Math Review Notes—	Asymptotics	and Convergence
--------------------	-------------	-----------------

Gregory Faletto

G. Faletto

Contents

1	Asymptotics and Convergence		3
	1.1	Preliminaries (5.9 and 7.1, Grimmett and Stirzaker)	3
	1.2	Inequalities (8.6 of Pesaran)	4
	1.3	Modes of Convergence (7.2 of Grimmet and Strikazer, 8.2 and 8.4 of Pesaran)	6
	1.4	More on convergence (7.2 of Grimmet and Strikazer)	8
		$1.4.1 \text{Slutsky's Convergence Theorems (8.4.1 of Pesaran, 7.3 of Grimmett and Stirzaker)} \ . \ .$	11
	1.5	Stochastic orders $\mathcal{O}_p(\cdot)$ and $o_p(\cdot)$ (Pesaran 8.5)	12
	1.6	Law of Large Numbers (8.6 of Pesaran)	12
	1.7	The case of dependent and heterogeneously distributed observations (Pesaran 8.8)	14
	1.8	Worked Examples from Math 505A Midterm 2	14

Last updated November 22, 2018

1 Asymptotics and Convergence

These notes are based on my notes from chapter 8 of *Time Series and Panel Data Econometrics* (1st edition) by M. Hashem Pesaran and coursework for Economics 613: Economic and Financial Time Series I at USC, as well as Math 505A at USC and chapter 7 from *Probability and Random Processes* (Grimmet and Stirkazer) 3rd edition.

1.1 Preliminaries (5.9 and 7.1, Grimmett and Stirzaker)

Definition 1.1. Definition 7.1.4, Grimmett and Stirzaker. If for all $x \in [0,1]$ the sequence $\{f_n(x)\}$ of real numbers satisfies $f_n(x) \to f(x)$ as $n \to \infty$ then we say $f_n \to f$ pointwise.

Remark. In practice pointwise convergence is often not useful for functions because a sequence of functions may be continuous while its limit is not. For instance, consider $\{f_n: f_n = x^n \ \forall x \in [0,1]\}$. Then f_n is continuous for all n but

$$\lim_{n \to \infty} f_n = \begin{cases} 0 & x \le 1\\ 1 & x = 1 \end{cases}$$

Instead, the following definition is often more useful.

Definition 1.2. (from class notes.) We say that f_n uniformly converges to f on [a, b] if for every $\epsilon > 0$ there exists N such that for every n > N,

$$\forall x \in [a, b] |f_n(x) - f(x)| < \epsilon$$

Definition 1.3. (**Definition 7.1.5, Grimmett and Stirzaker.**) Let V be a collection of functions mapping [0,1] into \mathbb{R} and assume V is endowed with a function $\|\cdot\|:V\to\mathbb{R}$ satisfying

- (a) $||f|| \ge 0$ for all $f \in V$
- (b) ||f|| = 0 if and only if f is the zero function (or equivalent to it)
- (c) $||af|| = |a| \cdot ||f||$ for all $a \in \mathbb{R}$, $f \in V$
- (d) $||f + g|| \le ||f|| + ||g||$ (triangle inequality)

The function $\|\cdot\|$ is called a **norm**. If $\{f_n\}$ is a sequence of members of V then we say that $f_n \to f$ with respect to the **norm** $\|\cdot\|$ if $\|f_n - f\| \to 0$ as $n \to \infty$.

Definition 1.4. (Definition 7.16, Grimmett and Stirzaker.) Let $\epsilon > 0$ be prescribed, and define the distance between two functions $g, h : [0, 1] \to \mathbb{R}$ by

$$d_{\epsilon}(g,h) = \int_{E} dx$$

where $E = \{u \in [0,1] : |g(u) - h(u)| > \epsilon\}$. We say that $f_n \to f$ in measure if

$$d_{\epsilon}(f_n, f) \to 0$$
 as $n \to \infty$ for all $\epsilon > 0$

Theorem 1. Inversion Theorem (Theorem 5.9.2, Grimmett and Stirzaker). Let X have distribution function F and characteristic function ϕ . Define $\overline{F}: \mathbb{R} \to [0,1]$ by

$$\overline{F}(x) = \frac{1}{2} \left[F(x) + \lim_{y \to x^{-}} F(y) \right]$$

Then

$$\overline{F}(b) - \overline{F}(a) = \lim_{N \to \infty} \int_{-N}^{N} \frac{\exp(-iat) - \exp(-ibt)}{2\pi i t} \cdot \phi(t) dt$$

Proof. See Kingman and Taylor (1966).

Corollary 1.1. Corollary 5.9.3. Random variables X and Y have the same characteristic function if and only if they have the same distribution function.

Proof. Available in Grimmett and Stirzaker section 5.9, pp. 189 - 190.

Definition 1.5. (Definition 5.9.4, Grimmett and Stirzaker.) We say that the sequence F_1, F_2, \ldots of distribution functions converges to the distribution function F (written $F_n \to F$) if $F(x) = \lim_{n \to \infty} F_n(x)$ at each point x where F is continuous.

Theorem 2. Continuity theorem (Thereom 5.9.5; in notes from Friday 10/26, Lecture 28). Supose that F_1, F_2, \ldots is a sequence of distribution functions with corresponding characteristic functions ϕ_1, ϕ_2, \ldots

- (a) If $F_n(x) \to F(x)$ for some distribution function F with characteristic function ϕ (at x where F is continuous), then $\phi_n(t) \to \phi(t)$ for all t.
- (b) Conversely, if $\phi(t) = \lim_{n \to \infty} \phi_n(t)$ exists and $\phi(t)$ is continuous at t = 0, then ϕ is the characteristic function of some distribution function F, and $F_n \to F$.

Proof. See Kingman and Taylor (1966).

1.2 Inequalities (8.6 of Pesaran)

Inequalities

• Probabilities

Lemma 3. Markov's Inequality (Grimmett and Stirzaker p. 311, 319)): For a > 0,

$$\Pr(|X| \ge a) \le \frac{\mathbb{E}(|X|)}{a}$$

Proof. Note that $a \cdot \mathbf{1}_{\{|X| \geq a\}} \leq |X|$, where **1** is the indicator function. Dividing both sides by a and taking expectations yields the result.

Theorem 4. Chebyshev's Inequality: (probability p. 319) Let X be an (integrable) random variable with finite expected value μ and finite nonzero variance σ^2 . Then for any real number k > 0

$$\Pr\left(|X - \mu| \ge k\sigma\right) \le \frac{1}{k^2}$$

(Can be used to demonstrate consistency of estimators: if we can show that as $T \to \infty$ Var $(X) = \sigma^2 \to 0$, then this implies $\Pr(|X - \mu| \ge k\sigma) \to 0$ as $T \to \infty$, showing consistency.)

Theorem 5. Chernoff For $x \ge 0$, a > 0, $\forall t > 0$,

$$\Pr(X \ge a) = \Pr(e^{tx} \ge e^{ta}) \le \frac{\mathbb{E}(e^{tx})}{e^{ta}}$$

• Moments

Theorem 6. Cauchy-Schwarz. (and Bunyakovsky)

$$\mathbb{E}(XY)^2 \le \mathbb{E}(X^2)\mathbb{E}(Y^2)$$

- Krylov

Theorem 7. Jensen's (Grimmett and Stirzaker p.181, 349) If u is convex and $\mathbb{E}X < \infty$,

$$\mathbb{E}(u(X)) \ge u(\mathbb{E}(X))$$

Theorem 8. Holder (Grimmett and Stirzaker p. p. 143, 319) Generalization of Cauchy-Schwarz. For p, q > 1 satisfying 1/p + 1/q = 1 we have

$$\mathbb{E}(|XY|) \le (\mathbb{E}(|X^p|))^{1/p} (\mathbb{E}(|X^q|))^{1/q}$$

Theorem 9. Minkowski (Grimmett and Stirzaker p. p. 143) For $p \geq 1$,

$$[\mathbb{E}(|X+Y|^p)]^{1/p} \le (\mathbb{E}|X^p|)^{1/p} + (\mathbb{E}|Y^p|)^{1/p}$$

- Useful for showing lower order moments are finite (e.g. finite variance implies finite mean). Lemma 10. Lyapunov's Inequality (Grimmett and Stirzaker p. 143). For $0 < r \le s < \infty$,

$$\mathbb{E}(|X|^r)^{1/r} \le \mathbb{E}(|X|^s)^{1/s}$$

Monotone convergence theorem.

Dominated convergence theorem.

1.3 Modes of Convergence (7.2 of Grimmet and Strikazer, 8.2 and 8.4 of Pesaran)

Let $\{X_n\} = \{X_1, X_2, \ldots\}$ and X be random variables defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Definition 1.6. Convergence in probability. $\{X_n\}$ is said to converge in probability to X if

• Grimmett and Strizaker definition:

$$\lim_{n\to\infty} \Pr(|X_n - X| > \epsilon) = 0, \text{ for every } \epsilon > 0$$

• Pesaran definition:

$$\lim_{n\to\infty} \Pr(|X_n - X| < \epsilon) = 1, \text{ for every } \epsilon > 0$$

This mode of convergence is also often denoted by $X_n \xrightarrow{p} X$ and when X is a fixed constant it is referred to as the **probability limit of** X_n , written as $Plim(X_n) = x$, as $n \to \infty$.

The above concept is readily extended to multivariate cases where $\{X_n, n = 1, 2, ...\}$ denote m-dimensional vectors of random variables. Then the condition is

$$\lim_{n\to\infty} \Pr(\|\boldsymbol{X}_n - \boldsymbol{X}\| < \epsilon) = 1, \text{ for every } \epsilon > 0$$

where $\|\cdot\|$ denotes an appropriate norm (say ℓ_2). Convergence in probability is often referred to as "weak convergence" (in contrast to convergence with probability 1, below).

Definition 1.7. Convergence with probability 1 or almost surely. The sequence of random variables $\{X_n\}$ is said to converge with probability 1 (or almost surely) to X if

• (505A class notes definition)

$$\Pr\left(\left\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\right\}\right) = 1$$

(Note: pointwise convergence can hardly ever be shown here and is not useful.)

• Grimmett and Strikazer textbook definition:

$$\Pr\left(\left\{\omega \in \Omega : X_n(\omega) \to X(\omega) \text{ as } n \to \infty\right\}\right) = 1$$

• Pesaran textbook definition:

$$\Pr\left(\lim_{n\to\infty} X_n = X\right) = 1$$

This is often written as $X_n \xrightarrow{w.p.1} X$ or $X_n \xrightarrow{a.s.} X$. An equivalent condition for convergence with probability 1 is given by

$$\lim_{n\to\infty} \Pr(|X_m-X|<\epsilon, \text{ for all } m\geq =n)=1, \text{ for every } \epsilon>0$$

which shows that convergence in probability is a special case of convergence with probability 1 (obtained by setting m = n). Convergence with probability 1 is stronger than convergence in probability and is often referred to as "strong convergence."

Definition 1.8. Convergence in r-th mean. $X_n \to X$ in rth mean where $r \ge 1$ if $\mathbb{E}|X_n^r| < \infty$ for all n and

$$\lim_{n \to \infty} \mathbb{E}(|X_n - X|^r) = 0$$

Convergence in rth mean is often written $X_n \xrightarrow{r} X$.

Definition 1.9. Convergence in Distribution. Let $X_1, X_2, ...$ have distribution functions $F_1(\cdot), F_2(\cdot), ...$ respectively. Then X_n is said to **converge in distribution to** X if

$$\lim_{n \to \infty} \Pr(X_n \le u) = \Pr(X \le u)$$

for all u at which $F_X(x) = \Pr(X \le x)$ is continuous. This can also be written

$$\lim_{n \to \infty} F_n(u) = F(u)$$

for all u at which F is continuous. Convergence in distribution is usually denoted by $X_n \xrightarrow{d} X$, $X_n \xrightarrow{L} X$, or $F_n \implies F$. By the Continuity Theorem (section 1.1), this is equivalent to

$$\lim_{n \to \infty} \phi_{X_n}(t) = \phi_X(t), \quad t \in \mathbb{R}$$

Theorem 11. (Theorem 7.2.3, Grimmett and Stirzaker.) The following implications hold:

- $\bullet \ (X_n \xrightarrow{a.s.} X) \implies (X_n \xrightarrow{p} X)$
- $(X_n \xrightarrow{r} X) \implies (X_n \xrightarrow{p} X)$ for any $r \ge 1$
- $\bullet \ (X_n \xrightarrow{p} X) \implies (X_n \xrightarrow{d} X)$

Also, if $r > s \ge 1$, then $(X_n \xrightarrow{r} X) \implies (X_n \xrightarrow{s} X)$. No other implications hold in general.

Theorem 12. Some exceptions (Theorem 7.2.4).

- If $X_n \xrightarrow{d} c$ where c is constant, then $X_n \xrightarrow{p} c$.
- If $X_n \xrightarrow{p} X$ and $\Pr(|X_n| \le k) = 0$ for all n and some k, then $X_n \xrightarrow{r} X$ for all $r \ge 1$.
- If $P_n(\epsilon) = \Pr(|X_n X| > \epsilon)$ satisfies $\sum_n P_n(\epsilon) < \infty$ for all $\epsilon > 0$, then $X_n \xrightarrow{a.s.} X$.

Proof. (Part (c).) Let $A_n(\epsilon) = \{|X_n - X| > \epsilon\}$ (so that $P_n(\epsilon) = \Pr[A_n(\epsilon))$], and let $B_m(\epsilon) = \bigcup_{n \geq m} A_n(\epsilon)$. Then

$$\Pr(B_m(\epsilon)) \le \sum_{n=m}^{\infty} \Pr(A_n(\epsilon))$$

so $\lim_{m\to\infty} \Pr(B_m(\epsilon)) = 0$ whenever $\sum_n \Pr(A_n(\epsilon)) < \infty$. See also Lemma 14 part (b).

1.4 More on convergence (7.2 of Grimmet and Strikazer)

Other theorems to include: Fatou's Lemma, Fubini's Theorem, Kolmogorov's Maximal Inequality, Kolmogorov Three-Series Test, Linberg Feller Central Limit Theorem, this and more at beginning of Mike's 505A qual solutions.

Definition 1.10. Cauchy Convergence. We say that the sequence $\{X_n : n \ge 1\}$ of random variables on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is almost surely Cauchy convergent if

$$\Pr\left(\left\{\omega \in \Omega : X_m(\omega) - X_n(\omega) \to 0 \text{ as } m, n \to \infty\right\}\right) = 1$$

That is, the set of points ω of the sample space for which the real sequence $\{X_n(\omega) : n \geq 1\}$ is Cauchy convergent is an event having probability 1.

Lemma 13. (Lemma 7.2.6 from Grimmett and Stirzaker)

- (a) If $r > s \ge 1$ and $X_n \xrightarrow{r} X$, then $X_n \xrightarrow{s} X$.
- (b) If $X_n \xrightarrow{1} X$ then $X_n \xrightarrow{p} X$.

The converse assertions fail in general.

Proof. (a) Using Lyapunov's Inequality (Lemma 10), if $r > s \ge 1$

$$\left[\mathbb{E}(|X_n-X|^s)\right]^{1/s} \leq \left[\mathbb{E}(|X_n-X|^r)\right]^{1/r}$$

Therefore if $X_n \xrightarrow{r} X$ (meaning $\lim_{n\to\infty} \mathbb{E}(|X_n-X|^r)=0$), (then $\lim_{n\to\infty} \mathbb{E}(|X_n-X|^s)=0$, so $X_n \xrightarrow{s} X$. We show the converse fails by counterexample:

$$X_n = \begin{cases} n & \text{with probability } n^{(-1/2)(r+s)} \\ 0 & \text{with probability } 1 - n^{(-1/2)(r+s)} \end{cases}$$

Then $\mathbb{E}|X_n^s| = n^{(1/2)(s-r)} \to 0$ and $\mathbb{E}|X_n^r| = n^{(1/2)(r-s)} \to \infty$.

(b) By Markov's Inequality (Lemma 3),

$$\Pr(|X_n - X| > \epsilon) \le \frac{\mathbb{E}|X_n - X|}{\epsilon}$$
 for all $\epsilon > 0$

Therefore if $X_n \xrightarrow{1} X$; that is, $\lim_{n\to\infty} \mathbb{E}(|X_n - X|) = 0$, then $\lim_{n\to\infty} \Pr(|X_n - X| > \epsilon) = 0$ for every $\epsilon > 0$, so $X_n \xrightarrow{p} X$.

To see the converse fails, define an independent sequence $\{X_n\}$ by

$$X_n = \begin{cases} n^3 & \text{with probability } n^{-2} \\ 0 & \text{with probability } 1 - n^{-2} \end{cases}$$

Then $\Pr(|X| > \epsilon) = n^{-2}$ for all large n, and so $X_n \xrightarrow{p} 0$. However, $\mathbb{E}|X_n| = n \to \infty$.

Lemma 14. (Lemma 7.2.10, Grimmett and Stirzaker.) Let $A_n(\epsilon) = \{|X_n - X| > \epsilon\}$ and $B_m(\epsilon) = \bigcup_{n \geq m} A_n(\epsilon)$. Then:

- (a) $X_n \xrightarrow{a.s.} X$ if and only if $\Pr(B_m(\epsilon)) \to 0$ as $m \to \infty$ for all $\epsilon > 0$.
- (b) $X_n \xrightarrow{a.s.} X$ if $\sum_n \Pr(A_n(\epsilon)) < \infty$ for all $\epsilon > 0$.
- (c) If $X_n \xrightarrow{a.s.} X$ then $X_n \xrightarrow{p} X$, but the converse fails in general.

Proof. (a)

- (b) As for Theorem 12 part (c).
- (c) To see the converse fails, define an independent sequence $\{X_n\}$ by

$$X_n = \begin{cases} 1 & \text{with probability } n^{-1} \\ 0 & \text{with probability } 1 - n^{-1} \end{cases}$$

Clearly $X_n \xrightarrow{p} 0$. However, if $0 < \epsilon < 1$,

$$\Pr(B_m(\epsilon)) = 1 - \lim_{r \to \infty} \Pr(X_n = 0 \text{ for all } n \text{ such that } m \le n \le r) \text{ (by Lemma 1.3.5)}$$

$$= 1 - \left(1 - \frac{1}{m}\right) \left(1 - \frac{1}{m+1}\right) \cdots \text{ (by independence)}$$

$$= 1 - \lim_{M \to \infty} \left(\frac{m-1}{m} \cdot \frac{m}{m+1} \cdot \frac{m+1}{m+2} \cdots \frac{M}{M+1}\right)$$

$$= 1 - \lim_{M \to \infty} \frac{m-1}{M+1} = 1$$

and so $\{X_n\}$ does not converge almost surely.

Lemma 15. (Lemma 7.2.12, Grimmett and Stirzaker.) There exist sequences which

- (a) converge almost surely but not in mean,
- (b) converge in mean but not almost surely.

Proof. (a) As for Lemma 13 part (b).

Theorem 16. (Theorem 7.2.13, Grimmett and Stirzaker.) If $X_n \xrightarrow{p} X$, there exists a non-random increasing sequence of integers n_1, n_2, \ldots such that $X_{n_i} \xrightarrow{a.s.} X$ as $i \to \infty$.

Theorem 17. Skorokhod's representation theorem (Theorem 7.2.14, Grimmett and Stirzaker). If $\{X_n\}$ and X with distribution functions $\{F_n\}$ and F are such that $X_n \stackrel{d}{\to} X$ (or equivalently, $F_n \to F$) as $n \to \infty$, then there exists a probability space $(\Omega', \mathcal{F}', \mathbb{P}')$ and random variables $\{Y_n\}$ and Y mapping Ω' into \mathbb{R} such that

- (a) $\{Y_n\}$ and Y have distribution functions $\{F_n\}$ and F
- (b) $Y_n \xrightarrow{a.s.} Y$ as $n \to \infty$

Therefore, although X_n may fail to converge to X in any mode other than in distribution, there exists a sequence $\{Y_n\}$ such that Y_n is distributed identically to X_n for every n, which converges almost surely to a copy of X.

Theorem 18. (Theorem 7.2.18, Grimmett and Stirzaker.) If $X_n \xrightarrow{d} X$ and $g : \mathbb{R} \to \mathbb{R}$ is continuous, then $g(X_n) \xrightarrow{d} g(X)$.

Theorem 19. (Theorem 7.2.19, Grimmett and Stirzaker; same as Portmanteau Theorem?) The following three statements are equivalent:

- (a) $X_n \xrightarrow{d} X$
- (b) $\mathbb{E}[g(X_n)] \to \mathbb{E}[g(X)]$ for all bounded continuous functions g.
- (c) $\mathbb{E}[g(X_n)] \to \mathbb{E}[g(X)]$ for all functions g of the form $g(x) = f(x)\mathbf{1}_{[a,b]}(x)$ where f is continuous on [a,b] and a and b are points of continuity of the distribution function of the random variable X.

Theorem 20. (Grimmett and Stirzaker Theorem 7.3.9.)

- (a) If $X_n \xrightarrow{a.s.} X$ and $Y_n \xrightarrow{a.s.} Y$ then $X_n + Y_n \xrightarrow{a.s.} X + Y$.
- (b) If $X_n \xrightarrow{r} X$ and $Y_n \xrightarrow{r} Y$ then $X_n + Y_n \xrightarrow{r} X + Y$.
- (c) If $X_n \xrightarrow{p} X$ and $Y_n \xrightarrow{p} Y$ then $X_n + Y_n \xrightarrow{p} X + Y$.
- (d) It is not in general true that $X_n + Y_n \xrightarrow{d} X + Y$ whenever $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{d} Y$.

Theorem 21. Borel-Cantelli lemmas (Grimmett and Stirzaker Theorem 7.3.10.) Let $\{A_n\}$ be an infinite sequence of events from some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let $A = \bigcap_n \bigcup_{m=n}^{\infty} A_m = \limsup_{n \to \infty} A_n = \{A_n \text{ i.o.}\}$ be the event that infinitely many of the A_n occur. Then:

- (a) $\Pr(A) = 0$ if $\sum_{n} \Pr(A_n) < \infty$
- (b) $\Pr(A) = 1$ if $\sum_{n} \Pr(A_n) = \infty$ and A_1, A_2, \ldots are independent events.

Proof. (a) We have that $A \subseteq \bigcup_{m=n}^{\infty} A_n$ for all n, so

$$\Pr(A) \le \sum_{m=n}^{\infty} \Pr(A_m) \to 0 \text{ as } n \to \infty$$

whenever $\sum_{n} \Pr(A_n) < \infty$.

(b) One can confirm that

$$A^c = \bigcup_n \bigcap_{m=n}^{\infty} A_m^c$$

But

$$\Pr\left(\bigcap_{m=n}^{\infty}A_{m}^{c}\right)=\lim_{r\to\infty}\Pr\left(\bigcap_{m=n}^{r}A_{m}^{c}\right)=\prod_{m=n}^{\infty}[1-\Pr(A_{m})] \text{ (by independence) } \leq \prod_{m=n}^{\infty}\exp(-\Pr(A_{m}))$$

$$= \exp\left(-\sum_{m=n}^{\infty} \Pr(A_m)\right) = 0$$

whenever $\sum_{n} \Pr(A_n) = \infty$, where the fourth step follows since $1 - x \le e^{-x}$ if $x \ge 0$. Thus

$$\Pr(A^c) = \lim_{n \to \infty} \Pr\left(\bigcap_{m=n}^{\infty} A_m^c\right) = 0$$

so Pr(A) = 1.

Theorem 22. Kolmogorov's Two-Series Theorem. Let $X_1, X_2, ...$ be independent random variables with $\mathbb{E}(X_n) = \mu_n$ and $\operatorname{Var}(X_n) = \sigma_n^2$ such that $\sum_{n=1}^{\infty} \mu_n < \infty$ and $\sum_{n=1}^{\infty} \sigma_n^2 < \infty$. Then $\sum_{n=1}^{\infty} X_n$ converges in \mathbb{R} almost surely.

Proof. Available on wikipedia, https://en.wikipedia.org/wiki/Kolmogorov%27s_two-series_theorem.

1.4.1 Slutsky's Convergence Theorems (8.4.1 of Pesaran, 7.3 of Grimmett and Stirzaker)

Theorem 23. Theorem 6 of Pesaran, Section 8.4.1, p. 173. Let $\{x_t, y_t\}, t = 1, 2, ...$ be a sequence of pairs of random variables with $y_t \xrightarrow{d} y$ and $|y_t - x_t| \xrightarrow{p} 0$. Then $x_t \xrightarrow{d} y$.

Theorem 24. Theorem 7 in Pesaran, on p.318 (section 7.3) of Grimmett and Stirzaker. (Section 8.4.1, p. 174) If $x_t \stackrel{d}{\to} x$ and $y_t \stackrel{p}{\to} c$ where c is a finite constant, then

- (i) $x_t + y_t \xrightarrow{d} x + c$
- (ii) $y_t x_t \xrightarrow{d} cx$
- (iii) $x_t/y_t \xrightarrow{d} x/c$, if $c \neq 0$.

Theorem 25. on p.318 (section 7.3) of Grimmett and Stirzaker. Suppose that $X_n \xrightarrow{d} 0$ and $Y_n \xrightarrow{p} Y$, and let $g: \mathbb{R}^2 \to \mathbb{R}$ be such that g(x,y) is a continuous function of y for all x, and g(x,y) is continuous at x=0 for all y. Then $g(X_n,Y_n) \xrightarrow{p} g(0,Y)$.

Theorem 8. (Grimmett and Stirzaker Section 8.4.1, p. 175)

Theorem 26. Theorem 9 of Pesaran, Section 8.4.1, p. 176: convergence properties of transformed sequences. Suppose $\{x_t\}$, $\{y_t\}$, x, and y are $m \times 1$ vectors of random variables on a probability space, and let $g(\cdot)$ be a continuous vector-valued function. Then

- (i) $x_t \xrightarrow{a.s.} x \implies g(x_t) \xrightarrow{a.s.} g(x)$
- (ii) $\boldsymbol{x}_t \xrightarrow{p} x \implies \boldsymbol{g}(\boldsymbol{x}_t) \xrightarrow{p} \boldsymbol{g}(\boldsymbol{x})$
- (iii) $\boldsymbol{x}_t \xrightarrow{d} x \implies \boldsymbol{g}(\boldsymbol{x}_t) \xrightarrow{d} \boldsymbol{g}(\boldsymbol{x})$
- (iv) $x_t y_t \stackrel{p}{\to} \mathbf{0}$ and $y_t \stackrel{d}{\to} y \implies g(x_t) g(y_t) \stackrel{d}{\to} \mathbf{0}(x)$

Proof. See Serfling (1980) or Rao (1973).

1.5 Stochastic orders $\mathcal{O}_p(\cdot)$ and $o_p(\cdot)$ (Pesaran 8.5)

Definition 1.11. (Pesaran 8.5 Definition 6.) Let $\{a_t\}$ be a sequence of positive numbers and $\{x_t\}$ be a sequence of random variables. Then

(i) $x_t = \mathcal{O}_p(a_t)$, or x_t/a_t is bounded in probability, if for every $\epsilon > 0$ there exist real numbers M_{ϵ} and N_{ϵ} such that

$$\Pr\left(\frac{|x_t|}{a_t} > M_{\epsilon}\right) < \epsilon, \quad \text{for } t > N_{\epsilon}$$

(ii) $x_t = o_p(a_t)$ if

$$\frac{\boldsymbol{x}_t}{a_t} \stackrel{p}{\to} 0$$

1.6 Law of Large Numbers (8.6 of Pesaran)

Theorem 27. (Khinchine) (Pesaran 8.6 Theorem 10.) Suppose that $\{x_t\}$ is a sequence of IID random variables with constant mean, i.e., $\mathbb{E}(x_t) = \mu < \infty$. Then

$$\overline{x}_T = \frac{1}{T} \sum_{t=1}^T x_t \xrightarrow{p} \mu$$

Theorem 28. Weak Law of Large Numbers (Chebyshev) (Pesaran Section 8.6, p. 178, Theorem 11.) Let $\mathbb{E}(x_t) = \mu_t$, $\operatorname{Var}(x_t) = \sigma_t^2$, and $\operatorname{Cov}(x_t, x_t) = 0$, $t \neq s$. Then if

$$\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \sigma_t^2 < \infty$$

we have $\overline{x}_T - \overline{\mu}_T \xrightarrow{p} 0$, where $\overline{\mu}_T = T^{-1} \sum_{t=1}^T \mu_t$.

Theorem 29. Strong Law of Large Numbers 1 (Kolmogorov) (Pesaran 8.8 Theorem 12). Let $\{x_t\}$ be a sequence of independent random variables with $\mathbb{E}(x_t) = \mu_t < \infty$ and $\mathrm{Var}(x_t) = \sigma_t^2$ such that

$$\sum_{t=1}^{\infty} \frac{\sigma_t^2}{t^2} < \infty$$

Then $\overline{x}_T - \overline{\mu}_T \xrightarrow{wp1} 0$. If the independence assumption is replaced by a lack of correlation (i.e. $Cov(x_t, x_s) = 0, t \neq s$), the convergence of $\overline{x}_T - \overline{\mu}_T$ with probability one requires the stronger condition

$$\sum_{t=1}^{\infty} \frac{\sigma_t^2 (\log t)^2}{t^2} < \infty$$

Theorem 30. Strong Law of Large Numbers 2 (Pesaran 8.8 Theorem 13) Suppose that $x_1, x_2, ...$ are independent random variables, and that $\mathbb{E}(x_i) = 0, \mathbb{E}(x_i^4) \leq K \ \forall i$ where K is an arbitrary positive constant. Then \overline{x}_T converges to 0 with probability 1.

Theorem 31. Central Limit Theorem (Grimmett and Stirzaker theorem 5.10.4.) Let $X_1, X_2, ...$ be a sequence of independent identically distributed random variables with finite mean μ and finite non-zero variance σ^2 , and let $S_n = \sum_{i=1}^n X_i$. Then

$$\frac{S_n - n\mu}{\sqrt{n\sigma^2}} \xrightarrow{d} \mathcal{N}(0,1)$$

Theorem 32. (Grimmett and Stirzaker theorem 5.10.5.) Let $X_1, X_2, ...$ be independent random variables satisfying $\mathbb{E}(X_j) = 0$, $\operatorname{Var}(X_j) = \sigma_j^2$, $\mathbb{E}|X_j^3| < \infty$ such that

$$\lim_{n \to \infty} \frac{1}{\sigma(n)^3} \sum_{j=1}^n \mathbb{E}|X_j^3| = 0$$

where $\sigma(n)^2 = \text{Var}(\sum_{j=1}^n X_j) = \sum_{j=1}^n \sigma_j^2$. Then

$$\frac{1}{\sigma(n)} \sum_{j=1}^{n} X_j \xrightarrow{d} \mathcal{N}(0,1)$$

Proof. See Loeve (1977, p. 287) and Grimmett and Stirzaker Problem 5.12.40.

Lemma 33. Lindeberg's Condition: Let $\{X_k\}$ be a sequence of independent (not necessarily identically distributed) random variables with expectations μ_k and finite variances σ_k^2 . Let $s_n^2 = \sum_{k=1}^n \sigma_k^2$. If such a sequence of independent random variables X_k satisfies the condition

$$\lim_{n \to \infty} \frac{1}{s_n^2} \sum_{k=1}^n \mathbb{E}[(X_k - \mu_k)^2) \cdot \mathbf{1}_{\{|X_k - \mu_k| > \epsilon s_n\}}] = 0$$

for all $\epsilon > 0$ then the central limit theorem holds; that is, the random variables

$$Z_n = \frac{1}{s_n} \sum_{k=1}^{n} (X_k - \mu_k)$$

converge in distribution to $\mathcal{N}(0,1)$ as $n \to \infty$.

1.7 The case of dependent and heterogeneously distributed observations (Pesaran 8.8)

Theorem 34. Central limit theorem for martingale difference sequences (Pesaran 8.8 Theorem 28). Let $\{x_t\}$ be a martingale difference sequence with respect to the information set Ω_t . Let $\overline{\sigma}_T^2 = \operatorname{Var}(\sqrt{T}\overline{x}_T) = T^{-1} \sum_{t=1}^T \sigma_t^2$. If $\mathbb{E}(|x_t|^r) < K < \infty$, r > 2 and for all t, and

$$\frac{1}{T} \sum_{t=1}^{T} x_t^2 - \overline{\sigma}_t^2 \xrightarrow{p} 0$$

then $\sqrt{T}\overline{x}_T/\overline{\sigma}_T \xrightarrow{d} \mathcal{N}(0,1)$.

1.8 Worked Examples from Math 505A Midterm 2

(1) (a) Let X_k , $k \ge 1$, be i.i.d. random variables with mean 1 and variance 1. Show that the limit

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{n} X_k}{\sum_{k=1}^{n} X_k^2}$$

exists in an appropriate sense, and identify the limit.

(b) Let $(X_j)_{j>1}$ be i.i.d. uniform on (-1,1). Let

$$Y_n = \frac{\sum_{j=1}^n X_j}{\sum_{j=1}^n X_j^2 + \sum_{j=1}^n X_j^3}$$

Prove that $\lim_{n\to\infty} \sqrt{n}Y_n$ exists in an appropriate sense, and identify the limit.

Solution.

(a) $\lim_{n \to \infty} \frac{\sum_{k=1}^{n} X_k}{\sum_{k=1}^{n} X_k^2} = \lim_{n \to \infty} \frac{n^{-1} \sum_{k=1}^{n} X_k}{n^{-1} \sum_{k=1}^{n} X_k^2}$

Since $X_1, X_2,...$ are i.i.d., $E(X_1^2) = Var(X_1) + (\mathbb{E}(X_1))^2 = 2 < \infty$, we have

$$n^{-1} \sum_{k=1}^{n} X_k \xrightarrow{a.s.} \mathbb{E}(X_1) = 1 \text{ as } n \to \infty$$

by Theorem 7.4.3 (Strong Law of Large Numbers). Also, X_1^2, X_2^2, \ldots are clearly identically distributed, and are independent by Theorem 4.2.3 ("If X and Y are independent, then so are g(X) and g(Y)."). It is clear also that $\mathbb{E}(|X_1^2|) = \mathbb{E}(X_1^2) = \mathrm{Var}(X_1) + \mathbb{E}(X_1)^2 = 1 + 1 = 2 < \infty$. Therefore by the Strong Law of Large Numbers,

$$n^{-1} \sum_{k=1}^{n} X_k^2 \xrightarrow{a.s.} \mathbb{E}(X_1^2) = 2 \text{ as } n \to \infty$$

(From here I had two different ways of finishing the problem.)

• Approach suggested by Lototsky (possibly less rigorous?):

Because we have almost sure convergence in the numerator and denominator, the regular rules of calculus/real analysis apply. That is,

$$\lim_{n \to \infty} \frac{n^{-1} \sum_{k=1}^{n} X_k}{n^{-1} \sum_{k=1}^{n} X_k^2} = \frac{\lim_{n \to \infty} n^{-1} \sum_{k=1}^{n} X_k}{\lim_{n \to \infty} n^{-1} \sum_{k=1}^{n} X_k^2} \xrightarrow{a.s.} \boxed{\frac{1}{2}}$$

• By-the-book approach:

Then, using one of Slutsky's convergence theorems (Theorem 24: "If $x_t \xrightarrow{d} x$ and $y_t \xrightarrow{p} c$ where c is a finite constant, then $x_t/y_t \xrightarrow{d} x/c$, if $c \neq 0$."), we have

$$\frac{n^{-1} \sum_{k=1}^{n} X_k}{n^{-1} \sum_{k=1}^{n} X_k^2} \xrightarrow{d} \frac{\mathbb{E}(X_1)}{\mathbb{E}(X_1^2)} = \frac{\mathbb{E}(X_1)}{\operatorname{Var}(X_1) + \mathbb{E}(X_1)^2} = \frac{1}{1+1} = \frac{1}{2}$$

But then, by Theorem 12 (Theorem 7.2.4(a) in Grimmett and Stirzaker: "If $X_n \xrightarrow{d} c$ where c is constant, then $X_n \xrightarrow{p} c$."), we have $\frac{n^{-1} \sum_{k=1}^n X_k}{n^{-1} \sum_{k=1}^n X_k^2} \xrightarrow{p} 1/2$.

(b)
$$Y_n = \frac{\sum_{j=1}^n X_j}{\sum_{j=1}^n X_j^2 + \sum_{j=1}^n X_j^3} = \frac{n^{-1} \sum_{j=1}^n X_j}{n^{-1} \sum_{j=1}^n X_j^2 + n^{-1} \sum_{j=1}^n X_j^3}$$

Note that $\mathbb{E}(X_1) = 0$, $\mathbb{E}(X_1^2) = \text{Var}(X_1) + \mathbb{E}(X_1)^2 = (1 - -1)^2/12 + 0^2 = 1/3$, $\mathbb{E}(X_1^3) = (1/2) \int_{-1}^1 x^3 dx = 0$. (We derived the formulae for the first three moments of a uniform distribution on Homework 4 problem 2(2).)

$$\implies \sqrt{n}Y_n = \frac{\sqrt{1/3} \left(\sum_{j=1}^n X_j - n\mathbb{E}(X_1) \right) / \sqrt{n \cdot 1/3}}{n^{-1} \sum_{j=1}^n X_j^2 + n^{-1} \sum_{j=1}^n X_j^3}$$

By the Central Limit Theorem,

$$\frac{\sum_{j=1}^{n} X_j - n\mathbb{E}(X_1)}{\sqrt{n \cdot 1/3}} \xrightarrow{d} \mathcal{N}(0,1)$$

By the Law of Large Numbers, since $\mathbb{E}(|X_1^2|) = \mathbb{E}(X_1^2) = 1/3 < \infty$,

$$\frac{1}{n} \sum_{j=1}^{n} X_j^2 \xrightarrow{a.s.} \mathbb{E}(X_1^2) = 1/3$$

By the Law of Large Numbers, since $\mathbb{E}(|X_1^3|)=(1/2)\int_{-1}^1|x^3|dx=\int_0^1x^3dx=1/4<\infty,$

$$\frac{1}{n} \sum_{j=1}^{n} X_j^3 \xrightarrow{a.s.} \mathbb{E}(X_1^3) = 0$$

In the denominator, since we have almost sure convergence, the regular rules of calculus/real analysis apply. That is, using the above results,

$$n^{-1} \sum_{j=1}^{n} X_j^2 + n^{-1} \sum_{j=1}^{n} X_j^3 \xrightarrow{a.s.} 1/3$$

Therefore

$$\sqrt{n}Y_n = \frac{\sqrt{1/3} \left(\sum_{j=1}^n X_j - n\mathbb{E}(X_1) \right) / \sqrt{n \cdot 1/3}}{n^{-1} \sum_{j=1}^n X_j^2 + n^{-1} \sum_{j=1}^n X_j^3} \xrightarrow{d} \frac{\sqrt{1/3}}{1/3} \mathcal{N}(0,1) = \boxed{\mathcal{N}(0,3)}$$

- (2) (a) Consider the sequence $\{X_k, k \geq 1\}$ of random variables such that X_1 is uniform on (0,1) and, given X_k , the distribution of X_{k+1} is uniform on $(0, CX_k)$, where $\sqrt{3} < C < 2$.
 - (i) Show that $\lim_{x\to\infty} X_n = 0$ in ℓ_1 and with probability one, but not in ℓ_2 .
 - (ii) Investigate the same questions for all other values of C > 0.
 - (b) Let a > 0, let $X_n, n \ge 1$ be i.i.d. random variables that are uniform on (0, a), and let $Y_n = \prod_{k=1}^n X_k$. Determine, with a proof, all values of a for which $\lim_{n\to\infty} Y_n = 0$ with probability one. **Solution.**
 - (a) (i) We have that $X_{n+1} \mid X_n \sim U(0, CX_n)$. Therefore

$$\mathbb{E}(X_{n+1}^r \mid X_n) = \frac{1}{CX_n} \int_0^{CX_n} x^r dx = \frac{1}{CX_n} \cdot \frac{x^{r+1}}{r+1} \Big|_0^{CX_n} = \frac{C^r X_n^r}{r+1}$$

$$\implies \mathbb{E}(X_{n+1}^r) = \mathbb{E}[\mathbb{E}(X_{n+1}^r \mid X_n)] = \frac{C^r}{r+1} \cdot \mathbb{E}(X_n^r)$$

Note that $E(X_1^r) = \int_0^1 x^r dr = 1/(r+1)$. Therefore

$$\mathbb{E}(X_{n+1}^r) = \frac{C^r}{r+1} \cdot \mathbb{E}(X_n^r) = \left(\frac{C^r}{r+1}\right)^n \cdot \mathbb{E}(X_1^r) = \left(\frac{C^r}{r+1}\right)^n \cdot \frac{1}{r+1}$$

We would like to show that $X_n \xrightarrow{w.p.1} 0$ and that $X_n \xrightarrow{1} 0$, but that the same result does not follow for the ℓ_2 norm.

• Convergence with probability one: We seek to show that $\Pr(\{\omega \in \Omega : \lim_{n\to\infty} X_n(\omega) = 0\}) = 1$. By Markov's Inequality (Lemma 3), we have

$$\Pr(|X_n| \ge a) \le \frac{\mathbb{E}(X_n)}{a} \ \forall \ a > 0$$

$$\iff \Pr(|X_n| \ge a) \le \left(\frac{C^1}{1+1}\right)^{n-1} \cdot \frac{1}{1+1} \cdot \frac{1}{a} = \left(\frac{C}{2}\right)^{n-1} \cdot \frac{1}{2a} \quad \forall \ a > 0$$

Since $\sqrt{3} < C < 2$, $\sqrt{3}/2 < C/2 < 1$. Since $X_n \in [0, CX_{n-1}]$, $X_n \ge 0$, so $|X_n| = X_n$. Therefore we have

$$\Pr(\lim_{n \to \infty} |X_n| \ge a) = \Pr(\lim_{n \to \infty} X_n \ge a) \le \lim_{n \to \infty} \left(\frac{C}{2}\right)^{n-1} \cdot \frac{1}{2a} = 0 \quad \forall \ a > 0$$

Since $|X_n| \ge 0$, this implies that $\Pr(\lim_{n\to\infty} X_n = 0) = \Pr(\{\omega \in \Omega : \lim_{n\to\infty} X_n(\omega) = 0\}) = 1$, so X_n converges to 0 with probability 1.

• Convergence in ℓ_1 norm: We seek to show that $\lim_{n\to\infty} \mathbb{E}(|X_n|) = 0$. Since $X_n \in [0, CX_{n-1}], X_n \geq 0$, so $|X_n| = X_n$. Therefore

$$\lim_{n \to \infty} \mathbb{E}(|X_n|) = \lim_{n \to \infty} \mathbb{E}(X_n) = \lim_{n \to \infty} \left(\frac{C}{2}\right)^{n-1} \cdot \frac{1}{2}$$

Since $\sqrt{3} < C < 2$, $\sqrt{3}/2 < C/2 < 1$, so C/2 < 1. Therefore we have

$$\lim_{n \to \infty} \mathbb{E}(|X_n|) = \lim_{n \to \infty} \left(\frac{C}{2}\right)^{n-1} \cdot \frac{1}{2} = 0$$

so X_n converges to 0 in 1st mean.

• Convergence in ℓ_2 norm: We seek to show that $\lim_{n\to\infty} \mathbb{E}(|X_n|^2) \neq 0$. We have

$$\lim_{n \to \infty} \mathbb{E}(|X_n|^2) = \lim_{n \to \infty} \mathbb{E}(X_n^2) = \lim_{n \to \infty} \left(\frac{C^2}{3}\right)^{n-1} \cdot \frac{1}{3}$$

Since $\sqrt{3} < C < 2$, $3/3 < C^2/3 < 4/3$, so $C^2/3 > 1$. Therefore we have

$$\lim_{n \to \infty} \mathbb{E}(|X_n|^2) = \lim_{n \to \infty} \left(\frac{C^2}{3}\right)^{n-1} \cdot \frac{1}{3} = \infty \neq 0$$

so X_n does not converge to 0 in 2nd mean.

(ii) From the above, it is clear that for convergence with probability one or in 1st mean we require 0 < C/2 < 1 and for convergence in second mean we require $0 < C^2/3 < 1$. For $0 < C < \sqrt{3}$, we see that X_n would converge to zero in 2nd mean since this would imply that $0 < C^2/3 < 1$. It would also still converge to 0 in 1st mean (and with probability 1) since we would have $(0 < C/2 < \sqrt{3}/2 < 1)$.

For $C = \sqrt{3}$, X_n would still converge to 0 with probability one and in 1st mean for the same reasons. However, it would not converge in 2nd mean because we would have

$$\lim_{n \to \infty} \mathbb{E}(|X_n|^2) = \lim_{n \to \infty} \left(\frac{\sqrt{3}^2}{3}\right)^{n-1} \cdot \frac{1}{3} = \frac{1}{3} \neq 0$$

For $C \ge 2$, it would diverge in all three cases, since in this case $C/2 \ge 2/2 = 1$ and $C^2/3 \ge 4/3 > 1$.

(b) Probably won't be on midterm. Note that

$$\lim_{n \to \infty} Y_n = \lim_{n \to \infty} \prod_{k=1}^n X_k = 0 \iff \log(Y_n) = \log\left(\prod_{k=1}^n X_k\right) = \sum_{k=1}^n \log(X_k) \to -\infty$$

Note that

$$\mathbb{E}[\log(Y_n)] = \mathbb{E}\left(\sum_{k=1}^n \log(X_k)\right) = \sum_{k=1}^n \mathbb{E}[\log(X_k)] = \sum_{k=1}^n \mathbb{E}[\log(X_1)] = \sum_{k=1}^n \int_0^a (\log(x)/a) dx$$
$$= \sum_{k=1}^n \frac{1}{a} \left[x \log x - x\right]_0^a = \sum_{k=1}^n \frac{a \log a - a}{a} = \sum_{k=1}^n (\log(a) - 1) = n(\log(a) - 1)$$

As $n \to \infty$ we have

$$\mathbb{E}[\log(Y_n)] = \begin{cases} -\infty & a < e \\ 0 & a = e \\ \infty & a > e \end{cases}$$

Since $\mathbb{E}[\log(Y_n)] \to \infty$ for a < e, we have $\lim_{n \to \infty} Y_n = 0$ for a < 3. Therefore

$$\lim_{n \to \infty} Y_n = \lim_{n \to \infty} \prod_{k=1}^n X_k = 0 \iff a < e.$$