Министерство образования Республики Беларусь

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра информатики

О.И. Костюкова

Тестовые задачи по курсу «Системный анализ и исследование операций»

Минск 2016

Содержание

- 1. Двойственный метод решения задач линейного программирования с двухсторонними ограничениями
- 2. Линейные задачи целочисленного программирования. Метод ветвей и границ
- 3. Линейные задачи целочисленного программирования. Метод Гомори
- 4. Задачи распределения ресурсов
- 5. Задачи о потоке минимальной стоимости. Метод потенциалов
- 6. Задачи о нахождении дерева кратчайших путей из заданного узла
- 7. Задачи о нахождении пути максимальной длины из узла s в узел t
- 8. Задачи о нахождении максимального потока из узла s в узел t
- 9. Задачи о нахождении кратчайших путей между всеми парами узлов данной сети. Метод Флойда
- 10. Задачи о назначениях
- 11. Задачи коммивояжера

1. Двойственный метод решения задач линейного программирования с двухсторонними ограничениями

Пример. Рассмотрим задачу линейного программирования следующего вида:

$$c'x \to max$$
, $Ax = b$, $d* \le x \le d^*$,

где

$$A = \begin{pmatrix} 2 & 1 & -1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}, b = \begin{pmatrix} 2 \\ 5 \\ 0 \end{pmatrix}, n = 6, m = 3,$$

$$c = \begin{pmatrix} 3 & 2 & 0 & 3 & -2 & -4 \end{pmatrix}', d_* = \begin{pmatrix} 0 & -1 & 2 & 1 & -1 & 0 \end{pmatrix}', d^* = \begin{pmatrix} 2 & 4 & 4 & 3 & 3 & 5 \end{pmatrix}'.$$

Решим данную задачу двойственным методом. В качестве начального базиса возьмем множество индексов $J_{\scriptscriptstyle E}=\{j_1,j_2,j_3\}=\{4,5,6\}$. Ему

соответствует базисная матрица
$$A_{\!\scriptscriptstyle E} = (A_{\!\scriptscriptstyle f}, j \in \! J_{\!\scriptscriptstyle E}) = \! \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
. Матрицу,

обратную к базисной, обозначим через
$$B$$
 : $B = A_B^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$.

Итерация 1.

1. Найдем *m*-вектор

$$y' := c'_B B = (3, -2, -4) \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} = (-4, 3, -2).$$

и оценки

$$\begin{split} \Delta_{j} &:= y'A_{j} - c_{j}, \quad j \in J \;; \\ \Delta_{1} &= y'A_{1} - c_{1} = -8, \quad \Delta_{2} = y'A_{2} - c_{2} = -8, \quad \Delta_{3} = y'A_{3} - c_{3} = 7, \\ \Delta_{4} &:= y'A_{4} - c_{4} = 0, \quad \Delta_{5} = y'A_{5} - c_{5} = 0, \quad \Delta_{6} = y'A_{6} - c_{6} = 0. \end{split}$$

сформируем множества

$$J_{H} = J \setminus J_{E} \; ; \quad J_{H}^{+} = \{ j \in J_{H} : \Delta_{j} \geq 0 \} = \{ 3 \}, \quad J_{H}^{-} = J_{H} \setminus J_{H}^{+} = \{ 1, 2 \}.$$

2. Построим вектор $\aleph = (\aleph_j, j \in J)$ по следующему правилу:

$$\aleph_{j} = d_{*j}, \quad j \in J_{H}^{+}; \quad \aleph_{j} = d_{j}^{*}, \quad j \in J_{H}^{-};$$

$$\aleph_{E} = (\aleph_{j}, j \in J_{E}) = B(b - \sum_{j \in J_{H}^{+} \cup J_{H}^{-}} A_{j} \aleph_{j}). \tag{Д1}$$

В результате получим $\aleph = (\aleph_1 = 2, \ \aleph_2 = 4, \ \aleph_3 = 2, \ \aleph_4 = 1, \aleph_5 = -4, \aleph_6 = -4).$

3. Проверяем, выполняются ли соотношения (критерий оптимальности)

$$d_{*_j} \leq \aleph_j \leq d_j^*, j \in J_{\scriptscriptstyle E}.$$

Для построенного псевдоплана эти соотношения не выполняются. Поэтому переходим к следующему шагу.

- **4**. Найдем такой индекс $j_k \in J_B$, что $\aleph_{j_k} \notin [d_{*j_k}, d_{j_k}^*]$. На данной итерации в качестве такого индекса можно взять индекс $j_k = j_2 = 5$.
 - **5.** Поскольку $\aleph_{j_2} = -4 < d_{*_{j_2}} = -1$, то полагаем $\mu_{j_2} = 1$.

Подсчитаем *т*-вектор

$$\Delta y' = \mu_{j_2} e'_2 B = (0, 1, 0) \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} = (0, 0, 1)$$

и числа $\mu_j = \Delta y' A_j$, $j \in J$:

$$\mu_1 = 0$$
, $\mu_2 = 1$, $\mu_3 = 0$, $\mu_4 = 0$, $\mu_5 = 1$, $\mu_6 = 0$.

6. Найдем шаги σ_i , $j \in J_H = J_H^+ \cup J_H^-$ по правилу:

$$\sigma_j = \begin{cases} - \, \varDelta_j \, / \, \mu_j \, , \, \, \text{если} \, \, j \in J_H^+ \, \, \text{и} \, \, \mu_j < 0 \, \, \, \text{либо} \, \, \, j \in J_H^- \, \, \text{и} \, \, \mu_j > 0 \, ; \\ \\ \infty \quad \text{в противном случае}. \end{cases}$$

В результате получим $\sigma_1 = \infty$, $\sigma_2 = 8$, $\sigma_3 = \infty$.

Положим $\sigma_0 = \min_{j \in J_H} \sigma_j = \sigma_{j_*} = \sigma_2 = 8$. Здесь $j_* = 2 \in J_H$ --- индекс, на котором достигается минимум в последнем выражении. Поскольку $\sigma_0 < \infty$, идем на шаг 7.

7. Построим новый коплан $\overline{\Delta} = (\overline{\Delta}_j, j \in J)$ по правилу:

$$\overline{\Delta}_{i} = \Delta_{i} + \sigma_{0} \mu_{i}, \quad j \in J.$$

В результате получим $\overline{\Delta}_1=-8,\ \overline{\Delta}_2=0,\ \overline{\Delta}_3=7,\ \overline{\Delta}_4=0,\ \overline{\Delta}_5=8,\ \overline{\Delta}_6=0.$

8. Построим новый базис $\overline{J}_{\scriptscriptstyle E} = (J_{\scriptscriptstyle E} \setminus j_{\scriptscriptstyle k}) \cup j_* = \{4,2,6\}$, соответствующую ему базисную матрицу

$$\overline{A}_{E} = (A_{j}, j \in \overline{J}_{E}) = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

и обратную матрицу $\overline{B} = (\overline{A}_B)^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & -1 \end{pmatrix}$.

9. Построим новые множества \bar{J}_H , \bar{J}_H^- и \bar{J}_H^+ :

$$\overline{J}_{H} = J \setminus \overline{J}_{B} ;$$

$$\overline{J}_{H}^{+} = (J_{H}^{+} \setminus j_{*}) \cup j_{k}, \text{ если } \mu_{j_{k}} = 1, j_{*} \in J_{H}^{+};$$

$$\overline{J}_{H}^{+} = (J_{H}^{+} \setminus j_{*}), \text{ если } \mu_{j_{k}} = -1, j_{*} \in J_{H}^{+};$$

$$\overline{J}_{H}^{+} = (J_{H}^{+} \cup j_{k}), \text{ если } \mu_{j_{k}} = 1, j_{*} \notin J_{H}^{+};$$

$$\overline{J}_{H}^{+} = J_{H}^{+}, \text{ если } \mu_{j_{k}} = -1, j_{*} \notin J_{H}^{+};$$

$$\overline{J}_{H}^{-} = \overline{J}_{H} \setminus \overline{J}_{H}^{+}.$$

$$(д3)$$

В результате получим $\overline{J}_H=\{1,3,5\},\,\overline{J}_H^+=\{3,5\},\,\overline{J}_H^-=\{1\}$.

Идем на шаг 2 следующей итерации, используя новые базис $\overline{J}_{\rm B}$, коплан $\overline{\varDelta}$, базисную матрицу $\overline{A}_{\rm B}$ и обратную к ней матрицу \overline{B} .

Итерация 2.

2. Построим вектор $\aleph = (\aleph_j, j \in J)$ по следующему правилу:

$$\aleph_{j} = d_{*j}, \quad j \in \overline{J}_{H}^{+}; \quad \aleph_{j} = d_{j}^{*}, \quad j \in \overline{J}_{H}^{-};$$

$$\aleph_{B} = (\aleph_{j}, j \in \overline{J}_{B}) = B(b - \sum_{j \in \overline{J}_{H}^{+} \cup \overline{J}_{H}^{-}} A_{j} \aleph_{j}).$$

Получим $\aleph = (\aleph_1 = 2, \aleph_2 = 1, \aleph_3 = 2, \aleph_4 = 1, \aleph_5 = -1, \aleph_6 = -2).$

3. Проверяем, выполняются ли соотношения (критерий оптимальности)

$$d_{*_j} \leq \aleph_j \leq d_j^*, j \in \overline{J}_{\mathcal{B}}.$$

Для построенного псевдоплана эти соотношения не выполняются. Поэтому переходим к следующему шагу.

4. Найдем такой индекс $j_k \in J_B$, что $\aleph_{j_k} \notin [d_{*j_k}, d_{j_k}^*]$. На данной итерации в качестве такого индекса можно взять индекс

$$j_k = j_3 = 6$$
.

5. Поскольку $\aleph_{j_3} = \aleph_6 = -2 < d_{*_{j_3}} = 0$, то полагаем $\mu_{j_3} = 1$. Подсчитаем m-вектор

$$\Delta y' = \mu_{j_3} e_3' B = (0,0,1) \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & -1 \end{pmatrix} = (1,0,-1)$$

и числа $\mu_{j} = \Delta y' A_{j}, j \in J$:

$$\mu_1 = 2$$
, $\mu_2 = 0$, $\mu_3 = -1$, $\mu_4 = 0$, $\mu_5 = -1$, $\mu_6 = 1$.

6. Найдем шаги σ_j , $j \in J_H = J_H^+ \cup J_H^-$ по правилу:

$$\sigma_j = \begin{cases} -\overline{\Delta}_j \, / \, \mu_j, \ \text{если} \, j \in \overline{J}_H^+ \ \text{и} \ \mu_j < 0 \ \text{либо} \ \ j \in \overline{J}_H^- \ \text{и} \ \mu_j > 0; \\ \\ \infty \ \ \text{в противном случае}. \end{cases}$$

В результате получим $\sigma_1=8/2=4,\,\sigma_3=7/1=7,\,\,\,\sigma_5=8/1=8.$ Положим $\sigma_0=\min_{j\in \overline{J}_H}\sigma_j=\sigma_{j*}=\sigma_1=4.$ Здесь $j_*=1\in\overline{J}_H$ --- индекс, на котором достигается минимум в последнем выражении. Поскольку $\sigma_0<\infty$, идем на шаг 7.

7. Построим новый коплан $\overline{\overline{\Delta}} = (\overline{\overline{\Delta}}_j, j \in J)$ по правилу:

$$\overline{\overline{\Delta}}_{j} = \overline{\Delta}_{j} + \sigma_{0} \mu_{j}, \quad j \in J.$$

В результате получим $\overline{\overline{\Delta}}_1=0,\ \overline{\overline{\Delta}}_2=0,\ \overline{\overline{\Delta}}_3=3,\ \overline{\overline{\Delta}}_4=0,\ \overline{\overline{\Delta}}_5=4,\ \overline{\overline{\Delta}}_6=4.$

8. Построим новый базис $\overline{\bar{J}}_E = (\overline{J}_E \setminus j_k) \cup j_* = \{1,2,6\}$, соответствующую ему базисную матрицу

$$\overline{\overline{A}}_{\overline{B}} = (A_j, j \in \overline{\overline{J}}_{\overline{B}}) = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
 и обратную матрицу $\overline{\overline{B}} = (\overline{\overline{A}}_{\overline{B}})^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -2 & -1 \end{pmatrix}$.

9. Построим новые множества \overline{J}_H , \overline{J}_H^- и \overline{J}_H^+ по правилам, аналогичным (д3). В результате получим $\overline{J}_H = \{3,5,6\}$, $\overline{J}_H^+ = \{3,5,6\}$, $\overline{J}_H^- = \varnothing$. Идем на шаг 2 следующей итерации, используя новые базис $\overline{J}_{\overline{b}}$, коплан $\overline{\Delta}$, базисную матрицу $\overline{\overline{A}}_{\overline{b}}$ и обратную к ней матрицу $\overline{\overline{B}}$.

Итерация 3.

2. Построим вектор $\aleph = (\aleph_j, j \in J)$ по следующему правилу:

$$\aleph_{j} = d_{*j}, \quad j \in \overline{\overline{J}}_{H}^{+}; \quad \aleph_{j} = d_{j}^{*}, \quad j \in \overline{\overline{J}}_{H}^{-};$$

$$\aleph_{\overline{b}} = (\aleph_{j}, j \in \overline{\overline{J}}_{\overline{b}}) = B(b - \sum_{j \in \overline{J}_{H}^{+} \cup \overline{J}_{H}^{-}} A_{j} \aleph_{j}).$$

Получим $\aleph = (\aleph_1 = 3/2, \aleph_2 = 1, \aleph_3 = 2, \aleph_4 = 3/2, \aleph_5 = -1, \aleph_6 = 0).$

3. Для построенного псевдоплана выполняются соотношения (критерий оптимальности)

$$d_{*_{j}} \leq \aleph_{j} \leq d_{j}^{*}, j \in \overline{J}_{B}.$$

Следовательно, этот псевдоплан является оптимальным планом исходной задачи линейного программирования.

Otbet:
$$x^0 = (x_1^0 = 3/2, x_2^0 = 1, x_3^0 = 2, x_4^0 = 3/2, x_5^0 = -1, x_6^0 = 0), c'x^0 = 13.$$

Задачи.

Решить задачи линейного программирования с двухсторонними ограничениями

$$c'x \rightarrow \max$$
, $Ax = b$, $d_* \le x \le d^*$

двойственным методом.

Задача 1.

N	Лат	ри	ца	. A	l :	Вектор <i>b</i>
1	-5	3	1	0	0	-7
4	-1	1	0	1	0	22
2	4	2	0	0	1	30

Вектор c: Вектор d_* : Вектор d^* : 7 -2 6 0 5 2 2 1 0 0 1 1 6 6 5 2 4 6

Ответ:

Оптимальный план $x^0 = (5, 3, 1, 0, 4, 6)$ '. Значение целевой функции: 67

Задача 2.

Матрица A :	Вектор b :
1 0 2 2 -3 3	15
0 1 0 -1 0 1	0
1 0 1 3 2 1	13

Вектор c: Вектор d_* : Вектор d^* : 3 0.5 4 4 1 5 0 0 0 0 0 0 3 5 4 3 3 4

Ответ:

Оптимальный план $x^0 = (3, 0, 4, 1.1818, 0.6364, 1.1818)$ '. Значение целевой функции: 36.2727.

Задача 3.

Матрица A :	Вектор <i>b</i> :	
1 0 0 12 1 -3 4 -1	40	
0 1 0 11 12 3 5 3	107	
0 0 1 1 0 22 -2 1	61	
Вектор c :	Вектор d_* :	Вектор d^* :

2 1 -2 -1 4 -5 5 5 0 0 0 0 0 0 0 0 0 3 5 5 3 4 5 6 3

Ответ:

Оптимальный план $x^0 = (3, 5, 0, 1.8779, 2.7545, 3.0965, 6, 3)'$. Значение целевой функции: 49.6577.

Задача 4.

Матрица A :	Вектор b :
1 -3 2 0 1 -1 4 -1 0	3
1 -1 6 1 0 -2 2 2 0	9
2 2 -1 1 0 -3 8 -1 1	9
4 1 0 0 1 -1 0 -1 1	5
1 1 1 1 1 1 1 1 1	9

Вектор c: Вектор d_* : Вектор d^* :

Ответ:

Оптимальный план $x^0 = (1.1579, 0.6942, 0, 0, 2.8797, 0, 1.0627, 3.2055, 0)'.$

Значение целевой функции: 38.7218

Задача 5.

Матрица A: Вектор b:

1 7 2 0 1 -1 4 1

0 5 6 1 0 -3 -2 4

3 2 2 1 1 1 5 7

Вектор c: Вектор d_* : Вектор d^* :

1 2 1 -3 3 1 0 -1 1 -2 0 1 2 4 3 2 2 5 3 4 5

Ответ:

задача не имеет решения, т.к. в ней множество допустимых планов пусто.

Задача 6.

Матрица A: Вектор b:

2 -1 1 0 0 -1 3 1.5

0 4 -1 2 3 -2 2 9

3 1 0 1 0 1 4 2

Вектор c: Вектор d_* : Вектор d^* :

0 1 2 1 -3 4 7 0 0 -3 0 -1 1 0 3 3 4 7 5 3 2

Ответ:

Оптимальный план $x^0 = (0, 1, 3.5, 0, 3.5, 1, 0)$ '. Значение целевой функции: **1.5.**

Задача 7.

Матрица A: Вектор b:

Вектор
$$c$$
: Вектор d_* : Вектор d^* :

2

Ответ:

задача не имеет решения, т.к. в ней множество допустимых планов пусто.

Задача 8.

Матрица A: Вектор b: 1 3 1 -1 0 -3 2 1 4

Вектор c: Вектор d_* : Вектор d^* :

Ответ:

Оптимальный план $x^0 = (-1, 0.4074, 1, 4, -0.3704, 1.7407, 4, 4)'$.

Значение целевой функции: 37. 5556.

2. Линейные задачи целочисленного программирования.

Метод ветвей и границ

Пример 1. Рассмотрим следующую задачу ЦЛП:

$$7x_1 - 2x_2 + 6x_3 + 5x_5 + 2x_6 \rightarrow \max$$
 $x_1 - 5x_2 + 3x_3 + x_4 = -8$
 $4x_1 - x_2 + x_3 + x_5 = 22$
 $2x_1 + 4x_2 + 2x_3 + x_6 = 30$
 $d_* \le x_j \le d^*, j = \overline{1,6}$
 $d_* = \begin{pmatrix} 2 & 1 & 0 & 0 & 1 & 1 \end{pmatrix}', d^* = \begin{pmatrix} 6 & 6 & 5 & 2 & 4 & 6 \end{pmatrix}'$
 $x_j - \text{целое}, j = \overline{1,6}$

Положим $r = -\infty$. В список задач включим задачу №1, которая совпадает с исходной задачей, но не содержит требования о целочисленности компонент плана.

Итерация 1.

Список состоит из одной задачи – задачи №1

$$c'x \to \max, Ax = b, d_* \le x \le d^*$$
.

Решаем эту задачу. Она имеет решение:

$$x^0 = (5.077 \quad 3.077 \quad 0.769 \quad 0 \quad 4 \quad 6)', \quad c'x^0 = 66.$$

Так как решение задачи №1 нецелочисленное и $c'x^0 = 66 > r = -\infty$, то выберем нецелочисленную переменную x_1 для ветвления, т.е. $j_0 = 1$. Задачу №1 вычеркиваем из списка и формируем две новые задачи:

задача №2:
$$c'x \to \max, Ax = b, d_* \le x \le d^*,$$

$$d_* = \begin{pmatrix} 6 & 1 & 0 & 0 & 1 & 1 \end{pmatrix}', d^* = \begin{pmatrix} 6 & 6 & 5 & 2 & 4 & 6 \end{pmatrix}',$$

$$\underline{3} = \begin{pmatrix} 6 & 1 & 0 & 0 & 1 & 1 \end{pmatrix}', d^* = \begin{pmatrix} 6 & 6 & 5 & 2 & 4 & 6 \end{pmatrix}',$$

$$d_* = \begin{pmatrix} 2 & 1 & 0 & 0 & 1 & 1 \end{pmatrix}', d^* = \begin{pmatrix} 5 & 6 & 5 & 2 & 4 & 6 \end{pmatrix}'.$$

Идем на следующую итерацию.

Итерация 2.

Список состоит из задач №2 и №3. Выбираем любую задачу из списка. Пусть это будет <u>задача №2:</u>

$$c'x \to \max, Ax = b, d_* \le x \le d^*,$$

$$d_* = \begin{pmatrix} 6 & 1 & 0 & 0 & 1 & 1 \end{pmatrix}', d^* = \begin{pmatrix} 6 & 6 & 5 & 2 & 4 & 6 \end{pmatrix}'.$$

Решаем ее. Решение задачи №2 имеет вид: $x^0 = (6 \ 3 \ 0 \ 1 \ 1 \ 6)$, $c'x^0 = 53$.

Так как решение задачи №2 целочисленное и $c'x^0=53>r=-\infty$, то полагаем $x_\mu=x^0=(6\quad 3\quad 0\quad 1\quad 1\quad 6)$ ' и $r=c'x^0=53$. Задачу №2 вычеркиваем из списка и переходим на новую итерацию.

Итерация 3.

Список состоит из задачи №3

$$c'x \to \max, Ax = b, d_* \le x \le d^*, d_* = \begin{pmatrix} 2 & 1 & 0 & 0 & 1 & 1 \end{pmatrix}',$$

$$d^* = \begin{pmatrix} 5 & 6 & 5 & 2 & 4 & 6 \end{pmatrix}'.$$

Решаем ее. Задачи №3 имеет следующее решение:

$$x^0 = (5 \quad 3.5 \quad 1.5 \quad 0 \quad 4 \quad 3)', c'x^0 = 63.$$

Так как решение задачи №3 нецелочисленное и $c'x^0 = 63 > r = 53$, то выберем нецелочисленную переменную x_2 для ветвления, т.е. $j_0 = 2$. Задачу №3 вычеркиваем из списка и формируем две новые задачи:

задача №4:
$$c'x \rightarrow \max, Ax = b, d_* \le x \le d^*$$
,

$$d_* = \begin{pmatrix} 2 & 4 & 0 & 0 & 1 & 1 \end{pmatrix}', \quad d^* = \begin{pmatrix} 5 & 6 & 5 & 2 & 4 & 6 \end{pmatrix}',$$

задача №5: $c'x \rightarrow \max_{x} Ax = b, d_* \le x \le d^*$,

$$d_* = \begin{pmatrix} 2 & 1 & 0 & 0 & 1 & 1 \end{pmatrix}', d^* = \begin{pmatrix} 5 & 3 & 5 & 2 & 4 & 6 \end{pmatrix}'.$$

Идем на следующую итерацию.

Итерация 4.

Список состоит из задач №4 и №5. Выбираем любую задачу из списка. Пусть это будет <u>задача №4</u>

$$c'x \to \max, Ax = b, d_* \le x \le d^*,$$

$$d_* = \begin{pmatrix} 4 & 2 & 0 & 0 & 1 & 1 \end{pmatrix}', d^* = \begin{pmatrix} 5 & 6 & 5 & 2 & 4 & 6 \end{pmatrix}'.$$

Решаем ее. Решение задачи №4: ограничения этой задачи несовместны. Значит, мы вычеркиваем задачу №4 из списка и переходим к новой итерации.

Итерация 5.

Список состоит из задачи №5

$$c'x \to \max, Ax = b, d_* \le x \le d^*,$$

 $d_* = \begin{pmatrix} 2 & 1 & 0 & 0 & 1 & 1 \end{pmatrix}', d^* = \begin{pmatrix} 5 & 3 & 5 & 2 & 4 & 6 \end{pmatrix}'.$

Решаем ее. Решение задачи №5: ограничения этой задачи несовместны. Значит, мы вычеркиваем задачу №5 из списка и переходим к новой итерации.

Итерация 6.

На новой итерации список пуст. Алгоритм заканчивает работу. Вектор $x_{\mu} = x^0 = \begin{pmatrix} 6 & 3 & 0 & 1 & 1 & 6 \end{pmatrix}$ ' является решением исходной задачи целочисленного программирования.

Ход решения задачи схематично можно представить в виде дерева:

Пример 2. Рассмотрим задачу ЦЛП:

$$7x_1 - 2x_2 + 6x_3 + 5x_5 + 2x_6 \rightarrow \max$$
 $x_1 + 3x_3 + x_4 = 10$ $-x_2 + x_3 + x_4 + x_5 + 2x_6 = 8$ $-2x_1 + 4x_2 + 2x_3 + x_6 = 10$ $d_* \le x_j \le d^*, x_j - \text{целое}, \ j = \overline{1,6},$ $d_* = \begin{pmatrix} 0 & 1 & -1 & 0 & -2 & 1 \end{pmatrix}', \ d^* = \begin{pmatrix} 3 & 3 & 6 & 2 & 4 & 6 \end{pmatrix}'.$

Положим $r = -\infty$. В список задач включим задачу №1, которая совпадает с исходной задачей, но не содержит требования о целочисленности компонент плана.

Итерация 1.

Список состоит из одной задачи – задачи №1

$$c'x \rightarrow \max_{A} Ax = b, d_* \le x \le d^*$$
.

Решаем эту задачу. Она имеет решение: $x^0 = \begin{pmatrix} 3 & 2.333 & 2.333 & 0 & 4 & 2 \end{pmatrix}$ ', $c'x^0 = 54.333$.

Так как решение задачи №1 нецелочисленное и $c'x^0 = 54.333 > r = -\infty$, то выберем нецелочисленную переменную x_2 для ветвления, т.е $j_0 = 2$. Задачу №1 вычеркиваем из списка и формируем две новые задачи:

задача №2:
$$c'x \rightarrow \max, Ax = b, d_* \le x \le d^*$$
,

$$d_* = \begin{pmatrix} 0 & 1 & -1 & 0 & -2 & 1 \end{pmatrix}', d^* = \begin{pmatrix} 3 & 2 & 6 & 2 & 4 & 6 \end{pmatrix}',$$

<u>задача №3:</u> $c'x \rightarrow \max, Ax = b, d_* \le x \le d^*$,

$$d_* = \begin{pmatrix} 0 & 3 & -1 & 0 & -2 & 1 \end{pmatrix}', d^* = \begin{pmatrix} 3 & 3 & 6 & 2 & 4 & 6 \end{pmatrix}'.$$

Идем на следующую итерацию.

Итерация 2.

Список состоит из задач №2 и №3. Выбираем любую задачу из списка. Пусть это будет <u>задача №2</u>

$$c'x \to \max, Ax = b, d_* \le x \le d^*,$$

$$d_* = \begin{pmatrix} 0 & 1 & -1 & 0 & -2 & 1 \end{pmatrix}', d^* = \begin{pmatrix} 3 & 2 & 6 & 2 & 4 & 6 \end{pmatrix}'.$$

Решаем ее. Решение задачи №2: $x^0 = (2.4 \ 2 \ 2.533 \ 0 \ 4 \ 1.733)$ ', $c'x^0 = 51.467$.

Так как решение задачи №2 нецелочисленное и $c'x^0 = 51.467 > r = -\infty$, то выберем нецелочисленную переменную x_1 для ветвления, т.е. $j_0 = 1$. Задачу №2 вычеркиваем из списка и формируем две новые задачи:

<u>задача №4</u>: $c'x \rightarrow \max$, Ax = b, $d_* \le x \le d^*$,

$$d_* = \begin{pmatrix} 0 & 1 & -1 & 0 & -2 & 1 \end{pmatrix}', d^* = \begin{pmatrix} 2 & 2 & 6 & 2 & 4 & 6 \end{pmatrix}',$$

<u>задача №5</u>: $c'x \rightarrow \max$, Ax = b, $d_* \le x \le d^*$,

$$d_* = \begin{pmatrix} 3 & 3 & -1 & 0 & -2 & 1 \end{pmatrix}', d^* = \begin{pmatrix} 3 & 2 & 6 & 2 & 4 & 6 \end{pmatrix}'.$$

Идем на следующую итерацию.

Итерация 3.

Список состоит из задач №3, №4 и №5. Выбираем любую задачу из списка. Пусть это будет <u>задача №3</u>

$$c'x \to \max, Ax = b, d_* \le x \le d^*,$$

$$d_* = \begin{pmatrix} 0 & 3 & -1 & 0 & -2 & 1 \end{pmatrix}, d^* = \begin{pmatrix} 3 & 3 & 6 & 2 & 4 & 6 \end{pmatrix}.$$

В результате решения этой задачи устанавливаем, что ее ограничения несовместны. Значит, мы вычеркиваем задачу №3 из списка и переходим к новой итерации.

Итерация 4.

Список состоит из задач №4 и №5. Выбираем любую задачу из списка. Пусть это будет <u>задача №4</u>

$$c'x \to \max, Ax = b, d_* \le x \le d^*,$$

$$d_* = \begin{pmatrix} 0 & 1 & -1 & 0 & -2 & 1 \end{pmatrix}, d^* = \begin{pmatrix} 2 & 2 & 6 & 2 & 4 & 6 \end{pmatrix}.$$

Решаем ее. Решение задачи №4: $x^0 = \begin{pmatrix} 2 & 1.778 & 2.667 & 0 & 4 & 1.556 \end{pmatrix}'$, $c'x^0 = 49.556$.

Так как решение задачи №4 нецелочисленное и $c'x^0 = 49.556 > r = -\infty$, то выберем нецелочисленную переменную x_2 для ветвления, т.е. $j_0 = 2$. Задачу №4 вычеркиваем из списка и формируем две новые задачи:

задача №6:
$$c'x \to \max$$
, $Ax = b$, $d_* \le x \le d^*$, $d_* = \begin{pmatrix} 0 & 1 & -1 & 0 & -2 & 1 \end{pmatrix}'$, $d^* = \begin{pmatrix} 2 & 1 & 6 & 2 & 4 & 6 \end{pmatrix}'$, $d_* = \begin{pmatrix} 0 & 2 & -1 & 0 & -2 & 1 \end{pmatrix}'$, $d^* = \begin{pmatrix} 2 & 2 & 6 & 2 & 4 & 6 \end{pmatrix}'$. $d_* = \begin{pmatrix} 0 & 2 & -1 & 0 & -2 & 1 \end{pmatrix}'$, $d^* = \begin{pmatrix} 2 & 2 & 6 & 2 & 4 & 6 \end{pmatrix}'$.

Идем на следующую итерацию.

Итерация 5.

Список состоит из задач №5, №6 и №7. Выбираем любую задачу из списка. Пусть это будет <u>задача №5</u>:

$$c'x \rightarrow \max$$
, $Ax = b$, $d_* \le x \le d^*$,

$$d_* = \begin{pmatrix} 3 & 1 & -1 & 0 & -2 & 1 \end{pmatrix}', d^* = \begin{pmatrix} 3 & 2 & 6 & 2 & 4 & 6 \end{pmatrix}'.$$

Решаем ее. Решение задачи №5: $x^0 = \begin{pmatrix} 3 & 2 & 2.333 & 0 & 1 & 3.333 \end{pmatrix}$, $c'x^0 = 42.667$.

Так как решение задачи №5 нецелочисленное и $c'x^0 = 42.667 > r = -\infty$, то выберем нецелочисленную переменную x_3 для ветвления, т.е. $j_0 = 3$. Задачу №5 вычеркиваем из списка и формируем две новые задачи:

задача №8:
$$c'x \rightarrow \max$$
, $Ax = b$, $d_* \le x \le d^*$,

$$d_* = \begin{pmatrix} 3 & 1 & -1 & 0 & -2 & 1 \end{pmatrix}', d^* = \begin{pmatrix} 3 & 2 & 2 & 2 & 4 & 6 \end{pmatrix}',$$

<u>задача №9</u>: $c'x \to \max, Ax = b, d_* \le x \le d^*, d_* = \begin{pmatrix} 3 & 1 & 3 & 0 & -2 & 1 \end{pmatrix}',$

$$d^* = \begin{pmatrix} 3 & 2 & 6 & 2 & 4 & 6 \end{pmatrix}'$$
.

Идем на следующую итерацию.

Итерация 6.

Список состоит из задач №6, №7, №8 и №9. Выбираем любую задачу из списка. Пусть это будет <u>задача №6</u>:

$$c'x \rightarrow \max$$
, $Ax = b$, $d_* \le x \le d^*$,

$$d_* = \begin{pmatrix} 0 & 1 & -1 & 0 & -2 & 1 \end{pmatrix}', d^* = \begin{pmatrix} 2 & 1 & 6 & 2 & 4 & 6 \end{pmatrix}'.$$

Решаем ее. Решение задачи №6: $x^0 = \begin{pmatrix} 0.625 & 1 & 3.125 & 0 & 3.875 & 1 \end{pmatrix}'$, $c'x^0 = 42.5$.

Так как решение задачи №6 нецелочисленное и $c'x^0 = 42.5 > r = -\infty$, то выберем нецелочисленную переменную x_1 для ветвления, т.е. $j_0 = 1$. Задачу №6 вычеркиваем из списка и формируем две новые задачи:

задача №10:
$$c'x \to \max$$
, $Ax = b$, $d_* \le x \le d^*$,

$$d_* = \begin{pmatrix} 0 & 0 & -1 & 0 & -2 & 1 \end{pmatrix}', d^* = \begin{pmatrix} 0 & 1 & 6 & 2 & 4 & 6 \end{pmatrix}',$$

<u>задача №11</u>: $c'x \rightarrow \max$, Ax = b, $d_* \le x \le d^*$,

$$d_* = \begin{pmatrix} 1 & 1 & -1 & 0 & -2 & 1 \end{pmatrix}', d^* = \begin{pmatrix} 2 & 1 & 6 & 2 & 4 & 6 \end{pmatrix}'.$$

Идем на следующую итерацию.

Итерация 7.

Список состоит из задач №7, №8, №9, №10 и №11. Выбираем любую задачу из списка. Пусть это будет <u>задача №7</u>:

$$c'x \rightarrow \max$$
, $Ax = b$, $d_* \le x \le d^*$,

$$d_* = \begin{pmatrix} 0 & 2 & -1 & 0 & -2 & 1 \end{pmatrix}', d^* = \begin{pmatrix} 2 & 2 & 6 & 2 & 4 & 6 \end{pmatrix}'.$$

Решаем ее. Решение задачи №7: $x^0 = \begin{pmatrix} 2 & 2 & 2.333 & 1 & 4 & 3.333 \end{pmatrix}'$, $c'x^0 = 46.667$.

Так как решение задачи №7 нецелочисленное и $c'x^0 = 46.667 > r = -\infty$, то выберем нецелочисленную переменную x_3 для ветвления, т.е. $j_0 = 3$. Задачу №7 вычеркиваем из списка и формируем две новые задачи:

<u>задача №12</u>: $c'x \rightarrow \max$, Ax = b, $d_* \le x \le d^*$,

$$d_* = \begin{pmatrix} 0 & 2 & -1 & 0 & -2 & 1 \end{pmatrix}', d^* = \begin{pmatrix} 2 & 2 & 2 & 2 & 4 & 6 \end{pmatrix}',$$

<u>задача №13</u>: $c'x \rightarrow \max$, Ax = b, $d_* \le x \le d^*$,

$$d_* = \begin{pmatrix} 0 & 2 & 3 & 0 & -2 & 1 \end{pmatrix}', d^* = \begin{pmatrix} 2 & 2 & 6 & 2 & 4 & 6 \end{pmatrix}'.$$

Идем на следующую итерацию.

Итерация 8.

Список состоит из задач №8, №9, №10, №11, №12 и №13. Выбираем любую задачу из списка. Пусть это будет <u>задача №8</u>:

$$c'x \to \max, Ax = b, d_* \le x \le d^*,$$

$$d_* = \begin{pmatrix} 3 & 1 & -1 & 0 & -2 & 1 \end{pmatrix}, d^* = \begin{pmatrix} 3 & 2 & 2 & 2 & 4 & 6 \end{pmatrix}.$$

Решаем эту задачу. Решение задачи №8: $x^0 = \begin{pmatrix} 3 & 2 & 2 & 1 & -1 & 4 \end{pmatrix}'$, $c'x^0 = 32$.

Так как решение задачи №8 целочисленное и $c'x^0=32>r=-\infty$, то полагаем $x_\mu=x^0=\begin{pmatrix} 3 & 2 & 2 & 1 & -1 & 4 \end{pmatrix}'$. Так как $c'x^0=32>r=-\infty$, то $r=c'x^0=32$. Задачу №8 вычеркиваем из списка и переходим на новую итерацию.

Итерация 9.

Список состоит из задач №9, №10, №11, №12 и №13. Выбираем любую задачу из списка. Пусть это будет <u>задача №9</u>:

$$c'x \to \max, \quad Ax = b, \quad d_* \le x \le d^*,$$

$$d_* = \begin{pmatrix} 3 & 1 & 3 & 0 & -2 & 1 \end{pmatrix}, \quad d^* = \begin{pmatrix} 3 & 2 & 6 & 2 & 4 & 6 \end{pmatrix}.$$

Решаем ее. Решение задачи №9: ограничения этой задачи несовместны. Значит, мы вычеркиваем задачу №9 из списка и переходим к новой итерации.

Итерация 10.

Список состоит из задач №10, №11, №12 и №13. Выбираем любую задачу из списка. Пусть это будет <u>задача №12</u>:

$$c'x \to \max, \quad Ax = b, \quad d_* \le x \le d^*,$$

$$d_* = \begin{pmatrix} 0 & 2 & -1 & 0 & -2 & 1 \end{pmatrix}', \quad d^* = \begin{pmatrix} 2 & 2 & 2 & 2 & 4 & 6 \end{pmatrix}'.$$

Решаем ее. Решение задачи №12: $x^0 = \begin{pmatrix} 2 & 2 & 2 & 2 & 2 \end{pmatrix}', c'x^0 = 36$.

Так как решение задачи №12 целочисленное и $c'x^0 = 36 > r = 32$, то полагаем $x_{\mu} = x^0 = \begin{pmatrix} 2 & 2 & 2 & 2 & 2 \end{pmatrix}$. Так как $c'x^0 = 36 > r = 32$, то $r = c'x^0 = 36$. Задачу №12 вычеркиваем из списка и переходим на новую итерацию.

Итерация 11.

Список состоит из задач №10, №11 и №13. Выбираем любую задачу из списка. Пусть это будет <u>задача №13</u>:

$$c'x \to \max, Ax = b, d_* \le x \le d^*,$$

 $d_* = \begin{pmatrix} 0 & 2 & 3 & 0 & -2 & 1 \end{pmatrix}', d^* = \begin{pmatrix} 2 & 2 & 6 & 2 & 4 & 6 \end{pmatrix}'.$

Решаем ее. Решение задачи №13: ограничения этой задачи несовместны. Значит, мы вычеркиваем задачу №13 из списка и переходим к новой итерации.

Итерация 12.

Список состоит из задач №10 и №11. Выбираем любую задачу из списка. Пусть это будет <u>задача №10</u>:

$$c'x \to \max, Ax = b, d_* \le x \le d^*,$$

$$d_* = \begin{pmatrix} 0 & 1 & -1 & 0 & -2 & 1 \end{pmatrix}', d^* = \begin{pmatrix} 0 & 1 & 6 & 2 & 4 & 6 \end{pmatrix}'.$$

Решаем ее. Решение задачи №10: ограничения этой задачи несовместны. Значит, мы вычеркиваем задачу №10 из списка и переходим к новой итерации.

Итерация 13.

Список состоит из задачи №11:

$$c'x \to \max, Ax = b, d_* \le x \le d^*,$$

$$d_* = \begin{pmatrix} 1 & 1 & -1 & 0 & -2 & 1 \end{pmatrix}', d^* = \begin{pmatrix} 2 & 1 & 6 & 2 & 4 & 6 \end{pmatrix}'.$$

Решаем ее. Решение задачи №11 имеет следующий вид:

$$x^{0} = \begin{pmatrix} 1 & 1 & 3 & 0 & 2 & 2 \end{pmatrix}', \quad c'x^{0} = 37.$$

Так как решение задачи №11 целочисленное и $c'x^0 = 37 > r = 36$, то полагаем $x_{\mu} = x^0 = \begin{pmatrix} 1 & 1 & 3 & 0 & 2 & 2 \end{pmatrix}$. Так как $c'x^0 = 37 > r = 36$, то

r = c ' $x^0 = 37$. Задачу №11 вычеркиваем из списка и переходим на новую итерацию.

Итерация 14.

На новой итерации список пуст. Алгоритм заканчивает работу. Вектор $x_{\mu} = x^0 = \begin{pmatrix} 1 & 1 & 3 & 0 & 2 & 2 \end{pmatrix}$ принимаем за решение исходной задачи.

Ход решения задачи схематично можно представить в виде дерева:

Пример 3. Рассмотрим задачу ЦЛП:

$$-3x_1 + 2x_2 - 2x_4 - 5x_5 + 2x_6 \rightarrow \max,$$

$$x_1 + x_3 + x_6 = -3,$$

$$x_1 + 2x_2 - x_3 + x_4 + x_5 + 2x_6 = 3,$$

$$-2x_1 + 4x_2 + x_3 + x_5 = 13,$$

$$d_* \le x_j \le d^*, \quad x_j - \text{целое}, \quad j = \overline{1,6}$$

$$d_* = (-2 \quad -1 \quad -2 \quad 0 \quad 1 \quad -4)', \quad d^* = (2 \quad 3 \quad 1 \quad 5 \quad 4 \quad -1)'$$

Положим $r = -\infty$. В список задач включим задачу №1, которая совпадает с исходной задачей, но не содержит требования о целочисленности компонент плана.

Итерация 1.

Список состоит из одной задачи – задачи №1:

$$c'x \rightarrow \max, Ax = b, d_* \le x \le d^*$$
.

Решаем эту задачу. Она имеет решение:

$$x^{0} = (-1.429 \quad 2.429 \quad -0.571 \quad 0 \quad 1 \quad -1)', \quad c'x^{0} = 2.143.$$

Так как решение задачи №1 нецелочисленное и $c'x^0 = 2.143 > r = -\infty$, то выберем нецелочисленную переменную x_1 для ветвления, т.е. $j_0 = 1$. Задачу №1 вычеркиваем из списка и формируем две новые задачи:

задача №2:
$$c'x \to \max$$
, $Ax = b$, $d_* \le x \le d^*$, $d_* = \begin{pmatrix} -2 & -1 & -2 & 0 & 1 & -4 \end{pmatrix}$, $d^* = \begin{pmatrix} -2 & 3 & 1 & 5 & 4 & -1 \end{pmatrix}$,

<u>задача №3:</u> $c'x \rightarrow \max$, Ax = b, $d_* \le x \le d^*$,

$$d_* = \begin{pmatrix} -1 & -1 & -2 & 0 & 1 & -4 \end{pmatrix}', d^* = \begin{pmatrix} 2 & 3 & 1 & 5 & 4 & -1 \end{pmatrix}'.$$

Идем на следующую итерацию.

Итерация 2.

Список состоит из задач №2 и №3. Выбираем любую задачу из списка. Пусть это будет <u>задача №2:</u>

$$c'x o \max$$
, $Ax = b$, $d_* \le x \le d^*$, $d_* = \begin{pmatrix} -2 & -1 & -2 & 0 & 1 & -4 \end{pmatrix}'$, $d^* = \begin{pmatrix} -1 & 3 & 1 & 5 & 4 & -1 \end{pmatrix}'$. Решаем ее. Решение задачи №2: $x^0 = \begin{pmatrix} -2 & 2 & 0 & 2 & 1 & -1 \end{pmatrix}'$, $c'x^0 = -1$. Так как решение задачи №2 целочисленное и $c'x^0 = -1 > r = -\infty$, то полагаем $x_\mu = x^0 = \begin{pmatrix} -2 & 2 & 0 & 2 & 1 & -1 \end{pmatrix}'$ и $r = c'x^0 = -1$. Задачу №2 вычеркиваем из списка и переходим на новую итерацию.

Итерация 3.

Список состоит из одной задачи – задачи №3:

$$c'x \rightarrow \max$$
, $Ax = b$, $d_* \le x \le d^*$,

$$d_* = \begin{pmatrix} -1 & -1 & -2 & 0 & 1 & -4 \end{pmatrix}', \quad d^* = \begin{pmatrix} 2 & 3 & 1 & 5 & 4 & -1 \end{pmatrix}'$$

Решаем эту задачу и получаем ее решение:

$$x^{0} = (-1.429 \quad 2.429 \quad -0.571 \quad 0 \quad 1 \quad -1)', \quad c'x^{0} = 2.143.$$

Так как решение задачи №3 нецелочисленное и $c'x^0 = 2.143 > r = -\infty$, то выберем нецелочисленную переменную x_2 для ветвления, т.е. $j_0 = 2$. Задачу №3 вычеркиваем из списка и формируем две новые задачи:

задача №4:
$$c'x \rightarrow \max$$
, $Ax = b$, $d_* \le x \le d^*$,

$$d_* = \begin{pmatrix} -1 & -1 & -2 & 0 & 1 & -4 \end{pmatrix}', d^* = \begin{pmatrix} 2 & 2 & 1 & 5 & 4 & -1 \end{pmatrix}',$$

<u>задача №5:</u> $c'x \rightarrow \max$, Ax = b, $d_* \le x \le d^*$,

$$d_* = \begin{pmatrix} -1 & 3 & -2 & 0 & 1 & -4 \end{pmatrix}', d^* = \begin{pmatrix} 2 & 3 & 1 & 5 & 4 & -1 \end{pmatrix}'.$$

Идем на следующую итерацию.

Итерация 4.

Список состоит из задач №4 и №5. Выбираем любую задачу из списка. Пусть это будет <u>задача №4:</u>

$$c'x \to \max, \quad Ax = b, \quad d_* \le x \le d^*,$$

$$d_* = \begin{pmatrix} -1 & -1 & -2 & 0 & 1 & -4 \end{pmatrix}', \quad d^* = \begin{pmatrix} 2 & 2 & 1 & 5 & 4 & -1 \end{pmatrix}'.$$

Решаем ее. Решение задачи №4: $x^0 = \begin{pmatrix} -1 & 2 & -0.25 & 0 & 3.25 & -1.75 \end{pmatrix}'$, $c'x^0 = -12.75$.

Так как решение задачи №4 нецелочисленное и $c'x^0 = -12.75 < r = -1$, то задачу №4 вычеркиваем из списка и переходим на новую итерацию.

Итерация 5.

Список состоит из одной задачи №5:

$$c'x \to \max$$
, $Ax = b$, $d_* \le x \le d^*$,

$$d_* = \begin{pmatrix} -1 & 3 & -2 & 0 & 1 & -4 \end{pmatrix}', d^* = \begin{pmatrix} 2 & 2 & 1 & 5 & 4 & -1 \end{pmatrix}'.$$

Решаем ее. Решение задачи №5: $x^0 = (-0.286 \ 3 \ -0.571 \ 0 \ 1 \ -2.143)$ ', $c'x^0 = -2.429$.

Так как решение задачи №5 нецелочисленное и $c'x^0 = -2.429 < r = -1$, то задачу №5 вычеркиваем из списка и переходим на новую итерацию.

Итерация 6.

На новой итерации список пуст. Алгоритм заканчивает работу. Вектор $x_{\mu} = x^0 = \begin{pmatrix} -2 & 2 & 0 & 2 & 1 & -1 \end{pmatrix}'$ принимаем за решение исходной задачи.

Ход решения задачи схематично можно представить в виде дерева:

Задачи.

Решить задачи целочисленного программирования $c'x \to \max$, Ax = b, $d_{j^*} \le x_j \le d_j^*$, x_j – целое, $j = \overline{1,n}$. методом ветвей и границ.

Задача 1.

Матр	ица A :	Вектор b :
1 0 0	12 1 -3 4 -1	40
0 1 0	11 12 3 5 3	107
0 0 1	1 0 22 -2 1	61

Вектор c: Вектор d_* : Вектор d^* : 2 1 -2 -1 4 -5 5 5 0 0 0 0 0 0 0 0 3 5 5 3 4 5 6 3

Ответ:

Оптимальный целочисленный план $x^0 = (1 \ 1 \ 2 \ 2 \ 3 \ 3 \ 6 \ 3)'$. Значение целевой функции: 39

Задача 2.

Матрица A :	Вектор b :
1 -3 2 0 1 -1 4 -1 0	3
1 -1 6 1 0 -2 2 2 0	9
2 2 -1 1 0 -3 8 -1 1	9
4 1 0 0 1 -1 0 -1 1	5
1 1 1 1 1 1 1 1 1	9

Вектор c: Вектор d_* : Вектор d^* :

-1 5 -2 4 3 1 2 8 3 0 0 0 0 0 0 0 0 5 5 5 5 5 5 5 5 5

Ответ:

Оптимальный целочисленный план $x^0 = (1, 1, 1, 1, 1, 1, 1, 1, 1)'$. Значение целевой функции: 23

Задача 3.

Матрица A: Вектор b: $1\ 0\ 0\ 12\ 1\ -3\ 4\ -1\ 2.5\ 3 \ 43.5 \ 0\ 1\ 0\ 11\ 12\ 3\ 5\ 3\ 4\ 5.1 \ 107.3 \ 0\ 0\ 1\ 1\ 0\ 22\ -2\ 1\ 6.1\ 7 \ 106.3$

Вектор c: Вектор d_* : Вектор d^* :

2 1 -2 -1 4 -5 5 5 1 2 0 0 0 0 0 0 0 0 0 0 2 4 5 3 4 5 4 4 5 6

Ответ:

Оптимальный целочисленный план x^0 =(1 1 2 2 2 3 3 3 3)'. Значение целевой функции: 29.

Задача 4.

Матрица A :	Вектор b
4 0 0 0 0 -3 4 -1 2 3	8
0 1 0 0 0 3 5 3 4 5	5
0 0 1 0 0 22 -2 1 6 7	4
0 0 0 1 0 6 -2 7 5 6	7
0 0 0 0 1 5 5 1 6 7	8

Вектор c:

2 1 -2 -1 4 -5 5 5 1 2

Вектор d_* : Вектор d^* :

Ответ:

Оптимальный целочисленный план x^0 =(2 5 4 7 8 0 0 0 0 0)'. Значение целевой функции 26.

Задача 5.

Матрица A :	Вектор b :
1 -5 3 1 0 0	-8
4 -1 1 0 1 0	22
2 4 2 0 0 1	30

Вектор c: Вектор d_* : Вектор d^* : 7 -2 6 0 5 2 2 1 0 0 1 1 6 6 5 2 4 6

Ответ:

Оптимальный целочисленный план x^0 =(6 3 0 1 1 6)'. Значение целевой функции: 53 .

Задача 6.

Вектор c: Вектор d_* : Вектор d^* : 2 1 -2 -1 4 -5 5 5 0 0 0 0 0 0 0 5 5 3 4 5 6 6 8

Ответ:

Оптимальный целочисленный план x^0 =(5 5 3 4 0 1 6 8)'. Значение целевой функции: 70.

Задача 7.

Вектор c: Вектор d_* : Вектор d^* : 7 5 -2 4 3 1 2 8 3 0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8 8

Ответ:

Оптимальный целочисленный план x^0 =(3 5 0 0 0 0 8 2 0)'. Значение целевой функции: **78**.

Задача 8.

 Матрица A:
 Вектор b:

 1 0 1 0 4 3 4
 26

 0 1 2 0 55 3.5 5
 185

 0 0 3 1 6 2 -2.5
 32.5

Вектор c: Вектор d_* : Вектор d^* :

1 2 3 -1 4 -5 6 0 1 0 0 0 0 0 1 2 5 7 8 4 2

Ответ:

Оптимальный целочисленный план x^0 =(1 2 3 4 3 2 1)'. Значение целевой функции: 18.

Задача 9.

Матрица A: Вектор b:

2 0 1 0 0 3 5 58 0 2 2.1 0 0 3.5 5 66.3

0 0 3 2 0 2 1.1 36.7

0 0 3 0 2 2 -2.5 13.5

Вектор c: Вектор d_* : Вектор d^* :

1 2 3 1 2 3 4 1 1 1 1 1 1 1 2 3 4 5 8 7 7

Ответ:

Оптимальный целочисленный план x^0 =(1 2 3 4 5 6 7)'. Значение целевой функции: 74

Задача 10.

Матрица A: Вектор b:

1 0 0 1 1 -3 4 -1 3 3 27

0 1 0 -2 1 1 7 3 4 5 6 0 0 1 1 0 2 -2 1 -4 7 18

Вектор c: Вектор d_* : Вектор d^* :

-2 1 -2 -1 8 -5 3 5 1 2 0 0 0 0 0 0 0 0 0 0 8 7 6 7 8 5 6 7 8 5

Ответ:

Оптимальный целочисленный план x^0 =(5 0 6 7 8 0 1 0 0 1)'. Значение целевой функции: 40.

3. Линейные задачи целочисленного программирования. Метод Гомори

Пример 1. Решить задачу ЦЛП

$$3.5x_1 - x_2 o \min,$$
 $5x_1 - x_2 + x_3 = 15,$
 $-x_1 + 2x_2 + x_4 = 6,$
 $-7x_1 + 2x_2 + x_5 = 0,$
 $x_j \ge 0, \quad x_j - \text{целое}, \quad j = \overline{1,5}.$

методом Гомори.

Итерация 1.

Решим задачу №1, которая совпадает с исходной задачей, но не содержит требования целочисленности переменных. В результате получим оптимальный план, оптимальный базис и соответствующую базисную матрицу

$$x^{0} = (1 \ 3.5 \ 13.5 \ 0 \ 0), J_{E}^{0} = \{j_{1} = 1, j_{2} = 2, j_{3} = 3\}, A_{E} = \begin{pmatrix} 5 & -1 & 1 \\ -1 & 2 & 0 \\ -7 & 2 & 0 \end{pmatrix}.$$

Выберем любую нецелочисленную базисную переменную $x_{j_k}, j_k \in J_E^0$.

Пусть $j_k = 2, k = 2$. Подсчитаем

$$e'_k A_B^{-1} b = (0 \quad 1 \quad 0) A_B^{-1} b = 3.5,$$

$$e'_k A_E^{-1} A = (0 \quad 1 \quad 0 \quad 0.58333 \quad -0.08333),$$

Здесь символом $\{a\}$ обозначена дробная часть числа a.

По полученным данным построим отсекающее ограничение:

$$-0.58333x_4 - 0.917667x_5 + x_6 = -0.5$$
.

Добавляем это ограничение к условиям последней задачи линейного программирования. В результате получаем задачу №2.

Итерация 2.

Мы получили задачу №2 со следующими данными:

$$A = \begin{pmatrix} 5 & -1 & 1 & 0 & 0 & 0 \\ -1 & 2 & 0 & 1 & 0 & 0 \\ -7 & 2 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -0.58333 & -0.91667 & 1 \end{pmatrix}, b = \begin{pmatrix} 15 \\ 6 \\ 0 \\ -0.5 \end{pmatrix},$$

$$c = (3.5, -1, 0, 0, 0, 0)'.$$

Решим задачу №2. В результате получим оптимальный план, оптимальный базис и соответствующую базисную матрицу

$$x^0 = (0.85714 \ 3 \ 13.71429 \ 0.85715 \ 0 \ 0)',$$

$$J_{E} = \{j_{1} = 1, j_{2} = 2, j_{3} = 3, j_{4} = 4\}, \qquad A_{E} = \begin{pmatrix} 5 & -1 & 1 & 0 \\ -1 & 2 & 0 & 1 \\ -7 & 2 & 0 & 0 \\ 0 & 0 & 0 & -0.58333 \end{pmatrix}.$$

Выберем любую нецелочисленную базисную переменную $x_{j_k}, j_k \in J_E^0$.

Пусть $j_k = 1, k = 1$. Вычислим

$$e'_{k}A_{E}^{-1}b = (1 \quad 0 \quad 0 \quad 0)A_{E}^{-1}b = 0.85714,$$

 $e'_{k}A_{E}^{-1}A = (1 \quad 0 \quad 0 \quad 0 \quad -4.42886 \quad 0.28572).$

По полученным данным построим отсекающее ограничение:

$$-0.57114x_5 - 0.28572x_6 + x_7 = -0.85714$$
.

Добавляем это ограничение к условиям последней задачи линейного программирования. В результате получаем задачу №3.

Итерация 3.

Мы получили задачу №3 со следующими данными:

$$A = \begin{pmatrix} 5 & -1 & 1 & 0 & 0 & 0 & 0 \\ -1 & 2 & 0 & 1 & 0 & 0 & 0 \\ -7 & 2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -0.58333 & -0.917667 & 1 & 0 \\ 0 & 0 & 0 & 0 & -0.57114 & -0.28572 & 1 \end{pmatrix}, b = \begin{pmatrix} 15 \\ 6 \\ 0 \\ -0.5 \\ -0.85714 \end{pmatrix},$$

$$c = (3.5, -1, 0, 0, 0, 0, 0, 0)'.$$

Решим задачу №3. В результате получим оптимальный план $x^0 = \begin{pmatrix} 0 & 0 & 15 & 6 & 0 & 3 & 0 \end{pmatrix}$ '. Это решение является целочисленным.

Следовательно, оно является решением исходной задачи ЦЛП.

Пример 2. Решить задачу линейного целочисленного программирования

$$\begin{aligned} -x_1 + x_2 &\to \min, \\ 5x_1 + 3x_2 + x_3 &= 4 \\ -x_1 + 2x_2 + x_4 &= 3 \\ x_1 - 2x_2 + x_5 &= 7 \\ x_j &\ge 0, \quad x_j - \text{yenoe}, \quad j = \overline{1,5} \end{aligned}$$

методом Гомори.

Итерация 1.

Решим задачу №1, которая совпадает с исходной задачей, но не содержит требования целочисленности переменных. В результате получим оптимальный план, оптимальный базис и соответствующую базисную матрицу

$$x^{0} = (0.8 \quad 0 \quad 0 \quad 3.8 \quad 6.2)', J_{E}^{0} = \{j_{1} = 1, j_{2} = 4, j_{3} = 5\}, \quad A_{E} = \begin{pmatrix} 5 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

Выберем любую нецелочисленную базисную переменную $x_{j_k}, j_k \in J_{\mathcal{B}}^0$.

Пусть $j_k = 1, k = 1$. Подсчитаем

$$e'_k A_B^{-1} b = (1 \quad 0 \quad 0) A_B^{-1} b = 0.8,$$

 $e'_k A_B^{-1} A = (1 \quad 0.6 \quad 0.2 \quad 0 \quad 0),$

$$-\{0\} = 0$$
, $-\{1\} = 0$, $-\{0.8\} = -0.8$, $-\{0.8\} = -0.6$, $-\{0.2\} = -0.2$.

Здесь символом $\{a\}$ обозначена дробная часть числа a.

По полученным данным построим отсекающее ограничение:

$$-0.6x_2 - 0.2x_3 + x_6 = -0.8$$
.

Добавляем это ограничение к условиям последней задачи линейного программирования. В результате получаем задачу №2.

Итерация 2.

Мы получили задачу №2 со следующими данными:

$$A = \begin{pmatrix} 5 & 3 & 1 & 0 & 0 & 0 \\ -1 & 2 & 0 & 1 & 0 & 0 \\ 1 & -2 & 0 & 0 & 1 & 0 \\ 0 & -0.6 & -0.2 & 0 & 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 4 \\ 3 \\ 7 \\ -0.8 \end{pmatrix},$$

$$c = (-1,1,0,0,0,0)'.$$

Решим задачу №2. В результате получим оптимальный план $x^0 = \begin{pmatrix} 0 & 0 & 4 & 3 & 7 & 0 \end{pmatrix}$ '. Это решение является целочисленным.

Следовательно, оно является решением исходной задачи ЦЛП.

Пример 3. Решить задачу ЦЛП

$$2x_1 - 5x_2 o \max,$$
 $-2x_1 - x_2 + x_3 = -1,$ $3x_1 + x_2 + x_4 = 10,$ $-x_1 + x_2 + x_5 = 3,$ $x_j \ge 0, \quad x_j - \text{целое}, \quad j = \overline{1,5}.$

методом Гомори.

Итерация 1.

Решим задачу №1, которая совпадает с исходной задачей, но не содержит требования целочисленности переменных. В результате получим оптимальный план, оптимальный базис и соответствующую базисную матрицу

$$x^{0} = (3.333 \quad 0 \quad 5.667 \quad 0 \quad 6.333)', \ J_{E}^{0} = \{j_{1} = 1, j_{2} = 3, j_{3} = 5\},\$$

$$A_{E} = \begin{pmatrix} -2 & 1 & 0 \\ 3 & 0 & 0 \\ -1 & 0 & 1 \end{pmatrix}.$$

Выберем любую нецелочисленную базисную переменную $x_{j_k}, j_k \in J_E^0$.

Пусть $j_k = 1, k = 1$. Подсчитаем

$$e'_k A_{A'}^{-1} b = (1 \quad 0 \quad 0) A_{A'}^{-1} b = 3.333,$$

$$e'_k A_{A'}^{-1} A = (1 \quad 0.333 \quad 0 \quad 0.333 \quad 0),$$

$$-\{0\} = 0, \quad -\{1\} = 0, \quad -\{3.333\} = -0.333, \quad -\{0.333\} = -0.333.$$

Здесь символом $\{a\}$ обозначена дробная часть числа a.

По полученным данным построим отсекающее ограничение:

$$-0.333x_2 - 0.333x_4 + x_6 = -0.333$$
.

Добавляем это ограничение к условиям последней задачи линейного программирования. В результате получаем задачу №2.

Итерация 2.

Мы получили задачу №2 со следующими данными:

$$A = \begin{pmatrix} -2 & -1 & 1 & 0 & 0 & 0 \\ 3 & 1 & 0 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 & 1 & 0 \\ 0 & -0.333 & 0 & -0.333 & 0 & 1 \end{pmatrix}, b = \begin{pmatrix} -1 \\ 10 \\ 3 \\ -0.333 \end{pmatrix},$$

$$c = (2, -5, 0, 0, 0)'.$$

Решим задачу №2. В результате получим оптимальный план $x^0 = \begin{pmatrix} 3 & 0 & 5 & 1 & 6 & 0 \end{pmatrix}$ '. Это решение является целочисленным. Следовательно, оно является решением исходной задачи ЦЛП.

Задачи.

Решить задачи целочисленного программирования

$$c'x \rightarrow \max$$
, $Ax = b$, $x \ge 0$, $x -$ целое ,

методом Гомори.

Задача 1.

Матрица A :	Вектор <i>b</i>
1 -5 3 1 0 0	-8
4 -1 1 0 1 0	22
2 4 2 0 0 1	30

Вектор c = (7 - 2 6 0 5 2)'.

Ответ:

Оптимальный целочисленный план $x^0 = (0 \ 2 \ 0 \ 2 \ 24 \ 22)'$.

Значение целевой функции: 160

Задача 2.

Мат	грица	Вектор b	
1 -3	2 0	1 -1 4 -1 0	3
1 -1	6 1	0 -2 2 2 0	9
2 2	-1 1	0 -3 8 -1 1	9
4 1	0 0	1 -1 0 -1 1	5
1 1	1 1	1 1 1 1 1	9

Вектор $c = (-1 \ 5 \ -2 \ 4 \ 3 \ 1 \ 2 \ 8 \ 3)$ '.

Ответ:

Оптимальный целочисленный план x^0 =(1 1 1 1 1 1 1 1)'.

Значение целевой функции: 23.

Задача 3.

Матрица A: Вектор b:

1 0 0 12 1 -3 4 -1 40

0 1 0 11 12 3 5 3 107

0 0 1 1 0 22 -2 1 61

Вектор $c = (2 \ 1 \ -2 \ -1 \ 4 \ -5 \ 5 \ 5)$ '.

Ответ:

Оптимальный целочисленный план x^0 =(77 2 5 0 0 1 0 34) '.

Значение целевой функции: 311.

Задача 4.

Mатрица A :	Вектор <i>b</i>
1 2 3 12 1 -3 4 -1 2 3	153
0 2 0 11 12 3 5 3 4 5	123
0 0 2 1 0 22 -2 1 6 7	112

Вектор $c = (2 \ 1 \ -2 \ -1 \ 4 \ -5 \ 5 \ 5 \ 1 \ 2)$ '.

Ответ:

Оптимальный целочисленный план $x^0 = (188\ 0\ 4\ 0\ 0\ 3\ 0\ 38\ 0\ 0)$ '. Значение целевой функции: 543.

Задача 5.

M	атр	ица	A	:		Вектор b :
2	1	-1	-3	4	7	7
0	1	1	1	2	4	16
6	-3	-2	1	1	1	6

Вектор $c = (1 \ 2 \ 1 \ -1 \ 2 \ 3)$ '.

Ответ:

Оптимальный целочисленный план $x^0 = (5\ 1\ 11\ 0\ 0\ 1)$ '. Значение целевой функции: 21.

Задача 6.

M	атр	риц	a A	Вектор b			
0	7	1	-1	-4	2	4	12
5	1	4	3	-5	2	1	27
2	0	3	1	0	1	5	19

Вектор $c = (10 \ 2 \ 1 \ 7 \ 6 \ 3 \ 1)$ '.

Ответ:

Оптимальный целочисленный план $x^0 = (5 \ 6 \ 0 \ 8 \ 6 \ 1 \ 0)$ '. Значение целевой функции: 157.

Задача 7.

M	атр	оиц	a A	Вектор b			
0	7	-8	-1	5	2	1	6
3	2	1	-3	-1	1	0	3
1	5	3	-1	-2	1	0	7
1	1	1	1	1	1	1	7

Вектор $c = (2 \ 9 \ 3 \ 5 \ 1 \ 2 \ 4)'$.

Ответ:

Оптимальный целочисленный план x^0 =(1 1 1 1 1 1 1) '. Значение целевой функции: 26.

Задача 8.

Матрица A: Вектор b:

1 0 -1 3 -2 0 1 4

0 2 1 -1 0 3 -1 8

1 2 1 4 2 1 1 24

Вектор c = (-1 -3 -7 0 -4 0 -1)'.

Ответ:

Оптимальный целочисленный план x^0 =(1 1 0 3 3 3 0)'. Значение целевой функции -16.

Задача 9.

Матрица A :	Вектор b
1 -3 2 0 1 -1 4 -1 0	3
1 -1 6 1 0 -2 2 2 0	9
2 2 -1 1 0 -3 2 -1 1	9
4 1 0 0 1 -1 0 -1 1	5
1 1 1 1 1 1 1 1 1	9

Вектор $c = (-1 \ 5 \ -2 \ 4 \ 3 \ 1 \ 2 \ 8 \ 3)$ '.

Ответ:

Оптимальный целочисленный план $x^0 = (0 \ 1 \ 1 \ 2 \ 0 \ 0 \ 1 \ 0 \ 4)'$.

Значение целевой функции: 25.

4. Задачи распределения ресурсов

Пример. Рассмотрим пример с данными из таблицы, где c=6, n=3.

X	0	1	2	3	4	5	6
$f_1(x)$	0	3	4	5	8	9	10
$f_2(x)$	0	2	3	7	9	12	13
$f_3(x)$	0	1	2	6	11	11	13

Используя данные из Таблицы 1, вычислим функции Беллмана $B_k(y), y=0,1,...,6,\ k=1,2,3,$ по рекуррентным правилам

$$B_1(y) = f_1(y), B_2(y) = \max_{0 \le z \le y} [f_2(z) + B_1(y - z)], B_3(y) = \max_{0 \le z \le y} [f_3(z) + B_2(y - z)].$$
(4.1)

Через $x_k^0(y)$ будем обозначать значение переменной z, на котором достигается максимум при подсчете соответствующего значения функции $B_k(y)$.

Согласно (1) имеем

$$\begin{split} &B_2(1) = \max_{0 \le z \le 1} (f_2(z) + B_1(1-z)) = \{f_2(0) + B_1(1), f_2(1) + B_1(0)\} = \{0+3, 2+0\} = 3, x \frac{0}{2}(1) = 0; \\ &B_2(2) = \max_{0 \le z \le 2} (f_2(z) + B_1(2-z)) = \{f_2(0) + B_1(2), f_2(1) + B_1(1), f_2(2) + B_1(0)\} = \\ &\{0+4, 2+3, 3+0\} = 5, x \frac{0}{2}(2) = 1; \\ &B_2(3) = \max_{0 \le z \le 3} (f_2(z) + B_1(3-z)) = \{f_2(0) + B_1(3), f_2(1) + B_1(2), f_2(2) + B_1(1), f_2(3) + B_1(0)\} = \\ &\{0+5, 2+4, 3+3, 7+0\} = 7, x \frac{0}{2}(3) = 3; \\ &B_2(4) = \max_{0 \le z \le 4} (f_2(z) + B_1(4-z)) = \{f_2(0) + B_1(4), f_2(1) + B_1(3), f_2(2) + B_1(2), f_2(3) + B_1(1), f_2(4) + B_1(0)\} = \{0+8, 2+5, 3+4, 7+3, 9+0\} = 10, x \frac{0}{2}(4) = 3; \\ &B_2(5) = \max_{0 \le z \le 5} (f_2(z) + B_1(5-z)) = \{f_2(0) + B_1(5), f_2(1) + B_1(4), f_2(2) + B_1(3), f_2(3) + B_1(2), f_2(4) + B_1(1), f_2(5) + B_1(0)\} = \{0+9, 2+8, 3+5, 7+4, 9+3, 12+0\} = 12, x \frac{0}{2}(5) = 5 \lor 4; \\ &B_2(6) = \max_{0 \le z \le 5} (f_2(z) + B_1(6-z)) = \{f_2(0) + B_1(6), f_2(1) + B_1(5), f_2(2) + B_1(4), f_2(3) + B_1(3), f_2(4) + B_1(2), f_2(5) + B_1(1), f_2(6) + B_1(0)\} = \\ &= \{0+10, 2+9, 3+8, 7+5, 9+4, 12+3, 13+0\} = 15, x \frac{0}{2}(6) = 5; \end{split}$$

$$\begin{split} &B_3(1) = \max_{0 \le z \le 1} (f_3(z) + B_2(1-z)) = \{f_3(0) + B_2(1), f_3(1) + B_2(0)\} = \{0 + 3, 1 + 0\} = 3, x \frac{9}{3}(1) = 0; \\ &B_3(2) = \max_{0 \le z \le 2} (f_3(z) + B_2(2-z)) = \{f_3(0) + B_2(2), f_3(1) + B_2(1), f_3(2) + B_2(0)\} = \\ &\{0 + 5, 1 + 3, 2 + 0\} = 5, x \frac{9}{3}(2) = 0; \\ &B_3(3) = \max_{0 \le z \le 3} (f_3(z) + B_2(3-z)) = \{f_3(0) + B_2(3), f_3(1) + B_2(2), f_3(2) + B_2(1), f_3(3) + B_2(0)\} = \\ &\{0 + 7, 1 + 5, 2 + 3, 6 + 0\} = 7, x \frac{9}{3}(3) = 0; \\ &B_3(4) = \max_{0 \le z \le 4} (f_3(z) + B_2(4-z)) = \{f_3(0) + B_2(4), f_3(1) + B_2(3), f_3(2) + B_2(2), f_3(3) + B_2(1), f_2(4) + B_1(0)\} = \{0 + 10, 1 + 7, 2 + 5, 6 + 3, 11 + 0\} = 11, x \frac{9}{4}(4) = 4; \\ &B_3(5) = \max_{0 \le z \le 5} (f_3(z) + B_2(5-z)) = \{f_3(0) + B_2(5), f_3(1) + B_2(4), f_3(2) + B_2(3), f_3(3) + B_2(2), f_3(4) + B_2(1), f_3(5) + B_2(0)\} = \{0 + 12, 1 + 10, 2 + 7, 6 + 5, 11 + 3, 11 + 0\} = 14, x \frac{9}{3}(5) = 4; \\ &B_3(6) = \max_{0 \le z \le 5} (f_3(z) + B_2(6-z)) = \{f_3(0) + B_2(6), f_3(1) + B_2(5), f_3(2) + B_2(4), f_3(3) + B_2(3), f_3(4) + B_2(2), f_3(5) + B_2(1), f_3(6) + B_2(0)\} = \{0 + 15, 1 + 12, 2 + 10, 6 + 7, 11 + 5, 11 + 3, 13 + 0\} = 16, x \frac{9}{3}(6) = 4. \end{split}$$

Значения функций Беллмана запишем в таблицу, где в каждой клетке наряду со значением функции Беллмана $B_k(y)$ в скобках укажем значение $x_k^0(y)$:

У	0	1	2	3	4	5	6
$B_1(y)$	0	3	4	5	8	9	10
$B_2(y)$	0	3(0)	5(1)	7(3)	10(3)	12(5,4)	15(5)
$B_3(y)$	0	3(0)	5(0)	7(0)	11(4)	14(4)	16(4)

Из последней таблицы что максимальная прибыль видно, В $B_3(6) = 16$. Найдем рассматриваемой задаче равна оптимальное $x_3^0(6) = 4$, To Поскольку распределение ресурсов. третьему технологическому процессу назначается ресурсов в объеме $x_3^0 = 4$. На остальные процессы 1 и 2 остается ресурсов 6-4=2. Прибыль от реализации процессов 1, 2 при объеме ресурсов 2 равна $B_2(2) = 5$ и $x_2^0(2) = 1$. Значит, второму процессу назначается ресурс в объеме 1: $x_2^0 = 1$. Тогда на первый

процесс остается ресурса в объеме 2-1=1. Следовательно $x_1^0=1$. Таким образом, получен оптимальный план ($x_1^0=1,\ x_2^0=1,\ x_3^0=4$).

Предположим, что условия задачи изменились, например, пусть теперь имеется только два технологических процесса, т.е. пусть c=6 и n=2. Согласно таблице имеем $B_2(6)=15$ и $x_2^0(6)=5$. Следовательно, при новых условиях задачи оптимальная прибыль будет равна 15 и второму процессу надо назначить 5 единиц ресурса. Тогда на первый процесс остается ресурса в объеме 6-5=1 единиц. Оптимальный план имеет вид

$$(x_1^0 = 1, x_2^0 = 5).$$

Задачи.

Решить задачи распределения ресурсов, используя данные из таблиц.

Задача 1.

x f(x)	0	1	2	3	4	5	6
f ₁ (x)	0	1	2	2	4	5	6
$f_2(x)$	0	2	3	5	7	7	8
f ₃ (x)	0	2	4	5	6	7	7

Ответ

y B(y)\	0	1	2	3	4	5	6
B ₁ (y)	0	1	2	2	4	5	6
B ₂ (y)	0	2(1)	3(1)	5(3)	7(4)	8(4)	9(4)
B ₃ (y)	0	2(0)	4(1)	6(2)	7(0)	9(1)	11(2)

Оптимальное назначение: $x_1^0 = 0$, $x_2^0 = 4$, $x_3^0 = 2$.

Задача 2.

f(x)	0	1	2	3	4	5	6
f ₁ (x)	0	1	1	3	6	10	11
$f_2(x)$	0	2	3	5	6	7	13
f ₃ (x)	0	1	4	4	7	8	9

Ответ

y B(y)	0	1	2	3	4	5	6
B ₁ (y)	0	1	1	3	6	10	11
B ₂ (y)	0	2(1)	3(1)	5(3)	6(0)	10(0)	13(6)
B ₃ (y)	0	2(0)	4(2)	6(2)	7(2)	10(0)	13(0)

Оптимальное распределение: $x_1^0 = 0$, $x_2^0 = 6$, $x_3^0 = 0$.

Задача 3.

f(x)	0	1	2	3	4	5	6	7
f ₁ (x)	0	1	2	4	8	9	9	23
$f_2(x)$	0	2	4	6	6	8	10	11
f ₃ (x)	0	3	4	7	7	8	8	24

Ответ:

у	0	1	2	3	4	5	6	7
B(y)	0	1	2	4	8	0	9	23
$\frac{B_1(y)}{B_2(y)}$	0	2(1)				10(1)		
$B_3(y)$	0		5(1)			11(1)		

Оптимальное распределение: $x_1^0 = 0$, $x_2^0 = 0$, $x_3^0 = 7$.

Задача 4.

f(x)	0	1	2	3	4	5	6	7
f ₁ (x)	0	3	3	6	7	8	9	14
$f_2(x)$	0	2	4	4	5	6	8	13
f ₃ (x)	0	1	1	2	3	3	10	11

Ответ:

y B(y)	0	1	2	3	4	5	6	7
$B_1(y)$	0	3	3	6	7	8	9	14
B ₂ (y)	0	3(0)	5(1)	7(2)	8(1)	10(2)	11(2)	14(0)
B ₃ (y)	0	3(0)	5(0)	7(0)	8(0)	10(0)	11(0)	14(0)

Оптимальное распределение: $x_1^0 = 0$, $x_2^0 = 0$, $x_3^0 = 7$.

Задача 5.

x f(x)	0	1	2	3	4	5	6	7	8
f ₁ (x)	0	2	2	3	5	8	8	10	17
$f_2(x)$	0	1	2	5	8	10	11	13	15
f ₃ (x)	0	4	4	5	6	7	13	14	14
f ₄ (x)	0	1	3	6	9	10	11	14	16

Ответ:

y B(y)\	0	1	2	3	4	5	6	7	8
$B_1(y)$	0	2	2	3	5	8	8	10	17
B ₂ (y)	0	2(0)	3(1)	5(3)	8(4)	10(4)	12(5)	13(6)	17(0)
B ₃ (y)	0	4(1)	6(1)	7(1)	9(1)	12(1)	14(1)	16(1)	17(0)
B ₄ (y)	0	4(0)	6(0)	7(0)	10(3)	13(4)	15(4)	16(0)	18(3)

Оптимальное распределение: $x_1^0 = 0$, $x_2^0 = 4$, $x_3^0 = 1$, $x_4^0 = 3$.

Задача 6.

f(x)	0	1	2	3	4	5	6	7	8	9	10	11
f ₁ (x)	0	1	3	4	5	8	9	9	11	12	12	14
$f_2(x)$	0	1	2	3	3	3	7	12	13	14	17	19
f ₃ (x)	0	4	4	7	7	8	12	14	14	16	18	22
f ₄ (x)	0	5	5	5	7	9	13	13	15	15	19	24

Ответ:

y B(y)	0	1	2	3	4	5	6	7	8	9	10	11
$B_1(y)$	0	1	3	4	5	8	9	9	11	12	12	14
B ₂ (y)	0	1(0)	3(0)	4(0)	5(0)	8(0)	9(0)	12(7)	13(7)	15(7)	17(10)	19(11)
B ₃ (y)	0	4(1)	5(1)	7(1)	8(1)	10(3)	12(1)	14(7)	16(1)	17(1)	19(1)	22(11)
B ₄ (y)	0	5(1)	9(1)	10(1)	12(1)	13(1)	15(1)	17(1)	19(1)	21(1)	22(1)	24(1)

Оптимальное распределение: $x_1^0 = 2$, $x_2^0 = 7$, $x_3^0 = 1$, $x_4^0 = 1$.

Задача 7.

x f(x)	0	1	2	3	4	5	6	7	8	9	10	11
f ₁ (x)	0	4	4	6	9	12	12	15	16	19	19	19
$f_2(x)$	0	1	1	1	4	7	8	8	13	13	19	20
f ₃ (x)	0	2	5	6	7	8	9	11	11	13	13	18
f ₄ (x)	0	1	2	4	5	7	8	8	9	9	15	19
$f_5(x)$	0	2	5	7	8	9	10	10	11	14	17	21

Ответ:

y B(y)	0	1	2	3	4	5	6	7	8	9	10	11
B ₁ (y)	0	4	4	6	9	12	12	15	16	19	19	19
B ₂ (y)	0	4(0)	5(1)	6(0)	9(0)	12(0)	13(1)	15(0)	16(0)	19(0)	20(1)	23(10)
B ₃ (y)	0	4(0)	6(1)	9(2)	10(2)	12(0)	14(1)	17(2)	18(2)	20(2)	21(1)	24(2)
B ₄ (y)	0	4(0)	6(0)	9(0)	10(0)	12(0)	14(0)	17(0)	18(0)	20(0)	21(0)	24(0)
B ₅ (y)	0	4(0)	6(0)	9(0)	11(1)	14(2)	16(3)	17(0)	19(1)	22(2)	24(3)	25(2)

Оптимальное распределение: $x_1^0 = 7$, $x_2^0 = 0$, $x_3^0 = 2$, $x_4^0 = 0$, $x_5^0 = 2$.

Задача 8.

f(x)	0	1	2	3	4	5	6	7	8	9	10
f ₁ (x)	0	1	2	2	2	3	5	8	9	13	14
$f_2(x)$	0	1	3	4	5	5	7	7	10	12	12
f ₃ (x)	0	2	2	3	4	6	6	8	9	11	17
f ₄ (x)	0	1	1	1	2	3	9	9	11	12	15
f ₅ (x)	0	2	7	7	7	9	9	10	11	12	13
$f_6(x)$	0	2	5	5	5	6	6	7	12	18	22

Ответ:

y B(y)	0	1	2	3	4	5	6	7	8	9	10
B ₁ (y)	0	1	2	2	2	3	5	8	9	13	14
B ₂ (y)	0	1(0)	3(2)	4(2)	5(2)	6(3)	7(4)	8(0)	10(8)	13(0)	14(0)
B ₃ (y)	0	2(1)	3(0)	5(1)	6(1)	7(1)	8(1)	9(1)	10(0)	13(0)	17(10)
B ₄ (y)	0	2(0)	3(0)	5(0)	6(0)	7(0)	9(6)	11(6)	12(6)	14(6)	17(0)
B ₅ (y)	0	2(0)	7(2)	9(2)	10(2)	12(2)	13(2)	14(2)	16(2)	18(2)	19(2)
B ₆ (y)	0	2(0)	7(0)	9(0)	12(2)	14(2)	15(2)	17(2)	18(2)	19(2)	22(10)

Оптимальное распределение: $x_1^0 = 0$, $x_2^0 = 0$, $x_3^0 = 0$, $x_4^0 = 0$, $x_5^0 = 10$.

5. Задачи о потоке минимальной стоимости.

Метод потенциалов

Пример. Рассмотрим сеть $S = \{I, U\}$, изображенную на Рис.1, где на каждой дуге (i,j) красными цифрами указаны «стоимости» c_{ij} . Для этой сети задан начальный допустимый базисный поток $\{x, U_{\mathcal{B}}\}$, $x = (x_{ij}, (i,j) \in U)$, $U_{\mathcal{B}} \subset U$. На Рис. 5.1 значения дуговых потоков x_{ij} указаны черными цифрами на дугах, дуги множества $U_{\mathcal{B}}$ выделены красным цветом.

Рис. 5.1.

Итерация 1.

Используя базисное множество дуг $U_{\it B}$, подсчитаем потенциалы $u_{\it i}, \it i \in I$, узлов по правилу

$$u_i - u_j = c_{ij}, (i, j) \in U_E, u_1 = 0.$$

Найденные потенциалы приведены на Рис. 5.1. Зная потенциалы, подсчитаем оценки $\Delta_{ij} = u_i - u_j - c_{ij}$, $(i,j) \in U_H = U \setminus U_B$, и проверим выполнение условий

$$\Delta_{ij} \le 0, (i,j) \in U_H. \tag{5.1}$$

На данной итерации условия (5.1) не выполняются, поскольку для дуги $(6,1)\!\in\!U_H$ имеем $\Delta_{61}=5-0-(-2)=7>0.$

Полагаем (i_0,j_0) = (6,1). Во множестве дуг $U_{\it E} \cup (i_0,j_0)$ найдем цикл и выделим в этом цикле множество прямых $U^+_{\it цикл}$ и обратных $U^-_{\it цикл}$. Направление движения по циклу задается дугой (i_0,j_0) = (6,1). В результате получим

$$U_{uu\kappa\eta}^+ = \{(6,1),(1,2)\}, \ \ U_{uu\kappa\eta}^- = \{(6,3),(3,2)\}.$$

Найдем $\theta \coloneqq \min_{(i,j) \in U_{uu\kappa_{1}}^{-}} x_{ij} = x_{32} = 3$. Положим $(i_{*}, j_{*}) = (3,2)$.

Построим новый поток $\overline{x} = (\overline{x}_{ij}, (i, j) \in U)$ по правилу

$$\overline{x}_{ij} = x_{ij}, (i,j) \in U \setminus U_{uukn}; \overline{x}_{ij} = x_{ij} + \theta, (i,j) \in U_{uukn}^+; \ \overline{x}_{ij} = x_{ij} - \theta, (i,j) \in U_{uukn}^-.$$

Для нового потока построим новое базисное множество дуг по правилу

$$\overline{U}_{\scriptscriptstyle B} = (U_{\scriptscriptstyle B} \setminus (i_*, j_*)) \cup (i_0, j_0).$$

На Рис. 5.2 приведены новые дуговые потоки $\overline{x}_{ij}, (i,j) \in U$, и новое множество базисный дуг $\overline{U}_{\mathcal{B}}$.

Переходим к новой итерации, используя новый базисный поток $\{\overline{x}, \overline{U}_{\scriptscriptstyle E}\}$ в качестве исходного базисного потока $\{x, U_{\scriptscriptstyle E}\}$.

Рис. 5.2.

Итерация 2.

Используя базисное множество дуг U_{E} , подсчитаем потенциалы u_{i} , $i \in I$, узлов по правилу $u_{i}-u_{j}=c_{ij}$, $(i,j)\in U_{E}$, $u_{1}=0$. Найденные потенциалы приведены на Рис. 5.2. Зная потенциалы, подсчитаем оценки $\Delta_{ij}=u_{i}-u_{j}-c_{ij}$, $(i,j)\in U_{H}=U\setminus U_{E}$, и проверим выполнение условий (5.1). На данной итерации эти условия не выполняются, поскольку для дуги $(6,5)\in U_{H}$ имеем $\Delta_{65}=-2-(-9)-4=3>0$. Полагаем $(i_{0},j_{0})=(6,5)$.

Во множестве дуг $U_{\scriptscriptstyle E} \cup (i_0,j_0)$ найдем цикл и выделим в этом цикле множество прямых $U_{\scriptscriptstyle \mu \nu \kappa n}^+$ и обратных $U_{\scriptscriptstyle \mu \nu \kappa n}^-$. Направление движения по циклу задается дугой (i_0,j_0) = (6,5). В результате получим

$$U_{must}^{+} = \{(6,5),(5,4)\}, \ U_{must}^{-} = \{(6,3),(3,4)\}.$$

Найдем $\theta \coloneqq \min_{(i,j) \in U_{mux}^-} x_{ij} = x_{34} = 1$. Положим $(i_*, j_*) = (3,4)$.

Построим новый поток $\overline{x} = (\overline{x}_{ij}, (i, j) \in U)$ по правилу

$$\overline{x}_{ij} = x_{ij}, (i, j) \in U \setminus U_{uukn}; \overline{x}_{ij} = x_{ij} + \theta, (i, j) \in U_{uukn}^+; \overline{x}_{ij} = x_{ij} - \theta, (i, j) \in U_{uukn}^-$$

Для нового потока построим новое базисное множество дуг по правилу

$$\overline{U}_{\scriptscriptstyle B} = (U_{\scriptscriptstyle B} \setminus (i_*, j_*)) \cup (i_0, j_0).$$

На Рис. 5.3 приведены новые дуговые потоки $\overline{x}_{ij}, (i,j) \in U$, и новое множество базисный дуг $\overline{U}_{\mathcal{B}}$.

Переходим к новой итерации, используя новый базисный поток $\{\overline{x}, \overline{U}_{\scriptscriptstyle B}\}$ в качестве исходного базисного потока $\{x, U_{\scriptscriptstyle B}\}$.

Рис.5.3.

Итерация 3.

Используя текущее базисное множество дуг $U_{\scriptscriptstyle B}$, подсчитаем потенциалы $u_{\scriptscriptstyle i}$, $i\in I$, узлов по правилу $u_{\scriptscriptstyle i}-u_{\scriptscriptstyle j}=c_{\scriptscriptstyle ij}$, $(i,j)\in U_{\scriptscriptstyle B}$, $u_{\scriptscriptstyle 1}=0$.

Найденные потенциалы приведены на Рис. 5.3. Зная потенциалы, подсчитаем оценки $\Delta_{ij} = u_i - u_j - c_{ij}$, $(i,j) \in U_H = U \setminus U_B$, и проверим выполнение условий (5.1). На данной итерации эти условия выполняются. Следовательно, текущий поток (приведенный на Рис. 5.3) является оптимальным потоком. Задача решена.

Ответ: оптимальный поток

$$x_{12} = 4, x_{61} = 3, x_{63} = 5, x_{65} = 1, x_{54} = 6, x_{26} = 0, x_{23} = 0, x_{34} = 0, x_{53} = 0.$$

Задачи.

Решить задачи о потоке минимальной стоимости методом потенциалов Задача 1.

Ответ: оптимальный поток

$$\begin{split} x_{23} &= 4, x_{26} = 1, x_{74} = 3, x_{65} = 5, x_{96} = 2, x_{87} = 2, x_{18} = 9, x_{75} = 1, x_{12} = 0, x_{73} = 0, \\ x_{43} &= 0, x_{54} = 0, x_{39} = 0, x_{79} = 0, x_{89} = 0, x_{27} = 0, \text{его стоимость} \sum_{(i,j) \in U} c_{ij} x_{ij} = 127. \end{split}$$

Задача 2.

$$x_{12}=5, x_{73}=1, x_{75}=2, x_{86}=11, x_{65}=5, x_{54}=6, x_{23}=0, x_{27}=0,$$
 $x_{18}=0, x_{87}=0, x_{43}=0, x_{36}=0, x_{76}=0, x_{46}=0,$ его стоимость $\sum_{(i,j)\in U}c_{ij}x_{ij}=186.$

Задача 3.

Ответ: оптимальный поток

$$\begin{split} x_{12} &= 2, x_{18} = 7, x_{87} = 3, x_{43} = 4, x_{75} = 7, x_{65} = 4, x_{54} = 10, x_{23} = 0, x_{27} = 0, \\ x_{73} &= 0, x_{74} = 0, x_{76} = 0, x_{87} = 0, x_{36} = 0, \text{ его стоимость } \sum_{(i,j) \in U} c_{ij} x_{ij} = 41. \end{split}$$

Задача 4.

$$x_{12}=3, x_{23}=5, x_{53}=1, x_{56}=8, x_{76}=4, x_{64}=7, x_{25}=0, x_{17}=0,$$
 $x_{75}=0, x_{34}=0, x_{54}=0, x_{36}=0,$ его стоимость $\sum_{(i,j)\in U}c_{ij}x_{ij}=85.$

Задача 5.

Ответ: оптимальный поток

$$\begin{split} x_{12} &= 1, x_{17} = 5, x_{53} = 1, x_{67} = 1, x_{54} = 2, x_{25} = 5, x_{23} = 0, x_{27} = 0, \\ x_{15} &= 0, x_{16} = 0, x_{56} = 0, x_{37} = 0, x_{34} = 0, x_{64} = 0, \text{ его стоимость } \sum_{(i,j) \in U} c_{ij} x_{ij} = 13. \end{split}$$

Задача 6.

$$\begin{split} x_{72} &= 6, x_{17} = 2, x_{24} = 2, x_{36} = 6, x_{67} = 3, x_{68} = 3, x_{58} = 2, x_{12} = 0, x_{23} = 0, x_{16} = 0, \\ x_{65} &= 0, x_{75} = 0, x_{78} = 0, x_{43} = 0, x_{35} = 0, x_{26} = 0, \text{ его стоимость } \sum_{(i,j) \in U} c_{ij} x_{ij} = 94. \end{split}$$

Задача 7.

Ответ: оптимальный поток

$$\begin{split} x_{12} &= 2, x_{15} = 8, x_{71} = 5, x_{34} = 4, x_{35} = 1, x_{67} = 2, x_{23} = 0, x_{13} = 0, \\ x_{75} &= 0, x_{56} = 0, x_{46} = 0, x_{54} = 0, x_{26} = 0, \text{ его стоимость } \sum_{(i,j) \in U} c_{ij} x_{ij} = 85. \end{split}$$

Задача 8.

$$x_{26}=1, x_{16}=3, x_{15}=3, x_{64}=5, x_{34}=1, x_{12}=0, x_{32}=0, x_{24}=0,$$
 $x_{45}=0, x_{31}=0, x_{65}=0, x_{35}=0,$ его стоимость $\sum_{(i,j)\in U} c_{ij}x_{ij}=37.$

6. Задачи о нахождении дерева кратчайших путей из заданного узла s

Пример. На сети, изображенной на Рис. 6.1, найти кратчайший путь из узла s = 1 в узел t = 4. Воспользуемся алгоритмом Дейкстры.

Перед началом работы алгоритма полагаем

$$I_* = \{s\}, B_s = 0, f(s) = s, B_j' = \infty, f(j) = 0, j \in I \setminus I_*, i_* = s.$$

Итерация 1. Рассмотрим узлы

$$\tilde{I}_{i_*}^+ = \tilde{I}_1^+ = \{ j \in I \setminus I_* : \exists (i_*, j) \in U \} = \{2, 6\}.$$

Поскольку $\infty = B_{j}^{'} > B_{1} + c_{1j}^{}$, $j \in \tilde{I}_{1}^{+}$, то меняем временные метки узлов $j \in \tilde{I}_{1}^{+}$:

$$B_2' := B_1 + c_{12} = 12, f'(2) := 1, \quad B_6' := B_1 + c_{16} = 1, f'(6) := 1.$$

Временные метки остальных узлов не меняем:

$$B'_{j} := B'_{j}, f'(j) = f'(j), j \in I \setminus \{1, 2, 6\}.$$

Среди всех узлов $j \in I \setminus I_*$ (т.е. узлов с временными метками) находим узел j_* с минимальной временной меткой:

$$B'_{j_*} = \min_{j \in I \setminus I_*} B'_{j} = B'_{6} = 1$$
.

Полагаем $B_6 := B_6^{'} = 1$, $f(6) = f^{'}(6) = 1$, т.е. узлу $j_* = 6$ приписываем постоянные метки и относим узел j_* к множеству I_* , заменяя I_* на $I_* := I_* \cup j_* = \{1,6\}$. Полагаем $i_* := j_* = 6$ и переходим к следующей итерации.

Итерация 2. Рассмотрим узлы

$$\tilde{I}_{i_*}^+ = \tilde{I}_6^+ = \{ j \in I \setminus I_* : \exists (i_*, j) \in U \} = \{2, 5, 7\}.$$

Поскольку для узлов \tilde{I}_6^+ имеем

$$12 = B'_2 > 11 = B_6 + c_{62}$$
, $\infty = B'_7 > B_6 + c_{67} = 9$, $\infty = B'_5 > B_6 + c_{65} = 6$,

то меняем временные метки этих узлов:

$$B_2' := 11, f'(2) := 6, B_5' := 5, f'(5) := 6, B_7' := 9, f'(7) := 6.$$

Временные метки остальных узлов не меняем.

Среди всех узлов $j \in I \setminus I_*$ (т.е. узлов с временными метками) находим узел j_* с минимальной временной меткой. Это узел $j_* = 5$. Полагаем

$$B_5 := B_5' = 6$$
, $f(5) = f'(5) = 6$,

т.е. узлу $j_*=5$ приписываем постоянные метки и относим узел j_* к множеству I_* , заменяя I_* на $I_*:=I_*\cup j_*=\{1,5,6\}$. Полагаем $i_*:=j_*=5$ и переходим к следующей итерации.

Итерация 3. Рассмотрим узлы

$$\tilde{I}_{i_*}^+ = \tilde{I}_5^+ = \{ j \in I \setminus I_* : \exists (5, j) \in U \} = \{4, 7\}.$$

Поскольку для узлов $\tilde{I}_{\scriptscriptstyle 5}^{\scriptscriptstyle +}$ имеем

$$9 = B_7 > B_5 + c_{57} = 8$$
, $\infty = B_4 > B_5 + c_{54} = 21$,

то меняем временные метки этих узлов:

$$B_7' := 8$$
, $f'(7) := 5$, $B_4' := 21$, $f'(4) := 5$.

Временные метки остальных узлов не меняем.

Среди всех узлов $j \in I \setminus I_*$ (т.е. узлов с временными метками) находим узел j_* с минимальной временной меткой. Теперь это узел $j_* = 7$. Полагаем $B_7 := B_7^{'} = 8$, $f(7) = f^{'}(7) = 5$, и относим узел $j_* = 7$ к множеству I_* , заменяя I_* на $I_* := I_* \cup j_* = \{1,5,6,7\}$. Полагаем $i_* := j_* = 7$ и переходим к следующей итерации.

Итерация 4. Рассмотрим узлы

$$\tilde{I}_{i_*}^+ = \tilde{I}_7^+ = \{ j \in I \setminus I_* : \exists (7, j) \in U \} = \{2, 3\}.$$

Поскольку для узлов \tilde{I}_7^+ выполняются соотношения

$$11 = B_2' > B_7 + c_{72} = 10, \infty = B_3' > B_7 + c_{73} = 14,$$

то меняем временные метки этих узлов:

$$B_2^{'} := 10, f'(2) := 7, B_3^{'} := 14, f'(3) := 7.$$

Временные метки остальных узлов не меняем.

Среди всех узлов $j \in I \setminus I_*$ находим узел j_* с минимальной временной меткой. Теперь это узел $j_* = 2$. Полагаем

$$B_2 := B_2' = 10$$
, $f(2) = f'(2) = 7$,

и относим узел $j_*=2$ к множеству I_* , заменяя I_* на $I_*\coloneqq I_*\cup j_*=\{1,2,5,6,7\}$. Полагаем $i_*\coloneqq j_*=2$ и переходим к следующей итерации.

Итерация 5. Рассмотрим узлы

$$\tilde{I}_{i}^{+} = \tilde{I}_{2}^{+} = \{ j \in I \setminus I_{*} : \exists (2, j) \in U \} = \{3\}.$$

Поскольку для узла $\tilde{I}_{2}^{+}=\{3\}$ выполняется соотношение

$$14 = B_3' > B_2 + c_{23} = 12,$$

то меняем временную метку этого узла: $B_3^{'} := 12$, f'(3) := 2. Временные метки остальных узлов не меняем.

Среди всех узлов $j \in I \setminus I_*$ находим узел j_* с минимальной временной меткой. Теперь это узел $j_* = 3$. Полагаем

$$B_3 := B_3' = 12$$
, $f(3) = f'(3) = 2$,

и относим узел $j_*=3$ к множеству I_* , заменяя I_* на множество $I_*\coloneqq I_*\cup j_*=\{1,2,3,5,6,7\}$. Полагаем $i_*\coloneqq j_*=3$ и переходим к следующей итерации.

Итерация 6. Рассмотрим узлы

$$\tilde{I}_{i_*}^+ = \tilde{I}_3^+ = \{ j \in I \setminus I_* : \exists (3, j) \in U \} = \{4\}.$$

Поскольку для узла $\tilde{I}_{2}^{+}=\{4\}$ выполняется соотношение

$$21 = B_4' > B_3 + c_{34} = 13,$$

то меняем временную метку этого узла:

$$B_{\Delta}' := 13, f'(4) := 3.$$

Временные метки остальных узлов не меняем.

Среди всех узлов $j \in I \setminus I_*$ находим узел j_* с минимальной временной меткой. Теперь это узел $j_* = 4$. Полагаем

$$B_4 := B'_4 = 13$$
, $f(4) = f'(4) = 3$,

и относим узел $j_* = 4$ ко множеству I_* , заменяя I_* на

 $I_* := I_* \cup j_* = \{1, 2, 3, 4, 5, 6, 7\}$. Узел t = 4 является помеченным.

Алгоритм заканчивает свою работу. Длина кратчайшего пути из узла s=1 в узел t=4 равна $B_{4}^{'}=13$. Сам путь восстанавливаем с помощью вторых меток по правилу

$$f(t) = 3$$
, $f(3) = 2$, $f(2) = 7$, $f(7) = 5$, $f(5) = 5$, $f(6) = 1 = s$. (6.1)

Путь из s в t имеет вид:

$$1 = s \to 6 \to 5 \to 7 \to 2 \to 3 \to 4 = t. \tag{6.2}$$

Задачи.

Решить задачи о нахождении дерева кратчайших путей из узла s=1.

Задача 1.

Ответ: $B_1=0, B_2=4, B_3=6, B_4=13, B_5=12, B_6=12, B_7=7, B_8=3, B_9=4, B_{10}=9.$ Здесь и далее через B_j обозначена длина минимального пути из узла s=1 в узел j.

Задача 2.

Otbet: $B_1 = 0, B_2 = 6, B_3 = 10, B_4 = 8, B_5 = 11, B_6 = 9, B_7 = 2, B_8 = 6, B_9 = 7.$

Задача 3.

Otbet: $B_1 = 0, B_2 = 3, B_3 = 7, B_4 = 5, B_5 = 13, B_6 = 10, B_7 = 4, B_8 = 9.$

Задача 4.

Otbet: $B_1 = 0, B_2 = 4, B_3 = 5, B_4 = 4, B_5 = 5, B_6 = 4, B_7 = 2, B_8 = 1.$

Задача 5.

Otbet: $B_1 = 0, B_2 = 4, B_3 = 10, B_4 = 5, B_5 = 8, B_6 = 6, B_7 = 9.$

Задача 6.

Otbet: $B_1 = 0, B_2 = 3, B_3 = 4, B_4 = 8, B_5 = 6, B_6 = 1, B_7 = 5, B_8 = 4.$

Задача 7.

Otbet: $B_1 = 0, B_2 = 5, B_3 = 6, B_4 = 8, B_5 = 6, B_6 = 7, B_7 = 4, B_8 = 3, B_9 = 7.$

Задача 8.

Otbet: $B_1 = 0, B_2 = 1, B_3 = 5, B_4 = 5, B_5 = 7, B_6 = 5, B_7 = 6, B_8 = 5.$

7. Задачи о нахождении пути максимальной длины из узла s в узел t

Пример. На сети, изображенной на Рис. 7.1, требуется найти максимальный путь из узла s=1 в узел t=4. Числа, указанные на дугах, равны длине соответствующей дуги. Решим эту задачу методом пометок.

На первой итерации множество помеченных узлов $I_* = \{s\}$ содержит только узел s=1, метки которого равны $B_1=0$, f(1)=0. Рассмотрим множество узлов, соседних с I_* . Это множество $w(I_*)=\{2,6\}$. Во множестве $w(I_*)$ находим узел j_* , для которого $I_{j_*}^- \subset I_*$. Это узел $j_*=6$. Помечаем этот узел, приписывая ему метки $B_6 = \min_{i \in I_6^-} \{B_i + c_{i6}\} = 1$ и f(6)=1. Переходим к следующей итерации.

На **второй итерации** множество помеченных узлов имеет вид $I_* = \{s,6\}$. Ему соответствует множество соседних узлов $w(I_*) = \{2,3,5\}$. Во множестве $w(I_*)$ находим узел $j_* = 2$, для которого $I_{j_*}^- = \{1,6\} \subset I_*$. Помечаем этот узел, приписывая ему метки $B_2 = \min_{i \in I_2^-} \{B_i + c_{i2}\} = 5$ и f(2) = 6. Переходим к следующей итерации.

На **третьей итерации** множество помеченных узлов имеет вид $I_* = \{s,2,6\}$. Ему соответствует множество соседних узлов $w(I_*) = \{3,5\}$. Во множестве $w(I_*)$ находим узел $j_* = 5$, для которого $I_{j_*}^- = \{2,6\} \subset I_*$. Помечаем этот узел, приписывая ему метки $B_5 = \min_{i \in I_5^-} \{B_i + c_{i5}\} = 12$ и f(5) = 2. Переходим к следующей итерации.

На **четвертой итерации** множество помеченных узлов имеет вид $I_* = \{s, 2, 5, 6\}$. Ему соответствует множество соседних узлов $w(I_*) = \{3, 4\}$. Во

множестве $w(I_*)$ находим узел $j_*=3$, для которого $I_{j_*}^-=\{2,5,6\}\subset I_*$. Помечаем этот узел, приписывая ему метки $B_3=\min_{i\in I_3^-}\{B_i+c_{i3}\}=13$ и f(3)=5. Переходим к следующей итерации.

На **пятой итерации** множество помеченных узлов имеет вид $I_* = \{s,2,3,5,6\}$. Ему соответствует множество соседних узлов $w(I_*) = \{4\}$. Для узла $j_* = 4 \in w(I_*)$ имеем $I_{j_*}^- = \{3,5\} \subset I_*$. Помечаем этот узел, приписывая ему метки $B_4 = \min_{i \in I_4^-} \{B_i + c_{i4}\} = 21$ и f(4) = 3. Переходим к следующей итерации.

На **шестой итерации** выполняется включение $t = 4 \in I_* = \{s, 2, 3, 4, 5, 6\}$. Значит, максимальный пусть найден, его длина равна $B_4 = 21$. Вторые метки $f(j), j = \overline{1,6}$, позволяют восстановить критический путь из s в t по правилу:

 $i_1 \coloneqq f(t) = 3, \quad i_2 \coloneqq f(3) = 5, \quad i_3 \coloneqq f(5) = 2, \quad i_4 \coloneqq f(2) = 6, \ i_6 \coloneqq f(6) = 1.$ Следовательно, искомый путь имеет вид: $s = 1 \to 6 \to 2 \to 5 \to 3 \to 4 = t$. На Рис. 7.1. приведены значения функции Беллмана $B_j, \quad j = \overline{1,6}$, и вторых меток $f(j), j = \overline{1,6}$.

Рис. 7.1.

Задачи.

Решить задачи о нахождении пути максимальной длины из узла s в узел t .

Задача 1.

Ответ: длина максимального пути равна 21.

Задача 2.

Ответ: длина максимального пути равна 17.

Задача 3.

Ответ: длина максимального пути равна 25.

Задание 4.

Ответ: длина максимального пути равна 29.

Задача 5.

Ответ: длина максимального пути равна 22.

Задача 6.

Ответ: длина максимального пути равна 37.

Задача 7.

Ответ: длина максимального пути равна 49.

Задача 8.

Ответ: длина максимального пути равна 44.

8. Задачи о нахождении максимального потока из узла s в узел t

Пример 1. Рассмотрим сеть, приведенную на Рис. 8.1. Пропускные способности дуг d_{ij} указаны на дугах красными цифрами. Требуется найти максимальный поток, который можно пропустить из узла s в узел t.

Пусть на данной сети уже имеется допустимый поток $x=(x_{ij},(i,j)\in U)$ величины v=9. Дуговые потоки x_{ij} указаны на дугах черными цифрами. Проверим, является ли данный поток максимальным, и если нет, то построим новый поток, для которого $\overline{v}>v=9$. Для этого осуществим итерации метода Форда-Фалкерсона.

Рис. 8.1.

Построение увеличивающего пути.

Итерация 1.

Шаг 1. Полагаем

$$I_c = 1, I_t = 1, L = \{s\}, \quad g(s) = 0, \quad i = s, \quad p_s = 1.$$

Шаг 2. Из узла i=s есть только одна дуга $(s,3) \in U$, для которой $x_{s3}=5 < 9=d_{s3}$. Помечаем узел 3, полагая $I_t=2, L=\left\{s,3\right.$, $g(3)=s, p_3=2$.

Шаг 3. Для узла i=s нет ни одной дуги $(j,i) \in U$, для которой $x_{ii} > 0$. Переходим к шагу 4.

Шаг 4. Поскольку $t \notin L$, то переходим к шагу 5.

Шаг 5. Полагаем $I_c := I_c + 1$ и поскольку $p_3 = I_c$, то полагаем $j_0 = 3$.

Переходим к шагу 2 итерации 2, положив $i = j_0$.

Итерация 2.

Шаг 2. Из узла i=3 нет дуг $(i,j) \in U$, для которых $x_{ij} < d_{ij}$. Переходим к шагу 3.

Шаг 3. Для узла i=3 есть одна дуга $(1,3)\in U$, для которой $x_{13}>0$. Помечаем узел 1, полагая $I_t=3$, $L=\left\{s,3,1\right\}$, g(1)=-3, $p_1=3$.

Шаг 4. Поскольку $t \notin L$, то переходим к шагу 5.

Шаг 5. Полагаем $I_c:=I_c+1=3$ и находим узел $j_0\in L$, для которого $p_{j_0}=I_c$. На данной итерации $j_0=1$. Переходим к шагу 2 итерации 3, полагая $i=j_0=1$.

Итерация 3.

Шаги 2 - 3. С помощью узла i=1 помечаем узел 4, полагая

$$I_t = 4, L = \{s, 3, 1, 4\}, g(4) = 1, p_4 = 4.$$

Шаг 4. Узел $t \notin L$, переходим к шагу 5.

Шаг 5. Полагаем $I_c := I_c + 1 = 4$ и находим узел $j_0 \in L$, для которого $p_{j_0} = I_c$. На данной итерации $j_0 = 4$. Переходим к шагу 2 итерации 4, полагая $i = j_0 = 4$.

Итерация 4.

Шаги 2 - 3. С помощью узла i = 4 помечаем узел 2, полагая

$$I_t = 5, L = \{s, 3, 1, 4, 2\}, g(2) = -4, p_2 = 5.$$

Шаг 4. Узел $t \notin L$, переходим к шагу 5.

Шаг 5. Полагаем $I_c := I_c + 1 = 5$, $j_0 = 2$. Переходим к шагу 2 итерации 5, заменив i на $j_0 = 2$.

Итерация 5.

Шаги 2 - 4. С помощью узла i = 2 помечаем узел 5, полагая

$$I_t = 6, L = \{s, 3, 1, 4, 2, 5\}, g(5) = 2, p_5 = 6.$$

Переходим к шагу 5.

Шаг 5. Полагаем $I_c := I_c + 1 = 6$, $j_0 = 5$. Переходим к шагу 2 итерации 6, заменив i на $j_0 = 5$.

Итерация 6.

Шаги 2 - 4. С помощью узла i = 5 помечаем узел t, полагая $L = \{s, 3, 1, 4, 2, 5, t\}, g(t) = 5$. Узел $t \in L$. STOP — увеличивающий путь построен. Значит, имеющийся поток можно увеличить.

Переходим к алгоритму восстановления пути и увеличения потока. Применяя алгоритм восстановления пути и увеличения потока, получаем

$$q(t) = 5, \quad \alpha_1 = d_{5t} - x_{5t} = 2,$$

$$q(5) = 2, \quad \alpha_2 = \min\{\alpha_1, 10\} = 2,$$

$$q(2) = -4, \quad \alpha_3 = \min\{\alpha_2, 1\} = 1,$$

$$q(4) = 1, \quad \alpha_4 = \min\{\alpha_3, 2\} = 1,$$

$$q(1) = -3, \quad \alpha_5 = \min\{\alpha_4, 2\} = 1,$$

$$q(3) = s, \quad \alpha_6 = \min\{\alpha_5, 4\} = 1.$$

Увеличиваем поток вдоль построенного увеличивающего пути

$$U_n = \{ (s,3), (1,3), (1,4), (2,4), (2,5), (5,t) \},$$

изменяя дуговые потоки на дугах $(i,j) \in U$: по правилу

$$\overline{x}_{s3} = x_{s3} + \alpha_6 = 6, \ \overline{x}_{13} = x_{13} - \alpha_6 = 1, \ \overline{x}_{14} = x_{14} + \alpha_6 = 3,$$

$$\overline{x}_{24} = x_{24} - \alpha_6 = 0, \ \overline{x}_{25} = x_{25} + \alpha_6 = 1, \ \overline{x}_{5t} = x_{5t} + \alpha_6 = 8,$$

$$\overline{x}_{ij} = x_{ij}, (i, j) \in U : U_n, \ \overline{v} = v + \alpha_6.$$

Сеть S с новым потоком \bar{x} приведена на Рис. 8.2.

Рис. 8.2

Поток \overline{x} является максимальным. Действительно, применив к сети S с потоком \overline{x} алгоритм построения увеличивающего пути, мы можем пометить только узлы $L = \{ s, 3, 1, 4, \}$. После чего на шаге S не удается найти узел j_0 , для которого $p_{j_0} = I_c$. Легко проверить, что множество узлов L задают разрез

$$\omega(L) = \{ (3,2), (3,6), (4,5), (2,t) \},\$$

пропускная способность которого равна

$$\rho(\omega(L)) = 1 + 6 + 1 + 2 = 10 = \overline{v}$$
.

Согласно теореме, \bar{x}, \bar{v} – максимальный поток, $\omega(L)$ – минимальный разрез.

Пример 2. Рассмотрим сеть, приведенную на Рис.8.3, где черными цифрами указаны пропускные способности дуг. Требуется найти максимальный поток, который можно пропустить из узла s=1 в узел t=4.

Решим данную задачу методом Форда-Фалкерсона.

Итерация 1.

В качестве начального допустимого потока возьмем нулевой поток. На Рис. 8.3 и далее в данном примере дуговые потоки указаны красными цифрами около соответствующих дуг.

В исходной сети с нулевым потоком ищем увеличивающий путь из узла s=1в узел t=4. Пусть это будет путь, отмеченный на Рис.8.3 розовыми линиями.

Рис. 8.3.

По найденному увеличивающему пути пропускаем поток максимально допустимой величины. Для данного пути эта величина равна $\alpha=1$. Изменяем дуговые потоки вдоль увеличивающего пути: к «старым» дуговым потокам на прямых дугах пути прибавляем величину $\alpha=1$, от «старых» дуговых потоков на обратных дугах пути вычитаем величину $\alpha=1$. Дуговые потоки дуг, не принадлежащих увеличивающему пути, не меняются. В результате в исходной сети будет построен новый поток величины $\nu=1$ с дуговыми потоками, указанными на Рис. 8.4. Переходим к следующей итерации.

Рис. 8.4.

Итерация 2.

В исходной сети с текущим потоком, приведенным на Рис. 8.4, ищем увеличивающий путь из узла s=1 в узел t=4. Пусть это будет путь, отмеченный на Рис. 8.4 розовыми линиями.

По найденному увеличивающему пути пропускаем поток максимально допустимой величины. Для данного пути эта величина равна $\alpha = 5$. Изменяем дуговые потоки вдоль увеличивающего пути: к «старым» дуговым потокам на прямых дугах пути прибавляем величину $\alpha = 5$, от «старых» дуговых потоков на обратных дугах пути вычитаем величину $\alpha = 5$. Дуговые потоки дуг, не принадлежащих увеличивающему пути, не меняются. В результате в исходной сети будет построен новый поток величины $\nu = 6$ с дуговыми потоками, указанными на Рис. 8.5. Переходим к следующей итерации.

Рис. 8.5.

Итерация 3.

В исходной сети с текущим потоком, приведенным на Рис. 3, ищем увеличивающий путь из узла s=1в узел t=4. Пусть это будет путь, отмеченный на Рис. 3 розовыми линиями. Заметим, что в данном увеличивающем пути присутствует обратная дуга. Это дуга (6,2).

По найденному увеличивающему пути пропускаем поток максимально допустимой величины. Для данного пути эта величина равна $\alpha=1$. Изменяем дуговые потоки вдоль увеличивающего пути: к «старым» дуговым потокам на прямых дугах пути прибавляем величину $\alpha=1$, от «старых» дуговых потоков на обратных дугах пути вычитаем величину $\alpha=1$. Дуговые потоки дуг, не принадлежащих увеличивающему пути, не меняются. В результате в исходной сети будет построен новый поток величины v=7 с дуговыми потоками, указанными на Рис. 8.6. Переходим к следующей итерации.

Рис. 8.6.

Итерация 4.

В исходной сети с текущим потоком, приведенным на Рис. 4, ищем увеличивающий путь из узла s=1в узел t=4. Пусть это будет путь, отмеченный на Рис. 3 розовыми линиями. Все дуги данного пути являются прямыми.

По найденному увеличивающему пути пропускаем поток максимально допустимой величины. Для данного пути эта величина равна $\alpha = 1$. Изменяем дуговые потоки вдоль увеличивающего пути: к «старым» дуговым потокам на прямых дугах пути прибавляем величину $\alpha = 1$. Как отмечалось выше, обратных дуг в данном пути нет. Дуговые потоки дуг, не принадлежащих увеличивающему пути, не меняются. В результате в исходной сети будет построен новый поток величины v = 8 с дуговыми потоками, указанными на Рис. 8.7. Переходим к следующей итерации.

Рис. 8.7.

Итерация 5.

В исходной сети с текущим потоком, приведенным на Рис. 8.7, ищем увеличивающий путь из узла s=1 в узел t=4. В процессе построения увеличивающего пути методом Форда-Фалкерсона удается пометить только множество узлов $I_* = \{1,2\}$. Остальные узлы, включая и узел t=4, нельзя пометить. Это говорит о том, что в сети с данным потоком нельзя построить увеличивающий путь, что, в свою очередь, означает, что простроенный поток является максимальным потоком для данной сети.

Согласно теории, величина максимального потока величины v=8 должна равняться пропускной способности разреза, построенного по множеству помеченных узлов $I_*=\{1,2\}$. Действительно, имеем

$$\omega(I_*) = \{(1,6), (2,3)\}, \sum_{(i,j) \in \omega(I_*)} d_{ij} = 6 + 2 = 8 = v.$$

Задачи.

Решить задачи о максимальном потоке из узла s в узел t. Красными цифрами на дугах обозначены пропускные способности дуг.

Задача 1.

Ответ: величина максимального потока равна v = 10, пример максимального потока приведен на рисунке ниже. Здесь и далее дуговые потоки указаны на дугах черными цифрами.

Задание 2.

Ответ: величина максимального потока равна v = 12, пример максимального потока приведен на рисунке ниже

Задача 3.

Ответ: величина максимального потока равна v=5, пример максимального потока приведен на рисунке ниже

Задача 4.

Ответ: величина максимального потока равна v = 8, пример максимального потока приведен на рисунке ниже

Задача 5.

Ответ: величина максимального потока равна v = 6, пример максимального потока приведен на рисунке ниже

Задача 6.

Ответ: величина максимального потока равна v=5, пример максимального потока приведен на рисунке ниже

Задача 7.

Ответ: величина максимального потока равна v=7, пример максимального потока приведен на рисунке ниже

Задача 8.

Ответ: величина максимального потока равна v = 9, пример максимального потока приведен на рисунке ниже

9. Задачи о нахождении кратчайших путей между всеми парами узлов данной сети. Метод Флойда

Пример. Крупное учреждение планирует разработать систему внутренней доставки почты, основанную на использовании линии пневматической связи, для распределения корреспонденции между 8 отделами. Некоторые отделы будут только отсылать корреспонденцию в другие отделы, не имея при этом возможности получать почту. Все остальные отделы могут получать и отправлять почту. Расположение линий пневматической связи изображено на рис. 9.1.

Каждому отделу соответствует узел, каждая дуга — это линия связи. Числа на дугах — расстояния между отделами.

Рис. 9.1.

Для того чтобы каждый отдел при пересылке почты в другой отдел смог бы определить оптимальный путь, необходимо заготовить таблицу, указывающую кратчайший путь между каждой парой отделов. Для построения такой таблицы воспользуемся алгоритмом Флойда.

Согласно алгоритму, начальные матрицы кратчайших путей и маршрутов имеют вид

$$D^{0} = \begin{bmatrix} 0 & 9 & \infty & 3 & \infty & \infty & \infty & \infty & \infty \\ 9 & 0 & 2 & \infty & 7 & \infty & \infty & \infty \\ \infty & 2 & 0 & 2 & 4 & 8 & 6 & \infty \\ 3 & \infty & 2 & 0 & \infty & \infty & 5 & \infty \\ \infty & 7 & 4 & \infty & 0 & 10 & \infty & \infty \\ \infty & \infty & 8 & \infty & 10 & 0 & 7 & \infty \\ \infty & \infty & \infty & 6 & 5 & \infty & 7 & 0 & \infty \\ \infty & \infty & \infty & \infty & \infty & 9 & 12 & 10 & 0 \end{bmatrix}, R^{0} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{bmatrix}.$$

Итерация 1.

На этой итерации j=1 — базовый элемент. Из матрицы D^0 вычёркиваем 1-й столбец и 1-ю строку. Кроме того, столбцы 3, 5, 6, 7, 8 и строки 3, 5, 6, 7, 8 также можно вычеркнуть, так как в базовой строке и в базовом столбце на соответствующих местах стоят ∞ . Следовательно, рабочая матрица имеет вид

Диагональные элементы матрицы D^0 можно не рассматривать. Значит, необходимо исследовать две оценки d_{24}^0 и d_{42}^0 . Применение трёхместной операции даёт следующие результаты:

$$d_{24}^1 = min \{d_{24}^0, d_{21}^0 + d_{11}^0\} = min \{\infty, 9+3\} = 12,$$

$$d_{42}^1 = min \ \{d_{42}^0, d_{41}^0 + d_{12}^0\} = min \ \{\infty, 3+9\} = 12.$$

Новые оценки лучше старых: $d_{24}^1 < d_{24}^0$, $d_{42}^1 < d_{42}^0$, поэтому полагаем $r_{24}^1 = 1$, $r_{42}^1 = 1$. Все остальные элементы матриц D^1 и R^1 остаются прежними. Выпишем матрицы D^1 и R^1

$$D^{1} = \begin{bmatrix} 0 & 9 & \infty & 3 & \infty & \infty & \infty & \infty & \infty \\ 9 & 0 & 2 & 12 & 7 & \infty & \infty & \infty \\ \infty & 2 & 0 & 2 & 4 & 8 & 6 & \infty \\ 3 & 12 & 2 & 0 & \infty & \infty & 5 & \infty \\ \infty & 7 & 4 & \infty & 0 & 10 & \infty & \infty \\ \infty & \infty & 8 & \infty & 10 & 0 & 7 & \infty \\ \infty & \infty & \infty & 6 & 5 & \infty & 7 & 0 & \infty \\ \infty & \infty & \infty & \infty & \infty & 9 & 12 & 10 & 0 \end{bmatrix}, \ R^{1} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{bmatrix}.$$

Итерация 2.

Определим узел j=2 как базовый и выделим в D^1 вторую строку и второй столбец — это базовые строка и столбец. Кроме того, можно вычеркнуть столбцы 6, 7, 8 и строки 6, 7, 8, так как в базовых строке и столбце на соответствующих местах стоят ∞ . «Рабочая» матрица D^1_p имеет вид

$$D_{p}^{1} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 9 & \infty & 3 & \infty \\ 9 & 0 & 2 & 12 & 7 \\ \infty & 2 & 0 & 2 & 4 \\ 4 & 3 & 12 & 2 & 0 & \infty \\ 5 & \infty & 7 & 4 & \infty & 0 \end{bmatrix}$$

Применяем трёхместную операцию к элементам матрицы D^1_p (диагональные элементы не пересчитываем):

$$d_{13}^2 = min \{ d_{13}^1, d_{12}^1 + d_{23}^1 \} = min \{ \infty, 9+2 \} = 11 < d_{13}^1,$$

$$\begin{split} d_{14}^2 &= \min \left\{ d_{14}^1, \ d_{12}^1 + d_{24}^1 \right\} = \min \left\{ 3, \, 9+12 \right\} = 3 < d_{14}^1, \\ d_{15}^2 &= \min \left\{ d_{15}^1, \ d_{12}^1 + d_{25}^1 \right\} = \min \left\{ \infty, \, 9+7 \right\} = 16 < d_{15}^1, \\ d_{31}^2 &= \min \left\{ d_{31}^1, \ d_{32}^1 + d_{23}^1 \right\} = \min \left\{ \infty, \, 9+2 \right\} = 11 < d_{31}^1, \\ d_{34}^2 &= \min \left\{ 2, \, 12+2 \right\} = 2 = d_{34}^1, \\ d_{35}^2 &= \min \left\{ 4, \, 2+7 \right\} = 4 = d_{35}^1, \\ d_{41}^2 &= \min \left\{ 3, \, \infty+12 \right\} = 3 = d_{41}^1, \\ d_{43}^2 &= \min \left\{ 2, \, 12+0 \right\} = 2 = d_{43}^1, \\ d_{45}^2 &= \min \left\{ \infty, \, 12+7 \right\} = 19 < d_{45}^1, \\ d_{51}^2 &= \min \left\{ \infty, \, 9+7 \right\} = 16 < d_{51}^1, \\ d_{53}^2 &= \min \left\{ 4, \, 7+2 \right\} = 4 = d_{53}^1, \\ d_{54}^2 &= \min \left\{ \infty, \, 7+12 \right\} = 2 < d_{54}^1. \end{split}$$

Остальные

$$d_{ik}^2 = d_{ik}^1 \,!$$

Следовательно,

полагаем

 $r_{13}^2=r_{15}^2=r_{31}^2=r_{45}^2=r_{51}^2=r_{54}^2=2$ и все остальные r_{ik}^2 не меняем: $r_{ik}^2=r_{ik}^1$. Запишем матрицы D^2 и R^2 :

$$D^{2} = \begin{bmatrix} 0 & 9 & 11 & 3 & 16 & \infty & \infty & \infty \\ 9 & 0 & 2 & 12 & 7 & \infty & \infty & \infty \\ 11 & 2 & 0 & 2 & 4 & 8 & 6 & \infty \\ 3 & 12 & 2 & 0 & 19 & \infty & 5 & \infty \\ 16 & 7 & 4 & 19 & 0 & 10 & \infty & \infty \\ \infty & \infty & 8 & \infty & 10 & 0 & 7 & \infty \\ \infty & \infty & \infty & 6 & 5 & \infty & 7 & 0 & \infty \\ \infty & \infty & \infty & \infty & \infty & 9 & 12 & 10 & 0 \end{bmatrix}, R^{2} = \begin{bmatrix} 1 & 2 & 2 & 4 & 2 & 6 & 7 & 8 \\ 1 & 2 & 3 & 1 & 5 & 6 & 7 & 8 \\ 2 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{bmatrix}.$$

Выполняя аналогичные операции на итерациях 3, 4, 5, 6, 7, 8, мы получим матрицы D^i , R^i , $i=\overline{3,8}$. Матрицы D^8 и R^8 приведены ниже:

$$D^{8} = \begin{bmatrix} 0 & 7 & 5 & 3 & 9 & 13 & 8 & \infty \\ 7 & 0 & 2 & 4 & 6 & 10 & 8 & \infty \\ 5 & 2 & 0 & 2 & 4 & 8 & 6 & \infty \\ 3 & 4 & 2 & 0 & 6 & 10 & 5 & \infty \\ 9 & 6 & 4 & 6 & 0 & 10 & 10 & \infty \\ 13 & 10 & 8 & 10 & 10 & 0 & 7 & \infty \\ 8 & 8 & 6 & 5 & 10 & 7 & 0 & \infty \\ 18 & 15 & 13 & 15 & 9 & 12 & 10 & 0 \end{bmatrix}, R^{8} = \begin{bmatrix} 1 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\ 3 & 2 & 3 & 3 & 3 & 3 & 3 & 3 \\ 4 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3 & 3 & 4 & 3 & 3 & 7 & 8 \\ 3 & 3 & 3 & 3 & 5 & 6 & 3 & 8 \\ 3 & 3 & 3 & 3 & 5 & 6 & 7 & 8 \\ 4 & 3 & 3 & 4 & 3 & 6 & 7 & 8 \\ 5 & 5 & 5 & 5 & 5 & 5 & 5 & 6 & 7 & 8 \end{bmatrix}.$$

Для иллюстрации результатов, содержащихся в матрицах D^8 , R^8 , рассмотрим кратчайший путь из узла 1 в узел 5. Длина этого пути равна $d_{15}^8 = 9$. Для того чтобы найти сам путь из 1 в 5, обратимся к матрице R^8 . Поскольку r_{15}^8 равно 4, то узел 4 является первым промежуточным узлом пути из 1 в 5. Затем, для того чтобы найти узел, следующий за узлом 4 в пути, ведущем в 5, определяем значение r_{45}^8 . Данное значение равно 3. Значит, за узлом 4 следует узел 3. Далее находим $r_{35}^8 = 5$. Следовательно, кратчайший путь из 1 в 5 проходит через узлы

$$1 \rightarrow 4 \rightarrow 3 \rightarrow 5$$
.

Задачи.

Для сетей, приведенных на рисунках, решить задачи о нахождении кратчайших путей между всеми парами узлов методом Флойда.

Задача 1.

 $D^{0} =$

	1	2	3	4	5	6	7	8
1	0	9	∞	3	∞	∞	∞	∞
2	9	0	2	∞	7	∞	∞	∞
3	∞	2	0	2	4	8	6	∞
4	3	∞	2	0	∞	∞	5	∞
5	∞	7	4	∞	0	10	∞	∞
6	∞	∞	8	∞	10	0	7	∞
7	∞	∞	6	5	∞	7	0	∞
8	oc o	∞	∞	∞	9	12	10	0

Ответ:

 $D^n =$

	1	2	3	4	5	6	7	8
1	0	7	5	3	9	13	8	∞
2	7	0	2	4	6	10	8	∞
3	5	2	0	2	4	8	6	∞
4	3	4	2	0	6	10	5	∞
5	9	6	4	6	0	10	10	∞
6	13	10	8	10	10	0	7	∞
7	8	8	6	5	10	7	0	∞
8	18	15	13	15	9	12	10	0

 $R^n =$

		1	2	3	4	5	6	7	8
ĺ	1	1	4	4	4	4	4	4	8
	2	3	2	3	3	3	3	3	8
	3	4	2	3	4	5	6	7	8
ĺ	4	1	3	3	4	3	3	7	8
ĺ	5	3	3	3	3	5	6	3	8
	6	3	3	3	3	5	6	7	8
ĺ	7	4	3	3	4	3	6	7	8
	8	5	5	5	5	5	6	7	8

	1	2	3	4	5	6	7	8	9
1	0	3	2	6	∞	∞	∞	∞	∞
2	∞	0	∞	2	∞	∞	∞	∞	∞
3	∞	∞	0	∞	∞	4	∞	∞	∞
4	∞	∞	3	0	1	∞	6	∞	∞
5	∞	∞	∞	∞	0	∞	7	5	∞
6	∞	∞	∞	∞	5	0	∞	4	∞
7	∞	∞	∞	∞	∞	∞	0	2	4
8	∞	0	4						
9	∞	0							

Ответ:

$$D^n =$$

	1	2	3	4	5	6	7	8	9
1	0	3	2	5	6	6	11	10	14
2	∞	0	5	2	3	9	8	8	12
3	∞	∞	0	∞	9	4	16	8	12
4	∞	∞	3	0	1	7	6	6	10
5	∞	∞	∞	∞	0	∞	7	5	9
6	∞	∞	∞	∞	5	0	12	4	8
7	∞	∞	∞	∞	∞	∞	0	2	4
8	∞	0	4						
9	∞	0							

$$R^n =$$

	1	2	3	4	5	6	7	8	9
1	1	2	3	2	2	3	2	3	3
2	1	2	4	4	4	4	4	4	4
3	1	2	3	4	6	6	6	6	6
4	1	2	3	4	5	3	7	5	7
5	1	2	3	4	5	6	7	8	8
6	1	2	3	4	5	6	5	8	8
7	1	2	3	4	5	6	7	8	9
8	1	2	3	4	5	6	7	8	9
9	1	2	3	4	5	6	7	8	9

Задача 3.

 $D^{0} =$

	1	2	3	4	5	6	7	8	9
1	0	3	2	6	∞	∞	∞	∞	∞
2	∞	0	∞	2	∞	∞	∞	∞	∞
3	∞	∞	0	∞	∞	4	∞	∞	∞
4	∞	∞	3	0	1	∞	6	∞	∞
5	∞	∞	∞	∞	0	∞	7	5	∞
6	∞	∞	∞	∞	5	0	∞	4	∞
7	∞	∞	∞	∞	∞	∞	0	2	4
8	∞	0	15						
9	∞	0							

Ответ:

 $D^n =$

	1	2	3	4	5	6	7	8	9
1	0	3	2	5	6	6	11	10	15
2	∞	0	5	2	3	9	8	8	12
3	∞	∞	0	∞	9	4	16	8	20
4	∞	∞	3	0	1	7	6	6	10
5	∞	∞	∞	∞	0	∞	7	5	11
6	∞	∞	∞	∞	5	0	12	4	16
7	∞	∞	∞	∞	∞	∞	0	2	4
8	∞	0	15						
9	∞	0							

 $R^n =$

	1	2	3	4	5	6	7	8	9
1	1	2	3	2	2	3	2	3	2
2	1	2	4	4	4	4	4	4	4
3	1	2	3	4	6	6	6	6	6
4	1	2	3	4	5	3	7	5	7
5	1	2	3	4	5	6	7	8	7
6	1	2	3	4	5	6	5	8	5
7	1	2	3	4	5	6	7	8	9
8	1	2	3	4	5	6	7	8	9
9	1	2	3	4	5	6	7	8	9

Задача 4.

Ответ:

		1	2	3	4	5	6	7	8
	1	0	3	4	4	5	9	7	8
	2	∞	0	2	1	4	6	4	5
10	3	∞	∞	0	3	2	8	6	5
$D^n =$	4	∞	∞	∞	0	∞	5	3	4
	5	∞	∞	∞	4	0	8	7	3
	6	∞	∞	∞	5	∞	0	8	2
	7	∞	∞	∞	7	∞	2	0	1
	8	∞	0						

		1	2	3	4	5	6	7	8
	1	1	2	3	2	5	2	2	5
	2	1	2	3	4	3	7	7	7
- 10	3	1	2	3	4	5	4	4	5
$R^n =$	4	1	2	3	4	5	7	7	7
	5	1	2	3	4	5	6	4	8
	6	1	2	3	4	5	6	4	8
	7	1	2	3	6	5	6	7	8
	8	1	2	3	4	5	6	7	8

Задача 5.

 $D^{0} =$

	1	2	3	4	5	6	7	8
1	0	3	4	∞	5	∞	∞	∞
2	∞	0	∞	1	∞	∞	4	∞
3	∞	∞	0	3	2	∞	∞	∞
4	∞	∞	∞	0	∞	∞	1	∞
5	∞	∞	∞	4	0	8	∞	3
6	∞	∞	∞	5	∞	0	∞	2
7	∞	∞	∞	∞	∞	2	0	1
8	∞	∞	∞	oc o	∞	∞	∞	0

Ответ:

 $D^n =$

	1	2	3	4	5	6	7	8
1	0	3	4	4	5	7	5	6
2	∞	0	∞	1	∞	4	2	3
3	∞	∞	0	3	2	6	4	5
4	∞	∞	∞	0	∞	3	1	2
5	∞	∞	∞	4	0	7	5	3
6	∞	∞	∞	5	∞	0	6	2
7	∞	∞	∞	7	∞	2	0	1
8	∞	0						

 $R^n =$

	1	2	3	4	5	6	7	8
1	1	2	3	2	5	2	2	2
2	1	2	3	4	5	4	4	4
3	1	2	3	4	5	4	4	5
4	1	2	3	4	5	7	7	7
5	1	2	3	4	5	4	4	8
6	1	2	3	4	5	6	4	8
7	1	2	3	6	5	6	7	8
8	1	2	3	4	5	6	7	8

Задача 6.

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	1	0	6	1	5	∞										
	2	∞	0	4	∞	2	3	∞	∞	oc	∞	∞	∞	∞	oc	∞
	3	∞	∞	0	2	∞	∞	5	∞							
	4	∞	∞	∞	0	∞	∞	6	6	∞						
	5	∞	∞	∞	∞	0	∞	∞	∞	10	∞	∞	∞	∞	∞	∞
0	6	∞	∞	∞	∞	4	0	∞	∞	∞	7	∞	∞	∞	∞	∞
$D^{0} =$	7	∞	∞	∞	∞	∞	20	0	∞	∞	10	5	∞	∞	∞	∞
	8	∞	∞	∞	∞	∞	∞	2	0	∞	∞	3	4	∞	∞	∞
	9	∞	0	1	∞	∞	3	∞	∞							
	10	∞	0	∞	∞	2	∞	∞								
	11	∞	8	0	∞	∞	2	∞								
	12	∞	0	∞	1	∞										
	13	∞	0	3	4											
	14	∞	0	5												
	15	∞	0													

Ответ:

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	1	0	6	1	3	8	9	6	9	18	16	11	13	18	13	18
	2	∞	0	4	6	2	3	9	12	12	10	14	16	12	15	16
	3	∞	∞	0	2	29	25	5	8	39	15	10	12	17	12	17
	4	∞	∞	∞	0	30	26	6	6	40	16	9	10	18	11	16
	5	∞	∞	∞	∞	0	∞	∞	∞	10	11	∞	∞	13	16	17
10	6	∞	∞	∞	∞	4	0	∞	∞	14	7	∞	∞	9	12	13
$D^n =$	7	∞	∞	∞	∞	24	20	0	∞	34	10	5	∞	12	7	12
	8	∞	∞	∞	∞	26	22	2	0	36	11	3	4	13	5	10
	9	∞	0	1	∞	∞	3	6	7							
	10	∞	0	∞	∞	2	5	6								
	11	∞	8	0	∞	10	2	7								
	12	∞	0	∞	1	6										
	13	∞	0	3	4											
	14	∞	0	5												
	15	∞	0													

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	1	1	2	3	3	2	2	3	3	2	2	3	3	2	3	3
	2	1	2	3	3	5	6	3	3	5	6	3	3	6	6	6
	3	1	2	3	4	7	7	7	4	7	7	7	4	7	7	7
	4	1	2	3	4	7	7	7	8	7	7	8	8	7	8	8
	5	1	2	3	4	5	6	7	8	9	9	11	12	9	9	9
$R^n =$	6	1	2	3	4	5	6	7	8	5	10	11	12	10	10	10
N –	7	1	2	3	4	6	6	7	8	6	10	11	12	10	11	11
	8	1	2	3	4	7	7	7	8	7	11	11	12	11	11	11
	9	1	2	3	4	5	6	7	8	9	10	11	12	13	13	13
	10	1	2	3	4	5	6	7	8	9	10	11	12	13	13	13
	11	1	2	3	4	5	6	7	8	9	10	11	12	10	14	14
	12	1	2	3	4	5	6	7	8	9	10	11	12	13	14	14
	13	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	14	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	15	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Задача 7.

		1	2	3	4	5	6	7	8	9	10	11	12	13	14
	1	0	2	∞	∞	5	∞	∞	7	∞	∞	3	∞	∞	∞
	2	∞	0	3	∞	4	∞								
	3	∞	∞	0	7	∞									
	4	∞	∞	∞	0	∞	∞	9	∞	∞	∞	∞	∞	∞	3
$D^{0} =$	5	∞	∞	1	∞	0	2	∞							
$D^{\circ} =$	6	∞	∞	5	8	∞	0	∞	∞	2	3	∞	∞	∞	∞
	7	∞	∞	∞	∞	∞	∞	0	∞	∞	∞	∞	∞	∞	5
	8	∞	∞	∞	∞	∞	1	∞	0	∞	∞	4	2	∞	∞
	9	∞	0	∞	∞	7	1	∞							
	10	∞	∞	∞	∞	∞	∞	4	∞	∞	0	∞	∞	∞	2
	11	∞	0	6	∞	∞									
	12	∞	0	4	∞										
	13	∞	3	∞	∞	0	4								
	14	∞	0												

Ответ:

		1	2	3	4	5	6	7	8	9	10	11	12	13	14
	1	0	2	5	12	5	7	14	7	9	10	3	9	10	12
	2	∞	0	3	10	4	6	13	∞	8	9	∞	15	9	11
	3	∞	∞	0	7	∞	∞	16	∞	∞	∞	∞	∞	∞	10
	4	∞	∞	∞	0	∞	∞	9	∞	∞	∞	∞	∞	∞	3
$D^n =$	5	∞	∞	1	8	0	2	9	∞	4	5	∞	11	5	7
	6	∞	∞	5	8	∞	0	7	∞	2	3	∞	9	3	5
	7	∞	∞	∞	∞	∞	∞	0	∞	∞	∞	∞	∞	∞	5
	8	∞	∞	6	9	∞	1	8	0	3	4	4	2	4	6
	9	∞	∞	∞	∞	∞	∞	8	∞	0	4	∞	7	1	5
	10	∞	∞	∞	∞	∞	∞	4	∞	∞	0	∞	∞	∞	2
	11	∞	∞	∞	∞	∞	∞	17	∞	∞	13	0	6	10	14
	12	∞	∞	∞	∞	∞	∞	11	∞	∞	7	∞	0	4	8
	13	∞	∞	∞	∞	∞	∞	7	∞	∞	3	∞	∞	0	4
	14	∞	0												

		1	2	3	4	5	6	7	8	9	10	11	12	13	14
	1	1	2	2	2	5	5	5	8	5	5	11	8	5	5
	2	1	2	3	3	5	5	5	8	5	5	11	5	5	5
	3	1	2	3	4	5	6	4	8	9	10	11	12	13	4
	4	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$R^n =$	5	1	2	3	3	5	6	6	8	6	6	11	6	6	6
Λ –	6	1	2	3	4	5	6	10	8	9	10	11	9	9	10
	7	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	8	1	2	3	6	5	6	6	8	6	6	11	12	6	6
	9	1	2	3	4	5	6	13	8	9	13	11	12	13	13
	10	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	11	1	2	3	4	5	6	12	8	9	12	11	12	12	12
	12	1	2	3	4	5	6	13	8	9	13	11	12	13	13
	13	1	2	3	4	5	6	10	8	9	10	11	12	13	14
	14	1	2	3	4	5	6	7	8	9	10	11	12	13	14

10. Задачи о назначениях

Пример. Пусть начальная матрица стоимостей имеет вид

$$\begin{pmatrix}
2 & -1 & 9 & 4 \\
3 & 2 & 5 & 1 \\
13 & 0 & -3 & 4 \\
5 & 6 & 1 & 2
\end{pmatrix}.$$

Итерация 1.

Шаг 1. После просмотра строк и соответствующих преобразований получаем

$$\begin{pmatrix}
3 & 0 & 10 & 5 \\
2 & 1 & 4 & 0 \\
16 & 3 & 0 & 7 \\
4 & 5 & 0 & 1
\end{pmatrix}.$$

После просмотра столбцов и соответствующих преобразований получаем

$$\begin{pmatrix}
1 & 0 & 10 & 5 \\
0 & 1 & 4 & 0 \\
14 & 3 & 0 & 7 \\
2 & 5 & 0 & 1
\end{pmatrix}.$$

Шаг 2. Используя последнюю матрицу, сформируем сеть S, приведенную на рис. 10.1.

Рис.10.1.

На сети *S* с пропускными способностями

$$d_{si} = 1$$
, $i = \overline{1,4}$; $d_{it} = 1$, $i = \overline{5,8}$; $d_{16} = d_{25} = d_{28} = d_{37} = d_{47} = \infty$

решим задачу о максимальном потоке. Дуговые потоки x_{ij} максимального потока приведены на дугах сети S на рис. 10.1. Множество помеченных узлов I_* состоит из узлов $I_* = \{s, 3, 4, 7\}$. Поскольку $v^0 = 3 < n = 4$, то переходим к шагу 3.

Шаг 3. Построим множество $N^{(1)}=\{3,4\}$ и $N^{(2)}=\{3\}$. Подсчитаем число α (30) для нашего примера

$$\alpha = \min\{c_{3j}, c_{4j}, j=1,2,4\} = \min\{14,2,3,5,7,1\} = 1.$$

Используя α , $N^{(1)}$ и $N^{(2)}$, построим новую матрицу стоимостей \overline{C} по правилам

$$\overline{c}_{ij} = c_{ij}, \;\; \text{если} \;\; i \in N^{(1)}, \;\; j \in N^{(2)} \;\;$$
либо $i \notin N^{(1)}, \;\; j \notin N^{(2)};$
$$\overline{c}_{ij} = c_{ij} - \alpha, \;\; \text{если} \;\; i \in N^{(1)}, \;\; j \notin N^{(2)};$$

$$\overline{c}_{ij} = c_{ij} + \alpha, \;\; \text{если} \;\; i \notin N^{(1)}, \;\; j \in N^{(2)}.$$

Матрица \overline{C} имеет вид

$$\begin{pmatrix}
1 & 0 & 11 & 5 \\
0 & 1 & 5 & 0 \\
13 & 2 & 0 & 6 \\
1 & 4 & 0 & 0
\end{pmatrix}.$$

C новой матрицей \overline{C} переходим к шагу 2 новой итерации.

Итерация 2.

Шаг 2. Сеть S, соответствующая \overline{C} , приведена на рис. 10.2. Пропускные способности дуг задаются соотношениями

$$d_{si} = 1$$
, $i = \overline{1,4}$; $d_{it} = 1$, $i = \overline{5,8}$; $d_{16} = d_{25} = d_{28} = d_{37} = d_{47} = d_{48} = \infty$.

Рис. 10.2.

На этом же рисунке приведены и дуговые потоки x_{ij} максимального потока.

Величина этого потока равна $v^0 = 4 = n$. Используя найденный максимальный поток, построим оптимальное назначение:

$$x_{12}^{0} = 1, \quad x_{21}^{0} = 1, \quad x_{33}^{0} = 1, \quad x_{44}^{0} = 1,$$

$$x_{ij}^{0} = 0, \quad i = \overline{1, n}, \quad j = \overline{1, n}; \quad (i, j) \notin \{ (1, 2), (2, 1), (3, 3), (4, 4) \}.$$

Таким образом, 1-й работник назначается на 2-ю работу, 2-й работник — на 1-ю работу, 3-й работник — на 3-ю работу и 4-й работник назначается на 4-ю работу.

Задачи.

Решить задачи о назначениях с заданными матрицами стоимостей ${\it C}$.

Задача 1.

Матрица $\it C$:		<u>Ответ</u> : Матрица X^0 :
6 4 13 4	19 15 11 8	0 0 0 1 0 0 0 0
17 15 18 14	0 7 18 7	0 0 0 0 0 0 0 1
3 5 11 9	7 7 18 16	1 0 0 0 0 0 0 0
17 10 16 19	9 6 1 5	0 0 0 0 0 0 1 0
14 2 10 14	11 6 4 10	0 1 0 0 0 0 0 0
17 11 17 12	1 10 6 19	0 0 0 0 1 0 0 0
13 1 4 2	2 7 2 14	0 0 1 0 0 0 0 0
12 15 19 11	13 1 7 8	0 0 0 0 0 1 0 0

Оптимальные назначение:

Стоимость оптимальных назначений: 23

Задача 2.

Оптимальные назначение:

Стоимость оптимальных назначений: 4

Задача 3.

Матрица C :	<u>Ответ</u> : Матрица X^0
6 6 2 4 7 1 9 4 6	0 0 0 0 0 1 0 0 0
5 0 2 4 9 2 9 2 0	0 0 0 0 0 0 0 0 1
7 6 0 5 2 3 0 5 5	0 0 1 0 0 0 0 0 0
9 5 8 9 2 3 1 5 7	0 0 0 0 0 0 1 0 0
3 1 7 3 0 2 2 8 1	0 0 0 0 1 0 0 0 0

 3 0 0 6 1 7 2 4 7
 0 1 0 0 0 0 0 0 0

 5 6 1 9 9 8 4 1 8
 0 0 0 0 0 0 0 0 1 0

 5 4 5 2 2 6 6 5 6
 0 0 0 1 0 0 0 0 0

 3 6 1 6 3 0 5 2 2
 1 0 0 0 0 0 0 0 0

Оптимальные назначение:

Стоимость оптимальных назначений: 8

Задача 4.

 Матрица C:
 Ответ: Матрица X⁰
 :

 6 5 6 8 4 0 4 6
 0 0 0 0 0 1 0 0
 :

 5 7 8 7 4 4 0 9
 0 0 0 0 0 0 1 0
 :

 0 7 9 2 8 7 0 3
 1 0 0 0 0 0 0 0
 :

 6 6 6 3 0 3 0 8
 0 0 0 0 1 0 0 0
 :

 7 4 7 1 1 1 8 9
 0 0 0 1 0 0 0 0
 :

 8 0 7 5 0 9 1 3
 0 1 0 0 0 0 0 0
 :

0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0

Оптимальные назначение:

3 2 4 7 1 7 3 4

9 2 4 3 2 4 3 9

Стоимость оптимальных назначений: 9

Задача 5.

Матрица C :	$\underline{\text{Ответ:}}$ Матрица X^0 :
7 4 5 3 8 9 6 5 5 3 2	0 1 0 0 0 0 0 0 0 0 0
5 6 9 4 9 0 0 4 4 7 2	0 0 0 0 0 1 0 0 0 0
8 8 3 2 7 3 7 6 7 4 6	0 0 0 1 0 0 0 0 0 0 0
7 4 9 9 3 7 3 8 1 5 8	0 0 0 0 0 0 0 0 1 0 0
5 2 4 3 3 9 6 2 5 1 3	0 0 0 0 1 0 0 0 0 0 0
9 4 5 8 6 3 3 1 7 6 5	0 0 0 0 0 0 0 1 0 0 0
9 1 0 3 1 2 7 6 9 4 6	0 0 1 0 0 0 0 0 0 0 0
5 6 8 0 9 9 1 9 3 0 8	0 0 0 0 0 0 1 0 0 0 0
4 6 5 6 4 7 5 3 8 0 1	0 0 0 0 0 0 0 0 0 1 0
2 3 7 8 4 9 5 0 2 8 0	1 0 0 0 0 0 0 0 0 0 0
7 6 7 1 9 5 7 4 2 3 0	0 0 0 0 0 0 0 0 0 0 1

Оптимальные назначение:

Стоимость оптимальных назначений: 14

Задача 6.

Оптимальные назначение:

Стоимость оптимальных назначений: 2

Задача 7.

```
Ответ: Матрица X^0
Матрица C:
                       0 0 0 1 0 0 0 0 0
2 6 5 - 1 6 1 8 4 6
2 1 2 7 9 - 2 8 2 0
                      0 0 0 0 0 0 0 0 1
                      0 0 1 0 0 0 0 0 0
0 6 0 5 1 3 4 3 5
7 0 8 9 2 4 1 6 7
                      0 1 0 0 0 0 0 0 0
-1 1 0 -3 0 2 2 2 1
                      0 0 0 0 1 0 0 0 0
3 0 6 6 1 - 2 2 4 0
                       0 0 0 0 0 1 0 0 0
                   1 0 0 0 0 0 0 0 0
1 7 1 9 4 8 2 6 8
 5 1 5 2 2 6 - 1 5 4
                      0 0 0 0 0 0 1 0 0
3 6 0 6 3 0 9 1 2
                       0 0 0 0 0 0 0 1 0
```

Оптимальные назначение:

Стоимость оптимальных

```
1 2 3 4 5 6 7 8 9

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

4 9 3 2 5 6 1 7 8
```

Стоимость оптимальных

назначений: -2

Задача 8.

Матрица C :	Ответ: Матрица X^0 :
2 4 0 3 8 - 1 6 5	$0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0$
8 6 3 4 2 0 0 4	0 0 0 0 0 0 1 0
8 -4 3 2 7 3 1 0	$0\ 1\ 0\ 0\ 0\ 0\ 0$
2 4 9 5 3 0 3 8	0 0 0 0 0 1 0 0
5 2 7 3 -1 0 3 2	0 0 0 0 1 0 0 0
3 2 5 1 5 3 0 1	0 0 0 0 0 0 0 1
2 1 0 -3 1 2 7 0	0 0 0 1 0 0 0 0
1 6 4 0 0 9 1 7	1 0 0 0 0 0 0 0

Оптимальные назначение

Стоимость оптимальных назначений: -6.

11. Задачи коммивояжера

Пример 1. Пусть имеется n=5 городов, связанных системой дорог. Обозначим через $d_{ij}>0$ длину пути из города i в город j. Числа $d_{ij}, i=\overline{1,5},\ j=\overline{1,5},\$ приведены в таблице 1.

Таблица 1.

∞	2	1	10	6
4	∞	3	1	3
2	5	∞	8	4
6	7	13	∞	3
10	2	4	6	∞

Требуется найти маршрут, обладающий следующими свойствами:

- А) маршрут заканчивается в том городе, с которого он начался,
- В) маршрут должен включать все города и ни один город (кроме начального) не может быть включен в маршрут дважды,
- С) маршрут имеет минимально возможную длину.

Решение. Выберем любой маршрут, удовлетворяющий свойствам A) и B). Пусть это будет маршрут

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 1. \tag{11.1}$$

Длина данного маршрута равна $r^0 = 2 + 3 + 8 + 3 + 10 = 26$. Запоминаем маршрут (11.1). Число $r^0 = 26$ берем в качестве рекорда. В список задач о назначениях включает задачу <u>№1</u>, с матрицей с матрицей стоимостей, приведенной в таблице 1.

Итерация 1.

Решим задачу о назначениях №1. Получим ответ: оптимальное назначение

$$1 \rightarrow 3$$
, $3 \rightarrow 1$, $2 \rightarrow 4$, $4 \rightarrow 5$, $5 \rightarrow 2$,

его стоимость равна $1+2+1+3+2=9 < r^0=29$. Также получим последнюю приведенную матрицу стоимостей:

$$C^{1} = \begin{pmatrix} \infty & 1 & 0 & 9 & 6 \\ 3 & \infty & 2 & 0 & 2 \\ 0 & 3 & \infty & 6 & 2 \\ 3 & 4 & 10 & \infty & 0 \\ 8 & 0 & 2 & 4 & \infty \end{pmatrix}.$$

Дуги (1,3), (3,1), (2,4), (4,5), (5,2), соответствующие оптимальному назначению, образуют два контура:

$$1 \rightarrow 3 \rightarrow 1 \text{ if } 2 \rightarrow 4 \rightarrow 5 \rightarrow 2. \tag{11.2}$$

Поэтому решение задачи о назначениях не может быть использовано в качестве решения исходной задачи коммивояжера.

Из контуров (11.2) выберем контур с минимальным количеством дуг. В данном примере это контур $1 \rightarrow 3 \rightarrow 1$, состоящий из двух дуг (1,3) и (3,1). Каждой дуге выбранного контура поставим в соответствие задачу о назначениях по правилу: дуге (i,j) из выделенного контура соответствует задача о назначениях с матрицей стоимостей, полученной из матрицы C^1 заменой коэффициента d_{ij} на $d_{ij} = \infty$. С рассматриваемом примере мы получаем две задачи:

задача №2 с матрицей стоимостей
$$C^2 = \begin{pmatrix} \infty & 1 & \infty & 9 & 6 \\ 3 & \infty & 2 & 0 & 2 \\ 0 & 3 & \infty & 6 & 2 \\ 3 & 4 & 10 & \infty & 0 \\ 8 & 0 & 2 & 4 & \infty \end{pmatrix}$$

и задача №3 с матрицей стоимостей
$$C^3 = \begin{pmatrix} \infty & 1 & 0 & 9 & 6 \\ 3 & \infty & 2 & 0 & 2 \\ \infty & 3 & \infty & 6 & 2 \\ 3 & 4 & 10 & \infty & 0 \\ 8 & 0 & 2 & 4 & \infty \end{pmatrix}.$$

Задачу №1 вычеркиваем из списка задач, полученные задачи №2 и №3 включаем в список. Переходим к следующей итерации.

Итерация 2.

Из списка задач о назначениях выберем задачу №2 и решим ее. Получим ответ: оптимальное назначение

$$3 \to 1, 1 \to 2, 2 \to 4, 4 \to 5, 5 \to 3,$$

его стоимость равна $2+1+3+4+2=12 < r^0 = 29$. Дуги (3,1), (1,2), (2,4), (4,5), (5,3), соответствующие оптимальному назначению, образуют один контур. Этому контуру соответствует допустимый маршрут

$$3 \rightarrow 1 \rightarrow 2 \rightarrow 4 \rightarrow 5 \rightarrow 3 , \qquad (11.3)$$

длина которого равна $12 < r^0 = 29$. Поэтому меняем рекорд, положив $r^0 = 12$, и запоминаем найденный допустимый маршрут (11.3). Задачу №2 вычеркиваем из списка и идем на следующую итерацию.

Итерация 3.

Из списка задач о назначениях выбираем задачу N2 с матрицей стоимостей C^3 . В результате решения этой задачи получаем оптимальное назначение

$$1 \to 3, 3 \to 5, 5 \to 2, 2 \to 4, 4 \to 1,$$

стоимость которого равна 1+4+2+1+6=14. Поскольку $14>r^0=12$, то вычеркивает задачу №3 из списка и идем на следующую итерацию.

Итерация 4.

Список задач о назначениях пуст. Исходная задача коммивояжера решена: оптимальным является маршрут (11.3), соответствующий рекорду $r^0 = 12$.

Пример 2. Решить задачу коммивояжера с матрицей расстояний

	8	27	43	16	30	26
	7	8	16	1	30	30
C =	20	13	8	35	5	0
C =	21	16	25	8	18	18
	12	46	27	48	8	5
	23	5	5	9	5	8

Решение. Для решения данной задачи будем использовать метод задания маршрутов.

Перед началом первой итерации найдем оценку сверху r_0^1 оптимального значения целевой функции. Для этого выберем какой-либо допустимый маршрут и подсчитаем его длину. Пусть это будет маршрут (1,4), (4,5), (5,3), (3,6), (6,2), (2,1). Его длина равна $r_0^1 = 73$.

Следующим шагом процедуры является выбор звена, на котором будет базироваться ветвление. Пусть это будет дуга (1,4). Используя эту дугу, сформируем список задач, включив в него две задачи №1 и №2.

Задача №1 получается из исходной задачи при дополнительном условии, что дуга (1,4) обязательно включается в маршрут. Такую дугу назовем зафиксированной, и будем помечать ее в матрице длин темным квадратом. В матрице длин помечаем первую строку и четвертый столбец. В дальнейшем элементы помеченных строк и помеченных столбцов, кроме элементов, соответствующих зафиксированным дугам, использоваться не будут. Поэтому в матрицах длин в помеченных строках и столбцах будем указывать только коэффициенты, соответствующие зафиксированным дугам (см. темные клетки).

Включение дуги (1,4) в маршрут означает, что дуга (4,1) не войдет в маршрут, так как это привело бы к образованию цикла, число дуг которого меньше n. Поэтому полагаем $c_{41} = \infty$. Матрица длин, соответствующая задаче \mathbb{N} 1 имеет вид

				16		
	7	∞	16		30	30
$C_1 =$	20	13	∞		5	0
	∞	16	25		18	18
	12	46	27		∞	5
	23	5	5		5	∞

Задача №2 получается из исходной задачи при дополнительном условии, что дуга (1,4) обязательно исключается из маршрута. Следовательно, в исходной матрице C надо положить $c_{14} = \infty$. Матрица длин, соответствующая задаче №2 имеет вид

	∞	27	43	∞	30	26
	7	∞	16	1	30	30
$C_2^{} =$	20	13	∞	35	5	0
	∞	16	25	∞	18	18
	12	46	27	48	∞	5
	23	5	5	9	5	∞

Ход решения задачи будет изображать в виде дерева, узлы которого соответствую рассматриваемым задачам. Начальное дерево имеет вид, приведенный на Рис. 11.1. Запись $\overline{(i,\ j)}$ означает, что дуга $(i,\ j)$ исключается из маршрута.

Рис. 11.1.

Итерация 1.

Выберем задачу из списка. Пусть это будет задача \mathbb{N} 1 с матрицей C_1 . Определим для этой задачи нижнюю оценку целевой функции. Для этого в каждой неотмеченной i-ой строке матрицы C_1 находится минимальный элемент α_i вычитается из всех элементов данной строки. В результате получим матрицу \overline{C}_1 , которая имеет вид

				16			
	0	∞	9		23	23	$\alpha_2 = 7$
	20	13	∞		5	0	$\alpha_3 = 0$
$\overline{C}_1 =$	∞	0	9		2	2	$\alpha_4 = 16$
	7	41	22		∞	0	$\alpha_5 = 5$
	18	0	0		0	8	$\alpha_6 = 5$

Далее, в матрице $\overline{C}_{\!\scriptscriptstyle 1}$ в каждом неотмеченном столбце находим минимальный элемент $\beta_{\scriptscriptstyle i}$:

				16			
	0	∞	9		23	23	$\alpha_2 = 7$
	20	13	∞		5	0	$\alpha_3 = 0$
$\overline{C}_1 =$	∞	0	9		2	2	$\alpha_4 = 16$
	7	41	22		∞	0	$\alpha_5 = 5$
	18	0	0		0	8	$\alpha_6=5$
$\beta_1 = 0$ $\beta_2 = 0$ $\beta_3 = 0$ $\beta_5 = 0$ $\beta_6 = 0$							

Для подсчета нижней оценки суммируем найденные числа α_i , β_j и числа c_{ij} , соответствующие зафиксированным дугам: 7+0+16+5+5+0+0+0+0+0+16=49. Данная оценка меньше рекорда $r_0^1=73$. Зафиксированные дуги не образуют цикл, состоящий из n дуг. Поэтому найти такую дугу (i_0,j_0) :

1) которая до текущего момента не принадлежала множеству зафиксированных дуг;

- 2) для которой текущее $c_{i_0j_0}<\infty$;
- 3) во множестве фиксированных дуг нет дуг вида (i , j $_0$), (i $_0$, j);
- 4) добавление дуги (i_0, j_0) к множеству зафиксированных дуг (i, j) не образует цикла с количеством дуг меньше, чем n.

В данном примере в качестве дуги (i_0, j_0) можно выбрать дугу (2,1).

Задачу №1 вычеркиваем из списка, заменив ее двумя новыми задачами №3 и №4, которые строятся по задаче №1 и выбранной дуге (2,1).

Задача №3 получается из задачи №1 при дополнительном условии, что дуга (2,1) обязательно включается в маршрут. В матрице длин помечаем вторую строку и первый столбец и помечаем темным квадратом клетку (2,1). При этом мы точно знаем, что дуги (1,2) и (4,2) не войдут в маршрут, содержащий отмеченные дуги (1,4) и (2,1), так в противном случае получился бы цикл, содержащий меньше, чем n дуг. Поэтому в соответствующей матрице полагаем $c_{12} = c_{42} = \infty$. Матрица, соответствующая задаче №3 имеет вид

				16		
	7					
$C_3 =$		13	∞		5	0
		8	25		18	18
		46	27		∞	5
		5	5		5	8

*Задача №*4 получается из задачи №1 при дополнительном условии, что дуга (2,1) не включается в маршрут. Следовательно, в матрице C_1 надо положить $c_{21} = \infty$. Матрица, соответствующая задаче №4 имеет вид

				16		
	∞	∞	16		30	30
$C_{4} =$	20	13	∞		5	0
	8	16	25		18	18
	12	46	27		∞	5
	23	5	5		5	∞

Полагаем $r_0^2 = r_0^1$ и идем на следующую итерацию.

Дерево, полученное после первой итерации, приведено на Рис. 2.8.

Рис. 11.2.

Итерация 2.

Список задач состоит из задач № 2, №3, №4. Выберем из этого списка задачу №3 с матрицей C_3 . Определим для этой задачи нижнюю оценку целевой функции. Для этого в каждой неотмеченной i-ой строке матрицы C_3 находится минимальный элемент α_i и этом элемент вычитается из всех элементов данной строки. В результате получим матрицу \overline{C}_3 , которая имеет вид

				16						
	7									
		13	∞		5	0	$\alpha_3 = 0$			
$\overline{C}_3 =$		0	7		0	0	$\alpha_4 = 18$			
		41	22		∞	0	$\alpha_5 = 5$			
		0	0		0	8	$\alpha_6 = 5$			
	$\beta_2 = 0$ $\beta_3 = 0$ $\beta_5 = 0$ $\beta_6 = 0$									

Далее, в матрице \overline{C}_3 в каждом неотмеченном столбце находим минимальный элемент $oldsymbol{eta}_j$.

Для подсчета нижней оценки суммируем найденные числа α_i , β_j и числа c_{ij} , соответствующие зафиксированным дугам: 0+18+5+5+0+0+0+0+16+7=51. Данная оценка меньше рекорда $r_0^2=73$. Зафиксированные дуги не образуют цикл, состоящий из n дуг. Поэтому найти дугу (i_0,j_0) , обладающую указанными выше свойствами 1) - 4). В качестве дуги (i_0,j_0) выберем дугу (5,6).

Задачу №3 вычеркиваем из списка, заменив ее двумя новыми задачами №5 и №6, которые строятся по задаче №3 и выбранной дуге (5,6) по следующим правилам.

Задача №5 получается из задачи №3 при дополнительном условии, что дуга (5,6) обязательно включается в маршрут. В матрице длин помечаем пятую строку и шестой столбец и помечаем темным квадратом клетку (5,6). При этом мы точно знаем, что дуга (6,5) не войдет в маршрут, содержащий отмеченные дуги (1,4) , (2,1) и (5,6), так в противном случае получился бы цикл, состоящий меньше, чем из n дуг. Поэтому в матрице C_3 полагаем $c_{65} = \infty$. Матрица, соответствующая задаче №5 имеет вид

				16		
	7					
$C_{5} =$		13	∞		5	
		∞	25		18	
						5
		5	5		8	

Задача №6 получается из задачи №3 при дополнительном условии, что дуга (5,6) не включается в маршрут. Следовательно, в матрице C_3 надо положить $c_{56} = \infty$. Матрица, соответствующая задаче №6 имеет вид

				16		
	7					
C_{6}^{-}		13	∞		5	0
		8	25		18	18
		46	27		8	∞
		5	5		5	∞

Полагаем $r_0^3 = r_0^2$ и идем на следующую итерацию.

Итерация 3.

Список задач состоит из задач № 2, №4, №5, №6. Выберем из этого списка задачу №5 с матрицей C_5 . Определим для этой задачи нижнюю оценку целевой функции. Для этого в каждой неотмеченной i-ой строке матрицы C_5 находится минимальный элемент α_i и этом элемент вычитается из элементов данной строки. В результате получим матрицу \overline{C}_5

				16			
	7						
$\overline{C}_5 =$		8	∞		0		$\alpha_3 = 5$
		∞	7		0		$\alpha_4 = 18$
						5	
		0	0		8		$\alpha_6 = 5$
		$\beta_2 = 0$	$\beta_3=0$		β ₅ =0		

Далее, в матрице \overline{C}_5 в каждом неотмеченном столбце находим минимальный элемент $\boldsymbol{\beta}_i$.

Для подсчета нижней оценки суммируем найденные числа α_i , β_j и числа c_{ij} , соответствующие зафиксированным дугам: 5+18+5+0+0+0+16+7+5=56. Данная оценка меньше рекорда $r_0^3=73$. Зафиксированные дуги не образуют цикл длина n . Поэтому найти дугу (i_0,j_0) , обладающую указанными выше свойствами 1)-4). В качестве дуги (i_0,j_0) выберем дугу (3,5).

Задачу №5 вычеркиваем из списка, заменив ее двумя новыми задачами №7 и №8, которые строятся по задаче №5 и выбранной дуге (3,5) по следующим правилам

Задача №7 получается из задачи №5 при дополнительном условии, что дуга (3,5) обязательно включается в маршрут --- в матрице длин помечаем третью строку и пятый столбец и помечаем темным квадратом клетку (3,5). При этом мы точно знаем, что дуги (5,3) и (6,3) не войдут в маршрут, содержащий отмеченные дуги (1,4) , (2,1), (5,6) и (3,5), так в противном случае получился бы цикл длине меньше, чем n. Поэтому в соответствующей матрице полагаем $c_{63} = c_{53} = \infty$. Матрица, соответствующая залаче №7 имеет вил

				16		
	7					
$C_7 =$					5	
		∞	25			
						5
		5	∞			

Задача №8 получается из задачи №5 при дополнительном условии, что дуга (3,5) не включается в маршрут. Следовательно, в матрице C_5 надо положить $c_{35} = \infty$. Матрица, соответствующая задаче №8 имеет вид

				16		
	7					
$C_8^{} =$		13	∞		8	
		∞	25		18	
						5
		5	5		8	

Полагаем $r_0^4 = r_0^3$ и идем на следующею итерацию.

Итерация 4.

Список задач состоит из задач № 2, №4, №6, №7, №8. Выберем из этого списка задачу №7 с матрицей C_7 . Определим для этой задачи нижнюю оценку целевой функции. Для этого в каждой неотмеченной строке i-ой строке матрицы C_7 находится минимальный элемент α_i и этом элемент вычитается из всех элементов данной строки. В результате получим матрицу \overline{C}_7

				16			
	7						
$\overline{C}_7 =$					5		
		∞	0				$\alpha_4 = 25$
						5	
		0	∞				$\alpha_6 = 5$
		$\beta_2 = 0$	$\beta_3 = 0$)			

Далее, в матрице \overline{C}_7 в каждом неотмеченном столбце находим минимальный элемент $oldsymbol{eta}_i$.

Для подсчета нижней оценки суммируем найденные числа α_i , β_j и числа d_{ij} , соответствующие зафиксированным дугам: 25+5+0+0+16+7+5+5=63. Данная оценка меньше рекорда $r_0^4=73$. Зафиксированные дуги не образуют цикл длина n. Поэтому найти дугу (i_0,j_0) , обладающую указанными выше свойствами 1)-4). В качестве дуги (i_0,j_0) выберем дугу (4,3).

Задачу №7 вычеркиваем из списка, заменив ее двумя новыми задачами №9 и №10, которые строятся по задаче №7 и выбранной дуге (4,3).

Задача №9 получается из задачи №7 при дополнительном условии, что дуга (4,3) обязательно включается в маршрут, т.е. теперь дуга (4,3) становится фиксированной. В матрице длин помечаем четвертую строку и третий столбец и помечаем темным цветом клетку (4,3). При этом мы точно знаем, что дуга (3,4) не войдет в маршрут, содержащий отмеченные дуги (1,4), (2,1), (5,6), (3,5) и (4,3), так в противном случае получился бы цикл, содержащий меньше, чем n дуг. Поэтому в соответствующей матрице полагаем $c_{34} = \infty$. Матрица, соответствующая задаче №9 имеет вид

				16		
	7					
$C_{9} =$					5	
			25			
						5
		5				

Задача №10 получается из задачи №7 при дополнительном условии, что дуга (4,3) не включается в маршрут. Следовательно, в матрице C_7 надо положить $c_{43}=\infty$. Матрица, соответствующая задаче №10 имеет вид

				16		
	7					
$C_{10}^{} =$					5	
		8	∞			
						5
		5	∞			

Полагаем $r_0^5 = r_0^4$ и идем на следующею итерацию.

Итерация 5.

Список задач состоит из задач № 2, №4, №6, №8, №9, №10. Выберем из этого списка задачу №9 с матрицей C_9 . Определим для этой задачи нижнюю оценку целевой функции по описанным выше правилам. Эта оценка равна 5+16+7+5+5+25=63.

Данная оценка меньше рекорда $r_0^5=73$. Зафиксированные дуги не образуют цикл длина n. Поэтому найти дугу (i_0,j_0) , обладающую

указанными выше свойствами 1)-4). В качестве дуги (i_0, j_0) можем выбрать только дугу (6,2).

Задачу №9 вычеркиваем из списка, заменив ее двумя новыми задачами №11 и №12, которые строятся по задаче №9 и выбранной дуге (6,2).

Задача №11 получается из задачи №9 при дополнительном условии, что дуга (6,2) обязательно включается в маршрут. В матрице длин помечаем шестую строку и второй столбец и помечаем темным цветом клетку (6,2), которая соответствует фиксированной дуге маршрута. Полагаем $c_{26} = \infty$. Матрица, соответствующая задаче №11 имеет вид

				16		
	7					
$C_{11} =$					5	
			25			
						5
		5				

Задача №12 получается из задачи №9 при дополнительном условии, что дуга (6,2) обязательно исключается из маршрута. Следовательно, полагаем $c_{62}=\infty$. Матрица, соответствующая задаче №12 имеет вид

				16		
	7					
$C_{12} =$					5	
			25			
						5
		8				

Полагаем $r_0^6 = r_0^5$ и идем на следующую итерацию.

Итерация 6.

Список задач состоит из задач № 2, №4, №6, №8, №10, №11, №12. Выберем из этого списка задачу №11 с матрицей C_{11} . Определим для этой задачи нижнюю оценку целевой функции по описанным выше правилам. Эта оценка равна 5+16+7+5+5+25=63.

Данная оценка меньше рекорда $r_0^5 = 73$. Зафиксированные дуги **образуют** цикл из n дуг. Поэтому запоминаем дуги этого цикла

$$(1,4), (2,1), (3,5), (4,3), (5,6), (6,2)$$
 (11.4)

и меняем рекорд, полагая $r_0^7 = 63$. Задачу №11 вычеркиваем из списка. При этом в список не добавляем новых задач. Переходим к следующей итерации. Дерево, отражающее ход решения задачи после шестой итерации, приведено на Рис. 11.3.

Рис. 11.3.

Итерация 7.

Список задач состоит из задач № 2, №4, №6, №8, №10, №12. Выберем из этого списка задачу №12 с матрицей C_{12} . Определим для этой задачи нижнюю оценку целевой функции по описанным выше правилам. Эта оценка равна $\infty+16+7+5+5+25=\infty$.

Данная оценка больше рекорда $r_0^7 = 63$. Поэтому задачу №12 вычеркиваем из списка, новые задачи не добавляем в список, полагаем $r_0^8 = r_0^7 = 63$ и переходим к следующей итерации.

Итерация 8.

Список задач состоит из задач № 2, №4, №6, №8, №10. Выберем из этого списка задачу №10 с матрицей C_{10} . Определим для этой задачи нижнюю оценку целевой функции по описанным выше правилам. Эта оценка равна $\infty+5+\infty+16+7+5+5=\infty$.

Данная оценка больше рекорда $r_0^7 = 63$. Поэтому задачу №10 вычеркиваем из списка, новые задачи не добавляем в список, полагаем $r_0^9 = r_0^8 = 63$ и переходим к следующей итерации.

Итерация 9.

Список задач состоит из задач № 2, №4, №6, №8. Выберем из этого списка задачу №8 с матрицей C_8 . Определим для этой задачи нижнюю оценку целевой функции по описанным выше правилам. Эта оценка равна 13+18+5+16+7+5=64.

Данная оценка больше рекорда $r_0^9 = 63$. Поэтому удаляем задачу №8 из списка. Полагаем $r_0^{10} = r_0^9 = 63$ и переходим к следующей итерации.

Итерация 10.

Список задач состоит из задач № 2, №4, №6. Выберем из этого списка задачу №6 с матрицей C_6 . Определим для этой задачи нижнюю оценку целевой функции по описанным выше правилам. Эта оценка равна 0+18+27+5+16+7=73.

Данная оценка больше рекорда $r_0^{10}=63$. Поэтому задачу №6 вычеркиваем из списка. Полагаем $r_0^{11}=r_0^{10}=63$ и переходим к следующей итерации.

Итерация 11.

Список задач состоит из задач № 2, №4. Выберем из этого списка задачу №4 с матрицей C_4 . Определим для этой задачи нижнюю оценку целевой функции по описанным выше правилам. Эта оценка равна 16+0+16+12+5+16=65. Данная оценка больше рекорда $r_0^{13}=63$. Поэтому задачу №4 вычеркиваем из списка. Полагаем $r_0^{12}=r_0^{11}=63$ и переходим к следующей итерации.

Итерация 12.

Список задач состоит из задачи № 2. Выберем эту задачу из списка. Определим для нее нижнюю оценку целевой функции по описанным выше правилам. Эта оценка равна 26+1+0+16+5+5=58. Данная оценка меньше рекорда $r_0^{13}=63$. Множество зафиксированных дуг пусто. Поэтому найдем дугу (i_0,j_0) , обладающую указанными выше свойствами 1)-4). В качестве дуги (i_0,j_0) можем выбрать только дугу (6,3).

Задачу №2 вычеркиваем из списка, заменив ее двумя новыми задачами №13 и №14, которые строятся по задаче №2 и выбранной дуге (6,3).

Задача №13 получается из задачи №2 при дополнительном условии, что дуга (6,3) обязательно включается в маршрут. Эта дуга считается фиксированной. В матрице длин помечаем шестую строку и третий столбец и помечаем темным цветом клетку (6,3). При этом полагаем $c_{36} = \infty$. Матрица, соответствующая задаче №13 имеет вид

	∞	27		∞	30	26
	∞	∞		1	30	30
$C_{13} =$	20	13		35	5	0
	∞	16		∞	18	18
	12	46		48	∞	5
			5			

Задача №14 получается из задачи №2 при дополнительном условии, что дуга (6,3) обязательно не включается в маршрут, т.е. полагаем $c_{63} = \infty$. Матрица, соответствующая задаче №14 имеет вид

	∞	27	43	∞	30	26
	7	∞	16	1	30	30
$C_{14} =$	20	13	8	35	5	∞
	21	16	25	∞	18	18
	12	46	27	48	8	5
	23	5	8	9	5	∞

Полагаем $r_0^{15} = r_0^{14} = 63$ и переходим к следующей итерации.

Итерация 13.

Список задач состоит из задач № 13, №14. Выберем из списка задачу № 14. Определим для нее нижнюю оценку целевой функции по описанным выше правилам. Эта оценка равна 26+1+5+16+5+5+9=72. Данная оценка больше рекорда $r_0^{13}=63$. Поэтому задачу №14 удаляем из списка, не меняем рекорд $r_0^{14}=r_0^{13}=63$ и переходим к следующей итерации.

Итерация 14.

Список задач состоит задачи № 13. Выберем эту задачу. Определим для нее нижнюю оценку целевой функции по описанным выше правилам. Эта оценка равна 26+1+5+16+5+5=63. Данная оценка равна рекорду $r_0^{16}=63$. Поэтому задачу №13 удаляем из списка, не меняем рекорд $r_0^{15}=r_0^{14}=63$ и переходим к следующей итерации.

Итерация 15.

Список задач пуст. Исходная задача решена. Длина оптимального маршрута равна текущему значению рекорда $r_0^{15} = 63$, оптимальный маршрут состоит из дуг (11.4).

Дерево, отражающее ход всех итераций, приведено на Рис.4.8

Рис.11.4.

Задачи.

Решить задачи коммивояжера

Задача 1.

Мат	рица	a <i>C</i> :			$\underline{\text{Ответ}}$: Матрица X^0	:
∞	10	25	25	10	0 0 0 0 1	
1	∞	10	15	2	0 0 1 0 0	
8	9	∞	20	10	0 0 0 1 0	
14	10	24	∞	15	1 0 0 0 0	
10	8	25	27	∞	0 1 0 0 0	
				\circ	U	

Оптимальный маршрут:

$$1 \longrightarrow 5 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4 \longrightarrow 1$$

Длина оптимального маршрута: 62

Задача 2.

Ответ: Матрица X^0 : Матрица C: ∞ 10 10 8 0 0 0 0 0 1 13 1 3 ∞ 1 17 17 7 0 0 1 0 0 0 $1 \quad 10 \quad \infty$ 6 1 17 0 0 0 0 1 0 ∞ 5 12 6 3 2 0 1 0 0 0 0 $13 \infty 11$ 1 0 0 0 0 0 8 17 8 $11 \ 14 \ 12 \ 6 \ 11 \ \infty$ 0 0 0 1 0 0

Оптимальный маршрут:

$$1 \longrightarrow 6 \longrightarrow 4 \longrightarrow 2 \longrightarrow 3 \longrightarrow 5 \longrightarrow 1$$

Длина оптимального маршрута: 20

Задача 3.

Матрица	а <i>С</i>	:				${}_{ m Oтвет}$: Матрица X^0 :
∞ 8	0	1	18	16	5	$0\ 0\ 1\ 0\ 0\ 0$
19 ∞	12	5	11	8	17	0 0 0 1 0 0 0
10 19	∞	17	11	15	5	0 0 0 0 1 0 0
1 8	9	∞	11	2	2	1 0 0 0 0 0 0
11 12	14	8	∞	4	1	0 0 0 0 0 0 1
9 3	5	17	15	∞	19	0 1 0 0 0 0 0
13 6	15	13	18	10	∞	$0\ 0\ 0\ 0\ 0\ 1\ 0$

Оптимальный маршрут:

$$1 \longrightarrow 3 \longrightarrow 5 \longrightarrow 7 \longrightarrow 6 \longrightarrow 2 \longrightarrow 4 \longrightarrow 1$$

Длина оптимального маршрута: 31

Задача 4.

Ma	три	ца <i>С</i>	' :					$\underline{\text{Ответ}}$: Матрица X^0 :
∞	18	13	18	8	16	11	0	0 0 0 0 0 0 0 1
0	∞	1	8	2	15	19	11	0 0 0 1 0 0 0 0
1	10	∞	18	5	15	12	12	0 1 0 0 0 0 0 0
15	16	10	∞	16	10	6	9	$0\ 0\ 0\ 0\ 0\ 1\ 0$
2	18	14	16	∞	18	13	1	1 0 0 0 0 0 0 0
5	19	1	19	1	∞	7	4	0 0 1 0 0 0 0 0
5	7	16	0	0	8	∞	6	$0\ 0\ 0\ 0\ 1\ 0\ 0\ 0$
10	8	13	10	12	3	13	∞	$0\ 0\ 0\ 0\ 0\ 1\ 0\ 0$

Оптимальный маршрут: $1 \longrightarrow 8 \longrightarrow 6 \longrightarrow 3 \longrightarrow 2 \longrightarrow 4 \longrightarrow 7 \longrightarrow 5 \longrightarrow 1$

Длина оптимального маршрута: 30

Задача 5.

Мат	риц	c	:		$\overline{ ext{Ответ}}$: Матрица X^{0}
∞	13	2	17	14	0 0 1 0 0
11	∞	11	8	2	0 0 0 0 1
4	10	∞	3	6	0 0 0 1 0
9	4	6	∞	19	0 1 0 0 0
3	7	12	18	∞	1 0 0 0 0

Оптимальный маршрут:

Длина оптимального маршрута: 14

Задача 6.

Матрица C:

$$\infty$$
 6 16 16 4 12 11 1 4 10
1 ∞ 16 9 17 5 3 2 6 19
19 4 ∞ 11 17 8 10 4 15 11
7 1 17 ∞ 17 2 5 6 10 17
8 18 18 13 ∞ 0 19 6 12 14
3 5 13 19 16 ∞ 12 17 2 19
1 4 1 18 2 17 ∞ 8 12 10
6 14 19 7 19 19 10 ∞ 2 9
2 14 18 0 16 17 13 15 ∞ 1
1 12 2 6 19 4 13 7 0 ∞

Оптимальный маршрут:

$$1 \longrightarrow 8 \longrightarrow 4 \longrightarrow 7 \longrightarrow 5 \longrightarrow 6 \longrightarrow 9 \longrightarrow 10 \longrightarrow 3 \longrightarrow 2 \longrightarrow 1$$

Длина оптимального маршрута: 25

Задача 7.

Матри	ца (7 :						$\underline{ ext{Ответ}}$: Матрица X^0 :
∞ 12	11	1	18	4	14	3	18	$0\ 0\ 0\ 1\ 0\ 0\ 0\ 0$
9∞	14	12	7	10	4	18	9	$0\ 0\ 0\ 0\ 0\ 1\ 0\ 0$
7 8	∞	18	1	6	1	9	19	$0\ 0\ 0\ 0\ 1\ 0\ 0\ 0$
10 18	0	∞	3	14	3	11	4	$0\ 0\ 1\ 0\ 0\ 0\ 0\ 0$
7 3	17	10	∞	14	14	9	8	$0\ 1\ 0\ 0\ 0\ 0\ 0\ 0$
17 16	17	16	8	∞	9	3	19	$0\ 0\ 0\ 0\ 0\ 0\ 1\ 0$
13 19	8	19	12	0	∞	13	4	0 0 0 0 0 0 0 0 1
3 3	7	6	9	15	16	∞	15	1 0 0 0 0 0 0 0 0
5 13	15	19	6	5	5	2	∞	$0\ 0\ 0\ 0\ 0\ 1\ 0\ 0$

Оптимальный маршрут:

$$1 \longrightarrow 4 \longrightarrow 3 \longrightarrow 5 \longrightarrow 2 \longrightarrow 7 \longrightarrow 9 \longrightarrow 6 \longrightarrow 8 \longrightarrow 1$$

Длина оптимального маршрута: 24

Задача 8.

Матрица C:

11 5 ∞ 4∞ 12 6 19 15 ∞ 14 4 ∞ 19 15 19 ∞ ∞ ∞ 17 17 9 17 ∞ 13 14 ∞ 11 11 ∞ 14 10 ∞

Ответ: Матрица X^0

- $0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$
- $0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0$
- $0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0$
- 0 0 0 0 0 1 0 0 0 0
- 0 0 0 0 0 0 1 0 0 0 0
- 0 0 0 0 0 0 0 0 1 0 0

- $0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$
- 0 0 0 1 0 0 0 0 0 0 0

Оптимальный маршрут:

 $1 \longrightarrow 2 \longrightarrow 5 \longrightarrow 7 \longrightarrow 10 \longrightarrow 11 \longrightarrow 4 \longrightarrow 6 \longrightarrow 9 \longrightarrow 3 \longrightarrow 8 \longrightarrow 1$

Длина оптимального маршрута: 32

Задача 9.

Матрица C:

 ∞

Оптимальный маршрут:

$$1 \longrightarrow 6 \longrightarrow 7 \longrightarrow 4 \longrightarrow 8 \longrightarrow 5 \longrightarrow 11 \longrightarrow 2 \longrightarrow 12 \longrightarrow 10 \longrightarrow 9 \longrightarrow 3 \longrightarrow 1$$

Длина оптимального маршрута: 27

Задача 10.

3.6		
\/lamniiiia	•	•
Матрица	\mathbf{C}	
1 '		

∞	10	17	15	0	15	2	16	10	2	6	19	10
1	∞	9	5	13	4	13	9	18	10	14	2	9
7	9	∞	12	13	12	7	7	9	15	0	3	12
6	1	19	∞	9	17	4	1	0	10	10	15	18
13	9	9	8	∞	2	6	4	14	2	0	17	9
17	10	10	13	1	∞	14	8	14	17	14	14	2
17	18	3	2	6	0	∞	19	14	3	13	3	13
0	4	1	9	6	6	16	∞	3	19	8	15	4
15	7	5	14	6	10	1	4	∞	4	16	17	19
1	9	18	7	16	16	1	19	16	∞	1	6	12
7	6	7	13	8	18	10	5	19	9	∞	5	10
10	16	10	5	2	5	9	13	6	7	9	∞	7
18	19	4	14	13	12	7	11	8	11	12	13	∞

Оптимальный маршрут:

$$1 \longrightarrow 5 \longrightarrow 10 \longrightarrow 7 \longrightarrow 6 \longrightarrow 13 \longrightarrow 3 \longrightarrow 11 \longrightarrow 2 \longrightarrow 12 \longrightarrow 4 \longrightarrow 9 \longrightarrow 8 \longrightarrow 1$$

Длина оптимального маршрута: 26