Bài tập về phản ứng tách nước của ancol

A. Phương pháp giải

a. Tách nước tạo ete ở (140°C)

$$ROH + R'OH \xrightarrow{H_2SO_4} ROR'(ete) + H_2O$$

- Số ete thu được từ n ancol khác nhau tham gia phản ứng là $\frac{n(n+1)}{2}$

$$\Sigma n_{ancol} = 2\Sigma n_{ete} = 2\Sigma n_{H_2O}$$

 $\Sigma m_{ancol} = \Sigma m_{ete} + \Sigma m_{H_2O}$

- Khi ancol no, đơn chức, mạch hở tách nước tạo thành ete thì khi đốt ete này ta vẫn thu được:

$$n_{\text{Ete}}\!=\,n_{\text{H}_2\text{O}}-n_{\text{CO}_2}$$

- Phương pháp: Áp dụng định luật bảo toàn khối lượng.

b. Tách nước tạo anken (hay olefin) (ở 170°C)

$$C_nH_{2n+1}OH \xrightarrow{H_2SO_4} C_nH_{2n} + H_2O$$

Quy tắc tách Zai-xép: nhóm –OH ưu tiên tách ra cùng với nguyên tử H ở nguyên tử C có bậc cao hơn bên canh để tao thành liên kết đôi C=C.

- Trong phản ứng tách
$$H_2O \rightarrow Anken$$
:
$$\begin{aligned} \Sigma n_{ancol} &= \Sigma n_{anken} + \Sigma n_{H_2O} \\ \Sigma m_{ancol} &= \Sigma m_{anken} + \Sigma m_{H_2O} \end{aligned}$$

Chú ý:

- Nếu tách nước 1 ancol \to 1 anken duy nhất \to ancol no, đơn chức, bậc 1 hoặc ancol đối xứng.
- Nếu 1 hỗn hợp ancol tách nước cho ra 1 anken \rightarrow hỗn hợp ancol phải có 1 ancol là CH_3OH hoặc 2 ancol là đồng phân của nhau.
- Ancol bậc bao nhiều thì khi tách nước sẽ cho tối đa bấy nhiều anken.
- Khi tách nước của ancol thì số C không thay đổi, nên khi đốt ancol và anken đều thu được lượng CO_2 bằng nhau.

- Phương pháp: Áp dụng định luật bảo toàn khối lượng.

c. Mở rộng:

Ancol X tách nước trong điều kiện thích hợp tạo sản phẩm hữu cơ Y thì

+ Nếu tỉ khối của Y so với X nhỏ hơn 1 thì Y là anken và $d_{\frac{y}{x}} = \frac{14n}{14n+18}$

$$C_nH_{2n+1}OH \xrightarrow{H_2SO_4} C_nH_{2n} + H_2O$$

+ Nếu tỉ khối của Y so với X lớn hơn 1 thì Y là ete và $d_{\frac{Y}{X}} = \frac{2R + 16}{R + 17}$

$$2ROH \xrightarrow{H_2SO_4} ROR + H_2O$$

B. Ví dụ minh họa

Ví dụ 1: Đun nóng một ancol no, đơn chức X với H₂SO₄ đặc ở nhiệt độ thích hợp thu được chất hữu cơ Y. Tỉ khối hơi của Y so với X là 0,7. Công thức phân tử của X là

- A. C₅H₁₁OH
- B. C₄H₉OH
- C. C₂H₅OH
- D. C₃H₇OH

Hướng dẫn giải

Vì
$$d_{\frac{y}{X}} = 0,7 < 1 \rightarrow Y$$
 là anken

$$C_nH_{2n+1}OH \xrightarrow{H_2SO_4} C_nH_{2n} + H_2O$$

$$d_{Y/X} = \frac{14n}{14n+18} = 0.7$$

$$\rightarrow$$
 n = 3

 \rightarrow Công thức phân tử của X là C₃H₈O.

Đáp án D

Ví dụ 2: Đun nóng hỗn hợp gồm hai ancol đơn chức, mạch hở, kế tiếp nhau trong dãy đồng đẳng với H_2SO_4 đặc ở $140^{\circ}C$. Sau khi các phản ứng kết thúc, thu được 6 gam hỗn hợp gồm ba ete và 1,8 gam nước. Công thức phân tử của hai rượu trên là:

A. CH₃OH và C₂H₅OH

B. C₂H₅OH và C₃H₇OH

C. C₃H₅OH và C₄H₈OH

D. C₃H₇OH và C₄H₉OH

Hướng dẫn giải

$$n_{\rm H_2O} = \frac{1.8}{18} = 0.1 \text{ mol}$$

Ta có: $n_{ancol} = 2n_{H_2O} = 2.0, 1 = 0, 2 \text{ mol}$

Áp dụng định luật bảo toàn khối lượng có:

$$m_{ancol} = m_{ete} + m_{nu\acute{o}c} = 6 + 1.8 = 7.8 gam$$

Gọi công thức chung của 2 ancol ROH

$$\rightarrow M_{\text{ancol}} = \frac{7.8}{0.2} = 39$$

Mà 2 ancol là đồng đẳng liên tiếp \rightarrow 2 ancol là CH₃OH và C₂H₅OH

Đáp án A

Ví dụ 3: Tách nước hoàn toàn từ hỗn hợp Y gồm 2 ancol (rượu) A, B ta được hỗn hợp X gồm các olefin. Nếu đốt cháy hoàn toàn Y thì thu được 0,66g CO₂. Vậy khi đốt cháy hoàn toàn X thì tổng khối lượng CO₂ và H₂O là:

A. 0,903g

B. 0,39g

C. 0,94g

D. 0,93g

Hướng dẫn giải

$$n_{CO_2} = \frac{0.66}{44} = 0.015 \text{ mol}$$

Bảo toàn nguyên tố C: $n_{C \text{ (ancol)}} = n_{C \text{(anken)}} = n_{C \text{(CO}_2)} = 0,015 \text{ mol}$

Khi đốt cháy X và đốt cháy Y đều thu được lượng CO_2 như nhau. Mà Y là hỗn hợp các olefin nên $n_{\rm H_2O}=n_{\rm CO_2}=0{,}015~({\rm mol})$

$$\rightarrow$$
 $m_{CO_2} + m_{H_2O} = 0.015.44 + 0.015.18 = 0.93g$

Đáp án D

C. Bài tập tự luyện

Câu 1: Khi tách nước từ một chất X có công thức phân tử $C_4H_{10}O$ tạo thành 3 anken là đồng phân của nhau (tính cả đồng phân hình học). Công thức cấu tạo thu gọn của X là

A. CH₃CH(OH)CH₂CH₃

B. (CH₃)₃COH

C. CH₃OCH₂CH₂CH₃

D. CH₃CH(CH₃)CH₂OH

Hướng dẫn giải

Loại B và C vì B, C không bị tách nước

Loại D do D chỉ có một hướng tách nên không thể tạo ra 3 anken

A đúng vì CH₃CH(OH)CH₂CH₃ có 2 cách tách là:

CH₂=CH-CH₂-CH₃ và CH₃-CH=CH-CH₃ (có đồng phân hình học)

Đáp án A

Câu 2: Cho các ancol sau: CH₃CH₂CH₂OH (1); CH₃CH(OH)CH₃ (2); CH₃CH₂CH(OH)CH₂CH₃ (3) và CH₃CH(OH)C(CH₃)₃ (4). Dãy gồm các ancol tách nước chỉ tạo 1 olefin duy nhất là

A. (1), (2)

B.(1),(2),(3)

C.(1),(2),(4)

D.(1),(2),(3),(4)

Hướng dẫn giải

Chỉ có (3) tách nước sẽ tạo ra CH₃CH=CHCH₂CH₃ có đồng phân cis – trans

Đáp án C

Câu 3: Đun nóng ancol đơn chức X với H₂SO₄ đặc ở 140 °C thu được Y. Tỉ khối hơi của Y đối với X là 1,75. X là

- A. CH₃OH
- B. C₂H₅OH
- C. C₄H₇OH
- D. C₄H₉OH

Hướng dẫn giải

Vì
$$d_{\frac{y}{X}} = 1,75 > 1 \rightarrow Y$$
 là ete

$$2ROH \xrightarrow{H_2SO_4} ROR + H_2O$$

$$d_{Y/X} = \frac{2R + 16}{R + 17} = 1,75$$

$$\rightarrow R = 55(-C_4H_7)$$

 \rightarrow Công thức phân tử của X là C₄H₇OH.

Đáp án C

Câu 4: Đun 132,8g hỗn hợp 3 ancol no, đơn chức với dung dịch H_2SO_4 đặc được hỗn hợp các ete có số mol bằng nhau và có khối lượng là 111,2g . Số mol của mỗi ete trong hỗn hợp là :

- A. 0,1 mol
- B. 0,2 mol
- C. 0,3 mol
- D. 0,15 mol

Hướng dẫn giải

Áp dụng định luật bảo toàn khối lượng có : $m_{Ancol\ phản\ \'ung} = m_{ete} +\ m_{H_2O\ sp}$

$$\rightarrow$$
 m_{H,O} = 132,8 - 111,2 = 21,6

$$\rightarrow n_{H_2O} = 1,2 \text{mol}$$

$$n_{ete} = n_{H,O} = 1,2 \text{ mol}$$

Số ete =
$$\frac{3.(3+1)}{2}$$
 = 6

Vì các ete có số mol bằng nhau⇒ số mol mỗi ete là $\frac{1,2}{6}$ = 0,2

Đáp án B.

Câu 5: Tách nước hoàn toàn từ hỗn hợp X gồm 2 ancol A, B ta được hỗn hợp Y gồm các olefin. Nếu đốt cháy hoàn toàn hỗn hợp X thì thu được 1,76 g CO₂. Khi đốt cháy hoàn toàn Y thì tổng khối lượng nước và CO₂ tạo ra là

- A. 2,94 g
- B. 2,48 g
- C. 1,76 g
- D. 2,76 g

Hướng dẫn giải

$$n_{CO_2} = \frac{1,76}{44} = 0,04 \text{ mol}$$

Bảo toàn nguyên tố C: $n_{C \text{ (ancol)}} = n_{C \text{(anken)}} = n_{C(CO_2)} = 0,04 \text{ mol}$

Khi đốt cháy X và đốt cháy Y đều thu được lượng CO_2 như nhau. Mà Y là hỗn hợp các olefin nên $n_{\rm H_2O}=n_{\rm CO_2}=0{,}04~(mol)$

$$\rightarrow$$
 m_{CO₂} + m_{H₂O} = 0,04.44 + 0,04.18 = 2,48g

Đáp án B

Câu 6: Đun hai rượu đơn chức với H_2SO_4 đặc, $140^{\circ}C$, được hỗn hợp 3 ete. Lấy 0,72 gam một trong ba ete đem đốt cháy hoàn toàn thu được 1,76 gam CO_2 và 0,72 gam H_2O . Hai rượu đó là:

A. C₂H₅OH và C₃H₇OH

B. C₂H₅OH và C₄H₉OH

C. CH₃OH và C₂H₅OH

D. CH₃OH và C₃H₅OH

Hướng dẫn giải

$$n_{CO_2} = \frac{1,76}{44} = 0,04 \text{ mol}$$

 $n_{\rm H_2O} = \frac{0.72}{18} = 0.04 \text{ mol}$

Khi đốt ete:

Bảo toàn nguyên tố C: $n_C = n_{CO_2} = 0.04 \text{ mol}$

Bảo toàn nguyên tố H: $n_H = 2n_{H,O} = 0.08 \text{ mol}$

Bảo toàn khối lượng: $m_O = m_{ete} - m_C - m_H = 0.72 - 0.04.12 - 0.08.1 = 0.16$ gam

$$\rightarrow$$
 $n_{ete} = n_O = 0.01 \text{ mol}$

$$\rightarrow$$
 C: H: O = n_C : n_H : n_O = 4:8:1

$$M_{ete} = \frac{0.72}{0.01} = 72$$

 \rightarrow Công thức phân tử của ete là C₄H₈O

→ Công thức cấu tạo: CH₃OCH₂CH=CH₂

→Các ancol là CH₃OH và C₃H₅OH

Đáp án D

Câu 7: Đốt cháy hoàn toàn một lượng hỗn hợp X gồm 3 ancol thuộc cùng dãy đồng đẳng thu được 6,72 lít CO_2 (đktc) và 9,90 gam nước. Nếu đun nóng cũng lượng hỗn hợp X như trên với H_2SO_4 đặc ở nhiệt độ thích hợp để chuyển hết thành ete thì tổng khối lượng ete thu được là

A. 7,40 gam

B. 5,46 gam

C. 4,20 gam

D. 6,45 gam

Hướng dẫn giải

$$n_{CO_2} = \frac{6,72}{22,4} = 0,3 \text{ (mol)}$$

$$n_{\rm H_2O} = \frac{9.9}{18} = 0.55 \text{ (mol)}$$

 $n_{_{\rm H_2O}}~>~n_{_{\rm CO_2}} \rightarrow 3$ ancol no, mạch hở

$$n_{ancol} = 0.55 - 0.3 = 0.25 (mol)$$

Gọi công thức chung của 3 ancol là $C_nH_{2n+2}O$

Số nguyên tử
$$\overline{C} = \frac{0.3}{0.25} = 1.2$$

$$m_{ancol} = 0,25.(14n+18) = 0,25.(14.1,2+18) = 8,7 \text{ gam}$$

Mặt khác khi tách nước thì $n_{\rm H_2O} = \frac{1}{2} n_{\rm ancol} = \frac{1}{2}.0,25 = 0,125 \, \text{mol}$

Áp dụng định luật bảo toàn khối lượng có

$$m_{ancol} = m_{ete} + m_{nu\acute{o}c} \rightarrow m_{ete} = 8,7-0,125.$$
 18 = 6,45 g

Đáp án D

Câu 8: Khi thực hiện phản ứng tách nước với ancol X, chỉ thu được anken duy nhất. Oxi hóa hoàn toàn một lượng X thu được 5,6 lít CO₂ và 5,4 gam nước. Hỏi có bao nhiều công thức cấu tạo phù hợp với X?

A. 2

B. 4

C. 3

D. 5

Hướng dẫn giải

X bị tách nước tạo 1 anken $\to X$ là ancol no, đơn chức và chỉ có 1 hướng tách Công thức phân tử của X là $C_nH_{2n+1}OH$

$$n_{ancol} = n_{H_2O} - n_{CO_2} = \frac{5,4}{18} - \frac{5,6}{22,4} = 0,05 \,\text{mol}$$

$$\rightarrow$$
 n = $\frac{0.25}{0.05}$ = 5 \rightarrow Công thức phân tử của X là C₅H₁₁OH

Công thức cấu tạo của X thỏa mãn là

$$CH_3 - CH_2 - CH_2 - CH_2 - CH_2OH$$

$$CH_3 - CH(CH_3) - CH_2 - CH_2OH$$

$$CH_3 - CH_2 - CH(CH_3) - CH_2OH$$

Đáp án C

Câu 9: Cho V lít (đktc) hỗn hợp khí gồm 2 olefin liên tiếp trong dãy đồng đẳng hợp nước (H₂SO₄ xúc tác) thu được 12,9 gam hỗn hợp A gồm 3 Ancol. Đun nóng 12,9 gam A trong H₂SO₄ đặc ở 140°C thu được 10,65 gam hỗn hợp B gồm 6 ete.

A) Công thức phân tử của 2 anken là:

- A. C₂H₄ và C₃H₆
- B. C₂H₆ và C₃H₈
- $C. C_3H_6$ và C_4H_8
- $D. \ C_4H_8 \ va \ C_5H_{10}$

Hướng dẫn giải

Áp dụng định luật bảo toàn khối lượng có : $m_{Ancol\;phán\;\acute{u}ng}\!=m_{ete}+\;m_{H_2O}$

$$\rightarrow$$
 $m_{H,O} = 12,9 - 10,65 = 2,25(g)$

$$\rightarrow$$
 n_{H₂O} = $\frac{2,25}{18}$ = 0,125 (mol)

$$\rightarrow n_{Ancol} = 2n_{H_2O} = 0,25 \text{ (mol)}$$

Anken + H₂O
$$\rightarrow$$
 Ancol
0,25 0,25 \leftarrow 0,25
 $m_{Anken} = m_{Ancol} - m_{H_2O} = 12,9 - 0,25.18 = 8,4$
 $\rightarrow M_{Anken} = \frac{8,4}{0,25} = 33,6$

Mà 2 anken liên tiếp \rightarrow 2 anken đó là C_2H_4 và C_3H_6

Đáp án A.

Câu 10: Chia hỗn hợp gồm hai ancol đơn chức X và Y (phân tử khối của X nhỏ hơn của Y) là đồng đẳng kế tiếp thành hai phần bằng nhau. Đốt cháy hoàn toàn phần 1 thu được 5,6 lít CO₂ (đktc) và 6,3 gam H₂O. Đun nóng phần 2 với H₂SO₄ đặc ở 140°C tạo thành 1,25 gam hỗn hợp ba ete. Hoá hơi hoàn toàn hỗn hợp ba ete trên, thu được thể tích hơi bằng thể tích của 0,42 gam N₂ (trong cùng điều kiện nhiệt độ, áp suất). Hiệu suất phản ứng tạo ete của X, Y lần lượt là

A. 25% và 35%.

B. 20% và 40%.

C. 40% và 20%.

D. 30% và 30%.

Hướng dẫn giải

+ Phần 1:
$$n_{CO_2} = \frac{5.6}{22.4} = 0.25 \text{ (mol)}, \ n_{H_2O} = \frac{6.3}{18} = 0.35 \text{ (mol)}$$

 $n_{H_2O} > n_{CO_2} \Rightarrow 2$ ancol no, mạch hở

$$n_{ancol} = 0.35 - 0.25 = 0.1 \text{(mol)}$$

Gọi công thức chung của 2 ancol là $C_n H_{2n+2} O$

$$\frac{n_{H_2O}}{n_{CO_2}} = \frac{n+1}{n} = \frac{0.35}{0.25}$$
$$\Rightarrow n = 2.5$$

 \Rightarrow 2 ancol đó là C₂H₅OH (X) (x mol) và C₃H₇OH (Y) (y mol)

$$\frac{x}{y} = \frac{3-2.5}{2.5-2} = 1$$

$$\rightarrow n_{C_2H_5OH} = n_{C_3H_7OH} = 0.05 (mol)$$

+ Phần 2:

$$n_{ete} = \frac{0,42}{28} = 0,015 \text{ (mol)}$$

$$\rightarrow \begin{cases} n_{Ancol pu} = 2n_{ete} = 0,03 \text{ (mol)} \\ n_{H_2O} = n_{ete} = 0,015 \text{ (mol)} \end{cases}$$

Áp dụng định luật bảo toàn khối lượng có:

$$m_{Ancol\;ph{\mbox{\tiny d}}n\;{\mbox{\tiny ψ}}ng} = m_{\;\mbox{\tiny ete}} + \; m_{H_2O}$$

$$\rightarrow m_{Ancol\ phån\ \acute{u}ng} = 1,25 + 0,015.18 = 1,52g$$

$$Goi \begin{cases} n_{C_2H_5OH \ pu} = a \\ n_{C_3H_7OH \ pu} = b \end{cases} (mol)$$

$$\begin{cases} a + b = n_{Ancol pu} = 0.03 \\ 46a + 60b = m_{Ancol pu} = 1.52 \end{cases}$$

$$\rightarrow$$
a = 0,02 mol ;b = 0,01 mol

$$H_{(X)} = \frac{0.02}{0.05}.100\% = 40\%$$

$$H_{(Y)} = \frac{0.01}{0.05}.100\% = 20\%$$

Đáp án C.