Plotting all the results

Amy Pitts

2/19/2022

Jimmy needs to give me the right esitamte of effect right now here is what I am using

```
smaller_true_ATE <- 0.15
bigger_true_ATE <- 0.3

pos_beta <- 1
neg_beta <- -1</pre>
```

Loading Data

Compiling Binary Data

Get all the odd numbers $\beta_1 = 0.767$

```
binary_final_odd <-
  binary scen 1 %>%
   mutate(n_sample = 1000, beta1 = 0.767, desired_prop = 0.1) %>%
  bind_rows(binary_scen_3 %>%
              mutate(n_sample = 1000, beta1 = 0.767, desired_prop = 0.2)) %>%
  bind_rows(binary_scen_5 %>%
              mutate(n_sample = 1000, beta1 = 0.767, desired_prop = 0.3)) %>%
  bind_rows(binary_scen_13 %>%
              mutate(n_sample = 100, beta1 = 0.767, desired_prop = 0.1)) %>%
  bind_rows(binary_scen_15 %>%
              mutate(n_sample = 100, beta1 = 0.767, desired_prop = 0.2)) %>%
  bind_rows(binary_scen_17 %>%
              mutate(n_sample = 100, beta1 = 0.767, desired_prop = 0.3))
binary_final_odd <- binary_final_odd %>%
  mutate(
   ATE_bias = ATE - smaller_true_ATE,
   empirical_bias = empirical_mean - smaller_true_ATE,
   boot_type = ifelse(boot_type == 0, "Simple", "Complex")
rm(binary_scen_1, binary_scen_3, binary_scen_5,
   binary_scen_13, binary_scen_15, binary_scen_17)
```

Get all the even numbers $\beta_1 = 1.386$

```
binary_final_even <-
binary_scen_2 %>%
  mutate(n_sample = 1000, beta1 = 1.386, desired_prop = 0.1) %>%
```

```
bind_rows(binary_scen_4 %>%
              mutate(n_sample = 1000, beta1 = 1.386, desired_prop = 0.2)) %>%
  bind_rows(binary_scen_6 %>%
              mutate(n_sample = 1000, beta1 = 1.386, desired_prop = 0.3)) %>%
  bind_rows(binary_scen_14 %>%
              mutate(n_sample = 100, beta1 = 1.386, desired_prop = 0.1)) %>%
  bind_rows(binary_scen_16 %>%
              mutate(n sample = 100, beta1 = 1.386, desired prop = 0.2)) %>%
  bind rows(binary scen 18 %>%
              mutate(n_sample = 100, beta1 = 1.386, desired_prop = 0.3))
binary_final_even <- binary_final_even %>%
  mutate(
   ATE_bias = ATE - bigger_true_ATE,
   empirical_bias = empirical_mean - bigger_true_ATE,
   boot_type = ifelse(boot_type == 0, "Simple", "Complex")
  )
rm(binary_scen_2, binary_scen_4, binary_scen_6,
   binary_scen_14, binary_scen_16, binary_scen_18)
binary_final <- binary_final_even %>% bind_rows(binary_final_odd)
```

Compiling Continuous Data

```
continuous final odd <-
  cont df scen 1 %>%
   mutate(n_sample = 1000, beta1 = pos_beta, desired_prop = 0.1) %>%
  bind_rows(cont_df_scen_3 %>%
              mutate(n_sample = 1000, beta1 = pos_beta, desired_prop = 0.2)) %>%
  bind_rows(cont_df_scen_5 %>%
              mutate(n_sample = 1000, beta1 = pos_beta, desired_prop = 0.3)) %>%
  bind_rows(cont_df_scen_13 %>%
              mutate(n_sample = 100, beta1 = pos_beta, desired_prop = 0.1)) %>%
  bind_rows(cont_df_scen_15 %>%
              mutate(n_sample = 100, beta1 = pos_beta, desired_prop = 0.2)) %>%
  bind rows(cont df scen 17 %>%
              mutate(n_sample = 100, beta1 = pos_beta, desired_prop = 0.3)) %>%
  mutate(
   ATE_bias = ATE - pos_beta,
   empirical_bias = empirical_mean - pos_beta,
   boot_type = ifelse(boot_type == 0, "Simple", "Complex")
  )
rm(cont_df_scen_1, cont_df_scen_3, cont_df_scen_5,
   cont_df_scen_13, cont_df_scen_15, cont_df_scen_17)
continuous final even <-
  cont_df_scen_2 %>%
   mutate(n_sample = 1000, beta1 = neg_beta, desired_prop = 0.1) %>%
  bind_rows(cont_df_scen_4 %>%
```

```
mutate(n_sample = 1000, beta1 = neg_beta, desired_prop = 0.2)) %>%
  bind_rows(cont_df_scen_6 %>%
              mutate(n_sample = 1000, beta1 = neg_beta, desired_prop = 0.3)) %>%
  bind_rows(cont_df_scen_14 %>%
              mutate(n_sample = 100, beta1 = neg_beta, desired_prop = 0.1)) %>%
  bind_rows(cont_df_scen_16 %>%
              mutate(n_sample = 100, beta1 = neg_beta, desired_prop = 0.2)) %>%
  bind_rows(cont_df_scen_18 %>%
              mutate(n_sample = 100, beta1 = neg_beta, desired_prop = 0.3)) %>%
  mutate(
    ATE_bias = ATE - neg_beta,
    empirical_bias = empirical_mean - neg_beta,
    boot_type = ifelse(boot_type == 0, "Simple", "Complex")
rm(cont_df_scen_2, cont_df_scen_4, cont_df_scen_6,
   cont_df_scen_14, cont_df_scen_16, cont_df_scen_18)
continuous_final <-</pre>
  continuous_final_odd %>%
  bind_rows(continuous_final_even)
rm(continuous_final_even, continuous_final_odd)
```

Binary Coverage Rates

`summarise()` regrouping output by 'new_name', 'treat_effect' (override with `.groups` argument)
name the scenarios by sample size and treat prop and facet by the treatment effect

Binary Coverage Rates by Parameters of Interest

Continuous Coverage Rates

`summarise()` regrouping output by 'new_name', 'treat_effect' (override with `.groups` argument)

Continuous Coverage Rates by Parameters of Interest

Binary Simulation Bias and Standard Error CI

Continuous Simulation Bias and Standard Error CI

Standard Error

Binary Simulation Standard Error

Continuous Simulation Standard Error

