MATH 350-2 Advanced Calculus

W.R. Casper

Department of Mathematics California State University Fullerton

October 21, 2024

Outline

- Real Analysis Lecture 14
 - Cauchy sequences
 - Limit of a function

Outline

- Real Analysis Lecture 14
 - Cauchy sequences
 - Limit of a function

A sequence $\{x_n\}$ in a metric space (M, d) is called Cauchy if the terms get arbitrarily close together as n gets arbitrarily large.

A sequence $\{x_n\}$ in a metric space (M, d) is called Cauchy if the terms get arbitrarily close together as n gets arbitrarily large.

More formally:

A sequence $\{x_n\}$ in a metric space (M, d) is called Cauchy if the terms get arbitrarily close together as n gets arbitrarily large.

More formally:

Definition

A sequence $\{x_n\}$ is called a **Cauchy sequence** if

 $\forall \epsilon > 0$, there exists $N \in \mathbb{Z}_+$ with $m, n \geq N \Rightarrow d(x_m, x_n) < \epsilon$.

A sequence $\{x_n\}$ in a metric space (M, d) is called Cauchy if the terms get arbitrarily close together as n gets arbitrarily large.

More formally:

Definition

A sequence $\{x_n\}$ is called a **Cauchy sequence** if

 $\forall \epsilon > 0$, there exists $N \in \mathbb{Z}_+$ with $m, n \geq N \Rightarrow d(x_m, x_n) < \epsilon$.

every convergent sequence is Cauchy

A sequence $\{x_n\}$ in a metric space (M, d) is called Cauchy if the terms get arbitrarily close together as n gets arbitrarily large.

More formally:

Definition

A sequence $\{x_n\}$ is called a **Cauchy sequence** if

 $\forall \epsilon > 0$, there exists $N \in \mathbb{Z}_+$ with $m, n \geq N \Rightarrow d(x_m, x_n) < \epsilon$.

- every convergent sequence is Cauchy
- is every Cauchy sequence convergent?

Problem

Prove that if $\{x_n\}$ is a Cauchy sequence in a metric space (M, d), then it is bounded.

Problem

Prove that if $\{x_n\}$ is a Cauchy sequence in a metric space (M, d), then it is bounded.

Solution

Problem

Prove that if $\{x_n\}$ is a Cauchy sequence in a metric space (M, d), then it is bounded.

Solution

Suppose $\{x_n\}$ is Cauchy.

Problem

Prove that if $\{x_n\}$ is a Cauchy sequence in a metric space (M, d), then it is bounded.

Solution

Suppose $\{x_n\}$ is Cauchy.

Let $\epsilon = 2024$.

Problem

Prove that if $\{x_n\}$ is a Cauchy sequence in a metric space (M, d), then it is bounded.

Solution

Suppose $\{x_n\}$ is Cauchy.

Let $\epsilon = 2024$.

Then $\exists N \in \mathbb{Z}_+$ with $d(x_m, x_n) < 2024$ for all $m, n \geq N$.

Problem

Prove that if $\{x_n\}$ is a Cauchy sequence in a metric space (M, d), then it is bounded.

Solution

Suppose $\{x_n\}$ is Cauchy.

Let $\epsilon = 2024$.

Then $\exists N \in \mathbb{Z}_+$ with $d(x_m, x_n) < 2024$ for all $m, n \geq N$.

Therefore for all $n \ge N$, we have $d(x_n, x_N) \le 2024$.

Problem

Prove that if $\{x_n\}$ is a Cauchy sequence in a metric space (M, d), then it is bounded.

Solution

Suppose $\{x_n\}$ is Cauchy.

Let $\epsilon = 2024$.

Then $\exists N \in \mathbb{Z}_+$ with $d(x_m, x_n) < 2024$ for all $m, n \geq N$.

Therefore for all $n \ge N$, we have $d(x_n, x_N) \le 2024$.

So if we define

$$R = \max\{d(x_1, x_N), d(x_2, x_N), \dots, d(x_{n-1}, x_N), 2024\},\$$

Problem

Prove that if $\{x_n\}$ is a Cauchy sequence in a metric space (M, d), then it is bounded.

Solution

Suppose $\{x_n\}$ is Cauchy.

Let $\epsilon = 2024$.

Then $\exists N \in \mathbb{Z}_+$ with $d(x_m, x_n) < 2024$ for all $m, n \geq N$.

Therefore for all $n \ge N$, we have $d(x_n, x_N) \le 2024$.

So if we define

$$R = \max\{d(x_1, x_N), d(x_2, x_N), \dots, d(x_{n-1}, x_N), 2024\},\$$

then $d(x_n, x_N) \le 2024$ for all $n \ge 1$.

Problem

Prove that if $\{x_n\}$ is a Cauchy sequence in a metric space (M, d), then it is bounded.

Solution

Suppose $\{x_n\}$ is Cauchy.

Let $\epsilon = 2024$.

Then $\exists N \in \mathbb{Z}_+$ with $d(x_m, x_n) < 2024$ for all $m, n \geq N$.

Therefore for all $n \ge N$, we have $d(x_n, x_N) \le 2024$.

So if we define

$$R = \max\{d(x_1, x_N), d(x_2, x_N), \dots, d(x_{n-1}, x_N), 2024\},\$$

then $d(x_n, x_N) \le 2024$ for all $n \ge 1$.

Hence $X = \{x_1, x_2, \dots\} \subseteq B_M(x_N, R)$, and is bounded.

Every convergent sequence is Cauchy.

Every convergent sequence is Cauchy.

Theorem

Let (M, d) be a metric space and suppose that $\{x_n\}$ is a sequence in M which converges to $L \in M$. Then $\{x_n\}$ is Cauchy.

Every convergent sequence is Cauchy.

Theorem

Let (M, d) be a metric space and suppose that $\{x_n\}$ is a sequence in M which converges to $L \in M$. Then $\{x_n\}$ is Cauchy.

Proof.

Every convergent sequence is Cauchy.

Theorem

Let (M, d) be a metric space and suppose that $\{x_n\}$ is a sequence in M which converges to $L \in M$. Then $\{x_n\}$ is Cauchy.

Proof.

Let $\epsilon > 0$.

Every convergent sequence is Cauchy.

Theorem

Let (M, d) be a metric space and suppose that $\{x_n\}$ is a sequence in M which converges to $L \in M$. Then $\{x_n\}$ is Cauchy.

Proof.

Let $\epsilon > 0$.

Then there exists N such that $n \ge N$ implies $d(x_n, L) < \epsilon/2$.

Every convergent sequence is Cauchy.

Theorem

Let (M, d) be a metric space and suppose that $\{x_n\}$ is a sequence in M which converges to $L \in M$. Then $\{x_n\}$ is Cauchy.

Proof.

Let $\epsilon > 0$.

Then there exists N such that $n \ge N$ implies $d(x_n, L) < \epsilon/2$. Therefore for any $m, n \ge N$ we have

$$d(x_m, x_n) \le d(x_m, L) + d(L, x_n) < \epsilon/2 + \epsilon/2 = \epsilon.$$

Since $\epsilon > 0$ was arbitrary, this proves that $\{x_n\}$ is Cauchy.

Partial converse.

Partial converse.

Theorem

Let $M = \mathbb{R}^n$ with the Eucliean metric, and suppose that $\{x_n\}$ is a Cauchy sequence in M.

Then $\{x_n\}$ converges.

Partial converse.

Theorem

Let $M = \mathbb{R}^n$ with the Eucliean metric, and suppose that $\{x_n\}$ is a Cauchy sequence in M.

Then $\{x_n\}$ converges.

Proof.

Partial converse.

Theorem

Let $M = \mathbb{R}^n$ with the Eucliean metric, and suppose that $\{x_n\}$ is a Cauchy sequence in M.

Then $\{x_n\}$ converges.

Proof.

Consider the range $X = \{x_1, x_2, \dots\}$ of $\{x_n\}$.

Partial converse.

Theorem

Let $M = \mathbb{R}^n$ with the Eucliean metric, and suppose that $\{x_n\}$ is a Cauchy sequence in M.

Then $\{x_n\}$ converges.

Proof.

Consider the range $X = \{x_1, x_2, \dots\}$ of $\{x_n\}$.

Since $\{x_n\}$ is Cauchy, X is bounded.

Partial converse.

Theorem

Let $M = \mathbb{R}^n$ with the Eucliean metric, and suppose that $\{x_n\}$ is a Cauchy sequence in M.

Then $\{x_n\}$ converges.

Proof.

Consider the range $X = \{x_1, x_2, \dots\}$ of $\{x_n\}$.

Since $\{x_n\}$ is Cauchy, X is bounded.

We consider two cases:

Partial converse.

Theorem

Let $M = \mathbb{R}^n$ with the Eucliean metric, and suppose that $\{x_n\}$ is a Cauchy sequence in M.

Then $\{x_n\}$ converges.

Proof.

Consider the range $X = \{x_1, x_2, \dots\}$ of $\{x_n\}$.

Since $\{x_n\}$ is Cauchy, X is bounded.

We consider two cases:

when X is finite

Partial converse.

Theorem

Let $M = \mathbb{R}^n$ with the Eucliean metric, and suppose that $\{x_n\}$ is a Cauchy sequence in M.

Then $\{x_n\}$ converges.

Proof.

Consider the range $X = \{x_1, x_2, \dots\}$ of $\{x_n\}$.

Since $\{x_n\}$ is Cauchy, X is bounded.

We consider two cases:

- when X is finite
- when X is infinite

Proof.

Case I: Assume *X* is finite.

Proof.

Case I: Assume *X* is finite.

Then

$$\{d(x,y): x,y\in X,\ x\neq y\}$$

is a finite set of positive values.

Proof.

Case I: Assume *X* is finite.

Then

$$\{d(x,y): x,y\in X,\ x\neq y\}$$

is a finite set of positive values.

Therefore it has a minimum $\epsilon > 0$.

Proof.

Case I: Assume *X* is finite.

Then

$$\{d(x,y):x,y\in X,\ x\neq y\}$$

is a finite set of positive values.

Therefore it has a minimum $\epsilon > 0$.

Since $\{x_n\}$ is Cauchy, there exists $N \in \mathbb{Z}_+$ with $d(x_m, x_n) < \epsilon$ for all m, n > N.

Proof.

Case I: Assume X is finite.

Then

$$\{d(x,y):x,y\in X,\ x\neq y\}$$

is a finite set of positive values.

Therefore it has a minimum $\epsilon > 0$.

Since $\{x_n\}$ is Cauchy, there exists $N \in \mathbb{Z}_+$ with $d(x_m, x_n) < \epsilon$ for all $m, n \ge N$.

This implies $x_n = x_N$ for all $n \ge N$.

Proof.

Case I: Assume *X* is finite.

Then

$$\{d(x,y):x,y\in X,\ x\neq y\}$$

is a finite set of positive values.

Therefore it has a minimum $\epsilon > 0$.

Since $\{x_n\}$ is Cauchy, there exists $N \in \mathbb{Z}_+$ with $d(x_m, x_n) < \epsilon$ for all m, n > N.

This implies $x_n = x_N$ for all $n \ge N$.

Hence $\lim_{n\to\infty} x_n = x_N$.

Proof.

Case II: Assume *X* is infinite.

Proof.

Case II: Assume *X* is infinite.

Then by the Bolzano-Weierstrass Theorem, X has an accumulation point $L \in M$.

Proof.

Case II: Assume *X* is infinite.

Then by the Bolzano-Weierstrass Theorem, X has an accumulation point $L \in M$.

Let $\epsilon > 0$.

Proof.

Case II: Assume *X* is infinite.

Then by the Bolzano-Weierstrass Theorem, X has an accumulation point $L \in M$.

Let $\epsilon > 0$.

Since $\{x_n\}$ is Cauchy, we can choose $N \in \mathbb{Z}_+$ with $d(x_m, x_n) < \epsilon/2$ for all $m, n \ge N$.

Proof.

Case II: Assume *X* is infinite.

Then by the Bolzano-Weierstrass Theorem, X has an accumulation point $L \in M$.

Let $\epsilon > 0$.

Since $\{x_n\}$ is Cauchy, we can choose $N \in \mathbb{Z}_+$ with $d(x_m, x_n) < \epsilon/2$ for all $m, n \ge N$.

Moreover, the ball $B(L, \epsilon/2)$ contains infinitely many points of X, so we can choose $\ell \geq N$ with $x_{\ell} \in B(L, \epsilon/2)$.

Proof.

Case II: Assume *X* is infinite.

Then by the Bolzano-Weierstrass Theorem, X has an accumulation point $L \in M$.

Let $\epsilon > 0$.

Since $\{x_n\}$ is Cauchy, we can choose $N \in \mathbb{Z}_+$ with $d(x_m, x_n) < \epsilon/2$ for all $m, n \ge N$.

Moreover, the ball $B(L, \epsilon/2)$ contains infinitely many points of X, so we can choose $\ell \geq N$ with $x_{\ell} \in B(L, \epsilon/2)$.

It follows that for all $n \ge N$,

$$d(x_n, L) \leq d(x_n, x_\ell) + d(x_\ell, L) \leq \epsilon/2 + \epsilon/2 = \epsilon.$$

Proof.

Case II: Assume *X* is infinite.

Then by the Bolzano-Weierstrass Theorem, X has an accumulation point $L \in M$.

Let $\epsilon > 0$.

Since $\{x_n\}$ is Cauchy, we can choose $N \in \mathbb{Z}_+$ with $d(x_m, x_n) < \epsilon/2$ for all $m, n \ge N$.

Moreover, the ball $B(L, \epsilon/2)$ contains infinitely many points of X, so we can choose $\ell \geq N$ with $x_{\ell} \in B(L, \epsilon/2)$.

It follows that for all $n \ge N$,

$$d(x_n, L) \le d(x_n, x_\ell) + d(x_\ell, L) \le \epsilon/2 + \epsilon/2 = \epsilon.$$

Since $\epsilon > 0$ was arbitrary, this proves $\{x_n\}$ converges to L.

Consider the metric space $M = \mathbb{Q}$ with the Euclidean metric d.

Consider the metric space $M = \mathbb{Q}$ with the Euclidean metric d. Consider the sequence $\{x_n\}$ defined by $x_1 = 1$ and

$$x_{n+1} = x_n - \frac{x_n^2 - 2}{2x_n}, \quad n \ge 1.$$

Consider the metric space $M = \mathbb{Q}$ with the Euclidean metric d. Consider the sequence $\{x_n\}$ defined by $x_1 = 1$ and

$$x_{n+1} = x_n - \frac{x_n^2 - 2}{2x_n}, \quad n \ge 1.$$

$$x_1 = 1$$
, $x_2 = \frac{3}{2}$, $x_3 = \frac{17}{12}$,...

Consider the metric space $M = \mathbb{Q}$ with the Euclidean metric d. Consider the sequence $\{x_n\}$ defined by $x_1 = 1$ and

$$x_{n+1} = x_n - \frac{x_n^2 - 2}{2x_n}, \quad n \ge 1.$$

$$x_1 = 1, \quad x_2 = \frac{3}{2}, \quad x_3 = \frac{17}{12}, \dots$$

• *tries* to converge to $\sqrt{2}$

Consider the metric space $M = \mathbb{Q}$ with the Euclidean metric d. Consider the sequence $\{x_n\}$ defined by $x_1 = 1$ and

$$x_{n+1} = x_n - \frac{x_n^2 - 2}{2x_n}, \quad n \ge 1.$$

$$x_1 = 1, \quad x_2 = \frac{3}{2}, \quad x_3 = \frac{17}{12}, \dots$$

- *tries* to converge to $\sqrt{2}$
- however $\sqrt{2} \notin M$, so it doesn't converge!

Consider the metric space $M = \mathbb{Q}$ with the Euclidean metric d. Consider the sequence $\{x_n\}$ defined by $x_1 = 1$ and

$$x_{n+1} = x_n - \frac{x_n^2 - 2}{2x_n}, \quad n \ge 1.$$

$$x_1 = 1$$
, $x_2 = \frac{3}{2}$, $x_3 = \frac{17}{12}$,...

- *tries* to converge to $\sqrt{2}$
- however $\sqrt{2} \notin M$, so it doesn't converge!
- somehow M is "missing" some points

Definition

A metric space (M, d) is called **complete** if every Cauchy sequence in M converges.

Definition

A metric space (M, d) is called **complete** if every Cauchy sequence in M converges.

A subset $S \subseteq M$ is called **complete** if the subspace (S, d) is a complete metric space.

Definition

A metric space (M, d) is called **complete** if every Cauchy sequence in M converges.

A subset $S \subseteq M$ is called **complete** if the subspace (S, d) is a complete metric space.

• \mathbb{R}^n with the Euclidean metric is complete

Definition

A metric space (M, d) is called **complete** if every Cauchy sequence in M converges.

A subset $S \subseteq M$ is called **complete** if the subspace (S, d) is a complete metric space.

- \mathbb{R}^n with the Euclidean metric is complete
- [0, 1] with the Euclidean metric is complete

Definition

A metric space (M, d) is called **complete** if every Cauchy sequence in M converges.

A subset $S \subseteq M$ is called **complete** if the subspace (S, d) is a complete metric space.

- \mathbb{R}^n with the Euclidean metric is complete
- [0, 1] with the Euclidean metric is complete
- (0, 1) with the Euclidean metric is not complete

Challenge!

Problem

Show that the interval $(0,1)\subseteq\mathbb{R}$ with the Euclidean metric is not a complete metric space.

Theorem

Let (M, d) be a metric space.

Theorem

Let (M, d) be a metric space. Then for any compact subset $S \subseteq M$, the subspace (S, d) is complete.

Theorem

Let (M, d) be a metric space. Then for any compact subset $S \subseteq M$, the subspace (S, d) is complete.

Proof.

Theorem

Let (M, d) be a metric space. Then for any compact subset $S \subseteq M$, the subspace (S, d) is complete.

Proof.

Let (M, d) be a metric space and $S \subseteq M$ compact.

Theorem

Let (M, d) be a metric space. Then for any compact subset $S \subseteq M$, the subspace (S, d) is complete.

Proof.

Let (M, d) be a metric space and $S \subseteq M$ compact. To show that (S, d) is complete, we must show that every Cauchy sequence in S converges to a value in S.

Theorem

Let (M, d) be a metric space. Then for any compact subset $S \subseteq M$, the subspace (S, d) is complete.

Proof.

Let (M, d) be a metric space and $S \subseteq M$ compact. To show that (S, d) is complete, we must show that every Cauchy sequence in S converges to a value in S. Suppose that $\{x_n\}$ is a Cauchy sequence in (S, d).

Theorem

Let (M, d) be a metric space. Then for any compact subset $S \subseteq M$, the subspace (S, d) is complete.

Proof.

Let (M, d) be a metric space and $S \subseteq M$ compact. To show that (S, d) is complete, we must show that every Cauchy sequence in S converges to a value in S. Suppose that $\{x_n\}$ is a Cauchy sequence in (S, d). If the set X of all values of $\{x_n\}$ is finite, then the Cauchy condition implies $\{x_n\}$ converges.

Theorem

Let (M, d) be a metric space. Then for any compact subset $S \subseteq M$, the subspace (S, d) is complete.

Proof.

Let (M, d) be a metric space and $S \subseteq M$ compact. To show that (S, d) is complete, we must show that every Cauchy sequence in S converges to a value in S. Suppose that $\{x_n\}$ is a Cauchy sequence in (S, d). If the set X of all values of $\{x_n\}$ is finite, then the Cauchy condition implies $\{x_n\}$ converges. Assume instead X is infinite.

Theorem

Let (M, d) be a metric space. Then for any compact subset $S \subseteq M$, the subspace (S, d) is complete.

Proof.

Let (M, d) be a metric space and $S \subseteq M$ compact.

To show that (S, d) is complete, we must show that every Cauchy sequence in S converges to a value in S.

Suppose that $\{x_n\}$ is a Cauchy sequence in (S, d).

If the set X of all values of $\{x_n\}$ is finite, then the Cauchy condition implies $\{x_n\}$ converges.

Assume instead X is infinite.

TIME OUT!

Lemma

Let (M, d) be a metric space and let $S \subseteq M$ be compact.

Lemma

Let (M, d) be a metric space and let $S \subseteq M$ be compact. Then for any infinite subset $X \subseteq S$, the set S has an accumulation point of X.

Lemma

Let (M, d) be a metric space and let $S \subseteq M$ be compact. Then for any infinite subset $X \subseteq S$, the set S has an accumulation point of X.

Proof.

Lemma

Let (M, d) be a metric space and let $S \subseteq M$ be compact. Then for any infinite subset $X \subseteq S$, the set S has an accumulation point of X.

Proof.

To see this, suppose otherwise.

Lemma

Let (M, d) be a metric space and let $S \subseteq M$ be compact. Then for any infinite subset $X \subseteq S$, the set S has an accumulation point of X.

Proof.

To see this, suppose otherwise.

Then for all $x \in S$, there exists $r_x > 0$ such that $B_S(x, r_x) \cap X$ is empty if $x \notin X$ or equal to $\{x\}$ if $x \in X$.

Lemma

Let (M, d) be a metric space and let $S \subseteq M$ be compact. Then for any infinite subset $X \subseteq S$, the set S has an accumulation point of X.

Proof.

To see this, suppose otherwise.

Then for all $x \in S$, there exists $r_x > 0$ such that $B_S(x, r_x) \cap X$ is empty if $x \notin X$ or equal to $\{x\}$ if $x \in X$.

The open cover $\{U_i : i \in I\}$ with I = S and $U_i = B_S(i; r_i)$ of S has no finite subcover.

Lemma

Let (M, d) be a metric space and let $S \subseteq M$ be compact. Then for any infinite subset $X \subseteq S$, the set S has an accumulation point of X.

Proof.

To see this, suppose otherwise.

Then for all $x \in S$, there exists $r_x > 0$ such that $B_S(x, r_x) \cap X$ is empty if $x \notin X$ or equal to $\{x\}$ if $x \in X$.

The open cover $\{U_i : i \in I\}$ with I = S and $U_i = B_S(i; r_i)$ of S has no finite subcover.

This is a contradiction, so S has an accumulation point of X.

Theorem

Let (M, d) be a metric space. Then for any compact subset $S \subseteq M$, the subspace (S, d) is complete.

Proof.

Theorem

Let (M, d) be a metric space. Then for any compact subset $S \subseteq M$, the subspace (S, d) is complete.

Proof.

Let *L* be an accumulation point of *X* in *S*.

Theorem

Let (M, d) be a metric space. Then for any compact subset $S \subseteq M$, the subspace (S, d) is complete.

Proof.

Let *L* be an accumulation point of *X* in *S*. Let $\epsilon > 0$.

Joge

Theorem

Let (M, d) be a metric space. Then for any compact subset $S \subseteq M$, the subspace (S, d) is complete.

Proof.

Let L be an accumulation point of X in S.

Let $\epsilon > 0$.

Then $\exists N > 0$ such that $m, n \ge N$ implies $d(x_m, x_n) < \epsilon/2$.

Theorem

Let (M, d) be a metric space. Then for any compact subset $S \subseteq M$, the subspace (S, d) is complete.

Proof.

Let L be an accumulation point of X in S.

Let $\epsilon > 0$.

Then $\exists N > 0$ such that $m, n \geq N$ implies $d(x_m, x_n) < \epsilon/2$.

Moreover, $B_S(L, \epsilon/2)$ contains infinitely many points of X.

Theorem

Let (M, d) be a metric space. Then for any compact subset $S \subseteq M$, the subspace (S, d) is complete.

Proof.

Let L be an accumulation point of X in S.

Let $\epsilon > 0$.

Then $\exists N > 0$ such that $m, n \ge N$ implies $d(x_m, x_n) < \epsilon/2$.

Moreover, $B_S(L, \epsilon/2)$ contains infinitely many points of X.

Hence it contains x_m for some $m \ge N$.

Theorem

Let (M, d) be a metric space. Then for any compact subset $S \subseteq M$, the subspace (S, d) is complete.

Proof.

Let L be an accumulation point of X in S.

Let $\epsilon > 0$.

Then $\exists N > 0$ such that $m, n \ge N$ implies $d(x_m, x_n) < \epsilon/2$.

Moreover, $B_S(L, \epsilon/2)$ contains infinitely many points of X.

Hence it contains x_m for some $m \ge N$.

It follows that for all $n \ge N$,

$$d(x_n, L) \le d(x_n, x_m) + d(x_m, L) < \epsilon/2 + \epsilon/2 = \epsilon.$$

Theorem

Let (M, d) be a metric space. Then for any compact subset $S \subseteq M$, the subspace (S, d) is complete.

Proof.

Let L be an accumulation point of X in S.

Let $\epsilon > 0$.

Then $\exists N > 0$ such that $m, n \geq N$ implies $d(x_m, x_n) < \epsilon/2$.

Moreover, $B_S(L, \epsilon/2)$ contains infinitely many points of X.

Hence it contains x_m for some $m \ge N$.

It follows that for all $n \geq N$,

$$d(x_n, L) \le d(x_n, x_m) + d(x_m, L) < \epsilon/2 + \epsilon/2 = \epsilon.$$

Since $\epsilon > 0$ was arbitrary, this proves $\{x_n\}$ converges to L.

Outline

- Real Analysis Lecture 14
 - Cauchy sequences
 - Limit of a function

Let (S, d_S) and (T, d_T) be metric spaces and $A \subseteq S$.

Let (S, d_S) and (T, d_T) be metric spaces and $A \subseteq S$. Also, let $f : A \to T$ be a function.

Let (S, d_S) and (T, d_T) be metric spaces and $A \subseteq S$. Also, let $f: A \to T$ be a function.

Definition

Let (S, d_S) and (T, d_T) be metric spaces and $A \subseteq S$. Also, let $f: A \to T$ be a function.

Definition

Then for any accumulation point p of A and element $L \in T$, we say that the **limit as** x **approaches** p **of** f(x) **is** L

Let (S, d_S) and (T, d_T) be metric spaces and $A \subseteq S$. Also, let $f : A \to T$ be a function.

Definition

Then for any accumulation point p of A and element $L \in T$, we say that the **limit as** x **approaches** p **of** f(x) **is** L and write

$$\lim_{x\to p}f(x)=L$$

Let (S, d_S) and (T, d_T) be metric spaces and $A \subseteq S$. Also, let $f : A \to T$ be a function.

Definition

Then for any accumulation point p of A and element $L \in T$, we say that the **limit as** x **approaches** p **of** f(x) **is** L and write

$$\lim_{x\to p} f(x) = L$$

if for all $\epsilon > 0$ there exists $\delta > 0$ such that

$$0 < d_S(x, p) < \delta \Rightarrow d_T(f(x), L) < \epsilon$$
.

Theorem

Theorem

Let (S, d_S) and (T, d_T) be metric spaces, $A \subseteq S$, and $f : A \to T$ be a function.

Theorem

Let (S, d_S) and (T, d_T) be metric spaces, $A \subseteq S$, and $f : A \to T$ be a function. Then

$$\lim_{x\to a} f(x) = L$$

Theorem

Let (S, d_S) and (T, d_T) be metric spaces, $A \subseteq S$, and $f : A \to T$ be a function. Then

$$\lim_{x\to a} f(x) = L$$

if and only if

$$\lim_{n\to\infty} f(x_n) = L$$

for all sequences $\{x_n\}$ of values in $A\setminus\{a\}$ which converge to a.