AD-A188 792 1/2 UNCLASSIFIED

.

THE GIA

3

AD-A188 792

AD

SELF-BORING PRESSUREMETER IN PLUVIALLY DEPOSITED SANDS

Final Technical Report

by

R. Bellotti, V. Crippa, V.W. Ghionna, M. Jamiolkowski and P.K. Robertson

June 1987

United States Army EUROPEAN RESEARCH OFFICE OF THE U.S. ARMY

London England

CONTRACT NUMBER DAJA45-84-C-0034

ENEL CRIS - MILAN (ITALY)

Approved for Public Release, distribution unlimited

c7 | 1 | · · · 906

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dele Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER 4. TITLE (and Subtitio) S. TYPE OF REPORT & PERIOD COVERED FINAL TECHNICAL REPORT
AUD SA - AUD 'ST

- PERFORMING ORG. REPORT NUMBER SELF-BORING PRESSUREMETER IN PLUVIALLY DEPOSITED SANDS BELLOTTI 7. AUTHOR(e) . CONTRACT OR GRANT NUMBER(+) .DAJA 45-54-C- 0034. R. Bellotti, V. Crippa, V.N. Ghionna, BELLOTTI M. Jamiolkowski, and P.K. Robertson 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS ENEL-CRIS 61102A. Via Ornato, 90/14 16 16 1102 BH 57EN-CI 20162 - MILANO (ITALY) 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE USARDSG(UK) June 1967 13. NUMBER OF PAGES BOX 65. FPC NY 09510 1500 14. MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office) 15. SECURITY CLASS. (of the report) UNCLASSIFIED 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release Distribution Union til 17. DISTRIBUTION STATEMENT (of the obstrect entered in Black 20, If different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde if necessary and identify by black number) Self-boring pressuremeter, Sands, Initial in-situ horizontal stress, Shear modulus, Shear Strength, Limit Pressure, Calibration Chamber 20. ABSTRACT (Continue on reverse side it necessary and identify by black number) This report presents the results of 47 self-boring pressuremeter (SBP) tests performed under strictly controlled boundary conditions or pluvially deposited Ticino and Hokksund sand samples in the Calibration Chamber existing at ENEL-CRIS (Milan-Italy): N°25 tests were performed with the probe in place during sample preparation and N°22 with the probe self-bored into saturated sand.

DD 1 JAM 73 1473 EDITION OF 1 NOV 63 IS OBSOLETE

LAUDSSHILLD
SECURITY CLASSIFICATION OF THIS PAGE (From Doir Entered)

20. The purpose of the testing was to evaluate the performance of the self-boring pressuremeter and to critically review existing interpretation methods of SBPT in sand.			
	Accession For HTIS GRABI DTIC TAB Unannounced Justification		
	Distribution/ Availability Codes Avail and/or Distribution/ Avail and/or Special		
	A-1		

TABLE OF CONTENTS

1.	INTRODUCTION	page	5
2.	TEST EQUIPMENT	page	5
3.	TEST SAND	page	7
4.	TEST PROCEDURES	page page page page page	7 7 8 8
5.	TEST RESULTS	page	10
	5.1.2. Evaluation of Stress Concentration 5.1.3. Mechanical Compliance of Strain Arms 5.1.4. Evaluation of Arching Effects 5.1.5. Initial Horizontal Stress:	page page page	11
	Self-Bored Installation	page page page	13 14 21 25 25
6.	SUMMARY AND CONCLUSIONS	page	26
	LITERATURE CITED	page	29
	NOTATIONS	page	32
	FIGURES		

APPENDIXES

LIST OF TABLES

- TABLE 1: SUMMARY OF INSTALLATION CONDITIONS DURING SELF-BORING
- TABLE 2: SUMMARY OF GENERAL CALIBRATION CHAMBER CONDITIONS AFTER SAMPLE CONSOLIDATION
- TABLE 3: SUMMARY OF PROBE AND CC CONDITIONS DURING SELF-BORED TESTS
- TABLE 4: SUMMARY OF LITF-OFF PRESSURES OF INDIVIDUAL ARMS
- TABLE 5: SUMMARY OF LIMIT PRESSURE AND SECANT SHEAR MODULUS
- TABLE 6: SUMMARY OF 1ST UNLOADING-RELOADING CYCLE
- TABLE 7: SUMMARY OF 2ND UNLOADING-RELOADING CYCLE
- TABLE 8: SUMMARY OF 3RD UNLOADING-RELOADING CYCLE
- TABLE 9: SUMMARY OF 4TH UNLOADING-RELOADING CYCLE
- TABLE 10: SUMMARY OF 1ST RELOADING-UNLOADING CYCLE
- TABLE 11: SUMMARY OF CALCULATED ANGLES OF FRICTION AND DILATANCY $\{\phi'_{CV} = 34^{\circ}\}$

LIST OF FIGURES

- FIG. 1: SCHEMATIC CROSS-SECTION OF ENEL-CRIS CALIBRATION CHAMBER
- FIG. 2: SCHEMATIC OUTLINE OF CC LOADING AND DATA ACQUISITION SYSTEM FOR SBPT IN SAND
- FIG. 3: SCHEMATIC OUTLINE OF SELF-BORING PRESSUREMETER PROBE CAMKOMETER MARK VIII
- FIG. 4: GENERAL CHARACTERISTICS OF TICINO AND HOKKSUND SAND
- FIG. 5: SCHEMATIC OUTLINE OF SAND SPREADER .
- FIG. 6: SCHEMATIC OUTLINE OF IDEAL INSTALLATION PROCEDURE IN CC
- FIG. 7: SCHEMATIC OUTLINE OF SELF-BORING INSTALLATION PROCEDURE IN CC

- FIG. 8: EXAMPLE OF TYPICAL SAMPLE CONSOLIDATION
- FIG. 9: AVAILABLE BOUNDARY CONDITIONS IN CC
- FIG. 10: TYPICAL TEST RESULT FROM SBPT IN CC
- FIG. 11: COMPARISON BETWEEN MEASURED AVERAGE LIFT-OFF STRESSES (p_0) AND APPLIED BOUNDARY STRESSES (σ_{ho}): IDEAL INSTALLATION
- FIG. 12: 1-D STRESSING OF CAMBRIDGE Ko- CELL IN CC
- FIG. 13: EXAMPLE OF STRAIN ARM COMPLIANCE DURING SAMPLE CONSOLIDATION STAGE
- FIG. 14: EXAMPLE OF PRONOUNCED MECHANICAL COMPLIANCE OF STRAIN ARMS DURING PRESSUREMETER EXPANSION
- FIG. 15: DETAILS OF ORIGINAL AND MODIFIED SBP STRAIN ARMS
- FIG. 16: COMPARISON BETWEEN MEASURED AVERAGE LIFT-OFF STRESSES (p_0) AND APPLIED BOUNDARY STRESS (σ_{ho}): SELF-BORED INSTALLATION
- FIG. 17: SCHEMATIC OF SHEAR MODULI FROM SBP TEST
- FIG. 18: SCHEMATIC OF EFFECTIVE STRESS PATH OF SOIL ELEMENT ADJACENT TO AN EXPANDING PRESSUREMETER
- FIG. 19: SCHEMATIC OF UNLOADING-RELOADING CYCLE DURING SBPT IN
- FIG. 20: TYPICAL RESULTS OF SIMPLE SHEAR TESTS ON SAND (AFTER STROUD) AND THE IDEAL SOIL MODEL ASSUMED BY HUGHES ET al. (1977).
- FIG. 21: CALCULATED STRESS STRAIN RELATIONSHIPS FROM TEST No.222 (D_R = 46.2%) USING METHOD BY MANASSERO (1987)
- FIG. 22: CALCULATED STRESS STRAIN RELATIONSHIPS FROM TEST No.228 ($D_R = 77$) USING METHOD BY MANASSERO (1987)
- FIG. 23: ANGLE β ; DEVIATION OF ESP FROM ISOTROPIC ELASTIC BEHAVIOUR (FOR WHICH $\beta = 90^{\circ}$)
- Fig. 24: Determination of ϕ_{CV} from Ring shear tests
- Fig. 25: Comparison of calculated $\phi_{\mathbf{P}}^{\mathbf{PS}}$ from SBPT and equivalent $\phi_{\mathbf{P}}^{\mathbf{PS}}$ from triaxial tests

LIST OF APPENDIXES

- APP. I : EXAMPLE OF COMPUTER GENERATED PLOTS FOR TYPICAL TEST RESULT
- APP. II : COMPLETE LISTING FOR EACH SBPT RESULTS
- APP. III: CALCULATION OF AVERAGE STRESS ON HORIZONTAL PLANE AROUND EXPANDING CAVITY
- APP. IV : DETAILS ON MANASSERO (1987) METHOD FOR DETERMINATION OF ϕ FROM SBPT IN SAND

1. INTRODUCTION

This report presents the results of 47 self-boring pressure-meter tests (SBPT's) performed in the ENEL-CRIS(*) calibration chamber (CC). The tests were performed in dry and saturated Ticino and Hokksund sand. Pressuremeter tests were performed with the probe in-place during sample preparation ("ideal installation") and with the probe self-bored into the saturated sand.

The purpose of the testing was to evaluate the performance of the self-boring pressuremeter (SBP) probe under strictly controlled laboratory conditions and to critically review existing interpretation methods of the SBPT in sands. The SBP probe used in the study was the Camkometer Mark VIII manufactured by Cambridge In-situ Ltd., England.

2. TEST EQUIPMENT

2.1. Calibration Chamber (CC)

The ENEL-CRIS calibration chamber was designed to calibrate and evaluate different in-situ testing devices in sands under strictly controlled boundary conditions.

A complete description of the chamber is given by Bellotti et al. (1982). The equipment consists of a double wall chamber, a loading frame, a mass sand spreader for sand deposition and a saturation system. The chamber can test a cylindrical sample of sand 1.2 m (3.9 feet) in diameter and 1.5 m (4.9 feet) in height.

A schematic cross-section of the ENEL-CRIS calibration chamber is shown in Figure 1.

The sample is confined laterally with a flexible rubber membrane surrounded by water through which the horizontal stresses are applied. The bottom of the sample is supported on a water filled cushion resting on a rigid steel piston.

The vertical confining stress is applied through the water filled base cushion and vertical deflection of the sample is controlled by the movement of the base steel piston. The top of the sample is confined by a rigid top plate and fixed beam.

The double-walled chamber allows the application of a zero average lateral strain boundary condition to the test sample by maintaining the pressure in the double-wall cavity equal to the lateral pressure acting on the sample membrane.

^(*) ENEL - CRIS: Italian National Electricity Board - Hydraulic and Structural Research Center.

The axial and lateral confining pressures can be varied independently so that the ratio of the applied horizontal stress (σ_h) to the vertical stress (σ_v) can be maintained at any desired value.

A schematic cross-section of the CC loading system is shown in Figure 2.

2.2. Self-boring Pressuremeter

The SBP probe used in the study was the Camkometer Mark VIII manufactured by Cambridge In-Situ Ltd., England. A schematic outline of the SBP probe is given in Figure 3.

The SBP probe is essentially a thick walled steel cylinder with a flexible membrane attached to the outside. The instrument is advanced into the ground as the soil displaced by a sharp cutting shoe is removed up the center of the probe by the action of a rotating cutter inside the shoe. The cuttings are flushed to the surface by water or drilling mud which is pumped down to the cutting head.

The cylindrical adiprene membrane used in this study was 82 mm in diameter and 490 mm in length, corresponding to a length to diameter ratio (L/D) of approximately 6. The adiprene membrane was designed to be flush with the body of the probe. An outer flexible protective membrane with stainless steel strips ("chinese lantern") can be placed over the adiprene membrane during penetration and testing in dense or abrasive soils.

Once the instrument is at the desired test depth, the membrane is expanded against the soil using pressurized N₂ gas. The radial expansion of the membrane is measured at the mid-height of the membrane by three pivoted levers, called strain arms. The strain arms are located at 120 degrees around the circumference. The strain arms are kept in light contact with the inside of the membrane by strain gauged cantilever springs (Figure 3). Individual and average readings were taken of the three strain arms. The sensitivity of the strain arms was approximately 0.02 mm/mV.

A strain gauged total pressure cell (TPC) is located inside the probe to measure the inflation gas pressure. Two strain gauged pore pressure cells (PPC) are also incorporated into the membrane. The sensitivity of the PPC and TPC was approximately 8 kPa/mV.

The data from all six transducers (3 strain, 1 total pressure, 2 pore pressure) was collected by the original data acquisition system consisting of a data capture unit, and a thermal paper printer with the addition of a cartridge equipped HP 9825 computer and a wider paper tape printer. The output was also recorded on a four channel Y-T chart recorder and an X-Y plotter for simultaneous plotting of raw data (Fig.2).

3. TEST SAND

Two natural sands have been tested; Ticino sand from Italy and Hokksund sand from Norway. Both sands have a uniform gradation and are medium to coarse grained with a mean grain size, D_{50} =0.53 mm, and 0.39 mm for Ticino and Hokksund sand, respectively.

General characteristics of the sands and grain size distributions are given in Fig.4.

A detailed description of the physical properties of the two sands is given by Baldi et al. (1985).

During the course of the testing different batches of Ticino sand were used. However, each batch was tested to ensure consistent grain size characteristics.

4. TEST PROCEDURES

4.1. Sample Formation

All test samples were prepared by pluvial deposition of dry sand in air using a gravity mass sand spreader (Jacobsen, 1976). A schematic representation of the mass sand spreader is shown in Figure 5.

The pluvial deposition method has the following advantages;

- · good repeatibility
- wide range of obtainable relative densities (20% \leq D_R \leq 98%)
- · good homogeneity of sample
- · cost effectiveness.

The homogeneity of the samples is generally good although somewhat erratic for medium dense specimens (40% \leq D_{R} \leq 60%). Full details concerning sample homogeneity is given by Baldi et al. (1985).

Sample formation is performed in one operation and the sand container holds enough sand necessary for specimen preparation.

4.2. Probe Installation

4.2.1. Ideal

To evaluate and avoid the influence of the self-boring installation on the pressuremeter results a series of tests were performed with "ideal installation".

For ideal installation the probe was placed in the CC before sample formation. A schematic outline of the ideal installation procedure is shown in Figure 6.

The SBP probe was placed in the center of the CC with the midheight of the membrane approximately 65 cm (25 inches) from the sample base. A protective cylinder was placed above the probe and extended up to the base of the sand container (see Fig.6). This was done to avoid sand falling onto the top of the probe during sample formation.

4.2.2. Self-bored

To simulate field self-boring conditions a series of tests were performed with the probe self-bored into the CC. A schematic outline of the self-bored installation procedure is given in Figure 7.

The sand samples were first formed using pluvial deposition and then saturated with de-aired water. Full details of the saturation procedures are given by Bellotti et al. (1982). The probe was self-bored into the CC using water as the flushing fluid. Drainage was generally allowed at the base of the sample. A summary of the installation conditions during self-boring is given in Table 1.

Installation was performed with various boundary conditions in order to evaluate their influence on the test results (see Table 1).

A small vacuum (5 t/m^2) was applied to the inside of the SBP probe to maintain the adiprene membrane in close contact with the body of the probe.

The cutter speed was generally maintained at a rate of about 60 revolutions per minute. The distance of the cutter from the leading edge of the cutting shoe was varied from about 1.9 cm (0.75 inch) to 5.4 cm (2.13 inches). For the tests in dense sand the adiprene membrane was generally protected by using the chinese lantern. The size of the cutting shoe was adjusted to be the same diameter as the membranes.

The probe was advanced into the CC at a rate of about 3 cm/min. (1.18 inches/min).

A flowmeter was used to monitor the flow rate of the flushing water sent to the cutter. The flow rate was generally about 9 to 12 lt/min. The flow rates from the probe and calibration drainage lines were also monitored. During the installation, the CC pore pressures and boundary stresses and strains were monitored. All the sand flushed out from the CC during installation was carefully collected and weighted (oven-dry).

4.3. Sample Stresses

Following sample formation and probe installation, the sample was subjected to one-dimensional consolidation under conditions of no average lateral strain (i.e. $\Delta \epsilon_h = 0$). Normally

consolidated (NC) and mechanically overconsolidated (OC) specimens were reproduced.

During the loading and unloading consolidation phases, changes in vertical effective stress (σ_V') and the corresponding vertical strain (ϵ_V) were recorded. This allowed the calculation of the constrained modulus (\texttt{M}_{O}) and the coefficient of earth pressure at rest (\texttt{K}_{O}) .

A summary of the general CC conditions at the end of consolidation is given in Table 2.

An example of data collected during a typical sample stressing is given in Figure 8.

During the SBPT the sample boundary conditions could be controlled.

A summary of the possible boundary conditions is given in Figure 9.

The boundary conditions applied during each pressuremeter test are given in Table 2.

The most common boundary condition applied was constant vertical ($\sigma_{\rm V}$ = constant) and horizontal ($\sigma_{\rm h}$ = constant) stresses (BC1).

4.4. Pressuremeter Expansion

After sample stressing and the self-boring insertion when appropriate, the pressuremeter test was performed by expanding the membrane to a maximum cavity strain (ϵ_0) of about 10%. Cavity strain is defined in terms of circumferential strain;

$$\epsilon_0 = \frac{\Delta R}{R_0} \qquad \dots \tag{1}$$

where:

R_O = initial cavity radius

AR = increment of cavity radius.

Generally, before the beginning of the expansion phase, a relaxation time ranging between:

- 30' to 60' in tests with ideal installation
- $\boldsymbol{\cdot}$ 60' to 180' in tests with self-boring installation was allowed.

Only strain controlled tests were performed using an electronic Strain Control Unit (SCU) supplied by Cambridge In-Situ Ltd.

The SCU automatically adjusts the expansion pressure as a function of the output from the strain arms.

Constant strain rates of 0.1%/hour up to 2% per minute can be achieved. Generally, tests were performed at a strain rate of about 1%/minute.

Generally, during each expansion phase, two or three unloadingreloading (UR) loops and, during the contraction phase, one or two reloading-unloading (RU) loops were performed. The strain amplitude for each UR or RU loop was maintained constant and in the order of 0.1 to 0.2%.

An example of a typical pressuremeter test result is shown in Figure 10.

Typical pressuremeter tests show the average strain for the three strain arms. The average strain is calculated at any instant in time as the numerical average of each strain arm measurement.

A summary of the probe and chamber conditions for the tests using self-bored installation is given in Table 1.

Data from all transducers in the SBP probe were stored on computer cassettes and printed in digital form on a paper tape printer. After each test the basic data was processed and corrected for membrane stiffness. Examples of the computer generated plots are given in Appendix I.

5. TEST RESULTS

A complete listing of all the test results is given in Appendix II.

5.1. Initial Horizontal Stress

It is generally postulated that, if the SBP probe is inserted into the ground with minimum disturbance to the surrounding soil, the total horizontal stress (σ_{ho}) existing in the soil prior to insertion can be measured. The σ_{ho} is measured by recording the corrected SBP cavity pressure (p_{o}) causing "lift-off" of the pressuremeter membrane. This postulation should be especially valid in the case of the "ideal-installation" used in the CC for test No.201 to 236, inclusive and No.262 and 263. Table 4 presents a summary of lift-off stresses for each strain arm. The lift-off stress was determined from a visual inspection of the early part of the expansion curve.

5.1.1. Initial Horizontal Stress: Ideal Installation

Examination of the results in Table 4, for ideal installation, shows that the measured average lift-off stress (p_0) is often significantly different than the applied boundary stress (σ_{h0}) . Figure 11(a) presents a comparison of the measured average lift-off stress and the applied boundary stress for the tests with ideal-installation.

The average lift-off stress is defined as the observed "lift-off" from the cavity expansion versus average strain plot, as shown in Fig.10. This lift-off is generally very close to the first lift-off of one of the arms.

The reasons for the differences are not clear but may be caused by one or more of the following:

- a. stress concentration around the rigid SBP probe juring one-dimensional stressing,
- b. sechanical compliance of the strain arms,
- c. arching effects caused by the presence of an annulus of looser sand around the SBP probe.

In the field, the possible existence of anisotropic stress fields (Dalton and Hawkins (1982)) should also be considered, but this possibility does not exist in the triaxial CC tests.

5.1.2. Evaluation of Stress Concentration

The possibility of stress concentrations around the probe in the CC during the consolidation stage was investigated using a rigid self-boring K_0 -cell manufactured by Cambridge In-Situ Ltd. The K_0 -cell has the same diameter as the SBP probe and consists of a rigid steel cylinder with a K_0 -cell mounted flush on one side. The K_0 -cell is strain-gauged and operated on a null-indicator principle. Gas pressure on the inside of the cylinder is constantly adjusted to ensure no lateral strain of the K_0 -cell.

One test was performed (Test N°226) using the K_0 -cell with ideal-installation in the CC. The test was carried out using Ticino sand at a $D_{\rm R}$ - 60%. The sample was stressed under boundary conditions BC 3 up to a stress of $\gamma_{\rm ho}$ - 3 0 kg/cm² and $\sigma_{\rm VO}$ = 6.2 kg/cm². A comparison between the applied horizontal stress ($\sigma_{\rm ho}$) and the measured stress ($P_{\rm h}$) recorded with the K_0 -cell is shown in Figure 12.

The results from this special test indicate that there is little or no stress concentration around the SBP probe after ideal-installation in sand in the CC. A comparison between the K_0 -cell results and the SBP probe results is also included in Figure 11.

5.1.3. Machanical Compliance of Strain Arms

The problem of mechanical compliance of the strain arms has been investigated in detail. The first indications of this phenomena emerged during SBP tests performed at several Italian clay and send sites using the same SBP equipment used in this study [Ghionna et al. (1983), Jamiolkowski et al. (1985)]. Bruzzi et al. (1986)].

The following observations emerged from the field tests:

a. the "lift-off" pressures from each strain arm were almost always different. This occured even in soil deposits for which it was difficult to justify, based on geologic history, the presence of anisotropic horizontal in-situ stresses. b. the differences between the three measured "lift-off" pressures tended to increase with increasing soil stiffness and ambient in-situ soil stress.

These observations indicated a possible problem due to mechanical compliance of the strain arms. These problems where further confirmed during the CC testing when the following observations were made;

- despite the "ideal installation" of the SBP probe and the simple stress history of the CC specimens, different "lift-off" pressures were recorded for each of the three strain arms. The difference was more pronounced in the stiffer samples,
- during the sample stressing with the probe installed, apparent inward movement of the strain arms was recorded when the radial chamber stress was increased and apparent outward movement when the chamber stress was decreased. An example of this phenomenon is shown in Figure 13.

Figure 14 presents the results of the initial portion of expansion curves recorded with each strain arm and with the averaged strain for a test with pronounced mechanical compliance.

The mechanical compliance of the strain arms tends to confuse the initial part of the expansion curves and makes the detection of the lift-off pressure uncertain.

The detection of the lift-off pressure becomes more difficult with increasing stiffness of the surrounding soil because the slope of the initial portion of the expansion curve becomes very steep.

In an effort to eliminate or at least reduce the mechanical compliance the three strain arms were modified.

A comparison between the original and modified strain arm designs is shown in Figure 15. The modified arms had the following major changes:

- the body of the arms were made thicker and stiffer and were machined from stainless steel instead of the original brass.
- the alignment of the pivots and arms with respect to their seats on the probe body were improved,
- the pivots were modified by using precision miniature bearings.

All the tests from N^*225 onwards used a SBP probe with the modified strain arms.

Figure 11(b) shows a comparison between the measured average lift-off stress (with modified arms) and the applied chamber stress for the remaining CC tests with ideal-installation. The results indicate that the modifications to the strain arms have minimized to some extent the mechanical compliance but have not completely removed the problem.

At pesent, based on the CC results using ideal installation it appears that the strain measuring system in the existing version of the Cambridge In-Situ Ltd., Camkometer (Mark VIII) requires radical changes in order to improve the precision of the measured lift-off pressures, especially in stiffer soils.

5.1.4. Evaluation of Arching Effects

The possible problem of arching around the SBP probe has not been directly investigated. The experience gained in the evaluation of sample homogeneity of pluvially deposited CC samples [Baldi et al., (1985)] indicates that $\mathbf{D_R}$ tends to increase slightly towards the center of the sample. However, this experience refers to samples formed without the SBP probe installed inside the CC.

5.1.5. Initial Morizontal Stress: Self-Bored Installation

Figure 16 compares the measured average lift-off pressures against the applied boundary stress (σ_{ho}) for the CC tests with self-boring installation. In almost all cases the measured average lift-off stress is less than the applied stress and often close to the water pressure in the CC. This indicates significant sample disturbance during the installation, especially in loose and medium dense samples.

The ratio between the average lift-off stress (p_O (AV)) and the applied boundary stress (σ_{hO}) for the self-bored installation is:

$$\frac{P_O (AV)}{\sigma_{ho}} = 0.47 \pm 0.28$$
 ... (2)

Table 4 presents a summary of the individual lift-off pressures for each strain arm. Examination of Table 4 shows that, for the self-bored installation, the variation between lift-off pressures from the individual arms in extremely large.

Because sands are generally stiff in comparison to soft clays, the measurement of in-situ stress in sands is extremely difficult.

A slight outward disturbance during self-boring will tend to produce an overestimate of σ_{ho} . A slight inward disturbance during self-boring can cause the sand around the probe to arch and produce a significant underestimate of σ_{ho} .

Based on the CC results, it appears that the measurement of insitu stresses in sands using the self-boring pressuremeter is extremelly sensitive to disturbance.

5.2. Shear Modulus

The evaluation of deformation characteristics of soils from the results of a SBPT is usually linked to the assumption that the probe is expanded in a linear, isotropic, elastic, perfectly plastic soil. With this assumption the soil surrounding the probe is subjected to pure shear only. This holds true provided the applied pressuremeter cavity effective stress (p') stays below the yield stress (p_v^\prime) of the soil element adjacent to the cavity wall. The values of p, in a purely frictional Coulomb material is given by the formula [Baguelin et al. (1978):

$$p'_{y} = p'_{0} (1 + \sin \phi)$$
 ... (3)

For the range of effective cavity stress $p_0' < p' \le p_\gamma'$, the expansion curve should have a constant slope $d_p/d\varepsilon_0 = 2 G_1$ [Baguelin et al. (1972, 1978) where:

= initial shear modulus of tested soil, see Fig.17

The above is true for SBPT's performed in an infinite medium (i.e. in-situ). However Fahey (1980) demonstrated that because of the limited dimensions of a CC the initial slope of expansion curves obtained in the CC tend to be sligthly too small. In this study, the effect of the limited dimensions of the ENEL CRIS CC has only a minor effect, resulting in a reduction of less than 3% on the measured values of G.

The definition of G_i given above implicity incorporates the following simplified assumptions:

a. The length (L) to diameter (D) ratio of the probe is sufficiently large to ensure deformations of the surrounding soil occur in plane strain conditions

b. The expansion proceeds with no volume change in the surrounding soil mass (i.e. linear, isotropic elastic

material).

c. All soil elements surrounding the expanding cavity have the same stress strain characteristics.

The first assumption (a) appears reasonable for the Camkometer probe used in this research, where the L/D=6. The other assumptions (b) and (c) are both strictly linked to the hypothesis made about the stress-strain relationship of soil. Both assumptions require that the effective stress path (ESP) projected on the horizontal plane should have a shape as shown schematically in Fig.18. In reality because of, the strain nonlinearity, elastic anisotropy, and work hardening plasticity, etc., the behavour of sands deviates from that of the isotropic-elastic perfectly plastic material so that volume changes occur even during the early stage of the expansion. A more realistic ESP, as obtained by Manassero (1987), is qualitatively also shown in Fig.18. Comparison of the two stress paths shown in Fig.18 clearly indicates that beyond the initial elastic stage (point 1') the mean effective stress (σ_0') in the soil surrounding the expanding pressuremeter probe is not constant and consequently the volumetric strain cannot be equal to zero.

Since the modulus (G_i) can only be determined with validity from the very early part of the expansion curve the value is very sensitive to disturbance.

An alternative to the assessment of G_i from the initial part of the expansion curve is to evaluate G from correctly performed unloading-reloading (G_{UR}) and reloading-unloading (G_{RU}) loops as illustrated in Fig.17. According to Wroth (1982) the amplitude of the unloading should be performed in such a manner as to avoid the failure of the soil at the cavity wall in extension. For an isotropic-elastic, perfectly plastic material the magnitude of the effective cavity stress change ($\Delta p'$) during an elastic unloading should therefore not exceed the following:

$$\Delta p' = \frac{2 \sin \phi^{PS}}{1 + \sin \phi^{PS}} \quad p'_{C} \qquad \dots (4)$$

where:

The slope of the secant within the loop, (see Fig.17) is again equal to 2 G_{UR} or 2 G_{RU} . Both G_{UR} and G_{RU} represent an "elastic" shear stiffness of the tested sand. Within the framework of elasto-plasticity it can be demonstrated that during a drained test any unloading of the expanding cavity wall will bring the surrounding soil below the current yield surface. Inside this yield surface, (see Fig.19) the strains are small and to a large extent recoverable.

In addition to the above mentioned moduli (G_i, G_{UR}, G_{RU}) it is also possible to evaluate directly from the expansion curve the secant pressuremeter modulus G_g , as shown in Figure 17. The assessment of G_g is also based on the assumption of an elastic soil behaviour which, except for the very early part of the expansion curve where $G_g \approx G_i$, and during unloading-reloading cycles, is conceptually not true.

Despite the lack of a clear physical meaning, G_g is frequently incorporated in the empirical design rules for shallow and deep foundations in France [Baguelin et al. (1978)].

Table 5 reports the values of $G_{\rm g}$ computed at cavity strains equal to 0.5%, 1.0% and 1.5%.

Values of G_{UR} for the different unloading-reloading cycles are given in Tables 6 to 9. Values of G_{RU} for the reloading-unloading cycle are given in Table 10.

In all soils, and especially in sands, the early part of the self-bored pressuremeter curve is strongly influenced by disturbance due to the installation. Therefore, G_{i} and G_{s} are also strongly influenced by disturbance. On the other hand, G_{UR} and G_{RU} are almost completely independent from the initial shape of the expansion curve and hence, independent from disturbance.

Despite this advantage, there is still the problem of how to apply the measured G_{UR} and G_{RU} values in engineering design. This requires some assessment of the average stress and shear strain levels relevant to the measured moduli [Robertson (1982). As with all boundary value problems this is difficult to assess and requires a number of simplifying assumptions.

Concerning the relevant stress level, existing pratice has been to refer G_{UR} to the average stress existing around the expanding pressuremeter probe. This average stress may be either the mean octahedral effective stress [Robertson (1982)] or the mean value of the plane strain effective stress [Fahey and Randolph (1984)].

In this study the latter stress will be adopted.

When a value of the reference stress has been selected, the following tentative procedure can be used to relate the measured G_{UR} and G_{RU} values to any level of effective stress:

- Consider the value of G_{UR} corresponding to a given value of the double shear strain amplitude of the cycle $(\Delta_7 = \tau_B \tau_A)$ and to the effective cavity stress from which the cycle starts (p_C') , see Fig.19 and Tables 6 through 10.
- Compute the weighted average of the current effective stress (p_{AV}^*) existing around the SBP probe at p_C^* , adopting an appropriate constitutive equation:

$$\mathbf{p}_{\mathbf{AV}}' = \chi \ \mathbf{p}_{\mathbf{C}}' \qquad \dots \tag{5}$$

For elastic perfectly plastic material, referring to the average stress on the horizontal plane existing in the plastic zone ($r_C \le r \le R_D$), the parameter χ can be computed from the following equation, see also Appendix III:

$$\chi = \frac{1}{(1-\sin\phi^{PS})} \cdot \frac{\left[\frac{p'_{C}}{\sigma'_{ho} (1+\sin\phi^{PS})}\right]^{\omega_{1}} - 1}{\left[\frac{p'_{C}}{\sigma'_{ho} (1+\sin\phi^{PS})}\right]^{\omega_{2}} - 1} \dots (6)$$

 σ_{ho}^{\prime} = initial effective horizontal stress. In a high quality SBPT σ'_{ho} should be closed to the measured effective lift-off pressure po

$$\omega_1 = \frac{1 - \sin \phi^{PS}}{2 \sin \phi^{PS}} \qquad \dots (7)$$

$$\omega_2 = \frac{2 \sin \phi^{PS}}{1 + \sin \phi^{PS}} \qquad \dots (8)$$

r = radial distance from center of cavity R_{p} = radius of plastic zone r_{C}^{F} = radius of cavity when cavity pressure = p_{C}^{\prime}

In practice the true value of σ_{ho}' is generally unknown, therefore, the assessment of χ is made by introducing into the above formula the measured value of p_0' . The values of χ computed for each SBPT performed in the CC are given in Tables 6 through 10 together with the corresponding values of p'AV. The use of the relationship, $p'_{AV} = \chi p'_{C}$, is correct provided the following condition is satisfied:

$$p'_{C} > \sigma'_{ho} (1 + \sin \phi^{PS})$$
 ... (9)

If this condition is not fulfilled the p'_{AV} should be assumed equal to $\sigma'_{ho} \approx p'_{o}$.

- Once the $p_{\mbox{\scriptsize AV}}^{\star}$ is assessed it is possible to compute the modulus number K_G from the following empirical formula proposed by Janbu (1963):

$$G_{UR} = K_G p_a \left\{ \frac{p_{AV}'}{p_a} \right\}^n \dots (10)$$

where:

K_G = modulus number

n = modulus exponent
p_a = reference stress, usually p_a = 98.1 kPa pay - average effective stress around the probe For sand, the modulus exponent is generally within the range of 0.4 to 0.5, with a slight tendency to increase with increasing level of strain [Wroth et al. (1979). Knowing the value of $K_{\mathbb{G}}$ it is possible to compute the shear modulus G for any desired stress level.

Following the procedure outlined above, the measured G_{UR} and G_{RU} values for each cycle have been referred to the effective horizontal stress σ'_{hO} applied to the boundary of the CC specimen, assuming n=0.43 as obtained by Lo Presti (1987). The corresponding values of G_{URO} and G_{RUO} are given in Tables 6 through 10.

The same tables also show the values of maximum dynamic shear modulus (G_O) obtained from resonant column tests performed by Lo Presti (1987) on pluvially deposited Ticino sand. The value of G_O corresponding to each SBPT has been computed using the following empirical equation based on the experimental data obtained by Lo Presti (1987):

$$G_0 = 647.0 \cdot p_a \left(\frac{\sigma'_{ho}}{p_a} \right)^{0.43} \frac{(2.27 - e)^2}{1+e} \dots (11)$$

where:

e = void ratio of the sand in the CC (*)
p_a = reference stress = 98.1 kPa

In order to make a meaningful comparison between the G_{URO} and G_{O} values it is necessary to consider other factors influencing the deformation characteristics of sand. Among them, the most relevant is the strain level. Each cycle is characterized by the double shear strain amplitude ($\Delta\gamma$) at the cavity wall where:

$$\Delta \gamma = \gamma_{\rm B} - \gamma_{\rm A} = 2 (\epsilon_{\rm OB} - \epsilon_{\rm OA})$$
 ...(12)

Values of $\Delta\gamma$ are reported in Tables 6 through 10. The maximum shear modulus G_O corresponds to a shear strain level less than 10^{-4} t, which is two orders of magnitude smaller than the strains at which G_{UR} and G_{RU} have been measured. In order to be able to compare G_O against G_{UR} , at the same strain level, it is necessary to use a relationship which can match the decay of G with increasing γ . The simplest solution is offered by the well known hyperbolic stress-strain relation in the form proposed by Hardin and Drnevich (1972):

^(*) Computed assuming the specific weight of the tested sands 26.35 kN/m^3 and 26.72 kN/m^3 for Ticino and Hokksund sands, respectively.

$$\frac{G}{G_{0}} = \frac{1}{1 + \frac{\gamma}{\gamma_{r}}} = \frac{1}{1 + \frac{G_{0} \gamma}{r_{max}}} \dots (13)$$

where:

G = shear modulus

= shear strain

 $r_{\text{max}} = \text{maximum shear stress}$

= reference strain = -

Referring to the SBP unloading-reloading cycle and relating the above given hyperbolic formula directly to the modulus number (K_G) , one gets:

$$\frac{G_{UR}}{G_{O}} = \frac{1}{1 + \frac{G_{O} \Delta \gamma_{AV}}{2 \sigma'_{hO} \sin \phi^{PS}}} \dots (14)$$

and therefore:

$$K_{G_O} = K_{G_{UR}}(\sigma'_{ho})^{n_{UR}-n_O} \cdot \left[1 + \frac{K_{G_O}(\sigma'_{ho})^{n_O} \cdot \Delta_{\gamma_{AV}}}{2 \sigma'_{ho} \sin \phi^{PS}}\right] \dots (15)$$

where:

 $K_{G_{O}}$ = modulus number related to the maximum dynamic shear

= modulus number as computed from Gur, see equation ...(10)

 $\Delta \gamma_{AV}$ = average strain in the plastic zone around the expanding probe

= modulus exponent related to the maximum dynamic shear modulus, Go

 n_{UR} = modulus exponent related to G_{UR} , see equation ...(10)

Referring to the data given in Tables 6 through 10 and assuming:

- $\Delta \gamma_{AV} \approx 0.45 \Delta \gamma$, see Robertson (1982)
- $n_0 = n_{UR} = 0.43$ $\sigma_{ho} = \text{boundary stress applied to the CC specimen,}$

one can assess, extrapolating using the hyperbolic stress strain relation, the value of $K_{G_{Q_1}}$ and hence compute;

$$G_o^{SBP} = f (G_{UR}, \Delta_7, \sigma_{ho})$$
 ...(16)

For the available tests in this study this approach gives, for the 1st and 2nd unloading-reloading cycles, the following:

$$1.3 \le \frac{G_o}{G_o^{SBP}} \le 1.8 \qquad \dots (17)$$

where:

 G_{O} = maximum dynamic shear modulus as measured in the resonant column tests G_{O}^{SBP} = maximum dynamic shear modulus assessed from G_{UR} .

The lack of coincidence between G_0 and $G_0^{\mbox{\footnotesize SBP}}$ may be due to the following:

- The oversimplified and approximate nature of the procedure used to obtain ${\tt G}_{\tt O}^{\tt SBP}$ from ${\tt G}_{\tt UR}.$
- The influence of the number of unload-reload cycles on the shear stiffness of sands. Values of G_{UR} have been measured during a single unloading-reloading cycle. Therefore the extrapolated G_{O}^{SBP} values should be referred to the 1st unload-reload cycle while the resonant column G_{O} has been measured after thousands of unload-reload cycles. For the given level of shear strain amplitude this factor can be expected to be responsible for differences between G_{O} and G_{O}^{SBP} of up to about 10 to 20 percent.
- The pluvially deposited sand tends to exhibit an anisotropic behaviour. Within the framework of the theory of elasticity for transverally isotropic soils, the available shear moduli can be defined as follows:

 $G_{UR} = G_{HH} =$ shear modulus for shearing in horizontal direction

 $G_{O} = G_{VH} =$ shear modulus for shearing in vertical direction

However this factor does little to justify the observed differences between G_O and G_O^{SBP} . The results of large scale tests performed by Stokoe and co-workers [Knox (1982, Stokoe and Ni (1985), Lee (1986)] indicate that, in sand the velocity of the horizontally polarized shear wave (v_S^{HH}) is 1.1 to 1.15 higher than the vertically polarized shear wave velocity (v_S^{VH}) . This data indicates a G_{HH}/G_{VH} ratio ranging between 1.2 and 1.3, therefore suggesting $G_O^{SBP} > G_O$.

5.3. Shear Strength

Theoretical methods for the determination of the peak friction angle (**) of sands from pressuremeter test data have been proposed by several authors; i.e. Gibson and Anderson (1961), Ladanyi (1963), Vésic (1972), Hughes et al. (1977), Robertson (1982) and Manassero (1987). Each method relies on a model for the sand behaviour. Most of the above methods consider that sand has a constant friction angle at failure. However, not all methods allow for the fact that sand changes in volume during shearing.

In Ladanyi's method the volume change is considered to be constant at the point the failure stress ratio is reached. This volume change is introduced into the assessment of the friction angle by a trial and error method.

Vésic's solution uses the results of laboratory tests directly to determine volume change. However, the problem of determining the appropriate laboratory density to perform the tests, is not easy to resolve. Also, the laboratory tests may not produce reliable volume change behaviour because the in-situ structure and fabric cannot be reproduced in the laboratory.

The solution developed by Hughes et al. (1977) relies on the fact that the volume changes are occurring during the expansion of the cavity and the amount of volume change (dilation) is closely related to the current friction angle developed. This approach brings together the stress dilatancy concept of Rowe (1962) and the observed behaviour of sand in simple shear, as for example, observed by Stroud (1971).

Figure 20 shows typical results of simple shear tests on sand conducted by Stroud (1971) and the ideal soil model assumed in the method by Hughes et al. (1977).

In the method proposed by Hughes et al. (1977), it was shown that:

$$\log \left(\frac{\Delta R}{R_O} + \frac{c}{2}\right) = \frac{n+1}{1-N} \cdot \log (p-u_O) + constant \qquad \dots (18)$$

where:

R_o = initial radius of pressuremeter

= change in radius of pressuremeter

 $\Delta R/R_{\Omega}$ = cavity strain, ϵ_{Ω}

= intercept shown on Fig.20 (c) and (d)

p = total pressuremeter cavity stress

u_o = pore water pressure

 $\frac{1-N}{n+1} = \frac{(1+\sin \nu)}{(1+\sin \phi)} \cdot \sin \phi = \text{slope S}$

sin > = maximum dilation rate

In the above method the intercept "c" is assumed zero and a plot of the pressuremeter data in terms of log $(p-u_0)$ (effective cavity stress) against log $(\triangle R/R_0)$ will tend towards a straight line with a slope S. This slope is related to the in-situ friction angle (ϕ) and the maximum dilation rate (sin ν).

For very dense sands the intercept "c" is essentially negligible and for all practical purposes can be ignored. The results of the laboratory studies conducted by Jewel et al. (1980) in very dense sands ($D_R = 90$ %) using the self-boring pressuremeter probe show that the above technique appears to work very successfully. In loose materials the method is not so convenient as the pressuremeter does not expand sufficiently for the sand around the probe to reach the linear portion of its volumetric strain/shear strain curve.

The method by Robertson (1982) expands on the method by Hughes et al. (1977) but incorporates an empirical correction to account for the non-linear nature of the volume change - shear strain relationship (see Figure 20).

The method developed by Manassero (1987) is also a further development of the Hughes et al. (1977) method but incorporates the full non-linear nature of the stress-strain curves. The method assumes that Rowes stress dilatancy concept is valid and solves the shear-volume coupling in a unique manner by using a finite difference numerical solution.

The method by Manassero (1987) allows the complete stress strain and stress path to be calculated for each pressuremeter test. Figures 21 and 22 show typical examples of the calculated stress strain and stress paths for pressuremeter tests with ideal installation. From the stress path plots (d) in Figures 21 and 22 it is clear that the soil surrounding the probe is initially strain hardening up to the point of peak strength $(\sigma_T'/\sigma_I')_{\max}$, and then strain softening.

The deviation of the soil behaviour from the simple isotropic elastic behaviour can be represented by the angle β (see Fig.23), which is the angle between the point of peak strength $(\sigma_{\Gamma}/\sigma_{\ell})_{\max}$ and the initial mean normal stress, p_0 . Values of β are given in Table 11 for each pressuremeter test analysed using the method by Manassero (1987). In order to avoid numerical instability in the calculation of the stress strain curves and stress paths using the method by Manassero (1987) a 7th order polynominal function was made to fit the measured curve.

Full details of the method by Manassero (1987) is given in Appendix IV.

The methods by Hughes et al. (1977), Robertson (1982) and Manassero (1987) have been evaluated using the results from the SBPT's performed in the CC, and results are presented in Table 11.

All three methods require a knowledge of the friction angle at constant volume (ϕ_{CV}) . Values of ϕ_{CV} were determined for Ticino and Hokksund sand using a ring shear apparatus. A summary of the ring shear results are shown in Figure 24. An average value of $\phi_{CV} = 34^{\circ}$ was used in the analyses.

A summary of the calculated angles of friction and dilatancy obtained from the pressuremeter tests performed in the CC are presented in Table 11.

Peak friction angles have also been determined from triaxial tests on Ticino sand at various stress levels and densities. Triaxial specimens were formed using the same pluvial deposition technique as used to form the CC specimens.

deposition technique as used to form the CC specimens. The peak friction angles $(\phi_{\bf p}^{\rm PS})$ and dilation angles $(\nu^{\rm PS})$ determined from the pressuremeter are obtained under approximately plain strain conditions and are related to the average effective stress around the probe during the test. Therefore, to compare the calculated peak friction angles from the pressuremeter $(\phi_{\bf p}^{\rm PS})$ with those obtained from triaxial tests $(\phi_{\bf p}^{\rm TX})$ requires some corrections to account for stress level at failure $(\sigma_{\bf ff})$ and boundary conditions (plain strain-triaxial).

The peak friction angles obtained from the laboratory triaxial compression tests $(\phi_{\mathbf{p}}^{TX})$ where corrected to the equivalent stress level at failure $(\sigma_{\mathbf{f}\mathbf{f}})$ occurring in each pressuremeter test and then corrected to an equivalent plain strain value $(\phi_{\mathbf{p}}^{PS})$.

The stress level at failure (σ_{ff}') for each pressuremeter test was calculated assuming a linear elastic isotropic soil behaviour, where:

$$\sigma_{ff}' = \sigma_{ho}' \left[1 - \sin^2 \phi_{P}^{PS} \right] \qquad \dots (19)$$

The values of $\phi_{\mathbf{p}}^{TX}$ were then determined at the $\sigma_{\mathbf{ff}}$ stress level using the curved strength envelope equation developed by Baligh (1975), where:

$$\tan \phi_{\mathbf{p}}^{\mathbf{TX}} = \tan \phi_{\mathbf{0}}^{\mathbf{TX}} + \tan \alpha \left(\frac{1}{2.3} - \log \cdot \frac{\sigma_{\mathbf{ff}}^2}{p_{\mathbf{a}}} \right) \dots (20)$$

where:

 ϕ^{TX} = secant friction angle from triaxial compression test at $\sigma_{ff}^{r=2.72}$ p_a

p_a = reference stress = 98.1 kPa

 a = angle which describes the curvature of the failure envelope

Values for ϕ_0^{TX} and α for Ticino sand are given by Baldi et al. (1986).

The triaxial friction angle values were then converted to equivalent $\phi_{\mathbf{P}}^{\mathbf{PS}}$ using the following equation by Lade and Lee (1976); $\phi_{\mathbf{P}}^{\mathbf{PS}} = \phi_{\mathbf{D}}^{\mathbf{TX}} \cdot 1.5 - 17$

The calculated equivalent $\phi_{\mathbf{p}}^{\mathbf{pS}}$ values determined from the laboratory triaxial results are also shown in Table 11.

Comparisons between the calculated ϕ_p^{PS} from the SBPT results using the methods by Hughes et al. (1977), Robertson (1982) and Manassero (1987) and the equivalent ϕ_p^{PS} obtained from triaxial results are shown in Figure 25. The following comments can be made about the results presented in Figure 25.

- 1. No method provides a reliable estimate of $\phi_{\mathbf{p}}^{\mathbf{PS}}$ for sands from the SBPT.
- The method by Robertson (1982) appears to produce less scatter.
- 3. Generally the scatter in calculated ϕ_{p}^{PS} is slightly larger for the test results where the probe was self-bored into the CC.

It is interesting to note that, although most of the self-bored results gave very poor values of σ_{ho} due to disturbance, the self-bored data gave reasonable values of ϕ_p^{PS} . This is consistent with observations made in the field (Ghionna et al., 1983; Jamiolkowski et al., 1985; Bruzzi et al., 1986). Based on the CC results, it appears that the determination of peak friction angle (ϕ_p^{PS}) in sands using the self-boring pressuremeter is not very reliable and depends on the method of analyses.

Table 11 also provides the values of the state parameter (ϕ), as defined by Been and Jefferies (1985). The ϕ combines the influence of both mean effective stress level and void ratio on the dilatancy of sand and may correlate to the parameters reflecting the behaviour at failure, i.e. ϕ , ν .

5.4. Limit Pressure

Table 5 presents the calculated limit pressures $(P_{\frac{1}{2},n})$ from each SBPT using two existing methods. The two methods evaluated were:

WW P_{lim} : Method by Windle and Wroth (1977)

 $\frac{\text{AA}}{\text{Plim}}$: Method by Al Awkati (1975)

Examples of the plots to calculate P_{lim} are given in Appendix I. Unfortunately, the concept of a limit pressure is no applicable to pressuremeter tests in sand, especially with a maximum cavity strain of only 10%. Because there is no fundamental concept to support the values of P_{lim} , their application to design is related to empirical correlations. This is further complicated by the fact that different values of P_{lim} are obtained from the different methods (see Table 5).

5.5. Boundary Conditions

The laboratory studies by Fahey (1980) showed that the condition of a constant horizontal stress boundary at some finite distance from the expanding pressuremeter had the effect of producing an apparent strain softening in the pressure expansion curve. This situation was not observed in any of the pressuremeter tests performed for this study. The reasons for this apparent lack of boundary effect could be the following:

- The ENEL-CRIS CC is 1.2 m in diameter, compared to the 0.9 m diameter CC used by Fahey (1980).
- Pahey studied only very dense sand ($D_R=921$) in which the plastic zone expands rapidly during the pressuremeter test. For the tests in this study where $D_R=901$ there was no strain softening observed.

No influence of boundary effects could be observed for the interpreted values of $\sigma_{\mbox{ho}}$, G and ϕ .

6. SUMMARY AND CONCLUSIONS

A series of 47 self-boring pressuremeter tests have been performed in the ENEL-CRIS calibration chamber, 25 tests were performed with the probe in-place during sample preparation i.e. ideal installation) and 22 tests were performed with the probe self-bored into saturated sand, 1 test was not completed due to a ruptured membrane during probe installation (Test No. (40)).

ing appears the testing was to evaluate the performance of the self-tering pressuremeter probe under strictly controlled interitory conditions and to critically review existing interpretation methods of SBPT in sands.

The SBP probe used in the study was the Cambometer Mark VIII manufactured by Cambridge In-Situ Ltd., England.

The results of the testing can be summarized as follows:

1. Assessment of in-situ stress (oho)

- Ideal installation:

Large scatter exists in the experimental data because of mechanical compliance of the strain measurement system. The precision required (approximately 0.005 mm) is probably beyond the limits of a mechanical system. There is, therefore, a need for improvement in the measurement system of lift-off pressure, possibly by adding non-contact precision transducers.

The existing strain arm design is sufficiently reliable to measure radial displacement during the main expansion phase.

· Self-bored installation:

The disturbance caused by the self-boring process generally rendered the measured lift-off pressure too low, highly scattered and generally unrealiable.

However, the soil tested in this study (i.e. freshly deposited, unaged, uncemented, clean sand) creates particularly unfavourable conditions with respect to the reliable assessment of in-situ stress. More reliable assessment of $\sigma_{\mbox{ho}}$ may be possible in natural sand deposits.

2. Assessment of Shear Modulus, G

- Even for the same sand (grain size, fabric, stress history, etc.) the shear stiffness is a complex function of; void ratio (e), effective stress (p'), shear strain (γ), number of cycles ($N_{\rm C}$) and anisotropy and plasticity.
- There is a need to improve the link between the measured G and the stiffness required for specific design problems.
- The initial shear moduli (G_i) and the secant shear moduli (G_s) are both sensitive to disturbance and are very complex to locate within the framework of elastoplastic theory.

 Therefore, G_i and G_s are almost impossible to link to other laboratory and in-situ tests and to design problems.
- The shear moduli determined from unload-reload cycles (G_{UR} or G_{RU}) are "elastic" but non-linear and are much less sensitive to disturbance due to installation. G_{UR} or G_{RU} should be linked to the relevant design problems via appropriate corrections accounting for stress (p') and strain (γ) level. Soil anisotropy should also be considered, since SBPT $G_{UR} = G_{HH}$, while in many practical problems the value G_{VH} is appropriate.
- \bullet Because ${\rm G}_{UR}$ and ${\rm G}_{RU}$ reflects the shear stiffness of sands inside the current yield surface they implicity refer only to overconsolidated (OC) materials.
- When relating G_{UR} to the dynamic shear modulus (G_{O}) the influence of number of cycles (N_{C}) should also be considered.
- Further theoretical work is required concerning the application of G_{TIP} to engineering design practice.
- At present G_{UR} represents a rather unique method to assess directly some kind of shear stiffness for natural sands in-situ, with the exception of the dynamic shear moduli from in-situ shear wave velocity measurements.

3. Assessment of peak friction angle & PS

- A large scatter exists between the calculated \mathfrak{I}_{p}^{PS} from the SBPT results and the equivalent values of \mathfrak{I}_{p}^{PS} obtained from triaxial compression tests.
- None of the existing methods evaluated (Hughes et al., 1977; Robertson, 1982; Manassero, 1987) provided consistently reliable values of the peak friction angle under plane strain conditions (p_p^{PS}).
- Evaluation of the reference friction angle from laboratory triaxial testing is complicated by the curvature of the failure envelope, the variation in stress level at failure ($\sigma_{\mathbf{ff}}$) in the pressuremeter test and the strain conditions (plain strain-triaxial).
- The calculation of $\phi_{\mathbf{p}}^{PS}$ from the self-bored pressuremeter tests appear to be less sensitive to initial disturbance than the measurement of in-situ stress $(\sigma_{\mathbf{ho}})$.
- The method by Robertson (1982) appears to produce less scatter.
- Because of the relatively high densities ($D_R > 40\%$) and low stresses (max 500 kPa) the sand tested had $\phi_P^{PS} \ge 41^\circ$. Therefore, the high friction angles creates particularly unfavourable conditions for the ϕ methods evaluated.

The objective of this study has been to verify the performance of the SBPT in sand and to critically review existing approaches to interpretation of the data for geotechnical design.

The objectives of this study have been reached. However, the study has produced extensive data concerning the SBPT in sand and not all the information has been fully studied and discussed in this report. Further research can be performed to fully evaluate all the available data resulting from this study.

LITERATURE CITED

- AL AWKATI A., (1975). "On Problems of Soil Bearing Capacity at Depth". Ph. D. Thesis, Duke Univ., Durham, N.C.
- BAGUELIN F., JEZEQUEL J.F., LE MEE H. and LE MEHAUTE A., (1972). "Expansion of Cylindrical Probes in Cohesive Soils". JSMFD, ASCE, SM11.
- BAGUELIN F., JEZEQUEL J.F. and SHIELDS D.H., (1978). "The Pressuremeter and Foundation Engineering". Trans. Tech. Publications, Clausthall.
- BALDI G. et al. (1985). "Laboratory Validation of In-Situ Tests". AGI, Jubilee Volume, XI ICSMFE, San Francisco.
- BALDI G. et al., (1986). "Interpretation of CPT's and CPTU's. II Part: Drained Penetration on Sands". Proc. IV Int. Geotech. Seminar NTI on Field Instrumentation and in Situ Measurements, Singapore.
- BALIGH M.M., (1975). "Theory of Deep Site Static Cone Penetration Resistance". Res. Rep. R75-56, N.517, MIT Cambridge Mass.
- BELLOTTI R., BIZZI G., GHIONNA V.N., (1982). "Design Construction and Use of a Calibration Chamber". Proc. ESOPT II, Amsterdam, V.2.
- BEEN K. and JEFFERIES M.G., (1985). "A State Parameter for Sand". Geotechnique, N.2.
- BRUZZI D. et al. (1986). "Self-Boring Pressuremeter in Po River Sand". Proc. II Int. Symp. on the Pressuremeter and Its Marine Applications. Texas A&M Univ., ASTM STP 950.
- DALTON J.P.C., HAWKINS P.G., (1982). "Some Measurements of the In-Situ Stress in a Meadow in Cambridge Shire Country Side". Gr. Engng. N.5.
- FAHEY M., (1980). "A Study of the Pressuremeter Test in Dense Sand". Ph. D. Thesis, Cambridge Univ., U.K.
- FAHEY M., RANDOLPH M.F., (1984). "Effect of Disturbance on Parameters Derived from Self-Boring Pressuremeter Tests in Sand", Geotechnique, N.1

- GHIONNA V.N., JAMIOLKOWSKI M., LACASSE S., IADD C.C., LANCELLOTTA R. and LUNNE T., (1983). "Evaluation of Self-Boring Pressuremeter". Proc. Int. Symp. on Soil and Rock Investigation by In-Situ Testing, Paris, V.2
- GIBSON R.E. and ANDERSON W.F., (1961). "In-Situ Measurement of Soil Properties with the Pressuremeter". Civ. Eng. & Publ. Works, Rev., May.
- HARDIN B.O. and DRNEVICH V.P., (1972). "Shear Modulus and Damping in Soils: Design Equations and Curves", JSMFED, ASCE SM7.
- HUGHES J.M.O., WROTH C.P. & WINDLE D., (1977). "Pressuremeter Tests in Sands". Geotechnique, N.4.
- JACOBSEN M., (1976). "On Pluvial Compaction of Sand". Rep. N.9. Laboratoiert for fundering. Aalborg Univ., Denmark.
- JAMIOLKOWSKI M., LADD C.C., GERMAINE J.T., LANCELLOTTA R., (1985). "New Developments in Field and Laboratory Testing of Soils". Proc. XI ICSMFE, San Francisco, Theme Lectures, V.1.
- JANBU N., (1963). "Soil Compressibility as Determined by Oedometer and Triaxial Tests". Proc. III ECSMFE, S.1, Wiesbaden.
- KNOX D.P., (1982). "Effect of State of Stress on Velocity of Low Amplitude Shear Wave Propagating Along Principal Stress Direction in Dry Sand". Ph. D. Thesis Texas Univ., Austin.
- LADANYI B., (1963). "Evaluation of Pressuremeter Tests in Granular Soils". Proc. of the II Pan American Conf. SMFE São Paulo, V.1.
- LADE P.V. & LEE K.L., (1976). "Engineering properties of Soil", Report UCLA-ENG-7652, California Univ., Los Angeles.
- LEE S.H.H., (1986). "Investigation on Low Amplitude Shear Wave Velocity in Anisotropic Material". Ph. D. Thesis, Texas Univ., Austin.
- LO PRESTI D., (1987). "Mechanical Behaviour of Ticino Sand from Resonant Column Test". Ph. D. Thesis, Politecnico di Torino, Torino.
- MANASSERO M., (1987). "Stress-Strain Relationship of Sands from Self-Boring Pressuremeter Tests". Atti del Dipartimento di Ingegneria Strutturale, Politecnico di Torino, Torino.

- ROBERTSON P.K., (1982). "In-Situ Testing of Soil With Emphasis on Its Application to Liquefaction Assessment", Ph.D., Thesis, Univ. British Columbia, Vancouver.
- ROWE P.W., (1962). "The Stress-Dilatancy Relation for Static Equilibrium of An Assembly of Particles in Contact". Proc. Royal Soc.
- STROUD M.A., (1971). "Sand at Low Stress Levels in the Simple Shear Apparatus", Ph. D. Thesis, Cambridge Univ., U.s.
- STOKOE K.H. & NI F.H., (1985). "Effects of Stress State and Strain Amplitude on Shear Modulus of Dry Sand". Proc. II Symp. on Interaction of Non-Nuclear Munitions with Structures, Panama City Beach, Florida.
- VESIC A.S., (1972). "Expansion of Cavities in Infinite Soil Masses", JSMFED, ASCE, SM3.
- WINDLE D., WROTH C.P., (1977). "In-Situ Measurement of the Properties of Stiff Clays". Proc. IX ICSMFE, Tokyo, V.1
- WROTH C.P., (1982). "British Experience with the Self-Boring Pressuremeter". Proc. Symp. on the Pressuremeter and Its Marine Applications, Paris.
- WROTH C.P., RANDOLPH M.F., HOULSBY G.T. & FAHEY M., (1979). "A Review of the Engineering Properties of Soils with Particular Reference to the Shear Modulus", Cambridge Univ., CUED/D Soils TR75.

NOTATIONS

BC ≈ Boundary condition = Length of pressuremeter membrane (490 mm) = Diameter of pressuremeter (82 mm) = Horizontal stress; total and effective = Vertical stress; total and effective $\sigma_{\mathbf{v}}$, $\sigma_{\mathbf{v}}'$ = Relative density (after consolidation) $D_{\mathbf{R}}$ = Coefficient of earth pressure at rest K = Overconsolidation ratio OCR = Vertical strain ٠v Mt = Tangent constrained modulus Mo = Secant constrained Modulus = Pressuremeter cavity strain ¢ o = Initial radius of cavity Ro = Change in radius of cavity $\Delta \mathbf{R}$ = Lift-off stress p_{o} = Average lift-off stress (3 Arms) p' = Effective cavity stress = Yield stress $\mathbf{p}_{\mathbf{y}}$ = Effective cavity stress at start of unloading cycle $\mathbf{p'_C}$, PS = Friction angle under plain strain conditions **XTX** = Friction angle under triaxial conditions

= Shear modulus

Gi	=	Initial shear modulus
G _s ^{1.5}	=	Secant shear modulus at cavity strain of 1.5%
G _{UR} , G _{RU}	=	Shear modulus for unload-reload and reload-unload cycle
G _{URo} , G _{RUO}	=	Shear modulus from unload-reload and reload-unload cycle normalized to the stress level $\sigma_{\mbox{\scriptsize ho}}^{\prime}$
Go	=	Maximum dynamic shear modulus obtained from resonant column test
γđ	=	Bulk density
u _o	=	Pore pressure at center of CC
p'AA Plim	=	Effective limit pressure using method by Al Awkati (1975)
p'ww plim	=	Effective limit pressure using method by Windle and Wroth (1977)
ΔγΑΒ	=	Shear strain increment during unload-reload or reload-unload cycle
p _{AV}	=	Calculated average effective stress around cavity
ν	=	Maximum dilation angle
β	=	Angle of straight line connecting p_0' and the point of peak strength $(\sigma_T'/\sigma_\theta)_{\rm max}$
•	=	State parameter (Been and Jefferies, 1985)

TABLE 1
SUPPLARY OF INSTALLATION CONDITIONS DURING SELF-BORING

	B-1			ł		Speed	Flow	Inside Membrane	
	B-1			c a	om/min	rev/min	Lain	: m²	
238		Not protected	Open at top	2.5	3 0	50÷60	11-14	5	25 cm before end of installation stopped for 3 mins
	B-1	Not protected	Cpen at base	2.5	2.4	50÷60	13	5	Instrument rotated 180° with respect to Test No.237*10 cm from end of installation stopped for I mins. At end of installation piping in CC
239 E	B-1	Not protected	Open at base	2.5	2 4	50÷60	3	5	10 cm from end of installation probe started to lift
240 E	B-1	Not protected	Open at base	2.5	3.0	50÷60	::	5	Failed test the to ruptured membrane during installation
241 E	B-1	Protected	Open at base	2.0	3,0	50÷60	: 2	5	
242 E	B-1	Not protected	Open at base	1.9	3.0	50÷60	1.5	5	
243 E	B-1	Not protected	Open at base	2.5	4.2	50÷60	3	5	
244	B-1	Not protected	Open at base	3.5	3.0	50÷50	8.5	5	
245	B-1	Not protected	Open at base	5,4	3.0	60	3~3	5	After 22 cm of penetration in- stallation stopped for 5 mins
246	B-3	Not protected	Open at base	4.5	3.0	60	3	5	
247	B-3	Not protected	Open at base	3.4	3.0	60	3+10	5	
250	B-4	Not protected	Open at base	3.4	3.0	60	3÷10	5	}
251	B~4	Not protected	Open at base	3.4	3.0	60	11	5	}
252	B-4	Not protected	Open at base	3.3	3.0	60	:1	5	
253	B-4	Not protected	Open at base	3.3	3.0	60	10-11	5	
254	B-1	Not protected	Open at base	3.3	3.0	60	11	5	
255	B-4	Protected	Open at base	2.4	3.0	60	:1	5	
256	B-4	Protected	Open at base	2.4	3.0	60	11	5	
257	B-4	Protected	Open at base	1.9	3.0	60	11	5	
258	8-4	Protected	Open at base	1.9	3.0	60	12	5	Probably disturbed due to drilling vibrations
259	8-4	Protected	Open at base	1.9	3.0	60	11	5	Probably disturbed due to drilling vibrations
260	B-4	Protected	Open at base	1.9	3.0	60	:1	5	
261	B-4	Protected	Open at base	1.9	3.0	60	:1	5 ′	

TABLE 2
SUMMARY OF GENERAL CALIBRATION CHAMBER CONDITIONS AFTER SAMPLE CONSOLIDATION

	Test	Sand	γ _d	DRC	OCR	σ' vo	σ'nο	Ko	u _o	M _o	1	er of cles	ВС
	No.	-	kN/m ³	8		kPa	kPa	-	kPa	MPa	UR	RU	_
	201	HS	16.08	67.0	2.77	112.8	74.56	0.662	0	192.18	2	1	1
	207	HS	15.22	43.9	3.29	109.9	64.75	0.586	0	185.51	2	ī	1
I	208	TS-4	14.82	43.2	1.00	112.8	45.13	0.400	0	34.14	2	ī	i
D	209	TS-4	15.01	49.2	1.00	116.7	51.99	0.441	0	43.56	3	ī	ī
E	210	TS-4	15.13	53.3	1.00	511.1	244.27	0.479	0	100.06	3	i	1
A	211	TS-4	15.57	67.4	1.00	512.1	242.31	0.473	o	114.88	3	2	1
L	212	TS-4	15.49	64.6	2.86	110.9	82.40	0.747	0	189.82	3	ī	i
_	213	TS-4	14.96	47.5	2.78	112.8	83.39	0.740	0	168.63	á	i	î
1	214	TS-4	14.80	42.4	1.00	113.8	53.96	0.476	10	50.82	3	ī	4
N	215	TS-4	16.42	92.3	1.00	514.6	225.63	0.439	lo	143.72	3	ī	ī
S	216	TS-4	14.92	46.3	7.57	60.8	56.90	0.927	0	156.76	3	ì	ī
T	218	TS-4	15.51	65.4	7.66	59.8	59.84	0.980	o	169.62	3	ī	ī
Ā	219	TS-4	15.52	65.9	5.46	112.9	101.04	0.902	lő	207.48	3	i	i
L	220	TS-4	14.95	47.2	1.00	313.3	150.09	0.481	lo	80.15	3	i	i
L	221	TS-4	14.87	44.6	2.88	108.9	81.42	0.751	lŏ	167.36	3	i	i
A	222	TS-4	14.92	46.2	5.50	111.8	95.16	0.850	0	199.05	3	ì	i
T	224	TS-4	15.81	74.6	5.38	113.8	93.20	0.816	١ŏ	222.39	3	ī	i
Ī	225	TS-4	15.81	74.6	5.46	111.8	87.31	0.775	١ŏ	218.27	3	1 .	i
Ō	228	TS-4	15.89	77.0		518.0	215.82	0.417	ŏ	120.27	3	1	li
N	233	TS-4	15.98	79.6	1.00	512.1	224.65	0.439		121.25	3	l i	i
14	234	TS-4	15.93	76.1	5.34	115.8	103.99	0.904	0	216.21	3	i	1
	235	TS-4	14.99	48.5	1.00	516.0	239.36	0.465		80.54	3	<u> </u>	i
	236	TS-4	15.83	75.2	2.72		78.48	0.686		190.41	3	1	1
	237	TS-4	15.79	74.6	2.90	96.1	81.42	0.850		178.35	3	li	ĺ
	238	TS-4	15.79	74.8	2.83	101.0	83.39	0.828	1	171.28	3	li	ı
	239	TS-4	15.79	74.8	2.84	101.0	86.33	0.856	5.89	169.32	3	li	i
	240	TS-4	16.47	94.1	2.84	101.0	90.25	0.892		195.22	3	i	i
	241	TS-4	16.38	91.8	2.76	104.0	86.33	0.829		192.37	3	i	li
	242	TS-4	14.72	40.1	1.00	103.0	49.05	0.475	6.87	32.67	3	i	i
	243	TS-4	14.79	42.7	3.10	95.2	74.56	0.473		141.46	4	•	1
S			14.80	42.8	6.12	97.1		0.783	•	172.36		i :	
E	244	TS-4					94.18				4	-	1
L F	245	TS-4	14.72 14.72	40.0	1.00	102.0	54.94	0.539 0.523	6.87	41.40	4		1
r	247	TS-5		43.0	4.19	102.0 190.3	52.97	0.323	6.87	45.32 212.58	4	-	3
P	250		14.80 14.81	43.0		480.7	147.15	0.776	6.87	93.20	4	-	4
В	250	TS-5					219.74						1
0			14.74	41.0	1.00	100.1	51.01	0.508		36.30	4	•	4
R	252 253	TS-6	15.79	75.0	1.00	101.0	52.97	0.518	6.87	58.27	4		1 3
D D	1	TS-6	15.68	71.0		103.0	52.97	0.517	6.87	58.99		-	
υ	254	TS-6	15.69	71.0	6.16	97.1	88.29	0.912		194.43	3		1
	255		15.49	65.0	1.00	108.9	55.92	0.514	6.87	56.70	2	-	1
	256	TS-7	15.46	65.0	1.73	345.3	277.62	0.690		263.69	4	•	1
	257	TS-7	16.22	87.0	1.00	130.5	77.50	0.597	6.87	69.16	4	•	1
	258	TS-7	16.18	86.0	1.00	495.4	226.61	0.458	6.87	125.47	4	-	1
ı	259	TS-8	16.39	92.0		138.3	139.30	1.008		215.62	4	•	1
	260	TS-8	16.29	89.0	1.00	131.5	78.48	0.595	6.87	70.53	4	-	3
	261	TS-8	16.37	91.5	3.99	199.1	157.94	0.797		261.44	4	-	1
	262	TS-9	16.28	88.7	1.00	113.8	45.10	0.398	0	73.77	4	-	1
IDEAL	263	TS-9	16.29	89.1	1.00	112.8	103.00	0.913	0	229.46	4	•	1

TABLE 3
SUMMARY OF PROBE AND CC CONDITIONS DURING SELF-BORED TESTS

Test No.	ВС	Membrane Type	Notes
237	B-1	Not protected	Modified arms + bushings
238	B-1	Not protected	Modified arms + bearings
239	B-1	Not protected	Arms + bushings
240	B-1	Not protected	Arms + bushings
241	8-1	Protected	Arms + bushings
242	B-1	Not protected	Arms trimed and rounded + bushings
243	B-1	Not protected	Arms + bushings
244	B-1	Not protected	Arms + bushings
245	B-1	Not protected	Arms + bushings
246	B-3	Not protected	Arms + bushings
247	B-3	Not protected	Arms + bushings
250	B-4	Not protected	Arms+bushings.5 lift-offs. Relaxation time=96 hrs
251	B-4	Not protected	Arms + bushings
252	B-1	Not protected	Arms+bushings. Relaxation time=71 hrs
253	B-3	Not protected	Arms+bushings. At 5 bar total pressure and 4% strain membrane ruptured
254	B-1	Not protected	Arms+bushings. At 5.5 bar total pressure membrane ruptured
255	B-1	Protected	Arms + bushings
256	B-1	Protected	Arms + bushings
257	B-1	Protected	Arms + bushings
258	B-1	Protected	Arms + bushings
259	B-1	Protected	Arms+bushings-After 1st loop manual expansion due to problems with SCU
260	B-3	Protected	Arms+bushings.After 3rd loop manual expansion due to problems with SCU
261	8-1	Protected	Arms+bushings.After 1st loop manual expansion due to problems with SCU

TABLE 4
SUMMARY OF LIFT-OFF PRESSURES OF INDIVIDUAL ARMS

	No.	1		i i		(p _o)	1
1		kPa	kPa	kPa	kPa.	kPa	
	201 207	74.56 64.75	82.06 150.53	84.07 69.05	71.06 65.05	76.06 65.05	O S R T
1	208	45.13	28.02	34.03	34.03	28.02	I R
D	20 9	51.99	42.03	49.04	43.03	45.04	G A
E	210	244.27	87.08	61.10	136.12	81.06	II
Α	211	242.31	65.02	65.02	90.03	56,04	N N
L	212	82.40	108.95	114.45	104.25	104.27	A
_ 1	213	83.39	129.25	164.26	165.15	120.23	L
I	214	53.96	49.23	61.19	63.25	49.21	A
N	215	225.63	347.36	379.52 97.28	256.25 80.22	254.27	R
S T	216 218	56.90 59.84	139.26 85.22	117.29	165.64	73.23 80.22	M S
A	219	101.04	179.27	173.29	145.24	131.28	ادا
L	220	150.09	171.32	122.29	190.35	139.28	
L	221	81.42	68.26	93.26	152.30	68.26	Δ
A	222	95.16	119.25	163.28	146.32	141.28	l ī l
T	224	93.20	116.70	162.30	136.02	124.84	
1	225	87.31	98.44	105.54	115.67	96.41	
. 0	228	215.82	200.81	274.79	222.09	207.90	
N	233	224.65	227.67	237.19	217.36	217.36	À
l I	234	103.99	134.07	124.56	144.39	117.42	
1 1	235	239.36	115.04	109.48	70.62	142.80	
L	236	78.48	95.22	90.52	115.92	88.12	[
1	237	88.29	88.26	148.18	86.10	86.05	M
1 1	238	89.28	177.50	309.01	50.01	50.01	0
1 [239	92.22	86.78	146.42	300.68	67.15	D
) }	241	92.22	80.39	80.39	356.82	80.39	I
s	242 243	55.92 81.43	30.99 25.20	30.99 27.56	27.26 23.14	30.33 25.15	F
E	244	100.07	37.27	24.71	22.07	24.58	E
L	245	61.81	59.82	46.78	44.62	40.95	Ď
F	246	59.84	70.81	18.53	97.58	19.81	"
1 . 1	247	154.02	26.53	18.53	78.65	18.53	s
В	250	226.61	82.06	84.07	71.06	76.06	T
اةا	251	57.88	13.15	8.49	18.33	15.09	R
R	252	59.84	90.79	68.44	114.35	74.51	A
E	253	59.84	12.47	13.94	29.12	10.85	I
D	254	95.16	34.94	31.28	36.88	34.94	N
1 1	255	62.79	36.47	57.51	62.38	36.47	
]]	256	284.49	137.17	81.83	73.14	71.83	A
	257	84.37	62.98	47.64	79.05	47.64	R
j l	258	233.48	122.34	122.34	53,53	50.67	М
[{	259	146.17	64.34	37.34	32.46	43.17	S
	260	85.35	45.00	32.65	42.90	27.40	
	261	164.81	79.79	88.16	67.02	63.65	
	262	45.10	46.93	57.12	57.81	54.54	
IDEAL	263	103.00	134.38	125.64	129.64	125.64	

 $\frac{\overline{\text{IDEAL}}}{\overline{\text{INSTALLATION}}} : \frac{P_o(AV)}{\sigma_{ho}} = 1.07 \pm 0.29; \qquad \frac{\overline{\text{SELF-BORED}}}{\overline{\text{INSTALLATION}}} : \frac{P_o(AV)}{\sigma_{ho}} = 0.47 \pm 0.28$

TABLE 5
SUMMARY OF LIMIT PRESSURE AND SECANT SHEAR MODULUS

	Γ	, ww	, AA		_	
Test	P'o	P _{lim}	Plim	G _s (0.5%)	G _s ∈l∗	6 1 4
No.	kPa	kPa	kPa	MPa	MPa	MPa .
	76.06	2 (32) 50	1177 30		L ,	
201	76.06	1471.50			11. 3	
207	65.05	882.90	784.80	13.73	10)	2 . ,
208	28.02	529.74	412.02	9,71	6 .5	
209	45.04	686.70	637.65		, ,	
210	81.06	2648.70	ı)	42 -	
211	56.04	2844.90		58.25	33	
212	104.27	1402.83		15.79	12 5	,
213	120.23	1098.72	1079.00	17.16	12.55	•)
214	49.21	804.42	784.80	10.40		5 5/
215	254.27	3678.75		45,42	32.57	28 35
216	73.23	725.94	588.60	16.97	11.57	9 32
218	80.22	971.19		18.25	13.44	11 09
219	131.28	1599.03		27.57	19 32	15 ()
220	139.28	1236.06		20.01	14.22	11 48
221	68.26	1059.48		20.11	13.54	11 09
222	141.28	1206.63		17.46	12.35	10.79
224	124.84	1716.75	1373.40	21.48	16.97	14.42
225	96.41	1579.41		20.70	15.99	13.93
228	207.90	2992.05		33.45	24.13	21.58
233	217.36	2943.00		26.68	22.17	20.21
234	117.42	1765.80	1373.40	24.72	18.54	15.60
235	142.80	1955.13		33.54	25.89	21.38
236	88.12	1402.83		19.03	14.72	12.46
237	79.18	1464.63		25.31	19.72	15.70
238	44.12	1220.36		39.34	27.37	20.99
239	61.26	1396.94		32.57	23.54	18.93
241	74.50	1818.77		35.81	28.84	23.25
242	23.46	454.20		4.71	4.22	3.73
243	18.28	365.91		5.59	4.71	3.92
244	18.69	680.81		8.73	7.65	5.97
245	34.08	513.06		7.11	6.07	3.60
246	12.94	689.64		12.75	9.26	7.51
247	11.66			9.11	8.81	8.22
250	69.19	•		53.06	32.03	24.08
251	8.22	326.67	238.38	4.28	3.58	3.12
252	67.64	1037.90		18.14	13.57	10.93
253	3.98	985.91		10.31	11.21	10.64
254	28.07	1248.81	630.78	11.60	13.33	13.30
255	29.60	1219.38		18.28	14.77	13.20
256	64.96	1629.34	1269.32	28.93	24.23	19.85
257	40.77	1098.62	822.96	21.72	17.37	14.41
258	43.80	3918.02	_	38.98	33.59	30.65
259	36.30	2065.89		37.32	31.38	26.26
260	20.93	1833.39	1254.60	22.57	17.62	15.03
261	56.78	3231.32	2262.09	42.59	37.04	32.25
262	54.54	1149.7	826.0	13.00	10.88	9.64
263	125.64	2047.3	1500.9	25.56	19.99	17.15
L	<u> </u>	<u>L</u> .		L	L	L

PARLE 4
SUPPLEMENT OF THE SECOND THE TYPE

			1	144497		: 57	18.00) (LOSOI						
***	2	Fg	P _C	٠.		,	· -	**•		FAT			•	•	
% o	aPa .	are	474	:			t	1	i	1	:	7.	, **F *	,	•
_		1				- 1		t :	İ	† !		•	†	1	,
201	143 20	258 M6	266 63 256 78	: 183		97:	1 943	0 212	8 11	173 3			130		
200	56 55	223	120 51	1 90		3/1	1 +34	0 2:2	9				124 a	•	
	47 13	.25 35	143 23	, ,,,	;		1 422		0 023	1			1	1	
2:)	.20 13	36	140 13	2 44	ï			\$ 130		2 3	2		ļ:	•	-
211	-01 50	485 28	503 25	3 '15	í		2 12						40	1	1.
2:2	207 50	272 58	2"8 64	3 '90	,	160	3 415	9 114		1.12	5 .52			, i'	
21)	: 32 90	262 '8	268 '9	3 525		. 36	3 - ec						1 '	2 L	
	19 '3	133 49	100 21	3 446	٠.	24	: ***	3 156	0 .44				ˈ:s ·		
215	-12 46	168 41	**2 30	1 -12		•		3 (56	a . · ·		٠.		10		
216	:91 00	216 121	255 42	2 '35	٠.	* 1.5	3 *2	3 14	0 .40	41 -2		•. "•	: · ·		
2.0	197 91		263 98	3 492		÷:	*:	2 356	0	1 ** **			52 0 ×	. •	
213	160 24	10. 9.	311 20	2 1 79		4,5	1 100	10 :44	2 134	***		1	713	• :	•
223	263 36	120 25	119 43	1 197	:			5 128	0 1:	1 1	•		يد فعل	- 1	٠.
22:	206 72	164 45	273 70	1 .32	1	20:		0 .20	6 +60		1		23 .0	1	•
222	247 59	3:0 56	321 ''	3 442	'	je.	3 33.	0 :26	0 .0.			12.85	104 ,0		- ;
22.	237 30	316 10	328 64	3 520			0 586	8 136			6		73 24	- 1	*
225	228 46	3:8 27	325 59	3 804			8 193	0 196	0 370		9 90		10: 36		***
226	352 67	442 36	+56 17	* 506	١,		5 +83 6 518	0 134		1	9 96		65 1		
233	335 61	•33 :5	443 41	0 517	•				ı			1		1.	***
230	243 77	317 28	122 '5	2 100	1 .		7 507				6 43		F .	• • •	•
235	327 68	4:4 52	+22 41	3 .51	١:		-	9 142	4		2 .61		1 51 53	1	
236	151 24	305 31	233 40	3 732	١,		8 '58	110			3 3 3 4		1 51 53	1	142
239	323 '3	1.0 .3	183 57	3 120	Ι,		2 304	a ::6			. 2		,	- 1 -	.,
230	302 13	362 37	360 84	0 984	1		0 229				0 :51		30	- 1	4.11
241	361 01	454 20	144 99	9 977		342							30 13	- 5 -	
202	84 37	107 31	190 80	1 710		176							1 16 93		
243	52 97	73 50	76 52		١.	762	705	194			9 395		14 81	- 1	
244	56 67	97 12	90 00	0 447	,	544	544	0 134			0 700		10 14	- 1	
245	72 36	96 63	105 75	9 476		557	779	0 162	0 544	57 13	0 273	15 10	14 61	3 40	450
246	87 99	:20 36	132 14	0 683	١,	792	3 220	0 100		13 99	0 :01	10 616	17 :0	• 5•	9.46
247	128 66	161 77	166 SA	2 955	lı	334	o 201	0 130	0 710	121 10	0 271	26 13	2 200 77	2 >>	201
256	461 26	567 31	661 64	8 829	1	200	1 136	0 142	6 461	270 20	0 244	61 300) 33 X	0 112	291
251	40 18	63 39	86 00	1 900	ı	135	9 161	9 162	6 672			12 710		4 30	- MG
252	182 56	237 50	242 83	0 836		916	1 200	0 190	9 334				20 91	• '•	36 3
253	146 63	201 30	206 /1	0 905	1	379	0 750	1)26 H		
254	161 00	222 79	229 02	0 686	9	761	0 962	1					33 .1	-1	
255	150 76	214 54	210 33	0 784	9	972	96.2) 31 11		215
256	258 48	342 97	351 30	0 611	10		(0 840 5					+9 104			
257	130.60	216.90	222 13	0 463	•	352	p >**				-		24	- 4	
256	302 64	463 36	+40 60	8 474	۱.	357	9 333					90 30			
250	323 44	410 00	432 30		۱.	774	776	4				31 99		- [
260	100 04	254 47	361 SS	0 771	۱.	961	947		1				22 04	-	
261	332 16	1 22 70	436 76		ľ	529	2 330						(b) e)		
242	103 00	100 10	171 06		١.	300	9 371 9 303				0 :70 0 :00		30 94 104 7		523
263	229.16	344 \$6	243 64	0 102	Ľ	744	ريد ع	1 1 7	T -	122 20	<u> </u>	I <u>""</u> ""	T	<u>,</u>	. -J

Gum - mesoured unload-relead medulus

 $[\]theta_{\rm tilbe}$ - unload-reload modelus corrected for atress level $(\sigma_{\rm bo}^*)$

 $[\]mathbf{G}_{\mathbf{G}}$. The maining dynamic shoer madelius from resonant column tests

TABLE 7

			;	#80487	7 200	JELON.	-	1.000:1	S TYCL	ŀ			
	, p.	1 25	₽ c		,	۱.,	4.48	•	Pay	2 . AV	: 💂	; _{Eo}	.]
90	47+		270	2						1	49.	ه رس	ا میں
1 1	•	 		1		-	+ -				}	•	+
2.5	23 🚜	+20 H	+36 51	2 ***			0 230			2	10 10		
231	1.14	365 72	108 32	2 243	1					3 .'		ا م	•
1228		.47 61	1.50 32	: ::	• • • • • • • • • • • • • • • • • • • •			3		3 44	ł	2 .	- **
2 ;	152 16 152 24	45 10	1 '4 42 460 21	1 62	• •	1 416	G 124	2 +1"	.,,	3 163	16 484	12	
211	113 .2	442 12	665 12				0 :30			9 :50		71 197	
212	200 23	44	377 60					8 334		2 55	41		
213	.40 37	101 37	157 30	1		, ,			او چړ.				
1	31 36	14 .	34 24	1	•	.40	: :45	5 172	4	2	34 127		
	• • • 2	22 43	*76 *1	: 3		7 #41	2 :42		233 15	. • •			
	. * *•	1 .5 2		: ••*				•			i		
. 1	• •		12: **	1 4 4	•	. 64		3 .	,				
-19	• • • •	1 115 11	***	1 6	• •	•	- 7	e	•	. •	•	•	
-20	21.44	**	** (1.0	2 • 1	-	.1 350					, , ,		• .
2.,	*3 •		130 50	2	•	2 184) 12 mars ;	• • •
: 224	20 10	24 42	+26 [3 +27 [2	201			1 .		('	-			1
225	28 24	413 140	427 12 424 77			1 234				0 60	12 195		
220	••3 3	197 25	155 23	9 978	3 .1	0 045				0 160	12 195		
233	++0 30		597 21	2 220	2 26:	0 001			255 00		11 537	i 1	
234	-37 65	110 83	133 66		2 5		e :20					31 . 2	
233	117 93	146 11	610 22	2 129		: 175	0 .34			0 00	- 9 - 156		
236	192 30	105 21	+97 12	1 826		2 :44					41 799	- 1	- 3
237	164 33	-34 10	*** 70	1 931	: 202	1 963	0 142	0 200	134 26	C .60	+0 935		•
230	+24 ;7	419 13	+90 35	2 : 93	2 .57	2 127	0 :40	€ 284	241 69	0 167	1; 393	61 74	
230	*:B #?	125 22	128 91	2 236		2 /82			147 23		+8 756	30	-4 41
241	100 00	532 58	650 23	2 366	2 **:				150 90		62 900) : 9
242	118 05	166 21	133 04	3 634	3 '2'	3 675		0 427	65 35		10 341		27 '1
243	99 25	113 76	122 63	2 348	2 +31			0 402		9 325	15 590		77 22
200	130 40	167 75	176 62	1 :00	1 250				70 44		17 71/		77 92
246	:02 50	179 72	100	2 210		2 228			13 1		17 71/ 22 112		38 41
207	238 +6	300 44	310 00	2 250	2 100			9 132		384	13 054		34 29
230	534 72	730 27	788 28	1	2 312					971	42 380		112 29
231	78 34	WE 70		2 905	2 101	r ·			34 74		14 900		56 96
232	271 00	320 14	341 27	2 136	2 210			0 271	82 41		35 051		14 30
253	247 31	206 7;	312 71	2 250	2 176	2 135	0 154	0 205	60 57	9 360	34 051	27 :67	-9 28
294	271 00	326 la	425 00	1 905	2 371	2 000	0 172	0 325	136 43	0 977	42 300	34 335	92 44
255	240 06	100 52	121 10	2 127	2 297	2 193	0 160	0 29Z	83 77	0 972	37 553	30 367	12 21
256	+90 25	+88 54	384 44	1 716	1 '96	1 700	0 100	0 567	201 00	0 372	16 103	53 400	142 34
257	200 /1	195 22	370 00	1 90.5	2 #21	1 ***	200	0 324	1,00 33		42 300		05 68
250	556 34	670 62	685 02	1 101		3 216		9 426		0 074	73 781		150 68
250	400 41	100 45	100 95	1 421		1 047		9 246		9 900	53 647		126 90
200	200 30	1	748 %	1 073	1 971	1 913	_			0 000	40 562		97 45
262	122 SO		725 55	2 300	1 278	1 27		9 336			70 671		:33 55
363	222 99 300 10	1	311 27 317 13	1 736	1 344	1 036 1 366		0 257 8 313	162 17		30 000	23 034	00 52
	L	1 "	1 217 13			Ľ <u></u>		C	1.02 17	C 🎫.	1	[<u>' "'</u>	[::3 6:]

^{4&}lt;sub>00</sub> - more unless releas audalus

 $[\]mathbf{G}_{\overline{\mathbf{Q}}_{\mathbf{B}}}$ - unload-relead modulus corrected for stress level $\{e_{\mathbf{b}_{\mathbf{B}}}^{(i)}\}$

^{5 . *} maximum dynamic sheer modulus from resonant column tests

TABLE 8
SUPPMENT OF SED UNLOADING-RELOADING SYCLE

Test	PÁ	P _B	Pc	'A	' B	٠,	Δ7 _{AB}	,	PAY	27AV	3. _R	7,	٦,
]	1 -	1]	,	J	1	.,,				Į.
No	aPa	kPa	kPa	:	1	1	1	L	474	1	MF 1	77.	4.P.
201		1										ļ	32, 103
237		İ			l ·					-			12 691
209	j ·	}		· ·					i	}		l	15 -42
203	158 88	223 58	225 63	2 550					19.35		*1 *11	i•	-3:30
210	559 36	761 30	179 30	2 332		1 973		3 421	124 (3	11.53		49	125 131
211	195 25	810 +2	827 36	2 362	2 349		0 134			0 (63)	9: '21		137 373
212	+33 54	313 -6	493 44	3 :24			0 148		143 53	0 161	52 297	* * * * * * * * * * * * * * * * * * * *	
213	133 54	106 19	421 33	2 323	2 971]2 713	•	0 16:	51 -14		
214	119 16	234 15 393 15	311 35	2 4 24	2 692	1		1 1 2	129 21	l , '		•	
211	-5 51	1	1	2 623	2 599		3 112		. 7 . 14	ú.	١٠٠.		
-19 -19	251 22	303 °6 367 18	328 67	2 165	2 +29	2 .11	13 125	1		1		ria i	
	1 433 33	536 55	554 2	2 197	2 258		10 102			I			
213	95 21	455 []	676 42	3 354	3 431		F	2 .2		رج دا	1	1	
221	112 37	371 59	389 -5	3 249	3 321		1			0 16	1 4'8	, , .	
.22	423 25	-68	487 16	1 254	3 129	3 117				2 : 13	11 431	4: 115	' '
224	357 36	459 21	423 79	2 240			0 228		: +2 52		48 564		35 312
225	1 427 37	498 52	513 35	2 169			0 136				50 209		132
228	537 44	529 58	655 31	1 309	: 107			2 .27				63 ' 44	129 715
233	146 16	653 40	676 39	1 373				0 429		0 362	15 6 6		
234	578 41	561 43	684 14	3 546			0 :30	1		0 159	67 130	52 474	2 454
235	109 56	507 58	547 58	3 '35				3 32		0 :63	72 190	-2 100	121 111
236	135 99	515 58	535 63	3 564			0 :36			0 386	54 550		19 42
237	453 22	136 61	554 27	2 977	3 :61				:41 :8	0 275	51 306		37 112
236	+48 32	545 44	579 77	3 250	3 350	3 276	0 200	0 259	1:43 21	0 190	50 420		9;
239	427 37	603 32	629 80	3 572	3 190	3 737	0 236			0 . 6	46 34	36 .16	
241	569 34	778 91	813 25	3 962	3 956	3.891	0 158	0 211	171 39	0 :45	61 507	45 815	113 149
242	133 42	173 54	186 39	5 905	5 922	5 881	0 234	0 360	.o se	0 135	18 443	15 '42	57 /16
243	110 70	145 :0	254 02	a 394	6.477	404	0 166	0 536	92 54	0 275	16 775	16 117	10 229
244	198 16	237 40	249 17	3 396	3 483	3 452	0 156	0 469	116 95	0 076	24 231	22 : '5	27 428
245	109 31	204 83	224 16	2 196	2 561	2 558	0 330	0 358	90 21	0 149	17 285	14 589	50 500
246	170 98	224 26	245 54	4 390	4 214	4 151	0 248	0 336	52 56	0 112	22 279	18 :59	13 656
247	364 64	432 91	450 28	4 134	4 226	4 162	0 184	0 433	195 07	0 293	38 799	34 369	34 291
250	#25 22	926 26	978 45	4 432	4 516	4 . 468	0 164	0 346	339 31	0 076	63 126	52 130	112 291
251	97 61	123 31	129 03	5 125			0 168			0 376	16 379		58 369
252	358 07	413 20	436.94	3 951			0 156		: >0 89			27 534	26 903
253	333 64	396 72	416 92	3 473	3 562	3 550	0 178	0 236	98 32	0 060	36 550	27 3'3	73 229
254			1 .	١.			٠.				•		91 +89
255	339 23	403 39	421 22	3 968					: 23 35			30 447	72 210
256	536 31	633 04	657 36	3 356	3 443	1				0 378	57 428		:42 340
257	398 58	471 96	493 23	4 081				0 272		0 081		33 470	95 696
258	796 93	931 95	956 75	2 114				0 331		0 078		65 758	150 685
259	530 98	730 97	754 21	2.837			0 190			0 086		47 771	126 988
266	402 98	461 08	503 57	3 104	3 278				136 35		,	33 762	97 450
261	963 . 67	982 86	1012 51	2 567			0.170		274 84		71 956		133 554
262	354.43	437 62	450 . 97	3.615		3 680				0 097	39 590		90 523
563	536.31	677 48	692.97	2.656	[2 771	[2 764	jo 230	0 262	201 35	0 :03	52 970	40 492	113 808

Gum - measured unload-reload modulus

 $\mathbf{G}_{\widehat{\mathbf{URo}}}$ = unload-reload modulus corrected for stress level (s_i^*)

 $\mathbf{G}_{\mathbf{G}}$ - maximum dynamic shear modulum from resonant column tests

TABLE 9
SUMMARY OF 4TH UNLOADING-RELOADING CYCLE

?est	PÅ	P'B	Pċ	'A	43	¹c	&7 _{AB}		PÁV	Δ7 _A V	G _{UR}	3 _{.7Ro}	G _o
No	kPe	kPa	kPa	2	1	1	1		kPa	1	MFa	MPa	MP4
243	144.13	178 54	191.30	7 578	7.975	7.779	0 :34	0 477	91 22	0 287	17 462	16 011	70 229
244	264.87	304.11	319.61	6.625	6.709	6.547	0 158	9.437	230 14	0 076	25 114	21 353	77 828
245	:88 65	252.51	270.07	5.798	5.997	5.953	0 158	0 320	86 47	0 179	17 020	14 304	60 600
246	244.07	288.32	303.91	7.317	7.411	7.256	0 198	3 294	89 35	0 085	25 637	20 312	59 556
247	459 62	489 62	592.03	6 476	6.573	6.496	0 134	0 358	216 08	0 087	42.615	35 383	94 291
250	1013 08	1112.65	1163 56	6 389	7.069	6.900	0.150	0 3::	361 26	0 072	66 236	53.536	112 291
251	121.84	150.30	154 82	7 307	7.995	7.999	0 1'5	0.433	67.11	0 379	17 432	15 493	58 369
252	445.47	504.33	529 70	6 541	6 626	6.508	0 :73	7 2:3	107 51	0 377	36 315	27.159	74 303
253] -	} -		1 -] -				1		1 .	73 239
254	-	-	1 -		-	١ -	1 .			1	1	· ·	91 469
255	437 33	500.90	525 49	5.128	6.205	6 150	0 114	3 212	111 29	0 759	43 192	32 573	/2 210
256	574 34	774.01	845.43	5 612	5.702	6 213	0 130	2 +3:	353 11	0 191		52 195	142 340
257	501.39	570.35	598.92	5. 385	7.076	7 220	0 :32	241	:44 :4	0 132		31 235	35 496
258	1052.81	1192.50	1240 01	3 421	3 504	3.489	0 166	ja 131	372 65	0 375	87 054	70 291	150 685
253	786.76	587.51	923 61	4 344	4 434	4 . 424			245 26			1	126.388
260	520.71	500 47	625.91	4 754	4 554				147.54			35 370	97 450
251	1132.96	1246.75	1336.83	4.437	4 517	4 755	0 :63	13 227	303 41	0 072			133.554
262	498 64	566.63	584 68	6.531	6 618	6.543	0 174	0 170	39 13	0 078	41 460	24 . 297	80 523
263	716.03	842.58	857.98	4 206	4.311	4 313	0 213	0.229	:95 81	0 295	52 910	48.049	113 808

Gum - measured unload-reload modulus

Guno = unload-reload modulus corrected for stress level (5)

G = maximum fynamic shear modulum from resonant column tests

TABLE 10
SUBMARY OF 1ST RELOADING UNLCADING CYCLE

lest	P'A	P'B	Pć	¹^ .	'B	*c	5 7AB		PÁV	A TAV	34.7		;
No.	kPa	kPa	kPa	3	1		1		kP4	1	Mir a	* 7.	٠,,
201	446.36	582 71	575 85	13 504	13 731	13 731	0 254	J 241	:39 03	0 ::4	61 313		31 1
207	206.01	306 37	306 07	9 376	9 502	9 502	2 252	2 333	101 78	0 113	43 944	34 .43	12 - 9
208	77 50	127 53	127 53	9 238	9 340	9 340	2:4	3 451	57 46	0 :32	21 21.	2	
209	104 97	152 06	152.06	9 232	9 299	9 299	0 134	3 443	56 97	0 343	9		
210	505 28	671 00	671.00	9 177	9 218	9 218	3 : 52	3 459	337 89	0 337	-4	ia) i	
11*	1164.45	1287.07	1287.07	9.638	₽ 705	9 '05	3 :34	1 108	336 24	د م. ه	1.23	4: -24	
11**	554 27	658 25	658 25	9,089	9 155	9 155	3 192	3 458	301 17	0 : 0	-6 124	14	100
212	577 81	652 37	552.37	9 626	9 595	9 636	2 141	2 2 2 3 6	1.14 19	0 41	49 -2		
213	454 39	556 23	533 28	9 555	9 54:	9 541	3 : 15	1.267	: +1 +8	n - 14	** **	·	1
214	312 34	380 53	380 53	9.910	9 ⊹58	3 744	3 116	2.257	37 27	2		3	1.1
2:5	1+22.45	1579.41	1580 39	9 543	9 711	9 724	2 141	1.257	+05 €1		<u>'</u> :		
2.6	336.48	401 23	401 23	3.515	9 491	9 10:	3 152	1.052	: 11 16				
218	441 45	507 19	509 14	10 095	19 161	1: 10:	12 : 12	1 225	115 27		' -	-: .	
219	507.18	619 39	618 39	9 433	3 395	3 340	1.124	1 282	: "3 43	0 . 10			
220	368.86	439 43	439 49	3 398	10 042	12 162	J 1.4	1 443	:34 *4	3 114	* 1 * £2		
221	273.70	335 50	335.50	9 311	9 979	3 3,3	2 1 10	1.362	121 **	0 '51	4		• .
222	460.09	534.65	534 65	10 028	10 095	10 195	3 :34.	. 298	159 39	0 16-	- 44	50 . 34	92.3
224	658.25	752 43	750.47	10 315	10 382	10 182	0 134	2 235	1'6 :6	0 63	18 183	4.5	
225	-				j -		l i		j	j :	!	1	#3 2.
228	1186.03	1320 43	1320.43	10 405	10 474	10 474	3 :38	0 281	379 72	0 352	100 320	94 424	139 1
233	1189.95	1319 45	1319.45	8 619	8 684	3 554	3 :30	: 298	379 36	0 119	109 243	8	: 44 6
234	552.30	663 17	563 15	8 221	8 306	8 116	3 : 15	2.213	141 02	3	1: 2.1	1	: 2 •
235	•		-	.		1	- !					1	12: 1
236	470.88	573 39	571.92	7 110	7 176	7 : '5	3 : 12	2.50	143 24	0 .59	44	64 14	49
237	526,80	596.45	594 49	7 655	7 719	7 715	0 :26	250	148 74	0 :49	63 124		+c :
238	470.88	527 78	526 90	7 544	7.604	2.504	0 :2:	3 275	144 52	2 . 4	1 1 1	14 .45	, ,
239	475.79	589.58	587 52	8 101	8 217	8 2:7	0 232	262	253 93	0 :34	53 212	1	32 .
240	-	١.	- '						l				136 4
241	771.07	863.28	863.28	9 201	9 272	9 2/2	0 142	0 203	175 37	0 064	71 221	52 511	103 :
242	137.34	174.62	174.62	9.810	9 892				69 34			21 342	
	t Reload	<u> </u>	<u> </u>	L	L	••	L	L	ia Unice	L !	l .	L	i

GRU = measured reaload-unload modulus

 $\mathbf{G}_{\mathrm{RUo}}$ = reload-unload modulus corrected for stress level $\{\sigma_{\mathrm{ho}}^{+}\}$

G - maximum dynamic shear modulus from resonant column tests

TABLE 11 SUMMARY OF CALCULATED ANGLES OF FRICTION AND DILATANCY (4cv - 34")

					· · c	•	•				
	Test	S	PS P(1)	øPS P(2)	• 25 P(3)	ار: سا	ر 2 ،	ر 3 ، م	3	v	$\frac{1}{q}$
	No			,	,		•		• 1		trasit
	, ,	9 55		49 1		1 .			,	भ ्रस्य	.3 .
	207		1 1 2	44 0	1	• 1			l :	1.48	• • •
i	1 .	0 3	13 1	42	4 6	•			• 1	106,	•
i) E	504	1	1 1 2	+3 +		' · :		110	••	1.76	••
-		9 .3		12.2			10 3	13	•		• -
÷ .	11:						ر رد. الحيات				
	213.	0 3		39				1		11	
1	214	0 .3	.20	4.1			1.	11 5		1 (6)	
	215	0 .	1 1 9	14. 3		1		1 3 1		0 242	
5	216	0 32	31 1	36	1 11 ,	ι.	3 >	3 0) 122	•3 3
•	218	0 38	35 6	39 5	3		7.5			3 188	.3 /
4	219	0 41	3, .	4. 0	24.5	١. ٨	a ,	5 1	1.65	0 1/6	. 1
	∠20	0.0	37.0	•O >	14 1	. 1	3 3	- 1	4.	1 (195	•.` •
L	221	0 42	18 .	11.5	13 1	٠,	10-2	> 1	30 .	9 105	•2.2
A	222	0 39	16 1	-0 0	in I	' 4	3 0	2.5	• " • !	9 109	•2 ' '
τ	224	0 .6	41 2	+3 8	• ? •	1	13 0	10	40 3	0.208	** 2
1	225	0 47	1.9	44 3	1 5	.))	13 >	10 9	45 4	0 209	•9 3
0	228	0 47	+1 9	44 3	+3 9	10 0	13.5	12 7	52.2	0 188	48 2
×	233	0 49	43 3	45 5	•2.0	11 8	14 5	12.0	62 2	0 198	48 3
}	234	0 .5	40 5	43 3	1 .2 3	3.2	12 0	11 3	. 3	0 219	.8 9
}	235	0 .2	38 4	41 5	39 3	10 9	14 2	13 9	49 3	0 U88	.9 6
	236	0 45	42 6	45 0	8	8 2	11 9	112 0	43 3	0 212	.9 6
Ì	238	0 34	32 6	37 6	32	1 ,	4 8	1 6	35 3	0 209	9 3
1	239	0 38	35 6	39 4	36 11	1 3	71	1	43 0	0 208	.9 3
1	241	0 40	1	40.5	.0 7	3 7	8 4	8 7	39 5	0 268	50.2
	242	0 40		40 5	+3 8	3 1	8 4	12.5	46 6	0 095	41 9
s	243	1	34 8	38 9	33.2	10	6 5		12 6	-0 098	42 0
E	244	0.40	37 0	40 5	38 1	3 7	8 4	5 1	45 4	-0 095	41 9
L	245	0.52	45 3	47 4	1	14 6	16 6	ł		0 093	42 0
F	246	0 39	36.3	39 9		2 8	7 8		į i	0 094	42 7
ł	247	0.67	55 3	55 3	48 6	29 0	ļ	19 2	9 1	0 082	41 4
8	250		39 1	62 0	1	1	10.5	11 4	46 1	0 068	41.0
0	251	0 47		44 3	1	10 0	13 5		62 1	0 097	42 2
R	252			41 6	39 0	1	10 2		39 3	0 215	50 3
E	253	1	1	3	1	21 2	21 9	1	45 0	0 203	50 0
D	254	0 56	1	1	51 3	18 3	19 3	23 I	54 4	0 197	48 7
1	255	0 47	1	1	38 4	1	13 5	1	65 8	0 181	48 5
ſ	257		í	1	(10 9	14 2	3 6	1 '	0 251	32 5
1	258			ι	52 7	38 7	1	25 2		0 218	49 0
}	259	0 44		1	-	10 9	14 2	13 1	45 0	0 259	49 1
1	260			1		9 1	13 0		46 1	0 262	50 4
Ì	261	0.51	44 6	1	1	lis i	16.0	112 5	42 6	0 252	49 1
	262	3		1	,	lis s	17 2	1	46 0	0 271	52 3
IDEAL	263					17.4	19.0		44 2	0 256	50 0
l			<u> </u>	L	1	L	1	L		l	i. I

Methods: 1: Hughes et al. (1977) 2: Robertson (1982) 3: Hanassero (1987)

FIG 1 SCHEMATIC CROSS-SECTION OF ENEL CRIS CALIBRATION CHAMBER

FIG. 2: SCHEMATIC OUTLINE OF CC LOADING SYSTEM AND OF DATA ACQUISITION SYSTEM FOR SBPT IN SAND

CC LOADING SYSTEM

DATA ACQUISITION SYSTEM

FIG. 3: SCHEMATIC OUTLINE OF SELF BORING
PRESSUREMETER PROBE-CAMKOMETER
MARK VIII

SAND	1-TICINO	2-HOKKSUND
DOMINANT MINERAL	QUARTZ (30%)	QUARTZ(35%)
ANGULARITY (LEES' CHART)	8+9	6+8
MICA	~5%	~10%
Ymax (t/m³)	1700	1.759
)' _{min} (t/m³)	1391	1.438

FIG.4: CHARACTERISTICS OF THE TESTED SANDS

FIG.5: SCHEMATIC OUTLINE OF SAND SPREADER

FIG.6: SCHEMATIC OUTLINE OF IDEAL INSTALLATION IN CC

FIG.7: SCHEMATIC OUTLINE OF SELF-BORING INSTALLATION PROCEDURE IN CC

FIG. 8: EXAMPLE OF SAMPLE CONSOLIDATION

CC TEST 234 - SBP

TICINO SAND TS-4; D_R = 76.1%; OCR = 5.34

CONSOLIDATION PHASE, BC3

	r		
Vertical Stress	Radial Stress	Ko	Tangent Constrained Modulus
y [kg/cm ²]	σ'h [kg/cm²]	[-]	M ^t o [kg/cm ²]
0.12 0.34 0.68 1.19 1.71 2.20 2.71 3.19 3.70 4.21 4.73 5.24 5.76 6.28	0.08 0.15 0.30 0.52 0.75 0.97 1.19 1.40 1.62 1.82 2.08 2.30 2.53 2.76	0.613 0.445 0.441 0.433 0.423 0.439 0.440 0.439 0.439 0.439 0.439 0.439	346.7 524.8 676.1 794.3 891.3 912.0 1047.1 1122.0 1202.3 1225.9 1318.3 1349.0 1412.5

Vertical Stress o'v [kg/cm ²]	Radial Stress o'h [kg/cm ²]	K _o	Secant Constrained Modulus M ^S O [kg/cm ²]
6.05 5.84 5.63 5.43 5.22 4.72 4.18 3.69 3.18 2.70 2.16 1.60 1.18	2.71 2.66 2.61 2.56 2.52 2.39 2.25 2.11 1.95 1.78 1.56 1.30	0.448 0.456 0.464 0.473 0.482 0.507 0.538 0.572 0.611 0.657 0.722 0.812 0.904	2884.0 3890.5 3890.5 3630.8 3388.4 3162.3 2818.4 2630.3 2290.9 2089.3 1862.1 1513.6 1174.9

PRIMARY LOADING

UNLOADING

- 1. Stresses at mid-height of sample (75 cm)
- 2. No lateral strain $\Delta \epsilon_{\mathbf{h}}$ 0

FIG.9: AVAILABLE BOUNDARY CONDITIONS IN CC

$$\frac{BC1}{\sigma_{v} = const} \quad \sigma_{h} = const$$

$$\frac{BC2}{\sigma_{v}} \Delta \epsilon_{v} = \Delta \epsilon_{h} = 0$$

$$\frac{BC3}{\sigma_{v}} \sigma_{v} = const \quad \Delta \epsilon_{h} = 0$$

$$\frac{BC4}{\sigma_{v}} \Delta \epsilon_{v} = 0 \quad \sigma_{h} = const$$

FIG 10 TYPICAL TEST RESULT FROM SBPT IN CC

CC TEST N° 234 SBP TICINO SAND TS 4 , DR=76.1% , OCR=5.34 PRESSUREMETER TEST, BC1

*All data referred to the average strain of the three strain arms, corrected for membrane stiffness

FIG. 11: COMPARISON OF MEASURED LIFT-OFF STRESS AND APPLIED HORIZONTAL STRESS FOR IDEAL INSTALLATION IN CC

FIG. 12
1-D STRESSING OF THE CAMBRIDGE Ko CELL IN CC

FEELER ARM COMPLIANCE DURING COMPRESSION PHASE

IDEAL INSTALLATION TEST N 213

TIME (min)▶

TIME (min)▶

FIG. 13

FIG. 14: EXAMPLE OF PRONUNCED MECHANICAL COMPLIANCE DURING EXPANSION

FIG 15: DETAILS OF ORIGINAL AND MODIFIED SBP STRAIN ARMS

ORIGINAL DESIGN

MODIFIED DESIGN

Material: Stainless steel AISI 420 F

FIG.16: COMPARISON BETWEEN MEASURED AVERAGE LIFT-OFF PRESSURES AND APPLIED STRESSES FOR SELF-BORED INSTALLATION

FIG.17: SCHEMATIC OF SHEAR MODULI FROM SBP TESTS

(*) ACCORDING MANASSERO (1987)

FIG. 18: SCHEMATIC OF EFFECTIVE STRESS PATH OF SOIL ELEMENT ADJACENT TO AN EXPANDING PRESSUREMETER

FIG. 19: SCHEMATIC OF UNLOADING-RELOADING CYCLE DURING SBPT IN SAND ,

a) RESULTS OF SIMPLE SHEAR TEST (AFTER STROUD 1971)

b) SIMPLIFIED MODEL ASSUMED BY HUDGES ET AL (1977)

FIG 20 :STRESS-STRAIN AND VOLUMETRIC STRAIN-SHEAR STRAIN CURVES FOR a) SIMPLE SHEAR TEST RESULTS (STROUD, 1971), b) IDEALIZED BY HUGES ET AL (1977)

FIG.21: Stress / strain relationships from test N 222 (D_R =46.2%) MANASSERO (1987)

a) Volumetric strain vs shear strain

FiG.22 Stress /strain relationships from test N.228 (D_R = 77.0 \times) MANASSERO (1987)

a) Volumetric strain vs shear strain

b) Shear stress vs shear strain

c) Stress ratio vs shear strain

d) Shear stress vs mean normal stress

FIG.23: ANGLE 3. DEVIATION OF THE ESP FROM ISOTROPIC ELASTIC BEHAVIOUR (FOR WHICH .3 = 90")

MANASSERO (1967)

FIG. 24: $\phi_{\rm CV}$ OF SANDS USED IN CC TEST

FIG.25: COMPARISON OF CALCULATED $\varphi_{\rm p}^{\rm PS}$ FROM SBPT AND EQUIVALENT $\varphi_{\rm p}^{\rm PS}$ FROM TRIAXIAL TESTS

APPENDIX I EXAMPLE OF COMPUTER GENERATED PLOTS FOR TYPICAL SBPT RESULT

ENEL-CRIS OF MILAN AND TECHNICAL UNIVERSITY OF TURIN CC TEST N.234 - SBP TICINO SAND TS-4; Dr=76.1%; OCR=5.34 PRESSUREMETER TEST, BCI (All data referred to the average strain of the three strain arms)

ENEL-CRIS OF MILAN AND TECHNICAL UNIVERSITY OF TURIN OC TEST N.234 + SBP TIDINO SAND TS-4; Dr=76.14, DCR=5.34 PRESSUREMETER TEST, B01

(All data referres to the average strain of the three strain arms)

LOOP N°1 UR

ENEL TRIS F MILAN AND TECHNICAL UNIVERSITY OF TIRIN CC TEST N 234 - SBP TIGINO SAND TS-4; Dr-76 1%; OCR-5 34 PRESSUREMETER TEST, BC1

(All data referred to the average strain of the three strain arms)

LOOP N° 2 UR

EMEL CRIS OF MILAN AND TECHNICAL UNIVERSITY OF TURIN CC TEST N 234 - SBP TICINO SAND TS-4, Dr=75 1%; DCR=5 3. PRESSUREMETER TEST, BC1 All data referred to the average strain of the three strain arms)

LOOP N°3 UR

ENEL DRIS OF MILAN AND TECHNICAL UNIVERSITY OF TORIS CC TEST N 23+ SBP TI INO SAND TS + Dr+16 14 0 P-5 3+ PRESSUREMETER TEST, BC1

(All data referred to the average strain of the three strain are

LOOP Nº 4 RU

ENEL TRIS OF MILAN AND TECHNICAL UNIVERSITY OF TURIN CC TEST N 234 - SBP TICINO SAND TS-4; Dr-76.1%; DCR-5 34 PRESSUREMETER TEST, BC1

(All data referred to the average strain of the three strain arms)

. . :

ENEL-CRIS OF MILAN AND TECHNICAL UNIVERSITY OF TURIN CC TEST N.234 - SBP TICINO SAND TS-4; Dr-76.1%, OCR-5.34 PRESSUREMETER TEST, BC1 (All data referred to the average strain of the three strain arms)

ENEL-CRIS OF MILAH AND TECHNICAL UNIVERSITY OF TURIN CC TEST N 234 SBP TICINO SAND TS-4, Dr=76 le, OCF=5 34 PRESSURENETER TEST, BC1 (All data referred to the average strain of the three strain arms)

1

APPENDIX II COMPLETE LISTING FOR EACH SBPT RESULTS

APPENDIX III

CALCULATION OF AVERAGE STRESS ON

HORIZONTAL PLANE IN PLASTIC ZONE

AROUND EXPANDING CAVITY

AVERAGE STRESS ON HORIZONTAL PLANE IN PLASTIC ZONE

$$\mathbf{s} = \frac{\mathbf{r'r} + \sigma'_{\mathbf{f}}}{2} = \frac{\mathbf{p'_{\mathbf{c}}}}{1 + \sin \sigma'_{\mathbf{f}}} \left(\frac{\mathbf{R}}{\mathbf{r}}\right)^{1 - \mathbf{K}_{\mathbf{d}}} \dots 1$$

where.

 $\sigma_{\mathbf{r}}^{\prime}$ = radial effective stress at a generic radial distance

 $r \le R_p$ $\sigma_\theta^* = \text{circumferential effective stress at a generic rid, if$

distance r < R_p
p'c = effective cavity stress at which unload.ng~r#load.ng
loop starts

r = radial distance

R_p = radius of plastic zone

R = current cavity radius

$$K_a = \frac{1+\sin \frac{1}{2} \frac{1}{2}}{1+\sin \frac{1}{2} \frac{1}{2}}$$

$$P_{AV} = \frac{R^{p}}{R^{p}} \frac{s dr}{dr} \qquad \dots (2a)$$

or:

$$p_{AV}' = \frac{R^{\int} s \cdot 2\pi r \cdot dr}{R^{p}} \dots (2b)$$

Due to the tentative and preliminary nature of the proposed approach, the more simple solution ... (2a) integrating s along the radius r is the only method considered here.

Introducing the value of s from equation ... (1) into equation
... (2a) one obtains:

$$p_{AV}' = \frac{p_{C}'}{1 + \sin \phi_{PS}'} \left(R \right)^{1-K_{a}} \frac{R^{p}(r)^{K_{a}-1} dr}{R_{p} - R}$$

$$p_{AV}' = \frac{p_{C}'}{1 - \sin \phi_{PS}'} \cdot \frac{\left(\frac{R_{p}}{R} \right)^{K_{a}} - 1}{\frac{R_{p}}{R} - 1} \dots (3)$$

:

Also;
$$\frac{R_{p}}{R} \approx \left\{ \frac{\frac{P_{c}'}{\sigma_{ho}'}}{1 + \sin \phi_{pS}'} \right\} \frac{1}{1 - K_{a}} \dots (4)$$

.

Introducing the ratio $\frac{RP}{R}$ from equation ... (4) into equation ... (3) one obtains:

$$\frac{P'_{AV}}{P'_{AO}} = \frac{P'_{C}}{P'_{AO}} \left[\frac{P'_{C}}{P'_{AO}} \right]^{-1} - 1$$

$$\frac{P'_{AO}}{P'_{AO}} = \frac{P'_{C}}{P'_{AO}} \left[\frac{P'_{C}}{P'_{AO}} \right]^{-1} - 1$$

$$\frac{P'_{C}}{P'_{AO}} = \frac{P'_{C}}{P'_{AO}} \left[\frac{P'_{C}}{P'_{AO}} \right]^{-1} - 1$$
(5.)

where:

$$\omega_1 = \frac{K_a}{1-K_a} = \frac{1 - \sin \phi_{PS}'}{2 \sin \phi_{PS}'}$$

$$\omega_2 = \frac{1}{1-K_a} = \frac{2 \sin \phi_{PS}'}{1 + \sin \phi_{PS}'}$$

From equation ... (5) the following two formulae allows the evaluation of p_{AV}^{\prime} in the plastic zone around the expanding cavity

$$p'_{AV} = \sigma'_{ho} + \alpha \left(p'_{C} - \sigma'_{ho} \right) \qquad \dots (6a)$$

$$p'_{AV} = x p'_{C} \qquad ... (6b)$$

where:

or:

$$x = \frac{1}{(1-\sin\phi_{PS}')} \cdot \frac{\left[\frac{p_{C}'}{\sigma_{ho}'(1+\sin\phi_{PS}')}\right]^{-1} - 1}{\left[\frac{p_{C}'}{\sigma_{ho}'(1+\sin\phi_{PS}')}\right]^{-2} - 1} \dots (7)$$

$$\frac{p'_{c}}{\sigma'_{ho} (1-\sin\phi'_{pS})} \cdot \frac{\left[\frac{p'_{c}}{\sigma'_{ho} (1+\sin\phi'_{pS})}\right]^{\omega_{1}} - 1}{\left[\frac{p'_{c}}{\sigma'_{ho} (1+\sin\phi'_{pS})}\right]^{\omega_{2}} - 1}$$

$$\frac{p'_{c}}{\sigma'_{ho}} - 1$$
... (8)

Equations (6a) and (6b) are valid only if a plastic zone exists which means:

 $p_C' > \sigma_{ho}' (1 + \sin \phi_{PS}')$

... (9)

Otherwise one has to assume $p'_{AV} = \sigma'_{ho} \approx p'_{o}$

APPENDIX IV

DETAILS ON MANASSERO (1987) METHOD

FOR DETERMINATION OF P FROM SBPT IN SAND

STRESS-STRAIN RELATIONSHIPS FROM DRAINED SELF BORING PRESSUREMETER TESTS IN SAND

by

MARIO MANASSERU

DIPARTIMENTO DI INGEGNERIA STRUTTURALE DEL POLITAMNICO DI TORINO

ATTO Nº 6675310

ABSTRACT

A numerical method is presented in order to obtain the complete stresses and strains path during a self boring pressuremeter test (SBPT) in sand.

Plane strain conditions and a material behaviour according to Rowe's /23/24/ dilatancy theory are assumed.

The obtained results have been checked using a large number of SBPT in sand performed in a calibration chamber (CC).

RIASSUNTO

Viene illustrato un procedimento di calcolo numerico che permette di ottenere gli andamenti completi delle componenti di tensione e deformazione durante una prova di espansione esegui ta con il pressiometro autoperforante (SBPT) in sabbia. Si ipotizzano condizioni di deformazione piane ed un comportamento del materiale in accordo con la teoria della dilatanza di Rowe /23/24/.

I risultati ottenuti sono stati controllati usando numerosi SBPT in sabbia, eseguiti in camera di calibrazione (CC).

1. INTRODUCTION

The first closed form solution of an expanding cavity problem has been obtained considering a linear elastic material and small deformations (Lamé /18/). By using this solution it is possible to find the elatic shear modulus. G both from the first part of the SBPT and from an unload-relead cycle. Solutions for a linear elastic-perfectly plastic material have been presented later by Biship et al. 6; for a pure cohesive soil, and by Hill (17), Menard (19) /20/, Cassan /8/, Salengen /25/ and Vesic -26/ for a frictional and cohesive soil. On the basis of the above mentioned solutions, Gibson et al. /10/, Ladanyi /13/14/15/16/, Palmer /21/, Baguelin et al. 17, Wroth et al. 727%, Hughes et al. 12/and Robertson /22/ have presented procedures for the interpretation of pressuremeter tests, allowing the derivation of the stress-strain relationships of a soil element at the inner boundary of the expanding cavity. The interpretation method for a pure frictional material presented in this paper is closely related to Wroth's et al. /27/ and Hughes's et al. /12/ analyses

2. BASIC ASSUMPTION

The basic assumptions, used in the here presented approach, are briefly summarized in the following points a) The particulate material surrounding the infinitely long expanding cavity deforms in plane strain conditions, i.e. the vertical strain $\varepsilon_z = 0$.

and it is based on Rowe's /23/24 dilatancy theory.

- b) The principal stresses $\sigma_1, \sigma_2, \sigma_3$ are coincident with radial, vertical, hoop stresses around the cavity, $\sigma_{\mathbf{r}}, \sigma_{\mathbf{z}}, \sigma_{\mathbf{0}}$, the same applies to the strains $\varepsilon_1, \varepsilon_2, \varepsilon_3$ and $\varepsilon_{\mathbf{r}}, \varepsilon_{\mathbf{z}}, \varepsilon_{\mathbf{0}}$. In the following either subscript notations can be used.
- c) Stresses and strains are positive in compression.
- d) All stresses and strength parameters are in terms of effective stress.
- e) The strains are considered to be simpletely plastic. Elastic strains are not considered.
- f) Only frictional forces act at the cintact points if particles (sand grains).
- g) Strains due to particle crushing or plastic yield at contact points—are—supposed not affecting the soil behaviour in the case of the contemplated sand.
- h) The hypothesis of small strains is adopted.

3. CONSTITUTIVE RELATIONSHIP

According to Rowe's /23/24/ theory, the behaviour of a particulate medium may be described by the following equation:

$$\frac{\sigma_1 d \sigma_1}{(\sigma_2 d \sigma_2 + \sigma_3 d \sigma_3)} = -\kappa_p^{CV}$$
 (1)

where:

Taking into account for plain strain conditions (dc,* 0) the eq. (1) reduces to:

$$\frac{\sigma_1}{\sigma_3} = -\kappa_p^{cv} = \frac{d\sigma_3}{d\sigma_1}$$
 (2)

Shear (y) and volumetric ($\epsilon_{_{_{\mathbf{V}}}}$) strains are defined by the following:

$$\gamma = \epsilon_1 - \epsilon_3 \tag{3}$$

$$\varepsilon_{v}^{z} \varepsilon_{1} + \varepsilon_{3}$$
 (4)

Using this last set of equations the stress ratio (τ_1/τ_1) can be expressed also as follows

$$\frac{z_1}{z_3} = K_p^{CV} = \frac{1 - \frac{d\varepsilon}{dv}}{\frac{d\varepsilon}{dv}}$$

$$1 + \frac{d\varepsilon}{dv}$$
(5)

The introduced relationships of the adopted constitutive model are qualitatively shown in Fig. 1.

4. CAVITY EXPANSION RELATIONSHIPS

The equations of equilibrium and compatibility of strains all around the cavity are: (see also Fig.2)

$$\frac{dz}{dr} = \frac{\sigma_0 - c_r}{r} \tag{6}$$

$$\frac{d\varepsilon_0}{d\mathbf{r}} = \frac{\varepsilon_r - \varepsilon_0}{\mathbf{r}} \tag{7}$$

where:

 $\sigma_{\bf r},\sigma_{\theta}\colon$ principal stresses (MAX and min) around the cavity (corresponding to σ_{1} and σ_{3}

 $\epsilon_{\bf r},\epsilon_0$: principal strains around the cavity (corresponding to ϵ_1 and $\epsilon_3)$

r : radial distance.

This last set of equations with eq. (2) described in chapter 2 allows to obtain the solution of the expanding cylindrical cavity problem (See 5th Sect.).

5. PROPOSED METHOD

Expressing the equations (6) and (7) as function of $\frac{r}{dr}$ and referring them to a generic radius r around the expanding cavity, one can write:

$$\frac{\sigma_0 - \sigma_r}{d\sigma_r} = \frac{\varepsilon_r - \varepsilon_r}{d\varepsilon_r}$$
(3)

Introducing into eq. (8):

$$\sigma_{9} = -\frac{\sigma_{\mathbf{r}}}{\kappa_{\mathbf{p}}^{\mathbf{cv}}} = \frac{\mathrm{d}\varepsilon_{\mathbf{r}}}{\mathrm{d}\varepsilon_{3}}$$

given by eq. (2) and rearranging it, one gets

$$\frac{d\sigma_{\mathbf{r}}}{d\varepsilon_{9}} = -\frac{\sigma_{\mathbf{r}} (1 + \kappa_{\mathbf{a}}^{cv} - \frac{d\varepsilon_{\mathbf{r}}}{d\varepsilon_{0}})}{\varepsilon_{\mathbf{r}} - \varepsilon_{3}}$$
(9)

being:
$$K_a^{CV} = \frac{1}{K_D^{CV}}$$

This equation of general validity can be solved for a soil element at the cavity wall where the $\frac{1}{r}$ = p and $\frac{1}{2}$ = $\frac{1}{2}$ are measured. To do this analytically, a relationship $\frac{1}{r}$ = $\frac{1}{r}$ (c.) is required (see Hughes et al. /12/), nevertheless knowing p = F (c) one can solve eq. (9) using numerical techniques, like finite difference.

6. NUMERICAL ANALYSIS

With the aim to assess the $\epsilon_{\mathbf{r}}$ at the cavity wall through a numerical procedure, the following equations at the points (i) and (i-1) can be setup (see also Fig. 3).

$$\frac{dp}{d\varepsilon} = \frac{p(i) - p(i-1)}{\varepsilon(i) - \varepsilon(i-1)} \tag{10}$$

$$\frac{d\varepsilon_{\mathbf{r}}}{d\varepsilon} = \frac{\varepsilon_{\mathbf{r}}(i) - \varepsilon_{\mathbf{r}}(i-1)}{\varepsilon(i) - \varepsilon_{\mathbf{r}}(i-1)}$$
(11)

Introducing eqs. (10) and (11) into eq. (9), using average criteria between forward and backwards interpolations techniques and making appropriate arrangements it is obtained:

$$\varepsilon_{\mathbf{r}}(\mathbf{i}) = \frac{p(\mathbf{i}) \left[\varepsilon(\mathbf{i}-1) + K_{\mathbf{a}}^{cv} \varepsilon_{\mathbf{r}}(\mathbf{i}-1) \right] - p(\mathbf{i}-1) \varepsilon(\mathbf{i})}{2 \left[p(\mathbf{i}) \cdot (1 + K_{\mathbf{a}}^{cv}) - p \cdot (\mathbf{i}-1) \right]} + \frac{p(\mathbf{i}) \left[\varepsilon(\mathbf{i}-1) - \varepsilon_{\mathbf{r}}(\mathbf{i}-1) \right] + p(\mathbf{i}-1) \left[\varepsilon_{\mathbf{r}}(\mathbf{i}-1) \cdot (1 + K_{\mathbf{a}}^{cv}) - \varepsilon(\mathbf{i}) \right]}{2 K_{\mathbf{a}}^{cv} p \cdot (\mathbf{i}-1)}$$

$$(12)$$

Moreover knowing that $\varepsilon_{\bf r}$ (0)=0,equation(12)allows to compute step by step the unknown values $\varepsilon_{\bf r}$ (i) from i = 1

Once $\varepsilon_{\mathbf{r}}(\mathbf{i})$, $\varepsilon(\mathbf{i})$, $p(\mathbf{i})$ and $\sigma_{0}(0) = p(0)$ are known, one can compute from eqs. (3) and (4) the deformation components $\gamma(\mathbf{i})$, $\varepsilon_{\mathbf{v}}(\mathbf{i})$ and solving equation (2) or (5), once more with finite difference technique, the complete stress-strain curve and stress-path for the soil element at the cavity wall can be assessed.

AKNOWLEDGEMENTS

The author wishes to aknowledge Dr.P.Bertacchi and in lotti of ENEL-CRIS - Milan, who made available the result of SBPT's performed in the CC, used to validate the interpretable method exposed in the paper.

REFERENCES

- /1/ BAGUELIN, F., JEJÉZUEL, J.F., LIMEF, E., LE M. ...
 "Expansion of Cylindrical Probes in Concessed delia".
 Journal of the Soil Mechanics and Flundations I. ...
 American Society of Civil Engineers, Volume, No. Mach.
 Proc. Paper 9377, (1972) November, pp. 1129-1142.
- /2/ BAGUELIN, F., JÉZÉQUEL, J.F. and SHIELD, D.H., "The grown suremeter and foundation engineering", Series on the and Rock Mechanics, Vol. 2, No.4, Trans Test Publication, (1978).
- /3/ BALIGH, M.M., "Cavity Expansion in Sand with Curved Envelopes", Journ. Geot. Eng. Div. ASCE, GT. 11, (1976).
- /4/ BALDI ET AL., "Laboratory Validation of in-Situ Tests".

 Published by A.G.I. on the occasion of the ISSMFE Golden
 Jubilee, (1985a).
- /5/ BELLOTTI,R.,BRUZZI G. and GHIONNA V., "Design, Construction and Use of a Calibration Chamber", Proc. ESOPT 11, Amsterdam, Vol. 2, (1982), pp. 439-446.
- /6/ BISHOP, R.F., HILL, R., and MCTT, N.F., "Theory of indentation and hardness tests", Proc. Phys. Soc. 57, 147, (1945).
- /7/ CARTER, J.P., BOOKER, J.RandYEUNG., S.K., "Cavity expansion in cohesive frictional soils", Geotechnique 36,No.3, (1986), pp. 349-358

t the following the second of process of the process of the process of the process of the process of the process of the following the second of the following of the process of the p

- 14 (ACANYI, B., "Evaluation of Frenchimmeter Tests in Granular Scales", Proceedings of the Second Fig. American Conference on Soil Mechanics and Foundation Engineering, Brasil, Vol. 1, (1963), pp. 3-20.
- Medium", Journal of the Soil Medium Society of Civil Engineers, Vol. 90, No SM4, Proc. Paper 3577, (1963), July, pp. 127-161.
- /16/ DADANYI, B., "In Situ Determination of Undrained Stress-Strain Behavior of Sensitive Clays with the Pressuremeter", Canadian Geotechnical Journal, Vol. 9, (1972).
- /17/ LADE,P.V.and LEE, K.L. "Engineering Properties of Soils", Report, UCLA-ENG-7652, (1976), pp.145.
- /18/ LAMÉ, G., "Leçons sur la théorie mathématique de l'elasticité des corps solides", Bachelier, Paris, France, (1852).
- /19/ MÉNARD, L., "Mesure in situ des proprietés physiques des sols", Annales des Ponts et Chaussées, Paris, No. 14, (1957), Mai-Juin, pp. 357-377.
- /20/ MÉNARD, L., "An Apparatus for Measuring the Strength of Soils in Place", Thesis, University of Illinois, (1957).

- /21/ PALMER, A.C., "Undrained plane-strain expansion of a cylindrical cavity in clay: a simple interpretation of the pressuremeter test", Géotechnique 22, No. 3, (1972), pp. 451-457.
- /22/ ROBERTSON, P.K., "In Situ Testing of Soil with emphasis on its application to liquefaction assessment", PhD Thesis Department of Civil Engineering, Vancouver (Canada), (1982).
- 7237 RCWE, P.W., "The stress-dilatancy relation for static equilibrium of an assembly of particles in contact", Proc. Royal Soc., Vol. 269, (1962), pp. 500-527.
- 24 ROWE, P.W., "Stress-Strain Relationship for Particulate Materials at equilibrium", Proc. of the specialty Conference on Ferformance of Earth and Earth-supported Structures. Purdue University, Lafayette (Indiana). Published by ASCE, (1972).
- /25/ SALENÇON, J., "Expansion quasi-statique d'une cavité à symétrie sphérique ou cylindrique dans un milieu élasto plastique", Annales des Ponts et Chaussées, Paris, Vol. III, (1966), pp. 175-187.
- /26/ VESIC, A.S., "Expansion of cavities in infinite soil mass.", J. Soil Mech. Fdns Div. Am. Soc. Civ. Engrs 98, SM3, (1972), pp. 265-290.
- /27/ WROTH, C.P. and WINDLE, D., "Analysis of the pressuremeter test allowing for volume change", Technical Note, Geotechnique 25, (1975), pp. 598-610.

AD-A188 792 SELF-BORING PRESSURENETER IN PLUVIALLY DEPOSITED SAMDS 2/2

(U) CENTRO DI RICERCA IDRAULICA E STRUTURALE HILAN

(TIALY) R BELLOTTI ET AL. JUN 87 DAJA45-84-C-9834

UNCLASSIFIED

END

TAB. 1 - TESTED SAND SHEAR STRENGTH

TICINO SAND						
D _R	φ ^{TX} _o	α	R ²			
(%)	(°)	(°)	(-)			
45 65 85	38.2 40.2 42.9	4.2 6.5 8.1	0.67 0.78 0.89			

 $\phi^{TX}_{\mbox{\scriptsize o}}$ parameters describing the curved

a |strength envelopes (Baligh/3/)(*)

R2= correlation coefficient

D_R average relative density of the tested specimens, at the end of consolidation

(*) tg
$$\phi_{\mathbf{p}}^{\mathbf{TX}} = \frac{\tau_{\mathbf{ff}}}{\sigma_{\mathbf{ff}}} = \left[\operatorname{tg} \cdot \phi_{\mathbf{o}}^{\mathbf{TX}} + \operatorname{tg} \alpha \left(\frac{1}{2.3} - \log_{10} \frac{\sigma_{\mathbf{ff}}}{\sigma_{\mathbf{o}}} \right) \right]$$

where:

 $\phi_{p}^{TX} : \begin{array}{l} \text{secant peak friction angle from laboratory triaxial} \\ \text{compression test} \end{array}$

 $\tau_{\rm ff}$ = shear stress on the failure surface at failure

off = effective normal stress on the failure surface at
failure

 σ_0 = reference stress, assumed equal to 1 Kg/cm²

= 98.2 KPa

 ϕ_{O}^{TX} = secant friction angle from laboratory triaxial compression test at σ_{ff} = 2.72 σ_{O}

a = angle which describes the curvature of the failure envelope.

TAB. 2 : Experimental readings from Test N. 228

Rd	-ε	p	R _d	-ε	p	Rd	-ε	p .
N.	[8]	[MPa]	N.	ز کی	[MPa]	я.	[8]	[MPa]
N. 1234567890113145678901222345678	2.22200 .20350 .20350 .20350 .21225 .21255 .22100 .22625 .22974 .23849 .24199 .24724 .25424 .26649 .07174 .28049 .29099 .09798 .12573 .11548 .12598 .13473 .14348 .15398 .16622 .17672 .18722	MPa .2080 .2131 .2181 .2232 .2343 .2383 .2444 .2524 .2525 .2626 .2757 .2807 .2877 .2927 .2919 .3019 .3139 .3179 .3280 .3351 .3398 .3451	N. 401234455789012345578901234557	34545 362194 391594 421394 421393 4581391 55831193 481591 5583115 568115 67189 57165 68111 68139 71663 68111 68139 71663 68111 71663	MPa	7 0 0 1 1 2 3 4 5 5 7 8 9 0 1 1 2 3 4 5 5 7 8 9 0 1 1 2 3 4 5 5 7 8 9 0 1 1 2 3 4 5 5 7 8 9 0 1 1 2 3 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8 2.11714 2.24836 2.38134 2.51781 2.65953 2.88124 3.03221 3.19143 3.35055 3.51336 3.67959 4.21146 4.39517 4.58588 4.78184 4.98123 5.18425 5.39595 5.61289 5.86586 6.28823 6.52617 6.76586	MPa . 8243 . 8462 . 9572 . 9991 . 9118 . 9337 . 9446 . 9574 . 9901 . 0139 1. 0559 1. 0777 1. 2996 1. 1216 1. 1444 1. 1664 1. 1883 1. 2111 1. 2339 1. 2558 1. 3241 1. 3468 1. 3686 1. 3923 1. 414P
29 30 31 32 33 34	.20997 .22047 .23096 .24321 .25546 .26596	.3562 .3602 .3652 .3713 .3763 .3803	68 69 70 71 72 73	1.08132 1.12507 1.16801 1.21255 1.25824 1.43321	.6109 .6209 .6310 .6411 .6502	107 108 108 1:0	7.27498 7.53216 7.80334 8.07802 8.36144 8.65186	1.4377 1.4584 1.4621 1.5056 1.5282 1.5499
35 36 37 38 39	.27996 .29395 .30795 .32020 .33420	.3884 .3924 .3984 .4034 .4084	74 75 76 77 78	1.53099 1.53773 1.74971 1.85593 1.98765	.7127 .7337 .7566 .7795 .8015	70 9 WH IN	8.95103 9.26594 9.58785 9.91325 10.25265	1.5715 1.5950 1.6156 1.6391 1.6505

 R_{d}^{-} : number of the experimental reading

E : hoop strain at the cavity wall

p : radial stress at the cavity wall

FIG.1: Stress - strain relationships for plane strain conditions

FIG.2: Stresses and strains around the expanding cavity

Equilibrium equation $\frac{d\sigma_r}{dr} = \frac{\sigma_\theta - \sigma_r}{r}$

___ ;

FIG.3: Use of pressuremeter curve for numerical analysis

IV. 15

FIG. 4: Characteristics of the tested sand

SAND	1.2-TICINO		
DOMINANT MINERAL	QUARTZ(30		
ANGULARITY (LEE'S CHART)	8÷9		
MICA	~5%		
/max (t/m³)	1] 1.705 2] i.700		
γ _{min} (t/m³)	1] 1,398 2] 1,391		

FIG.5: Stress/strain relationships using the experimental readings from test N_1 228 (D_R =77.0%)

FIG.6: Curve fitting results with 7th polynomial degree in original p vs ϵ plot

FIG.7: Stress ratio - strain curve for 5th, 7th and 9th degree polynomials (Test No 228)

O

FIG.8: Stress / strain relationships from test N₀222 (D_R =46.2%)

-

FIG.9: Stress / strain relationships from test No 228 (D_R=77.0%)

END

DATE FILMED