~0		"U" 🗶)		•		
· (C)*		a ka		an a		
	m' \ .	~ ~ ~		, W		
₽_				*		
, Ø		`````	-U @,			
°~~		\bigcirc	~ . ~ ~ ~	· •		
~~"	C X X	d	CA WA -	*		
Æ¥"	aï ÖK 💜)" *(J* ())		
« <i>></i> /		» ° °	, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
		v ,"\"	C. A			
~	O. 🛷 💆 ° o	*	N M			
.~	y "y" N	m	0.			
	' <u> </u>	4 "				
Q		~~~ /	~			
•	Z' Z 'ú	~	¥' 🔊 Y'			
(A)	.O* ~~ ~ U)	- 10%			
		, °~,				
~~			*			
	· 0 · ~ 1					
<u>~</u>].		, Q	, 4			
ON Y			\sim			
			*			
	, y	,	,			
J.						
.×∨ ×	U'					
/	~ ~ ~ Q,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
*	"O" C" "	$_{e}$ \bigcirc				
<i>a</i> , \$	L O	4				
. r		Q,`				
2		*				
_O. *						
LE 1						
Ţ,	, 'O, ' <i>x</i> , <i>x</i> , <i>x</i> ,					
	Õ D					
	~ ~~					
_						
	4 ~~					
	A					
	A.S					
	F j					
	Fish, acute Invertebrate, acute Fish, acute Invertebrate, acute Fish, acute Invertebrate, acute Fish, acute Invertebrate, acute Invertebrate, acute Invertebrate, acute Invertebrate, acute Invertebrate, acute					

CHRONIC RISK ASSESSMENT FOR AQUATIC ORGANISMS

Table 10.2-8 TERLT calculations based on drift entry for the formulation and on FOCUS Step 2 for foramsulfuron and metabolites

Compound	Species]	Endpoint [μg/L]	PEC _{sw,ma} ν [μg/Δ]	TERLT	Trigger
Maize, 1 x 60 g a.s./h	a		(°A)			
	Fish, chronic	NOEC	1 800	2 3.17	98 S	140
FSN + IDF OD 45	Invertebrate, chronic	NOEC	4 90	© 23.17	₩ 17 Q	J80 €
(22.5+22.5)	Green algae, chronic	E _r C ₅₀	\$ 5 000	2 3 ,17	216	10 ₁₀ 4
	Aquatic plants, chronic	$E_rC_{SO}^{CO}$	53.23	×23.17	×2.30 ×) 10°
	Fish, chronic	N QEC	\$\sqrt{9} 500 \rightarrow \tag{9}	4.948	2 122	Ϋ́O
F16	Invertebrate, chronic	NOEC	J> 100 000	4048	©> 20 2 10	\$ 10 ₹°
Foramsulfuron	Green algae, chronic	E _r C ₅	8,1000	4.948	1637	10
	Aquatic plants, chronic	E ₃ C ₅₀	C 01 , \$\square\$	5 4.948	© 0.20 V	10
AE F092944	Green algae, chronic &	E_rC_{50}	× > 56600000	QG89 &	2 96 29 62	10
AE F092944	Aquatic plants chronic	EC ₅₀	> 100 000	3 0.1890	>529 101	10
AE F099095	Green algae chronic	F ₀ € 50	\$100 660	√ 0.0 8	O 176,471	10
AE 1099093	Aquatic plants, chronic	EC50,	> 100 000	Ø	> 1 1769 471	10
AE F153745	Aquatic plants chronic	EC®	> 100 000	~~0.08 7 ~	> 1 2 49 425	10
AE 0338795	Aquatic plants, chronic	E C ₅₀	3 77 200 🖓 🛴	0.127	2 14 173	10
AE F130619	Aquatic plants, ohronic	EC ₅₀	0.889//	Q 481 %	1.85	10
4-Amino-N- methylbenzamide	Aquatic plant chrome	E_rC_{50}	\$\text{\$\tilde{10}\text{ 000}\$\text{\$\tilde{0}}}	0.023	> 434 783	10
4-Formylamido-8- methylbenzam@e	Aquatic plants, dironic		> 10,000	0.043	> 232 558	10
Foramsulfur@n sulfamic acrd	Aquatic plants, chronic	EC50	> 10 000	0.060	> 166 667	10
Maize, 2x 30 g a.s./h						
Š	Fish, chronic	NOEC	P800	11.59	155	10
FSN + IDF OD 45	Invertebrate, chronic	MOEC	y 400 S	11.59	35	10
(22.5+22.5)	Green algae, chronic	$E_r C_{so}$	> 5 000	11.59	431	10
<u> </u>	Aquadre plants, chrome	F_0 50	5 3.23	11.59	4.60	10
Ø,	Figh, chronic V		10 500	4.189	2 507	10
Foragrisdulfuron &	Invertebrate, chronic	NQEC	> 100 000	4.189	> 23 872	10
rolamsultuloli	Green algae, Phronic	£ 50	8100	4.189	1933	10
@ \\	Aquatic plants, chronic	E_rC_{50}	1.01	4.189	0.24	10
AE F092944	Green Bae, chronic	E_rC_{50}	> 560 000	0.172	3 255 813	10
AE F092944	Aquatic plants, chronic	EC ₅₀	> 100 000	0.172	> 581 395	10
AE F099995	Green algoe, chronic	E_bC_{50}	> 100 000	0.066	> 1 515 152	10
	Aquatic plants, chronic	EC ₅₀	> 100 000	0.066	> 1 515 152	10
AF 1537460	Aquatic plants, chronic	EC ₅₀	> 100 000	0.070	> 1 428 571	10
AE 0338095	Aquatic plants, chronic	E _r C ₅₀	27 200	0.107	254 205	10
AE F130619	Aquatic plants, chronic	EC ₅₀	0.889	0.276	3.22	10
4-Amino-N- methylbenzamide	Aquatic plants, chronic	E_rC_{50}	> 10 000	0.021	> 476 190	10

Compound	Species	Endpoint [µg/L]	PECsw,max [µg/L]	TER _{LT}	Trigger
4-Formylamido-N-methylbenzamide	Aquatic plants, chronic	$E_r C_{50} > 10\ 000$	0.038	> 263 158	
Foramsulfuron sulfamic acid	Aquatic plants, chronic	$E_r C_{50} > 10\ 000$	0.053	>188 679	for the second

Table 10.2-9 TERLT calculations based on FOCUS Step 3

		<u> </u>	- O _A	<u> </u>	
Species	Endpoint [µg/L]	PPCsw,max	FOCUS.	TER _{Ly}	Frigger
Foramsulfuron, Maize, 1	., 0 ,	<i>&∕</i> n⁻	- 7 %	8 0. ×	(a)
Foramsulturon, Maize, 1	x ou g/na			O*_	. Lú
	O	19 ,314 1	DG (ditch)	@ J.Z	10
		0.01%	D4 (pond)	770	* 10 \$
		0:271	D4 (stream)	3.7	
		0.015	D (pond)	67.3	010
	E _r C ₅₀ Q 1.01	0.254	Ø5 (stream)	40	2 10
Aquatic plants, chronic	E_rC_{50} $Q1.01_{\odot}$	0316	D6@ditch)	3.2 ⋄	
		©.025 ©	Kol (pond)	° 40.4€	10
		1.284	R1 (stream)	0.8	10
\		0.972	R2 (stream)	£1.0	10
<i></i>		Ø.225 O	R3 (stream)	6 0.5	10
		2.341	OR4 (stream)	0.4	10
AE F130619, Maize 1 x 6	Øg/ha 🔊 🎺				
		Ø.032 S	Ø3 (ditch)	27.8	10
		0.00	D4 (pond)	889	10
		070001	D4 (stream)	889	10
		©0.002	Description (pond)	445	10
		<0,001	>D5 (stream)	>889	10
Aquatic plants, chronic	ErC50 0.889	0032	D6 (ditch)	27.8	10
		©0.004©	R1 (pond)	222	10
		0,081	R1 (stream)	11.0	10
A		6 706	R2 (stream)	8.4	10
<u></u>		0.178	R3 (stream)	5.0	10
		0.202	R4 (stream)	4.4	10
		Ÿ			
AE F130619, Maize 1 x 6	· ***				
$igcup_{}$					

Table 10.2-9 (continued): TERLT calculations based on FOCUS Step 3

		•			<i></i>
Species	Endpoint [μg/L]	PEC _{sw,max} [μg/L]	FOCUS scenario	TER _{LT}	Trigger
Foramsulfuron, Maize, 2			d.	Q .	
		0.157	D3 (ditch)	6.4	10
		0.010	D4 (pond)	101.00	° Ø,0
		0.136	D4 (stream)	7.AV	10
		0.013	D5 (Sond)	19 .7 3	
		2 126	D (stream)		90
Aquatic plants, chronic	E _r C ₅₀ 1.01	© 0.158	D6 (diteh)	(6 d	10
	4	0,062	O RL (Nond)	₹8.3 %	, TØ,
	Ő	Ø.281 🔑	R1 (stream)	© 0.8	10
		© 0.45@	R2 (stream)	2.0	© 10 5
		1:084	R3 (stream)	\$0.9	10
		4J.315	R4 (stream)	0.8	010
AE F130619, Maize, 2 x 3					
		00016	D3@ditch)	©35.6 °≈	10
		80.001 ©	DA (pond)	>88%	10
		0.001	D4 (stream)	889	10
%		0.001	D5 pond	889	10
₩		Ø.001 O	D5 (stream)	889	10
Aquatic plants, chronic	$E_r \mathcal{O}_0$ \mathcal{O}_0 \mathcal{O}_0	0.016	D6 (ditch)	55.6	10
\$. (0.010	R1 (pond	88.9	10
Aquatic plants, chronic		(V.099)	Ry (stream)	9.0	10
TO AT		0.00	R2 (stream)	17.1	10
*.		0089	R3 (stream)	10.0	10
		0.1215	(stream)	7.3	10

Bold values require further refinement

REFINED CHRÖNIGRISKASSESSMENT FOR AQUATIC PLANTS

Foramsulfuron

In addition to the tier Φ test with Lemna graba, resulting in the E_rC_{50} of 1.01 μg a.s./L four further macrophyte studies have been conducted with foramsulfuron technical and the formulation Foramsulfuron WG 50, respectively.

- Aim of the 4 d laboratory study with *Myriophyllum spicatum* (et al., 2012; M-431270-01-1, KCA 8.2-7709) was to investigate the sensitivity of a dicotyledonous macrophyte species to foranculfurors. In this study *Myriophyllum spicatum* showed low sensitivity to the compound with maximum inhibition of the growth parameters (shoot length, wet weight, dry weight) being less than 20% up to the maximum test concentration (88 μg a.s./L).
- The 6 weeks (42 d) bioassay with *Lemna gibba* (, 2013; M-464150-01-1, KCA 8.2.7/08) has been performed to generate an endpoint which can be compared to the macrophyte species tested in the outdoor pond study (see below). Since *Lemna gibba* insufficiently growths under the mesotrophic conditions in outdoor ponds, decreasing concentrations of foramsulfuron as observed

in the pond study were mimicked in the laboratory in 20 x APP nutrient medium under sterile conditions. Every week, duckweed plants were transferred to new test vessels with a stepwise lower foramsulfuron content. The total test duration of the bioassay was equal to the duration of the pond study. As the most sensitive response variable frond number, and 2 d E_rC₅₀ of 1.18 og a.s./L was obtained.

- The 24h- peak exposure study with Lemna gibba (2013; M-452569-01-1, CA 8 2.7 /06) has been conducted to specifically address peak exposure patterns as predicted e.g. for runoff scenarios. The study should reveal expected differences in the regnitude and duration of effects between a constant exposure as given in a Lemna standard test and an exposure for a very limited time span. Lemna gibba was exposed to the compound for 24 a. Afterward the plants were transferred to untreated growth medium in which they were kept for further six days. The CC 50 was greater than 56.7 μg a.s./L, the NOFC of growth rates in the period between day 2 and day 7 (post-exposure after the peak) was 2.42 μg a 3./L. These endpoints refer to growth rates of both parameters, frond number and total foord area.
- In the macrophyte pond study (2012, M-42538, 9-1, KCA 82.7 /07), ten offerent macrophyte species were exposed to foramsulfuron applied as WG 50 formulation under outdoor conditions. The aim of the study was to deliver an appropriate number of endpoints for an HC₅ calculation. The study included two different exposure or gimes.
 - 1) Constant exposure over 6 weeks with natural degradation of the compound in the ponds; this part was conducted in an OCx design.
 - 2) 48 h peak exposure (two peak concentrations 1.6 and 3.9 ug a.s./L, measured) with subsequent replacement of the test solutions with intreated dilution water in the ponds. As with the Lemna peak exposure study, this second regime affect at mimoking short runoff or drift peaks and their effects on macrophytes.

Endpoints relevant for the refined risk assessment are presented in Table 10.2-2. Although the study has been started with ten species, the data for *symphaea odorata* were omitted from the analysis due to poor energence every in the controls. The evaluation was done with the remaining nine species. For more information on the studies and further endpoints see study summaries in document M, CA 8.2.7.

Probabilistic risk assessment SSD and HC calculation for foramsulfuron

The refined risk assessment for foramsulfuron is mainly based on the results of the multispecies outdoor pond study and the associated give laboratory bioassay with *Lemna gibba*. The data of the two studies have been used to generate a species sensitivity distribution (SSD) and calculate an HC₅. Since endpoints in the *Lemna* bioassay have been calculated based on nominal concentrations, also from the pond study the nominal endpoints were used.

The outdoor pond study yielded EC₀ values ranging from 1.5 μ g a.s./L to > 61 μ g a.s./L. For the variable shoot length growth rate, definitive EC₅₀ values could be calculated only for two of the ten species tested. However, for the variable dry weight growth rate definitive EC₅₀ figures were obtained for seven species. According to the new aquatic guidance document (EFSA, 2013, p. 93) greater-than figures. Mould be included in an SSD calculation, if they are outside the range of already available endpoints. In the present case this applies to *Mentha aquatica* and *Cabomba caroliniana* which both delivered $\frac{1}{2}$ C₅₀ values of > 61 μ g a.s./L. The highest definitive endpoint was 60 μ g a.s./L and was obtained or *Glyceria maxima*. As a pragmatic and conservative approach, the E_rC_{50} of > 61 μ g a.s./L was included in the SSD only once.

As mentioned above the lowest endpoint from the 6-weeks Lemna bioassay is 1.18 µg a.s./L (E_rC₅₀ for frond number). This endpoint was added to the overall eight endpoints from the pond study. The complete data set used for generating the SSD is shown in the table below (Table 10.2-10).

Table 10.2-10 Refined species included in the SSD and their relevant EC₅₀ value

t used for generating the SSD is shown in	the table below (Table 10.2-10).
Refined species included in the SSD and thei	ir relevant EC50 value
Species	Endpoint [Fig a.s./L] ErCso 1.18 ErCso 2.5
Lemna gibba	E _r C ₅₀ 1.18
Elodea canadensis	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Salvinia minima	E.C.56 & 2.87 & 5
Sagittaria latifolia	₽ (C50, 7 , 74.6 €)
Stuckenia pectinata	E.G. 7.70 L
Ceratophyllum demersum	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Myriophyllum heterophyllum of U	
Glyceria maxima	EC50 600 61.0 6
Mentha aquatica Cabomba capoliniano	
HCs S S	0.652

The HC₅ calculation is based on the method of 0.652 µg a.s./L was calculated of Table 10.0

A median HC5 of

Refined aquatic risk assessment for foramsulfurent

For the refined risk assessment long-term exposure scenarios and peak exposure scenarios were considered separately. In order to distinguish long term exposure scenarios from peak exposure 2013; <u>M468841-02-1</u>) were analysed. Peak scenarios the temporal patterns of PFC-figures (scenarios showed a cominant peak (primary peak) that lasted not longer than 24 hours. In some scenarios this printipy peak was tollowed by one or a few smaller peaks called secondary peaks in the following text. The following scenarios were considered a Speak-scenarios: D4 stream, D5 stream, D6 ditch, R1 stream, R2 @eam R3 stream and R4 stream.

Report:	*; 2013; M468841-02; Amended: 2013-11-18
Title:	Forams Ofuron (FSN) and metabolite: PECsw,sed FOCUS EUR (graphical outputs) -
	Use in maize in Europe
Report No:	Eliag-13-0ag0 Q
Document No:	M46884Q02-1
Guidelines:	not applicable not applicable
GLP/GEP: O	no S V

environmental concentrations of the active substance for amsulfuron and its metabolites for in Furope were calculated and reported in the study report KCP 9.2.5/02.

^{(2000):} Uncertainty of the hazardous concentration and fraction affected for normal species sensitivity distributions. Ecotoxicology and Environmental Safety, 46: 1-18.

This report KCP 10.2/01 supplements the original document and provides graphical representation of time evolution of PECsw concentrations for all calculated uses and scenarios at Step3 level for parent and its metabolite AE F130619.

For <u>the long-term scenarios</u>, the calculated HC₅ was compared to Focus Step 3 max. PEC_{sw} figures. The results of these calculations are provided in Table 10.2- 11. According to the new squatic guidance document (EFSA, 2013a, p. 100), an assessment factor of 3 should be applied in conjunction with the median HC₅ to derive the regulatory acceptable concentration

In case that further refinement is required as the risk assessment based on the median HC₅ combined with FOCUS Step 3 PECvalues is not passed in a second step a risk assessment is performed with Focus Step 4 max. PEC_{sw} figures considering a m buffer zone to mitigate spray drift and run off entry.

The <u>peak scenarios</u> were considered separately. For the TER calculations the <u>peak ErCs 56.7 fug</u> <u>a.s./L</u> from the *Lemna* peak study was taken into account. Regarding the derivation of a regulatory acceptable concentration from a refined expassive laboratory test, the new aquate guidance document (EFSA, 2013a, p. 110) <u>proposes an assessment factor of 10</u> in conjunction with the EC₅₀ for plants. This approach is reasonable because:

- 1. Lemna is the most sensitive agreatic macrophile species,
- 2. Lemna is also most sensitive to peak exposures. The peak NOEC of 3.9 μg a.s./L from the pond study is higher than the NOEC of 2.42 μg a.s./L obtained from the Lemna-peak study.

A refined risk assessment based on the comparison of the 24 h Lemna-peak study with primary peak (PECmax) from peak exposure patterns described by (2013; M-46884 02-1) can be justified for the following reasons:

- 1. The primary peak lasted not longer than 24 librars.
- 2. The secondary peaks (if the coccurred at all) did not exceed the NOEC of 2.42 μg a.s./L.
- 3. The temporal distance between primary and secondary peaks was greater or equal than three days (with exception of the R2 stream scenarios, where a slight peak (<0.1 µg a.s./L) occurred after two days aready. Figures 1 and 3 in the *Lemna* peak study (2013; M-462569-11-1, KCA 8.7.7 /b) reveal that the growth curves growth lines" in the semi-logarithmic plots) even between day 2 and 5 are sunning parallel to the control at concentrations up to 2.42 µg a.s./L indicating a rapid recovery within a few days. Taking into account that the secondary peaks are far less than 2.42 µg/L and a fast recovery of Lemna-growth after a preceding exposure has been observed it can be concluded that the secondary peaks can be neglected.

It can be concluded that for all FOCUS Step 3 seenarios which are characterised by peak exposure the risk of foramsulfurou to aquatic plants is acceptable.

AE F130619

No higher per-data are available for ME F130619. Both compounds, AE F130619 and its parent compound forangulfuron, have a very similar molecular structure, and it has been shown that the Lemna M_1C_{50} of AE E130619 is very close to the respective endpoint of the parent. Although no peak-exposure study has been conducted with AE F130619, it can be assumed, that the result would be similar. It is therefore reasonable to use the endpoint of foramsulfuron from the Lemna peak exposure study, the E_1C_{50} of >56.7 μ g/L also to evaluate peak exposure scenarios of AE F130619. In order to address the higher uncertainty resulting from the fact that only a similar but not the exact chemical structure was tested, an increased assessment factor of 20 is proposed.

Summary: Rationale for setting of assessment factors for refined risk assessment

Summary: Rationale for setting of asse	T.	
Endpoint	Proposed	Reference and further comments
	assessment	
	factor	
Foramsulfuron		7 . 7
HC5 of 0.652 μg/L		The HC ₅ is calculated from a total of nine
derived from EC ₅₀ -levels obtained in the		endpoints obtained from a wide variety of
outdoor macrophyte study and the 6-week		Califferent aquasie macrophytes (
Lemna study. Lemna is the most sensitive	3	The AF of Dis proposed on page 700 in new
species.	, O	aquatic guidance document (EFSQ 2013)
The HC ₅ is used for the risk assessments of		
long-term exposure scenarios.		The peak exposure study has been done with the most sensitive species (Lemna). Regarding the derivation of a regulatory acceptable concentration from a rethred exposure laboratory test, the new aguatic guidance document (MSA, 2013a, p. 110) proposes an assessment factor of 10 in conjunction with the EC 50 to plants.
$E_rC_{50} > 56.7 \mu g/L$	k, b°	The peak exposure study has been done with
obtained from <i>Lemna</i> -peak exposure study.	0, 76,	the most sensitive species (Lemna).
The short-term exposure is comparable to	4 . 6 . 6	Regarding the derivation of a regulatory
peak exposures scenarios.		acceptable concernation from a retined
<u> </u>		exposure radorantly tests the flew astractic
		proposes an assessment factor of 10 in
		conjunction with the EC ₅₀ to plants
AE F130619		Constitution of the time of time of the time of time of the time of the time of time o
AE 1 1 3 0 0 1 7		Little Silen medea Or state of this
ErC50 > 50.7 µg/L	\$. ·	The similar molecular structure of this metabolite compared to the parent and the
obtained from Lemna-peak exposure study		similar empoint obtained from the standard
The short term expective is a comparable to		Lemna-growth whibition study justifies the
neak exposure scenarios &	20,0	use of the same endpoint for peak exposure as
peak exposure sections.		for the pagent. How order to address the
		additional uncertainty an assessment factor of
		35 instead of 100s proposed
	, S	W . T
9' 4' Ş Z		
		D
	\$.Q'	
	, 'O _a	
	Ő,	
	¥ 7 n	
	II	
AE F130619 ErCs ₀ > 56.7 μg/L obtained from Lemna-peak exposure study with foramsulfuron The short-term exposure is comparable to peak exposure scenarios		
\cup		

Table 10.2-11 Refined TER_{LT} calculations based on FOCUS Step 3 and refined ecotox endpoints

	Endpoint	PEC _{sw,max}	FOCUS		
Species	[μg/L]	[µg/L]	scenario	TERLT	Trigger
Foramsulfuron, Maize, 1				Š.	
		0.314	D3 (ditch)	2.1	3
	long-term exposure	0.013	D4 (pond)	50.2	, Q3 4
	HC ₅ : 0.652	0.01	D5 (pond)	43.5	3,0
		0.025	R1(pond)	2 6.1	
		△0.271	DQ (stream)	رب 20 <u>%</u>	©10 _©
Aquatic plants, chronic		0.251	D5 (st@am)	\$ 2 2 6	D 100°
	<u> </u>	0æ316 🌊	D&(ditch)	Ø179 %	40
	peak exposure peak E_rC_{50} : >56,7	√1.284°C	Kor (stream)	® 44.2€	∠ 10 s
	peak E ₁ C ₃₀ . F ₂ C ₁	© 0.97\$,	R2 (stream)	⁷ 58.3 «	100
		2 3 25	R3 (stream)	25.5 W	10
		2.341	K4 (stream)	24.25	10
AE F130619, Maize, 1 x 6	4				J.
) 9 96	R2(stream)	535,	20
Aquatic plants, chronic	peak exposure	©.178∜	(stream)	© 318	20
	100 C	0.2002	R4 (stream)	2 81	20
Foramsulfuron, Maize, 2/	xy 30 g/ha 💆 🔊				
2		0.157°	D3 (ditch) %	9 4.2	3
	long-term exposure	0.010	D4 (Pond) *	65.2	3
	**************************************	-20 9 013 🖉	D\$∕(pond¶∕	50.2	3
		\$0.062	R1 (pond)	10.5	3
		0.436	D4 (stream)	417	10
1 0 1		_0.126@	DS (stream)	450	10
		0.158	©D6 (ditch)	359	10
	peak exposure) 1. 28 1 /	R1 (stream)	44.3	10
	peakstrC50.990.7	0.456	R2 (stream)	124.3	10
Aquatic plants, chronic		1.084	R3 (stream)	52.3	10
		12315	R4 (stream)	43.1	10
AE F130619, Maize, 2 x 3	0 g/ha)	, V			
Aquatic plants, chronic		0.052	R1 (stream)	1090	20
Aquatic plants, chronic	peak ErC50: \$56.7	0.089	R3 (stream)	637	20
)	peakyereso.70	0.121	R4 (stream)	469	20
(// //					

Bold TER values require further refinement

Scenario 3 dites for toramsubfuron, Maize, 1 x 60 g/ha is the only scenario that requires a further refinement.

Higher-tier risk assessment based on Focus Step 4

Table 10.2- 12 TERLT calculations based on FOCUS Step 4

Species	Endpoint [µg/L]	PEC _{sw,max} [μg/L]	FOCUS scenario	TERLT	Trigger		
Foramsulfuron, Maize, 1 x 60 g/ha; 10 m spray drift & runoff buffer							
Aquatic plants, chronic	long-term exposure HC ₅ : 0.652	0.05 %	D3 (dytch)	109	3,000		

The outcome of the aquatic risk assessment can be summarized as follows:

		Maige, 1 x 60°g/ha		
	Step 3	Step 3 &	Step 4 of higher-tier RA based	conclusion
	standard RA based on	Angher-ther RA based		
	Lemna E _r C ₅₀	on differenciated (endpoints for long	on difference ted a endpoints for long	
	Į.	& term and peak	term and peak	
	Ž,	exposure	Sosure S	
D3 (ditch)			(10 m)	10 m buffer
D4 (pond)				no buffer
D4 (stream)				no buffer
D5 (pond)				no buffer
D5 (stream)				no buffer
D6 (ditch)				no buffer
R1 (pond)				no buffer
R1 (stream)				no buffer
R2 (stream)				no buffer
R3 (stream)				no buffer
R4(stream)				no buffer
\$		Maize√2 x 30/g/ha	3 ″	,
D3 (ditch)				no buffer
D4 (pond®				no buffer
D4 (stream)				no buffer
D5 (pond)				no buffer
D5 (stream)		\$. \		no buffer
D6 (ditch)				no buffer
R1 (pond)				no buffer
R1 (stream)		, · · · · · · · · · · · · · · · · · · ·		no buffer
R2 (stream)		✓		no buffer
R3 (stream)		~		no buffer
R4 (stream)		✓		no buffer

In conclusion, no mitigation measure is required to pass the aquatic risk assessment in case of the 2-fold application in maize (2 x 30 g a.s./ha), while in case of the single application (1 x 60 g a.s./ha) a 10 m drift buffer is necessary to pass scenario D3.

CP 10.2.1 Acute toxicity to fish, aquatic invertebrates, or effects on aquatic algae and macrophytes

Report:	K
Title:	Static renewal toxicity with the rainbow trout Oncorbynchus rollics: AF F130060 +A
TILL.	Static renewal toxicity with the rainbow trout, Oncorhynchus Kiss: AE F130360 + AE F122006: AE F130360 01 1K05 A304 B002796 Report includes Trial Nos.: 1889-AG CF00W543 M-238518-01-2 CF00W543
Report No:	AE F122006: AE F130360 01 1K05 A304 B002796 Report includes Trial Nos.: 1889-AG CF00W543 M-238518-01-2
Document No(s):	Report includes Trial Nos.:
	1889-AG
	CF00W543
	Report includes Trial Nos.: 1889-AG CF00W543 M-238518-01-2 OECD: 203: Deviation not specified
Guidelines:	OECD: 203; Deviation not specified
GLP/GEP:	lyes Q Q Q Q
Report:	K g; 3,2000 N-238 17-01
Title:	K g; 2000 7-238 17-01 Static renewal toxicity with the Auegill Junfish Lepon's macrochirus AE F1 360 AE F1 22006: AE F1 37860 V 1K05 304 B002795
D	AE F122006: AE F1350660 0 1 1 K05 3304
Report No:	Static renewal toxicity with the Auegill Junfish Leponos macrochirus AE F13360 AE F122006: AE F137860 AE F1378
Document No(s):	Report includes Trial Net 7 7 7 0 1888-07 7 7 7
	1888-09 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	M-238517-012
Guidelines:	OECD: 33;Dexiation not specified
GLP/GEP:	yes V (C A Q Q
GLI/GLI.	
Report:	§; (2000; M-238s) 9-02-0
Title:	Spatic recewal relicity test with the Daphnid Wapha ia magya AE F130360 + AE
Title.	4 C17701UL · A CaL 9 202 (4) 01 1 L/2 S A 2 K/h
Report No:	\$\ \B\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Document No(s)	B007797
	1890 AG
O'	CF00W544" Q Q O Q
Guideliney:	©ECD © 2; Destation not specified ~ Y
GLP/GEP:	019C3 0, ~/ // // // // 0. ~ ***
Report:	
Report:	; 2000;M-238520-0 <u>2</u>
I itle:	Growth and reproduction toxical test with the freshwater alga, Selenastrum
Daniel Na	Report in Nudes That Nus. 8891-AG M-2852060-2 AE F122006: AE F130360 01 1K05 A304
Report No:	Buy 198 / December 1987 dec 19
Document (8).	Report in orders of the invest.
	4091-AU 70 70 70 70 70 70 70 70 70 70 70 70 70
~	M-9052000-2 0 0
Guidelines: \	OECD: 291; Degiation Lot specified
GLP/GEP:	wes of Q
O A	
	Report in Mides Tal No. Report in Mides Tal N
	A
Ď	
\cup	

Donart.	b; ; ; ;2000;M-238581-01
Report: Title:	Toxicity to the Duckweed, <i>Lemna gibba</i> : AE F130360 + AE F122006 flowable: AE
TILLE.	F130360 01 1K05
Report No:	B002845
Document No(s):	F130360 01 1K05 B002845 Report includes Trial Nos.: 1928-AG CF99W571 M-238581-01-1 USEPA (=EPA): 123-3; Deviation not specified
Document No(s).	1928-AG
	CF99W571
	M-238581-01-1
Coridalinas	WI-238381-UI-1
Guidelines:	
GLP/GEP:	yes yes
D	
Report:	b; ;2000;M238567501
Title:	Toxicity of AE F130360 + ADF122006 + ADF115008, water dispersible ganule
	+ 30 + 2% w/w including a methylated rap Seed all surfactors of the cockwess, Lenzy gibba G3 determined und stati Genew Mest conditions AE F5 0360, 02 WG62 A10
D (3)	gibba G3 determined ungor stationenews test conditions AE F 30360 02 w G62 ATC
Report No:	B002838
Document No(s):	Report includes Triat Nos.:
	Report includes Triat Nos.: 45737 M-238567-01-1
C 111	M-238567-01-1
Guidelines:	OECD:;Devia Con nog specific 1
GLP/GEP:	yes Q' o o o o o o o o o o o o o o o o o o
Report:	j3 ;
Title:	Toxicity of AE, F130,600 + AE, F122,006 + AE, F115608, walk dispersible granule,
	30+30+20 WWw. Sde: AF130360 02 WG62 AF04 to Jackwegs, Lemna gibba
	G3, determined under stage renegal test sonditions: Al \$\infty 1303, \$\infty 02 \text{ WG62 A104}
Report No:	\$20028167
Document No(s):	Report includes Tria Vos.: 57 2 0 4
<u> </u>	M-238536-01-1
Guidelines: O	OECD: Draft est (1209); Deviation not specified
GLP/GEP:	yes V V V V V V V V V V V V V V V V V V V
Report C	ü; 2002;M 240877 01
Title: "Y	7 Forance of furon Oil Flowable 2.5 g/L Formingtion (AE F130360 01 1K05 A304) -
	Toxforty Towneck weed, Lemna gibba
Report No:	BA03893
Document No(s):	Report Delude Frial Nos.:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0 1372×6166 × ×
4	M-090877-84-1
Guidelin's?	USEPA SEPA OPP 850, 4000; Deviation not specified
GLP/G©P:	yes y
, 4	
w \	
~ .	
$\bigcup$	
	Forat wilding on Oil Flowable 2.5 g/L Formingtion (AE F130360 01 1K05 A304) - Toxisty Topucky, ed., Letina gibba  BA03893  Sport Octude Frial No.: 1372x6166  M-250877c91-1  USEPA SEPA DOPPN 850, 4000; Deviation not specified yes



Report:	q; ;	;2008;M-296352-01	
Title:	Toxicity of foramsulfuron + isoxadifen-ethyl OD 22.5+22.5 g/L (AE F130360 01 1K05 A9) to duckweed ( <i>Lemna gibba</i> G3) under static-renewal conditions		
	1K05 A9) to duckweed (Lemna gibba G3) under s	static-renewal conditions	
Report No:	EBFSX011		
Document No:	<u>M-296352-01-1</u>		
<b>Guidelines:</b>	FIFRA Guideline 123-2 (1982)		
	OPPTS Guideline 850.4400 (2006 draft)		
	OECD Guideline 221 (2006);none		
GLP/GEP:	yes		

#### **Executive Summary**

A 7-day static-renewal duckweed growth test was conducted to determine the growth effects of Foramsulfuron + Isoxadifen-Ethyl OD 22.5+22.5 g/L/(AE LV30360 01 1K05 A9) on Lemna gibba G3. The duckweed Lemna gibba G3 was exposed for 7 days under static-renewal (Day 3 and Day 5 renewal) conditions. Nominal (mean measured) consentrations were control (<0.01), 0.094 (0.10), 0.19 (0.19), 0.38 (0.41), 0.75 (0.77), 1.2 (1.53), and 2.0 (3.08) µg a g./L. Concentrations were based on the amount of Foramsulfuron in the Foramsulfuron + Isoxadifen-Ethyl GD 22 +22.5 g/L (AE F130360 01 1K05 A9). Growth was determined by frond counts on days 0.3, 5 and 7 and frond dry weights from day 0 and day 7. Results are reported as mean measured recoveries of foramsulfuron as measured on Day 0, Day 3 (of and new solutions), Day 5 fold and new solutions) and Day 7.

The NOEC and LOEC for the endpoint of growth rate for frond dry weight were 0.77  $\mu g$  a.s./L and 1.5  $\mu g$  a.s./L, respectively. For all other endpoints the NOEC and LOEC was 50.10  $\mu g$  a.s./L and 0.10  $\mu g$  a.s./L, respectively. The endpoint with the most sensitive  $EC_{10}$  was day 7 frond dry weight yield with an  $E_yC_{10}$  value of 0.74  $\mu g$  a.s./L. The endpoint with the most sensitive  $EC_y$  value was day 7 frond yield with an  $E_yC_{10}$  value of 0.75  $\mu g$  a.s./L.

#### Material and Methods:

Test item: Foramsulfuron + Isoxadifen-Ethyl DD 22.5+22.5 g/L (NE F130360 01 1K05 A9); Batch number DFKM001398 Tox-No: 08697-00; purity 2.32 % Foramsulfuron, 2.40 % Isoxadifen-Ethyl.

The duckweed Lemna gibba G5 was exposed for Odays under static-renewal (Day 3 and Day 5 renewal) conditions. Nominal (mean measured) concentrations were control (<0.01), 0.094 (0.10), 0.19 (0.19), 0.38 (0.48), 0.75 (0.77), 1.5 (1.53), and 3.0 (3.08) μg a.s./L. Concentrations were based on the amount of Foramsultaron of the Foramsulfuron + Isoxadifen-Ethyl OD 22.5+22.5 g/L (AE F130360 of 1K05 A9). Growth was determined by frond counts on days 0, 3, 5 and 7 and frond dry weights from day 0 and day 7. Results are reported as mean measured recoveries of foramsulfuron as measured on Day 0, Day 3 fold and new colutions), Day 5 (old and new solutions) and Day 7.

The test system consisted of three replicates per level. Each replicate contained three plants and twelve fronds for a total of 9 plants per level. Conductivity and pH value were measured on days 0, 3 (old and new solutions), 5 (old and new solutions) and 7 from all test levels. Visual observations were conducted on day 0, 3, and 7

Growth rate for frond counts and cumulative biomass for frond counts (as area under the growth curve) were measured. The variable used to calculate these response parameters was frond number as determined by direct frond counts. Frond dry weights measured at study initiation from representative samples and dry weights measured at study termination from the test samples were used to calculate response parameters for 7 day frond dry weight yield and growth rate for frond dry weight. Temperature during the test ranged between 23.3 and 23.8°C (recorded hourly), pH was 7.7 to 8.89,



the photoperiod was 24 hours light and the light intensity was 5040 to 6450 lux. All test dishes were placed in an environmentally controlled chamber.

November 01, 2007 (study initiation) – November 09, 2007 (in-life termination) Dates of work:

termination)

#### **Results:**

#### Validity Criteria:

All biological validity criteria for this study were met

#### **Biological findings**:

On study Day 7 small fronds were noted in the 0.77 and 1.3 Day 7 in the 3.08 µg a.s./L was the appearance of bown fronds. All other plants in all test concentrations and controls appeared normal throughout the study period.

Table 8.2.7-16: Toxicity to Lemna gibba

Test Substance	Forancial furous Fisosophifen Effyl OD  Ø2.5+20.5 g/L  (AE P130360 01 11605 A9)
Test Object	Lemma gibba G3
Exposure	7-Qay, statio-renewal
7-day $E_yC_{10}$ – frond count	& 0.26 μg formsulfuron/L
7-day $E_yC_{50}$ – frond wint	Ø.75 μg/foramsulfuron/L
7-day E _r C ₁₀ – growth rate for frond numbers	0.320ug foramsulfuron/L
7-day E _r C ₅₀ – growth rate for frond numbers	1.56 μg foramsulfuron/L
7-day E _b C ₁₀ – cumularive biomass for frond numbers	© 0.22 μg foramsulfuron/L
7-day EbCy - cumulative Vionass for frond numbers	0.86 μg foramsulfuron/L
7-day $C_{10}$ – frond dreweight	0.14 μg foramsulfuron/L
7-day E _y C ₅₀ – frond Pry weight	2.1 μg foramsulfuron/L
7-day NOEC – growth rate for frond droweight	0.77 μg foramsulfuron/L
	>3.08 μg foramsulfuron/L
7-day E _r C ₅₀ – growth rate for frond dry weight	(greater than highest test concentration)
Lowest Concentration With an Effect (LOEC)	0.10 μg foramsulfuron/L
Highest Concentration Without Toxic Effect (NORC)	< 0.10 μg foramsulfuron/L
Toxic Threshold Effect Concentration, VEC (Geometric mean of NOEC and LOVC)	NA

#### Conclusions:

The NOE Cand LOEC in the 7-day exposure of Lemna gibba G3 to Foramsulfuron + Isoxadifen-Ethyl OD 22,5 22.5 g/L (AE F130360 01 1K05 A9) for the endpoint of growth rate for frond dry weight were 0.77 µg a.s./L and 1.5 µg a.s./L, respectively. For all other endpoints the NOEC and LOEC was < 0.10 µg a.s./L and 0.10 µg a.s./L, respectively. Additionally, following the recommendations in OECD 221, EC₁₀s were calculated for all endpoints. The endpoint with the most sensitive EC₁₀ was



day 7 frond dry weight yield with an  $E_vC_{10}$  value of 0.14 µg a.s./L. The endpoint with the most sensitive EC50 value was day 7 frond yield with an  $E_{\nu}C_{50}$  value of 0.75  $\mu g$  a.s./L.

#### Additional long-term and chronic toxicity studies on fish, aquatic inverter **CP 10.2.2** and sediment dwelling organisms

Report:	K d; ;;2000;M-238492-0}
Title:	Prolonged toxicity to the rainbow troug Oncorhynch mykiss, in a few through
	system: AE F130360 + AE F122006 vil flowable 205 + 22.5 g/L: &E F13060 0
	1K05 A304
Report No:	B002764 A Q
Document No(s):	Report includes Trial Nos.: CF99W541
	<u>  WI-238492-01-2</u>
<b>Guidelines:</b>	OECD: 204; Deviation not specified O
GLP/GEP:	yes , y , y , y , y , y , y , y , y , y ,

Report:	KCP 10.2.2 /02;
Title:	Effects on life cycle of the water flex (Dapland magnet) in a Satic recewal system:  AE F1303600 AE F122006, oil flewable 236 + 23 g/L OE F130360 01 1K05  A304
	AE F1303600 AE F122006, oil flawable 23/3 + 229 g/L QE F139360 01 K05
Report No:	B002/40 7
Document No(s):	Report includes Trial Sos.: 4 CFOW5460
	CFOW5465 Q G
	M-2/38488-01-2
<b>Guidelines:</b>	M-2/38488-01-2  USEPA = EPA 72-4(©); Devortion for specified (
GLP/GEP:	Syes O S S S S

## **CP 10.2.3**

Details of the honeybee testing with the active substance foramsulfuron are presented in MCA, Section 6, Point 8.3

Table 10.3.1-1: Acute toxicity of foramsulfuron (tech.) to bees

Test substance	Test organism	Ecotoxicological end	point	Reference
Foramsulfuron, tech.	Honey bee		LD ₅₀ > 163 μg a.s./bee	, 1998 M-143626-01-1 KCA 8.3.1.1 7/01
Foramsulfuron, tech.	Honey bee	48/72 h-LD ₅₀ -contact	LD ₅₀ > μg a.s./bee	M-143205-01 KCA § 3.1.1 2001
Foramsulfuron, tech.	Honey bee	48 h-LD ₅₀ -oral 48 h-LD ₅₀ -contact		
		48 h-LD ₅₀ -contact  lered relevant for ris@a	Lets > 110.1 µg a.s./bee  Lets > 100 µg a.s./bee  assessment	M-44-055-01 F KCAO 3.1.12 /02 J



Table 10.3.1-2: Honey bee toxicity data generated with formulated foramsulfuron

Table 10.3.1- 2: Honey bee toxicity data generated with formulated foramsulfuron				
Test	Ecotoxicological end	point	Reference	
substance				
Acute oral and contac	t toxicity (laboratory)		F 4 . F	
Foramsulfuron +			(1999)	
Isoxadifen-ethyl	48 h-LD ₅₀ -oral	230.5 μg product/bee	M-187295 1-1	
(oil-flowable) 45	72 h-LD ₅₀ -oral	226.3 µg prodoct/bee	List of Endpoints	
(22.5 + 22.5)		Y. Q.	(EU review report, 2002)	
Foramsulfuron +		Zy Zo	(1999)	
Isoxadifen-ethyl	48 h-LD ₅₀ -contact	> 202 25 a product/box	M£ 87293-01-1	
(oil-flowable) 45	48 II-LD50-Comact	> 392.2 ng product/bee of	Est of Odpoints	
(22.5 + 22.5)			(EU seview report, 2002)	
Foramsulfuron +				
Isoxadifen-ethyl	48 h-LD ₅₀ -oral	LD50 >214.4 µg/product/bee	2093	
OD (oil-dispersion) 45	48 h-LD ₅₀ -contact	LD ₅₀ 200 µg product/bee	<b>M</b> -465361-01	
(22.5 + 22.5)	To It ED 30 contact		KCP\$0.3.1.1/01	
	14 1 (1 - 1 4		RCI PO.S.IVI OI	
Chronic toxicity to ad	uit bees (laboratory)			
Faranaulfaran WC 50	10 d chronic dult	LC ₅₀ 2120 mg a.s./kg	(\$013) (\$013)	
Foramsulfuron WG 50	feeding study 💪	NO@C ≥ 120 mg ao /kg 0	<u>M-479639-01-1</u> KC <b>©</b> 8.3. <u>1</u> .2/01	
T 1, 1 1 1			KCG 8.3.4.2/01	
In vitro honey bee larv				
	In vitro honey bee		j	
Foramsulfuron WG 50	larvae laboratory 🛇	LEG > 100 μg a Alarva 🗸 🧢	(2013)	
Totalisaliaron WG 50	study, single	ODED 100 µQa.s./latya	<u>M</u>	
4	exposore test design		RCA 8.3.1.3/01	
Bee brood feeding test			•	
		Slightly, Dut statistically ignifi-		
		Cantly increased termination rate of		
O À		your and an larva which as not		
, Q	1. 29 A	biologicall relevant; no adverse		
		effects on the survival of adult bees		
	Honey bee brood	and purae, behaviour colony	, (2013)	
Foramsulfuron WG 50	floney bee brood feeding (Ownen at O ak, 1992)	strength, condition of the colonies,	M-465326-01-1	
	ak 1992)	brood index and prood compensa-	KCA 8.3.1.3/02	
Q		tion index by feeding honey bee		
Q ,		Colonies sugar syrup at a foram-		
		sultaron-concentration at a con-		
⊿.		centration typically present in the		
Ø".		spray (aspk (100 ppm)		
Cage and tunnel studi	és A O		l	
<u> </u>	Somi-field honey			
	bee brood study	So adverse effects on mortality,		
L, 4	(according to SECD	Plight intensity, behaviour, brood		
Foramsulfurou+	75; Freed exposur	development (brood termination	(2013)	
Isoxadifen ethyl	conditions in	rate, brood index, compensation	M-468794-01-1	
OD $45 (22.5 + 22.5)$	Phacelo;	index) as well as on colony vitality	KCA 8.3.1.3/03	
OD 73 (\$2.3   4×23)	application during	at maximum application rate (2.67	KCA 0.3.1.3/03	
	full bloom and bees	L product/ha)		
	actively foraging	D productina)		
<u> </u>	actively lolagilig		l	

Bold values: Endpoints considered relevant for risk assessment

#### Risk assessment for bees

#### Hazard Quotients

An indication of hazard (Hazard Quotient or Q_H) can be derived according to the EPP assessment scheme, by calculating the ratio between the application rate (expressed in go s./ha in go product/ha) and the laboratory contact and oral LD₅₀ (expressed in μg a.s. bee or in μg/product/bee

QH values can be calculated using data from the studies performed with the active substance approximately with the formulation. QH values higher than 50 indicate the need of Agher tiered activities to clarify actual risk to honey bees.

Hazard Quotient, oral: 
$$Q_{HO} = \frac{\text{maximum application rate}}{2 \text{ LD}_{500} \text{ oral}} = \frac{\text{[g.a.s./bacor g product/ha]}}{\text{[fig. a.s./bee or us. product/bee]}}$$

Hazard Quotient, contact:
$$Q_{HC} = \frac{\text{maximum application n rate}}{\text{LD}_{50} \text{ contact}} = \frac{\text{g.a.s./har or g product/ker]}}{\text{lg.a.s./bee or up product/bee}}$$

The maximum label rate of Foramsulfuron + Isoxadifen-ethyl OD 45 (22) (22.5) is 2.67 L product/ha in maize (BBCH 12 -08). With the content of foramsulfaron and isoxadifen-ethyl within the formulation being 22.3 g substance/L, respectively, this accounts to a maximum application rate of 60 g foramsulfuron a /2/ha. Based on a density of 0.96 g/cp, 2.62, L product/ha corresponds to 2566 g product/ha.

Table 10.3.1- 4: Hazar Quotients for bees wall exposure

Test item	OrabLD504	Max. application rate	Hazard quotient	Trigger	A-priori acceptable risk for
	Tota product/has	Jg product/haf	Qно		adult bees
Maximum application are = 6	Q g foram@furon a.7./ha v	ia@:67 L (≈2566 g)Foramsul	furon + Isoxadi	fen-ethyl OD	45 / ha
Foramsulfuron Wech.	2 > 140 M	600	< 1	50	yes
Foramsulfaton + Isoxadifed ethyl OD 45 (22.5 + 22.5 g/L)	214.4	2566	< 12	50	yes
The hazard quotient for $Q_{HO} < 50$ ).	oral exposure is bel	w the validated trigg	er value for	higher tie	r testing (i.e.

Table 10.3.1- 5: Hazard quotients for bees – contact exposure

Test item	Contact LD ₅₀ [µg a.s./bee] /  [µg product/bee]	Max. application rate  [g a.s./ha] /  [g product/ha]	Hazard quotient	Trigger	A-priori acceptable nock for attult bees
Maximum application rate = 6	60 g foramsulfuron a.s./ha	via 2.67 L (≈2566 g) Foramsul	furon + Isoxad	ifen-ethyl OD	A3 / ha
Foramsulfuron, tech.	> 100	600		505	yes of
Foramsulfuron + Isoxadifen-ethyl OD 45 (22.5 + 22.5 g/L)	>200	2566		\$\int_{0}^{\infty} 50	Gyes C

The hazard quotient for contact exposure is below the validated trigger value for higher tier testing (i.e. Q_{HC} < 50).

Further considerations for the risk present the property of the prop

In addition to acute laboratory studies with adult honey bees for amount of was subjected to chronic laboratory testing with adult honey bees.

This chronic study was designed as a limit test by exposing adult hone bees for 10 consecutive days to a concentration of nominally 120 mg forams after on a.s./kg in aqueous singar solution. As technical foramsulfuron is - at least under certain circumstances - not readily soluble in water (e.g. 37.2 mg/L at pH 5) and because difficulties occurred by dissolving technical foramsulfuron in a pre-test, the actual test was conducted by using the formulated product Foramsulfuron WG 50. The nominal employed test concentration corresponded to about the concentration of formsultation in the spray tank of a high-volume use. No adverse lethal-, sub lethal behavioural or delayed effects were found by exposing adul hones bees for ten consecutive days exclusive to sugar solution, containing 120 ppm foramsulfuton (nominal),

In order to reveal whether formsulfuron poses a lisk to immature honey bee life stages, a bee brood feeding study has been conducted by following the provisions/method of

(QEPP/PPPO Billetin 22:613616 (1992)), which require, amongst other parameters to "...use formalited products only". products are fed at a concentration recommended for high-volume of e..." The boney bee broad feeding test is a worst-case screening test, by feeding the honey bees directly in the hive with a reated sugar solution which contains the test substance at a concentration typically present in the pray lank (and as such at a very high concentration) and by investigating the development of eggs, young so old larvae by employing digital photo imaging technology.

This particular study was conducted in June 2012 by mixing formulated foramsulfuron via Foramsulfuror WG 50 (together with formulated safener cyprosulfamide, as Cyprosulfamide SC 500), and the tested concentration corresponded to about the concentration of foramsulfuron in the spray tank of whigh bolume use. The actual test concentration of foramsulfuron was 100 mg/L. The administration of 1 large sugar solution per colony, containing 100 ppm foramsulfuron, resulted in a slightly, but statistically significantly increased termination rate of young and old larvae. No adverse effects on the survival of adult bees and pupae, behaviour, colony strength, condition of the colonies, colony development, brood index and brood compensation index was observed. The observed slightly elevated termination rate of larvae - if at all test item related - was in absolute terms low and as such biologically not relevant.



Nonetheless, in order to clarify whether the observations in the honey bee brood feeding study are due to natural variability or test-item related, foramsulfuron was subjected to *in-vitro* larval testing. The study was conducted in June 2013 by following the OECD Draft Test Guideline on Honey Bee (Apisomellifera) Larval Toxicity Test, Single Exposure (Version of 21 February 2013) and the current draft version of the Post-WNT25 Approved Larval Honey Bee Test, dated April 2013, which is the Draft-version of the OECD 237-guideline (Adopted: 26 July 2013).

The *in-vitro* larvae study was conducted with Foramsulfuron WG 50, as technical foramsulfuron was not well soluble in water. The potential effects on larval development were investigated and level of 100 µg a.s./larva, i.e. the (highest) dose recommended for a limit test. In order to achieve this dose, the foramsulfuron concentration in the larval diet was about 3000 ppin. No adverse effects on mortality were observed. The mortality in both, in the control and in the foramsulfuron treatment group was max. 2.1%, respectively; the toxic reference treatment resulted in at least 89.6% larval mortality.

Based on these findings, the observations in the hone bee brood feeding study are rather to be attributed to natural variability than being test-item related.

In parallel to the *in-vitro* larval test a higher tier semi-field honey bee brood study according to the provisions of the OECD Guidance Document 75 was conducted in June July 2013 under forced/confined exposure conditions, by applying the machinum rate (268 Ly of Foramsulfuron + Isoxadifen-ethyl OD 45 (22.5 + 22.5 g/L) under tunnel conditions to the full flowering and highly bee attractive surrogate crop *Phacelia anacetyolia*.

The test was designed as a replicated tunnel study to assess potential effects of formsulfuron to honey bee colonies, including a very detailed assessment of broad development. Tunnels (20 m length x 5.5 m width x 2.5 m height) were set up on a ca. 75 m² plot of *Phacelia* (2 x 36 m²). Small bee colonies were introduced to the tonnels of days before the application. One honey bee colony was used per tunnel. The test frem, water and a reference frem was applied during honey bees actively foraging on the crop. The test item, treatment (Insepar, 250 g/kg, fenoxycarb), respectively. The confined exposure phase of the honey bees inside the treated crop was 4 days following the test item application. At the end of the 4th day after application, due to the herbicide mode of action of the test item, the *Phacelia* crop was no longer attractive to bees (faded) and did not longer support the confined colonies. Thus, all bee colonies it e. the colonies from the test item, the water and the reference item group, respectively, were clocated after 4 complete days of confined exposure from their respective tunnels and placed in an area with no main flowering, bee attractive crops.

The test item was applied under optimum foraging conditions. After foliar (spray) application of the water (control), test item (Foramsulfuron & Isoxad fen-ethyl OD 45 (22.5 + 22.5 g/L) and the reference item (fenoxycarb), ontogenesis of a defined number of honey bee eggs was observed for each group and colony. Mortality of adult bees and pupae larvae as well as foraging activity of the adult bees was also assessed. The condition of the colonies was assessed in regular intervals until the end of the trial. Ontogenesis of the brees from egg to adult workers was observed for a period of 22 days (i.e. one complete honey bee brood cycle). This was done one day before the application by taking out a brood comb and taking a digital picture of the brood comb. After saving the file on a computer, 220 - 270 eggs for colony were marked at this first brood area fixing day BFD0 (BFD = Brood Area Fixing Day). For each subsequent brood assessment (BFDn), again, the respective comb was taken out of the hive and another digital photo was taken in order to investigate the progress of the brood development until day 21 following the application (BFD22 following BFD0). Statistical evaluation was done for mortality, foraging activity, colony strength and the brood termination rate using Shapiro-Wilk's test



(check for normal distribution), Levene's test (check for homogeneity of variance), Student or Welch t- test (pairwise comparison).

No adverse effects on mortality of worker or pupae, foraging activity, behaviour, nectar- and bolleno storage as well as on queen survival were observed. No effects on colony development colony strength or bee brood were observed. Based on the results of this study, we can be concluded that Foramsulfuron + isoxadifen-ethyl OD 45 (22.5+22.5 g/L) does not adversely affect hovey bees and honey bee brood when applied at a rate of 2.68 L product/ha (corresponding to 60 g) for a rate of 2.68 L a.s./ha), during honey bees actively foraging on a bee-attractive, flowering crop. The observed, characteristic brood effects of the reference item Insegar (a.s. fenox carb) in terms of typicality time. of occurrence and extent, showed that the prevailing test conditions allowed for a profound detection of effects on immature honey bee life stages.

Synopsis

The calculated Hazard Quotients for foremsulfuron are well-below the validated trigger value which would indicate the need for a refined risk assessment no adverse effects on hone bee mortality are to be expected. This conclusion is confirmed by the results of the hee brood feeding study as well as by the results of the semi-field study which covered the maximum application rates of 60 g foramsulfuron a.s./ha.

Regarding potential side effects of foramsulfuron on immature toney bee life stages the conducted (t, al., 1992) found a slightly, but statistically significantly increased bee brood feeding study ( termination rate of young and old larvae, as the observed slightly elevated termination rate of larvae was in absolute terms low; this observation if at M test tem related - was as such biologically not relevant. The bee brood feeding study further did not reveal adverse offects on the survival of adult bees and pupae, behaviour, colony strength, colony development as well as the condition of the colonies. Nonetheress, to clarify whether the observations in the one of the brood feeding study are due to natural Pariability or test-item related, foramsulfuron was subjected to in-vitro larval testing. The potential effects on larval development were investigated at a level of 100 µg a.s./larva, i.e. the (highest) dose recommended for a limit test and revealed to adverse effects on larval mortality: the performance of the test item groups was identical in the control group whereas the toxic reference performance was fully in line with the guideline specification. Based on the findings of the in-vitro larvae study, the bservations of the boney bee brood feeding study are rather to be attributed to natural variability than being the related (intrasic).

In parallel, for amsulfaron was subjected to confined semi-field testing (according to the provisions of OECD Guidance Document No 75) by applying the maximum rate of Foramsulfuron + Isoxadifenethyl OD 45 (i.e. 2.68 1) to full-flowering *Phacelia* during honey bees actively foraging on the crop.

The results of this higher tier study confirmed all conclusions made above on the basis of the outcome of the lower-tiered studies, as no adverse direct or delayed effects on mortality of worker bees or pupae, foraging activity, behaviour, rectar-and pollen storage, queen survival, colony strength, colony development as well as the development of bee brood were observed, even under aggravated, forced exposure conditions and by digitally following-up in a very detailed manner the fate of individually marked bood colls (dightal photographic assessment) from egg stage until emergence.

Overall it cap be coreluded that foramsulfuron, when applied at the maximum application rate of 60 g a.s./ha even during the flowering period of potentially bee-attractive weeds inside the cropping area, does not gose an unacceptable risk to honey bees and honey bee colonies.

#### **CP 10.3.1.1** Acute toxicity to bees

### CP 10.3.1.1.1 Acute oral toxicity to bees

Report:	11.	·1999·N	1-187295-01		
Title:	Oral toxicity (LD50) to hor			30360 + AE	£122006%il
11000	flowable 22.5 + 22.5 g/L C			, (	
Report No:	C004077	Ĉħ	4	<b>4</b> /	
Document No:	<u>M-187295-01-1</u>	- V	<u> </u>	Ò	
Guidelines:	EPPO: 170; Deviation not	specified	.O¥	<b>W</b>	
GLP/GEP:	yes	4W"	Å.	ر آ	

Endpoint according to the Review Report for formsulfuron (SANCO 10324/2002-Final):  $LD_{50} \rightleftharpoons 226.3$   $\mu g/bee$ 

Report:	j; ;2013, M-465, 61-01,
Title:	Effects of foramsulation + isoxadiffer-ethy DDD 45 (22.5+22.5) G (acute contact and
	oral) on honey bee (Apis mellifer L.) in the laboratory
Report No:	/9092035
Document No:	M-465361-014 0 7 5 5 5 5
<b>Guidelines:</b>	OECD 213 and 214 (1998) none O
GLP/GEP:	

#### **Executive Summary:**

The purpose of this study was to determine the acute correct and oral toxicity of foramsulfuron + isoxadifen-ethyl OD 45/(22.5-22.5) to the hones bee (1. methyera 1.) under laboratory conditions. For this purpose fertile worker bees (Apris methyera) were exposed for 48 hours to a single dose of 200.0 µg product bee by topical application (contact limit test) and to a single dose of 214.4 µg product/bee by teeding (oral limit test, value based on the actual intake of the test item). Mortality of the bees was used as the toxic endpoint. Subletilal effects, such as Changes in behaviour, were also assessed.

The contact LD₅₀ (48 h) was > 200.0 µg product/bee. The oral LD₅₀ (48 h) was > 214.4 µg product/bee.

# Material and methods

Test item. For msulturon disoxadifen ethyl OD 45 (22.5+22.5) G; Foramsulfuron (AE F130360): 2.33 % w/w, 22,41 g/L isoxadifen ethyl (AE F122006): 2.29 % w/w, 21.96 g/L, (all values analytical) Batch ID: EFKM0024422 Sample description: TOX10129-00; Material No.: 06321801; Specification No.: 102000011304-06; Workorder 3005744; density: 0.961 g/mL (20°C).

Test units were stainless steel eages of 10 cm x 8.5 cm x 5.5 cm (length x height x width). 10 bees were used per test unit. 5 test units were used per test item dose level, control and reference item dose level, respectively 30 female worker bees (*Apis mellifera*) were exposed for 48 hours to a single dose of 200.0 are product/bee by topical application (contact limit test) and 50 female worker bees (*Apis mellifera*) were exposed for 48 hours to a single dose of 214.4 µg product/bee by feeding (oral limit test, value based on the actual intake of the test item).

For the contact test a single 5  $\mu$ L droplet of foramsulfuron + isoxadifen-ethyl OD 45 (22.5+22.5) G, dissolved in tap water with 0.5 % Adhäsit, was placed on the dorsal bee thorax, likewise for the toxic reference (dimethoate) and the control (tap water). For the oral test aqueous stock solutions of the test item and reference item were prepared and mixed with ready-to-use sugar syrup (30 % sucrose, 31 %



glucose, 39 % fructose) at a concentration of 50 % (w/w). For the control, tap water and sugar syrup was used at the same ratio 50% (w/w) tap water, 50% (w/w) ready-to-use sugar syrup. The treated food was offered in syringes, which were weighed before and after introduction into the cages. After a maximum 55 minutes, the uptake was complete and the syringes containing the treated food were removed, weighed and replaced by ones containing fresh, untreated food.

The number of dead bees was determined after 4 (± 0.5 h) hours (first day); 24 and 48 (£ 2 h) hours (\$\frac{1}{2}\$) Behavioural abnormalities (e.g. vomiting, apathy, intensive cleaning) were assessed after 4 \(\pm\) 0.5 \(\ph\) Dates of experimental work: May 14, 2013 – May 23, 2013 contact and oral limit test) by Validity Criteria:

Table 10.3.1.1.1-1: Validity criteria:

Validity Criteria hours (first day), 24 and 48 (± 2 h) hours. Temperature during the test was 24 25 %; relative

Validity Criteria	Recommended S Obtained &
Control Mortality	CO2/water control  Organ Test  Water sugar syrup control  Organ Test  One of Test
LD ₅₀ of Reference Inom (24-th)	Сорбаст Тем   Ота Тем    Ота Тем    Ота Тем    Ота Тем    Ота Тем    Ота Тем    Ота Тем    Ота Тем    Ота Тем    Ота Тем    Ота Тем    Ота Тем    Ота Тем     Ота Тем     Ота Тем     Ота Тем     Ота Тем     Ота Тем      Ота Тем      Ота Тем       Ота Тем

All validity criteria for the study were onet

Biological results:

Contact test:

At the end of the contact oxicity test (48 hours after application), there was 2.0 % mortality at 200.0 μg product/bee. No mortality recurred in the control group (water + 0.5 % Adhäsit). After the first 4 hours one single beaut the 200.0 pe/bee lose level showed cramp (before dying). During 24 and 48 hours after application one single bee in the test item treated group was apathetic.

#### Oral test:

In the oral toxicity test, the maximum reminal test level of foramsulfuron + isoxadifen-ethyl OD 45 (22.5+22 A) G (i 2 200 @g product/bee) corresponded to an actual intake of 214.4 μg product/bee. This dose level led to 2.03% mortality after 48 hours. No mortality occurred in the control group (50 % aqueous sugar syrup solution). No test item induced behavioural effects were observed at any time in the oral toxicity test.

Table 10.3.1.1.1-2: Toxicity to honey bees; laboratory tests

T I.	F 16 +: 10 41 10D 45 (22 5 122 5) G
Test Item	Foramsulfuron + isoxadifen-ethyl OD 45 (22 5+22 5) G



Test Object	Apis mellifera			
Exposure	contact (solution in Adhäsit (0.5 %)/water)	oral (sugar syrup solution)		
Application rate μg product/bee	200.0	214.4		
LD ₅₀ μg product/bee	> 200.0	> 214.4		
LD ₂₀ μg product /bee	> 200.0	> 214.40		
LD ₁₀ μg product /bee	> 200.0	> 2144		
NOED μg product /bee*	≥ 200.0			

^{*} The NOED was estimated using Fisher Exact Test (pairwise comparison one-sided greater,  $\alpha = 0.05$ ).

The contact and oral LD₅₀ (24 h) values of the reference item dimethoate) were calculated to be 0.19 and  $0.13 \,\mu g$  a.si./bee, respectively.

#### **Conclusions:**

The toxicity of foramsulfuron + isoxactifen ethyl QD 45 (22.5+22.5) G was toxical in both, an acute contact and an acute oral toxicity teston hopey bees.

The contact LD₅₀ (48 h) was 200,0 μg product/bee. The oran LD₅₀ (48 h) was 214.4 μg product/bee.

### CP 10.3.1.1.2 Acute contact to acity to bees

Report:	d; (1999,M-1872)3-01
Title:	Contact toxo (1400) to honey (25 (Apo mellifera L.) AE F130360 + AE F122006
Title:	Contact toxic ty (I-000) to honey be s (Apr. mellifera L.) AE F130360 + AE F122006 oi Diowahi 22.5 22.5 22.5 22.6 AE F 30360 1 1KQ A301
Report No:	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Document No	M-18/293-019  EPPO: 17/60 aviotion not recitive
Guidelines	ETTO. 1700 Deviation no specifica
GLP/GEP	

Endpoint according to the Review Report or foramsulturon (SANCO/10324/2002-Final):

Report:	;2 <b>,9</b> 23;M-465361-01
Title:	Effects of orangulfuron isoxadifen-ethyl OD 45 (22.5+22.5) G (acute contact and
	Softal) on Stoney bees (Apris me Livera L.) in the laboratory
Report, No:	\$\frac{7}{7909}2035
Document No:	M_265361291-1 Q
Guidelines:	OECD 213 and@14 (1998);none
GLP/GEP:	Typo & A

The study is summarised in KCP 10.3.1.1.1/02. The endpoint from this study is:

 $\bigcirc$ 8 h-LD₅₀-contact > 200.0 µg product/bee

48 h-LD₅₀-oral > 214.4 µg product/bee

### CP 10.3.1. Chronic oxicity to bees

A 10 day chronic oral toxicity study was conducted with Foramsulfuron WG 50, the corresponding summary is filed under KCA, point 8.3.1.2/01.

#### **CP 10.3.1.3** Effects on honey bee development and other honey bee life stages

A honey bee brood feeding study was conducted with Foramsulfuron WG 50, the corresponding summary is filed under KCA, point 8.3.1.3/02.

#### **CP 10.3.1.4 Sub-lethal effects**

There is no particular study design / test guideline to assess "sub-tethal effects in honey be so However, in each laboratory study as well as in any higher-tier study sub-lethal effects, poccurring are described and reported.

#### **CP 10.3.1.5** Cage and tunnel tests

A honey bee tunnel study to assess potential effects of foremsulfuson to be colonies, including a very detailed assessment of brood development with FSN+ IDF OD 45 was conducted the corresponding summary is filed under KCA, point 8.3 2/2/03

#### CP 10.3.1.6 Field tests with horeybees

Not necessary when considering the outcome of the task assessment and the results of the lower-tiered studies.

# CP 10.3.2 Effects on non-target arthropod other than bees

Toxicity tests on non-target arthropods were conducted with FSN + IDF OD 45 on the sensitive standard species *Diphlotromus pyri* and *Aphidius ripopalosiphi*. In addition, tests on further species are available (*Grysoporla carnea*, *Meochara bilineata*, *Poecillo cupreus*, *Pardosa* sp.). A summary of the results is provided in Table 10.3.2-1.

Table 16.3.2-1: FSN + DF QD 45: Ecotoxicological endpoints for arthropods other than bees

Test species,	Tested Formulation, study	Ecotoxicological End	lpoint
Test species, Dossier-file-No.	type, sposure		
Reference			
Typhlodromus@yri 💍	FST + IDF OD 45	$LR_{50} > 2670 \text{ mL prod}$	./ha
M-457360-01-1	Orboratory, glass plate	Corr. M	Iortality [%]
Rep.No: 13 10 48 031 A	l 2607 mLppgod./hat√y ,≪		1.0
<b>20</b> 13	45 mL prod./ha		5.1
	844 ps prodona		38.8
	\$150 pmL pro@/ha		36.7
	2670 mL prod./ha		48.0
Typhlodromus pyri 🔬 🐧	FSN# IDF OD 45 Q		
M-191384-01	Laboratory, glass plate	Corr. Mortality [%]	Effect on Reproduction [%]
Rep.No: CW 99/003	↓○ 26,7mL prod./ha	-8.5 ^A	-0.8 ^B
, 19 <b>99</b>	2667 mL prod.∕ha	53	33.9
Typhlodromus pri	FSN+ IDF OD 45	$LR_{50} > 4000 \text{ mL prod}$	./ha
Typhlodromus Sri M-192822-0161	Extended lab., exposure on		
Rep No: CW99/092	atetached <i>Polygonum</i>		
, 1999	convolvulus leaves	Corr. Mortality [%]	Effect on Reproduction [%]
	2000 mL prod./ha	-1.3 ^A	9.4
	4000 mL prod./ha	20.0	-10.4 ^B



Test species,	Tested Formulation, study	Ecotoxicological Endpoint
Dossier-file-No.	type, exposure	
Reference	J.P.J. Carposare	LR ₅₀ 241 mL prod./ha Corr. Mortalia [%]  7.5  50.0  57.5  61.5  90  100  100
Aphidius rhopalosiphi	FSN + IDF OD 45	LR ₅₀ 241 mL prod./ha
M-461455-01-1	Laboratory, glass plate	Corr. Mortality [%]
Rep.No: 13 10 48 030 A	2 nd test run:	
, 2013	35 mL prod./ha	a S S
, = 0.13	62 mL prod./ha	
	111 mL prod./ha	
	197 mL prod./ha	Q 50.0 Q Q X
	350 mL prod./ha	57.5 × 57.5
	1 st test run:	61.5 %
	267 mL prod./ha	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	475 mL prod./ha	61.5 Q 896 900 700 100 100 7
	844 mL prod./ha	
	1501 mL prod./ha 2670 mL prod./ha	
	2670 mL prod./ha, 🧳	
Aphidius rhopalosiphi	FSN + IDF OD 45	
M-191908-01-1	Laboratory, glass plate y	## 100
Rep.No: 991048029	160 mL prod./hr	
, 1999	2000 m. √prod./f@r 🌂 🔭 🔭 🤠	100 × 5 × 5n.a. ×
	4000 m² pro <b>ð</b> /ha 💪	© 100% O O n.a. ♥
Aphidius rhopalosiphi	FSN + ODF QD 45	LR ₅₀ 2670 no prod ha
<u>M-198973-01-1</u>	Aged residues, spray deposits	
Rep.No: 001048067	on potted maize plants	OCorr. Freeton Repellency
, 2000	LOV/ mL prod./hob	Repellency & S
	Residues aged for days:	Mortality [%] Repr. [%] \$30 min) [%] (2h) [%
	Residues aged for 3 days	$\begin{bmatrix} 39 \\ 6 \end{bmatrix} $
Q ^y	Residues aged for 7 days:	0 2 7 -7 ° 6 0 0 5 11 -24 0 0 0 13 6 0 0 -6 B 5 -13 0 3 5 21 0 7 6 -12 ° 7 -2 B 5 -4 °
Ş.	3000 ml prod. In	0 0 4 -3 0 11 -24
	Residues aged for days	
	Besidue aged for 3 days.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Residues aged for 7 days:	5 6 70 0 0 0 13 6 0 0 -6 B 5 -13
		0 -6 B 5 -13
	Residues aged for 0 days	
	Residues aged for 3 days.	$\begin{bmatrix} & & & & & & & \\ & & & & & & \\ & & & & $
<b>\$</b>	Residues aged for 7 days:	6 -12 ^C 7
Chrysoperla carneă	FSN SIDF OF 45	LR ₅ 4000 mL prod./ha
M-194627-01-1	Laboratory glass plate	
Rep.No: 991048098	Control 160 miles 160 mile	Orr. Mortality [%] Eggs/Female/DayHatching [%
, <b>2,90</b> 0	1 gg/IIIL phoru./IIa~	- 17.8 81.3
	2600 mL prod./ha	13 15.7 81.7
. U	4000 ml prod fra	2 15.0 80.8
	Way Grands	35 15.4 81.7
Aleochara bilineata	FSN + FDF OD 45	$ER_{50} > 4000 \text{ mL prod./ha}$
M-193482-01-1	Laboratory Spray deposits on	ECC 4 D 1 4' F0/1
Rep.No: 991048095	quartz sand	Effect on Reproduction [%]
, 1959	1600mL prod./ha	0
	2000 mL prod./ha	10
D :18 0 0 0	→ 000 mL prod./ha	15
Poecillus cupredis	FSN + IDF OD 45	$LR_{50} > 5333 \text{ mL prod./ha}$
M-186968-00-1	Laboratory, spray deposits on	C M
Rep. No: 6 W 98/112	quartz sand	Corr. Mortality [%] Effect on Feeding Rate [%] -22.5 D
1000		11150
, 1999	2667 mL prod./ha 5333 mL prod./ha	0 -22.5 b 0 -12.4 b



Test species, Dossier-file-No. Reference	Tested Formulation, study type, exposure	Ecotoxicological End	lpoint	, , , , , , , , , , , , , , , , , , ,
Pardosa sp.	FSN + IDF OD 45	$LR_{50} > 4000 \text{ mL prod}$	./ha 🔪	
<u>M-188675-01-1</u>	Laboratory, spray deposits on			
Rep.No: 991048030	quartz sand	Corr. Mortality [%]	Effect on Feedir	ng Kate 🐼
, 1999	160 mL prod./ha	0	4 8 6	
	2000 mL prod./ha	5	√ y  3 √	
	4000 mL prod./ha		′ ××	

A: A negative value indicates a lower mortality in the treatment than in the control

n.a.: not assessed

#### Risk assessment procedures

The risk assessment was performed according to the Guidance Document on Torestrike Ecotoxicology (SANCO/10329/2002) and to the Guidance Document on regulatory testing and risk assessment (ESCORO 2, Candolfi et al. procedures for plant protection products with non-target enthropods  $2000^4$ ).

### In-field hazard quotient (HQ) tier 1 risk assessment

The following equation was used to calculate the hazard

#### Use pattern:

Please note that for the risk assessment on non-target arthropods, the worst-case application rate of 1 x 2.6 L product/hathas been taken into account. This use pattern is considered to cover also the multiple applications as goven in the intended use pattern for this product (2 x 1.3 L product/ha; see Table 10-

FSN + IDF OD 45 is intended to be applied once with an application rate of 2.6 L product/ha. Therefore, the multiple application factor (MAF) was set at 1.0. Resulting HQ values are presented in The risk is considered acceptable if the calculated HO is < 2.

et al.: Guidance document on regulatory testing and risk assessment procedures for plant protection products with non-target arthropods; ESCORT 2 workshop (European Standard Characteristics Of Non-Target Arthropod Regulatory Testing), Wageningen, NL, March 21-23, 2000, SETAC Europe; SETAC publication August 2001

C: A negative value indicates a higher reproduction rate in the treatment than in the control.

D: A negative value indicates a higher percentage of wasps found on plants in the treatment than in the control.

D: A negative value indicates a higher feeding rate in the featment than in the control. prod.: product

Table 10.3.2- 2: HQ for terrestrial non-target arthropods for the in-field scenario

Crop	Species	Appl. rate [mL product/ha]	MAF	LR ₅₀ [mL product/ha]	HQ	Trigger
	T. pyri			> 2670	<b>\$1</b> \$6	2 2
Maize	A. rhopalosiphi	2600	1	241	10.8	\$ \$

The in-field HQ value for *Typhlodromus pyri* is below the trigger of concern. However the in-field HQ value for *Aphidius rhopalosiphi* is above the trigger of 2, indicating a need for refinement.

#### In-field tier 2 risk assessment:

The risk is considered acceptable if effects on morality and reproduction are 50% at the in-field PEC_{max} (application rate x MAF).

Table 10.3.2-4: Tier 2 in-field risk assessment (based on study vesults from extended aboratory studies with the standard species *Typhodromus pyn* and *Apridius riopalosiphi* and laboratory studies with additional species)

Test Species	in-field PEC max [mL product/ha]	LR50/ER50 [mL/ha]	Risk acceptable of:	Refined assessment required?
Aphidius rhopalosiphi	2500	£ >2670 <b>.</b> ≪	Effects are \$50%	no
Typhlodromus pyri	2600	©″>4 <b>6</b> 000 ⟨⟨	Effects are 50%	no
Chrysoperla carnea		\$#000 <b>©</b>	Effects are < 50%	no
Aleochara bilineata 💇 🔒	2600	>400 <b>@</b> ,	Effects are < 50%	no
Poecilus cupreus S	2600	>5393	Effects are < 50%	no
Pardosa sp.	% 2600 Y	√y >4 <b>0</b> 00 √	Effects are < 50%	no

An extended laboratory aged residue study has been performed on Aphidius rhopalosiphi (2000; 198973-01-1). In this study, FSN + DF OD 45, was applied on potted maize plants. Bioassays with freshly dried residues and residues aged for 3 and 7 days resulted in a corrected mortality of 0%, 5% and 0%, respectively, at a rate of 2679 mL product/ha. Effects on reproduction were < 7% in all bioassays. At the highest tested rate of 2670 mL product/ha no repellent effects of the test item were observed. This study indicates that no unacceptable effects on mortality or reproduction of Aphidius rhopalosiphi are to be expected, even directly after application.

The extended laboratory study with *Typhlodromus pyri* ( 1999; M-192822-01-1) resulted in 20% corrected mortality at a fate of 4000 mL product/ha and a higher reproduction rate than in the control, confirming the results of the tier 1 assessment and showing that no adverse effects on reproduction of *Typhlodromus pyr* are to be expected.

Further tests on additional arthropoid species resulted in  $LR_{50}$  and  $ER_{50}$  values above the intended application are of 2600 product/harriese Tables 10.3.2-1 and 10.3.2-4 above).

It can be concluded that no unacceptable in-field risk for non-target arthropods has to be expected from the one of FSN + IDF OD 45 according to the proposed use pattern.

#### Off-field hazard quotient (HQ) tier 1 risk assessment

The following equation was used to calculate the hazard quotient (HQ) for the off-field scenario:

### Off-field HQ = max. single application rate * MAF * (drift factor/VDF)*correction factor

MAF (multiple application factor) = 1 (single application)

Drift factor = 0.0277 (90th percentile for 1 application in field crops, 1m distance; SCOF VDF (vegetation distribution factor ) = 10

Correction factor = 10 (uncertainty factor for the extrapolation from indicator species to other off-field non-target arthropods; default value for tier 1 risk assessment according to the Terrestrial Guidance Document)

The risk is considered acceptable if the calculated HQ is < 2.

Table 10.3.2-3: HQ for terrestrial non-target arthropods for the off-field scenario.

Table 10.3.2-3: HQ for terrestrial non-target arthropods for the officeld scenario

Crop	Species	Appl. rate MAF Prift WDF Corp. 1R50 HQ Trigger mL [%]   factor   mL   mL   mL   mL   mL   mL   mL   m
		Appl. rate   WAr   WDr   Correct   CRS   HQ   Irigger
		product/hap*  😽   🏈   🎺   🍿   aroductha    🖉   🖟
Main	T. pyri	2 10 5 10 5 670 5 0.03 2
Maize	A. rhopalosiphi	2600 1 2.77 241 0.3 2

The calculated HQ values are below the trigger of concern indicating that no macceptable risk is to be expected for non-target arthropods in the off-field area from the use of FSN + IDF OD 45 according to the proposed use pattern. «

Standard kaboratory testing for non-target arthropods

((/)	
Report:	gr, :1999;M. \$\forall 1908. \text{\text{91}}
Title:	a ovicitation the Gracitoid Anhious rhandlesia (Destatani Paraz) / adults under
. ,	Dahora bry condition of coording to WORC Gaidelines (1992/1997) Code:
	A F F 1303 6 0 1 1 2 5 A 3 6 0
Report No:	
Document No Consideration Guidelines:	<u>OX-197908-01-</u> O O O
Guidelines:	
GLP/GEP	yes Q A V

£0%*		<b>W</b>	~~~	
Report:		*.		;1999;M-191384-01
Titk	Tox	Wity to the pre-	tory no	(3.1999,M-191384-01)  We <i>Typhlodromus pyri</i> SCHEUTEN (Acari, Phytoseiidae)  360 + AE F122006 oil flowable 22.5 + 22.5 g/L Code: AE
,	in't	he lab@atory_AE	F1 <b>3</b> 036	360 + AE F122006 oil flowable 22.5 + 22.5 g/L Code: AE
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )	₹ K13	03 <b>6</b> 0 01 14 <b>0</b> 5 A	.3 <b>Q</b> "	
Report No: Q	C00		7)	
Document o:		<u>)91384401-1</u> 🍳	Ĭ	
Guidelines:	Der	viatien not speci	fied	
GLP/GEP:	₄∫yes	Ş		



Report:	k; ;1999;M-188675-01
Title:	Toxicity to the ground dwelling predator <i>Pardosa</i> spp. (laboratory) according to IQUC
	Guideline ( et al. 1998) Code: AE F130360 01 1K05 A304
Report No:	C004831
Document No:	<u>M-188675-01-1</u>
Guidelines:	IOBC: Wehling et al. 1998;Deviation not specified
GLP/GEP:	yes A O S
Report:	t; \$\frac{7}{8}999;M-1869\&-01 \\ \tag{9}  \tag{9}
Title:	Toxicity to the ground dwelling produtor <i>Poecilus Opreus</i> L. (Coepptera Parabiche) in the laboratory AE F130360 + & F122006 oil bowable 22.5 © 22.5 g/b Code AE F130360 01 1K05 A301
	in the laboratory AE F130360 + & F122006 oil wowable 22.5 O22.5 g/B Code OAE
Report No:	C003899 Q Y V Q Q
Document No:	<u>M-186968-01-1</u> & & o o o o o o o o o o o o o o o o o
Guidelines:	BBA: VI 23-2.1.8; Devia On no Opecified
GLP/GEP:	yes 1 0 Q O O O O
Report:	g; 199 <b>Q</b> ;M-1,95,482-0 0
Title:	Toxicity to the Qund Welling redator Aleoghera bilineata & II. (law ratory)
	according to LOBC Godeline to Local 1987 Code PAE F 5036009 1K05
	A304 Q & & & & & & & & & & & & & & & & & &
Report No:	C006202@ \\ \" \\ \" \\ \\ \\ \\ \\ \\ \\ \\ \\
Document No:	M-1934\$2-01-1
Guidelines:	IOBC: More & Noon, 1372; Devation not specified
GLP/GEP:	
Report:	6: \$\infty 000:M=\text{9462}\tilde{0}1 \times \text{\$\psi}\$
Title:	Toxicity to the foliage dwelling produtor Chrysoperla carnea STEPH. (laboratory)
	fold wing the IOBO Guideline ( 20088), Angtest Gethod ( 2008 et al. 1997)
	and OECD Guideline proposal detal. 1999) Cate: AE F130360 01 1K05 A304
Report No:	2C0067 <b>0</b> 1 O & & & &
Document Ino.	
Guidelines	ICAC: 198; 197; Deviation not specifed
GLP/CEP:	
* 1/2	
Report:	(5) ;2000;M-194770-01
Title:	Firective of the herbicide AE F130366 on entomology screening species
Report No:	00006863 . 0 0 0
Document No	M-1 0770 0 1 Deviation of specified Q
Guideline	M-JQ770-69-1  Deviation of specified Q
GLP/GF	

This last study was in the baseline dossion and has been included here for completeness; however please note that this study is not relevant for this data point.

Report:	;2013;M-457360-01
Title:	Effects of foramsulfuron + isoxadifen-ethyl OD 45 (22.5+22.5 g/L) on the predatory
	mite <i>Tophlodromus pyri</i> SCHEUTEN in a laboratory test
Report No: @	13,19,48 031 A
Document No:	M\$\frac{357360-01-1}{57360-01-1}
Guidelines:	IOBC (BLUEMEL et al. 2000);none
GLP/GEP:	yes

#### **Executive Summary:**

The purpose of this study was to determine a rate-response relationship for mortality of the predatory mite *Typhlodromus pyri* SCHEUTEN in a worst-case laboratory test. Mites were exposed on glass plates to application rates of 267, 475, 844, 1501 and 2670 ml product/ha in 200 L deionized water/ha and effects on mortality were compared to those of deionized water treated controls 200 C/ha). Dimethoate (applied at 15 mL product/ha, nominally equivalent to 6 g a.s./ha, in 200 L deionized water/ha) was used as reference item. Survival of the predatory mites was used as test endpoint with the aim to calculate the LR₅₀ if possible. The test was performed according to the IOBC Gardeline (and the calculate of a reproduction assessment. The LR₅₀ for *Typhlodromus pyri* was estimated to be 2670 mL product/ha in 200 L water/ha, the highest rate tested. All validity, criteria according to the guideline were met.

#### **Materials and Methods:**

Test item. Foramsulfuron + Isoxadifen ethyl OD 45 22.5+27.5 g/J9; analysed agrive ingredients: 2.33 % w/w (22.41 g/L) foramsulfuron QAE 130360, 2.29 % w/w (21.96 g/L9 isoxadifen ethyl (AE F122006); Specification No.: 102000011304-06; Batch ID EFK M002442, Sample description: TOX10129-00, Material No.: 06321804, Density: 0.901 g/m/ (according to Certificate of Analysis).

The test item was tested under laboratory conditions after contact exposure of protonymphs of the predatory mite *Typhlodromus pyri* SCHEUTEN to dried spray residues of the test item with rates of 267 – 475 – 844 – 1501 – 2670 mt. product/ha in 2000 L deionised water/ha applied on glass plates. The control was treated with deionised water (2000 L/ha). Dimethoat EC 400 (15 mL product/ha, nominally equivalent to 6 g a.s./ha; in 2000 L deionised water/ha) was used as a toxic reference item. Protonymphs of the predatory mite *Typhlodromus pyri* SCHEUTEN were exposed in 5 replicates per treatment group and 20 mites per replicates to the residues of the test item, reference item and control treatments, respectively. During the assessments the intes were fed with a mix of pine (*Pinus nigra*) and birch *Betula pendula*) potten, 1:4. The number of surviving, dead, trapped and escaped predatory mites was recorded over a period of 7 days. From these data the endpoint mortality was calculated.

Toxic standard: (Dimethoate 15, 400), 15 mil product/ha Giominally equivalent to 6 g a.s./ha) in 200 L/ha of deioni@d water, control: defenise@water only (200 L/ha).

Dates of work: May 25 2013 May 28, 200

Results:

Table 10.3.2.1-1; Walidity criteria

Validity criteria	<b>V</b>
Mortality in the control group	$\leq 20 \%$ (dead, trapped and escaped mites) on day 7
Corrected mortality in the reference group	50 – 100 % on day 7

All validity criteria were met.

The results of the control group indicated that the test organisms were in a good condition (mortality: 2.0 %). The results of the reference item group indicated that the test system was sensitive to harmful



substances (corrected mortality: 85.7 %). Concerning mortality in the control group and as well the susceptibility of the test organisms to the reference item the study is proved to be valid.

After 7 days, the mortality in the test item treatments ranged between 3.0 % and 49.0 % in comparison to 2.0 % in the control. Based on these results the corrected mortality for the different rates ranged between 1.0 % and 48.0 %. The LR₅₀ for Foramsulfuron + Isoxadifen-ethy OD 45 (2) was estimated to be > 2670 mL product/ha in 200 L water/ha.

Table 10.3.2.1-2: Effects on mortality of Typhlodromus pyri Scheuten

Test item	Foramsulfuron + Isoxadifen-ethyl OD 45 (22,5 + 22.5 g/L)
Test organism	Byphlodromus pyri ScyleutenQ' O' a gy
Exposure on	
Treatment	Mortality ² [%] Corrected mortality ³ [%]
Control	
Application rate ¹	
[mL product/ha]	
267	
475	7.0 (ms.) 5 5.1 5
844	7.0 (hs.) 7.0 (h
1501	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
2670	49.0* 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
$LR_{50}$	>2670 mL product/ha
Reference item	
	86.0* \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
150 mL product/ha 🍇	
1 Application rate in 2600 I	was the state of t

¹ Application rate in 200 L water/ha

No unusual observations regarding behaviour were noted on the control and the test item treatment groups at any observation point during the tes

#### Conclusions:

In a worst-case laboratory study with Foramsulforon + Isoxadifen-ethyl OD 45 (22.5+22.5 g/L) the LR₅₆ for Typhlodromus provious estimated to be 2670 mL product/ha in 200 L water/ha, the highest rate tested.

Report:	3; ;2013;M-461455-01
Title:	Effects of Feramsulturon + isoxadifen-ethyl OD 45 (22.5+22.5 g/L) on the parasitic
	wasp Apoidius rhopalosiphi (DESTEFANI-PEREZ) in a laboratory test
Report No:	13 10 48 030 A
Document No:	<u>M-461455-01-1</u>
Guidelines:	IOBC (MEAD-BRIGGS et al. 2000);none
GLP/GP:	yes

² Mortality after exposure to residue on treated glass plates. The results for mortality in individual treatments were compared to that in the control using Fisher & Exact Binomial test of = 0.05%.

³ Corrected mortality according to

⁽n.s.) not statistically significantly different compared to the control Fisher Exact Binomial test with Bonferroni correction  $(\alpha = 0.05)$ 

^{*} statistically significantly different compared to the control: Figher's Exact Binomial test with Bonferroni correction ( $\alpha = 0.05$ ) for test from and Fisher's Exact Binomial test ( $\alpha = 0.05$ ) for reference item



#### **Executive Summary:**

The purpose of this study was to determine a rate-response relationship for mortality of the parasitic wasp *Aphidius rhopalosiphi* (DESTEFANI-PEREZ) in a laboratory test. Adult wasps (used within 48 hours after hatching, 4 x 7 females and 4 x 3 males for the control groups and the treatment groups) were exposed to control (deionised water) and dried spray residues of the test item with rates of 267, 475, 844, 1501 and 2670 mL product/ha (1st test run) and 35, 62, 111, 197 and 350 mL product/ha (2st run) in 200 L deionised water/ha applied on glass plates. Dimethoate EC 400 (0.3 mL product/ha in 200 L deionised water/ha) was used as a toxic reference item. Sufficient of the parasitic wasps was used as test endpoint with the aim to calculate the LR₅₀, if possible. The LR₅₀ for *Aphidius rhopalosiphi* was calculated to be 241 mL product/ha in 200 L water/habbased on the results of the parasitic wasp was and 2nd test run.

The test was performed following the IOBC (mideling) (many data and all 2000) taking account of the recommendations given by assessment.

#### **Material and Methods:**

Test item: Foramsulfuron + Isoxaoffen-ethyl OD 45 (22,5+22,5 g/L), analysed active ingredients: 2.33 % w/w (22.41 g/L) Foramsulfuron (AE F130360) and 2.29% w/w (21.96 g/L) Boxadifen-ethyl (AE F122006); Specification No. 10200011304 - 06, Batch ID, EFKM002442, Sample description: TOX10129-00, Material No.: 06321801, Lensity 0.961 g/mL (according to Certificate of Analysis)

The test item was tested under laboratory conditions after contact exposure of adults of the parasitic wasp *Aphidius rhopotosiphi* (DESOFANI PEREZI to dried spray residues of the test item with rates of 267, 475, 844, 1505 and 2670 mL product/ha (1st test can) and 35, 62, 111 @97 and 350 mL product/ha (2nd test run) in 200 L deionised water/ha applied on glass plates. The control was treated with deionised water (200 c/ha), Dimethoate EC 400 do.3 mC product/ha in 200 L deionised water/ha) was used as a toxic reference item.

Adults of the parasitic wasp whiding hopalosiph (DESTGFANI-PEREZ) were exposed in 4 replicates per treatment group and 7 females and 3 males per replicate to the residues of the test item, reference item and control treatments, respectively. During the exposure phase the adult wasps were fed with 25 % w/w aqueous fructose solution. The member of surviving, affected, moribund and dead wasps was recorded wer a period of 48 hours. From these data the endpoint mortality was calculated.

Climatic conditions: Temperature: 15 test run: 19-21°C

Relative humidity: 1st test run: 67-73%

2nd test run: 68-71%

Light – dark – cycle: 16 hours light, 8 hours dark

Dates of work: 1st test run: June 03, 2013 – June 05, 2013

2nd test run: June 24, 2013 – June 26, 2013

#### **Results:**

### Table 10.3.2.1-3: Validity criteria

Validity criteria	Recommended	Á	Obtained  1st run	Obtained 2nd run
Mortality in the control group	≤ 13 % (48 hours)	4	2.5 %	~ Q.Q3
Corrected mortality in the reference item group	> 50% ( hours)		100	100 %

et al. (2000) were met. All validity criteria according to

The results of the control group indicated that the set organisms were in a good condition (mortality) 2.5 % in the 1st test run and 0 % in the 2nd test run). The results of the reference from group indicated that the test system was sensitive to harmful sobstances (corrected frortality: 100%, both test runs). Concerning mortality in the control group and as well the susceptibility of the test organisms to the reference item the study is proved to be varid

Mortality:

1st test run

After 48 hours, the mortality in the test item treatments ranged between 62.5 item groups in comparison to 2.5 % in the control Based 12.5 item groups in comparison to 2.5 % in the control. Based on these results the corrected mortality for

2nd test run

After 48 hours, the portality in the test item treatment ranged between 0 % and 57.5 % in the test item groups in comparison to 0% in the control. Based on these results the corrected mortality for the different rates was between 0 % and 57.5 %.

Table 10.3.2.1-4: Effects on mortality of Aphidius rhopalosiphi (DESTEFANI-PEREZ)

Test item	Farameulfuron + Isovad	lifen-ethyl OD 45 (22.5+22.5 g/L)		
		lifen-ethyl OD 45 (22.5+22.5 g/L)		
Test object	Aphidius rhopalosiphi (DESTEFANI-PEREZ)  dried spray deposits on glass plate			
Exposure	uneu spray ucposits on grass prates			
Treatment	Mortality ² [%]	Corrected mortality  [%]		
Application rate ¹				
[mL product/ha]	Ö V			
1 st test run	<b>S</b>			
Control	2.5			
267	62.5*	\$\langle \tag{61.5} \tilde{\gamma} \		
475	90.0*			
844	90.0* 100* 1,000*			
1501	100*	2 100 0		
2670	\$100*	100		
2 nd test run	\$100*\frac{1}{2}			
Control	(a) (n,s,) (b)			
35	Ø (n.s.) Ø 🔊			
62	₩ ₩ U (II.S.)			
111	7.50n.s.) \$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sin\sin\sin\sin\sin\sin\sin\sin\sin\sin	\$ 7.5 Q 7.5		
197 %	50.0*	50.0		
350	57.5	\$\tag{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex		
LR ₅₀ ⁴	241 mLproduct/ha (205 – 269 mL product/ha)			
[95 % CL] ⁵	[206 – 269 mL product/ha]			
Reference item	The second secon	100		
Dimethoate & 400		100		
0.3 mL product/ha				
(1st and 2nd test run)	r/ha.			

Application rate in 200 L water/ha

No unusual observations were control and all test item treatment groups at any observation point during the te

### Conclusions &

In a worst-case laboratory study with Foramsulfuron + Isoxadifen-ethyl OD 45 (22.5+22.5 g/L) the LR₅₀ for Aphidius hopalosiphi was calculated to be 241 mL product/ha in 200 L water/ha based on the results of the 1st and 2nd test run

All validity coveria according to et al. (2000) were met.

² Mortality after exposure to residue on treated glass plates. The results for mortality in individual treatments were compared to that in the control using Fisher's Exact Binomial test ( $\alpha = 0.05$ ).

³ Corrected mortality according to

⁴ LR₅₀ = lethal rate of or 1st and 2nd test fin
⁵ 95 % CL means lower and upper 95% confidence limits
(n.s.) not statistically significantly different compared to the control

^{*} statistically significantly different compared to the control

# CP 10.3.2.2 Extended laboratory testing, aged residue studies with non-target arthropods

Report:	h;	;1999;M-192	2822-01		
Title:	Toxicity to the predatory mite	Typhlodromus pyr	i SCHEUTEN	(Acari, Phyt	tosej (ae)
	using an extended laboratory t	est AE F130360 +	AE F122006	I flowable 2	22 <b>®</b> + 22 <b>.</b>
	g/L Code: AE F130360 01 1K	.05 A301	- F	,	4 .4"
Report No:	C005863		.1	Ş	
Document No:	M-192822-01-1			~	, Ø' , Ø
<b>Guidelines:</b>	<b>Deviation not specified</b>	Ö	a¥	W.	
GLP/GEP:	yes	, Ry	Q.		9' &

	· 1/2
Report:	j; (2000;M-198973-Q1
Title:	Toxicity of AE F130360 01 1K05 A304 to the cereal aphid arasis at Aphidius
	rhopalosiphi (Destefani-Pevez) (Sended Jaboratory test Aged Radue test") Code:
	AE F130360 01 1K05 A304 & & & & & & & & & & & & & & & & & & &
Report No:	C010411
Document No:	M-198973-01-1 &
<b>Guidelines:</b>	ESCORT: et al. 1994; LOBC: Wead-Bloggs & Longle 1997 eviaton not
	specified O 4 V V V V V V
GLP/GEP:	yes of the second secon

# CP 10.3.2.3 Semi-field studies with non-target arthropods.

No semi-field studies were deemed necessary.

# CP 10.3.2.4 Field studies with mon-tagget arthropods

No field studies wore deconed nevessary

### CP 10.3.2.5 Other routes of exposure for non-target arthropody

No relevant exposure of non-target arthropods is expected by other routes of exposure than by contact.

### CP 10.4 Effects on non-target soil meso- and macrofauna

The risk assessment procedure follows the requirements as given in the EU Regulation 1107/2009 and the Guidance Document on Ferrestrial Ecotoxicology

# Predicted environmental concentrations used in visk assessment

Predicted environmental concentrations in Sil (PEC $_{soil}$ ) values were calculated for the active substance and its respective metabolites as described in detail in Point 9.1.3.

A soil layer of 5 cm with a bulk density of 1.5 g/cm³, 25% interception and a DT₅₀ of 82 days (maximum  $DT_{50}$  of laboratory studies; formalized to 20°C and field capacity to FOCUS (2000)) for the parent compound for msultaron, 25.7 days for AE F130619, 3.68 days for AE F153745 and 147.6 days for AE F02944 were considered.

The maximum PEC_{soil} values are summarised in the following table.

Compound	Maize			-	Maize		Ţ,
•	I	1 x 60 g a.s./h	a		2 x 30 g a.s./ha		ect of
	PEC _{soil, max}	PECsoil, plateau	PECsoil, accu ¹⁾	PECsoil, max	PECsoil, plateau	PECsoil, accu ¹⁾	
	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	
SN + IDF OD 45	<b>2.499</b> ²⁾			2.499 2)	🔎	, 0	
Foramsulfuron	0.060	0.003	0.063	<b>0</b> ≥ <b>Q</b> 58	0.003	0.061	
AE F130619	0.016	< 0.001	0.016	015	< 0.0001	0.05	
AE F153745	0.003	< 0.001	0.003	ů.002	<b>€</b> 001	Q. <b>6</b> 62	
AE F092944	0.004	< 0.001	0.004 🔏	0.004	<b>≈</b> 0.001	_ <b>.</b> 00.004 ~~	
FSN + IDF OD 45   2.499 2)       2.499 2)       2.499 2)         2.499 2)         2.499 2)         2.499 2)         2.499 2)           2.499 2)         2.499 2)           2.499 2)           2.499 2)           2.499 2)           2.499 2)           2.499 2)           2.499 2)           2.499 2)           2.499 2)           2.499 2)           2.499 2)           2.499 2)           2.499 2)           2.499 2)           2.499 2)           2.499 2)           2.499 2)           2.499 2)           2.499 2)           2.499 2)         2.499 2)         2.499 2)         2.499 2)         2.499 2)         2.499 2)         2.499 2)         2.499 2)         2.499 2)         2.499 2)         2.499 2)         2.499 2)         2.499 2)         2.499 2)         2.499 2)         2.499 2)         2.499 2)         2.499 2)         2.499 2)         2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499 2)     2.499							
P 10.4.1 E	arthworms	<b>)</b>			'.A.0	, 	

The summary of the toxicity of FSN + 1DF OD 45, for amsulfuron and its soil one tabolites to earthworms is provided in Table 104.1- Details of the studies with the active substance and the metabolites are presented in the decument M, Point CA 8.4.

Chronic toxicity of for amsulfuron to earthworms

Table 10.4.1-1 Endpoints used in risk assessment

Test substance Table 20.4.1-1.

Test substance	Test species, test design	Endpoint &	Reference
FSN + IDF OD 45	Pisenia fetida   Creproduction   O d   (10% peat in test soil),	NOEC 2370 mg prod/kg dw	2013 M-464888-01-1 KCP 10.4.1.1 /01
Foramsultaron	reproduction 6 d (10% pear of test soft), test item sprayed on soil	NOEC > 20 mg O kg dyg 1)	, 2000 M-193508-01-1 KCA 8.4.1 /01
AE F092944	Eisenia fetida reproduction, 56 do 60% peur in test soil). O test itsur mixed into soil	NOF 10 mg/kg dws	, 2013 M-461051-01-1 KCA 8.4.1 /02
AE F159745	reproduction, 56 d C0% peat in test/soil), test item mixed into soil	NOIO ≥ 100 mg/kg dws	, 2013 M-459518-01-1 KCA 8.4.1 /04
AE F130619	reproduction, 560 The post in test soil) test item mixed into foil	NOEC 56 mg/kg dws	, 2013 M-461453-01-1 KCA 8.4.1 /03

¹⁾ Considering a jan surface area of 283.4 cm² and an amount of 618 g dry soil per jar – BCS calculation results

Based on the endpoints in the table above the TER values are calculated using the following equations:

Table 10.4.1-2 TER calculations for earthworms

based on the endpe	omis m me	e table above the TER van	ues are calculated using the following equations.
$TER_{LT} = NOEC / F$	PEC _{soil}		
The risk is conside	red accept	able if the TER _{LT} is $>$ 5.	·U
Table 10.4.1-2 TE	R calculat	ions for earthworms	
Compound, test design		Endpoint	PECsoil,max/agen TERL® Trigger
FSN + IDF OD 45 reproduction	NOEC	≥ 370 mg prod./kg ws	2.409
Foramsulfuron reproduction	NOEC	$\geq$ 2.75 mg a.s./kg dws/	© 0.063
AE F092944 reproduction	NOEC	10 mg a.s.kg dws	9,004
AE F153745 reproduction	NOEC	≥ 100 mg a.s. kg dws	$0.003$ $\ge 33333$
AE F130619 reproduction	NOEC	56 mg a/s/kg dvo	3 5000 5 5

Conclusion: The TERLT values are above the trigger, indicating no maccepitable risk for earthworms.

Report:	;1999/M-19©746-0/%
Title:	A 14-day active toxicity test with the earthworm (Eisenia fetida) Code: AE F130360
J. S.	
Report No:	Q\06356\(\frac{1}{2}\)
	<u>M-197046-010</u> & S
Guidelines: O	OECD: 20% Deviation not specifical
GLP/GER;	

plat of the initial submission. However, as acute d according to EEC 1107/2009, no risk assessment

Report:	d; 291 ³ 3;M-464888-01
Title:	Forms sulfuron + isoxadifen ethyl OD 45 (22.5+22.5) G: Effects on reproduction and
*	growth of arthworms Eionia fetida in artificial soil
	83352022
	<u>vM-464888-044</u>
Guidelines 🗸	OECD, Guideling or the testing of chemicals No. 222, Earthworm, Reproduction
	Test (adepted April 13, 2004)
	ISO-Cuideline 11268-2, Soil quality - Effects of pollutants on earthworm (Eisenia
	fetida) - Part 2: Determination of effec;none
GLAD GEP	yes y
GLAP/GEP	yęś ^y



#### **Executive Summary:**

The purpose of this study was to investigate the effects of foramsulfuron + isoxadifen-ethyl 0145 (22.5 + 22.5) G on the mortality, body weight, feeding activity and reproduction of adult disental fetida.

Adult Eisenia fetida (with clitellum and weight range 300 to 600 mg, 9 to 10 months old, \$\times 10\$ animals for the control group and 4 x 10 animals for each treatment group) were exposed in artificial soil (with 10 % peat content) to an untreated control and to the nominal concentrations of 13, 21, 4, 55, 88, 142, 229 and 370 mg test item/ kg dry weight artificial soil. The test item was incorporated into the soil. After 28 days exposure of adult worms are mortality behavioural affects and blomass development was carried out. After additional 28 days the reproduction rate (number of offspring) was assessed. The test was performed according to the guideline ISO 1268 2 (1998) and the OCCD Guideline 222 (2004).

The No Observed Effect Concentration (NOEC) for mortality growth and feeding activity of the earthworm *Eisenia fetida* was determined to be \$\sumsymbol{2}\sqrt{70}\$ mg test item/kg soil, i.e. the highest concentration tested. The No Observed ffect Concentration (NOEG) for reproduction was determined to be the concentration of 229 mg test item/kg soil. The Lowest Observed Effect Concentration (LOEC) was determined to be 370 mg test item/kg soil and the E(50), E(3) and E(50) values were determined to be 273.9 mg test item/kg soil, 30\$\sqrt{8}\$ mg fest item/kg soil and \$\sqrt{9}\$69.2 mg test item/kg soil.

#### **Materials and Methods:**

Test item. Foramsulfuron + isoxadifen-ethyl OD 45 (22.5 + 22.5) (BCS-AH47626 + BCS-AI19578); Batch ID: EFKM002442; Materal No 0632 801; Specification No.: 102000011304-06; density: 0.961 g/mL at 20°C); content of a.s.: foramsilfuron (AE FC 0360): 2.33% w/w, 22.41 g/L, isoxadifen-ethyl (AE F122006): 2.29% w/w, 21.96 g/C, Sample description TOX10129-00.

Adult Eisenia etida with civellum and weight range 300 to 600 mg. to 10 months old, source: from an in-house culture, 8 x 10 animals for the control group and 4 x 10 animals for each treatment group) were exposed in artificial soil (with 60 % peat centent) to an intreated control and to the nominal concentrations of 13 21, 34 35, 88, 142 229 and 370 mg test tem/kg dry weight artificial soil. The test item was incorporated into the soil: After 28 days exposure of adult worms in treated artificial soil the mortality, behavioural effects and biomass development was carried out. After additional 28 days the reproduction rate of offspring was assessed (assessed 56 days after application). The test was performed according to the anideline ISO 12682 (1998) and the OECD Guideline 222 (2004). Mortality weight change, feeding activity and reproduction rate were determined as endpoints.

The artificial soil contained 69.6 % fine quartz sand, 20 % kaolin clay, 10 % sphagnum peat, air dried and finely ground, and 0.4% Ca $^{\circ}$ Co $^{\circ}$  for the adjustment to pH to 6.0  $\pm$  0.5 according to OECD 222; the pH was 5.9 to 6.1 at experimental start and 5.9 to 6.0 at experimental end; the water content at experimental start was 25.8% to 29.3% (49.6% to 56.4% of the maximum water holding capacity) and at experimental end, 30.2% to 34.2% (58.1% to 65.8% of the maximum water holding capacity); temperature was within the range of 18°C to 22°C; the illumination was 16 h light: 8 h dark, light intensity was within the range of 400 to 800 lux.

Together standard (Luxan Carbendazim 500 FC): 0.57 - 0.87 - 1.30 - 1.96 - 2.91 mg a.s./kg soil d.w. (corresponds to 1.3 - 2.0 - 3.0 - 4.5 - 6.7 mg test item/ kg soil d.w.); .; control: untreated artificial soil moistened with deionised water, solvent control: none.



**Dates of experimental work:** May 08, 2013 – July 24, 2013

#### **Results:**

Table 10.4.1.1- 1: Validity criteria

Dates of experimental work.	- 1, = 0 10	
Results:		
Table 10.4.1.1- 1: Validity criteria	, l	
Validity criteria	Recommended	Obtained O
Mortality of adults in the control	≤ 10 %	
Reproduction of control (number of juvenile worms per replicate)	≥ <b>ુ</b>	146 382
Coefficient of variation of reproduction in the control	\$\ \ 30 \%	39.1 % 0 5 6
All study validity criteria were met.		
In the most recent GIP conducted experiments with the reference	Tonor Home Make	n Grandvin 500 FC

In the most recent GLP conducted experiment with the reference from Euxan Carbendazim 500 FC (performed under IBACON Project No. 46645022 from August 2012 to October 2012), there were statistically significant effects on reproduction at a concentration of 1430 mg carbendazim kg soil and higher. The  $EC_{10}$ ,  $EC_{20}$  and  $EC_{50}$  (reproduction) were calculated to be 1.2 artificial soil dry weight.

#### Mortality:

No mortality was observed in any treatment group.

Weight change:

The body weight changes of the earthworms after 4 weeks exposure to for ansulfuron + isoxadifenethyl OD 45 (22.5 ± 2.5) 6 were not statistically significantly different compared to the control up to and including the highest test concentration of 370 mg test item/kg soil (Williams t-test,  $\alpha = 0.05$ , twosided).

### Reproduction:

The reproduction rates were not significantly different compared to the control up to and including the test concentration 229 mg test item kg soil Williams t-test,  $\alpha = 0.05$ , one-sided smaller). At the highest test concentration of 300 mg/rest item/kg soil a strustically significantly reduced reproduction was observed

No behavioural abnormalities were observed in any of the treatment groups. The feeding activity in all the treated groups was comparable to the control (see table below).



Table 10.4.1.1- 2: Foramsulfuron + isoxadifen-ethyl OD 45 (22.5+22.5) G: Effect on earthworms (*Eisenja fetida*) in a 56-day reproduction study

jenaa) in a 50	-uay repre	buuction	study						
Foramsulfuron + isoxadifenethyl OD 45 (22.5+22.5) G	Control	13	21	34	55	88 🐧	<b>)</b> 142	229	370
[mg/kg soil dry weight]								~	. S"
Mortality (day 28) [%]	0.0	0.0	0.0	0.0	0.0	Q.0	0.0	Ø.0 ~	Ø.0
Significance	-	-	-	-	-	Z.	- %	Q'-,Q	) - K
Weight change (day 28) [%]	26.3	24.1	23.6	<b>_</b> 25.0	24.4	¥20.2	21,5	25.4	316
Significance 1)	-	n.s.	n.s.	[™] n.s.	n.s.Q	n.s.	ngs.	DS.	∜ovs.
Mean No. of juveniles (day 56)	237	239	236	251	266	275	<b>2</b> 78	Q231 g	₹118 §
Significance 1)	-	n.s.	n.s.	n.s.	√ <b>Q</b> ,.s. /	∞n.s. 🎺	n.s.	n.s.	* @
Reproduction in [%] of control		100.8	<b>%</b> <b>9</b> 9.5	105 6	112,2 [®]	1156	1 N79"	0Ĝ) 1	A (V) 6
(day 56)	-	100.8	<i>₩99.3</i>	105.6		115.6	J1V.2	<i>₽</i> , 1 ×	A 39.0
Food consumption [g]	24.4	24.8	250	2,4,3	24.5	24.8	<b>2</b> 5.0	^y 24.5 _a	24.3
		4	Endpo	ints [mg	Asg soil	Dry weig	ht]		W °
NOEC				Y >	≫ >370∕-\$	Ş	.// .		
(day 28 mortality and weight)	0	¥	Y OF		23/W "	*\\\			
NOEC (day 56 reproduction)	Q.		W.		229		Ÿ á	» O	
LOEC (day 56 reproduction)	10°				<b>9</b> 70 ~	) Ş		, Ò	
FGM 1 ( 1 ( ) 2)	Q ,	EC ₁₀			EQ ₀			<b>E</b> C 50	
EC Values (reproduction) 2)		273.9			<b>3</b> 05.8			369.2	
×.	(26)	9.3 🕼 27	8.1)	(3,0	2.5 to 39	<b>9</b> 8.8) 🙈	(368	.2 to 370	.3)

^{- =} not applicable

#### Conclusions:

In an earthworm reproduction and growth study with foramsustruron + isoxadifen-ethyl OD 45 (22.5+225) G the No Observed Effect Concentration NOEO for mortality, growth and feeding activity of the earthworm Eisenia fetidal was determined to be  $\geq$ 370 mg test item/kg soil, i.e. the highest concentration tested.

The No Observed Effect Concentration (NOEC) for reproduction was determined to be the concentration of 229 mg test item/kg soil. The Lowest Observed Effect Concentration (LOEC) was determined to be 370 mg test item/kg soil and the EG0, EC20 and EC50 values were determined to be 273.9 mg test item/kg soil (95% confidence limits of 269.3 to 278.1 mg test item/kg soil), 305.8 mg test item/kg soil (95% confidence limits of 302.9 to 308.8 mg test item/kg soil) and 369.2 mg test item/kg soil (95% confidence limits of 308.2 to 370.3 mg test item/kg soil).

## CP 10.4.1.2 Earthworms field studies

Considering the findings reported above no further studies are required.

### CP:10.4.2 Effects on non-target soil meso- and macrofauna (other than earthworms)

A summary of the toxicity of FSN + IDF OD 45, foramsulfuron and its soil metabolites to other soil non-target macro-organisms is provided in Table 10.4.2- 1. For details of the studies conducted with the active substance and metabolites, please refer to the M document, point CA 8.4.2.1.

n.s. = not significantly different compared to the control

^{* =} significantly different compared to the comport

Williams t-test,  $\alpha = 0.05$  two-sided for weight changes and one-sided smaller for reproductive

²⁾ Logit Analysis

Table 10.4.2-1 Endpoints used in risk assessment

Test substance	Test species	Endpoint	Reference
FSN + IDF OD 45	Folsomia candida	NOEC 142 mg product/kg d	, 2013 M-46282 (201-1 KCP 10.4.2.1./9)
15IN T IDF OD 43	Hypoaspis aculeifer	NOEC ≥ 370 product/kg dws	2013 M-42835-01-1 KCP 10-42.1/02
Foramsulfuron	Folsomia candida	NOE 178 mg a.s./kg dws	2012, , , , , , , , , , , , , , , , , , ,
	Hypoaspis aculeifer	NOFC 1000 mg a.s./kg dws	M-448308-01-1 KCA 8.4201
AE F092944	Folsomia candida	NOEC 100, mg/kg dws	, 2016 M-451142-04 KC 8.4.264
112 1 0/2/11	Hypoaspis aculeifer ®	NOEC 2000 mg/kg dws	, 2013 <del>31-4540, 13-01-1</del> <del>3-4540, 13-01-1</del> <del>3-4540, 13-01-1</del>
AE F153745	Folsonia candida	NOEC \$\frac{100}{2}\text{mg/ag dws}	№450830-01-1 &KCA 8.4.2/06
AL 1133743	Hypoaspis aculeifer	NQZ 2 100 mg/kg dws	, 2013 <u>M-447606-01-1</u> KCA 8.4.2/05
	Msomin Candida	NOFO S ≥ 106 mg/kg@ws	, 2013 <u>M-450824-01-1</u> KCA 8.4.2/08
AE F130619	Hypoaspissaculeifer	NOECS 2 100 mg/kg dws	, 2013 <u>M-454051-01-1</u> KCA 8.4.2/07

Toxicity exposure ratios for non-target soil meso, and macrofauna (other than earthworms)

Ecotoxicological endpoints and REC_{soil} values used for TER calculations for soil non-target macro-TER values were calculated using the equation: organisms are summarised below

TER NOEC / PEC

The risk is considered acceptable if the TER is >5.

Table 10.4.2-2 TER calculations for other non-target soil meso- and macrofauna

Compound	Species	Endpoint	PEC _{soil,max/accu} [mg/kg]	TER	Trigger
FSN + IDF OD 45	Folsomia candida	NOEC 142 mg product/kg dws	2.499	56.8	@ ´ 5 🔊
	Hypoaspis aculeifer	NOEC ≥ 370 product /kg dws	2.499	≥ 148	55
Foramsulfuron	Folsomia candida	NOEC 178 mg a.s./kg dws	63	2,825	\$\sqrt{5} \d
	Hypoaspis aculeifer	NOEC ≥ 1000 mg & ./kg dws	0.063	≥ ¥5 873	7 5 Ö
AE F092944	Folsomia candida	NOEC ≥ 100 mg/kg dws	$\mathbb{Q}$ 0.004 $\mathbb{Q}$	<u>25 00</u> €	
	Hypoaspis aculeifer	NOEC ≥ 100 @g/kg dws	0.004	≥ 25 000	©5 .
AE F153745	Folsomia candida	NOEC ≥ 100 mg/kg dws	0.002	₹33 333	5
	Hypoaspis aculeifer	NOEC $\geq$ 100 mg/kg dws0°	° 0.0003 °	≥ 33, <b>3</b> 53	<b>13</b>
AE F130619	Folsomia candida	NOEC 100 @ g/kg ws	<b>10</b> :016	≥6.250	3 5
	Hypoaspis aculeifer	NOEC ≥ 100 mg/k@dws Q	0.016,	©6 250 ©	7 5 5

Conclusion: The TER values are above the trigger, indicating no macceptable risk for soil non-target macro-organisms, i.e. collembola and soil mites.

Report:	p;
Title:	Foremsulfuron + is exadifer ethyl OD 45 (22.5+22.5) GOSN+IDF OD 45
	(22.5+225) G): Effects on reportaction of the collembola Following candida in
	Cartificial soil of the soil o
Report No:	833,53016 8
Document No:	<u>MQ62827701-1</u>
Guidelines:	CLP compliant study based of OECD 232, 2009 and ISO 11267, 1999; none
GLP/GEP: O	Fyes 40 W B A B W

#### Executive Summary:

The purpose of the rudy was to determine the effects of for amsulfuron + isoxadifen-ethyl OD 45 (22.5+22.5) G (ESN+IDF OD & (22.5+22.5) G) on more lity and reproduction of the Collembola Folsomia candida in araficial soil.

10 collembolors (1002 days old) per replicate (8 replicates for the control group, 4 replicates for each treatment group) were exposed to control (water treated), 13, 21, 34, 55, 88, 142, 229 and 370 mg test item/kg foil dry weight. After a period of 8 days, mortality, behavioural effects and reproduction were determined.

The werall No-Observed Effect Concentration (NOEC) was determined to be 142 mg test item/kg soil dry weight. The overall Lowes Observed-Effect-Concentration (LOEC) was determined to be 229 mg test tem/kg/soil by weight. All validity criteria for the untreated control of the study according to the OECD Goldeline 232 have been fulfilled.

### Material and Methods:

Test item; Foramsuffuror isoxadifen-ethyl OD 45 (22.5+22.5) G (FSN+IDF OD 45 (22.5+22.5) G); batch ID EFKM002442; specification no.: 102000011304-06; sample description: TOX10129-00; density. 0.961 g/ml; content of a.s.: foramsulfuron (AE F130360): 2.33% w/w, 22.41 g/L, isoxadifenethyl (AE F122006): 2.29% w/w, 21.96 g/L.



10 Collembola (10-12 days old, from cultures held at the laboratory) per replicate (8 replicates for the control group, 4 replicates for each treatment group) were exposed 28 days in treated artificial soil. Different concentrations of the test item were mixed homogeneously into the soil which was Maced into glass vessels before the Collembola were introduced on top of the soil; & Concentration (13, 2), 34, 55, 88, 142, 229 and 370 mg test item/kg soil) and one control (untreated) were tested. The collembolans were fed with approximately 2 mg dry yeast for each test vessel at the beginning of the test and on day 14. The assessments of adult mortality behavioural effects and reproduction were performed after 28 d.

The artificial soil contained 74.8 % fine quartz sand 20 % kaolin elay, 5 % sphagnum peat, air dried and finely ground, and 0.2 % CaCO₃ for the adjustment to pH to 0.0 ± 0.5 according to OEOD 232 the pH was 5.7 to 5.8 at experimental start and 5.7 at experimental end, the water content at experimental start was 21.2% to 21.7% (55.8% to 57.1% of the maximum water hording capacity) and at experimental end 20.0% to 21.9% (52.7\% to 5\%.6\% of the maximum water holding capacity); temperature was within the range of 18°C to 22°C; the Glumination was 16th light. 8 h Cark, bight intensity was within the range of 400 to \$00 lux

Toxic standard 33.6 – 53.7 – 85.9 137.5 2200 mg boric acd/kg soil d.w., control: artificial soil with deionised water, solvent control: none.

Dates of experimental works: June 05, 2013 to July 04, 2013

Results:

Table 10.4.2.1-1: Validity criteria

Validity criteria	Recommended Q	Obtained
Control mortality (mean)	$S' = S' \leq 20\%$	5 %
Control reproduction (pean number of viveniles per creplicate)		423 - 555
Coefficient of variation of the control reproduction	$\mathbb{Q} \leq 30\mathbb{Z}$	10.7 %

All validity criteria were met. Therefore this study is valid?

In a separate GLE conducted saidy (spidy code 61403016) the reference item Boric acid showed statistically significant offects on morfality and reproduction at concentrations of ≥ 53.7 mg/kg soil dry weight; the EO₅₀ for reproduction was calculated to be 59.9 mg/kg soil dry weight.

#### **Mortalit**

A mottality of 58% was observed on the Righest test item treated group of 370 mg test item/kg soil dry weight, which was statistically significantly different compared to the control, where 5% of the Collembola die  $\mathcal{U}(Fisher's Exact test) = 0.005$ , one-sided greater). At the lower test concentrations no significant in ceased mortality was observed, except at the concentration of 21 mg test item/kg soil dry weight, which is not considered to be treatment related since at the higher concentrations up to and including 229 mg test item/kg oil dry weight no effects were observed.

The reproduction of the Collembola exposed to foramsulfuron + isoxadifen-ethyl OD 45 (22.5+22.5) G (FSN+IDF OD 45 (22.5+22.5) G) was not statistically significantly different compared to the control up to and including the test concentration of 142 mg test item/kg soil dry weight (Bonferroni-Welch t-test,  $\alpha = 0.05$ , one-sided smaller).

No behavioural abnormalities were observed in any of the treatment groups.

Table 10.4.2.1-2: Effect of foramsulfuron + isoxadifen-ethyl OD 45 (22.5+22.5) G (FSN+IDF OD 45 (22.5+22.5) G) on Collembola (*Folsomia candida*) in a 28-day reproduction study

Foramsulfuron + isoxadifen-ethyl OD 45 (22.5+22.5) G (FSN+IDF OD 45 (22.5+22.5) G)	Control	13	21	34	ି 55	88	J42	2 <b>2</b> 9	370
[mg/kg soil]	ĈA					<b>1</b>	/ 	$\sim$	
Mortality (day 28) [%]	<b>7</b> 5	13	23@	ı 15	15	20	130	[™] 15 ॢ	, <b>\$</b> 8
Statistical significance ¹⁾	ر <del>-</del>	n.s.	ð	n.s.	n.s.	√¶.s.	pš.	n.s©	* /
No. of juveniles (day 28)	⁷ 487		<b>3</b> 86	467	5320	432	<b>3</b> 12	391	53
Reproduction in [%] of control (day 28)	-	109		<b>∂</b> 96	16	89	105	66	N
Statistical significance 2)	-	n⁄.s.	n,s		n.s.	ħ.s.	$\eta_{\ell} S_{\ell}^{Q}$	* ~	Ø.
<b>%</b>	~	,	Énd₁	oint	s [mg	Rg soi	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֓֓	$\langle \! \rangle$	,
NOEC (mortality)	Ü	Ô	7 6		2290	- L		4	e °
NOEC (reproduction)	Q.	Q	4	9	142	0,		Ď.	0,4
LOEC (reproduction)		<b>)</b>		, C	229	<b>U</b>	,		) )
EC Values (reproduction) 3)	*E	05		<u> </u>	EC26 03 10	Ž		F650 258.4	

n.s. = not significantly different compared to the control * significantly different compared to the control

¹⁾ Fisher's Exact Test,  $\alpha = 0.05$ , one-sided greater

#### **Conclusions:**

Foramsulfuron + isoxadifen-ethyl OD 45 (225+225) G (PSN+IDF OD 45 (225+22.5) G) caused no significant effects on mortality of *Folsomia candida* up to and ocluding the concentration of 229 mg test item/kg soil dry weight and to effects on reproduction up to and including the concentration of 142 mg test item/kg soil dry weight.

Therefore, the overall No Observed Effect Concentration (NOIC) was determined to be 142 mg test item/kg soil dry weight. The overall Lowest Observed Effect Concentration (LOEC) was determined to be 229 mg test item/kg soil dry weight. The EC₅₀ was determined to be 258.48 mg test item/kg soil dry weight.

Report:	ĵ3 ;201 QM-462835-01
Title:	Foramsutturon resoxaditen-ethyl OD 45 (22.5+22.5) G (FSN+IDF OD 45
	Q22.5+Q2.5) Gly Effec on reproduction of the predatory mite <i>Hypoaspis aculeifer</i> in
~	artifical soil
Report No₄	833510899
Document No:	<u>M-462865-01-1</u>
Guidelines:	GLP compliant study according to OECD 226, 2008; none
GLÆGEP:	yes v v v

#### Executive summarys

The purpose of the study was to determine the effects of foramsulfuron + isoxadifen-ethyl OD 45 (22.5+22.5) G (28N+IDF OD 45 (22.5+22.5) G) on mortality and reproduction of the Predatory Mite Hypogenis activities.

10 adult soil mites remains) per replicate (8 replicates for the control group and 4 replicates for each treatment group) were exposed to control (water treated), 13, 21, 34, 55, 88, 142, 229 and 370 mg test item/kg soil dry weight. Two weeks after start of exposure, the number of juveniles and surviving adult female mites were determined.

Bonfaroni-Weich t-tes  $\Omega \alpha = 0.05$ , one-sided smaller

³⁾ Probit analysis



The overall No-Observed-Effect-Concentration (NOEC) was determined to be  $\geq$  370 mg test item/kg soil dry weight. The overall Lowest-Observed-Effect-Concentration (LOEC) and the EC₅₀ were estimated to be greater than 370 mg test item/kg soil dry weight. The validity criteria for the control group of the study were accomplished.

#### **Material and Methods:**

Test item: Foramsulfuron + isoxadifen-ethyl OD 45 (22,522.5) G (FS) +IDF OD 45 (22.52.5) batch ID: EFKM002442; specification no.: 102000011304-06; sample description: TOX 10122-009 density: 0.961 g/ml; content of a.s.: foramsulfuron (AE F130360): 2.33% w/w, 22.41 g/B, isoxadifen ethyl (AE F122006): 2.29% w/w, 21.96 g/L.

10 collembolans (adult females, approximately 9 days after reaching the adult stage) per replicate (8 replicates for the control group, 4 replicates for each treatment group) were exposed 13 days in treated artificial soil. Different concentrations of the test fem were mixed homogeneously into the soil which was filled in glass vessels before the predatory ontes were introduced on top of the soil; 8 concentrations (13, 21, 34, 55, 88, 142, 229 and 370 mg test item kg soil dry weight and one control (untreated) were tested. The collembolans were fed with cheese mite. (Tyrophagus putrescentiae) ad libitum at test start and on day 2, 5, 7, 9 and 12. The assessments of adult mortality, morphological differences and reproduction were performed after 12 d.

The artificial soil contained 74.8 % fine quartz sand, 20 % kaotin clay, 5 % sphagnum peat, air dried and finely ground, and 0.2% Ca©O₃ for the adjustment to pH to 60 ± 0.5 according to OECD 226; the pH was 5.7 to 5.8 at experimental start and 5.8 to 5.8 at experimental end, the water content at experimental start was 21.2% to 21.7% (55.8% to 57.1% of the maximum water holding capacity) and at experimental end, 20.3% to 20.8% (53.5% to 57.5% of the maximum water holding capacity); temperature was within the range of 18°C to 22°C, the illumination was 16 h light: 8 h dark, light intensity was within the range of 400 to 8000ux.

Toxic standard: (Dimethoate (BAS 1521), 400.0 g/L (nominal), 407.7 g/L (nanlysed)): 1.0 – 1.7 – 2.7 – 4.3 – 68 mg a.s./kgzoil do weight; control: amorticial soil mostened with deionized water, solvent control: none.

Dates of experimental work June 15, 2013 to June 21, 2013

#### **Results:**

Table 103.2.1-3: Validity criteria

Validity criteria	Recommended	Obtained
Control Mortality (mean mortality of the adult female animals)	≤ 20 %	4 %
Control Reproduction number of juvenile mites per replicate)	≥ 50	190 - 226
Coefficient of variation of the Control Reproduction	≤ 30 %	5.3 %

All vandity enteria were net. Therefore this study is valid.

In a separate GLP conducted study (study code 74661089, performed in May/June 2012) the reference item dimethoate showed statistically significant effects on reproduction at a concentration of 1 mg dimethoate/kg soil dry weight and above. The EC₅₀ for reproduction was 4.0 mg dimethoate/kg soil dry weight.

#### Mortality:

Mortality of *Hypoaspis aculeifer* in the test item treated group ranged from 3% to 13%. The values were not significantly different compared to the control where 4% of the soil rules died (Fisher's Exact Test,  $\alpha = 0.05$ , one-sided greater).

No differences in morphology of the mites between the test item reated groups, and the control were observed.

#### Reproduction:

There were no statistically significant effects, on reproduction of Hypoaspis acuteifer of to and including the highest test concentration of 370 mg test item kg soil (Williams treest,  $\alpha = 0.05$ ) one-sided smaller).

The reference item dimethoate showed statistically significant effects on reproduction at a concentration of 1.7 mg dimethoate/kg soil and above. The EC50 for reproduction was 4.0 mg dimethoate/kg soil.

Table 10.4.2.1-4: Effect of foramsulfuron isoxaction-ethyl OD 45 (22.5+22.5) C (FSN+IDF OD 45 (22.5+22.5) G) on the Predatory Mite Hypographic aculeifer in a 14-day reproduction study

✓ n				, U	X/	1. 0	<b>(</b> )		
		Q ₁	Z		0' 2		7		
isoxadifen-ethyl OD 45		♥ ♥13 ~				<i>y</i>			
(22.5+22.5) G (FS) IDF	Control	<b>≈</b> ′13  ^	21	340	55		142	229	370
OD 45 (22.5+22 S) G)			, L, "	\ \@*	<b>55</b>	W.			
(22.5+22.5) G (FSN) IDF O OD 45 (22.5+22.5) G) [mg/kg soil]	) O'	&**O*				J.			
Mortality (day 14) [%]	<b>A</b>	<u> </u>	<b>*</b> 8 (	8	135	8	8	3	8
Statistical significance 1)	~	n.s.	n.s	n s	ns.	n.s.	n.s.	n.s.	n.s.
No. of weniles (day 140)	🔊 207 🔊	213,	² 04	243	, <u>Q</u> 33	209	207	223	193
Reproduction in [%] of		» Q03	¥127	103	112	101	100	108	93
control (day 14)		K 1	6 12 / C	103	112	101	100	100	93
control (day 14)  Statistical significance ²	\$ - \$C	n.s	n.s	n©:	n.s.	n.s.	n.s.	n.s.	n.s.
		~0`	~O`	Endpoir	nts [mg/k	kg soil]			
NOEC (mortality)	≥370√	,Q, ,	Ď,	Ď'					
LC ₅₀ (mortality) ³⁾	>370								
NOEC (coproduction)	<b>₽</b> 370 <u></u> °								
LOEC (reproduction)	>370					•			
ECs (reproduction) 39	>379	Q ^	\$						

n.s. = not significantly different compared to the control. - not applicable

#### Conclusions:

Foransulfuren + is padifen ethyl OD 45 (22.5+22.5) G (FSN+IDF OD 45 (22.5+22.5) G) caused no significant effects on mortality and reproduction of *Hypoaspis aculeifer* up to and including the highest est concentration of 370 mg test item/kg soil.

¹⁾ Fisher's Exact Test,  $\alpha = 0.05$ , one-sided greater  $\mathbb{Q}^*$  2) Williams t-test,  $\alpha = 0.05$ , one-sided smaller

³⁾ estimated value

Therefore, the overall No Observed Effect Concentration (NOEC) was determined to be ≥370 mg test item/kg soil. The overall Lowest Observed Effect Concentration (LOEC) and the EC50 were estimated to be greater than 370 mg test item/kg soil

#### **CP 10.4.2.2** Higher tier testing

In view of the findings above, no higher tier testing is required.

#### **CP 10.5** Effects on soil nitrogen transformation

The toxicity of foramsulfuron on soil non-target micro-organisms is summarised in Table 10.5-1. details of the studies conducted with the active substance and petabolites, please refer to the document M. point CA 8.4.2.1.

Table 10.5- 1: Effects on soil nitrogen transformation

Test item	Test design	Ecotoricological en	dpoint 💸 🗸 🕺	Reference O
N-transformation				\$ \$ .4
FSN + IDF OD 45	28 d	no anacoptable of the free of	≥10.59 Lorod./ha 23.8 mg/prod.ong dws	; 1999 M-190742-01-1 KCP10.5/67
Foramsulfuron	28 db	no macceptable of effects	≥0.3 mg a.s./kg d3	, 1997 <u>M-1429, 2-01-1</u> KCAS.5/01
Foramsulfuron + bound residues	28 d	no macceptable S	≥0.735 mg a.s./kg dws	, 2000 <u>M-193916-01-1</u> KCA 8.5/02
AE F153745	\$\frac{1}{28} \text{ desc}	no maccestable	≥0.240 mg/0g dws ©	, 2013 <u>M-453508-01-1</u> KCA 8.5/07
AE F130619	. <b>2</b> 8 d . 5	no unacceptable effects	≥0.375 mg/kg dws	, 2013 <u>M-453568-01-1</u> KCA 8.5/06
AE F092944	28 d 5	effects of effects of the effects	≥0.137 mg/kg dws	, 2013 <u>M-453511-01-1</u> KCA 8.5/05

### Risk assessment for soil attroger transformation

dws = dry weight soil

According to current regulatory requirements the risk is considered acceptable if the effect on nitrogen mineralisation at the recommended application rate of a compound/product is  $\leq 25\%$  after 100 days.

In no case did deviations from the control exceed 25% 28 days after application, indicating low risk to soil micro-organisms. A study testing effects of bound residues of foramsulfuron on nitrogen transformation , 2000; M-193916-01-1) measured nitrogen turnover for 28 days starting from the time point when a plateau concentrations of bound residues had been reached in the test of l. No deviations from the control exceeding 25% occurred. It can be concluded that the formation of bound residues does not have a negative impact on the activity of soil microorganisms.

Report:	d; ;1999;M-193742-01		0
Title:	The effects on the respiration and nitrification of so 01 1K05 A304	oil microflora Code	e: AE F13036 <b>@</b>
	01 1K05 A304		
Report No:	C006355	~	
Document No:	<u>M-193742-01-1</u>	Z,	Ž Ž
<b>Guidelines:</b>	BBA: VI, 1-1, 1990; Deviation not specified	0	
GLP/GEP:	yes	<u>,</u>	

CP 10.6 Effects on terrestrial non-target higher plants

Risk assessment for Terrestrial Non-Target Higher Plants

The risk assessment is based on the "Gudance Document on Terrestrial Ecotoxicology" (SANCO/10329/2002 rev2 final 2002) It is the trial to the contribution of the contribut (SANCO/10329/2002 rev2 final, 2002). It is restricted to off-field situations, as non-target plants are non-crop plants located outside the treated area. Spray drift from the treated area may lead to residues of a product in off-crop areas.

For herbicides and plant growth regulators it is considered improving the confidered improving t is inevitable that these will lead to tier 2 or dose response studies in order to senerate data suitable for deterministic or probabilistic risk assessments i.e. Ello valves for O10 species, copresenting a broad range of plant species.

Seedling emergence and regetative vigour studies have been conducted with the plant protection product with the product code 102000005810, which contains the active substance for amsulfuron (22.5 g/L) and the sate of iso adifenethyl (22.5 g/L) solved in an Olf-formitation, following OECD



Table 10.6-1: Survey of non-target plant tests performed with FSN + IDF OD 45

Terrestrial Non-Target Pla	nts		
Number of species tested (species)	Test method Test substance Application rate	Effects	Reference
Dicotyledoneae: 6 (bean, cabbage, radish, tomato, soybean, lettuce) Monocotyledoneae: 4 (rye grass, corn, wheat, onion)	Tier 2 vegetative vigour FSN + IDF OD 45 0 (control), 0.25, 0.74, 2.2, 6.7, 20 and 60 g prod./ha with height and condition observations on Days -1 0 (prior to application), 14 and 21, dry weight measurements on Day 21	a.s./ha	H999; H002710 H2238444601-2 H62P 10.6.2/01
Dicotyledoneae: 4 (cabbage, radish, tomato, lettuce) Monocotyledoneae: 3 (rye grass, wheat, onion)	Tier 2 seedling emergence FSN + IDF OD 45 0 (control) 9.25, 9.74, 2.2 6.7, 20 and 60 g prod./ha with observations of emergence on Days 10 and 14 with observations of height and condition on Day 14 and measurement of droweight on Day 14	a s Dra	B002819 M238550-01-1 ECP 10 0.2/02

Remark: In all studies endpoints are given in gari./ha Descriptions of the experimental design in the two seedling emergence studies (pages in each report) indicate that the endpoints are given as g (AE F130360 + AE F122006) per hectare.

#### **Exposure**

Effects on non-fargetofiants are of concert in the off-field environment, where they may be exposed to spray drift. The amount of spray drift reaching off-crop habitats is calculated using the 90th percentile estimates derived by the BBA (2000). From the spray-drift predictions of (2000). Only a single application was considered as factors such as plant growth will reduce residues per unit area between multiple applications. For a single application to maize, 2.77% of the application rate was assumed to reach areas at the edge of the crop (0 meter buffer zone; worst-case scenario). For a 5 m buffer zone a drift rate of 0.57% is assumed. The highest single application rate of foramsulfution + isoxadifen-eth 0 DD 45 (22.54 22.5 g/L) is 2.7 L product/ha (corresponding to 120 g foramsulfution + isoxadifen ad ha), giving a maximum off-field predicted environmental rate (PER_{off-field}) of 3.324 g sum of a.i./ha.

⁵ BBA (2000) Bundesanzeiger Jg. 52 (Official Gazette), Nr 100, S. 9879-9880 (25.05.2000) Bekanntmachung über die Abtrifteckwerte, die bei der Prüfung und Zulassung von Pflanzenschutzmitteln herangezogen werden. Public domain.

⁶ Lordon (2000) Drift, drift-reducing sprayers and sprayer testing. Aspects of Applied Biology 57, 2000, Pesticide Application. Public domain.

#### **Deterministic Risk assessment**

According to the Terrestrial Guidance Document⁷, the risk to non-target plants is evaluated by comparing the lowest ER50 observed in the laboratory studies with the drift rates (PER_{off-to-0}) inclosing a safety factor of 5. In addition, the usage of drift reducing nozzles is considered.

Table 10.6-2: Deterministic risk assessment for foramsulfuron + isoxadi@n-ethyl OD 45 (22.5-22.5 g/g) based on effects on seedling emergence

ar	able field cro	ops, one appl	ication, 120.0 g sum of a.i./ha; lowest ER ₅₀ = 38.845 sum of a.i./ha
Distance	Drift	PER	TERO Q Q
[m]	(%)	no drift reduction [g sum of a.i./ha]	No drift 50% drift 75% drift 90% drift reduction reduction
1	2.77	3.324	②1.67
5	0.57	0.684	56.73 193.45 2226.90 2 567.25
10	0.29	0.348	111.49 2222.99 445.98 1114.94

Table 10.6-3: Deterministic risk assessment for foramsulfuron + isoxadifen-ethyl OD 45 (22.5+22.5 g/L) based on effects on regetative vigour

arable field crops, one application, 120.0 sum of a.i./ha lowest ER50 1.880 sum of a.i./ha							
[m]	Drift PFOR  One drift  reduction  [g sum of a*/ha]	No dfift reduction	50% drift reduction	### drift reduction	90% drift reduction		
1 %	2.77	Ø 0.57 °		2.26	5.66		
5	0.57 ° 0.68	2,75	[∞] 45/.50 √	10.99	27.49		
10	0.290 6,348	9.40 V	10.80	21.61	54.02		

### Probabilistic Rosk assessment

In addition to the deterministic fisk assessment the Torrestrial Guidance Document recommends the use of the  $FC_5$  (the concentration below which less than 5% of the species will be harmed above the  $EC_{50}$  level) which can be calculated from the data sets of  $ER_{50}$  growth inhibition levels. The EU guidance document for terrestrial ecotoscology states: "If the  $ED_{50}$  for less than 5% of the species is below the highest predicted exposure level, the risk for terrestrial plants is assumed to be acceptable. Thus, the  $HC_5$  uself (TER = G can be regarded to be protective.

The HC₅ was calculated according to

⁷ Anonymous (2002b). Guidance Document on terrestrial ecotoxicology under council directive 91/414/EEC. SANCO/10329/2002. 17 October 2002.

 $HC_5 = 10 \exp(avg-ks*std)$ 

#### With

avg=mean of log10 transformed  $EC_{50}$  values std=standard deviation of log10 transformed  $EC_{50}$  values ks = extrapolation factor

From the data sets of  $ER_{50}$ -levels obtained from the tests with forams of furon + isoxidifen only QD 45 (22.5+22.5 g/L) only the vegetative vigour data are applicable for an  $HC_5$ -calculation. The seedling emergence data contain too many greater-than figures.

Table 10.6-4: HC5-figures for seedling-emergence and vegetative vigour with foramsulfution + isoxadifenerthyl OD 45 (22.5+22.5 g/L)

HC ₅		×	edling merge	sce	wegetative vigota
HC ₅ based on lowest endpoint from all	lspecies	, \$	Sn.a.		625 gum of a.i./ha

Table 10.6-5 Probabilistic ris Cassessment for for any ulfuror + isognidifen-ethyl 45 (22.5+22.5 g/L) based on effects on yegetative vigour

		<b>//</b>		(7)>> 1	y ^ -\/ &-	
arable field crops one application, 120 kg sum of a.i./ha; HC5 \ 0.6250 g sum of a.i./ha						
Distance	Drift	PER.			ER V	
[m]	(%)6	noærift reduction sum of a.i./ha	No drift Veduction		75% drift reduction	90% drift reduction
1	<b>2.77</b>	″ ₃ 9924 (	<b>1 1 1 1 1 1 1 1 1 1</b>	0.38	© 0.75	1.88
5 . 0	(a) 0.57	0.684	A 0.91	1.83	3.65	9.14
10	0.29	O.348	1.80	<b>3.59</b>	7.18	17.96

Since foramsulfuron + isoxadifest ethyl OD 45 (22.552.5 g/L) has stronger effects on the vegetative vigour of young plants than on the sædling emergence, the vegetative vigour data determine the risk assessment. From tables 10 8.1-3 and -5 is becomes obvious, that a 10-m buffer zone is sufficient to protect terrestrial non-target plants if conventional spraying equipment is used. With the use of 50% drift reducing nozzles the buffer zone can be reduced to 5 m. With the use of 90% drift reducing nozzles no buffer zone is required.

Foramsulfuron visoxadifen orly QL 45 (22.5+22.5 g/L) poses no unacceptable risk to terrestrial non-target plants of off-cop areas following the proposed uses.

### CP 10.61 Summary of screening data

Screening data are not available.

#### **CP 10.6.2 Testing on non-target plants**

Report:	∃; ;	;;1999;M-238444-01&
Title:		effects of the test substance on vegetative gor
	of ten species of plants: AE F130360 +	- AE F122006, oil flow: Die, 22.5+22.5 & 6
Report No:	B002710	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Document No(s):	Report includes Trial Nos.:	
	312-122	
	<u>M-238444-01-2</u>	
Guidelines:	MAFF: 3850; OECD: (98)17; USEP	A (=EPA): 850.4250;Deviation not Pecifico
GLP/GEP:	yes	

Report:	j; § \$\frac{1}{2}000; \partial \tilde{2}385\frac{2}{2}9-01
Title:	A tier II toxicity test to determine the effect of the 12st subgrance is seed fing emergence of seven specified of plans: AET 130360 + AET 122067 oil flowable 22.5 +
	emergence of seven species of plans: AET 130340 + AET 12204 oil flowable 22.5 +
	1 22 5 a/I · A E E120260 01 1 V 0 \$\langle 1 204 ("1
Report No:	B002819
Document No(s):	Report includes Trial Nos. 7
	M-238550-0154
	312-123 CF00H582 M-238550-048
	11/1-236330-02-4
<b>Guidelines:</b>	MAFF: 59 NohSa@Notifi@ation Qo. 3850 OEQD: ENQMC/(MEM(98)17;
	MAFF: 59 NohSac Notification Co. 3850, OEGO: ENOMC/(HEM(98)17; USEPA (LEPA): 460; Deviation not specified Q.
GLP/GEP:	yes V , S , Y , Q , O

### Extended laboratory studies on non-target plants **CP 10.6.3**

Considering the findings reported above no further studies are required

#### Semi-field and field tests on non-target plants **CP 10.6.4**

Considering the findings reported above no further studies are required.

### Effects on other terrestrial organisms (Hora and fauna)

Studies on effects of other terrestoral organisms are neither available nor required.

#### Moniforing data > **CP 10.8**

Reliable monitoring data on formsulfution are not available.