Algoritmusok és adatszerkezetek 2

2015/16 tavaszi félév

Előadó: Dr. Ásványi Tibor

Készítették:

Koruhely Gábor (Koru)

Szalay Richárd (Whisperity)

Lektorálta:

Dr. Ásványi Tibor

Frissítve: 2016. 06. 18.

első blokk: 10:15 - 11:00 szünet: 11:00 - 11:15 második blokk: 11:15 - 12:00

Rendezés lineáris időben

Edényrendezés (bucket sort)

Tételezzük fel, hogy a kulcsok: [0,1) intervallumba esnek és egyenletesen oszlanak el. Példa számok: 0,32; 0,81; 0,89; 0,17; 0,53 (n = 5) a "k" kulcsot |k * n| edénybe tesszük

0.edény: 0,17 1.edény: 0,32 2.edény: 0,53 3.edény:

4.edény: 0,81; 0,89

az eredmény: 0,17; 0,32; 0,53; 0,81; 0,89

azonban hiába mehet n²-ig a műveletigény, a legtöbb esetben (a legtöbb inputra) marad az átlagos n-es műveletigény

Leszámláló rendezés (Counting sort)

Most tegyük fel, hogy a kulcsok [0..k]-ba esnek, $k \in O(n)$ (azaz k legfeljebb n-nel lineáris)

most már a bal szélső számjegy szerint is rendezett a tömb; a többi számjegy szerinti, most már másodlagos rendezettséget megtartotta.

Radix (számjegypozíciós) rendezés

Stabil rendezés: amely az elemeknek, egyenlő kulcsok esetén, az egymáshoz viszonyított sorrendjét nem változtatja meg (pl Counting_sort ilyen).

$$T_{\text{radix}} \in \Theta \left(d * T_{\text{stabil}}(n) \right) \\ T_{\text{counting}}(n,k) \in \Theta(n+k)$$

$$T_{\text{Radix rendez\'es t\"omb\"okre}} \in \Theta \left(d * (n+k) \right) = \Theta(n) \\ \text{ha d konstans \'es } k \in O(n) \text{ volt}$$

$$\begin{aligned} \mathbf{T}_{radix/ed\acute{e}nyrendez\acute{e}s}(\mathbf{n},\mathbf{k}) \in \Theta(\mathbf{d}*(\mathbf{n}+\mathbf{k})) &= \Theta(\mathbf{n}) \\ & \uparrow \\ & \mathsf{ha} \; \mathsf{d} \; \mathsf{konstans} \; \acute{e}s \; k \in \mathrm{O}(n) \end{aligned}$$

tárgy követelményei:

- Legalább elégséges gyakorlati jegy kell a vizsgázáshoz,
- vizsga
- 3szor lehet maximum vizsgázni egy vizsgaidőszakban,
- vizsga ugyanolyan felépítésű, mint előző félévben az algo 1

tematika:

- A tárgy honlapján megtalálható a tárgy tematikája: http://aszt.inf.elte.hu/~asvanyi/ad/ad2programok.pdf
- 8tétel
- nem összehasonlító rendezésekről lesz szó.
- hasítótáblák
- gráf algók
 - o legrövidebb út
 - o minimális feszítőfa
- veszteségmentes tömörítés
- mintaillesztés

Hasítótáblák (Hash tables)

Hasonlóan a kiegyensúlyozott fákhoz cél lenne a 3 alapművelet (keresés, beszúrás, törlés) optimálisan fusson le.

• átlagos esetben $\Theta(1)$, legrosszabb esetben $\Theta(n)$.

<u>Direkt – címzés (Direct addressing):</u>

a lehetséges kulcsok az $U = \{0,...,m-1\}$ (m nem túl nagy pozitív egész) univerzumba esnek műveletei: beszúr; keres; töröl

A tárigény miatt problémás a módszer, pl. ha a személyi szám szerint így tárolnánk a magyarokat, akkor a <10millió embernek 75 millió hely kellene, nagyon sok az üres hely.

h: kulcsuniverzumból résekre (slotokra) képez le.

(n a tárolt adatok száma)

$$(|U| \gg m /* \gg := sokkal nagyobb*/), (m \in O(n))$$

A baj az, hogy hiába tesszük a hash szerinti helyre a kulcsokat, előbb, utóbb lesz két külön kulcs, aminél h(k) = h(k'). Ekkor kulcsütközés következik be, ez célszerűen láncolt listával elkerülhető.

Láncolt listás esetben viszont $MT_{keres}(n) \in \Theta(n)$; $mT_{keres}(n) \in \Theta(1)$; $AT_{keres}(n) \in \Theta(1+\alpha)$, a törlés műveletigénye ugyanaz, mint a keres egyes eseteiben.

a minimális akkor lehet, ha a réshez tartozó lista első elemét keressük, vagy a lista üres.

a listák átlagos hossza a hashtábla kitöltöttségi hányadosa, $\alpha = \frac{n}{m}$

Ha nem ellenőrizzük az esetleges duplikált kulcsokat, a beszúrás igénye $\Theta(1)$. Ha nem engedjük meg a duplikált kulcsokat, ugyanaz, mint a keresés-nél.

<u>Egyszerű egyenletes hasítás:</u> minden slotra ugyanakkora a h leképezési valószínűsége. Ilyen hash-ek megadhatók, de elég komoly matematika van mögötte.

Osztómódszer: $h(k) = k \mod m$, ahol m olyan prím amely messze van a 2-hatványoktól Ha a kulcsok a [0,1) intervallumon egyenletesen oszlanak el, akkor a $h(k) = \lfloor k * m \rfloor$ is jó hashfüggvény

Szorzómódszer:

$$0 < A < 1$$
 konstans
 $h(k) = \lfloor \{k * A\} * m \rfloor$ ($\{x\}$ a törtrész fgv.)

(különböző vizsgálatok szerint A = $\frac{(\sqrt{5}-1)}{2} \approx 0,618$ jól szórja szét a kulcsokat.

Ezt a kiszámítást azonban nehéz elvégezni a lebegőpontos aritmetika miatt.

 $m = 2^p$ a hashtábla mérete

w = 32

 $k \in 0 ... 2^{w} - 1$; legyen, 0

A kulcsütközések feloldására a láncolt lista helyett vannak más módszerek is.

Nyílt címzés:

Most az egyszerűség kedvéért nem ellenőrizzük a duplikált kulcsokat. h: $U \times [0 \dots m-1] \rightarrow [0 \dots m-1]$ k kulcshoz m darab hash-érték fog tartozni: <h(k,0); h(k,1); ... h(k,m-1)>← próbasorozat A műveletek a próbasorozaton mennek végig:

szabad Pl: beszúrásnál ha h(k,0)-hoz van foglalt elem akkor h(k,1)-re szúr be, feltéve ha az már üres vagy törölt

ahol: ⊘: üres rés ⊗: törölt rés

 $\emptyset \in \mathbb{Z} \setminus [0..m-1]$

fv.Töröl(T[0..m-1],k) := Keres(T,k) $i \neq \emptyset$ $T[i] := \bigotimes$ return(j) (⊗ a törölt rés)

fv.Keres(T[0..m-1],k)

Feltesszük, hogy ⊘.kulcs, ⊗.kulcs ∉ U

 $k \in U$

A próbasorozatnak a <0,1,...,m-1> permutáltjának kell lennie A próbasorozatok egyik előállítási módja pl. a lineáris próbálás: $h(k,i) = (h'(k) + i) \mod m$

Hasítótáblák

Hasítótáblák tulajdonságai:

- egy szótárt valósítanak meg
- kulcs alapján lehet benne keresni
- törölni is lehet benne
- átlagos műveleti igény konstans

a tábla (ism.):

egy tömbnek lehet tekinteni; 0..m-1-ig indexelve van speciálisan a nyílt címzésnél az adatokat slot-okban tároljuk; megkülönböztetjük a törölt (⊗) illetve az üres (♦) slotokat

sikertelen a keresés, ha üres slothoz ér, vagy ha túl sokat próbálkozik (m db próba után megáll)

valójában nem egy hash függvény van, hanem m db hash függvény van

feltehetjük, hogy van m db hash függvény
h:
$$(.,i): U \rightarrow 0..m-1 (i \in 0..m-1)$$

 $\langle h(k,0), ..., h(k,m-1) \rangle$ perm $\langle 0, ..., m-1 \rangle$

lineáris próba:

$$h(k,i) = (h'(k) + i) \mod m$$

négyzetes próba: $h(k,i) = (h'(k) + c_1 * i + c_2 * i^2) \mod m$ /*ahol h'(k) = h(k,0)*/

elsődleges csomósodások.

Tipikusan foglalt rések hosszú összefüggő szakaszain alakulnak ki T[0..m-1]-ben

$$i \neq j: (h(k,i) - h(k,j)) \mod m = \left[\frac{i*(i+1)}{2} - \frac{j*(j+1)}{2}\right] (\mod m) \neq 0 \Leftrightarrow \\ 2m \nmid i*(i+1) - j*(j+1) = i^2 + i - j^2 - j = i^2 - j^2 + (i-j) = (i-j)(i+j+1)$$

 $2^{p+1} \nmid (i-j)(i+j+1)$ ezek párossága különbözik

a)
$$2 | (i - j) \Rightarrow 2 \nmid (i + j + 1)$$

de
$$2m \nmid (i - j)$$
 hiszen $i - j < 2m-1$

b)
$$2 | (i + j + 1) \Rightarrow 2 \nmid (i - j)$$

de
$$2m \nmid (i + j + 1)$$
-nek, mivel $(i + j + 1) < 2m - 1$

azaz 2-hatvány tábla esetén a négyzetes próba szépen lefedi az egész táblát

$$\left(h(k, i+1) - h(k, i)\right) \bmod m = \left[\frac{(i+1)*(i+2)}{2} - \frac{i*(i+1)}{2}\right] \bmod m = (i+1) \bmod m$$

azaz: $h(k, i + 1) = (h(k, i) + (i + 1)) \mod m$ és h(k,0) = h'(k)

feltesszük: törölt(⊗) slot kulcsa és az üres(⊘) slot kulcsa nem eleme az U-nak

nyílt címzés, négyzetes próba és ⊘.kulcs és ⊗.kulcs ∉ kulcsuniverzum az általános négyzetes próbánál (ahol c_1 és c_2 tetszőleges) ha $h(k_1, 0) = \overline{h(k_2, 0)}$, akkor $\forall i - re \overline{h(k_1, i)} \neq h(k_2, i)$

Másodlagos csomósodás

 $j := (j + i) \mod m$ return -1 Megjegyzés: ha T[j] NIL, akkor T[j].kulcs olyan extremális érték, amely bármilyen

fv.keres(T[0..m-1], k)

T[i].kulcs = k

 $b := T[i] \neq \emptyset$ és i < m

i := h'(k); i := 0;

return j

i := i + 1

Tehát csak m különböző próbasorozat van a lehetséges m! közül, így a (másodlagos) csomósodás fellép, de ez jobb, mint a lineáris próba elsődleges csomósodása, ahol a sorozatok menet közben gabalyodhatnak össze...

b:= true

Kettős hasítás

$$h(k,i) = [h_1(k) + i * h_2(k)] \mod m$$

a próbasorozatok száma itt már $\Theta(n^2)$ szemben $\Theta(n)$ -nel.

ez – tapasztalat alapján – már majdnem ideális tud lenni

ha $lnko(h_2(k), m) = 1 \Rightarrow \langle h(k,0), ..., h(k,m-1) \rangle perm \langle 0, ..., m-1 \rangle -nak$

hiszen $i \neq j \Rightarrow (h(k,i) - h(k,j) \mod m \neq 0$

 $0 \neq (h(k,i) - h(k,j)) \mod m \iff (i - j) * h_2(k) \mod m \neq 0$

 \Leftrightarrow m \nmid (i – j) * h₂(k) mivel |i – j| < m, h₂(k) pedig relatív prím (ez feltétel volt, hogy lehet biztosítani, hogy a h₂(k) és az m relatív prímek legyenek).

a) m legyen prím, akkor $h_1(k) := k \mod m$

$$h_2(k)=1 + (k \mod m')$$
 ahol: $m'=m-1 \vee m'=m-2$ például, azaz m-nél picit kisebb

b) $m = 2^p \text{ és } 2 \nmid h_2(k)$

Hashelés Ideális esete: Egyenletes hasítás

ideális lenne, ha <0..m-1> összes permutáció azonos valószínűséggel fordulna elő

0 < α telítettségi együttható < 1 esetén

sikertelen keresés várható hossza $\leq \frac{1}{1-\alpha}$

beszúrás várható hossza $\leq \frac{1}{1-\alpha}$

Feltéve, hogy nincs a hasító táblában törölt rés (slot).

sikeres keresés várható hossza $\leq \frac{1}{\alpha} * \ln \left(\frac{1}{1-\alpha} \right)$ at használjuk a hashtáblát. akkor folkulató negelelet (m. 1998). Ha sokat használjuk a hashtáblát, akkor feltöredezik, elfogynak az üres slotok, ekkor frissítést kell végrehajtani: beszúrásokkal új táblát létrehozni a mostani elemekből.

Gráf algoritmusok

Szomszédosági mátrix (C)

$$G = (V,E) E \subseteq V \times V$$

$$V = 1..n$$

$$C[i,j] = \begin{cases} C[1..n,1..n] \\ 1 \iff (i,j) \in E \\ 0 \iff (i,j) \notin E \end{cases}$$

ha számít az él költsége

$$w: E \rightarrow \mathbb{R}$$

 $(i \neq j)$

$$C[i,j] = \underbrace{ \begin{cases} w(i,j) \Leftrightarrow (i,j) \in E \\ 0 \Leftrightarrow i = j \\ +\infty \text{ k\"ul\"onben} \end{cases}}$$

Azonban a mátrix tárolás miatt a műveletigény $\Theta(n^2)$, ami az irányítatlan esetben a szimmetria kihasználásával javítható (majdnem felezhető), de $\Theta(n^2)$ marad (csak alsó háromszög mátrixot tároljuk).

Szomszédsági éllistás reprezentáció:

Memóriaigény n csúcs és e él esetén: $\Theta(n + e)$

Elemi gráf algoritmusok

Szélességi keresés

Meghatározzuk a start csúcsból a további csúcsokba a legkevesebb élet tartalmazó utat.

- d hány élen keresztül jutunk a csúcsba
- π melyik csúcsból jutunk a csúcsba

f-ből indítva, másik szemléltetési móddal:

$Q = \langle b \rangle$

- 1. lépés: Q= <c, d, e> /*b szomszédai*/
- 2. lépés: Q= <d, e> /*c rákövetkezője e, de ott már voltunk*/
- 3. lépés: Q= <e, a> /*,,a" d szomszédjai*/
- 4. lépés: Q= <a>/*e szomszédja csak a d, de ott már voltunk*/
- 5. lépés: Q=<>/*a sor kiürült, a bejárás véget ért

d	a	b	c	d	e	f	Q	π	a	b	c	d	e	f
	∞	∞	∞	∞	∞	0	<f></f>		Ø	Ø	Ø	Ø	Ø	Ø
f			1		1		<c, e=""></c,>				f		f	
c							<e></e>							
e				2			<d></d>					e		
d	3						<a>		d					
a		4								a				
b	3	4	1	2	1	0	<>		d	a	f	e	f	Ø

Az irányított gráfon a "szomszédsági" kapcsolat nem szimmetrikus.

A fenti gráfban pl.: a szomszédja b, de b-nek nem szomszédja a.

Jelölés:

Ha $G = (V, E), E \subseteq V \times V$ gráf,

G.V a G csúcsainak halmaza

G.E a G éleinek halmaza

u ∈ G.V esetén

G.Adj[u] $\stackrel{\text{def}}{=}$ { $v \in G.V \mid (u, v) \in G.E$ }

Feltesszük, hogy $(u, u) \notin G$. E, azaz nincs hurokél.

Feltesszük, hogy nincsenek párhuzamos élek sem.

G egyszerű gráf

BFS műveletigénye: $T(n, e) \in O(n + e)$, ahol n = |V| és e = |E| mindent legfeljebb egyszer dolgozunk fel, de előfordulhat, hogy néhány csúcs kimarad (a start csúcsból nem elérhető csúcsok és élek maradnak ki.).

DFS (Mélységi keresés)

u.d = elérési idő (discovery time) u.f = befejezési idő (finishing time)

$DFS_VISIT(\&u,G,\&ido)$ ido := ido + 1 u.d := ido u.szín := szürke $\forall v \in G.Adj[u]$ v.szín = fehér $v.\pi := u$ $DFS_VISIT(v,G,ido)$ v.szín = szürke v.szín = szürke v.szín := fekete ido := ido + 1 u.f := ido

Mélységi bejárás példa:

Ha az él már fekete csúcsba mutat, keresztélet vagy előreélet találtunk.

Élek osztályozása

Def:

a → b faél: ez kerül a mélységi fába, e mentén járjuk be a gráfot

 $f \leftarrow g$ visszaél (f a g őse egy mélységi fában.)

b → f előreél, az előreél két leszármazottat köt össze, ahol b-ből kettő vagy több faélből álló út vezet f-be.

g → h keresztél, olyan két csúcs, amelyek más ágon vannak vagy másik mélységi fába mutat át

Példa:

Azaz a keresés eredménye egy mélységi erdő

DFS műveletigénye: $T(n,e) = \Theta(n + e)$

minden csúcsot néhányszor (3) és minden élet egyszer.

Tétel:

Ha a ⊛ mélységi bejárás során egy (u,v) élet találunk:

(u,v) faél $\Leftrightarrow v.szín = fehér$

(u,v) visszaél ⇔ v.szín = szürke

(u,v) előreél \Leftrightarrow v.szín = fekete \land u.d < v.d

(u,v) keresztél \Leftrightarrow v.szín = fekete \land u.d > v.d

Irányított gráfok csúcsainak topologikus rendezése

Topologikus rendezés: A csúcsok olyan sorrendje, amelyben minden él egy-egy később jövő csúcsba (szemléletesen: balról jobbra) mutat.

Tétel: Pontosan akkor ∃ topologikus rendezés, ha nincs irányított kör a gráfban. Bizonyítás:

- a) Ha van irányított kör a gráfban, jelölje $\langle u_1, u_2, ..., u_k, u_1 \rangle$! Ekkor egy tetszőleges topologikus rendezésben u_1 után jön valahol u_2 , az után valahol u_3 , és így tovább, végül is u_1 után jön u_k , és u_k után u_1 , ami $\not\sim$, tehát ekkor nincs topologikus rendezés (a gráf csúcsain).
- b) Ha nincs irányított kör a gráfban, akkor nyilván van olyan csúcs, aminek nincs megelőzője.

Ha veszünk egy megelőzővel nem rendelkező csúcsot és töröljük a gráfból, akkor a maradék gráfban nem keletkezik irányított kör, lesz megint legalább egy olyan, amelyiknek nincs megelőzője. Sorban a törölt csúcsok adják a topologikus rendezést.

$$G=(V,Adj[V])$$
 $Adj[u] = \{v \in V | (u,v) \in E\} \subseteq V$

 $\overline{T_{TR}(n)} \in O(n+e).$

Mélységi bejárás:

Mélységi bejárássel:

Mél

A sorrend: <óra, ing, nyakkendő, alsónadrág, zokni, nadrág, öv, kabát, cipő>

Tetszőleges u csúcs, akkor kerül a TR-be, a hátulról első szabad helyre, amikor befejeztük.

Ha a mélységi bejárás visszaélt talál ⇔ irányított kör van a gráfban ⇔ nincs topologikus rendezés.

Erősen összefüggő komponensek

/*Minden csúcsból minden csúcsba vezet irányított út a komponensen belül*/ A gráf erősen összefüggő komponensei:

Előállítás: mélységi bejárással mintha topologikus rendezés lenne, de nem kezeljük a visszaéleket.

A sorozat: <a, b, e, f, g, c, d, h> a csúcsok befejezés szerinti sorrendben.

Transzponáljuk a gráfot, ezen mélységi bejárás a sorrend szerint, az így talált mélységi fák a komponensek.

Minimális feszítőfák

w(u,v) = w(v,u)

Kössünk össze minden várost, hogy minden pontba eljusson az áram, de a lehető legolcsóbban (és még sok más megfogalmazású feladat)

A lényeg minimális feszítőfa keresése.

 $G=(V,E) \qquad E\subseteq V \ x \ V \qquad (u,v)\in E \Leftrightarrow (v,u)\in E \ /^*u\neq v, \ a \ hurokéleknek nincs értelme*/w: E\rightarrow \mathbb{R} \ élsúlyok$

 $GEN_MST(G)$ $A:=\{\}$ s:=0 s < n-1 $(u,v) \text{ legyen olyan \'el a G.E } \land A-b\'ol,$ ami A-hoz biztons'agosan hozz'avehet'o $A:= A \cup \{(u,v)\}$ s:= s+1

azaz A \cup {(u,v)} minimális feszítőfa része marad \underline{P} invariáns = \exists T = (V, T_E) MST, hogy $A \subseteq T_E$

Def1: G=(V,E), $\emptyset \subseteq S \subseteq V$ esetben $(S, V \setminus S)$ vágás a G gráfban

Def2: $A \subseteq E$ és $(S, V \setminus S)$ vágás esetén a vágás elkerüli az A- $t \Leftrightarrow A$ egyetlen éle sem keresztezi a vágást Def3: (u,v) él keresztezi az $(S, V \setminus S)$ vágást \Leftrightarrow az $u \in S$ és $v \in V \setminus S$ (vagy fordítva $u \in V \setminus S$ és $v \in S$)

Tétel: G = (V,E) irányítatlan w: $E \rightarrow \mathbb{R}$ -rel élsúlyozott gráf

 $(S, V \setminus S)$ vágás a gráfban elkerüli A - t, ahol $\exists T = (V, T_E)$ MST, hogy $A \subseteq T_E$

(u, v) ∈ E egy könnyű él (legkisebb költségű) a vágásban

Ekkor (u,v) biztonságos A-ra nézve

Bizonyítás:

a) $(u, v) \in T_E \checkmark$

b) $(u,v) \notin T_E \Rightarrow (p,q) \in T_E$, ami keresztezi az $(S, V \setminus S)$ vágást, ui: T feszítőfa, tehát T-ben el lehet jutni u-ból v-be.

 \Rightarrow w(p,q) \geq w(u,v)

(p,q) törlésével az MST szétesik, de ha ehhez (u,v)-t hozzávesszük, akkor újra feszítőfa lesz.

 $T' = T \setminus \{(p,q)\} \cup \{(u,v)\}$

 $w(T') = w(T) - w(p,q) + w(u,v) \le w(T)$

viszont mivel T MST volt, $w(T') \ge w(T) \implies azaz \ w(T') = w(T)$ és T' is MST kell, hogy legyen...

110_2 EA

Minimális feszítőfa ismétlése példán keresztül

A	S	V\S
Ø	{a, b, d}	{c, e, f}
d-e	{a, b, d, e, f}	{c}
d-e c f	{a}	{b, c, d, e, f}
a-b	{a, b, d, e}	{c, f}
d-e c f		
a-b	{a, b}	{c, d, e, f}
d-e-f 		,

G=(V,E)	
$w: E \rightarrow \mathbb{R}$	
egy vágás:	
S	$V \setminus S$
{a,b,d}	{c,e,f}

egy vágást keresztező él az $E \cap (S \times (V \setminus S))$ egy eleme, ennek a halmaznak a legkisebb súlyú tagja a könnyű él

Az új vágás a két élt kerülje el, ne menjen keresztül rajtuk, majd mindig választjuk a könnyű élt.

Az eddig kiszámolt feszítőfa-részlet (A) élhalmaza diszjunk kell, hogy legyen a vágás éleivel.

Kruskal algoritmus

- Elsőként súly szerint sorba rendezzük a csúcsokat! Minden csúcs egy egyelemű fát képezzen!
- Majd minden lépésben hozzávesszük a minimális élt, ha külön komponenseket kötnek össze (ha nem, kihagyjuk)

0. lépés	1	2	3	4	5	6	7	8	9	végeredmény:
	d 1 e	a²b	e ² f	b 3 e	a 4 d	5/2	c 5 f	b <u>€</u> c	6/0	
abc def	abc d ¹ ef	a^2-b c d^2-e f	$a^2 b c$ $d^1 e^2 f$	a^2b c $ 3$ d^1e^2f	$a^{2}bc$ $ 4 3$ $d^{1}e^{2}f$ kihagyjuk	a2b c 5/3 d1e2f kinggjuk	$a^{2}b c$ 3 5 $d^{1}e^{2}f$	$a^{\frac{2}{b}}b^{\frac{6}{c}}c$ $ 3 5$ $d^{\frac{1}{2}}e^{\frac{2}{5}}f$ kihagyjuk	2 6 c 3/15	@ ² 0 0 @ ¹ 0 ² 0

A komponensek nyilvántartásához menetközben egy másik fát is kezelünk:

						O,			
0	1 (d-e)	2 (a-b)	3 (f-d)	4 (b-e)	5	6	7 (c-f)	8	9
abc def	abc df 1	adc ↑ ↑ bef	adc † † \ be f	a←d c ↑ ↑ [*] b e f	(kihagyjuk)	(kihagyjuk)	a to de	(kihagyjuk)	(kihagyjuk)

A HOL_VAN() megállapítja, a csúcs melyik ilyen köztes fában van, ennek megfelelően az unió később a fákat köti össze. (Mindegyik fát a gyökércsúcsa azonosítja.)

Az új élt úgy vesszük a köztes fához, hogy a fák magassága ne változzon, de a komponenshez tartozás jelezve maradjon. (Az alacsonyabb fa gyökerét a nagyobb fa gyökere alá kötjük be.)

A fák magassága legfeljebb log_2 n (n = |G. V|)

Közös magasság esetén az uniózott fa magassága h+1 lesz (h közös magasság volt)

Prim algoritmus

- Kiindulva egy csúcsból és a (csúcs, maradék) vágás közé választja a minimális élt
- Ezt hozzáveszi az eredményhez és az (eddigi eredmény, maradék) vágásban keresi a könnyű élt
- addig folytatva az előző két lépést, míg Minimális feszítőfát nem kapunk.

meg kell adni, hogy hol kezdi (s), de mindegy, hogy hol kezdi

Lehet, hogy az u hozzávétele után v közelebb kerül a részleges feszítőfához.

Az egész algoritmus műveletigénye: O((n+e)*lg(n)), de a gráf összefüggő $(e \ge n-1)$, azaz O(e*lg(n))

kezdő csúcs: a

1646		kulcs							π						
lépés	a	b	c	d	e	f	a	b	c	d	e	f			
start	0	∞	∞	∞	∞	∞	Ø	Ø	Ø	Ø	Ø	Ø			
a		2		4				a		a					
b	-		6		3				b		b				
e		-		1		2				e		e			
d	-	-			-										
f			5		-				f						
С	nino	es má	r töbl	b lehe	etsége	es szo	mszé	dja							
vége:	0	2	5	1	3	2	Ø	a	f	e	b	e			

^{-:} a szomszéd már korábban belekerült a fába

1: új, jobb távolság prim optimalizációja:

Fibonacci kupacokkal le lehet csökkenteni a műveleti igényt: O(e+n*lg(n))

Az MST, amit kaptunk, irányított faként reprezentált IRÁNYÍTATLAN FA

Legrövidebb út probléma

Adott egy tetszőleges hálózat, amiben az utaknak költségeik vannak, ezt a hálózatot egyszerű gráffal ábrázoljuk.

Negatív költség is lehetséges. Adott pontból az összes többi csúcsba meg szeretnénk határozni a legrövidebb utat a költségekkel, nem biztos, hogy a legkevesebb élből álló út a legrövidebb.

Mikor értelmes a kérdés:

 ha létezik a start csúcsból elérhető negatív kör, nincs legrövidebb út egyetlen a körből elérhető csúcsba sem.

Ha a startcsúcsból csak nem negatív kör érhető el, az az útból elhagyható.

Optimális útnak tetszőleges részútja is optimális út.

Általános algoritmus: (Robert Endre Tarjan: Data Structures and Network Algorithms könyvben: "Breadth-first Scanning" algoritmus)

"Queue-based BELLMAN-FORD" (Sor alapú Bellman-Ford algo)

d	a	b	c	d	Q	π	a	b	c	d	menet
init	0	8	∞	∞	<a>		Ø	Ø	Ø	Ø	Ø
a		3	1		<b,c></b,c>			a	a		0.
b				1	<c,d></c,d>					b	1
c		0			<d,b></d,b>			c			1.
d											2.
b				-2	<d></d>					b	۷.
d					<>						3.
	0	0	1	-2			Ø	С	a	b	

—a sorban levés ellenőrizhető pl. egy adattaggal, mindig bejárni a sort nem lenne hatékony.

Tulajdonság:

 $\forall u \in G.V$, hogy ha az u csúcsba vezet k élből álló s \rightarrow u optimális út \Rightarrow a k. menet elején már u.d = w(s \rightarrow u) és (s, ..., u. π , u. π , u. π , u) egy optimális út

Lemma: s-ből nem érhető el negatív kör (amely összköltsége negatív) ⇒ tetszőleges u elérhető csúcsra létezik s → u optimális út, ami legfeljebb n-1 élből áll.

T(Lemma és Tulajdonság következménye):

Ha s-ből nem érhető el negatív kör

- ⇒ tetszőleges u elérhető (s-ből) csúcsra létezik s → u optimális út, és egy optimális út az n-1. menet elején már rendelkezésünkre áll (ki van számolva).
- ⇒ az n-1. menet végére kiürül a sor, az algoritmus O(n*e) időben megáll.

Következmény: Ha az (n-1). menet végén van a Q sorban elem \Leftrightarrow van s-ből elérhető negatív kör. Megjegyzés: vegyünk egy ilyen w elemet. Ebből a π pointereken visszafele haladva megtalálható egy ismétlődő v elem, amire $\exists \ k \in 1..n$ $\pi^k(v) = v$, és $(v, \pi^{k-1}(v), \pi^{k-2}(v), ..., \pi(v), v)$ egy negatív kör.

Legrövidebb utak egy forrásból, körmentes irányított gráfokon

feltétel: nincs irányított kör, ekkor lehet topologikus rendezéssel optimális utakat keresni.

topologikus rendezés:

				d			π					
	a	b	c	d	e	f	a	b	c	d	e	f
init	∞	0	∞	∞	∞	∞	Ø	Ø	Ø	Ø	Ø	Ø
a												
b			1		-1	2			b		b	b
e				0		1				e		e
f												
d												
c												
vége:	∞	0	1	0	-1	1	Ø	Ø	b	e	b	e

nem történik semmi, el kell jutni a start csúcsba

"a" nem volt elérhető

Műveletigény: Θ(n+e) műveletigény (topologikus rendezés)

 \forall csúcs kiterjesztése (Θ (n+e))

Teljes műveletigénye: Θ(n+e)

Legyen G=(V,E) akár irányított, akár irányítatlan,

w: E $\rightarrow \mathbb{R}_0$ nem negatív valós számok

DIJKSTRA algoritmus

d	a	b	c	d	e	kiterjesztés	π	a	b	c	d	e
init:	0	8	8	8	8			Ø	Ø	Ø	Ø	Ø
		2	4	1		a			a	a	a	
			3			d				d		
			2			b				b		
						С						
						e						
vége:	0	2	2	1	∞			Ø	a	b	a	Ø

 $Q.MINKIVESZ_d(): n* O(lg n)$ alsó index d azt jelenti, hogy a minkivesz a d értékei szerinti Q. HELYREÁLLÍT $_d(v)$: O(e * lg n) szomszédsági éllista + bináris kupac esetén $T(n,e) \in O((n+e)*log n)$

Áll: Amikor a csúcsot kivesszük a sorból, oda már optimális út vezet. Bizonyítás:

start csúcsra √, a költség optimális. Tegyük fel, hogy nem igaz az Állítás! Legyen u az első ilyen csúcs, t pedig az s \rightarrow u optimális út első csúcsa amely \in Q sornak.

u-ra nem igaz, u-t válasszuk kiterjesztésre, ekkor nincs talált optimális út (de attól még létezik)

 $u.d>w(s \overset{opt}{\longrightarrow} u), \ mivel \ egyébként \ megtaláltuk \ volna \ az \ optimális \ utat.$

 $t.d \neq w(s \xrightarrow{opt} t) \leq w(s \rightarrow u) < u.d$

az s→ t optimális út, mivel optimális út részútja.

=: hiszen "t"-t megelőző csúcs kiterjesztésekor beállítottuk, de mivel t.d < u.d, ezért a következő 1épés "t"-t választja kiterjesztésre 2

Minden csúcsból minden csúcsba legrövidebb út minden csúcsra futtatott Dijkstrával:

- ritka gráfra $O(n*(n+e)*log n) = O(n^2*log n)$
- sűrű gráfra O(n³*log n), nem jó választás...
 - ehelyett a vektorpáros Dijkstra stabil O(n³)-öt (n * O(n²)) fut.

(közvetlen út szülője)

Engedjük meg a negatív élsúlyt, de ne lehessen negatív kör.

$$G=(V, E)$$

G:
$$V = 1..n$$

csúcsmátrixos ábrázolás

 $D_{ij} := i \rightarrow j$ optimális út költsége (végtelen, ha nincs optimális út)

$$\pi_{ij}^{} := i \rightarrow j$$
 optimális úton j szülője

 $D_{ii}^{(k)} = az i \rightarrow j$ úton az [1..k] indexű csúcsok lehetnek csak közbenső csúcsok.

$$\min\{w(i \xrightarrow{V|} j)\}$$

 $\min\{w(i \xrightarrow{v|} j)\}$ $\pi_{ij}^{(k)} = \text{egy ilyen } [1..k] \text{ közbensős úton a j csúcsok szülője}$

$$D_{ij}^{(0)} = \overbrace{ \begin{array}{c} 0, \text{ ha } i = j \\ w(i,j), \text{ ha } (i,j) \in G.E \land i \neq j \\ \infty, \text{ ha } i \neq j \land (i,j) \notin G.E \end{array} }$$

$$D_{ij}^{(n)} = D_{ij}$$

$$\pi_{ij}^{(n)} = \, \pi_{ij}$$

ha
$$D_{ij}^{(k-1)} > D_{ik}^{(k-1)} + D_{kj}^{(k-1)}$$
, akkor $D_{ij}^{(k)} = D_{ik}^{(k-1)} + D_{kj}^{(k-1)}$ különben: $D_{ij}^{(k)} = D_{ij}^{(k-1)}$

hasonlóan $\pi_{ij}^{(k)}$ is ha nem tudtuk az utat javítani = $\pi_{ij}^{(k-1)}$

$$\text{ha tudtuk} = \pi_{kj}^{(k-1)}$$

$$D_{ilr}^{(k)} = D_{ilr}^{(k-1)}$$

$$\begin{array}{l} D_{ik}^{(k)} = \ D_{ik}^{(k-1)} \\ D_{ki}^{(k)} = \ D_{ki}^{(k-1)} \end{array}$$

Az algoritmus lépésenként előállítja mátrixpárok sorozatát.

$$D^{(k)} = \left(D_{ij}^{(k)}\right)_{i,j=1}^{n} k = 0,..., \text{ n-ig, n+1 db mátrix.}$$

D és π k-adik sora és oszlopa a (k-1) és k. lépésben egyenlő:

D i.-edik sora: i. csúcsból optimális utak hossza.

 $T_{FW} \in \Theta(n^3)$

Sűrű gráfokon az aszimptotikus műveletigény, mint a Dijkstra, de ritka gráfokon a Dijkstra aszimptotikusan jobb (feltéve hogy ∄ negatív él, és így a Dijkstra is alkalmazható).

Megjegyzés: A negatív körök a D főátlójában negatív számként jelennek meg.

Tranzitív lezárt algoritmus (Warshall algoritmus)

T_{ii}: van-e út i-ből j-be (megállapítja, hogy van-e a két csúcs között út (csak az számít, hogy van-e, hogy milyen költségű az nem számít))

 $T_{ij}^{(k)} \iff i \xrightarrow{\begin{array}{c} k \\ \forall i \end{array}} j \text{ megint csak legfeljebb az 1..k csúcsokat \'{e}rint\"{o}\'{u}t.}$ $, \text{ ha } i = j \ \forall \ (i,j) \in G.E$ $T_{ij}^{(0)} = \begin{cases} TRANZ_LEZ(C) \\ \\ \\ \end{cases}, \text{ k\"{u}l\"{o}nben}$ $\forall (i,i) \in 1..n \times 1..n$

Sűrű gráfokra sokkal jobb, mint n db szélességi bejárás. Ritka gráfokra ($e \in O(n)$) viszont n darab szélességi bejárás műveletigénye: $O[n*(n+e)] = O(n^2)$ in the special search bisebb mint a $O(n^3)$ Warshall algo-nál. $e \in O(n)$

Sűrű gráfokra $T_{n*BFS}(n) \in O\left(n*(n+e)\right) = O(n^3).$ $e \in \Theta(n^2)$ Ez hasonló a Warshall-hoz,

de annak kisebb a konstans szorzója.

Mintaillesztési feladat

Fa: T[1..n]: Σ ; P[1..m]: Σ $0 \le m \le n$ $S := \{ s \in 0..n-m \mid T[s+1..s+m] = P[1..m] \}$ programozása

Megjegyzés:

Gyakran feltehető: n ≫ m

Ekkor: $MT(n,m) \in \Theta(n^*m)$

 $mT(n) \in \Theta(n)$

Elég jónak tűnhet, de nagy inputra hamar elszáll, kell ennél jobb algoritmus.

QUICK SEARCH

Alapfilozófiája példán illusztrálva:

Pl: $\hat{\Sigma} = \{A, B, C, D\}$

P = CADA

piros betű: a keresett minta nem található zöld szó: a keresett minta megtalálható a szóban

*

eltoljuk annyival, hogy a szövegnek a mintán túli első karaktere (jel.X) illeszkedjen a mintában az (X) karakter jobb szélső előfordulására. ha mintánkon nem szereplő input karakter jön, teljes hosszon átugorjuk, hiszen úgysem illeszkedne

ABCD

shift: 1542 adott betű esetén annyit kell lépni, hogy a minta illeszkedhessen, ezek a mintához specifikusak

először feltesszük, hogy Σ ábécé összes betűjét át kell ugrani.

j shift[P[j]]

1 m
2 m-1
3 m-2
...

hogy a P[1] kerüljön X=T[s+m+1] alá, a mintát a teljes hosszával el kell tolni, hogy P[2] kerüljön az X alá, csak egyel, kevesebbet kell tolni, stb...

RABIN-KARP

$$\Sigma = \{\sigma_1, \dots, \sigma_d\}$$

$$\phi: \Sigma \to 0..d-1$$

$$\phi(\sigma_i) = i-1$$

$$\begin{split} P[1..m] \sim & \overline{\sum_{j=1}^{m} \phi(P[j]) d^{m-j}} \text{: d számrendszerbeli szám, Horner elrendezéssel: } \Theta(m) \text{ időben számítható.} \\ T[s+1..s+m] \sim & T_s = \sum_{j=1}^{m} \phi(T[s+j]) d^{m-j} \text{: Horner elrendezéssel: } \Theta(m) \text{ időben számítható.} \end{split}$$

A keresett eltolásokat $S := \{s \in 0..n - m \mid T_s = P_0\}$ alakban oldjuk meg, a d-számrendszerű számok egyenlőségét vizsgáljuk.

A számítás a Horner mellett tovább egyszerűsödik:

$$\begin{split} T_{s+1} &= \sum_{j=1}^{m} \phi(T[s+1+j]) d^{m-1} = \left(T_s - \phi(T[s+1]) d^{m-j}\right) d + \phi(T[s+m+1]) : \Theta(1) \text{ időben,} & \text{ha } d^{m-1}\text{-et előre kiszámoltuk.} \\ T_s &= \boxed{1 \ 2 \ 8 \ 2514} \end{split}$$

 T_0 és P_0 számítása O(m) és O(m) idejű a rekurzió O(1) idejű.

A teljes műveletigény így $\Theta(m) + (n - m) * \Theta(1)$, ami $\Theta(n)$ igényű.

ha a rekurzió tényleg $\Theta(1)$ és a T_i , P_0 számokat a gép tudja hatékonyan ábrázolni.

Mi lesz a nagy mintákkal?

$$\begin{split} p &:= P_0 \bmod q \\ t_s &:= T_s \bmod q \\ h &:= d^{m-1} \bmod q \end{split} \tag{q ,,nagy" prim}$$

$$t_{s+1} = (t_s - \phi (T[s+1])h)d + \phi (T[s+m+1]) \mod q$$

a különbség átcsaphat negatívba...

$$\begin{aligned} t_{s+1} &= \left(\left(\underbrace{(t_s + dq - \phi (T[s+1])h)}_{<(d+1)*q} \bmod q \right) * d + \phi (T[s+m+1]) \right) \bmod q \\ \Rightarrow t_s &= \left(\left((t_{s-1} + dq - \phi (T[s])h) \bmod q \right) * d + \phi (T[s+m]) \right) \bmod q =: \Delta \end{aligned}$$

hogy jól működjön $(d+1)q \le legnagyobb$ ábrázolható szám kell legyen (size_t, Integer'Last'...) Lehet hamis találat (fals pozitív), ekkor ellenőrizni kell, hogy valódi találat-e, eredeti karakterekkel.

RABIN-KARP folytatása

 $q = \frac{\max \mathbb{N}}{d+1}$ legnagyobb ábrázolható \mathbb{N} szám, prímszám használatával a mod q számítások nem fognak túlcsordulni

 $\begin{array}{c} p \neq t_s \Rightarrow P_0 \neq T_s \\ p = t_s & \Rightarrow P_0 = T_s \text{ igy potenciális találat esetén a valódi találatot ellenőrizni kell.} \\ \text{a modulo számítás miatt} \end{array}$

elveszik az információ

teljes algoritmus:

$$\begin{split} & mT_{RK} \, \in \, \Theta(n) \\ & MT_{RK} \, \in \, \Theta((n-m+1)*m) \end{split}$$

A gyakorlatban nincs túl sok valódi találat, nagy q esetén a hamis találatok száma se túl sok. Így $AT_{RK} \sim mT_{RK}$ (nem biz)

Mintaillesztés lineáris időben

 $T[1..i]_{j \text{ hosszú suffixe}} = P[1..j] \Rightarrow T[1..i]_{h \text{ hosszú suffixe}} = P[1..j]_{h \text{ hosszú suffixe}}$ ilyen feltételt kielégítő h-t keresünk.

Ez az információ csak a minta ismeretében megkapható.

Def: $next(j) = max\{h \in [0..j-1] \mid P[1..h] \supset P[1..j]\}$ next[1..m] := next(1..m)

Ezt kiszámolva úgy toljuk el a mintát, hogy p[1..next(j)] legyen a T[1..i] hosszú suffixe alatt, mivel korábban biztos nem lehet illeszkedés.

A fő ciklus $T \in \Omega(n)$, mivel i növekedni egyesével tud, és n-ig nő \Longrightarrow biztos van n lefutás $t(i,j) = 2i - j \in [0..2n]$ szig mon növő mind a négy ágon, de így a főciklus legfeljebb 2n-szer fut le $\Longrightarrow T \in O(n)$ $0 \le j \le i \le n$

most is a 2j- $i \in [0..2n]$, az ágakon szigorúan monoton növő mindig így legfeljebb 2m, legalább m-szer fut le $\Rightarrow \Theta(m)$

Folytatás init stuki:

$$x \sqsubset y \iff xz = y \ (\exists \ z)$$

Def: next:
$$[1..m] \rightarrow [0..m-1]$$
 $(m \in \mathbb{N}_+)$

$$x \supset y \Leftrightarrow zx = y (\exists z)$$

$$next(j) = max\{h \in [0..j-1] \mid P[1..h] \supset P[1..j]\}$$

x ps-párosa y-nak \Leftrightarrow x \neq y \wedge x \square y \wedge y /*ps: prefix-suffix*/

Tulajdonságok:

- 1. $P[1..h] ps párosa P[1..j] nek \Leftrightarrow 0 \leq h < j \land P[1..h] \supset P[1..j]$
- 2. $P[1..i+1] \supset P[1..i+1] \Leftrightarrow P[1..i] \supset P[1..i] \land P[i+1] = P[i+1]$

3.
$$0 \le \text{next}(j) \le j$$
 Köv: j

Köv:
$$j > \text{next}(j) > \text{next}^2(j) > \dots > \text{next}^k(j) = 0$$

4.
$$0 \le \text{next}(j+1) \le \text{next}(j) + 1$$

valamely k > 0-ra

5.

- a. $next^k(j)$ értelmezve van $\Leftrightarrow \exists$ a P[1..j]-nek a k. leghosszabb ps-párosa
- b. $\operatorname{next}^{k}(j)$ értelmezve van $\Rightarrow P[1... \operatorname{next}^{k}(j)]$ a P[1...j] k. leghosszabb ps-párosa

Q: m > 0

R: next[1..m] = next(1..m) /*utófeltétel*/

Inv: $0 \le i \le j \le m \land \text{next}[1..i] = \text{next}(1..i) \land P[1..i] \supset P[1..i] \land (a P[1..i] \text{ tetszőleges i-nél hosszabb P[1..l] ps$ párosára: $P[1+1] \neq P[j+1] (0 \le i < j)$

 $2i-i \in 2..2m$

Példa:

j	1	2	3	4	5	6	7	8
P[j]	A	В	A	В	В	A	В	Α
next[j]	0	0	1	2	0	1	2	3

Az algoritmus működése lépésről-lépésre:

	عس	Soffering illus	···		,,,		<u>-P</u>	•		
			1	2	3	4	5	6	7	8
i	j	next[j]	A	В	A	В	В	A	В	A
0	1	0		A						
0	2	0			A					
1	3	1			A	В				
2	4	2			A	В	A			
0	4	üres mező					A			
0	5	0						A		
1	6	1						A	В	
2	7	2						Ā	В	A
3	8	3								

Tömörítés

Naiv módszer:

T[1..n]:
$$\Sigma = {\sigma_1, ..., \sigma_d}$$

n * [lg d] bittel kódolható a szöveg

[lg d] bittel kódolható a karakter

Huffman kód: egyfajra prefix kód

a szöveg: ABRAKADABRA

jel	előfordulás	kód
A	5	0
В	2	100
R	2	101
K	1	110
D	1	111

Megjegyzés: A kerekterenként kódoló tömörítések között a Huffman kód hossza minimális.

Tömörített kód:

0 100 101 0 110 0 111 0 100 101 0

Kitömörítés kódfa alapján

LEMPEZ-ZIV-WELCH (LZW)

ababcbababaaaaaaa IN: OUT 12435 8 110111 $\Sigma = \{a, b, c\}$

szó	kód
a	1
b	2
c	3
ab	4
ba	5
abc	6
cb	7
bab	8
baba	9
aa	10
aaa	11
aaaa	12

 $k\acute{o}d := d + 1$

 $s := get_char(In)$

¬eof(In)

 $c := get_char(In)$

Rekonstruálás:

IN'	1	2	4	3	5	8	1	10	11	1
OUT'	a	b	ab	c	ba	bab	a	aa	aaa	a

8-as kód nincs a szótárban! generáláskor a 8-as kód a ba... szövegből jött létre

 $\underbrace{ba}_{5} bab \rightarrow \underbrace{bab}_{8} a..?$

(hasonlóan járunk el a 10-es, 11-es esetben is)

szó	kód
a	1
b	2
c	3
ab	4
ba	5
abc	6
cb	7
bab	8
baba	9
aa	10
aaa	11
aaaa	12

az utolsó sor dekódoláskor legtöbbször felesleges már

LZW_COMPRESS (In, Out, Σ)

 $D := \{\underline{\sigma_1} : 1, \underline{\sigma_2} : 2, \dots, \underline{\sigma_d} : d\}$

 $\Sigma = {\sigma_1, ..., \sigma_d}$ ábécé

s: string

c: char

D: szótár, "string: kód" alakú rendezett párosok halmaza

sc: az s string és a c char konkatenáltja

 σ_i : a σ_i betűből álló string (egybetűs string)

kód(D,s) = a D szótárban az s string kódja

eof(In) ⇔ az In inputról ∀ karaktert beolvastunk

"s: " olyan rendezett páros, aminek az első komponense s O Az így jelzett utasítások csak akkor hajtandók végre, ha még kód ≤ MAXKÓD, ahol MAXKÓD a kódok előre

Pl: ha ez 12bit, akkor MAXKÓD = 2^{12} -1 = 4095.

$(\widehat{sc}:_) \in D$ write(Out, kód(D,s)) $s := \widehat{sc}$ $D := D \cup \{sckod\} \odot$

s := c $k\acute{o}d := k\acute{o}d + 1$

write(Out, kód(D, s))

LZW DECOMPRESS(In, Out, Σ)

s,t: string k, kód: kódok

rögzített hosszától függ.

t₁: a t string első betűje

string(D,k)= a D szótárban k kódnak megfelelő string eof(In) ⇔ az In inputról ∀ kódot beolvastunk

"; k" olyan rendezett páros, aminek a 2. komponense k ⊗: Itt k = kód teljesül

 $D := {\sigma_1: 1, \sigma_2: 2, ..., \sigma_d: d}$ $k\acute{o}d := d + 1$ $k := get_code(In)$ s := string(D, k)write(Out, s) ¬eof(In) $k := get_code(In)$ $(:k) \in D$ t := string(D, k) $t := \widehat{ss_1}$ write(Out, t) write(Out, t) $D := D \cup \{\widehat{st_1}: k\acute{o}d\} \bigcirc$ $D := D \cup \{t: kod\} \otimes$ $k\acute{o}d := k\acute{o}d + 1$

Megjegyzés: Balra, az elágazásban az "(:k) ∈ D" feltétel helyén "k < kód" is állhatna (így egy kicsit gyorsabb lenne az algoritmus)

Felhasznált segédanyagok:

- Az előadáson készített jegyzetem (Koru),
- Whisperity előadás jegyzete (a jegyzetben található összes kép és néhány szöveges kiegészítés).
- http://aszt.inf.elte.hu/~asvanyi/ad/sor%20alapu%20Bellman-Ford%20alg.pdf
- http://aszt.inf.elte.hu/~asvanyi/ad/Lempel-Ziv-Welch%20alg.pdf

Külön köszönet Dr. Ásványi Tibor tanár úrnak a jegyzet alapos átolvasásáért, a talált hibák jelzéséért és az anyag megértését segítő megjegyzéseiért.

A jegyzetet átolvasták és a talált hibákat jelezték, amiért köszönet:

- Bán Róbert
- Fekete Anett
- László Tamás
- Nagy Vendel
- Szabó Gergő
- Szécsi Péter
- Tőkés Anna