Ridge Regression

9 questions

1.	Which of the following is NOT a valid measure of
	overfitting?

) Su	ım of para	ameters (w	1+w2++wn)

Sum of squares of parameters ($w1^2 + w2^2 +$
+wn^2)

Range of parameters, i.e., difference between
maximum and minimum parameters

Sum of absolute values of parameters (w1 + w2 +
+ wn)

2. In ridge regression, choosing a large penalty strength λ tends to lead to a model with (choose all that apply):

Low bia

Ridge Regression | Coursera 2/17/16, 11:58 PM

3. Which of the following plots best characterize the trend of bias, variance, and generalization error (all plotted over λ)?

Ridge Regression | Coursera 2/17/16, 11:58 PM

- 4. In ridge regression using unnormalized features, if you double the value of a given feature (i.e., a specific column of the feature matrix), what happens to the estimated coefficients for every other feature? They:
 - Double
 - Half
 - Stay the same
 - Impossible to tell from the information provided
- 5. If we only have a small number of observations, K-fold cross validation provides a better estimate of the generalization error than the validation set method.
 - True
 - False

6. 10-fold cross validation is more computationally intensive than leave-one-out (LOO) cross validation.

True

False

7. Assume you have a training dataset consisting of N observations and D features. You use the closed-form solution to fit a multiple linear regression model using ridge regression. To choose the penalty strength λ , you run leave-one-out (LOO) cross validation searching over L values of λ . Let Cost(N,D) be the computational cost of running ridge regression with N data points and D features. Assume the prediction cost is negligible compared to the computational cost of training the model. Which of the following represents the computational cost of your LOO cross validation procedure?

L* N * Cost(N,D)

L* N * Cost(N-1,D)

L* D * Cost(N-1,D)

L* D * Cost(N,D)

L* Cost(N-1,D)

L* Cost(N,D)

8. Assume you have a training dataset consisting of 1 million observations. Suppose running the closed-form solution to fit a multiple linear regression model using ridge regression on this data takes 1 second. Suppose

2/17/16, 11:58 PM Ridge Regression | Coursera

> you want to choose the penalty strength λ by searching over 100 possible values. How long will it take to run leave-one-out (LOO) cross-validation for this selection task? About 3 hours About 3 days About 3 years About 3 decades Assume you have a training dataset consisting of 1 million observations. Suppose running the closed-form solution to fit a multiple linear regression model using ridge regression on this data takes 1 second. Suppose you want to choose the penalty strength λ by searching over 100 possible values. If you only want to spend about 1 hour to select λ , what value of k should you use for k-fold cross-validation? k=6 k=36 k=600 k=3600 2 questions

unanswered

Submit Quiz

9.

Ridge Regression | Coursera 2/17/16, 11:58 PM

