

ECE 344L Course Summary

Spring 2020

1. Course Introduction

Computer hardware and software evolution

2. Number Formats

Bits

Bytes

Decimal

Binary

Hexadecimal

Words – vary by machine – MIPS – Word 32 bits

$$X = \{x_{w-1} .. x_0\}$$

Integer Formats

Signed – value = $\sum_{i=0}^{w-1} x_i 2^i$

Unsigned – value = $-x_{w-1}2^{w-1} + \sum_{i=0}^{w-2} x_i 2^i$

(Remember that bits are indexed as: $x_{w-1}..x_0$

Alignment requirements for storing integers in memory

3. Character Formats

ASCII

UTF-8

4. Computer Operations

Fetch – Decode – Execute

5. Computer Architecture

Harvard

Von Neumann

CISC

RISC

Load/Store Architecture

Fixed length instructions

One instruction per clock cycle

Limited addressing modes

Many general-purpose registers – data and addresses

6. MIPS Processor

Virtual & Physical Memory addresses

Fixed Map Translation

Addressing: one mode - Base register + displacement

Stack operations

Register usage conventions

Assembly Language programming

5/6/2020

7. MIPS processor pipeline

Data Hazards Control Hazards

8. Microcontroller Characteristics – MIPS with integrated peripherals

Configuration using SFRs Communication with peripherals with SFRs Monitor peripheral status using SFRs

9. System Clocks

SYSCLK PBCLK USBCLK

PERIPHERALS

10. Ports

Digital I/O – inputs or outputs Some shared with analog inputs Open Drain configuration option

11. Timers

Type A & B timers All are 16 bit or 32 bit with 2&3 or 4&5

12. Communication Characteristics

Parallel – multiple bits simultaneously Serial – One bit at a time Synchronous – A clock is transmitted Asynchronous – No transmitted clock Full Duplex – Tx and Rx simultaneously Half Duplex – Tx or Rx at any given time

13. Serial Communication Peripherals

SPI – synchronous, full duplex **I2C, aka I²C or two-wire** – synchronous, half duplex

UART – asynchronous – <u>fixed baud rate</u> – extract synchronization info from signal

Character data encoding for transmission

ASCII

UTF-8

14. Interrupts

PIC32 uses an interrupt controller to provide support for up to 96 sources Can be used in lieu of constant status polling for more efficient operation

Requirements to use interrupts

- Need a source
- The specific interrupt for the source must be enabled
- Need an interrupt service routine to respond to the interrupt (ISR)

ISR Requirements

- An ISR cannot be called directly by any other function
- Argument cannot be passed to an ISR
- An ISR cannot return any values
- Ideally, and ISR should not call any other functions

15. Processing Analog signals (Analog to Digital Converter - ADC)

Two types of ADC

- Flash or direct conversion
- Successive Approximation

Sample processing time = acquisition + conversion time

16. Pulse Width Modulated (PWM) Signal and Output Compare

17. **Servo Motors** – range of motion is limited

Position "0" (1.5 ms pulse) is middle, "90" (~2ms pulse) is middle, is all the way to the right, "-90" (~1ms pulse) is all the way to the left.

Time

18. **Stepper Motors** – full 360° range of motion – moves in step increments Multiple configuration – unipolar and bipolar windings

Internal shaft rotation

Full step – 11.25° /step

Half step – 5.625° /step

Output shaft rotation

Full step – 0.1758° /step

Half step - 0.0879° /step

Moves in either direction by energizing phases one or two at a time.

(Unipolar)
One Phase Half Step Sequencing

Step	A	С	В	D
1	1	0	0	0
2	1	1	0	0
3	0	1	0	0
4	0	1	1	0
5	0	0	1	0
6	0	0	1	1
7	0	0	0	1
8	1	0	0	1