Laboratorio de Fundamentos de Computadores 1

Práctica 1 - Grupo B (25/11/20)

Apellidos y nombre del alumno

1. Diseño

Funciones de conmutación

Grey			Binario		
X2	X1	X0	Z2	Z1	ZO
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	1
0	1	1	0	1	0
1	0	0	1	1	1
1	0	1	1	1	0
1	1	0	1	0	0
1	1	1	1	0	1

Mapas de Karnaugh y expresiones simplificadas:

Z2 = X2

Para la salida Z0:

$$Z0 = X2 \oplus X1 \oplus X0 = (X2 \oplus X1) \oplus X0$$

2. Esquemático

3. Programa VHDL

• Imagen de la ventana "Project" con los archivos compilados

Código VHDL

```
ENTITY grey IS

PORT(x2, x1, x0 : IN bit; z2, z1, z0 : INOUT bit);

END grey;

ARCHITECTURE estructural OF grey IS

COMPONENT xor2

PORT(e1, e2 : IN bit; s : OUT bit);

END COMPONENT;

BEGIN

xor21 : xor2 PORT MAP(x2, x1, z1);

xor22 : xor2 PORT MAP(z1, x0, z0);

z2 <= x2;

END estructural;
```

4. Entrada/salida

• Señales de entrada

```
force x2 1 40,
force x1 1 20, 0 40, 1 60, 0 80
force x0 1 10, 0 20, 1 30, 0 40, 1 50, 0 60, 1 70, 0 80
```

• Gráfica entrada/salida

