


```
Si R, y R<sub>2</sub> son las rectas antives color

Se ven en el apph \chi_1 \neq 0

\begin{bmatrix} x_0 : x_1 : x_2 \end{bmatrix} \times \begin{bmatrix} x_1 : 1 : \frac{2}{t} + 1 \end{bmatrix} = \begin{bmatrix} \lambda : 1 : 1 + 2\lambda \end{bmatrix}
   R_{2}: [ \pm , 1; \frac{3}{4} + 1 ] = [ \lambda : 1 : 1 + 3 \lambda ]
                                                                  [0:1:1]
  (y, 92) -> (y, 1, y, )
    5i F∈ C[Xo,..,Xn] es un polinonio
homogéneo de minos
           V_{\mathbb{P}}(F) = \{ [\lambda] \in \mathbb{P}^n : F(\lambda) = 0 \}
 Obs: (a) Vp(F) extr bien dynido
           (b) F NO ES un funció en Ph
   F([\lambda]) = F(\lambda)
    [d] = [d_0: ...d_n] \qquad F(X_0, ..., X_n)(d) = F(d_0, ...d_n)
     [\lambda] = [t\lambda] \qquad \mp (x_0, x_0)(t\lambda) = \mp (t\lambda_0, x_0) = t^{d} \mp (t\lambda_0, x_0)
      Si F(d)=0 => F(td)=0 +t 6 C así que
                                     tofice) VIP(F) est bien depuido
```

Def: Si I C [Xo,, Xn] es un idual
homogéneo, de prinos
·
$V_{\mathcal{P}}(I) = \left\{ [L] \in \mathbb{R}^n : F(L) = 0 \forall F \in I \right\}$ Fhorogino
Subconjustos algebricos de P
Ejernico: Demeste que los subconjutos algebricos de P ⁿ son los cenados de una topología
de P ⁿ son los cenados de una topología
(de Zuishi) en P ⁿ .
Obs: Si $Z \subseteq \mathbb{C}^{n+1}$ es un cono A_{-1}
(de Zvishi) en P ⁿ . Obs: Si Z C C ⁿ⁺¹ es un cono {[+]: ze Z} C IP ⁿ es un conjuti alz de IP ⁿ }
Vp (Z(Z)) es horogras poque Z es co-o.
Por eso conocernos muchos ejemplos de
conjuto, algebrais de Ph.
$P(V) := V \setminus \{\vec{0}\}$
$/\sim$
~v(=>)] λ ∈ (": λ h=v
$S: A \oplus V \Rightarrow \mathbb{P}(A) \subseteq \mathbb{P}(V)$
Subespanio
rechai
Ejercicio: ([Varedadis Lineales])
{Vp(I) per I \(\subseteq \subsete(\times_0,, \times_n \) \\ \text{grands por forms liveales}
Subespans
11 Pogeths
$\{P(A): A \subseteq V\}$
subespano vechal de

