Quantifying Fragility of Network-Coupled Oscillators and Electric Power Grids with Resistance Distances.

Melvyn Tyloo

University of Applied Sciences of Western Switzerland HES-SO, Sion and Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL).

January 14, 2019

MT, Coletta and Jacquod, Phys. Rev. Lett. 120, 084101 (2018).

MT, Pagnier and Jacquod submitted (2018), arXiv:1810.09694.

Motivation

Complex network-coupled dynamical systems:

- Individual Units:
 - Degrees of freedom $\rightarrow (\theta_{i,1}, \theta_{i,2}, \theta_{i,3}, ...)$.
 - Internal parameters $\rightarrow (P_{i,1}, P_{i,2}, P_{i,3}, ...)$.
- Complex Network:
 - Coupling b_{ij} between units i and j.

Perturbation

- $(P_{i,1}, P_{i,2}, ...) \rightarrow (P_{i,1} + \delta P_{i,1}, P_{i,2} + \delta P_{i,2}, ...)$.
- \rightarrow How does the response of $(\theta_{i,1},\theta_{i,2},...)$ depend on the coupling network?

Interesting Question about Coupled Dynamical Systems 1

Most fragile network?

MT, Coletta and Jacquod, *Phys. Rev. Lett.* **120** 084101 (2018).

Interesting Question about Coupled Dynamical Systems 2

MT, Pagnier and Jacquod submitted (2018), arXiv:1810.09694.

Coupled Dynamical Systems on Complex Networks

Swing Equations in the lossless line limit (second-order Kuramoto):

$$m_i\ddot{\theta}_i + d_i\dot{\theta}_i = P_i - \sum_j b_{ij}\sin(\theta_i - \theta_j) \ , \ i = 1,...,n.$$
 (1)

 $b_{ij}=b_{ji}\geq 0$.

Steady-state solutions: Synchronous state $\{\theta_i^{(0)}\}$ such that:

$$P_{i} = \sum_{i} b_{ij} \sin(\theta_{i}^{(0)} - \theta_{j}^{(0)}) , i = 1, ..., n.$$
 (2)

 $\sum_i P_i = 0.$

Perturbations: $P_i \rightarrow P_i^{(0)} + \delta P_i(t)$.

Quantifying Robustness

Performance measures :

$$\mathcal{P}_1(T) = \sum_{i} \int_0^T |\theta_i(t) - \theta_i^{(0)}|^2 dt$$

$$\mathcal{P}_{2}(T) = \sum_{i} \int_{0}^{T} |\dot{\theta}_{i}(t) - \dot{\theta}_{i}^{(0)}|^{2} dt .$$

$$\mathcal{P}_{1,2}^{\infty} = \mathcal{P}_{1,2}(T \to \infty)$$
.

Noisy disturbances \rightarrow divide by T.

Perturbations : $P_i \rightarrow P_i^{(0)} + \delta P_i(t)$.

MT, Coletta and Jacquod, *Phys. Rev. Lett.* **120**, 084101 (2018)

Response to Perturbations: Linearization

Linear response: Perturbation of the natural frequencies (inj/cons powers).

$$-P_{i}(t) = P_{i}^{(0)} + \delta P_{i}(t) \rightarrow \theta_{i}(t) = \theta_{i}^{(0)} + \delta \theta_{i}(t) :$$

$$m\delta \ddot{\theta}(t) + d\delta \dot{\theta}(t) = \delta P(t) - \mathbb{L}(\{\theta_{i}^{(0)}\})\delta \theta(t) , \qquad (3)$$

 $\mathbb{L}(\{\theta_i^{(0)}\})$: the weighted Laplacian matrix,

$$\mathbb{L}_{ij}(\{\theta_i^{(0)}\}) = \begin{cases} -b_{ij}\cos(\theta_i^{(0)} - \theta_j^{(0)}), & i \neq j, \\ \sum_k b_{ik}\cos(\theta_i^{(0)} - \theta_k^{(0)}), & i = j. \end{cases}$$
(4)

Topology $\rightarrow b_{ii}$.

Steady state $\rightarrow \{\theta_i^{(0)}\}.$

Expanding on the eigenvectors \mathbf{u}_{α} of \mathbb{L} , we have $\delta \boldsymbol{\theta}(t) = \sum_{\alpha} c_{\alpha}(t) \mathbf{u}_{\alpha}$.

 $\rightarrow \mathcal{P}_1(T)$, $\mathcal{P}_2(T)$ for specific perturbations

MT, Coletta and Jacquod, Phys. Rev. Lett. 120, 084101 (2018) MT, Pagnier and Jacquod submitted (2018), arXiv:1810-09694.

NREL

Response to Large Perturbations

Change of fixed point!

Response to Perturbations: Time Scales

Intrinsic Time Scales

- Individual elements: m/d.
- Network relaxation: d/λ_{α} with $\{\lambda_{\alpha}\}$ the eigenvalues of \mathbb{L} .

Perturbation Time Scale

• Correlation time of the external perturbation $\delta P(t)$.

Noisy perturbations

• $\langle \delta P_i(t) P_j(t') \rangle = \delta P_{0i}^2 \delta_{ij} \exp[-|t - t'|/\tau_0].$

Correlation time $\rightarrow \tau_0$.

MT, Coletta and Jacquod, *Phys. Rev. Lett.* **120**, 084101 (2018) MT, Pagnier and Jacquod submitted (2018), arXiv:1810.09694.

Performance Measures Asymptotics

Performance Measures for Noisy Perturbations

$$\mathcal{P}_1^{\infty} = \sum_{\alpha > 2} \frac{\sum_i \delta P_{0i}^2 u_{\alpha,i}^2 (\tau_0 + m/d)}{\lambda_{\alpha} (\lambda_{\alpha} \tau_0 + d + m/\tau_0)} . \tag{5}$$

Short time correlated: $\tau_0 \ll d/\lambda_\alpha$, m/d

$$\mathcal{P}_1^{\infty} \simeq \frac{\tau_0}{d} \sum_{\alpha > 2} \frac{\sum_i \delta P_{0i}^2 u_{\alpha,i}^2}{\lambda_{\alpha}} . \tag{6}$$

Long time correlated: $\tau_0 \gg d/\lambda_\alpha$, m/d

$$\mathcal{P}_1^{\infty} \simeq \sum_{\alpha>2} \frac{\sum_i \delta P_{0i}^2 u_{\alpha,i}^2}{\lambda_{\alpha}^2} \,. \tag{7}$$

MT, Coletta and Jacquod, *Phys. Rev. Lett.* **120**, 084101 (2018). MT, Pagnier and Jacquod submitted (2018), arXiv:1810.09694.

Global Robustness & Local Vulnerabilities

Global Robustness:

Averaging over an ergodic ensemble of perturbation vectors, $\tau_0 \ll d/\lambda_{\alpha}$, m/d

$$\langle \mathcal{P}_1^{\infty} \rangle \simeq \frac{\langle \delta P_0^2 \rangle \tau_0}{d} \sum_{\alpha \geq 2} \lambda_{\alpha}^{-1} ,$$

$$\tau_0 \gg d/\lambda_\alpha, m/d$$

$$\langle \mathcal{P}_1^{\infty} \rangle \ \simeq \ \langle \delta P_0^2 \rangle \sum_{\alpha \geq 2} \lambda_{\alpha}^{-2} \; .$$

Local Vulnerability:

Perturbing a specific node k i.e. $\delta P_{0i} = \delta_{ik} \delta P_0$, $\tau_0 \ll d/\lambda_{\alpha}$, m/d

$$\mathcal{P}_1^{\infty}(k) \simeq \frac{\delta P_0^2 \tau_0}{d} \sum_{\alpha > 2} \frac{u_{\alpha,k}^2}{\lambda_{\alpha}} ,$$

$$au_0 \gg d/\lambda_{\alpha}, m/d$$

$$\mathcal{P}_1^{\infty}(k) \simeq \delta P_0^2 \sum_{\alpha>2} \frac{u_{\alpha,k}^2}{\lambda_{\alpha}^2} .$$

MT, Coletta and Jacquod, *Phys. Rev. Lett.* **120**, 084101 (2018). MT, Pagnier and Jacquod submitted (2018), arXiv:1810.09694.

Resistance Distance

Resistance Distance

$$\Omega_{ij} = \mathbb{L}_{ii}^{\dagger} + \mathbb{L}_{jj}^{\dagger} - \mathbb{L}_{ij}^{\dagger} - \mathbb{L}_{ji}^{\dagger} = \sum_{\alpha \geq 2} \frac{(u_{\alpha,i} - u_{\alpha,j})^2}{\lambda_{\alpha}}.$$
 (8)

 \mathbb{L}^{\dagger} : pseudo inverse of \mathbb{L} (because of $\lambda_1=0$).

Resistance Distances, $Kf'_m s$ and C_m 's

Kirchhoff Index

$$Kf_1 = \sum_{i < j} \Omega_{ij} = n \sum_{\alpha \ge 2} \lambda_{\alpha}^{-1} . \tag{9}$$

Resistance Distances, Kf'_ms and C_m 's

Resistance Centrality

$$C_1(k) = \left[n^{-1} \sum_{j} \Omega_{kj} \right]^{-1} = \left[\sum_{\alpha \ge 2} \frac{u_{\alpha,k}^2}{\lambda_{\alpha}} + n^{-2} K f_1 \right]^{-1}.$$
 (10)

Resistance Distances, Kf'_ms and C_m 's

Generalized Resistance Distances

$$\Omega_{ij}^{(m)} = \mathbb{L}'_{ii}^{\dagger} + \mathbb{L}'_{jj}^{\dagger} - \mathbb{L}'_{ij}^{\dagger} - \mathbb{L}'_{ji}^{\dagger}$$

$$\tag{11}$$

$$= \sum_{\alpha \geq 2} \frac{(u_{\alpha,i} - u_{\alpha,j})^2}{\lambda_{\alpha}^m} , \qquad (12)$$

$$\mathbb{L}' = \mathbb{L}^m. \tag{13}$$

Generalized Kirchhoff Indices

$$Kf_m = \sum_{i < j} \Omega_{ij}^{(m)} = n \sum_{\alpha \ge 2} \lambda_{\alpha}^{-m} . \tag{14}$$

Generalized Resistance Centralities

$$C_{m}(k) = \left[n^{-1} \sum_{j} \Omega_{kj}^{(m)} \right]^{-1} = \left[\sum_{\alpha \geq 2} \frac{u_{\alpha,k}^{2}}{\lambda_{\alpha}^{m}} + n^{-2} K f_{m} \right]^{-1}.$$
 (15)

MT, Coletta and Jacquod, *Phys. Rev. Lett.* **120**, 084101 (2018)

Global Robustness $\to Kf_m$'s Local Vulnerabilities $\to C_m$'s

Global Robustness:

Averaging over an ergodic ensemble of perturbation vectors, $\tau_0 \ll d/\lambda_{\rm C}, m/d$

$$\langle \mathcal{P}_1^{\infty} \rangle \simeq \frac{\langle \delta P_0^2 \rangle \tau_0}{nd} K f_1 ,$$

$$au_0 \gg d/\lambda_{\alpha}, m/d$$

$$\langle \mathcal{P}_1^\infty
angle \ \simeq \ rac{\langle \delta P_0^2
angle}{n} extit{K} extit{f}_2 \; .$$

Local Vulnerability:

Perturbing a specific node k i.e.

$$\delta P_{0i} = \delta_{ik} \delta P_0,$$

$$\tau_0 \ll d/\lambda_\alpha, m/d$$

$$\mathcal{P}_1^{\infty}(k) \simeq \frac{\delta P_0^2 \tau_0}{d} \left(C_1^{-1}(k) - n^{-2} K f_1 \right) ,$$

$$au_0 \gg d/\lambda_{\alpha}, m/d$$

$$\mathcal{P}_1^{\infty}(k) \simeq \delta P_0^2 \left(C_2^{-1}(k) - n^{-2} K f_2 \right) .$$

MT, Coletta and Jacquod, *Phys. Rev. Lett.* **120**, 084101 (2018). MT, Pagnier and Jacquod submitted (2018), arXiv:1810.09694.

Summary

Global Robustness:

$$au_0 \ll d/\lambda_{\alpha}, m/d$$

$$\langle \mathcal{P}_1^{\infty} \rangle \simeq \frac{\langle \delta P_0^2 \rangle \tau_0}{nd} K f_1 ,$$

$$\langle \mathcal{P}_2^{\infty} \rangle \simeq \frac{\langle \delta P_0^2 \rangle \tau_0}{dm} \frac{(n-1)}{n} .$$

$$\tau_0 \gg d/\lambda_{\alpha}, m/d$$

$$\langle \mathcal{P}_1^{\infty} \rangle \simeq \frac{\langle \delta P_0^2 \rangle}{n} K f_2 ,$$

 $\langle \mathcal{P}_2^{\infty} \rangle \simeq \frac{\langle \delta P_0^2 \rangle}{n} K f_1 .$

Local Vulnerability:

$$au_0 \ll d/\lambda_{lpha}, m/d$$

$$\mathcal{P}_1^\infty(\textbf{k}) \ \simeq \ \frac{\delta P_0^2 \tau_0}{d} \left(C_1^{-1}(\textbf{k}) - \textbf{n}^{-2} \textbf{K} \textbf{f}_1 \right) \; , \label{eq:posterior}$$

$$\mathcal{P}_2^{\infty}(k) \simeq \frac{\delta P_0^2 \tau_0}{dm} \frac{(n-1)}{n}.$$

$$au_0 \gg d/\lambda_{lpha}, m/d$$

$$\mathcal{P}_1^{\infty}(k) \simeq \delta P_0^2 \left(C_2^{-1}(k) - n^{-2} K f_2 \right) ,$$

$$\mathcal{P}_2^\infty(\textbf{k}) \ \simeq \ \frac{\delta P_0^2}{d\tau_0} \left(C_1^{-1}(\textbf{k}) - \textbf{n}^{-2} \textbf{K} \textbf{f}_1 \right) \; .$$

MT, Coletta and Jacquod, *Phys. Rev. Lett.* **120**, 084101 (2018).

Averaged Global Robustness and Kf_m's

MT, Coletta and Jacquod, *Phys. Rev. Lett.* **120**, 084101 (2018).

Specific Local Vulnerabilities and C_m 's

Specific Local Vulnerabilities and C_m 's

Physical Realization: European Electrical Grid

MT, Pagnier and Jacquod submitted (2018), arXiv:1810-09694.

Physical Realization: European Electrical Grid

MT, Pagnier and Jacquod submitted (2018), arXiv:1810.09694.

Physical Realization: European Electrical Power Grid

node #	$C_{\rm geo}$	Degree	PageRank	C_1	C_2	$\mathcal{P}_1^{\mathrm{num}}$	$\mathcal{P}_2^{\text{num}} [\gamma^2]$
1	7.84	4	3024	31.86	5.18	0.047	0.035
2	6.8	1	2716	22.45	5.68	0.021	0.118
3	5.56	10	896	22.45	2.33	0.32	0.116
4	4.79	3	1597	21.74	3.79	0.126	0.127
5	7.08	1	1462	21.74	5.34	0.026	0.125
6	4.38	6	2945	21.69	5.65	0.023	0.129
7	5.11	2	16	19.4	5.89	0.016	0.164
8	4.15	6	756	19.38	1.83	0.453	0.172
9	5.06	1	1715	10.2	5.2	0.047	0.449
10	2.72	4	167	7.49	2.17	0.335	0.64

Conclusion

Global Robustness

Generalized Kirchhoff Indices, Kf_m's.

Local Vulnerabilities

- Generalized Resistance Centralities, C_m 's.
- Establish a ranking of the nodes.
- ightarrow m depends on which performance measures you are interested in and on the correlation time of the perturbation.

MT, Coletta and Jacquod, *Phys. Rev. Lett.* **120**, 084101 (2018). MT, Pagnier and Jacquod submitted (2018), arXiv:1810.09694.

HES-SO Valais-Wallis

Supplemental Material

blue : cycle graph red : star graph

Supplemental Material

Supplemental Material

