Homework 9 -Problemi in P e complessità temporale

Gabriel Rovesti

- 1. Sia $MODEXP = \{\langle a, b, c, p \rangle \mid a, b, c, p \text{ sono numeri interi binari positivi tali che } a^b = c(modp)\}$. Si dimostri che il problema $MODEXP \in P$.
- 2. Sia G un grafo indiretto. Si consideri $SPATH = \{\langle G, a, b, k \rangle \mid G$ contiene un percorso (path) semplice tra $a \in b$ di lunghezza al più k. Si dimostri che $SPATH \in P$.
- 3. In entrambe le parti, fornisci un'analisi della complessità temporale del tuo algoritmo.
 - a. Dimostra che EQDFA \in P ricordiamo che EQDFA è il problema di decidere se due automi a stati finiti deterministici (DFA) sono equivalenti, ovvero se accettano lo stesso linguaggio.
 - b. Si dice che un linguaggio A è star-closed se $A=A^*$. Fornisci un algoritmo in tempo polinomiale per verificare se un DFA riconosce un linguaggio star-closed. (Nota che EQNFA non è noto essere in P.)
- 4. Sia $CONNECTED = \{\langle G \rangle \mid \text{ Il grafo indiretto } G \text{ è connesso } \}$. Si dimostri che $CONNECTED \in P$