第六章接口技术

存储器接口

学习目标

- 了解常见存储芯片的读写时序
- 掌握简单存储器接口设计
- 掌握基于存储控制器的存储器接口设计

一、半导体存储芯片分类

- 读写操作功能
 - -只读型存储器(Read Only Memory, ROM)
 - ROM一般用于存放程序代码与固定数据
 - ROM, OTP ROM, EPROM, EEPROM
 - 随机存取存储器(Random Access Memory, RAM)。
 - RAM通常用于构成PC主存储器
 - SRAM与DRAM
- 读写操作时序: 异步存储器和同步存储器
- 数据传输的方式: 并行存储器与串行存储器

并行存储器的引脚

- 地址线
 - 地址线的多少可以表征存储器芯片的容量
- 数据线
 - 数据线的多少表征存储器的数据宽度
- 片选线
 - 片选线用于选中某一指定的存储器芯片
- 控制线
 - -控制数据的传输方向,是读数据还是写数据
- 如果是同步存储器则还有时钟信号线

典型存储芯片接口

• 异步SRAM存储器接口

工作模式	CE	WE	ŌĒ	I/O ₀ -I/O _m
保持(微功 耗)	1	X	X	高阻
读	0	1	0	数据输出
写	0	0	1	数据输入
输出无效	0	1	1	高阻

异步SRAM读操作时序

TCEDV - 读周期片选信号保持低电平到有效数据建立的时间

TAVDV - 读周期地址保持有效到有效数据建立的时间

TPACC - 页访问模式下的数据读周期

THZCE- 片选信号变为高电平到数据线变为高阻态的时间

Тнгое - 读信号变为高电平到数据线变为高阻态的时间

异步SRAM写操作时序

Twc - 写周期

Twp-写使能信号低电平脉冲的最短时间

Тирн - 写使能信号高电平的最短时间

Tuzwe - 写使能信号变为高电平到数据总线低阻态的时间

同步静态存储器 (SSRAM)

SSRAM读写操作时序_单个数据

当突发使能控制ADV为低电平时,A₁A₀可直接穿过突发控制逻辑电路,按外部给定的地址进行读/写,此时就是一般读写操作

SSRAM读写操作时序_突发模式

当突发使能控制ADV 为高电平时,地址寄存器不接收外部新地址而保持上一个时钟周期输入的地址,在CP下一个上升沿到来时,由突发计数器在上一个 A_1A_0 基础上,计数生成下一个地址的 A_1A_0 进行读/写。由于突发计数器是2位计数器,所以在ADV 保持高电平时,可以连续生成4个不同的地址

简单存储器接口

SRAM0: $\overline{\text{CS}} = \overline{\overline{\text{A31}} \cdot \overline{\text{A30}} \cdot \overline{\text{A29}} \cdot \overline{\text{A28}} + \overline{\text{BE0}}$

SRAM1: $\overline{\text{CS}} = \overline{\overline{\text{A31}} \cdot \overline{\text{A30}} \cdot \overline{\text{A29}} \cdot \overline{\text{A28}} + \overline{\text{BE1}}$

SRAM2: $\overline{\text{CS}} = \overline{\overline{\text{A31}} \cdot \overline{\text{A30}} \cdot \overline{\text{A29}} \cdot \overline{\text{A28}} + \overline{\text{BE2}}$

SRAM3: $\overline{\text{CS}} = \overline{\text{A31}} \cdot \overline{\text{A30}} \cdot \overline{\text{A29}} \cdot \overline{\text{A28}} + \overline{\text{BE3}}$

SRAM4: $\overline{\text{CS}} = \overline{\overline{\text{A31}} \cdot \overline{\text{A30}} \cdot \overline{\text{A29}} \cdot \text{A28} + \overline{\text{BE0}}$

SRAM5: $\overline{\text{CS}} = \overline{\overline{\text{A31}} \cdot \overline{\text{A30}} \cdot \overline{\text{A29}} \cdot \text{A28}} + \overline{\text{BE1}}$

SRAM6: $\overline{\text{CS}} = \overline{\text{A31}} \cdot \overline{\text{A30}} \cdot \overline{\text{A29}} \cdot \text{A28} + \overline{\text{BE2}}$

SRAM7: $\overline{\text{CS}} = \overline{\overline{\text{A31}} \cdot \overline{\text{A30}} \cdot \overline{\text{A29}} \cdot \text{A28} + \overline{\text{BE3}}$

由64MB建立一个128M*32位的存储器,支持字、半字、字节数据访问,要求地址映射范围为0x0000 0000~0x1FFF FFFF

存储控制器

• 将系统总线转换为适合访问各类存储器总线信号的接口设备

存储控制器结构

(bank),不同的存储模块通过存储控制器组成子存储系统(subsystem)。

Xilinx异步SRAM存储器接口信号

信号类型描述	存储控制器引脚名称	存储芯片引脚名称
数据线	MEM_DQ(((DN+1)*DW)-1:DN*DW)	D(DW-1:0)
地址线	MEM_A(HAW-AS-1:HAW-MAW-AS)	A(MAW-1:0)
芯片使能线(低电平有效)	MEM_CEN(BN)	CEN
读使能线(低电平有效)	MEM_OEN	OEN
写使能线(低电平有效)	MEM_WEN	WEN (有字节使能的芯片)
写使能线(低电平有效)	MEM_QWEN(DN*DW/8)	WEN (无字节使能的芯片)
字节使能线(低电平有效)	MEM_BEN((((DN+1)*DW/8)- 1):(DN*DW/8))	BEN(DW/8-1:0)

变量名称	具体含义	变量名称	具体含义
DN	存储块内芯片序号	HAW	存储控制器接口地址宽度
BN	子存储系统存储块序号	MW	存储块数据位宽
DW	存储芯片数据总线位宽	AS	地址偏移宽度= $\log_2(\frac{AU*MW}{DW}/8)$
AU	存储芯片可寻址最小数据 位宽	MAW	存储芯片地址总线宽度

• 异步SRAM芯片IDT71V416S为256k*16b的存储 芯片,支持字节访问。要求采用2片芯片通过 存储控制器构建一个32位的存储模块,试设计 存储控制器与存储芯片之间的接口。

变量名	值	含义
BN	0	一个存储块,序号为0
DN	0, 1	两个存储芯片,序号为0,1;其中0号为高位数据,1号为低位数据
MW	32	子存储系统数据位宽32位
DW	16	存储芯片数据位宽16位
MAW	18	存储芯片地址总线18位
AU	16	存储芯片字长16位
AS	2	地址偏移2位=log ₂ (32 * 16/16)/8
HAW	32	地址总线32位(AXI总线)

存储控制器与存储芯片之间的引线连接

设备号	引脚含义	存储控制器段引脚名称	存储芯片引脚名称
1	数据线	MEM_DQ(15:0)	I/O(15 : 0)
	地址线	MEM_A(19:2)	A(17:0)
	芯片使能	MEM_CEN(0)	CS
	读使能	MEM_OEN	OE
	写使能	MEM_WEN	WE
	字节使能	MEM_BEN(1:0)	BHE:BLE
0	数据线	MEM_DQ(31:16)	I/O(15:0)
	地址线	MEM_A(19:2)	A(17:0)
	芯片使能	MEM_CEN(0)	CS
	读使能	MEM_OEN	OE
	写使能	MEM_WEN	WE
	字节使能	MEM_BEN(3:2)	BHE:BLE

存储控制器与存储芯片IDT71V416S之间的接口

实验演示

• SRAM芯片

作业

• 7

