微分方程数值解计算实习 Lecture 8

朱荃凡

(吉林大学数学系计算唐班)

2023年5月5日

如图所示, Ω 表示 $[0,1]^2$ 的区域, $\Gamma_1,\Gamma_2,\Gamma_3,\Gamma_4$ 是它的四条边:

利用三角剖分线性元元求解区域 Ω 区域上的偏微分问题:

$$\begin{cases}
-\Delta u - 2\pi^2 u = -2\pi^2 xy, & \text{in } \Omega, \\
u(x,y) = 0, & \text{in } \Gamma_1, \Gamma_3, \\
\partial_x u(x,y) = y - \pi \sin(\pi y), & \text{in } \Gamma_2, \\
\partial_y u(x,y) = x - \pi \sin(\pi x), & \text{in } \Gamma_4.
\end{cases}$$
(0.1)

其相应的的真解为

$$u^* = xy + \sin(\pi x)\sin(\pi y). \tag{0.2}$$

求数值解的网点 C- 范数和 0- 范数误差并画出误差图.

1 算法设计

在课件中给出了边值条件的两种的处理方式——数值微商法和有限体积法. 使用同样的方式, 可以得到右上顶角处的方程.

数值微商法:

$$\left[\frac{u(x_{N-1}, y_N) - u(x_N, y_N)}{h^2}\right] + \left[\frac{u(x_N, y_{N-1}) - u(x_N, y_N)}{h^2}\right] + q(x_N, y_N)u(x_N, y_N)
= f(x_N, y_N) - \frac{1}{h}(u_x(x_N, y_N) + u_y(x_N, y_N)).$$
(1.1)

有限体积法:

$$\left[\frac{u(x_{N-1}, y_N) - u(x_N, y_N)}{2h^2}\right] + \left[\frac{u(x_N, y_{N-1}) - u(x_N, y_N)}{2h^2}\right] + \frac{1}{4}q(x_N, y_N)u(x_N, y_N)
= \frac{1}{4}f(x_N, y_N) - \frac{1}{2h}\left(u_x(x_N, y_N) + u_y(x_N, y_N)\right).$$
(1.2)

2 程序结果

2.1 不同边值方法下的误差

建于数值解和真解的图像我们已经在往期报告中看过许多次了,这回换一种表现方式.

在此问题中, 我们使用均匀剖分. 设剖分数为 N, 此时 x 轴和 y 轴均被 N 等分, 区域 Ω 上有 N^2 个小正方形单元和 $(N+1)^2$ 个剖分节点, 也就是自由度. 当 N=4 时, 剖分如下所示

取剖分数 $N=10k(1 \le k \le 10)$,分别计算出两种边值条件处理方式下的数值解与真解的 $||\cdot||_C$ 误差和 $||\cdot||_0$ 误差. 得到如下表格.

比较奇怪的一点是数值微商法居然比有限体积法拥有更高的精度, 难道是我公式推导有问题?

表 1: 数值解和真解的误差

自由度	数值微商法		有限体积法	
	· C 误差	· 0 误差	· _C 误差	· 0 误差
100	0.01875	0.02958	0.02688	0.04655
400	0.00643	0.01459	0.00737	0.01675
900	0.00304	0.00851	0.00345	0.00922
1600	0.00175	0.00570	0.00200	0.00603
2500	0.00114	0.00415	0.00130	0.00433
3600	0.00082	0.00319	0.00091	0.00331
4900	0.00061	0.00255	0.00068	0.00263
6400	0.00048	0.00210	0.00052	0.00216
8100	0.00038	0.00177	0.00041	0.00181
10000	0.00031	0.00152	0.00034	0.00155

2.2 收敛阶

两种边值方法的收敛阶是一样的, 这边以有限体积法为例. 可以看出 $||\cdot||_C$ 误差的收敛速度为二阶, $||\cdot||_0$ 误差的收敛速度为 1.5 阶, 可见收敛速度和维度有关.

