5. Krümmung

5.1. Der Riemann'sche Krümmungstensor

Gegeben sei eine Riemann'sche Mannigfaltigkeit $(M, \langle \cdot, \cdot \rangle)$ mit Levi-Civita-Zusammenhang D. Der Riemann'sche Krümmungstensor von M bezüglich D ist die Abbildung $R: \mathcal{V}M \times \mathcal{V}M \times \mathcal{V}M \to \mathcal{V}M$, $(X,Y,Z) \mapsto R(X,Y)Z$, wobei

$$R(X,Y)Z := D_Y D_X Z - D_X D_Y Z + D_{[X,Y]} Z.$$

Beispiel

Im $(\mathbb{R}^n, \langle \cdot, \cdot \rangle)$, wobei $\langle \cdot, \cdot \rangle$ das Standardskalarprodukt ist, betrachten wir das Vektorfeld $Z = (z^1, \ldots, z^n) \in \mathcal{V}\mathbb{R}^n$. Da $D_X Z = (Xz^1, \ldots, Xz^n)$, folgt: $D_Y D_X Z = (YXz^1, \ldots, YXz^n)$. Wegen [X,Y] = XY - YX folgt: R(X,Y)Z = 0.

Das oben definierte R ist somit ein "Maß" für die Abweichung der Riemann'schen Mannigfaltigkeit $(M, \langle \cdot, \cdot \rangle)$ von der euklidischen Geometrie.

Bemerkung: Bezüglich lokalen Basisfeldern $\frac{\partial}{\partial x^i}$ $(i=(1,\ldots,n))$ gilt: $\left[\frac{\partial}{\partial x^i},\frac{\partial}{\partial x^j}\right]=0$ für C^{∞} -Funktionen. Dann ist $R\left(\frac{\partial}{\partial x^i},\frac{\partial}{\partial x^j}\right)\frac{\partial}{\partial x^k}=D_{\frac{\partial}{\partial x^j}}D_{\frac{\partial}{\partial x^i}}\frac{\partial}{\partial x^k}-D_{\frac{\partial}{\partial x^i}}D_{\frac{\partial}{\partial x^j}}\frac{\partial}{\partial x^k}$. "R ist ein Maß für die Vertauschbarkeit der 2. kovarianten Ableitungen."

Definition

Setze $\mathcal{V}_0M := C^{\infty}M$, $\mathcal{V}_rM := \mathcal{V}M \times \cdots \times \mathcal{V}M$. (r Summanden). \mathcal{V}_rM ist ein $C^{\infty}M$ -Modul. Ein (s,r)-Tensorfeld auf M ist eine r-lineare Abbildung $T: \mathcal{V}_rM \to \mathcal{V}_sM$ über dem Ring $C^{\infty}M$, das heißt

$$T(X_1, \dots, X_{i-1}, fX + gY, X_{i+1}, \dots, X_r) = fT(X_1, \dots, X_{i-1}, X, X_{i+1}, \dots, X_r) + gT(X_1, \dots, X_{i-1}, Y, X_{i+1}, \dots, X_r)$$

für alle Argumente von $T, X, Y \in \mathcal{V}M$

Satz 5.1

R ist ein (1,3)-Tensorfeld

Beweis

Exemplarisch für $R(X,Y)(fZ) = fR(X,Y)Z \ \forall f \in C^{\infty}M$.

$$D_Y D_X (fZ) = D_Y (fD_X Z + (Xf)Z) = (Yf)D_X Z + fD_Y D_X Z + (YXf)Z + (Xf)D_Y Z.$$
Also: $D_Y D_X (fZ) - D_X D_Y (fZ) = f(D_Y D_X Z - D_X D_Y Z) + (YXf - XYf)Z;$

$$D_{[X,Y]} fZ = fD_{[X,Y]} Z + ([X,Y]f)Z \implies R(X,Y)fZ = fR(X,Y)Z.$$

Satz 5.2 (Symmetrie-Eigenschaften)

 $(M,\langle\cdot,\cdot\rangle)$ sei eine Riemann'sche Mannigfaltigkeit. D der Levi-Civita-Zusammenhang und R ein Krümmungstensor. Dann gilt

- (1) R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0 (zyklisch Vertauschbar). "Bianchi-Identität"
- (2) $\langle R(X,Y)Z,T\rangle = -\langle R(Y,X)Z,T\rangle$
- (3) $\langle R(X,Y)Z,T\rangle = -\langle R(X,Y)T,Z\rangle$
- (4) $\langle R(X,Y)Z,T\rangle = \langle R(Z,T)X,Y\rangle$

Beweis

- (1) ist äquivalent zur Jacobi-Identität für Lie-Klammern (mit Torsionsfreiheit).
- (2) folgt direkt aus der Definition.
- (3) ist äquivalent zu $\langle R(X,Y)W,W\rangle=0$ (setzte W=Z+T und verwende Satz 5.1). Es ist $\langle R(X,Y)W,W\rangle=\langle D_YD_XW-D_XD_YW+D_{[X,Y]}W,W\rangle,$

 $\langle D_Y D_X W, W \rangle \overset{\text{Levi-Civita, verträglich}}{=} Y \langle D_X W, W \rangle - \langle D_X W, D_Y W \rangle, \text{ analog } \langle D_X D_Y W, W \rangle;$ $\langle D_{[X,Y]} W, W \rangle = \frac{1}{2} [X, Y] \langle W, W \rangle. \text{ Somit: } \langle R(X,Y) W, W \rangle = Y \langle D_X W, W \rangle - \langle D_X W, D_Y W \rangle - X \langle D_Y W, W \rangle + \langle D_Y W, D_X W \rangle + \frac{1}{2} [X, Y] \langle W, W \rangle = 0.$

(4) Analog.

Krümmungstensor in lokalen Koordinaten (u, φ)

Die Basisfelder seien $X_i := \frac{\partial}{\partial x^i}$, i = 1, ..., n. Dann: $R(X_i, X_j)X_k := \sum_{l=1}^n R_{ijk}^l X_l$ (per Basissatz), wobei R_{ijk}^l die Komponenten des Krümmungstensors in lokalen Koordinaten sind, also C^{∞} -Funktionen und symmetrisch bezüglich i, j.

Für beliebige Vektorfelder $X, Y, Z \in \mathcal{V}M$ mit

$$X = \sum_{i=1}^{n} u^{i} X_{i}, \quad Y = \sum_{j=1}^{n} v^{j} X_{j}, \quad Z = \sum_{k=1}^{n} w^{k} X_{k}$$

gilt wegen Satz 5.1:

$$R(X,Y)Z = \sum_{i,j,k,l=1}^{n} u^{i}v^{j}w^{k}R_{ijk}^{l}X_{l} \qquad (*)$$

(man muss alles an der Stelle p kennen).

Bemerkung: (Trägereigenschaft von R) Die Formel (*) zeigt, dass (R(X,Y)Z)(p) nur von den Werten der Vektorfelder X,Y,Z im Punkt p abhängig ist.

Formel für R_{ijk}^l

$$\begin{split} R(X_i,X_j)X_k &= D_{X_j}(D_{X_i}X_k) - D_{X_i}(D_{X_j}X_k) + D_{\underbrace{\left[X_i,X_j\right]}}X_k \\ &= D_{X_j}\left(\sum_{m=1}^n \Gamma_{ik}^m X_m\right) - D_{X_i}\left(\sum_{m=1}^n \Gamma_{jk}^n X_m\right) \\ &= \sum_{m=1}^n [X_j\left(\Gamma_{ik}^m\right)X_m + \Gamma_{ik}^m \underbrace{D_{X_j}X_m}_{\sum_{l=1}^m \Gamma_{jm}^l X_l}] - \sum_{m=1}^n [X_i(\Gamma_{ik}^m)X_m + \Gamma_{jk}^m \underbrace{D_{X_i}X_m}_{\sum_{l=1}^n \Gamma_{im}^l X_l}] \\ &\Longrightarrow R_{ijk}^l = \frac{\partial}{\partial x^j}\Gamma_{ik}^l + \sum_{m=1}^n \Gamma_{ik}^m \Gamma_{jm}^l - \frac{\partial}{\partial x^i}\Gamma_{jk}^l - \sum_{m=1}^n \Gamma_{jk}^m \Gamma_{im}^l \end{split}$$

(so hatte es Riemann definiert)

Setze nun

$$R_{ijks} := \sum_{l=1}^{n} R_{ijk}^{l} \cdot g_{ls} = \langle R(X_i, X_j) X_k, X_s \rangle$$

"Herunterziehen von Indizes", "Ricci-Kalkül". Nach Satz 5.2 gilt:

- $\bullet \ R_{ijks} + R_{jkis} + R_{kijs} = 0$
- $R_{ijks} = -R_{jiks}$
- $R_{ijks} = -R_{ijsk}$
- $R_{ijks} = R_{ksij}$

Bemerkung: Für dim M=2 sind $i,j,k,s\in\{1,2\}$ und aufgrund obiger Symmetrien ist im wesentlichen nur $R_{1212}\neq 0$. Dies ist gerade die Gauß-Krümmung.

Riemann'scher Krümmungstensor

Sei $(M, \langle \cdot, \cdot \rangle)$ eine Riemann'sche Mannigfaltigkeit und D der zugehöriger Levi-Civita-Zusammenhang. Dann ist

$$R: \frac{\mathcal{V}M \times \mathcal{V}M \times \mathcal{V}M \to \mathcal{V}M}{(X,Y,Z) \mapsto R(X,Y)Z := D_Y D_X Z - D_X D_Y Z - D_{[X,Y]} Z}$$

multilinear bezüglich $C^{\infty}M$.

5.2. Schnittkrümmung

Vorbemerkung aus der Linearen Algebra. Sei V ein \mathbb{R} -Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$. Für $x,y \in V$ setze

$$|x \wedge y| \coloneqq \sqrt{\|x\|^2 \|y\|^2 - \langle x, y \rangle^2} \ge 0$$

(Flächeninhalt des des von x und y aufgespannten Parallelogramms). Für orthonormierte Vektoren ist $|x \wedge y| = 1$.

Lemma 5.1

Sei $(M, \langle \cdot, \cdot \rangle)$ eine Riemann'sche Mannigfaltigkeit, $p \in M$, σ ein 2-dimensionaler Untervektorraum von T_pM mit Basis x, y. Dann ist

$$K(x,y) \coloneqq \frac{\langle R(x,y)x,y\rangle_p}{|x\wedge y|^2}$$

unabhängig von der Wahl der Basis.

In der Konsequenz macht folgende Definition Sinn:

Definition

Für $p \in M$, $\sigma \subset T_pM$ ein 2-dimensionaler Untervektorraum setze $K(p,\sigma) := K(x,y)$ für eine beliebige Basis $\{x,y\}$ von σ . $K(p,\sigma)$ heißt Schnittkrümmung von σ in $p \in M$.

Bemerkungen: (1) Für n = 2 ist $K(p, \sigma) = K(p)$ die Gauß-Krümmung von M im Punkt p. Die Menge der Krümmungstensoren R im Punkt p ist vollständig bestimmt.

Beispiel

Schnittkrümmung von (\mathbb{R}^n , kan) ist konstant null, da R=0.

(2) (S^n, kan) . Behauptung: Schnittkrümmung ist konstant 1.

Lemma 5.2

Sei $f:(M,\langle\cdot,\cdot\rangle)\to (N,\langle\cdot,\cdot\rangle)$ eine Riemann'sche Isometrie. Für $\sigma\subset T_pM$ ist $df|_p(\sigma)\subset T_{f(p)}N$ ein 2-dimensionaler Untervektorraum und $K^M(p,\sigma)=K^N(f(p),df|_p(\sigma))$. Das heißt: Schnittkrümmung ist invariant unter Isometrie.

Beweis (des Lemmas)

Es gilt (Übungsblatt 7 Aufgabe 1):

- $D_{df(x)}^N df(y) = df(D_x^M y)$
- $\bullet \ [d\!f(x),d\!f(y)]^N = d\!f([x,y]^M)$
- $\langle\langle df(x), df(y)\rangle\rangle = \langle x, y\rangle$

$$\implies R^N(df(x),df(y))df(z) = df(R^M(x,y)z).$$

Beweis (Schnittkrümmung von S^n ist konstant)

Es genügt zu zeigen: Zu $\sigma \subset T_x S^n$ und $\tau \subset T_y S^n$, jeweils 2-dimensionale Untervektorräume, existiert eine Isometrie $f: S^n \to S^n$ mit $df_x(\sigma) = \tau$.

Sei nun $\sigma = [u, v], \ \tau = [\tilde{u}, \tilde{v}],$ wobei u, v bzw. \tilde{u}, \tilde{v} Orthonormalbasen sind. $l_1 = x, \ l_2 = u,$ $l_3 = v.$

$$y = \begin{pmatrix} y_1 \\ \vdots \\ y_{n+1} \end{pmatrix} = f_1 \qquad \tilde{u} = \begin{pmatrix} \tilde{u}_1 \\ \vdots \\ \tilde{u}_{n+1} \end{pmatrix} = f_2 \qquad \tilde{v} = \begin{pmatrix} \tilde{v}_1 \\ \vdots \\ \tilde{v}_{n+1} \end{pmatrix} = f_3$$

ergänze zu einer Orthonormalbasis $\{f_1, \ldots, f_{n+1}\}$ von \mathbb{R}^{n+1} . Dann ist $A := [f_1, f_2, \ldots, f_{n+1}] \in O(n+1)$, also eine orthogonale $(n+1) \times (n+1)$ -Matrix, mit $A_{li} = (f_i)_l$, $f : \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$; $w \mapsto Aw$ ist eine euklidische Isometrie (Rotation von $(\mathbb{R}^{n+1}, \text{kan})$) die S^n invariant lässt. Dies Induziert also eine Isometrie von (S^n, kan) .

Da f linear ist, df = f, also $df_x(\sigma) = df_x([u, v]) = [df_x(u), df_y(v)] = [\tilde{u}, \tilde{v}] = \tau \implies$ Behauptung. S^n hat konstante Schnittkrümmung. Es gilt K = 1 (siehe später).

(3) n-dimensionale hyperbolische Räume $H^n\mathbb{R} := \{x \in \mathbb{R}^n \mid x_n > 0\}$ mit der Identität als Karte und lokalen Koordinaten x_1, \ldots, x_n . Es ist

$$(g_{ij}) := \begin{pmatrix} \frac{1}{(x_n)^2} & 0 \\ & \ddots & \\ 0 & & \frac{1}{(x_n)^2} \end{pmatrix} = \frac{1}{(x_n)^2} \begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & & 1 \end{pmatrix}$$

Berechnung der R_{ijks} zeigt: Schnittkrümmung R ist konstant -1.

(4) Konforme Änderung der Metrik (M,g) einer Riemann'schen Mannigfaltigkeit um $\lambda \in C^{\infty}M$, $\lambda > 0$: $\tilde{g} := \lambda g$ ist wieder eine Riemann'sche Metrik.

Für konstantes $\lambda > 0$ ist die Schnittkrümmung für \tilde{g} : $\tilde{K} = \frac{1}{\lambda}K$. Insbesondere kann man aus jeder Mannigfaltigkeit mit beliebiger, konstanter Krümmung $(\neq 0)$ durch Reskalierung der Riemann'schen Metrik S^n oder H^n erhalten.

Ergänzende Sätze (ohne Beweis, vergleiche: do Carmo, Kapitel 8)

Satz

 $(M, \langle \cdot, \cdot \rangle)$ hat konstante Schnittkrümmung, also

$$K(p,\sigma) = K_0 \ \forall \sigma \subset T_p M \ \forall p \in M \iff \langle R(x,y)w,z \rangle = K_0 \left(\langle x,w \rangle \langle y,z \rangle - \langle y,w \rangle \langle x,z \rangle \right)$$
insbesondere ist $\langle R(x,y)x,y \rangle = K_0 \left(\|x\|^2 \|y\|^2 - \langle x,y \rangle^2 \right)$.

Satz (Hopf)

Eine vollständige, einfach zusammenhängende, zusammenhängende Riemann'sche Mannigfaltigkeit mit konstanter Krümmung 0, 1 oder -1 ist isometrisch zu \mathbb{R}^n , S^n , $H^n\mathbb{R}$. Dabei heißt

- Vollständig: Jede Geodätische ist auf ganz R definiert
- Einfach zusammenhängend: Jede geschlossene Kurve ist auf einen Punkt zusammenziehbar

5.3. Ricci-Krümmung

Sei R der Krümmungstensor einer Riemann'schen Mannigfaltigkeit $(M, \langle \cdot, \cdot \rangle)$ und $X, Y, Z \in \mathcal{V}M$. In jedem Punkt $p \in M$ ist $Y(p) \mapsto R(X(p), Y(p))Z(p)$ ein Endomorphismus von T_pM . Oder: Für $X, Z \in \mathcal{V}M$ fest ist $R(X, \cdot)Z$ ein (1,1)-Tensormodul.

Für ein beliebiges (1,1)-Tensorfeld A ist $A(p):T_pM\to T_pM$ ein Endomorphismus und wir definieren die Spur von A durch

$$(\operatorname{Spur} A)(p) := \sum_{i=1}^{n} \langle A(p)e_i, e_i \rangle_p$$

wobei $[e_i]$ eine Orthonormalbasis von T_pM ist. Linere Algebra: Es gibt einen Endomorphismus Φ mit Abbildungsmatrix A und Spur $\Phi = \operatorname{Spur} A = \sum_{i=1}^n A_{ii}$ (insbesondere für Orthonormalbasen, $a_{ii} = \langle Ae_i, e_i \rangle$).

Der Ricci-Tensor von M ist der (0,2)-Tensor $\mathrm{Ric}(x,z) \coloneqq \mathrm{Spur}(y \mapsto R(x,y)z)$. (In manchen Quellen noch mit $\frac{1}{n-1}$ normiert.) Die Ricci-Krümmung von M in Richtung $v \in T_pM$ ist

$$r(v) \coloneqq \frac{\operatorname{Ric}(v, v)}{\|v^2\|}$$
.

Für eine Orthonormalbasis $\{e_i\}$ von T_pM ist $\mathrm{Ric}(v,w) = \sum_{i=1}^n \langle R(v,e_i)w,e_i\rangle$. Also insbesondere ist der Ricci-Tensor symmetrisch und $r(e_1) = \sum_{i=2}^n K(p,[e_1,e_i])$.

Die Skalar-Krümmung ist eine differenzierbare Funktion auf $S: M \to \mathbb{R}, p \mapsto \sum_{j=1}^{n} r(e_j)$, wobei $\{e_j\}$ eine Orthonormalbasis von T_pM ist.

$$S(p) = \sum_{j=1}^{n} r(e_j) = \sum_{j=1}^{n} \text{Ric}(e_j, e_j) = \sum_{i,j=1}^{n} \langle R(e_j, e_i) e_j, e_i \rangle = \sum_{\substack{i,j=1 \ i \neq j}}^{n} K(p, [e_i, e_j])$$

Eine Riemann'sche Mannigfaltigkeit (M, g) heißt Einstein-Raum falls $\mathrm{Ric}(x, y) = \lambda g(x, y) \, \forall x, y \in \mathcal{V}M$, wobei $\lambda: M \to \mathbb{R}$ eine differenzierbare Funktion ist.

Beispiel

Räume mit konstanter Krümmung sind Einstein-Räume: $K=c_0$ konstant:

$$Ric(X, X) = \sum_{i=1}^{n} K([x, e_i])g(x, x) = (n-1)c_0g(x, x)$$

Bemerkung: Der Einstein-Tensor ist $G := \text{Ric} - \frac{S}{2}g$. Einstein-Feldgleichungen der ART:

$$\underbrace{G}_{\text{Geometrie}} = \underbrace{T}_{\text{Physik}},$$

wobei G: Einstein-Tensor für 4 dimensionale Lorentz-Mannigfaltigkeit (mit Pseudo-Riemannscher Metrik), T: Energie-Impuls-Tensor der Materie-Verteilung. (Buch: Gravitation – Misner, Thorne, Wheeler).