4-6 In-Class Exercise

- 1. In each part, find a basis for the given subspace of R^4 , and state its dimension.
 - **a.** All vectors of the form (a, b, c, 0).
 - **b.** All vectors of the form (a, b, c, d), where d = a + b and c = a b.
 - **c.** All vectors of the form (a, b, c, d), where a = b = c = d.

4-6 Suggested Exercises

1. Find a basis for the solution space of the homogeneous linear system, and find the dimension of that space.

(a)
$$x_1 - 4x_2 + 3x_3 - x_4 = 0$$

$$2x_1 - 8x_2 + 6x_3 - 2x_4 = 0$$

$$x + y + z = 0$$

$$3x + 2y - 2z = 0$$
(b)
$$4x + 3y - z = 0$$

$$6x + 5y + z = 0$$

- 2. Find the dimension of each of the following vector spaces.
 - **a.** The vector space of all diagonal $n \times n$ matrices.
 - **b.** The vector space of all symmetric $n \times n$ matrices.
 - **c.** The vector space of all upper triangular $n \times n$ matrices.

3. Show that the set W of all polynomials in P_2 such that p(1) = 0 is a subspace of P_2 .

4. Find a standard basis vector for R^3 that can be added to the set $\{\mathbf{v}_1, \mathbf{v}_2\}$ to produce a basis for R^3 .

$$\mathbf{v}_1 = (-1, 2, 3), \ \mathbf{v}_2 = (1, -2, -2)$$

Let $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be a basis for a vector space V. Show that $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is also a basis, where $\mathbf{u}_1 = \mathbf{v}_1$, $\mathbf{u}_2 = \mathbf{v}_1 + \mathbf{v}_2$, and $\mathbf{u}_3 = \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3$.

6. The vectors $\mathbf{v}_1 = (1, -2, 3)$ and $\mathbf{v}_2 = (0, 5, -3)$ are linearly independent. Enlarge $\{\mathbf{v}_1, \mathbf{v}_2\}$ to a basis for R^3 .