Multiplexer

Lecture by

Ganaraj P S

School of Electronics Engineering

Outline

- 2 × 1 Multiplexer
- 4 × 1 Multiplexer
- 8 × 1 Multiplexer
- Higher-order Multiplexer design
- Boolean function realization using Multiplexers

What is a Multiplexer?

General diagram

$2 \times 1 MUX$

Working of 2×1 MUX

Truth table

Select line, S	Output, Y
0	I_0
1	I_1

Logic expression

Circuit based on AND-OR-Inverter logic

Analyzing Circuit Operation

- NAND based circuit
- $\bullet \ Y = I_0 \overline{S} + I_1 S$
- $\overline{Y} = \overline{I_0 \overline{S} + I_1 S}$
- $\overline{Y} = \overline{I_0 \overline{S}} \ \overline{I_1 S}$
- $\overline{\overline{Y}} = Y = \overline{\overline{I_0}\overline{S}} \ \overline{I_1}S$

NAND based circuit

$$\begin{array}{c} \bullet \ Y = I_0 \bar{S} + I_1 S \\ \bullet \ \bar{Y} = \overline{I_0 \bar{S}} + I_1 S \\ \bullet \ \bar{Y} = \overline{I_0 \bar{S}} \ \overline{I_1 S} \\ \bullet \ \bar{Y} = Y = \overline{\overline{I_0 \bar{S}}} \ \overline{I_1 S} \end{array}$$

NAND based circuit

NAND based circuit

•
$$Y = I_0 \bar{S} + I_1 S$$

• $\bar{Y} = \overline{I_0 \bar{S} + I_1 S}$
• $\bar{Y} = \overline{I_0 \bar{S}} \ \overline{I_1 S}$
• $\bar{\bar{Y}} = Y = \overline{\overline{I_0 \bar{S}}} \ \overline{I_1 S}$

$4 \times 1 MUX$

S_1	S_0	Y
0	0	I_0
0	1	I_1
1	0	I_2
1	1	I_3

$$Y = \overline{S_1} \, \overline{S_0} \, I_0 + \overline{S_1} S_0 I_1 + S_1 \, \overline{S_0} \, I_2 + S_1 \, S_0 I_3$$

$8 \times 1 MUX$

S_2	S_1	S_0	Y
0	0	0	I_0
0	0	1	I_1
0	1	0	I_2
0	1	1	I_3
1	0	0	I_4
1	0	1	I_5
1	1	0	I_6
1	1	1	I_7

4×1 MUX using 2×1 MUX

$$Y = \overline{S_1} \, \overline{S_0} \, I_0 + \overline{S_1} S_0 I_1 + S_1 \, \overline{S_0} \, I_2 + S_1 \, S_0 I_3$$

$$= (\overline{S_0} \, I_0 + S_0 \, I_1) \overline{S_1} + (\overline{S_0} \, I_2 + S_0 \, I_3) S_1 = Y_1 \overline{S_1} + Y_2 S_1$$

$$I_0 \longrightarrow I_2 \longrightarrow I_1 \longrightarrow I_2 \longrightarrow I_2 \longrightarrow I_3$$

$$I_1 \longrightarrow I_2 \longrightarrow I_3 \longrightarrow I_3 \longrightarrow I_3$$

4×1 MUX using 2×1 MUX

4×1 MUX using 2×1 MUX

8×1 MUX using 4×1 and 2×1 MUX

Implementation of Boolean Functions Using MUX

• Implement the following function with a 4×1 MUX:

$$F(a, b, c) = \sum m(1,3,5,6)$$

 Solution: Step 1- Construct a truth table

• Implement the following function with a 4×1 MUX:

$$F(a, b, c) = \sum m(1,3,5,6)$$

- Implement the function $F(a,b,c)=ab+\overline{b}\ c$ using a 4×1 MUX.
- Solution:
- Express in terms of minterms
- $F(a, b, c) = ab + \overline{b} c = 11X + X01 = 110 + 111 + 001 + 101$
- $F(a, b, c) = \sum m(1,5,6,7)$

• Implement the function $F(a,b,c)=ab+\overline{b}\ c$ using a 4×1 MUX.

• Solution:

• $F(a, b, c) = \sum m(1,5,6,7)$

• Implement the function $F(a,b,c)=ab+\overline{b}\ c$ using a 4×1 MUX.

• Implement the following logic function using an 8×1 MUX:

$$F(A, B, C, D) = \prod M(0,2,5,6,7,8,9,10)$$

Solution is shown in the next slide

END