Kenneth Ireland & Michael Rosen A Classical Introduction to Modern Number Theory (Chapter 1 Solutions)

Khang Vinh Nguyen February 27, 2022 **Exercise 1.** Let a and b be nonzero integers. We can find nonzero integers q and r such that a = qb + r, where $0 \le r < b$. Prove that (a, b) = (b, r) (these are ideals in \mathbb{Z}).

Proof. Let $m \in (a,b)$, then m = ax + by for some $x,y \in \mathbb{Z}$. But a = qb + r, so we get m = (qb + r)x + by = rx + b(qx + y), so $m \in (b,r)$ by definition. Vice versa, if $m \in (b,r)$, then m = bx + ry for some $x,y \in \mathbb{Z}$. Using a = qb + r, we get m = bx + (a - qb)y = ay + b(x - qy), so $m \in (a,b)$. We conclude that (a,b) = (b,r) as sets.

Exercise 2 (continuation). If $r \neq 0$, we can find q_1 and r_1 such that $b = q_1r + r_1$, with $0 \leq r_1 < r$. Show that $\gcd(a,b) = \gcd(r,r_1)$. This process can be repeated. Show that it must end in finitely many steps. Show that the last nonzero remainder must equal $\gcd(a,b)$. The process looks like

$$\begin{aligned} a &= qb + r, & 0 &\leq r < b, \\ b &= q_1r + r_1, & 0 &\leq r_1 < r, \\ r &= q_2r_1 + r_2, & 0 &\leq r_2 < r_1, \\ \vdots & & \\ \vdots & & \\ r_{k-1} &= q_{k+1}r_k + r_{k+1}, & 0 &\leq r_{k+1} < r_k, \\ r_k &= q_{k+2}r_{k+1}. & \end{aligned}$$

Proof. From the previous exercise (and the fact that gcd(a, b) is the least positive integer d such that (a, b) = (d)), we get $gcd(a, b) = gcd(b, r) = gcd(r, r_1) = \cdots = gcd(r_k, r_{k+1})$.

The process eventually stops since $b, r, r_1, r_2, ...$ is a strictly decreasing sequence of non-negative integers (in fact, the sequence stops once it reaches zero, in this case $r_{k+2} = 0$). Otherwise, by induction, we can show that

$$r_k \le r_{k-1} - 1 \le \dots \le r_1 - (k-1) \le r - k \le b - (k+1), \qquad k \ge 1$$

When k = b, $r_k \leq -1$ cannot be non-negative, a contradiction.

Since $r_{k+2} = 0$ according to the last division, we have $r_{k+1} \mid r_k$. Therefore, $gcd(a,b) = gcd(r_k,r_{k+1}) = r_{k+1}$.

Exercise 3. Calculate gcd(187, 221), gcd(6188, 4709), gcd(314, 159).

Solution. *gcd(187, 221) = 17 since

$$221 = 1 \cdot 187 + 34$$

$$187 = 5 \cdot 34 + 17$$

$$34 = 2 \cdot 17 + 0$$

 $*\gcd(6188, 4709) = 17$ since

$$6188 = 1 \cdot 4709 + 1479$$

$$4709 = 3 \cdot 1479 + 272$$

$$1479 = 5 \cdot 272 + 119$$

$$272 = 2 \cdot 119 + 34$$

$$119 = 3 \cdot 34 + 17$$

$$34 = 2 \cdot 17 + 0$$

 $*\gcd(314, 159) = 1$

$$314 = 1 \cdot 159 + 155$$

$$159 = 1 \cdot 155 + 4$$

$$155 = 38 \cdot 4 + 3$$

$$4=1\cdot 3+1$$

$$3 = 3 \cdot 1 + 0$$

Exercise 4. Let $d = \gcd(a, b)$. Show how one can use the EucJidean algorithm to find numbers m and n such that am + bn = d (*Hint*: In Exercise 2 we have that $d = r_{k+1}$. Express r_{k+1} in terms of r_k and r_{k-1} , then in terms of r_{k-1} and r_{k-2} , etc.)

Proof. Let the following be the Euclidean algorithm for computing $d = \gcd(a, b)$

$$\begin{aligned} a &= qb + r, & 0 &\leq r < b, \\ b &= q_1r + r_1, & 0 &\leq r_1 < r, \\ r &= q_2r_1 + r_2, & 0 &\leq r_2 < r_1, \\ \vdots & & & \\ \vdots & & & \\ r_{k-1} &= q_{k+1}r_k + r_{k+1}, & 0 &\leq r_{k+1} < r_k, \\ r_k &= q_{k+2}r_{k+1}. & & \end{aligned}$$

From Exercise 2, we know that $d = r_{k+1}$. Thus,

$$d = r_{k+1} = r_{k-1} - q_{k+1}r_k$$

$$r_k = r_{k-2} - q_k r_{k-1}$$

$$r_{k-1} = r_{k-3} - q_{k-1}r_{k-2}$$

$$\vdots$$

$$r_2 = r - q_2 r_1$$

$$r_1 = b - q_1 r$$

$$r = a - qb$$

Keeping d on one side, and sequentially substituting r_i by a linear combination of r_{i-1} and r_{i-2} (according to the above), we get

$$\begin{split} d &= r_{k-1} - q_{k+1} r_k \\ &= r_{k-1} - q_{k+1} (r_{k-2} - q_k r_{k-1}) \\ &= m_k r_{k-2} + n_k r_{k-1} & (m_k = -q_{k+1}, \quad n_k = 1 + q_k) \\ &= m_k r_{k-2} + n_k (r_{k-3} - q_{k-1} r_{k-2}) \\ &= m_{k-1} r_{k-3} + n_{k-1} r_{k-2} & (m_{k-1} = n_k, \quad n_{k-1} = m_k - n_k q_{k-1}) \\ \vdots \\ &= m_3 r_1 + n_3 r_2 \\ &= m_3 r_1 + n_3 (r - q_2 r_1) \\ &= m_2 r + n_2 r_1 & (m_2 = n_3, \quad n_2 = m_3 - n_3 q_2) \\ &= m_2 r + n_2 (b - q_1 r) \\ &= m_1 b + n_1 r & (m_1 = n_2, \quad n_1 = m_2 - n_2 q_1) \\ &= m_1 b + n_1 (a - q b) \\ &= m_0 a + n_0 b & (m_0 = n_1, \quad n_0 = m_1 - n_1 q) \end{split}$$

Exercise 5. Find m and n for the pairs a and b given in Exercise 3

Solution. *For gcd(187, 221) = 17

$$17 = 187 - 5 \cdot 34$$
$$= 187 - 5(221 - 187)$$
$$= 6 \cdot 187 - 5 \cdot 221$$

*For gcd(6188, 4709) = 17

$$\begin{aligned} 17 &= 119 - 3 \cdot 34 \\ &= 119 - 3(272 - 2 \cdot 119) \\ &= 7 \cdot 119 - 3 \cdot 272 \\ &= 7(1479 - 5 \cdot 272) - 3 \cdot 272 \\ &= 7 \cdot 1479 - 38 \cdot 272 \\ &= 7 \cdot 1479 - 38(4709 - 3 \cdot 1479) \\ &= 121 \cdot 1479 - 38 \cdot 4709 \\ &= 121(6188 - 4709) - 38 \cdot 4709 \\ &= 121 \cdot 6188 - 159 \cdot 4709 \end{aligned}$$

*For gcd(314, 159) = 1

$$1 = 4 - 3$$

$$= 4 - (155 - 38 \cdot 4)$$

$$= 39 \cdot 4 - 155$$

$$= 39(159 - 155) - 155$$

$$= 39 \cdot 159 - 40 \cdot 155$$

$$= 39 \cdot 159 - 40(314 - 159)$$

$$= 79 \cdot 159 - 40 \cdot 314$$

Exercise 6. Let $a, b, c \in \mathbb{Z}$. Show that the equation ax + by = c has solutions in integers iff $gcd(a, b) \mid c$.

Proof. Suppose ax + by = c has solutions in integers, then $c \in (a,b)$. Since (a,b) = (d) where $\gcd(a,b) = d$, we have $c \in (d)$, or simply $\gcd(a,b) \mid c$. Elementarily, note that a,b are divisibly by $\gcd(a,b)$, so c = ax + by is also divisible by $\gcd(a,b)$.

Vice versa, suppose $\gcd(a,b) \mid c$. Exercise 4 produces us a pair of integers (m,n) such that $am+bn=\gcd(a,b)$. Let $k=\frac{c}{\gcd(a,b)}$. By assumption, k is an integer. Hence, $a(km)+b(kn)=k(am+bn)=k\gcd(a,b)=c$, and so $x_0=km,y_0=kn$ is a solution to ax+by=c.

Exercise 7. Let $d = \gcd(a, b)$ and a = da', b = db'. Show that $\gcd(a', b') = 1$. First Proof. Let $d' = \gcd(a', b')$, then $d' \mid a', b'$. Since a = da' and b = db', we have $dd' \mid a, b$. But $d = \gcd(a, b)$, so any common divisor of a, b must divide d, i.e. $dd' \mid d$. Canceling d on both side, we get $d' \mid 1$, or simply d' = 1 (since the greatest common divisor is defined to be always positive). \Box Second Proof. From Exercise 6, we know there exists some integers m, n such that am + bn = d. Dividing d' on both side, we get a'm + b'n = 1. Again, by Exercise 6, we know that $\gcd(a', b') \mid 1$. But $\gcd(a', b')$, so we get $\gcd(a', b') = 1$.

Exercise 8. Let x_0 and y_0 be a solution to ax + by = c. Show that all solutions have the form $x = x_0 + t \frac{b}{d}, y = y_0 - t \frac{a}{d}$ where d = (a, b) and $t \in \mathbb{Z}$.

Proof. Suppose (x,y) are any solution to ax+by=c. Then $a(x-x_0)+b(y-y_0)=0$, or

$$\frac{b}{d}(y-y_0) = -\frac{a}{d}(x-x_0)$$

Note that $\frac{b}{d} \mid -\frac{a}{d}(x-x_0)$, but $\gcd\left(\frac{a}{d}, \frac{b}{d}\right) = 1$ (Exercise 7), so $\frac{b}{d} \mid x-x_0$. Let $x-x_0 = t\frac{b}{d}$ and substitute into the previous equation, we get

$$\frac{b}{d}(y - y_0) = -\frac{a}{d}(x - x_0)$$

$$\frac{b}{d}(y - y_0) = -\frac{a}{d} \cdot t \cdot \frac{b}{d}$$

$$y - y_0 = -t\frac{a}{d}$$

Thus any solution is always of the form $x=x_0+t\frac{b}{d},y=y_0-t\frac{a}{d}$ for some $t\in\mathbb{Z}$. On the other hand, for all $t\in\mathbb{Z}$

$$a\left(x_0 + t\frac{b}{d}\right) + b\left(y_0 - t\frac{a}{d}\right) = ax_0 + t\frac{ab}{d} + by_0 - t\frac{ba}{d} = c$$

So those are all (integer) solutions of ax + by = c.

Exercise 9. Suppose that $u, v \in \mathbb{Z}$ and that gcd(u, v) = 1. If $u \mid n$ and $v \mid n$, show that $uv \mid n$. Show that this is false if $gcd(u, v) \neq 1$.

Proof. If $\gcd(u,v) \neq 1$, then u=v=n=2 should suffice (as $4 \nmid 2$). As for $\gcd(u,v)=1$, let n=ux=vy for some $x,y \in \mathbb{Z}$. In particular, we have $v \mid ux$. Yet $\gcd(u,v)=1$, so we get $v \mid x$. In other words, $uv \mid ux=n$.

Exercise 10. Suppose that gcd(u, v) = 1. Show that gcd(u + v, u - v) is either 1 or 2.

Proof. Let $d = \gcd(u + v, u - v)$, then $d \mid u + v, u - v$, and so

$$d \mid (u+v) + (u-v) = 2u$$

$$d \mid (u+v) - (u-v) = 2v$$

Hence, $d \mid \gcd(2u, 2v)$. Since $\gcd(u, v) = 1$, Exercise 6 implies that there exists some $m, n \in \mathbb{Z}$ such that um + vn = 1. Multiplying 2 on both side, we get (2u)m + (2v)n = 2, so $\gcd(2u, 2v) \mid 2$. Combining the previous result, we get $d \mid 2$, so either d = 1 or d = 2.

Remark 10.1. There is another way to show $\gcd(au, av) = a \gcd(u, v)$, assuming $a \geq 0$. Suppose $d \mid au, av$, let $t = \gcd(d, a)$. By Exercise 7, $\gcd\left(\frac{d}{t}, \frac{a}{t}\right) = 1$, so since $d \mid au$, we get $\frac{d}{t} \mid \frac{a}{t}u$, and thus, $\frac{d}{t} \mid u$. Similarly, $\frac{d}{t} \mid v$, so $\frac{d}{t} \mid \gcd(u, v)$. Multiplying both side by t, we get $d \mid t \gcd(u, v) \mid a \gcd(u, v)$. Vice versa, suppose $d \mid a \gcd(u, v)$. Again, let $t = \gcd(a, d)$, then we get $\frac{d}{t} \mid \frac{a}{t} \gcd(u, v)$, so $\frac{d}{t} \mid \gcd(u, v)$. In particular, $\frac{d}{t} \mid u$, so by multiplying t on both side, we get $d \mid tu \mid au$. Similarly, $d \mid av$.

What we have just shown is that $d \mid au, av$ iff $d \mid a \gcd(u, v)$. But $d \mid au, av$ iff $d \mid \gcd(au, av)$, so $d \mid \gcd(au, av)$ iff $d \mid a \gcd(u, v)$. Thus,

$$\gcd(au, av) = |\gcd(au, av)| = |a\gcd(u, v)| = a\gcd(u, v)$$

Exercise 11. Show that $gcd(a, a + k) \mid k$

Proof. Like previous exercise, let $d=\gcd(a,a+k)$. Then $d\mid a,a+k,$ so $d\mid (a+k)-a=k.$

Exercise 12. Suppose that we take several copies of a regular polygon and try to fit them evenly about a common vertex. Prove that the only possibilities are six equilateral triangles, four squares, and three hexagons.

Proof. Since the vertex angle of an regular n-gon is $\frac{n-2}{n}\pi$, so if there are k copies that can fit around a vertex, then we have

$$k\left(\frac{n-2}{n}\pi\right) = 2\pi$$
$$k(n-2) = 2n$$

Necessarily, $(n-2) \mid 2n = 2(n-2)+4$, so we get $(n-2) \mid 4$. Note that $n-2 \ge 1$, so the only possibilities are $n-2 \in \{1,2,4\}$. Equivalently, $n \in \{3,4,6\}$.

- 1. If n = 3: then k = 2n/(n-2) = 6. So we can fit 6 equilateral triangles around a vertex.
- 2. If n=4: then k=2n/(n-2)=4. So we can fit 4 squares around a vertex.
- 3. If n=6: then k=2n/(n-2)=3. So we can fit 3 regular hexagons around a vertex.

Exercise 13. Let $n_1, n_2, \ldots, n_s \in \mathbb{Z}$. Define the greatest common divisor d of n_1, n_2, \ldots, n_s and prove that there exist integers m_1, m_2, \ldots, m_s such that $n_1 m_1 + n_2 m_2 + \cdots + n_s m_s = d$.

Proof. Let $(n_1, n_2, \ldots, n_s) = \{z_1 n_1 + z_2 n_2 + \cdots + z_s n_s : z_1, z_2, \ldots, z_s \in \mathbb{Z}\}$. Since $|n_1| \in (n_1, n_2, \ldots, n_s)$, there exists some positive integers in (n_1, n_2, \ldots, n_s) . By well-ordering principle, let d' to be the smalllest such. We will show that d = d', and hence, there exists integers m_1, m_2, \ldots, m_s such that $n_1 m_1 + n_2 m_2 + \cdots + n_s m_s = d$.

Since $d = \gcd(n_1, n_2, \ldots, n_s)$, then given $d' = n_1 m_1 + n_2 m_2 + \cdots + n_s m_s$, we must have $d \mid d'$. On the other hand, d' must divide each n_i $(i = \overline{1, s})$. In other words, d' is a common divisor, so by definition, $d' \mid d$. Both d and d' are positive, so we must have d = d'.

Exercise 14. Discuss the solvability of $a_1x_1 + a_2x_2 + \cdots + a_rx_r = c$ in integers (*Hint*: Use Exercise 13 to extend the reasoning behind Exercise 6.)

Solution. Suppose there exists some x_1, x_2, \ldots, x_r such that $a_1x_1 + a_2x_2 + \cdots + a_rx_r = c$, then $\gcd(a_1, a_2, \ldots, a_r) \mid c$ since $\gcd(a_1, a_2, \ldots, a_r)$ divides each a_i for $1 \leq i \leq r$. Vice versa, suppose $\gcd(a_1, a_2, \ldots, a_r) \mid c$. Then by Exercise 13, there exists some integers m_1, m_2, \ldots, m_r such that $a_1m_1 + a_2m_2 + \cdots + a_rm_r = \gcd(a_1, a_2, \ldots, a_r)$. Denote $k = c/\gcd(a_1, a_2, \ldots, a_r)$, which is an integer by assumption. We thus get

$$a_1(km_1) + a_2(km_2) + \dots + a_r(km_r) = k(a_1m_1 + a_2m_2 + \dots + a_rm_r)$$

= $k \gcd(a_1, a_2, \dots, a_r) = c$

In other words, there exists a solution to $a_1x_1 + a_2x_2 + \cdots + a_rx_r = c$

Remark 14.1. One can solve such equation as follows:

- 1. We group the first r-1 variables so that $(a_1x_1+\cdots+a_{r-1}x_{r-1})+a_rx_r=c$.
- 2. For the first group $a_1x_1 + \cdots + a_{r-1}x_{r-1}$, it is always a multiple of $d = \gcd(a_1, \ldots, a_{r-1})$ and vice versa, so we can set it to dy for some integer y.
- 3. Since $gcd(a_1, \ldots, a_r) = gcd(gcd(a_1, \ldots, a_{r-1}), a_r) = gcd(d, a_r)$ and $gcd(a_1, \ldots, a_r) \mid c$, there exists a solution to $dy + a_r x_t = c$.
- 4. Fixing y, we repeat the process for $a_1x_1 + \cdots + a_{r-1}x_{r-1} = dy$. Note that $d = \gcd(a_1, \ldots, a_{r-1})$ so there exists a solution to $a_1x_1 + \cdots + a_{r-1}x_{r-1} = d$. Scaling by y gives us a solution.

However, there is no closed form for the solutions.

Exercise 15. Prove that $a \in \mathbb{Z}$ is the square of another integer iff $\operatorname{ord}_p a$ is even for all primes p. Give a generalization.

Proof. We prove that a>0 is an r-th power of some integer iff $\operatorname{ord}_p a$ is divisible by r for all primes p. Suppose $a=b^r$ for some $b\in\mathbb{Z}$. Then $\operatorname{ord}_p a=\operatorname{ord}_p b^r=r\operatorname{ord}_p b$ by unique factorization. Thus, $r\mid\operatorname{ord}_p a$ for each prime p. Vice versa, suppose $r\mid\operatorname{ord}_p a$. Let $\beta_p=\frac{\operatorname{ord}_p a}{r}$, and $b=\prod_p p^{\beta_p}$ (the sign of b is so that a has the same sign as b^r). We then have $b^r=\prod_p p^{r\beta_p}=\prod_p p^{\operatorname{ord}_p a}=a$.

Exercise 16. If gcd(u, v) = 1 and $uv = a^2$ (with $u, v \ge 0$), show that both u and v are squares.

First proof. Let $b = \gcd(u, a)$ and $c = \gcd(v, a)$. We will show that $u = b^2$ and $v = c^2$. By Exercise 4, there exists some $x, y \in \mathbb{Z}$ such that b = ux + ay. Squaring on both side, we get

$$b^{2} = u^{2}x^{2} + 2uaxy + a^{2}y^{2}$$
$$= u^{2}x^{2} + 2uaxy + uvy^{2}$$
$$= u(ux^{2} + 2axy + vy^{2})$$

Hence, $u \mid b^2$. On the other hand, there also exists some $m, n \in \mathbb{Z}$ such that um + vn = 1. Multiplying u on both side we get $u = u^2m + uvn = u^2m + a^2n$. Note that $b = \gcd(u, a)$, so $b^2 \mid u^2, a^2$. From there, we have $b^2 \mid u^2m + a^2n = u$. We conclude that $u = b^2$ (both are non-negative). Similarly, $v = c^2$.

Second proof. Let $u=\prod_p p^{\mu_p}, v=\prod_p p^{\nu_p}$ be the factorizations of u,v. Since $\gcd(u,v)=1$, we must have $\mu_p\nu_p=0$ at each prime p (i.e. the exponent of p in u,v cannot both be non-zero). Yet $uv=a^2$, so $\mu_p+\nu_p$ must be divisible by 2. Since one of them is zero, it must be that the other must be divisible 2. In either case, μ_p,ν_p are always even for each prime p. By Exercise 15, u,v must be squares.

Exercise 17. Prove that the square root of 2 is irrational, i.e., that there is no rational number r = a/b such that $r^2 = 2$.

Proof. Suppose otherwise, that a/b is a rational number such that $(a/b)^2 = 2$. Equivalently, $a^2 = 2b^2$. Consider the exponent of the prime factor 2 on both side, we have $2 \operatorname{ord}_2 a = 1 + \operatorname{ord}_2 b$, which is impossible since the left-hand side (LHS) is even, while the right-hand side (RHS) is odd.

Exercise 18. Prove that $\sqrt[n]{m}$ is irrational if m is not the n-th power of an integer.

Proof. Suppose otherwise, that a/b is a rational number such that $(a/b)^n = m$. Equivalently, $a^n = mb^n$. Since m is not the n-th power of an integer, Exercise 15 (or rather the generalization) tells us that, for some prime p, $\operatorname{ord}_p m$ is not divisible by n. Consider the exponent of p on both side of $a^n = mb^n$, we must have $n \operatorname{ord}_p a = \operatorname{ord}_p m + n \operatorname{ord}_p b$. In other words, $n(\operatorname{ord}_p a - \operatorname{ord}_p b) = \operatorname{ord}_p m$, so $\operatorname{ord}_p m$ must be divisible by n, contradicting the previous assertion. Therefore, $\sqrt[n]{m}$ is irrational.

Exercise 19. Define the least common multiple of two integers a and b to be an integer m such that $a \mid m, b \mid m$, and m divides every common multiple of a and b. Show that such an m exists. It is determined up to sign. We shall denote it by lcm(a, b) (or [a, b]).

Proof. Let P be the intersection of $a\mathbb{Z} = \{an : n \in \mathbb{Z}\}$ and $b\mathbb{Z} = \{bn : n \in \mathbb{Z}\}$. Note that $|ab| \in P$, so there exists some positive integer in P. By well-ordering principle, there exists the smallest such m > 0. Since $m \in a\mathbb{Z}$, m is a multiple of a. Similarly, m is a multiple of b.

To show m is the least common multiple of a and b, we need to show $m \mid \ell$ for any ℓ that is a common multiple of both a and b. Let $m = q\ell + r, 0 \le r < \ell$ be the Euclidean division of m by ℓ . Since $a \mid m, \ell$, we also have $a \mid m - q\ell = r$. Similarly, $b \mid r$. However, m is the least positive integer that is a multiple of both a and b, so r = 0 necessarily. We conclude that $m \mid \ell$.

Now if $\ell \mid m$ additionally, then we must have $|\ell| = |m|$, i.e. the least common multiple is uniquely defined up to its sign.

Exercise 20. Prove the following

- 1. $\operatorname{ord}_{p} \operatorname{lcm}(a, b) = \max(\operatorname{ord}_{p} a, \operatorname{ord}_{p} b)$
- 2. gcd(a, b) lcm(a, b) = ab (assuming a, b are non-negative)
- 3. gcd(a+b, lcm(a,b)) = gcd(a,b)

Proof. Part 1: let $m = \operatorname{lcm}(a,b)$, then $a \mid m$. Using factorization, this means that $p^{\operatorname{ord}_p a} \mid p^{\operatorname{ord}_p m}$, or simply $\operatorname{ord}_p a \leq \operatorname{ord}_p m$ for each prime p. Similarly, $\operatorname{ord}_p b \leq \operatorname{ord}_p m$, so $\operatorname{max}(\operatorname{ord}_p a, \operatorname{ord}_p b) \leq \operatorname{ord}_p m$. On the other hand, the number $\ell = \prod_p p^{\operatorname{max}(\operatorname{ord}_p a, \operatorname{ord}_p b)}$ is a common multiple of a and b (note there are finite many prime with positive exponent) since $\operatorname{ord}_p \ell \geq \operatorname{ord}_p a$, $\operatorname{ord}_p b$ by definition, so $m \mid \ell$. In particular, $\operatorname{ord}_p m \leq \operatorname{ord}_p \ell = \operatorname{max}(\operatorname{ord}_p a, \operatorname{ord}_p b)$. Hence, $\operatorname{ord}_p m = \operatorname{max}(\operatorname{ord}_p a, \operatorname{ord}_p b)$.

<u>Part 2:</u> by similar argument, we also have $\operatorname{ord}_p \gcd(a, b) = \min(\operatorname{ord}_p a, \operatorname{ord}_p b)$ for each prime p. Using the identity $\max(u, v) + \min(u, v) = u + v$ (wlog, assume $u \ge v$, then $\max(u, v) + \min(u, v) = u + v$), we get

```
\operatorname{ord}_{p}(ab) = \operatorname{ord}_{p} a + \operatorname{ord}_{p} b
= \min(\operatorname{ord}_{p} a, \operatorname{ord}_{p} b) + \max(\operatorname{ord}_{p} a, \operatorname{ord}_{p} b)
= \operatorname{ord}_{p} \gcd(a, b) + \operatorname{ord}_{p} \operatorname{lcm}(a, b)
```

As p prime varies, this means $\gcd(a,b) \operatorname{lcm}(a,b) = ab$ (as $a,b \geq 0$). Part 3: we first show the distribution law $\gcd(x,\operatorname{lcm}(y,z)) = \operatorname{lcm}(\gcd(x,y),\gcd(x,z))$. Indeed, at each prime p

```
\begin{aligned} \operatorname{ord}_{p} \gcd(x, \operatorname{lcm}(y, z)) &= \min(\operatorname{ord}_{p} x, \operatorname{max}(\operatorname{ord}_{p} y, z)) \\ &= \operatorname{max}(\min(\operatorname{ord}_{p} x, \operatorname{ord}_{p} y), \min(\operatorname{ord}_{p} x, \operatorname{ord}_{p} z)) \\ &= \operatorname{lcm}(\gcd(x, y), \gcd(x, z)) \end{aligned}
```

The second-to-last equality is due to distribution law on maximum and minimum. From there, we have

$$\gcd(a+b, \operatorname{lcm}(a,b)) = \operatorname{lcm}(\gcd(a+b,a), \gcd(a+b,b))$$
$$= \operatorname{lcm}(\gcd(b,a), \gcd(a,b)) = \gcd(a,b)$$

The second-to-last equality equality is due to Exercise 1.

Exercise 21. Prove that $\operatorname{ord}_p(a+b) \ge \min(\operatorname{ord}_p a, \operatorname{ord}_p b)$ with equality holding if $\operatorname{ord}_p a \ne \operatorname{ord}_p b$.

Proof. Let $u = \operatorname{ord}_p a, v = \operatorname{ord}_p b$, then $a = p^u m, b = p^v n$ for some $p \nmid m, n$. Without loss of generality (WLOG), suppose $u \geq v$. We then have $a + b = p^v(p^{u-v}m+n)$, so $\operatorname{ord}_p(a+b) \geq v = \min(u,v) = \min(\operatorname{ord}_p a, \operatorname{ord}_p b)$. If $u \neq v$, then $p^{u-v}m$ is divisible by p, but n is not, so $p^{u-v}m+n$ is not divisible by p. Hence, $\operatorname{ord}_p(a+b) = v$, i.e. equality holds.

Exercise 22. Almost all the previous exercises remain valid if instead of the ring \mathbb{Z} we consider the ring k[x]. Indeed, in most we can consider any EucJidean domain. Convince yourself of this fact. For simplicity we shall continue to work in \mathbb{Z}

Proof. Recall that a Euclidean domain D is an integral domain with a function $\lambda: D\setminus\{0\} \to \mathbb{Z}_{\geq 0}$ (non-negative integer) such that if $a, b \in R, b \neq 0$, there exists $q, r \in R$ such that a = qb + r, and either r = 0 or $\lambda(r) < \lambda(b)$ (the function is not required to be compatible with other structure on D).

- 1. Exercise 3, 5, 12, 17, 18 are explicitly stated in \mathbb{Z} , so there's no generalization to Euclidean domain.
- 2. Exercise 1, 2, 4 depends directly on the fact that D is Euclidean domain.
- 3. Exercise 6, 7, 8, 9, 11, 13, 14 rely on the fact that *D* is a PID (or rather a Bézout domain, where every finitely generated ideal is principal, not *every* ideal is principal).
- 4. Exercise 10 (generalization) works in any commutative ring with unity: if (u,v)=(1)=D, then $(2)\subseteq (u+v,u-v)$ (thus if (d)=(u+v,u-v), then (d+v)=(u+v,u-v)), then (d+v)=(u+v,u-v).

The proof is as follows: given $r \in D$, then there exists some $m, n \in D$ such that um + vn = r. We then get

$$2r = (2u)m + (2v)n = [(u+v) + (u-v)]m + [(u+v) - (u-v)]n$$
$$= (u+v)(m+n) + (u-v)(m-n)$$

Therefore, $2r \in (u+v, u-v)$.

5. Exercise 16 (generalization) works in any commutative ring R with unity: suppose I, J, K are ideals such that $IJ = K^2$ and I + J = R, then $I = (I + K)^2, J = (J + K)^2$.

The proof is as follows:

- (a) Suppose $i \in I$, then there exists $j \in J$ such that i + j = 1. Thus, $i = i^2 + ij$. But $ij \in IJ = K^2$, so we can represent $ij = \sum_{\alpha} k_{\alpha} l_{\alpha}$ for some $k_{\alpha}, l_{\alpha} \in K$. In other words, $i = i^2 + \sum_{\alpha} k_{\alpha} l_{\alpha}$. Since $I, K \subseteq I + K$, we know that $i \in I^2 + K^2 \subseteq (I + K)^2$.
- (b) Vice versa, note that an element of $(I+K)^2$ is always of the form

$$\sum_{\alpha} (i_{\alpha} + k_{\alpha})(j_{\alpha} + l_{\alpha}) = \sum_{\alpha} i_{\alpha} j_{\alpha} + \sum_{\alpha} (i_{\alpha} l_{\alpha} + j_{\alpha} k_{\alpha}) + \sum_{\alpha} k_{\alpha} l_{\alpha}$$

for some $i_{\alpha}, j_{\alpha} \in I; k_{\alpha}, l_{\alpha} \in K$. In the latter sum (with 3 terms): the first term is in $I^2 \subseteq I$, the second term is in $IK \subseteq I$, and the last term is in $K^2 = IJ \subseteq I$. Thus, $(I + K)^2 \subseteq I^2 + IK + K^2 \subseteq I + I + I = I$.

Since we have both inclusion of I and $(I + K)^2$ into one another, we get $I = (I + K)^2$. Similarly, $J = (J + K)^2$.

When $R = \mathbb{Z}$ and I = (u), J = (v), K = (a) (with $IJ = (uv), K^2 = (a^2), I + J = (\gcd(u, v)) = (1)$), we get the original exercise.

- 6. Exercise 15, 19, 20a, 21 work in a UFD.
- 7. However, 20b and 20c need a modification (both works in Bézout domain)
 - (a) Part 20b: show that $(a,b) \cdot [(a) \cap (b)] = (ab)$.

To prove, let $(d)=(a,b), (m)=(a)\cap (b)$. Then $\frac{ab}{d}=a\frac{b}{d}$, so $\frac{ab}{d}\in (a)$. Similarly, $\frac{ab}{d}\in (b)$, so $\frac{ab}{d}\in (m)$ necessarily. In other words, $ab\in (dm)$. On the other hand, suppose d=ax+by and m=az=bw for some $x,y,z,w\in D$. Then dm=(ax)(bw)+(by)(az)=ab(xw+yz), so $dm\in (ab)$. We conclude that $(ab)=(dm)=(d)(m)=(a,b)\cdot [(a)\cap (b)]$.

(b) Part 20c: $(a+b) + [(a) \cap (b)] = (a,b)$.

To prove, we need the identity $(x) + [(y) \cap (z)] = (x, y) \cap (x, z)$. Note if $I = (p_i : 1 \le i \le n)$ and $J = (q_j : 1 \le j \le m)$ are finitely generated ideals, then $IJ = (p_i q_j : 1 \le i \le n, 1 \le j \le m)$, so

$$(x,y)(y,z)(z,x) = (x^2y, x^2z, y^2z, y^2x, z^2x, z^2y, xyz)$$

$$= (x, y, z)(xy, yz, zx)$$

$$= (x, y, z)[(xy, zx) + (yz)]$$

$$= (x, y, z)[(x)(y, z) + (yz)]$$

Yet by part (20b) (and the fact that D is a PID), we have $(x,y)(z,x) = [(x,y)+(z,x)][(x,y)\cap(z,x)] = (x,y,z)[(x,y)\cap(z,x)]$ and $(yz) = (y,z)[(y)\cap(z)]$. Therefore,

$$\begin{split} (x,y,z)[(x,y)\cap(z,x)](y,z) &= (x,y)(y,z)(z,x) \\ &= (x,y,z)[(x)(y,z) + (yz)] \\ &= (x,y,z)[(x)(y,z) + (y,z)[(y)\cap(z)]] \\ &= (x,y,z)(y,z)[(x) + [(y)\cap(z)]] \end{split}$$

We can cancel ideals in a PID, which helps us get the identity $(x,y) \cap (z,x) = (x) + [(y) \cap (z)]$. If one to go by normal route, let $I = (x,y,z)(y,z) = (q) \neq (0)$, then $(q)[(x,y) \cap (z,x)] = (q)[(x) + [(y) \cap (z)]]$. If $a \in (x,y) \cap (z,x)$, then there exists some $v \in D, b \in (x) + [(y) \cap (z)]$ such that qa = (qv)b. In other words, a = bv since $q \neq 0$, so $a \in (x) + [(y) \cap (z)]$. Similarly, we also have $a \in (x,y) \cap (z,x)$ whenever $a \in (x) + [(y) \cap (z)]$.

Using the identity above, we get $(a+b)\cap[(a)\cap(b)]=(a+b,a)\cap(a+b,b)=(b,a)\cap(a,b)=(a,b).$

Exercise 23. Suppose that $a^2+b^2=c^2$ with $a,b,c\in\mathbb{Z}$. For example, $3^2+4^2=5^2$ and $5^2+12^2=13^2$. Assume that $\gcd(a,b)=\gcd(b,c)=\gcd(c,a)=1$. Prove that there exist integers u and v such that $c-b=2u^2$ and $c+b=2v^2$ and $\gcd(u,v)=1$ (there is no loss in generality in assuming that b and c are odd and that a is even). Consequently $a=2uv,\ b=v^2-u^2,\ and\ c=v^2+u^2.$ Conversely show that if u and v are given, then the three numbers a,b, and c given by these formulas satisfy $a^2+b^2=c^2$.

Proof. The converse direction is rather apparent: $(2uv)^2 + (v^2 - u^2)^2 = 4u^2v^2 + v^4 - 2v^2u^2 + u^4 = v^4 + 2v^2u^2 + u^4 = (v^2 + u^2)^2$. As for the forward direction, note if a, b are both even, then c is also even, contradicting the pairwise co-prime condition. If a, b are both odd, then considering modulo 4: $c^2 \equiv 0, 1 \pmod{4}$, yet $a^2 + b^2 \equiv 1 + 1 \equiv 2 \pmod{4}$ (since a, b are odd), contradicting $a^2 + b^2 = c^2$. Therefore, WLOG, we can assume that a is even, and b is odd, which makes c also odd.

Rewrite $a^2 = c^2 - b^2 = (c - b)(c + b)$. By Exercise 10, either gcd(c - b, c + b) = 1, or gcd(c - b, c + b) = 2. Both b, c are odd, so c - b, c + b are even, thus gcd(c - b, c + b) = 2. Dividing 4 on both side, we get

$$\left(\frac{a}{2}\right)^2 = \frac{c-b}{2} \cdot \frac{c+b}{2}$$

Since $\gcd(c-b,c+b)=2$, we have $\gcd\left(\frac{c-b}{2},\frac{c+b}{2}\right)=1$. By Exercise 16, we must have $\frac{c-b}{2}=u^2,\frac{c+b}{2}=v^2$ for some $u,v\in\mathbb{Z}$. In other words, $b=v^2-u^2,c=v^2+u^2$, which makes a=2uv.

Exercise 24. Prove the identities

1.
$$x^n - y^n = (x - y)(x^{n-1} + x^{n-2}y + \dots + y^{n-1}).$$

2. For
$$n$$
 odd, $x^n + y^n = (x+y)(x^{n-1} - x^{n-2}y + x^{n-3}y^2 - \dots + y^{n-1})$.

Proof. Part 1:

$$\begin{split} (x-y) \sum_{k=0}^{n-1} x^k y^{n-1-k} &= \sum_{k=0}^{n-1} x^{k+1} y^{n-1-k} - \sum_{k=0}^{n-1} x^k y^{n-k} \\ &= x^n + \sum_{k=0}^{n-2} x^{k+1} y^{n-(k+1)} - \left[\sum_{k=1}^{n-1} x^k y^{n-k} + y^n \right] \\ &= x^n + \sum_{k=1}^{n-1} x^k y^{n-k} - \sum_{k=1}^{n-1} x^k y^{n-k} - y^n \\ &= x^n - y^n \end{split}$$

Part 2:

$$(x+y)\sum_{k=0}^{n-1}(-1)^kx^ky^{n-1-k} = \sum_{k=0}^{n-1}(-1)^kx^{k+1}y^{n-1-k} + \sum_{k=0}^{n-1}(-1)^kx^ky^{n-k}$$

$$= x^n - \sum_{k=0}^{n-2}(-1)^{k+1}x^{k+1}y^{n-(k+1)} + \left[\sum_{k=1}^{n-1}(-1)^kx^ky^{n-k} + y^n\right]$$

$$= x^n + \sum_{k=1}^{n-1}(-1)^kx^ky^{n-k} + \sum_{k=1}^{n-1}(-1)^kx^ky^{n-k} + y^n$$

$$= x^n + y^n$$

Exercise 25. If $a^n - 1$ is a prime for a, n > 1, show that a = 2 and that n is a prime. Primes of the form $2^p - 1$ are called *Mersenne primes*. For example, $2^3 - 1 = 7$ and $2^5 - 1 = 31$. It is not known if there are infinitely many Mersenne primes (as of October 2020, there are 50 Mersenne prime found).

Proof. If $a \neq 2$, then $a^n - 1 = (a - 1)(a^{n-1} + \cdot + 1)$ is a factorization of it (Exercise 24). Since $a \neq 2$, we have $a - 1 \geq 2$. Since a, n > 1, $a^{n-1} + \cdot + 1 > 1$. Thus, $a^n - 1$ cannot be a prime by definition.

If n is not a prime, then let n=uv be a factorization with u,v>1. We then have $a^n-1=(a^u)^v-1=(a^u-1)(a^{u(v-1)}+\cdots+1)$ (Exercise 24. Since $a,u>1,\ a^u-1>1$. Since $v>1,\ a^{u(v-1)}+\cdots+1>1$. Hence, a^n-1 cannot be a prime by definition.

We conclude that a=2 and n is prime, given a^n-1 is a prime.

Exercise 26. If $a^n + 1$ is a prime for a, n > 1, show that a is even and that n is a power of 2. Primes of the form $2^{2^t} + 1$ are called Fermat primes. For example, $2^{2^t} + 1 = 5$ and $2^{2^2} + 1 = 17$. It is not known if there are infinitely many Fermat primes (as of 2021, there are only 5 Fermat prime found, namely $2^{2^t} + 1$ for $0 \le t \le 4$).

Proof. Suppose a is odd, then a^n is also odd, and thus a^n+1 is even. Since a>1, we have $a^n+1\geq a+1\geq 4$. Thus, a^n+1 cannot be a prime, since the only even prime is 2<4. On the other hand, if n is not a power of 2, i.e. $n=2^dm$ for some m>1 odd. By Exercise 24, $a^n+1=(a^{2^d})^m+1=(a^{2^d}+1)(a^{2^d(m-1)}-a^{2^d(m-2)}+\cdots+1)$. Again, since a>1, $a^{2^d}+1\geq a+1\geq 3$. And since a,m>1, $a^{2^d(m-1)}>a^{2^d(m-2)}>\cdots>a^{2^d}>1$, so $a^{2^d(m-1)}-a^{2^d(m-2)}+\cdots+1=(a^{2^d(m-1)}-a^{2^d(m-2)})+\cdots+(a^{2^d\cdot 2}-a^{2^d})+1>1$. By definition, a^n+1 cannot be a prime. □

Exercise 27. For all odd n show that $8 \mid n^2 - 1$. If $3 \nmid n$, show that $6 \mid n^2 - 1$.

Proof. Suppose $n=2k+1, k\in\mathbb{Z}$, then $n^2-1=(2k+1)^2-1=4k^2+4k=4k(k+1)$. However, one of k or k+1 must be even, so n^2-1 must be divisible by $4\cdot 2=8$. Suppose $n=3k\pm 1, k\in\mathbb{Z}$ (since $n\equiv \pm 1\pmod 3$) whenever n is not divisible by 3), then $n^2-1=(3k\pm 1)^2-1=9k^2\pm 6k=3k(3k\pm 2)$. In particular, $3\mid n^2-1$. We have proved $8\mid n^2-1$ (for n odd), so since $\gcd(3,8)=1$, we get $24\mid n^2-1$ (Exercise 9). □

Exercise 28. For all n show that $30 \mid n^5 - n$ and that $42 \mid n^7 - n$.

Proof. *Using the factorization $30 = 2 \cdot 3 \cdot 5$, we prove $n^5 - n$ is divisible by 2, 3, 5 separately. Note that $n^5 - n = n(n^4 - 1) = n(n^2 - 1)(n^2 + 1) = n(n - 1)(n+1)(n^2+1)$, so since n-1, n, n+1 are 3 consecutive integers, one of them must be divisible by 2 and one of them must be divisible by 3. As for $5 \mid n^5 - n$, consider the following case

- 1. If $n \equiv 0, \pm 1 \pmod{5}$, then n(n-1)(n+1) is divisible by 5, so $n^5 n$ is divisible by 5.
- 2. If $n \equiv \pm 2 \pmod{5}$, then $n^2 + 1 \equiv 2^2 + 1 \equiv 0 \pmod{5}$, so $n^5 n = n(n-1)(n+1)(n^2+1) \equiv 0 \pmod{5}$.

*Similarly as above, we prove $n^7 - n$ is divisible by 2, 3, 7 separately. Note that $n^7 - n = n(n^6 - 1) = n(n^3 - 1)(n^3 + 1) = n(n - 1)(n + 1)(n^2 + n + 1)(n^2 - n + 1)$, so $n^7 - n$ is divisble by 2 and 3 with the same argument previously. As for $7 \mid n^7 - n$, consider the following case

- 1. If $n \equiv 0, \pm 1 \pmod{7}$, then n(n-1)(n+1) is divisible by 7, so $n^7 n$ is divisible by 7.
- 2. If $n \equiv 2 \pmod{7}$, then $n^2+n+1 \equiv 2^2+2+1 \equiv 0 \pmod{7}$, so $n^7-n \equiv 0 \pmod{7}$.
- 3. If $n \equiv -2 \pmod{7}$, then $n^2 n + 1 \equiv (-2)^2 + 2 + 1 \equiv 0 \pmod{7}$, so $n^7 n \equiv 0 \pmod{7}$.
- 4. If $n \equiv 3 \pmod{7}$, then $n^2 n + 1 \equiv 3^2 3 + 1 \equiv 0 \pmod{7}$, so $n^7 n \equiv 0 \pmod{7}$.
- 5. If $n \equiv -3 \pmod{7}$, then $n^2 + n + 1 \equiv (-3)^2 3 + 1 \equiv 0 \pmod{7}$, so $n^7 n \equiv 0 \pmod{7}$.

Exercise 29. Suppose that $a, b, c, d \in \mathbb{Z}$ and that gcd(a, b) = gcd(c, d) = 1. If (a/b) + (c/d) =an integer, show that $b = \pm d$.

Proof. Since (a/b) + (c/d) = (ad + bc)/(bd) is an integer, we have $bd \mid ad + bc$. In particular, $d \mid ad + bc$, so $d \mid bc$. Yet $\gcd(c,d) = 1$, so we need $d \mid b$. Similarly, $b \mid d$, so we conclude |b| = |d|, or $b = \pm d$ simply. \square

Exercise 30. Prove that $\frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$ is not an integer.

Proof. Let $2^k \leq n$ be the largest power of 2 not exceeding n. Then it is also the only number $\leq n$ that is divisble by such power 2^k . Indeed, if $2^k \mid m \leq n$, then $m = 2^k d$ for some $d \geq 1$. If $d \geq 2$, then $n \geq m \geq 2^{k+1}$, contradicting the maximality of k.

We then split the sum into $\frac{1}{2^k}$ and the remaining ones $\frac{p}{q} = \sum_{i \neq 2^k} \frac{1}{i} \left(\gcd(p,q) = 1 \right)$. By the previous remark, each i can be divisible by at most 2^{k-1} , so q (which divide $\lim_{i \neq 2^k} i$) is also divisible by at most 2^{k-1} . If we suppose $\frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$ is an integer, then $\frac{1}{2^k} + \frac{p}{q}$ is that same integer. By Exercise 29, we thus have $q = \pm 2^k$, a contradiction.

Exercise 31. Show that 2 is divisible by $(1+i)^2$ in $\mathbb{Z}[i]$.

Proof.
$$(1+i)^2 = 1 + 2i + i^2 = 2i$$
, so $-i(1+i)^2 = 2$, i.e. $(1+i)^2 \mid 2$.

Exercise 32. For $\alpha = a + bi \in \mathbb{Z}[i]$, we defined $\lambda(\alpha) = a^2 + b^2$. From the properties of λ deduce the identity $(a^2 + b^2)(c^2 = d^2) = (ac - bd)^2 + (ad + bc)^2$.

Proof. Since λ is multiplicative $\lambda((a+bi)(c+di)) = \lambda(a+bi)\lambda(c+di) = (a^2+b^2)(c^2+d^2)$. On the other hand, $(a+bi)(c+di) = ac+adi+bci+bdi^2 = (ac-bd)+(ad+bc)i$, so $\lambda((a+bi)(c+di)) = (ac-bd)^2+(ad+bc)^2$. Comparing the 2 results, we get the desired identity.

Exercise 33. Show that $\alpha \in \mathbb{Z}[i]$ is a unit iff $\lambda(\alpha) = 1$. Deduce that 1, -1, i, and -i are the only units in $\mathbb{Z}[i]$.

Proof. If $\alpha \in \mathbb{Z}[i]$ is a unit, then there exists some $\beta \in \mathbb{Z}[i]$ such that $\alpha\beta = 1$. Applying λ to both side and use multiplicativity, we get $\lambda(\alpha)\lambda(\beta) = \lambda(1) = 1$. Note that $\lambda(\alpha)$ is always an integer for any Gaussian integer α , so we get $\lambda(\alpha) \mid 1$, i.e. $\lambda(\alpha) = 1$ since $\lambda(\alpha) \geq 0$ is a sum of square. Vice versa, suppose $\lambda(\alpha) = 1$. If $\alpha = a + bi$, consider the product of α and its conjugate: $\alpha\overline{\alpha} = (a + bi)(a - bi) = (a^2 + b^2) + (a(-b) + ba)i = \lambda(\alpha) = 1$. By definition, α is a unit.

By the previous result, the units of $\mathbb{Z}[i]$ are of the form a+bi for $a^2+b^2=1$. Since $a^2 \leq a^2+b^2=1$, we have $-1 \leq a \leq 1$.

- 1. If $a = \pm 1$, then b = 0. The corresponding units are ± 1 .
- 2. If a = 0, then $b = \pm 1$. The corresponding units are $\pm i$.

Exercise 34. Show that 3 is divisible by $(1 - \omega)^2$ in $\mathbb{Z}[\omega]$.

Proof. Recall that $\omega^2 + \omega + 1 = 0$, so $(1 - \omega)^2 = 1 - 2\omega + \omega^2 = -3\omega$. Also recall that $\omega^3 = 1$, so $3 = 3\omega^3 = -\omega^2(1 - \omega)^2$, so $(1 - \omega^2) \mid 3$.

Exercise 35. For $\alpha = a + b\omega \in \mathbb{Z}[\omega]$, we defined $\lambda(\alpha) = a^2 - ab + b^2$. Show that α is a unit iff $\lambda(\alpha) = 1$. Deduce that $\pm 1, \pm \omega, \pm \omega^2$ are the only units in $\mathbb{Z}[\omega]$.

Proof. First we verify that $\overline{\omega} = \omega^2$. Indeed, $\omega^2 = \left(\frac{-1+\sqrt{-3}}{2}\right)^2 = \frac{1-3-2\sqrt{-3}}{4} = \frac{-1-\sqrt{-3}}{2} = \overline{\omega}$.

Next, we verify λ is multiplicative.

$$\lambda(a+b\omega)\lambda(c+d\omega) = (a^2 - ab + b^2)(c^2 - cd + d^2)$$

$$= a^2c^2 - a^2cd + a^2d^2 - abc^2 + abcd - abd^2 + b^2c^2 - b^2cd + b^2d^2$$

$$= a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2 + abcd - a^2cd - b^2cd - abc^2 - abd^2$$

$$\lambda((a+b\omega)(c+d\omega)) = \lambda(ac + bd\omega^2 + (bc + ad)\omega)$$

$$= \lambda((ac - bd) + (bc + ad - bd)\omega)$$

$$= (ac - bd)^2 - (ac - bd)(bc + ad - bd) + (bc + ad - bd)^2$$

$$= a^2c^2 - 2abcd + b^2d^2 - abc^2 - a^2cd + abcd + b^2cd + abd^2 - b^2d^2$$

$$+ b^2c^2 + a^2d^2 + b^2c^2 + b^2d^2 + abcd - a^2cd - b^2cd - abc^2 - abd^2$$

$$= a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2 + abcd - a^2cd - b^2cd - abc^2 - abd^2$$

*Now suppose $\alpha = a + b\omega$ is a unit, i.e. $\alpha\beta = 1$ for some $\beta \in \mathbb{Z}[\omega]$. Then $\lambda(\alpha)\lambda(\beta) = \lambda(1) = 1$, so $\lambda(\alpha) \mid 1$ (since $\lambda(\alpha)$ is always an integer). But $\lambda(\alpha) = a^2 - ab + b^2 = \left(a - \frac{b}{2}\right)^2 + \frac{3b^2}{4} \geq 0$, so $\lambda(\alpha) = 1$. On the other hand, if $\lambda(\alpha) = 1$, then note that

$$\alpha \overline{\alpha} = (a + b\omega)(a + b\overline{\omega})$$

$$= a^2 + b^2 \omega \overline{\omega} + ab(\omega + \overline{\omega})$$

$$= a^2 + b^2 - ab = \lambda(\alpha) = 1$$

By definition, α is a unit.

*To find all units of $\mathbb{Z}[\omega]$, we need to solve $a^2 - ab + b^2 = 1$ for $a, b \in \mathbb{Z}$. Rewrite it into $\left(a - \frac{b}{2}\right)^2 + \frac{3b^2}{4} = 1$, then normalize it by multiplying both side by 4, we get $(2a - b)^2 + 3b^2 = 4$. Since $3b^2$ is a multiple of 3 that is between 0 and 4, we consider the following cases

1. $3b^2 = 0$, or b = 0: then $(2a - b)^2 = 4a^2 = 4$, so $a = \pm 1$. These correspond to the units ± 1 .

- 2. $3b^2 = 3$, or $b = \pm 1$: then $(2a b)^2 = 1$, so $2a b = \pm 1$.
 - (a) If b=1, then $a\in\{0,1\}$. These correspond to the units $\omega,1+\omega=-\omega^2.$
 - (b) If b=-1, then $a\in\{0,-1\}$. These correspond to the units $-\omega,-1-\omega=\omega^2$.

Exercise 36. Define $\mathbb{Z}[\sqrt{-2}]$ as the set of complex numbers of the form $a+b\sqrt{-2}$, where $a,b\in\mathbb{Z}$. Show that $\mathbb{Z}[\sqrt{-2}]$ is a ring. Define $\lambda(\alpha)=a^2+2b^2$ for $\alpha=a+b\sqrt{-2}$. Use λ to show that $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain.

Proof. $*\mathbb{Z}[\sqrt{-2}]$ is a ring since

1. For any $a+b\sqrt{-2}, c+d\sqrt{-2} \in \mathbb{Z}[\sqrt{-2}]$ (equivalently, $a,b,c,d \in \mathbb{Z}$), we have

$$(a+b\sqrt{-2}) + (c+d\sqrt{-2}) = (a+c) + (b+d)\sqrt{-2} \in \mathbb{Z}[\sqrt{-2}]$$
$$(a+b\sqrt{-2})(c+d\sqrt{-2}) = (ac-2bd) + (ad+bc)\sqrt{-2} \in \mathbb{Z}[\sqrt{-2}]$$

- 2. Commutativity, associativity, and distributivity hold as these are just complex arithmetics.
- 3. Identities: since $0 = 0 + 0 \cdot \sqrt{-2}, 1 = 1 + 0 \cdot \sqrt{-2} \in \mathbb{Z}[\sqrt{-2}]$

$$(a+b\sqrt{-2}) + (0+0\sqrt{-2}) = a+b\sqrt{-2}$$
$$(a+b\sqrt{-2})(1+0\sqrt{-2}) = a+b\sqrt{-2}$$

4. Additive inverse: $(a + b\sqrt{-2}) + [(-a) + (-b)\sqrt{-2}] = 0$

*To show $\mathbb{Z}[\sqrt{-2}]$, for any $\alpha = a + b\sqrt{-2}$ and $\beta = c + d\sqrt{-2} \neq 0$. Let

$$\frac{\alpha}{\beta} = \frac{(a + b\sqrt{-2})(c - d\sqrt{-2})}{c^2 + 2d^2} = \frac{(ac + 2bd) + (bc - ad)\sqrt{-2}}{c^2 + 2d^2} = r + s\sqrt{-2}$$

for some $r, s \in \mathbb{Q}$. Pick some integer m, n such that $|m-r| \leq 1/2$ and $|n-s| \leq 1/2$ (e.g. m, n are respectively the nearest integers to r, s). Let $\rho = m + n\sqrt{-2}$ and $\delta = \alpha - \rho\beta$ (both in $\mathbb{Z}[\sqrt{-2}]$), then $\lambda\left(\frac{\alpha}{\beta} - \rho\right) = (m-r)^2 + 2(n-s)^2 \leq 3/4 < 1$, so $\lambda(\delta) = \lambda(\beta)\lambda\left(\frac{\alpha}{\beta} - \rho\right) < \lambda(\beta)$ (note that λ is the square of the absolute value on \mathbb{C}).

Exercise 37. Show that the only units in $\mathbb{Z}[\sqrt{-2}]$ are 1 and -1.

Proof. If $\alpha = a + b\sqrt{-2}$ is a unit, then $\alpha\beta = 1$ for some $\beta \in \mathbb{Z}[\sqrt{-2}]$. Since the absolute value of a complex number is multiplicative, we have $|\alpha| \cdot |\beta| = 1$, or equivalently, $\lambda(\alpha)\lambda(\beta) = |\alpha|^2|\beta|^2 = 1$. But $\lambda(\alpha) = a^2 + 2b^2$ is a non-negative integer, so we get $\lambda(\alpha) = 1 = a^2 + 2b^2$. In particular, $2b^2 \leq 1$, so b = 0 necessarily. From there, we get $a = \pm 1$, so the only possible units in $\mathbb{Z}[\sqrt{-2}]$ are ± 1 . Checking $1^2 = (-1)^2 = 1$, we conclude that these are the only units. \square

Exercise 38. Suppose that $\pi \in \mathbb{Z}[i]$ and that $\lambda(n) = p$ is a prime in \mathbb{Z} . Show that π is a prime in $\mathbb{Z}[i]$. Show that the corresponding result holds in $\mathbb{Z}[\omega]$ and $\mathbb{Z}[\sqrt{-2}]$.

Proof. We will show that such holds in any Euclidean domain D with Euclidean function $\lambda: D \to \mathbb{Z}_{\geq 0}$ such that λ is multiplicative, and α is a unit whenever $\lambda(\alpha) = 1$. Indeed, suppose $\pi \in D$ such that $\lambda(\pi) = p$ a prime. Then π must be irreducible, as whenever $\pi = \alpha\beta$, we have $\lambda(\alpha)\lambda(\beta) = \lambda(\pi) = p$. Since $\lambda(\alpha), \lambda(\beta) \geq 0$, we must have either $\lambda(\alpha) = 1$, or $\lambda(\beta) = 1$. In other words, either α or β is a unit.

So π is irreducible. We need to show that π is prime from this fact. Indeed, an Euclidean domain is always a PID, so whenever $\pi \mid \alpha\beta$, yet $\pi \nmid \alpha$, we let $(\gamma) = (\pi, \alpha)$. Since $(\gamma) \supseteq (\pi)$, we have $\gamma \mid \pi$. π is irreducible so either $(\pi, \alpha) = (\gamma) = (\pi)$, or $(\pi, \alpha) = (\gamma) = (1)$. The first case implies that $(\pi) \supseteq (\alpha)$, or simply $\pi \mid \alpha$, contradicting the assumption. Thus, $(\pi, \alpha) = (1)$, and so there exists $x_0, y_0 \in D$ such that $\pi x_0 + \alpha y_0 = 1$. Multiplying both side by β , we get $\pi(\beta x_0) + (\alpha\beta)y_0 = \beta$. Since $\pi \mid \alpha\beta$, we have $\pi \mid \pi(\beta x_0) + (\alpha\beta)y_0 = \beta$. By definition, π is a prime.

Exercise 39. Show that in any integral domain a prime element is irreducible.

Proof. Let $p \in R$ be a prime element. Suppose p = ab, then $p \cdot 1 = ab$, so $p \mid ab$. By definition, we can assume WLOG that $p \mid a$. Let a = pc for some $c \in R$. Then p = ab = pcb, so 1 = cb (since R is an integral domain). In other words, b is a unit in R. In summary, any factorization p = ab of a prime element has either a or b be a unit. By definition, p must be irreducible.