



# Software security, secure programming (and computer forensics)

Lecture 9: from Static Analysis to (Dynamic) Symbolic Execution

Master M2 on Cybersecurity

Academic Year 2016 - 2017

## Summary

## Static analysis techniques

- allow to (automatically) reason about a whole program without executing it . . .
- ▶ but at the price of approximations due to undecidability problems:
  - ▶ over-approximations → false positives
  - ▶ under-approximations → false negatives
- example: value-set analysis (VSA)
   abstract representation = trade-off between accuracy and efficiency (e.g., intervals vs polyhedra vs ...)
- can be leveraged with use-provided asertions ...
   (to deal with library calls, "complex" code patterns, etc.)

## Summary

## Static analysis techniques

- allow to (automatically) reason about a whole program without executing it . . .
- but at the price of approximations due to undecidability problems:
  - ▶ over-approximations → false positives
  - ▶ under-approximations → false negatives
- example: value-set analysis (VSA)
   abstract representation = trade-off between accuracy and efficiency
   (e.g., intervals vs polyhedra vs ...)
- can be leveraged with use-provided asertions ...
   (to deal with library calls, "complex" code patterns, etc.)

Long (success) story in program verification ⇒ numerous tools available!

## Summary

## Static analysis techniques

- allow to (automatically) reason about a whole program without executing it . . .
- but at the price of approximations due to undecidability problems:
  - ▶ over-approximations → false positives
  - ▶ under-approximations → false negatives
- example: value-set analysis (VSA)
   abstract representation = trade-off between accuracy and efficiency
   (e.g., intervals vs polyhedra vs ...)
- can be leveraged with use-provided asertions ...
   (to deal with library calls, "complex" code patterns, etc.)

Long (success) story in program verification ⇒ numerous tools available!

#### **But:**

- ▶ not so effective on binary code, simple memory model
- ▶ not go "beyond the bug" (≠ exploitability analysis)
- may provide too many false postives ?

"security analysis" = vulnerability detection

## A pragmatic approach:

 annotate the code with "vulnerability checks" (e.g., frama-c -rte) i.e., assertions to detect integer overflows, invalid memory accesses (arrays, pointers), etc

"security analysis" = vulnerability detection

- annotate the code with "vulnerability checks" (e.g., frama-c -rte) i.e., assertions to detect integer overflows, invalid memory accesses (arrays, pointers), etc
- run a VSA
  - → reveals a lot of hot spots (= unchecked assertions)

"security analysis" = vulnerability detection

- annotate the code with "vulnerability checks" (e.g., frama-c -rte) i.e., assertions to detect integer overflows, invalid memory accesses (arrays, pointers), etc
- 2. run a VSA
  - → reveals a lot of hot spots (= unchecked assertions)
- 3. add user-defined assertions when possible ...
   e.g., function pre/post conditions, loop invariants, extra information ...
   → consider proving (some of) these assertions?

"security analysis" = vulnerability detection

- annotate the code with "vulnerability checks" (e.g., frama-c -rte) i.e., assertions to detect integer overflows, invalid memory accesses (arrays, pointers), etc
- 2. run a VSA
  - → reveals a lot of hot spots (= unchecked assertions)
- add user-defined assertions when possible ...
   e.g., function pre/post conditions, loop invariants, extra information ...
   → consider proving (some of) these assertions?
- 4. run the VSA again ...

"security analysis" = vulnerability detection

- annotate the code with "vulnerability checks" (e.g., frama-c -rte) i.e., assertions to detect integer overflows, invalid memory accesses (arrays, pointers), etc
- 2. run a VSA
  - → reveals a lot of hot spots (= unchecked assertions)
- add user-defined assertions when possible ...
   e.g., function pre/post conditions, loop invariants, extra information ...
   → consider proving (some of) these assertions?
- 4. run the VSA again ...
- $\Rightarrow$  a set of potential vulnerabilities remains, to be discharged by other means, possibly on a **program slice** (false positive ? real bug but harmless w.r.t security ? real vulnerability ?)

"security analysis" = vulnerability detection

## A pragmatic approach:

- annotate the code with "vulnerability checks" (e.g., frama-c -rte) i.e., assertions to detect integer overflows, invalid memory accesses (arrays, pointers), etc
- 2. run a VSA
  - → reveals a lot of hot spots (= unchecked assertions)
- add user-defined assertions when possible ...
   e.g., function pre/post conditions, loop invariants, extra information ...
   → consider proving (some of) these assertions?
- 4. run the VSA again ...
- ⇒ a set of potential vulnerabilities remains, to be discharged by other means, possibly on a **program slice** (false positive ? real bug but harmless w.r.t security ? real vulnerability ?)

**Rk:** some static analysis tools also provide bug finding facilities (i.e., no false postives, . . . but false negatives instead)

## Today's menu

1. A few words on assertion proving using weakest pre-conditions (WP)

2. Some exercices on VSA (and WP)

3. An alternative/complementary approach to static analysis:

(Dynamic) Symbolic Execution

- may help to discharge/confirm unchecked assertions
- may help to detect (others) vulnerabilities . . . (in a more general context)

## A basic programming language

## Syntax

```
Exp ::= x \mid n \mid op (Exp, ... Exp)

Stm ::= x := Exp

::= Stm; Stm

::= skip

::= if Exp then Stm else Stm

::= while Exp do Stm end

::= assert Exp
```

In practice: arrays, structures, pointers, procedures, etc.

#### **Axiomatic Semantics**

⇒ programs viewed as *predicate transformers* where predicates are assertions on program variables (Hoare, Dijkstra 1976).

Weakest Preconditions (wp): backward computation Example:

$$x \ge 0 \ \{x := x + 1; \} \ x > 0$$

Strongest Postcondition (sp): forward computation Example:

$$x \ge 0 \{x := x + 1; \} x > 0$$

# Weakest precondition / Strongest postcondition

Let I a statement, P, R, ', R' some predicats

The weakest precondition P = wp(I, R) is such that:

$$\forall P' \ (P' \Rightarrow wp(I,R)) \Rightarrow (P' \Rightarrow P)$$

A precondition P' stronger than  $x \ge 0$ : x > 5.

# Weakest precondition / Strongest postcondition

Let I a statement, P, R, ', R' some predicats

The weakest precondition P = wp(I, R) is such that:

$$\forall P' (P' \Rightarrow wp(I,R)) \Rightarrow (P' \Rightarrow P)$$

A precondition P' stronger than  $x \ge 0$ : x > 5.

The strongest postcondition R = sp(R, I) is such that:

$$\forall R' \ (\mathit{sp}(P,I) \Rightarrow R' \Rightarrow (R \Rightarrow R')$$

A postcondition R' weaker than  $x \ge 0$ : x > -2.

#### Substitution - free/bounded variables

#### Free and bounded variables

A variable *x* is bounded (resp. free) within formula *F* iff *F* contains an occurrence of *x* which is (resp. which is not) within the scope of a quantifier.

### Example:

$$\varphi \equiv P(y,x) \wedge \forall x . Q(x,y)$$

 $\hookrightarrow$  there is both a free and a bounded occurrence of x in  $\varphi$ 

#### Substitution - free/bounded variables

#### Free and bounded variables

A variable *x* is bounded (resp. free) within formula *F* iff *F* contains an occurrence of *x* which is (resp. which is not) within the scope of a quantifier.

## Example:

$$\varphi \equiv P(y,x) \wedge \forall x . Q(x,y)$$

 $\hookrightarrow$  there is both a free and a bounded occurrence of x in  $\varphi$ 

#### Substitution

P[E/x] is the formula P in which all free occurrences of variable x have been replaced by the term E.

### Example:

$$(\varphi[x+1/x])[f/y] \equiv P(f,x+1) \wedge \forall x . Q(x,f)$$

# Computing weakest preconditions: basic instructions

| Statement          | def. | WP                    |
|--------------------|------|-----------------------|
| wp(skip, R)        | â    | R                     |
| wp(x := e, R)      | â    | R[e/x]                |
| $wp(i_1 ; i_2, R)$ | â    | $wp(i_1, wp(i_2, R))$ |
| wp(assert(e), R)   | â    | e∧ R                  |

# Computing weakest preconditions: basic instructions

| Statement          | def. | WP                    |
|--------------------|------|-----------------------|
| wp(skip, R)        | â    | R                     |
| wp(x := e, R)      | â    | R[e/x]                |
| $wp(i_1 ; i_2, R)$ | â    | $wp(i_1, wp(i_2, R))$ |
| wp(assert(e), R)   | â    | e∧ R                  |

# Examples:

- 1. wp(x := x + 1, x > 0)
- 2.  $wp(z := 2 ; y := z + 1 ; x := z + y, x \in 3..8)$

# Another way to write WPs

```
R R[e/x] \mathbf{x} := \mathbf{e}; \mathbf{w}p(i_1, \mathbf{w}p(i_2, R)) P \wedge R \mathbf{assert}(\mathbf{P}) \mathbf{i_1}; \mathbf{w}p(i_2, R) \mathbf{i_2};
```

# Example

$$2+2+1 \in 3..8$$
  
**z:=2**;  
 $z+z+1 \in 3..8$   
**y:=z+1**;  
 $z+y \in 3..8$   
**x:=z+y**;  
 $x \in 3..8$ 

# Computing weakest precondition: conditional statement

$$wp(\text{if } P \text{ then } i_1 \text{else } i_2 \text{ end}, R)$$
  
 $\hat{=} (P \Rightarrow wp(i_1, R)) \land (\neg P \Rightarrow wp(i_2, R))$ 

# Computing weakest precondition: conditional statement

$$\begin{array}{c} \textit{wp}(\text{if } P \text{ then } i_1 \text{else } i_2 \text{ end}, R) \\ \hat{=} (P \Rightarrow \textit{wp}(i_1, R)) \land (\neg P \Rightarrow \textit{wp}(i_2, R)) \end{array}$$

#### Examples:

▶ Define wp(if e then i end , R).

# Computing weakest precondition: conditional statement

$$\begin{array}{c} \textit{wp}(\text{if } P \text{ then } i_1 \text{else } i_2 \text{ end}, R) \\ \hat{=} (P \Rightarrow \textit{wp}(i_1, R)) \land (\neg P \Rightarrow \textit{wp}(i_2, R)) \end{array}$$

#### Examples:

- ▶ Define wp(if e then i end , R).
- What does the following program compute ? Prove the result . . .

```
begin if x > y then m := x else m := y end; if z > m then m := z end end
```

## Solution (1)

```
(x > y \Rightarrow F_1[x/m]) \land (\neg(x > y) \Rightarrow F_1[y/m]) = F_2
if x > y
  F_1[x/m]
  then m := x
  F_1[y/m]
  else m := y end;
(z > m \Rightarrow R_1[z/m]) \land (\neg(z > m) \Rightarrow R_1)
                                                  = F_1
if z > m
   R_1[z/m];
  then m := z
   R_1;
  else skip;
end
 R_1
```

# Solution (2)

#### Postcondition:

$$(m = x \lor m = y \lor m = z) \land m \ge x \land m \ge y \land m \ge z$$

Let's process  $R_1 = m \ge x$ .

### Computing $F_1$ :

$$(z > m \Rightarrow m[z/m] \ge x) \land (\neg(z > m) \Rightarrow m \ge x)$$

#### which can be rewritten:

$$(z > m \Rightarrow z \ge x) \land (\neg(z > m) \Rightarrow m \ge x)$$

# Solution (3)

Computing  $F_2$ :

$$(x > y \Rightarrow F_1[x/m]) \wedge (\neg(x > y) \Rightarrow F_1[y/m])$$

leading to:

$$\begin{array}{lll} (x>y \wedge z>x & \Rightarrow z \geq x) & \wedge \\ (x>y \wedge \neg(z>x) & \Rightarrow x \geq x) & \wedge \\ (\neg(x>y) \wedge z>y & \Rightarrow x \geq x) & \wedge \\ (\neg(x>y) \wedge \neg(z>y) & \Rightarrow y \geq x) \end{array}$$

Each of these 4 propositions is equivalent to **true**.

# Computing weakest precondition: iteration

$$wp(while \ b \ do \ S \ end \ , R)$$
 ?

#### Partial correctness

- → compute the WP assuming the loop will terminate
  - need to reason about an arbitrary number of iteration;
  - ▶ find a loop invariant / such that:
    - 1. I is preserved by the loop body:

$$I \wedge b \Rightarrow wp(S, I)$$

2. if and when the loop terminates, the post-condition holds:

$$I \wedge \neg b \Rightarrow R$$

Then

$$wp(while \ b \ do \ S \ end \ , R) = I$$

## Computing weakest precondition: iteration

$$wp(while \ b \ do \ S \ end \ , R)$$
?

#### Partial correctness

- → compute the WP assuming the loop will terminate
  - need to reason about an arbitrary number of iteration;
  - ▶ find a loop invariant / such that:
    - 1. I is preserved by the loop body:

$$I \wedge b \Rightarrow wp(S, I)$$

2. if and when the loop terminates, the post-condition holds:

$$I \wedge \neg b \Rightarrow R$$

Then

$$wp(while \ b \ do \ S \ end \ , R) = I$$

Total correctness: prove that the loop **do** terminate ... need to introduce a loop variant (i.e, a measure strictly decreasing at each iteration towards a limit).

# Example

## Prove the following program using WP

```
{x=n && n>0}
y := 1;
while x <> 1 do
    y := y*x;
    x := x-1;
end
{y=n! && n>0}
```

# Implementing WP computation?

- 1. WP computation:
  - based on the program structure (Abstract Syntax Tree)
  - ▶ leaves → root, following the instruction structure

## Implementing WP computation?

#### 1. WP computation:

- based on the program structure (Abstract Syntax Tree)
- ▶ leaves ~ root, following the instruction structure

#### Decidability problems:

- simplification and proof of formula undecidable in general, heuristics ...
- invariant generation undecidable in general, only specific invariant can be generated in some restricted conditions (i.e., inductive invariants)

## Accurracy vs Effectiveness trade-off

## Assertion language

| Theories          | Complexity   | Rappels                |
|-------------------|--------------|------------------------|
| First order logic | undecidable  | Interactive provers    |
| Booleans          | decidable    | state enumeration      |
| Intervals         | quasi linear | approximation          |
| Polyhedras        | exponential  | (better) approximation |

#### Tools:

Frama-C/WP (proofs), Frama-C/Value (intervals), Polyspace (polyhedras) . . .

## Static analysis ... what else?

Another (quite) standard technique for program validation: run tests ...!
But, not always easy to find "good" test inputs?

**Example:** which input allow to activate the vulnerability below?

```
int twice(int v) {
  return 2 * v;
void test(int x, int y) {
  int *t = (int *) malloc((x+10) * sizeof(int));
  z = twice(y);
  if (x == z) {
       assert (y \le x +10);
       assert (y > 0);
  t[y] = 0 ;
```

## Static analysis ... what else?

Another (quite) standard technique for program validation: run tests ...!

But, not always easy to find "good" test inputs?

**Example:** which input allow to activate the vulnerability below?

```
int twice(int v) {
  return 2 * v;
void test(int x, int y) {
  int *t = (int *) malloc((x+10) * sizeof(int));
  z = twice(v);
  if (x == z) {
       assert (y \le x +10);
       assert (y > 0);
  t[y] = 0 ;
```

A random search may not succeed ...

Can "static analysis like techniques" help?

```
⇒ An (old!) answer: symbolic execution ...
```

# Symbolic Excecution King, 76

## Objective:

run a program paths (as in test execution) but mapping variables to symbolic values (instead of concrete ones)

- each symbolic execution allows to reason on a set of concrete executions
   (all the ones following the same path in the CFG)
- allow to decide if a CFG path is feasable or not (and with wich input values)
- allow to explore a (finite!) set of paths in the CFG ...

# Symbolic Excecution King, 76

## Objective:

run a program paths (as in test execution) but mapping variables to symbolic values (instead of concrete ones)

- each symbolic execution allows to reason on a set of concrete executions
   (all the ones following the same path in the CFG)
- allow to decide if a CFG path is feasable or not (and with wich input values)
- allow to explore a (finite!) set of paths in the CFG ...

## Principle:

Associate a path predicate  $\varphi_{\sigma}$  to each path  $\sigma$  of the CFG:

```
(\exists \text{ a variable valuation } v \text{ s.t } v \models \varphi_{\sigma}) \Leftrightarrow (v \text{ covers } \sigma)
```

 $(\varphi_{\sigma}$  is the conjunction of all boolean conditions associated to  $\sigma$  in the CFG)

- solving  $\varphi_{\sigma}$  indicates if  $\sigma$  is feasible
- ▶ iteration over a finite subset of the CFG paths . . .

**In practice:** express  $\varphi_{\sigma}$  in a decidable logic fragment (e.g., SMT).

## More on Symbolic Execution ...

- application to the previous example
- what can we do if:
  - the path predicate cannot be expressed in a decidable logic ? (e.g., non linear operations)
  - the program contains conditions on non-reversible functions ? (e.g., if (x == hash(y)) ...)
  - part of the program code is not available (e.g., library functions, if (!strcmp(s1, s2) ...)
  - → combine symbolic and concrete executions: concolic execution (or Dynamic Symbolic Execution)

see that on Martin Vechev's slides . . .

## Conclusion about Dynamic Symbolic Execution

- an effective test generation and test execution technique
  - can be used on "arbitrary" code dynamic allocation, complex math. functions, binary code
  - trade-off between correctness, completeness and efficiency (ratio between symbolic and concrete values)
  - can be used in a coverage-oriented (bug finding) or path-oriented (vulnerability confirmation) way

⇒ widely used in security ... (and also for exploitability analysis)

## Conclusion about Dynamic Symbolic Execution

- an effective test generation and test execution technique
  - can be used on "arbitrary" code dynamic allocation, complex math. functions, binary code
  - trade-off between correctness, completeness and efficiency (ratio between symbolic and concrete values)
  - can be used in a coverage-oriented (bug finding) or path-oriented (vulnerability confirmation) way
  - $\Rightarrow$  widely used in security  $\dots$  (and also for exploitability analysis)
- numerous existing tools . . .

## Conclusion about Dynamic Symbolic Execution

- an effective test generation and test execution technique
  - can be used on "arbitrary" code dynamic allocation, complex math. functions, binary code
  - trade-off between correctness, completeness and efficiency (ratio between symbolic and concrete values)
  - can be used in a coverage-oriented (bug finding) or path-oriented (vulnerability confirmation) way
  - ⇒ widely used in security ... (and also for exploitability analysis)
- numerous existing tools . . .
- however, not all problems solved (yet ?), e.g.:
  - ► "path explosion" problem
  - can be rather slow (compared with *fuzzing*)