Matrix Chain Multiplication

matrix multiplication

Multiplying the Matrix

Naïve Method

O(abc)

Matrix Chain Multiplication

Matrix Multiplication

- ABC = (AB)C = A(BC)
- (AB)C differs from A(BC)?
 Same result, different efficiency
- What is the cost of (AB)C?
- What is the cost of A(BC)?

(AB)C

A(BC)

The Problem

- Input: $a_1, a_2, a_3,, a_n$
 - n-1 matrices of sizes

$$a_1 \times a_2$$

- $-a_2 \times a_3$ F
- $a_3 x a_4$
- -3 -- -4
- ...
- $\quad a_{n\text{-}1} \, x \, a_n \qquad \quad B_{n\text{-}1}$
- Output
 - The order of multiplication
 - How to parenthesize the chain

Example

- a₁ a₂ a₃ a₄ a₅ a₆
- 10 x 5 x 1 x 5 x 10 x 2

$$B_1$$
 B_2 B_3 B_4 B_5

Possible Output

$$((B_1B_2)(B_3B_4))B_5$$

$$(B_1B_2)((B_3B_4)B_5)$$

 $(B_1((B_2B_3)B_4))B_5$

And much more...

Consider the Output

What do

$$(B_1B_2)((B_3B_4)B_5)$$

 $(B_1B_2)(B_3(B_4B_5))$

have in common?

What do

 $((B_1B_2)(B_3B_4))B_5$

 $(((B_1B_2)B_3)B_4))B_5$

have in common?

Solving $B_1 B_2 B_3 B_4 \dots B_{n-1}$

Min cost of

$$B_1 (B_2 B_3 B_4 ... B_{n-1})$$

$$(B_1 B_2) (B_3 B_4 ... B_{n-1})$$

$$(B_1 B_2 B_3) (B_4 ... B_{n-1})$$

Solving $B_1 B_2 B_3 B_4 \dots B_{n-1}$

Min cost of

$$B_1$$
 (B_2 B_3 Sub problem B_{n-1})
(Sub problem) (B_3 Sub problem B_{n-1})
(Sub problem B_3) (B_4 Sub problem B_1)
...
(B_1 Sub problem B_1 ...) B_{n-1}

Matrix Chain Multiplication

Deriving the Recurrent

- mcm(l,r) – The least cost to multiply $B_l ... B_r$
- The solution is mcm(1,n-1)

The Recurrence

- Initial Case
 - $-\operatorname{mcm}(x,x)=0$
 - mcm(x,x+1) = a[x] * a[x+1] * a[x+2]

The Recurrence

$$\begin{aligned} & \text{mcm}(I,r) = & & \\ & \text{min cost of } B_{I} \; (B_{I+1} \; B_{I+2} \; B_{I+3} \; \ldots \; B_{r} \;) & & + \; a_{I} \bullet a_{I+1} \bullet a_{r+1} \\ & \text{min cost of } (B_{I} \; B_{I+1}) \; (B_{I+2} \; B_{I+3} \; \ldots \; B_{r} \;) & & + \; a_{I} \bullet a_{I+2} \bullet a_{r+1} \\ & \text{min cost of } (B_{I} \; B_{I+1} \; B_{I+2}) \; (B_{I+3} \; \ldots \; B_{r} \;) & & + \; a_{I} \bullet a_{I+3} \bullet a_{r+1} \\ & & \cdots & & \\ & \text{min cost of } (B_{I} \; B_{I+1} \; B_{I+2} \; B_{I+3} \; \ldots) \; B_{r} & & + \; a_{I} \bullet a_{r} \bullet a_{r+1} \end{aligned}$$

The Recurrence

Matrix Chain Multiplication

```
int mcm(int 1,int r) {
    if (1 < r) {
        minCost = MAX_INT;
        for (int i = 1;i < r;i++) {
             my_cost = mcm(1,i) + mcm(i+1,r) + (a[1] * a[i+1] * a[r+1]);
             minCost = min(my_cost,minCost);
        }
        return minCost;
    } else {
        return 0;
    }
}</pre>
```

Using bottom-up DP

- Design the table
- M[i,j] = the best solution (min cost) for multiplying B_i...B_j
- The solution is at M[i,n-1]

What is M[i,j]?

- Trivial case
 - What is m[x,x]?
 - No multiplication, m[x,x] = 0

What is M[i,j]?

- Simple case
 - What is m[x,x+1]?
 - $-B_xB_{x+1}$
 - Only one solution = $a_x * a_{x+1} * a_{x+2}$

What is M[i,j]?

- General case
 - What is m[x,x+k]?
 - $-B_{x}B_{x+1}B_{x+2}...B_{x+k}$

Filling the Table

Filling the Table

Trivial case

	1	2	3	4	5	6
1	0					
2		0				
3			0			
4				0		
5					0	
6						0

Filling the Table

Arbitrary case

	1	2	3	4	5	6
1	0					
2		0				
3			0			
4				0		
5					0	
6						0

Filling the Table

Arbitrary case

Filling the Table

Arbitrary case

Filling the Table

Arbitrary case

Filling the Table

Arbitrary case

Filling the Table

	1	2	3	4	5	6
1	0 <					
2		0				
3			0			
4				0		
5						
6						0

Filling the Table

Example

- a₁ a₂ a₃ a₄ a₅ a₆
- 10 x 5 x 1 x 5 x 10 x 2

 $B_1 \quad B_2 \quad B_3 \quad B_4 \quad B_5$

Example

			10 x 5	x 1 x 5	x 10 x	()
	1	2	3	4	5	
1	0					
2		0				
3			0			
4				0		
5					0	

Example

Example

Example

Example

Example

Example

Option $1 = 0 + 25 + 10 \times 5 \times 5 = 275$

Example

Option $2 = 50 + 25 + 10 \times 1 \times 5 = 100$ minimal

Example

Option $2 = 50 + 25 + 10 \times 1 \times 5 = 100$ minimal

Example

a_1 a_2 a_3 a_4 a_5 a_6 a_6 a_5 a_6 a_6

			_		_
	1	2	3	4	5
1	0	50	100 (2)		
2		$^{\tiny{\scriptsize{0}}}$	25		
3			0	50	
4				0	100
5					0

Option $1 = 0 + 50 + 5x + 1 \times 10 = 100$

Example

	1	2	3	4	5
1	0	50	100 (2)		
2		0	25		
3			0	50	
4			(0	100
5					0

Option 1 = 25 + 0 + 5x 5 x 10 = 275

Example

a_1 a_2 a_3 a_4 a_5 a_6 10 imes 5 imes 1 imes 5 imes 10 imes 2

	1	2	3	4	5
1	0	50	100 (2)		
2		0	25	100 (2)	
3			0	50	
4				0	100
5					0

Option 1 is better

Example

a_1 a_2 a_3 a_4 a_5 a_6 10 imes 5 imes 1 imes 5 imes 10 imes 2

	1	2	3	4	5
1	0	50	100 (2)		
2		0	25	100 (2)	
3			0	50	70 (4)
4				0	100
5					0

Example

a_1 a_2 a_3 a_4 a_5 a_6 $10 \times 5 \times 1 \times 5 \times 10 \times 2$

	1	2	3	4	5
1	0	50	100 (2)	200 (2)	
2		0	25	100 (2)	
3			0	50	70 (4)
4				0	100
5					0

Example

a₁ a₂ a₃ a₄ a₅ a₆ 10 x 5 x 1 x 5 x 10 x 2

	1	2	3	4	5
1	0	50	100 (2)	200 (2)	
2		0	25	100 (2)	80 (2)
3			0	50	70 (4)
4				0	100
5					0

Example

	1	2	3	4	5
1	0	50	100 (2)	200 (2)	140 (2)
2		0	25	100 (2)	80 (2)
3			0	50	70 (4)
4				0	100
5					0