Exercices TVI

Exercice 1

- 1) Soit f la fonction définie sur \mathbb{R} par $f(x) = 2x^3 3x^2 36x + 200$.
 - a) Déterminer les limites de f aux bornes de son ensemble de définition.
 - **b)** Dresser le tableau de variations complet de la fonction f sur son ensemble de définition.
 - c) Montrer que l'équation f(x) = 0 admet une solution unique α sur \mathbb{R} .
 - **d**) Déterminer une valeur approchée de α au centième près.
 - e) En déduire le tableau de signes de f sur \mathbb{R} .
- **2)** Soit *g* la fonction définie par $g(x) = \sqrt{f(x)}$.
 - **a)** Expliquer pourquoi l'ensemble de définition de g est $[\alpha; +\infty[$.
 - **b**) Déterminer les limites de *g* aux bornes de son ensemble de définition.
 - c) Calculer g'(x).
 - d) Dresser le tableau de variations complet de la fonction g sur son ensemble de définition.
 - e) Montrer que l'équation g(x) = 20 admet une unique solution β sur son ensemble de définition et donner un encadrement de β à 10^{-2} près.

Exercice 2

Soit *g* la fonction définie sur \mathbb{R} par $g(x) = -3x^4 + 3x^3 + 1$.

- 1) Déterminer les limites de la fonction g aux bornes de son ensemble de définition.
- 2) Dresser le tableau de variations de la fonction g sur son ensemble de définition.
- 3) **a)** Démontrer que l'équation g(x) = 0 admet exactement deux solutions α_1 et α_2 sur \mathbb{R} .
 - b) Donner un encadrement d'amplitude 0, 1 de chaque solution.
- 4) Déterminer le signe de g(x) selon les valeurs de x.

Exercice 3

- 1) Soit f_1 la fonction définie sur \mathbb{R} par $f_1(x) = (2x^3 5)^4$. Calculer $f_1'(x)$.
- 2) Soit f_2 la fonction définie sur \mathbb{R} par $f_2(x) = \sqrt{2x^2 x + 1}$. Justifier que f_2 est bien définie sur \mathbb{R} puis calculer $f_2'(x)$.

Correction

Exercice 1

1) **a)**
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} 2x^3 = -\infty \text{ et } \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} 2x^3 = +\infty$$

b)
$$f'(x) = 6x^2 - 6x - 36$$

$\int (x) - 0x$							
x	$-\infty$		-2		3		+∞
f'(x)		+	0	-	0	+	
f(x)	-∞		, 244		119		, +∞

c) • f est continue sur \mathbb{R} car c'est une fonction polynôme.

• f est strictement croissante sur $]-\infty$; -2] (sur [-2; $+\infty[$, le minimum est positif (119) donc l'équation n'a pas de solution)

• f(-2) = 244 et $\lim_{x \to -\infty} f(x) = -\infty$ or $0 \in]-\infty$; 244]

Donc d'après le corollaire du théorème des valeurs intermédiaires, l'équation f(x) = 0 admet une unique solution α sur \mathbb{R} .

d) $\alpha \approx -5,35$

e)	x	$-\infty$		α	+∞
	f(x)		_	0	+

2) **a)** g est définie si f est positive donc, d'après la question précédente, g est définie sur $[\alpha; +\infty[$

b) g est la composée de la fonction f suivie de la fonction racine carrée.

 $\lim_{x \to +\infty} f(x) = +\infty \text{ et } \lim_{x \to +\infty} \sqrt{x} = +\infty \text{ donc } \lim_{x \to +\infty} g(x) = +\infty$ $f(\alpha) = 0 \text{ et } \sqrt{0} = 0 \text{ donc } g(\alpha) = 0$

c)
$$g'(x) = \frac{f'(x)}{2\sqrt{f(x)}} = \frac{6x^2 - 6x - 36}{2\sqrt{2x^3 - 3x^2x - 36x + 200}}$$

d)	x	α		-2		3		+∞
	g'(x)		+	0	_	0	+	
	g(x)	0		$\sqrt{244}$		$\sqrt{119}$		+∞

e) • g est continue sur $[\alpha; +\infty[$ comme composée d'une fonction racine et d'une fonction polynôme.

• g est strictement croissante sur [3; $+\infty$ [(sur [α ; 3], le maximum est $\sqrt{244}$ qui est inférieur à 20 donc l'équation n'a pas de solution)

• $g(3) = \sqrt{119}$ et $\lim_{x \to +\infty} g(x) = +\infty$ or $20 \in [\sqrt{119}; +\infty[$

Donc d'après le corollaire du théorème des valeurs intermédiaires, l'équation g(x) = 20 admet une unique solution β sur $[\alpha; +\infty[$ et $6,56 < \beta < 6,57$

Exercice 2

1) $\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} (-3x^4) = -\infty$ et $\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} (-3x^4) = -\infty$.

2) $g'(x) = -12x^3 + 9x^2 = x^2(-12x + 9)$

X	$-\infty$		0		$\frac{3}{4}$		+∞
x^2		+	0	+		+	
-12x+9		+		+	0	-	
g'(x)		+	0	+	0	_	
g(x)			1		$\frac{337}{256} \approx 1.31$	I	· -∞

3) a) • Sur
$$\left] -\infty; \frac{3}{4} \right]$$
:

- g est continue car dérivable
- g est strictement croissante

$$-\frac{\lim_{x \to -\infty} g(x) = -\infty}{g\left(\frac{3}{4}\right) \approx 1,31}$$
 or $0 \in]-\infty$; 1,31]

Donc d'après le corollaire du TVI, g(x) = 0 admet une unique solution α_1 sur $\left[-\infty; \frac{3}{4}\right]$

• Sur
$$\left[\frac{3}{4}; +\infty\right]$$
:

- g est continue car dérivable
- g est strictement décroissante

$$-\frac{\lim_{x \to +\infty} g(x) = -\infty}{g\left(\frac{3}{4}\right) \approx 1,31}$$
 or $0 \in]-\infty$; 1,31]

Donc d'après le corollaire du TVI, g(x) = 0 admet une unique solution α_2 sur $\left[\frac{3}{4} ; +\infty \right]$

b)
$$-0.6 < \alpha_1 < -0.5 \text{ et } 1, 1 < \alpha_2 < 1.2$$

4)	x	-∞	α_1		α_2		+∞
	g(x)	_	0	+	0	_	

Exercice 3

1)
$$f_1'(x) = 4 \times (2x^3 - 5)^3 \times (6x^2) = 24x^2 (2x^3 - 5)^3$$

2)
$$f_2$$
 est bien définie sur \mathbb{R} car $2x^2 - x + 1$ est toujours positif ($\Delta = -7$ donc $2x^2 - x + 1$ est toujours positive (signe de $a = 2$))
$$f_2'(x) = \frac{4x - 1}{2\sqrt{2x^2 - x + 1}}$$