Departamento de Análisis Matemático

1º de Matemáticas. Examen de Cálculo, julio 2001

Problema 1. (a) Sea $f: \mathbb{R} \to \mathbb{R}$, dada por $f(x) = (2 - \cos x)^{1/x^2}$, $f(0) = \sqrt{e}$. Calcular f'(0)

(b) Calcular el límite:
$$\lim_{x\to 0} \left(\frac{3 \sin x - 3x \cos x}{x^3}\right)^{1/x}$$

Problema 2. (a) Estudiar, según los valores de α , la convergencia de la serie $\sum_{n\geq 1} \left(\frac{2\cdot 4\cdot 6\cdots (2n)}{5\cdot 7\cdots (2n+3)}\right)^{\alpha}$.

(b) Estudiar, según los valores de α , el número de ceros, contando multiplicidades cuando proceda, de la función polinómica $f(x) = 3x^5 + 5x^3 - 30x - \alpha$. Explica con detalle lo que haces.

Problema 3. Estudiar la convergencia uniforme en intervalos de la forma [0,a] y $[a,+\infty[$, (a>0), de la sucesión de funciones $\{f_n\}$ definidas para todo $x \in \mathbb{R}_o$ por $f_n(x) = \frac{2nx^2}{n^2x^4+1}$. Explica con detalle lo que haces.

Problema 4. (a) Sea $z = \cos(xy) + y \cos x$ donde $x = u^2 + v$, $y = u - v^2$. Calcular $\frac{\partial z}{\partial u}$ en el punto (u, v) = (1, 1).

(b) Sea z = z(x, y) la función dada implícitamente por $yz^4 + x^2z^3 - e^{xyz} = 0$. Calcular $\frac{\partial^2 z}{\partial x \partial y}$ en el punto (x, y) = (1, 0).

Problema 5. (a) Calcular el volumen de la región $A \subseteq \mathbb{R}^3$ comprendida entre el plano XY y el paraboloide $z = x^2 + y^2$ y que queda dentro del cilindro $x^2 + y^2 - 2x = 0$. Es decir:

$$A = \{(x, y, z) \in \mathbb{R}^3 : 0 \le z \le x^2 + y^2, \ x^2 + y^2 - 2x \le 0\}$$

(b) Calcular $\iint_D \sqrt{xy} d(x,y)$, donde $D = \{(x,y) \in \mathbb{R}^2 : (x^2 + y^2)^4 \leqslant xy, \ 0 \leqslant x, \ 0 \leqslant y\}$.

Problema 6. Calcular la mínima distancia del origen a la superficie de ecuación $xy^2z^3=2$.

Granada, 5 de Julio de 2001.