DM2

Exercice 1 (VARIABLES EXPONENTIELLES). Soit X une variable aléatoire à valeurs réelles distribuée selon une loi exponentielle de paramètre 1.

- 1. Montrer que $U = X/\lambda$ suit une loi exponentielle de paramètre λ .
- 2. Donner la loi de la variable aléatoire V = 1 + |X|, où $|\cdot|$ désigne la partie entière.
- 3. Donner la loi de $W = \sqrt{X}$.
- 4. Déterminer la fonction de répartition de la variable aléatoire $Y = \min(X, a)$, où a > 0. La variable Y a-t-elle une densité? Pour cette dernière question on pourra montrer que si $f : \mathbb{R} \to \mathbb{R}_+$ est intégrable pour la mesure de Lebesgue alors $t \mapsto \int_{-\infty}^t f(s) ds$ est continue sur \mathbb{R} .

Solution. 1. Calculons la fonction de répartition de U: si $t \in \mathbb{R}$,

$$\mathbb{P}(U \le t) = \mathbb{P}(X \le \lambda t) = (1 - e^{-\lambda t}) \mathbf{1}_{\mathbb{R}^+}(\lambda t).$$

On reconnait bien la fonction de répartition d'une loi exponentielle de paramètre λ , donc $U \sim \mathcal{E}(\lambda)$.

2. On remarque que V est à valeurs dans \mathbb{N}^* et est donc une variable aléatoire discrète. Pour tout $k \geq 1$, on a

$$\mathbb{P}(V = k) = \mathbb{P}(E(X) = k - 1) = \mathbb{P}(X \in [k - 1, k]) = \int_{k - 1}^{k} e^{-u} du = e^{-(k - 1)} - e^{-k} = \left(\frac{1}{e}\right)^{k - 1} \left(1 - \frac{1}{e}\right).$$

On conclut que V suit une loi géométrique de paramètre $p=1-\frac{1}{\mathrm{e}}.$

3. Pour déterminer la loi de $W = \sqrt{X}$, calculons sa fonction de répartition : si $t \ge 0$,

$$F_W(t) = \mathbb{P}(\sqrt{X} \le t) = \mathbb{P}(X \le t^2) = 1 - e^{-t^2},$$

et si $t \leq 0$, $F_W(t) = 0$. On remarque que

$$F_W(t) = \int_{-\infty}^t 2u e^{-u^2} \mathbf{1}_{\mathbb{R}^+}(u) du, \quad \forall t \in \mathbb{R}.$$

Par conséquent, W a pour densité $f_W(u) = 2u e^{-u^2} \mathbf{1}_{\mathbb{R}^+}(u)$, $u \in \mathbb{R}$. Il s'agit de la loi $\mathcal{W}(2,1)$ (loi de Weibull).

4. Calculons la fonction de répartition de $Y = \min(X, a)$ où $a \ge 0$. Si $t \le 0$, alors $F_Y(t) = 0$.

Si $t \in [0, a[$, alors

$${Y \le t} = {\min(X, a) \le t} = {X \le t}$$

et donc

$$F_Y(t) = \mathbb{P}(Y \le t) = \mathbb{P}(X \le t) = 1 - e^{-t}$$
.

Enfin, si $t \geq a$, alors

$$\{Y \le t\} = \{\min(X, a) \le t\} = \Omega$$

et donc $F_Y(t) = \mathbb{P}(Y \le t) = 1$. En conclusion,

$$F_Y(t) = \begin{cases} 0 & \text{si } t \le 0\\ 1 - e^{-t} & \text{si } 0 < t \le a \\ 1 & \text{si } t \ge a \end{cases}.$$

On remarque en particulier que F_Y est discontinue en a. La variable Y ne peut donc pas avoir de densité, car la fonction de répartition des variables à densité est toujours continue en tout point d'après l'indication de l'exercice. Montrons cette indication.

Soit $f: \mathbb{R} \to \mathbb{R}_+$ intégrable pour la mesure de Lebesgue et $t_0 \in \mathbb{R}$ et posons $F(t) = \int_{-\infty}^t f(s) ds$. Alors pour tout $t \in \mathbb{R}$, $|F(t) - F(t_0)| = |\int_{t_0}^t f(s) ds|$. Il reste à montrer que $t \mapsto |\int_{t_0}^t f(s) ds|$ tend vers 0 lorsque $t \to t_0$. Pour cela on utilise le critère sequentiel de la limite et le théorème de convergence dominé à la famille de fonctions $(g_n)_{n \in \mathbb{N}}$ où $g_n = \mathbbm{1}_{[\min(t_0,t_n),\max(t_0,t_n)]}f$ pour une suite $(t_n)_{n \in \mathbb{N}}$ tendant vers t_0 . Comme $g_n \leq f$ pour tout $n \in \mathbb{N}$ et f est supposée intégrale, et g_n converge presque partout vers la fonction nulle, on en déduit que $\lim_{n \to +\infty} \int_{\mathbb{R}} g_n dLeb = 0$. Cela implique que bien $t \mapsto |\int_{t_0}^t f(s) ds|$ tend vers 0 lorsque $t \to t_0$ et conclue la preuve de l'indication.

Remarque : On rappelle que la valeur du saut en a détermine la masse accordée au singleton $\{a\}$. En effet, si t_n est une suite strictement croissante convergeant vers a, alors par la propriété d'intersection décroissante

$$F_Y(a) - F_Y(a^-) = \lim_{n \to \infty} \mathbb{P}(Y \in]t_n, a]) = \mathbb{P}(Y \in \{a\}).$$

Ici, on trouve donc $\mathbb{P}(Y = a) = e^{-a}$.