2440086155_FinalExam

Thursday, July 14, 2022.

Student Name: SHAREN IVANA

Student ID: 2440086155

Video Link : https://binusianorg-

<u>my.sharepoint.com/personal/sharen_ivana_binus_ac_id/_layouts/15/guestaccess.aspx?</u>
guestaccesstoken=7LKliwLRPl0sfyTDxggndulNAV19WXZZ%2FreXerKU3XM%3D&folderid=2_05
c4aed8786de4eb8a90e0ff708c7df2f&rev=1&e=J9cMyN

Dataset Link

Dataset Description

a record of the crimes that have occurred in Chicago

- Domestic: Indicates whether the incident was domestic-related as defined by the Illinois Domestic Violence Act.
- Beat: Indicates the beat where the incident occurred. A beat is the smallest police geographic area – each beat has a dedicated police beat car. Three to five beats make up a police sector, and three sectors make up a police district. The Chicago Police Department has 22 police districts.
- District: Indicates the police district where the incident occurred
- Ward: The ward(City Council District) where the incident occurred
- Community Are: Indicates the community area where the incident occurred. Chicago has 77 community areas.
- FBI Code: Indicates the crime classification as outlined in the FBI's National Incident-Based Reporting System (NIBRS).
- Date: A given month (1: January, 12: December); a given hour (1 to 23)

NOTES:

- You are required to build 'the BEST and suitable' supervised machine learning model for the given dataset. The model may be used for the effective deployment of police officers in a city across several districts regarding the degree to which each area is prone to crime at a particular hour, day, and month.
- Build multiple potentially suitable machine learning models (at least 2 different machine learning models).
- You have to evaluate the models using at least 2 performance metrics before choose what you assume to be the `"best"` model for the given dataset.

HINT:

- 1. You need to generate the target feature by **performing feature engineering on Date and**Primary Type **features** to group crimes together
- 2. Level of Crime Rate:

• 0-14: Low Crime Rate

• 15-33: Medium Crime Rate

34 and above : High Crime Rate

You may need to check the data proportion in each class (imbalance/not)

▼ 1. Load the neccessary Libraries and Data (2 pts.)

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import warnings
import statsmodels.api as sm
import statsmodels.formula.api as smf
import sklearn
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make classification
from sklearn.model_selection import train_test_split, cross_val_predict
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OneHotEncoder
from math import remainder
from sklearn import svm, datasets
from sklearn.model_selection import GridSearchCV
from sklearn.linear model import LogisticRegression
from sklearn.model selection import KFold, cross val score
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import LabelEncoder
from sklearn.datasets import load breast cancer
from sklearn.neighbors import KNeighborsClassifier as KNN
from sklearn.metrics import classification report
from sklearn import metrics
from sklearn.metrics import precision score, recall score, confusion matrix, classification
from sklearn.ensemble import RandomForestClassifier
```

/usr/local/lib/python3.7/dist-packages/statsmodels/tools/ testing.py:19: FutureWarnir

import pandas.util.testing as tm

•

→ 2. Data Exploration (15 pts.)

Import dataset Sharen_Odd

```
from google.colab import drive
drive.mount("/content/gdrive")
Sharen_Odd = pd.read_csv('/content/gdrive/My Drive/Dataset UAS ML/OddID.csv')
Sharen_Odd
```

Drive already mounted at /content/gdrive; to attempt to forcibly remount, call drive

menampilkan 10 data teratas dari dataset Sharen_Odd

Sharen_Odd.head(10)

	Unnamed:	ID	Case Number	Date	Block	IUCR	Primary Type	Descripti
0	1024161	11254362	JB183495	03/12/2018 07:32:00 PM	017XX W CHICAGO AVE	0560	ASSAULT	SIMP
1	428801	10540177	HZ285387	05/29/2016 11:28:00 PM	027XX S STATE ST	0454	BATTERY	AGG F Hani No/M Injuf
2	1099812	11624449	JC187320	03/16/2019 02:10:00 AM	101XX S PRINCETON AVE	031A	ROBBERY	ARME HANDGI
3	595228	11109388	JA459177	10/05/2017 11:00:00 AM	019XX W OGDEN AVE	0810	THEFT	OVER \$5
4	1033611	11241624	JB166623	02/26/2018 07:51:00 PM	067XX S COTTAGE GROVE AVE	1330	CRIMINAL TRESPASS	TO LAN
5	954838	11349522	JB309088	06/16/2018 07:00:00 AM	063XX N WAYNE AVE	0810	THEFT	OVER \$5
6	319779	10716523	HZ474727	10/14/2016 02:00:00 PM	042XX W 31ST ST	0820	THEFT	\$500 AN UNDE
7	886493	11441117	JB428604	09/09/2018 02:10:00 PM	0000X S STATE ST	0860	THEFT	RET/ THE
8	918820	11398123	JB372965	07/31/2018 01:00:00 PM	006XX E GRAND AVE	0484	BATTERY	PRO EN HANI NO/M INJUI
9	17633	10335273	HY526308	12/05/2015 08:10:00 PM	027XX N MOODY AVE	0486	BATTERY	DOMEST BATTEF SIMP

10 rows × 23 columns

Menampilkan 10 data terbawah dari dataset Sharen_Odd

Sharen_Odd.tail(10)

	Unnamed:	ID	Case Number	Date	Block	IUCR	Primary Type	I
1031734	998679	11291299	JB231971	04/21/2018 01:12:00 AM	058XX S FAIRFIELD AVE	1320	CRIMINAL DAMAGE	
1031735	95349	10205821	HY392671	08/22/2015 09:20:00 AM	029XX W 63RD ST	0820	THEFT	
1031736	205306	10016465	HY205929	03/31/2015 10:00:00 PM	037XX W DICKENS AVE	0820	THEFT	
1031737	249662	9936233	HY124991	01/22/2015 06:25:00 PM	009XX W NORTH AVE	0860	THEFT	RE
1031738	231171	9969662	HY159284	02/21/2015 06:15:00 PM	040XX W MADISON ST	031A	ROBBERY	
1031739	540482	11182652	JA556030	12/19/2017 08:10:00 PM	076XX S DREXEL AVE	0486	BATTERY	
1031740	750276	10880463	JA189513	03/16/2017 01:00:00 PM	028XX N MOBILE AVE	0486	BATTERY	
1031741	122985	10157277	HY346558	07/18/2015 09:30:00 PM	072XX S LOWE AVE	0620	BURGLARY	
1031742	929773	11383727	JB354262	07/17/2018 10:56:00 PM	063XX S PEORIA DR	2021	NARCOTICS	B/
1031743	337187	10689428	HZ443522	09/21/2016 01:10:00 PM	029XX N BROADWAY	1330	CRIMINAL TRESPASS	

10 rows × 23 columns

Menampilkan shape dari dataset Sharen_Odd

Sharen_Odd.shape

(1031744, 23)

Sharen_Odd.shape berfungsi untuk menjelaskan bentuk array saat ini. Numpy akan memberi tahu bahwa dataset Sharen_Odd kita terdiri dari 1031744 baris dan 23 kolom.

Menampilkan info dari dataset Sharen_Odd

Sharen Odd.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1031744 entries, 0 to 1031743 Data columns (total 23 columns): # Column Non-Null Count Dtype --- ----_____ Unnamed: 0 1031744 non-null int64 0 1 ID 1031744 non-null int64
2 Case Number 1031744 non-null object
3 Date 1031744 non-null object
4 Block 1031744 non-null object
5 IUCR 1031744 non-null object
6 Primary Type 1031744 non-null object
7 Description 1031744 non-null object Location Description 1028477 non-null object 1031744 non-null bool 9 Arrest 9 Arrest 1031744 non-null bool
11 Beat 1031744 non-null int64
12 District 1031743 non-null float64
13 Ward 1031738 non-null float64
14 Community Area 1031742 non-null float64
15 FBI Code 1031744 non-null object
16 X Coordinate 1019181 non-null float64
17 Y Coordinate 1019181 non-null float64
18 Year 1031744 non-null int64
19 Updated On 1031744 non-null object
20 Latitude 1019181 non-null float64 1019181 non-null float64 21 Longitude 1019181 non-null object 22 Location dtypes: bool(2), float64(7), int64(4), object(10) memory usage: 167.3+ MB

Sharen_Odd.dtypes

Unnamed: 0	int64		
ID	int64		
Case Number	object		
Date	object		
Block	object		
IUCR	object		
Primary Type	object		
Description	object		
Location Description	object		
Arrest	bool		
Domestic	bool		
Beat	int64		
District	float64		

Ward	float64			
Community Area	float64			
FBI Code	object			
X Coordinate	float64			
Y Coordinate	float64			
Year	int64			
Updated On	object			
Latitude	float64			
Longitude	float64			
Location	object			
dtype: object				

Dari hasil diatas, diketahui terdapat 2 variabel dengan tipe data BOOL, 7 variabel dengan tipe data FLOAT, 4 variabel dengan tipe data INT, dan 10 variabel dengan tipe data OBJECT.

Menampilkan deskripsi data dari dataset Sharen_Odd

Sharen_Odd.describe()

	Unnamed: 0	ID	Beat	District	Ward	Commun: Aı
count	1.031744e+06	1.031744e+06	1.031744e+06	1.031743e+06	1.031738e+06	1.031742e-
mean	5.734502e+05	1.081694e+07	1.144468e+03	1.121607e+01	2.316172e+01	3.686135e-
std	3.308943e+05	7.250323e+05	6.942233e+02	6.934780e+00	1.398308e+01	2.141199e-
min	0.000000e+00	2.171400e+04	1.110000e+02	1.000000e+00	1.000000e+00	0.000000e-
25%	2.869228e+05	1.040797e+07	6.120000e+02	6.000000e+00	1.000000e+01	2.300000e-
50%	5.737245e+05	1.087063e+07	1.031000e+03	1.000000e+01	2.400000e+01	3.200000e-
75%	8.598735e+05	1.127863e+07	1.713000e+03	1.700000e+01	3.400000e+01	5.400000e-
max	1.146380e+06	1.168250e+07	2.535000e+03	3.100000e+01	5.000000e+01	7.700000e-

Menampilkan urutan menurun sehingga elemen pertama adalah elemen yang paling sering muncul

Sharen Odd.value counts()

setiap kolomnya.

Unnamed: 0 ID Case Number Date Block

```
IUCR Primary TypeDescriptionLocationDescriptionArrest Domestic Beat District Ward Community Area
FBI Code X Coordinate Y Coordinate Year Updated On
Longitude Location
         10365064 HZ100370
                             12/31/2015 11:59:00 PM 075XX S EMERALD AVE
1320 CRIMINAL DAMAGE TO VEHICLE
False False 621 6.0 17.0 68.0
                                               14
                                                        1172605.0
1854931.0 2015 02/10/2018 03:50:01 PM 41.757367 -87.642993 (41.757366519,
-87.642992854) 1
       10855197 JA160258 02/20/2017 12:12:00 AM 0000X W JACKSON BLVD
0460 BATTERY
                      SIMPLE
             113 1.0 42.0 32.0
False False
                                                08B
                                                        1176349.0
1898987.0 2017 02/10/2018 03:50:01 PM 41.878177 -87.627946 (41.878176784,
-87.627946266)
              1
         10855188 JA160281 02/20/2017 12:54:00 AM 018XX S LAWNDALE AVE
                      DOMESTIC BATTERY SIMPLE
0486 BATTERY
                                                      APARTMENT
              1014 10.0 24.0 29.0
                                               08B
           2017 02/10/2018 03:50:01 PM 41.855838 -87.717588 (41.855838254,
1890659.0
-87.717588081)
         10855221 JA160287 02/20/2017 12:45:00 AM 038XX W LEXINGTON ST
1310 CRIMINAL DAMAGE TO PROPERTY
                                                      APARTMENT
False False 1133 11.0 24.0 26.0
                                                14
                                                        1150920.0
1896423.0 2017 02/10/2018 03:50:01 PM 41.871676 -87.721383 (41.87167643,
-87.721383082)
               1
765854 10855163 JA160277 02/20/2017 12:40:00 AM 063XX S MOZART ST
                     DOMESTIC BATTERY SIMPLE
0486 BATTERY
                                                      APARTMENT
False True 823 8.0 15.0 66.0
                                               08B
                                                    1158473.0
1862386.0
           2017 02/10/2018 03:50:01 PM 41.778124 -87.694582 (41.778123668,
-87.694581962) 1
          10609562 HZ362203 07/24/2016 11:33:00 AM 013XX E 75TH ST
384680
502P OTHER OFFENSE FALSE/STOLEN/ALTERED TRP
                                                      STREET
    False 411 4.0 5.0 43.0
                                                26
1855535.0 2016 02/10/2018 03:50:01 PM 41.758709 -87.592403 (41.758708964,
-87.592402969)
             1
384681 10609549 HZ362184
                            07/24/2016 11:33:00 AM 019XX N KEELER AVE
0560 ASSAULT
                      SIMPLE
                                                      RESIDENCE
False True 2534 25.0 30.0 20.0
                                                08A
                                                       1148077.0
1912561.0
            2016 02/10/2018 03:50:01 PM 41.916016 -87.731405 (41.916015982,
-87.731405299) 1
         10609621 HZ362237 07/24/2016 11:30:00 AM 069XX S HARPER AVE
                     SIMPLE
0560 ASSAULT
CHURCH/SYNAGOGUE/PLACE OF WORSHIP False False 332
                                                 3.0
                 1859342.0 2016 02/10/2018 03:50:01 PM 41.769128
08A 1187581.0
-87.587969 (41.769127812, -87.587968505)
                                     1
384683
          10613509 HZ366376 07/24/2016 11:30:00 AM 060XX W GRAND AVE
               UNLAWFUL ENTRY
0620 BURGLARY
                                                      NURSING
HOME/RETIREMENT HOME
                      False False
                                      2512 25.0
                                                    29.0 19.0
       1135581.0 1914244.0 2016 02/10/2018 03:50:01 PM 41.920866
-87.777275 (41.92086582, -87.777275445)
                                      1
          11583562 JC137815 01/01/2019 12:00:00 AM 045XX N GREENVIEW AVE
1153 DECEPTIVE PRACTICE FINANCIAL IDENTITY THEFT OVER $ 300 OTHER
False False 1912 19.0 47.0 3.0
                                               11
                                                        1165260.0
1930188.0
           2019 02/06/2019 04:03:01 PM 41.964037 -87.667773 (41.964037099,
-87.667773171)
Langth 1016027 dtung intel
```

Melihat kolom-kolom pada dataset Sharen_Odd

```
Sharen_Odd.columns
```

Mengubah spasi menjadi underscore untuk memudahkan pengerjaan

Melihat index pada dataset Sharen_Odd

```
Sharen_Odd.index
RangeIndex(start=0, stop=1031744, step=1)
```

Mengecek missing value pada dataset Sharen_Odd

Sharen Odd.isna().sum()

Unnamed:_0	0
ID	0
Case_Number	0
Date	0
Block	0
IUCR	0
Primary_Type	0
Description	0
Location_Description	3267
Arrest	0
Domestic	0
Beat	0
District	1
Ward	6
Community_Area	2
FBI_Code	0
X_Coordinate	12563
Y_Coordinate	12563
Year	0

Updated_On	0
Latitude	12563
Longitude	12563
Location	12563

dtype: int64

Dari hasil diatas, terdapat missing value pada kolom Location Description, X Coordinate, Y Coordinate, Latitude, Longitude, dan Location.

Mem-plot histogram dari dataset Sharen_Odd

```
Sharen_Odd.hist(bins = 20, figsize = (20,25), color = 'red');
```


Melihat korelasi antar variabel pada dataset Sharen_Odd

120000

Sharen_Odd.corr(method ='kendall')

/usr/local/lib/python3.7/dist-packages/scipy/stats/stats.py:4812: RuntimeWarning: ove (2 * xtie * ytie) / m + x0 * y0 / (9 * m * (size - 2)))

	Unnamed:_0	ID	Arrest	Domestic	Beat	District	
Unnamed:_0	1.000000	0.559896	-0.031282	0.007419	-0.002323	-0.002307	0.00
ID	0.559896	1.000000	-0.047354	0.003247	-0.000905	-0.000821	0.01
Arrest	-0.031282	-0.047354	1.000000	-0.035033	-0.021422	-0.022149	-0.01
Domestic	0.007419	0.003247	-0.035033	1.000000	-0.047870	-0.049191	-0.06

Korelasi suatu variabel dengan dirinya sendiri adalah 1. Oleh karena itu semua nilai diagonalnya adalah 1.000000.

U.U. 626166.U 626266.U 646600.U- 414010.U- 620210.U 086800.U

Membuat data 2D 15x15 dari modul NumPy.

```
X Coordinate 0.009591 0.011623 -0.026610 0.010511 -0.408871 -0.437463 -0.30 plt.figure(figsize = (15,15))
```

```
annot = True
linewidths = 2
linecolor = "yellow"
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f71a2b92990>

Fungsi .corr() digunakan untuk menemukan korelasi berpasangan dari semua kolom dalam kerangka data. Nilai na apa pun secara otomatis dikecualikan. Untuk kolom tipe data non-numerik apa pun dalam kerangka data, kolom ini diabaikan.

Menampilkan beberapa scatterplot pada variabel dalam dataset Sharen_Odd

le6

Scatterplot digunakan dengan beberapa pengelompokan semantik yang dapat membantu untuk memahami dengan baik dalam grafik dengan mem-plot grafik dua dimensi.Semua parameter kontrol semantik visual yang digunakan untuk mengidentifikasi himpunan bagian yang berbeda.

Menampilkan BLOXPOT

```
print(Sharen_Odd.boxplot(column = 'ID'))
```

AxesSubplot(0.125,0.125;0.775x0.755)

print(Sharen_Odd.boxplot(column = 'Beat'))

AxesSubplot(0.125,0.125;0.775x0.755)

print(Sharen_Odd.boxplot(column = 'Year'))

AxesSubplot(0.125,0.125;0.775x0.755)

Bloxpot adalah representasi visual dari ringkasan statistik dari kumpulan data yang diberikan. Bloxpot secara statistik merepresentasikan distribusi data melalui lima dimensi utama, yaitu nilai minimum, nilai maksimum, kuartil pertama, median (kuartil kedua), kuartil ketiga.

→ 3. Data Preparation (30 pts.)

Dari hasil diatas, terdapat missing value pada kolom Location Description, X Coordinate, Y Coordinate, Latitude, Longitude, dan Location.

Men-drop kolom yang memiliki missing value

Sharen_Odd.dropna()

Unnamed: 0 ID Case Number Date Block IUCR Primary Ty

Data diatas sudah tidak memiliki missing value. Selanjutnya kita men-drop data yang terduplikat.

Menghapus data yang terduplikat pada dataset Sharen_Odd

72777 OI UZIEZICU

Sharen_Odd.drop_duplicates()

	Unnamed:_0	ID	Case_Number	Date	Block	IUCR	Primary_Ty
0	1024161	11254362	JB183495	03/12/2018 07:32:00 PM	017XX W CHICAGO AVE	0560	ASSAU
1	428801	10540177	HZ285387	05/29/2016 11:28:00 PM	027XX S STATE ST	0454	BATTEF
2	1099812	11624449	JC187320	03/16/2019 02:10:00 AM	101XX S PRINCETON AVE	031A	ROBBEF
3	595228	11109388	JA459177	10/05/2017 11:00:00 AM	019XX W OGDEN AVE	0810	THE
4	1033611	11241624	JB166623	02/26/2018 07:51:00 PM	067XX S COTTAGE GROVE AVE	1330	CRIMIN. TRESPAS
1031739	540482	11182652	JA556030	12/19/2017 08:10:00 PM	076XX S DREXEL AVE	0486	BATTEF
1031740	750276	10880463	JA189513	03/16/2017 01:00:00 PM	028XX N MOBILE AVE	0486	BATTEF
1031741	122985	10157277	HY346558	07/18/2015 09:30:00 PM	072XX S LOWE AVE	0620	BURGLAF
1031742	929773	11383727	JB354262	07/17/2018 10:56:00 PM	063XX S PEORIA DR	2021	NARCOTIC
1031743	337187	10689428	HZ443522	09/21/2016 01:10:00 PM	029XX N BROADWAY	1330	CRIMIN, TRESPAS

1031744 rows × 23 columns

Karena sudah tidak ada lagi data yang missing value ataupun terduplikat, kita kembali mengecek bentuk dari dataset Sharen_Odd.

```
Sharen_Odd.shape
(1031744, 23)
```

Dari hasil diatas, karena Shape nya sama yaitu 1031744 baris dan 23 kolom, maka dapat disimpulkan sudah tidak ada lagi data yang duplikat.

Numerical Columns

Dari hasil diatas:

Numerical columns:

```
Index(['Unnamed:_0', 'ID', 'Beat', 'District', 'Ward', 'Community_Area', 'X_Coordinate', 'Y_Coordinate', 'Year', 'Latitude', 'Longitude']
```

```
dtype='object')
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: DeprecationWarning: `
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/re
"""Entry point for launching an IPython kernel.
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: DeprecationWarning: `
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/re
"""Entry point for launching an IPython kernel.
```

Dari hasil diatas:

Categorical columns:

Index(['Case_Number', 'Date', 'Block', 'IUCR', 'Primary_Type', 'Description', 'Location_Description', 'Arrest', 'Domestic', 'FBI_Code', 'Updated_On', 'Location']

▼ FEATURE ENGINEERING

Di bagian HINT soal diminta untuk generate the target by performing engineering on 'DATE' and 'PRIMARY TYPE'. Namun, kedua fitur tersebut memiliki datatype OBJECT yang merupakan categorical, sehingga harus di ubah menjadi numerical terlebih dahulu.

Pertama, mengubah datatype kolom 'Date' dari OBJECT menjadi datetime64[ns]

```
Sharen_Odd['Date'] = pd.to_datetime(Sharen_Odd['Date'])
Sharen_Odd['Year'] = Sharen_Odd['Date'].dt.year
Sharen Odd['Month'] = Sharen Odd['Date'].dt.month
Sharen_Odd['Day'] = Sharen_Odd['Date'].dt.day
Sharen_Odd['Hour'] = Sharen_Odd['Date'].dt.hour
print(Sharen Odd.Date)
    0
               2018-03-12 19:32:00
    1
               2016-05-29 23:28:00
     2
               2019-03-16 02:10:00
     3
               2017-10-05 11:00:00
               2018-02-26 19:51:00
    1031739
              2017-12-19 20:10:00
     1031740 2017-03-16 13:00:00
    1031741
               2015-07-18 21:30:00
     1031742
               2018-07-17 22:56:00
     1031743
               2016-09-21 13:10:00
    Name: Date, Length: 1031744, dtype: datetime64[ns]
```

Kedua, mengubah datatype kolom 'Primary_Type' dari OBJECT menjadi INT

```
Sharen_Odd['Primary_Type'] = pd.factorize(Sharen_Odd['Primary_Type'])[0]
```

print(Sharen_Odd.Primary_Type)

```
0
1
            1
2
           2
3
           3
4
           4
1031739
           1
1031740
           1
1031741
        14
1031742
           9
1031743
           4
```

Name: Primary_Type, Length: 1031744, dtype: int64

Data types terbaru dari yang sudah di update

Sharen_Odd.dtypes

Unnamed:_0	int64
ID	int64
Case_Number	object
Date	datetime64[ns]
Block	object
IUCR	object
Primary_Type	int64
Description	object
Location_Description	object
Arrest	bool
Domestic	bool
Beat	int64
District	float64
Ward	float64
Community_Area	float64
FBI_Code	object
X_Coordinate	float64
Y_Coordinate	float64
Year	int64
Updated_On	object
Latitude	float64
Longitude	float64
Location	object
Month	int64
Day	int64
Hour	int64
dtype: object	

Dari hasil diatas, dapat dilihat variabel Date sudah berubah datatype menadi Datetime dan variabel Primary_Type sudah berubah datatype menjadi Integer.

Data Visualization

Visualiasi Data kolom 'Date'

Visualiasi Data kolom 'Primary_Type'

Sharen_Odd['Primary_Type'].value_counts()[:15].sort_values(ascending=True).plot(kind='barh title='Prim color='cya

<matplotlib.axes._subplots.AxesSubplot at 0x7f71a2c00ad0>

Visualisasi scatterplot kolom 'Date' dan 'Primary_Type'

```
plt.figure(figsize=(10,6))
ax = sns.scatterplot(x='Date',y='Primary_Type', data=Sharen_Odd)
```


Masing-masing teknik dikelompokkan berdasarkan kolom yang mereka butuhkan untuk diterapkan menggunakan **ColumnTransformer**. Idealnya, ini dijalankan dalam pipeline tepat sebelum model dilatih. Namun, untuk memahami seperti apa tampilan data, biasanya data akan diubah menjadi variabel sementara.

```
PreprocessorCategoricalCol = ColumnTransformer(transformers=[('categorical',
                                                               Categorical_transform,
                                                               CategColumns)],
                                                               remainder="passthrough")
PreprocessorAllCol = ColumnTransformer(transformers=[('categorical',
                                                               Categorical_transform,
                                                               CategColumns),
                                                      ('Numerical',
                                                               Numerical_transform,
                                                               NumColumns)],
                                                               remainder="passthrough")
Sharen Odd temp 1 = PreprocessorCategoricalCol.fit transform(Sharen Odd)
print("Data seleah di transform :")
print(Sharen_Odd_temp_1)
Sharen Odd temp 2 = PreprocessorAllCol.fit transform(Sharen Odd)
print("Data seleah di transform :")
print(Sharen_Odd_temp_2)
       (1031743, 1841065)
                             2016.0
       (1031743, 1841066)
                             41.935361214
       (1031743, 1841067)
                             -87.644241031
       (1031743, 1841068)
                             9.0
       (1031743, 1841069)
                             21.0
       (1031743, 1841070)
                             13.0
     Data seleah di transform :
       (0, 757539)
       (0, 1371188)
```

```
(0, 1511526) 1.0
(0, 1535905) 1.0
(0, 1536188) 1.0
(0, 1536494) 1.0
(0, 1536673) 1.0
(0, 1536706) 1.0
(0, 1536708) 1.0
(0, 1536719) 1.0
(0, 1537556) 1.0
(0, 1735021) 1.0
(0, 1841057) 1.3620995589101363
(0, 1841058) 0.6033172156125879
(0, 1841059) 0.0987170127750439
(0, 1841060) 0.11304381023336667
(0, 1841061) -1.5848965493341785
(0, 1841062) -0.6006614250776775
(0, 1841063) -0.01830855508110071
(0, 1841064) 0.6125739213802728
(0, 1841065) 1.060557379035099
(0, 1841066) 0.6114854377943567
(0, 1841067) -0.008598286264049631
(0, 1841068) 3.0
(0, 1841069) 12.0
(1031743, 1213459)
                     1.0
(1031743, 1516498)
                     1.0
(1031743, 1535978)
                     1.0
(1031743, 1536192)
                     1.0
(1031743, 1536515)
                     1.0
(1031743, 1536684)
                     1.0
(1031743, 1536706)
                     1.0
(1031743, 1536708)
                     1.0
(1031743, 1536735)
                     1.0
(1031743, 1536960)
                     1.0
(1031743, 1782673)
                    1.0
(1031743, 1841057)
                     -0.7140143705409286
(1031743, 1841058)
                     -0.17586771506502724
(1031743, 1841059)
                    1.1372882441898646
(1031743, 1841060)
                    1.1224490402248235
(1031743, 1841061)
                    1.4902503559953786
(1031743, 1841062)
                     -1.4413124020845758
(1031743, 1841063)
                     0.43225387756376626
(1031743, 1841064)
                     1.07437806036593
(1031743, 1841065)
                     -0.5411765203166606
(1031743, 1841066)
                    1.0704296452834323
(1031743, 1841067)
                     0.45314994477725185
(1031743, 1841068)
                     9.0
(1031743, 1841069)
                     21.0
(1031743, 1841070)
                     13.0
```

Dari hasil data transforming diatas, terdapat beberapa nilai. Ada yang termasuk ke level crime Low(0-14), medium(15-33), dan high(34 and above)

Plot grafik antara Date(Hour, Day, Month, Year) dengan jumlah crime pada Primary_Type

```
ig, axes = plt.subplots(2, 2, figsize=(20, 10))
```

Sharen_Odd.groupby('Hour').count()['Primary_Type'].plot(kind='bar', title='Crime Per Hour' Sharen_Odd.groupby('Day').count()['Primary_Type'].plot(kind='bar', title='Crime Per Day', Sharen_Odd.groupby('Month').count()['Primary_Type'].plot(kind='bar', title='Crime Per Mont Sharen_Odd.groupby('Year').count()['Primary_Type'].plot(kind='bar', title='Crime Per Year'

Melihat korelasi

corr = Sharen_Odd.corr()
corr.style.background_gradient(cmap='coolwarm')

	Unnamed:_0	ID	Primary_Type	Arrest	Domestic	Beat	
Unnamed:_0	1.000000	0.619242	-0.018518	-0.038335	0.009086	-0.002889	
ID	0.619242	1.000000	-0.124232	-0.047438	0.011389	0.005324	
Primary_Type	-0.018518	-0.124232	1.000000	0.152579	-0.208837	0.006367	
Arrest	-0.038335	-0.047438	0.152579	1.000000	-0.035033	-0.031986	
Domestic	0.009086	0.011389	-0.208837	-0.035033	1.000000	-0.054418	
Beat	-0.002889	0.005324	0.006367	-0.031986	-0.054418	1.000000	
District	-0.002882	0.005378	0.006365	-0.032082	-0.054452	0.999723	
Ward	0.014496	0.020361	-0.010559	-0.023560	-0.081570	0.659778	
Community_Area	-0.015820	-0.024534	0.026138	0.034056	0.096904	-0.485325	
X_Coordinate	0.012545	0.010323	-0.043487	-0.028767	0.017577	-0.547681	
Y_Coordinate	0.008968	0.021032	-0.021171	-0.040441	-0.111847	0.624609	
Year	0.972282	0.668731	-0.020240	-0.045000	0.007442	-0.002826	

A value closer to 0 implies weaker correlation

A value closer to 1 implies stronger positive correlation

A value closer to -1 implies stronger negative correlation

Machine Learning tidak dapat menggunakan teks sederhana. Kita harus mengubah data dari teks menjadi angka. Oleh karena itu, untuk setiap string yang merupakan kelas, kami menetapkan label yang berupa angka.

Misalnya, dalam kumpulan data 'Date' pelanggan, mereka diklasifikasikan menjadi 3 bagian, yaitu high, medium, atau low dan diberi label 0, 1, atau 2. Kami menggunakan kelas LabelEncoder yang disediakan oleh Sklearn untuk ini.

Oleh karena itu, variabel 'Date' akan di LabelEncoder agar bisa dipakai sebagai data numerical.

```
features = []
features = Sharen_Odd.drop(['Date'], axis = 1)

Label_Date = pd.DataFrame(Sharen_Odd, columns = ['Date'])
Label_encorder = LabelEncoder()
Label = Sharen_Odd['Date']

Label = Label_encorder.fit_transform(Label)
print("Nilai 'Date' setelah diberi label encoder : "+str(Label))

Nilai 'Date' setelah diberi label encoder : [339569 146852 455574 ... 56455 380484 1
```

Splitting data for training and testing

```
X = Label.reshape(-1, 1)
y = Sharen_Odd['Primary_Type']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)
print("Training dan testing split was successfulpada dataset HousingData : BERHASIL")

Training dan testing split was successfulpada dataset HousingData : BERHASIL
```

- ▼ 4. Build and Assess the machine learning models (35 pts.)
- Mencoba Model ML

You have to evaluate the machine learning models using at least two performance metrics (for example: precision and recall).

▼ First Model : Logistic Regression

```
LG·=·LogisticRegression()
LG.fit(X_train,y_train)
pred_LG·=·LG.predict(X_test)
confusion_matrix(y_test, pred_LG)
print ('\n · confussion · matrix Logistic Regression :\n',confusion_matrix(y_test, pred_LG))
      confussion matrix Logistic Regression :
      [[0\ 0\ 0\ \dots\ 0\ 0\ 0]
      [0 0 0 ... 0 0 0]
      [0 0 0 ... 0 0 0]
      [0 0 0 ... 0 0 0]
      [0 0 0 ... 0 0 0]
      [0\ 0\ 0\ \dots\ 0\ 0\ 0]]
     /usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_logistic.py:818: Convers
     STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
     Increase the number of iterations (max_iter) or scale the data as shown in:
         https://scikit-learn.org/stable/modules/preprocessing.html
     Please also refer to the documentation for alternative solver options:
         https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
       extra warning msg= LOGISTIC SOLVER CONVERGENCE MSG,
```

```
print ('Accuracy:', accuracy_score(y_test, pred_LG))
```

precision

Accuracy: 0.23304692535461766

Class_report_LogistrikRegression = print(classification_report(y_test, pred_LG))
Class_report_LogistrikRegression

recall f1-score

/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: Undet _warn_prf(average, modifier, msg_start, len(result))

/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: Under _warn_prf(average, modifier, msg_start, len(result))

	precision	1 CCGII	11 30010	Suppor c
0	0.00	0.00	0.00	14860
1	0.00	0.00	0.00	38522
2	0.00	0.00	0.00	8122
3	0.23	1.00	0.38	48089
4	0.00	0.00	0.00	5122
5	0.00	0.00	0.00	1862
6	0.00	0.00	0.00	8175
7	0.00	0.00	0.00	13718
8	0.00	0.00	0.00	22326
9	0.00	0.00	0.00	11932
10	0.00	0.00	0.00	13473
11	0.00	0.00	0.00	945
12	0.00	0.00	0.00	1277
13	0.00	0.00	0.00	145
14	0.00	0.00	0.00	9997
15	0.00	0.00	0.00	831
16	0.00	0.00	0.00	3447
17	0.00	0.00	0.00	161
18	0.00	0.00	0.00	701
19	0.00	0.00	0.00	336
20	0.00	0.00	0.00	493
21	0.00	0.00	0.00	1208
22	0.00	0.00	0.00	145
23	0.00	0.00	0.00	122
24	0.00	0.00	0.00	164
25	0.00	0.00	0.00	72
26	0.00	0.00	0.00	30
27	0.00	0.00	0.00	55
28	0.00	0.00	0.00	5
29	0.00	0.00	0.00	6
30	0.00	0.00	0.00	4
31	0.00	0.00	0.00	2
32	0.00	0.00	0.00	2
				00-50-5
accuracy	0.01	0.00	0.23	206349
macro avg	0.01	0.03	0.01	206349
ghted avg	0.05	0.23	0.09	206349

/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: Under _warn_prf(average, modifier, msg_start, len(result))

Second Model: KNeighborsClassifier (KNN)

mac weight

```
knn = KNN()
knn.fit(X_train, y_train)
pred_KNN = knn.predict(X_test)
confusion matrix(y test, pred KNN)
print ('\n confussion matrix KNN:\n',confusion_matrix(y_test, pred_KNN))
      confussion matrix KNN:
      [[ 2100 4615
                       356 ...
                                    0
                                          0
                                                 0]
                                                0]
      [ 5147 13165
                     1110 ...
                                   0
                                         0
      [ 1097
               2760
                      295 ...
                                         0
                                                0]
      0
                  1
                        0 ...
                                   0
                                         0
                                                01
      0
                  0
                        0 ...
                                   0
                                         0
                                                0]
      0
                  1
                        0 ...
                                         0
                                                0]]
print ('Accuracy KNN:', accuracy_score(y_test, pred_KNN))
     Accuracy KNN: 0.19013903629288245
Class_report_KNN = print(classification_report(y_test, pred_KNN))
Class_report_KNN
     /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: Undet
       _warn_prf(average, modifier, msg_start, len(result))
                    precision
                                  recall f1-score
                                                      support
                 0
                         0.08
                                    0.14
                                               0.10
                                                        14860
                 1
                         0.22
                                    0.34
                                               0.27
                                                        38522
                 2
                         0.05
                                    0.04
                                               0.04
                                                         8122
                 3
                         0.26
                                    0.38
                                               0.31
                                                        48089
                 4
                         0.03
                                    0.01
                                               0.01
                                                         5122
                 5
                         0.16
                                    0.04
                                                         1862
                                               0.06
                 6
                         0.06
                                    0.03
                                               0.04
                                                         8175
                 7
                         0.18
                                    0.14
                                               0.15
                                                        13718
                 8
                         0.13
                                    0.09
                                               0.10
                                                        22326
                 9
                         0.14
                                    0.06
                                               0.08
                                                        11932
                10
                         0.07
                                    0.03
                                               0.04
                                                        13473
                11
                         0.00
                                    0.00
                                               0.00
                                                          945
                12
                                                         1277
                         0.01
                                    0.00
                                               0.00
                13
                         0.00
                                    0.00
                                               0.00
                                                           145
                14
                         0.08
                                               0.04
                                                         9997
                                    0.03
                15
                         0.00
                                    0.00
                                               0.00
                                                           831
                16
                         0.06
                                    0.01
                                               0.01
                                                         3447
                17
                         0.00
                                    0.00
                                               0.00
                                                          161
                18
                         0.09
                                    0.02
                                               0.03
                                                           701
                19
                         0.00
                                    0.00
                                               0.00
                                                           336
                20
                         0.10
                                    0.01
                                               0.01
                                                          493
                21
                         0.03
                                    0.00
                                               0.01
                                                          1208
                22
                         0.00
                                    0.00
                                               0.00
                                                           145
                23
                         0.00
                                    0.00
                                               0.00
                                                           122
                24
                         0.00
                                    0.00
                                               0.00
                                                           164
```

0.00

0.00

72

0.00

25

```
0.00
                               0.00
                                          0.00
           26
                                                        30
           27
                    0.00
                               0.00
                                          0.00
                                                        55
                                                        5
           28
                    0.00
                               0.00
                                          0.00
           29
                                                         6
                    0.00
                               0.00
                                          0.00
                    0.00
                                                         4
           30
                               0.00
                                          0.00
           31
                    0.00
                               0.00
                                          0.00
                                                         2
           32
                    0.00
                               0.00
                                                         2
                                          0.00
                                          0.19
    accuracy
                                                   206349
                                          0.04
                                                   206349
   macro avg
                    0.05
                               0.04
weighted avg
                    0.16
                               0.19
                                          0.16
                                                   206349
```

/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: Undet _warn_prf(average, modifier, msg_start, len(result)) /usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: Undet

_warn_prf(average, modifier, msg_start, len(result))

▼ Third Model : Decision Tree Classifier(DTC)

```
from sklearn.tree import DecisionTreeClassifier
DTC = DecisionTreeClassifier()
DTC.fit(X_train, y_train)
pred_DTC = DTC.predict(X_test)
confusion_matrix(y_test, pred_DTC)
print ('\n confussion matrix DTC:\n',confusion_matrix(y_test, pred_DTC))
      confussion matrix DTC:
                                               0]
      [[ 1553 3541
                      546 ...
                                  0
                                         0
      [ 3770 10119 1655 ...
                                 2
                                        0
                                              0]
         790
             2137
                     400 ...
                                              01
                                              0]
      0
                       1 ...
                                 0
                                        0
           0
                       0 ...
      0
                 0
                                 0
                                        0
                                              0]
                       0 ...
                                              0]]
print ('Accuracy DTC:', accuracy_score(y_test, pred_DTC))
     Accuracy DTC: 0.186208801593417
Class_report_DTC = print(classification_report(y_test, pred_DTC))
Class_report_DTC
     /usr/local/lib/python3.7/dist-packages/sklearn/metrics/ classification.py:1318: Under
       _warn_prf(average, modifier, msg_start, len(result))
```

0.10

0.26

0.05

0.40

0.02

recall f1-score

0.09

0.24

0.05

0.32

0.02

support

14860

38522

48089

8122

5122

precision

0.08

0.22

0.05

0.27

0.03

0

1

2

3

```
5
                               0.05
                    0.10
                                          0.07
                                                     1862
            6
                    0.05
                               0.03
                                          0.04
                                                     8175
            7
                    0.18
                               0.17
                                          0.17
                                                    13718
            8
                    0.13
                               0.09
                                          0.11
                                                    22326
            9
                    0.14
                               0.09
                                          0.11
                                                    11932
           10
                    0.08
                               0.04
                                          0.05
                                                    13473
           11
                    0.00
                               0.00
                                          0.00
                                                      945
          12
                    0.01
                               0.01
                                          0.01
                                                     1277
           13
                    0.00
                               0.00
                                          0.00
                                                      145
           14
                                                     9997
                    0.07
                               0.03
                                          0.04
          15
                    0.00
                               0.00
                                          0.00
                                                      831
           16
                    0.05
                               0.03
                                          0.04
                                                     3447
          17
                    0.01
                               0.01
                                          0.01
                                                      161
                    0.07
                               0.04
                                          0.05
          18
                                                      701
          19
                    0.03
                               0.01
                                          0.02
                                                      336
           20
                    0.07
                               0.04
                                          0.05
                                                      493
           21
                    0.01
                               0.00
                                          0.00
                                                     1208
          22
                    0.00
                               0.00
                                          0.00
                                                      145
           23
                    0.00
                               0.00
                                          0.00
                                                      122
           24
                    0.01
                               0.01
                                          0.01
                                                      164
          25
                    0.00
                               0.00
                                          0.00
                                                       72
           26
                    0.00
                               0.00
                                          0.00
                                                       30
           27
                    0.00
                               0.00
                                          0.00
                                                       55
                               0.00
          28
                    0.00
                                          0.00
                                                        5
           29
                    0.00
                               0.00
                                          0.00
                                                        6
                                                        4
           30
                    0.00
                               0.00
                                          0.00
                                                        2
          31
                    0.00
                               0.00
                                          0.00
           32
                    0.00
                               0.00
                                          0.00
                                                        2
                                          0.19
                                                   206349
    accuracy
   macro avg
                    0.05
                               0.05
                                          0.05
                                                   206349
                    0.16
                               0.19
                                          0.17
                                                   206349
weighted avg
```

```
/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: Undet 
   _warn_prf(average, modifier, msg_start, len(result)) 
/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: Undet 
   _warn_prf(average, modifier, msg_start, len(result))
```

▼ Fourth Model : GaussianNB

```
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]]
```

print ('Accuracy NB:', accuracy_score(y_test, pred_NB))

Accuracy NB: 0.23304692535461766

Class_report_NB = print(classification_report(y_test, pred_NB))
Class report_NB

/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: Undet _warn_prf(average, modifier, msg_start, len(result))

_wai ii_pi i (a	verage, illou			
	precision	recall	f1-score	support
0	0.00	0.00	0.00	14860
1	0.00	0.00	0.00	38522
2	0.00	0.00	0.00	8122
3	0.23	1.00	0.38	48089
4	0.00	0.00	0.00	5122
5	0.00	0.00	0.00	1862
6	0.00	0.00	0.00	8175
7	0.00	0.00	0.00	13718
8	0.00	0.00	0.00	22326
9	0.00	0.00	0.00	11932
10	0.00	0.00	0.00	13473
11	0.00	0.00	0.00	945
12	0.00	0.00	0.00	1277
13	0.00	0.00	0.00	145
14	0.00	0.00	0.00	9997
15	0.00	0.00	0.00	831
16	0.00	0.00	0.00	3447
17	0.00	0.00	0.00	161
18	0.00	0.00	0.00	701
19	0.00	0.00	0.00	336
20	0.00	0.00	0.00	493
21	0.00	0.00	0.00	1208
22	0.00	0.00	0.00	145
23	0.00	0.00	0.00	122
24	0.00	0.00	0.00	164
25	0.00	0.00	0.00	72
26	0.00	0.00	0.00	30
27	0.00	0.00	0.00	55
28	0.00	0.00	0.00	5
29	0.00	0.00	0.00	6
30	0.00	0.00	0.00	4
31	0.00	0.00	0.00	2
32	0.00	0.00	0.00	2
accuracy			0.23	206349
macro avg	0.01	0.03	0.01	206349
weighted avg	0.05	0.23	0.09	206349

/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: Under _warn_prf(average, modifier, msg_start, len(result))

/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: Undet _warn_prf(average, modifier, msg_start, len(result))

▼ 5. Choose your Final Model (3 pts.)

You finally have your final model. Write comments to justify your final model

KESIMPULAN:

Confusion matrix dapat mengetahui keakuratan dari model yang kita buat dengan performance metrics seperti: accuracy, recall, dan precision.

Recall menggambarkan keberhasilan model dalam menemukan kembali sebuah informasi. Maka, recall merupakan rasio prediksi benar positif dibandingkan dengan keseluruhan data yang benar positif.

Pada dataset Sharen_Odd, dapat dilihat bahwa data menginginkan terjadinya True Negatif dan sangat tidak menginginkan terjadinya False Positif. Oleh sebab itu, dalam pemilihan model sebaiknya dapat dilihat dari Precision-nya.

Berdasarkan pengujian terhadap beberapa model ML, saya memilih model ketiga: **Decision Tree Classifier(DTC)**. Dapat dilihat dari nilai precision dan recallnya, Model DTC ini memliki nilai yang lebih tinggi dari model-model lainnya.