

دورة: 2019

المدة: 03 سا و 30 د

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

الديوان الوطني للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: تسيير واقتصاد

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

التمرين الأول: (04 نقاط)

. $u_{n+1}=\frac{3}{4}u_n+2$ ، n عدد طبیعي المتتالیة العددیة المعرفة کما یلي $u_0=-4$: ومن أجل کل عدد طبیعي (u_n

 u_{2} و u_{1} أ) احسب كلا من الم

. $u_n < 8$ ، n برهن بالتراجع أنّه: من أجل كل عدد طبيعي (ب

. ادرس اتجاه تغیر المتتالیة (u_n) واستنتج أنها متقاربة (2

. عدد حقیقی α عدد $v_{\scriptscriptstyle n}=u_{\scriptscriptstyle n}-\alpha$: نضع n عدد طبیعی α عدد (3

$$v_{n+1} = \frac{3}{4}v_n - \frac{1}{4}\alpha + 2$$
 ، n عدد طبیعي (أ

 v_0 عيّن قيمة العدد α حتى تكون المتتالية (v_n) هندسية أساسها عيّن قيمة العدد α

. $u_{n}=-12\Big(rac{3}{4}\Big)^{n}+8$ ، n عبّر عن v_{n} بدلالة v_{n} بدلالة v_{n} نضع $\alpha=8$ نضع (ج

. $S_n = u_1 + u_2 + \ldots + u_n$:حيث n بدلالة S_n بدلالة (4

التمرين الثاني: (04 نقاط)

نرمي نردا غير مزيف ذا ستة أوجه مرقمة من 1 إلى 6 مرتين متتاليتين ونسجل الرقم الظاهر على الوجه العلوي في كل مرة.

- 1) ما احتمال الحصول على رقمين زوجيين ؟
- 2) ما احتمال الحصول على رقمين جداؤهما يساوي 6 ؟
- 3) ما احتمال الحصول على رقمين أحدهما ضعف الآخر؟
- 4) ما احتمال الحصول على رقمين زوجيين أحدهما هو 2 ؟

التمرين الثالث: (05 نقاط)

يمثّل الجدول التالي تطور الواردات في الجزائر مقدرة بالمليار دولار من سنة 2009 إلى سنة 2014 .

السنة	2009	2010	2011	2012	2013	2014
رتبة السنة x_i	1	2	3	4	5	6
الواردات y_i	39,29	40,47	47,25	47,49	54,85	58,33

(المرجع: المركز الوطني للإعلام الآلي والإحصاء التابع للجمارك)

مثّل سحابة النقط $M_{i}ig(x_{i}\,;y_{i}ig)$ في معلم متعامد. (1

(نأخذ 1cm لكل سنة على محور الفواصل و 1cm لكل 10 مليار دولار على محور التراتيب)

مها. وكانيي النقطة المتوسطة G، ثم علمها.

y=3,96x+34,09: بيّن أنّ معادلة (Δ) مستقيم الانحدار بالمربّعات الدّنيا لهذه السلسلة الإحصائية هي (Δ) مستقيم الانحدار بالمربّعات الدّنيا لهذه السلسلة الإحصائية هي أنّ مثل (Δ). (تُدوّر النتائج إلى Δ).

4) اعتماداً على التعديل الخطي السابق، ابتداءً من أيّ سنة تفوق الواردات 77 مليار دولار؟

التمرين الرابع: (07 نقاط)

. الدالة المعرّفة على \mathbb{R} بـ : $x-2 = x^3 + x - 2$ و g(x) تمثيلها البياني كما هو مبيّن في الشكل g(x)

. \mathbb{R} على على $g\left(x \right)$ واستنتج إشارة $g\left(1 \right)$ على على

 $(O\;;\;ec{i}\;,\;ec{j})$ في المستوي المنسوب إلى المعلم المتعامد والمتجانس

ب) احسب $\lim_{x\to 0} f(x)$ وفسّر النتيجة بيانيا.

$$f'(x) = \frac{g(x)}{x^3}$$
 : x معدوم غیر معدو عدد حقیقی غیر معدوم (2

استنتج اتجاه تغير الدالة f ثم شكّل جدول تغيراتها.

$$\cdot \left(C_f
ight)$$
 مقارب مائل المنحنى $y=x$ ألمعادلة (Δ) ذا المعادلة (Δ) مقارب مائل المنحنى (3

.(Δ) ادرس الوضع النسبي للمنحنى C_f و المستقيم

.
$$]-1.4;-1.3[$$
 في المجال α في المجال $f(x)=0$ تقبل حلا وحيدا α

. (C_f) ارسم (Δ) ثم المنحنى (5

الحسب
$$A$$
 مساحة الحيز المستوي المحدّد بالمنحنى (C_f) والمستقيمات التي معادلاتها:

$$x = 3$$
 $y = x = 1$

انتهى الموضوع الأول

الموضوع الثاني

التمرين الأول: (04 نقاط)

- . $(4x^2+3x-1)(x^2-5x+6)=0$ (E) : المعادلة \mathbb{R} المعادلة المعادلة
- p_i كيس به أربع كريات تحمل الأرقام 1 ، 3 ، 2 ، 1 نسحب منه كرية واحدة ونرمز ب p_i إلى احتمال سحب (2 . $p_4=2\alpha$ و $p_3=\alpha$ ، $p_2=\alpha^2$ ، $p_1=3\alpha^2$ و $p_3=\alpha$. $p_4=2\alpha$ و $p_3=\alpha$. $p_4=2\alpha$ و $p_3=\alpha$.
 - : نضع $\alpha = \frac{1}{4}$ نضع (3

. "سحب كرية تحمل رقما فرديا A

 $. \ " 4$ سحب كربة تحمل الرقم : B

. " 3 يسحب كرية تحمل رقما أصغر من أو يساوي : C

. "(E) سحب كربة تحمل رقما حلا للمعادلة : D

التمرين الثاني: (04 نقاط)

.
$$\begin{cases} u_2+2u_5=27\\ u_1=\frac{9}{2} \end{cases}$$
: — ب $\mathbb N$ يلمتتالية المعرفة على $\begin{pmatrix} u_n \end{pmatrix}$

- . r احسب حدها الأول u_0 واساسها (1
- . n بدلالة u_n بدلالة (2
- . S_2 و S_1 بيّن أن العدد 2019 حد من حدود هذه المتتالية ثم احسب كلا من المجموعين و S_1

.
$$S_2 = u_2 + u_4 + u_6 + \dots + u_{1344}$$
 و $S_1 = u_1 + u_2 + u_3 + \dots + u_{1344}$ حيث

.
$$S_3 = u_1 + u_3 + u_5 + \dots + u_{1343}$$
: حيث $S_3 = u_1 + u_3 + u_5 + \dots + u_{1343}$ - استنتج حساب المجموع

.
$$v_n = e^{6-2u_n}$$
 : بالمتتالية العددية المعرفة على (v_n) (4

.
$$S_n = \frac{1}{v_0} + \frac{1}{v_1} + \dots + \frac{1}{v_n}$$
 | $-$

التمرين الثالث: (05 نقاط)

يمثل الجدول التالي تطور الإنتاج السنوي (الوحدة: الطن) لأحد أنواع الأسماك في حوض مائي لتربية الأسماك.

السنة	2013	2014	2015	2016	2017	2018
x_i الرتبة	1	2	3	4	5	6
y_i (بالطن) الإنتاج	490	510	595	630	840	999

(نأخذ 1cm لكل سنة على محور الفواصل و 1cm لكل 1cm طن على محور التراتيب) .

- جد إحداثيي النقطة المتوسطة G لهذه السّحابة.
- بيّن أنّ معادلة لمستقيم الانحدار بالمربعات الدنيا لهذه السلسلة هي: y = 102 x + 320,33 ومثّله بيانيا.
 - 4) باعتبار أنّ كمية الإنتاج تتبع نفس الوتيرة:
 - أ) ما هي كمية الإنتاج المتوقعة لسنة 2023؟
 - ب) ابتداءً من أي سنة تتجاوز كمية الإنتاج 2000 طن؟

التمرين الرّابع: (07 نقاط)

- . $g(x)=2x+6-e^{2x+1}$: كما يلي $]-\infty;0]$ الدالة العددية المعرفة على المجال [$g(X)=2x+6-e^{2x+1}$
 - . $\lim_{x\to\infty} g(x)$ أحسب (أ (1
 - . ادرس اتجاه تغیر الدالة g على المجال $[0\,;\infty -[$ ثم شكل جدول تغیراتها
 - . $-3 < \alpha < -2.9$: حيث α حيث g(x) = 0 : قبل حلا وحيدا (1) بيّن أنّ المعادلة
 - .] $-\infty$; 0] على المجال g(x) على استنتج إشارة
- $f(x) = -2x^2 12x + e^{2x+1}$: كما يلي $f(x) = -2x^2 12x + e^{2x+1}$ الدالة المعرفة على المجال [0]
 - . $\left(O; \vec{i}, \vec{j} \right)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد $\left(C_f \right)$
 - حيث الوحدة على محور الفواصل 1cm وعلى محور التراتيب 0.5cm
- . f'(x) = -2g(x) :] $-\infty$; 0] من المجال x عدد حقیقی عدد عدد عقیقی (1
 - .] $-\infty$; 0] استنتج اتجاه تغیر الدالة f على المجال (2
 - . f أحسب أ $\lim_{x \to \infty} f(x)$ أحسب (3
- . [-4;0] على المجال $f(\alpha)=-2\alpha(\alpha+5)+6$: ثم ارسم $f(\alpha)=-2\alpha(\alpha+5)+6$: بيّن أنّ
 - . احسب بدلالة α التكامل : $\frac{1}{2}\int\limits_{\alpha}^{0}f\left(x\right)\,dx$: احسب بدلالة α التكامل : (5

انتهى الموضوع الثانى

العلامة		/ t bbl a * ti\ 7.1 bbl 1*a		
مجزأة مجموع		عناصر الإجابة (الموضوع الاول)		
		التمرين الأول: (04 نقاط)		
01.5	0.5×2	$u_2 = \frac{5}{4}$ $u_1 = -1$ (1)		
01.5	0.5	$u_n < 8$ ، n بالبرهان بالتراجع على أنّ : من أجل كل عدد طبيعي $u_n < 8$		
0.5	0.25	المتتالية (u_n) متزايدة تماما (2		
0.5	0.25	استنتاج أنها متقاربة		
	0.25	$v_{n+1} = \frac{3}{4}v_n - \frac{1}{4}\alpha + 2$ 'n عدد طبیعي أ) تبیان أنه من أجل كل عدد طبیعي (3		
1 77	0.25	lpha =8 ب) قيمة العدد $lpha$ هي		
1.75	0.25	$v_0 = -12$ الحد الأول		
	2×0.5	$u_{n}=-12igg(rac{3}{4}igg)^{n}+8$: التحقق أن $v_{n}=-12igg(rac{3}{4}igg)^{n}$ (ج		
0.25	0.25	$S_n = 36 \left[\left(\frac{3}{4} \right)^n - 1 \right] + 8n$: large (4)		
		التمرين الثاني: (04 نقاط)		
	01	عدد الحالات الممكنة		
	0.75	$P_1 = \frac{9}{36} = 0.25$ احتمال الحصول على رقمين زوجيين		
04	0.75	$p_2=rac{4}{36}=rac{1}{9}$ احتمال الحصول على رقمين جداءهما يساوي 6		
	0.75	$p_3=rac{6}{36}=rac{1}{6}$ احتمال الحصول على رقمين احدهما ضعف الاخر		
	0.75	$p_4=rac{5}{36}$ 2 احتمال الحصول على رقمين زوجيين احدهما هو		
		التمرين الثالث:(05 نقاط)		
	01	1) تمثيل سحابة النقط		
	01	G(3,5;47,95) إحداثيتي النقطة: $G(3,5;47,95)$		
05	0.75	G تمثیل		
	1.25	$y = 3,96x + 34,09$: هي (Δ) هي (3		
	0.5	$\left(\Delta ight)$ تمثیل		
	0.5	إذن ابتداء من السنة 2019 تفوق الواردات 77 مليار دولار $x\!=\!11$		

العلامة		عناصر الإجابة (الموضوع الأول)				
مجموع	مجزأة	عاصر الإجابة (الموصوح الأون)				
		التمرين الرابع: (07 نقاط)				
	0.5	g(1) = 0 I				
01	0.5	x اشارة $y(x)$ على $y(x)$ على $y(x)$ اشارة $y(x)$ على $y(x)$ على $y(x)$ اشارة $y(x)$ على $y(x)$ على $y(x)$ على $y(x)$ على المارة $y(x)$ على				
	0.5×2					
01.5		$\lim_{x \to +\infty} f(x) = +\infty \text{i} \lim_{x \to -\infty} f(x) = -\infty \text{i} \text{1}$				
	2×0.25	$\cdot (C_f)$ مقارب لـ (yy') ، $\lim_{x \to 0} f(x) = +\infty$ (ب				
	0.5	$f'(x) = \frac{g(x)}{x^3} $ (2				
01.50	0.5	$[1;+\infty[$ $]-\infty[$				
	0.25	$-\infty$ عند $+\infty$ عند Δ : $y=x$ (أ (3)				
0.5	0.25	(C_f) با الوضع النسبي: لما (C_f) $(x \in]-\infty;0$ يقع فوق (Δ) . لما (C_f) يقع				
		$(C_f)\cap(\Delta)=\{(1;1)\}$ $x=1$ اما (Δ) يقع تحت (C_f) يقع تحت (Δ) اما (Δ) اما (Δ)				
0.75	0.75	α المعادلة $f(x)=0$ تقبل حلا وحيدا (4				
01	01	$\left(C_{f} ight)$ رسم $\left(\Delta ight)$ رسم (Δ				
0.75	0.75	$A = \int_{1}^{3} (x - f(x)) dx = \left[\frac{1}{x} + \ln x \right]_{1}^{3} = \left(\ln 3 - \frac{2}{3} \right) u.a $ The second contains the containing the second contains the containing the containin				

العلامة		/ *1**ti			
مج	مجزأة	عناصر الإجابة (الموضوع الثاني)			
		التمرين الأول: (04 نقاط)			
	0.25×4	$S = \left\{-1, \frac{1}{4}, 2, 3 ight\}$ حل المعادلة (E) مجموعة الحلول (1			
04	0.5+0.5	$lpha=rac{1}{4}$ قيمة $lpha$ هي (2			
	4×0.5	$p(D) = \frac{5}{16}$, $p(C) = \frac{1}{2}$, $p(B) = \frac{1}{2}$, $p(A) = \frac{7}{16}$ (3)			
		التمرين الثاني: (4 نقاط)			
	1×2	$r=rac{.3}{2}$ حدها الاول $u_0=3$ واساسها (1			
	0.5	$u_n = 3 + \frac{3}{2}n$ عبارة الحد العام (2)			
	0.5	3)العدد 2019 هو حد من حدود هذه المتتالية و رتبته 1345 ودليله 1344			
04	2×0.25	$S_1 = 1359795$ و $S_2 = 680403$ المجموعين			
	0.25	$S_3 = S_1 - S_2 = 679392$ استنتاج المجموع $S_3 = S_1 - S_2 = 679392$			
	0.25	$S_n = \frac{1 - e^{3(n+1)}}{1 - e^3}$ يٰذي $v_n = e^{6 - 2u_n} = e^{-3n}$ (4)			
		التمرين الثالث: (05 نقاط)			
	01	$M(x_i; y_i)$ سحابة النقط (1			
03	01	G(3,5;677,33) إحداثيتي النقطة المتوسطة ($G(3,5;677,33)$			
	01	y = 102 x + 320,33 و تمثیله (3) معادلة مستقیم الانحدار هي			
02	01	1000. 900. 800. 700.			
		0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5			
	0.5	y = 1442,33 الكمية الإنتاج المتوقعة لسنة 2023: الرتبة $x = 11$ الكمية الإنتاج المتوقعة المتوقعة الرتبة $y = 1442,33$			
	0.5	ب) في السنة التي رتبتها 17 أي سنة 2029			

	العلامة	
مج	مجزأة	عناصر الإجابة (الموضوع الثاني)
		التمرين الرابع: (07 نقاط)
		(I)
	01	$\lim_{x \to \infty} g(x) = -\infty \text{(1)}$
	01	ب) اتجاه التغير وجدول التغيرات
	0.75	$g(x)=0$ المعادلة $g(x)=0$ تقبل حلا وحيدا α حيث $\alpha<-2.9$
	0.5	g(x) استنتاج إشارة $g(x)$
	0.5	$f'(x) = -2g(x)$ (1 (II)
	0.5	f اتجاه تغیر الدالة f
07	0.25+0.5	3) حساب النهاية+جدول التغيرات
	0.25	$f(\alpha) = -2\alpha(\alpha+5) + 6 $ (4
	0.25	$17.6 < f(\alpha) < 18.6$ $: f(\alpha)$
	0.5	رسم المنحنى
	0.5	$\int_{\alpha}^{0} \frac{1}{2} f(x) dx = \frac{1}{4} e + \frac{1}{3} \alpha^{3} + 3 \alpha^{2} - \frac{1}{4} e^{2\alpha + 1} $ (5)
	0.5	التفسير البياني : مساحة الحيّز المحدد بمنحنى الدالة والمستقيمات المعرفة بالمعادلات التالية : $x=\infty$ و $x=0$; $y=0$