Bayesian inference for mixture models

M. Concepción Ausín Universidad Carlos III de Madrid

Master in Business Administration and Quantitative Methods
Master in Mathematical Engineering

1. Finite mixtures

- 1.1 Bayesian inference for finite mixtures
- ______
- 2. Infinite mixtures
- 2.1 Bayesian inference for infinite mixtures

A finite mixture of k densities of the same distribution is a convex combination.

$$f(x \mid k, \rho, \theta) = \sum_{i=1}^{k} \rho_i f(x \mid \theta_i),$$

of densities $f(x \mid \theta_i)$, where $\rho = (\rho_1, ..., \rho_k)$ such that $\sum_{i=1}^k \rho_i = 1$.

Remarks

- Mixture models are frequently referred as semi-parametric models as their flexibility allow to approximate non-parametric problems.
- Mixture component do not always have a physical meaning, they can describe complex behaviour of data in different research areas: biology, astronomy, engineering...

Finite mixtures

- Note that $E[X^r] = \sum_{i=1}^k \rho_i E[X^r \mid \boldsymbol{\theta}_i]$
- Computationally intensive methods must be considered for inference in mixture models: MCMC methods, EM algorithm,...
- The Bayesian approach using MCMC methods allows us to transform the complex structure of a mixture model in a set of simple structures using latent variables.

Finite mixtures

Example (Gaussian mixtures)

A finite Gaussian mixture of size k has the following density:

$$f(x \mid k, \rho, \theta) = \sum_{i=1}^{k} \rho_i f_N(x \mid \mu_i, \phi_i),$$

where $\theta = (\mu_1, \phi_1, ..., \mu_k, \phi_k)$ and $f_N(x \mid \mu_i, \phi_i)$ is the density of a Gaussian distribution with mean μ_i and precision ϕ_i .

Finite mixtures

The following figure shows various density functions of Gaussian mixtures with k=2 components (first row), k=5 components (second row), k=25 components (third row) and k=50 components (fourth row):

Assume we have n observations $\mathbf{x} = (x_1, ..., x_n)$ sampled i.i.d. from a finite mixture distribution with density,

$$f(x \mid \boldsymbol{\rho}, \boldsymbol{\theta}) = \sum_{i=1}^{k} \rho_i f(x \mid \boldsymbol{\theta}_i),$$

where k is finite and known.

We wish to make Bayesian inference for the model parameters (ρ, θ) . The likelihood is,

$$I(\boldsymbol{\rho}, \boldsymbol{\theta} \mid \mathbf{x}) = \prod_{i=1}^{n} \sum_{j=1}^{k} \rho_{i} f(\mathbf{x}_{j} \mid \boldsymbol{\theta}_{i}),$$

which is given by k^n terms, which implies a large computational cost for a not very large sample size, n.

In order to simplify the likelihood, we can introduce latent variables Z_j such that:

$$X_i \mid Z_i = i \sim f(x \mid \theta_i)$$
 and $P(Z_i = i) = \rho_i$.

These auxiliary variables allows us to identify the mixture component each observation has been generated from.

Therefore, for each sample of data $\mathbf{x} = (x_1, ..., x_n)$, we assume a missing data set $\mathbf{z} = (z_1, ..., z_n)$, which provide the labels indicating the mixture components from which the observations have been generated.

Using this missing data set, the likelihod simplifies to:

$$I(\boldsymbol{\rho}, \boldsymbol{\theta} \mid \mathbf{x}, \mathbf{z}) = \prod_{j=1}^{n} \rho_{z_{j}} f\left(x_{j} \mid \boldsymbol{\theta}_{z_{j}}\right)$$
$$= \prod_{i=1}^{k} \rho_{i}^{n_{i}} \left[\prod_{j: z_{j}=i} f\left(x_{j} \mid \boldsymbol{\theta}_{i}\right) \right],$$

where $n_i = \#\{z_j = i\}$ and $\sum n_i = n$.

Then, the posterior probability that the observation x_j has been generated from the i-th component is:

$$P(z_j = i \mid x_j, \boldsymbol{\rho}, \boldsymbol{\theta}) = \frac{\rho_i f(x_j \mid \boldsymbol{\theta}_i)}{\sum_{i=1}^k \rho_i f(x_i \mid \boldsymbol{\theta}_i)}.$$

Example (Bayesian inference for Gaussian mixtures)

Using the missing data, $\mathbf{z} = (z_1, ..., z_n)$ the likelihood simplifies to:

$$I(\boldsymbol{
ho}, \boldsymbol{\mu}, \boldsymbol{\phi} \mid \mathbf{x}, \mathbf{z}) \propto \prod_{i=1}^{k} (\rho_i \phi_i)^{n_i} \exp \left(-\frac{\phi_i}{2} \sum_{j: z_j = i} (x_j - \mu_i)^2\right),$$

where $n_i = \#\{z_j = i\}$.

And we have that:

$$P(z_{j} = i \mid x_{j}, \boldsymbol{\rho}, \boldsymbol{\mu}, \boldsymbol{\phi}) = \frac{\rho_{i}\phi_{i} \exp\{-\frac{\phi_{i}}{2}(x_{j} - \mu_{i})^{2}\}}{\sum_{i=1}^{k} \rho_{i}\phi_{i} \exp\{-\frac{\phi_{i}}{2}(x_{j} - \mu_{i})^{2}\}}$$

For the model parameters, ρ , μ and ϕ , we assume conjugate priors:

Prior Posterior
$$\rho \sim D\left(\delta_{1},...,\delta_{k}\right) \qquad \rho \mid \mathbf{x}, \mathbf{z} \sim D\left(\delta_{1}^{*},...,\delta_{k}^{*}\right)$$

$$\phi_{i} \sim G\left(a/2,b/2\right) \qquad \phi_{i} \mid \mathbf{x}, \mathbf{z} \sim G\left(a_{i}^{*}/2, b_{i}^{*}/2\right)$$

$$\mu_{i} \mid \phi_{i} \sim N\left(m_{i}, \frac{1}{\alpha_{i}\phi_{i}}\right) \qquad \mu_{i} \mid \mathbf{x}, \mathbf{z}, \phi_{i} \sim N\left(m_{i}^{*}, \frac{1}{\alpha_{i}^{*}\phi_{i}}\right)$$

where

$$\begin{split} \delta_i^* &= \delta_i + n_i, & \qquad \mathbf{a}_i^* &= \mathbf{a} + n_i, \\ \mathbf{b}_i^* &= \mathbf{b} + \sum\limits_{j:z_j=i} \left(x_j - \mu_i\right)^2, & \qquad \alpha_i^* &= \alpha_i + n_i, \\ m_i^* &= \frac{\alpha_i m_i + n_i \bar{x}_i}{\alpha_i + n_i}, & \qquad \text{where } \bar{x}_i &= \frac{1}{n_i} \sum\limits_{i:z_i=i} x_j. \end{split}$$

For identifiability reasons, we assume that $\mu_1 < ... < \mu_k$.

Note that $D(\delta_1, \ldots, \delta_k)$ a Dirichlet distribution with density:

$$f(\rho_1,\ldots,\rho_k) \propto \prod_{i=1}^k \rho_i^{\delta_i-1}.$$

The usual prior choice is to take $(\delta_1, \ldots, \delta_k) = (1, \ldots, 1)$ to impose a uniform prior over the mixture weights.

Note that this prior choice is equivalent to use the following reparameterization:

$$\rho_1 = \eta_1,
\rho_i = (1 - \eta_1) \dots (1 - \eta_{i-1}) \eta_i$$

assuming that $\eta_i \sim \mathcal{B}(1, k-i+1)$.

MCMC algorithm

- 1. Set initial values $\eta^{(0)}, \mu^{(0)}$ and $\phi^{(0)}$.
- 2. Update **z** sampling from $\mathbf{z}^{(j+1)} \sim \mathbf{z} | \mathbf{x}, \boldsymbol{\rho}^{(j)}, \boldsymbol{\mu}^{(j)}, \boldsymbol{\phi}^{(j)}.$
- 3. Update η sampling from $\eta^{(j+1)} \sim \eta | \mathbf{x}, \mathbf{z}^{(j+1)}.$
- 4. Update ϕ_i sampling from $\phi_i^{(j+1)} \sim \phi_i | \mathbf{x}, \mathbf{z}^{(j+1)}$.
- 5. Update μ_i sampling from $\mu_i^{(j+1)} \sim \mu_i | \mathbf{x}, \mathbf{z}^{(j+1)}, \phi_i^{(j+1)}.$
- 6. Order $\mu^{(j+1)}$ and arrange $\rho^{(j+1)}$ y $\phi^{(j+1)}$ with this order.
- 7. j = j + 1. Go to 2.

Infinite mixtures

Now, consider an infinite mixture of densities of the same distribution,

$$f(x \mid \boldsymbol{\rho}, \boldsymbol{\theta}) = \sum_{i=1}^{\infty} \rho_i f(x \mid \boldsymbol{\theta}_i),$$

of densities $f(x \mid \theta_i)$, where $\rho = (\rho_1, \rho_2, ...)$ such that $\sum_{i=1}^{\infty} \rho_i = 1$.

Suppose that we reparametrize the weights such that:

$$\rho_1 = \eta_1,
\rho_i = (1 - \eta_1) \dots (1 - \eta_{i-1}) \eta_i$$

and assume a priori that:

$$\eta_i \sim \mathcal{B}(1, \alpha),$$
 $\theta_i \sim P_0,$

for
$$i = 1, 2, ...$$

Infinite mixtures

Note that this infinite mixture model with the considered prior choice corresponds to a Dirichlet process mixture model (DPM model) given by,

$$X_i \mid \boldsymbol{\theta}_i \sim f(x \mid \boldsymbol{\theta}_i),$$

 $\boldsymbol{\theta}_i \mid P \sim P(\boldsymbol{\theta})$
 $P \sim DP(\alpha, P_0)$

or equivalently, using the stick-breaking representation,

$$egin{aligned} &x_j|z_j \sim f(x\mid heta_{z_j}) \ & ext{Pr}\left(z_j=i
ight) =
ho_i, \ & heta \sim P_0 \ &
ho_1 = \eta_1, \qquad
ho_i = (1-\eta_1)\dots(1-\eta_{i-1})\,\eta_s \ &\eta_i \sim \mathcal{B}\left(1,lpha
ight) \end{aligned}$$

Observe that even using the latent variables, z_j , the likelihood is complicated:

$$I(\boldsymbol{\rho},\boldsymbol{\theta} \mid \mathbf{x},\mathbf{z}) = \prod_{i=1}^{\infty} \rho_i^{n_i} \left[\prod_{j:z_j=i} f(x_j \mid \boldsymbol{\theta}_i) \right],$$

where $n_i = \#\{z_j = i\}$ and $\sum n_i = n$.

And the posterior probability that the observation x_j has been generated from the i-th component is difficult to evaluate:

$$P(z_j = i \mid x_j, \boldsymbol{\rho}, \boldsymbol{\theta}) = \frac{\rho_i f(x_j \mid \boldsymbol{\theta}_i)}{\sum_{i=1}^{\infty} \rho_i f(x_i \mid \boldsymbol{\theta}_i)}.$$

To solve this problem, Walker (2007) proposes to introduce a new set of latent variables, $\mathbf{u} = (u_1, \dots, u_n)$ such that,

$$f(x_j, u_j | \boldsymbol{\rho}, \boldsymbol{\theta}) = \sum_{i=1}^{\infty} I(u_j < \rho_i) f(x_j | \theta_i),$$

where I is the indicator function. Observe that integrating over u_j the marginal density is $f(x | \rho, \theta)$. Also note that we can write,

$$f(x_j, u_j | \boldsymbol{\rho}, \boldsymbol{\theta}) = \sum_{i=1}^{\infty} \rho_i f_U(u_j \mid 0, \rho_i) f(x_j \mid \theta_i),$$

where f_U is the density of a uniform $U(0, \rho_i)$. Then, with probability ρ_i , the auxiliary variable u_j follows a uniform distribution in $(0, \rho_i)$ and the variable x_i follows the density $f(x_i | \theta_i)$.

With this new set of latent variables, the complete likelihood function is,

$$I(\boldsymbol{\rho}, \boldsymbol{\theta} \mid \mathbf{x}, \mathbf{u}, \mathbf{z}) \propto \prod_{j=1}^{n} I(u_{j} < \rho_{z_{j}}) f(x_{j} \mid \theta_{z_{j}}).$$

And the posterior probability that the observation x_j has been generated from the i-th component is:

$$P(z_{j} = i \mid x_{j}, u_{j}, \boldsymbol{\rho}, \boldsymbol{\theta}) = \frac{f(x_{j} \mid \boldsymbol{\theta}_{i})}{\sum_{i: o_{i} > u_{i}} f(x_{j} \mid \boldsymbol{\theta}_{i})}.$$

Given ρ , the posterior distribution of u_i is:

$$u_j \sim U(0, \rho_{z_j}),$$

for
$$j=1,\ldots,n,$$
 where $ho_{z_j}=\left(1-\eta_1
ight)\ldots\left(1-\eta_{z_j-1}
ight)\eta_{z_j}.$

Given ${f z}$, the posterior distribution of ${m \eta}$ is:

$$\eta_j | \mathbf{z} \sim \mathit{Beta}\left(\mathit{n_s} + 1, \mathit{n} - \sum_{l=1}^{s} \mathit{n_l} + lpha
ight)$$

where
$$n_i = \sum_{j=1}^n I(z_j = i)$$
.

Clearly, assuming a conjugate prior, P_0 , for all θ_i , the conditional posterior distribution of θ_i given **z** is straightforward to obtain.

MCMC algorithm

- 1. Set an initial allocation $\mathbf{z} = \{z_1, \dots, z_n\}$.
- 2. Update η_i by simulating from the beta distribution for $i = 1, ..., z^*$, where $z^* = \max\{z_i\}_{i=1}^n$.
- 3. Update u_i by simulating from $u_i \sim U(0, \rho_{z_i})$ for $j=1,\ldots,n$.
- 4. Update η_i by simulating from $\eta_i \sim Beta(1, \alpha)$ for $i=z^*+1,\ldots,s^*$, where s^* is the smallest value such that: $\sum_{i=1}^{s^*} \rho_i > 1 - u^*$ where $u^* = \min\{u_1, \dots, u_n\}$.
- 5. Update θ_i by simulating from its conditional posterior distribution for $i = 1, ..., s^*$.
- 6. Update z_i by simulating from $Z_i \mid x_i, u_i, \rho, \theta$ for $j=1,\ldots,n$.