Matrix Norms

Tom Lyche

Centre of Mathematics for Applications, Department of Informatics, University of Oslo

September 28, 2009

Matrix Norms

We consider matrix norms on $(\mathbb{C}^{m,n},\mathbb{C})$. All results holds for $(\mathbb{R}^{m,n},\mathbb{R})$.

Definition (Matrix Norms)

A function $\|\cdot\|: \mathbb{C}^{m,n} \to \mathbb{C}$ is called a **matrix norm** on $\mathbb{C}^{m,n}$ if for all $A, B \in \mathbb{C}^{m,n}$ and all $\alpha \in \mathbb{C}$

- 1. $||A|| \ge 0$ with equality if and only if A = 0. (positivity)
- 2. $\|\alpha A\| = |\alpha| \|A\|$. (homogeneity)
- 3. $||A + B|| \le ||A|| + ||B||$. (subadditivity)

A matrix norm is simply a vector norm on the finite dimensional vector spaces $(\mathbb{C}^{m,n},\mathbb{C})$ of $m \times n$ matrices.

Equivalent norms

Adapting some general results on vector norms to matrix norms give

Theorem

- 1. All matrix norms are equivalent. Thus, if $\|\cdot\|$ and $\|\cdot\|'$ are two matrix norms on $\mathbb{C}^{m,n}$ then there are positive constants μ and M such that $\mu\|A\| \leq \|A\|' \leq M\|A\|$ holds for all $A \in \mathbb{C}^{m,n}$.
- 2. A matrix norm is a continuous function $\|\cdot\|: \mathbb{C}^{m,n} \to \mathbb{R}$.

Examples

From any vector norm $\| \|_V$ on \mathbb{C}^{mn} we can define a matrix norm on $\mathbb{C}^{m,n}$ by $\|\mathbf{A}\| := \|\text{vec}(\mathbf{A})\|_V$, where $\text{vec}(\mathbf{A}) \in \mathbb{C}^{mn}$ is the vector obtained by stacking the columns of \mathbf{A} on top of each other.

$$\|\mathbf{A}\|_{\mathcal{S}} := \sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|, \ p = 1$$
, Sum norm, $\|\mathbf{A}\|_{F} := \big(\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^{2} \big)^{1/2}, \ p = 2$, Frobenius norm, $\|\mathbf{A}\|_{M} := \max_{i,j} |a_{ij}|, \ p = \infty$, Max norm.

(1)

The Frobenius Matrix Norm 1.

The Frobenius Matrix Norm 2.

Unitary Invariance.

- ▶ If $\mathbf{A} \in \mathbb{C}^{m,n}$ and $\mathbf{U} \in \mathbb{C}^{m,m}$, $\mathbf{V} \in \mathbb{C}^{n,n}$ are unitary
- $\|\mathbf{U}\mathbf{A}\|_F^2 \stackrel{2.}{=} \sum_{j=1}^n \|\mathbf{U}\mathbf{a}_{\cdot j}\|_2^2 = \sum_{j=1}^n \|\mathbf{a}_{\cdot j}\|_2^2 \stackrel{2.}{=} \|\mathbf{A}\|_F^2.$
- $\| \mathbf{AV} \|_F \stackrel{1}{=} \| \mathbf{V}^H \mathbf{A}^H \|_F = \| \mathbf{A}^H \|_F \stackrel{1}{=} \| \mathbf{A} \|_F.$

Submultiplicativity

- ► Suppose **A**, **B** are rectangular matrices so that the product **AB** is defined.
- ► $\|\mathbf{A}\mathbf{B}\|_F^2 = \sum_{i=1}^n \sum_{j=1}^k (\mathbf{a}_{i\cdot}^T \mathbf{b}_{\cdot j})^2 \le \sum_{i=1}^n \sum_{j=1}^k \|\mathbf{a}_{i\cdot}\|_2^2 \|\mathbf{b}_{\cdot j}\|_2^2 = \|\mathbf{A}\|_F^2 \|\mathbf{B}\|_F^2.$

Subordinance

- $\|\mathbf{A}\mathbf{x}\|_2 \leq \|\mathbf{A}\|_F \|\mathbf{x}\|_2$, for all $\mathbf{x} \in \mathbb{C}^n$.
- ▶ Since $\|\mathbf{v}\|_F = \|\mathbf{v}\|_2$ for a vector this follows from submultiplicativity.

Explicit Expression

- Let $\mathbf{A} \in \mathbb{C}^{m,n}$ have singular values $\sigma_1, \dots, \sigma_n$ and SVD $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^H$. Then
- $\|\mathbf{A}\|_F \stackrel{3.}{=} \|\mathbf{U}^H \mathbf{A} \mathbf{V}\|_F = \|\mathbf{\Sigma}\|_F = \sqrt{\sigma_1^2 + \dots + \sigma_n^2}.$

Consistency

- ▶ A matrix norm is called **consistent on** $\mathbb{C}^{n,n}$ if 4. $\|\mathbf{A}\mathbf{B}\| \leq \|\mathbf{A}\| \|\mathbf{B}\|$ (submultiplicativity) holds for all $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{n,n}$.
- ▶ A matrix norm is **consistent** if it is defined on $\mathbb{C}^{m,n}$ for all $m, n \in \mathbb{N}$, and 4. holds for all matrices \mathbf{A} , \mathbf{B} for which the product \mathbf{AB} is defined.
- ▶ The Frobenius norm is consistent.
- ▶ The Sum norm is consistent.
- ▶ The Max norm is not consistent.
- ▶ The norm $\|\mathbf{A}\| := \sqrt{mn} \|\mathbf{A}\|_{M}$, $\mathbf{A} \in \mathbb{C}^{m,n}$ is consistent.

Subordinate Matrix Norm

Definition

- ▶ Suppose $m, n \in \mathbb{N}$ are given,
- ▶ Let $\| \|_{\alpha}$ on \mathbb{C}^m and $\| \|_{\beta}$ on \mathbb{C}^n be vector norms, and let $\| \|$ be a matrix norm on $\mathbb{C}^{m,n}$.
- ▶ We say that the matrix norm $\| \|$ is **subordinate** to the vector norms $\| \|_{\alpha}$ and $\| \|_{\beta}$ if $\| \mathbf{A} \mathbf{x} \|_{\alpha} \leq \| \mathbf{A} \| \| \mathbf{x} \|_{\beta}$ for all $\mathbf{A} \in \mathbb{C}^{m,n}$ and all $\mathbf{x} \in \mathbb{C}^n$.
- ▶ If $\| \|_{\alpha} = \| \|_{\beta}$ then we say that $\| \|$ is subordinate to $\| \|_{\alpha}$.
- ► The Frobenius norm is subordinate to the Euclidian vector norm.
- ▶ The Sum norm is subordinate to the I_1 -norm.
- ▶ $\|\mathbf{A}\mathbf{x}\|_{\infty} \leq \|\mathbf{A}\|_{M} \|\mathbf{x}\|_{1}$.

Operator Norm

Definition

Suppose $m, n \in \mathbb{N}$ are given and let $\|\cdot\|_{\alpha}$ be a vector norm on \mathbb{C}^n and $\|\cdot\|_{\beta}$ a vector norm on \mathbb{C}^m . For $A \in \mathbb{C}^{m,n}$ we define

$$||A|| := ||A||_{\alpha,\beta} := \max_{\mathbf{x} \neq 0} \frac{||A\mathbf{x}||_{\beta}}{||\mathbf{x}||_{\alpha}}.$$
 (2)

We call this the (α, β) operator norm, the (α, β) -norm, or simply the α -norm if $\alpha = \beta$.

Observations

- $\|\mathbf{A}\|_{\alpha,\beta} = \mathsf{max}_{\mathbf{x} \notin \mathsf{ker}(\mathbf{A})} \frac{\|\mathbf{A}\mathbf{x}\|_{\alpha}}{\|\mathbf{x}\|_{\beta}} = \mathsf{max}_{\|\mathbf{x}\|_{\beta}=1} \|\mathbf{A}\mathbf{x}\|_{\alpha}.$
- ▶ $\|\mathbf{A}\mathbf{x}\|_{\alpha} \leq \|\mathbf{A}\| \|\mathbf{x}\|_{\beta}$.
- $\|\mathbf{A}\|_{\alpha,\beta} = \|\mathbf{A}\mathbf{x}^*\|_{\alpha}$ for some $\mathbf{x}^* \in \mathbb{C}^n$ with $\|\mathbf{x}^*\|_{\beta} = 1$.
- ▶ The operator norm is a matrix norm on \mathbb{C}^{mn} .
- ▶ The Sum norm and Frobenius norm are not an α operator norm for any α .

Operator norm Properties

- ▶ The operator norm is a matrix norm on $\mathbb{C}^{m,n}$.
- ▶ The operator norm is consistent if the vector norm $\| \|_{\alpha}$ is defined for all $m \in \mathbb{N}$ and $\| \|_{\beta} = \| \|_{\alpha}$.

Proof

- In 2. and 3. below we take the max over the unit sphere S_{β} .
 - 1. Nonnegativity is obvious. If $\|\mathbf{A}\| = 0$ then $\|\mathbf{A}\mathbf{y}\|_{\beta} = 0$ for each $\mathbf{y} \in \mathbb{C}^n$. In particular, each column $\mathbf{A}\mathbf{e}_j$ in \mathbf{A} is zero. Hence $\mathbf{A} = 0$.
 - 2. $\|c\mathbf{A}\| = \max_{\mathbf{x}} \|c\mathbf{A}\mathbf{x}\|_{\alpha} = \max_{\mathbf{x}} |c| \|\mathbf{A}\mathbf{x}\|_{\alpha} = |c| \|\mathbf{A}\|.$
 - 3. $\|\mathbf{A} + \mathbf{B}\| = \max_{\mathbf{x}} \|(\mathbf{A} + \mathbf{B})\mathbf{x}\|_{\alpha} \le \max_{\mathbf{x}} \|\mathbf{A}\mathbf{x}\|_{\alpha} + \max_{\mathbf{x}} \|\mathbf{B}\mathbf{x}\|_{\alpha} = \|\mathbf{A}\| + \|\mathbf{B}\|.$
 - $\begin{aligned} \textbf{4.} \ \ \|\mathbf{A}\mathbf{B}\| &= \mathsf{max}_{\mathsf{Bx}\neq \mathbf{0}} \, \frac{\|\mathsf{A}\mathsf{Bx}\|_{\alpha}}{\|\mathsf{x}\|_{\alpha}} = \mathsf{max}_{\mathsf{Bx}\neq \mathbf{0}} \, \frac{\|\mathsf{A}\mathsf{Bx}\|_{\alpha}}{\|\mathsf{Bx}\|_{\alpha}} \frac{\|\mathsf{Bx}\|_{\alpha}}{\|\mathsf{x}\|_{\alpha}} \\ &\leq \mathsf{max}_{\mathsf{y}\neq \mathbf{0}} \, \frac{\|\mathsf{A}\mathsf{y}\|_{\alpha}}{\|\mathsf{y}\|_{\alpha}} \, \mathsf{max}_{\mathsf{x}\neq \mathbf{0}} \, \frac{\|\mathsf{B}\mathsf{x}\|_{\alpha}}{\|\mathsf{x}\|_{\alpha}} = \|\mathbf{A}\| \, \|\mathbf{B}\|. \end{aligned}$

The p matrix norm

- ▶ The operator norms $\|\cdot\|_p$ defined from the *p*-vector norms are of special interest.
- ▶ Recall $\|\mathbf{x}\|_p := \left(\sum_{j=1}^n |x_j|^p\right)^{1/p}, \ p \ge 1, \quad \|\mathbf{x}\|_\infty := \max_{1 \le j \le n} |x_j|.$
- ▶ Used quite frequently for $p = 1, 2, \infty$.
- ▶ We define for any $1 \le p \le \infty$

$$||A||_{p} := \max_{\mathbf{x} \neq 0} \frac{||A\mathbf{x}||_{p}}{||\mathbf{x}||_{p}} = \max_{||\mathbf{y}||_{p} = 1} ||A\mathbf{y}||_{p}.$$
(3)

► The *p*-norms are consistent matrix norms which are subordinate to the *p*-vector norm.

Explicit expressions

Theorem

For $\mathbf{A} \in \mathbb{C}^{m,n}$ we have

$$\begin{split} \|\mathbf{A}\|_1 &:= \max_{1 \leq j \leq n} \sum_{k=1}^m |a_{k,j}|, \qquad \qquad (\text{max column sum}) \\ \|\mathbf{A}\|_2 &:= \sigma_1, \qquad \qquad (\text{largest singular value of } \mathbf{A}) \\ \|\mathbf{A}\|_\infty &:= \max_{1 \leq k \leq m} \sum_{j=1}^n |a_{k,j}|, \qquad (\text{max row sum}). \end{split}$$

The expression $\|\mathbf{A}\|_2$ is called the **two-norm** or the **spectral norm** of \mathbf{A} . The explicit expression follows from the minmax theorem for singular values.

Examples

For $\mathbf{A} := \frac{1}{15} \begin{bmatrix} \frac{14}{2} & \frac{4}{21} & \frac{16}{16} \end{bmatrix}$ we find

- $\|\mathbf{A}\|_1 = \frac{29}{15}.$
- ▶ $\|\mathbf{A}\|_2 = 2$.
- $ightharpoonup \|\mathbf{A}\|_{\infty} = \frac{37}{15}.$
- ▶ $\|\mathbf{A}\|_F = \sqrt{5}$.
- $A := \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$
- $||A||_1 = 6$
- $||A||_2 = 5.465$
- $||A||_{\infty} = 7.$
- $||A||_F = 5.4772$

The 2 norm

Theorem

Suppose $\mathbf{A} \in \mathbb{C}^{n,n}$ has singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$ and eigenvalues $|\lambda_1| \geq |\lambda_2| \geq \cdots \geq |\lambda_n|$. Then

$$\|\mathbf{A}\|_{2} = \sigma_{1} \text{ and } \|\mathbf{A}^{-1}\|_{2} = \frac{1}{\sigma_{n}},$$
 (5)

 $\|\mathbf{A}\|_2 = \lambda_1$ and $\|\mathbf{A}^{-1}\|_2 = \frac{1}{\lambda_n}$, if **A** is symmetric positive definite (6)

 $\|\mathbf{A}\|_{2} = |\lambda_{1}| \text{ and } \|\mathbf{A}^{-1}\|_{2} = \frac{1}{|\lambda_{n}|}, \text{ if } \mathbf{A} \text{ is normal.}$ (7)

For the norms of \mathbf{A}^{-1} we assume of course that \mathbf{A} is nonsingular.

Unitary Transformations

Definition

A matrix norm $\| \|$ on $\mathbb{C}^{m,n}$ is called **unitary invariant** if $\|\mathbf{UAV}\| = \|\mathbf{A}\|$ for any $\mathbf{A} \in \mathbb{C}^{m,n}$ and any unitary matrices $\mathbf{U} \in \mathbb{C}^{m,m}$ and $\mathbf{V} \in \mathbb{C}^{n,n}$.

If **U** and **V** are unitary then $\mathbf{U}(\mathbf{A} + \mathbf{E})\mathbf{V} = \mathbf{U}\mathbf{A}\mathbf{V} + \mathbf{F}$, where $\|\mathbf{F}\| = \|\mathbf{E}\|$.

Theorem

The Frobenius norm and the spectral norm are unitary invariant. Moreover $\|\mathbf{A}^H\|_F = \|\mathbf{A}\|_F$ and $\|\mathbf{A}^H\|_2 = \|\mathbf{A}\|_2$.

Proof 2 norm

- $\|\mathbf{U}\mathbf{A}\|_2 = \max_{\|\mathbf{x}\|_2=1} \|\mathbf{U}\mathbf{A}\mathbf{x}\|_2 = \max_{\|\mathbf{x}\|_2=1} \|\mathbf{A}\mathbf{x}\|_2 = \|\mathbf{A}\|_2.$
- Arr $\|\mathbf{A}^H\|_2 = \|\mathbf{A}\|_2$ (same singular values).
- $\|\mathbf{AV}\|_2 = \|(\mathbf{AV})^H\|_2 = \|\mathbf{V}^H\mathbf{A}^H\|_2 = \|\mathbf{A}^H\|_2 = \|\mathbf{A}\|_2.$

Perturbation of linear systems

$$x_1 + x_2 = 20$$

 $x_1 + (1-10^{-16})x_2 = 20-10^{-15}$

- ▶ The exact solution is $x_1 = x_2 = 10$.
- Suppose we replace the second equation by

$$x_1 + (1 + 10^{-16})x_2 = 20 - 10^{-15},$$

- ▶ the exact solution changes to $x_1 = 30$, $x_2 = -10$.
- ▶ A small change in one of the coefficients, from $1-10^{-16}$ to $1+10^{-16}$, changed the exact solution by a large amount.

III Conditioning

- ▶ A mathematical problem in which the solution is very sensitive to changes in the data is called **ill-conditioned** or sometimes **ill-posed**.
- ▶ Such problems are difficult to solve on a computer.
- If at all possible, the mathematical model should be changed to obtain a more well-conditioned or properly-posed problem.

Perturbations

- We consider what effect a small change (perturbation) in the data A,b has on the solution x of a linear system Ax = b.
- ▶ Suppose **y** solves (A + E)**y** = **b**+**e** where E is a (small) $n \times n$ matrix and **e** a (small) vector.
- ▶ How large can y-x be?
- To measure this we use vector and matrix norms.

Conditions on the norms

- ▶ $\|\cdot\|$ will denote a vector norm on \mathbb{C}^n and also a submultiplicative matrix norm on $\mathbb{C}^{n,n}$ which in addition is subordinate to the vector norm.
- ▶ Thus for any $A, B \in \mathbb{C}^{n,n}$ and any $\mathbf{x} \in \mathbb{C}^n$ we have

$$||AB|| \le ||A|| \, ||B|| \text{ and } ||A\mathbf{x}|| \le ||A|| \, ||\mathbf{x}||.$$

➤ This is satisfied if the matrix norm is the operator norm corresponding to the given vector norm or the Frobenius norm.

Absolute and relative error

- ► The difference $\|\mathbf{y} \mathbf{x}\|$ measures the absolute error in \mathbf{y} as an approximation to \mathbf{x} ,
- ▶ $\|\mathbf{y} \mathbf{x}\|/\|\mathbf{x}\|$ or $\|\mathbf{y} \mathbf{x}\|/\|\mathbf{y}\|$ is a measure for the relative error.

Perturbation in the right hand side

Theorem

Suppose $A \in \mathbb{C}^{n,n}$ is invertible, $\mathbf{b}, \mathbf{e} \in \mathbb{C}^n$, $\mathbf{b} \neq \mathbf{0}$ and $A\mathbf{x} = \mathbf{b}$, $A\mathbf{y} = \mathbf{b} + \mathbf{e}$. Then

$$\frac{1}{K(A)} \frac{\|\mathbf{e}\|}{\|\mathbf{b}\|} \le \frac{\|\mathbf{y} - \mathbf{x}\|}{\|\mathbf{x}\|} \le K(A) \frac{\|\mathbf{e}\|}{\|\mathbf{b}\|}, \quad K(A) = \|A\| \|A^{-1}\|.$$
(8)

- ► Proof:
- ▶ Consider (8). $\|\mathbf{e}\|/\|\mathbf{b}\|$ is a measure for the size of the perturbation \mathbf{e} relative to the size of \mathbf{b} . $\|\mathbf{y} \mathbf{x}\|/\|\mathbf{x}\|$ can in the worst case be

$$K(A) = ||A|| ||A^{-1}||$$

times as large as $\|\mathbf{e}\|/\|\mathbf{b}\|$.

Condition number

- ► K(A) is called the condition number with respect to inversion of a matrix, or just the condition number, if it is clear from the context that we are talking about solving linear systems.
- ► The condition number depends on the matrix A and on the norm used. If K(A) is large, A is called ill-conditioned (with respect to inversion).
- ▶ If K(A) is small, A is called **well-conditioned** (with respect to inversion).

Condition number properties

- ▶ Since $||A|| ||A^{-1}|| \ge ||AA^{-1}|| = ||I|| \ge 1$ we always have $K(A) \ge 1$.
- Since all matrix norms are equivalent, the dependence of K(A) on the norm chosen is less important than the dependence on A.
- ▶ Usually one chooses the spectral norm when discussing properties of the condition number, and the l_1 and l_∞ norm when one wishes to compute it or estimate it.

The 2-norm

- ▶ Suppose **A** has singular values $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n > 0$ and eigenvalues $|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_n|$ if **A** is square.
- $K_2(\mathbf{A}) = \|\mathbf{A}\|_2 \|\mathbf{A}^{-1}\|_2 = \frac{\sigma_1}{\sigma_n}$
- $K_2(\mathbf{A}) = \|\mathbf{A}\|_2 \|\mathbf{A}^{-1}\|_2 = \frac{|\lambda_1|}{|\lambda_n|}, \quad \mathbf{A} \text{ normal.}$
- ▶ It follows that **A** is ill-conditioned with respect to inversion if and only if σ_1/σ_n is large, or $|\lambda_1|/|\lambda_n|$ is large when **A** is normal.
- $\boldsymbol{\kappa}_{2}(\mathbf{A}) = \|\mathbf{A}\|_{2} \|\mathbf{A}^{-1}\|_{2} = \frac{\lambda_{1}}{\lambda_{n}}, \quad \mathbf{A} \text{ positive definite.}$

The residual

Suppose we have computed an approximate solution y to $\mathbf{A}\mathbf{x} = \mathbf{b}$. The vector $\mathbf{r}(y:) = \mathbf{A}y - \mathbf{b}$ is called the residual vector , or just the residual. We can bound $\mathbf{x} - \mathbf{y}$ in term of $\mathbf{r}(y)$.

Theorem

Suppose $\mathbf{A} \in \mathbb{C}^{n,n}$, $\mathbf{b} \in \mathbb{C}^n$, \mathbf{A} is nonsingular and $\mathbf{b} \neq \mathbf{0}$. Let $\mathbf{r}(\mathbf{y}) = \mathbf{A}\mathbf{y} - \mathbf{b}$ for each $\mathbf{y} \in \mathbb{C}^n$. If $\mathbf{A}\mathbf{x} = \mathbf{b}$ then

$$\frac{1}{K(\mathbf{A})} \frac{\|\mathbf{r}(\mathbf{y})\|}{\|\mathbf{b}\|} \le \frac{\|\mathbf{y} - \mathbf{x}\|}{\|\mathbf{x}\|} \le K(\mathbf{A}) \frac{\|\mathbf{r}(\mathbf{y})\|}{\|\mathbf{b}\|}.$$
 (9)

Discussion

- ▶ If **A** is well-conditioned, (9) says that $\|\mathbf{y} \mathbf{x}\|/\|\mathbf{x}\| \approx \|\mathbf{r}(\mathbf{y})\|/\|\mathbf{b}\|$.
- ▶ In other words, the accuracy in \mathbf{y} is about the same order of magnitude as the residual as long as $\|\mathbf{b}\| \approx 1$.
- ▶ If **A** is ill-conditioned, anything can happen.
- ▶ The solution can be inaccurate even if the residual is small
- ▶ We can have an accurate solution even if the residual is large.

The inverse of $\mathbf{A} + \mathbf{E}$

Theorem

Suppose $\mathbf{A} \in \mathbb{C}^{n,n}$ is nonsingular and let $\|\cdot\|$ be a consistent matrix norm on $\mathbb{C}^{n,n}$. If $\mathbf{E} \in \mathbb{C}^{n,n}$ is so small that $r := \|\mathbf{A}^{-1}\mathbf{E}\| < 1$ then $\mathbf{A} + \mathbf{E}$ is nonsingular and

$$\|(\mathbf{A} + \mathbf{E})^{-1}\| \le \frac{\|\mathbf{A}^{-1}\|}{1 - r}.$$
 (10)

If r < 1/2 then

$$\frac{\|(\mathbf{A} + \mathbf{E})^{-1} - \mathbf{A}^{-1}\|}{\|\mathbf{A}^{-1}\|} \le 2K(\mathbf{A})\frac{\|\mathbf{E}\|}{\|\mathbf{A}\|}.$$
 (11)

Proof

- ▶ We use that if $\mathbf{B} \in \mathbb{C}^{n,n}$ and $\|\mathbf{B}\| < 1$ then $\mathbf{I} \mathbf{B}$ is nonsingular and $\|(\mathbf{I} \mathbf{B})^{-1}\| \leq \frac{1}{1 \|\mathbf{B}\|}$.
- ▶ Since r < 1 the matrix $I B := I + A^{-1}E$ is nonsingular.
- ► Since $(\mathbf{I} \mathbf{B})^{-1} \mathbf{A}^{-1} (\mathbf{A} + \mathbf{E}) = \mathbf{I}$ we see that $\mathbf{A} + \mathbf{E}$ is nonsingular with inverse $(\mathbf{I} \mathbf{B})^{-1} \mathbf{A}^{-1}$.
- ► Hence, $\|(\mathbf{A} + \mathbf{E})^{-1}\| \le \|(\mathbf{I} \mathbf{B})^{-1}\| \|\mathbf{A}^{-1}\|$ and (10) follows.
- ▶ From the identity $(\mathbf{A} + \mathbf{E})^{-1} \mathbf{A}^{-1} = -\mathbf{A}^{-1}\mathbf{E}(\mathbf{A} + \mathbf{E})^{-1}$ we obtain by $\|(\mathbf{A} + \mathbf{E})^{-1} \mathbf{A}^{-1}\| \le \|\mathbf{A}^{-1}\| \|\mathbf{E}\| \|(\mathbf{A} + \mathbf{E})^{-1}\| \le K(\mathbf{A}) \frac{\|\mathbf{E}\|}{\|\mathbf{A}\|} \frac{\|\mathbf{A}^{-1}\|}{1-r}$.
- ▶ Dividing by $\|\mathbf{A}^{-1}\|$ and setting r = 1/2 proves (11).

Perturbation in A

Theorem

Suppose $\mathbf{A}, \mathbf{E} \in \mathbb{C}^{n,n}$, $\mathbf{b} \in \mathbb{C}^n$ with \mathbf{A} invertible and $\mathbf{b} \neq \mathbf{0}$. If $r := \|\mathbf{A}^{-1}\mathbf{E}\| < 1/2$ for some operator norm then $\mathbf{A} + \mathbf{E}$ is invertible. If $\mathbf{A}\mathbf{x} = \mathbf{b}$ and $(\mathbf{A} + \mathbf{E})\mathbf{y} = \mathbf{b}$ then

$$\frac{\|\mathbf{y} - \mathbf{x}\|}{\|\mathbf{y}\|} \le \|\mathbf{A}^{-1}\mathbf{E}\| \le K(\mathbf{A})\frac{\|\mathbf{E}\|}{\|\mathbf{A}\|},\tag{12}$$

$$\frac{\|\mathbf{y} - \mathbf{x}\|}{\|\mathbf{x}\|} \le 2K(\mathbf{A}) \frac{\|\mathbf{E}\|}{\|\mathbf{A}\|}.$$
 (13)

Proof

- \triangleright **A** + **E** is invertible.
- ▶ (12) follows easily by taking norms in the equation $\mathbf{x} \mathbf{y} = \mathbf{A}^{-1}\mathbf{E}\mathbf{y}$ and dividing by $\|\mathbf{y}\|$.
- ▶ From the identity $\mathbf{y} \mathbf{x} = ((\mathbf{A} + \mathbf{E})^{-1} \mathbf{A}^{-1}) \mathbf{A} \mathbf{x}$ we obtain $\|\mathbf{y} \mathbf{x}\| \le \|(\mathbf{A} + \mathbf{E})^{-1} \mathbf{A}^{-1}\| \|\mathbf{A}\| \|\mathbf{x}\|$ and (13) follows.

Finding the rank of a matrix

- Gauss-Jordan cannot be used to determine rank numerically
- ▶ Use singular value decomposition
- ▶ numerically will normally find $\sigma_n > 0$.
- ▶ Determine minimal r so that $\sigma_{r+1}, \ldots, \sigma_n$ are "close" to round off unit.
- ▶ Use this *r* as an estimate for the rank.

Convergence in $\mathbb{R}^{m,n}$ and $\mathbb{C}^{m,n}$

- Consider an infinite sequence of matrices $\{\mathbf{A}_k\} = \mathbf{A}_0, \mathbf{A}_1, \mathbf{A}_2, \dots$ in $\mathbb{C}^{m,n}$.
- ▶ $\{\mathbf{A}_k\}$ is said to converge to the limit \mathbf{A} in $\mathbb{C}^{m,n}$ if each element sequence $\{\mathbf{A}_k(ij)\}_k$ converges to the corresponding element $\mathbf{A}(ij)$ for $i=1,\ldots,m$ and $j=1,\ldots,n$.
- ▶ $\{\mathbf{A}_k\}$ is a **Cauchy sequence** if for each $\epsilon > 0$ there is an integer $N \in \mathbb{N}$ such that for each $k, l \geq N$ and all i, j we have $|\mathbf{A}_k(ij) \mathbf{A}_l(ij)| \leq \epsilon$.
- ▶ $\{\mathbf{A}_k\}$ is bounded if there is a constant M such that $|\mathbf{A}_k(ij)| \leq M$ for all i, j, k.

More on Convergence

- **b** By stacking the columns of **A** into a vector in \mathbb{C}^{mn} we obtain
- ▶ A sequence $\{\mathbf{A}_k\}$ in $\mathbb{C}^{m,n}$ converges to a matrix $\mathbf{A} \in \mathbb{C}^{m,n}$ if and only if $\lim_{k\to\infty} ||\mathbf{A}_k \mathbf{A}|| = 0$ for any matrix norm $||\cdot||$.
- ▶ A sequence $\{\mathbf{A}_k\}$ in $\mathbb{C}^{m,n}$ is convergent if and only if it is a Cauchy sequence.
- ▶ Every bounded sequence $\{\mathbf{A}_k\}$ in $\mathbb{C}^{m,n}$ has a convergent subsequence.

The Spectral Radius

- $ho(\mathbf{A}) = \max_{\lambda \in \sigma(\mathbf{A})} |\lambda|.$
- ▶ For any matrix norm $\|\cdot\|$ on $\mathbb{C}^{n,n}$ and any $\mathbf{A} \in \mathbb{C}^{n,n}$ we have $\rho(\mathbf{A}) \leq \|\mathbf{A}\|$.
- ▶ Proof: Let (λ, \mathbf{x}) be an eigenpair for **A**
- $ightharpoonup X := [x, \ldots, x] \in \mathbb{C}^{n,n}$.
- ▶ $\lambda \mathbf{X} = \mathbf{A}\mathbf{X}$, which implies $|\lambda| \|\mathbf{X}\| = \|\lambda \mathbf{X}\| = \|\mathbf{A}\mathbf{X}\| \le \|\mathbf{A}\| \|\mathbf{X}\|$.
- ▶ Since $\|\mathbf{X}\| \neq 0$ we obtain $|\lambda| \leq \|\mathbf{A}\|$.

A Special Norm

Theorem

Let $\mathbf{A} \in \mathbb{C}^{n,n}$ and $\epsilon > 0$ be given. There is a consistent matrix norm $\|\cdot\|'$ on $\mathbb{C}^{n,n}$ such that $\rho(\mathbf{A}) \leq \|\mathbf{A}\|' \leq \rho(\mathbf{A}) + \epsilon$.

A Very Important Result

Theorem

For any $\mathbf{A} \in \mathbb{C}^{n,n}$ we have

$$\lim_{k\to\infty} \mathbf{A}^k = 0 \Longleftrightarrow \rho(\mathbf{A}) < 1.$$

- ► Proof:
- ▶ Suppose $\rho(\mathbf{A}) < 1$.
- ▶ There is a consistent matrix norm $\|\cdot\|$ on $\mathbb{C}^{n,n}$ such that $\|\mathbf{A}\| < 1$.
- ▶ But then $\|\mathbf{A}^k\| \leq \|\mathbf{A}\|^k \to 0$ as $k \to \infty$.
- ▶ Hence $\mathbf{A}^k \rightarrow 0$.
- ▶ The converse is easier.

Convergence can be slow

$$\mathbf{A} = \begin{bmatrix} 0.99 & 1 & 0 \\ 0 & 0.99 & 1 \\ 0 & 0 & 0.99 \end{bmatrix}, \ \mathbf{A}^{100} = \begin{bmatrix} 0.4 & 9.37 & 1849 \\ 0 & 0.4 & 37 \\ 0 & 0 & 0.4 \end{bmatrix},$$

$$\mathbf{A}^{2000} = \begin{bmatrix} 10^{-9} & \epsilon & 0.004 \\ 0 & 10^{-9} & \epsilon \\ 0 & 0 & 10^{-9} \end{bmatrix}$$

More limits

▶ For any submultiplicative matrix norm $\|\cdot\|$ on $\mathbb{C}^{n,n}$ and any $\mathbf{A} \in \mathbb{C}^{n,n}$ we have

$$\lim_{k \to \infty} \|\mathbf{A}^k\|^{1/k} = \rho(\mathbf{A}). \tag{14}$$