Construction of the G_2 algebra

Zhengjiang Lin

November 4, 2018

This reading report most follows contents in Humphreys's Introduction to Lie Algebras and Representation Theory. Our focuses are on the constructions of G_2 algebra, whose Cartan matrices are:

 $\begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix}$

And I filled some details which are not in this book.

1 Criterion for semisimplicity

We begin this reading report with a criterion for reductive Lie algebra's semisimplicity, while it is well-known that we could compute the **Killing form** of an arbitrarily given Lie algebra to test its semisimplicity in general. But for **reductive** Lie algebra, which means that $Rad\ L$, the maximal solvable ideal of L, equals to the center Z(L), we have a result that $L = [LL] \oplus Z(L)$ with [LL] semisimple. Hence, once we could show that Z(L) = 0, the L is semisimple automatically.

Proposition. (a) Let L be reductive. Then $L = [LL] \oplus Z(L)$, and [LL] is semisimple. (b) Let $L \subset \mathfrak{gl}(V)(V \text{ finite dimensional})$ be a nonzero Lie algebra acting irreducibly on V. Then L is reductive, with dim $Z(L) \leq 1$. If in addition $L \subset \mathfrak{sl}(V)$, then L is semisimple.

Proof. (a) If L is abelian, then the conclusion is trivial. Hence, we could suppose that L is reductive but not abelian, so L' = L/Z(L) = L/Rad L is semisimple by definition. Then $ad L \cong ad L' \cong L'$ acts completely reducible on L by **Weyl's theorem**, which states that a finite dimensional representation of a semisimple Lie algebra is completely reducible. Hence, Z(L), an L-submodule of L, has an L-submodule complement M, which also means that M is an ideal of L. Write $L = M \oplus Z(L)$. Then, $[LL] = [MM] \subset M$. But [LL] maps onto L' by the canonical map, so $L = [LL] \oplus Z(L)$ (Or we can use the fact that [MM] = M since $M \cong L/Z(L) \cong L'$ is semisimple, then [LL] = [MM] = M).

(b) We briefly denote $Rad\ L$ as S. Because S is a solvable Lie subalgebra of $\mathfrak{gl}(V)$, according to **Lie's theorem**, S has a common eigenvector v in V, say $s.v = \lambda(s)v$ ($s \in S$) with λ linear. We wants to show that S acts diagonally on V as the scalar $\lambda(s)$ to get $dim\ S \leq 1$. Since L acts irreducibly on V, V has a basis with the form $\{v, x_1.v, \ldots, x_n.v\}$. Hence, we only need to consider the action of S on this basis. Clearly, since S is an ideal, for any $x \in L$, $[x, s] \in S$ (here, $[\cdot, \cdot]$ is the canonical lie bracket of $\mathfrak{gl}(V)$), then

$$s.x.v = \lambda(s)x.v + \lambda([s,x]).v$$

By this formula, we could conclude that the matrices relative to the above basis of all $s \in S$ are triangular, with the only diagonal entry $\lambda(s)$. Nevertheless, the commutators $[SL] \subset S \subset \mathfrak{gl}(V)$ have trace zero, which forces λ to vanish on [SL]. Hence, by the above formula, $S \subset \mathfrak{gl}(V)$ acts diagonally on V as the scalar $\lambda(s)$, then $\dim S \leq 1$ and S = Z(L) by $Z(L) \subset S \subset Z(\mathfrak{gl}(V)) \cap L \subset Z(L)$. Hence L is reductive.

If $L \subset \mathfrak{sl}(V)$, since the only diagonal matrix in $\mathfrak{sl}(V)$ is 0, then S = 0, and L = [LL] is semisimple.

Remark: The technique about **trace** in (b) is also used in proving the **Lie's Theorem** in section 4 of Humphreys's book.

2 Explicit construction of algebra G_2

In general, once we have a fixed root system Φ , with base $\Delta = \{\alpha_1, \alpha_2, \dots, \alpha_l\}$, according to **Serre's Theorem**, we could construct a semisimple Lie algebra with corresponding root system Φ following some relations. In the irreducible root system cases, say G_2 , this Lie algebra is automatically a simple Lie algebra by the correspondence between the direct sum decomposition of a semisimple Lie algebra and irreducible components of its root system.

In Humphreys's book, there are two constructions of G_2 . The first is to regard L, the simple algebra of type G_2 , as a subalgebra of $L_0 = \mathfrak{o}(7)$, the simple algebra of type B_3 . In this way, it just assigns the corresponding root vectors of L to some vectors in L_0 and verifies that L is a 14-dimensional Lie algebra. Then, just directly verify that L acts irreducibly on $V = \mathbb{F}^7$ and use the **criterion of semisimplicity** above to show L is semisimple and type G_2 . The second, which is a more interesting way, is to regard it as the Lie algebra $Der \mathfrak{C}$, where \mathfrak{C} is an 8-dimensional nonassociative algebra and called the octonion algebra. I would like to present the **idea** about the second construction.

Before our construction, we are supposed to describe this $\mathfrak C$ first. Let $\{e_1, e_2, e_3\}$ be the usual standard orthonormal basis of $\mathbb F^3$ (in most cases of Humphreys's book, we could just regard $\mathbb F$ as $\mathbb C$) and the usual inner product for $u=u_1e_1+u_2e_2+u_3e_3, v=v_1e_1+v_2e_2+v_3e_3$ in $\mathbb F^3$ is $u\cdot v=u_1v_1+u_2v_2+u_3v_3$. It is clear that we could also define a cross product in $\mathbb F^3$:

$$u \times v = \det \begin{bmatrix} e_1 & e_2 & e_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix}$$

Then, as a vector space, \mathfrak{C} is the sum of two copies of \mathbb{F}^3 and two copies of \mathbb{F} . For convenience, we could write elements in \mathfrak{C} as 2×2 matrices in the form:

$$\begin{bmatrix} a & v \\ w & b \end{bmatrix}, a, b \in \mathbb{F} \text{ and } v, w \in \mathbb{F}^3$$

We add and multiply scalars just as we would for matrices. However, the product in \mathfrak{C} is given by a little complicate formula:

$$\begin{bmatrix} a & v \\ w & b \end{bmatrix} \begin{bmatrix} a' & v' \\ w' & b' \end{bmatrix} = \begin{bmatrix} aa' - v \cdot w' & av' + b'v + w \times w' \\ a'w + bw' + v \times v' & bb' - w \cdot v' \end{bmatrix}$$

This product is obviously bilinear. Then, fix a basis $\{c_1, \ldots, c_8\}$:

$$c_{1} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, c_{2} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, c_{2+i} = \begin{bmatrix} 0 & e_{i} \\ 0 & 0 \end{bmatrix}, c_{5+i} = \begin{bmatrix} 0 & 0 \\ e_{i} & 0 \end{bmatrix}$$

By careful computation, we could get the multiplication table of \mathfrak{C} :

	c_1	c_2	<i>c</i> ₃	<i>C</i> ₄	<i>c</i> ₅	<i>c</i> ₆	<i>c</i> ₇	<i>c</i> ₈
c_1	c_1	0	c_3	<i>c</i> ₄	c_5	0	0	0
c_2	0	c_1	0	0	0	c_6	c_7	c_8
C3	0	c_3	0	c_8	$-c_{7}$	$-c_1$	0	0
C4	0	C4	$-c_8$	0	c_6	0	$-c_1$	0
25	0	c_5	c_7	$-c_6$	0	0	0	$-c_1$
6	c_6	0	$-c_2$	0	0	0	c_5	$-c_4$
c7	c_7	0	0	$-c_2$	0	$-c_5$	0	c_3
28	c_8	0	0	0	$-c_2$	<i>c</i> 4	$-c_3$	0

Notice that $c_1 + c_2$ acts as identity in this table and check that $\mathfrak{C}_0 = [\mathfrak{C}, \mathfrak{C}]$ (here [c, c'] = cc' - c'c for $c, c' \in \mathfrak{C}$) is a subspace with codimension 1 and is spanned by the basis $\{e_1 - e_2, e_3, e_4, \dots, e_8\}$. By the product rule, any derivation of \mathfrak{C} kills the multiples of $c_1 + c_2$ ($\delta(x) = \delta((c_1 + c_2)x) = \delta(x) + \delta(c_1 + c_2)x$, for all $x \in \mathfrak{C}$). Moreover, a derivation leaves \mathfrak{C}_0 invariant since $\delta([c, c']) = \delta(c)c' + c\delta(c') - \delta(c')c - c'\delta(c) = [\delta(c), c'] + [c, \delta(c')] \in \mathfrak{C}_0$.

Now, set $L = Der \mathfrak{C}$. Obviously, L acts faithfully on \mathfrak{C}_0 because if $x \in L$ acts trivially on \mathfrak{C}_0 , we will get that x acts trivially on the whole \mathfrak{C} since any derivation kills $c_1 + c_2$ and \mathfrak{C}_0 is spanned by $\{c_1 - c_2, c_3, c_4, \ldots, c_8\}$. Denote by $\phi : L \to \mathfrak{gl}(7, \mathbb{F})$ the associated matrix representation with the basis of \mathfrak{C}_0 chosen as above. The idea here is to exhibit some derivations of \mathfrak{C} clearly. As the long roots in the root system of G_2 form a system of type A_2 , L contain a copy of $\mathfrak{sl}(3, \mathbb{F})$. Then, for $x \in \mathfrak{sl}(3, \mathbb{F})$, set:

$$\delta: \mathfrak{sl}(3,\mathbb{F}) \to End(\mathfrak{C}) \quad x \mapsto \delta(x)$$

with

$$\delta(x)(\begin{bmatrix} a & v \\ w & b \end{bmatrix}) = \begin{bmatrix} 0 & x(v) \\ -x^t(w) & 0 \end{bmatrix}$$

By the fact that $det(x(v_1), v_2, v_3) + det(v_1, x(v_2), x_3) + det(v_1, v_2, x(v_3)) = 0$ for $v_1, v_2, v_3 \in \mathbb{F}^3$ and $x \in \mathfrak{sl}(3, \mathbb{F})$ (this fact is also **true in higher dimension** and the key to prove it is that the trace of x is zero and then verify it by choosing the standard basis of $\mathfrak{sl}(n, \mathbb{F})$ and \mathbb{F}^n for higher n), we could prove that these $\delta(x)$ are actually in $Der\mathfrak{C}$. Also, this representation of $\mathfrak{sl}(3, \mathbb{F})$ is actually nontrivial according to this form.

However, in order to construct the whole L which is semisimple, the above representation about $\mathfrak{sl}(3,\mathbb{F})$ is not enough because we want to use the **criterion of semisimplicity** before, for which we are supposed to show that $Der\mathfrak{C}$ acts on \mathfrak{C}_0 irreducibly while $\mathfrak{sl}(3,\mathbb{F})$ kills $c_1 - c_2$. Hence, we need to locate more derivations to show the irreducibility.

Fortunately, we do not need to locate too much derivations thanks to the representation of $\mathfrak{sl}(3,\mathbb{F})$. For example, if we let $w = w_1e_1 + w_2e_2 + w_3e_3$, $v = v_1e_1 + v_2e_2 + v_3e_3$, then:

$$\begin{bmatrix} a & v \\ w & b \end{bmatrix} \mapsto \begin{bmatrix} 0 & v_1 e_1 - v_2 e_2 \\ -w_1 e_1 + w_2 e_2 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 0 & (v_1 - v_2) e_1 \\ (w_1 - w_2) e_2 & 0 \end{bmatrix}$$

by setting
$$x=\begin{bmatrix}1&0&0\\0&-1&0\\0&0&0\end{bmatrix}$$
 and $x=\begin{bmatrix}0&1&0\\0&0&0\\0&0&0\end{bmatrix}$ in $\delta(x)$. Hence, the only trouble is that $\mathfrak{sl}(3,\mathbb{F})$

will kills $c_1 - c_2$ while we could choose elements in $\mathfrak{sl}(3, \mathbb{F})$ and get c_3, \ldots, c_8 in above way. Now, we need a lemma:

Lemma. In any algebra \mathfrak{A} satisfying the alternative laws, i.e. $x^2y = x(xy)$, $yx^2 = (yx)x$, an endomorphism of the following form is actually a derivation: $[L_a, L_b] + [L_a, R_b] + [R_a, R_b]$ $(a, b \in \mathfrak{A}, L_a = left multiplication by a, R_a = right multiplication by a)$

Proof. Let x = a + b, y = c, we could get an equivalent statement of the alternative laws:

$$(ab)c + (ba)c = a(bc) + b(ac)$$
 and $c(ba) + c(ab) = (cb)a + (ca)b$

Denote (xy)z - x(yz) as [x, y, z], which is called associator, then we show this lemma by several steps:

(1) $[L_a, L_b] = L_{[a,b]} - 2[L_a, R_b]$ and $[R_a, R_b] = -R_{[a,b]} - 2[L_a, R_b]$. For any $x \in \mathfrak{U}$, $[L_a, L_b](x) = a(bx) - b(ax)$, $L_{[a,b]} - 2[L_a, R_b](x) = ((ab) - (ba))x - 2(a(xb)) + 2((ax)b)$, then

$$[L_{a}, L_{b}](x) = L_{[a,b]} - 2[L_{a}, R_{b}](x)$$

$$\iff a(bx) - b(ax) = ((ab) - (ba))x - 2(a(xb)) + 2((ax)b)$$

$$\iff (ab)x + (ax)b - a(xb) - b(ax) = ((ab) - (ba))x - 2(a(xb)) + 2((ax)b)$$

$$\iff -b(ax) = -(ba)x - a(xb) + (ax)b$$

$$\iff a(bx) - (ab)x = -a(xb) + (ax)b$$

$$\iff a(bx) - (ax)b = (ab)x - a(xb)$$

$$\iff a(bx) - (ax)b = -(ax)b + a(xb) + a(bx) - a(xb)$$

The $[R_a, R_b] = -R_{[a,b]} - 2[L_a, R_b]$ is similar.

(2) $L_a(xy) = ((L_a + R_a)x)y - x(L_ay)$ and $R_a(xy) = -(R_ax)y + x((L_a + R_a)y)$ for any $x, y \in \mathfrak{A}$.

$$L_a(xy) = ((L_a + R_a)x)y - x(L_ay)$$

$$\iff a(xy) = (ax + xa)y - x(ay)$$

$$\iff a(xy) + x(ay) = (ax + xa)y$$

The $R_a(xy) = -(R_ax)y + x((L_a + R_a)y)$ is similar.

(3) $(L_a - R_a)(xy) = ((L_a - R_a)x)y + x((L_a - R_a)y) + [x, 3a, y].$

According to (2), $(L_a - R_a)(xy) = ((L_a - R_a)x)y + 2(R_ax)y - x(L_ay) + x((L_a - R_a)y) - 2x(L_ay) + (R_ax)y$, and $(R_ax)y - x(L_ay) = [x, a, y]$ by definition.

(4) $[L_a, R_b](x) = [a, b, x] = (ab)x - a(bx) = b(ax) - (ba)x = x(ba) - (xb)a.$

This is quickly from $[L_a, R_b](x) = -[a, x, b] = [a, b, x] = -[b, a, x] = -[x, b, a]$ by the alternativity laws.

(5) The left Moufang identity, i.e. ((xy)x)z = x(y(xz)).

According to (4), $((xy)x)z - x(y(xz)) = ((xy)x)z - (xy)(xz) + (xy)(xz) - x(y(xz)) = [xy, x, z] + [x, y, xz] = -[x, xy, z] - [x, xz, y] = -(x^2y)z + x((xy)z) - (x^2z)y + x((xz)y) = -x^2(yz + zy) + x(x(yz + zy)) = -x^2(yz + zy) + x^2(yz + zy) = 0.$

Moreover, let x = a + b, we could get the **linearized left Moufang identity**:

((ay)b)z + ((by)a)z = a(y(bz)) + b(y(az)).

(6) $[L_a, R_b](xy) = ([L_a, R_b]x)y + x([L_a, R_b]y) + [x, [a, b], y].$

According to (4), $[L_a, R_b](xy) = (ab)(xy) - a(b(xy))$,

$$(ab)(xy) = ((ab)x + x(ab))y - x((ab)y),$$

by the linearized left Moufang identity,

$$a(b(xy)) = ((ab)x)y + ((xb)a)y - x(b(ay)),$$

then, according to (4),

$$[L_a, R_b](xy) = (x(ab) - (xb)a)y - x((ab)y - b(ay))$$

$$= (x(ba) - (xb)a)y + (x([a, b]))y + x(b(ay) - (ba)y) - x(([a, b])y)$$

$$= ([L_a, R_b]x)y + x([L_a, R_b]y) + [x, [a, b], y]$$

(7) $\delta = [L_a, L_b] + [L_a, R_b] + [R_a, R_b]$ is a derivation.

We could rewrite δ as $L_{[a,b]} - R_{[a,b]} - 3[L_a, R_b]$ by (1), then, by (2),

$$(L_{[a,b]} - R_{[a,b]})(xy) - ((L_{[a,b]} - R_{[a,b]})x)y - x((L_{[a,b]} - R_{[a,b]})y) = 3[x, [a,b], y],$$

by (6),

$$3[L_a, R_b](xy) - 3([L_a, R_b]x)y - 3x([L_a, R_b]y) = 3[x, [a, b], y],$$

subtracts these two equations, we get $\delta(xy) - \delta(x)y - x\delta(y) = 3[x, [a, b], y] - 3[x, [a, b], y] = 0$

Now, we show that \mathfrak{C} satisfies the alternative laws $x^2y = x(xy)$ and $yx^2 = (yx)x$ for any $x, y \in \mathfrak{C}$. For $x^2y = x(xy)$,

$$\begin{bmatrix} a & v \\ w & b \end{bmatrix}^{2} \begin{bmatrix} a' & v' \\ w' & b' \end{bmatrix}$$

$$= \begin{bmatrix} (a^{2} - v \cdot w)a' - (a+b)v \cdot w' & (a^{2} - v \cdot w)v' + b'(a+b)v + (a+b)w \times w' \\ a'(a+b)w + (b^{2} - v \cdot w)w' + (a+b)v \times v' & -(a+b)w \cdot v' + b'(b^{2} - v \cdot w) \end{bmatrix}$$

$$= \begin{bmatrix} a & v \\ w & b \end{bmatrix} \begin{pmatrix} \begin{bmatrix} a & v \\ w & b \end{bmatrix} \begin{bmatrix} a' & v' \\ w' & b' \end{bmatrix} \rangle$$

And $yx^2 = (yx)x$ is similar.

Hence, by the above lemma, endomorphisms of the form $[L_a, L_b] + [L_a, R_b] + [R_a, R_b]$ for $a, b \in \mathfrak{C}$ are in $Der\mathfrak{C}$. Now, we could consider the irreducibility. For example, we could consider $\delta_{13} = [L_1, L_3] + [L_1, R_3] + [R_1, R_3]$ (here, for simplicity, we denote L_{c_i} as L_i and R_{c_i} as R_i for $i = 1, 2, \ldots, 8$, $\{c_i\}$ is the basis we chose earlier), and let $w = w_1e_1 + w_2e_2 + w_3e_3$, $v = v_1e_1 + v_2e_2 + v_3e_3$, then:

$$L_{3}\left(\begin{bmatrix} a & v \\ w & b \end{bmatrix}\right) = \left(\begin{bmatrix} -w_{1} & be_{1} \\ v_{2}e_{3} - v_{3}e_{2} & 0 \end{bmatrix}\right) , R_{3}\left(\begin{bmatrix} a & v \\ w & b \end{bmatrix}\right) = \begin{bmatrix} 0 & ae_{1} \\ v_{3}e_{2} - v_{2}e_{3} & -w_{1} \end{bmatrix}$$

$$L_{1}\left(\begin{bmatrix} a & v \\ w & b \end{bmatrix}\right) = \begin{bmatrix} a & v \\ 0 & 0 \end{bmatrix} , R_{1}\left(\begin{bmatrix} a & v \\ w & b \end{bmatrix}\right) = \begin{bmatrix} a & 0 \\ w & 0 \end{bmatrix}$$

$$\delta_{13}\left(\begin{bmatrix} a & v \\ w & b \end{bmatrix}\right) = \begin{bmatrix} -w_1 & (b-a)e_1 \\ v_3e_2 - v_2e_3 & w_1 \end{bmatrix} \in \mathfrak{C}_{\mathfrak{o}}$$

From this example, we could see that the combination of δ_{ij} , $i = 1, 2, j \geq 3$ and the action of $\mathfrak{sl}(3,\mathbb{F})$ could actually show the irreducibility of the action of $Der\mathfrak{C}$ on $\mathfrak{C}_{\mathfrak{o}}$. Thanks to the criterion of semisimplicity, $Der\mathfrak{C}$ is semisimple.

Now, back to the faithful representation of $\mathfrak{sl}(3,\mathbb{F})$ we constructed earlier, and $L=Der\mathfrak{C}$. Denote the image in L of $\mathfrak{sl}(3,\mathbb{F})$ as M and the image of the diagonal subalgebra of $\mathfrak{sl}(3,\mathbb{F})$ as H. It could be directly verified that the matrices in $\mathfrak{gl}(8,\mathbb{F})$ commuting with H all have the form $diag(x, a_3, a_4, a_5, a_6, a_7, a_8)$, where $x \in \mathfrak{gl}(2,\mathbb{F})$, with the basis $c_1, c_2, \ldots c_8$. Notice that such a matrix represents a derivation of \mathfrak{C} only if it is already in H (This fact could be showed by applying the multiplication table of \mathfrak{C} showed earlier. Say, let $\delta = diag(x, a_3, a_4, a_5, a_6, a_7, a_8)$ be a derivation, by $\delta(c_1^2) = \delta(c_1)c_1 + c_1\delta(c_1)$ and $\delta(c_2^2) = \delta(c_2)c_2 + c_2\delta(c_2)$, x must be $0 \in \mathfrak{gl}(2,\mathbb{F})$, and by c_3, \ldots, c_8 to get a relation between a_3, \ldots, a_8 , which shows that δ must be in H). Hence, H is its own centralizer in L. Since the representation of $\mathfrak{sl}(3,\mathbb{F})$ we constructed is faithful, then $Z(M) = Z(\mathfrak{sl}(3,\mathbb{F})) = 0$, $Z(L) = Z(L) \cap H \subset (H \cap Z(M)) = 0$. Hence, $L = Der\mathfrak{C}$ is simple according to the **criterion of semisimplicity**(We could also deduce Z(L) = 0 by facts that L does not contain constant matrices other than 0 while Z(L) consists of constant matrices as showed in the proof of the **criterion of semisimplicity**). And H, which is two dimensional, is exactly the **Cartan subalgebra** of $L = Der\mathfrak{C}$. By our construction, $L \not\supseteq \mathfrak{sl}(3,\mathbb{F})$, which is a system of type A_2 , hence, L could not be type B_2 and A_2 , and the only possibility left is G_2 .

References

- [1] James E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer, (1972), ISBN 0-387-90053-5
- [2] R.D. Schafer, An Introduction to Nonassociative Algebras, An Advanced Subject-Matter Institute in Algebra at Oklahoma State University, (1961)
- [3] Ottmar Loos, Holger P. Petersson and Michel L. Racine, *Inner derivations of alternative algebras over commutative rings*, Algebra and Number Theory, vol.2 (2008)