Lista 5 - Topologia 2022

Zad. 1 Które z poniższych przestrzeni są spójne. Tym, które nie są spójne, zbadaj składowe. Które przestrzenie są całkowicie niespójne, a które zerowymiarowe?

- a) kostka Hilberta $[0,1]^{\mathbb{N}}$,
- b) strzałka,
- c) przestrzeń $C_p([0,1])$,
- d) zbiór funkcji wielomianowych $f \colon [0,1] \to \mathbb{R}$ o współczynnikach wymiernych, z metryką supremum,
- e) \mathbb{R}^2 z metryką centrum. $\mathbb{R}^2 \setminus \{\langle 0, 0 \rangle\}$ z metryką centrum.

Zad. 2 Czy istnieje ciągła surjekcja $f: X \to Y$ i ciągła surjekcja $g: Y \to X$, jeśli

- a) $X = [0,1], Y = \{\langle x, y \rangle x^2 + y^2 = 1\},\$
- b) $X = (0,3) \setminus \{1,2\}, Y = [0,3] \setminus \{1,2\},$
- c) $X = [0,3) \setminus \{1,2\}, Y = [0,1] \cup [2,3) \cup (4,5),$
- d) $X = \mathbb{Q}, Y = \mathbb{N},$
- e) $X = [0,1]^2$, $Y = [0,1]^2 \setminus (0,1)^2$.

Zad. 3 Podaj przykład funkcji nieciągłej $f: \mathbb{R} \to \mathbb{R}$, która przekształca zbiory spójne na zbiory spójne.

Zad. 4 Pokaż, że każda niejednopunktowa przestrzeń metryczna spójna jest nieprzeliczalna.

Zad. 5 Niech $A\subseteq\mathbb{R}^2$ będzie zbiorem przeliczalnym. Pokaż, że $\mathbb{R}^2\setminus A$ jest przestrzenią spójną.

Zad. 6 Powiemy, że przestrzeń topologiczna jest *lokalnie spójna*, jeśli posiada bazę złożoną ze zbiorów spójnych. Pokaż, że nie każda przestrzeń lokalnie spójna jest spójna. Znajdź przykład przestrzeni spójnej, która nie jest lokalnie spójna.

Zad. 7 Niech dane będzie pokrycie przestrzeni spójnej X zbiorami otwartymi $\{U_i\colon i\in I\}$. Pokaż, że dla każdych punktów $x,y\in X$ istnieje ciąg $(i_k)_{k\leq n}$ taki, że $x\in U_{i_0},\ y\in U_{i_n}$ i dla każdego k< n mamy $U_{i_k}\cap U_{i_{k+1}}\neq\emptyset$. (Wskazówka: zbadaj zbiór tych punktów z X, które dadzą się połączyć z x takim łańcuchem.) Wywnioskuj stąd, że jeśli (X,d) jest przestrzenią metryczną i spójną, to dla dowolnych $x,y\in X$ i dowolnego $\varepsilon>0$ istnieją $x_1,\ldots,x_n\in X$ takie, że $x=x_1,\ y=x_n$ i $d(x_k,x_{k+1})<\varepsilon$ dla każdego $k\leq n$.

Zadania rekreacyjne i problemy

Zad. 8 Niech C będzie zbiorem Cantora. Oznaczmy przez C_0 zbiór końców odcinków powstałych w procesie konstrukcji zbioru Cantora. Dla każdego $c \in C$ niech I_c będzie odcinkiem na płaszczyźnie łączącym $\langle c, 0 \rangle$ punktem $\langle \frac{1}{2}, \frac{1}{2} \rangle$ (bez samego punktu $\langle \frac{1}{2}, \frac{1}{2} \rangle$). Tipi Cantora definiujemy jako

$$T = \bigcup_{c \in C_0} \{ \langle x, y \rangle \in I_c \colon y \in \mathbb{Q} \} \cup \bigcup_{c \in C \setminus C_0} \{ \langle x, y \rangle \in I_c \colon y \in \mathbb{R} \setminus \mathbb{Q} \}.$$

Pokaż, że tipi Cantora jest całkowicie niespójne. Pokaż, że tipi Cantora z dodanym punktem $\langle x, y \rangle$ (a więc przeciekający namiot Cantora alias miotełka Knastera-Kuratowskiego) jest spójna.