

การศึกษาความสัมพันธ์ทางคณิตศาสตร์จากเกมหนูลอดบ่วง The Study of Mathematical Relationship from Desperado Puzzle

โดย

นายณัฐวีฬ์ เกิงฝาก โรงเรีนนจุฬาภรณราชวิทยาลัย ปทุมธานี (โรงเรียนวิทยาศาสตร์ภูมิภาค)

โครงงานนี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรโรงเรียนจุฬาภรณราชวิทยาลัย
(โรงเรียนวิทยาศาสตร์ภูมิภาค)
โรงเรียนจุฬาภรณราชวิทยาลัย ปทุมธานี
ปีการศึกษา 2560

การศึกษาความสัมพันธ์ทางคณิตศาสตร์จากเกมหนูลอดบ่วง The Study of Mathematical Relationship from Desperado Puzzle

โดย

นายณัฐวีฬ์ เกิงฝาก โรงเรีนนจุฬาภรณราชวิทยาลัย ปทุมธานี (โรงเรียนวิทยาศาสตร์ภูมิภาค)

> **อาจารย์ที่ปรึกษา** นายสุเทพ ผานัด

ชื่อโครงงาน การศึกษาความสัมพันธ์ทางคณิตศาสตร์จากเกมหนูลอดบ่วง

ผู้พัฒนาโครงงาน นายณัฐวีห์ เกิงฝาก

อาจารย์ที่ปรึกษา นายสุเทพ ผานัด

โรงเรียน จุฬาภรณราชวิทยาลัย ปทุมธานี (โรงเรียนวิทยาศาสตร์ภูมิภาค)

ที่อยู่ 51 หมู่ 6 ตำบลบ่อเงิน อำเภอลาดหลุมแก้ว จังหวัดปทุมธานี 12140

โทรศัพท์ 02-599-4462 ต่อ 133 **โทรสาร** 02-599-4462 ต่อ 133

ระยะเวลาในการทำโครงงาน พฤศจิกายน 2559 - กุมภาพันธ์ 2561

บทคัดย่อ

จากความสนใจของผู้พัฒนาที่ต้องการศึกษาเกี่ยวกับการแก้ปัญหาเกมหนูลอดบ่วง เพื่อศึกษา ความสัมพันธ์ทางคณิตศาสตร์จากผลของการแก้ปัญหาเกม โดยการแก้ปัญหานั้นได้ยึดหลักการแก้ปัญหาจาก บริษัท puzzle master โดยการศึกษาความสัมพันธ์ของตำแหน่งของการเปลี่ยนตำแหน่งของเชือกที่คล้องไป ในตำแหน่งต่างๆในเกมหนูลอดบ่วง และ จำนวนครั้งที่ในการนำเชือกคล้องผ่านเสาสุดท้ายของเกมหนูลอดบ่วง เพื่อหาจำนวนครั้งในการนำเชือกคล้องผ่านเสาแรกสำหรับหนูลอดบ่วงจำนวนห่วงใดๆและในที่สุดนั้นผู้พัฒนา ทำการศึกษาความสัมพันธ์ทางคณิตศาสตร์ต่อและใช้ความสัมพันธ์นั้นนำมาหาความสัมพันธ์ใหม่อีกรอบเพื่อ เพิ่มประโยชน์ที่ได้รับในการคิดคำนวนต่อไป

กิตติกรรมประกาศ

โครงงานคณิตศาสตร์เรื่องนี้ประกอบด้วยการดำเนินงานหลายขั้นตอน นับตั้งแต่คิดริเริ่มหาหัวข้อที่ สนใจ ศึกษาหาข้อมูล เริ่มทดลอง หาความสัมพันธ์จากผลการทดลอง การจัดทำโครงงานเป็นรูปเล่ม ตลอดจน กระทั่งโครงงานสำเร็จลุล่วงไปด้วยดี ผู้พัฒนาโครงงานได้รับความช่วยเหลือ คำแนะนำ และกำลังใจจากบุคคล หลายๆท่าน ผู้พัฒนาโครงงานตระหนักและซาบซึ้งในความกรุณาจากทุกๆท่านอย่างยิ่ง ณ โอกาสนี้ ขอขอบคุณ ทุกๆท่านดังนี้

ขอขอบคุณ อาจารย์สุเทพ ผานัด อาจารย์ที่ปรึกษา และอาจารย์ในกลุ่มสาระการเรียนรู้ คณิตศาสตร์ โรงเรียนจุฬาภรณราชวิทยาลัย ปทุมธานี ทุกคนที่คอยดูแลเอาใจใส่และให้คำปรึกษาเป็นอย่างดี

ขอขอบคุณ ผู้อำนวยการโรงเรียนจุฬาภรณราชวิทยาลัย ปทุมธานี ดร.สมร ปาโท ที่ให้ความ อนุเคราะห์ และความช่วยเหลือในด้านต่างๆ

ขอขอบคุณ คณาจารย์ รุ่นพี่ เพื่อน ทุกๆคนที่คอยให้กำลังใจจนโครงงานนี้ประสบความสำเร็จไปได้

สุดท้ายนี้ ขอกราบขอบพระคุณ คุณพ่อและคุณแม่ ผู้เป็นที่รัก ผู้ให้กำลังใจและให้โอกาสการศึกษา อันมีค่ายิ่ง

ผู้พัฒนาโครงงาน

สารบัญ

	หน้า
บทคัดย่อ	ก
กิตติกรรมประกาศ	ข
สารบัญ	ค
สารบัญตาราง	9
สารบัญรูปภาพ	จ
บทที่ 1 บทนำ	1
1.1 ที่มาและความสำคัญ	1
1.2 วัตถุประสงค์	1
1.3 สมมติฐาน	1
1.4 ตัวแปรที่ศึกษา	2
1.5 ขอบเขตที่ศึกษา	2
1.6 นิยามเชิงปฏิบัติการ	3
บทที่ 2 เอกสารและงานวิจัยที่เกี่ยวข้อง	4
2.1 ซัมเมชั่น	4
2.2 การแก้ปัญหาเกมหนูลอดบ่วง	5
บทที่ 3 วิธีการดำเนินการทดลอง	6
3.1 วัสดุอุปกรณ์	6
3.2 วิธีการดำเนินงาน	6
บทที่ 4 การทดลองและผลการทดลอง	7
4.1 ผลการทดลองในรูปแบบการแก้ปัญหา	7
4.2 ผลการทดลองในรูปแบบจำนวนการแก้ปัญหา	8
4.3 การหาความสัมพันธ์จากการแก้ปัญหาเกมหนูลอดบ่วง	8
4.4 การสร้างสมการจากความสัมพันธ์ที่ได้จากการแก้ปัญหา	9
4.5 สร้างสมการใหม่เพื่อเพิ่มประโยชน์ที่ได้รับจากสมการแสดงความสัมพันธ์	11
บทที่ 5 สรุปผลการทดลอง อภิปรายผลและข้อเสนอแนะ	14
5.1 สรุปผลการทดลอง	14
5.2 อภิปรายผลการทดลอง	
5.3 ข้อเสนอแนะ	16
บรรณานกรม	17

สารบัญตาราง

	หน้า
4.1 ตารางบันทึกผลรูปแบบในการแก้ปัญหา	7
4.2 ตารางบันทึกผลจำนวนในการแก้ปัญหา	8

สารบัญรูปภาพ

	หน้า
1.1 หนูลอดบ่วงแบบ 4 ห่วง	3
1.2 การแก้ปัญหาเกมหนูลอดบ่วงแบบ 4 ห่วงจาก puzzle master	4
4.1 แผนภาพแสดงความสัมพันธ์ของสมการ	11
4.2 แผนภาพแสดงความสัมพันธ์ของสมการ	12

บทที่ 1

บทนำ

1.1 ที่มาและความสำคัญ

การศึกษาคณิตศาสตร์หมายถึงการพยายามอธิบายถึงโครงสร้าง ความสัมพันธ์ระเบียบรูปแบบแบบ แผนต่าง ๆ โดยอาศัยภาษาทางคณิตศาสตร์มาอธิบายรูปแบบด้วยการศึกษาความสัมพันธ์ แบบแผนต่าง ๆ โดย นักคณิตศาสตร์ สามารถนำไปศึกษาสิ่งใด ๆ ในธรรมชาติ เช่น แบบแผนที่สมมาตรกันของดอกไม้ แบบแผนที่ ซับซ้อนของเงื่อนปมต่าง วงโคจรของกระสวยอวกาศที่โคจรนอกโลก แบบแผนของลายจุดบนแผ่นหนังของเสือ ดาว รูปแบบ Keith Devlin เห็นว่าถ้าโลกนี้ปราศจากนักคณิตศาสตร์ เราคงไม่เข้าใจว่าอะไรทำให้ชิ้นเหล็ก ขนาดใหญ่ลอยอยู่ได้ในอากาศโดยที่ไม่มีอะไรยกมันไว้ (เหลืองวิสุทธิ์, 2553)

ซัสคิน (Zuskin, 1995) ได้ทำวิจัยของผลเกมที่มีต่อการเพิ่มขึ้นของความสนใจและผลสัมฤทธิ์ทางการ เรียนวิชาคณิตศาสตร์ระดับมัธยมศึกษาเรื่องการคำนวนเศษส่วนกับนักเรียนเกรด 7 โดยมีกลุ่มตัวอย่าง 2 กลุ่ม คือ กลุ่มทดลองเล่นเกมคณิตศาสตร์ เป็นการเสริมบทเรียนก่อนสอนทักษะทางคณิตศาสตร์และกลุ่มควบคุมอีก กลุ่มให้ฝึกหัดด้วยสมุดแบบฝึกหัด ผู้พัฒนาจึงเล็งเห็นถึงข้อดังกล่าวว่า เกมคณิตศาสตร์ต่าง ๆ อาจมี ความสัมพันธ์ทางคณิตศาสตร์อยู่ในเกมปริศนานั้น

ผู้พัฒนาต้องการศึกษาความสัมพันธ์ทางคณิตศาสตร์ในเกมคณิตศาสตร์ ปริศนาหนูลอดบ่วงซึ่งเป็น เกมทางคณิตศาสตร์ชนิดหนึ่ง โดยผู้พัฒนาคาดว่าสามารถสร้างสมการทางคณิตศาสตร์จากการแก้ปัญหาเกมได้ จึงมีความสนใจและว่า เหมาะสมแก่การนำมาศึกษาต่อ เพื่อสร้างสมการที่ช่วยในด้านการคำนวน หรือใช้เป็น รูปแบบของรหัสผ่านชนิดใหม่ และอาจนำมาเป็นหลักอธิบายปรากฏการณ์ธรรมชาติต่าง ๆ ที่จะเกิดในอนาคต

1.2 วัตถุประสงค์

- 1.2.1 เพื่อศึกษาความสัมพันธ์ของตัวเลขที่เกิดจากการแก้ปัญหาเกมหนูลอดบ่วง
- 1.2.2 เพื่อศึกษาจำนวนครั้งที่นำเชือกคล้องผ่านเสาแรกของหนูลอดบ่วงแบบห่วงใดๆ
- 1.2.3 เพื่อสร้างสมการแสดงความสัมพันธ์ของตัวเลขที่เกิดจากการแก้ปัญหาเกมหนูลอดบ่วง
- 1.2.4 เพื่อทดลองเพิ่มประโยชน์ของสมการแสดงความสัมพันธ์ของตัวเลขที่เกิดจากการแก้ปัญหาเกม หนูลอดบ่วง

1.3 สมมติฐาน

- 1.3.1 สามารถหาความสัมพันธ์ของตัวเลขที่เกิดจากการแก้ปัญหาเกมหนูลอดบ่วงได้
- 1.3.2 สามารถหาจำนวนครั้งที่นำเชือกคล้องผ่านเสาแรกของหนูลอดบ่วงที่มีจำนวนห่วงใดๆได้
- 1.3.3 สามารถสร้างสมการแสดงความสัมพันธ์ของตัวเลขที่เกิดจากการแก้ปัญหาเกมหนูลอดบ่วงได้
- 1.3.4 สามารถเพิ่มประโยชน์ของสมการแสดงความสัมพันธ์ของตัวเลขที่เกิดจากการแก้ปัญหาเกม หนูลอดบ่วงได้

1.4 ตัวแปรที่ศึกษา

1.4.1 ตัวแปรต้น

ตำแหน่งที่ใช้ศึกษาได้แก่

- ระหว่างตำแหน่ง 0-1 - ระหว่างตำแหน่ง 1-5 - ระหว่างตำแหน่ง 3-6 - ระหว่างตำแหน่ง 1-6 - ระหว่างตำแหน่ง 3-7 - ระหว่างตำแหน่ง 0-2 - ระหว่างตำแหน่ง 0-3 - ระหว่างตำแหน่ง 1-7 - ระหว่างตำแหน่ง 4-5 - ระหว่างตำแหน่ง 0-4 - ระหว่างตำแหน่ง 2-3 - ระหว่างตำแหน่ง 4-6 - ระหว่างตำแหน่ง 0-5 - ระหว่างตำแหน่ง 2-4 - ระหว่างตำแหน่ง 4-7 - ระหว่างตำแหน่ง 0-6 - ระหว่างตำแหน่ง 2-5 - ระหว่างตำแหน่ง 5-6 - ระหว่างตำแหน่ง 5-7 - ระหว่างตำแหน่ง 0-7 - ระหว่างตำแหน่ง 2-6 - ระหว่างตำแหน่ง 1-2 - ระหว่างตำแหน่ง 2-7 - ระหว่างตำแหน่ง 6-7 - ระหว่างตำแหน่ง 3-4 - ระหว่างตำแหน่ง 1-3 - ระหว่างตำแหน่ง 1-4 - ระหว่างตำแหน่ง 3-5

1.4.2 ตัวแปรตาม

รูปแบบการแก้ปัญหา จำนวนครั้งที่นำเชือกข้ามเสาที่ 0

1.4.3 ตัวแปรควบคุม

จำนวนห่วงที่ใช้ในการศึกษาเกมหนูลอดบ่วง คือ 7 ห่วงวิธีในการแก้ปัญหาเกม

1.5 ขอบเขตของการศึกษา

1.5.1 ขอบเขตด้านสถานที่

โรงเรียนจุฬาภรณราชวิทยาลัย ปทุมธานี 51 ตำบลบ่อเงิน อำเภอลาดหลุมแก้ว จังหวัดปทุมธานี 12140

1.5.2 ขอบเขตด้านระยะเวลา ระหว่างเดือน

พฤศจิกายน 2559 - กุมภาพันธ์ 2561

1.6 นิยามศัพท์เชิงปฏิบัติการ

หนูลอดบ่วงเป็นของเล่นคณิตศาสตร์ชนิดหนึ่งมีวิธีการเล่นโดยหาวิธีที่นำเชือกเข้าไปร้อยกับเสาที่ อยู่ในสุด ในงานวิจัยนี้เราได้เลือกใช้เป็นหนูลอดบ่วงแบบ 7 ห่วง

ภาพที่ 1.1 หนูลอดบ่วงแบบ 4 ห่วง

วิธีกำหนดเลขของเสา

เสาที่ 0 คือเสาที่อยู่นอกสุดที่ไม่มีห่วง เสาที่ 1 ถึงเสาที่ 7 คือนับถัดมาตามลำดับ

วิธีกำหนดตำแหน่ง

ตำแหน่งที่ 0 คือตำแหน่งระหว่างเสาที่ 0 ถึงเสาที่ 1

ตำแหน่งที่ 1 คือตำแหน่งระหว่างเสาที่ 1 ถึงเสาที่ 2

ตำแหน่งที่ 2 คือตำแหน่งระหว่างเสาที่ 2 ถึงเสาที่ 3

ตำแหน่งที่ 3 คือตำแหน่งระหว่างเสาที่ 3 ถึงเสาที่ 4

ตำแหน่งที่ 4 คือตำแหน่งระหว่างเสาที่ 4 ถึงเสาที่ 5

ตำแหน่งที่ 5 คือตำแหน่งระหว่างเสาที่ 5 ถึงเสาที่ 6

ตำแหน่งที่ 6 คือตำแหน่งระหว่างเสาที่ 6 ถึงเสาที่ 7

ตำแหน่งที่ 7 คือตำแหน่งระหว่างเสาที่ 7 ถึงตำแหน่งที่เชือกหลุดออก

วิธีกำหนดตัวดำเนินการในการแก้ปัญหาเกม

O คือ การนำเชือกร้อยผ่านช่องที่ไม่ได้มีส่วนที่ซ้อนทับกันกับห่วงของเสาถัดไป

คือ การนำเชือกร้อยผ่านช่องที่มีส่วนที่ซ้อนทับกันกับห่วงของเสาถัดไป
 เครื่องหมาย a-b หมายถึงการดำเนินการจากตำแหน่งที่ a ไปตำแหน่งที่ b โดยที่ a < b

บทที่ 2

เอกสารและงานวิจัยที่เกี่ยวข้อง

2.1 ซัมเมชัน (summation)

ซัมเมชัน หรือ ซิกมา ∑ ในปัจจุบันเป็นเครื่องหมายที่ใช้ในการหาผลรวมของลำดับที่เป็นรูปทั่วไป เป็นพหุนามกำลังไม่เกิน 3

ถ้าเราจะเขียน

ในรูปซิกมา เราสามารถเขียนได้ว่า

$$\sum_{n=1}^{100} n$$

เราสามารถใช้ตัวแปรในรูปแบบอื่นๆได้เช่น

$$\sum_{k=1}^{100} k = \sum_{l=1}^{100} l = \sum_{j=1}^{100} j$$

ยกตัวอย่างลำดับ

$$a^2 + (a + 1)^2 + (a + 2)^2 + ... + (b - 2)^2 + (b - 1)^2 + b^2$$
; b>a+2 จะเท่ากับ

$$\sum_{i=a}^{b} i^2$$

2.2 วิธีแก้ปัญหาเกมหนูลอดบ่วง

ในการแก้ปัญหาเกมหนูลอดบ่วงในปัจจุบันมีวิธีการแก้แค่วิธีเดียวโดยเราจะอิงวิธีการแก้ปัญหาเกม จากบริษัท puzzle master โดยอธิบายการแก้ปัญหาเกมหนูลอดบ่วงแบบ 4 ห่วง ไว้ดังภาพ

รูปที่ 2.1 วิธีการแก้ปัญหาเกมหนูลอดบ่วงแบบ 4 ห่วง จาก puzzle master

สังเกตได้ว่าหลังจากที่เรานำเชือกร้อยผ่านห่วงขึ้นมา ไม่ว่าช่องนั้นจะเป็นช่องของห่วงที่มีส่วนทับ ซ้อนกันกับห่วงที่ติดกันหรือไม่ ก็ล้วนคล้องเชือกผ่านเสาที่ 0 ทุกๆรอบของการดำเนินการแก้ปัญหา เราจึง สามารถเขียนสูตรสำเร็จในการเล่นเกมออกมาได้ในรูปของสายตัวอักษรและสามารถทราบจำนวนครั้งที่นำ เชือกคล้องผ่านเสาสุดท้ายโดยนับจากจำนวนขั้นตอนการดำเนินการในสูตรการแก้ปัญหานั้น ๆ

บทที่ 3

วิธีดำเนินการทดลอง

3.1 วัสดุอุปกรณ์และเครื่องมือพิเศษ

3.1.1 อุปกรณ์

หนูลอดบ่วง

3.1.2 เครื่องมือ

เครื่องพิมพ์ 3 มิติ

3.2ขั้นตอนการดำเนินงาน

- 3.2.1. ศึกษาวิธีการแก้ปัญหาเกมหนูลอดบ่วง
- 3.2.2. ทำการทดลองแล้วบันทึกข้อมูลลงตาราง
- 3.2.3. หาความสัมพันธ์ที่ได้จากการแก้ปัญหาเกมหนูลอดบ่วง
- 3.2.4. สร้างสมการจากความสัมพันธ์พร้อมแสดงแผนภาพที่มาของสมการ
- 3.2.5. ปรับปรุงสมการที่ได้จากการแก้ปัญหาเกมหนูลอดบ่วงเพื่อเพิ่มประโยชน์ที่ได้รับ

บทที่ 4 การทดลองและผลการทดลอง

4.1 ตารางบันทึกผลรูปแบบในการแก้ปัญหา

	รูปแบบของการแก้ปัญหา							
ตำแหน่ง	1	2	3	4	5	6	7	
0								
1								
2								
3								
4								
5								
6								

จากตารางสังเกตได้ว่า

การดำเนินการจาก a-b เท่ากับ การดำเนินการจาก a-c รวมกับ c-b โดยที่ a , b , c เป็นจำนวนเต็มที่ a < c < b

4.2 ตารางบันทึกผลจำนวนของการดำเนินงาน

	จำนวนของการดำเนินงาน							
ตำแหน่ง	1	2	3	4	5	6	7	
0	1	3	7	15	31	63	127	
1		2	6	14	30	62	126	
2			4	12	28	60	124	
3				8	24	56	120	
4					16	48	112	
5						32	96	
6							64	

4.3 การหาความสัมพันธ์จากแก้ปัญหาเกมหนูลอดบ่วง

กำหนดให้

0-1 แทนด้วย d[0] มีจำนวนดำเนินการ คือ $1=2^0$

1-2 แทนด้วย d(1) มีจำนวนดำเนินการ คือ $2=2^1$

2-3 แทนด้วย d[2] มีจำนวนดำเนินการ คือ $4=2^2$

3-4 แทนด้วย d[3] มีจำนวนดำเนินการ คือ $8=2^3$

4-5 แทนด้วย d[4] มีจำนวนดำเนินการ คือ $16=2^4$

5-6 แทนด้วย d[5] มีจำนวนดำเนินการ คือ $32=2^5$

6-7 แทนด้วย d[6] มีจำนวนดำเนินการ คือ $64=2^6$

n-(n+1) แทนด้วย d[n] มีจำนวนดำเนินการ คือ 2^n

จากค่าที่กำหนดให้สังเกตได้ว่า

$$d[6] = (2)(d[5])$$

$$d[5] = (2)(d[4])$$

$$d[4] = (2)(d[3])$$

$$d[3] = (2)(d[2])$$

$$d[2] = (2)(d[1])$$

$$d[1] = (2)(d[0])$$

จะเกิดการเวียนเกิดดังนี้

$$d[n] = (2)(d[n-1])$$

4.4 การสร้างสมการจากความสัมพันธ์

จากตารางที่ 4.2 พบว่า

$$0-2$$
 มีค่าเท่ากับ $3=2^1-1=d[0]+d[1]$
 $0-3$ มีค่าเท่ากับ $7=2^2-1=d[0]+d[1]+d[2]$
 $0-4$ มีค่าเท่ากับ $15=2^3-1=d[0]+d[1]+d[2]+d[3]$
 $0-5$ มีค่าเท่ากับ $31=2^4-1=d[0]+d[1]+d[2]+d[3]+d[4]$
 $0-6$ มีค่าเท่ากับ $63=2^5-1=d[0]+d[1]+d[2]+d[3]+d[4]+d[5]$
 $0-7$ มีค่าเท่ากับ $127=2^6-1=d[0]+d[1]+d[2]+d[3]+d[4]+d[5]+d[6]$
 $0-1$ มีค่าเท่ากับ $127=2^6-1=d[0]+d[1]+d[2]+d[3]+d[4]$

จะได้เป็นสมการ

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

โดยที่ n ∈ N

จากสมการ การแก้ปัญหาเกมหนูลอดบ่วงที่มีจำนวนห่วงใดๆ จะมีจำนวนครั้งในการนำเชือกคล้องผ่าน เสาแรกของหนูลอดบ่วง คือ

จะได้

$$\sum_{i=0}^{n-1} d[i] = \sum_{i=0}^{n-1} 2^i = 2^n - 1$$

จาก
$$0-n$$
 มีค่าเท่ากับ $2^n-1=d[0]+d[1]+...+d[n-2]+d[n-1]$ จะได้ว่า
$$d[n-1]-d[0]=d[0]+d[1]+...+d[n-2]+d[n-1]$$
 ลบด้วย $d[0]$ ทั้ง 2 ข้างของสมการ ;
$$d[n-1]-2d[0]=d[1]+d[2]+...+d[n-2]+d[n-1]$$
 แทน $2d[0]$ ด้วย $d[1]$;
$$d[n-1]-d[1]=d[1]+d[2]+...+d[n-2]+d[n-1]$$
 ลวกสมการข้างต้นละได้สมการใหม่ว่า

จากสมการข้างต้นจะได้สมการใหม่ว่า

$$\sum_{i=a}^{b} 2^i = 2^{b+1} - 2^a$$

โดยที่ a , $b\in\mathbb{Z}$ และ b>a

4.5 สร้างสมการใหม่เพื่อเพิ่มประโยชน์ที่ได้รับจากสมการแสดงความสัมพันธ์ จากสมการข้างต้นสามารถสร้างเป็นแผนภาพได้ดังนี้

จะเห็นว่า
$$2^{b+1} = 2^b + 2^{b-1} + ... + 2^{a+1} + 2^a + 2^a$$

$$2^{b+1} - 2^a = 2^b + 2^{b-1} + ... + 2^{a+1} + 2^a$$

รูปที่ 4.1 แผนภาพแสดงความส้มพันธ์ของสมการ

จากแผนภาพสามารถอธิบายได้ดังนี้

$$2^{b+1}=2^b+2^b$$
 $2^{b+1}=2^b+2^{b-1}+2^{b-1}$...
$$2^{b+1}=2^b+2^{b-1}+\ldots+2^{a+1}+2^{a+1}$$
 $2^{b+1}=2^b+2^{b-1}+\ldots+2^{a+1}+2^a+2^a$ ลบด้วย 2^a ทั้ง 2 ข้างของสมการจะได้
$$2^{b+1}-2^a=2^b+2^{b-1}+\ldots+2^{a+1}+2^a$$

เมื่อทำตามแผนภาพเช่นเดียวกันกับ n^{b+1} จะได้

รูปที่ 4.2 แผนภาพแสดงความสัมพันธ์ของสมการ

จากแผนภาพสามารถอธิบายได้ดังนี้

$$n^{b+1}=(n-1)\,n^b+n^b$$
 $n^{b+1}=(n-1)(n^b+n^{b-1})+n^{b-1}$... $n^{b+1}=(n-1)(n^b+n^{b-1})+n^{a+1}+n^{a+1}+n^{a+1}$... $n^{b+1}=(n-1)(n^b+n^{b-1}+\dots+n^{a+1})+n^{a+1}$ ลบด้วย n^a ทั้ง 2 ข้างของสมการจะได้ $n^{b+1}-n^a=(n-1)(n^b+n^{b-1}+\dots+n^{a+1}+n^a)$ $(n^{b+1}-n^a)/(n-1)=n^b+n^{b-1}+\dots+n^{a+1}+n^a$

จะได้สมการใหม่ดังนี้

$$\sum_{i=a}^b n^i = \frac{n^{b+1} - n^a}{n-1}$$

โดยที่ n $\in \mathbb{R} - \{1\}$, a < b และ a , b $\in \mathbb{Z}$

บทที่ 5

สรุปผลการทดลอง อภิปรายผลและข้อเสนอแนะ

5.1 สรุปผลการทดลอง

จากความสัมพันธ์ทางคณิตศาสตร์ระหว่าง ตำแหน่งในการย้ายเชือก กับ จำนวนครั้งใน การนำเชือกคล้องผ่านเสาแรกของเกมหนูลอดบ่วง จะได้

สมการที่ 1 ได้จากความสัมพันธ์ของจำนวนครั้งในการแก้ปัญหาเกมหนูลอดบ่วง

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

โดยที่ n $\in \mathbb{N}$

จากการแก้ปัญหาเกมหนูลอดบ่วงแบบจำนวนห่วงใดๆนั้นจะต้องย้ายเชือกจากตำแหน่งที่ 0 ไปเรื่อยๆจนถึงตำแหน่งที่ n จะมีค่า 2ⁿ - 1

จากสมการแสดงความสัมพันธ์ดังกล่าวเมื่อสังเกตเพิ่มเติมแล้ว สามารถประยุกต์สมการ ดังกล่าวเป็นสมการใหม่ได้

สมการที่ 2 ปรับปรุงมาจากสมการที่ 1

$$\sum_{i=a}^{b} 2^{i} = 2^{b+1} - 2^{a}$$

โดยที่ a , $b \in \mathbb{Z}$ และ b > a

จากขั้นตอนการแสดงสมการดังกล่าวออกเป็นแผนภาพจะสามารถเห็นถึงความสัมพันธ์ บางอย่างในแผนภาพจนสามารประยุกต์สมการเพื่อเพิ่มประโยชน์ที่ได้รับ ได้ว่า

สมการที่ 3 ขั้นตอนเพิ่มประโยชน์ที่ได้รับ

$$\sum_{i=a}^b n^i = \frac{n^{b+1} - n^a}{n-1}$$

โดยที่ n $\in \mathbb{R} - \{1\}$, a < b และ a , b $\in \mathbb{Z}$

5.2 อภิปรายผลที่ได้รับ

จากการศึกษาความสัมพันธ์ทางคณิตศาสตร์จากเกมหนูลอดบ่วง พบว่าสามารถหา ความสัมพันธ์ของตัวเลขที่เกิดจากการแก้ปัญหาเกมหนูลอดบ่วงได้ ในรูปความสัมพันธ์เวียนเกิด สามารถหาจำนวนในการนำเชื่อกคล้องผ่านเสาแรกในการแก้ปัญหาเกมหนูลอดบ่วงแบบ จำนวนห่วงใดๆได้ คือจำนวน 2^n-1 ครั้ง สามารถสร้างสมการที่เกิดจากความสัมพันธ์ที่เกิด จากการแก้ปัญหาเกมได้ คือ $\sum_{i=a}^b 2^i = 2^{b+1} - 2^a$ และเมื่อสร้างแผนภาพ แสดงความสัมพันธ์นั้นก็สามารถประยุกต์สมการดังกล่าวเพื่อเพิ่มประโยชน์เป็นสมการใหม่ได้ คื อ $\sum_{i=a}^b n^i = \frac{n^{b+1}-n^a}{n-1}$ โดยที่ $n \in \mathbb{R}-\{1\}$

5.3 ข้อเสนอแนะ

- 5.3.1 ควรเพิ่มประโยชน์ในด้านอื่นนอกเหนือจากด้านคณิตศาสตร์
- 5.3.2 เพิ่มของเล่นทางคณิตศาสตร์ชนิดอื่น
- 5.3.3 ปรับปรุงหนูลอดบ่วงเพิ่มมิติในการเล่นอาทิเช่น การซ้อนทับของห่วง จำนวนทางใน การย้ายตำแหน่งของเชือก

บรรณานุกรม

ชัญลักษณ์ เหลืองวิสุทธิ์. (2553). What is Mathematics? เข้าถึงได้จาก scimath: http://scimath.org/index.php/matharticle/item/399-mathematics

Zuskin, Terry E. (1995) The Effects of Games on Increasing Interest and Achievement in Middle School Mathematics