SURVIVAL ANALYSIS - TCGA PRAD CANCER

Kelvin Ofori-Minta University of Texas at El Paso (UTEP)

June 11, 2022

Contents

1	Loading and Cleaning Data	2
	1.1 Inspecting dataframe for missing values	2
	1.1.1 Notes	3
	1.1.2 Re-coding variables	4
2	KM Curve- Default survival probability with Radiation Therapy	6
3	KM Curve- survival probability:Censored cases of Radiation therapy	8
4	KM Curve- survival probability:Censored cases of New tumor event	10
5	KM Curve- survival probability: Censored cases of Prior Diagnosis	12

1 Loading and Cleaning Data

1.1 Inspecting dataframe for missing values

```
require(inspectdf)
show_plot(inspect_na(data))
```

Prevalence of NAs in df::data

df::data has 28 columns, of which 28 have missing values


```
missing = inspect_na(data)
missing[ , 3] = round(missing[ ,3], 2)
names(missing) = c("variable", "count", "proportion")
require(kableExtra)
# missing<-as.matrix.data.frame(missing)
kable(missing)</pre>
```

variable	count	proportion
Ethnicity.Category	162	90.00
Race.Category	160	88.89
Buffa.Hypoxia.Score	122	67.78
Ragnum.Hypoxia.Score	122	67.78
Winter.Hypoxia.Score	122	67.78
Radiation.Therapy	100	55.56
New_Tumor_event	94	52.22
last_contact_frominitial_diagnosis	91	50.56
Birth.from.Initial.Pathologic.Diagnosis.Date	88	48.89
Neodjuvant_Therapy_type	88	48.89
Aneuploidy.Score	87	48.33
Mutation.Count	87	48.33
Tissue.Prospective.Collection.Indicator	87	48.33
Tissue.Retrospective.Collection.Indicator	87	48.33
Diagnosis.Age	86	47.78
Form.completion.date	86	47.78
Fraction.Genome.Altered	86	47.78
Informed.consent.verified	86	47.78
In.PanCan.Pathway.Analysis	86	47.78
MSI.MANTIS.Score	86	47.78
MSIsensor.Score	86	47.78
Prior.Diagnosis	86	47.78
Sex	86	47.78
tissue_source.site	86	47.78
TMBnonsynonymous.	86	47.78
Neoplasm_status	86	47.78
progression_time	86	47.78
progression_status	86	47.78

as.data.frame.matrix(missing)
kable(as.da(missing))

1.1.1 Notes

"TMB-H means that the tumor has a high number of mutations. Doctors have found that certain immunotherapy drugs are more likely to work against TMB-H cancers. This is because the immune system may be able to find and attack cancer cells with high TMB more easily."

[1] "TMB-H means that the tumor has a high number of mutations. Doctors have found that\nce."

"Person neoplasm status..... You are correct, IMO: tumor free does not mean normal, but rathe

[1] "Person neoplasm status...... You are correct, IMO: tumor free does not mean normal, by

1.1.2 Re-coding variables

```
# newdata$Neodjuvant_Therapy_type <- factor(newdata$Neodjuvant_Therapy_type,</pre>
#
                                      levels=c("No", "Yes"),
#
                                      labels=c("No", "Yes")) all were "no"
data$In.PanCan.Pathway.Analysis<-factor(data$In.PanCan.Pathway.Analysis,
                                           levels=c("No","Yes"),
                                           labels=c("No","Yes"))
data$Prior.Diagnosis<-factor(data$Prior.Diagnosis,</pre>
                                levels=c("No","Yes","Yes, History Of Synchronous And Or Bilate
                                labels=c("No","Yes", "yes history"))
data$tissue_source.site<-factor(data$tissue_source.site,</pre>
                                   levels = c("university", "Biotech & Pharma", "Hospital", "Rese
                                                           labels=c("university", "biotech_pharm
data$New_Tumor_event <- factor(data$New_Tumor_event,</pre>
                                    levels=c("No","Yes"),
                                    labels=c("No","Yes"))
data$Radiation.Therapy <- factor(data$Radiation.Therapy,</pre>
                                    levels=c("No","Yes"),
                                    labels=c("No","Yes"))
str(data)
## 'data.frame':
                    180 obs. of 28 variables:
## $ Diagnosis.Age
                                                   : int NA 64 65 48 NA 57 65 66 57 67 ...
## $ Aneuploidy.Score
                                                  : int NA 0 3 0 NA 0 2 1 0 5 ...
## $ Buffa.Hypoxia.Score
                                                  : int NA -31 -17 -13 NA -37 -29 -33 -31 -29
## $ last_contact_from_.initial_diagnosis
                                                  : int NA 31 62 62 NA 91 1427 2118 1882 1115
## $ Birth.from.Initial.Pathologic.Diagnosis.Date: int NA -23649 -23803 -17807 NA -21002 -24
                                                  : chr NA "Not Hispanic Or Latino" "Not Hispanic"
## $ Ethnicity.Category
## $ Form.completion.date
                                                  : chr NA "3/21/2012" "3/21/2012" "3/16/2012
## $ Fraction.Genome.Altered
                                                  : num NA 0.0125 0.2071 0.0284 NA ...
## $ Neodjuvant_Therapy_type
                                                  : chr NA "No" "No" "No" ...
## $ Informed.consent.verified
                                                  : chr NA "Yes" "Yes" "Yes" ...
## $ In.PanCan.Pathway.Analysis
                                                  : Factor w/ 2 levels "No", "Yes": NA 2 2 2 NA
## $ MSI.MANTIS.Score
                                                  : num NA 0.266 0.272 0.34 NA ...
## $ MSIsensor.Score
                                                  : num NA 0 0.01 0.2 NA 0 0.01 0 0 0.31 ...
## $ Mutation.Count
                                                  : int NA 33 78 108 NA 34 40 31 37 59 ...
## $ New_Tumor_event
                                                   : Factor w/ 2 levels "No", "Yes": NA NA NA
```

```
## $ Prior.Diagnosis
                                                  : Factor w/ 3 levels "No", "Yes", "yes_history
                                                  : chr NA "white" "white" "white" ...
## $ Race.Category
## $ Radiation. Therapy
                                                 : Factor w/ 2 levels "No", "Yes": NA NA NA
## $ Ragnum.Hypoxia.Score
                                                 : int NA -20 -2 6 NA -20 -20 -20 -12 -8 ...
## $ Sex
                                                  : chr NA "Male" "Male" "Male" ...
## $ Tissue.Prospective.Collection.Indicator
                                                 : chr NA "Yes" "Yes" "Yes" ...
## $ Tissue.Retrospective.Collection.Indicator
                                                 : chr NA "No" "No" "No" ...
## $ tissue_source.site
                                                  : Factor w/ 4 levels "university", "biotech_pi
## $ TMB..nonsynonymous.
                                                  : num \, NA 1.1 2.6 3.57 NA \ldots
## $ Winter.Hypoxia.Score
                                                  : int NA -28 -16 -24 NA -40 -30 -26 -40 -32
                                                  : chr NA "with_tumor" "with_tumor" "with_tumor"
## $ Neoplasm_status
## $ progression_time
                                                  : num NA 1.02 2.04 2.04 NA ...
## $ progression_status
                                                  : int \, NA 1 1 1 NA 1 1 2 2 2 ...
```

2 KM Curve- Default survival probability with Radiation Therapy

```
library("survival")
library("survminer")
ndata<-data
fit1a <- survfit(Surv(ndata$progression_time, ndata$progression_status) ~ ndata$Radiation.There
print(fit1a)
## Call: survfit(formula = Surv(ndata$progression_time, ndata$progression_status) ~
      ndata$Radiation.Therapy, data = ndata)
##
##
      100 observations deleted due to missingness
                                n events median 0.95LCL 0.95UCL
##
## ndata$Radiation.Therapy=No 59
                                      39
                                           30.4
                                                   21.8
                                                            43.7
## ndata$Radiation.Therapy=Yes 21
                                       8
                                           45.2
                                                   30.9
                                                             NA
summary(fit1a)$table
##
                               records n.max n.start events
                                                               *rmean *se(rmean)
## ndata$Radiation.Therapy=No
                                    59
                                          59
                                                  59
                                                         39 39.53371
                                                                        6.151106
## ndata$Radiation.Therapy=Yes
                                                           8 35.03934
                                                                        4.080074
                                    21
                                          21
                                                  21
                                 median 0.95LCL 0.95UCL
## ndata$Radiation.Therapy=No 30.41063 21.82990 43.69267
## ndata$Radiation.Therapy=Yes 45.23786 30.93665
                                                       NA
ggsurvplot(fit1a,
          #legend.labs=c("tumor_free", "with_tumor"),
          pval = TRUE, conf.int = F,
          risk.table = TRUE, # Add risk table
          risk.table.col = "strata", # Change risk table color by groups
          linetype = "strata", # Change line type by groups
          surv.median.line = "hv", # Specify median survival
          ggtheme = theme_bw(), # Change ggplot2 theme
          palette = c("#E7B800", "#2E9FDF"))
```


#1 - censored & 2- progression #1 - tumor_free & 2 with tumorneoplasm status #1 - NO & 2-YESTREATMENT CODE

3 KM Curve- survival probability:Censored cases of Radiation therapy

```
library("survival")
library("survminer")
fit1b <- survfit(Surv(ndata$progression_time, ndata$progression_status==1) ~ ndata$Radiation.T.
               data = ndata)
print(fit1b)
## Call: survfit(formula = Surv(ndata$progression_time, ndata$progression_status ==
       1) ~ ndata$Radiation.Therapy, data = ndata)
##
##
      100 observations deleted due to missingness
##
                                n events median 0.95LCL 0.95UCL
## ndata$Radiation.Therapy=No 59
                                           47.1
                                      20
                                                   40.2
                                                             NA
## ndata$Radiation.Therapy=Yes 21
                                      13
                                           23.9
                                                   22.4
                                                             NA
summary(fit1b)$table
##
                               records n.max n.start events *rmean *se(rmean)
## ndata$Radiation.Therapy=No
                                    59
                                          59
                                                  59
                                                         20 64.84633
                                                                       10.35374
## ndata$Radiation.Therapy=Yes
                                          21
                                                  21
                                                         13 44.15745
                                                                       11.38353
                                    21
##
                                 median 0.95LCL 0.95UCL
## ndata$Radiation.Therapy=No 47.14469 40.17490
## ndata$Radiation.Therapy=Yes 23.93398 22.35592
ggsurvplot(fit1b,
          #legend.labs=c("tumor_free", "with_tumor"),
          pval = TRUE, conf.int = F,
          risk.table = TRUE, # Add risk table
          risk.table.col = "strata", # Change risk table color by groups
          linetype = "strata", # Change line type by groups
          surv.median.line = "hv", # Specify median survival
          ggtheme = theme_bw(), # Change ggplot2 theme
          palette = c("#E7B800", "#2E9FDF"))
```


#1 - censored & 2- progression #1 - tumor_free & 2 with tumorneoplasm status #1 - NO & 2-YESTREATMENT CODE

4 KM Curve- survival probability:Censored cases of New tumor event

```
library("survival")
library("survminer")
fit1c <- survfit(Surv(ndata$progression_time, ndata$progression_status==2) ~ ndata$New_Tumor_e
              data = ndata)
print(fit1c)
## Call: survfit(formula = Surv(ndata$progression_time, ndata$progression_status ==
      2) ~ ndata$New_Tumor_event, data = ndata)
##
##
      94 observations deleted due to missingness
##
                             n events median 0.95LCL 0.95UCL
## ndata$New_Tumor_event=No 46
                                        66.9
                                   13
                                                  NA
                                                           NA
## ndata$New_Tumor_event=Yes 40
                                         23.0
                                   37
                                                 18.4
                                                         34.8
summary(fit1c)$table
##
                            records n.max n.start events *rmean *se(rmean)
## ndata$New_Tumor_event=No
                                  46
                                        46
                                               46
                                                       13 48.31179
                                                                    4.520889
## ndata$New_Tumor_event=Yes
                                  40
                                        40
                                                       37 27.33404
                                                                     2.697264
                                                40
##
                              median 0.95LCL 0.95UCL
## ndata$New_Tumor_event=No 66.93625
## ndata$New_Tumor_event=Yes 23.01345 18.37788 34.84893
ggsurvplot(fit1c,
          #legend.labs=c("tumor_free", "with_tumor"),
         pval = TRUE, conf.int = F,
         risk.table = TRUE, # Add risk table
         risk.table.col = "strata", # Change risk table color by groups
         linetype = "strata", # Change line type by groups
         surv.median.line = "hv", # Specify median survival
         ggtheme = theme_bw(), # Change ggplot2 theme
         palette = c("#E7B800", "#2E9FDF"))
```


#1 - censored & 2- progression #1 - tumor_free & 2 with tumorneoplasm status #1 - NO & 2-YESTREATMENT CODE

5 KM Curve- survival probability: Censored cases of Prior Diagnosis

```
library("survival")
library("survminer")
fit1d <- survfit(Surv(ndata$progression_time, ndata$progression_status==2) ~ ndata$Prior.Diagno
               data = ndata)
print(fit1d)
## Call: survfit(formula = Surv(ndata$progression_time, ndata$progression_status ==
      2) ~ ndata$Prior.Diagnosis, data = ndata)
##
##
      87 observations deleted due to missingness
##
                              n events median 0.95LCL 0.95UCL
## ndata$Prior.Diagnosis=No 90
                                         30.9
                                    49
                                                 22.8
                                                         45.2
## ndata$Prior.Diagnosis=Yes 3
                                     1
                                           NA
                                                 20.9
                                                           NA
summary(fit1d)$table
##
                            records n.max n.start events
                                                             *rmean *se(rmean)
## ndata$Prior.Diagnosis=No
                                 90
                                        90
                                                90
                                                       49 38.65491
                                                                      5.451505
## ndata$Prior.Diagnosis=Yes
                                   3
                                         3
                                                 3
                                                        1 101.11670 32.731088
##
                              median 0.95LCL 0.95UCL
## ndata$Prior.Diagnosis=No 30.93665 22.75044 45.23786
## ndata$Prior.Diagnosis=Yes
                                   NA 20.94224
ggsurvplot(fit1d,
          #legend.labs=c("tumor_free", "with_tumor"),
          pval = TRUE, conf.int = F,
          risk.table = TRUE, # Add risk table
          risk.table.col = "strata", # Change risk table color by groups
          linetype = "strata", # Change line type by groups
          surv.median.line = "hv", # Specify median survival
          ggtheme = theme_bw(), # Change ggplot2 theme
          palette = c("#E7B800", "#2E9FDF"))
```


#1 - censored & 2- progression