Some properties of Natural numbers and Real numbers

1 Preliminaries

Definition 1.1. A binary relation ρ on a nonempty set S is called a partial order relation if

- 1. $a\rho a$ for all $a \in S$ (reflexivity),
- 2. $a, b \in S$, $a\rho b$ and $b\rho a$ imply a = b (antisymmetry),
- 3. $a, b, c \in S$, $a\rho b$ and $b\rho c$ imply $a\rho c$ (transitivity).

Definition 1.2. A nonempty set S together with a partial ordering ρ is called a partially ordered set. A partially ordered set (S, ρ) is called totally ordered if for any $a, b \in S$, either $a\rho b$ or $b\rho a$ or both (in which case a = b). A totally ordered set (S, ρ) is called well-ordered if every nonempty subset of S has a smallest element.

Definition 1.3. Let (S, \leq) be a partially ordered set (please do not confuse \leq with its usual meaning in \mathbb{R} , here \leq is just a replacement for ρ above for convenience). Let A be a nonempty subset of S. An element $x \in S$ is called an *upper bound* of A if $a \leq x$ for all $a \in A$. An upper bound s of s is called the *least upper bound* (in brief, s is called a *lower bound* (in brief, s if s if s is called the *greatest lower bound* (in brief, s is unique by definition. In this context, we just mention, a partially ordered set is called a *lattice* if there exist lub and glb for every pair of elements in the set. Let s be a nonempty subset of s. If s has an upper bound in s, then s called bounded above and if s has a lower bound in s, then s is called bounded below. A is called bounded if it is both bounded above and bounded below. A totally ordered set s is said to have the s but s is said to have a glb (in s).

Definition 1.4. A nonempty set F together with two binary operation + and \cdot is called a *field* if the following conditions are satisfied (+ and \cdot are binary operations on F imply that $a+b, a \cdot b \in F$ for all $a, b \in F$):

- 1. a+b=b+a for all $a,b\in F$,
- 2. a + (b + c) = (a + b) + c for all $a, b, c \in F$,
- 3. there exists $0 \in F$ such that a + 0 = a for all $a \in F$,

- 4. for each $a \in F$, there exists $-a \in F$ such that a + (-a) = 0,
- 5. $a \cdot b = b \cdot a$ for all $a, b \in F$,
- 6. $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for all $a, b, c \in F$,
- 7. there exists $1 \in F$ such that $a \cdot 1 = a$ for all $a \in F$,
- 8. for each $0 \neq a \in F$, there exists $a^{-1} \in F$ such that $a \cdot a^{-1} = 1$,
- 9. $a \cdot (b+c) = a \cdot b + a \cdot c$ for all $a, b, c \in F$.

Notations: We denote the sets of natural numbers, integers, rational numbers and real numbers by \mathbb{N} , \mathbb{Z} , \mathbb{Q} and \mathbb{R} respectively.

Here we assume the constructions of \mathbb{N} , \mathbb{Z} , \mathbb{Q} and \mathbb{R} and the following properties:

- 1. \mathbb{N} , \mathbb{Z} , \mathbb{Q} and \mathbb{R} are totally ordered with usual \leq .
- 2. $(\mathbb{N}, +, \cdot)$ is a totally ordered additively and multiplicatively commutative semiring with multiplicative identity (satisfying 1,2,5,6,7,9 of Definition 1.4).
- 3. $(\mathbb{Z}, +, \cdot)$ is a totally ordered commutative *ring* with identity (satisfying 1,2,3,4,5,6,7,9 of Definition 1.4).
- 4. $(\mathbb{Q}, +, \cdot)$ a totally ordered field.
- 5. $(\mathbb{R}, +, \cdot)$ is a totally ordered field with lub property.

Theorem 1.5. \mathbb{N} is well-ordered, i.e., every nonempty subset of natural numbers contains a smallest element.

Proof. Let $\emptyset \neq A \subseteq \mathbb{N}$. If $A = \mathbb{N}$, then 1 is the smallest element of A. Let $A \subsetneq \mathbb{N}$. Let $P = \{x \in \mathbb{N} \mid x \leq n \text{ for all } n \in A\}$. Now $P \neq \emptyset$ as $1 \in P$. Then if $x \in P \Longrightarrow x + 1 \in P$, then by induction $P = \mathbb{N}$ which implies $A = \emptyset$, for otherwise, if $n \in A$, then $n + 1 \notin P = \mathbb{N}$ which is a contradiction. Thus there exists $x_0 \in P$ such that $x_0 + 1 \notin P$. Then there exists $n_0 \in A$ such that $x_0 + 1 > n_0$. Then $x_0 + 1 \geq n_0 + 1$, i.e., $x_0 \geq n_0$. Again $x_0 \leq n_0$ as $x_0 \in P$ and $n_0 \in A$. So $x_0 = n_0 \in A$ and $x_0 \leq n$ for all $n \in A$ as $x_0 \in P$. Therefore x_0 is the least element of A.

2 Cardinal numbers

Definition 2.1. Let \mathscr{C} be a collection of sets. Define a binary relation \sim on \mathscr{C} by $A \sim B$ if and only if there exists a bijective map from A onto B. It is easy to see that \sim is an equivalence relation on \mathscr{C} . For any $A \in \mathscr{C}$, the equivalence class, $\{B \in \mathscr{C} \mid B \sim A\}$ of A under the equivalence relation \sim is said to be the *cardinal number* of A and is denoted by |A|. Two sets A and B are said to be

numerically equivalent if $A \sim B$, i.e., |A| = |B|. For convenience, we write $n = |\{1, 2, ..., n\}|$ for any $n \in \mathbb{N}$ and $|\emptyset| = 0$. A set A is called *finite* if |A| = 0 or |A| = n, i.e., if there exists a bijective map from A onto $\{1, 2, ..., n\}$ for some $n \in \mathbb{N}$. A set is *infinite* if it is not finite, i.e., if there does not exist a bijective map from A onto $\{1, 2, ..., n\}$ for any $n \in \mathbb{N}$. A cardinal number is said to be *infinite* (resp. *finite*) if it is the cardinal number of an infinite set (resp. finite set). The cardinal number of \mathbb{N} is denoted by \aleph_0 .

Theorem 2.2. (Schroeder-Bernstein Theorem) Let X and Y be two nonempty sets such that there exist injective maps $f: X \longrightarrow Y$ and $g: Y \longrightarrow X$. Then there exists a bijective map from X onto Y (for proof, see Simmons Pg 29–30).

Definition 2.3. Let \mathscr{C} be a collection of sets. Define $|A| \leq |B|$ if and only if there exists an injective map from A into B. Then by Schroeder-Bernstein Theorem, we have \leq is a partial order relation on \mathscr{C} . We write |A| < |B| if $|A| \leq |B|$ and $|A| \neq |B|$, i.e., if there exists an injective map from A into B, but there does not exist any bijective map from A onto B or, equivalently, there does not exist any injective map from B into A. For example, $|A| < |\mathscr{P}(A)|$ for any set A, where $\mathscr{P}(A)$ denotes the set of all subsets of A. We denote $|\mathscr{P}(A)| = 2^{|A|}$.

Theorem 2.4. (Cardinal Arithmatics) Let A, B be two sets such that $A \cap B = \emptyset$. Let $\alpha = |A|$ and $\beta = |B|$. Define $\alpha + \beta = |A \cup B|$, $\alpha\beta = |A \times B|$ and $\alpha^{\beta} = |A^B|$, where A^B denotes the set of all maps from B into A. Then

1.
$$\alpha + \beta = \beta + \alpha$$
, $\alpha\beta = \beta\alpha$

2.
$$\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$$
, $\alpha(\beta \gamma) = (\alpha \beta) \gamma$.

3.
$$\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$$
.

4.
$$\alpha^{(\beta+\gamma)} = \alpha^{\beta} \cdot \alpha^{\gamma}$$
.

5.
$$(\alpha\beta)^{\gamma} = \alpha^{\gamma} \cdot \beta^{\gamma}$$
.

6.
$$(\alpha^{\beta})^{\gamma} = \alpha^{\beta\gamma}$$
.

7.
$$\alpha \leq \beta \Longrightarrow \alpha + \gamma \leq \beta + \gamma$$
, $\alpha \gamma \leq \beta \gamma$, $\alpha^{\gamma} \leq \beta^{\gamma}$, $\gamma^{\alpha} \leq \gamma^{\beta}$.

8.
$$\alpha < \alpha + \beta$$
, $\alpha < \alpha\beta$ (for $\beta \neq 0$).

9.
$$\alpha < 2^{\alpha}$$
.

For all infinite cardinal numbers α, β , the following results hold:

10.
$$\aleph_0 \leq \alpha$$
, $n < \alpha$ for all $n \in \mathbb{N}$.

11.
$$\alpha + \alpha = \alpha$$
, $\alpha \alpha = \alpha$, $\alpha \alpha = \alpha$, $\alpha^n = \alpha$ for all $n \in \mathbb{N}$.

12. $\alpha \leq \beta \Longrightarrow \alpha + \beta = \beta$, $\alpha\beta = \beta$. In particular, $\aleph_0 + \alpha = \alpha$, $\aleph_0\alpha = \alpha$.

Proof. Below we prove (6). Others are left as exercises.

Let A, B, C be three sets such that $\alpha = |A|$, $\beta = |B|$ and $\gamma = |C|$.

Define the map $\phi: (A^B)^C \longrightarrow A^{B \times C}$ by $\phi(f)(b,c) = f(c)(b)$ for all $b \in B$ and $c \in C$. Note that the maps have the following domains and co-domains: $\phi(f): B \times C \longrightarrow A, f: C \longrightarrow A^B, f(c): B \longrightarrow A$ for all $c \in C$. Now

$$\phi(f_1) = \phi(f_2)$$

$$\Rightarrow \phi(f_1)(b,c) = \phi(f_2)(b,c) \text{ for all } b \in B, c \in C$$

$$\Rightarrow f_1(c)(b) = f_2(c)(b) \text{ for all } b \in B, c \in C$$

$$\Rightarrow f_1(c) = f_2(c) \text{ for all } c \in C$$

$$\Rightarrow f_1 = f_2.$$

Therefore ϕ is injective.

Let $F \in A^{B \times C}$. Define $f: C \longrightarrow A^B$ by f(c)(b) = F(b,c) for all $b \in B$, $c \in C$. Then

$$c_1 = c_2$$

$$\implies (b, c_1) = (b, c_2) \text{ for all } b \in B$$

$$\implies F(b, c_1) = F(b, c_2) \text{ for all } b \in B$$

$$\implies f(c_1)(b) = f(c_2)(b) \text{ for all } b \in B$$

$$\implies f(c_1) = f(c_2).$$

So f is well-defined. Also $\phi(f)(b,c)=f(c)(b)=F(b,c)$ for all $b\in B, c\in C$. Thus $\phi(f)=F$. Therefore ϕ is surjective and hence bijective. So we have $|(A^B)^C|=|A^{B\times C}|$, i.e., $(\alpha^\beta)^\gamma=\alpha^{\beta\gamma}$. \square

Definition 2.5. A set is A called *countable* if $|A| \leq \aleph_0$. All finite sets are countable. A countable infinite set is called *countably infinite*. A set A is called *uncountable* if it is not countable ($|A| > \aleph_0$), i.e., if there does not exist any injective map from A into \mathbb{N} . The set \mathbb{R} of all real numbers is uncountable. The cardinal number of \mathbb{R} is denoted by c.

Theorem 2.6. The following results hold:

- 1. Let A be an infinite subset of \mathbb{N} . Then $|A| = \aleph_0$.
- 2. Let A be an infinite set and B be a finite set. Then $|A \cup B| = |A|$. If C is a finite subset of A, then $|A \setminus C| = |A|$.
- 3. Let A be an infinite set. Then there exists a subset B of A such that $|B| = |\mathbb{N}|$. That is, every infinite set contains a copy of \mathbb{N} .
- 4. A set is infinite if and only if it has a bijection with a proper subset of itself.

- 5. Let $\{A_i \mid i \in I\}$ be a collection of sets such that $|A_i| \leq \aleph_0$, where $I \subseteq \mathbb{N}$. Then $|\bigcup_{i \in I} A_i| \leq \aleph_0$. That is, countable union of countable sets is countable.
- 6. $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$, i.e., $\aleph_0^2 = \aleph_0$. In general, $\aleph_0^n = \aleph_0$ for all $n \in \mathbb{N}$.
- 7. The set \mathbb{Z} of all integers and the set \mathbb{Q} of all rational numbers are countable, i.e., $|\mathbb{Z}| = \aleph_0$ and $|\mathbb{Q}| = \aleph_0$.
- 8. Let A be an infinite subset of \mathbb{Q} , then $|A| = \aleph_0$.
- 9. $|\mathbb{Q}^n| = \aleph_0 \text{ for all } n \in \mathbb{N}. \ |\bigcup_{i \in I} A_i| \leq \aleph_0 \text{ where } A_i \subseteq \mathbb{Q} \text{ for all } i \in I \subseteq \mathbb{N}.$
- 10. Let A, B be two non-empty sets, $f: A \longrightarrow B$ be a surjective map and A is countable. Then B is also countable, i.e., image of a countable set is countable.
- 11. $c > \aleph_0$, i.e., the set of real numbers is uncountable.
- 12. $2^{\aleph_0} = c$, i.e., $|\mathbb{R}| = |\mathscr{P}(\mathbb{N})|$.
- 13. For any a < b in \mathbb{R} , $c = |\mathbb{R}| = |(a,b)| = |[a,b]| = |[a,b)| = |(a,b)| = |(0,1)| = |[0,1]| = |[0,1]| = |[0,1]|$.
- 14. $|\mathbb{N} \times \mathbb{R}| = |\mathbb{Q} \times \mathbb{R}| = |\mathbb{R} \times \mathbb{R}| = |\mathbb{R}^n| = |\mathbb{R}^{\mathbb{N}}| = |\mathbb{R}| = c \text{ for all } n \in \mathbb{N}. \text{ Note that } c^{\aleph_0} = c.$
- 15. $|\mathbb{N}^{\mathbb{R}}| = |\mathbb{Q}^{\mathbb{R}}| = |\mathbb{R}^{\mathbb{R}}| = 2^{c}$. Note that, $\aleph_0^c = c^c = 2^{c}$.

3 Properties of rational numbers

Theorem 3.1. \mathbb{Q} is densely ordered, i.e., between any two rational numbers, there exist infinite number of rational numbers.

Hint: $a < \frac{a+b}{2} < b$, $a < \frac{a+\frac{a+b}{2}}{2} < \frac{a+b}{2}$ and so on.

Theorem 3.2. \mathbb{Q} is archimedian ordered, i.e., for any $a,b \in \mathbb{Q}$ with a,b > 0, there exists $n \in \mathbb{N}$ such that nb > a.

Proof. Suppose $nb \leq a$ for all $n \in \mathbb{N}$. Then $\frac{nb}{a} \leq 1 \leq m$ for all $m, n \in \mathbb{N} \Longrightarrow \frac{n}{m} \leq \frac{a}{b}$ for all $m, n \in \mathbb{N} \Longrightarrow x \leq \frac{a}{b}$ for all $x \in \mathbb{Q}^+$, which is a contradiction (as $\frac{a}{b} + 1 > \frac{a}{b}$).

Proposition 3.3. \mathbb{Q} does not have the lub property.

Proof. Let $A = \{x \in \mathbb{Q} \mid x > 0, \ x^2 < 2\}$. Now A is bounded above as x < 2 for all $x \in A$. Let $x \in A$. Define $y = \frac{2x+2}{x+2} = x + \frac{2-x^2}{x+2}$. Since $x^2 < 2$, y > x. Also $2 - y^2 = \frac{2(2-x^2)}{(x+2)^2} > 0$. Thus $y^2 < 2$ and so $y \in A$. Therefore for each $x \in A$, there is a y in A such that y > x, i.e., A has no greatest element. Again let $B = \{x \in \mathbb{Q} \mid x > 0, \ x^2 > 2\}$. Let $x \in B$. Define $y = x - \frac{x^2-2}{x+2} = \frac{2x+2}{x+2}$. Then 0 < y < x and $y^2 > 2$. So B has no least element. Finally, there is no rational number y such that $y^2 = 2$ (surely, its proof is known to you). Thus A has no lub.

4 Properties of \mathbb{R}

Theorem 4.1. \mathbb{R} is archimedean ordered, i.e., for any $x, y \in \mathbb{R}$ with x > 0, there exists $n \in \mathbb{N}$ such that nx > y.

Proof. Let $A = \{nx \mid n \in \mathbb{N}\}$. If the result is not true, then y is an upper bound of A. But then A has a lub in \mathbb{R} . Let $\alpha = \sup(A)$. Since x > 0, $\alpha - x < \alpha$ and $\alpha - x$ is not an upper bound of A. Then $\alpha - x < mx$ for some $m \in \mathbb{N}$. But then $\alpha < (m+1)x \in A$ which is impossible as $\alpha = \sup(A)$.

Theorem 4.2. \mathbb{Q} is dense in \mathbb{R} , i.e., if $x, y \in \mathbb{R}$ with x < y, then there exists $p \in \mathbb{Q}$ such that x .

Proof. We have y - x > 0. So there exists $n \in \mathbb{N}$ such that n(y - x) > 1, i.e., ny > 1 + nx Also $m_1, m_2 \in \mathbb{N}$ such that $m_1 \cdot 1 > nx$ and $m_2 \cdot 1 > -nx$. Then $-m_2 < nx < m_1$. This implies there exists $m \in \mathbb{Z}$ such that $m - 1 \le nx < m$. Therefore $nx < m \le 1 + nx < ny$ which implies $x < \frac{m}{n} < y$. This proves the result for $p = \frac{m}{n}$.

Definition 4.3. (Limit points of a subset of \mathbb{R}): Let $S \subseteq \mathbb{R}$ and $x \in \mathbb{R}$. Then x is called a limit point of S if for every $\delta > 0$, $(x - \delta, x + \delta) \cap (S \setminus \{x\}) \neq \emptyset$. In other words, every neighborhood of x contains at least one point of S different from x itself, where $N \subseteq \mathbb{R}$ is a neighborhood of x if there exists $\delta > 0$, $\delta \in \mathbb{R}$ such that $(x - \delta, x + \delta) \subseteq N$. It is important to understand that δ in the definition of a limit point is arbitrary, i.e., the condition holds for ANY δ (i.e., δ can be as small as you please. But do not romanticize δ to be the length of a very small nano particle! It is simply, arbitrary). Another important thing to note in the definition of a limit point is that $(x - \delta, x + \delta) \cap (S \setminus \{x\}) \neq \emptyset \iff (x - \delta, x + \delta) \cap S$ is infinite (prove!). Finally, note that the limit of a sequence of real numbers is not the same as limit points. For example, the limit of the constant sequence $\{1, 1, 1, \ldots\}$ is 1. But as a set, $\{1, 1, 1, \ldots\} = \{1\}$ and it has no limit points (prove!).

Example 4.4. For example, 0 and 1 are limit points of the set $\{x \in \mathbb{R} \mid 0 < x < 1\}$, i.e., the open interval (0,1). Note that for any $\delta > 0$, $(-\delta,\delta) \cap (0,1) \neq \emptyset$ as $0 < \frac{\delta}{2} < \delta < 1$ for $\delta < 1$ and $(0,1) \subseteq (-\delta,\delta)$ for $\delta \geq 1$. Similarly, $(1-\delta,1+\delta) \cap (0,1) \neq \emptyset$ as $0 < 1-\delta < 1-\frac{\delta}{2} < 1$ for $\delta < 1$ and $(0,1) \subseteq (1-\delta,1+\delta)$ for $\delta \geq 1$. Another example is that 0 is a limit point of set $\left\{\frac{1}{n} \mid n \in \mathbb{N}\right\} = \left\{1,\frac{1}{2},\frac{1}{3},\frac{1}{4},\cdots\right\}$ as for any $\delta > 0$, there exists $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < \delta$.

Now which subsets of \mathbb{R} always have limit points? Note that the set $\{1,2,3\}$ is finite and bounded, but it has no limits points (prove!). Also $\mathbb{N} = \{1,2,3,\ldots\}$ is infinite and not bounded. It has also no limit points (prove!).

Theorem 4.5. (Bolzano-Weirstrass Theorem) Every bounded infinite subset of \mathbb{R} has a limit point.

Proof. Let S be a bounded infinite subset of \mathbb{R} . Since S is bounded, we have, $S \subseteq [a, b]$ for some $a, b \in \mathbb{R}$ with $a \leq b$. Let $A = \{x \in \mathbb{R} \mid x \text{ exceeds only a finite number of elements of } S\}$. Now

 $A \neq \emptyset$ as $a \in A$. Also A is bounded above. In fact, for all $x \in A$, x < b as for any $y \in \mathbb{R}$ with $y \ge b$ exceeds infinite number of elements of S (in fact, all elements of S and S is infinite). Thus by lub property, A has an lub, say, $r \in \mathbb{R}$.

We show that r is a limit point of S. Let $\delta > 0$. Then $r - \delta \in A$ and $r + \delta \notin A$. Thus $(r - \delta, r + \delta) \cap S$ contains infinite number of elements of S. This implies r is a limit point of S.

4.1 Decimal expansion of Real numbers

Let x > 0, $x \in \mathbb{R}$. Let n_0 be the largest integer such that $n_0 \le x$.

Having chosen $n_0, n_1, \ldots, n_{k-1}$, let n_k be the largest integer such that $n_0 + \frac{n_1}{10} + \cdots + \frac{n_k}{10^k} \leq x$.

Let $E = \{n_0 + \frac{n_1}{10} + \dots + \frac{n_k}{10^k} \mid k = 0, 1, 2, 3, \dots\}$. Then $x = \sup(E)$. The decimal expansion of x is given by $n_0.n_1n_2...n_k...$

- \Diamond **Exercise 4.1.** Prove that \mathbb{R} has the glb property.
- \Diamond **Exercise 4.2.** Find lub and glb of the following subsets of \mathbb{R} :

1.
$$S = \{1 + \frac{1}{n} \mid n \in \mathbb{N}\},\$$

$$2. S = \left\{ \frac{n}{n+2} \mid n \in \mathbb{N} \right\}.$$

- \Diamond **Exercise 4.3.** Let $\emptyset \neq S, T \subseteq \mathbb{R}$ be two bounded sets. Prove the following:
 - 1. $S \subseteq T \Longrightarrow \inf(T) \le \sup(S) \le \sup(S) \le \sup(T)$.
 - 2. If $M = \{x \in \mathbb{R} \mid -x \in S\}$, then $\sup(M) = -\inf(S)$ and $\inf(M) = -\sup(S)$.
 - 3. If $A = \{x + y \mid x \in S, y \in T\}$, then $\sup(A) = \sup(S) + \sup(T)$ and $\inf(A) = \inf(S) + \inf(T)$.
 - 4. If $B = \{|x y| \mid x, y \in S\}$, then $\sup(B) = \sup(S) \inf(S)$ and $\inf(B) = 0$.