บทที่ 4 การวิเคราะห์ข้อมูล

โครงงานเรื่อง การแก้หาผลเฉลย 2 ตัวแปรบนระบบสมภาคโดยใช้ระเบียบวิธีของนิวตันเป็นโครงงาน ประเภทการสร้างทฤษฎี คณะผู้จัดทำนำเสนอผลการศึกษาโดยแบ่งเป็นทฤษฎีที่สร้างขึ้นและตัวอย่างการ คำนวณโดยใช้รหัสโปรแกรมดังนี้

4.1 ทฤษฎีและสูตรทั่วไป

ทฤษฎีที่ทางได้คณะผู้จัดได้สร้างขึ้น คือ

ถ้าให้
$$\alpha>0$$
 และสมมติให้มี x_i,y_i ที่ทำให้ $ax_i+by_i\equiv 1\ (mod\ p^\alpha)$ และ $cx_i+dy_i\equiv 1\ (mod\ p^\alpha)$ เมื่อ $a,b,c,d\in\mathbb{Z}$ และ $d-b=1$ จะได้ว่าจะมี x_{i+1} และ y_{i+1} ที่ทำให้ $ax_{i+1}+by_{i+1}\equiv 1\ (mod\ p^{2\alpha})$ และ $cx_{i+1}+dy_{i+1}\equiv 1\ (mod\ p^{2\alpha})$ เมื่อ x_{i+1} และ y_{i+1} สอดคล้องกับสมการ $x_{i+1}=x_i^2(cb-ad)+2x_i$ และ $y_{i+1}=y_i-x_i(day_i-bcy_i+c-a)$ เมื่อ $i\geq 0$

4.2 ตัวอย่างการคำนวณ

ให้ a=2 , b=3 , c=5 , d=4 , p=5 และ n=16 เราต้องการหาค่า x และ y ที่ทำให้

$$2x + 3y \equiv 1 \pmod{5^{16}}$$
 และ $5x + 4y \equiv 1 \pmod{5^{16}}$

ข**้นตอนที่ 1** การกำหนด initial guess

เราจะเรียก x_0 และ y_0 ว่าเป็น initial guess โดย x_0 และ y_0 จะทำให้

$$2x_0 + 3y_0 \equiv 1 \pmod{5}$$
 และ $5x_0 + 4y_0 \equiv 1 \pmod{5}$

โดยการหา initial guess ทางคณะผู้จัดทำได้ทำการสรุปสูตรออกมาเป็น

$$x_0 = [(ad - bc) \% p)^{p-2} ((d \% p) + (-b \% p))] \% p$$

$$y_0 = [(ad - bc) \% p)^{p-2} ((-c \% p) + (a \% p))] \% p$$

เมื่อ %~p คือการเอาเศษที่ได้จากการหารด้วย p

ดังนั้นจากโจทย์เราจะได้ x_0 และ y_0 เป็น 2 และ 4 ตามลำดับ

ขั้นตอนที่ 2 การหา x_{i+1} จากทฤษฎีที่สร้างขึ้น

จากทฤษฎีที่คณะผู้จัดทำได้สร้างขึ้นจะได้ว่า

$$2x_1 + 3y_1 \equiv 1 \pmod{5^2}$$
 was $5x_1 + 4y_1 \equiv 1 \pmod{5^2}$

และจากสูตรทั่วไป จะได้ x_1 และ y_1 เป็น 32 และ 54 ตามลำดับ และเมื่อทำซ้ำเราจะได้

$$2x_2 + 3y_2 \equiv 1 \pmod{5^4}$$
 และ $5x_2 + 4y_2 \equiv 1 \pmod{5^4}$

และจากสูตรทั่วไป จะได้ x_2 และ y_2 เป็น 7232 และ 12054 ตามลำดับ และเมื่อทำซ้ำเราจะได้

$$2x_3 + 3y_3 \equiv 1 \pmod{5^8}$$
 และ $5x_3 + 4y_3 \equiv 1 \pmod{5^8}$

และจากสูตรทั่วไป จะได้ x_3 และ y_3 เป็น 36612723 และ 610212054 ตามลำดับ และเมื่อ ทำซ้ำเราจะได้

$$2x_4 + 3y_4 \equiv 1 \pmod{5^{16}}$$
 une $5x_4 + 4y_4 \equiv 1 \pmod{5^{16}}$

และจากสูตรทั่วไป จะได้ x_4 และ y_4 เป็น 938344050816127232 และ

1563906751360212054 ตามลำดับ

```
Enter coefficients a, b, c, d separated by spaces: 2 3 5 4
Enter mod value as p:5
Enter number of p raise to the power of n as n : 16
2 4 1 1
32 54 1 1
7232 12054 1 1
366127232 610212054 1 1
938344050816127232 1563906751360212054 1 1
```

รูปที่ 4.1 การแสดงค่าผลเฉลยของการแก้หาคำตอบ

ในบรรทัดที่ 1 จะเป็นการรับค่า a , b , c , d คือสัมประสิทธิ์ข้างหน้าตัวแปร

ในบรรทัดที่ 2 จะเป็นการรับค่า $oldsymbol{p}$ ตัวที่ต้องการนำมาหาเศษ

ในบรรทัดที่ 3 จะเป็นการรับค่า n หรือเลขชี้กำลังของ p

ในบรรทัดที่ 4-8 เป็นการแสดงค่าต่างๆ โดยจะแสดง $x_i, y_i, (ax_i + by_i) \% \ p, (cx_i + dy_i) \% \ p$ ตามลำดับ