Universidad Nacional de Ingeniería Ciencias de la Computación Análisis Asintótico

Yuri Nuñez Medrano ynunezm@gmail.com

Resumen

Se evaluará el tiempo de ejecucion (complejidad del algorítmo) en los diferentes casos mejor, peor y promedio. Se analizara el tipo de notación asíntotica "La Gran O".

1. Introducción

El analisis del algoritmo lo aproximaremos a una función en³ sus diferentes casos, que pudiera tener el algorímo median-⁴ te la aproximación a una función conocida, con el análisis⁵ asintótico. En una primera instancia con el limite superior⁶ con la "Gran O"

2. Analisis Asintótico

"Asintótico dicho de una curva, que se acerca de continuo a una recta o a otra curva sin llegar a nunca encontrarla" [DRA, 2001].

Notación Asintótica 2.1.

Tiene como objeto simplificar el análisis de tiempo de ejecución mediante la eliminación de detalles que pueden verse afectados por especificaciones en la implementación y el Hw. Eim. similud de redondeo

$$1000001 = 1000000$$

$$3n^2=n^2$$

Capturar la escencia: como el tiempo de ejecución aumenta, con el input en el limite.

Asitóticamente los algoritmos más eficientes son mejores para todos los inputs.

2.2. Caso Mejor, Peor y Promedio

Cada caso tiene su complejidad con su tiempo de ejecución de un algoritmo.

Ejm: Evaluar el tiempo de ejecución del algoritmo 1 y luego el caso mejor, peor y promedio.

Algorithm 1: INSERTION SORT(A,n)

Input: Array A de n elementos de números

Output: Array A ordenado

1 for
$$j = 2$$
 to n do
2 $key = A[j]$
3 $i = j - 1$
4 while $i > 0$ and $A[i] > key$ do
5 $A[i + 1] = A[i]$
6 $i = i - 1$
7 $A[i + 1] = key$

Al evaluar la complejidad linea por línea encontraremos los costos c_i donde $i = 1, 2, 3, \dots$ y t_i es para evaluar el caso peor, mejor e intermedio.

1:
$$c_1n$$

2: $c_2(n-1)$
3: $c_3(n-1)$
4: $c_4 \sum_{j=2}^{n} t_j$
5: $c_5 \sum_{j=2}^{n} (t_j - 1)$
6: $c_6 \sum_{j=2}^{n} (t_j - 1)$
7: $c_7(n-1)$

El tiempo de ejecucion T(n) es la suma de cada tiempo del algoritmo.

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^n t_j + c_5 \sum_{j=2}^n (t_j-1) + c_6 \sum_{j=2}^n (t_j-1) + c_7 (n-1)$$
 Reemplazando las sumatorias
$$T(n) = c_1 n + c_2 n - c_2 + c_3 n - c_3 + c_4 (\frac{n^2}{2} + \frac{n}{2} - 1) + c_5 (\frac{n^2}{2} - \frac{n}{2}) + c_6 (\frac{n^2}{2} - \frac{n}{2}) + c_7 n - c_7$$

$$T(n) = -(c_2 + c_3 + c_4 + c_7) + n(c_1 + c_2 + c_3 + c_7 + \frac{c_4}{2} - \frac{c_5}{2} - \frac{c_6}{2}) + n^2 (\frac{c_4}{2} + \frac{c_5}{2} + \frac{c_6}{2})$$
 La solución tiene la siguiente forma.

$$-k_0 + nk_1 + n^2k_2$$

Evaluando los diferentes casos y reemplazando:

^{*}Escuela de Ciencias de la Computación, 27-08-15

Figura 1: gran O

Figura 2: 2n+6

- Caso mejor: Cuando los elementos ya estan ordenados $t_i = 1$ tiempo de ejecución = f(n), tiempo lineal.
- Caso peor: Cuando los elementos estan ordenado de manera inversa $t_j = j$ tiempo de ejecución = $f(n^2)$, tiempo cuadratico.
- Caso promedio: Cuando aproximadamente $t_j = j/2$ tiempo de ejecución = $f(n^2)$, tiempo cuadratico.

2.3. Notación "Gran O"

Asintóticamente el límite superior

f(n) = O(g(n)), Si existe c ctes y n_0 , de tal manera que $f(n) \le cg(n)$, $\forall n \ge n_0$.

f(n) y g(n) son funciones sobre numeros no negativos.

Es usada para el peor de los casos, en la figura 1.

Ejm: Para funciones f(n) y g(n) que tiene c constantes positivos y n_0 , de tal manera que $f(n) \le cg(n)$ para $n \ge n_0$, se define la pregunta. $i \ge 2n + 6$ es O(n)?

en la figura 2.

f(n) = O(g(n))

f(n) = cg(n)

si probamos con c = 4.

4n = 2n + 6

 $n_0 = \frac{6}{2}$

Ejm: Se define la pregunta in^2 es O(n)?

en la figura 3, observamos que n^2 no es O(n) porque no hay c y $n{\ge}n_0$ de tal manera que no cumple $f(n){\le}cg(n)$ para $n{\ge}n_0$

Figura 3: n^2

En la figura 3 se ilustra que no importa que tan grande sea elegido una "c" existe un n suficientemente grade $n^2 > cn$.

 $f(n) \le g(n)$

 $f(n) = n^2$

 $f(n) \not\leq cg(n)$

 $n^2 \not< O(n)$

 $n^2 > cn$

Regla Simple

Podemos definir una regla simple.

50nlogn es O(nlogn)

7n-3 es O(n)

 $8n^2lgn + 5n^2 + n$ es $O(n^2lgn)$

 $50nlogn es O(n^5)$

Aunque 50nlgn es $O(n^5)$, se espera que la aproximación sea la menor posible.

Analisis Asintótico del tiempo de ejecución

- Uso de la notación-O para expresar el número de operaciones primitivas ejecutadas en función del tamaño del input.
- Comparación el tiempo de ejecución asintótico.
 - Un algorítmo ejecuta en un tiempo O(n) es mejor que otro que ejecuta a un tiempo $O(n^2)$.
 - Jerarquia de funciones: $logn < n < n^2 < n^3 < 2^n$.

Advertencia tener cuidado con los factores de costantes muy grandes.

• Un algoritmo ejecuta en un tiempo 1000000n es todavia O(n) pero puede ser menos eficiente que una ejecución en tiempo $2n^2$, que es $O(n^2)$.

Ejr: Evaluar el tiempo de ejecución del algoritmo 2 y luego el caso mejor, peor y promedio. Luego diseñar un nuevo algoritmo PROM_PREFIJO2(X,n), la que sera mas optimo que el anterior, para que se evalue su tiempo de ejecución y su caso mejor, peor y promedio.

Algorithm 2: PROM PREFIJO(X,n)

Input: Array X de n elementos de números

 $\begin{aligned} \textbf{Output} \colon \text{Array A de n elementos, de talmanera que A[i]} \\ \text{es el promedio de X[0]}...\text{X[i]} \end{aligned}$

```
\begin{array}{c|cccc} \mathbf{1} & \mathbf{for} \ i=0 \ \mathbf{to} \ n-1 \ \mathbf{do} \\ \mathbf{2} & a=0 \\ \mathbf{3} & \mathbf{for} \ j=0 \ \mathbf{to} \ i \ \mathbf{do} \\ \mathbf{4} & a=a+X[j] \\ \mathbf{5} & A[i]=a/(i+1) \end{array}
```

6 return A

Referencias

[DRA, 2001] DRA, R. A. E. (2001). Diccionario de la Real Academia Española. Espasa Calpe.

[H.Cormen et al., 2009] H.Cormen, T., Leiserson, C., and Riverson, R. L. (2009). *Algorithms*. The MIT Press.