

Faculty of Engineering

AIN SHAMS UNIVERSITY

Third year mechatronics engineering

Computer Organization
Third part of the project

Represented by:

Shrouk Magdy Ibrahim	sec: 1
Salma Hussien Sayed	sec: 1
Abd-El-Rahman Mohamed Abd-El-Fattah	sec: 2
Abd-Allah Osama Korany	sec:2
Abd-El-Rahman Ahmed Abbas	sec:2

The executed program

Location	Instruction	Ac	Рс	IR
000	CLA	0000	001	7800
001	ADD 006	C1A5	002	1006
002	BUN 004	C1A5	004	4004
003	HLT	8184	004	7001
004	AND 007	8184	005	0007
005	BUN 003	8184	003	4003
006	C1A5			
007	93C6			

Design hints:

- 1. The top level module will have:
 - a. Two inputs only: a clock and a global reset signal
 - b. One output: the accumulator AC

- 4. The memory module should have a sample test program for the CPU. Therefore, initialize the memory contents in your design with a small program.
- 5. For simplicity, let the first instruction in your program be at address 0.

```
module memory16(address,datain,dataout,R,W,CLK);
input CLK;
input R;
input [11:0]address;
input [15:0]datain;
output [15:0]dataout;
wire CLK;
wire R;
wire W;
wire[15:0]datain;
reg[15:0]datain;
reg[15:0]dataout;
reg[15:0]dataout;
reg[15:0]memory16[0:4095];
initial
begin
memory16[1]=16'h7800;
memory16[1]=16'h7800;
memory16[3]=16'h7800;
memory16[3]=16'h7801;
memory16[3]=16'h7801;
memory16[3]=16'h7801;
memory16[3]=16'h7801;
memory16[5]=16'h7801;
memory16[5]=16'h8007;
memory16[5]=16'h8007;
memory16[5]=16'h8007;
memory16[6]=16'h6007;
memory16[7]=16'h9306;
memory16[7]=16'h
```

```
mem[0]=7800
mem[1]=1006
mem[2]=4004
mem[3]=7001
mem[4]=0007
mem[5]=4003
mem[6]=c1a5
mem[7]=93c6
```

b. Assert the reset signal for at least one cycle, and then negate it back. This action should clear the PC and begin fetching the first instruction.

Output of the executed program

Module CPU

Module Sequencer

Module PC

Module AR

Module memory

Module IR

Module decoder (for opcode)

Module DR

Module Alu

Module AC

