

Chapter 12 (Chapter 18 in the textbook)

The Lognormal Distribution

ROBERT L. McDONALD

Points to Note

- 1. Definition of the lognormal distribution. See P.10.
- 2. Properties of lognormal random variables. See P.10.
- 3. The expectation and variance of the lognormal random variable. See P.11.
- 4. The lognormal model of stock prices. See P.14 15.
- 5. Some results of the lognormal distribution. See P.17 20.
- 6. Estimating the parameters of a lognormal distribution. See P.21 23.

The Normal Distribution

• Normal distribution (or density) $\Phi(x; \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$

• Normal density is symmetric about the mean μ :

$$\Phi(\mu + a; \mu, \sigma) = \Phi(\mu - a; \mu, \sigma)$$

- If a random variable x is normally distributed with mean μ and standard deviation, σ then $x \sim N(\mu, \sigma^2)$
- Use z to represent a random variable that has a standard normal distribution: $z \sim N(0,1)$

 The value of the cumulative normal distribution function N(a) equals to the probability P(z<a) of a number z drawn from the normal distribution to be less than a.

$$N(a) \equiv \int_{-\infty}^{a} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx$$

FIGURE 18.2

Top panel: Area under the normal curve to the left of 0.3. Bottom panel: Cumulative normal distribution. The height at x = 0.3, given by N(0.3), is 0.6179.

 The probability that a number drawn from the standard normal distribution will be between a and -a:

Prob
$$(z < -a) = N(-a)$$

Prob $(z < a) = N(a)$

therefore

Prob
$$(-a < z < a) = N(a) - N(-a) =$$

 $N(a) - [1 - N(a)] = 2 \cdot N(a) - 1$

• Example: Prob (-0.3 < z < 0.3) = 2.0.6179 - 1 = 0.2358.

 Converting a normal random variable to standard normal

- If
$$x \sim N(\mu, \sigma^2)$$
, then $z \sim N(0,1)$ if $z = \frac{x - \mu}{\sigma}$

 Converting a standard normal variable to a normal variable

- If
$$z \sim N(0,1)$$
, then $x \sim N(\mu, \sigma^2)$ if $x = \mu + \sigma z$

• Example 18.2: Suppose $x \sim N(3,25)$ and $z \sim N(0,1)$ then

$$\frac{x-3}{5} \sim N(0,1)$$
 and $3+5 \times z \sim N(3,25)$

The sum of normal random variables is also

$$\sum_{i=1}^{n} \omega_{i} x_{i} \sim N \left(\sum_{i=1}^{n} \omega_{i} \mu_{i}, \sum_{i=1}^{n} \sum_{j=1}^{n} \omega_{i} \omega_{j} \sigma_{ij} \right)$$

where x_i , i = 1,...,n, are n random variables, with mean $E(x_i) = \mu_i$, variance $Var(x_i) = \sigma_i^2$, covariance $Cov(x_i, x_i) = \sigma_{ij} = \rho_{ij}\sigma_i\sigma_i$.

The Lognormal Distribution

- A random variable x is lognormally distributed if ln(x) is normally distributed
 - If x is normal, and ln(y) = x (or $y = e^x$), then y is lognormal.
 - If continuously compounded stock returns are normal then the stock price is lognormally distributed.
- Product of lognormal variables is lognormal
 - If x_1 and x_2 are normal, then $y_1 = e^{x_1}$ and $y_2 = e^{x_2}$ are lognormal.
 - The product of y_1 and y_2 : $y_1 \times y_2 = e^{x_1} \times e^{x_2} = e^{x_1 + x_2}$.
 - Since x_1+x_2 is normal, $e^{x_1+x_2}$ is lognormal.
 - Note: the sum of lognormal variables is NOT lognormal.

• If $\ln y \sim N(m, v^2)$, the lognormal density function of y is

$$g(y;m,v) \equiv \frac{1}{yv\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{\ln(y)-m]}{v}\right)^2}$$

• If $x \sim N(m, v^2)$, then

$$E(e^{x}) = e^{m + \frac{1}{2}v^{2}}$$

$$Var(e^{x}) = e^{2m + v^{2}} \left(e^{v^{2}} - 1\right)$$

FIGURE 18.3

Graph of the lognormal density for y, where $ln(y) \sim \mathcal{N}(0, 1)$, $ln(y) \sim \mathcal{N}(0, 1.5)$, and $ln(y) \sim \mathcal{N}(1.5, 0.2)$.

A Lognormal Model of Stock Prices

- If the stock price S_t is lognormal, then $S_t / S_0 = e^x$, where x, the continuously compounded return from 0 to t, is normally distributed.
- If R(t, s) is the continuously compounded return from t to s, and, $t_0 < t_1 < t_2$, then $R(t_0, t_2) = R(t_0, t_1) + R(t_1, t_2)$.
- From 0 to T, $E[R(0,T)] = n\alpha_h$, and $Var[R(0,T)] = n\sigma_h^2$, where $\alpha_h = E[R((i-1)h, ih)]$ and $\sigma_h^2 = Var[R((i-1)h, ih)]$. Here, R((i-1)h, ih) are uncorrelated.
- If returns are i.i.d., the mean and variance of the continuously compounded returns are proportional to time.

A Lognormal Model of Stock Prices (cont'd)

If we assume that

$$\ln(S_t/S_0) \sim N[(\alpha-\delta-0.5\sigma^2)t,\sigma^2t]$$
 then
$$\ln(S_t/S_0) = (\alpha-\delta-\frac{1}{2}\sigma^2)t + \sigma\sqrt{t}Z$$
 and therefore
$$S_t = S_0e^{(\alpha-\delta-\frac{1}{2}\sigma^2)t + \sigma\sqrt{t}Z}$$

$$E(S_t) = E\Big(S_0e^{(\alpha-\delta-0.5\sigma^2)t + \sigma\sqrt{t}Z}\Big)$$

$$= S_0e^{(\alpha-\delta-0.5\sigma^2)t}E\Big(e^{\sigma\sqrt{t}Z}\Big)$$

$$= S_0e^{(\alpha-\delta-0.5\sigma^2)t}e^{0.5\sigma^2t}$$

$$= S_0e^{(\alpha-\delta)t}$$

$$\ln E\Big(\frac{S_t}{S_0}\Big) = (\alpha-\delta)t$$

A Lognormal Model of Stock Prices (cont'd)

- The expression $\alpha \delta$ is called the continuously compounded expected rate of stock-price appreciation on the stock.
- The median stock price the value such that 50% of the time prices will be above or below that value is obtained by setting Z = 0 in S_t . The median is thus

$$E(S_t)e^{-0.5\sigma^2t}$$

A Lognormal Model of Stock Prices (cont'd)

Example

Suppose that the stock price today is \$100, the expected rate of return on the stock is $\alpha = 10\%/\text{year}$, and $\sigma = 30\%/\text{year}$. If the stock is lognormally distributed, then we have

$$S_2 = \$100e^{(0.1-0.5\times0.3^2)2+\sigma\sqrt{2}Z}$$

Thus,

$$E(S_2) = \$100e^{(0.1)(2)} = \$122.14.$$

and the median is

$$$100e^{(0.1-0.5\times0.3^2)\times2} = $111.63.$$

Lognormal Probability Calculations

Probabilities

If

$$\ln(S_t/S_0) \sim N[(\alpha - \delta - 0.5\sigma^2)t, \sigma^2 t], \text{ or,}$$

$$\ln(S_t) \sim N[\ln(S_0) + (\alpha - \delta - 0.5\sigma^2)t, \sigma^2 t]$$

then

$$\Pr(S_t < K) = N(-\hat{d}_2)$$

where

$$\hat{d}_2 = \frac{\left(\alpha - \delta - 0.5\sigma^2\right)t + \ln\left(S_0/K\right)}{\sigma\sqrt{t}}$$

Lognormal Probability Calculations (cont'd)

 Given a call option expires in the money, what is the expected stock price?
 The <u>partial</u> expectation of S_t, conditional on S_t < K, is defined as

$$\int_{0}^{K} S_{t}g(S_{t}; S_{0})dS_{t} = S_{0}e^{(\alpha-\delta)t}N\left(\frac{\ln(K) - \left[\ln(S_{0}) + (\alpha-\delta+0.5\sigma^{2})t\right]}{\sigma\sqrt{t}}\right)$$
$$= S_{0}e^{(\alpha-\delta)t}N\left(-\hat{d}_{1}\right)$$

where $g(S_t; S_0)$ is the probability density of S_t conditional on S_0 , and \hat{d}_1 is the Black-Scholes d_1 with α replacing r.

Lognormal Probability Calculations (cont'd)

The probability that $S_t < K$ is $N(-\hat{d}_2)$. Thus, the expectation of S_t conditional on $S_t < K$ is

$$E(S_t \mid S_t < K) = S_0 e^{(\alpha - \delta)t} \frac{N(-\hat{d}_1)}{N(-\hat{d}_2)}$$

Similarly, we obtain

$$E(S_t \mid S_t > K) = S_0 e^{(\alpha - \delta)t} \frac{N(\hat{d}_1)}{N(\hat{d}_2)}$$

Lognormal Probability Calculations (cont'd)

 The Black-Scholes formula—the price of a call option is

$$C(S, K, \sigma, r, t, \delta) = e^{-rt} \int_{K}^{\infty} (S_{t} - K) g^{*}(S_{t}; S_{0}) dS_{t}$$

$$= e^{-rt} E^{*}(S_{t} - K \mid S > K) \times \operatorname{Pr}^{*}(S > K)$$

$$= e^{-\delta t} SN(d_{1}) - Ke^{-rt} N(d_{2})$$

where g^* denote the risk-neutral lognormal probability density, E^* denote the expectation taken with respect to risk-neutral probabilities, and Pr^* denote those probabilities. Under g^* ,

$$\ln(S_t/S_0) \sim N \left[\left(r - \delta - 0.5\sigma^2 \right) t, \sigma^2 t \right].$$

Estimating the Parameters of a Lognormal Distribution

When stocks are lognormally distributed, the price
 S_t evolves from the previous price observed at time
 t - h, according to

$$S_{t} = S_{t-h} e^{(\alpha - \delta - \sigma^{2}/2)h + \sigma\sqrt{h}z}$$

Thus

$$E\left(\ln\left(\frac{S_{t}}{S_{t-h}}\right)\right) = \left(\alpha - \delta - \sigma^{2}/2\right)h$$

$$Var\left(\ln\left(\frac{S_t}{S_{t-h}}\right)\right) = \sigma^2 h$$

Estimating the Parameters of a Lognormal Distribution (cont'd)

TABLE 18.2

Hypothetical weekly stock price observations and corresponding weekly continuously compounded returns, $ln(S_t/S_{t-1})$

Week	Price (\$)	$\ln(S_t/S_{t-1})$
1	100	_
2	105.04	0.0492
3	105.76	0.0068
4	108.93	0.0295
5	102.50	-0.0608
6	104.80	0.0222
7	104.13	-0.0064

Estimating the Parameters of a Lognormal Distribution (cont'd)

• Example 18.8:

- The mean of the second column is 0.006745 and the standard deviation is 0.038208.
- h = 1/52.
- Annualized standard deviation

$$= 0.038208 \times \sqrt{52} = 0.2755$$

Annualized expected return

$$=0.006745 \times 52 + 0.5 \times 0.2755^2 = 0.3887$$

How Are Asset Prices Distributed?

FIGURE 18.4

Histograms for daily and weekly returns on the S&P 500 index and IBM, from July 1, 2001 to July 1, 2011.

How Are Asset Prices Distributed? (cont'd)

- None of the histograms appears exactly normal.
 All of the histograms exhibit a peak around 0; the presence or absence of this peakedness is referred to as <u>kurtosis</u> (a measure of how sharp the peak of the distribution is).
- The graph displays <u>leptokurtosis</u> (small, thin and delicate).
- Kurtosis for the S&P and IBM are 8.03 and 9.54 for daily returns, and 4.68 and 5.21 for weekly returns.

How Are Asset Prices Distributed? (cont'd)

- Accompanying the peaks are fat tails, large returns that occur more often would be predicted by the lognormal model.
- The normal probability plot can be used for assessing normality. If the data points lie along the straight line in the graph, the data are consistent with a normal distribution. If the data plot is curved, the data are less likely to have come from a normal distribution.

FIGURE 18.5

Normal probability plots for daily and weekly returns on the S&P 500 index and IBM from July 1, 2001 to July 1, 2011.

